

UNIVERSIDADE ESTADUAL DE FEIRA DE SANTANA DEPARTAMENTO DE TECNOLOGIA ÁREA DE ELETRÔNICA

Problema #2 – 2023.2

Linguagem Assembly

1. Tema

Desenvolvimento de programas usando linguagem Assembly e aplicação de conceitos básicos de arquitetura de computadores.

2. Objetivos de Aprendizagem

Ao final da realização deste problema, o/a discente deverá ser capaz de:

- Programar em Assembly para um processador com arquitetura ARM;
- Entender o conjunto de instruções da arquitetura ARM e saber como utilizá-las de acordo com a necessidade do sistema:
- Avaliar o desempenho de um código assembly através de medidas sobre o comportamento de sua execução no sistema.

3. Problema

Desenvolver uma IHM (Interface Homem-Máquina) que apresente em um display LCD as informações do sensor desenvolvido. A interface deve substituir a que foi desenvolvida em linguagem C, atendendo aos mesmos requisitos. O protótipo dessa interface será embutido em um computador de placa única (SBC).

4. Requisitos

O problema a ser desenvolvido no SBC Orange Pi deve atender às seguintes restrições:

- 4.1. O código deve ser escrito em Assembly;
- 4.2. O sistema só poderá utilizar os componentes disponíveis no protótipo.

5. Produto

Todo o projeto deverá ser disponibilizado na plataforma GitHub. No prazo indicado no cronograma a seguir, cada equipe deverá apresentar:

- 5.1. Levantamento de requisitos;
- 5.2. Código
 - 5.2.1. Código em linguagem Assembly;
 - 5.2.2. Todos os códigos deverão estar detalhadamente comentados;
- 5.3. Script de compilação tipo Makefile para geração do código executável;

- 5.4. Documentação técnica escrita no arquivo READ.ME do projeto no GitHub, contendo, no mínimo:
 - 5.4.1. Detalhamento dos software usados no trabalho, incluindo softwares básicos:
 - 5.4.2. Arquitetura do computador usado nos testes;
 - 5.4.3. Descrição dos tipos de instruções utilizadas;
 - 5.4.4. Descrição de instalação, configuração de ambiente e execução;
- 5.5. Descrição dos testes de funcionamento do sistema, bem como, análise dos resultados alcançados.

6. Cronograma

Semana	Data	Descrição
8	ter 19/set.	Paralisação - Sintest
	qui 21/set.	Problema 2 – Apresentação
9	ter 26/set.	Problema 1 – Entrega/Avaliação
	qui 28/set.	Problema 2 – Seção Tutorial #2
10	ter 03/out.	Problema 2 – Seção Tutorial #3
	qui 05/out.	Problema 2 – Seção Desenvolvimento #1
11	ter 10/out.	Problema 2 – Seção Tutorial #4
	qui 12/out.	Feriado – Nossa Senhora Aparecida
12	ter 17/out.	Feira de Graduação
	qui 19/out.	Problema 2 – Seção Desenvolvimento #2
13	ter 24/out.	Problema 2 – Seção Tutorial #5
	qui 26/out.	Problema 2 – Entrega/Avaliação

7. Avaliação

Para avaliar o envolvimento do grupo nas discussões e na apresentação, o tutor poderá fazer perguntas variadas a qualquer membro, tanto nas sessões tutoriais quanto na apresentação. O estudante que não comparecer, ou se atrasar, no dia da sessão de apresentação, terá automaticamente nota 0,0 (zero) no problema, excetuando-se as condições que permitem 2ª chamada de avaliações, conforme regulamento do curso.

A nota final será a composição de 3 (três) notas parciais:

Critério	Critérios para a nota	Peso
Desempenho Individual	Participação individual nas sessões tutoriais, de acordo com o interesse e entendimento demonstrados pelo aluno, assim como sua assiduidade, pontualidade e contribuição nas discussões. Essa nota inclui o desempenho do estudante na apresentação do problema no laboratório.	3

Documentação	Documentação técnica de cada grupo, considerando qualidade da redação (ortografia e gramática), organização dos tópicos, definição do problema, descrição da solução, explicação dos experimentos, análise dos resultados, detalhando os itens não atendidos, se for o caso.	3
Códigos	Qualidade do código fonte (organização e comentários), e execução correta dos códigos binários de acordo com testes de validação que explorem as situações de uso.	4