Real Analysis

Jatinder Singh

 $January,\ 2022$

Contents

1	$Th\epsilon$	e Real Number System	3		
	1.1	Ordered Field	3		
	1.2	Natural Numbers and The Principle of Mathematical Induction	6		
	1.3	Integer Powers of Real Numbers	7		
	1.4	Rational Powers of Real Numbers	9		
	1.5	Additional Properties of Inequalities	9		
	1.6	Intervals	10		
	1.7	Absolute Value	10		
	1.8	Some Useful Inequalities and Identities	11		
2	Cardinality 13				
	2.1	Finite Sets	14		
	2.2	Countably Infinite and Countable Sets	15		
	2.3	Uncountable Sets	16		
3	The Completeness Property and its Applications				
	3.1	Bounded Sets	18		
	3.2	Suprema and Infima	19		
	3.3	The Completeness Axiom	19		
4	Top	oology	23		
	4.1^{-}	Neighborhoods	23		
	4.2	Interior, Exterior, And Boundary	24		
	4.3	Isolated, Accumulation, And Closure	25		
	4.4	Open and Closed Sets	26		
	4.5	Compact Sets	29		
	4.6	The Cantor Set	29		

5	\mathbf{Seq}	uences 3	0
	5.1	Algebra of Limits	3 0
	5.2	Monotone Sequences	3
	5.3	Subsequences	34
	5.4	Cauchy Sequences	35
6	Lim	its of Functions 3	6
	6.1	One-Sided Limits	89
	6.2	Infinity in Limits	0
		6.2.1 Infinity as a Limit	0
		6.2.2 Limit at Infinity	1
7	Cor	ntinuous Functions 4	3
	7.1	Continuity of a Function at a Point	3
	7.2	Monotonic Functions	4
	7.3	Continuity on Compact Sets and Intervals	15
	7.4	Uniform Continuity	6

Chapter 1

The Real Number System

1.1 Ordered Field

Definition 1.1. A field F is said to be an ordered field with respect to a particular subset $P \subseteq F$ if

01. $\forall x, y \in P, x + y \in P \text{ and } x \cdot y \in P.$

02. $\forall x \in F$, one and only one of the following statements hold:

$$x \in P \lor -x \in P \lor x = 0$$

Definition 1.2. If $x \in P$, we say that x is **positive** and if $-x \in P$, then we say x is **negative**.

Definition 1.3. Given $x, y \in F$, we say that x and y have the **same sign** if $x, y \in P \lor -x, -y \in P$ (either both positive or both negative). We say that x and y have **opposite signs** if $-x, y \in P$, or $x, -y \in P$ (one positive and the other one negative).

Definition 1.4. We define the symbols $<, \le, >$ and \ge in an ordered field as follow

- $x < y \iff y x \in P$.
- $x > y \iff y < x \iff x y \in P$.
- $x \le y \iff x < y \lor x = y \iff y x \in P \lor x = y$.
- $x \ge y \iff x > y \lor x = y \iff x y \in P \lor x = y$.

Remark. Since $0 = 0 \implies 0 \notin P$ (hence 0 is not positive) and $-0 \notin P$ (hence 0 is not negative).

Theorem 1.5. (a) x is positive $\iff x > 0$.

- (b) x is negative $\iff x < 0$.
- (c) $x > 0 \iff -x < 0$.
- (d) $x < y \iff y x > 0 \iff x y < 0$.
- (e) $x > y \iff x y > 0 \iff y x < 0$.

Theorem 1.6. Let $x, y \in F$ an ordered field. Then one and only one of the following statements hold: $x < y, x > y \lor x = y$.

Corollary 1.6.1. Let $x \in F$. Then one and only one of the following statements hold: $x < 0, x > 0 \lor x = 0$.

Theorem 1.7. Let $x, y \in F$. Then

- (a) $x \le y \iff x \not> y$.
- (b) $x > y \iff x \not< y$.
- (c) If $x \le y$ and $y \le x$ then x = y.
- (d) $\forall x, y \in \mathbb{R}, x \leq y \text{ or } y \leq x.$

Theorem 1.8 (Combination of Positive and Negative Elements). Let F be an ordered field. Then

- (a) $\forall x, y \in F, x > 0 \land y > 0 \implies x + y > 0 \land x \cdot y > 0$.
- (b) $\forall x, y \in F, x < 0 \land y < 0 \implies x + y < 0 \land x \cdot y > 0.$
- (c) $\forall x \in F, x \neq 0 \implies x^2 > 0$.
- (d) $\forall x \in F, x^2 > 0$.
- (e) $\forall x, y \in F, x > 0 \land y < 0 \implies x \cdot y < 0.$
- (f) $\forall x, y \in F, x \cdot y > 0 \implies x \text{ and } y \text{ have same signs.}$
- (g) $\forall x, y \in F, x \cdot y < 0 \implies x \text{ and } y \text{ have opposite signs.}$

Theorem 1.9. 1 > 0.

Corollary 1.9.1. -1 < 0.

Theorem 1.10. Let $x, y, z \in F$ and ordered field. Then

(a) $(x < y) \land (y < z) \implies x < z$.

(b) $(x \le y) \land (y \le z) \implies x \le z$

(c) $x < y \iff x + z < y + z$.

(d) $(x < y) \land (z > 0) \implies x \cdot z < y \cdot z$

(e) $(x \le y) \land (z > 0) \implies x \cdot z \le y \cdot z$.

(f) $(x \le y) \land (z \ge 0) \implies x \cdot z \le y \cdot z$.

(g) $(x < y) \land (z < 0) \implies x \cdot z > y \cdot z$.

Theorem 1.11. (a) If x > 0 then $\frac{1}{x} > 0$.

(b) If x < 0 then $\frac{1}{x} < 0$.

(c) If x < y and z > 0 then $\frac{x}{z} < \frac{y}{z}$.

(d) If x < y and z < 0 then $\frac{x}{z} > \frac{y}{z}$.

Theorem 1.12. (a) $0 < x < y \iff 0 < \frac{1}{y} < \frac{1}{x}$.

(b) $x < y < 0 \iff \frac{1}{y} < \frac{1}{x} < 0.$

(c) $(x < y) \land (u < v) \implies x + u < y + v$.

(d) $(0 < x < y) \land (0 < u < v) \implies (x \cdot u < y \cdot v) \land \left(\frac{x}{v} < \frac{y}{u}\right)$.

(e) $(0 \le x \le y) \land (0 \le u \le v) \implies (0 \le x \cdot u \le y \cdot v)$

(f) $x < y \implies x < \frac{x+y}{2} < y$.

Theorem 1.13. (a) $(x < y) \land (w < z) \implies x + w < y + z$.

(b) $(x < y) \land (w \le z) \implies x + w < y + z$.

1.2 Natural Numbers and The Principle of Mathematical Induction

Definition 1.14. A set $A \subseteq \mathbb{R}$ is said to be **inductive** if

- 1. $1 \in A$, and
- $2. \ \forall x \in \mathbb{R}, \ x \in A \implies x+1 \in A.$

Theorem 1.15. The intersection of any collection of inductive sets is inductive.

Definition 1.16. The set of natural numbers is the intersection of all the inductive subsets of \mathbb{R} . In symbols,

$$\mathbb{N} = \cap S$$
,

where S denotes the collection of all inductive subsets of \mathbb{R} .

Theorem 1.17. The set of natural numbers is the smallest inductive subset of \mathbb{R} , in the sense that if A is an inductive subset of R then $\mathbb{N} \subseteq A$.

Theorem 1.18. (a) All natural numbers are positive.

- (b) 1 is the smallest natural number. That is, $\forall n \in \mathbb{N}, n \geq 1$.
- (c) If n is a natural number other than 1, then n-1 is also a natural number. That is $\forall n \in \mathbb{N}$, if n > 1, then $n-1 \in \mathbb{N}$.

Theorem 1.19 (The Principle of Mathematical Induction). Let P(n) be a statement concerning natural numbers. Then

$$P(1)$$
 and $(\forall k \in \mathbb{N}) [P(k) \implies P(k+1)] \implies \forall n \in \mathbb{N}, P(n).$

Theorem 1.20. Let P(n) be a statement concerning natural numbers, then following statements are equivalent:

1. The Principle of Mathematical Induction

$$P(1)$$
 and $(\forall k \in \mathbb{N})[P(k) \implies P(k+1)] \implies \forall n \in \mathbb{N}, P(n).$

2. The Principle of Strong Mathematical Induction

$$P(1)$$
 and $(\forall k \in \mathbb{N}) [(\forall j \le k, P(j)) \implies P(k+1)] \implies \forall n \in \mathbb{N}, P(n).$
where j ranges over natural numbers in this statement.

3. Well Ordering Principle

Every nonempty set of natural numbers contains a least element.

Remark. Alternate definition of The Principle of Strong Mathematical Induction.

$$(\forall k \in \mathbb{N}) [(\forall j < k, P(j)) \implies P(k)] \implies \forall n \in \mathbb{N}, P(n).$$

where j ranges over natural numbers in this statement.

Theorem 1.21. Show that:

- (a) $\forall m, n \in \mathbb{N}, m < n \implies n m \in \mathbb{N}.$
- (b) $\forall n \in \mathbb{N}$, there is no natural number between n and n+1.
- (c) \mathbb{N} is closed under addition.
- (d) N is closed under multiplication.
- (e) N is not closed under subtraction or division.

1.3 Integer Powers of Real Numbers

Definition 1.22. The set of integers is the set

$$\mathbb{Z} = \{ x \in \mathbb{R} : x \in \mathbb{N} \ or \ -x \in \mathbb{N} \ or \ x = 0 \}$$

Definition 1.23. Let $a \in \mathbb{R}$ and $n \in \mathbb{N}$. Then

$$a^{n} = \begin{cases} a & \text{if } n = 1\\ a^{n-1} \cdot a & \text{if } n \ge 2 \end{cases}$$

We define $a^0 = 1$ for all $a \in \mathbb{R} - \{0\}$.

Definition 1.24. Let $a \in \mathbb{R} - \{0\}$ and $n \in \mathbb{N}$. Then

$$a^{-n} = \frac{1}{a^n}$$

Theorem 1.25. Let $a \in \mathbb{R} - \{0\}$, then for every $n \in \mathbb{N}$,

$$a^{-n} \stackrel{def}{=} \frac{1}{a^n} = \left(\frac{1}{a}\right)^n$$

Theorem 1.26. Show that:

- (a) $\forall x \in \mathbb{R}_{>0}, \forall n \in \mathbb{N}, x^n \ge 0.$
- (b) $\forall x \in \mathbb{R}_{>0}, \forall n \in \mathbb{N}, x^{-n}$.

Theorem 1.27. Let x and y be real numbers, and let $m, n \in \mathbb{N}$. Show that

- (a) $(xy)^n = x^n y^n$,
- (b) $x^{n+m} = x^n x^m$,
- (c) $(x^n)^m = x^{nm}$.

