Concours National Commun Session 2015 Filière PSI

Épreuve de Mathématiques II : Un corrigé 1

Première partie Résultats préliminaires

Dorénavant $(E_{1,1},E_{1,2},E_{2,1},E_{2,2})$ désigne la base canonique $\mathcal{M}_2(\mathbb{R})$.

1.1.1. Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
. On a

$$\chi_A = \begin{vmatrix} X - a & -b \\ -c & X - d \end{vmatrix} = (X - a)(X - d) - bc = X^2 - (a + d)X + ad - bc = X^2 - \operatorname{tr}(A)X + \det(A),$$

donc

$$A \in \mathcal{U} \iff A$$
 possède deux valeurs propres réelles distinctes
$$\iff \chi_A \text{ possède deux racines réelles distinctes}$$

$$\iff \Delta = (\operatorname{tr}(A))^2 - 4 \operatorname{det} A > 0,$$

ainsi
$$\mathcal{U} = \left\{ A \in \mathcal{M}_2(\mathbb{R}) : (\operatorname{tr}(A))^2 - 4 \det A > 0 \right\}.$$

1.1.2. Pour tout
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
, on a

$$tr(A) = a + d$$
 et $det(A) = ad - bc$,

donc les applications $A \longrightarrow \operatorname{tr}(A)$ et $A \longrightarrow \det(A)$ sont polynomiales en les coefficients de A, dès lors elles sont continues.

- **1.1.3.** La matrice diagonale A = diag(1,0) possède deux valeurs propres réelles distinctes, à savoir 0 et 1, donc $A \in \mathcal{U}$ et par suite $\mathcal{U} \neq \emptyset$.
 - Considérons l'application $\varphi: A \longmapsto (\operatorname{tr}(A))^2 4 \det A$, définie sur $\mathcal{M}_2(\mathbb{R})$ et à valeurs réelles. Comme les applications $A \longrightarrow \operatorname{tr}(A)$ et $A \longrightarrow \det(A)$ sont continues d'après la question précédente, alors l'application φ est aussi continue en tant que somme d'applications continues. Par ailleurs, on a ²

$$\mathcal{U} = \{ A \in \mathcal{M}_2(\mathbb{R}) : \varphi(A) > 0 \} = \{ A \in \mathcal{M}_2(\mathbb{R}) : \varphi(A) \in]0, +\infty[\} = \varphi^{-1}(]0, +\infty[)$$

et, comme $]0 + \infty[$ est une partie ouverte de \mathbb{R} , alors $^3 \mathcal{U}$ est un ouvert de $\mathcal{M}_2(\mathbb{R})$.

1.1.4. D'après la question **1.1.1.** On a

$$\left\{ (\operatorname{tr} A, \det A) \ : \ A \in \mathcal{U} \right\} = \left\{ (\operatorname{tr} A, \det A) \ : \ \det A < \frac{1}{4} \left(\operatorname{tr} (A) \right)^2 \right\} = \left\{ (x, y) \in \mathbb{R}^2 \ : \ y < \frac{1}{4} x^2 \right\}.$$

- 1. Ce corrigé est proposé par Adham Elbekkali, professeur de mathématiques de la classe PCSI 2 au CPGE de Tanger
- 2. Soient $f: E \longrightarrow F$ une application et $B \subset F$. L'image réciproque de la partie B par l'application f est $f^{-1}(B) = \{x \in E : f(x) \in B\}$
- 3. L'image réciproque d'un ouvert par une application continue est un ouvert.

- **1.1.5.** Soit $A \in \mathcal{U}$, alors A est une matrice carrée réelle d'ordre 2 possédant de valeurs propres réelles distinctes, dès lors A diagonalisable dans $\mathcal{M}_2(\mathbb{R})$.
 - Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{V}$. On a $\chi_M = X^2 \operatorname{tr}(M)X + \det(M)$, donc

$$Sp(M) = \left\{ \lambda(M) = \frac{\text{tr}(M) + \sqrt{(\text{tr}(M))^2 - 4\det M}}{2}, \mu(M) = \frac{\text{tr}(M) - \sqrt{(\text{tr}(M))^2 - 4\det M}}{2} \right\}.$$

