

AD-A169 884 FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM 1/4
SIMULATOR HARDWARE. (U) ROCKWELL INTERNATIONAL COLUMBUS
OH NORTH AMERICAN AIRCRAFT OP W N BICKEL ET AL
UNCLASSIFIED JAN 86 MA-85-0134 NADC-79024-60 F/G 13/7 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

(12)

NADC-79024-60

FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM SIMULATOR HARDWARE – PHASE II

AD-A169 884

DTIC FILE COPY

**Rockwell
International**

North American Aircraft Operations
4300 East Fifth Avenue
P.O. Box 1259
Columbus, Ohio 43216

JANUARY 1986

FINAL REPORT FOR PERIOD 15 MAY 1980–15 NOVEMBER 1985

Approved for Public Release
Distribution Unlimited

Prepared For

NAVAL AIR SYSTEMS COMMAND
Department of the Navy
Washington, DC 20361

NAVAL AIR DEVELOPMENT CENTER
Aircraft and Crew Systems Technology Directorate
Warminster, PA 18974

DTIC
ELECTED
JUL 21 1986
S E D

86 7 21 002

DISCLAIMER NOTICE

**THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.**

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE					
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS N/A			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION/AVAILABILITY OF REPORT Approved for Public Release; Distribution Unlimited			
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE					
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NA-85-0134		5. MONITORING ORGANIZATION REPORT NUMBER(S) NADC-79024-60			
6a. NAME OF PERFORMING ORGANIZATION Rockwell International Corp. North American Aircraft Operations	6b. OFFICE SYMBOL <i>(If applicable)</i> --	7a. NAME OF MONITORING ORGANIZATION Naval Air Development Center (6061)			
6c. ADDRESS (City, State and ZIP Code) 4300 East Fifth Avenue Columbus, OH 43216	7b. ADDRESS (City, State and ZIP Code) Warminster, PA 18974				
8a. NAME OF FUNDING/SPONSORING ORGANIZATION Naval Air Systems Command	8b. OFFICE SYMBOL <i>(If applicable)</i> 310I	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER N62269-80-C-0261			
9c. ADDRESS (City, State and ZIP Code) Department of the Navy Washington, DC 20361	10. SOURCE OF FUNDING NOS.				
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT NO.
11. TITLE (Include Security Classification) FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM SIMULATOR HARDWARE - PHASE II					
12. PERSONAL AUTHOR(S) Bickel, William N. and Haning, Robert K.					
13a. TYPE OF REPORT Final	13b. TIME COVERED FROM 80 May 5 to 85 Nov 15	14. DATE OF REPORT (Yr., Mo., Day) 1986 January	15. PAGE COUNT 280		
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Aircraft Hydraulic Systems Lightweight Hydraulic Systems LHS				
19. ABSTRACT (Continue on reverse if necessary and identify by block number) The Lightweight Hydraulic System (LHS) Advanced Development Program is a multi-phase investigation of the concept of using an 8000 psi operating pressure level to achieve smaller and lighter weight hydraulic components than those used in aircraft with conventional 3000 psi systems. This report presents the results of Phase II in which a full scale A-7E 8000 psi dual system hydraulic simulator was fabricated and tested. Tests conducted were proof pressure, system integration, baseline, dynamic performance, and 600 hours of endurance cycling. No major technological problems were encountered. Four flight control actuators accumulated over 3,000,000 cycles; one pump accumulated over 1000 hours of operation (Phase I + Phase II). Hydraulic system math models were corroborated by test data. A weight and space analysis update projected 33.1% and 36.3% savings, respectively, over an equivalent 3000 psi system. A study of simulator operating experience indicated a 23% improvement in reliability over a comparable 3000 psi system. An additional 600 hours of simulator endurance cycling are scheduled for completion in FY '86.					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED <input checked="" type="checkbox"/> SAME AS RPT. <input type="checkbox"/> DTIC USERS <input type="checkbox"/>		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED			
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b. TELEPHONE NUMBER <i>(Include Area Code)</i>	22c. OFFICE SYMBOL		

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

EXECUTIVE SUMMARY1.0 PURPOSE OF THE PROGRAM

Power requirements of hydraulic systems in military aircraft have risen steadily from a few horsepower during World War II to over 1000 horsepower in the current B-1B bomber. Advanced tactical fighters in the 1990's are expected to have large increases in hydraulic power levels over comparable existing aircraft yet have less space available for installation of hydraulic components. Significant improvements must therefore be made in hydraulic system energy management and in reducing component weight and size. The multi-phase Lightweight Hydraulic System (LHS) Advanced Development Program is an investigation of the concept of using an 8000 psi operating pressure level to achieve smaller and lighter weight components than those used in conventional 3000 psi systems.

2.0 BENEFITS TO THE NAVY

The LHS Advanced Development Program is an assessment of the advantages of using an 8000 psi operating pressure level instead of the standard 3000 psi level. The benefit goals established for 8000 psi lightweight hydraulic systems over conventional 3000 psi systems are:

Weight	30% reduction
Volume	40% reduction
MFHBF	15% improvement
MMH/FH	15% improvement

3.0 BACKGROUND INFORMATION

The Navy began an Exploratory Development Program in 1966 to study the practicality and potential benefits of using operating pressure levels higher than 3000 psi. The program included a feasibility study, component development and testing, selection of an optimum operating pressure level, laboratory system testing, and brief flight testing. The program established that: 1) 8000 psi hydraulic systems are practical, and 2) overall weight and volume can be reduced (on a retrofit basis) up to 30% and 40%, respectively, for systems delivering more than approximately 100 horsepower. Future aircraft hydraulic systems may show even greater benefits in weight and space savings using 8000 psi technology.

QUALITY
INSPECTED
3

Justification	
By _____	
Distribution/ _____	
Availability Codes _____	
Dist	Avail and/or Special
A-1	

The development of a full scale lightweight hydraulic system was undertaken to demonstrate and validate 8000 psi technology in a system designed for installation in an A-7E test bed aircraft. Objectives of the full scale LHS Development Program were:

- o Re-design the A-7E flight control hydraulic and actuation systems to operate at 8000 psi.
- o Demonstrate 8000 psi system reliability by long term endurance testing.
- o Assess the effects of utilizing 8000 psi technology on component weight & volume and R&M.

The full scale Lightweight Hydraulic System Development Program was scheduled to be performed in three phases:

- Phase I Design, fabricate, and test 8000 psi components.
(Documented in Report NADC-77108-30, Design, Development, and Evaluation of Lightweight Hydraulic System Hardware - Phase I, dated January 1981)
- Phase II Fabricate full scale hydraulic simulator. Conduct performance and endurance tests.
- Phase III Install 8000 psi hydraulic system in an A-7E aircraft. Conduct flight test program.

This report covers Phase II

4.0 PHASE II PROGRAM OBJECTIVE

The primary objective in Phase II was to substantiate the acceptability of LHS components for flight testing on an A-7E aircraft. This was done by demonstrating that the LHS hardware met design requirements and was validated by:

- o Confirming component performance
- o Determining system pressure, flow, and temperature characteristics
- o Demonstrating system stability, response, and control
- o Verifying component/system endurance capabilities
- o Providing data for R&M determinations
- o Substantiating math models
- o Providing data to verify predicted weight and volume savings

5.0 PHASE II SUMMARY

5.1 HYDRAULIC SYSTEM DESIGN

Hydraulic circuitry design was completed in Phase I. The A-7E systems were reconfigured from three independent power control systems operating at 3000 psi (PC-1, PC-2, and PC-3) to two independent 8000 psi flight control systems (FC-1 and FC-2) and one 3000 psi utility system. Primary control surface actuators were aileron, spoiler/deflector, rudder, and unit horizontal tail (UHT). Secondary flight controls include a speed brake and wing leading edge flaps. The automatic flight control system (AFCS) has three actuators: roll, pitch, and yaw.

All A-7E flight control actuators were fabricated except the RH aileron, RH spoiler/deflector, RH leading edge flaps, and two AFCS units. These actuators were not procured because of program funding limitations. Initial testing was conducted with a one pump system. Subsequent funding permitted fabrication of a two system configuration. The aileron, rudder, LH UHT, yaw AFCS, and speed brake actuators were fabricated and tested in Phase I.

The LHS actuators were designed for the same end attach points, kinematics, load, stroke, and rate requirements as their counterpart 3000 psi actuators. Conventional design techniques and fabrication procedures were employed for all the test units. The 8000 psi pumps were a typical variable delivery in-line piston design with several unique features to optimize performance at 8000 psi.

5.2 SIMULATOR DESIGN

The LHS simulator is a steel structure with aircraft hydraulic component installations designed to represent a full scale A-7E 8000 psi flight control system. Modular design was employed to facilitate fabrication and permit testing of individual actuators. Load/stroke conditions imposed on each actuator were based on original A-7E design requirements. Transmission line lengths, routing, and fittings were as close as practical to those anticipated in the aircraft.

5.3 SIMULATOR TESTS

Proof Pressure. Two types of proof tests were conducted on the newly fabricated systems. Pressure lines and fittings alone were proofed at 16,000 psi. Then with all components installed, the total system was proofed at 12,000 psi.

System Integration. Initial operation of the simulator was accomplished using a planned start-up procedure. Hydraulic fluid clean-up and actuator rigging were performed first. A hydraulic resonance survey and simulator operating stability tests were then conducted. Maximum pump ripple found was 300 psi peak-to-peak; the maximum allowable is 400 psi peak-to-peak.

NADC-79024-60

Lightweight Hydraulic System Simulator

Baseline. Tests were performed to determine the range and distribution of simulator fluid temperatures, pressures, and flows. Stabilized temperatures resulting from operation with pump suction fluid maintained at +200°F were recorded. Pump case drain fluid temperature never exceeded +260°F. Pump discharge flow during simulator cycling varied from 1.2 to 5.4 gpm; pump case flow ranged from 1.1 to 1.3 gpm. Internal leakage of all actuators and valves totaled 0.8 gpm with the actuators at null.

Dynamic Performance. Pressure dynamics occurring in the discharge line near the pump were surveyed. The maximum pressure ripple found was 300 psi peak-to-peak. Information developed in this investigation was used to support math model testing.

Measurements were taken in the pressure and return systems to verify that pressure transients resulting from the operation of actuators and solenoid valves did not exceed the design limit of 9600 psi. All pressure peaks were acceptable except at the AFCS yaw actuator where an 11,700 psi surge occurred when a shut-off valve was energized. The surge was eliminated by installing a restrictor.

Simulator tubing vibration was measured to verify that stress levels were satisfactory. Sixteen locations were surveyed. All vibration was well below maximum acceptable amplitudes.

Actuator frequency response was determined under both load and no-load conditions for three modes of operation. Overdamped operating characteristics were observed. The various operating modes had only minor effects on performance.

Endurance. This test was conducted to demonstrate that component performance and reliability were satisfactory for long periods of operation. A typical 2 hour flight mission was simulated and repeated until a total of 600 hours of operation were accumulated. Component performance checks were made at 150 hour intervals. Selected actuators were disassembled at these times and examined for wear.

Actuator load/stroke magnitude and cycle distribution were as follows:

<u>Load/Stroke</u>	<u>Cycling Rate</u>	<u>Total Cycles</u>
2%	3 Hz	5400
10%	1 Hz	900
50%	0.25 Hz	375
100%	0.12 Hz	72

6747/2 Hours

LHS component performance summaries given below include Phase I hours and cycles.

Pumps. Operating time totals were: FC-1, 1043 hours; FC-2, 543 hours; "spare", 221 hours. Pump overall efficiency was marginal; heat rejection was 20% higher than the design goal of 300 BTU/min. Pump endurance characteristics were good except for the pintle bearings which were under-sized. A re-designed pump currently under test is expected to resolve the performance deficiencies.

Actuators. Four actuators have completed approximately 3,000,000 cycles. The endurance characteristics of all actuators were considered satisfactory, and further cycling is planned to accumulate an additional 2,000,000 cycles during 600 more hours of operation.

Minor Components. Although some quality control and design deficiencies were encountered, in general, the performance of all minor components such as check valves, relief valves, and restrictors was considered satisfactory. Coil tubing used in the spoiler/deflector installation will require additional development effort.

Ground Support Equipment. An AHT-63 portable hydraulic test stand was converted to operate at 8000 psi by replacing 3000 psi components with 8000 psi components. The GSE was operated a total of 13.0 hours during simulator demonstrations and tests. Performance was satisfactory except for heat dissipation which was marginal. Efforts are currently in progress to increase the heat removal capacity.

5.4 MATH MODEL

Hydraulic system dynamic analysis was conducted on the LHS simulator using a computer program developed by the Air Force. Two types of analyses were performed:

- o Prediction of locations, amplitudes, and frequencies of standing wave oscillating pressures.
- o Prediction of hydraulic system response to sudden changes in flow demand resulting in pressure disturbances throughout the system.

FC-1 system was modeled for the frequency response analysis. The predictions were verified near the pump using test data generated by a clamp-on pressure transducer and spectrum analyzer. Correlation of math model results with the measured test data was considered good. All pressure ripple amplitudes were less than the maximum allowable ± 200 psi. The pressure peak observed in the rudder actuator control system was used to corroborate the transient analysis program. The math model prediction was considered excellent.

5.5 SYSTEM WEIGHT AND SPACE ANALYSIS

A major objective of the LHS program was to verify the projected 30% weight and 40% volume reductions achieved by using an 8000 psi operating pressure level instead of 3000 psi. Weight and space savings calculated in Phase I were updated to reflect actual hardware weight measurements taken in Phase II. The updated weight and space savings were:

Total weight of EQUIVALENT 3000 psi system	644.4 lb
Total weight of 8000 psi system	<u>431.3</u> lb
Weight reduction	213.1 lb
Weight savings	33.1 %
Total volume of EQUIVALENT 3000 psi system	8173 in ³
Total volume of 8000 psi system	<u>5207</u> in ³
Volume reduction	2966 in ³
Space savings	36.3 %

5.6 RELIABILITY & MAINTAINABILITY ASSESSMENT

The R&M assessment was based primarily on data accumulated from LHS simulator mission/profile testing. R&M goals were to achieve a 15% improvement over current fleet experience with the A-7E aircraft. A reliability growth trend analysis was performed using the laboratory data, and a failure-modes-and-effects analysis was made to determine design improvement requirements.

The data base developed in this program substantiated that 8000 psi technology does not compromise the reliability or maintainability of an aircraft hydraulic system. Experience gained from LHS simulator testing indicated a potential improvement in reliability of 23% over a comparable 3000 psi system. The reduced failure rate translates to an 18% reduction in maintenance man-hours. These figures exceed the R&M improvement goal of 15%.

5.7 LHS SPECIFICATIONS

A total of 34 preliminary specifications covering system and component requirements for 8000 psi lightweight hydraulic systems were prepared in Phase I. Ten specifications were updated in Phase II based on laboratory test experience. One new specification was written.

6.0 CONCLUSIONS

Major advances toward the goals of the LHS program were accomplished in Phase II. A full scale, dual system 8000 psi hydraulic simulator was fabricated and 600 hours of endurance testing were completed satisfactorily. Six hundred additional hours of cycling are planned. R&M improvement and weight and space saving objectives were validated. The practicality of the 8000 psi lightweight hydraulic system concept was demonstrated conclusively in Phase II. Full scale flight testing is now the logical next step.

7.0 RECOMMENDATIONS

The LHS advanced development program should proceed by conducting the planned Phase III flight tests using an A-7E test bed aircraft. Additional effort should be directed toward support of 8000 psi technology for next generation aircraft. Recommended tasks are:

- o Use the LHS simulator as a means to evaluate emerging technologies such as rotary actuators, PEEK seals, and energy efficient concepts.
- o Conduct a full qualification test on a re-designed 8000 psi pump.
- o Conduct full qualification tests on 8000 psi tubing/fittings.
- o Develop coil tube installation design guidelines.
- o Conduct extreme temperature tests on LHS simulator components.

PREFACE

This report documents a development program conducted by Rockwell International Corporation, North American Aircraft Operations, Columbus, Ohio, under Contract N62269-80-C-0261 with the Naval Air Development Center, Warminster, Pennsylvania. Technical direction was administered by Mr. J. Ohlson, Head, Materials Application Branch, Aircraft and Crew Systems Technology Directorate, Naval Air Development Center (6061), and Mr. S. Hurst, Assistant Technology Administrator, Naval Air Systems Command (AIR-340C).

This report presents the results of Phase II of a program to design, fabricate, and test a full scale 8000 psi Lightweight Hydraulic System in a ground simulator and A-7E flight test aircraft. This work is related to tasks performed under Contracts N0w-65-0567-d, N00019-68-C-0352, N00156-70-C-1152, N62269-71-C-0147, N62269-72-C-0381, N62269-73-C-0700, N62269-74-C-0511, N62269-75-C-0422, N62269-76-C-0254, N62269-78-C-0005, and N62269-78-C-0363.

The project engineer for Phase II of the LHS Advanced Development Program was Mr. W. Bickel. Acknowledgement is given to the following engineers for their contributions to this report.

Mr. W. Andrews	Math Model
Mr. E. Kauffman	R&M Assessment
Mr. L. Grieszmer	LHS Specifications and Weight & Space Analysis

Appreciation is extended to the many individuals who provided helpful support and constructive criticism of the program; in particular, Mr. S. Hurst of the Naval Air Systems Command, Mr. J. Ohlson and Mr. J. Dever of the Naval Air Development Center, Mr. F. Perian of Vickers Corporation, Mr. R. Olsen and Mr. K. Fling of Vought Corporation, Dr. D. Uhr of Pall Corporation, and Mr. L. Biafore and Mr. E. Culp of Rockwell International.

TABLE OF CONTENTS

<u>Section</u>	<u>Title</u>	<u>Page</u>
EXECUTIVE SUMMARY.		1
PREFACE.		8
TABLE OF CONTENTS.		9
LIST OF FIGURES.		12
LIST OF TABLES		15
1.0 INTRODUCTION		
1.1 BACKGROUND INFORMATION.		17
1.2 PROGRAM OBJECTIVES.		17
1.3 PHASE I SCOPE OF WORK		18
1.4 PHASE II SCOPE OF WORK.		19
1.5 SUBCONTRACTING.		20
2.0 HYDRAULIC SYSTEM DESIGN		
2.1 A-7E AIRCRAFT BASELINE SYSTEM		21
2.2 A-7E LIGHTWEIGHT HYDRAULIC SYSTEM		21
3.0 SIMULATOR DESIGN		
3.1 SIMULATOR ASSEMBLY.		29
3.2 MODULES		
3.2.1 Power Modules.		35
3.2.2 Load Modules		
3.2.2.1 Aileron		38
3.2.2.2 Spoiler/Deflector		38
3.2.2.3 Unit Horizontal Tail.		38
3.2.2.4 Rudder.		38
3.2.2.5 RFI and AFCS Actuators.		38
3.2.2.6 Speed Brake		44
3.2.2.7 Leading Edge Flap		44
3.2.2.8 Seal Test Fixture		44
3.2.3 Load System.		48
3.3 TEST HARDWARE		
3.3.1 Major 8000 psi Components.		48
3.3.2 Minor 8000 psi Components.		48
3.4 INSTRUMENTATION		
3.4.1 Controls		54
3.4.2 Monitoring		56
3.4.3 Dynamic Data		
3.4.3.1 Oscillograph Data		56
3.4.3.2 Oscilloscope Data		56
3.4.3.3 Spectrum Data		58
3.4.4 Data Logs.		58

TABLE OF CONTENTS (Continued)

<u>Section</u>	<u>Title</u>	<u>Page</u>
4.0	SIMULATOR TESTS	
4.1	PROOF PRESSURE	
4.1.1	Test Procedures	
4.1.1.1	Transmission Lines	59
4.1.1.2	System	59
4.1.2	Results	59
4.2	SYSTEM INTEGRATION	
4.2.1	Start-Up Procedures	
4.2.1.1	Fluid Cleanup.	59
4.2.1.2	Initial Startup.	60
4.2.1.3	Rigging.	60
4.2.2	Operation Checks	
4.2.2.1	Resonance Survey	60
4.2.2.2	Operating Stability.	60
4.3	BASELINE	
4.3.1	Initial Test System	65
4.3.2	Final Test System	65
4.4	DYNAMIC PERFORMANCE	
4.4.1	Pressure Harmonics	
4.4.1.1	Test Procedure	70
4.4.1.2	Results.	70
4.4.2	Pressure Peaks and Transients	
4.4.2.1	Test Procedure	74
4.4.2.2	Results.	74
4.4.3	Tubing Vibration	
4.4.3.1	Test Procedure	77
4.4.3.2	Results.	77
4.4.4	Actuator Frequency Response	83
4.5	ENDURANCE	
4.5.1	Cycling Program	86
4.5.2	Test Conditions	
4.5.2.1	Temperature.	87
4.5.2.2	Hydraulic Fluid.	87
4.5.2.3	Pump Inspections	87
4.5.2.4	Performance Checks	90
4.5.2.5	Data Collection.	90
4.5.3	Test Results	
4.5.3.1	Pumps.	96
4.5.3.2	Actuators.	96
4.5.3.3	Solenoid Valves.	103
4.5.3.4	Relief Valves.	103
4.5.3.5	Restrictors.	103
4.5.3.6	System Filters	103
4.5.3.7	Fluid Contamination.	107
4.5.3.8	Fittings	109
4.5.3.9	Hoses.	109
4.5.3.10	Coil Tubing.	110
4.6	GROUND SUPPORT EQUIPMENT	111

TABLE OF CONTENTS (Continued)

<u>Section</u>	<u>Title</u>	<u>Page</u>
5.0	MATH MODEL	
5.1	INTRODUCTION	112
5.2	HYDRAULIC FREQUENCY RESPONSE ANALYSIS	
5.2.1	Background.	112
5.2.2	Hydraulic Test Configuration.	113
5.2.3	Test Results.	113
5.3	HYDRAULIC TRANSIENT RESPONSE ANALYSIS	
5.3.1	Background.	119
5.3.2	Hydraulic Test Configuration.	123
5.3.3	Test Results.	123
6.0	SYSTEM WEIGHT AND SPACE ANALYSIS	
6.1	INTRODUCTION.	129
6.2	APPROACH	
6.2.1	General Guidelines	129
6.2.2	Weight Adjustments	129
6.3	RESULTS	130
7.0	RELIABILITY & MAINTAINABILITY ASSESSMENT	
7.1	INTRODUCTION.	132
7.2	FAILURE MODES & EFFECTS ANALYSIS.	132
7.3	R&M EVALUATION	
7.3.1	Summary of Simulator Failures.	135
7.3.2	Reliability Trend Analysis	135
7.3.3	Maintainability Assessment	142
7.4	R&M CONCLUSIONS	144
8.0	LHS SPECIFICATIONS	
8.1	INTRODUCTION.	145
8.2	SPECIFICATION UPDATE.	145
9.0	CONCLUSIONS.	146
10.0	RECOMMENDATIONS.	149
11.0	REFERENCES	150
12.0	LIST OF ABBREVIATIONS	152

APPENDICES

A	MISSION/PROFILE TEST LOG	155
B	PRESSURE RIPPLE DYNAMICS DATA.	161
C	ACTUATOR PISTON AND ROD SEALS.	177
D	PHOTOGRAPHS AND DRAWINGS OF LHS ACTUATORS.	181
E	WEIGHT AND SPACE ANALYSIS UPDATE	193
F	FAILURE MODES AND EFFECTS ANALYSIS	205
G	LHS SPECIFICATIONS	267
H	BLACK RESIDUE INVESTIGATION.	271

LIST OF FIGURES

<u>Figure No.</u>		<u>Page</u>
1	A-7E hydraulic system	22
2	A-7E lightweight hydraulic system	23
3	Schematic diagram of FC-1 and FC-2	25
4	Initial test system	27
5	Final test system	28
6	A-7E LHS simulator, looking aft	30
7	A-7E LHS simulator, looking forward	31
8	Simulator assembly drawing	33
9	FC-1 power module	36
10	FC-2 power module	37
11	Aileron actuator module	39
12	Aileron actuator load/stroke curve	39
13	Spoiler/deflector actuator module	40
14	Spoiler/deflector actuator load/stroke curve	40
15	LH unit horizontal tail module	41
16	UHT load/stroke curve	41
17	Rudder actuator module	41
18	Rudder actuator load/stroke curve	42
19	Roll feel isolation actuator	43
20	AFCS yaw actuator	43
21	Speed brake actuator module	45
22	Speed brake actuator load/stroke curve	45
23	Leading edge flap actuator module	46

LIST OF FIGURES (Continued)

<u>Figure No.</u>		<u>Page</u>
24	L.E. flap actuator load/stroke curve	46
25	Seal test fixture	47
26	Load system power supply	47
27	LHS pumps	52
28	Ground support equipment	52
29	FC-2 reservoir area	53
30	Speed brake solenoid valve area	53
31	Simulator controls and instrumentation	55
32	Transducer locations for resonance survey	61
33	Resonance survey data, +140°F	62
34	Resonance survey data, +200°F	63
35	Clamp-on pressure transducer	71
36	Pressure dynamics analysis instrumentation	71
37	Pressure wave harmonics instrumentation	72
38	Pressure wave harmonics test configurations	73
39	Pressure surge at AFCS yaw actuator with original plumbing configuration	76
40	Pressure surge at AFCS yaw actuator with restrictor in 3-Way valve port 'P'	76
41	Tubing vibration instrumentation	78
42	Tubing vibration measurement locations	79
43	Maximum allowable tube deflection	82
44	LH UHT actuator frequency response, no load	84
45	LH UHT actuator frequency response, load	85
46	Typical mission profile log	91

LIST OF FIGURES (Continued)

<u>Figure No.</u>		<u>Page</u>
47	Typical component performance record	92
48	Typical component service log	93
49	Typical daily work log	94
50	Typical failure analysis record	95
51	Model schematic for HSFR program	114
52	Computer input data	115
53	Peak pressure vs pump rpm at element 6 (12 inches), fundamental	116
54	Peak pressure vs pump rpm at element 7 (20 inches), fundamental	117
55	Peak pressure vs pump rpm at element 10 (32 inches), fundamental	118
56	Peak pressure vs pump rpm at element 6 (12 inches), 1st harmonic	120
57	Peak pressure vs pump rpm at element 7 (20 inches), 1st harmonic	121
58	Peak pressure vs pump rpm at element 10 (32 inches), 1st harmonic	122
59	Model schematic for HYTRAN program	124
60	Pressure transient at AFCS yaw actuator, Bendix valve, no restrictor	125
61	Pressure transient at AFCS yaw actuator, Bendix valve, restrictor in port 'P'	126
62	Pressure transient at AFCS yaw actuator, Parker Bertea valve, no restrictor	127
63	Pressure transient at AFCS yaw actuator, Parker Bertea valve, restrictor in port 'C'	128
64	Rockwell design coil tubes	141
65	LHS simulator reliability growth	143

LIST OF TABLES

<u>Table No.</u>		<u>Page</u>
1	Major 8000 psi components	49
2	Minor 8000 psi components	50
3	Transducer locations	57
4	Pump ripple amplitude	64
5	Steady-state temperatures, initial test system	66
6	Pump flows, initial test system	67
7	Steady-state temperatures, final test system	68
8	Steady-state pressures and flows, final test system	69
9	FC-1 pump ripple	74
10	Transient pressure peaks	75
11	FC-1 tubing vibration survey	80
12	FC-2 tubing vibration survey	81
13	Mission/profile cycling program, initial test system	88
14	Mission/profile cycling program, final test system	89
15	Total time minor components subjected to 8000 psi	97
16	Maintenance action totals	99
17	Pump operating time	100

LIST OF TABLES (Continued)

<u>Table No.</u>		<u>Page</u>
18	Pump performance checks, Vickers M/N PV3-047-2	100
19	Actuator cycle totals	101
20	Actuator seal cycling time totals	101
21	Dynamic seal leakage summary	102
22	Control valve leakage summary	104
23	Spoiler/deflector and RFI actuator internal leakage	104
24	Solenoid valve internal leakage summary	105
25	Relief valve performance summary	105
26	Restrictor performance summary	105
27	Filter element replacement	106
28	Fluid contamination	108
29	Weight savings summary	131
30	Volume savings summary	131
31	LHS function summary	133
32	Failure rate contribution to 8000 psi hydraulic system	133
33	Failure rate contribution to A-7E hydraulic system	134
34	Summary of LHS simulator failures	136
35	Failure reports and analysis summary	137

1.0 INTRODUCTION

1.1 BACKGROUND INFORMATION

The Navy began an Exploratory Development Program in 1966 to study the practicality and potential benefits of using an operating pressure level higher than 3000 psi. The program included a feasibility study, component development and testing, selection of an optimum operating pressure level, laboratory system testing, and brief flight testing, references 1 through 11. The program established that: 1) 8000 psi hydraulic systems are practical, and 2) overall weight and volume can be reduced (on a retrofit basis) up to 30% and 40%, respectively, for hydraulic systems delivering more than approximately 100 horsepower. Future aircraft hydraulic systems may show even greater benefits in weight and space savings using 8000 psi technology.

1.2 PROGRAM OBJECTIVES

The development of a full scale lightweight hydraulic system was undertaken to validate and demonstrate 8000 psi technology in a system designed for installation in an A-7E test bed aircraft. Objectives of the full scale LHS Development Program were:

- o Re-design the A-7E flight control hydraulic and actuation systems to operate at 8000 psi.
- o Demonstrate 8000 psi system reliability by long term endurance testing.
- o Assess the effects of utilizing 8000 psi technology on component weight & volume and reliability & maintainability

Ultimate benefit goals established for 8000 psi lightweight hydraulic systems over conventional 3000 psi systems were:

Weight	30% reduction
Volume	40% reduction
MFHBF	15% improvement
MMH/FH	15% improvement

The full scale Lightweight Hydraulic System Development Program was scheduled to be performed in three phases:

- Phase I Design, fabricate, and test 8000 psi components (see reference 11).
- Phase II Fabricate full scale hydraulic simulator. Conduct performance and endurance tests (reported herein).
- Phase III Install 8000 psi hydraulic system in an A-7E aircraft. Conduct flight test program.

1.3 PHASE I SCOPE OF WORK

The scope of work completed in Phase I and documented in reference 11 is summarized below:

- Task I Design the 8000 psi flight control system to be tested in an A-7E aircraft.
- Task II Prepare preliminary military specifications for 8000 psi components and systems.
- Task III Design 8000 psi components. Fabricate selected components.
- Task IV Conduct component testing including seal development, valve erosion, acceptance, endurance, impulse, and compatibility.
- Task V Assess R&M from test program data.
- Task VI Design ground simulator. Design and fabricate selected subsystem modules.
- Task VII Develop preliminary math model for test system.
- Task VIII Verify projected weight and space savings to be achieved.
- Task IX Determine GSE interface requirements and make recommendations for equipment to be utilized in follow-on phases.

1.4 PHASE II SCOPE OF WORKPage

The scope of work in Phase II was as follows:

Task I	Procure major 8000 psi components	48
Task II	Procure actuator load modules	38
Task III	Procure minor 8000 psi components	48
Task IV	Procure modification of AHT-63 GSE	111
Task V	Fabricate simulator structure	29
Task VI	Fabricate simulator hydraulic systems	35
Task VII	Fabricate simulator instrumentation/ control system	54
Task VIII	Prepare simulator test plan	reference 12
Task IX	Conduct simulator tests including: proof pressure, system integration, baseline, dynamic performance, math model, GSE, and endurance	59
Task X	Update Phase I math model using Phase II data	112
Task XI	Update Phase I weight and space analysis using Phase II data	129
Task XII	Update Phase I R&M analysis using Phase II data	132
Task XIII	Update LHS specifications using Phase II information	145
Task XIV	Piston seal endurance test (conducted by Vought Corporation)	addendum
Task XV	Develop an 8000 psi check valve pump (fabricated by Hydrodyne)	addendum
Task XVI	Conduct 600 additional hours of simulator endurance testing	addendum

The test plan and specifications developed in Tasks VIII and XIII were submitted to the Navy Project Office under separate cover, references 12 and 13, respectively. The results of Tasks XIV, XV, and XVI will be documented in an addendum to this report.

1.5 SUBCONTRACTING

Fourteen suppliers were awarded subcontracts to support the LHS Advanced Development Program in Phase II. Two firms provided major support: Vought Corporation, Dallas, Texas, and Vickers, Incorporated, Jackson, Mississippi.

Vought Corporation is a prime manufacturer of military aircraft and provided important support in several areas:

- o Supplied technical information on the A-7E
- o Designed and fabricated flight control actuators and load modules
- o Conducted acceptance and limited endurance testing of actuators
- o Conducted piston seal endurance tests

Vickers, Incorporated is a major manufacturer of aircraft hydraulic pumps. This firm developed the variable delivery pumps used to power the 8000 psi test systems.

2.0 HYDRAULIC SYSTEM DESIGN

2.1 A-7E AIRCRAFT BASELINE SYSTEM

The A-7E hydraulic systems operate at 3000 psi and are designed to MIL-H-5440 Type II (-65 to +275°F) requirements. Primary flight control surfaces are powered by dual tandem hydraulic actuators -- aileron, spoiler/deflector, rudder, and unit horizontal tail (UHT). Each actuator is pressurized by two of three independent hydraulic systems as shown on Figure 1. If one system fails, the other two continue to supply power. Secondary flight controls include the speed brake and wing leading/trailing edge flaps. Dual parallel automatic flight control system (AFCS) actuators are provided for the roll, pitch, and yaw axes. System pumps are pressure compensated, variable delivery axial piston designs. MIL-H-5606 hydraulic fluid is supplied to each pump by an airless, bootstrap type reservoir.

2.2 A-7E LIGHTWEIGHT HYDRAULIC SYSTEM

The A-7E hydraulic circuitry was reconfigured from three independent systems operating at 3000 psi (PC-1, PC-2, and PC-3) to two independent 8000 psi flight control systems (FC-1 and FC-2) and one 3000 psi utility system, Figure 2. A detail schematic diagram of FC-1 and FC-2 is presented as Figure 3. This work was done in Phase I, reference 11.

All A-7E flight control actuators depicted on Figure 3 were fabricated except the RH aileron, RH spoiler/deflector, RH leading edge flaps, and two AFCS units. These actuators were not procured because of program funding limitations. Initial testing was conducted with a one pump system, Figure 4. Subsequent funding permitted fabrication of a two system configuration which was used for all remaining tests, Figure 5. Previously built seal test fixtures, reference 10, were installed in the RH aileron location at the 300 hour point of cycling. The fixtures provided pump loading and an opportunity to evaluate additional dynamic seals.

The LHS simulator includes nearly every type of component normally used in aircraft hydraulic systems (see Section 3.3). All test components were located on the simulator in relative positions representative of an A-7E installation. Tubing lengths and routing were as close as practical to those anticipated in the A-7E. Pressure (8000 psi) tubing was titanium. Pressure line fittings were both permanent and separable; the separable fittings were a lip-seal design. Return lines were primarily aluminum with MS flareless type fittings for cost effectiveness. Static boss seals were conventional MS28778. The hydraulic fluid was per specification MIL-H-83282A/B. Fluid volume in FC-1 and FC-2 systems was 3.2 gallons (each). Fluid filtration was 5 microns absolute.

NADC-79024-60

FIGURE 1. A-7E hydraulic system

NADC-79024-60

FIGURE 2. A-7E lightweight hydraulic system

NADC-79024-60

LHS proof, burst, and surge design factors, expressed as a percent of operating pressure, are listed below.

	<u>Proof Pressure</u>	<u>Burst Pressure</u>	<u>Max. Allowable Pressure Surge</u>
Tubing, Fittings, Hoses	200%	300%	120%
Components, i.e., Actuators Valves, Disconnects, Etc.	150%	200%	120%

7
YAW AUTOPILOT

PITCH AUTOPILOT

RUDDER

FIGURE 3

REVISION	DESCRIPTION	DATE	APPROVED
A	1. MAY BE REVERSED 2. CHAMFER OR REINFORCED 3. REINFORCED 4. WIRE CLOTH PRACTICE 5. PARTS MADE ON		
B	1. REPLACED LEAVING EDGE SPONGES 2. WITH COILED TUBE (ITEMS 3&4) 3. REPLACED WING/FUS. SWIVELS 4. WITH COILED TUBE (ITEMS 3&4) 5. REPLACED LINE EXTENSION UNITS 6. (ITEMS 57 THRU 68) WITH COILED 7. TUBE AND HOSES (ITEMS 77 THRU 88) 8. DELETED SPEED BRAKE ARMURE 9. UNLOADING VALVE (ITEM 22) 10. REPLACED MANUALLY OPER. VALVE 11. (ITEM 26) WITH SOLIDNOID OPER. 12. VALVE (ITEM 85) ADDED ITEM 76 13. REVISED CHECK VALVE CALLOUTS 14. UPDATED SNT 2 TABLES 15. ADDED FC1 PUMP CASE BRAKE FILTER	E. HOLLAND 12 DEC. 1980	

NOTES: THE FOLLOWING ACTUATORS WERE NOT
 INSTALLED IN THE LHS SIMULATOR:
 R.H. ALERON, RH SPOILER,
 RH. LE FLAPS (2),
 ROLL AUTOPilot, PITCH AUTOPilot.

FIGURE 3

NADC-79024-60

FIGURE 4. Initial test system (1st 300 hrs.)

NADC-79024-50

FIGURE 5. Final test system (2nd 300 hrs.)

3.0 SIMULATOR DESIGN

3.1 SIMULATOR ASSEMBLY

The LHS simulator is a steel structure with aircraft hydraulic component installations designed to represent a full scale A-7E 8000 psi flight control system, Figures 6, 7, and 8. Fuselage structure is primarily 3 inch square steel tubing; wing structure is principally 8 inch steel channel. Modular design was employed to facilitate fabrication and permit separate testing of individual actuators. Two types of modules were used: power modules and load modules.

