Control Variates

Apurva Nakade

2025-04-11

Table of contents

Control Variates

Control random variables are examples of random variables that are positively correlated. In this case, the difference

$$var(X - Y) = var(X) + var(Y) - 2cov(X, Y)$$

will have lower variance. Let $X \sim p(x)$. Suppose we want to estimate $\ell = \mathbb{E}[f(x)]$ for some function f(x). We can use a control variate Y = h(X) for some function h(x) such that

- 1. $\mathbb{E}[h(X)]$ is known, say $\mathbb{E}[h(X)] = h_0$.
- 2. h(x) is strongly positively correlated with f(x), i.e., $cov(f(X), h(X)) \gg 0$.

Then we can use the control variate estimator

$$\hat{\ell}_{\text{CV}} = \frac{1}{n} \sum_{i=1}^{n} \left[f(X_i) - \beta(h(X_i) - h_0) \right]$$

where β is a constant. It is easy to see that $\hat{\ell}_{\text{CV}}$ is an unbiased estimator of ℓ . The variance of the control variate estimator is given by

$$\begin{aligned} \operatorname{var}(\hat{\ell}_{\text{CV}}) &= \frac{1}{n} \left[\operatorname{var}(f(X)) + \beta^2 \operatorname{var}(h(X)) - 2\beta \operatorname{cov}(f(X), h(X)) \right] \\ &= \frac{1}{n} \left[\operatorname{var}(f(X)) + \beta \operatorname{var}(h(X)) \left[\beta - 2 \frac{\operatorname{cov}(f(X), h(X))}{\operatorname{var}(h(X))} \right] \right] \end{aligned}$$

By choosing $\beta < 2 \frac{\cos(f(X), h(X))}{\operatorname{var}(h(X))}$, we can reduce the variance of the control variate estimator. In practice, it is not easy to calculate the covariance between f(X) and h(X), so we

- 1. Pick a control variate h(X) that is strongly correlated with f(X), and whose expectation is known.
- 2. Experiment with different values of β to find the one that minimizes the variance of the control variate estimator.

Example 0.1. In the example below, we estimate the integral of xe^{-x} over the interval [0,1] using control function g(x) = x. We know that $\mathbb{E}[g(X)] = \frac{1}{2}$ so the estimator is given by

$$\hat{\ell}_{\mathrm{CV}} = \frac{1}{n} \sum_{i=1}^{n} \left[f(X_i) - \beta(g(X_i) - \frac{1}{2}) \right]$$

where β is a constant and $X_i \sim \text{Uniform}(0,1)$ are i.i.d. We choose $\beta \approx 0.35$ which minimizes the variance of the control variate estimator. This results in an 8-fold reduction in variance compared to the naive estimator.

Beta: 0.358238

True Integral Value: 0.264241

Standard MC Estimate: 0.258290, Variance: 1.18e-04 Control Variate Estimate: 0.264526, Variance: 1.26e-05

Variance Reduction Factor: 9.36x