# Quick Permutation Test: feature filtering of n-gram data

Piotr Sobczyk<sup>1\*</sup>, Michał Burdukiewicz<sup>2</sup>, Chris Lauber<sup>3</sup>, Paweł Mackiewicz<sup>2</sup>
\*Piotr.Sobczyk@pwr.edu.pl

<sup>1</sup>Wrocław University of Technology, Department of Mathematics, Poland <sup>2</sup>University of Wrocław, Department of Genomics, Poland

<sup>3</sup>Dresden University of Technology, Institute of Medical Informatics and Biometry, Poland

#### Introduction

N-grams (k-tuples) are vectors of n characters derived from input sequence(s). They may form continuous sub-sequences or be discontinuous. Another important n-gram parameter is its position. Instead of just counting n-grams, one may want to count how many n-grams occur at a given position in multiple (e.g. related) sequences.

|            | P1  | P2   | P3  | P4    | P5  | P6 |
|------------|-----|------|-----|-------|-----|----|
| S1         | 2   | 3    | 1   | 1     | 2   | 3  |
| <b>S</b> 2 | 3   | 2    | 3   | 2     | 2   | 2  |
| <b>S</b> 3 | 4   | 2    | 2   | 1     | 3   | 1  |
|            | San | nnle | Sen | lllen | CES |    |

| P1_1 | P2_1 | P3_1 | P4_1 | P5_1 | P6_1 | P1_2 | P2_2 | P3_2 | P4_2 | P5_2 |
|------|------|------|------|------|------|------|------|------|------|------|
| 0    | 0    | 1    | 1    | 0    | 0    | 1    | 0    | 0    | 0    | 1    |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 1    |
| 0    | 0    | 0    | 1    | 0    | 1    | 0    | 1    | 1    | 0    | 0    |
|      |      |      |      |      |      |      |      |      | _    |      |

A fraction of possible unigrams with position information.

# Curse of dimensionality

Number of possible positioned n-grams (not taking into account distances between elemnts of n-gram):



# Permutation test

During permutation tests class labels are randomly exchanged during computation of significance statistic. p-values are defined as:

p-value 
$$=rac{N_{T_P>T_R}}{N}$$

where  $N_{T_P > T_R}$  is number of times when  $T_P$  (permuted test statistic) was more extreme than  $T_R$  (test statistic for non-permuted data).

Permutation tests are model and statistic independent, but computationally expensive (especially precise estimation of low p-values, because the number of permutations is inversely proportional to the interval between p-values).

# QuiPT algorithm

If probability that target equals 1 is  $oldsymbol{p}$  and probability that feature equals 1is q and feature and target are independent then each of them has the following probabilities

$$P(Target, Feature) = (1, 1)) = p \cdot q$$
 $P(Target, Feature) = (1, 0)) = p \cdot (1 - q)$ 
 $P(Target, Feature) = (0, 1)) = (1 - p) \cdot q$ 
 $P(Target, Feature) = (0, 0)) = (1 - p) \cdot (1 - q)$ 

$$F(n_{1,1},n_{1,0},n_{0,1},n_{0,0}) = inom{n}{n_{1,1}} (p \cdot q)^{n_{1,1}} n - n_{1,1} \ inom{p \cdot (1-q)^{n_{1,0}}}{(n_{1,0})} (p \cdot (1-q))^{n_{1,0}} \ inom{n - n_{1,1} - n_{1,0}}{(n_{0,1})} ((1-p) \cdot q)^{n_{0,1}} \ inom{n - n_{1,1} - n_{1,0} - n_{0,1}}{n_{0,0}} \ inom{(1-p) \cdot (1-q)^{n_{0,0}}}{(1-p) \cdot (1-q)^{n_{0,0}}}$$

In addition to this:  $n_{1,\cdot}=n_{1,1}+n_{1,0}$  and  $n_{\cdot,1}=n_{1,1}+n_{0,1}$  are known

and fixed.





|   | Target | Feature | Freq |
|---|--------|---------|------|
| 1 | 0      | 0       | 40   |
| 2 | 1      | 0       | 10   |
| 3 | 0      | 1       | 25   |
| 4 | 1      | 1       | 40   |

#### Test power



# False discoveries



# Summary

Quick permutation test is a powerful and quick equivalent of permutation test in binary feature-binary target testing scenario.

# **Avaibility**

biogram R package:

http://cran.r-project.org/web/packages/biogram/

# Bibliography