

Feature Scaling

EMPOWERING High Performance Technology Teams

OVERVIEW

Overview

- Total Session2 (2 hours)
- Focus majorly on Feature Scaling techniques in Python

Agenda

- Concept of feature scaling
- Feature scaling techniques
- Min-max feature scaling
- Standardization
- Robust scaling

FEATURE SCALING

A widely used technique in machine learning to bring numeric columns to a common scale

In machine learning, certain feature values may have a much larger magnitude compared to others, which can lead to dominance of those features in the learning process

However, the magnitude of a feature does not necessarily indicate its importance in predicting the model's outcome

Feature scaling ensures that all variables are transformed to the same scale, mitigating the dominance of high-magnitude features

Feature Scaling Techniques

Min-max feature scaling

Standard scaling

Robust scaling

Min-Max Scaling

- The min-max feature scaling approach rescales the values of a numeric feature to a fixed range, typically between o and 1
- The scaling is done by subtracting the minimum value of the feature and then dividing it by the range

$$x_{norm} = \frac{x - x_{min}}{x_{max} - x_{min}}$$

 Min-max scaling is suitable when the exact range of the feature values is known or when there are no extreme outliers

Standardization

 Standardization is the scaling of data to have zero mean and unit standard deviation

 It is preferred when data has Gaussian or normal distribution

 Typically, the z-score ranges from -3.00 to 3.00 – encompassing more than 99% of the data if the input follows a normal distribution

Standardization:

$$z = \frac{x - \mu}{\sigma}$$

with mean:

$$\mu = rac{1}{N} \sum_{i=1}^N (x_i)$$

and standard deviation

$$\sigma = \sqrt{rac{1}{N}\sum_{i=1}^{N}\left(x_i - \mu
ight)^2}$$

Robust Scaling

 Robust scaling answers a simple question: How far is each data point from the input's median?

• More precisely, it measures this distance in terms of the IQR

$$Scaled \, Value = \frac{Original \, Value \, - \, Input's \, Median}{Input's \, IQR}$$

Outliers cause the mean and standard deviation to soar to much higher values; the standard scaler uses these inflated values

When outliers are present, the standard scaler produces a distorted view of the original distribution

Robust scaler resists the pull of outliers

DEMO

Summary

- Feature scaling ensures that all variables are transformed to the same scale, mitigating the dominance of high-magnitude features
- The min-max feature scaling approach rescales the values of a numeric feature to a fixed range, typically between 0 and 1
- Standardization is the scaling of data to have zero mean and unit standard deviation
- Robust scaling uses median and interquartile range instead of mean and standard deviation, which is effective when outliers are present

