Álgebra lineal I, Grado en Matemáticas

Febrero 2017, Primera Semana

No se permite el uso de material impreso (libros, apuntes) ni ningún tipo de calculadora.

Todas las soluciones tendrán que darse suficientemente razonadas.

Defina los siguientes conceptos: (2 puntos)

- (a) Matriz triangular inferior y triangular superior.
- (b) Rango de un conjunto de vectores. Rango de una matriz.
- (c) Subespacio vectorial.
- (d) Matriz de una aplicación lineal.

Ejercicio 1: (2 puntos)

Demuestre el siguiente resultado: Si v_1, \ldots, v_m son vectores linealmente independientes de un espacio vectorial V y v_{m+1} es un vector de V que no es combinación lineal de v_1, \ldots, v_m entonces $v_1, \ldots, v_m, v_{m+1}$ son linealmente independientes.

Ejercicio 2: (3 puntos)

Sean a y b números enteros. Discuta y resuelva el sistema lineal AX = B en función de los parámetros a y b, siendo

$$A = \begin{pmatrix} -a & 1 & 2 \\ 1 & 0 & 1 \\ -a & 2 & ab \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ b \\ a \end{pmatrix},$$

Indique explícitamente todos los valores (a, b) para los que el sistema es incompatible.

Ejercicio 3: (3 puntos)

Sean $\mathcal{B} = \{v_1, v_2, v_3\}$ y $\mathcal{B}' = \{u_1, u_2\}$ bases de dos K-espacios vectoriales V y V', respectivamente.

- (a) Determine la matriz en las bases \mathcal{B} y \mathcal{B}' de la aplicación lineal $f:V\longrightarrow V'$ que cumple:
 - $f(v_1 + v_2) = u_1 + u_2$, $f(2v_1 + v_2 + v_3) = u_2$
 - El núcleo de f es la recta de ecuaciones $\{x_1 + x_2 + x_3 = 0, 2x_1 x_3 = 0\}$.
- (b) Determine un plano P de V cuya imagen por f sea una recta R = f(P) de V'.

Ejercicio 1. Es la Proposición 3.8, página 97.

Ejercicio 2: Sean a y b números enteros. Discuta y resuelva el sistema lineal AX = B en función de los parámetros a y b, siendo

$$A = \begin{pmatrix} -a & 1 & 2 \\ 1 & 0 & 1 \\ -a & 2 & ab \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ b \\ a \end{pmatrix},$$

Indique explícitamente todos los valores (a, b) para los que el sistema es incompatible.

Solución: Transformamos el sistema AX = B en uno escalonado equivalente. Para ello escalonamos la matriz ampliada (A|B)

$$(A|B) = \begin{pmatrix} -a & 1 & 2 & 0 \\ 1 & 0 & 1 & b \\ -a & 2 & ab & a \end{pmatrix} \xrightarrow{f_1 \leftrightarrow f_2} \begin{pmatrix} 1 & 0 & 1 & b \\ -a & 1 & 2 & 0 \\ -a & 2 & ab & a \end{pmatrix} \xrightarrow{f_2 \to f_2 + af_1} \begin{pmatrix} 1 & 0 & 1 & b \\ 0 & 1 & 2 + a & ab \\ 0 & 2 & ab + a & a + ab \end{pmatrix}$$

$$\xrightarrow{f_3 \leftrightarrow f_3 - 2f_2} \begin{pmatrix} 1 & 0 & 1 & b \\ 0 & 1 & 2 + a & ab \\ 0 & 0 & ab - a - 4 & a - ab \end{pmatrix} = (A'|B')$$

Estudiamos el sistema escalonado equivalente A'X = B' aplicando el Teorema de Rouché-Fröbenius (es igual que el ejercicio F3.8, salvo por la condición de que a y b sean números enteros).

Distinguimos los casos:

- a) Si $ab a 4 \neq 0$ entonces rg(A') = 3 = rg(A'|B') e igual al número de incógnitas, luego el sistema es compatible determinado.
- b) Si ab a 4 = 0 entonces rg(A') = 2. y se distinguen dos subcasos
 - b.1) Si ab a 4 = 0 y $a ab \neq 0$, entonces $\operatorname{rg}(A') = 2 \neq \operatorname{rg}(A'|B') = 3$, luego el sistema es incompatible. Veamos qué valores a y b cumplen estas condiciones.

$$\begin{cases} ab - a - 4 = 0 \\ a - ab \neq 0 \end{cases} \Leftrightarrow \begin{cases} a(b-1) = 4 \\ a(1-b) \neq 0 \end{cases} \Leftrightarrow \begin{cases} a(b-1) = 4 \\ -a(b-1) \neq 0 \end{cases} \Leftrightarrow a(b-1) = 4$$

