Universidade Federal de Alfenas

Algoritmos em Grafos

Aula 10 – Árvore Geradora Mínima: Algoritmo de Prim Prof. Humberto César Brandão de Oliveira

humberto@bcc.unifal-mg.edu.br

Relembrando aula passada... Kruskal

• Exemplo:

- Assim como o algoritmo de Kruskal, o algoritmo de Prim também é uma especialização do algoritmo genérico visto em sala;
 - Onde o ponto chave é a localização de uma aresta segura que cruza o corte para ingressar no conjunto X de arestas da AGM;

- Ao contrário do algoritmo de Kruskal, no algoritmo de Prim o corte no grafo pode ser facilmente visualizado;
- e implementado...

$$S = \{a, b, d, e\}$$

 $V - S = \{h, i, c, g, f\}$

• Diferente do *algoritmo de Kruskal*, o *algoritmo de Prim* forma uma *única árvore* ao longo da construção da AGM;

• Idéia geral:

- O algoritmo começa de um vértice r qualquer e expande a árvore até alcançar todos os vértices de V;
- Durante o processo, X é o tempo todo uma árvore;
 - Nunca uma floresta com mais de uma árvore como pode acontecer no Algoritmo de Kruskal.

- O *algoritmo de Prim* é **guloso** porque a árvore é expandida a cada etapa com uma aresta que **adiciona o menor peso** possível na árvore;
- Relembrando, o algoritmo de Kruskal é guloso porque adiciona a aresta de menor peso na floresta que não fecha ciclo em alguma de suas árvores;

- O ponto chave para a obtenção de um algoritmo simples e eficiente é tornar fácil a seleção de uma nova aresta a ser adicionada à árvore formada pelas arestas em X;
 - Ou seja, da arestas que cruzam o corte, qual é a aresta leve?
 - · Mas antes disso, quem é o corte???

- Estruturas auxiliares
 - Q: Vértices que ainda não fazem parte da AGM parcial (ainda não fazem parte do conjunto X);
 - chave[u]: peso da aresta mais leve do vértice u que a conecta à AGM parcialmente construída;
 - π[u]: vértice pai do vértice u;

• Vamos acompanhar o algoritmo pelo seguinte grafo...

 $AGM_Prim(G(V, A), w, r)$

vértice	a	b	c	d	e	f	g	h	i
chave									
π									
Q									

 $AGM_Prim(G(V, A), w, r)$

$$X \leftarrow \{ \}$$

vértice	a	b	c	d	e	f	g	h	i
chave	∞								
π	NULL								
Q									

4

8

11

h

a

 $AGM_{Prim}(G(V, A), w, r)$

$$X \leftarrow \{ \}$$

para cada vértice $u \in V$ faça

$$chave[u] \leftarrow \infty$$

$$\pi[u] \leftarrow NULL$$

$$chave[r] \leftarrow 0$$

$$Q \leftarrow V$$

vértice	a	b	c	d	e	f	g	h	i
chave	0	∞							
π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
Q									

14

10

Algoritmo de Prim AGM_Prim(G(V,A), w, r)

vértice	a	b	c	d	e	f	g	h	i
chave	O	∞							
π	NULL	NIII	NULL	NULL	NULL	NULL	NIII.	NULL	NULL
Q	X	X	X	X	X	X	X	X	X

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	∞							
π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
Q	X	X	X	X	X	X	X	X	X

enquanto $Q \neq \{\}$


```
u \leftarrow extrairMinimo(Q)
    X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r
    para\ cada\ v \in Adj[u]\ faça
       se\ (v \in Q)e(w(u,v) < chave[v])
         chave[v] \leftarrow w(u,v)
         \pi[v] \leftarrow u
       fim se
    fim para
  fim enquanto
  retorne X
fim.
```

vértice	a	b	c	d	e	f	g	h	i
chave	0	∞							
π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
Q	$\left(\right)$	X	X	X	X	X	X	X	X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ para cada v∈ Adj[u] faça 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	(b)	c	d	e	f	g	h	i
chave	O	∞							
π	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL	NULL
Q		X	X	X	X	X	X	X	X

