EAIiIB	Piotr Morawie	cki, Tymoteusz Paszun	Rok II	Grupa 3a	Zespół 6
Temat: Wahadła fizyczne		Numer ćwiczenia: 1			
Data wykonania:	Data oddania:	Zwrot do poprawki:	Data oddania:	Data zaliczenia:	Ocena:
26.10.2017r.	8.11.2017r.				

1 Cel ćwiczenia

Celem ćwiczenia jest wyznaczenie momentu bezwładności brył sztywnych przez pomiar okresu drgań wahadła oraz na podstawie wymiarów geometrycznych. Badane bryły to pręt oraz pierścień.

2 Wstęp teoretyczny

2.1 Wahadło fizyczne

Wahadłem fizycznym nazywamy bryłę sztywną mogącą obracać się wokół osi obrotu O nie przechodzącej przez środek masy S. Wahadło odchylone od pionu o kąt θ , a następnie puszczone swobodnie będzie wykonywać drgania zwane ruchem wahadłowym. W ruchu tym mamy do czynienia z obrotem bryły sztywnej wokół osi O, opisuje go zatem druga zasada dynamiki dla ruchu obrotowego. Zasada dynamiki dla ruchu obrotowego wyrażona jest wzorem

$$I\varepsilon = M$$

gdzie I - moment bezwładności, ϵ - przyspieszenie kątowe, M - moment siły. Wartość przyspieszenia kątowego opisuje wzór

$$\varepsilon = \frac{d^2\theta}{dt^2}$$

2.2 Moment bezwładności na podstawie okresu drgań

Dla wahadła fizycznego moment siły powstaje pod wpływem siły ciężkości. Dla wychylenia θ jest równy

$$M = mga\sin\theta$$

gdzie a - odległość środka masy S od osi obrotu O. Zatem równanie ruchu wahadła można zapisać jako

$$I_0 \frac{d^2 \theta}{dt^2} = -mga \sin \theta$$

gdzie I_0 - moment bezwładności względem osi obrotu przechodzącej przez punkt zawieszenia O. Jeżeli ograniczyć ruch do małych kątów wychylenia, to sinus kąta można zastąpić samym kątem w mierze łukowej, czyli $\sin\theta\approx\theta$. Przyjmując częstość określoną wzorem $\omega_0^2=\frac{mga}{I_0}$ równanie ruchu przyjmuje postać równania oscylatora harmonicznego

$$\frac{d^2\theta}{dt^2} + \omega_0^2 \theta(t) = 0$$

. Okres drgań związany z częstością wynosi

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

Przekształcając wzór otrzymujemy wzór na moment bezwładności

$$I_0 = (\frac{T}{2\pi})^2 mga = \frac{mgaT^2}{4\pi^2}$$

2.3 Moment bezwładności na podstawie prawa Steinera

Dla wyznaczenia momentu bezwładności I_S względem równoległej osi przechodzącej przez środek masy możemy posłużyć się związkiem między I_0 i I_S znanym jako twierdzenie Steinera:

$$I_0 = I_S + ma^2$$

Wzór na moment bezwładności cienkiego pręta względem osi obrotu umieszczonej na końcu pręta to

$$I = \frac{1}{3}mL^2$$

gdzie L - długość pręta.

Wzór na moment bezwładności pierścienia względem osi obrotu przechodzącej przez jego środek to

$$I = \frac{1}{2}m(R^2 + r^2)$$

gdzie R - zewnętrzny promień, r - wewnętrzny promień.

3 Opis doświadczenia

Doświadczenie składa się z dwóch części: pomiaru masy i wymiarów badanych ciał oraz pomiarów okresów drgań ciał wprawionych w ruch wahadłowy. Badane bryły to cienki metalowy pręt z dodatkową poprzeczką stanowiącą punkt zawieszenia (w odległości b od końca pręta) oraz metalowy pierścień zawieszony na wycięciu znajdującym się na jego krawędzi. Punkty zawieszenia ciał stanowiły oś obrotu brył.

Do pomiarów masy użyto wagi o dokładności $1\,\mathrm{g}$. Wymiary zostały zmierzone linijką z podziałką o dokładności $1\,\mathrm{mm}$. Schemat badanych brył prezentuje rysunek 1

Rysunek 1: Bryły (pręt i pierścień) użyte w ćwiczeniu

Pomiary okresu drgań brył wprawionych w ruch wahadłowy o niewielkim wychyleniu zostały dokonane stoperem o dokładności $0,01\,\mathrm{s}.$

4 Wyniki pomiarów

4.1 Pomiary masy i długości

Tablica 1: Pomiary masy i długości dla pretu

	Wartość	Niepewność
m [g]	658	1
$l \; [\mathrm{mm}]$	738	1
$b \; [\mathrm{mm}]$	99	1
a [mm]	270	1

