

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶ : C12N 15/12, C07K 14/22, 16/12, A61K 35/74, 39/40		A2	(11) Numéro de publication internationale: WO 95/33049 (43) Date de publication internationale: 7 décembre 1995 (07.12.95)
(21) Numéro de la demande internationale: PCT/FR95/00701 (22) Date de dépôt international: 30 mai 1995 (30.05.95)		(81) Etats désignés: AU, CA, FI, HU, JP, NO, US, brevet européen (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Données relatives à la priorité: 94/06594 31 mai 1994 (31.05.94) FR		Publiée <i>Sans rapport de recherche internationale, sera republiée dès réception de ce rapport.</i>	
(71) Déposants (<i>pour tous les Etats désignés sauf US</i>): PASTEUR MERIEUX SERUMS ET VACCINS [FR/FR]; 58, avenue Leclerc, F-69007 Lyon (FR). TRANSGENE S.A. [FR/FR]; 11, rue de Molsheim, F-67000 Strasbourg (FR).			
(72) Inventeurs; et			
(75) Inventeurs/Déposants (<i>US seulement</i>): MILLET, Marie-José, Bernadette, Jacqueline [FR/FR]; 70, cours Emile-Zola, F-69100 Villeurbanne (FR). LISSOLO, Ling [FR/FR]; 691, rue du Vallon, F-69280 Marcy-L'Etoile (FR). MAZARIN, Véronique [FR/FR]; 11, rue Poutteau, F-69001 Lyon (FR). LEGRAIN, Michèle [FR/FR]; 107, grande-rue, F-67120 Dorlisheim (FR). JACOBS, Eric [FR/FR]; 107, grande-rue, F-67120 Dorlisheim (FR).			
(74) Mandataires: BERNASCONI, Jean etc.; Cabinet Lavoix, 2, place d'Estienne-d'Orves, F-75441 Paris Cédex 09 (FR).			

(54) Title: Tbp2 FRAGMENTS OF THE TRANSFERRINE RECEPTOR OF NEISSERIA MENINGITIDIS

(54) Titre: FRAGMENTS Tbp2 DU RECEPTEUR TRANSFERRINE DE NEISSERIA MENINGITIDIS

(57) Abstract

Polypeptide having a sequence of amino acids derived from that of the Tbp2 subunit of the transferrine receptor of a *Neisseria meningitidis* strain of the IM2169 or IM2394 type, the first, second and third domains being defined by maximum homologous alignment on the Tbp2 subunit sequence of the respective IM2169 or IM2394 reference strain, especially by total or partial deletion of at least one domain of said Tbp2 subunit of the IM2169 or IM2394 type provided the first and second domains are not fully deleted at the same time.

(57) Abrégé

L'invention a pour objet un polypeptide ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 du récepteur transferrine d'une souche de *Neisseria meningitidis* de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, notamment par déletion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, à condition que le premier et le deuxième domaine ne soient pas simultanément et totalement déletés.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publant des demandes internationales en vertu du PCT.

AT	Autriche	GB	Royaume-Uni	MR	Mauritanie
AU	Australie	GE	Géorgie	MW	Malawi
BB	Barbade	GN	Guinée	NE	Niger
BE	Belgique	GR	Grèce	NL	Pays-Bas
BF	Burkina Faso	HU	Hongrie	NO	Norvège
BG	Bulgarie	IE	Irlande	NZ	Nouvelle-Zélande
BJ	Bénin	IT	Italie	PL	Pologne
BR	Brésil	JP	Japon	PT	Portugal
BY	Bélarus	KE	Kenya	RO	Roumanie
CA	Canada	KG	Kirghizistan	RU	Fédération de Russie
CF	République centrafricaine	KP	République populaire démocratique de Corée	SD	Soudan
CG	Congo	KR	République de Corée	SE	Suède
CH	Suisse	KZ	Kazakhstan	SI	Slovénie
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovaquie
CM	Cameroun	LK	Sri Lanka	SN	Sénégal
CN	Chine	LU	Luxembourg	TD	Tchad
CS	Tchécoslovaquie	LV	Lettonie	TG	Togo
CZ	République tchèque	MC	Monaco	TJ	Tadjikistan
DE	Allemagne	MD	République de Moldova	TT	Trinité-et-Tobago
DK	Danemark	MG	Madagascar	UA	Ukraine
ES	Espagne	ML	Mali	US	Etats-Unis d'Amérique
FI	Finlande	MN	Mongolie	UZ	Ouzbékistan
FR	France			VN	Viet Nam
GA	Gabon				

FRAGMENTS Tbp2 DU RECEPTEUR TRANSFERRINE DE NEISSERIA MENINGITIDIS

La présente invention a pour objet des polypeptides dérivés de la sous-unité Tbp2 du récepteur transferrine de *Neisseria meningitidis*, leur utilisation à titre thérapeutique notamment vaccinal, ainsi que les fragments d'ADN codant pour ces polypeptides.

5

D'une manière générale, les méningites sont soit d'origine virale, soit d'origine bactérienne. Les bactéries principalement responsables sont : *N. meningitidis* et *Haemophilus influenzae*, respectivement impliquées dans environ 40 et 50 % des cas de méningites bactériennes.

10

On dénombre en France, environ 600 à 800 cas par an de méningites à *N. meningitidis*. Aux Etats-Unis, le nombre de cas s'élève à environ 2 500 à 3 000 par an.

15

L'espèce *N. meningitidis* est subdivisée en sérogroupes selon la nature des polysaccharides capsulaires. Bien qu'il existe une douzaine de sérogroupes, 90 % des cas de méningites sont attribuables à 3 sérogroupes : A, B et C.

20

Il existe des vaccins efficaces à base de polysaccharides capsulaires pour prévenir les méningites à *N. meningitidis* sérogroupes A et C. Ces polysaccharides tels quels ne sont que peu ou pas immunogéniques chez les enfants de moins de 2 ans et n'induisent pas de mémoire immunitaire. Toutefois, ces inconvénients peuvent être surmontés en conjuguant ces polysaccharides à une protéine porteuse.

25

Par contre, le polysaccharide de *N. meningitidis* groupe B n'est pas ou peu immunogène chez l'homme, qu'il soit sous forme conjuguée ou non. Ainsi, il apparaît hautement souhaitable de rechercher un vaccin à l'encontre des méningites induites par *N. meningitidis* notamment du sérogroupe B autre qu'un vaccin à base de polysaccharide.

30

A cette fin, différentes protéines de la membrane externe de *N. meningitidis* ont déjà

été proposées. Il s'agit en particulier du récepteur membranaire de la transferrine humaine.

35

D'une manière générale, la grande majorité des bactéries ont besoin de fer pour leur croissance et elles ont développé des systèmes spécifiques d'acquisition de ce métal. En ce qui concerne notamment *N. meningitidis* qui est un pathogène strict de l'homme, le fer ne peut être prélevé qu'à partir de protéines humaines de transport du fer telles que la transferrine et la lactoferrine puisque la quantité de fer sous forme libre est négligeable chez

l'homme (de l'ordre de 10^{-18} M), en tout cas insuffisante pour permettre la croissance bactérienne.

5 Ainsi, *N. meningitidis* possède un récepteur de la transferrine humaine et un récepteur de la lactoferrine humaine qui lui permettent de fixer ces protéines chélatrices du fer et de capter par la suite le fer nécessaire à sa croissance.

10 Le récepteur de la transferrine de la souche *N. meningitidis* B16B6 a été purifié par Schryvers et al (WO 90/12591) à partir d'un extrait membranaire. Cette protéine telle que purifiée apparaît essentiellement constituée de 2 types de polypeptides : un polypeptide d'un poids moléculaire apparent élevé de 100 kD et un polypeptide d'un poids moléculaire apparent moindre d'environ 70 kD, telles que révélés après électrophorèse sur gel de polyacrylamide en présence de SDS.

15 15 Le produit de la purification notamment mise en oeuvre par Schryvers est par définition arbitraire et pour les besoins de la présente demande de brevet, appelé récepteur de la transferrine et les polypeptides le constituant, des sous-unités. Dans la suite du texte, les sous-unités de poids moléculaire élevé et de poids moléculaire moindre sont respectivement appelées Tbp1 et Tbp2.

20 20 D'autre part, depuis les travaux pionniers de Schryvers et al, on a découvert qu'il existait en fait au moins 2 types de souches qui diffèrent par la constitution de leurs récepteurs de la transferrine respectifs. Ceci a été mis en évidence en étudiant des extraits membranaires de plusieurs dizaines de souches de *N. meningitidis* d'origines variées. Ces extraits membranaires ont tout d'abord été soumis à une électrophorèse sur gel de polyacrylamide en présence de SDS, puis électrotransférés sur feuilles de nitrocellulose. Ces feuilles de nitrocellulose ont été incubées :

- 30 a) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche *N. meningitidis* B16B6, aussi appelée IM2394 ;
- 35 b) en présence d'un antisérum de lapin dirigé contre le récepteur de la transferrine purifié à partir de la souche *N. meningitidis* M982, aussi appelée IM2169 ; ou
- c) en présence de la transferrine humaine conjuguée à la peroxydase.

- 3 -

En ce qui concerne a) et b), la reconnaissance des sous-unités du récepteur de la transferrine est révélée par addition d'un anticorps anti-immunoglobulines de lapin couplé à la peroxydase, puis par addition du substrat de cette enzyme.

5 Les tableaux I et II ci-dessous indiquent le profil de certaines souches représentatives tel qu'il apparaît sur gel de polyacrylamide à 7,5 % après électrophorèse en présence de SDS ; les bandes sont caractérisées par leur poids moléculaires apparents exprimés en kilodaltons (kD) :

10

	Souches			
Tableau I	2394 (B; 2a; P1.2:L2,3) 2228 (B; nd) 2170 (B; 2a:P1.1:L3)	2234 (Y; nd) 2154 (C; nd) 2448 (B; nd)	550 (C; 2a:) 179 (C; 2a:P1.2)	
Détection avec l'antisérum anti-récepteur 2394	93 68	93 69	99 69	
Détection avec l'antisérum anti-récepteur 2169	93	93	99	
Détection avec la transferrine peroxydase	68	69	69	

N.B. : Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

15

- 4 -

	Souches								
Tableau II	2169 (B:9:P1.9)	1000 (B:nd)	1604 (B:nd)	132 (C:15:P1.16)	1001 (A:4:P1.9)	876 (B:19:P1.6)	1951 (A:nd)	2449 (B:nd)	867 (B:2b:P1.2)
Détection avec l'antisérum anti-récepteur 2394	96	98	98	98	98	98	96	94	93
Détection avec l'antisérum anti-récepteur 2169	96	98	98	98	98	98	96	94	93
Détection avec la transferrine peroxydase	87	85	83	81	79	88	87	85	85

N.B. : Entre parenthèses sont indiqués dans l'ordre le sérogroupe, le sérotype, le sous-type et l'immunotype.

Les résultats répertoriés dans les 2 premières lignes des tableaux montrent qu'il existe 2 types de souches :

Le premier type (Tableau I) correspond à des souches qui possèdent un récepteur
5 dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2394 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2169.

Le second type (Tableau II) correspond à des souches qui possèdent un récepteur
10 dont les 2 sous-unités dans les conditions expérimentales utilisées, sont reconnues par l'antisérum anti-récepteur IM2169 tandis que seule la sous-unité de haut poids moléculaire est reconnue par l'antisérum anti-récepteur IM2394.

En conséquence, il existe une diversité antigénique au niveau de la sous-unité de
15 moindre poids moléculaire. Cette diversité est toutefois restreinte puisqu'elle se résout en 2 grands types, contrairement à ce qui est suggéré par Griffiths et al, FEMS Microbiol. Lett. (1990) 69 : 31.

Conformément à cela, il sera fait référence dans la suite du texte à des souches de
20 type IM2169 ou de type IM2394.

Outre les souches cités dans le tableau II, des souches de type IM2169 sont par
exemples les souches S3032 (12, P 1.12.16), 6940 (19, P 1.6), M978 (8, P 1.1, 7), 2223 (B
25 : nd), 1610 (B : nd), C708 (A : 4, P 1.7), M981 (B : 4), aussi appelée 891, et 2996 (B : 2b,
P 1.2). Le déposant a reçu, par envoi gracieux, les souches S3032, M978 et M981 du Dr. J.
Poolman (RIVM, Bilthoven, Pays-Bas), et la souche C708 du Dr. Achtman (Max Plank
Institute, Berlin, Allemagne).

La souche IM2154 (sérogrroupe C) est citée à titre d'exemple comme étant de type
30 IM2394.

En vertu des précédentes constatations, on pouvait supposer qu'un vaccin efficace à
l'encontre de toutes les infections à *N. meningitidis* pourrait être constitué de manière
suffisante, de la sous-unité de haut poids moléculaire, quelle que soit la souche d'origine du
35 récepteur, puisque cette dernière est reconnue par les 2 types d'antisérum. Toutefois, il
semble que cela ne puisse être le cas dans la mesure où la sous-unité de haut poids

moléculaire ne serait pas capable d'induire la production d'anticorps de type neutralisant. Seule la plus petite des 2 sous-unités du récepteur (Tbp2) serait capable de remplir cette fonction.

5 Les séquences en acides aminés des sous-unités Tbp2 des souches IM2169 et IM2394 ont été divulguées dans la demande de brevet EPA 586 266 (publiée le 9 Mars 1994) ainsi que les fragments d'ADN correspondants. Ces séquences sont reprises dans les SEQ ID NO 1 à 4 de la présente demande.

10 Dans les SEQ ID NO 5 à 10 sont présentées les séquences des sous-unités Tbp2 des souches de type IM2169, soient les souches M978, 6940 et S3032.

15 On indique de plus que la séquence de la sous-unité Tbp2 IM2154 (type IM2394) diffère par deux acides aminés de la séquence de la sous-unité Tbp2 IM2394, en positions 306 et 510.

20 On a maintenant trouvé qu'une sous-unité Tbp2 quelque soit la souche d'origine, présentait en termes de structures, trois domaines principaux associés pour au moins l'un d'entre eux à des propriétés particulières. Par définition, les domaines de Tbp2 IM2169 et Tbp2 IM2394 ont été fixés comme le montre le tableau ci-après, en indiquant la position des acides aminés, bornes incluses des différents domaines, et par référence à la numérotation apparaissant dans les SEQ ID NO 1 et 3.

	Tbp2 IM2169	Tbp2 IM2394
Domaine N-terminal ou premier domaine	1-345	1-325
Dômeine charnière ou deuxième domaine	346-543	326-442
Domaine C-terminal ou troisième domaine	544-691	443-579

25 Cette définition s'applique de même à toutes les Tbp2 de type IM2169 ou IM2394, après alignement d'une séquence type IM2169 ou IM2394 sur la séquence de référence, au maximum d'homologie. Ainsi, à titre d'exemple et par référence à la Figure 1, on indique la position des domaines de la sous-unité Tbp2 de M978 comme suit : premier domaine (1 - 346), deuxième domaine (347 - 557) et troisième domaine (558 - 705).

D'autre part, on a aussi trouvé que le domaine N-terminal ou premier domaine et/ou le domaine charnière ou deuxième domaine pourrait être nécessaire et suffisant, en vue d'induire un effet vaccinal chez les humains ; en conséquence de quoi, il ne serait pas indispensable d'utiliser une Tbp2 sous une forme complète. On a en particulier trouvé que le 5 premier domaine contenait dans sa quasi intégralité le site de liaison à la transferrine, se trouvait donc très vraisemblablement exposé vers l'extérieur et par conséquent constituait un élément de choix à des fins vaccinales.

Enfin, on a trouvé que certaines régions du deuxième domaine des Tbp2 de type 10 IM2169 étaient assez généralement variables et immunodominantes. Deux approches sont donc possibles, en vue d'un vaccin : soit on considère que les épitopes immunodominants peuvent masquer d'autres épitopes d'intérêt vaccinal et par conséquent, on les délète, soit on se sert de cette variabilité, pour ne conserver que ces régions dans un vaccin.

C'est pourquoi l'invention fournit un polypeptide ayant une séquence en acides 15 aminés qui dérive de celle d'une sous-unité Tbp2 du récepteur transferrine d'une souche de *N. meningitidis* de type IM2169 ou IM2394 dont le premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; notamment par 20 délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394 à condition que le premier et deuxième domaines ne soient pas simultanément et totalement délétés.

Par "séquence qui dérive d'une autre séquence" on entend bien évidemment une 25 séquence issue par processus intellectuel de cette autre séquence.

De manière plus particulière, un polypeptide selon l'invention possède une séquence d'acides aminés qui dérive d'une sous-unité Tbp2 de type IM2169 ou IM2394 :

- 30 (i) notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 sélectionné parmi les deuxième et troisième domaines ; de préférence par délétion totale ou partielle du troisième domaine ou des deuxième et troisième domaines ;
- 35 (ii) notamment par délétion totale des premier et troisième domaines, ou

(iii) notamment par délétion intégrale du troisième domaine et par délétion partielle du premier domaine, optionnellement par délétion partielle du deuxième domaine.

5 D'une manière avantageuse, un polypeptide selon l'invention présente une délétion partielle, quasi totale ou totale du troisième domaine, de préférence totale. Dans ce cas là, le premier ainsi que le deuxième domaine peuvent être maintenus dans leur intégralité, partiellement ou totalement déleté; ceci indépendamment l'un de l'autre.

10 Sont possibles les combinaisons suivantes (sachant que les premier, deuxième et troisième domaines dans leur intégralité sont respectivement représentés par 1, 2 et 3, et que O et Δ signifient de manière respective, partiellement et totalement déleté) :

15 1, 2, Δ3 ; 1, O2, Δ3 ; 1, Δ2, Δ3 ;
 O1, 2, Δ3 ; O1, O2, Δ3 ; O1, Δ2, Δ3 ;
 Δ1, 2, Δ3 ; Δ1, O2, Δ3 ;

20 1, 2, O3 ; 1, O2, O3 ; 1, Δ2, O3 ;
 O1, 2, O3 ; O1, O2, O3 ; O1, Δ2, O3 ;
 Δ1, 2, O3 ; Δ1, O2, O3 ;

Est aussi d'intérêt, un polypeptide selon l'invention dérivé d'une sous-unité Tbp2 de type IM2169 par délétion partielle du deuxième domaine, qui comporte dans leur intégralité ou quasi intégralité le premier et troisième domaines ; soit la combinaison 1, O2, 3. (Par "domaine maintenu dans sa quasi-intégralité" on entend ici et dans la suite du texte, un domaine modifié en un très faible nombre de positions, environ 5 maximum.) Un polypeptide selon l'invention peut aussi répondre à la combinaison O1, O2, 3, la délétion partielle du premier domaine portant avantageusement sur la région homologue de celle de Tbp2 IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du deuxième domaine d'une sous-unité Tbp2 de type IM2169, cette délétion partielle porte avantageusement sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant :

(i) de l'acide aminé en position 362 à l'acide aminé en position 379 ;

(ii) de l'acide aminé en position 418 à l'acide aminé en position 444 ;

5 (iii) de l'acide aminé en position 465 à l'acide aminé en position 481 ; et

(iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à
10 (iv) sus-décrtes.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion intégrale du troisième domaine et délétion quasi intégrale du deuxième domaine d'une sous-unité Tbp2 de type IM2169 et comporte l'intégralité du premier domaine ou dérive en outre par
15 délétion de la partie N-terminale du premier domaine, la délétion quasi intégrale du deuxième domaine s'étend sur la région qui :

20 - dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2169, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543 ;

25 - dans le cas d'un polypeptide dérivé d'une sous-unité Tbp2 de type IM2394, est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.

Lorsqu'un polypeptide selon l'invention dérive notamment par délétion partielle du premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394, cette délétion partielle
30 porte avantageusement sur tout ou partie de la région :

(i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281 ; ou

- 10 -

- (ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.

5 A titre d'exemple de ce qui précède, on cite une délétion d'intérêt portant sur la région :

- 10 (i) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 40 ; ou
- 15 (ii) qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé approximativement en position 45.

20 La séquence de type IM2169 ou IM2394 à partir de laquelle est dérivée celle d'un polypeptide selon l'invention présente un degré d'homologie avec la séquence de référence respective, IM2169 ou IM2394, avantageusement d'au moins 70-75%, de préférence d'au moins 80%, de manière plus particulièrement préférée d'au moins 90%.

25 Selon un mode de réalisation tout particulièrement préféré, un polypeptide selon l'invention possède une séquence dérivée de celle de la sous-unité Tbp2 IM2169 ou IM2394.

30 Le degré d'homologie peut être aisément calculé en alignant les séquences de manière à obtenir le degré maximal d'homologie ; pour ce faire, il peut être nécessaire d'introduire artificiellement des emplacements vacants, comme cela est illustré dans les Figures 1 à 4 et 8 à 10. Une fois que l'alignement optimal est réalisé, le degré d'homologie est établi en comptabilisant toutes les positions dans lesquelles les acides aminés des deux séquences se retrouvent à l'identique, par rapport au nombre total de positions.

35 Il serait fastidieux de décrire des séquences homologues autrement que de manière générique, en raison du trop grand nombre de combinaisons. L'homme du métier connaît toutefois les règles générales qui permettent de remplacer un acide aminé par un autre sans abolir la fonction biologique ou immunologique d'une protéine.

- 11 -

A titre d'exemple préféré, on cite un polypeptide selon l'invention dont la séquence possède au moins 70-75%, de manière avantageuse au moins 80%, de préférence au moins 90%, de manière tout à fait préférée 100% d'homologie avec :

- 5 (i) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 345 ;
- (ii) la séquence telle que montrée dans l'ID SEQ NO 3, de l'acide aminé en position 1 à l'acide aminé en position 325 ou 442 ;
- 10 (iii) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691 ou 543, délétée des régions 362-379, 418-444, 465-481 et 500-520 ;
- 15 (iv) la séquence telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543.

Des polypeptides répondant à la définition donnée au paragraphe précédent sont illustrés comme suit :

- 20 (i) Un polypeptide selon l'invention dont la séquence est实质iellement telle que montrée dans l'ID SEQ NO 1, 5, 7, 9, 36 ou 38, de l'acide aminé en position 1 à l'acide aminé en position 350, 351, 354, 358, 322 ou 346 respectivement ;
- 25 (ii) Un polypeptide selon l'invention dont la séquence est实质iellement telle que montrée dans l'ID SEQ NO 3 de l'acide aminé en position 1 à l'acide aminé en position 330 ;
- 30 (iii) Un polypeptide selon l'invention dont la séquence est实质iellement telle que montrée dans :
- l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520 ;

- l'ID SEQ NO 5, de l'acide aminé en position 1 à l'acide aminé en position 705, déletée des régions 365-382, 421-453, 474-495 et 514-534 ;
 - l'ID SEQ NO 7, de l'acide aminé en position 1 à l'acide aminé en position 693, déletée des régions 366-383, 422-448, 469-485 et 504-524 ;
 - l'ID SEQ NO 9, de l'acide aminé en position 1 à l'acide aminé en position 699, déletée des régions 372-389, 428-454, 475-491 et 510-529 ;
- 5
- l'ID SEQ NO 36, de l'acide aminé en position 1 à l'acide aminé en position 699, déletée des régions 339-356, 395-421, 443-458 et 477-497 ; ou
 - l'ID SEQ NO 38, de l'acide aminé en position 1 à l'acide aminé en position 699, déletée des régions 363-380, 419-445, 467-482 et 501-521 ; et
- 10
- 15
- (iv) Un polypeptide selon l'invention dont la séquence est实质iellement telle que montrée dans :
- l'ID SEQ NO 1, de l'acide aminé en position 346 à l'acide aminé en position 543,
 - l'ID SEQ NO 5, de l'acide aminé en position 347 à l'acide aminé en position 557,
 - l'ID SEQ NO 7, de l'acide aminé en position 350 à l'acide aminé en position 557,
 - l'ID SEQ NO 9, de l'acide aminé en position 354 à l'acide aminé en position 551,
- 20
- 25
- 30
- 35
- l'ID SEQ NO 36, de l'acide aminé en position 323 à l'acide aminé en position 521, ou
 - l'ID SEQ NO 38, de l'acide aminé en position 345 à l'acide aminé en position 544.

Des polypeptides particuliers répondant aux définitions données aux points (i) à (iv) sont décrits dans les exemples qui suivent.

Un polypeptide selon l'invention possède une séquence d'acide aminés qui comprend 5 au moins 10, avantageusement au moins 20, de préférence au moins 50, de manière tout à fait préférée au moins 100 acides aminés.

Bien évidemment, un polypeptide selon l'invention peut aussi comprendre de manière additionnelle, une séquence d'acides aminés qui ne présente pas d'homologie avec 10 les séquences des sous-unités Tbp2 des souches IM2169 et IM2394 ; séquences qui sont montrées dans les ID SEQ NO 1 et 3 de l'acide aminé en position 1 à l'acide aminé en position C-terminale.

D'une manière générale, une séquence additionnelle peut être celle de tout autre 15 polypeptide à l'exclusion de Tbp2.

Par exemple, une séquence additionnelle peut être celle d'un peptide signal localisée en position N-terminale d'un polypeptide selon l'invention. Des exemples de séquence signal sont montrés dans les ID SEQ NO 1 à 4. D'autre part, on indique qu'une séquence signal 20 hétérologue appropriée peut être une séquence signal d'un gène codant pour une lipoprotéine.

L'invention a aussi pour objet :

- 25 (i) un fragment d'ADN isolé codant pour un polypeptide selon l'invention ;
- (ii) une cassette d'expression qui comprend au moins un fragment d'ADN selon l'invention, placé sous le contrôle d'éléments capables d'assurer son expression dans une cellule-hôte appropriée ; et
- 30 (iii) un procédé de production d'un polypeptide selon l'invention, selon lequel on cultive une cellule-hôte comportant une cassette d'expression selon l'invention.

35 Par "fragment d'ADN isolé", on signifie qu'un fragment d'ADN selon l'invention n'est pas intégré dans un fragment d'ADN codant pour une sous-unité Tbp2 complète.

Dans la cassette d'expression, le fragment d'ADN selon l'invention peut être ou non associé à un bloc d'ADN codant pour un peptide signal hétérologue ou non, au polypeptide codé par ledit fragment d'ADN, selon que l'on recherche ou non la sécrétion du polypeptide. De préférence, cette sécrétion sera recherchée.

5

Des éléments tels qu'un bloc d'ADN codant pour un peptide signal hétérologue (région signal) ou un promoteur existent déjà en assez grand nombre et sont connus de l'homme du métier. Ses compétences générales lui permettront de choisir une région signal ou un promoteur particulier qui seront adaptés à la cellule-hôte dans laquelle il envisage 10 l'expression.

Aux fins du procédé selon l'invention, la cellule-hôte peut être une cellule de mammifère, une bactérie ou une levure ; ces deux dernières étant préférées. Là aussi, le choix d'une lignée particulière est à la portée de l'homme du métier.

15

L'invention concerne également un anticorps monoclonal :

- (i) capable de reconnaître un épitope présent dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 ; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394 et sélectionnée parmi YKGTW (SEQ ID NO 32), EFEVDFSDKTIGTL (ID SEQ NO 33), EGGFYGPKGEEL (ID SEQ NO 34) et AVFGAK (ID SEQ NO 35) ; et de manière optionnelle,
- 20 (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.

Afin d'illustrer le point (ii) précédent, on indique à titre d'exemple que les séquences 30 du troisième domaine de la sous-unité Tbp2 IM2394 homologues deux à deux à celles du premier domaine se trouvent respectivement en position 443 - 447, 472 - 485, 537 - 548 et 568 - 573;

De préférence, un monoclonal selon l'invention est :

35

- 15 -

- 5 (i) capable de reconnaître la région présente dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394 ; et de manière optionnelle,

10 (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.

Un monoclonal préféré est :

- 15 (i) capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394 ; et

(ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.

En effet, un tel monoclonal a été reconnu comme bactéricide et par conséquent on peut envisager de l'utiliser comme principe actif dans une composition pharmaceutique, en immunothérapie passive pour combattre une infection à *N. meningitidis*.

25 Enfin, l'invention concerne également une composition pharmaceutique comprenant
à titre de principe actif au moins un polypeptide selon l'invention

Une composition pharmaceutique selon l'invention est notamment utile pour induire une réponse immunitaire chez les humains à l'encontre de *N. meningitidis*, entre autre un effet vaccinal de manière à protéger les humains contre des infections à *N. meningitidis*, en prévention ou en thérapie.

