A STUDY OF LINEAR FEEDBACK SHIFT REGISTER CIRCUITS OVER GF(2ⁿ)

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

MASTER OF TECHNOLOGY

by SHAKEEL AHMAD

to the

DEPARTMENT OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY, KANPUR
SEPTEMBER 1984

EE-1984-M-AHM-STU

CERTIFICATE

This is to certify that the work "A STUDY OF LINEAR FEEDBACK SHIFT REGISTER CIRCUITS OVER ${\rm GF(2}^n)$ " has been carried out by S. Ahmad under my supervision and has not been submitted elsewhere for a degree.

September - 1984

(M.U. Siddiqi)

Assistant Professor
Department of Electrical Engineering
Indian Institute of Technology Kanpur
INDIA

ACKNOWLEDGEMENTS

I wish to extend my deep sense of gratitude to Dr. M.U. Siddiqui for his constant encouragement and patience throughout the course of this work.

Thanks are also due to my friends, associates and wellwishers for useful discussions held with them.

At the last, but not the least, I want to thank Mr. S.K. Tewari and Mr. B. Ram for typing and cyclostyling the thesis.

September 24th, 1984

S. Ahmad

CONTENTS

					Page
ABSTRACT					
CHAPTER 1	:	INTRO	DDUCTIO	N	1
		Intro	oduction	n	1
		Histo	orical 1	Background	3
		Organ	nisation	n of the Thesis	4
		Appl:	ication	s of LFSR circuits	5
CHAPTER 2	:	MATHI	EMATICA	l preliminaries	10
		2.1	Finite	Fields and Extensions	10
			2.1-1	Finite Fields	11
			2.1-2	Field Extensions	12
			2.1-3	Representation of Field Element by Powers of Primitive Element	14
		2.2	Other Field	Representations of Elements	16
		2.3	Repres	entation of Sequences	34
CHAPTER 3	:	LINEAR FEEDBACK SHIFT REGISTER CIRCUITS OVER ${ t GF(2^n)}$			38
		3.1	Circui Equati	t Description by State on	38
		3.2	Respon	se of LFSR Circuits	41
		3.3	Autono	mous Response	43
				Expression for Autonomous Response	44
				Properties of Autonomous Response	48
			3.3-3	Maximal Sequences	53
		3.4	Total	Response	69

CHAPTER 4:	SYNTHESIS OF LFSR CIRCUITS OVER $GF(2^n)$	7 8		
	4.1 The Synthesis Problem	78		
	4.2 Brief Description of Massey's Algorithm	82		
	4.3 The Synthesis Procedure	83		
	Computer Program	98		
	Examples	103		
CHAPTER 5:	CONCLUSION	107		
REFERENCES		111		
APPENDIX A:	INVERSE OF THE CONNECTION POLYNOMIAL			
	$\underline{\underline{C}}(d)$ OVER GF(2 ⁿ)	113		
APPENDIX B:	EXPONENT OF C(d)	115		
APPENDIX C:	Exp $q(d^{\beta}) = \beta$ (Exp $q(d)$)	116		
APPENDIX D:	LIST OF FACTORS OF POLYNOMIALS OVER GF(2)	117		
APPENDIX E:	LIST OF FACTORS OF POLYNOMIALS OVER GF(2 ²)	123		
APPENDIX F:	LIST OF FACTORS OF POLYNOMIALS OVER GF(2 ³)			

ABSTRACT

The present thesis is a study of linear feedback shift register circuits (LFSR) over GF(2ⁿ). It is shown that sequences of binary n-tuples can be represented as sequences over GF(2ⁿ) and therefore can be generated by LFSR circuits over $GF(2^n)$. The multiplication of two field elements (binary n-tuples) is shown to be equivalent to multiplication of an appropriately chosen n x n binary matrix corresponding to one of the two elements, by the n x l vector corresponding to the other element. A procedure is given to obtain the binary matrices corresponding to field elements. The response of LFSR circuits over GF(2n) is studied. This includes both the autonomous response and the response to periodic input over GF(2n). Some of the properties of autonomous response of LFSR circuits over GF(2ⁿ), viewed as n binary sequences put row by row, regarding relationship between these rows, their individual periods and period of overall sequence are described. A synthesis procedure based on Massey's algorithm for designing a LFSR to generate a sequence binary n-tuples is given. This includes determination of the tap coefficients, the length of the circuit and initial states, such that the number of stages in the LFSR is minimum. A computer program is given which can be used for the design of LFSR by the above procedure. Some of the applications of LFSR circuits and of the synthesis procedure are described.

CHAPTER I

INTRODUCTION

The present thesis is a study of a particular class of linear sequential circuits which are capable of handling sequences of binary n-tuples. Such circuits are basically LSC^S over $GF(2^n)$, in which the field elements are represented by n-tuples formed by binary coefficients of polynomials with degree less than n, and the multiplication and addition of these polynomials is modulo an irreducible polynomial [see chapter 2] of degree n. Thus all the 2^n binary n-tuples $\begin{bmatrix} a_0 a_1 a_2 \cdots a_{n-1} \end{bmatrix}$, $a_i \in GF(2)$ are elements of $GF(2^n)$ and are represented by n x 1 vectors.

The block diagram of a general LSC is shown in Fig. 1.1. It consists of a number of synchronous delays which are fed in by various linear combinations of the contents of the delays, and in addition, by the external inputs. The outputs are also combinations of the similar type. The contents of the delays, called state variables, and the outputs at any instant are given by the following matrix equations:

$${\tilde{X}}(k+1) = {\overset{\sim}{\lambda}}{\tilde{X}}(k) + {\overset{\sim}{BU}}(k)$$

$$\Upsilon^{(k)} = \overset{\mathbf{2}_{\sim}}{CX}(k) + \overset{\mathbf{2}_{\sim}}{DU}(k)$$

where the vectors \tilde{X}, \tilde{U} and \tilde{Y} denote the states, inputs and outputs respectively, and $\tilde{A}, \tilde{B}, \tilde{C}$ and \tilde{D} are matrices of compatible dimensions.

When the matrices A and B are of the type:

$$\hat{A} = \begin{bmatrix}
c_1 & c_2 & c_3 & \dots & c_{in-1} & c_{in} \\
1 & 0 & 0 & \dots & 0 & 0 \\
0 & 1 & 0 & \dots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \dots & 1 & 0
\end{bmatrix}, \quad \hat{B} = \begin{bmatrix}
1 \\
0 \\
0 \\
\vdots \\
0
\end{bmatrix}$$

then the circuit becomes of the type shown in Fig. 1.2 and is called a linear feedback shift register (LFSR) circuit. When a sequence $U^{(k)}$ is fed to the circuit, the output $Y^{(k)}$ becomes a linear combination of the states $X_1^{(k)}, X_2^{(k)} \dots X_m^{(k)}$ and the input $U^{(k)}$, and a sequence is obtained at the output. Generally the matrices C and D are of the form

$$\hat{c} = [c_1 c_2 c_3 \dots c_m], D = 1.$$

Sometimes $\tilde{C} = [000...1]$ and D = 0 or other choices are used. For those two choices, the outputs Y and Y' are shown in the figure. The constants $c_1, c_2, c_3...c_m$ are called tap coefficients. When the entries of the matrices $\tilde{A}, \tilde{B}, \tilde{C}$ and D are from some finite field GF(q), where $q = p^n, (p \text{ is prime})$ and the circuit is capable of handling data from GF(q), the circuit is called LFSR circuit over GF(q).

Design of LFSR circuits is simpler than that of a general LSC and LFSR circuits have got a wide range of

Fig.1.1 Block Diagram of a General LSC

Fig.1.2. A General LFSR Circuit

applications. Properly designed LFSR circuits can translate a sequence into another with desired properties like extension of period etc. and thus are useful for scrambling, excryptography and BCH decoding etc.

In this thesis, we study LFSR circuits over GF(2ⁿ) where elements of the field are represented by binary vectors. The structure of such circuits, their autonomous response properties of autonomous response and their response to periodic inputs drestudied.

The synthesis of such circuits is also studied in this thesis. This study involves the design of LFSR circuits which can generate a given vector sequence. The connection polynomial and the shift register length are the two things to be determined in the design. However, since the LFSR circuit which can generate a given sequence is not unique, a procedure is also given to choose the one which has got minimum number of stages.

Historical Background: — The concept of linear sequential networks was originally described by Huffman [1] and since then several generalisations have been suggested [2]. Huffman suggested that the results obtained for binary case are still valid if the polynomials describing the circuits are based on some number system other than binary. Elpas [3], Hartmanis [4] and many others have considered the linear modular sequential circuits over GF(p), p > 2 and prime, as generalisation of binary case. Friedland and Stern [6] have

considered such circuits whose state variables and input and output data are vector representation of elements of GF(pr). In the generalisation of such circuits, the multiplication of a vector by another vector modulo [p,q(x)] is represented by a matrix-vector multiplication. Then they have proved that a kth order LMSC over GF(pr) is equivalent to a (k.r) th order LMSC over GF(p), and since synthesis procedure for systems having a prime number of levels are known, the circuit can be synthesized. However, they have not given the details of how the LMSC over $GF(p^r)$ can be obtained from the equivalent (kr) th order LMSC over GF(p). Nakamura and Idawere [7] have discussed multilevel pulse sequence seramblers, in which the data are elements of $GF(2^n)$. Massey [8] has given a LFSR circuit synthesis algorithm which is modification of Berlekamp's iterative algorithm [9] for error correction which is applicable to sequences from any finite field. However the synthesis procedure for sequences consisting of n-tuples in particular is not studied yet.

Organisation of the Thesis: - Chapter 2 gives relevant results concerning finite fields and their representation by polynomials, n-tuples and matrices. Representation of sequence using d-operator is also described.

In thapter 3, expressions for the response of vector LFSR circuits are described. These include both the autonomous

 $[^]st$ Details will appear in chapter 2

response, and the response to periodic input sequences. Some properties of autonomous response sequences, viewed as a bank of a binary sequences put row by row, are derived. It is shown that how a sequence generated by a LFSR circuit having some connection polynomial is related to another, generated by a LFSR circuit whose connection polynomial is related to earlier one in a particular manner. Circuits generating maximal sequences are analysed. Expression for period of output sequences in terms of input sequence period is also given.

Chapter 4 describes a design procedure for a LFSR circuit (including the calculation of connection polynomial, shift register length and initial states) which can generate a given sequence of n-tuples. The synthesis procedure is based upon Massey's algorithm. Appropriate flow charts are given to explain the overall synthesis procedure, and the Massey's algorithm. Finally a computer program is given which is used for LFSR circuit synthesis. Illustrative examples are also included.

The thesis is concluded in chapter 5, in which results obtained are discussed and problems for further investigations are given.

Application of LFSR circuits:- A LFSR circuit translates a periodic sequences into another with some desired properties which can be achieved by proper design

of LFSR circuit and thus can be used in places where some sequence is converted into another with some desired properties like extension of period or insertion of frequent transitions. A few of its applications are described here.

One of the most important applications of LFSR circuits is scramblers. Scramblers [5] are digital machines which translate a periodic data sequence into another with much extended period. This operation is most conveniently obtained by adding bit by bit, a maximal sequence to the given sequence. Following factors are responsible for the use of scramblers in a digital data transmission system.

The frequency spectrum of a periodic digital data contains discrete lines. If such signal is to be transmitted through one of channels of a group modulation system, some nonlinearity in the devices may give rise to harmonics of frequencies at which discrete lines exist. These harmonics may fall in the domain of adjacent channel and therefore single tone interference arises. Since tones (discrete lines) are generated in data transmission systems by periodic sequences, and their amplitudes are inversely proportional to period, a larger period is desirable.

Recovery of clock from the digital data is one of the major operations done by the receiver equipments. The clock is recovered using circuits which operate with zero crossings in the received data. Therefore if the transmitted data

contains a string of '1's only or '0's only, then the performance of clock recovery circuit will degrade. Also if the transmitted data is periodic with small period, its frequency spectrum will contain discrete lines at frequencies different from clock frequency. Thus the clock may get locked to some other frequency giving rise to timing error.

From the above reasons, we conclude that the transmitted data must contain sufficient number of level transitions and should not have periodic data with small period. This is achieved by use of scramblers $\begin{bmatrix} 10 \end{bmatrix}$.

Scramblers, alongwith lengthening of data period, also do one more important operation, viz. systematic jitter suppression [10]. Timing jitter is the phase modulation of received signal due to some obliterations in zero crossings of received signal. This get accumulated at every repeater stage and leads to crosstalk and distortion. The timing jitter related to pulse train is called systematic jitter and is mainly due to ISI, finite pulse width and clock threshold offsets. This can considerably be reduced by incorporating scramblers [11].

Another application of LFSR circuits is encryption in which a digital data is translated into another by adding to it, bit by bit, a sequence. We will see later that this is achieved by possing the data through a LFSR circuit. However if a m-sequence is simply added to data, this

encryption is not secure and can be decoded by a **hi**t and trial method [12,13]. If some nonlinear but reversible operation is done with the data using sequences of high complexity the decoding becomes very difficult and can not be done easily by hit and trialmethod. Generation of such sequences with higher complexity is described by Kalouptsidis and Mandarakis [14].

The LFSR synthesis algorithm has got a very important application in decoding of BCH codes. BCH codes [9] are cyclic codes whose generator polynomial g(x) is chosen to be a minimum degree polynomial with coefficients in GF(p) having [m] m+1 = m+d-2 = m+d

If a BCH code, described by the polynomial $f(x) = f_0 + f_1 x + \dots + f_{n-1} x^{n-1} \quad \text{is transmitted and the received vector} \quad r(x) \quad \text{has some errors, then the weighted}$ power sum symmetric function S_1 , associated with the error polynomial e(x) = r(x) - f(x) is defined as

$$s_{i} = e(u^{i}) \qquad i=1,2,3...$$
 and therefore
$$s_{i} = r(u^{i}) \qquad i=m_{0}, m_{0}+1...m_{0} d-2$$

If t errors occur then e(x) has t nonzero components. If j^{th} nonzero component e(x) is the digit e_k then $X_j = u^k$ is called the error locator and $Y_i = e_k$ is the error magnitude and these are related to S_i as

$$s_{i} = \sum_{j=1}^{t} Y_{j} x_{j}^{i}$$
 $i=1,2,3...$

Forney [15] has shown that Y_j can be determined from the knowledge of X_j . Thus the essential BCH decoding problem reduces to determination of X_j , j=1,2,...t, knowing S_i , $i=m_0,m_0+1...m_0+d-2$

It has been shown by Berkkamp^[9] and Massey^[8] that

$$s_{m_0} + s_{m_0+1} d + s_{m_0+2} d^2 + \dots + \dots = \frac{p(d)}{c(d)}$$
,

where d is the delay perator

and
$$p(d) = \sum_{j=1}^{t} y_j x_j^{o} \prod_{k=1}^{t} (1-x_k d)$$

and
$$c(d) = \prod_{j=1}^{t} (1-x_j d)$$

and c(d) is the connection polynomial of a unique shortest LFSR over $GF(p^m)$ that generates the sequence $S_{m_0}, S_{m_0+1}, S_{m_0+1}$. The roots of c(d) are reciprocals of the terror locators.

Thus knowing the S_i obtained from the received vector, we can design a LFSR which generates the sequence S_i , $i=m_0$, m_0+1 ... and the roots of the connection polynomial of this LFSR can be used to find the error locators $\begin{bmatrix} 16 \end{bmatrix}$ and hence the errors.

CHAPTER II

MATHEMATICAL PRELIMINARIES

This chapter includes relevant text on algebra of galois fields and representation of field elements by polynomials, n-tuples and matrices. The set of all binary n-tuples also represents set of elements of $GF(2^n)$ and has a one-to-one correspondence with set of binary polynomials of degree less than n. The multiplication of n-tuples is equivalent to multiplication of an appropriately chosen n x n binary matrix by a n x l vector. The procedure to obtain these matrices, given by Friedland and Stern [6] is explained in this chapter, and an alternative procedure is also given. Representation of sequences using d-operator, and their representation by polynomials in d is also described. Since adequate literature is available on these topics, relevant results are quoted in this chapter without proof, details can be seen in the references [17] through [20].

2.1 Finite Fields and Extensions: In this section, definitions of finite field, extension of finite field and other relevant terms are given and the representation of elements of extension field by polynomials is described.

2.1-1 Finite Fields

A finite field is defined as an algebraic structure consisting of a finite set S alongwith two binary operations \oplus and \odot , such that $\langle S, \oplus \rangle$ is an abelian group under addition, and the set of all nonzero elements of S, alongwith the operation \odot forms a cyclic multiplicative group, and \odot distributes over \oplus .

The operations \oplus and \odot are known as field addition and multiplication operations, and are generally different from ordinary operations. Field is denoted by $\langle S, \oplus, \odot \rangle$.

Finite fields are also called modular fields or galois fields, and are written as GF(q), where q is the number of elements in the field. 'q' has to be either a prime number, or some integral power of a prime number i.e. $q = p^n$, n=1,2,3... and p is prime.

A number of mathematical structures may be used to represent the elements of a rield. If two fields are such that they have equal number of elements, and there is a one to one mapping ϕ between the elements of the two fields say F_1 and F_2 such that

$$\varphi(a \oplus b) = \varphi(a) \triangle \varphi(b)$$

$$\varphi(a \odot b) = \varphi(a) \circ \varphi(b)$$

for all a,b ϵ F_1 with field operations \oplus and \odot and $\phi(a)$, $\phi(b)$ ϵ F_2 with field operations Δ and \circ

then the two fields are said to be isomorphic. In this thesis, all isomorphic fields having q elements will be denoted by GF(q). When n=1, it is very convenient to represent the elements of the field GF(p) by the integers $0,1,2,\ldots p-1$, and to define the operations \oplus and \odot as,

$$a \oplus b = \begin{cases} a+b & a+b
$$2.1-1$$

$$a \oplus b = \begin{cases} a.b & a.b \le p \\ a.b-pi & pi \le a.b \le p(i+1) \end{cases}$$

$$2.1-2$$$$

where a and b are elements of the field and '+' and '.' are ordinary addition and multiplication operations. This field has p elements and is written as GF(p). The operation \oplus is called addition modulo-p.

Example 2.1 Consider GF(2). The elements are represented by 0 and 1.

Then
$$0 \oplus 0 = 0 + 0 = 0$$
; $0 \oplus 0 = 0 \times 0 = 0$
 $0 \oplus 1 = 0 + 1 = 1$; $0 \oplus 1 = 0 \times 1 = 0$
 $0 \oplus 0 = 1 + 0 = 1$; $1 \oplus 0 = 1 \times 0 = 0$
 $1 \oplus 1 = 1 + 1 = 1 + 1 - 2 - 0$; $1 \oplus 1 = 1 \times 1 = 1$

2.1-2 Field Extensions:-

Consider a set T having p clements where p is a prime number and n=2,3,4.... Let # and * be two binary operations such that $\langle T,\#,*\rangle$ is a field. Let S b a subset of T having p elements and $\langle S,\#,*\rangle$ be a field isomorphic to

to GF(p). Then the field < T, # , * > is said to be an extension of < S, # , : > 'n' is called degree of extension.

Then the degree extension of GF(p) is written as $GF(p^n)$.

Now we shall see how $GF(p^n)$ can be formed from GF(p). For this, following definitions are useful.

A polynomial $q(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_{n-1} x^{n-1} + q_n x^n$ over a field GF(p) [i.e., the coefficients q_1 are from GF(p)] is said to be reducible over this field if it can be written as a product of two polynomials over GF(p). Otherwise it is said to be irreducible.

The exponent of a polynomial is defined as the least integer e such that the polynomial is factor of $1-x^2$.

An irreducible polynomial of degree n over GF(p) is said to be primitive if its exponent is q^n-I . Now consider the set of all polynomials over GF(p), with degree less than n.

i.e.
$$T = \{(a_0 + a_1x + \dots + a_{n-1}x^{n-1})/a_1 \in GF(p), l=0,1,2\dots n-1\}$$

and let $q(x) = q + q_1x + q_2x^2 + \dots + q_{n-1}x^{n-1} + x^n$ 2.1-3
be an irreducible polynomial or degree n over $GF(p)$.

Then < T, # , \approx > is defined as the n th degree extension of GF(p) and is written as GF(p), where the field operations # and * are defined by

$$A(x) \# B(x) = \sum_{i=0}^{n-1} (a_i \oplus b_i) x^i$$
2.1-4

$$A(x) * B(x) = \sum_{i=0}^{n-2} \sum_{j=0}^{i} (a_j \circ b_{i-j}) x^{i} \mod q(x) \qquad 2.1-5$$

where
$$A(x) = \sum_{i=0}^{n-1} a_i x^i \in T$$

$$B(x) = \sum_{i=0}^{n-1} b_i x^i \in T$$

⊕ and ⊙ are GF(p) operations

and mod q(x) means whenever power of x exceeds n-1, x^n is replaced by $x^n-q(x)$, where q(x) is given by 2.1-3. Thus RHS of 2.1-5 is a polynomial of degree less than n and therefore is an element of T.

It can be verified that the set S of all polynomials of degree zero over GF(p) is a subset of T and $\langle S, \#, * \rangle$ is a field isomorphic to GF(p). Therefore $\langle T, \#, * \rangle$ is an n^{th} degree extension of GF(p). The operations # and * are called addition and multiplication modulo [p,q(x)]

2.1-3 Representation of field elements by power of primitive clement:

An element of a field GF(a) is said to be a primitive element of the field if it can generate all other nonzero elements of the field by repeated multiplication of itself.

The order of a field element is defined as the least integer, to which the element should be raised to get the unit

element of the field. Thus if α is a field element and $\alpha^V_{=}$ 1, $\alpha^k \neq 1$ for k (v then |v| is the order of α .

The order of a primitive element of GF(q) is $q-1.1e^{q^{-1}}=1$. In any field isomorphic to GF(q), there are a number of primitive elements. One of them is represented by some symbol α . Then others are written as $\alpha^2, \alpha^3 \dots \alpha^{q-1}$.

Example 2.2. Consider the field $GF(2^4)$. Here p=2, n=4. Let $g(x) = 1+x+x^2+x^3+x^4$ be an irreducible polynomial over GF(2).

Then $T = \{1, x, x^2, x^3, 1+x, 1+x^2, 1+x^3, x+x^2, x+x^3, x^2+x^3, 1+x+x^2, 1+x+x^3, 1+x+x^2+x^3, 1+x+x^2+x^3, 0\}$

We see that the polynomials $1+x+x^2$, $1+x+x^3$, $x+x^3$, $1+x^2$, $x+x^2$, 1+x, $1+x^3$, $x+x^2+x^3$ have order 15 and therefore can be chosen as primitive elements. Choosing $x+x^2$ as primitive element and denoting it by α , the others can be obtained by repeated multiplication of $x+x^2$ by itself in a manner defined by 2.1-5. Thus

1 = 1

$$\alpha$$
 = $x+x^2$
 $\alpha^2 = (x+x^2)*(x+x^2)$
 $= x^2 + x^4$
 $= x^2 + (x^4 - (1+x-x^2+x^3+x^4))$
 $= x^2+1+x+x^2+x^3$ = $1+x$ $+x^3$

$$\alpha^{3} = (1+x+x^{3}) * (x+x^{2})$$

$$= x+x^{3}+x^{4}+x^{5}$$

$$= x+x^{3}+(x^{4}-1-x-x^{2}-x^{3}-x^{4})$$

$$+(x^{4}-1-x-x^{2}-x^{3}-x^{4})$$

$$= x+x^{3}+1+x+x^{2}+x^{3}$$

$$+x+x^{2}+x^{3}+x^{4}$$

$$= 1+x+x^{5}+(x^{4}-1-x-x^{2}-x^{3}-x^{4}) = x^{2}$$

and we can proceed in a similar mannar to get

$$\alpha^{4} = 1 + x + x^{4}$$
 $\alpha^{5} = 1 + x^{2} + x^{3}$
 $\alpha^{6} = 1 + x + x^{2} + x^{3}$
 $\alpha^{7} = 1 + x$
 $\alpha^{8} = x - x^{3}$
 $\alpha^{9} = x$
 $\alpha^{10} = x^{2} + x^{3}$
 $\alpha^{11} = 1 + x^{5}$
 $\alpha^{12} = x^{5}$
 $\alpha^{13} = x + x^{2} + x^{5}$
 $\alpha^{14} = 1 + x^{2}$
 $\alpha^{15} = 1$

2.2 Other Representations of Field Elements: Mathematical structures other than polynomials are also used to represent the elements of GF(q). In this section, we show that vectors and matrices may also be used to represent elements of GP(q).

Let T be the set of all polynomials over GF(p) with degree less than n-1, as defined in previous section. Let V be the set of all n x l vectors with elements from GF(p). Define a mapping ϕ from V to T as

$$\varphi: \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \rightarrow (a_0 + a_1 \times \cdots + a_{n-1} \times^{n-1})$$
where
$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \in V \text{ and } a_0 + a_1 \times \cdots + a_{n-1} \times^{n-1} \in T.$$

It is obvious that this mapping is one to one, and each element of V maps to a unique element of T. The mapping is invertible, and the element of V corresponding to some element of T can be obtained as,

$$\varphi^{-1} (b_0 + b_1 x + \dots + b_{n-1} x^{n-1}) = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix}$$
 εV

The elements of the set of vectors V can be added and multiplied by adding or multiplying the corresponding elements of T and converting them into vectors i.e.

$$\underline{\mathbf{y}}_{1} \# \underline{\mathbf{y}}_{2} = \varphi(\varphi^{-1}(\underline{\mathbf{y}}_{1}) \# \varphi^{-1}(\underline{\mathbf{y}}_{2}))$$

$$\underline{\mathbf{y}}_{1} * \underline{\mathbf{y}}_{2} = \varphi(\varphi^{-1}(\underline{\mathbf{y}}_{1}) * \varphi^{-1}(\underline{\mathbf{y}}_{2}))$$

$$2.2-1$$

Then we see that the set of all n x l vectors over GF(p) can represent the elements of GF(q). Now we shall find the procedure to add and multiply these vectors.

