SUMAS PARCIALES

DE ELEMENTOS CONSECUTIVOS

ALGORÍTMICA

Grado en Ingeniería Informática Universidad de granada

ADRA SANCHEZ RUIZ CRISTINA GARRIDO AMADOR MARIANA ORIHUELA CAZORLA JUAN MANUEL CASTILLO NIEVAS LUIS LIÑÁN VILLAFRANCA

29 de marzo de 2017, Granada

Índice

1	Pres	Presentación del problema				
2	Prue	Pruebas realizadas				
3	Resu	Algoritmo clásico	4 5			
	3.2	3.1.2 Cálculo de la eficiencia híbrida	6 7 8 9			
	3.3	Comparación	10			
ĺn	dice	e de figuras				
	3.1.	Gráfica empírica de la suma parcial de elementos realizada con un algoritmo secuencial	6			
3.2. Gráfica híbrida de la suma parcial de elementos realizada con el algorit secuencial						
		Gráfica empírica de la suma parcial de elementos realizada con un algoritmo Divide y Vencerás	9			
3.4. Gráfica híbrida de la suma parcial de elementos realizada con el algor Divide y Vencerás						
	3.5.	Comparación de la eficiencia de dos algoritmos	10			
ĺn	dice	e de tablas				
	3.1. 3.2. 3.3. 3.4.	Tiempos obtenidos para el algoritmo clásico	5 7 8			

1. Presentación del problema

La práctica que se nos ha asignado ha sido el cálculo de la suma parcial de elementos consecutivos. La cual tiene como objetivo encontrar la suma máxima entre los distintos componentes.

Para ello, hemos desarrollado un bucle anidado que va sumando el primer componente del vector con el segundo, guardando este valor en una variable. Seguidamente, suma ese valor con el tercero y comprueba si es mayor o no, si lo es, sigue sumando con el cuarto y así sucesivamente, sino, coge el último máximo y va sumando desde ese.

Esto lo hace para cada uno de los componentes del vector, hallando por tanto el valor máximo y siendo este el que se devuelve.

2. Pruebas realizadas

A la hora de hacer el cálculo empírico, hemos utilizado una macro de la siguiente forma:

```
\#!/bin/bash
```

```
echo "" > $1.dat

for((i = 0; i < 100000; i += 1000)) do
    echo "Tamaño $i"
    echo `$@ $i` >> $1.dat
done
```

3. Resultados obtenidos

3.1. Algoritmo clásico

Como solución a este problema, proponemos primero un algoritmo clásico. Este algoritmo es simple:

INICIO Recorrer todos los elementos del vector menos el último

- 1 Coger el i-ésimo elemento del vector
- 2 Recorrer todos los elementos del vector a partir del elemento i+1 del punto anterior
- 3 En cada iteración, sumar a la variable suma el elemento actual. Si la suma es mayor que el máximo que teníamos hasta ahora, el máximo ahora es la variable suma.

BASE Devolver el máximo

Es fácil ver la eficiencia cuadrática que tiene este algoritmo. Tenemos un bucle for que recorre todos los elementos del vector menos el último (orden O(n)) y dentro de este bucle, tenemos otro bucle for que, en el peor de los casos, va a recorrer todos los elementos del vector menos el primero, con lo cual tenemos O(n) otra vez. Como las demás sentencias son de O(1), tenemos que:

$$\sum_{i=0}^{n} O(i) \in O(n^2)$$

3.1.1. Cálculo de la eficiencia empírica

Vector size	Time (sec)
1000	0.0023
2000	0.0079
3000	0.0137
4000	0.0232
5000	0.0306
6000	0.0423
7000	0.0567
8000	0.0738
9000	0.0937
10000	0.1149
11000	0.1413
12000	0.1646
13000	0.1934
14000	0.2240
85000	8.2522
86000	8.4425
87000	8.6385
88000	8.8398
89000	9.0516
90000	9.2474
91000	9.4298
92000	9.6841
93000	9.8733
94000	10.0894
95000	10.3090
96000	10.5203
97000	10.7451
98000	10.9694
99000	11.1872

Tabla 3.1: Tiempos obtenidos para el algoritmo clásico.

Figura 3.1: Gráfica empírica de la suma parcial de elementos realizada con un algoritmo secuencial.

3.1.2. Cálculo de la eficiencia híbrida

Figura 3.2: Gráfica híbrida de la suma parcial de elementos realizada con el algoritmo secuencial.

