

Campus Heilbronn

Campus Künzelsau Reinhold-Würth-Hochschule Campus Schwäbisch Hall Sicherheitstechnik, 3. Vorlesung (Safety Technology)

Fred Härtelt, Heilbronn

Beispiel (2012): Zulassung des ICE 3 (Velaro-D)

<u>Problematik:</u> Verzögerung des Bremsvorgangs um bis zu 1,6 Sekunden durch das Zusammenkoppeln zweier Züge

Neue ICE-Modelle: Eine Sekunde bis zum Stopp

Ein digitales Detail stellt die Deutsche Bahn und den Siemens-Konzern vor große Probleme: Das Kommando zum Anhalten eines ICE-3-Zugs irrt etwa eine Sekunde lang durch den Rechner, bis es ausgeführt wird. Nach SPIEGEL-Informationen verweigerte das Eisenbahn-Bundesamt deshalb die Zulassung.

Quellen: www.spiegel.de, www.zeit.de, http://www.eba.bund.de

Sicherheitstechnik: zeitlicher Überblick

- ▶ 1. V: Definition Sicherheit, Normen und Vorschriften (14.03.2022)
- 2. V: Festlegung von Grenzen und Gefährdungen (21.03.2022)
- 3. V: Risikobeurteilung, -minimierung, Risikograph (28.03.2022)
- ▶ 4. V: Verteilungsfunktion, Ausfallraten, Fehlerbeherrschung (04.04.2022)
- 5. V: Fehlervermeidung, Fehlerentdeckung, FMEA (11.04.2022)
- Keine Vorlesung am 18.04.2022 (Ostermontag)
- Keine Vorlesung am 25.04.2022
- 6. V: Redundanz, Strukturierungsmaßnahmen, FTA (02.05.2022)
- 7. V: Berechnung von Ausfallraten, FMEDA, Aufgabenstellung Belegarbeit, Einteilung der Gruppen (09.05.2022)
- 8. V: Prozess vs. Technik, Besonderheiten HW/SW, Zuverlässigkeit SW Entwicklungsprozess, Bsp. Belegarbeit, Beginn der Gruppenarbeit (16.05.2022)
- Rückfragen bezüglich Gruppenarbeit am 23.05., 30.05. und 13.06.2022 (WebEx)
- Abgabetermin der Gruppenarbeiten: 20.06.2022 (vor Beginn der Präsentationen)
- Präsentationstermine der Gruppen: 20.06.2022 (vorläufiger Stand)

Sicherheitstechnik: Wiederholung

Sicherheitstechnik: Wiederholung

Sicherheitstechnik: Wiederholung

Berechnung des Performance Level (PL) mit einem Risikograph

s	Schwere der Verletzung
S1 – leicht (üblicherweise reversible Verletzung)	S2 – ernst (üblicherweise irreversible Verletzungen einschließlich Tod)
F	Häufigkeit und Dauer der Gefahrdungsexposition
F1 – selten bis weniger häufig und/oder die Dauer der Gefahrdungsexposition ist kurz (nicht häufiger als 2-Mal am Tag und insgesamt nicht langer als 15 min.)	F2 – häufig bis dauernd und/oder die Dauer der Gefahrdungsexposition ist lang
P	Vermeidung der Gefährdung
P1 – möglich unter bestimmten Bedingungen	P2 – kaum möglich

Beispiel

- 1. Risikobeurteilung und –minderung
- 2. Identifikation der Sicherheitsfunktionen
- 3. Bestimmen des PL_r
- 4. Auswahl der Systemarchitektur
- Modellieren des Systems als Blockdiagramm
- 6. Fehler und Diagnose
- Bestimmen des PL
- Bewerten der Robustheit der Steuerung -Fehlervermeidung
- 9. Software-Anforderungen
- 10. Verifizieren und Validieren

WIRTSCHAFT INFORMATIK

Beispiel

Maßnahmen zur Risikominderung nach ISO 12100

- Vermeidung durch inhärent sichere Konstruktion
- Vermeidung durch Schutzeinrichtung
- 3. Vermeidung durch Benutzerinformation

Ausreichende Maßnahmen

Nein Hängt die Maßnahme von Steuerung ab?

