

The curse of dimensionality

Tyler Chang

Argonne National Laboratory

CAA&CM Argonne Student Visit Sep 28, 2023

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

$$\stackrel{\circ}{\longrightarrow} 0$$

$$f(x_1,x_2,x_3,\ldots,x_n) \rightarrow y$$

$$\xrightarrow{f}$$
 (

"The dog jumped over the ..."

$$\xrightarrow{f}$$
 "

"fence"

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

Molecular discovery for better battery electrolytes (photo from the Argonne MERF).

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

 $\label{eq:molecular} \mbox{Molecular discovery for better battery} \\ \mbox{electrolytes (photo from the Argonne MERF)}.$

Nonparametric aircraft geometry (photo from NASA Langley).

$$f(x_1,x_2,x_3,\ldots,x_n)\to y$$

 $\label{eq:molecular} \mbox{Molecular discovery for better battery} \\ \mbox{electrolytes (photo from the Argonne MERF)}.$

Nonparametric aircraft geometry (photo from NASA Langley).

Particle accelerator designs (photo from simulation run on HPCs at Argonne).

Want to predict unknown f(x) for observation x

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- **NA**: fit an interpolant (piecewise-linear) to f on \mathcal{X}

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}
- ▶ Real data not perfectly balanced \Rightarrow $\hat{f} \rightarrow f$ non-uniformly

- Want to predict unknown f(x) for observation x
- ▶ ML: Learn approximation $\hat{f} \sim f$ based on training data X
- NA: fit an interpolant (piecewise-linear) to f on X
- ▶ Both cases: more data \Rightarrow better \hat{f}
- ▶ Real data not perfectly balanced \Rightarrow $\hat{f} \rightarrow f$ non-uniformly
- ▶ If we have enough data, it doesn't matter

The curse of dimensionality

10 training points in 1D

10 training points in 2D

The curse of dimensionality no data

Need data in all quadrants?

The curse of dimensionality no data

Need data in all quadrants?

- ▶ Inference in 2D : $2^2 = 4$
- ▶ Inference in 10D : $2^{10} \approx 1000$
- ▶ Inference in $100\text{D}:2^{100}\approx 10^{30}$ (orders of magnitude bigger than exascale)
- ► Many ML problems : inference in 1000+ dimensions

Classical methods to "connect the dots" in high-dimensions (from applied math literature) rely on meshing:

A mesh of n points in \mathbb{R}^d can have up to $\mathcal{O}(n^{d/2})$ elements

- A mesh of n points in \mathbb{R}^d can have up to $\mathcal{O}(n^{d/2})$ elements
- ▶ Takes at least $\mathcal{O}(n^{d/2})$ time to compute

- ▶ A mesh of *n* points in \mathbb{R}^d can have up to $\mathcal{O}(n^{d/2})$ elements
- ► Takes at least $\mathcal{O}(n^{d/2})$ time to compute
- ▶ Requires at least $\mathcal{O}(n^{d/2})$ storage

- A mesh of n points in \mathbb{R}^d can have up to $\mathcal{O}(n^{d/2})$ elements
- ► Takes at least $\mathcal{O}(n^{d/2})$ time to compute
- ▶ Requires at least $\mathcal{O}(n^{d/2})$ storage
- Impossible for large data sets

Results for some methods

Results for some methods

Questions

Everything is a function

The fundamental ML problem (multidimensional inference)

The curse of dimensionality

Not enough data to make accurate predictions Too much data for many "classical" methods

Data from some existing methods

Some courses to take

Math:

- Advanced linear algebra
- Numerical analysis
- Functional analysis

CS:

- ► Data structures & algorithms
- Parallel computing
- ▶ Data analysis and/or Machine learning