Déterminons le sous espace propre $E_{\lambda(M)}(M)$. Soit $X=\left(\begin{array}{c}x\\y\end{array}\right)\in\mathcal{M}_{2,1}(\mathbb{R}).$ On a

$$MX = \lambda X \iff \begin{cases} ax + by = \lambda(M)x \\ cx + dy = \lambda(M)y \end{cases}$$

$$\iff \begin{cases} (a - \lambda(M))x + by = 0 \\ cx + (d - \lambda(M))y = 0 \end{cases}$$

$$\iff \begin{cases} y = \frac{\lambda(M) - a}{b}x & \text{car } b \neq 0 \text{ puisque } M \in \mathcal{V} \\ cx + (d - \lambda(M))y = 0 \end{cases}$$

$$\iff \begin{cases} y = \frac{\lambda(M) - a}{b}x \\ 0 = 0 \end{cases}$$

$$\iff y = \frac{\lambda(M) - a}{b}x,$$

$$\operatorname{donc} E_{\lambda}(M) = \left\{ \left(\begin{array}{c} x \\ \frac{\lambda(M) - a}{b} x \end{array} \right) \ : \ x \in \mathbb{R} \right\} = \operatorname{Vect} \left(\left(\begin{array}{c} 1 \\ \frac{\lambda(M) - a}{b} \end{array} \right) \right). \text{ En \'echangeant les r\^oles de } \lambda(M)$$

et $\mu(M)$ on trouve $E_{\mu(M)}(M) = \text{Vect}\left(\left(\begin{array}{c} 1\\ \underline{\mu(M)-a}\\ b \end{array}\right)\right)$. On déduit la relation de diagonalisation suivante

$$f_1(M)^{-1}Mf_1(M) = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$$
 avec $f_1(M) = \begin{pmatrix} 1 & 1 \\ \frac{\lambda(M) - a}{b} & \frac{\mu(M) - a}{b} \end{pmatrix}$.

Comme les applications $M \longmapsto \lambda(M)$ et $M \longmapsto \mu(M)$, définies sur \mathcal{V} et à valeurs réelles, sont continues, alors les applications $M \longmapsto \frac{\lambda(M) - a}{b}$, $M \longmapsto \frac{\mu(M) - a}{b}$ et $M \longmapsto 1$, définies sur \mathcal{V} et à valeurs réelles, sont aussi continues, du coup l'application $f_1 : \mathcal{V} \longrightarrow E_{1,1} + E_{1,2} + \frac{\lambda(M) - a}{b} E_{2,1} + \frac{\mu(M) - a}{b} E_{2,2}$, définies sur \mathcal{V} et à valeurs $\mathcal{M}_2(\mathbb{R})$, est continue.

1.2.1. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
. on a

$$M \in \mathcal{C}(B) \iff MB = BM$$

$$\iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$\iff \begin{pmatrix} \alpha a & \beta b \\ \alpha c & \alpha d \end{pmatrix} = \begin{pmatrix} \alpha a & \alpha b \\ \beta c & \beta d \end{pmatrix}$$

$$\iff \beta b = \alpha b \text{ et } \alpha c = \beta c$$

$$\iff (\beta - \alpha)b = (\alpha - \beta)c = 0$$

$$\iff b = c = 0, \quad \text{car } \alpha \neq \beta$$

donc
$$\mathscr{C}(B) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}) : b = c = 0 \right\} = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} : a, d \in \mathbb{R} \right\}.$$

1.2.2. On a

$$\begin{array}{ll} UBU^{-1} = VBV^{-1} & \iff & (V^{-1}U)B = B(V^{-1}U) \\ & \iff & V^{-1}U \in \mathscr{C}(M) \\ & \iff & V^{-1}U \text{ est diagonale d'après la question précédente.} \end{array}$$

1.3 Notons C_1 et C_2 les colonnes de la matrices P, et α et β les coefficients diagonaux de $D:D=\mathrm{diag}(\alpha,\beta)$. On a

$$P^{-1}MP = D \iff MP = PD$$

$$\iff \left(\begin{array}{c|c} M \end{array}\right) \left(\begin{array}{c|c} C_1 & C_2 \end{array}\right) = \left(\begin{array}{c|c} C_1 & C_2 \end{array}\right) \left(\begin{array}{c|c} \alpha & 0 \\ \hline 0 & \beta \end{array}\right)$$

$$\iff \left(\begin{array}{c|c} MC_1 & MC_2 \end{array}\right) = \left(\begin{array}{c|c} \alpha C_1 + 0C_2 & 0C_1 + \beta C_2 \end{array}\right)$$

$$\iff \left(\begin{array}{c|c} MC_1 & MC_2 \end{array}\right) = \left(\begin{array}{c|c} \alpha C_1 & \beta C_2 \end{array}\right)$$

$$\iff MC_1 = \alpha C_1 \text{ et } MC_2 = \beta C_2$$

 \iff α et β sont les valeurs propres de M et C_1 et C_2 sont des vecteurs propres de M

