PART OF THE SUPERVISORY CONTROLLER FOR THE OISTERWIJKSEBAAN-BRIDGE SPLC

FERDIE F.H. REIJNEN, TOBY R. ERENS, JOANNA M. VAN DE MORTEL-FRONCZAK, AND JACOBUS E. ROODA

In this document, an example is provided regarding the splitting of a supervisor for implementation on a safety PLC. For this, part of the supervisor for the Oisterwijksebaan bridge, located in Tilburg, The Netherland, is described. The plant consists of 14 components, modeled with finite automata (FAs) and Boolean input variables (BIVs) and there are 28 event-condition requirements. In Section 1 the case is described. Subsequently, in Section 2, the splitting is performed. In the appendix, a list of symbols and the implementation code is provided.

1. The Oisterwijksebaan bridge case

Figure. 1 shows a sketch of the Oisterwijksebaan-bridge. This is a rotating bridge that can be opened whenever vessels want to pass. The bridge consists of the following components: two stop signs SS1 and SS2, two boom barriers BB1 and BB2, two boom barrier lights BL1 and BL2, and a bridge deck BD. Additionally, a graphical user interface is present, allowing an operator to send commands to the bridge. In the remainder of this section, the component models are provided

FIGURE 1. Oisterwijksebaan-bridge.

Figure 2 shows the model of the actuator that enables both stop signs simultaneously. Both stop signs have a sensor that measures whether the lamp is activated. These sensors are represented by two BIVs: S_SS1_On and S_SS2_On.

FIGURE 2. Stop sign actuator P_{SS} .

Each boom barrier consists of a bidirectional actuator, shown in Figure 3. Each boom barrier has two sensors that measure whether the barrier is fully closed or fully open. These sensors are represented by BIVs: S_BB1_Open, S_BB1_Closed, S_BB2_Open, and S_BB2_Open.

FIGURE 3. Boom barrier actuator $P_{BBX}, X \in \{1, 2\}$.

Each boom barrier contains a light BL. One actuator enables both lights simultaneously, shown in Figure 4. Each light has a sensor that measures whether the lamp is activated. These sensors are represent by two BIVs: S_BL1_On and S_BL2_On.

FIGURE 4. Barrier light actuator $P_{\rm BL}$.

The bridge deck consists of a bidirectional actuator, shown in Figure 5. The bridge deck has two sensors that measure when it is fully closed or fully open. These sensors are represented by two BIVs: S_BD_Open and S_BD_Closed.

FIGURE 5. Bridge deck actuator $P_{\rm BD}$.

Lastly, there is a GUI present, shown in Figure 6. A command (via a mouse click) is modeled as an uncontrollable event. Whenever a command activates an action, a controllable event represents that action being completed. The possible commands are: stopping

land traffic, releasing land traffic, closing the barriers, opening the barriers, opening the bridge, and closing the bridge.

FIGURE 6. GUI P_{GUI} .

The components are connected to the variables in the output image of the PLC, via a hardware mapping. The hardware mapping is shown in Table 1. For each output image variable, one event is defined for setting the value to \mathbf{T} and one event for setting the value to \mathbf{F} .

Table 1. Hardware mapping of the actuators T_Q .

Output image variable	Event for T	Event for F
$q_{ m stopsign}$	$P_{ m SS}.$ on	$P_{ m SS}.{ t off}$
$q_{ m bb1Open}$	$P_{ m BB1}.$ open	$P_{ m BB1}.{ t stop0pen}$
$q_{ m bb1Close}$	$P_{ m BB1}.$ close	$P_{ m BB1}.{ t stopClose}$
$q_{ m bb2Open}$	$P_{ m BB2}.$ open	$P_{ m BB2}.{ t stop0pen}$
$q_{ m bb2Close}$	$P_{ m BB2}.$ close	$P_{ m BB2}.{ t stopClose}$
$q_{ m barrierlight}$	$P_{ m BL}.$ on	$P_{ m BL}.{ t off}$
$q_{ m bridgeOpen}$	$P_{ m BD}.$ open	$P_{ m BD}.{ t stop 0}$ pen
$q_{ m bridgeClose}$	$P_{ m BD}.$ close	$P_{ m BD}.{ t stopClose}$

Tables 2 and 3 show the regular requirements \mathcal{R}'_R and the safety requirements \mathcal{R}'_S , respectively. The portioning is based on as risk assessment study, conducted by safety experts.