<u>Power Modules</u>	<u>Designer/Fabricator</u>
FC-1 System	NAAO-Columbus
FC-2 System	NAAO-Columbus
<u>Load Modules</u>	
Aileron, LH	Vought
Spoiler, LH	Vought
UHT, LH & RH	Vought, Blacklick Machine
Rudder	NAAO-Columbus
Speed Brake	Vought
Leading Edge Flap, LH Inboard & LH Outboard	Vought

Each power module contains a pump, reservoir, filters, and valving to supply/receive hydraulic fluid to/from the flight control actuators. Each actuator is mounted in a load module that duplicates the kinematics of an A-7E installation. Load/stroke conditions imposed on each actuator are based on specific, individual requirements. Load cylinders in the modules are powered by a 2300 psi hydraulic system.

Mechanical control linkages -- push-rods, bellcranks, and load-limiting bungees -- drive LHS actuator input levers. Linkages from SARDIP A-7 aircraft were used wherever possible to reduce costs.

The simulator can be controlled manually or automatically. Manual control is by "pilot stick" or through manipulating dials and switches on a console panel. Automatic control is provided by a mechanical programmer. Both the manual and automatic controls utilize fiber optics to transmit signals to the simulator. The fiber optics system controls the roll, pitch, and yaw AFCS actuators by microcomputer multiplexing/processing of the command and feedback signals of each axis.

NADC-79024-60

FIGURE 6. A-7E LHS simulator, looking aft

NADC-79024-60

FIGURE 7. A-7E LHS simulator, looking forward

NADC-79024-60

THIS PAGE LEFT BLANK INTENTIONALLY

14

13

12

11

10

8

8

FIGURE 8

5	4	3	2	1	H
					G
					F
					E
					D
					C
					B
					A
PART NO.	DESCRIPTION	SIZE			

FIGURE 8

3.2 MODULES3.2.1 Power Modules

Photographs of FC-1 and FC-2 power modules are presented as Figures 9 and 10. Hydraulic components used in the modules are listed below, and described briefly in Tables 1 and 2.

	<u>Quantity</u>			
	<u>FC-1 Module</u>	<u>FC-2 Module</u>	<u>FC-1 Module</u>	<u>FC-2 Module</u>
	<u>8000 psi Component</u>	<u>Return System Component</u>	<u>8000 psi Component</u>	<u>Return System Component</u>
Pump	1		1	
Quick Disconnect	2	3	2	3
Hose	1	2	1	2
Reservoir	1		1	
Check Valve	2	4	3	6
Filter	1	2	1	2
Relief Valve	1	1	1	1
Solenoid Valve, 2-Way			1	
Solenoid Valve, 4-Way	1			
Accumulator			1	
Pressure Transmitter	1		1	
Pressure Snubber	1		1	
Restrictor	1			
Pressure Gage			1	

Both modules contained provisions for mounting components in locations representative of an A-7E installation. Transmission line lengths, routing, fittings, and clamps were as close as practical to those anticipated in the aircraft. Some minor variations in plumbing were necessary to accommodate temperature, pressure, and flow instrumentation. Both pumps were placed at a low elevation to simulate engine mounting and assure realistic suction line pressures. A 100 horsepower varidrive with two mounting pads was used to power the pumps. An oil-to-water heat exchanger was installed in the case drain line of each pump to provide a means for fluid temperature control, if required.

NADC-79024-60

NADC-79024-60

3.2.2 Load Modules

3.2.2.1 Aileron. The aileron actuator is mounted in a linkage system identical to the aircraft installation, Figure 11. Piston rod travel and actuator body motion combine to deflect a load cylinder producing the load/stroke curve shown on Figure 12. Four hoses are used to transmit hydraulic power to the actuator. The actuator input lever is operated by a push-rod in the simulator roll axis control system. Mechanical input is by the RFI and roll AFCS actuators. The AFCS actuator was obtained from a SARDIP A-7 and was powered by the 2300 psi load system.

3.2.2.2 Spoiler/Deflector. The spoiler/deflector actuator is installed in a toggle linkage arrangement utilizing A-7E parts, Figure 13. Piston rod travel and actuator body motion combine to oppose a load cylinder resulting in load/stroke characteristics as shown on Figure 14. Four coil tubes are used to transmit hydraulic power to the actuator. The actuator input lever is operated by a push-rod in the simulator roll axis control system. A motion limiting bungee prevents the LH actuator from responding to pilot "stick right" inputs.

3.2.2.3 Unit Horizontal Tail (UHT). The LH and RH UHT actuators are each installed in a module that provides mounting and kinematics identical to the aircraft installation, Figure 15. Control of the actuator input levers is through an A-7 linkage system that includes structural feedback. Actuator loading is developed when an industrial-type cylinder is forced away from a neutral position, Figure 16. Hydraulic power is supplied through tubing that flexes as the actuators stroke. The LH and RH actuator input linkages are operated jointly by a torque tube driven by the AFCS pitch actuator. The pitch actuator was obtained from a SARDIP A-7 and was powered by the 2300 psi load system.

3.2.2.4 Rudder. The rudder module, Figure 17, contains several A-7 aircraft components: control valve housing, valve input linkage, structural feedback linkage, and structural load forging. Rudder actuator mounting and swivelling is identical to the aircraft installation. Load/stroke characteristics are shown on Figure 18. Hydraulic power is supplied to the actuator through tubing that flexes as the piston rod moves. Rudder input is controlled by an 8000 psi AFCS pitch actuator through a load-limiting bungee.

3.2.2.5 RFI and AFCS Actuators

RFI. The roll-feel isolation (RFI) actuator is a floating power link in the airplane roll control push rod system. This unit is used to drive the aileron actuator servo valves, one spoiler valve, and one bungee spring. Since the simulator control system provided normal loading on the RFI actuator, a load module was not required, Figure 19.

NADC-79024-60

FIGURE 11. Aileron actuator module

FIGURE 12. Aileron actuator load/stroke curve

NADC-79024-60

FIGURE 13. Spoiler/deflector actuator module

FIGURE 14. Spoiler/deflector actuator load/stroke curve

NADC-79024-60

FIGURE 16. UHT load/stroke curve

NADC-79024-60

FIGURE 17. Rudder actuator module

FIGURE 18. Rudder actuator load/stroke curve

NADC-79024-60

FIGURE 19. Roll feel isolation actuator

FIGURE 20. AFCS yaw actuator

AFCS. The A-7 has three automatic flight control system (AFCS) actuators, one each for the roll, pitch, and yaw axes of the airplane. In the LHS simulator, the roll and pitch AFCS actuators operate at 2300 psi; the yaw actuator operates at 8000 psi and has a direct drive servo valve, Figure 20. The actuators are controlled electrically and have hydro-mechanical provisions to center and lock the pistons when the actuator is "off". Since the AFCS actuators drive only hydraulic control valves, load modules were not required.

3.2.2.6 Speed Brake. The motion of the A-7 speed brake actuator requires a minimum vertical height of 75 inches. Space constraints in the LHS simulator prohibited duplicating the aircraft geometry and motion of the speed brake actuator. The speed brake load module was therefore designed to provide realistic loading in a fixture suitable for use in the simulator, Figure 21.

The speed brake actuator is loaded by an industrial cylinder, and controlled by a 4-way solenoid valve located on the FC-1 power module. The load/stroke curve is shown on Figure 22. A restrictor in the 4-way valve limits speed brake piston velocity to maintain system pressure.

3.2.2.7 Leading Edge Flap. Two identical flap load modules are mounted on the LH wing Leading edge, Figure 23. Each module contains two LE flap actuators and one load cylinder. Kinematics are identical to an aircraft installation. Actuator location and mounting were modified to simplify module design and reduce costs. Coil tubes are used to transmit hydraulic power to the flap actuators. A 4-way solenoid valve ports fluid to all four actuators simultaneously. Both 1-way and 2-way restrictors are used to control actuator piston rates. Module load/stroke characteristics are shown on Figure 24.

3.2.2.8 Seal Test Fixtures. Seal test fixtures were mounted in the right hand wing at a location originally intended for the aileron load module, Figure 25. Four piston rod and two piston head seals were evaluated. Flow needed to operate the cylinders approximated aileron actuator flow and thus helped provide realistic pump loading.

The fixtures were originally built for endurance tests reported in References 7 and 10. The units were refurbished and modified for the LHS simulator as follows:

- o The piston rods were re-chrome plated and ground
- o One piston head containing a standard seal groove was fabricated
- o Four seal retainers housing 2-stage unvented rod seals were fabricated

NADC-79024-60

WORKING STROKE: 19.94 IN.

TOTAL STROKE: 19.94 IN.

LOAD CYLINDER PRESSURE: 2040 PSI (100% LOAD)

FIGURE 22. Speed brake actuator load/stroke curve

NADC-79024-60

FIGURE 23. Leading edge flap actuator module

FIGURE 24. L.E. flap actuator load/stroke curve

NADC-79024-60

FIGURE 25. Seal test fixture

FIGURE 26. Load system power supply

Test seal manufacturers were:

<u>Cylinder</u>	<u>Simulator System</u>	<u>Test Seal Manufacturer</u>
#1	FC-1	Shamban
#2	FC-2	Greene, Tweed

Fluid flow to cylinders #1 and #2 was controlled by 8000 psi direct drive (single stage) electrohydraulic servo valves. Cylinder #1 was driven by a rotary spool valve, reference 14. Cylinder #2 was powered by two linear valves plumbed in parallel. The linear valves were originally procured for use on the roll and pitch AFCS actuators.

3.2.3 Load System

Each load module contained an industrial-type cylinder that opposed test actuator stroking through a bellcrank/linkage arrangement. Each cylinder had an individual load pressure level maintained by individual hydraulic control circuits. Fluid power for all circuits was provided by a 20 gpm hydraulic power supply operating at 2300 psi using MIL-H-6083 fluid, Figure 26. The power supply was located outside the LHS simulator area to reduce noise.

3.3 TEST HARDWARE

3.3.1 Major 8000 psi Components

Pumps, actuators, and reservoirs were considered major components. Table 1 lists these items and provides part number, manufacturer, and design features. Photographs of installed components are also listed on Table 1.

Photographs of disassembled actuators are presented in Appendix D. Assembly drawings of the spoiler, roll feel isolation and leading edge flap actuators are also presented in Appendix D. Assembly drawings of all other major components are included in reference 11.

An AHT-63 portable hydraulic test stand was converted to operate at 8000 psi by replacing 3000 psi components with 8000 psi components, Figure 28. Table 1 gives pertinent information on the GSE.

3.3.2 Minor 8000 psi Components

Minor components are listed on Table 2. Part number, manufacturer, and design features are given for each item. Photographs of the components are also listed on Table 2. Components provided at no cost to the LHS program are indicated by * on Table 2.

TABLE 1. Major 8000 psi components

DESCRIPTION	FIG. NO.	PART NO.	QUANTITY	SYSTEM/ LOCATION	MANUFACTURER FSCN NO.	DESIGN FEATURES
ACTUATOR, RUDDER	17	8696-587100	1	FC-1&2, TAIL	ROCKWELL 89372	1. DUAL TANDEM 2. BALANCED AREAS 3. 2-STAGE ROD SEALS 4. FIXED BODY
ACTUATOR, SPEED BRAKE	21	83-00201	1	FC-1, FWD. FUSE.	VOUGHT 80378	1. SINGLE CYLINDER 2. UNBALANCED AREAS 3. 1-STAGE ROD SEAL 4. RETRACT LOCK
ACTUATOR, UNIT HORIZONTAL TAIL	15	83-00211	2	FC-1&2, TAIL	VOUGHT 80378	1. DUAL TANDEM 2. UNBALANCED AREAS 3. 2-STAGE ROD SEALS 4. FIXED BODY
ACTUATOR, AILERON (SEE FOOTNOTE ¹)	11	83-00221	1	FC-1&2 LH WING	VOUGHT 80378	1. DUAL TANDEM 2. UNBALANCED AREAS 3. 2-STAGE ROD SEALS 4. MOVING BODY
ACTUATOR, AFCS	20	83-00231, 566-201 (SERVO VALVE)	1	FC-1, TAIL	VOUGHT, MOOG 80378, 94697	1. DUAL PARALLEL 2. BALANCED AREAS 3. 1-STAGE ROD SEAL 4. DIRECT-DRIVE E-H SERVO VALVE
ACTUATOR, ROLL FEEL ISOLATION	19	83-00251	1	FC-1&2 CENTER FUSE.	VOUGHT 80378	1. DUAL TANDEM 2. BALANCED AREAS 3. 2-STAGE ROD SEALS 4. MOVING BODY 5. SHRINK-FIT CONTROL VALVE
ACTUATOR, LEADING EDGE FLAP	23	83-00261	4	FC-2 LH WING	VOUGHT 80378	1. SINGLE CYLINDER 2. UNBALANCED AREAS 3. 1-STAGE ROD SEAL 4. RETRACT AND EXTEND LOCKS
ACTUATOR, SPOILER/ DEFLECTOR ²	13	83-00271	1	FC-1&2 LH WING	VOUGHT 80378	1. DUAL TANDEM 2. UNBALANCED AREAS 3. 2-STAGE ROD SEALS 4. MOVING BODY 5. SHRINK-FIT CONTROL VALVE
PUMP	27	PV3-047-2	S/N 346581 348168 346580	FC-1 FC-2 "SPARE"	VICKERS 62983	1. IN-LINE PISTON 2. PRESSURE COMPENSATED 3. VARIABLE DELIVERY 4. 10 GPM @5900 RPM
RESERVOIR	9, 10	83-00241	2	FC-1 & 2, CENTER FUSE.	VOUGHT 80378	1. BOOTSTRAP DESIGN 2. 320 IN ³ CAPACITY 3. RESERVOIR PRESS.: 90 PSI
GROUND SUPPORT EQUIPMENT	28	AHT-63MOD	1	--	UNC 22680	1. 8 GPM @8000 PSI 2. 3 MICRON FILTRATION 3. 50 HP 440 VAC MOTOR 4. 15 FT HOSES WITH QUICK DISCONNECTS 5. DISCHARGE PRESSURE & FLOW ADJUSTABLE
SEAL TEST FIXTURE	25	4252-03 (Fixture) 50E-489 (ROTARY VALVE) 566-201 (LINEAR VALVE)	1	FC-1&2 RH WING	ROCKWELL 89378 MOOG 94697	1. TEST SEALS: 4 2-STAGE UNVENTED ROD SEALS 2. DRIVEN BY SINGLE STAGE 8000 PSI SERVO VALVES

¹FC-1 AND FC-2 CYLINDER BORES WERE DAMAGED IN A PRIOR TEST BY PISTON SEALS CONTAINING STEEL BACKUP RINGS. THE CYLINDERS WERE HONED IN AN ATTEMPT TO ELIMINATE BORE SCORING. ONLY FC-2 COULD BE REPAIRED. FABRICATION OF A NEW AILERON ACTUATOR BODY IS CURRENTLY IN WORK. FC-1 SECTION OF THE AILERON ACTUATOR WAS THEREFORE INOPERATIVE THROUGHOUT SIMULATOR TESTING REPORTED HEREIN.

TABLE 2. Minor 8000 psi components

DESCRIPTION	FIG. NO.	PART NO.	QUANTITY	SYSTEM/ LOCATION	MANUFACTURER, FSM NO.	DESIGN FEATURES
ACCUMULATOR	29	3321471	1	FC-2 POWER MODULE	BENDIX ELECTRODYNAMICS 77068	1. PISTON TYPE 2. MAX. OIL VOL: 9 IN ³ 3. MIN GAS VOL: 2 IN ³
CHECK VALVE	27	P4-858	1	FC-1 PUMP	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -8
CHECK VALVE	27	95201-5	1	FC-2 PUMP	GAR KENYON 26044	1. STANDARD DESIGN 2. SIZE: -8
CHECK VALVE	30	95200-5	1	FC-1 POWER MODULE	GAR KENYON 26044	1. STANDARD DESIGN 2. SIZE: -8
CHECK VALVE	29	95202-5	1	FC-2 POWER MODULE	GAR KENYON 26044	1. STANDARD DESIGN 2. SIZE: -8
CHECK VALVE	29	P2-858	1	FC-2 PRESSURE REGULATOR	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -8
CHECK VALVE	--	P9-858	2	FC-1&2 RUN AROUND	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -6
CHECK VALVE	30	P11-858	1	FC-1 SPEED BRAKE	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -4
CHECK VALVE	15	P8-858	4	LH&RH UHT ACTUATOR	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -4
CHECK VALVE	--	P1-858	2	RUDDER ACTUATOR	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -3
CHECK VALVE	30	P1-858 P10-858	1	FC-1 SPEED BRAKE	CIRCLE SEAL 91816	1. STANDARD DESIGN 2. SIZE: -3
FILTER	9, 10	AD-A640-83Y1	2	FC-1&2 POWER MODULE	AIRCRAFT POROUS MEDIA 18350	1. RATED FLOW: 10 GPM 2. FILTRATION: 5u ABS. 3. TITANIUM CONSTR.
FITTINGS		011XXXXXX			DEUTSCH 14798	1. EXTERNALLY SWAGED 2. PERMANENT AND SEPARABLE FITTINGS 3. LIP SEAL TYPE SEPARABLE FITTINGS
	*	3P00101-3 3P02121-8			RAYCHEM 34964	1. HEAT SHRINKABLE COUPLING 2. PERMANENT CONNECTION ONLY
		R44XXX-XX MR54XXX-XX			RESISTOFLEX 50599	1. INTERNALLY SWAGED 2. SEPARABLE CONNECTION ONLY 3. LIP SEAL TYPE SEPARABLE FITTING
		RFHS003-18 RFHS005-18			ROSAN 83324	1. TITANIUM CONSTR. 2. O-RING SEAL
FLUID	--	MIL-H-83282 A/B	3.2 GAL/ SYSTEM	FC-1&2	ROYAL LUBRICANTS 07950	1. SYNTHETIC HYDRO- CARBON 2. FIRE RESISTANT
HOSE	27	F37404008 -0300	2	FC-1&2 PUMP	TITEFLEX 78570	1. STEEL & NON-METALLIC REINFORCEMENT BRAIDS 2. SIZE: -8
HOSE	11	DE6964-3 -0282	2	FC-2 AILERON ACTUATOR	AEROQUIP 00624	1. KEVLAR REINFORCEMENT BRAID 2. SIZE: -3
HOSE	*	2B404003- 0214	4	FC-1&2 SPOILER & RFI ACTUATORS	TITEFLEX 78570	1. KEVLAR REINFORCEMENT BRAID 2. SIZE: -3 3. USED TO REPLACE FAILED COIL TUBES
MANIFOLD	--	8696-581002 8696-581201	1	FC-1 POWER MODULE	ROCKWELL 89372	1. STEEL CONSTR. 2. ROSAN FITTINGS
PRESSURE GAGE	10	1218-63-1	1	FC-2 POWER MODULE	QED 24708	1. MINIATURE SIZE 2. MULTI-TURN HELICAL BOURDON TUBE

TABLE 2. (continued)

DESCRIPTION	FIG. NO.	PART NO.	QUANTITY	SYSTEM/ LOCATION	MANUFACTURER, FSCM NO.	DESIGN FEATURES
PRESSURE SNUBBER	--	95239	2	FC-1&2 POWER MODULE	GAR KENYON 26044	1. CONVENTIONAL DESIGN
PRESSURE TRANSMITTER	9, 10	18-2143	2	FC-1&2 POWER MODULE	COURTER 96774	1. SYNCHRO-TYPE (SIMILAR TO MS2800S -8) 2. MULTI-TURN HELICAL BOURDON TUBE
QUICK DISCONNECT	9 27	AE80943H AE81214H AE81215H	2 2	FC-1&2 POWER MODULE	AEROQUIP 00624	1. CONVENTIONAL DESIGN 2. THREE DIAMETRAL STATIC SEALS
RELIEF VALVE	30 29	1257A 1258	1 1	FC-1&2 POWER MODULE	PNEUDRAULICS 06177	1. CONVENTIONAL DESIGN 2. ONE DIAMETRAL STATIC SEAL
RESTRICTOR	30	REFX0380250AB	1	FC-1 SPEED BRAKE	LEE 92555	1. 2-WAY RESTRICTOR 2. MULTI-STAGE ORIFICES 3. 4 GPM @ 7800 PSID
RESTRICTOR	23	95461-2	1	FC-2 L.E. FLAP OUTBOARD RETRACT	GAR KENYON 26044	1. 1-WAY RESTRICTOR 2. 2.2 GPM @ 7800 PSID
RESTRICTOR	--	95462	2	FC-2 L.E. FLAP EXTEND	GAR KENYON 26044	1. 2-WAY RESTRICTOR 2. 1.17 GPM @ 7800 PSID
RESTRICTOR	--	95461-1	1	L.E. FLAP INBOARD RETRACT	GAR KENYON 26044	1. 1-WAY RESTRICTOR 2. 1.17 GPM
SEALS	*	SEE APPENDIX C			CONOVER 07060	1. BACKUP RINGS
	*	FOR LIST OF DYNAMIC SEALS			GREENE, TWEED 72902	1. TEE SEALS 2. CAPPED G-T RING SEALS
	*				SHAMBAN 25220	1. DOUBLE DELTA SEALS 2. PLUS SEALS
SOLENOID VALVE	30	3321472 (4-WAY VALVE)	1	FC-1 SPEED BRAKE	BENDIX 77068	1. CONVENTIONAL DESIGN 2. 28 VDC, PILOT OPERATED 3. RATED FLOW: 4-WAY 4.5 GPM 3-WAY 1.4 GPM 4. STEEL HOUSING
	--	3321473 (3-WAY VALVE)	1	AFCS PITCH ACTUATOR		
SOLENOID VALVE	29	305100 (2-WAY VALVE)	1	FC-2 POWER MODULE	PARKER-BERTEA 82106	1. CONVENTIONAL DESIGN 2. 28 VDC, PILOT OPERATED 3. RATED FLOW: 2-WAY 1.4 GPM 3-WAY 1.4 GPM 4-WAY 4.5 GPM 4. ALUMINUM HOUSING
	20	306750 (3-WAY VALVE)	1	FC-1 AFCS YAW ACT'R		
	--	306700 (4-WAY VALVE)	1	FC-2 L.E. FLAP		
SWIVEL	21	L38910 L39010	1	FC-1 SPEED BRAKE	LOURDES 01178	1. CONVENTIONAL DESIGN 2. RATED FLOW: 4 GPM 3. 2 DIAMETRAL SEALS
TUBING	--	LHS-8042A			KAMECKI-BERYLCO 61452	1. 3 AL-2.5V TITANIUM 2. TUBE SIZES: 3/16X.020, 1/4X.026 5/16X.032, 3/8X.038 1/2X.051
TUBING, COIL	13	83-00287-1	1	FC-1 P SPOILER	VOUGHT 80378	1. 3AL-2.5V TITANIUM 2. TUBE SIZE: 3/16X.035 3. NESTED COILS 4. DEUTSCH FITTINGS
	13	83-00287-3	1	FC-1 R SPOILER		
	13	83-00288-1	1	FC-2 P SPOILER		
	13	83-00288-3	1	FC-2 R SPOILER		
TUBING, COIL	19	83-00283-1	1	FC-1 P RFI	VOUGHT 80378	1. 3AL-2.5V TITANIUM 2. TUBE SIZE: 3/16X.035 3. DEUTSCH FITTINGS 4. TYPE: NESTED COILS (283) TRI-COILS (284)
	19	83-00283-3	1	FC-1 R RFI		
	19	83-00284-1	1	FC-2 P RFI		
	19	83-00284-3	1	FC-2 R RFI		

NADC-79024-60

FIGURE 27. LHS pumps

FIGURE 28. Ground support equipment

NADC-79024-60

3.4 INSTRUMENTATION3.4.1 Controls

Simulator controls are housed in two consoles located near the simulator tail, Figure 31. The control console has the following indicators, controls, and safety provisions:

<u>Controls</u>	<u>Indicators</u>	<u>Safety Provisions</u>
Pump speed	Pump rpm	Over-temperature
Fluid temperature	Fluid flow	Low fluid
Electrical power	Fluid temperature	(8000 psi and
Flap/speed brake switches	System pressure (synchros)	2300 psi systems) Pressure interlock (8000 psi must be on before 2300 psi)

The programmer console permits either manual or automatic operation of the simulator. Manual control is by a "pilot" type joy stick for the roll and pitch axes and a foot pedal for yaw inputs. Automatic operation is by means of a mechanical timer/programmer that applies various sinusoidal inputs for 5 minute periods during a 2 hour simulated flight, reference Section 4.5.1. The programmer console has the following:

- Manual/automatic switches
- Load on-off switches
- Step indicator (0 to 24)
- Timer/programmer
- Load/stroke bias controls
- Load/stroke amplitude controls
- Cycling rate controls
- Pilot's stick
- Signal monitoring oscilloscope

NADC-79024-60

FIGURE 31. Simulator controls and instrumentation

3.4.2 Monitoring

Parameters monitored visually are listed below. Transducer locations are given in Table 3.

<u>Parameter</u>	<u>Quantity</u>	<u>Transducer</u>	<u>Readout</u>
Temperature	26	Thermocouple	Programmable data logger
Pressure	7		Dial pressure gage
Flow	12	Turbine flowmeter	Frequency counter
Pump speed	1	Magnetic pickup	Frequency counter
Simulator running time	1	Clock	Digital time totalizer

3.4.3 Dynamic Data

3.4.3.1 Oscillograph Data. A multichannel oscillograph with direct readout was used for transient pressure investigations. Light beam type galvanometers with 1000 Hz response capability were installed in the oscillograph. Film speeds up to 40 in/sec were used to provide high resolution. The transducers were bonded strain gage type pressure pickups.

3.4.3.2 Oscilloscope Data. System pressure dynamics excited by pump ripple were displayed on an oscilloscope screen and photographed. Oscilloscope bias adjustments permitted examination of small (<100 psi) pressure fluctuations superimposed on system pressure (8000 psi). The oscilloscope had dual beams which permitted simultaneous comparison of two pressures. Bonded strain gage type pressure transducers with a bandwidth of 20,000 Hz were the signal source. Provisions were built into the simulator plumbing at selected locations throughout FC-1 and FC-2 systems to permit installation of the transducers. The oscilloscope was used in the system integration search for hydraulic resonance and examination of pump ripple.

TABLE 3. Transducer locations

PARAMETER	SYSTEM	LOCATION	TRANSDUCER TYPE
<u>Temperatures</u>			
T1	FC-1	Pump inlet	
T2	FC-1	Pump case drain	
T3	FC-1	LH UHT return	
T4	FC-1	RH UHT return	
T5	FC-1	Rudder return	
T6	FC-1	LH aileron return	
T7	FC-1	LH spoiler/deflector return	
T8	FC-1	Speed brake return	
T9	FC-1	AFCS yaw return	
T10	FC-1	System return	
T11	FC-2	Pump inlet	
T12	FC-2	Pump case drain	
T13	FC-2	LH UHT return	
T14	FC-2	RH UHT return	
T15	FC-2	Rudder return	
T16	FC-2	LH aileron return	
T17	FC-2	LH spoiler/deflector return	
T18	FC-1	Seal test fixture	
T19	FC-2	Seal test fixture	
T20	FC-2	System return	
T21	--	Ambient air	
T22	Load	System return	
T23	FC-1	Heat exchanger inlet	
T24	FC-1	Heat exchanger outlet	
T25	FC-2	Heat exchanger inlet	
T26	FC-2	Heat exchanger outlet	
<u>Pressures</u>			
P1	FC-1	Pump inlet	Dial pressure gage
P2	FC-1	Pump case drain	
P3	FC-1	Pump discharge	
P4	FC-2	Pump inlet	
P5	FC-2	Pump case drain	
P6	FC-2	Pump discharge	
P7	Load	Pump discharge	
<u>Flows</u>			
F1	FC-1	Pump case drain	Turbine flowmeter
F2	FC-2	Pump case drain	
F3	FC-1	Pump inlet	
F4	FC-2	Pump inlet	
F5	FC-1	LH UHT actuator return	
F6	FC-2	Rudder actuator return	
F7	FC-1	LH aileron actuator return	
F8	FC-2	Seal test fixture return	
F9	FC-1	Speed brake actuator return	
F10	FC-2	RH UHT actuator return	
F11	FC-2	Spoiler/deflector return	
F12	Load	System return	

NOTE: INSTRUMENTATION USED IN FINAL TEST SYSTEM. SEE FIGURE 5.

3.4.3.3 Spectrum Data. Analysis of pressure wave dynamics was accomplished using ubiquitous signal processing equipment. Both real time and instant spectrum analysis displays were obtained. Readout was on an interactive digital x-y plotter. Piezoelectric transducers with 100,000 Hz response capability sensed pressure dynamics. This equipment was used for math model verification and pressure harmonics testing.

3.4.4 Data Logs

Laboratory logs of all tests and operations were maintained. Due to the scope and duration of testing, the data were segregated to facilitate information retrieval. Major file categories were:

- Pump performance
- Component performance
- Mission/profile test log
- Individual component logs
- Daily work logs
- Malfunctions and failures

4.0 SIMULATOR TESTS

4.1 PROOF PRESSURE

Two types of proof tests were conducted on the newly fabricated hydraulic systems. First, pressure lines alone, i.e., tubing, fittings, and hoses were proofed at 16,000 psi. Second, the complete pressure system, with all components installed, was proofed at 12,000 psi. Since system fabrication was done in stages, FC-1 in 1982 and FC-2 in 1984, two proof tests were performed.

4.1.1 Test Procedures

4.1.1.1 Transmission Lines. Temporary lines were installed to replace removed components. All pressure tubing in the fuselage and LH wing were proofed simultaneously using a 0.2 gpm hydraulic power supply to fill lines and build pressure up to 8000 psi. A hand pump was then used to increase pressure to 16,000 psi. Proof pressure was held for 2 minutes, released, then applied again for 2 minutes.

4.1.1.2 System. This test was performed on the complete system with all components installed except the pump and with the relief valve return port plugged. Since approximately 0.7 gpm of internal leakage was expected to occur during the test, a hand pump could not be used. Instead, a reciprocating hydraulic pressure intensifier applied the required 12,000 psi. The total system was proofed for 5 minutes with all actuators extended, then for 5 minutes with all actuators retracted. The system proof test was performed after hydraulic fluid cleanup discussed in Section 4.2.

4.1.2 Results

Proof test results were completely satisfactory. No failures occurred and no leakage was observed during either the test conducted in 1982 or in the 1984 test.

4.2 SYSTEM INTEGRATION

Initial operation of the simulator was accomplished by employing tasks properly sequenced to prevent damaging components. Two areas were involved: 1) start-up and 2) operation checks. Tasks described in this section were conducted with a one pump system, Figure 4.

4.2.1 Start-Up Procedures

4.2.1.1 Fluid Clean-Up. Hydraulic fluid cleanliness was essential to prevent component damage. All actuator pressure and return lines were interconnected to form a circuit and by-pass the actuators. Filter elements were removed from the pressure and return filters. A 3000 psi laboratory pump and a laboratory filter were temporarily installed in the simulator system. Fluid was circulated through system tubing for 4 hours and a fluid sample was drawn to check contamination. When the contamination level met NAS 1638, Class 8 requirements, the temporary pump and filter were removed and the system was restored to its original configuration.

4.2.1.2 Initial Startup. First-time operation of the hydraulic system was done with all actuators unloaded and with 1000 psi applied. This was accomplished by disconnecting all actuator piston rod ends and by partially opening a pressure unloading valve in FC-1 power module. With the test pump running and the system pressurized at 1000 psi, visual checks were made for external leaks and loose fittings. After correcting all leaks, system pressure was increased to 8000 psi and further leak checks were made.

4.2.1.3 Rigging. Operation of the simulator actuators at 8000 psi could physically damage certain elements if rigging is improper. Actuator length and stroke requirements were the same as for an aircraft installation. Each actuator was rigged separately to obtain the specified dimensions. With the piston rod disconnected from the load module and 8000 psi applied, each actuator was manually operated full extend and retract. Overall lengths were measured, and the rod ends adjusted as required. Stops on the actuator input control linkage were then adjusted to provide specified working strokes.

4.2.2 Operation Checks

4.2.2.1 Resonance Survey. The first check was to determine if any operating conditions existed which could harm components. A primary cause of such damage is pump induced hydraulic resonance. A survey was made for resonance using pressure transducers and an oscilloscope to observe pressure ripple. Transducer locations are shown on Figure 32. The investigation was conducted over a pump speed range of 3400 to 5900 rpm and at two temperatures -- +140 and +200°F pump inlet fluid. Typical data are presented in Figures 33 and 34.

No damaging resonance was found. Pressure ripple was highest near the pump and very low at the UHT and aileron actuators. Peak-to-peak values are summarized on Table 4.

4.2.2.2 Operating Stability. The flight control actuators were cycled with various combinations of 2%, 10%, and 50% stroke over the speed range of the pump. The speed brake and L.E. flap actuators were also cycled. Pump response and control stability were satisfactory.

4.3 BASELINE

Tests were performed to determine the range and distribution of simulator fluid temperatures, pressures, and flows. Two basic operating conditions were examined: 1) steady-state and 2) mission/profile cycling (see Section 4.5). Data were taken on the initial test system (ref. Figure 4) and on the final test system (ref. Figure 5). Only data considered pertinent is presented.

FIGURE 32. Transducer locations for resonance survey

NADC-79024-60

FIGURE 33. Resonance survey data, +140°F

NADC-79024-60

↓
200 psi
↑

P_P

P_{QD}

Pump speed: 5900 rpm

← 0.001 sec

↓
200 psi
↑

P_{AI}

P_{UFT}

FIGURE 34. Resonance survey data, +200°F

TABLE 4. Pump ripple amplitude

PUMP INLET FLUID TEMP., °F	PUMP SPEED, RPM	PUMP RIPPLE, PSI			
		P _P	P _{QD}	P _{AIL}	P _{UHT}
+140	3400	±60	±50	±20	±10
	3900	±70	±50	±10	0
	4400	±80	±100	±10	±10
	4900	±50	±90	±10	±10
	5400	±90	±125	0	0
	5900	±60	±80	0	0
+200	3400	±125	±80	±50	±20
	3900	±125	±125	±20	±20
	4400	±125	±150	±30	±60
	4900	±100	±130	±30	±30
	5400	±110	±150	±40	±40
	5900	±80	±130	±50	±50

NOTES: 1. MAXIMUM ALLOWABLE PRESSURE RIPPLE IS ±200 PSI, REFERENCE
SPECIFICATION LHS-8810-1
2. DATA IS FOR ONE PUMP CONFIGURATION, FIGURE 4.

4.3.1 Initial Test System

Steady-state stabilized temperatures resulting from operation with pump suction fluid maintained at +200°F are shown on Table 5. A small oil-to-water heat exchanger in the pump case drain line and a temperature controller were used to maintain the +200°F. All tests were begun with suction fluid near room temperature except as noted in Table 5. The roll, pitch, and yaw axes were operated with synchronized inputs. Pump case drain temperature never exceeded +260°F. Actuator return fluid was generally less than +240°F. Heat removed by the heat exchangers ranged from 100 to 300 BTU/min depending upon operating conditions. Heat removed by conduction, convection, and radiation was considered to approximate that which might occur in an A-7E operating on the ground during an +80°F day. The range and distribution of fluid temperatures observed were satisfactory.

Pump flows measured during mission/profile cycling are listed on Table 6. System fluid was at room temperature at the beginning of Step 1. Pump suction temperature was not allowed to exceed +200°F during the 2 hour course of the test. Maximum discharge flow occurred in Step 17 when the pitch axis was operating at 50% and the yaw axis at 100%. Maximum case flow occurred at the start of Step 13 following operation of the pitch axis at 100% and the yaw axis at 50%.

4.3.2 Final Test System

Steady-state stabilized temperatures resulting from operation under various conditions are shown on Table 7. The roll, pitch, and yaw axes were cycled simultaneously with either null, 2%, or 10% inputs, but cycling was not synchronized. The LH aileron FC-2 ports were plumbed into FC-1 system; the FC-1 ports were not used (See note on Table 1). Temperature range and distribution were considered satisfactory.

