Исследование спектра ^у-излучения, прошедшего через поглотитель

Постановка задачи

Схема экспериментальной установки

- лабораторная установка
- компьютерная симуляция (geant4)

Форма импульса ФЭУ:

цифровой осциплограф

Теоретические предположения

Формула Клейна-Нисины:

$$\sigma_k=2\pi r_0^2\left(rac{1+\epsilon}{\epsilon^2}\left(rac{2+2\epsilon}{1+2\epsilon}-rac{\ln(1+2\epsilon)}{\epsilon}
ight)+rac{\ln(1+2\epsilon)}{2\epsilon}-rac{1+3\epsilon}{(1+2\epsilon)^2}
ight)$$
 , as $\epsilon=\hbar\omega/m_0c^2$

Изменение частоты за счет эффекта Комптона:

$$\omega' = rac{\omega}{1 + \epsilon(1 - \cos heta)}$$

Теоретические предположения

График зависимости dσ от угла для разных энергий

Теоретические предположения

$$L \sim 4 \text{ (cm)}$$

 $L \sim 1/\mu \sim 0.5 \text{ (cm)}$

$$\alpha 1 \sim 8.13$$

 $\alpha 2 \sim 9.46$

$$\alpha$$
3 \sim 9.46

$$E2 \sim 0.6502$$

Результаты эксперимента

Результаты симуляции

Появление пика обратного рассеяния:

Результаты симуляции

Картинка вместе с логарифмической шкалой

Результаты симуляции

Подходящая геометрия для наблюдения дополнительных пиков:

Выводы

$$d\sigma(\theta) = \frac{dN(\theta)}{(n\ d)\ N}$$

N - число налетающих частиц

n - концентрация электронов

d - размер мишени