Дифференциальные уравнения

Содержание

1	Уравнения с разделяющимися переменными 1.1 Метод разделения переменных	2 2
2	Неоднородные линейные дифф. ур. 1-го порядка 2.1 Метод вариации произвольных констант	2 2 3
3	Уравнение Бернулли3.1 Метод замены $y=z^a$	4 4
4	Дифф. уравнения вида $y^n=f(x)$ 4.1 Метод n-кратного интегрирования	5
5	Дифф. уравнения, в которых нет y без $'$ и которые содержат как минимум две производные 5.1 Метод замены $z=z(x)=y^{\min}$	5
6	Дифф. уравнения, в которых нет x 6.1 Метод замены $z=z(y)=y'$	5
7	Уравнение Лагранжа 7.1 Метод замены $p = p(x) = y'$	6
8	Уравнение Клеро 8.1 Метод замены $p = p(x) = y'$	7 8
9	Уравнение вида $x = F(y')$ 9.1 Метод замены $p = y'$	8
10	Уравнение вида $y = F(y')$ 10.1 Метод замены $p = y'$	9
11		10 10
12	12.1 Метод решения подтипа 12а	11 11 12

13	Уравнение в полных дифференциалах	13
	13.1 Метод поиска полного дифференциала	13
	13.2 Метод поиска интегрирующего множителя	14
14	ОЛДУ с постоянным коэффициентом	14
	14.1 Метод линейных комбинаций	14

1 Уравнения с разделяющимися переменными

Общий вид:

$$f(x)dx = g(y)dy.$$

1.1 Метод разделения переменных

Пример:

$$xy' - y = 0$$

1. Записать y' как $\frac{dy}{dx}$.

$$x\frac{dy}{dx} - y = 0$$

2. В одной стороне собрать все x, а в другой - все y.

$$\frac{1}{x}dx = \frac{1}{y}dy$$

3. Проинтегрировать.

$$\int \frac{1}{x} dx = \int \frac{1}{y} dy$$

$$\ln|x| + C_1 = \ln|y| + C_2$$

$$ln |y| = ln |x| + C_3$$

4. Выразить у и записать ответ.

$$e^{\ln|y|} = e^{\ln|x| + C_3}$$

$$|y| = |x| \cdot e^{C_3}$$

$$|y| = |x| \cdot C_4$$

$$y = x \cdot C_5$$

Omeem: $y = Cx, C \in \mathbb{R}$.

2 Неоднородные линейные дифф. ур. 1-го порядка

Так называемый "НЛДУ1П".

Общий вид:

$$y' + p(x) \cdot y = q(x)$$
, где

q(x) обеспечивает неоднородность,

p(x), q(x) – заданные функции,

y = y(x) – искомая функция.

2.1 Метод вариации произвольных констант

Пример:

$$y' - y \cdot \operatorname{ctg} x - \sin x = 0$$

1. Убедиться, что это действительно НЛДУ1П.

$$y' + (-\operatorname{ctg} x) \cdot y = \sin x$$

2. Записать соответствующее однородное дифф. ур. (вместо q(x) записать 0).

$$y' - y \cdot \operatorname{ctg} x = 0$$

3. Решить его (методом разделения переменных).

$$[...]$$

$$y = C \cdot \sin x$$

- 4. Записать фразу "Будем искать решение исходного уравнения в виде y = ...C(x)...". Будем искать решение исходного уравнения в виде y = ...C(x)...
- 5. Эту штуку (выражение справа) подставить в исходное уравнение.

$$(C(x)\sin x)' - C(x)\cos x - \sin x = 0$$

$$(C(x)\sin x)' - C(x)\sin x \cdot \operatorname{ctg} x - \sin x = 0$$

$$C'(x)\sin x + C(x)\cos x - C(x)\cos x - \sin x = 0$$

$$C'(x)\sin x = \sin x$$
 (на этом шаге $C(x)$ обязательно должен пропасть)

$$C'(x) = 1$$

$$C(x) = x + C_1$$

6. Заглянуть в пункт 4 и записать ответ.

Omeem:
$$y = (x + C)\sin x, C \in \mathbb{R}$$
.