Heat removed by the oil-to-water heat exchangers in FC-1 and FC-2 system case drain lines differed significantly. The difference was attributed to configuration dissimilarities. FC-1 power module is relatively compact, Figure 9. FC-2 power module is much larger, Figure 10, and contains nearly 40 feet of additional tubing in the pump case drain line. The extra tubing length simulates a cooling loop employed in the A-7E. Heat removed for the stabilized conditions shown on Table 7 are given below:

<u>Heat Removed, BTU/min</u>									
Suc. Temp, °F	140	140	200	150	200	150	200	200	200
Pump rpm	3400	5900	5900	3400	3400	5900	5900	3400	5900
Cycling Mode	null	null	null	2%	2%	2%	2%	10%	10%
FC-1	210	207	93	291	178	323	204	400	400
FC-2	27	60	13	152	43	154	63	185	229

NADC-79024-60

TABLE 5. Steady-state temperatures, initial test system

SUCTION TEMP., °F PUMP RPM CYCLING MODE	OPERATING CONDITIONS					
	200 3400 NULL	200 5900 NULL	200 3400 10%	200 5900 10%	200 3400 50%	200 5900 50%
	STABILIZATION TIME, MIN	20 ¹	30	18	14 ²	22
LOCATION						
Suction	205	197	202	198	198	199
Case Dr.	257	259	250	253	246	254
LH UHT	110	101	236	238	240	244
Rudder	84	73	206	210	204	200
LH Aileron ³	73	73	74	74	73	71
LH Spoiler	96	87	171	179	151	169
Speed Brake	109	81	98	82	95	95
Yaw AFCS	74 ⁴	73 ⁴	117	140	117	140
System Return	217	218	206	205	202	203
Ambient Air	76	71	75	75	75	72

- NOTES:
1. SUCTION FLUID TEMPERATURE +166°F AT START OF TEST
 2. SUCTION FLUID TEMPERATURE +137°F AT START OF TEST
 3. AILERON ACTUATOR NOT IN SYSTEM. NEEDLE VALVE INSTALLED BETWEEN FC-1 P&R ACTUATOR HOSES AND SET FOR 20 CC/MIN FLOW
 4. AFCS SOLENOID VALVE "OFF"

TABLE 6. Pump flows, initial test system

MISSION/ PROFILE STEP NO.	DISCHARGE FLOW, GPM			CASE FLOW, AVG. GPM
	MIN.	STEADY	MAX.	
1		.06		1.04
2		.26		1.11
3	3.04		3.32	1.05
4	3.01		4.92	1.09
5	2.35		2.96	1.11
6		.043		1.27
7	2.43		4.10	1.07
8	2.90		4.83	1.14
9	2.16		2.65	1.31
10	2.68		5.04	1.19
11	1.26		2.29	1.30
12	1.76		4.61	1.19
13		1.00		1.41
14		.85		1.27
15		.81		1.27
16	3.17		3.46	1.17
17	3.12		5.38	1.20
18	2.44		2.90	1.28
19	2.09		3.26	1.20
20	2.86		5.11	1.18
21	3.57		4.08	1.21
22	1.92		3.07	1.18
23	1.84		2.48	1.19
24	2.04		4.37	1.27

NOTES: 1. PUMP USED WAS S/N 346581 (FC-1)
 2. SEE TABLE 13 FOR MISSION/PROFILE CYCLING DETAILS
 3. SYSTEM AT ROOM TEMPERATURE AT START OF STEP 1.
 4. DISCHARGE FLOW = SUCTION FLOW - CASE FLOW

TABLE 7. Steady-state temperatures, final test system

SUCTION TEMP, °F PUMP RPM CYCLING MODE		OPERATING CONDITIONS								
		140 3400 NULL	140 5900 NULL	200 5900 NULL	150 3400 2%	200 3400 2%	150 5900 2%	200 5900 2%	200 3400 10%	200 5900 10%
SYSTEM	LOCATION									
FC-1	Suction	142	143	197	159	203	150	200	201	202
	Case Drain	200	206	250	210	248	206	252	250	253
	LH UHT	119	127	173	200	237	189	238	245	245
	RH UHT	134	135	167	200	236	188	236	243	243
	Rudder	83	84	101	183	212	163	205	226	226
	LH Aileron	--	--	--	--	--	--	--	--	--
	LH Spoiler	146	147	101	165	196	152	195	193	192
	Speed Brake	87	90	93	84	101	88	104	90	82
FC-2	Yaw AFCS	61	69	72	155	174	138	174	179	178
	System Return	156	155	217	169	208	157	212	213	213
	Suction	144	145	195	151	202	151	201	203	202
	Case Drain	217	229	264	200	251	213	259	251	258
	LH UHT	107	118	152	191	236	197	236	245	245
	RH UHT	104	108	144	195	239	193	239	245	246
	Rudder	90	91	101	178	209	161	199	222	222
	LH Aileron	83	77	94	162	200	167	203	196	196
FC-1	LH Spoiler	108	113	148	142	176	145	181	176	177
	Seal Fixture	163	158	202	197	232	190	233	233	232
	FC-2 Seal Fixture	--	--	--	--	224	186	226	--	--
FC-2	System Return	145	137	159	146	200	146	209	194	195
	Ambient Air	69	72	75	74	77	74	78	74	72
	Ht. Ex. In	199	204	248	208	247	205	250	248	250
	Ht. Ex. Out	152	162	231	138	209	132	210	157	156
FC-1	Ht. Ex. In	198	207	240	182	224	187	236	225	230
	Ht. Ex. Out	190	190	237	130	212	135	220	170	163

TABLE 8. Steady-state pressures and flows, final test system

TEMP, °F PUMP RPM CYCLING MODE	OPERATING CONDITIONS									
	140 3400 NULL	140 5900 NULL	200 5900 NULL	150 3400 2%	200 3400 2%	150 5900 2%	200 5900 2%	200 3400 10%	200 5900 10%	
	<u>PRESSURES</u>									
<u>SYSTEM LOCATION</u>										
FC-1 Suction	102	99	102	99	98	99	99	96	96	
Case Drain	116	115	118	115	113	117	117	113	113	
Discharge	8100	8070	8010	8080	8020	8050	8010	8020	7980	
FC-2 Suction	99	97	103	103	100	100	101	99	98	
Case Drain	121	122	127	123	123	123	126	124	125	
Discharge	8110	8100	8040	8120	8050	8100	8030	8030	8000	
<u>FLOWs</u>										
FC-1 Suction	1.59	1.67	1.98	2.89	3.05	2.85	3.08	4.06	4.17	
Case Drain	1.25	1.37	1.47	1.16	1.28	1.24	1.39	1.21	1.31	
LH UHT	0+	0+	0+	.41	.46	.32	.36	1.01	1.01	
Rudder	0+	0+	0+	0+	0+	0+	0+	.10	.10	
FC-2 Suction	*1.09	*1.15	1.44	*2.13	2.72	2.37	2.64	*3.39	*3.51	
Case Drain	.93	.98	1.16	.82	.98	.83	1.07	.93	1.02	
RH UHT	0+	0+	0+	.41	.42	.34	.36	.93	.93	
LH Aileron	0+	0+	0+	0+	0+	0+	0+	0+	0+	
LH Spoiler	0+	0+	0+	0+	0+	0+	0+	0+	0+	

NOTES: 1. *FC-2 SEAL TEST FIXTURE NOT OPERATING
 2. 0+ = FLOW TOO LOW FOR TURBINE FLOWMETER READOUT

Stabilized pressures and flows are presented on Table 8. All pressures and flows were considered satisfactory. The flowmeters used in actuator return lines were -8 size and had a flow measurement range of 0.2 to 6 gpm. Actuator null leakage and small stroke flow rates could therefore not be measured as indicated on Table 8. (Actuator null leakage checked during mission/profile testing was performed using a graduate and stopwatch. Leakage was usually less than 0.03 gpm (See Table 22).

4.4 DYNAMIC PERFORMANCE

4.4.1 Pressure Harmonics

4.4.1.1 Test Procedure. Pressure dynamics occurring in the discharge line near the pump were investigated. Two methods of pressure measurement were employed: 1) a piezoelectric transducer was teed into a line, and 2) a piezoelectric transducer was clamped on the outside of a line. The two methods were used to demonstrate transducer response correlation as well as provide simulator performance data. The data presented are for the final test system, Figure 5.

The transducer clamp-on device was designed and fabricated by NAAO-Columbus, Figure 35. The same piezoelectric transducer was used for both the clamp-on and tee-in arrangements. Pressure wave spectrum analysis and real time data display were performed by a dual channel fast fourier transform analyzer, Figure 36. Data presentation was accomplished with an interactive digital x-y plotter. A block diagram of the instrumentation is shown on Figure 37.

Four test configurations were evaluated, Figure 38. Installation of the female tee in configurations #2 and #4 added fluid volume at the pressure measurement location and influenced fluid dynamics slightly. Data for the four configurations was necessarily taken at different times because of plumbing differences. Although care was exercised to duplicate pump speed and fluid temperature conditions for each configuration, operating conditions were probably not identical.

4.4.1.2 Results. Selected examples of real time and instant spectrum data are presented in Appendix B. The data were taken with a pump discharge fluid temperature of +145°F and with all simulator actuators operating at null. A summary of peak-to-peak pump ripple is given on Table 9. As expected, pump ripple was the predominate harmonic mode. First and second harmonics generally had lower amplitudes than the fundamental. Occasionally pump yoke natural frequency (12 Hz) entered the spectrum. The maximum ripple found was 300 psi p-p; maximum allowable ripple is 400 psi p-p. Correlation of the clamp-on and tee-in transducer outputs was considered excellent for both the real time and spectrum data. See comparison data in Appendix B.

NADC-79024-60

FIGURE 35. Clamp-on pressure transducer

FIGURE 36. Pressure dynamics analysis instrumentation

FIGURE 37. Pressure wave harmonics instrumentation

FIGURE 38. Pressure wave harmonics test configurations

TABLE 9. FC-1 pump ripple

<u>Pump Speed, rpm</u>	<u>Pump Ripple, psi p-p</u>	
	<u>Location, 2.19 in.</u>	<u>Location, 34.5 in.</u>
2400	240	200
2800	300	180
3400	200	240
3500	270	260
4000	160	140
5885	250	150

4.4.2 Pressure Peaks and Transients

4.4.2.1 Test Procedure. Measurements were taken in the pressure and return systems to verify that pressure transients resulting from the operation of actuators and solenoid valves did not exceed design limits. The maximum allowable peak in the pressure system is 9600 psi (120% of operating pressure). The maximum allowable peak in the return system is 4000 psi (50% of operating pressure). The data presented are for the initial test system, Figure 4.

Two strain gage type pressure transducers were used to measure the transient peaks. One transducer was located immediately upstream of the component being operated, and one immediately downstream. Readout was on an oscilloscope with 1000 Hz response capability. The transducers were relocated for measurements at other components.

4.4.2.2 Results. Operating conditions and resulting transient pressures are given on Table 10. All pressure peaks were acceptable except at the AFCS yaw actuator where an 11,700 psi surge occurred when a Bendix 3-way shut-off valve was energized to power the actuator, Figure 39. The surge was caused by high fluid velocities being ported through the valve during the period of pressurizing the AFCS actuator to 8000 psi. The high velocities resulted from compressed system fluid suddenly expanding into a line filled with fluid at return pressure. The surge was eliminated, Figure 40, by installing a restrictor in the inlet port of the 3-way solenoid valve. The restrictor, rated at 2 gpm at 7800 psid, did not degrade AFCS actuator performance (maximum actuator flow is 0.5 gpm).

A similar surge investigation was conducted following fabrication of the two pump system when a Parker Beretea 3-way valve was used instead of the Bendix valve. This time the restrictor was installed in port 'C' (downstream of the valve). Results of this test, shown on Figures 62 and 63, were used to corroborate the math model HYTRAN program (see Section 5.3).

TABLE 10. Transient pressure peaks

COMPONENT	PUMP SPEED, RPM	SUCTION FLUID TEMP, °F	ACTUATOR LOAD	* OPERATING MODE	TRANSIENT PRESSURE PEAK, PSI			
					P SUPPLY	P C1	P C2	P RETURN
Rudder, Actuator	3400	+140	None	1	6550			578
				2	8620			548
				3	8570			603
				4	8450			643
	5900	+200	None	1	8300			703
				2	8520			643
				3	8550			678
				4	8520			703
LH UHT Actuator	3400	+140	None	1	8560			446
				2	--			--
				3	8630			801
				4	--			--
	5900	+200	None	1	8560			476
				2	--			--
				3	8660			786
				4	--			--
AFCS Yaw Actuator	3400	+140	None	1	**			609
				2	**			579
				3	**			639
				4	**			634
				5	10990			719
				6	~100+			584
	5900	+200		1	**			679
				2	**			684
				3	**			724
				4	**			679
				5	11700			1143
				6	~100+			689
Spoiler Actuator	3400	+140	Full	1	8160			310
				3	8310			565
	5900	+200		1	8110			323
				3	8310			546
Solenoid Valve, Speed Brake Actuator	3400	+140	Full	7	8580	7990	4370	2370
				8	8170	100	8350	131
				9	8680	8290	1835	443
				10	8220	7910	100	141
				11	8420	7960	100	282
	5900	+200	Full	7	8630	8340	4600	2500
				8	8050	100	8270	131
				9	8450	8210	1825	181
				10	8140	7780	100	136
				11	8370	7890	100	282
Solenoid Valve, L.E. Flap Actuator	3400	+140	Full	7	9310	8590	203	1850
				8	8230	8330	100	131
	5900	+200	Full	9	9560	354	8470	1400
				10	8290	100	8250	110
				7	9090	8490	279	1750
				8	8180	8260	100	101
				9	9570	404	8500	1360
				10	8240	100	8170	100

*OPERATING MODES

- 1 10% retract to null (step input)
- 2 10% extend to null (step input)
- 3 50% retract to null (step input)
- 4 50% extend to null (step input)
- 5 3-way valve "off" to "on," actuator at null
- 6 3-way valve "on" to "off," actuator at null
- 7 Hold to extending (from full retraction)
- 8 Bottoming at full extend
- 9 Start of retraction (from full extension)
- 10 Bottoming at full retraction
- 11 Retract to hold (at full retraction)

**Data not meaningful since 3-way valve was de-energized to produce step input at actuator.

NADC-79024-60

FIGURE 39. Pressure surge at AFCS yaw actuator with original plumbing configuration

FIGURE 40. Pressure surge at AFCS yaw actuator with restrictor in 3-way valve port 'P'

4.4.3 Tubing Vibration

4.4.3.1 Test Procedure. Simulator tubing vibration was measured to verify that stress levels were satisfactory. Two miniature accelerometers were mounted on a small block that was attached to tubing at selected locations throughout the simulator. One accelerometer sensed vertical motion, the other horizontal motion. A block diagram of the electronic equipment used determine the frequency and 'g' level of vibration peaks is shown on Figure 41. Vibration amplitude was calculated using:

$$A = \frac{19.57 g}{f^2}$$

where,

A = vibration amplitude, inches peak-to-peak

g = acceleration, ft/sec² ÷ 32.17 ft/sec²

f = vibration frequency, Hz

4.4.3.2 Results. Sixteen locations were surveyed over a pump speed range of 2000 to 6000 rpm. Figure 42. Pump ripple frequency was the primary excitor of tubing vibration (frequency = pump rpm x 9 ÷ 60). Results of the survey are given on Tables 11 and 12.

Determination of maximum allowable tube deflection is summarized on Figure 43. A comparison of measured and maximum acceptable vibration amplitudes is given below.

<u>Tube O.D., inches</u>	<u>Measured Vibration, max. P-P, inches</u>	<u>Acceptable Vibration, max. P-P, inches</u>
3/16	0.0052	.076
1/4	0.0017	.058
3/8	0.0005	.038
1/2	0.0055	.028

Tubing vibration levels observed on the simulator were thus satisfactory. This has been demonstrated by the fact that no tubing/fitting failures occurred during simulator testing that were attributed to excessive vibration.

NADC-79024-60

FIGURE 41. Tubing vibration instrumentation

NADC-79024-60

FIGURE 42. Tubing vibration measurement locations

TABLE 11. Tubing vibration survey, FC-1 system

<u>LOCATION</u>	<u>TUBE SIZE</u>	<u>PUMP RPM</u>	<u>VERTICAL VIBRATION</u>	<u>PUMP RPM</u>	<u>HORIZONTAL VIBRATION</u>
35"	-8	4324	.00077	3876	.00020
		5022	.00054	4428	.00095
		5326	.00029	5025	.00082
70"	-8	2266	.0001	2176	.00023
		4494	.00097	4482	.00093
		5177	.00051	5798	.00030
97"	-8	2260	.0024	2241	.0015
		4460	.0014	2972	.00093
				4441	.0035
149"	-8	4580	.00033	1988	.0023
		5512	.00036	2692	.00071
221"	-6	3253	.00016	2515	.00018
		4293	.00012	4328	.00027
		5519	.00010		
393"	-4	2257	.00023 (1st H.)	2255	.0017 (1st H.)
		4514	.00023	4508	.0013
		5098	.00022	5484	.00010
392"	-3	2296	.00003 (2nd H.)	2297	.00004 (2nd. H)
		3426	.00002 (1st H.)	3466	.00003 (1st. H)
325"	-3	2591	.0023	2589	.0015
		3163	.0010	3617	.0005
		3594	.0011	4006	.0003

- NOTES:
1. All tubing pressurized with 8000 psi
 2. Vibration amplitude values are inches peak-to-peak and are maximum values observed.
 3. Vibration values are at fundamental frequency except as noted (2nd H. = second harmonic frequency)
 4. See Figure 42 for location details

TABLE 12. Tubing vibration survey, FC-2 system

<u>LOCATION</u>	<u>TUBE SIZE</u>	<u>PUMP RPM</u>	<u>VERTICAL VIBRATION</u>	<u>PUMP RPM</u>	<u>HORIZONTAL VIBRATION</u>
44"	-8	2826	.0052	3048	.0010
		5215	.00048	3859	.00040
		5645	.0028	4411	.00026
		5892	.0020		
69"	-8	3862	.00022	2931	.0055
		4407	.00035	4377	.00096
		5168	.00028		
113"	-8	2226	.00060	2264	.0031
		2500	.00071	2500	.00084
		4400	.0011	4400	.00050
		5004	.00080	5004	.0016
163"	-8	2162	.0011 (1st H.)	4369	.00015
		4369	.0011*	5692	.00040
		5693	.00065		
387"	-6	2856	.0005 (1st H.)	3452	.00007 (1st H.)
		5681	.0008	4349	.00005 (1st H.)
519"	-4	2055	.00007 (1st H.)	2048	.00016 (1st H.)
		3042	.00006 (1st H.)	3032	.00003 (1st H.)
		4499	.00003 (1st H.)	4481	.00005 (1st H.)
552"	-3	3387	.00003	2767	.00005
		4294	.00002 (1st H.)	4458	.00001 (1st H.)
748"	-3	2558	.0001	2415	.00003
		4309	.0052*	3810	.00001
*Vibration at 71 Hz					

- NOTES:
1. All tubing pressurized with 8000 psi
 2. Vibration amplitude values are inches peak-to-peak and are maximum values observed.
 3. Vibration values are at fundamental frequency except as noted (2nd H. = second harmonic frequency).
 4. See Figure 42 for location details.

Stress Levels

Maximum allowable stress for 3A1-2.5V Ti tubing	33,000 psi
Longitudinal stress in tubing due to 8000 psi hydraulic pressure	20,000 psi
Maximum acceptable bending stress due to tube vibration	13,000 psi

R Factor

$$R = \frac{\text{min. stress}}{\text{max. stress}} \approx +1 \quad \therefore \text{No fatigue damage occurs}$$

Assumptions

1. Spacing between tube clamps: 12 in.
2. Deflection Mode: simple beam, uniform load

Tube deflection Producing 13,000 psi Stress

<u>Tube O.D.</u>	<u>Deflection, in.</u>
3/16	0.038
1/4	0.029
3/8	0.019
1/2	0.014

FIGURE 43. Maximum allowable tube deflection

4.4.4 Actuator Frequency Response

4.4.4.1 Test Procedure. Dynamic response of the LH UHT actuator was determined under both load and no-load conditions for three modes of operation.

- o FC-1 and FC-2 systems operating at 8000 psi
- o FC-1 system only operating at 8000 psi
- o FC-2 system only operating at 3000 psi

Actuator input was maintained at a constant sinusoidal amplitude using the AFCS pitch actuator as a driver. Operation was closed loop through mechanical feedback provided by the UHT linkage system. A DC position pot was used to sense displacement of the input push rod. A second DC pot was used to sense UHT actuator piston motion. Input/output data were displayed by a two channel strip chart recorder. Wave form, input/output magnitudes, and phase angle were observed on the recordings. The GSE was used to power the UHT actuator with 3000 psi pressure (see section 4.6). Input fluid temperature was maintained at approximately +140°F for all tests.

4.4.4.2 Results. UHT actuator frequency response is shown on Figures 44 and 45. The data indicates overdamped operating characteristics. There was little difference between response with or without load when cycling at 8000 psi. Performance degraded slightly with operation at 3000 psi.

NADC-79024-60

FIGURE 44. LH UHT actuator frequency response, no load

FIGURE 45. LH UNIT actuator frequency response, load

AD-A169 884 FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM 2/4
UNCLASSIFIED SIMULATOR HARDWARE (U) ROCKWELL INTERNATIONAL COLUMBUS
OH NORTH AMERICAN AIRCRAFT OP W N BICKEL ET AL
JAN 86 MA-85-0134 NADC-79024-60 F/G 13/7 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

4.5 ENDURANCE

This test was conducted to demonstrate that component performance and reliability are satisfactory for long periods of operation. A typical flight mission was simulated and repeated until a total of 600 hours of operation was accumulated. Component performance checks were made at 150 hour intervals. Selected actuators were disassembled at these times and examined for wear.

4.5.1 Cycling Program

Load/stroke magnitude and cycle distribution were based on the MIL-C-5503 schedule shown below:

	<u>No. of Cycles</u>	<u>% of Total</u>
Full stroke & load	50,000	1%
One-half stroke & load	250,000	5%
10% stroke & load	700,000	14%
2% stroke & load	<u>4,000,000</u>	<u>80%</u>
	5,000,000	100%

The cycling program was designed to profile a typical two hour mission: Taxi, Take-off, Cruise, Mission, Cruise, and Landing. The two hours were broken down into 24 five minute steps. The program used for the initial test system is shown on Table 13. Mission/profile cycling used for the final test system was modified to accommodate the seal test fixture and to provide more realistic pump speed conditions, Table 14. All primary flight control actuators, except the spoiler, accumulated cycles as follows:

<u>Load/ Stroke</u>	<u>Cycling Rate</u>	<u>Total Cycles</u>
2%	3 Hz	5400
10%	1 Hz	900
50%	0.25 Hz	375
100%	0.12 Hz	<u>72</u>

6747/2 hrs.

The LH spoiler operates when the pilot's stick is moved left; the RH spoiler functions when the stick is moved right. A motion limiting bungee used to accomplish this prevented operating the LH spoiler with 2% inputs. Total spoiler cycles were therefore 1347 for each 2 hours of simulator operation.

Secondary flight control actuators were operated at the rate of 1 cpm during two steps in the program. Total cycles accumulated were thus 10 cycles for each 2 hours of simulator operation.

The total number of cycles run was $6747 \times 300 = 2,024,100$. When Phase I compatibility test cycling, reference 1, is added to this number, some actuators were operated over 3,000,000 cycles.

4.5.2 Test Conditions

4.5.2.1 Temperature. Cycling was conducted at room temperature with fan air circulation to simulate compartment air movement. Pump inlet fluid temperature was maintained in the range of +190 to +210°F. Pump case drain fluid was not allowed to exceed +275°F. Actuator return fluid temperatures ranged from +100 to +240°F depending on location and cycling mode.

4.5.2.2 Hydraulic Fluid. Fluid samples were taken periodically throughout the test to monitor contamination level. Hiac electronic equipment was employed to make particle counts. System health was monitored periodically by means of patches made of debris collected in the pressure, return, and pump case drain filters. Fluid viscosity measurements to check shear stability were not taken because of the frequent need to replenish fluid lost in the contamination checks, patch tests, and actuator disassembly inspections.

4.5.2.3 Pump Inspections. Pump wear in areas such as piston shoes, pintle bearings, and valving surfaces was monitored frequently during the early stages of testing. This was done by making periodic patches of debris taken from the pump case drain filter. After each 50 hours of simulator running time the pump was shipped to the supplier for disassembly and inspection. The pump was then returned to NAAO-Columbus for resumption of mission/profile cycling.

Pintle bearing wear was a particular concern throughout the test. Attempts were made during the course of simulator cycling to improve bearing life by:

- o using bearings with specially hardened races
- o using slightly larger bearings (as large as the existing pump housing would permit),
- o using bearings with crowned rollers.

Installation of significantly larger pintle bearings that require a pump housing re-design has recently been completed. These pumps are scheduled for testing and evaluation during 600 additional hours of simulator operation, reference Section 1.4.

TABLE 13. Mission/profile cycling program, initial test system

STEP NO.	ROLL AILERON/ SPOILER	PITCH, UHT	YAW, RUDDER	AFCS ACTUATORS	SPEED BRAKE, L.E. FLAPS	ACTUATOR LOADING	PUMP RPM
1	0	0	0	Off	Off	Off	3400
2	0	0	0	Off	Off	Off	3400
3	2%	10%	50%	On	Off	Off	3400
4	10%	50%	2%	On	Off	Off	3400
5	50%	2%	10%	On	Off	Off	3400
6	0	0	0	Off	Off	Off	3400
7	50%	2%	10%	On	On	On	5900
8	10%	50%	2%	On	Off	On	5900
9	0	2%	100%	On	Off	On	5900
10	2%	50%	0	On	Off	On	5900
11	100%	0	2%	On	Off	On	5900
12	2%	100%	50%	On	Off	On	5900
13	0	0	0	On	Off	On	5900
14	0	0	0	On	Off	On	5900
15	0	0	0	On	Off	On	5900
16	2%	10%	50%	On	Off	On	5900
17	2%	50%	100%	On	Off	On	5900
18	50%	2%	10%	On	Off	On	5900
19	100%	2%	50%	On	Off	On	5900
20	0	50%	2%	On	Off	On	5900
21	50%	10%	2%	On	Off	On	5900
22	2%	0	50%	On	On	On	5900
23	50%	2%	0%	On	Off	On	5900
24	10%	100%	2%	On	Off	On	5900

TABLE 14. Mission/profile cycling program, final test system

STEP NO.	ROLL AILERON/ SPOILER	PITCH UHT	YAW, RUDDER	SEAL Fixture	AFCS ACTUATORS	SPEED BRAKE, L. E. FLAP	ACTUATOR LOADING	PUMP RPM
1	0	0	0	0	Off	Off	Off	3400
2	0	0	0	0	Off	Off	Off	3400
3	2%	10%	50%	S	On	Off	Off	3400
4	10%	50%	2%	S	On	Off	Off	3400
5	50%	2%	10%	S	On	Off	Off	3400
6	0	0	0	0	Off	Off	Off	5900
7	50%	2%	10%	L	On	On	On	5900
8	10%	50%	2%	S	On	Off	On	5900
9	0	2%	100%	0	On	Off	On	5900
10	2%	50%	0	S	On	Off	On	4900
11	100%	0	2%	L	On	Off	On	4900
12	2%	100%	50%	0	On	Off	On	4900
13	2%	2%	2%	S	On	Off	On	5900
14	2%	2%	2%	S	On	Off	On	5900
15	2%	2%	2%	S	On	Off	On	5900
16	0	10%	50%	S	On	Off	On	5400
17	0	50%	100%	0	On	Off	On	5400
18	50%	0	10%	L	On	Off	On	5400
19	100%	0	50%	L	On	Off	On	4400
20	0	50%	0	0	On	Off	On	4400
21	50%	10%	0	L	On	Off	On	4400
22	0	0	50%	S	On	On	On	4400
23	50%	0	0	L	On	Off	On	4400
24	10%	100%	0	S	On	Off	On	4400

NOTE: S = short stroke (± 0.10 in.) at 2 HzL = long stroke (± 1.0 in.) at 0.07 Hz

4.5.2.4 Performance Checks. Component performance tests conducted at 0, 150, 300, 450, and 600 hours of simulator operation were as follows:

<u>Component</u>	<u>Test</u>
Pump(s)	Overall efficiency Heat rejection
Flight control actuators	Null leakage Piston seal leakage Rod seal leakage (accumulation)
Solenoid Valves	Internal leakage
Restrictors	Flow rate
Relief valves	Internal leakage Cracking & re-seat pressures

Pump performance was determined on a test bench. Actuator and solenoid valve leakage checks were run with the component installed in the simulator, but plumbed individually to a portable, 0.5 gpm, 8000 psi industrial hydraulic power supply. This was done to facilitate testing and avoid unnecessary wear on the LHS pumps.

After performance testing was completed, selected flight control actuators were removed from the simulator and disassembled. All dynamic seals and wear surfaces were examined and their condition recorded. Seals with excessive wear were replaced. Photographs were taken of selected parts. The actuators were then re-assembled and re-installed in the simulator.

4.5.2.5 Data Collection. Four types of data logs were maintained to record test information.

- Mission/Profile log sheet
- Performance test results
- Individual component service records
- Daily work log

Examples of each are shown on Figures 46 through 49. Failures and malfunctions, briefly noted on the mission/profile log sheet, were detailed, analyzed, and cataloged in a separate file as illustrated in Figure 50.

NADC-79024-60

FIGURE 46. Typical mission/profile log

NADC-79024-60

4/H UHT ACTUATOR LEAKAGE HISTORY

150 TEST HOURS						
9-17-83	FC-1	NULL LEAKAGE AUG.	4.6cc 5.5cc 5.4cc 20.7cc/min	15sec 15sec 15sec	{	WITH INPUT DITHER - LEAKAGE SILTS UP TO DROPS WITHOUT DITHER
		PISTON SEAL LEAKAGE	ZERO (ACT'R FULL EXT)			WAIT 3 MIN - MEAS 1 MIN
9-19-83	FC-2	NULL LEAKAGE AUG	7.1cc 7.1cc 28.4cc/min	15sec 15sec	{	WITH INPUT DITHER
		PISTON SEAL LEAKAGE	TRACE (ACT'R FULL RET'D)			WAIT 3 MIN - MEAS 1 MIN
2-15-84	ROO SEAL LEAKAGE	83 DROPS (200 hr.)				
3-13-84	ROO SEAL LEAKAGE	71 DROPS (250 hr.)				
4-18-84	ROO SEAL LEAKAGE	67 DROPS (300 hrs.)				
	CENTER SEALS	0 DROPS (300 hrs.)				
300 HOURS CHECK						
6-11-84	NULL LEAKAGE <u>FC-1</u>	8.0cc 7.2cc 6.3cc 6.8cc	15sec 15sec 15sec 15sec	{	WAIT 20 SEC - MEAS. 15SEC MANUAL LIGHT DITHER	
	NULL LEAKAGE <u>FC-2</u>	8.5cc 5.8cc 6.6cc 5.8cc	15sec 15sec 15sec 15sec	{	LEAKAGE SILTS UP AND GOES TO DROPS OTHERWISE MANUAL LIGHT DITHER LEAKAGE SILTS UP AND GOES TO DROPS OTHERWISE	
	PISTON SEAL LEAKAGE	FC-1 (TRACE) FC-2 (TRACE)				
2-1-85	ROO SEAL LEAKAGE	AFTER FLIGHT PROFILE 225 -	132 DROPS			
5-8-85	ROO SEAL LEAKAGE	END OF FLIGHT PROFILE	300 -	115 DROPS		

FIGURE 47. Typical component performance record

NADC-79024-60

HISTORY FC-1 PUMP MODEL PV3-047-2
P/N 570937
S/N MX346581

DATE	REASON FOR REMOVAL OR RUNNING	OPERATING TIME	TOTAL TIME
JAN 28, 1983	CHECK OUT FC-1 SYSTEM WITH LOAD LOAD - CHECK OUT PROGRAMMER 3400RPM	.24	2.4
JAN 31, 1983	CHECK OUT I.E. FLAP LOAD 3400RPM	.75	3.15
FEB 1, 1983	CHECKOUT FLOW METERS 3400RPM	.92	4.07
FEB 2, 1983	CHECKOUT OSCILLOGRAPH 3400RPM	.35	4.42
FEB 3, 1983	CHECKOUT OSCILLOGRAPH 3400RPM	.40	4.82
FEB 4, 1983	CHECKOUT OSCILLOGRAPH 3400RPM	.95	5.77
FEB 7, 1983	STADY- STATE BASELINE 3400RPM	2.20	7.97
FEB 7, 1983	STADY- STATE BASELINE 5700 RPM	1.3	9.27
FEB 8, 1983	RESONANCE SEARCH 3400RPM → 5700RPM	1.95	11.22
FEB 9, 1983	RESONANCE SEARCH 3400RPM → 5700RPM	.95	12.17
FEB 10, 1983	RESONANCE SEARCH & TRANSFER 3400RPM → 5700RPM	2.20	14.37
FEB 11, 1983	TRANSIENT SURVEY 3400RPM & 5700RPM	1.70	16.07
FEB 17, 1983	CHECKOUT UHT ACTUATOR 3400RPM	.30	16.37
FEB 18, 1983	CHECKOUT CONTROL SYSTEM 3400RPM	.80	17.17
FEB 19, 1983	REMOVED PUMP FOR DENTINENCE TEST		
FEB 23, 1983	COMPLETED PUMP PERFORMANCE TEST	2.0	19.17
FEB 28, 1983	CHECKOUT LOAD SYSTEM - RODGER-DAT 3400RPM	.80	19.97
MAR 1, 1983	CHECKOUT LOAD SYSTEM (COMPLETE) 3400RPM (STEP)	1.70	21.67
MAR 1, 1983	STARTED TEST-STOP ON END OF CYCLE 21	1.70	23.37
MAR 2, 1983	CHECKOUT SYSTEM 3400RPM	.15	23.52
MAR 2, 1983	COMPLETED FIRST CYCLE STEP 21 TO 24	.35	23.87
APRIL 6, 1983	CHECKOUT ACTUATORS 3400RPM	.50	24.37
APRIL 7, 1983	CHECKOUT ACTUATORS 3400RPM	1.30	25.67
APRIL 7, 1983	SIMULATED FLT RUN #2	2.10	27.77
APRIL 7, 1983	CHECKOUT STICK CONTROLS 3400RPM	.20	27.97
APRIL 8, 1983	SIMULATED FLT 3, 4, & 5	6.10	34.07
APRIL 11, 1983	SIMULATED FLT 6	2.03	36.10
APRIL 11, 1983	CHECKOUT UHT AMPLIFIER 3400RPM	.20	36.30
APRIL 11, 1983	SIMULATED FLT #7	2.05	38.35
APRIL 12, 1983	SIMULATED FLT #8	2.07	40.42
APRIL 13, 1983	SIMULATED FLT #9	2.02	42.44
APRIL 13, 1983	SIMULATED FLT #10	2.10	44.54
APRIL 14, 1983	SIMULATED FLT #11	2.05	46.59
APRIL 14, 1983	SIMULATED FLT #12	2.03	48.62
APRIL 15, 1983	SIMULATED FLT #13 & 14	4.06	52.68

FIGURE 48. Typical component service log

DATE	TASK
3-26-85	1. RAN SIMULATOR 6 HOURS TIGHTEN ALL FITTINGS AT 4H UHT ACTUATOR - NO IMPROVEMENT
3-27-85	1. REMOVED 4H UHT FROM SIMULATOR. 2. REMOVED AFT END CAP P/N 83-00214-103 3. REPLACE "O" RING P/N MS 07595-225 4. REPLACED END CAP 5. INSTALLED ACTUATOR IN SIMULATOR - NO IMPROVEMENT 6. REMOVED 4H ACTUATOR FROM SIMULATOR 7. REMOVED AFT EVO GAP FROM ACTUATOR FOR INSPECTION 8. TOOK PART TO M+P LAB FOR INSPECTION - NO CRACKS FOUND 9. TOOK PART TO HEAT TREAT BLDG 9 TO MAGNAPLUX PART - SEVERAL CRACKS FOUND 10. RAN SIMULATOR 2 1/2 HOURS 11. RAN PATCH TESTS OF FC-1 + FC-2 CASE DRAIN OIL SAMPLERS.
3-28-85	1. ADDED HYDRO FLUID TO FC-1 + FC-2 SYSTEM AFTER LOW FLUID AUTO SHUT DOWN OF FC-1 SYSTEM SHIPPED 8000PSI ACTUATOR TO NADC WITH ALL OF THE ELECTRONICS. 2. RAN SIMULATOR 4 HOURS 15 MIN. EQUIPMENT WOULD NOT COME ON - FOUND DEFECTIVE POWER SWITCH 3. REMOVED DEFECTIVE SWITCH 4. PUT IN NEW POWER SWITCH 5. REMOVED R/H UHT FROM SIMULATOR 6. REMOVED AFT END CAP FROM ACTUATOR 7. INSTALLED AFT END CAP FROM R/H UHT INTO 4/H UHT ACTUATOR 8. INSTALLED 4/H UHT ACTUATOR IN SIMULATOR. MADE FOUR OIL RESERVOIRS TO MEASURE OIL LEAKAGE FOR SEAL TEST FIXTURE 9. INSTALLED OIL RESERVOIRS 10. RAN SIMULATOR 2 HOURS 15 MIN.
3-29-85	

FIGURE 49. Typical daily work log

LH UHT ACT'12

DATE: 3-27-85

PHASE I + II

PHASE I II

No. Hours: $166 + 164 = 630$ No. Cycles: $1,055,000 + 1,569,000 = 2,624,000$

LOCATION: BASE END SUPPORT P/N 83-00214-101

FAILURE MODE: LEAKAGE AT APPROX. 1 DEP/MIN

- REMARKS:
- BASE END SUPPORT REMOVED FROM ACTUATOR
 - DIAMETRAL SEAL IS OK
 - NO CRACKS IN YART COULD BE SEEN
 - PART WAS MAGNAFLUXED IN BLDG 3
 - 2 CRACKS WERE FOUND IN FILLET AREA AROUND BASE OF TONGUE. ONE CRACK HAD PROPAGATED COMPLETELY THRU THE WEB AREA
 - FILLET AREA WAS ROUGH DUE TO TOOLING MARKS. FINISH WAS ~~AS~~ OR WORSE
 - ANALYSIS BY D. TODD DISCLOSED 43,000 PSI OCCURRED AT FULL LOAD. CONSIDERING THE FILLET EFFECT AND THE WORST NOTCH F=0.708, LIFE IS 100,000 CYCLES. PART HAD \approx 26,000 FULL LOAD CYCLES. (SEE ATTACHED ANALYSIS SHEET)

CAUSE OF FAILURE: UNDER-DESIGN & FATIGUE

- REMEDY:
- INCREASE WALL THICKNESS BY .12 IN.
(SEE ATTACHED DWS.)
 - REQUIRE ~~AS~~ FINISH IN FILLET AREA
 - TWO NEW BASE END SUPPORTS TO BE FABRICATED
(FOR LH & LH ACT'S)

FIGURE 50. Typical failure analysis record

4.5.3 Test Results

All pertinent events that occurred during the 600 hours of mission/profile cycling are listed in the Test Log presented in Appendix A. The total time that minor components were subjected to 8000 psi is given on Table 15. Maintenance actions are shown on Table 16. Summaries of component performance are discussed in the following sections.

