- Gunsian Quadrature.

$$\int_{\alpha}^{b} w(x)f(x)dx = \sum_{i=1}^{n} w_{i}f(x_{i})$$

want it exact for f being a polynomius
of degree as high as possible

- w; weights (w; *w(x,))
 - X; : knots
- we pich both the weights were the knots
 - note: f is considered polynomial, not the integreened up
 - How high is possible?

2n parametes > degree 2n-1

- we saw that we get a nonlinear
- Granso solved it
- Carl Friedrich Grauss 1777-1855
- putty remarkabl!

- Let p be a polynomial of degree 2n-1.

- we brown two types of parametes, the w; and the x;

- can we break the polynomial into two pieces?

- yes! long division with remainely

 $P_n(x) = Q_n(x) q(x) + r(x)$

Qn: degree n, divisor

01: des ree n-1, quotient

v: degree u-1, remainde

- same concept as for number

45 = 7.6 + 3

45:7 = 6, remainder 3

$$Q_{\mu} = \chi^2 - \frac{1}{3}, \quad say$$

$$p(x) = x^3 + 2x^2 + 3x + 4$$
, say

$$x^{2} - \frac{1}{3} = \frac{x^{3} + 2x^{2} + 3x + 4}{x^{3} - \frac{x}{3}}$$

$$2x^{2} + \frac{10}{3}x + 4$$

$$2x^{2} - \frac{2}{3}$$

$$\frac{10}{3} \times + \frac{14}{3}$$

- easy to chech:

$$x^{3} + 2x^{2} + 3x + 4 = \left(x^{2} - \frac{1}{3}\right)(x+2) + \frac{10}{3}x + \frac{14}{3}$$

- How do we pick Qu?

 $I = \int_{1}^{5} w(x) p(x) dx$

= $\int_{0}^{\infty} w(x) (Q_{\mu}(x) q(x) + r(x)) dx$

= Sw(x) Qn(x)q(x)dx + Sw(x)v(x)dx

how about picking Qu so that the first integral vanishes for all polynomials of of degree up to u-it orthogonal polynomicals with respect to

(u,v) = Sw(x)u(x)v(x)dx

old hat.

= Sw(x)r(x)dx

= $\sum_{i=1}^{N} w_i p(x_i)$ = $\sum_{i=1}^{N} w_i \left(Q_n(x_i)q(x_i) + r(x_i)\right)$

 $= \sum_{i=1}^{N} w_i \Upsilon(x_i) = \sum_{i=1}^{N} w_i(x_i) \Upsilon(x_i) dx$

- we know how to pich the w;

$$\gamma(x) = \sum_{i=j}^{N} \gamma(x_i) L_i(x)$$

$$-\int_{\alpha}^{b} w(x) r(x) dx = \int_{\alpha}^{b} w(x) \sum_{i=1}^{n} v(x_{i}) L_{i}(x) dx$$

Lugrange basis

$$= \sum_{i=1}^{N} |Y(X_i)| \int w(x) L_i(x) dx$$

$$= \sum_{i=1}^{n} w_i r(x_i)$$

w; = SW(x) Licx)dx

$$L_{i}(x) = \frac{\prod (x - x_{i})}{\prod (x_{i} - x_{j})}$$

$$J \neq i$$

X;: roots of Qn

Outside the interval [a,b], or if they are multiple?

- That wou't nappen!
- The roots of Qu are real, distinct, and in the interval (a, b).
- suppose Qu changes sign at the points

Z,,Z,,,,,Z, E(0,6)

- ul want to show that k = 4

- conside

 $\int_{\alpha}^{b} W(x)Q_{n}(x)(x-z_{i})(x-z_{i})\cdots(x-z_{n}) > 0$

- => k7, n since Qn is orthogonal to all polynomials of degree = n

$$W(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\int_{-1}^{1} \frac{f(x)}{\sqrt{1-x^2}} dx = \sum_{i=1}^{n} w_i f(x_i) + R_n$$

$$X_{i} = \cos \frac{(2i-1)\pi}{2n}$$
 $i = 1, ..., n$

$$R_n = \frac{11}{(2n)! \, 2^{2n-1}} f^{(2n)}(\xi)$$

Assuming the derivative is

5 points will suffice for most purpose

If you are not impressed try approximations, son dx

with an open Newton-Cotes formula.