Deuxième partie

Quelques propriétés du groupe spécial orthogonal en dimension 2

$$\textbf{2.1. Soit } M = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}). \text{ On a } {}^tAA = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix}, \text{ donc }$$

$$A \in SO_2(\mathbb{R}) \iff {}^tAA = I_2 \text{ et det } A = 1 \\ \iff \begin{pmatrix} a^2 + b^2 & ac + bd \\ ac + bd & c^2 + d^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ et } ad - bc = 1$$

$$\Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ ac + bd = 0 \\ ad - bc = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ (a - d)^2 + (b + c)^2 = 0 \quad L_2 \leftarrow L_2 + L_1 - 2L_4 \\ ac + bd = 0 \\ ad - bc = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ d = a \text{ et } c = -b \\ 0 = 0 \\ a^2 + b^2 = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ d = a \text{ et } c = -b \end{cases}$$

$$\Leftrightarrow \begin{cases} d = a \text{ et } c = -b \\ 0 = 0 \\ a^2 + b^2 = 1 \\ d = a \text{ et } c = -b \end{cases} ,$$

$$\Leftrightarrow \begin{cases} a^2 + b^2 = 1 \\ d = a \text{ et } c = -b \end{cases} ,$$

$$\operatorname{d'où}\operatorname{SO}_2(\mathbb{R}) = \left\{ \left(\begin{array}{cc} a & c \\ b & d \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) \ : \ a^2 + b^2 = 1, \\ d = a \text{ et } c = -b \right\} = \left\{ \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \in \mathcal{M}_2(\mathbb{R}) \ : \ a^2 + b^2 = 1 \right\}.$$

- **2.2.** $SO_2(\mathbb{R}) \subset GL_2(\mathbb{R})$ car : $\forall A \in SO_2(\mathbb{R})$, det $A = 1 \neq 0$.
 - $I_2 \in SO_2(\mathbb{R})$ car ${}^tI_2I_2 = I_2I_2 = I_2$ et det $I_2 = 1$.
 - Soient $A, B \in SO_2(\mathbb{R})$. On a ${}^t(AB)(AB) = {}^tB({}^tBA)B = {}^tBI_2B = {}^tBB = I_2$ et $\det(AB) = \det A \det B = 1$, donc $AB \in SO_2(\mathbb{R})$.
 - Soit $A \in SO_2(\mathbb{R})$. On a $^t(A^{-1})A^{-1} = (^tA)^{-1}A^{-1} = (A^tA)^{-1} = I_2^{-1} = I_2$, donc $A^{-1} \in SO_2(\mathbb{R})$. On en déduit que $SO_2(\mathbb{R})$ est un sous-groupe de $GL_2(\mathbb{R})$.
- **2.3.1.** Pour tout $\theta \in \mathbb{R}$, on a

$$\Phi(\theta) = \cos(\theta)E_{1,1} - \sin(\theta)E_{1,2} + \sin(\theta)E_{2,1} + \cos(\theta)E_{2,2},$$

donc l'application Φ est continue puisque cos et sin sont continues.

- **2.3.2.** Pour tout $\theta \in \mathbb{R}$, on a $\cos^2 \theta + \sin^2 \theta = 1$, donc, en vertu de la question **2.1.**, $\Phi(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \in SO_2(\mathbb{R})$. D'où l'inclusion $\Phi(\mathbb{R}) \subset SO_2(\mathbb{R})$.
 - Soit $A \in SO_2(\mathbb{R})$, alors, en vertu de la question 2.1., il existe $a, b \in \mathbb{R}$ tels que

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \quad \text{et} \quad a^2 + b^2 = 1.$$

De $a^2+b^2=1$, on déduit l'existence de $\theta\in\mathbb{R}$ tel que $a=\cos\theta$ et $b=\sin\theta$, par suite $A=\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}=\Phi(\theta)\in\Phi(\mathbb{R})$. D'où l'inclusion $\mathrm{SO}_2(\mathbb{R})\subset\Phi(\mathbb{R})$.

- Conclusion : $\Phi(\mathbb{R}) = SO_2(\mathbb{R})$.
- **2.4.1.** Puisque l'application $T: M \mapsto {}^tM$, définie sur $\mathcal{M}_2(\mathbb{R})$, est linéaire et $\mathcal{M}_2(\mathbb{R})$ est un espace vectoriel de dimension finie, alors ⁴ elle est continue.
- **2.4.2.** Par définition de $SO_2(\mathbb{R})$, on a

$$\forall U \in SO_2(\mathbb{R}), \quad U^{-1} = {}^tU,$$

donc l'application $\varphi: U \longmapsto U^{-1}$, définie sur $SO_2(\mathbb{R})$, est la restriction de l'application $T: U \longmapsto^t U$, définie sur $\mathcal{M}_2(\mathbb{R})$, qui est continue d'après la question précédente, ainsi l'application $\varphi: U \longmapsto U^{-1}$ est continue.

