

Construction of Additive Reed-Muller Codes*

J. Pujol, J. Rifà, and L. Ronquillo

Department of Information and Communications Engineering, Universitat Autònoma de Barcelona, 08193-Bellaterra, Spain.

Abstract. The well known Plotkin construction is, in the current paper, generalized and used to yield new families of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.

Key Words: $\mathbb{Z}_2\mathbb{Z}_4$ -Additive codes, Plotkin construction, Reed-Muller codes, $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes.

1 Introduction

The aim of our paper is to obtain a generalization of the Plotkin construction which gave rise to families of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes such that, after the Gray map, the corresponding $\mathbb{Z}_2\mathbb{Z}_4$ -linear codes had the same parameters and properties as the family of binary linear *RM* codes. Even more, we want the corresponding codes with parameters $(r, m) = (1, m)$ and $(r, m) = (m-2, m)$ to be, respectively, any one of the non-equivalent $\mathbb{Z}_2\mathbb{Z}_4$ -linear Hadamard and $\mathbb{Z}_2\mathbb{Z}_4$ -linear 1-perfect codes.

2 Constructions of $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes

In general, any non-empty subgroup \mathcal{C} of $\mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, where \mathbb{Z}_2^α denotes the set of all binary vectors of length α and \mathbb{Z}_4^β is the set of all β -tuples in \mathbb{Z}_4 .

Let \mathcal{C} be a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code, and let $C = \Phi(\mathcal{C})$, where $\Phi : \mathbb{Z}_2^\alpha \times \mathbb{Z}_4^\beta \longrightarrow \mathbb{Z}_2^n$ is given by the map $\Phi(u_1, \dots, u_\alpha | v_1, \dots, v_\beta) = (u_1, \dots, u_\alpha | \phi(v_1), \dots, \phi(v_\beta))$ where $\phi(0) = (0, 0)$, $\phi(1) = (0, 1)$, $\phi(2) = (1, 1)$, and $\phi(3) = (1, 0)$ is the usual Gray map from \mathbb{Z}_4 onto \mathbb{Z}_2^2 .

Since the Gray map is distance preserving, the Hamming distance of a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code C coincides with the Lee distance computed on the $\mathbb{Z}_2\mathbb{Z}_4$ -additive code $\mathcal{C} = \phi^{-1}(C)$.

* This work has been partially supported by the Spanish MICINN Grants MTM2006-03250, TSI2006-14005-C02-01, PCI2006-A7-0616 and also by the *Comissionat per a Universitats i Recerca de la Generalitat de Catalunya* under grant FI2008.

A $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} is also isomorphic to an abelian structure like $\mathbb{Z}_2^\gamma \times \mathbb{Z}_4^\delta$. Therefore, \mathcal{C} has $|\mathcal{C}| = 2^\gamma 4^\delta$ codewords and, moreover, $2^{\gamma+\delta}$ of them are of order two. We call such code \mathcal{C} a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(\alpha, \beta; \gamma, \delta)$ and its binary image $C = \Phi(\mathcal{C})$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -linear code of type $(\alpha, \beta; \gamma, \delta)$.

Although \mathcal{C} may not have a basis, it is important and appropriate to define a generator matrix for \mathcal{C} as:

$$\mathcal{G} = \left(\begin{array}{c|c} B_2 & Q_2 \\ \hline B_4 & Q_4 \end{array} \right), \quad (1)$$

where B_2 and B_4 are binary matrices of size $\gamma \times \alpha$ and $\delta \times \alpha$, respectively; Q_2 is a $\gamma \times \beta$ -quaternary matrix which contains order two row vectors; and Q_4 is a $\delta \times \beta$ -quaternary matrix with order four row vectors.

2.1 Plotkin construction

In this section we show that the well known Plotkin construction can be generalized to $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes.

Definition 1 (Plotkin Construction) Let \mathcal{X} and \mathcal{Y} be any two $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes of types $(\alpha, \beta; \gamma_{\mathcal{X}}, \delta_{\mathcal{X}})$, $(\alpha, \beta; \gamma_{\mathcal{Y}}, \delta_{\mathcal{Y}})$ and minimum distances $d_{\mathcal{X}}$, $d_{\mathcal{Y}}$, respectively. If $\mathcal{G}_{\mathcal{X}}$ and $\mathcal{G}_{\mathcal{Y}}$ are the generator matrices of \mathcal{X} and \mathcal{Y} , then the matrix

$$\mathcal{G}_P = \left(\begin{array}{cc} \mathcal{G}_{\mathcal{X}} & \mathcal{G}_{\mathcal{X}} \\ 0 & \mathcal{G}_{\mathcal{Y}} \end{array} \right)$$

is the generator matrix of a new $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} .