> ↓ Ja Sicherheitsfunktion (SRP/CS) nach ISO 13849

Restrisiken (neue Gefährdungen)? Beurteilung nach ISO 12100

	-	[m]		
Procedure	Machine	Joystick	Controller	Valve
ldentify the hazard	Unexpected telescopic movement		-	
Define the trigger event	User commands stop	Joystick in neutral position	-	
Define the safe state	Telescopic movement stopped		-	Valve in neutral position
Specify the reaction	Stop movement	Send stop sig- nal to controller	Process stop signal, shut off valve	Stop oil flow
Safety (related) function	start-up of the	Provide neutral position to controller	Process stop signal	Shut off oil flow

Safety function

Safety related function

Beispiel

Prevent unexpected start-up of the telescopic movement

Measure	SIL	PL_r
e.g. safety function (SF)	3	е
e.g. safety function (SF)	2	d
e.g. safety function (SF)	1	С
Other measure or SF	-	b
Other measure or SF	-	a

Beispiel

Risk index R = S * K		Class K = F + W + P										
	RISK INDEX R = 5 " K		3	4	5	7	8	10	11	13	14	15
	Death or permanent injury	4	12	16	20	28	32	40	44	52	56	60
S	Permanentinjury	3	9	12	15	21	24	30	33	39	42	45
3	Reversibel injury 2		6	8	10	14	16	20	22	26	28	30
	Reversibel injury 1		3	4	5	7	8	10	11	13	14	15
						Mea	sure		S	IL	Р	L _r
					e.g.	safety f	unction	(SF)	3	3	6	9
_					e.g. safety function (SF)		2	2	C	t		
R	Risk evaluation according to severity S and class K			e.g. safet		g. safety function (SF)		1		1 c		
					Otl	her mea	sure or	SF		-	k)
					Otl	her mea	sure or	SF	-		á	a

Sicherheitstechnik: Übung 3

Schadensausmaß (severity)

S1 leichte Verletzungen (reversibel)

S2 schwere Verletzungen (irreversibel)

Möglichkeit zum Erkennen und Ausweichen der Gefahr (avoidance)

A1 möglich unter bestimmten Umständen

A2 kaum möglich

Aufenthaltsdauer im Gefahrenbereich (frequency)

F1 selten bis öfter

F2 häufig bis dauernd

Wahrscheinlichkeit des Eintretens des Ereignisses (occurrence probability)

O1 klein (unwahrscheinlich)

O2 mittel (wird wahrscheinlich einige Male eintreten)

O3 groß (wird häufig eintreten)

			Risk	index	calcu	lation	
		01		0)2	О3	
		A1	A2	A1	A2	A1	A2
S1	F1			1			2
5	F2			!			-
S2	F1		2			3	4
32	F2	3		4		Š	6

	Lebens- phasen	Gefährdung	Risiko- einschätzung 1	Maßnahmen zur Risikominderung	Risiko- einschätzung 2
1	Transport	Gefährdungen durch unsachgemäßen Transport der Maschine	S = S2, F = F1, O = O1, A = A1, RI = 2	Gesamtgewicht in der Betriebsanleitung angeben. Korrekte Transportmöglichkeiten in der Betriebsanleitung beschreiben.	S = S1, F = F1, O = O1, A = A1, RI = 1

2	Betrieb	Herunterfallen von Holzstücken auf die Beine/Füße der	S = S2, F = F1, O = O3, A = A1, RI = 3	Halteeinrichtung für das Holzstück anbauen. Halteeinrichtung so	S = S1, F = F1, O = O1, A = A1, RI = 1
		Bedienperson, wenn diese gespalten werden.		gestalten, dass das Holzstück vor - während oder nach dem Spalten nicht auf die Füße der Bedienperson fällt, wenn diese in Arbeitsposition ist.	

