шие объемы информации и упорядочить ряд предприятий в соответствии с их положением на осях. Программа предназначена для быстрой сортировки массивов дельта - значений индикатора устойчивости и сопоставления его значений с приращениями собственного капитала и нефинансовых активов. Данный метод является оперативной системой мониторинга предприятий всех отраслей, а также позволяет прогнозировать наступление ситуации банкротства на предприятиях с целью его предотвращения.

ЛИТЕРАТУРА

- 1. Коновалов А. И., Привалов В. П. Анализ финансового состояния предприятия М., 1997.
- 2. Абрютина М. С., Грачев А. В.Анализ финансово-экономической деятельности предприятия М., 1998.
- 3. Антикризисное управление. Под ред. Минаева Э. С., Панагушина В. П. М, 1998.

УДК 681.3:658.52

А.О.Пьявченко, Л.О.Цивенко

ИНТЕЛЛЕКТУАЛЬНАЯ ПРОГРАММНАЯ СРЕДА ДЛЯ АНАЛИЗА СОСТОЯНИЯ СИСТЕМЫ ДАТЧИКОВ

Современные SCADA-системы предназначены для контроля за состоянием производственных технологических процессов, для хранения и обработки показаний приборов, датчиков, для управления этими процессами. Однако обилие генерируемой в процессе контроля информации приводит к увеличению времени, затрачиваемого оператором на ее обработку, а следовательно, к повышению вероятности ошибки при ее анализе, при принятии решения по ликвидации возникшей критической ситуации. С целью снижения такой вероятности и предлагается разработанная программная среда "Recommendator", позволяющая не только осуществлять контроль за состоянием поля датчиков контролируемого объекта, получать графическую интерпретацию информации, но и выполнять предварительный анализ сложившейся ситуации, выдавать рекомендации по устранению критического состояния системы в соответствии с действующими инструкциями. Предполагается дальнейшая интеграция программы с одной из промышленных SCADA-систем (например, Trace Mode).

Анализ состояния датчиков в программе Recommendator проводится на основе интеллект-модели наблюдаемой системы. Конструкт-элементами интеллект-модели являются:

- ◆ Иерархия Определителей, которая задает семантику ключевых слов диспетчера ("семантическое поле" Диспетчера).
- Группа Виртуальных Датчиков.
- ◆ Правила слежения за состоянием наблюдаемой системы, которые составляют алгоритм автоматического слежения.

Реализованы два режима работы программы: режим настройки и режим обработки потока исходных данных.

<u>В режиме настройки</u> пользователь создает конструкт-объекты (Определители, Рекомендации, Виртуальные Датчики, Правила Слежения) и настраивает их свойства.

В режиме обработки потока исходных данных пользователь задает поток исходных данных и получает доступ к аналитическим выводам программы, в частности:

- к смысловым определениям показаний датчиков;
- к диаграммам истории показаний любого из виртуального датчиков;
- к рекомендациям по соответствующим показаниям виртуальных датчиков;
- а также к экранным индикаторам состояния той или иной части контролируемой системы, всей системы в целом.

Поток исходных данных состоит из цифровых значений показаний аппаратных датчиков (в формате Extended), отображающих состояние объектов наблюдаемой системы. Исходные данные, поступающие от аппаратного датчика, записываются в Свойство Indication(показание) виртуальных датчиков.

Средой функционирования программы Recommenator является операционная система типа Windows 95,98,NT. Для создания программы применялась интегрированная среда разработки приложений Delphi 3.0.

УДК 681.3.016

Д.А.Заставной

РЕАЛИЗАЦИЯ НАВИГАЦИОННОГО ЯЗЫКА ДЛЯ ОБЪЕКТНЫХ БАЗ ДАННЫХ НА OCHOBE SQL-CEPBEPA ORACLE

1. Введение

Современные приложения, такие как системы автоматизированного проектирования, так же как и традиционные системы применения баз данных, требуют наличия инструментальных средств, поддерживающих моделирование и оперирование с данными сложной структуры. Такие данные, образующиеся совокупностью объектов (сущностей) и связей между ними, удобно хранить в объектной базе данных. Для извлечения данных из ОБД используются высокоуровневые языки запросов, которые позволяют специфицировать множества данных. Основные существующие системы ОБД (ОDMG, SQL3) [3,4], однако, обладают, по мнению автора, некоторыми недостатками, главный из которых, с концептуальной точки зрения, - недостаточная выразительность средств оперирования с совокупностями связанных объектов.

Автор развивает собственный язык запросов для ОДБ [1,2], позволяющий специфицировать множества путей в ОДБ, состоящих из объектов, связанных различными семантическими связями. Средства этого языка, позволяющие иден-