

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 18 de julio de 2018

Nombre y apellido:	Padrón:
e-mail:	Cuatrimestre de cursada:

- Para aprobar deben contestarse bien 6 puntos del total.
- Cada pregunta otorga una cantidad de puntos especificada entre corchetes sobre el margen izquierdo.
- Si la pregunta es respondida correctamente suma el puntaje especificado.
- Si la pregunta tiene opciones y es respondida incorrectamente resta el puntaje especificado.
- Si la pregunta no es respondida no se asignan puntos.
- [½ pt.] 1) Calcular la diferencia de potencial entre los extremos de un bloque de silicio $(\phi_B = \phi(L) \phi(0) \text{ [mV]})$ de L = 2 mm de largo cuyo nivel de dopaje sigue la ley: $N_A(x) = (4 \times 10^7 10^{18} (x L) \text{ m}^{-1}) \text{ at/cm}^3$ con x en metros.
- [½ pt.] 2) Calcular la carga por unidad de superficie en el gate $(Q'_G [\text{C/cm}^2])$ de una juntura MOS fabricada con polysilicio dopado tipo N y sustrato dopado con $N_D = 2 \times 10^{15} \,\text{at/cm}^3$, $C'_{ox} = 1,37 \times 10^{-7} \,\text{F/cm}^2$, cuando se aplica $V_{GB} = 0,5 \,\text{V}$.
- [½ pt.] 3) Dado un diodo de silicio N⁺P con $\phi_B = 0.75 \,\text{V}$, $I_S = 2 \,\text{pA}$, $A = 0.1 \,\text{mm}^2$, $C'_{j0} = 12 \,\text{nF/cm}^2 \,\text{y}$ $\tau_T = 15 \,\text{ns}$, hallar $\phi_p \,[\text{mV}]$.
- [1 pt.] 4) Para el circuito de la figura, considerando: $\beta = 80,\ V_{CC} = 3,3\,\mathrm{V},\ R_{B1} = 100\,\mathrm{k}\Omega,$ $R_{B2} = 185,7\,\mathrm{k}\Omega,\ R = 100\,\Omega,\ V_T = 0,7\,\mathrm{V},$ $\mu_n\ C'_{ox}W/(2L) = 120\,\mu\mathrm{A/V^2},\ \mathrm{hallar}$ el punto de trabajo del transistor bipolar: $(I_{CQ}\,[\mathrm{mA}],V_{CEQ}\,[\mathrm{V}]).$

- [½ pt.] 5) En un proceso de fabricación CMOS de sustrato tipo P, ¿cuál es el orden adecuado en el que se aplican las máscaras de fabricación para obtener un PMOSFET?
- [1 pt.] 6) Se diseña un amplificador emisor común sin carga con un TBJ NPN, alimentado por una fuente de 1,56 V. La señal de entrada tiene una tensión pico $v_s = 30\,\mathrm{mV}$ y una resistencia serie de $R_s = 1040\,\Omega$. El amplificador debe consumir la mínima corriente y la señal de salida debe estar montada en $V_{CC}/2$. Determinar los 4 parámetros del amplificador $(A_{vo}, A_{vs}, R_{IN}, R_{OUT})$ resultantes del diseño. Considerar: $V_{BE,on} = 0.7\,\mathrm{V},\ V_{CE,sat} = 0.2\,\mathrm{V},\ \beta = 400,\ V_A \to \infty$ y $V_{th} = 26\,\mathrm{mV}$.
- $[\frac{1}{2}$ pt.] 7) Si al amplificador de la pregunta 6 se cambia R_B por una de menor valor, sin cambiar ningún otro elemento del circuito, ¿cuál es la consecuencia?
- [½ pt.] 8) Para un amplificador source común implementado con un MOSFET canal N que funciona correctamente polarizado con una I_D y R_D dadas, ¿qué ocurre si aumenta la corriente I_D , pero simultáneamente se altera R_D para mantener el V_{DSQ} constante? (Suponer $\lambda = 0$).
- [½ pt.] 9) La resistencia de entrada de un amplificador source común está integrada principalmente por:
- [½ pt.] 10) Realizar el corte lateral de un transistor MOSFET de potencia indicando sus características constructivas mas importantes.

DISPOSITIVOS SEMICONDUCTORES http://materias.fi.uba.ar/6625/

Evaluación Final 18 de julio de 2018

[1 pt.] 11) En el circuito de la figura donde T_1 y T_2 son dos tiristores idénticos cuya señal de control es v_p , un tren de pulsos de amplitud y ancho de pulsos suficientes como para generar un disparo, y con período $T_p=10\,\mathrm{ms},\ D_1$ y D_2 son dos diodos de potencia idénticos, $R_L=10\,\Omega,$ y la señal $v_S(t)$ se muestra en la figura con período $T_s=20\,\mathrm{ms}.$ La señal v_p está desfasada α (ms) respecto del cruce con cero de $v_S(t)$. Considerando que los dispositivos semiconductores (SCRs y diodos) presentan una caída de tensión $V_{AK}=2\,\mathrm{V}$ cuando se encuentran en conducción, se pide hallar α para que la potencia media en la resistencia sea 700 W y la potencia que disipa D_1 en esa condición (α [ms], P_{D1} [W]).

[1 pt.] 12) Un transistor MOSFET canal N de potencia con parámetros $V_T=3\,\mathrm{V};$ $(1/2~\mu~C_{ox}~W/L)=15\,\mathrm{mA}/V^2~\mathrm{y}~\lambda\simeq0,$ es utilizado para encender un LED de potencia con $V_{AK}=2.5\,\mathrm{V}$ cuando $V_{DD}=12\,\mathrm{V}$ como muestra la figura. Considerando para el transistor que la temperatura máxima de juntura es $T_{j,\mathrm{máx}}=115^{\circ}\mathrm{C}~\mathrm{y}$ que $P_{\mathrm{máx}}(@~T_A=25^{\circ}\mathrm{C})=1.5\,\mathrm{W}$ y $P_{\mathrm{máx}}(@~T_C=25^{\circ}\mathrm{C})=45\,\mathrm{W},$ y que la temperatura máxima de ambiente son 50°C, determinar si es necesario utilizar un disipador y en tal caso calcule el valor de su resistencia térmica.

