

planetmath.org

Math for the people, by the people.

martingale proof of the Radon-Nikodym theorem

 ${\bf Canonical\ name} \quad {\bf Marting ale Proof Of The Radon Nikodym Theorem}$

Date of creation 2013-03-22 18:34:10 Last modified on 2013-03-22 18:34:10

Owner gel (22282)Last modified by gel (22282)

Numerical id 9

Author gel (22282)
Entry type Proof
Classification msc 60G42
Classification msc 28A15

Related topic RadonNikodymTheorem

Related topic MartingaleConvergenceTheorem

We apply the martingale convergence theorem to prove the Radon-Nikodym theorem, which states that if μ and ν are σ -finite measures on a measurable space (Ω, \mathcal{F}) and ν is absolutely continuous with respect to μ then there exists a non-negative and measurable $f \colon \Omega \to \mathbb{R}$ such that $\nu(A) = \int_A f \, d\mu$ for all measurable sets A.

As http://planetmath.org/AnySigmaFiniteMeasureIsEquivalentToAProbabilityMeasure σ -finite measure is equivalent to a probability measure, it is enough to prove the result in the case where μ and ν are probability measures. Furthermore, by the Jordan decomposition, the result generalizes to the case where ν is a signed measure. So, we just need to prove the following.

Theorem (Radon-Nikodym). Let \mathbb{P} and \mathbb{Q} be probability measures on the measurable space (Ω, \mathcal{F}) , such that \mathbb{Q} is absolutely continuous with respect to \mathbb{P} . Then, there exists a non-negative random variable X such that $\mathbb{E}_{\mathbb{P}}[X] = 1$ and $\mathbb{Q}(A) = \mathbb{E}_{\mathbb{P}}[1_A X]$ for every $A \in \mathcal{F}$.

Here, X is called the Radon-Nikodym derivative of \mathbb{Q} with respect to \mathbb{P} . More generally, for any sub- σ -algebra \mathcal{G} of \mathcal{F} we can restrict the measures \mathbb{P} and \mathbb{Q} to \mathcal{G} and ask if the Radon-Nikodym derivative of $\mathbb{Q}|_{\mathcal{G}}$ with respect to $\mathbb{P}|_{\mathcal{G}}$ exists. If it does we shall denote it by $X_{\mathcal{G}}$, which by definition is a non-negative \mathcal{G} -measurable random variable satisfying $\mathbb{Q}(A) = \mathbb{E}_{\mathbb{P}}[1_A X_{\mathcal{G}}]$ for all $A \in \mathcal{G}$.

We note that if $X_{\mathcal{G}}$ does exist, then it is uniquely defined (\mathbb{P} -almost everywhere). Suppose that $\tilde{X}_{\mathcal{G}}$ also satisfied the required properties, then

$$\mathbb{E}_{\mathbb{P}}[\max(X_{\mathcal{G}} - \tilde{X}_{\mathcal{G}}, 0)] = \mathbb{E}_{\mathbb{P}}[X_{\mathcal{G}} 1_{\{X_{\mathcal{G}} > \tilde{X}_{\mathcal{G}}\}}] - \mathbb{E}_{\mathbb{P}}[\tilde{X}_{\mathcal{G}} 1_{\{X_{\mathcal{G}} > \tilde{X}_{\mathcal{G}}\}}]$$
$$= \mathbb{Q}(X_{\mathcal{G}} > \tilde{X}_{\mathcal{G}}) - \mathbb{Q}(X_{\mathcal{G}} > \tilde{X}_{\mathcal{G}}) = 0$$

so $X_{\mathcal{G}} \leq \tilde{X}_{\mathcal{G}}$ almost surely. Similarly, $\tilde{X}_{\mathcal{G}} \leq X_{\mathcal{G}}$ and therefore $\tilde{X}_{\mathcal{G}} = X_{\mathcal{G}}$ (almost surely).

First, the easy case. For a finite σ -algebra, the Radon-Nikodym derivative can be written out explicitly.

Lemma 1. If \mathcal{G} is a finite sub- σ -algebra of \mathcal{F} then the Radon-Nikodym derivative $X_{\mathcal{G}}$ exists.

