Might be completely wrong cos I did this hella hungover but it's better than no answers eh?

a)
$$s = (x -> 2, y -> 3)$$

i) $<(z + x) + (y + 4), s>$

$$\langle z + x, s \rangle \rightarrow_e fault$$

 $<(z + x) + (y + 4), s> -->_e$ fault

$$<(1 + x) + (y + z), s>$$

$$x, s \to_e 2, s \to_e 1$$

$$<1 + x, s> \rightarrow_e <1+2, s>$$

$$(1 + x) + (y + z)$$
, s> \rightarrow_e $(1+2) + (y + z)$, s>

$$<(1 + x) + (y + 4), s>$$

$$s(x) = 2$$

$$x, s \to e < 2, s \to$$

$$<1 + x, s> \rightarrow_e < (1+2), s>$$

$$<(1 + x) + (y + 4), s > \rightarrow_e <(1 + 2) + (y + 4), s >$$

ii)

$$(z + x) + (y + 4), s \rightarrow fault$$

$$<(1 + x) + (y + z), s> \rightarrow <(1 + 2) + (y + z), s>$$

$$\rightarrow$$
 <3 + (y + z), s> \rightarrow <3 + (3 + z), s> \rightarrow fault

$$<(1 + x) + (y + 4), s> \rightarrow <(1 + 2) + (y + 4), s>$$

$$\rightarrow$$
 <3 + (y + 4), s> \rightarrow <3 + (3 + 4), s> \rightarrow <3 + 7, s> \rightarrow <10, s>

i)

When E = n, then in this case the predicate doesn't hold, so the implication holds trivially.

When E = x, then it's easy to see from the rule that we have the expected result.

When E = E1 + E2, then consider three separate cases E = E1 + E2, E = n + E2 and E = n1 + n2.

ii) Just follows the normal mathematical induction rule.

Base Case: Proved in (i)

Inductive Case: Break into k steps and 1 final step and then use the IH

iii)

When E = n, then the predicate doesn't hold, so we have the implication trivially.

When E = x, then we just inspect the rule and get the result.

When E = E1 + E2 then consider two cases, either E = E1 + E2 or E = n + E2

Use the examples given to you in (ai) where it faults

- iv) Similar to ii
- v) Strong normalization implies that every term has normalised form. Specifically in our case, every expression **must** eventually becomes either a natural number **n** or **fault**. If the given expression reduced to a **fault**, i.e. $\langle E, s \rangle \rightarrow e^* \langle fault, s \rangle$, the from iv's result we have var(E) dom(s)! = empty set. And if the given expression reduced to a natural number **n** from ii it must be the case $var(E) \cup dom(s) = var(n) \cup dom(s) = dom(s)$, which means we have var(E) is a subset of dom(s)

4.

a) There exists a register machine M with at least n + 1 registers, R₀ , R₁ , ... , R_n , such that for all $(x_1, ..., x_n) \in \mathbb{N}^n$ and all $y \in \mathbb{N}$:

The computation of M starting with $R_0=0$, $R_1=x_1,\ldots,R_n=x_n$ and all other registers set to 0, halts with $R_0=y$

If and only if
$$f(x_1, ..., x_n) = y$$

b)

i) Some diagram (hopefully something like the one below)?

- ii) f(x, y) computed by M is the function that halts if y = x
- c) inc(R): $L_0: R^+ \rightarrow L_i$

zero(R):
$$L_0: R^- \rightarrow L_0, L_i$$

test(
$$R_i$$
, R_j): L_0 : $R_i^- -> L_1$, L_2
 L_1 : $R_j^- -> L_0$, L_1
 L_2 : $R_i^- -> L_1$, L_k

Define ADD(a,x,y) as: ENTRY
$$\rightarrow$$
 L₀

$$L_0: R_a^- \rightarrow L_1$$
, EXIT

$$L_1: R_x^+ \rightarrow L_2$$

$$L_2: R_v^+ \rightarrow L_0$$

Then test(
$$R_i, R_j$$
) is: $L_0: R_i^- \rightarrow L_1, L_3$

$$L_1\colon R_j^-\to L_2,\, L_7$$

$$L_2\text{: }R_a{}^+ \to L_0$$

L₃:
$$R_i^- \rightarrow L_4$$
, L₆ This section is for x < y

$$L_4$$
: ADD(a, i, j) $\rightarrow L_5$

$$L_5: R_i^+ \rightarrow L_I$$

$$L_6$$
: ADD(a, i, j) $\rightarrow L_k$ $x = y$ (success)

$$L_7$$
: ADD(a, i, j) $\rightarrow L_8$ $x > y$

$$L_8: R_i^+ \rightarrow L_I$$

HALT: HALT

- d) i) A register machine is said to be decided the halting problem if for all e,a_1, a_2, a_3, a_n which all natural number, it always halt with R_0 equals to 0 and 1 when starting with R_0 = 0, R1 = e and R_2 = [a_1,a_2,...,a_n]. And R_0 equals to 1 if and only if a register machine executed the program e with initial register value set as R=0, R_1 = a_1, R_2 = a_2, ...,R_n = a_n, and all other register zeroed halts. This register machine doesn't exist, so we say that halting problem is undecidable for a register machine.
 - ii)

We cannot express the halting problem using successor machine because all the operation that is supported by the successor machine can be implemented using register machine. And we can't construct a register machine that is capable of deciding the halting problem, thus we cannot do it using the successor machine either.

Or we could prove by contradiction. Assuming that there is a successor machine **S** which can solve the halting problem. Then by using the result from part c, we will obtain a register machine **M** that is capable of solving the halting problem. However as we have known already such register machine **M** doesn't exist. So we have a contradiction. Thus it must be that we can't have a successor machine **S** which can solve the halting problem.