subgrupos normais e grupos quociente

subgrupos normais

Definição. Sejam G um grupo e H < G. Diz-se que H é *subgrupo normal* ou *invariante* de G, e escreve-se $H \triangleleft G$, se

$$\forall x \in G, xH = Hx.$$

Exemplo 25.

0	ρ_1	ρ_2	ρ_3	θ_1	θ_2	θ_3
ρ_1	ρ_1	ρ_2	ρ_3	θ_1	θ_2	θ_3
ρ_2	ρ_2	ρ_3	ρ_1	θ_3	θ_1	θ_2
ρ_3	ρ3	ρ_1	ρ_2	θ_2	θ_3	θ_1
θ_1	θ_1	θ_2	θ_3	ρ_1	ρ_2	ρ_3
θ_2	θ_2	θ_3	θ_1	ρ_3	ρ_1	ρ_2
θ_3	θ_3	θ_1	θ_2	ρ_2	ρ_3	ρ_1

Considere-se o grupo diedral do triângulo, D_3 .

Então, o subgrupo $H=\{
ho_1, heta_1\}$ não é normal pois, por exemplo,

$$\theta_2 H = \{\theta_2, \rho_3\} \neq \{\theta_2, \rho_2\} = H\theta_2.$$

No entanto, se considerarmos o subgrupo $K = \{\rho_1, \rho_2, \rho_3\}$, temos que $K \lhd D_3$, uma vez que

$$\rho_1 K = K \rho_1 = \rho_2 K = K \rho_2 = \rho_3 K = K \rho_3 = K = \{\rho_1, \rho_2, \rho_3\}$$

е

$$\theta_1 K = K \theta_1 = \theta_2 K = k \theta_2 = \theta_3 K = K \theta_3 = \{\theta_1, \theta_2, \theta_3\}.$$

Vimos já que a comutatividade num grupo G implica a normalidade dos subgrupos. Assim, podemos afirmar que se H é um subgrupo de G tal que, para todos $a \in G$ e $h \in H$, ah = ha, então $H \triangleleft G$.

Reciprocamente, se H é um subgrupo normal de G o que podemos afirmar é que

$$\forall a \in G, \ \forall h_1 \in H, \ \exists h_2 \in H : \ ah_1 = h_2 a.$$

Teorema. Sejam G um grupo e H < G. Então,

$$H \triangleleft G \iff (\forall x \in G) (\forall h \in H) \quad xhx^{-1} \in H.$$

Demonstração. $[\Rightarrow]$ Suponhamos que $H \triangleleft G$. Então, para todo $x \in G$.

$$xH = Hx$$
.

Sejam $g \in G$ e $h \in H$. Temos que existe $h' \in H$

$$ghg^{-1} = (gh)g^{-1} = (h'g)g^{-1} = h'(gg^{-1}) = h',$$

pelo que $ghg^{-1} \in H$.

[\Leftarrow] Suponhamos que, para todos $x \in G$ e $h \in H$, $xhx^{-1} \in H.$

Queremos provar que $H \triangleleft G$.

Seja $g \in G$. Então,

$$y \in gH$$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh'$
 \Leftrightarrow $(\exists h' \in H)$ $y = gh' (g^{-1}g)$
 \Leftrightarrow $(\exists h' \in H)$ $y = (gh'g^{-1})g$
 \Rightarrow $y \in Hg$ por hipótese,

pelo que $gH\subseteq Hg$. De modo análogo, prova-se que $Hg\subseteq gH$ e, portanto, Hg=gH.

