

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ $\Pi O \Lambda \Upsilon T E X N I K H \Sigma X O \Lambda H$ T M H M A H Λ ΕΚΤΡΟΛΟΓΩΝ ΜΗΧ ΑΝΙΚΩΝ ΚΑΙ ΜΗΧ ΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

$TIT\Lambda O\Sigma$

Διδακτορική Διατριβή

του

Αλεξάνδρου Φιλοθέου του Χρήστου και της Μαρίνας

ΔΙΠΛΩΜΑΤΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ΚΑΙ ΜΗΧΑΝΙΚΟΥ ΥΠΟΛΟΓΙΣΤΩΝ $\text{APIΣΤΟΤΕΛΕΙΟΥ} \text{ ΠΑΝΕΠΙΣΤΗΜΙΟΥ } \Theta \text{ESSAΛONIKHS}$

KAI

ΜΕΤΑΠΤΥΧΙΟΥΧΟΥ ΗΛΕΚΤΡΟΛΟΓΟΥ ΜΗΧΑΝΙΚΟΥ ${\rm BAΣΙΛΙΚΟΥ}\ {\rm INΣΤΙΤΟΥΤΟΥ}\ {\rm TEXNΟΛΟΓΙΑΣ}\ {\rm ΣΤΟΚΧΟΛΜΗΣ}$

που εκπονήθηκε ως μερική εκπλήρωση των απαιτήσεων για την απονομή του τίτλου του $\Delta {\rm i} \delta {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm Mhc} {\rm aktora} \ {\rm a$

Επιβλέπων Γεώργιος Δ. Σεργιάδης Καθηγητής

Συμβουλευτική Επιτροπή

Τραϊανός Β. Γιούλτσης Καθηγητής Ανδρέας Λ. Συμεωνίδης Αναπληρωτής Καθηγητής

Hκύρια αιτία των προβλημάτων είναι οι λύσεις.

—Έρικ Σέβαραϊντ

Περίληψη

Abstract

Περιεχόμενα

Ι	Εισαγωγή					
1	Πε	ριγραφ	ρή του πεδίου εφαρμογής	3		
	1.1	Ρομποτική κινητής βάσης				
		1.1.1	Θεμελιώδεις λειτουργίες	5		
		1.1.2	Πηγές και κύριοι τρόποι αντίληψης του περιβάλλοντος	7		
		1.1.3	Τρέχουσα κατάσταση και Προκλήσεις	10		
	1.2	Απαρο	ίτητες έννοιες	11		
		1.2.1	Εκτιμητέο διάνυσμα κατάστασης	11		
		1.2.2	Τα δύο κύρια προβλήματα εκτίμησης στάσης	12		
		1.2.3	Το φίλτρο σωματιδίων	14		
		1.2.4	Ο αισθητήρας lidar δισδιάστατων μετρήσεων	17		
		1.2.5	Ευθυγράμμιση σαρώσεων lidar	18		
		1.2.6	Ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη	20		
		1.2.7	Αναλλοίωτη ευθυγράμμιση Fourier-Mellin σε δύο διαστάσεις	24		
		1.2.8	Κεντροειδές πολυγώνου	27		
		1.2.9	Το λειτουργικό σύστημα ρομπότ ROS	30		
2	Οδι	ιχός χ	άρτης	31		
	2.1	Οδικό	ς χάρτης	31		
3	Σ υį	μβολέο	ς και Διάρθρωση της διατριβής	37		

ii	$\Pi EPIEXOMENA$

	3.1 Συμβολές της διατριβής			37	
	3.2	Δ ιάρ ϑ ρ	ρωση	37	
Η	Π_{ξ}	οοβλή	ματα $-\Lambda$ ύσεις $-\Sigma$ υμβολές	39	
4	Μέν	θοδοι	ευθυγράμμισης πραγματικών με εικονικές σαρώσεις χω-	-	
	ρίς	τον υπ	τολογισμό αντιστοιχίσεων	41	
	4.1	Στόχο	ι του χεφαλαίου και δομή	41	
	4.2	Μεθοδ	δολογία ευθυγράμμισης προσανατολισμού	42	
		4.2.1	Η μέθοδος Fourier-Mellin σε μία διάσταση	43	
		4.2.2	Η μέθοδος Πρώτων Αρχών	45	
		4.2.3	Η μέθοδος του Προχρούστη	49	
		4.2.4	Η κλίνη της διακριτικής γωνίας του αισθητήρα	55	
		4.2.5	Η μέθοδος του Πιτυοκάμπτη Σίνι	57	
		4.2.6	Η μέθοδος του Θησέα	60	
		4.2.7	Θανάσιμοι περιορισμοί υπό γενικές συνθήκες	64	
	4.3	Μεθοδ	δολογία ευθυγράμμισης θέσης	70	
	4.4	Μεθοδ	δολογία ευθυγράμμισης από κοινού	75	
		4.4.1	Αντιμετώπιση των περιορισμών υπό γενικές συνθήκες	75	
		4.4.2	Το σύστημα από κοινού ευθυγράμμισης	77	
	4.5	Πειραμ	ιατιχή αξιολόγηση	80	
	4.6 Συμπεράσματα και περαιτέρω έρευνα				
II	ΙΣ	υμπε	ράσματα	83	
Iλ	$^{\prime}$ Π	αραπο	ομπές	85	
\mathbf{V}	П	χραρτ	ήματα	117	

Μέρος Ι

Εισαγωγή

Κεφάλαιο 1

Περιγραφή του πεδίου εφαρμογής

Η ρομποτιχή είναι η επιστήμη της αντίληψης και του χειρισμού του φυσικού κόσμου μέσω συσχευών που ελέγχονται από υπολογιστές [TBF05]. Ως επιστήμη συμβάλλεται από τους κλάδους του αυτομάτου ελέγχου, της επιστήμης των υπολογιστών, των μαθηματικών, και ως πράξη από την επιστήμη της φυσικής, της τεχνολογίας υλικών, της τεχνολογίας λογισμικού, και της ηλεκτρονικής. Το φυσικό αντικείμενο της ρομποτικής είναι το ρομποτ: μία τεχνητή σύνθεση αντλούσα πληροφορίες από το φυσικό περιβάλλον μέσω αισθητήριων συσκευών, επενεργούσα σε αυτό μέσω φυσικών δυνάμεων, αποτελούμενη κατ' ελάχιστον από κινητήρες, τερματικά, υπολογιστικά συστήματα, λογισμικό, και πηγή ενέργειας. Η μορφή της χρήσης των ρομπότ είναι πρόσθετική: 1 πολλαπλασιάζουν τις επιχειρησιακές ενέργειες του ανθρώπου διαιρώντας την απαιτούμενη προσπάθεια για την επίτευξη των σχοπών του χαι χατανέμοντάς την σε μη ανθρώπινους δράστες της βούλησής του. Στη σημερινή εποχή επιχουρούν, συνεργούν, ή επιχειρούν εξ ολοκλήρου στους τομείς της κατασκευής $[\mathrm{Wan}{+}19]$, πλανητικής εξερεύνησης [Wil+18], γεωργίας [VKA19; NB11], απομακρυσμένης ιατρικής πράξης [SCD20], μεταφοράς αγαθών και ανθρώπων [DB16; Lim+18; Sim+19], συνεχούς απογραφής αγαθών σε αποθήκες [Dim+21], καθαρισμού και απολύμανσης χώρων [KSL20], και αλλού [smp21; rev22; Che+21; NH08]. Σχοπός του ανθρώπου όσο αφορά στα ρομπότ είναι (α) η αντικατάστασή του ατόμου του από αυτά με στόχο την απελευθέρωσή του από τα τετριμμένα, χρονοβόρα, ή επιχίνδυνα έργα τα οποία έχει αυτοεπωμιστεί και (β) η ανάπτυξη τους ώστε να αποκτήσει

¹προσθετικός: ο διατεθειμένος να προσθέση, ο παρέχων πρόσθετον δύναμιν [LSK07]

τη δυνατότητα να πατήσει στους ώμους γιγάντων με στόχο τις δικές του επιδιώξεις. Η επιταχυνόμενη, εξαπλούμενη, και θεμελιωμένη χρήση της αυτοματικής λογικής που γέννησε τη ρομποτική έχει εκτρέψει αυτές τις αντικειμενικές επιδιώξεις με αποτέλεσμα την αυτονόμηση τους: ο οριακός σκοπός της αυτοματοποίησης είναι σήμερα η παράδοση των διαδικασιών που εμπλέκουν οργανικά τον άνθρωπο, ει και όπου δυνατόν, στον κόσμο των αυτοματοποιημάτων.

Προς το παρόν, και σε συνάφεια με το πεδίο εφαρμογής της παρούσας διατριβής, το περιεχόμενο αντικείμενο της ρομποτικής ταξινομείται σε τέσσερις τάξεις:

- ρομπότ των οποίων το σώμα μπορεί να κινηθεί ως μία μονάδα στο σύνολό του στο χώρο (ρομποτική κινητής βάσης) ή ρομπότ των οποίων μόνο μέρη έχουν τη δυνατότητα κίνησης στο χώρο (π.χ. βραχίονες)
- ρομπότ τα οποία δρουν αυτόνομα, χωρίς την ανάγκη για είσοδο από άνθρωπο (π.χ. αυτόνομη οδήγηση) ή ρομπότ των οποίων η δράση ορίζεται από ανθρώπινες εντολές
 (π.χ. ως μέσα εξουδετέρωσης εκρηκτικών μηχανισμών). Αυτή η τάξη διακρίνεται σε βαθμίδες αυτονομίας [BFR14]
- ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στη γη, τον αέρα, ή τη θάλασσα
- ρομπότ εσωτερικού ή εξωτερικού χώρου

Πεδίο Εφαρμογής ΠΕ. Το πεδίο εφαρμογής της παρούσας διατριβής είναι η ρομποτική αυτόνομης επίγειας κινητής βάσης εσωτερικού χώρου.

Πιό συγχεχριμένα: το μεγαλύτερο μέρος της διατριβής αφορά στην επίλυση προβλημάτων τα οποία είναι ανεξάρτητα από το βαθμό αυτονομίας, ενώ σε όλες τις συνθήχες προϋποτίθεται ότι το ρομπότ επιχειρεί εντός χλειστού (από όλες τις έξι πλευρές) χώρου. Η τελευταία προϋπόθεση-παραδοχή είναι χύριας σημασίας:

Παραδοχή Ι. Ο περιβάλλον χώρος είναι επιδεκτικός αίσθησης ως πλήρως οριοθετημένος, και κάθε πληροφορία που αποτελεί είσοδο (ή προϊόν επεξεργασίας της) των υπολογιστικών συστημάτων του ρομπότ προέρχεται αποκλειστικά από ίδια μέσα του ρομπότ και από την επίδραση του με τα όρια του χώρου—: το σύστημα ρομποτ-

περιβάλλων χώρος είναι κλειστό.

Παρατήρηση Ι. Αυτό σημαίνει ότι η μοντελοποίηση του κόσμου και η αυτοαντίληψη του ρομπότ πηγάζουν από τους δικούς του (πεπερασμένους) πόρους.

Η παρούσα διατριβή εστιάζει στο πεδίο εφαρμογής ΠΕ λόγω του διαρχώς αυξανόμενου ενδιαφέροντος στην έρευνα αυτόνομων επίγειων οχημάτων, η οποία εφορμάται από την τρέχουσα και προβλεπόμενη διάχυση τους σε (κρίσιμους και μη) τομείς της παγκόσμιας ανθρώπινης δραστηριότητας. Σκοπός της είναι η επίλυση τρέχοντων προβλημάτων του πεδίου εφαρμογής, τα οποία απαντώνται τόσο στην ερευνητική βιβλιογραφία όσο και στην ερευνητική πράξη. Σημείο εκκίνησής της είναι η έρευνα πάνω στην αυτόνομη πλοήγηση επί του πρακτέου. Από εκεί, βάσει μίας κρίσιμης παρατήρησης, ξεκινάει να εστιάζει στο πρόβλημα της εύρεσης της στάσης ενός ρομπότ στο χώρο, με βάσει παραδοχές και περιορισμούς που προσδιορίζονται από πραγματικές συνθήκες και επιδιώξεις και οι οποίες ποικίλουν ανάλογα με αυτές. Σε αυτό το κεφάλαιο ορίζεται η ρομποτική κινητής βάσης (ενότητα 1.1) ... ??

1.1 Ρομποτική κινητής βάσης

Ο όρος "ρομποτική κινητής βάσης" αναφέρεται σε ρομπότ τα οποία έχουν τη δυνατότητα κίνησης στο περιβάλλον τους, σε αντίθεση με εκείνα των οποίων η βάση είναι πακτωμένη σε μία συγκεκριμένη θέση του χώρου. Ως εκ τούτου η έρευνα αυτού του τομέα ασχολείται με όλα εκείνα τα προβλήματα που απορρέουν από την πλοήγηση ενός ρομπότ από μία θέση σε μία άλλη.

1.1.1 Θεμελιώδεις λειτουργίες

Το πρόβλημα της πλοήγησης διακρίνεται σε βαθμούς αυτονομίας. Κάθε επόμενη βαθμίδα αυτονομίας αφομοιώνει μία ανεξάρτητη μεταβλητή προηγούμενης βαθμίδας ως μία προς υπολογισμό, την οποία εξαρτά από τον αρχικό στόχο. Η αυτονομία πλοήγησης ξεκινάει από την τυχαία κίνηση στο χώρο με εντολές κίνησης υπολογιζόμενες από το ρομπότ, στην παρακολούθηση προκαθορισμένων τροχιών, ύστερα στην αυτόνομη χάραξη τροχιών προς προκα-

θορισμένους στόχους και την αυτόνομη παρακολούθηση των τροχιών, και καταλήγει στην αυτόνομη πλοήγηση με αυτόνομη επιλογή σημείων-στόχων.

Κοιτώντας την μη-τετριμμένη αυτόνομη πλοήγηση από το επίπεδο της επιφάνειας απαιτείται κατ' ελάχιστον η γνώση δύο μεταβλητών: του στόχου προς τον οποίο το ρομπότ θα κινηθεί και η τρέχουσα θέση του. Αυτές οι αθώες μεταβλητες ανοίγουν την πόρτα σε ένα σύμπαν προβλημάτων μερικών από των οποίων τη λύση αποπειράται η παρούσα διατριβή.

Για τον αχριβή προσδιορισμό ενός σημείου στο φυσικό χώρο απαιτείται αυτός ο χώρος να φέρει σύστημα συντεταγμένων, και κατά συνέπεια να είναι μετρικός. Έπειτα, με γνώμονα την ασφάλεια του ρομπότ και του περιβάλλοντός του, το ρομπότ πρέπει να έχει γνώση των κατειλειμένων και μη σημείων από εμπόδια σε αυτό το σύστημα. Από αυτές τις αιτίες προκύπτει η ανάγκη για την αναπαράσταση του περιβάλλοντος με τη μορφή μετρικού χάρτη. Εν γένει το σύστημα συντεταγμένων και ο χάρτης θα πρέπει να εφευρεθούν επί τούτου για κάθε περιβάλλον καθώς στη γενική περίπτωση τα αρχιτεκτονικά σχέδια χώρων δεν είναι γνωστά. Από αυτή την απαίτηση προχύπτει το πρόβλημα του SLAM (Simultaneous Localisation and Mapping), δηλαδή της ταυτόχρονης κατασκευής χάρτη και εύρεσης της στάσης ενός ρομποτ σε αυτόν.

Κατά συνέπεια η γνώση μιας οποιασδήποτε θέσης στο φυσικό χώρο μεσολαβείται από τη γνώση της στο χάρτη του, στο οικείο του σύστημα αναφοράς. Δεδομένου του χάρτη ενός χώρου ένα ρομπότ μπορεί να προσδιορίσει τη θέση του σε αυτόν χρησιμοποιώντας τους αισθητήρες του, αντιπαραβάλλοντας μετρήσεις από αυτούς με εικονικές μετρήσεις από κάποια υπόθεση-εκτίμηση για τη θέση του στο χάρτη. Το πρόβλημα της έυρεσης της θέσης ενός ρομπότ στο χάρτη είναι θεμελιώδους σημασίας στη ρομποτική κινητής βάσης, και διακρίνεται σε τριών ειδών προβλήματα (σχήμα 1.1 [PB21]):

- Εύρεση της θέσης βάσει καθολικής αβεβαιότητας (Global Localisation)
- Εύρεση και παρακολούθηση της θέσης βάσει περιορισμένης αβεβαιότητας (Pose Tracking)
- Ανίχνευση απαγωγής ρομπότ και εύρεση της νέας θέσης του (Kidnapped Robot Problem)

Παρατήρηση ΙΙ. Λόγω της παραδοχής Ι η θέση του ρομπότ δεν είναι μετρήσιμη αλλά παρατηρήσιμη.

Σχήμα 1.1: Κατάτμηση του προβλήματος της εύρεσης θέσης σε κατηγορίες και τα ποσοστά έρευνας σε αυτές

Στο μεγαλύτερό της μέρος η παρούσα διατριβή εστιάζει στα δύο πρώτα προβλήματα, των οποίων η λύση απαιτείται στην πράξη σε κάθε σύστημα με πεδίο εφαρμογής ΠΕ που ικανοποιεί την παραδοχή Ι.

Δεδομένης της γνώσης του χάρτη του περιβάλλοντος στο οποίο χινείται ένα ρομπότ χινητής βάσης, της αρχιχής και της επιθυμητής του θέσης, ενός αλγορίθμου παραχολούθησης της θέσης του (pose tracking), και αισθητήρων για την αντίληψη του περιβάλλοντος, στη γενιχότερή του μορφή το πρόβλημα της αυτόνομης πλοήγησης είναι επιλύσιμο. Για την επίλυσή του απαιτούνται δύο μέθοδοι:

- Ένας αλγόριθμος χάραξης μονοπατιού που συνδέει την αρχική με την τελική του θέση (Path Planning)
- Ένας ελεγκτής κίνησης του ρομπότ για την παρακολούθηση του παραπάνω μονοπατιού (Motion Controller)

1.1.2 Πηγές και κύριοι τρόποι αντίληψης του περιβάλλοντος

Η επιτυχής λύση του προβλήματος της αυτόνομης πλοήγησης προϋποθέτει την ύπαρξη και χρήση εξωδεκτικών αισθητήρων. Χωρίς αυτούς τα προβλήματα των οποίων η λύση είναι αναγκαία για την αυτόνομη πλοήγηση (κατασκευή χάρτη, εύρεση και παρακολούθηση της θέσης του ρομπότ) δεν είναι επιλύσιμα. Για την αντίληψη των ορίων (επιφάνειες-εμπόδια) του

περιβάλλοντος χρησιμοποιούνται αισθητήρες με ποιχίλα χαραχτηριστιχά, ανάλογα με τα χαραχτηριστιχά του περιβάλλοντος και την αντιχειμενιχή επιδίωξη της χρήσης ρομπότ χινητής βάσης. Όσο τα χρόνια περνούσαν και η τεχνολογία υλιχών εχλεπτυνόταν, μαζί της εξελίσσονταν και οι παραπάνω αλγόριθμοι, οξύνοντας την αχρίβεια εχτίμησης της αναπαράστασης του περιβάλλοντος χώρου και της θέσης ενός ρομπότ σε αυτό, ή παρέχοντας περισσότερη και πλουσιότερη πληροφορία για το περιβάλλον.

Τα πρώτα χρόνια της ρομποτικής χρησιμοποιούνταν αισθητήρες υπερήχων (sonar), εκκινώντας από την ανίχνευση εμποδίων στη γειτονιά ενός ρομπότ. Η τεχνολογία ήταν εκεί λόγω εκτεταμένης χρήσης τους σε στρατιωτικές επιχειρήσεις, και το κόστος τους ήταν χαμηλό. Η αρχή λειτουργίας τους βασίζεται στην εκτίμηση αποστάσεων προς τα γύρω εμπόδια μέσω της μέτρησης του χρόνου εκπομπής υπερήχων προς και ανάκλασης από αυτά. Αν και χρησιμοποιούνται μέχρι και σήμερα, η χρήση τους περιορίζεται στην ανίχνευση αντικειμένων σε χαμηλές αποστάσεις λόγω της αδρής λεπτομέρειας των μετρήσεών τους, το περιορισμένο τους γωνιακό πεδίο όρασης, και το εγγενές πρόβλημα της αμφισημίας των μετρήσεών τους λόγω των πολλαπλών διαδοχικών ενδεχόμενων ανακλάσεων του ήχου σε τρίτες επιφάνειες.

Την ίδια αρχή λειτουργίας εκμεταλλεύονται οι αισθητήρες lidar (σύντμηση του Light και Radar ή αλλιώς Light Detection and Ranging) χρησιμοποιώντας, αντί για ήχο, φως υπέρυθρης, ορατής, ή υπεριώδους ακτινοβολίας. Διακρίνονται σε αισθητήρες που αποτυπώνουν αποστάσεις σε εμπόδια του περιβάλλοντός τους σε ένα επίπεδο (δισδιάστατες μετρήσεις) ή σε πολλαπλά επίπεδα γύρω από αυτό (τρισδιάστατες μετρήσεις). Οι αισθητήρες LIDAR υστερούν σε κόστος, μέγεθος, και συχνότητα μετρήσεων σε σχέση με τους αισθητήρες υπερήχων, αλλά εμφανίζουν σημαντικά μεγαλύτερο εύρος όρασης (έως 360°), τόσο γωνιακά όσο και ακτινικά, και ακρίβεια μετρήσεων που μπορεί να φτάσει την τάξη των μερικών εκατοστών. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.2.

Η ανάπτυξη της τεχνολογίας αισθητήρων εικόνας και η βελτίωση της ποιότητάς τους τούς κατέστησε και πηγές εξωδεκτικών μετρήσεων στη ρομποτική. Το σημαντικό τους προτέρημα είναι η χρωματική πληροφορία του περιβάλλοντος, το μεγάλο οριζόντιο και κάθετο εύρος όρασής τους, και ο υψηλός ρυθμός ανανέωσης των μετρήσεών τους. Η εφεύρεση των αισθητήρων εικόνας και βάθους (RGBD, ή η χρήση στερεοειδών συστημάτων) εισάγει την επιπρόσθετη πληροφορία κατάληψης σημείων στον τρισδιάστατο χώρο από εμπόδια, αλλά ταυ-

Σχήμα 1.2: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου sonar. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Qi+20]. Τα χρωματισμένα περιγράμματα περικλείουν περιοχές τις οποίες ο αισθητήρας sonar απέτυχε να χαρτογραφήσει με πιστότητα προς το πραγματικό περιβάλλον

τόχρονα επιφέρει χαμηλότερες συχνότητες ανανέωσης αξιοποιήσιμης πληροφορίας λόγω του αυξημένου όγκου της χωρικής πλέον πληροφορίας. Λόγω του μεγάλου όγκου πληροφορίας που φέρουν απαιτούν αντίστοιχους υπολογιστικούς πόρους, οι οποίοι στα πλαίσια του πεδίου εφαρμογής ΠΕ ενδέχεται να μην είναι διαθέσιμοι. Σε αντίθεση με τους προηγούμενους αισθητήρες εξαρτώνται από τις συνθήκες φωτισμού του χώρου στον οποίον λειτουργούν και συνεπώς η ποιότητα των μετρήσεων είναι ευμετάβλητη. Σε σχέση με τους αισθητήρες lidar εμφανίζουν σημαντικά περιορισμένο γωνιακό εύρος όρασης, ακρίβεια μετρήσεων που φθίνει τετραγωνικά σε σχέση με την απόσταση μέτρησης (αντί για γραμμικά όπως στους αισθητήρες lidar), και περιοχές μη αξιοποιήσιμων μετρήσεων λόγω σκιών που παράγονται ως συνέπεια της αρχής λειτουργίας τους [MDM14]. Η διαφορά της ακρίβειάς των μετρήσεών τους ως προς την κατασκευή χάρτη με τη χρήση τους αποτυπώνεται στο σχήμα 1.3.

Λόγω της μεγάλης τους μετρητικής ακρίβειας, της πυκνής τους γωνιακής δειγματολειψίας, του ικανού ρυθμού ανανέωσης μετρήσεων, του ευρύτατου πεδίου οράσεώς τους, του μέτριου κόστους τους, και του γεγονότος ότι ο όγκος των μετρήσεών τους είναι κατά κύριο λόγο επεξεργάσιμος σε πραγματικό χρόνο (απαιτητέο από την επίλυση της πλειονότητας των προβλημάτων της υποενότητας 1.1.1), οι αισθητήρες τύπου lidar έχουν προκριθεί στη θέση των αισθητήρων εκ των ων ουκ άνευ όσο αφορά σε εφαρμογές αυτόνομους πλοήγησης, κατασκευής χάρτη, και εύρεσης της θέσης ενός ρομπότ, στο πεδίο εφαρμογής ΠΕ που ικανοποιούν την παραδοχή Ι. Οι ίδιες αρετές τούς έχουν καταστήσει ηγέτες στην ευρύτερη

Σχήμα 1.3: Αριστερά: δισδιάστατος χάρτης από μετρήσεις αισθητήρα τύπου RGBD προβεβλημένες στο οριζόντιο επίπεδο. Δεξιά: χάρτης του ίδιου χώρου από μετρήσεις αισθητήρα τύπου lidar σε δύο διαστάσεις [Oli+12]. Οι κόκκινες γραμμές αναπαραστούν το πραγματικό περιβάλλον

αγορά αισθητήρων για ρομποτικές εφαρμογές όπου επιζητείται επιπρόσθετη αντίληψη που να υπηρετεί σκοπούς αυτονομίας (σχήμα 1.4).

1.1.3 Τρέχουσα κατάσταση και Προκλήσεις

Τα θεμελιαχά προβλήματα που απορρέουν από απαιτήσεις αυτόνομης πλοήγησης, δηλαδή η κατασκευή χάρτη, η εύρεση και παρακολούθηση της θέσης ενός ρομπότ στο χώρο, καθώς και η ίδια η αυτόνομη πλοήγηση, θεωρούνται σήμερα λυμένα στο πεδίο εφαρμογής ΠΕ με τη χρήση αισθητήρων lidar. Για την ακρίβεια αυτό που θεωρείται λυμένο είναι το πρόβλημα επί της αρχής: δηλαδή ότι υπάρχουν αναγκαίες συνθήκες στις οποίες η λύση κάθε προβλήματος είναι εφικτή. Η αφαίρεση αυτών των συνθηκών και η έρευνα με γνώμονα την ευρωστία στη μετέπειτα κατάσταση αποτελεί πρόκληση για κάθε μελλοντική λύση.

Επιπρόσθετα η λύση κάθε προβλήματος δεν είναι απαραίτητα "βέλτιστη". Παράδειγμα αποτελεί το πεδίο του εντοπισμού της θέσης ενός ρομπότ όπου, λόγω της παρατήρησης ΙΙ, η εκτίμηση για τη θέση του φέρει ένα αναπόφευκτο σφάλμα (λόγω μετρητικού θορύβου και σφαλμάτων μοντελοποίησης και λύσης). Η ανάγκη για πρόσθετη ή υψηλή ακρίβεια, αν και πάντα ευπρόσδεκτη, δεν ανήκει στις αυστηρές απαιτήσεις των ρομποτικών εφαρμογών, εκτός από αυτές της βιομηχανίας. Στις τελευταίες, ωστόσο, λόγω της ανάγκης για αυστηρές προδιαγραφές και υψηλή ακρίβεια, η αυτονομία ενός οχήματος είτε αποφεύγεται (η χειροκίνητη

Σχήμα 1.4: Αριστερά: κατάτμηση της αγοράς αισθητήρων στην αυτοκινητοβιομηχανία [SSC21]. Μέση: πωλήσεις αισθητήρων lidar σε εκατομμύρια δολλάρια κατά έτος [staa]. Δεξιά: προβολή της κατάτμησης της αγοράς αισθητήρων και πωλήσεις σε δισεκατομμύρια δολλάρια το έτος 2027 [stab]

πλοήγηση καθιστά περιττό τον εντοπισμό της θέσης του) είτε, όπου υιοθετείται, αντικαθίσταται από εξωτερικές και δαπανηρές υποδομές λόγω των διακυβεύματων που υπάρχουν στα βιομηχανικό πλαίσια [Vas+16]. Σε αυτά τα πλαίσια αποτελεί πρόκληση η μείωση των σφαλμάτων εκτίμησης της θέσης ενός ρομπότ, καθώς μικρότερα σφάλματα σημαίνουν περισσότερο γόνιμο έδαφος για την περαιτέρω αυτοματοποίηση διαδικασιών, και την διεύρυνση υιοθέτησης ρομποτικών οχημάτων από τη βιοτεχνία/βιομηχανία.

1.2 Απαραίτητες έννοιες

1.2.1 Εχτιμητέο διάνυσμα χατάστασης

Κεντρικής σημασίας στη διατριβή είναι το εκτιμητέο διάνυσμα κατάστασης ενός επίγειου οχήματος. Μέχρι σε αυτό το σημείο χρησιμοποιείτο αντί αυτής η λέξη "θέση" για εισαγωγικούς λόγους.

Ορισμός Ι. Διάννσμα κατάστασης ή στάση

Ως διάνυσμα κατάστασης θεωρούμε τη στάση ενός οχήματος στο δισδιάστατο επίπεδο: τον ειρμό της θέσης του με τον προσανατολισμό του, ως προς το σύστημα αναφοράς

του χάρτη του περιβάλλοντος στο οποίο βρίσκεται το όχημα (σχήμα 1.5):

$$\boldsymbol{p} = [x \ y \ \theta]^{\top} \tag{1.1}$$

Σχήμα 1.5: Το διάνυσμα κατάστασης (στάση) $\boldsymbol{p} = [x,y,\theta]^{\top}$ ενός επίγειου οχήματος στο οριζόντιο επίπεδο

Η αχριβής γνώση της στάσης του οχήματος είναι απαγορευμένη (παρατήρηση II): η εκτί- $\mu\eta\sigma\eta~\hat{p}$ της στάσης του είναι το αντικείμενο των αλγορίμων εύρεσης στάσης.

1.2.2 Τα δύο κύρια προβλήματα εκτίμησης στάσης

Τα δύο κύρια προβλήματα εκτίμησης της στάσης ενός οχήματος (σχήμα 1.1) διακρίνονται βάσει του εύρους της αβεβαιότητας που διαθέτει το όχημα για αυτή. Και τα δύο προϋποθέτουν κατ' ελάχιστον τη γνώση του χάρτη του περιβάλλοντος στο οποίο βρίσκεται το όχημα (το μόνο σύστημα αναφοράς είναι αυτό του χάρτη και χωρίς αυτό είναι αδόκιμη η εκτίμηση της στάσης του) και μετρήσεις από τουλάχιστον έναν αισθητήρα αντίληψης του περιβάλλοντός του.

Το πρόβλημα της εύρεσης-εχτίμησης της στάσης του βάσει χαθολιχής αβεβαιότητος (global localisation) αναφέρεται στη συνθήχη όπου η μόνη επιπρόσθετη γνώση που διαθέτει το ρομπότ είναι ότι βρίσχεται εντός των ορίων του χάρτη: δεν υπάρχει εχ των προτέρων γνώση για τη στάση του. Για τη λύση του προβλήματος το ρομπότ πρέπει να συλλέξει μετρήσεις από τους αισθητηρες του χαι να τις αντιπαραβάλλει με το χάρτη του περιβάλλοντός. Εάν η εχτίμηση της στάσης ισούται με την πραγματιχή του στάση τότε ειχονιχές μετρήσεις ή χαραχτηριστιχά του χάρτη που αντιλαμβάνεται το ρομπότ από την εχτίμησή της στάσης του προσεγγίζουν τις αντίστοιχες πραγματιχές μετρήσεις ή χαραχτηριστιχά του περιβάλλοντος με μεγαλύτερη πιστότητα από άλλες υποθέσεις για τη στάση του (σχήμα 1.6).

Σχήμα 1.6: Το πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητας της στάσης του. Το ρομπότ βρίσκεται στη θέση που σημειώνεται με πράσινο. Οι κουκίδες που σημειώνονται με πορτοκαλί δείχνουν υποθέσεις προς εξέταση για την εκτίμηση της στάσης του

Ορισμός ΙΙ. Παθητική και ενεργητική εκτίμηση βάσει καθολικής αβεβαιότητος

Ένας τρόπος ταξινόμησης των υπαρχουσών λύσεων στο πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος είναι μέσω του ίδιου του συστήματος πλοήγησης του ρομπότ. Προκειμένου να μεγιστοποιηθεί η πιθανότητα επιτυχούς εντοπισμού, οι προσεγγίσεις ενεργητικής εκτίμησης υπολογίζουν εντολές κίνησης που μετακινούν το ρομπότ εντός του περιβάλλοντός του σε στάσεις που επιτρέπουν στο σύστημα εκτίμησης της στάσης του να αποκτάει πρόσθετες πληροφορίες. Εάν οι εντολές κίνησης—εάν υπάρχουν—προσδιορίζονται χωρίς τη συμβουλή του συστήματος εκτίμησης στάσης τότε η προσέγγιση εκτίμησης ονομάζεται παθητική.

Παρατήρηση ΙΙΙ. Ακρίβεια λύσης

Μια αχριβής λύση στο πρόβλημα της εκτίμησης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος είναι αναγκαία προϋπόθεση για την επίλυση του επακόλουθου προβλήματος της παρακολούθησης της στάσης του καθώς αυτό κινείται στο χώρο. Τα τελευταία χρόνια οι πιθανοτικές προσεγγίσεις στο πρόβλημα της παρακολούθησης της στάσης έχουν έχουν καταστεί εκ των ων ουκ άνευ. Χάρει στην ανοχή τους για αυξημένη αβεβαιότητα στάσης, η απαίτηση μέγιστης ακρίβειας όσον αφορά στη λύση του προβλήματος εκτίμησης βάσει καθολικής αβεβαιότητος έχει, κατα συνέπεια, με-

τριαστεί. Εάν χρησιμοποιούνται πιθανοτικές μέθοδοι στο μετέπειτα έργο της εκτίμησης στάσης βάσει περιορισμένης αβεβαιότητος, τότε ως λύση στο πρόβλημα της εκτίμησης βάσει καθολικής αβεβαιότητας μπορεί να γίνει δεκτό ένα σύνολο ανακριβέστερων (και συνεπώς χωρικά εκτεταμένων) στάσεων. Μια λύση που βρίσκεται στη γειτονιά της πραγματική στάσης ενός ρομπότ, με άμεση οπτική επαφή σε αυτήν, θα αναφέρεται ως ορθή λύση.

Παρατήρηση ΙV. Λύση πραγματικού χρόνου

Στο πρόβλημα της εκτίμησης βάσει καθολικής αβεβαιότητος δεν υπάρχει αυστηρή απαίτηση για λύση σε πραγματικό χρόνο στην περίπτωση παθητικών προσεγγίσεων, εάν το ρομπότ δεν κινείται κατά τη διάρκεια της λύσης του προβλήματος εκτίμησης.

