

Università degli Studi di Milano-Bicocca Laboratorio di Fisica 2

Corso di Laurea Triennale in Fisica

Relazione di laboratorio

Circuiti 1

07 Marzo 2024

Gruppo di lavoro n. 18: Brambilla Luca, I.bambilla75@campus.unimib.it Matricola 897853

Carminati Giovanni, g.carminati17@campus.unimib.it Matricola 897462

Di Lernia Sara, s.dilernia1@campus.unimib.it Matricola 898437

Indice

1	Obiettivi	
2	Cenni teorici 2.1 Strumenti di misura non ideali 2.2 Legge di Ohm 2.3 Partitore resistivo 2.4 Legge di Shockley	
3	Apparato sperimentale e strumenti di misura	
4	Raccolta dati	
	4.1 Misura delle resistenze interne agli strumenti di misura	
	4.1.1 Voltimetro	
	4.1.2 Amperometro	
	4.1.3 Incertezza percentuale resistenze	
	4.2 Verifica legge di Ohm	
	4.3 Approfondimento: partitore resistivo	
	4.4 Caratterizzazione V-I diodo	
5	Analisi Dati	
	5.1 Stima delle resistenze interne di voltmetro e amperometro	
	5.1.1 Incertezza di R	
	5.1.2 Voltmetro	
	5.1.3 Amperometro	
	5.2 Verifica legge di Ohm	
	5.3 Misura della caratteristica corrente-tensione di un diodo	
	5.4 Partitore di tensione	
6	Conclusioni	1
7	Appendice	1

1 Obiettivi

- Configurare opportunamente gli strumenti per effettuare misure di resistenze considerando la non idealità dei componenti
- Verificare la legge di Ohm
- Caratterizzazione corrente-tensione di un dispositivo non lineare (diodo)

2 Cenni teorici

2.1 Strumenti di misura non ideali

L'amperometro e il voltmetro usati per la misura della carattristica tensione-corrente contengono una resistenza interna che può falsare i valori.

La resistenza interna del voltmetro (R_v) è nell'ordine di $1 - 10M\Omega$ ed è in parallelo rispetto al circuito di cui viene misurata la tensione.

La resistenza interna dell'amperometro (R_a) è nell'ordine di $1-10\Omega$ ed è in serie rispetto al circuito di cui viene misurata la tensione.

2.2 Legge di Ohm

La legge di Ohm descrive la relazione di proporzionalità diretta tra la tensione applicata ai capi di un resistore e la corrente che lo attraversa.

$$V = RI \tag{1}$$

2.3 Partitore resistivo

Un partitore resistivo è un particolare tipo di circuito composto da due resistenze in serie che permette di ottenere un voltaggio inferiore a quello erogato dal generatore, sfruttando la caduta di potenziale della prima resistenza. Modificando il valore della seconda resistenza, è possibile ottenere il valore desiderato di tensione ai capi di quest'ultima, senza dover agire sulla tensione del generatore.

2.4 Legge di Shockley

La legge di Shockeley descrive la caratteristica tensione-corrente di un diodo

$$I(V) = I_0(e^{\frac{qV}{gkT}} - 1) \tag{2}$$

dove I_0 è la corrente di saturazione inversa, g una costante adimensionale dipendente dal diodo, k la costante di boltzman, q la carica dell'elettrone e T la temperatura in Kelvin. Essendo la legge descritta da un'esponenziale per ragioni pratiche si usa considerare un $valore\ di\ soglia$ oltre il quale il diodo inizia a condurre una corrente significativa.

3 Apparato sperimentale e strumenti di misura

I circuiti sono stati costruiti su una breadboard, con l'ausilio di fili e resistenze in dotazione e di un generatore di tensione a corrente continua. In alcuni casi è stata utilizzata una decade, ovvero uno strumento dotato di resistenze multiple collegabili in serie, per consentire delle modifiche agevoli al circuito.

