

crt sequences.ST25 SEQUENCE LISTING

St. Boniface General Hospital Research Centre <110> Mesaeli, Nasrin <120> Transgenic Mouse over-expressing calreticulin (CRT) in vascular smooth muscle cells <130> 81190-2602 <150> us 60/455399 <151> 2003-03-18 <160> 24 <170> PatentIn version 3.2 <210> <211> 2655 <212> DNA <213> Artificial <220> <223> artificial construct of sm22a promoter and CRT cDNA <220> **CDS** <221> (1319)..(2653)<222> <223> CRT coding sequence 60 ccccttcctt cagatgccac aaggaggtgc tggagttcta tgcaccaata gcttaaacca 120 qccaqqctqq ctqtaqtqqa ttqaqcqtct gaggctgcac ctctctggcc tgcagccagt tcctgggtga gactgaccct gcctgagggt tctctccttc cctctcta ctcctttcct 180 240 ccctctccct ctccctctct ctgtttcctg aggtttccag gattggggat gggactcaga 300 gacaccacta aagccttacc ttttaagaag ttgcattcag tgagtgtgtg agacatagca cagatagggg cagaggagag ctggttctgt ctccactgtg tttggtcttg ggtactgaac 360 420 tcagaccatc aggtgtgata gcagttgtct ttaaccctaa ccctgagcct gtctcacctg 480 tcccttccca agaccactga agctaggtgc aagataagtg gggacccttt ctgaggtggt 540 aggatctttc acgataagga ctattttgaa gggagggagg gtgacactgt cctagtcctc 600 ttaccctagt gtcctccagc cttgccaggc cttaaacatc cgcccattgt caccgctcta gaaggggcca gggttgactt gctgctaaac aaggcactcc ctagagaagc acccgctaga 660 agcataccat acctgtgggc aggatgaccc atgttctgcc acgcacttgg tagccttgga 720 780 aaggccactt tgaacctcaa ttttctcaac tgttaaatgg ggtggtaact gctatctcat aataaagggg aacgtgaaag gaaggcgttt gcatagtgcc tggttgtgca gccaggctgc 840 agtcaagact agttcccacc aactcgattt taaagccttg caagaaggtg gcttgtttgt 900 cccttgcagg ttcctttgtc gggccaaact ctagaatgcc tccccctttc tttctcattg 960 Page 1

aaga	.gcag	jac o	caag	gtcc	gg g1	taaca	aagga	a agg	ggtti	tcag	ggt	ctg	ccc a	ataaa	aaggtt	1020
tttc	ccgg	gcc g	gccci	tċago	ca co	gcc	ccgc	cc	gacco	cccg	cago	catc	tcc a	aaago	catgca	1080
gaga	atgt	ct	cgg	ctgc	cc co	gaca	agact	t gc1	tccaa	actt	ggt	gtcti	ttc (cccaa	aatatg	1140
gagc	ctgt	gt	ggagt	tgag	tg g	ggcg	gccc	9 9 9 9	gtgg	tgag	ccaa	agcag	gac ·	ttcca	atgggc	1200