Let
$$\underline{A} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix}$$
 and $\underline{B} = \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix}$ be two elements of V .

then their sum can be obtained by the procedure given by 2.2-1. Since

$$\varphi^{-1}(\underline{A}) = a_0 + a_1 x_1 \dots a_{n-1} x_{n-1}^{n-1} = \sum_{i=0}^{n-1} a_i x_i^i = A(x)$$

$$\varphi^{-1}(\underline{B}) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1} = \sum_{i=0}^{n-1} b_i x^i = B(x)$$

$$\varphi^{-1}(\underline{A}) \# \varphi^{-1}(\underline{B}) = A(\underline{x}) \# B(\underline{x})$$

$$= \sum_{i=0}^{n-1} (a_i + b_i) x^i \quad \text{using 2.1-4}$$

$$= \begin{pmatrix} a_0 \oplus b_0 \\ a_1 \oplus b_1 \\ \vdots \\ a_{n-1} \oplus b_{n-1} \end{pmatrix}$$

$$\begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} \# \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_i \\ \vdots \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} c_0 \oplus b_0 \\ a_1 \oplus b_1 \\ \vdots \\ a_{n-1} \oplus b_{n-1} \end{bmatrix}$$

$$2.2-2$$

The multiplication of two vectors can be achieved by the procedure given by the following lemma.

Lemma 2.1. The multiplication of two vectors from the set of n x l vectors corresponding to set of polynomial of degree n-l is equivalent to multiplication of a n x n matrix corresponding to one of the vectors by the other vector.

<u>Proof.</u> The multiplication of A and B can be done by the procedure given by 2.2-1. For this, we first multiply corresponding polynomials

$$A(x) * B(x) = \begin{bmatrix} 2n-2 & i \\ \Sigma & \Sigma \\ i=0 & j=0 \end{bmatrix}$$
 (a. 0 b_{i-j}) xⁱ mod q(x) using 2.1-5

The product A(x)*B(x) includes terms having powers of x higher than n-1 which are to be reduced modulo q(x). For this, we write using 2.1-3

$$x^{n} = -q_{0} - q_{1}x - q_{2}x^{2} - \dots - q_{n-1}x^{n-1}$$

$$x^{n+1} = -q_{0}x - q_{1}x^{2} - \dots - q_{n-2}x^{n-1} - q_{n-1}x^{n}$$

$$= -q_{0}x - q_{1}x^{2} - \dots - q_{n-2}x^{n-1}$$

$$+q_{0}q_{n-1} + q_{1}q_{n-1}x + q_{2}q_{n-1}x^{2} + \dots + q_{n-1}x^{n-1}$$

$$= (q_{0}q_{n-1}) + (q_{1}q_{n-1} - q_{0})x + (q_{2}q_{n-1} - q_{1})x^{2} + \dots + \dots + (q_{n-1}^{2} - q_{n-2})x^{n-1}$$

$$(q_{n-1}^{2} - q_{n-2})x^{n-1}$$

In otherwords we can write

$$x^{n} = Q_{0}^{(n)} + Q_{1}^{(n)}x + Q_{2}^{(n)}x^{2} + \dots + \dots + Q_{n-1}^{(n)}x^{n-1}$$

$$x^{n+i} = Q_0^{(n+i)} + Q_1^{(n+i)} x + Q_2^{(n+i)} x^2 + \dots + Q_{n-1}^{(n+i)} x^{n-1}, i=1,2,3,\dots$$

where the coefficient $Q_j^{(n+i)}$ are given by the recursive equation

$$Q_{j}^{(n+i+1)} = Q_{j-1}^{(n+i)} - q_{j} Q_{n-1}^{(n+i)}, j=1,2,...n-1$$

$$Q_{0}^{(n+i+1)} = -q_{0} Q_{n-1}^{(n+i)}$$
and $Q_{j}^{(n)} = -q_{j}$

$$= -q_{j}$$

$$2.2.4$$

Therefore x^n , x^{n+1} , x^{n+2} ...etc. can be written in terms of n-1 degree polynomials in x. We can write $x^n, x^{n+1}, x^{n+2} \dots x^{2n-2}$ in terms of $x, x^2 \dots x^{n-1}$ as the following matrix equation x^n ...

$$[x^{n} x^{n+1} x^{n+2} \dots x^{2n-2}] = [1 \times x^{2} \dots x^{n-1}] \cdot \begin{bmatrix} Q_{0}^{(n)} & Q_{0}^{(n+1} \dots Q_{0}^{(2n-2)} \\ Q_{1}^{(n)} & Q_{1}^{(n+1)} & Q_{1}^{(2n-2)} \\ Q_{2}^{(n)} & Q_{2}^{(n+1)} & Q_{2}^{(2n-2)} \\ \vdots & \vdots & \vdots & \vdots \\ Q_{n-1}^{(n)} & & & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & & & & \\ Q_{n-1}^{(n)} & & & & \\ Q_{n-1}^{(n)} & & & & & \\ Q_{n-1}^{(n)} & & & & \\ Q_{n-1}^{(n)} & & & & \\ Q_{n-1}^{(n)} & & & & \\ Q_{n-1}^{(n)} & & & & & \\ Q_{n-1}^{(n)} & & & & & \\ Q_{n-1}^{(n)} & &$$

2.2-5

where the coefficients $y_j^{(n+i)}$ are given by 2.2-4.

Now we can write

$$= [1 \times x^{2} \dots x^{n-1}] \cdot \left\{ \begin{bmatrix} a_{0} & 0 & \dots & 0 \\ a_{1} & a_{0} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-1} & a_{n-2} \dots & a_{0} \end{bmatrix} + \begin{bmatrix} Q_{0}^{(n)} & Q_{0}^{(n+1)} & \dots & Q_{0}^{(2n-2)} \\ Q_{1}^{(n)} & Q_{1}^{(n+1)} & \dots & Q_{1}^{(2n-2)} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n-1} & Q_{n-1}^{(n+1)} & Q_{n-1}^{(2n-2)} \end{bmatrix} \right.$$

$$\times \begin{bmatrix} 0 & a_{n-1} & \dots & a_{1} \\ 0 & 0 & \dots & a_{2} \\ \vdots & \vdots & \vdots \\ 0 & 0 & \dots & a_{n-1} \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{n-1} \end{bmatrix}$$

$$= [1 \times x^{2} \dots x^{n-1}] \begin{bmatrix} a'_{00} & a'_{01} & \dots & a'_{0n-1} \\ a'_{10} & a'_{11} & \dots & a'_{1n-1} \\ \vdots & \vdots & \vdots \\ a'_{n-1}, 0 & a'_{n-1}, 1 \dots & a'_{n-1}, n-1 \end{bmatrix} \begin{bmatrix} b_{0} \\ b_{1} \\ \vdots \\ b_{n-1} \end{bmatrix}$$

and therefore

$$\underline{A} * \underline{B} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_{n-1} \end{bmatrix} * \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} = \begin{bmatrix} a'_{00} & a'_{01} & \cdots \\ a'_{10} & a'_{11} & \cdots \\ \vdots & \vdots & \vdots \\ a'_{n-1,0} & a'_{n-1,1} & \cdots \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{bmatrix} = \underline{\underline{A}} \cdot \underline{\underline{B}}$$

where the matrix $\underline{A} = \begin{bmatrix} a'_{ij} \end{bmatrix}$ on the RHS of above equation is the matrix appearing in the bracket in the RHS of Eq. 2.2-6.

Thus we see that multiplication of two vectors is equivalent to multiplication of a n x n matrix whose elements depend upon the elements of A and coefficients of q(x), by the other vector. However computation of the above matrix A by this procedure is quite involved and we give a simple procedure to compute this matrix after the following example.

Example 2.3. Multiply
$$^{\lambda} = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$
 and $^{B} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$, given $q(x) = 1 + x + x^2 + x^3 + x^4$.

The equation $1+x+x^2+x^3+x^4=0$ gives

$$x^{4} = 1 + x + x^{2} + x^{3}$$

$$x^{5} = x * (1 + x + x^{2} + x^{3}) = x + x^{2} + x^{3} + x^{4} = x + x^{2} + x^{3} + 1 + x + x^{2} + x^{3}$$

$$= 1$$

$$x^{6} = x$$

Therefore

$$[x^{4} x^{5} x^{6}] = [1 \times x^{2} x^{3}] \cdot \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$A(x) * B(x) = [1 \times x^{2} x^{3}] \cdot \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$+ \begin{bmatrix} x^{4} & x^{5} & x^{6} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & x^{2} & x^{3} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\times \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & x^{2} & x^{3} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & x^{2} & x^{3} \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & x^{2} & x^{3} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & x & x^{2} & x^{3} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

and therefore

Recall for Ex.2.2 that $\underline{A} = \alpha$, $\underline{B} = \alpha^6$ and therefore $\underline{A} * \underline{B} = \alpha^7$. Therefore result is verified .

Procedure to obtain the matrices corresponding to vectors:

It has been shown in previous section that the multiplication of two vectors is equivalent to multiplication of a matrix corresponding to one of the vectors by the other. Now we give two alternative procedures to determine the matrix corresponding to a given vector. The first procedure is the one described by Friedland and Stern [6]. Then another procedure is given and it is proved that the matrices obtained by both cases are the same.

Let A(x) and B(x) be two polynomials of degree n-l and A and B be corresponding vectors. The product of A(x) and B(x) can be written as

$$C(x) = A(x) F(x) = (a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}) . B(x)$$

$$= a_0 . B(x) + a_1 . x . B(x) + a_2 x^2 . 3(x) + \dots + a_{n-1} x^{n-1} . B(x)$$

Writing C(x) and B(x) in vector form, we get,

$$C = a_0 B + a_1 x B + a_2 x^2 B + \dots + a_{n-1} x^{n-1} B$$
 2.2-8

where B is representing the polynomial $b_0+b_1x+b_2x^2+\ldots+b_{n-1}x^{n-1}$. If the multiplication is modulo- $\dot{q}(x)$, x^n is replaced by $x^n-q(x)$ and therefore

$$\begin{aligned} \mathbf{x} \cdot \mathbf{B}(\mathbf{x}) &= \mathbf{b}_{0} \mathbf{x} + \mathbf{b}_{1} \mathbf{x}^{2} + \dots + \mathbf{b}_{n-2} \mathbf{x}^{n-1} + \mathbf{b}_{n-1} \mathbf{x}^{n} \mod q(\mathbf{x}) \\ &= (-q_{0} \mathbf{b}_{n-1}) + (\mathbf{b}_{0} - q_{1} \mathbf{b}_{n-1}) \mathbf{x} + (\mathbf{b}_{1} - q_{2} \mathbf{b}_{n-1}) \mathbf{x}^{2} + \dots + \dots + \\ & (\mathbf{b}_{n-2} - \mathbf{b}_{n-1} q_{n-1}) \mathbf{x}^{n-1} \end{aligned}$$

or in the matrix form,

$$x.B = \begin{bmatrix} 0 & 0 & \dots & 0 & -c_0 \\ 1 & 0 & \dots & 0 & -q_1 \\ 0 & 1 & \dots & 0 & -q_2 \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & -q_{n-1} \end{bmatrix} \qquad P = M.B \qquad 2.2-9$$

Substituting 2.2-9 in 2.2-8, we get

Substituting 2.229 in 2.223, we get

$$C = a_0B + a_1M \cdot B + a_2M^2 \cdot B + \dots + a_{n-1}M^{n-1} \cdot B$$

or
$$C = (a_0I + a_1M + a_2M^2 + \dots + a_{n-1}M^{n-1}) \cdot B = A \cdot B$$

where
$$A = a_0I + a_1M + a_2M^2 + \dots + a_{n-1}M^{n-1}$$
2.2-10

$$a_0I + a_1M + a_2M^2 + \dots + a_{n-1}M^{n-1}$$
2.2-10

and
$$M = \begin{bmatrix} 0 & 0 & \dots & 0 & -q_0 \\ 1 & 0 & \dots & 0 & -q_1 \\ 0 & 1 & \dots & 0 & -q_2 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -q_{n-1} \end{bmatrix}$$
(from Eqn. 2.2-9)
2.2-11

The matrix \underline{M} is the companion matrix corresponding to the polynomial q(x), and using powers of \underline{M} , the matrix \underline{A} corresponding to the vector \underline{A} can be constructed.

Now we give an alternative procedure for construction of \underline{A} . Let $\underline{\alpha}$ be the primitive element of $GF(p^n)$, where the elements of $GF(p^n)$ are represented by vectors over GF(p). Therefore $\underline{\alpha}$ corresponds to some polynomial say $\alpha_0 + \alpha_1 x^{n-1} x^{n-1}$ and let some power of $\underline{\alpha}$ say $\underline{\alpha}^V$ corresponds to the polynomial x. Therefore

$$\alpha^{\mathbf{V}} = \begin{bmatrix} \mathbf{c} \\ \mathbf{l} \\ \mathbf{0} \\ \vdots \\ \mathbf{c} \end{bmatrix}$$

and $(\underline{\alpha}^{V})^{i} = \underline{\alpha}^{V}^{i}$ corresponds to x^{i} and thus

$$\underline{\alpha}^{2v} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} ; \underline{\alpha}^{3v} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix} \underline{\alpha}^{(n-1)v} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \text{ and } \underline{\alpha}^{nv} = \begin{bmatrix} -q_0 \\ -q_1 \\ -q_2 \\ \vdots \\ -q_{n-1} \end{bmatrix}$$

since $\underline{\alpha}^{nv}$ corresponds to \underline{x}^n which is equal to $-q_0-q_1\underline{x}-q_2\underline{x}^2...-q_{n-1}\underline{x}^{n-1}.$

Now let α be the matrix corresponding to α .

We can verify that all other equations can be represented as linear combinations of the above n equations. The above n equations can be written simultaneously as n columns of the following matrix equation

$$\underline{\alpha} = \left[\underline{\alpha} \underline{\alpha}^{\text{v+l}} \underline{\alpha}^{\text{2v+l}} \dots \underline{\alpha}^{(n-1)} \underline{v+l} \right] \qquad 2.2-13$$

This is the matrix corresponding to the vector $\underline{\alpha} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_{n-1} \end{bmatrix}$.

The ith power of this matrix is obtained as follows.

$$\underline{\alpha}^{1} = \underline{\alpha}^{1-1} \underline{\alpha}$$

$$= \underline{\alpha}^{1-1} [\underline{\alpha} \underline{\alpha}^{v+1} \underline{\alpha}^{2v+1} \dots \underline{\alpha}^{(n-1)v+1}]$$

$$= \underline{\alpha}^{1-2} [\underline{\alpha} \underline{\alpha} \underline{\alpha} \underline{\alpha}^{v+1} \underline{\alpha}^{2v+1} \dots \underline{\alpha}^{(n-1)v+1}]$$

$$= \underline{\alpha}^{1-2} [\underline{\alpha}^{2} \underline{\alpha}^{v+2} \underline{\alpha}^{2v+2} \dots \underline{\alpha}^{(n-1)v+2}]$$

$$= \underline{\alpha}^{1} = [\underline{\alpha}^{1} \underline{\alpha}^{v+1} \underline{\alpha}^{2v+1} \dots \underline{\alpha}^{(n-1)v+1}]$$
2.2-14

Now let us prove that the ith power of $\underline{\alpha}$ corresponds to ith power of $\underline{\alpha}$ and the two sets $\{\underline{\alpha}\ \underline{\alpha}^2...\underline{\alpha}^{q-1}\}$ and $\{\underline{\alpha},\underline{\alpha}^2...\underline{\alpha}^{q-1}\}$ have a one-to-one correspondence. Suppose $\underline{\alpha}^i$ corresponds to $\underline{\alpha}^i$ and $\underline{\alpha}^j$ corresponds to $\underline{\alpha}^j$. Then it is sufficient to prove that $\underline{\alpha}^i\ \underline{\alpha}^j$ corresponds to $\underline{\alpha}^{i+j}$. Since,

$$\underline{\alpha}^{i} = [\underline{\alpha}^{i} \ \underline{\alpha}^{v+i} \ \underline{\alpha}^{2v+i} \ \dots \ \underline{\alpha}^{(n-1)v+i}]$$

$$\underline{\alpha}^{j} = [\underline{\alpha}^{j} \ \underline{\alpha}^{v+j} \ \underline{\alpha}^{2v+j} \ \dots \ \underline{\alpha}^{(n-1)v+j}]$$

and therefore $\underline{\alpha}^{\underline{i}}\underline{\alpha}^{\underline{j}} = \underline{\alpha}^{\underline{i}+\underline{j}} = [\underline{\alpha}^{\underline{i}+\underline{j}} \ \underline{\alpha}^{\underline{v}+\underline{i}+\underline{j}} \ \underline{\alpha}^{\underline{2}\,\underline{v}+\underline{i}+\underline{j}}, ...\underline{\alpha}^{(n-1)\,\underline{v}+\underline{i}+\underline{j}}]$ which corresponds to $\underline{\alpha}^{\underline{i}+\underline{j}} = \underline{\alpha}^{\underline{i}}, \underline{\alpha}^{\underline{j}}$

The matrix α given by 2.2-13 can further be simplified. Since

$$\underline{\alpha}^{V} = [\underline{\alpha}^{V} \ \underline{\alpha}^{V+V} \ \underline{\alpha}^{2V+V} \dots \underline{\alpha}^{(n-1)} \ \underline{v}^{+V}] = \begin{bmatrix} 0 & 0 & 0 & \dots & -q_{0} \\ 1 & 0 & 0 & \dots & -q_{1} \\ 0 & 1 & 0 & \dots & -q_{2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & -q_{n-1} \end{bmatrix} = \underline{\underline{M}}$$
(from 2.2-11)

and

$$\underline{\alpha}^{i+j} = \underline{\alpha}^{i} * \underline{\alpha}^{j} = \underline{\alpha}^{i} \; \underline{\alpha}^{j}$$

therefore Eq. 2.2-13 becomes

$$\underline{\alpha} = \left[\underline{\alpha} \underline{\alpha}^{V} * \underline{\alpha} \underline{\alpha}^{2V} \cdot \underline{\alpha} \dots \underline{\alpha}^{(n-1)V} * \underline{\alpha} \right]$$

$$= \left[\underline{\alpha} \underline{\alpha}^{V} \cdot \underline{\alpha} \underline{\alpha}^{2V} \cdot \underline{\alpha} \dots \underline{\alpha}^{(n-1)V} \cdot \underline{\alpha} \right]$$
or $\underline{\alpha} = \left[\underline{\alpha} \underline{M} \cdot \underline{\alpha} \underline{M}^{2} \underline{\alpha} \dots \underline{M}^{n-1} \underline{\alpha} \right]$ 2.2-15

and therefore Eq. 2.2-14 becomes

$$\underline{\alpha^{i}} = \left[\underline{\alpha^{i}} \underline{M} \cdot \underline{\alpha^{i}} \underline{M}^{2} \underline{\alpha^{i}} \dots \underline{M}^{n-1} \underline{\alpha^{i}} \right]$$
or $\underline{A} = \left[\underline{A} \underline{M} \cdot \underline{A} \underline{M}^{2} \underline{A} \dots \underline{M}^{n-1} \underline{A} \right]$ 2.2-16

where $\underline{\underline{M}}$ is the companion matrix corresponding to irreducible

polynomial q(x) given by 2.2.11 and \underline{A} is the matrix equivalent of the vector $\underline{A} = \underline{\alpha}^{\mathbf{i}}$ for any value of i.

Now we prove that the matrix $\underline{\underline{A}}$ given by 2.2-16 is the same as given by 2.2-10 following Friedland and Stern's procedure

Since
$$\underline{l} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
; $\underline{\alpha}^{V} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$ $\underline{\alpha}^{(n-1)V} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$

and similarly
$$\alpha^{nv} = \begin{bmatrix} -q_0 \\ -q_1 \\ -q_2 \\ \vdots \\ -q_{n-1} \end{bmatrix} = \begin{bmatrix} q_n \\ q_n \\ q_n \\ q_n \end{bmatrix}$$
, $\alpha^{(n+i)}v = \begin{bmatrix} Q_0^{(n+i)} \\ Q_0^{(n+i)} \\ Q_1^{(n+i)} \\ Q_1^{(n+1)} \\ Q_1^{$

i=1,2,3....

where $Q_j^{(n+i)}$ are given by Eq. 2.2-4.

Therefore we can write

$$\underline{\underline{I}} = \left[\underline{1} \quad \underline{\alpha}^{V} \quad \underline{\alpha}^{2V} \dots \underline{\alpha}^{(n-1)V} \right]$$

$$\underline{\underline{M}} = \left[\underline{\alpha}^{V} \quad \underline{\alpha}^{2V} \quad \underline{\alpha}^{3V} \dots \underline{\alpha}^{nV} \right]$$

$$\underline{\underline{M}}^{2} = \underline{\underline{M}} \cdot \left[\underline{\alpha}^{V} \quad \underline{\alpha}^{2V} \quad \underline{\alpha}^{3V} \dots \underline{\alpha}^{nV} \right]$$

$$= \left[\underline{\alpha}^{2V} \quad \underline{\alpha}^{3V} \quad \underline{\alpha}^{4V} \quad \dots \quad \underline{\alpha}^{(n+1)V} \right]$$

and similarly higher powers of $\underline{\mathbb{M}}$ can be written as

$$\underline{\mathbf{M}}^{\mathbf{i}} = \left[\underline{\mathbf{c}}^{\mathbf{i}\mathbf{v}} \underline{\mathbf{\alpha}}^{(\mathbf{i}+\mathbf{1})\mathbf{v}} \underline{\mathbf{\alpha}}^{(\mathbf{i}+\mathbf{2})\mathbf{v}} \dots \underline{\mathbf{\alpha}}^{(\mathbf{i}+\mathbf{n}-\mathbf{1})\mathbf{v}} \right] \qquad 2.2-17$$

Therefore the matrix $\underline{\underline{A}}$ given by 2.2-10 can be written using Eq. 2.2-19 as,

$$\underbrace{A}_{\Sigma} = a_{0}^{T} + a_{1}^{M} + a_{2}^{M} + \cdots + a_{n-1}^{M}^{n-1}$$

$$= a_{0}^{T} + \alpha_{1}^{M} + \alpha_{2}^{M} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \cdots + \alpha_{n-1}^{M}^{n-1}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T}$$

$$+ a_{2}^{T} + \alpha_{2}^{T}$$

$$+ a_{1}^{T} + \alpha_{2}^{T}$$

$$+ a_{2$$

The i^{th} colum of the matrix $\underline{\wedge}$ is therefore

$$a_0 \underline{\alpha}^{(i-1)v} + a_1\underline{\alpha}^{iv} + a_2\underline{\alpha}^{(i+1)v} + \cdots + a_{n-1}\underline{\alpha}^{(i+n-2)v}$$

2.2-18

The ith column of the matrix $\underline{\underline{A}}$ given by Eq. 2.2-16 is $\underline{\underline{\underline{M}}}^{i-1}\underline{\underline{\underline{A}}} = [\underline{\underline{\alpha}}^{(i-1)}\underline{\underline{v}}\underline{\underline{\alpha}}^{i\underline{v}}\underline{\underline{\alpha}}^{(i+1)}\underline{\underline{v}}...\underline{\underline{\alpha}}^{(i+n-2)}\underline{\underline{v}}].\underline{\underline{A}}$

$$= a_0 \alpha^{(i-1)} v + a_1 \alpha^{i} v + a_2 \alpha^{(i+1)} v + \dots + a_{n-1} \alpha^{(i+n-2)} v$$

which is the same as given by Eq. 2.2-18 and therefore the matrix $\frac{A}{2}$ corresponding to the vector $\frac{A}{2}$ given by both procedures is the same.

The various steps involved in computation of the matrix \underline{A} corresponding to some vector \underline{A} are following:

- (1) Construct the companion matrix M corresponding to the given irreducible polynomial q(x)
- (2) Compute the products $\underline{\underline{M}} \cdot \underline{\underline{A}}$, $\underline{\underline{M}}^2 \underline{\underline{A}} \cdot \cdot \cdot \underline{\underline{M}}^{n-1} \underline{\underline{A}}$
- (3) The matrix A is given by $A = [A MA M^2A ... M^{n-1}A]$

Example 2.4. Find the matrices corresponding to the vectors

$$\underline{A} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 and $\underline{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ using $q(x) = 1 + x + x^{2}$ and find the

products $\underline{A} * \underline{B}$ and $\underline{B} * \underline{A}$.

Here
$$\underline{\underline{M}} = \begin{bmatrix} 0 & 0 & 0 & -q_0 \\ 1 & 0 & 0 & -q_1 \\ 0 & 1 & 0 & -q_2 \\ 0 & 0 & 1 & -q_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\underline{\underline{M}} \underline{A} = \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} ; \underline{\underline{M}}^2 \underline{A} = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} ; \underline{\underline{M}}^3 \underline{A} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

$$\underline{\mathbf{M}} \, \underline{\mathbf{B}} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}; \, \underline{\mathbf{M}}^{2} \underline{\mathbf{B}} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}; \, \underline{\mathbf{M}}^{3} \underline{\mathbf{B}} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\frac{A}{A} = \begin{bmatrix} A & M & A & M^{2} & A & M^{3} & A \\ A & M & A & M^{2} & M^{3} & A \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\frac{A}{A} = \begin{bmatrix} B & M & B & M^{2} & B & M^{3} & B \\ A & M & B & M^{2} & B & M^{3} & B \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\frac{A}{A} + B = \frac{A}{A} \cdot B = \frac{A}{A} \cdot B = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$\frac{B}{A} + A = \frac{B}{A} \cdot A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\frac{B}{A} + A = \frac{B}{A} \cdot A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

$$\frac{B}{A} + A = \frac{B}{A} \cdot A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Therefore A * B = B : A is verified.

From the preceeding discussion, we conclude that the set $\{A, A^2, ... A^{q-1}, \varphi\}$ of all n x l vectors over GF(p) has a one to one correspondence with the set of polynomials and similarly the set $\{A, A^2, ... A^{q-1}, \varphi\}$ of n x n matrices constructed by using 2.2-16 has one to one correspondence with the set of vectors such that A^i corresponds to A^i . The multiplication of two vectors is achieved by converting one of them into corresponding matrix using 2.2-16 and multiplying it by the other vector. Thus the set of all n x l vectors over GF(p)

alongwith the multiplication and addition operations defined by 2.2-2 and 2.2-7 represents a field isomorphic to $GF(p^n)$. Similarly the set of matrices obtained from the elements of the set of vectors using 2.2-16 alongwith matrix addition and multiplication operations also represents a field isomorphic to $GF(p^n)$.

2.3 Representation of seguences.

A sequence S is an ordered set of elements from some set and is written as $S = s_0 s_1 s_2 \cdots$. A sequence is periodic with period P if $s_i = s_{i+kp}$ for all $i=0,1,2,\ldots$ P-1 and $k=1,2,3\ldots$. The sequence $T = t_0 t_1 t_2 \cdots$ is said to be a shifted version of some sequence $S=s_0 s_1 s_2 \cdots$ if for all $i \geq 0$, $t_{i+\beta} = s_i$, and $t_0 = t_1 = \cdots = t_{\beta-1} = 0$ where β is some integer. In this case we say that T is equal to S shifted by β bits.

