A Bilingual Graph-based Semantic Model for Statistical Machine Translation

Rui Wang¹, Hai Zhao¹, Sabine Ploux², Bao-Liang Lu¹, and Masao Utiyama³

¹Shanghai Jiao Tong University ²Centre National de la Recherche Scientifique ³ National Institute of Information and Communications Technology

Bilingual Word Embedding

- □ Bilingual word embedding can enhance many cross-lingual NLP tasks, such as word translation, cross-lingual document classification and SMT.
- According to the *cross-lingual* projection step, there are mainly three types of bilingual embedding methods.
 - 1) Each language is embedded separately at first, and transformation of projecting one embedding onto the other. [*Mikolov, 2013*]
 - 2) Parallel sentence/document-aligned corpora are used for learning word or phrase representation directly, such as a series of NN methods.
 - 3) Monolingual and bilingual objectives are optimized jointly, such as BiLBOWA [Gouws et al. 2015]

Bilingual Graph-based Semantic Model

■ Motivation

- Most of the existing methods for bilingual word embedding only consider shallow context or simple co-occurrence information.
- Sense information gives more exact meaning representation than word information itself.
- Dynamic representation: A word may have multiple senses.

☐ Hypotheses:

- Bilingual Contexonym Clique (BCC) as smallest bilingual sense unit.
- Construct the cross-lingual relationship before the projection step.
- To embed words dynamically according to contextual information.
- Apply word embedding to phrase translation and generation.

Graph Constructing

Formally, words are considered as nodes (vertices) and cooccurrence relationships of words are considered as the edges of graph. An edge-weighted graph derived from a bilingual corpus is defined as,

$$G = \{W, E\},\$$

The *Edge Weight* (*EW*) connecting nodes n_i and n_j is defined by a modified PMI measure,

$$EW = \frac{Co(n_i, n_j)}{fr(n_i) \times fr(n_j)}$$

Context-Dependent Clique Extraction

- ☐ Clique in this thesis: a maximum, complete sub-graph.
- Only the co-occurrence nodes n_{ij} of each n_i (including n itself) are useful and kept.

$$|N_{extracted}| = \left| \bigcup_{\forall i,j} \{n_{ij}\} \right|$$

Bilingual Contexonym Clique (BCC)

As the clique is to represent a fine grained bilingual sense of a word given a set of its contextual words, it is called **Bilingual**Contexonym Clique (BCC).

Words	BCCs
work_e	{employees_e, travail_f (work), unemployed_e, work_e } {heures_f (hours), travaillent_f (to work, third-person plural form), travailler_f (work), week_e, work_e } {readers_e, work_e }
readers_e	{informations_f (information), jour- naux_f(newspapers), online_e, readers_e} {journaux_f (newspapers), lire_f (read), newspa- per_e, presse_f (press), readers_e, reading_e} {readers_e, work_e}

Correspondence Analysis (CA)

- ☐ CA (Benzécri, 1980), which is based on SVD, measure and assess semantic variations of principal axes.
- ☐ To project words/BCC onto lower dimensional semantic space, CA is conducted over the clique-word matrix constructed from the relation between BCCs and words.

	w_1	w_2	w_3	•••
BCC_1	0	0	1	
BCC_2	1	1	0	
BCC_3	0	0	1	
•••				

Entire Pipeline

Semantic Spatial Representation

"Work" as input

Contexts as input

Phrase Translation

☐ The phrase-table of phrase-based SMT model can be simply formalized as:

 $(P_F, P_E, \text{ scores, word-alignment})$

- Strategy-A: only the source words in P_F are used as contextual words.
- Strategy-B: both the source words in P_F and target words in P_E are used as contextual words.

Semantic Similarity Measurement

□ Because the lengths of phrases are different, *Normalized Euclidean Distance* (*NED*) is adopted to measure the distance between source and target phrases incorporated with word-alignment model:

$$NED(P_F, P_E) = \sqrt{\frac{\sum_{align(i,j)} ED^2(V_{wf_i}, V_{we_j})}{\sum_{i,j} align(w_{f_i}, w_{e_j})}}$$

□ NED is added as additional feature of phrase based SMT.

Bilingual Phrase Generation

Word w and its co-occurrence words are represented as vectors. For a aligned word pair (w_{fi}, w_{ej}) , they are represented as vectors (V_{fi}, V_{ej}) and their co-occurrence words fwcog are represented as vectors Vco. We need to find new translation candidate w'_{ej} in w_{co} to form new phrase pair (w_{fi}, w'_{ej}) .

Course	Original Target	CCTM Compared	DCCM Consented
Source	Original Target	CSTM Generated	BGSM Generated
la bonne réponse	the right answer	1. a right answer	1. the correct answer
		2. all right answer	2. the right response
		3. the right reply	3. the good answer
nettoyer le jardin	clean the garden	1. clean a garden	1. clean the yard
		2. clean the yard	2. clean the ground
		3. clean an garden	3. tidy the garden

$$DR(P'_E, P_E) = \frac{NED(P_F, P'_E)}{NED(P_F, P_E)}$$

Experiments (Chapter 5.4)

☐ Corpora

Corpus	IWSLT	NCTIR	NIST
training	186.8K	1.0M	2.4M
dev	0.9K	2.0K	1.6K
test	1.6K	2.0K	1.3K

☐ Phrase Translation: BLEU

	IWSLT	NTCIR	NIST
Baseline	31.80	32.19	30.12
+Zou	N/A	N/A	30.36
+CSTM	32.19	32.37	30.25
+BGSM-A	32.32+	32.56	30.38
+BGSM-B	32.61++	33.04++	30.44+

Experiments

☐ Phrase Generation

Corpora	Methods	Phrase Pairs	BLEU
	Baseline	9.8M	31.80
	+CSTM	23.1M	32.19
IWSLT	+Saluja	31.5M	32.35
	+BPG	25.6M	32.37
	+BPG+BGSM	25.6M	33.13++
NTCIR	Baseline	71.8M	32.19
	+CSTM	297.8M	32.42
	+Saluja	341.3M	32.68
	+BPG	312.6M	32.54+
	+BPG+BGSM	312.6M	33.47++

☐ Efficiency Comparison

Methods	Training Time	Calculating Time
CSTM	59.5 Hours	17.1 Minutes
BGSM-A	1.1 Hours	8.9 Minutes
BGSM-B	1.1 Hours	15.6 Minutes

Thank You