Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики

Кафедра «Телематика (при ЦНИИ РТК)»

Отчет по лабораторной работе

Построение боксплотов и рассчет доли выбросов По дисциплине «Теория вероятностей и математическая статистика»

Выполнил Студент гр.3630201/80101		В.Н. Сеннов
Руководитель доцент к.фм.н.		А.Н. Баженов
	« »	202 г

Содержание

1	Постановка задачи	4
2	Математическое описание 2.1 Построение боксплотов	
3	Особенности реализации	6
4	Результаты работы программы 4.1 Боксплоты	
За	аключение	10
Cı	писок литературы	11
\mathbf{A}	Репозиторий с исходным кодом	12
В	Вычисление теоретической вероятности выбросов	13

Список таблиц

1	Доли выбросов и теоретические вероятности выбросов P_{sp}	9
Спис	сок иллюстраций	
1	Боксплот для выборки, соответствующей нормальному распределению	7
2	Боксплот для выборки, соответствующей распределению Коши	7
3	Боксплот для выборки, соответствующей распределению Лапласа	8
4	Боксплот для выборки, соответствующей распределению Пуассона	8
5	Боксплот для выборки, соответствующей равномерному распределению	9

1 Постановка задачи

Для заданных распределений нужно сгенерировать выборки размером 20, 100 элементов. Для каждой выборки нужно построить боксплот и рассчитать долю выбросов. Долю выбросов нужно посчитать 1000 раз и взять среднее значение. Также необходимо рассчитать теоретическую вероятность выбросов.

Заданные распределения:

- 1. Нормальное (гауссово) распределение с параметрами $\mu = 0, \, \sigma = 1;$
- 2. Распределение Коши с параметрами $\mu = 0, \lambda = 1;$
- 3. Распределение Лапласа с параметрами $\mu = 0, \ \lambda = \frac{1}{\sqrt{2}};$
- 4. Распределение Пуассона с параметром $\mu = 10$;
- 5. Равномерное распределение с параметрами $a = -\sqrt{3}, b = \sqrt{3}.$

2 Математическое описание

2.1 Построение боксплотов

Боксплотом называется диаграмма, компактно изображающая распределение одномерной величины. [1]

Диаграмма состоит из следующих частей:

- 1. Ящик. Границами ящика являются верхний и нижний квартили. Внутри ящика проводится линия медиана.
- 2. Усы. Вне ящика изображают линии, напоминающие усы. Длина усов равна либо 3/2 от межквартильного расстояния, либо разнице экстремального значения с квартилем. Тогда для выборки x_1, \ldots, x_n концы усов будут иметь координаты X_1 и X_2 :

$$X_1 = \max\left\{x_1, \ z_{1/4} - 3/2\left(z_{3/4} - z_{1/4}\right)\right\} \tag{1}$$

$$X_2 = \min \left\{ x_n, \ z_{3/4} + 3/2 \left(z_{3/4} - z_{1/4} \right) \right\} \tag{2}$$

3. Выбросы. Значения выборки, меньшие X_1 или большие X_2 отображаются на диаграмме кружочками.

[1]

2.2 Теоретическая вероятность выбросов

По формулам (1) и (2) можно вычислить теоретические значения X_1^T и X_2^T . Выбросом считается значение случайной величины, меньшее X_1^T или большее X_2^T . Тогда теоретическая вероятность выброса может быть рассчитана по формуле:

$$P_{sp} = P\left(x \in \left(-\infty; X_1^T\right) \cup \left(X_2^T; +\infty\right)\right) = F(X_1^T) + \left(1 - F(X_2^T)\right),\tag{3}$$

где F(x) — функция распределения [2].

3 Особенности реализации

Программа для выполнения лабораторной была написана на языке Python 3.8.2. Для генерации выборок использовался модуль **distributions**, написанный для лабораторной №1. Для построения боксплотов использовалась библиотека Matplotlib.

Для вычисления доли выбросов был написан модуль **spikes**. В нем на основе формул (1) и (2) рассчитывается средняя доля выбросов.

В приложении А приведена ссылка на репозиторий с исходным кодом.

Теоритическая вероятность выбросов рассчитана вручную по формуле (3), математические выкладки приведены в приложении В.

4 Результаты работы программы

4.1 Боксплоты

На рис. 1 изображен боксплот для выборки, соответствующей нормальному распределению.

Рис. 1: Боксплот для выборки, соответствующей нормальному распределению На рис. 2 изображен боксплот для выборки, соответствующей распределению Коши.

Рис. 2: Боксплот для выборки, соответствующей распределению Коши

На рис. 3 изображен боксплот для выборки, соответствующей распределению Лапласа.

Рис. 3: Боксплот для выборки, соответствующей распределению Лапласа На рис. 4 изображен боксплот для выборки, соответствующей распределению Пуассона.

Рис. 4: Боксплот для выборки, соответствующей распределению Пуассона

На рис. 5 изображен боксплот для выборки, соответствующей равномерному распределению.