If some sequence $S=s_0s_1s_2...$ is delayed by one bit, the delayed sequence can be considered as equal to the sequence S operated upon by a unit delay operator, which is written as d. Thus

$$d\{s_0s_1s_2s_3...\} = \{0s_0s_1s_2...\}$$

Similarly if we denote the infinite sequence

10000.... by δ , where $\delta_0 = 1$ and $\delta_{i>0} = 0$ then we can write,

10000 ... =
$$\delta$$

01000 ... = $d\delta$
00100 ... = $d^2 \delta$ etc.

and therefore the segumee $5 - s_0 s_1 s_2 \cdots$ can be written as,

$$S = s_0 s_1 s_2 s_3 ...$$

$$= s_0 00000 ...$$

$$+ 0 s_1 0000 ...$$

$$+ 000 s_2 000 ...$$

$$+ 000 s_3 00 ...$$

$$+ ...$$

$$= s_0 \delta + s_1 d \delta + s_2 d^2 \delta + s_3 d^3 \delta + ... + ...$$
or
$$S = (s_0 + s_1 d + s_2 d^2 + s_3 d^3 + ... + ... + ...) \delta$$

$$= 3(d) \delta$$

This is called the polynomial representation of S. The term δ is generally understood and is omitted. The polynomial S(d) can be obtained by the following equation:

$$S(d) = \sum_{i=0}^{\infty} s_i d^i$$
 2.3-1

and is called the d-transform of S

If a sequence S is periodic with period P, then it can be written in terms of its u-transform as,

The polynomial $1+d^p+d^{2p}+\ldots+\ldots$ is a formal geometric series and can be summed up to give

$$1+d^{p}+d^{2p}+...+... = \frac{1}{1-d^{p}}$$

since $(1+d^{p}+d^{2p}+...)(1-d^{p}) = 1$ and $1-d^{p} \neq 0$.

Therefore expression for S(d) becomes

$$s(d) = \frac{s_0 + s_1 d + s_2 d^2 + \dots + s_{p-1} d^{p-1}}{1 - d^p}$$
2.3-2

The RHS of above equation may have common factors in numerator and denominator polynomial, and can be cancelled. Therefore we may write,

$$S(d) = \frac{N(d)}{D(d)}.$$

In otherwords, a periodic sequence can be written as a ratio of two polynomials in d.

Suppose $\frac{A(1)}{B(d)}$ be a rational polynomial representing a sequence such that A(d) and B(d) are relatively prime. We know that there exists an integer e such that B(d) is a factor of $1-d^e$ i.e. B(d) $B'(d) = 1-d^e$

$$\frac{A(a)}{B(d)} = \frac{A(a) \cdot B'(d)}{B(d) \cdot B'(d)} = \frac{A'(d)}{1 - d^{e}}$$
.

Thus ratio of two relatively prime polynomials in d represent a sequence whose period is equal to exponent of the denominator polynomial.

Lxample 2.5. Represent the sequence

S = 0111101011001000111101011001000111... over GF(2)

by a rational polynomial. Find $T(d) = d^2S(d)$ and verify that T is a delayed version of S by 2 bits.

Here
$$S(d) = \sum_{i=0}^{\infty} s_i d^i$$

 $= d+d^2+d^3+d^4+d^6+d^8+d^9+d^{12}+d^{16}+d^{17}+d^{18}+d^{19}+d^{21}+d^{23}+d^{24}+d^{27}+\dots$
 $= (d+d^2+d^3+d^4+d^6+d^8+d^9+d^{12})(1+d^{15}+d^{30}+\dots)$
 $= \frac{d+d^2+d^3+d^4+d^6+d^8+d^9+d^{12}}{1+d^{15}}$

or
$$s(d) = \frac{d}{1+d+d^4}$$

$$T(d) = \frac{d^3}{1+d+d^4} = \frac{d^3+d^4+d^5+d^6+d^8+d^{10}+d^{11}+d^{14}}{1+d^{15}}$$

and we see that

and
$$t_{i+3} = s_i$$
, $i=0,1,2...$

CHAPTER III

LINEAR FEEDBACK SHIFT REGISTER CIRCUITS OVER GF(2")

In this chapter, Linear feedback shift register (LFSR) circuits over GF(2ⁿ) are studied. Expressions for the response of LFSR circuits are obtained. It is shown that the response of the LFSR circuit can be viewed as n binary sequences put row by row. Properties of the autonomous response of LFSR circuit regarding periods of individual rows, and their relationship to the period of vector sequence are studied. In the case of maximal length sequence, it is shown that the individual rows are shifted versions of the same binary sequence, and the amount of shifts is calculated.

An expression for the total response in terms of the input sequence, the initial contents of the shift register and the circuit constants is derived. The periods of the output sequence are calculated for cases when the input period is (i) relatively prime to (ii) integral multiple of, and (iii) equal to the autonomous period.

3.1 Circuit Description by State Equation :-

As has been discussed in Chapter 1, LFSR circuits are special class of linear sequential circuits, and such a circuit with single input and single output can be described by the equations:

$$\tilde{\chi}^{(k+1)} = \tilde{A} \tilde{\chi}^{(k)} + \tilde{B} U^{(k)}$$

$$\chi^{(k)} = \tilde{C} \tilde{\chi}^{(k)} + D U^{(k)}$$
3.1-2

where $\tilde{X}^{(k)}$ is the state vector, $U^{(k)}$ and $Y^{(k)}$ are the input and output respectively, and \tilde{A} , \tilde{B} , \tilde{C} and D are matrices of the following form,

$$\begin{array}{l}
\mathbb{R} \\
\mathbb{A} = \begin{bmatrix}
 C_1 & C_2 & C_3 & \cdots & C_{m-1} & C_m \\
 1 & 0 & 0 & \cdots & 0 & 0 \\
 0 & 1 & 0 & \cdots & 0 & 0
\end{bmatrix} \\
\mathbb{R} = \begin{bmatrix}
 1 \\
 0 \\
 0 \\
 0
\end{bmatrix} \quad (mxm)$$

$$\begin{array}{l}
\mathbb{R} \\
\mathbb{$$

 C_1 , C_2 ... C_m are called the tap coefficients. When the LFSR circuit is over the field $GF(2^n)$ with nxl vector elements the elements of A, B, C and D become vectors, and their product is obtained by the method given in Lemma 2.1. Equivalently, elements of A, B, C and D can be converted into corresponding nxn matrices, and ordinary multiplication operation may be used. The equations describing the circuit then become

and

$$\underline{\underline{x}}^{(k+1)} = \underline{\underline{A}} \cdot \underline{\underline{x}}^{(k)} + \underline{\underline{B}} \underline{\underline{U}}^{(k)}$$
3.1-3

$$\underline{\underline{Y}}^{(k)} = \underline{\underline{C}} \cdot \underline{\underline{X}}^{(k)} + \underline{\underline{D}} \underline{\underline{U}}^{(k)}$$

where

and $\underline{\mathbb{D}} = \underline{\mathbb{I}}$ I and ϕ are unit and zero elements of $GF(2^n)$ and are unit and null matrices respectively. Here $\underline{\mathbb{X}}$ is the state vector whose elements are the state variables $\underline{\mathbb{X}}_1$, $\underline{\mathbb{X}}_2$, ..., $\underline{\mathbb{X}}_m$ and these state variables are elements of $GF(2^n)$ and themselves vectors. $\underline{\mathbb{A}}$, $\underline{\mathbb{B}}$, $\underline{\mathbb{C}}$ and $\underline{\mathbb{D}}$ are matrices of the form described earlier, but their elements are non matrices representing elements of $GF(2^n)$ and therefore are the powers of the companion matrix $\underline{\mathbb{M}}$. $\underline{\mathbb{U}}^{(k)}$ and $\underline{\mathbb{Y}}^{(k)}$ denote the input and output sequences of n-tuples respectively.

For the case of ${\tt GF(2^n)}$ which is considered in this chapter, the polynomial q(x) has coefficients from ${\tt GF(2)}$ and therefore becomes

$$q(x) = 1 + q_1 x + q_2 x^2 + \cdots + q_{n-1} x^{n-1} + x^n$$
 3.1.46

and for the companion matrix given by Eq. 2.2-11 $q_0 = 1$ and $q_i \in GF(2)$.

The LFSR circuit over GF(2ⁿ) is shown in Fig. 3.1:

Example 3.1 : Find the LTSR circuit whose tap coefficients are

$$\underline{C}_{1} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \quad ; \underline{C}_{2} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \quad ; \underline{C}_{3} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \quad ; \underline{C}_{4} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$

and $q(x) = 1+x+x^3$

The companion matrix corresponding to q(x) is

The given vectors are converted into corresponding matrices using 2 2-16, giving

The LFSR circuit is of the type shown in Fig. 3.1 with C_1 , C_2 , C_3 , C_4 given above and m=4.

3.2 Response of LFSR Circuits: In this section, we derive an expression for the total response (output sequence) of the circuit shown in Fig. 3.1. The LFSR circuit is described by

Fig. 3.1. LESR Circuit Over GF(2ⁿ)

equations 3.1-3 and 3.1-4 where $\frac{x}{X}$ is the state vector representing the states \underline{x}_1 \underline{x}_2 ... \underline{x}_m in a mxl vector form, and the individual states are themselves nxl vectors. The states $\underline{x}_1^{(k)}\underline{x}_2^{(k)}$... $\underline{x}_m^{(k)}$ at instants $k=1,2,3,\ldots$ can be obtained by putting $k=1,2,3,\ldots$ and can be written simultaneously in vector form as $\underline{x}_1^{(1)}, \underline{x}_2^{(2)}, \underline{x}_1^{(3)}$... etc. Therefore from eqn. 3.1-3,

$$\begin{array}{lll}
\overset{\circ}{\mathbb{X}}(1) &= & \overset{\circ}{\mathbb{A}} \cdot \overset{\circ}{\mathbb{X}}(0) + \overset{\circ}{\mathbb{B}} \cdot \overset{\circ}{\mathbb{U}}(0) \\
\overset{\circ}{\mathbb{X}}(2) &= & \overset{\circ}{\mathbb{A}} \cdot \overset{\circ}{\mathbb{X}}(1) + \overset{\circ}{\mathbb{B}} \overset{\circ}{\mathbb{U}}(1) \\
& \vdots & \vdots & \vdots \\
\overset{\circ}{\mathbb{X}}(1) &= & \overset{\circ}{\mathbb{A}} \cdot \overset{\circ}{\mathbb{X}}(1-1) + \overset{\circ}{\mathbb{B}} \overset{\circ}{\mathbb{U}}(1-1)
\end{array}$$

Therefore the state sequence $X = X^{(0)}, X^{(1)}, X^{(2)}$... can be written in polynomial form using 2.3-1 as

$$\frac{x}{X}(d) = \frac{x}{X}(0) + \frac{x}{X}(1)d + \frac{x}{X}(2)d^{2} + \frac{x}{X}(3) \cdot d^{3} + \cdots + \cdots + \cdots$$

$$= \frac{x}{X}(0) + \left[\frac{x}{A} \cdot \frac{x}{X}(0) + \frac{x}{B} U^{(0)}\right] d + \left[\frac{x}{A} \cdot \frac{x}{X}(1) + \frac{x}{B} U^{(1)}\right] d^{2} + \left[\frac{x}{A} \cdot \frac{x}{X}(2) + \frac{x}{B} \cdot U^{(2)}\right] d^{3} + \cdots + \frac{x}{A} \cdot \frac{x}{A}(2) + \frac{x}{A} \cdot$$

or
$$\widetilde{X}(d) = \widetilde{X}^{(O)} + \left[\underbrace{\overset{\sim}{\underline{A}}}_{\underline{X}} \widetilde{X}(d) + \underbrace{\overset{\sim}{\underline{B}}}_{\underline{U}} \underline{U}(d) \right] d$$
 3.2-1

where $\underline{U}(d) = \underline{U}^{(0)} + \underline{U}^{(1)}d + \underline{U}^{(2)}d^2 + \cdots + \cdots$ is the d-transform of the input sequence $\underline{U} = \underline{U}^{(0)}$, $\underline{U}^{(1)}$, $\underline{U}^{(2)}$, ... and similarly $\underline{\tilde{X}}(d)$ is d-transform of state sequence $\underline{\tilde{X}}$

Eqn. 3.2-1 can be written as

$$\widetilde{X}(d) + \widetilde{A} \widetilde{X}(d) \cdot d = \widetilde{X}^{(0)} + \widetilde{B} \cdot U(d) \cdot d$$
or
$$\widetilde{X}(d) \cdot \left[\widetilde{I} + \widetilde{A} \right] = \left[\widetilde{X}^{(0)} + \widetilde{B} \cdot U(d) \cdot d \right]$$
or
$$\widetilde{X}(d) = \left[\widetilde{I} + \widetilde{A} \right] \cdot \left[\widetilde{X}^{(0)} + \widetilde{B} \cdot U(d) \cdot d \right]$$
3.2-2

where $\frac{2}{4}$ is a unit matrix of size maxma such that $\frac{2}{4}$ $\frac{2}{4}$ $\frac{2}{4}$ (d) = $\frac{2}{4}$ (d) and it will be shown later that the above inverse exists. The elements of the output sequence can similarly be obtained by putting $k = 0,1,2,\dots$ in eqn. 3.1-2 and therefore the d-transform of the output sequence Y becomes

$$\underline{Y}(d) = \underline{\underline{C}} \, \underline{X}(d) + \underline{\underline{D}} \, \underline{U}(d)$$
 and use of 3.2-2 yields

$$\underline{Y}(\mathbf{d}) = \widehat{\underline{\mathbb{C}}} \cdot \left[\underbrace{\widehat{\underline{\mathbb{Z}}}}_{\mathbf{d}} \widehat{\underline{\mathbb{C}}} \right]^{-1} \cdot \left[\underbrace{\widehat{\underline{X}}}_{\mathbf{d}} (\mathbf{0}) + \underbrace{\widehat{\underline{\mathbb{D}}}}_{\mathbf{d}} \mathbf{u}(\mathbf{d}) \mathbf{d} \right] + \underline{\underline{\mathbb{D}}} \underline{\mathbf{U}}(\mathbf{d})$$
 3.2-3

This is the expression for the output sequence in terms of the input sequence, initial conditions, and circuit constants which are determined by the matrices $\frac{2}{4}$ $\frac{2}{8}$ $\frac{2}{9}$ and $\frac{2}{9}$. Now we shall study various cases for various choices of $\underline{\underline{U}}(d)$ and $\underline{\underline{X}}^{(0)}$.

3.3 Autonomous Response: The autonomous response of a LFSR circuit is defined as the response of the circuit to the input 0 0 0 In other words, the input is absent, and the output sequence depends upon the contents of the delays only.

Mathematically $\underline{U}(d) = \underline{O}$ and eqn. 3.2-3 becomes.

$$\therefore \underline{\underline{\mathbf{Y}}}(\mathbf{d}) = \underline{\underline{\mathbf{C}}} \left[\underline{\underline{\mathbf{I}}} + \underline{\underline{\mathbf{A}}} \underline{\mathbf{d}} \right]^{-1} \cdot \underline{\underline{\mathbf{X}}}^{(O)}$$
3-3-1

If Y is the autonomous response of a LFSR circuit then we say that the LFSR circuit generates Y.

3:3-1 Expression for Autonomous Response: The expression for the d-transform of output sequence involves the inverse of the mnxmn matrix $\left[\begin{array}{c} \frac{\aleph}{\underline{I}} + \frac{\aleph}{\underline{A}} d \end{array}\right]$, We shall derive a simplified expression for $\underline{Y}(d)$ and will show that $\underline{Y}(d)$ can be written as $\underline{Y}(d) = [\underline{C}(d)]^{-1} \cdot \underline{P}(d)$, where $\underline{C}(d)$ is a nxn matrix and $\underline{P}(d)$ is a nxl vector of binary polynomials.

Since

$$\begin{array}{c} \mathbf{z} \\ \mathbf$$

therefore

therefore
$$\begin{bmatrix} \exists & \sum_{i=2}^{m} \subseteq_{i} \mathbf{d}^{i-1} & \sum_{i=3}^{m} \subseteq_{i} \mathbf{d}^{i-2} & \sum_{i=m-1}^{m} \subseteq_{i} \mathbf{d}^{i-m+2} \subseteq_{m} \mathbf{d} \\ \exists d & \exists_{i=2}^{m} = \mathbf{d}^{i-1} & \sum_{i=3}^{m} \subseteq_{i} \mathbf{d}^{i-1} & \sum_{m=1}^{m} \subseteq_{i} \mathbf{d}^{i-m+3} & \subseteq_{m} \mathbf{d}^{2} \end{bmatrix}$$

$$\begin{bmatrix} \exists \exists \exists_{i=2}^{m} \exists_{i=3}^{m} \subseteq_{i} \mathbf{d}^{i-1} & \sum_{i=3}^{m} \subseteq_{i} \mathbf{d}^{i-m+3} & \subseteq_{m} \mathbf{d}^{2} \\ \exists_{i=3}^{m} \exists_{i=3}^{m} \subseteq_{i} \mathbf{d}^{i-1} & \sum_{m=1}^{m} \subseteq_{i} \mathbf{d}^{i-m+4} & \subseteq_{m} \mathbf{d}^{3} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \exists_{i=1}^{m-1} (\exists_{i=1}^{m} + \mathbf{d}) \mathbf{d}^{i} (\exists_{i=1}^{m} \mathbf{d}^{i-1} \in_{i} \mathbf{d}^{2}) \mathbf{d}^{m-3} & (\exists_{i=1}^{m} \mathbf{d}^{i-1} \in_{i} \mathbf{d}^{i-1}) \mathbf{d}^{m-1} & \vdots & \vdots \\ \exists_{i=1}^{m-1} (\exists_{i=1}^{m} + \mathbf{d}) \mathbf{d}^{i} (\exists_{i=1}^{m} \mathbf{d}^{i-1} \in_{i} \mathbf{d}^{2}) \mathbf{d}^{m-3} & (\exists_{i=1}^{m} \mathbf{d}^{i-1} \in_{i} \mathbf{d}^{i-1}) \mathbf{d}^{m-1} & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \exists_{i=1}^{m-1} (\exists_{i=1}^{m} + \mathbf{d}) \mathbf{d}^{i-1} & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \end{bmatrix}$$

$$\times \left[\underline{C}(q) \right]^{-1}$$

Where
$$\underline{C}(\underline{d}) = \underline{I} + \underline{C}\underline{d} + \underline{C}\underline{d}^2 + \dots + \underline{C}\underline{d}^m$$
 3.3-2

is equal to the determinant of the matrix $\begin{bmatrix} \underline{\underline{z}} + \underline{\underline{A}} \underline{d} \end{bmatrix}$ and is defined as the connection polynomial, or the feedback polynomial of the LFSR circuit.

Multiplication of C with + Ad yields

$$\overset{\sim}{\underline{\mathbb{C}}} \cdot \begin{bmatrix} \overset{\sim}{\underline{\mathbb{C}}} & \overset{\sim}{\underline{\mathbb{$$

Therefore eqn. 3.3-1 becomes

$$\underline{Y}(d) = \underline{\underline{C}} \begin{bmatrix} \underline{\underline{Z}} + \underline{\underline{A}} d \end{bmatrix}^{-1} \underline{\underline{X}}^{(0)}$$

$$= \underline{\underline{C}}(d) \begin{bmatrix} \underline{\underline{Z}} + \underline{\underline{A}} d \end{bmatrix}^{-1} \underline{\underline{X}}^{(0)}$$

$$= \underline{\underline{C}}(d) \begin{bmatrix} \underline{\underline{C}} + \underline{\underline{A}} d \end{bmatrix}^{-1} \underline{\underline{X}}^{(0)}$$

$$= \underline{\underline{C}}(d) \begin{bmatrix} \underline{\underline{C}} + \underline{\underline{A}} d \end{bmatrix}^{-1} \underline{\underline{C}} d^{i-1} \underline{\underline{C}} d^{i-2} \cdots \underline{\underline{C}} d^{i-m+1} \underline{\underline{C}} \underline{\underline{C}} \underline{\underline{C}} d^{i-m+1} \underline{\underline{C}} \underline{\underline{C}} \underline{\underline{C}} d^{i-m+1} \underline{\underline{C}} \underline{\underline$$

$$= \left[\underline{C}(d) \right]^{-1} \cdot \left[\underline{C}_{1} \underline{X}_{1}^{(0)} + \underline{C}_{2} \underline{X}_{2}^{(0)} + \underline{C}_{3} \underline{X}_{3}^{(0)} + \cdots + \underline{C}_{m} \underline{X}_{m}^{(0)} \right]$$

$$+ (\underline{C}_{2} \underline{X}_{1}^{(0)} + \underline{C}_{3} \underline{X}_{2}^{(0)} + \cdots + \underline{C}_{m} \underline{X}_{m-1}^{(0)}) d$$

$$+ (\underline{C}_{3} \underline{X}_{1}^{(0)} + \cdots + \underline{C}_{m} \underline{X}_{m-2}^{(0)}) d$$

$$+ (\underline{C}_{3} \underline{X}_{1}^{(0)} + \cdots + \underline{C}_{m} \underline{X}_{m-2}^{(0)}) d$$

$$+\underline{\underline{\underline{C}}}_{m}\underline{\underline{X}}^{(0)}$$
 $\underline{\underline{d}}^{m-1}$

or
$$\underline{\underline{Y}(a)} = \left[\underline{\underline{C}(a)}\right]^{-1} \begin{bmatrix} \underline{\Sigma} & \underline{\Sigma} & \underline{\underline{C}} & \underline{\underline{X}}^{(O)} \cdot \underline{a}^{j} \end{bmatrix} \qquad 3 \cdot 3 - 4$$

$$\underline{\underline{J}} = 0 \quad \underline{\underline{J}} = 1 \quad \underline{\underline{J}} =$$

[[]C(d)] is defined in Appendix A.

3 • 3--8

Therefore the output sequence Y is given in terms of its d-transform by

$$\underline{Y}(d) = [\underline{C}(d)]^{-1} \underline{P}(d)$$
 3.3-5

where

$$P(d) = \sum_{j=0}^{m-1} \sum_{i=1}^{m-j} \sum_{i+j=i}^{m-j} 3 \cdot 3 - 6$$

and

C(d) is given by 3.3-2.

Sometimes the output Y' is drawn from the last stage. this case the matrices $\stackrel{\mathbf{2}}{\underline{\mathbf{C}}}$ and $\stackrel{\mathbf{D}}{\underline{\mathbf{D}}}$ are modified as

$$\stackrel{\circ}{\underline{C}} = \left[\stackrel{\circ}{\underline{Q}} \stackrel{\circ}{\underline{Q}} \stackrel{\circ}{\underline{Q}} \stackrel{\circ}{\underline{Q}} \stackrel{\circ}{\underline{Q}} \right] \text{ and } \underline{D} = \stackrel{\circ}{\underline{Q}}$$

Therefore

$$\underline{Y}'(d) = \underbrace{\mathbb{C}} \cdot \begin{bmatrix} \mathbb{E} + \frac{\lambda}{2} d \end{bmatrix} \cdot \underbrace{\mathbb{E}}^{(0)}$$

$$= \underbrace{[\mathbb{C}(d)]^{-1}} \begin{bmatrix} \mathbb{E} d^{m-1} (\mathbb{E} + \mathbb{C}_{1} d) d^{m-2} (\mathbb{E} + \mathbb{C}_{1} d + \mathbb{C}_{2} d^{2}) d^{m-3} \cdot \mathbb{E}^{m-1} \\ \mathbb{E}^{(0)} \mathbb{E}^{(0)} \end{bmatrix} = \underbrace{[\mathbb{C}(d)]^{-1}} \underbrace{[\mathbb{X}_{m}^{(0)} + (\mathbb{C}_{1} \mathbb{X}_{m}^{(0)}) d +} \\ + \underbrace{(\mathbb{C}_{2} \cdot \mathbb{X}_{m} + \mathbb{C}_{1} \cdot \mathbb{X}_{m-1} + \mathbb{X}_{m-2}) d^{2} + \cdots + \cdots + (\mathbb{E}_{1} \mathbb{E}^{(0)} + \mathbb{X}_{1}^{(0)}) d^{m-1}} \\ = \underbrace{\mathbb{C}(d)} - \mathbf{1} \cdot \begin{bmatrix} \mathbb{E} \mathbf{1} & \mathbb{E} \mathbf{1} \\ \mathbb{E} & \mathbb{E} \mathbf{1} \\ \mathbb{E} & \mathbb{E} \mathbf{1} \end{bmatrix} \cdot \mathbb{E}_{0} = \mathbb{E}$$
or
$$\underline{Y}'(d) = \begin{bmatrix} \mathbb{C}(d) \end{bmatrix}^{-1} \cdot \underline{P}'(d) \qquad 3 \cdot 3 - 7$$
where
$$\underline{P}'(d) = \underbrace{\mathbb{E}} \mathbf{1} = \mathbf{1} =$$

Example 3.2: Find the autonomous response of a 3 stage LFSR circuit over $GF(2^2)$ given

$$\underline{C}_{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \underline{C}_{2} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \underline{C}_{3} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \underline{q}(x) = 1 + x + x^{2},$$

$$\underline{X}_{1}^{(0)} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \underline{X}_{2}^{(0)} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \underline{X}_{3}^{(0)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Here companion matrix corresponding to q(x) is $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$

$$\underline{\underline{C}}_{1} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} ; \underline{\underline{C}}_{2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} ; \underline{\underline{C}}_{3} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\underline{P}(d) = \sum_{j=0}^{3-1} \sum_{i=1}^{3-j} \underline{\Sigma}_{i+j}^{(0)} \underline{d}^{j} \text{ using } 3.3-5$$

$$= \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} d + \begin{bmatrix} 0 \\ 1 \end{bmatrix} d^2 = \begin{bmatrix} 0 \\ d^2 \end{bmatrix}$$

$$\underline{C}(d) = \underline{I} + \underline{C}_{1}d + \underline{C}_{2}d^{2} + \underline{C}_{3}d^{3} \text{ using } 3.3~2$$

$$= \begin{bmatrix} 1 + d^{2} + d^{3} & d + d^{2} \\ d + d^{2} & 1 + d + d^{3} \end{bmatrix}$$

$$\underline{Y}(d) = [\underline{C}(d)]^{-1} \cdot \underline{P}(d) = \begin{bmatrix} 1 + d + d^3 & d + d^2 \\ d + d^2 & 1 + d^2 + d^3 \end{bmatrix} \begin{bmatrix} 0 \\ d^2 \end{bmatrix} \cdot \frac{1}{1 + d + d^3 + d^5 + d^6}$$

$$= \begin{bmatrix} d^{3} + d^{4} & \frac{1}{1 + d + d^{3} + d^{5} + d^{6}} \\ d^{2} + d^{4} + d^{5} & 1 + d + d^{3} + d^{5} + d^{6} \end{bmatrix}$$

$$= \begin{bmatrix} (d^{3}+d^{4})(1+d+d^{2}+d^{4}+d^{5}+d^{6}) \\ (d^{2}+d^{4}+d^{5})(1+d+d^{2}+d^{4}+d^{5}+d^{6}) \end{bmatrix} \cdot \frac{1}{1+d^{12}}$$

$$= \begin{bmatrix} d^{3}+d^{6}+d^{7}+d^{10} \\ d^{2}+d^{3}+d^{6}+d^{11} \end{bmatrix} \cdot \frac{1}{1+d^{12}}$$

Output sequence $Y = Y(d) \cdot \delta$

$$=$$
 { 000100110010 } with period 12

Similarly using 3.3-7,
$$P(d) = \begin{bmatrix} d \\ 0 \end{bmatrix}$$
 and $Y'(d) = \begin{bmatrix} C(d) \end{bmatrix}^{-1} \cdot P(d) = \begin{bmatrix} d+d^6+d^9+d^{10} \\ d^2+d^5+d^6+d^9 \end{bmatrix} \cdot \frac{1}{1+d^{12}} \text{ using 3.3-8}$

The sequence drawn from the last stage is

$$Y' = Y'(d) \cdot \delta = \{ \begin{cases} 010000100110 \\ 001001100100 \end{cases}$$
 with period 12.

