Konfiguracja i Eksploatacja Urządzeń Teleinformatycznych Zespół Szkół Elektronicznych w Bydgoszczy

Badanie filtrów stosowanych w sieciach teleinformatycznych za pomocą symulacji komputerowej oraz selektywnego pomiaru widma wymuszenia i odpowiedzi.

Cel ćwiczenia

Poznanie metod symulacyjnych i pomiarowych wykorzystywanych przy badaniu filtrów stosowanych w sieciach teleinformatycznych.

Zagadnienia do przygotowania

- Napięciowa transmitancja widmowa i operatorowa filtrów dolnoprzepustowych i górnoprzepustowych RC i RL.
- Charakterystyki Bodego i Nyquista filtrów dolnoprzepustowych i górnoprzepustowych RC i RL.
- Składowe harmoniczne i metody ich sumowania

Literatura

- Szabatin J.: Podstawy teorii sygnałów. WKŁ, Warszawa 2007
- Osiowski J., Szabatin J.: Podstawy teorii obwodów tom III. WMT, Warszawa 1995
- Atabiekow G.: Teoria liniowych obwodów elektrycznych. WMT, Warszawa 1963

Wiadomości wstępne

Filtrem nazywamy bierny układ elektryczny przepuszczający jedynie sygnały o wybranych częstotliwościach. Zazwyczaj jest to czwórnik elektryczny zbudowany z elementów o odpowiednio dobranej oporności, pojemności i indukcyjności. Filtry elektroniczne dzieli się na <u>dolnoprzepustowe</u> <u>LPF</u> (odcinające częstotliwości większe od wybranej), <u>górnoprzepustowe HPF</u> (odcinające częstotliwości mniejsze od wybranej), <u>pasmowo przepustowe BPF</u> (przepuszczające częstotliwości w wybranym zakresie) i <u>zaporowe BRF</u> (przepuszczające częstotliwości skrajne).

Filtry aktywne realizowane są w postaci układów scalonych. Pomimo rozwoju technologii scalania, nadal trudno jest zrealizować cewkę indukcyjną w postaci układu scalonego. Dlatego filtry aktywne nazywane są "filtrami aktywnymi RC". Na etapie projektowania tych filtrów wykorzystujemy takie elementy jak: wzmacniacz operacyjny, rezystory i kondensatory.

Filtr dolnoprzepustowy (układ całkujący, integrator) LPF (Low Pass Filter)

Poniższy schemat prezentuje symulację charakterystyk trzech powyżej opisanych filtrów.

1. Układ pasywny

2. Układ aktywny (teoretyczny)

CHARAKTERYSTYKA
AMPLITUDOWA

3. Układ aktywny stosowany w praktyce

Właściwości filtru dolnoprzepustowego

Charakterystyka amplitudowa filtra aktywnego RC (układ teoretyczny) różni się od charakterystyki amplitudowej filtra pasywnego i filtra aktywnego (stosowanego w praktyce). Można stwierdzić, że układ teoretyczny działa nie stabilnie w zakresie częstotliwości od 0 Hz do częstotliwości górnej pasma przenoszenia.

Dzięki włączeniu równolegle do kondensatora rezystora o wartości równej rezystancji wejściowej, uzyskujemy najprostszą konstrukcję filtra aktywnego RC, którego charakterystyka amplitudowa jest taka sama w paśmie przenoszenia jak w przypadku filtr pasywnego. Zatem układ taki działa stabilnie w paśmie od 0 Hz do częstotliwości górnej przenoszenia

Częstotliwość graniczna w przypadku filtra dolnoprzepustowego jest nazywana częstotliwością górną pasma przenoszenia. Pasmo przenoszenia zawiera się w przedziale od 0 Hz do f_g (na wykresie oznaczone znacznikiem)

$$au=RC$$
 gdzie: $au-stala\ czasowa$ $f_{gr}=rac{1}{2\pi RC}$

Filtr górnoprzepustowy (układ różniczkujący) HPF (High Pass Filter)

Poniższy schemat prezentuje symulację charakterystyk trzech powyżej opisanych filtrów.

1. Układ pasywny

2. Układ aktywny (teoretyczny)

3. Układ aktywny stosowany w praktyce

Właściwości filtru górnoprzepustowego

Charakterystyka amplitudowa filtra aktywnego RC (układ teoretyczny) różni się od charakterystyki amplitudowej filtra pasywnego i filtra aktywnego (stosowanego w praktyce). Można stwierdzić, że układ teoretyczny działa nie stabilnie w zakresie częstotliwości od częstotliwości dolnej do nieskończoności pasma przenoszenia.

