01

02

A resposta dessa questão se encontra no slide 12 da Aula 8.

a.

63	62	6,	60	B3	BZ	6,	Bo	63	62	61	60	B3	BZ	8,	Bo
0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0
0	0	0	1	0	0	0	7	0	1	7	1	0	1	0	1
0	0	1	7	0	0	7	0	10	1	0	1	0	1	1	0
0	0	1	0	0	0	7	1	0	1	0	01	0	1	1	1
63	6,	6,	6.	18:	, B2	13,	130	6,5	62	6,	6.	Bs	82	В	B
63	61	6,	6.	8:	, B2	B,	B.	6,5	62	6,	6.	Bs	182	8,	E
63	60	6,000		8:	0	0	0	6,	62 0	6,	6.	Bs	82	80	8
1	1	6,00		1	0	0	0 0	6,1	62 0	7	6.	B ₃	82	8,000	0 4

 $B_3 = G_3$

 $B_2 = \overline{G_3}G_2 + G_3\overline{G_2} = G_3 \oplus G_2$

$$B_1 = \overline{G_3}\overline{G_2}G_1 + \overline{G_3}G_2\overline{G_1} + G_3G_2G_1 + G_3\overline{G_2}\overline{G_1} = \overline{G_3}(G_2 \oplus G_1) + G_3(\overline{G_2 \oplus G_1}) = G_3 \oplus G_2 \oplus G_1$$

 $B_0 = \overline{G_3}\overline{G_2}\overline{G_1}G_0 + \overline{G_3}\overline{G_2}G_1\overline{G_0} + \overline{G_3}G_2\overline{G_1}\overline{G_0} + \overline{G_3}G_2G_1G_0 + G_3G_2\overline{G_1}G_0 + G_3G_2G_1\overline{G_0} + G_3\overline{G_2}\overline{G_1}G_0 + G_3\overline{G_2}G_1\overline{G_0} + G$

b. A solução dessa questão se encontra a partir do slide 23 da Aula 7.

05

A resposta dessa questão se encontra no slide 18 da Aula 8.