Рис. 5: Боксплот для выборки, соответствующей равномерному распределению

4.2 Доля выбросов

В таблице 1 представлены полученные экспериментально доли выбросов и теоретические значения. Экспериментальные значения приведены с округлением, погрешность рассчитана по следующей формуле:

$$\Delta_z = \sqrt{\frac{1}{n} \sum z_i^2 - \frac{1}{n} \left(\sum z_i\right)^2}$$

Распределение	n	Доля выбросов	P_{sp}	
Нормальное	20	0.02	0.00694	
	100	0.007	0.00034	
Коши	20	0.14	0.156	
Коши	100	0.15		
Лапласа	20	0.06	0.0625	
Лапласа	100	0.06		
Пуассона	20	0.02	0.00996	
Пуассона	100	0.01		
Равномерное	20	0.001	0	
гавномерное	100	0.0		

Таблица 1: Доли выбросов и теоретические вероятности выбросов P_{sp}

Заключение

В рамках лабораторной работы были построены боксплоты для заданных распределений, были вычислены доли выбросов и теоретические вероятности выбросов.

По построенным боксплотам можно легко отличить на вид распределение Лапласа и Коши, а вот нормальное распределение и равномерное распределение оказываются очень похожи.

Заметно, что если выборка больше, то доля выбросов ближе к теоретической. Также заметно, что разные распределения весьма заметно отличаются долями выбросов.

Программа для лабораторной была написана языке Python 3.8.2, для построения графиков использовалась библиотека Matplotlib.

Список литературы

- [1] Box plot. // Wikipedia, the free encyclopedia. URL: https://en.wikipedia.org/wiki/Box_plot. (дата обращения: 09.11.2020)
- [2] Теоритическое приложение к лабораторным работам №1-4 по дисциплине «Математическая статистика». Спб.: Сантк-Петербургский политехнический университет, 2020. 12 с.

А Репозиторий с исходным кодом

Исходный код программы для данной лабораторной размещен на сервисе GitHub. Ссылка на репозиторий: https://github.com/Vovan-S/TV-Lab1.

В Вычисление теоретической вероятности выбросов

Нормальное распределение

Заданное распределение имеет параметры $\mu=0,\,\sigma=1,\,$ то есть является стандартным. Значение верхнего и нижнего квартилей найдем приблизительно по таблице значений функции Лапласа, поскольку $\Phi(z_{1/4})=0.25,\,\Phi(z_{3/4})=0.75.$

По таблице находим значения: $z_{1/4} = -0.675$, $z_{3/4} = 0.675$.

Тогда $X_1^T = -2.700, X_2^T = 2.700.$ Тогда

$$P_{sp} = \Phi(-2.7) + 1 - \Phi(2.7) = 1 - 2\Phi_0(2.7) = 1 - 2 \cdot 0.49653 = 0.00694$$

Распределение Коши

Заданное распределение имеет функцию распределения $F_C(x)=0.5+rac{rctg\,x}{\pi}$. Найдем $z_{1/4}$:

$$0.25 = 0.5 + \frac{\arctan z_{1/4}}{\pi}$$

$$\arctan z_{1/4} = -\frac{\pi}{4}$$

$$z_{1/4} = -1$$

Очевидно, что $z_{3/4}=-z_{1/4}=1$. Тогда $X_1^T=-4,\,X_1^T=4$. Тогда:

$$P_{sp} = F_C(-4) + 1 - F_C(4) = 1 - 2\frac{\text{arctg } 4}{\pi} \approx 0.156$$

Распределение Лапласа

Заданное распределение имеет следующую функцию распределения:

$$F_L(x) = \begin{cases} \frac{1}{2} e^{\frac{x}{\sqrt{2}}}, & x \le 0\\ 1 - \frac{1}{2} e^{-\frac{x}{\sqrt{2}}}, & x > 0 \end{cases}$$

Найдем $z_{1/4}$:

$$0.25 = 0.5e^{\frac{z_{1/4}}{\sqrt{2}}}$$
$$z_{1/4} = -\sqrt{2} \cdot \ln 2$$

Очевидно, что $z_{3/4}=-z_{1/4}=\sqrt{2}\cdot\ln 2$. Тогда $X_1^T=-4\sqrt{2}\ln 2,\,X_2^T=4\sqrt{2}\ln 2$. Вычислим P_{sp} :

$$P_{sp} = F_L(X_1^T) + 1 - F_L(X_2^T) = 0.5e^{\frac{-4\sqrt{2}\ln 2}{\sqrt{2}}} + 0.5e^{\frac{-4\sqrt{2}\ln 2}{\sqrt{2}}} = 2^{-4} = 1/16 = 0.0625$$

Распределение Пуассона

При помощи написанной программы посчитаем значения функции распределения, меньшие 0.9:

k	1	2	3	4	5	6	7
F(k)	0.00005	0.00049	0.00277	0.01034	0.02925	0.06709	0.13014
k	8	9	10	11	12	13	14
F(k)	0.22022	0.33281	0.45793	0.58304	0.69678	0.79156	0.86446

Возьмем $z_{1/4}=8.5,\,z_{3/4}=12.5.$ Тогда $X_1^T=2.5,\,X_2^T=18.5.$ Тогда:

$$P_{sp} = F(3) + 1 - F(19) = 0.00277 + 1 - 0.99281 = 0.00996$$

Равномерное распределение

Теоретическая вероятность выбросов равна 0. Действительно, $z_{1/4}=a+\frac{b-a}{4},\ z_{3/4}=a+3\frac{b-a}{4}.$ Значит:

$$X_1^T = a + \frac{b-a}{4} - \frac{3}{2} \cdot \frac{b-a}{2} < a,$$

$$X_2^T = a + 3\frac{b-a}{4} + \frac{3}{2} \cdot \frac{b-a}{2} > b.$$

То есть случайная величина не может оказаться вне $[X_1^T; X_2^T]$.