JP09130626

Title: JP09130626

Abstract:

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-130626

(43)公開日 平成9年(1997)5月16日

(51) Int.Cl. ⁶		識別記号	庁内整理番号	\mathbf{F} I			技術表示箇所
H 0 4 N	1/60			H04N	1/40	D	
G06T	1/00			C 0 6 F	15/66	3 1 0	
H 0 4 N	1/46			H 0 4 N	1/46	Z	

審査請求 未請求 請求項の数5 OL (全 7 頁)

(2.1.) (1.1) (2.1.469) (2.1.469)	(21)出顧番号	特願平7-284892	•
----------------------------------	----------	-------------	---

平成7年(1995)11月1日 (22) 出願日

(71)出願人 000006747

株式会社リコー

東京都大田区中馬込1丁目3番6号

(72)発明者 青木 伸

東京都大田区中馬込1丁目3番6号 株式

会社リコー内

(74)代理人 弁理士 鈴木 誠 (外1名)

(54) 【発明の名称】 色信号変換方法

(57)【要約】

【課題】 高次の多項式を使用することによる振動を回 避しながら、非線形性の強いプリンタに対しても精度良 く色変換特性を近似する。

【解決手段】 入力cmykをc-k(c')、m-k (m'), y-k (y')に変換し、領域判別部2は c', m', y'の大小関係を基に領域を判別する。領 域毎の係数を係数記憶部3から読み出し、多項式演算部 4に設定して、c', m', y', kをL*a*b*に 変換する多項式を計算する。

【特許請求の範囲】

【請求項1】 多項式を用いて第1のカラー画像信号を、属性の異なる第2のカラー画像信号に変換する色信号変換方法において、該第1のカラー画像信号のn次元空間を複数の領域に分割し、該複数の領域毎に異なる係数を用い、かつ領域の境界で微分値が連続である係数を用いた多項式によって、前記第1のカラー画像信号を第2のカラー画像信号に変換することを特徴とする色信号変換方法。

【請求項2】 前記多項式は、n次元の多項式から選択されたm項の多項式であることを特徴とする請求項1記載の色信号変換方法。

【請求項3】 前記領域の分割は、各カラー画像信号の 大小関係を基に分割することを特徴とする請求項1記載 の色信号変換方法。

【請求項4】 前記領域の分割は、黒信号と他のカラー 画像信号との大小関係を基に分割することを特徴とする 請求項1記載の色信号変換方法。

【請求項5】 前記第1のカラー画像信号が黒信号を含むとき、黒信号以外のカラー画像信号から黒信号を減算した信号を生成し、それら黒信号を減算した信号と黒信号を、前記多項式によって前記第2のカラー画像信号に変換することを特徴とする請求項1記載の色信号変換方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、カラー画像信号 を、属性の異なるカラー画像信号に変換する色信号変換 方法に関する。

[0002]

【従来の技術】カラー画像入出力システムにおいては色変換などの技術が不可欠である。ここで色変換とは、カラー画像信号が色を表す表色空間(RGB、CMYK、L*a*b*など)を変換する処理のことであり、例えば、NTSC-RGBで表現されたカラー画像信号をCIE-L*a*b*信号などに変換する処理をいう。

【0003】従来の色変換法としては、多数のサンプル出力を測色し、その入出力関係を多項式で近似する方法が知られている。例えば、cmykの多項式により、出力XYZを予測するもので、多項式の係数は実測値との最小2乗近似によって決定する再現色予測方法がある(特開平4-337965号公報を参照)。

【0004】この多項式近似による色変換法では、多項式の次数を増やすことで近似式の自由度が増し、カラープリンタなど非線形性の強い変換に対してもより精度よく近似を行うことが可能となる。しかし、一般に多項式近似は次数が高くなると不要な振動を起こしやすくなるという性質がある。図4は、その例を示す。図では簡単のために横軸が入力信号、縦軸が出力信号の1次元の信号変換を示している。図中(a)は、サンプル出力の測

定値であり、(b)、(c)はそれぞれ測定値を最小2 乗近似する3次、4次多項式曲線である。3次の曲線は 滑らかであるが、4次の曲線は波打っていることが分かる。

[0005]

