BME TMIT 2022

14/4 Németh Gábor

λ-kalkulus II.

Egyszerű típusnélküli λ–kalkulus

```
<λ-kifejezés> ::= <változó> | <λ-absztrakció> | <applikáció>
<λ-absztrakció> ::= (λ<változó>.<λ-kifejezés>)
<applikáció> ::= (<λ-kifejezés><λ-kifejezés>)
                    λx.E
                                           E(x)
                    λx.EF
                                           (\mathsf{E} \circ \mathsf{F})(\mathsf{x}) = \mathsf{E}(\mathsf{F}(\mathsf{x}))
                                                                    β-redukció (\rightarrow_β)
                    (\lambda x.E)F
                                           E(x)|_{x=F}
              "
                   \lambda x.(1 + x) x \mapsto 1 + x
                   \lambda x.(1 + x)F x \mapsto 1 + F
                   (\lambda x.(1 + x))F   1 + x|_{x = F}
                                                              "
```

Konstansok és függvények

- nincsenek konstansok
- nincsenek konstansokon értelmezett függvények
 - egyes kifejezéseket tekinthetjük konstansoknak

- legyen
 - ▶ true $\equiv \lambda xy.x$
 - ▶ false $\equiv \lambda xy.y$

- legyenpair≡ λxyz.zxy
 - ▶ first $≡ \lambda x.xtrue ≡ \lambda x.x(\lambda yz.y)$
 - ▶ second $\equiv \lambda x.x$ false $\equiv \lambda x.x(\lambda yz.z)$

β-konverzió, normál forma

```
first pair u v \equiv (\lambda x.x(\lambda yz.y)) (pair u v \equiv (\lambda x.x(\lambda yz.y)) (pair u v \equiv (\lambda x.x(\lambda yz.y))
                                                                                                     \rightarrow_{\beta} (pair u v)(\lambdayz.y)
                                                                                                     \equiv (\lambda xyz.zxy) \underline{u} \vee (\lambda yz.y)
                                                                                                      \rightarrow_{\beta} (\lambda yz.zuy) \underline{v} (\lambda yz.y)
                                                                                                      \rightarrow_{\beta} (\lambda z.zuv) (\lambda yz.y)
                                                                                                      \Rightarrow_{\beta} (\lambda yz.y) \underline{u} v
                                                                                                      \rightarrow_{\beta} (\lambda z.u) \underline{v}
                                                                                                      \rightarrow_{\beta} u
```

Láncolt lista

- ► cons $\equiv \lambda xy.pair false (pair x y)$
- nil ≡ pair true true
- ► head $\equiv \lambda x.$ first (second x)
- ► tail $\equiv \lambda x.second (second x)$

$$E_3 -> E_2 -> E_1 -> nil$$

$$E' \equiv cons E_1 nil$$

$$E'' \equiv cons E_2 E'$$

$$E''' \equiv cons E_3 E''$$

λ-kifejezések C++-ban I.

```
λx.x
                [](auto x) { return x; }
λy.y
                [](auto y) { return y; }
λx.y
                [](auto x) { return y; }
λχ.λγ.γ
                [](auto x) { return [=](auto y) { return y; } }
(xy)
                x(y)
(\lambda x.x)y
                (\lambda z.x)y
                ([](auto z) { return x; })(y)
\lambda x.(xy) [](auto x) { return x(y); }
(\lambda x.\lambda y.y)z ([](auto x) { return [=](auto y) { return y; } })(z)
((\lambda x.\lambda y.y)u)v ([](auto x) { return [=](auto y) { return y; } })(u)(v)
```

λ-kifejezések C++-ban II.

```
[](auto x) {
    return [=](auto y) {
        return [=](auto z) {
            return x(y)(z);
        }
    }
}
```

ex_0: λ-kifejezések C++-ban

δ-redukció

- a λ-kalkulus kifejezései jobban olvashatóak, ha abban beépített konstansok, előre definiált függvények szerepelnek
- a konstansokon értelmezett függvények: δ-függvények
- δ-redukció
 - ha egy függvényapplikációban szereplő függvény egy δ -függvény, és az aktuális paraméter konstans, akkor a függvényapplikáció helyettesíthető azzal az értékkel, amelyet a függvény a paraméterrel megadott pontban felvesz

$$+13 \rightarrow_{\delta} 4$$
 $+(*23) 4 \rightarrow_{\delta} +64 \rightarrow_{\delta} 10$

Rekurzív függvények I.