Proposition 2 Code \mathcal{C} defined above is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(2\alpha, 2\beta; \gamma, \delta)$, where $\gamma = \gamma_{\mathcal{X}} + \gamma_{\mathcal{Y}}$, $\delta = \delta_{\mathcal{X}} + \delta_{\mathcal{Y}}$, binary length $n = 2\alpha + 4\beta$, size $2^{\gamma+2\delta}$ and minimum distance $d = \min\{2d_{\mathcal{X}}, d_{\mathcal{Y}}\}$.

2.2 BA-Plotkin construction

Applying two Plotkin constructions, one after another, but slightly changing the submatrices in the generator matrix, we obtain a new construction with interesting properties with regard to the minimum distance of the generated code. We call this new construction *BA-Plotkin construction*.

Given a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code \mathcal{C} with generator matrix \mathcal{G} we denote, respectively, by $\mathcal{G}[b_2]$, $\mathcal{G}[q_2]$, $\mathcal{G}[b_4]$ and $\mathcal{G}[q_4]$ the four submatrices B_2 , Q_2 , B_4 , Q_4 of \mathcal{G} defined in (1); and by $\mathcal{G}[b]$ and $\mathcal{G}[q]$ the submatrices of \mathcal{G} , $\left(\begin{array}{c|c} B_2 \\ \hline B_4 \end{array} \right)$, $\left(\begin{array}{c|c} Q_2 \\ \hline Q_4 \end{array} \right)$, respectively.

Definition 3 (BA-Plotkin Construction) Let \mathcal{X} , \mathcal{Y} and \mathcal{Z} be any three $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes of types $(\alpha, \beta; \gamma_{\mathcal{X}}, \delta_{\mathcal{X}})$, $(\alpha, \beta; \gamma_{\mathcal{Y}}, \delta_{\mathcal{Y}})$, $(\alpha, \beta; \gamma_{\mathcal{Z}}, \delta_{\mathcal{Z}})$ and minimum distances $d_{\mathcal{X}}$, $d_{\mathcal{Y}}$, $d_{\mathcal{Z}}$, respectively. Let $\mathcal{G}_{\mathcal{X}}$, $\mathcal{G}_{\mathcal{Y}}$ and $\mathcal{G}_{\mathcal{Z}}$ be the generator matrices

of the $\mathbb{Z}_2\mathbb{Z}_4$ -additive codes \mathcal{X} , \mathcal{Y} and \mathcal{Z} , respectively. We define a new code \mathcal{C} as the $\mathbb{Z}_2\mathbb{Z}_4$ -additive code generated by

$$\mathcal{G}_{BA} = \left(\begin{array}{cc|ccccc} \mathcal{G}_{\mathcal{X}}[b] & \mathcal{G}_{\mathcal{X}}[b] & 2\mathcal{G}_{\mathcal{X}}[b] & \mathcal{G}_{\mathcal{X}}[q] & \mathcal{G}_{\mathcal{X}}[q] & \mathcal{G}_{\mathcal{X}}[q] & \mathcal{G}_{\mathcal{X}}[q] \\ 0 & \mathcal{G}_{\mathcal{Y}}[b_2] & \mathcal{G}_{\mathcal{Y}}[b_2] & 0 & 2\mathcal{G}'_{\mathcal{Y}}[q_2] & \mathcal{G}'_{\mathcal{Y}}[q_2] & 3\mathcal{G}'_{\mathcal{Y}}[q_2] \\ 0 & \mathcal{G}_{\mathcal{Y}}[b_4] & \mathcal{G}_{\mathcal{Y}}[b_4] & 0 & \mathcal{G}_{\mathcal{Y}}[q_4] & 2\mathcal{G}_{\mathcal{Y}}[q_4] & 3\mathcal{G}_{\mathcal{Y}}[q_4] \\ \mathcal{G}_{\mathcal{Y}}[b_4] & \mathcal{G}_{\mathcal{Y}}[b_4] & 0 & 0 & 0 & \mathcal{G}_{\mathcal{Y}}[q_4] & \mathcal{G}_{\mathcal{Y}}[q_4] \\ 0 & \mathcal{G}_{\mathcal{Z}}[b] & 0 & 0 & 0 & 0 & \mathcal{G}_{\mathcal{Z}}[q] \end{array} \right),$$

where $\mathcal{G}'_{\mathcal{Y}}[q_2]$ is the matrix obtained from $\mathcal{G}_{\mathcal{Y}}[q_2]$ after switching twos by ones in its $\gamma_{\mathcal{Y}}$ rows of order two, and considering the ones from the third column of the construction as ones in the quaternary ring \mathbb{Z}_4 .