【発明が解決しようとする課題】近似多項式が振動すると、例えば、なだらかな濃度変化のある画像を変換すると、縞状の濃淡模様が生じてしまうことになり、これはたとえ平均的な色差が小さくても画質上、大きな問題となる。

【0006】また、別の方法として格子点補間法がある。これは入力空間を格子状に分割し、格子の頂点での出力値を予め実測しておく。そして格子内部の入力に対しては、頂点の値を使って、補間によって出力値を計算する方法である(例えば、特開平2-226867号公報を参照)。この方法では、各格子の内部は多項式により補間することになるが、空間を分割しているため、各領域内では低次の多項式を使用しても精度が保てる。

【0007】しかし、各格子点での出力値を補間する多項式はその形式が限られていて、任意の次数の項を含む多項式を使用することができなかった。そのため、実現できる変換特性の自由度が限られ、色変換の精度向上に限界があった。

【0008】本発明の目的は、高次の多項式を使用することによる振動を回避しながら、非線形性の強いプリンタに対しても精度良く色変換特性を近似するための多くの自由度を持つ色信号変換方法を提供することにある。

[0009]

【課題を解決するための手段】前記目的を達成するために、請求項1記載の発明では、多項式を用いて第1のカラー画像信号を、属性の異なる第2のカラー画像信号に変換する色信号変換方法において、該第1のカラー画像信号のn次元空間を複数の領域に分割し、該複数の領域毎に異なる係数を用い、かつ領域の境界で微分値が連続である係数を用いた多項式によって、前記第1のカラー画像信号を第2のカラー画像信号に変換することを特徴としている。

【0010】請求項2記載の発明では、前記多項式は、 n次元の多項式から選択されたm項の多項式であること を特徴としている。

【0011】請求項3記載の発明では、前記領域の分割は、各カラー画像信号の大小関係を基に分割することを 特徴としている。

【 0 0 1 2 】請求項4記載の発明では、前記領域の分割は、黒信号と他のカラー画像信号との大小関係を基に分割することを特徴としている。

【 0 0 1 3 】請求項5記載の発明では、前記第1のカラー画像信号が黒信号を含むとき、黒信号以外のカラー画像信号から黒信号を減算した信号を生成し、それら黒信号を減算した信号と黒信号を、前記多項式によって前記

第2のカラー画像信号に変換することを特徴としている。

[0014]

【発明の実施の形態】上記課題で説明したように区分的な多項式を使用した色変換方法では、領域の境界で連続となる多項式係数であっても、その微分値が連続になるとは限らない。ここで、区分的な多項式とは、例えばxとyの関係が、x>0の領域ではy=xの多項式で表され、 $x\leq0$ の領域では $y=x^2$ の多項式で表されるように、複数の多項式で近似したものをいう。

【0015】微分値が不連続ということは、境界で変換特性が急激に変化する、つまり「角」を持つことを意味する。一般にプリンタなどの色変換特性は、なめらかな変化をするものが多いので、このような急激な変化は好ましくない。

【0016】本発明では、領域の境界で多項式の微分値を連続にすることで、なめらかな色変換特性を持つようにする。

【0017】ところで、カラー画像はc, m, y, kのインクやトナーを重ねることによって再現されるが、この再現方法として、各色毎に異なるスクリーン角を持たせて重ねる方法と、各色を同心円的に重ねる方法(同心円モデル)がある。

【0018】理想的な同心円モデルのプリンタでは、各色材の面積の大小関係によって場合分けすれば、cmykの面積率からXYZへの色変換が、それぞれの場合で線形になることが知られている。例えばc>m>y>kのときcとXの関係がリニアになる。しかし、実際のプリンタは、各版の位置ずれ、ドットの形状のゆがみ、紙内部の光散乱などのため、理想的な同心円モデルとは異なる特性を持つ。そこで、本発明では、理想的な同心円モデルでは線形となるべき各領域(つまり、上記したc>m>y>kの領域など)を、それぞれ異なる多項式で近似することにより、より現実のプリンタにあった色信号の変換特性となる。