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ \blacktriangleright chave[v] \leftarrow w(u,v) $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a		b	c	d	e	f	g	(h)	i
chave	O		4	∞	∞	∞	∞	∞	8	∞
π	NULL	(a	NULL	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X	X

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	∞	∞	∞	∞	∞	8	∞
π	NULL	a	NULL	NULL	NULL	NULL	NULL	a	NULL
Q		X	X	X	X	X	X	X	X

enquanto $Q \neq \{\}$


```
u \leftarrow extrairMinimo(Q)
    X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r
    para\ cada\ v \in Adj[u]\ faça
       se\ (v \in Q)e(w(u,v) < chave[v])
         chave[v] \leftarrow w(u,v)
         \pi[v] \leftarrow u
       fim se
    fim para
  fim enquanto
  retorne X
fim.
```

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	∞	∞	∞	∞	∞	8	∞
π	NULL	a	NULL	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X

a 11 i a 4 14 e h 10 f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto

fim.

retorne X

vértice	a	(b)	c	d	e	f	g	h	i
chave	O	4	∞	∞	∞	∞	∞	8	∞
π	NULL	a	NULL	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ para cada v∈ Adj[u] faça 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b $chave[v] \leftarrow w(u,v)$ 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	(c	d	e	f	g	(h)	i
chave	0	4	∞	∞	∞	∞	∞	8	∞
π	NULL	a	NULL	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b ightharpoonup chave[v] \leftarrow w(u, v) 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	(c	d	e	f	g	(h)	i
chave	0	4	8	∞	∞	∞	∞	8	∞
π	NULL	a	b	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X

 $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

enquanto $Q \neq \{\}$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	∞	8	∞
π	NULL	a	b	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X	X	X

enquanto $Q \neq \{\}$

Algoritmo de Prim


```
u \leftarrow extrairMinimo(Q)
    X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r
    para\ cada\ v \in Adj[u]\ faça
       se\ (v \in Q)e(w(u,v) < chave[v])
         chave[v] \leftarrow w(u,v)
         \pi[v] \leftarrow u
       fim se
    fim para
  fim enquanto
  retorne X
fim.
```

vértice b d a 8 chave 4 ∞ ∞ 0 ∞ ∞ ∞ b NULL NULL NULL **NULL NULL** a a π X X X X X X

b 8 c 7 d 9
a 11 i 4 14 e
b 7 10

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} / | seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	∞	8	∞
π	NULL	a	b	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X		X

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	∞	8	∞
π	NULL	a	b	NULL	NULL	NULL	NULL	a	NULL
Q			X	X	X	X	X		X

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	8	∞	∞	∞	1	8	7
π	NULL	a	b	NULL	NULL	NULL	h	a	h
Q			X	X	X	X	X		X

b 8 c 7 d 9
a 11 i 4 14 e
b 7 10

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	1	8	7
π	NULL	a	b	NULL	NULL	NULL	h	a	h
Q			X	X	X	X	X		X

enquanto $Q \neq \{\}$


```
u \leftarrow extrairMinimo(Q)
    X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r
    para\ cada\ v \in Adj[u]\ faça
       se\ (v \in Q)e(w(u,v) < chave[v])
         chave[v] \leftarrow w(u,v)
         \pi[v] \leftarrow u
       fim se
    fim para
  fim enquanto
  retorne X
fim.
```

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	1	8	7
π	NULL	a	b	NULL	NULL	NULL	h	a	h
Q			X	X	X	X	()		X

b 8 c 7 d 9
a 11 i 6
7 10
h g g f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} / | seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X fim.

