# **Robot Modeling**

Optimization-based Robot Control

Andrea Del Prete

University of Trento

#### **Schedule**

Classroom Code: 2ym4lka

#### First week:

- 1. Modeling ( $\approx$  1 hour)
- 2. Joint-Space Control ( $\approx 1 \text{ hour}$ )
- 3. Task-Space Control ( $\approx 1 \text{ hour}$ )
- 4. Implementation ( $\approx 1$  hour)
- 5. Coding ( $\approx$  2 hours)

#### **Schedule**

Classroom Code: 2ym4lka

#### First week:

- 1. Modeling ( $\approx 1 \text{ hour}$ )
- 2. Joint-Space Control ( $\approx 1 \text{ hour}$ )
- 3. Task-Space Control ( $\approx 1 \text{ hour}$ )
- 4. Implementation ( $\approx 1$  hour)
- 5. Coding ( $\approx$  2 hours)

#### Second week:

- 1. Limits of Reactive Control ( $\approx$  0.5 hour)
- 2. Linear Inverted Pendulum Model  $\approx$  0.5 hour)
- 3. Center of Mass Trajectory Generation ( $\approx 1$  hour)
- 4. Implementation ( $\approx 1$  hour)
- 5. Coding: CoM trajectory optimization (pprox 1 hour)
- 6. Coding: walking with TSID ( $\approx$  2 hours)

# **Options for coding**

• use my 11 GB VM (VMware Fusion, compatible with VirtualBox)

## **Options for coding**

- use my 11 GB VM (VMware Fusion, compatible with VirtualBox)
- install TSID and dependencies (available on github.com):
  - TSID (branch devel)
  - Pinocchio
  - Gepetto-viewer
  - Gepetto-viewer-corba

### **Table of contents**

- 1. Modeling Robot Manipulators
- 2. Modeling Robots in Contact
- 3. Modeling Legged Robots

## **Notation & Definitions**

State  $\triangleq x$ .

Control  $\triangleq u$ .

#### **Notation & Definitions**

```
State \triangleq x.
```

Control  $\triangleq u$ .

Identity matrix  $\triangleq I$ .

Zero matrix  $\triangleq 0$ .

Matrix size written as index (when needed), e.g.,  $I_3$ .

#### **Notation & Definitions**

State  $\triangleq x$ .

Control  $\triangleq u$ .

Identity matrix  $\triangleq I$ .

Zero matrix  $\triangleq 0$ .

Matrix size written as index (when needed), e.g.,  $I_3$ .

Fully actuated system: number of actuators = number of degrees of freedom (e.g., manipulator).

Under actuated system: number of actuators < number of degrees of freedom (e.g., legged robot, quadrotor).

**Modeling Robot Manipulators** 

## Robot Manipulators: Fixed-base Robots

Robot base is (typically) fixed (e.g., attached to the ground).

Configuration represented by vector  $q \in \mathbb{R}^{n_q}$  of (relative) joint angles. Velocity represented by vector  $v = \dot{q} \in \mathbb{R}^{n_v}$  of (relative) joint velocities.





#### **Actuation Models**

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

## **Actuation Models**

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

Actuator models:

- velocity source
- acceleration source
- torque source
- ...

#### **Actuation Models**

Typically each joint driven by 1 actuator (e.g., electric, hydraulic, pneumatic).

Actuator models:

- velocity source
- acceleration source
- torque source
- ...

Appropriate model depends on robot and task.

## **Velocity Input**

Model actuators as velocity sources.

- Good for hydraulic.
- Good for electric in certain conditions (e.g., manipulators).

# **Velocity Input**

Model actuators as velocity sources.

- Good for hydraulic.
- Good for electric in certain conditions (e.g., manipulators).

$$x \triangleq q$$

$$u \triangleq v$$

Dynamics is simple integrator:

$$\dot{x} = u$$

7

## **Acceleration Input**

Model actuators as acceleration sources.

• Good for electric w/o large contact forces.