Proof. Let A_1, A_2, \ldots, A_n be the minimal non-empty elements of \mathcal{G} . These are pairwise disjoint subsets of Ω such that every set in \mathcal{G} is a union of a

subcollection of the A_k . Set

$$X_{\mathcal{G}} = \sum_{k=1}^{n} \frac{\mathbb{Q}(A_k)}{\mathbb{P}(A_k)} 1_{A_k}$$

Note that whenever $\mathbb{P}(A_k) = 0$ then $\mathbb{Q}(A_k) = 0$, and we adopt the convention that $\frac{0}{0} = 0$. Clearly, $X_{\mathcal{G}}$ is \mathcal{G} -measurable, and

$$\mathbb{E}_{\mathbb{P}}[1_{A_k}X_{\mathcal{G}}] = \frac{\mathbb{Q}(A_k)}{\mathbb{P}(A_k)}\mathbb{E}_{\mathbb{P}}[1_{A_k}] + \sum_{j \neq k} \frac{\mathbb{Q}(A_j)}{\mathbb{P}(A_j)}\mathbb{E}_{\mathbb{P}}[1_{A_k \cap A_j}]$$
$$= \mathbb{Q}(A_k).$$

Here, we have used $\mathbb{E}_{\mathbb{P}}[1_{A_k}] = \mathbb{P}(A_k)$ and $1_{A_k \cap A_j} = 0$. By linearity, this equality remains true if both sides are replaced by any union of the A_k , and therefore $X_{\mathcal{G}}$ is the required Radon-Nikodym derivative.

Next, martingale convergence is used to prove the existence of the Radon-Nikodym derivative in the case where the σ -algebra \mathcal{G} is separable. By separable, we mean that there is a countable sequence of sets A_1, A_2, \ldots generating \mathcal{G} . Note that if we let \mathcal{G}_n be the σ -algebra generated by A_1, A_2, \ldots, A_n , then \mathcal{G}_n is an increasing sequence of finite sub- σ -algebras such that $\bigcup_n \mathcal{G}_n$ generates \mathcal{G} . The following result is general enough to apply in many useful cases, such as with the Boral σ -algebra on \mathbb{R}^n .

Lemma 2. Let \mathcal{G} be a separable sub- σ -algebra of \mathcal{F} . Then, the Radon-Nikodym derivative $X_{\mathcal{G}}$ exists. If furthermore, \mathcal{G}_n is an increasing sequence of finite σ -algebras satisfying $\mathcal{G} = \sigma(\bigcup_n \mathcal{G}_n)$ then $\mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}} - X_{\mathcal{G}_n}|] \to 0$ as $n \to \infty$.

Proof. Let us set $X_n \equiv X_{\mathcal{G}_n}$. If m < n then the conditional expectation $\mathbb{E}_{\mathbb{P}}[X_n \mid \mathcal{G}_m]$ is \mathcal{G}_m -measurable, and for every $A \in \mathcal{G}_m$,

$$\mathbb{E}_{\mathbb{P}}\left[1_{A}\mathbb{E}_{\mathbb{P}}[X_{n} \mid \mathcal{G}_{m}]\right] = \mathbb{E}_{\mathbb{P}}\left[1_{A}X_{n}\right] = \mathbb{Q}(A).$$

This equality just uses the definition of the conditional expectation and then the definition of X_n as the Radon-Nikodym derivative restricted to \mathcal{G}_n . So, $\mathbb{E}_{\mathbb{P}}[X_n \mid \mathcal{G}_m]$ is the Radon-Nikodym derivative restricted to \mathcal{G}_m , and equals X_m (almost-surely).

Therefore, X_n is a martingale and the martingale convergence theorem implies that the limit

$$X_{\mathcal{G}} = \lim_{n \to \infty} X_n \tag{1}$$

exists almost surely. We now show that the sequence X_n is uniformly integrable. Choose any $\epsilon > 0$. As \mathbb{Q} is absolutely continuous with respect to \mathbb{P} , there exists a $\delta > 0$ such that $\mathbb{Q}(A) < \epsilon$ whenever $\mathbb{P}(A) < \delta$. Using

$$\mathbb{P}(X_n > K) = \mathbb{E}_{\mathbb{P}}[1_{\{X_n > K\}}] \le \mathbb{E}_{\mathbb{P}}\left[\frac{X_n}{K}\right] = \frac{1}{K}$$

we see that $\mathbb{P}(X_n > K) < \delta$ whenever $K > \delta^{-1}$ and, therefore, $\mathbb{Q}(X_n > K) < \epsilon$. So

$$\mathbb{E}_{\mathbb{P}}[X_n 1_{\{X_n > K\}}] = \mathbb{Q}(X_n > K) < \epsilon$$

for every n, showing that X_n is a uniformly integrable sequence with respect to \mathbb{P} . Therefore, convergence in (??) is in L^1 , and $\mathbb{E}_{\mathbb{P}}[|X_n - X_{\mathcal{G}}|] \to 0$ as $n \to \infty$. So, for any $A \in \bigcup_n \mathcal{G}_n$,

$$\mathbb{E}_{\mathbb{P}}[X_{\mathcal{G}}1_A] = \lim_{m \to \infty} \mathbb{E}_{\mathbb{P}}[X_m 1_A] = \mathbb{Q}(A). \tag{2}$$