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	∞	1	8	7
π	NULL	a	b	NULL	NULL	NULL	h	a	h
Q			X	X	X	X			X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ • para cada v∈ Adj[u] faça 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b $chave[v] \leftarrow w(u,v)$ 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	(f)	g	h	(i)
chave	O	4	8	∞	∞	∞	1	8	7
π	NULL	a	b	NULL	NULL	NULL	h	a	h
Q			X	X	X	X			X

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	2	1	8	6
π	NULL	a	b	NULL	NULL	g	h	a	g
Q			X	X	X	X			X

b 8 c 7 d 9
a 11 i 6 4 14 e
h 7 f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto

fim.

retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	2	1	8	6
π	NULL	a	b	NULL	NULL	g	h	a	g
Q			X	X	X	X			X

enquanto $Q \neq \{\}$

Algoritmo de Prim

▶
$$u \leftarrow extrairMinimo(Q)$$
 $X \leftarrow X \cup \{(u, \pi[u])\} / | se u \neq r$
 $para \ cada \ v \in Adj[u] \ faça$
 $se \ (v \in Q) \ e \ (w(u, v) < chave[v])$
 $chave[v] \leftarrow w(u, v)$
 $\pi[v] \leftarrow u$
 $fim \ se$
 $fim \ para$
 $fim \ enquanto$
 $retorne \ X$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	8	∞	∞	2	1	8	6
π	NULL	a	b	NULL	NULL	g	h	a	g
Q			X	X	X				X

b 8 c 7 d 9
a 11 i 4 14 e

h 7 6 10

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	(f)	g	h	i
chave	O	4	8	∞	∞	2	1	8	6
π	NULL	a	b	NULL	NULL	g	h	a	g
Q			X	X	X				X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ • para cada v∈ Adj[u] faça 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b $chave[v] \leftarrow w(u,v)$ 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	(c	d	(e)	f	g	h	i
chave	O	4	8	∞	∞	2	1	8	6
π	NULL	a	b	NULL	NULL	g	h	a	g
Q			X	X	X				X

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	\mathbf{f}	(g)	h	i
chave	O	4	4	14	10	2	1	8	6
π	NULL	a	f	f	f	g	h	a	g
Q			X	X	X				X

b 8 c 7 d 9
a 11 i 6 4 14 e
h 7 f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto

fim.

retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	14	10	2	1	8	6
π	NULL	a	f	f	f	g	h	a	g
Q			X	X	X				X

enquanto $Q \neq \{\}$

Algoritmo de Prim


```
u \leftarrow extrairMinimo(Q)
  X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r
  para\ cada\ v \in Adj[u]\ faça
    se\ (v \in Q)e(w(u,v) < chave[v])
       chave[v] \leftarrow w(u,v)
       \pi[v] \leftarrow u
     fim se
  fim para
fim enquanto
retorne X
```

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	14	10	2	1	8	6
π	NULL	a	f	f	f	g	h	a	g
Q				X	X				X

b 8 c 7 d 9
a 11 i 4 14 e
b 7 6 f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto

fim.

retorne X

vértice	a	b	$\left(\begin{array}{c} \mathbf{c} \end{array}\right)$	d	e	f	g	h	i
chave	O	4	4	14	10	2	1	8	6
π	NULL	a	f	f	f	g	h	a	g
Q				X	X				X

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ para cada v∈ Adj[u] faça 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b $chave[v] \leftarrow w(u,v)$ 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	(d)	e	(f)	g	h	(i)	
chave	O	4	4	14	10	2	1	8	6	
π	NULL	a	f	f	f	g	h	a	g	
Q				X	X				X	

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ 8 $se\ (v \in Q)e(w(u,v) < chave[v])$ b \rightarrow chave[v] \leftarrow w(u,v) 4 $\rightarrow \pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	f	g	h	\int i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				X

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X fim.