2.2 Метод Бернулли

Пример:

$$y' - y \cdot \operatorname{ctg} x - \sin x = 0$$

1. Убедиться, что это действительно НЛДУ1П.

$$y' + (-\operatorname{ctg} x) \cdot y = \sin x$$

2. Заменить y = uv, где u = u(x), v = v(x) – пока неизвестные функции.

$$(uv)' + (\operatorname{tg} x)(uv) = \frac{1}{\cos x}$$

$$u'v + uv' + uv \cdot tgx = \frac{1}{\cos x}$$

3. Вынести u за скобки.

$$u'v + u(v' + v \operatorname{tg} x) = \frac{1}{\cos x}$$

4. Найти какую-то конкретную функцию $v \neq 0$, которая обнуляет выражение в скобках.

$$Peuum v' + v \operatorname{tg} x = 0$$

$$v = C_1 \cos x$$

Берём конкретное решение при $C_1 = 0$ $v = \cos x$

5. Подставить подобранную функцию v в уравнение из пункта 3.

$$u'\cos x = \frac{1}{\cos x}$$
$$u = \operatorname{tg} x + C$$

6. Заглянув в пункт 2, записать ответ.

Omeem:
$$y = C \cos x + \sin x$$
.

3 Уравнение Бернулли

Общий вид:

$$y'+p(x)\cdot y=q(x)\cdot y^b,$$
 где b – число, $b\neq 0$

\mathbf{M} етод замены $y=z^a$ 3.1

Пример:

$$xy' = \frac{x}{y} + y$$

1. Убедиться, что это уравнение Бернулли.

$$y' - \frac{1}{x}y = y^{-1}$$

2. Заменить $y=z^a$, где a — пока неизвестное число, z=z(x) — пока неизвестная функция.

$$(z^a)' - \frac{1}{x}z^a = (z^a)^{-1}$$

$$(z(x)^{a})'_{x} \Rightarrow (z^{a})' = az^{a-1} \cdot z'$$
$$az^{a-1} \cdot z' - \frac{1}{x}z^{a} = z^{-a}$$

$$az^{a-1} \cdot z' - \frac{1}{x}z^a = z^{-a}$$

3. Поделить обе части уравнения на выражение, стоящее перед z'.

$$z' - \frac{1}{ax}z = \frac{1}{a}z^{-2a+1}$$

4. Подобрать число a так, чтобы в правой части было z^0 .

$$-2a + 1 = 0 \Rightarrow a = 1/2$$

5. Подобранное a подставить в уравнение из пункта 3.

$$z' - \frac{2}{x}z = 2$$

6. Решить это уравнение (НЛДУ1П).

$$[...]$$

$$z = C_7 x^2 - 2x$$

7. Заглянув в пункт 2, написать ответ.

Omeem:
$$y = \sqrt{Cx^2 - 2x}$$
.

Уравнения, допускающие понижение порядка

Порядок – это наибольший встречающийся порядок производной в уравнении. Например:

$$y' - \frac{1}{x}y = \frac{1}{x^2}$$
 – дифф. ур. 1-го порядка

$$y'-rac{1}{x}y=rac{1}{x^2}$$
 — дифф. ур. 1-го порядка $y''-\sin\left(e^{y'''}+rac{4}{y''}
ight)=rac{1}{\sqrt{y}}$ — дифф. ур. 3-го порядка

- 4 Дифф. уравнения вида $y^n = f(x)$
- 4.1 Метод п-кратного интегрирования

Пример:

$$y''' = 3x^{2} + 6$$

$$y'' = x^{3} + 6x + C_{1}$$

$$y' = \frac{x^{4}}{4} + 3x^{2} + C_{1}x + C_{2}$$

$$y = \frac{x^{5}}{20} + x^{3} + C_{4}x^{2} + C_{2}x + C_{3}$$

$$Omsem: y = \frac{x^{5}}{20} + x^{3} + C_{4}x^{2} + C_{2}x + C_{3}$$

- 5 Дифф. уравнения, в которых нет y без ' и которые содержат как минимум две производные
- **5.1** Метод замены $z = z(x) = y^{\min}$

Пример:

$$y'''' - y''' = e^x$$

- 1. Заменить $z=z(x)=y^{(...)}$, где (...) наименьший встречающийся порядок производной. Замена $z=z(x)=y^{\prime\prime\prime}$
- 2. Переписать уравнение через z.

$$z' - z = e^x$$

$$z = (x + C)e^x$$

3. Заменить обратно.

$$y''' = e^x(x+C)$$

Решим методом п-кратного интегрирования

$$y = e^{x}(x + C - 3) + C_7 + C_2 x + C_8 x^2$$

Omeem:
$$y = e^x(x + C - 3) + C_7 + C_2x + C_8x^2$$
.