Une composition selon l'invention comprend avantageusement, à titre de principe actif, au moins deux polypeptides selon l'invention ; soit au moins un premier polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins un deuxième polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type

IM2394. De manière alternative, une composition selon l'invention peut aussi contenir au moins un polypeptide dont la séquence dérive de celle d'une sous-unité Tbp2 de type IM2169 et au moins une sous-unité Tbp2 de type IM2394.

5 Pour ce qui concerne le polypeptide de type IM2394, élément de la composition pharmaceutique, il est très préférable que celui-ci comporte tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2394 dont il est dérivé. La partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2394 allant de l'acide aminé en position 267 à l'acide aminé
10 en position 325. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2394 notamment par délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2394.

Ainsi, en vue d'une composition pharmaceutique à deux types d'éléments (type
15 IM2394 et type IM2169), sont plus particulièrement préférés les polypeptides de type IM2394 suivants :

20 1, 2, O3 ; 1, 2, Δ3 ; 1, O2, Δ3 ; 1, Δ2, Δ3
O1, 2, O3 ; O1, 2, Δ3 ; O1, O2, Δ3 ; O1, Δ2, Δ3.

Pour ce qui concerne le polypeptide de type IM2169, élément de la composition pharmaceutique, deux approches préférées sont possibles :

(A) - Soit associer au polypeptide de type IM2394, un polypeptide qui comporte
25 tout ou partie de la séquence qui est homologue à celle du premier domaine de la sous-unité Tbp2 IM2169 dont il est dérivé. Dans ce cas là, la partie de la séquence qui doit de préférence, être maintenue est l'homologue de la région de la sous-unité Tbp2 IM2169 allant de l'acide aminé en position 282 à l'acide aminé en position 345. La séquence d'un tel polypeptide peut dériver de celle d'une sous-unité Tbp2 de type IM2169 notamment par
30 délétion totale ou partielle de la région du deuxième ou troisième domaine de la sous-unité Tbp2 de type IM2169.

Ainsi, selon cette alternative et en vue d'une composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), sont plus particulièrement préférés les
35 polypeptides de type IM2169 suivants :

1, 2, O3 ; 1, 2, Δ3 ; 1, O2, Δ3 ; 1, Δ2, Δ3
O1, 2, O3 ; O1, 2, Δ3 ; O1, O2, Δ3 ; O1, Δ2, Δ3.

1, O2, 3 ; O1, O2, 3.

5

Pour ce qui concerne les deux dernières possibilités (1, O2, 3 ; O1, O2, 3), la délétion partielle du deuxième domaine peut très avantageusement porter sur une ou des régions du deuxième domaine qui est (sont) l'(les) homologue(s) des régions de la séquence IM2169 allant :

10

(i) de l'acide aminé en position 362 à l'acide aminé en position 379 ;

(ii) de l'acide aminé en position 418 à l'acide aminé en position 444 ;

15

(iii) de l'acide aminé en position 465 à l'acide aminé en position 481 ; et

(iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

De préférence, la délétion partielle porte simultanément sur les quatre régions (i) à 20 (iv) sus-décris.

(B) - Soit associer au polypeptide de type IM2394, un polypeptide dont la séquence dérive par délétion partielle du deuxième domaine et par délétion totale ou quasi totale du premier ou troisième domaine de la sous-unité Tbp2 de type IM2169 et comporte le 25 deuxième domaine dans son intégralité (Δ1, 2, Δ3). Dans cette alternative, la composition pharmaceutique à deux types d'éléments (type IM2394 et type IM2169), peut avantageusement contenir plusieurs polypeptides (Δ1, 2, Δ3) de type IM2169 ; par exemple deux ou plus des polypeptides sélectionnés parmi (Δ1, 2, Δ3) IM2169, M978, 6940 et S3032.

30

Une composition pharmaceutique selon l'invention peut être fabriquée de manière conventionnelle. En particulier on associe le ou les polypeptide(s) selon l'invention avec un adjuvant, un diluant ou un support acceptable d'un point de vue pharmaceutique. Une composition selon l'invention peut être administrée par n'importe quelle voie 35 conventionnelle en usage dans le domaine des vaccins, en particulier par voie sous-cutanée, par voie intra-musculaire ou par voie intra-veineuse, par exemple sous forme de suspension

injectable. L'administration peut avoir lieu en dose unique ou répétée une ou plusieurs fois après un certain délai d'intervalle. Le dosage approprié varie en fonction de divers paramètres, par exemple, de l'individu traité ou du mode d'administration.

5 Afin de déterminer l'objet de la présente invention, on précise que les souches de *N. meningitidis* IM2394 et IM2169 sont publiquement disponibles auprès de la Collection Nationale de Culture des Microorganismes (CNCM), Institut Pasteur, 25 rue du Dr Roux 75015 Paris sous les numéros d'enregistrement respectifs LNP N 1511 et LNP N 1520.

10 L'invention est décrite plus en détails dans les exemples ci-après et par référence aux Figures 1 à 10.

15 Les Figures 1 à 3, 8 et 9 présentent respectivement les alignements des séquences Tbp2, M978, 6940, S3032, BZ83 et BZ163 avec la séquence Tbp2 IM2169, au maximum d'homologie. Les degrés d'homologies respectifs sont de 78.9, 81.2, 79.6, 71.3 et 81.8%.

20 La Figure 4 présente les alignements au maximum d'homologie des séquences des domaines charnières (deuxième domaine) de Tbp2 IM2169 (1), 6940 (2), 2223 (3), C708 (4), M978 (5), 1610 (6), 867 (7), S3032 (8) et 891 (9). En italiques est donnée la numérotation de IM2169, telle qu'elle apparaît dans ID SEQ NO 2. En gras apparaissent les séquences que l'on peut déléter selon un mode préféré. (C) indique la séquence consensus.

25 Les Figures 5 à 7 illustrent respectivement la construction des plasmides pTG5782, pTG5755 et pTG5783.

30 La Figure 10 présente les alignements au maximum d'homologie des séquences des domaines charnières (deuxième domaine) de Tbp2 IM2169 (1), 2223 (2), 708 (3), M528 (4), 6940 (5), M978 (6), 1610 (7), S3032 (8), 867 (9), BZ83 (10) et BZ163 (11). En italiques est donnée la numérotation de IM2169, telle qu'elle apparaît dans ID SEQ NO 2. En gras apparaissent les séquences que l'on peut déléter selon un mode préféré. (C) indique la séquence consensus.

- 19 -

EXEMPLE 1 : Polypeptide T/2169 (1, O2, Δ3 ; 1-350) dont la séquence telle que montrée dans l'ID SEQ NO 1 (IM2169), de l'acide aminé en position 1 à l'acide aminé en position 350.

**5 1A - Préparation du fragment d'ADN codant pour T/2169 (1-350) :
Construction du vecteur pTG 5782.**

A partir du plasmide pTG3721 décrit dans la demande EPA 586 266, on introduit, par mutagénèse dirigée, un site de restriction *Hind*III en aval de la séquence codant pour Tbp2, pour générer le plasmide pTG4704.

A partir du plasmide pTG3721, on amplifie par PCR, à l'aide des amores OTG4915 et OTG4651, un fragment comportant la séquence codant pour le signal de sécrétion de RlpB et du début de la séquence codant pour Tbp2 mature jusqu'au site *Hae*II interne.

OTG4915 : AAACCCGGATCCGTTGCCAAGCGCTGCCGT
HaeII

20

OTG4651 :

BspH I

TTTTTCCATG AGA TAT CTG GCA ACA TTG TTG TTA TCT CTG
Met Arg Tyr Leu Ala Thr Leu Leu Leu Ser Leu

25

GCG GTG TTA ATC ACC GCC GGG TGC CTG GGT GGC
Ala Val Leu Ile Thr Ala Gly Cys Leu Gly ...

clivage du peptide signal

30

GGC GGC AGT TTC

Le fragment PCR est ensuite digéré par *Bsp*HII et *Hae*II et inséré simultanément avec le fragment *Hae*II-*Hind*III de pTG4704 qui comporte la partie 3' de la région codant pour Tbp2, dans le plasmide pTG3704 décrit dans la demande EPA 586 266, digéré par *Nco*I et *Hind*III, pour générer le plasmide pTG5768.

- 20 -

A partir de plasmide pTG3721, on amplifie par PCR, à l'aide des amores OTG4928 et OTG5011, un fragment comportant la séquence codant pour la partie N-terminale de Tbp2.

5

SphI

OTG4928 : GTG TTT TTG TTG AGT GCA TGC CTG GGT GGC
 Val Phe Leu Leu Ser Ala Cys Leu Gly Gly
Clivage du peptide
signal

10

OTG5011 : TGCGCAAGCTTACAGTTGTCTTGGTTTCGCGCTGCCG
HindIII

15

Ce fragment PCR est digéré par *SphI* et *HindIII*, puis cloné dans le plasmide pTG4710 décrit dans la demande EPA 586 266 ; on génère ainsi le plasmide pTG5740.

20

Le fragment *HaeII-HindIII* de pTG5740 comportant la partie 3' de la séquence codant pour le domaine de liaison à la transferrine humaine (hTf) (3' de la région codant pour le premier domaine) est inséré dans le plasmide pTG3704 digéré par *BamHI* et *HindIII*, simultanément avec le fragment *BamHI-HaeII* de pTG5768 comportant le promoteur *araB*, la séquence signal *rlpB* et le début de la séquence codante de Tbp2 ; on génère ainsi le plasmide pTG5782. Ce vecteur comporte le promoteur *araB*, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 350).

25

1B - Production et purification de T/2169 (1-350)

30

Une souche d'*E. coli* (Xac-I) est transformée par pTG5782. Les transformants sont mis en culture à 37°C en milieu M9 + succinate 0,5% + arginine 50µg/ml + ampicilline 100 µg/ml. En phase exponentielle, on ajoute 0,2% d'arabinose (inducteur). Après une heure d'induction, on prélève des cellules et des extraits sont préparés. Une analyse en Western Blot suivie d'une révélation par la hTF-peroxidase permet de détecter une bande majoritaire dont le P.M. correspond à celui attendu pour cette forme tronquée de Tbp2.

35

- 21 -

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) T/2169 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

5

EXEMPLE 2 : Polypeptide T/2394 (1, O2, Δ3 ; 1-340) dont la séquence telle que montrée dans l'ID SEQ NO 2 (IM2394), de l'acide aminé en position 1 à l'acide aminé en position 340.

10 **2A - Préparation du fragment d'ADN codant pour T/2394 (1-340) :
Construction du vecteur pTG 5755**

15 A partir du plasmide pTG4710 décrit dans la demande EPA 586 266, on amplifie par PCR, à l'aide des amores OTG4873 et OTG4877, un fragment comportant la région codant pour la partie C-terminale du domaine de liaison à la hTf. Ce fragment est ensuite digéré par *MluI* et *HindIII*.

OTG4873 : AAAAAGCATGCATAAAACTACGCGTTACACCATTCAAGC
MluI

20 OTG4877 : TATATAAGCTTACGTTGCAGGCCCTGCCCGTTTCCCC
HindIII

25 Le plasmide pTG4710 est digéré par *MluI* et *HindIII*. Le fragment *MluI-HindIII* comportant la partie 3' de la séquence codant pour Tbp2 est remplacé par le fragment PCR codant pour la partie C-terminale du domaine de liaison à la hTf. On génère ainsi le plasmide pTG5707. On remplace ensuite dans le plasmide pTG5707, un fragment *BamHI-MluI* comportant le promoteur *araB* et le début de la séquence codant pour Tbp2, par un fragment *BamHI-MluI* de pTG4764 décrit dans la demande
30 EPA 586 266 qui comporte le promoteur *araB*, la séquence codant pour le signal de sécrétion RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2. On génère ainsi le plasmide pTG5755. Ce vecteur comporte le promoteur *araB*, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence codant pour le domaine N-terminal de Tbp2 (1 - 340).

35

- 22 -

2B - Production et purification de T/2394 (1-340)

T/2394 (1-340) est produit et purifié tel que décrit dans l'Exemple 1B.

5 Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) T/2394 purifié se révèle capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

10 **EXEMPLE 3 :** Polypeptide D4/2169 (1, 02, 3) dont la séquence est identique à celle telle que montrée dans l'ID SEQ NO 1, de l'acide aminé en position 1 à l'acide aminé en position 691, délétée des régions 362-379, 418-444, 465-481 et 500-520.

15 **3A - Préparation du fragment d'ADN codant pour D4/2169**

1.1. Clonage du fragment d'ADN.

20 Le fragment d'ADN codant pour la sous-unité Tbp2 de la souche de *N. meningitidis* IM2169 est amplifié par PCR (Polymerase chain reaction) à l'aide d'amorces spécifiques complémentaires des régions 5' et 3', (respectivement A5' et A3') sur 10 ng d'ADN génomique extrait d'une culture de bactéries de la souche IM2169.

25 A5' : 5' CCCGAATTCTGCCGTCTGAAGCCTTATTC 3'

A3' : 5' CCCGAATTCTGCTATGGTGCTGCCTGTG 3'

30 Un fragment d'ADN est ainsi obtenu et après digestion par *EcoRI*, il compte 2150 nt. Ce fragment *EcoRI* est ensuite ligué aux extrémités *EcoRI* déphosphorylées du phagemide pBluescriptSK(-) (Stratagene) pour donner le phagemide recombinant pSK/2169tbp2.

- 23 -

1.2. Mise en oeuvre des délétions.

Le clone pSK/2169tbp2 contenant les séquences *tbp2* de la souche M982 est déléte par la technique de Kunkel, PNAS (1985) 82 : 448.

5

10

15

20

25

30

35

En bref, la forme phagique du phagémide recombinant pSK/2169tbp2 est obtenue après sauvetage par le phage "helper" VCS M13 selon la technique décrite par Stratagene, fournisseur du vecteur de base, et utilisée pour infecter la souche bactérienne CJ236. Les mutations *dut* et *ung* portées par la souche CJ236 ont pour conséquence la synthèse de molécules d'ADN ayant incorporé le précurseur nucléotidique dUTP.

Les phages sont récoltés et l'ADN simple brin est extrait par un mélange phénol/chloroforme. Cet ADN est hybridé dans les conditions classiques, aux oligonucléotides suivants :

2169d1 : 5' CGCATCCAAAACCGTACCTGTGCTGCCTGA 3'

2169d2 : 5' TTTATCACTTCCGGGGCAGGAGCGGAAT 3'

2169d3 : 5' GTTGGAACAGCAGACAGCGGTTTGCGCC 3'

2169d4 : 5' GAACATACTTGTTCGTTTGCGCGTCAA 3'

La réaction d'hybridation est poursuivie 30 min, en température décroissante à partir de 70°C jusqu'à 30°C.

Le second brin complémentaire est ensuite achevé par synthèse complète en présence des quatre desoxynucléotides, de la T4 DNA polymérase et de la T4 DNA ligase, selon les conditions classiques.

La souche *E. coli* SURE (Stratagene) est transformée par l'ADN ainsi obtenu. Dans cette souche, les molécules porteuses de dUTP, c'est-à-dire non-mutées, sont détruites.

Les phages obtenus sont analysés par les techniques classiques de préparation rapide d'ADN plasmidique et de digestion par les enzymes de restriction appropriées. La présence de la mutation recherchée est ensuite vérifiée par séquençage nucléotidique.

Le clone pSK2169#7, porteur des quatre mutations Δ 1203-1256, Δ 1371-1451, Δ 1512-1562, et Δ 1617-1679 est sélectionné.

3B - Construction du vecteur d'expression pTG5783

5

Le plasmide pTG5768 décrit précédemment est digéré par *Hpa*I et *Xcm*I. On insère simultanément dans ce vecteur un fragment *Xcm*I-*Xcm*I de pTG5768 et le fragment *Hpa*I-*Xcm*I du plasmide pSK/2169ed#7, pour générer le plasmide pTG5783. Ce vecteur comporte le promoteur *araB*, la séquence codant pour le signal de sécrétion de RlpB fusionnée à la séquence *tbp2* modifiée (délétions d1 à d4).

10

3C - Préparation et purification de D4/2169.

15

D4/2169 est produit et purifié selon l'Exemple 1B.

Dans un test tel décrit dans l'exemple 4 de WO93/6861 (publié : 15. 04. 93) D4/2169 purifié s'est révélé capable d'induire des anticorps bactéricides et par conséquent devrait être utile à des fins vaccinales.

20

EXEMPLES 4 à 8 : Polypeptides 4) C/2223, 5) C/M981, 6) C/1610, 7) C/M978 et 8) C/C708 correspondants au deuxième domaine (région charnière) de Tbp2s de diverses souches.

25

Les fragments d'ADN codant pour les Tbp2 des souches de *N. meningitidis* 2223, M981, 1610, M978 et C708 ont été clonés par amplification PCR comme décrit dans l'exemple 3A, en utilisant les deux même amores. De même, ces fragments ont été insérés aux sites *Eco*RI ou *Eco*RI/*Bam*HI du phagémide pBluescriptSK(-). Le séquençage de la région codant pour le deuxième domaine a été effectué et la séquence en acides aminés déduite telle chacune d'elle apparaît à la Figure 4.

30

Sur la base de chacune des séquences nucléotidiques, des amores spécifiques de chacuns des deuxièmes domaines sont créées en introduisant des sites de clivage appropriés en vue d'un futur clonage en phase avec séquence signal *rlpB*, sous le contrôle du promoteur *araB*. Ces amores sont utilisées en PCR pour amplifier la région codant pour le deuxième domaine de chacune des Tbp2. Ces régions sont

35

- 25 -

clonées comme indiqué ci-dessus dans un plasmide comportant la séquence signal *rlpB*, sous le contrôle du promoteur *araB*.

L'expression des peptides est conduite comme décrit à l'Exemple 1B.

5

EXEMPLE 9 : Composition vaccinale (T/2169 - T/2394) destinée à prévenir des infections à *N. meningitidis*

10 Des solutions stériles de T/2169 et T/2394 tels que purifiés dans les exemples 1B et 2B sont décongelées. Afin de préparer un litre de vaccin renfermant 100 µg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

- | | | |
|----|--|----------|
| | - Solution de T/2394 à 1 mg/ml dans du tampon C
(tampon phosphate 500 mM, pH8, Sarkosyl 0,05 %) | 100 ml |
| 15 | - Solution de T/2169 à 1mg/ml dans du tampon C | 100 ml |
| | - Eau physiologique tamponnée (PBS)) pH 6.0 | 300 ml |
| 20 | - Hydroxyde d'aluminium à 10 mg Al ⁺⁺⁺ /ml | 50 ml |
| | - Merthiolate à 1 % (p/v) dans du PBS | 10 ml |
| 25 | - PBS qsp | 1.000 ml |

EXEMPLE 10 : Composition vaccinale (D4/2169 - Tbp2/2394) destinée à prévenir des infections à *N. meningitidis*

30

Une solution stérile de D4/2169 tel que purifié dans l'exemple 3C est décongelée. On fait de même avec une solution stérile de Tbp2/2394 tel que préparé et purifié dans l'exemple 3 de EPA 586 266. Afin de préparer un litre de vaccin renfermant 100 µg/ml de chacun des principes actifs, on mélange stérilement les solutions suivantes :

35

- Solution de Tbp2/2394 à 1 mg/ml dans du tampon C 100 ml

- 26 -

	- Solution de D4/2169 1mg/ml dans du tampon C	100 ml
	- Eau physiologique tamponnée (PBS)) pH 6.0	300 ml
5	- Hydroxyde d'aluminium à 10 mg Al ⁺⁺⁺ /ml	50 ml
	- Merthiolate à 1 % (p/v) dans du PBS	10 ml
10	- PBS qsp	1.000 ml

EXEMPLE 11 : Obtention d'un anticorps capable de reconnaître l'épitope GFYGPKE du premier domaine de Tbp2 IM2394.

15

11A -Immunisation des souris et production des hybridomes

Des souris MRL/Lpr-Lpr connues pour produire plus d'IgG2a, IgG2b et IgG3 que les souris Balb/C (J. Immunol. Methods (1991) 144 : 165) reçoivent une première 20 injection intrapéritonéale de 50 µg de la fraction membranaire IM2394 en présence d'adjuvant complet de Freund. La fraction membranaire que l'on utilise est préparée comme suit :

La souche IM2394 conservée sous forme lyophilisée est reprise et cultivée sur gélose Mueller - Hinton pendant une nuit à 37°C dans une atmosphère contenant 20% de CO₂. La nappe est reprise et sert à ensemencer un erlen-meyer contenant du bouillon Mueller - Hinton additionné de 30 µM EDDA (ethylene diamine di ortho-hydroxy acetic acid - Sigma). Après 5 heures d'incubation à 37°C sous agitation rotative, la culture est centrifugée. Le culot est repris par du tampon Tris-HCl pH 8 et la suspension est lysée dans un appareil à ultrasons fonctionnant à haute pression (Rannie, modèle 8.30H). La suspension obtenue est centrifugée à basse vitesse pour éliminer les débris cellulaires et les membranes sont recueillies par ultracentrifugation (140 000 xg, 75 min, 4°C). La fraction membranaire est finalement reprise en tampon Tris-HCl 50 mM pH 8 et sa concentration protéique déterminée.

35

Cette première injection est suivie de deux injections de rappel 21 et 49 jours plus tard. Les doses de rappel contiennent 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266, sous la forme d'une émulsion dans l'adjuvant incomplet de Freund.

5

56 jours après, la souris ayant développé le titre en anticorps le plus élevé (contrôle des immunsérum par ELISA) est sélectionnée pour la production d'anticorps monoclonaux spécifiques. Celle-ci reçoit une dernière injection de rappel (78 jours après l'injection initiale) en inoculant 25 µg de la protéine Tbp2 telle que purifiée dans l'Exemple 3 de EPA 586 266 à la fois par voie intraveineuse et par voie 10 intrapéritonéale. 3 jours après, la rate de l'animal est prélevée et les splénocytes sont fusionnés avec les cellules myélomateuses murines P3 x 63 Ag 8653 dans un rapport d'une cellule myélomateuse pour 4 cellules spléniques. Le protocole de fusion utilisé est dérivé de celui décrit initialement par G. Köhler et C. Milstein, Nature (1975) 256 15 : 495. Après fusion, les cellules sont disposées dans des micropuits stériles (Nunc) recouverts d'un "feeder" nourricier à raison de 100 000 cellules par puits dans un volume de 200 µl de milieu sélectif [milieu D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - azaserine - thymidine à 2% (V/V) (Gibco. Réf 043-01060H)]. Le milieu sélectif est remplacé 6 jours après, par un milieu non sélectif [milieu 20 D.M.E.M contenant 20% de SVF et un mélange hypoxanthine - thymidine à 2% (V/V) (Gibco. Réf 043-01065H)].

11B - Criblage des hybridomes

25

Les surnageants de culture des hybridomes sont testés par ELISA selon la méthode suivante :

30

Dans des micropuits de plaque ELISA "sensibilisés" pendant une nuit à +4°C par 100 µl d'une solution à 5 µg/ml de RT 2394 en tampon carbonate (50 mM pH 9,6), puis saturés pendant 1 heure à 37°C avec 200 µl d'un tampon phosphate 0,1 M contenant 1% de serum albumine bovine (poids/volume) (PBS-AB), sont déposés 100 µl de surnageant de culture d'hybridomes (ou les dilutions d'immunsérum effectuées en tampon PBS-AB contenant 0,05% de Tween 20) (PBS-T-AB). Après une nouvelle incubation de 1h30 à 37°C suivie de 5 lavages en PBS-Tween, les puits sont recouverts par 100 µl d'une solution mixte d'anticorps conjugués à la phosphatase alcaline (PA) spécifiques des isotypes IgG_{2a}, IgG_{2b} et IgG₃ murins de façon à ne

35

5 sélectionner que les hybridomes sécrétant des anticorps spécifiques et fonctionnels dans le test de bactéricidie. La solution mixte d'anticorps conjugués est préparée en diluant les 3 immunsérum de chèvre suivants : chèvre anti IgG_{2a} - PA (Caltag), chèvre anti IgG_{2b} - PA (Caltag), chèvre anti IgG₃-PA (Caltag) au 1/1500^e en tampon PBS-T-AB. Après incubation de la solution d'anticorps conjugués 1h30 à 37°C, suivie de 5 lavages, la réaction enzymatique est révélée par 100 µl d'une solution de paranitrophényl phosphate à 5 mg/ml en tampon diéthanolamine 0,1 M, pH 9,8. Le développement de la réaction est arrêté au bout de 30 min. en rajoutant 50 µl de soude 1N avant analyse au spectrophotomètre à 405 nm.

10

Les clones positifs après ce premier criblage sont analysés pour leur capacité à reconnaître la sous-unité Tbp2 par Western blot.

15

Pour ce faire, les récepteurs transferrine IM2394 (0,863 mg/ml) et IM2169 (0,782 mg/ml) tels que préparés dans les exemples 1 et 2 de WO93/6861, sont dilués au 1/10 dans un tampon Tris 1 M pH 6,8, puis dénaturés en ajoutant 10% (V/V) d'une solution de SDS à 25% dans un tampon TE (Tris/HCl 100 mM, EDTA 10 mM) pH 8,0 et 5% (V/V) de β-mercaptopropanoïlique. Après un traitement de 15 min à 56°C, un aliquot de 110 µl contenant le récepteur transferrine dénaturé IM2394 ou IM2169, est déposé sur un gel de polyacrylamide à 7,5%. Après migration (1 heure sous 200 volts dans une cuve Biorad), les protéines sont électrotransférées sur une membrane de nitrocellulose (100 volts pendant 50 min.). La membrane est saturée pendant 1 nuit à température ambiante dans un tampon Tris 20 mM, NaCl 137 mM pH 7,6 (TBS) contenant 5% (P/V) de poudre de lait écrémé puis montée sur miniblotter. Les anticorps que l'on teste sont ajustés à la concentration de 25 µg/ml en tampon TBS contenant 1% (P/V) de poudre de lait avant d'être déposés à raison de 50 µl par canal.

20

25

30

Après 45 min. d'incubation, suivies de rinçages en tampon TBS/lait 1%, 50 µl d'un immunsérum de lapin anti IgG.A.M de souris (Zymed) conjugué à la phosphatase alcaline préalablement dilué 1000 fois en tampon TBS/lait 1% sont déposés dans chaque canal.

35

Après une nouvelle incubation de 45 min. suivie de rinçages, la réaction enzymatique est révélée à l'aide d'un substrat chromogénique (B.C.I.P/NBT (Sigma Fast R). La réaction est arrêtée au bout de 15 min. par trempage dans l'eau distillée. Les clones positifs sont caractérisés par leur capacité à révéler une bande

- 29 -

correspondant à une protéine d'environ 69 kD (sous-unité Tbp2) après électrotransfert du récepteur transferrine IM2394 sur membrane de nitrocellulose.

5 A l'issue de ce second criblage par Western blot, les clones sont analysés pour leur capacité à produire une immunoglobuline réagissant avec la séquence peptidique GFYGPKE dans un système ELISA ; la méthodologie est identique à celle décrite ci-dessus à l'exception de la sensibilisation des plaques qui est réalisée par addition dans chaque puits de 100 µl d'une solution de peptide GFYGPKE à 2 µg/ml.

10 Parmi les hybridomes que l'on teste, on en sélectionne un qui se révèle capable de réagir avec le peptide ; puis on le stabilise par clonage successifs (au moins 2) à raison de 5 cellules/puits lors du premier clonage, de une cellule/puits lors des suivants.

15 **11C -Production et purification de l'anticorps monoclonal**

L'anticorps monoclonal est produit en ascite de souris Nude swiss males.

20 15 jours après injection de 500 µl de pristane par voie intrapéritonéale, les souris nudes reçoivent une deuxième injection intrapéritonéale de 7 millions de cellules provenant de l'hybridome.

25 Les liquides d'ascites sont prélevés stérilement puis purifiés par chromatographie d'affinité sur une colonne de protéine G. L'ascite diluée au 1/5è dans un tampon phosphate 0,1M pH 7,4 et filtrée sur filtre millipore 0,22 µ est passée au travers d'une colonne de protéine G préalablement équilibrée dans le même tampon phosphate, à raison de 40 ml/heure.

30 Les anticorps fixés sur la colonne sont élués à l'aide d'un tampon glycine 0,1M pH 2,7. Les fractions éluées sont immédiatement neutralisées à l'aide d'un tampon Tris 1 M pH 8,0 (à raison de 1 volume de Tris pour 10 volumes d'éluat).