And we can verify that \underline{Y}' is same as \underline{Y} delayed by m=3 bits.

3.3-2 Properties of Autonomous Response: We have seen that the sequence of binary nxl vectors can be viewed as n binary sequences put row by row, so that the vector formed by taking k^{th} element of these sequences becomes the k^{th} element of the vector sequence for all k > 0.

In this section, we show that these row sequences are periodic, and the period of vector sequence is equal to the LCM of the periods of individual rows. Also the vector sequence

can be generated by an equivalent mn stage binary LFSR circuit.

This r sult can be put as the following lemma.

Lemma 3.1: The vector secuence generated by a m stage LFSR circuit over $GF(2^n)$ can be viewed as n binary sequences put row by row such that,

- (i) the row sequences are periodic
- (ii) all row sequences can be generated by the same equivalent mn stage LFSR circuit over GF(2)
- (iii) the period of vector sequence is equal to the LCM of periods of row sequences.

<u>Proof</u>: Consider a m stage LFSR circuit on $GF(2^n)$ whose connection polynomial $\underline{C}(d)$ is given by $3\cdot 3-2\cdot$ Since the coefficients \underline{C}_i of $\underline{C}(d)$ are non binary matrices, we can write

$$= \begin{bmatrix} 1 + \sum\limits_{i=1}^{m} c_{i1}^{(i)} d^{i} & \sum\limits_{i=1}^{m} c_{12}^{(i)} d^{i} & \cdots & \sum\limits_{i=1}^{m} c_{1n}^{(i)} d^{i} \\ \sum\limits_{i=1}^{m} c_{21}^{(i)} d^{i} & 1 + \sum\limits_{i=1}^{m} c_{22}^{(i)} d^{i} & \cdots & \sum\limits_{i=1}^{m} c_{2n}^{(i)} d^{i} \\ \sum\limits_{i=1}^{m} c_{21}^{(i)} d^{i} & \sum\limits_{i=1}^{m} c_{22}^{(i)} d^{i} & \cdots & 1 + \sum\limits_{i=1}^{m} c_{2n}^{(i)} d^{i} \end{bmatrix}$$

$$Therefore \quad \underline{C}(d) = \begin{bmatrix} c_{11}(d) & c_{12}(d) & \cdots & c_{1n}(d) \\ c_{21}(d) & c_{22}(d) & \cdots & c_{2n}(d) \\ \vdots & & & & \vdots \\ c_{n1}(d) & c_{n2}(d) & \cdots & c_{nn}(d) \end{bmatrix} \quad 3 \cdot 3 - 9$$

$$where \quad \underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ii}(d) = 1 + \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i, \quad i, j = 1, 2, \dots, n$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m} c_{ij}^{(l)} d^{l} \quad i \neq j$$

$$\underline{c}_{ij}(d) = \sum\limits_{l=1}^{m$$

d^j in the polynomial P(d) given by 3.3-6

The inverse of the matrix C(d) can be obtained using ordinary

The inverse of the matrix $\underline{\underline{C}}(d)$ can be obtained using ordinary matrix inversion procedure. Thus

$$[\mathbf{c}(\mathbf{d})]^{-1} = \begin{bmatrix} \mathbf{c}'_{11}(\mathbf{d}) & \mathbf{c}'_{12}(\mathbf{d}) & \cdots & \mathbf{c}'_{1n}(\mathbf{d}) \\ \mathbf{c}'_{21}(\mathbf{d}) & \mathbf{c}'_{22}(\mathbf{d}) & \cdots & \mathbf{c}'_{2n}(\mathbf{d}) \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{c}'_{n1}(\mathbf{d}) & \mathbf{c}'_{n2}(\mathbf{d}) & \cdots & \mathbf{c}'_{nn}(\mathbf{d}) \end{bmatrix} - \frac{1}{N(\mathbf{d})} = \mathbf{c}'(\mathbf{d}) \cdot \frac{1}{N(\mathbf{d})}$$

$$3 \cdot 3 \cdot 10$$

where $c'_{ij}(d)$ is the cofactor of $c_{ji}(d)$ in 3.3-8 and is a binary polynomial with degree less than m(n-1) and

$$N(d) = Det^*[(\underline{c}(d))]$$
 and $deg[N(d)] \leq mn + (*See Appendix A)$

Therefore eqn. 3.3-5 can be written as

$$\underline{Y}(d) = \begin{bmatrix} c_{11}'(d) & c_{12}'(d) & \cdots & c_{1n}'(d) \\ c_{21}'(d) & c_{22}'(d) & \cdots & c_{2n}'(d) \\ \vdots & & & & \vdots \\ c_{n1}'(d) & c_{n2}'(d) & \cdots & c_{nn}'(d) \end{bmatrix} \qquad \begin{bmatrix} p_1(d) \\ p_2(d) \\ \vdots \\ p_n(d) \end{bmatrix}$$

$$= \begin{bmatrix} f_1(d) \\ f_2(d) \\ \vdots \\ f_n(d) \end{bmatrix}$$
3.3-11

which can also be written as

$$Y(d) = \begin{cases} f_{1}(d)/N(d) \\ f_{2}(d)/N(d) \\ \vdots \\ f_{n}(d)/N(d) \end{cases} = \begin{cases} R_{1}(d) \\ R_{2}(d) \\ \vdots \\ R_{n}(d) \end{cases}$$

$$3.3-12$$

where
$$R_{i}(d) = \frac{f_{i}(d)}{N(d)} = \frac{f_{i}(d)}{N_{i}(d)}$$
, $i = 1, 2, ..., n$ 3-3-13

such that f'(d) and Ni(d) are relatively prime.

We see that rows of the sequence Y are represented by ratio of two binary polynomials and therefore are binary sequence with period equal to exponent of the denominator polynomial. Thus first part of Lemma is proved.

The denominator of each polynomial R_i(d) is the same binary polynomial N(d) with degree mm. Therefore the sequences represented by these polynomials can be generated by a binary LFSR circuit whose connection polynomial is N(d) and therefore it will be a mm stage LFSR circuit. Hence second part is proved. Equation 3.3-12 can be written with the help of 3.3-13 as

$$\underline{Y}(d) = \begin{bmatrix} R_1(d) \\ R_2(d) \\ \vdots \\ R_n(d) \end{bmatrix} = \begin{bmatrix} f'_1(d)/N_1(d) \\ f'_2(d)/N_2(d) \\ \vdots \\ f'_n(d)/N_n(d) \end{bmatrix}$$

And since $N_1(d)$, $N_2(d)$... $N_n(d)$ are all factors of N(d), therefore

$$N(d) = LCM[N_1(d), N_2(d) \cdots N_n(d)]$$

$$\operatorname{Exp}\left\{\operatorname{N}(\operatorname{d})\right\} = \operatorname{LCM}\left[\operatorname{Exp}\left\{\operatorname{N}_{1}(\operatorname{d})\right\}, \operatorname{Exp}\left\{\operatorname{N}_{2}(\operatorname{d})\right\} \cdots, \operatorname{Exp}\left\{\operatorname{N}_{n}(\operatorname{d})\right\}\right]$$

And since $\mathbb{E}xp\left\{N_{\mathbf{i}}(d)\right\}$ represents the period of $R_{\mathbf{i}}$, i.e. the period of sequence given by $R_{\mathbf{i}}(d)$, we conclude that

Period of $\underline{Y} = LCM$ [Period of R_1 , Period of R_2 , ...

Period of R_n]

Thus third part of the Lemma is proved.

3-3-3 Maximal Sequences:

In this section we find the LFSR circuit which can generate maximal sequences and study the properties of maximal sequences, which are already developed for a general sequence in preceding section. First we give the definition of maximal sequence.

A sequence S of elements from GF(q) is said to be maximal if it is periodic with period q^m-1 , m is an integer, and each element of the sequence $S = s_0 s_1 s_2 s_3 \cdots can$ be written as a linear combination of past m elements only, with coefficients from GF(q) i.e.

$$s_j = \sum_{i=1}^{m} s_{j-i}q_i$$
, $j = m, m+1$, $and q_i \in GF(q)$.

Alternately, if S can be generated by a m stage LFSR circuit over GF(q) and has period q^m-1 , it is maximal.

For the present case, $q=2^n$ and therefore the maximal sequences have period $(2^n)^m-1$.

Regarding the properties of maximal sequences, and the circuits which can generate them, we construct the following lemmas.

Lemma 3.2: The connection polynomial of LFSR circuit which can generate a maximal sequence over $GF(2^n)$ is a primitive polynomial over $GF(2^n)$.

Lemma 3.3 [a]: The rows of a maximal sequence over GF(2ⁿ) are shifted versions of a binary maximal sequence which can be

generated by a mm stage LFSR circuit over GF(2), with N(d) as its connection polynomial.

[b] • The numbers of bits by which the rows of a vector maximal squence are shifted from the first row are integral multiples of a number β given by

$$\beta = \frac{2^{mn}-1}{2^n-1}$$

Lemma 3.4. If $\underline{A}(d) = \underline{I} + \underline{A}_1 d + \underline{A}_2 d^2 + \dots + \underline{A}_m d^m$ is a primitive polynomial over $GF(2^n)$ and $\underline{B}(d) = \underline{I} + \underline{A}_1^{1/2} d \cdot \underline{A}_2^{1/2} d^2 + \dots + \underline{A}_m^{1/2} d^m$ is another polynomial then $\underline{B}(d)$ is also primitive, and the amounts of shifts β_1 for the sequence generated by a LFSR circuit with $\underline{B}(d)$ as its connection polynomial are double of the amounts of respective shifts β_1 for the sequence generated by a LFSR circuit whose connection polynomial is $\underline{A}(d)$, and the row sequences in both cases are shifted versions of the same binary sequences.

Proof of Lemma 3.2 :

The d-transform of the autonomous response of a m-stage LFSR circuit over $CF(2^n)$ is given, using Eq. 3.3-11 by

$$\underline{Y}(d) = \underline{c}'(d) \cdot \underline{p}(d) \cdot \frac{1}{N(d)}$$

Therefore period of $\underline{Y} = \mathbb{D}_{XP} * [N(d)]$ And since \underline{Y} is given to be maximal, its period is 2^{nm} -1

i.e.
$$Exp[N(d)] = 2^{nm}-1$$

Therefore* Exp
$$\left[\underline{c}(d)\right] = 2^{nm}-1$$

= $(2^n)^m-1$

^{*}See Appendix B

Since $\underline{c}(d)$ is polynomial of degree m over $GF(2^n)$, and has exponent $(2^n)^m$ -1, from the definition of primitive polynomial we conclude that $\underline{c}(d)$ is a primitive polynomial over $GF(2^n)$

Proved

Proof of Lemma 3.3 [a] :

Recalling Eqs. 3.3-11, 3.3-12 and 3.3-13, the i^{th} row of the sequence Y is given by

$$R_{i}(d) = \frac{f_{i}(c)}{N(d)}, i = 1, 2, ..., n$$

where $f_i(\bar{a})$ is relatively prime to N(d) since N(d) is primitive. Also Exp [N(d)] = 2^{nm} = Period of R_i. Therefore R_i is a maximal sequence.

Since all the rows $R_{\underline{i}}$ of the sequence \underline{Y} are represented by ratios of two polynomials in d such that they have same . denominators, we conclude from the properties of maximal sequences that each row $R_{\underline{i}}$ is a shifted version of the same sequence $R_{\underline{i}}$ given by,

$$R_1(d) = \frac{f_1(d)}{N(d)} = \frac{F_1(d)}{1+d^2}$$
 3.3-14

And R_1 (d) can be generated by a LFSR circuit whose connection polynomial is N(d) and therefore number of stages is equal to degree of N(d) which is mn

Proved

Proof of Lemma 3.3 [b]:

Since all rows of the sequence Y are shifted versions of the first row R1, the elements of the row sequences R_i^{(k)} can be

3 - 3-16

written as

$$R_{i}^{(k)} = R_{1}^{(k-\beta_{i})}$$
, $i = 2,3,...,n$ for all k

where β_i is the amount of shift for ith row. Eq. 3.3-12 becomes

$$\underline{Y}^{(k)} = \begin{bmatrix} R_{1}^{(k)} \\ R_{2}^{(k)} \\ R_{3}^{(k)} \\ \vdots \\ R_{n}^{(k)} \end{bmatrix} = \begin{bmatrix} R_{1}^{(k)} \\ (k-\beta_{2}) \\ R_{1}^{(k-\beta_{3})} \\ (k-\beta_{3}) \\ R_{1}^{(k-\beta_{n})} \end{bmatrix}$$
 for all k 3.3-15

In absence of input, Fq. 3.1-3 can be written as

$$\frac{2}{2}$$
(k+1) = $\frac{2}{4}$ $\frac{2}{2}$ (k)

or
$$\underline{\underline{x}}^{(k+1)} = \underline{\underline{c}}_1 \cdot \underline{\underline{x}}^{(k)}_1 + \underline{\underline{c}}_2 \cdot \underline{\underline{x}}^{(k)}_2 + \dots + \underline{\underline{c}}_m \cdot \underline{\underline{x}}^{(k)}_m$$

 $X_{i}^{(k+1)} = X_{i-1}^{(k)}$ i = 2, 3, ..., m

Therefore

and

$$X_{1}^{(k+1)} = \sum_{j=1}^{k} X_{j}^{(k)} + \sum_{j=1}^{k} X_{j}^{(k-1)} + \sum_{j=1}^{k} X_{j}^{(k-2)} + \cdots + \sum_{j=1}^{k} X_{j}^{(k-m+1)}$$

Eq. 3.1-4 gives

$$\underline{x}^{(k)} = \underline{\underline{c}} \, \underline{\underline{x}}^{(k)}$$

$$= \underline{\underline{c}}_{1} \underline{\underline{x}}^{(k)} + \underline{\underline{c}}_{2} \underline{\underline{x}}^{(k)} + \cdots + \underline{\underline{c}}_{nr} \underline{\underline{x}}^{(k)}$$

$$= \underline{\underline{x}}^{(k+1)}_{1} \text{ using } 3.3-16.$$

Therefore Eq. 3.3-17 can be written in terms of Y as

$$\underline{Y}^{(k)} = \sum_{i=1}^{m} \underline{C}_{i} \underline{Y}^{(k-i)}$$
3.3-18

The tap coefficients C's are matrices corresponding to elements of $GF(2^n)$ and are therefore some power of the companion matrix M. Writing $C = M^1$, and using Eq. 2.2-16 and 3.3-15, Eq. 3.3-18 can be written as

$$\underline{\underline{Y}}^{(k)} = \sum_{i=1}^{m} \underline{\underline{M}}^{e_{i}} \underline{\underline{Y}}^{(k-i)}$$

$$= \sum_{i=1}^{m} [\underline{\underline{\alpha}}^{e_{i}} \underline{\underline{M}}^{e_{i}} \underline{\underline{M}}^{2} \underline{\underline{\alpha}}^{e_{i}} \dots \underline{\underline{M}}^{m-1} - \underline{\underline{\alpha}}^{e_{i}}] \cdot \begin{bmatrix} R_{1}^{(k-i)} \\ (k-\beta_{2}-i) \\ R_{1}^{(k-\beta_{3}-i)} \\ (k-\beta_{n}-i) \end{bmatrix}$$

$$= \sum_{i=1}^{m} [R_{1}^{(k-i)} \underline{\underline{\alpha}}^{e_{i}} + R_{1}^{(k-\beta_{2}-i)} \underline{\underline{\underline{M}}}^{e_{i}} \underline{\underline{\alpha}}^{e_{i}} + R_{1}^{(k-\beta_{3}-i)} \underline{\underline{\underline{\alpha}}}^{e_{i}} + \dots + \dots + \\
+ R_{1}^{(k-\beta_{n}-i)} \underline{\underline{\underline{M}}}^{m-1} \underline{\underline{\underline{\alpha}}}^{e_{i}}$$

$$= \sum_{i=1}^{m} [\underline{\underline{\underline{I}}} R_{1}^{(k-i)} + \underline{\underline{\underline{M}}} R_{1}^{(k-\beta_{2}-i)} + \underline{\underline{\underline{M}}}^{2} R_{1}^{(k-\beta_{3}-i)} + \dots + \dots + \\
+ \underline{\underline{\underline{M}}}^{m-1} R_{1}^{(k-\beta_{n}-i)} \underline{\underline{\underline{\alpha}}}^{e_{i}}$$

Using only first two columns of the matrices \underline{I} , \underline{M} , \underline{M}^2 , ... we can write

$$\underline{\underline{\mathbf{I}}}_{R_{1}}^{(k-i)} = \begin{bmatrix} 1 & 0 & \dots & \\ 0 & 1 & \dots & \\ 0 & 0 & \dots & \\ \vdots & \vdots & \\ 0 & 0 & \dots \end{bmatrix}_{R_{1}^{(k-i)}} = \begin{bmatrix} R_{1}^{(k-i)} & 0 & \dots \\ 0 & R_{1}^{(k-i)} & 0 \\ 0 & 0 & \vdots & \vdots \\ 0 & 0 & \dots \end{bmatrix}$$

$$\underset{=}{\mathbb{M}^{R}}_{1}^{(k-\beta_{2}-i)} = \begin{bmatrix} 0 & 0 & \dots \\ 1 & 0 & \dots \\ 0 & 1 & \dots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \dots \end{bmatrix}_{R_{1}^{(k-\beta_{2}-i)}} = \begin{bmatrix} 0 & 0 & \dots \\ R_{1}^{(k-\beta_{2}-i)} & 0 & \dots \\ 0 & R_{1}^{(k-\beta_{2}-i)} & \vdots \\ \vdots & \vdots & \vdots \\ 0 & 0 & \dots \end{bmatrix}$$

Similarly we can write $\frac{12^2}{1}$, $\frac{(k-\beta_4-i)}{2}$, $\frac{M^3}{R_1}$, $\frac{M^{n-2}R_1}{2}$ and finally

$$\underline{\mathbf{M}}^{n-1} \mathbf{R}_{1}^{(k-\beta_{n}-\mathbf{i})} = \begin{bmatrix} 0 & 1 & \dots & & \\ 0 & q_{1} & \dots & \\ \vdots & \vdots & & \\ & & \vdots & & \\ & & & \\$$

Therefore $\underline{Y}^{(k)}$ can be written as,

$$\underline{Y}^{(k)} = \sum_{i=1}^{m} \begin{bmatrix} R_{1}^{(k-1)} & R_{1}^{(k-\beta_{n}-i)} & & & & \\ (k-\beta_{2}-i) & (k-i) & (k-\beta_{n}-i) & & \\ R_{1} & +q_{1}R_{1} & & & \\ R_{1} & +q_{2}R_{1} & & & \\ R_{1}^{(k-\beta_{3}-i)} & R_{1}^{(k-\beta_{2}-i)} +q_{2}R_{1}^{(k-\beta_{n}-i)} & & & \\ \vdots & \vdots & & \vdots & & \\ (k-\beta_{n}-i) & R_{1} & & & & +q_{n-1}R_{1} & & \\ R_{1} & & & & & \\ R_{1} & & & & & \\ \end{bmatrix} \cdot \underline{\alpha}^{e_{1}}$$

Using Eq. 3.3-15, the above vector equation can be splitted into n rows giving,

$$R_{1}^{(k)} = \sum_{i=1}^{m} [R_{1}^{(k-i)} R_{1}^{(k-\beta_{1}-i)} \dots] \underline{\alpha}^{e_{i}}$$

$$R_{1}^{(k-\beta_{i})} = \sum_{i=1}^{m} [R_{1}^{(k-\beta_{2}-i)} (k-i) (k-\beta_{-i}) \dots] \underline{\alpha}^{e_{i}}$$

$$R_{1}^{(k-\beta_{1})} = \sum_{i=1}^{m} [R_{1}^{(k-\beta_{2}-i)} (k-\beta_{1}-i) (k-\beta_{n}-i)] \underline{\alpha}^{e_{i}}, j=3,4,...n$$

$$R_{1}^{(k-\beta_{1})} = \sum_{i=1}^{m} [R_{1}^{(k-\beta_{1}-i)} (k-\beta_{1}-i) (k-\beta_{n}-i)] \underline{\alpha}^{e_{i}}, j=3,4,...n$$

The above n equations are representing k^{th} element of the row sequences of \underline{Y} for all values of k. Therefore replacing k by k^{th} , in above equations, we get,

$$R_{1}^{(k)} = \sum_{i=1}^{m} [R_{1}^{(k-i)} \quad R_{1}^{(k-\beta_{n}-i)} \quad \cdots]\underline{\alpha}^{e_{i}} [\underline{unchan-ged}]$$

$$R_{1}^{(k)} = \sum_{i=1}^{m} [R_{1}^{(k-i)} \quad R_{1}^{(k+\beta_{2}-i)} + \underline{q_{1}R_{1}}^{(k+\beta_{2}-\beta_{n}-i)} \quad \cdots]\underline{\alpha}^{e_{i}}$$

$$R_{1}^{(k)} = \sum_{i=1}^{m} [R^{(k-i)} \quad R^{(k+\beta_{j}-\beta_{j-1}-i)} + \underline{q_{j-1}R_{1}}^{(k+\beta_{j}-\beta_{n}-i)} \cdots]\underline{\alpha}^{e_{i}} j=3,4,...$$

$$3.3-19$$

The above equations are representing the elaments of the same sequence R_1 . Since we have not put any constraint upon $\underline{\alpha}^i$'s, these equations are valid for all $\underline{\alpha}^i$ and therefore respective columns of all of the equations 3.3-19 must be equal independently. We see that first columns are the same. Equating second columns, we get

$$R_{1}^{(k-\beta} n^{-i)} = R_{1}^{(k+\beta} 2^{-i)} + q_{1}R_{1}^{(k+\beta} 2^{-\beta} n^{-i)}$$

$$= R_{1}^{(k+\beta} 3^{-\beta} 2^{-i)} + q_{2}R_{1}^{(k+\beta} 3^{-\beta} n^{-i)}$$

$$= R_{1}^{(k+\beta} 3^{-\beta} 2^{-i)} + q_{2}R_{1}^{(k+\beta} 3^{-\beta} n^{-i)}$$

$$= R_{1}^{(k+\beta} n^{-1} n^{\beta} n^{-2} n^{-i)} + q_{n-2}R_{1}^{(k+\beta} n^{-1} n^{-i)}$$

$$= R_{1}^{(k+\beta} n^{-\beta} n^{-1} n^{-i} + q_{n-1}R_{1}^{(k-1)}$$

$$= R_{1}^{(k+\beta} n^{-\beta} n^{-1} n^{-i} + q_{n-1}R_{1}^{(k-1)} + q_$$

Eq. 3.3-20(1) gives

$$R_1^{(k-\beta_2)} = R_1^{(k+\beta_n)} + q_1 R_1^{(k)}$$
 3.3-21(1)

Eq. 3.3-20(2) gives

$$R_1^{(k-\beta_3)} = R_1^{(k+\beta_n-\beta_2)} + q_2^{(k)}$$

which, with the help of 3.3-21(1), becomes,

$$R_{1}^{(k-\beta_{3})} = (R_{1}^{(k+\beta_{n}+\beta_{n})} + q_{1}^{(k+\beta_{n})}) + q_{2}^{(k)}$$

$$(k-\beta_3) = (k+2\beta_1) + (k+\beta_1).$$
or $R_1 = R_1 + q_1R_1 + q_2R_1$
3.3-21(2)

Eq. 3.3-20(3) gives

$$R_1^{(k-\beta_4)} = R_1^{(k+\beta_1-\beta_3)} + q_3 R_1^{(k)}$$

which, with the help of 3.3-21(2) becomes

$$R_{1}^{(k-\beta_{4})} = (R_{1}^{(k+2\beta_{n}+\beta_{n})} + q_{1}^{(k+\beta_{n}+\beta_{n})} + q_{2}^{(k+\beta_{n})} + q_{3}^{(k+\beta_{n})}) + q_{3}^{(k)}$$

$$or R_{1}^{(k-\beta_{4})} = R_{1}^{(k+3\beta_{n})} + q_{1}^{(k+2\beta_{n})} + q_{2}^{(k+\beta_{n})} + q_{3}^{(k)} + q_{3}^{(k)}$$

$$3.3-21(3)$$

In a similar manner, we proceed to calculate (k- β) R₁ , j=5,6,7...n and end up with

The sequence R_1 , whose elements are given by the above equation, can be written in terms of a polynomial in d [see sec. 2.3] as,

$$R_{1}(d) = R_{1}(d) d^{n\beta_{n}} + q_{n-1}R_{1}(d)d^{(n-1)\beta_{n}} + \dots + \dots + q_{2}R_{1}(d)d^{n} + q_{1}R_{1}(d)d^{n}$$

$$= [q_{1}d^{n} + q_{2}d^{n} + \dots + \dots + q_{n-1}d^{(n-1)\beta_{n}} + d^{n\beta_{n}}]R_{1}(d)$$

or
$$R_1(d) = \frac{h(d)}{\beta 2^{\beta} n + \dots + q_{n-1} d}$$
 3.3-22

or
$$R_1(d) = \frac{h(d)}{\beta}$$
.

where h(d) is some binary polynomial in d with degree less than $n\beta_n$ and $q(d^n)$ is defined by replacing x by d^n in Eq. 3.1-6.

