Лабораторна робота №5

Визначення показників захищеності інформації при несанкціонованому доступі

Ціль роботи: Визначити показники захищеності (уразливості) інформації при несанкціонованому доступі. Провести аналіз залежності показника уразливості інформації від параметрів системи ЗІ.

Коротка теорія

Один з основних принципів побудови КСЗІ - необхідність вибудовування навколо об'єкта захисту постійно діючих замкнутих контурів.

Мал. 1

Нехай Р_{угр} - імовірність виникнення погрози. Імовірність того, що всі зони захисту правильно функціонують,

$$P_{_{3au_{i}}}=\prod_{i=1}^{n}P_{_{3i}}.$$
 $P_{_{ya_{36}}}=1-P_{_{3au_{i}}}.$ дорівнює:

Імовірність того, що відбувся НСД, дорівнює:

$$P_{HCJI} = P_{yzp} \prod_{i=1}^{n} (1 - P_{3i})$$

Точність розрахунку залежить від точності вихідних даних.

Для одержання ймовірностей появи окремих погроз необхідно мати статистику (закон розподілу відповідних подій). Найпоширеніший - експонентний закон розподілу. Виражена за цим законом імовірність появи погрози у_і, дорівнює:

$$P_{yi}(t) = 1 - e^{-\lambda_i t}$$

де λ - інтенсивність НСД (відносне число НСД в одиницю часу). Если

$$\lambda_i << 1$$
, to $P_{yi}(t) \approx \lambda_i t$.

Постановка завдання

- 1) елементарні випадкові події:
 - $A^{(1)}$ порушник зруйнував захист в $3_1^{(1)}$,
 - $A^{(2)}$ порушник зруйнував захист в $3_1^{(2)}$,
 - $B^{(1)}$ порушник зруйнував захист в $3_2^{(1)}$,
 - $B^{(2)}$ порушник зруйнував захист в $3_2^{(2)}$,
 - С порушник зруйнував захист в 33,

 - Е порушник одержав НСД к ИИ1 и ИИ2 через КС2.
- 2) інтенсивності настання перерахованих вище подій λ (см.варіанти)

Вариа нт	$\lambda\{A^{(1)}\}$	λ{A ⁽²⁾ }	λ{B ⁽¹⁾ }	λ{B ⁽²⁾ }	λ{C}	λ{Д ⁽¹⁾ }	λ{Д ⁽²⁾ }	λ{Ε}
	1	2	3	4	5	6	7	8
1	0,000	0,000 7	0,002	0,000	0,0029	0,000	0,0038	0,0032
2	0,000	0,000	0,004	0,000	0,0028	0,000	0,0045	0,0025
3	0,000	0,000	0,001	0,000	0,0032	0,000	0,0055	0,0022
4	0,012	0,000	0,002	0,000	0,0035	0,000	0,0042	0,0022
5	0,000	0,000	0,001	0,000	0,0002	0,000	0,0022	0,0045

Порядок виконання роботи

- 1. Підрахувати ймовірності подій 1-8, якщо Т=500 годин.
- 2. Знайти ймовірності складних подій:

$$\begin{split} &P\{ \mbox{$ \Pi(^1)$} + E\} = P\{ \mbox{$\Pi(^1)$}\} + P\{E\} - P\{ \mbox{$\Pi(^1)$}\} \cdot P\{E\}, \qquad \mbox{$/$ / 0} \mbox{ бъединение} \\ &P\{ \mbox{$\Pi(^2)$} + E\} = P\{ \mbox{$\Pi(^2)$}\} + P\{E\} - P\{ \mbox{$\Pi(^2)$}\} \cdot P\{E\}, \\ &P\{ CB^{(1)} \mbox{$A^{(1)}$}\} = P\{C\} \cdot P\{B^{(1)}\} \cdot P\{A^{(1)}\}, \qquad \mbox{$/$ / 0$ пересечение} \end{split}$$

 $P\{CB^{(2)}|A^{(2)}\} = P\{C\} \cdot P\{B^{(2)}\} \cdot P\{A^{(2)}\},$

$$\begin{split} &P\{CB^{(1)}\,A^{(1)} + CB^{(2)}\,A^{(2)}\} \!=\! 1 - (1 - P\{CB^{(1)}\,A^{(1)}\})(1 - P\{CB^{(2)}\,A^{(2)}\}), \\ &P\{E + CB^{(1)}\,A^{(1)} + CB^{(2)}\,A^{(2)}\} \!=\! 1 - (1 - P\{E\})(1 - P\{CB^{(1)}\,A^{(1)}\})(1 - P\{CB^{(2)}\,A^{(2)}\}). \end{split}$$

3. Побудувати графік зміни ймовірності

$$P{E + CB^{(1)}A^{(1)} + CB^{(2)}A^{(2)}}$$
 від часу при T=(0÷1000) годин.

4. Зменшити найбільшу інтенсивність в 4 рази й подивитися, як це вплинуло на зміну ймовірності

$$P\{E + CB^{(1)}A^{(1)} ++ CB^{(2)}A^{(2)}\}$$

Від часу (зробити графік).

5. Визначити, у скільки разів потрібно зменшити всі інтенсивності, щоб імовірність

$$P\{E + CB^{(1)}A^{(1)} + CB^{(2)}A^{(2)}\}$$

зменшилася в 2 рази при незмінному значенні часу.

6. Представити у звіті обчислення й графіки. Проаналізувати отримані результати.