aggg	aggg	gc g	gccag	gcgga	ac g	gcaga	aggg	g tga	acato	cact	gcc	taggo	cgg (cctti	taaacc	1260
cctc	acco	ag o	cgg	gcc	cc a	ccga	gctc	g gat	tcca	ctag	tcca	agtgi	tgg ⁻	tggaa	attc	1318
atg Met 1	ctg Leu	ctc Leu	cct Pro	gtg Val 5	ccg Pro	ctg Leu	ctg Leu	ctc Leu	ggc Gly 10	ctg Leu	ctc Leu	ggc Gly	ctg Leu	gcc Ala 15	gcc Ala	1366
gcc Ala	gag Glu	ccc Pro	gtc Val 20	gtc Val	tac Tyr	ttc Phe	aag Lys	gag Glu 25	cag Gln	ttt Phe	ctg Leu	gac Asp	gga Gly 30	gat Asp	ggg Gly	1414
tgg Trp	acc Thr	gag Glu 35	cgc Arg	tgg Trp	atc Ile	gaa Glu	tcc Ser 40	aaa Lys	cac His	aag Lys	tcc Ser	gat Asp 45	ttt Phe	ggc Gly	aaa Lys	1462
Phe	gtc Val 50	ctc Leu	agt Ser	tcg Ser	ggc Gly	aag Lys 55	ttc Phe	tac Tyr	ggc Gly	gat Asp	cag Gln 60	gag Glu	aaa Lys	gat Asp	aaa Lys	1510
ggg Gly 65	ctg Leu	cag Gln	acc Thr	agc Ser	cag Gln 70	gac Asp	gcc Ala	cgc Arg	ttc Phe	tac Tyr 75	gcc Ala	ctg Leu	tcg Ser	gcc Ala	cga Arg 80	1558
ttc Phe	gag Glu	ccg Pro	ttc Phe	agc Ser 85	aac Asn	aag Lys	ggc Gly	cag Gln	cca Pro 90	ctg Leu	gtg val	gtg val	cag Gln	cca Pro 95		1606
agg Arg	acg Thr	ccc Pro	gct Ala 100	tct Ser	acg Thr	ccc Pro	tgt Cys	cgg Arg 105	ccc Pro	gat Asp	tcg Ser	agc Ser	cgt Arg 110	tca Ser	gca Ala	1654
aca Thr		gcc Ala 115	agc Ser	cac His	tgg Trp	tgg Trp	tgc Cys 120	agt Ser	tca Ser	ccg Pro	tga	aac Asn		agc Ser		1702
aca Thr	ttg Leu	act Thr 130	gcg Ala	ggg Gly	gcg Ala	gct Ala	acg Thr 135	tga	agc Ser	tgt Cys	ttc Phe	cgg Arg	ccg Pro 140	gcc Ala	tgg Trp	1750
acc Thr	aga Arg	agg Arg 145	aca Thr	tgc Cys	acg Thr	ggg Gly	act Thr 150	ctg Leu	agt Ser	aca Thr	aca Thr	tca Ser 155	tgt Cys	ttg Leu	gtc Val	1798
ctg Leu	aca Thr 160	tct Ser	gtg Val	gcc Ala	ccg Pro	gca Ala 165	cca Pro	aga Arg	agg Arg	ttc Phe	acg Thr 170	tca Ser	tct Ser	tca Ser	act Thr	1846
aca Thr 175	agg Arg	gca Ala	aga Arg	acg Thr	tgc Cys 180	tga	tca Ser	aca Thr	agg Arg	aca Thr	tcc Ser 185	gtt val	gca Ala	agg Arg	acg Thr	1894
acg Thr	agt Ser	tca Ser	сас His	acc Thr	tgt Cys	aca Thr	cgc Arg	tga	Ser	tgc Cys Page	Gly	cgg Arg	aca Thr	aca Thr	cgt Arg	1942