Proposition 4 Code \mathcal{C} defined above is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(2\alpha, \alpha + 4\beta; \gamma, \delta)$ where $\gamma = \gamma_{\mathcal{X}} + \gamma_{\mathcal{Z}}$, $\delta = \delta_{\mathcal{X}} + \gamma_{\mathcal{Y}} + 2\delta_{\mathcal{Y}} + \delta_{\mathcal{Z}}$, binary length $n = 4\alpha + 8\beta$, size $2^{\gamma+2\delta}$ and minimum distance $d = \min\{4d_{\mathcal{X}}, 2d_{\mathcal{Y}}, d_{\mathcal{Z}}\}$.

3 Additive Reed-Muller codes

We will refer to $\mathbb{Z}_2\mathbb{Z}_4$ -additive Reed-Muller codes as \mathcal{ARM} . Just as there is only one *RM* family in the binary case, in the $\mathbb{Z}_2\mathbb{Z}_4$ -additive case there are $\lfloor \frac{m+2}{2} \rfloor$ families for each value of m . Each one of these families will contain any of the $\lfloor \frac{m+2}{2} \rfloor$ non-isomorphic $\mathbb{Z}_2\mathbb{Z}_4$ -linear extended perfect codes which are known to exist for any m [1].

We will identify each family $\mathcal{ARM}_s(r, m)$ by a subindex $s \in \{0, \dots, \lfloor \frac{m}{2} \rfloor\}$.

3.1 The families of $\mathcal{ARM}(r, 1)$ and $\mathcal{ARM}(r, 2)$ codes

We start by considering the case $m = 1$, that is the case of codes of binary length $n = 2^1$. The $\mathbb{Z}_2\mathbb{Z}_4$ -additive Reed-Muller code $\mathcal{ARM}(0, 1)$ is the repetition code, of type $(2, 0; 1, 0)$ and which only has one nonzero codeword (the vector with only two binary coordinates of value 1). The code $\mathcal{ARM}(1, 1)$ is the whole space \mathbb{Z}_2^2 , thus a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(2, 0; 2, 0)$. Both codes $\mathcal{ARM}(0, 1)$ and $\mathcal{ARM}(1, 1)$ are binary codes with the same parameters and properties as the corresponding binary $RM(r, 1)$ codes (see [2]). We will refer to them as $\mathcal{ARM}_0(0, 1)$ and $\mathcal{ARM}_0(1, 1)$, respectively.

The generator matrix of $\mathcal{ARM}_0(0, 1)$ is $\mathcal{G}_0(0, 1) = (1 \ 1)$ and the generator matrix of $\mathcal{ARM}_0(1, 1)$ is $\mathcal{G}_0(1, 1) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

For $m = 2$ we have two families, $s = 0$ and $s = 1$, of additive Reed-Muller codes of binary length $n = 2^2$. The family $\mathcal{ARM}_0(r, 2)$ consists of binary codes obtained from applying the Plotkin construction defined in Proposition 2 to the family $\mathcal{ARM}_0(r, 1)$. For $s = 1$, we define $\mathcal{ARM}_1(0, 2)$, $\mathcal{ARM}_1(1, 2)$ and $\mathcal{ARM}_1(2, 2)$ as the codes with generator matrices $\mathcal{G}_1(0, 2) = (1 \ 1 | 2)$, $\mathcal{G}_1(1, 2) = \begin{pmatrix} 1 & 1 | 2 \\ 0 & 1 | 1 \end{pmatrix}$ and $\mathcal{G}_1(2, 2) = \begin{pmatrix} 1 & 1 | 2 \\ 0 & 1 | 0 \\ 0 & 1 | 1 \end{pmatrix}$, respectively.

