PRUEBAS DE HIPÓTESIS

	Hipótesis nula	Estadístico de prueba
6.01	$\mathbf{H_0:} \ \mu = \mu_0$ $\sigma^2 conocida$	$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$
6.02	$\mathbf{H_0:} \ \mu = \mu_0$ $\sigma^2 desconocida$	$t = \frac{\overline{x} - \mu_0}{\sqrt[S]{n}}$
6.03	$\mathbf{H_0:} \ \mu_1 = \mu_2$ $\sigma_1^2 \ \mathbf{y} \ \sigma_2^2 \ \mathbf{conocidas}$	$z = \frac{\left(\overline{x}_1 - \overline{x}_2\right)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$
6.04	H₀: $\mu_1 = \mu_2$ $\sigma_1^2 = \sigma_2^2$ desconocidas	$t = \frac{\left(\overline{x}_{1} - \overline{x}_{2}\right)}{S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}} siendo S_{p}^{2} = \frac{(n_{1} - 1)s_{1}^{2} + (n_{2} - 1)s_{2}^{2}}{n_{1} + n_{2} - 2}$
6.05	H₀: $\mu_1 = \mu_2$ $\sigma_1^2 \neq \sigma_2^2 \text{ desconocidas}$	$t = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$
6.06	H₀: $p = p_0$	$z = \frac{\hat{P} - p_0}{\sqrt{\frac{p_0 q_0}{n}}}$
6.07	H₀: $p_1 = p_2$	$z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} siendo \hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$
6.08	$\mathbf{H_0:} \ \boldsymbol{\sigma}^2 = \boldsymbol{\sigma}_0^2$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$
6.09	$\mathbf{H_{0}:}\ \sigma_{1}^{2}=\sigma_{2}^{2}$	$f = \frac{s_1^2}{s_2^2}$

		Para pruebas sobre una media
6.10	Tamaño de muestra dados α y β	$n = \frac{(z_{\alpha} + z_{\beta})^2 \cdot \sigma^2}{\delta^2}$ para pruebas unilaterales
		$n = \frac{(z_{\alpha/2} + z_{\beta})^2 \cdot \sigma^2}{\delta^2}$ para pruebas bilaterales
		Para pruebas sobre dos medias
		$n = \frac{(z_{\alpha} + z_{\beta})^{2} \cdot (\sigma_{1}^{2} + \sigma_{2}^{2})}{\delta^{2}} para \ pruebas$
		$unilaterales\ con\ n=n_1=n_2$
6.11	Estadístico de prueba para Bondad de Ajuste	$\chi_o^2 = \sum_i \frac{(o_i - e_i)^2}{e_i}$