【0019】多項式の係数を最小2乗法などで設定するためには、各領域について多数のサンプルデータが必要となる。サンプルデータの少ない領域については、正確な係数を設定することが難しい。そこで色変換式としては、できるだけ分割する領域の数が少ないことが望ましい。

【0020】cmyk4種の色材を使用するプリンタでは、全ての大小関係を考慮して分類すると、4つの要素の順列は $4\times3\times2\times1=24$ 通りあるので、24個の領域に分割される。

【0021】しかし、全ての組み合わせが同じ重要性を持つわけではない。例えば、シアンと黒、およびシアンとマゼンタの関係を比べてみる。図5は、理想的な同心円モデルで、一定のマゼンタ(m)に対し、シアン

(c)が小さい場合(c < m)、等しい場合(c =

m)、シアンが大きい場合(c>m)の様子を示している。マゼンタよりもシアンが小さい場合は、マゼンタと(マゼンタとシアンの重なりである)ブルーの2つの領域からなり、マゼンタとシアンが同じ大きさになると全てブルーになり、さらにシアンが増えるとシアンとブルーの領域ができる。

【0022】このようにシアンが増えるに従い、c<mの領域ではマゼンタがブルーに置き換わることで、また、c>mの領域では白がシアンに置き換わることで、全体として色が変化する。そのため、一定の大きさのマゼンタの上にシアンを重ねた時の全体としての色度

(X)変化は、図5の下のグラフのように(c=m)を 境に異なる傾きを持つ。

【0023】一方、図6は、図5と同様に一定の黒に、3通りの大きさのシアンが重なった様子を示している。この場合、シアンが黒より小さいときは、黒は全波長域を吸収するため黒の上にシアンがのってもほぼ黒のままなので、シアンの量によらずほぼ一定の色を表し、シアンが黒より大きくなって初めてシアン色材の量が全体として色に大きく影響を及ぼすようになる。

【0024】そのため一定の大きさの黒の上にシアンを重ねた時の全体としての色度(X)変化は、図6の下のグラフのように、c<kでは一定(黒)のままであり、c>kになって初めてcの量が全体の色に影響を与えるようになる。

【0025】ここではシアンが、マゼンタと黒に重なった例を挙げたが、シアン、マゼンタを他の色材に変えてもほぼ同じことが起こる。これは黒色材が全ての波長の光を吸収するために、他のどの色材とも吸収帯域が重なるためである。

【0026】このように、各カラー信号の間の大小関係の中で、特にその境界で色再現特性の振舞が変わるのは黒とその他の色の関係である。そのため、区分的多項式を構成するために領域を分割するならば、黒と他の色との大小関係が特に重要である。つまり、図5のグラフでは、境界(c=m)の左右では色変換特性の違いが少ないので、全体を一つの多項式で近似することができるが、図6のグラフのようにc=kを境界に二つの領域で大きく異なる色変換特性を持つ場合は、異なる多項式を使うべきである。

【 0 0 2 7 】本発明では、各信号の関係の内、その大小関係により、色再現特性の大きく変化する部分だけを分割することにより、不必要な領域数の増加を抑え、少数のサンプルで正確に係数を設定することができる。

【0028】上記したように、黒信号(k)と他のカラー信号(c,m,y)との大小関係で領域を分割する場合、境界は、

c = k

m = k

y = k

となる。 c, m, y, kそのままの4次元空間では、これはどの軸とも直交しない、いわば斜めの超平面であり、各境界での連続性の扱いが難しい。図7は、例えば cとkの関係を示し、c=kが斜めの超平面となる。

【0029】本発明では、座標系を変換して各領域の境界が各軸と直交する超平面とすることで、連続性の保証を簡単にしている。すなわち、座標系(c,k)を、座標系(c-k,k)に変換する。図8は、c-kとkの関係を示し、c-k=0(c=k)の超平面は、(c-k)軸に直交する。以下、本発明の一実施例を図面を用いて具体的に説明する。本発明は、色変換式として区分多項式を使用し、各領域毎の多項式係数を少数のサンプルの実測値に対する最小2乗近似によって決定するものである。以下の実施例ではCMYKをL*a*b*に変換する変換法について説明するが、rgbをLuvに変換するなど、その他の属性、次元数の変換についても同様の方法で実施することができる。

