Wydział:	Imię i nazwisko Rafał Grabiańs		Rok:	Grupa:	Zespół:
WIEiT	Zbigniew Królikowski		II	7	7
PRACOWNIA FIZYCZNA WFiIS AGH	Temat: Moduł	Younga			Nr ćwiczenia: 11
Data wykonania:	Data oddania:	Zwrot do poprawy:	Data oddania:	Data zaliczenia:	
					OCENA:
4.11.2014	18.11.2014	2.12.2014	9.12.2014		

1 Cel ćwiczenia

Celem ćwiczenia było obliczenie modułu Younga dla dwóch drutów metalowych pod obciążeniem stałej siły.

2 Wyniki pomiarów

2.1 Dane dotyczące drutów

Rodzaj materiału	stal			
Długość drutu l [mm]	1070	u(l) [mm]	1	
Średnica drutu d [mm]	Pomiar pierwszy 0.75	Pomiar drugi 0.77	Pomiar trzeci: 0.78	
Średnica średnia [mm]	0.77	u(d) [mm]	0.008	

Tabela 1: Drut stalowy

Rodzaj materiału	stal			
Długość drutu l [mm]	1070	u(l) [mm]	1	
Średnica drutu d [mm]	Pomiar pierwszy	Pomiar drugi	Pomiar trzeci:	
Sredinca drutu d [inin]	1.15	1.14	1.15	
Średnica średnia [mm]	1.15	u(d) [mm]	0.008	

Tabela 2: Drut mosiężny

Masa [kg]	Sila [N]	{Wskazanie czujnika 1 [mm]	Wskazanie czujnika 2 [mm]	Wydłużenie średnie [mm]
1	9.81	0.4	0.42	0.205
2	19.62	0.7	0.74	0.36
3	29.43	0.99	0.99	0.495
4	39.24	1.23	1.24	0.6175
5	49.05	1.48	1.49	0.7425
6	58.86	1.71	1.72	0.8575
7	68.67	1.95	1.95	0.975
8	78.48	2.16	2.16	1.08
9	88.29	2.39	2.39	1.195

Tabela 3: Wyniki pomiaru wydłużenia dla drutu stalowego

Masa [kg]	Siła [N]	Wskazanie czujnika 1 [mm]	Wskazanie czujnika 2 [mm]	Wydłużenie średnie [mm]
1	9.81	0.35	0.36	0.1775
1.5	14.715	0.51	0.52	0.2575
2	19.62	0.68	0.67	0.3375
2.5	24.525	0.81	0.8	0.4025
3	29.43	0.92	0.94	0.465
3.5	34.335	1.05	1.06	0.5275
4	39.24	1.17	1.18	0.5875
5	49.05	1.4	1.42	0.705
6	58.86	1.63	1.63	0.815

Tabela 4: Wyniki pomiaru wydłużenia dla drutu mosiężnego

3 Opracowanie wyników

3.1 Średnice drutów

Dokonaliśmy pomiaru średnicy drutu za pomocą śruby mikrometrycznej. Wyciągnęliśmy średnią arytmetyczną z trzech pomiarów wykonanych w różnych miejscach dla obo drutów. Niepewność oceniona na podstawie rozdzielczości przyrządu wynosi 1 μm . Wyniki umieszczono w tabelach 1 i 2. Niepewność pomiaru grubości oszacowaliśmy na $8\nu m$. Taka była różnica między zacieśnieniem do oporu śruby mikrometrycznej na drucie, a lekkim dociśnięciem.

3.2 Obliczenie wartości siły rozciągającej

Obliczenie siły rozciągającej sprowadzało się do wymnożenia przyspieszenia ziemskiego przez masę obciążającą:

$$F = m \cdot g \tag{1}$$

Za g przyjęliśmy przybliżoną wartość $9.81\frac{m}{c^2}$

3.3 Obliczenie średniej wartości wydłużenia

Liczymy średnią arytmetyczną z dwóch pomiarów dokonanych dla każdego obciążenia. Wynik musimy podzielić przez 2 by uwzględnić działanie dźwigni (zmiana wg czujnika jest dwa razy większa od rzeczywistej). Wyniki znajdują się w kolumnach *Wydłużenie średnie* w tabelach 1 i 2.

