Math for Machine Learning

Week 4.1: Optimization and the Lagrangian Method

By: Samuel Deng

Logistics & Announcements

Lesson Overview

Optimization. Minimize an objective function $f: \mathbb{R}^d \to \mathbb{R}$ with the possible requirement that the minimizer \mathbf{x}^* belongs to a constraint set $\mathscr{C} \subseteq \mathbb{R}^d$.

Lagrangian. For optimization problems with \mathscr{C} defined by equalities/inequalities, the Lagrangian is a function $L: \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ that "unconstrains" the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point \mathbf{x}^* to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When \mathscr{C} is represented by inequalities and equalities, we can use the method of Lagrange multipliers and the KKT Theorem to "unconstrain" the problem.

Ridge regression and minimum norm solutions. By constraining the norm of $\mathbf{w}^* \in \mathbb{R}^d$ of least squares (i.e. $\|\mathbf{w}^*\|$), we obtain more "stable" solutions.

Lesson Overview

Big Picture: Least Squares

Lesson Overview

Big Picture: Gradient Descent

Optimization Problems Definition and examples

Optimization in calculus

In much of machine learning, we design algorithms for well-defined optimization problems.

In an optimization problem, we want to minimize an <u>objective function</u> $f: \mathbb{R}^d \to \mathbb{R}$ with respect to a set of constraints $\mathscr{C} \subseteq \mathbb{R}^d$:

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\mathbf{x} \in \mathbb{R}^d
\end{array}$$

$$\text{subject to} \quad \mathbf{x} \in \mathscr{C}$$

Components of an optimization problem

minimize
$$f(\mathbf{x})$$
 $\mathbf{x} \in \mathbb{R}^d$
subject to $\mathbf{x} \in \mathscr{C}$

 $f: \mathbb{R}^d \to \mathbb{R}$ is the <u>objective function</u>.

 $\mathscr{C} \subseteq \mathbb{R}^n$ is the <u>constraint/feasible set</u>.

Components of an optimization problem

minimize
$$f(\mathbf{x})$$
 $\mathbf{x} \in \mathbb{R}^d$
subject to $\mathbf{x} \in \mathscr{C}$

 $f: \mathbb{R}^d \to \mathbb{R}$ is the <u>objective function</u>.

 $\mathscr{C} \subseteq \mathbb{R}^n$ is the <u>constraint/feasible set</u>.

x* is an optimal solution (global minimum) if

$$\mathbf{x}^* \in \mathscr{C}$$
 and $f(\mathbf{x}^*) \leq f(\mathbf{x})$, for all $\mathbf{x} \in \mathscr{C}$.

The <u>optimal value</u> is $f(\mathbf{x}^*)$. Our goal is to find \mathbf{x}^* and $f(\mathbf{x}^*)$.

Components of an optimization problem

minimize
$$f(\mathbf{x})$$
 $\mathbf{x} \in \mathbb{R}^d$
subject to $\mathbf{x} \in \mathscr{C}$

 $f: \mathbb{R}^d \to \mathbb{R}$ is the <u>objective function</u>.

 $\mathscr{C} \subseteq \mathbb{R}^n$ is the <u>constraint/feasible set</u>.

x* is an optimal solution (global minimum) if

$$\mathbf{x}^* \in \mathscr{C}$$
 and $f(\mathbf{x}^*) \leq f(\mathbf{x})$, for all $\mathbf{x} \in \mathscr{C}$.

The <u>optimal value</u> is $f(\mathbf{x}^*)$. Our goal is to find \mathbf{x}^* and $f(\mathbf{x}^*)$.

Note: to maximize $f(\mathbf{x})$, just minimize $-f(\mathbf{x})$. So we'll only focus on *minimization* problems.

Optimization in single-variable calculus

Ultimate goal: Find the global minimum of functions.

Intermediary goal: Find the local minima.

Example: Linear Programming

Let $\mathbf{c} \in \mathbb{R}^d$, $\mathbf{A} \in \mathbb{R}^{n \times d}$, $\mathbf{b} \in \mathbb{R}^n$ be fixed.

Let $\mathbf{x} \in \mathbb{R}^d$ be the <u>decision/free variables</u>.

minimize $\mathbf{c}^\mathsf{T}\mathbf{x}$ $\mathbf{x} \in \mathbb{R}^d$ subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

 \leq is element-wise inequality: $\mathbf{a}_i^\mathsf{T}\mathbf{x} \leq b_i$ for all $i \in [n]$.

Example: Linear Programming (d = 3, n = 7)

We're cooking some NYC classics again. Suppose we have:

100 bacon, 120 egg, 150 cheese, and 300 (sandwich) rolls.

There are three recipes we know:

Bacon egg and cheese (BEC) requires 1 bacon, 1 egg, 1 cheese, and 1 roll.

Cost (including labor): \$3

Egg and cheese (EC) requires 0 bacon, 2 egg, 1 cheese, and 1 roll.

Cost (including labor): \$2

Bacon egg omelette (BEO) requires 1 bacon, 3 egg, 1/2 cheese, and 0 roll.

Cost (including labor): \$1

Example: Linear Programming (d = 3, n = 7)

We're cooking some NYC classics again. Suppose we have:

100 bacon, 120 egg, 150 cheese, and 300 (sandwich) rolls.

There are three recipes we know:

1. Bacon egg and cheese (BEC) requires 1 bacon, 1 egg, 1 cheese, and 1 roll.

Cost (including labor): \$3

2. Egg and cheese (EC) requires 0 bacon, 2 egg, 1 cheese, and 1 roll.

Cost (including labor): \$2

3. Bacon egg omelette (BEO) requires 1 bacon, 3 egg, 1/2 cheese, and 0 roll.

Cost (including labor): \$1

Decision variables?

$$\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$$

 x_1 = number of BEC,

 x_2 = number of EC,

 x_3 = number of BEO

Constraints?

Bacon:
$$\mathbf{a}_1 = (1,0,1), b_1 = 100$$

Egg:
$$\mathbf{a}_2 = (1,2,3), b_2 = 120$$

Cheese:
$$\mathbf{a}_3 = (1,1,1/2), b_3 = 150$$

Roll:
$$\mathbf{a}_4 = (1,1,0), b_4 = 300$$

Objective?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 3x_1 + 2x_2 + x_3$$

Example: Linear Programming (d = 3, n = 7)

Decision variables?

$$\mathbf{x} = (x_1, x_2, x_3) \in \mathbb{R}^3$$

 x_1 = number of BEC,

 x_2 = number of EC,

 x_3 = number of BEO

Constraints?

Bacon:
$$\mathbf{a}_1 = (1,0,1), b_1 = 100$$

Egg:
$$\mathbf{a}_2 = (1,2,3), b_2 = 120$$

Cheese: $\mathbf{a}_3 = (1,1,1/2), b_3 = 150$

Roll: $\mathbf{a}_4 = (1,1,0), b_4 = 300$

Objective?

$$\mathbf{c}^{\mathsf{T}}\mathbf{x} = 3x_1 + 2x_2 + x_3$$

Linear program:

minimize

$$3x_1 + 2x_2 + x_3$$

subject to
$$x_1 + x_3 \le 100$$

$$x_1 + 2x_2 + 3x_3 \le 120$$

$$x_1 + x_2 + 0.5x_3 \le 150$$

$$x_1 + x_2 \le 300$$

$$x_1 \ge 0$$

$$x_2 \ge 0$$

$$x_3 \ge 0$$

Example: Linear Programming (d = 3, n = 7)

Linear program:

minimize
$$3x_1 + 2x_2 + x_3$$

subject to $x_1 + x_3 \le 100$ \Rightarrow $x_1 + 2x_2 + 3x_3 \le 120$ \Rightarrow $x_1 + x_2 + 0.5x_3 \le 150$ \Rightarrow $x_1 + x_2 \le 300$ \Rightarrow $x_1 \ge 0$ \Rightarrow $x_2 \ge 0$ \Rightarrow $x_3 \ge 0$

LP in matrix form:

minimize
$$3x_1 + 2x_2 + x_3$$

subject to $\mathbf{A}\mathbf{x} \leq \mathbf{b}$

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & \frac{1}{2} \\ 1 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} 100 \\ 120 \\ 150 \\ 300 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Regression Setup

Observed: Matrix of *training samples* $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training labels* $\mathbf{y} \in \mathbb{R}^d$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\mathsf{T} & \rightarrow \\ \vdots & & \vdots \\ \leftarrow & \mathbf{x}_n^\mathsf{T} & \rightarrow \end{bmatrix}.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

Regression Setup

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \dots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$X\hat{w} = \hat{y} \approx y$$
.

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares*.

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Least Squares Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^n$ be fixed. Let $\mathbf{w} \in \mathbb{R}^d$ be the decision variables.

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
 subject to $\mathbf{w} \in \mathbb{R}^d$

Least Squares Optimization Problem

Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^n$ be fixed. Let $\mathbf{w} \in \mathbb{R}^d$ be the decision variables.

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
 subject to $\mathbf{w} \in \mathbb{R}^d$

How to find the minimizer?

Theorem (Ordinary Least Squares). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and $rank(\mathbf{X}) = d$, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Proof (OLS).

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \iff$$
$$f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $rank(\mathbf{X}) = d \Longrightarrow rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \Longrightarrow \mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Proof (OLS).

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \iff f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to $\mathbf{0}$.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $rank(\mathbf{X}) = d \Longrightarrow rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \Longrightarrow \mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^{2} f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$\mathrm{rank}(\mathbf{X}) = d \implies \mathrm{rank}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = d \implies \lambda_{1}, \dots, \lambda_{d} > 0$$

$$\implies \mathbf{X}^{\mathsf{T}} \mathbf{X} \text{ is positive definite!}$$

Proof (OLS).

