Faculdade de Engenharia da Universidade do Porto

BDAD: Empresa de Entregas Relatório

Grupo 2:

João Martins – up201706978 José Miguel Maçães – up201806622 Miguel Charchalis - up201506074

Resumo

Neste trabalho define-se uma possível base de dados relativa a uma suposta empresa de entregas, recorrendo para isso a modelação UML, ao Modelo Relacional e também a SQL, esta última não só como linguagem de definição de dados mas também como linguagem de manipulação de dados.

Índice

1. Contexto	4
2. Esquema UML	5
3. Modelo Relacional	6
3.1 Relações	6
3.2 Análise de Dependências Funcionais e Formas Normais	7
3.3 Restrições	11
4. Interrogações	14
5. Gatilhos	16
6. Conclusões	18

1. Contexto

De cada cliente interessa saber o nome, o NIF, o email, a data de nascimento, o número de telemóvel e a palavra passe. Isto tudo também é informação necessária relativa a cada condutor, para além do número de segurança social e a data em que começou a trabalhar na plataforma. Para além disso interessa saber as horas de início e de fim da sessão de trabalho do condutor.

Cada cliente necessita de ter um cartão de crédito, do qual deve ser conhecido o número, o CVV, a data de validade e a rede (VISA, MasterCard, etc.)

Cada condutor deve ter a si associado um veículo, identificado pela matrícula, do qual interessa saber a marca e o modelo. Um condutor pode ser chefe de equipa, sendo responsável por outros condutores.

O cliente pode efetuar o pedido, que será entregue por um condutor e é constituído por uma data, um modo de pagamento e um preço, calculado a partir do preço da comida e da taxa de entrega. Para além disso terá uma avaliação que terá uma classificação, entre 1 e 5, e poderá ou não ter um texto. As classificações são usadas para calcular a média de classificações do condutor. O pedido estará também associado a um local de entrega, caracterizado pela cidade, nome da rua, número da rua, código postal.

O Restaurante tem como elementos identificativos o nome, o tipo, a localização, da qual interessa saber o mesmo que o local de entrega, e a classificação, é a média de classificações de clientes. Disponibiliza pratos, cada um com um nome e preço, que constituem os itens pedidos, juntamente com a quantidade de cada prato. Estes itens fazem parte do pedido e estão presentes na fatura, também associada ao pedido composta por um número identificativo, os itens pedidos e a sua quantidade, o preço total e a data.

2. Esquema UML

3. Modelo Relacional

3.1 Relações

Person (NIF, name, birth_date, email, phone, password)

Customer (<u>customerNIF</u> -> Person)

Driver (driverNIF -> Person, ss_number, start_date, /rating_average)

Vehicle (license plate, make, model)

VehicleDriver (<u>driverNIF</u> -> Driver, <u>vehicle_license_plate</u> -> Vehicle, begin, end)

Team (driverNIF -> Driver, leaderNIF -> Driver)

CreditCard (number, cvv, exp_date, card_type, customerNIF -> Customer)

Demand (<u>demandID</u>, date, /price, specification, delivery_fee, customerNIF -> Customer, driverNIF -> Driver, locationID -> Location, paymentTypeID -> PaymentType, creditCardID -> CreditCard)

PaymentType (paymentTypeID, type)

Review (<u>reviewID</u>, rating, text, demandID -> Demand)

Rating (<u>ratingID</u>, rating, restaurantID -> Restaurant) - Class associação.

Food (<u>foodID</u>, name, price, restaurantID -> Restaurant)

Demanded (<u>demandedID</u>, foodID -> Food, demandID -> Demand, quantity)

Restaurant (<u>restaurantID</u>, name, NIF, locationID ->Location, /rating_average, restaurantTypeID -> RestaurantType)

RestaurantType (restaurantTypeID, type)

Location (<u>locationID</u>, city, street_name, street_number, postal_code)

Invoice (id, /total, date, demandID -> Demand)

InvoiceLine (invoice_lineID, quantity, demandedID -> Demanded, invoiceID -> Invoice)

3.2 Análise de Dependências Funcionais e Formas Normais

3.2.1 Person

{NIF} -> {name, birth_date, email, phone, password}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.2 Customer

(Só um atributo)

3.2.3 Driver

{driverNIF} -> {ss_number, start_date, /rating_average}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.4 Vehicle

{license_plate} -> {make, model}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.5 VehicleDriver

{driverNIF, vehicle_license_plate} -> {begin, end}

Não viola BCNF, pois os dois atributos da esquerda na dependência funcional constituem chaves da relação.

