实 验 报 告

课程名称 _	CPU 设计	_
实验项目 _	实验模型机的研制	_
实验仪器 _	微程序控制板 (C板)、	_
数据通路版	(B板)、控制信号版(A板)32	位微指令
	读写板各一块	

系	别_	计算机学院
专	业_	计算机科学与技术
班级/	学号	计科 1206/
学生如	生名	
联系甲	电话 .	
实验日	∃期 .	2014. 03-26
成	绩	
指导教	シ 师 _	沈美娥

一. 设计总要求

模型计算机设计的总要求主要有以下几个方面:

- (1) 模型机采用暂存器型的计算器结构。
- (2) 设计一个十六条指令的指令系统,包括单字长指令和双字长指令,其 指令寻址方式包括立即寻址、直接寻址、间接寻址、寄存器直接寻址 等;指令类型包括算逻类指令、传送类指令、控制类指令、停机指令 等。
- (3) 微程序控制器采用断定方式,微指令编码采用直接控制和字段编码相结合的方式,设计完成微程序流程图,编写微指令。
- (4) 自己编写一段小程序,完成某个小的功能,以验证指令的正确性。

二. 设计模型机的数据通路

本实验仪的 B 板已经给我们提供了带单总线的数据通路,如图一所示。

三. 模型机指令系统

一. 指令类型

指令系统系统可包含以下类型的指令:

1. 算术/逻辑运算类指令

算术/逻辑运算类指令,如取反、加1、加法、减法、与、或异或等指令。

2. 移位操作类指令

移位操作类指令,如左移指令和右移指令。

3. 数据传送类指令

数据传送类指令,通常指 CPU 内部寄存器之间传送或累加器与寄存器之间的数据传送指令,如 MOV、LDI

4. 程序转移控制类指令

存储器操作类指令,即存储器读/写指令。一般指的是把内存某单元内容读到某通用寄存器,或将某通用寄存器内容写入某内存单元。如 LAD、STA。

5. 程序转移控制类指令

转移指令分无条件转移和有条件转移。"条件"可以是运算器的一些状态标志(如进位标志 C_v 等)。如 JMP、JC。

二. 指令操作数寻址方式及其编码

X 字段	有效地址	说明
00	E=D	直接寻址
01	E=(D)	间接寻址
10	E=(PC)+D	相对寻址
11	E=(R ₂)+D	变址寻址

指令系统汇总表

1月マ 赤丸 仁心 衣					
指令长度	类型	助记符	功能	指令格式	
	零地址指令	HLT	停机	0000 ** **	
	单	COM R _d	$\overline{(R_d)} \rightarrow R_d$	0001 ** R _d	
	抽	INC R _d	$(R_d)+1 \rightarrow R_d$	0010 ** R _d	
	址指令	RAL R _d	2(R _d)→R _d	0011 ** R _d	
单字长指令	令	RAR R _d	$(R_d)/2 \rightarrow R_d$	0100 ** R _d	
长		ADD R _s , R _d	(R _s)加(R _d)→R _d	0101 R _s R _d	
指 	<u> </u>	SUB R _s , R _d	(R₅)减(Rd)→Rd	0110 R _s R _d	
	一 地 址 指•	AND R _s , R _d	$(R_s) \cdot (R_d) \rightarrow R_d$	0111 R _s R _d	
	上 指	OR R _s , R _d	$(R_s)+(R_d)\rightarrow R_d$	1000 R _s R _d	
	*	EOR R _s , R _d	$(R_s) \oplus (R_d) \rightarrow R_d$	1001 R _s R _d	
		MOV R _s , R _d	$(R_s) \rightarrow R_d$	1010 R _s R _d	
	一种扩扑	I DI DATA D		1011 ** R _d	
双字长指令	二地址指令	LDI DATA, R _d	DATA → R _d	DATA	
			(MD) -> D	11 X 00 R _d	
	三地址指令	LAD X,D, R _d	(MD)→R _d	D	
令	二地址111学	CTA V D D	p AMD	11 X 01 R _d	
		STA X, D, R _d	R _d →MD	D	

