INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4029B MSI

Synchronous up/down counter, binary/decade counter

Product specification
File under Integrated Circuits, IC04

January 1995

HEF4029B MSI

DESCRIPTION

The HEF4029B is a synchronous edge-triggered up/down 4-bit binary/BCD decade counter with a clock input (CP), an active LOW count enable input (\overline{CE}), an up/down control input (UP/ \overline{DN}), a binary/decade control input (BIN/ \overline{DEC}), an overriding asynchronous active HIGH parallel load input (PL), four parallel data inputs (P₀ to P₃), four parallel buffered outputs (\overline{O} 0 to O₃) and an active LOW terminal count output (\overline{TC}).

Information on P_0 to P_3 is asynchronously loaded into the counter while PL is HIGH, independent of CP.

The counter is advanced one count on the LOW to HIGH transition of CP when \overline{CE} and PL are LOW. The \overline{TC} signal is normally HIGH and goes LOW when the counter reaches its maximum count in the UP mode, or the minimum count in the DOWN mode provided \overline{CE} is LOW.

HEF4029BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4029BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4029BT(D): 16-lead SO; plastic

(SOT109-1)

(): Package Designator North America

PINNING

PL parallel load input
P₀ to P₃ parallel data inputs

BIN/DEC binary/decade control input

UP/DN up/down control input

CE count enable input (active LOW)

CP clock input (LOW to HIGH, edge triggered)

 O_0 to O_3 buffered parallel outputs

TC terminal count output (active LOW)

FAMILY DATA, IDD LIMITS category MSI

See Family Specifications

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

FUNCTION TABLE

PL	BIN/DEC	UP/DN	CE	СР	MODE
Н	X	X	Х	Х	parallel load $(P_n \rightarrow O_n)$
L	X	X	Н	X	no change
L	L	L	L	_	count-down, decade
L	L	н	L	_	count-up, decade
L	Н	L	L	_	count-down, binary
L	н	н	L	_	count-up, binary

Notes

- 1. H = HIGH state (the more positive voltage)
 - L = LOW state (the less positive voltage)
 - X = state is immaterial

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

Logic equation for terminal count:

$$\mathsf{TC} = \overline{\mathsf{CE}} \; (\mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \mathsf{UP}/\overline{\mathsf{DN}} \bullet \mathsf{O}_0 \bullet \mathsf{O}_1 \bullet \mathsf{O}_2 \bullet \mathsf{O}_3 + \mathsf{BIN}/\overline{\mathsf{DEC}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{O}}_0 \bullet \overline{\mathsf{O}}_1 \bullet \overline{\mathsf{O}}_2 \bullet \overline{\mathsf{O}}_3 + \\ \overline{\mathsf{BIN}/\overline{\mathsf{DEC}}} \bullet \mathsf{UP}/\overline{\mathsf{DN}} \bullet \mathsf{O}_0 \bullet \mathsf{O}_3 + \overline{\mathsf{BIN}/\overline{\mathsf{DEC}}} \bullet \overline{\mathsf{UP}/\overline{\mathsf{DN}}} \bullet \overline{\mathsf{O}}_0 \bullet \overline{\mathsf{O}}_1 \bullet \overline{\mathsf{O}}_2 \bullet \overline{\mathsf{O}}_3)$$

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$1000 f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	4500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	11 500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\Sigma(f_0C_L)$ = sum of outputs
			V _{DD} = supply voltage (V)

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.			TRAPOLATION RMULA
Propagation delays								
$CP \ \to O_n$	5			145	290	ns	118 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		55	110	ns	44 ns +	(0,23 ns/pF) C _L
	15			40	75	ns	32 ns +	(0,16 ns/pF) C _L
	5			160	315	ns	133 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		60	120	ns	49 ns +	(0,23 ns/pF) C _L
	15			40	80	ns	32 ns +	(0,16 ns/pF) C _L
$CP \rightarrow \overline{TC}$	5			280	560	ns	253 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		105	205	ns	94 ns +	(0,23 ns/pF) C _L
	15			70	140	ns	62 ns +	(0,16 ns/pF) C _L
	5			195	385	ns	168 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		75	150	ns	64 ns +	(0,23 ns/pF) C _L
	15			55	105	ns	47 ns +	(0,16 ns/pF) C _L
$PL \to O_n$	5			120	240	ns	93 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		50	100	ns	39 ns +	(0,23 ns/pF) C _L
	15			35	70	ns	27 ns +	(0,16 ns/pF) C _L
	5			170	335	ns	143 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	130	ns	54 ns +	(0,23 ns/pF) C _L
	15			45	90	ns	37 ns +	(0,16 ns/pF) C _L
$\overline{CE} \to \overline{TC}$	5			180	360	ns	153 ns +	(0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		70	140	ns	59 ns +	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns +	(0,16 ns/pF) C _L
	5			170	335	ns	143 ns +	(0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		65	135	ns	54 ns +	(0,23 ns/pF) C _L
	15			50	100	ns	42 ns +	(0,16 ns/pF) C _L

