Exam: Average 44 Grade breakdown: A: 57-99

B: 37-56 C: 18-36 D: <18

Chapter 21 material: amines and related nitrogen compounds. See the Web for problem and reading assignments

Naturally occurring nitrogen compounds are among the most interesting for biological activity: Alkaloids, etc.

Basic structure of amines:

Nomenclature: p 1077

Basic structural types:

indole

quinoline

pyrrolidine

Odor:

$$H_2N$$
 NH_2 H_2N NH_2 effect of lemons: putrescine cadaverine

piperidine

3D Structure:

Calculate the trimethyl system

Heat of formation:

Flattening of pyramid?

Cannot isolate one enantiomer, in general. Not planar, but rapidly inverting via a planar transition state.

extent of reaction

How influence the barrier?

Increase the barrier: Destabilize lone pair in sp² hybridization

Bond angle: wants to expand to 120° in the planar form.

BP:

H-bonding

¹H NMR chemical shifts: effect of amino substituent on adjacent C-H

NOTE: -NH₂ protons are generally in rapid exchange--no coupling observed with adjacent H. Broad lump

Chemical shift of -NH₂ depends on conditions: around 3-4 ppm

More acidic N-H: more downfield

IR: N-H stretch at 3100-3500 [same as O-H stretch]

Basicity:

	NH_3	Me-NH ₂	Me_2NH		Me ₃ N
pKa (water)	9.2	10.6	10.8	9.8	(of ammonium ion, conj. acid)
pKa (gas)	lowest	2nd lowest	2nd highest		highest (weakest acid, strongest base)

Alkyl groups have two effects: stabilize the ammonium ion by dispersing charge destabilize the ammonium ion by interfering with solvation

Acidity:

R-OH + B.
$$\Theta$$
 \longrightarrow R-O Θ + H-B pKa 15

Lewis Base:

R₃N:

R₂O:

Important derivatives of nitrogen: diazonium ions

$$\begin{array}{c} \bigoplus \\ \mathsf{R-CH_2-N} \equiv \mathsf{N} \end{array}$$

Aromatic diazonium ions: (mechanism of formation: Fig 21.49)

Substitution:

Diazoalkanes:

diazomethane

$$\Theta \oplus$$

H₂C-N \equiv N

Powerful esterification reagent:

Source of carbenes: Divalent Carbon (Chapter 10, p 436. 303?)

$$\Theta \oplus$$

H₂C-N \equiv N \longrightarrow N₂ + H₂C $\stackrel{\bullet}{\bullet}$

Special cases of divalent nitrogen:

$$R \xrightarrow{\bigcirc} + N_3 \xrightarrow{} R \xrightarrow{\bigcirc} R \xrightarrow{N-N \equiv N} \xrightarrow{} R \xrightarrow{N} + N_2$$
Curtius Rearrangement
$$R = NH_2 + CO_2 \xrightarrow{} R = N = C = O$$

Related:

Hoffman Rearrangement

$$R \xrightarrow{O} + NH_3 \longrightarrow R \xrightarrow{O} \xrightarrow{NaOH, Br_2} \xrightarrow{R-NH_2} + CO_2$$