

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 September 2002 (12.09.2002)

PCT

(10) International Publication Number
WO 02/069980 A2

(51) International Patent Classification⁷: **A61K 31/58**,
A61P 9/00, 13/12, 17/02, 19/08

Hong Kong (CN). WONG, Ngok, Shun, Ricky [GB/CN];
Flat G, 21/F, Castello, 69 Siu Lek Yuen Road, Shatin, N.T.,
Hong Kong (CN). YEUNG, Hin, Wing [CN/CN]; 69C
Waterloo Road, 2nd Floor, Kowloon, Hong Kong (CN).

(21) International Application Number: **PCT/GB02/00891**

(74) Agent: **GILL JENNINGS & EVERY**; Broadgate House,
7 Eldon Street, London EC2M 7LH (GB).

(22) International Filing Date: 1 March 2002 (01.03.2002)

(81) Designated States (*national*): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EB, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0105613.4 7 March 2001 (07.03.2001) GB

(84) Designated States (*regional*): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

(71) Applicants (*for all designated States except US*): CAM-
BRIDGE UNIVERSITY TECHNICAL SERVICES
LIMITED [GB/GB]; The Old Schools, Trinity Lane,
Cambridge CB2 1TS (GB). HONG KONG BAPTIST
UNIVERSITY [CN/CN]; Kowloon Tong, Kowloon, Hong
Kong (CN).

Published:

— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(71) Applicant and
(72)-Inventor: SENGUPTA, Shiladitya [IN/US]; 100 Lake
Street, Brighton, MA 02135 (US).

(72) Inventors; and

(75) Inventors/Applicants (*for US only*): FAN, Tai-Ping
[GB/GB]; 23 Carlton Rise, Melbourn, Royston, Herts
SG8 6BZ (GB). TOH, Sue-Anne Ee Shiow [MY/GB];
Newnham College, Cambridge CB2 9DF (GB). LEUNG,
Hi, Wun [CN/CN]; Flat B, G/F, Block 9, Casa De Oro, 23
Hung Sui Kiu Main Street, Yuen Long, New Territories,

A2
WO 02/069980 A2

(54) Title: PHARMACEUTICALLY EFFECTIVE COMPOUNDS AND THEIR USE

(57) Abstract: The invention provides use of panaxadiol for the treatment of conditions requiring stimulation of angiogenesis but not stimulation of chemoinvasion and use of panaxadiol in the manufacture of medicaments for such treatments. A preferred panaxadiol is the naturally occurring ginsenoside Rb1.

Pharmaceutically Effective Compounds and Their Use

This invention relates to compounds which we have found to have angiogenic effects in particular circumstances, in particular the ginseng component Rb₁ and its derivatives, and other panaxadiol ginsenosides which act in the same way, and their use in certain therapeutic applications for which angiogenic response is valuable.

The root of Panax ginseng has been well known as a general "tonic" for many centuries. It is used for its anti-stress effects and for toning up the nervous system, and has been suggested for a variety of other purposes, including treatment of atherosclerosis, cerebrovascular diseases, liver dysfunction, post-menopausal disorders and hypertension.

Attele et al in Biochem. Pharmacol. Vol. 58, pp 1685-1693, 1999, review the various pharmacological effects which have been reported for ginseng.

Morisaki et al in Br. J. Pharmacol. (1995) 115, 1188-1193 surmise that saponin of ginseng *Radix rubra* influences angiogenesis. They state that orally administered ginseng has been reported to stimulate the repair of intractable skin ulcers in some patients. Morisaki et al suggest a mechanism of tube formation by saponin modifying the balance of protease/protease inhibitor secretion from HUVEC and enhancing the migration of HUVEC.

Kanzaki et al in Br. J. Pharmacol. (1998) 125, 255-262, disclose some effects of saponin on wound healing. They report the Morisaki et al suggestion that saponin stimulates wound healing by the suggested mechanism above, but carry out further testing to clarify this. They surmise that saponin stimulates fibronectin synthesis through changes of TGF- β receptor expressions in fibroblasts.