Αντιθέτως, το πρόβλημα της εκτίμησης της στάσης του βάσει περιορισμένης αβεβαιότητας (pose tracking) δέχεται ως δεδομένη τη γνώση της αρχικής του στάσης. Στόχος της λύσης του προβλήματος είναι η διαρκής εκτίμηση της στάσης του καθώς το ρομπότ κινείται μέσα στο χώρο στο πέρασμα του χρόνου. Για την επίλυσή του είναι εξαιρετικά επιτυχημένη η χρήση πιθανοτικών προσεγγίσεων, όπως το φίλτρο Kalman [May79] και το φίλτρο σωματιδιών [Thr02; Gus+02].

1.2.3 Το φίλτρο σωματιδίων

Οι πιθανοτικές προσεγγίσεις στο πρόβλημα της εκτίμησης της στάσης έχουν αυξημένη ακρίβεια και ευρωστία σε σύγκριση με τις μη πιθανοτικές, αλλά, ανάλογα με τη φύση τους, πάσχουν ή επιλύουν διάφορα προβλήματα που αφορούν στους σκοπούς εκτίμησης. Για παράδειγμα τα φίλτρα Kalman είναι γνωστό ότι είναι εύρωστα και ακριβή (βέλτιστα ακόμα όταν όλοι οι συστημικοί θόρυβοι είναι κατανεμημένοι κανονικα), αλλά δεν έχουν την ικανότητα να αναπαραστούν αμφισημίες (ambiguities) ως προς τη στάση ή να εντοπίζουν το ρομπότ στην περίπτωση άγνωστης αρχικής στάσης. Από την άλλη πλευρά η φύση των τεχνικών MCL [Del+99] τούς επιτρέπει να αναπαραστούν την αβεβαιότητα ως προς τη στάση του ρομπότ διατηρώντας ένα σύνολο υποθέσεων (που ονομάζονται σωματίδια) για αυτή, του οποίου η μορφή δεν δεσμεύεται από συναρτήσεις πυκνότητας πιθανότητας μίας κορυφής (unimodal)

όπως στα φίλτρα Kalman. Μεταξύ άλλων αυτή η αναπαράσταση επιτρέπει στις προσεγγίσεις MCL να εντοπίζουν καθολικά ένα ρομπότ και να παρακολουθούν τις αμφισημίες της στάσης του μέχρι να είναι σε θέση να τις επιλύσει, λόγω της δυνατότητας αναπαράστασης αυθαίρετα πολύπλοκων πυκνοτήτων πιθανότητας. Το σχήμα 1.7 απεικονίζει την κατανομή υποθέσεων στάσης μετά την αρχικοποίηση του φίλτρου σωματιδίων.

Σχήμα 1.7: Αρχικοποίηση κατανομής σωματιδίων δεδομένης εκτίμησης για την αρχική στάση. Η πληροφορία προσανατολισμού παραλείπεται για λόγους ευανάγνωσης. Στην αρχική φάση το φίλτρο δεν έχει συγκλίνει και συνεπώς η διακύμανσή του συνόλου υποθέσεων στάσης είναι μέγιστη

Τα φίλτρα σωματιδίων εκτιμούν αναδρομικά την εκ των υστέρων πυκνότητα πιθανότητας της στάσης ενός οχήματος βάσει λογικής Bayes [TBF05]:

$$p(\mathbf{p}_t|\mathbf{z}_{1:t}, \mathbf{u}_{0,t-1}, \mathbf{M}) \propto p(\mathbf{z}_t|\mathbf{p}_t) \int_{\mathbf{p}'} p(\mathbf{p}_t|\mathbf{p}', \mathbf{u}_{t-1}) \cdot p(\mathbf{p}'|\mathbf{z}_{1:t-1}, \mathbf{u}_{0:t-2}, \mathbf{M}) dx'$$
(1.2)

όπου η στάση του ρομπότ τη χρονική στιγμή t συμβολίζεται με p_t , η ακολουθία των εντολών κίνησης που εκτελούνται από το το ρομπότ με $u_{0:t-1}$, και με $z_{0:t}$ η ακολουθία των μετρήσεων που γίνονται από το τους αισθητήρες του. M είναι ο χάρτης που αναπαραστά το περιβάλλον στο οποίο κινείται το ρομπότ. Το μοντέλο κίνησης $p(p_t|p_{t-1},u_{t-1})$ υποδηλώνει την πιθανότητα ότι τη χρονική στιγμή χρονική στιγμή t το ρομπότ καταλήγει στην κατάσταση p_t δεδομένου ότι εκτελεί την εντολή κίνησης u_{t-1} ενώ βρίσκεται στην κατάσταση p_{t-1} τη χρονική στιγμή t-1. Σε ρομπότ με τροχούς οι εντολές κίνησης συνήθως αντικαθίστανται από μετρήσεις της περιστροφής τους μέσω κωδικοποιητών (encoders), οι οποίες αναφέρονται ως

οδομετρία. Το μοντέλο παρατήρησης $p(z_t|p_t,M)$ δηλώνει την πιθανότητα μέτρησης z_t ενώ το ρομπότ βρίσκεται στη στάση p_t . Δεδομένου ότι τα φίλτρα σωματιδίων διατηρούν ένα σύνολο διαφορετικών υποθέσεων ως προς την κατάσταση του ρομπότ, η κάθε μία σταθμίζεται σύμφωνα με την πιθανότητα το ρομπότ να διενεργήσει τη μέτρηση z_t υπό τη συγκεκριμένη υπόθεση στάσης ενός σωματιδίου p_t^i με βάση το μοντέλο παρατήρησης $p(z_t|p_t,M)$, όπου i δηλώνει τον δείκτη-αναγνωριστικό του σωματιδίου-υπόθεσης i. Αυτή η πιθανότητα ονομάζεται το βάρος του κάθε σωματιδίου, του οποίου το μέγεθος, θεωρητικά, είναι ευθέως ανάλογο της ακρίβειας της υπόθεσής του για τη στάση του ρομπότ. Η τελική εκτίμηση του φίλτρου είναι ο σταθμισμένος μέσος όρος των υποθέσεων στάσης όλων των σωματιδίων κατά το βάρος του καθενός.

Στην απλούστερή έχδοση των φίλτρων σωματιδίων ο αριθμός των τελευταίων είναι σταθερός. Για την αποφυγή απόκλισης της εκτίμησης λόγω εξάντλησης των σωματιδίων [ΤΒF05] ένας μεγάλος αριθμός δειγμάτων είναι απαραίτητος ώστε το ρομπότ να μπορεί να αντιμετωπίσει τόσο τον αρχικό εντοπισμό της στάσης του όσο και την παρακολούθηση της μετά από αυτόν. Η πρακτική του σταθερού αριθμού υποθέσεων μπορεί να είναι μια σοβαρή σπατάλη υπολογιστικών πόρων μετά τα αρχικά στάδια εντοπισμού. Η δειγματοληψία KLD [Fox01] χρησιμοποιείται προχειμένου το φίλτρο να προσαρμόζει τον αριθμό των σωματιδίων που απαιτούνται με την πάροδο του χρόνου, περιορίζοντας το σφάλμα που εισάγεται από την αναπαράσταση της εχ των υστέρων πυχνότητας πιθανότητας της στάσης του ρομπότ με βάση τα δείγματα, και μειώνοντας έτσι των αριθμό των απαιτούμενων υπολογισμών. Το σφάλμα υπολογίζεται με βάση την απόκλιση Kullback-Leibler μεταξύ της δειγματοληπτούμενης κατανομής και μιας διακριτής κατανομής που υπολογίζεται σε ολόκληρο το χάρτη. Στα αρχικά στάδια του εντοπισμού (όταν το φίλτρο πρέπει να εντοπίσει το ρομπότ βάσει καθολικής αβεβαιότητος), τα σωματίδια μπορούν να έχουν μεγαλύτερη διασπορά, έτσι ώστε να καλύπτουν μεγαλύτερο χώρο υποθέσεων. Αντίθετα, αφού το ρομπότ έχει εντοπιστεί με επιτυχία και το σφάλμα μεταξύ των δύο παραπάνω κατανομών έχει μειωθεί, το φίλτρο σωματιδίων μπορεί να διατηρήσει ένα μικρότερο σύνολο σωματιδίων για την παρακολούθηση της στάσης του ρομπότ.

Το φίλτρο σωματιδίων έχει τη δυνατότητα να αφομοιώσει μετρήσεις από αισθητήρες των οποίων το μοντέλο παρατήρησης μπορεί να ανακατασκευαστεί σε κλειστή μορφή, και συνήθως χρησιμοποιούνται αισθητήρες sonar, lidar, και εικόνας. Η παρούσα διατριβή εστιάζει

αποκλειστικά στη χρήση αισθητήρων lidar δισδιάστατων μετρήσεων.

Παρατήρηση V. Λύση πραγματικού χρόνου

Σε αντίθεση με τις παθητικές προσεγγίσεις εκτίμησης της στάσης του ρομπότ βάσει καθολικής αβεβαιότητος σε περίπτωση που το ρομπότ θεωρείται ακίνητο, η επίλυση του προβλήματος της εκτίμησης της στάσης του βάσει πεπερασμένης αβεβαιότητος εξ ορισμού απαιτεί τη συχνή ανανέωση εκτιμήσεων στάσης, καθώς η στάση του ρομπότ μεταβάλλεται μέσα στο χώρο και κατά τη διάρκεια του χρόνου.

1.2.4 Ο αισθητήρας lidar δισδιάστατων μετρήσεων

Ορισμός ΙΙΙ. Ορισμός μέτρησης αισθητήρα 2D lidar

Μία μέτρηση συμβατικού αισθητήρα 2D lidar αποτελείται από έναν πεπερασμένο αριθμό αποστάσεων σε αντικείμενα σε οπτική επαφή εντός της μέγιστης εμβέλειάς του. Οι μετρήσεις λαμβάνονται εγκαρσίως προς το σώμα του, σε κανονικά γωνιακά και χρονικά διαστήματα, σε ένα καθορισμένο γωνιακό εύρος [CRP18].

Μία μέτρηση (αλλιώς ονομαζόμενη σάρωση) $\mathcal S$ που απαρτίζεται από N_s ακτίνες σε γωνιακό εύρος λ είναι μία διατεταγμένη ακολουθία $\mathcal S:\Theta\to\mathbb R_{\geq 0}$, όπου

$$\Theta = \{ \theta_n \in [-\frac{\lambda}{2}, +\frac{\lambda}{2}) : \theta_n = -\frac{\lambda}{2} + \lambda \frac{n}{N_s}, n = 0, 1, \dots, N_s - 1 \}$$
 (1.3)

Οι γωνίες θ_n εκφράζονται σε σχέση με τον προσανατολισμό του αισθητήρα στο τοπικό του σύστημα συντεταγμένων.

Το σχήμα 1.8 απεικονίζει τη γεωμετρία του ενός τυπικού αισθητήρα 2D lidar, όπου $d_n = \mathcal{S}[-\tfrac{\lambda}{2} + \tfrac{\lambda n}{N_s}]$ είναι η απόσταση που αφορά στην ακτίνα με αναγνωριστικό n.

Ορισμός IV. Πανοραμικός αισθητήρας 2D lidar

Το γωνιακό εύρος ενός 2D lidar είναι συμμετρικά κατανεμημένο ως προς τον τοπικό του x άξονα. Κάθε ακτίνα έχει την ίδια γωνιακή απόσταση από τις γειτονικές της, εξαιρέσει των δύο ακραίων ακτίνων όταν $\lambda < 2\pi$. Όταν $\lambda = 2\pi$ ο αισθητήρας ονομάζεται

Σχήμα 1.8: Κάτοψη του τοπικού συστήματος αναφοράς ενός τυπικού αισθητήρα αποστάσεων τύπου 2D lidar. Ο αισθητήρας είναι τοποθετημένος στο O(0,0) και ο προσανατολισμός του είναι αυτός του θετικού x άξονα. Το γωνιακό πεδίο οράσεώς του είναι λ

πανοραμικός.

1.2.5 Ευθυγράμμιση σαρώσεων lidar

Η ευθυγράμμιση σαρώσεων μέσω αισθητήρων lidar βρίσκεται στο επίκεντρο των περισσότερων εφαρμογών χαρτογράφησης και εκτίμησης της στάσης ενός οχήματος λόγω της ικανότητάς της να εξάγει τη σχέση μεταξύ στάσεων από όπου ελήφθησαν μετρήσεις του αισθητήρα. Έστω ένα ρομπότ εξοπλισμένο με έναν αισθητήρα 2D lidar που καταγράφει δύο σαρώσεις, z και z', την πρώτη ενώ ο αισθητήρας είναι τοποθετημένος στη στάση $p(x, y, \theta)$, και την δεύτερη ενώ βρίσκεται στη στάση $p'(x', y', \theta')$, σε κάποιο σύστημα αναφοράς. Αυτές οι σαρώσεις καταγράφουν μια οριζόντια τομή του περιβάλλοντος στο οποίο κινείται το ρομπότ. Υπό την προϋπόθεση ότι ορισμένα τμήματα του περιβάλλοντος είναι ορατά τόσο από τη στάση p όσο και από τη p' είναι γενικά δυνατή η εύρεση του τρισδιάστατου μετασχηματισμού q που προβάλλει τα τελικά σημεία του z' σε εκείνα του z με τρόπο τέτοιο ώστε να ευθυγραμμιστούν μεταξύ τους. Η διαδικασία εξαγωγής του μετασχηματισμού q ονομάζεται ευθυγράμμιση σαρώσεων (scan-matching—εδώ σε μετρήσεις δύο διαστάσεων). Η λύση qαποτελείται από δύο μεταφορικές συνιστώσες, Δx και Δy , και μία περιστροφική συνιστώσα, $\Delta\theta$. Αυτή η λύση αντιστοιχεί στην αχριβώς αντίστροφη χίνηση του αισθητήρα από τη στάση p στην p': $p = R(\Delta\theta) \cdot p' + [\Delta x, \Delta y]^{\top}$, όπου $R(\cdot)$ είναι ο πίνακας περιστροφής σε δύο διαστάσεις.

Στο σχήμα 1.9 απειχονίζεται η ευθυγράμμιση δύο μετρήσεων που λήφθησαν από στάσεις σε χοντινή απόσταση και στο ίδιο περιβάλλον μέσω του τελεστή m. Στην πράξη, η εφαρμογή του μετασχηματισμού q^{-1} στο διάνυσμα p δεν ισούται αχριβώς με p' λόγω (α) της παρουσίας θορύβου στις μετρήσεις του αισθητήρα, (β) ενδεχόμενης ατελούς αλληλοεπιχάλυψης των δύο μετρήσεων σε μη χυρτά περιβάλλοντα, (γ) του γεγονότος ότι ένας αλγόριθμος ευθυγράμμισης σαρώσεων δεν είναι απαραίτητα τέλειος τελεστής, χαι (δ) του γεγονότος ότι ο τελευταίος συνήθως απαιτεί τον χαθορισμό πολλών παραμέτρων, χυριότερες από τις οποίες είναι εχείνες που διέπουν το χειρισμό των συσχετίσεων ανάμεσα στις αχτίνες των δύο μετρήσεων.

Σχήμα 1.9: Η ευθυγράμμιση των μετρήσεων 2D lidar z(p) και z'(p') (scan-matching) παράγει την εκτίμηση p' από την p

Ορισμός V. Ευθυγράμμιση σαρώσεων 2D lidar

Έστω δύο μετρήσεις ενός 2D lidar αισθητήρα που ικανοποιούν τον ορισμό III, S_R και S_V . Έστω ότι οι μετρήσεις λήφθηκαν στο ίδιο περιβάλλον και τις δύο χρονικές στιγμές καταγραφής τους. Έστω $p_V(x_V, y_V, \theta_V)$ η στάση από την οποία ο αισθητήρας κατέγραψε την S_V , εκπεφρασμένη σε κάποιο σύστημα συντεταγμένων. Στόχος της ευθυγράμμισης σαρώσεων σε δύο διαστάσεις είναι να βρεθεί ο τρισδιάστατος μετασχηματισμός $q=(t,\theta)$, $t=(\Delta x, \Delta y)$, που ελαχιστοποιεί την απόσταση των τελικών σημείων της μετασχηματιζόμενης κατά q μέτρησης S_V από την προβολή της στην S_R .

Συμβολίζοντας τα τελικά σημεία του \mathcal{S}_V με $\{oldsymbol{p}_V^i\}$:

$$\min_{\mathbf{q}} \sum_{i} \left\| \mathbf{p}_{V}^{i} \oplus \mathbf{q} - \prod \{ \mathcal{S}_{R}, \mathbf{p}_{V}^{i} \oplus \mathbf{q}^{-1} \} \right\|^{2}$$
(1.4)

Το σύμβολο " \oplus " δηλώνει τον τελεστή μετασχηματισμού $p_V^i \oplus (t,\theta) \triangleq R(\theta)p_V^i + t$, όπου $R(\theta)$ είναι ο δισδιάστατος πίναχας περιστροφής με όρισμα θ , και $\prod \{S_R, p_V^i \oplus q\}$ είναι η ευκλείδεια προβολή στην S_R .

Παρατήρηση VI. Η ευθυγράμμιση σαρώσεων χρησιμοποιείται στη ρομποτική ως μέσο οδομετρίας, πρωτίστως σε μη τροχοφόρα οχήματα (τα οποία συνεπώς δεν έχουν τη δυνατότητα να φέρουν κωδικοποιητές), ή ως ένας χρήσιμος βελτιωτικός συντελεστής της διαρκώς παρεκκλίνουσας οδομετρίας με κωδικοποιητές: σαρώσεις που λαμβάνονται σε διαδοχικές χρονικές στιγμές, εισαγόμενες σε αλγόριθμο ευθυγράμμισης σαρώσεων, εξάγουν την εκτίμηση της στάσης του αισθητήρα σάρωσης κατά τη δεύτερη χρονική στιγμή καταγραφής σε σχέση με την πρώτη. Αλγόριθμοι ευθυγράμμισης σαρώσεων χρησιμοποιούνται με επιτυχία για την επίλυση του προβλήματος της ταυτόχρονης χαρτογράφησης και εκτίμησης της στάσης οχήματος [GK99; Hah+03; CTT03], κατασκευή τοπικών χαρτών [Lac+02; MMM04; MMM08], και σε συστήματα παρακολούθησης της τροχιάς ανθρώπων [Sch+01].

1.2.6 Ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη

Η τεχνική της ευθυγράμμισης μετρήσεων 2D lidar έχει αποκτήσει τα τελευταία χρόνια και μία ακόμη εφαρμογή: τη χρήση της για την εκτίμηση της στάσης ενός οχήματος εντός του χάρτη του περιβάλλοντος στο οποίο βρίσκεται. Η λογική εδώ είναι ότι εάν αντικατασταθεί η μία από τις δύο μετρήσεις που αναφέρονται στο περιβάλλον με μία σάρωση που αναφέρεται στο χάρτη του τότε η ευθυγράμμισή της σάρωσης του χάρτη με τη σάρωση του περιβάλλοντος παρέχει το μετασχηματισμό που ελαχιστοποιεί το σφάλμα εκτίμησης της στάσης του αισθητήρα στο σύστημα συντεταγμένων του χάρτη. Συνεπώς η ευθυγράμμιση σαρώσεων lidar με σαρώσεις χάρτη μπορεί να χρησιμοποιηθεί στα πλαίσια της λύσης προβλημάτων εκτίμησης της στάσης του αισθητήρα. Κατά συνέπεια, σε αντίθεση με το πρόβλημα της ευθυγράμμισης

σαρώσεων μετρήσεων lidar, το οποίο δεν προϋποθέτει τη γνώση του χάρτη του περιβάλλοντος, στο πρόβλημα της ευθυγράμμισης σαρώσεων lidar με σαρώσεις χάρτη η γνώση του τελευταίου είναι αναγκαία συνθήκη.

Ορισμός VI. Ορισμός σάρωσης χάρτη

Μια σάρωση χάρτη είναι μια ειχονιχή σάρωση που ενσωματώνει τις ίδιες πληροφορίες με μια σάρωση που προέρχεται από έναν φυσιχό αισθητήρα. Μόνο η υποχείμενη αρχή λειτουργίας τους είναι διαφορετιχή λόγω του γεγονότος ότι η σάρωση χάρτη αναφέρεται σε αποστάσεις σε εμπόδια εντός του χάρτη του περιβάλλοντος του ρομπότ χαι όχι εντός του το ίδιου του περιβάλλοντος—εξ ου χαι η ειχονιχότητά του. Μία σάρωση χάρτη λαμβάνεται από έναν ειχονιχό αισθητήρα χαι προχύπτει μέσω του εντοπισμού των τομών των αχτίνων που προέρχονται από την εχτίμηση της στάσης του αισθητήρα χαι των ορίων των εμποδίων του χάρτη.

Ορισμός VII. Ευθυγράμμιση σαρώσεων 2D lidar με σαρώσεις χάρτη

Η ευθυγράμμιση σαρώσεων 2D lidar με σαρώσεις χάρτη ορίζεται με τον ίδιο τρόπο όπως η ευθυγράμμιση σαρώσεων 2D lidar (ορισμός V) αλλά με το S_V να προέρχεται όχι από το φυσικό περιβάλλον του ρομπότ αλλά από το χάρτη του.

Παρατήρηση VII. Το όφελος της ευθυγράμμισης α) μιας σάρωσης χάρτη που προέρχεται από έναν ειχονικό αισθητήρα, από την εχτιμώμενη στάση του σε αυτόν με (β) μια σάρωση που προέρχεται από έναν φυσικό αισθητήρα, από την πραγματική του στάση είναι ότι η διόρθωση της εχτίμησης της στάσης του αισθητήρα παρέχει τη διόρθωση της εχτίμησης της στάσης του ρομπότ: Έστω ότι η εχτίμηση της στάσης ενός ρομπότ βρίσχεται στη γειτονιά της πραγματικής στάσης του. Αν υποτεθεί ότι ο αισθητήρας απόστασης είναι σταθερά στην ίδια στάση σε σχέση με το ρομπότ τόσο στο πραγματικό όσο χαι στο ειχονικό περιβάλλον τότε ο μετασχηματισμός των τελιχών σημείων της ειχονικής σάρωσης που ελαχιστοποιεί την απόσταση από την προβολή τους στη φυσική σάρωση ισούται με το μετασχηματισμό που, όταν εφαρμοστεί στην εχτιμώμενη στάση του ρομπότ ελαχιστοποιεί το σφάλμα της σε σχέση με την πραγμα-

τική του στάση. Επομένως η εξαγωγή του σχετικού μετασχηματισμού της εικονικής σάρωσης σε σχέση με την πραγματική σάρωση μπορεί να χρησιμοποιηθεί ως διόρθωση της εκτίμησης της θέσης του ρομπότ εντός του χάρτη. Η βαρύτητα της σημασίας αυτής της διόρθωσης έγκειται στο γεγονός ότι η τελευταία μπορεί να χρησιμοποιηθεί για να να μειώσει το σφάλμα εκτίμησης της θέσης του ρομπότ κατά την παρακολούθηση της στάσης του, ή για να διευκολύνει την εύρεση της στάσης του υπό καθολική αβεβαιότητα.

Στο σχήμα 1.10 απεικονίζεται η ευθυγράμμιση μίας μέτρησης \mathcal{S}_R με μία εικονική μέτρηση \mathcal{S}_V μέσω του τελεστή smsm.

Σχήμα 1.10: Η ευθυγράμμιση της 2D ειχονικής μέτρησης $\mathcal{S}_V(\hat{p})$ με τη φυσική μέτρηση 2D lidar $\mathcal{S}_R(p)$ (scan-to-map-scan matching) μειώνει το σφάλμα εκτίμησης σε $\hat{p}'\approx p$: $\|\hat{p}'-p\|<\|\hat{p}-p\|$. Τα κόκκινα σημεία υποδηλώνουν τη φυσική μέτρηση $\mathcal{S}_R(p)$, ενώ τα γκρι την εικονική μέτρηση $\mathcal{S}_V(\hat{p})$. Η μεταβολή της μορφής της εικονικής μέτρησης οφείλεται στο γεγονός ότι από διαφορετικές στάσεις εντός του χάρτη είναι ορατά διαφορετικά σημεία του: η εικονική μέτρηση προσομοιάζει όλο και περισσότερο τη φυσική μέτρηση όσο το σφάλμα εκτίμησης της στάσης μειώνεται

Παρατήρηση VIII. Σε αντίθεση με το πρόβλημα της ευθυγράμμισης πραγματικών σαρώσεων, η ευθυγράμμιση πραγματικών και εικονικών σαρώσεων είναι ένα εγγενώς συζευγμένο πρόβλημα: δεδομένου του γεγονότος ότι η γεωμετρία των τελικών σημείων των ακτίνων της εικονικής σάρωσης μπορεί να ευθυγραμμιστεί, χωρίς βλάβη της γενικότητας, μόνο από την πραγματική στάση του ρομπότ, ο προσανατολισμός του ρομπότ μπορεί να εξαχθεί εάν και μόνον εάν η εκτίμηση της θέσης του συμπίπτει με την πραγματική του θέση, και η θέση του μπορεί να εξαχθεί μόνο εάν και μόνον εάν η εκτίμηση προσανατολισμού του είναι ίση με τον πραγματικό του προσανατολισμό. Ωστόσο, και τα δύο είναι, κατ' αρχήν, άνισα. Αυτή η σύζευξη είναι ο λόγος για τον

οποίο απαιτείται μια επαναληπτική μέθοδος όσο αφορά στην λύση της ευθυγράμμισης πραγματικών και εικονικών σαρώσεων.

Παρατήρηση ΙΧ. Σε αντίθεση με την ευθυγράμμιση μετρήσεων, όπου η S_V είναι μια αμετάβλητη μέτρηση επιφορτωμένη με αναπόφευκτα σφάλματα λόγω τυφλών σημείων, στην ευθυγράμμιση πραγματικών μετρήσεων και εικονικών σαρώσεων η S_V παράγεται από το χάρτη, ο οποίος αποτυπώνει το περιβάλλον του ρομπότ στο σύνολό του, μεταφέροντας έτσι αυτή την ιδιότητα στην εικονική σάρωση. Αυτή η λεπτή διαφορά καθιστά κατ' αρχήν δυνατή την ευθυγράμμιση της εικονικής σάρωσης S_V με την αμετάβλητη μέτρηση S_R

- με μέγιστη ακρίβεια: η ανάκτηση της πραγματικής στάσης του ρομπότ μπορεί
 να γίνει με αυθαίρετη ακρίβεια (στην ιδανική περίπτωση τέλειων μετρήσεων και
 πλήρους σύμπτωσης χάρτη και περιβάλλοντος)
- χωρίς την ανάγκη να δημιουργηθούν αντιστιχίες μεταξύ των ακτίνων των δύο σαρώσεων (καθώς η λειτουργία αυτή επινοήθηκε για και κυρίως διευκολύνει την αντιστοίχιση συνόλων που κατ' αρχήν επικαλύπτονται σε ορισμένες περιοχές αλλά όχι σε άλλες, δηλαδή για το έργο της ευθυγράμμισης μετρήσεων)

Παρατήρηση Χ. Η σημασία της αποφυγής χρήσης αντιστοιχιών—εκτός από το γεγονός ότι δεν είναι αυστηρά απαραίτητες για την ευθυγράμμιση πραγματικών μετρήσεων και εικονικών σαρώσεων— έγκειται στο γεγονός ότι η αποφυγή τους συμπαρασύρει και την αποφυγή χρήσης των εξωτερικά καθορίσιμων παραμέτρων που διέπουν τη λειτουργία των αλγορίθμων ευθυγράμμισης. Μέθοδοι ευθυγράμμισης που βασίζονται στην εφεύρεση και χρήση αντιστοιχιών απαιτούν τη ρύθμιση των εν λόγω παραμέτρων, ο προσδιορισμός ορισμένων από τις οποίες έχει αποδειχθεί ότι είναι μη διαισθητικός, απαιτητικός, και όχι καθολικά αρμόζων σε οποιοδήποτε περιβάλλον ή ακόμη και για διαφορετικές στάσεις στο ίδιο περιβάλλον.

1.2.7 Αναλλοίωτη ευθυγράμμιση Fourier-Mellin σε δύο διαστάσεις

Σε αυτή την ενότητα αναφέρουμε πώς ο μετασχηματισμός Fourier-Mellin μπορεί να χρησιμοποιηθεί για την ευθυγράμμιση δύο δισδιάστατων πλεγμάτων, τα οποία στο εξής θα αναφέρονται επίσης ως "εικόνες", οι οποίες σχετίζονται μεταξύ τους μόνο με affine μετασχηματισμούς, δηλαδή μετατόπιση, περιστροφή ή/και κλιμάκωση. [CP76; QDD94; RC96].

Έστω δύο εικόνες σταθερού μεγέθους, r(x,y), s(x,y), όπου η δεύτερη είναι ένα μετατοπισμένο, περιστραμμένο, και κλιμακωμένο αντίγραφο της πρώτης:

$$s(x,y) = r(\sigma(x\cos\xi + y\sin\xi) - x_0, \sigma(-x\sin\xi + y\cos\xi) - y_0)$$

Εδώ x_0, y_0 είναι οι μετατοπίσεις κατά τους δύο άξονες x, y, ξ η γωνία περιστροφής, και σ ο συντελεστής κλίμακας. Έστω ο μετασχηματισμός Fourier μιας συνάρτησης h ότι συμβολίζεται με $\mathcal{H} = \mathcal{F}\{h\}$, ότι ο αντίστροφος μετασχηματισμός Fourier της \mathcal{H} συμβολίζεται με $h = \mathcal{F}^{-1}\{\mathcal{H}\}$, και ότι $|\mathcal{H}|$ συμβολίζει το μέγεθος του \mathcal{H} . Τότε ο μετασχηματισμοί Fourier των s, r συνδέονται με τις σχέσεις

$$S(u,v) = e^{-j\phi_s(u,v)}\sigma^{-2} |\mathcal{R}(\sigma^{-1}(u\cos\xi + v\sin\xi), \sigma^{-1}(-u\sin\xi + v\cos\xi))|$$

όπου $j^2=-1$, και ϕ_s είναι η φασματική φάση του s. Η φάση ϕ_s εξαρτάται από τη μετατόπιση, την περιστροφή, και την κλίμακα του s σε σχέση με το r, αλλά το φασματικό μέτρο $|\mathcal{S}(u,v)|$:

$$\begin{aligned} \left| \mathcal{S}(u,v) \right| &= \left| e^{-j\phi_{\mathcal{S}}(u,v)} \sigma^{-2} \mathcal{R} \left(\sigma^{-1} (u\cos\xi + v\sin\xi), \sigma^{-1} (-u\sin\xi + v\cos\xi) \right) \right| \\ &= \left| \mathcal{R} \left(\sigma^{-1} (u\cos\xi + v\sin\xi), \sigma^{-1} (-u\sin\xi + v\cos\xi) \right) \right| \end{aligned}$$
(1.5)

είναι αναλλοίωτο της μετατόπισης. Η εξίσωση (1.5) δείχνει ότι περιστροφή της r περιστρέφει το φασματικό μέγεθος της s κατά την ίδια γωνία, και ότι κλιμάκωση της r κλιμακώνει το φασματικό μέγεθος της s κατά το αντίστροφο του συντελεστή κλίμακας. Τώρα που η μετατόπιση έχει απεμπλακεί από τις άλλες δύο γραμμικές πράξεις, η περιστροφή και η κλιμάκωση μπορούν να απεμπλακούν περαιτέρω με τον ορισμό των φασματικών μεγεθών των r και s σε

πολικές συντεταγμένες:

$$egin{aligned} oldsymbol{r}_p(heta,
ho) &\triangleq |\mathcal{R}(
ho\cos heta,
ho\sin heta)| \ oldsymbol{s}_p(heta,
ho) &\triangleq |\mathcal{S}(
ho\cos heta,
ho\sin heta)| \end{aligned}$$

Χρησιμοποιώντας

$$\sigma^{-1}(u\cos\xi + v\sin\xi) = \frac{\rho}{\sigma}\cos(\theta - \xi)$$
$$\sigma^{-1}(-u\sin\xi + v\cos\xi) = \frac{\rho}{\sigma}\sin(\theta - \xi)$$

προχύπτει

$$s_p(\theta, \rho) = \sigma^{-2} r_p(\theta - \xi, \rho/\sigma)$$

Με τη μετατροπή σε πολικές συντεταγμένες, η περιστροφή της s ως προς r έχει μετατραπεί σε μετατόπιση της s_p ως προς r_p κατά μήκος του γωνιακού άξονα. Ωστόσο, η κλιμάκωση στο αρχικό πεδίο έχει δεν έχει μετασχηματιστεί: χρησιμοποιώντας όμως μια λογαριθμική κλίμακα για τον ακτινικό άξονα, η κλιμάκωση μπορεί επίσης να αναχθεί σε μετατόπιση. Έστω $\lambda = \log \rho$ και $\kappa = \log \sigma$. Τότε, ορίζοντας

$$\mathbf{r}_{pl}(\theta,\lambda) \triangleq \mathbf{r}_p(\theta,\rho)$$
 (1.6)

$$\mathbf{s}_{pl}(\theta,\lambda) \triangleq \mathbf{s}_{p}(\theta,\rho) = \sigma^{-2} \mathbf{r}_{pl}(\theta - \xi, \lambda - \kappa)$$
 (1.7)

η περιστροφή και η κλιμάκωση ανάγονται σε μετατοπίσεις κατά τον γωνιακό και ακτινικό άξονα αντίστοιχα. Με μετασχηματισμό Fourier των εξισώσεων (1.6) και (1.7) λαμβάνουμε ότι:

$$S_{pl}(\alpha, \beta) = \sigma^{-2} e^{-2\pi j(\alpha\kappa + \beta\xi)} \mathcal{R}_{pl}(\alpha, \beta)$$

Εδώ η γωνία περιστροφής ξ και ο συντελεστής κλίμακας $\sigma=e^{\kappa}$ εμφανίζονται ως μετατοπίσεις φάσης. Η τεχνική που περιγράφηκε παραπάνω απεμπλέκει τη μετατόπιση, την περιστροφή, και την κλιμάκωση των δύο εικόνων ανάμεσά τους και επομένως είναι αποτελεσματική, αριθμητικά

εφικτή, και αποδοτική.

Η τεχνική Symmetric Phase-Only Matched Filtering [QDD94] έχει βρεθεί ότι είναι αποτελεσματική στην ευθυγράμμιση δύο όμοιων (όχι απαραίτητα πανομοιότυπων) εικόνων, λόγω της ικανότητάς της να αποδίδει υψηλά επίπεδα λόγου σήματος προς θόρυβο (Signal-to-Noise ratio—SNR) και ευκρινείς κορυφές συσχετίσεων. Η βασική διαδικασία υπολογισμού της γωνίας περιστροφής και της κλίμακας της εικόνας s σε σχέση με r συνοψίζεται σε ψευδοκώδικα στον αλγόριθμο s.

