RESUM D'ANÀLISI REAL

ApuntsFME

Barcelona, Abril 2019

Índex

1	Successions i sèries funcionals	1
	Teorema d'Abel	3
	Teorema de Taylor	4
2	1	4
	Teorema d'Arzelà-Ascoli	5
	Teorema d'aproximació de Weierstrass	5
	Teorema d'aproximació de Bernstein	5
	Teorema d'aproximació de Stone	6
	Teorema de Stone-Weierstrass	6
3	La integral de Lebesgue	6
	Teorema de la convergència monòtona	9
	Teorema de la convergència dominada	11
	Teorema de completesa de L_n	12

1 Successions i sèries funcionals

Definició 1.1. Sigui (f_n) una successió de funcions, $f_i : E \subseteq \mathbb{R} \to \mathbb{R}$, i sigui $f : A \subseteq E \to \mathbb{R}$. Diem que (f_n) convergeix puntulament cap a f en A si

$$\lim_{n\to\infty} f_n\left(x\right) = f\left(x\right), \, \forall x \in A.$$

Diem que (f_n) convergeix uniformement cap a f en A si

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tal que } |f_n(x) - f(x)| < \varepsilon, \forall n \geq N, \forall x \in A.$$

Observació 1.2. (f_n) convergeix uniformement cap a f en A si, i només si,

$$\lim_{n \to \infty} \sup_{x \in A} |f_n(x) - f(x)| = 0.$$

Observació 1.3. La convergència uniforme implica la convergència puntual.

Proposició 1.4. Criteri de Cauchy. Sigui (f_n) una successió de funcions, $f_i : E \subseteq \mathbb{R} \to \mathbb{R}$, i sigui $f : A \subseteq E \to \mathbb{R}$. (f_n) convergeix uniformement cap a f en A si, i només si,

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} \text{ tal que } |f_n(x) - f_m(x)| < \varepsilon, \forall n, m \ge N, \forall x \in A.$$

Teorema 1.5. Sigui (f_n) una successió de funcions contínues que convergeix uniformement cap a f en A. Aleshores, f és contínua en A.

Lema 1.6. Lema de Dini. Sigui (f_n) una successió de funcions puntualment monòtona (no estrictament) que convergeix puntualment cap a f en un compacte K. Aleshores, (f_n) convergeix uniformement cap a f.

Teorema 1.7. Sigui (f_n) una successió de funcions integrables Riemann a [a, b] que convergeix uniformement cap a f en [a, b]. Aleshores, f és integrable Riemann a [a, b] i

$$\int_a^b f = \int_a^b \lim_{n \to \infty} f_n = \lim_{n \to \infty} \int_a^b f_n.$$

Corol·lari 1.8. Sota les mateixes condicions, si $x \in [a, b]$,

$$\left(\int_{a}^{x} f_{n}\right) \to \int_{a}^{x} f$$

uniformement.

Teorema 1.9. Sigui (f_n) una successió de funcions derivables en [a, b] tal que (f'_n) convergeix uniformement cap a g en [a, b] i tal que $(f_n(x_0))$ convergeix per un cert $x_0 \in [a, b]$. Aleshores, (f_n) convergeix uniformement cap a una funció f derivable a [a, b] que satisfà que f' = g. En particular,

$$\lim_{n \to \infty} f'_n = \left(\lim_{n \to \infty} f_n\right)'.$$

Comentari: quan no s'especifiqui el domini de les funcions ni en quin subconjunt del domini tenen certes propietats, s'entendrà que tot passa en un mateix subconjunt qualsevol dels reals.

Proposició 1.10. Criteri de Weierstrass. Sigui (f_n) una successió de funcions tal que, per tot $n, |f_n| \leq M_n$, per a cert $M_n \in \mathbb{R}$ i tal que $\sum_{n\geq 1} M_n$ és convergent. Aleshores, $\sum f_n$ convergeix uniformement.

Lema 1.11. Fórmula de sumació d'Abel. Siguin (a_n) , (b_n) successions de nombres reals i sigui $s_n = \sum_{i=1}^n a_i$. Aleshores,

$$\sum_{i=1}^{n} a_i b_i = s_n b_{n+1} - \sum_{i=1}^{n} s_i (b_{i+1} - b_i) = s_n b_1 + \sum_{i=1}^{n} (s_n - s_i) (b_{i+1} - b_i).$$

Aquest és un lema auxiliar que s'utilitza per demostrar els següents dos criteris.

