Planejamento Automático

Jomi F. Hübner

Universidade Federal de Santa Catarina Departamento de Automação e Sistemas http://jomi.das.ufsc.br/ia

Contexto

- único agente racional, que deve escolher ações que levam o estado atual para um estado objetivo
- um ambiente completamente observável e determinístico

Planejamento

- estado atual e objetivo na forma de conjunção de literais
- ações com pré-condições e efeitos
- ambos descritos com uma linguagem específica (STRIPS, PDDL, ...)
- ► É mais fácil definir o problema em linguagem específica e declarativa (que definir estados e transições em linguagens de propósito geral)
- Possui algoritmos e heurísticas gerais e eficientes

Especificação dos **Estados**

- conjunção de literais positivos sem variáveis
- ► exemplos: Poor ∧ Unknown At(Truck₁, Melbourne) ∧ At(Truck₂, Sydney)
- mundo fechado: o que não é dito é falso

Especificação dos **Ações**

```
Exemplo:

Fly(p, from, to)

Pre-condições:

At(p, from) \land Plane(p) \land Airport(from) \land Airport(to)

Efeitos:

\neg At(p, from) \land At(p, to)
```

- ▶ Pre-condições: em que estados a ação se aplica
- ▶ Efeitos: o que muda no estado (adições e remoções)

Especificação de um **Problema** de Planejamento

Init
$$At(C_1, SFO) \wedge At(C_2, JFK) \wedge At(P_1, SFO) \wedge$$

 $At(P_2, JFK) \wedge Cargo(C_1) \wedge Cargo(C_2) \wedge$
 $Plane(P_1) \wedge Plane(P_2) \wedge Airport(SFO) \wedge Airport(JFK)$
Goal $At(C_1, JFK) \wedge At(C_2, SFO)$
 $Load(c, p, a)$ if $At(c, a) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)$
 $\rightarrow \neg At(c, a) \wedge In(c, p)$
 $Unload(c, p, a)$ if $In(c, p) \wedge At(p, a) \wedge Cargo(c) \wedge Plane(p) \wedge Airport(a)$
 $\rightarrow : \neg In(c, p) \wedge At(c, a)$
 $Fly(p, f, t)$ if $At(p, f) \wedge Plane(p) \wedge Airport(f) \wedge Airport(t) \wedge f \neq t$
 $\rightarrow : \neg At(p, f) \wedge At(p, t)$

–Especificação de um **Problema** de Planeiamento Init $At(C_1, SFO) \land At(C_2, JFK) \land At(P_1, SFO) \land$ $At(P_2, JFK) \land Cargo(C_1) \land Cargo(C_2) \land$ $Plane(P_2) \land Plane(P_3) \land Airport(SFO) \land Airport(JFK)$

Goal $At(C_1, JFK) \wedge At(C_2, SFO)$ $Load(c, \rho, a)$ if $At(c, a) \wedge At(\rho, a) \wedge Cargo(c) \wedge Plane(\rho) \wedge Airport(a)$

 $\longrightarrow \neg At(c, a) \land h(c, p)$ $\longrightarrow \neg At(c, a) \land h(c, p)$ $Unicad(c, p, a) \text{ if } h(c, p) \land At(p, a) \land Cargo(c) \land Plane(p) \land Airport(a)$ $\longrightarrow \neg h(c, p) \land At(c, a)$

Fly(ρ , f, t) if $At(\rho, f) \land Plane(\rho) \land Airport(f) \land Airport(t) \land f \neq t$ $\Longrightarrow : \neg At(\rho, f) \land At(\rho, t)$

essa é a "programação" da "aplicação", não precisa codificar nada em java, python,

qual a solução, quantas, qual melhor.... como?

Resolução de um Problema de Planejamento

Dado um problema de planejamento (Init, Goal, Actions), encontrar uma sequencia de ações que leva do estado atual ao estado objetivo.

Solução com busca – progressão

do estado atual para o objetivo

- ▶ para cada estado s a explorar, tentar todas as ações a que tem suas pre-condições implicadas pelo estado s $s \models PRE(a)$
- o novo estado é o antigo mais a aplicação dos efeitos da ação

$$s' = s + ADD(a) - DEL(a)$$

termina quando o estado objetivo é alcançado

PPGEAS - IA

-Solução com busca — progressão

Solução com busca - progressão

 para cada estado s a explorar, tentar todas as acões a que tem suas pre-condições implicadas pelo estado s

> o novo estado é o antigo mais a aplicação dos efeitos da ação

s' = s + ADD(a) - DEL(a)

termina quando o estado obietivo é alcancado

apesar de poucas ações, o problema são os argumentos. Tem que fazer todas as combinações parêmetro/valor! $O(v^k)$, v é nro de args da ação, k o número de valores.

Solução com busca – regressão

do estado objetivo para o atual

- o estado atual é o objetivo da busca o estado objetivo é o inicio da busca
- ▶ para cada estado s a explorar, tentar todas as ações a que tenham efeitos que contribuem para o estado $\exists_{e \in ADD(a)} \ e\theta \in s \land \neg \exists_{e \in DEL(a)} \ e \in s$
- o novo estado é o antigo acrescido das pre-condições da ação e sem as adições da ação s' = s + PRE(a) - ADD(a)
- termina quando o estado atual é alcançado pela busca

-Solução com busca — regressão

Solução com busca - regressão

- ▶ o estado atual é o objetivo da busca
- o estado obietivo é o inicio da busca para cada estado s a exolorar, tentar todas as acões a
- que tenham efeitos que contribuem para o estado $\exists_{e \in ADD(s)} e \theta \in s \land \neg \exists_{e \in DEL(s)} e \in s$ o novo estado é o antigo acrescido das pre-condições
- da ação e sem as adições da ação s' = s + PRE(a) - ADD(a) termina quando o estado atual é alcancado pela busca.

diminui os número de antecessores por causa da unificação entre objetivo/efeito b

Exercício: mundo dos blocos

PPGEAS - IA

Exercício: mundo dos blocos

A
B
B
A
C

Exercício: mundo dos blocos

não dá pra usar quantificadores, $\neg \exists_X On(x, b)$, então se usa Clear(b). distinguir move de moveToTable para lidar com efeitos diferentes.

Init
$$On(A, Table)$$
, $On(B, Table)$, $On(C, A)$, $Block(A)$, $Block(B)$, $Block(C)$, $Clear(B)$, $Clear(C)$

Goal On(A, B), On(B, C)

$$Move(b, x, y)$$
 if $On(b, x)$, $Clear(b)$, $Clear(y)$, $Block(b)$, $Block(y)$, $b \neq x, b \neq y, x \neq y$
 $\leadsto On(b, y)$, $Clear(x)$, $\neg On(b, x)$, $\neg Clear(y)$

MoveToTable(b, x) if
$$On(b, x)$$
, $Clear(b)$, $Block(b)$, $b \neq x$ $\longrightarrow On(b, Table)$, $Clear(x)$, $\neg On(b, x)$

Exercício: Shakey Robot

Objetivo: Box_2 na sala $Room_2$

Ações: robô ir de um lugar para outro, robô empurrar uma caixa de um lugar para outro, subir ou descer de uma caixa, ligar ou desligar uma lâmpada.

Material de **consulta**

- ► RUSSEL & NORVIG. **Artificial Intelligence: a** modern approach. 3rd Ed. 2010. Ch. 10–11. http://aima.cs.berkeley.edu
- ► GALLAB & NAU & TRAVERSO. Automated Planning and Acting. 2016. http://projects.laas.fr/planning