TOPOLOGIE ET CALCUL DIFFÉRENTIEL -

Exercices complémentaires – Feuille 4

DIFFÉRENTIELLES ET DÉRIVÉES PARTIELLES

Exercice 1. On fixe $n \in \mathbb{N}^*$ et on considère l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$ des matrices carrés réelles de dimension n. Soient les fonctions :

$$f: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R}) \qquad g: \mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$$

$$M \longmapsto M^2 \qquad M \longmapsto \operatorname{Tr}(M^3)$$

Justifier que f et g sont différentiables et déterminer les différentielle de f et g en tout $M \in \mathcal{M}_n(\mathbb{R})$. (Indication: Utiliser les développements limité à l'ordre 1).

Exercice 2. Soit $GL_n(\mathbb{R}) = \{ M \in \mathcal{M}_n(\mathbb{R}) \mid M \text{ inversible} \}$ et la fonction $\varphi : GL_n(\mathbb{R}) \to GL_n(\mathbb{R})$ donné par $\varphi(M) = M^{-1}$.

- (a) Justifier que φ est différentiable dans $GL_n(\mathbb{R})$.
- (b) Pour $H \in GL_n(\mathbb{R})$ telle que $H \to O_n$, monter que $(I_n + H)(I_n H) = I_n + o(H)$. Qu'est-ce qu'on peut dire du développement limité à l'ordre 1 de $(I_n + H)^{-1}$?
- (c) Soit $M \in GL_n(\mathbb{R})$. Utiliser le résultat obtenu dans (b) pour calculer le développement limité à l'ordre 1 de $(M+H)^{-1}$ pour $H \to O_n$.
- (d) Déterminer la différentielle en I_n puis en $M \in GL_n(\mathbb{R})$ (Indication : Utiliser les développements limité à l'ordre 1 précédents).

Exercice 3. Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$f(x,y) = (x^2 - y^2) \ln(x^2 + y^2)$$

- i) Est-il possible de prolonger f par continuité en (0,0)?
- ii) Établir que f est de classe \mathcal{C}^1 sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et, sans calculs, montrer que

$$\frac{\partial f}{\partial x}(x,y) = -\frac{\partial f}{\partial y}(y,x)$$

iii) La fonction f est-elle de classe C^1 sur \mathbb{R}^2 ?

Exercice 4. Soient U un ouvert de \mathbb{R}^n et $f,g,h:U\to\mathbb{R}$ telles que

$$f(x) \le g(x) \le h(x), \quad \forall x \in U$$

On suppose de f et h sont différentiables en $a \in U$ et f(a) = h(a).

- i) Montrer que $\partial_{\xi} f(a) = \partial_{\xi} h(a)$ pour tout $\xi \in \mathbb{R}^n$. En déduire que les formes linéaires f'(a) et h'(a) sont égales.
- ii) On pose $f'(a) = h'(a) = \ell$. Montrer que g est différentiable en a et $g'(a) = \ell$.

Exercice 5. Soit $k \in \mathbb{N}$, on considère la fonction $f_k : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$f(x,y) = (x+y)^k \sin \frac{1}{\sqrt{x^2 + y^2}}$$

- (a) Quelle est la condition nécessaire et suffisante pour que f_k se prolonge par continuité en (0,0)?
- (b) Si la condition de (a) est remplie, quelle est la condition nécessaire et suffisante pour que le prolongement obtenu soit différentiable en (0,0)?

Exercice 6. Soit $f: E \to F$ différentiable vérifiant $f(\lambda x) = \lambda f(x)$ pour tout $\lambda \in \mathbb{R}$ et tout $x \in E$. Montrer que l'application f est linéaire. (*Indication*: Utiliser le développement limité à l'ordre 1 de f)

Exercice 7. On définit une fonction $\varphi : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ par

$$\varphi(x,y) = \frac{\cos x - \cos y}{x - y}$$

- i) Montrer que φ admet un prolongement par continuité à \mathbb{R}^2 noté $\overline{\varphi}$.
- ii) Montrer que $\overline{\varphi}$ est \mathcal{C}^1 puis \mathcal{C}^{∞} .

Exercice 8. Soient $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et $F: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$F(x,y) = \frac{f(x^2 + y^2) - f(0)}{x^2 + y^2}$$

- i) Déterminer $\lim_{(x,y)\to(0,0)} F(x,y)$. On prolonge F par continuité en (0,0) et on suppose de surcroît f de classe \mathcal{C}^2 .
- ii) Justifier que F est différentiable en (0,0) et y préciser sa différentielle.
- iii) Montrer que F est de classe C^1 .

Exercice 9. Soit $f: \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par

$$f(x,y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

La fonction f admet-elle un prolongement continue à \mathbb{R}^2 ? Un prolongement de classe \mathcal{C}^1 ? de classe \mathcal{C}^2 ?

