

STP60NF06 STP60NF06FP

N-CHANNEL 60V - 0.014Ω - 60A TO-220/TO-220FP STripFET™ POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STP60NF06	60 V	< 0.016 Ω	60A
STP60NF06FP	60 V	< 0.016 Ω	60A

- TYPICAL $R_{DS}(on) = 0.014\Omega$
- EXCEPTIONAL dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- APPLICATION ORIENTED CHARACTERIZATION

This Power Mosfet series realized with STMicroelectronics unique STripFET process has specifically been designed to minimize input capacitance and gate charge. It is therefore suitable as primary switch in advanced high-efficiency isolated DC-DC converters for Telecom and Computer application. It is also intended for any application with low gate charge drive requirements.

APPLICATIONS

- HIGH-EFFICIENCY DC-DC CONVERTERS
- UPS AND MOTOR CONTROL
- AUTOMOTIVE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		
		STP60NF06	STP60NF06FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	60		V
V_{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	60		V
V _{GS}	Gate- source Voltage	± 20)	V
I _D	Drain Current (continuos) at T _C = 25°C	60	37	А
I _D	Drain Current (continuos) at T _C = 100°C	42	26	А
I _{DM} (●)	Drain Current (pulsed)	240	148	А
P _{TOT}	Total Dissipation at T _C = 25°C	110	42	W
	Derating Factor	0.73	0.28	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	4		V/ns
V _{ISO}	Insulation Winthstand Voltage (DC)	2500		V
T _{stg}	Storage Temperature	-65 to	175	°C
Tj	Max. Operating Junction Temperature	-00 10	175	

(•) Pulse width limited by safe operating area January 2002

(1) $I_{SD} \le 60A$, $di/dt \le 400 A/\mu s$, $V_{DD} \le 24V$, $Tj \le T_{jMAX}$

STP60NF06 - STP60NF06FP

THERMAL DATA

			TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case	Max	1.36	3.57	°C/W
Rthj-amb	Thermal Resistance Junction-ambient	Max	62	2.5	°C/W
T _I	Maximum Lead Temperature For Soldering	Purpose	3	00	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	30	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 30$ V)	360	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0$	60			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μΑ
	Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating, T_C = 125 °C$			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	2		4	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 30 A		0.014	0.016	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} =15V , I _D = 30 A		20		S
C _{iss}	Input Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		1810		pF
Coss	Output Capacitance			360		pF
C _{rss}	Reverse Transfer Capacitance			125		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	V _{DD} = 30 V, I _D = 30 A		16		ns
t _r	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		108		ns
Qg	Total Gate Charge	$V_{DD} = 48V$, $I_{D} = 60A$, $V_{GS} = 10V$		49	66	nC
Q_{gs}	Gate-Source Charge			18		nC
Q_{gd}	Gate-Drain Charge			14		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)}	Turn-off-Delay Time Fall Time	$V_{DD} = 30 \text{ V}, I_D = 30 \text{ A},$ $R_G = 4.7\Omega, V_{GS} = 10V$ (see test circuit, Figure 3)		43 20		ns ns
t _{d(off)} t _f t _c	Off-voltage Rise Time Fall Time Cross-over Time	$ \begin{array}{l} \text{Vclamp =} 48\text{V, I}_D = 60 \text{ A} \\ \text{R}_G = 4.7\Omega, \text{V}_{GS} = 10\text{V} \\ \text{(see test circuit, Figure 3)} \\ \end{array} $		40 12 21		ns ns ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				60	Α
I _{SDM} (2)	Source-drain Current (pulsed)				240	Α
V _{SD} (1)	Forward On Voltage	I _{SD} = 60 A, V _{GS} = 0			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	I_{SD} = 60 A, di/dt = 100A/µs, V_{DD} = 25V, T_j = 150°C (see test circuit, Figure 5)		73 182 5		ns nC A

Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

Safe Operating Area for TO-220

Safe Operating Area for TO-220FP

A7/.

Thermal Impedence for TO-220

Thermal Impedence for TO-220FP

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage

Capacitance Variations

Normalized Gate Threshold Voltage vs **Temperature**

Normalized On Resistance vs Temperature

Source-drain Diode Forward Characteristics

57.

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

TO-220 MECHANICAL DATA

DIM.		mm			inch	
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.		mm.			inch	
DIW.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	.0385		0.417
L5	2.9		3.6	0.114		0.141
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2001 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

ngaporo opam owodon owizonana omica kingaom

http://www.st.com