8. Graphs

Our plan

- Euler and the Königsberg Bridges
- Graphs
- Paths and Cycles
- Subgraphs
- Isomorphism
- Euler circuits and when they exist

Königsberg Bridges

http://www-history.mcs.st-andrews.ac.uk/Extras/Konigsberg.html

Königsberg Bridges

In Königsberg, Germany, a river ran through the city which also consisted of two islands and was connected by seven bridges. People often wondered (so the story goes) whether it was possible to walk a circuit round Königsberg, taking in all seven bridges which were crossed exactly once and ending up back in the same place – except that no-one seemed able to find a route that achieved this. This led Leonard Euler to discover a new branch of mathematics – graph theory – a topic that is not often taught at school level, but is highly important in Computing.

Consider a road map, the tube map, an electrical circuit, a chemical structure – all of these may be represented diagrammatically by means of points and lines.

The points 1,2,3,4,5 in the diagram above are called *vertices* (sometimes these may be labelled, P,Q,R,...), the lines (or arrows) connecting them are called *edges* and the whole diagram is called a *graph*.

Exercise: what is the best way to represent this?

Nodes = $\{1, 2, 3, 4, 5\}$

Edges == Nodes X Nodes

Map = ??

Exercise: what is the best way to represent this?

Nodes = $\{1, 2, 3, 4, 5\}$

Edges == Nodes X Nodes

Map =
$$\{ (1,2), (1,3), (2,2), (4,3), (4,3), (2,5), (4,5), \}$$

V(G) = {North, Centre, East, South} = { N, C, S, E}

$$E(G) = ?$$

V(G) = {North, Centre, East, South} = { N, C, S, E}

 $E(G) = \{ (N,C), (C,N), (N,E), (E,N), (E,S), (S,E), (S,C), (C,S) \}$

A degree of a node is the number of edges which END at the node

What are the degrees of N, C, S and E?

Degree (N) = 2

Degree (C) = 3

Degree (S) = 2

Degree (E) = 3

Simple Graph Representations

- A simple graph has a set of edges
- A graph may be directed or undirected
- Directed if edges are ordered pairs
 - $-\{(1,2),(3,4)\}$
- Undirected could be represented as sets
 - **-** { {1,2}, {2,3} ... }
 - Or a symmetric relation of course!! (as in the previous example)

Exercise

Draw the following undirected graph, G

•
$$V(G) = \{1, 2, 3, 4, 5\}$$

• E(G) = { {1,2}, {2,3}, {3,4}, {1,4}, {3,4}, {4,1}, {4,5} }

Exercise Solution

Exercise

Draw the following directed graph G

•
$$V(G) = \{1,2,3,4,5\}$$

• $E(G) = \{ (1,2), (2,3), (3,4), (4,1) \}$

Exercise Solution

More definitions about Graphs

- Two vertices connected by an edge are said to be adjacent
- Degree: number of edges ending at a vertex
- Path: a list of vertices linked by edges
- Simple path: a path with no duplicate vertices
- Cycle: a path with the same start/end vertex
- Graphs may be connected or disconnected

Module Evaluation Survey

- A formal way to gather your feedback to improve the student experience
- More information on the Student Hub
- Access all open surveys on the <u>Student Survey Portal</u> or via the QR code (you will also be emailed a link)

https://city.surveys.evasysplus.co.uk

Exam

- January 7th (Tuesday)
- I'll do a video of last years exam
- It lasts 1 hour
- It covers the whole course content
- Seven questions, choose five.
- Or if you do more, we will mark them and give the result based on the top 5

Subgraphs

Exercise

 Are the following isomorphic? (if and only if we can find a bijective function from nodes to nodes which keeps all the relations in tact)

• $F = \{ (1,7), (5,8), (6,9), (2,a), (4,b), (3,c) \}$

Exercise

 What edge to you need to add to the second graph to make it isomorphic to the first?

Weighted directed graph

What is the shortest path in this graph?

Euler circuit

- A Euler circuit is a cycle with each vertex visited and each edge used once.
- Theorem: An undirected graph has a Euler circuit if and only if every vertex has even degree
- Hence, there is no solution to the Königsberg Bridges problem
 - Just cannot be done!