35 L'éluat est ensuite dialysé une nuit à +4°C dans un tampon phosphate 0,1M pH 7,4, aliquoté et conservé congelé.

- 30 -

La pureté de l'anticorps est contrôlée par électrophorèse sur gel de polyacrylamide à 7,5% et par chromatographie de perméation sur Superose 12. Le taux de pureté généralement est supérieur à 95%.

5 En appliquant le protocole décrit ci-dessus et en criblant environ 800 hybridomes, on a notamment sélectionné un monoclonal capable de réagir avec l'épitope GFYGPKGE du premier domaine de Tbp2 IM2394 et incapable de réagir avec l'épitope correspondant situé dans le troisième domaine (soit GFYGKNAI).

10 Ce monoclonal (appelé 475E₇) est une IgG_{2b}, de point isoélectrique compris entre 7,8 et 8,1, et possède un titre bactéricide de 512.

Ce titre a été déterminé comme suit :

15 A partir d'une solution de Mab 475 E₇, des dilutions de raison deux sont réalisées et incubées en présence de 50 µl d'une suspension de méningocoques à 1.10⁴ CFU/ml et de 50 µl de complément de lapereau [la suspension bactérienne est obtenue par culture de la souche *N. meningitidis* B16B6 à 37°C pendant 5 heures dans le bouillon Mueller-Hinton-Difco contenant 30 µM d'EDDA (éthylène diamine di ortho hydroxyphenyl acetic acid - Sigma)].

20
25 Après une heure d'incubation à 37°C, 25 µl de mélange sont prélevés et cultivés sur gélose Mueller-Hinton supplémentée. Les boîtes de gélose sont incubées une nuit à 37°C sous une atmosphère contenant 10 % de CO₂. Les colonies sont numérées et le titre bactéricide est exprimé comme l'inverse de la dernière dilution en présence de laquelle on observe 50% ou plus de lyse des bactéries par rapport au contrôle.

Dans ces conditions, il a été déterminé que le Mab 475 E₇ possédait un titre bactéricide de 512.

EXEMPLE 12 : Mise en évidence de l'activité bactéricide des immunoglobulines spécifiques de la protéine T/2169 (1-350) vis-à-vis de diverses souches de *N. meningitidis*.

5 **12A -Production et purification de T/2169 (1-350)**

Une souche d'*E. coli* B est transformée par le plasmide pTG5782 décrit dans l'Exemple 1. Le transformant sélectionné est amplifié pour donner des lots de semence. A partir d'un tube d'*E. coli* B transformée par pTG 5782, on procède à une amplification de la culture dans le milieu M9 + succérat 0,5 %. La culture est réalisée dans un fermenteur de 20 l.

10 En phase exponentielle, on ajoute l'arabinose (inducteur d'expression). Après une heure d'induction, les cellules sont récoltées, cassées dans un appareil fonctionnant à haute pression (Rannie) et la fraction membranaire est récoltée par centrifugation.

15 Une analyse en Western blot suivie d'une révélation par la transferrine-peroxidase permet de détecter une bande majoritaire dont le poids moléculaire correspond à celui attendu pour cette forme tronquée. La protéine est purifiée par SDS-Page préparatif à partir de gel d'acrylamide à 10 %.

20 **12B - Production des immunoglobulines spécifiques de T/2169 (1-350)**

25 La fraction protéique ainsi obtenue sert à immuniser des lapins. Brièvement, des lapins (New-Zealand White) sont immunisés (i) à J/0 avec 50 µg de protéine T/2169 préparée comme décrit en 12A, en présence d'adjuvant complet de Freund et (ii) à J/21 et J/42 avec 50 µg de protéine T/2169 en présence d'adjuvant de Freund incomplet. A J/56, les lapins sont sacrifiés et le sérum est récolté. A partir de ce sérum, les immunoglobulines sont purifiées par chromatographie d'affinité sur une résine de protéine A-Sépharose (Pharmacia). La purification est réalisée selon les recommandations du fournisseur. La fraction d'IgG purifiée est lyophilisée et le lyophilisat est repris par un certain volume de façon à ce que la concentration protéique finale de la solution soit voisine de 25 mg/ml.

12C -Test de bactéricidie

En parallèle à la purification de T/2169, on procède à une purification par SDS-PAGE préparatif d'une fraction d'*E. coli* B obtenue après transformation avec le plasmide pTG3704 (ce vecteur est identique au plasmide pTG5782 mais ne comprend aucune séquence de Tbp2). La fraction protéique obtenue par SDS-PAGE préparatif sert à immuniser des lapins comme cela est décrit précédemment, et les IgG sont purifiées à partir du sérum récolté.

On dispose donc de deux fractions sériques dénommées IgG T/2169 et IgG Témoin. Elles sont analysées pour leur capacité à lyser différentes souches de *N. meningitidis* dans le test de bactéricidie, tel que décrit dans l'Exemple 4 de WO93/6861 (publié le 15.04.1993).

Les résultats obtenus sur différents isolats sont résumés dans le tableau ci-après et démontrent que la protéine T/2169 purifiée se révèle capable d'induire des anticorps bactéricides vis-à-vis de plusieurs souches du groupe de type IM2169. Ces résultats de bactéricidie croisée démontrent que T/2169 devrait être utile à des fins vaccinales.

Détermination de l'activité bactéricide des immunoglobulines spécifiques de la protéine T/2169 en comparaison avec les immunoglobulines témoin vis-à-vis de six souches de N. meningitidis

Souche	Sérotype Sérotype/sous-type	Titres bactéricides*	
		IgG Témoin	IgG T/2169
2169	B:9;P1.9	< 4	128
RH 873	B:8;P1.1.7	< 4	16
RH 876	B;19,P1.6	< 4	64
351	B:NT;P1.7	< 4	256
NG G40	B;1:-	< 4	512
EG 328	B:NT;-	< 4	64

* Les titres bactéricides sont exprimés en inverse de la dilution pour laquelle on observe 50 % de lyse des colonies initiales

- 33 -

EXEMPLE 13 : Mise en évidence de l'activité bactéricide des immunoglobulines spécifiques de la protéine D4/2169 vis-à-vis de diverses souches de *N. meningitidis*.

5 **13A -Production et purification de D4/2169**

D4/2169 est produit et purifié selon l'Exemple 12A.

10 **13B -Production des immunoglobulines spécifiques de D4/2169**

Cette production est effectuée de manière similaire à celle décrite dans l'Exemple 12B.

15 **13C -Test de bactéricidie**

On dispose de deux fractions d'immunoglobulines dénommées IgG D4/2169 et IgG Témoin. Elles sont analysées pour leur capacité à lyser différentes souches de *N. meningitidis* dans le test de bactéricidie tel que décrit dans l'Exemple 4 de WO 93/6861 (publié le 15.04.93).

20 Les résultats obtenus sur différents isolats sont résumés dans le tableau ci-après et démontrent que D4/2169 purifié se révèle capable d'induire des anticorps bactéricides vis-à-vis de plusieurs souches et par conséquent devrait être utile à des fins vaccinales.

25 *Détermination de l'activité bactéricide des immunoglobulines spécifiques de la protéine D4/2169 en comparaison avec les immunoglobulines témoin vis-à-vis de six souches de N. meningitidis*

Souche	Sérotype/ Sérogrupe sous-type	Titres bactéricides*	
		IgG Témoin	IgG D4/2169
2169	B:9;P1.9	< 4	32
RH 873	B;8;P1.1.7	< 4	8
RH 876	B;19;P1.6	< 4	16
351	B:NT;P1.7	< 4	128
NG G40	B;1:-	< 4	64
EG 328	B:NT:-	< 4	16

30 * Les titres bactéricides sont exprimés en inverse de la dilution pour laquelle on observe 50 % de lyse des colonies initiales.

- 34 -

SEQ ID NO	Nom du projet	Séquence
1, 2	IM2169-2	Tbp2 IM2169 complète
3, 4	IM2394-2	Tbp2 IM2394 complète
5, 6	M978	Tbp2 M978 complète
7, 8	6940	Tbp2 6940 complète
9, 10	S3032	Tbp2 S3032 complète
11	2D IM2169	2ième domaine de Tbp2 IM2169
12	2D 6940	2ième domaine de Tbp2 6940
13	2D 2223	2ième domaine de Tbp2 2223
14	2D C708	2ième domaine de Tbp2 C708
15	2D M978	2ième domaine de Tbp2 M978
16	2D 1610	2ième domaine de Tbp2 1610
17	2D 867	2ième domaine de Tbp2 867
18	2D S3032	2ième domaine de Tbp2 S3032
19	2D 891	2ième domaine de Tbp2 M981
20	OTG 4915	OTG 4915
21	OTG 4651	OTG 4651
22	OTG 4928	OTG 4928
23	OTG 5011	OTG 5011
24	OTG 4873	OTG 4873
25	OTG 4877	OTG 4877
26	A 5'	A 5'
27	A 3'	A 3'
28	2169 D1	2169D1
29	2169 D2	2169D2
30	2169 D3	2169D3
31	2169 D4	2169D4
32	MAB1	1ère boîte du 1er domaine de Tbp2 IM 2169
33	MAB2	2ième boîte du 1er domaine de Tbp2 IM 2169
34	MAB3	3ième boîte du 1er domaine de Tbp2 IM 2169
35	MAB4	4ième boîte du 1er domaine de Tbp2 IM 2169
36, 37	BZ83	Tbp2 BZ83 complète
38, 39	BZ163	Tbp2 BZ163 complète

- 35 -

40	2D BZ83	2ième domaine de Tbp2 BZ83
41	2D BZ163	2ième domaine de Tbp2 BZ163
42	2D M528	2ième domaine de Tbp2 M528

- 36 -

LISTE DE SEQUENCES

(1) INFORMATION GENERALE:

(i) DEPOSANT:

(A) NOM: Pasteur Merieux serums et vaccins
(B) RUE: 58, avenue leclerc
(C) VILLE: Lyon
(E) PAYS: France
(F) CODE POSTAL: 69007

(A) NOM: Transgene
(B) RUE: 11, rue de Molsheim
(C) VILLE: Strasbourg
(E) PAYS: France
(F) CODE POSTAL: 67000

(ii) TITRE DE L' INVENTION: Fragments Tbp2 de N. meningitidis

(iii) NOMBRE DE SEQUENCES: 35

(iv) FORME LISIBLE PAR ORDINATEUR:

(A) TYPE DE SUPPORT: Tape
(B) ORDINATEUR: IBM PC compatible
(C) SYSTEME D' EXPLOITATION: PC-DOS/MS-DOS
(D) LOGICIEL: PatentIn Release #1.0, Version #1.25 (OEB)

(2) INFORMATION POUR LA SEQ ID NO: 1:

(i) CARACTERISTIQUES DE LA SEQUENCE:

(A) LONGUEUR: 2230 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:

(A) ORGANISME: Neisseria meningitidis
(B) SOUCHE: IM2169

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: sig_peptide
(B) EMPLACEMENT: 60..119

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: mat_peptide
(B) EMPLACEMENT: 120..2192

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: CDS
(B) EMPLACEMENT: 60..2192

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc_feature
(B) EMPLACEMENT: 120..1154

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc feature
(B) EMPLACEMENT: 1155..1748

- 37 -

(ix) CARACTERISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc_feature
(B)EMPLACEMENT: 1749..2192

(ix) CARACTÉRISTIQUE ADDITIONNELLE:

(A) NOM/CLE: misc binding
(B) EMPLACEMENT: 237..1169

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 1:

ATG AAC AAT CCA TTG GTA AAT CAG GCT GCT ATG GTG CTG CCT GTG TTT Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe -20 -15 -10 -5	107
TTG TTG AGT GCC TGT CTG GGC GGC GGC AGT TTC GAT CTT GAT TCT Leu Leu Ser Ala Cys Leu Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5 10	155
GTC GAT ACC GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser 15 20 25	203
TCC GAA AAA CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala 30 35 40	251
ATG AGG TTG AAA CGG AGG AAT TGG TAT CCG GGG GCA GAA GAA AGC GAG Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu 45 50 55 60	299
GTT AAA CTG AAC GAG AGT GAT TGG GAG GCG ACG GGA TTG CCG ACA AAA Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys 65 70 75	347
CCC AAG GAA CTT CCT AAA CGG CAA AAA TCG GTT ATT GAA AAA GTA GAA Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu 80 85 90	395
ACA GAC GGC GAC AGC GAT ATT TAT TCT TCC CCC TAT CTC ACA CCA TCA Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser 95 100 105	443
AAC CAT CAA AAC GGC AGC GCT GGC AAC GGT GTA AAT CAA CCT AAA AAT Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn 110 115 120	491
CAG GCA ACA GGT CAC GAA AAT TTC CAA TAT GTT TAT TCC GGT TGG TTT Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe 125 130 135 140	539
TAT AAA CAT GCA GCG AGT GAA AAA GAT TTC AGT AAC AAA AAA ATT AAG Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys 145 150 155	587
TCA GGC GAC GAT GGT TAT ATC TTC TAT CAC GGT GAA AAA CCT TCC CGA Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg 160 165 170	635
CAA CTT CCT GCT TCT GGA AAA GTT ATC TAC AAA GGT GTG TGG CAT TTT Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe 175 180 185	683

- 38 -

GTA ACC GAT ACA AAA AAG GGT CAA GAT TTT CGT GAA ATT ATC CAG CCT Val Thr Asp Thr Lys Lys Gly Gln Asp Phe Arg Glu Ile Ile Gln Pro 190 195 200	731
TCA AAA AAA CAA GGC GAC AGG TAT ACC GGA TTT TCT GGT GAT GGC AGC Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Gly Ser 205 210 215 220	779
GAA GAA TAT TCC AAC AAA AAC GAA TCC ACG CTG AAA GAT GAT CAC GAG Glu Glu Tyr Ser Asn Lys Asn Glu Ser Thr Leu Lys Asp Asp His Glu 225 230 235	827
GGT TAT GGT TTT ACC TCG AAT TTA GAA GTG GAT TTC GGC AAT AAG AAA Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Asn Lys Lys 240 245 250	875
TTG ACG GGT AAA TTA ATA CGC AAT AAT GCG AGC CTA AAT AAT AAT ACT Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Ser Leu Asn Asn Asn Thr 255 260 265	923
AAT AAT GAC AAA CAT ACC ACC CAA TAC TAC AGC CTT GAT GCA CAA ATA Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile 270 275 280	971
ACA GGC AAC CGC TTC AAC GGC ACG GCA ACG GCA ACT GAC AAA AAA GAG Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala Thr Asp Lys Lys Glu 285 290 295 300	1019
AAT GAA ACC AAA CTA CAT CCC TTT GTT TCC GAC TCG TCT TCT TTG AGC Asn Glu Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser 305 310 315	1067
GGC GGC TTT TTC GGC CCG CAG GGT GAG GAA TTG GGT TTC CGC TTT TTG Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu 320 325 330	1115
AGC GAC GAT CAA AAA GTT GCC GTT GTC GGC AGC GCG AAA ACC AAA GAC Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp 335 340 345	1163
AAA CTG GAA AAT GGC GCG GCG GCT TCA GGC AGC ACA GGT GCG GCA GCA Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly Ala Ala Ala 350 355 360	1211
TCG GGC GGT GCG GCA GGC ACG TCG TCT GAA AAC AGT AAG CTG ACC ACG Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr 365 370 375 380	1259
GTT TTG GAT GCG GTT GAA TTG ACA CTA AAC GAC AAG AAA ATC AAA AAT Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn 385 390 395	1307
CTC GAC AAC TTC AGC AAT GCC GCC CAA CTG GTT GTC GAC GGC ATT ATG Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met 400 405 410	1355
ATT CCG CTC CTG CCC AAG GAT TCC GAA AGC GGG AAC ACT CAG GCA GAT Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp 415 420 425	1403
AAA GGT AAA AAC GGC GGA ACA GAA TTT ACC CGC AAA TTT GAA CAC ACG Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr 430 435 440	1451

- 39 -

CCG GAA AGT GAT AAA AAA GAC GCC CAA GCA GGT ACG CAG ACG AAT GGG Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 445 450 455 460	1499
GCG CAA ACC GCT TCA AAT ACG GCA GGT GAT ACC AAT GGC AAA ACA AAA Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys 465 470 475	1547
ACC TAT GAA GTC GAA GTC TGC TGT TCC AAC CTC AAT TAT CTG AAA TAC Thr Tyr Glu Val Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 480 485 490	1595
GGA ATG TTG ACG CGC AAA AAC AGC AAG TCC GCG ATG CAG GCA GGA GGA Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly 495 500 505	1643
AAC AGT AGT CAA GCT GAT GCT AAA ACG GAA CAA GTT GAA CAA AGT ATG Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 510 515 520	1691
TTC CTC CAA GGC GAG CGT ACC GAT GAA AAA GAG ATT CCA ACC GAC CAA Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Thr Asp Gln 525 530 535 540	1739
AAC GTC GTT TAT CGG GGG TCT TGG TAC GGG CAT ATT GCC AAC GGC ACA Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ala Asn Gly Thr 545 550 555	1787
AGC TGG AGC GGC AAT GCT TCT GAT AAA GAG GGC GGC AAC AGG GCG GAA Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Asn Arg Ala Glu 560 565 570	1835
TTT ACT GTG AAT TTT GCC GAT AAA AAA ATT ACC GGC AAG TTA ACC GCT Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Lys Leu Thr Ala 575 580 585	1883
GAA AAC AGG CAG GCG CAA ACC TTT ACC ATT GAG GGA ATG ATT CAG GGC Glu Asn Arg Gln Ala Gln Thr Phe Thr Ile Glu Gly Met Ile Gln Gly 590 595 600	1931
AAC GGC TTT GAA GGT ACG GCG AAA ACT GCT GAG TCA GGT TTT GAT CTC Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe Asp Leu 605 610 615 620	1979
GAT CAA AAA AAT ACC ACC CGC ACG CCT AAG GCA TAT ATC ACA GAT GCC Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr Asp Ala 625 630 635	2027
AAG GTA AAG GGC GGT TTT TAC GGG CCT AAA GCC GAA GAG TTG GGC GGA Lys Val Lys Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly 640 645 650	2075
TGG TTT GCC TAT CCG GGC GAT AAA CAA ACG GAA AAG GCA ACA GCT ACA Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Glu Lys Ala Thr Ala Thr 655 660 665	2123
TCC AGC GAT GGA AAT TCA GCA AGC AGC GCG ACC GTG GTA TTC GGT GCG Ser Ser Asp Gly Asn Ser Ala Ser Ser Ala Thr Val Val Phe Gly Ala 670 675 680	2171
AAA CGC CAA CAG CCT GTG CAA TAAGCACGGT TGCCGAACAA TCAAGAATAA Lys Arg Gln Gln Pro Val Gln 685 690	2222

- 40 -

GGCTTCAG

2230

(2) INFORMATION POUR LA SEQ ID NO: 2:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 711 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine

- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 2:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe			
-20	-15	-10	-5
Leu Leu Ser Ala Cys Leu Gly Gly Gly Ser Phe Asp Leu Asp Ser			
1	5	10	
Val Asp Thr Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser			
15	20	25	
Ser Glu Lys Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala			
30	35	40	
Met Arg Leu Lys Arg Arg Asn Trp Tyr Pro Gly Ala Glu Glu Ser Glu			
45	50	55	60
Val Lys Leu Asn Glu Ser Asp Trp Glu Ala Thr Gly Leu Pro Thr Lys			
65	70	75	
Pro Lys Glu Leu Pro Lys Arg Gln Lys Ser Val Ile Glu Lys Val Glu			
80	85	90	
Thr Asp Gly Asp Ser Asp Ile Tyr Ser Ser Pro Tyr Leu Thr Pro Ser			
95	100	105	
Asn His Gln Asn Gly Ser Ala Gly Asn Gly Val Asn Gln Pro Lys Asn			
110	115	120	
Gln Ala Thr Gly His Glu Asn Phe Gln Tyr Val Tyr Ser Gly Trp Phe			
125	130	135	140
Tyr Lys His Ala Ala Ser Glu Lys Asp Phe Ser Asn Lys Lys Ile Lys			
145	150	155	
Ser Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg			
160	165	170	
Gln Leu Pro Ala Ser Gly Lys Val Ile Tyr Lys Gly Val Trp His Phe			
175	180	185	
Val Thr Asp Thr Lys Lys Gly Gln Asp Phe Arg Glu Ile Ile Gln Pro			
190	195	200	
Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Gly Ser			
205	210	215	220
Glu Glu Tyr Ser Asn Lys Asn Glu Ser Thr Leu Lys Asp Asp His Glu			
225	230	235	

- 41 -

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Asn Lys Lys
240 245 250

Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Ser Leu Asn Asn Asn Thr
255 260 265

Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile
270 275 280

Thr Gly Asn Arg Phe Asn Gly Thr Ala Thr Ala Thr Asp Lys Lys Glu
285 290 295 300

Asn Glu Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser
305 310 315

Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly Phe Arg Phe Leu
320 325 330

Ser Asp Asp Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp
335 340 345

Lys Leu Glu Asn Gly Ala Ala Ala Ser Gly Ser Thr Gly Ala Ala Ala
350 355 360

Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr
365 370 375 380

Val Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn
385 390 395

Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met
400 405 410

Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly Asn Thr Gln Ala Asp
415 420 425

Lys Gly Lys Asn Gly Gly Thr Glu Phe Thr Arg Lys Phe Glu His Thr
430 435 440

Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly
445 450 455 460

Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys
465 470 475

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr
480 485 490

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Gly
495 500 505

Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met
510 515 520

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Thr Asp Gln
525 530 535 540

Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile Ala Asn Gly Thr
545 550 555

Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly Asn Arg Ala Glu
560 565 570

- 42 -

Phe	Thr	Val	Asn	Phe	Ala	Asp	Lys	Lys	Ile	Thr	Gly	Lys	Leu	Thr	Ala
575															585
Glu	Asn	Arg	Gln	Ala	Gln	Thr	Phe	Thr	Ile	Glu	Gly	Met	Ile	Gln	Gly
590															600
Asn	Gly	Phe	Glu	Gly	Thr	Ala	Lys	Thr	Ala	Glu	Ser	Gly	Phe	Asp	Leu
605															620
Asp	Gln	Lys	Asn	Thr	Thr	Arg	Thr	Pro	Lys	Ala	Tyr	Ile	Thr	Asp	Ala
															635
Lys	Val	Lys	Gly	Gly	Phe	Tyr	Gly	Pro	Lys	Ala	Glu	Glu	Leu	Gly	Gly
															650
Trp	Phe	Ala	Tyr	Pro	Gly	Asp	Lys	Gln	Thr	Glu	Lys	Ala	Thr	Ala	Thr
															665
Ser	Ser	Asp	Gly	Asn	Ser	Ala	Ser	Ser	Ala	Thr	Val	Val	Phe	Gly	Ala
															680
Lys	Arg	Gln	Gln	Pro	Val	Gln									
															685

(2) INFORMATION POUR LA SEQ ID NO: 3:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 1808 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)
- (vi) ORIGINE:
 - (A) ORGANISME: *N. meningitidis*
 - (B) SOUCHE: IM2394
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: sig_peptide
 - (B) EMPLACEMENT: 1..60
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: mat_peptide
 - (B) EMPLACEMENT: 61..1797
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: CDS
 - (B) EMPLACEMENT: 1..1797
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 61..1035
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1036..1386
- (ix) CARACTERISTIQUE ADDITIONNELLE:
 - (A) NOM/CLE: misc_feature
 - (B) EMPLACEMENT: 1387..1797
- (ix) CARACTERISTIQUE ADDITIONNELLE:

- 43 -

(A) NOM/CLE: misc_binding
 (B) EMPLACEMENT: 46..1050

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 3:

ATG AAC AAT CCA TTG GTA AAT CAG GCT GCT ATG GTG CTG CCT GTG TTT Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe -20 -15 -10 -5	48
TTG TTG AGT GCT TGT CTG GGT GGC GGC AGT TTC GAT TTG GAC AGC Leu Leu Ser Ala Cys Leu Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5 10	96
GTG GAA ACC GTG CAA GAT ATG CAC TCC AAA CCT AAG TAT GAG GAT GAA Val Glu Thr Val Gln Asp Met His Ser Lys Pro Lys Tyr Glu Asp Glu 15 20 25	144
AAA AGC CAG CCT GAA AGC CAA CAG GAT GTA TCG GAA AAC AGC GGC GCG Lys Ser Gln Pro Glu Ser Gln Gln Asp Val Ser Glu Asn Ser Gly Ala 30 35 40	192
GCT TAT GGC TTT GCA GTA AAA CTA CCT CGC CGG AAT GCA CAT TTT AAT Ala Tyr Gly Phe Ala Val Lys Leu Pro Arg Arg Asn Ala His Phe Asn 45 50 55 60	240
CCT AAA TAT AAG GAA AAG CAC AAA CCA TTG GGT TCA ATG GAT TGG AAA Pro Lys Tyr Lys Glu Lys His Lys Pro Leu Gly Ser Met Asp Trp Lys 65 70 75	288
AAA CTG CAA AGA GGA GAA CCA AAT AGT TTT AGT GAG AGG GAT GAA TTG Lys Leu Gln Arg Gly Glu Pro Asn Ser Phe Ser Glu Arg Asp Glu Leu 80 85 90	336
GAA AAA AAA CGG GGT AGT TCT GAA CTT ATT GAA TCA AAA TGG GAA GAT Glu Lys Lys Arg Gly Ser Ser Glu Leu Ile Glu Ser Lys Trp Glu Asp 95 100 105	384
GGG CAA AGT CGT GTA GTT GGT TAT ACA AAT TTC ACT TAT GTC CGT TCG Gly Gln Ser Arg Val Val Gly Tyr Thr Asn Phe Thr Tyr Val Arg Ser 110 115 120	432
GGA TAT GTT TAC CTT AAT AAA AAT ATT GAT ATT AAG AAT AAT ATA Gly Tyr Val Tyr Leu Asn Lys Asn Ile Asp Ile Lys Asn Asn Ile 125 130 135 140	480
GTT CTT TTT GGA CCT GAC GGA TAT CTT TAC TAT AAA GGG AAA GAA CCT Val Leu Phe Gly Pro Asp Gly Tyr Leu Tyr Tyr Lys Gly Lys Glu Pro 145 150 155	528
TCC AAG GAG CTG CCA TCG GAA AAG ATA ACT TAT AAA GGT ACT TGG GAT Ser Lys Glu Leu Pro Ser Glu Lys Ile Thr Tyr Lys Gly Thr Trp Asp 160 165 170	576
TAT GTT ACT GAT GCT ATG GAA AAA CAA AGG TTT GAA GGA TTG GGT AGT Tyr Val Thr Asp Ala Met Glu Lys Gin Arg Phe Glu Gly Leu Gly Ser 175 180 185	624
GCA GCA GGA GGA GAT AAA TCG GGG GCG TTG TCT GCA TTA GAA GAA GGG Ala Ala Gly Gly Asp Lys Ser Gly Ala Leu Ser Ala Leu Glu Glu Gly 190 195 200	672
GTA TTG CGT AAT CAG GCA GAG GCA TCA TCC GGT CAT ACC GAT TTT GGT Val Leu Arg Asn Gln Ala Glu Ala Ser Ser Gly His Thr Asp Phe Gly 205 210 215 220	720