Un multimetro palmare e uno da banco sono stati utilizzati rispettivamente come voltmetro e amperometro. La scelta è stata dettata dalla maggiore sensibilità richiesta dalla misura dell'intensità di corrente (ordine di grandezza dei microampere).

Figura 1: Configurazione 1

Figura 2: Configurazione 2

Le figure rappresentano le due possibili configurazioni per la misura della resistenza R. La prima si usa nel caso in cui $R \ll R_v$ mentre la seconda quando $R \gg R_a$.

4 Raccolta dati

E stato assunto un errore su I e V relativo del 1%, questo a causa dell'oscillazione dei valori oltre alla seconda cifra decimale (nel caso dell'amperometro) e della variazione dell'unità di misura sul display del voltmetro.

4.1 Misura delle resistenze interne agli strumenti di misura

L'obiettivo è di stimare il valore delle resistenze interne del voltimetro (R_v) e dell'amperometro (V_a) .

4.1.1 Voltimetro

E' stato posto il circuito nella config 1, R_v è in parallelo s R e quindi la corrente misurata dall'amperometro è quella dovuta ad una resistenza equivalente

$$R_{eq} = \frac{1}{\frac{1}{R} + \frac{1}{R_v}} \tag{3}$$

Sono state raccolte 20 misure della corrente mantenendo tensione costante (V = 5.01V) e variando il valore della resistenza tra $1 - 10M\Omega$:

4.1.2 Amperometro

Il circuito è stato posto nella Config 2, la resistenza equivalente misurata è

$$R_{eq} = R + R_a \tag{4}$$

Sono state usate 10 resistenze di valori tra $1-10\Omega$ e misurati i relativi valori V ed I.

$$R(\Omega)$$
 1 2 3 4 5 6 7 8 9 10 $V(volt)$ 2.11 2.53 2.6 2.64 2.66 2.68 2.7 2.7 2.71 2.72 $I(mA)$ 1058 864 650 529 444 387 336 299 272 248

NOTA: I componenti usati hanno una resistenza interna di 0.2Ω , significativa per l'ordine di grandezza considerato.

4.1.3 Incertezza percentuale resistenze

Questa ulteriore esperienza è stata fatta per stimare l'errore associato alle resistenze. Con un ohmmetro sono stati letti i valori delle resistenze usate e confrontati con i valori dichiarati dal costruttore. Le misure sono state raccolte su diversi ordini di grandezza (da pochi ohm fino all'ordine dei $M\Omega$). Vanno inoltre considerati 0.2Ω dovuti alla resistenza delle componenti.

4.2 Verifica legge di Ohm

Fissata la resistenza $R=2M\Omega$ è stata variata la tensione V e misurata la corrente I. Il circuito è stato posto nella configurazione 2 e la tensione variata da 0.5 a 10 Volt per un totale di 20 misure.

4.3 Approfondimento: partitore resistivo

In questa parte dell'esperimento, è stato montato un partitore resistivo, come nella Configurazione 3. Come R_1 e R_2 sono state utilizzate due resistenze fisse, mentre una decade è stata collegata al posto di R_L , data la necessità di variare il suo valore.

Per misurare $V_{\rm in}$ e $V_{\rm out}$ sono stati collegati il multimetro palmare e quello da banco rispettivamente ai capi della resistenza $R_{\rm L}$ e del generatore di tensione; entrambi sono stati utilizzati con funzione di voltmetro. Il circuito è stato testato sperimentalmente con voltaggio $(V_{\rm in})$ adeguato a $R_{\rm L}$ utilizzato,

Figura 3: configurazione 3

e $R_1 = R_2 = 10, 3\Omega$. R_L è stato variato nell'intervallo tra $10k\Omega$ e $1M\Omega$.

