

SEQUENCE LISTING

THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE

SUKUMAR, Saraswati

EVRON, Ella

DOOLEY, William

DAVIDSON, Nancy

<120> ABERRANTLY METHYLATED GENES AS MARKER	OF RREAST MALIGNAN	CY

<130> JHU1630

<140> US 09/771,357

<141> 2001-01-26

<160> 110

<170> PatentIn version 3.0

<210> 1

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer (Sense)

<400> 1

gcggcgcagt tccccaacca

20

<210> 2

<211> 22

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer (Antisense)

<400> 2

atggtttctc accagtgtgc tt

22

<210> 3

<211> 20

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer (Sense)

<400> 3

gcatctgaaa ccagtgagaa

20

<210> 4

<211> 18

<212> DNA

<213> Artificial sequence

<220>

<223> PCR primer (Antisense)

<400>		18
tttctct	tgat gcatgttg	10
<210>	5	
<211>	22	
<212>		
	Artificial sequence	
<213>	Altititat bequence	
<220>		
	PCR primer (Sense)	
\2237	7	
<400>	5	
gattgg	ctac ccaactgttg ca	22
	6	
	22	
<212>		
<213>	Artificial sequence	
<220>	PCR primer (Antisense)	
<223>	PCR primer (Antibense)	
<400>	6	
	rcagc agccacaaag gc	22
9-5555		
<210>	7	
<211>	24	
<212>		
<213>	Artificial sequence	
<220>	nen (Ganga)	
<223>	PCR primer (Sense)	
400	7	
<400>	7 gttaa gttaggcgtc gtcg	24
cceggg	gitaa gitaggogoo goog	
<210>	8	
<211>		
<212>	DNA	
<213>		
<220>		
<223>	PCR primer (Antisense)	
<400>	8 actcc tegtaegaet eeg	23
acacta	actee tegraegaer eeg	
<210>	9	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer (Sense)	

	9 taa gttaggtgtt gttg	24
<210>	10	
	23	
<212>		
<213>	Artificial sequence	
<220>	(3.44.5	
<223>	PCR sequence (Antisense)	
<400>	10	23
acactac	tcc tcatacaact cca	
<210>	11	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer (Sense)	
<400>	11	21
cgtcgg	gtga aggcgggtaa t	21
<210>	12	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer (Antisense)	
<400>	12	21
cgaacc	cgaa cctacgaaac c	
<210>	13	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer (Sense)	
<400>		21
tgttgg	ggtga aggtgggtaa t	
<210>	14	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer (Antisense)	
-400>		
4400	1.0	

caaaccc	aaa cctacaaaac c	21
<210>	15	
<211>		
<212>		
	Artificial sequence	
(213/	Altilitat podanio	
<220>		
<223>	PCR primer(Sense)	
<400>	15	
	gctg ctgtgccacg	20
	555 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
.010-	16	
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer (Antisense)	
<400>	16	
ccgacci	tacc tccagcatcc	20
J		
<210>	17	
<211>		
<212>		
	Artificial sequence	
<220>		
	PCR rimer (Sense)	
(223)	FCR TIMET (BETTS)	
<400>	17	
agccat	ggaa caccagctc	19
<210>	18	
<211>		
<212>	DNA	
	Artificial sequence	
<220>		
<2235	PCR primer (Antisense)	
	1 510 P2	
<400>		19
gcacct	ccag catccaggt	1)
<210>	19	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer (Sense)	
<400>	19	
gatto	gctac ccaactgttg ca	22

<210>		
<211>		
<212>	Artificial sequence	
<213>	Artificial sequence	
<220>		
	PCR primer (Antisense)	
12257	- on Fermina	
<400>	20	
cagggg	cagc agccacaaag gc	22
<210>		
<211>		
<212>		
<213>	Artificial sequence	
000		
<220>	PCR primer (Sense)	
<223>	PCR primer (bense)	
<400>	21	
	ttat gtttgttgta tg	22
gccacg		
<210>	22	
<211>	21	
<212>		
<213>	Artificial sequence	
<220>	(3-11-2-2-2)	
<223>	PCR primer (Antisense)	
.400	22	
<400>	ccac caacacaatc a	21
Ladaal	ccac caacacaace a	
<210>	23	
<211>		
<212>		
	Artificial sequence	
<220>	(0)	
<223>	PCR primer (Sense)	
400		
<400>	23	19
tacgt	gttag ggtcgatcg	
<210>	24	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer (Antisense)	
<400>		20
ccasa	tatct acoctaaaco	

<210>	25	
<211>	22	
<212>		
<213>	Artificial sequence	
<220>		
<223>	Sense primer	
<400>		22
acaggg	gaac tttattgaga gg	22
<210>	26	
<212>		
<213>	Artificial sequence	
<220>	n i la companya manamana	
<223>	Antisense primer	
<400>	26	
	etccg tggagaggg	19
aayyy	seced radadass	
<210>	27	
<211>		
<212>		
	Artificial sequence	
12107	•	
<220>		
	PCR primer (Sense)	
	-	
<400>	27	21
gagga	gtgtc ccgccttgtg g	21
<210>		
<211>		
	DNA	
<213>	Artificial sequence	
<220>	1	
<223>	PCR primer (Ancisense)	
.400>	28	
<400>	eggtet tgeactgge	19
gicii	39000 09000990	
<210>	> 29	
<211:		
	> DNA	
	Artificial sequence	
<220		
<223	> PCR primer (Sense)	
<400		20
gtgt	gtcccc agagccatgg	

```
<210> 30
<211> 20
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer (Antisense)
<400> 30
                                                                     20
gtctcggtct tgcactggcg
      31
<210>
<211>
      21
<212> DNA
<213> Artificial sequence
<220>
<223> Alpha -33P-labeled primer (Antisense)
<400> 31
                                                                     21
caccttctcc cggtactcac g
<210>
      32
<211>
      18
<212> DNA
<213> Artificial sequence
<220>
<223> Alpha -33P-labeled primer (Sense)
<400> 32
                                                                     18
gageteteet gegaagag
<210> 33
<211>
      21
<212> DNA
<213> Artificial sequence
<220>
<223> Alpha -33P-labeled primer (Sense)
<400> 33
                                                                     21
gaggaggcca tcctctctgg c
<210> 34
<211>
      22
<212> DNA
<213> Artificial sequence
<220>
<223> Alpha -33P-labeled primer (Antisense)
<400> 34
                                                                     22
tccacagtgt caggttgtct cg
```

