# Diseño e implementación de método de compresión de grafos basados en clustering de cliques maximales

Defensa de Tesis

Felipe A. Glaría Grego



Lilian Salinas, Ceciclia Hernández
Departamento de Ingeniería Informática y Ciencias de la Computación
Facultad de Ingeniería
Universidad de Concepción

27 de junio de 2019

#### Motivación

Gran crecimiento en grafos de redes sociales y de la web.

- Estimación sitios indexados: 4,46 mil millones<sup>1</sup>.
- Usuarios activos diarios en Facebook: 1,47 mil millones.
   Crecimiento de 11 % anual<sup>2</sup>.

Los grafos de redes sociales son menos comprimibles. Muy útil descubir usuarios reelevantes y cómo se relacionan, para mejorar resultados de búsquedas, recomendaciones, marketing, entre otros.

Alto costo en recursos que demanda su procesamiento.

- Principalmente espacio en memoria.
- Jerarquía de memoria penaliza tiempo de acceso a datos alejados de unidades de procesamiento.

<sup>&</sup>lt;sup>1</sup>http://www.worldwidewebsize.com/, consultado el 05 de octubre del 2018.

<sup>&</sup>lt;sup>2</sup>https://investor.fb.com, informe de resultados del segundo trimestre del 2018.

## Trabajos Relacionados

WebGraph, Boldi y Vigna (2003).

k2-tree, Brisaboa, Ladra y Navarro (2009).

**Graph Compression by BFS**, Apostolico y Drovandi (2009).

**Layered Label Propagation**, de *Boldi, Vigna, Santini* y *Rosa* (2011).

**Tight and simple Web graph compression**, *Grabowski y Bieniecki* (2011).

Compressed representations for web and social graphs, *Hernández y Navarro* (2014).

Compressing graphs by grammars, Maneth y Peternek (2016).

### Marco teórico

- Un **grafo** G = (V, E) como el conjunto finito de *vértices* V (nodos) y el conjunto de *aristas*  $E \subseteq V \times V$  (arcos).
- Dos vértices  $v_1$  y  $v_2 \in V(G)$  son adyacentes o vecinos si  $(v_1, v_2) \in E(G)$  y  $v_1 \neq v_2$ .
- Un grafo es **no dirigido** cuando la arista conlleva ambos sentidos, es decir  $(v_1, v_2) = (v_2, v_1)$ .
- El grado de un vértice d(v) es la cantidad de vértices en V(G) que son adyacentes con v.
- La **matriz de adyacencia** de un grafo G corresponde a una matriz binaria cuadrada  $|V(G)| \times |V(G)|$  donde cada bit representa si un par de vértices  $v_1$  y  $v_2 \in V(G)$  son vecinos o no.

# Marco teórico (2)

- Un grafo k-degenerate es no dirigido, donde cada subgrafo tiene un vértice con grado a lo más k.
- El índice de degeneracy de un grafo, D(G), es el menor valor k para el cual el grafo es k-degenerate.
- Un clique es un subgrafo donde todos los vértices son adyacentes entre sí. Un clique maximal no es subconjunto de otro clique más grande.



Figura 1: Ejemplo de grafo y sus cliques maximales.

# Marco teórico (3)

- Un **triángulo** es un subgrafo de tres vértices y tres aristas. Se define  $\lambda(v)$  como la cantidad de triángulos donde participa un nodo v.
- Se define  $\lambda(G)$  como la cantidad de triángulos de un grafo. Se calcula sumando  $\lambda(v)$  para cada vértice v, y dividiendo el total en tres.

$$\lambda(G) = \frac{1}{3} \sum_{v \in V} \lambda(v) \tag{1}$$

- Un **triplete** es un subgrafo de tres vértices y dos aristas, donde las aristas comparten un vértice común. Se define  $\tau(v)$  como la cantidad de tripletes donde v es el vértice común.
- Se define  $\tau(G)$  como la cantidad de tripletes de un grafo.