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \iff f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $rank(\mathbf{X}) = d \Longrightarrow rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \Longrightarrow \mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

"Second derivative test." Take the *Hessian* of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$\operatorname{rank}(\mathbf{X}) = d \implies \operatorname{rank}(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \implies \lambda_1, ..., \lambda_d > 0$$

$$\implies \mathbf{X}^{\mathsf{T}}\mathbf{X} \text{ is positive definite!}$$

 \mathbf{x} 1-axis \mathbf{x} 2-axis \mathbf{f} (x1, x2)-axis

Local and global minima Definition of "locality" and different minima

Optimization in single-variable calculus

Ultimate goal: Find the global minimum of functions.

Intermediary goal: Find the local minima.

Definition of an open ball/neighborhood

Let $\mathbf{x} \in \mathbb{R}^d$ be a point. For some real value $\delta > 0$, the <u>open ball</u> or <u>neighborhood of radius</u> δ around \mathbf{x} is the set of all points:

$$B_{\delta}(\mathbf{x}) := \{ \mathbf{a} \in \mathbb{R}^d : ||\mathbf{x} - \mathbf{a}|| < \delta \}.$$

Definition of an open ball/neighborhood

Example. Consider $\mathbf{x} = (1,1) \in \mathbb{R}^2$. What is the open ball of radius $\delta = 1$ around \mathbf{x} ?

Definition of an open ball/neighborhood

Example. Consider $\mathbf{x} = (1,1) \in \mathbb{R}^2$. What is the open ball of radius $\delta = 1$ around \mathbf{x} ?

An open ball lets us approach x from all directions.

Definition of the interior of a set

$$B_{\delta}(\mathbf{x}) := \{ \mathbf{a} \in \mathbb{R}^d : ||\mathbf{x} - \mathbf{a}|| < \delta \}$$

Let $S \subseteq \mathbb{R}^d$ be a set. A point $\mathbf{x} \in S$ is an <u>interior point</u> if there exists a neighborhood $B_{\delta}(\mathbf{x})$ around \mathbf{x} such that $B_{\delta}(\mathbf{x}) \subset S$ (where \subset is *proper subset*).

The <u>interior of the set</u> int(S) is the set of all interior points of S, i.e.

$$int(S) := \{ \mathbf{x} \in S : N_{\delta}(\mathbf{x}) \subset S \}.$$

Local and global minima

Local and global minima

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathscr{C}$

A point $\hat{\mathbf{x}} \in \mathscr{C}$ is a <u>local minimum</u> if there exists a neighborhood $B_{\delta}(\mathbf{x})$ around $\hat{\mathbf{x}}$ such that

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathscr{C} \cap B_{\delta}(\hat{\mathbf{x}})$.

We will also call this a constrained local minimum.

A point $\mathbf{x}^* \in \mathcal{C}$ is a global minimum if

$$f(\mathbf{x}^*) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathscr{C}$.

Local and global minima

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathscr{C}$

A point $\hat{\mathbf{x}} \in \mathcal{C}$ is an <u>unconstrained local</u> <u>minimum</u> if there exists a neighborhood $B_{\delta}(\hat{\mathbf{x}}) \subset \mathcal{C}$ around $\hat{\mathbf{x}}$ such that

 $f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$ for all $\mathbf{x} \in B_{\delta}(\hat{\mathbf{x}})$.

Local and global minima

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathscr{C}$

A point $\hat{\mathbf{x}} \in \mathcal{C}$ is an <u>unconstrained local</u> <u>minimum</u> if there exists a neighborhood $B_{\delta}(\hat{\mathbf{x}}) \subset \mathcal{C}$ around $\hat{\mathbf{x}}$ such that

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in B_{\delta}(\hat{\mathbf{x}})$.

Unconstrained local minima are in the interior $int(\mathscr{C})$ of the constraint set.

On the other hand, constrained local minima can be on the "edge" of the constraint set.

Which type of minima are each of these points?

minimize $f(\mathbf{x})$ subject to $\mathbf{x} \in \mathscr{C}$

constrained local:

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x}) \text{ for all } \mathbf{x} \in \mathscr{C} \cap B_{\delta}(\hat{\mathbf{x}})$$

unconstrained local:

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x}) \text{ for all } \mathbf{x} \in B_{\delta}(\hat{\mathbf{x}}) \text{ and } B_{\delta}(\hat{\mathbf{x}}) \subset \mathscr{C}.$$

global:

 $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathscr{C}$.

Big picture

At the end of the day, we want to find *global minima*.

Global minima could be either unconstrained local minima or constrained local minima.

Without &, global minima are just one of the unconstrained local minima.

With \mathscr{C} , global minima may lie on the boundary of the constraint set.

Types of Minima Big picture

At the end of the day, we want to find global minima.

Global minima could be either unconstrained local minima or constrained local minima.

Without \mathscr{C} , global minima are just one of the *unconstrained local* minima.

With \mathscr{C} , global minima may lie on the boundary of the constraint set.

Strategy: Find all unconstrained and constrained local minima, then *test* for global minima.

Finding local minima Big Picture

Necessary and sufficient conditions

Review

$$P \implies Q$$

Q is <u>necessary</u> for P. P is <u>sufficient</u> for Q.

sufficiency: If you assume this, you get your property.

necessity: Your property cannot hold unless you assume this.

Example:

A sufficient (but not necessary) condition to get an A in this class is to get 100 on every assignment.

A necessary (but not sufficient) condition to get an A in this class is to turn in every assignment.

How do we find unconstrained minima?

A point $\hat{\mathbf{x}} \in \mathscr{C}$ is an <u>unconstrained local minimum</u> if there exists a neighborhood $B_{\delta}(\hat{\mathbf{x}}) \subset \mathscr{C}$ around $\hat{\mathbf{x}}$ such that

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in B_{\delta}(\hat{\mathbf{x}})$.

From single-variable calculus:

$$f'(x) = 0 \text{ and } f''(x) \ge 0.$$

Intuition from Taylor series

Let $\delta \in \mathbb{R}$ be a scalar increment.

At $x_0 \in \mathbb{R}$, the second-order Taylor approximation tells us all we need to know:

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$
.

Second-order Taylor Approximation

Single-variable example

$$f(x) = e^{x/2}$$

Second-order Taylor expansion at $x_0 = 1$:

$$T^{2}(x) = e^{1/2} + \frac{e^{1/2}(x-1)}{2} + \frac{e^{1/2}(x-1)^{2}}{8}$$

Intuition from Taylor series

Let $\delta \in \mathbb{R}$ be a scalar increment.

At $x_0 \in \mathbb{R}$, the second-order Taylor approximation tells us all we need to know:

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$
.

Pretend that this function approximation is exact. Then...

What are the *necessary* conditions for *x* to be a minimum?

What are the *sufficient* conditions for *x* to be a minimum?

Intuition from Taylor series

Let $\delta \in \mathbb{R}$ be a scalar increment.

At $x_0 \in \mathbb{R}$, the second-order Taylor approximation tells us all we need to know:

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$
.

Pretend that this function approximation is exact. Then...

What are the *necessary* conditions for x to be a minimum? f'(x) = 0, $f''(x) \ge 0$.

What are the sufficient conditions for x to be a minimum? f'(x) = 0, f''(x) > 0.

Sufficient conditions met

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$

Necessary conditions: $f'(x_0) = 0$, $f''(x_0) \ge 0$.

Sufficient conditions: $f'(x_0) = 0$, $f''(x_0) > 0$.

$$f(x) = (x-1)^2 + 1$$

Necessary, not sufficient

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$

Necessary conditions: $f'(x_0) = 0$, $f''(x_0) \ge 0$.

Sufficient conditions: $f'(x_0) = 0$, $f''(x_0) > 0$.

$$f(x) = (x-1)^3 + 1$$

Remainder of Taylor Polynomial

Definition

The <u>remainder</u> of a function and its Taylor polynomial at \mathbf{x}_0 is the function:

$$R^n(\mathbf{x}) := f(\mathbf{x}) - T_{\mathbf{x}_0}^n(\mathbf{x})$$

What behavior would we like? Ideally, $R^n(\mathbf{x}) \to 0$ as $\mathbf{x} \to \mathbf{x}_0$ (the approximation gets better as we approach \mathbf{x}_0).

Remainder Theorem 1: Peano's Form Taylor's Theorem

Theorem (2nd Order Taylor's Theorem: Peano's Form). Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function at \mathbf{x}_0 . Then, for every direction $\mathbf{d} \in \mathbb{R}^d$:

$$f(\mathbf{x}_0 + \mathbf{d}) = f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d} + o(\|\mathbf{d}\|^2).$$

The remainder is

$$R^{2}(\mathbf{x}_{0} + \mathbf{d}) = f(\mathbf{x}_{0} + \mathbf{d}) - \left(f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^{2} f(\mathbf{x}_{0}) \mathbf{d} \right),$$

and the claim is that $R^2(\mathbf{x}_0 + \mathbf{d}) = o(\|\mathbf{d}\|^2)$, meaning that $\lim_{\mathbf{d} \to \mathbf{0}} R^2(\mathbf{x}_0 + \mathbf{d}) / \|\mathbf{d}\|^2 = 0$.

Remainder Theorem 1: Peano's Form Taylor's Theorem

What does
$$R^2(\mathbf{x}_0 + \mathbf{d}) = o(\|\mathbf{d}\|^2)$$
 mean?