<210> 35

<211>	24	
<212>		
<213>	Artificial sequence	
<220>		
	PCR sense primer	
1220		
<400>	35	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	gtta gtttgattta gaag	24
gagaga	grea geregateen gang	
0.7.0		
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>	36	
	aata tocataacot co	22
CCCCC	33404 000400000000000000000000000000000	
.010-	2.7	
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR sense primer	
<400>	37	22
		23
	37 gtttt tatgaaaggc gtc	23
		23
tggtag	gtttt tatgaaaggc gtc	23
tggtag <210>	gtttt tatgaaaggc gtc 38	23
tggtag <210> <211>	gtttt tatgaaaggc gtc 38 19	23
<210> <211> <212>	gtttt tatgaaaggc gtc 38 19 DNA	23
<210> <211> <212>	gtttt tatgaaaggc gtc 38 19	23
<210> <211> <212> <213>	gtttt tatgaaaggc gtc 38 19 DNA Artificial sequence	23
<210> <211> <212> <213>	gtttt tatgaaaggc gtc 38 19 DNA Artificial sequence	23
<210> <211> <212> <213>	gtttt tatgaaaggc gtc 38 19 DNA Artificial sequence	23
<210> <211> <212> <213> <223>	38 19 DNA Artificial sequence  PCR antisense primer	23
<210> <211> <212> <213> <223> <400>	38 19 DNA Artificial sequence  PCR antisense primer 38	23
<210> <211> <212> <213> <223> <400>	38 19 DNA Artificial sequence  PCR antisense primer	
<210> <211> <212> <213> <223> <400>	38 19 DNA Artificial sequence  PCR antisense primer 38	
<210> <211> <212> <213> <220> <223> <400> cctct	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg	
<210> <211> <212> <213> <220> <223> <400> cctct	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg	
<210> <211> <212> <213> <220> <223> <400> cctct	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg	
<210> <211> <212> <213> <220> <223> <400> cctct  <210> <211>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg	
<210> <211> <212> <213> <220> <223> <400> cctct  <210> <211> <211>	38 19 DNA Artificial sequence  PCR antisense primer  38 aaccg cccaccacg	
<210> <211> <212> <213> <220> <223> <400> cctct  <210> <211> <211>	38 19 DNA Artificial sequence  PCR antisense primer  38 aaccg cccaccacg	
<210> <211> <211> <212> <213> <220> <223> <400> cctct  <210> <211> <212> <213>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence	
<210> <211> <211> <212> <213> <220> <223> <400> cctct  <210> <211> <212> <213>	38 19 DNA Artificial sequence  PCR antisense primer  38 aaccg cccaccacg  39 24 DNA Artificial sequence	
<210> <211> <211> <212> <213> <220> <223> <400> cctct  <210> <211> <212> <213>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence	
<pre> &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;220&gt; &lt;223&gt;  &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; </pre>	38 19 DNA Artificial sequence  PCR antisense primer  38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer	19
<pre> &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;  &lt;220&gt; &lt;223&gt;  &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400</pre>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer	
<pre> &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;  &lt;220&gt; &lt;223&gt;  &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400</pre>	38 19 DNA Artificial sequence  PCR antisense primer  38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer	19
<pre> &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;  &lt;220&gt; &lt;223&gt;  &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400</pre>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer	19
<pre> &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;220&gt; &lt;223&gt; &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400 atggt</pre>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer  39 agttt ttatgaaagg tgtt	19
<pre> &lt;210&gt; &lt;211&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt;  &lt;220&gt; &lt;223&gt;  &lt;400&gt; cctct  &lt;210&gt; &lt;211&gt; &lt;212&gt; &lt;213&gt; &lt;400</pre>	38 19 DNA Artificial sequence  PCR antisense primer 38 aaccg cccaccacg  39 24 DNA Artificial sequence  PCR sense primer  39 agttt ttatgaaagg tgtt	19

<212> <213>	DNA Artificial sequence	
<220>		
	PCR antisense primer	
<400>	4.0	
	aacc acccaccaca	20
<210>	41	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer	
<400>		20
gtgtgt	cccc agagccatgg	20
<210>	42	
<211>	20	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer	
<400>	42	20
acctto	etccc ggtactcacg	20
<210>	43	
<211>	24	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR sense primer	
<400>	43	24
agagt	ttgat ggagttgggt ggag	2 <del>4</del>
<210>	44	
<211>		
	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>		24
catto	ggttt gggtcaatcc actg	
<210>		
<211>	· 20 · DNA	
	, DIVA	

<213	> Artificial sequence	
<220	>	
	> PCR W3 sense primer	
-400	> 45	
	ccgggt agggttcacc	20
5-		
-210	> 46	
	> 19	
	> DNA	
<213	> Artificial sequence	
<220	>	
	> PCR W3 antisense primer	
<400	> 46	
	atceta cecegacgg	19
<210	u> 47	
	.> 19	
<212	> DNA	
<213	3> Artificial sequence	
<220		
<223	3> PCR W4 sense primer	
<400	0> 47	10
	agaacgc gagcgatcc	19
<21	0> 48	
<21		
	2> DNA	
<21	3> Artificial sequence	
<22	0>	
<22	3> PCR W4 antisense primer	
<40		19
ggc	caatcca gccggggcg	
	0> 49	
	1> 20	
<21	2> DNA 3> Artificial sequence	
<21	3> Artificial sequence	
<22		
<22	3> U1 sense primer	
	0> 49	20
gtg	ggtgtag gtggaatatt	20
	0> 50	
	1> 20	
	.2> DNA .3> Artificial sequence	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

<220> <223>	U1 antisense primer	
<400> aacaaa	50 caca caaaccaaca	20
<210>	51	
<211>		
<212>	DNA Artificial sequence	
<213>	Aftificial sequence	
<220>		
<223>	U2 sense primer	
<400>	51	22
	ttag gagtagtgtt tt	22
<210>	52	
<211>	18	
<212>		
<213>	Artificial sequence	
<220>		
<223>	U2 antisense primer	
<400>	52	1.0
	caaac cctaccca	18
<210>	53	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	U3 sense primer	
<400>	53	24
ttagt	agttt gggtagggtt tatt	24
<210>	54	
<211>	18	
	DNA	
<213>	Artificial sequence	
<220>		
<223>	U3 antisense primer	
<400>	. 54	.= -
	tecta ceccaaca	18
<210:	s 55	
	> 23	
<212	> DNA	
011	Artificial sequence	

AND THE RESERVE OF THE PROPERTY OF THE SAME INTERNAL PROPERTY OF THE PROPERTY

<220> <223> U4 sense primer	
<400> 55 gatgttgaga atgtgagtga ttt	23
<210> 56	
<211> 19	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> U4 antisense primer	
<400> 56	10
aaccaatcca accaaaaca	19
<210> 57	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> M1 sense primer	
<400> 57	
agcgggcgta ggcggaatat c	21
#3°333°3 33 33	
<210> 58	
<211> 21	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> M1 antisense primer	
<400> 58 caacgaacgc acaaaccgac g	21
Caacgaacge acadacogue 3	
<210> 59 <211> 22	
<211> 22 <212> DNA	
<213> Artificial sequence	
<220>	
<223> M2 sense primer	
<400> 59	22
cgtgagttag gagtagcgtt tc	22
<210> 60	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	

TO STATE OF THE PARTY OF THE PA

<223>	M2 antisense primer	
<400>	60	
	gataa accctacccg	20
<210>	61	
<211>		
<212>		
<213>	Artificial sequence	
<220>	M3 sense primer	
<223>	M3 Selise primer	
<400>	61	26
ggttag	gtagt togggtaggg tttato	26
<210>	62	
<211>		
<212>		
<213>	Artificial sequence	
<220>	M3 antisense primer	
<4437	M3 and sense primer	
<400>	62	1.0
ccgaa	tocta cocogacg	18
<210>	63	
<211>		
	DNA	
<213>	Artificial sequence	
<220>	M4 sense primer	
<2237	Ma Bonbe primor	
<400>	63	20
gtcga	gaacg cgagcgattc	20
<210>	64	
<211>		
<212>	DNA	
<213>	Artificial sequence	
000		
<220>	M4 antisense primer	
\22J	M dicisonal parame	
<400		20
cgaco	caatcc aaccgaaacg	20
<210:	> 65	
	> 22	
<212:	> DNA	
<213	> Artificial sequence	
-000		
<220:	> > PCR sense primer	

THE PROPERTY OF A CONTROL OF A

<400> gactgt	65 atgg atgttctgtc ag	22
<210>	66	
<211>	22	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>	66	
	cctg gcagacgaag ca	22
4000		
<210>	67	
<211>	19	
<212>		
	Artificial sequence	
<213>	Altificial bequest	
000		
<220>	DGD series primer	
<223>	PCR sense primer	
<400>	67	19
accato	ggatg atgatatcg	
<210>	68	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>		20
acatg	gctgg ggtgttgaag	20
<210>	69	
<211>	17	
<212>	DNA	
<213>		
<220>		
	PCR sense primer	
12-01	2	
<400>	69	
	reggtg gegtteg	17
cccag	,-JJ-J J J J	
<210>	. 70	
<211>		
	DNA	
<212>	Artificial sequence	
<213>	Altiticial bedrones	
<220	pop auticope primer	
<223	PCR antisense primer	

ild o

<400>		20
atacgac	ette gaateaegta	
<210>	71	
	16	
<212>		
	Artificial sequence	
<213>	Artificial sequence	
-0005		
<220>	PCR sense primer	
<223>	PCK Selise primer	
<400>	71	
	aagt tgggtg	16
ctggtg	aagu uggag	
<210>	72	
	22	
<212>		
	Artificial sequence	
(215)	morrage states	
<220>		
	PCR antisense primer	
(225)	101. 4110-11-1-11-1	
<400>	72	
aataca	actt caaatcacat ac	22
aacaca		
<210>	73	
<211>		
<212>		
	Artificial sequence	
\21J/		
<220>		
	PCR sense primer	
	•	
<400>	73	•
	gttat aatgggttgt aat	23
•	,	
<210>	74	
<211>	21	
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>	74	21
aacat	atact taattccctc c	21
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR sense primer	
400	75	

