FATTI GENERALI DI ANALISI 1

Definizione (F_{σ}) Si dice F_{σ} un sottoinsieme $I \subseteq \mathbb{R}$ che sia unione numerabile di chiusi, ovvero se si può scrivere

$$I = \bigcup_{n \in \mathbb{N}} C_n$$

Definizione (*Insieme trascurabile*) Si dice che un sottoinsieme $E \subseteq \mathbb{R}$ è trascurabile (ovvero ha misura di Lebesgue nulla) se $\forall \varepsilon > 0$ $\exists \{(a_n, b_n)\}_{n \in \mathbb{N}}$ t.c. $E \subseteq \bigcup_{n \in \mathbb{N}} (a_n, b_n)$

Definizione (*Funzione oscillazione*) Di una funzione $f: \Omega \to \mathbb{R}$ (dove Ω è uno spazio metrico) si definisce la funzione oscillazione $\Theta_f: \Omega \to \mathbb{R}$ come:

$$\Theta_f(x) := \lim_{r \to 0^+} \operatorname{diam}(f(B_r(x)))$$

Proprietà importanti:

- \bar{x} è un punto di discontinuità $\Leftrightarrow \Theta_f(\bar{x}) > 0$.
- Θ_f è una funzione semicontinua inferiormente.
- Definizione equivalente: $\Theta_f(x) = (\limsup_{y \to x} f(y)) (\liminf_{y \to x} f(y)).$

Caratterizzazione della Riemann-integrabilità Una funzione è Riemann-integrabile se e solo se l'insieme dei suoi punti di discontinuità è trascurabile.

Teorema fondamentale del calcolo integrale, versione pro $f:[a,b]\to\mathbb{R}$ derivabile in (a,b) e f' Riemann-integrabile. Allora vale $f(b)-f(a)=\int_a^b f'(t)\,\mathrm{d}t$

Teorema di Darboux Le derivate mappano connessi in connessi. Sia $f:[a,b] \to \mathbb{R}$ ovunque derivabile, e si ponga $\alpha:=f'(a), \beta:=f'(b)$. Possiamo wlog supporre che $\alpha \le \beta$. Allora si ha, $\forall \alpha < \lambda < \beta \quad \exists \xi \in (a,b)$ t.c. $f'(\xi) = \lambda$.

Dimostrazione Si consideri la funzione $g(x) := f(x) - \lambda x$. Questa funzione è continua (essendo λ fissato e f continua) e definita sul compatto [a,b]. Quindi ammette massimo e/o minimo. Siccome g è anche derivabile si ha, nel punto di massimo $0 = g'(M) = f'(M) - \lambda \Rightarrow f'(M) = \lambda$.

Punti di discontinuità di una funzione reale Una funzione f ha punti di discontinuità che sono un F_{σ}

Dimostrazione Si consideri la funzione oscillazione di $f : \Theta_f(x)$. Fissata una "soglia di oscillazione" ν si ha che $\mathfrak{Dsc}_f^{\geq \nu} := \{x \mid \Theta_f(x) \geq \nu\}$ è un chiuso (Si dimostri che se c'è un punto y sul quale si accumula una successione (y_n) di punti t.c. $\Theta_f(y_n) \geq \nu$ allora si ha $\Theta_f(y) \geq \nu$). Ora, siccome i punti di discontinuità sono tutti e soli quelli con oscillazione maggiore di zero, si ha $\mathfrak{Disc}_f = \bigcup_{n \in \mathbb{N}} \mathfrak{Dsc}_f^{\geq \frac{1}{n}}$, ovvero unione numerabile di chiusi.

Discontinuità di una funzione semicontinua inferiormente I punti di discontinuità di una funzione semicontinua inferiormente sono di prima categoria (ovvero unione numerabile di chiusi a parte interna vuota).

Prima Categoria - Misura di Lebesgue nulla Non c'è nessuna implicazione tra queste due; ovvero esistono insiemi di prima categoria ma di misura positiva ed insiemi a misura nulla di seconda categoria.

OPERATORI DIFFERENZIALI

COME CAMBIANO I DIFFERENZIALI

$Cartesiane \rightarrow Polari$

$$\left(\begin{array}{c} \frac{\partial}{\partial r} \\ \frac{\partial}{\partial \theta} \end{array} \right) = \left(\begin{array}{cc} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{array} \right) \left(\begin{array}{c} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{array} \right)$$

LAPLACIANO

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2}$$