FEUILLE D'EXERCICES N°6 Méthodes numériques d'optimisation

Démonstrations de cours

Les exercices de cette section ne seront pas traités en TD, les corrigés se trouvant dans le polycopié. Les exercices marqués & sont exigibles au partiel et à l'examen.

Exercice 1 – Directions de descente

Module B₃ – Propositions 1 et 2

Soit \mathcal{X} un espace de HILBERT. Soient $\mathcal{U} \subset \mathcal{X}$ un ouvert, $x_0 \in \mathcal{U}$ et $f: \mathcal{U} \to \mathbb{R}$ une fonction.

(a) Soit $d \in \mathcal{X}$. On suppose que f admet une dérivée directionnelle en x_0 suivant d, avec $f'(x_0;d) < 0$. Montrer que, si d est une direction de descente pour f en x_0 , alors il existe $\tau_0 > 0$ tel que

$$\forall \tau \in]0; \tau_0], \qquad \frac{f(x_0 + \tau d) - f(x_0)}{\tau} < 0$$

$$\lim_{\tau \to 0^+} \frac{f(x_0 + \tau d) - f(x_0)}{\tau}$$

Justifier que

$$\lim_{\tau \to 0^+} \frac{f(x_0 + \tau \, d) - f(x_0)}{\tau}$$

existe. Que vaut cette limite? En déduire que $f'(x_0; d) \leq 0$.

(b) Soit $d \in \mathcal{X}$. On suppose que f admet une dérivée directionnelle en x_0 suivant d. En considérant la limite du taux de variation

$$\forall \tau \neq 0, \qquad \frac{f(x_0 + \tau d) - f(x_0)}{\tau}$$

 $\forall \tau \neq 0, \qquad \frac{f(x_0 + \tau d) - f(x_0)}{\tau}$ justifier qu'il existe une fonction ε définie au voisinage de 0 telle que $\varepsilon(t) \to 0$ lorsque $t \to 0$ et

$$f(x_0 + \tau d) = f(x_0) + \tau \left(f'(x_0; d) + \varepsilon(\tau) \right)$$

En remarquant que

$$f'(x_0; d) + \varepsilon(\tau) \xrightarrow[\tau \to 0]{} f'(x_0; d)$$

et en utilisant le fait que $f'(x_0;d) < 0$ par hypothèse, montrer qu'il existe $\tau_0 > 0$ tel que

$$\forall \tau \in]0; \tau_0], \qquad (f'(x_0; d) + \varepsilon(\tau)) > 0$$

En déduire que, pour tout $\tau \in]0; \tau_0]$, on a $f(x_0 + \tau d) < f(x_0)$.

♣ Exercice 2 – Fonctions régulières

Module B₃ – Proposition 8

Soit \mathcal{X} un espace de Hilbert. Soit $J: \mathcal{X} \to \mathbb{R}$ une fonction L-régulière. Soient $A: \mathcal{Y} \to \mathcal{X}$ un opérateur linéaire borné et $b \in \mathcal{X}$. Considérons la fonction

$$f: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & J(A(x)+b) \end{array} \right.$$

 $\ \, \int \ x \ \mapsto \ J(A(x)+b)$ Justifier que f est différentiable et calculer son gradient. En déduire que f est $(|||A|||^2L)$ -régulière.

Exercices fondamentaux

Exercice 3 – Méthode de Newton Après avoir justifié de son applicabilité, écrire les itérations explicites de la méthode de NEWTON pour la minimisation des fonctions suivantes :

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t^2 + \cos t \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 6y^2 \end{array} \right.$$

Exercice 4 – Fonctions régulières

Montrer que les fonctions suivantes sont régulières :

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \rightarrow & \mathbb{R} \\ t & \mapsto & t^2 + \cos t \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 6y^2 \end{array} \right.$$

Exercice 5 – Méthode de gradient Après avoir justifié de son applicabilité, écrire les itérations explicites de la méthode du gradient à pas fixe pour la minimisation des fonctions suivantes :

(a)
$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ t & \mapsto & t^2 + \cos t \end{array} \right.$$

(b)
$$f: \left\{ \begin{array}{ccc} \mathbb{R}^2 & \rightarrow & \mathbb{R} \\ (x,y) & \mapsto & 2x^2 + 6y^2 \end{array} \right.$$

À quelles conditions l'algorithme écrit converge-t-il vers un minimiseur de la fonction considérée?

Exercice 6 – Méthode de Newton vs. méthode du gradient dans le cas quadratique

Soient $A \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique définie positive, $b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. On considère la fonction suivante :

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \langle A \, x, x \rangle - \langle b, x \rangle + c \end{array} \right.$$

- (a) Justifier que f admet un unique minimiseur. Le caractériser au premier ordre.
- (b) Écrire la suite générée par la méthode de NEWTON. Justifier qu'elle converge vers le minimiseur de f.
- (c) Montrer que f est régulière.
- (d) Écrire la suite générée par la méthode du gradient. À quelle condition converge-t-elle vers le minimiseur de f?
- (e) Discuter des avantages éventuels à utiliser la méthode du gradient plutôt que la méthode de NEWTON.