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				X

enquanto $Q \neq \{\}$

Algoritmo de Prim

▶
$$u \leftarrow extrairMinimo(Q)$$
 $X \leftarrow X \cup \{(u, \pi[u])\} / | se u \neq r$
 $para \ cada \ v \in Adj[u] \ faça$
 $se \ (v \in Q) \ e \ (w(u, v) < chave[v])$
 $chave[v] \leftarrow w(u, v)$
 $\pi[v] \leftarrow u$
 $fim \ se$
 $fim \ para$
 $fim \ enquanto$
 $retorne \ X$

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				()

b 8 c 7 d 9
a 11 i 4 14 e
b 7 6 10

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice	a	b	c	d	e	f	g	h	(i)
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				

6

4

14

8

b

4

a)11

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$

→ para cada v∈ Adj[u] faça

 \Longrightarrow se $(v \in Q)$ e (w(u,v) < chave[v])

 \implies chave[v] \leftarrow w(u, v)

 $\pi[v] \leftarrow u$

fim se

fim para

fim enquanto

retorne X

					<i>J</i> -				
vértice	a	b	$\left(\begin{array}{c} \mathbf{c} \end{array}\right)$	d	e	f	(g)	h	i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X fim.

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				X	X				

enquanto $Q \neq \{\}$

Algoritmo de Prim

▶
$$u \leftarrow extrairMinimo(Q)$$
 $X \leftarrow X \cup \{(u, \pi[u])\} / | se u \neq r$
 $para\ cada\ v \in Adj[u]\ faça$
 $se\ (v \in Q)e\ (w(u, v) < chave[v])$
 $chave[v] \leftarrow w(u, v)$
 $\pi[v] \leftarrow u$
 $fim\ se$
 $fim\ para$
 $fim\ enquanto$
 $retorne\ X$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q				()	X				

b 8 c 7 d 9
a 11 i 4 14 e

h 7 6 f

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

$$X \leftarrow X \cup \{(u, \pi[u])\} // se u \neq r$$

 $para\ cada\ v \in Adj[u]\ faça$

$$se\ (v \in Q)e(w(u,v) < chave[v])$$

$$chave[v] \leftarrow w(u,v)$$

$$\pi[v] \leftarrow u$$

fim se

fim para

fim enquanto

retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q					X				

 $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} / | se u \neq r$ $\Rightarrow para \ cada \ v \in Adj[u] \ faça$ $se \ (v \in Q) \ e \ (w(u, v) < chave[v])$ $chave[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ $fim \ se$ $fim \ para$

enquanto $Q \neq \{\}$

→ para caaa v∈ Aaj[u]
$se\ (v \in Q)e(w(u,v)$
$chave[v] \leftarrow w(u, v)$
$\pi[v] \leftarrow u$
fim se
fim para
fim enquanto
retorne X

vértice	a	b	\mathbf{c}	d	(e)	(f)	g	h	i
chave	0	4	4	7	10	2	1	8	2
π	NULL	a	f	c	f	g	h	a	c
Q					X				

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ 8 \Rightarrow se $(v \in Q)$ e (w(u, v) < chave[v])b ightharpoonup chave[v] \leftarrow w(u,v) 4 $\pi[v] \leftarrow u$ 4 14 a)11 fim se 6 fim para fim enquanto retorne X fim.

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

vértice	a	b	c	d	e	f	g	h	i
chave	0	4	4	7	9	2	1	8	2
π	NULL	a	f	c	d	g	h	a	c
Q					X				

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\}// se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e\ (w(u, v) < chave[v])$ $chave[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ $fim\ se$ $fim\ para$

retorne X

fim enquanto

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	9	2	1	8	2
π	NULL	a	f	c	d	g	h	a	c
Q					X				

enquanto $Q \neq \{\}$

Algoritmo de Prim

▶ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} / | se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)\ e\ (w(u, v) < chave[v])$ $chave[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ $fim\ se$ $fim\ para$ $fim\ enquanto$ $retorne\ X$

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	9	2	1	8	2
π	NULL	a	f	c	d	g	h	a	c
Q									

b 8 c 7 d 9
a 11 i 4 14 e

h 7 6 f

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} / se u \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e\ (w(u, v) < chave[v])$ $chave[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ $fim\ se$ $fim\ para$

fim.