Since q(d) is a primitive polynomial of degree n, we have

Eq. 3.3-23 can be written as

$$R_{1}(d) = \frac{h(d)}{q(d^{n})} = \frac{h'(d)}{(2^{n}-1)\beta_{n}}$$
3.3.24

From Eq. 3.3-14 we know that period of R_1 is $2^{nm}-1$. Therefore the period $(2^n-1)\beta_n$ given by 3.2-24 must be an integral multiple of 2^{nm}-1 i.e.

$$\beta_{n}(2^{n}-1) = K. (2^{n}-1)$$

$$\beta_{n} = K \cdot \frac{2^{n}-1}{2^{n}-1} \quad K = 1, 2, \dots, 2^{n}-1$$

From Eq. 3.3-20, all β_1 , $j=2,3,\dots,n-1$ can be calculated in terms of β_n . We conclude that the amounts of shifts β_1 , β_2 , ..., β_n

are integral multiple of the number \$\beta\$ given by

$$\beta = \frac{2^{n_{m-1}}}{2^{n_{m-1}}}$$
 3.3-25

Proved

or

^{*}See Appendix C for proof.

Example 3.3: Find the amounts of shifts of the rows of the sequence generated by the primitive polynomial $1+\alpha d+\alpha d^2$ where $\alpha = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ is element of $GF(2^3)$ and $g(x) = 1+x+x^3$. Verify that they are integral multiples of β given by 3.3-25.

Here
$$\underline{\underline{M}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & q_1 \\ 0 & 1 & q_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad \underline{\underline{\alpha}} = [\underline{\underline{\alpha}} \; \underline{\underline{M}} \cdot \underline{\underline{\alpha}} \; \underline{\underline{M}}^2 \underline{\underline{\alpha}}] = \underline{\underline{M}}$$

We see that $N(! = 1+d^2+d^3+c^5+d^6)$ is a primitive polynomial and therefore $1 + 2d + \alpha d^2$ is also

assuming initial contents such that P(d) = 1.

or
$$\underline{Y}(d) = \begin{bmatrix} 1+d^2+d^4 \\ d+c^2 \\ d^2+d^4 \end{bmatrix}, \frac{1}{1+d^2+d^3+d^5+d^6}$$

which gives

Here we observe that $\beta_2 = 4$ and $\beta_3 = 54$.

From Eq. 3.3-25
$$R = \frac{2^{mn}-1}{2^n-1} = \frac{2^{3-2}-1}{2^3-1} = \frac{63}{7} = 9$$

and therefore β_2 and β_3 are integral multiples of β .

Proof of Lemma 3.4

First we define the square roots of the elements of ${\tt GF(2^n)}$. Since elements of ${\tt GF(2^n)}$ in matrix form are powers of the companion matrix M, we may write

$$A = M$$
 where e_i is some integer.

Then we define

Thus square roots of alements of $GF(2^n)$ are also elements of $GF(2^n)$. Using 3.3-10, the autonomous response \underline{S}_a of a LFSR circuit whose connection polynomial is \underline{A} d) is given by

$$S_{a} = \begin{bmatrix} A'(d) \end{bmatrix} \cdot P_{1}(d) \cdot \frac{1}{N(d)}$$

$$= \begin{bmatrix} A'_{11}(d) & A'_{12}(d) & \cdots & A'_{1n}(d) \\ A'_{21}(d) & A'_{21}(d) & \cdots & A'_{2n}(d) \\ \vdots & \vdots & & \vdots \\ A'_{n1}(d) & A'_{n2}(d) & A'_{nn}(d) \end{bmatrix} P_{1}(d) \cdot \frac{1}{N(d)}$$

$$-3 \cdot 3 - 26$$

where $\underline{P}_1(d)$ is the polynomial corresponding to initial contents. Now the second polynomial $\underline{B}(d)$ obtained by taking square roots of coefficients of $\underline{A}(d)$ can be written as

$$\mathbb{E}^{(d)} = \mathbb{I} + \mathbb{A}^{1/2} d + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m$$
or
$$\left[\mathbb{E}^{(d)} \right]^2 = \left[\mathbb{I} + \mathbb{A}^{1/2} d + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \left[\mathbb{I} \right]^2 + \left[\mathbb{A}^{1/2} d \right]^2 + \left[\mathbb{A}^{1/2} d^2 \right]^2 + \cdots + \left[\mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^2 + \cdots + \mathbb{A}^{1/2} d^m \right]^2$$

$$= \mathbb{I} + \mathbb{A}^{1/2} d^2 + \mathbb{A}^{1/$$

Therefore $\underline{\underline{B}}(d) = [\underline{\underline{A}}(d^2)]^{1/2}$

and the sequence generated by the LFSR circuit whose connection polynomial is $\underline{B}(d)$ is given by

$$\underline{S}_{b}(d) = [\underline{B}(d)]^{-1} \cdot \underline{P}_{2}'d) \\
= [\underline{A}(d^{2})]^{-1/2} \cdot \underline{P}_{2}(d) \\
= [\underline{A}(d^{2})]^{-1} \cdot [\underline{A}(d^{2})]^{1/2} \cdot \underline{P}_{2}(d), \\
= \begin{bmatrix} A'_{11}(d^{2}) & A'_{12}(d^{2}) & \cdots & A'_{1n}(d^{2}) \\ A'_{21}(d^{2}) & A'_{22}(d^{2}) & \cdots & A'_{2n}(d^{2}) \\
\vdots & \vdots & \vdots & \vdots \\ A'_{n1}(d^{2}) & A'_{n2}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
= \begin{bmatrix} A'_{11}(d^{2}) & A'_{12}(d^{2}) & \cdots & A'_{1n}(d^{2}) \\ A'_{21}(d^{2}) & A'_{22}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\ A'_{n1}(d^{2}) & A'_{n2}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
= \begin{bmatrix} A'_{11}(d^{2}) & A'_{12}(d^{2}) & \cdots & A'_{1n}(d^{2}) \\ A'_{21}(d^{2}) & A'_{22}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\ A'_{n1}(d^{2}) & A'_{n2}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\ A'_{n1}(d^{2}) & A'_{n2}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{1}_{N(d)} \\
\vdots & \vdots & \vdots & \vdots \\ A'_{n1}(d^{2}) & A'_{n2}(d^{2}) & \cdots & A'_{nn}(d^{2}) \end{bmatrix} \cdot \underline{P}'_{2}(d) \cdot \underline{P}'_{2}(d)$$

where

 $\underline{P}_{2}'(d) = [\underline{A}(d^{2})]^{1/2} \cdot \underline{P}_{2}(d)/N(d)$ is a polynomial $tn \ d$.

Since $\det \left[\underline{B}(d) \right] = \det \left[\underline{A}(d^2) \right]^{1/2} = \left[N(d^2) \right]^{1/2} = N(d)$, we conclude that the denominator of Eq. 3.3-27 is N(d) only i.e. $\underline{P}_2'(d)$ is a polynomial with denominator 1. Thus rows of \underline{S}_a and \underline{S}_b are shifted version of same sequence since the denominators in both cases are N(d). Since the effect of the initial contents is to introduce a shift in the vector sequence, and the sequence length and amounts of shifts of individual rows are independent of $\underline{P}(d)$, we can choose $\underline{P}_1(d)$ and $\underline{P}_2(d)$ different such that

$$P_1(d) = P_2'(d)$$
.

Therefore Eqs. 3.3-26 and 3.3-27 can be written as

$$\underline{\underline{S}}_{a}(d) = \begin{bmatrix} \underline{f}_{1}(d) \\ \underline{f}_{2}(d) \\ \vdots \\ \underline{f}_{n}(d) \end{bmatrix} \cdot \underline{\underline{I}} \quad ; \quad \underline{\underline{S}}_{b}(d) = \begin{bmatrix} \underline{f}_{1}(d^{2}) \\ \underline{f}_{2}(d^{2}) \\ \vdots \\ \underline{f}_{n}(d^{2}) \end{bmatrix} \cdot \underline{\underline{I}} \quad .$$

If S_a is written as

$$\mathbf{S}_{\mathbf{a}}^{(k)} = \begin{bmatrix} \mathbf{k} \\ \mathbf{k} \\$$

then since numerators of polynomials representing rows of \underline{S}_{b} are squares of the numerators of polynomials representing rows of \underline{S}_{a} , we can write,

$$\underline{S}_{b}^{(k)} = \begin{bmatrix} R_{1}^{(k)} \\ (k-2\beta_{2}) \\ (k-2\beta_{3}) \\ R_{1} \\ \vdots \\ (k-2\beta_{n}) \\ R_{1} \end{bmatrix}$$

Thus the amounts of shifts are doubled.

The Equation 3.3-24 for this case becomes $R_b(d)=\frac{h_b'(d)}{2\beta_n(2^n-1)}$, where R_b is the row of S_b .

Similarly, we can keep on taking square roots of coefficients and find the corresponding sequences generated by $\stackrel{m}{=} \frac{1/2^j}{1} = 1,2,\ldots,n-1 . \quad \text{If β_i's are the amounts of i=1}$ shifts for $\underline{A}(d)$ and $(2^n-1)\beta_n$ is the exponent of the denominator of the polynomial representing the row of the sequence \underline{S}_a then for the other cases we get the following results:

Coefficients	Shifts	expon on ts
₹ <u>†</u>	βi	$\beta_n(2^n-1)$
<u>≜</u> 1/2	2β <u>±</u>	$2\beta_n(2^n-1)$
$A_{i}^{1/4}$	4eta i	$4\beta_n(2^n-1)$
* 0 *	***	* * *
* 0 1	аръ	3 + ₽
	8 22 e	* * q
A ¹ /2 ⁿ	$2^{n_{\beta}}i^{=\beta}i$	$\beta_n(2^n-1)$

And since periods of rows are 2^{nm}-1 only, these exponents must be integral multiples of 2^{nm}-1 i.e.

$$2^{j'}$$
 $\beta_n(2^{n-1}) = K_n(2^{nm-1}), \quad j' = 0,1,2,...,n-1,K = integer$

Which is satisfied for $K = 2^{n-1}$ only.

$$\beta_{n}(2^{n-1}) = \frac{2^{n-1}}{2^{n-1}}(2^{nm}-1)$$
 $j' = 0,1,2,...,n-1$

or
$$\beta_n = \frac{2^{mm}-1}{2^n-1} \cdot 2^j$$
 $j = 0,1,2,\dots,n-1$ 3.3-28

Example 3.4. Consider the primitive polynomial $\underline{A}(d) = \underline{I} + \underline{M}d$ where \underline{M} is the companion matrix and $q(x) = 1 + x + x^4$. Find the shifts β_1 for the sequences generated by $\underline{I} + \underline{M}^2$ d, $\underline{j} = 0,1,2,3,\dots$,

Since
$$\underline{S}_a = [\underline{I} + \underline{I}d]^{-1} \cdot \underline{P}(d) \delta$$

we have

 $\beta_3 = 13$

 $\beta_A = 14$

Therefore for j=1, the sequence \underline{S}_b generated by $\underline{\underline{I}} + \underline{\underline{M}}^{1/2}d$ must have

$$\beta_2 = 24 = 24 - 15 = 9$$

$$\beta_3 = 26 = 26 - 15 = 11$$

$$\beta_A = 28 = 28 - 15 = 13$$

For j = 2, the sequence S_c generated by $I + M^{1/4}d$ has

$$\beta_2 = 9 \cdot 2 = 18 = 3$$

$$\beta_3 = 11 \cdot 2 = 22 = 7$$

$$\beta_4 = 13 \cdot 2 = 26 = 11$$

For j = 3, the sequence \underline{S}_d generated by $\underline{I} + \underline{M}^{1/3}d$ has

$$\beta_2 = 3 \cdot 2 = 6$$
 $\beta_3 = 7 \cdot 2 = 14$
 $\beta_4 = 11 \cdot 2 = 22 = 7$

3.4 Total Response: In this section, the response of the LFSR circuit over $GF(2^n)$ to periodic input sequence over $GF(2^n)$ is studied. The expression for the d-transform of output sequence is derived and the output period is determined when the input period and the autonomous period are (i) relatively prime (ii) integral multiples and (iii) equal. Since the

using 3.3-6

expressions giving the period of output sequence are similar to those obtained in the case of sequences over GF(2), for which periods are already known [10], the results available for binary case are directly used here, without going into their derivation.

The expression for the response of LFSR circuit is given by $3\cdot 2-3\cdot$ With the use of $3\cdot 3-3$, it can be written as

$$\underline{\underline{Y}}(d) = [\underline{\underline{C}}(d)]^{-1} \begin{bmatrix} \underline{\underline{m}} & \underline{\underline{C}} & \underline{\underline{d}}^{i-1} & \underline{\underline{m}} & \underline{\underline{C}} & \underline{\underline{d}}^{i-2} & \underline{\underline{m}} & \underline{\underline{C}} & \underline{\underline{d}}^{i-3} & \dots \\ & \vdots & \underline{\underline{C}} & \underline{\underline{d}}^{i-m+1} & \underline{\underline{C}} & \underline{\underline{d}}^{i-m+1} & \underline{\underline{C}} & \underline{\underline{\underline{C}}} & \underline{\underline{C}} & \underline{\underline{$$

 $= \left[\underline{\underline{C}}(\underline{a})\right]^{-1} \cdot \underline{\underline{P}}(\underline{a}) + \left[\underline{\underline{C}}(\underline{a})\right]^{-1} \cdot \left\{ \sum_{i=1}^{m} \underline{\underline{C}} \underline{a}^{i-1} \cdot \underline{\underline{A}} \underline{\underline{U}}(\underline{a}) + \underline{\underline{I}} \underline{\underline{C}}(\underline{a}) \underline{\underline{U}}(\underline{a}) \right\}$

=
$$[\underline{c}(d)]^{-1}$$
, $\underline{p}(d) + [\underline{c}(d)]^{-1}$, $\{\underline{I},\underline{U}(d)\}$
or
 $\underline{Y}(d) = [\underline{c}(d)]^{-1}$, $[\underline{p}(d) + \underline{U}(d)]$
3.4-1

If the input sequence $U = \underline{u}_0 u_1 \underline{u}_2 \underline{u}_3$... is a periodic sequence of vectors with period b, then its d-transform can be written as

$$\underline{U}(d) = \frac{\underline{u}_0 + \underline{u}_1 d + \underline{u}_2 d^2 + \dots + \underline{u}_{b-1} d^{b-1}}{1+d^b} = \frac{\underline{v}(d)}{1+d^b}$$
3.4-2

And sinc
$$\left[\underline{C}(d) \right]^{-1} = \left[\underline{C}'(d) \right] \cdot \frac{1}{1(d)} = \left[\underline{C}''(d) \right] \cdot \frac{1}{1+d}$$

where a = Exp[N(d)] = Exp[C(d)], we can write Eq. 3.4-1 as

$$\underline{\underline{Y}}(d) = \left[\underline{\underline{C}}''(d)\right] \left[\underline{\underline{\frac{p(d)}{1+d^a} + \frac{y(d)}{(1+d^b)(1+d^a)}}}\right]$$
 3-4-9

where observe that the expression for the response of LFSR circuit to periodic input for $GF(2^n)$ has binary polynomials in the denominator. Since the periods of sequences depend upon the denominators of the polynomials representing them, we conclude that period of Y can be calculated in the same manner as it is calculated for the case of sequences over GF(2). Since these results are already known, we don't go into details and write the results directly.

Case I : Input period 'b' is relatively prime to autonomous
period 'a' :

i.o.
$$b \neq r_{1}a$$
 , $r = 1, 2, 3, ...$

In this case $\frac{y(d)}{(1+d^b)(1+d^a)}$ can be expanded into partial fractions, and the expression for Y(d) becomes

$$Y(d) = \left[\underline{C}''(d)\right] \left[\frac{\underline{V}'(d)}{1+d^{b}} + \frac{\underline{A}(d) + \underline{P}(d)}{1+d^{a}}\right]$$

When P(d) = L(d), second terms from above expression vanishes. That is, for one particular initial state corresponding to P(d) = A(d), the output period is equal to the input period. This state is called the critical state.

For other initial states

Output period = LCM(a,b) = a.b

Case II : Input period is an integral multiple of autonomous period.

$$b = a \cdot r$$
 , $r = 2, 3, ...$

In this case output period is an integral multiple of the autonomous period, but not necessarily equal to b.

Output period =
$$a \cdot r'$$
 , $r' = 1,2,3,...$

Case III: Input period is equal to autonomous period. i.e. b = a.

In this case, if initial contents are zero then P(d) = 0 and

$$\underline{Y}(d) = \left[\underline{C}^{n}(d)\right] \frac{\underline{V}(d)}{(1+d^{a})(1+d^{a})}.$$

If $[\underline{C}''(d)] \cdot y(d)$ has a factor $1+d^a$ then output period will be a. Otherwis: output period will be 2a.

If the initial states are nonzero then the output period will depend upon the particular initial state and cannot be obtained in terms of a. Details are given in reference [10].

Example 3.5: The connection polynomial of a LFSR circuit over $GF(2^2)$ is $C(d) = 1+\alpha x + 1x^2$ where α is the primitive element of $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ are $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ are $GF(2^2)$ and $GF(2^2)$ and $GF(2^2)$ are $GF(2^2)$ and $GF(2^2)$ are $GF(2^2)$ and $GF(2^$

(i)
$$\underline{x}_{1}^{(0)} = \underline{1} ; \underline{x}_{2}^{(0)} = \underline{0}$$

(ii)
$$\underline{x}_{1}^{(0)} = \underline{\alpha} ; \underline{x}_{2}^{(0)} = \underline{\alpha}^{2}$$

The companion matrix corresponding to α is

$$\underline{\underline{M}} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$$

$$\underline{\text{Case (i)}}: = \left[\underline{\underline{I}} + \underline{\underline{M}}^2 d + \underline{\underline{I}} d^2\right] \frac{1+d}{1+d}$$

And
$$\underline{P}(d) = \sum_{j=0}^{1} \sum_{i=1}^{2-j} \underline{x}_{i}^{(0)} d^{j} = \underline{C}_{1} \cdot \underline{x}_{1}^{(0)} + \underline{C}_{2} \cdot \underline{x}_{2}^{(0)} + \underline{C}_{2} \cdot \underline{x}_{1}^{(0)} d$$

$$= \underline{\alpha} + \underline{1} d.$$

Autonomous response
$$\underline{Y}(d) = \left[\underline{\underline{C}}(d)\right]^{-1} \cdot \underline{P}(d) = \left[\underline{\underline{I}} + \underline{\underline{M}}^2 d + \underline{\underline{I}} d^2\right] \cdot \left[\underline{\underline{\alpha}} + \underline{\underline{I}} d\right] \frac{1 + d \cdot \underline{\underline{I}}}{1 + d}$$

$$= \frac{\underline{\alpha} + \underline{\alpha} d + \underline{\underline{I}} d^2 + \underline{\underline{I}} d^4}{1 + d^5}$$
or
$$\underline{Y} = \begin{cases} 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{cases}$$
 with period 5.

The total response is

$$\underline{Y}(d) = [\underline{C}(d)]^{-1} \cdot [\underline{P}(d) + \underline{U}(d)]$$

For convenience, we write

$$\underline{\underline{C}(d)} = \underline{\underline{1}} + \underline{\alpha}d + \underline{\underline{1}}d^{2}$$

$$\therefore \underline{\underline{Y}(d)} = \underline{\underline{\alpha}} + \underline{\underline{1}}d + \underline{\underline{1}}d^{2} + \underline{\underline{1}}d^{2} + \underline{\underline{\alpha}}d^{4} + \underline{\underline{\alpha}}d^{4} + \underline{\underline{\alpha}}^{2}d^{5} + \underline{\underline{\alpha}}^{2}d^{8} + \underline{\underline{1}}d^{9}$$

$$(\underline{\underline{1}} + \underline{\alpha}d + \underline{\underline{1}}d^{2})(\underline{1} + \underline{\underline{d}}^{12})$$

The division by vector is permitted since they are elements of $GF(2^2)$. The second term is expanded into partial fractions as,

$$\frac{\underline{1} + \underline{\alpha}\underline{d} + \underline{\alpha}\underline{d}^4 + \underline{\alpha}^2\underline{d}^5 + \underline{\alpha}^2\underline{d}^8 + \underline{1}\underline{d}^9}{(\underline{1} + \underline{\alpha}\underline{d} + \underline{1}\underline{d}^2)(\underline{1} + \underline{d}^{12})} = \frac{\underline{1}}{(\underline{1} + \underline{\alpha}\underline{d} + \underline{1}\underline{d}^2)(\underline{1} + \underline{\alpha}\underline{d})^3}$$

$$= \frac{\underline{Ad} + \underline{B}}{\underline{1} + \underline{\alpha}d + \underline{1}d^{2}} + \frac{\underline{C}}{1 + \underline{\alpha}d} + \frac{\underline{D}}{\underline{1} + \underline{\alpha}^{2}d^{2}} + \frac{\underline{E}}{(\underline{1} + \underline{\alpha}d)^{3}}.$$

The values of \underline{A} , \underline{B} , \underline{C} , \underline{D} and \underline{E} are calculated to be,

$$\underline{A} = \underline{1}$$
; $\underline{B} = \underline{\alpha}$; $\underline{C} = \underline{\alpha}$; $\underline{D} = \underline{\alpha}$; $\underline{E} = \underline{\alpha}^2$

Therefore

$$\underline{\underline{Y}}(d) = \frac{\underline{\alpha} + \underline{1}d}{\underline{1} + \underline{\alpha}d + \underline{1}d^{2}} + \frac{\underline{\alpha} + \underline{1}d}{\underline{1} + \underline{\alpha}d + \underline{1}d^{2}} + \frac{\underline{\alpha}^{2} + \underline{\alpha}^{2}d + \underline{1}d^{2}}{(\underline{1} + \underline{\alpha}d)^{3}}$$

$$= \frac{\underline{\alpha}^{2} + \underline{\alpha}^{2}d + \underline{1}d^{2}}{(\underline{1} + \underline{\alpha}d)^{3}}$$

$$\underbrace{ \underline{x}(d) = \frac{\underline{\alpha}^2 + \underline{\alpha}d + \underline{\alpha}d^3 + \underline{1}d^4 + \underline{\alpha}^2d^5 + \underline{\alpha}^2d^7 + \underline{\alpha}d^8 + \underline{1}d^9 + \underline{1}d^{11}}_{1 + d^{12}}$$

Therefore this is the critical state and output period is 12.

Case (ii):
$$\underline{P}(d) = \sum_{j=0}^{1} \sum_{i=1}^{2-j} \underline{C}_{i+j} \times \underline{C}_{i}^{(0)} d^{j} = \underline{I} \cdot \underline{\alpha} + \underline{M} \cdot \underline{\alpha}^{2} + \underline{M} \cdot \underline{\alpha} d$$
$$= \underline{\alpha} + \underline{1} + \underline{\alpha}^{2} d = \underline{\alpha}^{2} + \underline{\alpha}^{2} d.$$

Total response in this case becomes

$$\underline{\underline{Y}}(d) = \frac{\underline{\underline{\alpha}^2 + \underline{\alpha}^2 d}}{\underline{\underline{1} + \underline{\alpha} d + \underline{1} d^2} + \frac{\underline{\underline{\alpha} + \underline{1} d}}{\underline{\underline{1} + \underline{\alpha} d + \underline{1} d^2}} + \frac{\underline{\underline{\alpha}^2 + \underline{\alpha}^2 d + \underline{1} d^2}}{\underline{\underline{1} + \underline{\alpha} d}}$$

$$= \frac{\underline{\underline{1} + \underline{\alpha} d}}{\underline{\underline{1} + \underline{\alpha} d + \underline{1} d^2}} + \frac{\underline{\underline{\alpha}^2 + \underline{\alpha}^2 d + \underline{1} d^2}}{\underline{\underline{(1 + \underline{\alpha} d)^3}}} .$$

The first term has exponent 5 and therefore output period = LCM (5,12) = 60

Example 3.6: Find the response of the LFSR circuit over $GF(2^2)$ whose connection polynomial is $\underline{C}(d) = \underline{1} + \underline{\alpha}^2 d$. The initial conditions and the input sequence \underline{U} are same as in Example 3.5.

$$\frac{\text{Case (1)}}{\text{Y(d)}} = \frac{\alpha + 1 \text{d}}{\frac{1}{1 + \alpha^2 \text{d}}} + \frac{1}{\frac{1}{1 + \alpha^2 \text{d}} \cdot (\frac{1}{1 + \alpha \text{d}})^3}$$

$$= \frac{\alpha + 1 \text{d}}{\frac{1}{1 + \alpha^2 \text{d}}} + \frac{1}{\frac{1}{1 + \alpha^2 \text{d}}} + \frac{\alpha \text{d} + \alpha \text{d}^2}{\frac{1}{1 + \alpha \text{d}})^3}$$

$$= \frac{\alpha^2 + 1 \text{d}}{\frac{1 + \alpha^2 \text{d$$

Therefore output period is LCM [Exp $(1+\alpha^2 d)$, Exp $(1+\alpha d)^3$] = LCM [3,12] = 12

Case (ii) : $\underline{P}(d) = \underline{\alpha}^2 + \underline{\alpha}^2 d$.

In this case also, output period is 12.

Example 3.7: Find the output period for $C(d) = 1 + \alpha^2 d$ and $U(d) = \frac{1 + \alpha d + 1 d^2 + \alpha^2 d^3 + \alpha^2 d^5 + 1 d^7 + \alpha^2 d^8 + \alpha^2 d^9 + \alpha d^{10} + \alpha^2 d^{11}}{1 + d^{12}}$

$$\text{Here } \underline{Y(d)} = \frac{\underline{P(d)}}{\underline{1} + \underline{\alpha}^2 d} + \frac{\underline{1} + \underline{\alpha} d + \underline{1} d^2 + \underline{\alpha}^2 d^3 + \underline{\alpha}^2 d^5 + \underline{1} d^7 + \underline{\alpha}^2 d^8 + \underline{\alpha}^2 d^9 + \underline{\alpha}^2 d^{10} + \underline{\alpha}^2 d^{11}}{(\underline{1} + \underline{\alpha}^2 d)(1 + d^{12})}$$

And since $\underline{1} + \underline{\alpha}^2 d$ is a factor of $\underline{1} + \underline{1} d^{12}$, we cannot get partial

fraction of the type
$$\frac{\underline{A}(d)}{\underline{1} + \underline{\alpha}^2 c} + \frac{\underline{B}(d)}{\underline{1} + \underline{1}d^{12}}$$
.