6 Дифф. уравнения, в которых нет x

Пример:

$$y'' \cdot y = y'^2$$

- 6.1 Метод замены z = z(y) = y'
 - 1. Заменить z = z(y) = y'.

Введём новую функцию z = z(y) = y'

2. Выразить через z все производные, встречающиеся в уравнении.

$$y'=z$$

$$y''=y''_{xx}=(y'_x)'_x=\frac{d(y'_x)}{dx}\cdot\frac{dy}{dx}=\frac{dz}{dy}\cdot\frac{dy}{dx}=z'\cdot y'=z'\cdot z$$
 Имеем: $z'\cdot z\cdot y=z^2$ (искомая функция $z=z(y)$) $z'\cdot y=z$
$$\frac{dz}{dy}\cdot y=z$$

$$\frac{dz}{z}=\frac{dy}{y}$$
 $\ln|z|=\ln|y|+C_1$ $z=C_2y$

3. Заменить обратно.

$$y' = C_2 y$$

 $\frac{dy}{dx} = C_2 y$
 $\ln |y| = C_2 x + C_3$
 $y = e^{C_2 x} \cdot C_4$
 $Om6em: y = C_1 e^{C_2 x}, C_1, C_2 \in \mathbb{R}.$

7 Уравнение Лагранжа

Общий вид уравнения Лагранжа:

$$y = x \cdot F(y') + G(y')$$
, где $F(y'), G(y')$ – выражения, в которых нет $y, \ y'', \ y'''$ и т. д.

7.1 Метод замены p = p(x) = y'

Пример уравнение Лагранжа, не являющегося уравнением Клеро:

$$y + 3y'^2 = 2xy' (*)$$

1. Убедиться, что это уравнение Лагранжа, не являющееся уравнением Клеро.

$$t = x \cdot 2y' + (-3y'^2)$$

2. Заменить p = p(x) = y'.

Замена
$$p = p(x) = y' \Rightarrow y = 2px - 3p^2$$
 (**)

3. Продифференцировать обе части.

$$y' = 2p'x + 2p - 6pp'$$

4. Заменить y' на p.

$$p = 2p'x + 2p - 6pp'$$

5. Все слагаемые с p' перенести влево, вынести за скобку p', а всё остальное — вправо.

$$(6p - 2x)p' = p$$

6. Переписать p' как $\frac{dp}{dx}$ и умножить обе части на $\frac{dx}{dp}$.

$$(6p - 2x)\frac{dp}{dx} = p$$

$$6p - 2x = p \frac{dx}{dp}$$

$$6p-2x=px'$$
 (это НЛДУ1П, искомая функция $x=x(p)$)

7. Рассмотреть случай (множитель при x') = 0.

$$(7a) p = 0$$

$$y' = 0$$

$$y = A$$

(76) Полученное выражение подставить в (*).
$$A + 3 \cdot 0^2 = 2x \cdot 0 \\ A = 0$$

(7в) Первое решение дифф. уравнения.
$$y=0$$

8. Рассмотреть случай (множитель при x') $\neq 0$.

(8а) Поделить на
$$p'$$
.
$$6 - \frac{2x}{p} = x'$$

$$x' + \frac{2}{p}x = 6$$
 [...]
$$x = 2p + \frac{B}{p^2}$$

(8б) Полученное выражение для
$$x$$
 подставим в (**).
$$y = 2p\cdot(2p+\frac{B}{p^2}) - 3p^2 = p^2 + \frac{2B}{p}$$

9. Записать ответ,

- учитывая результат 7в,
- учитывая результат 8а и 8б,
- заменяя константы на C,
- заменяя p на x.