3	Betrieb	Verletzungen der Hände	S = S2, F = F1,	1. Hinweis in der	S = S1, F = F1,
		bei unsachgemäßer	O = O2, A = A1,	Betriebsanleitung, wie bei	O = O1, A = A1,
		Handhabung der	RI = 2	verklemmten Holzklötzen	RI = 1
		Maschine, wenn sich		vorzugehen ist.	
		Holzklötze verklemmt			
		haben.		2. Hinweis in der	
				Betriebsanleitung, dass	
				der Arbeitsbereich frei von	
				Holzresten und	
				Hindernissen gehalten	

TECHNIK

IRTSCHAFT

INFORMATIK

4	Betrieb	Schneiden bzw.	S = S2, F = F1,	Zweihandschaltung einbauen. Das Auslösen	S = S1, F = F1,
		Abschneiden von Händen oder Fingern am Spaltkeil beim Auflegen oder Halten von Spaltmaterial und gleichzeitigem Auslösen des Spaltvorgangs.	O = O3, A = A1, RI = 3	einbauen. Das Auslosen des Spaltvorgangs darf nur unter Verwendung beider Hände erfolgen können. Zweihandschaltung nach EN 574 gestalten. Die Zwei-handsteuerung muss mindestens Kategorie 1 (DIN EN 954-1) erfüllen. (Forderung aus DIN EN 609-1). 2. Sicherheitshinweise auf der Spaltmaschine: "Vorsicht! Bewegte Maschinenteile!", "Nur für Betrieb durch 1 Person!"	O = O1, A = A1, RI = 1
				3. Hinweis in der Betriebsanleitung: "Warnung! Die Schutzeinrichtung der Spaltmaschine ist nur dann wirksam, wenn die Bedienung durch eine einzelne Person erfolgt. Bedienung niemals durch mehrere Personen!"	
				4. Hinweis in der Betriebsanleitung, dass die Schutzeinrichtung regelmäßig auf korrekte Funktion geprüft werden muss.	

Sicherheitstechnik: PL bestimmen

Angewandtes Diagramm nach DIN EN ISO13849-1 zur Bestimmung des erforderlichen Performance-Level (PL):

Schwere der Verletzung (severity)

S1: leichte Verletzung

S2: Tod oder schwere Verletzung

Häufigkeit und Aufenthaltsdauer (frequency)

F1: selten bis öfter

F2: häufig bis dauernd

Möglichkeit zur Vermeidung von Gefährdungen (possibility of avoidance)

P1: möglich unter bestimmten Bedingungen

P2: kaum möglich

PL: Performance-Level

Gestalten der Sicherheitsfunktionen

Ermittlung PL der sicherheitsbezogenen Teile

Ermittlung des Performance Levels der sicherheitsbezogenen Teile

Ermittlung PL: Einflussfaktoren

Ermittlung PL: Kategorien

Merkmal			Kategorie		
	В	1	2	3	4
Gestaltung gemäß zutreffender Normen, zu erwartenden Einflüssen standhalten	х	х	х	x	x
Grundlegende Sicherheitsprinzipien	x	x	х	х	x
Bewährte Sicherheitsprinzipien		х	x	x	x
Bewährte Bauteile		х			
Mean Time to Dangerous Failure - MTTF _d	niedrig bis mittel	hoch	niedrig bis hoch	niedrig bis hoch	hoch
Fehlererkennung (Tests)			Х	Х	X
Einfehlersicherheit				x	X
Berücksichtigung von Fehlerakkumulation					x
Diagnosedeckungsgrad - DC _{avg}	kein	kein	niedrig bis mittel	niedrig bis mittel	hoch
Маßnahmen gegen Fehler gemeinsamer Ursache (ССF)			(X) bedingt	х	х
Hauptsächlich charakterisiert durch	Bauteilaus	wahl	Struktur		