Therefore output period = LCM $\left[\text{Exp}(\underline{1} + \underline{\alpha}^2 d), \text{Exp}((\underline{1} + \underline{\alpha}^2 d), (1 + d^{12})) \right]$

= LCM $\left[3,24 \right]$

Use of LFSR circuit as Scrambler :

In the calculation of period of output sequence for the case I of the LFSR circuit, we see that if the autonomous period and input sequence periods are relatively prime, then the output sequence period is the product of the two periods. Also, if the connection polynomial of the LFSR circuit is a primitive polynomial then the autonomous period is $(2^n)^m$ —1 and the output period in this case is b· $(2^{nm}-1)$, where b is input sequence period. Thus the input sequence is translated into another with much extended period. It can also be verified that the number of transitions are more in the output sequence than in the input. Therefore such a circuit can be used for scrambling purposes. The difference between a binary scrambler and this scrambler is that this scrambler scrambles binary vector data.

CHAPIER IV

SYNTHESIS OF LFSR CIRCUITS OVER GF(2")

In this chapter synthesis procedure of a LFSR circuit which can generate a given vector sequence is given. In Section 4.1, the synthesis problem is explained. In Section 4.2, Massey's algorithm [3] is described and in Section 4.3, the overall synthesis procedure is explained with the help of appropriate flow charts. At the end of this chapter, a computer program is given which is based on the synthesis procedure described in Section 4.3. This program can be used to design LFSR circuits which can generate the given vector sequence. Examples of synthesis of a variety of vector sequences solved by using the given computer program are included.

4.1 The Synthesis problem: In this section, we give the synthesis problem and synthesize a LFSR circuit over GF(2ⁿ) by a classical procedure. The problem arising in the synthesis procedure are described. We see that this procedure is very much involved. It has been proved^[21] that among the various existin; synthesis procedures, the Massey's synthesis procedure is the most efficient procedure, specially for synthesis over higher degree extension of fields.

Consider a finite length sequence of binary n \times 1 vectors taken as elements of GF(2^n)

$$\underline{S}_1 = \underline{S}_0 \underline{S}_1 \underline{S}_2 \cdots \underline{S}_{p-1}$$

 s_1 may also be considered to consist of the initial P bits of the periodic sequence $\underline{s} = \underline{s_0}\underline{s_1}\underline{s_2}\cdots\underline{s_{p-1}}\underline{s_0}\underline{s_1}\cdots$ with period P. On the other hand, if a given sequence is of infinite length then it is periodic. Therefore we have to design a LFSR circuit which can generate a vector sequence with arbitrary period.

The sequence \underline{S} can be written in the polynomial form using Eq. 2.3-2 as

$$\underline{s}(d) = \frac{s_0 + s_1 d + s_2 d^2 + \dots + s_{p-1} d^{p-1}}{1 + d^p}$$

$$= \frac{s_0 + s_1 d + s_2 d^2 + \dots + s_{p-1} d^{p-1}}{1 + 1 d^p}$$

The denominator $\underline{1} + \underline{1d}^P$ is obtained by dividing $\underline{S}(d)$ by the unit element of the field $\underline{1}$. The numerator and denominator of the above equation are polynomials in d over the field $GF(2^n)$ and can be factorized as,

$$\underline{s}_{0} + \underline{s}_{1} d + \underline{s}_{2} d^{2} + \dots + \underline{s}_{p-1} d^{p-1} = \underline{f}_{1}(d) \quad \underline{f}_{2}(d) \quad \dots \underline{f}_{a}(d)$$

$$\underline{1} + \underline{1} d^{p} = \underline{g}_{1}(d) \quad \underline{g}_{2}(d) \quad \dots \underline{g}_{b}(d)$$

Where the multiplication of vectors is already defined. Some of the factors may be common to both the numerator and

denominator and can be cancelled. Therefore the expression for S(d) becomes

 $S(d) = \frac{F(d)}{G(d)}$, where F(d) and G(d) are relatively prime polynomials over $GF(2^n)$

Thus the sequence \underline{S} is represented by ratio of two relatively prime polynomials in d over $GF(2^n)$ and can be generated by a LFSR circuit over $GF(2^n)$ whose connection polynomial is G(d) and initial conditions are given by F(d). Example 1.1. Find the connection polynomial of LFSR circuit which can generate the periodic sequence

$$S = \begin{cases} 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0 & 1 \end{cases}$$
 with period 7. Choosing $\alpha = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $g(x) = 1 + x^2 + x^3$, the sequence

can be written as,

$$s = \alpha^{1} \alpha^{3} 1 \alpha \alpha^{2} \alpha^{5} \alpha^{6}$$

or
$$\underline{s}(d) = \frac{\alpha^4 + \alpha^3 a + 1 a^2 + \alpha a^3 + \alpha^2 a^4 + \alpha^5 a^5 + \alpha^6 a^6}{1 + 1 a^7}$$

and after going through a very lengthy process of determining the factors of numerator polynomial, we get

$$S(d) = \frac{(\alpha + \alpha^{3}x + \alpha^{6}x^{2})(\underline{1} + \underline{1}x^{2} + \underline{1}x^{3} + \underline{1}x^{4})}{(\underline{1} + \underline{1}x^{2} + \underline{1}x^{3} + \underline{1}x^{3})(\underline{1} + \underline{1}x^{2} + \underline{1}x^{3})} = \frac{\alpha + \alpha^{3}x + \alpha^{6}x^{2}}{\underline{1 + 1}x^{2} + \underline{1}x^{3}}$$

Therefore the given sequence eq. be generated by a 3 stage LFSR circuit whose connection polynomial is $1 + 1x^2 + 1x^3$.

If we choose $\beta = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $q(x) = 1 + x^2 + x^3$, the sequence becomes

 $\underline{S} = \underline{\beta^3 \beta^4 1} \ \underline{\beta^6 \beta^5 \beta^2 \beta} \ \dots \ \text{and the LFSR circuit has still 3 stage}$ However if we choose $q(x) = 1 + x + x^3$, $\underline{\alpha} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ then and $\underline{S}(d) = \frac{\underline{\alpha^5 + \alpha^6 d + 1 d^2 + \alpha d^3 + \alpha^2 d^4 + \alpha^3 d^5 + \alpha^4 d^6}}{\underline{1 + 1 d^7}} = \frac{\underline{\alpha^5}}{\underline{1 + \alpha d}}$

Thus a single stage LFSR circuit whose connection polynomial is $\underline{1}+\underline{\alpha}d$ can generate \underline{S} . From the above discussion, followed by an illustrative example, we observe that the design procedure involves the following steps.

- 1. Choose an irreducible polynomial q(x) of degree n, and a primitive element α among various possible choices.
- 2: Write the given sequence as a sequence of powers of α .
- 3. Write the sequence in polynomial form. Find the factors of numerator and denominator polynomials. Cancell common terms.
- 4. The resulting denominator polynomial is the connection polynomial of the desired LFSR circuit.
- 5. Calculate initial conditions from the numerator polynomial.

 The above procedure has the following drawbacks.
- 1. Different choices of $\underline{\alpha}$ simply rename the sequence and the designed LFSR circuit is not changed, but different choices of q(x) lead to different LFSR circuits and an arbitrary choice may not give the shortest length LFSR circuit.

- 2. A finite length sequence of length P may be portion of a periodic sequence of period $P_1 > P$ which may be generated by a LFGR circuit much shorter than the one which generates sequence with period P. But there is no way to know P_1 . Therefore shortest length is not guaranted.
- 3. Factorization of polynomials is a difficult task. It becomes more difficult as we go to higher degree extension of fields.

The synthesis procedure given by Massey [8] is free from few of these drawbacks and is proved to be the most efficient procedure. A synthesis procedure based of Massey's is given in the next section. The problem of getting shortest LFSR circuit for various choices of q(x) is overcome by designing for all q(x) and choosing the shortest one.

4.2 Brief Description of Massey's Algorithm: In this section, the Massey's synthesis procedure is described in brief. The procedure is based upon the following theorem, which asserts that the shortest length LFSR circuit which can generate quence can be synthesized in an iterative fashion given by the theorem.

Theorem. In any field, let S S S D be given. Under the initial conditions Λ S D D and S D D Let the following set of recursive equations be used to compute Λ S D

$$\Delta_{R} = \sum_{j=0}^{R-1} \Lambda_{j}^{(R-1)} S_{R-j-1}$$

$$L_{R} = \delta_{R}^{(R-L_{R-1})} + (1-\delta_{R}^{-1})L_{R-1}$$

$$\left[\Lambda_{R}^{(R)}(x)\right] = \left[1 - \Delta_{R}^{-1} A_{R}^{-1} A_{R}^{$$

where $\delta_{R} = 1$ if $\Delta_{R} \neq 0$ and $2L_{R-1}$ R-1 $\delta_{R} = 0$ otherwise

Then $\Lambda^{(p)}(\mathbf{x})$ is the smallest degree polynomial with the properties that

$$\Lambda_0^{(P)}(x) = 1$$

$$4.1-2$$
 and
$$S_{R-1} + \sum_{j=1}^{R-1} \Lambda_j^{(P)} S_{R-j-1} = 0, R = L_{p}+1, \dots P$$

 $\Delta_{\rm R}^{-1}$ $\delta_{\rm R}$ is understood to be zero whenever $\Delta_{\rm R}=\delta_{\rm R}=0$.

Now we see how the above theorem is useful for LFSR circuit synthesis. Let $\underline{S} = \underline{S}_0 \underline{S}_1 \underline{S}_2 \dots \underline{S}_{P-1}$ be some given vector sequence and a LFSR circuit is to be designed to generate it. If such a circuit is designed with tap coefficient $\underline{C}_1 \ \underline{C}_2 \dots \underline{C}_{L_p}$ and has \underline{L}_p number of stages then we can write $\underline{C}_1 \ \underline{C}_2 \dots \underline{C}_{L_p}$ for this case as.

$$\frac{\Sigma_{k}}{\Sigma_{k}} = \frac{\Sigma}{j=1} \frac{C_{j}}{S_{k-j}}, \quad k = L_{p}, L_{p}+1...p-1$$

$$= \frac{L_{p}}{\Sigma_{j=1}} \frac{C_{j}}{S_{k-j}}, \quad k = L_{p}, L_{p}+1...p-1$$

$$4.1-3$$

where the multiplication of vectors is defined in Sec. 2.2 and $\frac{C}{=j}$ are matrices corresponding to vectors $\frac{C}{=j}$. If the designed circuit is of shortest length then the polynomial

$$\underline{\underline{C}}(x) = \underline{\underline{C}}_0 + \underline{\underline{C}}_1 \times + \underline{\underline{C}}_2 \times^2 + \dots + \underline{\underline{C}}_D \times^{\underline{L}_D}$$

must be a smallest degree polynomial with the properties that

and
$$\frac{\mathbb{Z}}{\mathbb{Z}} = \frac{\mathbb{I}}{\mathbb{Z}}$$

$$\frac{k-1}{j=1} + \frac{\mathbb{E}}{\mathbb{E}} = \mathbb{E}$$

And if we compare the above properties with those given by Eq. 4.1-2, we observe that these are the same. Now we show how Eq. 4.1-1 can be used to calculate $\underline{C}(x)$ so that $\underline{C}(x)$ has the properties given by Eq. 4.1-4. The synthesis procedure based on Eq. 4.1-1 is iterative and consists of determination of the quantities \underline{L} , which is the LFSR length and the connection polynomial $\underline{C}(x)$ given by

$$\underline{\underline{C}}(x) = \underline{\underline{I}} + \underline{\underline{C}}_{\underline{I}}x + \underline{\underline{C}}_{\underline{I}}x^2 + \dots + \underline{\underline{C}}_{\underline{L}}x^{\underline{L}}.$$

This pair of quantities is denoted by $(L,\underline{C}(x))$.

$$\underline{\mathbf{S}}_{R-1} = \sum_{j=1}^{R-1} \underline{\mathbf{C}}_{j}^{(R-1)} \underline{\mathbf{S}}_{R-j-1}$$

A quantity $\Delta_{\mathbb{R}}$, known as the \mathbb{R}^{th} discrepency is obtained as,

$$\Delta_{R} = S_{R-1} - S_{R-1} = S_{R-1} + \sum_{j=1}^{R-1} C_{j}^{(R-1)} \cdot S_{R-j-1}$$

or
$$\underline{\Delta}_{k} = \sum_{j=0}^{R-1} \underline{C}_{j}^{(R-1)} \underline{S}_{R-j-1}$$

If $\Delta_R = \underline{\varphi}$, then the (R-1)th LFSR circuit can also generate the Rth element of the sequence \underline{S}_{R-1} , and then $(\underline{L}_R, \underline{C}^{(R)}(x)) = (\underline{L}_{R-1}, \underline{C}^{(R-1)}(x))$.

Otherwise the circuit taps are modified as follows,

$$\underline{C}^{(R)}(x) = \underline{C}^{(R-1)}(x) + \underline{A} x^{1} \underline{C}^{(m-1)}(x)$$

where \underline{A} is a field element (i.e. matrix equivalent of a field element \underline{A}), l is an integer and $\underline{C}^{(m-1)}(x)$ is one of the LFSR polynomials calculated earlier.

A proper choice of $\underline{A} = \frac{\Delta^{-1}}{n} \cdot \underline{\Delta}_{R}$ and 1 = R-m gives $\underline{\underline{C}}^{(R)}(x) = \underline{\underline{C}}^{(R-1)}(x) + \underline{\Delta}_{R}^{-1} * \underline{\Delta}_{R} \times \underline{\underline{C}}^{(m-1)}(x)$

and the new discrepency $\underline{\Delta}_{\mathbb{R}}^{\prime}$ becomes

$$\underline{\Delta}_{\mathbf{R}}^{\prime} = \sum_{\mathbf{j}=0}^{R-1} \underline{C}_{\mathbf{j}}^{(R)} \underline{S}_{R-\mathbf{j}-\mathbf{l}}$$

$$= \sum_{\mathbf{j}=0}^{R-1} \underline{C}_{\mathbf{j}}^{(R-1)} + \underline{\Delta}_{\mathbf{m}}^{-1} \underline{\Delta}_{\mathbf{R}} \times \sum_{\mathbf{j}=0}^{R-1} \underline{C}_{\mathbf{j}}^{(m-1)} \underline{S}_{R-\mathbf{j}-\mathbf{l}}$$

$$= \underline{\Delta}_{\mathbf{R}} + \underline{\Delta}_{\mathbf{m}}^{-1} * \underline{\Delta}_{\mathbf{R}} * \underline{\Delta}_{\mathbf{m}}$$

$$= \underline{\Psi}$$

and therefore $\underline{C}^{(R)}(x)$ can be used to generate \underline{S}_{R-1} .

In this manner, we start from $\underline{C}^{(o)}(x) = \underline{I}$, $\underline{L}_{o} = 0$ and $\underline{L}_{m-1}(x) = \underline{I}$ and proceed upto $\underline{R} = P$ and thus calculate $(\underline{L}_{p}, \underline{C}^{(p)}(x))$ which is the shift register design for $\underline{S} = \underline{S}_{o} \underline{S}_{1} \underline{S}_{2} \cdots \underline{S}_{p-1}$.

We observe that the choices of A, 1, \triangle_{m_0} , \subseteq $(m_0-1)(x)$ in the above case are equivalent to determination of \subseteq (P)(x) using Eq. 4.1-1. Therefore the theorem ensures that \subseteq (P)(x) is the smallest degree polynomial with the properties given by Eq. 4. In determination of \subseteq (x) by using Eq. 4.1-4, a polynomial (m_R-1) is introduced (m_R-1) is introduced

where $M_R < R$ is the largest integer such that $\delta_{m_R} = 1$, and δ is given by Eq. 4.1-1. In otherwords m_R is the most recent

iteration number in which length was changed, and this choice of $m_{\tilde{K}}$ guarantees that $\underline{C}(x)$ calculated by Eq. 4.1-1 is of shortest length.

A.3 The Synthesis Procedure: In the previous section, we have seen that the synthesis procedure involves multiplication and inversion of field elements. In the present case, the field clement are represented by binary vectors, and their multiplication and inversion can not be achieved using ordinary rules. It has been discussed in Section 2.2, that for these purposes, the vectors are converted into corresponding matrices given by Eqs. 2.2-7, 2.2.8 and 2.2-9. Therefore whenever there is a multiplication or inversion of field elements in the calculation of $\underline{C}(x)$, the elements are converted into corresponding matrices. The process of obtaining matrices corresponding to vectors is already discussed in Section 2.2.

Here, we represent it with the help of flow chart number 1.

Flow chart number 1 explains how multiplication and inversion of field elements is obtained. The synthesis procedure is explained with the help of flow chart number 2.

After the LFSR circuit given by $(L_p,\underline{\mathbb{C}}^{(p)}(x))$ is designed for one choice of $q_K^{(n)}(x)$, the other designs should be determined so as to choose the shortest LFSR among them. This can be achieved by following the procedure given by flow chart number 3. In this procedure, after calculation of $(L_p,\underline{\mathbb{C}}^P(x))$

for each choice of $q_K^{(n)}(x)$, K is increased by one and the process is continued. Simultaneously, the smallest number among the L_p 's calculated for each K, is stored as the value of the variable LENGTH and corresponding $\underline{C}(x)$ is abouted in the name $\mathrm{CON}(x)$. This process terminates when all irreducible polynomials $q_K^{(n)}(x)$ has been considered. At the end of this chapter, a computer program in FORTRAN IV is given which can be used to calculate the connection polynomial and the number of stages of the LESS circuit which can denorate the sequence specified in the input file of the program. If course of memory limitations, this program is made to design LESS circuits for generation of sequences of length less than 100 over the field $\mathrm{GF}(2^n)$, where $n \leq 5$. However, it can easily be extended for higher values of n and P.

Fow examples are solved with the help of the given computer program and it can be verified that the circuit is of shortest length in each case.

For simplicity of calculation of initial contents, the output is drawn from the last stage. Therefore the initial contents can be determined by using Eq. 3.3-7 and 3.3-8 and they coincide with the m initial bits of the given sequence.

i... For $S = S_0 S_1 S_2 S_3 \cdots S_{p-1}$

The initial contents are

$$\frac{X_1^{(0)}}{X_1^{(0)}} = \underbrace{s_{m-1}}_{m-2}$$

$$\frac{X_2^{(0)}}{X_3^{(0)}} = \underbrace{s_{m-2}}_{m-3}$$

$$\vdots$$

$$\frac{X_m^{(0)}}{X_m} = \underbrace{s_{m-3}}_{n}$$

However, if we want to draw output from the input point of first stage only then from Eq. 3.3-4

$$\underline{\underline{C}}(d) \ \underline{\underline{Y}}(d) = \begin{bmatrix} \Sigma & \Sigma & C_{i+1} & X_i^{(o)} \\ j=0 & i=1 \end{bmatrix}$$

or writing first m elements of the sequence Y given by

$$Y(d) = \frac{Y_0^+ Y_1^{d} + Y_2^{d^2} + \dots + Y_{p-1}^{d^{p-1}}}{1 + d^p}$$
 ir matrix form

$$\begin{bmatrix} \underline{I} & \underline{\varphi} & \underline{\varphi} & \cdots & \underline{\varphi} \\ \underline{C}_1 & \underline{I} & \underline{\varphi} & \cdots & \underline{\varphi} \\ \underline{C}_1 & \underline{I} & \underline{\varphi} & \cdots & \underline{\varphi} \\ \underline{Y}_1 & \underline{Y}_2 & \underline{C}_3 & \cdots & \underline{\varphi} \\ \underline{C}_{m-1} & \underline{C}_{m-2} & \underline{C}_{m-3} & \underline{I} \\ \underline{Y}_{m-1} & \underline{C}_{m-2} & \underline{C}_{m-3} & \underline{I} \end{bmatrix} \begin{bmatrix} \underline{Y}_0 \\ \underline{Y}_1 \\ \underline{Y}_2 \\ \underline{C}_m & \underline{\varphi} & \cdots & \underline{\varphi} \end{bmatrix} \begin{bmatrix} \underline{X}_1^{(o)} \\ \underline{X}_1^{(o)} \\ \underline{X}_2^{(o)} \\ \underline{X}_m^{(o)} \end{bmatrix}$$

And therefore $\underline{x}_1^{(o)}$, $\underline{x}_2^{(o)}$... $\underline{x}_m^{(o)}$ can be calculated in terms of \underline{C}_1 \underline{C}_2 ... \underline{C}_m and \underline{y}_0 \underline{y}_1 ... \underline{y}_{m-1} .

FLOW CHART NO. 1

Construct the matrix $\underline{\mathbb{Y}}_1$ corresponding to $\underline{\mathbb{Y}}_1$ using $\underline{\mathbb{Y}}_1 = [\underline{\mathbb{Y}}_1 \ \underline{\mathbb{Y}}_2 \ \dots \ \underline{\mathbb{Y}}_1]$

inversion/multiplication

needed

Return to main program. Continue calculation

Procedure to obtain matrix corresponding to some vector.

FLOW CHART NO. 3

Synthesis procedure with provision to choose the shortest LFSR circuit

In the following example, a LFSR circuit is designed to generate a given sequence. The example is solved in detail, showing at each step, the values of various variables used in the computer program. The symbols used here are the same as are used in the program. Then few more examples are given which are solved with the help of computer, and only the results are given.

Example 4.2

Synthesize a LFSR circuit to generate the sequence over $\mbox{GF}(\mbox{$z$}^3)$

Solution. Various variables are declared integer and are dimensioned. The read statement assigns,

$$P = 7$$
; $N = 3$
 $S(1,1)=1$; $S(1,2)=1$; $S(1,3)=1$; $S(1,4)=0$; $S(1,5)=1$; $S(1,6)=0$; $S(1,7)=1$; $S(2,1)=0$; $S(2,2)=1$; $S(2,3)=1$; $S(2,4)=1$; $S(2,5)=0$; $S(2,6)=1$; $S(2,7)=1$; $S(3,1)=0$; $S(3,2)=1$; $S(3,3)=0$; $S(3,4)=0$; $S(3,5)=1$; $S(3,6)=1$; $S(3,7)=1$; $S(3,6)=1$; $S(3,6)=1$; $S(3,7)=1$; $S(3,6)=1$;

Companion matrix corresponding to 3rd degree polynomial for

K=1 is formed. Thus

$$\underline{\underline{M}} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Massey's Algorithm Starts. Initialization.

$$R=0; L=0; B(1) = B(2) = ... = B(P)=0; Lem(1)=Lem(2)=... Lem(P)=0$$

The values of the various variables for each iteration are tabulated below

$$DEI_{\bullet}(1) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \underline{T}(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \underline{T}(2) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$2I_{1} \leq R-1; \quad \underline{B} \quad (1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \underline{B} \quad (2) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix};$$

R=2

$$DEI_{\bullet}(2) = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}; \quad \frac{1}{2}(1) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \quad \frac{1}{2}(2) = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$2L > R-1; L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; L = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix};$$

R=4

$$DEL(A) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; DEL(R) = 0$$

$$\begin{array}{c} \cdot \cdot \stackrel{\text{(4)}}{=} (4) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \stackrel{\text{(4)}}{=} (1) = \stackrel{\text{(4)}}{=} (2) = \stackrel{\text{(4)}}{=} (3) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}; \\ \stackrel{\text{(4)}}{=} (4) = \stackrel{\text{(3)}}{=} (2) = \stackrel{\text{(4)}}{=} (3) = \stackrel{\text{(4)}}{=} (3) = \stackrel{\text{(4)}}{=} (3) = \stackrel{\text{(4)}}{=} (3); \\ \stackrel{\text{(4)}}{=} (4) = \stackrel{\text{(4)}}{=} (4$$

R=5

DEL(5) =
$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
; DEL(R) = 0
(5) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$; $\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$; $\begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$; $\begin{bmatrix} 5 \\ 0 \end{bmatrix}$; $\begin{bmatrix} 5$

$$DEL(G) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, DEL(R) = 0$$

$$(G) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; \begin{bmatrix} (6) \\ (6) \\ (1) \\ (6) \\ (1) \\ (6) \\ (6) \\ (6) \\ (6) \\ (7) \\ (6) \\ (8) \\ (9) \\ (9) \\ (9) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (9) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (6) \\ (7) \\ (8) \\ (1) \\ (9) \\ (1) \\ (1) \\ (1) \\ (2) \\ (1) \\ (2) \\ (3) \\ (1) \\ (2) \\ (2) \\ (3) \\ (4) \\ (5) \\ (6) \\ (7) \\ (8) \\ (1) \\ (9) \\ (1) \\ (1) \\ (1) \\ (2) \\ (2) \\ (3) \\ (4) \\ (5) \\ (4) \\ (5) \\ (6) \\ (7) \\ (8) \\ (9) \\ (9) \\ (9) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (5) \\ (6) \\ (7) \\ (8) \\ (9) \\ (9) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (5) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (5) \\ (5) \\ (6) \\ (7) \\ (7) \\ (8) \\ (8) \\ (8) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (5) \\ (5) \\ (6) \\ (7) \\ (7) \\ (8) \\ (8) \\ (8) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (5) \\ (1) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (4) \\ (5) \\ (5) \\ (6) \\ (7) \\ (8) \\ (8) \\ (8) \\ (8) \\ (8) \\ (1) \\ (1) \\ (1) \\ (1) \\ (2) \\ (3) \\ (4) \\ (4) \\ (5) \\ (6) \\ (6) \\ (7) \\ (8)$$

E-1/

$$DEI_{1}(7) = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}; DEI_{1}(R) = 0$$

All syndromes are over. F(N) = F(3) = Number of irreducible (x) lynomials of degree 3 is 2.