Theorem 1.28. Let x and y be nonzero real numbers and $m, n \in \mathbb{N}$. Show that

- (a) $(xy)^{-n} = x^{-n}y^{-n}$,
- (b) $x^{-n-m} = x^{-n}x^{-m}$,
- (c) $(x^{-n})^{-m} = x^{nm}$.

Theorem 1.29. Show that

(a)

$$(x^{n} - y^{n}) = (x - y) \sum_{k=1}^{n} x^{n-k} y^{k-1}$$

is valid for all $x, y \in \mathbb{R}$ and every $n \in \mathbb{N}$.

- (b) Suppose that x and y are postive real numbers. If $x^n < y^n$ for some $n \in \mathbb{N}$, prove that x < y.
- (c) Suppose that x and y are nonnegative real numbers. If $x^n = y^n$ for some $n \in \mathbb{N}$, prove that x = y.
- (d) Suppose that x and y are nonnegative real numbers. If $x^n \leq y^n$ for some $n \in \mathbb{N}$, prove that $x \leq y$.

1.4 Rational Powers of Real Numbers

Theorem 1.30 (The Existence of nth root). For every positive real number a and every natural number n there exists a unique positive number b such that $b^n = a$.

Proved later after introducing completeness.

Definition 1.31. The set of rational numbers is the set

$$\mathbb{Q} = \left\{ x \in \mathbb{R} : \exists m \in \mathbb{Z}, \exists n \in \mathbb{N} \text{ such that } n \neq 0, \text{ and } x = \frac{m}{n} \right\}$$

If x is positive real number and $r = \frac{m}{n}$, we define x^r by

$$x^r := (x^m)^{\frac{1}{n}}$$

Remark. Show that this definition is well defined.

If x < 0 and n is even, $x^{\frac{1}{n}}$ has no meaning. Since if n is even (n = 2k for some $k \in \mathbb{N}$) then

$$x = (x^{\frac{1}{n}})^n = (x^{\frac{1}{n}})^{2k} = ((x^{\frac{1}{n}})^k)^2 \ge 0$$

If n is odd, then we define $x^{\frac{1}{n}}$ by

$$x^{\frac{1}{n}} := -\left((-x)^{\frac{1}{n}}\right)$$

Remark. *nth* root of 0 is 0 for $\forall n \in \mathbb{N}$.

1.5 Additional Properties of Inequalities

Theorem 1.32. Show that:

- (a) Let $x, y \in \mathbb{R}_{>0}$. Then $\forall n \in \mathbb{N}, 0 < x < y \iff x^n < y^n$.
- (b) Let $x, y \in \mathbb{R}_{\geq 0}$. Then $\forall n \in \mathbb{N}, x \leq y \iff x^n \leq y^n$.
- (c) Let $x, y \in \mathbb{R}_{>0}$. Then $\forall n \in \mathbb{N}, 0 < x < y \iff x^{\frac{1}{n}} < y^{\frac{1}{n}}$.
- (d) Let $x, y \in \mathbb{R}_{\geq 0}$. Then $\forall n \in \mathbb{N}, x \leq y \iff x^{\frac{1}{n}} \leq y^{\frac{1}{n}}$.

Theorem 1.33 (Forcing Principle). Let $x, y \in \mathbb{R}$. Then

- (a) $\forall \epsilon > 0, x \leq \epsilon \implies x \leq 0.$
- (b) $\forall \epsilon > 0, x \leq y + \epsilon \implies x \leq y.$
- (c) $\forall \epsilon > 0, |x| \le \epsilon \implies x = 0.$
- (d) $\forall \epsilon > 0, |x y| \le \epsilon \implies x = y.$

1.6 Intervals

Definition 1.34. $\forall a, b \in \mathbb{R}$, we define the [a, b] to be the set

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

Note that $[a, a] = \{a\}$ and $[2, 1] = \emptyset$ since $2 \le x \le 1$ is false, $\forall x \in \mathbb{R}$.

An interval in \mathbb{R} is any subset $I \subseteq \mathbb{R}$ such that $\forall x, y \in I, x < y \implies [x,y] \subseteq I$.

Theorem 1.35. Show that following sets are intervals:

- (a) $[a, b] = \{x \in \mathbb{R} : a \le x \le b\};$
- (b) $(a,b) = \{x \in \mathbb{R} : a < x < b\};$
- (c) $(-\infty, b) = \{x \in \mathbb{R} : x < b\};$
- (d) $(a, \infty) = \{x \in \mathbb{R} : a < x\};$

1.7 Absolute Value

Definition 1.36. Let $x \in \mathbb{R}$. Then

$$|x| = \begin{cases} x & \text{if } x \ge 0; \\ -x & \text{if } x < 0. \end{cases}$$

Theorem 1.37. $\forall x \in \mathbb{R}, |x|^2 = |x^2| = x^2.$

Theorem 1.38. $\forall x \in \mathbb{R}, |x| = \sqrt{x^2}$.

Theorem 1.39. $\forall x \in \mathbb{R}, |x| \geq 0.$

Theorem 1.40. $\forall x \in \mathbb{R}, |-x| = |x|$.

Theorem 1.41. $\forall x \in \mathbb{R}, -|x| \leq x \leq |x|$.

Theorem 1.42. $\forall x \in \mathbb{R}, |x| = 0 \iff x = 0.$

Theorem 1.43. $\forall x, y \in \mathbb{R}, |x| = y \implies x = y \text{ or } x = -y.$

Theorem 1.44. Let $a \in \mathbb{R}$ and suppose a > 0. Then

$$\forall x \in \mathbb{R}, \left[|x| < a \iff -a < x < a \right]$$

.

Theorem 1.45. Let $a \in \mathbb{R}$ and suppose $a \geq 0$. Then

$$\forall x \in \mathbb{R}, \left[|x| \le a \iff -a \le x \le a \right]$$

.

Theorem 1.46. Let $a \in \mathbb{R}$ and suppose a > 0. Then

$$\forall x \in \mathbb{R}, \left[|x| > a \iff x < -a \lor x > a \right]$$

.

Theorem 1.47. Let $a \in \mathbb{R}$ and suppose $a \geq 0$. Then

$$\forall x \in \mathbb{R}, \left[|x| \ge a \iff x \le -a \lor x \ge a \right]$$

.

Theorem 1.48. $\forall x, y \in \mathbb{R}, |x + y| \le |x| + |y|$.

Theorem 1.49. $\forall x, y, z \in \mathbb{R}, |x - z| \le |x - y| + |y - z|.$

Theorem 1.50. $\forall x, y \in \mathbb{R}, ||x| - |y|| \le |x - y| \iff |x| - |y| \le |x - y| \land |y| - |x| \le |x - y|.$

Theorem 1.51. $\forall x,y \in \mathbb{R}, \left||x|-|y|\right| \leq |x+y| \iff |x|-|y| \leq |x+y| \land |y|-|x| \leq |x+y|.$

Theorem 1.52. $\forall x, y \in \mathbb{R}, |xy| = |x||y|$.

Theorem 1.53. $\forall x, y \in \mathbb{R} \text{ with } y \neq 0, \left| \frac{x}{y} \right| = \frac{|x|}{|y|}.$

Theorem 1.54. $\forall x \in \mathbb{R}, \forall n \in \mathbb{N}, |x^n| = |x|^n$.

1.8 Some Useful Inequalities and Identities

Theorem 1.55 (Bernoulli's inequality). Prove that for every $n \in \mathbb{N}$ and every real number $x \geq -1$,

$$(1+x)^n \ge 1 + nx$$

Theorem 1.56. Let $x \in \mathbb{R} - \{0\}$. Prove that for every $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} x^k = \frac{1 - x^{n+1}}{1 - x}$$

Lemma 1.57. Let n and k be natural numbers and let $1 \le k \le n$. Then

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

Theorem 1.58 (Binomial Theorem). If x and y are arbitrary real numbers and $n \in \mathbb{N}$, then

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k$$

Theorem 1.59. If x and y are arbitrary real numbers then

$$|xy| \le \frac{1}{2}(x^2 + y^2).$$

Theorem 1.60. Let x_1, \ldots, x_n be nonnegative real numbers, and let $m \in \mathbb{N}$. Prove that

$$\sqrt[m]{x_1 + \dots + x_n} \le \sqrt[m]{x_1} + \dots + \sqrt[m]{x_n}$$

Theorem 1.61 (The Cauchy-Schwartz Inequality). If x_1, \ldots, x_n and y_1, \ldots, y_n are arbitrary real numbers, then

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 \le \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right)$$

Theorem 1.62 (Minokowski's Inequality). If x_1, \ldots, x_n and y_1, \ldots, y_n are arbitrary real numbers, then

$$\left(\sum_{i=1}^{n} (x_i + y_i)^2\right)^{\frac{1}{2}} \le \left(\sum_{i=1}^{n} x_i^2\right)^{\frac{1}{2}} + \left(\sum_{i=1}^{n} y_i^2\right)^{\frac{1}{2}}$$

Chapter 2

Cardinality

Definition 2.1. Let A and B be sets. Then we say that A and B are equinumerous $(A \approx B)$ provided that there exists a bijection from the set A to the set B.

Theorem 2.2. Let A, B, and C be sets.

- (a) For each set $A, A \approx A$.
- (b) For all sets A and B, if $A \approx B$, then $B \approx A$.
- (c) For all sets A, B and C, if $A \approx B$ and $B \approx C$, then $A \approx C$.

Theorem 2.3. Let E be the set of all even natural numbers and let D be the set of all odd natural numbers. Prove that,

- (a) $\mathbb{N} \approx E$.
- (b) $\mathbb{N} \approx D$.
- (c) $\mathbb{N} \approx \mathbb{Z}$.
- (d) $\mathbb{R}_{>0} \approx \mathbb{R}$.

Theorem 2.4. Suppose $A \approx B$ and $C \approx D$. Then:

- (a) $A \times C \approx B \times D$.
- (b) If A and C are disjoint and B and D are disjoint, then $A \cup C \approx B \cup D$.

2.1 Finite Sets

Theorem 2.5. Let $m, n \in \mathbb{N}$. If $\mathbb{N}_n \approx \mathbb{N}_m$, then n = m.

Corollary 2.5.1. If $A \approx \mathbb{N}_m$ and $A \approx \mathbb{N}_n$ then m = n.

Definition 2.6. We define $\mathbb{N}_k = \{1, 2, ..., k\}$. A set A is a **finite set** provided that $A = \emptyset$ or $A \approx \mathbb{N}_k$ for some natural number k.

If A is finite, we say that the **cardinality** of A, denoted as |A|, is 0 if $A = \emptyset$, or k if $A \approx N_k$.

