Analyse de données - Résumé

November 28, 2023

THEVENET Louis

Table des matières

1.	Introduction - Evaluating classifiers	1
2.	Statistical Classification	1
	2.1. Bayesian Rule	
	2.2. MAP Classifier	
	ACP - Analyse en Composantes Principales	

1. Introduction - Evaluating classifiers

Définition 1.1: Confusion Matrix

	Predicted Negative	Predicted Positive
Actual Negative	60	10
Actual Positive	5	25

Définition 1.2: Precision, Recall and F1-score

$$\begin{aligned} & \text{Precision} = \frac{\text{True positives}}{\text{True Positives} + \text{False Positives}} \\ & \text{Recall} = \frac{\text{True positives}}{\text{True Positives} + \text{False Negatives}} \\ & \text{F1-score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} \end{aligned}$$

2. Statistical Classification

2.1. Bayesian Rule

Définition 2.1.1:

Pour K classes $w_1, ..., w_K$ et $x = (x_1, ..., x_p)^T$ observations

$$d: \begin{cases} X \to A \\ x \mapsto d(x) \end{cases}$$

où A est un ensemble d'actions $a_1,...,a_q$ où $a_k=$ assigne x à la classe $w_k, \forall k \in \llbracket 1,...,n \rrbracket$ On peut ajouter $a_0=$ ne pas classer x pour avoir une option de rejet.

Théorème 2.1.1: Bayesian Rule

- Probabilité à priori de la classe $w_k: P(w_k)$
- Densité de probabilité de x sachant la classe $w_k: f(x\mid w_k)$

On en conclut la probabilité à posteriori que x appartiennent à \boldsymbol{w}_k :

$$P(w_k \mid x) = \frac{f(x \mid w_k)P(w_k)}{f(x)}$$

avec $f(x) = \sum_{k=1}^K f(x \mid w_k) P(w_k)$

2.2. MAP Classifier

Définition 2.2.1:

$$d^*(x) = a_j \Leftrightarrow \forall k \in [\![1,...,K]\!] : P\big(w_j \mid x\big) \geq P(w_k \mid x)$$

Définition 2.2.2:

Classes équiprobables : classificateur de maximum de vraisemblance

$$d^*(x) = a_j \Leftrightarrow \forall k \in [\![1,...,K]\!] : P\big(x \mid w_j\big) \geq P(x \mid w_k)$$

Proposition 2.2.1: Le MAP classifier minimise la probabilité d'erreur :

$$P_e = \sum_{k=1}^K P[d(x) = a_k \cap x \not\in w_k]$$

2

3. ACP - Analyse en Composantes Principales