4.5.3.1 Pumps. Pump operating time totals are listed in Table 17. Performance summaries are given on Table 18. Overall efficiency was generally satisfactory. FC-1 and "spare" pump heat rejection was higher than the design goal of 300 BTU/min; FC-2 pump heat rejection was acceptable. Transient response, stability, pressure ripple, pressure droop, and compensator drift of all pumps was excellent. Pump dynamics were matched well to system impedance.

Pump endurance characteristics were good except for the pintle bearings which were under-designed. Sliding/bearing interface surfaces at the piston shoes/cam, piston/cylinder bores, and valving block exhibited normal wear characteristics. Three different approaches were tried to reduce wear in the pintle bearings (see section 4.5.2). Bearing life was improved but not significantly. Fabrication of pumps with larger pintle bearings and a housing re-design were recently completed (September, 1985). These units, Vickers P/N PV3-047-3, will be used during the second 600 hours of endurance testing to be conducted on the LHS simulator. The re-designed pumps are expected to have lower heat rejection as well as longer life.

4.5.3.2 Actuators. Actuator cycles and cycling time totals are presented in Tables 19 and 20, respectively. The cycle quantities and cycling hours include those accumulated in Phase I, reference 11, and tests conducted by Vought in Phase II. Four actuators have completed approximately 3,000,000 cycles: LH UHT, rudder, yaw AFCS, and aileron. No major difficulties were encountered with any actuator other than minor problems related to quality control during initial fabrication and typical maintenance actions.* One fatigue failure occurred as a result of under-design which was corrected. The endurance characteristics of all actuators were considered satisfactory, and further cycling is planned to accumulate an additional 2,000,000 cycles.

Piston and rod seal leakage summaries are given on Table 21. Maximum allowable rod seal leakage is 1 drop/25 cycles, reference MIL-C-5503. All piston and rod seal leakage was satisfactory. Rod seal maintenance actions are shown on Table 16.

* FC-1 and FC-2 cylinder bores in the aileron actuator were damaged in a prior test by piston seals containing steel back-up rings. The cylinders were honed in an effort to eliminate bore scoring. Only FC-2 bore could be repaired. FC-1 section of the aileron actuator was therefore inoperative throughout the 600 hours of simulator testing. A new aileron actuator body is being procured. As a result of this seal problem, all actuators with steel back-up rings in the piston seals were disassembled, the seals removed, and new seals installed. See Appendix 'C' for the piston seals tested, and Table 20 for cycling time accumulated on these seals.

TABLE 15. Total time minor components subjected to 8000 psi

<u>DESCRIPTION</u>	<u>PART NO.</u>	<u>SYSTEM/LOCATION</u>	<u>TIME, HRS.</u>
Accumulator	3321471	FC-2 Power Module	450
Check Valve	P4-858	FC-1 Pump	261
Check Valve	95201-5	FC-2 Pump	750
Check Valve	95200-5	FC-1 Power Module	766
Check Valve	95202-5	FC-2 Power Module	450
Check Valve	P2-858	FC-2 Press. Regulator	450+
Check Valve	P9-858	FC-1 Run-around	Pressure Surge Test 500
Check Valve	P9-858	FC-2 Run-around	300
Check Valve	P11-858	FC-1 Speed Brake	766
Check Valve	P8-858	LH&RH UMT Actuator	300
Check Valve	P1-858	Rudder Actuator	300
Check Valve	P1-858	FC-1 Speed Brake	600
Check Valve	P10-858	FC-1 Speed Brake	600
Filter	AD-A640-83Y1	FC-1 Power Module	766
Filter	AD-A640-83Y1	FC-2 Power Module	450
Hose	F37404008-0300	FC-1 Pump	766
Hose	F37404008-0300	FC-2 Pump	450
Hose	DE6964-3-0282	FC-2, Aileron actuator	600
Hose	28404003-0214	FC-1&2, Spoiler & RFI	107
Manifold	8696-581002	FC-1 Power Module	766
Manifold	8696-581201	FC-1 Power Module	600
Pressure Gage	1218-63-1	FC-2 Power Module	450
Pressure Snubber	95239	FC-1 Power Module	766
Pressure Snubber	95239	FC-2 Power Module	450

NADC-79024-60

TABLE 15. (continued)

DESCRIPTION	PART NO.	SYSTEM/LOCATION	TIME, HRS.
Pressure Transmitter	18-2143	FC-1 Power Module	766
Pressure Transmitter	18-2143	FC-2 Power Module	450
Quick Disconnect	AE80943H	FC-1 Pump Hose	766
Quick Disconnect	AE81214H	FC-1 Pump Port	766
Quick Disconnect	AE81215H	FC-1 Ground Service	766
Quick Disconnect	AE80943H	FC-2 Pump Hose	450
Quick Disconnect	AE81214H	FC-2 Pump Port	450
Quick Disconnect	AE81215H	FC-2 Ground Service	450
Relief Valve	1257A	FC-1 Power Module	766
Relief Valve	1258	FC-2 Power Module	450
Restrictor	REFX0380250AB	FC-1 Speed Brake	58
Restrictor	95461-2	FC-2 L.E. Flap	2
Restrictor	95462	FC-2 L.E. Flap	2
Restrictor	95461-1	FC-2 L.E. Flap	2
Solenoid Valve	3221472	FC-1 Speed Brake	766
Solenoid Valve	3321473	AFCS Pitch Actuator	450
Solenoid Valve	305100	FC-2 Power Module	300
Solenoid Valve	306700	FC-1 AFCS Yaw Actuator	150
Solenoid Valve	306750	FC-2 L.E. Flap	300
Swivel	L38910	FC-1 Speed Brake	58
Swivel	L39010	FC-1 Speed Brake	58
Tubing, Coil	83-00287-1	FC-1P, Spoiler	112 (leaking)
Tubing, Coil	83-00287-3	FC-1R, Spoiler	170 (removed)
Tubing, Coil	83-00288-1	FC-2P, Spoiler	150 (leaking)
Tubing, Coil	83-00288-3	FC-2R, Spoiler	84 (failed)
Tubing, Coil	83-00283-1	FC-1P, RFI	310 (leaking)
Tubing, Coil	83-00283-3	FC-1R, RFI	310 (removed)
Tubing, Coil	83-00284-1	FC-2P, RFI	452 (leaking)
Tubing, Coil	83-00284-3	FC-2R, RFI	452 (removed)

NOTE: Total test time includes Phase I.

TABLE 16. Maintenance action totals

	LOW PRESSURE COMPONENT	8000 PSI COMPONENT
<u>ACTUATORS</u>		
Fixes (rework out-of-tolerance parts) * Worn rod seals replaced (2nd stage O-ring) Worn piston seals replaced Fatigue failure	6 16 2 1	
<u>PUMPS</u>		2
Removal (excessive wear)		
<u>MINOR COMPONENTS</u>		
Leaking Malfunction Fatigue failure	2 2 1	3 2 1
<u>BOSS SEAL LEAKS</u>	2	6
<u>COIL TUBING/FITTING LEAKS/FAILURES</u>	1	6
<u>HOSE LEAKS</u>		1
<u>FILTER ELEMENTS REPLACED</u>	8	1
<u>LOAD MODULE</u>		
Mechanical malfunction Excessive wear Fatigue Failure	1 1 2	—
TOTALS	19	47

*SIMULATOR OPERATING TIME, HR.

ACTUATOR	FC-1		FC-2	
	ROD	C/D	C/D	ROD
LH/UHT		150	150	2
Rudder	2 150	150	150 150 300	2
RFI		150	150	
Spoiler/Deflector		150	150	
Aileron			150 300	

- NOTES:
1. Selected seals were removed at 150 hours as a general maintenance action. The seals were worn by nibbling, pinching, and abrasion, but none leaked or had a permanent set.
 2. Seals replaced at 300 hours had considerable wear but were still operational.
 3. The rudder actuator FC-2 rod seal has no rod scraper. Use of a scraper is recommended for this application.

NADC-79024-60

TABLE 17. Pump operating time

VICKERS MODEL PV3-047-1, -2

Serial No.	Phase I	Phase II	Vickers Tests	Total
FC-1 346581	158.5	684.7	200	1043.2
FC-2 348168	130.2	212.5	200	542.7
SPARE 346580	.3	220.4		220.7

NOTE: HOURS ARE ACCUMULATED TIME AND INCLUDE:

- Simulator mission/profile cycling
- Simulator check-outs
- Simulator tests
- Pump performance tests
- Simulator demonstrations

TABLE 18. Pump performance checks

SIMULATOR RUNNING TIME, HRS. →	0	50	100	150	200	250	340	450	600
FC-1 Pump (S/N 346581)					*	*	*		
Heat Rejection, BTU/MIN	367	354	353	359	362	350	354	345	342
Overall Efficiency, %	85.6	84.0	83.7	83.3	86.7	86.3	82.2	82.5	83.9
Case Flow, GPM	1.30	1.26	1.21	1.27	1.29	1.26	1.33	1.34	1.27
FC-2 Pump (S/N 348168)							273		293
Heat Rejection, BTU/MIN		314					87.4		88.0
Overall Efficiency, %		83.0					.99		1.08
Case Flow, GPM		0.96							
Spare Pump (S/N 346580)						*	reworked		
Heat Rejection, BTU/MIN		374					350	335	
Overall Efficiency, %		81.7					82.9	86.2	
Case Flow, GPM		1.42					1.31	1.40	

100

* Pintle bearings changed

TABLE 19. Actuator cycle totals

ACTUATOR	SIMULATOR RUNNING TIME, HR.				
	0	150	300	450	600
L/H UHT	1,054,800*	1,560,800	2,066,800	2,525,600	3,018,200
R/H UHT	--	--	0	357,100	667,400
Rudder	1,054,800*	1,554,100	2,060,100	2,532,400	3,038,400
Yaw AFCS	1,054,800*	1,560,800	2,066,800	2,572,800	3,078,900
RFI	27,400**	533,400	1,039,400	1,545,400	2,051,500
Spoiler	50,000**	151,000	252,000	353,000	454,100
Aileron	1,054,800*	1,466,400	1,972,400	2,477,900	2,984,400
L.E. Flap	0	750	1,500	2,250	3,000
Speed Brake	4,000*	4,750	5,500	6,250	7,000
Seal Test Fixtures					
FC-1	--	--	0	510,750	1,021,500
FC-2	--	--	--	0	510,750

* CYCLES ACCUMULATED IN PHASE I

** TESTS CONDUCTED BY VOUGHT IN PHASE II

TABLE 20. Actuator seal cycling time totals

ACTUATOR	FC-1			FC-2		
	ROD	PISTON	C/D	C/D	PISTON	ROD
L/H UHT	N.A.	598	766 450	766 450	598	766 598
R/H UHT	N.A.	300	300 300	300 300	300	300 300
Rudder	766 450	598	766 450	766 450	598	766 300
AFCS	766	450	766			
RFI	600 600	450	600 450	600 450	450	600 600
Spoiler	600 600	450	600 450	600 450	450	600 600
Aileron	--	--	--	766 300	570	766 736

NOTES:

1. Time values are hours.
2. Times include Phase I hours.
3. Center dam (C/D) and rod seals are 2-stage (except AFCS). Upper value is 1st stage; lower value is 2nd stage O-ring.

TABLE 21. Dynamic seal leakage summary

ACTUATOR	NO. CYCLES/ 150 HRS.	MAX. ALLOWABLE LEAKAGE/150 HRS.	SYSTEM/ SEAL	SIMULATOR RUNNING TIME, HR.			
				150	300	450	600
L/H UHT	506,000	20,000	FC-2 Rod FC-1 Piston FC-2 Piston	220 0 T	221 T T	132 T T	115 T T
R/H UHT	506,000	20,000	FC-2 Rod FC-1 Piston FC-2 Piston	---	---	82 ID T	111 ID T
Rudder	506,000	20,000	FC-2 Rod FC-1 Piston FC-2 Piston	41 T T	3 T T	0 T T	7 T T
Yaw AFCS	506,000	20,000	FC-1 Rod FC-1 Piston	28 (2)	(1) (2)	(1) (2)	(1) (2)
RFI	506,000	20,000	FC-2 Rod FC-1 Piston FC-2 Piston	45 (2) (2)	0 --- ---	0 --- ---	0 --- ---
Spoiler	101,000	4,000	FC-2 Rod FC-1 Piston FC-2 Piston	(3) T T	10 T T	10 T T	27 T T
Aileron	506,000	20,000	FC-2 Rod FC-2 Piston	272 T	434 ID	242 T	367 T
L.E. Flap	750	30	FC-2 Rod FC-2 Piston	75 T	12 T	34 T	(4) T
Speed Brake	750	30	FC-1 Rod FC-1 Piston	1 T	0 T	0 T	0 T

NOTES: 1. Rod seal leakage values are number of drops accumulated in 150 hours

2. Maximum allowable rod seal leakage is 1 drop/25 cycles (Ref MIL-C-5503)

3. Piston seal leakage values are:
T = Trace (less than one drop/min)
D = Drops/min

(1) Not meaningful because of servo valve face seal seepage

(2) Not measured because all cylinder porting is internal

(3) Not meaningful because of coil tube failure

(4) Not meaningful because of coil tube fitting leakage

Actuator control valve null leakage summaries are shown on Table 22. The maximum allowable leakage goal was 125 cc/min. All leakage was satisfactory at the beginning of cycling and trended upward as test time accumulated. At 600 hours, the yaw AFCS and RFI actuators had higher than desired leakage. AFCS actuator leakage occurred primarily in the direct drive 8000 psi electrohydraulic servo valve.

The spoiler/deflector and RFI actuators have shrink-fit control valves -- the valve sleeve has no diametral seals. (All other actuator control valves on the simulator have diametral seals on the sleeve O.D.) The shrink-fit sleeve/housing interface was believed to be leaking in the RFI and spoiler actuators. This was determined by checking valve internal leakage with hard-over inputs. Leakage that occurs with hard-over inputs is normally less than leakage that occurs at null. Although the test data, Table 23, were inconsistent, comparison with null leakage values on Table 22 indicates some sleeve leakage occurred during certain operating modes. Additional study of this condition is warranted.

4.5.3.3 Solenoid Valves. A summary of internal leakage measured at 150 hour intervals is given on Table 24. The maximum allowable internal leakage goal was 10 cc/min. Four valves met this goal; the 4-way speed brake valve did not.

Undetected failures were found during the 450 hour check on valves P/N 3321472 and P/N 3321473, reference Table 2. The cause was attributed to backup ring extrusion that permitted an O-ring to fail. Backup ring material was virgin Teflon; filled Teflon is recommended. Other than the noted discrepancies, the performance of all valves was considered satisfactory.

4.5.3.4 Relief Valves. Relief valve performance is summarized on Table 25. All performance characteristics were satisfactory. No malfunctions or failures occurred.

4.5.3.5 Restrictors. Restrictor performance is shown on Table 26. A slight upward trending of flow occurred as simulator time accumulated. All performance was considered satisfactory.

4.5.3.6 System Filters. FC-1 and FC-2 power modules each contain three filters: pressure line (-8 size), return line (-8 size), and pump case drain (-6 size). All filters contained elements with 5 micron absolute ratings. The fluid cleanliness level goal was NAS 1638, Class 8 or better, reference Table 28. Element replacements during the 600 hour test are shown on Table 27. Because of the special treatment given FC-1 pump during the first 300 hours, see section 4.5.2, the case drain filter element was changed more frequently than would normally be required. On two occasions 15 μ case drain elements were installed to provide a comparison with 5 μ element performance. Element replacement intervals appeared to be normal (>300 hr) for the 5 μ pressure and return line filters.

NADC-79024-60

TABLE 22. Control valve null leakage summary

ACTUATOR	SYSTEM	SIMULATOR RUNNING TIME, HR.				
		0	150	300	450	600
L/H UHT	FC-1	49	21	28	63	66
	FC-2	22	28	27	41	53
R/H UHT	FC-1	---	---	39	55	75
	FC-2	---	---	25	41	58
Rudder	FC-1	4	5	21	32	35
	FC-2	6	8	17	35	53
Yaw AFCS	FC-1	110	112	132	148	161

RFI	*FC-1	48	21	80	50	70
	*FC-2	68	65	116	126	149
Spoiler	*FC-1	25	24	65	124	97
	*FC-2	22	18	41	52	47
Aileron	---	---	---	26	41	24
	FC-2	---	---			

NOTES:

1. Leakage values are in cc/min
2. Inlet fluid temperature approximately +130°F
3. Maximum allowable leakage: 125 cc/min (goal)

*Some of this leakage may be around shrink-fit control valve (sleeve O.D. has no seals).

TABLE 23. Spoiler/deflector and RFI actuator internal leakage

Simulator Running Time, Hours →			300	450	600
Actuator	System	Direction			
Spoiler/deflector	FC-1	extend	38	42	57
		retract	46	100	79
	FC-2	extend	29	120	49
		retract	44	86	92
RFI	FC-1	extend	144	95	61
		retract	184	159	198
	FC-2	extend	100	122	111
		retract	76	124	113

NOTES: 1. Leakage values are cc/min

2. Valve inputs are hard-over

TABLE 24. Solenoid valve internal leakage summary

VALVE	MODE	SIMULATOR RUNNING TIME, HR.				
		0	150	300	450	600
Yaw AFCs (3-way) (P/N 3321473)	on off	4 8	4 7	4 7	1500(6)* 8(9)*	4** 8**
Yaw AFCs (3-way) (P/N 306750-1001)	on off	-- --	---	---	T***	0 30
Speed Brake (4-way) (P/N 3321472)	on(ext.) on(hold) off(ret.)	28 13 34	30 10 34	43 11 50	1600(52)* 18(17)* 44(60)*	32 12 36
L.E. Flap (4-way) (P/N 306700)	on(ext.) on(ret.) off--	0 T T	T T T	T T T	T T T	T T T
FC-2 Reservoir (2-way) (P/N 305100)	off	--	---	120	40	90

NOTES: 1. Leakage values are cc/min at 8000 psi except:
T = Trace (less than one drop/min)
D = Drops/min

2. Inlet fluid temperature approximately +100°F

3. Maximum allowable leakage goal: 10 cc/min

* Leakage after installation of new seal.

** Used at 8000 psi for 450 hours; used at 2300 psi for 150 hours.

*** Valve P/N 306750-1001 installed in FC-1 system. Valve P/N 3321473 installed in load system.

TABLE 25. Relief valve performance summary

VALVE	SIMULATOR HOURS	CRACKING PRESSURE, PSI	RESEAT PRESSURE, PSI	INTERNAL LEAKAGE
FC-1 (M/N 1257A)	150	8900	8400	1 drop/min
	600	8900	8400	zero
FC-2 (M/N 1258)	600	8750	8450	zero

TABLE 26. Restrictor performance summary

RESTRICTOR	SIMULATOR RUNNING TIME, HR.		
	0	150	600
Speed Brake (ext.) (P/N REFX0380250AB) (ret.)	4.0 4.17	4.02 4.18	4.02 4.21
L.E. Flap, Inbrd., 1-way (P/N 95461-1)	1.18	1.18	1.24
L.E. Flap, Inbrd., 2-way (P/N 95462)	1.27	1.24	1.33
L.E. Flap, Outbrd., 1-way (P/N 95461-2)	2.22	2.21	2.28
L.E. Flap, Outbrd., 2-way (P/N 95462)	1.18	1.18	1.23

NOTE: Flow in gpm at return pressure.

NADC-79024-60

TABLE 27. Filter element replacement

RUNNING TIME, HRS.	PUMP CASE DRAIN		PRESSURE		RETURN	
	FC-1	FC-2	FC-1	FC-2	FC-1	FC-2
0	5u ¹		5u ¹		5u ¹	
78	5u ²					
100	5u ³					
150	15u ⁴					
200						
250	5u ³		5u ³		5u ⁴	
300		5u ¹		5u ¹		5u ¹
342		5u ²				
460	15u ⁵	15u ⁵				
560						5u ²
600						

¹ New test

² Filter ΔP button operated

³ New start with re-worked pump

⁴ Plumbing or setup change

⁵ Element dirty

The 5 μ case drain element replacement interval varied from 42 to 210 hours. Use of 15 μ elements lengthened the replacement interval. Use of a larger flow capacity 5 micron element would also extend the replacement interval.

Although flows in 8000 psi systems are lower than in equivalent 3000 psi systems, maximum flow rates for a given tube size are larger in 8000 psi systems because of higher allowable fluid velocities. For example, a -8 size 3000 psi filter is rated for 6 gpm, while a -8 size 8000 psi filter is rated for 10 gpm. The dirt holding capacity of 8000 psi filters must therefore be larger than 3000 psi filters (for the same tube size) to maintain equal filter element replacement intervals.

4.5.3.7 Fluid Contamination. Hydraulic fluid was drawn periodically from a sampling valve located upstream of the return filter in each power module. A sample consisted of approximately 200 cc of fluid collected in a specially cleaned jar. Particulate contamination was measured with a Hiac M/N PC320 counter and CMB150 sensor during the first 300 hours of simulator cycling. A Hiac M/N 4100 counter and HR300 sensor were used during the second 300 hours. Results of the contamination checks are given on Table 28.

The accuracy of the results were questioned during the second 300 hours of cycling when readings in the 5 to 15 μ range became large. The sensor was suspected of counting microscopic air bubbles. Eight fluid samples were taken at the 600 hour point to provide a means to verify count accuracy. Four samples were given to Pall Corporation for particulate counts and four jars were stored in the LHS laboratory pending resolution of the contamination measurement equipment problem. Results of the Pall counts and final Rockwell determinations for the 600 hour point are shown on Table 28. Fluid cleanliness was considered satisfactory.

Patch tests were run periodically to examine debris collected in the pressure, return, and pump case drain filters and thus monitor system health. The filter element outer surface was flushed off and debris in the filter bowl was flushed out. All effluent was collected and passed through a 0.45 micron filter patch. The concentrated debris was then examined under a microscope. A black residue was observed on all patches. Metallic wear particles and seal fragments were also present. The black residue has been observed in prior LHS programs and in systems operating at 3000 psi. The residue apparently has no detrimental effect except for filter element replacement. An investigation was conducted by Pall Corporation to identify the composition and source of the black residue. A full report is forthcoming; a brief summary of the analysis is given in Appendix H. The residue is mostly agglomerates of inorganic particles imbedded in relatively larger organic particles. Organic black particles were most numerous. Aluminum, iron, and chromium wear debris all contributed to the black appearance of the particles. Case drain filters had a predominance of iron containing particles, while return line filters held a large number of chromium containing particles. Particle generation was believed to be the result of normal wear on the pump, actuators, seals, and hydraulic fluid and is not unique to 8000 psi systems.

TABLE 28. Fluid contamination

HOURS	SYSTEM	PARTICLE SIZE RANGE, MICRONS					
		1-5	5-15	15-25	25-50	50-100	100+
0	FC-1		1207	39	7	0	0
50	FC-1		16434	1298	182	20	2
64	FC-1		23944	1309	375	82	2
100	FC-1		9416	752	160	20	0
150	FC-1		1059	44	183	25	0
200	FC-1		12463	89	31	0	0
250	FC-1		3825	716	414	127	11
300	FC-1		394	69	19	2	1
490	FC-1		75810	206	92	20	0
490	FC-2		33788	24	10	4	0
542	FC-1		113532	17185	3493	257	2
542	FC-2		33983	1703	466	62	7
*600	FC-1		1984	353	109	32	2
*600	FC-2		1298	597	143	16	6
**600	FC-1	45	20	7	3	2	1
**600	FC-2	45	26	13	3	1	0.4

Reference Standard

NAS 1638, Class 8	64000	11400	2025	360	64
----------------------	-------	-------	------	-----	----

*Manual count made by Rockwell-Columbus.

**Manual count made by Pall Corporation. See Appendix H.

REMARKS

The Rockwell Metrology Laboratory upgraded its fluid contamination measuring equipment during the period when the simulator was being converted from a one system to a two system configuration. New microcomputer based particle counters were procured. This equipment was used to obtain the data at 490 and 542 hours. The accuracy of these particle counts were questioned (see Section 4.5.3.7).

The new Hiac HR300 particle sensors were subsequently found to be more susceptible to foreign liquid contamination than the previously used CMB150 sensors. Water contamination over 100 parts per million (ppm) will cause the HR300 to give erroneous counts. (One drop of water in a 200 cc fluid sample jar is equivalent to 150 ppm.) The water content in the fluid samples taken at 600 hours was 132 ppm (ref. Appendix H).

Particle counts made on the 600 hour fluid samples using the HR300 sensor resulted in numbers over 100,000 in the 5-15 μ range. Manual counts of patches made from the same fluid produced satisfactory information. This data is given in Table 28. The disparity between the Rockwell-Columbus and Pall Corporation manual counts was not resolved, but is attributed, at least in part, to differences in techniques and procedures.

4.5.3.8 Fittings. Three types of hydraulic fittings were used at 8000 psi:

Name	Manufacturer	Attachment Method
Dynatube	Resistoflex	Internal swage
Permaswage	Deutsch	External swage
Cryofit	Raychem	Heat shrink

Few problems occurred during the 600 hour test that were related to fittings (except for the coil tubes, see section 4.5.3.10). No fitting failures occurred and only seepage was observed at a few fittings after prolonged operation at 8000 psi. Nearly all of this seepage occurred at the tubing/fitting joint of -3 size Permaswage fittings. Negligible seepage occurred with -4, -6, and -8 tube sizes using Dynatube, Permaswage, or Cryofit fittings. The low pump ripple and resulting low tube vibration levels contributed to the successful fitting results.

Vibration levels occurring in aircraft plumbing installations will be more severe than those experienced on the LHS simulator. For this reason, it is recommended that flex stress/pressure impulse tests be conducted on various tubing/fitting combinations to more fully demonstrate 8000 psi tubing/fitting integrity.

4.5.3.9 Hoses. The pump hoses were -8 size. Two types were evaluated:
 1) hose with Kevlar reinforcement braid fabricated by Aeroquip; and
 2) hose with steel reinforced braid manufactured by Titeflex. The Aeroquip hose developed a leak in the fitting swage area after 62 hours of operation. Performance of the Titeflex hose was satisfactory after 766 hours of use (Phase I + Phase II).

The aileron hoses were -3 size, made with Kevlar reinforcement braid, and fabricated by Aeroquip. Fluid seeped through the hose wall wetting the outer surface. Although this condition was a concern, no hose failures occurred. The seepage would not be acceptable in an aircraft installation.

Kevlar -3 size hoses were used on a temporary basis to replace coil tubes that failed on the simulator. These hoses, made by Titeflex, were necessarily subjected to severe flexing in the spoiler/deflector installation and moderate flexing at the RFI actuator. Fluid seepage through the hose wall was significant in the spoiler/deflector application, but no failures occurred. Fluid seepage at the RFI installation was negligible.

Performance deficiencies encountered with Kevlar braid hoses indicate that further development effort is required.

4.5.3.10 Coil Tubing. The A-7 spoiler/deflector and RFI installations employ hydraulic extension units with end swivels as flexible connections to transmit hydraulic power to the actuators. These 3000 psi units have a history of leaking. The extension units were replaced with coil tubes on the LHS simulator, Figures 13 and 19. Coil tube fittings attached to the spoiler/deflector actuator had the following motion:

inboard/outboard	1.8 in
fore and aft	0.5 in
up and down	0.5 in

Space available for spoiler/deflector actuator plumbing was severely restricted. The RFI actuator installation was not as severe, either motion-wise or space-wise. Space constraints prevented having a sufficient number of coils to moderate coil tube stress levels in the spoiler/deflector installation. Space available at the RFI actuator permitted more coils to be used and tube stress levels were acceptable. All coil tubes in the spoiler/deflector installation either failed or developed serious leaks early in the program. No RFI actuator coils failed, but some fittings leaked (see Appendix A).

The spoiler tube failures were attributed to two factors: 1) high stress levels in the tubing and 2) an inadequate swage joint between the tube and fitting. The tubing was 3/16 x .035 titanium; the fittings were Deutsch P/N D11200TE-03. The failures were the result of fatigue cracks developing in the tube in the fitting swage area. This fitting/coil tube combination was considered to be an unsatisfactory design.

Failed or leaking coil tubes were replaced with either hoses or Rockwell design coil tubes, Figure 64. The hoses and Rockwell tubes were used to permit continued cycling of the spoiler/deflector and RFI actuators, and were intended as a temporary fix only. The Rockwell tubes were fabricated from 3/16 x .020 21-6-9 CRES or 3A1 - 2.5V titanium and had internally swaged fittings.

The A-7E spoiler/deflector installation is not a suitable application for coil tubes because 1) the severe space constraints prevent attaining a satisfactory design, and 2) coil tubes should not be exposed to outside air flow which occurs in this installation. Further development effort is required to provide suitable flexible connections for this unique application.

Torsional coil tubes were used on the L.E. flap actuators. These also employ 3/16 x .035 titanium tubing and Deutsch P/N D11200TE-03 fittings. Performance of these tubes was satisfactory for 2,740 cycles at which time leakage began to occur. The leaky fittings were re-swaged; the leakage stopped. A total of 3,000 cycles were completed at the 600 hour point.

Coil tubing has important potential use in 8000 psi hydraulic systems. Rockwell has addressed coil tube problems encountered during LHS simulator testing and is endeavoring to solve them. Factors affecting coil tube design have been studied and computer programs developed. Work in this area is currently on-going, and results of the study will be documented in the addendum to this report (see section 1.4).

4.6 GROUND SUPPORT EQUIPMENT

An existing 3000 psi AHT-63 portable test stand was modified to operate at 8000 psi. The modification involved: 1) general rehabilitation and 2) replacement of 3000 psi components in the pressure system with 8000 psi components. The ground support equipment is shown on Figure 28; design features are given on Table 1.

The 8000 psi pump in the ground cart was built by Denison Division of Abex Corporation and is a modified version of their P6V Gold Cup series 6000 psi pump. The unit is an axial piston variable volume design with manual servo controls for both displacement and pressure compensation. The pump runs at 1200 rpm, has a 10% overpressure capability, and delivers up to 8 gpm. An integral auxiliary pump provides servo pressure and cooling flow. Separate pumps are used to supply suction boost pressure and to drive the heat exchanger fan.

The GSE was operated a total of 13.0 hours at pressures from 1000 to 9000 psi during the course of conducting:

- o Initial startup, check-outs, and adjustments
- o GSE temperature stabilization determinations
- o Simulator demonstrations by powering FC-1 system
- o Actuator frequency response tests by powering FC-2 system.

Test stand performance was considered good except heat dissipation capacity was marginal. Pump inlet fluid temperatures reached +180°F after 15 minutes of operating FC-1 system. The GSE heat exchanger is rated for 50,900 BTU/hr removal with 20 gpm oil flow. Ground cart tare flows are:

Main pump case leakage	4 gpm @ 8000 psi
Boost pressure pump	17 gpm @ 60 psi
Fan drive pump	6 gpm @ 200 psi
Main pump servo/cooling pump	5.6 gpm @ 500 psi

Tests are planned to determine the heat removal rate necessary to permit continuous operation of the GSE with pump inlet fluid temperature stabilized below 180°F. It should be noted that the 8 gpm main pump design was adapted from a model originally sized to deliver 20 gpm for an 8000 psi stationary test bench. Case leakage remains relatively constant regardless of discharge flow. This causes overall efficiency to be low. Use of a smaller pump (designed to deliver 8 gpm) would reduce heat rejection and heat dissipation requirements.

5.0 MATH MODEL

5.1 INTRODUCTION

Hydraulic system dynamic analysis computer programs developed for the Air Force were implemented initially during Phase I, reference 11. Use of these programs were extended to the full scale LHS simulator in Phase II. Two programs were evaluated:

1. Hydraulic System Frequency Response (HSFR)

This program predicts locations, amplitudes, and frequencies of standing wave oscillating flows and pressures resulting from the operation of piston type pumps.

2. Hydraulic System Transient Analysis (HYTRAN)

This program simulates the dynamic response of a hydraulic system to sudden changes in load flow demand, and predicts the pressure and flow disturbances that propagate through the system.

Reference 15 contains background and user information necessary to implement the programs.

5.2 HYDRAULIC FREQUENCY RESPONSE ANALYSIS

5.2.1 Background

Aircraft piston-type pumps cause pressure and flow oscillations (commonly known as pump ripple or pulsations) to be superimposed upon the pressurized hydraulic fluid. Since the pulsations are in the audio frequency range, they are termed acoustic noise. This pump induced acoustic noise can generate standing waves of pressure and flow throughout the pressure system in a manner similar to those observed in organ pipes and electrical transmission lines. When the pulsation frequency coincides with natural frequencies in the system, hydraulic resonance occurs. This creates large pressure peaks and destructive vibratory conditions can result.

The HSFR program computes pump speeds for which hydraulic resonances occur at element locations in the system. Component modifications can be rapidly evaluated to correct unacceptable resonant conditions. Potential problems resulting from pump acoustical noise can therefore be minimized in the design stage.

5.2.2 Hydraulic Test Configuration

FC-1 system in the LHS simulator was evaluated. A schematic diagram showing component and line arrangements used for the computer analysis is presented in Figure 51. The hose normally connected to the pump discharge port was replaced with a -8 size titanium tube approximately 37 in. long. This was done to permit a clamp-on type pressure transducer to be used. Collectively, the components and lines made up a 53 element model. The computer input data that physically described these elements is shown in abbreviated form in Figure 52. An explanation of the data format is given in reference 15. MIL-H-83282 fluid properties for the program test conditions of 8000 psi and +145°F were:

Density	0.00007870 lb-sec ² /in ⁴
Viscosity	0.02468 in ² /sec
Bulk Modulus	288,000 psi

The laboratory instrumentation consisted of a spectrum analyzer and a clamp-on piezoelectric pressure transducer. Instrumentation details are given in section 4.4.1. Transducer response verification is shown in Appendix B. Peak pressure data were measured with the spectrum analyzer while pump speed was varied from 2000 to 6000 rpm. Pump speed was indicated on an electronic frequency counter. Fluid temperature was measured with a thermocouple near the pump suction port. Discharge fluid temperature was determined using the known temperature rise due to fluid compression (17°F @ 8000 psi). Fundamental, first, and second harmonic data were recorded at 100 rpm increments at locations of 12, 20, and 32 inches from the pump outlet. The 37 in. long hard line from the pump to the check valve was divided into smaller line length elements (such as P6 and P7) for programming at specific locations.

Computer data designated as harmonic No. 1 was actually the fundamental frequency and harmonic No. 2 was the first harmonic of the fundamental. This terminology was used for programming convenience.

5.2.3 Test Results

The laboratory test data was overplotted on the computer printouts generated by the HSFR program. Figures 53, 54, and 55 provide comparisons of pressure amplitudes at the fundamental frequency for locations 12 (P6), 20 (P7), and 32 (P10) inches downstream from the pump outlet. Amplitudes of the predicted fundamental correlated well with the measured data above pump speeds of 3600 rpm. At element P6 the predicted and actual resonant peaks were nearly identical near maximum pump speed of 5900 rpm. Correlation was also excellent at P7 near 5900 rpm. Further downstream at P10, the predicted values were higher than the measured values.

NADC-79024-60

FIGURE 51. Model schematic for HSF program

NADC-79024-60

LHS FCL HYDRAULIC SYSTEM FREQUENCY RESPONSE 2CSEPT83

RESPONSE IS CALCULATED FROM 2000.00 TO 0000.00 R.P.M. IN INCREMENTS OF 50.00 R.P.M.

RESPONSE IS PLOTTED FOR HARMONIC NUMBER , 2

NUMBER OF PUMPING ELEMENTS. 9.

USFA DEFINED FLUID DATA

B002-3 PSIG

TEMPERATURE (DEGREES F.)	DENSITY (G/CM ³)	DENSITY (LB/FT ³)	DENSITY (KG/M ³)	VISCOSITY (CENTI STOLES)	VISCOSITY (DYNES-SEC/CM ²)	BULK MODULUS (PSI)
145.00	.4410	52.11	70700.00	15.92	24200E-01	235000.

