3F3 – Statistical Signal Processing Examples Paper 1

Questions marked as '†' are straightforward questions testing fundamental concepts. The rest are Tripos style although not necessarily Tripos length.

- 1. †An incoming email is either spam or not. Let B be the event the email contains the word "free." From experience (or training data), P(B|spam) = 0.8 and P(B|not spam) = 0.1 and spam emails are 25% of all my emails. Give (Ω, P) .
- 2. †A fair die is thrown. Let $A = \{2, 4, 6\}$ and $B = \{1, 2, 3, 4\}$. Show A and B are independent.
- 3. †(Inverting the cdf.)
 - (a) Flip a fair coin twice and let X be the number of heads. Find and then sketch the cumulative distribution function (cdf) F(x).

Let the inverse cdf be defined as

$$F^{-1}(t) = \min\{x : F(x) > t\} \tag{1}$$

for any $t \in [0, 1)$.

- (b) Find $F^{-1}(0.5)$ and $F^{-1}(3/4)$.
- (c) Find $F^{-1}(0.5)$ and $F^{-1}(3/4)$ when the inverse cdf is now defined to be

$$F^{-1}(t) = \min\{x : F(x) \ge t\}.$$
 (2)

Are both definitions of the inverse correct? (Hint: Find the probability mass function of $F^{-1}(U)$ where U is a uniform random variable in the interval [0,1).)

Note: The actual definition of the inverse of the cdf is (2). The the definition in (1) has been introduced here for a learning/teaching purpose only.

- 4. †The set of possible of a random experiment is given by $\Omega = \{\omega_1, \omega_2, \dots, \omega_M\}$. Show the following results using the Axioms of Probability and/or Venn diagrams.
 - (a) For arbitrary events F and G, $P(F \cup G) = P(F) + P(G) P(F \cap G)$.
 - (b) Total Probability:

$$P(G) = \sum_{i=1}^{n} P(G|F_i)P(F_i),$$

where G is an arbitrary event and events $\{F_1, F_2, \ldots, F_n\}$ are mutually exclusive and exhaustive, i.e. $F_1 \cup F_2 \cup \ldots \cup F_n = \Omega$ and $F_i \cap F_j = 0$ for all $i \neq j$.

5. †The cdf of the random variable X is

$$F(x) = \begin{cases} 0 & -\infty < x \le 0\\ 1 - e^{-x} & 0 \le x < \infty \end{cases}$$

Find:

- (a) Pr(X > 0.5), i.e. the probability that X > 0.5.
- (b) Pr(X < 0.25).
- (c) $Pr(0.3 < X \le 0.7)$.

Figure 1: Function $g(\omega)$.

- 6. A real-valued random variable U has a Gaussian distribution with mean zero and variance σ^2 . A new random variable X = g(U) is defined as a function of U. Determine and sketch the probability density function of X when g(.) takes the following forms:
 - (a) q(U) = U.
 - (b) g(U) = |U|.
 - (c) $g(U) = U^2$.
 - (d) g(U) is as shown in the figure.
- 7. Let random variables X and Y have means μ_X and μ_Y and variances σ_X^2 and σ_Y^2 respectively. Define the *covariance*

$$Cov(X,Y) = \mathbb{E}\left\{ (X - \mu_X) \left(Y - \mu_Y \right) \right\} = \mathbb{E}\left\{ XY \right\} - \mu_X \mu_Y$$

and the *correlation* by

$$\rho(X,Y) = \frac{\operatorname{Cov}(X,Y)}{\sigma_X \sigma_Y}.$$

Let Y = aX + b for constants a, b and calculate $\rho(X, Y)$.

- 8. An archer measures the accuracy of shots in terms of x and y coordinates relative to the centre of the bullseye. It is found from many measurements that the x- and y-values of the shots are independent and normally distributed with mean zero and standard deviation σ .
 - Write down the joint probability density function for the x and y measurements and write down an integral expression which gives the probability that x lies between a and b and y lies between a and b.

Show that the cdf for R, the radial distance of shots from the centre of the bullseye, is given by:

$$F(r) = 1 - \exp(-r^2/(2\sigma^2)), \quad 0 \le r < \infty.$$

Determine the pdf for R. What type of distribution is this?