Proposició 1.12. Test d'Abel. Siguin (f_n) i (g_n) successions de funcions tals que

- (i) $\sum f_n$ convergeix uniformement,
- (ii) $\forall n, |q_n| < M$,
- (iii) (g_n) és puntualment monòtona (no estrictament).

Aleshores, $\sum f_n g_n$ convergeix uniformement.

Proposició 1.13. Test de Dirichlet. Siguin (f_n) i (g_n) successions de funcions tals que

- (i) $\forall n, |\sum_{i=1}^n f_i| < M$, és a dir, que $\sum f_n$ és uniformement fitada.
- (ii) (g_n) és puntualment monòtona (no estrictament),
- (iii) (g_n) convergeix uniformement a 0.

Aleshores, $\sum f_n g_n$ convergeix uniformement.

Definició 1.14. Anomenem sèrie de potències a una expressió de la forma

$$\sum_{n\in\mathbb{N}} a_n \left(x-a\right)^n.$$

El canvi de variable y = x - a és un desplaçament que transforma l'expressió en

$$\sum_{n\in\mathbb{N}} a_n y^n,$$

de manera que només considerarem sèries de potències d'aquesta forma.

Observació 1.15. Observem que una sèrie de potències $\sum_{n\in\mathbb{N}} a_n x^n$ defineix la successió de funcions $(\sum_{i=1}^n a_n x^n)$. Quan parlem de la convergència de la sèrie ens referirem a la convergència d'aquesta successió de funcions que defineix.

Proposició 1.16. Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències. Aleshores,

- (i) Si $\sum_{n\in\mathbb{N}} a_n x^n$ convergeix en $x_0 \neq 0$, aleshores convergeix absolutament en tot $x \in (-|x_0|,|x_0|)$. A més, convergeix uniformement en tot $[a,b] \subset (-|x_0|,|x_0|)$.
- (ii) Si $\sum_{n\in\mathbb{N}} a_n x^n$ divergeix en x_0 , aleshores divergeix en tot $x\in\mathbb{R}$ tal que $|x|>|x_0|$.

Definició 1.17. Anomenem radi de convergència de la sèrie de potències $\sum_{n\in\mathbb{N}} a_n x^n$ a

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} \in [0, +\infty].$$

Proposició 1.18. Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències i sigui $R\in[0,+\infty]$ el seu radi de convergència. Aleshores,

- (i) $\sum_{n\in\mathbb{N}} a_n x^n$ convergeix a (-R, R),
- (ii) $\sum_{n\in\mathbb{N}} a_n x^n$ divergeix a $(-\infty, R) \cup (R, +\infty)$.

El resultat també val canviant R per -R en les sèries i considerant [-R,0] i $\lim_{x\to -R^+}$.

Teorema 1.19. Teorema d'Abel.

Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències amb radi de convergència $R\in[0,+\infty)$ tal que $\sum_{n\in\mathbb{N}} a_n x^n$ convergeix a R, és a dir, si $\sum_{n\in\mathbb{N}} a_n R^n = A$. Aleshores,

- (i) $\sum_{n\in\mathbb{N}} a_n x^n$ convergeix uniformement a [0, R],
- (ii) $\lim_{x \to R^-} \sum_{n \in \mathbb{N}} a_n x^n = A$.

Observació 1.20. Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències. Observem que $\sum_{n\in\mathbb{N}} a_n x^n$ defineix una funció

$$f \colon (-R, R) \to \mathbb{R}$$

 $x \mapsto \sum_{n \in \mathbb{N}} a_n x^n.$

Lema 1.21. Les sèries de potències $\sum_{n\in\mathbb{N}} a_n x^n$ i $\sum_{n\in\mathbb{N}} n a_n x^{n-1}$ tenen el mateix radi de convergència.

Proposició 1.22. Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències i sigui R el seu radi de convergència. Aleshores, $f(x) = \sum_{n\in\mathbb{N}} a_n x^n$ és derivable a (-R,R) i

$$f'(x) = \sum_{n \in \mathbb{N}} n a_n x^{n-1}.$$

Proposició 1.23. Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències. Aleshores,

- (i) $f(x) = \sum_{n \in \mathbb{N}} a_n x^n$ és integrable Riemann a (-R, R),
- (ii) $\sum_{n\in\mathbb{N}}\int_{x_0}^x a_n t^n dt$ és una sèrie de potències en la variable x amb radi de convergència R, per tot $x_0\in(-R,R)$,

(iii)
$$\int_{x_0}^x \sum_{n \in \mathbb{N}} a_n t^n dt = \sum_{n \in \mathbb{N}} \int_{x_0}^x a_n t^n dt, \text{ per tot } x_0, x \in (-R, R).$$

Teorema 1.24. Teorema de Taylor.