【0030】〈実施例〉

(色変換式)図1は、本発明の実施例の構成を示す。本実施例では、c, m, y, k それぞれの面積率(0 \sim 1)を入力とし、実際にプリンタでそれを出力し、測色器で測定したときのL*a*b*値に変換するものとする。図において、1はc, m, yからkを引く減算器、2はc-k, m-k, y-kの大小関係を基に領域を判

$$(1 + c' + c'^2) \times (1 + m' + m'^2) \times (1 + y' + y'^2) \times (1 + k + k^2)$$

【0035】のように各項が、

[0036]

【数2】

 a_0

$$+a_1c' + a_2m' + a_3y' + a_4k$$

 $+a_5c'^2 + a_6m'^2 + a_7y'^2 + a_8k^2$

•••

$$+a_{80}c'^2m'^2y'^2k^2$$

【0039】ただし、 a_i は、後述する方法で係数記憶部3に設定される各領域毎の係数である。使用する多項式としては、例えば上記した81項の内からm項だけを選択して、一部分だけを使うなど、異なる形式とすることもできる。

【0040】(多項式係数の設定)測定データから最小 2乗法により各領域での係数を設定する。ここで各領域 別する領域判別部、3は領域毎に設定された係数を記憶する係数記憶部、4は判定された領域の係数を使った多項式によってL*a*b*を出力する多項式演算部である。

【0031】まず、減算器1は、座標系を変換するために、c, m, yそれぞれからkを引き、c-k(=c')、m-k(=m')、y-k(=y')、k04次元信号を作り、その内c', m', y'の3次元空間をc'=0、m'=0、y'=0を境界として分割する。その結果として、それぞれの入力信号は、図2に示すように8つの領域に判定される。図3は、図2で判定される各領域を示す。

【0032】このような分割は、c'=c-k=0より、元々のc, m, y, kの4次元空間では、c=k, m=k, y=kの3つの超平面を境界に分割する、つまりkとc, m, yとの大小関係により分割することに相当する。

【0033】次に、c', m', y', k04つの信号から、後述するように各領域で予め決められた係数を使った多項式によって、L*, a*, b*03つを計算する。多項式としては、c', m', y', k0双2次形式、つまり、

[0034]

【数1】

【0037】の各行から1つづつ要素を取り出して掛け合わせたものとする。各変数について3通りあるので、全ての組み合わせは34=81通りあり、次のような81項からなる多項式になる。

[0038]

【数3】

の多項式係数には以下の性質が要求される。すなわち、

(1) サンプルデータ(c, m, y, k-L*a*b

(1)

近似式の精度が当然求められる。

*)を良く近似する。

(2)領域の境界で連続である。

本来プリンタの色変換特性は、連続的な関数と考えられるので、近似の都合で不連続点が生じてはならない。

【0041】そこで、各領域での変換の連続性を保証するため、次のような方法をとる。まず、簡単のために1次元の信号について説明し、次いでcmyk4次元の場合を説明する。

$$1, c', c_-^{\prime 2}, c_+^{\prime 2}$$

【0044】の4つの項を考える。ただし、

[0045]

$$x_{-}^{n} = \begin{cases} x^{n} & (\text{if } x < 0) \\ 0 & (\text{otherwise}) \end{cases}$$
$$x_{+}^{n} = \begin{cases} x^{n} & (\text{if } x > 0) \\ 0 & (\text{otherwise}) \end{cases}$$

【0046】とする(なお、(式3)は切断べキ関数という)。

【0047】この4つから、任意の係数(a0, a1,

$$a_0 + a_1 c' + a_2 c_-^{\prime 2} + a_3 c_+^{\prime 2}$$

【0049】となる(1次元の区分多項式)。これは、c'が0以上の場合と0未満の場合に分けて考えれば、それぞれが

[0050]