Although these authors have surmised possible effects on wound healing of saponin of ginseng the mechanism of wound healing is so complex and so many factors are involved that the situation is far from certain.

White et al in Pharmacotherapy July 2001; 21(7): 773-7, "An Evaluation of the Hemostatic Effects of Hydrophilic, Alcohol and Lipophilic Extracts of Notoginseng" disclose that notoginseng extracts can have hemostatic effects. The 5 same authors discuss use of notoginseng extracts for hemostatic effects in J. Clin. Pharmacol. 2000 Oct.; 40(10): 1150-3.

Separately, Sato et al in Biol. Pharm. Bull. 1994 May; 17(5):635-9, report that one ginsenoside, Rb₂, inhibited tumour growth and showed an anti-angiogenic effect.

Mochizuki et al in Bio. Pharm. Bull. 1995; Sep; 17 (9): 1197-202 disclose that saponin preparations 20(R)-and 20(S)-ginsenoside-Rg₃ inhibit the lung metastasis of tumour 15 cells and suggest that this mechanism is related to inhibition of the adhesion and invasion of tumour cells and to anti-angiogenic activity.

Therefore, the effects of ginseng on angiogenesis are at present uncertain. As can be seen from above, it has 20 been suggested both that it exhibits angiogenic effects and that it exhibits anti-angiogenic effects.

WO01/92289, published 6 December 2001, discloses intravenous preparations, skin preparations, mucosal preparations and cosmetics comprising Rb ginsenosides as 25 skin tissue regeneration/reconstruction promoters or wound healing promoters and as fertiliser additives for use as plant tissue regeneration/reconstruction promoters. However, this publication does not discuss angiogenesis in particular. Many factors are involved in the wound healing 30 process, of which angiogenesis is just one. Other steps can include fibroblast or keratocintyte growth, chemoattraction of inflammatory cells etc.

Our publication WO02/07732, published 31 January 2002, discloses that panaxatriol ginsenosides, in particular the 35 naturally-occurring ginsenoside Rg1, may be used for stimulation of angiogenesis.

A known component in ginseng is the panaxadiol ginsenoside Rb₁. Rb₁ has a four trans-ring steroid skeleton and is a panaxadiol (see Figure 1a). The ginsenoside Rb₂ and the ginsenoside Rg₃, discussed by Sato and Mochizuki in the publication discussed above are also panaxadiols. Thus it would be expected that materials of this type are generally anti-angiogenic.

However we have found surprisingly that the ginsenoside Rb₁ and other panaxadiols may be used to stimulate angiogenesis in particular circumstances and indeed we have found that Rb₁ in particular is a highly potent angiogenic compound in certain specific circumstances.

Thus according to a first aspect of the invention we provide a method of stimulating angiogenesis in circumstances which do not require chemoinvasion in a subject by the use of a panaxadiol ginsenoside, preferably Rb₁. The invention also provides the use of a panaxadiol ginsenoside, preferably Rb₁, in the manufacture of a medicament for treatment of a human or other subject by stimulation of angiogenesis, for a condition which requires stimulation of angiogenesis but does not require stimulation of chemoinvasion.

As discussed above, this conclusion is surprising, firstly in view of the general uncertainty about the angiogenic effects of ginseng as a whole, with Kanzaki et al and Morisaki et al suggesting that ginseng extract may have angiogenic effects but Sato et al and Mochizuki et al suggesting that certain components (and thus ginseng itself) have an anti-angiogenic effect. It is particularly surprising in view of the fact that the specific components stated to have an anti-angiogenic effect are panaxadiols. It has not been realised previously that Rb₁ is in fact a potent angiogenic compound which can be used in circumstances where chemoinvasion is not required.

Rb₁ is in the panaxadiol or 20(s)-protopanaxadiol group of ginsenosides (Gillis, Biochem. Pharmacol., Vol.

54, ppl-8, 1997). We believe that other panaxadiol ginsenosides also exhibit equivalent angiogenic effects. The discussion below concerns Rb₁ but is applicable to other angiogenic panaxadiols which show the same effect.