A set is an **infinite set** provided that it is not a finite set. So a set A is infinite $\iff A \neq \emptyset$ and there is not bijection between A and \mathbb{N}_k , $\forall k \in \mathbb{N}$.

Lemma 2.7. If $A \approx \emptyset$ then $A = \emptyset$.

Theorem 2.8. Any set equivalent to a finite set A is a finite set and has the same cardinality as A.

Theorem 2.9. Suppose A and B are finite sets. Then

$$A \approx B \iff |A| = |B|.$$

Theorem 2.10. Suppose A and B are finite sets. Then

- (a) If $A \cap B = \emptyset$ then $A \cup B$ is finite and $|A \cup B| = |A| + |B|$.
- (b) $A \cup B$ is finite, and $|A \cup B| = |A| + |B| |A \cap B|$.
- (c) $A \times B$ is finite, and $|A \times B| = |A| \times |B|$.

Lemma 2.11. If A is a finite set and $x \notin A$, then $A \cup \{x\}$ is a finite set and $|A \cup \{x\}| = |A| + 1$.

Lemma 2.12. For each natural number m, if $A \subseteq \mathbb{N}_m$, then A is a finite set and $|A| \leq m$.

Theorem 2.13. If S is a finite set and A is a subset of S, then A is a finite set and $|A| \leq |S|$.

Corollary 2.13.1. If A is a finite set and $x \in A$, then $A - \{x\}$ is a finite set and $|A - \{x\}| = |A| - 1$.

Theorem 2.14 (The Pigeonhole Principle). Let A and B be finite sets. If |A| > |B|, then any function $f: A \to B$ is not an injection.

Theorem 2.15. For every finite set A, $|\mathcal{P}(A)| = 2^{|A|}$.

Theorem 2.16. A finite set is not equivalent to any of its proper subsets.

2.2 Countably Infinite and Countable Sets

Theorem 2.17. If a set A is equivalent to any of its proper subset, then A is infinite.

Corollary 2.17.1. (a) The set of natural numbers is infinite.

(b) The set of real numbers is infinite.

Corollary 2.17.2. If A is an infinite set and B is a finite set, then A and B are not equivalent.

Theorem 2.18. Let A and B be sets.

- (a) If A is infinite and $A \approx B$, then B is infinite.
- (b) If A is infinite and $A \subseteq B$, then B is infinite.

Definition 2.19. A set A is **countably infinite** provided that $A \approx \mathbb{N}$. So A is countably infinite \iff there exists a bijection between A and \mathbb{N} . A set is **countable** provided that it is finite or countably infinite. An infinite set that is not countably infinite is called an **uncountable set**. So a set A if uncountable \iff A is infinite and there is no bijection between A and \mathbb{N} .

Since $\mathbb{N} \approx \mathbb{Z}$, the set \mathbb{Z} of integers is countably infinite.

Remark. So if A is countably infinite $(A \approx \mathbb{N})$ then A is an infinite set since \mathbb{N} is infinite (Theorem 2.18). So a finite set can not be countably infinite.

If A is countably infinite $(A \approx \mathbb{N})$ then the elements of A can be enumerated in an interminable list as $A = \{a_1, a_2, a_3, \ldots\}$ where $a_i = f(i), \forall i \in \mathbb{N}$ where f is a bijection from \mathbb{N} and A. Since f is onto and one-to-one, each element of A appears in this list one and only one times.

Theorem 2.20. Show that:

- (a) The set of positive rational numbers is countably infinite.
- (b) The set of negative rational numbers is countably infinite.

Theorem 2.21. If A is a countably infinite set, then $A \cup \{x\}$ is a countably infinite set.

Theorem 2.22. If A is a countably infinite set and B is a finite set, then $A \cup B$ is a countably infinite set.

Theorem 2.23. If A and B are disjoint countably infinite set, then $A \cup B$ is a countably infinite set.

Theorem 2.24. The set \mathbb{Q} of all rational numbers is countably infinite.

Theorem 2.25. If A and B are both countably infinite, then so is $A \times B$.

Theorem 2.26. The set $\mathbb{N} \times \mathbb{N}$ is countably infinite.

Theorem 2.27. Any set equivalent to a countable set is countable.

Corollary 2.27.1. If A is a countable set and B is an uncountable set, then A and B are not equivalent.

Theorem 2.28. Every subset of the natural numbers is countable.

Corollary 2.28.1. Every subset of a countable set is countable.

Corollary 2.28.2. *If* A *and* B *are both countably infinite, then so is* $A \cup B$.

Theorem 2.29. Let A be a nonempty set. The following statements are equivalent:

- (a) A is countable.
- (b) There is a function $f: \mathbb{N} \to A$ that is onto.
- (c) There is a function $f: A \to \mathbb{N}$ that is one-to-one.

Theorem 2.30. Suppose A and B are countable sets. Then:

- (a) $A \times B$ is countable.
- (b) $A \cup B$ is countable.

Theorem 2.31. The union of countably many countable sets in countable.

2.3 Uncountable Sets

Theorem 2.32. The open interval (0, 1) of real numbers in uncountable.

Theorem 2.33. Let A and B be sets.

- (a) If A is uncountable and $A \approx B$ then B is uncountable.
- (b) If A is uncountable and $A \subseteq B$ then B is uncountable

Corollary 2.33.1. The sets of real numbers \mathbb{R} is uncountable.

Corollary 2.33.2. If A is a countable set and B is an uncountable set then A and B are not equivalent.

Theorem 2.34. For $a, b \in \mathbb{R}$, with a < b, $(a, b) \approx (0, 1)$.

Theorem 2.35. For $a, b \in \mathbb{R}$, with a < b, $(a, b) \approx \mathbb{R}$.

Theorem 2.36. The set of irrational numbers is uncountable.

Definition 2.37. If A and B are sets, then we will say that B dominates A, and write $A \leq B$, if there is a function $f: A \to B$ that is one-to-one. We write $A \prec B$ if and only if $A \leq B$ and $A \not\approx B$.

Theorem 2.38. For every nonempty set A, the sets $\mathcal{P}(A)$ and 2^A are equivalent.

Theorem 2.39 (Cantor's Theorem). For every set $A, A \prec \mathcal{P}(A)$.

Corollary 2.39.1. $\mathcal{P}(\mathbb{N})$ is an uncountable set.

Theorem 2.40 (The Schröder-Bernstein Theorem). If A and B are sets such that $A \leq B$ and $B \leq A$, then $A \approx B$.

Theorem 2.41. The sets $\mathcal{P}(\mathbb{N})$ and \mathbb{R} are equivalent.

Corollary 2.41.1. The sets 2^N and \mathbb{R} are equivalent.

Remark (The Continuum Hypothesis). There exists no set S such that

$$\mathbb{N} \prec S \prec \mathbb{R}$$
.

Chapter 3

The Completeness Property and its Applications

3.1 Bounded Sets

Definition 3.1. Let $A \subseteq \mathbb{R}$ and $u \in \mathbb{R}$. We say that:

- (a) u is an **upper bound** for A if $\forall x \in A, x \leq u$.
- (b) u is a **lower bound** for A if $\forall x \in A, u \leq x$.
- (c) u is a maximum element of A if $u \in A$ and $\forall x \in A, x \leq u$.
- (d) u is a **minimum element** of A if $u \in A$ and $\forall x \in A, u \leq x$.

If A has an upper bound we say that A is **bounded above**; if A has a lower bound we say that A is **bounded below**. If A is bounded above and below, we say that A is **bounded**.

Theorem 3.2. Let $A \subseteq \mathbb{R}$. Then A is bounded $\iff \exists M > 0$ such that $|x| \leq M$ for all $x \in A$.

- **Theorem 3.3.** (a) A set cannot have more than one maximum or mroe than one minimum element.
 - (b) Every nonempty finite set has both a maximum element and a minimum element.

3.2 Suprema and Infima

Definition 3.4. Suppose that F is an ordered field and $A \subseteq F$. We say that an element $u \in F$ is

- (a) a least upper bound (supremum) of A if u is an upper bound for A and for all upper bounds v for $A, u \leq v$. The notation we use is $u = \sup(A)$.
- (b) a greatest lower bound (infimum) of A if u is a lower bound for A and for all lower bounds v for $A, u \ge v$. The notation we use is $u = \inf(A)$.

Theorem 3.5. (a) A set cannot have more than one greatest lower bound.

- (b) A set cannot have more than one least upper bound.
- (c) If a set has the minimum (or maximum) element, then that element is the greatest lower bound (or least upper bound) of A.
- (d) If a set contains the greatest lower bound (or least upper bound) then that element is the minimum (or maximum) element of A.

3.3 The Completeness Axiom

<u>Completeness Axiom</u>: Every nonempty set of real numbers that is bounded above has the least upper bound.

Theorem 3.6. Every nonempty $S \subseteq \mathbb{R}$ that is bounded below has the greatest lower bound.

Theorem 3.7. Let a < b in an ordered field F. Then a = inf(a, b) and b = sup(a, b).

Theorem 3.8. Suppose $S \subseteq \mathbb{R}$ is nonempty and bounded. Let $A \subseteq S$ be nonempty. Prove that A is bounded. Then prove that $\sup(A) \leq \sup(S)$ and $\inf(S) \leq \inf(A)$.

Theorem 3.9. Suppose $S \subseteq \mathbb{R}$ is nonempty and bounded above. Let $\beta = \sup(S)$. Prove that $\forall \epsilon > 0, \exists x \in S \text{ such that } \beta - \epsilon < x$.

Theorem 3.10. Suppose $S \subseteq \mathbb{R}$ is nonempty and bounded below. Let $\alpha = \inf(S)$. Prove that $\forall \epsilon > 0, \exists x \in S \text{ such that } x < \alpha + \epsilon$.

Theorem 3.11. Let $S \subseteq \mathbb{R}$ be nonempty and bounded and let $k \in \mathbb{R}$. Define the set $k + S = \{k + x : x \in S\}$. Prove that:

- (a) sup(k+S) = k + sup(S).
- (b) inf(k+S) = k + inf(S).

Theorem 3.12. Let $S \subseteq \mathbb{R}$ be nonempty and bounded and let $k \in \mathbb{R}$. Define the set $kS = \{kx : x \in S\}$. Then the set kS is bounded and

- (a) if $k \ge 0$, then $\sup(kS) = k \sup(S)$ and $\inf(kS) = k \inf(S)$.
- (b) if k < 0, then $sup(kS) = k \inf(S)$ and $\inf(kS) = k \sup(S)$.

Theorem 3.13. Given nonempty subsets A and B of \mathbb{R} , let C denote the set $C = \{x + y : x \in A \text{ and } y \in B\}$. If A and B have suprema then C has a supremum and $\sup(C) = \sup(A) + \sup(B)$.

Definition 3.14. A function $f: D \to \mathbb{R}$ is bounded if the set $f(D) = \{f(x) : x \in D\}$ is bounded.