Laplacian

25.3.30

$$\begin{split} \nabla^2 u_{0,0} &= \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right)_{0,0} \\ &= \frac{1}{h^2} \left(u_{1,0} + u_{0,1} + u_{-1,0} + u_{0,-1} - 4u_{0,0}\right) + O(h^2) \end{split}$$

25.3.31

$$\nabla^{2}u_{0,0} = \frac{1}{12h^{2}} \left[-60u_{0,0} + 16(u_{1,0} + u_{0,1} + u_{-1,0} + u_{0,-1}) - (u_{2,0} + u_{0,2} + u_{-2,0} + u_{0,-2}) \right] + O(h^{4})$$

Biharmonic Operator

25.3.32

$$\nabla^{4}u_{0,0} = \left(\frac{\partial^{4}u}{\partial x^{4}} + 2\frac{\partial^{4}u}{\partial x^{2}\partial y^{2}} + \frac{\partial^{4}u}{\partial y^{4}}\right)_{0,0}$$

$$= \frac{1}{h^{4}} \left[20u_{0,0} - 8(u_{1,0} + u_{0,1} + u_{-1,0} + u_{0,-1}) + 2(u_{1,1} + u_{1,-1} + u_{-1,1} + u_{-1,-1}) + (u_{0,2} + u_{2,0} + u_{-2,0} + u_{0,-2})\right] + O(h^{2})$$

25.3.33

$$\nabla^{4}u_{0,0} = \frac{1}{6h^{4}} \left[-(u_{0,3} + u_{0,-3} + u_{3,0} + u_{-3,0}) \right. \\ + 14 \left. (u_{0,2} + u_{0,-2} + u_{2,0} + u_{-2,0}) \right. \\ - 77 \left. (u_{0,1} + u_{0,-1} + u_{1,0} + u_{-1,0}) \right. \\ + 184 u_{0,0} + 20 \left(u_{1,1} + u_{1,-1} + u_{-1,1} + u_{-1,-1} \right) \\ - \left. (u_{1,2} + u_{2,1} + u_{1,-2} + u_{2,-1} + u_{-1,2} + u_{-2,1} \right. \\ + \left. u_{-1,-2} + u_{-2,-1} \right) \right] + O(h^{4})$$

25.4. Integration

Trapezoidal Rule

25.4.1

$$\begin{split} \int_{x_0}^{x_1} f(x) dx &= \frac{h}{2} (f_0 + f_1) - \frac{1}{2} \int_{x_0}^{x_1} (t - x_0) (x_1 - t) f^{\prime \prime}(t) dt \\ &= \frac{h}{2} (f_0 + f_1) - \frac{h^3}{12} f^{\prime \prime}(\xi) \qquad (x_0 < \xi < x_1) \end{split}$$

Extended Trapezoidal Rule

25.4.2

$$\int_{x_0}^{x_m} f(x)dx = h \left[\frac{f_0}{2} + f_1 + \dots + f_{m-1} + \frac{f_m}{2} \right] - \frac{mh^3}{12} f''(\xi)$$

Error Term in Trapezoidal Formula for Periodic Functions

If f(x) is periodic and has a continuous k^{th} derivative, and if the integral is taken over a period, then

25.4.3
$$|\text{Error}| \leq \frac{\text{constant}}{m^k}$$

Modified Trapezoidal Rule

25.4.4

$$\int_{z_0}^{z_m} f(x)dx = h \left[\frac{f_0}{2} + f_1 + \dots + f_{m-1} + \frac{f_m}{2} \right] + \frac{h}{24} \left[-f_{-1} + f_1 + f_{m-1} - f_{m+1} \right] + \frac{11m}{720} h^{b} f^{(4)}(\xi)$$

25.4.5

Simpson's Rule

$$\int_{x_0}^{x_2} f(x)dx = \frac{h}{3} [f_0 + 4f_1 + f_2]$$

$$+ \frac{1}{6} \int_{x_0}^{x_1} (x_0 - t)^2 (x_1 - t) f^{(3)}(t) dt$$

$$+ \frac{1}{6} \int_{x_1}^{x_2} (x_2 - t)^2 (x_1 - t) f^{(3)}(t) dt$$

$$= \frac{h}{3} [f_0 + 4f_1 + f_2] - \frac{h^6}{90} f^{(4)}(\xi)$$

Extended Simpson's Rule

25.4.6

$$\int_{x_0}^{x_{2n}} f(x)dx = \frac{h}{3} [f_0 + 4(f_1 + f_3 + \dots + f_{2n-1}) + 2(f_2 + f_4 + \dots + f_{2n-2}) + f_{2n}] - \frac{nh^5}{90} f^{(4)}(\xi)$$

Euler-Maclaurin Summation Formula

$$\int_{x_0}^{x_n} f(x)dx = h \left[\frac{f_0}{2} + f_1 + f_2 + \dots + f_{n-1} + \frac{f_n}{2} \right]$$

$$- \frac{B_2}{2!} h^2(f'_n - f'_0) - \dots - \frac{B_{2k}h^{2k}}{(2k)!} \left[f_n^{(2k-1)} - f_0^{(2k-1)} \right] + R_{2k}$$

$$R_{2k} = \frac{\theta n B_{2k+2}h^{2k+3}}{(2k+2)!} \max_{x_0 \le x \le x_n} |f^{(2k+2)}(x)|, \qquad (-1 \le \theta \le 1)$$
(For B_{2k} , Bernoulli numbers and

(For B2k, Bernoulli numbers, see chapter 23.)

