Lesson1_Assignment_EnergyEfficiency

Suman Nooney January 18, 2017

Synopsis

This report is based on the dataset available at https://archive.ics.uci.edu/ml/datasets/Energy+efficiency#. Our interest in this data, is to find out the 3 interesting patterns how the Heating and Cooling Loads are impacted with the given 8 input variables.

Variable(s) Information:

- Relative Compactness
- Surface Area m²
- Wall Area m²
- Roof Area m²
- Overall Height m
- Glazing Area 0%, 10%, 25%, 40% (of floor area)
- Glazing Area Distribution (Variance) 1:Uniform, 2:North, 3:East, 4:South, 5:West
- Heating Load kWh/m²
- Cooling Load kWh/m²

Data staging

There is a cleansed dataset available from the Github at https://raw.githubusercontent.com/StephenElston/DataScience350/master/Lecture1/EnergyEfficiencyData.csv. Used it as a source, and below are the steps used in downloading and created a categorical variables for "Orientation", "Glazing Area Distribution (variance)".

```
rm(list = ls())
SourceURL_Raw <- "https://raw.githubusercontent.com/StephenElston/DataScience350/master/Lecture1/Energy.
energy.efficiency <- read.csv( SourceURL_Raw, header = TRUE)
require(ggplot2)
## Loading required package: ggplot2
#install.packages("gridExtra")
require(gridExtra)
## Loading required package: gridExtra
energy.efficiency$Orientation <- as.factor(energy.efficiency$Orientation)
levels(energy.efficiency$Orientation) <- c("North", "East", "South", "West")
energy.efficiency$Glazing.Area.Distribution <- as.factor(energy.efficiency$Glazing.Area.Distribution)</pre>
```

```
levels(energy.efficiency$Glazing.Area.Distribution) <- c("UnKnown", "Uniform", "North", "East", "South"
energy.efficiency$Glazing.Area <- as.factor(energy.efficiency$Glazing.Area)
levels(energy.efficiency$Glazing.Area) <- c("0%", "10%", "25%", "40%")</pre>
```

Lets look at the summary of the energy.effiiency data.

```
summary(energy.efficiency)
```

```
## Relative.Compactness Surface.Area
                                          Wall.Area
                                                          Roof.Area
                               :514.5
                                               :245.0
                                                               :110.2
## Min.
          :0.6200
                        Min.
                                        Min.
                                                        Min.
## 1st Qu.:0.6825
                        1st Qu.:606.4
                                        1st Qu.:294.0
                                                       1st Qu.:140.9
## Median :0.7500
                        Median :673.8
                                        Median :318.5
                                                        Median :183.8
## Mean
          :0.7642
                        Mean
                              :671.7
                                        Mean
                                              :318.5
                                                        Mean
                                                              :176.6
## 3rd Qu.:0.8300
                        3rd Qu.:741.1
                                        3rd Qu.:343.0
                                                        3rd Qu.:220.5
## Max.
          :0.9800
                        Max.
                               :808.5
                                        Max.
                                               :416.5
                                                        Max.
                                                               :220.5
## Overall.Height Orientation Glazing.Area Glazing.Area.Distribution
## Min.
          :3.50
                  North:192
                              0%: 48
                                           UnKnown: 48
## 1st Qu.:3.50
                              10%:240
                                           Uniform: 144
                  East :192
## Median :5.25
                  South: 192
                              25%:240
                                           North: 144
## Mean
          :5.25
                  West :192
                              40%:240
                                           East
                                                  :144
## 3rd Qu.:7.00
                                           South: 144
## Max.
          :7.00
                                           West
                                                  :144
##
   Heating.Load
                    Cooling.Load
## Min.
          : 6.01
                   Min.
                          :10.90
## 1st Qu.:12.99
                   1st Qu.:15.62
## Median :18.95
                   Median :22.08
         :22.31
## Mean
                   Mean
                          :24.59
## 3rd Qu.:31.67
                   3rd Qu.:33.13
                          :48.03
## Max.
          :43.10
                   Max.
```

Visualizations

Plot 1:

Lets visualize how the overall height impacts the overall Cooling and Heating Load using density plot.

```
ggplot(energy.efficiency, aes(x = Heating.Load , y = Cooling.Load)) +
    geom_point( aes(col = factor(Overall.Height)), alpha= 0.3) +
    geom_density2d()+
    xlab('Heating Load') +
    ylab('Cooling Load') +
    ggtitle('Heat and Cold Load Comparison by Overall Height')
```


From the above plot, it is clear that the overall height plays a critical role in heating and cooling load.

Plot 2:

Lets visualize our second plot by how the roof and wall areas impacts the Heating Load using box plot.

tribution of Heating Load on Roof Area by Wall Area and Overall Height

Plot: $\bf 3$ Lets visualize the load distribution of Glazing Area by Orientation.

```
ggplot(energy.efficiency, aes(Heating.Load, Cooling.Load))+
  geom_point(aes(col = factor(Overall.Height)))+
  facet_grid(Orientation ~ Glazing.Area)+
  xlab('Heating Load') +
  ylab('Cooling Load') +
  ggtitle(' Heating and Cooling load distribution by Orientation and Glazing Area.')
```

ting and Cooling load distribution by Orientation and Glazing Area.

Plot: 4

Lets visualize the Cooling and Heating load distribution by Orientation and Roof Area.

```
ggplot(energy.efficiency, aes(x = Cooling.Load, y = Heating.Load))+
    geom_point(aes(colour= Orientation))+
    facet_grid(Overall.Height ~ Roof.Area)
```


Conclusion:

From the above plots, we have clearly observed the Overall Height has a significant impact on overall heating and cooling load.