## **Acceleration Input**

Model actuators as acceleration sources.

• Good for electric w/o large contact forces.

$$x \triangleq (q, v)$$

$$u \triangleq \dot{v}$$

Dynamics is double integrator:

$$\begin{bmatrix} \dot{q} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} 0 & I \\ 0 & 0 \end{bmatrix} \begin{bmatrix} q \\ v \end{bmatrix} + \begin{bmatrix} 0 \\ I \end{bmatrix} u$$

8

## **Torque Input**

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case (unfortunately).

$$x \triangleq (q, v)$$
  $u \triangleq \tau$ 

C

## **Torque Input**

Model actuators as torque sources.

Good for electric w/o high-friction gear box—rarely the case (unfortunately).

$$x \triangleq (q, v)$$
  $u \triangleq \tau$ 

Dynamics of fully-actuated mechanical system (e.g., manipulator):

$$M(q)\dot{v} + h(q,v) = \tau,$$

where

- $M(q) \in \mathbb{R}^{n_v \times n_v} \triangleq \text{(positive-definite)}$  mass matrix,
- $h(q, v) \in \mathbb{R}^{n_v} \triangleq \text{bias forces}$ ,
- $\tau \in \mathbb{R}^{n_v} \triangleq \text{ joint torques}$ .

9

## **Torque Input: Fully-Actuated Dynamics**

Bias forces sometimes decomposed as:

$$h(q, v) = C(q, v)v + g(q)$$

- $C(q, v)v \triangleq \text{Coriolis}$  and centrifugal effects
- $g(q) \triangleq$  gravity forces

## **Torque Input: Fully-Actuated Dynamics**

Bias forces sometimes decomposed as:

$$h(q, v) = C(q, v)v + g(q)$$

- $C(q, v)v \triangleq \text{Coriolis}$  and centrifugal effects
- $g(q) \triangleq$  gravity forces

Nonlinear state-space dynamics:

$$\begin{bmatrix} \dot{q} \\ \dot{v} \end{bmatrix} = \begin{bmatrix} v \\ -M(q)^{-1}h(q,v) \end{bmatrix} + \begin{bmatrix} 0 \\ M(q)^{-1} \end{bmatrix} u$$

## **Inverse VS Forward Dynamics**

#### **Forward Dynamics**

Given  $q, v, \tau$  compute  $\dot{v}$ :

$$\dot{v} = M(q)^{-1}(\tau - h(q, v))$$

Problem solved by simulators.

## **Inverse VS Forward Dynamics**

### **Forward Dynamics**

Given  $q, v, \tau$  compute  $\dot{v}$ :

$$\dot{v} = M(q)^{-1}(\tau - h(q, v))$$

Problem solved by simulators.

#### **Inverse Dynamics**

Given  $q, v, \dot{v}$  compute  $\tau$ :

$$\tau = M(q)\dot{v} + h(q,v)$$

Problem solved by controllers.

**Modeling Robots in Contact** 

## **Adding Contact Forces**

If robot in contact with surrounding  $\rightarrow$  contact forces  $\mathbf{f} \in \mathbb{R}^{n_{\mathbf{f}}}$ :

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\mathsf{T}}f,$$

where  $J(q) \in \mathbb{R}^{n_f \times n_v} \triangleq \text{contact Jacobian}$ :

## **Adding Contact Forces**

If robot in contact with surrounding  $\rightarrow$  contact forces  $\emph{f} \in \mathbb{R}^{n_{\emph{f}}}$ :

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\mathsf{T}}f,$$

where  $J(q) \in \mathbb{R}^{n_f \times n_v} \triangleq \text{contact Jacobian}$ :

$$J(q) = \frac{\partial c(q)}{\partial q},$$

where  $c(q): \mathbb{R}^{n_q} \to \mathbb{R}^{n_f} \triangleq \text{forward geometry of contact points (i.e. function mapping joint angles to contact point positions).$ 

Rigid contacts constrain motion.