2.4.3. Considérons les applications $\phi: U \longmapsto UA$ et $\psi: U \longmapsto (\phi(U), \varphi(U)) = (UA, U^{-1})$, définie sur $SO_2(\mathbb{R})$, et $\Psi: (A, B) \longmapsto AB$, définie sur $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$, de telle sorte que

$$\forall U \in SO_2(\mathbb{R}), \quad \Psi \circ \psi(U) = \Psi (\psi(U)) = \Phi (UA, U^{-1}) = UAU^{-1}.$$

- L'application $U \mapsto UA$, définie sur $\mathcal{M}_2(\mathbb{R})$ qui est un espace vectoriel de dimension finie, est linéaire, donc elle continue, par suite sa restriction à $SO_2(\mathbb{R})$, à savoir ϕ , est continue. Par ailleurs, d'après la question précédente, l'application φ est continue, dès lors l'application $\psi: U \longmapsto (\phi(U), \varphi(U))$ est continue.
- Ψ est une application bilinéaire sur l'espace vectoriel $\mathcal{M}_2(\mathbb{R})$, qui est de dimension finie, donc ⁵ elle continue.
- Conclusion : l'application $\Delta = \Psi \circ \psi : U \longmapsto \Psi \circ \psi(U) = UAU^{-1}$ est continue comme composée de deux applications continues.
- **2.4.4.** On considère l'application $\pi: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathbb{R}$ définie par

$$\forall A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}), \quad \pi(A) = a.$$

Il est clair que π est linéaire et, comme $\mathcal{M}_2(\mathbb{R})$ est de dimension finie, alors π est continue.

Maintenant, considérons l'application $S = \pi o \sigma o \Delta o \Phi$:

$$S: \mathbb{R} \xrightarrow{\Phi} \mathrm{SO}_2(\mathbb{R}) \xrightarrow{\Delta} \mathscr{S}_A \xrightarrow{\sigma} \mathcal{M}_2(\mathbb{R}) \xrightarrow{\pi} \mathbb{R}.$$

Comme les applications Φ , Δ , σ et π sont continues, alors l'application est aussi continue.

Supposons par l'absurde que σ n'est pas constante. Puisque $\sigma(\mathscr{S}_A) \subset \{B_1, B_2\}$ et σ n'est pas constante,

- 4. Toute application linéaire d'un espace vectoriel de dimension finie vers un autre est continue
- 5. Tout application bilinéaire d'un espace vectoriel de dimension finie vers un autre est continue

alors $\sigma(\mathscr{S}_A) = \{B_1, B_2\}$. D'après la question **2.3.2.**, on a $\Phi(\mathbb{R}) = \mathrm{SO}_2(\mathbb{R})$ et, par définition de \mathscr{S}_A , on a $\Delta(\mathrm{SO}_2(\mathbb{R})) = \mathscr{S}_A$ et enfin $\pi(\{B_1, B_2\}) = \{\alpha, \beta\}$, dès lors $S(\mathbb{R}) = \{\alpha, \beta\}$. Comme S est continue, alors $S(\mathbb{R})$ est un intervalle de \mathbb{R} , ce qui absurde puisque on vient de trouver que $S(\mathbb{R}) = \{\alpha, \beta\}$ et $\{\alpha, \beta\}$ n'est pas un intervalle de \mathbb{R} .

Troisième partie

Non continuité de la diagonalisation dans tout l'ouvert \mathcal{U}

- **3.1.1.** Pour simplifier l'écriture on écrit C_1 et C_2 au lieu de $C_1(M)$ et $C_2(M)$.
 - Puisque $f^{-1}(M)Mf(M)$ est une matrice diagonale, alors, d'après la question 1.3., les vecteurs colonnes de f(M) dont des vecteurs propres associées aux deux valeurs propres distinctes de M.
 - Posons $D = f^{-1}(M)Mf(M)$ et notons α, β les coefficients diagonaux de D. Donc Mf(M) = f(M)D et en suite ${}^tf(M)Mf(M) = {}^tf(M)f(M)D$. En transposant les matrices des deux membres de cette égalité et en tenant du fait que $M, S \in \mathscr{S}_2(\mathbb{R})$, on obtient ${}^tf(M)Mf(M) = D^tf(M)f(M)$. En combinant ces deux dernière égalités, on déduit $D^tf(M)f(M) = {}^tf(M)f(M)D$ (*). Par ailleurs, on a

$${}^t f(M) f(M) = \left(\begin{array}{c|c} {}^t C_1 \\ \hline {}^t C_2 \end{array} \right) \left(\begin{array}{c|c} C_1 \\ \hline \end{array} \right) = \left(\begin{array}{c|c} {}^t C_1 C_1 & {}^t C_1 C_2 \\ \hline {}^t C_2 C_1 & {}^t C_2 C_2 \end{array} \right) = \left(\begin{array}{c|c} \langle C_1, C_1 \rangle & \langle C_1, C_2 \rangle \\ \hline \langle C_1, C_2 \rangle & \langle C_2, C_2 \rangle \end{array} \right),$$