4.4 Caratterizzazione V-I diodo

Per la caratterizzazione della caratteristica tensione-corrente del diodo è stata usata la configurazione 2, con il diodo (D) nella posizione di R come in figura 4

Figura 5: Valori raccolti

Variando la tensione è stato misurato il relativo valore della corrente, raccolte 25 misure tra 0.2-1Volt (figura 2)

5 Analisi Dati

5.1 Stima delle resistenze interne di voltmetro e amperometro

5.1.1 Incertezza di R

Assumendo che l'errore sia esprimibile mediante percentuale e considerando la resistenza interna delle componenti di 0.2Ω , confrontiamo il valore atteso delle resistenze con quello misurato dall'ohmmetro mediante la media degli scarti rapportati con R_{media} :

$$\bar{E_{\%}} = \frac{1}{N} \sum_{i=1}^{N} \frac{|R_{attesa} - R_{misurata}|}{R_{media}} = 3\%$$

Figura 6: Errore relativo e ordine di grandezza

Dalla figura 6 osserviamo che la media al 3% non rappresenta efficacemente l'errore associato alla resistenza. Assumiamo quindi l'errore dichiarato dal costruttore (1%)

5.1.2 Voltmetro

La resistenza misurata è quella di una resistenza equivalente espressa dell'equazione 3.

$$R_v = \left(\frac{I}{V} - \frac{1}{R}\right)^{-1} \tag{5}$$

$$\sigma_{R_v} = \left| \frac{I}{V} - \frac{1}{R} \right|^{-1} \cdot \sqrt{\left(\frac{\sigma_I}{V}\right)^2 + \left(\frac{I \cdot \sigma_V}{V^2}\right)^2 + \left(\frac{\sigma_R}{R^2}\right)^2}$$
 (6)

La figura 5.1.2 rapprensenta la differenza fra i valori misurati e i valori attesi: essendo le resistenze R e R_v in parallelo ne consegue che $R_e < R$ quindi $I_{attesa} < I_{osservata}$ ($I \propto \frac{1}{R}$)

$$\begin{array}{ll} \bar{R_v} & 10.846 \times 10^6 \, \Omega \\ \sigma_{\bar{R_v}} & 0.037 \times 10^6 \, \Omega \end{array}$$

Figura 7: Grafico corrente-resistenza per le misure di R_v

5.1.3 Amperometro

La resistenza misurata è quella di una resistenza equivalente espressa dell'equazione 4. Ai valori di R vanno inoltre sottratti 0.2Ω dovuti alle resistenze interne dei componenti

$$R_a = \frac{V}{I} - R \tag{7}$$

$$\sigma_{R_a} = \sqrt{\left(\frac{V}{I}\right)^2 \left(\frac{\sigma_V^2}{V^2} + \frac{\sigma_I^2}{I^2}\right) + \sigma_R^2} \tag{8}$$

La figura 5.1.3 rappresenta come R_a possa essere intesa come una traslazione della bisettice R=V/I.

 $ar{R}_a = 1.180 \,\Omega$ $\sigma_{ar{R}_a} = 0.012 \,\Omega$

Figura 8: valori attesi e valori misurati nel grafico resistenza - V/I

5.2 Verifica legge di Ohm

Interpoliamo linearmente le misure di V in funzione di I:

$$\begin{array}{ll} R & 2.027 \times 10^6 \\ \sigma_R & 0.001 \times 10^6 \\ \bar{\sigma_y} & 0.001 \\ \tilde{\chi_o}^2 & 0.15 \\ d_{liberta} & 19 \\ \text{pvalue} & 100.0\% \end{array}$$

Figura 9: Interpolazione lineare tensione-corrente

Possiamo ora confrontare il valore di R ricavato dall'interpolazione con il valore scelto di $2M\Omega\pm3\%$ mediante il t-test:

$$\begin{array}{ll} t-test & 0.44 \\ p-value & 0.66\% \end{array}$$

Figura 10: confronto valori resistenza R La stima della resistenza mediante l'interpolazione è molto precisa rispetto al valore nominale ed è perfettamente in accordo con questo.