Sigui $\sum_{n\in\mathbb{N}} a_n x^n$ una sèrie de potències que convergeix a f(x) a la regió (-R,R) i sigui $c\in(-R,R)$. Aleshores,

$$f(x) = \sum_{n \in \mathbb{N}} \frac{f^{(n)}(c)}{n!} (x - c)^n$$

per a tot x tal que |x - c| < R - |c|.

Teorema 1.25. Sigui f una funció suau a (a, b) tal que

$$\left|f^{(n)}\left(x\right)\right| \leq \gamma, \, \forall x \in (a,b), \, \forall n$$

per a cert $\gamma > 0$. Aleshores, f té una sèrie de Taylor de radi no nul al voltant de cada punt $c \in (a, b)$.

2 Espais de funcions contínues

Definició 2.1. Sigui E un espai vectorial. Diem que E és un espai de Banach si és normat i complet.

Teorema 2.2. Sigui $K \subseteq \mathbb{R}$ un compacte. $\mathscr{C}(K,\mathbb{R})$ dotat de la norma del suprem és un espai de Banach.

Definició 2.3. Sigui E un espai vectorial. Diem que E és una àlgebra si admet un producte intern distributiu respecte la suma.

Definició 2.4. Sigui E un espai de Banach. Diem que E és una àlgebra de Banach si és una àlgebra que satisfà que

- (i) ||1|| = 1,
- (ii) $||f \cdot g|| \le ||f|| \cdot ||g||$.

Teorema 2.5. Sigui $K \subseteq \mathbb{R}$ un compacte. $\mathscr{C}(K,\mathbb{R})$ dotat de la norma del suprem és una àlgebra de Banach.

Definició 2.6. Sigui $A \subseteq \mathbb{R}$ i sigui $\mathcal{F} \subseteq \mathscr{C}(A, \mathbb{R})$ una família de funcions contínues de A a \mathbb{R} . Fixat un $x \in A$, notarem

$$\mathcal{F}_x = \{ f(x) \mid f \in \mathcal{F} \}.$$

Diem que \mathcal{F} és puntualment fitada si \mathcal{F}_x és fitat per tot $x \in A$ i que \mathcal{F} és uniformement fitada si existeix un $\alpha \in \mathbb{R}$ tal que $||f|| < \alpha$ per tota $f \in \mathcal{F}$. Aquestes definicions per famílies de funcions d'estenen naturalment a les successions de funcions.

Proposició 2.7. Sigui $K \subseteq \mathbb{R}$ un compacte i sigui (f_n) una successió de funcions de $\mathscr{C}(K,\mathbb{R})$ uniformement convergent. Aleshores, $\mathcal{F}=(f_n)$ és uniformement fitada.

Definició 2.8. Sigui $A \subseteq \mathbb{R}$ i sigui $\mathcal{F} \subseteq \mathscr{C}(A, \mathbb{R})$ una família de funcions contínues de A a \mathbb{R} . Diem que \mathcal{F} és equicontínua si, per tot $\varepsilon > 0$, existeix un $\delta > 0$ tal que, per tota $f \in \mathcal{F}$,

$$|x - y| < \delta \implies |f(x) - f(y)| < \varepsilon.$$

Aquesta definició per famílies de funcions d'estén naturalment a les successions de funcions.

Proposició 2.9. Sigui $K \subseteq \mathbb{R}$ un compacte i sigui (f_n) una successió de funcions de $\mathscr{C}(K,\mathbb{R})$ uniformement convergent. Aleshores, $\mathcal{F}=(f_n)$ és equicontínua.

Lema 2.10. Sigui $K \subseteq \mathbb{R}$ un compacte i sigui (f_n) una successió de funcions de $\mathscr{C}(K,\mathbb{R})$ equicontínua i puntualment fitada. Aleshores, (f_n) és uniformement fitada.

Teorema 2.11. Teorema d'Arzelà-Ascoli.

Sigui $K \subseteq \mathbb{R}$ un compacte i sigui \mathcal{F} una família de funcions de $\mathscr{C}(K,\mathbb{R})$. Són equivalents

- (i) \mathcal{F} és puntualment fitada i equicontínua.
- (ii) De tota successió de funcions de \mathcal{F} se'n pot extreure una parcial convergent.

