Multimedia Systems

Assignment A2. Low-Level features and timbre characterization

FEUP 2019/2020 - António Sá Pinto

27/04/2020

1. Goal

The goal of this assignment is to understand, implement and evaluate a simple set of low-level audio descriptors and analyse their distribution over a collection of sounds, which are samples of isolated notes from musical instruments. It is divided in 2 weeks.

2. Resources

Available implementations:

- MIR.EDU Vamp Plugins for feature extraction (https://github.com/justinsalamon/miredu)
- (Matlab/Octave) Additional code for low-level feature extraction. MPEG-7 MATLAB
 (http://mpeg7.doc.gold.ac.uk/mirror/v1/Matlab-XM/index.html). You can download this code from Moodle.
- (Python) Essentia (Bogdanov et al., 2013)
- (Matlab) MIR Toolbox (Lartillot & Toiviainen, 2007)
- (Matlab) <u>TimbreToolbox</u> (Peeters et al., 2011)

Sound material:

- Samples (isolated notes) from different instruments. ("InstrumentalSounds.zip" Download from Moodle)
- Sounds from <u>www.freesound.org</u>. You may use this as a complement if you feel the need for more specific sounds (Note: Download only isolated notes)

3. Tasks

Task 1 (week1)

Please review the paper by Peeters (Peeters, 2004) "A large set of audio features for sound description (similarity and classification) in the cuidado project", to make sure that you understand the following descriptors:

Time-domain:

Instantaneous

1. RMS/Energy; 2. Zero Crossing Rate

Global

3. Log-attack time; 4. Temporal centroid; 5. Effective duration

Frequency-domain:

Instantaneous

6. Spectral centroid; 7. Spectral spread; 8. Spectral variation / spectral flux; 9. Spectral flatness

Please pick 2 descriptors by group (one from time-domain and another from frequency-domain), depart from the formula and explain the expected values for a sinusoid and white noise. Calculate these values

and comment on your results. If they're not implemented in your software library, please find that implementation in another library (e.g. MPEG7 Matlab) and use it.

Task 2 (week1)

Implement a function to obtain, for a given audio file, the mentioned set of **instantaneous descriptors** (1,2,6-9).

To start, use similar analysis parameters: windowsize = 60 ms, hopsize=10 ms, no zero padding. Create plots to visualize the extracted instantaneous low-level descriptors and study their evolution for a small set of instrument samples (e.g. percussive, string, wind instrument). Play around with the STFT analysis parameters (windowsize, hopsize, etc.), and try to obtain the best compromise.

Task 3 (week1)

Implement a function to obtain, for a given audio file, the mentioned set of **global descriptors** (3,4,5), as well as statistics of the previous **instantaneous** descriptors (mean, standard deviation, min, max). Study the values of these descriptors for the previous instrumental samples and analyse how they represent the following aspects: percussive/non-percussive sounds, sustained/non sustained, low-pitch/high pitch, and instrument.

In order to do that, you can build 2-D plots visualizing the values of 2 descriptors for the different samples, e.g.:

- Spectral Flux mean vs Spectral Spread mean
- Spectral Flux mean vs Spectral Flatness
- Spectral Centroid mean vs Zero Crossing Rate mean
- Temporal Centroid vs Log Attack Time (you would need to normalize temporal centroid by the duration of each sound).

Task 4 (week1)

Imagine and describe in a short paragraph (max 5/6 lines) a sound-based multimedia application for which you could use your previous work in this assignment.

Week2:

- A further task to announce
- Write a report with the above work.

4. Evaluation Criteria

To be announced next week.

5. References

Bogdanov, D., Wack, N., Emilia, G., Gulati, S., Herrera, P., Mayor, O., Roma, G., & Salamon, J. (2013). Essentia: An Audio Analysis Library for Music Information Retrieval. *ISMIR 2013*, 2–7.

Lartillot, O., & Toiviainen, P. (2007). A Matlab Toolbox for Musical Feature Extraction from Audio. *Proc of the 10th International Conference on Digital Audio Effects DAFx07*, 1–8. http://dafx.labri.fr/main/papers/p237.pdf

Peeters, G. (2004). A large set of Audio features for sound description (similarity and classification) in the CUIDADO project.

Peeters, G., Giordano, B. L., Susini, P., Misdariis, N., & McAdams, S. (2011). The Timbre Toolbox: Extracting audio descriptors from musical signals. *The Journal of the Acoustical Society of America*, *130*(5), 2902–2916. https://doi.org/10.1121/1.3642604