Table 2. Regular requirements $\mathcal{R}'_{\mathrm{R}}$.

	Event name	Condition
R1	$P_{ m GUI}.$ trafficStopped	$S_SS1_0n \land S_SS2_0n$
R2	$P_{ m GUI}.$ trafficReleased	$\neg S_SS1_0n \land \neg S_SS2_0n$
R3	$P_{ m GUI}.$ barriersClosed	$S_BB1_Closed \land S_BB2_Closed$
R4	$P_{ m GUI}$.barriersOpen	S_BB1_Open \land S_BB2_Open
R5	$P_{ m GUI}$.bridgeOpen	S_BD_Open
R6	$P_{ m GUI}.$ bridgeClosed	S_BD_Closed
R7	$\mid P_{ ext{SS}}. ext{on}$	$P_{ m GUI}.$ StopTraffic
R8	$P_{ m SS}.$ off	$P_{ m GUI}$.ReleaseTraffic
R9	$\mid P_{ m BB1}.$ open	$P_{ m GUI}$.OpenBarriers
R10	$P_{ m BB1}.$ close	$P_{ m GUI}.$ CloseBarriers
R11	$P_{ m BB1}.{ t stop0pen}$	$P_{\mathrm{GUI}}.\mathtt{StopBarriers} \lor \mathtt{S_BB1_Open}$
R12	$P_{ m BB1}.{ t stopClose}$	$P_{\mathrm{GUI}}.\mathtt{StopBarriers} \lor \mathtt{S_BB1_Closed}$
R13	$\mid P_{ m BB2}.$ open	$P_{ m GUI}$.OpenBarriers
R14	$\mid P_{ m BB2}.$ close	$P_{ m GUI}$.CloseBarriers
R15	$P_{ m BB2}.{ t stopOpen}$	$P_{\mathrm{GUI}}.\mathtt{StopBarriers} \lor \mathtt{S_BB2_Open}$
R16	$\mid P_{ m BB2}.$ stopClose	$P_{\mathrm{GUI}}.\mathtt{StopBarriers} \lor \mathtt{S_BB2_Closed}$
R17	$\mid P_{ m BL}.$ on	$P_{ m GUI}.$ StopTraffic
R18	$\mid P_{ m BL}.$ off	$P_{ m GUI}$.ReleaseTraffic
R19	$\mid P_{ m BD}.$ open	$P_{ m GUI}$.OpenBridgeDeck
R20	$P_{ m BD}.$ close	$P_{ m GUI}.$ CloseBridgeDeck
R21	$P_{ m BD}.{ t stop 0pen}$	$P_{\mathrm{GUI}}.\mathtt{StopBridgeDeck} \lor \mathtt{S_BD_Open}$
R22	$P_{ m BD}.{ t stopClose}$	$P_{\mathrm{GUI}}.\mathtt{StopBridgeDeck} \lor \mathtt{S_BD_Closed}$

Table 3. Safety requirements \mathcal{R}'_{S} .

	Event name	Condition
R23	$P_{ m SS}.{ t off}$	S_BB1_Open \land S_BB2_Open
R24	$P_{ m BB1}.$ open	S_BD_Closed
R25	$P_{ m BB1}.$ close	$S_SS1_0n \land S_SS2_0n$
R26	$P_{ m BB2}.{ t open}$	S_BD_Closed
R27	$P_{ m BB2}.{ t close}$	$S_SS1_0n \land S_SS2_0n$
R28	$P_{ m BD}.{ t open}$	${\tt S_BB1_Closed} \land {\tt S_BB2_Closed}$

When performing supervisor synthesis, it has shown that the plant in combination with the requirements is safe, nonblocking, controllable, and maximally permissive.

