

Decision trees are prone to 'overfitting'

- Decision Tree is a powerful algorithm that can adapt well and capture various patterns in the data
- If allowed to grow fully, they become over-complex & tend to fit even the noise
- Thus, a fully grown tree may not 'generalize' well on test or new unseen data

Train	Test
M1	?
M2	?
M3	?

TRAIN			TES	ST	+Error
TRAIN		TEST	TRA	'IN	
TRAIN	TEST	TRAIN			

Post-Pruning: Cost-complexity pruning

- Starting from the Full tree, create a sequence of trees that are sequentially smaller (pruned)
- At each step the algorithm
 - try removing each possible subtree
 - find the 'relative error decrease per node' for that subtree Complexity parameter, α
 - And remove the subtree with the minimum α
- With the list of subtrees, one usually reverts back to using crossvalidation errors to find the best final pruned tree

Pruning

- Ideally we would like a tree that does not over-fit the given data
- One popular and simple way to prune a decision tree is by limiting the depth of the tree to avoid over fitting.
- For example the tree on the right below is generated with a max depth of 2 while the tree on the left has no depth restriction (and hence overfits the data)

SMALL

COMPLEX

	ERROR	ALPHA
T ₀		
T ₁		
T ₂		
T ₃		
T _m		

Alpha decreases, impurity increases, complexity decreases

SIMPLE LARGE

ALPHA = (Error (Pruned) - Error (original)) / (Number of nodes reduced)

Impurity Measures in Decision Trees

	GINI INDEX	ENTROPY	INFORMATION GAIN	VARIANCE
When to use	Classification	Classification	Classification	Regression
Formula	$1 - \Sigma p_i^2$	$-\Sigma p_i \log(p_i)$	E(Y) - E(Y X)	$\Sigma(x-\bar{x})^2/N$
Range	0 to 0.5 0 = most pure 0.5 = most impure	0 to 1 0 = most pure 1 = most impure	0 to 1 0 = less gain 1 = more gain	>=0
Characteristics	Easy to compute Non-additive	Computationally intensive Additive	Computationally intensive	The most common measure of spread