Αλγόριθμος Ι core FMI-SPOMF

Input: 2D grids / Images r, s

Output: $Q_0(\alpha, \beta)$

- 1: compute $\mathcal{R}_{pl}(\alpha,\beta) = \mathcal{F}\{r_{pl}(\theta,\lambda)\}$
- 2: extract the phase $e^{-j\phi_{\boldsymbol{r}}(\alpha,\beta)}$
- 3: compute $S_{pl}(\alpha, \beta) = \mathcal{F}\{s_{pl}(\theta, \lambda)\}$
- 4: extract the phase $e^{-j\phi_{s}(\alpha,\beta)}$
- 5: determine $Q_0(\alpha, \beta) = e^{-j(\phi_s(\alpha, \beta) \phi_r(\alpha, \beta))}$
- 6: **return** $Q_0(\alpha, \beta)$

Μετά τον υπολογισμό του Q_0 η γωνία περιστροφής ξ και ο συντελεστής κλίμακας σ μπορούν να εξαχθούν με τον υπολογισμό του αντίστροφου μετασχηματισμού Fourier του $Q_0,\,q_0=\mathcal{F}^{-1}(Q_0),\,$ και τον υπολογισμό των ορισμάτων που τον μεγιστοποιούν.

Παρατήρηση XI. Υπό αυτή την έννοια, το $\max q_0$ μπορεί να ερμηνευτεί ως ένα μέτρο ομοιότητας των δύο εικόνων εισόδου.

Στα προβλήματα ευθυγράμμισης εικόνων οι δύο εικόνες εισόδου θεωρούνται ότι είναι πανομοιότυπες, και στόχος είναι να προσδιοριστούν και οι τέσσερις παράμετροι του γεωμετρικού μετασχηματισμού που συνδέιουν τη μία με την άλλη. Η διαδικασία που ακολουθείται για εξαγωγή τους συνοψίζεται σε ψευδοκώδικα στον αλγόριθμο ΙΙ.

Στα προβλήματα αναγνώρισης προτύπων, από την άλλη πλευρά, όπου ο στόχος είναι να εντοπιστούν μεταξύ ενός συνόλου εικόνων αναφοράς εκείνη που ταιριάζει καλύτερα με μια παρατηρούμενη εικόνα, μπορεί κανείς δυνητικά να βεβαιώσει την ύπαρξη αυτής της εικόνας εκτελώντας τον αλγόριθμο Ι ανάμεσα σε όλες τις εικόνες αναφοράς και την εικόνα εισόδου, να προσδιορίσει το μέγιστο κάθε εξόδου q_0 , και να τοποθετήσει ένα κατώφλι σε αυτό: εάν

Αλγόριθμος ΙΙ FMI-SPOMF for image registration

Input: 2D grids / Images r, s

Output: Translation (x_0, y_0) , rotation angle ξ , scale σ , similarity measure w

- 1: $Q_0(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (\boldsymbol{r}, \boldsymbol{s})$
- 2: Compute $q_0(\theta, \lambda) = \mathcal{F}^{-1}\{Q_0(\alpha, \beta)\}$
- 3: Determine $(\xi, \kappa) \leftarrow \arg \max_{\theta, \lambda} q_0(\theta, \lambda)$
- 4: $\mathbf{s} \leftarrow \text{Rescale } \mathbf{s} \text{ by } \sigma^{-1} = e^{-\kappa}$
- 5: $s' \leftarrow s$
- 6: $s \leftarrow \text{rotate } s \text{ by } \xi$
- 7: $s' \leftarrow \text{rotate } s' \text{ by } \xi + \pi$
- 8: $Q_1(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (r, s)$
- 9: $Q_2(\alpha, \beta) \leftarrow \text{execute algorithm I for input } (\boldsymbol{r}, \boldsymbol{s}')$
- 10: $q_1(\theta, \lambda) \leftarrow \mathcal{F}^{-1}\{Q_1(\alpha, \beta)\}$
- 11: $q_2(\theta, \lambda) \leftarrow \mathcal{F}^{-1}\{Q_2(\alpha, \beta)\}$
- 12: Determine $q(\theta, \lambda) \leftarrow \arg\max_{q_1, q_2} \{q_1, q_2\}$
- 13: Determine similarity measure $w = \max q$
- 14: $(x_0, y_0) \leftarrow \arg \max_{\theta, \lambda} q$
- 15: **return** $(x_0, y_0), \xi, \sigma, w$

το υπερβαίνει τότε πρόχειται για ταύτιση. Τα ψευδώς θετικά αποτελέσματα μπορούν στη συνέχεια να φιλτραριστούν εκτελώντας τον αλγόριθμο Π , συγκρίνοντας την παρατηρούμενη εικόνα με κάθε εικόνα αναφοράς μετά από μετατόπιση, περιστροφή, και κλιμάκωση κατά τις προσδιορισμένες παραμέτρους, και εφαρμόζοντας ένα κατώφλι στο μέγιστο του q_0 .

1.2.8 Κεντροειδές πολυγώνου

Το θεώρημα του Green [Rie51] δηλώνει ότι για μια ομαλή καμπύλη C που αποτελεί το όριο μιας περιοχής D:

$$\oint_C P(x,y) dx + Q(x,y) dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA$$
 (1.8)

όπου $A=\iint_D dA$ είναι το εμβαδόν του D. Το εμβαδόν A μπορεί να να υπολογιστεί επιλέγοντας κατάλληλα $P,\ Q$ έτσι ώστε $\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=1$. Έστω P=0 και Q=x, τότε $\oint_C x\,dy=\iint_D dA=A$. Έστω το πολύγωνο του σχήματος 1.11, το οποίο ορίζεται από τη διατεταγμένη ακολουθία κορυφών n $\{C_0,C_1,\ldots,C_{n-1}\}$, του οποίου η περιοχή οριοθετείται από το όριο $C=(C_0C_1)\cup(C_1C_2)\cup\cdots\cup(C_{n-1}C_0)$. Επειδή η επικαμπύλια ολοκληρώματα

Σχήμα 1.11: Ένα πολύγωνο n κορυφών του οποίου το όριο $C=C_0C_1\cup C_1C_2\cup\cdots\cup C_{n-1}C_0$ οριοθετεί την περιοχή D

πάνω σε ομαλές καμπύλες είναι προσθετικά σε μήκος:

$$A = \oint_C x \, dy = \int_{C_0 C_1} x \, dy + \dots + \int_{C_{n-1} C_0} x \, dy \tag{1.9}$$

Για να υπολογίσουμε το k-οστό ολοκλήρωμα C_kC_{k+1} , έστω ότι το ευθύγραμμο τμήμα από (x_k,y_k) έως (x_{k+1},y_{k+1}) παραμετροποιείται από την ακόλουθη σχέση:

$$C_k C_{k+1} : \vec{r} = ((x_{k+1} - x_k)t + x_k, (y_{k+1} - y_k)t + y_k)$$
(1.10)

όπου $t \in \mathbb{R}: 0 \le t \le 1, \ k \in \mathbb{Z}: 0 \le k \le n-1,$ και k+1 είναι 0 εάν k=n-1. Ένα ολοκλήρωμα της δεξιά πλευρά της εξίσωσης (1.9) επί του $C_k C_{k+1}$ εκφράζεται ως

$$\int_{C_k C_{k+1}} x \, dy = \int_0^1 \left((x_{k+1} - x_k)t + x_k \right) (y_{k+1} - y_k) \, dt \tag{1.11}$$

Θέτοντας αυτή την παραμετροποίηση στην εξίσωση (1.9) και αθροίζοντας για όλες τις γραμμές, καταλήγουμε ότι:

$$A = \frac{1}{2} \sum_{k=0}^{n-1} (x_{k+1} + x_k)(y_{k+1} - y_k)$$
 (1.12)

όπου $(x_n, y_n) \equiv (x_0, y_0)$.

Ο υπολογισμός του εμβαδού του πολυγώνου επιτρέπει την εύρεση του κέντρου μάζας του, δηλαδή το κεντροειδές του. Το κεντροειδές (x_c, y_c) ενός πολυγώνου δίνεται από τη σχέση:

$$(x_c, y_c) \equiv \left(\frac{1}{A} \iint_A x \, dx \, dy, \frac{1}{A} \iint_A y \, dx \, dy\right) \tag{1.13}$$

Για να υπολογίσουμε το x_c , έστω P=0 και $Q=\frac{1}{2}x^2$. Τότε από την εξίσωση (1.8):

$$x_c = \frac{1}{A} \iint_A x \, dx \, dy = \frac{1}{A} \oint_C \frac{1}{2} x^2 \, dy \tag{1.14}$$

Χρησιμοποιώντας την ίδια παραμετροποίηση για κάθε όριο C_kC_{k+1} όπως στην εξίσωση (1.11):

$$x_{c} = \frac{1}{2A} \int_{0}^{1} (x_{k}^{2} + 2x_{k}(x_{k+1} - x_{k})t + (x_{k+1} - x_{k})^{2}t^{2})(y_{k+1} - y_{k}) dt$$
$$= \frac{1}{6} (x_{k+1}^{2} + x_{k+1}x_{k} + x_{k}^{2})(y_{k+1} - y_{k})$$

Επομένως, για ένα πολύγωνο με πεπερασμένο αριθμό κορυφών:

$$x_{c} = \frac{1}{6A} \sum_{k=0}^{n-1} (x_{k+1}^{2} + x_{k+1}x_{k} + x_{k}^{2})(y_{k+1} - y_{k})$$

$$= \frac{1}{6A} \sum_{k=0}^{n-1} (-y_{k}x_{k+1}^{2} + y_{k+1}x_{k+1}x_{k} - y_{k}x_{k+1}x_{k} + y_{k+1}x_{k}^{2})$$

$$= \frac{1}{6A} \sum_{k=0}^{n-1} (x_{k+1} + x_{k})(x_{k}y_{k+1} - x_{k+1}y_{k})$$

$$(1.15)$$

Με τον ίδιο τρόπο καταλήγουμε ότι:

$$y_c = \frac{1}{6A} \sum_{k=0}^{n-1} (y_{k+1} + y_k)(x_k y_{k+1} - x_{k+1} y_k)$$
 (1.16)

όπου και στις δύο εξισώσεις (1.15), (1.16) η συντεταγμένες του n-οστού σημείου είναι αυτές του 0-οστού, και το εμβαδόν A δίνεται από την εξίσωση (1.12).

Παρατήρηση ΧΙΙ. Το κεντροειδές ενός πολυγώνου είναι μοναδικό. Η θέση του σε σχέση με τα σημεία που αποτελούν το πολύγωνο είναι ανεξάρτητη από το σύστημα αναφοράς στο οποίο εκφράζονται όλα τα σημεία (συμπεριλαμβανομένου του κεντροειδούς).

1.2.9 Το λειτουργικό σύστημα ρομπότ ROS

Το ROS είναι ένα μετα-λειτουργικό σύστημα ανοικτού κώδικα για την εκτέλεση εφαρμογών που αφορούν στη ρομποτική από το υπολογιστικό σύστημα που φέρει ένα ρομπότ [Ng09]. Παρέχει αφαίρεση υλικού (hardware abstraction), έλεγχο συσκευών χαμηλού επιπέδου, υλοποίηση συχνά χρησιμοποιούμενων λειτουργιών, διακίνηση μηνυμάτων μεταξύ διεργασιών, και διαχείριση πακέτων. Παρέχει επίσης εργαλεία και βιβλιοθήκες για την απόκτηση, την κατασκευή, τη συγγραφή, και την εκτέλεση κώδικα. Ο "γράφος" του ROS σε χρόνο εκτέλεσης είναι ένα δίκτυο peer-to-peer διεργασιών που συνδέονται χρησιμοποιώντας την υποδομή επικοινωνίας του ROS.

Ένα από τα κύρια πλεονεκτήματα του ROS είναι η τυποποίηση των τύπων μηνυμάτων επικοινωνίας, χρησιμοποιώντας μια απλή γλωσσικά ουδέτερη IDL (Interface Definition Language) για την περιγραφή τους, με αποτέλεσμα την ικανότητα υλοποίησης λογισμικού χωρίς γλωσσικές ιδιαιτερότητες. Αυτή η τυποποίηση επιτρέπει την ανάπτυξη αποσυνδεδεμένων πακέτων ROS, δηλαδή εύκολα επαναχρησιμοποιήσιμων συλλογών κύμβων. Ένας κόμβος είναι μια υπολογιστική διεργασία που εκτελεί υπολογισμούς που προσφέρουν συγκεκριμένη λειτουργικότητα. Οι κόμβοι συνδυάζονται μαζί σε έναν γράφο και επικοινωνούν μεταξύ τους ασύχγρονα, χρησιμοποιώντας θέματα (topics), ή/και σύγχρονα, μέσω υπηρεσιών κλήσης απομακρυσμένων διαδικασιών. Στο ROS ένα ρομποτικό σύστημα αποτελείται συνήθως από πολλούς κόμβους. Οι απαιτήσεις του υλικού του ROS είναι ελάχιστες σε επεξεργαστική ισχύ και μνήμη, καθιστώντας το ικανό να εκτελεστεί σε ένα Raspberry Pi ή ένα BeagleBone, ωστόσο οι πραγματικές απαιτήσεις του ποικίλουν ανάλογα με το ανάλογα με τον αριθμό και τον τύπο των κόμβων που έχει αναλάβει να εκτελέσει ένα ρομπότ.

Για τους σχοπούς της διατριβής το ROS χρησιμοποιείται σε συνδυασμό με πραγματικά ή προσομοιωμένα περιβάλλοντα, αισθητήρες, και ρομπότ, για την εμβάθυνση της έρευνας στο πεδίο εφαρμογής ΠΕ, και για την διεξαγωγή πειραμάτων και προσομοιώσεων με βάση προτεινόμενες μεθόδους και μεθόδους της βιβλιογραφίας.

²http://wiki.ros.org/Nodes

Κεφάλαιο 2

Οδικός χάρτης

2.1 Οδικός χάρτης

Αυτό το κεφάλαιο έχει ως σκοπό την παροχή μίας συνοπτικής κάτοψης των προβλημάτων στων οποίων τη λύση συμβάλλει η διατριβή. Το σχήμα 2.1 λειτουργεί τροχιοδεικτικά ως προς τα προβλήματα-σταθμούς, των συνδετικών βημάτων ανάμεσά τους, και τις ιδιότητές των λύσεών τους.

Όλα ξεχινούν από την ανάγχη διαλεύχανσης ενός προβλήματος του οποίου η λύση είναι χρίσιμη σε πραχτιχές εφαρμογές ρομποτιχής χινητής βάσης: της επίδοσης χαι ποιότητας των διαφορετιχών παχέτων λογισμιχού που αφορούν στην αυτόνομη πλοήγηση με το λειτουργιχό σύστημα ROS (ενότητα 1.2.9). Καθώς η δημοφιλία τού τελευταίου έχει εξαπλωθεί στην έρευνα, έχει ενσωματωθεί σε αυτό ένας ιχανός αριθμός αλγορίθμων αυτόνομους πλοήγησης (χάραξης μονοπατιών σε δισδιάστατο χάρτη χαι ελεγχτών χίνησης: ενότητα 1.1.1), των οποίων η συνδυαστιχή χρήση αποτελεί αντιχείμενο χρονοβόρας έρευνας χαι πειραματισμού για ερευνητές χαι επαγγελματίες του πεδίου εφαρμογής ΠΕ. Σχοπός αυτής της μελέτης είναι η παροχή μίας μεθόδου αξιολόγησης της επίδοσης αλγορίθμων αυτόνομους πλοήγησης, χαθώς χαι η πειραματιχή αξιοποίησή της σε ό,τι αφορά τρέχοντες διαθέσιμους αλγορίθμους.

Κατά τη διενέργεια της πειραματικής αξιολόγησης των μεθόδων πλοήγησης παρατηρήσαμε το φαινόμενο της αστάθειας της εκτίμησης της στάσης από το φίλτρο σωματιδίων, και το γενικευμένο φαινόμενο του σφάλματός της ως προς την πραγματική στάση ενός ρομπότ, ανεξαρτήτως μεθόδου πλοήγησης (σχήμα 2.1-A). Η μικρή αυτή παρατήρηση αποδεικνύεται

ότι είναι καίριας σημασίας καθώς μάς εισάγει στον δρόμο της έρευνας επί της βελτίωσης της εκτίμησης της στάσης ενός ρομπότ.

Προς αυτόν το στόχο επικεντρωθήκαμε στην πηγή του προβλήματος: την εκτίμηση της στάσης ενός ρομπότ βάσει περιορισμένης αβεβαιότητας (pose tracking) με φίλτρο σωματιδίων (ενότητα 1.2.3). Με σκοπό τη μείωση του σφάλματος εκτίμησης θέσαμε έναν αριθμό από υποθέσεις και εξακριβώσαμε πειραματικά την ευστάθειά τους. Τα συμπεράσματα που εξήγαμε αφορούν στη βελτίωση της ακρίβειας εκτίμησης του φιλτρου σωματιδίων (α) επιλέγοντας ως πηγές της τελικής εκτίμησης του υποσύνολα των πιό βαρέων σωματιδίων, (β) με τον προσθετικό τρόπο χρήσης της μεθόδου ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη (ενότητα 1.2.6), και (γ) με την ανατροφοδότηση της εκτίμησης της τελευταίας στον πληθυσμό σωματιδίων του φίλτρου (σχήμα 2.1-Β).

Για την υλοποίηση της ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη χρησιμοποιήσαμε τον αλγόριθμο ευθυγράμμισης μετρήσεων lidar με την καλύτερη επίδοση στη βιβλιογραφία. Κατά την υλοποίηση της μεθόδου β' παρατηρήσαμε ότι η λύσεις του εν λόγω αλγορίθμου παρουσίαζαν σημαντικές διακυμάνσεις στην ακρίβειά τους (α) με μικρές αλλαγές στις παραμέτρους που αφορούν στη διαδικασία υπολογισμού αντιστοιχιών ανάμεσα στις ακτίνες των δύο σαρώσεων, και (β) με την ακρίβεια να μειώνεται όσο ο θόρυβος στις δύο σαρώσεις αυξάνεται.

Για αυτούς τους λόγους ξεκινήσαμε να ερευνούμε τη βιβλιογραφία για μεθόδους ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη που να μην χρησιμοποιούν αντιστοιχίες και που να είναι εύρωστες ως προς τον θόρυβο εισόδου. Το ενδιαφέρον εδώ είναι ότι τόσο οι μέθοδοι ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη όσο και οι μέθοδοι ευθυγράμμισης μετρήσεων lidar (οι οποίες είναι δυνατόν και αυτές να χρησιμοποιηθούν για την ευθυγράμμιση μιση μετρήσεων με σαρώσεις χάρτη) χρησιμοποιούν στο σύνολό τους αντιστοιχίσεις ανάμεσα σε δύο εισόδους για να φέρουν εις πέρας την ευθυγράμμιση. Για να πετύχουμε τους στόχους στραφήκαμε εν τέλει στο πεδίο της μηχανικής όρασης, από όπου χρησιμοποιήσαμε μία μέθοδο που εκπληρώνει και τα δύο κριτήρια. Για την πειραματική εξακρίβωση του οφέλους χρήσης της τήν στρέψαμε στο πρόβλημα της εύρεσης της στάσης ενός ρομπότ βάσει καθολικής αβεβαιότητος (σχήμα 2.1-Γ). Η πειραματική διαδικασία της μεθόδου εστιάζει στην εξακρίβωση των ποστοστών των αληθώς θετικών εκτιμήσεων στάσεων και των σφαλμάτων τους σε σχέση με την καλύτερη μέθοδο ευθυγράμμισης μετρήσεων lidar με σαρώσεις χάρτη της βιβλιογραφίας.

Ο λόγος που η μέθοδος δεν χρησιμοποιήθηκε απευθείας για την εκτίμηση της στάσης ενός

οχήματος βάσει περιορισμένης αβεβαιότητος είναι ότι ο χρόνος εκτέλεσής της είναι τέτοιος που δεν μπορεί να συμβαδίσει με το ρυθμό ανανέωσης των μετρήσεων που προέρχονται από έναν συμβατικό αισθητήρα lidar. Αντιθέτως, στο πρόβλημα της εκτίμησης βάσει καθολικής αβεβαιότητος, ο χαμηλός χρόνος εκτέλεσης είναι επιθυμητός αλλά όχι αυστηρά απαιτητέος ή αναγκαίος.

Σε αυτό το σημείο είχαν γίνει κατανοητά τέσσερα σημεία: (α) η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη είναι ικανή να επιλύσει με επιτυχία τα προβλήματα εύρεσης και παρακολούθησης της στάσης ενός ρομπότ (δηλαδή βάσει καθολικής και πεπερασμένης αβεβαιότητος), (β) η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη με βάση τον υπολογισμό αντιστοιχιών ανάμεσα στις εισόδους—ο de facto και καθ' ολοκληρίαν τρόπος επίλυσης του προβλήματος—είναι υπό συνθήκες επιβλαβής ως προς την ποιότητα της ευθυγράμμισης, (γ) η ανάπτυξη μεθόδων ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών που εκτελείται σε πραγματικό χρόνο αποτελεί ως εκ τούτου σημαντική συμβολή στη λύση του προβλήματος, και (δ) οποιαδήποτε προσπάθεια για τη δημιουργία μεθόδου ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών θα έπρεπε να προέλθει από έρευνα έξω από τη σχετική βιβλιογραφία.

Ως εχ τούτων η έρευνα μας επιχεντρώθηκε στην επίλυση του προβλήματος της ευθυγράμμισης μετρήσεων με σαρώσεις χάρτη χωρίς τη χρήση αντιστοιχιών χαι σε πραγματιχό χρόνο. Προς αυτόν το σχοπό εστιάσαμε σε μία χλάση αισθητήρων lidar των οποίων η χρήση έχει αυξηθεί τα τελευταία χρόνια για σχοπούς εύρεσης της στάσης, οι οποίοι έχουν να επωφεληθούν τα μέγιστα από τέτοιες μεθόδους λόγω του αυξημένου θορύβου μέτρησης που φέρουν. Επιπρόσθετα, αυτή η χλάση αισθητήρων εμφανίζει πανοραμιχό γωνιαχό πεδίο όρασης: χατά συνέπεια η περιοδιχότητα του σήματος μετρήσεων αποτελεί γόνιμο έδαφος για την απαλλαγή από τον υπολογισμό αντιστοιχιών (σχήμα 2.1-Δ). Το αποτέλεσμα αυτής της έρευνας ήταν η ανάπτυξη μίας τριλογίας μεθόδων, αντλούσα την αποτελεσματιχότητά της από πρώτες αρχές, το πεδίο της χρυσταλλογραφίας, χαι το πεδίο της μηχανιχής όρασης. Κάθε μία από τις τρεις μεθόδους εχτελείται σε πραγματιχό χρόνο χαι εμφανίζει μεγαλύτερη ευρωστία χαι μιχρότερα σφάλματα στάσης από τις μεθόδους της βιβλιογραφίας.

Το επόμενο και τελευταίο βήμα ήταν το πιό σημαντικό, το λιγότερο τεχνικό, και με τη γενικότερη συμβολή: εάν ο χάρτης αντικατασταθεί με μία δεύτερη φυσική μέτρηση τότε η ευθυγράμμιση μετρήσεων με σαρώσεις χάρτη μετατρέπεται στη γενικότερη μέθοδο ευθυγράμ-

μισης μετρήσεων lidar, η οποία χρησιμοποιείται ως μέσο οδομετρίας (απαραίτητη στα φίλτρα σωματιδίων και Kalman), και βρίσκεται στην καρδιά της επίλυσης του προβλήματος της ταυτόχρονης χαρτογράφησης και παρακολούθησης της στάσης ενός ρομπότ (παρατήρηση VI). Το τελευταίο λοιπόν βήμα είναι η ανάπτυξη μίας μεθόδου για την ευθυγράμμιση μετρήσεων 2D lidar που δεν χρησιμοποιεί αντιστοιχίες, που εκτελείται σε πραγματικό χρόνο, και που εμφανίζει μεγαλύτερη ευρωστία στο θόρυβο μέτρησης και μικρότερα σφάλματα ευθυγράμμισης σε σχέση με αντίστοιχες μεθόδους της βιβλιογραφίας.

Σχήμα 2.1: Ο οδικός χάρτης της διατριβής

Κεφάλαιο 3

Συμβολές και Διάρθρωση της διατριβής

- 3.1 Συμβολές της διατριβής
- 3.2 Διάρθρωση

Μέρος ΙΙ

Προβλήματα—Λύσεις— Συμβολές

Κεφάλαιο 4

Μέθοδοι ευθυγράμμισης πραγματικών με εικονικές σαρώσεις χωρίς τον υπολογισμό αντιστοιχίσεων

Η έρευνα που παρουσιάζεται στο παρόν κεφάλαιο αντλεί τις πηγές της από τις αιτίες περαιτέρω έρευνας του προηγούμενου κεφαλαίου, όπως αυτές διατυπώθηκαν στην τελευταία του ενότητα. Στο παρόν κεφάλαιο επιζητούμε το σχεδιασμό και την ανάπτυξη μεθόδων ευθυγράμμισης πραγματικών με εικονικές σαρώσεις η οποία λειτουργεί ... και κανε μια ανακεφαλαιωση εδω γιατι αλλαζουμε ταχυτητα και ροτα

4.1 Στόχοι του κεφαλαίου και δομή

Πρόβλημα Π3. Έστω ένα ρομπότ κινητής βάσης του πεδίου εφαρμογής ΠΕ, ικανό να κινείται στο επίπεδο x-y, εξοπλισμένο με έναν οριζόντια τοποθετημένο αισθητήρα lidar μετρήσεων δύο διαστάσεων που εκπέμπει N_s ακτίνες. Έστω επίσης ότι τα ακόλουθα είναι διαθέσιμα ή ευσταθούν:

ullet Ο χάρτης M του περιβάλλοντος στο οποίο κινείται το ρομπότ

- Μια δισδιάστατη μέτρηση S_R μεγέθους N_s , που λαμβάνεται από την—άγνωστη και αναζητούμενη—στάση $p(l,\theta), l=(x,y)$
- Μια εκτίμηση της θέσης του αισθητήρα $\hat{p}(\hat{l},\hat{\theta})$ στο σύστημα αναφοράς του χάρτη, όπου $\hat{l}=(\hat{x},\hat{y})$ είναι σε μία γειτονιά του l

Τότε ο στόχος είναι να μειωθεί το μέτρο του σφάλματος στάσης του αισθητήρα $e(p,\hat{p})\triangleq p-\hat{p}$ από την αρχική του τιμή $\|e(p,\hat{p})\|_2$ βελτιώνοντας την εκτίμηση της στάσης του αισθητήρα σε $\hat{p}'(\hat{x}',\hat{y}',\hat{\theta}')$ έτσι ώστε

$$\|e(p,\hat{p}')\|_2 < \|e(p,\hat{p})\|_2$$
 (**)

δεδομένων των κάτωθι παραδοχών και περιορισμών:

- Το γωνιακό εύρος του αισθητήρα lidar ισούται με $\lambda = 2\pi \ (\Pi$ αραδοχή $\ref{eq:continuous}$?
- Η λύση του προβλήματος δίνεται μέσω ευθυγράμμισης πραγματικών με εικονικές σαρώσεις (Παραδοχή ??)
- Η επίλυση του προβλήματος δίνεται χωρίς τον υπολογισμό αντιστοιχίσεων ανάμεσα στις εισόδους της μεθόδου επίλυσης (Παραδοχή ??)
- Η εκτέλεση της επίλυσης του προβλήματος πρέπει γίνεται σε χρόνο που να συμβαδίζει με το ρυθμό ανανέωσης εκτιμήσεων στάσης που παρέχει η βασική μέθοδος εκτίμησης στάσης (Επακόλουθο ??)

4.2 Μεθοδολογία ευθυγράμμισης προσανατολισμού

Έστω οι παραδοχές του προβλήματος Π3. Έστω επιπλέον ότι $\hat{l} = l$, δηλαδή μόνο ο προσανατολισμός του αισθητήρα πρέπει να εκτιμηθεί. Τότε ας υπολογιστεί η εικονική σάρωση S_V μέσω δεσμοβολής (raycasting) από την εκτίμηση \hat{p} στον χάρτη M. Η εκτίμηση της περιστροφής της εικονικής σάρωσης S_V σε σχέση με την πραγματική σάρωση S_R μπορεί να βρεθεί μέσω των μεθόδων που παρουσιάζονται στις ενότητες 4.2.1, 4.2.2, και 4.2.3. Το

σφάλμα της εχτίμησης προσανατολισμού μπορεί να μειωθεί περαιτέρω μέσω της μεθόδου που παρουσιάζεται στην ενότητα 4.2.6.

Στα συμφραζόμενα του παρόντος κεφαλαίου, έστω $\mathcal{F}\{S\}$ ο διακριτός μετασχηματισμός Fourier του σήματος \mathcal{S} , $\mathcal{F}^{-1}\{S\}$ ο αντίστροφός του, $\mathcal{F}_1\{S\}$ ο πρώτος όρος του μετασχηματισμού (υποθέτοντας αρίθμηση από το μηδέν), \mathbf{c}^* ο συζυγής του μιγαδικού αριθμού \mathbf{c} , $|\mathbf{c}|$ το μέτρο του, και i η φανταστική μονάδα.

4.2.1 Η μέθοδος Fourier-Mellin σε μία διάσταση

Έστω ότι ο χώρος δειγματοληπτείται επαρχώς πυχνά γωνιαχά, τότε για $k,\xi\in\mathbb{Z}_{\geq 0}$: $k,\xi\in[0,N_s-1]$:

$$\mathcal{S}_V[k] \simeq \mathcal{S}_R[(k-\xi) \mod N_s] \Rightarrow$$

$$\mathcal{F}\{\mathcal{S}_V\}(u) \simeq e^{-i2\pi\xi u/N_s} \cdot \mathcal{F}\{\mathcal{S}_R\}(u)$$

και, επομένως, αφού $2\pi\frac{\xi}{N_s}=\xi\frac{2\pi}{N_s}=\xi\gamma$, όπου γ είναι η διακριτική γωνία του αισθητήρα:

$$Q_{\mathcal{S}_{V},\mathcal{S}_{R}}(u) \triangleq \frac{\mathcal{F}\{\mathcal{S}_{V}\}^{*} \cdot \mathcal{F}\{\mathcal{S}_{R}\}}{|\mathcal{F}\{\mathcal{S}_{V}\}| \cdot |\mathcal{F}\{\mathcal{S}_{R}\}|}$$

$$\simeq \frac{e^{-i\xi\gamma u} \cdot \mathcal{F}\{\mathcal{S}_{R}\}^{*} \cdot \mathcal{F}\{\mathcal{S}_{R}\}}{|e^{-i\xi\gamma u} \cdot \mathcal{F}\{\mathcal{S}_{R}\}^{*}| \cdot |\mathcal{F}\{\mathcal{S}_{R}\}|}$$

$$= e^{-i\xi\gamma u} \cdot \frac{\mathcal{F}\{\mathcal{S}_{R}\}^{*} \cdot \mathcal{F}\{\mathcal{S}_{R}\}}{|\mathcal{F}\{\mathcal{S}_{R}\}| \cdot |\mathcal{F}\{\mathcal{S}_{R}\}|}$$

$$= e^{-i\xi\gamma u}$$

$$= e^{-i\xi\gamma u}$$

$$(4.1)$$

Ο αντίστροφος διαχριτός μετασχηματισμός Fourier του Q_{S_V,S_R} είναι μία Kronecker δ-συνάρτηση $q_{S_V,S_R}=\mathcal{F}^{-1}\{Q_{S_V,S_R}\}$ με κέντρο ξ :

$$\xi = \underset{u}{\operatorname{arg\,max}} \ q_{\mathcal{S}_V, \mathcal{S}_R}(u) \tag{4.2}$$

Εάν η διαφορά του προσανατολισμού μεταξύ των στάσεων από τις οποίες ελήφθησαν οι σαρώσεις \mathcal{S}_R και \mathcal{S}_V είναι $\Delta\theta=\theta-\hat{\theta},$ τότε $\Delta\theta=\xi\gamma+\phi,$ όπου $\mod(\Delta\theta,\gamma)=\phi\in[-\frac{\gamma}{2},+\frac{\gamma}{2}].$ Τα παραπάνω μάς οδηγούν στη διατύπωση του Λήμματος I:

Λήμμα Ι. Έστω οι παραδοχές του προβλήματος $\Pi 3$ και $\hat{l} = l$. Έστω επίσης ότι (α) οι μετρήσεις του φυσικού αισθητήρα δεν φέρουν διαταραχές, και (β) ο χάρτης M αναπαριστά το περιβάλλον τέλεια. Τότε ενημερώνοντας την εκτίμηση προσανατολισμού $\hat{\theta}$ σε $\hat{\theta}'$:

$$\hat{\theta}' = \hat{\theta} + \xi \gamma \tag{4.3}$$

όπου ξ δίνεται από την εξίσωση (4.2), οδηγεί σε ένα επίλοιπο σφάλμα προσανατολισμού ϕ :

$$|\phi| \le \frac{\gamma}{2} \tag{4.4}$$

 \mathbf{E} παχόλουθο \mathbf{I} . Ο στόχος (*) επιτυγχάνεται υπό την προϋπόθεση ότι $|\theta - \hat{\theta}| > \frac{\gamma}{2}$.

Η παραπάνω μέθοδος εκτίμησης του προσανατολισμού της στάσης $p(x,y,\theta)$ ονομάζεται στο εξής μέθοδος Fourier-Mellin σε μία διάσταση. Στο σχήμα 4.1 απεικονίζεται η αρχική και τελική συνθήκη ευθυγράμμισης προσανατολισμού με εφαρμογή της μεθόδου Fourier-Mellin μίας διάστασης για έναν αισθητήρα δισδιάστατων πανοραμικών σαρώσεων με $\gamma=2\pi/360$, σε ένα μη δομημένο περιβάλλον, του οποίου ο χάρτης το αναπαριστά τέλεια, ενώ οι μετρήσεις του αισθητήρα δεν διαταράσσονται από θόρυβο. Το σχήμα 4.2 απεικονίζει το μέσο χρόνο εκτέλεσης μίας επανάληψης της μεθόδου σε δέκα εκτελέσεις για αυξανόμενο μέγεθος σαρώσεων N_s . Ο Αλγόριθμος ΙΙΙ παρουσιάζει σε ψευδοκώδικα τη διαδικασία διόρθωσης προσανατολισμού με βάση την εν λόγω μέθοδο.

