Diseños de aliento y cumplimiento imperfecto

Diseño e implementación de experimentos en ciencias sociales Departamento de Economía (UdelaR)

Tipos de cumplimiento

Treatment	Control
Treated	Treated
Treated	Not Treated
Not Treated	Not Treated
Not Treated	Treated
	Treated Treated Not Treated

Incumplimiento y resultados potenciales del tratamiento

Type	$D_i(1)$	$D_i(0)$	
Always-Takers	1	1	D=1
Compliers	1	0	D = Z
Never-takers	0	0	D = 0
Defiers	0	1	D = 1 - Z

Tipos de efectos causales

▶ ITT: intención de tratar (intent to treat)

Tipos de efectos causales

- ► ITT: intención de tratar (intent to treat)
- ► LATE: efecto local (local average treatment effect)

Tipos de efectos causales

- ► ITT: intención de tratar (intent to treat)
- ► LATE: efecto local (local average treatment effect)
 - También conocido como "Complier Average Causal Effect" (CACE).

Table 2

	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Never-Takers	20 people	20 people
Compliers	80 people	80 people

▶ 100 son asignados aleatoriamente al tratamiento

Table 2

	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Never-Takers	20 people	20 people
Compliers	80 people	80 people

- ▶ 100 son asignados aleatoriamente al tratamiento
- ▶ 80 son realmente tratados

	Table 2	
	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Never-Takers	20 people	20 people
Compliers	80 people	80 people

▶ Dado que la asignación es aleatoria y sabemos que hay un 20% de nunca-cumplidores (Never-Takers) en el grupo de tratamiento (columna de la izquierda), probablemente haya un 20% de nunca-cumplidores en el grupo de control.

	Table 2	
	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Never-Takers	20 people	20 people
Compliers	80 people	80 people

- ▶ Dado que la asignación es aleatoria y sabemos que hay un 20% de nunca-cumplidores (Never-Takers) en el grupo de tratamiento (columna de la izquierda), probablemente haya un 20% de nunca-cumplidores en el grupo de control.
- Dada la restricción de exclusión, los nunca-cumplidores tienen el mismo resultado potencial bajo las dos condiciones de tratamiento.

Incumplimiento de un solo lado (one-sided)

Table 2

	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Never-Takers	20 people	20 people
Compliers	80 people	80 people

- ► La diferencia en los resultados medios (40) no puede atribuirse a los *Never-takers*.
- Por tanto, podemos atribuir todo el efecto ITT a los cumplidores.
- ► El LATE puede calcularse dividiendo la estimación del ITT por la proporción de cumplidores:

$$40/0.8 = 50$$

Incumplimiento de ambos lados (two-sided noncompliance)

	Table 3	
	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Defiers	0 people	0 people
Never-Takers	10 people	10 people
Compliers	80 people	80 people
Always-Takers	10 people	10 people

Supuestos necesarios para estimar un LATE:

► Restricción de exclusión

Incumplimiento de ambos lados (two-sided noncompliance)

	Table 3	
	Assigned to treatment	Assigned to control
	Average outcome = 50	Average outcome = 10
Defiers	0 people	0 people
Never-Takers	10 people	10 people
Compliers	80 people	80 people
Always-Takers	10 neonle	10 neonle

Supuestos necesarios para estimar un LATE:

- Restricción de exclusión
- Que la población no contenga desfiantes (defiers) (también denominado supuesto de "monotonicidad")

Incumplimiento de ambos lados (two-sided noncompliance)

Table 3

	Assigned to treatment Average outcome = 50	Assigned to control Average outcome = 10
Defiers	0 people	0 people
Never-Takers	10 people	10 people
Compliers	80 people	80 people
Always-Takers	10 people	10 people

- Podemos estimar el porcentaje de cumplidores: 100% 10% (nunca cumplen) - 10% (siempre cumplen) = 80%.
- ► LATE:

$$40/0.8 = 50$$

$$LATE = ATE_{complier} = ITT/ATE$$
 de Z en D

- ► LATE es equivalente a una estimación por variables instrumentales.
- Supongamos que 50 individuos de una población de 100 son asignados aleatoriamente al tratamiento.