- 44 -

ATG ACT AGT GAG TTT GAG GTT GAT TTT TCT GAT AAA ACA ATA AAG GGC Met Thr Ser Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly 225 230 235	768
ACA CTT TAT CGT AAC AAC CGT ATT ACT CAA AAT AAT AGT GAA AAC AAA Thr Leu Tyr Arg Asn Asn Arg Ile Thr Gln Asn Asn Ser Glu Asn Lys 240 245 250	816
CAA ATA AAA ACT ACG CGT TAC ACC ATT CAA GCA ACT CTT CAC GGC AAC Gln Ile Lys Thr Thr Arg Tyr Thr Ile Gln Ala Thr Leu His Gly Asn 255 260 265	864
CGT TTC AAA GGT AAG GCG TTG GCG GCA GAT AAA GGT GCA ACA AAT GGA Arg Phe Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly 270 275 280	912
AGT CAT CCC TTT ATT TCC GAC TCC GAC AGT TTG GAA GGC GGA TTT TAC Ser His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Gly Phe Tyr 285 290 295 300	960
GGG CCG AAA GGC GAG GAA CTT GCC GGT AAA TTC TTG AGC AAC GAC AAC Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp Asn 305 310 315	1008
AAA GTT GCA GCG GTG TTT GGT GCG AAG CAG AAA GAT AAG AAG GAT GGG Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys Asp Gly 320 325 330	1056
GAA AAC GCG GCA GGG CCT GCA ACG GAA ACC GTG ATA GAT GCA TAC CGT Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp Ala Tyr Arg 335 340 345	1104
ATT ACC GGC GAG GAG TTT AAG AAA GAG CAA ATA GAC AGT TTT GGA GAT Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp Ser Phe Gly Asp 350 355 360	1152
GTG AAA AAG CTG CTG GTT GAC GGA GTG GAG CTT TCA CTG CTG CCG TCT Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu Ser Leu Leu Pro Ser 365 370 375 380	1200
GAG GGC AAT AAG GCG GCA TTT CAG CAC GAG ATT GAG CAA AAC GGC GTG Glu Gly Asn Lys Ala Ala Phe Gln His Glu Ile Glu Gln Asn Gly Val 385 390 395	1248
AAG GCA ACG GTG TGT TGT TCC AAC TTG GAT TAC ATG AGT TTT GGG AAG Lys Ala Thr Val Cys Cys Ser Asn Leu Asp Tyr Met Ser Phe Gly Lys 400 405 410	1296
CTG TCA AAA GAA AAT AAA GAC GAT ATG TTC CTG CAA GGT GTC CGC ACT Leu Ser Lys Glu Asn Lys Asp Asp Met Phe Leu Gln Gly Val Arg Thr 415 420 425	1344
CCA GTA TCC GAT GTG GCG GCA AGG ACG GAG GCA AAC GCC AAA TAT CGC Pro Val Ser Asp Val Ala Ala Arg Thr Glu Ala Asn Ala Lys Tyr Arg 430 435 440	1392
GGT ACT TGG TAC GGA TAT ATT GCC AAC GGC ACA AGC TGG AGC GGC GAA Gly Thr Trp Tyr Gly Tyr Ile Ala Asn Gly Thr Ser Trp Ser Gly Glu 445 450 455 460	1440
GCC TCC AAT CAG GAA GGT GGT AAT AGG GCA GAG TTT GAC GTG GAT TTT Ala Ser Asn Gln Glu Gly Gly Asn Arg Ala Glu Phe Asp Val Asp Phe 465 470 475	1488

- 45 -

TCC ACT AAA AAA ATC AGT GGC ACA CTG ACG GCA AAA GAC CGT ACG TCT Ser Thr Lys Lys Ile Ser Gly Thr Leu Thr Ala Lys Asp Arg Thr Ser 480 485 490	1536
CCT GCG TTT ACT ATT ACT GCC ATG ATT AAG GAC AAC GGT TTT TCA GGT Pro Ala Phe Thr Ile Thr Ala Met Ile Lys Asp Asn Gly Phe Ser Gly 495 500 505	1584
GTG GCG AAA ACC GGT GAA AAC GGC TTT GCG CTG GAT CCG CAA AAT ACC Val Ala Lys Thr Gly Glu Asn Gly Phe Ala Leu Asp Pro Gln Asn Thr 510 515 520	1632
GGA AAT TCC CAC TAT ACG CAT ATT GAA GCC ACT GTA TCC GGC GGT TTC Gly Asn Ser His Tyr Thr His Ile Glu Ala Thr Val Ser Gly Gly Phe 525 530 535 540	1680
TAC GGC AAA AAC GCC ATC GAG ATG GGC GGA TCG TTC TCA TTT CCG GGA Tyr Gly Lys Asn Ala Ile Glu Met Gly Ser Phe Ser Phe Pro Gly 545 550 555	1728
AAT GCA CCA GAG GGA AAA CAA GAA AAA GCA TCG GTG GTA TTC GGT GCG Asn Ala Pro Glu Gly Lys Gln Glu Lys Ala Ser Val Val Phe Gly Ala 560 565 570	1776
AAA CGC CAA CAG CTT GTG CAA TAAGCACGGC T Lys Arg Gln Gln Leu Val Gln 575	1808

(2) INFORMATION POUR LA SEQ ID NO: 4:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 599 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 4:

Met Asn Asn Pro Leu Val Asn Gln Ala Ala Met Val Leu Pro Val Phe -20 -15 -10 -5
Leu Leu Ser Ala Cys Leu Gly Gly Gly Ser Phe Asp Leu Asp Ser 1 5 10
Val Glu Thr Val Gln Asp Met His Ser Lys Pro Lys Tyr Glu Asp Glu 15 20 25
Lys Ser Gln Pro Glu Ser Gln Gln Asp Val Ser Glu Asn Ser Gly Ala 30 35 40
Ala Tyr Gly Phe Ala Val Lys Leu Pro Arg Arg Asn Ala His Phe Asn 45 50 55 60
Pro Lys Tyr Lys Glu Lys His Lys Pro Leu Gly Ser Met Asp Trp Lys 65 70 75
Lys Leu Gln Arg Gly Glu Pro Asn Ser Phe Ser Glu Arg Asp Glu Leu 80 85 90
Glu Lys Lys Arg Gly Ser Ser Glu Leu Ile Glu Ser Lys Trp Glu Asp 95 100 105

- 46 -

Gly Gln Ser Arg Val Val Gly Tyr Thr Asn Phe Thr Tyr Val Arg Ser
 110 115 120
 Gly Tyr Val Tyr Leu Asn Lys Asn Asn Ile Asp Ile Lys Asn Asn Ile
 125 130 135 140
 Val Leu Phe Gly Pro Asp Gly Tyr Leu Tyr Tyr Lys Gly Lys Glu Pro
 145 150 155
 Ser Lys Glu Leu Pro Ser Glu Lys Ile Thr Tyr Lys Gly Thr Trp Asp
 160 165 170
 Tyr Val Thr Asp Ala Met Glu Lys Gln Arg Phe Glu Gly Leu Gly Ser
 175 180 185
 Ala Ala Gly Gly Asp Lys Ser Gly Ala Leu Ser Ala Leu Glu Glu Gly
 190 195 200
 Val Leu Arg Asn Gln Ala Glu Ala Ser Ser Gly His Thr Asp Phe Gly
 205 210 215 220
 Met Thr Ser Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly
 225 230 235
 Thr Leu Tyr Arg Asn Asn Arg Ile Thr Gln Asn Asn Ser Glu Asn Lys
 240 245 250
 Gln Ile Lys Thr Thr Arg Tyr Thr Ile Gln Ala Thr Leu His Gly Asn
 255 260 265
 Arg Phe Lys Gly Lys Ala Leu Ala Ala Asp Lys Gly Ala Thr Asn Gly
 270 275 280
 Ser His Pro Phe Ile Ser Asp Ser Asp Ser Leu Glu Gly Phe Tyr
 285 290 295 300
 Gly Pro Lys Gly Glu Glu Leu Ala Gly Lys Phe Leu Ser Asn Asp Asn
 305 310 315
 Lys Val Ala Ala Val Phe Gly Ala Lys Gln Lys Asp Lys Lys Asp Gly
 320 325 330
 Glu Asn Ala Ala Gly Pro Ala Thr Glu Thr Val Ile Asp Ala Tyr Arg
 335 340 345
 Ile Thr Gly Glu Glu Phe Lys Lys Glu Gln Ile Asp Ser Phe Gly Asp
 350 355 360
 Val Lys Lys Leu Leu Val Asp Gly Val Glu Leu Ser Leu Leu Pro Ser
 365 370 375 380
 Glu Gly Asn Lys Ala Ala Phe Gln His Glu Ile Glu Gln Asn Gly Val
 385 390 395
 Lys Ala Thr Val Cys Cys Ser Asn Leu Asp Tyr Met Ser Phe Gly Lys
 400 405 410
 Leu Ser Lys Glu Asn Lys Asp Asp Met Phe Leu Gln Gly Val Arg Thr
 415 420 425
 Pro Val Ser Asp Val Ala Ala Arg Thr Glu Ala Asn Ala Lys Tyr Arg
 430 435 440

- 47 -

Gly Thr Trp Tyr Gly Tyr Ile Ala Asn Gly Thr Ser Trp Ser Gly Glu
 445 450 455 460
 Ala Ser Asn Gln Glu Gly Gly Asn Arg Ala Glu Phe Asp Val Asp Phe
 465 470 475
 Ser Thr Lys Lys Ile Ser Gly Thr Leu Thr Ala Lys Asp Arg Thr Ser
 480 485 490
 Pro Ala Phe Thr Ile Thr Ala Met Ile Lys Asp Asn Gly Phe Ser Gly
 495 500 505
 Val Ala Lys Thr Gly Glu Asn Gly Phe Ala Leu Asp Pro Gln Asn Thr
 510 515 520
 Gly Asn Ser His Tyr Thr His Ile Glu Ala Thr Val Ser Gly Gly Phe
 525 530 535 540
 Tyr Gly Lys Asn Ala Ile Glu Met Gly Gly Ser Phe Ser Phe Pro Gly
 545 550 555
 Asn Ala Pro Glu Gly Lys Gln Glu Lys Ala Ser Val Val Phe Gly Ala
 560 565 570
 Lys Arg Gln Gln Leu Val Gln
 575

(2) INFORMATION POUR LA SEQ ID NO: 5:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 2255 paires de bases
 (B) TYPE: acide nucléique
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:
 (A) ORGANISME: N. meningitidis
 (B) SOUCHE: M978

(ix) CARACTERISTIQUE ADDITIONNELLE:
 (A) NOM/CLE: mat_peptide
 (B) EMPLACEMENT: 1..2115

(xi) CARACTERISTIQUE ADDITIONNELLE:
 (A) NOM/CLE: CDS
 (B) EMPLACEMENT: 1..2115

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 5:

TGT CTG GGT GGC GGC GGC ACG TTC GAT CTT GAT TCT GTC GAT ACC GAA	48
Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu	
1 5 10 15	
GCC CCG CGT CCC GCC CCA AAA TAT CAA GAT GTT TCT TCC GAA AAA CCG	96
Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro	
20 25 30	
CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCA ATG CGC CTC AAG	144
Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys	
35 40 45	

- 48 -

CGG CGG AAT TGG CAT CCG CAG GCA AAT CCT AAA GAA GAT GAG ATA AAA Arg Arg Asn Trp His Pro Gln Ala Asn Pro Lys Glu Asp Glu Ile Lys 50 55 60	192
CTT TCT GAA AAT GAT TGG GAG GCG ACA GGA TTG CCA GGC AAT CCC AAA Leu Ser Glu Asn Asp Trp Glu Ala Thr Gly Leu Pro Gly Asn Pro Lys 65 70 75 80	240
AAC TTA CCT GAG CGA CAG AAA TCG GTT ATT GAA AAA GTA AAA ACA GGC Asn Leu Pro Glu Arg Gln Lys Ser Val Ile Glu Lys Val Lys Thr Gly 85 90 95	288
AGC GAC AGC AAT ATT TAT TCT TCC CCC TAT CTC ACG CAA TCA AAC CAT Ser Asp Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser Asn His 100 105 110	336
CAA AAC GGC AGT GCA AAC CAA CCA AAA AAT GAA GTA AAA GAT TAT AAA Gln Asn Gly Ser Ala Asn Gln Pro Lys Asn Glu Val Lys Asp Tyr Lys 115 120 125	384
GAG TTC AAA TAT GTT TAT TCC GGT TGG TTT TAC AAA CAC GCT AAA CTC Glu Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His Ala Lys Leu 130 135 140	432
GAA ATC ATA AAA GAA AAC AAC TTA ATT AAG GGT GCA AAG AGC GGC GAC Glu Ile Ile Lys Glu Asn Asn Leu Ile Lys Gly Ala Lys Ser Gly Asp 145 150 155 160	480
GAC GGT TAT ATC TTT TAT CAC GGT GAA AAA CCT TCC CGA CAA CTT CCC Asp Gly Tyr Ile Phe Tyr His Gly Glu Lys Pro Ser Arg Gln Leu Pro 165 170 175	528
GTT TCT GGA GAA GTT ACC TAC AAA GGC GTA TGG CAT TTT GTA ACC GAT Val Ser Gly Glu Val Thr Tyr Lys Gly Val Trp His Phe Val Thr Asp 180 185 190	576
ACG AAA CAG GGA CAA AAA TTT AAC GAT ATT CTT GGA ACC TCA AAA AAA Thr Lys Gln Gly Gln Lys Phe Asn Asp Ile Leu Gly Thr Ser Lys Lys 195 200 205	624
CAA GGC GAC AGG TAT AGC GGA TTT CCG GGT GAT GAC GGC GAA GAA TAT Gln Gly Asp Arg Tyr Ser Gly Phe Pro Gly Asp Asp Gly Glu Glu Tyr 210 215 220	672
TCC AAT AAA AAT GAA GCG ACT TTA CAA GGC AGT CAA GAG GGT TAT GGT Ser Asn Lys Asn Glu Ala Thr Leu Gln Gly Ser Gln Glu Gly Tyr Gly 225 230 235 240	720
TTT ACC TCA AAT TTA AAA GTG GAT TTC AAT AAG AAA AAA TTG ACG GGT Phe Thr Ser Asn Leu Lys Val Asp Phe Asn Lys Lys Lys Leu Thr Gly 245 250 255	768
GAA TTG ATA CGC AAT AAT AGA GTT ACA AAC GCT ACT GCT AAC GAT AAA Glu Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Thr Ala Asn Asp Lys 260 265 270	816
TAC ACC ACC CAA TAT TAC AGC CTT GAG GCT CAA GTA ACA GCA AAC CGC Tyr Thr Thr Gln Tyr Tyr Ser Leu Glu Ala Gln Val Thr Gly Asn Arg 275 280 285	864
TTC AAC GGC AAG GCA ACG GCA ACC GAC AAA CCT GGC ACT GGA GAA ACC Phe Asn Gly Lys Ala Thr Ala Thr Asp Lys Pro Gly Thr Gly Glu Thr 290 295 300	912

- 49 -

AAA CAA CAT CCC TTT GTT TCC GAC TCG TCT TCT TTG AGC GGC GGC TTT Lys Gln His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser Gly Gly Phe 305 310 315 320	960
TTC GGC CCG AAG GGT GAG GAA TTG GGT TTC CGC TTT TTG AGC AAC GAT Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu Ser Asn Asp 325 330 335	1008
CAA AAA GTT GCC GTT GTC GGC AGC GCG AAA ACC CAA GAC AAA GCC GCA Gln Lys Val Ala Val Val Gly Ser Ala Lys Thr Gln Asp Lys Ala Ala 340 345 350	1056
AAT GGC AAT ACT GCG GCG GCT TCA GGC GGC ACA GAT GCG GCA GCA TCA Asn Gly Asn Thr Ala Ala Ser Gly Gly Thr Asp Ala Ala Ala Ser 355 360 365	1104
AAC GGT GCG GCA GGC ACG TCG TCT GAA AAC AGT AAG CTG ACC ACG GTT Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr Val 370 375 380	1152
TTG GAT GCG GTT GAA TTG ACA CTA AAC GAC AAG AAA ATC AAA AAT CTC Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn Leu 385 390 395 400	1200
GAC AAC TTC AGC AAT GCC GCC CAA CTG GTT GTC GAC GGC ATT ATG ATT Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile 405 410 415	1248
CCG CTC CTG CCC GAG ACT TCC GAA AGT GGG AGC AAT CAG GCA GAT AAA Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly Ser Asn Gln Ala Asp Lys 420 425 430	1296
GGT AAA AAA GGT AAA AAC GGT AAA AAC GGC GGA ACA GAC TTT ACC TAC Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly Gly Thr Asp Phe Thr Tyr 435 440 445	1344
AAA ACA ACC TAC ACG CCG AAA AAC GAT GAC AAA GAT ACC AAA GCC CAA Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln 450 455 460	1392
ACA GGT GCG GCA GGC TCT AGC GGC GCA CAA ACC GAT TTG GGT AAG GCG Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln Thr Asp Leu Gly Lys Ala 465 470 475 480	1440
GAC GTT AAC GGC GGT AAG GCA GAA ACA AAA ACC TAT GAA GTC GAA GTC Asp Val Asn Gly Gly Lys Ala Glu Thr Lys Thr Tyr Glu Val Glu Val 485 490 495	1488
TGC TGT TCC AAC CTC AAT TAT CTG AAA TAC GGA ATG TTG ACG CGT AAA Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys 500 505 510	1536
AAC AGC AAG TCC GCG ATG CAG GCA GGA GGA AAC AGT AGT CAA GCT GAT Asn Ser Lys Ser Ala Met Gln Ala Gly Gly Asn Ser Ser Gln Ala Asp 515 520 525	1584
GCT AAA ACG GAA CAA GTT GAA CAA AGT ATG TTC CTC CAA GGC GAG CGT Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg 530 535 540	1632
ACC GAT GAA AAA GAG ATT CCA AAC GAC CAA AAC GTC GTT TAT CGG GGG Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln Asn Val Val Tyr Arg Gly 545 550 555 560	1680

- 50 -

TCT TGG TAC GGG CAT ATT GCC AGC AGC ACA AGC TGG AGC GGC AAT GCT Ser Trp Tyr Gly His Ile Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala 565 570 575	1728
TCC AAT GCA ACG AGT GGC AAC AGG GCG GAA TTT ACT GTG AAT TTC GAT Ser Asn Ala Thr Ser Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Asp 580 585 590	1776
ACG AAA AAA ATT AAC GGC ACG TTA ACC GCT GAA AAC AGG CAG GAG GCA Thr Lys Lys Ile Asn Gly Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala 595 600 605	1824
ACC TTT ACC ATT GAT GGT AAG ATT GAG GGC AAC GGT TTT TCC GGT ACG Thr Phe Thr Ile Asp Gly Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr 610 615 620	1872
GCA AAA ACT GCT GAC TTA GGT TTT GAT CTC GAT CAA AGC AAT ACC ACC Ala Lys Thr Ala Asp Leu Gly Phe Asp Leu Asp Gln Ser Asn Thr Thr 625 630 635 640	1920
GCG ACG CCT AAG GCA TAT ATC ACA GAT GCC AAG GTG CAG GGC GGT TTT Gly Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe 645 650 655	1968
TAC GGG CCT AAA GCC GAA GAG TTG GGC GGA TGG TTT GCC TAT CCG GGC Tyr Gly Pro Lys Ala Glu Glu Leu Gly Trp Phe Ala Tyr Pro Gly 660 665 670	2016
GAT AAA CAA ACG GAA AAG GCA ACG GTT GCA TCC GGC GAT GGA AAT TCA Asp Lys Gln Thr Glu Lys Ala Thr Val Ala Ser Gly Asp Gly Asn Ser 675 680 685	2064
GCA AGC AGC GCG ACC GTG GTA TTC GGT GCG AAA CGC CAA CAG CCT GTG Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg Gln Gln Pro Val 690 695 700	2112
CAA TAACTAAATG AAGTTGTCTG GGTGGCGGCG GCACGTTCGA TCTTGATTCT Gln 705	2165
GTCGATACCG AAGCCCCGCG TCCCCCCCCA AAATATCAAG ATGTTCTTC CGAAAAACCG	2225
CAAGCCCCAA AAGACCAAGG CGGATACGGT	2255

(2) INFORMATION POUR LA SEQ ID NO: 6:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 705 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 6:

Cys Leu Gly Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu
1 5 10 15

Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro
20 25 30

Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys
35 40 45

- 51 -

Arg	Arg	Asn	Trp	His	Pro	Gln	Ala	Asn	Pro	Lys	Glu	Asp	Glu	Ile	Lys
50						55				60					
Leu	Ser	Glu	Asn	Asp	Trp	Glu	Ala	Thr	Gly	Leu	Pro	Gly	Asn	Pro	Lys
65						70			75				80		
Asn	Leu	Pro	Glu	Arg	Gln	Lys	Ser	Val	Ile	Glu	Lys	Val	Lys	Thr	Gly
				85				90				95			
Ser	Asp	Ser	Asn	Ile	Tyr	Ser	Ser	Pro	Tyr	Leu	Thr	Gln	Ser	Asn	His
				100				105				110			
Gln	Asn	Gly	Ser	Ala	Asn	Gln	Pro	Lys	Asn	Glu	Val	Lys	Asp	Tyr	Lys
				115				120				125			
Glu	Phe	Lys	Tyr	Val	Tyr	Ser	Gly	Trp	Phe	Tyr	Lys	His	Ala	Lys	Leu
				130				135				140			
Glu	Ile	Ile	Lys	Glu	Asn	Asn	Leu	Ile	Lys	Gly	Ala	Lys	Ser	Gly	Asp
				145				150				155			160
Asp	Gly	Tyr	Ile	Phe	Tyr	His	Gly	Glu	Lys	Pro	Ser	Arg	Gln	Leu	Pro
				165				170				175			
Val	Ser	Gly	Glu	Val	Thr	Tyr	Lys	Gly	Val	Trp	His	Phe	Val	Thr	Asp
				180				185				190			
Thr	Lys	Gln	Gly	Gln	Lys	Phe	Asn	Asp	Ile	Leu	Gly	Thr	Ser	Lys	Lys
				195				200				205			
Gln	Gly	Asp	Arg	Tyr	Ser	Gly	Phe	Pro	Gly	Asp	Asp	Gly	Glu	Glu	Tyr
				210				215				220			
Ser	Asn	Lys	Asn	Glu	Ala	Thr	Leu	Gln	Gly	Ser	Gln	Glu	Gly	Tyr	Gly
				225				230				235			240
Phe	Thr	Ser	Asn	Leu	Lys	Val	Asp	Phe	Asn	Lys	Lys	Lys	Leu	Thr	Gly
				245				250				255			
Glu	Leu	Ile	Arg	Asn	Asn	Arg	Val	Thr	Asn	Ala	Thr	Ala	Asn	Asp	Lys
				260				265				270			
Tyr	Thr	Thr	Gln	Tyr	Tyr	Ser	Leu	Glu	Ala	Gln	Val	Thr	Gly	Asn	Arg
				275				280				285			
Phe	Asn	Gly	Lys	Ala	Thr	Ala	Thr	Asp	Lys	Pro	Gly	Thr	Gly	Glu	Thr
				290				295				300			
Lys	Gln	His	Pro	Phe	Val	Ser	Asp	Ser	Ser	Leu	Ser	Gly	Gly	Phe	
				305				310				315			320
Phe	Gly	Pro	Lys	Gly	Glu	Glu	Leu	Gly	Phe	Arg	Phe	Leu	Ser	Asn	Asp
				325				330				335			
Gln	Lys	Val	Ala	Val	Val	Gly	Ser	Ala	Lys	Thr	Gln	Asp	Lys	Ala	Ala
				340				345				350			
Asn	Gly	Asn	Thr	Ala	Ala	Ala	Ser	Gly	Gly	Thr	Asp	Ala	Ala	Ala	Ser
				355				360				365			
Asn	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn	Ser	Lys	Leu	Thr	Thr	Val
				370				375				380			

- 52 -

Leu Asp Ala Val Glu Leu Thr Leu Asn Asp Lys Lys Ile Lys Asn Leu
 385 390 395 400

Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met Ile
 405 410 415

Pro Leu Leu Pro Glu Thr Ser Glu Ser Gly Ser Asn Gln Ala Asp Lys
 420 425 430

Gly Lys Lys Gly Lys Asn Gly Lys Asn Gly Gly Thr Asp Phe Thr Tyr
 435 440 445

Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln
 450 455 460

Thr Gly Ala Ala Gly Ser Ser Gly Ala Gln Thr Asp Leu Gly Lys Ala
 465 470 475 480

Asp Val Asn Gly Gly Lys Ala Glu Thr Lys Thr Tyr Glu Val Glu Val
 485 490 495

Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr Gly Met Leu Thr Arg Lys
 500 505 510

Asn Ser Lys Ser Ala Met Gln Ala Gly Gly Asn Ser Ser Gln Ala Asp
 515 520 525

Ala Lys Thr Glu Gln Val Glu Gln Ser Met Phe Leu Gln Gly Glu Arg
 530 535 540

Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln Asn Val Val Tyr Arg Gly
 545 550 555 560

Ser Trp Tyr Gly His Ile Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala
 565 570 575

Ser Asn Ala Thr Ser Gly Asn Arg Ala Glu Phe Thr Val Asn Phe Asp
 580 585 590

Thr Lys Lys Ile Asn Gly Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala
 595 600 605

Thr Phe Thr Ile Asp Gly Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr
 610 615 620

Ala Lys Thr Ala Asp Leu Gly Phe Asp Leu Asp Gln Ser Asn Thr Thr
 625 630 635 640

Gly Thr Pro Lys Ala Tyr Ile Thr Asp Ala Lys Val Gln Gly Gly Phe
 645 650 655

Tyr Gly Pro Lys Ala Glu Glu Leu Gly Gly Trp Phe Ala Tyr Pro Gly
 660 665 670

Asp Lys Gln Thr Glu Lys Ala Thr Val Ala Ser Gly Asp Gly Asn Ser
 675 680 685

Ala Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg Gln Gln Pro Val
 690 695 700

Gln
 705

- 53 -

(2) INFORMATION POUR LA SEQ ID NO: 7:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 2114 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: simple
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
- (B) SOUCHE: 6940

(ix) CARACTERISTIQUE ADDITIONNELLE:

- (A) NOM/CLE: mat_peptide
- (B) EMPLACEMENT: 1..2079

(ix) CARACTERISTIQUE ADDITIONNELLE:

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT: 1..2079

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 7:

TGT TTG GGT GGC GGC GGC ACG TTC GAT CTT GAT TCT GTC GAT ACC GAA Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu 1 5 10 15	48
GCC CCG CGT CCC GAC CCA AAG TAT CAA GAT GTT TCT TCC GAA AAA CCG Ala Pro Arg Pro Asp Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro 20 25 30	96
CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG ATG AGG TTG AAA Gln Ala Gln Lys Asp Gln Gly Tyr Gly Phe Ala Met Arg Leu Lys 35 40 45	144
CGG AGG AAT TGG TAT TCC GCA GCA AAA GAA GAC GAG GTT AAA CTG AAC Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn 50 55 60	192
GAG AGT GAT TGG GAG ACG ACA GGA TTG CCG ACA GAA CCC AAG AAA CTG Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu 65 70 75 80	240
CCA TTA AAA CAA GAA TCC GTC ATT TCA AAA GTA CAA GCA AAC AAT GGC Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly 85 90 95	288
GAC AAC AAT ATT TAC ACT TCC CCC TAT CTC ACG CAA TCA AAC CAT CAA Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln 100 105 110	336
AAT AGC AGC ATT AAT GGC GGT GCA AAC CTG CCA AAA AAC GAA GTA ACA Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pro Lys Asn Glu Val Thr 115 120 125	384
AAT TAT AAA GAT TTC AAA TAT GTT TAT TCC GGC TGG TTT TAT AAA CAT Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His 130 135 140	432
GCT AAA AAC GAA ATC ATA AGA GAA AAC AGC TCA ATT AAG GGT GCA AAG Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys 145 150 155 160	480