195

190					195						200					
atg Met 205		tga	aga Arg	ttg Leu	aca Thr	aca Thr 210	gcc Ala	agg Arg	tgg Trp	agt Ser	cgg Arg 215	gct Ala	ccc Pro	tgg Trp	agg Arg	1990
atg Met 220	act Thr	ggg Gly	act Thr	tcc Ser	tac Tyr 225	ccc Pro	cca Pro	aga Arg	aga Arg	taa				atg Met		2038
cga Arg 235	agc Ser	ctg Leu	aag Lys	act Thr	ggg G1y 240	acg Thr	agc Ser	ggg Gly	cca Pro	aga Arg 245	tcg Ser	acg Thr	acc Thr	cca Pro	cgg Arg 250	2086
act Thr	cca Pro	agc Ser	ccg Pro	agg Arg 255	act Thr	ggg Gly	aca Thr	agc Ser	ccg Pro 260	agc Ser	aca Thr	tcc Ser	ccg Pro	acc Thr 265	cgg Arg	2134
acg Thr	cga Arg	aga Arg	agc Ser 270	ccg Pro	aag Lys	act Thr	ggg Gly	acg Thr 275	aag Lys	aaa Lys	tgg Trp	acg Thr	gag Glu 280	agt Ser	ggg Gly	2182
	cgc Arg		tga	ttc Phe	aga Arg	acc Thr	ccg Pro	agt Ser 290	aca Thr	agg Arg	gtg Val	agt Ser	gga Gly 295	agc Ser	cgc Arg	2230
ggc Gly	aga Arg	tcg Ser 300	aca Thr	acc Thr	ccg Pro	att Ile	aca Thr 305	aag Lys	gca Ala	cct Pro	gga Gly	tcc Ser 310	acc Thr	ccg Pro	aaa Lys	2278
tcg Ser	aca Thr 315	acc Thr	ccg Pro	agt Ser	act Thr	cgc Arg 320	ccg Pro	acg Thr	cta Leu	aca Thr	tct Ser 325	atg Met	cct Pro	acg Thr	aca Thr	2326
gct Ala 330	ttg Leu	ccg Pro	tgc Cys	tgg Trp	gct Ala 335	tgg Trp	acc Thr	tct Ser	ggc Gly	agg Arg 340	tca Ser	agt Ser	cgg Arg	gca Ala	cca Pro 345	2374
tct Ser	tcg Ser	aca Thr	act Thr	tcc Ser 350	tca Ser	tca Ser	cca Pro	acg Thr	atg Met 355	agg Arg	cgt Arg	acg Thr	cag Gln	agg Arg 360	agt Ser	2422
ttg Leu	gca Ala	acg Thr	aga Arg 365	cgt Arg	ggg Gly	gcg Ala	tca Ser	cca Pro 370	aga Arg	cgg Arg	ccg Pro	aga Arg	agc Ser 375	aga Arg	tga	2470
					agg Arg				tga					agg Arg 390		2518
aga Arg	agc Ser	gga Gly	agg Arg 395	agg Arg	agg Arg	agg Arg	agg Arg	ccg Pro 400	agg Arg	agg Arg	acg Thr	agg Arg	agg Arg 405	aca Thr		2566
acg Thr	aca Thr	agg Arg 410	agg Arg	acg Thr	agg Arg	atg Met	agg Arg 415	acg Thr	agg Arg	agg Arg	aca Thr	agg Arg 420	acg Thr	agg Arg	agg Arg	2614
agg Arg	agg Arg 425	agg Arg	cgg Arg	ccg Pro	ccg Pro	gcc Ala 430	agg Arg	cca Pro	agg Arg	acg Thr	agc Ser 435	tgt Cys	ag			2655

```
crt sequences.ST25
```

```
<210>
        123
<211>
<212>
        PRT
<213>
       Artificial
<220>
        Synthetic Construct
<223>
<400>
Met Leu Leu Pro Val Pro Leu Leu Leu Gly Leu Leu Gly Leu Ala Ala 1 5 10 15
Ala Glu Pro Val Val Tyr Phe Lys Glu Gln Phe Leu Asp Gly Asp Gly 20 25 30
Trp Thr Glu Arg Trp Ile Glu Ser Lys His Lys Ser Asp Phe Gly Lys 35 40 45
Phe Val Leu Ser Ser Gly Lys Phe Tyr Gly Asp Gln Glu Lys Asp Lys 50 55 60
Gly Leu Gln Thr Ser Gln Asp Ala Arg Phe Tyr Ala Leu Ser Ala Arg 65 70 75 80
Phe Glu Pro Phe Ser Asn Lys Gly Gln Pro Leu Val Val Gln Pro Ala
85 90 95
Arg Thr Pro Ala Ser Thr Pro Cys Arg Pro Asp Ser Ser Arg Ser Ala 100 105 110
Thr Arg Ala Ser His Trp Trp Cys Ser Ser Pro
115 120
<210>
<211>
<212>
        12
        PRT
<213>
        Artificial
<220>
        Synthetic Construct
<223>
<400>
Asn Thr Ser Arg Thr Leu Thr Ala Gly Ala Ala Thr
1 5 10
<210>
        45
<211>
<212>
        PRT
<213>
        Artificial
<220>
<223>
       Synthetic Construct
```

```
<400> 4
```

Ser Cys Phe Arg Pro Ala Trp Thr Arg Arg Thr Cys Thr Gly Thr Leu

5 10 15

Ser Thr Thr Ser Cys Leu Val Leu Thr Ser Val Ala Pro Ala Pro Arg 20 25 30

<210> 5

<211> 17 <212> PRT <213> Artificial

<220>

<223> Synthetic Construct

<400> 5

Ser Thr Arg Thr Ser Val Ala Arg Thr Thr Ser Ser His Thr Cys Thr 10 15

Arg

<210> 6

<211> 9 <212> PRT <213> Artificial

<220>

<223> Synthetic Construct

<400> 6

Ser Cys Gly Arg Thr Thr Arg Met Arg 1

<210> 7 <211> 23 <212> PRT <213> Artificial

<220>

<223> Synthetic Construct

<400> 7

Arg Leu Thr Thr Ala Arg Trp Ser Arg Ala Pro Trp Arg Met Thr Gly $1 \hspace{1cm} 10 \hspace{1cm} 15$