Omeem:
$$\begin{cases} y=0, \\ x=2t+\frac{C}{t^2}, \\ y=t^2+\frac{2C}{t}, \ C\in\mathbb{R} \end{cases} .$$

8 Уравнение Клеро

Уравнение Клеро — частный случай уравнения Лагранжа. Общий вид уравнения Клеро:

$$y = xy' + G(y')$$

8.1 Метод замены p = p(x) = y'

Пример:

$$y - y'^2 = xy' \ (***)$$

- 1-5. Шаги идентичны предыдущему методу.
 - 6. Рассмотреть случай (множитель при x') = 0.

(6a)
$$p' = 0$$

 $y'' = 0$
 $y = Ax + B$

(66) Подставить выражения в
$$(***)$$
 $Ax + B - A^2 = Ax$

(6в) Выразить обе константы через какую-то одну
$$\begin{cases} A = A \\ B = A^2 \end{cases}$$

- (6г) Записать первую серию решений уравнения $y = Ax + A^2$
- 7. Рассмотреть случай (множитель при x') $\neq 0$.

(7a)
$$x + 2p = 0$$
 $x = -2p$

- (76) Подставим выражение в пункт 2 $y = xp + p^2$ $y = (-2)p + p^2$ $y = -p^2$
- 8. Записать ответ
 - учитывая результат 6г,
 - учитывая результат 7а и 7б,
 - заменяя константы на C,
 - заменяя p на t.

Omeem:
$$\begin{bmatrix} y = Cx + C^2, \ C \in \mathbb{R} \\ x = -2t, \\ y = -t^2 \end{bmatrix} \Leftrightarrow \begin{bmatrix} y = Cx + C^2, \ C \in \mathbb{R} \\ y = -\frac{x^2}{4} \end{bmatrix}.$$

Уравнения, не разрешённые относительно y'

Уравнение решено относительно $y'\Leftrightarrow y'$ выражено через всё остальное Например:

 $\sin x + y' = e^{xy'}$ – не решено относительно y'.

9 Уравнение вида x = F(y')

9.1 Метод замены p = y'

Пример:

$$ln y' + \sin y' - x = 0$$

1. Убедиться, что это уравнение вида x = F(y').

$$x = \ln y' + \sin y'$$

2. Заменить p = y'.

$$x = \ln p + \sin p$$

3. Взять дифференциал от обеих частей.

$$dx = d(\ln p + sinp)$$

$$dx = (\frac{1}{p} + \cos p)dp \ (*)$$

4. Из замены выразить dx через dy.

$$p = y'$$

$$p = \frac{dy}{dx}$$

$$dx = \frac{dy}{p} \ (**)$$

Подставить (**) в (*).

$$\frac{dy}{n} = (\frac{1}{n} + \cos p)dp$$

6. Выразить dy и проинтегрировать.

$$dy = p(1 + \cos p)dp$$

$$y = \int (1 + p\cos pdp = p + C_1 + \int p\cos pdp = p + p\sin p\cos p + C$$

7. Записать ответ
$$\begin{cases} p \to t \\ const \to C \end{cases}$$

$$Omeem: \begin{cases} x = \ln t + \sin t \\ y = t + t \sin t + \cos t + C, \ C \in \mathbb{R} \end{cases}$$

Уравнение вида y = F(y')**10**

Mетод замены p=y'

Пример:

$$e^{\ln y - y'} = y'^2$$

1. Убедиться, что это уравнение вида y = F(y').

$$\frac{y}{e^{y'}} = y'^2$$

$$y = y'^2 e^{y'}$$

2. Заменить p = y'.

$$y = p^2 e^p$$

3. Взять дифференциал от обеих частей.

$$dy = (2pe^p + p^2e^p)dp \ (*)$$

4. Из замены выразить dy через dx.

$$p = y'$$

$$p = \frac{dy}{dx}$$

$$dy = pdx (**)$$

Подставить (**) в (*).

$$pdx = (2pe^p + p^2e^p)dp$$

6. Выразить dx и проинтегрировать.

$$dx = \frac{2pe^{p} + pe^{2}}{p}dp$$

$$dx = (2e^{p} + pe^{p})dp$$

$$x = 2\int e^{p}dp + \int pe^{p}dp = (2e^{p} + A) + (pe^{p} - e^{p} + B) = e^{p} + pe^{p} + C$$

$$\int pe^{p}dp = pe^{p} - \int e^{p}dp = pe^{p} - e^{p} + B$$

7. Записать ответ $\begin{cases} p \to t \\ const \to C \end{cases}$.

