4-Bit Bidirectional Universal Shift Register

The MC14194B is a 4–bit static shift register capable of operating in the parallel load, serial shift left, serial shift right, or hold mode. The asynchronous Reset input, when at a low level, overrides all other inputs, resets all stages, and forces all outputs low. When Reset is at a logic 1 level, the two mode control inputs, S0 and S1, control the operating mode as shown in the truth table. Both serial and parallel operation are triggered on the positive—going transition of the Clock input. The Parallel Data, Data Shift, and mode control inputs must be stable for the specified setup and hold times before and after the positive—going Clock transition.

- Synchronous Right/Left Serial Operation
- Synchronous Parallel Load
- · Asynchronous Hold (Do Nothing) Mode
- Functional Pin for Pin Equivalent of LS194

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	- 0.5 to + 18.0	V
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	– 0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient), per Pin	± 10	mA
PD	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature (8-Second Soldering)	260	°C

^{*} Maximum Ratings are those values beyond which damage to the device may occur. †Temperature Derating:

Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C Ceramic "L" Packages: – 12 mW/°C From 100°C To 125°C

MC14194B

L SUFFIX CERAMIC CASE 620

P SUFFIX PLASTIC CASE 648

D SUFFIX SOIC CASE 751B

ORDERING INFORMATION

MC14XXXBCP Plastic
MC14XXXBCL Ceramic
MC14XXXBD SOIC

 $T_A = -55^{\circ}$ to 125°C for all packages.

LOGIC DIAGRAM

MOTOROLA

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

Characteristic			V _{DD}	– 55°C			25°C	125°C			
		Symbol	Vdc	Min	Max	Min	Тур#	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	VOL	5.0 10 15	_ _ _	0.05 0.05 0.05	_ _ _	0 0 0	0.05 0.05 0.05	_ _ _	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	VOH	5.0 10 15	4.95 9.95 14.95	_ _ _	4.95 9.95 14.95	5.0 10 15	_ _ _	4.95 9.95 14.95	_ _ _	Vdc
Input Voltage (V _O = 4.5 or 0.5 Vdc) (V _O = 9.0 or 1.0 Vdc) (V _O = 13.5 or 1.5 Vdc)	"0" Level	V _{IL}	5.0 10 15	_ _ _	1.5 3.0 4.0	_ _ _	2.25 4.50 6.75	1.5 3.0 4.0	_ _ _	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	VIH	5.0 10 15	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25		3.5 7.0 11	_	Vdc
Output Drive Current (V _{OH} = 2.5 Vdc) (V _{OH} = 4.6 Vdc) (V _{OH} = 9.5 Vdc) (V _{OH} = 13.5 Vdc)	Source	ІОН	5.0 5.0 10 15	- 3.0 - 0.64 - 1.6 - 4.2	_ _ _ _	- 2.4 - 0.51 - 1.3 - 3.4	- 4.2 - 0.88 - 2.25 - 8.8	_ _ _ _	- 1.7 - 0.36 - 0.9 - 2.4	_ _ _ _	mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	lOL	5.0 10 15	0.64 1.6 4.2	_ _ _	0.51 1.3 3.4	0.88 2.25 8.8	_ _ _	0.36 0.9 2.4	_ _ _	mAdc
Input Current		l _{in}	15	_	± 0.1	_	±0.00001	± 0.1	_	± 1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	_	_	_	_	5.0	7.5	_	_	pF
Quiescent Current (Per Package)		IDD	5.0 10 15	_ _	5.0 10 20		0.005 0.010 0.015	5.0 10 20	_ _ _	150 300 600	μAdc
Total Supply Current**† (Dynamic plus Quiesce Per Package) (C _L = 50 pF on all outp buffers switching)		lΤ	5.0 10 15			I _T = (1 I _T = (2	.95 μA/kHz) .90 μA/kHz) .90 μA/kHz)	f + I _{DD} f + I _{DD}	•		μAdc

#Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μ A (per package), C_L in pF, V = (V_{DD} – V_{SS}) in volts, f in kHz is input frequency, and k = 0.002.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either V_{SS} or V_{DD}). Unused outputs must be left open.

PIN ASSIGNMENT 16 V_{DD} DSR [15 Q0 14 🛮 Q1 D_{P0} [] 3 13 Q2 D_{P1} [D_{P2} [5 12] Q3 D_{P3} [] 6 11 🛮 C DSL [7 10 S1 9 S0 V_{SS} [] 8

^{**} The formulas given are for the typical characteristics only at 25 $^{\circ}$ C.