Thr Ser Tyr Pro Pro Arg Arg 20

<210> 8

<211> 56 <212> PR

<213> Artificial

<220>

<223> Synthetic Construct

<400> 8

Arg Thr Gln Met Pro Arg Ser Leu Lys Thr Gly Thr Ser Gly Pro Arg
1 10 15

Ser Thr Thr Pro Arg Thr Pro Ser Pro Arg Thr Gly Thr Ser Pro Ser $20 \\ 25 \\ 30$

Thr Ser Pro Thr Arg Thr Arg Arg Ser Pro Lys Thr Gly Thr Lys Lys 35 40 45

Trp Thr Glu Ser Gly Ser Arg Arg 50 55

<210> 9

<211> 91 <212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 9

Phe Arg Thr Pro Ser Thr Arg Val Ser Gly Ser Arg Gly Arg Ser Thr 10 15

Thr Pro Ile Thr Lys Ala Pro Gly Ser Thr Pro Lys Ser Thr Thr Pro $20 \ 25 \ 30$

Ser Thr Arg Pro Thr Leu Thr Ser Met Pro Thr Thr Ala Leu Pro Cys 35 40 45

Trp Ala Trp Thr Ser Gly Arg Ser Ser Arg Ala Pro Ser Ser Thr Thr 50 60

Ser Ser Ser Pro Thr Met Arg Arg Thr Gln Arg Ser Leu Ala Thr Arg 65 70 75 80

Arg Gly Ala Ser Pro Arg Arg Pro Arg Ser Arg 85 90

<210> 10

```
crt sequences.ST25
<211>
<212>
      PRT
      Artificial
<213>
<220>
<223>
      Synthetic Construct
<400>
      10
Lys Thr Ser Arg Thr Arg Ser Ser Gly 5
<210>
      11
<211>
      51
<212> PRT
<213>
      Artificial
<220>
      Synthetic Construct
<223>
<400>
      11
Arg Thr Arg Arg Thr Arg Thr Arg Arg Thr Arg Met Arg Thr Arg 20 25 30
Arg Thr Arg Thr Arg Arg Arg Arg Arg Pro Pro Ala Arg Pro Arg 35
Thr Ser Cys
   50
<210>
      12
<211>
      2691
<212>
      DNA
      Artificial
<213>
<220>
      construct of SM22a promoter and CRT cDNA with HA tag inserted
<223>
      into CRT cDNA
<220>
<221>
      CDS
      (1319)..(2689)
<222>
<220>
      misc_feature (2635)..(2670)
<221>
<222>
<223>
      HA insertion
<400> 12
                                                                   60
ccccttcctt cagatgccac aaggaggtgc tggagttcta tgcaccaata gcttaaacca
```

gccaggctgg ctgtagtgga ttgagcgtct gaggctgcac ctctctggcc tgcagccagt

120

		25		
tcctgggtga gactgaccct gcctgagggt	crt sequence tctctccttc	ces.ST25 cctctctcta	ctcctttcct	180
ccctctcct ctccctctct ctgtttcctg	aggtttccag	gattggggat	gggactcaga	240
gacaccacta aagccttacc ttttaagaag	ttgcattcag	tgagtgtgtg	agacatagca	300
cagatagggg cagaggagag ctggttctgt	ctccactgtg	tttggtcttg	ggtactgaac	360
tcagaccatc aggtgtgata gcagttgtct	ttaaccctaa	ccctgagcct	gtctcacctg	420
tcccttccca agaccactga agctaggtgc	aagataagtg	gggacccttt	ctgaggtggt	480
aggatctttc acgataagga ctattttgaa	gggagggagg	gtgacactgt	cctagtcctc	540
ttaccctagt gtcctccagc cttgccaggc	cttaaacatc	cgcccattgt	caccgctcta	600
gaaggggcca gggttgactt gctgctaaac	aaggcactcc	ctagagaagc	acccgctaga	660
agcataccat acctgtgggc aggatgaccc	atgttctgcc	acgcacttgg	tagccttgga	720
aaggccactt tgaacctcaa ttttctcaac	: tgttaaatgg	ggtggtaact	gctatctcat	780
aataaagggg aacgtgaaag gaaggcgttt	gcatagtgcc	tggttgtgca	gccaggctgc	840
agtcaagact agttcccacc aactcgattt	taaagccttg	caagaaggtg	gcttgtttgt	900
cccttgcagg ttcctttgtc gggccaaact	ctagaatgcc	tcccctttc	tttctcattg	960
aagagcagac ccaagtccgg gtaacaagga	agggtttcag	ggtcctgccc	ataaaaggtt	1020
tttcccggcc gccctcagca ccgccccgcc	ccgacccccg	cagcatctcc	aaagcatgca	1080
gagaatgtct ccggctgccc ccgacagact	gctccaactt	ggtgtctttc	cccaaatatg	1140
gagcctgtgt ggagtgagtg gggcggcccg	gggtggtgag	ccaagcagac	ttccatgggc	1200
agggagggc gccagcggac ggcagagggg	tgacatcact	gcctaggcgg	cctttaaacc	1260
cctcacccag ccggcgcccc accgagctcg	gatccactag	tccagtgtgg	tggaattc	1318
atg ctg ctc cct gtg ccg ctg ctg Met Leu Leu Pro Val Pro Leu Leu 1 5			gcc gcc Ala Ala 15	1366
gcc gag ccc gtc gtc tac ttc aag Ala Glu Pro Val Val Tyr Phe Lys 20	gag cag ttt Glu Gln Phe 25	ctg gac gga Leu Asp Gly 30	gat ggg Asp Gly	1414
tgg acc gag cgc tgg atc gaa tcc Trp Thr Glu Arg Trp Ile Glu Ser 35 40	aaa cac aag Lys His Lys	tcc gat ttt Ser Asp Phe 45	ggc aaa Gly Lys	1462
ttc gtc ctc agt tcg ggc aag ttc Phe Val Leu Ser Ser Gly Lys Phe 50 55	tac ggc gat Tyr Gly Asp	cag gag aaa Gln Glu Lys 60	gat aaa Asp Lys	1510
ggg ctg cag acc agc cag gac gcc Gly Leu Gln Thr Ser Gln Asp Ala 65 70	cgc ttc tac Arg Phe Tyr 75	gcc ctg tcg Ala Leu Ser	gcc cga Ala Arg 80	1558
ttc gag ccg ttc agc aac aag ggc Phe Glu Pro Phe Ser Asn Lys Gly 85	cag cca ctg Gln Pro Leu 90 Page	Val Val Glr	g cca gcc n Pro Ala 95	1606