donc

$$D^{t}f(M)f(M) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \begin{pmatrix} \langle C_{1}, C_{1} \rangle & \langle C_{1}, C_{2} \rangle \\ \langle C_{1}, C_{2} \rangle & \langle C_{2}, C_{2} \rangle \end{pmatrix} = \begin{pmatrix} * & * \\ \beta \langle C_{1}, C_{2} \rangle & * \end{pmatrix} \quad (\star\star)$$

et

$${}^{t}f(M)f(M)D = \left(\begin{array}{ccc} \langle C_{1}, C_{1} \rangle & \langle C_{1}, C_{2} \rangle \\ \langle C_{1}, C_{2} \rangle & \langle C_{2}, C_{2} \rangle \end{array} \right) \left(\begin{array}{ccc} \alpha & 0 \\ 0 & \beta \end{array} \right) = \left(\begin{array}{ccc} * & * \\ \alpha \langle C_{1}, C_{2} \rangle & * \end{array} \right) \quad (\star \star \star).$$

En combinant (\star) , $(\star\star)$ et $(\star\star\star)$, on déduit que $\alpha \langle C_1, C_2 \rangle = \beta \langle C_1, C_2 \rangle$ ou encore $(\alpha - \beta) \langle C_1, C_2 \rangle = 0$. Il s'ensuit que $\langle C_1, C_2 \rangle = 0$ puisque $\alpha \neq \beta$, c.à.d. C_1 et C_2 sont orthogonaux.

3.1.2. On a

$$\left\|\frac{C_1(M)}{\|C_1(M)\|_2}\right\|_2 = \left\|\frac{C_2(M)}{\|C_2(M)\|_2}\right\|_2 = 1 \text{ et } \left\langle\frac{C_1(M)}{\|C_1(M)\|_2}, \frac{C_2(M)}{\|C_2(M)\|_2}\right\rangle = \frac{1}{\|C_1(M)\|_2 \|C_2(M)\|_2} \left\langle C_1(M), C_2(M)\right\rangle = 0,$$

donc la matrice dont la première (resp. la deuxième) colonne est $\frac{C_1(M)}{\|C_1(M)\|_2}$ (resp. $\frac{C_1(M)}{\|C_1(M)\|_2}$) est orthogonale.

3.1.3. Puisque $\alpha(M)$ est le déterminant d'une matrice qui est orthogonale d'après la question précédente, alors $\alpha(M) = \pm 1$. On a $\left\| \alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2} \right\|_2 = \left\| \frac{C_2(M)}{\|C_2(M)\|_2} \right\|_2 = 1$, $\left\langle \alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2}, \frac{C_2(M)}{\|C_2(M)\|_2} \right\rangle = 0$ et

$$\det(g(M)) = \det\left(\alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2}, \frac{C_2(M)}{\|C_2(M)\|_2}\right) = \alpha(M) \det\left(\frac{C_1(M)}{\|C_1(M)\|_2}, \frac{C_2(M)}{\|C_2(M)\|_2}\right) = \alpha(M)\alpha(M) = 1,$$

donc $g(M) \in SO_2(\mathbb{R})$.

3.1.4. • On a

$$\forall M \in \mathcal{U} \cap \mathscr{S}_2(\mathbb{R}), \quad g(M) = \left(\alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2}, \frac{C_2(M)}{\|C_2(M)\|_2}\right).$$

Puisque l'application $f: M \longmapsto f(M) = (C_1(M), C_2(M))$ est continue, alors les applications C_1 et C_2 sont continues, et de plus l'application $\alpha = \det of$ est continue comme composée de deux applications continues, donc les applications $M \longmapsto \alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2}$ et $M \longmapsto \frac{C_2(M)}{\|C_2(M)\|_2}$ sont continues et par conséquent l'application g est continue.

• Soient $M \in \mathcal{U} \cap \mathscr{S}_2(\mathbb{R})$, L_1 et L_2 les lignes de la matrices M et $D = \operatorname{diag}(\lambda, \mu) = f^{-1}(M)Mf(M)$. On a Mf(M) = f(M)D, donc

$$\left(\begin{array}{c|c} L_1 \\ \hline L_2 \end{array}\right) \left(\begin{array}{c|c} C_1(M) & C_2(M) \end{array}\right) = \left(\begin{array}{c|c} C_1(M) & C_2(M) \end{array}\right) \left(\begin{array}{c|c} \lambda & 0 \\ \hline 0 & \mu \end{array}\right)$$

ou encore

$$\left(\begin{array}{c|c} L_1C_1(M) & L_1C_2(M) \\ \hline L_2C_1(M) & C_2L_2(M) \end{array}\right) = \left(\begin{array}{c|c} \lambda C_1(M) & \mu C_2(M) \end{array}\right) \quad \spadesuit.$$

