#9 קומבינטוריקה – תרגול

 $e \cap C \neq \emptyset$, $e \in E$ גרף. אם לכל הקדקודים של נקראת כיסוי $C \subseteq V$ גרף. גרף. גרף. הגדרה: יהא

דוגמאות לזיווג ולכיסוי:

 $|C| \geq |F|$ מענה: בכל גרף אם F הוא כיסוי ו-F הוא זיווג, מתקיים

סימון: $\nu(G)$ גודל מקס' של זיווג. $\tau(G)$ גודל מקס' של כיסוי.

 $\tau(G) \geq \nu(G)$ גרף, גרף, משפט: יהא

 $\tau(G) \leq 2\nu(G)$ טענה: יהא G גרף, אז מענה:

C-Vצ"ל - Fעות של Fעות מקס'. כלומר, Fעות של Fעות להיות כל הקדקודים המשתתפים בכל הצלעות של Fעול בע"ל - Fע"ל - Fע"ל היותג, שכן Fע"ל הוא זיווג, שכן Fע"ל הוא זיווג, שכן Fע בער ביFע"ל ביFע ב

 $\tau(G) = \nu(G)$ מתקיים G = (A, B, E) בגרף דו צדדי König משפט

תרגיל: הוכיחו את משפט Hall ממשפט König.

אמ"מ לכל גרף דו"צ $|N(S)| \geq |S|$ מתקיים מלכל אמ"מ לכל אנ"ט צ"ל אנ"ל ב"ל ע"ל אנ"ל מער נתון שלכל גרף דו"צ הוכחה: נתון $\sigma = (A,B,E)$ כאשר נתון שלכל גרף דו"צ $\sigma = (A,B,E)$.

.(Hall-ביוק כמו ב-Hall) אז סיימנו (ההוכחה היא בדיוק כמו ב-u(G) = |A|

נסתכל על 'S=A' ולכן: , $N(A') \subseteq B'$ וזה יביא לסתירה. און ,N(A') < |A'| ולכן:

$$|N(A')| \leq |B'| = |C \setminus A \cap C| = |C| - |A \cap C| \underset{|C| \leq |A|}{\leq} |A| - |C \cap A| = |A'|$$

|A| = |B| = n גרף דו"צ כאשר G = (A, B, E) יהי (תרגיל: יהי

- . אז יש זיווג מושלם לכל $\deg(v) \geq \frac{n}{2}$ אז יש זיווג אורף. הוכיחו אום לכל לפן או הוכיחו (או
 - . ואין זיווג ואין $\deg(v) \geq \frac{n}{2} 1$ בו לגרף דוגמא איימת קיימת (ב

פתרון:

 $|N(\{v\})|=0$, מתקיים איזשהו $S\subseteq S$ אם אם $S\subseteq S$ אם אם אועבור איזשהו $S\subseteq S$ מתקיים אועכל איז עבור איזשהו $S\subseteq S$ מתקיים אועכל אועכל S=S ולכן S=S ולכן S=S ולכן S=S ולכן S=S ולכן S=S ולכן איזשהו איזשהו S=S ולכן איזשהו איזשהו S=S ולכן איזשהו איזשה

 $|N(w) \cup S| > \frac{1}{2}$. נסתכל על $|N(w) \cup S| > \frac{n}{2}$, $w \in B \setminus N(S)$ בנוסף, אם כן, $|S| > \frac{n}{2}$. אם כן, $|S| > \frac{n}{2}$. אם רת, $|S| > \frac{n}{2}$. אם רת, $|S| > \frac{n}{2}$. אם כן, |S| = n. אם כן, |S| = n. אם כן, |S| = n. אם כן, |S| = n.

אך אין זיווג: , $\deg(v) \geq \frac{n}{2} - 1 = 1$ ו-וn = 4 אבר הבא

תרגיל: מטריצה ריבועית M מסדר $n \times n$ נקראת בי-סטוכסטית אם איבריה הם ממשיים אי-שליליים וסכומי כל השורות וכל העמודות הם 1. הוכיחו בעזרת משפט החתונה שמכל מטריצה M כזו ניתן לבחור n איברים חיוביים כך שבכל שורה ועמודה נמצא בדיוק אחד מהם.

$$M = \begin{pmatrix} 2/3 & 1/3 \\ 2/3 & 1/3 & \\ 1/3 & 1/2 & 1/6 \\ 1/3 & 1/6 & 1/2 \end{pmatrix}$$

אמ"מ i אמ"ה נחבר שורה M ו-B העמודות של M יהיו השורות לעמודה G=(A,B,E) כך שורה G=(A,B,E) אמ"מ העמודות נגדיר גרף דו"צ מוערים. $m_{ij}>0$

צ"ל שיש זיווג מושלם. יהי $S\subseteq A$, אז נראה ש-|S| ||N(S)| ||S| הוא סכום האיברים שמופיעים בשורות של S, אז נראה ש-|S| לפי העמודות, נקבל שהסכום על כל עמודה |S|, ומס' העמודות עליהן נסכום את האיברים החיוביים שמופיעים בשורות של S לפי העמודות, נקבל שהסכום על כל עמודה |N(S)|. לכן, סך הכל, סכום האיברים החיוביים שמשתתפים בשורות |N(S)| שווה מ-|N(S)|. לכן, |N(S)| כנדרש.