If $f^{(2k+2)}(x)$ and $f^{(2k+4)}(x)$ do not change sign for $x_0 < x < x_n$ then $|R_{2t}|$ is less than the first neglected term. If $f^{(2k+2)}(x)$ does not change sign for $x_0 < x < x_n$, $|R_{2k}|$ is less than twice the first neglected

Lagrange Formula

25.4.8

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n} \left(L_{i}^{(n)}(b) - L_{i}^{(n)}(a) \right) f_{i} + R_{n}$$

(See 25.2.1.)

25.4.9

$$L_{i}^{(n)}(x) = \frac{1}{\pi'_{n}(x_{i})} \int_{x_{0}}^{x} \frac{\pi_{n}(t)}{t - x_{i}} dt = \int_{x_{0}}^{x} l_{i}(t) dt$$

25.4.10
$$R_n = \frac{1}{(n+1)!} \int_a^b \pi_n(x) f^{(n+1)}(\xi(x)) dx$$

25.4.11

Equally Spaced Abscissas

$$\int_{x_0}^{x_k} f(x) dx = \frac{1}{h^n} \sum_{i=0}^n f_i \frac{(-1)^{n-i}}{i!(n-i)!} \int_{x_0}^{x_k} \frac{\pi_n(x)}{x - x_i} dx + R_n$$

25.4.12
$$\int_{z_{m}}^{z_{m+1}} f(x) dx = h \sum_{i=-\left[\frac{n-1}{2}\right]}^{\left[\frac{n}{2}\right]} A_{i}(m) f_{i} + R_{n}$$
(See Table 27)

(See Table 25.3 for $A_i(m)$.)

Newton-Cotes Formulas (Closed Type)

(For Trapezoidal and Simpson's Rules see 25.4.1-25.4.6.)

25.4.13

(Simpson's
$$\frac{3}{9}$$
 rule)

$$\int_{x_0}^{x_3} f(x)dx = \frac{3h}{8} \left(f_0 + 3f_1 + 3f_2 + f_3 \right) = \frac{3f^{(4)}(\xi)h^5}{80}$$

25.4.14

$$\int_{z_0}^{z_4} f(x)dx = \frac{2h}{45} (7f_0 + 32f_1 + 12f_2)$$

$$+32f_3+7f_4)-\frac{8f^{(6)}(\xi)h^7}{945}$$

25.4.15

$$\int_{x_0}^{x_3} f(x)dx = \frac{5h}{288} (19f_0 + 75f_1 + 50f_2 + 50f_3 + 75f_4 + 19f_5) - \frac{275f^{(6)}(\xi)h^7}{12096}$$
25.4.16

25.4.16

$$\int_{x_0}^{x_0} f(x)dx = \frac{h}{140} (41f_0 + 216f_1 + 27f_2 + 272f_3 + 27f_4 + 216f_5 + 41f_6) - \frac{9f^{(8)}(\xi)h^9}{1400}$$
25.4.17

$$\int_{t_0}^{x_7} f(x)dx = \frac{7h}{17280} (751 f_0 + 3577 f_1 + 1323 f_2 + 2989 f_3 + 2989 f_4 + 1323 f_5 + 3577 f_6 + 751 f_7) - \frac{8183 f^{(8)}(\xi) h^9}{518400}$$
25.4.18

$$\int_{x_0}^{x_0} f(x)dx = \frac{4h}{14175} (989f_0 + 5888f_1 - 928f_2 + 10496f_3 - 4540f_4 + 10496f_5 - 928f_6 + 5888f_7 + 989f_8) - \frac{2368}{467775} f^{(10)}(\xi)h^{11}$$
25.4.19

$$\int_{x_0}^{x_0} f(x)dx = \frac{9h}{89600} \left\{ 2857(f_0 + f_0) + 15741(f_1 + f_0) + 1080(f_2 + f_7) + 19344(f_3 + f_0) + 5778(f_4 + f_5) \right\} - \frac{173}{14620} f^{(10)}(\xi) h^{11}$$
*See page II.

25.4.20

$$\int_{x_0}^{x_{10}} f(x)dx = \frac{5h}{299376} \left\{ 16067(f_0 + f_{10}) + 106300(f_1 + f_0) - 48525(f_2 + f_0) + 272400(f_3 + f_1) - 260550(f_4 + f_0) + 427368f_5 \right\}$$

$$-\frac{1346350}{326918592}f^{\scriptscriptstyle (12)}(\xi)h^{\scriptscriptstyle 13}$$

Newton-Cotes Formulas (Open Type)

25.4.21

$$\int_{x_0}^{x_3} f(x) dx = \frac{3h}{2} (f_1 + f_2) + \frac{f^{(2)}(\xi)h^3}{4}$$

25.4.22

$$\int_{x_0}^{x_4} f(x) dx = \frac{4h}{3} (2f_1 - f_2 + 2f_3) + \frac{28f^{(4)}(\xi)h^5}{90}$$

25.4.23

$$\int_{x_0}^{x_5} f(x) dx = \frac{5h}{24} (11f_1 + f_2 + f_3 + 11f_4) + \frac{95f^{(4)}(\xi)h^5}{144}$$

