CS150 Quiz #7

* Required

Schedule 1

T1	R(A)		W(A)			R(B)			W(B)	
T2		R(A)						W(A)		R(C)
Т3				R(A)	R(B)		R(C)			

1. 1) Select all edges that are present in the above schedule's dependenc	cv graph. '
---	-------------

Notice that order matters! The edges are in the format (a, b), where a is the source node, and
b is the destination node.
Check all that apply.

(T1, T2)
(T1, T3)
(T2, T1)
(T2, T3)
(T3, T1)
(T3, T2)

2. 2) This schedule is:	*
-------------------------	---

ct all that apply. ck all that apply.
Serial
Serializable
Conflict Serializable
None of the above

Schedule 2

T1		R(A)		W(A)					R(B)	W(B)
T2			R(A)				W(A)	R(C)		
Т3	R(B)				R(C)	R(A)				

3.	3) Schedule 1 and schedule 2 are conflict equivalent. * Mark only one oval.
	True False
4.	4) True or False: Every serializable schedule is also conflict serializable. * Mark only one oval.
	True False
5.	5) True or False: If its dependency graph has no cycles, a schedule is always conflict serializable. * Mark only one oval.
	True False
Ω	cks

Each column represents a single transaction:

T1	T2
Lock_X (A)	
Lock_S (B)	
	Lock_S (B)
Read (A)	
	Read (B)
	Lock_S (A)
Read (B)	
A := B+A	
Write (A)	
Lock_X (C)	
Read (C)	
C := A+C	
Write (C)	
COMMIT	
Unlock (A)	
	Read (A)
	Lock_S (C)
Unlock (C)	
Unlock (B)	
	Read (C)
	print (C + B)
	COMMIT
	Unlock(C)
	Unlock(B)
	Unlock(A)

 6. 6) If the initial values of A, B, and C are 10, 50, 75 respectively, what is printed by print(C+B)? *

2-phase locking	
Strict 2-phase locking	
None of the above	