3.2.6 Team

{diverNIF} -> {leaderNIF}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.7 CreditCard

{number, customerNIF} -> {cvv, exp_date, card_type}

Viola BCNF pois duas pessoas podem usar o mesmo cartão, então a informação está repetida.

3.2.8 Demand (originalmente Order)

{demandID} -> {date, /price, specification, delivery_fee, customerNIF, driverNIF, locationID, paymentTypeID, creditCardID}

```
{date} -> {delivery_fee}
```

A segunda dependência funcional viola a BCNF porque o lado esquerdo (date) não é uma superchave, ou seja, o seu fecho não contém a totalidade dos atributos da relação.

Contudo, não viola a 3NF, uma vez que o atributo à direita (delivery_fee) depende de demandID.

3.2.9 PaymentType

```
{paymentTypeID} -> {type}
```

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.10 Review

{reviewID} -> {rating, text, demandID}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.11 Rating

```
{ratingID} -> {rating, restaurantID}
```

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.12 Food

```
{foodID} -> {name, price, restaurantID}
```

Viola BCNF porque o Restaurant, name e price dependem todos da foodID, mas não viola 3NF porque os atributos à direita que são parte de outra key.

3.2.13 Demanded

{demandedID} -> {foodID, demandID, quantity}

Viola BCNF porque a quantity, foodID e demandID dependem da demandedID, mas não viola 3NF porque todos os atributos da direita são parte de demandedID.

3.2.14 Restaurant

{restaurantID} -> {name, NIF, locationID, /rating_average, restaurantTypeID}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.15 RestaurantType

{restaurantTypeID} -> {type}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação.

3.2.16 Location

{locationID} -> {city, street_name, street_number, postal_code}

Não viola BCNF, pois o atributo da esquerda na dependência funcional constitui a chave da relação

3.2.17 Invoice

{id} -> {/total, date, demandID}

Viola BCNF porque date depende da demandID, mas

não viola 3NF porque todos os atributos da direita são parte de outra key.

3.2.18 InvoiceLine

{invoice_lineID} -> {quantity, demandedID, invoiceID}

Viola BCNF porque quantity depende de demandedID, mas

não viola 3NF porque todos os atributos da direita são parte de outra key.

3.3 Restrições

3.3.1 Person

NIF, birth_date, phone, password não podem ser nulos.

Cumprimento de phone maior ou igual a 9.

NIF tem de ter tamanho 9.

3.3.2 Customer

3.3.3 Driver

Comprimento ss_number maior ou igual a 11.

3.3.4 Vehicle

License_plate, make, model não podem ser nulos.

Tamanho de license_plate igual a 8 (a contar com "-").

3.3.5 VehicleDriver

Nenhum atributo pode ser nulo.

3.3.6 Team

Cada driver só tem um leader, ou nenhum, se for ele próprio leader.

3.3.7 CreditCard

Nenhum atributo pode ser nulo.

Comprimento de number maior ou igual a 13 e menor ou igual a 19.

Comprimento de cvv igual a 3.

3.3.8 Demand (originalmente Order)

Date, delivery_fee, price, customerNIF, driverNIF, locationID e paymentTypeID não podem ser nulos.

delivery_fee maior ou igual a 0.

price maior ou igual 0 (não inclui delivery_fee).

3.3.9 PaymentType

Nenhum atributo pode ser nulo.

3.3.10 Review

Pode não existir uma review numa demand, mas se existir não pode ter atributos nulos.

Não pode haver mais que uma review por demand.

Rating maior ou igual a 1 e menor ou igual a 5.

3.3.11 Rating

Pode não existir um rating para um restaurant, mas se existir não pode ter atributos nulos.

Não pode haver mais que um rating por restaurant.

Rating maior ou igual a 1 e menor ou igual a 5.

3.3.12 Food

foodID, name, price e restaurantID não podem ser nulos.

price tem de ser maior que 0.

3.3.13 Demanded

3.3.14 Restaurant

restaurantID, name, NIF, locationID e restaurantTypeID não podem ser nulos.

NIF tem de ter tamanho 9.