Proposição. Sejam G um grupo e H_1 e H_2 dois subgrupos normais de G. Então,

- 1. $H_1 \cap H_2 \triangleleft G$;
- 2. $H_1H_2 \triangleleft G$.

grupos quociente

Observação. É óbvio que, se um grupo G admite um subgrupo normal H, as relações $\equiv^e \pmod{H}$ e $\equiv^d \pmod{H}$ são uma e uma só relação de congruência. De facto,

$$x \equiv^{e} y \pmod{H} \quad \Leftrightarrow x^{-1}y \in H \Leftrightarrow y \in xH = Hx$$
$$\Leftrightarrow yx^{-1} \in H \Leftrightarrow x \equiv^{d} y \pmod{H}.$$

Assim, fala-se de uma única relação $\equiv \pmod{H}$, que, por sua vez, define um único conjunto quociente, que se representa por G/H. Logo,

$$G/H = \{xH \mid x \in G\} = \{Hx \mid x \in G\}.$$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então, G/H é grupo, se considerarmos o produto de subconjuntos de G.

Demonstração. Sejam $x,y\in G$. Então,

$$xHyH = xyHH = xyH$$
,

pelo que G/H é fechado para o produto.

Mais ainda, a operação é associativa, H é o seu elemento neutro e cada classe xH admite a classe $x^{-1}H$ como elemento inverso.

Definição. Sejam G um grupo e $H \triangleleft G$. Ao grupo G/H chama-se *grupo quociente*.

Exemplo 26. Considere-se o subgrupo $3\mathbb{Z}=\{3k:k\in\mathbb{Z}\}$ do grupo (aditivo) \mathbb{Z} . Como a adição usual de inteiros é comutativa, concluímos que $3\mathbb{Z}\lhd\mathbb{Z}$. Como estamos a trabalhar com a linguagem aditiva, temos que, dados $x,y\in\mathbb{Z}$,

$$x \equiv y \pmod{3\mathbb{Z}} \Leftrightarrow x - (-y) \in 3\mathbb{Z} \Leftrightarrow x - y = 3k$$
, para algum $k \in \mathbb{Z} \Leftrightarrow x \equiv y \pmod{3}$.

Assim, temos que

$$\mathbb{Z}/3\mathbb{Z} = \{[0]_3, [1]_3, [2]_3\} = \mathbb{Z}_3.$$

Proposição. Sejam G um grupo e θ uma relação de congruência definida em G. Então, a classe de congruência do elemento identidade, $[1_G]_{\theta}$, é um subgrupo normal de G. Mais ainda, para $x,y\in G$,

$$x \theta y \iff x^{-1}y \in [1_G]_{\theta}$$
.

Observação. Com o que vimos até agora, é claro que existe uma relação biunívoca entre o conjunto das congruências possíveis de definir num grupo e o conjunto dos subgrupos normais nesse mesmo grupo: Cada subgrupo normal H de um grupo G define uma relação de congruência em G (relação mod G) e cada relação de congruência em G0 origina um subgrupo normal de G0 (a classe do elemento identidade).

morfismos

conceitos básicos

Definição. Sejam G_1, G_2 grupos. Uma aplicação $\psi: G_1 \longrightarrow G_2$ diz-se um morfismo ou homomorfismo se

$$(\forall x, y \in G_1)$$
 $\psi(xy) = \psi(x)\psi(y)$.

Um morfismo diz-se um *epimorfismo* se for uma aplicação sobrejetiva. Um morfismo diz-se um *monomorfismo* se for uma aplicação injetiva. Um morfismo diz-se um *isomorfismo* se for uma aplicação bijetiva. Neste caso, escreve-se $G_1 \cong G_2$ e diz-se que os dois grupos são *isomorfos*. Um morfismo de um grupo nele mesmo diz-se um *endomorfismo*. Um endomorfismo diz-se um *automorfismo* se for uma aplicação bijetiva.

Exemplo 27. Sejam G_1 e G_2 grupos e $\varphi: G_1 \to G_2$ definida por $\varphi(x) = 1_{G_2}$, para todo $x \in G_1$. Então, φ é um morfismo de grupos (conhecido por *morfismo nulo*).

De facto, dados $x, y \in G_1$, temos que $\varphi(xy) = 1_{G_2} = 1_{G_2} 1_{G_2} = \varphi(x)\varphi(y)$.