SYSTEM ELEMENT INPUT DATA

N TYPE		K TYPE		PHYSICAL DATA						
1	9	21	.003	.921	.350	.853	.429	.081	.083	
			.08300	12.00000C	.062000	.025000	.31.70000	.33.30000	.20.70000	.22.30000
			90.00000	.0540C	.30200	1.45000	.00023	.125.00000	.150.00000	.133.000
2	3	0	.010	C.010C	.01000	0.000	0.000	0.000	0.000	
3	1	0	2.190	.50C	.351	15.000000.030	0.000	0.000	0.000	
4	1	0	5.000	.50C	.351	15.000000.030	0.000	0.000	0.000	
5	1	0	5.000	.50C	.051	15.000000.030	0.000	0.000	0.000	
6	1	0	5.000	.50C	.451	15.000000.022	0.000	0.000	0.000	
7	1	0	2.000	.50C	.351	15.000000.022	0.000	0.000	0.000	
8	1	0	5.000	.50C	.351	15.000000.022	0.000	0.000	0.000	
9	1	0	5.000	.50C	.351	15.000000.022	0.000	0.000	0.000	
10	1	0	5.000	.50C	.351	15.000000.022	0.000	0.000	0.000	
11	3	0	.100	C.010C	0.000	0.020	0.000	0.000	0.000	
12	1	0	75.000	.50C	.351	15.000000.320	0.000	0.000	0.000	
13	3	0	5.000	C.010C	.2.000	0.021	0.000	0.000	0.000	
14	1	0	.100	.50C	.351	15.000000.022	0.000	0.000	0.000	
15	A	12	.0000	C.010C	.0.000	0.023	0.000	0.000	0.000	
16	1	0	52.000	.50C	.351	15.000000.022	0.000	0.000	0.000	
17	A	0	0.000	C.010C	0.000	0.020	0.000	0.000	0.000	
18	1	0	30.000	.10C	.350	15.000000.020	0.000	0.000	0.000	
19	A	2	.0000	C.010C	0.000	0.020	0.000	0.000	0.000	
20	A	2	21.000	.10C	.351	15.000000.320	0.000	0.000	0.000	
			1.000	4.00000C	0.000	0.020	0.000	0.000	0.000	
21	0	0		10.0	.350	15.000000.320	0.000	0.000	0.000	
22	1	0	21.000		.350	0.000	0.000	0.000	0.000	
23	0	2	3.000	0.010		.100.320	0.000	0.000	0.000	
24	1	0	65.000	.10C	.351		0.000	0.000	0.000	
25	10	0	1300.000	.051	0.000	0.000		0.000	0.000	
26	1	0	60.000	.10C	.351	15.000000.020	0.000		0.000	
27	10	0	1000.000	.051	0.000	0.020	0.000		0.000	
28	1	0	19.000	.370	.350	13.000000.020	0.000	0.000		
29	0	2	3.000	C.010C	.2.000	0.020	0.000	0.000	0.000	
30	1	0	100.000	.10C	.350	15.000000.020	0.000	0.000	0.000	
31	10	0	1000.000	.051	0.000	0.020	0.000	0.000	0.000	
32	1	0	100.000	.10C	.350	15.000000.020	0.000	0.000	0.000	
33	10	0	1000.000	.051	0.000	0.020	0.000	0.000	0.000	

FIGURE 52. Computer input data

FIGURE 53. Peak pressure vs pump RPM at element 6 (12 inches), fundamental

NADC-79024-60

FIGURE 54. Peak pressure vs pump RPM at element 7 (20 inches), fundamental

NADC-79024-60

FIGURE 55. Peak pressure vs pump RPM at element 10 (32 inches), fundamental

Figures 56, 57, and 58 show first harmonic data comparisons at elements P6, P7, and P10, respectively. Agreement between the measured and predicted data at P6 was excellent except at 5800 rpm. The data for location P7 showed good correlation of resonant frequencies, but predicted amplitudes were higher than measured values. The data for P10 were similar to P7.

The test results show that the predictive capabilities of the HSFR program applied to the full scale LHS simulator were generally good. Excellent correlation with measured data was observed at some element locations. Predictions of resonant frequencies appeared consistent, but amplitude predictions tended to be on the high side. All measured peak pressures were below the 200 psi peak maximum allowable.

Effort was expended to minimize possible analytical errors by varying fluid temperatures, bulk modulus, and viscosity. The predicted peak amplitudes were relatively insensitive to the changes made. Additional effort needed to improve the modeling capabilities of the HSFR program was beyond the Phase II scope of work.

5.3 HYDRAULIC TRANSIENT RESPONSE ANALYSIS

5.3.1 Background

Operation of hydraulic components such as actuators and solenoid valves cause pressure and flow transients to propagate throughout system plumbing. The waterhammer effect produced by suddenly stopping fluid flow can result in a large pressure peak traveling from the point of origin back to the pressure source (pump). Severe transients can also occur when high pressure fluid is suddenly ported into a cavity filled with low pressure fluid.

The HYTRAN program simulates, by mathematical modeling, the dynamic response of hydraulic systems to sudden changes in load flow demand. System transient pressures and flows induced by the opening and closing of valves can be predicted. The program users guide, reference 15, contains detailed instructions on the preparation of an input data set that models the hydraulic system. Building-block subroutines are provided to mathematically represent transmission lines, branches, and a large variety of components. Motion of internal valve parts programmed as a function of time represent inputs to the program. Time histories of pressures and flows at any point in the system constitute the usual outputs.

NADC-79024-60

FIGURE 56. Peak pressure vs pump RPM at element 6 (12 inches), 1st harmonic

FIGURE 57. Peak pressure vs pump RPM at element 7 (20 inches), 1st harmonic

NADC-79024-60

FIGURE 58. Peak pressure vs pump RPM at element 10 (32 inches), 1st harmonic

5.3.2 Hydraulic Test Configuration

A fast-acting, 3-way solenoid valve used to control flow to the AFCS yaw actuator was selected for analyses. Rapid opening action of this valve induced large pressure transients in the line connecting the valve output port to the actuator (see section 4.4.2). A 2 gpm restrictor was used to provide damping needed to reduce the pressure surge. Two configurations were evaluated: 1) Bendix valve with and without the restrictor in the inlet port, and 2) Parker Berteau valve with and without the restrictor in the outlet port (see Table 2). Both valves are pilot operated, but employ different operating and internal sealing principles. A valve opening time of 0.005 sec was assumed for the Bendix valve; an opening time of 0.010 sec was used for the Parker Berteau valve.

A schematic diagram of hydraulic circuitry used to simulate the valve/actuator installation is shown in Figure 59. Only direct connections from the pump to the valve/actuator were required because other portions of FC-1 system would have little effect on the transient pressure due to 1) the remote location of the AFCS actuator and 2) the fact that system pressures were stabilized at a low flow condition.

5.3.3 Test Results

The laboratory test data was overplotted on the computer printouts generated by the HYTRAN program. This provides a direct comparison of actual versus predicted pressures. Figures 60 and 61 present Bendix valve data. Figures 62 and 63 cover the Parker Berteau valve. Correlation between actual and predicted pressure transients was excellent. Rise times, pressure peaks, frequency, and damping were all within normal experimental error of 5 to 10%. The HYTRAN program was thus considered to be well suited for analysis of transients in 8000 psi hydraulic systems.

NADC-79024-60

FIGURE 59. Model schematic for HYTRAN program

NADC-79024-60

FIGURE 60. Pressure transient at AFCS yaw actuator,
Bendix valve, no restrictor

NADC-79024-60

FIGURE 61. Pressure transient at AFCS yaw actuator,
Bendix valve, restrictor in port 'P'

FIGURE 62. Pressure transient at AFCS yaw actuator,
Parker Berteau valve, no restrictor

NADC-79024-60

FIGURE 63. Pressure transient at AFCS yaw actuator, Parker Berteau valve, restrictor in port 'C'

6.0 SYSTEM WEIGHT AND SPACE ANALYSIS

6.1 INTRODUCTION

The basic purpose of LHS technology is to reduce the weight of the installed hydraulic system. In addition, reduction in space occupied by smaller LHS components permits more compact installations, and in some cases, make possible design approaches not practical with larger, lower pressure components. A major objective of the LHS program was to verify the projected 30% weight and 40% volume reductions achieved by advancing to an 8000 psi operating pressure level. Weight and space savings calculated in Phase I (see reference 11) were updated to reflect actual hardware weight measurements taken in Phase II.

6.2 APPROACH

6.2.1 General Guidelines

Since the A-7E 8000 psi system configuration differed somewhat from the A-7E 3000 psi system, the A-7E weight data were re-arranged to permit a direct comparison between the two systems. The EQUIVALENT 3000 psi system was defined as the existing A-7E system with changes incorporated to make it functionally identical to the 8000 psi simulator system. Analysis guidelines are detailed in reference 11.

Component weights determined in Phase I included some actual measurements, but most values were calculated since the hardware was not available. All major and minor components on the LHS simulator (except tubing and fittings) were weighed in Phase II. Pump weight was updated to reflect incorporation of larger pintle bearings. (The first re-designed pump was received in September, 1985.). The Phase II weight update also includes weight adjustments outlined in the next section.

6.2.2 Weight Adjustments

Additional weight savings can be achieved by incorporating adjustments made to reflect improvements that could readily be made in a production aircraft application. The adjustments were included in both the 3000 psi and 8000 psi system weight determinations, but were not included in the volume calculations because of their negligible effect. The adjustments are outlined below and tabulated in Appendix E.

- o More efficient reservoir design. This would produce an estimated savings of 7.3 lb in the EQUIVALENT 3000 psi system and 11.6 lb in the 8000 psi system.
- o Match the 8000 psi UHT actuator output force to the 3000 psi actuator by reducing the LHS actuator barrel diameter one O-ring size. This would result in no change in the EQUIVALENT 3000 psi system and an estimated 2.0 lb decrease in the 8000 psi system.

- o Use castings/forgings instead of "hog-outs". This would not affect the 3000 psi weights and would decrease the 8000 psi system weight by an estimated 6.3 lb. Approximately 3 lb was attributed to valves and 3.3 lb to actuators.
- o Use shrink-fit control valves on the 8000 psi actuators instead of standard spool/sleeve valves. This would produce no change in the EQUIVALENT 3000 psi system and provide an estimated 12.3 lb savings in the 8000 psi system. Shrink-fit valves were used in the LHS spoiler and RFI actuators and the weight savings are included in the weight analysis. If shrink-fit valves were used in the aileron, UHT, and rudder actuators, an additional weight decrease could be achieved as follows:

Aileron actuator (2)	4.43 lb x 2 =	8.86
UHT actuator (2)	1.14 lb x 2 =	2.28
Rudder actuator	1.15 lb x 1 =	<u>1.15</u>
		12.29 lb

- o Run pumps at higher speeds than is possible with the current A-7E gear box. This would produce an estimated 3.6 lb decrease in the EQUIVALENT 3000 psi system and a 9.7 lb savings in the 8000 psi system.

6.3 RESULTS

Detail weight and space determinations are presented in Appendix E. Weight and space savings summaries are given on Tables 29 and 30. Weight savings achieved were:

Total weight of EQUIVALENT 3000 psi system	644.4 lb
Total weight of LHS 8000 psi system	<u>431.3</u> lb
Weight reduction	213.1 lb
Weight savings	33.1%

Space savings achieved were:

Total volume of EQUIVALENT 3000 psi system	8173 in ³
Total volume of LHS 8000 psi system	<u>5207</u> in ³
Volume reduction	2966 in ³
Space savings	36.3%

TABLE 29. Weight savings summary

	EQUIVALENT 3000 psi System	Percent of Sys. Weight	LHS System	Percent Red. in Comp. Wt.	Percent Red. in Sys. Wt.
Actuators	303.9	47.2	231.9	-23.7	-11.2
Pumps	26.2	4.1	27.3	+4.2	+0.2
Reservoirs	43.3	6.7	37.2	-14.1	-0.9
Tubing	75.9	11.8	30.2	-60.2	-7.1
Fittings	36.9	5.7	11.8	-68.0	-3.9
Fluid	76.0	11.8	38.9	-48.8	-5.8
Misc.	<u>82.2</u>	<u>12.7</u>	<u>54.0</u>	<u>-34.3</u>	<u>-4.4</u>
	644.4 lb	100%	431.3 lb		-33.1%

TABLE 30. Volume savings summary

	EQUIVALENT 3000 psi System	Percent of Sys. Volume	LHS System	Percent Red. in Comp. Vol.	Percent Red. in Sys. Vol.
Actuators	3605	44.1	2304	-36.1	-16.1
Pumps	342	4.2	236	-31.0	-1.3
Reservoirs	1634	20.0	1187	-27.4	-5.5
Tubing	1243	15.2	596	-52.0	-7.9
Fittings	319	3.9	145	-54.5	-2.1
Misc.	<u>1030</u>	<u>12.6</u>	<u>739</u>	<u>-28.2</u>	<u>-3.4</u>
	8173 in ³	100%	5207 in ³		-36.3%

The 30% weight savings goal was exceeded; the 40% space savings goal was nearly reached. Weight values are easily obtained using scales. Volume determinations are more difficult, and if calculated, require many approximations. The most accurate and practical method to determine component volume is water displacement; this was not attempted. More accurate and complete volume figures would increase space savings from the reported 36.3% to a value close to the 40% goal.

7.0 RELIABILITY & MAINTAINABILITY ASSESSMENT

7.1 INTRODUCTION

The reliability and maintainability assessment was based primarily on experience gained from laboratory mission/profile testing (see section 4.5). R&M goals in Phase II were to achieve a 15% improvement over current fleet experience with A-7E aircraft. A reliability growth trend analysis was conducted using the test data. Design evaluations were aided by Failure Modes and Effects Analysis (FMEA) and enhanced by test experience.

7.2 FAILURE MODES & EFFECTS ANALYSIS

An FMEA was prepared for the 8000 psi lightweight hydraulic system designed for installation in an A-7E test bed aircraft. The basic purpose of the FMEA was to identify all conceivable failure modes so that design improvement requirements could be determined. The FMEA was prepared using MIL-STD-1629A as a guide. Method 101 of this standard was applied for the basic FMEA. Method 201 was used as a guide in establishing quantitative estimates relating to criticality of function. The FMEA presented in this report was expanded from an earlier version prepared by Eagle Technology, Inc. (E-Tech) based on Phase I effort, reference 11. The update reflects system changes, laboratory failure analyses, and technical inputs from design engineers. The pump analysis was based on an FMEA prepared by Vickers Corporation. The expanded FMEA is presented in Appendix F.

The predicted failure rate summary given by the FMEA can be used to project total aircraft Mean Flight Hours Between Failures (MFHBF). Table 31 presents a summary of the MFHBF for each functional subsystem of the A-7E lightweight hydraulic system. The predicted MFHBF is 53.2 hours -- a 17.2% improvement over the operational MFHBF of 45.4 hours for the A-7E 3000 psi system. This is consistent with the experience achieved during simulator mission/profile cycling, see Section 7.3.

An analysis was made of the failure rate contribution of components in the 8000 psi system. The components and their respective contributions are listed in Table 32. For comparison, 10 components which contribute over 75% of the failures in the operational A-7E 3000 psi system are given in Table 33.

Potential leak problems in 8000 psi systems were addressed early in Phase I, and development work toward seal improvement has continued to prove successful in Phase II. The LHS simulator leak rates are reflected in the predictions made in the FMEA. LHS coil tubing, designed to replace

NADC-79024-60

TABLE 31. Lightweight hydraulic system function summary

SYSTEM CODE	FUNCTION	FAILURE RATE*	MEAN FLIGHT HOURS BETWEEN FAILURES
01	FC-1 power	3784	264
02	FC-2 power	4171	240
03	Speed brakes	1129	886
04	Roll feel iso.	727	1376
05	Autopilot system	1048	954
06	Aileron & spoiler	3065	326
07	L.E. flaps	2318	431
10	Rudder	569	1757
11	Unit horizontal tail	593	1686
--	Fittings/tubing	1386	--
SUMMARY		18790	53.2

* Failures per million flight hours

TABLE 32. Failure rate contribution to 8000 psi hydraulic system

ITEM	% CONTRIBUTION
Coiled tubing	16.4
Filters	14.9
Quick disconnects	13.9
Hoses	7.3
AFCS	5.5
Aileron actuators	5.0
Pumps	4.3
Tubing/fittings	4.0
Selector valves	3.3
Pressure transmitters	3.3
UHT actuators	3.2
Reservoir	2.8
Spoiler actuators	2.1
L.E. flap actuators	1.8
Restrictors	1.7
Swivel joints	1.6
RFI actuator	1.6
Rudder actuator	1.6
Relief valves	1.6

<u>ITEM</u>	<u>% CONTRIBUTION</u>
Extension units	23.0
Disconnects	11.4
Filters	10.6
Tubings/fittings	6.5
AFCS actuators	6.5
Aileron actuators	5.6
Swivel joints	4.5
Pumps	4.0
Pressure transmitter	2.7
UHT actuators	2.6

TABLE 33. Failure rate contribution to A-7E hydraulic systems

the high leak rate extension units on the A-7E aircraft, were predicted to continue as the highest failure rate contributor in the A-7E 8000 psi system. Coil tubing has valuable potential, however, and with continued development effort, may be used successfully in the A-7E applications. A successful design would reduce the number of reported failures significantly. The coil tube failure rate assigned in this study was influenced by LHS simulator experience.

An important aspect of Tables 32 and 33 is the presence of items which may be considered as minor components. Quick disconnects, five of which are used in each 8000 psi system, have the same number of seals as their 3000 psi counterparts. "Leaking" has been identified as contributing to 89% of the QD failure rate. Filters appear to have a high failure rate partly because the general definition of failure includes "clogged", "metal in filter", "no-go indication", and "low output" -- all of which are evidence of the filter doing its job. "Leaking", however, accounts for 78% of filter failure modes.

7.3 R&M EVALUATION

A quantitative assessment of operational R&M based on a laboratory development program is necessarily dependent upon subjective judgement. The test components do not experience an aircraft environment which probably would induce more failures. On the other hand, the laboratory equipment is under constant surveillance, and failures are detected long before they would be apparent in service use. Evaluation of failures that occurred during the program disclosed both quality control and design problems. Most of these took place early in the testing and fixes were incorporated before cycling was resumed. Such experience is applicable to the concept and theory of reliability growth development. Thus, reliability trends were established using growth methodology as a basis for the reliability assessment.

7.3.1 Summary of Simulator Failures

The reliability assessment was developed on the basis of mission/profile testing conducted on the LHS simulator. Table 34 is a summary listing of failures which occurred during mission/profile cycling and which were used for the reliability assessment. The list excludes failures which occurred in the simulator load system, non-hydraulic related mechanical components, and failures which did not affect the function of a component while operating in the simulator. Coiled tube failures were also excluded because they require additional development effort, and the application requirement is peculiar to the A-7 aircraft. A log of pertinent events relative to mission/profile testing is presented in Appendix A. A summary analysis of failures reported during Phase II is given in Table 35.

7.3.2 Reliability Trend Analysis

The reliability trend analysis was developed in accordance with concepts for reliability growth given in MIL-HDBK-189, Reliability Growth Management. The growth concept projects that Mean-Time-Between-Failure (MTBF) plotted versus time will approximate a straight line (using log-log scaling) if corrections are incorporated following each failure. The slope of the line, showing cumulative MTBF as a function of time, is indicative of the aggressiveness and completeness of the corrective actions taken.

The data of Table 34 are plotted on log-log scales in Figure 65. Operating time for the high pressure components was increased by a factor of 2.7 since cycles were accumulated at a rate 2.7 times faster than would be experienced in an operational aircraft. Actual simulator hours were used for low pressure components. A least square linear regression line was drawn through the data points. The end point of the curve at 1620 hours (600 simulator hours x 2.7 acceleration factor) yields a cumulative MTBF of 79 hours. Since this figure is based on accumulative data, and includes failures which have been corrected, it is not representative of

TABLE 34. Summary of LHS simulator failures

COMPONENT	SIMULATOR HOURS	FAILURE	LOCATION/REMARKS
O-ring	14	Leak	Rudder AFCS selector valve; loose fitting
Check valve	108	Leak	Speed brake circuit check valve; wrong size backup ring
Quick disconnect	138	Leak	FC-1 pump case drain QD; old O-ring
O-ring	172	Rupture	Rudder actuator control valve; loose fitting
O-ring	190	Leak	FC-1 pressure manifold -5 end port
O-ring	212	Leak	FC-1 pump case drain boss seal
O-ring	254	Leak	Rudder actuator control valve; aluminum housing port thread stretch
Relief valve	272	Leak	FC-1 reservoir; low pressure; replaced
Relief valve	304	Leak	FC-2 reservoir; low pressure; re-adjusted
RH UHT act'r	310	Malfunction	No output with 2% inputs; slot in spool 0.007" out-of-tolerance
LH UHT act'r	311	Malfunction	Running rough 0+200°F; oversize o-ring binding
Check valve	339	Leak & fatigue	FC-1 pump discharge check valve; backup ring extruded & poppet failed
Hose	362	Leak	FC-2 pump discharge; swaged fitting
LH UHT Act'r	372	Malfunction	Running rough 0+200°F; spool/sleeve temperature differential expansion
O-ring	380	Leak	FC-2 pump case drain filter static seal; permanent set
Check valve	452	Malfunction	FC-1 pump discharge check valve; bore pitting & erosion
LH UHT act'r	478	Fatigue	Base end support fitting; under-design

NOTE: Summary excludes coil tubing failures and non-hydraulic related mechanical failures.

TABLE 35. Failure reports and analysis summary

DATE	COMPONENT PART NO.	TEST	TIME OF FAILURE	FAILURE DESCRIPTION	PROBABLE CAUSE/RECOMMENDATIONS/ACTION
11-16-81	PUMP CLAMP, AEROQUIP P/N 4563-350	PUMP PERFORMANCE	---	FAILED WHILE LOOSENING SUCTION PORT FITTING ON FC-1 PUMP. CRACK ALSO FOUND IN FC-2 PUMP CLAMP.	IMPROPER APPLICATION OF CLAMP. HEAVIER DUTY CLAMP NOW BEING USED.
12-13-82	ONE WAY RESTRICTOR, GAR KEENON P/N 95461-1	SYSTEM PROOF PRESSURE	---	EXCESSIVE EXTERNAL LEAKAGE.	LIP SEAL FITTING SURFACE MACHINED TO 8 1/2 DEGREE ANGLE. SHOULD HAVE BEEN 3 DEGREES.
2-24-83	AILERON ACTUATOR, VOUGHT P/N 83-02221	PERFORMANCE CHECK	---	EXCESSIVE INTERNAL LEAKAGE. ACTUATOR PREVIOUSLY USED IN PHASE 1 COMPATIBILITY TEST AND VOUGHT LOW TEMPERATURE PERFORMANCE TESTS. SEE TABLE 1.	PISTON SEAL HAD STEEL BACKUP RINGS. SEAL WITH NON- METALLIC BACKUP RINGS INSTALLED. SEE APPENDIX C.
4-12-83	O-RING, AFCS 3-WAY VALVE. MS28778-4	MISSION/ PROFILE	14HR	EXTERNAL LEAK AT BOSS SEAL	FITTING LOOSE.
5-24-83	COIL TUBE, SPOILER FC-1 RET., VOUGHT P/N 83-0298-3	MISSION/ PROFILE	84 HR. 111,300 CYC	CRACKED TUBE	TUBE FATIGUE FAILURE UNDER DEUTSCH SWAGED FITTING. USE OF DEUTSCH FITTINGS ON 3/16 X .035 TITANIUM TUBING NOT RECOMMENDED. USE RESISTOFLEX OR CRYOFIT FITTINGS.
6-24-83	CHECK VALVE, SPEED BRAKE CIRCUIT, CIRCLE SEAL P/N P1-858	MISSION/ PROFILE	108HR	O-RING IN DIAMETRAL SEAL RUPTURED.	WRONG SIZE BACKUP RING. -012 SIZE USED. SHOULD HAVE BEEN -013.
6-27-83	COIL TUBE, SPOILER FC-1 PRESS., VOUGHT P/N 83-0287-1	MISSION/ PROFILE	112HR 30,500 CYC	LEAK AT SWAGE FITTING	SEE 5-24-83 ABOVE. SWAGED FITTINGS REPLACED WITH CRYOFIT FITTINGS ON 8-2-83.

TABLE 35. (continued)

DATE	COMPONENT PART NO.	TEST	TIME OF FAILURE	FAILURE DESCRIPTION	PROBABLE CAUSE/RECOMMENDATIONS/ACTION
8-2-83	QUICK DISCONNECT, PUMP CASE DRAIN, AEROQUIP P/N 3305-6	MISSION/ PROFILE	138HR	LEAKING.	OLD LAB PART USED IN PHASE I. REPLACE WITH NEW PART.
1-23-84	COIL TUBE, SPOILER FC-2 PRESS., VOUGHT P/N 83-00288-1	MISSION/ PROFILE	150HR, 151,000 CTC	LEAK AT MOVING END OF TUBE.	SEE 6-24-83 ABOVE. ROCKWELL DESIGN COIL TUBES WITH RESISTOFLEX FITTINGS INSTALLED IN P1, R1, P2, R2 LINES ON 2-17-84, FIGURE 64. SEE SECTION 4.5.3.10
2-1-84	O-RING, RUDDER CONTR. VALVE, MS-28178-4	MISSION/ PROFILE	172HR	O-RING RUPTURED AT CYLINDER PORT BOSS #3. FITTING WORKED LOOSE.	
2-7-84	O-RING, PRESS. MANIFOLD, MS-28178-5	MISSION/ PROFILE	190HR	LEAKING AT -5 END PORT.	O-RING HAD PERMANENT SET. REPLACE O-RING.
2-27-84	O-RING, FC-1 PUMP, MS-28178-6	MISSION/ PROFILE	212HR	LEAK AT CASE DRAIN BOSS	REPLACE O-RINGS IN ALL PUMP PORTS.
3-14-84	O-RINGS, CONTR. VALVE, MS-28178-4	MISSION/ PROFILE	254HR	O-RING DEBRIS NOTED AT P1, C1, AND C2 PORTS OF RUDDER ACTUATOR CONTROL VALVE HOUSING.	STRETCH IN ALUMINUM HOUSING THREADS ALLOWED O-RING TO EXTRUDE AND GET PINCHED. HOUSING IS A-7 3000 PSI COMPONENT. PART STRESS CHECKED OK FOR 8000 PSI SERVICE. RECOMMEND STEEL HOUSING BE USED.
3-19-84	RELIEF VALVE, VINTON P/N A-63256-3	MISSION/ PROFILE	272HR	FC-1 LOW PRESSURE RELIEF VALVE LEAKING DURING SPEED BRAKE CYCLING.	VALVE HAD PRIOR USE. HISTORY UNKNOWN. VALVE REPLACED WITH VALVE FROM FC-2 SYSTEM.

TABLE 35. (continued)

DATE	COMPONENT PART NO.	TEST	TIME OF FAILURE	FAILURE DESCRIPTION	PROBABLE CAUSE/RECOMMENDATIONS/ACTION
10-11-84	RELIEF VALVE, VISION P/N A-63256-3	MISSION/ PROFILE	304HR	FC-2 SYSTEM FLUID DUMPED THROUGH VALVE. (VALVE PREVIOUSLY USED IN FC-1 SYSTEM. SEE 3-19-84.)	ADJUST VALVE TO RELIEVE AT 170 PSI (WAS 145 PSI).
10-17-84	RH UHT ACT R, VOUGHT P/N 83-00211-102	MISSION/ PROFILE	310HR (10HR 34800 CYC)	PISTON NOT MOVING WITH 2% INPUTS.	TOO MUCH FREE-PLAY IN BALL JOINT IN CONTROL VALVE CAUSED DEAD BAND. SLOT IN SPOOL WAS 0.007 OUT-OF-TOLERANCE. RE-WORKED BY ADDING 0.003" CHROME PLATE TO BALL ON INPUT ARM.
10-17-84	COIL TUBE, RFI FC-1 PRESS., VOUGHT P/N 83-00293-1	MISSION/ PROFILE	310HR 1,073,200 CYC	TUBE LEAKING AT FIXED END DEUTSCH FITTING	PROBABLE FATIGUE CRACK IN TUBE IN FITTING SAGE AREA. INSTALL NEW ROCKWELL DESIGN COIL TUBES AT P1 & R1. CANNOT REPLACE P1 ONLY.
11-2-84	LH UHT ACT R, VOUGHT P/N 83-00211-101	MISSION/ PROFILE	311HR 2,155,000 CYC (PHASE I & II)	ACTUATOR RUNNING ROUGH. INPUT SHAFT BINDING WHEN FC-2 TEMPERATURES EXCEED +200°F.	WRONG SIZE O-RING ON INPUT SHAFT CAUSED HIGH FRICTION. APPARENTLY INSTALLED TO COMPENSATE FOR MACHINING O-RING GROOVE TOO DEEP. RE-WORKED BY RESIZING SEAL GLAND AND PLATING SHAFT FOR -115 SIZE O-RING.
11-26-84	CHECK VALVE, PUMP DISCHARGE, GAR KENTON P/N 95201-5	MISSION/ PROFILE	339HR (489HR. (PHASE I & II)	SLIGHT EXTERNAL SEEPAGE. BACKUP RING EXTRUDED. VALVE HALVES NOT TIGHT. NO LOCK WIRE USED.	POPPET BROKEN IN REDUCED AREA SECTIONS WHERE FLOW HOLES WERE DRILLED. DESIGN UNSATISFACTORY. REPLACE WITH CIRCLE SEAL VALVE P/N PA-658.
12-17-84	HOSE, PUMP DISCHARGE, AEROQUIP P/N DE-6356-102 -0300	MISSION/ PROFILE	362HR (62HR ON HOSE)	LEAK AT SWAGE FITTING NEAR PUMP.	PROBABLE INADEQUATE SWAGE.
1-2-85	LH UHT ACT R, VOUGHT P/N 83-00211-101	MISSION/ PROFILE	372HR 2,309,900 (PHASE I & II)	ACTUATOR RUNNING ROUGH WITH FLUID TEMPERATURES OVER +200°F.	TEMPERATURE DIFFERENTIAL EXPANSION BETWEEN CONTROL VALVE SPOOL AND SLEEVE CAUSED BINDING. SPOOL RE-WORKED TO REDUCE CENTER LAND 0.0001" IN DIAMETER.

TABLE 35. (continued)

DATE	COMPONENT PART NO.	TEST	TIME OF FAILURE	FAILURE DESCRIPTION	PROBABLE CAUSE/RECOMMENDATIONS/ACTION
1-28-85	O-RING, FILTER HOUSING, MS 28775-2B	MISSION/ PROFILE	380HR (530+ HR ON O-RING)	FC-2 CASE DRAIN FILTER STATIC SEAL LEAKING.	OLD SEAL. HAD PERMANENT SET.
1-30-85	COIL TUBE, SPOILER FC-1 PRESS. ROCKWELL P/N NONE	MISSION/ PROFILE	386HR (236 HR ON COIL TUBE)	LEAK AT FITTING SHAGE	PROBABLE FATIGUE CRACK IN TUBE IN FITTING SHAGE AREA. REPLACE WITH NEW ROCKWELL TUBE.
2-19-85	LOCK WASHER, RUDDER ACT R, NAS13-12 P/N 3321473	MISSION/ PROFILE	422HR 1,416,900 CYC (PHASE II)	PISTON ROD CLEVIS LOCK WASHER FAILED. PISTON ROD BACKED OUT OF CLEVIS. LAST 5 THREADS IN CLEVIS STRIPPED. TANG BROKEN OFF TAB WASHER.	CLEVIS LOCKNUT WORKED LOOSE. FREE-PLAY AT TAB WASHER FAILED TANG DUE TO PISTON ROTATION. FAILED LOCKWASHER ALLOWED PISTON ROD TO UNSCREW FROM CLEVIS UNTIL REMAINING THREADS COULD NOT HOLD LOAD. COMPONENTS MUST BE SAFETY WIRED.
3-12-85	3-WAY SOL. VALVE, BENODIX P/N 3321473	PERFORMANCE CHECK	450HR 900 CYC	NO FUNCTIONAL FAILURE. HIGH INTERNAL LEAKAGE.	DIAMETRAL SEAL NEAREST SOLENOID FAILED. BACKUP RING EXTRUDED AND O-RING RUPTURED. JACKUP RING WAS VIRGIN TEFLON AND SCARF CUT. RECOMMEND FILLED TEFLO UN-CUT BACKUP.
3-13-85	4-WAY SOL. VALVE, BENODIX P/N 3321472	PERFORMANCE CHECK	450HR 6300 CYC (PHASE I & II)	NO FUNCTIONAL FAILURE. HIGH INTERNAL LEAKAGE.	DIAMETRAL SEAL NEAREST SOLENOID FAILED. BACKUP RING EXTRUDED AND O-RING RUPTURED. BACKUP RING WAS VIRGIN TEFLON AND SCARF CUT. RECOMMEND FILLED TEFLO UN-CUT BACKUP.
3-19-85	CHECK VALVE, FC-1 PUMP DISCH, CIRCLE SEAL P/N PA-838	MISSION/ PROFILE	452HR	PUMP MOTORING DURING SHUT-DOWN. POPPET STICKING OPEN.	SURFACE PITTING, FRETTING, OR EROSION ON VALVE BORE SURFACE. GUIDE RING SURFACE ROUGH, PROBABLE POPPET CHATTERING UNDER SOME OPERATING CONDITIONS. RECOMMEND STIFFER SPRING ON POPPET AND HARDER SURFACE ON VALVE BORE.
3-20-85	COIL TUBE, RF1 FC-2 PRESS, MONGHT P/N 83-00284-1	MISSION/ PROFILE	452HR 1,552,200 CYC	SEE PAGE AT FIXED END DEUTSCH FITTING.	TUBE FATIGUE CRACK INSIDE FITTING.

TABLE 35. (continued)

DATE	COMPONENT PART NO.	TEST	TIME OF FAILURE	FAILURE DESCRIPTION	PROBABLE CAUSE/RECOMMENDATIONS/ACTION
3-27-85	LH UHT ACT'R, VOUGHT P/N 83-00211-101	MISSION/ PROFILE	478HR 2,624,000 C/C (PHASE I & II)	LEAKAGE FROM BASE END SUPPORT.	CRACKS IN BASE END SUPPORT AT FILLET AREA AROUND BASE OF TONGUE. CAUSE: FATIGUE. ANALYSIS DETERMINED PART WAS UNDER-DESIGNED. REQUIRE 37" INCREASE WALL THICKNESS BY 0.12". REQUIRE 37" FINISH IN FILLET AREA.
4-22-85	COIL TUBE FITTING, IMBD L.E. FLAP ACT'R #2 DEUTSCH P/N D11200TE-03	MISSION/ PROFILE	580HR 2740 C/C	LEAKAGE FROM SWAGE FITTING JOINT.	SUSPECT INCOMPLETE SWAGE. RE-SWAGING STOPPED LEAK. RECOMMEND USE OF RESISTOFLEX OR CRYOFIT FITTINGS. USE OF DEUTSCH FITTINGS ON 3/16 X .035 TITANIUM TUBING IS MARGINALLY SATISFACTORY.
5-1-85	COIL TUBE FITTING, IMBD, PROFILE L.E. FLAP ACT'R #1 DEUTSCH P/N D11200TE-03	MISSION/ PROFILE	584HR 2920 C/C	LEAKAGE FROM SWAGE FITTING JOINT.	SUSPECT INCOMPLETE SWAGE. RESHAGING STOPPED LEAK.

FIGURE 64. Rockwell design coil tubes

current MTBF. The principles of reliability growth development recognize this fact and provide an expression for determining current MTBF. Current (or instantaneous) MTBF is related to cumulative MTBF as follows:

$$\text{Current MTBF} = \frac{\text{Cumulative MTBF}}{1 - \alpha}$$

Where, α = slope of the line

The slope of the cumulative MTBF on Figure 65 is 0.162. Using the above equation, the current MTBF is found to be 94 hours. The current MTBF is shown on Figure 65 plotted as a line parallel to the cumulative MTBF.

A comparison with an operational hydraulic system was made using an analyzed sample of A-7E 3M data provided by Vought Corporation. The data were based on a 3.5 year period and 353,466 flight hours. Only those A-7E components that had equivalent counterparts on the LHS simulator were used to establish the A-7E MTBF base. A-7E pumps were not included since the 8000 psi pumps received special treatment during simulator testing, see section 4.5.2. The MTBF for an A-7E hydraulic system containing equipment equivalent to that tested on the LHS simulator is 76.3 hours. This is indicated by the horizontal line on Figure 65. The apparent improvement of the LHS MTBF over the A-7E 3000 psi system is 23%. This exceeds the 15% improvement goal set for the LHS Advanced Development Program and is approaching the 25% goal set for a production program.

7.3.3 Maintainability Assessment

A maintainability assessment based on laboratory test data is limited to a direct relationship to failure frequency (MTBF). Assuming a maintenance decrease proportional to the failure rate decrease, the reliability improvement predicted in section 7.3.2 will reduce maintenance man-hours by 18.8%. This exceeds the 15% improvement goal set for the LHS development program. Weight and volume reductions achieved by using 8000 psi components would facilitate access and handling in an A-7 aircraft and further improve maintainability.

The A-7E has pressure line and pump case drain filters; return line filters are not used. The LHS simulator has pressure, return, and case drain filters. The return filter was added to isolate contamination sources and provide a means for monitoring LHS pump health. LHS pressure and return filter element replacement intervals appeared to be normal. LHS pump case drain filter elements, however, required replacement after approximately 70 hours. Part of the problem was due to inadequate case drain filter size (-6) and the filtration level (5u). Use of a -8 size filter or a 15u filtration level would extend the element replacement

FIGURE 65. LHS simulator reliability growth

interval. Based on laboratory experience to date, return filters would probably be required in production lightweight hydraulic systems using the current pump design.

A concern that developed early in the LHS program was a black residue collected by system filters, reference 7. Although the substance was most prevalent in pump case drain filters, it was also observed in the pressure and return filters. Analyses were performed in an effort to determine the content and source of the residue. The residue appears to have no detrimental effect on LHS simulator operation except for filter element replacement (see section 4.5.3.7).

The use of coil tubing on the LHS simulator was originally conceived to eliminate the extension/rotary joints at the spoiler and RFI actuators. These 3000 psi joints had a history of leaking. Although seals developed during the LHS program would have probably reduced the leak frequency of such joints, coil tubing was believed to offer superior advantages. Reduced flow requirements at 8000 psi permitted the use of 3/16 O.D. tubing which in turn permitted coils to be made that would fit in restricted space areas. Coil tube failures were frequent, however, during simulator testing. Analyses clearly established the cause as fatigue in the tube at the fitting swage joint. Coil tubing is still considered a valid concept, but further development is required to provide satisfactory designs for the A-7E applicatons.

