Biol5705 Module: Gene Sequence Analysis

Lecture 1
Homology Searching

Dr. Morgan Langille

Outline

- What is homology?
- orthologs, paralogs, etc.
- local vs global alignment
- e values, bit scores, "coverage", identity vs similarity
- different blast flavours (blastn, blastp, tblastn, etc.)
- Blast (Web)

What is homology?

Homology refers to shared ancestry

 Two sequences are homologous if they are derived from a common ancestral sequence

- One sequence by itself is not informative;
 - it must be analyzed by comparative methods against existing sequence databases to develop hypothesis concerning relatives and function.

Types of homologs

Orthologs

- Think same gene in different organism
- Often thought to have similar function

Paralogs

- Think gene duplication
- Less likely to have similar function

What is similarity?

- Similarity is a measure of the likeness between sequences.
- Gene searching tools calculate the similarity between sequences and rank more similar sequences higher.

- Sequences can NOT be partially homologous
 - WRONG: Gene X is 80% homologous to Gene Y
- Sequences can be partially similar
 - CORRECT: Gene X has 80% identity to Gene Y

Identity vs Similarity

 Identity is a percentage measurement that states how many characters in the sequence are identical

 Similarity can also be used as a metric which means how many characters are "positive scoring"

Assessing Sequence Similarity

is this alignment significant?

Twilight Zone

Some Simple Suggestions

- If two sequence are > 100 residues and > 25% identical, they are likely related
- If two sequences are 15-25% identical they may be related, but more tests are needed
- If two sequences are < 15% identical they are probably not related

Global vs Local

- Alignments can be global or local (this is algorithm specific)
 - A global alignment is an optimal alignment that includes all characters from each sequence (Multiple Sequence Alignment)
 - A local alignment is an optimal alignment that includes only the most similar local region or regions (e.g BLAST).

Dot Plots

Popular freeware package is Dotter

http://sonnhammer.sbc.su.se/Dotter.html

The BLAST algorithm

- The BLAST programs (Basic Local Alignment Search Tools) are a set of sequence comparison algorithms introduced in 1990 that are used to search sequence databases for optimal local alignments to a query.
 - Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) "Basic local alignment search tool." J. Mol. Biol. 215:403-410.
 - Altschul SF, Madden TL, Schaeffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs." NAR 25:3389-3402.

Several different BLAST programs:

Program Description

blastp

blastn

blastx

tblastn

tblastx

Compares an amino acid query sequence against a protein sequence database.

Compares a nucleotide query sequence against a nucleotide sequence database.

Compares a nucleotide query sequence translated in all reading frames against a protein sequence database. You could use this option to find potential translation products of an unknown nucleotide sequence.

Compares a protein query sequence against a nucleotide sequence database dynamically translated in all reading frames.

Compares the six-frame translations of a nucleotide query sequence against the six-frame translations of a nucleotide sequence database. Please note that the tblastx program cannot be used with the nr database on the BLAST Web page because it is too computationally intensive.

MegaBLAST

- megaBLAST
 - For aligning sequences which differ slightly due to sequencing errors etc.
 - Very efficient for long query sequences
 - Uses big word (k-tuple) sizes to start search
 - Very fast

http://www.ncbi.nlm.nih.gov/BLAST/

Basic BLAST

Choose a BLAST program to run.

nucleotide blast	Search a nucleotide database using a nucleotide query Algorithms: blastn, megablast, discontiguous megablast
protein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
blastx	Search protein database using a translated nucleotide query
tblastn	Search translated nucleotide database using a protein query
tblastx	Search translated nucleotide database using a translated nucleotide query

Specialized BLAST

Choose a type of specialized search (or database name in parentheses.)

