

Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey

Computer Architecture and Assembly Lab Spring 2021

Lab 5
RISC-V functions and arrays

Instructions

Please answer all the questions below. You need to use the Venus RISC-V simulator for running and testing your code. Note that the simulator is 32-bit, and we do not consider overflow here.

Upload your lab report with the department cover page and your source code using Sakai.

Exercises

- 1. [30 pts] Write a RISC-V program in Venus simulator that accepts an input integer x and uses two methods to compute a factorial:
 - Recursive method: f(x) = x * f(x 1)
 - Iterative/loop method: f(x) = x! = x * (x 1) * (x 2) * ... * 2 * 1

You can assume *x* is always a positive number.

In the program, please have a **main** function that takes the value of the input, performs the factorial computations by the two methods, and prints the outputs of the two methods in the console.

• Verify your program for 3 different input values x_1 , x_2 , and x_3 such that $x_1 \neq x_2 \neq x_3 \neq 0$.

Note: you need to provide your own inputs and show screenshots of the outputs based on the given inputs. (Each method and function worth 10 pts.)

Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey

- 2. [30 pts] Write a RISC-V program in Venus simulator that splits the given array {4, 37, 0, 12, 1, 0, 6} into the following three sub-arrays:
 - Array 1: the elements are the odd positive numbers
 - Array 2: the elements are the even positive numbers
 - Array 3: the elements are all zeros

In the program, please have a **main** function that obtains the value of the input, splits the array, and prints the three sub-arrays in the console. Your implementation should work for arrays of different values as well.

Note: you need to show screenshots of the outputs based on the given input. (Each array worth 10 pts.)

Department of Electrical and Computer Engineering Rutgers, The State University of New Jersey

- 3. [40 pts] Write a RISC-V program in Venus simulator that computes matrix multiplication. You can assume all the entries in each matrix are positive numbers. In the program, you need to consider the following cases:
 - When the number of rows for matrix A and the number of columns for matrix B are equal, compute the multiplication and obtain the product matrix C: C = A * B.
 - When the number of rows for matrix A and the number of columns for matrix are not equal, return the error code 99. Hint: please refer to the Ecall wiki page about returning the error code (https://github.com/kvakil/venus/wiki/Environmental-Calls).

In the program, please have a **main** function that checks the condition, perform the appropriate computations, and print the matrix C or the error code in the console.

- Verify your program for 3 input matrices m_1 , m_2 , and m_3 such that the dimensions of m_1 , m_2 , and m_3 are all unique.
- Demonstrate each possible case at least once.
- Your implementation should work for matrices of different values as well.

Note: you need to provide your own inputs and show screenshots of the outputs based on the given inputs. (The **main** function worth 15 pts, and the multiplication function worth 25 pts.)