Dès lors

$$Mg(M) = \left(\frac{L_1}{L_2}\right) \left(\alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2} \left| \frac{C_2(M)}{\|C_2(M)\|_2} \right) \right)$$

$$= \left(\alpha(M) L_1 \frac{C_1(M)}{\|C_1(M)\|_2} L_1 \frac{C_2(M)}{\|C_2(M)\|_2} \right)$$

$$= \left(\alpha(M) L_2 \frac{C_1(M)}{\|C_1(M)\|_2} L_2 \frac{C_2(M)}{\|C_2(M)\|_2} \right)$$

$$= \left(\frac{\alpha(M)}{\|C_1(M)\|_2} \left(\frac{L_1C_1(M)}{L_2C_1(M)} \right) \left| \frac{1}{\|C_2(M)\|_2} \left(\frac{L_1C_2(M)}{L_2C_2(M)} \right) \right|$$

$$= \left(\frac{\alpha(M)}{\|C_1(M)\|_2} \lambda C_1(M) \left| \frac{1}{\|C_2(M)\|_2} \mu C_2(M) \right| \right) \text{ d'après } \spadesuit$$

$$= \left(\alpha(M) \frac{C_1(M)}{\|C_1(M)\|_2} \frac{C_2(M)}{\|C_2(M)\|_2} \right) \left(\lambda \quad 0 \atop 0 \quad \mu \right)$$

$$Mg(M) = g(M)D,$$

ainsi $g(M)^{-1}Mg(M)=D$. Finalement la matrice $g(M)^{-1}Mg(M)$ est diagonale.

- **3.2.1.** Soit $M \in \mathscr{S}_B$. Il existe donc $U \in SO_2(\mathbb{R})$ tel que $M = UBU^{-1}$. Puisque M et B sont semblables, alors $Sp(M) = Sp(B) = \{\alpha, \beta\}$, donc M admet deux valeurs propres réelles distinctes et il s'ensuit que $M \in \mathcal{U}$. Comme $U \in SO_2(\mathbb{R})$, alors $U^{-1} = {}^tU$ et par suite $M = UB^tU$. On a ${}^tM = {}^t({}^tU)^tD^tU = UD^tU = M$, donc $M \in \mathscr{S}_2(\mathbb{R})$. Ainsi $M \in \mathcal{U} \cap \mathscr{S}_2(\mathbb{R})$. D'où l'inclusion $\mathscr{S}_B \subset \mathcal{U} \cap \mathscr{S}_2(\mathbb{R})$.
- **3.2.2.** Soit $M \in \mathscr{S}_B$. D'après la question précédente, on a $\mathscr{S}_B \subset \mathcal{U} \cap \mathscr{S}_2(\mathbb{R})$, donc $M \in \mathcal{U} \cap \mathscr{S}_2(\mathbb{R})$, dès lors, selon la question **3.1.4.**, $h(M)^{-1}Mh(M) = g(M)^{-1}Mg(M)$ est diagonale.

- On a $h(M)^{-1}Mh(M)$ est semblable à M et M est semblable à B puisque $M \in \mathscr{S}_B$, donc, par transitivité, $h(M)^{-1}Mh(M)$ est semblable à B et par suite $\operatorname{Sp}(h(M)^{-1}Mh(M)) = \operatorname{Sp}(B) = \{\alpha, \beta\}$.
- **3.2.3.** Notons $\sigma: M \longmapsto h(M)^{-1}Mh(M)$ l'application définie sur \mathscr{S}_B et à valeurs dans $\mathcal{M}_2(\mathbb{R})$. Soit $M \in \mathscr{S}_B$, d'après la question précédente, la matrice $h(M)^{-1}Mh(M)$ est diagonale et $\mathrm{Sp}(h(M)^{-1}Mh(M)) = \{\alpha, \beta\}$, donc :

$$\sigma(M) = h(M)^{-1}Mh(M) = \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \quad \text{ou} \quad \sigma(M) = h(M)^{-1}Mh(M) = \begin{pmatrix} \beta & 0 \\ 0 & \alpha \end{pmatrix},$$

ce qui implique que $\sigma(\mathscr{S}_B) \subset \{B, B'\}$ où $B' = \begin{pmatrix} \beta & 0 \\ 0 & \alpha \end{pmatrix}$.

