2020 소프트웨어공학종합프로젝트(캡스톤디자인) 최종 발표

스마트미터(AMI) 공격 시나리오 기반 **인공지능 NIDS 개발**

캡스톤디자인 A2조 | 145204 윤성수 160542 신미주 175650 임수민

목차

- 1. 주제 선정
- 2. 아키텍처
- 3. 시나리오
- 4. 시연 영상

주제 선정

Topic selection

1. 배경

>> 스마트미터 관련 동향

지능형전력망의 구축 및 이용촉진에 관한 법률 (약청: 지능형전력망법)

[시행 2017, 9, 22,] [법률 제14674호, 2017, 3, 21, 일부개정]

산업통상자원부(전력진흥과), 044-203-5266

지능형전력망의 구축 및 이용촉진에 관한 법률 시행령 (약청:지능형전력망법 시행령)

[시행 2020, 3, 3,] [대통령령 제30509호, 2020, 3, 3,, 타법개정]

산업통상자원부(전력진흥과), 044-203-5266 산업통상자원부(분산에너지과), 044-203-5194

스마트미터링처, HPGP PLC형 AMI 테스트 통과업체 12개사 소집

한전 HPGP AMI 사업 추진 여부에 촉각

입찰 및 보안모듈 문제 등 논의, 한전, "늦어도 4월 중 공고 예정"

강수진 기자 작성: 2020년 03월 09일(월) 11:44 게시: 2020년 03월 09일(월) 17:01

▶▶ 최근 **국내에서 AMI(스마트 미터) 도입을 추진** 중에 있음

1. 배경

>> AMI 란?

- 지능형 원격 검침 장치, 스마트 전력량계
- 스마트 그리드의 핵심 요소
- 전기 사용량과 시간대별 요금 정보 등의 데이터를 수집하여 실시간으로 소비자와 공급자 양방향에 제공

1. 배경

>> 스마트 미터 공격 사례

- 스마트 미터 해킹을 통해 운영 센터가 침입된 사건
- 스마트 미터 취약점을 공격하는 **웜 전파 시뮬레이션**이 BlackHat에 의해 이루어졌으며 **24시간에 25,000대의 스마트 미터를 감염**시킴
- DDoS 공격을 통해 스마트미터가 마비되는 것을 보였으며, 스마트미터 취약점을 이용 하여 웜을 감염시키고 주변으로 전파하는 것을 시연.

(출처, AMI treats, intrusion detection requriements and deployment recommendations IEEE,2012)

▶▶ AMI(스마트 미터) 도입 시 해킹 위협 발생 가능

<u>1. 배경</u>

>> IDS/IPS 솔루션 동향

▶▶ 최근 판매되는 IDS & IPS에 **머신러닝, 딥러닝 기술**이 주로 적용됨

"스마트 미터(AMI) 공격 시나리오 기반 인공지능 NIDS <u>개발</u> "

2. 주제 선정

>> 탐지 공격 타켓팅 & 탐지 모델 선정

- 탐지 공격 유형 : DoS/DDoS
- 학습 및 검증 데이터셋 : CICIDS2017
- 탐지 모델: Auto Encoder

<u>2. 주제 선정</u>

>> 공격 유형, 왜 DoS, DDoS 인가?

• (2019) Exploring Severity Ranking of Cyber-Attacks in Modern Power Grid

T. C. L.	Voltage Index at PCC			
Type of Attack	With Attack	Without Attack	Severity Ranking	
DDoS	0.4029		1	
FDI	0.1338		4	
Compromised Key	0.1156		5	
Man-In-Middle	0.08147		8	
Replay	0.0815	0.0435	7	
Crash Override	0.2095		3	
Packet Drop	0.0665		9	
Jamming	0.4028		2	
Stealthy Deception	0.1089		6	

>> 전력 망에서 공격 수행 시 가장 큰 파급 효과를 보이는 공격

2. 주제 선정

>> 데이터 셋, 왜 CICIDS2017인가?

데이터 셋	정상 (비율)	DoS/DDoS (비율)	총 데이터	최신 공격 기법 반영
ISCX-IDS-2012	739,300 (94%)	41,236 (5%)	780,536	X
KDDCup-99	157,870 (20%)	621,311 (79%)	779,181	Χ
KISA 정보보호 R&D	2,883,653 (99%)	129 (0.00004%)	2,883,782	0
CICIDS-2017	440,032 (63%)	251,723 (37%)	691,755	0

CICIDS-2017은 총 691,755개 중 정상 데이터 440,032개, 공격 데이터
251,723개로 다른 오픈 DOS/DDOS 데이터 셋에 비해 데이터 불균형이 적었음

2. 주제 선정

>> 탐지 모델, 왜 AutoEncoder 인가?

- 1. 머신러닝 / 딥러닝을 이용한 이유 최신 **공격의 패턴을 학습**하여 IDS에 즉시 적용할 수 있는 방법이 필요.
- 2. 비지도 학습을 이용한 이유 비지도 **학습은 특징 간의 관계성을 스스로 학습 및 예측**하기 때문에 지도 학습의 한계를 극복할 수 있다고 판단
- 3. AutoEncoder를 사용한 이유

학습 방법	알고리즘	Precision	Recall	Accuracy
지도 학습	KNN	0.99	0.83	0.94
	Decision Tree	0.98	0.89	0.95
	Random Forest	0.99	0.89	0.96
	SVM	0.97	0.63	0.86
	DNN	0.92	0.92	0.94
비지도 학습	Kmeans-Clustering	0.97	0.52	0.82
	Auto Encoder	0.95	0.95	0.93

학습한 비지도 학습 알고리즘과 지도 학습 알고리즘과 비교했을 때, AutoEncoder가 공격 데이터 탐지
에 있어서 전체적으로 성능이 더 좋다고 판단

아키텍처 Architecture

<u>3. 아키텍처</u>

AMI_IDS

공격 시나리오

scenario

<u>4. IDS 배치</u>

<u>5. 공격 시나리오</u>

가정: 공격자는 내부 네트워크를 침입하여 공격을 수행함

시연 영상 Presentation

1. 최근 국내 AMI 도입 추진 중. <u>스마트미터 도입으로</u> <u>야기될 수 있는 위협에 대응</u>하기 위해서 AMI 환경 기반 IDS 의 필요성이 대두됨

요약

- 2. 다양한 인공지능 모델을 비교 분석하여, 최적의 모델을 적용시킨 인공지능 IDS 개발
- 3. 실제 간이의 AMI환경과 공격 시나리오를 구축하여, 개발한 IDS의 정상적인 동작 확인

2020 소프트웨어공학종합프로젝트(캡스톤디자인) 최종 발표 스마트미터(AMI) 공격 시나리오 기반 인공지능 NIDS

감사합니다.

캡스톤디자인 A2조 | 145204 윤성수 160542 신미주 175650 임수민 22/22