CLAIM AMENDMENTS

1	1.	(C	Currently amended) A method of determining a placement of services of a		
2		distributed application onto nodes of a distributed resource infrastructure			
3		comprising the steps of:			
4		a.	forming communication constraints between node pairs which ensure that		
5		a	sum of transport demands between a particular node pair does not exceed a		
6		tra	ansport capacity between the particular node pair, each term of the sum		
7		cc	emprising a product of a first placement variable, a second placement		
8		va	riable, and the transport demand between the services associated with the		
9		fii	rst and second placement variables;		
10		b.	forming an objective; and		
11		e.	employing a local search solution to solve an integer program comprising		
12		th	e communication constraints and the objective, which determines the		
13		pl	acement of the services onto the nodes.		
1	2.	(Currently amended) A method of determining a placement of services of a			
2			outed application onto nodes of a distributed resource infrastructure		
3		comp	rising the steps of:		
4		a.	establishing an application model of the services comprising transport		
5		de	emands between the services;		
6		b.	establishing an infrastructure model of the nodes comprising transport		
7		ca	pacities between the nodes;		
8		e .	forming an integer program that comprises:		
9		i.	a set of placement variables for a combination of the services and the		
10			nodes, each of the placement variables indicating whether a particular		
11			service is located on a particular node;		
12		ii.	communication constraints between node pairs which ensure that a		
13			sum of the transport demands between a particular node pair does not		
14			exceed the transport capacity between the particular node pair, each term		
15			of the sum comprising a product of a first placement variable, a second		
16			placement variable, and the transport demand between the services		
17			associated with the first and second placement variables; and		
18		iii	an objective; and		

- employing a local search solution to solve the integer program which determines the placement of the services onto the nodes.
- 1 3. (Original) The method of claim 2 wherein the step of solving the integer program employs a local search solution.
- 1 4. (Original) The method of claim 2 wherein the objective comprises 2 minimizing communication traffic between the nodes.
- 1 5. (Original) The method of claim 2 wherein the application model further comprises processing demands for the services.
- 1 6. (Original) The method of claim 5 wherein the infrastructure model further comprises processing capacities for the nodes.
- 1 7. (Original) The method of claim 6 wherein the integer program further
- 2 comprises processing constraints which ensure that a sum of the processing
- demands for each of the nodes does not exceed the processing capacity for the
- 4 node.
- 1 8. (Original) The method of claim 7 wherein the objective comprises
- 2 minimizing communication traffic between the nodes and balancing the
- 3 processing demands on the nodes.
- 1 9. (Original) The method of claim 6 wherein the processing demands and the
- 2 processing capacities are normalized according to a processing criterion.
- 1 10. (Original) The method of claim 9 wherein the processing criterion
- 2 comprises an algorithm speed.
- 1 11. (Original) The method of claim 9 wherein the processing criterion
- 2 comprises a transaction speed.
- 1 12. (Original) The method of claim 9 wherein the processing capacities of the

- 2 nodes are found according to a look-up table in which different types of nodes
- 3 have been normalized according to the processing criterion.
- 1 13. (Original) The method of claim 2 wherein the application model further
- 2 comprises storage demands for the services.
- 1 14. (Original) The method of claim 13 wherein the infrastructure model
- 2 further comprises storage capacities for the nodes.
- 1 15. (Original) The method of claim 14 wherein the integer program further
- 2 comprises storage constraints which ensure that a sum of the storage demands for
- ach of the nodes does not exceed the storage capacity for the node.
- 1 16. (Original) The method of claim 2 wherein the integer program further
- 2 comprises placement constraints which ensure that each of the services is placed
- 3 on one and only one of the nodes.
- 1 17. (Original) The method of claim 2 wherein the services reside on the nodes
- 2 according to a previous assignment.
- 1 18. (Original) The method of claim 17 further comprising the step of
- 2 assessing reassignment penalties for service placements that differs from the
- 3 previous assignment.
- 1 19. (Original) The method of claim 18 wherein the integer program further
- 2 comprises a second objective that seeks to minimize the reassignment penalties.
- 1 20. (Currently amended) A method of determining a placement of services of a
- 2 distributed application onto nodes of a distributed resource infrastructure
- 3 comprising the steps of:
- 4 a. establishing an application model of the services that comprises processing
- 5 demands for the services, storage demands for the services, and transport
- 6 demands between the services;
- 7 b. establishing an infrastructure model of the nodes that comprises processing

