Zmiana układu współrzędnych (info.20)

1

ANDRZEZ LENARCIK

0

0

imię i nazwisko	grup	a	numer zest	awu	
imię i nazwisko Ladauie 1.		y 1			
			B >>,	,	
			1		
		\vec{j}		A	
	(Oio		7	<i>x</i>

Stosujemy trojkat observacyjny OP = 00' + 0'P, czyli

$$\vec{xi} + \vec{yj} = 2\vec{i} + \vec{x'i'} + \vec{y'j'}.$$

Z rysunku odczytujemy dodatkowo $\vec{i}' = 3\vec{i} - 2\vec{j}', \ \vec{j}' = 2\vec{i}' + 3\vec{j}', \ \omega_{ec}$ $\vec{x}\vec{i}' + \vec{y}\vec{j}' = 2\vec{i}' + \vec{x}'(3\vec{i}' - 2\vec{j}') + \vec{y}'(2\vec{i}' + 3\vec{j}')$ $\vec{x}\vec{i}' + \vec{y}\vec{j}' = 2\vec{i}'' + 3\vec{x}'\vec{i}' - 2\vec{x}'\vec{j}'' + 2\vec{y}'\vec{i}'' + 3\vec{y}'\vec{j}''$ $\vec{x}\vec{i}' + \vec{y}\vec{j}'' = \vec{i}''(2 + 3\vec{x}' + 2\vec{y}') + \vec{j}''(-2\vec{x}' + 3\vec{y}').$

Z jednoznaczności współrzędnych otrzymujemy $\begin{cases} X = 2 + 3x' + 2y' \\ y = -2x' + 3y'. \end{cases}$

Poprovnosé mozna spravdzié w killen puntiach. Np. poczotek ulitadu primovanego (x'=0,y'=0) przelina się na x=2,y=0, co jest zgodne z nysenlien. Wybieraną jeszne killa dodathowych punktów

- 11	- 1	- (1				
punkt	x'	y'	x = 2 + 3x' + 2y'	y = -2x' + 3y'	/	
A	1	1	2+3.1+2.1=7	-2.1+3.1=1	OK	Bo A(7,1)
В	0	1	2+3.0+2.1=4	-2.0+3.1=3	OK	60 B(4,3)
C	1	0	2 + 3.1 + 2.0 = 5	$-2 \cdot 1 + 3 \cdot 0 = -2$	OK.	Bo C(5,-2)

Odurotne preliczenie uspotrzednych możemy uzyskać metodo wyznacznikową:

$$\begin{cases} 3x' + 2y' = x - 2 \\ -2x' + 3y' = y \end{cases} W = \begin{vmatrix} 3 & 2 \\ -2 & 3 \end{vmatrix} = 13, W_{x'} = \begin{vmatrix} x - 2 & 2 \\ y & 3 \end{vmatrix} = 3(x - 2) - 2y = 3x - 2y - 6$$

$$W_{y'} = \begin{vmatrix} 3 & x - 2 \\ -2 & y \end{vmatrix} = 3y + 2(x - 2) = 2x + 3y - 4$$

$$V_{y'} = \begin{vmatrix} 4 & 3 & 2 \\ -2 & y \end{vmatrix} = 3y + 2(x - 2) = 2x + 3y - 4$$

$$V_{y'} = \begin{vmatrix} 4 & 3 & 2 \\ -2 & y \end{vmatrix} = 3y + 2(x - 2) = 2x + 3y - 4$$

Sproudzenie robinny w tych samych punktach, w poprzednio.

punkt	x	y	$x' = \frac{1}{13}(3x - 2y - 6)$	$y' = \frac{1}{13}(2x + 3y - 4)$	(A) (2.33
A	7	1	$\frac{2}{3}(21-2-6)=1$	$\frac{1}{13}(14+3-4)=1$	OK
B	4	3	$\frac{1}{13}(12-6-6)=0$	$\frac{1}{13}(8+9-4)=1$	OK
C	5	-2	$\frac{1}{13}(15+4-6)=1$	$\frac{1}{13}(10-6-4)=0$	OK

Zadawie 4 (a) Otzymalismy
$$3x' + y' = 3$$
. Wstanamy: $\frac{3}{43}(3x-2y-6) + \frac{1}{43}(2x+3y-4) = 3 / \cdot 13$
 $3(3x-2y-6) + (2x+3y-4) = 39$
 $9x-6y-18+2x+3y-4=39$
 $11x-3y=61$ dobree
(b) Otzymalismy $2x'-y'+2=0$. Ustanamy: $\frac{2}{13}(3x-2y-6) - \frac{1}{13}(2x+3y-4) + 2=0 / \cdot 13$
 $2(3x-2y-6) - (2x+3y-4) + 26=0$
 $6x-4y-12-2x-3y+4+26=0$
 $4x-7y+18=0$ dobree