25.4.24

$$\int_{x_0}^{x_6} f(x)dx = \frac{6h}{20} \left(11f_1 - 14f_2 + 26f_3 - 14f_4 + 11f_5\right) + \frac{41f^{(6)}(\xi)h^7}{140}$$

25.4.25

$$\int_{x_0}^{x_1} f(x)dx = \frac{7h}{1440} (611f_1 - 453f_2 + 562f_3 + 562f_4 - 453f_5 + 611f_6) + \frac{5257}{8640} f^{(6)}(\xi)h^7$$

25.4.26

$$\int_{x_0}^{x_8} f(x)dx = \frac{8h}{945} (460f_1 - 954f_2 + 2196f_3 - 2459f_4 + 2196f_5 - 954f_8 + 460f_7) + \frac{3956}{14175} f^{(8)}(\xi)h^9$$

Five Point Rule for Analytic Functions

25.4.27

$$z_o + ih$$

$$z_o - h$$

$$z_o - ih$$

$$\int_{z_0-h}^{z_0+h} f(z)dz = \frac{h}{15} \left\{ 24f(z_0) + 4[f(z_0+h) + f(z_0-h)] - [f(z_0+ih) + f(z_0-ih)] \right\} + R$$

 $|R| \leq \frac{|h|^7}{1890} \max_{z \in S} |f^{(6)}(z)|$, S designates the square with vertices $z_0 + i^k h(k=0, 1, 2, 3)$; h can be complex.

Chebyshev's Equal Weight Integration Formula

25.4.28
$$\int_{-1}^{1} f(x) dx = \frac{2}{n} \sum_{i=1}^{n} f(x_i) + R_n$$

Abscissas: x_t is the i^{th} zero of the polynomial part of

$$x^n \exp \left[\frac{-n}{2 \cdot 3x^2} - \frac{n}{4 \cdot 5x^3} - \frac{n}{6 \cdot 7x^4} - \dots \right]$$

(See Table 25.5 for x_t .)

For n=8 and $n \ge 10$ some of the zeros are complex.

Remainder:

$$R_{n} = \int_{-1}^{+1} \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(\xi) dx$$

$$-\frac{2}{n(n+1)!} \sum_{i=1}^{n} x_{i}^{n+1} f^{(n+1)}(\xi_{i})$$

where $\xi = \xi(x)$ satisfies $0 \le \xi \le x$ and $0 \le \xi_i \le x_i$

$$(i=1,\ldots,n)$$

Integration Formulas of Gaussian Type

(For Orthogonal Polynomials see chapter 22)

Gauss' Formula

25.4.29
$$\int_{-1}^{1} f(x) dx = \sum_{i=1}^{n} w_i f(x_i) + R_n$$

Related orthogonal polynomials: Legendre polynomials $P_n(x)$, $P_n(1) = 1$

Abscissas: x_i is the i^{th} zero of $P_{-}(x)$

Weights: $w_i = 2/(1 - x_i^2) [P'_n(x_i)]^2$ (See **Table 25.4** for x_i and w_i .)

$$R_n = \frac{2^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3} f^{(2n)}(\xi) \qquad (-1 < \xi < 1)$$

Gauss' Formula, Arbitrary Interval

25.4.30
$$\int_{a}^{b} f(y) dy = \frac{b-a}{2} \sum_{i=1}^{n} w_{i} f(y_{i}) + R_{n}$$
$$y_{i} = \left(\frac{b-a}{2}\right) x_{i} + \left(\frac{b+a}{2}\right)$$

^{*}See page II.

25.4.36
$$\int_0^1 \frac{f(x)}{\sqrt{1-x}} dx = \sum_{i=1}^n w_i f(x_i) + R_n$$

Related orthogonal polynomials:

$$P_{2n}(\sqrt{1-x}), P_{2n}(1)=1$$

Abscissas: $x_i = 1 - \xi_i^2$ where ξ_i is the i^{th} positive zero of $P_{2n}(x)$.

Weights: $w_i = 2w_i^{(2n)}$, $w_i^{(2n)}$ are the Gaussian weights of order 2n.

Remainder:

$$R_n = \frac{2^{4n+1}}{4n+1} \frac{[(2n)!]^3}{[(4n)!]^2} f^{(2n)}(\xi) \qquad (0 < \xi < 1)$$

25.4.37
$$\int_{a}^{b} \frac{f(y)}{\sqrt{b-y}} dy = \sqrt{b-a} \sum_{i=1}^{n} w_{i} f(y_{i}) + R_{n}$$
$$y_{i} = a + (b-a) x_{i}$$

Related orthogonal polynomials:

$$P_{2n}(\sqrt{1-x}), P_{2n}(1)=1$$

Abscissas:

 $x_i = 1 - \xi_i^2$ where ξ_i is the i^{th} positive zero of $P_{2n}(x)$.

Weights: $w_i=2w_i^{(2n)}$, $w_i^{(2n)}$ are the Gaussian weights of order 2n.