tcattttgcg gtcgctatcc	20
<210> 76	
<211> 18	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR antisense primer	
<400> 76	18
gccggctggc tgtacctg	10
<210> 77	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR sense primer	
<400> 77	20
ttgtagaggt ggtgttgttt	20
<210> 78	
<211> 22	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR antisense primer	
<400> 78	2.2
cacacaataa aacaaaaaac ca	22
<210> 79	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR sense primer	
<400> 79	20
ttcgaagttt atggcgtttc	∠ ∪
<210> 80	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR antisense primer	
<400> 80	2.2
ttatttccgc aatacgcgac	20

with the secret are real constitution of the late of t

<210>	81	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR sense primer	
<400>		19
accaga	gttg ggtgctgac	
	••	
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR antisense primer	
<400>		18
acctgg	gcact ggtctccg	
<210>	83	
<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR sense primer	
<400>		22
gattg	gctac ccaactgttg ca	
<210>	84	
<211>	22	
	DNA	
	Artificial sequence	
<220>	•	
<223>	PCR antisense primer	
<400>	<b>84</b>	22
	ggcagc agccacaaag gc	22
55.		
<210:	> 85	
<211:		
	> DNA	
<213		
<220	>	
<223		
7223	• • • • • • • • • • • • • • • • • • •	
<400	> 85	21
daut.	gttttt gagattgttg g	21
2226	3 J	

<210> <211> <212>		
	Artificial sequence	
<220> <223>	Complement to reverse primer	
<400> tgagtt	86 gtga tgggttttgg	20
<210>	87 20	
<212>		
<220> <223>	Reverse primer	
<400> ccaaaa	87 ccca tcacaactca	20
010.		
<210> <211>		
<212>		
	Artificial sequence	
<220>		
	Forward primer	
	88 aggog gogagogt	18
<210>		
<211>		
<212> <213>	DNA Artificial sequence	
<220>		
<223>	Complement to reverse primer	
<400>		20
cggga	aaagt acgtgttcgt	20
<210>		
<211>		
<212> <213>	DNA Artificial sequence	
<220>		
	Reverse primer	
<400>		20
	anget actttcccq	

<210> 91 <211> 1462 <212> DNA <213> Homo sapiens

<400> 91 60 gtgacagaag tagtaggaag tgagctgttc agaggcagga gggtctattc tttgccaaag gggggaccag aattccccat gcgagctgtt tgaggactgg gatgccgaga acgcgagcga 120 tccgagcagg gtttgtctgg gcaccgtcgg ggtaggatcc ggaacgcatt cggaaggctt 180 tttgcaagca tttacttgga aggagaactt gggatctttc tgggaacccc ccgccccggc 240 300 tggattggcc gagcaagcct ggaaaatgca attgaaacac agagcaccag ctctgaggaa 360 ctcgtcccaa gccccccatc tccacttcct ccccctcgag tgtacaaacc ctgcttcgtc tgccaggaca aatcatcagg gtaccactat ggggtcagcg cctgtgaggg atgtaagggc 420 480 tttttccgca gaagtattca gaagaatatg atttacactt gtcaccgaga taagaactgt gttattaata aagtcaccag gaatcgatgc caatactgtc gactccagaa gtgctttgaa 540 gtgggaatgt ccaaagaatc tgtcaggaat gacaggaaca agaaaaagaa ggagacttcg 600 aagcaagaat gcacagagag ctatgaaatg acagctgagt tggacgatct cacagagaag 660 atccgaaaag ctcaccagga aactttccct tcactctgcc agctgggtaa atacaccacg 720 780 aattccagtg ctgaccatcg agtccgactg gacctgggcc tctgggacaa attcagtgaa ctggccacca agtgcattat taagatcgtg gagtttgcta aacgtctgcc tggtttcact 840 ggcttgacca tcgcagacca aattaccctg ctgaaggccg cctgcctgga catcctgatt 900 cttagaattt gcaccaggta taccccagaa caagacacca tgactttctc agacggcctt 960 accctaaatc gaactcagat gcacaatgct ggatttggtc ctctgactga ccttgtgttc 1020 acctttgcca accagctcct gcctttggaa atggatgaca cagaaacagg ccttctcagt 1080 gccatctgct taatctgtgg agaccgccag gaccttgagg aaccgacaaa agtagataag 1140 ctacaagaac cattgctgga agcactaaaa atttatatca gaaaaagacg acccagcaag 1200 cctcacatgt ttccaaagat cttaatgaaa atcacagatc tccgtagcat cagtgctaaa 1260 ggtgcagagc gtgtaattac cttgaaaatg gaaattcctg gatcaatgcc acctctcatt 1320 caagaaatgc tggagaattc tgaaggacat gaacccttga ccccaagttc aagtgggaac 1380 1440 acagcagagc acagtcctag catctcaccc agctcagtgg aaaacagtgg ggtcagtcag 1462 tcaccactcg tgcaataaga ca

<210> 92

<211> 21

<212> DNA

<213> Artificial sequence

<220>	_	7 .					
<223>	For	ward primer					
<400>	92 rgat	gttgagaatg	+				23
354003	,,,,,,	googagaaog	C				2.
<210>	93						
<211> <212>	21 DNA						
		ificial seq	uence				
<220>							
<223>	Rev	erse primer					
<400>	93 at cc	aaccaaaaca	а				21
caaccac		uuccuaaaca	u				2.3
<210>	94						
<211> <212>	145 DNA	4					
<213>		o sapiens					
<400>	94						
accage	ggca	gaccacaggc	agggcagagg	cacgtctggg	tcccctccct	ccttcctatc	60
ggcgact	ccc	agatcctggc	catgagagct	ccgcacctcc	acctctccgc	cgcctctggc	120
gcccggg	gctc	tggcgaagct	gctgccgctg	ctgatggcgc	aactctgggc	cgcagaggcg	180
gcgctgc	ctcc	cccaaaacga	cacgcgcttg	gaccccgaag	cctatggcgc	cccgtgcgcg	240
cgcggct	cgc	agccctggca	ggtctcgctc	ttcaacggcc	tctcgttcca	ctgcgcgggt	300
gtcctgg	gtgg	accagagttg	ggtgctgacg	gccgcgcact	gcggaaacaa	gccactgtgg	360
gctcgac	gtag	gggatgatca	cctgctgctt	cttcagggcg	agcagctccg	ccggacgact	420
cgctctc	gttg	tccatcccaa	gtaccaccag	ggctcaggcc	ccatcctgcc	aaggcgaacg	480
gatgago	cacg	atctcatgtt	gctaaagctg	gccaggcccg	tagtgccggg	geceegegte	540
cgggccc	ctgc	agcttcccta	ccgctgtgct	cagcccggag	accagtgcca	ggttgctggc	600
tggggca	acca	cggccgcccg	gagagtgaag	tacaacaagg	gcctgacctg	ctccagcatc	660
actatco	ctga	gccctaaaga	gtgtgaggtc	ttctaccctg	gcgtggtcac	caacaacatg	720
atatgtg	gctg	gactggaccg	gggccaggac	ccttgccaga	gtgactctgg	aggccccctg	780
gtctgtg	gacg	agaccctcca	aggcatcctc	tcgtggggtg	tttacccctg	tggctctgcc	840
cagcato	ccag	ctgtctacac	ccagatctgc	aaatacatgt	cctggatcaa	taaagtcata	900
cgctcca	act	gatccagatg	ctacgctcca	gctgatccag	atgttatgct	cctgctgatc	960
cagatgo	cca	gaggctccat	cgtccatcct	cttcctcccc	agtcggctga	actctcccct	1020
tgtctgc	cact	gttcaaacct	ctgccgccct	ccacacctct	aaacatctcc	cctctcacct	1080