2. Splitting the supervisor

In this section, the method as described in Section 4.2 of the paper is followed. The steps are as follows.

- (a) It is verified that the plant is a product system and that the condition given in Eq. 3 holds, i.e., all safety requirements depend on BIVs.
 - (b) Sets $I_{\rm S}$ and $I_{\rm R}$ are derived (Eqs. 4 and 5):

$$I_{\rm S} = \{ \texttt{S_SS1_On}, \texttt{S_SS2_On}, \texttt{S_BB1_Open}, \texttt{S_BB1_Closed}, \\ \\ \texttt{S_BB2_Open}, \texttt{S_BB2_Closed}, \texttt{S_BD_Closed} \}$$

$$I_{\rm R} = \{ \texttt{S_BL1_On}, \texttt{S_BL2_On}, \texttt{S_BD_Open} \}$$

(c) Sets $Q_{\rm S}$ and $Q_{\rm R}$ are derived (Eqs. 6 and 7).

$$Q_{\rm S} = \{q_{\rm stopsign}, q_{\rm bb1Open}, q_{\rm bb1Close}, q_{\rm bb2Open}, q_{\rm bb2Close}, q_{\rm bridgeOpen}\}$$

$$Q_{\rm R} = \{q_{\rm barrierlight}, q_{\rm bridgeClose}\}$$

(d) Sets \mathcal{P}_S and \mathcal{P}_R are derived (Eqs. 8 and 9).

$$\mathcal{P}_{S} = \{P_{SS}, P_{BB1}, P_{BB2}, P_{BD}\}$$

$$\mathcal{P}_{R} = \{P_{GUI}, P_{BL}\}$$

- (e) Sets $\Sigma_{\rm S}$ and $\Sigma_{\rm R}$ are derived (Eqs. 10 and 11). These events are simply the events belonging to the safety and regular components above.
 - (f) Regular requirement set \mathcal{R}'_{R} is split (Eqs. 12 and 13).

$$\mathcal{R}_{R}^{S} = \{R7, R8, R9, R10, R11, R12, R13, R14, R15, R16, R19, R20, R21, R22\}$$

 $\mathcal{R}_{R}^{R} = \{R1, R2, R3, R4, R5, R6, R17, R18\}$

(g) Regular requirement set for the safety events \mathcal{R}_{R}^{S} is split (Eqs. 14 and 15).

$$\mathcal{R}_{R}^{SS} = \{R11, R12, R15, R16, R22\}$$

$$\mathcal{R}_{R}^{SR} = \{R7, R8, R9, R10, R13, R14, R19, R20, R21\}$$

(h) Requirements in \mathcal{R}_{R}^{SR} are merged (Eq. 16). The result is given in Table 4.

Table 4. R2S communication.

Variable name	Condition
$c_{\mathtt{SS.on}}$	$P_{ m GUI}.$ StopTraffic
$c_{\mathtt{SS.off}}$	$P_{ m GUI}$.ReleaseTraffic
$c_{\mathtt{BB1.open}}$	$P_{ m GUI}.$ OpenBarriers
$c_{\mathtt{BB1.close}}$	$P_{ m GUI}.$ CloseBarriers
$c_{\mathtt{BB2.open}}$	$P_{ m GUI}.$ OpenBarriers
$c_{\mathtt{BB2.close}}$	$P_{ m GUI}.$ CloseBarriers
$c_{\mathtt{BD.open}}$	$P_{ m GUI}.$ OpenBridgeDeck
$c_{\mathtt{BD.close}}$	$P_{ m GUI}.$ CloseBridgeDeck
$c_{ t BD.stop0pen}$	$P_{\mathrm{GUI}}.\mathtt{StopBridgeDeck} \lor \mathtt{S_BD_Open}$

(i) Requirement set \mathcal{R}_D is added, Table 5 (Eq. 17).