Exemplo 28. A aplicação $\varphi: \mathbb{R} \to \mathbb{R} \setminus \{0\}$, definida por $\varphi(x) = e^x$ para todo $x \in \mathbb{R}$, é um morfismo do grupo $(\mathbb{R}, +)$ no grupo $(\mathbb{R} \setminus \{0\}, \times)$.

A conclusão é imediata tendo em conta que, para todos os reais x e y, $e^{x+y}=e^xe^y$ e que $e^x\neq 0$.

Exemplo 29. A aplicação $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$, definida por

$$\varphi([0]_4) = \varphi([2]_4) = [0]_2$$
 $\varphi([1]_4) = \varphi([3]_4) = [1]_2$

é um morfismo de grupos.

Para provar esta afirmação, temos de verificar os 10 casos distintos possíveis (temos 16 somas possíveis, mas os dois grupos são comutativos):

$$\begin{split} &\varphi([0]_4 \oplus [0]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([0]_4) \\ &\varphi([0]_4 \oplus [1]_4) = \varphi([1]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([1]_4) \\ &\varphi([0]_4 \oplus [2]_4) = \varphi([2]_4) = [0]_2 \oplus [0]_2 = \varphi([0]_4) \oplus \varphi([2]_4) \\ &\varphi([0]_4 \oplus [3]_4) = \varphi([3]_4) = [1]_2 = [0]_2 \oplus [1]_2 = \varphi([0]_4) \oplus \varphi([3]_4) \\ &\varphi([1]_4 \oplus [1]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([1]_4) \\ &\varphi([1]_4 \oplus [2]_4) = \varphi([3]_4) = [1]_2 = [1]_2 \oplus [0]_2 = \varphi([1]_4) \oplus \varphi([2]_4) \\ &\varphi([1]_4 \oplus [3]_4) = \varphi([0]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([1]_4) \oplus \varphi([3]_4) \\ &\varphi([2]_4 \oplus [2]_4) = \varphi([0]_4) = [0]_2 = [0]_2 \oplus [0]_2 = \varphi([2]_4) \oplus \varphi([3]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \\ &\varphi([3]_4 \oplus [3]_4) = \varphi([2]_4) = [0]_2 = [1]_2 \oplus [1]_2 = \varphi([3]_4) \oplus \varphi([3]_4) \end{split}$$

Este morfismo pode ser definido por $\varphi([x]_4) = [x]_2$, para todo $[x]_4 \in \mathbb{Z}_4$. Será que, dados $n, m \in \mathbb{N}$, a correspondência de \mathbb{Z}_n para \mathbb{Z}_m , definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos?

A resposta à pergunta do slide anterior é NÃO.

Se n < m, a correspondência nem sequer é uma aplicação, uma vez que $[m]_n = [m-n]_n$ e $\varphi([m]_n) = [0]_m \neq [-n]_m = \varphi([m-n]_n)$.

Se $n \geq m$, a correspondência é uma aplicação, mas não necessariamente um morfismo de grupos. Como contraexemplo, podemos considerar a aplicação $\varphi: \mathbb{Z}_6 \to \mathbb{Z}_5$, definida por $\varphi([x]_6) = [x]_5$. Temos

$$\varphi([2]_6 \oplus [4]_6) = \varphi([0]_6) = [0]_5 \neq [1]_5 = [2]_5 \oplus [4]_5 = \varphi([2]_6) \oplus \varphi([4]_6).$$

Prova-se que $\varphi: Z_n \to Z_m$, definida por $\varphi([x]_n) = [x]_m$ é um morfismo de grupos se e só se $m \mid n$.

Proposição. Sejam G_1 e G_2 dois grupos. Se $\psi:G_1\longrightarrow G_2$ é um morfismo então $\psi\left(1_{G_1}\right)=1_{G_2}$.