_81_I@31*INT

cattccccca cctatcccca ttctctgcct gtactgaagc tgaaatgcag gaagtggtgg	1140
caaaggttta ttccagagaa gccaggaagc cggtcatcac ccagcctctg agagcagtta	1200
ctggggtcac ccaacctgac ttcctctgcc actccccgct gtgtgacttt gggcaagcca	1260
agtgccctct ctgaacctca gtttcctcat ctgcaaaatg ggaacaatga cgtgcctacc	1320
tcttagacat gttgtgagga gactatgata taacatgtgt atgtaaatct tcatgtgatt	1380
gtcatgtaag gcttaacaca gtgggtggtg agttctgact aaaggttacc tgttgtcgtg	1440
aaaaaaaaaa aaaa	1454
<210> 95 <211> 181 <212> DNA <213> Homo sapiens	
<400> 95 ccgcagaggc ggcgctgctc ccccaaaacg acacgcgctt ggaccccgaa gcctatggcg	60
ccccgtgcgc gcgcggctcg cagecctggc aggtctcgct cttcaacggc ctctcgttcc	120
actgcgcggg tgtcctggtg gaccagagtt gggtgctgac ggccgcgcac tgcggaaaca	180
a	181
<210> 96 <211> 1150 <212> DNA <213> Homo sapiens	
<211> 1150 <212> DNA	60
<211> 1150 <212> DNA <213> Homo sapiens <400> 96	60 120
<211> 1150 <212> DNA <213> Homo sapiens <400> 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc	
<211> 1150 <212> DNA <213> Homo sapiens <400> 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat	120
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggggg cgccgggctc ggctcgctc</pre>	120 180
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre>&lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggcgg cgccgggctc ggctcgctc</pre>	120 180 240
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggcgg cgccgggctc ggctcgctc</pre>	120 180 240 300
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggcgg cgccgggctc ggctcgctc</pre>	120 180 240 300 360
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggggg cgccgggctc ggctcgctc</pre>	120 180 240 300 360 420
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens </pre> <pre>&lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgct ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggcgg cgccgggctc ggctcgctc</pre>	120 180 240 300 360 420 480
<pre>&lt;211&gt; 1150 &lt;212&gt; DNA &lt;213&gt; Homo sapiens  &lt;400&gt; 96 accaagagag actgggagag ggcggcagag aagagaggg ggaccgagag ccgcgtcccc gcggtcgcgt ggatttagaa aaaggctggc tttaccatga cttatgtgca gcttgcgcat ccaggggtag atctggggtt gggcgggggggggggggg</pre>	120 180 240 300 360 420 480 540

<220> <223>

<400> 98

Complement to reverse primer

gcacaat	tta	tgatgaatta	tggaaatgac	tgggacatgt	acttggttcc	ctcctacgta	780
ggcacco	caaa	tatggggtac	gacttcgaat	cacgtgcttt	tgttgtccag	tcgtaaatcc	840
tgcctga	atga	cctctagagg	taaactcgtg	cactaatagg	ggagttgggt	ggaggcgagg	900
ggggtgg	gege	gcgcgcccg	ggcgcgtgcc	cgccgccagt	tgccgccgtt	cagccggact	960
cgagcgc	ccac	ccgctggagg	cagggctcat	cgcccagctt	ccgaccgggg	gctgcaaggg	1020
ccggggt	cga	attgaggtta	cagcccatta	tggcaaaatt	attgcatttc	cctcgcagtt	1080
ccattag	ggat	gtaccaattg	ttaggccgtc	agctgccgat	cgcgcgcccg	gcgaggatgc	1140
agaggat	tgg						1150
<210> <211> <212> <213> <400>	97 790 DNA Homo	o sapiens					
		gcatcctcgc	cgggcgcgcg	atcggcagct	gacggcctaa	caattggtac	60
atcctaa	atgg	aactgcgagg	gaaatgcaat	aattttgcca	taatgggctg	taacctcaat	120
tcgaccc	cgg	cccttgcagc	ccccggtcgg	aagctgggcg	atgagccctg	cctccagcgg	180
gtggcgc	ctcg	agtccggctg	aacggcggca	actggcggcg	ggcacgcgcc	cggggcgcgc	240
gcgccac	ccc	cctcgcctcc	acccaactcc	cctattagtg	cacgagttta	cctctagagg	300
tcatcag	ggca	ggatttacga	ctggacaaca	aaagcacgtg	attcgaagtc	gtaccccata	360
tttgggt	gcc	tacgtaggag	ggaaccaagt	acatgtccca	gtcatttcca	taattcatca	420
taaattg	gtgc	aagggtgcta	tagacgcaca	aacgaccgcg	agccacaaat	caagcacaca	480
tatcaaa	aaaa	caaatgagct	cttattttgt	aaactcattt	tgcggtcgct	atccaaatgg	540
cccggac	ctac	cagttgcata	attatggaga	tcatagttcc	gtgatcgagc	aattcaggga	600
ctcggcg	gagc	atgcactccg	gcaggtacgg	ctacggctac	aatggcatgg	atctcagcgt	660
cggccgc	ctcg	ggctccggcc	actttggtct	cggagagcgc	gcccgcagct	acgctgccag	720
cgccago	gcg	gcgcccgccg	agcccaggta	cagccagccg	gccacgtcca	cgcactctcc	780
tcagcco	gat						790
<210><211><211><212><213>	98 22 DNA Art:	ificial sequ	lence				

g	tatgtg	gatt t	gaagttgta t	t				22
<	210> 211> 212> 213>	DNA	Eicial seque	ence				
	220>	Comp	lement to re	everse prime	er			
	:400> :acgtga	99 attc 9	gaagtcgtat					20
<	210> 211> 212> 213>	21 DNA	ficial sequ	ence				
	<220> <223>	Comp	lement to re	everse prim	er			
	<400> ggaggg	100 aatt	aagtatatgt	t				21
•	<210><211><211><212><212><213>	19 DNA	ficial sequ	ence				
	<220> <223>	Comp	element to r	everse prim	er			
	<400> ccaggt	101 acag	ccagccggc					19
	<211> <212>	DNA	34 o sapiens					
	<400> ggatco	102 ccagc	ctgcccctcc	acttctctcc	caagccaggt	cccggcatgg	gtgggttatg	60
	ctcato	gctgg	caatacttga	aacgggttta	ttaatgctgg	gtattttgca	caattttata	120
	gaccto	ctttt	ctacatagtc	ttttttaaat	ggaaggagaa	aatgtcagcc	acattactgt	180
	ctgtgt	tagtg	ccaggtgaag	ggttatcaga	aggctggttg	gttttaataa	gtttattcca	240
	agaga	ccttc	tggctggaat	gagtgagagt	gtgtgtgcat	gtgtgtgtgt	gttcatgtgt	300
	gccct	gtatg	aatgtggctg	gctcccagat	cccctgggct	gccccctgcc	ccatcccctt	360
	tgagt	atcag	aagcactctg	agccaagggg	acagggggca	cgtgcactgg	tcacgagaaa	420
							tatggacttc	480