【数7】

【0051】なる2次多項式である。また、その境界(c'=0)の前後で異なるのは、2次の項の係数(a2,a3)だけであり、c'2は境界点で0となるので、これら2つの2次多項式は境界で滑らかにつながる。正確にはその値および1次微分値が連続となる。【0052】従って、式(4)は、境界で滑らかに接続する区分多項式であるので、係数(a0からa3)を、測定値との平均2乗誤差が最小となるように決めればよい。そして、領域(c'<0)には係数a0,a1,a2が設定され、領域($c'\geq0$)には係数a0,a1,

【0053】c'm'y'k4次元の場合も式(2)と同様に、m',y', kについても4つの項をとり、それぞれを掛け合わせる。つまり、

[0054]

a3が設定される。

【数8】

$$\begin{array}{ccccc} 1 & c' & c'^{2}_{-} & c'^{2}_{+} \\ 1 & m' & m'^{2}_{-} & m'^{2}_{+} \\ 1 & y' & y'^{2}_{-} & y'^{2}_{+} \\ 1 & k & k^{2}_{+} \end{array}$$

【0055】の各行から1つづつを掛け合わせたものと

【0042】c'の1次元信号について、

[0043]

【数4】

(2)

【数5】

(3)

a2, a3)を使った多項式を作ると、

[0048]

【数6】

(4)

する(ただし、(k>0)なので k^2 _は必要がなく、kについて 3項となる)。そうすると、 $4^3 \times 3 = 19$ 2項の式ができる。

【0056】この多項式の第i項を p_i (c, m, y, k)とし、係数 q_i を使って、

[0057]

【数9】

$$\sum_{i}q_{i}p_{i}(c,m,y,k)$$

【0058】を考える。これは1次元の場合の式(4)に対応するものであり、任意の係数(q_i)に対して、図2に示す各領域で双2次式であり、また境界(c=k,m=k,y=k)で関数値および1次微分値が連続な関数となる。

【0059】上記した192項は、各領域の多項式として、式(1)を使用する場合に対応するもの、つまり式(1)のうち、 \mathbf{x}^2 を含む項(\mathbf{x} は \mathbf{c} , \mathbf{m} , \mathbf{y} , \mathbf{k} のどれか)を

[0060]

【数10】

 x^2

【0061】と

[0062]

【数11】

 x_{+}^{2}

【0063】で置き換えたものである。各領域の多項式 として、式(1)以外の形式を使用する場合にも、同様 な置き換えをすればよい。 【0064】この係数(q_i)は、多数のパッチの測定値から最小2乗法で決める。つまり、まず多数(N組)の(c , m , y , k)の組み合わせでプリンタ出力を行い、出力を測定し、測色値($L*_n$, $a*_n$, $b*_n$)を得る。また、出力したそれぞれのパッチについて、

$$\begin{bmatrix} P_{1,1} & P_{2,1} & \cdots & P_{192,1} \\ P_{1,2} & P_{2,2} & \cdots & P_{192,2} \\ \vdots & \vdots & & \vdots \\ P_{1,N} & P_{2,N} & \cdots & P_{192,N} \end{bmatrix} \begin{bmatrix} q_{L*,1} & q_{a*,1} & q_{b*,1} \\ q_{L*,2} & q_{a*,2} & q_{b*,2} \\ \vdots & \vdots & \vdots & \vdots \\ q_{L*,192} & q_{a*,192} & q_{b*,192} \end{bmatrix}$$

【 0 0 6 6 1 となる近似式が得られる。式(5) の第1 の行列の各行が p_i (c, m, y, k)であり、第2の行列の各列が q_i であり、式(5) の右辺の行列の各行が測定値である。これは係数(q_i)についての線形式であり、周知の線形最小 2 乗法で係数を求めることができる。

【0067】係数を求めた後、cmykからL*a*b*を計算するときには、各領域毎に $3^4=81$ 項の双2次式を使う。例えば、図2、3で、領域0に属するc, m, y, kの入力に対しては、 $c'\geq 0$, m' ≥ 0 , y' ≥ 0 'より、

[0068]