fim enquanto

retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	9	2	1	8	2
π	NULL	a	f	c	d	g	h	a	c
Q									

6

4

14

8

b

4

a)11

enquanto $Q \neq \{\}$

 $u \leftarrow extrairMinimo(Q)$

 $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$

→ para cada v∈ Adj[u] faça

 \Longrightarrow se $(v \in Q)$ e (w(u,v) < chave[v])

 \implies chave[v] \leftarrow w(u, v)

 $\pi[v] \leftarrow u$

fim se

fim para

fim enquanto

retorne X

vértice	a	b	c	d	e	f	g	h	i
chave	O	4	4	7	9	2	1	8	2
π	NULL	a	f	c	d	g	h	a	c
Q									

b 8 c 7 d 9
a 11 i 6 4 14 e
b 7 6 7 10

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X

vértice b d h a e 8 chave 4 4 9 1 2 0 f d h **NULL** g a a C π

enquanto $Q \neq \{\}$ $u \leftarrow extrairMinimo(Q)$ $X \leftarrow X \cup \{(u, \pi[u])\} // seu \neq r$ $para\ cada\ v \in Adj[u]\ faça$ $se\ (v \in Q)e(w(u,v) < chave[v])$ $chave[v] \leftarrow w(u,v)$ $\pi[v] \leftarrow u$ fim se fim para fim enquanto retorne X fim.

vértice	e a	b	c	d	e	f	g	h	i	
chave	0	4	4	7	9	2	1	8	2	
π	NULL	a	f	c	d	g	h	a	c	>
Q										

Entendendo PRIM nos moldes do Algoritmo Genérico

- AGM_PRIM((V,A), w, a)
 - Começando do vértice a;


```
Conjunto S: {a}
Conjunto V-S: {b,c,d,e,f}
X={ }
```



```
Conjunto S: {a}
Conjunto V-S: {b,c,d,e,f}
X={ }
```


Conjunto S: {a,f}

Conjunto V-S: {b,c,d,e}

 $X = \{(a,f)\}$

Conjunto S: {a,f}

Conjunto V-S: {b,c,d,e}

 $X = \{(a,f)\}$

Conjunto S: {a,f,e}

Conjunto V-S: {b,c,d}

 $X = \{(a,f),(f,e)\}$

Conjunto S: {a,f,e}

Conjunto V-S: {b,c,d}

 $X = \{(a,f),(f,e)\}$

Conjunto S: {a,f,e,b} Conjunto V-S: {c,d} X={(a,f),(f,e),(a,b)}

Conjunto S: {a,f,e,b} Conjunto V-S: {c,d} X={(a,f),(f,e),(a,b)}

Conjunto S: {a,f,e,b,d}

Conjunto V-S: {c}

 $X = \{(a,f),(f,e),(a,b),(b,d)\}$

Conjunto S: {a,f,e,b,d}

Conjunto V-S: {c}

 $X = \{(a,f),(f,e),(a,b),(b,d)\}$

Conjunto S: {a,f,e,b,d,c} Conjunto V-S: { } X={(a,f),(f,e),(a,b),(b,d),(c,e)} Custo da AGM: 84

Exercício

- AGM_PRIM((V,A), w, a)
 - Começando do vértice i;

Curiosidades

- O algoritmo de *Prim* foi criado em 1930 por *Vojtech Jarnik* (matemático checo). Apenas 3 anos depois da proposta do problema;
- Em 1957, Prim reinventa o algoritmo quando trabalhava nos laboratórios Bell, ao lado de Kruskall (publicando o trabalho no Bell Systems Technical Journal);
- Em 1959 *Djikstra* (matemático holandês) reinventa novamente o mesmo algoritmo;
- As vezes, na literatura podemos encontrar a referencia de *Algoritmo de Jarnik* para referenciar o mais conhecido popularmente como Algoritmo de Prim.

Bibliografia

 CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; (2002). Algoritmos – Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro. Editora Campus.

• ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson;