- 54 -

AAC GGC GAC GAC GGC TAT ATC TTT TAT CAC GGC AAA GAA CCT TCC CGA Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Glu Pro Ser Arg 165 170 175	528
CAA CTT CCC GCT TCT GGA ACA GTT ACC TAT AAA GGT GTG TGG CAT TTT Gln Leu Pro Ala Ser Gly Thr Val Thr Tyr Lys Gly Val Trp His Phe 180 185 190	576
GCG ACC GAT GTC AAA AAA TCC CAA AAT TTT CGC GAT ATT ATC CAG CCT Ala Thr Asp Val Lys Lys Ser Gln Asn Phe Arg Asp Ile Ile Gln Pro 195 200 205	624
TCG AAA AAA CAA GGC GAC AGG TAT AGC GGA TTT TCG GGC GAT GAT GAT Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp 210 215 220	672
GAA CAA TAT TCT AAT AAA AAC GAA TCC ATG CTG AAA GAT GGT CAA GAG Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly Gln Glu 225 230 235 240	720
GGT TAT GGT TTT ACC TCG AAT TTA GAA GTG GAT TTC GGC AGT AAA AAA Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Ser Lys Lys 245 250 255	768
TTG ACG GGT AAA TTA ATA CGC AAT AAT AGA GTT ACA AAC GCT CCT ACT Leu Thr Gly Lys Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Pro Thr 260 265 270	816
AAC GAT AAA TAC ACC ACC CAA TAC TAC AGC CTT GAT GCC CAA ATA ACA Asn Asp Lys Tyr Thr Gln Tyr Ser Leu Asp Ala Gln Ile Thr 275 280 285	864
GGC AAC CGC TTC AAC GGT AAG GCG ATA CGG ACC GAC AAA CCC GAC ACT Gly Asn Arg Phe Asn Gly Lys Ala Ile Arg Thr Asp Lys Pro Asp Thr 290 295 300	912
GGA GGA ACC AAA CTA CAT CCC TTT GTT TCC GAC TCG TCT TCT TTG AGC Gly Gly Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Leu Ser 305 310 315 320	960
GGC GGC TTT TTC GGT CCG AAG GGT GAG GAA TTG GGT TTC CGC TTT TTG Gly Gly Phe Phe Gly Pro Lys Gly Glu Leu Gly Phe Arg Phe Leu 325 330 335	1008
AGC GAC GAT AAA AAA GTT GCG GTT GTC GGC AGC GCG AAA ACC AAA GAC Ser Asp Asp Lys Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp 340 345 350	1056
AAA ACG GAA AAT GGC GCG GTG GCT TCA GGC GGC ACA GAT GCG GCA GCA Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp Ala Ala Ala 355 360 365	1104
TCA AAC GGT GCG GCA GGC ACG TCG TCT GAA AAC AGT AAG CTG ACC ACG Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr 370 375 380	1152
GTT TTG GAT GCG GTC GAG CTG AAA TTG GGC GAT AAG GAA GTC CAA AAG Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys 385 390 395 400	1200
CTC GAC AAC TTC AGC AAC GCC GCC CAA CTG GTT GTC GAC GGC ATT ATG Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met 405 410 415	1248

- 55 -

ATT CCG CTC TTG CCC GAG GCT TCC GAA AGT GGG AAC AAT CAA GCC AAT Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn Gln Ala Asn 420 425 430	1296
CAA GGT ACA AAT GGC GGA ACA GCC TTT ACC CGC AAA TTT GAC CAC ACG Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe Asp His Thr 435 440 445	1344
CCG GAA AGT GAT AAA AAA GAC GCC CAA GCA GGT ACG CAG ACG AAT GGG Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly 450 455 460	1392
GCG CAA ACC GCT TCA AAT ACG GCA GGT GAT ACC AAT GGC AAA ACA AAA Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys 465 470 475 480	1440
ACC TAT GAA GTC GAA GTC TGC TGT TCC AAC CTC AAT TAT CTG AAA TAC Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr 485 490 495	1488
GGA ATG TTG ACG CGC AAA AAC AGC AAG TCC GCG ATG CAG GCA GGA GAA Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Glu 500 505 510	1536
AGC AGT AGT CAA GCT GAT GCT AAA ACG GAA CAA GTT GAA CAA AGT ATG Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met 515 520 525	1584
TTC CTC CAA GGC GAG CGC ACC GAT GAA AAA GAG ATT CCA AGC GAG CAA Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Ser Glu Gln 530 535 540	1632
AAC ATC GTT TAT CGG GGG TCT TGG TAC GGA TAT ATT GCC AAC GAC AAA Asn Ile Val Tyr Arg Gly Ser Trp Tyr Gly Tyr Ile Ala Asn Asp Lys 545 550 555 560	1680
AGC ACA AGC TGG AGC GGC AAT GCT TCC AAT GCA ACG AGT GGC AAC AGG Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala Thr Ser Gly Asn Arg 565 570 575	1728
GCG GAA TTT ACT GTG AAT TTT GCC GAT AAA AAA ATT ACT GGT ACG TTA Ala Glu Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Thr Leu 580 585 590	1776
ACC GCT GAC AAC AGG CAG GAG GCA ACC TTT ACC ATT GAT GGT AAT ATT Thr Ala Asp Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly Asn Ile 595 600 605	1824
AAG GAC AAC GGC TTT GAA GGT ACG GCG AAA ACT GCT GAG TCA GGT TTT Lys Asp Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe 610 615 620	1872
GAT CTC GAT CAA AGC AAT ACC ACC CGC ACG CCT AAG GCA TAT ATC ACA Asp Leu Asp Gln Ser Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr 625 630 635 640	1920
GAT GCC AAG GTG CAG GGC GGT TTT TAC GGG CCC AAA GCC GAA GAG TTG Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu 645 650 655	1968
GGC GGA TGG TTT GCC TAT CCG GGC GAT AAA CAA ACG AAA AAT GCA ACA Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Lys Asn Ala Thr 660 665 670	2016

- 56 -

AAT GCA TCC GGC AAT AGC AGT GCA ACT GTC GTA TTC GGT GCG AAA CGC Asn Ala Ser Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg 675 680 685	2064
CAA CAG CCT GTG CGA TAACCGAACG CCAAAAAGAC CAAGGCGGAT ACGGT Gln Gln Pro Val Arg 690	2114

(2) INFORMATION POUR LA SEQ ID NO: 8:

- (i) CARACTERISTIQUES DE LA SEQUENCE:

 - (A) LONGUEUR: 693 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: protéine

- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 8:

Cys Leu Gly Gly Gly Thr Phe Asp Leu Asp Ser Val Asp Thr Glu
 1 5 10 15

Ala Pro Arg Pro Asp Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys Pro
 20 25 30

Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu Lys
 35 40 45

Arg Arg Asn Trp Tyr Ser Ala Ala Lys Glu Asp Glu Val Lys Leu Asn
 50 55 60

Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Thr Glu Pro Lys Lys Leu
 65 70 75 80

Pro Leu Lys Gln Glu Ser Val Ile Ser Lys Val Gln Ala Asn Asn Gly
 85 90 95

Asp Asn Asn Ile Tyr Thr Ser Pro Tyr Leu Thr Gln Ser Asn His Gln
 100 105 110

Asn Ser Ser Ile Asn Gly Gly Ala Asn Leu Pro Lys Asn Glu Val Thr
 115 120 125

Asn Tyr Lys Asp Phe Lys Tyr Val Tyr Ser Gly Trp Phe Tyr Lys His
 130 135 140

Ala Lys Asn Glu Ile Ile Arg Glu Asn Ser Ser Ile Lys Gly Ala Lys
 145 150 155 160

Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Glu Pro Ser Arg
 165 170 175

Gln Leu Pro Ala Ser Gly Thr Val Thr Tyr Lys Gly Val Trp His Phe
 180 185 190

Ala Thr Asp Val Lys Lys Ser Gln Asn Phe Arg Asp Ile Ile Gln Pro
 195 200 205

Ser Lys Lys Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp Asp Asp
 210 215 220

Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly Gln Glu
 225 230 235 240

- 57 -

Gly Tyr Gly Phe Thr Ser Asn Leu Glu Val Asp Phe Gly Ser Lys Lys
 245 250 255

Leu Thr Gly Lys Leu Ile Arg Asn Asn Arg Val Thr Asn Ala Pro Thr
 260 265 270

Asn Asp Lys Tyr Thr Thr Gln Tyr Tyr Ser Leu Asp Ala Gln Ile Thr
 275 280 285

Gly Asn Arg Phe Asn Gly Lys Ala Ile Arg Thr Asp Lys Pro Asp Thr
 290 295 300

Gly Gly Thr Lys Leu His Pro Phe Val Ser Asp Ser Ser Ser Leu Ser
 305 310 315 320

Gly Gly Phe Phe Gly Pro Lys Gly Glu Glu Leu Gly Phe Arg Phe Leu
 325 330 335

Ser Asp Asp Lys Lys Val Ala Val Val Gly Ser Ala Lys Thr Lys Asp
 340 345 350

Lys Thr Glu Asn Gly Ala Val Ala Ser Gly Gly Thr Asp Ala Ala Ala
 355 360 365

Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn Ser Lys Leu Thr Thr
 370 375 380

Val Leu Asp Ala Val Glu Leu Lys Leu Gly Asp Lys Glu Val Gln Lys
 385 390 395 400

Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val Val Asp Gly Ile Met
 405 410 415

Ile Pro Leu Leu Pro Glu Ala Ser Glu Ser Gly Asn Asn Gln Ala Asn
 420 425 430

Gln Gly Thr Asn Gly Gly Thr Ala Phe Thr Arg Lys Phe Asp His Thr
 435 440 445

Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly Thr Gln Thr Asn Gly
 450 455 460

Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr Asn Gly Lys Thr Lys
 465 470 475 480

Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu Asn Tyr Leu Lys Tyr
 485 490 495

Gly Met Leu Thr Arg Lys Asn Ser Lys Ser Ala Met Gln Ala Gly Glu
 500 505 510

Ser Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met
 515 520 525

Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Ser Glu Gln
 530 535 540

Asn Ile Val Tyr Arg Gly Ser Trp Tyr Gly Tyr Ile Ala Asn Asp Lys
 545 550 555 560

Ser Thr Ser Trp Ser Gly Asn Ala Ser Asn Ala Thr Ser Gly Asn Arg
 565 570 575

- 58 -

Ala Glu Phe Thr Val Asn Phe Ala Asp Lys Lys Ile Thr Gly Thr Leu
 580 585 590
 Thr Ala Asp Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly Asn Ile
 595 600 605
 Lys Asp Asn Gly Phe Glu Gly Thr Ala Lys Thr Ala Glu Ser Gly Phe
 610 615 620
 Asp Leu Asp Gln Ser Asn Thr Thr Arg Thr Pro Lys Ala Tyr Ile Thr
 625 630 635 640
 Asp Ala Lys Val Gln Gly Gly Phe Tyr Gly Pro Lys Ala Glu Glu Leu
 645 650 655
 Gly Gly Trp Phe Ala Tyr Pro Gly Asp Lys Gln Thr Lys Asn Ala Thr
 660 665 670
 Asn Ala Ser Gly Asn Ser Ser Ala Thr Val Val Phe Gly Ala Lys Arg
 675 680 685
 Gln Gln Pro Val Arg
 690

(2) INFORMATION POUR LA SEQ ID NO: 9:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 2114 paires de bases
 (B) TYPE: acide nucléique
 (C) NOMBRE DE BRINS: simple
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:
 (A) ORGANISME: N. meningitidis
 (B) SOUCHE: S3032

(ix) CARACTERISTIQUE ADDITIONNELLE:
 (A) NOM/CLE: mat_peptide
 (B) EMPLACEMENT: 1..2097

(ix) CARACTERISTIQUE ADDITIONNELLE:
 (A) NOM/CLE: CDS
 (B) EMPLACEMENT: 1..2097

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 9:

TGT TTG GGC GGA GGC GGC AGT TTC GAT CTT GAT TCT GTC GAT ACC	48
Cys Leu Gly Gly Gly Ser Phe Asp Leu Asp Ser Val Asp Thr	
1 5 10 15	
GAA GCC CCG CGT CCC GCG CCA AAG TAT CAA GAT GTT TCT TCC GAA AAA	96
Glu Ala Pro Arg Pro Ala Pro Lys Tyr Gln Asp Val Ser Ser Glu Lys	
20 25 30	
CCG CAA GCC CAA AAA GAC CAA GGC GGA TAC GGT TTT GCG ATG AGG TTG	144
Pro Gln Ala Gln Lys Asp Gln Gly Gly Tyr Gly Phe Ala Met Arg Leu	
35 40 45	
AAA CGG AGG AAT TGG TAT CCG TCG GCA AAA GAA AAC GAG GTT AAA CTG	192
Lys Arg Arg Asn Trp Tyr Pro Ser Ala Lys Glu Asn Glu Val Lys Leu	
50 55 60	

- 59 -

AAT GAG AGT GAT TGG GAG ACG ACA GGA TTG CCA AGC AAT CCC AAA AAC Asn Glu Ser Asp Trp Glu Thr Thr Gly Leu Pro Ser Asn Pro Lys Asn 65 70 75 80	240
TTA CCT GAG CGA CAG AAA TCG GTT ATT GAT CAA GTA GAA ACA GAT GGC Leu Pro Glu Arg Gln Lys Ser Val Ile Asp Gln Val Glu Thr Asp Gly 85 90 95	288
GAC AGC AAT AAC AGC AAT ATT TAT TCT TCC CCC TAT CTC ACG CAA TCA Asp Ser Asn Asn Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser 100 105 110	336
AAC CAT CAA AAC GGC AAC ACT GGC AAC GGT GTA AAC CAA CCA AAA AAC Asn His Gln Asn Gly Asn Thr Gly Asn Gly Val Asn Gln Pro Lys Asn 115 120 125	384
GAA GTA ACA GAT TAC AAA AAT TTT AAA TAT GTT TAT TCC GGC TGG TTT Glu Val Thr Asp Tyr Lys Asn Phe Lys Tyr Val Tyr Ser Gly Trp Phe 130 135 140	432
TAC AAA CAC GCC AAA CGA GAG GTT AAC TTA GCG GTG GAA CCT AAA ATT Tyr Lys His Ala Lys Arg Glu Val Asn Leu Ala Val Glu Pro Lys Ile 145 150 155 160	480
GCA AAA AAC GGC GAC GAC GGT TAT ATC TTC TAT CAC GGT AAA GAC CCT Ala Lys Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Asp Pro 165 170 175	528
TCC CGA CAA CTT CCC GCT TCT GGA AAA ATT ACC TAT AAA GGT GTG TGG Ser Arg Gln Leu Pro Ala Ser Gly Lys Ile Thr Tyr Lys Gly Val Trp 180 185 190	576
CAT TTT GCG ACC GAT ACA AAA AGG GGT CAA AAA TTT CGT GAA ATT ATC His Phe Ala Thr Asp Thr Lys Arg Gly Gln Lys Phe Arg Glu Ile Ile 195 200 205	624
CAA CCT TCA AAA AAT CAA GGC GAC AGA TAT AGC GGA TTT TCG GGT GAT Gln Pro Ser Lys Asn Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp 210 215 220	672
GAT GAT GAA CAA TAT TCT AAT AAA AAC GAA TCC ATG CTG AAA GAT GGT Asp Asp Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met. Leu Lys Asp Gly 225 230 235 240	720
CAT GAA GGT TAT GGT TTT GCC TCG AAT TTA GAA GTG GAT TTC GAC AAT His Glu Gly Tyr Phe Ala Ser Asn Leu Glu Val Asp Phe Asp Asn 245 250 255	768
AAA AAA TTG ACG GGT AAA TTA ATA CGC AAT AAT GCG AAC CAA AAT AAT Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Gln Asn Asn 260 265 270	816
AAT ACT AAT AAT GAC AAA CAC ACC ACC CAA TAC TAC AGC CTT GAT GCG Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala 275 280 285	864
ACG CTT AAG GGA AAC CGC TTC AGC GGA AAA GCG GAA GCA ACC GAC AAA Thr Leu Lys Gly Asn Arg Phe Ser Gly Lys Ala Glu Ala Thr Asp Lys 290 295 300	912
CCC AAA AAC GAC GGC GAA ACC AAG GAA CAT CCC TTT GTT TCC GAC TCG Pro Lys Asn Asp Gly Glu Thr Lys Glu His Pro Phe Val Ser Asp Ser 305 310 315 320	960

- 60 -

TCT TCT TTG AGC GGC GGC TTT TTC GGC CCG CAG GGT GAG GAA TTG GGT Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly 325 330 335	1008
TTC CGC TTT TTG AGC AAC GAT CAA AAA GTT GCC GTT GTC GGC AGC GCG Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala 340 345 350	1056
AAA ACC AAA GAC AAA CCC GCA AAT GGC AAT ACT GCG GAG GCT TCA GGC Lys Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly 355 360 365	1104
GCG ACA GAT GCG GCA GCA TCG GGC GGT GCG GCA GGC ACG TCG TCT GAA Gly Thr Asp Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu 370 375 380	1152
AAC AGT AAG CTG ACC ACG GTT TTG GAT GCG GTC GAG CTG ACG CAC GGC Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly 385 390 395 400	1200
GGC ACA GCA ATC AAA AAT CTC GAC AAC TTC AGC AAT GCC GCC CAA CTG Gly Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu 405 410 415	1248
GTT GTC GAC GGC ATT ATG ATT CCG CTC CTG CCT CAA AAT TCA ACA GGC Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly 420 425 430	1296
AAA AAT AAT CAG CCC GAT CAA GGT AAA AAC GGC GGA ACA GCC TTT ATC Lys Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile 435 440 445	1344
TAT AAA ACG ACC TAC ACG CCG AAA AAC GAT GAC AAA GAT ACC AAA GCC Tyr Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala 450 455 460	1392
CAA ACA GTC ACG GGC GGC ACG CAA ACC GCT TCA AAT ACG GCA GGT GAT Gln Thr Val Thr Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp 465 470 475 480	1440
GCC AAT GGC AAA ACA AAA ACC TAT GAA GTC GAA GTC TGC TGT TCC AAC Ala Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn 485 490 495	1488
CTC AAT TAT CTG AAA TAC GGG TTG CTG ACG CGC AAA ACT GCC GGC AAC Leu Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn 500 505 510	1536
ACG GTG GGA AGC GGC AAC AGC AGC CCA ACC GCC GCC CAA ACG GAC Thr Val Gly Ser Gly Asn Ser Ser Pro Thr Ala Ala Gln Thr Asp 515 520 525	1584
GCG CAG AGT ATG TTC CTC CAA GGC GAG CGC ACC GAT GAA AAC AAG ATT Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile 530 535 540	1632
CCA AGC GAG CAA AAC GTC GTT TAT CGG GGG TCT TGG TAC GGG CAT ATT Pro Ser Glu Gln Asn Val Val Tyr Arg Gly Ser Trp Tyr Gly His Ile 545 550 555 560	1680
GCC AGC AGC ACA AGC TGG AGC GGC AAT GCT TCT GAT AAA GAG GGC GGC Ala Ser Ser Thr Ser Trp Ser Gly Asn Ala Ser Asp Lys Glu Gly Gly 565 570 575	1728

- 61 -

AAC AGG GCG GAA TTT ACT GTG AAT TTT GGC GAG AAA AAA ATT ACC GGC Asn Arg Ala Glu Phe Thr Val Asn Phe Gly Glu Lys Lys Ile Thr Gly 580 585 590	1776
ACG TTA ACC GCT GAA AAC AGG CAG GAG GCA ACC TTT ACC ATT GAT GGT Thr Leu Thr Ala Glu Asn Arg Gln Glu Ala Thr Phe Thr Ile Asp Gly 595 600 605	1824
AAG ATT GAG GGC AAC GGT TTT TCC GGT ACG GCA AAA ACT GCT GAA TTA Lys Ile Glu Gly Asn Gly Phe Ser Gly Thr Ala Lys Thr Ala Glu Leu 610 615 620	1872
GGT TTT GAT CTC GAT CAA AAA AAT ACC ACC CGC ACG CCT AAG GCA TAT Gly Phe Asp Leu Asp Gln Lys Asn Thr Thr Arg Thr Pro Lys Ala Tyr 625 630 635 640	1920
ATC ACA GAT GCC AAG GTA AAG GGC GGT TTT TAC GGG CCC AAA GCC GAA Ile Thr Asp Ala Lys Val Lys Gly Phe Tyr Gly Pro Lys Ala Glu 645 650 655	1968
GAG TTG GGC GGA TGG TTT GCC TAT TCG GAC GAT AAA CAA ACG AAA AAT Glu Leu Gly Trp Phe Ala Tyr Ser Asp Asp Lys Gln Thr Lys Asn 660 665 670	2016
GCA ACA GAT GCA TCC GGC AAT GGA AAT TCA GCA AGC ACT GCA ACT GTC Ala Thr Asp Ala Ser Gly Asn Gly Asn Ser Ala Ser Ser Ala Thr Val 675 680 685	2064
GTA TTC GGT GCG AAA CGC CAA CAG CCT GTG CAA TAAACCAAAGG CGGATAC Val Phe Gly Ala Lys Arg Gln Gln Pro Val Gln 690 695	2114

(2) INFORMATION POUR LA SEQ ID NO: 10:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 699 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 10:

Cys	Leu	Gly	Gly	Gly	Ser	Phe	Asp	Leu	Asp	Ser	Val	Asp	Thr		
1								10				15			
Glu	Ala	Pro	Arg	Pro	Ala	Pro	Lys	Tyr	Gln	Asp	Val	Ser	Ser	Glu	Lys
								20	25			30			
Pro	Gln	Ala	Gln	Lys	Asp	Gln	Gly	Tyr	Gly	Phe	Ala	Met	Arg	Leu	
								35	40			45			
Lys	Arg	Arg	Asn	Trp	Tyr	Pro	Ser	Ala	Lys	Glu	Asn	Glu	Val	Lys	Leu
								50	55			60			
Asn	Glu	Ser	Asp	Trp	Glu	Thr	Thr	Gly	Leu	Pro	Ser	Asn	Pro	Lys	Asn
								65	70			75			80
Leu	Pro	Glu	Arg	Gln	Lys	Ser	Val	Ile	Asp	Gln	Val	Glu	Thr	Asp	Gly
								85		90			95		

- 62 -

Asp Ser Asn Asn Ser Asn Ile Tyr Ser Ser Pro Tyr Leu Thr Gln Ser			
100	105	110	
Asn His Gln Asn Gly Asn Thr Gly Asn Gly Val Asn Gln Pro Lys Asn			
115	120	125	
Glu Val Thr Asp Tyr Lys Asn Phe Lys Tyr Val Tyr Ser Gly Trp Phe			
130	135	140	
Tyr Lys His Ala Lys Arg Glu Val Asn Leu Ala Val Glu Pro Lys Ile			
145	150	155	160
Ala Lys Asn Gly Asp Asp Gly Tyr Ile Phe Tyr His Gly Lys Asp Pro			
165	170	175	
Ser Arg Gln Leu Pro Ala Ser Gly Lys Ile Thr Tyr Lys Gly Val Trp			
180	185	190	
His Phe Ala Thr Asp Thr Lys Arg Gly Gln Lys Phe Arg Glu Ile Ile			
195	200	205	
Gln Pro Ser Lys Asn Gln Gly Asp Arg Tyr Ser Gly Phe Ser Gly Asp			
210	215	220	
Asp Asp Glu Gln Tyr Ser Asn Lys Asn Glu Ser Met Leu Lys Asp Gly			
225	230	235	240
His Glu Gly Tyr Gly Phe Ala Ser Asn Leu Glu Val Asp Phe Asp Asn			
245	250	255	
Lys Lys Leu Thr Gly Lys Leu Ile Arg Asn Asn Ala Asn Gln Asn Asn			
260	265	270	
Asn Thr Asn Asn Asp Lys His Thr Thr Gln Tyr Tyr Ser Leu Asp Ala			
275	280	285	
Thr Leu Lys Gly Asn Arg Phe Ser Gly Lys Ala Glu Ala Thr Asp Lys			
290	295	300	
Pro Lys Asn Asp Gly Glu Thr Lys Glu His Pro Phe Val Ser Asp Ser			
305	310	315	320
Ser Ser Leu Ser Gly Gly Phe Phe Gly Pro Gln Gly Glu Glu Leu Gly			
325	330	335	
Phe Arg Phe Leu Ser Asn Asp Gln Lys Val Ala Val Val Gly Ser Ala			
340	345	350	
Lys Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly			
355	360	365	
Gly Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu			
370	375	380	
Asn Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly			
385	390	395	400
Gly Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu			
405	410	415	
Val Val Asp Gly Ile Met Ile Pro Leu Leu Pro Gln Asn Ser Thr Gly			
420	425	430	

- 63 -

Lys Asn Asn Gln Pro Asp Gln	Gly Lys Asn Gly	Gly Thr Ala Phe Ile	
435	440	445	
Tyr Lys Thr Thr Tyr Thr Pro	Lys Asn Asp Asp	Lys Asp Thr Lys Ala	
450	455	460	
Gln Thr Val Thr Gly Gly	Thr Gln Thr Ala Ser	Asn Thr Ala Gly Asp	
465	470	475	480
Ala Asn Gly Lys Thr Lys Thr Tyr Glu	Val Glu Val Cys Cys	Ser Asn	
485	490	495	
Leu Asn Tyr Leu Lys Tyr Gly	Leu Leu Thr Arg Lys	Thr Ala Gly Asn	
500	505	510	
Thr Val Gly Ser Gly Asn Ser Ser	Pro Thr Ala Ala Ala	Gln Thr Asp	
515	520	525	
Ala Gln Ser Met Phe Leu Gln	Gly Glu Arg Thr Asp	Glu Asn Lys Ile	
530	535	540	
Pro Ser Glu Gln Asn Val Val	Tyr Arg Gly Ser Trp	Tyr Gly His Ile	
545	550	555	560
Ala Ser Ser Thr Ser Trp Ser Gly	Asn Ala Ser Asp	Lys Glu Gly Gly	
565	570	575	
Asn Arg Ala Glu Phe Thr Val Asn	Phe Gly Glu Lys	Lys Ile Thr Gly	
580	585	590	
Thr Leu Thr Ala Glu Asn Arg	Gln Glu Ala Thr Phe	Thr Ile Asp Gly	
595	600	605	
Lys Ile Glu Gly Asn Gly	Phe Ser Gly Thr Ala	Lys Thr Ala Glu Leu	
610	615	620	
Gly Phe Asp Leu Asp Gln	Lys Asn Thr Thr	Arg Thr Pro Lys Ala Tyr	
625	630	635	640
Ile Thr Asp Ala Lys Val Lys	Gly Phe Tyr Gly Pro	Lys Ala Glu	
645	650	655	
Glu Leu Gly Gly Trp Phe Ala Tyr	Ser Asp Asp Lys	Gln Thr Lys Asn	
660	665	670	
Ala Thr Asp Ala Ser Gly Asn	Gly Asn Ser Ala Ser	Ser Ala Thr Val	
675	680	685	
Val Phe Gly Ala Lys Arg Gln	Gln Pro Val Gln		
690	695		

(2) INFORMATION POUR LA SEQ ID NO: 11:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: peptide
- (vi) ORIGINE:
 - (A) ORGANISME: *N. meningitidis*
 - (B) SOUCHE: IM2169

- 64 -

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 11:

Thr	Lys	Asp	Lys	Leu	Glu	Asn	Gly	Ala	Ala	Ala	Ser	Gly	Ser	Thr	Gly
1				5				10						15	
Ala	Ala	Ala	Ser	Gly	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn	Ser	Lys
				20				25					30		
Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Thr	Leu	Asn	Asp	Lys	Lys
				35				40					45		
Ile	Lys	Asn	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Asp
				50				55			60				
Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Lys	Asp	Ser	Glu	Ser	Gly	Asn	Thr
				65				70			75		80		
Gln	Ala	Asp	Lys	Gly	Lys	Asn	Gly	Gly	Thr	Glu	Phe	Thr	Arg	Lys	Phe
				85				90				95			
Glu	His	Thr	Pro	Glu	Ser	Asp	Lys	Lys	Asp	Ala	Gln	Ala	Gly	Thr	Gln
				100				105				110			
Thr	Asn	Gly	Ala	Gln	Thr	Ala	Ser	Asn	Thr	Ala	Gly	Asp	Thr	Asn	Gly
				115				120				125			
Lys	Thr	Lys	Thr	Tyr	Glu	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn	Tyr
				130				135			140				
Leu	Lys	Tyr	Gly	Met	Leu	Thr	Arg	Lys	Asn	Ser	Lys	Ser	Ala	Met	Gln
				145				150			155		160		
Ala	Gly	Gly	Asn	Ser	Ser	Gln	Ala	Asp	Ala	Lys	Thr	Glu	Gln	Val	Glu
				165				170				175			
Gln	Ser	Met	Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile	Pro
				180				185			190				
Thr	Asp	Gln	Asn	Val	Val										
				195											

(2) INFORMATION POUR LA SEQ ID NO: 12:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 198 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
- (B) SOUCHE: 6940

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 12:

Thr	Lys	Asp	Lys	Thr	Glu	Asn	Gly	Ala	Val	Ala	Ser	Gly	Gly	Thr	Asp
1				5				10					15		

Ala	Ala	Ala	Ser	Asn	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn	Ser	Lys
				20				25				30			

