

RISQUES ET VOLATILITÉ SUR LES MARCHÉS FINANCIERS

AURÉLIEN ALBA

SOMMAIRE

1. Histoire

2. Les marchés financiers

3. Mécanismes et produits

4. Les risques de marchés

SOMMAIRE

5. Les options

6. La volatilité

7. La corrélation et risque de covariance

LA VOLATILITÉ Définition

Mesure la **variabilité** des **prix** des actifs financiers sur une **période donnée**

Les mouvements du marché sont déclenchés par divers facteurs (événements économiques majeurs, annonces d'entreprises)

LA VOLATILITÉ Définition

Les mouvements du marché sont

Mesure la **variabilité** des **prix** des actifs financiers sur une **période donnée**

déclenchés par divers facteurs (événements économiques majeurs, annonces d'entreprises)

Une **compréhension** approfondie de cette notion est **cruciale** pour **anticiper** les **mouvements** du **marché**, évaluer les risques et prendre des décisions

Comprendre ces causes permet de connaître les principales forces derrière les fluctuations du marché

LA VOLATILITÉ Historique et Implicite

HISTORIQUE

se base sur l'analyse des **données** passées

IMPLICITE

utilise les **prix** des **options** pour projeter la **volatilité future**

Définition statistique de la volatilité historique

Mesure de l'amplitude de variation d'un actif

Volatilité = Ecart type de la variance annualisé

Variance = Vraie mesure du risque. Somme des carrés des rendements

$$\sigma^{2} = \frac{1}{T} Variance_{0 \to T} \left(\frac{dS}{S} \right) = \frac{1}{T} \int_{0}^{T} \left(\frac{dS}{S} \right)^{2} dt$$

$$Variance \sim \sum_{k=0}^{N-1} \left(\frac{\Delta S_k}{S_k} \right)^2 - \left(\sum_{k=0}^{N-1} \left(\frac{\Delta S_k}{S_k} \right) \right)^2$$

La volatilité présente des opportunités

La volatilité n'est pas simplement synonyme de **risque**; elle présente également des **opportunités**

Les investisseurs avertis peuvent utiliser ces fluctuations pour prendre des positions avantageuses

LA VOLATILITÉ Les indices de volatilités

Pour évaluer la volatilité, des indices tels que le VIX aux États-Unis servent de baromètres essentiels

Offrent une perspective **quantifiable** de la **volatilité**, permettant aux **investisseurs** de prendre des **décisions** éclairées

LA VOLATILITÉ Les indices de volatilités

Les indices de volatilités

Source: CBOE, FactSet, Standard & Poor's, J.P. Morgan Asset Management. Drawdowns are calculated as the prior peak to the lowest point. Guide to the Markets – U.S. Data are as of September 30, 2020.

Gestion

La **gestion** de la volatilité est une **compétence clé** pour les investisseurs.

Utilisation **d'options**, qui permettent **d'atténuer** les **risques** et de **protéger** les **portefeuilles** pendant des périodes de volatilité accrue.

Focus sur la volatilité implicite

La volatilité implicite est **dérivée** des **prix** des **options**

Exprime les **attentes** du **marché** concernant la **future fluctuation** des prix d'un actif financier

Calculée à l'aide des **modèles d'évaluation** des **options**

Prise en compte plusieurs facteurs :

- prix de l'option
- prix actuel de l'actif sous-jacent
- temps restant avant l'expiration de l'option
- le taux d'intérêt sans risque

Focus sur la volatilité implicite

Les **options** donnent aux investisseurs le **droit**, mais **non l'obligation**, **d'acheter** ou de **vendre** un actif à un prix prédéfini avant une date d'expiration.

Sensibilité des options aux variations de volatilité.

Une **volatilité implicite** plus **élevée** se traduit par des **primes** d'option plus **élevées**.

Une volatilité implicite élevée :

- anticipation de mouvements importants des prix dans le futur
- indique souvent une période d'incertitude ou d'événements économiques majeurs

À l'inverse, une **volatilité implicite** plus **basse** pourrait signaler une période de **stabilité** attendue sur les marchés.

