Radartecnica

II Radar

- Apparato atto a rilevare oggetti che non possono essere osservati visivamente
 - Direzione
 - Distanza
 - Quota

Principio di funzionamento

- Antenna direzionale emette impulsi elettromagnetici
 - Oscilla entro un certo angolo per avere più visuale
- Se incontrano un corpo, questi impulsi (in parte) vengono riflessi e ritornano all'antenna
- In base a quanto tempo è passato da trasmissione a ricezione, calcolo la distanza

$$d = \frac{cT}{2}$$

Ok la distanza, ma la direzione e quota?

- Si usano antenne direzionali, che irradiano l'energia in uno stretto fascio
 - Se ho un ostacolo tra l'antenna e il bersaglio, questo non può essere individuato
- La direzione è espressa in termini di angolo formato dalla congiungente velivolo-bersaglio e dall'asse longitudinale del velivolo
 - Azimut
 - Elevazione

Ma se i due oggetti si muovono?

- Sfruttiamo l'effetto Doppler
 - Velocità relativa rispetto alla nave o al velivolo

Classificazione dei radar

- Funzionali
- Trasmissione
- Frequenza operativa
- Tipo di installazione

Caratteristiche funzionali

- Ricerca e scoperta
 - Esplorazione di un volume di spazio per individuare eventuali bersagli
- Tracciamento
 - Servono numerose informazioni continue sul bersaglio
- Illuminazione
- Mapping

Caratteristiche di trasmissione

- Radar impulsivi
 - Gli impulsi sono prodotti azionando ad intervalli regolari un oscillatore di potenza
 - Non coerente (fasi non correlate) o coerente
 - Se il tempo di andata e ritorno supera il periodo di ripetizione, ho ambiguità
 - Misura facilmente la distanza usando una sola antenna senza rumore tra trasmissione e ricezione
 - Alta potenza e banda larga

Caratteristiche di trasmissione

- Radar ad onda continua
 - Viene trasmessa una sola frequenza e larghezza di banda stretta
 - Difficile misurare la distanza, più facile la velocità del bersaglio
 - Antenne diverse in trasmissione e ricezione dato che è sempre attivo
 - Se moduliamo la frequenza si possono calcolare brevi distanze

Frequenza operativa

- Dalla scelta della frequenza dipendono la portata, la risoluzione angolare, le dimensioni, il peso, etc.
- Le dimensioni dell'antenna sono direttamente proporzionali alla lunghezza d'onda, che a sua volta è direttamente proporzionale alla potenza di trasmissione
- Frequenze elevate \rightarrow fascio piccolo \rightarrow maggiore risoluzione angolare $\lambda = \frac{V}{4}$

Componenti di un radar

Sincronizzatore

- Regola il numero di impulsi che il radar deve emettere nell'unità di tempo
- Regola l'indicatore affinché vi sia sincronismo tra il sistema trasmittente e la misurazione della distanza che separa il radar da un ostacolo

Modulatore

- Modulazione del segnale
 - Tempo
 - Frequenza

Trasmettitore e ricevitore

- Ha il compito di creare l'energia a radiofrequenza
- Commutatore T/R
 - Collega antenna a trasmettitore
 - Collega antenna a ricevitore
- Ha il compito di leggere l'onda di ritorno

Antenna

- Installata in posizione opportuna e protetta da una carenatura chiamata "radome", realizzata in materiale trasparente alle onde elettromagnetiche
- Ciclo dell'antenna
 - Trasmette, resta in attesa, trasmette,...
 - Ruotare in un angolo di 120°
 - Inclinarsi di 25-30° rispetto all'orizzontale

Antenna

- Guadagno
 - Lobo principale e lobo laterale
- Larghezza di banda
 - Angolo sotteso da due semirette che hanno origine nel centro dell'antenna e passano per i due punti del lobo principale in cui l'energia irradiata è pari alla metà di quella irradiata lungo l'asse di simmetria del lobo principale

Antenna

- Apertura = area frontale dell'antenna
 - Tanto più grande, tanto più stretto è il lobo principale (larghezza del fascio
 - Più il fascio è stretto e più è alta la risoluzione (ma meno bersagli prendo)

Schermo

- In passato avevamo tubi catodici, che offrivano una rappresentazione analogica che rimaneva sullo schermo solo per pochi secondi
- Ora abbiamo gli LCD che hanno memoria digitale, ossia l'immagine resta fino ad

aggiornamento

Computer di elaborazione dati

- Digital Signal Processor oppure Radar Data Processor
- Intelligenza in grado di elaborare velocemente tutte le informazioni ricavabili dagli echi radar e dai loro spostamenti
- Controllo e monitoraggio di tutte le funzioni tramite software dedicato

Impieghi tipici del radar

- Radar di terra
 - TSR
 - ESR
- Radar imbarcato
- Radar metereologico

Radar di terra

- Determina la posizione ma non l'identità del bersaglio
- In campo civile: PSR (Radar Primario di Sorveglianza)
 - TSR (*Terminal*)= portata di 100NM usato per la copertura di aree circostante gli aeroporti
 - ESR (Enroute)= copertura di vaste aree per il servizio di controllo degli aeromobili in rotta
 - Limitazione: attenuazione per le condizioni meteorologiche

Radar di terra

- In campo civile: SSR (Radar di Sorveglianza Secondario)
 - Interrogatore + risponditore + ricevitore
 - Interrogatore e ricevitore sono nello stesso luogo, per confrontare i due segnali
- Campo militare: avvistare il bersaglio alla massima distanza possibile, fornendo quante più informazioni possibili

Radar imbarcato

- Uso principalmente militare per individuare gli altri bersagli
 - Ma questo fornisce al nemico informazioni su sé stessi, in quanto si è rintracciabili dall'impulso
 - Disturbi elettromagnetici intenzionali
- Fix di posizione
 - Comunica con posizione nota per adeguare la rotta

Radar meteorologico

- Localizzare ed evitare i temporali
 - Con una frequenza adeguata si vede attraverso le nubi
- Reticolo calibrato con un ventaglio di 180° con linee ogni 15°
 - I cerchi sono per la distanza del bersaglio e dipendono dalla portata preselezionata
- Discrimina fra aree calme e non, altezza delle nubi e vista del terreno sottostante

Video

- https://www.youtube.com/watch?v=wIwAOupj MeM
- https://www.youtube.com/watch?v=_mBn6o8 mIQw