Kategorie B und Kategorie 1 0 Logik Eingang Ausgang Verbindung Kategorie 2 0 Eingang Logik Ausgang OTE TE Ausgang der Testeinrichtung Testeinrichtun Verbindung Überwachung (angemessene

Fehlererkennung)

Eigenschaften der Kategorien

Abb. B-4.1: Beziehung zwischen Kategorien und PL

INFORMATIK

Ermittlung PL bei mehreren Bauteilen

- Zunächst Bestimmung des niedrigsten PL
- Bestimmung der Bauteile mit dem niedrigsten PL (n)
- Nachschlagen des Gesamt-PL

$PL_{niedrig}$	$N_{niedrig}$	PL
_	> 3	kein, nicht erlaubt
a	≤ 3	a
ь	> 2	a
Ů	≤2	ь
c	> 2	ь
	≤2	c
d	> 3	c
ď	≤ 3	d
	> 3	d
e	≤3	e

INFORMATIK

Ermittlung PL: Beispiel

- PL (niedrig) = c
- N (niedrig) = 2
- Tabelle anwenden
- PL (gesamt) = c

Ermittlung PL: Hilfsmittel

z.B. Performance Level Calculator, Sistema, Siemens Safety Evaluation Tool

Sicherheitstechnik: Beispiel Erreichung PL

MTTFd				
Bezeichnung für jeden Kanal	Bereich für jeden Kanal			
niedrig	3 Jahre ≤ MTTF _d < 10 Jahre			
mittel	10 Jahre ≤ MTTF _d < 30 Jahre			
hoch	30 Jahre ≤ MTTF _d ≤ 100 Jahre			

ANMERKUNG 1 Die Wahl der MTTF_d-Bereiche eines Kanals basiert nach dem in der Praxis vorgefundenen Stand der Technik auf einer logarithmischen Skala, die sich der logarithmischen Skala des PL anpasst. Es wird nicht angenommen, dass ein MTTF_d-Wert eines Kanals für ein reales SRP/CS kleiner als drei Jahre gefunden werden kann, denn das würde bedeuten, dass nach einem Jahr etwa 30 % aller Systeme auf dem Markt defekt sind und ersetzt werden müssten. Ein MTTF_d-Wert eines Kanals größer als 100 Jahre wird nicht akzeptiert, denn ein SRP/CS für hohe Risiken sollte nicht von der Zuverlässigkeit von Bauteilen alleine abhängig sein. Um ein SRP/CS gegen systematische und zufällige Fehler zu ertüchtigen, sind zusätzliche Mittel wie Redundanzen und Tests erforderlich. Für die praktische Anwendbarkeit wurde die Zahl der Bereiche auf drei beschränkt. Die Beschränkung des MTTF_d-Wertes jedes Kanals auf ein Maximum von 100 Jahren bezieht sich auf den einzelnen Kanal des SRP/CS, der die Sicherheitsfunktion ausführt. Höhere MTTF_c-Werte können für einzelne Bauteile verwendet werden (siehe Tabelle D.1).

ANMERKUNG 2 Für die gezeigten Grenzwerte der Tabelle 5 wird eine Genauigkeit von 5 % angenommen.