5 Panaxadiols have the structural formula in Figure 1 (b). They are based on the triterpene dammarane structure. Some panaxadiols are naturally-occurring ginsenosides.

10 In the formula 1(b) R₂ is H and each of R₁ and R₃ may independently be H or any organic group having up to 30 carbon atoms. They may be the same or different. In particular they may be sugar-containing groups. The sugar groups may be 5-ring sugars or 6-ring sugars and may for instance be selected from glucose, maltose, fructose, 15 xylose, rhamnose and arabinose. They may alternatively be alkyl, alkenyl or alkynyl so that R₁O- and/or R₃O- are ethers. Alternatively they may be acyl groups so that the R₁O- and/or R₃O- groups are esters. For instance R₁ and R₃ may be fatty acyl, saturated or unsaturated. Preferably R₁ 20 and R₃ are sugar-containing groups. Preferably they contain only sugar moieties but they may be derivatives of sugars.

25 Preferably each of R₁ and R₃ has not more than 24, preferably not more than 18 and particularly preferably not more than 12 carbon atoms.

Compounds of the Formula 1(b) may have any stereochemical structure. Preferably the stereochemical structure of the 4-ring skeleton is trans-trans-trans as in naturally occurring Rb₁.

30 Within any structure for which the steroid ring stereochemistry is defined, the stereochemistry at C20 may be R or S. Thus any defined skeleton stereostucture can produce two enantiomers. The S-configuration is preferred. Panaxadiols may be used in the form of a single enantiomer 35 or a non-racemic mixture of enantiomers or as the racemate. Panaxadiols having the structural formula of a naturally-

occurring ginsenoside preferably also have the stereochemistry of the naturally occurring ginsenoside.

Mixtures of panaxadiols may be used.

The compounds used in the invention differ from panaxatriols in that in the latter the group R₂ is not H but OR. In one aspect of the invention panaxadiol is preferably used without panaxatriol. Thus in this case the use of non-purified ginseng or saponin of ginseng is excluded. In one preferred aspect of the invention we use only one or two active constituents, each of which is a panaxadiol.

Naturally-occurring panaxadiols for use in the invention may be obtained from various ginseng species. These include *Panax ginseng* (often described as Oriental ginseng), *P. quinquefoliens* (often described as American ginseng), *P. notoginseng* and *P. japonicus* C.A.Mey (often described as Japanese ginseng). Preferably they are obtained from *P.ginseng* or *P.notoginseng*, preferably *P.ginseng*.

All of the naturally-occurring ginsenosides have the same stereostructure of the four-ring steroid skeleton. The structure is trans-trans-trans.

The panaxadiol may be naturally occurring, eg Rb₁, Rb₂, Rc or Rd, preferably Rb₁. It may be formed by synthesis or, preferably, by purification of a panaxadiol ginsenoside from ginseng. Purification of Rb₁ and other naturally occurring panaxadiols from ginseng may be achieved by known methods. Derivatives of the formula in Figure 1(b) may be used. These will have equivalent functionality. That is, any derivatisation does not significantly reduce the angiogenic effect. Generally functionally equivalent derivatives have the same or a greater angiogenic effect than Rb₁ (or other panaxadiol). If it is a lesser effect it is generally not less than 70%, usually not less than 80%, of the effect of Rb₁.

The structures of the naturally-occurring ginsenosides Rb₂, Rc and Rd are known. In each of these R₁ is Glc²-Glc-.

In Rb₂ the group R₃ is Glc⁶-ara(p) and in Rc the group R₃ is Glc₆-ara(f). In Rd the group R₃ is Glc.

Other naturally-occurring panaxadiols which may be used include compounds commonly described as 5 notoginsenosides. These are found naturally in the leaves and seeds of the species *Panax notoginseng*. The notoginsenoside-R4 has the formula 1(b) in which R₁ is Glc₂-Glc and R₃ is Glc₆-Glc₆-Xyl.

The steroid ring stereochemistry is the same in this 10 naturally-occurring notoginsenoside as in the ginsenoside Rb₁. It exists naturally in the 20S form.

