Batch Normalization : Accelerating Deep Network Training by Reducing Internal Covariate Shift

SKT Fellowship

LEE JINKYU

Department of Civil, Environmental and Architectural Engineering, Korea University

November 19, 2022

Stochastic Gradient Descent

Traditional Optimizer

$$\Theta = \Theta - \eta \nabla \Theta J(\Theta)$$

손실 값을 통해 기울기를 갱신하는 Gradient Descent 방식에서 mini-batch를 도입한 Optimizer이다 Full-batch(전체 데이터)에 대해 손실 값을 계산하고 갱신해야하는 GD에 비해 계산량이 현저히 줄어든다 훨씬 빠른 속도로 매개변수들이 갱신되며, 많은 반복을 통해 local minina에 빠지지 않고 학습될 가능성이 높다.

Covariate Shift - Definition

What if train/test data's distribution are different

훈련 데이터와 검증, 테스트 데이터의 분포가 다른 경우에 나타난다

동물 종 분류 / 얼굴 생성 알고리즘 등 다양한 분야에서 나타나며 모델의 성능을 크게 저하시킬 수 있다

Internal Covariate Shift

Covariate Shift in Deep Neural Network

Sigmoid의 특성 상 x값이 커지면 saturated 되어 gradient vanishing or slow converge가 발생한다

- → 네트워크 내의 Covariate Shift는 saturated regime을 발생시킨다
- → 네트워크의 깊이가 깊어질수록 Covariate Shift의 문제가 심각해진다

Relu, 좋은 초기값 설정에 더불어 input 값의 분포를 같게 만드는 것은 Covariate Shift를 방지하고, 학습을 촉진시킨다

Whitening

Try to reduce Internal Covariate Shift (But failed)

매 훈련 step마다 whitening을 시도했다

- → 정규화가 되는 방향으로 parameters가 update되고, 이는 gradient descent의 성능을 저하시킨다 → 학습이 가능한 parameters들이 무시, 역전파로 학습이 불가능하게 될 수 있다
- → 평균이 0, 표준편차가 1로 데이터 전체가 fitting 되어 non-linearity로서의 기능을 못할 수 있다
- → 네트워크 밖에 존재하며 갱신되지 않는다

whitened data original data decorrelated data

fect of the gradient step. For example, consider a layer with the input u that adds the learned bias b, and normalizes the result by subtracting the mean of the activation computed over the training data: $\hat{x} = x - E[x]$ where x = u + b, $\mathcal{X} = \{x_{1...N}\}$ is the set of values of x over the training set, and $E[x] = \frac{1}{N} \sum_{i=1}^{N} x_i$. If a gradient descent step ignores the dependence of E[x] on b, then it will update $b \leftarrow b + \Delta b$, where $\Delta b \propto -\partial \ell/\partial \hat{x}$. Then $u + (b + \Delta b) - \mathrm{E}[u + (b + \Delta b)] \, = \, u + b - \mathrm{E}[u + b].$

Batch Normalization

Reason why use Gamma, Beta

평균 0, 분산 1로 정규화 시켜 데이터 분포를 균일하게 한다

이 때, Activation F에 따라 non-linearity로서의 기능이 사라질 수 있다

- → Gamma, Beta를 통해 이를 해결한다
- → 학습, 갱신이 가능하며 Optimal uncorrelated distribution을 구할 수 있다

Full-batch가 아닌 mini-batch로 파라미터, 손실 값 갱신한다 0으로 나눠지는 것을 막기 위해 epsilon 추가한다

$$\frac{\partial \ell}{\partial \widehat{x}_{i}} = \frac{\partial \ell}{\partial y_{i}} \cdot \gamma$$

$$\frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot (x_{i} - \mu_{\mathcal{B}}) \cdot \frac{-1}{2} (\sigma_{\mathcal{B}}^{2} + \epsilon)^{-3/2}$$

$$\frac{\partial \ell}{\partial \mu_{\mathcal{B}}} = \left(\sum_{i=1}^{m} \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{-1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}\right) + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{\sum_{i=1}^{m} -2(x_{i} - \mu_{\mathcal{B}})}{m}$$

