Tablas de frecuancia

Diego Isaac Martínez Reyes

2023 - 11 - 15

TABLAS DE FRECUENCIAS						
Se implementa la matriz iris						
Exploración de la Matriz Iris						
1 Importación de la matriz						
data(iris)						
2 Exploración de la matriz						
<pre>dim(iris)</pre>						
## [1] 150 5						
3 Nombre de las columnas						
colnames(iris)						
## [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species" 4 Tipo de variables						
str(iris)						
## 'data.frame': 150 obs. of 5 variables: ## \$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ## \$ Sepal.Width: num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ## \$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ## \$ Petal.Width: num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ## \$ Species : Factor w/ 3 levels "setosa", "versicolor",: 1 1 1 1 1 1 1 1 1 1 1						
5 En busca de datos perdidos						
anyNA(iris)						
## [1] FALSE						
Generación de tablas						

1.- Convertimos la matriz de datos a un data frame, se Agrupan los valores para la variable Petal. Length y se calcula la frecuencia absoluta.

```
tabla_PL<-as.data.frame(table(PL = iris$Petal.Length))
```

2.- Frecuencia absoluta de la variable Petal.Length (PL) Se muestra la tabla de contingencia para la variable

PL con su respectiva frecuencia absoluta.

tabla_PL

```
##
       PL Freq
## 1
        1
## 2
      1.1
             1
## 3
      1.2
             2
## 4
      1.3
             7
## 5
      1.4
            13
## 6
      1.5
            13
## 7
      1.6
             7
     1.7
## 8
             4
## 9
      1.9
## 10
        3
             1
## 11 3.3
## 12 3.5
             2
## 13 3.6
## 14 3.7
             1
## 15 3.8
             1
## 16 3.9
             3
## 17
             5
## 18 4.1
             3
## 19 4.2
## 20 4.3
             2
## 21 4.4
             4
## 22 4.5
             8
## 23 4.6
             3
## 24 4.7
## 25 4.8
             4
## 26 4.9
## 27
        5
             4
## 28 5.1
## 29 5.2
             2
## 30 5.3
             2
## 31 5.4
             2
## 32 5.5
             3
## 33 5.6
             6
## 34 5.7
             3
## 35 5.8
             3
## 36 5.9
             2
## 37
        6
             2
## 38 6.1
             3
## 39 6.3
             1
## 40 6.4
             1
## 41 6.6
             1
## 42 6.7
             2
## 43 6.9
```

3.- Se contruye la tabla de frecuencias completas redondeando las frecuencias absolutas a 3 decimales

```
##
       PL Freq freqAc
                         Rel RelAc
## 1
        1
             1
                     1 0.007 0.007
## 2
                     2 0.007 0.013
      1.1
             1
## 3
     1.2
             2
                    4 0.013 0.027
             7
## 4
     1.3
                    11 0.047 0.073
## 5
      1.4
            13
                   24 0.087 0.160
## 6
      1.5
            13
                   37 0.087 0.247
## 7
      1.6
             7
                   44 0.047 0.293
## 8
     1.7
                   48 0.027 0.320
      1.9
## 9
                   50 0.013 0.333
             2
## 10
        3
             1
                   51 0.007 0.340
## 11 3.3
             2
                   53 0.013 0.353
## 12 3.5
                   55 0.013 0.367
## 13 3.6
                   56 0.007 0.373
             1
## 14 3.7
                   57 0.007 0.380
             1
## 15 3.8
                   58 0.007 0.387
## 16 3.9
             3
                   61 0.020 0.407
## 17
             5
                   66 0.033 0.440
        4
## 18 4.1
             3
                   69 0.020 0.460
## 19 4.2
             4
                   73 0.027 0.487
## 20 4.3
             2
                   75 0.013 0.500
## 21 4.4
             4
                   79 0.027 0.527
## 22 4.5
             8
                   87 0.053 0.580
## 23 4.6
                   90 0.020 0.600
## 24 4.7
             5
                   95 0.033 0.633
## 25 4.8
             4
                   99 0.027 0.660
## 26 4.9
             5
                  104 0.033 0.693
## 27
        5
                  108 0.027 0.720
                  116 0.053 0.773
## 28 5.1
             8
## 29 5.2
             2
                  118 0.013 0.787
## 30 5.3
             2
                  120 0.013 0.800
## 31 5.4
                  122 0.013 0.813
## 32 5.5
             3
                  125 0.020 0.833
## 33 5.6
                  131 0.040 0.873
             6
                  134 0.020 0.893
## 34 5.7
                  137 0.020 0.913
## 35 5.8
             3
## 36 5.9
             2
                  139 0.013 0.927
## 37
        6
             2
                  141 0.013 0.940
## 38 6.1
                  144 0.020 0.960
             3
## 39 6.3
                  145 0.007 0.967
             1
## 40 6.4
                  146 0.007 0.973
## 41 6.6
             1
                  147 0.007 0.980
## 42 6.7
                  149 0.013 0.993
## 43 6.9
                  150 0.007 1.000
```

