

VJ1214 - Consolas y dispositivos

Bloque 1: Arquitectura de computadores

Puertas lógicas básicas

1. Puertas lógicas

Índice de contenidos

- Puertas lógicas
 AND, OR, NOT, XOR
- 2. Lenguaje de descripción de hardware (HDL)
- 3. La puerta NAND
- 4. Multiplexores y demultiplexores
- 5. Puertas lógicas multibit

1. Puertas lógicas

Α	A
0	1
1	0

Α	В	A+B
0	0	0
0	1	1
1	0	1
1	1	1

$$F(A) = \overline{A}$$

$$F(A,B) = A+B$$

F(A,B) = AB

Libro de referencia

• Capítulo 1

• Capítulos 3 y 5

1. Puertas lógicas

Α	В	Xor(A,B)
0	0	0
0	1	1
1	0	1
1	1	0

1. Puertas lógicas

2. HDL

1. Puertas lógicas

 $F(A,B) = Xor(A,B) = A\overline{B} + \overline{A}B$

2. HDL

2. Lenguajes de descripción de hardware (HDL)

```
Nombre del
                    2. HDL
CHIP Xor
          b;
        a,
     OUT
          out;
     PARTS:
     Not (in=a,
                   out=nota);
     Not (in=b,
                   out=notb);
     And (a=a,
                   b=notb, out=w1);
     And (a=nota, b=b,
                          out=w2);
                   b=w2,
     Or (a=w1,
                           out=out);
```


2. HDL

CHIP Xor a, b; ΤN Construcción OUT out; PARTS: Not (in=a, out=nota); Not (in=b, out=notb); And (a=a,b=notb, out=w1); And (a=nota, b=b, out=w2); Or (a=w1,b=w2,out=out);

2. HDL

2. HDL

2. HDL

2. HDL

3. La puerta NAND

1

1 0

3. Nand

 Es posible construir las puertas lógicas NOT, AND y OR a partir de puertas Nand. NOT **AND**


```
NOT
                              OUT
        IN -
CHIP Not
    IN
         in;
    OUT out;
```

Nand (a=in,b=in, out=out);

PARTS:

}

```
AND
                             OUT
CHIP And
     IN
          a,b;
     OUT
         out;
    PARTS:
    Nand (a=a,b=b, out=temp);
    Not (in=temp, out=out);
```

OR

4. Multiplexores y Demultiplexores

5. Propiedades

•
$$\overline{AB} = \overline{A} + \overline{B}$$

 El complemento de una suma de dos variables es igual al producto de los complementos de las variables.

•
$$\overline{A+B} = \overline{A}\overline{B}$$

4. Multiplexor

Α	В	sel	out
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

4. Multiplexor

4. Multiplexor

4. Multiplexor

4. Multiplexor

4. Demultiplexor

in	sel	Α	В
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

DMUX

4. Demultiplexor

in	sel	Α	В
0	0	0	0
0	1	0	0
1	0	1	0
1	1	0	1

 $F_A(in,sel) = in \overline{sel}$ $F_B(in,sel) = in sel$

4. Demultiplexor

ı	in	sel	А	В
	0	0	0	0
	0	1	0	0
	1	0	1	0
	1	1	0	1

$$F_A(in,sel) = in \overline{sel}$$

 $F_B(in,sel) = in sel$

5. Puertas lógicas multibit

5. Puertas multibit

• Con operandos de 4 bits, se pueden ver como una puerta con 8 entradas y 4 salidas

5. Puertas multibit

 Con operandos de 4 bits, se pueden ver como una puerta con 8 entradas y 4 salidas

A ₃ A ₂		١											
^1		А3	A2	A1	A0	В3	B2	В1	ВО	Out3	Out2	Out1	Out0
A ₀ —	41154	0	0	0	0	0	0	0	0	0	0	0	0
B ₃ —	AND4	0	0	0	0	0	0	0	1	0	0	0	0
в, —		0	0	0	1	0	0	0	1	0	0	0	1
B ₀ —		0	0	1	1	1	1	1	0	0	0	1	0

5. Puertas multibit

• Es necesario construir puertas lógicas que realices operaciones entre dos operandos, los cuales tienen más de un bit.

Α	В	out
0000	0000	0000
0000	0001	0000
0000	1111	0000
0001	0000	0000
0001	0001	0001
1111	1111	1111

5. Puertas multibit

5. Puertas multibit

```
CHIP And4
{
    IN a[4], b[4];
        OUT out[4];

    PARTS:
    And (a=a[0],b=b[0],out=out[0]);
    And (a=a[1],b=b[1],out=out[1]);
    And (a=a[2],b=b[2],out=out[2]);
    And (a=a[3],b=b[3],out=out[3]);
}
```

Créditos imágenes utilizadas

- https://www.flickr.com/photos/gisur/4351196974/
- https://www.flickr.com/photos/mbiddulph/2489332318/
- https://pixabay.com/static/uploads/photo/2015/01/11/14/29/blowtorch-596294 640.jpg
- https://pixabay.com/static/uploads/photo/2014/09/16/18/28/stethoscope-448614_640.jpg
- https://pixabay.com/static/uploads/photo/2015/07/17/22/44/student-849828 640.jpg