8		capacities for the nodes, storage capacities for the nodes, and transport	
9		capacities between the nodes;	
10	e.	forming an integer program that comprises:	
11		i. a set of placement variables for a combination of the services and the	
12		nodes, each of the placement variables indicating whether a particular	
13		service is located on a particular node;	
14		ii. processing constraints which ensure that a sum of the processing	
15		demands for each of the nodes does not exceed the processing capacity fo	
16		the node;	
17		iii. storage constraints which ensure that a sum of the storage demands fo	
18		each of the nodes does not exceed the storage capacity for the node;	
19		iv. placement constraints which ensure that each of the services is placed	
20		on one and only one node;	
21		v. communication constraints between node pairs which ensure that a	
22		sum of the transport demands between a particular node pair does not	
23		exceed the transport capacity between the particular node pair, each term	
24		of the sum comprising a product of a first placement variable, a second	
25		placement variable, and the transport demand between the services	
26		associated with the first and second placement variables; and	
27		vi. an objective of minimizing communication traffic between the nodes	
28		and balancing processing loads on the nodes; and	
29	d.	employing a local search solution to solve the integer program which	
30		determines the placement of the services onto the nodes.	
1	21.	(Currently amended) A computer readable memory comprising computer	
2	СО	de for directing a computer to make a determination of a placement of services	
3	of	a distributed application onto nodes of a distributed resource infrastructure, the	
4	determination of the placement of the services onto the nodes comprising the step		
5	of:		
6	a.	forming communication constraints between node pairs which ensure that	
7		a sum of transport demands between a particular node pair does not exceed a	
8		transport capacity between the particular node pair, each term of the sum	
9		comprising a product of a first placement variable, a second placement	
10		variable, and the transport demand between the services associated with the	

11	fii	rst and second placement variables;		
12	b.	forming an objective; and		
13	e .	employing a local search solution to solve an integer program comprising		
14	th	e communication constraints and the objective, which determines the		
15	pl	acement of the services onto the nodes.		
1	22. (C	Currently amended) A computer readable memory comprising computer		
2	code for directing a computer to make a determination of a placement of services			
3	of a distributed application onto nodes of a distributed resource infrastructure, the			
4	determination of the placement of the services onto the nodes comprising the steps			
5	of:			
6	a.	establishing an application model of the services comprising transport		
7	de	emands between the services;		
8	b.	establishing an infrastructure model of the nodes comprising transport		
9	ca	pacities between the nodes;		
10	e.	forming an integer program that comprises:		
11	i.	a set of placement variables for a combination of the services and the		
12		nodes, each of the placement variables indicating whether a particular		
13		service is located on a particular node;		
14	ii.	communication constraints between node pairs which ensure that a		
15		sum of the transport demands between a particular node pair does not		
16		exceed the transport capacity between the particular node pair, each term		
17		of the sum comprising a product of a first placement variable, a second		
18		placement variable, and the transport demand between the services		
19		associated with the first and second placement variables; and		
20	iii.	an objective; and		
21	d.	employing a local search solution to solve the integer program which		
22	de	termines the placement of the services onto the nodes.		

1 24. (Original) The computer readable memory of claim 22 wherein the objective comprises minimizing communication traffic between the nodes.

solving the integer program employs a local search solution.

1

2

23.