Proposição. Sejam G_1 e G_2 dois grupos e $\psi: G_1 \longrightarrow G_2$ um morfismo. Então $[\psi(x)]^{-1} = \psi(x^{-1})$.

Proposição. Sejam G_1 e G_2 dois grupos, $H \subseteq G_1$ e $\psi : G_1 \to G_2$ um morfismo. Então,

$$H < G_1 \Rightarrow \psi(H) < G_2.$$

Corolário. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Se ψ é um monomorfismo então $G_1 \cong \psi(G_1)$.

Observação. Dois grupos finitos isomorfos têm a mesma ordem. Mas, dois grupos com a mesma ordem, não são necessariamente isomorfos. Como contraexemplo, basta pensar no grupo 4-Klein e no \mathbb{Z}_4 .

De facto, se o grupo 4-Klein $G = \{e, a, b, c\}$ fosse isomorfo ao grupo aditivo $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ e $f : G \to \mathbb{Z}_4$ fosse um isomorfismo de grupos, teríamos

$$\overline{0} = f(e) = f(xx) = f(x) \oplus f(x),$$

para todo $x \in G$. Sendo f bijetiva, concluíamos que todos os elementos de \mathbb{Z}_4 eram simétricos de si próprios, o que é uma contradição, pois, em \mathbb{Z}_4 , apenas as classes $\overline{0}$ e $\overline{2}$ são inversas de si próprias.

Proposição. Sejam G_1 e G_2 dois grupos, $H \subseteq G_1$ e $\psi : G_1 \to G_2$ um epimorfismo. Então,

$$H \triangleleft G_1 \Rightarrow \psi(H) \triangleleft G_2$$
.

núcleo de um morfismo

Definição. Seja $\psi: G_1 \longrightarrow G_2$ um morfimo de grupos. Chama-se *núcleo* (ou *kernel*) de ψ , e representa-se por $\operatorname{Nuc}\psi$ ou $\ker \psi$, ao subconjunto de G_1

$$\mathrm{Nuc}\psi = \left\{ x \in G_1 \mid \psi(x) = 1_{G_2} \right\}.$$

Exemplo 30. Se $\varphi: \mathbb{Z}_4 \to \mathbb{Z}_2$ é o morfismo definido no Exemplo 31., temos que

$$Nuc\varphi = \{[0]_4, [2]_4\}.$$

Exemplo 31. Sejam G_1 e G_2 grupos e $\varphi:G_1\to G_2$ o morfismo nulo. Então, ${\rm Nuc}\varphi=G_1.$

Proposição. Seja $\psi: G_1 \longrightarrow G_2$ um morfismo de grupos. Então, $\mathrm{Nuc}\psi \lhd G_1$.

O núcleo de um morfismo de grupos $\psi: G_1 \to G_2$ define uma relação de congruência, a saber

$$\begin{aligned} x \equiv y \pmod{\operatorname{Nuc}\psi} &\Leftrightarrow xy^{-1} \in \operatorname{Nuc}\psi \\ &\Leftrightarrow \psi \left(xy^{-1} \right) = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) \left[\psi \left(y \right) \right]^{-1} = \mathbf{1}_{G_2} \\ &\Leftrightarrow \psi \left(x \right) = \psi \left(y \right). \end{aligned}$$

Proposição. Seja $\psi:G_1\to G_2$ um morfismo de grupos. Então, ψ é um monomorfismo se e só se $\mathrm{Nuc}\psi=\{1_{\mathrm{G}_1}\}.$

Proposição. Sejam G um grupo e $H \triangleleft G$. Então,

$$\pi: G \longrightarrow G/H$$
$$x \longmapsto xH$$

é um epimorfismo (ao qual se chama epimorfismo canónico) tal que $\mathrm{Nuc}\pi=H.$

Demonstração. Sejam G um grupo e $H \triangleleft G$.