Dzięki włączeniu szeregowo do kondensatora, rezystora o wartości równej rezystancji w pętli sprzężenia, uzyskujemy najprostszą konstrukcję filtra aktywnego RC, którego charakterystyka amplitudowa jest taka sama w paśmie przenoszenia jak w przypadku filtr pasywnego. Zatem układ taki działa stabilnie w paśmie od częstotliwości dolnej do nieskończoności pasma przenoszenia.

Częstotliwość graniczna w przypadku filtra górnoprzepustowego jest nazywana częstotliwością dolną pasma przenoszenia. Pasmo przenoszenia zawiera się w przedziale od częstotliwości dolnej do nieskończoności. Wobec tego szerokość pasma przenoszenia filtra górnoprzepustowego jest nieskończenie duża.

$$au = RC$$
 gdzie: $au - stała$ czasowa $f_{gr} = rac{1}{2\pi RC}$

Wybrane informacje dotyczące filtrów aktywnych RC Butterwortha, Czebyszewa i Bessela:

Najczęściej realizuje się filtry dolnoprzepustowe, dla których podane są odpowiednie algorytmy. Aby zrealizować filtry górnoprzepustowe należy w filtrach dolnoprzepustowych zamienić miejscami odpowiednie rezystory z odpowiednimi kondensatorami.

Wybrane właściwości filtrów aktywnych RC:

- **Filtr Czebyszewa** charakterystyka amplitudowa w paśmie przepustowym jest zafalowana (liczba zafalowań odpowiada rzędowi projektowanego filtra i **może wynosić maksymalnie 1dB**). W paśmie przejściowym charakterystyka amplitudowa jest maksymalnie stroma. Charakterystyka fazowa tego filtra wskazuje silną nieliniowość.
- **Filtr Butterwortha** charakterystyka amplitudowa w paśmie przepustowym jest stała. W paśmie przejściowym charakterystyka amplitudowa jest najmniej stroma. Charakterystyka fazowa tego filtra wykazuje pewne nieliniowości, jednakże jest zbliżony do charakterystyki liniowej.
- **Filtr Bessela** charakterystyka amplitudowa w paśmie przepustowym jest malejąca od A_0 do A_o δ_p . Charakterystyka amplitudowa w paśmie przejściowym jest mniej stroma niż charakterystyka amplitudowa filtra Czebyszewa, ale bardziej stroma od charakterystyki amplitudowej filtra Butterwortha. Charakterystyka fazowa tego filtra jest maksymalnie płaska (najlepsza).

Korzystając z filtrów aktywnych RC można budować filtry pasmowo przepustowe. W tym celu łączymy kaskadowo filtr górnoprzepustowy (ograniczający częstotliwość dolną pasma) z filtrem dolnoprzepustowym (ograniczający górną częstotliwość pasma). Kaskadowo łączy się tylko filtry aktywne tego samego typu.

Filtry aktywne realizowane są w postaci gotowych układów scalonych. Bezpośrednio w monokrystalicznym krzemie bardzo ciężko jest wykonać rezystor, zatem układ kondensator – rezystor (RC) zastępuje się układem kondensatora przełączanego.

układ kondensatora przełączanego

układ kondensator – rezystor

Projektowanie filtrów aktywnych RC. Czebyszewa, Butterwortha, Bessela.

Najczęściej realizuje się filtry dolnoprzepustowe, dla których podane są odpowiednie algorytmy. Aby zrealizować filtry górnoprzepustowe należy w filtrach dolnoprzepustowych zamienić miejscami odpowiednie rezystory z odpowiednimi kondensatorami.

f_p- częstotliwość graniczna filtra

 f_s - częstotliwość od której rozpoczyna się pasmo zaporowe, przedział od $f_p \div f_s$ nazywany jest pasmem przejściowym

 $\delta_{\mathcal{S}}$ - próg charakterystyki amplitudowej A(f) dla którego pasmo jest uznawane za zaporowe

Struktury Sallena-Keya

α) Pierwszego rzędu

β) Drugiego rzędu

Charakterystyki Bodego

W teorii sterowania jedna z najważniejszych charakterystyk częstotliwościowych układu regulacji (lub jego członu, elementu).

Wyznacza się ją dla układu opisanego transmitancją widmową.

Transmitancja widmowa (transmitancja czwórnika) – jest to podstawowa funkcja układowa opisująca czwórnik. Transmitancja czwórnika wyrażona jest poprzez stosunek wielkości występujących na zaciskach wtórnych do odpowiedniej wielkości występującej na zaciskach pierwotnych czwórnika.