Omsem:
$$\begin{cases} y = t^2 e^t, \\ x = t e^t - e^t + C, \ C \in \mathbb{R} \end{cases}$$

11 Однородные дифф. уравнения

Опред. Однородным называется уравнение вида $y' = F(\frac{y}{x})$. Не путать с НЛДУ1П — уравнением вида y' + p(x)y = q(x)

11.1 Метод замены $y = x \cdot u$

Пример:

$$xy' - y - xe^{\frac{y}{x}} = 0$$

1. Убедиться, что это уравнение вида $y' = F(\frac{y}{x})$.

$$xy' = xe^{\frac{y}{x}} + y$$
$$y' = e^{\frac{y}{x}} + \frac{y}{x}$$

2. Заменить $y = x \cdot u$, где u = u(x).

Замена
$$y = x \cdot u$$
 $(xu)' = e^u + u$ $u + xu' = e^u + u$ $xu' = e^u$

3. Решить полученное уравнение относительно u = u(x) (методом разделения переменных).

$$x\frac{du}{dx} = e^{u}$$

$$\frac{1}{e^{u}}du = \frac{1}{x}dx$$

$$\int \frac{1}{e^{u}}du = \int \frac{1}{x}dx$$

$$-\frac{1}{e^{u}} = \ln|x| + C_{1}$$

$$e^{-u} = C_{2} - \ln|x|$$

$$\ln e^{-u} = \ln(C_{2} - \ln|x|)$$

$$u = -\ln C_{2} - \ln|x|$$

4. Заменить обратно и записать ответ. $Omeem: y = -x \ln{(C - \ln{|x|})}, C \in \mathbb{R}.$

12 Уравнение вида
$$y' = F(\frac{a_1x + b_1y + c_1}{a_2x + b_2y + c_2})$$

Данный тип уравнения делится на 2 подтипа:

- (12a) Если $a_1x + b_1y$ и $a_2x + b_2y$ пропорциональны.
- (126) Если $a_1x + b_1y$ и $a_2x + b_2y$ непропорциональны.

12.1 Метод решения подтипа 12а

Пример:

$$(x - 2y + 3)dx = (-2x + 4y + 8)dy$$

1. Убедиться, что это уравнение подтипа 12а.

$$y' = \frac{x-2y+3}{-2x+4y+8} \ (*)$$

$$F(t) = t$$

$$a_1 = 1 \quad b_1 = 2 \quad c_1 = 3$$

$$a_2 = -2 \quad b_2 = 4 \quad c_2 = 8$$

- 2. Заменить $z=z(x)=[o \partial homy \ us \ smux \ членов \ a_1x+b_1y \ uлu \ a_2x+b_2y].$ z=z(x)=x-2y
- 3. Выразить отсюда y и продифференцировать по x.

$$y = \frac{x}{2} - \frac{z}{2}$$

 $y' = \frac{1}{2} - \frac{z'}{2}$

4. В ур-и (*) из пункта 1 заменить левую и правую часть.

$$rac{1}{2} - rac{z'}{2} = rac{z+3}{-2z+8} \, - uc$$
комая функция $z = z(x)$

5. Решить полученное ДУ (заведомо пройдёт метод разделения переменных).

[...]
$$\frac{1}{4}(2z-1-7\ln|2z-1|) = x + C_1 - \textit{pewenue в неявном виде}$$

6. Заменить обратно и записать ответ.

$$\begin{split} &\frac{1}{4}(2x-4y-1-7\ln|2x-4y-1|) = x + C_1\\ &\textit{Ombem: } \frac{x}{2} + y + \frac{7}{4}\ln|2x-4y-1| = C, \ C \in \mathbb{R}. \end{split}$$

12.2Метод решения подтипа 126

Пример:

$$(x - y - 1)dx + (x + 2y - 4)dy = 0$$

1. Убедиться, что это уравнение подтипа 126.

$$y' = \frac{x-y-1}{-x-2y+4} (*)$$

$$F(t) = t$$

$$a_1 = 1 \quad b_1 = -1 \quad c_1 = 1$$

$$a_2 = -1 \quad b_2 = -2 \quad c_2 = 4$$

2. Записать и решить систему $\begin{cases} \textit{Числитель} = 0 \\ \textit{Знаменатель} = 0 \end{cases}$ и обозначить решение через x_0 и y_0 .