7.4. R&M CONCLUSIONS

The data base developed in this program substantiated that 8000 psi technology does not compromise the reliability or maintainability of an aircraft hydraulic system. In fact, experience gained from LHS simulator testing indicates a potential improvement in reliability of 23% over a comparable 3000 psi system. The reduction in failure rates translates to an 18% reduction in maintenance man-hours.

The laboratory experience indicated a need for strict quality control during fabrication of components. Hardware built per design requirements was generally trouble-free.

The Phase II program should put an end to two common misconceptions concerning 8000 psi hydraulic systems: leaks and personnel safety. Leaks that occurred during the course of testing appeared as seepage, the same as occurs in 3000 psi systems. Leak frequency at 8000 psi was no different than at 3000 psi. Personnel safety is a concern with 3000 psi systems and rigid safety procedures must be followed when working around, performing maintenance on, or operating such systems. The procedures are no different for 8000 psi systems. Injuries that might be incurred as the result of personnel not taking proper safety precautions with 3000 psi systems could be serious; the same is true of 8000 psi systems.

8.0 LHS SPECIFICATIONS

8.1 INTRODUCTION

A total of 34 preliminary specifications covering system and component requirements for 8000 psi lightweight hydraulic systems were written in Phase I, reference 11. These documents were used in the procurement of components fabricated in Phase I and II. The specifications were submitted to the Navy in Phase I and are listed in Appendix G.

8.2 SPECIFICATION UPDATE

Test experience gained in Phase II provided information to update the LHS specifications. Changes were made in ten specifications covering:

- o System Installation Requirements
- o System Components
- o Pumps
- o Filters
- o Cylinders
- o Fittings
- o Hoses
- o Gland design
- o Couplings
- o Valves

The updated specifications are listed in Appendix G as "Rev. A". Technical changes in the specifications are identified with a vertical bar (line) in the left hand margin. The filter specification, LHS 8815, was editorially updated. One new specification was written covering titanium tubing, LHS-8842.

9.0 CONCLUSIONS

Conclusions presented in this section are based on experience gained from 600 hours of operating a full scale A-7E 8000 psi hydraulic system simulator. Four of 12 flight control actuators accumulated more than 3,000,000 cycles, and one pump was operated over 1,000 hours. The conclusions affirm that 1) 8000 psi hydraulic systems can be designed, fabricated, and operated for extended periods of time without special problems occurring; and 2) lightweight hydraulic systems offer important advantages.

SYSTEM WEIGHT AND SPACE SAVINGS

Weight savings achieved were 33.1%; the objective was 30%. Volume reduction attained was 36.3%; the goal was 40%. The weight of an aircraft hydraulic system designed to operate at 8000 psi would therefore be at least 30% less than the weight of an equivalent 3000 psi system; system volume would be at least 35% smaller. These are significant benefits.

RELIABILITY AND MAINTAINABILITY

The reliability and maintainability of an aircraft hydraulic system can be improved approximately 20% by operating at 8000 psi instead of 3000 psi; the objective was 15%. This important finding demonstrates the practicality of the lightweight hydraulic system concept.

SIMULATOR HARDWARE PERFORMANCE

System. The performance of 8000 psi systems using MIL-H-83282 fluid is equal to or better than comparable 3000 psi systems. Pressure dynamics are smaller percentage-wise; tubing vibration problems are thus minimized. Standing wave oscillating pressures and system transient pressures can be predicted with good accuracy by mathematical modeling. Fluid temperatures are acceptable and depend principally on pump heat rejection and control valve throttling losses. System internal leakage rates are a minor source of heat. Improvements in the current pump design and use of advanced actuator control techniques to reduce throttling losses could eliminate the need for heat exchangers.

Pumps. 8000 psi pumps can be designed to meet aircraft performance requirements. Pump ripple and response were exceptionally good. Pump wear characteristics were satisfactory except in the pintle bearing area. Heat rejection was higher than desired. Transfer tubes, used to transmit fluid from the cylinder block to the port plate, were a problem area. Pintle bearing wear and heat rejection could be improved in future 8000 psi pumps by more conservative design and by eliminating the transfer tubes.

Actuators. Conventional actuator design techniques are acceptable for use in 8000 psi systems. Actuator endurance characteristic are typical of those found in 3000 psi systems. Steel or titanium cylinders are recommended for primary flight control actuators; aluminum can be used for secondary flight controls and utility actuators. Control valve null leakage of 125 cc/min maximum is readily attained. Several problems encountered were due to out-of-tolerance dimensions which emphasized the need for strict quality control during fabrication of hardware.

Seals. Use of standard sealing concepts with tighter tolerances to reduce extrusion gaps proved very successful.

Dynamic Seals

Piston Rod Two-stage unvented seals performed satisfactorily.

Piston Head Off-the-shelf piston seals were used successfully.

Static Seals

Diametral Standard MIL-G-5514 type seals were satisfactory.

Rosan Rosan fitting seals were satisfactory.

Boss Standard MS33649 boss seals performed satisfactorily when the boss was steel or titanium. Aluminum bosses are not recommended for use at 8000 psi.

Fittings. Internally swaged and shrink-fit type fittings are satisfactory at 8000 psi. Externally swaged fittings are also satisfactory except re-design of the -3 size is required. Improvement in tooling life for -3 size internally swaged fittings is recommended.

Hoses. Hose with wire braid performed satisfactorily. Kevlar braid hoses will require additional development effort to eliminate fluid seepage through the hose wall and to improve fitting attachment integrity.

Coil Tubing. Coil tubing has important potential use in 8000 psi systems. Standard configurations will perform satisfactorily. Failures encountered during simulator endurance testing were the result of space constraints unique to the A-7E airplane design and to leakage at -3 size externally swaged fittings (see Fittings). All failures were in the fitting/tube swage area; no failures occurred in the tube coils.

Filters. A 5u filtration level is recommended for 8000 psi systems because of small clearances in some component parts. The dirt holding capacity of 8000 psi filters must be larger than 3000 psi filters (for the same tube size) because of higher flow rate allowables in 8000 psi systems.

NADC-79024-60

Fluid Contamination. A fluid cleanliness level of NAS 1638, Class 8 is easily achieved using 5μ filtration. A black residue collected on patches made of filter bowl debris was considered to be the result of normal wear on system components. The residue had no harmful effect on component performance, and was also found to occur in the 2300 psi load system of the simulator.

Valves, Restrictors. Check valves, relief valves, solenoid valves, and restrictors can be readily designed for use at 8000 psi.

GSE. Conversion of 3000 psi GSE to 8000 psi GSE can be achieved without difficulty. Care should be exercised during design to consider total system heat generation and avoid the need for an oversize heat exchanger. An 8000 psi pump designed specifically to match system flow requirements is recommended to minimize heat rejection. (The current pump is de-stroked 60%.)

10.0 RECOMMENDATIONS

The LHS advanced development program should proceed by conducting the planned Phase III flight tests using an A-7E test bed aircraft. 8000 psi technology is maturing, and a successful flight test program would fully demonstrate its capabilities and benefits.

Additional effort should be directed toward support of 8000 psi technology for next generation aircraft. Recommended tasks are:

- o Use the LHS simulator as a means to evaluate emerging technologies such as composite actuators, rotary actuators, PEEK seals, and energy efficient concepts.
- o Conduct full qualification tests on 8000 psi tubing/ fittings. Pursue re-design of -3 size externally swaged fittings and internal swage tooling.
- o Develop coil tube installation design concepts, guidelines, and limitations.
- o Conduct extreme temperature tests (-40 to +275°F) on LHS simulator modules and components.
- o Conduct full qualification of an LHS pump refined by a conservative design approach and elimination of transfer tubes.
- o Develop a multiple pressure level pump to reduce system power consumption.
- o Pursue acquisition/development of a GSE pump sized to match 8 gpm flow requirements.

11.0 REFERENCES

REFERENCE NO.

- 1 D. Deamer, S., Brigham, Theoretical Study of Very High Pressure Fluid Power Systems, NA66H-822, North American Aviation, Inc., Columbus Division, Contract N0w65-0567-d, 15 October 1966, Unclassified. AD 803 870
- 2 J. Stauffer, Dynamic Response of Very High Pressure Fluid Power Systems, NR69H-65, North American Rockwell Corporation, Columbus Division, Contract N00019-68-C-0352, 16 April 1969, Unclassified. AD 854 142
- 3 J. Demarchi, Dynamic Response Test of Very High Pressure Fluid Power Systems, NR70H-533, North American Rockwell Corporation, Columbus Division, Contract N00156-70-C-1152, 9 December 1970, Unclassified. AD 891 214L
- 4 J. N. Demarchi and R. K. Haning, Application of Very High Pressure Hydraulic Systems to Aircraft, NR72H-20, Columbus Aircraft Division North American Rockwell Corporation, Contract N62269-71-C-0147, March 1972, Unclassified. AD 907 304L
- 5 J. N. Demarchi and R. K. Haning, Lightweight Hydraulic System Development, NR73H-20, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-72-C-0381, May 1973, Unclassified. AD 911 672L
- 6 J. N. Demarchi and R. K. Haning, Preparations for Lightweight Hydraulic System Hardware Endurance Testing, NR73H-191, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-73-C-0700, December 1973, Unclassified. AD B-001 857L
- 7 J. N. Demarchi and R. K. Haning, Lightweight Hydraulic System Hardware Endurance Test, NR75H-22, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-74-C-0511, March 1975, Unclassified. AD A-013 244
- 8 J. N. Demarchi and R. K. Haning, Design and Test of an LHS Lateral Control System for a T-2C Airplane, NR76H-14, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-75-C-0422, May 1976, Unclassified. AD A-032 677

REFERENCES (Continued)

- 9 J. N. Demarchi and R. K. Haning, Flight Test of an 8000 psi Lightweight Hydraulic System, NR77H-21, Columbus Aircraft Division, Rockwell International Corporation, Contract N62269-76-C-0254, April 1977, Unclassified.
AD A-039 717/4GA
- 10 J. N. Demarchi and R. K. Haning, Lightweight Hydraulic System Extended Endurance Test, NR78H-92, Columbus Aircraft Division, Rockwell International Corporation, Contract N622659-78-C-0005, September 1978, Unclassified.
AD A-062 749.
- 11 J. N. Demarchi and R. K. Haning, Design, Development, and Evaluation of Lightweight Hydraulic System Hardware Phase I, NR81H-2, North American Aircraft Division, Rockwell International Corporation, Contract N62269-78-C-0363, January 1981, Unclassified.
AD A-097 505/2.
- 12 Rockwell International Corporation Letter 80CL-987, Submittal, Simulator Test Plan, dated 17 November 1980.
- 13 Rockwell International Corporation Letter 85CL-3390, Submittal, Lightweight Hydraulic System Advanced Development Program, Specification Revisions, dated 15 November 1985.
- 14 L. P. Biafore, Fabrication and Testing of Direct Drive Control Valve Module, NR&H-18, North American Aircraft Operations, Rockwell International Corporation, Contract N62269-80-C-0281, February 1982, Unclassified.
- 15 AFAPL-TR-76-43, Aircraft Hydraulic Systems Dynamic Analysis, Volumes I through VIII, McDonnell Douglas Corporation, Contract F3615-74-C-2016, February 1977, Unclassified.

12.0 LIST OF ABBREVIATIONS

A/C	aircraft
AFCS	automatic flight control system
AIL	aileron
B/H	bulkhead half
BTU/min	British Thermal Units per minute
B-U	back-up ring
C/D	center dam
CIPR	cubic inches per revolution
CGT	capped GT seal (Greene, Tweed)
cpm	cycles per minute
CGTL	capped GTL seal (Greene, Tweed)
CRS	corrosion resistant
D-D	Double-Delta seal (Shamban)
E-C	Ener-cap seal (Greene, Tweed)
EPP	emergency power package
FC-1	flight control system #1
FMEA	failure-modes-and-effects analysis
gal	gallon
gpm	gallons per minute
GSE	ground support equipment
H/H	hose half
Hp	horsepower
Hr	hour
H-S	Hat Seal (Shamban)

Hz	Hertz (cycles per second)
in.	inch
in ³	cubic inches
inbd.	inboard
lb	pound
IS	instant spectrum
IT	instant time
L.E.	leading edge
LH, L/H	left hand
LHS	lightweight hydraulic system
max.	maximum
MFHBF	mean flight hours between failures
M/N	model number
min	minute (time)
MMH/FH	maintenance man-hours per flight hour
N.A.	not applicable
NAAO	North American Aircraft Operations
NADC	Naval Air Development Center
NAS	National Aerospace Standard
No.	number
O.D.	outside diameter
O-R	O-ring
O/S	outside
outbd.	outboard
ΔP	differential pressure

NADC-79024-60

PC-1	power control system #1
PEEK	Polyether etherketone
P/H	pump half
P/N	part number
P-P	peak-to-peak
psi	pounds per square inch
psig	pounds per square inch gage pressure
PWM	pulse width modulation
QD	quick disconnect
RAT	ram air turbine
RFI	roll feel isolation
RH, R/H	right hand
R&M	reliability and maintainability
rpm	revolutions per minute
+S	plus seal (Shamban)
SARDIP	Stricken Aircraft Reclamation and Disposal Program
sec	second (time)
S/N	serial number
sys.	system
T.E.	trailing edge
TRAF	Trapezoidal Seal (Greene, Tweed)
T-S	Tee Seal (Greene, Tweed)
u	micron
UHT	unit horizontal tail

APPENDIX A

MISSION/PROFILE TEST LOG

DATE	SIMULATOR HOURS	COMPONENT CYCLES/HOURS	SYSTEM	COMPONENT	PART NO.	REMARKS
3-1-83	0	0	FC-1A2	AILERON ACTUATOR	83-00221	BEGIN MISSION/PROFILE CYCLING. ONE PUMP/ONE SYSTEM. NO AILERON ACTUATOR DUE TO PISTON SEAL PROBLEM
3-2-83	2					RUDDER & UHT ACT'RS DISASSEMBLED. PISTON SEALS WITH METAL BACKUPS TO BE REPLACED. CYCLING HELD UP 'TIL NEW SEALS ARRIVE.
4-7-83	2					RESUME CYCLING. NEW PISTON SEALS IN UHT & RUDDER ACTUATORS. PUM FIBER OPTICS INSTALLED TO CONTROL RUDDER AFCS ACTUATOR.
4-12-83	14	27,000	FC-1	O-RING	MS28778-4	LEAK AT RUDDER AFCS 3-WAY SOL. VALVE. FITTING WAS LOOSE. REPLACE O-RING. TIGHTEN FITTING.
4-18-83	28					INSTALL AILERON ACTUATOR IN SIMULATOR. FC-2 PLUMBED IN. FC-1 INOPERATIVE DUE TO INABILITY TO REPAIR FC-1 CYLINDER BORE.
4-22-83	50	168,700	FC-1	PUMP	PV3-047-2	SEND PUMP TO VICKERS FOR TEAR DOWN AND WEAR INSPECTION.
5-4-83	50		FC-2	COIL TUBE	83-00288-3	RESUME CYCLING WITH FC-1 PUMP.
5-9-83	62	96,800	FC-2	COIL TUBE	83-00288-3	SPOILER ACTUATOR R2 COIL TUBE LEAKING 7 DROPS/CYCLE.
5-12-83	72	103,500	FC-2	COIL TUBE	83-00288-3	SPOILER R2 COIL TUBE LEAKING 0.7CC/CYCLE.
5-23-83	78	78HR	FC-1	PUMP CASE DRAIN FILTER ELEMENT	AC-7031-697Y6 (M8815/18-1) (5 MICRON)	FILTER△P BUTTON OPERATING PERIODICALLY. REPLACE ELEMENT.
5-24-83	84	111,300	FC-2	COIL TUBE	83-00288-3	SPOILER R2 COIL TUBE FAILED. LOST APPROX 1 GAL OF SYSTEM FLUID. REPLACE TUBE WITH -3 SIZE HOSE.
6-2-83	100	337,300	FC-1	PUMP	PV3-047-2	SEND PUMP TO VICKERS FOR TEAR DOWN AND WEAR INSPECTION.
6-23-83	100					RESUME CYCLING WITH FC-1 PUMP. INSTALL NEW 5 MICRON ELEMENT IN PUMP CASE DRAIN FILTER.
6-24-83	108	108HR	FC-1	CHECK VALVE	P1-858	CHECK VALVE LEAKING 4 DROPS/MIN. WRONG SIZE BACKUP RING IN VALVE. REPLACE O-RING. VALVE IN SPEED BRAKE CIRCUIT.

MISSION/PROFILE TEST LOG

NADC-79024-60

DATE	SIMULATOR HOURS	COMPONENT CYCLES/HOURS	SYSTEM	COMPONENT	PART NO.	REMARKS
6-27-83	112	130,500	FC-1	COIL TUBE	83-00287-1	SPOILER P1 COIL TUBE LEAKING 11 DROPS/MIN. REPLACE TUBE WITH -3 SIZE HOSE.
8-2-83	138		FC-1	COIL TUBE	83-00287-1	REPAIR SPOILER P1 COIL TUBE WITH CRYOFIT FITTINGS. INSTALL P1 COIL TUBE ON SPOILER ACTUATOR.
8-2-83	138	138	FC-1	QUICK DISCONNECT	3305-6	PUMP CASE DRAIN QD LEAKING. QD OLD LAB PART USED IN PHASE I. REPLACE WITH NEW QD.
8-5-83	150	506,000	FC-1	PUMP	PV3-047-2	SEND PUMP TO VICKERS FOR TEAR DOWN AND WEAR INSPECTION. SHUT DOWN FOR COMPONENT PERFORMANCE CHECKS & ACTUATOR SEAL INSPECTION.
10-5-83	---	---	---	SOLENOID VALVE	3321472 3321473	END CAP P/N 3321846 BLEW OFF AT 26,000 CYCLES DURING TEST AT GRIMMANN. FAILURE DUE TO STRESS RISER. NEW CAPS WITH LARGER FILLET INSTALLED AS PRECAUTION.
1-11-84	150		FC-1	RESTRICTOR	JEFX0483000A	2 GPM RESTRICTOR INSTALLED IN INLET PORT OF RUDDER AFC'S ACTUATOR 3-WAY SOLENOID VALVE TO ELIMINATE PRESSURE SURGE IN ACTUATOR PRESSURE LINE.
1-23-84	150	0	FC-1	FILTER ELEMENT	AC-9607F-6	RESUME MISSION/PROFILE CYCLING USING "SPARE" PUMP. INSTALL NEW 15 MICRON ELEMENT IN PUMP CASE DRAIN FILTER.
1-23-84	150	151,000	FC-2	COIL TUBE	83-0288-1	SPOILER ACTUATOR P2 LEAKING 60 DROPS/MIN. REPLACE TUBE WITH -3 SIZE HOSE.
1-31-84	170	0		COIL TUBE	NONE	INSTALL ROCKWELL STEEL COIL TUBES AT SPOILER ACTUATOR P1 AND R2 PORTS.
2-1-84	172	1,160,000	FC-2	O-RING	MS28778-4	O-RING ON CONTROL VALVE #3 CYLINDER PORT BLEW (RUDDER ACTUATOR). FITTING WORKED LOOSE. REPLACE O-RING.
2-7-84	190	190HR	FC-1	O-RING	MS28778-5	O-RING ON -5 END PORT IN PRESSURE MANIFOLD LEAKING. REPLACE O-RING. SEND PUMP TO VICKERS FOR TEAR DOWN AND WEAR INSPECTION AND INSTALLATION OF LARGER PINTLE BEARINGS.
2-9-84	200	674,700	FC-1	PUMP	PV3-047-2	INSTALL ROCKWELL TI COIL TUBES AT P1, R1, P2, R2 ON SPOILER ACTUATOR. PUT NEW PIN IN LOAD CYL. CLEVIS IN SPOILER MODULE. REPLACE RET. FILTER WITH APM FILTER WITH ΔP BUTTON.
2-17-84	---					

MISSION/PROFILE TEST LOG

DATE	SIMULATOR HOURS	COMPONENT CYCLES/HOURS	SYSTEM	COMPONENT	PART NO.	REMARKS
2-22-84	200		FC-1	O-RING	MS28770-6	RESUME MISSION/PROFILE CYCLING USING FC-1 PUMP.
2-27-84	212	212HR		SPOILER MODULE		LEAK AT PUMP CASE DRAIN BOSS SEAL (LOW PRESSURE). REPLACE O-RING.
3-5-84	242	163,000				SPOILER LOWER LH HINGE FAILED (PART PREVIOUSLY SUBJECTED TO STATIC TESTS AT VOUGHT). MISSION/PROFILE CYCLING TO CONTINUE WITHOUT SPOILER ACTUATOR.
3-6-84	250	743,400	FC-1	PUMP	PV3-047-2	SEND PUMP TO VICKERS FOR TEAR DOWN AND WEAR INSPECTION.
3-12-84	---		FC-1	FILTER ELEMENT	AC-7031F-69776 (MSB15/18-1)	NEW SPOILER ASSY INSTALLED IN SPOILER MODULE. PUMP CASE DRAIN LINE RE-ROUTED DIRECTLY TO RESERVOIR. INSTALL NEW 5 MICRON ELEMENT.
3-13-84	250					RESUME MISSION/PROFILE CYCLING WITH FC-1 PUMP (NEW PINTLE BEARINGS INSTALLED)
3-14-84	254	254HR	FC-1&2	O-RING	MS28770-4	LOCATION: P1, C1, C2 BOSS PORTS ON RUDDER ACT'R CONTROL VALVE. HOUSING (ALUMINUM) STRETCH IN PORT THDS. ALLOWS O-RING PINCHING. CAUSING DEBRIS. REPLACE O-RINGS.
3-19-84	272	272HR	FC-1	RELIEF VALVE	A-63256-3 215-32359-3	RESERVOIR LOW PRESSURE RELIEF VALVE LEAKING 2.5 CC DURING 5 MIN. SPEED BRAKE CYCLING. REPLACE FC-1 VALVE WITH FC-2 VALVE.
3-27-84	300					SHUT DOWN FOR COMPONENT PERFORMANCE CHECKS & ACTUATOR SEAL INSPECTION. SIMULATOR DOWN FOR FABRICATION OF FC-2 HYDRAULIC SYSTEM.
6-25-84	---	0	FC-1&2	RH UHT ACTUATOR	83-002211-102	ACT'R DISASSEMBLED TO INSTALL NEW PISTON SEALS. FOUND SCORING, CORROSION & OUT-OF-TOLERANCE DIMENSIONS. RE-GRIND PISTON ROD. CYLINDER BORES NOT RE-WORKED.
8-1-84	---	0		RH UHT ACTUATOR	S30650-217-14	CENTER DAM SEAL FOUND TO BE INSTALLED IMPROPERLY AND DAMAGED. REPLACE WITH GREENE, TWEED P/N 591-21700-160-0190.
10-8-84	300		FC-2	ROD SEAL		RESUME MISSION/PROFILE CYCLING. TWO PUMP, TWO SYSTEM OPERATION. RH UHT ACT'R AND RH WING SEAL TEST FIXTURE INSTALLED. BOTH PUMPS HAVE "LARGER" PINTLE BEARINGS WITH CROWNED ROLLERS. SIMULATOR CYCLING PROGRAM REVISED. SEALS IN RH UHT ACT'R REPLACED.

NADC-79024-60

MISSION/PROFILE TEST LOG

DATE	SIMULATOR HOURS	COMPONENT CYCLES/HOURS	SYSTEM	COMPONENT	PART NO.	REMARKS
10-11-84	304	4HR	FC-2	RELIEF VALVE	A-63256-3 215-32359-3	RESERVOIR LOW PRESSURE RELIEF VALVE OPENED. APPROX 1 GAL. OF SYSTEM FLUID LOST. VALVE DISASSEMBLED AND ADJUSTED FOR HIGHER SETTING.
10-17-84	310	34,000	FC-1&2	RH UHT ACT'R	83-00211-102	ACT'R PISTON NOT MOVING PROPERLY WITH 2% INPUTS. REMOVE ACT'R TO DETERMINE CAUSE AND FIX. CONTINUE CYCLING WITHOUT RH UHT ACT'R.
10-17-84	310	1,073,200	FC-2	COIL TUBE	83-00283-1	RF1 P1 TUBE LEAKING AT DEUTSCH FITTING. REPLACE P1 and R1 TUBES WITH ROCKWELL DESIGN COIL TUBES.
11-2-84	311	1,100,000+ PHASE 1	FC-1&2	LH UHT ACT'R	83-00211-101	ACT'R RUNNING ROUGH. INPUT SHAFT HAS -208 SIZE (NON-STD.) O-RING. REPLACE IT WITH TWO O-RINGS -018 &-114 TO REDUCE SQUEEZE ON SHAFT.
11-26-84	339	489HR	FC-1	CHECK VALVE	95201-5	SLIGHT EXTERNAL LEAKAGE. POPPET FAILED. REPLACE VALVE WITH CIRCLE SEAL P/N P4-858. VALVE 30° FROM PUMP.
12-4-84	342	42HR	FC-2	FILTER ELEMENT	AC-7031F-697Y6	PUMP CASE DRAIN FILTER &P INDICATOR OPERATED. INSTALL NEW ELEMENT. REMOVE FC-2 PUMP S/N 346580 (SPARE). REPLACE WITH S/N 346168 (FC-2).
12-11-84	354		FC-1&2	RH UHT ACT'R	83-00211-102	RE-INSTALL ACTUATOR INPUT SHAFT. BALL CHROME PLATED TO REDUCE FREE-PLAY BETWEEN BALL AND SPOOL SLOT.
12-13-84	360		FC-2	PUMP	PY3-047-2	"SPARE" PUMP S/N 346580 RECEIVED FROM VICKERS AND INSTALLED ON FC-2 PAD.
12-17-84	362	62HR	FC-2	PUMP HOSE	DE6356-102-0300	HOSE LEAKS AROUND SWAGED END NEAR PUMP. HOSE REPLACED WITH TITEFLEX P/N F37404008-0300.
1-2-85	372	1,254,900+ PHASE 1	FC-1&2	LH UHT ACT'R	83-00211-101	ACTUATOR RUNNING ROUGH. REMOVE ACTUATOR FOR FIX.
1-24-85	372		FC-1&2	LH UHT ACT'R	83-00211-101	RE-INSTALL ACTUATOR. INPUT SHAFT NICKEL PLATED AND HOUSING GROOVE MACHINED TO ACCEPT -115 SIZE O-RING.
1-25-85	376		FC-1&2	LH UHT ACT'R	83-00211-101	ACTUATOR RUNNING ROUGH. REMOVE FOR FIX. CONTINUE CYCLING WITHOUT LH UHT ACT'R
1-28-85	380	530+	FC-2	O-RING	28775-028	CASE DRAIN FILTER STATIC SEAL LEAKING. SEAL HAS PERMANENT SET. REPLACE O-RING.

MISSION/PROFILE TEST LOG

DATE	SIMULATOR HOURS	COMPONENT SYSTEM	COMPONENT	PART NO.	REMARKS
1-30-85	386	FC-1	COIL TUBE	NONE	ROCKWELL DESIGN COIL TUBE ON SPOILER P-1. LEAKING AT FITTING. REPLACE TUBE WITH ANOTHER ROCKWELL TUBE.
2-1-85	392	FC-1&2	LH UHT ACT'R	63-00211-101	RE-INSTALL ACTUATOR. 0.0001 IN. REMOVED FROM CENTER LAND DIA. ON CONTROL SPOON. REMOVE 0.004 IN. FROM NICKEL PLATED SHAFT.
2-5-85	400	420,500	FC-2	SEAL TEST FIXTURE	ROD SEALS LEAKING EXCESSIVELY. REMOVE FC-2 FIXTURE. CONTINUE CYCLING WITHOUT IT. PROPER SEALS NOT AVAILABLE.
2-19-85	422	1,416,900+ PHASE 1	FC-1&2	NASS13-12	THREADS STRIPPED OUT OF CLEVIS. LOCK WASHER FAILED. CONTINUE CYCLING WITHOUT RUDDER ACT'R.
2-21-85	432	0	RUDDER ACT'R CLEVIS	CV15-151567-1	RECEIVE NEW CLEVIS FROM VOUGHT. ALSO RECEIVE NEW LOCK WASHER. RESUME CYCLING RUDDER ACTUATOR.
2-26-85	450				3RD BLOCK OF 150 HRS. COMPLETED. SHUT DOWN FOR COMPONENT PERFORMANCE CHECKS & ACTUATOR SEAL INSPECTIONS.
3-12-85	450	900	FC-1	3-HAY SOL. VALVE	PERF. TEST DISCLOSED HIGH INTERNAL LEAKAGE. INTERNAL DIAMETRAL SEAL FAILED. REPLACE O-RING HS28775-007.
3-13-85	450	6,300	FC-1	4-HAY SOL. VALVE	PERF. TEST DISCLOSED HIGH INTERNAL LEAKAGE. INTERNAL DIAMETRAL SEAL FAILED. REPLACE O-RING HS28775-007.
3-14-85			FC-1	3-HAY SOL. VALVE	306750-1001 3-WAY VALVE 3321473 PUT IN LOAD SYSTEM AT PITCH AFCS ACT'R. 3-WAY VALVE 306750-1001 INSTALLED IN FC-1 AT YAW AFCS ACT'R.
3-15-85	450				MISSION/PROFILE CYCLING RESUMED.
3-19-85	452	452HR	FC-1	CHECK VALVE	POPPET STICKING, ALLOWING PUMP TO MOTOR DURING SHUT DOWN. POLISH VALVE BORE AND POPPET. REINSTALL VALVE.
3-20-85	452	1,532,200	FC-2	COIL TUBE	RFI ACT'R P2 TUBE LEAKING AT FITTING. REPLACE P2 AND R2 TRI-COILS WITH -3 HOSES.
				83-00284-1	

MISSION/PROFILE TEST LOG

NADC-79024-60

DATE	SIMULATION HOURS	COMPONENT CYCLES/HOURS	SYSTEM	COMPONENT	PART NO.	REMARKS
3-21-85	460	FC-2	PUMP		J3-047-2	PATCH ON FC-2 FILTER HAD EXCESSIVE WEAR DEBRIS. REMOVE PUMP 346580 AND REPLACE IT WITH 346168. PUMP 356480 SHIPPED TO VICKERS.
3-21-85	460	210HR 160HR	FC-1 FC-2	FILTER ELEMENT	AC-9607F-6	INSTALL NEW 15 _u ELEMENTS IN FC-1 & FC-2 PUMP CASE DRAIN FILTERS.
3-27-85	478	2,624,000 (PH. I & II)	FC-1&2	LH UHT ACT'R	83-00211-101	CRACK IN BASE END SUPPORT FITTING P/N 83-00214-101. REMOVE ACTUATOR. CONTINUE CYCLING WITHOUT LH UHT ACTUATOR.
3-29-85	484			RH UHT ACT'R	83-00211-102	REMOVE RH UHT ACT'R. REMOVE BASE END SUPPORT FITTING AND INSTALL IT IN LH UHT ACT'R. RESUME CYCLING WITHOUT RH UHT ACT'R.
4-2-85	493	0	FC-1&2	HOSE	28404003	REMOVE P1 & P2 COIL TUBES ON SPOILER ACT'R. REPLACE TUBES WITH DOMINATED -3 HOSES. ALSO INSTALL -3 HOSE AT FC-1 SEAL TEST FIXTURE.
4-18-85	544		FC-1	RESTRICTOR	JEFX0483090A	DISCOVER CAUSE OF YAN AFCS 3-WAY SOL. VALVE MALFUNCTION IS LOCATION OF RESTRICTOR. RELOCATE RESTRICTOR FROM PORT P TO PORT C ON VALVE.
4-19-85	544	0	FC-1&2	SUPPORT FITTING	83-00214-101A	NEW BASE END SUPPORT FITTINGS WITH HEAVIER WALL FABRICATED. NEW FITTING INSTALLED IN LH & RH UHT ACTUATORS. BOTH ACTUATORS RUNNING.
4-22-85	548	2,740	FC-2	COIL TUBE FITTING, ACT'R #2	D11200TE-03	DEUTSCH FITTING ON INBOARD L.E. FLAP EXTEND PORT LEAKING DURING OPERATION APPROX. 3 DROPS.
4-24-85	558	--	UHT LOAD MODULE	TL13197		UHT ACTUATOR BASE END SUPPORT BOLT FAILED. BOLT IS ONE OF SIX. FATIGUE CAUSED FAILURE. REPLACE BOLT.
4-25-85	560	260HR	FC-2	RETURN FILTER	AC-7031-1097Y6 (MS815/6-10)	140 PSI ΔP ACROSS ELEMENT. REPLACE ELEMENT. FC-1 RETURN FILTER ΔP IS 40 PSI (OK).
5-1-85	584	2,920	FC-2	COIL TUBE FITTING, ACT'R #1	D11200TE-03	DEUTSCH FITTING ON INBOARD-INBOARD L.E. FLAP ACTUATOR COIL TUBE LEAKING 26 DROPS/MIN. OUTBOARD COIL TUBE FITTING LEAKING 2 DROPS/MIN.
5-3-85	590	590	FC-1	O-RING	MS28778-8	PUMP CASE DRAIN LINE INSTRUMENTATION CROSS O-RING LEAKING. O-RING HARD. REPLACE O-RING.
5-6-85	600					4TH BLOCK OF 150 HRS COMPLETED. SHUT DOWN TO RUN COMPONENT PERFORMANCE CHECKS AND EXAMINE ACTUATORS FOR WEAR.

NADC-79024-60

APPENDIX B

PRESSURE RIPPLE DYNAMICS DATA

NOTE: The Abex pump data presented on pages 170 through 175 are given for information purposes only. The Abex pump (M/N AP6V-57) was temporarily installed in FC-1 system in place of the LHS pump (Vickers M/N PV3-047-2) to provide comparison data. See reference 3 for Abex pump details.

