Kapitel 1

Ebene hyperbolische Geometrie

Knörrer: Geometrie Kapitel 3

Ziel. Konstruktion einer *vollständigen* Fläche H mit konstanter Krümmung -1, analog zur Ebene $(K \equiv 0)$ und Sphäre $(K \equiv 1)$.

Vollständig: Jede geodätische Kurve $\gamma:(a,b)\to H$ lässt sich geodätisch auf $\mathbb R$ erweitern.

Motivation. Gauss-Bonnet

$$\int_{\Sigma} K \ dA = 2\pi \chi(\Sigma)$$

wobei Σ eine kompakte, vollständige Fläche. Falls $\chi(\Sigma)<0$ und die Krümmung K konstant ist, dann muss K negativ sein!

Theorem 1 (Klassifikation der Flächen). Sei Σ eine topologische (glatte), kompakte, vollständige, orientierbare, zusammenhängende Fläche. Dann ist Σ zu einer der Flächen Σ_g homöomorph (diffeomorph):

Abbildung 1.1: Σ_g mit g Henkel

Es gilt: $\chi(\Sigma_q) = 2 - 2g < 0$ falls $g \ge 2$.

1.1 Eine Riemannsche Metrik mit K=-1

Naiver Ansatz zur Konstruktion einer Riemannschen Metrik auf \mathbb{R}^2 mit K=-1.

$$\langle \ , \ \rangle_p = h(p)\langle \ , \ \rangle_{\mathbb{R}^2}$$

wobei $h: \mathbb{R}^2 \to \mathbb{R}$ positiv und glatt ist. Für die Koeffizientenfunktionen E, F, G gilt also:

- $E(x,y) = \langle e_1, e_1 \rangle_{(x,y)} = h(x,y)$
- $F(x,y) = \langle e_1, e_2 \rangle_{(x,y)} = 0$
- $G(x,y) = \langle e_2, e_2 \rangle_{(x,y)} = h(x,y)$

Terminologie. Falls E=G und F=0 gilt, dann heissen die Koordinaten konform oder isotherm.

Eine kleine Rechnung zeigt

$$K = -\frac{1}{2h(x,y)}\Delta(\log(h(x,y)))$$

wobei $\Delta f = f_{xx} + f_{yy}$ der Laplaceoperator (siehe Serie 10). Nun führt K = -1 zu einer Differentialgleichung für h:

$$2h(x,y) = \Delta(\log(h(x,y)))$$

Dies ist eine partielle Differentialgleichung, welche schwierig zu lösen ist. Mit dem Lösungsansatz $h(x,y)=y^n$ finden wir eine Lösung $h(x,y)=\frac{1}{y^2}$, welche allerdings nur auf der obenen Halbebene $H=\{z=x+iy\in\mathbb{C}\mid y>0\}$ definiert ist.

Definition. Die hyperbolische Ebene ist die Menge $H=\{z\in\mathbb{C}\mid \operatorname{im}(z)>0\}$ mit der Riemannschen Metrik

$$\langle \; , \; \rangle_{x+iy} = \frac{1}{y^2} \langle \; , \; \rangle_{\mathbb{R}^2}$$

Bemerkungen.

1. Die Translation $z \mapsto z + a$ mit $a \in \mathbb{R}$ ist eine Isometrie von H. Tatsächlich, schreibe

$$T: H \to H$$

 $(x,y) \mapsto (x+a,y)$

Für alle $p \in H$ gilt $(DT)_p = Id_{\mathbb{R}^2}$. Zu prüfen für alle $v, w \in \mathbb{R}^2$:

$$\langle v, w \rangle_p \stackrel{?}{=} \langle (DT)_p(v), (DT)_p(w) \rangle_{T(p)} = \langle v, w \rangle_{T(p)}$$

Stimmt, da y(p) = y(T(p)), und somit $\langle , \rangle_p = \langle , \rangle_{T(p)}$

2. Die Streckung $z\mapsto \lambda z$ mit $\lambda>0$ ist eine Isometrie von H. Schreibe

$$S: H \to H$$

 $(x,y) \mapsto (\lambda x, \lambda y)$

Für alle $p \in H$ gilt $(DS)_p = \lambda Id_{\mathbb{R}^2}$. Zu prüfen für alle $v, w \in \mathbb{R}^2$:

$$\langle v, w \rangle_p \stackrel{?}{=} \langle (DS)_p(v), (DS)_p(w) \rangle_{S(p)} = \lambda^2 \langle v, w \rangle_{S(p)}$$

Stimmt, da $y(S(p)) = \lambda y(p)$, also $\langle , \rangle_{S(p)} = \frac{1}{\lambda^2} \langle , \rangle_p$