Αλγόριθμος III rc_fm

Input: S_R , S_V , $\hat{\boldsymbol{p}}(x, y, \hat{\theta})$, γ

Output: $\hat{\theta}'$, q_{max}

- 1: $q_{\mathcal{S}_V,\mathcal{S}_R} \leftarrow \mathcal{F}^{-1}\{Q_{\mathcal{S}_V,\mathcal{S}_R}\}\ (\epsilon\xi.\ 4.1)$
- 2: $\xi = \arg \max q_{S_V, S_R}$
- 3: $q_{\text{max}} \leftarrow q_{\mathcal{S}_V, \mathcal{S}_R}[\xi] = \max q_{\mathcal{S}_V, \mathcal{S}_R}$
- 4: $\hat{\theta}' \leftarrow \hat{\theta} + \xi \gamma$
- 5: **return** $(\hat{\theta}', q_{\text{max}})$

Σχήμα 4.1: Αριστερά: η αρχική $\hat{p}[0] \equiv (l,\hat{\theta}[0])$ και τελική $\hat{p}[1] \equiv (l,\hat{\theta}[1])$ εκτίμηση στάσης του αισθητήρα σε ένα περιβάλλον με χάρτη M, για πραγματική στάση $p(l,\theta)$, ως συνέπεια της εφαρμογής της μεθόδου γωνιακής ευθυγράμμισης Fourier-Mellin μίας διάστασης. Δεξιά: το σφάλμα εκτίμησης προσανατολισμού ως συνάρτηση της διακριτικής γωνίας γ του αισθητήρα

Σχήμα 4.2: Ο μέσος χρόνος εκτέλεσης μίας επανάληψης της μεθόδου Fourier-Mellin μίας διάστασης για δέκα εκτελέσεις, ανά μέγεθος σαρώσεων εισόδου N_s

4.2.2 Η μέθοδος Πρώτων Αρχών

Έστω μία δισδιάστατη σάρωση $\mathcal S$ που έχει ληφθεί από τη στάση (x,y,θ) σε κάποιο σύστημα συντεταγμένων (Ορισμός ΙΙΙ). Έστω ότι το γωνιακό εύρος της $\mathcal S$ είναι $\lambda=2\pi$. Οι συντεταγμένες του τελικού σημείου της n-οστής ακτίνας της $\mathcal S$, $n=0,1,\ldots,N_s-1$, στο

σύστημα συντεταγμένων είναι (x_n, y_n) :

$$x_n = x + d_n \cos(\theta + \frac{2\pi n}{N_s} - \pi) = -d_n \cos(\theta + \frac{2\pi n}{N_s})$$
 (4.5)

$$y_n = y + d_n \sin(\theta + \frac{2\pi n}{N_s} - \pi) = -d_n \sin(\theta + \frac{2\pi n}{N_s})$$
 (4.6)

Εδώ παρατηρούμε ότι $-(x_n-x)$ και (y_n-y) είναι αντίστοιχα το πραγματικό και το φανταστικό μέρος της μιγαδικής ποσότητας

$$d_n e^{-i(\theta + \frac{2\pi n}{N_s})} = d_n \cos(\theta + \frac{2\pi n}{N_s}) - i \cdot d_n \sin(\theta + \frac{2\pi n}{N})$$

$$\stackrel{(4.5),(4.6)}{=} -(x_n - x) + i \cdot (y_n - y)$$
(4.7)

και, επομένως

$$d_n e^{-i2\pi n/N_s} = e^{i\theta}(-(x_n - x) + i \cdot (y_n - y))$$
(4.8)

Αθροίζοντας τα δύο μέλη της εξίσωσης (4.8) επί του συνόλου των N_s ακτίνων λαμβάνουμε τον πρώτο όρο του διακριτού μετασχηματισμού Fourier του σήματος $\{d_n\},\ n=0,1,\ldots,N_s-1,$ $\mathcal{F}_1\{\mathcal{S}\}=\mathcal{F}\{\mathcal{S}\}[1]$:

$$\mathcal{F}_{1}\{\mathcal{S}\} = \sum_{n=0}^{N_{s}-1} d_{n} \cdot e^{-i2\pi n/N_{s}} \stackrel{(4.8)}{=} \sum_{n=0}^{N_{s}-1} e^{i\theta} (-(x_{n}-x)+i\cdot(y_{n}-y))$$

$$= e^{i\theta} \sum_{n=0}^{N_{s}-1} [(x-i\cdot y)+(-x_{n}+i\cdot y_{n})]$$

$$= e^{i\theta} N_{s}(x-i\cdot y) - e^{i\theta} \Delta$$
(4.9)

όπου
$$\Delta \triangleq \sum_{n=0}^{N_s-1} (x_n - i \cdot y_n).$$

Συμβολίζοντας με το γράμμα R τις ποσότητες που αντιστοιχούν στην πραγματική σάρωση S_R , η οποία έχει ληφθεί από τη στάση του φυσικού αισθητήρα $p(x,y,\theta)$, και με V εκείνες που αντιστοιχούν στην εικονική σάρωση S_V , η οποία έχει ληφθεί από τη στάση $\hat{p}(x,y,\hat{\theta})$:

$$\mathcal{F}_1\{\mathcal{S}_R\} = \sum_{n=0}^{N_s - 1} d_n^R \cdot e^{-i2\pi n/N_s} \stackrel{(4.9)}{=} N_s e^{i\theta} (x - i \cdot y) - e^{i\theta} \Delta_R$$
 (4.10)

$$\mathcal{F}_1\{\mathcal{S}_V\} = \sum_{n=0}^{N_s - 1} d_n^V \cdot e^{-i2\pi n/N_s} \stackrel{(4.9)}{=} N_s e^{i\hat{\theta}} (x - i \cdot y) - e^{i\hat{\theta}} \Delta_V$$
 (4.11)

Έστω τώρα ότι

$$\Delta_R - \Delta_V = \sum_{n=0}^{N_s - 1} (x_n^R - x_n^V) - i \cdot \sum_{n=0}^{N_s - 1} (y_n^R - y_n^V)$$

$$= N_s(\delta_x - i \cdot \delta_y)$$
(4.12)

όπου

$$\delta_x \triangleq \frac{1}{N_s} \sum_{n=0}^{N_s - 1} (x_n^R - x_n^V) \tag{4.13}$$

$$\delta_y \triangleq \frac{1}{N_s} \sum_{n=0}^{N_s - 1} (y_n^R - y_n^V)$$
 (4.14)

τότε

$$\Delta_V = \Delta_R - N_s(\delta_x - i \cdot \delta_y) \tag{4.15}$$

Ο πρώτος όρος του διαχριτού μετασχηματισμού Fourier του σήματος που αποτελείται από τη διαφορά των δύο σημάτων (4.10) και (4.11) είναι:

$$\mathcal{F}_{1}\{\mathcal{S}_{R}\} - \mathcal{F}_{1}\{\mathcal{S}_{V}\} = \sum_{n=0}^{N_{s}-1} (d_{n}^{R} - d_{n}^{V}) \cdot e^{-i2\pi n/N_{s}}$$

$$\stackrel{(4.10),(4.11)}{=} N_{s}(x - i \cdot y)(e^{i\theta} - e^{i\hat{\theta}}) - e^{i\theta}\Delta_{R} + e^{i\hat{\theta}}\Delta_{V}$$

$$\stackrel{(4.15)}{=} N_{s}(x - i \cdot y)(e^{i\theta} - e^{i\hat{\theta}}) - e^{i\theta}\Delta_{R} + e^{i\hat{\theta}}(\Delta_{R} - N_{s}(\delta_{x} - i \cdot \delta_{y}))$$

$$= N_{s}(x - i \cdot y)(e^{i\theta} - e^{i\hat{\theta}}) - \Delta_{R}(e^{i\theta} - e^{i\hat{\theta}}) - N_{s}e^{i\hat{\theta}}(\delta_{x} - i \cdot \delta_{y})$$

$$= (e^{i\theta} - e^{i\hat{\theta}})[N_{s}(x - i \cdot y) - \Delta_{R}] - N_{s}e^{i\hat{\theta}}(\delta_{x} - i \cdot \delta_{y})$$

$$\stackrel{(4.10)}{=} (e^{i\theta} - e^{i\hat{\theta}})\frac{\mathcal{F}_{1}\{\mathcal{S}_{R}\}}{e^{i\theta}} - N_{s}e^{i\hat{\theta}}(\delta_{x} - i \cdot \delta_{y})$$

$$= (1 - e^{-i(\theta - \hat{\theta})})\mathcal{F}_{1}\{\mathcal{S}_{R}\} - N_{s}e^{i\hat{\theta}}(\delta_{x} - i \cdot \delta_{y})$$

άρα

$$-\mathcal{F}_1\{\mathcal{S}_V\} = -e^{-i(\theta-\hat{\theta})}\mathcal{F}_1\{\mathcal{S}_R\} - N_s e^{i\hat{\theta}}(\delta_x - i \cdot \delta_y)$$

$$e^{-i(\theta-\hat{\theta})} = \frac{\mathcal{F}_1\{\mathcal{S}_V\}}{\mathcal{F}_1\{\mathcal{S}_R\}} - \frac{N_s e^{i\hat{\theta}}}{\mathcal{F}_1\{\mathcal{S}_R\}} (\delta_x - i \cdot \delta_y)$$

$$(4.16)$$

Χρησιμοποιώντας την πολιχή αναπαράσταση $\mathbf{A} = |\mathbf{A}|e^{i\angle\mathbf{A}}$:

$$e^{-i(\theta-\hat{\theta})} = \frac{|\mathcal{F}_1\{\mathcal{S}_V\}|}{|\mathcal{F}_1\{\mathcal{S}_R\}|} e^{-i(\angle\mathcal{F}_1\{\mathcal{S}_R\} - \angle\mathcal{F}_1\{\mathcal{S}_V\})} - \frac{e^{-i(\angle\mathcal{F}_1\{\mathcal{S}_R\} - \hat{\theta})}}{|\mathcal{F}_1\{\mathcal{S}_R\}|} (N_s \delta_x - i \cdot N_s \delta_y)$$
(4.17)

Λόγω του γεγονότος ότι ο προσανατολισμός θ του αισθητήρα είναι άγνωστος, τα τελικά σημεία $\{(x_n^R,y_n^R)\}$ καθίστανται ομοίως άγνωστα, και συνεπώς και οι ποσότητες δ_x,δ_y . Προκειμένου να αποκτήσουμε μια αρχική διαίσθηση ως προς τα μέτρα των τελευταίων κάνουμε την παρατήρηση ότι, εξ ορισμού, οι ποσότητες $N_s\delta_x$ και $N_s\delta_y$ ποσοτικοποιούν τη διαφορά της προσέγγισης των επικαμπύλιων ολοκληρωμάτων επί των καμπύλων που ορίζονται από τα τελικά σημεία των δύο σαρώσεων στους δύο κύριους άξονες x και y. Η προσέγγιση αυτή οφείλεται στο πεπερασμένο μέγεθος των εκπεμπόμενων ακτίνων N_s . Επομένως υπό τις υποθέσεις ότι (α) ο χάρτης του περιβάλλοντος είναι τέλεια αναπαράστασή του και (β) οι μετρήσεις του φυσικού αισθητήρα δεν επηρεάζονται από διαταραχές: καθώς $N_s \to \infty$, $N_s\delta_x$, $N_s\delta_y \to 0$, τα οποία με τη σειρά τους σημαίνουν λόγω της εξίσωσης (4.17) ότι $\frac{|\mathcal{F}_1\{\mathcal{S}_R\}|}{|\mathcal{F}_1\{\mathcal{S}_R\}|} \to 1$ και $\theta - \hat{\theta} \to \angle \mathcal{F}_1\{\mathcal{S}_R\} - \angle \mathcal{F}_1\{\mathcal{S}_V\}$. Η παραπάνω ανάλυση μάς οδηγεί στη διατύπωση του Λήμματος Π :

Λήμμα ΙΙ. Έστω οι παραδοχές του προβλήματος $\Pi 3$ και $\hat{l} = l$. Έστω επίσης ότι (α) οι μετρήσεις του φυσικού αισθητήρα δεν φέρουν διαταραχές, και (β) ο χάρτης M αναπαριστά το περιβάλλον τέλεια. Τότε ενημερώνοντας την εκτίμηση προσανατολισμού σε $\hat{\theta}'$:

$$\hat{\theta}' = \hat{\theta} + \angle \mathcal{F}_1 \{ \mathcal{S}_R \} - \angle \mathcal{F}_1 \{ \mathcal{S}_V \} \tag{4.18}$$

όπου $\mathcal{F}_1\{\cdot\}=\mathcal{F}\{\cdot\}[1],$ οδηγεί σε ένα επίλοιπο σφάλμα προσανατολισμού ϕ :

$$\phi = \angle \mathcal{F}_1 \{ \mathcal{S}_V \} - \tan^{-1} \frac{|\mathcal{F}_1 \{ \mathcal{S}_V \}| \sin(\angle \mathcal{F}_1 \{ \mathcal{S}_V \}) - N_s |\delta| \sin(\hat{\theta} + \angle \delta)}{|\mathcal{F}_1 \{ \mathcal{S}_V \}| \cos(\angle \mathcal{F}_1 \{ \mathcal{S}_V \}) - N_s |\delta| \cos(\hat{\theta} + \angle \delta)}$$
(4.19)

όπου $\delta = \delta_x - i \cdot \delta_y$.

Η απόδειξη βρίσκεται στο παράρτημα ??.

Επακόλουθο ΙΙ. Το μέτρο του σφάλματος $|\phi|$ είναι αντιστρόφως ανάλογο του αριθμού των ακτίνων N_s που εκπέμπει ο αισθητήρας στην περίπτωση που τόσο η πραγματική μέτρηση S_R όσο και η εικονική σάρωση S_V δεν διαταράσσονται από θόρυβο (σχήμα 4.3).

Σχήμα 4.3: Θεωρητικές τιμές του επίλοιπου σφάλματος ϕ (εξ. 4.19) σε εκατό προσομοιώσεις για μεταβλητές τιμές $N_s|\delta|$. Το μέτρο $|\mathcal{F}_1\{\mathcal{S}_V\}|$ είναι ομοιόμορφα κατανεμημένο στο διάστημα [0.0,200.0], το μέγεθος $N_s|\delta|$ στο διάστημα $[10^{-4},10^{+2}]$, και τα ορίσματα $\angle\mathcal{F}_1\{\mathcal{S}_V\}$, $\angle\delta$ στο $[-\pi,\pi)$. Το επίλοιπο σφάλμα $\phi\to 0$ καθώς $N_s\to\infty \Rightarrow N_s|\delta|\to 0$

Η παραπάνω μέθοδος εκτίμησης του προσανατολισμού της στάσης $p(x,y,\theta)$ ονομάζεται στο εξής μέθοδος Πρώτων Αρχών. Στο σχήμα 4.5 απεικονίζεται η αρχική και τελική συνθήκη ευθυγράμμισης προσανατολισμού με εφαρμογή της μεθόδου Πρώτων αρχών για έναν αισθητήρα δισδιάστατων πανοραμικών σαρώσεων με $\gamma = 2\pi/360$, υπό τις ίδιες συνθήκες διεξαγωγής μείωσης του σφάλματος προσανατολισμού με αυτές που παρουσιάζονται στο σχήμα 4.1. Το σχήμα 4.4 απεικονίζει το μέσο χρόνο εκτέλεσης μίας επανάληψης της μεθόδου σε δέκα εκτελέσεις για αυξανόμενο μέγεθος σαρώσεων N_s . Ο Αλγόριθμος IV παρουσιάζει σε ψευδοχώδικα τη διαδικασία διόρθωσης προσανατολισμού με βάση την εν λόγω μέθοδο.

4.2.3 Η μέθοδος του Προχρούστη

Έστω ότι η προβολή των τελικών σημείων των ακτίνων της σάρωσης S_V γύρω από τη στάση $\hat{p}(x,y,\hat{\theta})$ παράγει το σύνολο σημείων P_V στο οριζόντιο επίπεδο. Έστω ότι η ίδια

Σχήμα 4.4: Ο μέσος χρόνος εκτέλεσης μίας επανάληψης της μεθόδου Πρώτων Αρχών για δέκα εκτελέσεις, ανά μέγεθος σαρώσεων εισόδου N_s

Σχήμα 4.5: Αριστερά: η αρχική $\hat{p}[0] \equiv (l,\hat{\theta}[0])$ και τελική $\hat{p}[1] \equiv (l,\hat{\theta}[1])$ εκτίμηση στάσης του αισθητήρα σε ένα περιβάλλον με χάρτη M, για πραγματική στάση $p(l,\theta)$, ως συνέπεια της εφαρμογής της μεθόδου γωνιακής ευθυγράμμισης Πρώτων Αρχών. Δεξιά: το σφάλμα εκτίμησης προσανατολισμού ως συνάρτηση της διακριτικής γωνίας γ του αισθητήρα

προβολή για τη σάρωση S_R ως προς τη στάση $p(x,y,\theta)$ παράγει το σύνολο P_R . Η περιστροφή της στάσης \hat{p} που ευθυγραμμίζει βέλτιστα το σύνολο σημείων P_V σε σχέση με το P_R μπορεί να βρεθεί από τη λύση του Ορθογώνιου Προσκρούστειου προβλήματος [Sch66] για πίνακες εισόδου P_V και P_R . Στην περίπτωση που ο πίνακας μετασχηματισμού περιορίζεται στο να έχει τη δομή πίνακα περιστροφής P_V και P_R ενθυγράμμισης ονομάζεται Περιορισμένο Ορθογώνιο Προσκρούστειο πρόβλημα.

51

Αλγόριθμος IV rc_x1

Input: S_R , S_V , $\hat{\boldsymbol{p}}(x, y, \hat{\theta})$

Output: $\hat{\theta}'$

1: $\mathbf{R} = \mathcal{F}\{S_R\}[1]$

2: $V = \mathcal{F}\{S_V\}[1]$

3: $\hat{\theta}' \leftarrow \hat{\theta} + \arg(\mathbf{R}) - \arg(\mathbf{V})$

4: **return** $\hat{\theta}'$

Σε αυτή την ενότητα αναζητούμε την λύση αυτού του τελευταίου προβλήματος ως μέσο επίλυσης του προβλήματος ??, διότι ο περιορισμός του πίνακα μετασχηματισμού σε πίνακα περιστροφής δίνει τη δυνατότητα προσδιορισμού της γωνίας περιστροφής της εκτίμησης στάσης από την οποία το εικονικό διάνυσμα σαρώσεων εμφανίζει τη βέλτιστη ευθυγράμμιση με το πραγματικό διάνυσμα S_R . Η λύση του Περιορισμένου Ορθογώνιου Προσκρούστειου προβλήματος δίνεται στο [Ume91] και περιγράφεται παρακάτω.

 Δ εδομένου ότι στα συμφραζόμενα του προβλήματός $\Pi 3$ η θέση \emph{l} είναι άγνωστη, τα τελικά σημεία κάθε σάρωσης λαμβάνονται με την προβολή κάθε σάρωσης στο επίπεδο x-y σύμφωνα με το τοπικό σύστημα αναφοράς της κάθεμίας, δηλαδή σαν να είχε ληφθεί η κάθε μιά από το O(0,0,0). Ο πίνακας περιστροφής \emph{R} που ευθυγραμμίζει βέλτιστα το σύνολο \emph{P}_V με το \emph{P}_R είναι ο πίνακας που ελαχιστοποιεί την απόκλιση των περιεστραμμένων σημείων \emph{RP}_V από το \emph{P}_R :

$$\operatorname{arg\,min}_{\boldsymbol{P}} \|\boldsymbol{P}_R - \boldsymbol{R} \cdot \boldsymbol{P}_V\|_F^2$$

όπου $\|A\|_F = (A^\top A)^{1/2}$ δηλώνει το μέτρο Frobenius του πίνακα πραγματικών τιμών A. Έστω ο τελεστής $\operatorname{tr}(A)$ ότι δηλώνει το ίχνος του πίνακα A. Τότε

$$\|\boldsymbol{P}_{R} - \boldsymbol{R}\boldsymbol{P}_{V}\|_{F}^{2} = \operatorname{tr}(\boldsymbol{P}_{R}^{\top}\boldsymbol{P}_{R} + \boldsymbol{P}_{V}^{\top}\boldsymbol{P}_{V}) - 2 \operatorname{tr}(\boldsymbol{R}\boldsymbol{P}_{R}\boldsymbol{P}_{V}^{\top})$$
(4.20)

Δεδομένου ότι μόνο ο δεύτερος όρος της δεξιάς πλευράς εξαρτάται από τον πίνακα R, για την ελαχιστοποίηση της (4.20) ως προς R αρκεί να βρεθεί ο πίνακας περιστροφής R που μεγιστοποιεί το ίχνος $\operatorname{tr}(RP_VP_R^\top)$. Ο βέλτιστος πίνακας R δίνεται από το Λήμμα III:

Λήμμα ΙΙΙ. Έστω P_R και P_V πίνακες διαστάσεων $2 \times N_s$, R πίνακας διαστάσεων 2×2 , και UDV^{\top} η αποσύνθεση του $P_RP_V^{\top}$ σε ιδιάζουσες τιμές (Singular Value Decomposition—

SVD). Tóte o πίναχας $m{R}$ που ελαχιστοποιεί το μέτρο $\| m{P}_R - m{R} \cdot m{P}_V \|_F^2$ δίνεται από τη σχέση $m{R} = m{U} m{S} m{V}^{ op}$, όπου $m{S} = {
m diag}(1, {
m det}\,(m{U}m{V}))$.

 \mathbf{E} παχόλουθο ΙΙΙ. Η τιμή του μέγιστου ίχνους $T(\mathbf{\textit{P}}_{\!R},\mathbf{\textit{P}}_{\!V}) \triangleq \max \operatorname{tr}(\mathbf{\textit{R}}\mathbf{\textit{P}}_{\!R}\mathbf{\textit{P}}_{\!V}^{\! op})$ είναι

$$\max \operatorname{tr}(\boldsymbol{R} \boldsymbol{P}_{R} \boldsymbol{P}_{V}^{\top}) = \operatorname{tr}(\boldsymbol{D} \boldsymbol{S}) \tag{4.21}$$

Το Λήμμα ΙΙΙ παρέχει τον βέλτιστο πίναχα περιστροφής ${\bf R}$ υπό την προϋπόθεση ότι τόσο το σύνολο ${\bf P}_R$ όσο και το ${\bf P}_V$ είναι γνωστά. Ωστόσο, στα συμφραζόμενα του προβλήματος Π3 τα τελικά σημεία ${\bf P}_R$ υπολογίζονται από έναν αυθαίρετο προσανατολισμό επειδή ο επιθυμητός προσανατολισμός είναι θεμελιωδώς άγνωστος. Επομένως ο υπολογισμός του πίναχα ${\bf R}$ και η εξαγωγή του σχετικού προσανατολισμού του ${\bf P}_V$ σε σχέση με το ${\bf P}_R$ από τον πίναχα ${\bf R}$ σε ένα βήμα είναι αδύνατη. Αυτό που μπορεί να γίνει για την εκτίμηση του προσανατολισμού της στάσης ${\bf p}$ ως προς τον προσανατολισμό της στάσης ${\bf \hat p}$ είναι το εξής. Υπολογίζεται το γινόμενο ${\bf P}_R{\bf P}_V^\top$ σε $O(N_s^2)$, η αποσύνθεσή του σε ιδιάζουσες τιμές σε O(1), καταγράφεται η τιμή του ίχνους ${\bf tr}({\bf D}{\bf S})$ σε O(1), μετατοπίζεται ο πίναχας ${\bf P}_V$ κατά στήλες προς τα αριστερά μία φορά, και επαναλαμβάνεται η διαδικασία N_s-1 φορές. Έστω ότι η επανάληψη $\psi\in\mathbb{Z}_{\geq 0}$ καταγράφει το μέγιστο ίχνος: τότε η περιστροφή της στάσης ${\bf \hat p}$ κατά ψ_V μεγιστοποιεί το ίχνος ${\bf tr}({\bf R}{\bf P}_R{\bf P}_V^\top)$ και ελαχιστοποιεί το μέτρο του σφάλματος ευθυγράμμισης (4.20) για μία δεδομένη διακριτική γωνία γ . Η παραπάνω διαδικασία αποδίδει τη βέλτιστη περιστροφή επειδή το ίχνος ${\bf tr}({\bf D}{\bf S})$ ουσιαστικά αναλαμβάνει το ρόλο ενός μέτρου ευθυγράμμισης μεταξύ των συνόλων σημείων ${\bf P}_V$ και ${\bf P}_R$.

Η παραπάνω διαδικασία καταγραφής N_s ιχνών μπορεί να υπολογιστεί είτε με ευθύ τρόπο, πολυπλοκότητας $O(N_s^3)$, είτε μέσω με της μεθόδου που παρουσιάζεται στο [DBH15] με σημαντικά μειωμένη πολυπλοκότητα $O(N_s \log N_s)$. Η μέθοδος αυτή θα αναφέρεται στο εξής ως μέθοδος DBH και περιγράφεται παρακάτω.

Έστω \widetilde{A} ο πίνακας A με αντίστροφη σειρά στηλών, $P_R = [p_R^x; p_R^y]$, $\widetilde{P}_V = [p_V^x; p_V^y]$. Έστω επίσης ότι ο τελεστής \odot υποδηλώνει τον πολλαπλασιασμό κατά στοιχείο. Τότε υπολογίζονται τέσσερα διανύσματα μεγέθους N_s :

$$egin{aligned} m{m}_{11} &= \mathcal{F}^{-1}\{\mathcal{F}\{m{p}_R^x\}\odot\mathcal{F}\{m{p}_V^x\}\}\} \ m{m}_{12} &= \mathcal{F}^{-1}\{\mathcal{F}\{m{p}_D^y\}\odot\mathcal{F}\{m{p}_V^x\}\}\} \end{aligned}$$

$$egin{aligned} m{m}_{21} &= \mathcal{F}^{-1}\{\mathcal{F}\{m{p}_R^x\}\odot\mathcal{F}\{m{p}_V^y\}\}\} \ m{m}_{22} &= \mathcal{F}^{-1}\{\mathcal{F}\{m{p}_R^y\}\odot\mathcal{F}\{m{p}_V^y\}\}\} \end{aligned}$$

Μετά τον υπολογισμό των διανυσμάτων \mathbf{m}_{kl} , k,l=1,2, υπολογίζονται N_s πίνακες \mathbf{M}_j , μεγέθους 2×2 , σύμφωνα με:

$$\mathbf{M}_{j} = \begin{bmatrix} \mathbf{m}_{11}^{j} & \mathbf{m}_{12}^{j} \\ \mathbf{m}_{21}^{j} & \mathbf{m}_{22}^{j} \end{bmatrix}$$
(4.22)

όπου $j=0,\ldots,N-1$, και $m{m}_{kl}^j$ είναι το j-οστό στοιχείο του διανύσματος $m{m}_{kl}$. Ο πίνακας $m{M}_j$ είναι ίσος με τον πίνακα $m{P}_R(m{P}_V^{N_s-1-j})^{\top}$, όπου ο συμβολισμός $m{A}^k$ δηλώνει τον πίνακα $m{A}$ του οποίου οι στήλες έχουν μετατοπιστεί k φορές προς τα αριστερά. Η απόδειξη χρησιμοποιεί το Θεώρημα Κυκλικής Συνέλιξης του DFT και παραλείπεται.

Αφού υπολογιστούν και σχηματιστούν όλοι οι N_s M_j πίνακες, κάθε ένας αποσυντίθεται σε ιδιάζουσες τιμές. Το ίχνος κάθε πίνακα R_jM_j καταγράφεται με την εφαρμογή του Λήμματος ΙΙΙ και του Επακόλουθου ΙΙΙ. Έστω ότι το μέγιστο ίχνος καταγράφεται για τον δείκτη J, τότε η περιστροφή της στάσης \hat{p} κατά $(N_s-1-J)\gamma=\psi\gamma$ επιτυγχάνει το ίδιο αποτέλεσμα με την ευθεία μέθοδο υψηλότερης πολυπλοκότητας για μία δεδομένη διακριτική γωνία γ . Εάν η διαφορά του προσανατολισμού μεταξύ των στάσεων από τις οποίες ελήφθησαν οι σαρώσεις \mathcal{S}_R και \mathcal{S}_V είναι $\Delta\theta=\theta-\hat{\theta}$, τότε $\Delta\theta=(N_s-1-J)\gamma+\phi$, όπου $\mod(\Delta\theta,\gamma)=\phi\in[-\frac{\gamma}{2},+\frac{\gamma}{2}]$. Τα παραπάνω μας οδηγούν στη διατύπωση του Λήμματος IV:

Λήμμα IV. Έστω οι παραδοχές του προβλήματος $\Pi 3$ και $\hat{l} = l$. Έστω επίσης ότι (α) οι μετρήσεις του φυσικού αισθητήρα δεν φέρουν διαταραχές, και (β) ο χάρτης M αναπαριστά το περιβάλλον τέλεια. Τότε ενημερώνοντας την εκτίμηση προσανατολισμού σε $\hat{\theta}'$:

$$\hat{\theta}' = \hat{\theta} + \psi \gamma \tag{4.23}$$

όπου ψ δίνεται από τη γραμμή 5 του Αλγορίθμου V, οδηγεί σε ένα επίλοιπο σφάλμα προσανατολισμού ϕ :

$$|\phi| \le \frac{\gamma}{2} \tag{4.24}$$

Επαχόλουθο IV. Ο στόχος (*) επιτυγχάνεται υπό την προϋπόθεση ότι $|\theta - \hat{\theta}| > \frac{\gamma}{2}$.

Η παραπάνω μέθοδος εκτίμησης του προσανατολισμού της στάσης $p(x,y,\theta)$ ονομάζεται στο εξής μέθοδος του Προκρούστη. Στο σχήμα 4.6 απεικονίζεται το κέρδος της εφαρμογής της μεθόδου DBH έναντι της αφελούς μεθόδου σε χρόνο εκτέλεσης για αύξοντες αριθμούς εκπεμπόμενων από τον αισθητήρα σάρωσης ακτίνων N_s .

 Σ χήμα 4.6: Το ποσοστό του χρόνου εκτέλεσης της μεθόδου ευθυγράμμισης Προκρούστη με την εφαρμογή της μεθόδου DBH προς το χρόνο εκτέλεσης χωρίς την εφαρμογή της, για αυξανόμενο αριθμό εκπεμπόμενων ακτίνων του αισθητήρα σάρωσης

Στο σχήμα 4.8 απεικονίζεται η αρχική και τελική συνθήκη ευθυγράμμισης προσανατολισμού με εφαρμογή της μεθόδου Προκρούστη για έναν αισθητήρα δισδιάστατων πανοραμικών σαρώσεων με $\gamma=2\pi/360$, σε ένα μη δομημένο περιβάλλον, του οποίου ο χάρτης το αναπαριστά τέλεια, ενώ οι μετρήσεις του αισθητήρα δεν διαταράσσονται από θόρυβο. Το σχήμα 4.7 απεικονίζει το μέσο χρόνο εκτέλεσης μίας επανάληψης της μεθόδου σε δέκα εκτελέσεις για αυξανόμενο μέγεθος σαρώσεων N_s . Ο Αλγόριθμος IV παρουσιάζει σε ψευδοκώδικα τη διαδικασία διόρθωσης προσανατολισμού με βάση την εν λόγω μέθοδο. Ο Αλγόριθμος VI παρουσιάζει σε ψευδοκώδικα τη μέθοδο DBH.

Σχήμα 4.7: Ο μέσος χρόνος εκτέλεσης μίας επανάληψης της μεθόδου Προκρούστη διάστασης για δέκα εκτελέσεις, ανά μέγεθος σαρώσεων εισόδου N_s

Σχήμα 4.8: Αριστερά: η αρχική $\hat{p}[0] \equiv (l,\hat{\theta}[0])$ και τελική $\hat{p}[1] \equiv (l,\hat{\theta}[1])$ εκτίμηση στάσης του αισθητήρα σε ένα περιβάλλον με χάρτη M, για πραγματική στάση $p(l,\theta)$, ως συνέπεια της εφαρμογής της μεθόδου γωνιακής ευθυγράμμισης Προκρούστη. Δεξιά: το σφάλμα εκτίμησης προσανατολισμού ως συνάρτηση της διακριτικής γωνίας γ του αισθητήρα

4.2.4 Η κλίνη της διακριτικής γωνίας του αισθητήρα

Η μέθοδος Fourier-Mellin σε μία διάσταση (ενότητα 4.2.1) και η μέθοδος του Προκρούστη (ενότητα 4.2.3), σε αντίθεση με την μέθοδο Πρώτων Αρχών (ενότητα 4.2.2), είναι διακριτές μέθοδοι εκτίμησης υπό την έννοια ότι λειτουργούν μειώνοντας την αρχική εκτίμηση προσανατολισμού κατά ακέραια πολλαπλάσια της σταθεράς διακριτικής γωνίας γ, με αποτέλεσμα αυθαίρετα επίλοιπα σφάλματα προσανατολισμού φ όπως ορίζονται από τα Λήμ-

Αλγόριθμος V rc_uf

```
Input: S_R, S_V, \hat{\boldsymbol{p}}(x,y,\hat{\theta}), \gamma

Output: \hat{\theta}', T

1: \boldsymbol{P}_R \leftarrow \text{project}(S_R,(0,0,0))

2: \boldsymbol{P}_V \leftarrow \text{project}(S_V,(0,0,0))

3: (J,T) \leftarrow \text{rc\_uf\_core}(\boldsymbol{P}_R,\boldsymbol{P}_V) (A\lambda\gamma\delta\rho\iota\theta\mu\rho\varsigma VI)

4: N_s = 2\pi/\gamma

5: \psi = N_s - 1 - J

6: \hat{\theta}' \leftarrow \hat{\theta} + \psi\gamma

7: \mathbf{return} (\hat{\theta}',T)
```

Αλγόριθμος VI rc_uf_core

```
Input: P_R, P_V
Output: J, T(P_R, P_V)
  1: reverse(P_V)
  2: \boldsymbol{p}_{R}^{x} \leftarrow \text{first row of } \boldsymbol{P}_{R}
  3: \boldsymbol{p}_{R}^{y} \leftarrow \text{second row of } \boldsymbol{P}_{R}
  4: \boldsymbol{p}_{V}^{x} \leftarrow \text{first row of } \boldsymbol{P}_{V}
  5: \boldsymbol{p}_{V}^{y} \leftarrow \text{second row of } \boldsymbol{P}_{V}
  6: \boldsymbol{m}_{11} \leftarrow \mathcal{F}^{-1} \{ \mathcal{F} \{ \boldsymbol{p}_{R}^{x} \} \odot \mathcal{F} \{ \boldsymbol{p}_{V}^{x} \} \}
  7: \boldsymbol{m}_{12} \leftarrow \mathcal{F}^{-1}\{\mathcal{F}\{\boldsymbol{p}_{R}^{y}\} \odot \mathcal{F}\{\boldsymbol{p}_{V}^{x}\}\}
  8: m_{21} \leftarrow \mathcal{F}^{-1}\{\mathcal{F}\{p_R^x\} \odot \mathcal{F}\{p_V^y\}\}
  9: \boldsymbol{m}_{22} \leftarrow \mathcal{F}^{-1} \{ \mathcal{F} \{ \boldsymbol{p}_{R}^{y} \} \odot \mathcal{F} \{ \boldsymbol{p}_{V}^{y} \} \}
10: T \leftarrow \{\emptyset\}
11: for j = 0: N_s - 1 do
              oldsymbol{M}_j \leftarrow egin{bmatrix} oldsymbol{m}_{11}(j) & oldsymbol{m}_{12}(j) \ oldsymbol{m}_{21}(j) & oldsymbol{m}_{22}(j) \end{bmatrix}
               (\boldsymbol{U}, \boldsymbol{D}, \boldsymbol{V}) \leftarrow \mathtt{SVD}(\boldsymbol{M}_i)
13:
                append \mathtt{trace}(oldsymbol{D} \cdot \mathtt{diag}(1, \det(oldsymbol{UV}))) to oldsymbol{T}
14:
15: end for
16: reverse(T)
17: J \leftarrow \arg \max T
18: T_{\text{max}} \leftarrow \max\{T\} = T[J]
19: return (J, T_{\text{max}})
```

ματα Ι και ΙV. Αυτός ο περιορισμός μπορεί να ιδωθεί ως μία έτερη Προκρούστεια ιδιότητα, 1

¹Στη μυθολογία ο Πολυπήμων, γνωστότερος ως Προχρούστης, ήταν ένας απαγωγέας ξένων, και μάστιγα της Ιεράς Οδού της Αττικής. Αφού φιλοξενούσε τα θύματά του προσφέροντάς τούς ένα πλουσιοπάροχο δείπνο, τα προσκαλούσε να ξαπλώσουν σε ένα κρεβάτι διαστάσεων τέτοιων που το ύψος του θύματος καλείτο να προσαμμοστεί στο μήκος του κρεβατιού, είτε μέσω τεμαχισμού του σώματός του, είτε μέσω τάνυσής του. Ο Πολυπήμων είχε την ατυχία να απαγάγει τον Θησέα, ο οποίος, άρτι αφιχθείς από τη δολοφονία του Μινώταυρου, τον τιμώρησε χρησιμοποιώντας την τεχνική του εναντίον τού.

