

$$\frac{-2\pi}{a} \qquad 0 \qquad \frac{2\pi}{a} \qquad \frac{4\pi}{a} \qquad \frac{6\pi}{a}$$

A repeating atomic configuration in real space leads to a solution that repeats in k-space.

A repeating atomic configuration in real space leads to a solution that repeats in k-space.

$$k_y = \frac{\pi}{a}$$

First Brillouin Zone

$$k_x = -\frac{\pi}{a}$$

$$k_y = -$$

$$k_x = \frac{\pi}{a}$$

$$R\cos\theta_1 + R\cos\theta_2 = n\lambda$$

$$kR\cos\theta_1 + kR\cos\theta_2 = nk\lambda$$

$$-\mathbf{R} \cdot \mathbf{k}_1 \qquad \mathbf{R} \cdot \mathbf{k}_2$$

$$\mathbf{R} \cdot \mathbf{G} = 2\pi n$$

$$\mathbf{R} \cdot \mathbf{G} = 2\pi n$$

$$\mathbf{R} \cdot \mathbf{G} = 2\pi n$$

$$\mathbf{R} = m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2 + m_3 \mathbf{a}_3$$

$$\mathbf{R} \cdot \mathbf{G} = 2\pi n$$

$$\mathbf{R} = m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2 + m_3 \mathbf{a}_3$$

$$\mathbf{G} = n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2 + n_3 \mathbf{b}_3$$

$$\mathbf{R} \cdot \mathbf{G} = 2\pi n$$

$$\mathbf{R} = m_1 \mathbf{a}_1 + m_2 \mathbf{a}_2 + m_3 \mathbf{a}_3$$

$$\mathbf{G} = n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2 + n_3 \mathbf{b}_3$$

$$\mathbf{b}_i = 2\pi \frac{(\mathbf{a}_j \times \mathbf{a}_k)}{\mathbf{a}_i \cdot (\mathbf{a}_j \times \mathbf{a}_k)}$$

What is all this good for?

 θ k

 $\frac{G}{2}$

$$\frac{G}{2k} = \sin \theta$$

$$\frac{G}{2}$$

k

$$\frac{G}{2k} = \sin \theta$$

$$G \leq 2k$$

$$\frac{G}{2}$$

$$\mathbf{G} = n_1 \mathbf{b}_1 + n_2 \mathbf{b}_2 + n_3 \mathbf{b}_3$$

$$\frac{G}{2k} = \sin \theta$$

$$G \leq 2k$$

$$\frac{G}{2}$$

 $2d\sin\theta = m\lambda$

 $G = 2k\sin\theta$

• • • • •

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R}\cdot\Delta\mathbf{k}} \right] \sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p\cdot\Delta\mathbf{k}}$$

$$\lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

$$\mathbf{b}_{1} = 2\pi \frac{\mathbf{a}_{2} \times \mathbf{a}_{3}}{\mathbf{a}_{1} \cdot (\mathbf{a}_{2} \times \mathbf{a}_{3})}$$

$$\mathbf{b}_{2} = 2\pi \frac{\mathbf{a}_{3} \times \mathbf{a}_{1}}{\mathbf{a}_{2} \cdot (\mathbf{a}_{3} \times \mathbf{a}_{1})}$$

$$\mathbf{b}_{3} = 2\pi \frac{\mathbf{a}_{1} \times \mathbf{a}_{2}}{\mathbf{a}_{3} \cdot (\mathbf{a}_{1} \times \mathbf{a}_{2})}$$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R}\cdot\Delta\mathbf{k}} \right] \sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p\cdot\Delta\mathbf{k}}$$

$$\lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

h		•	•	
0. 17.5801 37.1624 64.9739 90 36.3554 i	17.5801 25.2866 42.4835 72.7711 90 39.3563 i	37.1624 42.4835 58.6818 90 23.9993 i 90 46.6866 i	64.9739 72.7711 90 23.9993 i 90 42.0372 i 90 55.662 i	90 36.3554 i 90 39.3563 i 90 46.6866 i 90 55.662 i 90 64.7129 i
$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2}{\mathbf{a}_1 \cdot (\mathbf{a}_2)}$ $\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_3 \times \mathbf{a}_2}{\mathbf{a}_2 \cdot (\mathbf{a}_3)}$	$ullet$ \mathbf{a}_3 \mathbf{a}_3 \mathbf{a}_3	90 46.6866 1	90 55.6621	90 64.7129 1

 $\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}} \qquad \lambda = 1.542 \; \mathring{\mathbf{A}} \\ a = 3.61 \; \mathring{\mathbf{A}} \\ 0. \qquad 12.3318 \qquad 25.2866 \qquad 39.8455 \qquad 58.6818 \\ \hline 17.5801 \qquad 25.2866 \qquad 28.5265 \qquad 37.1624 \qquad 59.3584 \qquad 72.7711 \\ \hline 39.8455 \qquad 42.4835 \qquad 59.3584 \qquad 64.9739 \qquad 90. - 20.9914 \; \mathbf{i} \\ 58.6818 \qquad 17.5801 \qquad 37.1624 \qquad 64.9739 \qquad 90. - 36.3554 \; \mathbf{i} \\ 17.5801 \qquad 25.2866 \qquad 42.4835 \qquad 72.7711 \qquad 90. - 20.9914 \; \mathbf{i} \\ 90. \qquad 37.1624 \qquad 42.4835 \qquad 58.6818 \qquad 90. - 23.9993 \; \mathbf{i} \qquad 90. - 46.6866 \; \mathbf{i} \\ 64.9739 \qquad 72.7711 \qquad 90. - 23.9993 \; \mathbf{i} \qquad 90. - 42.0372 \; \mathbf{i} \qquad 90. - 55.662 \; \mathbf{i} \\ 90. - 36.3554 \; \mathbf{i} \qquad 90. - 39.3563 \; \mathbf{i} \qquad 90. - 46.6866 \; \mathbf{i} \qquad 90. - 55.662 \; \mathbf{i} \qquad 90. - 64.7129 \; \mathbf{i} \\ \mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)} \\ \mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)} \\ \mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \underbrace{\sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}}}_{\mathbf{a} = 3.61 \text{ Å}} \lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