3.4 Zależność średniego wydłużenia drutu od przyłożonej siły

Rysunek 1: Wykres zależności wydłużenia drutu stalowego od przyłożonej siły wydłużającej

Rysunek 2: Wykres zależności wydłużenia drutu mosiężnego od przyłożonej siły wydłużającej

3.5 Dopasowanie prostej do punktów

Korzystając z programu komputerowego, dopasowaliśmy dla obu drutów prostą aproksymującą je. Nie odrzucliśmy w żadnym przypadku żadnego punktu, gdyż w naszej opinii żaden nie odbiega na tyle by mógł być uznany za błąd gruby w pomiarze.

Ptrzymujemy takie współczynniki prostych:

- Drut stalowy: $a=1.24\cdot 10^{-5}\frac{m}{N},\,u(a)=2.4\cdot 10^{-7}\frac{m}{N}$
- Drut mosiężny: $a=1.29\cdot 10^{-5}\frac{m}{N},\, u(a)=3.17\cdot 10^{-7}\frac{m}{N}$

3.6 Wyznaczenie modułu Younga

Korzystając z przekształceń wykonanych w skrypcie, mamy do dyspozycji wzór roboczy na moduł Younga następującej postaci:

$$E = \frac{4l}{\pi d^2 a} \tag{2}$$

Zatem moduł Younga przyjmuje wartości:

- $E_{stal} = 186.38 \text{ GPa}$
- $E_{mosi} = 80.51 \text{ GPa}$

3.7 Wyznaczenie niepewności

Korzystając z również wyprowadzonego we wstępie teoretycznym wzoru na niepewność złożoną dla modułu Younga:

$$\frac{U_c(E)}{E} = \sqrt{\left(\frac{u(l)}{l}\right)^2 + \left(-2\frac{u(d)}{d}\right)^2 + \left(-\frac{u(a)}{a}\right)^2} = \sqrt{\left(\frac{0.001}{1.07}\right)^2 + 4\left(\frac{8 \cdot 10^{-6}}{7.7 \cdot 10^{-4}}\right)^2 + \left(\frac{2.4 \cdot 10^{-7}}{1.24 \cdot 10^{-5}}\right)^2} \approx \sqrt{8.07 \cdot 10^{-4}} \approx 0.028$$
(3)

natomiast dla wykonanego z mosiądzu:

$$\frac{u_{cMOSI}(E)}{E} = \sqrt{(\frac{u(l)}{l})^2 + (-2\frac{u(d)}{d})^2 + (-\frac{u(a)}{a})^2} = \sqrt{(\frac{0.001}{1.07})^2 + 4(\frac{8 \cdot 10^{-6}}{1.15 \cdot 10^{-3}})^2 + (\frac{3.17 \cdot 10^{-7}}{1.29 \cdot 10^{-5}})^2} \approx 0.028$$
(4)

4 Wnioski

Wartość dla mosiądzu to 80.5 GPa a tabelaryczna ok. 100 GPa.

Wartość dla stali, 186.4 GPa, podczas gdy tabelaryczna 200-210 GPa.

Otrzymane przez nas wartości odbiegają od tabelarycznych ponad otrzymaną przez nas niepewność. W przypadku drutu stalowego dla k = 2 przedział byłby równy [197.4, 233.2] i uzyksany wynik ciągle byłby poza przedziałem. Dopiero dla k=4 wartość tablaryczna mieści się w przedziałe. Warto jednak zaznaczyć, że materiał, z którego wykonane są nasze druty nie został dokładnie zidentyfikowany a także ich właściwości mogły ulec zmianie na skutek zużycia(mechaniczego lub czynników środowiskowych np. korozji). Wobec tego rozszerzanie niepewności miałoby sens tylko w przypadku nowych fabrycznie, lub minimalnie zużytych drutów, z modułem Younga jednoznacznie określonym przez producenta.

Biorąc pod uwagę te aspekty i traktując wartości tabelaryczne jako orientacyjne uzyskane przez nas wyniki uznajmemy za prawidłowe.