- Make specific primers with <u>Primer-BLAST</u>
- Search trace archives
- □ Find conserved domains in your sequence (cds)
- Find sequences with similar conserved domain architecture (cdart)
- Search sequences that have gene expression profiles (GEO)
- Search <u>immunoglobulins</u> (IgBLAST)
- Search using SNP flanks
- Screen sequence for <u>vector contamination</u> (vecscreen)
- Align two (or more) sequences using BLAST (bl2seq)
- Search <u>protein</u> or <u>nucleotide</u> targets in PubChem BioAssay
- Search SRA transcript and genomic libraries
- Constraint Based Protein <u>Multiple Alignment Tool</u>
- Needleman-Wunsch Global Sequence Alignment Tool
- Search <u>RefSeqGene</u>
- Search WGS sequences grouped by organism

QUERY sequence(s)

>gi||15237380|ret|NP_197163.1| myb tamily transcription factor (MYB43) [Arabidopsis thaliana] MGRQPCCDKVGLKKGPWTIEEDKKLINFILTNGHCCWRALPKLSGLLRCGKSCRLRWINYLRPDLKRGLL SEYEEQKVINLHAQLGNRWSKISHLPGRTDNEIKNHWNTHIKKKLRKMGIDPLTHKPLSEQEASQQAG RKKSLVPHDDKNPKQDQOTKDEQEQHQLEQALEKNNTSVSGDGFCIDEVPLLNPHEILIDISSSHHHHSN DDNVNINTSKFTSPSSSSSTSSCISSVVPGDEFSKFFDEMEILDLKWLSSDDSLGDDISKDGKFNNSTV DTMNLWDINDLSSLDMFMNEHDDGFIGNGGCSRMVLDQDSWTFDLL

BLAST program

BLAST database

BLAST results

Considerations for choosing a BLAST database

- First consider your research question:
 - Are you looking for an particular gene in a particular species?
 - BLAST against the genome of that species.
 - Are you looking for additional members of a protein family across all species?
 - BLAST against the non-redudant database (nr), if you can't find hits check wgs, htgs, and the trace archives.
 - Are you looking to annotate genes in your species of interest?
 - BLAST against known genes (RefSeq) and/or ESTs from a closely related species.

When choosing a database for BLAST...

- It is important to know your reagents.
 - Changing your choice of database is changing your search space
 - Database size affects the BLAST statistics
 - record BLAST parameters, database choice, database size in your bioinformatics lab book, just as you would for your wet-bench experiments.
 - Databases change rapidly and are updated frequently
 - It may be necessary to repeat your analyses

Where does the score (S) come from?

- The quality of each pair-wise alignment is represented as a score and the scores are ranked.
- Scoring matrices are used to calculate the score of the alignment base by base (DNA) or amino acid by amino acid (protein).
- The alignment score will be the sum of the scores for each position.

What's a scoring matrix?

- Substitution matrices are used for amino acid alignments.
 - each possible residue substitution is given a score
- A simpler unitary matrix is used for DNA pairs
 - each position can be given a score of +1 if it matches and a score of -1 if it does not.

BLOSUM vs. PAM

 BLOSUM 62 is the default matrix in BLAST 2.0. Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix.

Sequence Similarity Searching – The statistics are important

 Discriminating between real and artifactual matches is done using an estimate of probability that the match might occur by chance.

What do the Score and the e-value really mean?

- The quality of the alignment is represented by the Score.
 - Score (S)
 - The score of an alignment is calculated as the sum of substitution and gap scores. Substitution scores are given by a look-up table (PAM, BLOSUM) whereas gap scores are assigned empirically.
- The significance of each alignment is computed as an E value.
 - E value (E)
 - Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance.
 The lower the E value, the more significant the score.

I'm confused! What does the E-value mean again?

E value (E)

- Expectation value. The number of different alignments with scores equivalent to or better than S that are expected to occur in a database search by chance. The lower the E value, the more significant the score.
- When E < 0.01, P-values and E-value are nearly identical.
 - So, the E-value is the number of times you expect to see your hit occur in the database (with as good as or better score) due to random chance alone.

Notes on E-values

- Low E-values suggest that sequences are homologous
 - Can't show non-homology
- Statistical significance depends on both the size of the alignments and the size of the sequence database
 - Important consideration for comparing results across different searches
 - E-value increases as database gets bigger
 - E-value decreases as alignments get longer

Coverage

 Coverage: The proportion of the aligned length with respect to the length of the query or subject.

Example

 Your gene is 1000bp, and you have a Blast alignment from 250-500. What is the query coverage?