- fac(n) = n!
 - ightharpoonup fac(n) = if(n = 0) then 1 else (n * fac(n-1))
 - Arr fac ≡ λn.if(= n 0) 1 (* n (fac(- n 1)))
 - ▶ de a jobb oldalon nem hivatkozhatunk **fac**-ra!

$$H \equiv \lambda f.(\lambda n.if(= n \ 0) \ 1 \ (* \ n \ (f(- \ n \ 1))))$$
fac = H fac

Fixpont

ha az E és F λ-kifejezésekre F = EF, akkor az F λ-kifejezést E fixpontjának nevezzük

 $(\lambda x.-12x)6 = 6$

 $H \equiv \lambda f.(\lambda n.if(= n 0) 1 (* n (f(- n 1))))$

fac = H fac

fac a H fixpontja

Y fixpontkombinátor

- ► YE = E(YE)
- $\vdash \quad Y \equiv \lambda x.(\lambda y.x(yy))(\lambda y.x(yy))$
 - ▶ Curry
 - paradoxkombinátor

Egyéb fixpontkombinátorok

- ► O-fixpontkombinátor

 - \triangleright Turing, 1937, The p function in λ-K conversion (1 oldal)
 - Kleene, 1936, λ definability and recursiveness
- Böhm és van der Mey
 - \triangleright G = $\lambda xy.y(xy)$
 - ▶ G fixpontja fixpontkombinátor
 - F = GF, akkor FE = E(FE)

Fixpontkombinátor és redukció

 $Y(\lambda uv.E)F = E[u:=Y(\lambda uv.E)][v:=F]$

► $\Theta(\lambda uv.E)F \rightarrow E[u:=\Theta(\lambda uv.E)][v:=F]$

Rekurzív függvények II.

```
    fac ≡ λn.if(= n 0) 1 (* n (fac(- n 1)))
    H ≡ λf.(λn.if(= n 0) 1 (* n (f(- n 1))))
    fac = H fac
    fac ≡ YH
```

Rekurzív függvények III.

- ► fac ≡ YH
- \rightarrow Y(λ uv.E)F = E[u:=Y(λ uv.E)][v:=F]

Elsőrendű típusos λ-kalkulus

Típusos és nem típusos nyelvek

- nem típusos nyelvek
 - assembly
 - nincs megkötés egy változónak adható értékeket
 - ▶ a műveletek nem megfelelő argumentumokra is meghívhatóak → nem meghatározott viselkedés
- típusos nyelvek
 - fordítási idejű típushibák
 - ▶ egy típusrendszer követi nyomon a típusokat

Típusok célja

- futási idejű hibák megakadályozása
- tradicionálisan elkapott hibák
 - ▶ a végrehajtás azonnal megáll
 - gyakran a hardver kényszeríti ki
 - egészek nullával való osztás
 - nullptr feloldása
- nem elkapott hibák
 - b olvasás egy tömb utolsó eleme után

jól meghatározott viselkedés

nem specifikált viselkedés

Miért...

- típusos nyelv
 - teljesítmény
 - a dinamikus ellenőrzés időigényes lehet
 - hibák korai megtalálása
 - típusok használata a tervezés során
 - egyszerűbb statikusan analizálni

- nem típusos nyelv
 - a statikus ellenőrzés megkötés a programozónak
 - érvényes programok elutasításra kerülhetnek
 - dinamikusmemóriamenedzsment

	típusos		nem típusos
	statikus	dinamikus	
biztonságos	Java, ML, Haskell, Ada, C#	Lisp, PHP, Ruby, Perl, Python	λ-kalkulus
nem biztonságos	C, C++, Pascal	5	Assembly

Elsőrendű Church-típusos λ-kalkulus

- ► F1 típusrendszer
- ▶ λx:A.E
 - kötött változó típust kap
 - ▶ függvénytípus: A → B
 - típuskonstruktor
 - alaptípushalmaza
 - ▶ {Bool, Nat}

```
(EF):A \equiv EF:A (\lambda x:A.E):B \equiv \lambda x:A.E:B
```

```
<típus> ::= <alaptípus> | <típus> → <típus> 
<λ-kifejezés> ::= <változó> | λ<változó>:<típus>. <λ-kifejezés> | <λ-kifejezés> <λ-kifejezés>
```