5.3 Misura della caratteristica corrente-tensione di un diodo

La legge di Shockley lega la corrente alla tensione del diodo, secondo la formula 2. L'obiettivo è di trovare il valore di soglia considerando l'intersezione di una retta con l'asse I=0. L'intorno di V=1 è infatti approssimabile ad un comportamento lineare in quanto $(e^{\frac{qV}{gkT}}-1)\simeq \frac{qV}{gkT}$. interpoliamo quindi con una retta considerando un numero di dati (disposti in ordine decrescente) affinché $\tilde{\chi}_0^2 \simeq 1$ ottenendo così la retta I = A + BV. Invertendo la relazione della retta troviamo il valore di soglia come $V_{soglia} = -A/B$

Figura 11: Comportamento non lineare del diodo, fit e valore di soglia

Il valore di soglia ricavato è: $V_{soglia} = 0.734 \pm 0.013V$

5.4 Partitore di tensione

L'obiettivo è creare un circuito con la configurazione 3, e determinare quali siano i valori di R_1 e R_2 tali che:

- $V_{out} = \frac{1}{2}V_{in}$
- \bullet V_{out} (ovvero la caduta di potenziale delle due resistenze in parallelo) non dipenda dal valore di R_L per $10k\Omega < R_L < 1M\Omega$

La R_{eq} delle due resistenze in parallelo è:

$$R_{eq} = \frac{1}{\frac{1}{R_L} + \frac{1}{R_2}} \tag{9}$$

Ipotizzando $R_L >> R_2 \Rightarrow \frac{1}{R_L} << \frac{1}{R_2} \Rightarrow R_{eq} \simeq R_2$. Sotto queste ipotesi il circuito può essere considerato un partitore di tensione, composto da R_1 e R_2 in serie. Mettendo a sistema la seconda legge di Kirchhoff e la prima richiesta, si ottiene:

$$\begin{cases} V_{in} - IR_1 = IR_2 \\ IR_2 = \frac{1}{2}V_{in} \end{cases}$$

Il sistema si riduce alla condizione $R_1 = R_2$.

Nel test sperimentale, si è rilevato che la differenza di due ordini di grandezza è sufficiente a soddisfare entrambe le richieste, sebbene la precisione aumenti se ci si avvicina al centro dell'intervallo di valori previsto per R_L .

6 Conclusioni

- L'errore percentuale associato alle resistenze dell'1% è attendibile solo per resistenze superiori a $1K\Omega$, al di sotto di questa soglia il valore delle resistenze interne alle componenti (breadboard, cavi, strumenti di misura) non sono trascurabili
- Il valore della resistenza interna al voltmetro è $R_v = (10.84 \pm 0.04) \cdot 10^6 \Omega$. La configurazione 1 non è adatta nel caso in cui $R \simeq 10 M\Omega$
- Il valore della resistenza interna all'amperometro è $R_a = (1.180.01)\Omega$. La configurazione 2 non è adatta nel caso in cui $R \simeq 1\Omega$
- La legge di Ohm V=RI è verificata, in quanto i valori sono ben approssimabili ad una retta ($\tilde{\chi}_0^2=0.15$) e il pvalue supera la soglia del 5%. E' stata scelta una resistenza elevata ($2M\Omega$) in quanto attendibile l'errore associato dell'1%.

il valore della resistenza ottenuta è $R = (2.027 \pm 0.001) \cdot 10^6 \Omega$

Il valore di R ottenuto dall'interpolazione e quello dichiarato dal costruttore sono compatibili:

```
\begin{array}{ll} t & 1.32 \\ p-value & 19\% \gg 5\% \end{array}
```

• Il comportamento non lineare è confermato in quanto non possibile eseguire una interpolazione lineare con tutti i valori.

L'interpolazione che mantiene il $\tilde{\chi}_0^2 \simeq 1$ è con 9 punti, $V_{soglia} = (0.734 \pm 0.013)V$.

7 Appendice

Link per codice python e CSV:

https://github.com/CarminatiGiovanni/LaboratorioFisica2/tree/main/20240307circuiti1