

Cálculo Diferencial e Integral

Prof. Ricardo Ronald Eberson

Cálculo do Limite de uma Função

- PROPRIEDADES OPERATÓRIAS SOBRE LIMITES

Sejam f(x) e g(x) duas funções. Se existirem ambos os limites $\lim_{x\to a} f(x)$ e $\lim_{x\to a} g(x)$, então são válidas as seguintes propriedades operatórias para Limites de funções:

P1) Limite da soma (ou subtração) de funções

$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

P2) Limite do produto de funções

$$\lim_{x\to a} [f(x) \cdot g(x)] = \lim_{x\to a} f(x) \cdot \lim_{x\to a} g(x)$$

P3) Limite do quociente de funções

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \qquad (desde que \quad \lim_{x \to a} g(x) \neq 0)$$

- Em particular, para $k \in IR$ e $C \in IR$, temos:

a)
$$\lim_{x \to a} [k.f(x)] = k.\lim_{x \to a} f(x)$$

b)
$$\lim_{x \to a} C = C$$
, onde $f(x) = C$ é a função CONSTANTE

c)
$$\lim_{x \to a} x = a$$
, onde $f(x) = x$ é a função IDENTIDADE

Exemplos: Calcule o Limite das funções abaixo, utilizando as propriedades:

$$a) \lim_{x \to -1} (x+3)$$

$$b) \lim_{x \to 6} \left(\frac{x}{3} - 1 \right)$$

c)
$$\lim_{x \to 2} (x^2 - 3x + 4)$$

$$d)\lim_{x\to 1} \left(\frac{x^2-1}{x-1}\right)$$

- ALGUMAS REGRAS DE PRODUTOS NOTÁVEIS

Para a resolução dos exercícios de Limites envolvendo expressões indeterminadas, precisaremos utilizar artifícios para eliminar a indeterminação. Tais artifícios podem ser obtidos a partir das regras de Produtos Notáveis, das quais são apresentadas algumas a seguir:

$$x.(a \pm b) = a.x \pm b.x$$

$$(a+b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

$$(a \pm b)^3 = a^3 \pm 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 \pm b^3$$

$$a^2 - b^2 = (a + b).(a - b)$$

$$a. x^2 + b. x + c = a. (x - x'). (x - x'')$$

(onde x' e x" são as raízes da equação)

(Propr. Distributiva)

(Binômio ao Quadrado)

(Binômio ao Cubo)

(Diferença de Quadrados)

(Fat. da equação do 2o. Grau)

EXERCÍCIOS PROPOSTOS

1) Calcule o valor do Limite das funções abaixo:

a)
$$\lim_{x \to -2} (x^3 - 3x^2 + 5x - 3)$$

c)
$$\lim_{x \to -4} \frac{x+4}{x^2-16}$$

e)
$$\lim_{x \to -1} \frac{2x+2}{x^2-1}$$

g)
$$\lim_{x\to 2} \frac{x^2 + x - 6}{x - 2}$$

$$i$$
) $\lim_{x \to -4} \frac{x^2 + 5x + 4}{2x^2 + 6x - 8}$

$$k$$
) $\lim_{x \to 1/3} \frac{3x-1}{3x^2-x}$

m)
$$\lim_{x \to a} \frac{a^2 - 2ax + x^2}{x^2 - a^2}$$

o)
$$\lim_{x \to 0} \frac{\sqrt{x+2} - \sqrt{2}}{x}$$

q)
$$\lim_{x \to 2} \frac{\sqrt{x^2 + 5} - 3}{x - 2}$$

s)
$$\lim_{x \to 6} \frac{2 - \sqrt{x - 2}}{x^2 - 12}$$

$$u) \lim_{x \to 0} \frac{(x+2)^3 - 8}{x}$$

$$x) \lim_{x \to -1} \frac{1 + \frac{1}{x}}{x^2 - 1}$$

$$w) \lim_{x \to -1} \frac{x^3 - x}{x^2 - 2x - 3}$$

b)
$$\lim_{x \to -3} \frac{2}{x^2 + 1}$$

$$d) \lim_{x \to 3} \sqrt{\frac{x^2 - 9}{x - 3}}$$

$$f$$
) $\lim_{x \to -2} \frac{x^2 + x - 2}{x^2 - 4}$

h)
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - 3x + 2}$$

$$j) \lim_{x \to 1/2} \frac{4x^2 - 1}{2x^2 + x - 1}$$

$$l) \lim_{x \to 0} \frac{x^3 - 4x^2}{x^3 + 4x^2}$$

$$n) \lim_{x \to a} \frac{\sqrt{x} - \sqrt{a}}{x - a}$$

$$p) \lim_{x \to 3} \frac{\sqrt{x^2 + 7} - 4}{x^2 - 9}$$

$$r) \lim_{t \to 0} \frac{2 - \sqrt{4 - t}}{t}$$

t)
$$\lim_{x \to 7} \frac{2 - \sqrt{x - 3}}{x^2 - 49}$$

$$v) \lim_{x \to -3} \frac{\frac{x}{3} + 1}{x + 3}$$

$$y) \lim_{x \to 2} \frac{\frac{6}{x} - 3}{x - 2}$$

$$z) \lim_{x \to 1} \frac{x + 1 - 2\sqrt{x}}{(x - 1)^2}$$

Limites no Infinito

- CONSIDERAÇÕES INICIAIS

Um dos principais objetivos do Cálculo Diferencial e Integral, senão o maior deles, é o estudo do comportamento das Funções Reais. De fato, se pudéssemos resumir a importância do Cálculo em poucas palavras, diríamos que se trata de uma disciplina que desenvolveu todo um conjunto de ferramentas matemáticas para analisar o comportamento dessas funções, ou seja, para descobrir, ao se variar o valor de "x", o que ocorre com o valor de "y".

Nesse sentido, o estudo dos limites no infinito fornece um fragmento de informação importante a respeito desse comportamento ao fazer o valor na variável "x" aumentar indefinidamente, tanto para valores positivos ($x \to +\infty$), quanto para valores negativos ($x \to -\infty$).

Indicamos esses limites da seguinte forma:

$$\lim_{x\to +\infty} f(x)$$

$$\lim_{x\to -\infty} f(x)$$

Exemplos: Calcular o valor dos limites no infinito das funções abaixo.

(Obs: Note que, quando o exercício pede **limites** no infinito, o plural se refere aos dois limites, quando $x \to +\infty$ e $x \to -\infty$)

a)
$$f(x) = \left(\frac{1}{x}\right)$$

(Resolveremos esse exemplo por substituição direta)

$$\lim_{x \to +\infty} \left(\frac{1}{x} \right) = \frac{1}{+\infty} = 0 \qquad e$$

$$\lim_{x \to -\infty} \left(\frac{1}{x} \right) = \frac{1}{-\infty} = 0$$

b)
$$f(x) = -2x^4$$

b) $f(x) = -2x^4$ (Também resolveremos esse exemplo por substituição direta)

$$\lim_{x \to +\infty} (-2x^4) = (-2).(+\infty)^4 = (-2).(+\infty) = -\infty$$

$$\lim_{x \to -\infty} (-2x^4) = (-2).(-\infty)^4 = (-2).(+\infty) = -\infty$$

c)
$$f(x) = -x^3 + 4x^2 - 2x + 15$$

(Oops, esse exemplo não poderá ser resolvido por substituição direta, necessitando de resolução detalhada)

RESPOSTAS DOS EXERCÍCIOS

Exercício (1)

a) - 33

b) $\frac{1}{5}$

 $c) - \frac{1}{8}$

 $d) \sqrt{6}$

e) – 1

 $f) ^{3}/_{4}$

g) 5

h) - 3

i) $^{3}/_{10}$

 $j)^{4}/_{3}$

k) 3

l) -1

m) 0

 $n) \frac{1}{2\sqrt{a}}$

o) $^{1}/_{2\sqrt{2}}$

 $p) ^{1}/_{8}$

 $q)^{2}/_{3}$

 $r) \frac{1}{4}$

s) 0

 $t) - \frac{1}{56}$

u) 12

 $v) \frac{1}{3}$

 $x) \frac{1}{2}$

 $y) - \frac{3}{2}$

 $w) - \frac{1}{2}$

z) $^{1}/_{4}$