$$\tau(G) = \sum_{v \in V} \tau(v) \tag{2}$$

# Marco teórico (4)

- El **coeficiente de clusterización** de un vértice indica cuánto está conectado con sus vecinos, y se define como  $c(v) = \lambda(v)/\tau(v)$ .
- El coeficiente de clusterización de un grafo (C(G)) es el promedio del coeficiente de todos los nodos del grafo.

$$C(G) = \frac{1}{|V'|} \sum_{v \in V'} c(v)$$
 (3)

 $\operatorname{con} V' = \{ v \in V | d(v) \ge 2 \}.$ 

• La **transitividad** de un grafo (T(G)) es la probabilidad que un par de nodos adyacentes estén interconectados.

$$T(G) = \frac{3\lambda(G)}{\tau(G)} \tag{4}$$

## Método de Compresión Propuesto

#### Consta de tres etapas:

- 1 Listar todos los cliques maximales del grafo.
- 2 Particionar listado de cliques, utilizando heurística eficiente que explote su superposición.
- 3 Comprimir particiones en estructura compacta.

## Etapa 1: Cliques Maximales

Es un problema complejo desde un punto de vista teórico y práctico.

Eppstein, Strash et. al. proponen un algoritmo<sup>3</sup> rápido para listar cliques maximales de grafos dispersos.

Se asume que algoritmo puede entregar el listado de cliques maximales de un grafo.

Problema a resolver: Encontrar un método eficiente para dividir en particiones el grafo de cliques.

<sup>&</sup>lt;sup>3</sup>https://github.com/darrenstrash/quick-cliques

# Etapa 1: Cliques Maximales (2)

#### Definición

Gafo de cliques Dado un grafo G=(V,E) y  $\mathcal{C}=\{c_1,c_2,...,c_N\}$  el conjunto de tamaño N de cliques maximales que cubren G, se tiene  $CG_{\mathcal{C}}=(V_{\mathcal{C}},E_{\mathcal{C}})$  un grafo de cliques donde:

- $2 \ \forall c, c' \in \mathcal{C}, (c, c') \in E_{\mathcal{C}} \Longleftrightarrow c \cap c' \neq \varnothing$

# Etapa 1: Cliques Maximales (3)



Figura 2: (a) Grafo no dirigido. (b) Lista de cliques maximales. (c) Grafo de cliques.

## Etapa 2: Particionar listado de cliques

#### Problema

Encontrar particiones de cliques para el grafo de cliques  $CG_{\mathcal{C}}$ . Dado un grafo de cliques  $CG_{\mathcal{C}} = (V_{\mathcal{C}}, E_{\mathcal{C}})$ , encontrar un set de particiones de cliques  $\mathcal{CP} = \{cp_1, cp_2, ..., cp_M\}$  de  $CG_{\mathcal{C}}(V_{\mathcal{C}}, E_{\mathcal{C}})$  con  $M \geq 1$ , tal que

- $\bigcup_{i=1}^{M} cp_i = CG_i$
- $2 cp_i \cap cp_j = \varnothing \text{ para } i \neq j$
- 3 cualquier  $cp_i \in \mathcal{CP}$  es un subgrafo de  $CG_{\mathcal{C}}(V_{\mathcal{C}}, E_{\mathcal{C}})$  inducido por el subset de vértices en  $cp_i$

## Etapa 2: Particionar listado de cliques (2)

Definir una heurística que permita agruparlos en particiones eficientes, que exploten dicha redundancia de vértices en los cliques maximales.

#### Definición

Función de ranking

Dado un grafo G=(V,E) y  $\mathcal{C}=\{c_1,c_2,...,c_N\}$  el conjunto de tamaño N de cliques maximales que cubren G, una función de ranking es una función  $r:V\to\mathbb{R}^+$  que retorna un valor de puntuación para cada vértice  $v\in V$ .



# Muchas gracias