

Hand-Eye Calibration

Friday 16 Mar 2018, 12:00PM

Outlines

Introduction

Algorithm

Hand-eye calibration

With Camera installed, robot may perform some specific tasks with visual access to environmental information:

Measurement, tracking, Navigation, etc.

Hand-eye calibration may help in sensor fusion

Unifying coordinate system could be a problem

Eye-in-hand: the camera is either grasped by the gripper, or just fastened to it.

Eye-to-hand: the camera is fixed in a position.

Outlines

Introduction

Algorithm

Eye-in-hand: sensor fusion

$$CX = XD$$

$$\begin{bmatrix} R_c & t_c \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} R_d & t_d \\ 0^T & 1 \end{bmatrix}$$

$$R_{c}R = RR_{d}$$

$$R_{c}t + t_{c} = Rt_{d} + t$$

Let R_c be expressed as an angle of rotation ω_c around an arbitratry axis k_c , that is, $R_c = \text{Rot}(k_c, \omega_c)$. Similarly, $R_d = \text{Rot}(k_d, \omega_d)$.

$$\begin{cases} R_c = RR_d R^{-1} \\ (R_c - I)t = Rt_d - t_c \end{cases}$$

According to above equations, we can get:

$$k_c = Rk_d$$

When $R_c - I = 0$,

$$t_c = Rt_d$$

$$[k_{c_1}, \dots, k_{c_N}, t_{c_1}, \dots, t_{c_M}] = R[k_{d_1}, \dots, k_{d_N}, t_{d_1}, \dots, t_{d_M}]$$

$$[k_{c_1}, \dots, k_{c_N}, t_{c_1}, \dots, t_{c_M}] = R[k_{d_1}, \dots, k_{d_N}, t_{d_1}, \dots, t_{d_M}]$$

$$M_1 = R \cdot M_2$$

Theoretically, rank(M_1) = rank(M_2), but in fact, M_1 is more accuracy than M_2 , and now we focus on rank(M_1).

When rank(M_1) \neq 3:

$$\begin{cases} M_1^{**} = [n_{c_1}, n_{c_2}, n_c] \\ M_2^{**} = [n_{d_1}, n_{d_2}, n_d] & n_c = n_{c_1} \times n_{c_2}, \quad n_d = n_{d_1} \times n_{d_2} \\ M_1^{**} = R \cdot M_2^{**} \end{cases}$$

iMorpheus.ai

$$\begin{bmatrix} R_{c_{12}} - I \\ R_{c_{23}} - I \\ \dots \\ R_{c_{N-1N}} - I \end{bmatrix} t = \begin{bmatrix} Rt_{d_{12}} - t_{c_{12}} \\ Rt_{d_{23}} - t_{c_{23}} \\ \dots \\ Rt_{d_{N-1N}} - t_{c_{N-1N}} \end{bmatrix}$$

$$M_3 \cdot t = M_4$$

When $rank(M_3) = 2$ (4-DOF robot):

$$R_c = R \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} R^{-1}$$

$$R_{c} - I = R \begin{bmatrix} \cos\theta - 1 & -\sin\theta & 0 \\ \sin\theta & \cos\theta - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} R^{-1}$$

$$USV^{T} = R \begin{bmatrix} \cos\theta - 1 & -\sin\theta & 0 \\ \sin\theta & \cos\theta - 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} R^{-1} \quad SV^{T} t = U^{-1} (Rt_{d} - t_{c})$$

$$U^{-1} (Rt_{d} - t_{c}) = \begin{bmatrix} u_{x} \\ u_{y} \\ u_{z} \end{bmatrix} \quad S = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \lambda & 0 \\ 0 & \beta \end{bmatrix} V_{12}^{T} \cdot \begin{bmatrix} t_{x} \\ t_{y} \end{bmatrix} = \begin{bmatrix} u_{x} \\ u_{y} \end{bmatrix}$$

iMorpheus.ai

Outlines

Introduction

Algorithm

Experiment and evaluation

Calculate the transformation matrix of the calibration plate relative to the camera using PnP algorithm;

Read the position and orientation of the end effector from the robot controller.

$$err_i = ||(C_iX)^{-1} \cdot D_iX - I||$$

Table 1 Relative error of the hand-eye transformation matrix X in first experiment-

₽	$ \mid (C_i X)^{-I} \bullet D_i X - I \mid_{\varphi}$
err_{F}	0.759559₽
$err_{2^{\wp}}$	0.940860₽
$err_{\mathscr{P}}$	0.974952
均值。	0.891790₽
标准差。	0.115777₽

Table 2 Relative error of the hand-eye transformation matrix X in second experiment.

₽	$ \mid (C_i X)^{-I} \cdot D_i X - I \mid \downarrow_{\varphi}$
err_{F}	0.349424
$err_{\mathscr{U}}$	1.788770₽
$err_{\mathscr{F}}$	1.507480
$err_{4^{\wp}}$	0.213286
err50	1.252840
$err_{\mathscr{O}}$	1.113794
均值。	1.037598
标准差。	0.630913

iMorpheus.ai Weekly Journal Club

Next Friday, 23/03/2018 12:00PM GMT+8

An Introduction to Blockchain

Website : http://imorpheus.ai Email Address : live@imorpheus.ai