For every C>0, there exists a neighborhood $B_{\delta}(\mathbf{0})$ such that

$$R^2(\mathbf{x}_0 + \mathbf{d}) \le C \|\mathbf{d}\|^2, \quad \forall \mathbf{d} \in B_{\delta}(\mathbf{0}).$$

We can make the remainder term as small as we like as long as $\|\mathbf{d}\|$ is sufficiently small ($\|\mathbf{d}\| < \delta$ does the trick).

Remainder Theorem 1: Peano's Form Taylor's Theorem

What does
$$R^2(\mathbf{x}_0 + \mathbf{d}) = o(\|\mathbf{d}\|^2)$$
 mean?

Let $\mathbf{d} \in \mathbb{R}^d$ be a unit vector with $\|\mathbf{d}\| = 1$ and $\alpha > 0$ be a scalar, so:

$$o(\|\alpha\mathbf{d}\|^2) = o(\alpha^2).$$

Then, $R^2(\mathbf{x}_0 + \alpha \mathbf{d}) = o(\alpha^2)$ means:

$$\lim_{\alpha \to 0} \frac{R^2(\mathbf{x}_0 + \alpha \mathbf{d})}{\alpha^2} = 0$$

(the remainder goes to 0 faster than a quadratic).

Remainder Theorem 1: Peano's Form Taylor's Theorem

Theorem (2nd Order Taylor's Theorem: Peano's Form). Let $f: \mathbb{R}^d \to \mathbb{R}$ be a twice differentiable function at \mathbf{x}_0 . Let $\mathbf{d} \in \mathbb{R}^d$ be any direction. For every C > 0, there exists a neighborhood $B_{\delta}(\mathbf{0})$ such that

$$\left| f(\mathbf{x}_0 + \mathbf{d}) - \left(f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d} \right) \right| \le C \|\mathbf{d}\|^2$$

for all $\mathbf{d} \in B_{\delta}(\mathbf{0})$.

Unconstrained local minima Necessary conditions

Least Squares OLS Theorem

Proof (OLS).

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

Least Squares OLS Theorem

Proof (OLS).

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

Why is this the right thing to do?

Remainder Theorem 1: Peano's Form Taylor's Theorem

For all intents and purposes,

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2$$
 when δ is small enough.

is analogous to:

$$f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d}$$
 when $\|\mathbf{d}\|$ is small enough.

Necessary conditions

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2 \qquad f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\top} \mathbf{d} + \frac{1}{2}\mathbf{d}^{\top} \nabla^2 f(\mathbf{x}_0) \mathbf{d}$$
 when δ is small enough. when $\|\mathbf{d}\|$ is small enough.

$$f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d}$$

when $\|\mathbf{d}\|$ is small enough.

Necessary conditions:

$$f'(x_0) = 0, f''(x_0) \ge 0.$$

Necessary conditions:

$$\nabla f(\mathbf{x}_0) = \mathbf{0}, \ \nabla^2 f(\mathbf{x}_0) \text{ is PSD.}$$

Total Derivative

Review of definition

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a function and let $\mathbf{x}_0 \in \mathbb{R}^d$ be a point. If there exists a gradient vector $\nabla f(\mathbf{x}_0) \in \mathbb{R}^d$ such that

$$\lim_{\mathbf{d} \to \mathbf{0}} \frac{f(\mathbf{x}_0 + \mathbf{d}) - f(\mathbf{x}_0) - \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d}}{\|\mathbf{d}\|} = 0,$$

then f is <u>differentiable</u> at \mathbf{x}_0 and has the <u>(total) derivative</u> $\nabla f(\mathbf{x}_0)$.

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). Consider the optimization problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \mathscr{C}$

Suppose $\mathbf{x}^* \in \text{int}(\mathscr{C})$ is an *unconstrained local minimum*. Then,

First-order condition. If f is differentiable at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Second-order condition. If f is twice-differentiable at \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite, i.e. $\mathbf{v}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{v} \geq 0$ for all $\mathbf{v} \in \mathbb{R}^d$.

First order condition

First-order condition. If f is differentiable at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Step 1: Use definition of the gradient for $\alpha \mathbf{d}$.

Choose an arbitrary direction $\alpha \mathbf{d} \in \mathbb{R}^d$, where $\|\mathbf{d}\| = 1$ is a unit vector and $\alpha > 0$ is a scalar.

f is differentiable, so...

$$\lim_{\alpha \to 0} \frac{f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) - \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d}}{\alpha \|\mathbf{d}\|} = 0$$

which is the same as stating:

$$\lim_{\alpha \to 0} \frac{f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)}{\alpha} = \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d}.$$

First order condition

First-order condition. If f is differentiable at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Step 2: Use local optimality on difference $f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)$.

From Step 1,

$$\lim_{\alpha \to 0} \frac{f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)}{\alpha} = \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d}.$$

 \mathbf{x}^* is an *unconstrained local minimum*, so there exists a neighborhood $B_{\delta}(\mathbf{x}^*)$ such that $f(\mathbf{x}) \geq f(\mathbf{x}^*)$ for all $\mathbf{x} \in B_{\delta}(\mathbf{x}^*)$. So if $\alpha < \delta$ (sufficiently small),

$$f(\mathbf{x}^* + \alpha \mathbf{d}) \ge f(\mathbf{x}^*) \Longrightarrow \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} \ge 0.$$

First order condition

First-order condition. If f is differentiable at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Step 3: Conclude by recalling that $\mathbf{d} \in \mathbb{R}^n$ was an arbitrary direction.

From Step 2, if $\alpha < \delta$ (sufficiently small), $\nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} \geq 0$.

But $\mathbf{d} \in \mathbb{R}^d$ was an arbitrary direction with $\|\mathbf{d}\| = 1$.

$$\mathbf{d} = \mathbf{e}_1 \implies \nabla f(\mathbf{x}^*)_1 \ge 0 \text{ and } \mathbf{d} = -\mathbf{e}_1 \implies \nabla f(\mathbf{x}^*)_1 < 0$$

$$\mathbf{d} = \mathbf{e}_2 \implies \nabla f(\mathbf{x}^*)_2 \ge 0 \text{ and } \mathbf{d} = -\mathbf{e}_2 \implies \nabla f(\mathbf{x}^*)_2 < 0$$

$$\vdots$$

$$\mathbf{d} = \mathbf{e}_d \implies \nabla f(\mathbf{x}^*)_d \ge 0 \text{ and } \mathbf{d} = -\mathbf{e}_d \implies \nabla f(\mathbf{x}^*)_d < 0$$
 Therefore, $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Second order condition

Second-order condition. If f is twice-differentiable at \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*)$ is PSD.

Step 1: Use second-order Taylor's theorem with $\alpha \mathbf{d} \in \mathbb{R}^d$ with $\|\mathbf{d}\| = 1$.

Choose an arbitrary direction $\alpha \mathbf{d} \in \mathbb{R}^d$, where $\|\mathbf{d}\| = 1$ is a unit vector and $\alpha > 0$ is a scalar. By Taylor's Theorem (Peano's form):

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^{\mathsf{T}} (\alpha \mathbf{d}) + \frac{1}{2} (\alpha \mathbf{d})^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) (\alpha \mathbf{d}) + o(\|\alpha \mathbf{d}\|^2)$$
$$= \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} + \frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2)$$

Second order condition

Second-order condition. If f is twice-differentiable at \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*)$ is PSD.

Step 2: Use first-order condition on difference $f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)$.

From Step 1,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} + \frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2)$$

x* is an *unconstrained local minimum*, so by first-order condition (just proved):

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \frac{\alpha^2}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2)$$

Second order condition

Second-order condition. If f is twice-differentiable at \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*)$ is PSD.

Step 3: Take $\alpha \to 0$ to get rid of the little-oh terms.

From Step 3,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \frac{\alpha^2}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2).$$

Recall that if g = o(h), then $\lim_{\alpha \to 0} \frac{g(\alpha)}{h(\alpha)} = 0$.

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) - \frac{\alpha^2}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d} = o(\alpha^2) \Longrightarrow \lim_{\alpha \to 0} \frac{f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)}{\alpha^2} - \frac{1}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d} = 0$$

By local optimality of \mathbf{x}^* ,

$$0 \le \frac{f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*)}{\alpha^2}, \text{ so } 0 \le \frac{1}{2} \mathbf{d}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{d}. \text{ By definition, } \nabla^2 f(\mathbf{x}^*) \text{ is PSD.}$$

Least Squares OLS Theorem

Proof (OLS).

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \iff f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $rank(\mathbf{X}) = d \Longrightarrow rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \Longrightarrow \mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

"Second derivative test." Take the *Hessian* of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^{2} f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$\operatorname{rank}(\mathbf{X}) = d \implies \operatorname{rank}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = d \implies \lambda_{1}, \dots, \lambda_{d} > 0$$

$$\implies \mathbf{X}^{\mathsf{T}} \mathbf{X} \text{ is positive definite!}$$

x1-axis x2-axis f(x1, x2)-axis

Unconstrained local minima Sufficient conditions

Least Squares OLS Theorem

Proof (OLS).

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$rank(\mathbf{X}) = d \implies rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \implies \lambda_1, ..., \lambda_d > 0$$

 \longrightarrow $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

Least Squares OLS Theorem

Proof (OLS).

"Second derivative test." Take the Hessian of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^2 f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$rank(\mathbf{X}) = d \implies rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \implies \lambda_1, ..., \lambda_d > 0$$

 \longrightarrow $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive definite!

Why is this the right thing to do?