4.- Agruparemos las variables en 8 clases y se calcula la frecuencia absoluta

5.- Visualizamos la tabla de clases

```
tabla_clases
     Petal.length Freq
## 1 (0.994,1.74]
## 2 (1.74,2.48]
                      2
## 3 (2.48,3.21]
                      1
## 4
     (3.21, 3.95]
                     10
## 5 (3.95,4.69]
                     29
## 6 (4.69,5.43]
                     32
## 7 (5.43,6.16]
                     22
## 8 (6.16,6.91]
                      6
6.- Contrucción de la tabla de frecuencias completa redondeando las frecuencias relativas a 3 decimales
tabla_agrupada<-transform(tabla_clases,
             freqAc=cumsum(Freq),
             Rel= round(prop.table(Freq),3),
             RelAc=round(cumsum(prop.table(Freq)),3))
tabla_agrupada
##
     Petal.length Freq freqAc
                                 Rel RelAc
## 1 (0.994,1.74]
                    48
                            48 0.320 0.320
     (1.74, 2.48]
                     2
                            50 0.013 0.333
## 2
## 3 (2.48,3.21]
                   1
                            51 0.007 0.340
## 4 (3.21,3.95]
                   10
                            61 0.067 0.407
## 5 (3.95,4.69]
                    29
                            90 0.193 0.600
## 6
     (4.69, 5.43]
                    32
                           122 0.213 0.813
## 7 (5.43,6.16]
                     22
                           144 0.147 0.960
## 8 (6.16,6.91]
                      6
                           150 0.040 1.000
7.- Organización visual de la tabla (variable Petal.length)
7.1.- Instalamos la librería knitr
install.packages("knitr")
## Installing package into '/cloud/lib/x86_64-pc-linux-gnu-library/4.3'
## (as 'lib' is unspecified)
7.2.- Se abre la librería
library(knitr)
7.3.- Se visualiza la tabla
```

kable(tabla_no_agrupada)

PL	Freq	freqAc	Rel	RelAc
1	1	1	0.007	0.007
1.1	1	2	0.007	0.013
1.2	2	4	0.013	0.027
1.3	7	11	0.047	0.073
1.4	13	24	0.087	0.160

$\overline{\mathrm{PL}}$	Freq	freqAc	Rel	RelAc
1.5	13	37	0.087	0.247
1.6	7	44	0.037	0.241 0.293
1.7	4	48	0.027	0.230
1.9	2	50	0.013	0.320
3	1	51	0.013	0.340
3.3	$\overset{1}{2}$	53	0.013	0.353
3.5	2	55	0.013	0.367
3.6	1	56	0.007	0.373
3.7	1	57	0.007	0.380
3.8	1	58	0.007	0.387
3.9	3	61	0.020	0.407
4	5	66	0.033	0.440
4.1	3	69	0.020	0.460
4.2	4	73	0.027	0.487
4.3	2	75	0.013	0.500
4.4	4	79	0.027	0.527
4.5	8	87	0.053	0.580
4.6	3	90	0.020	0.600
4.7	5	95	0.033	0.633
4.8	4	99	0.027	0.660
4.9	5	104	0.033	0.693
5	4	108	0.027	0.720
5.1	8	116	0.053	0.773
5.2	2	118	0.013	0.787
5.3	2	120	0.013	0.800
5.4	2	122	0.013	0.813
5.5	3	125	0.020	0.833
5.6	6	131	0.040	0.873
5.7	3	134	0.020	0.893
5.8	3	137	0.020	0.913
5.9	2	139	0.013	0.927
6	2	141	0.013	0.940
6.1	3	144	0.020	0.960
6.3	1	145	0.007	0.967
6.4	1	146	0.007	0.973
6.6	1	147	0.007	0.980
6.7	2	149	0.013	0.993
6.9	1	150	0.007	1.000