3.2 Plotkin and BA-Plotkin constructions

Take the family \mathcal{ARM}_s and let $\mathcal{ARM}_s(r, m - 1)$, $\mathcal{ARM}_s(r - 1, m - 1)$ and $\mathcal{ARM}_s(r - 2, m - 1)$, $0 \leq s \leq \lfloor \frac{m-1}{2} \rfloor$, be three consecutive codes with parameters $(\alpha, \beta; \gamma', \delta')$, $(\alpha, \beta; \gamma'', \delta'')$ and $(\alpha, \beta; \gamma''', \delta''')$; binary length $n = 2^{m-1}$; minimum distances 2^{m-r-1} , 2^{m-r} and 2^{m-r+1} ; and generator matrices $\mathcal{G}_s(r, m - 1)$, $\mathcal{G}_s(r - 1, m - 1)$ and $\mathcal{G}_s(r - 2, m - 1)$, respectively. By using Proposition 2 and Proposition 4 we can prove the following results:

Theorem 5 For any r and $m \geq 2$, $0 < r < m$, code $\mathcal{ARM}_s(r, m)$ obtained by applying the Plotkin construction from Definition 1 on codes $\mathcal{ARM}_s(r, m - 1)$ and $\mathcal{ARM}_s(r - 1, m - 1)$ is a $\mathbb{Z}_2\mathbb{Z}_4$ -additive code of type $(2\alpha, 2\beta; \gamma, \delta)$, where $\gamma = \gamma' + \gamma''$ and $\delta = \delta' + \delta''$; binary length $n = 2^m$; size 2^k codewords, where $k = \sum_{i=0}^r \binom{m}{i}$; minimum distance 2^{m-r} and $\mathcal{ARM}_s(r - 1, m) \subset \mathcal{ARM}_s(r, m)$.

We consider $\mathcal{ARM}_s(0, m)$ to be the repetition code with only one nonzero codeword (the vector with 2α ones and 2β twos) and $\mathcal{ARM}_s(m, m)$ be the whole space $\mathbb{Z}_2^{2\alpha} \times \mathbb{Z}_4^{2\beta}$.

Theorem 6 For any r and $m \geq 3$, $0 < r < m$, $s > 0$, use the BA-Plotkin construction from Definition 3, where generator matrices \mathcal{G}_X , \mathcal{G}_Y , \mathcal{G}_Z stand for $\mathcal{G}_s(r, m - 1)$, $\mathcal{G}_s(r - 1, m - 1)$ and $\mathcal{G}_s(r - 2, m - 1)$, respectively, to obtain a new $\mathbb{Z}_2\mathbb{Z}_4$ -additive $\mathcal{ARM}_{s+1}(r, m + 1)$ code of type $(2\alpha, \alpha + 4\beta; \gamma, \delta)$, where $\gamma = \gamma' + \gamma'''$, $\delta = \delta' + \gamma'' + 2\delta'' + \delta'''$; binary length $n = 2^{m+1}$; 2^k codewords, where $k = \sum_{i=0}^r \binom{m+1}{i}$, minimum distance 2^{m-r+1} and, moreover, $\mathcal{ARM}_{s+1}(r - 1, m + 1) \subset \mathcal{ARM}_{s+1}(r, m + 1)$.

To be coherent with all notations, code $\mathcal{ARM}_{s+1}(-1, m + 1)$ is defined as the all zero codeword code, code $\mathcal{ARM}_{s+1}(0, m + 1)$ is defined as the repetition code with only one nonzero codeword (the vector with 2α ones and $\alpha + 4\beta$ twos), whereas codes $\mathcal{ARM}_{s+1}(m, m + 1)$ and $\mathcal{ARM}_{s+1}(m + 1, m + 1)$ are defined as the even Lee weight code and the whole space $\mathbb{Z}_2^{2\alpha} \times \mathbb{Z}_4^{\alpha+4\beta}$, respectively.

Using both Theorem 5 and Theorem 6 we can now construct all $\mathcal{ARM}_s(r, m)$ codes for $m > 2$. Once applied the Gray map, all these codes give rise to binary codes with the same parameters and properties as the *RM* codes. Moreover, when $m = 2$ or $m = 3$, they also have the same codewords.

References

1. J. Borges, J. Rifà, A characterization of 1-perfect additive codes. *IEEE Trans. Inform. Theory*, 45(5): 1688-1697, 1999.
2. F.J. MacWilliams and N.J.A. Sloane, *The Theory of Error-Correcting Codes*. North-Holland Publishing Company, 1977.