Montrons maintenant que l'application σ est continue. Considérons donc l'application $\Psi: (A_1, A_2, A_3) \mapsto A_1A_2A_3$, définie sue $(\mathcal{M}_2(\mathbb{R}))^3$ à valeurs dans $\mathcal{M}_2(\mathbb{R})$, et l'application $\phi: M \mapsto (h(M)^{-1}, M, h(M))$, définie sur \mathscr{S}_B et à valeurs dans $(\mathcal{M}_2(\mathbb{R}))^3$, de telle sorte que

$$\forall M \in \mathscr{S}_B, \quad \Psi o \phi(M) = \Phi(h(M)^{-1}, M, h(M)) = h(M)^{-1} M h(M) = \sigma(M).$$

Il est clair que l'application Ψ est trilinéaire, donc elle continue puisque $\mathcal{M}_2(\mathbb{R})$ est de dimension finie. De plus l'application ϕ est continue puisque les applications $h: M \longmapsto h(M), M \longmapsto h(M)^{-1}$ et $M \longmapsto M$, définies sur \mathscr{S}_B , sont continues, ainsi l'application $\sigma = \Psi o \phi$ est continue.

En résumé, on vient de montrer que $\sigma: \mathscr{S}_B \longrightarrow \mathcal{M}_2(\mathbb{R})$ est continue et que $\sigma(\mathscr{S}_B) \subset \{B, B'\}$, donc, d'après la question 2.4.2., σ est constante, c.à.d.

$$\forall M \mathscr{S}_B, \ h(M)^{-1} M h(M) = B \quad \text{ou} \quad \forall M \mathscr{S}_B, \ h(M)^{-1} M h(M) = B'.$$

3.2.4. Supposons qu'on n'est pas dans le cas voulu, c.à.d.

$$\forall M \mathscr{S}_B, \ h(M)^{-1} M h(M) = B'. \quad \bigstar$$

Puisque B et B' sont diagonalisables (car elles sont diagonales) et $\operatorname{Sp}(B) = \operatorname{Sp}(B') = \{\alpha, \beta\}$, alors B et B' sont semblables, d'où l'existence de $P \in \operatorname{GL}_2(\mathbb{R})$ tel que $P^{-1}B'P = B \bigstar \star$. En combinant \star et $\star \star$, on obtient

$$\forall m \mathscr{S}_B \ \left(h(M)P \right)^{-1} M \left(h(M)P \right) = P^{-1} \left(h(M)^{-1} M h(M) \right) P = P^{-1} B' P = B.$$

On en déduit que, pour se ramener au cas voulu, il suffit de remplacer l'application h par l'application $M \mapsto h(M)P$ qui est aussi **continue**.

3.3.1. Soit $U \in SO_2(\mathbb{R})$. On a $UBU^{-1} \in \mathscr{S}_B$, donc, par hypothèse, on a

$$(h(UBU^{-1}))^{-1}(UBU^{-1})h(UBU^{-1}) = B$$

ou encore

$$(U^{-1}h(UBU^{-1}))^{-1}B \left[(U^{-1}h(UBU^{-1}))^{-1} \right] = I_2BI_2^{-1},$$

donc, d'après la question **1.2.2.**, la matrice $I_2^{-1} \left(U^{-1} h(UBU^{-1}) \right)^{-1} = h(UBU^{-1})^{-1}U$ est diagonale, c.à.d. il existe $a, b \in \mathbb{R}$ tels que $h(UBU^{-1})^{-1}U = \operatorname{diag}(a, b)$. En vertu de la question **3.1.3.**, on a $h(UBU^{-1}) = g(UBU^{-1}) \in \operatorname{SO}_2(\mathbb{R})$, donc, d'après la question **2.2.**, $h(UBU^{-1})^{-1} \in \operatorname{SO}_2(\mathbb{R})$ et, comme $U \in \operatorname{SO}_2(\mathbb{R})$, alors,

d'après la question **2.2.**, $\operatorname{diag}(a,b) = h(UBU^{-1})^{-1}U \in \operatorname{SO}_2(\mathbb{R})$, ce qui entraı̂ne que ${}^t\operatorname{diag}(a,b)\operatorname{diag}(a,b) = I_1$ et $\operatorname{det}(\operatorname{diag}(a,b))$, c.à.d. $a^2 = b^2 = 1$ et ab = 1 et par suite $(a,b) = \pm (1,1)$. Finalement

$$h(UBU^{-1})^{-1}U = diag(a, b) = \pm I_2.$$

3.3.2. • Pour tout $U \in SO_2(\mathbb{R})$, on a

$$\psi \circ \varphi(U) = \psi(\varphi(M))$$

$$= \psi\left(UBU^{-1}, h(UBU^{-1})^{-1}U\right)$$

$$= h(UBU^{-1})h(UBU^{-1})^{-1}U$$

$$= U$$

$$= \mathrm{Id}_{\mathrm{SO}_{2}(\mathbb{R})}(U),$$

donc $\psi \circ \varphi = \mathrm{Id}_{\mathrm{SO}_2(\mathbb{R})}$.