Focus sur la volatilité implicite

Focus sur la volatilité implicite

Peut également servir d'indicateur de sentiment du marché

Une **augmentation soudaine** de la volatilité implicite => **réévaluation rapide des risques** par les investisseurs

Ajuster leurs positions et gérer le risque

Focus sur la volatilité implicite

Les investisseurs utilisent la volatilité implicite pour élaborer des stratégies

Une volatilité implicite **élevée** → stratégies de **protection**

Une volatilité implicite **basse** peut encourager des stratégies de **vente d'options**

Focus sur la volatilité implicite

Offre un aperçu unique des anticipations du marché.

Outil puissant pour **évaluer** le **sentiment** du **marché**, **gérer** le **risque** et **élaborer** des **stratégies** d'investissement.

Reconnaître ses **limites** et de **l'incorporer judicieusement** dans le processus de **prise** de **décision**.

Calcul de la volatilité réalisée

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

En posant $f(S_t, t) = ln(S_t)$ et en appliquant itô

$$dlog(S_t) = \left(\mu + \frac{\sigma^2}{2}\right)dt + \sigma dW_t$$

- Le logarithme du prix du stock suit une distribution normale
- Le terme de drift est proportionnel à la période pendant laquelle le changement a eu lieu
- Le terme de volatilité est déterminé par le bruit (mouvement Brownien)

Pour estimer la volatilité, on utilise les **log rendements** sur 1 jour et on calcule l'**écart-type** dessus. On obtient la volatilité sur un jour: $\sigma\sqrt{dt}$

Calcul de la volatilité implicite

Calculée à partir des **prix de marché d'options vanille** et en utilisant un modèle de pricing (B&S par ex.)

$$Prix_{BS} = f(\sigma_{BS}, K, T)$$

$$\sigma_{BS}(K,T) = f^{-1}(Prix\ de\ marché(K,T))$$

La volatilité implicite n'est pas une constante.

Elle dépend du strike K et de la maturité T

Calcul de la volatilité implicite

Source: CBOE

Pourquoi un smile ou un skew?

Calcul de la volatilité implicite

Source: CBOE

Pourquoi un smile ou un skew?

- FX: smile car le marché est « symétrique » →
 EURUSD, investisseur EUR voit le marché
 de façon inverse à un investisseur USD.
 Vol plus grande OTM/ITM car plus grande
 demande des acheteurs que des vendeurs →
 prix plus grand qu'attendu → vol plus grande
- EQ: skew car les investisseurs veulent se couvrir contre les baisses plutôt que les hausses. Plus probable d'avoir un gros mouvement baissier que haussier

Calcul de la volatilité implicite

Source: CBOE

Pourquoi un smile ou un skew?

- Raisonnement en terme de gamma P&L
- Marché fortement baissier → gamma sur petit strike augmente + plus grande volatilité réalisée → vendeur d'option rebalance son delta plus souvent → plus grande perte pour le vendeur d'option.
- Compensation de ces frais →le vendeur price ses options avec une plus grande volatilité implicite

Calcul de la volatilité implicite

Structure par terme

Vol, skew et curve sont dépendants de la maturité

$$Skew = \frac{\partial \sigma}{\partial K}$$
 = Pente de la surface de la volatilité

$$Curve = \frac{\partial^2 \sigma}{\partial K^2}$$
 = Convexité de la surface de volatilité

Surface de volatilité

Autres types de volatilités

Volatilité locale (Modèle de Dupire)

On modélise une volatilité qui dépend du cours du sous-jacent $\sigma = f(t, S_t)$

$$\frac{dS_t}{S_t} = \mu dt + \sigma_{local}(t, S_t) dW_t$$

$$\sigma(K, T) = \sqrt{2 \frac{\frac{\partial C}{\partial T} + (r - q)K \frac{\partial C}{\partial K} + qC}{K^2 \frac{\partial^2 C}{\partial K^2}}}$$

On calibre les volatilités $\sigma_{local}(t, S_t)$ de telle sorte que le modèle « match » les prix donnés par le marché

Autres types de volatilités

Volatilité stochastique (Modèle de Heston)

On modélise la volatilité comme une variable aléatoire

$$\frac{dS_t}{S_t} = \mu dt + \sqrt{v_t} dZ_S$$

$$dv_t = \kappa(\theta_v - v_t) dt + \sigma_v \sqrt{v_t} dZ_v$$

$$\langle dZ_s, dZ_v \rangle = \rho_{s,v} dt$$

Autres types de volatilités

Volatilité terminale

Pour (S, T), la volatilité terminale est la moyenne quadratique de la volatilité entre 0 et T

$$\sum_{T} \sqrt{E\left(\frac{1}{T} \int_{0}^{T} \sigma_{t}^{2} dt\right)}$$

Est-elle importante pour les investisseurs ?

