Selective Search for Object Recognition

Introduction

Introduction

- ☐ Capture all scales
- Diversification
- ☐ Fast to compute

Related works

Exhaustive search

- Coarse search grid with weak classifier
- Linear classifier SVM and HOG
- Regular grid and fixed aspect ratio
- Branch and Bound technique

Segmentation

- Class Independent Object Hypothesis
- Pixel wise image classification
- Generate a part of hypotheses using grouping method

Other Sampling Techniques

- Train a classifier and randomly sample boxes
- ☐ Region wise image classification
- Jumping window strategies to predict objectness

Selective Search

Selective search by Hierarchical Grouping

- Bottom up grouping
- Regions Based Feature
- ☐ Fast method of efficient graph based method

Diversification Strategies

- Variety of color spaces with different invariance properties
- Different similarity measures
- varying starting regions

>>>> Complementary Similarity measures

★ Color similarity measures

- >>> Create a color histogram for each region
- 1 dimensional color histogram for each color channel using 25 bins total 75 dimension
- >> Measure similarity with histogram intersection

$$s_{colour}(r_i, r_j) = \sum_{k=1}^{n} \min(c_i^k, c_j^k)$$

- **★** Texture similarity measures
 - SIFT like Features
 - >>> Take gaussian derivatives of the image in 8 orientation for each channel

★ Size similarity measures

- >>> Merging larger regions to smaller ones to create balanced hierarchy
 - Adding a size component to our similarity metric that ensures small regions are more similar to each other.

$$s_{size}(r_i, r_j) = 1 - \frac{\text{size}(r_i) + \text{size}(r_j)}{\text{size}(im)}$$

Fill measures

- >> Measures how well region ri and rj fit into each other
- Idea is to fill gaps (avoid holes)

 bij is the tight bounding box $fill(r_i, r_j) = 1 \frac{size(BB_{ij}) size(r_i) size(r_i)}{size(im)}$

★ Final Similarity Measures

measure the similarity between two patches as a linear combination of the four given measures:

$$s(r_i,r_j) = a1s_{colour}(r_i,r_j) + a2s_{texture}(r_i,r_j) + a3s_{size}(r_i,r_j) + a4s_{fill}(r_i,r_j)$$

>>>> Complementry Starting regions

- Oversegmentation
- \Box we vary the threshold additional to the various similarity measures

Object Recognition

Object Recognition

- Bag of Words for Object Recognition
- Employ variety of color SIFT descriptors and a finer spatial pyramid division
- Jumping window strategies to predict objectness
- Visual codebook
- ☐ Total feature of vector length of 360,000

we employ a support vector machine with histogram intersection kernal

Evaluation

Diversification Strategies Results

★ Individual Diversification strategies

>>> Full hierarchy is more natural than using multiple flat partitionings

threshold k	MABO	# windows
Flat $k = 50, 150, \dots, 950$	0.659	387
Hierarchical (this paper) $k = 50$	0.676	395
Flat $k = 50, 100, \dots, 1000$	0.673	597
Hierarchical (this paper) $k = 50,100$	0.719	625

★ Individual Diversification strategies

-	_
- 1	
•	•

Similarities	MABO	# box	Colours	MABO	# box
С	0.635	356	HSV	0.693	463
T	0.581	303	Ι	0.670	399
S	0.640	466	RGB	0.676	395
F	0.634	449	rgI	0.693	362
C+T	0.635	346	Lab	0.690	328
C+S	0.660	383	Н	0.644	322
C+F	0.660	389	rgb	0.647	207
T+S	0.650	406	C	0.615	125
T+F	0.638	400	Thresholds	MABO	# box
S+F	0.638	449	50	0.676	395
C+T+S	0.662	377	100	0.671	239
C+T+F	0.659	381	150	0.668	168
C+S+F	0.674	401	250	0.647	102
T+S+F	0.655	427	500	0.585	46
C+T+S+F	0.676	395	1000	0.477	19

★ Combination of Diversification strategies

>>> Combining strategies improves performance even more:

	Diversification				
Version	Strategies	MABO	# win	# strategies	time (s)
Single	HSV				
Strategy	C+T+S+F	0.693	362	1	0.71
	k = 100				
Selective	HSV, Lab				
Search	C+T+S+F, T+S+F	0.799	2147	8	3.79
Fast	k = 50,100				
Selective	HSV, Lab, rgI, H, I				
Search	C+T+S+F, T+S+F, F, S	0.878	10,108	80	17.15
Quality	k = 50, 100, 150, 300				

Thank you!