Sufficient conditions

$$f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta + \frac{1}{2}f''(x_0)\delta^2 \qquad f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}}\mathbf{d} + \frac{1}{2}\mathbf{d}^{\mathsf{T}}\nabla^2 f(\mathbf{x}_0)\mathbf{d}$$
 when δ is small enough. when $\|\mathbf{d}\|$ is small enough.

$$f(\mathbf{x}_0 + \mathbf{d}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^{\mathsf{T}} \mathbf{d} + \frac{1}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}_0) \mathbf{d}$$

when $\|\mathbf{d}\|$ is small enough.

Sufficient conditions:

$$f'(x_0) = 0, f''(x_0) > 0.$$

Sufficient conditions:

$$\nabla f(\mathbf{x}_0) = \mathbf{0}, \ \nabla^2 f(\mathbf{x}_0) \text{ is PD.}$$

Sufficient conditions

Theorem (Sufficient Conditions for Unconstrained Local Minimum). Consider the optimization problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \mathscr{C}$

Let $\mathbf{x}^* \in \mathrm{int}(\mathscr{C})$. If $f \in \mathscr{C}^2$ within a neighborhood $N_\delta(\mathbf{x}^*)$ of \mathbf{x}^* and

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*)$ is positive definite,

then x* is a strict unconstrained local minimum.

Proof of sufficient conditions

Second order condition

Second-order condition. If $\nabla^2 f(\mathbf{x}^*)$ is PD, then \mathbf{x}^* is an unconstrained local minimum.

Step 1: Use second-order Taylor's theorem with $\alpha \mathbf{d} \in \mathbb{R}^d$ with $\|\mathbf{d}\| = 1$.

Choose an arbitrary direction $\alpha \mathbf{d} \in \mathbb{R}^d$, where $\|\mathbf{d}\| = 1$ is a unit vector and $\alpha > 0$ is a scalar. By Taylor's Theorem (Peano's form):

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \nabla f(\mathbf{x}^*)^{\mathsf{T}} (\alpha \mathbf{d}) + \frac{1}{2} (\alpha \mathbf{d})^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) (\alpha \mathbf{d}) + o(\|\alpha \mathbf{d}\|^2)$$
$$= \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} + \frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2)$$

Proof of sufficient conditions

Second order condition

Second-order condition. If $\nabla^2 f(\mathbf{x}^*)$ is PD, then \mathbf{x}^* is an unconstrained local minimum.

Step 2: $\nabla^2 f(\mathbf{x}^*)$ is positive definite, so its eigenvalues are all positive.

From Step 1, for any $\mathbf{d} \in \mathbb{R}^d$ with $\|\mathbf{d}\| = 1$ and $\alpha > 0$,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} + \frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d} + o(\alpha^2).$$

Let the eigenvalues of $\nabla^2 f(\mathbf{x}^*)$ be $\lambda_1 \geq \ldots \geq \lambda_d > 0$, and consider the smallest eigenvalue, $\lambda_d > 0$ with unit eigenvector \mathbf{v}_d with $||\mathbf{v}_d|| = 1$.

$$\implies \frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d} \ge \frac{\alpha^2}{2} \mathbf{v}_d^{\mathsf{T}} \nabla f(\mathbf{x}^*) \mathbf{v}_d = \frac{\lambda_d \alpha^2}{2}.$$

Proof of sufficient conditions

Second order condition

Second-order condition. If $\nabla^2 f(\mathbf{x}^*)$ is PD, then \mathbf{x}^* is an unconstrained local minimum.

Step 3: We chose \mathbf{d} arbitrarily, so the first-order term can be non-negative.

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) = \alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} + \underbrace{\frac{\alpha^2}{2} \mathbf{d}^{\mathsf{T}} \nabla^2 f(\mathbf{x}^*) \mathbf{d}}_{\geq \frac{\lambda_d \alpha^2}{2}} + o(\alpha^2)$$

Because **d** is an arbitrary direction (could be negative or positive), $\alpha \nabla f(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} \geq 0$, and

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) \ge \frac{\lambda_d \alpha^2}{2} + o\left(\alpha^2\right) = \left(\frac{\lambda_d}{2} + \frac{o(\alpha^2)}{\alpha^2}\right) \alpha^2.$$

Proof of sufficient conditions

Second order condition

Second-order condition. If $\nabla^2 f(\mathbf{x}^*)$ is PD, then \mathbf{x}^* is an unconstrained local minimum.

Step 4: If α is small enough, then $o(\alpha^2)/\alpha^2$ can be as small as we like.

From Step 3,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) - f(\mathbf{x}^*) \ge \left(\frac{\lambda_d}{2} + \frac{o(\alpha^2)}{\alpha^2}\right) \alpha^2$$

For any C > 0, we can choose α small enough so $\left| \frac{o(\alpha^2)}{\alpha^2} \right| \leq C$.

Let's make
$$\left| \frac{o(\alpha^2)}{\alpha^2} \right|$$
 smaller than $C = \frac{\lambda}{4}$. Then, for any $\alpha > 0$ sufficiently small,

$$f(\mathbf{x}^* + \alpha \mathbf{d}) \ge f(\mathbf{x}^*) + \frac{\lambda}{4} \alpha^2 > f(\mathbf{x}^*).$$

Least Squares OLS Theorem

Proof (OLS).

$$f(\mathbf{w}) = \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 \iff f(\mathbf{w}) = \mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \mathbf{y}^{\mathsf{T}}\mathbf{y}$$

"First derivative test." Take the gradient.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = 2(\mathbf{X}^{\mathsf{T}} \mathbf{X}) \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y}.$$

Set it equal to 0.

$$2(\mathbf{X}^{\mathsf{T}}\mathbf{X})\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} = \mathbf{0} \implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

 $rank(\mathbf{X}) = d \Longrightarrow rank(\mathbf{X}^{\mathsf{T}}\mathbf{X}) = d \Longrightarrow \mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

"Second derivative test." Take the *Hessian* of $f(\mathbf{w})$.

$$\nabla_{\mathbf{w}}^{2} f(\mathbf{w}) = 2\mathbf{X}^{\mathsf{T}} \mathbf{X}.$$

$$\operatorname{rank}(\mathbf{X}) = d \implies \operatorname{rank}(\mathbf{X}^{\mathsf{T}} \mathbf{X}) = d \implies \lambda_{1}, \dots, \lambda_{d} > 0$$

$$\implies \mathbf{X}^{\mathsf{T}} \mathbf{X} \text{ is positive definite!}$$

Finding global minima Introducing constraint sets

Types of Minima Big picture

At the end of the day, we want to find global minima.

Global minima could be either unconstrained local minima or constrained local minima.

Without \mathscr{C} , global minima are just one of the *unconstrained local* minima.

With \mathscr{C} , global minima may lie on the boundary of the constraint set.

Strategy: Find all unconstrained and constrained local minima, then *test* for global minima.

Unconstrained Minima

Necessary conditions

Theorem (Necessary Conditions for Unconstrained Local Minimum). Consider the optimization problem

minimize
$$f(\mathbf{x})$$

subject to $\mathbf{x} \in \mathscr{C}$

Suppose $\mathbf{x}^* \in \text{int}(\mathscr{C})$ is an unconstrained local minimum. Then,

First-order condition. If f is differentiable at \mathbf{x}^* , then $\nabla f(\mathbf{x}^*) = \mathbf{0}$.

Second-order condition. If f is twice-differentiable at \mathbf{x}^* , then $\nabla^2 f(\mathbf{x}^*)$ is positive semidefinite, i.e. $\mathbf{v}^\top \nabla^2 f(\mathbf{x}^*) \mathbf{v} \geq 0$ for all $\mathbf{v} \in \mathbb{R}^d$.

Note: These necessary conditions only apply to $\mathbf{x}^* \in \text{int}(\mathscr{C})!$

Using necessary conditions with constraints

Necessary conditions for unconstrained local minima:

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \ge 0$.

How do we find the global minimum from this?

- 1. Find the set of possible *unconstrained local minima* from the first-order condition $M := \{\mathbf{x}^* \in \text{int}(\mathscr{C}) : \nabla f(\mathbf{x}^*) = \mathbf{0}\}.$
- 2. Find the set of "boundary" points $B := \mathscr{C} \setminus \operatorname{int}(\mathscr{C}) = \{ \mathbf{x} \in \mathscr{C} : \mathbf{x} \notin \operatorname{int}(\mathscr{C}) \}$.
- 3. The global minimum must be in the set $M \cup B$, so evaluate f on all $\mathbf{x} \in M \cup B$ and see which one is smallest.

Using necessary conditions with constraints

Necessary conditions for unconstrained local minima:

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \ge 0$.

How do we find the *global* minimum from this?

1. Find the set of possible *unconstrained local minima* from the first-order condition

$$M := \{ \mathbf{x}^* \in \text{int}(\mathscr{C}) : \nabla f(\mathbf{x}^*) = \mathbf{0} \}.$$

- 2. Find the set of "boundary" points $B := \mathscr{C} \setminus \operatorname{int}(\mathscr{C}) = \{ \mathbf{x} \in \mathscr{C} : \mathbf{x} \notin \operatorname{int}(\mathscr{C}) \}.$
- 3. The global minimum must be in the set $M \cup B$, so evaluate f on all $\mathbf{x} \in M \cup B$ and see which one is smallest.

Using necessary conditions without constraints

Necessary conditions for unconstrained local minima:

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \ge 0$.

How do we find the *global* minimum from this when $\mathscr{C} = \mathbb{R}^d$?

