VERA module

Author: Frank van den Hoef.

This document describes the Video Enhanced Retro Adapter video-module.

1. External address space

Reg	Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	\$9F20	VERA_ADDR_HI		Increment Address (18:16)						
1	\$9F21	VERA_ADDR_MID		Address (15:8)						
2	\$9F22	VERA_ADDR_LO		Address (7:0)						
3	\$9F23	VERA_DATA1		Data port 1						
4	\$9F24	VERA_DATA2		Data port 2						
5	\$9F25	VERA_CTRL	RESET				-			ADDRSEL
6	\$9F26	VERA_IEN	- SPRCOL LINE					VSYNC		
7	\$9F27	VERA_ISR	- SPRCOL LINE						VSYNC	

When RESET is set to 1, the FPGA will reconfigure itself. All registers will be reset. The palette RAM will be set to its default values.

If ADDR_SEL = 0, register 0/1/2 contain address of data port 1, otherwise register 0/1/2 contain address of data port 2.

After each access of one of the data ports the corresponding address is increment by the value in the corresponding increment field.

Interrupts will be generated for the interrupt sources set in VERA_IEN. VERA_ISR will indicate interrupts that have occurred. Writing a 1 to a position in VERA ISR will clear that interrupt status.

2. Internal address space

Address range	Description					
\$00000 - \$1FFFFF	Video RAM					
\$20000 - \$207FF	PETSCII character ROM (upper-case)					
\$20800 - \$20FFF	PETSCII character ROM (lower-case)					
\$40000 - \$4000F	Layer 1 registers					
\$40010 - \$4001F	Layer 2 registers					
\$40020 - \$4002F	Sprite registers					
\$40030 - \$4003F	Display composer registers					
\$40200 - \$403FF	Palette					

3. Registers

3.1. Layer 1/2 registers

Register	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	LAYERn_CTRL0		MODE		VSCALE		HSCALE		EN
1	LAYERn_CTRL1		-	TILEH	TILEW	MAPH		MAPW	
2	LAYERn_MAP_BASE_LO	MAP_BASE_LO (9:2)							
3	LAYERn_MAP_BASE_HI	MAP_BASE_HI (17:10)							
4	LAYERn_TILE_BASE_LO	TILE_BASE_LO (9:2)							
5	LAYERn_TILE_BASE_HI	TILE BASE HI (17:10)							
6	LAYERn_HSCROLL_LO	HSCROLL (7:0)							
7	LAYERn_HSCROLL_HI	- HSCROLL (11:8)				L (11:8)			
8	LAYERn_VSCROLL_LO	VSCROLL (7:0)							
9	LAYERn_VSCROLL_HI	- VSCROLL (11:8)							

Layer 1 registers can be accessed from memory location \$40000.

Layer 2 registers can be accessed from memory location \$40010.

The layer can be enabled or disabled by setting or clearing the EN bit.

The width and height of each rendered pixel can be controlled by the **HSCALE** and **VSCALE** field respectively. A range of 0-3 is available, which results in a pixel width or height of 1-4 pixels.

MAP_BASE, which is composed of **MAP_BASE_HI** and **MAP_BASE_LO**, specifies the base address where tile map data is fetched from. (Note that the registers don't specify the lower 2 bits, so the address is always aligned to a multiple of 4 bytes.)

TILE_BASE, which is composed of **TILE_BASE_HI** and **TILE_BASE_LO**, specifies the base address where tile data is fetched from. (Note that the registers don't specify the lower 2 bits, so the address is always aligned to a multiple of 4 bytes.)

HSCROLL, which is composed of **HSCROLL_HI** and **HSCROLL_LO**, specifies the horizontal scroll offset. A value between 0 and 4095 can be used. Increasing the value will cause the picture to move left, decreasing will cause the picture to move right.

YSCROLL, which is composed of **YSCROLL_HI** and **YSCROLL_LO**, specifies the vertical scroll offset. A value between 0 and 4095 can be used. Increasing the value will cause the picture to move up, decreasing will cause the picture to move down.

MAPW, MAPH specify the map width and map height respectively:

Value	Map width / height
0	32 tiles
1	64 tiles
2	128 tiles
3	256 tiles

TILEW, **TILEH** specify the tile width and tile height respectively:

Value	Tile width / height					
0	8					
1	16					

3.1.1. Layer display modes

Each layer supports a few different display modes, which can be selected using the **MODE** field:

Mode	Description
0	Tile mode 1bpp (per-tile 16 color foreground and background color)
1	Tile mode 1bpp (per-tile 256 color foreground color and fixed background color 0)
2	Tile mode 2bpp
3	Tile mode 4bpp
4	Tile mode 8bpp
5	Bitmap mode 2bpp
6	Bitmap mode 4bpp
7	Bitmap mode 8bpp

3.1.2. Mode 0 - 16 color text mode

MAP BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0		Character index							
1	E	Backgrou	und colc	r	Foreground color				

TILE_BASE points to the character data. This data is organized as 8 bytes per character entry. Each byte represents 1 line of character data, where bit 7 represents the left-most pixel and bit 0 the right-most pixel. If the bit is set the foreground color is used, otherwise the background color. To use the built-in character set this can be set to \$8000 for the upper case PETSCII font and to \$8200 for the lower case PETSCII font. It is also possible to use a custom character set located in RAM.

3.1.3. Mode 1-256 color text mode

MAP_BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		Character index								
1		Foreground color								

TILE_BASE points to the character data. This data is organized as 8 bytes per character entry. Each byte represents 1 line of character data, where bit 7 represents the left-most pixel and bit 0 the right-most pixel. If the bit is set the foreground color is used, otherwise color 0 is used. To use the built-in character set this can be set to \$8000 for the upper case PETSCII font and to \$8200 for the lower case PETSCII font. It is also possible to use a custom character set located in RAM.

3.1.4. Mode 2/3/4 – Tile mode 2/4/8bpp

MAP_BASE points to a tile map containing tile map entries, which are 2 bytes each:

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
0	Tile index (7:0)								
1		Palette	e offset		V-flip	H-flip	Tile ind	ex (9:8)	

TILE_BASE points to the tile data. Each tile is 8x8 pixels. Depending on the mode each tile uses either 16, 32 or 64 bytes of memory.

Each pixel in the tile data gives a color index of either 0-3 (2bpp), 0-15 (4bpp), 0-255 (8bpp). This color index is modified by the palette offset in the tile map data using the following logic:

- Color index 0 (transparent) and 16-255 are unmodified.
- Color index 1-15 is modified by adding 16 x palette offset.

TODO: explanation of tile data memory organization

3.1.5. Mode 5/6/7 – Bitmap mode 2/4/8bpp

MAP_BASE points to the bitmap data.

TILE_BASE isn't used in these modes.

TODO: explanation of bitmap data memory organization

3.2. Sprite registers

TBD

3.3. Display composer

TBD

3.4. Palette

The palette translate 8-bit color indexes into 12-bit output colors. The palette has 256 entries, each with the following format:

Offset	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0		Gre	een		Blue					
1			-		Red					

At reset, the palette will contain a predefined palette:

Color indexes 0-15 contain the C64 color palette.

Color indexes 16-31 contain a grayscale ramp.

Color indexes 32-255 contain various hues, saturation levels, brightness levels.