DYNAMICAL SYSTEMS MA3081

Exercise sheet 12

Exercise 1 (1D maps). (a) Show that the tent map

$$g \colon x \mapsto \begin{cases} 2x, & x \in [0, 1/2), \\ 2(1-x), & x \in [1/2, 1], \end{cases}$$

and the logistic map $f\colon x\mapsto 4x(1-x)$ are topologically conjugate via the conjugacy $h(x)=\sin^2(\pi x/2)$.

(b) Prove that topological transitivity is preserved by topological conjugacy. More precisely, if two dynamical systems are topologically conjugate then either both are topologically transitive or both are not topologically transitive.

Exercise 2 (1D maps). Let $\mu > 0$. Show that the map $f: x \mapsto \mu x(1-x)$ is conjugate to a map $g: x \mapsto x^2 + c$ for a suitable value of c.

Exercise 3 (Attractors). (a) Prove in detail (T1) and (T2) of Theorem 18.4 from the lecture notes.

(b) Consider the planar vector field

$$x' = x - x^3,$$

$$y' = -y.$$

Find a trapping region \mathcal{U} and an attracting set \mathcal{A} . Is \mathcal{A} an attractor?