- Objective: maximize the geometric "margin" between the separating hyperplane and the points that lay closest to that plane.
- Key concepts:
 - 1. A hyperplane can be characterized by a vector, , that is orthogonal to it, and a bias, , expressing its distance from the origin, .
 - 2. The distance, from any point, to has a nice closed form solution.

Linear SVM: problem formulation

$$\|\mathbf{d}\|_2 = \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|_2}$$

distance from any point x_i to the hyperplane w

we wish to maximize $\|\mathbf{d}\|_2$ for \mathbf{x}_i closest to \mathbf{w}

Linear SVM: problem formulation

- Objective: maximize the geometric "margin" between the separating hyperplane and the points that lay closest to that plane.
- Key concepts:
 - 1. A hyperplane can be characterized by a vector, w, that is orthogonal to it, and a bias, b, expressing its distance from the origin, 0.
 - 2. The distance, $\|\mathbf{d}\|_2$, from any point, \mathbf{x}_i , to \mathbf{w} has a nice closed form solution.

distance from any point \mathbf{x}_i to the hyperplane \mathbf{w}

$$\|\mathbf{d}\|_2 = \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|_2}$$

we wish to maximize $\|\mathbf{d}\|_2$ for \mathbf{x}_i closest to \mathbf{w}

Linear SVM: objective

starting objective:
$$\gamma_{\mathbf{w},b} = \min_{\mathbf{x}_i \in \mathbf{X}} \frac{|\mathbf{w}^T \mathbf{x}_i + b|}{\|\mathbf{w}\|_2}$$