Típus szempontjából hibás kifejezés

- λx:A.xy
 - szintaktikusan helyes
 - ▶ DE!
 - ▷ a kifejezés törzséből: x:A → B

- jól formált λ-kifejezés
 - szintaktikusan helyes
 - megfelel a λ-kifejezések szintaktikájának leírásában megadott szintaktikai szabályoknak
- jól formált típus
 - szintaktikusan helyes
 - megfelel a típus szintaktikájában leírásában megadott szintaktikai szabályoknak

Nem garantálja, hogy a kifejezés típus szempontjából hibátlan!

F1 következtetések

- Γ típuskörnyezet
 - változók típusa
 - ▶ Ø | <típuskörnyezet>, <változó>:<típus>
 - következtetés
 - $\triangleright \Gamma \vdash I$
 - *I* az Γ-ből adódó állítás
 - ▶ jól formált
 - Γ ⊢ wf
 - Ø ⊢ wf
 - érvényes következtetés
 - ha létezik hozzá típuslevezetés
 - jól típusozott kifejezés
 - ha Γ ⊢ E:A érvényes, akkor E jól típusozott

- következtetések
 - - Γ jól formált környezet
 - - Γ-ben az A jól formált típus
 - Γ ⊢ E:A
 - Γ-ben az E kifejezés típusa A

Az F1 szabályai I.

Az F1 szabályai II.

$$\frac{\Gamma', x:A, F'' \vdash wf}{\Gamma', x:A, F'' \vdash x:A} [VAL X]$$

$$\frac{\Gamma, x:A \vdash E:B}{\Gamma \vdash \lambda x:A.E:A \rightarrow B} [VAL FUN]$$

λx:Nat.x kifejezés típusa

► alaptípusok halmaza K = {Nat, Bool}

Ø⊢wf, Nat∈K Ø⊢Nat	[TYPE CONST]	x ∉ dom(Ø)	— [ENV X]
	Ø,x:Nat⊢ wf		— [ENV A] —
	Ø , x:Nat ⊢ x:Nat		
Ø	\vdash (λ x:Nat.x):Nat \rightarrow Na	at	—— [VAL FUN]

Az F1 rendszer szemantikája I.

► helyettesítési lemma
$$Γ, x:A \vdash E:B, Γ \vdash F:A$$

► E típusa nem változik meg $Γ, x:A \vdash E:B, Γ \vdash F:A$

[SUBST]

$$α$$
-konverzió
$$β$$

$$γ$$

$$λx:A.E ↔ α λy:A.E[x:=y]$$

$$Γ ⊢ λx:A.E:A → B, y ∉ FV(E) y ∉ dom(Γ)$$

$$Γ ⊢ λy:A.E[x:=y]:A → B$$
[CONV α]

Az F1 rendszer szemantikája II.

- tárgyredukció tétele
 - Arr ha Γ ⊢ E:A és E Arr F, akkor Γ ⊢ F:A
- tárgykiterjesztés tétele
 - Arr ha Γ ⊢ F:B, és van olyan E, amelyre E Arr F és Γ ⊢ E:A , akkor A \equiv B
- típusok egyértelműsége
 - Arr ha Γ ⊢ E:A és Γ ⊢ E:B, akkor A ≡ B

Normalizálás I.

- erős normalizálás tétele
 - Az F1 típusrendszerben az E:A jól típusozott kifejezésnek nincs végtelen
 β-redukciós sora
- normalizálás tétele
 - az F1 rendszerben minden jól típusozott λ-kifejezésnek van normál formája
- ► I. Church-Rosser tétel
 - ha az E:A jól típusozott kifejezésre E:A \rightarrow E₁:A és E:A \rightarrow E₂:A, akkor létezik olyan F:A kifejezés, amelyre E₁:A \rightarrow F:A És E₂:A \rightarrow F:A

Normalizálás II.

- egy jól típusozott program nem fut rosszul
 - Milner
 - ▶ 1978, A Theory of Type Polymorphism in Programming

Köszönöm a figyelmet!

Folytatjuk...