ECE521: Lecture 17

16 March 2017

Markov Random Fields, Factor graphs

With thanks to Brendan Frey and others

This week

- Exploring both types of graphical model (directed and undirected)
- Examples of additional perspectives:
 - Bishop 2006: parts of chap. 8
 - Murphy 2012: parts of chap. 10
 - Russell & Norvig, 2009: parts of chap. 14 (Artificial Intelligence: A Modern Approach)

Outline for today

- Finish: conditional independence in BNs
- Markov Random Fields
- Factor graphs

Finishing Lecture 16

A true-false quiz:

- 1. A ^业 F
- 2. A L D
- 3. A ¹¹ D | C
- 4. A [⊥] D | C, F
- 5. A [⊥] D | C, F, B

AND show that #3 would be implied by A \perp D, E | C

Undirected Graphical Models

a.k.a. Markov Random Fields

Conditional independence is easier to

assess: e.g. to see if A [⊥] B | C, remove the given nodes (C) and see if A and B can connect

Comparing Markov blankets

for BNs:

for MRFs:

Comparing factorizations

for BNs:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

Easy interpretation!

But not as popular on 2D grids etc

for MRFs:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

Normalization constant:

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

over some maximal cliques*

* Clique = fully connected subset of nodes

Maximal clique = a clique such that adding any new node from the graph would result in a non-clique

The Boltzmann distribution

• A convenient choice for the potential functions $\psi_C(\mathbf{x}_C)$ is the Boltzmann distribution: $\psi_C(\mathbf{x}_C) = \exp\{-E(\mathbf{x}_C)\}$

- E is the energy function
- x describes all states in the network,
 e.g. x = {B=1, E=0, A=1, J=0, M=1}
- \mathbf{x}_{C} is a subset, e.g. $\mathbf{x}_{3} = \{J=0, A=1\}$

Example: image de-noising

no – randomly change 100/ of n

noise = randomly change 10% of pixels

Choice of MRF: the Ising model

- x_i: original image
- y_i : noisy image

$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$

where

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_{i} x_i y_i$$

Energy function

- The relative values of h, β, and η control these three effects
- What are the maximal cliques in an Ising model?

Solving the Ising model

- Select $\beta = 1.0$, $\eta = 2.1$ and h = 0
- Initialize x to y
- Until convergence:

```
for each x_i:
```

$$x_i \leftarrow \operatorname{argmin} E(x_i, y_i)$$

Outline for today

- Finish: conditional independence in BNs
- Markov Random Fields
- Factor graphs

Factor graphs

For any subsets of variables x_s:

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

- Special cases:

 - MRFs,

– Bayesian networks,
$$p(\mathbf{x}) = \prod_{k=1}^{n} p(x_k | \mathbf{pa}_k)$$

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

Factor graph representation

Bipartite graph consisting of two types of nodes

- Variable nodes
- Function nodes

$$p(\mathbf{x}) = \prod_{s} f_s(\mathbf{x}_s)$$

$$p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$$

How might we draw the factor graph of the Ising model?

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

. . .

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_{i} x_i y_i$$

Factor graph of the Ising model

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_{i} x_i y_i$$

Factor graph of the Ising model

$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_i - \beta \sum_{\{i,j\}} x_i x_j - \eta \sum_{i} x_i y_i$$

Example application: surveillance

Example application: surveillance

Hardware toys for decentralized coordination

Chipcon CC2431 System-on-Chip (SoC)

Energy function penalizes neighbours who have the same colour

Four-colour theorem:

Example conference deadlines

- ICML (February, held in July)
- UAI (March, held in July)
- NIPS (June, held in December)
- AISTATS (October, held in May)

Upcoming topics

Sequential models

Sum-product algorithm

