

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ PROBA D

Varianta061

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea:$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul vectorului $2\vec{i} + 5\vec{j}$.
- (4p) b) Să se calculeze lungimea segmentului [AC], unde A(6,7) și C(7,6).
- (4p) c) Să se calculeze $\cos \frac{\pi}{6} + \cos \frac{\pi}{3}$.
- (4p) d) Să se determine $a,b \in \mathbb{R}$, astfel încât punctele A(6,7) și C(7,6) să fie pe dreapta de ecuație x + ay + b = 0.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(6,7), B(5,5) și C(7,6).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe $\frac{3+i}{4-i} = a+bi.$

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze elementul $\hat{3}^{2007}$ în \mathbb{Z}_7 .
- (3p) b) Să se calculeze expresia $E = C_9^4 C_9^5$.
- (3p) c) Să se rezolve în mulțimea numerelor reale ecuația $x^4 3x^2 + 2 = 0$.
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $2^x + 8^x = 10$.
- (3p) e) Să se calculeze probabilitatea ca un element $n \in \{1, 2, 3, 4, 5\}$ să verifice relația $3^n > n^3$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^5 + 2x 1$.
- (3p) a) Să se calculeze $f'(x), x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x) dx.$
- (3p) c) Să se calculeze $\lim_{x\to 0} \frac{f(x)-f(0)}{x}$.
- (3p) d) Să se arate că funcția f este strict crescătoare pe \mathbf{R} .
- (3p) e) Să se calculeze $\lim_{n \to \infty} \frac{3\sqrt{n} + 5}{2n + 7}.$

SUBIECTUL III (20p)

Se consideră inelele $(\mathbf{Z}_{24}, +, \cdot)$ și $(\mathbf{Z}_{24}[X], +, \cdot)$. Un element a dintr-un inel $(A, +, \cdot)$ se numește nilpotent dacă există $n \in \mathbf{N}^*$, astfel încât $a^n = 0$.

- (4p) a) Să se arate că $\hat{6}$ este *nilpotent* în inelul (\mathbf{Z}_{24} , +, ·), iar $\hat{2}$ nu este *nilpotent* în inelul (\mathbf{Z}_{24} , +, ·)
- (4p) **b)** Să se arate că $f = \hat{6}X + \hat{12}$ este *nilpotent* în inelul $(\mathbf{Z}_{24}[X], +, \cdot)$, iar $g = X + \hat{1}$ nu este *nilpotent* în $(\mathbf{Z}_{24}[X], +, \cdot)$
- (4p) c) Să se demonstreze că $\hat{a} \in \mathbb{Z}_{24}$ este *nilpotent* dacă și numai dacă 6 divide a.
- (2p) d) Să se determine numărul elementelor *nilpotente* din inelul ($\mathbb{Z}_{24}, +, \cdot$).
- (2p) e) Să se arate că dacă $\hat{a}, \hat{b} \in \mathbb{Z}_{24}$ sunt *nilpotente* atunci $f = \hat{a}X + \hat{b}$ este *nilpotent* în inelul $(\mathbb{Z}_{24}[X], +, \cdot)$.
- (2p) f) Să se arate că $f \in \mathbf{Z}_{24}[X]$, $f = \hat{a}X^3 + \hat{b}X^2 + \hat{c}X + \hat{d}$ este *nilpotent* dacă și numai dacă $\hat{a}, \hat{b}, \hat{c}, \hat{d}$ sunt *nilpotente* în inelul $(\mathbf{Z}_{24}, +, \cdot)$.
- (2p) g) Să se determine numărul polinoamelor de gradul 3 din inelul $\mathbf{Z}_{24}[X]$ care sunt *nilpotente*.

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \mathbf{R}$, $F: \mathbf{R} \to \mathbf{R}$, definite prin $f(x) = e^{x^2}$ și $F(x) = \int_0^x f(t) dt$, $\forall x \in \mathbf{R}$.

- (4p) a) Să se calculeze f'(x) și F'(x), $x \in \mathbb{R}$.
- (4p) **b)** Să se arate că funcția F este injectivă.
- (4p) c) Să se arate că $e^x \ge x+1$, $\forall x \in \mathbb{R}$.
- (2p) d) Să se demonstreze că $F(x) > \frac{x^3}{3} + x$, $\forall x > 0$ și $F(x) < \frac{x^3}{3} + x$, $\forall x < 0$.
- (2p) e) Să se demonstreze că funcția F este bijectivă.
- (2p) **f**) Să se calculeze $\lim_{n\to\infty} n \cdot G\left(\frac{1}{n}\right)$, unde $G: \mathbf{R} \to \mathbf{R}$ este inversa funcției F.
- (2p) g) Să se arate că nu există $u, v \in \mathbf{R}[X]$, nenule, astfel încât $F(x) = \frac{u(e^{x^2})}{v(e^{x^2})}$, $\forall x \in \mathbf{R}$.