$$LATE = ATE_{complier} = ITT/ATE$$
 de Z en D

- LATE es equivalente a una estimación por variables instrumentales.
- Supongamos que 50 individuos de una población de 100 son asignados aleatoriamente al tratamiento.
- ► La regresión (D~Z) da la proporción estimada de cumplidores: 80%.
- ► El efecto ITT: Y~Z.

$$LATE = ATE_{complier} = ITT/ATE$$
 de Z en D

- LATE es equivalente a una estimación por variables instrumentales.
- Supongamos que 50 individuos de una población de 100 son asignados aleatoriamente al tratamiento.
- ► La regresión (D~Z) da la proporción estimada de cumplidores: 80%.
- ► El efecto ITT: Y~Z.
- ► El LATE se calcula dividiendo por la proporción de cumplidores.

$$LATE = ATE_{complier} = ITT/ATE$$
 de Z en D

- ► LATE es equivalente a una estimación por variables instrumentales.
- Supongamos que 50 individuos de una población de 100 son asignados aleatoriamente al tratamiento.
- ► La regresión (D~Z) da la proporción estimada de cumplidores: 80%.
- ► El efecto ITT: Y~Z.
- ► El LATE se calcula dividiendo por la proporción de cumplidores.
- ▶ El mismo resultados surge de una regresión MCO en dos etapas (2SLS) en la que el resultado (Y) se regresa sobre el tratamiento (D), utilizando la asignación al tratamiento como variable instrumental (Z).

$$LATE = \frac{EffectZonY}{EffectZonD} = \frac{E[Y_i|Z_i = 1] - E[Y_i|Z_i = 0]}{E[D_i|Z_i = 1] - E[D_i|Z_i = 0]}$$

7 50 10 0.8 40

$$LATE = \frac{EffectZonY}{EffectZonD} = \frac{E[Y_i|Z_i=1] - E[Y_i|Z_i=0]}{E[D_i|Z_i=1] - E[D_i|Z_i=0]}$$

```
Z \leftarrow rep(0:1,50) # Assign 50 to treatment group (Z = 1), 50 to control group (Z = 0)
D <- Z
         # Compliers have D (treatment received) = Z (treatment assignment)
D[1:10] <- 0 # 10 Never Takers
D[11:20] <- 1 # 10 Always Takers
      <- 50*D # Compliers have Y = 50 if treated, 0 if not treated
Y[1:10] <- 100 # Never takers have high Y
Y[11:20] <- 0 # Always takers have low Y
# Estimated share of compliers
ITTD <- coef(lm(D~Z))[2]
# Estimated intention-to-treat effect
ITT <- coef(lm(Y~Z))[2]
# LATE estimate
I.ATE <- ITT / ITTD
cbind(Y_1 = mean(Y[Z==1]), Y_0=mean(Y[Z==0]), ITTD, ITT, LATE)
   Y_1 Y_0 ITTD ITT LATE
```

```
# install.packages(AER)
summary(ivreg(Y~ D | Z))
##
## Call:
## ivreg(formula = Y ~ D | Z)
##
## Residuals:
     Min 1Q Median 3Q
                               Max
##
   -55 -5 -5 -5
                              95
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 5.000
                          5.660 0.883
                                          0.379
               50.000
                      8.839 5.657 1.53e-07 ***
## D
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 35.36 on 98 degrees of freedom
## Multiple R-Squared: -0.1136, Adjusted R-squared: -0.125
## Wald test: 32 on 1 and 98 DF, p-value: 1.528e-07
```

► El LATE sólo refleja los efectos del tratamiento entre los cumplidores.

- ► El LATE sólo refleja los efectos del tratamiento entre los cumplidores.
- La estimación LATE siempre es mayor que la estimación ITT.

- ► El LATE sólo refleja los efectos del tratamiento entre los cumplidores.
- La estimación LATE siempre es mayor que la estimación ITT.
- ► El LATE es un estimando importante en los diseños de "aliento" y en los "downstream experiments".

- ► El LATE sólo refleja los efectos del tratamiento entre los cumplidores.
- La estimación LATE siempre es mayor que la estimación ITT.
- ► El LATE es un estimando importante en los diseños de "aliento" y en los "downstream experiments".
- ▶ Se puede utilizar un diseño con placebo para identificar el LATE (Gerber, Green, Kaplan, y Kern, 2010)