που αφορά σε δύο μεθόδους αυτή τη φορά, υπό την έννοια ότι το αρχικό σφάλμα προσανατολισμού $|\theta-\hat{\theta}|\in\mathbb{R}_{\geq 0}$ τεμαχίζεται στην κλίνη $K\gamma,K\in\mathbb{Z}_{\geq 0}$, στη βάση διακριτής και εξωτερικής λογικής:—το αρχικό σφάλμα προσαρμόζεται στη μέθοδο, αντί η μέθοδος να είναι προσαρμόσιμη στο αρχικό σφάλμα.

Επιπρόσθετα, σύμφωνα με τα Λήμματα Ι, ΙΙ, και IV τα τελικά σφάλματα προσανατολισμού των τριών ως άνω μεθόδων εξαρτώνται από τον αμετάβλητο αριθμό των εκπεμπόμενων από τον φυσικό αισθητήρα απόστασης ακτίνων, ή, ισοδύναμα, από την αμετάβλητη διακριτική του γωνία γ. Το πεπερασμένο και αμετάβλητο των εκπεμπόμενων ακτίνων του φυσικού αισθητήρα, σε συνδυασμό με το αυθαίρετο του ρυθμού των αλλαγών του περιβάλλοντος (σχήμα ??), μπορούν να οδηγήσουν σε υποδειγματοληψία τμημάτων του περιβάλλοντος ή/και του χάρτη του, με συνέπεια τη μη βέλτιστη σύγκλιση της εκτίμησης προσανατολισμού.

Οι δύο παραπάνω παρατηρήσεις αφορούν στα σφάλματα στάσης της συνολικής μεθόδου ευθυγράμμισης, όχι μόνο λόγω των μη επιλύσιμων σφαλμάτων προσανατολισμού αυτών καθεαυτά, αλλά και λόγω της διάδοσής τους στην διαδεχόμενη της μεθόδου ευθυγράμμισης σης προσανατολισμού μέθοδο ευθυγράμμισης της θέσης (Παρατήρηση VIII): λόγω σύζευξης των δύο ειδών ευθυγράμμισης, η μέθοδος εκτίμησης θέσης απαιτεί επί της αρχής μηδενικά σφάλματα προσανατολισμού. Κατ' ελάχιστον, όμως, στην περίπτωση των δύο ως άνω Προκρούστειων μεθόδων, το τελικό σφάλμα προσανατολισμού τους μπορεί να έχει τιμή έως και γ/2. Για την επίλυση αυτού του προβλήματος εξετάζουμε δύο υποψήφιες μεθόδους, οι οποίες παρουσιάζονται στις επόμενες δύο ενότητες.

4.2.5 Η μέθοδος του Πιτυοκάμπτη Σίνι

Προτού εισάγουμε τη μέθοδο που ελαττώνει τα σφάλματα εκτίμησης προσανατολισμού που προτείνουμε, πρέπει να εξετάσουμε το λόγο για την πολυπλοκότητά και την επιτυχία της σε σχέση με την αφελή μέθοδο επιχείρησης ελάττωσης του σφάλματος εκτίμησης του προσανατολισμού, η οποία παρουσιάζεται στην παρούσα ενότητα.

Δεδομένων ότι

• το τελικό σφάλμα εκτίμησης προσανατολισμού των τριών ως άνω μεθόδων είναι αντιστρόφως ανάλογο του αριθμού εκπεμπομένων ακτίνων N_s

- ο τελευταίος είναι αμετάβλητος όσο αφορά στον φυσικό αισθητήρα αποστάσεων (με την έννοια ότι δεν μπορεί να προσδώσει περισσότερες μετρήσεις από $N_s=2\pi/\gamma$)
- ο τελευταίος είναι μεταβλητός όσο αφορά στον εικονικό αισθητήρα αποστάσεων (με την έννοια ότι, εφόσον οι εικονικές σαρώσεις είναι υπολογιστέες μέσω του χάρτη, μπορεί να υπολογιστεί ένας αυθαίρετος αριθμός εικονικών ακτίνων εντός του)

ένας αφελής τρόπος επίλυσης του προβλήματος ελάττωσης του σφάλματος προσανατολισμού συνίσταται στην αύξηση των εκπεμπόμενων ακτίνων

- του φυσικού αισθητήρα με την παρεμβολή των τιμών των ακτίνων της πραγματικής σάρωσης
- \bullet του εικονικού αισθητήρα με την δεσμοβολή ισάριθμων ακτίνων της πραγματικής σάρωσης εντός του χάρτη M

Σε αυτή την περίπτωση η αύξηση του αριθμού των ακτίνων της πραγματικής σάρωσης μέσω παρεμβολής γίνεται με διχοτόμηση όλων των N_s γωνιών μεταξύ γειτονικών ακτίνων, και εισαγωγή ακτίνων σε γωνίες $n\gamma+\gamma/2,\,n=0,1,\ldots,N_s-1,$ των οποίων η αναφερόμενη απόσταση τίθεται σε $S_R'^{\text{interp}}[n]=\frac{1}{2}(S_R[n]+S_R[n+1]),$ όπου $S_R[N_s]=S_R[0].$ Με αυτόν τον τρόπο η προχύπτουσα διακριτική γωνία είναι $\gamma'=\gamma/2.$ Αυτή διαδικασία θα μπορούσε να επαναληφθεί περαιτέρω, έως ότου η τελική διακριτική γωνία φτάσει σε ένα αποδεκτά χαμηλό επίπεδο $\gamma^{(\nu)}=\gamma/2^{\nu},\,\nu\in\mathbb{Z}_{>0}.$ Όσο αφορά στην εικονική σάρωση, δεδομένου ότι παράγεται από το χάρτη, δεν απαιτεί τη χρήση παρεμβολής—ο αριθμός των απαιτούμενων εικονικών ακτίνων N_s' καθορίζεται από το μέγεθος της πραγματικής σάρωσης: $N_s'=2^{\nu}N_s.$ Λόγω της χρήσης της τεχνικής διχοτόμησης ακτίνων ονομάζουμε αυτή τη μέθοδο ως μέθοδο του Πιτυοχάμπτη Σίνι.²

Παρατήρηση XIII. Κατά τη διάρχεια αυτής της μεθόδου ελάττωσης του σφάλματος προσανατολισμού η πραγματική σάρωση και ο χάρτης δειγματοληπτούνται με ρυθμό δειγματοληψίας 2^{ν} , με αποτέλεσμα μία πραγματική σάρωση και μία εικονική σάρωση, αποτελούμενες από $2^{\nu}N_s$ ακτίνες. Η διόρθωση προσανατολισμού εκτελείται μία φορά, και έχει ως αποτέλεσμα μία εκτίμηση προσανατολισμού.

²Ο Σίνις, επονομαζόμενος Πιτυοχάμπτης, ήταν γιος του Προχρούστη Πολυπήμωνος. Σε συνέχεια της γενεαλογίας του ο Σίνις απήγαγε ξένους, των οποίων τα άχρα έδενε σε δύο λυγισμένα πεύχα (χεχαμμένες πιτύες) προτού αφήσει τα τελευταία να πάρουν τη φυσιχή τους χλίση, διχοτομώντας έτσι τα σώματά των θυμάτων του. Για χαχή του τύχη εξοντώθηχε επίσης από τον Θησέα.

Στο σχήμα 4.9 απεικονίζεται μία μεγέθυνση των δύο περιοχών του σχήματος ?? που περικλείονται σε κόκκινα και πράσινα πλαίσια. Η παραπάνω μεθοδολογία υπερδειγματοληψίας προσομοιώνει τέλεια τις επιπρόσθετες αποστάσεις που θα λάμβανε ένας αισθητήρας με 2^2N_s ακτίνες σε σχέση με έναν αισθητήρα N_s ακτίνων σε γραμμικά τμήματα του περιβάλλοντος (επάνω σειρά). Όμως, σε μη γραμμικά ή απότομα μεταβαλλόμενα τμήματα του περιβάλλοντος (κάτω σειρά), η μέθοδος παρεμβολής αστοχεί στην προσομοίωση των επιπρόσθετων αποστάσεων λόγω εισαγωγής σφαλμάτων απόστασης που οφείλονται στην επινόηση τεχνητών μετρήσεων. Το μέγεθος αυτών των σφαλμάτων εξαρτάται από το μέγεθος της διακριτικής γωνίας του αισθητήρα, τον ρυθμό υπερδειγματοληψίας, και τον χάρτη ως ανεξάρτητη μεταβλητή.

Σχήμα 4.9: Μεγέθυνση των δύο περιοχών που περικλείονται με κόκκινο και πράσινο χρώμα στο σχήμα??. Οι κόκκινες γραμμές υποδηλώνουν ακτίνες της πραγματικής μέτρησης S_R . Οι μπλε γραμμές υποδηλώνουν ακτίνες της εικονικής μέτρησης S_V . Οι διακεκομμένες φούξια γραμμές απεικονίζουν τις παρεμβαλλόμενες ακτίνες του πραγματικού αισθητήρα. Οι διακεκομμένες μπλε γραμμές απεικονίζουν τις πρόσθετες ακτίνες του εικονικού αισθητήρα. Εδώ ο ρυθμός υπερδειγματοληψίας είναι $\mu=2^{\nu}, \nu=2$. Τα σχήματα στην αριστερή πλευρά δείχνουν τις αρχικές σαρώσεις μεγέθους N_s . Τα δεξιά σχήματα δείχνουν την παρεμβαλλόμενη πραγματική σάρωση και την εικονική σάρωση ίσου μεγέθους $N_s'=2^{\nu}N_s$. Η παρεμβολή των ακτίνων της πραγματικής σάρωσης είναι ακριβής σε γραμμικά τμήματα. Σε μη γραμμικά τμήματα, όμως, οι αποστάσεις των παρεμβαλλόμενων ακτίνων είναι αυθαίρετα λανθασμένες, και δεν μπορεί να διασφαλιστεί ότι το σφάλμα προσανατολισμού φράσσεται άνωθεν από την τιμή $\gamma/2^{\nu+1}$.

Αυτό σημαίνει ότι η εισαγωγή παρεμβαλλόμενων αχτίνων έχει το αμετάβλητο χαι αχούσιο αποτέλεσμα η λύση να εισάγει τα δικά της σφάλματα στην επιζητούμενη εχτίμηση. Επιπλέον, αυτό το σφάλμα δεν μπορεί να ελεγχθεί, και, κατά συνέπεια, είναι αναγκαία εναλλαχτική προσέγγιση λύσης του προβλήματος. Για του λόγου το αληθές, στο σχήμα 4.10 εχτίθεται το μέγεθος, η τυχαιότητα, και η αστάθεια αυτών των σφαλμάτων. Όπως και πριν απεικονίζονται οι αρχικές και τελικές συνθήκες ευθυγράμμισης προσανατολισμού για έναν αισθητήρα δισδιάστατων πανοραμικών σαρώσεων με $\gamma=2\pi/360$, σε ένα μη δομημένο περιβάλλον, του οποίου ο χάρτης το αναπαριστά τέλεια, ενώ οι μετρήσεις του αισθητήρα δεν διαταράσσονται από θόρυβο. Η μέθοδος του Πιτυοχάμπτη Σίνι εφαρμόζεται επί των μεθόδων Fourier-Mellin μίας διάστασης (άνω) και Προχρούστη (κάτω). Εδώ ο βαθμός υπερδειγματοληψίας ν έχει αρχική τιμή $\nu=\nu_{\rm min}=0$ και αυξάνει διαδοχικά κάθε φορά που η εχτίμηση προσανατολισμού δεν εμφανίζει μεταβολή ως προς την προηγούμενη τιμή της πάνω από $\gamma/2$ rad, έως ότου $\nu=\nu_{\rm max}=3$.

Στην ενότητα 4.2.6 παρουσιάζουμε τη μέθοδο που, σε αντίθεση με τη μέθοδο του Πιτυοκάμπτη Σίνι, ελαττώνει το σφάλμα εκτίμησης προσανατολισμού με τρόπο ευσταθή, προβλεπόμενο, και αναλογικό ως προς το ρυθμό δειγματοληψίας $\mu=2^{\nu}$ του χάρτη M.

4.2.6 Η μέθοδος του Θησέα

Από την παραπάνω ανάλυση γίνεται κατανοητό ότι οποιαδήποτε προσπάθεια μείωσης του σφάλματος εκτίμησης προσανατολισμού θα πρέπει να περιοριστεί από την απαγόρευση εφεύρεσης πραγματικών μετρήσεων. Στο σχήμα 4.11 απεικονίζεται η μεθοδολογία που εισάγουμε, η οποία εγγυάται ότι το τελικό σφάλμα προσανατολισμού $|\phi| \in [0,\gamma/2^{1+\nu}]$ στην περίπτωση που οι μετρήσεις του φυσικού αισθητήρα δεν διαταράσσονται από θόρυβο και ο χάρτης αναπαριστά το περιβάλλον τέλεια, για $\nu=2$ και $\gamma=2\pi/360$.

Αντί της κατασκευής μίας εικονικής σάρωσης $2^{\nu}N_s$ ακτίνων, και της εκτέλεσης διόρθωσης του προσανατολισμού μία φορά (Παρατήρηση ΧΙΙΙ), το βέλτιστο σφάλμα προσανατολισμού $|\phi|\in[0,\gamma/2^{1+\nu}]$ για έναν δεδομένο ρυθμό δειγματοληψίας $\mu=2^{\nu}$ και διακριτική γωνία γ μπορεί να επιτευχθεί με τον υπολογισμό 2^{ν} εικονικών σαρώσεων μεγέθους N_s , εκτελώντας διόρθωση προσανατολισμού 2^{ν} φορές. Η διόρθωση προσανατολισμού πραγματοποιείται μία φορά μεταξύ της ανόθευτης πραγματικής σάρωσης και της εικονικής σάρωσης \mathcal{S}_V^k , η οποία

Σχήμα 4.10: Η λανθασμένη προσέγγιση ελάττωσης του γωνιαχού σφάλματος εκτίμησης της μεθόδου Πιτυοκάμπτη Σίνι για διαδοχική υπερδειγματοληψία βαθμών $(\nu_{\min}, \nu_{\max}) = (0,3)$. Το σφάλμα εκτίμησης προσανατολισμού $\phi^{(\nu)}$ φράσσεται από την ποσότητα $\gamma/2^{1+\nu}$ μόνο στο τέλος του βήματος δειγματοληψίας $\nu=0$

λαμβάνεται από τη στάση $\hat{\boldsymbol{p}}(x,y,\hat{\theta}_k)$:

$$\hat{\theta}_k = \hat{\theta} + k \cdot \gamma / 2^{\nu}, \quad k = 0, \dots, 2^{\nu} - 1$$
 (4.25)

για συνολικά 2^{ν} φορές, με αποτέλεσμα 2^{ν} εκτιμήσεις προσανατολισμού.

Όσο αφορά στις μεθόδους Fourier-Mellin μίας διάστασης και τη μέθοδο του Προκρούστη, η μετρική ευθυγράμμισης μεταξύ της k-οστής εικονικής σάρωσης και της πραγματικής σάρωσης υπολογίζεται σύμφωνα το Ποσοστό Δ ιάκρισης (Percent Discrimination—PD). Η μετρική του Ποσοστού Δ ιάκρισης για την k-οστή εικονική σάρωση $\mathrm{PD}_k \in [0,1]$, και είναι

Σχήμα 4.11: Μεγέθυνση της μη γραμμικής περιοχής που περιχλείεται με κόκκινο χρώμα στο σχήμα ??. Οι κόκκινες γραμμές υποδηλώνουν ακτίνες της πραγματικής σάρωσης S_R . Οι μπλε, καφέ, πράσινες, και μωβ γραμμές υποδηλώνουν ακτίνες $2^{\nu}=2^2$ διακριτών εικονικών σαρώσεων που λαμβάνονται από την εκτίμηση στάσης $\hat{p}(x,y,\hat{\theta})$ σε $\gamma/2^{\nu}$, $\nu=2$ γωνιακά βήματα, ξεκινώντας από τον εκτιμώμενο προσανατολισμό του αισθητήρα $\hat{\theta}$. Η εικονική σάρωση που συμβολίζεται με μωβ χρώμα σημειώνει την υψηλότερη τιμή της μετρικής Ποσοστού Διάκρισης (PD) μεταξύ όλων των 2^{ν} εικονικών σαρώσεων. Χρησιμοποιώντας τη μετρική PD και επιλέγοντας την εκτίμηση προσανατολισμού που αντιστοιχεί στην εικονική σάρωση με τη μέγιστη τιμή PD, το σφάλμα εκτίμησης προσανατολισμού φράσσεται εγγυημένα άνωθεν από την τιμή $\gamma/2^{\nu+1}$ στην περίπτωση όπου οι μετρήσεις του φυσικού αισθητήρα δεν διαταράσσονται από θόρυβο και ο χάρτης αναπαριστά το περιβάλλον τέλεια

ανάλογη του βαθμού ευθυγράμμισης μεταξύ των σαρώσεων \mathcal{S}_R και \mathcal{S}_V^k για όλες τις 2^ν σαρώσεις \mathcal{S}_V^k . Το Ποσοστό Διάκρισης ανάμεσα στην πραγματική μέτρηση \mathcal{S}_R και την εικονική σάρωση \mathcal{S}_V^k ορίζεται ως:

$$PD_k = \frac{2 \Phi(\Psi, \Omega_k)}{\Phi(\Psi, \Psi) + \Phi(\Omega_k, \Omega_k)}$$
(4.26)

Για τη μεν περίπτωση της μεθόδου Fourier-Mellin: $\Phi = \max q$, όπου $q = \mathcal{F}^{-1}\{Q\}$, με τον όρο Q να ορίζεται από την εξίσωση (4.1) με ορίσματα τα διανύσματα σαρώσεων εισόδου $\Psi = \mathcal{S}_R$ και $\Omega_k = \mathcal{S}_V^k$.

Για τη δε περίπτωση της μεθόδου του Προκρούστη: $\Phi=T$, όπου T είναι το μέγιστο ίχνος με ορίσματα τους πίνακες $\Psi=\mathbf{P}_R$ και $\Omega_k=\mathbf{P}_{V_k}$ (Επακόλουθο ΙΙΙ). Εδώ το σύνολο σημείων \mathbf{P}_R κατέχει τις συντεταγμένες των τελικών σημείων των ακτίνων της πραγματικής σάρωσης \mathcal{S}_R προβεβλημμένες στο επίπεδο x-y από την αρχή $\mathbf{O}(0,0,0)$ όπως προηγουμένως,

και το σύνολο P_{V_k} κατέχει τις συντεταγμένες των τελικών σημείων της k-οστής εικονικής σάρωσης, επίσης προβεβλημμένες στο επίπεδο x-y από το O.

Όσο αφορά στη μέθοδο Πρώτων Αρχών η σύγκριση ανάμεσα στις σαρώσεις \mathcal{S}_R και \mathcal{S}_V^k δεν είναι δόκιμη, καθώς αυτή αποτελεί μέθοδο συνεχούς χώρου, και συνεπώς δεν ορίζεται μετρική ευθυγράμμισης.

Έστω τώρα ότι $k_{\max} \in \mathbb{Z}_{\geq 0}: k_{\max} \in [0, 2^{\nu-1}]$ συμβολίζει το δείχτη της k-οστής ειχονικής σάρωσης $\mathcal{S}_V^{k_{\max}}$ που σημειώνει τον υψηλότερο δείχτη ευθυγράμμισης PD_k : $\mathrm{PD}_{k_{\max}} = \max\{\mathrm{PD}_k\}$. Έστω επίσης $I \in \mathbb{Z}$ το αχέραιο πολλαπλάσιο χατά το οποίο εάν πολλαπλασιαστεί η διαχριτιχή γωνία γ τότε η σάρωση $\mathcal{S}_V^{k_{\max}}$ ευθυγραμμίζεται με την \mathcal{S}_R με τρόπο τέτοιο που παράγεται η μετριχή ευθυγράμμισης $\mathrm{PD}_{k_{\max}}$. Τότε εάν η εχτίμηση προσανατολισμού του αισθητήρα ενημερωθεί σε

$$\hat{\theta}' = \hat{\theta} + I \cdot \gamma + k_{\text{max}} \cdot \frac{\gamma}{2\nu} \tag{4.27}$$

το επίλοιπο σφάλμα εκτίμησης προσανατολισμού ϕ φράσσεται από:

$$|\phi| = \mod(|\theta - \hat{\theta}'|, \gamma) \le \frac{\gamma}{2^{1+\nu}} < \frac{\gamma}{2}$$

$$(4.28)$$

για $\nu \in \mathbb{Z}_{>0}$.

Ο στόχος (*) επιτυγχάνεται με τη μέθοδο που εισαγάγαμε σε αυτή την ενότητα για τη μέθοδο Fourier-Mellin μίας διάστασης (ενότητα 4.2.1) και τη μέθοδο του Προκρούστη (ενότητα 4.2.3) υπό τις προϋποθέσεις ότι (α) $\mathbf{l} = \hat{\mathbf{l}}$, (β) το αρχικό σφάλμα προσανατολισμού είναι $|\theta - \hat{\theta}| > \gamma/2^{1+\nu}$ για δεδομένο βαθμό δειγματοληψίας ν , (γ) οι μετρήσεις του φυσικού αισθητήρα δεν διαταράσσονται από θόρυβο, και (δ) ο χάρτης του περιβάλλοντος το αναπαριστά τέλεια.

Στο σχήμα 4.12 απεικονίζονται οι ίδιες αρχικές συνθήκες με αυτές της διαμόρφωσης του σχήματος 4.10. Η ευθυγράμμιση προσανατολισμού εκτελείται και πάλι διαδοχικά για βαθμούς δειγματοληψίας του χάρτη M (ν_{\min}, ν_{\max}) = (0,3), αλλά αυτή τη φορά το σφάλμα εκτίμησης προσανατολισμού $\phi^{(\nu)}$ φράσσεται στο τέλος κάθε βήματος δειγματοληψίας ν από την ποσότητα $\frac{\gamma}{2^{1+\nu}}$. Στο σχήμα 4.13 απεικονίζεται ο μέσος χρόνος εκτέλεσης της μεθόδου

Fourier-Mellin μίας διάστασης με χρήση της επιπρόσθετης μεθόδου του Θησέα για αυξανόμενο αριθμό αχτίνων N_s με βάση την ίδια διαμόρφωση.

Στο σχήμα 4.14 η άνω σειρά απειχονίζει τα πραγματικά δεδομένα Ποσοστών Διάχρισης και επίλοιπων σφαλμάτων των υποψήφιων προσανατολισμών ανά βαθμό δειγματοληψίας, τα οποία παρήχθησαν κατά την εφαρμογή της μεθόδου Θησέα επί των μεθόδων γωνιακής ευθυγράμμισης Fourier-Mellin και Προχρούστη που παρουσιάζονται στην εικόνα 4.12. Στην αριστερή πλευρά της κάτω σειράς απειχονίζεται σχηματικά η εξέλιξη της ημίσειας κατάτμησης του επίλοιπου σφάλματος προσανατολισμού ανά βαθμό δειγματοληψίας, και στη δεξιά το Ποσοστό Διάχρισης που αντιστοιχεί σε κάθε σφάλμα. Συγκεκριμένα, με γκρι χρώμα σημειώνεται η μετρική που εμφανίζει τη μέγιστη τιμή ανάμεσα σε όλες εκείνες του ίδιου βαθμού δειγματοληψίας. Αντιπαραβάλλοντας αυτές με τα δεδομένα της δεξιάς στήλης της άνω σειράς και στη συνέχεια αυτά με εκείνα της αριστερής στήλης της ίδιας σειράς παρατηρούμε ότι τα ελάχιστα επίλοιπα σφάλματα εμφανίζουν τα μέγιστα ποσοστά διάκρισης, σε συνέπεια με την εξίσωση (4.28) και την ανάλυση της παρούσας ενότητας.

Ο Αλγόριθμος VII παρουσιάζει τη μέθοδο διόρθωσης προσανατολισμού που προτείνουμε σε μορφή ψευδοχώδιχα, για ορίσματα $rc = \{rc_fm, rc_uf\}$ (Αλγόριθμοι III και V).

Αλγόριθμος VII rc_theseus

Input: rc, M, S_R , $\hat{\boldsymbol{p}}(x,y,\hat{\theta})$, γ , N_s , ν

Output: $\hat{\theta}'$

- 1: $(\hat{\mathbf{\Theta}}, \mathbf{PD}) \leftarrow \texttt{rc_theseus_core}(\texttt{rc}, \mathbf{M}, \mathcal{S}_R, \hat{\mathbf{p}}(x, y, \hat{\theta}), \gamma, N_s, \nu)$
- 2: $k_{\text{max}} \leftarrow \arg \max \mathbf{PD}$
- 3: $\hat{\theta}' \leftarrow \hat{\mathbf{\Theta}}[k_{\text{max}}]$
- 4: **return** $\hat{\theta}'$

4.2.7 Θανάσιμοι περιορισμοί υπό γενικές συνθήκες

Οι μέθοδοι εκτίμησης του προσανατολισμού της στάσης \hat{p} που παρουσιάζονται σε αυτή την ενότητα εμφανίζουν σε πραγματικές συνθήκες περιορισμούς ως προς την τελική τους εκτίμηση.

Η μέθοδος Πρώτων Αρχών (ενότητα 4.2.2) πάσχει σε γενικές συνθήκες από δύο αιτίες. Η πρώτη αφορά στη μη σύμπτωση της εκτίμησης θέσης με την πραγματική θέση. Το σχήμα

Σχήμα 4.12: Η ορθή προσέγγιση ελάττωσης του γωνιαχού σφάλματος εχτίμησης της μεθόδου Θησέα για διαδοχική υπερδειγματοληψία βαθμών $(\nu_{\min}, \nu_{\max}) = (0,3)$. Το σφάλμα εχτίμησης προσανατολισμού $\phi^{(\nu)}$ των δύο μεθόδων φράσσεται στο τέλος χάθε βήματος δειγματοληψίας ν από την ποσότητα $\gamma/2^{1+\nu}$

4.15 απεικονίζει το σφάλμα εκτίμησης προσανατολισμού στην περίπτωση μη σύμπτωσης της εκτίμησης στάσης με την πραγματική στάση με μαύρο χρώμα, και με γκρι την περίπτωση όπου η εκτίμηση θέσης και η πραγματική θέση είναι ίσες.

Έπιπρόσθετα, η μέθοδος Πρώτων Αρχών εμφανίζει μη προβλέψιμη και ασταθή συμπεριφορά όταν ο χάρτης του περιβάλλοντος δεν το αναπαριστά τέλεια. Στο σχήμα 4.16 απεικονίζεται το μέσο σφάλμα προσανατολισμού της μεθόδου Πρώτων Αρχών και η τυπική του απόκλιση σε εκατό επαναλήψεις πειραμάτων με ένα σύνολο δεδομένων 778 περιβαλλόντων και

Σχήμα 4.13: Μέσος χρόνος εκτέλεσης της μεθόδου Fourier-Mellin μίας διάστασης με χρήση της μεθόδου του Θησέα για $(\nu_{\min}, \nu_{\max}) = (0,3)$, για αυξανόμενο αριθμό ακτίνων N_s

Αλγόριθμος VIII rc_theseus_core

Input: rc, M, S_R , $\hat{\boldsymbol{p}}(x,y,\hat{\theta})$, γ , N_s , ν

Output: $\hat{\Theta}$, PD

1: $\hat{\mathbf{\Theta}}, \mathbf{PD} \leftarrow \{\emptyset\}$

2: **for** $k = 0: 2^{\nu} - 1$ **do**

3: $\hat{\boldsymbol{p}}_k \leftarrow (x, y, \hat{\theta} + k \cdot \gamma/2^{\nu})$

4: $\mathcal{S}_V^k \leftarrow \text{scan_map}(\boldsymbol{M}, \hat{\boldsymbol{p}}_k, N_s)$

5: $(\hat{\theta}', w_k) \leftarrow \operatorname{rc}(\mathcal{S}_R, \mathcal{S}_V, \hat{\boldsymbol{p}}_k, \gamma)$

6: append $\hat{\theta}_k = \hat{\theta}' + k \cdot \gamma/2^{\nu}$ to $\hat{\Theta}$

7: $(\cdot, w_k^R) \leftarrow \operatorname{rc}(\mathcal{S}_R, \mathcal{S}_R, \hat{\boldsymbol{p}}_k, \gamma)$

8: $(\cdot, w_k^V) \leftarrow \operatorname{rc}(\mathcal{S}_V^k, \mathcal{S}_V^k, \hat{\boldsymbol{p}}_k, \gamma)$

9: append $\frac{2w_k}{w_k^R + w_k^V}$ to ${f PD}$

10: $k \leftarrow k + 1$

11: end for

12: **return** $(\hat{\boldsymbol{\Theta}}, \mathbf{PD})$

χαρτών. Στο αριστερό σχήμα ο χάρτης αναπαριστά στην εντέλεια το περιβάλλον, σε αντίθεση με το δεξιό σχήμα, στο οποίο ο χάρτης είναι διεφθαρμένος.

Εδώ παρατηρούμε ότι ενώ στην πρώτη περίπτωση το σφάλμα προσανατολισμού αυξάνεται με συνέπεια για αυξανόμενο επίπεδο διαταραχών και μειώνεται με συνέπεια για αυξανόμενο αριθμό εκπεμπόμενων ακτίνων, στη δεύτερη δεν εμφανίζει καμία συνέπεια. Ταυτόχρονα πα-

Σχήμα 4.14: Τα πραγματικά δεδομένα Ποσοστών Δ ιάκρισης $PD_{0:2^{\nu}-1}^{(\nu)}$ και επίλοιπων σφαλμάτων $\phi_{0:2^{\nu}-1}^{(\nu)}$ των υποψήφιων προσανατολισμών που αφορούν στα επίπεδα δειγματοληψίας ν , τα οποία προέκυψαν κατά την εφαρμογή της μεθόδου Θησέα επί των μεθόδων γωνιακής ευθυγράμμισης Fourier-Mellin και Προκρούστη που παρουσιάζονται στην εικόνα 4.12. Η κάτω σειρά απεικονίζει σχηματικά: στα αριστερά την αναδρομική εξέλιξη της κατάτμησης του αρχικού επίλοιπου σφάλματος $\phi^{(0)}$ σε ημίσεια σφάλματα, και στα δεξιά τα αντιστοιχούντα μέγιστα ποσοστά διάκρισης ανά βαθμό δειγματοληψίας. Παρατηρήστε πως υπάρχει ευθεία αντιστοιχία του μέγιστου ποσοστού διάκρισης (γκρι) με το ελάχιστο επίλοιπο σφάλμα προσανατολισμού

Αλγόριθμος IX scan_map

Input: $M, p(x, y, \theta), N_s$

Output: S_V

1: $S_V \leftarrow \{\emptyset\}$

2: **for** n = 0 : $N_s - 1$ **do** 3: $\lambda_n \leftarrow -\pi + \frac{2\pi}{N_s} n$

4: $\theta_n \leftarrow \lambda_n + \hat{\theta}$

 $(x_n, y_n) \leftarrow \mathtt{intersect}(\boldsymbol{M}, (x, y, \theta_n))$

 $d_n \leftarrow \|(x - x_n, y - y_n)\|_2$

7: append (d_n, λ_n) to \mathcal{S}_V

8: end for

9: return S_V

 Σ χήμα 4.15: Το αποτέλεσμα του ίδιου πειράματατος με αυτό που εχτίθεται στο σχήμα 4.5, για την ίδια εχτίμηση στάσης, μετατοπισμένη όμως χατά $-0.12~\mathrm{m}$ στον οριζόντιο άξονα. Σ το δεξιό γράφημα παρατηρούμε πως σε αυτή την περίπτωση (με μαύρο χρώμα) το μέτρο του σφάλματος εκτίμησης προσανατολισμού είναι σημαντικά αυξημένο σε σχέση με αυτό της ειδικής περίπτωσης του αρχικού πειράματος (γκρι)

ρατηρούμε τον μεγαλύτερο περιορισμό της μεθόδου, ήτοι την αδιαφορία του σφάλματος ως προς τον αριθμό εχπεμπόμενων αχτίνων όταν ο χάρτης δεν αναπαριστά τέλεια το περιβάλλον, η οποία είναι η γενική περίπτωση. Αυτή η ιδιότητα είναι κρίσιμη γιατί η μέθοδος λειτουργεί στον συνεχή γωνιαχό χώρο και, σε αντίθεση με τις Προκρούστειες μεθόδους των ενοτήτων 4.2.1 και 4.2.3, δεν είναι δυνατή η εφαρμογή εσωτερικής μεθόδου επιπρόσθετης μείωσης των σφαλμάτων της, όπως η μέθοδος του Θησέα.