Repeat the process for K=2 i.e.
$$M = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

In this case, final result is

L=3 and

Therefore the last part of program chooses

$$\frac{\text{Con}(1)}{\text{Con}(1)} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} ; \quad \frac{\text{Con}(2)}{2} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

The final answer is therefore,

$$CON(d) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} \cdot d$$

The computer program and some examples solved by using it are given in the following pages.

```
301
201
203
202
204
205
C
                     K=0
K=K+1
FORMATION OF COMPANION MATRIX CORRESPONDING TO.
K 'th PRIMITIVE POLYNOMIAL
DO 3 I=1,0
DO 3 J=1,0-1
M(I,J)=0
TF(I-J.EO.1) M(I,J)=1
COMPINUE
DO 4 I=2,4
M(I,0)=A(K,N,1)
M(I,0)=1
***** MASSEY'S AUGORITHM STARTS HERE ***
TNITIALIZATION
                       Km()
SCC
3
4
                       ***** MASSEY'S
INITIALIZATION
C
                      R=0

L=0

DG 141 J=1,N

DG 141 J=1,P

LEM(I,J,II)=0

B(I,J,II)=0

DD 21 J=1,N

TF(I=J) 22,23,22

B(I,J,I)=0

LEM(I,J,I)=0

LEM(I,J,I)=1

CONTINUE

CALCULATION OF R'th DISCREPENCY

DELTA(R)=SMAT(R)+SUMMATION(J=1to L)LEM(J+1)*SMAT(R-J)

R=R+1
                       R=0
141
22
23
21
C
C
24
```

```
DO 25 J=1,N
DED(J,R)=5(T,R)
TE(L,E0.0) GOTO 30
DO 26 J=1,N
    25
                                                                   00 20 1=1,8
SUB(I)=0
DO 27 JJ=1,6
J1=2-JJ
DO 28 I=1,8
SEAT1(I)=S(I,01)
   26
                                                                 SHATI(I)=S(I,UI)
DO 28 J=1,U
LEUI(I,J)=LEM(I,J,JJ+1)
CAGG MATVET(LEMI,SMATI,LEMMAT,N)
DO 27 V=1,U
SHI(I)=ABS(SUM(I)-LEMMAT(I))
DO 29 I=1,M
DEB(I,P)=ABS(DEL(I,R)-SUM(I))
IS R'th DISCPEPENCY ZERO?
DO 32 I=1,U
IF(DEL(I,R)) 33,32,33
CONTINUE
GOTO 43
DELTA(R) IS NUMZERO.
CALCULATE MEW COUNECTION POLYNOMIAL
FOR WHICH DELTA(R) IS ZERO.
T(X)=LEM(X)+DEL(P)*B(X)*X
DO 31 I=1,U
   58
  27
  29
C
30
   32
 CCCC31
                                                                FOR WHICH DELTA(R) IS ZERO.

T(X)=JEM(X)+DEL(R)*B(X)*X

DU 31 T=1,M

DELLLL(I)=DEL(I,R)

CALL VETMAT(DELLLL,M,DELL,M)

DU 36 T=2,R+1

DU 37 J=1,N

PB(I,J)=B(I,J,I1=1)

CALL MATMUT(DELL,BB,DELBB,M)

DU 36 J=1,N

DU 36 J=1,N

DELB(I,J,I1)=DELBB(I,J)

T(I,J,I1)=ABS(LEM(I,J,I1)+DELB(I,J,I1))

DU 38 J=1,N

T(I,J,J)=LEM(I,J,I)

T(I,J,J)=LEM(I,J,I)

TS LENGTH CHANGE NEEDED?

TF(2*L-R+1) 40,40,41

2*L IS MORE THAN R-1.

LEM(X)=T(X)

DU 43 T=1,N

DU 43 T=1,N

DU 43 T=1,N
  37
  36
38
C
C
C
4.1
                                                                 DU 43 I1=1,R+1
DO 43 J=1,N
DD 45 J=1,N
DD 45 J=1,N
DD 45 J=1,N
DD 45 J=1,N
DD 46 J=1,N
DD 46 J=1,N
DD 46 J=1,N
DD 47 J=1,N
 43
CCC44
   45
   46
   47
CCCC40
                                                                  L=R-L
DO 71 I9=1.N
DO 71 J9=1.N
AAA(I9,J9)=DELL(I9,J9)
 71
```

```
CALL MATINV(AAA,N,8B,0,DFT,5)
DO 72 18=1,N
DO 72 J8=1,N
RAAA=ABS(AAA(18,J8))
INTA=HAAA/2,
POLA=DAAA/2
                    RELATRACIÓN RELATION TA (RELATRACIÓN TA (RELATRELB) 73,74,73 ITA=1;GOTO 75
73
74
                    THYDEL(I8, J8)=IIA
75
                   TÜVDEL(IR,J8)=[IA

CONTTOUE

DO 49 II=1,R+1

DO 50 J=1,N

DO 50 J=1,N

LEMGMM(I,J)=LEM(I,J,I1)

CALL MATMUT(INVOEL,LEMMMM,INDDDM,N)

DO 49 I=1,N

TNDELM(I,J,I1)=INDDDM(I,J)

B(I,J,I1)=IUDELM(I,J,I1)

LEM(I,J,I1)=T(T,J,I1)

LEP-L

ARE ALL SYNDROMES OVER?
72
50
49
                   L=P-L
ARE ALL SYNDROMES OVER?
IF(R.NE.P) GOTO 24
LENGTH=L FOR FIRST PRIMITIVE POLYNOMIAL.
CON(x)=LEM(x) FOR FIRST PRIMITIVE POLYNOMIAL.
IF(K-1) 143,143,144
C
51
C
C
                   IF(K-1) 143,143,144
LENGTH=L
DO 145 I=1,N
DO 145 J=1,N
DO 145 I1=1,R
CON(I,J,I1)=LEM(I,J,I1)
CALCULATE L & LEM(X) FOR OTHER PRIMITIVE POLYNOMIALS.
IF OLD LENGTH IS MORE THAN NEW LENGTH L THEN
LENGTH=NEW LENGTH L & CON(X)=NEW LEM(X)
COTO 147
143
145
CCC
                144
146
148
C
147
C
640
639
641
644
540
                    C
```

```
SUBRUUTINE MATINV(A, N, B, M, DETERM, NDIMEN)
DIMENSION A(NDIMEN, NDIMEN), B(NDIMEN, 1), IPIVUT(100), INDEX(100, 2)
DIMENSION DT(100)
                                                                               DIMENSION DICION)

FOUIVALENCE (IROW, JROW), (ICOLUM, GCOLUM), (AMAX, T, SWAP)

DETERM=1.0

DG 20 J=1, N

TEIVOI(J)=0

DO 550 J=1, N
   10
15
20
30
    40
                                                                                AMAX=0.0
DO 105 J
    45
                                                                                 DO 105 J=1,4
IE(IPIVOT(J)-1) 60,105,60
   50
60
70
                                                                               TF(IPIVUT(K)-1) 80,100,740
TF(AMAX-ABS(A(J,K))) 85,100,100
   80
   85
                                                                                  TROW=J
                                                                              TCOLUM=K
AMAX=ABS(A(J,K))
CONTINUE
CONTINUE
IPTVOT(ICOLUM)=IPIVOT(ICOLUM)+1
IF(IROW=ICOLUM)140,260,140
DETERM=-DETERM
DO 260,140
   90
   95
  100
105
110
                                                                          TF(IROW-ICOLUM)140,260,140

DETERM=-DETERM

DO 2CO L=1,0
SWAP=A(IROW,L)
A(IROW,L)=A(ICOLUM,L)
A(ICOLUM,L)=SWAP

TF(M)260,260,210

DO 250 L=1,M
SWAP=B(IROW,L)
B(IROW,L)=SWAP
INDEX(I,1)=IROW
INDEX(I,1)=IROW
INDEX(I,2)=ICOLUM,ICOLUM)
DT(I)=PIVOT
A(ICOLUM,L)=A(ICOLUM,L)/PIVOT
IF(M) 380,380,360

DO 350 L=1,M
A(ICOLUM,L)=B(ICOLUM,L)/PIVOT
IF(M) 380,380,360

DO 370 L=1,M
B(ICOLUM,L)=B(ICOLUM,L)/PIVOT
IF(M) 380,380,360

DO 370 L=1,M
B(ICOLUM,L)=B(ICOLUM,L)/PIVOT
IF(M) 550,550,400

T=A(L1,ICOLUM) 400,550,400

T=A(L1,ICOLUM)=0.0
DO 450 L=1,M
A(L1,L)=B(L1,L)-A(ICOLUM,L)*T
IF( M) 550,550,460

DO 500 L=1,M
A(L1,L)=B(L1,L)-B(ICOLUM,L)*T
IF( M) 550,550,460

DO 710 I=1,M
B(IL1,L)=B(L1,L)-B(ICOLUM,L)*T
CONTINUE
DO 710 I=1,M
L=N+1-I
DETERM=DETERM*DT(L)
  130
   150
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
117005
11
  330
340
350
   355
  360
370
380
390
400
 420
430
450
   455
   460
  500
  550
  600
                                                                            L=N+1-I
DETERM=DETERM*DT(L)
TF(INDEX(L,1)-INDEX(L,2)) 630.710,630
JROW=INDEX(L,1)
JCOLUM=INDEX(L,2)
DO 705 K=1,N
SWAP=A(K,JROW)
A(K,JROW)=A(K,JCOLUM)
A(K,JCOLUM)=SWAP
CONTINUE
CONTINUE
DO 11 K=1,N
TF(IPIVOT(K).NE.1) GOTO 12
CONTINUE
RETURN
TYPE 991
FORMAT(10X,18HMATRIX IS SINGULAR /)
RETURN
                                                                                 L=N+1-I
  610
  620
  630
640
  650
660
  670
700
  705
710
   11
   12
  \frac{991}{740}
                                                                                RETURN
                                                                                 END
```

```
("
           ******************
171
172
CCC
           SUBEDUTINE FOR AUDTIPLICATION OF A MATRIX BY A MATRIX ORDER OF HOTH MATRICES IS N. ADDITION IS MODULO-2. SUBEDUTINE MATRICES IS N. ADDITION IS MODULO-2. DIMENSION M12(5,5), M1(5,5), M2(5,5) DO 5 1=1, M DO 5 J=1, M
           1.6=0
           4
5
\overset{\circ}{C}
           SUBROUTINE TO MULTIPLY A MATRIX BY A VECTOR SUBROUTINE MATVET(A,B,X,N)
INTEGER A(5,5), b(5), X(5)
DO 55 I=1, H
ISUM=0
           DD 45 K=1, N
ISTM=ABS(ISUM-A(I,K)*B(K))
X(I)=ISUM
RETURA
45
           END
C
           ******************
```

Design a LFSR circuit to generate

the sequence

63. with sequence length

HESTINE

The lesi med UFSR Circuit has 3 stages. Coefficients of the connection polynomial are:

100

111 1.

Example 4.4 Design a LFSR circuit to generate

the sequence

RESULT

Pae designed LFSR Circuit has 2 stages. Coefficients of the connection polynomial are:

100

010 oõi

111

100

010 011

101 .

Example 4.5 Design a LFSR circuit to generate

the sequence

RESULTS

The designed uFSR Circuit has 6 stages. Coefficients of the Connection polynomial are:

Example 4.6 Design a LFSR circuit to generate

the sequence

MISHTON THE MARKET

The designed LFSR Circuit has o stages. Coefficients of the connection polynomial are:

```
46000 00114 1011 1000 1100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 01100 011
```

Fixamble 4.7 Design a LFSR circuit to generate

the sequence

```
1111/1011601060
01111016110610
00111101016010
111610110016001
with sequence length 15.
```

RESult

Example 4.8 Design a LFSR circuit to generate

the sequence

PESSOLT

The designed LFSR Circuit has 1 stages. Coefficients of the connection polynomial are:

```
10000
01000
00160
00010
00001
10000
01000
00101
```

CHAPTER V

CONCLUSION

In this thesis we have studied LFSR circuits over $GF(2^n)$ with the following two objectives. The first objective is: given a LFSR circuit, to obtain expressions for autonomous and total response of this circuit, and study the properties of the generated sequences. The second objective is: for a given sequence over $GF(2^n)$, to design a shortest length LFSR circuit which can generate it. Results obtained in the thesis are summarized in this chapter; some suggestions for further investigation in related area are also given.

The important results obtained from the analysis of LFSR circuits over ${\rm GF}(2^n)$ are:

(1) Expressions for autonomous and total response of LFSR circuits over $GF(2^n)$ are similar to those for the case of LFSR circuits over GF(2) except that the coefficients of various polynomials in the expressions are elements of $GF(2^n)$. Since the elements of $GF(2^n)$ are represented by n x 1 binary vectors, the division by the connection polynomial C(d) in the expressions corresponds to multiplication by $C(d)^{-1}$, where C(d) is obtained by converting

vector coefficients of $\underline{\mathbb{C}}(d)$ into matrices. Thus the expression for the total response of LFSR circuits for GF(2) and GF(2ⁿ) are:

$$GF(2) : Y(d) = \frac{P(d) + U(d)}{C(d)}$$

$$GF(2^n) : \underline{Y}(d) = \left[\underline{C}(d)\right]^{-1} \left[\underline{P}(d) + \underline{U}(d)\right]$$

where symbols have their usual meaning. The periods of output sequence in the case of $GF(2^n)$ can be determined by using the procedure for GF(2).

- (2) Individual rows of the sequences over GF(2ⁿ) are binary sequences. For periodic vector sequences, these row sequences may have different periods such that their LCM is equal to the period of the vector sequence, but when the sequence is a maximal sequence row sequences are also maximal sequences with equal periods.
- (3) In the case of maximal sequences, individual rows are shifted versions of the same binary sequence which can be generated by a mn stage binary LFSR circuit. The connection polynomial of this binary LFSR circuit is equal to the determinant of the matrix $\underline{C}(d)$, which is the connection polynomial of the LFSR circuit over $GF(2^n)$.
- (4) The amounts by which rows of a maximal sequence are shifted from one of its rows (say from first row) are integral

multiples of a number $\beta = \frac{2^m \underline{n}_1}{2^n - 1}$, where m is number of stages in the LFSR.

(5) If the coefficients of a primitive polynomial over $GF(2^n)$ are raised to 2^{-j} power, where j=1,2,3...n-1, then the amounts of shifts for the sequence generated by this polynomial are 2^j times the amounts of shifts for the sequence generated by original polynomial.

For synthesis of LFSR circuits over GF(2ⁿ), we observe that:

- 1. LFSR circuits over $GF(2^n)$ can be synthesized by using Massey's algorithm.
- 2. Different choices of the irreducible polynomial q(x) give different circuits, among which the one with shortest length is chosen. There is no apparant way to know the q(x) directly from the sequence which gives the shortest length circuit.

In the light of the work done in this thesis, following points need further investigation.

1. Amounts of shifts $\beta_2, \beta_3 \dots \beta_n$ for the rows of a maximal sequence are integral multiples of a number β which can be calculated in terms of m and n. But can β_i be known directly from the knowledge of β and the connection polynomial $\underline{C}(d)$, without calculating the product $[\underline{C}(d)]^{-1}\underline{P}(d)$? If yes, then the sequence generated by a primitive polynomial $\underline{C}(d)$ can be obtained directly by taking the sequence generated by

- det $\left[\underline{C}(d)\right]$ as the first row (which can be seen from some table) and then writing the other rows using β_1 .
- (2) Among the primitive polynomials $\underline{I} + \sum_{i=1}^{m} \underline{C}_{i}^{2^{j}} d^{i}$, $\underline{j}=0,1,2...n-1$, which one gives minimum β_{i} , so that for others, amounts of shifts are $2^{j}.\beta_{i}$?
- (3) For a given sequence over $GF(2^n)$, can a q(x) be known which gives the shortest length LFSR circuit, without synthesizing it for all possible choices of q(x)?

REF EDENCES

- 1. Huffman, D.A., ''The Synthesis of Linear Sequential Coding Networks''. Information Theory ed. Colin Cherry, New York: Academic Press, 1956.
- 2. Kautz, W.H., ed. ''Linear Sequential Switching Circuits'.

 Selected Technical Papers. Holden-Day, Inc. 1965.
- 3. Elpas, B., "The Theory of Autonomous Linear Sequential Networks". IRE Trans. CT-6, 1959, pp. 45-60.
- 4. Hartmanis, J., 'Linear Multivalued Sequential Coding Networks'. IRE Trans., CT-6, 1959, pp. 69-74.
- 5. Savage, J.E., 'Some Simple Self-Synchsonising Digital Data Scramblers'. The B.S.T.J., Feb. 1967, pp.449-487.
- 6. Friedland, B., and Stern, T.E., 'On Periodicity of States in Linear Modulaer Sequential Circuits'. IRE Trans. CT-6, 1959, pp. 61-68.
- 7. Nakamura, K. and Idawere, et. al., 'Data Scramblers for for Multilevel Pulse Sequences'. Electronics and Communication in Japan, Vol. 55-A, No. 6, 1972, pp 18.
- 8. Massey, J.L., 'Shift Register Synthesis and BCH Decoding'.

 IEEE Trans., IT-15, No. 1, 1969, pp 122-127.
- 9. Peterson, W.W. and Weldon, L.J. Jr., 'Error Correcting Codes'. 2nd ed., The MIT Press, Cambridge, Mass. 1971.
- 10. Sreedhar, M.N., "Periodic Response and Spectral Analysis of Digital Data Scramblers". M. Tech. Thesis, Deptt. of Elect. Engg., Indian Institute of Technology, Kanpur, 1982.
- 11. Kasai, H., et. al., ''PCM Jitter Suppression by Scrambling'.

 IEEE Trans., COM-22, Aug. 1974, pp 1114-1122.
- 12. Yaralagadda, R.B., 'Synchromisation of M-Sequences'.

 Electronic Letters, 21 Jan. 1982, Vol. 18, No. 2,

 pp 68-69.

- 13. Geffe, P.R., 'An Open Letter to Communication Engineers'.

 Proc. IEEE, Vol. 55, 1967, pp 2173.
- Manolarakis, M. and Kalouptsidis, N., "Sequences of Linear Feedback Shift Registers with Nonlinear Feedrorward Logic". IEEE Proc.E, Vol. 130, Part E, No. 5, Sept. 1983, pp 174-176.
- 15. Forney, G.D., Jr., ''On Decoding BCH Codes''. IEEE Trans. IT-11, 1965, pp 549-557.
- 16. Chien, R.T., ''Cyclic Decoding Procedures for BCH Codes''.

 IEEE Trans., IT-10, 1964, pp 357-363.
- 17. Berlekamp, E.R., ''Algebraic Coding Theory''. New York: McGraw-Hill Book Co. 1968.
- 18. Herstein, "Topics in Algebra".
- 19. Birkhoff, G. and S. Mac Lane, 'A Survey of Modern Algebra'. New York: The McMillan Co. 1941.
- 20. Feher, Digital Communications and Microwave Applications'.
- 21. Blahut, R.E., "Theory and Practice of Error Control Codes". New York: Addison-Wesley Publishing Co., Inc. 1983.

Appendix A

Inverse of the connection polynomial $\underline{C}(d)$ over $GF(2^n)$

The polynomial $C(d) = I + C_1 d + C_2 d^2 + \dots + C_m d^m$ is the connection polynomial of some LFSR circuit over $GF(2^n)$ and therefore is a polynomial over $GF(2^n)$.

Therefore by the definition of exponent of a polynomial, we conclude that C(d) is a factor of I(1+d2) for some least integer L.

$$\underline{\underline{\underline{C}}}(d) = factor of \underline{\underline{\underline{I}}}(1+d^2)$$

$$c(a) c'(a) = \underline{I}(1+a^2)$$

$$c''(a) = [c(a)]^{-1} I(1+a^2)$$

or
$$\left[\underline{c}(a)\right]^{-1} = \frac{\underline{c''(a)}}{1+a^2}$$
 (A.1)

where $\underline{c}''(d)$ is also a polynomial over $GF(2^n)$.

Since C(d) is a n x n matrix with polynomials over GF(2) as its entries, we can write

$$\underline{\underline{C}}(d) = \begin{bmatrix} c_{11}(d) & c_{12}(d) & \dots & c_{1n}(d) \\ c_{21}(d) & c_{22}(d) & \dots & c_{2n}(d) \\ \vdots & \vdots & & & \vdots \\ c_{n1}(d) & c_{n2}(d) & \dots & c_{nn}(d) \end{bmatrix}$$

$$\vdots [\underline{\underline{C}}(d)]^{-1} = \begin{bmatrix} c'_{11}(d) & c'_{12}(d) & \dots & c'_{1n}(d) \\ c'_{21}(d) & c'_{22}(d) & \dots & c'_{2n}(d) \\ \vdots & \vdots & & & \vdots \\ c'_{n1}(d) & c'_{n2}(d) & \dots & c'_{nn}(d) \end{bmatrix}$$
where $\underline{C'}(d) = \text{cofactor of } \underline{C} \cdot (d) \text{ in } \underline{C}(d)$

where $C'_{ij}(d) = \text{cofactor of } C_{ij}(d) \text{ in } \underline{C}(d)$

and N(d) = Determinant of C(d)Therefore

$$\left[\underline{\underline{C}}(d)\right]^{-1} = \left[\underline{\underline{C}}'(d)\right] \frac{1}{N(d)} \tag{A2}$$

In otherwords, inverse of C(d) can be determined by considering C(d) as a matrix and applying ordinary matrix inversion technique.

Example A.l. The connection polynomial of a LFSR circuit over $GF(2^3)$ is $\underline{I} + \underline{\alpha} d + \underline{\alpha}^2 d + \underline{\alpha}^6 d^3$

where
$$\alpha = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
 is the primitive element of GF(2³) and

 $q(x) = 1+x+x^3$. Find

$$\underline{\underline{C}}(d)$$
 and $\underline{\underline{C}}(d)\underline{\underline{J}}^{-1}$

Here

Matrix corresponding to $\underline{\alpha}$ is $\underline{\alpha} = \begin{bmatrix} \underline{\alpha} & \underline{M} \cdot \underline{\alpha} & \underline{M}^2 \underline{\alpha} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

$$\underline{\alpha}^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} ; \underline{\alpha}^{6} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

$$\underline{\underline{\mathbf{g}}}(\mathbf{d}) = \underbrace{\underline{\underline{\mathbf{I}}} + \underline{\underline{\mathbf{g}}} \, d + \underline{\underline{\mathbf{g}}}^2 \, d^2 + \underline{\underline{\mathbf{g}}}^6 d^3}_{\mathbf{d} + \mathbf{d}^3 + \mathbf{$$

$$\begin{bmatrix} \underline{c}(d) \end{bmatrix}^{-1} = \begin{bmatrix} 1+d^2+d^3 & d^3+d^4+d^5 & 1+d^6 \\ 1+d^6 & 1+d^2+d^4+d^5 & 1+d^3+d^4+d^5+d^6 \\ d^3+d^4+d^5 & 1+d^6 & 1+d^2+d^4+d^5 \end{bmatrix}$$

$$x \frac{1}{1+d^3+d^4+d^8+d^9}$$

and therefore $N(d) = 1+d^3+d^4+d^8+d^9$.

Appendix B

Exponent of C(d)

From Eq. A.1, the exponent of C(d) is L.

Consider Eq. A.2. Suppose exponent of N(d) is L'. Then

• If L < L' then

 $[\zeta(d)]$ is a factor of $\underline{\zeta}(1+d^L)$

 $det[\underline{C}d)$] is a factor of $det[\underline{I}(1+d^2)]$

N(d) is a factor of $(1+d^2)$

Exponent of N(d) is least (L, L') = L and not L'.

If L>L' then

$$[\underline{c}(d)]^{-1} = [\underline{c}'(d)] \frac{N'(d)}{1+dL'} = \frac{[\underline{c}'(d) N'(d)]}{1+dL'}$$

or
$$[C(d)][C(d) n'(d)] = I(1+d^{L'})$$

i.e. C''(d) is a factor of $I(1+d^{L'})$

Exponent of C(d) = L'

Therefore if $L \neq L'$ then Exp. [N(d)] = Exp[C(d)].

In otherwords, exponent of $\underline{\underline{C}}(d)$ is same as the exponent of its determinant N(d).

Example B.1. The determinant of $\underline{C}(d) = \underline{I} + \alpha d + \alpha d^2$ over $GF(2^2)$ is $1+d+d^4$, where $\underline{\alpha} = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ is element of $GF(2^2)$. $\underline{C}(d)$ is a factor of $\underline{I}(1+d^L)$ with least value of L=15. Also $1+d+d^4$ is a factor of $1+d^L$ with least value of L'=15. Therefore L=L' i.e.

 $\text{Exp} \left[C(d) \right] = \text{Exp} \left[N(d) \right] = \text{Exp} \left[\det \left\{ C(d) \right\} \right].$

Appendix C

$$\operatorname{Exp}\left[q(d^{\beta})\right] = \beta(\operatorname{Exp}\left[q(d)\right])$$

Let $q(d) = q_0 + q_1 d + q_2 d^2 + \dots + q_n d^n$ is a polynomial with exponent e. We have to prove that for

 $q(d^{\beta}) = q_0 + q_1 d^4 + q_2 d^{2\beta} + \dots + q_n d^{n\beta}$ the exponent is $\beta \cdot e$

Assume on contrary that exponent of $q(d^{\beta})$ is $f < \beta e$ $q(d^{\beta})$ divides $1+d^{f}$

Put d = x

q(x) divides $l+x^{f/\beta}$

Exponent of $q(x) = f/\beta < e$ which is contradiction to the statement that exponent of q(x) = e

Assumption is wrong

 $\mathbf{f} = \mathbf{f} \mathbf{e}$.

Exponent of $q(d^{\beta})$ is βe

Example C.1. Let
$$q(d) = 1+d+d^2+d^5+d^6$$

Calculation shows that Exp[q(d)] = 63

$$q(d^2) = 1 + d^2 + d^4 + d^{10} + d^{12}$$

Calculation shows that $Exp[q(d^2)] = 126 = 2$. Exp[q(d)]

$$q(d^3) = 1+d^3+d^6+d^{15}+d^{18}$$

Calculation shows that $\text{Exp}\left[q(d^3)\right] = 189 = 3 \text{ Exp}\left[q(d)\right]$. Therefore $\text{Exp}\left[q(d^\beta)\right] = \beta \times \text{Exp}\left[q(d)\right]$ is verified from this example.

Appendix D

List of factors of polynomials over GF(2)

Weldon and Peterson^[9] have given the list of irreducible polynomials over GF(2) and information about the nature of their roots. Here we give the list of all polynomials through degree 8 with their factors over GF(2). Only coefficients of powers of x of the polynomials are given in the list. The corresponding polynomials may be obtained as is clear from the following example. The symbols N and P mean irreducible and primitive respectively.

Example D.1. In the list, factors of 101101011 are 11.1011.11111.