Abb. B-4.1: Be	eziehung zwisc	hen Kategorien und I	PL,
----------------	----------------	----------------------	-----

	Grundlegende und bewährte Sicherheitsprinzipien nach ISO 13849-2:2003	Andere relevante Normen	Typische Werte: MTTF _d (Jahre) B _{10d} (Zyklus)
Mechanische Bauteile	Tabellen A.1 und A.2	_	MTTF _d = 150
Hydraulische Bauteile	Tabellen C.1 und C.2	EN 982	MTTF _d = 150
Pneumatische Bauteile	Tabellen B.1 und B.2	EN 983	B _{10d} = 20 000 000
Relais und Hilfsschütze mit geringer Last (mechanische Belastung)	Tabellen D.1 und D.2	EN 50205 IEC 61810 IEC 60947	B _{10d} = 20 000 000
Relais und Hilfsschütze mit maximaler Belastung	Tabellen D.1 und D.2	EN 50205 IEC 61810 IEC 60947	B _{10d} = 400 000
Näherungsschalter mit geringer Last (mechanische Belastung)	Tabellen D.1 und D.2	IEC 60947 EN 1088	B _{10d} = 20 000 000
Näherungsschalter mit maximaler Belastung	Tabellen D.1 und D.2	IEC 60947 EN 1088	B _{10d} = 400 000
Schütze mit geringer Last (mechanische Belastung)	Tabellen D.1 und D.2	IEC 60947	B _{10d} = 20 000 000
Schütze mit nominaler Last	Tabellen D.1 und D.2	IEC 60947	B _{10d} = 2 000 000

PL _{niedrig}	N _{niedrig}	↑	PL
a	> 3	\Rightarrow	kein, nicht erlaubt
a	≤ 3	\Rightarrow	a
b	> 2	\uparrow	а
5	≤ 2	\uparrow	b
С	> 2	\uparrow	b
	≤ 2	\Rightarrow	С
d	> 3	\Rightarrow	С
u	≤ 3	\Rightarrow	d
е	> 3	\Rightarrow	d
	≤ 3	\Rightarrow	е

TECHNIK

IRTSCHAFT

INFORMATI

Sicherheitstechnik: Beispiel Erreichung PL

Gefährdung	Risiko- einschätzung 1	Maßnahmen zur Risikominderung	Risiko- einschätzung 2	Definierter Performance Level	Erreichter Performance Level
Schneiden bzw. Abschneide n von Händen oder Fingern am Spaltkeil beim Auflegen oder Halten von Spaltmateria I und gleichzeitige m Auslösen des Spaltvorgan gs.	S = S2, F = F1, O = O3, A = A1, RI = 3	1. Zweihandschaltung einbauen. Das Auslösen des Spaltvorgangs darf nur unter Verwendung beider Hände erfolgen können. Zweihandschaltung nach EN 574 gestalten. Die Zwei-handsteuerung muss mindestens Kategorie 1 (DIN EN 954-1) erfüllen. (Forderung aus DIN EN 609-1). 2. Sicherheitshinweise auf der Spaltmaschine: "Vorsicht! Bewegte Maschinenteile!", "Nur für Betrieb durch 1 Person!" 3. Hinweis in der Betriebsanleitung: "Warnung! Die Schutzeinrichtung der Spaltmaschine ist nur dann wirksam, wenn die Bedienung durch eine einzelne Person erfolgt. Bedienung niemals durch mehrere Personen!" 4. Hinweis in der Betriebsanleitung, dass die Schutzeinrichtung regelmäßig auf korrekte Funktion geprüft werden muss.	S = S1, F = F1, O = O1, A = A1, RI = 1	S = S2, F = F1, P = P1, PL = c	Struktur der Steuerung: Mechanische Ansteuerung des Steuerventils der Zweihandschaltung. Steuerventil: Sicherheitstechnisch bewährtes Hydraulik- Wegeventil 1V3. Daten für das Ventil: MTTF = 150 J (= hoch) Kategorie = 1 PL = c PL gesamt = c

Beispiel

- 1. Risikobeurteilung und –minderung
- 2. Identifikation der Sicherheitsfunktionen
- Bestimmen des PL_r
- 4. Auswahl der Systemarchitektur
- Modellieren des Systems als Blockdiagramm
- 6. Fehler und Diagnose
- Bestimmen des PL
- Bewerten der Robustheit der Steuerung Fehlervermeidung
- 9. Software-Anforderungen
- 10. Verifizieren und Validieren