3. Die Inversion $z\mapsto -\frac{1}{z}$ ist eine Isometrie von H. Schreibe

$$\varphi(z) = -\frac{1}{z} = -\frac{\bar{z}}{|z|^2} = \frac{-x + iy}{x^2 + y^2} \in H$$

falls $z \in H$ d.h. y > 0. Also $\varphi : H \to H$. Es gilt für alle $z \in H$ und $v \in \mathbb{C} = \mathbb{R}^2$:

$$(D\varphi)_z(v) = \varphi'(z)v = -\frac{1}{z^2}v$$

Zu prüfen:

$$\langle v,w\rangle_z\stackrel{?}{=}\langle -\frac{1}{z^2}v,-\frac{1}{z^2}w\rangle_{-\frac{1}{z}}=\frac{1}{|z|^4}\langle v,w\rangle_{-\frac{1}{z}}$$

. Stimmt, da $y(-\frac{1}{z})=\frac{1}{|z|^2}y(z)\implies \langle\ ,\ \rangle_{-\frac{1}{z}}=|z|^4\langle\ ,\ \rangle_z$

1.2 Möbiustransformationen

Erinnerung (aus der komplexen Analysis). Für $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(\mathbb{C}^2)$, definieren wir die zugehörige *Möbiustransformation* (nicht auf ganz \mathbb{C} definiert).

$$(MT)\Phi:\mathbb{C}\dashrightarrow\mathbb{C}$$

$$z\mapsto \frac{az+b}{cz+b}$$

Beispiele.

1.
$$A = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} b \in \mathbb{C} \implies \Phi_A(z) = z + b$$

2.
$$A = \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} a \in \mathbb{C} \setminus \{0\} \implies \Phi_A(z) = a^2 z$$
. Für $a = \sqrt{\lambda} : \lambda z \ (\lambda > 0)$

3.
$$A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \implies \Phi_A(z) = -\frac{1}{z}$$
 Insbesondere, für $a = \sqrt{\lambda}(\lambda > 0) : \lambda z$

Bemerkung. Die obigen Isometrien 1-3 sind vom Typ Φ_A mit $A \in SL(\mathbb{R}^3)$. (Determinante 1)

Projektive Interpretation von Möbiustransformation

Sei $A \in GL(\mathbb{C}^2)$. Dann erhalten wir eine lineare Abbildung $A : \mathbb{C}^2 \to \mathbb{C}^2$. Insbesondere bildet A Geraden durch 0 auf Geraden durch 0 ab (1).

Definition. Die *projektive Ebene* $\mathbb{P}(\mathbb{C}^2) = \mathbb{P}^1\mathbb{C}$ ist die Menge aller komplexen Geraden durch 0 in \mathbb{C}^2 . Konkret: Die Menge der Äquivalenzklassen bezüglich folgender Äquivalenzrelation auf $\mathbb{C}^2 \setminus \{0\}$:

$$v \sim w \iff \exists \lambda \in \mathbb{C}, \lambda \neq 0 \text{ mit } w = \lambda v$$

Dann ist
$$\mathbb{P}(\mathbb{C}^2) = (\mathbb{C}^2 \setminus \{0\}) / \sim$$
. Sei nun $\binom{a}{b} \in \mathbb{C}^2 \setminus \{0\}$

• Falls
$$b \neq 0$$
, dann gilt $v = \begin{pmatrix} a \\ b \end{pmatrix} \sim \begin{pmatrix} \frac{a}{b} \\ 1 \end{pmatrix} = \begin{pmatrix} z \\ 1 \end{pmatrix} z \in \mathbb{C}$.

• Falls
$$b = 0$$
, dann gilt $v = \begin{pmatrix} a \\ b \end{pmatrix} \underset{a \neq 0}{\sim} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \infty$.

Daraus folgern wir, dass $\mathbb{P}(\mathbb{C}^2) = \mathbb{C} \cup \{\infty\}$. Aus (1) folgt: Die Abbildung $A : \mathbb{C}^2 \to \mathbb{C}^2$ induziert eine Abbildung

$$\Phi_A: \mathbb{P}(\mathbb{C}^2) \to \mathbb{P}(\mathbb{C}^2)$$
$$[v] \mapsto [Av]$$

Interpretation via $\mathbb{P}(\mathbb{C}^2) = \mathbb{C} \cup \{\infty\}.$

•
$$v = \begin{pmatrix} z \\ 1 \end{pmatrix} \implies Av = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} \sim \begin{pmatrix} \frac{az+b}{cz+d} \\ 1 \end{pmatrix}$$
 bzw. $cz+d=0 \sim \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

•
$$v = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies Av = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ c \end{pmatrix} \sim \begin{cases} \begin{pmatrix} \frac{a}{c} \\ 1 \end{pmatrix} & \text{falls } c \neq 0 \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{falls } c = 0 \end{cases}$$

Notation für $\Phi_A: \Phi_A(z) = \frac{az+b}{cz+d}$ "geeignet interpretiert". Aus dieser Definition folgt auch dass $\Phi_{AB} = \Phi_A \circ \Phi_B$. Diese Tatsache ist mit der anderen Definition mühsam zu beweisen.