Rigid contacts constrain motion.

$$c(q) = \text{const} \iff \text{Contact points do not move}$$

Rigid contacts constrain motion.

$$c(q) = \text{const} \iff \text{Contact points do not move}$$

Differentiate:

$$Jv=0 \iff ext{Contact point velocities are null}$$
  $J\dot{v}+\dot{J}v=0 \iff ext{Contact point accelerations are null}$ 

Rigid contacts constrain motion.

$$c(q) = \text{const} \iff \text{Contact points do not move}$$

Differentiate:

$$Jv=0 \iff ext{Contact point velocities are null} \ J\dot{v}+\dot{J}v=0 \iff ext{Contact point accelerations are null}$$

Introduce constraints in dynamics:

$$\begin{bmatrix} M & -J^{\top} & -I \\ J & 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{v} \\ f \\ \tau \end{bmatrix} = \begin{bmatrix} -h \\ -\dot{J}v \end{bmatrix}$$
 (1)

#### Forward Dynamics (with constraints)

Given  $q, v, \tau$  compute  $\dot{v}$  and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -Jv \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

#### Forward Dynamics (with constraints)

Given  $q, v, \tau$  compute  $\dot{v}$  and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

### **Inverse Dynamics (with constraints)**

Given  $q, v, \dot{v}$  compute  $\tau$  and f:

$$\begin{bmatrix} au \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

## Forward Dynamics (with constraints)

Given  $q, v, \tau$  compute  $\dot{v}$  and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

## **Inverse Dynamics (with constraints)**

Given  $q, v, \dot{v}$  compute  $\tau$  and f:

$$\begin{bmatrix} \tau \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

Implicit assumption:  $\dot{v}$  satisfies constraints.

#### Forward Dynamics (with constraints)

Given  $q, v, \tau$  compute  $\dot{v}$  and f:

$$\begin{bmatrix} \dot{v} \\ f \end{bmatrix} = \begin{bmatrix} M & -J^{\top} \\ J & 0 \end{bmatrix}^{-1} \begin{bmatrix} \tau - h \\ -\dot{J}v \end{bmatrix}$$

Problem solved by (bilateral) rigid contact simulators.

### Inverse Dynamics (with constraints)

Given  $q, v, \dot{v}$  compute  $\tau$  and f:

$$\begin{bmatrix} \tau \\ f \end{bmatrix} = \begin{bmatrix} I & J^{\top} \end{bmatrix}^{\dagger} (M\dot{v} + h),$$

where † represents pseudo-inverse.

Implicit assumption:  $\dot{v}$  satisfies constraints.

Primitive version of inverse-dynamics control with rigid contacts.

**Modeling Legged Robots** 

# Modeling Legged (Floating-Base) Robots



#### **PROBLEM**

Joint angles not enough to describe robot configuration.

## Modeling Legged (Floating-Base) Robots



#### **PROBLEM**

Joint angles not enough to describe robot configuration.

#### **SOLUTION**

Add pose (position + orientation) of one link (called base) w.r.t. inertial frame:

$$q = (\underbrace{x_b}, \underbrace{q_j})$$
Base pose Joint angles

# Modeling Legged (Floating-Base) Robots



#### **PROBLEM**

Joint angles not enough to describe robot configuration.

#### **SOLUTION**

Add pose (position + orientation) of one link (called base) w.r.t. inertial frame:

$$q = (\underbrace{x_b}, \underbrace{q_j})$$
Base pose Joint angles

Now *q* sufficient to describe robot configuration in space.