【数13】

$$c_-^{\prime 2}, m_-^{\prime 2}, y_-^{\prime 2}$$

【0069】は必ず0となるので、これらを含む項は0となる。従って、(c', m', y', k)がそれぞれ、

[0070]

【数14】

$$(1, x, x_{+}^{2})$$

【0071】3種類の組み合わせからなる項の係数だけを選んで使用すればよい。各領域についても同様に、

[0072]

【数15】

$$x_{+}^{2}, x_{-}^{2}$$

【0073】のうち0とならない方だけを選べば、81 項の多項式(つまり、81個の q_i を領域毎に選んだ多項式)となる。

【0074】このように予め係数(q_i)から、領域毎に必要な係数を選択し、各領域毎に81個の係数(a_i)を係数記憶部3に記憶する。そして、入力される信号(c,m,y,k)の領域を領域判別部2で判別し、その領域の係数 a_i を係数記憶部3から読み出し、多項式演算部4に与える。多項式演算部4は読み出された係数 a_i を使って、式(1)の多項式を計算し、L*a*b*を出力する。

[0075]

(c, m, y, k)から $p_i(c, m, y, k)$ を求める。第nパッチについての第i項を P_i , $_n$ とすると、

[0065]

【数12】

【発明の効果】以上、説明したように、請求項1記載の発明によれば、入力空間を複数の領域に分割し、各領域毎に異なる係数を使った多項式により色変換を行うので、各領域毎の多項式としては低次の式を用い、高次多項式に起こりがちな不要な振動を抑えることができる。また、領域の境界で多項式の微分値が連続となるので、滑らかな特性の色変換方法を実現することができる。

【0076】請求項2記載の発明によれば、任意の次数 の項を含む多項式を用いるので、各領域内での自由度を 利用して、高精度な色変換を実現することができる。

【 O O 7 7 】請求項 3 記載の発明によれば、各カラー信号の大小関係を基に領域を分割し、同心円モデルに近いプリンタに対しては、各領域での色変換特性を多項式近似することによって、そのプリンタの理想的な特性とのずれを吸収し、精度よい近似を行うことができる。

【0078】請求項4記載の発明によれば、黒信号と他のカラー信号との大小関係を基に領域を分割するので、 近似多項式の自由度を保ちながら領域数を抑えることが できる。

【0079】請求項5記載の発明によれば、黒以外のカラー信号から黒信号を減算した信号を作り、それら黒減算信号と黒信号を、多項式によって色変換するので、黒と他の色との大小関係による領域分割の境界で、近似多項式が連続となる係数を簡単に設定することができる。

【図面の簡単な説明】

- 【図1】本発明の実施例の構成を示す。
- 【図2】入力信号の判定結果を示す。
- 【図3】図2で判定される各領域を示す。
- 【図4】多項式近似の問題点を説明する図である。
- 【図5】同心円モデルにおけるシアンとマゼンタの関係 を説明する図である。

【図6】同心円モデルにおけるシアンと黒の関係を説明 する図である。

【図7】cとkの関係を示す図である。

【図8】c-kとkの関係を示す図である。

【符号の説明】

- 1 減算器
- 2 領域判別部
- 3 係数記憶部
- 4 多項式演算部

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-130626

(43) Date of publication of application: 16.05.1997

(51)Int.Cl.

H04N 1/60 G06T 1/00 H04N 1/46

(21)Application number: 07-284892

(71)Applicant: RICOH CO LTD

(22)Date of filing:

01.11.1995

(72)Inventor: AOKI SHIN

(54) COLOR SIGNAL CONVERSION METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To approximate a color conversion characteristic with high accuracy even against a printer with strong nonlinearity while avoiding vibration by the use of higher degree polynomial.

SOLUTION: An input cmyk is converted into c-k(c'), m-k(m'), y-k(y'), and an area discrimination section 2 discriminates an area based on the relation of quantity of the c', m', y'. A coefficient for each area is read by a coefficient storage section 3 and set to a polynomial arithmetic section 4 to calculate a polynomial converting the c', m', y' into L*a*b*.

LEGAL STATUS

[Date of request for examination]

11.05.2001

[Date of sending the examiner's decision of

19.10.2004

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2004-23662 of rejection]