Afegint que \mathcal{F} sigui tancada obtenim una altra versió del teorema.

Teorema 2.12. Sigui $K \subseteq \mathbb{R}$ un compacte i sigui \mathcal{F} una família de funcions de $\mathscr{C}(K,\mathbb{R})$. Són equivalents

- (i) ${\mathcal F}$ és tancada, puntualment fitada i equicontínua.
- (ii) \mathcal{F} és compacta.

Teorema 2.13. Teorema d'aproximació de Weierstrass. $\mathbb{R}[x]$ és dens a $\mathscr{C}([a,b],\mathbb{R})$.

Definició 2.14. Sigui $f: [0,1] \to \mathbb{R}$. Definim el polinomi de Bernstein d'ordre n de f com

$$B_{n,f}(x) = \sum_{k=0}^{n} f\left(\frac{k}{n}\right) \binom{n}{k} x^{k} (1-x)^{n-k}.$$

Teorema 2.15. Teorema d'aproximació de Bernstein.

Sigui $f \in ([0,1], \mathbb{R})$. Per a tot $\varepsilon > 0$, existeix un $n \in \mathbb{N}$ tal que

$$||f - B_{n,f}|| < \varepsilon.$$

Definició 2.16. Siguin $f, g: \mathbb{R} \to \mathbb{R}$. Definim els operadors binaris \wedge i \vee com

$$(f \wedge g)(x) = \min (f(x), g(x)),$$

$$(f \vee g)(x) = \max (f(x), g(x)).$$

Observació 2.17. Clarament, es tenen les identitats

$$f \wedge g = \frac{f+g}{2} - \frac{|f-g|}{2},$$

$$f \vee g = \frac{f+g}{2} + \frac{|f-g|}{2}.$$

Corol·lari 2.18. Un espai vectorial de funcions és un reticle si, i només si, és tancat pel valor absolut.

Definició 2.19. Sigui $\mathcal{B} \subseteq \mathscr{C}([a,b],\mathbb{R})$. Diem que \mathcal{B} és un reticle si és tancat per \wedge i \vee .

Definició 2.20. Sigui $\mathcal{F} \subseteq$ una família de funcions $f : \mathbb{R} \to \mathbb{R}$. Diem que \mathcal{F} separa punts si, donats $x_0, x_1 \in \mathbb{R}$, existeix una funció $f \in \mathcal{F}$ tal que $f(x_0) \neq f(x_1)$. Diem que \mathcal{F} interpola punts si, donats $x_0, x_1, y_0, y_1 \in \mathbb{R}$, existeix una funció $f \in \mathcal{F}$ tal que $f(x_0) = y_0$ i $f(x_1) = y_1$.

Teorema 2.21. Teorema d'aproximació de Stone.

Sigui $\mathcal{B} \in \mathcal{C}([a,b],\mathbb{R})$ un reticle que interpola punts. Aleshores, \mathcal{B} és dens a $\mathcal{C}([a,b],\mathbb{R})$.

Proposició 2.22. Sigui $\mathcal{B} \subseteq \mathscr{C}([a,b),\mathbb{R})$ un espai vectorial que separa punts i que conté les constants. Aleshores, \mathcal{B} interpola punts.

Lema 2.23. Sigui $\mathcal{B} \subseteq \mathscr{C}([a,b],\mathbb{R})$ una subàlgebra que conté les constants. Aleshores, per tota $f \in \mathcal{B}$, es té que $|f| \in \overline{\mathcal{B}}$.

Teorema 2.24. Teorema de Stone-Weierstrass.

Sigui $\mathcal{B} \subseteq \mathscr{C}([a,b],\mathbb{R})$ una subàlgebra que conté les constants i separa punts. Aleshores, \mathcal{B} és dens en $\mathscr{C}([a,b],\mathbb{R})$.

3 La integral de Lebesgue

Definició 3.1. Sigui X un conjunt. Diem que $\mathcal{X} \subseteq \mathcal{P}(X)$ és una σ -àlgebra d'X si satisfà que

- (i) $\varnothing \in \mathcal{X}$,
- (ii) $A \in \mathcal{X} \implies \overline{A} \in \mathcal{X}$,

(iii)
$$\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{X} \implies \bigcup_{i\in\mathbb{N}}A_i\in\mathcal{X}.$$

Diem també que (X, \mathcal{X}) és un espai mesurable i els elements de \mathcal{X} els anomenem conjunts \mathcal{X} -mesurables (o, simplement, mesurables).

Observació 3.2. La intersecció numerable de conjunts mesurables és un conjunt mesurable.

Observació 3.3. La intersecció de σ -àlgebres sobre un mateix conjunt és una σ -àlgebra sobre aquest conjunt.

Definició 3.4. Anomenem àlgebra de Borel, i la notem per \mathcal{B} , a la σ -àlbegra generada pels intervals oberts $(a,b) \subseteq \mathbb{R}$. Dit d'una altra manera, \mathcal{B} és la intersecció de totes les σ -àlgebres sobre $X = \mathbb{R}$ que contenen els intervals oberts $(a,b) \subseteq \mathbb{R}$. Anomenem borelians als conjunts de \mathcal{B} .

Observació 3.5. L'àlgebra de Borel coincideix amb les àlgebres generades perls intervals tancats, els intervals semioberts, les semirectes tancades i les semirectes obertes.

Definició 3.6. Sigui (X, \mathcal{X}) un espai mesurable. Diem que una aplicació $\mu \colon \mathcal{X} \to \mathbb{R}^*$ és una mesura si satisfà

- (i) $\mu(\emptyset) = 0$,
- (ii) $\mu(A) \ge 0, \forall A \in \mathcal{X}$,
- (iii) Si $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathcal{X}$ són disjunts dos a dos, aleshores

$$\mu\left(\bigcup_{i\in\mathbb{N}}A_i\right)=\sum_{i\in\mathbb{N}}\mu\left(A_i\right).$$

Si $\mu(X) < +\infty$, diem que μ és una mesura finita.

Definició 3.7. Anomenem espai de mesura a un espai mesurable dotat d'una mesura, és a dir, a una tripleta (X, \mathcal{X}, μ) , on \mathcal{X} és una σ -àlgebra sobre X i μ és una mesura definida a (X, \mathcal{X}) .

Proposició 3.8. Sigui (X, \mathcal{X}, μ) un espai de mesura i siguin $E, F \in \mathcal{X}$ tals que $E \subseteq F$. Aleshores, $\mu(E) \leq \mu(F)$. A més, si $\mu(F) < +\infty$, es té que $\mu(F \setminus E) = \mu(F) - \mu(E)$.

Proposició 3.9. Sigui (X, \mathcal{X}, μ) un espai de mesura. Si $(E_n)_{n \in \mathbb{N}}$ és una successió creixent de \mathcal{X} , aleshores

$$\mu\left(\bigcup_{n=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mu\left(E_n\right).$$

Si $(F_n)_{n\in\mathbb{N}}$ és una successió decreixent de \mathcal{X} i $\mu(F_0)<+\infty$, aleshores

$$\mu\left(\bigcap_{n=1}^{\infty} F_n\right) = \lim_{n \to \infty} \mu\left(F_n\right).$$

Definició 3.10. Sigui (X, \mathcal{X}) un espai mesurable i sigui $f: X \to \mathbb{R}$. Diem que f és \mathcal{X} -mesurable si, per tot $\alpha \in \mathbb{R}$,

$$A_{\alpha} = f^{-1}((\alpha, +\infty)) \in \mathcal{X}.$$

Proposició 3.11. Sigui (X, \mathcal{X}) un espai mesurable. Són equivalents

- (i) $\forall \alpha \in \mathbb{R}, f^{-1}((\alpha, +\infty)) \in \mathcal{X},$
- (ii) $\forall \alpha \in \mathbb{R}, f^{-1}((-\infty, \alpha]) \in \mathcal{X},$
- (iii) $\forall \alpha \in \mathbb{R}, f^{-1}([\alpha, +\infty)) \in \mathcal{X},$
- (iv) $\forall \alpha \in \mathbb{R}, f^{-1}((-\infty, \alpha)) \in \mathcal{X}.$

Proposició 3.12. Sigui (X, \mathcal{X}) un espai mesurable, siguin f, g funcions \mathcal{X} -mesurables i sigui $c \in \mathbb{R}$. Aleshores, les funcions $cf, f^2, f + g, fg$ i |f| són mesurables.

Definició 3.13. Sigui $f: X \to \mathbb{R}$ una funció que pren valors reals. Definim les funcions $f^+, f^-: X \to \mathbb{R}$ com

$$f^+ = f \lor 0, \quad f^- = (-f) \lor 0.$$

Proposició 3.14. Sigui (X, \mathcal{X}) un espai de mesura i sigui $f: X \to \mathbb{R}$. Aleshores, f és \mathcal{X} -mesurable si, i només si, f^+ i f^- són mesurables.