Rozróżniamy następujące rodzaje transmitancji:

a) napięciowa:

$$H_U(j\omega) = \frac{U_2}{U_1}$$
 gdzie $l_2 = 0$ – stan jałowy

b) prądowa:

$$H_I(j\omega) = \frac{I_2}{I_1}$$
 gdzie $U_2 = 0$ – stan zwarcia na wyjściu

c) napięciowo – prądowa:

$$H_{UJ}(j\omega) = rac{I_2}{U_1}$$
 gdzie $U_2 = 0$ – stan zwarcia na wyjściu

d) prądowo – napięciowa:

$$H_{IU}(j\omega) = \frac{U_2}{I_1}$$
 gdzie $I_2 = 0 - stan jałowy$

Uwaga!

- 1. Transmitancję napięciową i prądową nazywamy jednorodnymi; transmitancję napięciowo prądową i prądowo napięciową mieszanymi.
- 2. Transmitancję $H_{UI}(j\omega)$ i $H_{IU}(j\omega)$ nazywamy zwarciowymi, a transmitancję

$$H_U(j\omega)$$
 i $H_I(j\omega)$ – rozwarciowymi.

3. Transmitancje są często nazywane funkcjami przenoszenia.

Na charakterystykę Bodego składa się:

charakterystyka amplitudowa: $A(\omega) = |H(j\omega)|$

$$m{\phi}(m{\omega}) = arctm{g}ig(m{H}(m{j}m{\omega})ig) = arctm{g}rac{Imm{g}m{H}_{m{U}}(m{j}m{\omega})}{Re\ m{H}_{m{u}}(m{j}m{\omega})}$$
fazowa:

- 1. Transmitancję zespoloną często nazywamy transmitancją widmową.
- 2. Charakterystyka amplitudowa jest funkcją parzystą zmiennej $^\omega$, oznacza to, że $A(-\omega)=A(\omega)$
- Charakterystyka fazowa jest funkcją nieparzystą, oznacza to, że $\varphi(-\omega) = -\varphi(\omega)$.

Filtr dolnoprzepustowy drugiego rzędu

Zadanie 1.1

- 1. W module KL-93001 zlokalizować obwód filtru dolnoprzepustowego (LPF) drugiego rzędu. Zworki wpiąć do punktów J1 i J2, w celu ustawienia wartości pojemności na **C1=C2=0,001μF.**
- 2. Podłączyć sygnał sinusoidalny 10Hz o napięciu 300mV do wejścia (I/P) układu. Do wyjścia filtru (O/P) podłączyć oscyloskop.
- 3. Zmierzyć i zanotować w poniższej tabeli amplitudę wyjściową dla sygnałów wejściowych o podanych częstotliwościach. Należy pamiętać o ujednoliceniu wartości napięć (amplituda lub wartość skuteczna)!
- 4. Obliczyć wzmocnienie napięciowe układu dla każdej częstotliwości wejściowej. Wyniki obliczeń zapisać w powyższej tabeli.
- 5. Korzystając z wyników z tabeli 1-1, na poniższym wykresie narysować charakterystykę wzmocnienia napięciowego filtru (tzw. wykres Bodego).

Tabela 1-1

Częstotliwość wejściowa [Hz]	10	100	1k	2k	5k	8k	10k	20k	50k	100k
Amplituda wyjściowa [mV]										
Wzmocnienie napięciowe [dB]										

Zadanie 1.2

- 1. W układzie z poprzedniego ćwiczenia zworki wpiąć do punktów J3 i J4, aby ustawić wartości pojemności na **C3=C4= 0,01μF.**
- 2. Zmierzyć i zanotować w poniższej tabeli amplitudę wyjściową dla sygnałów wejściowych o podanych częstotliwościach.
- 3. Obliczyć wzmocnienie napięciowe układu dla każdej częstotliwości wejściowej. Wyniki obliczeń zapisać w poniższej tabeli. Należy pamiętać o ujednoliceniu wartości napięć (amplituda lub wartość skuteczna)!
- 4. Korzystając z wyników z tabeli 1-2, na poniższym wykresie narysować charakterystykę wzmocnienia napięciowego filtru (tzw. wykres Bodego).

Tabela 1-2

Częstotliwość wejściowa [Hz]	10	100	1k	2k	5k	8k	10k	20k	50k	100k
Amplituda wyjściowa [mV]										
Wzmocnienie napięciowe [dB]										

Zadanie 1.3

Dla układu z ćwiczenia 1.1 ustawić napięcie 300mV i częstotliwość 1kHz. Na wejście i wyjście układu podłączyć oscyloskop. Zmieniać kształt sygnału wejściowego: sinusoidalny, trójkątny, prostokątny. Obserwować oscylogramy i umieścić je w sprawozdaniu.

