STA237 - Activity 8

Madeline Ahn

November 25, 2022

1. Let $Y \to \text{Score}$. We have $\mu = 60, \sigma^2 = 64$, so $\sigma = 8$. We want to find $P(\overline{y} \le 58)$.

First, calculate the distribution for \overline{y} . Let n = 100. Then:

$$\frac{\sigma}{\sqrt{n}} = \frac{8}{\sqrt{100}} = \frac{8}{10} = 0.8$$

By Central Limit Theorem, $\overline{y} \sim N(60, 0.8)$. Now, we can calculate $P(\overline{y} \leq 58)$.

$$\begin{split} P(\overline{y} \leq 58) &= P\left(\frac{\overline{y} - \mu_{\overline{y}}}{\sigma_{\overline{y}}}\right) \\ &= P(Z \leq -2.5) \\ &= 0.0062, \text{ using the Standard Normal Dist. Table.} \end{split}$$

Hence, other schools are considered better than the selected school.

2. We have n=100, with $y\to$ Service Time, with $\mu=1.5$ minutes and $\sigma=1.$ So:

$$P(\sum_{i=1}^{n} y_1 < 2 \cot 60) = P(\frac{1}{n} \sum_{i=1}^{n} y_1 < \frac{120}{100})$$
$$= P(\overline{y} < 1.2)$$

Using Central Limit Theorem, we have:

$$SD(\overline{y}) = \frac{\sigma}{\sqrt{n}} = \frac{1}{10} = 0.1$$

Then, $\overline{y} \sim N(1.5, 0.1)$. Hence:

$$P(\overline{y} < 1.2) = P(Z < \frac{1.2 - 1.5}{0.1})$$
$$= P(Z < -3)$$
$$= 0.0013$$