Então, para $x, y \in G$,

$$\psi(xy) = (xy) H = xHyH = \psi(x) \psi(y)$$
,

pelo que π é um morfismo. Além disso, ψ é obviamente sobrejetiva (cada classe é imagem por π do seu representante). Por fim,

$$x \in \text{Nuc}\pi \quad \Leftrightarrow \pi(x) = H$$

 $\Leftrightarrow xH = H \Leftrightarrow x \in H.$

teorema fundamental do homomorfismo

Os resultados que estudámos no final da secção anterior dizem-nos que:

- (i) Dado um morfismo qualquer entre dois grupos, o seu núcleo é um subgrupo normal do domínio;
- (ii) Dado um subgrupo normal de um grupo, existe um morfismo cujo núcleo é aquele subgrupo.

Considerando as duas situações em simultâneo, temos que: se $\psi: G \to G'$ é um morfismo de grupos, então, por (i),

$$\text{Nuc}\psi \triangleleft G$$
.

Logo, por (ii), $\pi: G o G/_{\mathrm{Nuc}\psi}$ é um epimorfismo tal que

$$Nuc\pi = Nuc\psi$$
.

Teorema Fundamental do Homomorfismo. Seja $\theta:G\longrightarrow G'$ um morfismo de grupos. Então,

$$\operatorname{Im} \theta \cong G/_{\operatorname{Nuc}\theta}$$
.

Demonstração. Sejam $K = \operatorname{Nuc} \theta$ e $\phi: G/_K \longrightarrow G'$ tal que $\phi(xK) = \theta(x), \qquad \forall x \in G.$

Estará a função ϕ bem definida, i.e., se xK = yK será que $\theta(x) = \theta(y)$? SIM. De facto,

$$xK = yK \Leftrightarrow x^{-1}y \in K (= \text{Nuc}\,\theta)$$

 $\Leftrightarrow \theta (x^{-1}y) = 1_{G'}$
 $\Leftrightarrow \theta (x) = \theta (y).$

Além disso, demonstrámos ainda que $\theta(x) = \theta(y) \Rightarrow xK = yK$, i.e., que

$$\phi(xK) = \phi(yK) \Rightarrow xK = yK$$
,

pelo que ϕ é injectiva.

Mais ainda,

$$\operatorname{Im} \phi = \{\phi(xK) \mid x \in G\}$$
$$= \{\theta(x) \mid x \in G\}$$
$$= \operatorname{Im} \theta.$$

Observamos, por último, que ϕ é um morfismo, já que

$$\phi(xKyK) = \phi(xyK) = \theta(xy) = \theta(x)\theta(y) = \phi(xK)\phi(yK).$$

Concluímos, então, que ϕ é um monomorfismo cujo conjunto imagem (que é isomorfo ao seu domínio) é igual a ${\rm Im}\theta$.

Logo,

$$\operatorname{Im} \theta \cong G/_K = G/_{\operatorname{Nuc} \theta}.$$

66

teoremas de isomorfismo

Lema. Sejam $\psi: {\sf G}
ightarrow {\sf G}'$ um morfismo de grupos e ${\sf K} < {\sf G}$. Então,

$$\operatorname{Nuc}\psi\subseteq K\Rightarrow\psi^{-1}\left(\psi\left(K\right)\right)=K.$$

1º Teorema do Isomorfismo. Sejam G e G' dois grupos e ψ : G → G' um epimorfismo. Seja K \lhd G tal que $\mathrm{Nuc}\psi\subseteq K$. Então,

$$G/_K\cong G'/_{\psi(K)}.$$

Lema. Sejam G um grupo e H < G e $H' \lhd G$. Então, HH' < G.

Lema. Sejam G um grupo e H < G e $H' \lhd G$. Então, se $H' \subseteq H$, então, $H' \lhd H$.

 $2^{\underline{\mathbf{0}}}$ Teorema do Isomorfismo. Sejam G um grupo e H, T < G tal que $T \lhd G$. Então,

$$(HT)/_T \cong H/_{(H\cap T)}.$$