Remark. $f: D \to \mathbb{R}$. f is bounded.

- $\iff \exists a, b \in \mathbb{R} \text{ such that } a \leq f(x) \leq b, \ \forall x \in D.$
- $\iff \exists M > 0 \text{ such that } |f(x)| \leq M, \ \forall x \in D.$

Theorem 3.15. Let D be a nonempty subset of \mathbb{R} and $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$ be bounded. Define $f+g: D \to \mathbb{R}$ by (f+g)(x) = f(x) + g(x), $\forall x \in D$. Then f+g is bounded i.e., (f+g)(D) is bounded and

- (a) $sup((f+g)(D)) \le sup(f(D)) + sup(g(D)).$
- (b) $inf(f(D)) + inf(g(D)) \le inf((f+g)(D)).$

Theorem 3.16. Let $A \subseteq \mathbb{R}$ and $B \subseteq \mathbb{R}$ by nonempty. Suppose $\forall x \in A, \forall y \in B, x \leq y$. Then A is bounded above and B is bounded below and $\sup(A) \leq \inf(B)$.

Corollary 3.16.1. Let $A \subseteq \mathbb{R}$ by nonempty and let $c \in \mathbb{R}$. Suppose $\forall x, y \in A$, x - y < c. Then A is bounded and $sup(A) - inf(A) \le c$.

Theorem 3.17. Suppose that D is a nonempty set and $f: D \to \mathbb{R}$ and $g: D \to \mathbb{R}$. If $\forall x, y \in D, f(x) \leq g(y)$ then f(D) is bounded above adn g(D) is bounded below and $\sup(f(D) \leq \inf(g(D))$.

Theorem 3.18 (Archimedean Property of \mathbb{R}). The set of natural numbers is not bounded above in \mathbb{R} .

Theorem 3.19. The following statements are equivalent:

- (a) $\forall x \in \mathbb{R}, \exists n \in \mathbb{N} \text{ such that } n > x.$
- (b) (Teaspoon and The Sea) (Every journey begins with a single step) $\forall x, y \in \mathbb{R}$ with $x > 0, \exists n \in \mathbb{N}$ such that nx > y.
- (c) $\forall x > 0, \exists n \in \mathbb{N} \text{ such that } 0 < \frac{1}{n} < x.$

Theorem 3.20. If $x < y + \frac{1}{n}$ for every natural number n then $x \le y$.

Theorem 3.21. Let A be a nonempty subset of \mathbb{R} , and let a be a real number such that $\forall n \in \mathbb{N}, a + \frac{1}{n}$ is an upper bound for A and $a - \frac{1}{n}$ is not an upper bound for this set. Then prove that a is the supremum of A.

Theorem 3.22. Let p be a prime. Then there is no element in \mathbb{Q} whose square is p.

Theorem 3.23. Let p be a prime number. Then there exists a unique positive real number x such that $x^2 = p$.

Theorem 3.24 (The Existence of *n*th root; extending previous theorem). For every positive real number a and every natural number n there exists a unique positive number b such that $b^n = a$.

Theorem 3.25. The ordered field \mathbb{Q} of rational numbers is not complete.

Theorem 3.26. $\forall x \in \mathbb{R}, \exists ! m \in \mathbb{Z} \text{ such that } m-1 \leq x < m.$

Corollary 3.26.1. Let $x, y \in \mathbb{R}$. If y - x > 1 then $\exists m \in \mathbb{Z}$ such that x < m < y.

Definition 3.27. Let $D \subseteq \mathbb{R}$. We say D is dense in \mathbb{R} if $\forall x, y \in \mathbb{R}$, if x < y, then $\exists d \in D$ such that x < d < y.

Theorem 3.28. The set \mathbb{Q} of rational numbers is dense in \mathbb{R} .

Lemma 3.29. Let $x \in \mathbb{Q}$ be nonzero and $y \in \mathbb{R}$ be irrational. Then xy is irrational.

Theorem 3.30. The set of irrational numbers is dense in \mathbb{R} .

Theorem 3.31 (Nested Interval Theorem). Let $\{I_n : n \in \mathbb{N}\}$ be a set of nonempty closed intervals $I_n = [a_n, b_n]$ such that $I_{n+1} \subseteq I_n, \forall \in \mathbb{N}$. Then

- (a) $\bigcap_{n=1}^{\infty} I_n$ is nonempty closed interval.
- (b) if $\lim_{n\to\infty} (b_n a_n) = 0$ then $\bigcap_{n=1}^{\infty} I_n$ consists of only one point.

Theorem 3.32 (Bolzano-Weierstrass Theorem for Sets). Every infinite bounded set of real numbers has an accumulation point.

Chapter 4

Topology

4.1 Neighborhoods

Definition 4.1. Let $a \in \mathbb{R}$. Then $N_{\epsilon}(a) = \{x \in \mathbb{R} : |x - a| < \epsilon\} = (a - \epsilon, a + \epsilon)$. Therefore

$$x \in N_{\epsilon}(a) \iff |x - a| < \epsilon$$

$$\iff -\epsilon < x - a < \epsilon$$

$$\iff a - \epsilon < x < a + \epsilon$$

$$\iff x \in (a - \epsilon, a + \epsilon)$$

Definition 4.2. Let $a \in \mathbb{R}$. Let $\epsilon > 0$. Then $N_{\epsilon}^* = \{x \in \mathbb{R} : x \neq a \land |x - a| < \epsilon\} = N_{\epsilon}(x) - \{a\} = (a - \epsilon, a) \cup (a, a + \epsilon)$.

Theorem 4.3. Let $a \in \mathbb{R}$. Let $0 < \epsilon_1 < \epsilon_2$. Then

- 1. $N_{\epsilon_1}(a) \subseteq N_{\epsilon_2}(a)$.
- 2. $N_{\epsilon_1}^*(a) \subseteq N_{\epsilon_2}^*(a)$.

Corollary 4.3.1. Let $a \in \mathbb{R}$. Let $0 < \epsilon_1 \le \epsilon_2$. Then $N_{\epsilon_1}(a) \subseteq N_{\epsilon_2}(a)$ and $N_{\epsilon_1}^*(a) \subseteq N_{\epsilon_2}^*(a)$

Corollary 4.3.2. Let $a \in \mathbb{R}$.

If
$$\epsilon_1 > 0$$
 and $\epsilon_2 > 0$ then $N_{\epsilon_1}(a) \cap N_{\epsilon_2}(a) = N_{\epsilon}(a)$ where $\epsilon = \min\{\epsilon_1, \epsilon_2\}$.

Theorem 4.4. Let $a, b \in \mathbb{R}$ and $\epsilon > 0$.

Then if
$$a < b$$
 then $(a, b) = N_{\frac{b-a}{2}} \left(\frac{a+b}{2} \right)$.

4.2 Interior, Exterior, And Boundary

Definition 4.5. Let $A \subseteq \mathbb{R}$. The interior of A is given by $int(A) = \{x \in \mathbb{R} : \exists \epsilon > 0, \text{ such that } N_{\epsilon}(x) \subseteq A\}.$

Theorem 4.6. Let $A \subseteq \mathbb{R}$. Then $int(A) \subseteq A$.

Theorem 4.7. Let $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Let $\epsilon > 0$, then $N_{\epsilon}(x) \subseteq A \iff N_{\epsilon}(x) \cap A^{c} = \emptyset$.

Remark.

- $x \in int(A) \iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \subseteq A \iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \cap A^{c} = \emptyset.$
- $x \notin int(A) \iff \forall \epsilon > 0, N_{\epsilon}(x) \not\subseteq A \iff \forall \epsilon > 0, N_{\epsilon}(x) \cap A^{c} \neq \emptyset.$

Definition 4.8. Let $A \subseteq \mathbb{R}$. The exterior of A is given by

$$ext(A) = \{x \in \mathbb{R} : \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \subseteq A^c\}.$$

Remark.

- $x \in ext(A) \iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \subseteq A^c \iff \exists \epsilon > 0 \text{ such that } N_{\epsilon}(x) \cap A = \emptyset.$
- $x \notin ext(A) \iff \forall \epsilon > 0, N_{\epsilon}(x) \not\subseteq A^c \iff \forall \epsilon > 0, N_{\epsilon}(x) \cap A \neq \emptyset.$

Definition 4.9. Let $A \subseteq \mathbb{R}$. The **boundary** of A is given by $\partial(A) = \{x \in \mathbb{R} : \forall \epsilon > 0, N_{\epsilon}(x) \cap A^{c} \neq \emptyset \text{ and } N_{\epsilon}(x) \cap A \neq \emptyset\}$

Remark.

$$x \in \partial(A) \iff \forall \epsilon > 0, N_{\epsilon}(x) \cap A^{c} \neq \emptyset \land N_{\epsilon}(x) \cap A \neq \emptyset$$

$$\iff \forall \epsilon > 0, N_{\epsilon}(x) \cap A^{c} \neq \emptyset \land \forall \epsilon > 0, N_{\epsilon}(x) \cap A \neq \emptyset$$

$$\iff x \notin int(A) \land x \notin ext(A)$$

$$x \notin \partial(A) \iff \exists \epsilon > 0, N_{\epsilon}(x) \cap A^{c} = \emptyset \lor \exists \epsilon > 0, N_{\epsilon}(x) \cap A = \emptyset$$

$$\iff x \in int(A) \lor x \in ext(A)$$

Theorem 4.10 (The first partition theorem). For any $A \subseteq \mathbb{R}$ we have

- (a) $int(A) \cup \partial(A) \cup ext(A) = \mathbb{R}$.
- (b) (i) $int(A) \cap \partial(A) = \emptyset$.
 - (ii) $ext(A) \cap \partial(A) = \emptyset$.
 - (iii) $int(A) \cap ext(A) = \emptyset$.

4.3 Isolated, Accumulation, And Closure

Definition 4.11. Let $A \subseteq \mathbb{R}$. The set of **isolated** (discrete) points of A is given by $A^{\circ} = \{x \in \mathbb{R} : \exists \epsilon > 0, \text{ such that } N_{\epsilon}(x) \cap A = \{x\}\}$

Theorem 4.12. Let $A \subseteq \mathbb{R}$. Then $x \in A^{\circ} \iff x \in A \land \exists \epsilon > 0$ such that $N_{\epsilon}^{*}(x) \cap A = \emptyset$.

Remark.

$$x \in A^{\circ} \iff \exists \epsilon > 0, \text{ such that } N_{\epsilon}(x) \cap A = \{x\}$$

$$\iff x \in A \land \exists \epsilon > 0 \text{ such that } N_{\epsilon}^{*}(x) \cap A = \emptyset$$

Definition 4.13. Let $A \subseteq \mathbb{R}$. The set of **accumulation** point of A is given by $acc(A) = \{x \in \mathbb{R} : \forall \epsilon > 0, N_{\epsilon}^*(x) \cap A \neq \emptyset\}.$

Remark. • $x \in acc(A) \iff \forall \epsilon > 0, N_{\epsilon}^*(x) \cap A \neq \emptyset$

•
$$x \notin acc(A) \iff \exists \epsilon > 0, N_{\epsilon}^*(x) \cap A = \emptyset$$

Remark.