Filtr górnoprzepustowy drugiego rzędu

Zadanie 2.1

- 1. W module KL-93001 zlokalizować obwód filtru górnoprzepustowego (HPF) drugiego rzędu. Zworki wpiąć do punktów J1 i J2, aby ustawić wartości pojemności na C1=C2=0,0047μF.
- 2. Podłączyć sygnał sinusoidalny 10Hz o napięciu 300mV do wejścia (I/P) układu. Do wyjścia filtru (O/P) podłączyć oscyloskop. Obserwować przebieg wyjściowy i w poniższej tabeli zanotować jego amplitudę.
- 3. Zmierzyć i zanotować w poniższej tabeli amplitudę wyjściową dla sygnałów wejściowych o podanych częstotliwościach. Należy pamiętać o ujednoliceniu wartości napięć (amplituda lub wartość skuteczna)!
- 4. Obliczyć wzmocnienie napięciowe układu dla każdej częstotliwości wejściowej. Wyniki obliczeń zapisać w poniższej tabeli.
- 5. Korzystając z wyników z tabeli 2-1, na poniższym wykresie narysować charakterystykę wzmocnienia napięciowego filtru(tzw. wykres Bodego).

Tabela 2-1

Częstotliwość wejściowa [Hz]	10	100	1k	2k	5k	8k	10k	20k	50k	100k
Amplituda wyjściowa [mV]										
Wzmocnienie napięciowe [dB]										

Zadanie 2.2

- 1. W układzie z poprzedniego ćwiczenia zworki wpiąć do punktów J3 i J4, aby ustawić wartości pojemności na C3=C4= 0,015μF.
- 2. Zmierzyć i zanotować w poniższej tabeli amplitudę wyjściową dla sygnałów wejściowych o podanych częstotliwościach.
- 3. Obliczyć wzmocnienie napięciowe układu dla każdej częstotliwości wejściowej. Wyniki obliczeń zapisać w poniższej tabeli. Należy pamiętać o ujednoliceniu wartości napięć (amplituda lub wartość skuteczna)!
- 4. Korzystając z wyników z tabeli 2-4, na poniższym wykresie narysować charakterystykę wzmocnienia napięciowego filtru (tzw. wykres Bodego).

Tabela 2-2

Tabcia 2-2										
Częstotliwość wejściowa [Hz]	10	100	1k	2k	5k	8k	10k	20k	50k	100k
Amplituda wyjściowa [mV]										
Wzmocnienie napięciowe [dB]										

Zadanie 1.3

Dla układu z ćwiczenia 2.1 ustawić napięcie 300mV i częstotliwość 1kHz. Na wejście i wyjście układu podłączyć oscyloskop. Zmieniać kształt sygnału wejściowego: sinusoidalny, trójkątny, prostokątny. Obserwować oscylogramy i umieścić je w sprawozdaniu.

Zadanie dodatkowe:

- 1. Wykonać symulację w programie Electronics Workbench filtru dolnoprzepustowego aktywnego.
- $R = ilość liter w imieniu ucznia [k\Omega]$
- C = ilość liter w nazwisku ucznia [nF]
- a) Wyznaczyć częstotliwość graniczną filtra.
- b) Zaobserwować charakterystyki Bodego.
- 2. Wykonać symulację w programie Electronics Workbench filtru górnoprzepustowego aktywnego.
- $R = ilość liter w imieniu ucznia [k\Omega]$
- C = ilość liter w nazwisku ucznia [nF]
- a) Wyznaczyć częstotliwość graniczną filtra.
- b) Zaobserwować charakterystyki Bodego.

Wnioski:

Zwróć uwagę na:

- zasadę działania filtrów górnoprzepustowych i dolnoprzepustowych (różnice w układzie),
- od czego zależy wartość wzmocnienia napięciowego,
- porównanie charakterystyk Bodego dla filtrów dolnoprzepustowych ,
- porównanie charakterystyk Bodego dla filtrów górnoprzepustowych,
- czy wartość kondensatora wpływa na charakterystyki Bodego,
- wpływ błędów na poprawność wykonania ćwiczenia.
- wpływ filtra dolnoprzepustowego na kształt sygnału wyjściowego
- wpływ filtra górnoprzepustowego na kształt sygnału wyjściowego
- zrzuty ekrany zaprojektowanego filtra w programie Workbench
- obliczoną częstotliwość graniczną dla symulowanego układu
- zrzuty ekranu charakterystyk Bodego (amplitudową i fazową) z zaznaczoną częstotliwością graniczną.