25.4.38
$$\int_{-1}^{+1} \frac{f(x)}{\sqrt{1-x^2}} dx = \sum_{i=1}^{n} w_i f(x_i) + R_n$$

Related orthogonal polynomials: Chebyshev Polynomials of First Kind

$$T_n(x), T_n(1) = \frac{1}{2^{n-1}}$$

Abscissas:

$$x_i = \cos \frac{(2i-1)\pi}{2n}$$

Weights:

$$w_i = \frac{\pi}{p}$$

Remainder:

$$R_{n} = \frac{\pi}{(2n)!2^{2n-1}} f^{(2n)}(\xi) \quad (-1 < \xi < 1)$$

25.4.39

$$\int_{a}^{b} \frac{f(y)dy}{\sqrt{(y-a)(b-y)}} = \sum_{i=1}^{n} w_{i}f(y_{i}) + R_{n}$$
$$y_{i} = \frac{b+a}{2} + \frac{b-a}{2}x_{1}$$

Related orthogonal polynomials:

$$T_n(x), T_n(1) = \frac{1}{2^{n-1}}$$

Abscissas:

$$x_i = \cos \frac{(2i-1)\pi}{2n}$$

Weights:

$$w_i = \frac{\pi}{n}$$

25.4.40

$$\int_{-1}^{+1} f(x) \sqrt{1 - x^2} dx = \sum_{i=1}^{n} w_i f(x_i) + R_n$$

Related orthogonal polynomials: Chebyshev Polynomials of Second Kind

$$U_n(x) = \frac{\sin [(n+1) \arccos x]}{\sin (\arccos x)}$$

Abscissas

$$x_i = \cos \frac{i}{n+1} \pi$$

Weights:

$$w_i = \frac{\pi}{n+1} \sin^2 \frac{i}{n+1} \pi$$

Remainder:

$$R_n = \frac{\pi}{(2n)! 2^{2n+1}} f^{(2n)}(\xi) \qquad (-1 < \xi < 1)$$

25.4.41

$$\begin{split} \int_{a}^{b} \sqrt{\overline{(y-a)} \, \overline{(b-y)}} f(y) dy = & \left(\frac{b-a}{2}\right)^{2} \sum_{i=1}^{n} \, w_{i} f(y_{i}) + R_{n} \\ y_{i} = & \frac{b+a}{2} + \frac{b-a}{2} \, x_{i} \end{split}$$

Related orthogonal polynomials:

$$U_n(x) = \frac{\sin [(n+1) \arccos x]}{\sin (\arccos x)}$$

Abscissas:

$$x_i = \cos \frac{i}{n+1} \pi$$

Weights:

$$w_i = \frac{\pi}{n+1} \sin^2 \frac{i}{n+1} \pi$$

25.4.42
$$\int_{0}^{1} f(x) \sqrt{\frac{x}{1-x}} dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + R_{n}$$

Related orthogonal polynomials:

$$\frac{1}{\sqrt{x}} T_{2n+1}(\sqrt{x})$$

Abscissas:

$$x_i = \cos^2 \frac{2i-1}{2n+1} \cdot \frac{\pi}{2}$$

Weights:

$$w_i = \frac{2\pi}{2n+1} x_i$$

^{*}See page 11.

Remainder:

$$R_n = \frac{\pi}{(2n)!2^{4n+1}} f^{(2n)}(\xi) \qquad (0 < \xi < 1)$$

$$\int_a^b f(x) \sqrt{\frac{x-a}{b-x}} dx = (b-a) \sum_{i=1}^n w_i f(y_i) + R_n$$

$$y_i = a + (b-a)x_i$$

Related orthogonal polynomials:

$$\frac{1}{\sqrt{x}} T_{2n+1} \left(\sqrt{x} \right)$$

Abscissas:

$$x_i = \cos^2 \frac{2i-1}{2n+1} \cdot \frac{\pi}{2}$$

Weights:

$$w_i = \frac{2\pi}{2n+1} x_i$$

25.4.44
$$\int_0^1 \ln x f(x) dx = \sum_{i=1}^n w_i f(x_i) + R_n$$

Related orthogonal polynomials: polynomials orthogonal with respect to the weight function -ln x Abscissas: See Table 25.7 Weights: See Table 25.7

25.4.45

$$\int_0^\infty e^{-x} f(x) dx = \sum_{i=1}^n w_i f(x_i) + R_n$$

Related orthogonal polynomials: Laguerre polynomials $L_n(x)$.

Abscissas: x_i is the i^{th} zero of $L_n(x)$ Weights:

$$w_i = \frac{(n!)^2 x_i}{(n+1)^2 [L_{n+1}(x_i)]^2}$$

(See Table 25.9 for x_i and w_i .) Remainder:

$$R_n = \frac{(n!)^2}{(2n)!} f^{(2n)}(\xi)$$
 $(0 < \xi < \infty)$

25.4.46

$$\int_{-\infty}^{\infty} e^{-x^2} f(x) dx = \sum_{i=1}^{n} w_i f(x_i) + R_n$$

Related orthogonal polynomials: Hermite polynomials $H_n(x)$.