- a) Elle n'a pas d'impact significatif sur les décisions d'investissement
- b) Elle permet d'anticiper les mouvements du marché et offre des opportunités d'investissement
- c) Elle est principalement utile pour les investisseurs à court terme

Comment les investisseurs peuvent-ils la gérer de manière proactive ?

- a) En ignorant les fluctuations du marché
- b) En utilisant des techniques de gestion des risques, y compris des instruments financiers tels que les options
- c) En évitant complètement les marchés volatils

Pourquoi les investisseurs pourraient-ils la considérer comme une opportunité ?

- a) Parce que la volatilité ne présente jamais d'opportunités
- b) Car elle crée des mouvements de marché prévisibles
- Elle peut permettre aux investisseurs de prendre des positions avantageuses lorsque les prix sont volatiles

Stratégie de trading de la volatilité

- La **volatilité** encapsule l'aspect **risque** du marché
- La **perception** de ce **risque** est traduite dans la « **valeur temps** » de la prime de l'option

Stratégie de trading de la volatilité

- Le **prix** des options vanilles sont des fonctions croissantes de la volatilité
- Une positions acheteuse d'un Call (long Call) → position long volatilité

Stratégie de trading de la volatilité

Augmentation du skew

- Renchérissement des Calls et Puts de strike < 100% du forward
- Baisse prime des options pour strike
 > 100% du forward

Augmentation de la curve

 Renchérissement des Calls et Puts en dehors de la monnaie

Stratégie de trading de la volatilité

Call-spread / Put-spread

LA VOLATILITÉ Call-spread / Put-spread

Construction

 Achat + vente de deux Calls (ou deux Puts) de même maturité et de strikes différents

Intérêt

 Permet d'avoir une exposition au skew

Call-spread / Put-spread

Profil d'un call-spread

Construction

 Achat + vente de deux Calls (ou deux Puts) de même maturité et de strikes différents

Intérêt

 Permet d'avoir une exposition au skew

LA VOLATILITÉ Straddle

Construction

 Achat d'un Call et d'un Put de même maturité et de même strikes

Intérêt

Extrêmement sensible à la volatilité

LA VOLATILITÉ Straddle

Profil d'un straddle

Construction

 Achat d'un Call et d'un Put de même maturité et de même strikes

Intérêt

• Extrêmement sensible à la volatilité

LA VOLATILITÉ Strangle

LA VOLATILITÉ Strangle

Construction

 Achat d'un Call et d'un Put de même maturité et de strikes différents

Intérêt

• Extrêmement sensible à la volatilité

LA VOLATILITÉ Strangle

Profil d'un strangle

Construction

 Achat d'un Call et d'un Put de même maturité et de strikes différents

Intérêt

Extrêmement sensible à la volatilité

PnL d'une pose de volatilité

PnL d'une position hedgée en delta

En utilisant un développement limité à l'ordre 2:

$$dPnL = \theta . dt + \frac{1}{2} \Gamma \left(\frac{dS}{S}\right)^{2} + v. d\sigma$$

En dehors des mouvements de volatilité, la position est gagnante seulement si:

$$S > \sqrt{\frac{-2\theta}{\Gamma}}$$

Sous les hypothèses de B&S, on peut écrire:

$$dPnL = \frac{1}{2}\Gamma\left(\left(\frac{dS}{S}\right)^2 - \sigma^2 S^2 dt\right) + v. d\sigma \cot\theta = \frac{1}{2}\sigma^2 \Gamma$$

PnL d'une pose de volatilité

Dynamique de volatilité

Etant donnée une fonction de volatilité, il est important de définir comment celle-ci varie si la valeur du sous-jacent change.

