G. KARCH & M. KRUPSKI & SZ. CYGAN

"Mając dwadzieścia lat, myślałem tylko o kochaniu.

Potem kochałem już tylko myśleć."

Albert Einstein

Istnienie i jednoznaczność rozwiązań

Zadanie 1. Wyprowadź wzór na n-tą iterację Picarda $y_n(x)$ i oblicz jej granicę gdy $n \to \infty$ dla podanych zagadnień Cauchy'ego:

a)
$$y' = -y$$
 $y(0) = 1$.

a)
$$y' = -y$$
 $y(0) = 1$, b) $y' = 2yt$ $y(0) = 1$,

c)
$$y' = -y^2$$
 $y(0) = 0$.

Zadanie 2. Wyprowadź wzór na n-tą iterację Picarda dla zagadnienia początkowego $x'=x^2$, x(0)=1 na odcinku [0,2], jeżeli $x_0(t)\equiv 1$. Oblicz granicę tego ciągu. Znajdź rozwiązanie zagadnienia i porównaj rezultaty.

Zadanie 3. Stosując twierdzenie Picarda-Lindelöfa dla podanych niżej zagadnień Cauchy'ego udowodnij, że rozwiązanie y = y(t) istnieje na zadanym przedziale:

a)
$$y' = y^2 + \cos t^2$$
, $y(0) = 0$, $0 \le t \le \frac{1}{2}$,

a)
$$y' = y^2 + \cos t^2$$
, $y(0) = 0$, $0 \le t \le \frac{1}{2}$, b) $y' = 1 + y + y^2 \cos t$, $y(0) = 0$, $0 \le t \le \frac{1}{3}$.

Zadanie 4. Rozważmy równanie $2y = t^2y''$. Rozwiązania $y \equiv 0$ i $y = t^2$ spełniają warunki początkowe y = y' = 0 dla t = 0. Wyjaśnij, dlaczego zachodzi ta niejednoznaczność rozwiązań.

Zadanie 5. Zbadaj ilość rozwiązań zagadnienia w zależności od wartości parametru a:

a)
$$y' = y^a$$
, $y(0) = 0$,

b)
$$y' = y |\log y|^a$$
, $x(0) = 0$.

Zadanie 6. Znajdź rozwiązanie zagadnienia $y' = t\sqrt{1-y^2}$, y(0) = 1, różne od rozwiązania $y(t) \equiv 1$. Które z założeń twierdzenia Picarda-Lindelöfa nie jest spełnione?

Zadanie 7. Niech y(t) będzie nieujemną ciągłą funkcją spełniającą

$$y(t) \le L \int_{t_0}^t y(s) \, ds$$

na odcinku $t_0 \le t \le t_0 + \alpha$. Udowodnij, że y(t) = 0 dla $t_0 \le t \le t_0 + \alpha$ (łatwiejsza wersja lematu Gronwalla). WSKAZÓWKA: Pokaż indukcyjnie, że $y(t) \le c(L^n/n!)(t-t_0)^n$.

Zadanie 8. Stosując lemat Gronwalla udowodnij, że y(t) = -1 jest jedynym rozwiązaniem zagadnienia $y' = t(1 + y), \ y(0) = -1.$

Zadanie 9. Zbadaj istnienie rozwiązania zagadnienia Cauchy'ego y' = f(y,t) i y(0) = 0, gdzie

$$f(y,t) = \begin{cases} -1 & t \le 0, \ y \in \mathbb{R} \\ 1 & t > 0, \ y \in \mathbb{R} \end{cases}$$

Powtórzenie materiału z wykładu: Iteracje Picarda.

Twierdzenie 1. Funkcja y = y(t) jest rozwiązaniem zagadnienia

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0$$

wtedy i tylko wtedy gdy y = y(t) jest rozwiązaniem równania całkowego

$$y(t) = y_0 + \int_{t_0}^t f(s, y(s)) ds.$$

Iteracje Picarda dla zagadnienia Cauchy'ego () to ciąg funkcji $y_n(t)$, n=0,1,2,3,..., zdefiniowanych następująco

$$y_0(t) \equiv y_0, \quad y_{n+1}(t) = y_0 + \int_{t_0}^t f(s, y_n(s)) ds.$$

Przykład. Ciąg iteracji Picarda dla zagadnienia $\frac{dy}{dt} = y$, y(0) = 1 ma postać $y_n(t) = 1 + t + \frac{t^2}{2!} + \frac{t^3}{3!} + \dots + \frac{t^n}{n!}$. Na wykładzie rozważano zagadnienie Cauchy'ego

$$\frac{dy}{dt} = f(t, y), \quad y(t_0) = y_0.$$

Sformułowano i udowodniono następujące twierdzenie.

Twierdzenie 2. (Picarda-Lindelöfa) Załóżmy, że funkcje f(t,y) i $\frac{\partial f(t,y)}{\partial y}$ są ciągłe w prostokącie $R=\{(t,y)\,:\,t_0\leq t\leq t_0+a,\;|y-y_0|\leq b\}.$ Obliczmy $M=\max_{(t,y)\in R}|f(t,y)|$ oraz $\alpha=\min\left(a,\frac{b}{M}\right)$.

$$R = \{(t, y) : t_0 \le t \le t_0 + a, |y - y_0| \le b\}$$

Wtedy zagadnienie początkowe $\frac{dy}{dt}=f(t,y),\quad y(t_0)=y_0$ ma dokładnie jedno rozwiązanie y(t) na odcinku $t_0 \le t \le t_0 + \alpha$. Podobny wynik jest prawdziwy dla $t < t_0$.

Najważniejsze fakty z dowodu:

- Najpierw dowodzi się, że ciąg iteracji Picarda $y_n(t)$ zbiega jednostajnie do pewnej funkcji y(t).
- Następnie przechodząc do granicy otrzymujemy, że funkcja y(t) jest rozwiązaniem równania całkowego równoważnego zagadnieniu ().
- Aby udowodnić jednoznaczność rozwiązań postępujemy następująco. Zakładamy (nie wprost), że mamy dwa rozwiązania y(t) i $\bar{y}(t)$ zagadnienia (). Definiujemy funkcję $w(t)=y(t)-\bar{y}(t)$ i dowodzimy, że spełnia ona nierówność

$$|w(t)| \le L \int_{t_0}^t |w(s)| ds$$

dla pewnej stałej L. Aby udowodnić, że $w(t) \equiv 0$ na odcinku $[t_0, t_0 + \alpha]$ stosujemy lemat Gronwalla.

Twierdzenie 3. (Lemat Gronwalla) Załóżmy, że funkcja u(t) jest nieujemna na przedziale $[t_0, T]$ i spełnia na tym przedziale nierówność całkową

$$u(t) \le a + b \int_{t_0}^t u(s) \ ds$$

dla wszyskich $t \in [t_0, T]$ i pewnych stałych $a \ge 0$ i b > 0. Wtedy zachodzi oszacowanie $u(t) \le ae^{b(t-t_0)}$. Uwaga. W dowodzie jednoznaczności rozwiązań zagadnienia () stosujemy to twierdzenie z a=0.