Theorem 4.14 (The second partition theorem). For any $A \subseteq \mathbb{R}$ we have

- (a) $A^{\circ} \cup acc(A) \cup ext(A) = \mathbb{R}$.
- (b) (i) $A^{\circ} \cap acc(A) = \emptyset$.
 - (ii) $A^{\circ} \cap ext(A) = \emptyset$.
 - (iii) $acc(A) \cap ext(A) = \emptyset$.

Definition 4.15. Let $A \subset \mathbb{R}$. The **closure** of A is given by, $cl(A) = int(A) \cup \partial(A)$.

Theorem 4.16. Let $A \subseteq \mathbb{R}$. Then

$$cl(A) = int(A) \cup \partial(A) = (ext(A))^{c}$$
$$= A \cup \partial(A)$$
$$= A^{\circ} \cup acc(A)$$
$$= A \cup acc(A)$$

Theorem 4.17. int(int(A)) = int(A).

Theorem 4.18. int(ext(A)) = ext(A).

Theorem 4.19. $int(A) \subseteq ext(ext(A))$.

Theorem 4.20. $ext(A) \subseteq ext(int(A))$.

Theorem 4.21. $\partial(\partial(A)) \subseteq \partial(A)$.

Theorem 4.22. $\partial(int(A)) \subseteq \partial(A)$.

Theorem 4.23. $\partial(A) = \partial(A^c)$.

Theorem 4.24. $\partial(ext(A)) \subseteq \partial(A)$.

Theorem 4.25. $int(A) \cup int(B) \subseteq int(A \cup B)$.

Theorem 4.26. $ext(A \cup B) \subseteq ext(A) \cap ext(B)$.

Theorem 4.27. $int(A \cap B) = int(A) \cap int(B)$.

Theorem 4.28. $ext(A \cup B) = ext(A) \cap ext(B)$.

Theorem 4.29. $\partial(A \cup B) \subseteq \partial(A) \cup \partial(B)$.

Theorem 4.30. If $A \subseteq B$ then $int(A) \subseteq int(B)$.

Theorem 4.31. If $A \subseteq B$ then $ext(B) \subseteq ext(A)$.

Theorem 4.32. $int(A) \subseteq acc(A)$.

Theorem 4.33. $A^{\circ} \subseteq \partial(A)$.

Theorem 4.34. (a) $x \in \partial(A) \land x \notin A \implies x \in acc(A)$.

(b) $x \in acc(A) \land x \notin A \implies x \in \partial(A)$.

4.4 Open and Closed Sets

Definition 4.35. Let $A \subseteq \mathbb{R}$. We say A is **open** $\iff \forall x \in A, \exists \epsilon > 0$ such that $N_{\epsilon}(x) \subseteq A \iff \forall x \in A, x \in int(A) \iff A \subseteq int(A)$. We say A is **closed** when $\partial(A) \subseteq A$.

Theorem 4.36. Let $A \subseteq \mathbb{R}$. Then the following statements are equivalent:

- (a) A is an open set.
- (b) A = int(A).
- (c) $A \cap \partial(A) = \emptyset$.
- (d) A^c is a closed set.

Theorem 4.37. Let $A \subseteq \mathbb{R}$. Then the following statements are equivalent:

- (a) A is a closed set.
- (b) $A = int(A) \cup \partial(A)$.
- (c) $acc(A) \subseteq A$.
- (d) A^c is an open set.

Theorem 4.38 (Finite Sets). (a) Every point of a finite set A is an isolated point of A i.e., $A \subseteq A^{\circ}$.

- (b) Every point of a finite set A is a boundary point of A i.e., $A \subseteq \partial(A)$.
- (c) Finite sets have no interior points i.e., A is finite \implies int(A) = \emptyset .
- (d) Finite sets have no accumulation points i.e., A is finite \implies $acc(A) = \emptyset$.
- (e) A finite set is a closed set.

Theorem 4.39. A nonempty open set must be an infinite set.

Theorem 4.40. The union of any collection of open sets is open.

Theorem 4.41. The intersection of any finite number of open sets is open.

Theorem 4.42. The intersection of any collection of closed sets is closed.

Theorem 4.43. The union of any finite number of closed sets is closed.

Theorem 4.44. Let $(a,b) \subseteq \mathbb{R}$. Then (a,b) is an open set.

Corollary 4.44.1. $\forall x \in \mathbb{R} \ and \ \forall \epsilon > 0$

- (a) $N_{\epsilon}(x)$ is an open set.
- (b) $N_{\epsilon}^*(x)$ is an open set.

Theorem 4.45. (a) $A = (-\infty, a)$ is an open set.

(b) $B = (a, \infty)$ is an open set.

Theorem 4.46. [a,b] is a closed set.

Theorem 4.47. (a, b] is neither open nor closed.

Theorem 4.48. Let A be a set of real numbers. Then,

- (a) $int(A) = \bigcup \{all \ open \ subsets \ of \ A\}$
- (b) int(A) is the largest open subset of A, in the sense that if B is an open subset of A then $B \subseteq int(A)$.

Theorem 4.49. Let $A \subseteq \mathbb{R}$. I

Theorem 4.50. int(A) is open.

Theorem 4.51. ext(A) is open.

Theorem 4.52. cl(A) is closed.

Theorem 4.53. $\partial(A)$ is closed.

Theorem 4.54. acc(A) is closed.

Theorem 4.55. (a) \emptyset and \mathbb{R} are open.

(b) \emptyset and \mathbb{R} are closed.

Theorem 4.56. Let $A \subseteq \mathbb{R}$.

- (a) If A has an infimum then $\inf(A) \in \partial(A)$.
- (b) If A has a supremum then $sup(A) \in \partial(A)$.

Theorem 4.57. Suppose $A \subseteq \mathbb{R}$ and $x \in \mathbb{R}$. Then x is an accumulation point of the set $A \iff every \ neighborhood \ of \ x \ contains \ infinitely \ many points \ of <math>A \ i.e., \forall \epsilon > 0, N_{\epsilon}(x) \cap A \ is \ infinite.$

Theorem 4.58 (Sequential Criterion for Accumulation Points).

- (a) $x \in acc(A) \implies \exists sequence \langle a_n \rangle \text{ of points of } A \text{ other than } x, \text{ such that } a_n \to x.$
- (b) Let $\langle a_n \rangle$ be a sequence of points of A other than x such that $a_n \to x$. Then $x \in acc(A)$.

Theorem 4.59 (Sequential Criterion for Closed Sets). A set A is closed $\iff \forall$ convergent sequences $\langle a_n \rangle$ of points of A, $\lim_{n \to \infty} a_n \in A$.

4.5 Compact Sets

Definition 4.60. A set A is said to be compact if whenever it is contained in the union of a family $\mathcal{F} = \{O_i : i \in I\}$ of open sets $(O_i$ is an open set for all $i \in I$) then it is contained in the union of some finite number of the sets in \mathcal{F} .

So A is compact if whenever $A \subseteq \bigcup_{i \in I} O_i$ where O_i is an open set for all $i \in I$ then $\exists J \subseteq I$ such that J is finite and $A \subseteq \bigcup_{i \in J} O_i$.

If $\mathcal{F} = \{O_i : i \in I\}$ is a family of open sets such that $A \subseteq \bigcup_{i \in I} O_i$ then \mathcal{F} is called an open cover to A. Given an open cover $\mathcal{F} = \{O_i : i \in I\}$ of A, $\mathcal{G} = \{O_i : i \in J\}$ is called an open subcover of A if $J \subseteq I$ and $A \subseteq \bigcup_{i \in J} O_i$. Thus A is compact if and only if every open cover contains a finite subcover.

Theorem 4.61. Show that A = (0, 2) is not compact.

Theorem 4.62. Any finite set is compact.

Theorem 4.63. If A is a nonempty closed bounded subset of \mathbb{R} then A has a maximum and a minimum.

Theorem 4.64. Every compact set is closed and bounded.

Theorem 4.65. Every closed, bounded interval of real numbers is compact.

Theorem 4.66. A closed subset of a compact set is compact.

Theorem 4.67 (Heine-Borel). Let $A \subseteq \mathbb{R}$. Then A is compact \iff A is closed and bounded.

Theorem 4.68 (Sequential Criterion for Compactness). Let $A \subseteq \mathbb{R}$. Then A is compact \iff every sequence of points of A has a subsequence that converges to a point of A.

4.6 The Cantor Set

Chapter 5

Sequences

Definition 5.1. Let $k \in \mathbb{Z}$. Define $D_k = \{m \in \mathbb{Z} : m \geq k\}$. So $D_{-2} = \{-2, -1, 0, 1, 2, \ldots\}$.

A sequence is a function $a: D_k \to \mathbb{R}$. We normally denote the value a(n) by a_n where a_n is called the nth term of the sequence.

A sequence a is denoted as $\langle a_n \rangle_{n=1}^{\infty}$.

Definition 5.2. A sequence $\langle a_n \rangle$ is said to **converge** to the real number L provided that

$$\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall n \in \mathbb{N}, n > N \implies |a_n - L| < \epsilon.$$

If $\langle a_n \rangle$ converges to L then L is called the limit of the sequence and we write $\lim_{n \to \infty} a_n = L$, $\lim a_n = L$ or $a_n \mapsto L$.

If a sequence $\langle a_n \rangle$ does not converge, then we say $\langle a_n \rangle$ diverges. So a sequence $\langle a_n \rangle$ diverges provided

$$\exists \epsilon > 0, \forall N \in \mathbb{N}, \exists n \in \mathbb{N} \text{ such that } n > N \land |a_n - L| \ge \epsilon.$$

5.1 Algebra of Limits

Theorem 5.3. Let $\langle a_n \rangle$ be a sequence and $L \in \mathbb{R}$. Then

- (a) $\lim_{n \to \infty} a_n = 0 \iff \lim_{n \to \infty} |a_n| = 0.$
- (b) $\lim_{n \to \infty} a_n = L \iff \lim_{n \to \infty} a_n L = 0.$
- (c) $\lim_{n \to \infty} a_n = L \iff \lim_{n \to \infty} |a_n L| = 0.$

(d) $\lim_{n \to \infty} a_n = L \implies \lim_{n \to \infty} |a_n| = |L|$.

Theorem 5.4. $\lim_{n\to\infty}\frac{1}{n}=0$.

Theorem 5.5. $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$.