Suitable panaxadiols of the formula in Figure 1(b) may be derived using methodologies such as quantitative 15 structure activity relationships (QSAR) and comparative molecular field analysis (CoMFA) so that molecules having equivalent or increased effectiveness over naturally- occurring ginsenosides may be devised using the naturally- occurring ginsenosides as starting points. This methodology is discussed for instance by Richon and Young, 20 in "An Introduction to QSAR Methodology", Network Science, 2000. Software packages such as QSAR with CoMFA, available from the company Tripos Inc may be used, but other products are available.

It is also possible to use such techniques to derive 25 compounds not of the Formula 1(b) but which show equivalent functionality to Rb₁ or other panaxadiol. In particular, the CoMFA methodology, a three-dimensional QSAR technique, is useful. For instance, techniques are known for defining the steric and electronic features of a compound necessary 30 to ensure optimal supramolecular interactions with a specific biological target structure. This ensemble of steric and electronic features is known as a pharmacophore. Similar techniques may be used to define other molecules having the steric and electronic features provided by Rb₁ 35 or other naturally-occurring ginsenoside.

In the invention at least one panaxadiol is used. The invention relates to use of panaxadiols and thus use of

non-purified ginseng or saponin of ginseng is preferably excluded. Preferably the only active constituents of the pharmaceutical composition used are panaxadiols. Preferably only one or two active constituents are used, 5 each of which is a panaxadiol.

In the treatment methods Rb₁ may be applied to the subject in any convenient manner.

Preferred vehicles include liposomes, microsomes or microsponges within which the Rg₁ may be contained and 10 which may be injected for instance intravenously, intramuscularly or subcutaneously. Cationic liposomes and stealth liposomes with or without antibody coating may be used.

Other suitable vehicles include implants, such as 15 collagen implants, in a suitable form for application to the subject. Implants may be made of natural (eg collagen, fibrin or gelatin), synthetic (eg methylcellulose, ELVAX, tetradecacyclodextran) or semi-synthetic materials. They may be applied to a wound or ulcer for which healing is 20 required. Other application forms include topical application, eg as a cream, gel, transdermal patch or time/controlled drug release system. The Rb₁ may be used impregnated in materials which are introduced to the body 25 of the subject for other reasons, eg sutures (eg made of catgut) or vascular grafts.

Applications for which the angiogenic activity of Rb₁ is beneficial include those in which angiogenesis can take place without chemovasion, which is believed to be inhibited by Rb₁. Angiogenesis requires four phases, (a) 30 destruction of the basement membrane by proteases secreted by endothelial cells, (b) migration/chemovasion of endothelial cells, (c) proliferation of endothelial cells, (d) tube formation by endothelial cells.

Thus applications for Rb₁ include the late phase of 35 wound healing where chemovasion has already taken place by otherwise normal physiological processes. Rb₁ may be used in combination with other angiogenic factors or

compounds where Rb1 is used to promote late stage angiogenesis (other angiogenic factors or compounds having been used to promote early stage angiogenesis). The invention may also be used in the maintenance of the 5 established neo-vasculature, in treatment of patients recovering from myocardial ischaemia and diabetic nephropathy.

Rb1 and other panaxadiols showing equivalent functionality may also be used to increase graft or implant 10 survival, promote bone growth and healing from fractures and the healing of diabetic ulcers, pressure ulcers, cerebrovascular ischaemia and angina.

Rb1 may also be used for maintenance therapy for preventing hair loss by promoting or maintaining an 15 existing angiogenic response.

For instance, Rb1 can be used in treatment of patients having suffered from myocardial ischaemia. Growth factors can be supplied to the patient, either by treatment directly with growth factors or with use of gene therapy 20 which elevates expression of growth factors. Rb1 may then be used to maintain the newly grown vessels. Similarly, diabetic nephropathy, which is characterised by a regression of blood vessels, may be treated with Rb1.