540 agacagecag tgtetgggga etetgecaet etacececag ecetacecae cagececeag 600 gtgaggette cagetgggae etgeecagae aggetgagee tgggegtggt gggtggggtg 660 atggetetgg ggageggetg ceatectaea agecaeaece eeteetetga getetgaata tgggacccag tgccaggagc tggaagacaa ggtgtttctg ccaaacggga cctccatcca 720 780 gagaaaagga agaaggtgca gggtgggcca agaggcaagt gaaggttggc ctgagtctgg 840 gccggaaact cagaggatgt ttctcctctg ctgggagctg tagtttctta tcaaaataga 900 tattgttcca ccatccccct ccttggccct tcaagtgggc tgaagccttg gaaagtgaca 960 taggaagtee ceagatettg ceetteteae teeagagget agtggteaea gacagetggg 1020 aatggcagcc acagagggtc cctctggaga aacagcttca ccccagcctc agggccctgg 1080 gcatcactgc agtggccctg ggaggtgagg aagaagctgg ctagaggagg gggctcccac ctacctttta tttaagccag tattctttgt tcctgcttgt aataaaactt cagtttataa 1140 1200 gagttgettt getttggttt ggtttttgtt tgetttteet ttgetgagge cecaactggg agccctctgt tctttcagac aaatttggtt ctttcctggg gagactgtga gaaggcaggc 1260 aqcccagtga tctggctaca ttttccctca cctggctgga gctctgtccg ctggaggaag 1320 1380 aqcaqagagg gctgcggctg agcccccatg ggcacgtgaa aagaggccat cctgtcccct 1440 etttgteece tecacettee eetgeeteag gggettggag acceeaaatt ettetteeet 1500 actgcctttc cactccgatc cccaatgagt gcccagctaa gaaaatgttt gagacagtag 1560 attocagttt gagagoogga gottocotgg ctaccacoto caacotgggo accagggood 1620 agccagacaa ctcataacac tggcccacct ctctggtatc tccctcagga ggacacctgt 1680 caggattttg ccatctcctg cacagcctga ggggagctaa caggcctctt tgcagagggt 1740 tagetggtaa gacegtttet teeetgtegg ceageactge eegeteeeet eeacacea 1800 teteatecte ategeatgee tegecaacee catggageee gteeatetgt etggtgtgtg gtgcggtgtg tgtgctggtg gtggtagggt ctccagggac tccccgctaa gcagaaggat 1860 cgggatatag ggcaaggcta aaagcccagc cccattgtgg actgaggaag tacgttcgcg 1920 1980 cagagcagct ctccagctgg aagaggaggt ggagggtgag gctggggaga ggatggcgaa cctgccctga ggtgcttggg tctgtgctgg tggggtcctg gtatgcaggg gccaccggtc 2040 2100 actaacactc ttatgtcctg gctttctgtc cccgctgagc tttctctcac ccgcccgttt teteteetge tteattgeet getgeetaag cettggeeet teteteggge agaggeaggt 2160 gctgtggcag cacctctccc caccaccggg cccctgcagg ccgcctccct cctcccaggc 2220 ctgctaaccc tctctcttct ccttctttgc tgtcctgccg gggatctcca gtgtgtgcgg 2280 2340 gggcttaagg acctectgag gaccgctgct ctctgcctct ccaggaatgg cctgggggga

and the state of t

2400 gccaggcacc cggcacctcc acctgcctaa cctgtggccc atctgccacc atctgtgcct acagggtetg ecceecagee tgeceggeet gtgtgetete taggaceeca tagggggcag 2460 gggctggcct ctttgcccca ttcccgctcc atgccggcca gagtgtagaa agccataacg 2520 cacgcagcca tcagcacaat aatgtgactc tacgctgata tgctccctct ctcctccact 2580 gacttcccct tcccggattt gtgaggtgtc aagactagga atctggcctt agagcctgcc 2640 2700 cctccacccc ctcagatcag gcatagccat agtcaagccc agcaggtttc ctcaggagct 2760 gtctggggtg ttgatggtgg atgacgctgc tgaacaagtt tggtgactgt tctaagcaca 2820 actggcttga tactgttccc acggcctgtc cacctcccac ccccaaccct ccaccagagt aggtaggatg tagggagggt gcgtgccgcc tttgctctag gcactgaggg accaagctag 2880 ccgtgcacag ccccatacac ttcaggggcg taaaggaaag agctgagcca aggaaaatca 2940 3000 gctgagccca gggctggggg ctgcttgtct gctatcctgt accttttttt tttttaacca 3060 aaataaagat teeeetette ttgeeataee attggetgte tggtggegee tttaetttgg ggcccaggga tgggacctgc agtgggcgtg tggaacatat ggctccccct cgctcccagc 3120 3180 tttcttccag ctggccagtg ctgctctgga gatttacaag cacaacgaag ccaggaggga 3240 cacaggaaaa gtggctgaca tccttttcac tctgcccctc cagaactctt ggtctcaatt ccagacacca cccagcetta getgacetet ggattetgat aggteccagt geaggetgag 3300 3360 acagagggtt taactccagt ttgggactgc catacccatg aactgagccc agcccagggt 3420 aacgatetea tggaaaette teteteecea gttgetgeae tacateaaga tacacacatg 3480 tgcatacact gtactatggg ctaaaaaaat acgtaccgct accgttcagc aagggcttgc 3540 cgagtcccgg gcccattttc tcatcttaac ctgtgaggag gatgatgtca gcctttttac 3600 agatgaggga actgagactc aaggaagaaa caggagctgc ccaaggtcac ccagctggca aagcagcaaa teecagateg gaacetgate tetgeecega getetgagee atetgeaeta 3660 cccaaggaat gaatacagcg gtgggaggat gagatcttgg agaaacccta aaattagaga 3720 3780 atgtcatage cagtagaggg cttagagttg atctgggcca gcctccttgt tttactgatg 3840 gagaaattga agcccagagg caggaaggga cctgcccaag gccttataac agagctggga 3900 tgcagtccca cactetgace teattecatt etetetecat aaattetgca etgtetetag actggactgg tttagatgtg ggatactcta aacagcagtg ccttcaagag aaaaagaatc 3960 agaactacga atcacttaaa agtaatgtaa gctactctgg gcacactgcc tatggggtcg 4020 ccctgctcca caaggagcca caaaaataat taaaataatt taatatccct tcccaaaggt 4080 aaccagtaaa gtaagctett ggetaggtaa etggaetett gtteacaaet ageeagtggg 4140

4200 aaaaggtgct agagcttcct ctggccacct gtttaatttg atcattccaa gacagaaaca 4260 tttcttagga agttctttct agaatctacc tggtgtccct cccactgcta tcagagccct gtcctctgtc ctcagtggag gtagagagca aatggttgct gctttcttca tcacaaccct 4320 tcaaagccta ttattaccag ctaagaagga ttggttgact atgggccaga gcccctgagc 4380 ctgctggtag aatggatgct gtacaggagg gtggggaggt agcaggcaga atgaggaaag 4440 cccctttgag ctgcaacccc agctcctgtc ctgctgactc agacagctga ctgtggagct 4500 4560 ccatgccctg ccagggcctg ctgcctcctg cccgtctgag ctcctgaact tgggaaatgg 4620 aggcccagag gcaaagggag gtacctgaga caggaactga gtcaggatca acaggccaga 4680 gcgggcagga ggtatcaggc agcctggctc ccagatgcac ccctgagctc cagcagggga 4740 ggagtaggaa tgaaggggct teettgeeet tgeteatgge tatgeggagg gegtgaacea ccaccaggtc ctctggctta agtggcggga agcaaatggt ccctccctgg actcaggctc 4800 caaagttect gggcctgeet tecaggttee cagtgteetg ggatetecag ettteeccag 4860 4920 gacttgggga agccccggct ggatgactag tacaaatgaa ggcccctgag gttccaggac ctgctgaggt cacaggaata tcctagatca agcttgtcca acccacggcc cacaggctgc 4980 5040 atgtggccca gaatggcttt gaatgcagcc caacacaaat tagtaaactt tcttaaaaca 5100 ttatgagatt tttttgcaaa tttttttttt ttttttagct catcagttat tggtagtgtt 5160 ggtatatttt atgtgtggcc caagacaatt cttccaatgt ggcccaggga agccaaaaga 5220 ttggacacgc ctgtcctaga tggagaggaa ggaggcagtg ctgagcacat ctggccattc atccatctgg agagagaagg ctatgggcaa actgcttcct ctcccctgta gacacccagc 5280 5340 tgggaaggtc tggcctttgg taagtcctgg cttggggtcc ttcctcattt cacagaacct 5400 aactctatgt tagtgetttg tgagtatatg ttgatcataa taaagttgac gggatttttt 5460 cacatgataa taatagttgt catctggccg ggcatggtgg cttatgccta taatttcagc 5520 actttggaag gctgaggcag gtggatcact tgaggtcagc tgttcgagac cagcctggcc 5580 5640 ggtggtgcac ccttgtaatc ccagctactc gggaggctga ggcaggagaa tcacttgaac ccaggaggtg gaggttgcag tgagctgaga ttgtgccact acactccagc ctgggtgaca 5700 5760 agagogaaac toogtotoaa aaaaaaagaa aataataata ataatagttg coatcoatto tactgtgctt tccattaact cgtgtaatcc tcacaagtcc cattttatag ttacaggaac 5820 tgaggctcac agagcttaaa tcacttggcc aaggccacaa acagctataa gaattacatt 5880 5940 taggcagtct gattccaaag atactagtct attctgtatc tcatagacaa acaatacata ttcacttttt tgttgttgtt ttgttttgag acggagtctt gctctgtcac ccaggctgga 6000