Theorem 5.6. Let $\langle a_n \rangle$ be a constant sequence i.e., $a_n = c$ for all $n \in \mathbb{N}$, where $c \in \mathbb{R}$, is a constant. Then $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c = c$.

Theorem 5.7. If $\lim_{n\to\infty} a_n = L, L > 0$ and $a_n \geq 0$ for all $n \in \mathbb{N}$. Then $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$.

Theorem 5.8. Let $\langle s_n \rangle, \langle a_n \rangle$ be sequences and let $L \in \mathbb{R}$. If

- (i) $|s_n L| \le k |a_n|$ for all $n \ge m$, where k > 0 and $m \in \mathbb{N}$.
- (ii) $\lim_{n \to \infty} a_n = 0$

then $\lim_{n \to \infty} s_n = L$.

Corollary 5.8.1. Let $x \in \mathbb{R}$ be such that |x| < 1. Then $\lim_{n \to \infty} x^n = 0$.

Corollary 5.8.2. Suppose that $\lim_{n\to\infty} a_n = L$. let $r \in \mathbb{R}$ and $\langle u_n \rangle$ be such that $|u_n - r| \leq k|a_n - L|$ for all $n \geq m$ for some k > 0 and $m \in \mathbb{N}$. Then $\lim_{n\to\infty} u_n = r$.

Corollary 5.8.3. $\lim_{n\to\infty} n^{\frac{1}{n}} = 1$

Theorem 5.9. If $\lim_{n\to\infty} a_n = L, L \ge 0$ and $a_n \ge 0$ for all $n \in \mathbb{N}$, then $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$.

Theorem 5.10 (Uniqueness of limit). A sequence cannot converge to more than one real number.

Theorem 5.11 (Alternate definition of limit). $\lim_{n\to\infty} a_n = L \iff \forall \epsilon > 0$, all but finitely many terms of the sequence $\langle a_n \rangle$ are in the interval $(L - \epsilon, L + \epsilon)$.

Theorem 5.12. Let $D \subseteq \mathbb{R}$ be dense in \mathbb{R} . Let x be any real number. Then there is a sequence $\langle d_n \rangle$ that converges to x where $d_n \in D$ for all $n \in \mathbb{N}$.

Definition 5.13 (Bounded Sequence). A sequence $\langle a_n \rangle$ is **bounded** if the set $S = \{a_n : n \in \mathbb{N}\}$ is bounded. So $\langle a_n \rangle$ is bounded

 $\iff \exists a, b \in \mathbb{R} \text{ such that } a \leq a_n \leq b \text{ for all } n \in \mathbb{N}$

 $\iff \exists M > 0 \text{ such that } |a_n| \leq M \text{ for all } n \in \mathbb{N}.$

Theorem 5.14. Every convergent sequence is bounded

Theorem 5.15 (Limit Algebra). Suppose that the sequence $\langle a_n \rangle$ and $\langle b_n \rangle$ converge to limits L and M respectively and $c \in \mathbb{R}$ is a constant. Then

- (a) $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n = L \pm M$.
- (b) $\lim_{n \to \infty} ca_n = c \cdot \lim_{n \to \infty} a_n = cL$.
- (c) $\lim_{n \to \infty} (a_n b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n = LM$.
- (d) $\lim_{n\to\infty} \frac{1}{b_n} = \frac{1}{M}$ provided $b_n \neq 0$ for all $n \in \mathbb{N}$ and $M \neq 0$.
- (e) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M}$ provided $b_n \neq 0$ for all $n \in \mathbb{N}$ and $M \neq 0$.

Theorem 5.16 (Only the 'Tail' matters). Given a sequence $\langle s_n \rangle$ and $k \in \mathbb{N}$, let $\langle t_n \rangle$ be the sequence defined by $t_n = s_{n+k}$ (first k terms skipped). Show that $\langle t_n \rangle$ converges if and only if $\langle s_n \rangle$ converges and if they converge then $\lim_{n \to \infty} t_n = \lim_{n \to \infty} s_n$.

Theorem 5.17 (The Squeeze Theorem). Let $\langle s_n \rangle$ and $\langle t_n \rangle$ be convergent sequences such that $\lim_{n \to \infty} s_n = L = \lim_{n \to \infty} t_n$. If $\langle y_n \rangle$ is a sequence satisfying $s_n \leq y_n \leq t_n$ for all $n \geq m$ where $m \in \mathbb{N}$, then $\lim_{n \to \infty} y_n = L$.

Theorem 5.18. For any fixed c > 0, $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$

Theorem 5.19. (a) If $\lim_{n\to\infty} a_n = L$ and L > 0, then $a_n > 0$ for all sufficiently large n;

(b) If $\lim_{n\to\infty} a_n = L$ and L < 0, then $a_n < 0$ for all sufficiently large n.

Theorem 5.20. If $\lim_{n\to\infty} a_n = L$ where $a_n \geq 0$ for all $n \in \mathbb{N}$, then $L \geq 0$.

Theorem 5.21. If $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} b_n = M$ where $a_n \leq b_n$ for all $n \in \mathbb{N}$, then $L \leq M$.

Theorem 5.22. Suppose that $\lim_{n\to\infty} a_n = L$. Let a and b be real numbers.

- (a) If $a_n \leq b$ for all $n \in \mathbb{N}$ then $L \leq b$.
- (b) If $a \leq a_n$ for all $n \in \mathbb{N}$ then $a \leq L$.

Corollary 5.22.1. Let $\langle a_n \rangle$ be a sequence whose terms are all in [a,b]. If $\lim_{n \to \infty} a_n = L$, then $L \in [a,b]$.

Corollary 5.22.2. Let $\langle a_n \rangle$ be a sequence such that $\lim_{n \to \infty} a_n = L$ and let $M \ge 0$. If $|a_n| \le M$ for all $n \in \mathbb{N}$ then $|L| \le M$.

5.2 Monotone Sequences

Definition 5.23. A sequence $\langle a_n \rangle$ is said to be

(a) monotone increasing if $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$; that is

$$a_1 \le a_2 \le \dots \le a_n \le a_{n+1} \dots$$

(b) monotone decreasing if $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$; that is

$$a_1 \geq a_2 \geq \cdots \geq a_n \geq a_{n+1} \cdots$$

(c) strictly increasing if $\forall n \in \mathbb{N}, a_n < a_{n+1}$; that is

$$a_1 < a_2 < \dots < a_n < a_{n+1} \cdots$$

(d) strictly decreasing if $\forall n \in \mathbb{N}, a_n > a_{n+1}$; that is

$$a_1 > a_2 > \cdots > a_n > a_{n+1} \cdots$$

(e) **monotone** if it is monotone increasing or monotone decreasing.

Theorem 5.24 (Monotone Convergence Theorem). Every bounded monotone sequence converges. More precisely,

- (a) if $\langle a_n \rangle$ is a monotone increasing sequence that is bounded above, then $\lim_{n \to \infty} a_n = \sup\{a_n : n \in \mathbb{N}\};$
- (b) if $\langle a_n \rangle$ is a monotone decreasing sequence that is bounded below, then $\lim_{n \to \infty} a_n = \inf\{a_n : n \in \mathbb{N}\};$

5.3 Subsequences

Definition 5.25. Suppose $\langle a_n \rangle$ is a sequence. if $\langle n_k \rangle$ is a strictly increasing sequence of natural numbers (i.e., $n_1 < n_2 < \cdots < n_k < \cdots$) then the sequence $\langle a_{n_k} \rangle$ is said to be the **subsequence** of $\langle a_n \rangle$.

Lemma 5.26. If $\langle n_k \rangle$ is a strictly increasing sequence of natural numbers, then $\forall k \in \mathbb{N}, n_k \geq k$.

Theorem 5.27. A sequence $\langle a_n \rangle$ converges to a real number $L \iff$ every subsequence of $\langle a_n \rangle$ converges to L.

Theorem 5.28. Every sequence has a monotone subsequence.

Theorem 5.29 (Bolzano-Weierstrass Theorem for Sequences). Every bounded sequence has a convergent subsequence.

Definition 5.30. A real number L is a **cluster point** of a sequence $\langle a_n \rangle$ if every neighborhood of L contains infinitely many term of the sequence $\langle a_n \rangle$ i.e., $\forall \epsilon > 0, a_n \in (L - \epsilon, L + \epsilon)$ for infinitely many values of $n \iff \forall \epsilon > 0, \{n \in \mathbb{N} : |a_n - L| < \epsilon\}$ is infinite.

Theorem 5.31. Let $\langle a_n \rangle$ be a sequence. If $a_n \to L$ then L is a cluster point of $\langle a_n \rangle$.

Theorem 5.32. Let $\langle a_n \rangle$ be a sequence and let $L \in \mathbb{R}$. Then the following statements are equivalent;

- (a) L is a cluster point of $\langle a_n \rangle$;
- (b) $\forall \epsilon > 0, \forall m \in \mathbb{N}, \exists n > m \text{ such that } |a_n L| < \epsilon;$
- (c) $\exists \langle a_{n_k} \rangle$ a subsequence of $\langle a_n \rangle$ converging to L.

Theorem 5.33. Let $\langle a_n \rangle$ be a sequence such that $\lim_{n \to \infty} a_n = L$. Then L is the only cluster point of $\langle a_n \rangle$.

Theorem 5.34. Let $\langle a_n \rangle$ be a bounded sequence. Then $\langle a_n \rangle$ has at least one cluster point.

Theorem 5.35. Let $\langle a_n \rangle$ be a bounded sequence such that it has one and only one cluster point L. Then $\langle a_n \rangle$ converges to L.

5.4 Cauchy Sequences

Definition 5.36. A sequence $\langle a_n \rangle$ is a **Cauchy sequence** if it satisfies the following criteria;

 $\forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } \forall m, n \in \mathbb{N}, m, n > N \implies |a_m - a_n| < \epsilon.$

Theorem 5.37. Every convergent sequence is a Cauchy sequence.

Theorem 5.38. Every Cauchy sequence is bounded.

Theorem 5.39 (Cauchy Convergence Criterion). A sequence of real numbers is convergent if and only if it is a Cauchy sequence.

Theorem 5.40. If some subsequence of a Cauchy sequence converges to a real number L, then the sequence itself also converges to L.

Chapter 6

Limits of Functions

Definition 6.1. If $f: D_f \to \mathbb{R}$ and a is an accumulation point of D_f then

 $\lim_{x \to a} f(x) = L \iff \forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x \in D_f, 0 < |x - a| < \delta \implies |f(x) - L| < \epsilon.$

Negation of $\lim_{x\to a} f(x) = L$: f does not have limit L at $a \iff$

 $\exists \epsilon > 0 \text{ such that } \forall \delta > 0, \exists x \in D_f \text{ such that } 0 < |x - a| < \delta \land |f(x) - L| \ge \epsilon.$

Remark. We require $a \in acc(D_f)$ since we want to talk about the value of f(x) as the value of x gets closer and closer to a.