We believe that these effects are demonstrated by the 25 fact that Rb₁ shows angiogenic effects in the *in vitro* HUVEC model discussed below. However, it does not show angiogenic effects *in vivo* and we believe this is due to inhibition of chemoinvasion. Thus the invention is based on the realisation that Rb1 is inhibitory of one stage of 30 the angiogenesis process but a promoter of a later stage. We believe that this has never previously been realised. This realisation enables the application of Rb1 in specific treatments where it is required to promote, for instance, the tube formation stage. This makes it a good candidate 35 for timed therapeutic interventions, ie in promoting angiogenensis once chemoinvasion of endothelial cells has occurred.

Other angiogenic compounds which can be used in combination treatments include Rg1 (or other panaxatriol) as disclosed in our publication WO02/07732. For instance, Rg1 may be administered to promote the initial stages of 5 wound healing and once chemo invasion has taken place Rb1 may subsequently be administered to promote the later stages.

We also find that combinations of Rb1 with bFGF (basic fibroblast growth factor) and TNF (tumour necrosis factor) 10 or VEGF (vascular endothelial growth factor) and TNF give particularly good and even synergistic results.

We also provide a process for the production of a pharmaceutical composition comprising providing ginseng or ginseng extract, obtaining from the ginseng or ginseng 15 extract the ginsenoside Rb₁ in purified form, optionally derivatising the Rb₁, and combining the purified and optionally derivatised Rb₁ with a pharmaceutically acceptable excipient. Any derivatisation does not remove the functionality of the ginsenoside. This process may be 20 applied to any other naturally-occurring panaxadiol in ginseng.

Such a composition may be used in the manufacture of a medicament for use in a method for the treatment of a human or animal subject by stimulation of angiogenesis and 25 may be used in a method of treating a human or other animal subject by stimulating angiogenesis using a pharmaceutical composition of this type. The method may be any of those discussed above.

The subject treated may be any animal, preferably a 30 mammal, and is usually a human.

The Rb₁ may be used in the form of any suitable pharmaceutical composition, generally provided by purifying Rb₁ from ginseng and combining it with a suitable pharmaceutical excipient. Pharmaceutical excipients can be 35 chosen on the basis of general knowledge.

The pharmaceutical composition may be in a form suitable for oral administration, for instance tablets,

capsules or a gel. Alternatively, it may be an aerosol formulation. It can thus be sprayed onto any biological surface such as the skin or internal organs. A particularly suitable composition comprises Rb₁ in 5 artificial or tissue-engineered skin or in slow drug release skin patches. Others include the forms such as sutures, vascular grafts and skin grafts discussed above. Compositions may also be in a form suitable for use in conjunction with gene-derived therapy. One suitable form is 10 delivery in a polymeric or copolymeric matrix containing Rb₁ and known angiogenic compounds, whereby the angiogenic promoters are released before the Rb₁ and promote chemovasion and Rb₁ is released later.

Dosages may be chosen by those skilled in the art 15 using known methods. The dosage is chosen so that the panaxadiol is administered in an amount effective to stimulate angiogenesis in the subject. Suitable dosages may be from 1 µg to 100mg per kg per day, preferably from 25 µg to 500µg panaxadiol per kg per day, preferably from 20 5 µg to 100 µg panaxadiol per kg per day. Treatment may be carried out for any period of time and may be over a period of months or even years. However, generally treatments will be carried out for from 1 to 60 days, preferably 1 to 30 days.

Because of the novel finding that Rb₁ stimulates tube formation but inhibits chemovasion we also provide 25 methods of treatment of a human or other animal subject by inhibition of chemovasion with a panaxadiol. We also provide use of a panaxadiol in the manufacture of a medicament for treatment of a condition requiring 30 inhibition of chemovasion. Such conditions include chemo prevention of tumours, diabetic retinopathy, psoriasis, rheumatoid arthritis, atherosclerosis, endometriosis, Crohn's disease and adiposity.

Features of the first aspect of the invention may be 35 applied to this aspect of the invention where appropriate.

The invention will now be illustrated by reference to the following examples.