6060 gtgcagtggc gccatctcgg ctcactgcaa cgtccgcctc ccgggttcaa gcgattctcc 6120 tgcctcagcc tcccgagtag ctgggactac aggcatgtgc caccatgccc ggctaatttt 6180 ttgtattttt agtagagaca gggttttcct gggttagcca gaatggtctc gatctcctga 6240 cettgtgate cacceacete ageeteecaa agtgetgaga tgacaggegt gagecacege 6300 gtccgaccta tattcactat ttataaattg gagagaataa gaaaatcaaa agggccaggt 6360 gtagtgactc acacctgtaa tcccagcact ttgggaagcc aaggcaggag gattgcttga 6420 acccagaagt tcgagaccag cctgggcaac atggtgagac cctgtctcta caaaaaatac aaaaattagc tgggcgttgt ggtgagcacc ttattcttag gaagctgagg caggaggatc 6480 6540 acctgaggcc aaggaggttg agactgcagt gagctgtgat cataccactg tacttcagcc 6600 tggacatcag agtaagaccc tatctctaaa aaggaaattg agaagaaaga aaatcaaagg gaagcaaaat cactcactct cactacctca agataccctc tagaagttgg tattttagtg 6660 6720 tggttcctat tgttttctgt gtcagttctc tgatttgagc aaaatctttg ggacgtcaaa 6780 cttaaaatcc cctttacttc cttggaaacc ctgtagcatt agcccagaca tgtccctact 6840 cctccttgtg gcaaagagaa ggatctcgtc tttggtcccc agagttctgg cctaagcctc 6900 cctccaggag ggaagatgag tgttcagaca ctcagagtag ctgggggaga cacaggcctg tgaaattatc ctggctcaac tattaggtcg gcagaatccc agtgaaggga gccctacctc 6960 7020 tgagccccat ctaagctttg gctatgggtg gggcagataa gcaggaatcc atccctatag gctcaatgcc aacaccctta ggtgaaactc ttgatgaaac ttgaggccag ggctccggca 7080 7140 agcagggaaa gaacgttggc aacagaggtc tccatctctg aggactctgc caggggtcag 7200 agatggggca atggtcaaaa ggaaggaaca ggccaggcac agtggctcat gcccataatc 7260 ccagcacttt gggaggctga ggcaggagga tcgcttgagc ccaggagttt gagacctgcc 7320 tgggcaatgt agtgagatct gctctctatt taaaaaaaaa aaaaaggaaa gaacaagtaa acttctgaga aacaggctgg gggaggcatc acgtagctgg aattgctgcc ccataaaaca 7380 7440 gaatggtatg tgtcactgcc acctcccttt ctcagtcctc tctctcccca ggttgctagc 7500 gtcccctgg gggatcaaac tggactgctt cccagcctca gacagagagc agtctgagtc 7560 aggcaggaaa gtgggacagc cggggagctg gaccccaccc tctgtgagcc ccgctggtac 7620 ctgatggcat gtggcttgga gagggcaggt gacctggcgt ggagggccag agggtaaatc 7680 ctcaaacaag tggcaacagg ccaccaactt gaaagggaaa attgtgtagt gatgggaaat 7740 gtgtccaaca aacctactgg gtgactaatt acaaaggctg ggctggagct tcagaggctg cttgttaaac acttcattaa gcggcactct gaaagctgcc acctgcgcat tctgggagct 7800

7860 cagaggggac cctgaggggg aatgaggcct ggaggatgga accatcttca ggtagactga 7920 gaaggagcct ggatctcact tccaaacaca gtctggagct cataggtcag aggcctcaat gggagaaaag ctaaaggaag agggtgcaga aaggagtttc agggaattgg tggctatgtg 7980 actttgagca aatctcaccc ctctctgaga cttagtgttc ccatctctat ggtcctgtgt 8040 gtgtcacaga gacatggtgg ggattaaatt cgatcgtgat atgaaagtgc ttgggaaact 8100 ccatggccct acctaaacat gagttatcct cacctgaacc aaggggggaa gttacctggc 8160 8220 aggattagga accccatcct cctgaacctt tatgggctct gtcgaggctg aagcagccag 8280 gggctaaagc cagtccttag cccctggaag ggcactgtga aagtggatct gatttgagaa 8340 gccgtttcct gatgtgggca gccatgtgat gccagccccg aacaagaggg ggcagcctgg 8400 agcctggaaa ggtgccagtg caggtggggc ccacgcccag atttctcctg ctgactgttc tgatgattca cccccacatc ccagectttt tacctttact gcagageegg aaagggtgtg 8460 gggaagagag gagagggagg caggtettgg geeetggtee egeeeeetge teeteeeeae 8520 8580 ccttctctgg gcctggccac ccagccaaaa ggcaggccaa gagcaggaga gacacagagt 8640 ceggeattgg teccaggeag cagttagece geegeeegee tgtgtgteee cagageeatg 8700 gagagagcca gtctgatcca gaaggccaag ctggcagagc aggccgaacg ctatgaggac atggcagcct tcatgaaagg cgccgtggag aagggcgagg agctctcctg cgaagagcga 8760 8820 aacctgctct cagtagccta taagaacgtg gtgggcggcc agagggctgc ctggagggtg 8880 ctgtccagta ttgagcagaa aagcaacgag gagggctcgg aggagaaggg gcccgaggtg 8940 cgtgagtacc gggagaaggt ggagactgag ctccagggcg tgtgcgacac cgtgctgggc 9000 ctgctggaca gccacctcat caaggaggcc ggggacgccg agagccgggt cttctacctg 9060 aagatgaagg gtgactacta ccgctacctg gccgaggtgg ccaccggtga cgacaagaag 9120 cgcatcattg actcagcccg gtcagcctac caggaggcca tggacatcag caagaaggag 9180 atgccgccca ccaaccccat ccgcctgggc ctggccctga acttttccgt cttccactac gagategeca acagececga ggaggecate tetetggeca agaceaettt egaegaggee 9240 9300 atggctgatc tgcacaccct cagcgaggac tcctacaaag acagcaccct catcatgcag 9360 ctgctgcgag acaacctgac actgtggacg gccgacaacg ccggggaaga ggggggcgag gctccccagg agccccagag ctgagtgttg cccgccaccg ccccgccctg cccctccag 9420 9480 tececeacee tgeegagagg actagtatgg ggtgggagge cecaceette tecectagge 9540 gctgttcttg ctccaaaggg ctccgtggag agggactggc agagctgagg ccacctgggg 9600 ctggggatcc cactettett geagetgttg agegeaceta accaetggte atgeeceeae 9660 ccctgctctc cgcacccgct tcctcccgac cccaggacca ggctacttct cccctcctct