Beispiel

Prevent unexpected start-up of the telescopic movement

Measure	SIL	PL_r
e.g. safety function (SF)	3	е
e.g. safety function (SF)	2	d
e.g. safety function (SF)	1	С
Other measure or SF	-	b
Other measure or SF	-	a

Beispiel

Beispiel

- 1. Risikobeurteilung und –minderung
- 2. Identifikation der Sicherheitsfunktionen
- Bestimmen des PL_r
- 4. Auswahl der Systemarchitektur
- 5. Modellieren des Systems als Blockdiagramm
- 6. Fehler und Diagnose
- Bestimmen des PL
- Bewerten der Robustheit der Steuerung Fehlervermeidung
- 9. Software-Anforderungen
- 10. Verifizieren und Validieren

Beispiel

5. Modellieren des Systems: MTTF_d-Daten

- MTTF_d-Wert: Erwartungswert der durchschnittlichen Zeit bis zu einem gefährlichen Ausfall
- Voraussetzung: Komponentenhersteller bestätigt die anwendbaren grundlegenden und bewährten Sicherheitsprinzipien (abhängig von spezifiziertem Einsatz)
- → Elektronik: Berechnung nach Abstimmung des Einsatzes (z.B. Temperaturprofil) möglich
- Priorität nach ISO 13849:

Daten des Komponentenherstellers

Standardisierte Werte in ISO 13849 mit zusätzlichen qualitativen Anforderungen, z.B. 150 Jahre für hydraulische Komponenten (zukünftig: 150-1200 Jahre je nach n_{Op})

Pessimistische zehn Jahre

WIRTSCHAFT INFORMATIK

Beispiel

6. Fehler und Diagnose

- Der erreichbare PL hängt neben MTTF_d und Kategorie vom Diagnosedeckunggrad ab.
- Der Diagnosedeckungsgrad (diagnostic coverage, DC) ist das Verhältnis

$$\frac{\text{unentdeckte gefährliche Fehlerrate}}{\text{gesamte gefährliche Fehlerrate}} = \frac{\lambda_{\text{du}}}{\lambda_{\text{d}}} = \frac{\lambda_{\text{du}}}{\lambda_{\text{du}}} + \lambda_{\text{dd}}$$

- Der DC ist auf Subsystemebene relevant, sollte aber mit Komponentenexperten gemeinsam bestimmt werden.
- Rexroth stellt möglichen DC bereit: Steuergeräte-Sicherheitshandbuch
- Beispiel möglicher Sicherheitsmechanismen aus ISO 13849:

Maßnahme	Technologie	DC
Process (zyklischer Test)	Fluidtechnik	0% ≤ DC < 99%
Kreuzüberwachung (2 Kanäle)	Elektronik	DC = 99%
Indirekte Überwachung (z.B. Druck)	Fluidtechnik	90% ≤ DC < 99%
Direkte Positionsüberwachung	Fluidtechnik	DC = 99%

Beispiel

- 1. Risikobeurteilung und -minderung
- 2. Identifikation der Sicherheitsfunktionen
- Bestimmen des PL_r
- 4. Auswahl der Systemarchitektur
- Modellieren des Systems als Blockdiagramm
- 6. Fehler und Diagnose
- 7. Bestimmen des PL
- Bewerten der Robustheit der Steuerung Fehlervermeidung
- 9. Software-Anforderungen
- 10. Verifizieren und Validieren

Beispiel

Sicherheitstechnik: Übung 4 PL bestimmen und Kategorie auswählen

HNIK WIRTSCHAFT INFO

Gefährdung	Definierter Performance Level	Erreichter Performance Level
Verletzung von Personen durch Quetschen oder Stoßen	S = 2 F = 2 P = 1 PL = d	Kategorie = 2 für elektronische Systeme, Kategorie = 3 für hydraulische und pneumatische Systeme PL = d