Tablica 2: Pomiary masy i długości dla pierścienia

	Wartość	Niepewność
m [g]	1360	1
$D_w [\mathrm{mm}]$	249	1
$D_z \; [\mathrm{mm}]$	279	1
$R_w [\mathrm{mm}]$	124,5	1
$R_z \; [\mathrm{mm}]$	139,5	1
e [mm]	9,7	0,05
a [mm]	129,8	0,05

4.2 Pomiary okresu drgań

Tablica 3: Pomiary okresu drgań dla prętu

Lp.	Liczba okresów \boldsymbol{k}	Czas t dla k okresów [s]	Czas 1 okresu [s]
1	30	39,72	1,324
2	30	39,61	1,320
3	30	39,58	1,319
4	30	39,66	1,322
5	30	39,48	1,316
6	30	39,60	1,320
7	30	39,46	1,315
8	30	39,33	1,311
9	50	65,68	1,314
10	50	65,75	1,315
		Wartość średnia okresu T : 1,318	3

,

Niepewność $u(T)\colon\thinspace 0{,}000015$

Tablica 4: Pomiary okresu drgań dla pierścienia

Lp.	Liczba okresów \boldsymbol{k}	Czas t dla k okresów $[\mathrm{s}]$	Czas 1 okresu $[s]$
1	30	31,04	1,035
2	30	30,83	1,028
3	30	31,01	1,034
4	30	31,05	1,035
5	30	31,12	1,037
6	30	30,96	1,032
7	30	30,91	1,030
8	30	31,16	1,039
9	30	31,17	1,039
10	30	30,86	1,029

Wartość średnia okresu T: 1,034

Niepewność u(T): 0,000014

5 Opracowanie wyników

5.1 Moment bezwładności I_0

Moment bezwładności I_0 względem rzeczywistej osi obrotu obliczamy ze wzoru:

$$T = 2\pi \sqrt{\frac{I_0}{mga}}$$

$$I_0 = \frac{T^2 mga}{4\pi^2}$$

$$I_0 = 0,07665 [\text{kg} \cdot \text{m}^2]$$

5.2 Moment bezwładności I_s

Z twierdzenia Steinera wynika wzór na $\mathcal{I}_0\colon$

$$I_0 = I_S + ma^2$$

Mając obliczony moment bezwładności ${\cal I}_0$ możemy obliczyć ${\cal I}_S$ ze wzoru:

$$I_S = I_0 - ma^2$$

$$I_S = 0.02868 [\text{kg} \cdot \text{m}^2]$$

5.3 Moment bezwładności względem osi przechodzącej przez środek masy

Moment bezwładności względem osi przechodzącej przez środek masy dla pręta możemy wyznaczyć ze wzoru:

$$I_s^{(geom)} = \frac{ml^2}{12}$$

$$I_S^{(geom)} = 0,02987[\,\mathrm{kg\cdot m^2}]$$

5.4 Niepewności pomiaru

Niepewność okresu typu A:

$$\overline{T} = \frac{\sum T_i}{n} = 1,318[s]$$

$$u(T) = \sqrt{\frac{\sum (T_i - \overline{T})^2}{n(n-1)}}$$

$$u(T) = 0,00000167[s]$$

n-ilość pomiarów, \overline{T} -średni okres drgań

Waga, na której pręt był ważony ma dokładnośc do 1 [g], więc

$$u(m) = 1[g]$$

Pret był mierzony za pomoca linijki, więc:

$$u(l) = 1[mm]$$

$$a = l/2 - b$$
, wiec:

$$u(a) = 0.5[\,\mathrm{mm}]$$

5.5 Niepewność złożona

$$\frac{u(I_o)}{I_0} = \sqrt{\left(\frac{u(m)}{m}\right)^2 + \left(\frac{u(a)}{a}\right)^2 + \left(2\frac{u(T_0)}{T_0}\right)^2} = 0,004[\text{kg} \cdot \text{m}^2]$$

$$u(I_s) = \sqrt{(u(I_0))^2 + (a^2u(m))^2 + (-2amu(m))^2} = 0,00048[\text{kg} \cdot \text{m}^2]$$

$$\frac{u(I_S^{(geom)})}{I_S^{(geom)}} = \sqrt{\left[\frac{u(m)}{m}\right]^2 + \left[2\frac{u(l)}{l}\right]^2} = 0,00311[\text{kg} \cdot \text{m}^2]$$

5.6 Sprawdzanie zgodności wyników

Obliczamy stosunek:

$$\frac{|I_S - I_S^{geom}|}{\sqrt{u^2(I_S) + u^2(I_S^{geom})}} = 0,3767$$

Wartość obliczonego stosunku jest mniejsza od k=2, więc wyniki uznajemy za zgodne.

6 Wnioski