Exercice 7 – Recherche linéaire Soient $A \in \mathcal{M}_{n,n}(\mathbb{R})$ une matrice symétrique définie positive, $b \in \mathbb{R}^n$ et $c \in \mathbb{R}$. On considère la fonction suivante

$$f: \left\{ \begin{array}{ccc} \mathbb{R}^n & \to & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \langle A \, x, x \rangle + \langle b, x \rangle + c \end{array} \right.$$

Soit $x_0 \in \mathbb{R}^n$ tel que $\nabla f(x_0) \neq 0$. On s'intéresse à la fonction suivante

$$J: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ \tau & \mapsto & f(x_0 - \tau \nabla f(x_0)) \end{array} \right.$$

- (a) Montrer que J est une fonction strictement convexe.
- (b) Montrer que J est infinie à l'infini.
- (c) En déduire que J admet un unique minimiseur.
- (d) Donner une expression explicite de J en fonction de A, b, c et x_0 .
- (e) Déterminer l'unique minimiseur τ^* de J. Vérifier que $\tau^* > 0$.
- (f) Donner une expression du minimiseur de J en fonction de $\nabla f(x_0)$ et de Hess $f(x_0)$.

Compléments

Exercice 8 – Suite minimisante pour une fonction fortement convexe Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction fortement convexe, de module $\alpha > 0$. On note $x^* \in \mathbb{R}^n$ son unique minimiseur. Soit $(x_k)_{k \in \mathbb{N}}$ une suite minimisante pour f.

(a) Soit $k \in \mathbb{N}$. Montrer que

$$\forall \lambda \in [0;1], \quad f(\lambda x_k + (1-\lambda) x^*) \le \lambda f(x_k) + (1-\lambda) f(x^*) - \frac{\alpha}{2} \lambda (1-\lambda) \|x_k - x^*\|_2^2$$

(b) Justifier que $\forall \lambda \in [0;1], \quad f(x^*) \leq f(\lambda x_k + (1-\lambda)x^*)$

En déduire que $\forall \lambda \in [0;1], \quad \|x_k - x^*\|_2^2 \le \frac{2}{\alpha(1-\lambda)} \left(f(x_k) - f(x^*)\right)$

(c) Justifier que $\forall k \in \mathbb{N}, \quad \frac{\alpha}{2} \|x_k - x^*\|_2^2 \le f(x_k) - \min_{x \in \mathbb{R}^n} f(x)$

En déduire que la suite $(x_k)_{k\in\mathbb{N}}$ converge vers le minimiseur de f.

★ Exercice 9 – Lemme de descente Soit \mathcal{X} un espace de HILBERT. Soit $J: \mathcal{X} \to \mathbb{R}$ une fonction L-régulière. Soit $(x, z) \in \mathcal{X}^2$. On pose

$$f: \left\{ \begin{array}{ccc} \left[\,0\,;1\,\right] & \to & \mathbb{R} \\ & t & \mapsto & J(x+t\,(z-x)) - \langle \nabla J(x), x+t\,(z-x) \rangle \end{array} \right.$$

- (a) Vérifier que $J(z) J(x) \langle \nabla J(x), z x \rangle = \left[f(t) \right]_1^0$
- (b) Montrer que $\left[f(t)\right]_1^0 \le \left|\left[f(t)\right]_1^0\right| \le L \int_0^1 t \|z x\|^2 dt$
- (c) En déduire que $J(z) \leq J(x) + \langle \nabla J(x), z x \rangle + \frac{L}{2} \|x z\|^2$

* Exercice 10 – Méthode du gradient à pas optimal et forte convexité Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction fortement convexe, de module $\alpha > 0$ et L-régulière. On note $x^* \in \mathbb{R}^n$ son unique minimiseur. Pour tout $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$, on considère la fonction

$$\varphi_x: t \mapsto f(x - t \nabla f(x))$$

(a) Justifier que φ_x admet un unique minimiseur, que l'on notera t_x^* . Soit $x_0 \in \mathbb{R}^n$. On définit la suite suivante :

$$\forall k \in \mathbb{N}, \qquad x_{k+1} = x_k - t_{x_k}^* \nabla f(x_k)$$

- (b) Justifier que si $x_k = x^*$ pour $k \in \mathbb{N}$, alors $x_{k+1} = x^*$.
- (c) Montrer que la suite $(f(x_k))_{k\in\mathbb{N}}$ est décroissante. En déduire qu'elle est convergente.
- (d) Montrer que $\forall k \in \mathbb{N}, \qquad f(x_k) f(x_{k+1}) \ge \frac{\alpha}{2} \|x_k x_{k+1}\|_2^2$

En déduire que la suite $(\|x_k - x_{k+1}\|_2)_{k \in \mathbb{N}}$ converge vers 0.

(e) Montrer que $\forall k \in \mathbb{N}, \quad \langle \nabla f(x_k), \nabla f(x_{k+1}) \rangle = 0$

En déduire que $\|\nabla f(x_k) - \nabla f(x_{k+1})\|_2^2 = \|\nabla f(x_k)\|_2^2 + \|\nabla f(x_{k+1})\|_2^2$

(f) Montrer que $\lim_{k \to +\infty} \|\nabla f(x_k)\|_2^2 + \|\nabla f(x_{k+1})\|_2^2 = 0$

En déduire que la suite $(\nabla f(x_k))_{k\in\mathbb{N}}$ converge vers 0.

- (g) Justifier que f est infinie à l'infini. En raisonnant par l'absurde, montrer que la suite $(x_k)_{k\in\mathbb{N}}$ est bornée. En déduire qu'il existe un compact $\mathcal{K}\subset\mathbb{R}^n$ tel que $x_k\in\mathcal{K}$ pour tout $k\in\mathbb{N}$.
- (h) En déduire qu'il existe $(x_{k_j})_{j\in\mathbb{N}}$ une sous-suite qui converge. Notons sa limite \tilde{x} . Montrer que $\nabla f(\tilde{x}) = 0$.
- (i) En déduire que $\tilde{x} = x^*$ et que la suite $(x_k)_{k \in \mathbb{N}}$ converge vers l'unique minimiseur de f.