Abscissas: x_i is the i^{th} zero of $H_n(x)$

Weights:

$$\frac{2^{n-1}n!\sqrt{\pi}}{n^2[H_{n-1}(x_t)]}$$

(See Table 25.10 for x_i and w_i .)

Remainder:

Filon's Integration Formula 3

$$\int_{x_0}^{x_{2n}} f(x) \cos tx \, dx = h \left[\alpha(th) \left(f_{2n} \sin t x_{2n} - f_0 \sin t x_0 \right) + \beta(th) \cdot C_{2n} + \gamma(th) \cdot C_{2n-1} + \frac{2}{45} th^4 S'_{2n-1} \right] - R_n$$

$$C_{2n} = \sum_{i=0}^{n} f_{2i} \cos(tx_{2i}) - \frac{1}{2} [f_{2n} \cos tx_{2n} + f_0 \cos tx_0]$$

25.4.49

$$C_{2n-1} = \sum_{i=1}^{n} f_{2i-1} \cos t x_{2i-1}$$

$$25.4.50$$

$$S'_{2n-1} = \sum_{i=1}^{n} f_{2i-1}^{(3)} \sin t x_{2i-1}$$

25.4.51

$$R_n = \frac{1}{90} nh^5 f^{(4)}(\xi) + O(th^7)$$

25.4.52

$$\alpha(\theta) = \frac{1}{\theta} + \frac{\sin 2\theta}{2\theta^2} - \frac{2 \sin^2 \theta}{\theta^3}$$
$$\beta(\theta) = 2\left(\frac{1 + \cos^2 \theta}{\theta^2} - \frac{\sin 2\theta}{\theta^3}\right)$$

$$\gamma(\theta) = 4 \left(\frac{\sin \theta}{\theta^3} - \frac{\cos \theta}{\theta^2} \right)$$

For small θ we have

25.4.53

$$\alpha = \frac{2\theta^3}{45} - \frac{2\theta^5}{315} + \frac{2\theta^7}{4725} - \dots$$

$$\beta = \frac{2}{3} + \frac{2\theta^2}{15} - \frac{4\theta^4}{105} + \frac{2\theta^6}{567} - \dots$$

$$\gamma = \frac{4}{3} - \frac{2\theta^2}{15} + \frac{\theta^4}{210} - \frac{\theta^6}{11340} + \dots$$

$$\int_{x_0}^{x_{2n}} f(x) \sin tx \, dx = h \left[\alpha(th) (f_0 \cos tx_0 - f_{2n} \cos tx_{2n}) + \beta S_{2n} + \gamma S_{2n-1} + \frac{2}{45} t h^4 C'_{2n-1} \right] - R_n$$
25.4.55

$$S_{2n} = \sum_{i=0}^{n} f_{2i} \sin(tx_{2i}) - \frac{1}{2} [f_{2n} \sin(tx_{2n}) + f_0 \sin(tx_0)]$$

³ For certain difficulties associated with this formula, see the article by J. W. Tukey, p. 400, "On Numerical Approximation," Ed. R. E. Langer, Madison, 1959.

25.4.33

Related orthogonal polynomials: $P_n(x)$, $P_n(1)=1$ Abscissas: x_i is the i^{in} zero of $P_n(x)$ Weights: $w_i = 2/(1-x_i^2) [P'_n(x_i)]^2$

$$R_n = \frac{(b-a)^{2n+1}(n!)^4}{(2n+1)[(2n)!]^3} 2^{2n+1} f^{(2n)}(\xi)$$

Radau's Integration Formula

25.4.31

$$\int_{-1}^{1} f(x)dx = \frac{2}{n^{2}} f_{-1} + \sum_{i=1}^{n-1} w_{i} f(x_{i}) + R_{n}$$

Related polynomials:

$$\frac{P_{n-1}(x) + P_n(x)}{x+1}$$

Abscissas: x_i is the i^{th} zero of

$$\frac{P_{n-1}(x) + P_n(x)}{x+1}$$

Weights:

$$w_{i} = \frac{1}{n^{2}} \frac{1 - x_{t}}{[P_{n-1}(x_{t})]^{2}} = \frac{1}{1 - x_{t}} \frac{1}{[P'_{n-1}(x_{t})]^{2}}$$

Remainder

$$R_{n} = \frac{2^{2n-1} \cdot n}{[(2n-1)!]^{3}} [(n-1)!]^{4} f^{(2n-1)}(\xi) \qquad (-1 < \xi < 1)$$

Lobatto's Integration Formula

25.4.32

$$\int_{-1}^{1} f(x)dx = \frac{2}{n(n-1)} \left[f(1) + f(-1) \right]$$

$$+\sum_{i=2}^{n-1}w_if(x_i)+R_n$$

Related polynomials: $P'_{n-1}(x)$

Abscissas: x_i is the $(i-1)^{st}$ zero of $P'_{n-1}(x)$

Weights:

$$w_i = \frac{2}{n(n-1)[P_{n-1}(x_i)]^2} \qquad (x_i \neq \pm 1)$$

(See Table 25.6 for x_t and w_t .)