(Original)

The computer readable memory of claim 22 wherein the step of

- 1 25. (Original) The computer readable memory of claim 22 wherein the
- 2 application model further comprises processing demands for the services.
- 1 26. (Original) The computer readable memory of claim 25 wherein the
- 2 infrastructure model further comprises processing capacities for the nodes.
- 1 27. (Original) The computer readable memory of claim 26 wherein the integer
- 2 program further comprises processing constraints ensure that a sum of the
- 3 processing demands for each of the nodes does not exceed the processing capacity
- 4 for the node.
- 1 28. (Original) The computer readable memory of claim 27 wherein the
- 2 objective comprises balancing the processing demands on the nodes.
- 1 29. (Original) The computer readable memory of claim 26 wherein the
- 2 processing demands and the processing capacities are normalized according to a
- 3 processing criterion.
- 1 30. (Original) The computer readable memory of claim 29 wherein the
- 2 processing criterion comprises an algorithm speed.
- 1 31. (Original) The computer readable memory of claim 9 wherein the
- 2 processing criterion comprises a transaction speed.
- 1 32. (Original) The computer readable memory of claim 9 wherein the
- 2 processing capacities of the nodes are found according to a look-up table in which
- different types of nodes have been normalized according to the processing
- 4 criterion.
- 1 33. (Original) The computer readable memory of claim 22 wherein the
- 2 application model further comprises storage demands for the services.
- 1 34. (Original) The computer readable memory of claim 33 wherein the

- 2 infrastructure model further comprises storage capacities for the nodes.
- 1 35. (Original) The computer readable memory of claim 34 wherein the integer
- 2 program further comprises storage constraints which ensure that a sum of the
- 3 storage demands for each of the nodes does not exceed the storage capacity for the
- 4 node.
- 1 36. (Original) The computer readable memory of claim 22 wherein the integer
- 2 program further comprises placement constraints which ensure that each of the
- 3 services is placed on one and only one of the nodes.
- 1 37. (Original) The computer readable memory of claim 22 wherein the
- 2 services reside on the nodes according to a previous assignment.
- 1 38. (Original) The computer readable memory of claim 37 further comprising
- 2 the step of assessing reassignment penalties for service placements that differs
- 3 from the previous assignment.
- 1 39. (Original) The computer readable memory of claim 38 wherein the integer
- 2 program further comprises a second objective that seeks to minimize the
- 3 reassignment penalties.
- 1 40. (Currently amended) A computer readable memory comprising computer
- 2 code for directing a computer to make a determination of a placement of services
- of a distributed application onto nodes of a distributed resource infrastructure, the
- 4 determination of the placement of the services onto the nodes comprising the steps
- 5 of:
- 6 establishing an application model of the services that comprises
- 7 processing demands for the services, storage demands for the services, and
- 8 transport demands between the services;
- 9 b. establishing an infrastructure model of the nodes that comprises processing
- capacities for the nodes, storage capacities for the nodes, and transport
- capacities between the nodes;
- 12 e. forming an integer program that comprises:

13		i.	a set of placement variables for a combination of the services and the
14			nodes, each of the placement variables indicating whether a particular
15			service is located on a particular node;
16		ii.	processing constraints which ensure that a sum of the processing
17			demands for each of the nodes does not exceed the processing capacity for
18			the node;
19		iii.	storage constraints which ensure that a sum of the storage demands for
20			each of the nodes does not exceed the storage capacity for the node;
21		iv.	placement constraints which ensure that each of the services is placed
22			on one and only one node;
23		₩.	communication constraints between node pairs which ensure that a
24			sum of the transport demands between a particular node pair does not
25			exceed the transport capacity between the particular node pair, each term
26			of the sum comprising a product of a first placement variable, a second
27			placement variable, and the transport demand between the services
28			associated with the first and second placement variables; and
29		vi.	an objective of minimizing communication traffic between the nodes
30			and balancing processing loads on the nodes; and
31	d.		employing a local search solution to solve the integer program which
32		det	ermines the placement of the services onto the nodes.