Como a y b son números enteros, se tienen las siguientes posibilidades:

$$(a, b-1) \in \{ (1,4), (-1,-4), (4,1), (-4,-1), (2,2), (-2,-2) \}$$

Es decir, los valores (a, b) para los cuales el sistema es incompatible son:

$$\{(1,5), (-1,-3), (4,2), (-4,0), (2,3), (-2,-1)\}\$$

b.2) Si ab-a-4=0 y a-ab=a(1-b)=0, entonces $\operatorname{rg}(A')=\operatorname{rg}(A'|B')=2$. Pero por lo visto anteriormente este caso no se puede dar ya que la primera igualdad ab-a-4=a(b-1)-4=0 implica $a(b-1)=4\neq 0$ y multiplicando por (-1) ambos miembros de la igualdad se tiene $a(1-b)=-4\neq 0$. Luego el sistema nunca es compatible e indeterminado.

En resumen

$$\begin{cases} \text{Incompatible} & \text{si } ab-a-4=0 \\ \text{Compatible Determinado} & \text{si } ab-a-4\neq 0 \end{cases}$$

A continuación, resolvemos el caso compatible determinando $ab-a-4\neq 0$ o lo que es lo mismo $a(b-1)\neq 4$, que serían todos los valores enteros (a,b) que no están en el conjunto (*) descrito anteriormente. Para ello, simplemente despejamos las incógnitas de abajo hacia arriba en el sistema escalonado A'X=B'

$$\begin{cases} x + & z = b \\ y + & (2+a)z = ab \\ (ab - a - 4)z = a(1-b) \end{cases}$$

Obteniéndose las soluciones:

$$x = b - \frac{a(1-b)}{ab-a-4}$$
, $y = ab - \frac{a(2+a)(1-b)}{ab-a-4}$, $z = \frac{a(1-b)}{ab-a-4}$

Ejercicio 3: Sean $\mathcal{B}=\{v_1,v_2,v_3\}$ y $\mathcal{B}'=\{u_1,u_2\}$ bases de dos \mathbb{K} -espacios vectoriales V y V', respectivamente.

- (a) Determine la matriz en las bases \mathcal{B} y \mathcal{B}' de la aplicación lineal $f: V \longrightarrow V'$ que cumple:
 - $f(v_1 + v_2) = u_1 + u_2$, $f(2v_1 + v_2 + v_3) = u_2$
 - El núcleo de f es la recta de ecuaciones $\{x_1 + x_2 + x_3 = 0, 2x_1 x_3 = 0\}$.
- (b) Determine un plano P de V cuya imagen por f sea una recta R = f(P) de V'.

Solución:

a) $f:V\longrightarrow V'$ queda determinada conociendo las imágenes de los vectores de una base de V. Nos dan las imágenes de dos vectores $f(v_1+v_2)=u_1+u_2,\ f(2v_1+v_2+v_3)=u_2$ y podemos conseguir la imagen de un tercero extrayendo un vector del núcleo. El núcleo de f es la recta de ecuaciones $\{x_1+x_2+x_3=0,\ 2x_1-x_3=0\}$ respecto de \mathcal{B} , y un vector de este subespacio es $v_1-3v_2+2v_3=(1,-3,2)_{\mathcal{B}}$ y su imagen por f es $f(v_1-3v_2+2v_3)=0$ (aquí 0 es el vector cero de V'). Los vectores:

$$\{v_1 + v_2, \ 2v_1 + v_2 + v_3, \ v_1 - 3v_2 + 2v_3\}$$

son linealmente independientes. En términos de coordenadas en \mathcal{B} forman la base de V:

$$\mathcal{B}^* = \{(1,1,0)_{\mathcal{B}}, (2,1,1)_{\mathcal{B}}, (1,-3,2)_{\mathcal{B}}\}$$

y las imágenes de estos vectores son:

$$f(1,1,0)_{\mathcal{B}} = (1,1)_{\mathcal{B}'}, \ f(2,1,1)_{\mathcal{B}} = (0,1)_{\mathcal{B}'}, \ f(1,-3,2)_{\mathcal{B}} = (0,0)_{\mathcal{B}'} \quad (*)$$

A partir de aquí podemos seguir dos métodos:

Método 1: Las columnas de la matriz pedida se corresponden con las coordenadas en \mathcal{B}' de $f(v_1)$, $f(v_2)$ y $f(v_3)$. Para calcular las imágenes previamente tenemos que determinar las coordenadas de cada vector en \mathcal{B}^* :

$$v_1 = a_1(v_1 + v_2) + b_1(2v_1 + v_2 + v_3) + c_1(v_1 - 3v_2 + 2v_3) \Rightarrow a_1 = \frac{5}{2}, b_1 = -1, c_1 = \frac{1}{2}$$

$$v_2 = a_2(v_1 + v_2) + b_2(2v_1 + v_2 + v_3) + c_2(v_1 - 3v_2 + 2v_3) \Rightarrow a_2 = -\frac{3}{2}, b_2 = 1, c_2 = -\frac{1}{2}$$

$$v_3 = a_3(v_1 + v_2) + b_3(2v_1 + v_2 + v_3) + c_3(v_1 - 3v_2 + 2v_3) \Rightarrow a_3 = -\frac{7}{2}, b_3 = 2, c_3 = -\frac{1}{2}$$

Las imágenes $f(v_1)$, $f(v_2)$ y $f(v_3)$ se obtienen aplicando la linealidad de f:

$$f(v_1) = \frac{5}{2} f(v_1 + v_2) - f(2v_1 + v_2 + v_3) + \frac{1}{2} f(v_1 - 3v_2 + 2v_3) = \frac{5}{2} u_1 + \frac{3}{2} u_2 = (\frac{5}{2}, \frac{3}{2})_{\mathcal{B}'}$$

$$f(v_2) = -\frac{3}{2} f(v_1 + v_2) + f(2v_1 + v_2 + v_3) - \frac{1}{2} f(v_1 - 3v_2 + 2v_3) = -\frac{3}{2} u_1 - \frac{1}{2} u_2 = (-\frac{3}{2}, -\frac{1}{2})_{\mathcal{B}'}$$

$$f(v_3) = -\frac{7}{2} f(v_1 + v_2) + 2f(2v_1 + v_2 + v_3) - \frac{1}{2} f(v_1 - 3v_2 + 2v_3) = -\frac{7}{2} u_1 - \frac{3}{2} u_2 = (-\frac{7}{2}, -\frac{1}{2})_{\mathcal{B}'}$$

Luego la matriz pedida es

$$\mathfrak{M}_{\mathcal{B}\mathcal{B}'} = \begin{pmatrix} \frac{5}{2} & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$

Método 2: Utilizando matrices de cambio de base.

Con los datos de (*) tenemos directamente la matriz de f en las bases \mathcal{B}^* y \mathcal{B}' que es

$$\mathfrak{M}_{\mathcal{B}^* \, \mathcal{B}'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Haciendo un cambio de base en el espacio vectorial de partida V de \mathcal{B} a \mathcal{B}^* tendremos la matriz pedida

$$M_{BB'}(f) = M_{B^*B'}(f) M_{BB^*} = M_{B^*B'}(f) M_{B^*B}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & -3 \\ 0 & 1 & 2 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{5}{2} & -\frac{3}{2} & -\frac{7}{2} \\ -1 & 1 & 2 \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{5}{2} & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & -\frac{1}{2} & -\frac{3}{2} \end{pmatrix}$$

b) Sea P un plano generado por dos vectores w_1 y w_2 de V linealmente independientes. La imagen de P por f es el subespacio $f(P) = L(f(w_1), f(w_2))$ y para que este subespacio sea una recta los vectores $f(w_1)$ y $f(w_2)$ tendrán que ser linealmente dependientes. Lo más sencillo es que uno de ellos sea un vector del núcleo cuya imagen sería el 0 de V'. Por ejemplo, tomamos $w_1 = v_1 - 3v_2 + 2v_3 \in \text{Ker } f$, el que calculamos al inicio, y w_2 cualquier otro que no pertenezca a núcleo, por ejemplo $w_2 = v_1$.

Así, si $P = L(v_1 - 3v_2 + 2v_3, v_1)$ entonces el subespacio imagen de P es

$$f(P) = L(f(v_1 - 3v_2 + 2v_3), f(v_1)) = L(0, u_1 + u_2) = L(u_1 + u_2)$$

es la recta generada por el vector $u_1 + u_2$ de V'.

Visto de un modo todavía más directo, sirve cualquier plano que contenga a la recta que es el núcleo de la aplicación lineal. Nos sirve cualquiera de los dos planos de las ecuaciones implícitas del núcleo que se dan en el enunciado:

$$Ker(f) \equiv \{x_1 + x_2 + x_3 = 0, \ 2x_1 - x_3 = 0\}$$

Es decir, tanto el plano de ecuación $x_1 + x_2 + x_3 = 0$ como el plano $2x_1 - x_3 = 0$, contienen al núcleo de f y sirven como respuesta a este apartado del ejercicio 3.