Sticky strike: On suppose que la volatilité implicite d'une option reste inchangée suite à la variation du cours du sous-jacent

$$\sigma_{S+\delta S}^{BS}(K,T) \equiv \sigma_{S}^{BS}(K,T)$$

 $\Delta = \Delta^{BS}$

Sticky delta: Le niveau de la volatilité à la monnaie (volatilité de l'option la plus liquide) doit rester invariante même si la valeur du spot change

$$\sigma_{S+\delta S}^{BS}(K = S + \delta S, T) = \sigma_{S}^{BS}(K = S, T)$$
$$\Delta = \Delta^{BS} + v \frac{\partial \sigma_{S}^{BS}}{\partial S}$$

PnL d'une pose de volatilité

Dynamique de volatilité

Sticky strike

Le skew reste le même

Sticky delta

- Le skew est « déplacé » dans le sens du mouvement du sous-jacent
- Ces deux règles entrainent des opportunités d'arbitrage mais elles permettent de comprendre les risques associés aux produits traités

LA CORRÉLATION ET RISQUE DE COVARIANCE Question de l'investisseur

Quelle est la probabilité que deux données de marchés évoluent simultanément dans le même sens ?

LA CORRÉLATION ET RISQUE DE COVARIANCE La corrélation

Définition économique

Quantification des facteurs communs qui impactent la variation des sousjacent

Evolution de la corrélation moyenne GLE/BNP/ACA

LA CORRÉLATION ET RISQUE DE COVARIANCE La corrélation

Définition statistique

Mesure de la co-dépendance de la variation de deux actifs sous-jacents.

Cas multi-sous-jacent : Covariance :

La notion de covariance est la généralisation de la variance dans le cas multi-sous-jacent

$$VAR(A + B) = VAR(A) + VAR(B) + 2COV(A, B)$$

Corrélation : Covariance normalisée par les niveaux de variance

$$\rho = \frac{COV(A,B)}{\sqrt{VAR(A)VAR(B)}} \text{ et } \sigma_{A+B}^2 = \sigma_A^2 + \sigma_B^2 + 2\sigma_A\sigma_B\rho(A,B)$$

Rappel:
$$VAR(X) = \mathbb{E}\left[\left(X - \mathbb{E}(X)\right)^2\right]$$

LA CORRÉLATION ET RISQUE DE COVARIANCE La corrélation

Terminologie

- Corrélation historique
- Corrélation terminale
- Corrélation implicite

Produit dépendant de la corrélation

Option sur la moyenne d'un panier

Panier contenant deux sous-jacents S1 et S2:

$$P = \frac{1}{2} \left(\frac{S_1}{S_1^0} + \frac{S_2}{S_2^0} \right)$$

$$\sigma_P^2 = \frac{1}{4} \left(\sigma_1^2 + \sigma_2^2 + 2\sigma_1 \sigma_2 \rho_{1,2} \right)$$

Exemple : σ1=σ2=20%

σ_P < **σ**₁

→ Diversification,
Réduction du risque

Produit dépendant de la corrélation

Cas général

Panier contenant n sous-jacents

$$P = \sum \omega_i S_i$$

Volatilité moyenne des composants du panier: σ

Corrélation moyenne: ρ

$$\sigma_p = \sigma \sqrt{\rho}$$

Exemple: Volatilité d'un Indice

Indice SX5E

Corrélation moyenne: 60%

Volatilité de l'indice = 77% de la volatilité moyenne des actions

Produit dépendant de la corrélation

Option sur WorstOf

Option sur le minimum des performances d'un panier

$$WorstOf = Min_i(\frac{S_i}{S_i^0})$$

WorstOf de deux sous-jacents

$$Min(S_1, S_2) = S_1 - Max(S_1 - S_2, 0)$$

=> Espérance du WorstOf < Espérance S1

WorstOf de plusieurs sous-jacents

$$Min(S_1, S_2, S_3) = Min(Min(S_1, S_2), S_3)$$

Produit dépendant de la corrélation

Option sur WorstOf

WO Put =
$$Max(0, K - Min(S_1(T), S_2(T), ..., S_n(T))$$

- Plus cher qu'une option vanille
- Quand un actif baisse → devient WO → delta augmente en valeur absolue et le delta des autres diminue. Quand un mouvement d'un sous-jacent impacte le delta des autres → cross-gamma. Cross-gamma sensi est plus grande quand le fwd des stocks sont proches (incertitude sur le WO)

Produit dépendant de la corrélation

Option sur WorstOf

WO Put =
$$Max(0, K - Min(S_1(T), S_2(T), ..., S_n(T))$$

- Plus cher qu'une option vanille
- Quand un actif baisse → devient WO → delta augmente en valeur absolue et le delta des autres diminue. Quand un mouvement d'un sous-jacent impacte le delta des autres → cross-gamma. Cross-gamma sensi est plus grande quand le fwd des stocks sont proches (incertitude sur le WO)
- Long put → long volatilité. Plus la volatilité est grande → plus de dispersion → prix du WO augmente. Acheteur WO put option → long volatilité.
- Plus grande dispersion → plus grand payoff. Petite corrélation → rendements plus dispersés → plus grand payoff. Acheteur WO put option → short correlation.