FASTA File Format

- Plain text file (e.g. don't open with Word!)
- Each sequence has 2 parts.
 - One header line starts with ">"
 - e.g. ">This is a fasta header. Any text goes here."
 - One or more sequence lines:
 - e.g. "ATTCTCGCTCGAATCGATCGCATAGTAGCA"
- Each file can contain multiple sequences
- Sequences can be DNA or protein (not a mixture)

Alignments

```
G recombinase A [Novosphingobium aromaticivorans DSM 12444]
>@reflYP 496553.11
Length=356
 GENE ID: 3917906 recA | recombinase A
[Novosphingobium aromaticivorans DSM 12444]
 Score = 483 bits (1244), Expect = 2e-173, Method: Compositional matrix adjust.
 Identities = 236/332 (71%), Positives = 282/332 (85%), Gaps = 6/332 (2%)
Query 1 ALAAALAQIEKQFGKGSIMRMGDGEATENIQVVSTGSLGLDIALGVGGLPRGRVVEIYGP
                                                                         60
           AL AALAOI++ FGKGS MR+G EA + ++ VSTGSLGLDIALG+GGLPRGR++EIYGP
Sbjct
      21 ALDAALAOIDRAFGKGSAMRLGSKEAMO-VEAVSTGSLGLDIALGIGGLPRGRIIEIYGP
                                                                         79
      61 ESSGKTTLTLOVIAELQKIGGTAAFIDAEHALDVQYAAKLGVNVPELLISQPDTGEQALE
                                                                         120
Query
           ESSGKTTL L IAE OK GGTAAFIDAEHALD YA KLGV++ L++SOPDTGEOALE
Sbjct
       80
           ESSGKTTLALHAIAEAOKGGGTAAFIDAEHALDPVYARKLGVDIDNLIVSOPDTGEOALE
                                                                         139
      121 ITDALVRSGSIDMIVIDSVAALVPKAEIEGEMGDSLPGLQARLMSQALRKLTGTIKRTNC
                                                                         180
Query
           ITD LVRS +ID++V+DSVAALVP+AEIEGEMGDS GLOARLMSOALRKLTG+I R+ C
Sbjct
       140 ITDTLVRSNAIDVLVVDSVAALVPRAEIEGEMGDSHVGLQARLMSQALRKLTGSISRSRC
                                                                         199
                                                                         240
Ouerv
      181 LVIFINQIRMKIGVMFGNPETTTGGNALKFYSSVRLDIRRIGSIKKNDEVIGNETRVKVV
           +VIFINO+RMKIGVM+GNPETTTGGNALKFY+SVRLDIRR G IK DE++GN TRVKVV
Sbict
       200 MVIFINOVRMKIGVMYGNPETTTGGNALKFYASVRLDIRRTGOIKDRDEIVGNATRVKVV
                                                                         259
Query
       241 KNKVSPPFREAIFDILYGEGISRQGEIIDLGVQAKIVDKAGAWYSYNGEKIGQGKDNARE
                                                                         300
           KNKV+PPF++ FDI+YGEGIS+ GEI+DLGV+A +V+K+GAW+SY+ +IGOG++NA+
Sbjct
       260 KNKVAPPFKQVEFDIMYGEGISKIGEILDLGVKAGLVEKSGAWFSYDSIRIGQGRENAKN
                                                                         319
      301 FLRENPEIAREIENRIRESL----GVVAMPD
                                             327
Query
           FLRENPE+
                      \pm E
                                    G++A PD
                         TR
Sbjct
     320 FLRENPEVCSRLEAAIRGRTDQVAEGLMAGPD
                                             351
```

Databases

- NR "non-redundant" database
 - Sequences from various experiments (not just completed genomes)
 - May not be that "non-redundant"
- RefSeq
 - Curated sequences by NCBI
 - Does not contain duplicates
- Swissprot
 - A manually curated sequence of proteins
- Protein Data Bank
 - Contains protein sequences that have 3D structures available

Blast Web Demo

- Assignment 1
 - http://morganlangille.com/teaching/biol5705/assignment1.pdf
- Due before next class