Examples

Example 1

5 We tested angiogenic effects by means of an *in vitro* assay similar to that described in Lauder *et al*, Angiogenesis 1998;2;67-80. In this assay, "wounded" human umbilical vein endothelial cells (HUVEC) are exposed to increasing concentrations of Rb₁. In their normal
10 physiological state endothelial cells remain quiescent but proliferate in injured tissue, causing angiogenesis. In mimicry, human umbilical vein endothelial cells were allowed to reach a confluent state in a well containing a semi-circular coverslip following which a "wound" to the
15 monolayer was imparted by removing the cover slip, and leaving an area denuded of cells.

The HUVECs were plated in 24 well plates with a bisected cover slip in each well. On reaching confluent state, the cells were wounded by lifting off the cover slip at time zero. The wounded monolayer of cells was incubated in the presence of Rb₁ for a further 48 hours following which the cells were harvested and counted. Results are shown in Figure 1. They demonstrate that Rb₁ stimulates endothelial cell proliferation.

25 Example 2

In this experiment the effect of Rb₁ on tube formation by HUVECs and modulation by Nw-nitro-L-arginine methyl ester, L-NAME (an inhibitor of Nitric Oxide Synthase enzyme) were assessed. Cells were plated on extra-cellular
30 matrix extracted from EHS murine sarcoma, and cultured for 16 hours in absence or presence of Rb₁. Where the NOS-inhibitor, L-NAME, was used, the cells were pre-incubated with L-NAME, which was maintained throughout the entire duration of the experiment. Endothelial cells incubated on extracellular matrix align and form tubular structures as seen in the photomicrographs of Figure 4. Results are in Figure 3.

Figure 4B shows pretreatment with 12.5 nM Rb₁. This induced a concentration-dependent formation of tubes, which were quantified by counting the branches formed per view field. Figure 4C shows the results of treatment with L-NAME (10^{-3} M). This did not alter the basal or tube formation.

Figure 4D shows that tube formation was unaffected by pretreatment with L-NAME. Concentration response of Rb₁ inducing angiogenesis is shown in Figure 4E.

10 Example 3

This experiment tests the effect of Rb₁ on chemovasion by HUVECs. Human recombinant HGF/SF(1nM) (Figure 5B) in the lower chamber, increased the chemovasion of HUVECs as compared with vehicle (Figure 5A). Pretreatment with Rb₁ inhibited the migration of the HUVECs towards HGF/SF. (Figure 5C)

Figure 5A shows cells migrated under control conditions. Figure 5B shows HGF/SF (1nM) facilitated HUVEC chemovasion and spreading. Figure 5C shows that Rb₁ (125nM) inhibits HGF/SF-induced chemovasion. Figure 5D shows the mean number of migrated cells per high power view field under different experimental conditions (mean \pm SEM, n=4).

Example 4

25 This example demonstrates the effect of Rb1 in combination with both bFGF and VEGF/TNF.

An *in vitro* assay was carried out in accordance with the assay described by Koolwijk et al in Angiogenesis 4:53-60;2001, page 55. In this system tube formation in the presence of bFGF/TNF and in the presence of VEGF/TNF was assessed. The effect of adding Rb1 to the system was then also tested. Results are shown in Figure 6. These results clearly show a significant increase in tube formation in the presence of Rb1.

