```
% Gini classificaton tree with carseats
T = readtable('Carseats_train.csv')
% need to create high variable and attach it to the table
T{T.Sales < 8, "High"} = 0
T{T.Sales} >= 8, "High" = 1
%Delete Sales and Index column
%T= removevars(T, { 'Sales' });
T= removevars(T, { 'Var1' });
%fitting classification tree with gini (default)
tc = fitrtree(T, "Price", "MinLeafSize", 5, "MinParentSize",
10, "MergeLeaves", "off")
%maxdepth wont work as it needs a tall array
%View tree
%view(tc,'Mode','graph')
%view(tc,'Mode','text')
%looks good, can save the graph
%need to see if i can get tabular output
%preduction
test = readtable('Carseats_test.csv')
test= removevars(test, { 'Var1' });
y_test = test.Price
test= removevars(test, { 'Price' });
test_pred = predict(tc, test)
test_results = table(y_test, test_pred)
y_train = T.Price
train= removevars(T, { 'Price' });
%mse
sum((test_results.y_test - test_results.test_pred).^2)/length(y_test)
%need to figure out how to do pruned tree, but first prediction
%ptc = prune(tc)
%view(ptc,'Mode','graph')
%need to get mse for each prune level
%ptc.PruneList
```

```
%ptc.Prunealpha
%max(tc.PruneList)
mse test = []
mse_train = []
leaves = []
for i = 1:max(tc.PruneList)
    ptc = prune(tc, "level", i )
    test_pred = predict(ptc, test)
    test_results = table(y_test, test_pred)
    leaves = [leaves sum(~ptc.IsBranchNode)]
    %sum(~ptc.IsBranchNode)
    %ptc.NumNodes - sum(ptc.IsBranchNode)
    mse_test = [mse_test sum((test_results.y_test -
 test_results.test_pred).^2)/length(y_test)]
    train_pred = predict(ptc, train)
    train_results = table(y_train, train_pred)
    mse_train = [mse_train sum((train_results.y_train -
 train_results.train_pred).^2)/length(y_train)]
end
%parenthesis for indexing
%min is 29 leaves from invesigating graph
%plot the result
figure
plot(leaves, mse_test, leaves, mse_train)
title('Carseats Regression Matlab, Leaves vs MSE for Test')
xlabel('Leaves')
ylabel('MSE')
ax = gca
ax.XDir = "reverse"
ptc = prune(tc, "level", 15 ) %max level (43) - min mse level (29) +1
test pred = predict(ptc, test)
test_results = table(y_test, test_pred)
sum((test_results.y_test - test_results.test_pred).^2)/length(y_test)
view(ptc,'Mode','graph')
view(ptc,'Mode','text')
T =
  280x12 table
    Var1
           Sales CompPrice
                                 Income
                                            Advertising
                                                           Population
                                                                         Price
                         Education
    ShelveLoc
                Age
                                      Urban
                                                   US
```