• Pour tout $(M, D) \in \mathscr{S}_B \times \{-I_2, I_2\}$, on a

$$\varphi \circ \psi(M, D) = \varphi (\psi(M, D))$$

$$= \varphi (h(M)D)$$

$$= \left(h(M)DB(h(M)D)^{-1}, h\left(h(M)DB(h(M)D)^{-1}\right)^{-1}h(M)\right)$$

$$= \left(h(M)DBD^{-1}h(M)^{-1}, h\left(h(M)DBD^{-1}h(M)^{-1}\right)^{-1}h(M)D\right)$$

$$= \left(h(M)Bh(M)^{-1}, h\left(h(M)Bh(M)^{-1}\right)^{-1}h(M)D\right) \text{ car } D = \pm I_2, \text{ donc } DBD^{-1} = DD^{-1}B = B$$

$$= \left(M, h(M)^{-1}h(M)D\right) \text{ car } h(M)^{-1}Mh(M) = B, \text{ donc } h(M)Bh(M)^{-1} = M$$

$$= \left(M, D\right)$$

$$= \text{Id}_{\mathcal{S} \times \{-I_2, I_2\}}(M, D),$$

donc $\varphi \circ \psi = \operatorname{Id}_{\mathscr{S}_2 \times \{-I_2, I_2\}}$

- Conclusion : les applications ψ et φ sont bijectives et $\psi^{-1} = \varphi$.
- **3.3.3.** L'application $F: U \longmapsto \operatorname{tr} \left(h(UBU^{-1})^{-1}U\right)$, définie sur $\operatorname{SO}_2(\mathbb{R})$ et à valeurs réelles, est continue car c'est une composée d'applications continues.
 - D'après la question 3.3.1., on a

$$\forall M \in SO_2(\mathbb{R}), \quad h(M)^{-1}Mh(M) = -I_2 \text{ ou } h(M)^{-1}Mh(M) = I_2,$$

donc

$$\forall M \in SO_2(\mathbb{R}), \quad tr(h(M)^{-1}Mh(M)) = tr(-I_2) = -2 \text{ ou } tr(h(M)^{-1}Mh(M)) = tr(I_2) = 2,$$

dès lors $F(SO_2(\mathbb{R})) \subset \{-2, 2\}$.

On a $(B, I_2), (B, -I_2) \in \mathscr{S}_B \times \{-I_2, I_2\}$ et l'application $\varphi : SO_2(\mathbb{R}) \longrightarrow \mathscr{S}_B \times \{-I_2, I_2\}$ est bijective d'après la question précédente, donc il existe $U, U' \in SO_2(\mathbb{R})$ tels que

$$\varphi(U) = \left(UBU^{-1}, h(UBU^{-1})^{-1}U\right) = (B, I_2) \text{ et } \varphi(U') = \left(U'BU'^{-1}, h(U'BU'^{-1})^{-1}U'\right) = (B, -I_2),$$

puis

$$h(UBU^{-1})^{-1}U = I_2 \text{ et } h(U'BU'^{-1})^{-1}U' = -I_2,$$

par suite $F(U) = \text{tr}((UBU^{-1})^{-1}U) = \text{tr}(I_2) = 2 \text{ et } F(U') = \text{tr}((U'BU'^{-1})^{-1}U') = \text{tr}(-I_2) = -2.$ D'où l'inclusion $\{-2, 2\} \subset F(SO_2(\mathbb{R}))$. Finalement $F(SO_2(\mathbb{R})) = \{-2, 2\}$.

3.3.4. D'après les questions **2.3.1.** et **3.3.3.**, les applications Φ et F sont continues, donc l'application

$$Fo\Phi: \mathbb{R} \xrightarrow{\Phi} SO_2(\mathbb{R}) \xrightarrow{F} \mathbb{R}$$

est continue et par suite 6 $Fo\Phi(\mathbb{R})$ est un intervalle de \mathbb{R} . En vertu des questions **2.3.2.** et **3.3.3.**, on a

$$Fo\Phi(\mathbb{R}) = F(\Phi(\mathbb{R})) = F((SO_2(\mathbb{R})) = \{-2, 2\},\$$

ce que contredit le fait que $Fo\Phi(\mathbb{R})$ est un intervalle de \mathbb{R} . Ainsi l'hypothèse "Il existe une application $f: \mathcal{U} \longrightarrow \mathcal{M}_2(\mathbb{R})$ continue, à valeurs dans $GL_2(\mathbb{R})$, et telle que, pour tout $m \in U$, la matrice $f(M)^{-1}Mf(M)$ soit diagonale" est fausse.

^{6.} l'image d'un intervalle par une fonction continue est un intervalle