- 1. Find the set of possible *unconstrained local minima* from the first-order condition $M := \{ \mathbf{x}^* \in \text{int}(\mathscr{C}) : \nabla f(\mathbf{x}^*) = \mathbf{0} \} = \{ \mathbf{x}^* \in \mathbb{R}^d : \nabla f(\mathbf{x}^*) = \mathbf{0} \}.$
- 2. There are no boundary points!
- 3. The global minimum must be in the set M, so evaluate f on all $\mathbf{x} \in M$ and see which one is smallest.

Using necessary conditions without constraints

Necessary conditions for unconstrained local minima:

$$\nabla f(\mathbf{x}^*) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}^*) \ge 0$.

How do we find the *global* minimum from this when $\mathscr{C} = \mathbb{R}^d$?

1. Find the set of possible *unconstrained local minima* from the first-order condition

$$M := \{\mathbf{x}^* \in \text{int}(\mathscr{C}) : \nabla f(\mathbf{x}^*) = \mathbf{0}\} = \{\mathbf{x}^* \in \mathbb{R}^d : \nabla f(\mathbf{x}^*) = \mathbf{0}\}.$$

- 2. There are no boundary points!
- 3. The global minimum must be in the set M, so evaluate f on all $\mathbf{x} \in M$ and see which one is smallest.

Unconstrained Minima Example

Consider the one-dimensional optimization problem

minimize
$$x^2$$

subject to $x \in [1,3]$

In general, this works for any one-dimensional problem where $f: \mathbb{R} \to \mathbb{R}$ is continuous on $\mathscr{C} = [a,b]$ and differentiable on $\mathrm{int}(\mathscr{C}) := (a,b)$.

Unconstrained Minima Example

Consider the one-dimensional optimization problem

minimize x^2 subject to $x \in [1,3]$

In general, this works for any one-dimensional problem where $f: \mathbb{R} \to \mathbb{R}$ is continuous on $\mathscr{C} = [a,b]$ and differentiable on $\operatorname{int}(\mathscr{C}) := (a,b)$.

Unconstrained Minima

Example: Why haven't we solved optimization?

Consider the two-dimensional optimization problem

minimize
$$f(x_1, x_2)$$

subject to $x_1^2 + x_2^2 \le 1$

We might have to evaluate f on the infinite number of points on the boundary of the circle, $\mathscr{C}\setminus \operatorname{int}(\mathscr{C}):=\{\mathbf{x}\in\mathbb{R}^2:x_1^2+x_2^2=1\}!$

This isn't feasible, so the question is:

How do we deal with the possible constrained local minima induced by \mathscr{C} ?

Unconstrained Minima

Example: Why haven't we solved optimization?

Consider the two-dimensional optimization problem

minimize
$$f(x_1, x_2)$$

subject to $x_1^2 + x_2^2 \le 1$

We might have to evaluate f on the infinite number of points on the boundary of the circle,

$$\mathscr{C}\setminus \mathrm{int}(\mathscr{C}) := \{\mathbf{x} \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}!$$

This isn't feasible, so the question is:

How do we deal with the possible constrained local minima induced by \mathscr{C} ?

Constrained Minima Equality Constraints and the Lagrangian

Constrained Minima

What can go wrong?

Recall the definitions of (unconstrained) local minima and constrained local minima.

A point $\hat{\mathbf{x}} \in \mathcal{C}$ is an <u>unconstrained local minimum</u> if there exists a neighborhood $B_{\delta}(\hat{\mathbf{x}}) \subset \mathcal{C}$ around $\hat{\mathbf{x}}$ such that

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in B_{\delta}(\hat{\mathbf{x}})$.

A point $\hat{\mathbf{x}} \in \mathscr{C}$ is a <u>local minimum</u> if there exists a neighborhood $B_{\delta}(\mathbf{x})$ around $\hat{\mathbf{x}}$ such that

$$f(\hat{\mathbf{x}}) \leq f(\mathbf{x})$$
 for all $\mathbf{x} \in \mathscr{C} \cap B_{\delta}(\hat{\mathbf{x}})$.

We also call this a constrained local minimum.

Constrained Local Minima

Minimum values on the "edge of the constraint set"

Constrained Minima

Equality constrained optimization

An <u>equality constrained minimization problem</u> is an optimization problem defined by an objective function $f: \mathbb{R}^d \to \mathbb{R}$, decision variables $\mathbf{x} \in \mathbb{R}^d$, and constraints $h_1(\mathbf{x}), \dots, h_m(\mathbf{x})$ from a \mathscr{C}^1 vector-valued function $\mathbf{h}: \mathbb{R}^d \to \mathbb{R}^m$, written as follows:

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0$
 \vdots
 $h_m(\mathbf{x}) = 0$

where $\mathbf{h}(\mathbf{x}) = (h_1(\mathbf{x}), ..., h_m(\mathbf{x})).$

Constrained Minima

Equality constrained optimization

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0$
 \vdots
 $h_m(\mathbf{x}) = 0$

The = 0 constraint is WLOG:

If $h_j(\mathbf{x}) = c$ then we can always consider $h_j'(\mathbf{x}) = h_j(\mathbf{x}) - c = 0$ instead.

Example: Maximum Volume Box

Consider the following optimization problem

minimize
$$x_1x_2x_3$$

subject to $x_1x_2 + x_2x_3 + x_1x_3 - c/2 = 0$

Here, $\mathbf{x} \in \mathbb{R}^3$, the objective is $f(\mathbf{x}) = x_1 x_2 x_3$, and $h: \mathbb{R}^3 \to \mathbb{R}$ is just scalar-valued (one constraint) with $h(\mathbf{x}) = x_1 x_2 + x_2 x_3 + x_1 x_3 - c/2$.

We will convert the *constrained* optimization problem into an *unconstrained* optimization problem and then use our tools for unconstrained optimization problems:

$$\nabla f(\mathbf{x}) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}) \ge 0$.

The unconstrained optimization problem will have m more variables (for each constraint h_j for $j \in [m]$), represented by a vector $\lambda \in \mathbb{R}^m$ (the <u>Lagrange</u> <u>multipliers</u>).

Constrained Minima: Equality Constraints Definition of the Lagrangian

For an optimization problem with equality constraints

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0$
 \vdots
 $h_n(\mathbf{x}) = 0$

the <u>Lagrangian function</u> $L: \mathbb{R}^d \times \mathbb{R}^m \to \mathbb{R}$ is the function

$$L(\mathbf{x}, \lambda) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) = f(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{h}(\mathbf{x}).$$

Notice that the function $L(\mathbf{x}, \lambda)$ is an *unconstrained* function.

Constrained Minima: Equality ConstraintsRegularity Conditions

For an optimization problem with equality constraints,

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0,..., h_m(\mathbf{x}) = 0$

a point $\mathbf{x} \in \mathbb{R}^n$ is a <u>regular point</u> if it is feasible and the gradients $\nabla h_1(\mathbf{x}), \dots, \nabla h_m(\mathbf{x})$ are linearly independent.

This will be the (usually) easily checkable condition we need for a minimum in the Lagrangian. Another condition is that h_1,\ldots,h_m are linear functions.

Lagrange Multiplier Theorem

Theorem (Lagrange Multiplier Theorem). Let $\mathbf{x}^* \in \mathbb{R}^d$ be a local minimum that is a regular point. Then, there exists a unique vector $\lambda \in \mathbb{R}^m$ called a <u>Lagrange multiplier</u> such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) = 0$$

If, in addition, f and h_1, \ldots, h_m are twice continuously differentiable,

$$\mathbf{d}^{\mathsf{T}} \left(\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla^2 h_i(\mathbf{x}^*) \right) \mathbf{d} \ge 0$$

for all $\mathbf{d} \in \mathbb{R}^n$ such that $\nabla \mathbf{h}(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} = 0$, where $\nabla \mathbf{h}(\mathbf{x}^*) \in \mathbb{R}^{d \times m}$ is the Jacobian of \mathbf{h} at \mathbf{x}^* .

Constrained Minima: Equality Constraints How to remember the Lagrange multiplier theorem

The Lagrangian function is:

$$L(\mathbf{x}, \lambda) = \nabla f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i \nabla h_i(\mathbf{x}) = 0$$

Remember the necessary conditions for local minima:

$$\nabla f(\mathbf{x}) = \mathbf{0}$$
 and $\nabla^2 f(\mathbf{x}) \ge 0$.

Applying the first-order necessary conditions for the Lagrangian, a local minimum $(\mathbf{x}^*, \lambda^*)$ must satisfy

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = \mathbf{0}$$
 and $\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = \mathbf{0}$.

Notice that $\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = \mathbf{0}$ is the same as requiring feasibility: $\mathbf{h}(\mathbf{x}^*) = \mathbf{0}$.

Lagrange Multiplier Theorem: Sufficient Conditions

Theorem (Lagrange Multiplier Theorem - Sufficient Conditions). Let f and h be \mathscr{C}^2 functions, such that $\mathbf{x}^* \in \mathbb{R}^d$ and $\lambda \in \mathbb{R}^m$ satisfy

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0 \text{ and } \nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0$$

$$\mathbf{d}^{\mathsf{T}} \nabla^2_{\mathbf{x},\mathbf{x}} L(\mathbf{x}^*, \lambda^*) \mathbf{d} > 0$$
, $\forall \mathbf{d}$ such that $\nabla \mathbf{h}(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} = \mathbf{0}$.

Then, \mathbf{x}^* is a local minimum.

How do we use the Lagrangian?

Assuming that a global minimum exists and f and h are \mathscr{C}^1 , let the Lagrangian be:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}).$$

To find a global minimum...

- 1. Find the set $(\mathbf{x}^*, \lambda^*)$ satisfying the necessary conditions: $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*) = 0$ and $\nabla_{\lambda} L(\mathbf{x}^*, \lambda^*) = 0$. This is just our usual first-order condition applied to $L(\cdot, \cdot)!$
- 2. Find the set of all non-regular points.
- 3. The global minima must be among the points in (1) or (2).