- 65 -

Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Lys	Leu	Gly	Asp	Lys	Glu
35							40							45	
Val	Gln	Lys	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Asp
50							55							60	
Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Glu	Ala	Ser	Glu	Ser	Gly	Asn	Asn
65							70							80	
Gln	Ala	Asn	Gln	Gly	Thr	Asn	Gly	Gly	Thr	Ala	Phe	Thr	Arg	Lys	Phe
85							90							95	
Asp	His	Thr	Pro	Glu	Ser	Asp	Lys	Lys	Asp	Ala	Gln	Ala	Gly	Thr	Gln
100							105							110	
Thr	Asn	Gly	Ala	Gln	Thr	Ala	Ser	Asn	Thr	Ala	Gly	Asp	Thr	Asn	Gly
115							120							125	
Lys	Thr	Lys	Thr	Tyr	Glu	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn	Tyr
130							135							140	
Leu	Lys	Tyr	Gly	Met	Leu	Thr	Arg	Lys	Asn	Ser	Lys	Ser	Ala	Met	Gln
145							150							160	
Ala	Gly	Glu	Ser	Ser	Ser	Gln	Ala	Asp	Ala	Lys	Thr	Glu	Gln	Val	Glu
165							170							175	
Gln	Ser	Met	Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile	Pro
180							185							190	
Ser	Glu	Gln	Asn	Ile	Val										
					195										

(2) INFORMATION POUR LA SEQ ID NO: 13:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 198 acides aminés
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:
 (A) ORGANISME: N. meningitidis
 (B) SOUCHE: 2223

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 13:

Thr	Lys	Asp	Lys	Thr	Glu	Asn	Gly	Ala	Val	Ala	Ser	Gly	Gly	Thr	Asp
1				5				10						15	

Ala	Ala	Ala	Ser	Asn	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn	Ser	Lys
				20				25						30	

Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Lys	Leu	Gly	Asp	Lys	Glu
				35				40						45	

Val	Gln	Lys	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Asp
				50				55						60	

Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Glu	Ala	Ser	Glu	Ser	Gly	Asn	Asn
				65				70						80	

- 66 -

Gln	Ala	Asn	Gln	Gly	Thr	Asn	Gly	Gly	Thr	Ala	Phe	Thr	Arg	Lys	Phe
85										90					95
Asp	His	Thr	Pro	Glu	Ser	Asp	Lys	Lys	Asp	Ala	Gln	Ala	Gly	Thr	Gln
100							105							110	
Ala	Asn	Gly	Ala	Gln	Thr	Ala	Ser	Asn	Thr	Ala	Gly	Asp	Thr	Asn	Gly
115							120							125	
Lys	Thr	Lys	Thr	Tyr	Glu	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn	Tyr
130						135								140	
Leu	Lys	Tyr	Gly	Met	Leu	Thr	Arg	Lys	Asn	Ser	Lys	Ser	Ala	Met	Gln
145					150					155					160
Ala	Gly	Glu	Ser	Ser	Ser	Gln	Ala	Asp	Ala	Lys	Thr	Glu	Gln	Val	Gly
165							170							175	
Gln	Ser	Met	Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile	Pro
180							185							190	
Ser	Glu	Gln	Asn	Ile	Val										
					195										

(2) INFORMATION POUR LA SEQ ID NO: 14:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 198 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
- (B) SOUCHE: C708

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 14:

Thr	Gln	Asp	Lys	Pro	Arg	Asn	Gly	Ala	Val	Ala	Ser	Gly	Gly	Thr	Gly
1									10					15	

Ala	Ala	Arg	Ser	Asn	Gly	Ala	Ala	Gly	Gln	Ser	Ser	Glu	Asn	Ser	Lys
									25					30	

Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Thr	Leu	Asn	Asp	Lys	Lys
									40					45	

Ile	Lys	Asn	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Asp
									55			60			

Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Glu	Ala	Ser	Glu	Ser	Gly	Lys	Asn
									70			75		80	

Gln	Ala	Asn	Gln	Gly	Thr	Asn	Gly	Gly	Thr	Ala	Phe	Thr	Arg	Lys	Phe

Asn	His	Thr	Pro	Lys	Ser	Asp	Glu	Lys	Asp	Thr	Gln	Ala	Gly	Thr	Ala
									105					110	

Glu	Asn	Gly	Asn	Pro	Ala	Ala	Ser	Asn	Thr	Ala	Gly	Asp	Ala	Asn	Gly
									120			125			

- 67 -

Lys	Thr	Lys	Thr	Tyr	Glu	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn	Tyr
130					135				140						
Leu	Lys	Tyr	Gly	Met	Leu	Thr	Arg	Lys	Asn	Ser	Lys	Ser	Ala	Met	Gln
145				150				155					160		
Ala	Gly	Glu	Ser	Ser	Ser	Gln	Ala	Asp	Ala	Lys	Thr	Glu	Gln	Val	Gly
					165			170			175				
Gln	Ser	Met	Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile	Pro
			180				185				190				
Asn	Asp	Gln	Asn	Asn	Val	Val									
					195										

(2) INFORMATION POUR LA SEQ ID NO: 15:

(i) CARACTERISTIQUES DE LA SEQUENCE:
 (A) LONGUEUR: 211 acides aminés
 (B) TYPE: acide aminé
 (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:
 (A) ORGANISME: N. meningitidis
 (B) SOUCHE: M978

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 15:

Thr	Gln	Asp	Lys	Ala	Ala	Asn	Gly	Asn	Thr	Ala	Ala	Ala	Ser	Gly	Gly
1				5					10				15		

Thr	Asp	Ala	Ala	Ala	Ser	Asn	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn
				20				25			30				

Ser	Lys	Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Thr	Leu	Asn	Asp
				35				40			45				

Lys	Lys	Ile	Lys	Asn	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val
				50				55			60				

Val	Asp	Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Glu	Thr	Ser	Glu	Ser	Gly
65					70				75		80				

Ser	Asn	Gln	Ala	Asp	Lys	Gly	Lys	Gly	Lys	Asn	Gly	Lys	Asn	Gly
				85				90		95				

Gly	Thr	Asp	Phe	Thr	Tyr	Lys	Thr	Thr	Tyr	Thr	Pro	Lys	Asn	Asp	Asp
				100				105			110				

Lys	Asp	Thr	Lys	Ala	Gln	Thr	Gly	Ala	Ala	Gly	Ser	Ser	Gly	Ala	Gln
				115				120			125				

Thr	Asp	Leu	Gly	Lys	Ala	Asp	Val	Asn	Gly	Gly	Lys	Ala	Glu	Thr	Lys
130					135				140						

Thr	Tyr	Glu	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn	Tyr	Leu	Lys	Tyr
145				150				155			160				

Gly	Met	Leu	Thr	Arg	Lys	Asn	Ser	Lys	Ser	Ala	Met	Gln	Ala	Gly	Gly
				165				170			175				

- 68 -

Asn Ser Ser Gln Ala Asp Ala Lys Thr Glu Gln Val Glu Gln Ser Met
 180 185 190
 Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu Ile Pro Asn Asp Gln
 195 200 205
 Asn Val Val
 210

(2) INFORMATION POUR LA SEQ ID NO: 16:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
 - (ii) TYPE DE MOLECULE: peptide
 - (vi) ORIGINE:
 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 1610

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 16:

Lys Arg Asp Lys Ala Glu Ser Gly Gly Gly Asn Gly Ala Ser Gly Gly
1 5 10 15

Thr Asp Ala Ala Ala Ser Asn Gly Ala Ala Gly Thr Ser Ser Glu Asn
20 25 . 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Lys Ser Gly Gly
35 40 45

Lys Glu Val Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val
50 55 60

Val Asp Gly Ile Met Ile Pro Leu Leu Pro Lys Asp Ser Glu Ser Gly
65 70 75 80

Asn Thr Gln Ala Asp Lys Gly Lys Asn Gly Gly Thr Lys Phe Thr Arg
85 90 95

Lys Phe Glu His Thr Pro Glu Ser Asp Lys Lys Asp Ala Gln Ala Gly
100 105 110

Thr Gln Thr Asn Gly Ala Gln Thr Ala Ser Asn Thr Ala Gly Asp Thr
115 120 125

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu
130 135 140

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr
145 150 155 160

Gly Glu Gly Gly Asn Gly Ser Gln Thr Ala Ala Ala Gln Thr Ala Gln
165 170 175

Gly Ala Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Lys Glu
180 185 190

Ile Pro Ser Glu Gln Asn Val Val

- 69 -

(2) INFORMATION POUR LA SEQ ID NO: 17:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 200 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: peptide

- (vi) ORIGINE:

 - (A) ORGANISME: N. meningitidis
 - (B) SOUCHE: 867

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 17:

Thr	Lys	Asp	Lys	Pro	Arg	Asn	Gly	Ala	Val	Ala	Ser	Gly	Gly	Thr	Asp	
1									5					10		15

Ala	Ala	Ala	Ser	Asn	Gly	Ala	Ala	Gly	Thr	Ser	Ser	Glu	Asn	Gly	Lys
									20			25			30

Leu	Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Thr	Leu	Asn	Asp	Lys	Lys
									35			40			45

Ile	Lys	Asn	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Ser
									50			55			60

Gly	Ile	Met	Ile	Pro	Leu	Met	Pro	Glu	Thr	Ser	Glu	Ser	Gly	Asn	Asn
									65			70			80

Gln	Ala	Asp	Lys	Gly	Lys	Asn	Gly	Gly	Thr	Ala	Phe	Thr	Arg	Lys	Phe
									85			90			95

Asp	His	Thr	Pro	Lys	Ser	Asp	Glu	Lys	Asp	Thr	Gln	Ala	Gly	Thr	Pro
									100			105			110

Thr	Asn	Gly	Ala	Gln	Thr	Ala	Ser	Gly	Thr	Ala	Gly	Val	Thr	Gly	Gly
									115			120			125

Gln	Ala	Gly	Lys	Thr	Tyr	Ala	Val	Glu	Val	Cys	Cys	Ser	Asn	Leu	Asn
									130			135			140

Tyr	Leu	Lys	Tyr	Gly	Leu	Leu	Thr	Arg	Lys	Thr	Ala	Asp	Asn	Thr	Val
									145			150			160

Gly	Ser	Gly	Asn	Gly	Ser	Ser	Thr	Ala	Ala	Ala	Gln	Thr	Ala	Gln	Gly
									165			170			175

Ala	Gln	Ser	Met	Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile
									180			185			190

Pro	Lys	Glu	Gln	Gln	Asp	Ile	Val		195			200			
-----	-----	-----	-----	-----	-----	-----	-----	--	-----	--	--	-----	--	--	--

(2) INFORMATION POUR LA SEQ ID NO: 18:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 198 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

- (ii) TYPE DE MOLECULE: peptide

- 70 -

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
(B) SOUCHE: S3032

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 18:

Thr Lys Asp Lys Pro Ala Asn Gly Asn Thr Ala Glu Ala Ser Gly Gly
 1 5 10 15

Thr Asp Ala Ala Ala Ser Gly Gly Ala Ala Gly Thr Ser Ser Glu Asn
20 25 30

Ser Lys Leu Thr Thr Val Leu Asp Ala Val Glu Leu Thr His Gly Gly
35 40 45

Thr Ala Ile Lys Asn Leu Asp Asn Phe Ser Asn Ala Ala Gln Leu Val
50 55 60

Val	Asp	Gly	Ile	Met	Ile	Pro	Leu	Leu	Pro	Gln	Asn	Ser	Thr	Gly	Lys
65					70					75					80

Asn Asn Gln Pro Asp Gln Gly Lys Asn Gly Gly Thr Ala Phe Ile Tyr
85 90 95

Lys Thr Thr Tyr Thr Pro Lys Asn Asp Asp Lys Asp Thr Lys Ala Gln
100 105 110

Thr Val Thr Gly Gly Thr Gln Thr Ala Ser Asn Thr Ala Gly Asp Ala
115 120 125

Asn Gly Lys Thr Lys Thr Tyr Glu Val Glu Val Cys Cys Ser Asn Leu
130 135 140

Asn Tyr Leu Lys Tyr Gly Leu Leu Thr Arg Lys Thr Ala Gly Asn Thr
145 150 155 160

Val Gly Ser Gly Asn Ser Ser Pro Thr Ala Ala Ala Gln Thr Asp Ala
165 170 175

Gln Ser Met Phe Leu Gln Gly Glu Arg Thr Asp Glu Asn Lys Ile Pro
180 185 190

Ser Glu Gln Asn Val Val
195

(2) INFORMATION POUR LA SEQ ID NO: 19:

(i) CARACTÉRISTIQUES DE LA SÉQUENCE:

- (A) LONGUEUR: 195 acides aminés
 - (B) TYPE: acide aminé
 - (C) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
(B) SOUCHE: 891

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 19:

Thr Lys Asp Lys Pro Gly Asn Gly Ala Arg Leu Gln Ala Ala Arg Cys
 1 5 10 15

- 71 -

Gly	Thr	Ser	Asn	Gly	Ala	Ala	Gly	Gln	Ser	Ser	Glu	Asn	Ser	Lys	Leu
20								25						30	
Thr	Thr	Val	Leu	Asp	Ala	Val	Glu	Leu	Lys	Leu	Gly	Asp	Lys	Glu	Val
35							40					45			
Gln	Lys	Leu	Asp	Asn	Phe	Ser	Asn	Ala	Ala	Gln	Leu	Val	Val	Asp	Gly
50							55				60				
Ile	Met	Ile	Pro	Leu	Leu	Pro	Lys	Asp	Ser	Glu	Ser	Gly	Lys	Asn	Gln
65							70			75			80		
Ala	Asp	Lys	Gly	Lys	Asn	Gly	Glu	Thr	Glu	Phe	Thr	Arg	Lys	Phe	Glu
							85			90			95		
His	Thr	Pro	Glu	Ser	Asp	Glu	Lys	Asp	Ala	Gln	Ala	Gly	Thr	Pro	Ser
							100			105			110		
Asn	Gly	Ala	Gln	Thr	Ala	Ser	Asn	Thr	Ala	Gly	Asp	Thr	Asn	Gly	Lys
							115			120			125		
Thr	Lys	Thr	Tyr	Glu	Val	Asn	Leu	Cys	Ser	Asn	Leu	Asn	Tyr	Leu	Lys
							130			135			140		
Tyr	Gly	Leu	Leu	Thr	Arg	Lys	Thr	Ala	Gly	Asn	Thr	Gly	Glu	Gly	
							145			150			155		160
Asn	Ser	Ser	Pro	Thr	Ala	Ala	Gln	Thr	Ala	Gln	Gly	Ala	Gln	Ser	Met
							165			170			175		
Phe	Leu	Gln	Gly	Glu	Arg	Thr	Asp	Glu	Lys	Glu	Ile	Pro	Asn	Asp	Gln
							180			185			190		
Asn	Val	Val													
							195								

(2) INFORMATION POUR LA SEQ ID NO: 20:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 29 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 20:

AAACCCGGAT CCGTTGCCAG CGCTGCCGT

29

(2) INFORMATION POUR LA SEQ ID NO: 21:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 85 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 21:

- 72 -

TTTTTTCATG AGATATCTGG CAACATTGTT GTTATCTCTG GCGGTGTTAA TCACCGCCGG	60
GTCGCCTGGGT GGCGGCCGCA GTTTC	85

(2) INFORMATION POUR LA SEQ ID NO: 22:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 30 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 22:

TGTTTTTGT TGAGTGCATG CCTGGGTGGC	30
---------------------------------	----

(2) INFORMATION POUR LA SEQ ID NO: 23:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 40 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 23:

TGCAGCAAGCT TACAGTTGT CTTTGGTTTT CGCGCTGCCG	40
---	----

(2) INFORMATION POUR LA SEQ ID NO: 24:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 40 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 24:

AAAAAGCATG CATAAAAACG CACGCGTTACA CCATTCAAGC	40
--	----

(2) INFORMATION POUR LA SEQ ID NO: 25:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 39 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 25:

TATATAAGCT TACGTTGCAG GCCCTGCCGC GTTTTCCCC	39
--	----

- 73 -

(2) INFORMATION POUR LA SEQ ID NO: 26:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 29 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 26:

CCCGAATTCT GCCGTCTGAA GCCTTATTC

29

(2) INFORMATION POUR LA SEQ ID NO: 27:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 28 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 27:

CCCGAATTCT GCTATGGTGC TGCCTGTG

28

(2) INFORMATION POUR LA SEQ ID NO: 28:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 28:

CGCATCCAAA ACCGTACCTG TGCTGCCTGA

30

(2) INFORMATION POUR LA SEQ ID NO: 29:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 30 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: simple
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 29:

TTTATCACTT TCCGGGGGCA GGAGCGGAAT

30

(2) INFORMATION POUR LA SEQ ID NO: 30:

- 74 -

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 30 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 30:

GTTGGAACAG CAGACAGCGG TTTGCGCCCC

30

(2) INFORMATION POUR LA SEQ ID NO: 31:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 30 paires de bases
 - (B) TYPE: acide nucléique
 - (C) NOMBRE DE BRINS: simple
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 31:

GAACATACTT TGTTCGTTTG TGCGCGTCAA

30

(2) INFORMATION POUR LA SEQ ID NO: 32:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 5 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
- (B) SOUCHE: IM2394

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 32:

Tyr Lys Gly Thr Trp
1 5

(2) INFORMATION POUR LA SEQ ID NO: 33:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 15 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:

- (A) ORGANISME: N. meningitidis
- (B) SOUCHE: IM2394

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 33:

Glu Phe Glu Val Asp Phe Ser Asp Lys Thr Ile Lys Gly Thr Leu
1 5 10 15

- 75 -

(2) INFORMATION POUR LA SEQ ID NO: 34:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 12 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:
(A) ORGANISME: N. meningitidis
(B) SOUCHE: IM2394

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 34:

Glu Gly Gly Phe Tyr Gly Pro Lys Gly Glu Glu Leu
1 5 10

(2) INFORMATION POUR LA SEQ ID NO: 35:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 6 acides aminés
(B) TYPE: acide aminé
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: peptide

(vi) ORIGINE:
(A) ORGANISME: N. meningitidis
(B) SOUCHE: IM2394

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 35:

Ala Val Phe Gly Ala Lys
1 5

(2) INFORMATION POUR LA SEQ ID NO: 36:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
(A) LONGUEUR: 2070 paires de bases
(B) TYPE: acide nucléique
(C) NOMBRE DE BRINS: double
(D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:
(A) ORGANISME: Neisseria meningitidis
(B) SOUCHE: BZ83

(ix) CARACTERISTIQUE ADDITIONNELLE:
(A) NOM/CLE: sig_peptide
(B) EMPLACEMENT: 1..60

(ix) CARACTERISTIQUE ADDITIONNELLE:
(A) NOM/CLE: mat_peptide
(B) EMPLACEMENT: 61..2067

(ix) CARACTERISTIQUE ADDITIONNELLE:
(A) NOM/CLE: CDS
(B) EMPLACEMENT: 1..2067

ATGAAACAATCCATTGGTAAATCAGGCTGCTATGGTCTGCCTGTGTTTGTTGAGTGCT
 TACTTGTAGGTAACCACTTACTGCCGACGATAACCACGACGGACACAAAAACAACTCACGA 50
 MetAsnAsnProLeuValAsnGlnAlaAlaMetValLeuProValPheLeuLeuSerAla

 TGTCTGGCGGGAGGCAGCTTCGATCTTGATTCTGTCGATACCGAAGCCCCGCGTCCC
 ACAGACCCGCCTCCGCGTCAGCTAGAACTAAGACAGCTATGGCTTGGGGCGCAGGG 120
 CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro

 GCGCCAAAGTATCAAGATGTTCTTCGAAACACCGCAAGCCAAAAAGACCAAGGCGGA
 CGCGGTTTCATAGTTCTACAAAGAAGGTTGTGGCGTTGGGTTCTGGTTCCGCCT 180
 AlaProLysTyrGlnAspValSerSerGluThrProGlnAlaGlnLysAspGlnGlyGly

 TACGGTTTGCAATGCGCTTCAGCGGCGGATTGGTACCCAAAAATGAAGAAGATCAT
 ATGCCAAACGTTACGCGAAGTTCGCCCTAACCATGGTTTTACTCTTAGTA 240
 TyrGlyPheAlaMetArgPheLysArgArgAsnTrpTyrProLysAsnGluGluAspHis

 AAGGCATTATCAGAAGCGGATTGGGAGAAGTTAGGTGCGGGTAAGCCAGATGAGTTCCC
 TTCCGTAATAGTCTCGCTAACCTCTTCAATCCACGCCATTGGTCACTCAAAGGG 300
 LysAlaLeuSerGluAlaAspTrpGluLysLeuGlyAlaGlyLysProAspGluPhePro

 CAAAGGAATGAAATATTGAATATGACTGACGGAATTCTGAGTGAGTCTCTCAGCTGGGT
 GTTCCCTTACTTATAACTTATACTGACTGCCTTAAGACTCACTCAGAGAAAGTCGACCCA 360
 GlnArgAsnGluIleLeuAsnMetThrAspGlyIleLeuSerGluSerLeuGlnLeuGly

GAGGGCGGC~~A~~~~A~~~~G~~CCGCGTAGAAGGATAAC~~C~~GGATT~~T~~CCAATATGTCCGCTCGGGCTAT
 CTCCCGCCGTTTCGGCGCATCTCCTATGTGCC~~T~~AA~~G~~GT~~T~~ATACAGGCGAGCCCCATA 420
 GluGlyGlyLysSerArgValGluGlyTy~~r~~ThrAspPheGlnTyrValArgSerGlyTyr

 ATCTACCGC~~A~~~~C~~GGTGCC~~A~~~~T~~AA~~A~~TCGATT~~T~~CA~~A~~~~A~~~~A~~~~A~~ATCGCCCTTCCGGTCCG
 TAGATGGCGTTGCCACGGTT~~A~~~~T~~TTAGCTA~~A~~~~R~~GGTTTTAGCGGGAAAGGCCAGGC 480
 IleTyrArgAsnGlyAlaAsnLysIleAspPheGlnLysLysIleAlaLeuSerGlyPro

 GACGGCTACCTTTCTACAAAGG~~C~~AGCAATCCT~~T~~CCC~~A~~GGCT~~G~~CCGATGGTAAGGTA
 CTGCCGATGGAA~~A~~~~A~~GTGTTCCGTTAGGA~~A~~~~G~~GGTT~~C~~GAGACGGCTACCCATTCCAT 540
 AspGlyTyrLeuPheTyrLysGlySerAsnProSerGlnAlaLeuProMetGlyLysVal

 GGTTATAAAGGTACTTGGGATTATGTAACCGATGCCAAGATGGGACAAAATT~~T~~CCAG
 CCAATATTCCATGAACCTAATACATTGGCTACGGTT~~C~~ACCCTGTTAAAAGGGTC 600
 GlyTyrLysGlyThrTrpAspTyrValThrAspAlaLysMetGlyGlnLysPheSerGln

 TTGGCTGGTTTCCAGCGGGGGATAAGGTATGGGCTTGTCTGCCAGGAAGCGGATGTG
 AACCGACCAAAAGGTGCC~~C~~CTATCCATACCCGAAACAGACGGCTTCGCC~~T~~ACAC 660
 LeuAlaGlyPheProAlaGlyAspArgTyrGlyAlaLeuSerAlaGluGluAlaAspVal

 TTGCGCAACAAAAGCGAGGCACAGCAAGGT~~C~~AGACC~~G~~ATT~~T~~CGGGCTGACCAGCGAGTT
 AACCGCTTGTTTCGCTCGTGT~~C~~CCAGTCTGGCTAAAGCCGACTGGTCGCTCAA 720
 LeuArgAsnLysSerGluAlaGlnGlnGlyGlnThrAspPheGlyLeuThrSerGluPhe

 GAGGTGGATT~~T~~GCCGCC~~A~~~~G~~ACC~~A~~GTGACCGCCGGCTCTACCGCAATAACCGGATTACT
 CTCCACCTAAAGCGGGCGTTCTGGTACTGGCCGCGAGATGGCGTTATTGGCCTAATGA 780
 GluValAspPheAlaAlaLysThrMetThrGlyAlaLeuTyrArgAsnAsnArgIleThr

AATAACGAAACCGAAAAATAAGCCAAACAAATTAAACGTTACGACATTCAAGGCTGACCTG
 TTATTGCTTGGCTTTATTCGGTTGTTAATTGCAATGCTGTAAGTCCGACTGGAC 840
 AsnAsnGluThrGluAsnLysAlaLysGlnIleLysArgTyrAspIleGlnAlaAspLeu

CACGGTACCGCTTCAGCGGCAGGCAACGGCAACCGACAAACCCAAAACGACGAAACC
 GTGCCATTGGCGAAGTCGCCGTTCCGTTGCCGTGGCTGTTGGGTTTGCTGCTTGG 900
 HisGlyAsnArgPheSerGlyLysAlaThrAlaThrAspLysProLysAsnAspGluThr

AAGGAACATCCCTTGTTCGACTCGTCTTCTTGAGCGGGCTTTTCGGTCCGAAG
 TTCCCTGTAGGGAAACAAAGGCTGAGCAGAAGAACTCGCCGCCGAAAAGCCAGGCTC 960
 LysGluHisProPheValSerAspSerSerLeuSerGlyGlyPhePheGlyProLys

GGTGAGGAATTGGGTTCCGCTTTTGAGCGACGATCAAAAGTTGCCGTGTCGGCAGC
 CCACTCCTAACCCAAAGGCAGAAACTCGCTGCTAGTTTCAACGGCAACAGCCGTCG 1020
 GlyGluGluLeuGlyPheArgPheLeuSerAspAspGlnLysValAlaValValGlySer

GCGAAAACCAAAGACAACCTGGAAATGGCGCGCCGGCTTCAGGCAGCACAGGTGCGGCA
 CGCTTTGGTTCTGTTGACCTTTACCGCGCCGCAAGTCCGTCGTGTCACGCCGT 1080
 AlaLysThrLysAspLysLeuGluAsnGlyAlaAlaAlaSerGlySerThrGlyAlaAla

GCATCGGGCGGTGCGGCAGATATGCCGTCTGAAAACGTAAGCTGACCACGGTTGGAT
 CGTAGCCGCCACGCCGTCTACGGCAGACTTGTCCATTGCACTGGTGCCAAACCTA 1140
 AlaSerGlyAlaAlaAspMetProSerGluAsnGlyLysLeuThrThrValLeuAsp

GCGGTTGAGCTGAAATCTGGCGTAAGGAAGTCAGAAATCTGACAACTTCAGCAATGCC
 CGCCAACTCGACTTTAGACCGCCATTCCCTCAGTTTAGAGCTGTTGAAGTCGTTACGG 1200
 AlaValGluLeuLysSerGlyLysGluValLysAsnLeuAspAsnPheSerAsnAla

GCCCAACTGGTTGTCGACGGCATTATGATTCCGCTCCTGCCAAGAATTCCGAAAGCGAG
 CGGGTTGACCAACAGCTGCCGTAACTAAGGCAGGGACGGGTTCTAAGGCTTCGCTC 1250
 AlaGlnLeuValValAspGlyIleMetIleProLeuLeuProLysAsnSerGluSerGlu

AGCAATCAGGCAGATAAAAGGTAAAAACGGCGAACAGCCTTACCCGCAATTGAAACAC
 TCGTTAGTCCGTCTATTCCATTTCGCGCCTGTCGAAATGGCGTTAAACTTG 1320
 SerAsnGlnAlaAspLysGlyLysAsnGlyGlyThrAlaPheThrArgLysPheGluHis

ACGCCGGAAAGTGATAAAAAGACACCCAGCAGGTACGGCGGAGAACATGGCAATCCAGCC
 TGCGGCCTTCACTATTTCTGTGGGTTCGTCCATGCCGCTCTTACCGTTAGGTCGG 1380
 ThrProGluSerAspLysLysAspThrGlnAlaGlyThrAlaGluAsnGlyAsnProAla

GCTTCAAATACGGCAGGTGATACCAATGGCAAAACAAAAACCTATGAAGTCGAAGTCTGC
 CGAAGTTATGCCGTCACTATGGTTACCGTTTGTGTTTGGATACTTCAGCTTCAGACG 1440
 AlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluValGluValCys

TGTTCCAACCTCAATTATCTGAAATACGGAATGTTACCGCTAAAAACAGCAAGTCCGCG
 ACAAGGTTGGAGTTAATAGACTTTATGCCCTACAAC TGCGCATTTTGTGTTAGGCGC 1500
 CysSerAsnLeuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSerLysSerAla

ATGCAGGCAGGCAGAACCGTAGTCTAGCTGACGCTAAACGGAACAGTGAACAAAGT
 TACGTCCGTCCGCTTTGCCATCAGATCGACTGCGATTTGCCTTGTCAACTTGTTCA 1560
 MetGlnAlaGlyGluAsnGlySerLeuAlaAspAlaLysThrGluGlnValGluGlnSer

ATGTTCCCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAAGAGCAACAAGACATC
 TACAAGGAGGTTCCGCTCGCGTGGCTACTTTCTCTAAGGTTTCTCGTTGTCTGTAG 1620
 MetPheLeuGlnGlyGluArgThrAspGluLysGluIleProLysGluGlnGlnAspIle

GT TTATCGGGGGTCTTGGTACGGGCATATTGCCAACGACACAAGCTGGAGCGGCAATGCT
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
CAAATAGCCCCAGAACCATGCCGTATAACGGTTGCTGTGTTGACCTGCCGTTACGA 1680
ValTyrArgGlySerTrpTyrGlyHisIleAlaAsnAspThrSerTrpSerGlyAsnAla.