#### **Base Pose**

 $x_b \in SE(3) \triangleq$  special Euclidian group, comprising any combination of

- translations: elements of  $\mathbb{R}^3$ ,
- rotations: elements of  $SO(3) \triangleq special$  orthogonal group

### **Base Pose**

 $x_b \in SE(3) \triangleq$  special Euclidian group, comprising any combination of

- translations: elements of  $\mathbb{R}^3$ ,
- rotations: elements of  $SO(3) \triangleq$  special orthogonal group

Can represent SO(3) elements with:

- minimal representations: 3 elements but suffer from singularities (e.g., Euler angles, roll-pitch-yaw)
- redundant representations: ≥4 elements but free from singularities (e.g., quaternions, rotation matrices)

### **Base Pose**

 $x_b \in SE(3) \triangleq$  special Euclidian group, comprising any combination of

- translations: elements of  $\mathbb{R}^3$ ,
- rotations: elements of  $SO(3) \triangleq$  special orthogonal group

Can represent SO(3) elements with:

- minimal representations: 3 elements but suffer from singularities (e.g., Euler angles, roll-pitch-yaw)
- redundant representations: ≥4 elements but free from singularities (e.g., quaternions, rotation matrices)

We represent SE(3) elements as 7d vectors: 3d for position, 4d for orientation (quaternion).

Unit quaternions: convenient notation for rotations in 3d.

Unit quaternions: convenient notation for rotations in 3d.

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Unit quaternions: convenient notation for rotations in 3d.

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Compared to rotation matrices: more compact, numerically stable, and efficient.

Unit quaternions: convenient notation for rotations in 3d.

Compared to Euler angles: simpler to compose and avoid gimbal-lock problem.

Compared to rotation matrices: more compact, numerically stable, and efficient.

Any 3d rotation equivalent to single rotation by angle  $\theta$  about fixed axis (unit vector  $u = (u_x, u_y, u_z)$ ).

quaternion = 
$$(u_x s, u_y s, u_z s, c)$$

where  $c=\cos \frac{\theta}{2}$  and  $s=\sin \frac{\theta}{2}.$  Note that  $||\text{quaternion}||=1 \quad \forall \, \theta, u.$ 

Robot configuration is  $q = (x_b, q_j)$ , where  $x_b = (p_b, o_b) \in \mathbb{R}^7$ .

Robot configuration is  $q=(x_b,q_j)$ , where  $x_b=(p_b,o_b)\in\mathbb{R}^7$ . Robot velocity is  $v=(\nu_b,\dot{q}_j)$ , where  $\nu_b=(\dot{p}_b,\omega_b)\in\mathbb{R}^6$ .

Robot configuration is  $q=(x_b,q_j)$ , where  $x_b=(p_b,o_b)\in\mathbb{R}^7$ . Robot velocity is  $v=(\nu_b,\dot{q}_j)$ , where  $\nu_b=(\dot{p}_b,\omega_b)\in\mathbb{R}^6$ .

Angular velocity  $\omega_b \in \mathbb{R}^3$  related to time derivative of associated rotation matrix  $R_b \in \mathbb{R}^{3 \times 3}$  by:

$$\dot{R}_b = \hat{\omega}_b R_b \quad \rightarrow \quad R_b(t) = e^{\hat{\omega}_b t} R_b(0)$$

where  $\hat{\omega}_b \in \mathbb{R}^{3 \times 3}$  is skew-symmetric matrix associated to  $\omega_b$ .

Robot configuration is  $q=(x_b,q_j)$ , where  $x_b=(p_b,o_b)\in\mathbb{R}^7$ . Robot velocity is  $v=(\nu_b,\dot{q}_j)$ , where  $\nu_b=(\dot{p}_b,\omega_b)\in\mathbb{R}^6$ .

Angular velocity  $\omega_b \in \mathbb{R}^3$  related to time derivative of associated rotation matrix  $R_b \in \mathbb{R}^{3\times 3}$  by:

$$\dot{R}_b = \hat{\omega}_b R_b \quad \rightarrow \quad R_b(t) = e^{\hat{\omega}_b t} R_b(0)$$

where  $\hat{\omega}_b \in \mathbb{R}^{3 \times 3}$  is skew-symmetric matrix associated to  $\omega_b$ .

