Remote Sensing Basic

Tek Kshetri

Remote Sensing

• Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object.

Satellite Remote Sensing

Passive vs. Active Sensors

Most Earth observation satellites are passive, only receiving image data from reflected sunlight, but a few utilize active image capture by transmitting their own signal.

Sensors types

PASSIVE Earth Observation Satellites

Passive satellites detect radiation reflected off the Earth's surface, such as visible light and infrared. In general, passive satellites are not able to work through clouds.

ACTIVE Earth Observation Satellites

Active satellites transmit energy towards the Earth and measure the returned signal which provides information about the Earth's surface. In general, active satellites can see through clouds.

Electromagnetic Spectrum

Interaction with vegetation

The healthy vegetation absorbs blue and red wavelengths and reflects green and (near) Infrared (NIR).

Source: https://news.mongabay.com/2018/01/data-fusion-opens-new-horizons-for-remote-imaging/

Spectral Indices

Normalized Indices ([-1, 1])

Normalized Difference Vegetation Index (NDVI)

$$NDVI = \frac{NIR - Red}{NIR + Red}$$

Normalized Difference Water Index (NDWI)

$$NDWI = \frac{Green - NIR}{Green + NIR}$$

What are Bands?

- Bands in imagery are layers of an image that are made up of specific wavelengths of light.
- Bands are also known as channels.

True Color (RGB)

False Color (NIR, G, B)

NDVI

Satellite Platforms

Seeing the Changing Planet

A Selection of Earth Observation Satellites

WorldView-4 Launch Mass 2,485kg

AIRBUS

Pleiades Launch Mass 970kg

Planetscope (Dove)
Launch Mass 4kg

Sentinel-2 Launch Mass 1,130kg

Landsat-8 Launch Mass 2,780kg

Aqua (MODIS) Launch Mass 2,934kg

Source: https://github.com/radiantearth/ml4eo-bootcamp-2021/tree/main

Satellite Resolutions

- 1. Spatial resolution
- 2. Spectral resolution
- 3. Temporal Resolution
- 4. Radiometric Resolution

Spatial Resolution

Aqua (MODIS) 250m Resolution

Landsat-8 30m Resolution

Sentinel-2 10m Resolution

PlanetScope (Dove) 3m Resolution

Pleiades 0.5m Resolution

Worldview-4 0.3m Resolution

Source: https://github.com/radiantearth/ml4eo-bootcamp-2021/tree/main

Spectral Resolution

 Number of bands of radiation in electromagnetic spectrum that a satellite can sample (eg. RGB, Infrared, microwave, etc)

Source: https://github.com/radiantearth/ml4eo-bootcamp-2021/tree/maii

Temporal Resolution

Temporal resolution varies by satellite and describes the time it takes for an individual satellite to orbit and revisit a specific area. Some satellites operate as a constellation with multiple satellites working together to increase their global coverage daily.

Radiometric Resolution

• Radiometric resolution is the amount of information in each pixel, that is, the number of bits representing the energy recorded.

Thank you!