EJERCICIO 1. (G,*) semigrupo abeliano con elemento neutro cuya tabla está dada parcialmente dada por

*	s	u	t	r	v	х	У	\mathbf{z}
\mathbf{s}	S	\mathbf{s}	\mathbf{s}	\mathbf{s}	s	\mathbf{s}	\mathbf{s}	\mathbf{s}
u	S	u	t	r	V	X	У	\mathbf{z}
t	s	+	V	У	s	t	V	У
r	S	٣	y	u	V	\mathbf{z}	t	Х
V	S	v	S	>	s	V	s	v
X	s	ж	+	2	~	u	У	r
У	5	y	v	+	s	у	V	t
\mathbf{z}	S	5	У	×	V	r	+	u

a) Completar la tabla de * y hallar elementos absorbentes, el elemento neutro y los elementos inversibles (con simétrico).

a) Elemento neutro: u

Elemento absorbente: s

$$u' = u$$
 $v' = \cancel{\lambda}$ Elementos inversibles : $u, r, \times, 2$
 $s' = \cancel{\lambda}$ $x' = x$
 $t' = \cancel{\lambda}$ $y' = \cancel{\lambda}$
 $r' = r$ $z' = z$

- b) Armar la tabla de (INV(G), *) y hallar todos los subgrupos.
- c) Grafique la red de subgrupos.

K	M	r	×	کے	<u>> = {u}</u>
u	M	~	×	N	< r> = \ r, m
r	r				< x> = {x, m}
×	×	Z	u	r	<5> = [5 'm]
	5	_			

EJERCICIO 2. Dada la relación de orden definida en $\mathbb{N} \times \mathbb{N}$: $(a,b)R(c,d) \iff a \mid c \land b \leq d$

a) Realice el diagrama de Hasse para $B = \{(1,2), (2,1), (1,3), (2,3), (2,2), (4,3)\}$ y determine si es un orden total o parcial.

```
de (1,2): (1,2), (1,3), (2,3), (2,2), (4,3)
Cotas superiores
                      (211): (211), (213), (212), (413)
cotas
       Superiores
Cotas superiores
                       (4.3): (1.3), (2.3), (4.3)
 Cotas superiores
                       (213): (213), (413)
 Cotas superiores
                        (2,2): (2,2), (2,3), (4,3)
                    de
  cotas superiores
                                 (4,3)
                    de
                         (4,3):
```


b) Halle maximales, minimales, máximo, mínimo, cotas superiores e inferiores y supremo e ínfimo de B en $\mathbb{N} \times \mathbb{N}$.

EJERCICIO 3.

a) Resolver la ecuación de congruencia $9x + 1 \equiv 7_{(39)}$

$$9 \times +1 = 7$$
 $9 \times = 6$
 (39)
 $9 \times = 6$
 (39)
 $9 = 3.3$
 $9 \times = 6$
 $3 \times = 6$

Una forma:
$$3 \times = 2 + 13 = 15$$
 (13)
 $2 \times = 2.5$ (13)
 $2 \times = 5$ (13)

Otra for ma:
$$3x = 2_{(13)}$$

$$x = 3^{9(13)-1} 2 = 3^{12-1} 2 = 177147.2 = 9.2 = 18 = 5 (13)$$

$$Y = k_2 b = -4.2 = -8 = 5$$

b) Calcular el resto de dividir 2^{3457} por 15.

$$2^{\varphi(15)} = 2^{8} = 1_{(15)} \leftarrow \text{Euler}$$

$$\varphi(15) = \varphi(3) \, \varphi(5) = 2.4 = 8 \qquad (3y 5 \text{ son coprimes})$$

$$3457 = 8.432 + 1$$

$$2^{3457} = 2^{8.432 + 1} = (2^8)^{432} 2^1 = 1.2 = 2$$

Ejercicio 4.

a) Probar que (D_{12}) es una red pero no un álgebra de Boole.

Todo par de elementos tiene supremo e infimo. Luego es red.

No es algebra de Bole porque tiène G elementos y G # 2ⁿ VneIN.

b) Dada la relación de recurrencia $a_n = 8a_{n-1} - 12a_{n-2}$, hallar la solución general y la solución particular que verifica $a_0 = -1$, $a_1 = 2$.

$$x^{2}-8 \times +12 = 0$$

$$x = 2 \qquad x = 6$$

$$C_0 = k_1 2^0 + k_2 6^0 = k_1 + k_2 = -1$$
 $k_1 = -k_2 - 1$
 $a_1 = k_1 \cdot 2 + k_2 \cdot 6 = 2k_1 + 6k_2 = 2$ $2(-k_2 - 1) + 6k_2 = 2$

$$k_1 = -k_2 - 1$$
 $k_1 = -k_2 - 1$
 $k_1 = -k_2 - 1$
 $k_2 = 4$
 $k_2 = 4$
 $k_2 = 4$

EJERCICIO 5.

a) Un árbol tiene en total 21 vértices: 11 hojas, k vértices de grado 2, m vértices de grado 3 y 4 vértices de grado 4. Hallar los valores de k y de m.

$$k+m=6$$
 $k=6-m$ $k=6-m$ $2k+3m=13$ $2(6-m)+3m=13$ $12-2m+3m=13$

b) La expresión $*+2*3+25-5\div 1$ 2 está dada en notación polaca. Recuperar el árbol, dar la expresión en notación polaca inversa y escribir la expresión algebraica