$$0. \frac{12.3318}{25.2866} \frac{25.2866}{28.5265} \frac{28.5265}{37.1624} \frac{42.4835}{59.3584} \frac{58.6818}{61.7131} \frac{61.7131}{72.7711} \frac{72.7711}{90. -20.9914 \text{ i}} \frac{90. -20.9914 \text{ i}}{90. -36.3554 \text{ i}}$$

$$17.5801 \frac{37.1624}{17.5801} \frac{42.4835}{27.7711} \frac{58.6818}{90. -23.9993 \text{ i}} \frac{90. -36.3554 \text{ i}}{90. -36.3554 \text{ i}}$$

$$17.5801 \frac{25.2866}{42.4835} \frac{42.4835}{58.6818} \frac{90. -23.9993 \text{ i}}{90. -46.6866 \text{ i}} \frac{90. -36.3554 \text{ i}}{90. -36.3554 \text{ i}} \frac{90. -36.3554 \text{ i}}{90. -36.3554 \text{ i}}$$

$$17.5801 \frac{37.1624}{90. -36.3554 \text{ i}} \frac{42.4835}{90. -23.9993 \text{ i}} \frac{90. -46.6866 \text{ i}}{90. -55.662 \text{ i}} \frac{90. -64.7129 \text{ i}}{90. -64.7129 \text{ i}}$$

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)}$$

$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$$

```
\lambda = 1.542 \text{ Å}
                                                                a = 3.61 \text{ Å}
  h
                                          20 2455
                   12 2218
                              25.2866
                                                            58.6818
                   17.5801
                                          42.4835
                              37.1624
                                                            72.7711
       25.2866
                                                            90. - 20.9914 i
                                          64.9739
                   42.4835
                                          90. - 20.9914 i
                                                            90. - 36.3554 i
       58.6818
                              72.7711
h
                  17.5801
                                                                    90. - 36.3554 i
  Θ.
                                   37.1624
                                                   64.9739
  17.5801
                  25,2866
                                                   72.7711
                                                                    90. - 39.3563 i
                                   42.4835
  37.1624
                                                   90. - 23.9993 i 90. - 46.6866 i
                  42.4835
                                   58.6818
  64.9739
                                   90. – 23.9993 i
                                                   90. - 42.0372 i 90. - 55.662 i
                  72.7711
  90. - 36.3554 i
                  90. - 39.3563 i 90. - 46.6866 i
                                                   90. – 55.662 i
                                                                    90. - 64.7129 i
       Θ.
                             25.2866
                                           58.6818
                                                         90. - 42.0372 i
       17.5801
                             17.5801
                                           42.4835
                                                         90. – 23.9993 i
       37.1624
                             25.2866
                                           37.1624
                                                         72.7711
       64.9739
                             42.4835
                                           42.4835
                                                         64.9739
       90. – 36.3554 i
                             72.7711
                                           58.6818
                                                         72.7711
```

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \underbrace{\sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}}}_{\mathbf{a} = 3.61 \text{ Å}} \lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

$$b_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$b_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)}$$

$$b_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}} \qquad \lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

$$\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3)}$$

$$\mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_2 \cdot (\mathbf{a}_3 \times \mathbf{a}_1)}$$

$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \left[\sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}} \right] \quad \begin{array}{c} \lambda = 1.542 \text{ Å} \\ a = 3.61 \text{ Å} \end{array}$$

0.	8.20862	16.5921	25.3618	34.8277
12.3318	14.8864	20.8909	28.5957	37.5706
25.2866	26.7679	30.9177	37.2228	45.494
39.8455	41.0286	44.5453	50.4176	59.127
58.6818	60.0134	64.2575	72.8742	90. – 13.4335 i

$$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)}$$

$$\mathcal{E} \propto f_e(\theta) \left[\sum_{\mathbf{R}} e^{i\mathbf{R} \cdot \Delta \mathbf{k}} \right] \left[\sum_{\mathbf{r}_p} f_{ap}(\theta) e^{i\mathbf{r}_p \cdot \Delta \mathbf{k}} \right] \quad \lambda = 1.542 \text{ Å}$$

$$a = 3.61 \text{ Å}$$

Θ.	16.5921	34.8277	58.9444	90. – 30.2067 i
14.8864	14.8864	28.5957	48.1721	90. – 11.999 i
30.9177	25.2866	30.9177	45.494	73.1867
50.4176	41.0286	41.0286	50.4176	73.5869
90 13	.4335 i 64.2575	58.6818	64.2575	90. – 13.4335 i

Θ.	8.20862	16.5921	25.361 8	34.8277
12.331 8	14.8864	20.8909	28.5957	37.570 6
25.2866	26.7679	30.9177	37.2228	45.494
39.845 5	41.0286	44.5453	50.4176	59.127
58.6818	60.0134	64.2575	72.874 2	90. – 13.4335 i
$\mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \wedge \mathbf{a}_2}{\mathbf{a}_3 \cdot (\mathbf{a}_1 \times \mathbf{a}_2)} \bullet \bullet \bullet \bullet$				
a 3 ·	$(\mathbf{a}_1 \wedge \mathbf{a}_2)$			