tgcctccctc	ctgcccctgc	tgcctctgat	cgtaggaatt	gaggagtgtc	ccgccttgtg	9720
gctgagaact	ggacagtggc	aggggctgga	gatgggtgtg	tgtgtgtgtg	tgtgtgtgtg	9780
tgtgtgcgcg	cgcgccagtg	caagaccgag	actgagggaa	agcatgtctg	ctgggtgtga	9840
ccatgtttcc	tctcaataaa	gttcccctgt	gacactcctc	ctgtctctct	tccagttctt	9900
ggcgatgggc	tgggagtggg	actggaatct	gacttagaga	ccctgacttt	ggacctctga	9960
gttagggccc	tgaactccct	aggtggctca	gtggcccgca	cgcaagactt	tgagtccagg	10020
tgaggccggg	gtcc					10034
<220> <221> misc <222> (324 <223> n is	sapiens _feature )(324) any nucleo	otide				
<400> 103 agcttgcagc	cccagcccgg	gccagccagg	tacaggaggc	cggactgcaa	ccggttgctt	60
ccctcccgtc	gcgcctggcc	gtcccacgct	gcgccgtcgc	tgctgcctcc	tggcgcccct	120
gggattttat	acgcacctct	gaaacacgct	ccgctccggc	ccccggttct	tctccttgcc	180
taggggttgt	ttcccaatag	atactgactc	ctttagaaga	tccaaaaacc	aaaccaaaac	240
accccctacc	cgccccaaac	acctgctctg	gggcgcgggg	gctgccaaac	agagactaga	300
cgaagggagt	cagatttagc	gaantcttcg	agctcccaaa	gattcgaaca	ctaactcgcg	360
cccgtgggcc	gatggaggtt	ctccctactc	cactccttgg	tccccttaac	tggcttccgc	420
ctcctggtca	atcactgagc	aaccagaatg	gtatcctcga	ccagggccac	aggcagtgct	480
cggcggagtg	gctccaggag	ttacccgctc	ctgccgggct	tcgtatccaa	accctcccct	540
tcacccctcc	tccccaaact	gggcgccagg	atgctccggc	cggaatatac	gcaggctttg	600
ggcgtttgcc	caagggtttt	cttccctcct	aaactagccg	ctgttttccc	ggcttaaccg	660
tagaagaatt	agatattcct	cactggaaag	ggaaactaag	tgctgctgac	tccaatttta	720
ggtaggcggc	aaccgcttcc	gcctggcgca	aacctcacca	agtaaacaac	tactagccga	780
tcgaaatacg	cccggcttat	aactggtgca	actcccggcc	acccaactga	gggacgttcg	840
ctttcagtcc	cgacctctgg	aacccacaaa	gggccacctc	tttccccagt	gaccccaaga	900
tcatggccac	tcccctaccc	gacagttcta	gaagcaagag	ccagactcaa	gggtgcaaag	960

caagggtata cgcttctttg aagcttgact gagttctttc tgcgctttcc tgaagttccc 1020

gccctcttgg agcctacctg cccctccctc caaaccactc ttttagatta acaaccccat	1080
ctctactccc accgcattcg accctgcccg gactcactgc ttacctgaac ggactctcca	1140
gtgagacgag gctcccacac tggcgaaggc caagaagggg aggtgggggg agggttgtgc	1200
cacaccggcc agctgagagc gcgtgttggg ttgaagagga gggtgtctcc gagagggacg	1260
ctccctcgga cccgccctca ccccagctgc gagggcgccc ccaaggagca gcgcgcgctg	1320
cetggceggg cttgggctgc tgagtgaatg gageggeega geeteetgge teeteetett	1380
ccccgcgccg ccggcccctc ttatttgagc tttgggaagc tgagggcagc caggcagctg	1440
gggtaaggag ttcaaggcag cgcccacacc cggggggctct ccgcaacccg accgcctgtc	1500
cgctccccca cttcccgccc tccctcccac ctactcattc acccacccac ccacccagag	1560
ccgggacggc agcccaggcg cccgggcccc gccgtctcct cgccgcgatc ctggacttcc	1620
tettgetgea ggaccegget tecaegtgtg teceggagee ggegteteag cacaegetee	1680
gctccgggcc tgggtgccta cagcagccag agcagcaggg agtccgggac ccgggcggca	1740
tetgggeeaa gttaggegee geegaggeea gegetgaaeg tetecaggge eggaggagee	1800
gcggggcgtc cgggtctgag cctcagcaaa tgggctccga cgtgcgggac ctgaacgcgc	1860
tgetgeeege egteeeetee etgggtggeg geggeggetg tgeeetgeet gtgageggeg	1920
eggegeagtg ggegeeggtg etggaetttg egeeeeggg egettegget taegggtegt	1980
tgggcggccc cgcgccgcca ccggctccgc cgccaccccc gccgccgccg cctcactcct	2040
tcatcaaaca ggagccgagc tggggcggcg cggagccgca cgaggagcag tgcctgagcg	2100
cetteactgt ceaettttee ggeeagttea etggeacage eggageetgt egetaeggge	2160
ccttcggtcc tcctccgccc agccaggcgt catccggcca ggccaggatg tttcctaacg	2220
cgccctacct gcccagctgc ctcgagagcc agcccgctat tcgcaatcag ggtaagtagg	2280
ccggggagcg ccccta	2296
<210> 104 <211> 2495 <212> DNA <213> Homo sapiens	
<pre>&lt;400&gt; 104 actatagggc acgcgtggtc gacggcccgg gctggtattg atagatgcat tttcttcacc</pre>	60
ctcacctatc tttttctgcc tgttggctta tggttgaaat tccttcatga cggtttccat	120

ttccagagat atcttgttaa caagtatata ccaccaaatg aagctgattt ttttttttt

ttttttttga gacagagtct cgctctgtcg cccaggctgg aatgcagtgg cgcgatcttg

gctcactgca acctccgcct cccatgttca agcgattctc ctgcctcagc ctcctgagta

180

240

gctgggatta ctggcatgtg ccaccgcgtc cagccaattt ttgtattttt agtagagacg 360 420 aggtttcacc atgttggtca ggctggtctc aaactcctga cctcgtgatc cacctgcctc 480 ggcctcccaa agtgctgaga ttataggtgt gagccaccat gcctggccat gaagctgatt 540 tttttaaacc atcatttaac attttctcca taaggtggca aggaggaaga gcatatgggg 600 actgggtact ttgagagacc ccaggacagg agacagggag gctgagattg gcatgttgtc tgctgcagtt atttgccagc gacacactct ttccgtccaa actaacttct ctgcctcaag 660 720 gacagggaga ctctgccttt caacctgaga gaaaccagga ctctcagctt taatgaaaat tggacttagg gtggggcagt ggagactttt cacagctatt gtttagctga tgaagcagat 780 840 gettetecat etttggagee tgtetteatt acetgtggae etcatettta teaacceaga 900 gcacacttgc gtctctctat tttggctaaa caccaaacag ctgaggctgg tactgtaaaa ctttccctcc aaatgccccc cctcgtcttc ctctattaga gatctggatc acaaccctca 960 1020 aaaaccatgt cccttatgcc acctgagtag atggtttgat gattaattag gcacagatgt 1080 gacactgggg gggtctcaca atggcctgtg ggtcacatgc tactttcctt ttcattttca tcagcaacag ctgccttaaa gccagttaag actgtggtcc tagtctcgca ccctggggct 1140 cctgctgggg tgggtgaggg gaacacccca ttaagctggg ggaactgggg ctgccaccag 1200 1260 ggggcgcgag gggccttcgc ccgagaagag gggtgggcag gtgcctccag cggagaaggg 1320 cgccgtggcc ggaggcacag gtctccccgg tgccacttca agtgagttcg aggaagtacc 1380 tgggatettt gatetaaege gaaaggeett cecagtgace tettgaggge tgagaaceca 1440 ctccctccac ctctagtcca cggctttgcc actccagggc ccgaggttac gtttgctgct 1500 ggggatttga caaacccaaa gcctctctgg tttcaccact ggctccttag aatcagacat ctgttctgaa tgacacttat gtgagtcagg ggctgaggac gtgatcctcg aagtgtggtc 1560 cccagactgg ctgtatcagt gtcggcatcc cccaggacct ggttggaaat gcatattctc 1620 1680 aggccctact ccagacctct taaatctgag actggggctg cggggagcgc catctgtgcg 1740 ccactatect tgtgggtgga ccaggagteg gttegagggt geteceaett agaggteaeg 1800 cgcggcgtcg ggcgttcctg agaccgtcgg gctccctggc tcggtcacgt gggctcaggc actactcccc tctaccctcc tctcggtctt taaaaggaag aaggggctta tcgttaagtc 1860 gettgtgate ttttcagttt etccagetge tggetttttg gacacceaet ecceegecag 1920 gaggcagttg caagcgcgga ggctgcgaga aataactgcc tcttgaaact tgcagggcga 1980 2040 agagcaggcg gcgagcgctg ggccggggag ggaccacccg agctgcgacg ggctctgggg 2100 ctgcggggca gggctggcgc ccggagcctg agctgcagga ggtgcgctcg ctttcctcaa 2160 caggtggcgg cggggcgcgc gccgggagac cccccctaat gcgggaaaag cacgtgtccg