Table 5. \mathcal{R}_D requirements.

	I	
	Event name	Condition
R29	$P_{ m SS}.$ on	$v_{\mathtt{SS.on}}$
R30	$P_{ m SS}.{ t off}$	$v_{\mathtt{SS.off}}$
R31	$P_{ m BB1}.$ open	$v_{\mathtt{BB1.open}}$
R32	$P_{ m BB1}.{ t close}$	$v_{\mathtt{BB1.close}}$
R33	$P_{ m BB2}.$ open	$v_{\mathtt{BB2.open}}$
R34	$P_{ m BB2}.{ t close}$	$v_{\mathtt{BB2.close}}$
R35	$P_{ m BD}.{ t open}$	$v_{\mathtt{BD.open}}$
R36	$P_{ m BD}.$ close	$v_{\mathtt{BD.close}}$
R37	$P_{ m BD}.{ t stopOpen}$	$v_{\mathtt{BD.stop0pen}}$

(j) The requirements in the safety part and in the regular part are (Eqs. 18 and 19):

$$\mathcal{R}_{S} = \{R11,\,R12,\,R15,\,R16,\,R22,\,R23,\,R24,\,R25,\,R26,\,R27,\,R28,\,R29,\,R30,\,R31\\ R32,\,R33,\,R34,\,R35,\,R36,\,R37\}$$

 $\mathcal{R}_{R} = \{R7, R8, R9, R10, R13, R14, R19, R20\}$

(k) The variables that have to be communicated are derived (Eqs. 20 and 21). There are no variables that have to be communicated via $D_{\rm S}$. The variables that are communicated via $D_{\rm R}$ are:

 $D_{\rm R} = \{v_{\rm SS.on}, v_{\rm SS.off}, v_{\rm BB1.open}, v_{\rm BB1.close} \\ v_{\rm BB2.open}, v_{\rm BB2.close}, v_{\rm BD.open}, v_{\rm BD.close}, v_{\rm BD.stopOpen} \\ P_{\rm GUI}. {\tt StopBarriers}, P_{\rm GUI}. {\tt StopBridgeDeck}\}$

Appendix A. List of symbols

Model symbols

- \mathcal{P} Plant model
- \mathcal{R} Requirements model
- \sum **Events**
- Condition c
- iBoolean input variable
- LLocations
- PComponent model
- REvent-condition requirement
- Hardware mapping T_Q
- Location reference v_l

Split symbols

- $\Sigma_{\rm R}$ Set of events in the regular part
- $\Sigma_{
 m S}$ Set of events in the safety part
- $D_{\rm R}$ Set of regular data buffer variables
- $D_{\rm S}$ Set of safety data buffer variables
- I_{R} Set of regular input image variables
- Set of safety input image variables $I_{\rm S}$
- $Q_{\rm R}$ Set of regular output image variables
- $Q_{\rm S}$ Set of safety output image variables
- \mathcal{R}_D Set of requirements via communication
- \mathcal{R}_{R} Set of requirements in the regular part
- \mathcal{R}_{S} Set of requirements in the safety part
- Set of regular requirements
- Set of regular requirements for $\Sigma_{\rm R}$
- $\mathcal{R}'_{\mathrm{RR}}$ $\mathcal{R}'_{\mathrm{RR}}$ $\mathcal{R}'_{\mathrm{RSR}}$ $\mathcal{R}'_{\mathrm{SR}}$ $\mathcal{R}'_{\mathrm{S}}$ Set of regular requirements for $\Sigma_{\rm S}$
- Set of regular requirements for $\Sigma_{\rm S}$ in the regular part
- Set of regular requirements for $\Sigma_{\rm S}$ in the safety part
- Set of safety requirements
- Supervisor
- c_{σ} Regular condition for event σ
- Evaluation result of c_{σ} v_{σ}

