

Estrutura desta apresentação

Análise entre dois planos

- Ângulo
- Condição de paralelismo
- Condição de ortogonalidade
- Interseção
- Interseção de um plano com os planos coordenados

Análise entre um plano e uma reta

- Ângulo
- Condição de paralelismo
- Condição de ortogonalidade
- Interseção
- Interseção de um plano com os eixos coordenados

Análise entre dois planos

Ângulo entre dois planos

Sejam dois planos:

- o plano $\overrightarrow{n_1}$, que tem um vetor normal ao plano $\overrightarrow{n_1}=(a_1,b_1,c_1)$, e
- o plano π_2 , que tem um vetor normal ao plano $\overrightarrow{n_2}=(a_2,b_2,c_2)$.

Define-se como o **ângulo de dois planos** π_1 e π_2 o **menor** ângulo formado entre um vetor normal de π_1 e um vetor normal de π_2 .

Ângulo entre dois planos

O ângulo entre os planos π_1 e π_2 pode então ser determinado por

$$\cos\theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}||\overrightarrow{n_2}|}$$

$$com 0 \le \theta \le \frac{\pi}{2}.$$

Condição de paralelismo entre dois planos

Sejam o plano π_1 , com um vetor normal $\overrightarrow{n_1} = (a_1, b_1, c_1)$, e o plano π_2 , com um vetor normal $\overrightarrow{n_2} = (a_2, b_2, c_2)$.

Note que, para analisar se os dois planos são paralelos, pode-se aplicar a condição de paralelismo em seus vetores normais. Ou seja, os planos π_1 e π_2 serão paralelos se

$$\overrightarrow{n_1} = \alpha \overrightarrow{n_2}$$

para algum $\alpha \in \mathbb{R}$ ou, caso ambos vetores não apresentem componentes nulas, se

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

$$\overrightarrow{n_1} = \alpha \overrightarrow{n_2}$$

$$\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$$

Observações:

Considerando as equações gerais do plano

$$\pi_1$$
: $a_1x + b_1y + c_1z + d_1 = 0$

e

$$\pi_2$$
: $a_2x + b_2y + c_2z + d_2 = 0$

- Se $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = \frac{d_1}{d_2}$, os planos são **coincidentes**.
- Se $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} \neq \frac{d_1}{d_2}$, os planos são paralelos mas **não** são coincidentes.

Condição de paralelismo entre dois planos

Condição de ortogonalidade entre dois planos

Analogamente, a condição de ortogonalidade entre os planos também é oriunda do conceito desenvolvido para vetores, considerando neste caso os vetores normais aos planos.

Assim, se o plano π_1 tem um vetor normal $\overrightarrow{n_1}=(a_1,b_1,c_1)$, e o plano π_2 tem um vetor normal $\overrightarrow{n_2}=(a_2,b_2,c_2)$, a condição de ortogonalidade de π_1 e π_2 será

$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$

Para que dois planos se intersecionem, eles não podem ser paralelos.

Caso esta condição seja garantida, a interseção de dados planos será uma reta r.

Interseção de dois planos

Há duas maneiras principais para se chegar na equação desta reta r. As ideias por trás de cada uma são apresentadas a seguir.

Para tal, sejam as equações gerais do plano

$$\pi_1$$
: $a_1x + b_1y + c_1z + d_1 = 0$

e

$$\pi_2$$
: $a_2x + b_2y + c_2z + d_2 = 0$

Interseção de dois planos

Método 01)

A reta r deve respeitar tanto a equação de π_1 quanto a equação de π_2 . Assim, busca-se uma solução para o sistema

$$r: \begin{cases} a_1 x + b_1 y + c_1 z + d_1 = 0 \\ a_2 x + b_2 y + c_2 z + d_2 = 0 \end{cases}$$

Têm-se duas equações não múltiplas (uma vez que os planos não são paralelos) e três variáveis (x, y e z). Assim, a solução deste sistema tem uma variável livre.

É possível, portanto, escrever duas das incógnitas em função de uma terceira, o que garante as equações reduzidas da reta.

Interseção de dois planos

Método 02)

Arbitrando um valor para uma das variáveis, a resolução do sistema linear

$$r: \begin{cases} a_1 x + b_1 y + c_1 z + d_1 = 0 \\ a_2 x + b_2 y + c_2 z + d_2 = 0 \end{cases}$$

fornecerá um ponto $A(x_0, y_0, z_0)$ pertencente à reta r.

Como um vetor diretor da reta pode ser obtido com

$$\vec{v} = \overrightarrow{n_1} \times \overrightarrow{n_2}$$

obtêm-se dados suficientes para criar uma equação para a retar.