CLAIMS

1. Use of a panaxadiol in the manufacture of a medicament for the treatment of a condition requiring stimulation of angiogenesis but not requiring chemoinvasion.
2. A use according to claim 1 wherein the panaxadiol is a naturally-occurring ginsenoside, preferably Rb1.
3. A use according to claim 1 or claim 2 in which the treatment is selected from the group consisting of promotion of late stage angiogenesis, maintenance of established neo-vasculature, treatment of myocardial ischaemia, treatment of diabetic nephropathy, healing of diabetic ulcers or pressure ulcers, treatment of cerebrovascular ischaemia and angina, increase of graft or implant survival, promotion of bone growth, healing of fractures, and preventing hair loss by promoting or maintaining an existing angiogenic response.
4. A use according to any preceding claim in which the panaxadiol has been obtained by purification from ginseng.
5. A use according to any preceding claim in which the panaxadiol is used without panaxatriols.
6. A use according to any of claims 1 to 4 in which the panaxadiol is used in combination with a panaxatriol, preferably a naturally-occurring ginsenoside, more preferably Rg1.
7. A use according to any of claims 1 to 4 in which the panaxadiol is used in combination with tumour necrosis factor-alpha (TNF-alpha).
8. Use according to any of claims 1 to 4 in which the panaxadiol is used in combination with basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF).
9. A use according to claim 7 in which the panaxadiol is used in combination with either TNF-alpha and bFGF or TNF-alpha and VEGF.
10. Use of a pharmaceutical composition in the manufacture of a medicament for use in a method for the treatment of a

- condition requiring stimulation of angiogenesis but not stimulation of chemoinvasion, wherein the composition has been prepared by (1) providing ginseng or a ginseng extract, (2) obtaining from the ginseng or ginseng extract 5 a panaxadiol in purified form, optionally (3) derivatising the panaxadiol, and (4) combining the purified and optionally derivatised panaxadiol with a pharmaceutically acceptable excipient.
11. A use according to claim 10 in which the pharmaceutical composition comprises at least one component which is not naturally present in ginseng.
12. A use according to claim 10 in which panaxadiols are the only pharmaceutical actives, and preferably the ginsenoside Rb1 is the sole pharmaceutical active.
13. A use according to any preceding claim in which the panaxadiol is applied to the subject to be treated encapsulated in liposomes or in an implant.
14. A use according to claim 13 wherein the treatment comprises injecting liposomes into the bloodstream or 20 application of a implant to the surface of a wound or application of an implant to the surface of an ulcer.
15. A pharmaceutical composition which comprises a panaxadiol encapsulated in liposomes, microsomes, microsponges or a controlled drug release system.
- 25 16. A pharmaceutical composition which comprises a panaxadiol in an implant made of natural, synthetic or semi-synthetic material, preferably a collagen implant.
17. A pharmaceutical composition which comprises a panaxadiol impregnated in a polymeric device suitable for 30 implantation in the human body.
18. A pharmaceutical composition according to any of claims 15 to 17 in which the panaxadiol is Rb1.
19. A method of treating a human or other animal subject comprising stimulating angiogenesis in circumstances which 35 do not require chemoinvasion by using a panaxadiol.
20. A method of treating a human or other animal subject comprising stimulating angiogenesis in circumstances which

do not require chemovasion by using the panaxadiol ginsenoside Rbl.

21. A method of treating a human or animal subject by stimulating angiogenesis in circumstances which do not
5 require chemovasion using a pharmaceutical composition, wherein the composition has been provided by providing ginseng or a ginseng extract, obtaining from the ginseng or ginseng extract a panaxadiol in purified form, optionally derivatising the panaxadiol, and combining the purified and
10 optionally derivatised panaxadiol with a pharmaceutically acceptable excipient.
22. Use of a panaxadiol, preferably the naturally occurring ginsenoside Rbl, in the manufacture of a medicament for the inhibition of angiogenesis.
- 15 23. A use according to claim 22 in which the inhibition is by inhibition of chemovasion.
24. A method of treating a human or other animal subject by inhibition of angiogenesis using a panaxadiol, preferably the naturally occurring ginsenoside Rbl.
- 20 25. A method according to claim 24 in which the inhibition is by inhibition of chemovasion.

Fig.1(a).

Rb1

Fig.1(b).

Panaxadiol

Fig.6.

2/4

Fig.2.

Fig.3.

3/4

Fig.4(a).

Control

Fig.4(b).

Rb1 [12.5 nM]

Fig.4(c).

L-NAME [10^{-3} M]

Fig.4(d).

Rb1 [125 nM]+
LNAME [10^{-3} M]

Fig.4(e).

4/4

Fig.5(a).

veh/veh

Fig.5(b).

veh/HGF

Fig.5(c).

Rb₁/HGF

Fig.5(d).

