A Genealogical Look at Shared Ancestry on the X Chromosome

Vince Buffalo¹, Stephen M. Mount², Graham Coop¹

¹Department of Evolution and Ecology, Center for Population Biology UC Davis

²Department of Cell Biology and Molecular Genetics, Center for Bioinformatics and Computational Biology University of Maryland

April 6, 2016

bioRxiv preprint and blog post

Details of this work are in our bioRxiv preprint: http://bit.ly/x-preprint

We've also written a blog post for a general audience about X chromosome ancestry and genetic genealogy: http://bit.ly/x-ancestry

Genealogies

One's **genealogy** contains all biparental relationships back in time of a present-day individual.

These include your two parents, four grandparents, eight great-grandparents, ..., your 2^k great k-2 grandparents, and in general the 2^k ancestors k generations back. These are one's **genealogical** ancestors.

X Genealogies

The X chromosome inheritance pattern:

- Every individual receives an X chromosome from his/her mother.
- ► Every female receives an X from her father (and sons do not receive an X from their fathers¹.).

¹We call this the *no two adjacent male conditon*, as it means no two males are adjacent in an X genealogy

X Genealogies

Thus, a present-day female has 2, 3, 5, 8, 18, ... X ancestors.

Encoding X inheritance rules as a set of recursion equations for the number of females (f_k) , males (m_k) , and total X ancestors $n_k = f_k + m_k$ for generation k in the past:

 $f_k=n_{k-1}$ every individual receives an X chromosome from his/her mother $m_k=f_{k-1}$ every female receives an X chromosome from her father

X Genealogies

Which is the famous Fibonacci recurrence. Thus, k generations back a present-day female has \mathcal{F}_{k+2} X ancestors in her X chromosome genealogy.

The X Chromosome

$$\mathbb{E}[N] = \frac{1}{2^d}(\nu d + c) \tag{2}$$

Acknowledgments

Graham Coop Steve Mount

Coop Lab

