Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl I für Mathematik Prof. Dr. Christof Melcher

Übungen zur Höheren Mathematik 3 Serie 12 vom 11. Januar 2010

Teil A

Aufgabe A42 Beim Werfen einer Münze ergibt sich als Ergebnis Wappen bzw. Zahl. Es werden gleichzeitig drei Münzen geworfen. Geben Sie die Ergebnismenge Ω und die Ereignismenge \mathcal{E} an und bestimmen Sie unter der Voraussetzung, dass es sich um ein Laplace-Experiment handelt, die Wahrscheinlichkeit dafür, dass

- a) dreimal Wappen,
- b) einmal Wappen und zweimal Zahl auftritt.

Aufgabe A43 Beim Tennisspiel gewinnt der Spieler 1 gegen den Spieler 2 einen Satz mit der Wahrscheinlichkeit p. Bei einem Turnier siegt derjenige Spieler, der zuerst drei Sätze gewonnen hat. Geben Sie die Ergebnismenge Ω und die Ereignismenge $\mathcal E$ an und berechnen Sie unter der Voraussetzung, dass es sich um ein Bernoulli-Experiment handelt, die Wahrscheinlichkeit P, mit der Spieler 1 siegt.

Aufgabe A44 In einer Urne befinden sich zu Beginn r rote und s schwarze Kugeln. Es wird n-mal $(n \le r + s)$ eine Kugel herausgenommen. Zeigen Sie, dass die Wahrscheinlichkeit, bei n Ziehungen ohne Zurücklegen der gezogenen Kugeln k rote Kugeln zu ziehen,

$$p_k = \frac{\binom{r}{k} \binom{s}{n-k}}{\binom{r+s}{n}}$$

beträgt.

Aufgabe A45 Sei $\Omega := \{1, 2, 3, 4\}$. Geben Sie vier verschiedene σ -Algebren über Ω an Wie viele verschiedene σ -Algebren über Ω gibt es?

Teil B

Aufgabe B42 Ein idealer Würfel werde zweimal geworfen. Dann ist ein Elementarergebnis ω ein Zahlenpaar (i, j) mit $i, j \in \{1, ..., 6\}$, wobei i die Augenzahl des zweiten Wurfs angibt. D.h. $\Omega := \{(i, j) | i, j \in \{1, ..., 6\}\}$. Wir betrachten folgende Ereignisse:

 A_1 : "Die Augensumme (aus 1. und 2. Wurf) ist größer als 10",

 A_2^{\downarrow} : "Die Augensumme ist 4",

 A_3^{\downarrow} : "In beiden Würfen werden gleich viele Augen geworfen",

 A_4 : "Die Augensumme sei 4 oder größer als 10",

A₅: "Die Augensumme sei 4, aber bei den beiden Würfen sollen verschiedene Augenzahlen auftreten".

Geben Sie die Ereignismenge an und berechnen Sie $p(A_1)$, $p(A_2)$, $p(A_3)$, $p(A_4)$, $p(A_5)$.

Aufgabe B43 Ein Schütze treffe bei einem Schuss mit Wahrscheinlichkeit 0, 6 ein Ziel. Wie oft muss er in einem Bernoulli-Experiment mindestens schießen, damit er mit Wahrscheinlichkeit von mindestens 0, 99 das Ziel mindestens einmal trifft? Geben Sie die Ergebnismenge Ω und die Ereignismenge \mathcal{E} an.

Aufgabe B44 Es sei $X := \{1, 2, 3\}$. Zeigen Sie, dass die folgenden Mengensysteme σ -Algebren über X sind.

- a) $\mathcal{A} := \{\emptyset, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$
- b) $\mathcal{P}(X)$ (Potenzmenge von X)
- c) $\{\emptyset, X\}$

Q42.) St = {(i,j) | i, j \ \{ 1, ..., 6} \}

Gesucht: Wheit folgender Ereignisse:

 $A_1 = \{(6,5), (5,6), (6,6)\}$

 $P(A_1) = \frac{\#A_1}{\#\Lambda} = \frac{3}{6^2} = \frac{1}{72}$

A = Anza & (_ Flower telf)

 $A_2 = \begin{cases} Augensumme & is 1 & 4 \\ A_2 = \begin{cases} (1,3), (2,2), (3,1) \end{cases} \\ o(A_2) = \frac{1}{12} \end{cases}$

 $A_3 = \frac{1}{9}$ gleich viele Augen in betchen Wüssen $A_3 = \frac{1}{8}(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)$ $B(A_3) = \frac{6}{16} = \frac{1}{6}$

Ay = Az U Az

Wohrschem Wille Fen können

P(Ay) = $\frac{6}{36} = \frac{1}{6}$ eta fed addrest merchen,

sofer sie ketre Erejguisse

genen sam haben.

As = Augensum 4, i and j versch recles $A_5 = A_2 \setminus A_3$ $P(A_5) = \frac{2}{36} = \frac{1}{18}$

B43.) 1 = Treffer, 0 = læin Treffer P(1) = 0,6 P(0) = 1-0,6=0,4 ges: Wie aff muss Schitze schiefen, danit er mit Wkett von mind. 0,99 des Ziel wind. 1-mal trifft Si = {0,1} Ergebusnenge boin i-ten Schuss (Elyzel experiment) N= {(w1, w2, ..., wn) ∈ {0,1} N∈N} bspu. (0,1,...) k = Anzald cl. Treffer $\rho(\omega) = \binom{N}{k} \cdot p^k (1-p)^{N-k}$ Setze eta: N=3, 4=1 $(\frac{3}{7})0.6^{7}(0.4)^{2}$ (1,0.6)Gull Hige Schess folger: (0,0,0,...,1), (1,1,1,...,0), (1,1,0,...,0), (1,...,1) Gegenereigniss Wie off muss schiefen,

Segenereigniss Wie off muss schiefen, dant er mit Whett von höcksturs 0,01 des Zhel nie triff?

 $P(w) = {0 \choose 0} P^{0} (1-p)^{N} < 0.01$ = 1.1.0,4 < 0,01 HM3 KGU 12

(=) $l_{1}(0,4) \cdot N < l_{1}(0,01)$ (=) $N > \frac{l_{1}(0,01)}{l_{1}(0,4)} = 5,0259$

d.4. ab 6 Versuchen verfehlt der Solvitze des Ziel mit Wkeit von höchstens 0,01 timmer.

-> Total ant W'kest von mind. 0,98 mind.

 $\mathbb{Z}44.$)

M leift o'-Algebra über X:

1.) $X \in \mathcal{M}$ 2.) $A, \mathbb{C} \in \mathcal{M} => A \setminus \mathbb{C} \in \mathcal{M} (E=>A \in \mathcal{M} =>A^c \in \mathcal{M})$ 3.) $A; \in \mathcal{M} => (\mathcal{O}A;) \in \mathcal{M}; i \in \mathbb{N}$

 $geg: X = \{1, 2, 3\}$ $a.l. A = \{\emptyset, \{3\}, \{1, 2\}, \{1, 2, 3\}\}$

1.) $\chi \in A$ 2.) $\beta' = \{1, 2, 3\} = \chi$, $\{3\}' = \{1, 2\},$ $\{1, 2\}' = \{3\},$ $\chi' = \{\emptyset\}$ $\forall A \in A : A \in A$

3.)
$$\beta \cup A = A$$
,
 $A \cup X = X$,
 $\{3\} \cup \{1,2\} = X$

7.)
$$A \in \mathcal{F}(x) => A = \mathcal{F}(x)$$

 $\leq \mathcal{K} => A' \in \mathcal{F}(x)$

3.)
$$A_1, A_2 \in \mathcal{F}(\mathcal{X}) \Rightarrow A_1, A_2 \leq \mathcal{X}$$

 $\Rightarrow A_1 \cup A_2 \in \mathcal{F}(\mathcal{X}) \qquad \vee$

$$\mathcal{Z}$$
) $\mathcal{O} \cup \mathcal{X} = \mathcal{X}$, $\mathcal{O} \cup \mathcal{A} = \mathcal{A}$, $\mathcal{X} \cup \mathcal{X} = \mathcal{X}$