$$\frac{\partial \ell}{\partial x_{i}} = \frac{\partial \ell}{\partial \widehat{x}_{i}} \cdot \frac{1}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \frac{\partial \ell}{\partial \sigma_{\mathcal{B}}^{2}} \cdot \frac{2(x_{i} - \mu_{\mathcal{B}})}{m} + \frac{\partial \ell}{\partial \mu_{\mathcal{B}}} \cdot \frac{1}{m}$$

$$\frac{\partial \ell}{\partial \gamma} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}} \cdot \widehat{x}_{i}$$

$$\frac{\partial \ell}{\partial \beta} = \sum_{i=1}^{m} \frac{\partial \ell}{\partial y_{i}}$$

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

Batch Normalization

Training and Inference with Batch-Normalized Networks

DEFAULT ARCHITECTURE

INPUT

WEIGHT, BIAS

ACTIVATION

WEIGHT, BIAS

•••

BATCH NORM ARCHITECTURE

INPUT

WEIGHT, BIAS

BATCH NORMALIZATION

ACTIVATION

WEIGHT, BIAS

•••

Input: Network N with trainable parameters Θ ; subset of activations $\{x^{(k)}\}_{k=1}^K$

Output: Batch-normalized network for inference, Nan

- 1: $N_{\text{BN}}^{\text{tr}} \leftarrow N$ // Training BN network
- 2: **for** k = 1 ... K **do**
- 3: Add transformation $y^{(k)} = \mathrm{BN}_{\gamma^{(k)},\beta^{(k)}}(x^{(k)})$ to $N^{\mathrm{tr}}_{\mathrm{BN}}$ (Alg. 1)
- 4: Modify each layer in $N_{\text{BN}}^{\text{tr}}$ with input $x^{(k)}$ to take $y^{(k)}$ instead
- 5: end for
- 6: Train $N_{
 m BN}^{
 m tr}$ to optimize the parameters $\Theta\cup\{\gamma^{(k)},\beta^{(k)}\}_{k=1}^K$
- 7: $N_{\mathrm{BN}}^{\mathrm{inf}} \leftarrow N_{\mathrm{BN}}^{\mathrm{tr}}$ // Inference BN network with frozen // parameters
- 8: **for** k = 1 ... K **do**
- 9: // For clarity, $x \equiv x^{(k)}$, $\gamma \equiv \gamma^{(k)}$, $\mu_{\mathcal{B}} \equiv \mu_{\mathcal{B}}^{(k)}$, etc.
- 10: Process multiple training mini-batches B, each of size m, and average over them:

$$E[x] \leftarrow E_{\mathcal{B}}[\mu_{\mathcal{B}}]$$
$$Var[x] \leftarrow \frac{m}{m-1} E_{\mathcal{B}}[\sigma_{\mathcal{B}}^2]$$

11: In $N_{\text{BN}}^{\text{inf}}$, replace the transform $y = \text{BN}_{\gamma,\beta}(x)$ with $y = \frac{\gamma}{\sqrt{\text{Var}[x] + \epsilon}} \cdot x + \left(\beta - \frac{\gamma \, \text{E}[x]}{\sqrt{\text{Var}[x] + \epsilon}}\right)$

12: end for

Algorithm 2: Training a Batch-Normalized Network

Batch Normalization on Convolution

Batch Normalization with Convolution Network

To Accelerate Batch Normalization

Advantages

Increase learning rate → 빠른 학습, 수렴

Remove Dropout → Overfitting 방지로서 Batch Normalization

Reduce the L2 weight regularization → Overfitting 방지로서 Batch Normalization

Remove LRN → 효과 없음

Shuffling training examples more thoroughly → mini batch를 사용하기 때문에 같은 batch 안에 데이터가 편향되지 않게 하기 위함

Reduce the photometric distortions → full batch보다 더 적게, 더 빠르게 학습하기 때문에 distorted img보다 real img 사용