	二地址指令	JMP X, D	D→PC	11 X	10 ** D
-		JC X, D	若 C _y =1,则 D→PC	11	11 ** D

四. 指令执行流程

以条指令从内存取出到执行完成,需要若干个机器周期,任何指令的第一个机器周期都是取指令周期,并且伴随着程序计数器(PC)的自增,其余的机器周期与每条指令具体的操作有关。比如算术类的指令,先把寄存器中的数据经过数据总线放入暂存器,然后再经过逻辑运算单元放到数据总线上,如果需要写入寄存器,就把相关的微命令执行。如果遇到不同的寻址方式,如直接寻址,只需把地址送入 AR 即可,而如果是间接寻址,就需要把相应的内存单元的数据再次作为地址,进行寻址,相对寻址就是根据 PC 给一个偏移量,最后的地址为 PC+偏移量,变址寻址把 R_2 作为变址寄存器,最后的地址为变址寄存器的值加上偏移量然后进行寻址。在测试相对寻址的时候要注意计算当时 PC 的值,然后确定最后的地址单元中存放的值。我们这次使用的模型机的字长为 8 位,操作码有 4 位,总共有 16 种操作,具体的操作及其编码如下表。

指令流程

1.	HĽ	г				BUS → IR I	.DIR=1
		停机	TJ=1		3.		DR _i =1, YS ₁ YS ₀ =10
2.		M R _d				R _d →BUS	$YS_1YS_0=00$, $R_d \rightarrow BUS$, $DZ=1$
		rC → AR	PC→BUS,LDAR=1	5.		R R _d	-1 -0 , u ,
		PC+1→PC	LDPC=1			PC→AR	PC→BUS,LDAR=1
	2.	RAM→BUS	CS=1			PC+1→PC	LDPC=1
		BUS→IR	LDIR=1		2.	RAM→BUS	CS=1
	3.	(R _d)→BUS	Rd→BUS			BUS→IR	LDIR=1
		$BUS \rightarrow DR_1$	LDDR1=1		3.	右移(R _d)	LDR _i =1, YS ₁ YS ₀ =01
	4.	$\overline{\mathrm{DR_1}} \rightarrow \mathrm{BUS}$	$S_3S_2S_1S_0MC_n$ =000010, ALU \rightarrow BUS		4.	$R_d \rightarrow BUS$	$YS_1YS_0=00$, $R_d \rightarrow BUS$, DZ=1
		$BUS \rightarrow R_d$	LDR _i =1, YS ₁ YS ₀ =11, DZ=1	6.	AD	DR _s , R _d	
3.	INC	C R _d			1.	PC→AR	PC→BUS,LDAR=1
	1.	PC→AR	PC→BUS,LDAR=1			PC+1→PC	LDPC=1
		PC+1 → PC	LDPC=1		2.	RAM→BUS	CS=1
	2.	RAM→BUS	CS=1			BUS→IR	LDIR=1
		BUS→IR	LDIR=1		3.	$(R_s) \rightarrow DR_1$	$R_s \rightarrow BUS$, $BUS \rightarrow DR_1$
	3.	(R _d)→BUS	Rd→BUS		4.	$(R_d) \rightarrow DR_2$	$R_d \rightarrow BUS$, $BUS \rightarrow DR_2$
		$BUS \rightarrow DR_1$	LDDR1=1		5.	(DR₁)加(DR₂)→B	US $S_3S_2S_1S_0MC_n=100100$, ALU \rightarrow BUS
	4.	(DR₁)加 1→BU	$S \mid S_3S_2S_1S_0MC_n = 000001$, ALU \rightarrow BUS			$BUS \rightarrow R_d$	LDR _i =1, YS ₁ YS ₀ =11, DZ=1
		$BUS \rightarrow R_d$	LDR _i =1, YS ₁ YS ₀ =11, DZ=1	7.	SU	BR _s , R _d	
4.	RA	L R _d			1.	PC→AR	PC→BUS,LDAR=1
	1.	PC→AR	PC→BUS,LDAR=1			PC+1→PC	LDPC=1
		PC+1→PC	LDPC=1		2.	RAM→BUS	CS=1
	2.	RAM→BUS	CS=1			BUS→IR	LDIR=1