Example: Maximum Volume Box

Consider the following optimization problem

minimize
$$x_1x_2x_3$$

subject to $x_1x_2 + x_2x_3 + x_1x_3 - c/2 = 0$

Constrained Minima Inequality Constraints and the KKT Theorem

Constrained Minima

Inequality constrained optimization

An inequality constrained minimization problem with objective $f: \mathbb{R}^d \to \mathbb{R}$:

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0, ..., h_m(\mathbf{x}) = 0$
 $g_1(\mathbf{x}) \le 0, ..., g_r(\mathbf{x}) \le 0$

where $h_1(\mathbf{x}), ..., h_m(\mathbf{x})$ are \mathscr{C}^1 and $g_1(\mathbf{x}), ..., g_r(\mathbf{x})$ are \mathscr{C}^1 .

Constrained Minima

Inequality constrained optimization

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0, ..., h_m(\mathbf{x}) = 0$
 $g_1(\mathbf{x}) \le 0, ..., g_r(\mathbf{x}) \le 0$

Main idea: Reduce to equality constrained optimization.

The only difference is that each inequality constraint can either be active or not.

A constraint $j \in [r]$ is <u>active</u> if $g_j(\mathbf{x}) = 0$.

Definition of active constraints

For feasible $\mathbf{x} \in \mathbb{R}^d$ the set of <u>active inequality constraints</u> is

$$\mathscr{A}(\mathbf{x}) := \{j : g_j(\mathbf{x}) = 0\} \subseteq [r].$$

This means we get a new definition for a regular point...

A point $\mathbf{x} \in \mathbb{R}^d$ is a <u>regular point</u> if it is feasible and the gradients $\{\nabla h_1(\mathbf{x}), ..., \nabla h_m(\mathbf{x})\} \cup \{\nabla g_j(\mathbf{x}) : j \in \mathcal{A}(\mathbf{x})\}$

are linearly independent.

Lagrangian in Inequality Constrained Optimization

For an optimization problem with equality and inequality constraints

minimize
$$f(\mathbf{x})$$

subject to $h_1(\mathbf{x}) = 0, ..., h_m(\mathbf{x}) = 0$
 $g_1(\mathbf{x}) \le 0, ..., g_r(\mathbf{x}) \le 0$

the <u>Lagrangian function</u> $L: \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ is the function

$$L(\mathbf{x}, \lambda, \mu) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x}) = f(\mathbf{x}) + \lambda^{\mathsf{T}} \mathbf{h}(\mathbf{x}) + \mu^{\mathsf{T}} \mathbf{g}(\mathbf{x}).$$

Notice that the function $L(\mathbf{x}, \lambda, \mu)$ is an *unconstrained* function.

Constrained Minima: Inequality Constraints Karush-Kuhn-Tucker (KKT) Theorem

Theorem (KKT Theorem). Let $\mathbf{x}^* \in \mathbb{R}^d$ be a local minimum that is a regular point. Then, there exists unique vectors $\lambda \in \mathbb{R}^m$ and $\mu \in \mathbb{R}^r$ called <u>Lagrange multipliers</u> such that

$$\nabla f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla h_i(\mathbf{x}^*) + \sum_{j=1}^r \mu_j^* \nabla g_j(\mathbf{x}^*) = 0,$$

where $\mu_j^* \ge 0$ for all $j \in [r]$ and $\mu_j^* = 0$ for all non-active constraints $j \notin \mathcal{A}(\mathbf{x}^*)$ (complementary slackness).

If, in addition, $f(\cdot)$ and $h(\cdot)$ are twice continuously differentiable,

$$\mathbf{d}^{\top} \left(\nabla^2 f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i \nabla^2 h_i(\mathbf{x}^*) \right) \mathbf{d} \ge 0$$

for all $\mathbf{d} \in \mathbb{R}^d$ such that $\nabla \mathbf{h}(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} = 0$, where $\nabla \mathbf{h}(\mathbf{x}^*) \in \mathbb{R}^{d \times m}$ is the Jacobian of \mathbf{h} at \mathbf{x}^* .

Constrained Minima: Inequality Constraints Karush-Kuhn-Tucker (KKT) Theorem

For the Lagrangian,

$$L(\mathbf{x}, \lambda, \mu) := f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x}),$$

we can write the previous necessary conditions at the local optimum $(\mathbf{x}^*, \lambda^*, \mu^*)$ as:

$$\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = 0, \ \mathbf{h}(\mathbf{x}^*) = 0, \ \mathbf{g}(\mathbf{x}^*) \le 0$$

where we also require the complementary slackness conditions:

$$\mu^* \ge 0 \text{ and } \mu_j^* g_j(\mathbf{x}^*) = 0, \ \forall j \in [r].$$

Karush-Kuhn-Tucker (KKT) Theorem: Sufficient Conditions

Theorem (KKT Theorem - Sufficient Conditions). Let f, \mathbf{h} , and \mathbf{g} be \mathscr{C}^2 functions, such that $\mathbf{x}^* \in \mathbb{R}^d$, $\lambda \in \mathbb{R}^m$, $\mu^* \in \mathbb{R}^r$ satisfy

$$\begin{split} \nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) &= 0, \ \mathbf{h}(\mathbf{x}^*) = 0, \ \mathbf{g}(\mathbf{x}^*) \leq 0 \\ \mu^* &\geq 0 \ \text{and} \ \mu_j^* g_j(\mathbf{x}^*) = 0, \ \forall j \in [r] \\ \mathbf{d}^\top \nabla_{\mathbf{x}, \mathbf{x}}^2 L(\mathbf{x}^*, \lambda^*, \mu^*) \mathbf{d} > 0, \end{split}$$

for all \mathbf{d} such that $\nabla \mathbf{h}(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} = \mathbf{0}$ and $\nabla g_j(\mathbf{x}^*)^{\mathsf{T}} \mathbf{d} = 0$, $\forall j \in \mathscr{A}(\mathbf{x}^*)$

Then, \mathbf{x}^* is a local minimum.

Constrained Minima: Inequality Constraints How do we use the Lagrangian?

Assuming that a global minimum exists and f, h, and g are \mathscr{C}^1 , let the Lagrangian be:

$$L(\mathbf{x}, \lambda, \mu) = f(\mathbf{x}) + \sum_{i=1}^{m} \lambda_i h_i(\mathbf{x}) + \sum_{j=1}^{r} \mu_j g_j(\mathbf{x})$$

To find a global minimum...

- 1. Find the set $(\mathbf{x}^*, \lambda^*, \mu^*)$ satisfying the necessary conditions: $\nabla_{\mathbf{x}} L(\mathbf{x}^*, \lambda^*, \mu^*) = 0$, $\mathbf{h}(\mathbf{x}^*) = 0$, $\mathbf{g}(\mathbf{x}^*) \leq 0$ (first-order conditions) $\mu^* \geq 0$ and $\mu_i^* g_j(\mathbf{x}^*) = 0$, $\forall j \in [r]$ (complementary slackness)
- 2. Find the set of all non-regular points.
- 3. The global minima must be among the points in (1) or (2).

Constrained Minima: Inequality Constraints

Example: Smallest point in a halfspace

Consider the following optimization problem over $\mathbf{x} \in \mathbb{R}^3$:

minimize
$$\frac{1}{2} \|\mathbf{x}\|_{2}^{2}$$

subject to $x_{1} + x_{2} + x_{3} \le -3$

Least Squares Regression Regularization and Ridge Regression

Regression Setup

Observed: Matrix of *training samples* $\mathbf{X} \in \mathbb{R}^{n \times d}$ and vector of *training labels* $\mathbf{y} \in \mathbb{R}^d$.

$$\mathbf{X} = \begin{bmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_d \\ \downarrow & & \downarrow \end{bmatrix} = \begin{bmatrix} \leftarrow & \mathbf{x}_1^\mathsf{T} & \rightarrow \\ \vdots & & \vdots \\ \leftarrow & \mathbf{x}_n^\mathsf{T} & \rightarrow \end{bmatrix}.$$

<u>Unknown:</u> Weight vector $\mathbf{w} \in \mathbb{R}^d$ with weights $w_1, ..., w_d$.

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \ldots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\mathbf{w} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$\mathbf{X}\mathbf{w} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

Regression Setup

Goal: For each $i \in [n]$, we predict: $\hat{y}_i = \mathbf{w}^\mathsf{T} \mathbf{x}_i = w_1 x_{i1} + \dots + w_d x_{id} \in \mathbb{R}$.

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$X\hat{w} = \hat{y} \approx y$$
.

To find $\hat{\mathbf{w}}$, we follow the *principle of least squares*.

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

Regression

"Regularization" and keeping ||w|| small

One reasonable

Big Picture: Least Squares

Least norm exact solution

```
For \mathbf{X} \in \mathbb{R}^{n \times d} with \mathrm{rank}(\mathbf{X}) = n, \min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{w}\| subject to \mathbf{X}\mathbf{w} = \mathbf{y}
```

Least norm exact solution

```
For \mathbf{X} \in \mathbb{R}^{n \times d} with \operatorname{rank}(\mathbf{X}) = n,
```

```
\begin{array}{ll} \text{minimize} & \|\mathbf{w}\| \\ \mathbf{w} \in \mathbb{R}^d & \mathbf{X} \mathbf{w} = \mathbf{y} \end{array}
```

We already know how to solve this — use the pseudoinverse!