1 9.5	138	73	11	276	120
{'Bad' } 42 2 11.22	17	{'Yes'}	{'Yes'}	260	83
	10			200	03
3 10.06	113			269	80
{'Medium'} 59 4 7.4	12 117	{'Yes'} 100		466	97
		{'Yes'}	{'Yes'}	100	<i>J</i> ,
5 4.15	141	64	3	340	128
{'Bad' } 38 6 10.81	13 124	{'Yes'} 113		501	72
	16	{'No' }		301	/ 2
7 6.63	115	105	0	45	108
{'Medium'} 71 8 11.85	15 136	{'Yes'} 81	{'No' } 15	425	120
		{'Yes'}		425	120
9 6.54	132	110	0	108	124
	10	{'No' }		101	104
10 4.69 {'Medium'} 76	132 17	113 {'No' }	0 {'Yes'}	131	124
11 9.01	121	78	9	150	100
{'Bad' } 26	10	{'No' }			
12 11.96 {'Good' } 50	117 13	94 {'Yes'}	4 { 'Veg' }	503	94
13 3.98	122	35	2	393	136
{'Medium'} 62	18	{'Yes'}	$\{'No'\}$		
14 10.96	115			29	86
{'Good' } 53 15 11.17	18 107	{'Yes'} 117		148	118
{'Good' } 52	18	{'Yes'}	{'Yes'}		
16 8.71	149			400	144
{'Medium'} 76 17 7.58	18 118		{ 'NO ' } 0	284	110
	13	{'Yes'}	$\{ 'No' \}$		
18 12.29		74		251	131
{'Good' } 52 19 13.91		{'Yes'} 110		408	68
{'Good' } 46	17	{'No' }	{'Yes'}	100	00
20 8.73	129	76	16	58	121
{'Medium'} 69 21 6.41	12 125	{'Yes'} 90	{'Yes'} 2	367	131
{'Medium'} 35	125	{'Yes'}	{'Yes'}	307	131
22 12.13	134	29	12	239	109
{'Good' } 62 23 5.08	130	{'No' }	{'Yes'}	407	120
23 5.08 {'Medium'} 42	128 13	46 {'Yes'}	6 {'No' }	497	138
24 5.87	121	31	0	292	109
{'Medium'} 79	10	{'Yes'}	{'No' }	004	110
25 10.14 {'Bad' } 42	145 12	119 {'Yes'}	16 {'Yes'}	294	113
26 14.9	139	32	0	176	82
{'Good' } 54	11	{'No' }	{'No' }		
27 8.33 {'Good' } 50	107 11	115 {'No'}	11 {'Yes'}	496	131
(000a) 50	<i>11</i>	[IVO }	(168)		

28 5.27	98	118	0	19	107
{'Medium'} 64 29 2.99		{'Yes'} 74		35 <i>9</i>	97
{'Bad' } 55	11	{'Yes'}	{'Yes'}		<i>J</i> /
30 7.81 {'Bad' } 58	104 17	99 {'Yes'}	15 {'Yeg'}	226	102
31 13.55	125	94	0	447	89
{'Good' } 30 32 8.25	12 136	{'Yes'} 58		241	131
{'Medium'} 44	18	{'Yes'}	{'Yes'}		
33 6.2 {'Good' } 64	107 10	32 {'No'}		236	137
34 8.77	114	38	13	317	128
{'Good' } 50 35 2.67	16 115	{'Yes'} 54	0	406	128
{'Medium'} 42 36 11.07	17 131	{'Yes'} 84		29	96
{'Medium'} 44	17	$\{'No'\}$			
37 8.89 {'Good' } 60	122 18	76 {'No'}	0 {'No' }	270	100
38 4.95	121	41	5	412	110
{'Medium'} 54 39 6.59	10 109	{'Yes'} 73	{'Yes'} 0	454	102
{'Medium'} 65 40 3.24	15 130	{'Yes'} 60	{'No' } 0	144	138
{'Bad' } 38	10	$\{'No'\}$		144	136
41 2.07 {'Bad' } 73	119 17	98 {'No' }	0 {'No' }	18	126
42 7.96	157	53	0	403	124
{'Bad' } 58 43 10.43	16 77	{'Yes'} 69	{'No' } 0	25	24
{'Medium'} 50	18	{'Yes'}			
44 4.12 {'Medium'} 59	123 13	42 {'Yes'}		16	134
45 4.16	85	79	6	325	95
{'Medium'} 69 46 4.56	13 141	{'Yes'} 63		168	135
{'Bad' } 44 47 12.44	12 127	{'Yes'} 90	{'Yes'} 14	16	70
{'Medium'} 48	15	{'No' }	{'Yes'}	10	70
48 4.38 {'Bad' } 55	126 16	98 {'Yes'}	0 {'No' }	173	108
49 3.91	116	52	0	349	98
{'Bad' } 69 50 10.61	18 157	{'Yes'} 93	{'No' } 0	51	149
{'Good' } 32 51 1.42	17 99	{'Yes'} 32	{'No' } 18	341	108
{'Bad' } 80	16	{'Yes'}	{'Yes'}	341	108
52 4.42 {'Bad' } 75	121 16	90 {'Yes'}	0 {'No' }	150	108
53 7.91	153	40	3	112	129
{'Bad' } 39 54 6.92	18 109	{'Yes'} 64	{'Yes'} 13	39	119
{'Medium'} 61	17	{'Yes'}	{'Yes'}		