Σχήμα 4.16: Μέσο σφάλμα προσανατολισμού της μεθόδου Πρώτων Αρχών και η τυπική του απόκλιση σε εκατό πειράματα, όπου το αρχικό σφάλμα προσανατολισμού $\Delta\theta=\theta-\hat{\theta}$ εξήχθη από ομοιόμορφη κατανομή $\Delta\theta\in U(-\bar{\delta}_{\theta},+\bar{\delta}_{\theta})$, όπου $\bar{\delta}_{\theta}=\pi$. Τα δύο σχήματα απεικονίζουν τα σφάλματα προσανατολισμού για αυξανόμενη τυπική απόκλιση σ_R των κανονικά κατανεμημένων και μηδενικής μέσης τιμής διαταραχών της πραγματικής σάρωσης \mathcal{S}_R , $\sigma_R\in\{0.01,0.03,0.05,0.10\}$ m, και αυξανόμενο αριθμό εκπεμπόμενων ακτίνων N_s . Στο αριστερό σχήμα ο χάρτης αναπαριστά στην εντέλεια το περιβάλλον, σε αντίθεση με το δεξιό σχήμα, στο οποίο ο χάρτης είναι διεφθαρμένος

Οι μέθοδοι διαχριτού χώρου Fourier-Mellin και Προκρούστη, με και δίχως τη χρήση της μεθόδου του Θησέα, επηρεάζονται από διαφορετικά προβλήματα που αναδύονται στη γενική περίπτωση, η οποία αφορά και εδώ στη γενική συνθήκη όπου η εκτίμηση θέσης δεν συμπέφτει αχριβώς με την πραγματική θέση. Όσο αφορά στην πρώτη περίπτωση, το σφάλμα εκτίμησης προσανατολισμού δεν είναι δυνατό να μειωθεί κάτω από $\gamma/2$ σε ένα βήμα λόγω του γεγονότος ότι από διαφορετικές θέσεις είναι ορατά διαφορετικά σημεία του περιβάλλοντος και του χάρτη, με συνέπεια μεγαλύτερη αναντιστοιχία μεταξύ των σαρώσεων εισόδου, όπως αχριβώς και στην περίπτωση της μεθόδου Πρώτων Αρχών. Στη δεύτερη περίπτωση, όταν δηλαδή χρησιμοποιείται η μέθοδος του Θησέα για την περαιτέρω μείωση του σφάλματος προσανατολισμού, το αναδυόμενο πρόβλημα είναι μεγαλύτερης βαρύτητας διότι η μη σύμπτωση των δύο θέσεων διαταράσσει την ευθεία αντιστοιχία ανάμεσα στις αύξουσες τιμές του Ποσοστού Διάχρισης των σφαλμάτων προσανατολισμού και τα φθίνοντα μέτρα των τελευταίων. Με άλλα λόγια, στη γενική περίπτωση, όπου η εκτίμηση θέσης δεν ισούται με την πραγματική θέση,

το υψηλότερο Ποσοστό Διάχρισης δεν αντιστοιχεί στο ελάχιστο σφάλμα προσανατολισμού. Αυτά τα δύο προβλήματα εχτίθενται στο σχήμα 4.17.

Κατά συνέπεια:

Παρατήρηση XIV. Χωρίς βλάβη της γενικοτητας, μετά την εφαρμογή των μεθόδων εκτίμησης προσανατολισμού Πρώτων Αρχών, Fourier-Mellin, και Προκρούστη, το σφάλμα εκτίμησης προσανατολισμού είναι ανάλογο του σφάλματος θέσης.

Παρατήρηση XV. Στη μέθοδο Πρώτων Αρχών είναι αδόχιμη η εφαρμογή μεθόδου υπερδειγματολειψίας του χάρτη και εσωτερικής ιεράρχησης των σφαλμάτων προσανατολισμού—σε αντιστοιχία με τη μέθοδο του Θησέα—για την περαιτέρω μείωση του σφάλματος προσανατολισμού λόγω της συνεχούς φύσεώς της. Επιπρόσθετα, αχόμα και να ήταν δυνατή η εφαρμογή τέτοιας μεθόδου, η μη φθίνουσα σχέση του σφάλματος εχτίμησης προσανατολισμού με τον αύξοντα βαθμό δειγματολειψίας στη γενική συνθήκη όπου ο χάρτης του περιβάλλοντος δεν το αναπαριστά τέλεια θα χαθιστούσε οποιαδήποτε εσωτερική σύγκριση αδιάφορη.

Παρατήρηση XVI. Στις Προχρούστειες μεθόδους με εφαρμογή της μεθόδου του Θησέα η εσωτεριχή σύγχριση μεταξύ των τιμών της μετριχής του Ποσοστού Διάχρισης οδηγεί σε μη βέλτιστα σφάλματα προσανατολισμού, αχόμα χαι όταν ο χάρτης αναπαριστά το περιβάλλον τέλεια χαι ο αισθητήρας σαρώσεων δεν επηρεάζεται από διαταραχές.

Λόγω των παραπάνω διαπιστώσεων είναι αναγκαία η εφεύρεση επιπρόσθετων μεθόδων, και εξωτερικών ως προς τις παραπάνω προσεγγίσεις, για τη σύγκλιση στο βέλτιστο κατά περίπτωση σφάλμα προσανατολισμού.

4.3 Μεθοδολογία ευθυγράμμισης θέσης

Έστω τώρα το αντίστροφο ως προς την προηγούμενη ενότητα πρόβλημα: έστω ότι η πραγματική και η εκτιμώμενη στάση είναι ίσες ως προς τον προσανατολισμό $\hat{\theta}=\theta$, αλλά άνισες ως προς τη θέση $\hat{l}\neq l$. Εάν ο χάρτης αναπαριστά το περιβάλλον τέλεια και ο φυσικός αισθητήρας αναφέρει μετρήσεις χωρίς διαταραχές, τότε η εκτίμηση της θέσης του αισθητήρα μπορεί να οδηγηθεί αυθαίρετα κοντά στην πραγματική θέση. Σε πραγματικές συνθήκες, όταν οι ακτίνες των πραγματικών σαρώσεων ή/και των εικονικών σαρώσεων αλλοιώνονται από προσθετικό θόρυβο πεπερασμένου μέγιστου μέτρου, η εκτίμηση θέσης μπορεί να φραχθεί σε

Σχήμα 4.17: Στην άνω σειρά διενεργούμε το ίδιο πείραμα με αυτό του σχήματος 4.12 για την ίδια εκτίμηση στάσης, μετατοπισμένη όμως κατά -0.12 m στον οριζόντιο άξονα. Στο δεξιό γράφημα της άνω σειράς παρατηρούμε πως σε αυτή την περίπτωση (με μαύρο χρώμα) το μέτρο του σφάλματος εκτίμησης προσανατολισμού δεν ήταν δυνατό να μειωθεί λιγότερο από $\gamma/2$ στο τέλος της πρώτης επανάληψης όπως στην περίπτωση σύμπτωσης θέσεων (γχρι). Στην κάτω σειρά: στα αριστερά παρατίθεται η βέλτιστη πορεία κατάτμησης του αρχικού επίλοιπου σφάλματος (σχήμα 4.14), στη μέση η κατάτμηση των επίλοιπων σφάλματων προσανατολισμού ανά βαθμό δειγματοληψίας ν με βάση τη μέθοδο του Θησέα σε αυτό το πείραμα, και με χρώμα τα πραγματικά ελάχιστα σφάλματα, και στα δεξιά με γχρι τα αντιστοιχούντα μέγιστα ποσοστά διάχρισης ανά βαθμό δειγματοληψίας. Παρατηρήστε πως πλέον, όχι μόνο δεν υφίσταται ευθεία αντιστοιχία του μέγιστου ποσοστού διάχρισης με το ελάχιστο επίλοιπο σφάλμα προσανατολισμού, αλλά και τα τελευταία δεν αντιστοιχούν στα βέλτιστα σφάλματα προσανατολισμού της αριστερής στήλης

μια γειτονιά της πραγματικής θέσης του αισθητήρα. Τα Θεωρήματα Ι και ΙΙ τυποποιούν αυτές τις δηλώσεις [Fil22].

Θεώρημα Ι. Έστω ότι ισχύουν οι υποθέσεις του Προβλήματος Π3, και ότι $\hat{\theta}=\theta$. Έστω επίσης ότι η εικονική σάρωση S_V που συλλαμβάνεται από τη στάση \hat{p} εντός του χάρτη M συμβολίζεται με $S_V|_{\hat{p}}$. Έστω ακόμα ότι οι δισδιάστατες σαρώσεις S_R και S_V είναι απαλλαγμένες από διαταραχές, δηλαδή ότι οι αποστάσεις που καταγράφουν οι ακτίνες της πραγματικής σάρωσης προς τα γύρω του εμπόδια αντιστοιχούν στις πραγματικές αποστάσεις του αισθητήρα από τα εν λόγω εμπόδια, και ότι ο χάρτης του περιβάλλοντος το αναπαριστά τέλεια. Αντιμετωπίζοντας την εκτίμηση της θέσης του αισθητήρα ως μεταβλητή κατάστασης $\hat{l}[k]=[\hat{x}[k],\hat{y}[k]]^{\top}$ και ενημερώνοντάς την σύμφωνα με την εξίσωση διαφορών

$$\hat{\boldsymbol{l}}[k+1] = \hat{\boldsymbol{l}}[k] + \boldsymbol{u}[k] \tag{4.29}$$

όπου $\hat{\pmb{l}}[0] = \hat{\pmb{l}} = [\hat{x}, \hat{y}]^{\top}$, (δηλαδή η παρεχόμενη αρχική εκτίμηση της θέσης), \pmb{u} είναι ένα διάνυσμα διαστάσεων 2×1 που στο εξής θα αναφέρεται ως διάνυσμα ελέγχου:

$$\boldsymbol{u}[k] = \frac{1}{N_s} \begin{bmatrix} \cos \hat{\theta} & \sin \hat{\theta} \\ \sin \hat{\theta} & -\cos \hat{\theta} \end{bmatrix} \begin{bmatrix} X_{1,r} (\mathcal{S}_R, \mathcal{S}_V |_{\hat{\boldsymbol{p}}[k]}) \\ X_{1,i} (\mathcal{S}_R, \mathcal{S}_V |_{\hat{\boldsymbol{p}}[k]}) \end{bmatrix}$$
(4.30)

όπου $X_{1,r}(\cdot)$ και $X_{1,i}(\cdot)$ είναι, αντίστοιχα, το πραγματικό και φανταστικό μέρος της μιγαδικής ποσότητας X_1 :

$$X_{1}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{\boldsymbol{p}}[k]}\right) = X_{1,r}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{\boldsymbol{p}}[k]}\right) + i \cdot X_{1,i}\left(\mathcal{S}_{R}, \mathcal{S}_{V}|_{\hat{\boldsymbol{p}}[k]}\right)$$

$$= \sum_{n=0}^{N_{s}-1} \left(\mathcal{S}_{R}[n] - \mathcal{S}_{V}[n]|_{\hat{\boldsymbol{p}}[k]}\right) \cdot e^{-i\frac{2\pi n}{N_{s}}}$$

$$(4.31)$$

όπου $S_R[n]$ και $S_V[n]|_{\hat{p}[k]}$ είναι, αντίστοιχα, οι αναφερόμενες αποστάσεις της n-οστής ακτίνας της πραγματικής S_R και εικονικής σάρωσης $S_V|_{\hat{p}[k]}$, και $\hat{p}[k]=(\hat{l}[k],\hat{\theta})$ —τότε η εκτίμηση θέσης $\hat{l}[k]$ συγκλίνει ομοιόμορφα ασυμπτωτικά στην πραγματική θέση l καθώς $k\to\infty$.

Επαχόλουθο V. Μια λύση που ικανοποιεί το στόχο (*) είναι αυστηρά εγγυημένη για κάθε αρχική θέση $\hat{\boldsymbol{l}}[0]$ στην περίπτωση που οι μετρήσεις του φυσικού αισθητήρα δεν φέρουν διαταραχές και ο χάρτης \boldsymbol{M} δεν είναι διεφθαρμένος ως προς το περιβάλλον που αναπαριστά.

Στην πράξη το σύστημα ελέγχου $(4.29,\,4.30)$ αφήνεται να επαναληφθεί είτε έως ότου το μέτρο του διανύσματος ελέγχου $\boldsymbol{u}[k]$ φτάσει σε ένα επαρχώς μιχρό μέγεθος $\|\boldsymbol{u}[k]\|_2 < \varepsilon_u$, όπου ε_u είναι επαρχώς μιχρό—π.χ. $\varepsilon_u < 10^{-3}$ —ή για $I_T > 0$ επαναλήψεις (ένα αρχετά μεγάλο, εξωτεριχά παρεχόμενο όριο μέγιστων επαναλήψεων—π.χ. $I_T \geq 20$). Επομένως, συμβολίζοντας με $k_{stop} \in (0,I_T]$ τον δείχτη της τελευταίας επανάληψης, χαι με $\hat{\boldsymbol{l}}' = \hat{\boldsymbol{l}}[k_{stop}]$ τότε $\|\boldsymbol{e}(\boldsymbol{l},\hat{\boldsymbol{l}}')\|_2 < \|\boldsymbol{e}(\boldsymbol{l},\hat{\boldsymbol{l}}[0])\|_2$, χαι επομένως ο στόχος (*) ιχανοποιείται.

Παρατήρηση XVII. Χωρίς βλάβη της γενικότητας, μετά την εφαρμογή του Θεωρήματος I το σφάλμα θέσης είναι ανάλογο με το σφάλμα προσανατολισμού.

Θεώρημα ΙΙ. Έστω ότι ισχύουν οι υποθέσεις του Θεωρήματος Ι. Έστω επιπλέον ότι η αποστάσεις που αναφέρονται από την πραγματική S_R και εικονική S_V σάρωση επηρεάζονται από προσθετικές διαταραχές με πεπερασμένο μέγιστο μέτρο. Τότε η εκτίμηση θέσης $\hat{l}[k]$ είναι ομοιόμορφα φραγμένη για $k \geq k_0$ και ομοιόμορφα τελικά φραγμένη σε μια γειτονιά της πραγματικής θέσης l. Το μέγεθος της γειτονιάς εξαρτάται από τα δύο μέγιστα μέτρα (με την έννοια της infinity norm) των διαταραχών που αλλοιώνουν τις πραγματικές τιμές των δύο σαρώσεων.

Επακόλουθο VI. Σε σύγκριση με την περίπτωση που δεν υπάρχουν διαταραχές, μια λύση που ικανοποιεί το στόχο (*) δεν είναι αυστηρά εγγυημένη για κάθε αρχική θέση $\hat{\boldsymbol{l}}[0]$ στην περίπτωση που οι μετρήσεις του φυσικού αισθητήρα φέρουν διαταραχές ή/και ο χάρτης \boldsymbol{M} είναι διεφθαρμένος ως προς το περιβάλλον που αναπαριστά.

Ας συμβολίσουμε και πάλι με $k_{stop} \in (0,I_T]$ τον δείκτη της τελευταίας επανάληψης, με $\hat{m l}' = \hat{m l}[k_{stop}]$ την τελική εκτίμηση της θέσης του αισθητήρα, και με B το τελικό φράγμα (ultimate bound) του σφάλματος θέσης. Εάν $\|{m e}({m l},\hat{m l}[0])\|_2 > B$, το Θεώρημα ΙΙ εγγυάται την ικανοποίηση του στόχου (\sharp) εάν $k_{stop} \geq k_0$. Εάν, από την άλλη πλευρά, εάν $\|{m e}({m l},\hat{m l}[0])\|_2 \leq B$,

δεν είναι βέβαιο ότι $\|e(\boldsymbol{l},\hat{\boldsymbol{l}}')\|_2 < \|e(\boldsymbol{l},\hat{\boldsymbol{l}}[0])\|_2$ —αυτό που είναι βέβαιο σε αυτή την περίπτωση, όμως, είναι ότι $\|e(\boldsymbol{l},\hat{\boldsymbol{l}}[k])\|_2 \not> B$ για όλα κάθε $k \geq 0$.

Στο σχήμα 4.18 απειχονίζονται οι τροχιές της εχτίμησης θέσης βάσει εφαρμογής του Θεωρήματος I για έναν αισθητήρα $N_s=360$ αχτίνων, με θέση ${\bf l}=(0.83,-0.98)$ [m] χαι αρχιχή εχτίμηση θέσης $\hat{\bf l}=(4.0,-4.0)$ [m]. Οι αχτίνες της πραγματιχής σάρωσης S_R χαι των ειχονιχών σαρώσεων S_V διαταράσσονται από θόρυβο χανονιχά χατανεμημένο με μηδενιχή μέση τιμή χαι τυπιχή απόχλιση σ_R χαι σ_V αντίστοιχα. Η άνω σειρά απειχονίζει τις τροχιές εχτίμησης για τυπιχές αποχλίσεις $\sigma_R=\sigma_V=0.0$ m, χαι η χάτω σειρά για $\sigma_R=\sigma_V=0.05$ m.

Σχήμα 4.18: Οι τροχιές της εκτίμησης θέσης βάσει εφαρμογής του Θεωρήματος I για επίπεδο διαταραχών αποστάσεων $\sigma_R=\sigma_V=0.0~{\rm m}$ (άνω σειρά) και $\sigma_R=\sigma_V=0.05~{\rm m}$ (κάτω σειρά). Τα τελικά σφάλματα εκτίμησης θέσης είναι 2.04e-07 m και 5.72e-03 m αντίστοιχα. Η εκτίμηση θέσης συγκλίνει ομοιόμορφα ασυμπτωτικά στην πρώτη περίπτωση (Θεώρημα I), ενώ στη δεύτερη είναι ομοιόμορφα φραγμένη σε μία γειτονιά της πραγματικής θέσης (Θεώρημα II)

Το σχήμα 4.19 απειχονίζει το μέσο χρόνο εχτέλεσης μίας επανάληψης της μεθόδου διόρθωσης της εχτίμησης θέσης σε δέχα εχτελέσεις για αυξανόμενο μέγεθος σαρώσεων N_s . Ο

αλγόριθμος X παραθέτει σε ψευδοχώδικα τη μέθοδο εκτίμησης της θέσης για δεδομένη και γνωστή εκτίμηση προσανατολισμού.

Σχήμα 4.19: Ο μέσος χρόνος εκτέλεσης μίας επανάληψης της μεθόδου διόρθωσης της εκτίμησης θέσης για δέκα εκτελέσεις, ανά μέγεθος σαρώσεων εισόδου N_s

4.4 Μεθοδολογία ευθυγράμμισης από κοινού

Οι δύο προηγούμενες ενότητες περιγράφουν μεθόδους ελάττωσης (α) του σφάλματος εκτίμησης προσανατολισμού όταν η εκτίμηση θέσης συμπίπτει με τη θέση του αισθητήρα, και (β) του σφάλματος εκτίμησης θέσης όταν η εκτίμηση προσανατολισμού ισούται με τον προσανατολισμό του αισθητήρα. Ωστόσο στη γενική περίπτωση καμία ισότητα δεν ισχύει. Επιπρόσθετα, στη γενική περίπτωση διαταραχές επηρεάζουν τις μετρήσεις του φυσικού αισθητήρα αποστάσεων και το βαθμό ταύτισης του χάρτη M ως προς το περιβάλλον που αναπαριστά. Οι τελευταίες δύο προτάσεις είναι κρίσιμης σημασίας για την από κοινού επίδοση των μεθόδων που παρουσιάστηκαν στις προηγούμενες δύο ενότητες, λόγω των περιορισμών της ενότητας 4.2.7 και των παρατηρήσεων VIII και XVII.

4.4.1 Αντιμετώπιση των περιορισμών υπό γενικές συνθήκες

Η παράχαμψη των επιδράσεων των περιορισμών που εμφανίζουν οι μέθοδοι ευθυγράμμισης σε γενιχές συνθήχες διαταραχών και ανισότητας στάσεων στοχεύει στη λύση τριών ειδών προβλημάτων: Το πρώτο αφορά αποχλειστιχά στη μέθοδο Πρώτων Αρχών και περιγράφεται στο πρώτο σχέλος της Παρατήρησης ΧV. Το δεύτερο πρόβλημα αφορά στο δεύτερο σχέλος

Αλγόριθμος Χ tc_x1

```
Input: M, S_R, \hat{\boldsymbol{p}}(\hat{x}, \hat{y}, \theta), k_{max}, \varepsilon_u, N_s
Output: \hat{\boldsymbol{p}}'(\hat{x}', \hat{y}', \hat{\theta})
  1: k \leftarrow 0
  2: while k < k_{max} do
              \mathcal{S}_{V}^{[k]} \leftarrow \mathtt{scan\_map}(M, \hat{\boldsymbol{p}}, N_s)
  4: X_1 \leftarrow \texttt{diff\_dft}(\mathcal{S}_R, \mathcal{S}_V^{[k]})
            (X_{1,r},X_{1,i}) \leftarrow (\texttt{re}(X_1),\texttt{im}(X_1))
              u_k = \begin{bmatrix} u_x \\ u_y \end{bmatrix} = \frac{1}{N_s} \begin{bmatrix} \cos \hat{\theta} & \sin \hat{\theta} \\ \sin \hat{\theta} & -\cos \hat{\theta} \end{bmatrix} \begin{bmatrix} X_{1,r} \\ X_{1,i} \end{bmatrix}
              \hat{m{p}} \leftarrow \hat{m{p}} + m{u}_k
  7:
               if \|\boldsymbol{u}_k\|_2 < \varepsilon_u then
  8:
                    break
  9:
               end if
10:
               k \leftarrow k + 1
12: end while
13: \hat{\boldsymbol{p}}' \leftarrow \hat{\boldsymbol{p}}
14: return \hat{p}'
```

της ίδιας παρατήρησης, και στην Παρατήρηση XVI. Το τρίτο πρόβλημα αφορά αποκλειστικά στη μέθοδο διόρθωσης θέσης, και συγκεκριμένα στην Παρατήρηση XVII. Το τελευταίο αυτό πρόβλημα αποτελεί ιδιότητα της μεθόδου ευθυγράμμισης θέσης, και η αντιμετώπισή του είναι συνέπεια της λύσης των πρώτων δύο προβλημάτων.

Δεδομένου ότι όλες οι μέθοδοι εκτίμησης προσανατολισμού επηρεάζονται από την έλλειψη μηχανισμού σύγκρισης εκτιμήσεων ως προς το σφάλμα τους, προσεγγίζουμε τη λύση των δύο πρώτων προβλημάτων με τον ακόλουθο κοινό τρόπο.

Έστω ότι προσθέτουμε στη μέθοδο Πρώτων Αρχών την λειτουργία δειγματοληψίας του χάρτη που παρουσιάστηκε στην ενότητα 4.2.6. Έστω επίσης ότι αφαιρούμε από τη μέθοδο του Θησέα τη λειτουργία υπολογισμού και σύγκρισης των τιμών της μετρικής Ποσοστού Διάκρισης για κάθε εκτιμώμενη εκτίμηση προσανατολισμού. Τότε οι τρεις μέθοδοι γίνονται εναλλάξιμες υπό την έννοια ότι, για μία δεδομένη εκτίμησης στάσης και ένα δεδομένο βαθμό δειγματοληψίας ν , καθεμία παράγει ένα σύνολο εκτιμήσεων στάσης μεγέθους 2^{ν} . Αυτό που επιζητούμε σε αυτό το στάδιο είναι η εφεύρεση ενός μέτρου σύγκρισης των εκτιμήσεων προσανατολισμού ως προς το (άγνωστο) σφάλμα τους. Το μέτρο σύγκρισης θα πρέπει να

Αλγόριθμος XI diff_dft

Input: S_R, S_V

Output: X_1

1: assert $|\mathcal{S}_R| = |\mathcal{S}V^{[k]}|$

2: $N_s \leftarrow |\mathcal{S}_R|$

3: $\Delta \leftarrow \{\varnothing\}$

4: **for** $n = 0: N_s - 1$ **do**

5: $d_n \leftarrow \mathcal{S}_R[n] - \mathcal{S}_V^{[k]}[n]$

6: append d to Δ

7: end for

8: $X \leftarrow \mathcal{F}\{\Delta\}$

9: $X_1 \leftarrow X[1]$

10: **return** X_1

αντικατοπτρίζει τις ιδιότητες

Τα χριτήρια που πρέπει να ικανοποιεί αυτή η μετρική θα είναι, με βάση τα παραπάνω, τα ακόλουθα δύο:

- Δεδομένης της παρατήρησης XVII, η μετρική θα πρέπει να αυξάνει για αυξανόμενο μέτρο σφάλματος προσανατολισμού και δεδομένο σφάλμα θέσης.
- Δεδομένης της παρατήρησης XIV, η μετρική θα πρέπει να αυξάνει για αυξανόμενο μέτρο σφάλματος θέσης και δεδομένο σφάλμα προσανατολισμού.

$$CAER_k \triangleq \sum_{n=0}^{N_s - 1} \left| \mathcal{S}_R[n] - \mathcal{S}_V[n] \right|_{(\hat{x}_k, \hat{y}_k, \hat{\theta}_k)}$$
(4.32)

Επιπλέον το γενικό πρόβλημα ευθυγράμμισης είναι πεπλεγμένο: το βέλτιστο σφάλμα προσανατολισμού δεν μπορεί να επιτευχθεί όταν το σφάλμα θέσης δεν είναι μηδέν, και το βέλτιστο σφάλμα θέσης δεν μπορεί να επιτευχθεί όταν το σφάλμα προσανατολισμού δεν είναι μηδέν (Παρατήρηση VIII).

4.4.2 Το σύστημα από κοινού ευθυγράμμισης

Σε αυτή την ενότητα παρουσιάζουμε το γενικό σύστημα που είναι ικανό να ενσωματώσει τις τρεις μεθόδους ελάττωσης του σφάλματος εκτίμησης προσανατολισμού και τη μέθοδο

Σχήμα 4.20: Κάτοψη (αριστερά) και πλάγια όψη (δεξιά) της μετρικής CAER (εξίσωση 4.33) από 10^6 ζεύγη μίας σάρωσης σταθερής στάσης και εικονικών σαρώσεων που συλλήφθησαν από τυχαίες στάσεις, ανάλογα με την απόσταση $(\Delta x^2 + \Delta y^2)^{1/2}$ και το σχετικού προσανατολισμό $\Delta \theta$ των στάσεων από όπου αυτές καταγράφηκαν. Οι εκτιμήσεις στάσεις που είναι πιο κοντά στην πραγματική στάση από άποψη προσανατολισμού (α) παρουσιάζουν χαμηλότερες τιμές CAER από εκείνες που απέχουν περισσότερο από αυτήν και (β) παράγουν χαμηλότερα σφάλματα θέσης μόλις εισαχθούν στο Σύστημα Εκτίμησης Θέσης (Παρατήρηση XVII)

ελάττωσης του σφάλματος εκτίμησης θέσης. Το προτεινόμενο σύστημα μειώνει στην αρχή το πρώτο είδος σφάλματος, και στη συνέχεια το δεύτερο. Ως συνέπεια της παρατήρησης VIII, η διαδικασία επαναλαμβάνεται μέχρι την ικανοποίηση συνθήκης τερματισμού. Η μέθοδος αυτή περιγράφεται στα ακόλουθα.

Έστω οι προϋποθέσεις του προβλήματος $\Pi 3$, δηλαδή η αρχική εκτίμηση εισόδου $\hat{p}(\hat{x},\hat{y},\hat{\theta})$, η πραγματική σάρωση S_R , και ο χάρτης M. Τότε η μέθοδος ελάττωσης του συνολικού σφάλματος εκτίμησης στάσης που προτείνουμε, την οποία ονομάζουμε Fourier Scan—to—Map-Scan Matching (FSMSM) και η οποία παρουσιάζεται στο σχήμα 4.21,—η μέθοδος μειώνει το σφάλμα με την επαναληπτική εκτέλεση της διαδικασίας ελάττωσης σφάλματος ενός βήματος (One-step Pose Correction, OPC—σχήμα 4.22), μέχρι να ικανοποιηθεί ένα σύνολο συνθηκών τερματισμού. Η FSMSM ξεκινά με ένα αρχικό βαθμό δειγματοληψίας του χάρτη $\nu=\nu_{\min}$. Η εκτίμηση της στάσης εισόδου επεξεργάζεται από την OPC, και η έξοδός της \hat{p}' εξετάζεται ως προς συνθήκες ανάκτησης και σύγκλισης. Εάν η προκύπτουσα εκτίμηση στάσης βρεθεί εκτός του χάρτη M τότε δημιουργείται μια νέα εκτίμηση από την αρχική εκτίμηση, και η διαδικασία επανεκιννεί. Εάν δεν παρατηρείται σημαντική διόρθωση της εκτίμησης $\|\hat{p}'-$

 $\hat{p}\|_2 < \varepsilon_{\delta p}$, τότε ο βαθμός δειγματοληψίας του χάρτη ν αυξάνεται. Η αύξησή του χρησιμεύει ως μέσο μείωσης του σφάλματος προσανατολισμού και συνεπώς του σφάλματος εκτίμησης θέσης (Παρατήρηση XVII). Διαφορετικά, η διαδικασία διόρθωσης της στάσης σε ένα βήμα είναι η εξής επαναλαμβάνεται έως ότου δεν παρατηρηθεί σημαντική διόρθωση. Η διαδικασία επαναλαμβάνεται έως ότου επιτευχθεί ο μέγιστος βαθμός δειγματοληψίας χάρτη $\nu = \nu_{\rm max}$, σε οπότε το FSMSM τερματίζει εάν πληρούται μια τελική συνθήκη. Αυτή η τελική συνθήκη διευκολύνει την αποφυγή τοπικών μεγίστων. Στην περίπτωση που αυτό το συνθήκη δεν ικανοποιείται, δημιουργείται μια νέα πόζα και η διαδικασία επαναφέρεται.

Δεδομένης μιας εκτίμησης πόζας εισόδου $\hat{p}(\hat{x},\hat{y},\hat{\theta})$, η πραγματική σάρωση S_R , ο χάρτης M και ένας βαθμός δειγματοληψίας ν , το σύστημα διόρθωσης πόζας ενός βήματος υπολογίζει πρώτα εκτιμήσεις πόζας 2^{ν} $\hat{P}_{OC} = \{(\hat{x},\hat{y},\hat{\theta}_k)\},\ k=0,\ldots,2^{\nu}-1$. Το σύστημα διόρθωσης προσανατολισμού χρησιμοποιεί τον αλγόριθμο ??. Η λειτουργία του συμβολίζεται στο σχήμα. 4.22 με τον τελεστή $OC(\cdot)$.

Τώρα, εάν η θέση της εκτίμησης της πόζας εισόδου συμπίπτει με τη θέση του του πραγματικού αισθητήρα, η μετρική Percent Discrimination (εξ. 4.26) θα αρχούσε για να χρησιμεύσει ως αχριβής προσδιοριστής της εκτίμησης της πόζας με τον ελάχιστο σφάλμα προσανατολισμού. Στην πράξη, ωστόσο, η κατάταξη που παρέχεται από την Percent Discrimination μετρική, μπερδεύεται από την ασυνέπεια των δύο θέσεων. Προκειμένου να αμβλυνθεί αυτό το φαινόμενο, κάθε εκτίμηση στάσης στο \hat{P}_{OC} δίνεται στο σύστημα διόρθωσης θέσης, όπου η θέση κάθε εκτίμησης πόζας μετατοπίζεται μία φορά (I=1), σύμφωνα με την Αλγόριθμος??. Αυτή η λειτουργία, που συμβολίζεται με τον τελεστή $RPC(\cdot)$ στην εικ. 4.22, παράγει το σύνολο $\hat{P}_{RPC} = \{(\hat{x}_k, \hat{y}_k, \hat{\theta}_k)\}$, $|\hat{P}_{RPC}| = 2^{\nu}$. Ο σκοπός αυτής της πράξης είναι να να παρέχει μια εκ των προτέρων εικόνα του επόμενου βήματος της διόρθωσης της θέσης: το λιγότερο περιστροφικά κακή ευθυγράμμιση είναι μια εκτίμηση της στάσης, τόσο λιγότερο θα αποκλίνει ως προς την προσανατολισμού και συνεπώς της θέσης σε σχέση με την πραγματική θέση του αισθητήρα μόλις εισάγεται στο σύστημα διόρθωσης θέσης (παρατήρηση XVII). Αυτή η απόκλιση αποτυπώνεται από το αθροιστικό απόλυτο σφάλμα ανά ακτίνα (CAER) μετρική:

$$CAER_{k} = \sum_{n=0}^{N_{s}-1} \left| \mathcal{S}_{R}[n] - \mathcal{S}_{V}[n] \right|_{(\hat{x}_{k}, \hat{y}_{k}, \hat{\theta}_{k})}$$
(4.33)

όπου $k=0,\ldots,2^{\nu}-1$. Η μετρική CAER (εικ. 4.20) κωδικοποιεί ταυτόχρονα ένα βαθμό ευ-

θυγράμμισης της θέσης και του προσανατολισμού μεταξύ των δύο σαρώσεων εισόδου της.3 Με την επανάληψη του διόρθωση θέσης κάθε εκτίμησης της θέσης στο \hat{P}_{OC} και την καταγραφή την CAER για κά ϑ ε μια από τις μετατοπισμένες εκτιμήσεις πόζας στο P_{RPC} , είναι είναι δυνατόν να καθοριστεί μια κατάταξη σφάλματος πόζας μεταξύ των εκτιμήσεων πόζας στο \hat{P}_{OC} και ταυτόχρονα να διατηρείται μόνο μία εκτίμηση πόζας για την την επόμενη επανάληψη της μεθόδου διόρθωσης πόζας ενός βήματος. 4 Η εκτίμηση πόζας $\hat{p}_C \in \hat{P}_{OC}$ η οποία, όταν μεταφράζεται μία φορά, καταγράφει το ελάχιστο CAER μεταξύ όλων των παρόμοια επεξεργασμένων πόζων εχτιμήσεις στο \hat{P}_{OC} εισάγεται στη μέθοδο διόρθωσης θέσης proper. Ο αριθμός των επαναλήψεων μετάφρασης I που υφίσταται είναι ένας αυξανόμενος συνάρτηση του βαθμού δειγματοληψίας του χάρτη $u.^5$ Το σύστημα διόρθωσης θέσης παράγει $\hat{m p}'$, το οποίο στη συνέχεια τροφοδοτείται πίσω στο σύστημα διόρθωσης προσανατολισμού με τη μορφή του νέου του εκτίμησης της θέσης $\hat{p} \leftarrow \hat{p}'$. Στην πράξη, η σύνολο πόζας \hat{P}_{OC} συμπληρώνεται με μία πόζα της οποίας η θέση είναι ίση με \hat{p} και του οποίου ο προσανατολισμός είναι ίσος με τον προσανατολισμό του \hat{p}_C που παράγει το ελάχιστο CAER με την πάροδο του χρόνου. Αυτή η προσθήκη εισάγει μια μορφή μνήμης στο σύστημα, η οποία το βοηθά στην αποφυγή απόχλιση χαι η οποία, ως εχ τούτου, ωφελεί την ταχύτητα εχτέλεσης.