LA CORRÉLATION ET RISQUE DE COVARIANCE Produit dépendant de la corrélation

Fonction de distribution du WorstOf

Fonction de distribution

L'utilisation du WorstOf renchérit le Put

Produit dépendant de la corrélation

Put Down & In sur WorstOf

Payoff

- A l'émission le client paye un nominal X A la fin du contrat:
- - Si la barrière est activée, le client perd une partie de son capital
 - Sinon, le client reçoit X + coupon

Intérêt: Coupon plus élevé que les taux de placement sans risque

Deux versions: Barrière européenne ou américaine

L'utilisation d'un panier sur WorstOf optimise le coupon que le client espère recevoir à l'échéance

LA CORRÉLATION ET RISQUE DE COVARIANCE Véhicule de trading de la corrélation

Le Call VS Calls

Principe

Vendre un call sur panier et acheter des Calls sur les sous-jacents individuels

$$Payoff = \frac{1}{N} \sum_{i} Max \left(\frac{S_i^T}{S_i^0} - K, 0 \right) - Max \left(\frac{1}{N} \sum_{i} \frac{S_i^T}{S_i^0} - K, 0 \right)$$

Composants du panier

- Généralement entre 8 et 12 stocks
- Choisis en « bespoke » par les traders

Gammas croisés

- Gamma diagonal positif
- · Gamma extra-diagonal négatif

Véhicule de trading de la corrélation

Le Straddle de dispersion

Principe

Vendre un Straddle sur un indice et acheter des Straddles sur les sous-jacents composant l'indice

$$Indice: I = \sum_i \omega_i S_i$$
 $Payoff = \sum_i \omega_i.Straddle_i - Straddle_I$

Caractéristiques

- Pose sur la volatilité de l'indice (direct) et les volatilités des composants (indirect)
- Indirectement, position sur la corrélation implicite

LA CORRÉLATION ET RISQUE DE COVARIANCE Véhicule de trading de la corrélation

Le Swap de corrélation réalisée

Payoff

$$Payoff = \rho^{R}(T) - K_{rho}$$

Avec:

$$\rho^{R}(T) = \frac{2}{n(n-1)} \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \rho_{i,j}^{R}(T) \text{ et } \rho_{i,j}^{R}(T) = \frac{cov_{i,j}^{R}}{\sqrt{VAR_{i}^{R}VAR_{j}^{R}}}$$

Caractéristiques

- Non linéarité
- Pur risque de corrélation. Ne hedge pas très bien le risque de covariance

LA CORRÉLATION ET RISQUE DE COVARIANCE Indice de corrélation

LA CORRÉLATION ET RISQUE DE COVARIANCE Estimation de la corrélation historique

On considère deux séries de spots: $S_0^0 \dots S_N^0$ et $S_0^1 \dots S_N^1$

Estimateur de la corrélation historique:

$$\rho_N = \frac{COV}{\sqrt{VAR_1 VAR_2}}$$

Avec:

$$\begin{split} COV &= \frac{1}{n} \sum \left(ln \frac{S_i^0}{S_{i-1}^0} - ln \frac{S_N^0}{S_0^0} \right) \left(ln \frac{S_i^1}{S_{i-1}^1} - ln \frac{S_N^1}{S_0^1} \right) \\ VAR_i &= \frac{1}{n} \sum \left(ln \frac{S_i^0}{S_{i-1}^0} - ln \frac{S_N^0}{S_0^0} \right)^2 \end{split}$$

LA CORRÉLATION ET RISQUE DE COVARIANCE Asynchronicité

Heures de clôture différentes : Quel cours de clôture utiliser ?