55 4.9	134	103	13	25	144
{'Medium'} 76 56 6.85	17	{'No' }	{'Yes'}	60	154
	18	{'Yes'}	{'Yes'}		
57 11.91	133	<i>82</i>	0	54	84
{'Medium'} 50 58 0.91	17 93	{'Yes'} 91	{'No' } 0	22	117
{'Bad' } 75	93 11	{'Yes'}	{'No' }	22	117
59 5.42	103	93	15	188	103
{'Bad' } 74	16	{'Yes'}			
60 5.21 {'Medium'} 80	118 13	71 {'Yes'}	4	148	114
61 8.32	122			469	123
{'Bad' } 29	13	{'Yes'}	{'Yes'}		
62 7.32	105			358	107
{'Medium'} 26 63 1.82	13 139	{'No' } 45	{'NO' } 0	146	133
{'Bad' } 77	17	{'Yes'}		140	133
64 8.47	119	88	10	170	101
{'Medium'} 61	13	{'Yes'}		104	10.4
65 7.8 {'Medium'} 32	100 16	67 {'No' }		184	104
66 4.9	122	26	0	197	128
{'Medium'} 55	13	$\{'No'\}$			
67 8.85	127	92		508	91
{'Medium'} 56 68 9.01	18 126	{'Yes'} 61		152	115
{'Medium'} 47	16	{'Yes'}		132	113
69 13.39	149	69	20	366	134
{'Good' } 60	13	{'Yes'}		220	0.0
70 7.99 {'Medium'} 65	127 12	59 {'Yes'}		339	99
71 9.46	89	81		237	99
{'Good' } 74	12	{'Yes'}			
72 6.5				148	150
{'Medium'} 58 73 5.52		{'No' } 45		432	116
{'Medium'} 25	15	{'Yes'}	{'No' }	_	
74 12.61	118	90	10	54	104
{'Good' } 31 75 6.2	11 150	{'No' } 68	{'Yes'} 5	125	136
{'Medium'} 64	130	{'No' }	{'Yes'}	125	130
76 8.55	88	111	23	480	92
{'Bad' } 36	16	{'No' }	{'Yes'}		
77 10.64 {'Medium'} 64	102 15	87 {'Yes'}	10 {'Yes'}	346	70
78 7.7	118	71	12	44	89
{'Medium'} 67	18	{'No' }	{'Yes'}		
79 4.43	134	48	1	139	145
{'Medium'} 65 80 9.14	12 134	{'Yes'} 67	{'Yes'} 0	286	90
{'Bad' } 41	13	{'Yes'}	{'No' }	200	20
81 8.01	113	100	16	353	79
{'Bad' } 68	11	{'Yes'}	{'Yes'}		

82	7.52		116		72	0	237	128
{'Good'	}	70		13	{'Yes'}	$\{'No'\}$		
83 1	11.62		151		83	4	325	139
{'Good'	}	28		17	{'Yes'}	{'Yes'}		
84	4.42		109		36	7	468	94
{	}	56		11	{'Yes'}	{'Yes'}		
85	2.23		111		25	0	52	121
{	}	43		18	$\{'No'\}$	$\{'No'\}$		
86	8.47		125		103	0	304	112
{'Medium'	}	49		13	$\{'No'\}$	$\{'No'\}$		
87	8.7		150		84	9	432	134
{'Medium'	}	64		15	{'Yes'}	$\{'No'\}$		
88	11.7		131		67	7	272	126
{'Good'	}	54		16	$\{'No'\}$	{'Yes'}		
89	6.56		117		42	7	144	111
{'Medium'	}	62		10	{'Yes'}	{'Yes'}		
90	7.95		128		66	3	493	119
{'Medium'	}	45		16	$\{'No'\}$	$\{'No'\}$		
91	5.33		115		22	0	491	103
{'Medium'	}	64		11	$\{'No'\}$	$\{'No'\}$		
92	4.81		97		46	11	267	107
{'Medium'	}	80		15	{'Yes'}	{'Yes'}		

. . .

Published with MATLAB® R2023a