

Name: Thato Maelane

Email: thato6216@gmail.com

LinkedIn: https://www.linkedin.com/in/thatomaelane

GitHub: https://github.com/thatomaelane

Kaggle: https://www.kaggle.com/thatomaelane

Date: 09 June 2025

Contents

Aim of the Project	2
The Problem We're Solving	
Dataset Information	
Language Used	
Models Used	2
Results & Findings	3
Summary & Conclusion	6
Reference	6

Aim of the Project

To build a machine learning system that can automatically detect fraudulent credit card transactions and minimize financial losses by flagging suspicious activities.

The Problem We're Solving

- Credit card fraud is rare but very costly.
- Fraudulent transactions make up only ~0.17% of all transactions in the dataset —
 making it hard for traditional systems to detect them.
- The challenge is to accurately **identify fraud** without generating too many false alarms.

Dataset Information

- Source: Kaggle Credit Card Fraud Detection
- Contains: 284,807 transactions
- Only 492 are frauds (class 1), rest are normal (class 0)
- Features are anonymized as V1, V2, ..., V28 plus Time, Amount, and Class

Language Used

Python

Models Used

- 1. Logistic Regression
- 2. Random Forest Classifier

Results & Findings

Class Distribution Plot

Amount of Money in Fraud VS Normal Plot

Logistic Regression Confusion Matrix:

Confusion Matrix: [[85278 17] [50 98]]

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85295
1	0.85	0.66	0.75	148
accuracy			1.00	85443
macro avg	0.93	0.83	0.87	85443
weighted avg	1.00	1.00	1.00	85443

Logistic Regression

Precision (Fraud): 85%

• Recall (Fraud): 66%

Missed frauds: 50

• Conclusion: Good start, but misses too many frauds

Confusion Matrix Heatmap (Logistic Regression):

Random Forest Classifier Confusion Matrix:

Random Forest Confusion Matrix: [[85290 5] [36 112]]

Random Forest Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	85295
1	0.96	0.76	0.85	148
accuracy			1.00	85443
macro avg	0.98	0.88	0.92	85443
weighted avg	1.00	1.00	1.00	85443

Random Forest Classifier (Better Model)

• Precision (Fraud): 96%

Recall (Fraud): 76%

Missed frauds: 36

• Conclusion: Random Forest Classifier Performs better than Logistic Regression

Confusion Matrix Heatmap (Random Forest Classifier):

Summary & Conclusion

This project successfully demonstrated how machine learning can be applied to detect fraudulent transactions from a large and imbalanced credit card dataset. By training and evaluating multiple models, we found that the Random Forest Classifier performs best, achieving 96% precision and 76% recall, making it both accurate and reliable for real-world use.

This model can now be used as a foundation for a real fraud detection system, and improved further with techniques like:

- · Feature engineering
- Scaling/normalization
- Ensemble models or deep learning

Reference

Kaggle, 2016. Credit Card Fraud Detection. [online] Available at: https://www.kaggle.com/datasets/mlg-ulb/creditcardfraud [Accessed 6 Jun. 2025].