Pleaides

The Python Exploratory Data Analysis Framework

By: Dominic Zygadlo

Data Import

File Data

You can import both local and remote data quickly.

- 1. Click the + button next to Data Frames and select Import File Data
- If you are importing files from your local device (e.g. desktop, laptop, etc.), then make sure the Local tab is selected
 - a. Click on the corresponding file type icon from the following options: **Text File (.csv)**, **Excel File (.xlsx)**, **JSON File (.json)**, **Pickle File (.pickle)**
 - b. If you select local, a file picker window will pop-up to select a file for importing
- 3. If you are importing files from a remote device (e.g. URL), then make sure the **Remote** tab is selected
 - a. Type in or paste the remote file's URL in the first text box
 - b. Select the file type from the dropdown of options: **Text File (.csv)**, **Excel File (.xlsx)**, **JSON File (.json)**, **Pickle File (.pickle)**
- When importing files, users may select different input parameters to customize how the data frame will be built
 - a. **Separator** character(s) used to separate fields within a record
 - b. **Treat as NA** strings or values that should be treated as missing values, a **comma** should be used to enter multiple strings
 - c. First Row as Header True or False, if False then column names will be alphabetic
 - d. Column Types users may override column types and names by directly click on the column in the displayed data frame head, column types may be adjusted by entering col_type = dtype
 - i. **N** nominal data (e.g. color, gender, ethnicity, etc.)
 - ii. **O** ordinal data (e.g. placing, letter grading, economic status, etc.)
 - iii. **D** discrete data (e.g. counts)
 - iv. **C** continuous data (e.g. price, time, measurements, etc.)
 - Column Selection users may rename and/or include/exclude columns by clicking on the column name and/or checkbox next to the desired column

Database Data

You can create connections to existing databases to query data. Examples include, **Google BigQuery**, **Snowflake**, **MySQL DB**, **PostgreSQL**

WebApp Data

You can scrape data directly from **Twitter**, **GitHub**, or even **Web Pages**, with our in-house data mining algorithms.

Data Wrangling

Command Line Mode

Users can enable command line mode if they prefer directly typing in their own **pandas** and **NumPy** functions.

Feature Manipulation

Users will have access to a variety of methods to clean and customize their dataset.

- 1. Select / Remove Columns
- 2. Reorder Columns / Rows
- 3. Create New Calculation(s)
- 4. Filter

- 5. Rename
- 6. Join / Bind / Union / Intersection / Difference
- 7. Unique Only
- 8. Drop NA
- 9. Train / Test / Validation Split
- 10. One hot encoding

Visualization

Numeric

- 1. ONE Numeric
 - a. Histogram
 - b. Density Plot
- 2. TWO Numeric
 - a. Not Ordered
 - i. Box Plot
 - ii. Violin Plot
 - iii. Histogram
 - iv. Density Plot
 - v. Scatter Plot
 - vi. 2D Density Plot
 - b. Ordered
 - i. Connected Scatter Plot
 - ii. Area Plot
 - iii. Line Plot
- 3. THREE Numeric
 - a. Not Ordered
 - i. Box Plot
 - ii. Violin Plot
 - iii. Bubble Plot
 - iv. 3D Scatter or Surface
 - b. Ordered
 - i. Stacked Area Plot
 - ii. Stream Graph
 - iii. Line Plot
 - iv. Area (SM)
- 4. FOUR+ Numeric
 - a. Not Ordered
 - i. Box Plot
 - ii. Violin Plot
 - iii. Ridge Line
 - iv. PCA
 - v. Correlogram
 - vi. Heatmap
 - vii. Dendrogram
 - b. Ordered
 - i. Stacked Area Plot
 - ii. Stream Graph
 - iii. Line Plot
 - iv. Area (SM)

Categorical

- 1. ONE Categorical
 - a. Bar Plot
 - b. Lollipop
 - c. Waffle
 - d. Word Cloud
 - e. Doughnut
 - f. Pie
 - g. Tree Map
 - h. Circular Packing
- 2. TWO+ Categorical
 - a. Independent Lists
 - i. Venn Diagram
 - b. Nested
 - i. Tree Map
 - ii. Circular Packing
 - iii. Sunburst
 - iv. Bar Plot
 - v. Dendrogram
 - c. Subgroup
 - i. Grouped Scatter
 - ii. Heat Map
 - iii. Lollipop
 - iv. Grouped Bar Plot
 - v. Stacked Bar Plot
 - vi. Parallel Plot
 - vii. Spider Plot
 - viii. Sankey Diagram
 - d. Adjacency
 - i. Network
 - ii. Chord
 - iii. Arc
 - iv. Sankey
 - v. Heatmap

Multivariate

- 1. ONE Numeric + ONE Categorical
 - a. One observation per group
 - i. Boxplot
 - ii. Lollipop
 - iii. Doughnut
 - iv. Pie
 - v. Word Cloud
 - vi. Tree Map
 - vii. Circular Packing
 - viii. Waffle
 - b. Several observations per group
 - i. Box Plot
 - ii. Violin
 - iii. Ridge Line
 - iv. Density
 - v. Histogram