agg Arg	acg Thr	ccc Pro	gct Ala 100	tct Ser	acg Thr	ccc Pro	tgt Cys	cgg Arg 105	ccc Pro	gat Asp	tcg Ser	agc Ser	cgt Arg 110	tca Ser	gca Ala	1654
aca Thr	agg Arg	gcc Ala 115	agc Ser	cac His	tgg Trp	tgg Trp	tgc Cys 120	agt Ser	tca Ser	ccg Pro	tga	aac Asn	acg Thr 125	agc Ser	aga Arg	1702
aca Thr	ttg Leu	act Thr 130	gcg Ala	ggg Gly	gcg Ala	gct Ala	acg Thr 135	tga	agc Ser	tgt Cys	ttc Phe	cgg Arg	ccg Pro 140	gcc Ala	tgg Trp	1750
acc Thr	aga Arg	agg Arg 145	aca Thr	tgc Cys	acg Thr	ggg Gly	act Thr 150	ctg Leu	agt Ser	aca Thr	aca Thr	tca Ser 155	tgt Cys	ttg Leu	gtc Val	1798
ctg Leu	aca Thr 160	tct Ser	gtg Val	gcc Ala	ccg Pro	gca Ala 165	cca Pro	aga Arg	agg Arg	ttc Phe	acg Thr 170	tca Ser	tct Ser	tca Ser	act Thr	1846
aca Thr 175	agg Arg	gca Ala	aga Arg	acg Thr	tgc Cys 180	tga	tca Ser	aca Thr	agg Arg	aca Thr	tcc Ser 185	gtt Val	gca Ala	agg Arg	acg Thr	1894
acg Thr 190	agt Ser	tca Ser	cac His	acc Thr	tgt Cys 195	aca Thr	cgc Arg	tga	tcg Ser	tgc Cys	ggc Gly 200	cgg Arg	aca Thr	aca Thr	cgt Arg	1942
atg Met 205	agg Arg	tga	aga Arg	ttg Leu	aca Thr	aca Thr 210	gcc Ala	agg Arg	tgg Trp	agt Ser	cgg Arg 215	gct Ala	ccc Pro	tgg Trp	agg Arg	1990
atg Met 220	act Thr	ggg Gly	act Thr	tcc Ser	tac Tyr 225	ccc Pro	cca Pro	aga Arg	aga Arg	taa	agg Arg 230	acc Thr	cag Gln	atg Met	cct Pro	2038
cga Arg 235	agc Ser	ctg Leu	aag Lys	act Thr	ggg Gly 240	acg Thr	agc Ser	ggg Gly	cca Pro	aga Arg 245	tcg Ser	acg Thr	acc Thr	cca Pro	cgg Arg 250	2086
act Thr	cca Pro	agc Ser	ccg Pro	agg Arg 255	act Thr	ggg Gly	aca Thr	agc Ser	ccg Pro 260	agc Ser	aca Thr	tcc Ser	ccg Pro	acc Thr 265	cgg Arg	2134
acg Thr	cga Arg	aga Arg	agc Ser 270	ccg Pro	aag Lys	act Thr	ggg Gly	acg Thr 275	aag Lys	aaa Lys	tgg Trp	acg Thr	gag Glu 280	agt Ser	ggg Gly	2182
_	cgc Arg		tga	ttc Phe	aga Arg	acc Thr	ccg Pro	agt Ser 290	aca Thr	agg Arg	gtg Val	agt Ser	gga Gly 295	agc Ser	cgc Arg	2230
ggc Gly	aga Arg	tcg Ser 300	aca Thr	acc Thr	ccg Pro	att Ile	aca Thr 305	aag Lys	gca Ala	cct Pro	gga Gly	tcc Ser 310	acc Thr	ccg Pro	aaa Lys	2278
tcg Ser	aca Thr 315	acc Thr	ccg Pro	agt Ser	act Thr	cgc Arg 320	ccg Pro	acg Thr	cta Leu	aca Thr	tct Ser 325	atg Met	cct Pro	acg Thr	aca Thr	2326
gct Ala	ttg Leu	ccg Pro	tgc Cys	tgg Trp	gct Ala	tgg Trp	acc Thr	tct Ser	Gly	agg Arg Page	Ser	agt Ser	cgg Arg	gca Ala	cca Pro	2374