$$\begin{cases} x - y - 1 = 0 \\ -x - 2y + 4 = 0 \end{cases} \begin{cases} x = 2 \\ y = 1 \end{cases} \Rightarrow x_0 = 2, \ y_0 = 1$$

 $\begin{cases} x-y-1=0\\ -x-2y+4=0 \end{cases} \begin{cases} x=2\\ y=1 \end{cases} \Rightarrow x_0=2, \ y_0=1$ 3. Заменить $\begin{cases} x=u+x_0\\ y=v+y_0 \end{cases},$ где u,v — новые переменные и v=v(u).

$$\begin{cases} x = u + 2 \\ y = v + 1 \end{cases}$$

4. Подставить это в уравнение (*) из пункта 1.

Левая часть
$$=y'=rac{dy}{dx}=rac{d(v+1)}{d(u+2)}=rac{dv}{du}=v'_u$$

Правая часть =
$$\frac{u+2-v-1-1}{-u-2-2v-2+4} = \frac{u-v}{-u-2v}$$

Если в числителе и знаменателе не исчезли свободные члены, ищи ошибку!

 $\Pi puxo \partial u M \kappa yp$ -ю

$$v' = \frac{u - v}{-u - 2v}$$

5. Решить это ДУ, разделив числитель и знаменатель на u и рассмотрев как уравнение вида $v' = F(\frac{v}{u})$.

$$v' = \frac{1 - \frac{v}{u}}{-1 - 2\frac{u}{v}}$$

$$...u...v... = ...u...v... - решение в неявном виде$$

6. Заменить обратно и записать ответ.

$$\begin{cases} u = x - 2 \\ v = y - 1 \end{cases}$$

Omeem: ...
$$(x-2)$$
... $(y-1)$... = ... $(x-2)$... $(y-1)$

13 Уравнение в полных дифференциалах

Дифференциал:

$$d(u(x, u)) = u'_x dx + u'_y dy$$

$$d(x^2 \ln y) = 2x \ln y dx + \frac{x}{y} dy$$

Опред. Уравнением в полных дифференциалах называется уравнение P(x,y)dx + Q(x,y)dy = 0, у которого в левой части стоит дифференциал некоторой функции двух переменных, т. е.

$$\exists u(x,y) : \begin{cases} P(x,y) = u'_x \\ Q(x,y) = u'_y \end{cases}$$

13.1 Метод поиска полного дифференциала

Пример:

$$(-x^2 + y\cos x)dx + (y + \sin x)dy = 0$$

1. Убедиться, что это уравнение в полных дифференциалах.

$$\begin{cases} (-x^2 + y\cos x)_y' = \cos x \\ (y + \sin x)_x' = \cos x \end{cases} \Rightarrow \cos x = \cos x \Rightarrow \textit{это уравнение в полных дифференциалах}$$

2. Записать систему $\begin{cases} u'_x = P \\ u'_y = Q \end{cases}$

$$\begin{cases} u'_x = -x^2 + y \cos x \ (1) \\ y'_y = y + \sin x \ (2) \end{cases}$$

3. Выбрать любое уравнение и проинтегрировать по соответствующей переменной.

(1)
$$\Rightarrow u(x,y) = \int (-x^2 + y \cos x) dx = -\frac{x^3}{3} + y \sin x + A(y)$$

A(y) – константа с точки зрения интегрирования по x

4. Полученное выражение подставить в другое уравнение из системы пункта 2.

(2)
$$\Rightarrow (-\frac{x^3}{3} + y \sin x + A(y))'_y = y + \sin x$$

$$\sin x + A_y'(y) = y + \sin x$$

$$A(y) = \frac{y^2}{2} + C_1$$

5. Записать окончательное выражение для u(x, y).

$$u(x,y) = -\frac{x^3}{3} + y\sin x + \frac{y^2}{2} + C_1$$

6. Вернуться к истокам.

$$u_x'dx + u_y'dy = 0$$

$$d(u(x,y)) = 0$$

$$u(x,y) = C_2$$

$$-\frac{x^3}{3} + y\sin x + \frac{y^2}{2} + C_1 = C_2$$

Omeem:
$$-\frac{x^3}{3} + y \sin x + \frac{y^2}{2} = C, C \in \mathbb{R}$$

13.2 Метод поиска интегрирующего множителя

В контрольной работе задания на данный метод не будет.