Definició 3.15. Sigui (X, \mathcal{X}) un espai de mesura i sigui $f: X \to \mathbb{R}^*$. Diem que f és \mathcal{X} -mesurable si, per tot $\alpha \in \mathbb{R}$,

$$f^{-1}((\alpha, +\infty]) \in \mathcal{X}.$$

A més, definim el conjunt $\mathcal{M}(X,\mathcal{X}) = \{f : X \to \mathbb{R}^* \mid f \text{ és } \mathcal{X}\text{-mesurable}\}$, és a dir, el conjunt de funcions de X a \mathbb{R} que són $\mathcal{X}\text{-mesurables}$.

Proposició 3.16. Sigui (X, \mathcal{X}) un espai mesurable i sigui $f: X \to \mathbb{R}^*$. Considerem els conjunts

$$A = \{x \in X \mid f(x) = +\infty\},\$$

 $B = \{x \in X \mid f(x) = -\infty\}.$

Aleshores, f és \mathcal{X} -mesurable si, i només si, $A, B \in \mathcal{X}$ i la funció $f_1 \colon X \to \mathbb{R}$ definida per

$$f_{1}(x) = \begin{cases} f(x) & \text{si } x \notin A \cup B \\ 0 & \text{si } x \in A \cup B \end{cases}.$$

Lema 3.17. Sigui (X, \mathcal{X}) un espai mesurable i sigui (f_n) una successió de funcions de $\mathcal{M}(X, \mathcal{X})$. Aleshores, les funcions

$$f(x) = \inf f_n(x),$$

$$F(x) = \sup f_n(x),$$

$$f^*(x) = \liminf f_n(x),$$

$$F^*(x) = \limsup f_n(x),$$

són \mathcal{X} -mesurables.

Corol·lari 3.18. Sigui (X, \mathcal{X}) un espai mesurable i sigui (f_n) una successió de funcions de $\mathcal{M}(X, \mathcal{X})$ que convergeix puntualment a $f: X \to \mathbb{R}^*$. Aleshores, $f \in \mathcal{M}(X, \mathcal{X})$.

Definició 3.19. Sigui $\varphi \colon X \to \mathbb{R}$ una funció. Diem que φ és simple si $|\varphi(X)| \in \mathbb{N}$.

Observació 3.20. Sigui (X, \mathcal{X}) un espai mesurable i sigui $\varphi \colon X \to \mathbb{R}$ una funció simple \mathcal{X} -mesurable. Aleshores, φ es pot escriure com

$$\varphi = \sum_{j=1}^{n} a_j \mathbb{I}_{E_j},$$

amb $a_j \in \mathbb{R}$ i $E_j \in \mathcal{X}$.

Definició 3.21. Sigui (X, \mathcal{X}) un espai mesurable i sigui $\varphi \colon X \to \mathbb{R}$ una funció simple \mathcal{X} -mesurable. Diem que una representació

$$\varphi = \sum_{j=1}^{n} a_j \mathbb{I}_{E_j},$$

és canònica si els valors a_j són tots diferents, els conjunts E_j són disjunts dos a dos i llur reunió és X.

Observació 3.22. La representació canònica d'una funció simple mesurable és única.

Definició 3.23. Sigui φ una funció simple de $\mathcal{M}^+(X,\mathcal{X}) = \{f \in \mathcal{M}(x,\mathcal{X}) \mid f \geq 0\}$ i sigui μ una mesura sobre (X, \mathcal{X}) . Definim la integral de φ respecte de μ a

$$\int \varphi \, \mathrm{d}\mu = \sum_{j=1}^{n} a_{j} \mu \left(E_{j} \right),$$

convenint que $0 \cdot \infty = 0$.

Lema 3.24. Sigui (X, \mathcal{X}, μ) un espai de mesura, siguin $\varphi, \psi \in \mathcal{M}^+(X, \mathcal{X})$ funcions simples i siguin $c, c' \in \mathbb{R}^+$. Aleshores,

(i)
$$\int c\varphi + c'\psi \,d\mu = c \int \varphi \,d\mu + c' \int \psi \,d\mu$$
.

(ii) L'aplicació

$$\lambda \colon \mathcal{X} \to \mathbb{R}^*$$

$$E \mapsto \int \varphi \mathbb{I}_E \, \mathrm{d}\mu$$

és una mesura sobre (X, \mathcal{X}) .