Synchronous up/down counter, binary/decade counter

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.			TRAPOLATION MULA
Output transition times	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns +	(0,28 ns/pF) C _L
	5			60	120	ns	10 ns +	(1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns +	(0,42 ns/pF) C _L
	15			20	40	ns	6 ns +	(0,28 ns/pF) C _L

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN	TYP	MAX	
Minimum clock	5		110	55	ns	
pulse width; LOW	10	t _{WCPL}	35	20	ns	
	15		25	15	ns	
Minimum PL	5		160	80	ns	
pulse width; HIGH	10	t _{WPLH}	55	25	ns	
	15		35	15	ns	
Recovery time	5		150	75	ns	
for PL	10	t _{RPL}	50	25	ns	
	15		35	20	ns	
Set-up times	5		270	135	ns	
$BIN/\overline{DEC} \to CP$	10	t _{su}	90	45	ns	
	15		60	30	ns	
	5		300	150	ns	
$UP/\overline{DN} \to CP$	10	t _{su}	105	55	ns	
	15		75	35	ns	
	5		240	120	ns	
$\overline{\sf CE} o {\sf CP}$	10	t _{su}	90	50	ns	
	15		70	40	ns	see also waveforms
	5		70	35	ns	Figs 7 and 8
$P_n \to PL$	10	t _{su}	20	10	ns	
	15		10	5	ns	
Hold times	5		45	-90	ns	
$BIN/\overline{DEC} \to CP$	10	t _{hold}	15	-30	ns	
	15		10	-20	ns	
	5		15	-135	ns	
$UP/\overline{DN} \to CP$	10	t _{hold}	0	-50	ns	
	15		- 5	-35	ns	
	5		30	-30	ns	
$\overline{\sf CE} o {\sf CP}$	10	t _{hold}	10	-10	ns	
	15		5	-10	ns	
	5		15	-20	ns	
$P_n \to PL$	10	t _{hold}	0	-10	ns	
	15		0	-5	ns	
Maximum clock	5		2	4	MHz	
pulse frequency	10	f _{max}	5	10	MHz	
	15		8	15	MHz	

HEF4029B MSI

values.

Philips Semiconductors

binary/decade counter

Synchronous up/down counter,

MSI

Philips Semiconductors

binary/decade counter

Synchronous up/down counter,

Synchronous up/down counter, binary/decade counter

HEF4029B MSI

APPLICATION INFORMATION

Some examples of applications for the HEF4029B are:

- Programmable binary and decade counting/frequency synthesizers BCD output.
- Analogue-to-digital and digital-to-analogue conversion.
- Up/down binary counting.
- Magnitude and sign generation.
- Up/down decade counting.
- Difference counting.

up/down preset enable

> clockbinary/

decade

UP/DN

CE

PL P₀ P₁ P₂

TC b

HEF4029B

BIN/DEC CP O0 O1 O2 O3

Fig.11 Example of parallel clocking when cascading HEF4029B ICs.

HEF4029B

HEF4029B

7Z85131

TC lines at all stages after the first may have a negative-going glitch pulse resulting from differential delays of different HEF4029B ICs. These negative-going glitches do not affect proper HEF4029B operation; however if the TC signals are used to trigger other edge-sensitive logic devices, such as flip-flops or counters, the TC signals should be gated with the clock signal using a 2-input OR gate such as HEF4071B.

Fig.12 Example of ripple clocking when cascading HEF4029B ICs. Ripple clocking mode: the up/down control can be changed at any count; the only restriction on changing the up/down control is that the clock input to the first counting stage must be HIGH.

HEF4029B NSI

Product specification

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.