	2	$(R_s) \rightarrow DR_1$		$R_s \rightarrow BUS$, $BUS \rightarrow DR_1$		1	PC→AR P	C→BUS, LDAR=1
		$(R_d) \rightarrow DR_2$		$R_d \rightarrow BUS$, $BUS \rightarrow DR_2$		Τ.		DPC=1
		(DR_1) - (DR_2) \rightarrow BI	us	$S_3S_2S_1S_0MC_n=011001$, ALU \rightarrow BUS		2	RAM→BUS	CS=1
	٥.	BUS $\rightarrow R_d$	00	LDR _i =1, YS ₁ YS ₀ =11, DZ=1			$BUS \rightarrow DR_2$	LDDR ₂ =1
8.	AN	D R _s , R _d				3.	(DR ₂)→BUS	$S_3S_2S_1S_0MC_n=101010$, ALU \rightarrow BUS
		PC→AR	PC-	BUS,LDAR=1			BUS→AR	LDAR=1, P(2)
		PC+1→PC	LDP		X=0)1	200) /	
	2.	RAM→BUS	CS=				PC→AR	PC→BUS,LDAR=1
		BUS→IR	LDIF				PC+1→PC	LDPC=1
	3.	$(R_s) \rightarrow DR_1$	$R_s \rightarrow$	BUS, BUS→DR₁		2.	RAM→BUS	CS=1
	4.	$(R_d) \rightarrow DR_2$	$R_d \rightarrow$	BUS, BUS→DR ₂			$BUS \rightarrow DR_2$	LDDR ₂ =1
	5.	$(DR_1)(DR_2) \rightarrow BU$	JS	$S_3S_2S_1S_0MC_n=101110$, ALU \rightarrow BUS		3.	(DR ₂)→BUS	$S_3S_2S_1S_0MC_n=101010$, ALU \rightarrow BUS
		BUS→R _d	LDR	_i =1, YS ₁ YS ₀ =11, DZ=1			BUS→AR	LDAR=1
9.	OR	R _s , R _d				4.	RAM→BUS	CS=1
	1.	PC→AR	PC-	BUS,LDAR=1			$BUS \rightarrow DR_2$	LDDR ₂ =1
		PC+1→PC	LDP	C=1		5.	(DR₂)→BUS	$S_3S_2S_1S_0MC_n$ =101010, ALU \rightarrow BUS
	2.	RAM→BUS	CS=	1			BUS→AR	LDAR=1, P(2)
		BUS→IR	LDIF	R=1	X=1	L O		
	3.	$(R_s) \rightarrow DR_1$	$R_s \rightarrow$	BUS, BUS→DR ₁		1.	PC→AR	PC→BUS,LDAR=1
	4.	$(R_d) \rightarrow DR_2$	$R_d \rightarrow$	BUS, BUS→DR ₂			PC+1→PC	LDPC=1
	5.	$(DR_1)+(DR_2)\rightarrow B$	US	$S_3S_2S_1S_0MC_n$ =111010, ALU \rightarrow BUS		2.	RAM→BUS	CS=1
		$BUS \rightarrow R_d$	LDR	_i =1, YS ₁ YS ₀ =11, DZ=1			$BUS \rightarrow DR_1$	LDDR ₁ =1
10.	EOF	RR _s , R _d				3.	(PC)→BUS	PC→BUS
	6.	PC → AR	PC-	BUS,LDAR=1			BUS→DR ₂	LDDR ₂ =1
		PC+1→PC	LDP	C=1		4.	(DR ₁)加(DR ₂)→BU	JS $S_3S_2S_1S_0MC_n=100100$, ALU \rightarrow BUS
	7.	RAM→BUS	CS=	1			BUS→AR	LDAR=1
		BUS→IR	LDIF				$BUS \rightarrow DR_2$	LDDR ₂ =1, P(2)
		$(R_s) \rightarrow DR_1$	-	BUS, BUS→DR ₁	X=1			
		$(R_d) \rightarrow DR_2$		BUS, BUS \rightarrow DR ₂		1.	PC→AR	PC→BUS, LDAR=1
	10.			$S_3S_2S_1S_0MC_n=011010$, ALU \rightarrow BUS			PC+1→PC	LDPC=1
		BUS→R _d	LDR	_i =1, YS ₁ YS ₀ =11, DZ=1		2.	RAM→BUS	CS=1
11.		V R _s , R _d		N D. 15 1 D 1 D 1		_	BUS→DR ₂	LDDR ₂ =1
	1.	PC→AR		BUS,LDAR=1			$R_2 \rightarrow DR_1$	$R_2 \rightarrow BUS, LDDR_1=1$
	_	PC+1→PC	LDP			4.		JS $S_3S_2S_1S_0MC_n=100100$, ALU \rightarrow BUS
	2.	RAM→BUS	CS=				BUS→AR	LDAR=1
	2	BUS→IR	LDIF		12		BUS→DR ₂	LDDR ₂ =1, P(2)
		$(R_s) \rightarrow DR_2$		BUS, LDDR ₂₌₁	13.		O X, D, R d RAM→BUS	CS=1
	4.	$DR_2 \rightarrow BUS$ $BUS \rightarrow R_d$		$S_1S_0MC_n=101010$, ALU \rightarrow BUS =1, YS ₁ YS ₀ =11, DZ=1		1.	BUS $\rightarrow R_d$	LDR _i =1, YS ₁ YS ₀ =11, DZ=1
12	וחו	DATA, R _d	LDN	i-1, 13 ₁ 13 ₀ -11, DZ-1	1/1	STA	X, D, R _d	LDN_i-1 , 13_113_0-11 , $DZ-1$
12.		PC→AR	PC-	BUS,LDAR=1	14.		$(R_d) \rightarrow BUS$	R _d →BUS
	1.	PC+1→PC	LDP			1.	BUS→RAM	CS=1, WE=1, DZ=1
	2	RAM→BUS	CS=		15	IM	P X, D	C3-1, WL-1, <i>D2</i> -1
	۷.	BUS→IR	LDIF		13.		(DR₂)→BUS	$S_3S_2S_1S_0MC_n=101010$, ALU \rightarrow BUS
	3	PC→AR		>BUS, LDAR=1		1.	BUS→PC	LD ₁ =1, LDPC=1, DZ=1
	٥.	PC+1→PC	LDP		16	JC)		
	4.	RAM→BUS	CS=		_0.		-	\Rightarrow BUS S ₃ S ₂ S ₁ S ₀ MC _n =101010, ALU \Rightarrow BUS
		BUS→R _d		_i =1, YS ₁ YS ₀ =11, DZ=1		٠.	,	OP LD ₁ =1, LDPC=1, DZ=1
				, -, .o ₁ .o ₀ ±±, b 2 ±			200 7 1 C, [A] A) N	J. 151 1, 251 5 1, 52-1