330	cr 335	t sequences.ST25 340	345
	Ser Ser Pro Thr	atg agg cgt acg cag Met Arg Arg Thr Gln 355	
ttg gca acg aga cgt Leu Ala Thr Arg Arg 365	ggg gcg tca cca Gly Ala Ser Pro 370	aga cgg ccg aga agc Arg Arg Pro Arg Ser 375	aga tga 2470 Arg
aag aca agc agg acg Lys Thr Ser Arg Thr 380	agg agc agc gga Arg Ser Ser Gly 385	tga agg agg agg Arg Arg Arg Arg	
aga agc gga agg agg Arg Ser Gly Arg Arg 395	agg agg agg ccg Arg Arg Arg Pro 400	agg agg acg agg agg Arg Arg Thr Arg Arg 405	aca agg 2566 Thr Arg
acg aca agg agg acg Thr Thr Arg Arg Thr 410	agg atg agg acg Arg Met Arg Thr 415	agg agg aca agg acg Arg Arg Thr Arg Thr 420	agg agg 2614 Arg Arg
agg agg agg cgg ccg Arg Arg Arg Arg Pro 425	ccg gcc tcg agt Pro Ala Ser Ser 430	acc cat atg atg ttc Thr His Met Met Phe 435	ctg act 2662 Leu Thr
atg cta gac agg cca Met Leu Asp Arg Pro 440			2691
<210> 13 <211> 123 <212> PRT <213> Artificial			
<220> <223> Synthetic Co	onstruct		
<400> 13			
Met Leu Leu Pro Val 1 5		Gly Leu Leu Gly Leu 10	Ala Ala 15
Ala Glu Pro Val Val 20	Tyr Phe Lys Glu 25	Gln Phe Leu Asp Gly 30	Asp Gly
Trp Thr Glu Arg Trp 35	o Ile Glu Ser Lys 40	His Lys Ser Asp Phe 45	Gly Lys
Phe Val Leu Ser Ser 50	Gly Lys Phe Tyr 55	Gly Asp Gln Glu Lys 60	Asp Lys
Gly Leu Gln Thr Ser 65	Gln Asp Ala Arg 70	Phe Tyr Ala Leu Ser 75	Ala Arg 80
Phe Glu Pro Phe Ser 85	· Asn Lys Gly Glr	Pro Leu Val Val Gln 90 Page 10	Pro Ala 95

```
Arg Thr Pro Ala Ser Thr Pro Cys Arg Pro Asp Ser Ser Arg Ser Ala 100 105 110
Thr Arg Ala Ser His Trp Trp Cys Ser Ser Pro
115 120
<210> 14
<211> 12
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 14
Asn Thr Ser Arg Thr Leu Thr Ala Gly Ala Ala Thr 1 	 5
<210> 15
<211> 45
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 15
Ser Cys Phe Arg Pro Ala Trp Thr Arg Arg Thr Cys Thr Gly Thr Leu 1 \hspace{1cm} 5 \hspace{1cm} 10 \hspace{1cm} 15
Ser Thr Thr Ser Cys Leu Val Leu Thr Ser Val Ala Pro Ala Pro Arg
20 25 30
Arg Phe Thr Ser Ser Ser Thr Thr Arg Ala Arg Thr Cys 45
<210>
        16
<211> 17
<212> PRT
<213> Artificial
<220>
        Synthetic Construct
<223>
<400>
Ser Thr Arg Thr Ser Val Ala Arg Thr Thr Ser Ser His Thr Cys Thr 10 15
```

Arg

```
<210> 17
<211> 9
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 17
Ser Cys Gly Arg Thr Thr Arg Met Arg 1
<210> 18
<211> 23
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400> 18
Arg Leu Thr Thr Ala Arg Trp Ser Arg Ala Pro Trp Arg Met Thr Gly 10 \ 15
Thr Ser Tyr Pro Pro Arg Arg
             20
<210> 19
<211> 56
<212> PRT
<213> Artificial
<220>
<223> Synthetic Construct
<400>
Arg Thr Gln Met Pro Arg Ser Leu Lys Thr Gly Thr Ser Gly Pro Arg 10^{-16}
Ser Thr Thr Pro Arg Thr Pro Ser Pro Arg Thr Gly Thr Ser Pro Ser 20 \\ 25 \\ 30
Thr Ser Pro Thr Arg Thr Arg Ser Pro Lys Thr Gly Thr Lys Lys 35 40 45
Trp Thr Glu Ser Gly Ser Arg Arg 50 55
<210>
       20
<211> 91
<212> PRT
<213> Artificial
```

