Правительство Санкт-Петербурга Комитет по науке и высшей школе Санкт-Петербургское государственное бюджетное профессиональное образовательное учреждение «Политехнический колледж городского хозяйства»

УТВЕРЖДЕН ПКГХ 09.02.07 ИП-21-3 .555-21- ЛУ

КУРСОВОЙ ПРОЕКТ

Программа для построения графиков функций "GraThing"

Пояснительная записка ПКГХ 09.02.07 ИП-21-3.555-21.81

Листов 25

Аннотация

Программа для построения графиков функций «GraThing» (далее GraThing) применима для изучения школьниками математики, физики с помощью графиков функций.

В программе доступно рисование разнообразных графиков функций в прямоугольной и полярной системах координат, а также рисование параметрических функций.

Содержание

Аннотация	2
Содержание	3
Введение	4
1. Назначение и область применения	5
2. Постановка задачи	6
3. Описание программы	7
4. Программа и методика испытаний	12
5. Руководство оператора	20
б. Мероприятия по информационной безопасности	22
Заключение	23
Приложения	24
источники, использованные при разработке	

Введение

GraThing является программой для построения графиков функций в прямоугольной системе координат; полярной системе координат и от градуса, и от радиуса; а также параметрические функции.

Разработка GraThing проводилась на основе следующих документов:

1) Техническое задание.

1. Назначение и область применения

GraThing предназначена для обучения школьников системам координат и графикам функций. Пользователь вводит количество функций, систему координат и сами функции, программа выводит графики введённых функций. Можно легко переключаться между полярной и прямоугольной системами и смотреть как функции ведут себя в разных системах.

Существующими аналогами GraThing являются:

- 1) Графический калькулятор Desmos https://www.desmos.com/calculator
- 2) Графический калькулятор MathWay https://www.mathway.com/Graph
- 3) Umath построение графика функции онлайн https://umath.ru/calc/graph/
- 4) WolframAlpha https://www.wolframalpha.com/

2. Постановка задачи

Необходимо было разработать программу для построения графиков, удовлетворяющую следующим требованиям:

- 1) Корректное отображение графиков заданных пользователем функций
- 2) Одновременное рисование от 1 до 10 графиков функций
- 3) Масштабирование координатной сетки
- 4) Работа с прямоугольными координатами
- 5) Работа с полярными координатами
- 6) Работа с параметрическими функциями
- 7) Задание минимального и максимального значения Т в параметрических функциях
- 8) Рисование 1 графика не более чем за 1 минуту

3. Описание программы

3.1 Общие сведения

Наименование: «GraThing»

Язык разработки: С#

<u>Инструменты разработки:</u> Интегрированная среда разработки Visual Studio, Платформа разработки Windows Forms

<u>Необходимое для работы ПО:</u> Операционная система Windows 10

3.2 Функциональное назначение

Программа предназначена для визуализации математических функций.

3.3 Описание логической структуры

Ниже представлены различные диаграммы и схемы, описывающие работу программы

Рис 1. Структура

Рис 2. Функциональная схема

Рис 3. Диаграмма деятельности

Рис 4. Диаграмма вариантов использования

Рис 5. Диаграмма переходов состояний

Рис 6. Диаграмма классов

3.4 Используемые технические средства

Для использования GraThing необходимо любое устройство с установленной операционной системой Windows 10

3.5 Вызов и загрузка

Для запуска программы нужно 2 раза кликнуть либо на исполняемый файл программы в файловой системе, либо на иконку на рабочем столе

Рис 7. Исполняемый файл

3.6 Входные и выходные данные

Входные данные:

- 1) Количество графиков
- 2) Функции в строковом виде
- 3) Система координат

Рис 8. Пример ввода

Выходные данные:

1) Графики заданных функций в заданной системе координат

Рис 9. Пример вывода

4. Программа и методика испытаний

4.1 Объекты испытаний

Объектом для испытаний является программа для построения графиков функций «GraThing».

4.2 Цель испытаний

Испытания проводятся с целью проверки соответствия проекта требованиям, указанным в техническом задании.

4.3 Требования к программе

Данный программный продукт должен удовлетворять следующим требованиям:

- Корректное отображение графиков заданных пользователем функций
- Одновременное рисование от 1 до 10 графиков функций
- Масштабирование координатной сетки
- Работа с прямоугольными координатами
- Работа с полярными координатами
- Работа с параметрическими функциями
- Задание минимального и максимального значения Т в параметрических функциях
- Рисование 1 графика не более чем за 1 минуту

4.4 Методы испытаний

Метолики выполнения испытаний:

- 1) Корректное отображение графиков заданных пользователем функций:
 - Запустить рисование одних и тех же графиков функций в разных программах-аналогах и сравнить результат и/или самостоятельно построить графики функций
- 2) Одновременное рисование от 1 до 10 графиков функций:
 - Запустить одновременное рисование 10 графиков