Remainder:

$$R_n = \frac{-n(n-1)^3 2^{2n-1} [(n-2)!]^4}{(2n-1)[(2n-2)!]^3} f^{(2n-2)}(\xi)$$
*See page II.

25.4.33
$$\int_{0}^{1} x^{k} f(x) dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + R_{n}$$
 Related orthogonal polynomials:

$$q_n(x) = \sqrt{k+2n+1}P_n^{(k,0)}(1-2x)$$

(For the Jacobi polynomials $P_n^{(k,0)}$ see chapter

Abscissas:

 x_i is the i^{th} zero of $q_n(x)$

Weights:

$$w_i = \left\{ \sum_{j=0}^{n-1} [q_j(x_i)]^2 \right\}^{-1}$$

(See Table 25.8 for x_i and w_i .)

Remainder:

$$R_n = \frac{f^{(2n)}(\xi)}{(k+2n+1)(2n)!} \left[\frac{n!(k+n)!}{(k+2n)!} \right]^2 \qquad (0 < \xi < 1)$$

25.4.34

$$\int_{0}^{1} f(x) \sqrt{1-x} \, dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + R_{n}$$

Related orthogonal polynomials:

$$\frac{1}{\sqrt{1-x}}P_{2n+1}(\sqrt{1-x}), P_{2n+1}(1)=1$$

Abscissas: $x_i=1-\xi_i^2$ where ξ_i is the i^{th} positive zero of $P_{2n+1}(x)$.

Weights: $w_i = 2\xi_i^2 w_i^{(2n+1)}$ where $w_i^{(2n+1)}$ are the Gaussian weights of order 2n+1. Remainder:

$$R_n = \frac{2^{4n+3}[(2n+1)!]^4}{(2n)!(4n+3)[(4n+2)!]^2} f^{(2n)}(\xi) \qquad (0 < \xi < 1)$$
4.35

25.4.35

$$\int_{a}^{b} f(y) \sqrt{b-y} \, dy = (b-a)^{3/2} \sum_{i=1}^{n} w_{i} f(y_{i})$$

$$y_{i} = a + (b-a) x_{i}$$

Related orthogonal polynomials:

$$\frac{1}{\sqrt{1-x}}P_{2n+1}(\sqrt{1-x}), P_{2n+1}(1)=1$$

Abscissas: $x_i = 1 - \xi_i^2$ where ξ_i is the i^{th} positive

Weights: $w_i = 2\xi_i^2 w_i^{(2n+1)}$ where $w_i^{(2n+1)}$ are the Gaussian weights of order 2n+1.

Shifted Legendre	Legendre (Spherical)	Shifted Chebyshev of the second kind	Shifted Chebysher of the most kind	Chebyshev of the second kind	Chebyshev of the first kind	Chebyshev of the second kind	Chebyshev of the first kind		Ultraspherical (Gegenbauer)	Jacobi	Jacobi	Name of Polynomial
0	1	0	0	-2	-22	1	-1		1	0	1	a
	1	H	<u> </u>	2	13	-	1		,	1	1	ь
	<u> </u>	$(x-x^2)$	$(x-x^2)^{-\frac{1}{2}}$	$\left(1-\frac{x^2}{4}\right)^{\frac{1}{4}}$	$\left(1-\frac{x^2}{4}\right)^{-\frac{1}{4}}$	$(1-x^2)$ †	(1-x*)-1		$(1-x^2)^{a-\frac{1}{2}}$	$(1-x)^{p-q}T^{q-1}$	$(1-x)^{\alpha}(1+x)^{\beta}$	w(x)
	$P_n(1) = 1$	$U_n^*(1) = n+1$	$T_n^*(1)=1$	$C_n(2)=2$	$S_n(2) = n+1$	$U_n(1) = n + 1$	$T_n(1) = 1$	$C_n^{(0)}(1) = \frac{2}{n},$ $C_0^{(0)}(1) = 1$	$C_n^{(a)}(1) = \binom{n+2\alpha-1}{n}$	$k_n = 1$	$P_n^{(a,\beta)}(1) = \binom{n}{n}$	Standardiza

a

গে

8

গ্ৰ

 $n \neq 0$ n=0

 $=\binom{n+2\alpha-1}{n}$

 $\frac{\pi^{2!-2\alpha}\Gamma(n+2\alpha)}{n!(n+\alpha)[\Gamma(\alpha)]^2}$

 $\alpha \neq 0$

 $\alpha > -\frac{1}{2}$

 $\frac{n!\Gamma(n+q)\Gamma(n+p)\Gamma(n+p-q+1)}{(2n+p)\Gamma^{\mathbf{z}}(2n+p)}$

p-q>-1, q>0

 $\alpha > -1, \beta > -1$

 $\frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{n!\Gamma(n+\alpha+\beta+1)}$

(α ≠ 0)

7,2

 $\alpha = 0$

22.2.4

 $T_n(x)$

22.2.3

 $C_n^{(a)}(x)$

22.2.1

 $P_n^{(a,\beta)}(x)$

 $f_n(x)$

22.2.2

 $G_n(p, q, x)$

22.2.10

 $P_n(x)$

 $U_n^*(x)$

*See page II.