4.5 Πειραματική αξιολόγηση

4.6 Συμπεράσματα και περαιτέρω έρευνα

 $^{^3}$ Αντίθετα, η αφαίρεση της απόλυτης τιμής θα παρείχε μόνο μια μετριχή ευθυγράμμισης θέσης.

 $^{^4}$ Αλλιώς, η διόρθωση της θέσης των εκτιμήσεων πόζας 2^{ν} και η επανατροφοδότησή τους στην διόρθωση πόζας ενός βήματος θα προχαλούσε εκθετικό χόστος σε χρόνο εκτέλεσης.

⁵Η λογική της αλυσίδωτής σύνδεσης του αριθμού των μεταφραστικών επαναλήψεων με το βαθμό δειγματοληψίας του χάρτη ν είναι η ακόλουθη. Δεδομένου ότι το σφάλμα προσανατολισμού είναι αντιστρόφως ανάλογο με το ν, σε χαμηλούς βαθμούς δειγματοληψίας χάρτη, όταν το σφάλμα εκτίμησης θέσης είναι στο υψηλότερο, εάν ο αριθμός των μεταφραστικών επαναλήψεων ήταν υψηλός, τότε η θέση εκτίμηση της θέσης θα ήταν ευάλωτη σε απόκλιση. Επομένως, ο αριθμός των μεταφραστικών επαναλήψεων διατηρείται χαμηλός στα αρχικά στάδια έτσι ώστε να υπάρχει ισορροπία μεταξύ της μείωσης του σφάλματος θέσης και της απόκλισης θέσης. Σε υψηλότερα τιμές του ν, το σφάλμα εκτίμησης προσανατολισμού μειώνεται και στη συνέχεια η απόκλιση περιορίζεται ή/και ικανοποιείται σε υψηλότερες τιμές μεταφραστικής επανάληψης. Καθώς η εκτίμηση προσανατολισμού γίνεται όλο και πιο ακριβής, το σύστημα διόρθωσης θέσης αφήνεται να επαναλάβει περισσότερες φορές, ώστε να μειωθεί περαιτέρω το σφάλμα θέσης να είναι εφικτό.

Σχήμα 4.21: Το διάγραμμα ροής του FSMSM. Η εκτέλεση αρχίζει με μια αρχική γωνιακό βαθμό δειγματοληψίας ν_{\min} , η σάρωση που καταγράφεται από το αισθητήρα φυσικού εύρους \mathcal{S}_R , και ο χάρτης του περιβάλλοντος M. Η αρχική εκτίμηση της στάσης παρέχεται από ένα φίλτρο παρακολούθησης κατά τη διάρκεια της ανίχνευσης της στάσης ή με τη μορφή μιας υπόθεσης κατά τη διάρκεια της συνολικής εντοπισμού. Η εσωτερική μέθοδος One-step Pose Correction (διόρθωση πόζας ενός βήματος) (εικ. 4.22) καλείται επαναληπτικά, ενημερώνοντας την πόζα εκτίμηση, μέχρι να επιτευχθεί ένας μέγιστος βαθμός γωνιακής δειγματοληψίας

Σχήμα 4.22: βασική μέθοδος ευθυγράμμισης πόζας του FSMSM, που ονομάζεται One-step Pose Correction

Μέρος III

Συμπεράσματα

Μέρος ΙV

Παραπομπές

- [Rie51] Bernhard Riemann. "Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse". Διδακτορική διατρ. 1851.
- [Fré06] M. Maurice Fréchet. "Sur quelques points du calcul fonctionnel". Στο: Rendiconti del Circolo Matematico di Palermo 22.1 (Δεχ. 1906), σσ. 1–72. ISSN: 0009-725X. DOI: 10.1007/BF03018603. URL: http://link.springer.com/10.1007/BF03018603.
- [Hou60] Paul V C Hough. Method and means for recognizing complex patterns. 1960.

 URL: https://patents.google.com/patent/US3069654A/en.
- [Sch66] Peter H. Schönemann. "A generalized solution of the orthogonal procrustes problem". Στο: Psychometrika 31.1 (Μαρ. 1966), σσ. 1–10. ISSN: 0033-3123. DOI: 10.1007/BF02289451. URL: http://link.springer.com/10.1007/BF02289451.
- [CP76] David Casasent και Demetri Psaltis. "Position, rotation, and scale invariant optical correlation". Στο: Applied Optics 15.7 (Ιούλ. 1976), σ. 1795. ISSN: 0003-6935. DOI: 10.1364/AO.15.001795. URL: https://opg.optica.org/abstract.cfm?URI=ao-15-7-1795.
- [LW79] Tomás Lozano-Pérez και Michael A. Wesley. "An algorithm for planning collision-free paths among polyhedral obstacles". Στο: Communications of the ACM
 22.10 (Οκτ. 1979), σσ. 560–570. ISSN: 0001-0782. DOI: 10.1145/359156.
 359164. URL: https://dl.acm.org/doi/10.1145/359156.359164.
- [May79] Peter S. Maybeck. "Stochastic models, estimation, and control Introduction". Στο: Stochastic models, estimation, and control. Τόμ. 1. 1979.
- [Rou84] Peter J. Rousseeuw. "Least Median of Squares Regression". Στο: Journal of the American Statistical Association 79.388 (Δεχ. 1984), σσ. 871–880. ISSN: 0162-1459. DOI: 10.1080/01621459.1984.10477105. URL: http://www. tandfonline.com/doi/abs/10.1080/01621459.1984.10477105.
- [MMS88] Mark Manasse, Lyle McGeoch και Daniel Sleator. "Competitive algorithms for on-line problems". Στο: Proceedings of the twentieth annual ACM symposium on Theory of computing STOC '88. New York, New York, USA: ACM Press,

- 1988, σσ. 322-333. ISBN: 0897912640. DOI: 10.1145/62212.62243. URL: http://portal.acm.org/citation.cfm?doid=62212.62243.
- [BK91] J. Borenstein και Y. Koren. "The vector field histogram-fast obstacle avoidance for mobile robots". Στο: *IEEE Transactions on Robotics and Automation* 7.3 (Ιούν. 1991), σσ. 278–288. ISSN: 1042296X. DOI: 10.1109/70.88137. URL: http://ieeexplore.ieee.org/document/88137/.
- [Gri91] W. Eric L. Grimson. Object Recognition by Computer. 1991. ISBN: 9780262071307.

 URL: https://mitpress.mit.edu/books/object-recognition-computer.
- [KB91] Y. Koren και J. Borenstein. "Potential field methods and their inherent limitations for mobile robot navigation". Στο: Proceedings. 1991 IEEE International Conference on Robotics and Automation. IEEE Comput. Soc. Press, 1991, σσ. 1398–1404.
 ISBN: 0-8186-2163-X. DOI: 10.1109/ROBOT.1991.131810. URL: http://ieeexplore.ieee.org/document/131810/.
- [Lat91] Jean-Claude Latombe. Robot Motion Planning. 1991. ISBN: 978-1-4615-4022-9.
- [Ume91] S. Umeyama. "Least-squares estimation of transformation parameters between two point patterns". Στο: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 13.4 (Απρ. 1991), σσ. 376–380. ISSN: 01628828. DOI: 10.1109/34. 88573. URL: http://ieeexplore.ieee.org/document/88573/.
- [BM92] P.J. Besl και Neil D. McKay. "A method for registration of 3-D shapes". Στο: IEEE Transactions on Pattern Analysis and Machine Intelligence 14.2 (Φεβ. 1992), σσ. 239–256. ISSN: 0162-8828. DOI: 10.1109/34.121791. URL: http://ieeexplore.ieee.org/document/121791/.
- [SG92] A. F. M. Smith και A. E. Gelfand. "Bayesian Statistics without Tears: A Sampling-Resampling Perspective". Στο: *The American Statistician* 46.2 (Μάι. 1992), σσ. 84-88. ISSN: 0003-1305. DOI: 10.1080/00031305.1992.10475856. URL: http://www.tandfonline.com/doi/abs/10.1080/00031305.1992. 10475856.
- [QK93] S. Quinlan και O. Khatib. "Elastic bands: connecting path planning and control".

 Στο: [1993] Proceedings IEEE International Conference on Robotics and Automation.

- IEEE Comput. Soc. Press, 1993, σσ. 802-807. ISBN: 0-8186-3450-2. DOI: 10. 1109/ROBOT.1993.291936. URL: http://ieeexplore.ieee.org/document/291936/.
- [FM94] Feng Lu και Milios. "Robot pose estimation in unknown environments by matching 2D range scans". Στο: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition CVPR-94. IEEE Comput. Soc. Press, 1994, σσ. 935-938. ISBN: 0-8186-5825-8. DOI: 10.1109/CVPR.1994.323928. URL: http://ieeexplore.ieee.org/document/323928/.
- J.M. Kleinberg. "The localization problem for mobile robots". Στο: Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput.
 Soc. Press, 1994, σσ. 521–531. ISBN: 0-8186-6580-7. DOI: 10.1109/SFCS.1994.
 365739. URL: http://ieeexplore.ieee.org/document/365739/.
- [QDD94] Qin-Sheng Chen, M. Defrise και F. Deconinck. "Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition". Στο: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 16.12 (1994), σσ. 1156–1168. ISSN: 01628828. DOI: 10.1109/34.387491. URL: http://ieeexplore.ieee.org/document/387491/.
- [Mon95] Villard Monod. "Frequency Modulated Radar: a new sensor for natural environment and mobile robotics". Διδακτορική διατρ. 1995.
- [Kav+96] L.E. Kavraki x.ά. "Probabilistic roadmaps for path planning in high-dimensional configuration spaces". Στο: *IEEE Transactions on Robotics and Automation* 12.4 (1996), σσ. 566–580. ISSN: 1042296X. DOI: 10.1109/70.508439. URL: http://ieeexplore.ieee.org/document/508439/.
- [RC96] B.S. Reddy και B.N. Chatterji. "An FFT-based technique for translation, rotation, and scale-invariant image registration". Στο: IEEE Transactions on Image Processing 5.8 (Αύγ. 1996), σσ. 1266–1271. ISSN: 1057-7149. DOI: 10. 1109/83.506761. URL: https://ieeexplore.ieee.org/document/506761/.
- [RS96] Kathleen Romanik και Sven Schuierer. "Optimal robot localization in trees".

 Στο: Proceedings of the twelfth annual symposium on Computational geometry
 SCG '96. New York, New York, USA: ACM Press, 1996, σσ. 264–273. ISBN:

- 0897918045. DOI: 10.1145/237218.237395. URL: http://portal.acm.org/citation.cfm?doid=237218.237395.
- [FBT97] D. Fox, W. Burgard και S. Thrun. "The dynamic window approach to collision avoidance". Στο: *IEEE Robotics & Automation Magazine* 4.1 (Μαρ. 1997), σσ. 23–33. ISSN: 10709932. DOI: 10.1109/100.580977. URL: http://ieeexplore.ieee.org/document/580977/.
- [DRW98] Gregory Dudek, Kathleen Romanik και Sue Whitesides. "Localizing a Robot with Minimum Travel". Στο: SIAM Journal on Computing 27.2 (Απρ. 1998), σσ. 583–604. ISSN: 0097-5397. DOI: 10.1137/S0097539794279201. URL: http://epubs.siam.org/doi/10.1137/S0097539794279201.
- [Lav98] S. Lavalle. Rapidly-exploring random trees: a new tool for path planning.
 Αδημοσίευτη ερευνητική εργασία. 1998, σ. 4.
- [RW98] R. Tyrrell Rockafellar xaı Roger J. B. Wets. *Variational Analysis*. 1998. ISBN: 978-3-642-02431-3.
- [UB98] I. Ulrich και J. Borenstein. "VFH+: reliable obstacle avoidance for fast mobile robots". Στο: Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146). Τόμ. 2. IEEE, 1998, σσ. 1572-1577. ISBN: 0-7803-4300-X. DOI: 10.1109/ROBOT.1998.677362. URL: http://ieeexplore.ieee.org/document/677362/.
- [Del+99] F. Dellaert x.ά. "Monte Carlo localization for mobile robots". Στο: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). Τόμ. 2. IEEE, 1999, σσ. 1322-1328. ISBN: 0-7803-5180-0. DOI: 10.1109/ ROBOT. 1999. 772544. URL: http://ieeexplore.ieee.org/document/ 772544/.
- [GK99] J.-S. Gutmann και K. Konolige. "Incremental mapping of large cyclic environments".
 Στο: Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375). IEEE, 1999, σσ. 318–325. ISBN: 0-7803-5806-6. DOI: 10.1109/CIRA.1999.810068. URL: http://ieeexplore.ieee.org/document/810068/.

- [NSL99] C. Nissoux, T. Simeon και J.-P. Laumond. "Visibility based probabilistic roadmaps".

 Στο: Proceedings 1999 IEEE/RSJ International Conference on Intelligent
 Robots and Systems. Human and Environment Friendly Robots with High
 Intelligence and Emotional Quotients (Cat. No.99CH36289). Τόμ. 3. IEEE,
 1999, σσ. 1316-1321. ISBN: 0-7803-5184-3. DOI: 10.1109/IROS.1999.811662.

 URL: http://ieeexplore.ieee.org/document/811662/.
- R. Bohlin και L.E. Kavraki. "Path planning using lazy PRM". Στο: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). IEEE, 2000, 521–528 vol.1. ISBN: 0-7803-5886-4. DOI: 10.1109/ROBOT.2000.844107. URL: http://ieeexplore.ieee.org/document/844107/.
- [GC00] S.S. Ge και Y.J. Cui. "New potential functions for mobile robot path planning". Στο: *IEEE Transactions on Robotics and Automation* 16.5 (2000), σσ. 615–620. ISSN: 1042296X. DOI: 10.1109/70.880813. URL: http://ieeexplore.ieee.org/document/880813/.
- [MM00] J. Minguez και L. Montano. "Nearness diagram navigation (ND): a new real time collision avoidance approach". Στο: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).
 Τόμ. 3. IEEE, 2000, σσ. 2094–2100. ISBN: 0-7803-6348-5. DOI: 10.1109/IROS.
 2000.895280. URL: http://ieeexplore.ieee.org/document/895280/.
- [UB00] I. Ulrich και J. Borenstein. "VFH*: local obstacle avoidance with look-ahead verification". Στο: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Τόμ. 3. IEEE, 2000, σσ. 2505–2511. ISBN: 0-7803-5886-4. DOI: 10.1109/ROBOT.2000.846405. URL: http://ieeexplore.ieee.org/document/846405/.
- [Fox01] Dieter Fox. KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localization.

 Αδημοσίευτη ερευνητική εργασία. 2001. URL: https://www.semanticscholar.

 org/paper/KLD-Sampling%7B%5C%%7D3A-Adaptive-Particle-Filtersand-Mobile-Fox/bc83280b12828a45366368294001f5890c07e02b.

- [JK01] P. Jensfelt και S. Kristensen. "Active global localization for a mobile robot using multiple hypothesis tracking". Στο: *IEEE Transactions on Robotics and Automation* 17.5 (2001), σσ. 748–760. ISSN: 1042296X. DOI: 10.1109/70. 964673. URL: http://ieeexplore.ieee.org/document/964673/.
- [Sch+01] D. Schulz x.ά. "Tracking multiple moving targets with a mobile robot using particle filters and statistical data association". Στο: Proceedings 2001 ICRA.

 IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

 Τόμ. 2. IEEE, 2001, σσ. 1665–1670. ISBN: 0-7803-6576-3. DOI: 10.1109/

 ROBOT. 2001. 932850. URL: http://ieeexplore.ieee.org/document/932850/.
- [SLL01] S. Se, D. Lowe και J. Little. "Local and global localization for mobile robots using visual landmarks". Στο: Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180). Τόμ. 1. IEEE, 2001, σσ. 414–420. ISBN: 0-7803-6612-3. DOI: 10.1109/IROS.2001.973392. URL: http://ieeexplore.ieee.org/document/973392/.
- [BV02] J. Bruce και M. Veloso. "Real-time randomized path planning for robot navigation".
 Στο: IEEE/RSJ International Conference on Intelligent Robots and System.
 Τόμ. 3. IEEE, 2002, σσ. 2383–2388. ISBN: 0-7803-7398-7. DOI: 10.1109/IRDS.
 2002.1041624. URL: http://ieeexplore.ieee.org/document/1041624/.
- [Che+02] D. Chetverikov x.ά. "The Trimmed Iterative Closest Point algorithm". Στο:

 *Object recognition supported by user interaction for service robots. Τόμ. 3.

 IEEE Comput. Soc, 2002, σσ. 545-548. DOI: 10.1109/ICPR.2002.1047997.

 URL: http://ieeexplore.ieee.org/document/1047997/.
- [Gus+02] Fredrik Gustafsson κ.ά. "Particle filters for positioning, navigation, and tracking". Στο: IEEE Transactions on Signal Processing 50.2 (2002). ISSN: 1053587X. DOI: 10.1109/78.978396.
- [Lac+02] Simon Lacroix κ.ά. "Autonomous Rover Navigation on Unknown Terrains: Functions and Integration". Στο: The International Journal of Robotics Research

- 21.10-11 (Οχτ. 2002), σσ. 917-942. ISSN: 0278-3649. DOI: 10.1177/0278364902021010841. URL: http://journals.sagepub.com/doi/10.1177/0278364902021010841.
- [Pfi+02] S.T. Pfister x.ά. "Weighted range sensor matching algorithms for mobile robot displacement estimation". Στο: Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292). Τόμ. 2. IEEE, 2002, σσ. 1667–1674. ISBN: 0-7803-7272-7. DOI: 10.1109/ROBOT.2002.1014782. URL: http://ieeexplore.ieee.org/document/1014782/.
- [Thr02] Sebastian Thrun. "Particle Filters in Robotics". $\Sigma \tau o:$ Smithsonian 1.4 (2002). ISSN: 00222275.
- [BS03] P. Biber και W. Strasser. "The normal distributions transform: a new approach to laser scan matching". Στο: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). Τόμ. 3. IEEE, 2003, σσ. 2743–2748. ISBN: 0-7803-7860-1. DOI: 10.1109/IROS.2003. 1249285. URL: http://ieeexplore.ieee.org/document/1249285/.
- [CTT03] Chieh-Chih Wang, C. Thorpe και S. Thrun. "Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas". Στο: 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422). Τόμ. 1. IEEE, 2003, σσ. 842–849. ISBN: 0-7803-7736-2. DOI: 10.1109/ROBOT.2003.1241698. URL: http://ieeexplore.ieee.org/document/1241698/.
- [Hah+03] D. Hahnel x.ά. "An efficient fastslam algorithm for generating maps of large-scale cyclic environments from raw laser range measurements". Στο: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453). Τόμ. 1. IEEE, 2003, σσ. 206-211. ISBN: 0-7803-7860-1. DOI: 10.1109/IROS.2003.1250629. URL: http://ieeexplore.ieee.org/document/1250629/.
- [LGT03] Maxim Likhachev, Geoff Gordon και Sebastian Thrun. "ARA*: Anytime A* with Provable Bounds on Sub-Optimality". Στο: Proceedings of (NeurIPS)

 Neural Information Processing Systems. 2003.

- [SM03] Endre Süli και David F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, Αύγ. 2003. ISBN: 9780511801181. DOI: 10.1017/ CB09780511801181. URL: https://www.cambridge.org/core/product/ identifier/9780511801181/type/book.
- [XLX03] Xu Zezhong, Liu Jilin και Xiang Zhiyu. "Scan matching based on CLS relationships".
 Στο: IEEE International Conference on Robotics, Intelligent Systems and
 Signal Processing, 2003. Proceedings. 2003. Τόμ. 1. IEEE, 2003, σσ. 99–104.
 ISBN: 0-7803-7925-X. DOI: 10.1109/RISSP.2003.1285556. URL: http://ieeexplore.ieee.org/document/1285556/.
- [Low04] David G. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints". Στο: International Journal of Computer Vision 60.2 (Noέ. 2004), σσ. 91–110. ISSN: 0920-5691. DOI: 10.1023/B:VISI.0000029664.99615.94. URL: http://link.springer.com/10.1023/B:VISI.0000029664.99615.94.
- [MMM04] J. Minguez, L. Montesano και L. Montano. "An architecture for sensor-based navigation in realistic dynamic and troublesome scenarios". Στο: 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566). Τόμ. 3. IEEE, 2004, σσ. 2750–2756. ISBN: 0-7803-8463-6. DOI: 10.1109/IROS.2004.1389825. URL: http://ieeexplore.ieee.org/document/1389825/.
- [MOM04] J. Minguez, J. Osuna και L. Montano. "A "divide and conquer" strategy based on situations to achieve reactive collision avoidance in troublesome scenarios".
 Στο: IEEE International Conference on Robotics and Automation, 2004. Proceedings.
 ICRA '04. 2004. IEEE, 2004, 3855–3862 Vol.4. ISBN: 0-7803-8232-3. DOI:
 10.1109/ROBOT.2004.1308869. URL: http://ieeexplore.ieee.org/document/1308869/.
- [Phi04] Roland Philippsen. "Motion planning and obstacle avoidance for mobile robots in highly cluttered dynamic environments". Διδακτορική διατρ. EPFL, 2004. DOI: 10.5075/epfl-thesis-3146.
- [CIG05] A. Censi, L. Iocchi xaı G. Grisetti. "Scan Matching in the Hough Domain". $\Sigma \tau o: Proceedings \ of \ the \ 2005 \ IEEE \ International \ Conference \ on \ Robotics \ and$

- Automation. IEEE, 2005, σσ. 2739–2744. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT. 2005.1570528. URL: http://ieeexplore.ieee.org/document/1570528/.
- [DK05] A. Diosi και L. Kleeman. "Laser scan matching in polar coordinates with application to SLAM". Στο: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005, σσ. 3317-3322. ISBN: 0-7803-8912-3. DOI: 10.1109/IROS.2005.1545181. URL: http://ieeexplore.ieee.org/document/1545181/.
- [HSZ05] D. Hsu, G. Sanchez-Ante και Zheng Sun. "Hybrid PRM Sampling with a Cost-Sensitive Adaptive Strategy". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005, σσ. 3874–3880. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT.2005.1570712. URL: http://ieeexplore.ieee.org/document/1570712/.
- [KNI05] K. Kim, N. Neretti και N. Intrator. "Mosaicing of acoustic camera images".
 Στο: IEE Proceedings Radar, Sonar and Navigation 152.4 (2005), σ. 263.
 ISSN: 13502395. DOI: 10.1049/ip-rsn:20045015. URL: https://digital-library.theiet.org/content/journals/10.1049/ip-rsn_20045015.
- [LH05] M. Leordeanu και M. Hebert. "A spectral technique for correspondence problems using pairwise constraints". Στο: Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1. IEEE, 2005, 1482–1489 Vol. 2. ISBN: 0-7695-2334-X. DOI: 10.1109/ICCV.2005.20. URL: http://ieeexplore.ieee.org/document/1544893/.
- [Lik+05] Maxim Likhachev κ.ά. "Anytime Dynamic A*: An Anytime, Replanning Algorithm".
 Στο: Proceedings of 15th International Conference on Automated Planning and
 Scheduling. 2005.
- [Lin+05] Kai Lingemann κ.ά. "High-speed laser localization for mobile robots". Στο:
 Robotics and Autonomous Systems 51.4 (Ιούν. 2005), σσ. 275-296. ISSN: 09218890.
 DOI: 10.1016/j.robot.2005.02.004. URL: https://linkinghub.elsevier.
 com/retrieve/pii/S0921889005000254.

- [Mik05] Alonzo Kelly Mikhail Pivtoraiko. "Efficient constrained path planning via search in state lattices". Στο: Proceedings of 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space. 2005.
- [MLM05] J. Minguez, F. Lamiraux και L. Montesano. "Metric-Based Scan Matching Algorithms for Mobile Robot Displacement Estimation". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. IEEE, 2005, σσ. 3557–3563. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT.2005. 1570661. URL: http://ieeexplore.ieee.org/document/1570661/.
- [MMM05] L. Montesano, J. Minguez και L. Montano. "Probabilistic scan matching for motion estimation in unstructured environments". Στο: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2005, σσ. 3499–3504.
 ISBN: 0-7803-8912-3. DOI: 10.1109/IROS.2005.1545182. URL: http://ieeexplore.ieee.org/document/1545182/.
- [OL05] J.M. O'Kane και S.M. LaValle. "Almost-Sensorless Localization". Στο: Proceedings of the 2005 IEEE International Conference on Robotics and Automation.
 IEEE, 2005, σσ. 3764–3769. ISBN: 0-7803-8914-X. DOI: 10.1109/ROBOT.2005.
 1570694. URL: http://ieeexplore.ieee.org/document/1570694/.
- [TBF05] Sebastian Thrun, Wolfram Burgard και Dieter Fox. *Probabilistic robotics*. Cambridge, Mass.: MIT Press, 2005. ISBN: 9780262201629. URL: http://www.amazon.de/gp/product/0262201623/102-8479661-9831324?v=glance% 78%5C&%7Dn=283155%7B%5C&%7Dn=507846%7B%5C&%7Ds=books%7B%5C&%7Dv=glance.
- [TGL05] Benjamín Tovar, Luis Guilamo και Steven M. LaValle. "Gap Navigation Trees: Minimal Representation for Visibility-based Tasks". Στο: Οκτ. 2005, σσ. 425–440. DOI: 10.1007/10991541_29. URL: http://link.springer.com/10.1007/10991541_29.
- [Cen06] A. Censi. "Scan matching in a probabilistic framework". Στο: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, σσ. 2291–2296. ISBN: 0-7803-9505-0. DOI: 10.1109/ROBOT. 2006.1642044. URL: http://ieeexplore.ieee.org/document/1642044/.

- [Gar+06] Santiago Garrido x.ά. "Path Planning for Mobile Robot Navigation using Voronoi Diagram and Fast Marching". Στο: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οχτ. 2006, σσ. 2376–2381. ISBN: 1-4244-0258-1. DOI: 10.1109/IROS.2006.282649. URL: http://ieeexplore.ieee.org/document/4058742/.
- [HM06] Sergio Hernandez-alamilla και Eduardo Morales. "Global Localization of Mobile Robots for Indoor Environments Using Natural Landmarks". Στο: 2006 IEEE Conference on Robotics, Automation and Mechatronics. IEEE, Δεκ. 2006, σσ. 1–6. ISBN: 1-4244-0024-4. DOI: 10.1109/RAMECH.2006.252692. URL: http://ieeexplore.ieee.org/document/4018808/.
- [OKa06] J.M. O'Kane. "Global localization using odometry". Στο: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006. IEEE, 2006, σσ. 37-42. ISBN: 0-7803-9505-0. DOI: 10.1109/ROBOT. 2006.1641158. URL: http://ieeexplore.ieee.org/document/1641158/.
- [BG07] Priyadarshi Bhattacharya και Marina L. Gavrilova. "Voronoi diagram in optimal path planning". Στο: 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). IEEE, Ιούλ. 2007, σσ. 38–47. ISBN: 0-7695-2869-4. DOI: 10.1109/ISVD.2007.43. URL: http://ieeexplore.ieee.org/document/4276103/.
- [Gas+07] Andrea Gasparri κ.ά. "A Hybrid Active Global Localisation Algorithm for Mobile Robots". Στο: Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, Απρ. 2007, σσ. 3148-3153. ISBN: 1-4244-0602-1. DOI: 10.1109/ROBOT.2007.363958. URL: http://ieeexplore.ieee. org/document/4209576/.
- [Gho07] Subir Kumar Ghosh. Visibility Algorithms in the Plane. Cambridge: Cambridge University Press, 2007. ISBN: 9780511543340. DOI: 10.1017/CB09780511543340.

 URL: https://www.cambridge.org/core/product/identifier/9780511543340/type/book.
- [GSB07] Giorgio Grisetti, Cyrill Stachniss και Wolfram Burgard. "Improved Techniques for Grid Mapping With Rao-Blackwellized Particle Filters". Στο: *IEEE Transactions*

- on Robotics 23.1 ($\Phi \epsilon \beta$. 2007), $\sigma \sigma$. 34-46. ISSN: 1552-3098. DOI: 10.1109/TRO. 2006.889486. URL: http://ieeexplore.ieee.org/document/4084563/.
- [KF07] Hanna Kurniawati και Thierry Fraichard. "From path to trajectory deformation".
 Στο: IEEE International Conference on Intelligent Robots and Systems. IEEE,
 Οκτ. 2007, σσ. 159–164. ISBN: 1424409128. DOI: 10.1109/IROS.2007.4399235.
 URL: http://ieeexplore.ieee.org/document/4399235/.
- [LSK07] Henry. G. Liddell, Robert Scott και Α. Κωνσταντινίδου. Επιτομή του μεγάλου λεξικού της ελληνικής γλώσσης. 2007.
- [MLD07] Martin Magnusson, Achim Lilienthal και Tom Duckett. "Scan registration for autonomous mining vehicles using 3D-NDT". Στο: Journal of Field Robotics 24.10 (Οκτ. 2007), σσ. 803–827. ISSN: 15564959. DOI: 10.1002/rob.20204. URL: https://onlinelibrary.wiley.com/doi/10.1002/rob.20204.
- [MWS07] Sean R. Martin, Steve E. Wright και John W. Sheppard. "Offline and Online Evolutionary Bi-Directional RRT Algorithms for Efficient Re-Planning in Dynamic Environments". Στο: 2007 IEEE International Conference on Automation Science and Engineering. IEEE, Σεπτ. 2007, σσ. 1131–1136. ISBN: 978-1-4244-1153-5. DOI: 10.1109/COASE.2007.4341761. URL: http://ieeexplore.ieee.org/document/4341761/.
- [RDW07] Malvika Rao, Gregory Dudek και Sue Whitesides. "Randomized Algorithms for Minimum Distance Localization". Στο: The International Journal of Robotics Research 26.9 (Σεπτ. 2007), σσ. 917–933. ISSN: 0278-3649. DOI: 10.1177/0278364907081234. URL: http://journals.sagepub.com/doi/10.1177/0278364907081234.
- [Cen08] Andrea Censi. "An ICP variant using a point-to-line metric". Στο: 2008 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2008, σσ. 19–25. ISBN: 978-1-4244-1646-2. DOI: 10.1109/ROBOT.2008.4543181. URL: http://ieeexplore.ieee.org/document/4543181/.
- [DB08] J.W. Durham και F. Bullo. "Smooth Nearness-Diagram Navigation". Στο: 2008

 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,

- Σεπτ. 2008, σσ. 690–695. ISBN: 978-1-4244-2057-5. DOI: 10.1109/IROS.2008. 4651071. URL: http://ieeexplore.ieee.org/document/4651071/.
- [MMM08] Luis Montesano, Javier Minguez και Luis Montano. "Modeling dynamic scenarios for local sensor-based motion planning". Στο: Autonomous Robots 25.3 (Οκτ. 2008), σσ. 231–251. ISSN: 0929-5593. DOI: 10.1007/s10514-008-9092-9. URL: http://link.springer.com/10.1007/s10514-008-9092-9.
- [NH08] J. W. Nicholson και A. J. Healey. "The present state of Autonomous Underwater Vehicle (AUV) applications and technologies". Στο: Marine Technology Society Journal 42.1 (2008), σσ. 44–51. ISSN: 00253324. DOI: 10.4031/002533208786861272.
- [BZ09] Michael Bosse και Robert Zlot. "Keypoint design and evaluation for place recognition in 2D lidar maps". Στο: Robotics and Autonomous Systems 57.12 (Δεκ. 2009), σσ. 1211–1224. ISSN: 09218890. DOI: 10.1016/j.robot.2009. 07.009. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889009000992.
- [BB09] Heiko Bulow και Andreas Birk. "Fast and robust photomapping with an Unmanned Aerial Vehicle (UAV)". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 3368–3373. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354505. URL: http://ieeexplore.ieee.org/document/5354505/.
- [GFC09] Julien Guitton, Jean-Loup Farges και Raja Chatila. "Cell-RRT: Decomposing the environment for better plan". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 5776–5781. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354106. URL: http://ieeexplore.ieee.org/document/5354106/.
- [Ng09] Morgan Quigley; Ken Conley; Brian Gerkey; Josh Faust; Tully Foote; Jeremy Leibs; Rob Wheeler; Andrew Y. Ng. ROS: an open-source Robot Operating System. 2009.
- [Ols09] E.B. Olson. "Real-time correlative scan matching". Στο: 2009 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2009, σσ. 4387–4393.

 ISBN: 978-1-4244-2788-8. DOI: 10.1109/ROBOT.2009.5152375. URL: http://ieeexplore.ieee.org/document/5152375/.

- [SWW09] David Sandberg, Krister Wolff και Mattias Wahde. "A Robot Localization Method Based on Laser Scan Matching". Στο: 2009, σσ. 171–178. DOI: 10. 1007/978-3-642-03983-6_21. URL: http://link.springer.com/10.1007/978-3-642-03983-6_21.
- [SHT09] A. Segal, D. Haehnel και S. Thrun. "Generalized-ICP". Στο: Robotics: Science and Systems V. Robotics: Science και Systems Foundation, Ιούν. 2009. ISBN: 9780262514637. DOI: 10.15607/RSS.2009.V.021. URL: http://www.roboticsproceedings.org/rss05/p21.pdf.
- [ZZL09] Lei Zhang, Rene Zapata και Pascal Lepinay. "Self-adaptive Monte Carlo localization for mobile robots using range sensors". Στο: 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2009, σσ. 1541–1546. ISBN: 978-1-4244-3803-7. DOI: 10.1109/IROS.2009.5354298. URL: http://ieeexplore.ieee.org/document/5354298/.
- [Bir10] Andreas Birk. "Using recursive spectral registrations to determine brokenness as measure of structural map errors". Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2010, σσ. 3472–3477. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.2010.5509322. URL: http://ieeexplore.ieee.org/document/5509322/.
- [Bre10] Claus Brenner. "Vehicle localization using landmarks obtained by a lidar mobile mapping system". Στο: PCV 2010 Photogrammetric Computer Vision And Image Analysis. 2010. DOI: 28061230.
- [BPB10] Heiko Bülow, Max Pfingsthorn και Andreas Birk. "Using Robust Spectral Registration for Scan Matching of Sonar Range Data". Στο: *IFAC Proceedings Volumes* 43.16 (2010), σσ. 611–616. ISSN: 14746670. DOI: 10.3182/20100906-3-IT-2019.00105. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016351254.
- [Che+10] Paul Checchin κ.ά. "Radar Scan Matching SLAM Using the Fourier-Mellin Transform". Στο: 2010, σσ. 151–161. DOI: 10.1007/978-3-642-13408-1_14. URL: http://link.springer.com/10.1007/978-3-642-13408-1_14.