Definició 3.25. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui $f \in \mathcal{M}^+(X, \mathcal{X}, \mu)$. Definim la integral de f respecte de μ com

$$\int f \, \mathrm{d}\mu = \sup_{\varphi \in \Phi} \int \varphi \, \mathrm{d}\mu \in \mathbb{R}^*,$$

on $\Phi = \{ \varphi \in \mathcal{M}^+(X, \mathcal{X}) \mid \varphi \leq f \}$. Sigui $E \in \mathcal{X}$. Definim també la integral de f respecte de μ sobre E com

$$\int_{E} f \, \mathrm{d}\mu = \int f \mathbb{I}_{E} \, \mathrm{d}\mu,$$

Lema 3.26. Sigui (X, \mathcal{X}, μ) un espai de mesura, siguin $f, g \in \mathcal{M}^+(X, \mathcal{X}, \mu)$ i siguin $E, F \in \mathcal{X}$. Aleshores,

- (i) Si $f \leq g$, aleshores $\int f d\mu \leq \int g d\mu$.
- (ii) Si $E \subseteq F$, aleshores $\int_E f d\mu \leq \int_F f d\mu$.

Teorema 3.27. Teorema de la convergència monòtona.

Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui (f_n) una successió monòtonament creixent de funcions de $\mathcal{M}^+(X, \mathcal{X})$. Aleshores, $f = \lim f_n \in \mathcal{M}^+(X, \mathcal{X})$ i es té que

$$\int f \, \mathrm{d}\mu = \lim \int f_n \, \mathrm{d}\mu.$$

Corol·lari 3.28. Sigui (X, \mathcal{X}, μ) un espai de mesura, siguin $f, g \in \mathcal{M}^+(X, \mathcal{X})$ i siguin $c, c' \geq 0$. Aleshores,

$$\int cf + c'g \,d\mu = c \int f \,d\mu + c' \int g \,d\mu.$$

Lema 3.29. Lema de Fatou. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui (f_n) una successió de funcions de $\mathcal{M}^+(X, \mathcal{X})$. Aleshores,

$$\int \liminf f_n \, \mathrm{d}\mu \le \liminf \int f_n \, \mathrm{d}\mu.$$

Corol·lari 3.30. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui $f \in \mathcal{M}^+(X, \mathcal{X})$. Aleshores, l'aplicació

$$\lambda \colon \mathcal{X} \to \mathbb{R}^*$$

$$E \mapsto \int_E f \, \mathrm{d}\mu$$

és una mesura sobre (X, \mathcal{X}) .

Corol·lari 3.31. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui $f \in \mathcal{M}^+(X, \mathcal{X})$. Aleshores,

$$\int f \, \mathrm{d}\mu = 0 \iff f = 0 \quad \mu\text{-g.a.}$$

Corol·lari 3.32. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui (f_n) una successió de funcions de $\mathcal{M}^+(X, \mathcal{X})$ monòtonament creixent cap a f μ -g.a.. Aleshores,

$$\int f \, \mathrm{d}\mu = \lim \int f_n \, \mathrm{d}\mu.$$

Corol·lari 3.33. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui (f_n) una successió de funcions de $\mathcal{M}^+(X, \mathcal{X})$. Aleshores,

$$\int \left(\sum_{n=1}^{\infty} g_n\right) d\mu = \sum_{n=1}^{\infty} \int g_n d\mu.$$

Definició 3.34. Sigui (X, \mathcal{X}, μ) un espai de mesura. Anomenem conjunt de funcions integrables o sumables a

$$L(X, \mathcal{X}, \mu) = \left\{ f \in \mathcal{M}(X, \mathcal{X}) \mid \int f^{+} d\mu \in \mathbb{R}, \int f^{-} d\mu \in \mathbb{R} \right\}.$$

Definició 3.35. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui $f \in L(X, \mathcal{X}, \mu)$. Anomenem integral d'f respecte de μ a

$$\int f \, \mathrm{d}\mu = \int f^+ \, \mathrm{d}\mu - \int f^- \, \mathrm{d}\mu.$$

Sigui $E \in \mathcal{X}$. Anomenem integral d'f sobre E respecte de μ a

$$\int_{E} f \, \mathrm{d}\mu = \int f \cdot \mathbb{I}_{E} \, \mathrm{d}\mu.$$

Comentari: a partir d'aquí, serem menys rigorosos amb la notació i no especificarem cada vegada l'espai de mesura.