Least norm exact solution

For
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
 with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} \\
 \mathbf{w} \in \mathbb{R}^d \\
 \text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}
 \end{array}$$

Theorem (Minimum norm least squares solution). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, let $d \ge n$, and let $\mathrm{rank}(\mathbf{X}) = n$. Then, $\hat{\mathbf{w}} = \mathbf{X}^+\mathbf{y} = \mathbf{V}\mathbf{\Sigma}^+\mathbf{U}^\top\mathbf{y}$ is the exact solution $\mathbf{X}\hat{\mathbf{w}} = \mathbf{y}$ with smallest Euclidean norm:

$$\|\mathbf{w}\|_2^2 \ge \|\hat{\mathbf{w}}\|_2^2$$
 for all $\mathbf{w} \in \mathbb{R}^d$.

Least norm exact solution

For
$$\mathbf{X} \in \mathbb{R}^{n \times d}$$
 with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} & \|\mathbf{w}\| \\
 \mathbf{w} \in \mathbb{R}^d
 \end{array}$$

$$\text{subject to} \quad \mathbf{X}\mathbf{w} = \mathbf{y}$$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

Least norm exact solution

For $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} & \|\mathbf{w}\| \\
 \mathbf{w} \in \mathbb{R}^d
 \end{array}$$

$$\text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}$$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

First-order conditions: $\nabla_{\mathbf{w}} L(\mathbf{w}, \lambda) = 2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda$ and $\nabla_{\lambda} L(\mathbf{w}, \lambda) = \mathbf{X}\mathbf{w} - \mathbf{y}$.

Setting equal to zero: $2\mathbf{w} + \mathbf{X}^{\mathsf{T}}\lambda = \mathbf{0}$ and $\mathbf{X}\mathbf{w} - \mathbf{y} = \mathbf{0}$

Least norm exact solution

$$\begin{array}{ll}
\text{minimize} & \|\mathbf{w}\| \\
\mathbf{w} \in \mathbb{R}^d
\end{array}$$

$$\text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}$$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\mathsf{T}}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

First-order conditions: $\nabla_{\mathbf{w}} L(\mathbf{w}, \lambda) = 2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda$ and $\nabla_{\lambda} L(\mathbf{w}, \lambda) = \mathbf{X}\mathbf{w} - \mathbf{y}$.

Setting equal to zero: $2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda = \mathbf{0}$ and $\mathbf{X}\mathbf{w} - \mathbf{y} = \mathbf{0}$

$$\Longrightarrow \mathbf{w} = -\frac{1}{2} \mathbf{X}^{\mathsf{T}} \lambda \text{ and } \mathbf{X} \mathbf{w} = \mathbf{y}$$

Least norm exact solution

For $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X}) = n$,

minimize
$$\|\mathbf{w}\|$$
 $\mathbf{w} \in \mathbb{R}^d$
subject to $\mathbf{X}\mathbf{w} = \mathbf{y}$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\mathsf{T}} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

First-order conditions: $\nabla_{\mathbf{w}} L(\mathbf{w}, \lambda) = 2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda$ and $\nabla_{\lambda} L(\mathbf{w}, \lambda) = \mathbf{X} \mathbf{w} - \mathbf{y}$.

Setting equal to zero:
$$2\mathbf{w} + \mathbf{X}^{\mathsf{T}}\lambda = \mathbf{0}$$
 and $\mathbf{X}\mathbf{w} - \mathbf{y} = \mathbf{0} \Longrightarrow \mathbf{w} = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\lambda$ and $\mathbf{X}\mathbf{w} = \mathbf{y}$

Solve for
$$\lambda$$
: $\mathbf{X}\mathbf{w} = -\frac{1}{2}\mathbf{X}\mathbf{X}^{\mathsf{T}}\lambda \implies -\frac{1}{2}(\mathbf{X}\mathbf{X}^{\mathsf{T}})\lambda = \mathbf{y} \implies \lambda = -2(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y}$.

Least Squares Least norm exact solution

For $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} & \|\mathbf{w}\| \\
 \mathbf{w} \in \mathbb{R}^d \\
 \text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}
 \end{array}$$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

First-order conditions: $\nabla_{\mathbf{w}} L(\mathbf{w}, \lambda) = 2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda$ and $\nabla_{\lambda} L(\mathbf{w}, \lambda) = \mathbf{X}\mathbf{w} - \mathbf{y}$.

Setting equal to zero:
$$2\mathbf{w} + \mathbf{X}^{\mathsf{T}}\lambda = \mathbf{0}$$
 and $\mathbf{X}\mathbf{w} - \mathbf{y} = \mathbf{0} \Longrightarrow \mathbf{w} = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\lambda$ and $\mathbf{X}\mathbf{w} = \mathbf{y}$

Solve for
$$\lambda$$
: $\mathbf{X}\mathbf{w} = -\frac{1}{2}\mathbf{X}\mathbf{X}^{\mathsf{T}}\lambda \implies -\frac{1}{2}(\mathbf{X}\mathbf{X}^{\mathsf{T}})\lambda = \mathbf{y} \implies \lambda = -2(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y}$.

Plug
$$\lambda$$
 back in to solve for \mathbf{w} : $\mathbf{w} = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\lambda = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\left(-2(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y}\right) \implies \mathbf{w} = \mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y} = \mathbf{X}^{\mathsf{+}}\mathbf{y}$. The pseudoinverse!

Least Squares Least norm exact solution

For $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} & \|\mathbf{w}\| \\
 \mathbf{w} \in \mathbb{R}^d \\
 \text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}
 \end{array}$$

Alternate proof (through Lagrangian): For Lagrange multipliers $\lambda \in \mathbb{R}^n$,

$$L(\mathbf{w}, \lambda) = \|\mathbf{w}\| + \lambda^{\top} (\mathbf{X}\mathbf{w} - \mathbf{y})$$

First-order conditions: $\nabla_{\mathbf{w}} L(\mathbf{w}, \lambda) = 2\mathbf{w} + \mathbf{X}^{\mathsf{T}} \lambda$ and $\nabla_{\lambda} L(\mathbf{w}, \lambda) = \mathbf{X}\mathbf{w} - \mathbf{y}$.

Setting equal to zero:
$$2\mathbf{w} + \mathbf{X}^{\mathsf{T}}\lambda = \mathbf{0}$$
 and $\mathbf{X}\mathbf{w} - \mathbf{y} = \mathbf{0} \Longrightarrow \mathbf{w} = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\lambda$ and $\mathbf{X}\mathbf{w} = \mathbf{y}$

Solve for
$$\lambda$$
: $\mathbf{X}\mathbf{w} = -\frac{1}{2}\mathbf{X}\mathbf{X}^{\mathsf{T}}\lambda \implies -\frac{1}{2}(\mathbf{X}\mathbf{X}^{\mathsf{T}})\lambda = \mathbf{y} \implies \lambda = -2(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y}$.

Plug
$$\lambda$$
 back in to solve for \mathbf{w} : $\mathbf{w} = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\lambda = -\frac{1}{2}\mathbf{X}^{\mathsf{T}}\left(-2(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y}\right) \implies \mathbf{w} = \mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{X}^{\mathsf{T}})^{-1}\mathbf{y} = \mathbf{X}^{\mathsf{+}}\mathbf{y}$. The pseudoinverse!

Least norm exact solution

For $\mathbf{X} \in \mathbb{R}^{n \times d}$ with $\operatorname{rank}(\mathbf{X}) = n$,

$$\begin{array}{ll}
 \text{minimize} & \|\mathbf{w}\| \\
 \mathbf{w} \in \mathbb{R}^d
 \end{array}$$

$$\text{subject to} & \mathbf{X}\mathbf{w} = \mathbf{y}$$

Theorem (Minimum norm least squares solution). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, let $d \ge n$, and let $\mathrm{rank}(\mathbf{X}) = n$. Then, $\hat{\mathbf{w}} = \mathbf{X}^+\mathbf{y} = \mathbf{V}\mathbf{\Sigma}^+\mathbf{U}^\top\mathbf{y}$ is the exact solution $\mathbf{X}\hat{\mathbf{w}} = \mathbf{y}$ with smallest Euclidean norm:

$$\|\mathbf{w}\|_2^2 \ge \|\hat{\mathbf{w}}\|_2^2$$
 for all $\mathbf{w} \in \mathbb{R}^d$.

How about for the approximate solution to $\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$?

Ridge Regression

Our goal will now be to minimize two objectives:

$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
 and $\|\mathbf{w}\|^2$.

Writing this as an optimization problem:

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

where $\gamma > 0$ is a fixed tuning parameter. This optimization problem is known as $ridge/Tikhonov/\ell_2$ -regularized regression.

Ridge Regression

Our goal will now be to minimize two objectives:

$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
 and $\|\mathbf{w}\|^2$.

Writing this as an optimization problem:

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

where $\gamma > 0$ is a fixed tuning parameter. This optimization problem is known as $ridge/Tikhonov/\ell_2$ -regularized regression.

Ridge Regression

Our goal will now be to minimize two objectives:

$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$
 and $\|\mathbf{w}\|^2$.

Writing this as an optimization problem:

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

where $\gamma > 0$ is a fixed tuning parameter. This optimization problem is known as $\underline{ridge/Tikhonov/\ell_2}$ $\underline{-regularized\ regression}$.

For bigger γ, bigger "constraint" ball!

Solving ridge regression

$$\begin{array}{ll}
\text{minimize} & \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2 \\
\mathbf{w} \in \mathbb{R}^d
\end{array}$$

How do we solve this using the first and second order conditions?

Solving ridge regression

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

How do we solve this using the first and second order conditions?