Пример:

$$(-\frac{3}{x} - 2y)dx + (\frac{6}{y} - 3x)dy = 0$$

1. Убедиться, что это уравнение не в полных дифференциалах.

$$\begin{cases} (-\frac{3}{x}-2y)_y'=-2\\ (\frac{6}{y}-3x)_x'=-3 \end{cases} \Rightarrow -2 \neq -3 \Rightarrow \textit{это не уравнение в полных дифференциалах}$$

2. Стоит поискать интегрирующий множитель в виде $x^a \cdot y^b$, где $a,\,b$ – числа.

$$[(-\frac{3}{x} - 2y)dx + (\frac{6}{y} - 3x)dy] \cdot x^a y^b = 0 \cdot x^a y^b$$
$$(3x^{a-1}y^b - 2x^a y^{b+1})dx + (6x^a y^{b-1} - 3x^{a+1}y^b)dy = 0$$

3. Записать условие того, что это уравнение в полных дифференциалах.

$$\begin{cases} (3x^{a-1}y^b - 2x^ay^{b+1})_y'\\ (6x^ay^{b-1} - 3x^{a+1}y^b)_x'\\ \\ 3x^{a-1} \cdot by^{b-1} - 2x^a \cdot (b+1)y^b\\ y^{b-1} \cdot 6ax^{a-1} - y^b \cdot 3(a+1)x^a\\ \\ \begin{cases} 3bx^{a-1}y^{b-1} - 2(b+1)x^ay^b\\ 6ax^{a-1}y^{b-1} - 3(a+1)x^ay^b\\ \end{cases} \Rightarrow \\ \begin{cases} 3b = 6a\\ 2(b+1) = 3(a+1) \end{cases} \Rightarrow \begin{cases} a = 1\\ b = 2 \end{cases}$$

4. Домножить исходное дифф. ур. на угаданный интегрирующий множитель.

$$(3y^2 - 2x^3)dx + (6xy - 3x^2y^2)dy = 0$$

Решаем как уравнение в полных дифференциалах [...]

14 ОЛДУ с постоянным коэффициентом

Пример:

$$y^{(5)} - 4y^{(4)} + 13y^{(4)} = 0$$

14.1 Метод линейных комбинаций

1. Записать характеристическое уравнение: $y \to \lambda$, порядок производной \to степень. $\lambda^5 - 4\lambda^4 + 13\lambda^3 = 0$

$$(\lambda - 3)^3(\lambda - 2 - 3i)(\lambda - 2 + 3i) = 0$$

3. Выписать список корней и их кратности.

$$\lambda_1 = 0, \ k_1 = 3$$

$$\lambda_2 = 2 \pm 3i, \ k_2 = 1$$

- 4. Около каждого корня (или пары комплексных сопряжённых корней) выписать серию функций (или две серии функций):
 - $\lambda = \alpha$, $k = m \rightarrow e^{\alpha x}$, $x e^{\alpha x}$, $x^2 e^{\alpha x}$, ..., $x^m e^{\alpha x}$
 - $\lambda = \alpha \pm \beta i \ (\alpha \in \mathbb{R}, \beta \in \mathbb{R}, \beta > 0), \ k = m, \rightarrow (e^{\alpha x} \cos \beta x, \ xe^{\alpha x} \cos \beta x, \dots, x^m e^{\alpha x} \cos \beta x), (e^{\alpha x} \sin \beta x, \ xe^{\alpha x} \sin \beta x, \dots, x^m e^{\alpha x} \sin \beta x)$

$$\lambda_1 = 0, \ k_1 = 3 \ \rightarrow \ e^{0x}, \ xe^{0x}, \ x^2e^{0x}$$

 $\lambda_2 = 2 \pm 3i, \ k_2 = 1 \ \rightarrow \ (e^{2x}\cos 3x), \ (e^{2x}\sin 3x)$

5. Записать ответ в виде линейное комбинации этих функций.

Omeem:
$$y = C_1 + C_2 x + C_3 x^2 + C_4 e^{2x} \cos 3x + C_4 e^{2x} \sin 3x$$
, $C_1, C_2, C_3, C_4 \in \mathbb{R}$.