[†]To calculate total supply current at loads other than 50 pF:

TRUTH TABLE

Operating	Inputs (Reset = 1)				Outputs (@ t _{n+1})				
Mode	S1	S0	DSR	DSL	D _{P0-3}	Q0	Q1	Q2	Q3
Hold	0	0	Х	Х	Х	Q0	Q1	Q2	Q3
Shift Left	1	0	Х	0	Х	Q1	Q2	Q3	0
Shift Left	1	0	Х	1	Х	Q1	Q2	Q3	1
Shift Right	0	1	0	Х	Х	0	Q0	Q1	Q2
Shirt Right	0	1	1	Х	Х	1	Q0	Q1	Q2
Parallel	1	1	Х	Х	0	0	0	0	0
Farallel	1	1	Х	Х	1	1	1	1	1

X = Don't Care

SWITCHING CHARACTERISTICS* ($C_L = 50 \text{ pF}, T_A = 25^{\circ}C$)

Characteristic	Symbol	V _{DD} Vdc	Min	Typ#	Max	Unit
Output Rise and Fall Time t _{TLH} , t _{THL} = (1.35 ns/pF) C _L + 32 ns t _{TLH} , t _{THL} = (0.6 ns/pF) C _L + 20 ns t _{TLH} , t _{THL} = (0.4 ns/pF) C _L + 20 ns	^t TLH, ^t THL	5.0 10 15	_ _ _	100 50 40	200 100 80	ns
Propagation Delay Time Clock to Q tplH, tpHL = (0.9 ns/pF) CL + 230 ns tplH, tpHL = (0.36 ns/pF) CL + 92 ns tplH, tpHL = (0.26 ns/pF) CL + 72 ns	^t PLH, ^t PHL	5.0 10 15	_ _ _	275 110 85	550 220 170	ns
Reset to Q $t_{PHL} = (0.9 \text{ ns/pF}) \text{ C}_{L} + 305 \text{ ns}$ $t_{PHL} = (0.36 \text{ ns/pF}) \text{ C}_{L} + 122 \text{ ns}$ $t_{PHL} = (0.26 \text{ ns/pF}) \text{ C}_{L} + 97 \text{ ns}$	^t PHL	5.0 10 15	_ _ _	350 140 110	700 280 220	ns
Clock Pulse Width	tWH	5.0 10 15	280 110 85	140 55 40	_ _ _	ns
Reset Pulse Width	tWH	5.0 10 15	180 70 50	90 35 26	_ _ _	ns
Clock Pulse Frequency (Shift Right or Left Mode)	fcl	5.0 10 15	_ _ _	3.6 9.0 12	1.8 4.5 6.0	MHz
Clock Pulse Rise and Fall Time	^t TLH ^{, t} THL	5.0 10 15	_ _ _	_ _ _	15 5 4	μs
Setup Time Data to Clock	t _{su}	5.0 10 15	10 20 40	- 8.0 0 9.0	_ _ _	ns
Mode Control (S) to Clock		5.0 10 15	200 75 55	100 36 27	_ _ _	ns
Hold Time Data to Clock	th	5.0 10 15	180 50 35	90 25 10	_ _ _	ns
Mode Control (S) to Clock		5.0 10 15	0 0 0	- 40 - 27 - 20	_ _ _	ns
Reset Removal Time	^t rem	5.0 10 15	300 110 80	150 55 40	_ _ _	ns

 $^{^{\}star}$ The formulas given are for the typical characteristics only at 25 $^{\circ}\text{C}.$

 t_{n+1} = State after the next positive–going transition of the clock.

[#]Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Switching Time Test Circuits and Waveforms

Figure 2. Dynamic Power Dissipation Test Circuit and Waveforms

OUTLINE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 DIMENSION F MAY NARROW TO 0.76 (0.030)
 WHERE THE LEAD ENTERS THE CERAMIC

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.750	0.785	19.05	19.93	
В	0.240	0.295	6.10	7.49	
С		0.200		5.08	
D	0.015	0.020	0.39	0.50	
Е	0.050	BSC	1.27 BSC		
F	0.055	0.065	1.40	1.65	
G	0.100	BSC	2.54 BSC		
Н	0.008	0.015	0.21	0.38	
K	0.125	0.170	3.18	4.31	
L	0.300 BSC		7.62	BSC	
М	0°	15°	0 °	15°	
N	0.020	0.040	0.51	1.01	

P SUFFIX PLASTIC DIP PACKAGE CASE 648-08 ISSUE R

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.

 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.740	0.770	18.80	19.55	
В	0.250	0.270	6.35	6.85	
С	0.145	0.175	3.69	4.44	
D	0.015	0.021	0.39	0.53	
F	0.040	0.70	1.02	1.77	
G	0.100	BSC	2.54 BSC		
Н	0.050	BSC	1.27 BSC		
J	0.008	0.015	0.21	0.38	
K	0.110	0.130	2.80	3.30	
L	0.295	0.305	7.50	7.74	
M	0°	10°	0°	10 °	
S	0.020	0.040	0.51	1.01	

OUTLINE DIMENSIONS

- DIMENSIONING AND TOLERANCING PER ANSI
- CONTROLLING DIMENSION: MILLIMETER.
- DIMENSIONS A AND B DO NOT INCLUDE
- MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	METERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
U	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
7	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
М	0°	7°	0°	7°	
Р	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Marare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.