Theorem 6.2 (Uniqueness of Limits). A function cannot have more than one limit as $x \to a$.

Theorem 6.3 (Sequential Criterion for Limits of Functions).

$$\lim_{x \to a} f(x) = L \iff \forall \text{ sequences } \langle x_n \rangle \text{ in } D_f - \{a\}, \text{ if } x_n \to a \text{ then } f(x_n) \to L.$$

Negation: f does not have limit L at a if and only if \exists sequence $\langle x_n \rangle$ in $D_f - \{a\}$ such that $x_n \to a$ but the sequence $\langle f(x_n) \rangle$ does not converge to L.

Theorem 6.4. If \exists sequences $\langle x_n \rangle$ and $\langle y_n \rangle$ in $D_f - \{a\}$ which both converge to a, but the sequence $\langle f(x_n) \rangle$ and $\langle f(y_n) \rangle$ do not both converge to the same number, then $\lim_{x \to a} f(x)$ does not exist.

Example 6.5. Prove that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Theorem 6.6 (Absolute Value and Limits).

- (a) $\lim_{x\to a} f(x) = 0 \iff \lim_{x\to a} |f(x)| = 0$.
- (b) $\lim_{x\to a} f(x) = L \iff \lim_{x\to a} |f(x) L| = 0.$
- (c) $\lim_{x\to a} f(x) = L \implies \lim_{x\to a} |f(x)| = |L|$.

Theorem 6.7. Let $f: D_f \to \mathbb{R}$ and a is an accumulation point of D_f . Then $\lim_{x\to a} f(x) = L \iff \text{for each neighborhood } V \text{ of } L \text{ there exists a deleted neighborhood } U \text{ of a such that } f(U \cap D_f) \subseteq V \text{ (or } U \cap D_f \subseteq f^{-1}(V)).$

Theorem 6.8. Let $f: D_f \to \mathbb{R}$ and $a \in acc(D_f)$. If f is constant, say f(x) = c, on some deleted neighborhood of a, then $\lim_{x\to a} f(x) = c$.

Theorem 6.9. If $\lim_{x\to a} f(x) = L \in \mathbb{R}$, then there is some deleted neighborhood U of a such that f is bounded on $U \cap D_f$.

Theorem 6.10 (Fundamental Limit). For every $a \in \mathbb{R}$, $\lim_{x\to a} x = a$

Theorem 6.11. Suppose $\lim_{x\to a} f(x) = L$, $\lim_{x\to a} g(x) = M$, and $a \in \mathbb{R}$. Then

- (a) $\lim_{x \to a} cf(x) = cL$.
- (b) $\lim_{x \to a} (f(x) \pm g(x)) = L \pm M$.
- (c) $\lim_{x \to a} (f(x) \cdot g(x)) = LM$.
- (d) $\lim_{x \to a} \left(\frac{1}{g(x)} \right) = \frac{1}{M} \quad (if M \neq 0).$
- (e) $\lim_{x \to a} \left(\frac{f(x)}{q(x)} \right) = \frac{L}{M}$ (if $M \neq 0$).

In (b), (c), and (e) we assume that a is an accumulation point of $D_f \cap D_g$.

Theorem 6.12. If $\lim_{x\to a} f(x) = L$ and $f(x) \ge 0$ for all x in some deleted neighborhood of a, then $\lim_{x\to a} \sqrt{f(x)} = \sqrt{L}$.

Definition 6.13. A polynomial (in one variable) is a function of the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where a_0, a_1, \dots, a_n are (constant) real numbers.

Theorem 6.14 (Limits of polynomials). For any polynomial p(x) and any $a \in \mathbb{R}$

$$\lim_{x \to a} p(x) = p(a).$$

Definition 6.15. A rational function (of one variable) is any function of the form

$$r(x) = \frac{p(x)}{q(x)},$$

where p(x) and q(x) are polynomials.

Theorem 6.16 (Limits of Rational Functions). For any rational function $r(x) = \frac{p(x)}{q(x)}$ and any $a \in \mathbb{R}$, $\lim_{x\to a} r(x) = r(a)$ provided that $q(a) \neq 0$.

Theorem 6.17 (Only What Happens in a Deleted Neighborhood of c Matters). Suppose $\lim_{x\to c} f(x) = L$, and f(x) = g(x) for all x in some deleted neighborhood of c. Then $\lim_{x\to c} g(x) = L$.

Theorem 6.18 (The *Squeeze* Principle for Functions).

- (a) The First Squeeze Principle: Suppose $f(x) \leq g(x) \leq h(x)$ for all x in some deleted neighborhood of c and $\lim_{x\to c} f(x) = \lim_{x\to c} h(x) = L$. Then $\lim_{x\to c} g(x) = L$.
- (b) The Second Squeeze Principle: Suppose $\lim_{x\to c} g(x) = 0$. If $|f(x) L| \le |g(x)|$, for all x in some deleted neighborhood of c, then $\lim_{x\to c} f(x) = L$.

Example 6.19. Use the squeeze principle to prove that

$$\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0.$$

Theorem 6.20 (Limits Preserve Inequalities).

- (a) If $\lim_{x\to a} f(x) = L$ and $f(x) \le K$ for all x in some deleted neighborhood of a, then $L \le K$.
- (b) If $\lim_{x\to a} f(x) = L$ and $f(x) \ge K$ for all x in some deleted neighborhood of a, then $L \ge K$
- (c) Let $f: D_f \to \mathbb{R}$ and $g: D_g \to \mathbb{R}$ and $a \in acc(D_f \cap D_g)$. If $\lim_{x\to a} f(x)$ and $\lim_{x\to c} g(x)$ exist, and $f(x) \leq g(x)$ for all x in some deleted neighborhood of a, then $\lim_{x\to a} f(x) \leq \lim_{x\to a} g(x)$.

Theorem 6.21 (Change of Variables in Limits). Suppose $\lim_{h\to c} g(h) = a$ and $\lim_{x\to a} f(x) = L$ where c and a are accumulation points of D_g and D_f respectively and $g(h) \in D_f - \{a\}$ for all $h \in D_g$ in some deleted neighborhood of c. Then

$$\lim_{h \to c} f(g(h)) = \lim_{x \to a} f(x) = L$$

.

Theorem 6.22. Suppose $f: D_f \to \mathbb{R}$. Then

$$\lim_{x \to a} f(x) = L \iff \lim_{h \to 0} f(a+h) = L$$

6.1 One-Sided Limits

Definition 6.23 (Limit from the Left). Suppose $f: D_f \to \mathbb{R}$ and $a \in acc(D_f \cap (-\infty, a))$. Then we say f has limit L as x approaches a from the left, written $\lim_{x\to a^-} f(x) = L$, if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that, } \forall x \in D_f, a - \delta < x < a \implies |f(x) - L| < \epsilon$$

.

Example 6.24. Prove that

$$\lim_{x \to 2^{-}} \frac{|x-2|}{x-2} = -1$$

Definition 6.25 (Limit from the Right). Suppose $f: D_f \to \mathbb{R}$ and $a \in acc(D_f \cap (a, +\infty))$. Then we say f has limit L as x approaches a from the right, written $\lim_{x\to a^+} f(x) = L$, if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that, } \forall x \in D_f, a < x < a + \delta \implies |f(x) - L| < \epsilon$$

.

Example 6.26. Prove that

$$\lim_{x \to 2^+} \frac{|x-2|}{x-2} = 1$$

Theorem 6.27. Suppose $f: D_f \to \mathbb{R}$.

(a) If $\lim_{x\to a^-} f(x) = L$ then $\exists \delta > 0$ such that f is bounded on $(a - \delta, a) \cap D_f$.

- (b) If $\lim_{x\to a^+} f(x) = L$ then $\exists \delta > 0$ such that f is bounded on $(a, a + \delta) \cap D_f$.
- **Theorem 6.28** (Limits from the Left Preserve Inequalities). (a) $If \lim_{x\to a^-} f(x) = L$ and $\exists \delta_1 > 0$ such that $f(x) \leq K$ for all $x \in (a \delta_1, a) \cap D_f$, then $L \leq K$.
 - (b) If $\lim_{x\to a^-} f(x) = L$ and $\exists \delta_1 > 0$ such that $f(x) \geq K$ for all $x \in (a \delta_1, a) \cap D_f$, then $L \geq K$.
 - (c) Let $f: D_f \to \mathbb{R}$ and $g: D_g \to \mathbb{R}$ and suppose $a \in acc(D_f \cap D_g \cap (-\infty, a))$. If $\lim_{x\to a^-} f(x)$ and $\lim_{x\to a^-} g(x)$ exist and $\exists \delta > 0 \ni \forall x \in (a-\delta, a) \cap (D_f \cap D_g), f(x) \leq g(x)$ then $\lim_{x\to a^-} f(x) \leq \lim_{x\to a^-} g(x)$.

Theorem 6.29. If a is an accumulation point of $D_f \cap (-\infty, a)$ and a is an accumulation point of $D_f \cap (a, +\infty)$ then $\lim_{x\to a} f(x) = L \iff \lim_{x\to a^-} f(x) = L$ and $\lim_{x\to a^+} f(x) = L$.

Example 6.30.

Prove that
$$\lim_{x\to 2} \frac{|x-2|}{x-2}$$
 does not exist.

6.2 Infinity in Limits

6.2.1 Infinity as a Limit

Definition 6.31. Suppose $f: D_f \to \mathbb{R}$ and $a \in acc(D_f)$. Then

- (a) $\lim_{x\to a} f(x) = +\infty$ if $\forall M > 0, \exists \delta > 0 \ni \forall x \in D_f, 0 < |x-a| < \delta \implies f(x) > M.$
- (b) $\lim_{x\to a} f(x) = -\infty$ if $\forall M > 0, \exists \delta > 0 \ni \forall x \in D_f, 0 < |x-a| < \delta \implies f(x) < -M.$

Theorem 6.32. Suppose $f: D_f \to \mathbb{R}$. Then $\lim_{x \to a} f(x) = +\infty \iff f(x) > 0$ for all x in some deleted neighborhood of a and $\lim_{x \to a} \frac{1}{f(x)} = 0$

Example 6.33. Prove that $\lim_{x\to 2} \frac{3x-5}{(x-2)^2} = +\infty$.

Theorem 6.34. Suppose $\lim_{x\to a} f(x) = +\infty$, $\lim_{x\to a} g(x) = +\infty$, $\lim_{x\to a} h(x) = -\infty$ and $\lim_{x\to a} k(x) = -\infty$. Then

- (a) $\lim_{x\to a} (f(x) + g(x)) = +\infty$;
- (b) $\lim_{x\to a} (f(x)g(x)) = +\infty$;
- (c) $\lim_{x\to a} (h(x) + k(x)) = -\infty;$
- (d) $\lim_{x\to a} (h(x)k(x)) = +\infty$;
- (e) $\lim_{x\to a} (f(x)h(x)) = -\infty$.

