

Unidad 2. Uniones químicas y nomenclatura. Ejercicios adicionales. Respuestas.

- 1.- Identifiquen cuál es la definición de cada uno de los siguientes términos
 - a) Partícula con carga positiva → catión
 - b) Partícula formada por un núcleo y una nube extranuclear → átomo
 - c) Grupo de dos o más átomos unidos covalentemente -> molécula
 - d) Representa la mínima relación entre el número de iones en una unidad de fórmula y la mínima relación de átomos en una molécula. → fórmula mínima
 - e) Partícula con carga negativa.

 anión
 - f) Representa el número y el tipo de átomos por molécula.

 fórmula molecular
- 2.- Completen el siguiente cuadro utilizando los términos:

Elementos	Tipo de unión	Tipo de sustancia	Partículas que constituyen a las sustancias
Generalmente metal y no metal	iónica	iónica	cationes y aniones
no metal y no metal (existen excepciones)	covalente	molecular	moléculas
metales	metálica	metales	cationes y electrones

- 3.- Indicar si la siguiente afirmación es correcta o incorrecta. Justificar la respuesta. "la fórmula Na₂S es una fórmula molecular". Incorrecta. Los compuestos iónicos están formados por cationes y aniones distribuidos en redes tidimensionales, no forman moléculas. Por lo tanto Na₂S es la mínima relación de iones en una un idad fórmula, dos cationes sodio por cada anión sulfuro.
- 4.- Indiquen que representan cada uno de los términos en las siguientes fórmulas de Lewis:

En ambos casos:

- los símbolos de los elementos que representan al core (núcleo y electrones internos),
- símbolos, como por ejemplo: *, **x**, •, para representar a los electrones externos o de valencia,

En el KCI:

- corchetes encerrando el anión,
- signos + y para indicar la carga de los iones.

En el H₂O

- xo par de electrones compartido (unión covalente simple)
- 5.- El flúor forma compuestos binarios con el calcio y con el carbono. Indiquen con su fórmula:
- a) una molécula pentatómica → tiene que ser entre el Flúor y el carbono, pues se establecen enlace s covalentes. CF₄
 - b) un compuesto cristalino con alto punto de fusión. Escriban el nombre. \rightarrow tiene que ser un compuesto iónico por lo tanto entre el flúor y el calcio, CaF_2 . Fluoruro de calcio.
- 6.- Representen las fórmulas de Lewis del hidróxido de magnesio, Ca(ClO₂)₂, trióxido de selenio y H₂SeO₃.

- a) escriban la fórmula o el nombre según corresponda,
- b) clasifiquen a qué familia de sustancias pertenece.

Fórmula	Nombre	Fórmulas de Lewis	Clasificación
Mg(OH) ₂	hidróxido de magnesio	Mg ²⁺ 2[·Ö̞·H]⁻	Hidróxido
Ca(ClO ₂) ₂	Clorito de calcio o clorato (III) de calcio	Ca ²⁺ 2 × Ö: ÇI · Ö ·	Oxosal
SeO₃	trióxido de selenio	* Ö: Se : * Ö * Ö *	Óxido de no metal
H₂SeO₃	Ácido selenioso	H ^x Ö ^x Se ^x Ö ^x ^x Ö ^x H	Oxoácido

- 7.- Indiquen la polaridad de las siguientes moléculas: a) Cl₂, b) HCl, c) N₂ d) CO. Justifiquen sus respuestas.
 - a) Cl₂, no polar
 - b) HCl, polar
 - c) N₂, no polar
 - d) CO, polar

 $\text{Cl}_{2\,\text{y}}\,\text{N}_2$ son moléculas no polares porque el enlace entre 2 átomos del mismo elemento es covalente, el par electrónico compartido se encuentra equidistante a los núcleos de los átomos porque, al tener el mismo valor de electronegatividad, presentan la misma tendencia a atraer electrones.

HCl y CO son moléculas polares porque el enlace entre 2 átomos de distintos no metales, es covalente los electrones se encuentran más desplazados hacia el átomo más electronegativo, lo cual genera una densidad de carga negativa sobre este y una densidad de carga positiva sobre el átomo menos electronegativo.

- 8.- A partir de las siguientes fórmulas: BCl₃, CF₄ y PCl₃, indiquen:
 - a) las fórmulas de Lewis

b) el tipo y número de enlaces en cada una,

 $BCl_3 \rightarrow 3$ uniones covalentes simples

 $CF_4 \rightarrow 4$ uniones covalentes simples

 $PCl_3 \rightarrow 3$ uniones covalentes simples

c) cuál de ellas presenta el enlace más polar.

CF₄

- 9) Escriba los nombres de los siguientes compuestos:
- a) Na₂HPO₄ → ortofosfato ácido de sodio
- b) HNO₃ → ácido nítrico
- c) NH₃ → amoníaco
- d) MgSO₄ → sulfato de magnesio
- e) $Fe(ClO_2)_2 \rightarrow clorito de hierro (II)$
- f) Na₂CrO₄ → cromato de sodio
- h) NaHSO₄ → sulfato ácido de sodio
- i) HNO₂ → ácido nitroso
- j) BF₃ → trifluoruro de boro
- k) $Li_2SO_3 \rightarrow sulfito de litio$
- I) $Fe(ClO_2)_2 \rightarrow clorito de hierro (II)$
- m) Na₂CrO₄ → cromato de sodio
- n) Cd(OH)₂ → hidróxido de cadmio
- o) $K_2SO_3 \rightarrow sulfito de potasio$
- p) NaF → fluoruro de sodio
- q) Li₂CO₃ → carbonato de litio
- r) Ca(HCO₃)₂ → carbonato ácido de calcio
- s) HClO₂ → ácido cloroso
- t) HIO₄ → ácido peryódico
- u) HBrO → ácido hipobromoso
- 10) Escriba las fórmulas de los siguientes compuestos:
- a) permanganato de sodio > NaMnO₄
- b) dicromato de potasio $\rightarrow K_2C_r2O_7$
- c) fluoruro de bario \rightarrow BaF₂
- d) nitrito de cobre (II) \rightarrow Cu(NO₂)₂
- e) hidróxido de bario \rightarrow Ba(OH)₂
- f) cloruro de aluminio \rightarrow AlCl₃
- g) sulfato de férrico → Fe₂(SO₄)₃
- h) ortofosfato de potasio K₃PO₄
- i) bromuro de plata → AgBr
- j) hipoclorito de sodio → NaClO
- k) cianuro de sodio → NaCN

Ejercicios integradores Unidad 1 y 2

- 1.- El catión ⁸⁸X²⁺ pertenece al quinto período y es isoelectrónico el anión R⁻.
 - a) 50 neutrones presentes en un átomo de X
 - b) Bromuro de estroncio

$$\begin{bmatrix} \mathbf{B}_{xx}^{xx} \mathbf{r} \mathbf{r} \end{bmatrix}^{T} \mathbf{S} \mathbf{r}^{2+} \begin{bmatrix} \mathbf{B}_{xx}^{xx} \mathbf{r} \mathbf{r} \end{bmatrix}^{T} \mathbf{S} \mathbf{r}^{2+} \mathbf{2} \begin{bmatrix} \mathbf{B}_{xx}^{xx} \mathbf{r} \mathbf{r} \end{bmatrix}^{T}$$

2.-