So q and v have different sizes  $(n_q = n_v + 1)$ 

Underactuated systems: less actuators than DoFs:



Underactuated systems: less actuators than DoFs:

$$\underbrace{n_{\text{Va}}}_{\text{number of actuators}} < \underbrace{n_{\text{V}}}_{\text{number of DoFs}}$$

Assume ordered elements of  $q \triangleq (q_u, q_a)$ :

- $q_u \in \mathbb{R}^{n_{qu}}$ : passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{qa}}$ : actuated joints.

Similarly,  $v \triangleq (v_u, v_a)$ ,  $v_u \in \mathbb{R}^{n_{vu}}$ ,  $v_a \in \mathbb{R}^{n_{va}}$ .

Underactuated systems: less actuators than DoFs:

$$\underbrace{n_{va}}_{\text{number of actuators}} < \underbrace{n_{v}}_{\text{number of DoFs}}$$

Assume ordered elements of  $q \triangleq (q_u, q_a)$ :

- $q_u \in \mathbb{R}^{n_{qu}}$ : passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{qa}}$ : actuated joints.

Similarly, 
$$v \triangleq (v_u, v_a)$$
,  $v_u \in \mathbb{R}^{n_{vu}}$ ,  $v_a \in \mathbb{R}^{n_{va}}$ .

$$S \triangleq \begin{bmatrix} 0_{n_{va} \times n_{vu}} & I_{n_{va}} \end{bmatrix}$$
 is selection matrix:

$$v_a = Sv$$

Underactuated systems: less actuators than DoFs:

$$\underbrace{n_{\textit{Va}}}_{\textit{number of actuators}} < \underbrace{n_{\textit{V}}}_{\textit{number of DoFs}}$$

Assume ordered elements of  $q \triangleq (q_u, q_a)$ :

- $q_u \in \mathbb{R}^{n_{qu}}$ : passive (unactuated) joints,
- $q_a \in \mathbb{R}^{n_{qa}}$ : actuated joints.

Similarly,  $v \triangleq (v_u, v_a)$ ,  $v_u \in \mathbb{R}^{n_{vu}}$ ,  $v_a \in \mathbb{R}^{n_{va}}$ .

 $S \triangleq \begin{bmatrix} 0_{n_{va} \times n_{vu}} & I_{n_{va}} \end{bmatrix}$  is selection matrix:

$$v_a = Sv$$

For legged robots typically  $q_u = x_b$  (all joints are actuated).

## **Under-Actuated Dynamic**

Dynamics of under-actuated mechanical system:

$$M(q)\dot{v} + h(q, v) = S^{\top}\tau + J(q)^{\top}f$$

Contrary to fully-actuated case:  $au \in \mathbb{R}^{n_{\mathrm{va}}}$ .

## **Under-Actuated Dynamic**

Dynamics of under-actuated mechanical system:

$$M(q)\dot{v} + h(q, v) = S^{\top}\tau + J(q)^{\top}f$$

Contrary to fully-actuated case:  $au \in \mathbb{R}^{n_{va}}$ .

Often decomposed into unactuated and actuated parts:

$$M_{u}(q)\dot{v} + h_{u}(q, v) = J_{u}(q)^{\top} f$$
  

$$M_{a}(q)\dot{v} + h_{a}(q, v) = \tau + J_{a}(q)^{\top} f$$
(2)

where

$$M = \begin{bmatrix} M_u \\ M_a \end{bmatrix} \quad h = \begin{bmatrix} h_u \\ h_a \end{bmatrix} \quad J = \begin{bmatrix} J_u & J_a \end{bmatrix}$$
 (3)

## Recap

Manipulator:

$$M(q)\dot{v} + h(q, v) = \tau$$

Manipulator in contact:

$$M(q)\dot{v} + h(q,v) = \tau + J(q)^{\top}f$$

Legged robot (in contact):

$$M(q)\dot{v} + h(q,v) = S^{\top}\tau + J(q)^{\top}f$$

If contacts are rigid:

$$J\dot{v} = -\dot{J}v$$