Exercice 10. Soit $f: \mathbb{R}^n \to \mathbb{R}$. On dit que f est homogène de degré $k \in \mathbb{R}$ si, et seulement si,

$$f(\lambda x_1, \dots, \lambda x_n) = \lambda^k f(x_1, \dots, x_n), \quad \forall (x_1, \dots, x_n) \in \mathbb{R}^n \text{ et } \lambda \in \mathbb{R}^*.$$

i) Case n=2: Vérifier que $f:\mathbb{R}^2\to\mathbb{R}$ différentiable est homogène de degré k si, et seulement si,

$$x \cdot \frac{\partial f}{\partial x} + y \cdot \frac{\partial f}{\partial y} = k \cdot f$$

ii) Cas général : Montrer que $f: \mathbb{R}^n \to \mathbb{R}$ différentiable est homogène de degré k si, et seulement si.

$$\sum_{i=1}^{n} x_i \cdot \frac{\partial f}{\partial x_i} = k \cdot f$$

Exercice 11. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ différentiable vérifiant

$$f(x,y) = f(y,x), \quad \forall (x,y) \in \mathbb{R}^2.$$

Quelle relation existe-t-il entre les dérivées partielles de f?

ÉQUATIONS EN DÉRIVÉES PARTIELLES

Exercice 12. Déterminer les fonctions $f \in \mathcal{C}^1(D_f, \mathbb{R})$ avec $D_f \subseteq \mathbb{R}^2$ telles qu'elles vérifient

(a)
$$\begin{cases} \frac{\partial f}{\partial x} = \frac{1-y}{(x+y+1)^2} \\ \frac{\partial f}{\partial y} = \frac{2+x}{(x+y+1)^2} \end{cases}$$
 (b)
$$\begin{cases} \frac{\partial f}{\partial x} = \frac{y^2}{(x+y)^2} \\ \frac{\partial f}{\partial y} = \frac{x^2}{(x+y)^2} \end{cases}$$

Exercice 13. Soit $f: \mathbb{R}^3 \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et soit $g: \mathbb{R}^3 \to \mathbb{R}$ la fonction définie par

$$g(x, y, z) = f(x - y, y - z, z - x).$$

Montrer que

$$\frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} + \frac{\partial g}{\partial z} = 0$$

Exercice 14. Résoudre sur \mathbb{R}^2 les équations aux dérivées partielles

- i) $\frac{\partial f}{\partial x}(x,y) 3\frac{\partial f}{\partial y}(x,y) = 0$, en effectuant le changement de variables $\begin{cases} u = 2x + y \\ v = 3x + y \end{cases}$.
- ii) $\frac{\partial f}{\partial x}(x,y) + \frac{\partial f}{\partial y}(x,y) = f(x,y)$, en effectuant le changement de variables $\left\{ \begin{array}{l} u = x + y \\ v = x y \end{array} \right.$

Exercice 15. Déterminer les fonctions $f \in \mathcal{C}^2(\mathbb{R}^2, \mathbb{R})$ solutions de l'équation aux dérivées partielles

- i) $\frac{\partial^2 f}{\partial x^2}(x,y) \frac{\partial^2 f}{\partial y^2}(x,y) = 0$, en effectuant le changement de variables $\left\{ \begin{array}{l} u = x + y \\ v = x y \end{array} \right.$.
- ii) $\frac{\partial^2 f}{\partial x^2} 2 \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2} = 0$, en effectuant le changement de variables $\begin{cases} u = x \\ v = x + y \end{cases}$.
- iii) $x^2 \frac{\partial^2 f}{\partial x^2} y^2 \frac{\partial^2 f}{\partial y^2} = 0$, en effectuant le changement de variables $\begin{cases} u = xy \\ v = x/y \end{cases}$.

CALCUL D'EXTREMA

Exercice 16. Déterminer les extrema locaux de $f: \mathbb{R}^2 \to \mathbb{R}$ définie par :

i)
$$f(x,y) = x^4 + y^4 + 4xy$$

iii)
$$f(x,y) = x^2 + xy + y^2 + 2x - 2y$$

ii)
$$f(x,y) = y(x^2 + (\ln y)^2)$$

iv)
$$f(x,y) = x^4 + y^4 - 2(x-y)$$

Exercice 17. Trouver les extrema locaux et absolus des fonction suivantes :

- (a) $f(x,y) = x^2 + y^2 xy + x + y$ définie sur $K = \{(x,y) \in \mathbb{R}^2 \mid x,y \le 0, x + y \ge -3\}$
- (b) $f(x,y) = \frac{x+y}{x^2+y^2+1}$ définie sur $\Omega = \{x, y > 0\}$.
- (c) $f(x,y) = \sqrt{x^2 + y^2} \frac{x}{2} y^2$ sur $A = \{0 \le x < y\}$ et sur le $\overline{B}(\overline{0}; 1)$.
- (d) $f(x,y) = e^{-x-2y} e^{-2x-y} \operatorname{sur} \Omega = \{x, y > 0\}.$
- (e) $f(x,y) = e^x + e^y$ sur le disque $\overline{B}(\overline{0};1)$.
- (f) $f(x,y)=x+y+z+x^2+y^2+z^2$ sur le cube délimité par les planes x=0, x=-2, y=0, y=-2, z=0, z=-2.
- (g) $f(x,y) = (x^2 + y^2)e^{-3x+y}$ sur :
 - (i) $B(\overline{0};1)$ et $\overline{B}(\overline{0};1)$.
 - (ii) $A = \{(x,y) \in \mathbb{R}^2 \mid 3x y \ge 0\}, B = \{(x,y) \in \mathbb{R}^2 \mid |y| \le x\} \text{ et } C = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \ge 1, 3x y \ge 0\}.$
- (h) $f(x,y) = e^{-x^2 y^2 x} \text{ sur } \mathbb{R}^2$