- 9. †Let joint probability density function of random variables X and Y be $f_{X,Y}(x,y) = 1$ if $x,y \in [0,1]$ and $f_{X,Y}(x,y) = 0$ otherwise. Show X and Y are independent.
- 10. Two random variables X and Y have a joint probability density function (pdf) given by

$$f_{X,Y}(x,y) = \begin{cases} kxy & 0 \le x \le 1, \\ 0 & \text{Otherwise} \end{cases}$$
 $0 \le y \le 1$

Determine:

- (a) The value of k which makes this a valid pdf.
- (b) The probability of the event $X \le 1/2$ AND Y > 1/2.
- (c) The marginal densities $f_X(x)$ and $f_Y(y)$.
- (d) The conditional density $f_{Y|X}(y|x)$. Determine whether X and Y are independent.
- 11. A bivariate Gaussian pdf is

$$f_{X,Y}(x,y) = \frac{1}{2\pi |\Sigma|^{1/2}} \exp\left(-\frac{1}{2} [x - m_1, y - m_2] \Sigma^{-1} [x - m_1, y - m_2]^T\right)$$

where $\Sigma = \begin{bmatrix} \sigma_1^2 & \rho \\ \rho & \sigma_2^2 \end{bmatrix}$ is the called covariance matrix and vector (m_1, m_2) is called the mean vector.

(a) Show the conditional pdf $f_{X|Y}(x|y)$ is a Gaussian pdf with

mean
$$m_1 + \frac{\rho}{\sigma_2^2}(y - m_2)$$
 and variance $\sigma_1^2 - \frac{\rho^2}{\sigma_2^2}$.

(Hint: write $f_{X,Y}(x,y) = g(x,y)h(y)$ where the function g(x,y) must contain all the x and xy terms of $f_{X,Y}$ and then use the definition of the conditional pdf. Also, you may first attempt the question for $m_1 = m_2 = 0$.)

(b) Find $f_Y(y)$ by using the definition of the conditional pdf.

Answers:

Q 1 Let S = spam, NS = not spam, F = contains word free, NF = does not contain free.

$$\Omega = \{(S, F), (S, NF), (NS, F), (NS, NF)\}.$$

$$P(\{(S,F)\}) = 0.8 \times 0.25, \ P(\{(NS,F)\}) = 0.1 \times 0.75, \ P(\{(NS,NF)\}) = 0.75 \times 0.9.$$

Q 3 (a)

$$F(x) = \begin{cases} 0 & x < 0 \\ 1/4 & 0 \le x < 1 \\ 3/4 & 1 \le x < 2 \\ 1 & 2 \le x. \end{cases}$$

(b)

$$F^{-1}(0.5) = \min\{x : F(x) > 0.5\} = \min[1, \infty) = 1,$$

$$F^{-1}(3/4) = \min\{x : F(x) > 3/4\} = \min[2, \infty) = 2.$$

(c)
$$F^{-1}(0.5) = 1$$
. $F^{-1}(3/4) = 1$.

 $\mathbf{Q} \ \mathbf{5}$ (a) 0.607. (b) 0.221. (c) 0.244.

Q 6 (a)
$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}x^2\right)$$
, $(-\infty < x < +\infty)$.
(b) $\frac{2}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}x^2\right)$, $(0 \le x < +\infty)$.
(c) $\frac{1}{\sqrt{2\pi x\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}x\right)$, $(0 \le x < +\infty)$.

(b)
$$\frac{2}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}x^2\right)$$
, $(0 \le x < +\infty)$.

(c)
$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}x\right)$$
, $(0 \le x < +\infty)$.

$$\begin{cases} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}(x-a)^2\right), & (-\infty < x < 0) \\ (2\Phi(a/\sigma) - 1)\delta(x), & (x = 0) \\ \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(\frac{-1}{2\sigma^2}(x+a)^2\right), & (0 < x < \infty) \end{cases}$$

where $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp(-u^2/2) du$.

Q 7
$$\rho(X,Y) = a\sigma_X^2/(\sigma_X \times |a|\sigma_X) = a/|a|$$
.

Q 10 (a) 4. (b) 3/16. (c)
$$f_X(x) = \begin{cases} 2x & 0 \le x \le 1 \\ 0 & \text{Otherwise} \end{cases}$$
, $f_Y(y) = \begin{cases} 2y & 0 \le x \le 1 \\ 0 & \text{Otherwise} \end{cases}$

(d)
$$\begin{cases} 2y & 0 \le y \le 1 \\ 0 & \text{Otherwise} \end{cases}$$
 X and Y independent.

S.S.Singh, September 2016