-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
TCAGATAGAGAGGGCGGCAACAGGGCGGACTTTACCGTGAAATTGGTACGAAAAAAATT
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
AGTCTATCTCTCCCGCCGTTGCTCCGCTGAAATGGCACTTAAACCAGCTTTTTTAA 1740
SerAspArgGluGlyGlyAsnArgAlaAspPheThrValAsnPheGlyThrLysLysIle

-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
AACGGAACGTTAACCGCTGAAAACAGGCAGGAGGCAACCTTACCATTTGTGGCGATATT
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
TTGCCCTTGCAATTGGCAGCTTTGTCCTCCGTTGGAAATGGTAACACCCGCTATAA 1800
AsnGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleValGlyAspIle

-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
AAGGACAACGGTTGAAGGTACGGCGAAAACGTGCTGACTCAGGTTTGATCTCGATCAA
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
TTCCCTGTTGCCGAAACTCCATGCCGCTTTGACGACTGAGTCCAAAATAGAGCTAGTT 1860
LysAspAsnGlyPheGluGlyThrAlaLysThrAlaAspSerGlyPheAspLeuAspGln

-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
AGCAATACCAACCCGCACGCCAACGGCATATATCACAGATGCCAACGGTGAAGGGCGTTT
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
TCGTTATGGTGGGCGTGGGATTCCGTATATAGTGTCTACGGTTCCACTTCCGCCAAA 1920
SerAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValLysGlyGlyPhe

-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
TACGGGGCTAAAGCCGAAGAGTTGGGCGGATGGTTGCCTATCCGGCGATAAACAAACG
-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
ATGCCCGGATTCGGCTCTAACCCGCTACCAAACGGATAGGCCGCTATTGTTGC 1980
TyrGlyProLysAlaGluGluLeuGlyGlyTrpPheAlaTyrProGlyAspLysGlnThr

GAAAAGGCAACGGTTACATCCGGCGATGGAAATTCAAGCAAGCAGTGCACGTGCGTATTC
 CTTTCCGTTGCCAATGTAGGCCGCTACCTTAAGTCGTTCGTCACGTTGACAGCATAAG 2040
 GluLysAlaThrValThrSerGlyAspGlyAsnSerAlaSerSerAlaThrValValPhe

GGTGCGAAACGCCAAAGCCTGTGCAATAA
 CCACGCTTGCGGTTTCGGACACGTTATT 2070
 GlyAlaLysArgGlnLysProValGlnTer

(2) INFORMATION POUR LA SEQ ID NO: 37:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 669 acides aminés
- (B) TYPE: acide aminé
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: protéine

(xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 37:

(2) INFORMATION POUR LA SEQ ID NO: 38:

(i) CARACTERISTIQUES DE LA SEQUENCE:

- (A) LONGUEUR: 2136 paires de bases
- (B) TYPE: acide nucléique
- (C) NOMBRE DE BRINS: double
- (D) CONFIGURATION: linéaire

(ii) TYPE DE MOLECULE: ADN (génomique)

(vi) ORIGINE:

- (A) ORGANISME: Neisseria meningitidis
- (B) SOUCHE: BZ163

(ix) CARACTERISTIQUE ADDITIONNELLE:

- (A) NOM/CLE: sig_peptide
- (B) EMPLACEMENT: 1..60

(ix) CARACTERISTIQUE ADDITIONNELLE:

- (A) NOM/CLE: mat_peptide
- (B) EMPLACEMENT: 61..2133

(ix) CARACTERISTIQUE ADDITIONNELLE:

- (A) NOM/CLE: CDS
- (B) EMPLACEMENT: 1..2133

ATGAACAATCCATTGGTAAATCAGGCTGCTATGGTGCCTGCTGTGTTGGTGAGTGCT
 TACTTGTAGGTAAACCATTAGTCGACGATACCACGACGGACACAAAACAACTCACGA 60
 MetAsnAsnProLeuValAsnGlnAlaAlaMetValLeuProValPheLeuLeuSerAla

 TGTTTGGCGGGAGGCAGCTTCGATCTTGATTCGATACCGAAGCCCCCGTCCC
 ACAAAACCGCCCTCCGCCGTCAAAGCTAGAAGCTAGACAGCTATGGCTTCGGGGCGAGGG 120
 CysLeuGlyGlyGlySerPheAspLeuAspSerValAspThrGluAlaProArgPro

 GCGCCAAAATATCAAGATGTTCTTCGAAAAACCGCAAGCCCCAAAAGACCAAGGCAGGA
 CGCGGTTTATAGTCTACAAAGAAGGCTTTGGCCTCGGGTTCTGGTTCCGCCT 180
 AlaProLysTyrGlnAspValSerSerGluLysProGlnAlaGlnLysAspGlnGlyGly

 TACGGTTTGCATGAGGTTGAAACGGAGGAATCGGCATCCGCAGGCAGAACAAAAGACAAA
 ATGCCAAACGCTACTCCAATTGCTCTTAGCCGTAGGCGTCGTTCTCTGT 240
 TyrGlyPheAlaMetArgLeuLysArgArgAsnArgHisProGlnAlaLysGluAspLys

 GTTGAACTAAACCCAAATGATTGGGAGGAGACAGGATTGCCAGCAAGCCCCAAAACCTTA
 CAACTTGATTGGGTTACTAACCTCTCTGTCTAACGGCTCGTTGGGTTGAAT 300
 ValGluLeuAsnProAsnAspTrpGluGluThrGlyLeuProSerLysProGlnAsnLeu

 CCCGAGCGACAGCAATCGGTTATTGATAAAAGTAAAACAGACGATGGCAGCAATATTCAC
 GGGCTCGCTGCGTTAGCCAAATAACTATTCATTGGCTGCTACCGTCGTTATAAATG 360
 ProGluArgGlnGlnSerValIleAspLysValLysThrAspAspGlySerAsnIleTyr

ACTTCCCCTTATCTACGCAATCAACCATAAAGGGCAGCACTAAATAGCGGTGCAAAC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TGAAGGGGAATAGAGTGCGTTAGTTGGTAGTTTGCCTCGTATTATGCCACGTTG 420
 ThrSerProTyrLeuThrGlnSerAsnHisGlnAsnGlySerThrAsnSerGlyAlaAsn
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 CAAACCAAAAAACGAGTAAAGATTACAAAATTCAAAATATGTTATTCCGGCTGGTT
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 GTTGGTTTTTGCTTCATTTCTAAATGTTTAAAGTTATACAAATAAGGCCGACCAA 480
 GlnProLysAsnGluValLysAspTyrLysAsnPheLysTyrValTyrSerGlyTrpPhe
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 TATAAACATGCAGAGAGTGAAGAGAAATTCAAGTAAATCAAAATTAAAGTCAGGCAGAC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 ATATTTGTACGTCTCTCACTTTCTAAAGTCATTAGTTAAATTCAAGTCCGCTGCTG 540
 TyrLysHisAlaGluSerGluArgGluPheSerLysIleLysPheLysSerGlyAspAsp
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GGCTATATTTTATCACGGTAAAGACCCCTCCGACAACCTCCCACCTCTGAAAAAGTT
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CCGATATAAAATAGTGCCTTTCTGGGAAGGGCTGTTGAAGGGTAAGACTTTCAA 600
 GlyTyrIlePheTyrHisGlyLysAspProSerArgGlnLeuProThrSerGluLysVal
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 ATCTACAAAGGCATGGCATTTGTAACCGATACTGAAAAGGGACAAAATTAAACGAT
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TAGATGTTCCGATACCGTAAAACATTGGCTATGACTTTCCCTGTTAAATTGCTA 660
 IleTyrLysGlyValTrpHisPheValThrAspThrGluLysGlnLysPheAsnAsp
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 ATTCTTGAAACCTCAAAAGGGCAAGGGCACAGATAACAGCGGATTTCGGGCGATGACGGC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 TAAGAACTTGGAGTTTCCGTTCCGCTGTCTATGTCGCCTAAAGCCCGCTACTGCCG 720
 IleLeuGluThrSerLysGlyGlnGlyAspArgTyrSerGlyPheSerGlyAspAspGly
 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GAAACAACCTCCATAGAACTGATTCAACCTTAAATGATAACGACCGAGGGTTATGGTTT
 -----+-----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTTGTTGAAGGTTATCTGACTAAGGTTGGAATTACTATTGGCTCCAAATACCAAAA 780
 GluThrThrSerAsnArgThrAspSerAsnLeuAsnAspLysHisGluGlyTyrGlyPhe

ACCTCGAATTAGAAGTGGATTCGGCACTAAAAAATTGACGGGTAAATTAAATACGCAAT
TGGAGCTTAAATCTCACCTAACCGCTCATTTTAACTGCCCATTAAATTATGCCTTA 840
ThrSerAsnLeuGluValAspPheGlySerLysLysLeuThrGlyLysLeuIleArgAsn

AATAGAGTTACAACGCTACTACTAACGATAAAATACACCACCCATACTACAGCCTTGAT
TTATCTCAATGTTGCGATGATGATTGCTATTTATGTGGTGGTTATGATGTCGGAACTA 900
AsnArgValThrAsnAlaThrThrAsnAspLysTyrThrThrGlnTyrTyrSerLeuAsp

GCCCAAATAACAGGCAACCGCTTCAACGGTAAGGGATAGCGACCGACAAACCCGACACT
CGGGTTTATTGTCCGTTGGCGAAGTTCGCAATTCCGCTATCGCTGGCTGTTGGCTGTGA 960
AlaGlnIleThrGlyAsnArgPheAsnGlyLysAlaIleAlaThrAspLysProAspThr

GGAGGAACCAAACATACATCCCTTGTTCGACTCGTCTTCTTGAGCGGGGGCTTTTC
CCTCCTTGGTTTGATGTAGGGAAACAAAGGCTGAGCAGAAGAAACTCGCCGCCGAAAAG 1020
GlyGlyThrLysLeuHisProPheValSerAspSerSerLeuSerGlyGlyPhePhe

GGTCCGAAGGGTGAGGAATTGGGTTCCGCTTTGAGCGACGATAAAAAGTTGCGGTT
CCAGGCTTCCCACTCCTAACCCAAAGGCAGAAACTCGCTGCTATTTTCAACGCCAA 1080
GlyProLysGlyGluGluLeuGlyPheArgPheLeuSerAspAspLysLysValAlaVal

GTCGGCAGCGCGAAAACCAAGACAAACGGAAAATGGCGCGGTGGCTTCAGGCAGGCA
CAGCCGTCGCGCTTTGGTTCTGTTTGCCCTTACCGCGCCACCGAAGTCCGCGGTGT 1140
ValGlySerAlaLysThrLysAspLysThrGluAsnGlyAlaValAlaSerGlyThr

GATGCGGCAGCATCAACGGTGCAGGACAGTCGTCTGAAACAGTAAGCTGACCACG
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTACGCCGTCGTAGTTGCCACGCCGTCCGTGAGCAGACTTTGTCAATTGACTGGTGC 1200
 AspAlaAlaAlaSerAsnGlyAlaAlaGlyThrSerSerGluAsnSerLysLeuThrThr

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GTTTTGGATGCCGTGAGCTGAAATTGGGCATAAGGAAGTCCAAAAGCTCGACAACCTC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 CAAACACTACGCCAGCTCGACTTTAACCCGCTATTCCCTCAGGTTTCCAGCTGTTGAAG 1260
 ValLeuAspAlaValGluLeuLysLeuGlyAspLysGluValGlnLysLeuAspAsnPhe

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 AGCAACGCCGCCAAGTGGTTGTCACGGCATTATGATTCCGCTCTGCCCGAGACTTCC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 TCGTTGCGGCGGGTTGACCAACAGCTGCCATAACTAAGGCAGAACGGCTCTGAAGG 1320
 SerAsnAlaAlaGlnLeuValValAspGlyIleMetIleProLeuLeuProGluThrSer

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GAAAGTGGGAACAATCAAGCCATCAAGGTACAAATGGCGAACAGCCTTACCCGCAA
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTTTACCCCTGTTAGTTGGTTAGTTCCATGTTACCGCCTTGCGAAATGGCGTT 1380
 GluSerGlyAsnAsnGlnAlaAsnGlnGlyThrAsnGlyGlyThrAlaPheThrArgLys

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 TTTGACCACACGCCGGAAAGTGTATAAAAAGACGCCAAGCAGGTACGCAGACGAATGGG
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 AAACCTGGTGTGCGGCCTTCACTATTTTCTGCGGGTTGTCATGCGTCTGCTTACCC 1440
 PheAspHisThrProGluSerAspLysLysAspAlaGlnAlaGlyThrGlnThrAsnGly

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GCGAAACCGCTTCAAATACGGCAGGTGATACCAATGGCAAAACAAAAACCTATGAAGTC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 CGCGTTGGCGAAGTTATGCCGTCACTATGGTTACCGTTTGTTGGATACTTCAG 1500
 AlaGlnThrAlaSerAsnThrAlaGlyAspThrAsnGlyLysThrLysThrTyrGluVal

 -----+-----+-----+-----+-----+-----+-----+-----+-----+

 GAAGTCTGCTGTTCCAACCTCAATTATCTGAAATACGGAATGTTGACGCGCAAAACAGC
 -----+-----+-----+-----+-----+-----+-----+-----+-----+
 CTTCAGACGACAAGGTTGGAGTTAATAGACTTTATGCCCTAACACTGCGCGTTTGTGCG 1560
 GluValCysCysSerAsnLeuAsnTyrLeuLysTyrGlyMetLeuThrArgLysAsnSer

AAGTCCCGCATGCAGGCAAGGAAAGCAGTAGTCAGCTGTGCTAAACGGAACAGTT
-----+-----+-----+-----+-----+-----+-----+-----+
TTCAGGCGCTACGTCCGTCTTCGTATCAGTCGACTACGATTTCGCTTGTTCAA
LysSerAlaMetGlnAlaGlyGluSerSerSerGlnAlaAspAlaLysThrGluGlnVal
-----+-----+-----+-----+-----+-----+-----+-----+

GGACAAAAGTATGTTCTCCAAGGCGAGCGCACCGATGAAAAAGAGATTCCAGCGAGCAA
-----+-----+-----+-----+-----+-----+-----+-----+
CCTGTTTCATACAGGAGGTTCCGCTCGGTGGCTACTTTCTCTAAGGTCGCTCGTT
GlyGlnSerMetPheLeuGlnGlyGluArgThrAspGluLysGluIleProSerGluGln
-----+-----+-----+-----+-----+-----+-----+-----+

AACATCGTTTATGGGGGTCTTGGTACGGGCATATTGCCAGCAGCACAAAGCTGGAGCGGC
-----+-----+-----+-----+-----+-----+-----+-----+
TTGTAGCAAATAGCCCCAGAACATGCCGTATAACGGTCGTGTTGACCTCGCCG
AsnIleValTyrArgGlySerTrpTyrGlyHisIleAlaSerSerThrSerTrpSerGly
-----+-----+-----+-----+-----+-----+-----+-----+

AATGCTTCTGATAAAAGAGGGCGGCAACAGGGCGGAATTACTGTGAATTGGCGAGAAA
-----+-----+-----+-----+-----+-----+-----+-----+
TTACGAAGACTATTTCTCCGCCGTGTCCTGCCTAAATGACACTTAAACCGCTTTT
AsnAlaSerAspLysGluGlyGlyAsnArgAlaGluPheThrValAsnPheGlyGluLys
-----+-----+-----+-----+-----+-----+-----+-----+

AAAATTACCGCACGTTAACCGCTGAAAACAGGCAGGAGGCAACCTTACCATTGATGGT
-----+-----+-----+-----+-----+-----+-----+-----+
TTTAATGGCCGTGCAATTGGCGACTTTGTCCGTCTCCGTTGGAAATGGTAACCTACCA
LysIleThrGlyThrLeuThrAlaGluAsnArgGlnGluAlaThrPheThrIleAspGly
-----+-----+-----+-----+-----+-----+-----+-----+

AAGATTGAGGGCAACGGTTTCCGGTACGGCAAAACTGCTGAATTAGGTTTGATCTC
-----+-----+-----+-----+-----+-----+-----+-----+
TTCTAACTCCCGTTGCCAAAAGGCCATGCCGTTTGACGACTTAACTCCAAAAGTAGAG
LysIleGluGlyAsnGlyPheSerGlyThrAlaLysThrAlaGluLeuGlyPheAspLeu
-----+-----+-----+-----+-----+-----+-----+-----+

GATCAAAAAAAATACCACCCGACGCCCTAAGGCATATATCACAGATGCCAAGGTGCAGGGC
 CTAGTTTTTTATGGTGGCGCTGGGATTCCGTATATAAGTGTCTACGGTTCCACGTCCCCG 1980
 AspGlnLysAsnThrThrArgThrProLysAlaTyrIleThrAspAlaLysValGlnGly
 -----+-----+-----+-----+-----+-----+-----+
 GGTTTTTACGGGCCAAGCCGAAGAGTTGGCGGATGGTTGCCTATCAGGGCGATAAA
 CCAAAATGCCGGGTTTGGCTCTCAACCCGCCTACAAACGGATAGTCCCCTATT 2040
 GlyPheTyrGlyProLysAlaGluGluLeuGlyTrpPheAlaTyrGlnGlyAspLys
 -----+-----+-----+-----+-----+-----+-----+
 CAAACGGAAAATACAACAGTTGCATCCGGCATGGAAATTCAAGCAAGCAGTGCAACTGTC
 GTTGCCTTTATGTTGTCAACGTAGGCCGTTACCTTAAGTCGTCGTACGTTGACAG 2100
 GlnThrGluAsnThrValAlaSerGlyAsnGlyAsnSerAlaSerSerAlaThrVal
 -----+-----+-----+-----+-----+-----+-----+
 GTATTCGGTGCAGACGCCAAAGCCTGTGCAATAA 2136
 CATAAGCCACGCTTGGCGTTTCGGACACGTTATT
 ValPheGlyAlaLysArgGlnLysProValGlnTer

(2) INFORMATION POUR LA SEQ ID NO: 39:

- (i) CARACTERISTIQUES DE LA SEQUENCE:
 - (A) LONGUEUR: 692 acides aminés
 - (B) TYPE: acide aminé
 - (D) CONFIGURATION: linéaire
- (ii) TYPE DE MOLECULE: protéine
- (xi) DESCRIPTION DE LA SEQUENCE: SEQ ID NO: 39:

Revendications

1. Un polypeptide ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 du récepteur transferrine d'une souche de *Neisseria meningitidis* de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394, telle que montrée dans l'ID SEQ NO 1 ou 3, notamment par délétion totale ou partielle d'au moins un domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, à condition que le premier et deuxième domaine ne soient pas simultanément et totalement délétés.
2. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; notamment par délétion partielle du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
3. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; notamment par délétion totale du troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
4. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; et qui comporte dans son intégralité, le deuxième domaine de la séquence dont elle est dérivée.
5. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum

d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; notamment par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.

6. Un polypeptide selon la revendication 2 ou 3, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; notamment par délétion totale du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
7. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; et qui comporte dans son intégralité, le premier domaine de la séquence dont elle est dérivée.
8. Un polypeptide selon la revendication 4, 5 ou 6, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; par délétion partielle du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
9. Un polypeptide selon la revendication 4 ou 5, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 ou IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence respective, IM2169 ou IM2394 ; par délétion totale du premier domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394.
10. Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.

11. Un polypeptide selon les revendications 2 ou 3, 4 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
12. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
13. Un polypeptide selon les revendications 2 ou 3, 4 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
14. Un polypeptide selon la revendication 12, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
15. Un polypeptide selon la revendication 13, ayant une séquence d'acides aminés qui en outre dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394 par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2394 allant de l'acide aminé en position 1 à l'acide aminé en position 266.
16. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
17. Un polypeptide selon les revendications 2 ou 3, 4 et 9, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
18. Un polypeptide selon la revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
19. Un polypeptide selon les revendications 2 ou 3, 5 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.

20. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
21. Un polypeptide selon les revendications 2 ou 3, 5 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
22. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2169 allant de l'acide aminé dans l'une des positions 346 à 361 à l'acide aminé en position 543.
23. Un polypeptide selon la revendication 19 ou 21, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394 dont les premier, deuxième et troisième domaines sont définis par alignement, au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2394, par délétion de la région du deuxième domaine de ladite sous-unité Tbp2 de type IM2394 qui est l'homologue de la région du deuxième domaine de la sous-unité Tbp2 IM2394 allant de l'acide aminé dans l'une des positions 326 à 341 à l'acide aminé en position 442.
24. Un polypeptide selon la revendication 18 ou 20, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :
 - (i) de l'acide aminé en position 362 à l'acide aminé en position 379 ;
 - (ii) de l'acide aminé en position 418 à l'acide aminé en position 444 ;
 - (iii) de l'acide aminé en position 465 à l'acide aminé en position 481 ; et

(iv) de l'acide aminé en position 500 à l'acide aminé en position 520.

25. Un polypeptide selon la revendication 24, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
26. Un polypeptide selon les revendications 20 et 24 ou 25, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par délétion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.
27. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
28. Un polypeptide selon les revendications 3, 6 et 7, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
29. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169.
30. Un polypeptide selon les revendications 3, 6 et 8, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2394.
31. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169 ; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité

Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520 ; et

qui comporte dans leur intégralité, le premier et troisième domaine de la séquence dont elle est dérivée.

32. Un polypeptide selon la revendication 1, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 de la souche de référence IM2169 ; par délétion partielle du deuxième domaine de ladite sous-unité Tbp2 de type IM2169, notamment par délétion partielle du premier domaine et par délétion d'au moins une des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues des régions de la sous-unité Tbp2 IM2169 allant :

- (i) de l'acide aminé en position 362 à l'acide aminé en position 379,
- (ii) de l'acide aminé en position 418 à l'acide aminé en position 444,
- (iii) de l'acide aminé en position 465 à l'acide aminé en position 481, et
- (iv) de l'acide aminé en position 500 à l'acide aminé en position 520 ; et

qui comporte dans son intégralité, le troisième domaine de la séquence dont elle est dérivée.

33. Un polypeptide selon la revendication 32, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et

troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, par déletion de tout ou partie de la région qui est l'homologue de la région du premier domaine de ladite sous-unité Tbp2 de type IM2169 allant de l'acide aminé en position 1 à l'acide aminé en position 281.

34. Un polypeptide selon l'une des revendication 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 de type IM2169 dont les premier, deuxième et troisième domaines sont définis par alignement au maximum d'homologie, sur la séquence de la sous-unité Tbp2 IM2169, telle que montrée dans l'ID SEQ NO 1, par déletion des régions du deuxième domaine de ladite sous-unité Tbp2 de type IM2169 qui sont les homologues desdites régions (i) à (iv) de la sous-unité Tbp2 IM2169.
35. Un polypeptide selon l'une des revendications 10, 12, 14, 16, 18, 20, 22, 24 à 27, 29, et 31 à 33, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
36. Un polypeptide selon l'une des revendications 11, 13, 15, 17, 19, 21, 23, 28 et 30, ayant une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
37. Un polypeptide selon l'une des revendications 1 à 36, ayant une séquence qui comprend au moins 50 acides aminés.
38. Un fragment d'ADN isolé codant pour un polypeptide selon l'une des revendications 1 à 37.
39. Une composition pharmaceutique pour induire une réponse immunitaire à l'encontre de *N. meningitidis*, comprenant à titre de principe actif, au moins un polypeptide selon l'une des revendications 1 à 37.
40. Une composition pharmaceutique selon la revendication 39, qui comprend à titre de principe actif, au moins un premier et au moins un deuxième polypeptides selon l'une des revendications 1 à 37 ; ledit premier polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2169 et ledit deuxième polypeptide ayant une séquence qui dérive de celle d'une sous-unité Tbp2 de type IM2394.

41. Une composition pharmaceutique selon la revendication 40, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 13, 15, 19, 21, 23, 28 et 30.
42. Une composition pharmaceutique selon la revendication 41, dans laquelle ledit au moins un deuxième polypeptide est selon l'une des revendications 11, 19, 23 et 28.
43. Une composition pharmaceutique selon la revendication 40, 41 ou 42, dans laquelle ledit au moins un deuxième polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2394.
44. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 12, 14, 18, 20, 22, 27 et 29.
45. Une composition pharmaceutique selon la revendication 44, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 10, 18, 22 et 27.
46. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon l'une des revendications 31 à 34.
47. Une composition pharmaceutique selon l'une des revendications 40 à 43, dans laquelle ledit au moins un premier polypeptide est selon la revendication 16.
48. Une composition pharmaceutique selon l'une des revendications 44 à 47, dans laquelle ledit au moins un premier polypeptide a une séquence d'acides aminés qui dérive de celle de la sous-unité Tbp2 IM2169.
49. Une composition pharmaceutique selon la revendication 47, qui comprend au moins un troisième polypeptide qui est selon la revendication 16.
50. Un anticorps monoclonal :
 - (i) capable de reconnaître un épitope présent dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 ; ledit épitope ayant une séquence homologue à celle présente dans le premier domaine de la sous-unité Tbp2 de

la souche IM2394 et sélectionnée parmi YKGTW, EFEVDFSDKTIKGTL, EGGFYGPKGEEL et AVFGAK; et de manière optionnelle,

- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, dont la séquence est homologue à celle de l'épitope du premier domaine qui est reconnu.

51. Un anticorps monoclonal selon la revendication 50,

- (i) capable de reconnaître la région présente dans le premier domaine d'une sous-unité Tbp2 de type IM2169 ou IM2394 dont la séquence est homologue à la séquence EGGFYGPKGEEL présente dans le premier domaine de la sous-unité Tbp2 de la souche IM2394 ; et de manière optionnelle,
- (ii) incapable de reconnaître l'épitope présent dans le troisième domaine de ladite sous-unité Tbp2 de type IM2169 ou IM2394, épitope équivalent de celui qui est reconnu, dont la séquence est homologue à la séquence SGGFYGKNAIEM présente dans le troisième domaine de la sous-unité Tbp2 de la souche IM2394.

52. Un anticorps monoclonal selon la revendication 51,

- (i) capable de reconnaître l'épitope GFYGPK, présent dans le premier domaine d'une sous-unité Tbp2 de la souche IM2394 ; et
- (ii) incapable de reconnaître l'épitope équivalent présent dans le troisième domaine de ladite sous-unité Tbp2 IM2394.

53. Une composition pharmaceutique pour traiter par immunothérapie passive une infection à *N. meningitidis*, qui comprend à titre de principe actif, un anticorps monoclonal selon l'une des revendications 50 à 52.