The corresponding polynomials are

$$101101011 = 1 + x^2 + x^3 + x^5 + x^7 + x^8$$

$$11 = 1+x$$

1011 =
$$1+x^2+x^3$$

11111 =
$$1+x+x^2+x^3+x^4$$

$$1+x^2+x^3+x^5+x^7+x^8=(1+x)\cdot(1+x^2+x^3)\cdot(1+x+x^2+x^3+x^4)$$

PCITY TOMIALS	FOACTORS			118	
DEGREE 2					
1 0 1 1 1 1 DEGREE 3	11 p	11			
1 0 0 1	1.1 E	111			
1 0 1 1 1 1 1 1 DEGREE 4	11	11	4 4		
1 0 0 0 1		11	1.1	11	
1 0 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1	111 111 111	111 1011 1101	111		
DEGREE 5					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	111	11111			
1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 111 11 11 11 11 11 11 11 11 11	1101 10011 111 11001	1101 11 11 1011	1111	11
DEGREE 6					
1 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 0 1	11 P 1101 N 1011 P	11 1101 1011 101111	111	111	
1 1 0 1 0 0 1 1 1 0 0 0 1 1		1111	1101 1101 11111	1011	

1 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 0 1 0 1		110111 111 1110111 11110 10011	1011	119
1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P 111 P 111	111	111	
1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	111111111111111111111111111111111111111	11001 11 101001 11 100101 11 1101	11001 11 10011	11 111
DEGREE 7				
1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 1 0 1 1	1011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1101 11101 110111 1111 1100001 11100001 1110011 11111 11111 11111	1011 11001 111101 11 100101 11 101011 1101001	10011 111 111 11111 11 11
1 1 0 0 1 0 1 1 1 1 0 0 0 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0	P 1101 1101 1011 P	10011 11001 111101 10011		

- 1	")	0

	1 1 RE 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11011111	1011111 3 GUODOTOOUDO1		000000000000000000000000000000000000000		11 11 11 11 11 11 11 11 11 11 11 11 11	1110101 100101 101001 11 101101 111101 111101 1101111 11011111 110111111	11 11 111 1110101	11 11 111	11,11, 11 11,11,11,11
القبيا فليد فليد فليد فليد فليد فليد فليد فليد	100000000001111	0	06010001000111000010001	00001000100100110001000	100001001001010101000100	01000010001001011000	电电子 电子 电子 电子 电子 电子 电子 电子 电子 医子 医子 医子 医子 医子 医子 医子 医子属性 医牙髓性 医皮肤皮肤 医皮肤皮肤 医皮肤皮肤		10000011 111 11101 1110100001 1110111 111111	1101 101001 1011 10011 11001 111 1101 1101 1101	1011 1011 11 11111 11 1101	111 111

4	11111111110000000	1110000000111100	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	영어, 영어, (漢國, 國際), 영향, (劉國, 國際), (劉國, 國國, 國際), (劉國, 國國, 國際), (劉國,	111 1101 1111 1111 1111 1111 1111 1111	1010111	11111			
	000000000000000000000000000000000000000	000001111		10110010		11111 1101 121 1011 111 1011	11111 110111 1110101 100101 1100111 101001				
1 (1000110001110001	01101101010101010101010101010101010101			P 11 P 11 P 11 P 11 P 11 P 11 P 11 P 11	1100601 11111 111011 10100111 111	11 1100001 111011 1101101	111	1101	
وطمين شهو شمو شمو شمو يتمو تامي تامي شمر شعر ش		000011100				ने कुन्ते	11 10111001 11 11 11 10010001 1101	111111111111111111111111111111111111111	100101 111 111 1011 101111	11 111 11, 11,	10
1 (100000111100	1161101010	10111010101		عم همار هما فعام عمام عمام عمام عمام هما هما هما وعمام عمام هما وعمام هما يعمام عمام هما هما هما هما هما هما هما هما هما	10011101 11 10001001 11 111 111 11010011	111 110111 1101011 111 1001001	10011 101001 111011 11001		
	1111000000	1000001111001	0110111011	101110111		त पुन्त	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 10 10 10 10 10 11 11 10 10 11 10 11 11	11 111101 11011 1101	1011	11

4	0	
1	Z.	

4 4	4 4 4 4						127
ال طاعية الأفسار الأمامية الأمامية الأمامية التأثير الأمامية الأمامية الأمامية الأمامية	1110		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	## P ## 111	11111111	11001	
1 1 1	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 0 1		111 N	1011	1011	
1 1	0 1 1 1 0 1 1 1 0 1 0 1	1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11001 111 1011	10011 1101 111101	1101	
1 0 1 0 1 0	0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10	and dead dead	1 1 1 1 1 1	1101	1011	
1 0	1 1 0 1 1 0 1 1 0 1 1	1 1 1 1 1 1 1		111 P	111	10011	
				M 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10101011 11 1011 11 1101 11010101 100100	1100111 10011 11 11001 1110011	11 11111

Appendix E List of factors of polynomials over $GF(2^2)$

Factors of polynomials over $GF(2^2)$ through degree 4 are listed here. 'a' denotes the element of $GF(2^2)$ corresponding to the vector $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $q(x) = 1 + x + x^2$. 'N' mean irreducible and 'P' means primitive.

Example E.1. Find factors of $1+a^2x^2+1x^4$, $a = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$; $q(x) = 1+x+x^2$

 $1+a^2x^2+1x^4$ corresponds to $10a^201$

Factors from table are lal , lal

$$\therefore \ \underline{1} + \underline{a}^2 x^2 + \underline{1} x^4 = (\underline{1} + \underline{a} x + \underline{1} x^2) \cdot (\underline{1} + \underline{a} x + \underline{1} x^2)$$

dere: decause of the inconvinience in twoing powers of 'a', 'a-square; is written as 'a?'.

ñ	YOU, Y	40) 1	TAUS.	3. A . 1 . 5	TOCE	71 (13)		ଅଟ • ଓ ଟ ୍ୟାମ						
P40	may non ton	ntit yang tilah i	**************************************				eles d	त्या सन्त्र तक्के ज्य	D may test					
*000	10 G () * *** *** ***	AND THE TOTAL O	on the real											
de la constant de la		a. 42					1	a2 a		,	La2			
1 电电子	A di	1 a a2					1 P	1			l 1 l a2			
中 日本中 中	1 13 12	1 3 82					1	qua.			la.			
4		1					. D							
4	1	12					1	a		1	a2			
†)	14 (3 14) 1 may 1 m 1 may 1 m	ili Maria	3											
4	۠		a a2				7.1							
1	Q Q	. (; a -	1. a				1	1 a		3	а а 1	1	1	ə2
4	. 25 14/4 4.3	а а а?	72 1 3				1	1		1		a2		
4	()	a2 a2	32 1				1	a2		3		a 1		
1	()	1	a a2 1				1	a2 3		1	a2	a2 a		
1	a a	0	a a2				1	a2 1		1	1 a2	a2 a2		
1	а а а	0 83 81	1 a 32				⊌ p 1	a		1	a2		1	a2
. 1	a	:n -	1				1	1		1	a2 a2	1		CA Kin
*	ම ව ම	a2 a2 a2	a2 1 a				1	a 1		1	a 1		1	a a
1	a a2	直見け	a 2 .				p 1	a2		1	. 1	a		
1	a2 a2	9	a a2 1				1	a		1	1	ਰ a		
4	a 222222222222222222222222222222222222	a	a 2				P	20					4	2 7
1	a2 a2	a2 a2	a a2				1	a2 a		1			1	a2 a2
4	a2 a2	a?	1 a				1 P	1	•	1		1	1	20
1	a 2	a a a a a a a a a a a a a a a a a a a	1 a				1	1 a a a2			1 1 a2 a	22 1		a2
母子 田子 日本十年日 女田 女田 日本 日本十年二十年日 三年 日本 女子	1	0	a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1 N	a2		1		1	1	a2
1	1	a a a2 a2	ā2 1				p 1 P	a		1		a2		
And San	1	a2 a2	a a2				P 1	1		1			. 1	a

1 1 32 1		. az	ia a	125
1 1 1 3 2 1 1 3 2 1 1 1 1 1 1 1 1 1 1 1	•		1 1	1 1
1		- a 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 a a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 2 1 a 3	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1 32 1 32 32 1 31 32 32	1 a2 1 a2 1 1 a2 a2 1 1 a 1 a2 1 1 a2 a 1 a2 a 1 a2 b	1 1 a 2 1 1 a 1 1 a a
1 U 3 a a 2 1 1 U 3 a a 2 a 2 1 U 3 a a 2 a 2 1 U 3 2 U 1 1 U 3 2 U 3 2 1 U 3 2 U 3 2 1 U 3 2 U 3 2 1 U 3 2 U 3 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a 1 1 a a	1 a 2 1 a 1 1 a a 1 a 2 1 a 1 a 0 1 1 a 0 1	1 1 a 1 a2 1 a2
1	1 1 1	₹ 1	1 32	1 1 az 1 az az
1 1 0 0 1 1 1 0 0 8 1 1 0 0 82	N 5 7 7 1 1 1 1 1 5 5 6 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	a a a a a a a a a a a a a a a a a a a	1 32 32 1 32 1 32 1 1	1 a 1 a2
1 1 0 0 32 1 1 0 1 3 1 1 0 1 32 1 1 0 3 1 1 1 0 3 3 1 0	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 0 0 a 1 a 1 0 0 a 1 0 0 a 1 1 1 1 1 1	1 1 a 1 1 a2

1																							
	882	3 1 3 B	9 1	1 82	l a	l i	1 1		J az) a) 1	3 1	32 a.d	32 3 32 3 32 3	1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	3.5 T	3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3	3 a		9 J	l a a	1 3	
1 32	9 3 3	a a2	a a 2	a a 2	aaz	3-2	32	l	à	a a 2	3 S	- 32	1 1 a	: 1	. a2	1	2 32 1 3	9.2	34	ા ક ક	& 1 & a & a &	3	9
1 32																							ı
1 32											•				,								
															•								
																(٠.					
32 1 3 1 1 1 32 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 2 1 1 3 1 3 2 1 3 3 1 3 2 1 3 3 1 3 2 1 3 3 1 3 2 1 3 3 1 3 2 1 3 <td>1 1 1 1 2</td> <td>1</td> <td>101</td> <td>4 14 14 14 14</td> <td>P</td> <td>N</td> <td>1</td> <td>N</td> <td>þ</td> <td>P.</td> <td>P</td> <td>1</td> <td>į,</td> <td>1</td> <td>. 1</td> <td></td> <td>i i</td> <td>7</td> <td>1</td> <td>1</td> <td>1</td> <td>ļ</td> <td>1</td>	1 1 1 1 2	1	101	4 14 14 14 14	P	N	1	N	þ	P.	P	1	į,	1	. 1		i i	7	1	1	1	ļ	1
1 a 2 0 1 1 a 2 a 2		a		a .			a					1	1	3 3 3 2 6	3 1		a		1	32	3	3 €	3
		3		9.2									3	1			I.	3					-
a2 0 1 a2 1 1 a2 a3 1 1 a2 a4 a1 a1 a2 a4 a2 a2 a1 a2 a4 a2 a2 a2 a2 a4 a2 a2 a2 a2 a4 a2 a3 a3 a3 a4 a2 a3 a3 a3 a5 a4 a4 a4 a4 a5 a4 a4 a4 a4 a6 a4 a4 a4 a4 a7 a4 a4 a4 a4 a6 a4 a4 a4 a4 a4 a7 a4	1 1	1		1	1	1			1			1	1	L	1		pand, pand	L	i i	Ĺ	À	l	1
1 1 a2 1 a a 1 a 1 a2 a2 a2 a 1 a2 a a2 a		a a 2		a Z	1	a 2	a		. ()				1 a 2	a	32		SE	زن	a 1 a 2	3	9 5 9 3		32
1 1 32 1 32 1 32 1 32 1 32 3 3 3 3 3 3 3		a 2			а	а		a	Û	()		a 2	1	a 2 a	9.2			а	a2			0	U
1 a a 1 a 2 1 a 2 1 a 2 1 a 2 1 a 1 a 2 1					a2				ā 2	3		a2	3	a	a 1		32	1		а		1	į.
1 a a 1 a 2 1 a 2 1 a 2 1 a 1 a 2 1																							
a a a a a a a a a a a a a a a a a a a	1	1			1		the part	3 .	9	1	-			L					1	1	. 1		
1 a2 1 a2 1 a2 a2 a2	1	a			m '7		a2 a	### ·	n -	3				a					1	a	a 1 a2	1.	
1 82		1		a2				₹38	a	. 1	,				B				a2		a a a2	32	
a 2	1			į	•						1			1			1						
	a Z			. a. 2	ا ^ن ج						a 2			82			ай						

1 3222 1 322 1 322 1 322 1 322 1 322 1 322	1 32 1 32 1 32	1 a2 1 a2	1 a2 1 a2 1 a2 1 a2	1 a2 1 a2 1 a2 1 a2	1 32 1 32 1 32 1 32	1 a2 1 a2 1 a2	1 a2 1 a2 1 a2	1 32	1 32 1 32 1 32	1 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a 2 a		t
	12222 12222 12222 12322 1322 1322 122 1222 122 122 122 122 122 122 122 122 122 122 122 122 122 122 122	3	3	a .	1	gen' yn i swed went gwed	greet gant good gast good	. 3)))	3.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3	######################################	2.0
01111aaaa222		a 2 a 2 a 2 a 2 0	8	000444	3332	3 3 3 7	0001111	a a 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	i.	a 222 2000 1	3	. 1
a2 1 a 2 1 a a2 1 a a2	a 2 1 3 3 2	a a 2 1 a	1 a a 2 1	a 2 1 a 2	3 3 3	a 2 a a 2 1	1 a 2 1 a	1 9 2	9 9 2	1 2 2 2 2	1 3 3 1 3 2 3 3 2 3 3 2	
				•								
								•				
N polymorphism	on the last N	1 1 2	HHAD	IINPINOITIE	PIN	1	7 mg qui mi . 47	Plip	2		VIOTILITEV	
1 1 2	a a 2	1	1 a	a 2 1 a	а	1 2 2	3 1 32 1	1 3-2	1 3 2 3	a 2 1 a 1		
a 2				а		а				1	a 2	
desir desir desir desir	1	1	Seed (seed seed)	-	1	1	from their parts seed	1	Seed Seed June	test pass fact feet feet	cent man your person bear man	
3 3 1	1 1 a 2	i a 2	a 2 a 2	0 a 1 a	1	a	a 2 a 2 a 3	10	3 0 a	32	32 32 1 32 1	
1 9 a2	1			8 0 0	a 2	Special Section 1	a2 a2	()	7)	a a a 2	9 2 9 2 0	
a 2	a 2			densk (britte) best	а	1	a 2	a 2	-B	a 2		
1	good	gard prod	and one day			1	gast.	tie N	gent .	Sect year	Seed poor	
1	a 2	a 2 1	1 a 2 a			а	a- a-2	32	a 2	7	3.2 3.	
	1	a 2 a	a 2 1 1				a a2	1	a 2	1	1 a	
1						1			1			
a						a			a 2			
)			

Appendix F List of factors of polynomials over GF(2³)

Factors of polynomials over $GF(2^3)$ through degree 3 are listed below. 'a' denotes the element of $GF(2^3)$ corresponding to the vector $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$ and $q(x) = 1 + x + x^3$. 'N' means irreducible.

Example F.1. Find factors of $1+a^6x+a^2x^2$

 $1+a^6x+a^2x^2$ is written in the list as $1a^6a^2$. Factors are given to be $11.1a^2$

$$\underline{1} + \underline{a}^{6} x + \underline{a}^{2} x^{2} = (\underline{1} + \underline{1} x) \cdot (\underline{1} + \underline{a}^{2} x).$$

LYNOMIALS	FACTORS	, 4.6 °		
GREE 2.				
G 1 0 a 0 a2 0 a3 0 a4 0 a6 1	1 a4 a a5 a a a a a a a a a a a a a a a a a		1 a4 a5 a2 a2 a3	
l å:	1.3%	1	26	
14 15 16			3	
4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			3	
8 85	1 85 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	1 a2 1 a3		 65	
62	11.3			
	1.1	1	A Comment of the Comm	
a	1 A4		a.u	
a3 a6 a4 1 a4 a				
	10		$\begin{aligned} & & & & & & & & & \\ & & & & & & & & & $	
as a	i a		RO	
a4 a5			e grande de	
a5 a4 a5 a5	1 à2.	1	$oldsymbol{4}$	
ao ao ao 1	1 a3	The state of the s	α4	
36 a2	1 a3	1	a2	
ao a4 a6 a5	l'a	1	a5	

GREE 3 0 0 1 0 0 a 0 0 a2 0 0 a3 0 0 a4 0 0 a5 0 0 a6		1 1 1 a5 a3 a3 a6 a a2 a6 a5 a6 a5 a4 a a2 a4	
		a a2 a6 a5 a4 a a2 a4 a2 a2	1 a4 a
0 1 82 0 1 83	1 au 1 au	1 a6 a4	
0 1 35 0 1 30	1.88	1888	
		1 a3 a5	
3 A2 V 1 A5 V A 26	1 32	1 48 43	1 46
8	1 44	1 a4 a4 1 a5 a3	1 a5
a a a a a a a a a a a a a a a a a a a	1 13	i 1 an i aj at i aj at	1 46
0 43 43 0 43 43 0 43 44	1 84	1 20 1	
0 a3 a5 0 a3 a6 a4 1	1 a	1 a a5	
2 a4 a2 4 a2 4 a3	i la	1.a a	
0 a4 a2 0 a4 a3 0 a4 a4 0 a4 a5 0 a4 a6 0 a5 1	1 a5 1 a3 1 a5	1 a5 a6 1 1 a5 . 1 a4 1 a5 a2	1 a6
0 15 12 45 43 45 43 7 15 24	1 a2 1 a4 1 a4 1 1	1 a2 1 · 1 a4 a6 1 a 4	1 43
0 a4 a6 0 a5 1 0 a5 a2 a5 a3 0 a5 a4 0 a5 a6 0 a6 a 0 a6 a 0 a6 a3 0 a6 a3 0 a6 a3 0 a6 a3 0 a6 a3 0 a6 a3 0 a6 a3 1 0 a6 a6 1 0 a6	1 02 1 1 1 ao	1 86 9	t as
0 45 44 0 ap 45		1 a2 a3	
7 a6 a5 0 a6 a6 1 0 1 1 0 a 1 0 a2	1 a2 1 a3 1 . 1 a2	1 (a5	1 46

		energy I	
A A2	1 06	a2 a5 a4 1 1	1 a5
a da			
- a a6 - a2 1 - a2 a	Maria de la Caración	1 e5 a 1 1 e5 1 a4 1	
#2 #2 #2 #3		1 1 a5 1 a4 1 1 a2 1 1 a3 a5	1.0
92 95 42 46	a6 a3 a2 a a4 1 a5	1 a5 a 1 1 a5 1 a4 1 1 a2 1 1 a3 a5 1 a5 a	
a2 a2 a2 a3 a2 a5 a2 a6 a2 a6 a3 a a3 a2 a3 a4 a3 a4 a3 a4	1.84	1 a2 a4	
	1 3	1 42 46	1 66
		1 45 46 42 43	
il i?! ay aj :	1.43	1.1 a6	
	1.2	1 83 45	1 a2
a a a a a a a a a a a a a a a a a a a	1 1 1 1 2	1 a3 a2	
33 33			1 a5
ab ab 'ab i ab a	A3 A A5 A6		
45 a2 45 a3 66 a4	1 46	1 38 83 1 43 64	
a6 a5 a6 a6			
	1 84	1 a a5	e de la companya de l
2 0 44 2 0 45	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 85 a 1 1 86 1 1 a	
2 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2	94 1	1 05	1 es 1 gg
2 1 33		1 20 24	
2 1 45	i a3	1 a5 a3 1 a4 a6	A Commission of the Commission
2 0 a2 a3 a2 a a2 a a2 a a2 a a2 a a2 a			- 1 a4
2 a 44 2 a a5	† a2 a6 1	1 a4 1 1 a5 1 a5 a5	

a2 a2 a2 a2 a2 a3	1 a2	1 a3 a4	
) a 1 a6		1 e/
62 83 82 82 83 83 82 83 84 82 83 85 82 83 85		1 a3 1 a5 a4	1 e6 1 a5
a2 a3 a3 a2 a3 a4 a2 a3 a5 a2 a3 a6 a2 a4 1 a2 a4 a a2 a4 a2 a2 a4 a3	1 a2 1 a4 1 a5 1 a 1 a6	1 a3 1 a6 a4 1 a5 1 a a2 1 a3 a2 1 a3 a3 1 a6 a3	
a2 a4 a2 a2 a4 a3 a2 a4 a4 a2 a4 a5 a2 a4 a6		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
a2 a4 a6. a2 a5 1 a2 a5 a. a2 a5 a2. a2 a5 a3		1 00 4	l å5
a2 a5 a3 a2 a5 a4 a2 a5 a5 a2 a5 a5	1 as	1 a3 a6	
a2 a6 1 a2 a6 a a2 a6 a2 a2 a6 a3	1 a2	a3 a a a a a a a a a	1- 63
a2 a6 a5 a2 a6 a5 a2 a6 a5		lara	
a3 0 a a3 0 a a3 0 a2		1 22 2	1 86
a3 (7. 45 7.	1 a/ 1	
	1 a 1 a4	1 As 23	
a) a [a) a a a) a A2	1 a5 n	1 az al	
a2 1 a3 a3 1 a6 a3 1 a6 a3 a a a3 a a2 a3 a a3 a1 a a3 a1 a a5 a3 a a2 a3 a2 a2 a3 a2 a2 a3 a2 a3 a3 a2 a3 a3 a2 a3 a3 a2 a3 a3 a2 a3 a3 a2 a3 a3 a3 a2 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a3 a	1 a3 1 a2 1 au	1 84 83	1 64
a3 a2 1 a3 a2 a	1 82	1 e3 a6 1 e0 a5	
83 82 84 83 82 84 83 82 85		1 25 1 2	1 a6 1 a3
as as as	1 1 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A	1 9 1	

t a3 ag		A.		
a3 a5 a3 a5 a1 a6		1 83	1 45	1 83
0 0 0 02 1 0 03		1 1	1 84 82	1 a5
1 84 85 1 84 85 1 84 86		1 26	1 84 86	
a a a a a a a a a a a a a a a a a a a		1 a3 1 a5 N	1 1 a6 1 a6 1 a2 a4	1 ä6
		1 1 1 as	1 82 1 82 82 1 86 84	1 44
40 a 46 a2 46 a3 35 a4 20 a5		1 e5 1 e3 2 e2	2 a2 a6 a4 a3 a4 a4 a5 a2 a a5 a a5	1.78
an 44 an 45 an 40				
1 0 a		1 86	1 a3 a2	
0 82 0 85 0 85		1 8	1 22 23	1.43
1 A2 1 A3	•	1 a 1 a2 1 a2	1.91	1-46
1 45		1.06	1 63 66	
a 32 a 43 a 43		a3 a a2 a6 a5,	1 49 94 1 42 1 1 4 1 1 43 04	
	The second of	1 as.	. Figure 1. A $T_{\rm int}$ and $T_{\rm int}$ are simple $T_{\rm int}$ and $T_{\rm int}$	1.04
62 1 62 1		94 m 32 35	1 33 33	
		1 1	1 a5 m3s	
a ab		, a a a a a a a a a	1 0 45 40 45 1 45 42	1 ##
		1.86		
13 15 13 15 14 16				
a4 a a4 a2		1 1a2	1 32	1 88
al al al al		1 83	1 46 9	

14 64 66 84 85 1	1964 - 19		
44 45 4 44 45 42 44 45 43 34 45 44		1 a5 1 a2 a2 1 a a2	1 a6
a4 a5 a5 a4 a5 a6		1 a6 a3	
a4 a5 a6 a4 a6 1 a4 a6 a a4 a6 a	11	. 1 a5 a	
a4 a6 a3	j a3	1 a3.	1 a4
ad a6 a5 a4 a6 a6		1 a2 a4 1 a5 1 a3 a5	1 a6
			1 a4
		1 a4 a4	
15 0 44 15 0 46 15 1 1	1 88	1 22 44	
a5 1 a2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	lat	1 1 a5	
a4 a6 a4 a6 a5 a4 a6	1 1 1 a2	1 1 3 4	1 a5
dia a l	1 42	1 83 86"	New Control
ab a		1 26 33	1 26
	1 44		1.75
as az 1 as az a as az az			
a5 a2 a a5 a2 a2 a5 a2 a3 a5 a2 a4 a5 a2 a5 a5 a2 a5	1 a3	1 32 43	1.46
as as 1 as as a	1 40	1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 as
a5 a3 a3 a5 a3 a4		a2 a3 a a a5 a 1 a6 a3 a2 a3 a2 a4 a2 1 a1 a6	1
X 44 14 - 1	72,23421317	1 81 86	
ab al a		1 a2	1. a5
ab a	1 A3 1 A3 1 A0	132 15	
a5 a4 a5 a5 a5 1		1 22 25	
a5 a5 a a5 a5 a2			
a5 a5 a5	1 a5 1 a4	1 46 1 1 1 1 ac a4	1 A6

46	(a**) /2	4
.8	- 4	ð

a5 a6 1 a5 a6 a	1 a4 1 a6	1 1 a3/	
a5 a6 1 a5 a6 a a5 a6 a2 a5 a6 a3 a5 a6 a3 a5 a6 a5 a5 a6 a5 a5 a6 a5	N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 a 1 a3	1 a2 /
.a5 a6 a6 a5 a6 a6 a0 0 1			
ao o a		1 a5 a6 * 1 a2 a2	
an (a2 ab (a3 ab () a1 ab () a5 ab () ab ab (a6 ab (a2 ab (a2 ab (a2	1 a3 1 a2 N	1 a4 1 1 a4	1 a5
ac 0 ac ac 1 4 ac 1 a	1 a5 1 a2	1 a a2 1 1 a6	
10 1 10 10 10 10 10 10 10 10 10 10 10 10		1 a3 a2	
ac 1 ac sul	1 1	1-1- 1. a4-3	1 ao ***********************************
a0 a a2 a3 a5 a a4	1 45	1 2 3	
at a a3 a5 a a4 a5 a a5 a5 a a6 a6 a2 1	i a	1 a2	1 63
86 a2 a 86 a2 a2 86 a2 a3	83	1 a 4 a6 1 a4 a6 1 a1 a6	1 au
a6 a2 a4 a0 a2 a5	Lab	1 a 1	
au a2 56 56 a1 1 au a1 a	1 42	1.1 a5	
# a3 a2		1 A5	1 A6
ao al ao ao al ao ao al ao ao al ao	1 1	1 a4 a 1 a	1 a4
a6 a4 a a6 a4 a a6 a4 a2	1-4	1 83 85	1 a5
as ad ad ab ad ad ac ad ad ac ad as	1 92 1 a	1 42	J' a 6
a5 a4 a3 a5 a4 a4 ac a4 a5 ac a4 ac a6 a5 1 ac a5 a ac a5 a ac a5 a		1 a4 a4 1 a1 a4	Programme Comments
a6 a5 a2 a5 a5 a3	11	1 22 21	
ao a	1 a4 1 a 1 a6 1 a2 1 a5	1 ao 1 1 a3 1 a a 1 a2 1	
an an 1 an an an ; an an an an	1 a2	111	
85 46 84 80 46 85 80 86 86	1 83 1 84	. 1 a3 1 a3 u2	1 as