- [JCS10] Léonard Jaillet, Juan Cortés και T Siméon. "Sampling-Based Path Planning on Configuration-Space Costmaps". Στο: IEEE Transactions on Robotics 26.4 (Αύγ. 2010), σσ. 635–646. ISSN: 1552-3098. DOI: 10.1109/TRO.2010.2049527. URL: http://ieeexplore.ieee.org/document/5477164/.
- [KF10] S. Karaman και E. Frazzoli. "Incremental Sampling-based Algorithms for Optimal Motion Planning". Στο: Robotics: Science and Systems VI. Robotics: Science και Systems Foundation, Ιούν. 2010. ISBN: 9780262516815. DOI: 10.15607/RSS.2010.VI.034. URL: http://www.roboticsproceedings.org/rss06/p34.pdf.
- [LCV10] Somchaya Liemhetcharat, Brian Coltin και Manuela Veloso. "Vision-Based Cognition of a Humanoid Robot in Standard Platform Robot Soccer". Στο: Proceedings of the 5th Workshop on Humanoid Soccer Robots. Nashville USA, 2010.
- [Pfi+10] Max Pfingsthorn x.ά. "Maximum likelihood mapping with spectral image registration".
 Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE,
 Μάι. 2010, σσ. 4282-4287. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.
 2010.5509366. URL: http://ieeexplore.ieee.org/document/5509366/.
- [Sin10] Gautam Singh. "Visual Loop Closing using Gist Descriptors in Manhattan World". $\Sigma \tau o$: 2010.
- [TA10] Gian Diego Tipaldi και Kai O Arras. "FLIRT Interest regions for 2D range data". Στο: 2010 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2010, σσ. 3616–3622. ISBN: 978-1-4244-5038-1. DOI: 10.1109/ROBOT.2010.5509864. URL: http://ieeexplore.ieee.org/document/5509864/.
- [Xie+10] Jianping Xie x.ά. "A real-time robust global localization for autonomous mobile robots in large environments". Στο: 2010 11th International Conference on Control Automation Robotics & Vision. IEEE, Δεχ. 2010, σσ. 1397–1402. ISBN: 978-1-4244-7814-9. DOI: 10.1109/ICARCV.2010.5707329. URL: http://ieeexplore.ieee.org/document/5707329/.

- [BB11] Heiko Bülow και Andreas Birk. "Spectral registration of noisy sonar data for underwater 3D mapping". Στο: Autonomous Robots 30.3 (Απρ. 2011), σσ. 307–331. ISSN: 0929-5593. DOI: 10.1007/s10514-011-9221-8. URL: http://link.springer.com/10.1007/s10514-011-9221-8.
- [KG11] Tim Kazik και Ali Haydar Goktogan. "Visual odometry based on the Fourier-Mellin transform for a rover using a monocular ground-facing camera". Στο:
 2011 IEEE International Conference on Mechatronics. IEEE, Απρ. 2011, σσ. 469–474. ISBN: 978-1-61284-982-9. DOI: 10.1109/ICMECH.2011.5971331. URL: http://ieeexplore.ieee.org/document/5971331/.
- [KKK11] Jungtae Kim, Munsang Kim και Daijin Kim. "Variants of the Quantized Visibility Graph for Efficient Path Planning". Στο: Advanced Robotics 25.18 (Ιαν. 2011), σσ. 2341–2360. ISSN: 0169-1864. DOI: 10.1163/016918611X603855.
 URL: https://www.tandfonline.com/doi/full/10.1163/016918611X603855.
- [NB11] Noboru Noguchi και Oscar C. Barawid. "Robot Farming System Using Multiple Robot Tractors in Japan Agriculture". Στο: IFAC Proceedings Volumes 44.1 (Ιαν. 2011), σσ. 633–637. ISSN: 14746670. DOI: 10.3182/20110828-6-IT-1002.03838. URL: https://linkinghub.elsevier.com/retrieve/pii/S1474667016436815.
- [PL11] Mike Phillips και Maxim Likhachev. "SIPP: Safe interval path planning for dynamic environments". Στο: 2011 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2011, σσ. 5628–5635. ISBN: 978-1-61284-386-5.

 DOI: 10.1109/ICRA.2011.5980306. URL: http://ieeexplore.ieee.org/document/5980306/.
- [TBD11] Madjid Tavana, Timothy E. Busch και Eleanor L. Davis. "Fuzzy Multiple Criteria Workflow Robustness and Resiliency Modeling with Petri Nets". Στο:

 International Journal of Knowledge-Based Organizations 1.4 (Οκτ. 2011),

 σσ. 72-90. ISSN: 2155-6393. DOI: 10.4018/ijkbo.2011100105. URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijkbo.2011100105.

- [ZZY11] Jihua Zhu, Nanning Zheng και Zejian Yuan. "An Improved Technique for Robot Global Localization in Indoor Environments". Στο: International Journal of Advanced Robotic Systems 8.1 (Μαρ. 2011), σ. 7. ISSN: 1729-8814. DOI: 10.5772/10525. URL: http://journals.sagepub.com/doi/10.5772/10525.
- [ZB11] Quanyan Zhu και Tamer Basar. "Robust and resilient control design for cyber-physical systems with an application to power systems". Στο: *IEEE Conference on Decision and Control and European Control Conference*. IEEE, Δεκ. 2011, σσ. 4066–4071. ISBN: 978-1-61284-801-3. DOI: 10.1109/CDC.2011.6161031. URL: http://ieeexplore.ieee.org/document/6161031/.
- [CSC12] Sachin Chitta, Ioan Sucan και Steve Cousins. "MoveIt! [ROS Topics]". Στο:
 IEEE Robotics & Automation Magazine 19.1 (Μαρ. 2012), σσ. 18–19. ISSN:
 1070-9932. DOI: 10.1109/MRA.2011.2181749. URL: http://ieeexplore.ieee.org/document/6174325/.
- [Hur+12] Natalia Hurtos x.ά. "Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing". Στο: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οχτ. 2012, σσ. 5298–5305. ISBN: 978-1-4673-1736-8. DOI: 10.1109/IROS.2012.6385813. URL: http://ieeexplore.ieee.org/document/6385813/.
- [Oli+12] Ayrton Oliver κ.ά. "Using the Kinect as a navigation sensor for mobile robotics". Στο: Proceedings of the 27th Conference on Image and Vision Computing New Zealand IVCNZ '12. New York, New York, USA: ACM Press, 2012, σσ. 509–514. ISBN: 9781450314732. DOI: 10.1145/2425836.2425932. URL: http://dl.acm.org/citation.cfm?doid=2425836.2425932.
- [Rös+12] Christoph Rösmann κ.ά. "Trajectory modification considering dynamic constraints of autonomous robots". Στο: 7th German Conference on Robotics, ROBOTIK 2012. 2012, σσ. 74–79.
- [Row+12] Jorg Rowekamper κ.ά. "On the position accuracy of mobile robot localization based on particle filters combined with scan matching". Στο: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Οκτ. 2012,

- σσ. 3158-3164. ISBN: 978-1-4673-1736-8. DOI: 10.1109/IROS.2012.6385988. URL: http://ieeexplore.ieee.org/document/6385988/.
- [BZ13] Michael Bosse και Robert Zlot. "Place recognition using keypoint voting in large 3D lidar datasets". Στο: 2013 IEEE International Conference on Robotics and Automation. IEEE, Μάι. 2013, σσ. 2677-2684. ISBN: 978-1-4673-5643-5.

 DOI: 10.1109/ICRA.2013.6630945. URL: http://ieeexplore.ieee.org/document/6630945/.
- [CV13] Brian Coltin και Manuela Veloso. "Multi-observation sensor resetting localization with ambiguous landmarks". Στο: Autonomous Robots 35.2-3 (Οκτ. 2013), σσ. 221–237. ISSN: 0929-5593. DOI: 10.1007/s10514-013-9347-y. URL: http://link.springer.com/10.1007/s10514-013-9347-y.
- [GG13] Subir K. Ghosh και Partha P. Goswami. "Unsolved problems in visibility graphs of points, segments, and polygons". Στο: ACM Computing Surveys 46.2 (Noέ. 2013), σσ. 1–29. ISSN: 0360-0300. DOI: 10.1145/2543581.2543589. URL: https://dl.acm.org/doi/10.1145/2543581.2543589.
- [ORD13] Jan Oberlander, Arne Roennau και Rudiger Dillmann. "Hierarchical SLAM using spectral submap matching with opportunities for long-term operation". Στο: 2013 16th International Conference on Advanced Robotics (ICAR). IEEE, Noέ. 2013, σσ. 1–7. ISBN: 978-1-4799-2722-7. DOI: 10.1109/ICAR.2013. 6766479. URL: http://ieeexplore.ieee.org/document/6766479/.
- [Ok+13] Kyel Ok κ.ά. "Path planning with uncertainty: Voronoi Uncertainty Fields".
 Στο: 2013 IEEE International Conference on Robotics and Automation. IEEE,
 Μάι. 2013, σσ. 4596-4601. ISBN: 978-1-4673-5643-5. DOI: 10.1109/ICRA.2013.
 6631230. URL: http://ieeexplore.ieee.org/document/6631230/.
- [OA13] Edwin Olson και Pratik Agarwal. "Inference on networks of mixtures for robust robot mapping". Στο: The International Journal of Robotics Research 32.7 (Ιούν. 2013), σσ. 826–840. ISSN: 0278-3649. DOI: 10.1177/0278364913479413. URL: http://journals.sagepub.com/doi/10.1177/0278364913479413.

- [Viv+13] Damien Vivet x.ά. "Mobile Ground-Based Radar Sensor for Localization and Mapping: An Evaluation of two Approaches". Στο: International Journal of Advanced Robotic Systems 10.8 (Αύγ. 2013), σ. 307. ISSN: 1729-8814. DOI: 10.5772/56636. URL: http://journals.sagepub.com/doi/10.5772/56636.
- [BFR14] Jenay M Beer, Arthur D Fisk και Wendy A Rogers. "Toward a Framework for Levels of Robot Autonomy in Human-Robot Interaction". Στο: Journal of Human-Robot Interaction 3.2 (Ιούν. 2014), σ. 74. ISSN: 2163-0364. DOI: 10.5898/JHRI.3.2.Beer. URL: http://dl.acm.org/citation.cfm?id=3109833.
- [Him+14] Marian Himstedt x.ά. "Large scale place recognition in 2D LIDAR scans using Geometrical Landmark Relations". Στο: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Σεπτ. 2014, σσ. 5030–5035. ISBN: 978-1-4799-6934-0. DOI: 10.1109/IROS.2014.6943277. URL: http://ieeexplore.ieee.org/document/6943277/.
- [Lyr+14] Lauro J. Lyrio x.ά. "Image-based global localization using VG-RAM Weightless Neural Networks". Στο: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE, Ιούλ. 2014, σσ. 3363-3370. ISBN: 978-1-4799-1484-5. DOI: 10.1109/IJCNN.2014.6889888. URL: https://ieeexplore.ieee.org/document/6889888/.
- [MDM14] Tanwi Mallick, Partha Pratim Das και Arun Kumar Majumdar. "Characterizations of Noise in Kinect Depth Images: A Review". Στο: *IEEE Sensors Journal* 14.6 (Ιούν. 2014), σσ. 1731–1740. ISSN: 1530-437X. DOI: 10.1109/JSEN.2014. 2309987. URL: http://ieeexplore.ieee.org/document/6756961/.
- [PP14] Soonyong Park και Sung-Kee Park. "Global localization for mobile robots using reference scan matching". Στο: International Journal of Control, Automation and Systems 12.1 (Φεβ. 2014), σσ. 156–168. ISSN: 1598-6446. DOI: 10.1007/s12555-012-9223-0. URL: http://link.springer.com/10.1007/s12555-012-9223-0.

- [Azz15] Charbel Azzi. "Efficient Image-Based Localization Using Context". Διδακτορική διατρ. 2015. URL: https://www.semanticscholar.org/paper/EfficientImage-Based-Localization-Using-Context-Azzi/1c7125987fe893d78cbbfa7e0ba1ec019fe
- [DBH15] Günay Doğan, Javier Bernal και Charles Hagwood. "FFT-based Alignment of 2D Closed Curves with Application to Elastic Shape Analysis". Στο: Procedings of the Proceedings of the 1st International Workshop on DIFFerential Geometry in Computer Vision for Analysis of Shapes, Images and Trajectories 2015.
 British Machine Vision Association, 2015, σσ. 12.1–12.10. ISBN: 1-901725-56-1. DOI: 10.5244/C.29.DIFFCV.12. URL: http://www.bmva.org/bmvc/2015/diffcv/papers/paper012/index.html.
- [FCR15] Chen Friedman, Inderjit Chopra και Omri Rand. "Perimeter-Based Polar Scan Matching (PB-PSM) for 2D Laser Odometry". Στο: Journal of Intelligent & Robotic Systems 80.2 (Noέ. 2015), σσ. 231–254. ISSN: 0921-0296. DOI: 10. 1007/s10846-014-0158-y. URL: http://link.springer.com/10.1007/s10846-014-0158-y.
- [Ols15] Edwin Olson. "M3RSM: Many-to-many multi-resolution scan matching". Στο: 2015 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2015, σσ. 5815–5821. ISBN: 978-1-4799-6923-4. DOI: 10.1109/ICRA.2015.7140013. URL: http://ieeexplore.ieee.org/document/7140013/.
- [DB16] Murat Dikmen και Catherine M. Burns. "Autonomous Driving in the Real World". Στο: Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications. New York, NY, USA: ACM, Οκτ. 2016, σσ. 225–228. ISBN: 9781450345330. DOI: 10.1145/3003715. 3005465. URL: https://dl.acm.org/doi/10.1145/3003715.3005465.
- [KR16] Fabjan Kallasi και Dario Lodi Rizzini. "Efficient loop closure based on FALKO lidar features for online robot localization and mapping". Στο: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Οκτ. 2016, σσ. 1206–1213. ISBN: 978-1-5090-3762-9. DOI: 10.1109/IROS. 2016.7759202. URL: http://ieeexplore.ieee.org/document/7759202/.

- [Kon+16] Jaromir Konecny κ.ά. "Novel Point-to-Point Scan Matching Algorithm Based on Cross-Correlation". Στο: Mobile Information Systems 2016 (2016), σσ. 1–11. ISSN: 1574-017X. DOI: 10.1155/2016/6463945. URL: http://www.hindawi.com/journals/misy/2016/6463945/.
- [Li+16] Jiayuan Li κ.ά. "Feature-Based Laser Scan Matching and Its Application for Indoor Mapping". Στο: Sensors 16.8 (Αύγ. 2016), σ. 1265. ISSN: 1424-8220.
 DOI: 10.3390/s16081265. URL: http://www.mdpi.com/1424-8220/16/8/1265.
- [Par16] Jong Jin Park. "Graceful Navigation for Mobile Robots in Dynamic and Uncertain Environments". Διδαχτοριχή διατρ. University of Michigan, Horace H. Rackham School of Graduate Studies, 2016.
- [Roh+16] Jan Rohde x.ά. "Precise vehicle localization in dense urban environments".
 Στο: 2016 IEEE 19th International Conference on Intelligent Transportation
 Systems (ITSC). IEEE, Noé. 2016, σσ. 853-858. ISBN: 978-1-5090-1889-5. DOI:
 10.1109/ITSC. 2016. 7795655. URL: http://ieeexplore.ieee.org/document/7795655/.
- [Vas+16] Goran Vasiljević x.ά. "High-accuracy vehicle localization for autonomous warehousing". Στο: Robotics and Computer-Integrated Manufacturing 42 (Δεχ. 2016), σσ. 1–16. ISSN: 07365845. DOI: 10.1016/j.rcim.2016.05.001. URL: https://linkinghub.elsevier.com/retrieve/pii/S0736584515300314.
- [DAM17] F.A. Donoso, K.J. Austin και P.R. McAree. "How do ICP variants perform when used for scan matching terrain point clouds?" Στο: Robotics and Autonomous Systems 87 (Ιαν. 2017), σσ. 147–161. ISSN: 09218890. DOI: 10.1016/j.robot. 2016.10.011. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889016301282.
- [GPG17] Dhiraj Gandhi, Lerrel Pinto και Abhinav Gupta. "Learning to fly by crashing". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 3948–3955. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS.2017.8206247. URL: http://ieeexplore.ieee.org/document/8206247/.

- [Li+17] Jiaxin Li x.ά. "Deep learning for 2D scan matching and loop closure". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 763-768. ISBN: 978-1-5386-2682-5. DOI: 10. 1109/IROS.2017.8202236. URL: http://ieeexplore.ieee.org/document/8202236/.
- [Moh+17] Haytham Mohamed κ.ά. "A Novel Real-Time Reference Key Frame Scan Matching Method". Στο: Sensors 17.5 (Μάι. 2017), σ. 1060. ISSN: 1424-8220. DOI: 10.
 3390/s17051060. URL: http://www.mdpi.com/1424-8220/17/5/1060.
- [RT17] Amir Rasouli και John K. Tsotsos. "The Effect of Color Space Selection on Detectability and Discriminability of Colored Objects". Στο: (Φεβ. 2017). arXiv: 1702.05421. URL: http://arxiv.org/abs/1702.05421.
- [RHB17] Christoph Rosmann, Frank Hoffmann και Torsten Bertram. "Kinodynamic trajectory optimization and control for car-like robots". Στο: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Σεπτ. 2017, σσ. 5681–5686. ISBN: 978-1-5386-2682-5. DOI: 10.1109/IROS. 2017.8206458. URL: http://ieeexplore.ieee.org/document/8206458/.
- [Su+17] Zerong Su κ.ά. "Global localization of a mobile robot using lidar and visual features". Στο: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE, Δεκ. 2017, σσ. 2377-2383. ISBN: 978-1-5386-3742-5. DOI: 10.1109/ROBIO.2017.8324775. URL: http://ieeexplore.ieee.org/document/8324775/.
- [Zha+17] Qibin Zhang x.ά. "Mobile Robot Global Localization Using Particle Swarm Optimization with a 2D Range Scan". Στο: Proceedings of the 2017 International Conference on Robotics and Artificial Intelligence ICRAI 2017. New York, New York, USA: ACM Press, 2017, σσ. 105–109. ISBN: 9781450353588. DOI: 10.1145/3175603.3175618. URL: http://dl.acm.org/citation.cfm? doid=3175603.3175618.
- [Zho+17] Bo Zhou x.ά. "A LiDAR Odometry for Outdoor Mobile Robots Using NDT Based Scan Matching in GPS-denied environments". Στο: 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control,

- and Intelligent Systems (CYBER). IEEE, Ιούλ. 2017, σσ. 1230–1235. ISBN: 978-1-5386-0490-8. DOI: 10.1109/CYBER.2017.8446588. URL: https://ieeexplore.ieee.org/document/8446588/.
- [CRP18] Matthew Cooper, John Raquet και Rick Patton. "Range Information Characterization of the Hokuyo UST-20LX LIDAR Sensor". Στο: Photonics 5.2 (Μάι. 2018), σ. 12. ISSN: 2304-6732. DOI: 10.3390/photonics5020012. URL: http://www.mdpi.com/2304-6732/5/2/12.
- [CBD18] Konrad P Cop, Paulo V K Borges και Renaud Dube. "Delight: An Efficient Descriptor for Global Localisation Using LiDAR Intensities". Στο: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2018, σσ. 3653–3660. ISBN: 978-1-5386-3081-5. DOI: 10.1109/ICRA.2018. 8460940. URL: https://ieeexplore.ieee.org/document/8460940/.
- [Jia+18] Guolai Jiang κ.ά. "FFT-Based Scan-Matching for SLAM Applications with Low-Cost Laser Range Finders". Στο: Applied Sciences 9.1 (Δεκ. 2018), σ. 41. ISSN: 2076-3417. DOI: 10.3390/app9010041. URL: http://www.mdpi.com/2076-3417/9/1/41.
- [Lim+18] Pedro F. Lima κ.ά. "Experimental validation of model predictive control stability for autonomous driving". Στο: Control Engineering Practice 81 (Δεκ. 2018), σσ. 244–255. ISSN: 09670661. DOI: 10.1016/j.conengprac.2018.09.021. URL: https://linkinghub.elsevier.com/retrieve/pii/S0967066118305926.
- [Pen+18] Gang Peng x.ά. "An Improved AMCL Algorithm Based on Laser Scanning Match in a Complex and Unstructured Environment". Στο: Complexity 2018 (Δεχ. 2018), σσ. 1–11. ISSN: 1076-2787. DOI: 10.1155/2018/2327637. URL: https://www.hindawi.com/journals/complexity/2018/2327637/.
- [Wan+18] Yun-Ting Wang κ.ά. "A Single LiDAR-Based Feature Fusion Indoor Localization
 Algorithm". Στο: Sensors 18.4 (Απρ. 2018), σ. 1294. ISSN: 1424-8220. DOI:
 10.3390/s18041294. URL: http://www.mdpi.com/1424-8220/18/4/1294.
- [Wen+18] Jian Wen κ.ά. "A Novel 2D Laser Scan Matching Algorithm for Mobile Robots Based on Hybrid Features". Στο: 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). IEEE, Αύγ. 2018, σσ. 366–371.

- ISBN: 978-1-5386-6869-6. DOI: 10.1109/RCAR.2018.8621744. URL: https://ieeexplore.ieee.org/document/8621744/.
- [WHZ18] Weisong Wen, Li-Ta Hsu και Guohao Zhang. "Performance Analysis of NDT-based Graph SLAM for Autonomous Vehicle in Diverse Typical Driving Scenarios of Hong Kong". Στο: Sensors 18.11 (Noé. 2018), σ. 3928. ISSN: 1424-8220. DOI: 10.3390/s18113928. URL: http://www.mdpi.com/1424-8220/18/11/3928.
- [Wil+18] Kenneth H. Williford κ.ά. "The NASA Mars 2020 Rover Mission and the Search for Extraterrestrial Life". Στο: From Habitability to Life on Mars. Elsevier, 2018, σσ. 275–308. DOI: 10.1016/B978-0-12-809935-3.00010-4. URL: https://linkinghub.elsevier.com/retrieve/pii/B9780128099353000104.
- [YZD18] Heng Yu, Yadan Zeng και Houde Dai. "A Novel Scan Matching Method for Mobile Robot Based on Phase Only Matched Filtering *". Στο: 2018 IEEE International Conference on Information and Automation (ICIA). IEEE, Αύγ. 2018, σσ. 391–394. ISBN: 978-1-5386-8069-8. DOI: 10.1109/ICInfA.2018. 8812336. URL: https://ieeexplore.ieee.org/document/8812336/.
- [BAJ19] Guillaume Bresson, Zayed Alsayed και Sylvain Jonchery. "Graph-based Map-Aided Localization using Cadastral Maps as Virtual Laser Scans". Στο: 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, Οκτ. 2019, σσ. 4074–4080. ISBN: 978-1-5386-7024-8. DOI: 10.1109/ITSC.2019. 8917506. URL: https://ieeexplore.ieee.org/document/8917506/.
- [CHM19] Weili Chen, Ting Huang και Allam Maalla. "Research on Adaptive Monte Carlo Location Method Based on Fusion Posture Estimation". Στο: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC). IEEE, Οκτ. 2019, σσ. 1209–1213. ISBN: 978-1-7281-0513-0. DOI: 10.1109/IMCEC46724.2019.8983808. URL: https://ieeexplore.ieee.org/document/8983808/.
- [Che+19] Yonggang Chen κ.ά. "A Study of Sensor-Fusion Mechanism for Mobile Robot Global Localization". Στο: *Robotica* 37.11 (Noέ. 2019), σσ. 1835–1849. ISSN: 0263-5747. DOI: 10.1017/S0263574719000298. URL: https://www.cambridge.

- org / core / product / identifier / S0263574719000298 / type / journal _ article.
- [CJK19] Baehoon Choi, HyungGi Jo και Euntai Kim. "Normal Distribution Mixture Matching based Model Free Object Tracking Using 2D LIDAR". Στο: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Noέ. 2019, σσ. 455–461. ISBN: 978-1-7281-4004-9. DOI: 10.1109/IROS40897. 2019.8967876. URL: https://ieeexplore.ieee.org/document/8967876/.
- [Kow19] Wojciech Kowalczyk. "Rapid Navigation Function Control for Two-Wheeled Mobile Robots". Στο: Journal of Intelligent & Robotic Systems 93.3-4 (Μαρ. 2019), σσ. 687–697. ISSN: 0921-0296. DOI: 10.1007/s10846-018-0879-4.
 URL: http://link.springer.com/10.1007/s10846-018-0879-4.
- [Liu+19] Xiaohui Liu x.ά. "Research on Improved Localization and Navigation Algorithm for Automatic Guided Vehicle". Στο: IOP Conference Series: Materials Science and Engineering 611.1 (Οχτ. 2019), σ. 012076. ISSN: 1757-8981. DOI: 10.1088/1757-899X/611/1/012076. URL: https://iopscience.iop.org/article/10.1088/1757-899X/611/1/012076.
- [QJ19] Wang Qingshan και Zhang Jun. "Point Cloud Registration Algorithm Based on Combination of NDT and PLICP". Στο: 2019 15th International Conference on Computational Intelligence and Security (CIS). IEEE, Δεκ. 2019, σσ. 132– 136. ISBN: 978-1-7281-6092-4. DOI: 10.1109/CIS.2019.00036. URL: https: //ieeexplore.ieee.org/document/9023760/.
- [Sim+19] Jesse R. Simpson x.ά. "An estimation of the future adoption rate of autonomous trucks by freight organizations". Στο: Research in Transportation Economics 76 (Σεπτ. 2019), σ. 100737. ISSN: 07398859. DOI: 10.1016/j.retrec.2019. 100737. URL: https://linkinghub.elsevier.com/retrieve/pii/S0739885919302495.
- [VKA19] Juan P. Vasconez, George A. Kantor και Fernando A. Auat Cheein. "Human-robot interaction in agriculture: A survey and current challenges". Στο: Biosystems Engineering 179 (Μαρ. 2019), σσ. 35–48. ISSN: 15375110. DOI: 10.1016/j. biosystemseng.2018.12.005. URL: https://linkinghub.elsevier.com/retrieve/pii/S1537511017309625.

- [Wan+19] L. Wang κ.ά. "Symbiotic human-robot collaborative assembly". Στο: CIRP Annals 68.2 (2019), σσ. 701-726. ISSN: 00078506. DOI: 10.1016/j.cirp. 2019.05.002. URL: https://linkinghub.elsevier.com/retrieve/pii/S0007850619301593.
- [WMO19] Xipeng Wang, Ryan J. Marcotte και Edwin Olson. "GLFP: Global Localization from a Floor Plan". Στο: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Noé. 2019, σσ. 1627–1632. ISBN: 978-1-7281-4004-9. DOI: 10.1109/IROS40897.2019.8968061. URL: https://ieeexplore.ieee.org/document/8968061/.
- [YT19] Abdurrahman Yilmaz και Hakan Temeltas. "Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data". Στο: Robotics and Autonomous Systems 122 (Δεκ. 2019), σ. 103285. ISSN: 09218890. DOI: 10. 1016/j.robot.2019.103285. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889019302106.
- [BBA20] Sara Bouraine, Abdelhak Bougouffa και Ouahiba Azouaoui. "NDT-PSO, a New NDT based SLAM Approach using Particle Swarm Optimization". Στο: 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV). IEEE, Δεκ. 2020, σσ. 321–326. ISBN: 978-1-7281-7709-0. DOI: 10.1109/ICARCV50220.2020.9305519. URL: https://ieeexplore.ieee.org/document/9305519/.
- [KSL20] Zeashan Hameed Khan, Afifa Siddique και Chang Won Lee. "Robotics Utilization for Healthcare Digitization in Global COVID-19 Management". Στο: International Journal of Environmental Research and Public Health 17.11 (Μάι. 2020), σ. 3819. ISSN: 1660-4601. DOI: 10.3390/ijerph17113819. URL: https://www.mdpi.com/1660-4601/17/11/3819.
- [Lee+20] Sumyeong Lee κ.ά. "Robust 3-Dimension Point Cloud Mapping in Dynamic Environment Using Point-Wise Static Probability-Based NDT Scan-Matching". Στο: IEEE Access 8 (2020), σσ. 175563–175575. ISSN: 2169-3536. DOI: 10. 1109 / ACCESS . 2020 . 3025537. URL: https://ieeexplore.ieee.org/document/9201452/.

- [LW20] Zhichao Li και Naiyan Wang. "DMLO: Deep Matching LiDAR Odometry".
 Στο: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, Οκτ. 2020, σσ. 6010-6017. ISBN: 978-1-7281-6212-6.
 DOI: 10.1109/IROS45743.2020.9341206. URL: https://ieeexplore.ieee.org/document/9341206/.
- [Qi+20] Xianyu Qi κ.ά. "Building semantic grid maps for domestic robot navigation".
 Στο: International Journal of Advanced Robotic Systems 17.1 (Iαν. 2020).
 ISSN: 1729-8814. DOI: 10.1177/1729881419900066. URL: http://journals.
 sagepub.com/doi/10.1177/1729881419900066.
- [SCD20] Kyle H. Sheetz, Jake Claffin και Justin B. Dimick. "Trends in the Adoption of Robotic Surgery for Common Surgical Procedures". Στο: JAMA Network Open 3.1 (Ιαν. 2020), e1918911. ISSN: 2574-3805. DOI: 10.1001/jamanetworkopen. 2019.18911. URL: https://jamanetwork.com/journals/jamanetworkopen/ fullarticle/2758472.
- [Ber+21] Lukas Bernreiter x.ά. "PHASER: A Robust and Correspondence-Free Global Pointcloud Registration". Στο: *IEEE Robotics and Automation Letters* 6.2 (2021), σσ. 855–862.
- [BBA21] Sara Bouraine, Abdelhak Bougouffa και Ouahiba Azouaoui. "Particle swarm optimization for solving a scan-matching problem based on the normal distributions transform". Στο: Evolutionary Intelligence (Ιαν. 2021). ISSN: 1864-5909. DOI: 10.1007/s12065-020-00545-y. URL: http://link.springer.com/10.1007/s12065-020-00545-y.
- [Che+21] Cheng Chen κ.ά. "The adoption of self-driving delivery robots in last mile logistics". Στο: Transportation Research Part E: Logistics and Transportation Review 146 (Φεβ. 2021), σ. 102214. ISSN: 13665545. DOI: 10.1016/j.tre. 2020.102214. URL: https://linkinghub.elsevier.com/retrieve/pii/S1366554520308565.
- [Dim+21] Antonis Dimitriou κ.ά. "Autonomous Robots, Drones and Repeaters for Fast,
 Reliable, Low-Cost RFID Inventorying & Localization". Στο: 2021 6th International
 Conference on Smart and Sustainable Technologies (SpliTech). IEEE, Σεπτ.

- 2021, σσ. 01-06. ISBN: 978-953-290-112-2. DOI: 10.23919/SpliTech52315. 2021.9566425. URL: https://ieeexplore.ieee.org/document/9566425/.
- [Koi+21] Kenji Koide x.ά. "Voxelized GICP for Fast and Accurate 3D Point Cloud Registration". Στο: 2021 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Μάι. 2021, σσ. 11054-11059. ISBN: 978-1-7281-9077-8. DOI: 10.1109/ICRA48506.2021.9560835. URL: https://ieeexplore.ieee.org/document/9560835/.
- [PB21] Prabin Kumar Panigrahi και Sukant Kishoro Bisoy. "Localization strategies for autonomous mobile robots: A review". Στο: Journal of King Saud University

 Computer and Information Sciences (Μαρ. 2021). ISSN: 13191578. DOI: 10.
 1016/j.jksuci.2021.02.015. URL: https://linkinghub.elsevier.com/retrieve/pii/S1319157821000550.
- [SSC21] Bogdan Ilie Sighencea, Rareș Ion Stanciu και Cătălin Daniel Căleanu. "A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction". Στο: Sensors 21.22 (Noć. 2021), σ. 7543. ISSN: 1424-8220. DOI: 10.3390/s21227543. URL: https://www.mdpi.com/1424-8220/21/22/7543.
- [smp21] smprobotics. 2021. URL: https://smprobotics.com/security_robot.
- [Wan+21] Zhong Wang κ.ά. "Global Localization With a Single-Line LiDAR by Dense 2D Signature and 1D Registration". Στο: IEEE Sensors Journal 21.10 (Μάι. 2021), σσ. 11497–11506. ISSN: 1530-437X. DOI: 10.1109/JSEN.2020.3021049. URL: https://ieeexplore.ieee.org/document/9184826/.
- [YSC21] Heng Yang, Jingnan Shi και Luca Carlone. "TEASER: Fast and Certifiable Point Cloud Registration". Στο: IEEE Transactions on Robotics 37.2 (Απρ. 2021), σσ. 314-333. ISSN: 1552-3098. DOI: 10.1109/TRO.2020.3033695. URL: https://ieeexplore.ieee.org/document/9286491/.
- [Fil22] Alexandros Filotheou. "Correspondenceless scan-to-map-scan matching of homoriented 2D scans for mobile robot localisation". Στο: Robotics and Autonomous Systems 149 (Μαρ. 2022), σ. 103957. ISSN: 09218890. DOI: 10.1016/j.robot.2021. 103957. URL: https://linkinghub.elsevier.com/retrieve/pii/S0921889021002323.

- [rev22] revfine. 2022. URL: https://www.revfine.com/hotel-robots/.
- [Cena] Andrea Censi. PLICP code headers. URL: https://github.com/AndreaCensi/csm/blob/master/sm/csm/algos.h.
- [Cenb] Andrea Censi. PLICP manual. URL: https://github.com/AndreaCensi/csm/blob/master/csm_manual.pdf.
- [staa] statista.com. URL: https://www.statista.com/statistics/430086/automotive-sales-of-automotive-lidar-systems-worldwide/.
- [stab] statista.com. URL: https://www.statista.com/statistics/880147/global-robotic-vehicle-sensors-market-size-by-segment/.
- [WIL] WILLOWGARAGE. Χάρτης του περιβάλλοντος WILLOWGARAGE. URL: https://github.com/CognitiveRobotics/jarves/tree/master/jarves%7B%5C_%7Dgazebo/worlds/maps.
- [YDL] YDLIDAR. YDLIDAR datasheets. URL: https://www.manualshelf.com/brand/ydlidar.

Μέρος V

Παραρτήματα