Não pode haver 2 Restaurant com o mesmo restaurantID.

3.3.15 RestaurantType

Não pode haver atributos nulos.

3.3.16 Location

locationID, city, street_name e postal_code não podem ser nulos.

3.3.17 Invoice

invoiceID, total, date e demandID não podem ser nulos.

3.3.18 InvoiceLine

invoice_lineID, demandedID e invoiceID não podem ser nulos.

4. Interrogações

4.1 Informação relativa a uma encomenda

Apresenta os vários itens da encomenda, como preço, nome do restaurante, local de entrega, etc.

4.2 Mês com mais faturação

Exibe o mês no qual a faturação dos restaurantes foi maior.

4.3 Lista dos 5 clientes com mais dinheiro gasto em encomendas

Apresenta uma lista do *top-5* de clientes ordenado pelo valor total gasto em encomendas, descendentemente.

4.4 Total de faturação por tipo de restaurante

Exibe uma lista do total de faturação agrupado por tipo de restaurante, ordenada descendentemente.

4,5 Lista de 5 restaurantes com maior número de encomendas

Apresenta uma listagem do *top-5* de restaurantes ordenado pelo número de encomendas a eles associadas.

4.6 Comidas nunca encomendadas

Mostra uma lista de todas as comidas que nunca foram associadas a nenhuma encomenda, ordenadas pelo nome do restaurante, ascendentemente.

4.7 Clientes que encomendaram apenas de um restaurante

Apresenta uma lista de todos os clientes que, sempre que encomendaram, foi do mesmo restaurante, bem como o restaurante em questão.

4.8 Clientes que nunca encomendaram de um restaurante específico

Exibe uma lista de todos os clientes que nunca fizeram nenhuma encomenda de um restaurante específico.

4.9 Tipo de pagamento mais usado por cidade

Mostra os tipos de pagamento mais utilizados agrupados por cidade, ordenados por ordem alfabética das cidades.

4.10 Conclusão relativa a se compensa mais trabalhar em equipa ou a solo

Apresenta uma conclusão relativa à questão de quem ganha mais serem os condutores que pertencem a uma equipa ou os que trabalham sozinhos.

5. Gatilhos

5.1 Cálculo automático da média do rating de um condutor após inserção de uma review

Aquando da inserção de uma Review, é calculada a média de rating do condutor associado a essa Review já tendo em conta o rating relativo à Review.

5.2 Cálculo automático da média do rating de um restaurante após inserção de um rating

Aquando da inserção de um Rating, é calculada a média de rating do restaurante associado a esse Rating já o tendo em conta.

5.3 Cálculo automático do preço de uma encomenda quando lhe é adicionado um item

Sempre que é adicionado um item (Demanded) à encomenda (Demand), o seu preço é adicionado ao total da encomenda, bem como é adicionado o valor da taxa de entrega.

5.4 Associação automática do cartão de crédito do cliente que fez a encomenda, se for esse o método de pagamento

Se o método de pagamento (PaymentType) de uma encomenda (Demand) for cartão de crédito, o cartão de crédito do cliente que fez a encomenda é associado à própria encomenda quando esta é inserida.

5.5 Atualização do total de uma fatura aquando da inserção de uma nova linha na fatura

Quando é inserido uma nova linha na fatura (InvoiceLine), é utilizado o valor do preço dessa linha e adicionado ao total da fatura (Invoice) a que a linha pertence.

5.6 Criação automática de uma linha de fatura quando é inserido um item na encomenda

Se é inserido um novo item (Demanded) na encomenda, é automaticamente criada uma linha de fatura (InvoiceLine) a si associada.

	7 ~ . ~	4 / 4 *	1	C 1	1	/ 0	• 1		1
ר	/ (riacan	automática	ae iima	tatura	allando	<u>Δ</u> 1	ncaria	ııma	<u> Ancomenda</u>
<i>-</i> .	Cilação	automatica	ac aiiia	iatuia	qualido	<u> </u>	III3CI IUU	ulliu	CITCOIIICITUA

Se é inserido uma nova encomenda (Demand), é automaticamente criada uma fatura (Invoice) a si associada.

6. Conclusões

Na generalidade, este trabalho correu como esperado, sendo o único obstáculo a obrigação de serem criados mais *triggers* que os três pedidos só para o funcionamento da base de dados.