Teorema 3.36. Sigui f una funció mesurable. Aleshores,

$$f \in L \iff |f| \in L$$
.

En aquest cas,

$$\left| \int f \right| \le \int |f| \ .$$

Corol·lari 3.37. Siguin f una funció mesurable i g una funció integrable tals que $|f| \le |g|$. Aleshores, f és integrable i

$$\int |f| \le \int |g|.$$

Teorema 3.38. Siguin $f, g \in L$ i siguin $c, c' \in \mathbb{R}$. Aleshores, $cf + c'g \in L$ i

$$\int (cf + c'g) = c \int f + c' \int g.$$

Teorema 3.39. Teorema de la convergència dominada.

Sigui (f_n) una successió de funcions mesurables que convergeix μ -g.a. a f tal que existeix una funció integrable g amb $|f_n| \leq g$, $\forall n \in \mathbb{N}$. Aleshores, f és integrable i

$$\int f = \lim \int f_n.$$

Teorema 3.40. Sigui f una funció integrable Riemann a [a,b]. Aleshores $f \cdot \mathbb{I}_{[a,b]} \in L(\mathbb{R}, \mathcal{B}, \lambda)$ i

$$\int f \cdot \mathbb{I}_{[a,b]} \, \mathrm{d}\lambda = \int_a^b f(x) \, \mathrm{d}x.$$

Definició 3.41. Siguin $f, g \in L$. Diem que f i g són μ -equivalents si f = g μ -g.a. Escrivim $f \stackrel{\mu}{\sim} g$.

Lema 3.42. $\stackrel{\mu}{\sim}$ és una relació d'equivalència.

Definició 3.43. Sigui (X, \mathcal{X}, μ) un espai de mesura. Anomenem espai de Lebesgue L_1 a

$$L_1(X, \mathcal{X}, \mu) = L(X, \mathcal{X}, \mu) / \mu$$

és a dir, el conjunt de classes d'equivalència d'L respecte de $\stackrel{\mu}{\sim}$. Sovint notarem simplement L_1 i $f \in L_1$ en comptes de $[f] \in L_1$. Definim la norma $\|\cdot\|_1$ com

$$\|\cdot\|_1: L_1 \to \mathbb{R}$$
$$[f] \mapsto \|[f]\|_1 \equiv \int |f| \, \mathrm{d}\mu.$$

Teorema 3.44. $(L_1, \|\cdot\|_1)$ és un espai normat.

Definició 3.45. Sigui (X, \mathcal{X}, μ) un espai de mesura i sigui $p \geq 1$. Anomenem espai de Lebesgue L_p a

$$L_{p}\left(X,\mathcal{X},\mu\right)=\left\{ f\in\mathcal{M}\left(X,\mathcal{X},\mu\right):\left|f\right|^{p}\in L\left(X,\mathcal{X},\mu\right)\right\} /_{\mu},$$

és a dir, el conjunt de classes d'equivalència de les funcions f mesurables tals que $|f|^p$ és integrable respecte de la relació d'equivalència $\stackrel{\mu}{\sim}$. Sovint notarem simplement L_p i $f \in L_p$ en comptes de $[f] \in L_p$. Definim la norma $\|\cdot\|_p$ com

$$\|\cdot\|_p : L_p \to \mathbb{R}$$

 $[f] \mapsto \|[f]\|_p \equiv \int |f|^p d\mu.$

Lema 3.46. Designatat de Young. Signin $a, b \ge 0$ i signin p, q > 1 tals que

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Aleshores,

$$ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Lema 3.47. Desigualtat de Hölder. Siguin $f \in L_p, g \in L_q$, amb p, q > 1 tals que

$$\frac{1}{p} + \frac{1}{q} = 1.$$

Aleshores, $fg \in L_1$ i

$$||fg||_1 \le ||f||_p \cdot ||g||_q$$
.

Proposició 3.48. Designaltat de Cauchy-Bunyakovskii-Schwarz. Siguin $f, g \in L_2$. Aleshores, fg és integrable i

$$||fg||_1 \le ||f||_2 \cdot ||g||_2.$$

Lema 3.49. Desigualtat de Minkowski. Siguin $f, g \in L_p$. Aleshores, $f + g \in L_p$ i

$$||f+g||_p \le ||f||_p + ||g||_p$$
.

Teorema 3.50. $(L_p, \|\cdot\|_p)$ és un espai normat.

Teorema 3.51. Teorema de completesa de L_p . $(L_p, ||\cdot||_p)$ és un espai de Banach.