<220>

<223> Synthetic Construct

<400> 20

Phe Arg Thr Pro Ser Thr Arg Val Ser Gly Ser Arg Gly Arg Ser Thr 10 15

Thr Pro Ile Thr Lys Ala Pro Gly Ser Thr Pro Lys Ser Thr Thr Pro 20 25 30

Ser Thr Arg Pro Thr Leu Thr Ser Met Pro Thr Thr Ala Leu Pro Cys $35 \hspace{1.5cm} 40 \hspace{1.5cm} 45$

Trp Ala Trp Thr Ser Gly Arg Ser Ser Arg Ala Pro Ser Ser Thr Thr 50 55 60

Ser Ser Ser Pro Thr Met Arg Arg Thr Gln Arg Ser Leu Ala Thr Arg 65 70 75 80

Arg Gly Ala Ser Pro Arg Arg Pro Arg Ser Arg 85 90

<210> 21

<211> 9 <212> PRT

<212> PRI <213> Artificial

<220>

<223> Synthetic Construct

<400> 21

Lys Thr Ser Arg Thr Arg Ser Ser Gly 1

<210> 22

<211> 63

<212> PRT

<213> Artificial

<220>

<223> Synthetic Construct

<400> 22

Arg Thr Arg Arg Thr Arg Thr Arg Arg Thr Arg Met Arg Thr Arg 20 25 30

Arg Thr Arg Thr Arg Arg Arg Arg Arg Pro Pro Ala Ser Ser Thr Page 13 His Met Met Phe Leu Thr Met Leu Asp Arg Pro Arg Thr Ser Cys 50 55 60

<210> 23

<211> 418

<212> PRT

<213> Artificial

<220>

<223> CRT peptide sequence from CRT cDNA

<400> 23

Met Leu Leu Pro Val Pro Leu Leu Leu Gly Leu Leu Gly Leu Ala Ala 1 5 10 15

Ala Glu Pro Val Val Tyr Phe Lys Glu Gln Phe Leu Asp Gly Asp Gly 20 25 30

Trp Thr Glu Arg Trp Ile Glu Ser Lys His Lys Ser Asp Phe Gly Lys 35 40 45

Phe Val Leu Ser Ser Gly Lys Phe Tyr Gly Asp Gln Glu Lys Asp Lys 50 55 60

Gly Leu Gln Thr Ser Gln Asp Ala Arg Phe Tyr Ala Leu Ser Ala Arg 65 70 75 80

Phe Glu Pro Phe Ser Asn Lys Gly Gln Pro Leu Val Val Gln Phe Thr 85 90 95

Val Lys His Glu Gln Asn Ile Asp Cys Gly Gly Gly Tyr Val Lys Leu 100 105 110

Phe Pro Ala Gly Leu Asp Gln Lys Asp Met His Gly Asp Ser Glu Tyr 115 120 125

Asn Ile Met Phe Gly Pro Asp Ile Cys Gly Pro Gly Thr Lys Lys Val 130 135 140

His Val Ile Phe Asn Tyr Lys Gly Lys Asn Val Leu Ile Asn Lys Asp 145 150 155 160

Ile Arg Cys Lys Asp Asp Glu Phe Thr His Leu Tyr Thr Leu Ile Val 165 170 175

Arg Pro Asp Asn Thr Tyr Glu Val Lys Ile Asp Asn Ser Gln Val Glu 180 185 190 Page 14

Ser Gly Ser Leu Glu Asp Asp Trp Asp Phe Leu Pro Pro Lys Lys Ile 195 200 205 Lys Asp Pro Asp Ala Ser Lys Pro Glu Asp Trp Asp Glu Arg Ala Lys 210 220 Ile Asp Asp Pro Thr Asp Ser Lys Pro Glu Asp Trp Asp Lys Pro Glu 225 230 235 240 His Ile Pro Asp Pro Asp Ala Lys Lys Pro Glu Asp Trp Asp Glu Glu 245 250 255 Met Asp Gly Glu Trp Glu Pro Pro Val Ile Gln Asn Pro Glu Tyr Lys 260 265 270 Gly Glu Trp Lys Pro Arg Gln Ile Asp Asn Pro Asp Tyr Lys Gly Thr 275 280 285 Trp Ile His Pro Glu Ile Asp Asn Pro Glu Tyr Ser Pro Asp Ala Asn 290 295 300 Ile Tyr Ala Tyr Asp Ser Phe Ala Val Leu Gly Leu Asp Leu Trp Gln 305 310 315 320 Val Lys Ser Gly Thr Ile Phe Asp Asn Phe Leu Ile Thr Asn Asp Glu 325 330 335Ala Tyr Ala Glu Glu Phe Gly Asn Glu Thr Trp Gly Val Thr Lys Thr 340 345 350 Ala Glu Lys Gln Met Lys Asp Lys Gln Asp Glu Glu Gln Arg Leu Lys 355 360 365 Glu Glu Glu Glu Lys Lys Arg Lys Glu Glu Glu Glu Ala Glu Glu 370 375 380 Asp Glu Glu Asp Lys Asp Asp Lys Glu Asp Glu Asp Glu Asp Glu Glu 385 390 395 400 Asp Lys Asp Glu Glu Glu Glu Ala Ala Ala Gly Gln Ala Lys Asp 405 410 415 Glu Leu

