Informed search algorithms

Chapter 4

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search
- Simulated annealing search
- Local beam search
- Genetic algorithms

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - → Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

traight-line distand	36
Bucharest	
rad	366
lucharest	0
raiova	160
)obreta	242
forie	161
agaras	176
agaras Jiurgiu	77
lirsova	151
asi	226
ugoj	244
fehadia 💮 💮	241
leam t	234
)radea	380
itesti	10
timnicu V ilcea	193
ibiu	253
imisoara	329
rziceni	80
'aslui	199
erind	374

Greedy best-first search

Evaluation function f(n) = h(n) (heuristic)
 = estimate of cost from n to goal

 e.g., h_{SLD}(n) = straight-line distance from n to Bucharest

 Greedy best-first search expands the node that appears to be closest to goal

•

Properties of greedy best-first search

- Complete? No can get stuck in loops,
 e.g., lasi → Neamt → lasi → Neamt →
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory
- Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r = \cosh n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through
 n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n, h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using TREE-SEARCH is optimal

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

•

•
$$f(G_2) = g(G_2)$$

•
$$g(G_2) > g(G)$$

•
$$f(G) = g(G)$$

•
$$f(G_2) > f(G)$$

since
$$h(G_2) = 0$$

since G₂ is suboptimal

since
$$h(G) = 0$$

from above

Optimality of A* (proof)

Suppose some suboptimal goal G_2 has been generated and is in the fringe. Let *n* be an unexpanded node in the fringe such that *n* is on a shortest path to an optimal goal G.

 $f(G_2) > f(G)$

- from above
- $h(n) \le h^*(n)$ since h is admissible
- $g(n) + h(n) \leq g(n) + h^*(n)$
- ≤ f(G) • f(n)

Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent heuristics

A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

If h is consistent, we have

$$f(n')$$
 = $g(n') + h(n')$
= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$

- i.e., f(n) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

- A* expands nodes in order of increasing f value
- Gradually adds "f-contours" of nodes
- Contour i has all nodes with f=f_i, where f_i < f_{i+1}

Properties of A*

- Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))
- <u>Time?</u> Exponential
- Space? Keeps all nodes in memory
- Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

•
$$h_2(S) = ?$$

Goal State

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desired location of each tile)

• $h_1(S) = ?$ 8

•
$$h_2(S) = ? 3+1+2+2+3+3+2 = 18$$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h₂ is better for search
- Typical search costs (average number of nodes expanded):
- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution