Special Topics on Basic EECS I VLSI Devices Lecture 8

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

Homework#2

- Sheet resistivity
 - -Assume the following electron distribution,

$$n(z) = n_s \exp\left(-\frac{z}{\Delta}\right),\,$$

where the vertical coordinate, z, starts at 0.

- Also assume a constant electron mobility, μ_n .
- (Neglect holes.)
- Calculate the sheet resistivity, which satisfies $R = \frac{L}{W} \rho_{sh}$.

Example 2-2 of Hu's book

- Hole mobility, $\mu_p = 470 \ {\rm cm^2 V^{-1} s^{-1}}$
 - When the electric field is 10^3 V cm⁻¹, the drift velocity is 4.7×10^5 cm s⁻¹.
 - -Momentum relaxation time (with $m_p=0.39\ m_0$) is 0.1 psec.

Phonon scattering

- Various phonon modes
 - Acoustic phonon : Low energy
 - Optical phonon : High energy, often treated as dispersion-less

"Selection rule" matters. Intravalley / f-process / gprocess

Typical parameters

- Various phonon modes
 - Acoustic phonon : Low energy

Mode	$D_t K (10^8 \text{eV/cm})$	$\hbar\omega$ (meV)	Туре
TA	0.470	12.1	g-type
LA	0.740	18.5	g-type
LO	10.23	62.0	g-type
TA	0.280	19.0	f-type
LA	1.860	47.4	f-type
ТО	1.860	58.6	f-type

Parameters for inelastic phonon scatterings in the Si conduction band

Temperature & doping

(Neamen's book)

Impurity concentration

• It is modeled as an elastic scattering process.

(Neamen's book)

• Which one is dominant? Phonon or impurity?

– Matthiessen's rule,
$$\frac{1}{\mu} = \frac{1}{\mu_I} + \frac{1}{\mu_L}$$

Taur, Eq. (2.27)

Matthiessen's rule

- When there are multiple contributions to the mobility,
 - (For example, phonon-limited mobility / impurity-limited mobility)
 - The overall collision rate is given by sum of all contributions.

$$-\frac{1}{\tau_{m}} = \frac{1}{\tau_{mL}} + \frac{1}{\tau_{mI}} + \cdots$$

- (The above relation holds exactly only in the microscopic level.)
- When recalling $\mu = \frac{q\tau_m}{m_n}$, it means $\frac{1}{\mu_m} = \frac{1}{\mu_{mL}} + \frac{1}{\mu_{mI}} + \cdots$
- It is very useful.

Hot electron

- Not only velocity, but also energy...
 - -Increases when the electric field increases.
 - Increase of energy is a reason of the velocity saturation. Why?

Up to 1 kV/cm, average energy is almost the same with the lattice energy.

Above 10 kV/cm, average energy significantly deviates from the lattice energy.

Average energy of electrons/holes in Si at 300K (Park's book)

Velocity saturation

- Electron with higher energy
 - Has a higher chance to be scattered by phonons. (Higher DOS)
 - More frequent scattering : Smaller au_m

Phonon scattering rate in Si resembles the Density-Of-States.

Phonon scattering rate in Si (Jungemann's book)

Velocity vs. electric field

- At low electric fields, the linear relationship is valid.
 - At high electric fields, the velocity saturation starts to occur. The saturation velocity of Si is about 10⁷ (cm/sec).

Velocity-field relationship in Si at 300K (Taur's book)

Caughey-Thomas relation

- For silicon,
 - Electron velocity can be approximated by

$$v_n = \frac{v_s}{\left[1 + \left(\frac{E_{on}}{E}\right)^2\right]^{0.5}}$$

Hole velocity

$$v_p = \frac{v_s}{\left[1 + \left(\frac{E_{op}}{E}\right)\right]}$$

– Why are they different?

Other scattering mechanisms

- We have discussed about the bulk mobility.
 - Other scattering mechanisms (alloy scattering & impact ionization)
 - Surface scattering severely reduces the inversion mobility.

So-called "universal" mobility curve in the Si inversion layer.

Two difference contributions are clearly visible.

Electron mobility versus effective field for several doping concentrations (Takagi's paper)

GaAs case

- Negative differential mobility
 - Its *L* valley is heavy.

(J. Bieder et al., IWCE 2010)

Diffusion

- It is not only for charged particles.
 - For example,

Diffusion of ink (Google images)

-Therefore, no polarity is expected.

A simple game, again

- Random motion of balls in a 1D box
 - At each turn, they can move forward (+1) or backward (-1).

Initial condition

1 k turns

10 k turns

Equation

- Flux
 - -The electron flux due to the diffusion mechanism is given by

$$\mathbf{F}_n = -D_n \nabla n$$

where D_n is the electron diffusion coefficient in the unit of (cm²/sec).

-The diffusion current density is

$$\mathbf{J}_{n,diff} = q D_n \nabla n$$

Taur, Eq. (2.36)

- How about the hole?
 - The diffusion current density is

$$\mathbf{J}_{p,diff} = -qD_p \nabla p$$

Taur, Eq. (2.37)

An example

- Taken from Neamen's book
 - -Over 1 mm, the electron density varies linearly from 1X10¹⁸ cm⁻³ to 7X10¹⁷ cm⁻³.
 - -The diffusion coefficient is D_n = 225 cm2/sec.
 - Calculate the current density.

$$J_n = +qD_n \frac{dn}{dx}$$
= $(1.6 \times 10^{-19} \text{ C})(225 \text{ cm}^2/\text{s}) \left(\frac{1 \times 10^{18} \text{ cm}^{-3} - 7 \times 10^{17} \text{ cm}^{-3}}{0.1 \text{ cm}}\right)$
= 108 A/cm^2

Revisit the total current density.

- Total current density
 - Electron current density

$$\mathbf{J}_n = q\mu_n n\mathbf{E} + qD_n \nabla n$$

Hole current density

$$\mathbf{J}_p = q\mu_p p \mathbf{E} - q D_p \nabla p$$

- (Time-dependent) displacement current density

$$\mathbf{J}_{displacement} = \frac{\partial}{\partial t} (\epsilon \mathbf{E})$$

Taur, Eq. (2.54)

Taur, Eq. (2.55)

Einstein relation

• At equilibrium, we have the following relations:

$$D_n = \frac{k_B T}{q} \mu_n$$
, $D_p = \frac{\bar{k}_B T}{q} \mu_p$

Taur, Eq. (2.38) and Eq. (2.39)

(Park's book)

Thank you!