cattttagag aaggcaaggc cggtgtgttt atctgcaagc cattatactt gcccacgaat 2220 ctttgagaac attataatga cctttgtgcc tcttcttgca aggtgttttc tcagctgtta 2280 teteaagaea tggatataaa aaaeteaeea tetageetta atteteette eteetaeaae 2340 tgcagtcaat ccatcttacc cctggagcac ggctccatat acataccttc ctcctatgta 2400 gacagecace atgaatatee agecatgaea ttetatagee etgetgtgat gaattacage 2460 attcccagca atgtcactaa cttggaaggt gggcc 2495 <210> 105 <211> 1630 <212> DNA Homo sapiens <400> 105 60 gagetegage caegecatge eegetgeacg tgecagettg egeageacat cagggegetg gtctctcccc ttcctcctgg agtgaaatac accaaagggc gcggtggggg tggggggtga 120 cgggaggaag gaggtgaaga aacgccacca gatcgtatct cctgtaaaga cagccttgac 180 tcaaggatgc gttagagcac gtgtcagggc cgaccgtgct ggcggacttc accgcagtcg 240 300 gctcccaggg agaaagcctg gcagagtgag gcgcgaaacc ggagggtcgg cgaggatgcg 360 ggcgaaggac cgagcgtgga ggcctcatgc ctccggggaa aggaaggggt ggtggtgttt 420 gegeaggggg agegaggggg ageeggaeet aateceteae tegeeceete eeceteeegg 480 gccatttcct agaaagctgc atcggtgtgg ccacgctcag cgcagacacc tcgggcggct tgtcagcaga tgcaggggcg aggaagcggg tttttcctgc gtggccgctg ggcgggggaa 540 600 ccgctgggag ccctgccccc ggcctgcggc ggccctagac gctgcaccgc gtcgccccac gggccccgaa gagcccccag aaacacgatg gtttctgctc gaggatcaca ttctatccct 660 720 780 acacactetg caggggggg cagaagggac gttgttetgg tecetttaat eggggettte 840 gaaacagctt cgaagttatc aggaacacag acttcaggga catgaccttt atctctgggt 900 atgegaggtt gctattttct aaaatcaccc cctcccttat ttttcactta agggacctat 960 ttctaaattg tctgaggtca ccccatcttc agataatcta ccctacattc ctggatctta aatacaaggg caggaggatt aggatccgtt ttgaagaagc caaagttgga gggtcgtatt 1020 1080 ttggcgtgct acacctacag aatgagtgaa attagagggc agaaatagga gtcggtagtt 1140 ttttgtgggt tgcctgtccg gggcccctgg catgcaggct ggatggaggg agaggggtgg 1200 ggggtggcgg gggaccgcgt ttgaagttgg gtcgggccag ctgctgttct ccttaataac

gagaggggaa aaggagggag ggagggagag attgaaagga ggaggggagg accgggaggg

et missing station

gaggaaaggg	gaggaggaac	cagagcgggg	aggcgcgggg	agagggagga	gagctaactg	1320
cccagccagc	ttgcgtcacc	gcttcagagc	ggagaagagc	gagcagggga	gagcgagacc	1380
agttttaagg	ggaggaccgg	tgcgagtgag	gcagccccga	ggctctgctc	gcccaccacc	1440
caatcctcgc	ctcccttctg	ctccaccttc	tctctctgcc	ctcacctctc	ccccgaaaac	1500
cccctattta	gccaaaggaa	ggaggtcagg	ggaacgctct	cccctcccct	tccaaaaaac	1560
aaaaacagaa	aaaccctttt	ccaggccggg	gaaagcagga	gggagagggg	ccgccgggct	1620
ggccatggag						1630
<210> 106 <211> 1800 <212> DNA <213> Homo	) o sapiens					
	ggtttccttc	caccgaagag	tgaacttctg	cctctttcga	gcaccttccg	60
aggcgtagtc	ctttggatgt	tggggagcgt	cagactgggt	cgttgtagag	gggaaaggag	120
ggcccagaag	ggcgagagag	caggccggga	cgcaaatcct	cagcccccgc	ggcgcgccac	180
gtcttcagaa	acgccaggac	ctccgggctg	ggccgccgcg	gtttggcctt	tggaactcaa	240
gggttcgtct	acctgaccat	tgggtggctc	cgcggttgac	acttttcttg	gcatgccccc	300
ccaccccgcg	ccacaccacc	cccccagccc	cagcaatcca	aatcggcccc	acggacctag	360
agggctcttg	ggcgagatga	gacatcaccc	actgtgtaga	agctgttgcc	attgctgctg	420
tcacagccac	tccggatggg	gctgccaccg	tggccaggac	agtctcctcc	gaccgcttcc	480
tgggctgcgc	tagggttcgg	gggcgctgcc	cgcacgctcc	ggcggggaag	gaaatcgccc	540
cgcgcccgcc	ggaggaaggc	gacggggagg	gaagggggag	ggcggctagg	aggcgggtgg	600
aggggccggc	cgcccgggcc	aggtcgtttt	tgaatggttt	gggaggacga	attgttagac	660
cccgaggaag	ggaggtggga	cgggggaggg	ggactggaaa	gcggaaactt	tcctataaaa	720
cttcgaaaag	tccctcctcc	tcacgtcagg	ccaatgacac	tgctgccccc	aaactttccg	780
cctgcacgga	ggtataagag	cctccaagtc	tgcagctctc	gcccaactcc	cagacacctc	840
gcgggctctg	cagcaccggc	accgtttcca	ggaggcctgg	cggggtgtgc	gtccagccgt	900
tgggcgcttt	ctttttggga	cctcggggcc	atccacaccg	tcccctcccc	ctcccgcctc	960
cctccccgcc	tcccccgcgc	gccctccccg	cggaggtccc	tcccgtccgt	cctcctgctc	1020
teteeteege	gggccgcatc	gcccgggccg	gcgccgcgcc	ggggggaagc	tggcgggctg	1080
aggcgccccg	ctcttctcct	ctgccccggg	cccgcgaggc	cacgcgtcgc	cgctcgagag	1140
atgatgcagg	acgtgtccag	ctcgccagtc	tegeeggeeg	acgacagcct	gagcaacagc	1200

gaggaag	gagc	cagaccggca	gcagccgccg	agcggcaagc	gcgggggacg	caagcggcgc	1260
acgagca	aggc	gcacggcggg	cggcggcgcg	gggcccggcg	gagcgggtgg	gggcgtcgga	1320
ggcggcg	gacg	agccgggcag	cccggcccag	ggcaagcgcg	gcaagaagtc	tgcgggctgt	1380
ggcggcg	ggcg	gcggcgcggg	cggcggcggc	ggcagcagca	gcggcggcgg	gagtccgcag	1440
tcttac	gagg	agctgcagac	gcagcgggtc	atggccaacg	tgcgggagcg	ccagcgcacc	1500
cagtcg	ctga	acgaggcgtt	cgccgcgctg	cggaagatca	tccccacgct	gccctcggac	1560
aagctga	agca	agattcagac	cctcaagctg	gcggccaggt	acatcgactt	cctctaccag	1620
gtcctc	caga	gcgacgagct	ggactccaag	atggcaagct	gcagctatgt	ggctcacgag	1680
cggctca	agct	acgccttctc	ggtctggagg	atggaggggg	cctggtccat	gtccgcgtcc	1740
cactago	cagg	cggagccccc	cacccctca	gcagggccgg	agacctaggt	aaggaccgcg	1800
<210><211><211><212><213>	107 21 DNA Arti	ificial sequ	ıence				
<220> <223> Forward primer							
<400> 107 tttggatggg gttgttattg t							21
<210> 108 <211> 20 <212> DNA <213> Artificial sequence							
<220> <223> Reverse primer							
<400> 108 cctaacccaa acaaccaacc 20							
<210><211><212><212><213>	109 20 DNA Art:	ificial sequ	ience				
<220> <223>	Forv	ward primer					
<pre>&lt;400&gt; 109 tttcggatgg ggttgttatc 20</pre>							
<210> <211> <212>	110 19 DNA						

<213> Artificial sequence

<220> <223> Reverse primer

<400> 110

aaacgaccta acccgaacg