- 2. TWO+ Numeric + ONE Categorical
 - a. No Order
 - i. Grouped Scatter
 - ii. 2D Density
 - iii. Box Plot
 - iv. Violin
 - v. PCA
 - vi. Correlogram
 - b. Ordered Number
 - i. Stacked Area
 - ii. Area
 - iii. Steam Graph
 - iv. Line Plot
 - v. Connected Scatter
 - c. One Value per Group
 - i. Grouped Scatter
 - ii. Heat Map
 - iii. Lollipop
 - iv. Grouped Bar Plot
 - v. Stack Bar Plot
 - vi. Parallel Plot
 - vii. Spider Plot
 - viii. Sankey Diagram
- 3. One Numeric + TWO+ Categorical
 - a. Subgroup
 - i. One Observation per Group
 - 1. Grouped Scatter
 - 2. Heat Map
 - 3. Lollipop
 - 4. Grouped Bar Plot
 - 5. Stack Bar Plot
 - 6. Parallel Plot
 - 7. Spider Plot
 - 8. Sankey Diagram
 - ii. Two+ Observations per Group
 - 1. Box Plot
 - 2. Violin
 - b. Nested
 - i. One Observation per Group
 - 1. Bar Plot
 - 2. Dendrogram
 - 3. Sunburst
 - 4. Tree Map
 - 5. Circular Packing
 - ii. Two+ Observations per Group
 - 1. Box Plot
 - 2. Violin
 - c. Adjacency
 - i. Network
 - ii. Chord
 - iii. Arc
 - iv. Sankey

v. Heatmap

Bar Charts

Inputs:

- 1. Orientation either vertical or horizontal
- 2. X-axis Feature
- 3. Y-axis Feature
- 4. Color by Feature
- 5. Sort by Feature
- 6. Repeat by Feature
- 7. Stack or Group by Feature(s)
- 8. Highlight
- 9. Reference Line(s)

Use Cases:

1.

Line Charts

Inputs:

- 1. X-axis Feature
- 2. Y-axis Feature
- 3. Color by Feature
- 4. Sort by Feature
- 5. Repeat by Feature
- 6. Marker Type
- 7. Highlight
- 8. Range
- 9. Reference Line(s)
- 10. Trendline(s)

Use Cases:

1.

Area Charts

Inputs:

- 1. X-axis Feature
- 2. Y-axis Feature
- 3. Color by Feature
- 4. Sort by Feature
- 5. Repeat by Feature
- 6. Marker Type
- 7. Highlight

Use Cases:

1.

Pie / Ring Charts

Inputs:

- 1. Value Feature
- 2. Sort by Feature
- 3. Repeat by Feature
- 4. Style
- 5. Highlight

Use Cases:

Histograms

Inputs:

- 1. X-ax Feature
- 2. Color by Feature
- 3. Number of Bars
- 4. Repeat by Feature
- 5. Highlight
- 6. Cumulative Sum Reference Line

Use Cases:

Density Plots

Inputs:

- 1. X-axis Feature
- 2. Color by Feature
- 3. Repeat by Feature
- 4. Include Outlier

Use Cases:

Boxplots

Inputs:

- 1. X-axis Feature
- 2. Y-axis Feature
- 3. Color by Feature
- 4. Repeat by Feature
- 5. Sort By Feature
 - a. Sum
 - b. Median
 - c. Min
 - d. **Max**
 - e. IQR
 - f. Standard Deviation
- 6. Outlier Detection

Use Cases:

Violin Plots

Inputs:

- 1. X-axis Feature
- 2. Y-axis Feature
- 3. Color by Feature
- 4. Repeat by Feature
- 5. Sort By Feature
 - a. Sum
 - b. Median
 - c. Min
 - d. **Max**
 - e. IQR
 - f. Standard Deviation
- 6. Outlier Detection
- 7. Include Boxplot / Dotplot

Use Cases:

Analytics

Correlations

Users can display correlations by Feature

- 1. Pearson
- 2. Kendall
- 3. Spearman

Inputs:

- 1. Selected Variables
 - a. X-axis Feature(s)
 - b. Y-axis Feature(s)
- 2. Color by Feature
- 3. Repeat by Feature
- 4. Positive Only
- 5. Negative Only

Outputs:

- 1. Correlogram in Descending Order
- 2. Scatter Matrix in Descending Order

Principal Component Analysis

Inputs:

- 1. Selected Numeric Features
- 2. Color by Features
- 3. Kernel linear; polynomial; radial basis function; sigmoid; cosine; precomputed

Outputs:

- 1. Data frame with Principal Components
- 2. **Scoring of Principal Component Features** displays the top n features based on their absolute eigenvalue contributions to the individual principal components

3. Heatmap of Explained Variance

5. Cumulative Explained Variance Plot with 95% Highlight

Survival Estimator

Inputs:

- 1. Start time
- 2. End time
- 3. Event Feature
- 4. Color by Feature(s)
- 5. Confidence Interval

Outputs:

1. Kaplan-Meier Curve

Lifespans of different tumor DNA profile

2. Nelson-Aalen Hazard Curve

Hypothesis Testing

- 1. T Test
- 2. ANOVA
- 3. Wilcoxon Test
- 4. Kruskal-Wallis Test
- 5. Chi-Square Test
- 6. **A/B Test**
- 7. Normality Test
 - a. Anderson-Darling Test for Error Normality
 - b. Shapiro-Wilk Test for Error Normality
- 8. Variance Inflation Test
- 9. Outlier Detection
 - a. Normalized Quartile Fences
 - b. **DBSCAN**
- 10. Constant Error Variance Test
 - a. Brown-Forsythe Test
 - b. Breusch-Pagan Test