Solution <u>la plus courante</u>: rendements hebdomadaires

LA CORRÉLATION ET RISQUE DE COVARIANCE Gestion d'un portefeuille de produit multi sous-jacents

PnL d'une pose Mono Sous-jacent

Variation du spot: S0 -> S1, développement limité à l'ordre 1:

$$PnL = \Delta. (S_1 - S_0) + \frac{1}{2} \Gamma. (S_1 - S_0)^2$$

$$\Delta_1 - \Delta_0 = \Gamma. (S_1 - S_0)$$

Avec:

- $\Delta = \frac{\partial PnL}{\partial S}$ le delta du portefeuille = dérivée du PnL par rapport au spot
- $\Gamma = \frac{\partial^2 PnL}{\partial S^2}$ le gamma du portefeuille = dérivée seconde du PnL par rapport au spot

LA CORRÉLATION ET RISQUE DE COVARIANCE Gestion d'un portefeuille de produit multi sous-jacents

LA CORRÉLATION ET RISQUE DE COVARIANCE Gestion d'un portefeuille de produit multi sous-jacents

- Le gamma mesure la convexité d'une option. La convexité est toujours favorable aux positions long option
- Un hedge en delta est fait uniquement pour des petits mouvements du sous-jacent. Pour les gros mouvements, un position long option surperforme toujours the portefeuille de hedge dans les deux directions.
- Pour une option delta-hedgée, le gamma P&L correspond à la surperformance de l'option par rapport au portefeuille de hedge. Plus le sous-jacent va bouger, plus le portefeuille de delta-hedge va sous performer la position long option.

LA CORRÉLATION ET RISQUE DE COVARIANCE Gestion d'un portefeuille de produit multi sous-jacents

Gestion d'un portefeuille de produit multi sous-jacents

- A t0, le sous-jacent vaut S_0 , l'option vaut p_0 , le delta et le gamma valent Δ_0 et Γ_0
- Le stock augmente de dS à S₁
- Le nouveau prix de l'option est $p_1=p_0+\Delta_0 dS+\frac{1}{2}\Gamma_0(dS)^2$
- Le P&L de la position long option est $p_1 p_0 = \Delta_0 dS + \frac{1}{2} \Gamma_0 (dS)^2$
- Le P&L de la position short delta hedge vaut $-\Delta_0 dS$
- Le P&L total est donc $\frac{1}{2}\Gamma_0(dS)^2$

Gestion d'un portefeuille de produit multi sous-jacents

PnL d'une pose Multi Sous-jacent

Variation des spots: $S_{i,0}$ -> $S_{i,1}$, développement limité à l'ordre 1:

$$PnL = \sum \Delta_{i} \cdot (S_{i,1} - S_{i,0}) + \frac{1}{2} \sum \Gamma_{i,j} (S_{i,1} - S_{i,0}) (S_{j,1} - S_{j,0})$$
$$\Delta_{1} - \Delta_{0} = \Gamma \cdot (S_{1} - S_{0})$$

Avec:

- $\Delta_i = \frac{\partial PnL}{\partial S_i}$ le delta du portefeuille = dérivée du PnL par rapport au spot S_i
- $\Gamma_{i,j} = \frac{\partial^2 PnL}{\partial S_i S_j}$ le gamma du portefeuille = dérivée seconde du PnL par rapport aux spots S_i et S_j

Gestion d'un portefeuille de produit multi sous-jacents

Question

On part d'un portefeuille delta-hedgé sur deux stocks A et B avec:

$$\Gamma_A = \Gamma_B = -\Gamma_{A,B}$$

Les cours des deux sous-jacents dispersent de 100%. Combien vaut le PnL ?

LA CORRÉLATION ET RISQUE DE COVARIANCE Gestion d'un portefeuille de produit multi sous-jacents

PnL d'une pose Multi Sous-jacent

Développement limité sur le delta

$$\Delta_{i,1} - \Delta_{i,0} = \sum_{j=1}^{n} \Gamma_{i,j} \cdot (S_{j,1} - S_{j,0})$$

Création de delta sur un sous-jacent i quand les autres sous-jacents bougent

Gestion d'un portefeuille de produit multi sous-jacents

Estimation de la pose de delta en temps réel sur chaque sous-jacent

Le delta qui se créé sur chaque stock dépend:

- De l'évolution des autres stocks
- Des taux de change

Delta qui se créé avant l'ouverture d'un marché par la variation des S_j des autres marchés ou des taux de change

Gestion d'un portefeuille de produit multi sous-jacents

Exemple:

Position sur un panier contenant TOYOTA et APPLE

1) A l'instant initial, on part d'une position delta-hedgée $\Delta^0_{TOYOTA} = \Delta^0_{APPLE} = 0$

Gamma du portefeuille: Γ_{TOYOTA} , Γ_{APPLE} et Γ_{CROSS}

- 2) Le marché japonais est ouvert (US fermé). TOYOTA augmente de 1% $PNL_{JP}=\frac{1}{2}\Gamma_{TOYOTA}.~(0,01)^2$
- → Un delta se créé sur APPLE: $\Delta_{APPLE} = \Gamma_{CROSS}$. (0,01)

Gestion d'un portefeuille de produit multi sous-jacents

3) Impacté par les marchés asiatique et européen, le marché US ouvre à +1% $PNL_{US} = \Delta_{APPLE}. (0,01) + \frac{1}{2} \Gamma_{APPLE}. (0,01)^2 = \Gamma_{CROSS}. (0,01)^2 + \frac{1}{2} \Gamma_{APPLE}. (0,01)^2$

Peut être négatif si Γ_{CROSS} < 0 (usuel pour les produits asiatiques)

PnL total de la position: $PNL_{US} + PNL_{JP} = \frac{1}{2}(\Gamma_{APPLE} + \Gamma_{TOYOTA} + 2\Gamma_{CROSS})$. $(0,01)^2$

Gestion d'un portefeuille de produit multi sous-jacents

Grecques à surveiller:

Gamma Beta 1: Le Gamma du portefeuille quand tous les sous-jacents varient de la même façon

$$\Gamma_{Beta1} = \sum_{i,j} \Gamma_{i,j}$$

 Gamme Beta « Histo »: Le Gamma du portefeuille quand tous les sous-jacents varient proportionnellement à leur Beta historique

$$\Gamma_{Beta\ H} = \sum_{i,j} \beta_i \beta_j \Gamma_{i,j} \text{ avec } \beta_i = \frac{\sigma_i}{\sigma_I} \rho_{i,I}$$

« I » est l'indice de référence du marché. On répond à la question «de combien varie le stock i quand l'indice de référence (ex: SX5E) varie de 1%

Le forward d'un panier de type 'Worstof' est inférieur au forward d'un panier de type 'moyenne des sous-jacents'?

- a) Vrai
- b) Faux

Pour calculer la corrélation entre un stock japonais et un stock chinois, il vaut mieux utiliser ?

- a) Les rendements journaliers
- b) Les rendements hebdomadaires
- c) Les rendements mensuels

On essaye de structurer un certificat avec Put Down &In pour un client. Toute chose égale par ailleurs, lesquels de ces paniers peuvent maximiser le coupon final du client?

- a) TOTAL / CITIGROUP / NINTENDO
- b) FRANCE TELECOM / DEUTSCHE TELECOM / TELEFONICA
- c) SOCIETE GENERALE / CARREFOUR / DANONE

LA CORRÉLATION ET RISQUE DE COVARIANCE La volatilité d'un indice est :

- a) Egale à la volatilité moyenne de ses composants
- b) Supérieure à la volatilité moyenne de ses composants
- c) Inférieure à la volatilité moyenne de ses composants

On valorise un CALL sur un panier de 10 sous-jacents. Les 10 sous-jacents ont la même devise, qui est aussi celle du CALL. Combien de valeurs de corrélation faut-il calibrer ?

- a) 10
- b) 45
- c) 90

Pour valoriser un Straddle de dispersion sur l'indice SX5E, on a besoin de connaître :

- a) La volatilité de l'indice et de ses composants
- b) Les niveaux de corrélation
- c) La volatilité et les niveaux de corrélation

Dans le cadre de ses stress-tests, l'équipe de « contrôle des risques » constate que si le marché varie uniformément de 5% la banque perd de l'argent. Pour hedger ce risque, la banque peut :

- a) Acheter un call sur un panier représentatif de la pose globale
- b) Acheter un Straddle de dispersion sur indice
- c) Acheter un swap de corrélation réalisée
- d) Ces trois solutions peuvent convenir