HOME CHAPTERS LOGIN

16. User Segment

🖶 Print

The U.S. Federal Aviation Administration (FAA) estimated in 2006 that some 500,000 GPS receivers are in use for many applications, including surveying, transportation, precision farming, geophysics, and recreation, not to mention military navigation. This was before in-car GPS navigation gadgets emerged as one of the most popular consumer electronic gifts during the 2007 holiday season in North America.

Basic consumer-grade GPS receivers, like the rather old-fashioned one shown below, consist of a radio receiver and internal antenna, a digital clock, some sort of graphic and push-button user interface, a computer chip to perform calculations, memory to store waypoints, jacks to connect an external antenna or download data to a computer, and flashlight batteries for power. The radio receiver in the unit shown below includes 12 channels to receive signal from multiple satellites simultaneously.

Figure 5.17.1 Recreation-grade GPS receiver, circa 1998.

NAVSTAR Block II satellites broadcast at two frequencies, 1575.42 MHz (L1) and 1227.6 MHz (L2). (For sake of comparison, FM radio stations broadcast in the band of 88 to 108 MHz.) Only L1 was intended for civilian use. Single-frequency receivers produce horizontal coordinates at an accuracy of about three to seven meters (or about 10 to 20 feet) at a cost of about \$100. Some units allow users to improve accuracy by filtering out errors identified by nearby stationary receivers, a post-process called "differential correction." \$300-500 single-frequency units that can also receive corrected L1 signals from the U.S. Federal Aviation Administration's Wide Area Augmentation System (WAAS) network of ground stations and satellites can perform differential correction in "real-time." Differentially-corrected coordinates produced by single-frequency receivers can be as accurate as one to three meters (about 3 to 10 feet).

The Nature of Geographic Information

Chapters

- ► Chapter 1: Data and Information
- Chapter 2: Scales and Transformations
- Chapter 3: Census Data and Thematic Maps
- Chapter 4: TIGER, Topology and Geocoding
- ▼ Chapter 5: Land Surveying and GPS
 - 1. Overview
 - 2. Geospatial Data Quality
 - 3. Error and Uncertainty
 - 4. Systematic vs. Random Errors
 - 5. Survey Control
 - 6. Measuring Angles
 - 7. Measuring Distances
 - 8. Horizontal Positions
 - 9. Traverse
 - 10. Triangulation
 - 11. Trilateration
 - 12. Vertical Positions
 - 13. Global Positioning System
 - 14. Space Segment

The signal broadcast at the L2 frequency is encrypted for military use only. Clever GPS receiver makers soon figured out, however, how to make dual-frequency models that can measure slight differences in arrival times of the two signals (these are called "carrier phase differential" receivers). Such differences can be used to exploit the L2 frequency to improve accuracy without decoding the encrypted military signal. Survey-grade carrier-phase receivers able to perform real-time kinematic (RTK) differential correction can produce horizontal coordinates at sub-meter accuracy at a cost of \$1000 to \$2000. No wonder GPS has replaced electro-optical instruments for many land surveying tasks.

Meanwhile, a new generation of NAVSTAR satellites (the Block IIR-M series) will add a civilian signal at the L2 frequency that will enable substantially improved GPS positioning.

<15. Control Segment

up

17. Satellite Ranging >

- 15. Control Segment
- 16. User
 Segment
- 17. Satellite Ranging
- 18. GPS Error Sources
- 19. User
 Equivalent
 Range Errors
- 20. Dilution of Precision
- 21. GPS Error Correction
- 22. Differential Correction
- 23. Real-Time Differential Correction
- 24. Post-Processed Differential Correction
- 25. Summary
- 26.Bibliography
- Chapter 6: National Spatial Data Infrastructure I
- Chapter 7: National Spatial Data Infrastructure II
- ► Chapter 8: Remotely Sensed Image Data
- ► Chapter 9: Integrating Geographic Data

Navigation

- login
- Search

Author: David DiBiase, Senior Lecturer, John A. Dutton e-Education Institute, and Director of Education, Industry Solutions, Esri. Instructors and contributors: Jim Sloan, Senior Lecturer, John A. Dutton e-Education Institute; Ryan Baxter, Senior Research Assistant, John A. Dutton e-Education Institute, Beth King, Senior Lecturer, John A. Dutton e-Education Institute and Assistant Program Manager for Online Geospatial Education, and Adrienne Goldsberry, Senior Lecturer, John A. Dutton e-Education Institute; College of Earth and Mineral Sciences, The Pennsylvania State University.

Penn State Professional Masters Degree in GIS: Winner of the 2009 Sloan Consortium award for Most Outstanding Online Program

This courseware module is offered as part of the Repository of Open and Affordable Materials at Penn State.

Except where otherwise noted, content on this site is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

The College of Earth and Mineral Sciences is committed to making its websites accessible to all users, and welcomes comments or suggestions on access improvements. Please send comments or suggestions on accessibility to the site editor. The site editor may also be contacted with questions or comments about this Open Educational Resource.

The John A. Dutton Institute for Teaching and Learning Excellence is the learning design unit of the College of Earth and Mineral Sciences at The Pennsylvania State University.

Navigation

- Home
- News
- AboutContact Us
- People
- Resources
- Services
- Login

 College of Earth and Mineral Sciences

EMS

- Department of Energy and Mineral Engineering
- Department of Geography
- Department of Geosciences
- Department of Materials Science and Engineering
- Department of Meteorology and Atmospheric Science
- Earth and Environmental Systems Institute
- Earth and Mineral Sciences Energy Institute

Programs

- Online Geospatial Education
- Programs

 iMPS in
 Renewable
 Energy and
 Sustainability
 Policy
- Office

 BA in Energy and Sustainability Policy Program

Office

Program

Related Links

- Penn State
 Digital
 Learning
 Cooperative
- Penn State
 World Campus
- Web Learning@ Penn State

2217 Earth and Engineering Sciences Building, University Park, Pennsylvania, 16802 Contact Us Privacy & Legal Statements | Copyright Information
The Pennsylvania State University © 2023