By linearity and the monotone convergence theorem, the collection of sets A satisfying (??) is a Dynkin system containing the π -system $\bigcup_n \mathcal{G}_n$ so, by Dynkin's lemma, is satisfied for every $A \in \sigma(\bigcup_n \mathcal{G}_n) = \mathcal{G}$ and, by definition, $X_{\mathcal{G}}$ is the Radon-Nikodym derivative restricted to \mathcal{G} .

Finally, by approximating by finite σ -algebras we can prove the Radon-Nikodym theorem for arbitrary inseparable σ -algebras \mathcal{F} .

Proof of the Radon-Nikodym theorem:

First, we use contradiction to show that for any $\epsilon > 0$ there exists a finite σ -algebra $\mathcal{G} \subseteq \mathcal{F}$ satisfying $\mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}} - X_{\mathcal{H}}|] < \epsilon$ for every finite σ -algebra \mathcal{H} with $\mathcal{G} \subseteq \mathcal{H} \subseteq \mathcal{F}$. If this were not the case, then by induction we could find an increasing sequence of finite sub- σ -algebras of \mathcal{F} satisfying $\mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}_n} - X_{\mathcal{G}_m}|] \geq \epsilon$. However, letting $\mathcal{G} = \sigma(\bigcup_n \mathcal{G}_n)$, Lemma ?? shows that $X_{\mathcal{G}}$ exists and

$$\epsilon \leq \lim_{n \to \infty} \mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}_n} - X_{\mathcal{G}_{n+1}}|] \leq \lim_{n \to \infty} \mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}_n} - X_{\mathcal{G}}|] + \lim_{n \to \infty} \mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}_{n+1}} - X_{\mathcal{G}}|] = 0$$

— a contradiction.

So, there exists a sequence of finite sub- σ -algebras \mathcal{G}_n of \mathcal{F} such that $\mathbb{E}_{\mathbb{P}}[|X_{\mathcal{G}_n}-X_{\mathcal{H}}|]<2^{-n}$ for every finite sub- σ -algebra \mathcal{H} of \mathcal{F} containing \mathcal{G}_n . Let \mathcal{G} be the (separable) σ -algebra generated by $\bigcup_n \mathcal{G}_n$, and set $\tilde{\mathcal{G}}_n = \sigma(\bigcup_{k=1}^n \mathcal{G}_k)$. By Lemma ??, the Radon-Nikodym derivative restricted to \mathcal{G} , $X_{\mathcal{G}}$, exists, and we show that it is the required derivative of \mathbb{Q} with respect to \mathbb{P} .

Choose any set $A \in \mathcal{F}$ and let \mathcal{H}_n be the (finite) σ -algebra generated by $\mathcal{G}_n \cup \{A\}$. Then, $X_{\mathcal{H}_n}$ exists and satisfies $\mathbb{E}_{\mathbb{P}}[X_{\mathcal{H}_n}1_A] = \mathbb{Q}(A)$ and,

$$\begin{split} |\mathbb{E}_{\mathbb{P}}[X_{\mathcal{G}}1_A] - \mathbb{Q}(A)| &= \lim_{n \to \infty} \left| \mathbb{E}_{\mathbb{P}}[X_{\tilde{\mathcal{G}}_n}1_A] - \mathbb{Q}(A) \right| \\ &= \lim_{n \to \infty} \left| \mathbb{E}_{\mathbb{P}}[X_{\tilde{\mathcal{G}}_n}1_A] - \mathbb{E}_{\mathbb{P}}[X_{\mathcal{H}_n}1_A] \right| \\ &\leq \lim_{n \to \infty} \mathbb{E}_{\mathbb{P}}[|X_{\tilde{\mathcal{G}}_n} - X_{\mathcal{G}_n}|] + \lim_{n \to \infty} \mathbb{E}_{\mathbb{P}}[|X_{\mathcal{H}_n} - X_{\mathcal{G}_n}|] \\ &\leq \lim_{n \to \infty} (2^{-n} + 2^{-n}) = 0. \end{split}$$

So, $\mathbb{E}_{\mathbb{P}}[X_{\mathcal{G}}1_A] = \mathbb{Q}(A)$ as required.

References

[1] David Williams, *Probability with martingales*, Cambridge Mathematical Textbooks, Cambridge University Press, 1991.