Final set	of parameters	Asymptotic Sta	ndard Error
========		=========	========
a0 =	1.14155e-09	+/- 9.995e-13	(0.08755%)
a1 =	5.3884e-08	+/- 1.023e-07	(189.8%)
a2 =	0.000283546	+/- 0.00219	(772.5%)

Tabla 3.2: Ajustes y errores para la función n^2 ajustada al algoritmo secuencial.

Viendo la gráfica 3.1, se puede deducir que el algoritmo es de orden de eficiencia $O(n^2)$. Para comprobarlo, hemos utilizado gnuplot para realizar un ajuste híbrido (gráfica 3.2). Según los datos obtenidos (Tabla 3.2) el ajuste a este orden es casi perfecto (sólo un 0.08755% de error al obtener la constante oculta a0 de $a0*n^2+a1*n+a2$).

3.2. Algoritmo Divide y Vencerás

Para hacer este algoritmo un poco más eficiente, hemos realizado el siguiente algoritmo:

INICIO Dividir el vector por la mitad

- 1 Calcular el máximo del vector izquierda y del vector derecha de manera recursiva
- 2 Calcular la suma de las dos mitades, pues puede pasar que la suma máxima esté en mitad. Para ello:
 - 2.1 Recorrer el vector izquierda desde el final y sumar sus elementos para encontrar el máximo
 - 2.2 Recorrer el vector derecha desde el principio y sumar sus elementos para encontrar el máximo
- 3 Calcular el máximo entre el vector izquierda y el vector derecha
- 4 Calcular el máximo entre el máximo anterior y la suma de las dos mitades (apartado 2)
- 5 Devolver máximo
- BASE El vector izquierda y el vector derecha son el mismo. Devolver el elemento que contiene.

Su eficiencia teórica es simple, pues tenemos que la función se llama dos veces a sí misma, pasándole como parámetro la mitad del vector, y luego tenemos dos bucles for que van a recorrer los elementos de los dos vectores, izquierda y derecha. Por lo tanto, tenemos $T(n) = 2 * T(\frac{n}{2}) + O(n)$, que como hemos visto en clase de teoría, se traduce en O(n*log(n)).

3.2.1. Cálculo de la eficiencia empírica

Vector size	Time (sec)
	` ′
1000	0.0001
2000	0.0002
3000	0.0003
4000	0.0004
5000	0.0005
6000	0.0005
7000	0.0006
8000	0.0007
9000	0.0008
10000	0.0009
11000	0.0011
12000	0.0012
13000	0.0013
14000	0.0014
	•
85000	0.0073
86000	0.0075
87000	0.0075
88000	0.0076
89000	0.0078
90000	0.0078
91000	0.0073
92000	0.0073
93000	0.0073
94000	0.0076
95000	0.0075
96000	0.0074
97000	0.0079
98000	0.0076
99000	0.0077

Tabla 3.3: Tiempos obtenidos para el algoritmo Divide y Vencerás.

Figura 3.3: Gráfica empírica de la suma parcial de elementos realizada con un algoritmo Divide y Vencerás.

3.2.2. Cálculo de la eficiencia híbrida

Figura 3.4: Gráfica híbrida de la suma parcial de elementos realizada con el algoritmo Divide y Vencerás.

Final	set of parameters	Asymptotic Stan	dard Error
=====		==========	=======
b0 =	0.00000000703773	+/- 1.079E-10	(1.533%)
b1 =	0.000296632	+/- 6.946E-05	(23.42%)

Tabla 3.4: Ajustes y errores para la función n*log(n) ajustada al algoritmo Divide y Vencerás.

Viendo la gráfica 3.3, se puede deducir que el algoritmo es de orden de eficiencia O(n * log(n)). Para comprobarlo, hemos utilizado gnuplot para realizar un ajuste híbrido (gráfica 3.4). Según los datos obtenidos (Tabla 3.4) el ajuste a este orden es casi perfecto (sólo un 1.533 % de error al obtener la constante oculta b0 de b0 * n * log(n) + b1).

3.3. Comparación

Figura 3.5: Comparación de la eficiencia de dos algoritmos.

Como podemos observar en la gráfica 3.5, no es nada comparable la salida de tiempos del algoritmo clásico con el Divide y Vencerás para los mismos tamaños.