- 3) Масштабирование координатной сетки:
 - Крутить колёсико мышки, пока одно деление координатных прямых не станет равно 1000, пока одно деление координатных прямых не станет равно 0.001
- 4) Работа с прямоугольными координатами:
 - Методика номер 1 в прямоугольных координатах
- 5) Работа с полярными координатами:
 - Методика номер 1 в полярных координатах
- 6) Работа с параметрическими функциями:
 - Методика номер 1 с параметрическими функциями
- 7) Задание минимального и максимального значения Т в параметрических функциях:
 - Задать Т_{min} и Т_{max} равные 2 и 6, -7 и 10, -234 и 461
- 8) Рисование 1 графика не более чем за 1 минуту
 - Запустить рисование 3 разных графиков в разных системах и замерить время отрисовки

4.5 Тестовый пример

1) Корректное отображение графиков заданных пользователем функций Функции синуса, косинуса и тангенса в разных системах:

Рис 10. Графики синуса, косинуса, тангенса в WolframAlpha

Рис 11. Графики синуса, косинуса, тангенса в Desmos

Рис 12. Графики синуса, косинуса, тангенса в MathWay

Рис 13. Графики синуса, косинуса, тангенса в GraThing

2) Одновременное рисование от 1 до 10 графиков функций

Рис 14. 10 графиков функций

3) Масштабирование координатной сетки

Рис 15. Одно деление равно 1000

Рис 16. Одно деление равно 0.001

4) Работа с прямоугольными координатами

Рис 17. График логарифма от 10 в Desmos

Рис 18. График логарифма от 10 в GraThing

5) Работа с полярными координатами

***Wolfram**Alpha

Рис 19. График Фи равно Р в WolframAlpha

Рис 20. График Фи равно Р в GraThing

6) Работа с параметрическими функциями

***Wolfram**Alpha

Рис 21. X=sin(T) Y=T в WolframAlpha

Рис 22. X=sin(T) Y=T в GraThing

- 7) Задание минимального и максимального значения Т в параметрических функциях:
 - Задать Т_{min} и Т_{max} равные 2 и 6, -7 и 10, -234 и 461

Рис 23. T_{min} и T_{max} равные 2 и 6

Рис 24. T_{min} и T_{max} равные -7 и 10

Pис 25. T_{min} и T_{max} равные -234 и 461

8) Рисование 1 графика не более чем за 1 минуту

Рис 26. Время рисования: 0,3 секунды

Рис 27. Время рисования: 0,1 секунда

Рис 28. Время рисования: 3 секунды

<u>Заключение тестирования:</u> в ходе прохождения тестирования исправностей не было выявлено. Программа соответствует требованиям из технического задания.

5. Руководство оператора

5.1 Выполнение программы

1) Запуск программы

Для запуска программы нужно 2 раза кликнуть либо на исполняемый файл программы в файловой системе, либо на иконку на рабочем столе

Рис 29. Исполняемый файл

2) Ввод данных

Входные данные:

- Количество графиков с помощью элемента управления "вверх-вниз"^[3]
- Функции в строковом виде
- Система координат с помощью радиокнопок ^[4]

Для запуска рисования нажмите «Построить графики»

Рис 30. Пример ввода

Выходные данные:

- Графики заданных функций в заданной системе координат

Рис 31. Пример вывода

3) Завершение программы

Чтобы завершить выполнение GraThing, нажмите X в верхнем правом углу любого из двух окон.

Рис 32. Х в вернем правом углу экрана

5.2 Сообщение оператору

Специальных сообщений нет.

6. Мероприятия по информационной безопасности

GraThing не представляет ни каких угроз информационной безопасности.

Для сохранности исходного кода, необходимо разместить исходный проект в системе контроля версий «GitHub» ^[5], а также сделать резервные копии на нескольких устройствах.

Заключение

Программный продукт удовлетворяет всем требованиям, изложенным в техническом задании. Таким образом, задача, поставленная при проектировании программы для построения графиков функций «GraThing», выполнена.

Реализация данного программного обеспечения была произведена с помощью интегрированной среды разработки Visual Studio и платформы разработки Windows Forms. GraThing написана на программном языке C#.

Данная программа является актуальной в нынешнее время т.к. понимание графиков функций — необходимый навык для школьников на экзаменах по математике и физике, а GraThing предоставляет им простой и понятный инструмент для их построения.

Приложения

Приложений нет.

Источники, использованные при разработке

- 1) ГОСТ Р ИСО_МЭК 25051-2017 Требования к качеству готового к использованию программного продукта (RUSP) и инструкции по тестированию.
- 2) ЕСПД Единая система программной документации.

Internet – ресурсы

- 3) NumericUpDown Класс Microsoft Learn [электронный ресурс] режим доступа: https://learn.microsoft.com/ru-ru/dotnet/api/system.windows.forms.numericupdown?view=windowsdeskto-p-8.0
- 4) Радиокнопка Википедия [электронный ресурс] режим доступа: https://ru.wikipedia.org/wiki/Радиокнопка
- 5) GitHub Википедия [электронный ресурс] режим доступа: https://ru.wikipedia.org/wiki/GitHub