<211> 430 <212> **PRT**

<213> Artificial

<220>

<223> CRT peptide sequence with HA tag inserted into peptide

<220>

<221> <222> <223> MISC_FEATURE

(413)..(424)HA Tag

<400> 24

Met Leu Leu Pro Val Pro Leu Leu Gly Leu Gly Leu Ala Ala 1 5 10 15

Ala Glu Pro Val Val Tyr Phe Lys Glu Gln Phe Leu Asp Gly Asp Gly 20 25 30

Trp Thr Glu Arg Trp Ile Glu Ser Lys His Lys Ser Asp Phe Gly Lys 35 40 45

Phe Val Leu Ser Ser Gly Lys Phe Tyr Gly Asp Gln Glu Lys Asp Lys 50 55 60

Gly Leu Gln Thr Ser Gln Asp Ala Arg Phe Tyr Ala Leu Ser Ala Arg 65 70 75 80

Phe Glu Pro Phe Ser Asn Lys Gly Gln Pro Leu Val Val Gln Phe Thr 85 90 95

val Lys His Glu Gln Asn Ile Asp Cys Gly Gly Gly Tyr Val Lys Leu 100 105 110

Phe Pro Ala Gly Leu Asp Gln Lys Asp Met His Gly Asp Ser Glu Tyr 115 120 125

Asn Ile Met Phe Gly Pro Asp Ile Cys Gly Pro Gly Thr Lys Lys Val 130 135 140

His Val Ile Phe Asn Tyr Lys Gly Lys Asn Val Leu Ile Asn Lys Asp 145 150 155 160

Ile Arg Cys Lys Asp Asp Glu Phe Thr His Leu Tyr Thr Leu Ile Val 165 170 175

Arg Pro Asp Asn Thr Tyr Glu Val Lys Ile Asp Asn Ser Gln Val Glu 180 185 190

Ser Gly Ser Leu Glu Asp Asp Trp Asp Phe Leu Pro Pro Lys Lys Ile 195 200 205 Lys Asp Pro Asp Ala Ser Lys Pro Glu Asp Trp Asp Glu Arg Ala Lys 210 220 Ile Asp Asp Pro Thr Asp Ser Lys Pro Glu Asp Trp Asp Lys Pro Glu 225 230 235 240 His Ile Pro Asp Pro Asp Ala Lys Lys Pro Glu Asp Trp Asp Glu Glu 245 250 255 Met Asp Gly Glu Trp Glu Pro Pro Val Ile Gln Asn Pro Glu Tyr Lys 260 265 270 Gly Glu Trp Lys Pro Arg Gln Ile Asp Asn Pro Asp Tyr Lys Gly Thr 275 280 285 Trp Ile His Pro Glu Ile Asp Asn Pro Glu Tyr Ser Pro Asp Ala Asn 290 295 300 Ile Tyr Ala Tyr Asp Ser Phe Ala Val Leu Gly Leu Asp Leu Trp Gln 305 310 315 320Val Lys Ser Gly Thr Ile Phe Asp Asn Phe Leu Ile Thr Asn Asp Glu 325 330 335 Ala Tyr Ala Glu Glu Phe Gly Asn Glu Thr Trp Gly Val Thr Lys Thr 340 345 350 Ala Glu Lys Gln Met Lys Asp Lys Gln Asp Glu Glu Gln Arg Leu Lys 355 360 365 Glu Glu Glu Glu Lys Lys Arg Lys Glu Glu Glu Glu Ala Glu Glu 370 375 380 Asp Glu Glu Asp Lys Asp Asp Lys Glu Asp Glu Asp Glu Glu 385 390 395 400 Asp Lys Asp Glu Glu Glu Glu Ala Ala Gly Leu Glu Tyr Pro 405 410 415 Tyr Asp Val Pro Asp Tyr Ala Arg Gln Ala Lys Asp Glu Leu 420 425 430