Interseção de dois planos

Interseção de um plano com os planos coordenados

Considere um plano

$$\pi : ax + by + cz + d = 0$$

Ao fazer a interseção com os planos coordenados, tem-se

1. Plano y0z (x = 0)

$$r: \begin{cases} x = 0 \\ z = my + n \end{cases}$$

2. Plano x0z (y = 0)

$$r: \begin{cases} y = 0 \\ z = mx + n \end{cases}$$

3. Plano x0y (z = 0)

$$r: \begin{cases} z = 0 \\ y = mx + r \end{cases}$$

Ângulo entre um plano e uma reta

Sejam:

- um plano π , com um vetor normal ao plano $\vec{n}=(a_n,b_n,c_n)$, e
- uma reta r, com um vetor diretor $\vec{v}=(a_r,b_r,c_r)$, e

O ângulo ϕ da reta r com o plano π é o complemento do ângulo θ que r forma com uma reta normal ao plano.

Ângulo entre um plano e uma reta

Sabe-se que

$$\cos\theta = \frac{|\vec{n} \cdot \vec{v}|}{|\vec{n}||\vec{v}|}$$

e que $\theta + \phi = \frac{\pi}{2}$. Assim, tem-se

$$\cos \theta = \cos \left(\frac{\pi}{2} - \phi\right) = \cos \frac{\pi}{2} \cos \phi + \sin \frac{\pi}{2} \sin \phi = \sin \phi$$

Ou seja, o ângulo ϕ da reta r com o plano π pode ser calculado com

$$\operatorname{sen} \boldsymbol{\phi} = \frac{|\overrightarrow{\boldsymbol{n}} \cdot \overrightarrow{\boldsymbol{v}}|}{|\overrightarrow{\boldsymbol{n}}||\overrightarrow{\boldsymbol{v}}|}, 0 \le \boldsymbol{\phi} \le \frac{\pi}{2}$$

Condição de paralelismo entre um plano e uma reta

Sejam o plano π , com um vetor normal ao plano $\vec{n}=(a_n,b_n,c_n)$, e a reta r, com um vetor diretor $\vec{v}=(a_r,b_r,c_r)$.

Note que, para que a reta e o plano sejam paralelos, o vetor diretor da reta e o vetor normal ao plano devem ser ortogonais.

Ou seja, o plano π e a reta r serão paralelos se

$$\vec{v} \cdot \vec{n} = 0$$

Atenção!

Para que a reta r esteja **contida** no plano π ,

- i. r deve ser paralela a π ;
- ii. um ponto $A \in r$ também deve pertencer ao plano.

Condição de ortogonalidade entre um plano e uma reta

Analogamente, se o plano π , com vetor normal $\vec{n}=(a_n,b_n,c_n)$, e a reta r, com vetor diretor $\vec{v}=(a_r,b_r,c_r)$, forem ortogonais, isso implica que o vetor normal ao plano e o vetor diretor da reta devem ser paralelos.

Ou seja, o plano π e a reta r serão ortogonais se

$$\vec{n} = \alpha \vec{v}$$

para algum $\alpha \in \mathbb{R}$ ou, caso ambos vetores não apresentem componentes nulas, se

$$\frac{a_n}{a_r} = \frac{b_n}{b_r} = \frac{c_n}{c_r}$$

Caso não sejam paralelos, é possível calcular a interseção entre uma reta e um plano.

Note que, neste caso, a interseção deles será um ponto I.

Este ponto é calculado resolvendo o sistema linear formado pelas equações do plano e da reta (ou seja, resolvendo as equações do plano e da reta simultaneamente).

Aconselha-se utilizar a equação geral do plano e as equações reduzidas da reta.

Interseção da reta com o plano

Interseção de um plano com os eixos coordenados

Considere um plano

$$\pi : ax + by + cz + d = 0$$

Ao fazer a interseção com os eixos coordenados, tem-se

1. Eixo x: ponto no formato I(x, 0, 0)

$$x = -\frac{d}{a} = p$$

2. Eixo y: ponto no formato I(0, y, 0)

$$y = -\frac{d}{b} = q$$

3. Eixo z: ponto no formato I(0,0,z)

$$z = -\frac{d}{c} = r$$

Observação: equação segmentária do plano

Se $a \neq 0$, $b \neq 0$, $c \neq 0$ e $d \neq 0$, a equação geral do plano pode ser reescrita como

$$\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 1,$$

em que p, q e r são as interseções com os eixos coordenados obtidas no slide anterior. Esta expressão é então denominada **equação segmentária** do plano.