APPENDIX B. SPLC IMPLEMENTATION CODE

In this section, the function block diagrams (FBDs) implemented in the safety part of the PLC are given. First, the stopsign FBDs are given, then the barrier FBDs, and lastly the bridge FBDs. Here, the FBDs are implemented in TIA Portal Version 15 from Siemens.

|--|

WODES / PLC_1 [CPU 315F-2 PN/DP] / Program blocks

stopsign [FB2]

stopsign Pro	perties				
General					
Name	stopsign	Number	2	Туре	FB
Language	FBD	Numbering	Automatic		
Information					
Title		Author		Comment	
Family		Version	0.1	User-defined	
				ID	

Block_1									
Name	Data type	Offset	Default value	sible from HMI/OP C UA	ta- ble fro	ing		Super- vision	Comment
Input									
Output									
InOut									
▼ Static									
v_Off	Bool	0.0	true		Tru e	True	False		
v_On	Bool	0.1	false	True	Tru e	True	False		
Temp									
Constant									

Network 1: on

Network 2: off

Totally Integrated Automation Portal %19.2 "BoomBarrier1_ Open" %I9.4 "BoomBarrier2_ Open" — 🚜 #v_On -#v_Off %DB2.DBX0.1 "R2S".stopsign_off — 🏥 #v_On %Q4.0 "q_stopsign" Safety information: 7D6D21E8 / 7D6D21E8; STEP 7 Safety V15; The safety program is consistent.

tally Integrated	
Automation Portal	

WODES / PLC_1 [CPU 315F-2 PN/DP] / Program blocks

boombarrier1 [FB3]

boombarrier	1 Properties				
General					
Name	boombarrier1	Number	3	Туре	FB
Language	FBD	Numbering	Automatic		
Information					
Title	boombarrier1	Author		Comment	
Family		Version	0.1	User-defined	
				ID	

Block_1									
Name	Data type	Offset	Default value	Acces- sible from HMI/OP C UA	ta- ble fro	ing		Super- vision	Comment
Input									
Output									
InOut									
▼ Static									
v_Opening	Bool	0.0	false	True	Tru e	True	False		
v_ldle	Bool	0.1	true	True	Tru e	True	False		
v_Closing	Bool	0.2	false	True	Tru e	True	False		
Temp									
Constant									

Network 1: open

Network 2: close

Network 3: stopOpen

Network 4: stopClose

WODES / PLC_1 [CPU 315F-2 PN/DP] / Program blocks

boombarrier2 [FB4]

boombarrier	2 Properties				
General					
Name	boombarrier2	Number	4	Туре	FB
Language	FBD	Numbering	Automatic		
Information					
Title		Author		Comment	
Family		Version	0.1	User-defined	
				ID	

boombarrier2									
Name	Data type	Offset	Default value	Acces- sible from HMI/OP C UA	ta- ble fro	ing		Super- vision	Comment
Input									
Output									
InOut									
▼ Static									
v_Opening	Bool	0.0	false	True	Tru e	True	False		
v_ldle	Bool	0.1	true	True	Tru e	True	False		
v_Closing	Bool	0.2	false	True	Tru e	True	False		
Temp									
Constant									

Network 1: open

Network 2: close

Network 3: stopOpen

Network 4: stopClose

	bridge FBD	ge		nber nbering	5 Automatic			Тур	Type FB		
Family			Author Version		0.1				Comment User-defined ID		
ridge lame		Data type	Offset	Default va	alue	Accessible from HMI/OP C UA	ta- ble fro	ing		Super- vision	Comment
Input							UA				
Output											
InOut											
▼ Static		D 1	0.6	6.1			_	_	F .		
v_Opening		Bool	0.0	false		True	Tru e	True	False		
v_ldle		Bool	0.1	true		True	-	True	False		
v_Closing		Bool	0.2	false		True	e	True	False		
q_bridgeClose		Bool	0.3	false		True	Tru e	True	False		
Temp											
Constant											

Network 2: close

Network 5: qclose

Network 3: stopOpen

Network 4: stopClose