Property (Perturbing PSD matrices). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Then, for any $\gamma > 0$, the matrix $\mathbf{A} + \gamma \mathbf{I}$ is positive definite.

Solving ridge regression

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

How do we solve this using the first and second order conditions?

Property (Perturbing PSD matrices). Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Then, for any $\gamma > 0$, the matrix $\mathbf{A} + \gamma \mathbf{I}$ is positive definite.

Proof. Let $\mathbf{v} \in \mathbb{R}^d$ be any vector.

$$\mathbf{v}^{\mathsf{T}}(\mathbf{A} + \gamma \mathbf{I})\mathbf{v} = \mathbf{v}^{\mathsf{T}}(\mathbf{A}\mathbf{v} + \gamma \mathbf{v}) = \mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v} + \gamma \mathbf{v}^{\mathsf{T}}\mathbf{v}$$
$$= \mathbf{v}^{\mathsf{T}}\mathbf{A}\mathbf{v} + \gamma ||\mathbf{v}||^{2}$$
$$\geq 0 \quad \text{volumless } \mathbf{v} = \mathbf{0}.$$

Solving ridge regression

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

Take the gradient and set to $\mathbf{0}$:

$$\nabla_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2} + \nabla_{\mathbf{w}} \|\mathbf{w}\|^{2} = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\lambda\mathbf{w}$$
$$2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\gamma\mathbf{w} = \mathbf{0} \implies (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma\mathbf{I})\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Solving ridge regression

minimize
$$\|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$
 $\mathbf{w} \in \mathbb{R}^d$

Take the gradient and set to $\mathbf{0}$:

$$\nabla_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^{2} + \nabla_{\mathbf{w}} \|\mathbf{w}\|^{2} = 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\lambda\mathbf{w}$$
$$2\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{\mathsf{T}}\mathbf{y} + 2\gamma\mathbf{w} = \mathbf{0} \implies (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma\mathbf{I})\mathbf{w} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$

By property (perturbing PSD matrices), $\mathbf{X}^{\top}\mathbf{X} + \gamma\mathbf{I}$ is PD, so:

$$\mathbf{w}^* = (\mathbf{X}^\mathsf{T} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}.$$

Solving ridge regression

Take the gradient and set to **0**:

$$\nabla_{\mathbf{w}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \nabla_{\mathbf{w}} \|\mathbf{w}\|^2 = 2\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y} + 2\lambda \mathbf{w}$$
$$2\mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w} - 2\mathbf{X}^{\mathsf{T}} \mathbf{y} + 2\gamma \mathbf{w} = \mathbf{0} \implies (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I}) \mathbf{w} = \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

By property (perturbing PSD matrices), $\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma\mathbf{I}$ is PD, so:

$$\mathbf{w}^* = (\mathbf{X}^\top \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^\top \mathbf{y}.$$

Taking the Hessian,

 $\nabla^2 f(\mathbf{w}) = \mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I}$, which is positive definite.

Sufficient condition for optimality applies!

Solving ridge regression

Theorem (Ridge Regression). Let $X \in \mathbb{R}^{n \times d}$, $y \in \mathbb{R}^n$, and $\gamma > 0$. Then,

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$

has the form:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Solving ridge regression

Theorem (Ridge Regression). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^{n}$, and $\gamma > 0$. Then, the ridge regression minimizer

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$

has the form:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Theorem (OLS). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$ and $\mathbf{y} \in \mathbb{R}^n$. Let $\hat{\mathbf{w}} \in \mathbb{R}^d$ be the least squares minimizer:

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2$$

If $n \ge d$ and rank(X) = d, then:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

Error using least squares model

Choose a weight vector that "fits the training data": $\hat{\mathbf{w}} \in \mathbb{R}^d$ such that $y_i \approx \hat{y}_i$ for $i \in [n]$, or:

$$X\hat{\mathbf{w}} = \hat{\mathbf{y}} \approx \mathbf{y}$$
.

But \hat{y} might not be a perfect fit to y!

Model this using a true weight vector $\mathbf{w}^* \in \mathbb{R}^d$ and an error term $\epsilon = (\epsilon_1, ..., \epsilon_n) \in \mathbb{R}^n$.

$$y_i = \mathbf{x}_i^\mathsf{T} \mathbf{w}^* + \epsilon_i \text{ for all } i \in [n]$$

$$y = Xw^* + \epsilon$$

Error using least squares model

True labels: $y = Xw^* + \epsilon$.

What happens when we use the OLS weights $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

$$= \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

Error using least squares model

True labels: $y = Xw^* + \epsilon$.

What happens when we use the OLS weights $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

$$= \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

When $\epsilon = 0$ (y is linearly related to X), this is perfect: $\hat{\mathbf{w}} = \mathbf{w}^*$!

Error using least squares model

True labels: $y = Xw^* + \epsilon$.

What happens when we use the OLS weights $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}(\mathbf{X}\mathbf{w}^{*} + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

$$= \mathbf{w}^{*} + (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$

When $\epsilon \neq 0$, we have an error of $\hat{\mathbf{w}} - \mathbf{w}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$.

Eigendecomposition perspective

Weight vector's error:
$$\hat{\mathbf{w}} - \mathbf{w}^* = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\epsilon$$
.

We know that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ (the covariance matrix) is PSD, so it is diagonalizable:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{V}\Lambda\mathbf{V}^{\mathsf{T}} \implies (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} = \mathbf{V}^{\mathsf{T}}\Lambda^{-1}\mathbf{V}.$$

The inverse of the diagonal matrix Λ^{-1} :

Error in Regression

Error using ridge regression

True labels: $y = Xw^* + \epsilon$.

What happens when we use the <u>ridge weights</u> $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}^* + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}^* + (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \epsilon$$

Error in Regression

Error using ridge regression

True labels: $y = Xw^* + \epsilon$.

What happens when we use the <u>ridge weights</u> $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}^* + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}^* + (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \epsilon$$

When $\epsilon = 0$ (y is linearly related to X), this is no longer perfect:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{w}^*, \text{ but...}$$

Error in Regression

Error using ridge regression

True labels: $\mathbf{y} = \mathbf{X}\mathbf{w}^* + \epsilon$.

What happens when we use the <u>ridge weights</u> $\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$?

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w}^* + \epsilon)$$

$$= (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{w}^* + (\mathbf{X}^{\mathsf{T}} \mathbf{X} + \gamma \mathbf{I})^{-1} \mathbf{X}^{\mathsf{T}} \epsilon$$

When $\epsilon \neq 0$, we have more stable errors!

Error in Ridge Regression

Eigendecomposition perspective

Ridge weights:
$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$
.

We know that $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is positive semidefinite, so it is diagonalizable:

$$\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I} = \mathbf{V}\Lambda\mathbf{V}^{\mathsf{T}} + \mathbf{V}(\gamma\mathbf{I})\mathbf{V}^{\mathsf{T}} \implies (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma\mathbf{I})^{-1} = \mathbf{V}^{\mathsf{T}}(\Lambda + \gamma\mathbf{I})^{-1}\mathbf{V}.$$

The inverse of the diagonal matrix $(\Lambda + \gamma I)^{-1}$:

$$(\mathbf{\Lambda} + \gamma \mathbf{I})^{-1} = \begin{bmatrix} \frac{1}{\lambda_1 + \gamma} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \frac{1}{\lambda_d + \gamma} \end{bmatrix}, \text{ so } \frac{1}{\lambda_i + \gamma} \text{ entries are never bigger than } \frac{1}{\gamma}$$

Ridge Regression

Theorem (Ridge Regression). Let $\mathbf{X} \in \mathbb{R}^{n \times d}$, $\mathbf{y} \in \mathbb{R}^{n}$, and $\gamma > 0$. Then, the ridge regression minimizer

$$\hat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^d}{\text{arg min}} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|^2 + \gamma \|\mathbf{w}\|^2$$

has the form:

$$\hat{\mathbf{w}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

To get predictions $\hat{\mathbf{y}} \in \mathbb{R}^n$:

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\mathsf{T}}\mathbf{X} + \gamma \mathbf{I})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}.$$

For bigger γ, bigger "constraint" ball!

Recap

Optimization. Minimize an objective function $f: \mathbb{R}^d \to \mathbb{R}$ with the possible requirement that the minimizer \mathbf{x}^* belongs to a constraint set $\mathscr{C} \subseteq \mathbb{R}^d$.

Lagrangian. For optimization problems with \mathscr{C} defined by equalities/inequalities, the Lagrangian is a function $L: \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^r \to \mathbb{R}$ that "unconstrains" the problem.

Unconstrained local optima. With no constraints, the standard tools of calculus give conditions for a point \mathbf{x}^* to be optimal, at least to all points close to it.

Constrained local optima (Lagrangian and KKT). When \mathscr{C} is represented by inequalities and equalities, we can use the method of Lagrange multipliers and the KKT Theorem to "unconstrain" the problem.

Ridge regression and minimum norm solutions. By constraining the norm of $\mathbf{w}^* \in \mathbb{R}^d$ of least squares (i.e. $\|\mathbf{w}^*\|$), we obtain more "stable" solutions.

Big Picture: Least Squares

Big Picture: Gradient Descent

References

Mathematics for Machine Learning. Marc Pieter Deisenroth, A. Aldo Faisal, Cheng Soon Ong.

Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach. John H. Hubbard and Barbara Burke Hubbard.

"Lecture 1: Introduction." Santiago Balserio and Ciamac Moallemi. Lecture notes from B9118 Foundations of Optimization, Fall 2023.

"Lecture 2: Local Theory of Optimization." Santiago Balserio and Ciamac Moallemi. Lecture notes from B9118 Foundations of Optimization, Fall 2023.