1/16

Figure 1

IM2169

M978

10	20	30	40	50	60	
CLGGGGSFDLDSVDTEAPRPAPKYQDVSSSEKPQAQKDQGGYGFAMRLKRRNWYPGAE--ESEVKLNESDW						
10	20	30	40	50	60	70
CLGGGGTDFDLDSVDTEAPRPAPKYQDVSSSEKPQAQKDQGGYGFAMRLKRRNWHPQANPKEDEIKLSENDW						
70	80	90	100	110	120	130
EATGLPTKPKELPKRQKSIEKVETDGDSDIYSSPYLTPSNHQNGSAGNGVNQPKNQATGHENFQYVYSG						
80	90	100	110	120	130	
EATGLPGNPKNLPERQKSIEKVKTGSDSNIYSSPYLTQSNHQNGSA-N---QPKNEVKDYKEFKYVYSG						
150	160	170	180	190	200	
WFYKHAASE--KDFS-NKKIKSGDDGYIFYHGEKPSRQLPASGVIVYKGVWHFVTDTKGQDFREIIQPS						
140	150	160	170	180	190	200
WFYKHAKLEI IKENNLIKAGSKGGYIFYHGEKPSRQLPVSGEVTVYKGVWHFVTDTKGQKFNDILGTS						
210	220	230	240	250	260	270
KKQGDRYSGFGSGDGEYEYSNKNESTLKDDHEGYGFTSNLEVDFGNXKLTGKLIRNNASLNNNTNNDKHTT						
210	220	230	240	250	260	270
KKQGDRYSGFGDDGEYEYSNKNEATLQGSQEYGETSNLKVDFNKKLTGELIRNN-RVTNATANDKYTT						
280	290	300	310	320	330	340
QYSLDAQITGNRFNGTATATDKKEN-ETKLHPFVSDSSSLSGGFFGPQGEELGFRFLSDDQKVAVVGSA						
280	290	300	310	320	330	340
QYSLAQTGNRFNGKATATDKPGTGETKQHPFVSDSSSLSGGFFGPKGEELGFRFLSNDQKVAVVGSA						
350	360	370	380	390	400	410
KTKDKLENG--AAASGSTGAAASGGAAGTSSSENSKLTTVLDRAVELTLNDKKIKNLDNFNSAAQLVVDGIM						
350	360	370	380	390	400	410
KTQDKAANGNTAAASGGTDAAASNGAAGTSSSENSKLTTVLDRAVELTLNDKKIKNLDNFNSAAQLVVDGIM						
420	430	440	450	460	470	
IPLLPKDSESQNTQADKGK--NG--G-TEFTRKFERTPESDKD--AQAGTQ-TNGAQTASNTAGDTNG						
420	430	440	450	460	470	
IPLLPETSESGSNQADKGKKGKNGKNGGTDFTYKTTYTPKNDDKDTKAQTGAAGSSGAQTDLGKADVNGG						
490	500	510	520	530	540	550
K-TKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPNDQN						
490	500	510	520	530	540	550
KAETKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPNDQN						

2/16

550 560 570 580 590 600 610
VYRGSWYGHLANGTSWSGNASDKEGGNRAEFTVNFDKKTGKLTAENRQAQFTIEGMIQGNGFEGTA
=====

560 570 580 590 600 610 620
VYRGSWYGHIASSTSWSGNASNATSGNRAEFTVNFDTKKINGTLTAENRQEATFTIDGKIEGNGFSGTA
=====

620 630 640 650 660 670 680
KTAESGFDDQKNTTRTPKAYITDAVKQGGFYGPKAEEELGGWFAYPGDKQTEKATATSSDGNASSATVV
=====

630 640 650 660 670 680 690
KTAADLGFDLDQSNTTGTPKAYITDAVKQGGFYGPKAEEELGGWFAYPGDKQTEKATVASGDGNSASSATVV
=====

690
FGAKRQQPVQ
=====

700

3/16

Figure 2

IM2169

=====

6940

10	20	30	40	50	60	70
CLGGGGSF DLD SVDT EAPR PAP KY QDV S SEK PQA QKD QGGY GFAM RL KRRN WY PGAE ESEV KLN ESDWEA						
10	20	30	40	50	60	70
CLGGGGT F DLD SVDT EAPR PDP KY QDV S SEK PQA QKD QGGY GFAM RL KRRN WY SAKE DEV KLN ESDWET						
80	90	100	110	120	130	
TGLPTKP KELPKRQKS VIEKVETD-GDSDIYSSPYLTPSNHQN GSVNQPKNQATGHENFQYVYSGW						
80	90	100	110	120	130	140
TGLPTEPKKLPLKQESVISKVQANNGDNNIYTSPYLTSQSNHQNS SINGGANLPKNEVTNYKDFKYVYSGW						
150	160	170	180	190	200	
FYKHAASE--KDFSNKK-IKGDDGYI FYHGEKPSRQLPASGKVIYGVWHFVTDTKKQDFREIIQPSK						
150	160	170	180	190	200	210
FYKHAKNEIIRENSSIKGAKNGDDGYI FYHGEKPSRQLPASGTVTYGVWHFATDVKSQNF RDIIQPSK						
210	220	230	240	250	260	270
KQGDRYSGFSGDGSE EYSNKNESTLKDDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNNDKHTTQ						
220	230	240	250	260	270	
KQGDRYSGFSGDDDEQYSNKNESMLKDQEGYGF TSNLEVDFGSKKLTGKLIRNN-RVTNAPTNDKHTTQ						
280	290	300	310	320	330	340
YYSLDAQITGNRFNGTATATDKENE-TKLHPFVSDSSLSGGFFGPQGEELGFRFLSDDQKVAVVGSAK						
290	300	310	320	330	340	
YYSLDAQITGNRFNGKAIRTDKPDGTGGT KLHPFVSDSSLSGGFFGPKGEELGFRFLSDDKKVAVVGSAK						
350	360	370	380	390	400	410
TKDKLENGAAASGSTGAAASGGAGTSSSENSKLTTVLD AVELT LINDKKIKNLNF SNAAQLVVDGIMIPL						
360	370	380	390	400	410	
TKDKTENGAVASGGT DAAA NGAGTSSSENSKLTTVLD AVELKLGDKEVOKL DNFSNAAQLVVDGIMIPL						
420	430	440	450	460	470	480
LPKDS ESGNTQADKGKNGGTEFTRKF EHTPESDKD QAQGTQTN GAQTA NTAGDTNGKT KTYEVEVCCS						
430	440	450	460	470	480	
LPEASESGNNQANQGTNGGTAFTRKF DHTPESDKD QAQGTQTN GAQTA NTAGDTNGKT KTYEVEVCCS						
490	500	510	520	530	540	550
NLNYLK YGMLTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPSEQNIVYRG SWY GHIA NG						
500	510	520	530	540	550	
NLNYLK YGMLTRKNSKSAMQAGESSSQADAKTEQVEQSMFLQGERTDEKEIPSEQNIVYRG SWY GHIA NG						
560	570	580	590	600	610	620
--TSWSGNASDKEGGNR AEEFTVN FADKKITGKLTAENRQA QTFTI EGMIQGNGFEGTAKTAESGF DLDQK						
570	580	590	600	610	620	
KSTSWSGNASNATSGNRAEFTVN FADKKITGKLTAENRQA QTFTI EGMIQGNGFEGTAKTAESGF DLDQK						

4/16

630 640 650 660 670 680 690
NTTRTPKAYITDAKVGGFYGPKAELGGWFAYPGDKQTEKATATSSDGNASSATVVFGAKRQQPVQ
===== = - =====
NTTRTPKAYITDAVQGGFYGPKAELGGWFAYPGDKQT-KN-ATNASGNS-S-ATVVFGAKRQQPVR
640 650 660 670 680 690

5/16

Figure 3

IM2169

S3032

10 20 30 40 50 60
 CLGGGG-SFDLSDVDTEAPRPAPKYQDVSSSEKPOAQKDQGGYGFAMRLKRRNWYPGAEESEVKLNESDWE
 10 20 30 40 50 60 70
 CLGGGGGSFDLSDVDTEAPRPAPKYQDVSSSEKPOAQKDQGGYGFAMRLKRRNWYPASAKENEVKLNESDWE
 80 90 100 110 120 130
 ATGLPTKPKELPKRQKSIEKVETDGDS---IYSSPYLTQSNHQNGSAGNGVNQPKNQATGHENFQYVY
 TTGLPSNPKNLPERQKSVIDQVETDGDSNNNSNIYSSPYLTQSNHQNGNTGNGVNQPKNEVTDYKNFKYVY
 80 90 100 110 120 130 140
 140 150 160 170 180 190 200
 SGWFYKHAASEKDFS-NKKI-KSGDDGYIFYHGEKPSRQLPASGKVIYKGWVHFVTDTKKGQDFREIIQP
 150 160 170 180 190 200 210
 SGWFYKHAKEVNLAPEVKIAKNGDDGYIFYHGKDPQRQLPASGKITYKGWVHFATDTKRGQKFREIIQP
 210 220 230 240 250 260 270
 SKKQGDRYSGFSGDGSEEEYSNKNESTLKDDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNDKHT
 220 230 240 250 260 270 280
 SKNQGDRYSGFSGDDDEQYSNKNESMLKGHEGYGFTASNLEVDFDNKKLTGKLIRNNANQNNNTNNDKHT
 280 290 300 310 320 330 340
 TQYYSLDAQITGNRFNGTATATDK-KEN-ETKLHPPVSDSSLSGGFFGPQGEELGFRFLSDDQKVAVVG
 290 300 310 320 330 340 350
 TQYYSLDATLKGNRFGKAETDKPKNDGETKEHPFVSDSSLSGGFFGPQGEELGFRFLSNDQKVAVVG
 350 360 370 380 390 400 410
 SAKTKDKLENG-AA-ASGSTGAAASGGAAGTSSSENSKLTTVLDVELTLNDKKIKNLDNFNSAAQLVVVG
 360 370 380 390 400 410 420
 SAKTKDKPANGNTAEASGGDAAASGGAAGTSSSENSKLTTVLDVELTHGGTALKNLDNFNSAAQLVVVG
 420 430 440 450 460 470 480
 IMIPLLPKDSESGNTQADKGKNGGTEFRKFEHTPESDKDAQAGTQTNAGQTASNTAGDTNGKTGYEV
 430 440 450 460 470 480 490
 IMIPLLPKDSESGNTQADKGKNGGTAFYKTTYTPKNDKDTKAQTVTGGTQTAASNTAGDANGKTGYEV
 490 500 510 520 530 540 550
 EVCCSNLNYLKYGMLTRKNKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPTDQNYYRGSWYG
 500 510 520 530 540 550
 EVCCSNLNYLKYGLLTRKTAGNTVGSGNSSPTAAQDAA--QSMFLQGERTDENKIPSEQNYYRGSWYG
 560 570 580 590 600 610 620
 HIAHTSWSGNASDKEGGNRAEFTVNFAKKITGKLTAENRQAQTFITIEGMIQGNGFEGTAKTAESGFDL
 570 580 590 600 610 620

6/16

630 640 650 660 670 680 690
DQKNTTRTPKAYITDAVKGGFYGPKAEEELGGWFAYPGDKQTEKATATSSDGN
SASSATVVFGAKRQQPVQ
===== ===== ===== ===== ===== ===== =====
DQKNTTRTPKAYITDAVKGGFYGPKAEEELGGWFAYSDDKQTKNATDASGN
NSASSATVVFGAKRQQPVQ
640 650 660 670 680 690

7/16

Figure 4

	10	20	30	40	50	60	
	346	361	380				
1	TKDKLENGAA--ASGSTGAAAAGGAAGTSSENSKLTTLDAVELTLNDKKIKNLDNFSNA						58
2	TKDKTENGAV--ASGGTDAAAASNGAAGTSENSKLTTLDAVELKLGDKEVQKLDNFSNA						58
3	TKDKTENGAV--ASGGTDAAAASNGAAGTSENSKLTTLDAVELKLGDKEVQKLDNFSNA						58
4	TQDKPRNGAV--ASGGTGAARSNGAAGQSSENSKLTTLDAVELTLNDKKIKNLDNFSNA						58
5	TQDKAANGNTAAASGGTAAAASNGAAGTSENSKLTTLDAVELTLNDKKIKNLDNFSNA						60
6	KRDKAESGGGGNGASGGTAAAASNGAAGTSENSKLTTLDAVELKSGGKEVKNLDNFSNA						60
7	TKDKPRNGAV--ASGGTDAAAASNGAAGTSENSKLTTLDAVELTLNDKKIKNLDNFSNA						58
8	TKDKPANGNTAEASGGTAAAASGGAAGTSENSKLTTLDAVELTLNDKKIKNLDNFSNA						60
9	TKDKPGNGA---RLQAARCGTSNGAAGQSSENSKLTTLDAVELKLGDKEVQKLDNFSNA						57
C	*+DK: : *G+: +:*****+**+S+GAAG+SSEN*KLTTVLDAVEL:+: +*: :++LDNFSNA						
	70	80	90	100	110	120	
	417				445		
1	AQLVVDGIMIPLLKDSESGNTQADKGK-----NGGTEFTRKFHHTPESDKDAQAGTQ						112
2	AQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFDHHTPESDKDAQAGTQ						112
3	AQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFDHHTPESDKDAQAGTQ						112
4	AQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFNHHTPKSDEKDQTQAGTA						112
5	AQLVVDGIMIPLLPEASESGNSNQADKGKKGKNGKNGGGTDFTYKTTYPKNDKDCKAQTG						120
6	AQLVVDGIMIPLLPEASESGNSNQADKGK-----NGGTAFTRKFEHHTPESDKDAQAGTQ						114
7	AQLVVGIMIPLMPETSESGNNQADKGK-----NGGTAFTRKFDHHTPKSDEKDQTQAGTP						112
8	AQLVVDGIMIPLLPEASESGNSNQADKGK-----NGGTAFTYKTTYPKNDKDCKAQTV						114
9	AQLVVDGIMIPLLPEASESGNSNQADKGK-----NGETEFTRKFHHTPESDEKDAQAGTP						111
C	AQLVV*GIMIPL*P: .S***+*Q+: G: NG*T:F*+K+.+TP:+D:KD:+A+T:						
	130	140	150	160	170	180	
	465	482	499				
1	TNGAQTASNTAGDTNGKT-----KTYEVEVCCSNLNLYLKYGMLTRKNSKSAMQAGGNSSQ						167
2	TNGAQTASNTAGDTNGKT-----KTYEVEVCCSNLNLYLKYGMLTRKNSKSAMQAGESSSQ						167
3	ANGAQTASNTAGDTNGKT-----KTYEVEVCCSNLNLYLKYGMLTRKNSKSAMQAGESSSQ						167
4	ENGNPAASNTAGDANGKT-----KTYEVEVCCSNLNLYLKYGMLTRKNSKSAMQAGESSSQ						167
5	AAGSSGAQTDLKGADVNNGKAETKTYEVEVCCSNLNLYLKYGMLTRKNSKSAMQAGGNSSQ						180
6	TNGAQTASNTAGDTNGKT-----KTYEVEVCCSNLNLYLKYGLLTRKTAGNTGEGGNGSQT						169
7	TNGAQTASNTAGDTNGKT-----KTYEVEVCCSNLNLYLKYGLLTRKTADNTVGSGNNSST						168
8	TGGTQTASNTAGDANGKT-----KTYEVEVCCSNLNLYLKYGLLTRKTAGNTVGSGNNSPT						169
9	SNGAQTASNTAGDTNGKT-----KTYEVNLCSNLYLKYGLLTRKTAGNTGEGGNNSPT						165
C	:+G+++A*++*G++**+. KTY*V**C*SNLYLKYG:LTRK:::::G::S+:						
	190	200	210				
	521						
1	ADAKTEQVEQSMFLQGERTDEKEIPTDQ-NVV						198
2	ADAKTEQVEQSMFLQGERTDEKEIPSEQ-NIV						198
3	ADAKTEQVGQSMFLQGERTDEKEIPSEQ-NIV						198
4	ADAKTEQVGQSMFLQGERTDEKEIPNDQ-NVV						198
5	ADAKTEQVEQSMFLQGERTDEKEIPNDQ-NVV						211
6	AAAQTAQGAQSMFLQGERTDEKEIPSEQ-NVV						200
7	AAAQTAQGAQSMFLQGERTDEKEIPKEQQDIV						200
8	AAAQTD--AQSMFLQGERTDENKIPSEQ-NVV						198
9	AA-QTAQGAQSMFLQGERTDEKEIPNDQ-NVV						195
C	A: *:T: *: :QSMFLQGERTDE**IP: :Q *:V						

Figure 5

Figure 6

Figure 7

11/16

Figure 8

M982

BZ83

10	20	30	40	50	60	70
CLGGGGSFDLDSVDTEAPRPAPKYQDVSSKEPKAQKDGQGYGFAMRLKRRNWYPGAEESEVKLNESDWEA						
10	20	30	40	50	60	70
CLGGGGSFDLDSVDTEAPRPAPKYQDVSSSETPKAQKDGQGYGFAMRFKRRNWYPKNEEDHKALSEADWEK						
80	90	100	110	120	130	140
TGLPTKPKELPKRQKSIEKVETDGDSDIYSSPYLTPSNHQNGSAGNGVNQPKNQATGHENFQYVYSGWF						
80	90	100	110	120	130	140
LG AGKPDEFPQRNE ILN M TDG ILS ES L QL GE G G KSRVEGYTDFQYVRSGYI						
150	160	170	180	190	200	210
YKHAASEKDFSNKKIKSGDDGYIFYHGEKPSRQLPASGKVIYKGWVHFVTDKKGQDFREIIQPSKKQGD						
130	140	150	160	170	180	190
YRNGANKIDFQKKIALSGPDGYLFYKGSNPSQALPM GKVGKGTWDYVTDAKMGQKFSQL AGFPAGD						
220	230	240	250	260	270	280
RYSGFSGDGSEEEYSNKNESTLKDDEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNTNNDKHTTQYYSL						
200	210	220	230	240	250	260
RYGALSAAEADVLRNKSEA QQGQTDFGLTSEFEVDFAAKTMTGALYRNNRITNNETENAKQIKRYDI						
290	300	310	320	330	340	350
DAQITGNRFNGTATAKDK KENETKLHPPFVSDSSLSGGFFGPQGEELGFRFLSDDQKVAVVGSAKTKDK						
260	270	280	290	300	310	320
QADLHNRFSGKATATDKPKNDETKEHPFVSDSSLSGGFFGPQGEELGFRFLSDDQKVAVVGSAKTKDK						
360	370	380	390	400	410	420
LENGAAASGSTGAAASGGAAGTSSENSKLTTVLDVELTLNDKKIKNLNDNFNSAAQLVVDGIMIPLLPKD						
330	340	350	360	370	380	390
LENGAAASGSTGAAASGGAADMPSENGKLTTVLDVELKSGGKEVKNLDNFNSAAQLVVDGIMIPLLPKN						
430	440	450	460	470	480	490
SESGNTOADKGKNGGTEFTRKFETHPESDKKDAQAGTQNTNGAQTASNTAGDTNGKTKTYEVVCNSNLNY						
400	410	420	430	440	450	460
SESESQNADKGKNGGTAFTRKFETHPESDKKDTQAGTAENGNPAASTAGDTNGKTKTYEVVCNSNLNY						
500	510	520	530	540	550	560
LKYGMILTRKNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPTDQ NVVYRGWSWYGHIANGTSW						
470	480	490	500	510	520	530
LKYGMILTRKNSKSAMQAGENGSLADAKTEQVEQSMFLQGERTDEKEIPKEQQDIVYRGWSWYGHIANGTSW						
570	580	590	600	610	620	630
SGNASDKEGGNRADFTVNFGTKKINGTLTAENRQAQTFTEGMIQGNGFEGTAKTAESGFDLDDQSNTTRT						
540	550	560	570	580	590	600

12/16

640 650 660 670 680 690
PKAYITDAVKGGFYGPKAEEELGGWFAYPGDKQTEKATATSSDGN
SASSATVVFGAKRQQPVQ
===== ===== ===== ===== ===== =====
PKAYITDAVKGGFYGPKAEEELGGWFAYPGDKQTEKATVTSGDGL
SASSATVVFGAKRQKPVQ
610 620 630 640 650 660

13/16

Figure 9

M982

BZ163

10	20	30	40	50	60
CLGGGGSFDLDSVDTEAPRPAP KYQDVSSPKPQAQKDQGGYGFAMRLKRRNWYPGAEESEVKLNESDWE					
10	20	30	40	50	60
CLGGGGSFDLDSVDTEAPRPAPPKYQDVSSPKPQAQKDQGGYGFAMRLKRRNRHPQAKEDKVELNPNDWE					
80	90	100	110	120	130
ATGLPTKPKELPKRQKSIEKVETDGDSDIYSSPYLTPSNHQNGSAGNGVNQPKNQATGHENFQYVYSGW					
80	90	100	110	120	130
ETGLPSKPQNLPERQQSVIDVKVTDDGSNIYTSPYLTQSNHQGSTNSGANQPKNEVKDYKNFKYVYSGW					
150	160	170	180	190	200
FYKHAASEKDFSNKKIKSGDDGYIFYHGEKPSRQLPASGKVIYKGVWHFVTDTKKQDFREIIQPSKKQG					
150	160	170	180	190	200
FYKHAESEREFSKIKFKSGDDGYIFYHGKDPSRQLPTSEKVIYKGVWHFVTDTKEGQKFNDILETSKGQG					
220	230	240	250	260	270
DRYSGFSGDGSEEYSNKNESTLKDDHEGYGFTSNLEVDFGNKKLTGKLIRNNASLNNNTNNDKHTTQYYS					
220	230	240	250	260	270
DRYSGFSGDDGETTSNRDSDLNLNDKHEGYGFTSNLEVDFGSKKLTGKLIRNN RVTNATTNDKYTTQYYS					
290	300	310	320	330	340
LDAQITGNRFNGTATADKKENE TKLHPFVSDSSSLGGFFGPQGEELGFRFLSDDQKVAVVGSAKTKD					
290	300	310	320	330	340
LDAQITGNRFNGKAIAADKPDGTGKTLHPFVSDSSSLGGFFGPKGEELGFRFLSDDKKVAVVGSAKTKD					
360	370	380	390	400	410
KLENGAAASGSTGAAASGGAAGTSSENSKLTTVLDLAVELTNDKKIKNLDNFNSAAQLVVDGIMIPLLPK					
360	370	380	390	400	410
KTENGAVASGGTDAASNGAAGTSSENSKLTTVLDLAVELKLGDKEVQKLDNFNSAAQLVVDGIMIPLLPE					
430	440	450	460	470	480
DSESGNTQADKGKNGGTEFTRKFENTPESDKDQAQGTQTNGAQTASNTAGDTNGKTKTYEVEVCCSNLN					
430	440	450	460	470	480
TSESGNNQANQGTNGGTAFTRKFHTPESDKDQAQGTQTNGAQTASNTAGDTNGKTKTYEVEVCCSNLN					
500	510	520	530	540	550
YLKYGMILTRNSKSAMQAGGNSSQADAKTEQVEQSMFLQGERTDEKEIPTDQNVYRGSWYGHIASTSW					
500	510	520	530	540	550
YLKYGMILTRNSKSAMQAGESSSQADAKTEQVGQSMFLQGERTDEKEIPSEQNIVYRGSWYGHIASTSW					
570	580	590	600	610	620
SGNASDKEGGNRAEFTVNFADEKKITGKLTAENRQAQTFTIEGMIQGNGFEGTAKTAESGFDLDDQKNTTRT					
570	580	590	600	610	620
SGNASDKEGGNRAEFTVNFGKEKKITGKLTAENRQEATFTIDGKIEGNNGFSGTAKTAELGFDLDDQKNTTRT					

14/16

640 650 660 670 680 690
PKAYITDAVKGGFYGPKAEEELGGWFAYPGDKQTEKATATSSDGN SASSATVVF GAKRQQPVQ
PKAYITDAKVQGGFYGPKAEEELGGWFAYQGDKQTENTTVASGN GNSASSATVVF GAKRQKPVQ
640 650 660 670 680 690

15/16

Figure 10

	10	20	30	40	50	60
	346	361	380			
1	TKDKLENG--AAASGSTGAAAAGGAAAGTSENSKLTTVLDACHELTLNDDKKIKNLDNFSN					57
2	TKDKTENG--AVASGGTDAAAASNGAAGTSENSKLTTVLDACHELKLGDKEVKLDNFSN					57
3	TQDKPRNG--AVASGGTGAAASNGAAGQSSENSKLTTVLDACHELTLNDDKKIKNLDNFSN					57
4	TKDNTANGNTAAASGGTDAAAASNGAAGTSENSKLTTVLDACHELTLNDDKKIKNLDNFSN					60
5	TKDKTENG--AVASGGTDAAAASNGAAGTSENSKLTTVLDACHELKLGDKEVKLDNFSN					57
6	TQDKAANGNTAAASGGTDAAAASNGAAGTSENSKLTTVLDACHELTLNDDKKIKNLDNFSN					59
7	RKDKAESGGNGASGGTDAAAASNGAAGTSENSKLTTVLDACHELKSGGKEVKLDNFSN					59
8	TKDKPANGNTAEASGGTDAAAASGGAAGTSENSKLTTVLDACHELTHGGTAIKNLDNFSN					59
9	TKDKPRNG--AVASGGTDAAAASNGAAGTSENSKLTTVLDACHELTLNDDKKIKNLDNFSN					57
10	TKDKLENG--AAASGSTGAAAASGGADMPSENGLTTVLDACHELKSGGKEVKLDNFSN					57
11	TKDKTENG--AVASGGTDAAAASNGAAGTSENSKLTTVLDACHELKLGDKEVKLDNFSN					57
C	**D..:G..*:ASG*T+AA*S+GAA***SEN+KLTTVLDACHEL:++*:++*:++LDNFSN					
	70	80	90	100	110	120
	417			445		
1	AAQLVVDGIMIPLLPKDSESGNTQADKGK-----NGGTEFTRKFHETPESDKDAQAGT					111
2	AAQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFHETPESDKDAQAGT					111
3	AAQLVVDGIMIPLLPEASESGENQANQGT-----NGGTAFTRKFHETPKSDEKDTQAGT					111
4	AAQLVVDGIMIPLLPEASESGMNQANQGT-----NGGTAFTRKFHETPKSDEKDTQAGT					114
5	AAQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFHETPESDKDAQAGT					111
6	AAQLVVDGIMIPLLPEASESGSNQADKGKKGKGNNGGTDFTYKTTTPKNDDDKDTKAQT					119
7	AAQLVVDGIMIPLLPEASESGSNQADKGK-----NGGTFTRKFHETPESDKDAQAGT					113
8	AAQLVVDGIMIPLLPEASESGNNQPDQGK-----NGGTAFTRKFHETPKSDEKDTQAGT					113
9	AAQLVVSGIMIPLMPETSESGNNQADKGK-----NGGTAFTRKFHETPKSDEKDTQAGT					111
10	AAQLVVDGIMIPLLPEASESGNNQADKGK-----NGGTAFTRKFHETPESDKDAQAGT					111
11	AAQLVVDGIMIPLLPEASESGNNQANQGT-----NGGTAFTRKFHETPESDKDAQAGT					111
C	AAQLVV*GIMIPL*P+.S***+*Q*:G: NGGT+F**K*.TP: *D:KD:+A*T					
	130	140	150	160	170	180
	465		482		499	
1	QTNGAQATASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGGNSS					166
2	QANGAQATASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGESSS					166
3	AENGNPAASNTAGDANG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGESSS					166
4	AANGDQAASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGESSS					169
5	QTNGAQATASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGESSS					166
6	GAAGSSGAQTDLGKADVNNGKAETKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGGNSS					179
7	QTNGAQATASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKTAGNTGEGGNGSQ					168
8	VTGGTQATASNTAGDANG-----KTKTYEVEVCCSNLYLKYGMLTRKTAGNTVGSGNSSP					168
9	PTNGAQATASGTAGVTGGQAG-----KTYAVEVCCSNLYLKYGMLTRKADNTVGSGNSS					167
10	AENGNPAASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGENGSS					166
11	QTNGAQATASNTAGDTNG-----KTKTYEVEVCCSNLYLKYGMLTRKNSKSAMQAGESSS					166
C	: : *G:++A****G*+**.. :+KTY*VEVCCSNLYLKYG+LTRK++++++G: : +					

16/16

Figure 10 (continuation)

	190	200	210	
521				
1	QADAKTEQVEQSMFLQGERTDEKEIPTDQ-NVV			198
2	QADAKTEQVGQSMFLQGERTDEKEIPSEQ-NIV			198
3	QADAKTEQVGQSMFLQGERTDEKEIPNDQ-NVV			198
4	TAAAQTAQGAQSMFLQGERTDEKEIPSEQ-NV-			200
5	QADAKTEQVEQSMFLQGERTDEKEIPSEQ-NIV			198
6	QADAKTEQVEQSMFLQGERTDEKEIPNDQ-NV-			210
7	TAAAQTAQGAQSMFLQGERTDEKEIPSEQ-NV-			199
8	TAAAQT--DAQSMFLQGERTDENKIPSEQ-NVV			198
9	TAAAQTAQGAQSMFLQGERTDEKEIPKEQQDIV			200
10	LADAKTEQVEQSMFLQGERTDEKEIPKEQQDIV			199
11	QADAKTEQVGQSMFLQGERTDEKEIPSEQ-NIV			198
C	:A+A+T+*+. QSMFLQGERTDE**IP:+Q *:+			

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.