Tracce delle soluzioni

1. Vedi dispense del corso.

2.

3.

L'equazione caratteristica del sistema retroazionato è:

$$1 + k \frac{s(s^2 + 1)}{(s^2 + 4)(s + 1)(s + 2)} = 0$$
$$s^4 + (3 + k)s^3 + 6s^2 + (12 + k)s + 8 = 0$$

I valori di k per i quali il sistema retroazionato è asintoticamente stabile sono quelli che che garantiscono la positività della prima colonna della tabella di Routh associata all'equazione caratteristica.

4	1	6
	8	
3	3+k	12+k
	0	
2	$\alpha(\mathbf{k})$	24+8k
	0	
1	$\beta(k)$	0
0	24+8k	

$$\alpha(k) = 6(3+k) - 12 - k = 5k + 6$$

$$\beta(k) = (5k+6)(12+k) - (3+k)(24+8k) = -3k^2 + 18k$$

Il sistema di disequazioni risultante ha come soluzione 0 < k < 6.

- 2) Si osservi innanzitutto che si ha la seguente configurazione di poli e zeri:
 - o uno zero per s = 0 con molteplicità 1
 - o uno zero per s = +i con molteplicità 1
 - o uno zero per s = -j con molteplicità 1
 - o uno polo per s = -1 con molteplicità 1
 - o uno polo per s = -2 con molteplicità 1
 - o uno polo per s = -2i con molteplicità 1
 - o uno polo per s = +2j con molteplicità 1

Essendo n-m=1 il luogo presenta un asintoto.

Tenendo conto delle seguenti osservazioni (luogo diretto):

- o un punto dell'asse reale fa parte del luogo delle radici se si lascia alla sua destra un numero totale dispari di zeri e di poli.
- o il luogo delle radici ha 4 rami.
- Angolo di partenza del luogo dal polo +2j:

$$\begin{aligned} & \left\{ \text{angolo di p. da } p_i \right\} = \pi + \sum_{j=1}^m \arg(p_i - z_j) - \sum_{j \neq i} \arg(p_i - p_j) \\ & \left\{ \text{angolo di p. dal polo} + 2j \right\} = \pi + \left[\arg\left(2j\right) + \arg\left(2j + j\right) + \arg\left(2j - j\right) \right] + \\ & - \left[\arg\left(2j + 2j\right) + \arg\left(2j + 1\right) + \arg\left(2j + 2\right) \right] = \\ & \pi + \left(\frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2} \right) - \left(\frac{\pi}{2} + \arctan\left(2\right) + \arctan\left(1\right) \right) = -108.43^{\circ} \end{aligned}$$

o Angolo di arrivo del luogo sullo zero 2j:

$$\begin{aligned} &\left\{\text{angolo di a. su } z_i\right\} = \pi + \sum_{j=1}^n \arg(z_i - p_j) - \sum_{j \neq i} \arg(z_i - z_j) \\ &\left\{\text{angolo di a. sullo zero } + \mathbf{j}\right\} = \pi + \left[\arg\left(j + 2j\right) + \arg\left(j - 2j\right) + \arg\left(j + 1\right) + \arg\left(j + 2\right)\right] + \\ &- \left[\arg\left(j + j\right) + \arg\left(j\right)\right] = \\ &\pi + \left(\frac{\pi}{2} - \frac{\pi}{2} + \arctan\left(1\right) + \arctan\left(1/2\right)\right) - \left(\frac{\pi}{2} + \frac{\pi}{2}\right) = 71.56^{\circ} \end{aligned}$$

 Intersezioni del luogo con l'asse immaginario
 Le intersezioni del luogo con l'asse immaginario si possono ottenere come soluzioni dell'equazione ausiliaria associata alla tabella di Routh in 1) per k=6:

$$(5 \cdot 6 + 6)s^2 + 24 + 8 \cdot 6 = 0$$

 $36s^2 + 72 = 0 \rightarrow s = \pm i\sqrt{2} = \pm i1.41$

si può dedurre che il luogo delle radici per $K_1 > 0$ ha l'andamento riportato in figura:

4. Vedi dispense dell'insegnamento.

5.

6.

a	1	1	1 /	-	1								A S			Z	, 3									23			4	-	1	(2				
"	1	H	1 (£)			Z	Z '	4		C	1 -	>	Z	2	+	0	. :	5	Z		+	0,	0	6				-	2	2)			
6)	C	2	(2) :		-	24		2	4	+	9	3	Z	3,	t	9	2	Z	2	+	9	1	Z	+	- 9	20								
												187			100	87				Z																
	0	يَنْ كُونُ	0	1	gle																															
	1)	0	11	1) :	>	0	,		1		0	, 4	5 7	-	0.	5		-0	, 0	26	5	11	1	, 0	06	,	> <	0	(ok	. !			
	2) ((-	1)	4	a	(-	1)	>	0	,		1		- 0	0,	5		0)	5	+	0,	0	6	=		0.	0	6	>	0	C	K	ţ
	3)		a	0	1.	_	c	24	-,			0	. 6) (5	_		1		0	K	,													
		τ.	ak	ul	20	-	d	à à		Ju	n	7																								
		1			C	2.	0	6			0	2.	5				- 0),	5			(2				1					\				
		2					1					0					- (2,	5			0		5		(0.	0	6							
		2	5		-	0.	9	96	4		C	0.0	3			(0.	4	7			- 0	2.	5												
		4	-			_	0	,5			C)	47				0,	0	3				0,	99	16	4										
		5			0),	74	2	8			*	-			(2.	20	05	51																
	4	F)			1 6	00	1	>	1	6	3	1			1	_	0.	9	9	6-	1		>	1	-	0		5	1		0	K	.			
	-	5))		1	C			>		0					1	0	,	7 4	+2	2 8	3								5	1	1		0 4	e \.	
		Tu	t	e	,	le	-	di	n	2	n	2	Sh	91	~	u	-	20	n	0	2	06	6	(i)	10	#	i		1	2	0	in	ter	n	2	
		ě		0													ni			M N					-											