In (a) and (b), $a \in acc(D_f \cap D_g)$. In (c) and (d), $a \in acc(D_h \cap D_k)$. In (e) $a \in acc(D_f \cap D_h)$.

Theorem 6.35 (Comparison Test). Suppose that $f(x) \leq g(x)$ for all x in some deleted neighborhood of a.

- (a) If $\lim_{x\to a} f(x) = +\infty$, then $\lim_{x\to a} g(x) = +\infty$;
- (b) If $\lim_{x\to a} g(x) = -\infty$, then $\lim_{x\to a} f(x) = -\infty$

6.2.2 Limit at Infinity

Definition 6.36. $\lim_{x\to +\infty} f(x) = L \iff D_f$ is unbounded above, and

$$\forall \epsilon > 0, \exists N > 0 \ni \forall x \in D_f, x > N \implies |f(x) - L| < \epsilon.$$

Definition 6.37. $\lim_{x\to-\infty} f(x) = L \iff D_f$ is unbounded below, and

$$\forall \epsilon > 0, \exists N > 0 \ni \forall x \in D_f, x < -N \implies |f(x) - L| < \epsilon.$$

Definition 6.38. $\lim_{x\to+\infty} f(x) = +\infty \iff D_f \text{ is unbounded above, and}$

$$\forall M > 0, \exists N > 0 \ni \forall x \in D_f, x > N \implies f(x) > M.$$

Definition 6.39. $\lim_{x\to +\infty} f(x) = -\infty \iff D_f \text{ is unbounded above, and}$

$$\forall M > 0, \exists N > 0 \ni \forall x \in D_f, x > N \implies f(x) < -M.$$

Definition 6.40. $\lim_{x\to-\infty} f(x) = +\infty \iff D_f$ is unbounded below, and

$$\forall M > 0, \exists N > 0 \ni \forall x \in D_f, x < -N \implies f(x) > M.$$

Definition 6.41. $\lim_{x\to-\infty} f(x) = -\infty \iff D_f$ is unbounded below, and

$$\forall M > 0, \exists N > 0 \ni \forall x \in D_f, x < -N \implies f(x) < -M.$$

Example 6.42. Prove that $\lim_{x\to+\infty} (5-4x) = -\infty$.

Theorem 6.43. (a) $\forall n \in \mathbb{N}, \lim_{x \to +\infty} x^n = +\infty;$

- (b) $\forall n \in \mathbb{N}$, if n is even, then $\lim_{x \to -\infty} x^n = +\infty$;
- (c) $\forall n \in \mathbb{N}$, if n is odd, then $\lim_{x \to -\infty} x^n = -\infty$.

Theorem 6.44. (a) Let $f: D_f \to \mathbb{R}$ and suppose $(0, +\infty) \subseteq D_f$. Then

$$\lim_{x \to 0^+} f(x) = L \iff \lim_{x \to +\infty} f\left(\frac{1}{x}\right) = L;$$

(b) Let $f: D_f \to \mathbb{R}$ and suppose $(-\infty, 0) \subseteq D_f$. Then $\lim_{x \to 0^-} f(x) = L \iff \lim_{x \to -\infty} f\left(\frac{1}{x}\right) = L$;

Theorem 6.45. Let $f: D_f \to \mathbb{R}$ and a be a real number.

- (a) Suppose $(a, +\infty) \subseteq D_f$ and $\forall x > a \implies f(x) > 0$. Then $\lim_{x \to +\infty} f(x) = +\infty \iff \lim_{x \to +\infty} \frac{1}{f(x)} = 0.$
- (b) Suppose $(a, +\infty) \subseteq D_f$ and $\forall x > a \implies f(x) < 0$. Then $\lim_{x \to +\infty} f(x) = -\infty \iff \lim_{x \to +\infty} \frac{1}{f(x)} = 0.$
- (c) Suppose $(-\infty, a) \subseteq D_f$ and $\forall x < a \implies f(x) > 0$. Then $\lim_{x \to -\infty} f(x) = +\infty \iff \lim_{x \to -\infty} \frac{1}{f(x)} = 0.$
- (d) Suppose $(-\infty, a) \subseteq D_f$ and $\forall x < a \implies f(x) < 0$. Then $\lim_{x \to -\infty} f(x) = -\infty \iff \lim_{x \to -\infty} \frac{1}{f(x)} = 0.$

Chapter 7

Continuous Functions

7.1 Continuity of a Function at a Point

Definition 7.1. Suppose $f: D_f \to \mathbb{R}$ and $a \in D_f$. Then f is **continuous** at a if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } \forall x \in D_f, |x - a| \implies |f(x) - f(a)| < \epsilon.$$

Example 7.2. Prove that the function $f(x) = 3x^2 - 2x - 1$ is continuous at a = 2.

Theorem 7.3. Suppose $f: D_f \to \mathbb{R}$ and $a \in acc(D_f)$. Then f is continuous at $a \iff \lim_{x\to a} f(x) = f(a)$.

Theorem 7.4 (Sequential Criterion for Continuity of f at a). A function f: $D_f \to \mathbb{R}$ is continuous at a point $a \in D_f \iff \forall \text{ sequences } \langle x_n \rangle \text{ in } D_f, \text{ if } x_n \to a \text{ then } f(x_n) \to f(a).$

Negation: A function $f: D_f \to \mathbb{R}$ is discontinuous at a point $a \in D_f$ if and only if \exists sequence $\langle x_n \rangle$ in D_f such that $x_n \to a$ but the sequence $\langle f(x_n) \rangle$ does not converge to f(a).

Example 7.5. The signum function, $sgn(x) = \begin{cases} \frac{|x|}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$ is discontinuous at a = 0.

Theorem 7.6. Polynomial functions are continuous everywhere.

Theorem 7.7. A rational function $r(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are polynomials, is continuous everywhere on its domain i.e., at every real number x for which $q(x) \neq 0$.

- **Example 7.8.** (a) The absolute value function f(x) = |x| is continuous everywhere.
 - (b) The square root function $f(x) = \sqrt{x}$ is continuous everywhere on its domain $[0, +\infty)$.

Example 7.9 (A function That is Continuous Nowhere). The Dirchlet

function $f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ is discontinuous everywhere.

Example 7.10. The Thomae's function $T(x) = \begin{cases} \frac{1}{n} & \text{if } x = \frac{m}{n} \neq 0, \text{ where } m \in \mathbb{Z}, n \in \mathbb{N}, \text{ and have } \\ 1 & \text{if } x = 0 \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$

Theorem 7.11 (Algebra of Continuous Function). Suppose f and g are continuous at a point a and let $c \in \mathbb{R}$. Then,

- (a) cf is continuous at a;
- (b) $f \pm g$ is continuous at a;
- (c) $f \cdot g$ is continuous at a;
- (d) $\frac{1}{q}$ is continuous at a, if $g(a) \neq 0$.
- (e) $\frac{f}{g}$ is continuous at a, if $g(a) \neq 0$.
- **Theorem 7.12** (Composite Functions). (a) Suppose f is continuous at a and g is continuous at f(a). Then the composite function $g \circ f$ is continuous at a.
 - (b) Suppose $\lim_{x\to a} f(x) = b \in D_g$ and g is continuous at b. Then

$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right) = g(b)$$

7.2 Monotonic Functions

Definition 7.13. A function f is

(a) monotone increasing on a set $A \subseteq D_f$ if $\forall x_1, x_2$ in A,

$$x_1 < x_2 \implies f(x_1) \le f(x_2);$$

(b) monotone decreasing on a set $A \subseteq D_f$ if $\forall x_1, x_2 \text{ in } A$,

$$x_1 < x_2 \implies f(x_1) \ge f(x_2);$$

(c) strictly increasing on a set $A \subseteq D_f$ if $\forall x_1, x_2$ in A,

$$x_1 < x_2 \implies f(x_1) < f(x_2);$$

(d) strictly decreasing on a set $A \subseteq D_f$ if $\forall x_1, x_2$ in A,

$$x_1 < x_2 \implies f(x_1) > f(x_2);$$

(e) **monotone** on a set $A \subseteq D_f$ if it is monotone increasing or monotone decreasing.

7.3 Continuity on Compact Sets and Intervals

Theorem 7.14 (Continuous functions preserve compactness). If A is a compact set and $f: A \to \mathbb{R}$ is continuous, then f(A) is compact.

Corollary 7.14.1 (Extreme Value Theorem). If A is a nonempty compact set and $f: A \to \mathbb{R}$ is continuous then f has the extreme value property on A:

- (a) $\exists u = min \ f(A) = min \{ f(x) : x \in A \}$, and
- (b) $\exists v = \max f(A) = \max \{ f(x) : x \in A \}.$

That is, a continuous function assumes a maximum and a minimum value on any nonempty compact set.

Theorem 7.15 (Continuous functions preserve intervals). Suppose I is an interval and $f: I \to \mathbb{R}$ is continuous. Then f(I) is an interval.

Corollary 7.15.1 (Intermediate Value Theorem). Suppose a < b. Any continuous $f : [a, b] \to \mathbb{R}$ must satisfy the **intermediate value property** on [a, b]:

$$\forall y \ between \ f(a) \ and \ f(b), \exists c \in [a, b] \ni f(c) = y.$$

7.4 Uniform Continuity

Definition 7.16. A function $f: D_f \to \mathbb{R}$ is **continuous** on a set $A \subseteq D_f$ if

$$\forall a \in A, \forall \epsilon > 0, \exists \delta > 0 \ni \forall x \in D_f, |x - a| < \delta \implies |f(x) - f(a)| < \epsilon.$$

Definition 7.17. A function $f: D_f \to \mathbb{R}$ is uniformly continuous on a set $A \subseteq D_f$ if

$$\forall \epsilon > 0, \exists \delta > 0 \ni \forall x, y \in A, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon.$$

Example 7.18. Prove that the function f(x) = 2x is uniformly continuous on \mathbb{R} .

Example 7.19. Prove that the function $f(x) = 3x^2 - 2x - 1$ is uniformly continuous on the interval [-1, 5].

Theorem 7.20. If $f: D_f \to \mathbb{R}$ is uniformly continuous on the set $A \subseteq D_f$, then $f|_A$ is continuous on A.

Corollary 7.20.1. If $f: D \to \mathbb{R}$ is uniformly continuous on D, then f is continuous on D.

Example 7.21. The converse of the previous theorem is not true. The function $f(x) = \frac{1}{x}$ is continuous on (0,1) but is not uniformly continuous there.

Theorem 7.22. If f is uniformly continuous on a bounded set A then f is bounded on A.

Theorem 7.23. If $f: A \to \mathbb{R}$ is continuous on a compact set A, then f is uniformly continuous on A.