五. 微程序流程图

(见附页)

六. 微程序表

(见附页)

七. 调试程序

先将 4 片芯片按照 3 2 1 4 的顺序插在 C 板上,然后开启电源,进行调试,一定要注意断电插拔芯片。要想执行上面指令系统中的程序,要使用控制台指令先把程序写入内存,然后执行。有的时候还需要检查相关内存单元中的数据是否正确。 控制台指令有:

- 1. 控制台写内存指令 WM: 代码 02H(0000 0010)
- 2. 控制台读内存指令 RM: 代码 01H(0000 0001)
- 3. 控制台启动指令 QD: 代码 00H(0000 0000) 下面介绍如何使用控制台指令:
- 1. 控制台写内存指令 WM
 - (1) 按下 CLR 总清键
 - (2) 置 SW=0000 0010, 然后 KQD, 进入写内存指令
 - (3) 置 SW=(要存入的内存单元), 然后 KQD
 - (4) KQD, 把PC送AR
 - (5) 置 SW=(要存入的数据), 然后 KQD
 - (6) KQD, 把数据送入 RAM, 并且 PC+1
 - (7) KQD, 返回第(5)步
- 2. 控制台读内存指令 RM
 - (1) 按下 CLR 总清键
 - (2) 置 SW=0000 0001, 然后 KQD, 进入读内存指令
 - (3) 置 SW=(要读取的内存单元), KQD
 - (4) KQD,把PC送AR
 - (5) KQD, 空操作
 - (6) KQD,将相关内存的内容读出,并在总线上显示,并且 PC+1 为读出下一个内存单元做准备
 - (7) KQD,返回第(5)步
- 3. 控制台启动指令
 - (1) 按下 CLR 总清键
 - (2) 置 SW=0000 0000, 然后 KQD, 进入启动指令
 - (3) KQD, 空操作
 - (4) KQD, 把PC送AR
 - (5) 置 SW=(要启动的程序所在的内存单元), KQD

- (6) KQD,将内存单元送到PC
- (7) KQD,转入微程序入口地址 55H。

所有指令总调试程序:

样机调试程序

地址	助记符	指令编码	说明	预期结果	
10H	10104110	1011 0001	0411.25	D 0411	
11H	LDI 01H,R ₁	0000 0001	01H→R ₁	R ₁ =01H	
12H	CTA V O111 D	1101 0101	0111-2/0.)	(0211)-0411	
13H	STA X ₁ , 01H, R ₁	0000 0001	01H→(R ₁)	(02H)=01H	
14H	1 V D V U D D	1100 0010	(01H)→R ₂	R ₂ =(02H)=01H	
15H	LAD X ₀ , 02H, R ₂	0000 0010	(OIH) 7 N ₂		
16H	LAD X ₂ , 01H, R ₀	1110 0000	$((PC)+1) \rightarrow R_0$	R ₀ =(19H)=02H	
17H	LAD X_2 , OITI, X_0	0000 0001	((FC)(1) > N ₀	10-(1311)-0211	
18H	LDI 02H, R₂	1011 0010	02H→R ₂	R ₂ =02H	
19H	LDI OZII, N2	0000 0010	0211 7 N ₂	112-0211	
1AH	LAD X ₃ , 01H, R ₀	1110 0000	$((R_2)+1) \rightarrow R_0$	R ₀ =(03H)=11H	
1BH	LAD X3, 0111, N ₀	0000 0001	(((2) 1) 7 (0		
1CH	LDI FFH, R ₁	1011 0001	FFH→R ₁	R ₁ =FFH	
1DH	LD11111, 11 ₁	1111 1111	1111 7 N ₁	111-1111	
1EH	ADD R ₂ , R ₁	0101 1001	(R₂)加(R₁)→R₁	R ₁ =01H	
1FH	JC X0, 21H	1100 1100	 若 Cy=1 则 22→PC 否则,无操作	PC=22	
20H	30 70, 2111	0010 0010	石 Cy-1 於 22) 		
21H	HLT	0000 0000	停机		
22H	COM R ₂	0001 0010	$(\overline{R_2}) \rightarrow R_2$	R ₂ =FDH	
23H	INC R ₂	0010 0010	$(R_2)+1 \rightarrow R_2$	R ₂ =FEH	
24H	RAL R ₂	0011 0010	(R₂)*2→R₂	R ₂ =FCH	
25H	RAR R ₂	0100 0010	$(R_2)/2 \rightarrow R_2$	R ₂ =FEH	
26H	SUB R ₂ , R ₁	0110 1001	(R₂)减(R₁)→R₁	R ₁ =FDH	
27H	AND R _{2,} R ₁	0111 1001	$(R_2) \cdot (R_1) \rightarrow R_1$	R ₁ =FCH	
28H	OR R _{2,} R ₁	1000 1001	$(R_2)+(R_1) \rightarrow R_1$	R ₁ =FEH	
29H	EOR R ₂ , R ₁	1001 1001	$(R_2) \oplus (R_1) \rightarrow R_1$	R ₁ =00H	
2AH	MOV R ₁ , R ₂	1010 0110	$(R_1) \rightarrow R_2$	R ₂ =00H	
2BH	JMP X ₀ , 21H	1100 1000	21H → PC	PC=21H	
2CH	31411 AU, ZIII	0010 0001	22.1710	FC-21FI	

注:

在启动上表的程序之前,要事先把下面几个内存单元用控制台指令写入对应的数据,然后进行调试。

01H	02H
02H	01H
03H	11H
19H	02H

八. 综合设计总结

通过本次实践性的《CPU设计》课程,我真真正正做到了理论结合实际。这次实验结合了《计算机组成原理》课程中学习的指令系统,把课本上的看到的理论以及课堂上听到的方法,从对指令系统的改写开始,到指令流程的设计,再到指令流程图的设计最后写出了完全以'0''1'代码组成的微程序,然后通过32位微指令读写板,把所有的微程序代码写入到4个281EEPROM芯片中,最后在插在C板上,进行调试。

由于微程序多,信号多,出错在所难免。我认为解决错位的最有效的方法还是从源头上, 先检查一下相应的控制信号是否正确,然后对照微程序表,判断是否有错误,最后,使用 32 位微程序读写板对照微程序表进行排错,做完上述工作后,在拿到 C 板上,对照程序流 程图和微程序表进行测试。这样一定会高效得找出所有的错误。比如我在往芯片中输入程序 之前,先检查了所有的控制信号与微程序表是否一致,然后把所有的微程序都输入到了芯片 中后,又立即对照微程序表看是否输入正确,这个过程中,我找到了几个错误。最后在 C 板上调试的时候,又根据其显示,找出了1个不容易发现的错误。一定要注意在插拔芯片之 前注意断电,并且不要弄断芯片的管脚,否则将会前功尽弃。

对于程序设计而言,俗话说 3 分编程, 7 分调试。的确是这样,本次实验的大部分时间基本上都是在排错。为了测试所有功能都能够正常运行,我设计了本报告第七部分的调试程序。在设计 4 种寻址方式的程序的时候着实废了一番功夫。如果说模型机设计的过程是把理论变成现实的过程,那么调试程序设计的过程,其实是对程序在理论应用层面的一个更加清楚的认识,对理论的更深入理解的过程。通过这次实验,我切身的感受到,动手能力在实践中的重要性,感受到了实践对于帮助理解理论原理的必要性。