 $P_n^*(x)$

2n+1

 $\frac{2}{2n+1}$

00 | ≥

1014

n=0 $n \neq 0$

22.2.8

 $T_n^*(x)$

22.2.7

 $C_n(x)$

22.2.6

 $S_n(x)$

00 # 47

n=0 $n \neq 0$

47

22.2.5

 $U_n(x)$

22.2. Orthogonality Relations

Standardization

ħ,

Remarks

22.2. Orthogonality Relations—Continued

		22.3.10	22.3.9	22.3.8	22.3.7	22.3.6	22.3.5	22.3.4	22.3.3	22.3.2	22.3.1			22.2.15	22.2.14	22.2.13	22.2.12
		$H_n(x)$	$L_{s}^{\left(a ight) }\left(x ight)$	$P_n(x)$	$U_n(x)$	$T_n(x)$	$C_{\pi}^{(0)}(x)$	$C_{*a}^{(a)}(x)$	$G_n(p, q, x)$	$P_{\mathfrak{n}}^{(a,eta)}(x)$	$P_n^{(a,eta)}(x)$	$f_{\pi}(x)$		$He_n(x)$	$H_n(x)$	$L_n(x)$	$L_n^{(a)}(x)$
	[2]	2 3	n	2 2 2	2 2	[2]	213	2 3	23	n	n	N		Hermite	Hermite	Laguerre	Generalized Laguerre
y 	n!	ni	1	2"	1	2013	1	$\Gamma(\alpha)$	$\frac{\Gamma(q+n)}{\Gamma(p+2n)}$	$\frac{\Gamma(\alpha+n+1)}{n!\Gamma(\alpha+\beta+n+1)}$	2"	,					zed
										+1) + n + 1)	i	d_n		8	8	0	0
-														8	8	8	8
	$(-1)^m \frac{1}{m!2^m(n-2m)!}$	$(-1)^m \frac{1}{m!(n-2m)!}$	$(-1)^m \binom{n+\alpha}{n-m} \frac{1}{m!}$	$(-1)^m \binom{n}{m} \binom{2n-2m}{n}$	$(-1)^m \frac{(n-m)!}{m!(n-2m)!}$	$(-1)^m \frac{(n-m-1)!}{m!(n-2m)!}$	$(-1)^m \frac{(n-m-1)!}{m!(n-2m)!}$	$(-1)^m \frac{\Gamma(\alpha+n-m)}{m!(n-2m)!}$	$(-1)^m \binom{n}{m} \frac{\Gamma(p+2n-m)}{\Gamma(q+n-m)}$	$\binom{n}{m} \frac{\Gamma(\alpha+\beta+n+m+1)}{2^{m}\Gamma(\alpha+m+1)}$	$\binom{n+\alpha}{m}\binom{n+\beta}{n-m}$	C _m	22.3. Explicit Expressions $f_n(x) = d_n \sum_{m=0}^{N} c_m g_m(x)$	10 140	6-22	e - +	e-zTa
1	2		27	$\binom{2m}{\iota}$,0	$\frac{2n-m}{n-m}$	$\frac{n+1)}{+1)}$			Expre	a _n =	a_n	kn	K = -
	Xn-2m	$(2x)^{n-2m}$	S as	x^{n-2m}	$(2x)^{n-2m}$	$(2x)^{n-2m}$	$(2x)^{n-2m}$	$(2x)^{n-2m}$	Lu-m	$(x-1)^m$	$(x-1)^{n-m}(x+1)^m$	$g_m(x)$	essions (x)	$a_n = (-1)^n$	$a_n = (-1)^n$	$\frac{(-1)^n}{n!}$	$k_n = \frac{(-1)^n}{n!}$
											1) m			$\sqrt{2\pi n!}$	$\sqrt{\pi}2^nn!$	1	$\frac{\Gamma(\alpha+n+1)}{n!}$
	P	22 2	$\frac{(-1)^n}{n!}$	$\frac{(2n)!}{2^n(n!)^2}$	12	2n-1	$\frac{2^n}{n}$ $n \neq 0$	$\frac{2^n}{n!} \frac{\Gamma(\alpha+n)}{\Gamma(\alpha)}$	1	$\frac{1}{2^n} \binom{2n+\alpha+\beta}{n}$	$\frac{1}{2^n} \binom{2n+\alpha+\beta}{n}$	Ke n					<u>i+1)</u>
		see 22.11	$\alpha > -1$				$n \neq 0, C_0^{(0)}(1) = 1$	$\alpha > -\frac{1}{2}, \ \alpha \neq 0$	p-q>-1, q>0	$\alpha > -1, \beta > -1$	$\alpha > -1$, $\beta > -1$	Remarks			068		$\alpha > -1$