NADC-79024-60

3500 RPM A 500.+00 PSI
2.19 IN.

3500 RPM A 500.+00 PSI
2.19 IN.

NADC-79024-60

NADC-79024-60

5885 RPM A 500.+00 PSI
2.19 IN.

5885 RPM A 500.+00 PSI
2.19 IN.

NADC-79024-60

5885 RPM A 200.+00 PSI
2.19 IN.

5885 RPM A 200.+00 PSI
2.19 IN.

NADC-79024-60

3400 RPM A 100.+00 PSI
34.5 IN.

3400 RPM A 100.+00 PSI
34.5 IN.

NADC-79024-50

NADC-79024-60

5886 RPM A 100.+00 PSI
34.5 IN.

5885 RPM A 100.+00 PSI
34.5 IN.

NADC-79024-60

NADC-79024-60

NADC-79024-60

NADC-79024-60

NADC-79024-60

3340 RPM A 500.+00 PSI
34.5 IN.

3340 RPM A 200.+00 PSI
34.5 IN.

4000 RPM A 500.+00 PSI
34.5 IN.

4000 RPM A 200.+00 PSI
34.5 IN.

NADC-79024-60

THIS PAGE LEFT BLANK INTENTIONALLY

NADC-79024-60

APPENDIX C

ACTUATOR PISTON AND ROD SEALS

ACTUATOR	TYPE	SYSTEM	LOCATION	STAGE	RING	PART NUMBER	SUPPLIER
L/H UHT	Piston	FC-1	---	---	D-D	S30660-327-14	Shamban
		FC-2	---	---	B-U	S33157-327-14	Shamban
		FC-1&2	C/D	1st	O-R	MS28775-327	---
					T-S	7329MT-160-4750	Greene, Tweed
	Rod				D-D	S30650-217-14	Shamban
					B-U	S33157-217-14	Shamban
				2nd	O-R	M83461/1-217	Shamban
					B-U	MS27595-217	
R/H UHT	Piston	FC-1	---	---	O-R	M83461/1-217	
		FC-2	---	---	D-D	S30650-326-17	Shamban
					B-U	S33157-326-14	Shamban
				1st	O-R	M83461/1-326	
					B-U	MS27595-326	Shamban
	Rod	FC-1	C/D	2nd	O-R	M83461/1-326	
					+S	S30772-327-19	Shamban
					B-U	S33157-327-19	Shamban
				1st	+S	S30772-329-19	Shamban
					B-U	S33157-329-19	Shamban
Rudder	Piston	FC-1	---	---	D-D	S30650-217-14	
		FC-2	---	---	B-U	S33157-217-14	
				1st	O-R	M83461/1-217	
					B-U	MS27595-217	
	Rod	FC-1	C/D	2nd	O-R	M83461/1-217	
				1st	E-C	591-21700-160-0190	Greene, Tweed
				2nd	B-U	MS27595-217	
				1st	+S	S30775-326P-19	Shamban
Yaw AFCS	Piston Rod	FC-1	---	---	B-U	S33157-326-19	Shamban
		FC-2	---	---	B-U	MS27595-326	
		FC-1&2	O/S&C/D	1st	O-R	M83461/1-326	
					B-U	CEC4862-211NC	Conover
					O-R	M83461/1-211	
RFI	Piston Rod	FC-1&2	---	---	T-S	7210MT-160-4750	Greene, Tweed
		FC-1&2	O/S&C/D	1st	D-D	S30650-116-14	Shamban
					B-U	S33012-116-14	Shamban
				2nd	O-R	M83461/1-116	
					T-S	7116MT-160-4750	Greene, Tweed
					D-D	S30650-116-114	Conover
					B-U	S33157-116-114	
					O-R	M83461/1-116	
					B-U	CEC5057-116NC	
					O-R	M83461/1-116	

<u>ACTUATOR</u>	<u>TYPE</u>	<u>SYSTEM</u>	<u>LOCATION</u>	<u>STAGE</u>	<u>RING</u>	<u>PART NUMBER</u>	<u>SUPPLIER</u>
L/H Spoiler/ Deflector	Piston Rod	FC-1 FC-2 FC-1&2	---	---	T-S T-S D-D B-U O-R M83461/-113 CEC4862/-113 B-U O-R D-D B-U O-R M83461/1-210 CEC4862-210NC M83461/1-210	7116MT-160-4750 7210MT-160-4750 S30650-113-14 S33157-113-14 M83461/-113 M83461/-113 S30650-210-14 S33157-210-14 M83461/1-210 CEC4862-210NC M83461/1-210	Greene, Tweed Greene, Tweed Shamban Shamban Conover Shamban Shamban Conover
L/H Aileron	Piston Rod	FC-2 FC-2	---	1st	T-S D-D B-U O-R B-U O-R D-D B-U O-R B-U O-R	7210DOMT-160-4750 S30650-113-14 S33157-113-14 M83461/1-113 MS27595-113 M83461/1-113 S30650-210-14 S33157-210-14 M83461/1-210 MS27595-210 M83461/1-210	Greene, Tweed Shamban Shamban Shamban Shamban
L.E. Flap	Piston Rod	FC-2 FC-2	---	---	T-S B-U O-R	7217MT-972-9009 CEC5056-211 M83461/1-211	Greene, Tweed Conover
Speed Brake	Piston Rod	FC-1 FC-1	---	---	T-S B-U O-R	7331MT-972-9009 CEC5056-331 M83461/1-331	Greene, Tweed Conover
Seal Test Fixture	Piston Rod	FC-1 FC-1	---	1st	+S B-U +S B-U	S30772-3044 S33157-330-19 S30775-218P-19 S33157-218-19	Shamban Shamban Shamban Shamban
	Piston Rod	FC-2 FC-2	inbd outbd inbd & outbd	2nd 1st 2nd 1st 2nd	Same as 1st stage except 2 B-U's on outside Same as inbd. 1st stage H-S CGT CGTL TRAP	S33353-218P-19 266-33000-964-1200 265-21800-964-1200 4635-21800H-964	Greene, Tweed Greene, Tweed Greene, Tweed

NADC-79024-60

THIS PAGE LEFT BLANK INTENTIONALLY

APPENDIX D

PHOTOGRAPHS AND DRAWINGS OF LHS ACTUATORSContents

<u>Figure No.</u>	<u>Title</u>	<u>Page No.</u>
<u>Photographs</u>		
D-1	Aileron actuator	182
D-2	Spoiler/deflector actuator	183
D-3	RFI actuator	184
D-4	AFCS yaw actuator	185
D-5	UHT actuator	186
D-6	Rudder actuator	187
<u>Drawings</u>		
D-7	* Spoiler/deflector actuator	189
D-8	* RFI actuator	190
D-9	L.E. flap actuator	191

* See Appendix 'C' for piston seal part numbers

AD-A169 884 FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM 3/4
SIMULATOR HARDWARE (U) ROCKWELL INTERNATIONAL COLUMBUS
OH NORTH AMERICAN AIRCRAFT OP. W N BICKEL ET AL

UNCLASSIFIED

JAN 86 MA-85-0134 NADC-79024-60

F/G 13/7

ML

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

NADC-79024-60

FIGURE D-1. Aileron actuator

NADC-79024-60

FIGURE D-2. Spoiler/deflector actuator

NADC-79024-60

FIGURE D-3. RFI actuator

NADC-79024-60

FIGURE D-4. AFCS yaw actuator

NADC-79024-60

FIGURE D-5. UHT actuator

NADC-79024-60

FIGURE D-6. Rudder actuator

NADC-79024-60

THIS PAGE LEFT BLANK INTENTIONALLY

14500-68
DWD
Hg
EXPE

This technical drawing illustrates an actuator assembly. It includes:

- ACTUATOR SCHEMATIC:** A top-down view showing four pins labeled C2, PC2, PC1, and R1 extending from a central body. The body features internal components labeled C3, C4, C1, and C8.
- CROSS-SECTIONAL VIEW:** A vertical cutaway showing the internal structure of the actuator. Labels include C2, PC2, PC1, R1, C3, C4, C1, C8, and a small circle labeled O.
- DETAIL A:** A magnified view of a component labeled "ASSEMBLY SPCD 6A".
- Callouts:** Several callouts point to specific parts:
 - A callout points to the top of the actuator assembly with the text "MS1 (S5) - 9-9" and "ASSEMBLY SPCD 6A" below it.
 - A callout points to the bottom of the actuator assembly with the text "ASSEMBLY SPCD 6A" and "MS1 (S5) - 9-9" below it.
 - A callout points to the detail A view with the text "ASSEMBLY SPCD 6A" and "MS1 (S5) - 9-9" below it.

FIGURE D-7

三
四
〇

DWG 9-1-0026

16 15 14 13 ↓ 12

1800-1801 QUARTER

7-83-00255-113

ME3461/1-011
ME27595-011 2 RECD
4 PLACES

DETAIL A [D5.1]

10 9 8 7 6 5

FIGURE D-8

215-72418-1 REF FOR -10
216-72043-101 REF FOR -

191/192

NADC-79024-60

APPENDIX E

WEIGHT AND SPACE ANALYSIS UPDATE

Contents

<u>Table No.</u>	<u>Title</u>	<u>Page No.</u>
E-1	Component Weight Summary	194
E-2	Component Volume Summary	197
E-3	3000 psi Plumbing Weight/Volume Breakdown	200
E-4	8000 psi Plumbing Weight/Volume Breakdown	201
E-5	Actuator Weight Summary	202
E-6	Subsystem Weight/Volume Breakdown	203
E-7	Major Elements Weight Summary	204
E-8	Configuration Adjustments Weight Summary	204

Table E-1. Component Weight Summary

ITEM*	QTY/AC	DESCRIPTION	WEIGHT, LB	
			EQUIV. 3000 PSI SYSTEM	LHS SYSTEM**
1	2	PUMP	14.90	18.5
2/3	1 EA	RESERVOIR	25.28	24.40
4	2	RELIEF VALVE, HIGH PRESS	.81	.46
5	2	RELIEF VALVE, LOW PRESS	1.63	.43
6	2	FILTER, PRESSURE	2.75	1.81 (H.O.)
7	2	FILTER, RETURN	2.75	1.40
8	1	FILTER, CASE DR	1.48	1.48
9	1	FILTER, EMER PWR PKG	N/A	N/A
10	2	PRESSURE SNUBBER	.09	.07
11	2	PRESSURE TRANSMITTER/SWITCH	1.45	1.50
12	2	BLEED VALVE	.05	.05
13	1	ACCUMULATOR	3.11	1.75
14	1	PRESSURE GAGE	.18	.11
15	1	SOLENOID VALVE-ACCUM.ISOL.	1.25	(1.40)(H.O.)
16	2	PRESS.DISC-EXTERNAL ACCESS	.67	.23
17	2	SUCTION DISC-EXTERNAL ACCESS	.98	.23
18	2	PRESS. DISC-PUMP	1.00	.23
19	2	SUCTION DISC-PUMP	1.00	.24
20	2	CASE DRAIN DISC-PUMP	.42	.42
21	1	SELECTOR VALVE-SPEED BR	3.30	3.25 (H.O.)
22	-	DELETED	-	-
23	1	EMER. POWER PACKAGE	N/A	N/A
24	1	FLOW SENSITIVE PRESS.REG.	N/A	N/A
25	3	SELECTOR VALVE-AFCSSHUTOFF	.56	1.56
26	-	DELETED	-	-
27	1	CHARGING VALVE-ACCUM.	.11	.11
28	1	RESTRICTOR-SPEED BRAKE	.40	.03
29	1	RESTRICTOR-L.E. FLAP	.15	.09
30	4	RESTRICTOR-L.E. FLAP	.13	.09
		O.B. PANEL		
31	2	RESTRICTOR-L.E. FLAP	.17	.09
		INBD. PANEL		
32	2	RESTRICTOR-L.E. FLAP	.17	.28
		INBD. PANEL		
33	1	SWIVEL-SPEED BRAKE EXTEND	.69	.81
34	1	SWIVEL-SPEED BRAKE RETRACT	.75	.81
35	1	SWIVEL-EMER. PWR. PKG	N/A	N/A
36	1	SWIVEL-EMER. PWR. PKG	N/A	N/A
37	2	SWIVEL-WING FOLD	1.85	1.75
38/	-	DELETED	-	-

Table E-1. Component Weight Summary (Cont'd)

ITEM#	QTY/AC	DESCRIPTION	WEIGHT, LB	
			EQUIV. 3000 PSI SYSTEM	LHS SYSTEM**
43	1	VALVE-SHUT OFF	--	.231
44	4	CHECK VALVE-RUD., SP.BR., RET., FLAP	.07	.08
45	1	CHECK VALVE-SP.BRAKE	.07	.08
46	2	CHECK VALVE-UHT PRESS & RET.	.11	.09
47	1	CHECK VALVE-SP.BRAKE	.10	.10
48	4	CHECK VALVE-RUN AROUND CIRCUITS	.18	.13
49	3	CHECK VALVE-FILTER RUN AROUND	.18	.22
50	1	CHECK VALVE-SP.BRAKE	.35	.23
51	3	CHECK VALVE-RETURN FILTER	.35	.26
52	2	CHECK VALVE-PUMP PRESS	.36	.28
53	2	CHECK VALVE-SYSTEM FILL	.07	.16
54	2	CHECK VALVE-UHT PRESS	.11	.09
55	1	CHECK VALVE-CASE DRAIN	.07	.144
56	1	CHECK VALVE RAT BY-PASS		.26
57/63	-	DELETED	-	-
64	1	MANIFOLD, PRESSURE	.58	1.00
65	1	MANIFOLD, RETURN	.55	.64
66	1	MANIFOLD, RELIEF VALVE	.79	.69 (H.O.)
67	1	HOSE ASSY-PUMP PRESSURE, FC1	3.14	2.18
68	1	HOSE ASSY-PUMP PRESSURE, FC2	3.14	2.18
69	1	HOSE ASSY-PUMP SUCTION, FC1	2.15	.28
70	1	HOSE ASSY-PUMP SUCTION, FC2	2.15	.18
71	1	HOSE ASSY-CASE DRAIN, FC1	.63	.63
72	1	HOSE ASSY-CASE DRAIN, FC2	.75	.75
73	1	CHECK VALVE-RAT SUCTION	N/A	N/A
74	1	MANIFOLD-ACCUMULATOR	.31	.31
75	1	CHECK VALVE-CASE DRAIN	.07	.144
76	1	MANIFOLD-SUCTION DISCONNECT		
77	1	HOSE ASSY-AILERON PRESSURE	.3	.336
78	1	HOSE ASSY-AILERON RETURN	.3	.331
79	1	HOSE ASSY-AILERON RETURN	.41	.589
80	1	HOSE ASSY-AILERON PRESSURE	.42	.509
81	1	HOSE ASSY-AILERON PRESSURE	.3	.331

Table E-1. Component Weight Summary (Cont'd)

ITEM*	QTY/AC	DESCRIPTION	WEIGHT, LB	
			EQUIV. 3000 PSI SYSTEM	LHS SYSTEM**
82	1	HOSE ASSY-AILERON RETURN	.3	.335
83	1	HOSE ASSY-AILERON RETURN	.42	.578
84	1	HOSE ASSY-AILERON PRESSURE	.39	.522
85	1	SELECTOR VALVE-L.E. FLAP	1.16	3.0 (H.O.)
101	2	AILERON ACTUATOR	16.35	15.41 (H.O.)
102	2	SPOILER ACTUATOR	16.35	10.75 (H.O.)
103	1	RUDDER ACTUATOR	8.55	6.40 (H.O.)
104	2	UHT ACTUATOR	33.80	25.35 (H.O.)
105	1	ROLL FEEL ACTUATOR	11.64	9.12 (H.O.)
106	3	AFCS ACTUATOR	15.79	14.95 (H.O.)
107	1	SPEED BRAKE ACTUATOR	46.41	43.93 (H.O.)
108	8	LEADING EDGE FLAP ACTUATOR	6.73	5.30 (H.O.)
109	1	RUDDER SERVO VALVE	3.09	2.86

*See Figure 3.

**H.O. = Hog-Out

N/A = Not Applicable

Table E-2. Component Volume Summary

ITEM*	QTY/AC	DESCRIPTION	VOLUME, IN ³	
			EQUIV. 3000 PSI SYSTEM	LHS SYSTEM
1	2	PUMP	171	118
2/3	1 EA	RESERVOIR	817	593
4	2	RELIEF VALVE, HIGH PRESS	7	4
5	2	RELIEF VALVE, LOW PRESS	17	7
6	2	FILTER, PRESSURE	62	24
7	2	FILTER, RETURN	62	31
8	1	FILTER, CASE DR	28	28
9	1	FILTER, EMER PWR PKG	N/A	N/A
10	2	PRESSURE SNUBBER	<1	<1
11	2	PRESSURE TRANSMITTER/SWITCH	22	22
12	2	BLEED VALVE	1	1
13	1	ACCUMULATOR	40	25
14	1	PRESSURE GAGE	1	1
15	1	SOLENOID VALVE-ACCUM.ISOL.	15	9
16	2	PRESS.DISC-EXTERNAL ACCESS	9	3
17	2	SUCTION DISC-EXTERNAL ACCESS	12	7
18	2	PRESS. DISC-PUMP	21	6
19	2	SUCTION DISC-PUMP	21	9
20	2	CASE DRAIN DISC-PUMP	5	5
21	1	SELECTOR VALVE-SPEED BR	50	35
22	-	DELETED	-	-
23	1	EMER. POWER PACKAGE	N/A	N/A
24	1	FLOW SENSITIVE PRESS.REG.	N/A	N/A
25	3	SELECTOR VALVE-SAS SHUTOFF	10	13
26	-	DELETED	-	-
27	1	CHARGING VALVE-ACCUM.	<1	<1
28	1	RESTRICTOR-SPEED BRAKE	1	<1
29	1	RESTRICTOR-L.E. FLAP	2	<1
30	4	RESTRICTOR-L.E. FLAP O.B. PANEL	2	<1
31	2	RESTRICTOR-L.E. FLAP INBD. PANEL	2	<1
32	2	RESTRICTOR-L.E. FLAP INBD. PANEL	2	<1
33	1	SWIVEL-SPEED BRAKE EXTEND	8	10
34	1	SWIVEL-SPEED BRAKE RETRACT	10	12
35	1	SWIVEL-EMER. PWR. PKG	N/A	N/A
36	1	SWIVEL-EMER. PWR. PKG	N/A	N/A
37	2	SWIVEL-WING FOLD	17	16
38/43	-	DELETED	-	-

Table E-2. Component Volume Summary (Cont'd)

ITEM*	QTY/AC	DESCRIPTION	VOLUME, IN ³	
			EQUIV. 3000 PSI SYSTEM	LHS SYSTEM
44	4	CHECK VALVE-RUD., SP.BR., RET., FLAP	< 1	< 1
45	1	CHECK VALVE-SP.BRAKE	< 1	< 1
46	2	CHECK VALVE-UHT PRESS & RET.	1	< 1
47	1	CHECK VALVE-SP.BRAKE	< 1	< 1
48	4	CHECK VALVE-RUN AROUND CIRCUITS	1	< 1
49	3	CHECK VALVE-FILTER RUN AROUND	1	< 1
50	1	CHECK VALVE-SP.BRAKE	1	< 1
51	3	CHECK VALVE-RETURN FILTER	1	< 1
52	2	CHECK VALVE-PUMP PRESS	1	< 1
53	2	CHECK VALVE-SYSTEM FILL	< 1	< 1
54	2	CHECK VALVE-UHT PRESS	1	< 1
55	1	CHECK VALVE-CASE DRAIN	< 1	< 1
56	1	CHECK VALVE RAT BY-PASS	N/A	N/A
57/63	-	DELETED	-	-
64	1	MANIFOLD, PRESSURE	7	2
65	1	MANIFOLD, RETURN	6	3
66	1	MANIFOLD, RELIEF VALVE	8	5
67	1	HOSE ASSY-PUMP PRESSURE, FC1	30	19
68	1	HOSE ASSY-PUMP PRESSURE, FC2	37	24
69	1	HOSE ASSY-PUMP SUCTION, FC1	27	18
70	1	HOSE ASSY-PUMP SUCTION, FC2	29	19
71	1	HOSE ASSY-CASE DRAIN, FC1	14	14
72	1	HOSE ASSY-CASE DRAIN, FC2	13	13
73	1	CHECK VALVE-RAT SUCTION	N/A	N/A
74	1	MANIFOLD-ACCUMULATOR	3	3
75	1	CHECK VALVE-CASE DRAIN	< 1	< 1
76	1	MANIFOLD-SUCTION DISCONNECT		
77	1	HOSE ASSY-AILERON PRESSURE	3	3
78	1	HOSE ASSY-AILERON RETURN	3	3
79	1	HOSE ASSY-AILERON RETURN	5	5
80	1	HOSE ASSY-AILERON PRESSURE	5	5
81	1	HOSE ASSY-AILERON PRESSURE	3	3

Table E-2. Component Volume Summary (Cont'd)

ITEM*	QTY/AC	DESCRIPTION	VOLUME, IN ³	
			EQUIV. SYSTEM	3000 PSI LHS SYSTEM
82	1	HOSE ASSY-AILERON RETURN	3	3
83	1	HOSE ASSY-AILERON RETURN	4	4
84	1	HOSE ASSY-AILERON PRESSURE	5	5
85	1	SELECTOR VALVE-L.E. FLAP	23	
101	2	AILERON ACTUATOR	206	101
102	2	SPOILER ACTUATOR	136	106
103	1	RUDDER ACTUATOR	106	53
104	2	UHT ACTUATOR	446	286
105	1	ROLL FEEL ACTUATOR	77	24
106	3	AFCS ACTUATOR	239	195
107	1	SPEED BRAKE ACTUATOR	658	334
108	8	LEADING EDGE FLAP ACTUATOR	47	26
109	1	RUDDER SERVO VALVE	185	170

*See Figure 3

N/A = Not Applicable

NADC-79024-60

Table E-3. 3000 PSI Plumbing Weight/Volume Breakdown

<u>PRESSURE LINES</u>				
SUBSYSTEM	TUBING WT DRY	OIL WEIGHT	FITTING WEIGHT	LINE VOLUME
POWER GENERATION	11.93	3.50	5.23	157
POWER TRANSMISSION	15.90	4.77	7.14	212
UHT	3.65	1.02	1.02	43
RUDDER	1.11	.28	1.50	13
AILERON	2.72	.69	.73	32
SPOILER	.75	.19	.64	9
ROLL FEEL	.29	.04	.18	3
YAW AFCS	.25	.06	.27	3
ROLL AFCS	.32	.08	.41	4
PITCH AFCS	.07	.02	.14	1
SPEED BRAKE	2.82	1.07	2.24	45
LEADING EDGE FLAP	8.58	2.15	3.67	100
TOTALS	48.39 LB	13.87 LB	23.17 LB	622 IN ³

<u>RETURN & SUCTION LINES</u>				
SUBSYSTEM	TUBING WT DRY	OIL WEIGHT	FITTING WEIGHT	LINE VOLUME
POWER GENERATION	9.90	6.47	5.02	262
POWER TRANSMISSION	10.86	5.80	4.73	247
UHT	2.58	1.03	.76	44
RUDDER	.27	.12	.36	7
AILERON	2.34	.74	.73	33
SPOILER	.70	.21	.64	9
ROLL FEEL	.22	.07	.21	3
YAW AFCS	.09	.03	.15	2
ROLL AFCS	.14	.07	.21	4
PITCH AFCS	.04	.02	.11	1
SPEED BRAKE	.06	.27	.49	4
LEADING EDGE FLAP	.19	.09	.02	5
TOTALS	27.39 LB	14.92 LB	13.43 LB	621 IN ³

Table E-4. 8000 PSI Plumbing Weight/Volume Breakdown

<u>PRESSURE LINES</u>				
SUBSYSTEM	TUBING WT DRY	OIL WEIGHT	FITTING WEIGHT	LINE VOLUME
POWER GENERATION	4.18	1.35	1.55	70
POWER TRANSMISSION	5.68	1.84	1.43	95
UHT	1.24	.39	.24	21
RUDDER	.45	.14	.23	7
AILERON	1.12	.34	.25	18
SPOILER	.58	.15	.30	49
ROLL FEEL	.31	.09	.20	22
YAW AFCS	.10	.03	.04	2
ROLL AFCS	.13	.04	.06	2
PITCH AFCS	.03	.01	.02	1
SPEED BRAKE	1.06	.34	.38	17
LEADING EDGE FLAP	3.72	1.14	1.46	87
TOTALS	18.60 LB	5.86 LB	6.16 LB	391 IN ³

<u>RETURN & SUCTION LINES</u>				
SUBSYSTEM	TUBING WT DRY	OIL WEIGHT	FITTING WEIGHT	LINE VOLUME
POWER GENERATION	3.65	2.60	2.52	120
POWER TRANSMISSION	4.14	2.55	1.70	112
UHT	1.01	.42	.24	20
RUDDER	.24	.07	.14	4
AILERON	1.15	.35	.25	19
SPOILER	.48	.16	.30	49
ROLL FEEL	.25	.11	.20	22
YAW AFCS	.07	.02	.06	1
ROLL AFCS	.13	.04	.08	2
PITCH AFCS	.03	.01	.04	1
SPEED BRAKE	.09	.05	.05	2
LEADING EDGE FLAP	.32	.09	.02	3
TOTALS	11.56 LB	6.47 LB	5.60 LB	355 IN ³

NADC-79024-60

TABLE E-5. Actuator Weight Summary

ACTUATOR	EXISTING WEIGHT (REF)	EQUIVALENT 3000 PSI SYSTEM	LHS SYSTEM	WEIGHT REDUCTION
SPOILER (2)	11.48	16.35 *	10.75	5.60
AILERON (2)	8.75	16.35 *	15.41	.94
ROLL FEEL (1)	6.58	11.64 *	9.12	2.52
AFCS (3)	15.79	15.79	14.95	.84
UHT (2)	34.78	33.80 *	25.35	8.45
RUDDER (1)	7.63	8.55 *	6.40	2.15
RUDDER VALVE (1)	1.70	3.09 *	2.86	.23
SPEED BR. (1)	46.41	46.41	43.93	2.48
L.E. FLAP (8)	6.73	6.73	5.30	1.43
TOTALS		303.90 LB	252.58 LB	51.32 LB

*STEEL BARREL OR HOUSING

TABLE E-6. Subsystem Weight/Volume Breakdown

<u>WEIGHT SUMMARY</u>			
SUBSYSTEM	3000 PSI	8000 PSI	REDUCTION
POWER GENERATION	201.34	154.15	47.19
DISTRIBUTION SYSTEM	51.69	18.84	32.85
UHT	84.03	56.62	27.41
RUDDER	15.83	10.86	4.97
AILERON	47.15	40.58	6.57
SPOILER	42.08	24.39	17.69
ROLL FEEL	15.58	10.34	5.24
YAW AFCS	17.44	17.10	.34
ROLL AFCS	17.79	17.26	.53
PITCH AFCS	16.95	16.92	.03
SPEED BRAKE	65.85	52.89	12.96
LEADING EDGE FLAP	79.59	53.73	25.86
TOTALS	655.32 LB	473.68 LB	181.64 LB

<u>VOLUME SUMMARY</u>			
SUBSYSTEM	3000	8000	1156
POWER GENERATION	3237	2081	
DISTRIBUTION SYSTEM	582	263	319
UHT	989	619	370
RUDDER	323	238	85
AILERON	440	284	156
SPOILER	364	314	50
ROLL FEEL	106	70	36
YAW AFCS	257	212	45
ROLL AFCS	261	214	47
PITCH AFCS	253	210	43
SPEED BRAKE	803	420	377
LEADING EDGE FLAP	558	282	276
TOTALS	8173 IN ³	5207 IN ³	2960 IN ³

NADC-79024-60

TABLE E -7. Major Elements Weight Summary

ITEM	EQUIVALENT 3000 PSI SYSTEM	PERCENT OF SYS.WT.	LHS SYSTEM	PERCENT RED. IN COMP.WT.
PUMP	29.80	4.5	37.00	+24.2
RESERVOIR	50.56	8.2	48.80	- 3.5
ACTUATORS	303.90	46.2	252.58	-16.9
TUBING	75.90	11.6	30.16	-60.3
OIL	76.04	11.6	38.91	-48.8
FITTINGS	36.89	5.6	11.76	-68.1
MISC. COMP.	<u>82.23</u>	<u>12.3</u>	<u>53.99</u>	<u>-34.3</u>
TOTALS	655.32 LB	100%	473.20 LB	

TABLE E-8. Configuration Adjustments Weight Summary

	EQUIVALENT 3000 PSI SYSTEM	LHS SYSTEM
BASIC SYSTEM	655.3 LB	473.2 LB
<u>CONFIGURATION ADJUSTMENTS</u>		
RESERVOIR	- 7.3	-11.6
UHT ACTUATOR	0	- 2.0
CASTINGS/FORGINGS	0	- 6.3
SHRINK-FIT VALVES (AIL, RUD, UHT, ACTRS)	0	-12.3
INCREASED PUMP SPEED	<u>- 3.6</u>	<u>- 9.7</u>
TOTALS	- 10.9 LB	41.9 LB
ADJUSTED SYSTEM WT.	644.4 LB	431.3 LB

NADC-79024-60

APPENDIX F

FAILURE MODES AND EFFECTS ANALYSIS

CONTENTS

	<u>Title</u>	<u>Page No.</u>
	System Definition	207
	Failure Effects Definition	207
	Subsystem Identification	207
	Malfunction Codes	208
	Failure Rate Definitions	208
	Parts Identification List	209
 <u>Figures</u>		
F-1	Side View - Drive Shaft End of Pump Showing Coupling Shaft, Shaft Seal, and Yoke and Piston Detail	212
F-2	Side View - Showing Transfer Tubes, Cylinder Block Bearing and Valve Block Assembly	213
F-3	Section B - Showing Detail of Yoke Position	214
F-4	End View of Pump, Showing Valve Block End, Hydraulic Connection Points and Section Views	215
F-5	Compensator Detail	216
F-6	FC-1 Power System	217
F-7	FC-2 Power System	218
F-8	Speed Brake	219
F-9	Roll Feel Isolation	220
F-10	Autopilot	221
F-11	Aileron and Spoiler	222
F-12	Leading Edge Flaps	223
F-13	Rudder	224
F-14	Unit Horizontal Tail	225
 <u>Table</u>		
F-1	LHS Failure Mode and Effects Analysis	222

FAILURE MODES AND EFFECT ANALYSIS
OF A LIGHTWEIGHT HYDRAULIC SYSTEM

System Definition - This FMEA has been developed for a Lightweight Hydraulic System designed for installation in an A-7E aircraft. The schematic diagrams upon which this analysis is based are presented in Figures F-1 through F-14. The FMEA is presented in Table F-1.

Failure Effects Definition - In performing the FMEA of the Lightweight Hydraulic System, the effects of each failure mode are evaluated with respect to the function of the related individual hardware item. These individual hardware failure effects are then related in sequence to the total LHS system. The effects of any failure will be limited to the impact on the hydraulic component, subsystem, or system. The effects as related to the intended function of the subsystem which the hydraulic system services, or the effects on the ultimate performance of the A-7 airplane are not a part of the LHS evaluation. Therefore, the following failure definitions apply to the hydraulic functions:

Aircraft Hydraulic System - The loss of hydraulic power from both FC-1 and FC-2 power systems. Where the end effects states "Loss of System Fluid," it is implied that this is a loss of the respective power system.

Hydraulic Subsystem - The inability of the subsystem to function within specified performance due to a hydraulic component or part discrepancy.

Component/Part - The inability of the component/part to perform its intended function within specified limits.

Subsystem Identification - To maintain a systematic approach to referencing failure modes throughout the analysis the following failure mode identification system was used.

XX.YYY-ZZ

where XX identifies the subsystem as follows:

- 01 FC-1 power
- 02 FC-2 power
- 03 speed brakes
- 04 roll feel isolation
- 05 autopilot system
- 06 aileron and spoiler
- 07 leading edge flaps
- 10 rudder
- 11 unit horizontal tail

YYY identifies the component from the system schematic and ZZ identifies the failure mode sequence.

Malfunction Codes - The most likely malfunction codes as recorded by maintenance personnel if a failure were to occur are listed on the work sheets in accordance with OPNAVINST 4790.2C, "Malfunction Description Codes."

Severity Levels - Severity levels of criticality will be defined as follows:

- Level I, Catastrophic: Complete loss of hydraulic power or functional capability of an actuator assembly
- Level II, Critical: Degradation of hydraulic power or actuator performance or any failure resulting in personal injury to maintenance personnel
- Level III, Major: Degradation of component performance resulting in negligible effect to total LHS performance and resulting in maintenance action at organization level
- Level IV, Minor: No effect on total LHS performance and no component removal required

Failure Rate Definitions - Failure rates were extrapolated from 3M data for the A-7E aircraft, using leak path comparisons, laboratory experience, and other design data as a basis for the projection. All failure rates presented are expressed in terms of failure per million flight hours. The failure rate definitions used on the FMEA format are defined as follows:

λ_p is the basic failure rate of the component.

α is the fractional contribution the failure mode contributes to the total component failure rate.

β is the conditional probability factor for the failure end effect occurring, given that the failure mode has occurred.

λ_o is the operational failure rate, or the product of λ_p , α and β .

Part Identification List - Use the list provided below and Figures F-1 through F-5 to locate parts in the pump.

ITEM CODE	DESCRIPTION OF ITEM
A	Coupling, Drive (570830)
A1	Ring, Coupling Shaft Retaining (Retainer "C" Ring) (570831)
A2	Packing, Coupling to Cylinder Block (395831)
B	Yoke, Pin & Inserts Subassembly (570809)
B1	Yoke, (363776)
B2	Pin (248774)
B3	Insert (Helicoil 33537)
B4	Plate, Piston Shoe Bearing (570845)
C	Rotating Group Assembly
C1	Block, Cylinder (570832)
C2	Bearing-Thrust (Bearing, Ball Annular 211606)
C3	Plate, Balance Subassembly (570821)
C3.1	Plate, Hold Down (570824)
C3.2	Plate, Balance (570822)
C3.3	Plate, Spacer (570823)
C3.4	Rivet, Countersunk Head (580511)
C4	Spring, Cylinder Block Hold Down (570833)
D	Piston Shoe Assembly (9) (570825)
D1	Piston (9) (570827)
D2	Shoe (9) (570828)
F	Plate, Hold Down, Retainer (570844)
F1	Screws (8) (224945)
G	Housing, Pins & Inserts Assembly (570805)
G1	Housing
G2	Inserts, Housing, Helicoil (7) (185993)
G3	Pin, Housing, Locating for Mating Flange (2) (248819)
G4	Packing, Valve Block to Housing (395958)
G5	Screw, Valve Block to Housing Assembly (7) (580555)
G6	Washer, Screw, Valve Block to Housing Assy(7) (32261)
G7	Piston, Yoke Control (Actuator, Piston, 570841)
G8	Piston, Spring Return, yoke control (570839)
G9	Spring, Yoke Control (570840)
G10	Seat, Spring, Yoke Control (570838)
H	Transfer Tube, Yoke Control (570842)
H1	Packing, Transfer Tube, Yoke Control (395824)
H2	Ring, Back-Up, Transfer Tube, Yoke Control (197567)
H3	Packing, Transfer Tube to Housing (395825)
H4	Ring, Back-Up, Transfer Tube to Housing (197568)
J	Bearing, Yoke (2) (312173)
K	Bearings Roller, Cylinder Block (577738)

ITEM CODE	DESCRIPTION OF ITEM
L	Spacer, Bearing (570837)
M	Flange, Mating, Pins & Inserts Assembly (570846)
M1	Flange, Mating (570846)
M2	Insert, Screw, Mating Flange, (Helicoil) (6) (429318)
M3	Pin, Mating Flange, Locating for Mounting Flange (1) (248820)
M4	Packing, Mating Flange to Mounting Flange (335957)
M5	Packing, Housing to Mating Flange (395972)
M7	Screw, Mating Flange to Housing (10) (580555)
M8	Washer, Mating Flange to Housing Assembly (10) (32261)
N	Shaft Seal Assembly (570811)
N1	Spring, Toroidal, Shaft Seal (570813)
N2	Grommet, Shaft Seal (570815)
N3	Spacer, Shaft Seal (570814)
N4	Spring, Wave Shaft Seal (570816)
N5	Retainer, Shaft Seal (570812)
N6	Seal, Carbon (570817)
N7	Ring, Mating, Shaft Seal (Steel) (570829)
N8	Packing, Mating Flange to Mating Ring (395884)
P	Ring, Retaining Shaft Seal (570826)
P1	Screws, Shaft Seal Retaining (6) (224942)
P2	Washer, Screw, Shaft Sealing Retaining (6) (51903)
Q	Plate, Transfer (570835)
R	Tube-Transfer Assembly
R1	Tube Transfer (9) (570834)
R2	Packing, Transfer Tube (9) (395826)
R3	Ring, Back-Up, Transfer Tube (9) (197569)
S	Plate, Wafer (570836)
W	Block, Valve Assembly (570807)
W1	Insert, Valve Block, Helicoil (4) (185993)
W2	Pin, Valve Block (248819)
W3	Screws, Outlet Connector Securing (4) (580554)
W4	Packing, Valve Block to Housing (395958)
W5	Plug, Fill and Drain, Housing (89276)
W6	Packing, Plug to Housing (396096)
W7	Lockwire, Fill and Drain Plug (48982)
X	Compensator Assembly
X1	Sleeve & Pilot Valve Subassembly (570818)
X1.1	Sleeve, Compensator (570820)
X1.2	Valve, Pilot Compensator (570819)
X2	Packing Valve Block to Sleeve (2) (395828)
X3	Ring, Back-Up, Valve to Sleeve (2) (197571)
X4	Adapter, Compensator Adjusting Screw (570849)
X5	Packing Valve Block to Adapter (395834)
X6	Guide, Spring, Compensator (570853)
X7	Spring, Compensator (570854)
X8	Seat, Spring, Compensator (570852)
X9	Screw, Adjusting, Pressure Control (570850)
X10	Packing, Adapter to Adjusting Screw (395832)
X11	Nut, Locking, Compensator (570851)

ITEM CODE	DESCRIPTION OF ITEM
Y	Adapter, Discharge (570843)
Y1	Packing, Discharge Adapter to Valve Block (395875)
Y2	Ring, Back-Up, Discharge Adapter to Valve Block (197596)
Z	Mounting Flange (570802)
Z1	Clamp, Mating Flange to Mounting Flange (570802)
Z10	Plate, Rotation Indicator (344947)
Z11	Plate, Identification (56981)

NADC-79024-60

Figure F-1. Side View - Drive Shaft End of Pump Showing Coupling Shaft, Shaft Seal, and Yoke and Piston Detail

Figure F-2. Side View ~ Showing Transfer Tubes, Cylinder Block Bearing and Valve Block Assembly

Figure F-3. Section B - Showing Detail of Yoke Position Control

Figure F-4. End View of Pump, Showing Valve Block End, Hydraulic Connection Points and Section Views

NADC-79024-60

Figure F-5. Compensator Detail

Figure F-6. FC-1 Power System

NADC-79024-60

Figure F-7. FC-2 Power System

Figure F-8. Speed Brake

NADC-79024-60

Figure F-9. Roll Feel Isolation

NADC-79024-60

Figure F-10. Autopilot

NADC-79024-60

Figure F-11. Aileron and Spoiler

Figure F-12. Leading Edge Flaps

NADC-79024-60

Figure F-13. Rudder

Figure F-14. Unit Horizontal Tail

TABLE F-1.
LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	1.0. number	FAILURE MODE		FAILURE EFFECT		DETECTION METHOD	COMPENSATING FAIL. CODE: LEVEL 1	LOSS FREQUENCY		
			FAILURE CAUSES	LOCAL EFFECTS	END RESULTS	LOSS OF FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM			λ_p	α	θ
FL-1/FC-2 Function	PROVIDE SYSTEM PRESSURE	101.001-00 102.001-01	FAIL TO OPERATE SEE DETAIL PARTS ANALYSIS	LOSS OF PUMPING FUNCTION	LOSS OF FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM	FE-1/FC-2 SUBSYSTEM	11	---	---	---	---
CONF 165 SHaFT : TRANSFER INPUT TURBINE TO DRIVE Srf. F1	TRANSFER INPUT	A-01	SPLINE WEAR IMPROPER INSTALLMENT, LACK OF LUBE ROUTING INSTALLATION	MEAN DEGRADATION/ SPLINE FREE-PLAY BRAND	PUMP REMOVAL	FE-1/FC-2 SUBSYSTEM	010 : 11 212 : 020	010 : 11 45.47 : 0.80 : 1.00 53.38	0.08	1.00	0.01
CONF 165 SHaFT : TRANSFER INPUT TURBINE TO DRIVE Srf. F1	TRANSFER INPUT	A-02	SHEAR AT LOW TORQUE	FRATIGUE AT SHEAR : LOSS OF PUMP AND SECTION, ANNUITY : FUNCTION	LOSS OF FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM	FE-1/FC-2 SUBSYSTEM	010 : 11 383 : 1	0.08 : 1.00 5.24	0.08	1.00	0.01
CONF 165 SHaFT : TRANSFER INPUT TURBINE TO DRIVE Srf. F1	TRANSFER INPUT	A-03	FAILURE TO SHEAR : QUALITY CONTROL : INTERNAL PUMP TOLERANCE	DAMAGE INTERNAL TOLERANCES AND MATERIALS	LOSS OF FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM	FE-1/FC-2 SUBSYSTEM	242 : 11 374 : 1 525 : 1	0.08 : 1.00 5.04	0.08	1.00	0.01
COLLING SHaFT : RETAINS COUPLING RETAINING RING : SHaFT IN PLACE	RETAINS COUPLING	A1-01	BROKEN	INSTALLED - RING INADE INADEQUATE UNINSTALLED - SHaFT WAY SEPARATE FROM FLUID	PUMP REMOVAL	FE-1/FC-2 SUBSYSTEM	070 : IV	0.01 : 1.00 : 0.00	0.01	1.00	0.01
COLLING SHaFT : RETAINS COUPLING RETAINING RING : SHaFT IN PLACE	RETAINS COUPLING	B1-01	BENDING, IFOR STIFFNESS	IMPROPER DESIGN INTERNAL LEAKAGE : INSTABLE FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM	FE-1/FC-2 SUBSYSTEM	242 : 111 374 : 1 525 : 1	2.74 : 0.70 : 1.00 1.97	2.74 : 0.70 : 1.00 1.97	2.74	0.70	1.00
COLLING SHaFT : RETAINS COUPLING RETAINING RING : SHaFT IN PLACE	RETAINS COUPLING	B1-02	IFRACTURE	IFATIGUE INTERNAL PUMP DAMAGE	LOSS OF FC-1/FC-2 COCKPIT PRESSURE SUBSYSTEM	FE-1/FC-2 SUBSYSTEM	242 : 11 374 : 1	0.30 : 1.00 0.47	0.30	1.00	0.47
COLLING SHaFT : RETAINS COUPLING RETAINING RING : SHaFT IN PLACE	RETAINS COUPLING	B4-01	EXCESSIVE WEAR IFOR WEAR IFOR WEAR IFOR WEAR	LOSS OF PLATE INTERNAL LEAKAGE : FILTER CONTAMINATION	---	---	185 : IV 372 : 1 500 : 1	0.03 : 1.00 : 0.00 0.03	0.03	1.00	0.01

LNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	LOSS FREQUENCY	
					END RESULTS	CODE ITIN.				
CYLINDER BLOCK TRANSFERS LOAD	OF COMP. LIN. SHAFT	C1-01	PISTON SEIZURE	CONTAMINATION OF SHEARING OF FLUID; OVER HEATING; LOSS OF INTERNAL PUMP LUBRICATION	LOSS OF FC-1/FC-2 COUPLET PRESSURE; SYSTEM CAPABILITY INDICATOR	FC-1/FC-2	242 11	20.09 0.41 11.00	8.24	
NO ADJUSTMENT OF CYL INERTIA CAUSES:	VECTORS TO DISELL	C1-02	SHREWD ON CHACKED FATIGUE AT CYL INDEK BLAD.	PUMP SELF SECTION BETWEEN INERTIAS SPLINE & BEARING; WEBS BETWEEN BLADES; AND FRONT SIDE THRUST BEARING LOADS	LOSS OF FC-1/FC-2 COUPLET PRESSURE; SYSTEM CAPABILITY INDICATOR	FC-1/FC-2	242 11	0.08 11.00	1.61	
EXTRADURAL FORCE:	OF PISTONS;	C1-03	INTERNAL SPLINE HEAR	THREE-PART SPLINE; LUBRICATION; INDICAL WEAK	-----	-----	242 11	0.49 11.00	9.84	
STRUCTURAL HYDRAULIC:	FLUID FROM PISTON	C1-04	NEAR AT TRANSFER ALIGNMENT MOTION STICKES	INTERNAL LEAKAGE; FLUCTUATION OF SYSTEM PRESSURE; LEAKAGE VIBRATION	COUPLET PRESSURE; INDICATOR	FC-1/FC-2	374 111	0.01 11.00	0.20	
C1-05	NEAR AT SHFT SEAL	-----	DAMAGED SEAL; DAMAGED SHIFT	INBURN LEAK RATE; MAY CAUSE LOSS OF INSECTIONS IFC-1/FC-2 SYSTEM CAPABILITY	INBURN LEAK RATE; INDICATOR	FC-1/FC-2	381 111	0.61 10.05	0.01	
INLET BEARING PROVIDES LOW FRICITION FOR CYL. IND. ROTATIONS;	SHAKES RWD L. THRUST LOADS	C2-01	SPALLING OF RACES/UNSTRESS LACK INCREASE IN TORQUE	LEANING SELF BEARING FACTION; INSTRUCTS	METAL IN FILTER	FILTERS	374 1 IV	10.90 1.00 11.00	10.70	
BALANCE PLATE	MOVES INTO INDIVIDUAL PISTON;	C3-01	FRATURE OF PISTON SHDE HOLD	PISTON SETTLE	PUMP FAILURE	LOSS OF FC-1/FC-2 COUPLET PRESSURE; SYSTEM CAPABILITY THROTTLING	FC-1/FC-2	242 11	9.52 0.03 10.02	---
PERPENDI	LEADS TO SURFACE	C3-02	FRATURE OF PISTON SHDE	FRATURE; OVERLOAD STRESSES	WEAR OF RUBBING SURFACE	THROTTLING BECAUSE OF FILTER CHECKS; WEAK INDICATORS	FC-1/FC-2	374 1	0.69 11.00	6.57
1.6 BEARHS SURFACE	FRAGMENTED TO ONE ASSEMBLY	C3-03	BALANCE PLATE	FAIGUE STRESSES DISASSEMBLY AND FAIL IN TENSION	PUMP FAILURE	LOSS OF FC-1/FC-2 COUPLET PRESSURE; SYSTEM CAPABILITY INDICATOR	FC-1/FC-2	242 11	0.28 11.00	2.67

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE MODE		FAILURE EFFECT		FAILURE DETECTION METHOD	COMPENSATING PROVISIONS	HALF SEVR LEVEL	LOSS MECHANISM		
			FAILURE CAUSES	END RESULTS	LOCAL EFFECTS	END RESULTS				λ_p	α	β
VALVE BLOCK: HOLLOW CYLINDER WITH DOME BLOCK, WASHERS W/SPRING	C4-01		WEAKENS OR BREAKS/FATIGUE		ENDURE WHILE OPERATING; HAZARD LIFTS DURING START-UP	INTERNAL LEAKAGE; LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	242 : 11 374	1.64	1.00	11.60	1.44
PISTON LINEAR MOTION IN CYLINDER BLOCK SEATS IN HOLLOW UR FLUID	D1-01		PISTON SETS IN; IDENTIFICATION OF CYLINDER BLOCK FLUID AND LOSS OF TIME AND FAILURE SYSTEM CAPABILITY INDICATOR			LOSS OF FC-1/FC-2 COCKPIT PRESSURE OF PUMPING ACTION;	FC-1/FC-2 SUBSYSTEM	242 : 11 374	6.14	1.00	11.00	6.14
SHEAR TRANSITS FORCES APPLIED BY FORCE TO PISTON	02-01		WEAR AT COINED SPHERICAL JOINT; COMPRESSION AND TENSILE LOADS		NOISE/PUMP LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR; NOISE CAUSES SEPARATION; WEAR AT JOINT	LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR; NOISE PUMP	FC-1/FC-2 SUBSYSTEM	242 : 11 374	41.34	0.75	10.80	24.82
RETAINER HOLD BLOCK PLATE IN PLACE	02-02		CHECKED OR BROKEN/FATIGUE AT COINED JOINT		DISASSEMBLY OF PISTON FROM SIDE SYSTEM CAPABILITY INDICATOR	LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	242 : 11 374	1.25	1.00	10.34	
RETAINER HOLD BLOCK PLATE IN PLACE	F-01		FATIGUE FRATURE; INVERSENESS FROM PISTON SEIZURE		DESTRUCTION OF PISTON ASSEMBLY BY PRESSURE	LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	242 : 11 374	3.29	0.97	11.00	3.19
F-02			FATIGUE; RETAINER SEIZURE LOW LOADS FROM LOW INTAKE PRESSURE		FAILURE TO HOLD RETAINER - END PISTON SEIZURE	LOSS OF FC-1/FC-2 COCKPIT PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	242 : 11 374	0.03	10.05	10.004	
HOLDING SPRING/GEAR SUBASSEMBLY	61-01		CRACKED OR BROKEN/FATIGUE FROM STRESS OF USE; ADJUSTMENTS OUT OF PRESSURE, ROTATING; PARTS, HYDRAULIC; FORCES & MATERIAL; INFECTION		LEAKAGE FROM CASE LEAK; LOSS OF ADJUSTMENTS OUT OF PRESSURE, ROTATING; LOSS OF FLUID, AND INDICATOR; VISUAL INSPECTION	LIMPID/PRESSURE, COCKPIT PRESSURE; SUBSYSTEM CAPABILITY	FC-1/FC-2 SUBSYSTEM	242 : 11 374	1.34	1.00	10.01	0.01
VALVE BLOCK HOLLOW CYLINDER W/SPRING	64-01		WEAR OF "O" RING JOINT LEADS FROM PRESSURE LEVELING, HIGH TEMPERATURE EFFECTIVE SET		MAINTENANCE ACTION	VISUAL INSPECTION	---	381 : IV	0.04	1.00	11.80	0.04
VALVE BLOCK TO SEALS JOINT HOLLOW CYLINDER W/SPRING	67-01		VALVE BLOCK TO SEALS JOINT HOLLOW CYLINDER W/SPRING		INCREASED FLUID MOVEMENT PISTON	HIGHER THAN NORMAL COCKPIT PRESSURE PISTON	COMPENSATOR ADJUSTMENTS	325 : IV 127	5.46	1.00	11.00	5.46

NADC-79024-60

FOLIAR AND AIR EFFECTS ON AEROSOLS

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

ITEM IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	LOSS OF SEVR LEVEL	λ_p	α	β	λ_o
					LOCAL EFFECTS	END RESULTS							
5-01 Seal failure at shaft centerline	Shaft seal	M-02	SHAFT SEAL CONTAMINATED WITH FLUID	AGE & CHEMICAL CHANGE IN IMBALANCE	VENTILATION LEAKAGE; SHAFT SEAL LEAKAGE; VISUAL AT SHFT 1 SEAL ASSEMBLY	SHFT 1 SEAL LEAKAGE; VISUAL	SHFT 1 SEAL LEAKAGE; VISUAL	CARBON SEAL 1 FLUID REFRESHMENT AT RESERVOIR	381 : IV	0.18 : 0.40	14.25		
5-02 Seal failure at shaft centerline	Shaft seal	M-03	LOSS OF TENSION FATIGUE	LOSS OF SHAFT SEAL SHUTTING DOWN	SHAFT SEAL LEAKAGE; VISUAL; NOT OPERATING	SHAFT SEAL LEAKAGE; VISUAL	SHAFT SEAL LEAKAGE; VISUAL	REFRESHMENT AT RESERVOIR	381 : IV	0.16 : 0.90	12.67		
5-04 Seal failure at shaft centerline	Shaft seal	M-04	FAILURE OF RETAINER BROWN OUT BEEN	FAILURE OF SHAFT 1 SEAL RETAINER BROWN OUT BEEN	ROTATION OF SHAFT ELEMENT CAUSED BY LEAKAGE INITIATED BY SYSTEM FUNCTIONS	SHAFT SEAL LEAKAGE; POSSIBLE LOSS OF FLUID INITIATED BY SYSTEM FUNCTIONS	SHAFT SEAL LEAKAGE; VISUAL	REFRESHMENT AT RESERVOIR	381 : IV	0.02 : 0.30	1.56		
5-05 Seal failure at shaft centerline	Shaft seal	M-05	SEALING SHFT SEAL LEAKS	SEALING SHFT SEAL LEAKS OF SOLID MATERIAL LEAKAGE ON SEALING SUBSURFACE	Possible loss of fluid and subsurface functions	Possible loss of fluid and subsurface functions	Possible loss of fluid and subsurface functions	REFRESHMENT AT RESERVOIR	381 : IV	0.65 : 0.05	2.84		
5-06 Seal failure at shaft centerline	Shaft seal	M-06	LEAKING SEAL BECAUSE OF PRESSURE CHANGES VALVE AND MOUNTING FLNG	DIFFERENTIAL LOADING LENS VALVE AND MOUNTING FLNG	PUMP LEAKS	PUMP LEAKS	PUMP LEAKS	REFRESHMENT AT RESERVOIR	381 : IV	0.02 : 0.50	0.88		
5-07 Transfer plate transfer fluid	Transfer plate	O-01	INTERNAL LEAKAGE BETWEEN VALVE BLOCK AND VALVE BLOCK	INCREASE IN PUMP EFFICIENCY VALVE BLOCK AND TRANSFER PLATE	DEGRADATION IN PUMP EFFICIENCY VALVE BLOCK AND TRANSFER PLATE	DEGRADATION IN PUMP EFFICIENCY VALVE BLOCK AND TRANSFER PLATE	REDUCED RESPONSE TO PUMP PRESSURE TRANSFER PLATE	FC-1/FC-2 SUBSYSTEM	240 : III	5.46	1.00 : 1.00	5.46	
5-08 Transfer plate transfer fluid	Transfer plate	O-01	INTERNAL LEAKAGE; LOW INTAKE INTERFACES WITH HIGH LOAD TRANSFER TIME AND PRESSURE CYCLING VALVE BLOCK INTROD HS	INCREASE IN CASE GRADUAL LOSS, EVENTUAL LOSS OF PUMP EFFICIENCY VALVE BLOCK INTROD HS	DEGRADATION IN PUMP EFFICIENCY VALVE BLOCK INTROD HS	DEGRADATION IN PUMP EFFICIENCY VALVE BLOCK INTROD HS	REDUCED RESPONSE IMBALANCE SYSTEM	FC-1/FC-2 SUBSYSTEM	242 : III	0.30	1.00 : 1.00	0.20	
5-09 Transfer plate transfer fluid	Transfer plate	S-01	PROVIDE HARD SURFACE FOR VALVE BLOCK INTROD HS	EROSION AT INTAKE LOW INTAKE PRESSURE SUPPLIED EFFICIENCY TO PUMP	REDUCTION IN PUMP EFFICIENCY VALVE BLOCK INTROD HS	REDUCTION IN PUMP EFFICIENCY VALVE BLOCK INTROD HS	REDUCTION IN PUMP EFFICIENCY VALVE BLOCK INTROD HS	FC-1/FC-2 SUBSYSTEM	242 : III	0.11	1.00 : 1.00	0.11	

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	L-E. NUMBER	FAILURE MODE	FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	FAIL. CODE	LOSS FREQUENCY	
				LOCAL EFFECTS	END RESULTS					
Valve Block	STATIONARY SURFACE OF WATER VALVE PRESSURE IFD CUFF INAKE HAND OUTPUT	M-01	FRACATURE INTERNAL HYD. PRESSURE ISSESSES EXTERNAL	LEAKAGE OF FLUID LOSS OF IF-1/IFC-2 PRESSURE SYSTEM CAPABILITY INDICATOR	IF-1/IFC-2 SUBSYSTEM	070 : 11	6.98	0.02 10.50	0.07	
CONFESATOR	FUNCTIONS FLOW OF INDUSTRIC FLUID VALVE Subassembly	M-02	LEAKS AT SEAL - WATER MUL. TO HOLDING	DAMAGED TEARAGE AT JOINT EVENTUAL LOSS OF SUBSYSTEN FLUID HAND CAPABILITIES INDICATION	IF-1/IFC-2 SUBSYSTEM	381 : 111	0.01	0.01	---	
		I-01	WEAR IN BORE OF CONFESATOR SLEEVE	MOVEMENT OF VALVE; LEAKAGE BETWEEN SPOOL & SLEEVE EFFEKT; PRESSURE CHANGES PUMP FEEDABLE CURVE;	PRESSURE INDICATOR	COMPENSATOR ADJUSTMENT	525 : 111	68.46	0.12 11.00	0.23
		I-02	SPUDL WEAR TO FLUID	SHARP EDGES WEAR DUE TO FLUID EROSION	PRESSURE INDIRECT PRESSURE; PRESSURE INDICATOR	COMPENSATOR ADJUSTMENT	525 : 121	0.20	11.00	0.21
		I-03	LEAKS IN VALVE SLEEVE PACKING	WEAR DUE TO PRESSURE CHANGES DIFERENTIAL ELUSION	PRESSURE INDIRECT PRESSURE; PRESSURE INDICATOR	COMPENSATOR ADJUSTMENT	525 : 111	0.0041.00	0.27	---
		I-04	LEAK IN VALVE SEAL TO ADAPTER SEAL	WEAR DUE TO PRESSURE CHANGES	WEAR AT COMPENSATOR FUNCTION	COMPENSATOR ADJUSTMENT	525 : 121	0.0011.00	0.07	---
		I-05	CONFESATOR SEPLNG SAE OR BKA	FATIGUE CHANGES IN PUMP PERFORMANCE CURVE;	VISUAL INSPECTION	COMPENSATOR ADJUSTMENT	525 : 111	0.0011.00	41.16	---
		I-06	LEAK AT PACKING - ADJUSTMENT SCREW ADJUSTMENT TO ADAPTER	WEAR FROM ADJUSTMENT SCREW ADJUSTMENT	LEAK AT COMPENSATOR	VISUAL INSPECTION	525 : 111	0.0011.00	---	---
		I-07	BRKEN OR LOOSE CONFESATOR LOCK WIRE LOCK NUT	FATIGUE; BROKEN LOCK WIRE LOCK NUT	CHANGES IN PUMP PERFORMANCE CURVE;	LOCWIRE INDICATOR	525 : 111	0.0011.00	---	---
		I-08	PROVIDES INTEGRITY KELF TEE CONNECTION TO SWATER	LEAKS IN SEALS ADAPTOR TO WAVE SWIMMERS TELL	LEAK AT PUMP DAMAGED SEAL TELL	VISUAL INSPECTION	525 : 111	0.0011.00	0.13	---

LHS FAILURE MODE AND EFFECT ANALYSIS

ITEM IDENTIFICATION :	FUNCTION :	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT	DETECTION	COMPENSATING FAILSAFE	LOSS FREQUENCY			
								λ_p	α	β	λ_0
RETURN LINE FLANGE : MOUNTS PUMP TO TURBINE AERATOR	1-01	CRACKED OR BROKEN/FATIGUE	NEAR STRESS OR COLLAPSING SHAFTE	Possible loss of subsystem possible sheared pressure shaft or damaged soft line	VISUAL INSPECTION PRESSURE IMBALANCE	FT-1/FF-2 SUBSYSTEM	381 IV 730	0.48	1.00	1.00	0.48
MOUNT 116 CLAMP : SECURES PUMP TO MOUNTING FLANGE	11-01	LOOSE CLAMP	VIBRATION	Possible pump vibration	VISUAL INSPECTION	-----	381 IV 730	0.24	0.50	0.50	0.49
	11-02	FAILED CLAMP	FRATIGUE NUMBER OF CYCLES	PUMP CAN ASSEMBLE FROM PRESSURE REFINE NOSES	LOSS OF SYSTEM	VISUAL INSPECTION	-----	780 III	0.10	1.00	0.02

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE NAME	FAILURE CAUSES	FAILURE EFFECT	FAILURE DETECTION METHOD	LOSS FREQUENCY			
							λ_p	α	β	λ_o
F-2-1 FLIGHT MBD PHM 101.000-01 FUNCTIONAL SUBSYSTEMS COMPONENTS	FC-1 SUBSTR.	10 FC-1 SUBSTR. COMPONENTS	LOSE HYDRAULIC PRESSURE	HIGH FAILURE SUBSYSTEM LEAK	FUNCTION LOSS OF : PRESSURE ACT. SPEEDBRAKE ACT., ROLL AUTOPilot, ACTuator, YAW AUTOPilot ACTuator,	INDICATOR	FC-2 POWER SYSTEM	232 : 11 381	SEE COMPONENT FAILURE RATES	

NADC-79024-60

לען פאלון מושב צדוקים אמצעי

ITEM IDENTIFICATION	FUNCTION	I.B. NUMBER	FAILURE NAME	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATION PROVISIONS	HALF SWR	LOSS FREQUENCY
					LOC. EFFECTS	END RESULTS				
RESERVOIR FL-1	LEVEL AND SYSTEM FLUID	101.002-01	HIGH PRESSURE INTERNAL SEAL FAILSAFE	CONTAMINATION/ WEAR / SCORING INTERNAL LEAKAGE / INTERNAL INS.	INTERNAL AND EXTERNAL LEAKAGE; INTERNAL LEAKS. INTERNAL LEAKS INTERNAL INS.	INTERNAL - NONE EXTERNAL - FLUID LEVEL CHECKS & VISUAL CAUSE LOSS OF FLUID AND FC-1 PRESSURE.	FC-2 SUBSYSTEM	301 11 135	0.30 10.10	7.55
FRONT LINE POSITIVE PRESSURE TO FLOW FL-1, ET		101.002-02	PRESSURE SEAL FAILURE	CONTAMINATION/ WEAR / SCREWD INTERNAL / INHALING	INTERNAL LEAKAGE; EVENTUAL LOSS OF SYSTEM FLUID AND LOSS OF FC-1 PRESSURE.	INTERNAL - NONE EXTERNAL - FLUID LEVEL CHECKS & VISUAL CAUSES LOSS OF FLUID AND FC-1 PRESSURE.	FC-2 SUBSYSTEM	301 11 135	0.30 10.10	7.55
		101.002-03	ROTATING JACKET VIBRATION	RENTED CASE	LOSS OF PRESSURE POSSIBLE LOSS OF PUMP INLET - JET CAPTIVATION	LOSS OF PRESSURE MAINTENANCE ENCLCS	FC-2 SUBSYSTEM	135 11 780	0.30 10.10	2.52
		101.002-04	CRACKED HOUSING; FATIGUE OR DAMAGE; LITTLINES	INTERNAL LEAKAGE; INTERNAL DAMAGE; INTERNAL	LOSS OF FLUID AND FC-1 SUBSYSTEM VISUAL INSPECTIONS	LOSS OF FLUID AND FC-1 SUBSYSTEM VISUAL INSPECTIONS	FC-2 SUBSYSTEM	199 11 301	0.30 10.10	7.55
RELIEF VALVE - SPINDLE OVER PRESSURE	RELIEF VALVE FL-1	101.005-01	IGNITION OF WEAK OR DAMAGED VALVE	IGNITION OF WEAK OR DAMAGED VALVE	IGNITION BURN TO FLUID AND OVERBOARD DRAIN.	LOSS OF SYSTEM FLUID AND EVENTUAL INDICATOR AND OVERBOARD DRAIN.	FC-2 SUBSYSTEM	070 11 684	0.30 10.00	9.50
SISTEN RESERVE/1		101.005-02	WAVE STICKS OPEN CONTAMINANT/S; INTERNAL DAMAGE	WAVE FAILS TO OPEN	WAVE FAILS TO OPEN	OVERBOARD MAIN, OVERBOARD DRAIN, EVENTUAL LOSS OF FLUID	FC-2 SUBSYSTEM	135 11 117	0.30 10.00	9.50
		101.005-03	WAVE STICKS CLOSED	WAVE STICKS CLOSED	WAVE FAILS TO OPEN	OVERBOARD MAIN, OVERBOARD DRAIN, OVERBOARD DRAIN	FC-2 SUBSYSTEM	135 11 170	0.30 10.00	3.17
		101.005-04	CRACKED HOUSING; SEAL FAILURE	INTERNAL DAMAGE; INTERNAL DAMAGE	INTERNAL LEAKAGE; LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE; LOSS OF SYSTEM FLUID	FC-2 SUBSYSTEM	190 11 301	0.30 10.10	1.19

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		FAILURE METHOD	COMPENSATING PROVISIONS	LOSS FREQUENCY
					LOCN.	END RESULTS			
PRESSURE RELIEF VALVE	CONTAMINANTS SEAL SYSTEM FLUID	101.001-01	IF FILTER CLOSED; INDICATOR FAILS TO ACTUATE	ASSEMBLY DUE TO DIRTY/CONTAMINANTS	FAILS TO INDICATE/EXCESSIVE PRESSURE DROP	INTERNAL DAMAGE	FE-2	125 : 111 : 420.5 : 0.10 : 10.30 : 10.97	
		101.001-02	IF SE ACTUATION OF INDICATOR	PRESSURE SURGE DUE TO CLOGGED ELEMENT	IF SE INDICATION/PRESSURE ELEMENT MAINTENANCE REPLACEMENT	INTERNAL DAMAGE	SUBSYSTEM	165 : 366 : -----	
		101.001-03	IF CRACKED HOUSING/; SEAL FAILURE VIBRATION/	FAILS TO INDICATE/EXCESSIVE PRESSURE DROP	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	FE-2	242 : IV : 0.10 : 10.30 : 10.97	
FILTER FILTER RELIEF	CONTAMINANTS SEAL SYSTEM FLUID	101.001-01	IF FILTER CLOSED; INDICATOR FAILS TO ACTUATE	ASSEMBLY DUE TO DIRTY/CONTAMINANTS/UNFILTERED OPERATION	FAILS TO INDICATE/EXCESSIVE PRESSURE DROP	INTERNAL FLUID LEVEL INDICATOR	SUBSYSTEM	190 : 111 : 381 : -----	
		101.001-02	IF SE ACTUATION OF INDICATOR	PRESSURE SURGE DUE TO CLOGGED ELEMENT	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	FE-2	135 : 111 : 359.7 : 0.10 : 10.30 : 10.79	
		101.001-03	IF CRACKED HOUSING/; SEAL FAILURE VIBRATION/	FAILS TO INDICATE/EXCESSIVE PRESSURE DROP	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	SUBSYSTEM	165 : 366 : -----	
CASE BREAK FILTER	CONTAMINANTS SEAL SYSTEM FLUID	101.001-01	IF FILTER CLOSED; INDICATOR FAILS TO ACTUATE	ASSEMBLY DUE TO DIRTY/CONTAMINANTS/UNFILTERED OPERATION	FAILS TO INDICATE/EXCESSIVE PRESSURE SURGE	INTERNAL DAMAGE	FE-2	242 : IV : 0.10 : 10.30 : 10.79	
		101.001-02	IF SE ACTUATION OF INDICATOR	PRESSURE SURGE DUE TO CLOGGED ELEMENT	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	SUBSYSTEM	190 : 111 : 359.7 : 0.10 : 10.30 : 10.79	
		101.001-03	IF CRACKED HOUSING/; SEAL FAILURE VIBRATION/	FAILS TO INDICATE/EXCESSIVE PRESSURE DROP	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	FE-2	135 : 111 : 359.7 : 0.10 : 10.30 : 10.79	
PRESSURE SWITCHES TRANSDUCER FROM PRESSURE SURGES FLUID		101.010-01	IF CLOGGED FILTER SCREEN/DIRT	SWINGER DOES NOT INDICATE FUNCTION PROPERLY	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	Maintenance checks	190 : 111 : 361 : -----	
		101.010-02	IF CRACKED HOUSING/; VIBRATIONS/; SEAL FAILURE	IF SE INDICATION/; INTERNAL DAMAGE	INTERNAL LEAKAGE/LOSS OF SYSTEM FLUID	INTERNAL DAMAGE	FE-2	190 : 111 : 381 : -----	

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE NAME	FAILURE CAUSE	FAILURE EFFECT	DETECTION	FAILURE DETECTION	COMPENSATING MEASURE	LOSS FREQUENCY
		NUMBER			LOCAL EFFECTS	END RESULTS	METHOD	PROVISIONS	CODE LEVEL
PRESSURE TRANSMITTER AND SWITCH FC-1	SENSES SYSTEM PRESSURE	101-011-01	INTERNAL DAMAGE	OVERPRESSURE / FATIGUE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	TEARER BUT TEARING OR NO INDICATION	LEVEL INDICATOR OR NO INDICATION OF SYSTEM PRESSURE	FULL FC-1 CONTINUOUS MAINTENANCE CHECKS	205.1 0.90 10.00 100.75
		101-011-02	[CRACKED HOUSING] / SEAL FAILURE	[FATIGUE / EXTERNAL SHOCK]	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	TEARER BUT TEARING OR NO INDICATION	LEVEL INDICATOR OR NO INDICATION OF SYSTEM PRESSURE	FULL FC-1 CONTINUOUS MAINTENANCE CHECKS	205.1 0.90 10.00 100.75
BLEED VALVE SYSTEM UNCOMMAND	LEAVES AIR FROM SYSTEM UNCOMMAND	101-012-01	WAVE STUCK CLOSED	INTERNAL PARTS / VALVE FAILS TO OPEN	INTERNAL BLEED AIR FROM SYSTEM	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.20 10.10 5.91
		101-012-02	WAVE CLOSED	INTERNAL PARTS / VALVE	INTERNAL BLEED AIR NOT FLOW THROUGH SYSTEM	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.20 10.10 5.91
		101-012-03	[CRACKED HOUSING] / SEAL FAILURE	[FATIGUE / EXTERNAL DAMAGE]	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.20 10.10 5.91
COUPL. DISCONNECT - PRESSURE TEST	SHADING TEST [SPLIT CONNECTION; Gauge Test]	101-016-01	INOPERATION	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34
		101-017-01	INOPERATION	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34
DAUL DISCONNECT - PUMP PRESSURE TEST	CONNECTS PRESSURE LINE TO PUMP	101-018-01	INOPERATION	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34
		101-019-01	INOPERATION [LINE TO PUMP]	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34
CHECK DISCONNECT - PUMP SUCTION	CONNECTS SUCTION LINE TO PUMP	101-020-01	INOPERATION	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34
		101-020-02	INOPERATION [PUMP CASE MAIN / PUMP CASE MAIN]	INTERNAL MEAN / FATIGUE/CRACKS / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL BLEED AIR VISUAL	Maintenance checks	FC-2 SUBSYSTEM	190 11 0.10 10.10 0.34

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE		FAILURE CAUSES		FAILURE EFFECT		DETECTION		COMPENSATING MEASURES		LOSS FREQUENCY	
			MANUFACTURER	NUMBER	LOCAL EFFECTS	END RESULTS	METHOD	PROVISIONS CODE LEVEL	SYS/LEVEL	SYS/PRESSURE	IMBALANCE	FC-2	SUBSYSTEM	
CHEM. VALVE - FLUID PATH WHEN NO. AIR/GAS FC-1	PUMP/DISCHARGE VALVE	101.048-01	VALVE STICK OPEN	INTERNAL DAMAGE / DUST	VALVE FAILS TO CLOSE	LOSS OF HIGH PRESSURE	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.27			
		101.048-02	VALVE STICK CLOSED	INTERNAL CONTAMINANTS / DUST	VALVE CANNOT FLUID WAY CAPTIVATE THROUGH VALVE ACTUATORS	NAME	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.27			
		101.048-03	CRACKED HOUSING / SEAL FAILURE	INTERNAL CONTAMINANTS / VIBRATION / INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.27			
LUBE VALVE - SUPPLY LINE MAKEUP FILTERS, AIR ARIDAG FC-1	CONDENSATE MAKEUP SYSTEM OPERATION	101.049-01	VALVE STICK OPEN	INTERNAL DAMAGE / DUST	VALVE CAN BYPASS FILTER ELEMENT FILTER	CONTAMINATED FLUID	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
		101.049-02	VALVE CLOSED	INTERNAL CONTAMINANTS / DUST	NAME	INDICATOR	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
		101.049-03	CRACKED HOUSING / SEAL FAILURE	INTERNAL CONTAMINANTS / VIBRATION / INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
CHEM. VALVE - RETURN BACK RETURN FILTER FC-1	PUMP/DISCHARGE VALVE	101.051-01	VALVE STICK OPEN	INTERNAL DAMAGE / DUST	FLUID ALLOWED TO TERRIFIC ACTION BACK FLUID THROUGH CAUSED BY DUST	NAME	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
		101.051-02	VALVE CLOSED	INTERNAL CONTAMINANTS / DUST	NAME	INDICATOR	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
		101.051-03	CRACKED HOUSING / SEAL FAILURE	INTERNAL CONTAMINANTS / VIBRATION / INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			
CHEM. VALVE - FLUID PRESSURE LEVEL INDICATING BURN FLUID FC-1	PUMP/DISCHARGE VALVE	101.052-01	VALVE STICK OPEN	INTERNAL DAMAGE / DUST	VALVE FAILS TO CLOSE	PUMP ROTATION NAME	INDICATOR CHECKS	135 : 11	4.7 : 0.10	10.40	0.40			
		101.052-02	VALVE CLOSED	INTERNAL CONTAMINANTS / DUST	VALVE CANNOT FLUID ELEMENT PRESSURE THROUGH VALVE SYSTEM POSSIBLE INDICATION FLUID DAMAGE	INDICATOR NAME	INDICATOR	135 : 11	4.7 : 0.10	10.40	0.40			

LNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I. S. NUMBER	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATION/MAINTENANCE PROVISIONS (CODE LEVEL)	LOSS FREQUENCY		
					LOCAL EFFECTS	END RESULTS			λ_p	α	β
CHECK VALVE - FLOW PRESSURE LEVELS ARE LOWED	PUMP	101.052-03	CRACKED HOLLOWING/ SEAL FAILURE	INTERNAL DAMAGE/ VIBRATION/ INTERNAL DAMAGE	EXTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.00	10.10	0.50
FC-1	SHUT DOWN						SUBSYSTEM	381			
CHEM. VALVE - SYSTEM FILL	PUMP/LEVELS	101.053-01	VALVE STUCK OPEN	INTERNAL DAMAGE/ DIRT	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-2 SUBSYSTEM	135 : 11	4.7	10.30	0.40
FC-1	REVERSE FLOW IN FILL LINE	101.053-02	VALVE CLOSED	CONTAMINANTS/ DIRT	FLOW THROUGH VALVE	Maintainance SYSTEM	SUBSYSTEM	306			
PRESSURE PROVIDER MULTIPLE	101.064-01	CRACKED MANTLE/FATIGUE/ POOR CONNECTIONS	VIBRATION/ INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-2 SUBSYSTEM	185 : 11	6.10	10.70	0.47	
MANIFOLD FC-1	FACELESS PORTS FOR SUPPLY FRESHNE						SUBSYSTEM	381			
RETURN MANIFOLD FC-1	FACELESS PORTS FOR RETURN FLW	101.065-01	CRACKED MANTLE/FATIGUE/ FLUID CONNECTIONS	VIBRATION/ INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	1.0	10.10	0.10
ASSE - FC-1	TRANSFERS HIGH PRESSURE FLUID TO TISTER	101.067-01	RUPTURED HOSE FATIGUE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	1.0	10.10	0.10
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.069-02	CRACKED FITTING/ CONNECTON	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	1.0	10.10	0.40
101.069-03	DEGRADE/ LEAKING HOSE						SUBSYSTEM	381			
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.069-02	CRACKED FITTING/ CONNECTON	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.30	10.60	13.58
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.069-03	DEGRADE/ LEAKING HOSE	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.30	10.60	13.58
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.069-02	CRACKED FITTING/ CONNECTON	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.30	10.60	13.58
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.069-03	DEGRADE/ LEAKING HOSE	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.30	10.60	13.58
PIPE - FC-1	TRANSFERS FLUID FROM KISSEVINK TO Pump	101.071-01	REFUSED HOSE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	42.4	10.10	4.24
PIPE - FC-1	INTERNAL LEAKAGE	101.071-02	CRACKED FITTING/ CONNECTON	VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE & FLUID LOSS OF FLUID	FC-2 SUBSYSTEM	190 : 11	0.00	10.10	2.55

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE NUMBER	FAILURE EFFECT		DETECTION METHOD	COMPENSATING MEASURE	LOSS FREQUENCY
				LOCAL EFFECTS	END RESULTS			
Base - Pump Case Train for Pump Train Internal Leakage (Crack)	MOVES RETURN TRAIN FOR PUMP	101-071-01	DEGRADED/ CLEARING NOSE	VIBRATION AND NOISE SPOTS	CHANGED NOSE OR NOSE FAILURE	VISUAL INSPECTIONS	----- SUBSYSTEM	0.20 / IV 696 / 111
ORIFICE VALVE - Pump Case Line Union Pump Case	PRESERVES FLUID Back Flow To Pump Case	101-075-01	VALVE STICK OPEN / INTERNAL DAMAGE / ELUDED	INTERNAL DAMAGE / OPEN	VALVE FAILS TO CLOSE	POSSIBLE EXCESSIVE NOISE CASE PRESSURE	FC-2 SUBSYSTEM	6.7 / 10 / 30 306 / 135 / 111
ORIFICE VALVE - Pump Case Line Union Pump Case	PRESERVES FLUID Back Flow To Pump Case	101-075-02	VALVE STICK ELUDED	CONTAMINANTS / OPEN	VALVE FAILS TO CLOSE	CASE PRESSURE / SHUTTING / POSSIBLE PUMP DAMAGE	FC-2 SUBSYSTEM	0.10 / 10 / 30 306 / 185 / 111
ORIFICE VALVE - Pump Case Line Union Pump Case	PRESERVES FLUID Back Flow To Pump Case	101-075-03	CRACKED NOSHING / SEAL FAILURE	FATIGUE / VIBRATION / INTERNAL SHOCK	INTERNAL LEAKAGE / LOSS OF SYSTEM	VISIBLE LOSS OF FLUID	FC-2 SUBSYSTEM	0.80 / 10 / 54 381 / 190 / 11
MANIFOLD - SUS. LINE DI. INJECT SECTION C-1	INTERFACE PUMP SUS. LINE TO DI. INJECT SECTION	101-076-01	CRACKED MANIFOLD / AND/OR FITTINGS	FATIGUE / VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM	VISIBLE LOSS OF FLUID	FC-2 SUBSYSTEM	1.0 / 1.00 / 10 / 10 381 / 190 / 11

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	L.D. NUMBER	FAILURE MODE FAILURE CAUSES	FAILURE EFFECT LOCAL EFFECTS	FAILURE EFFECT END RESULTS	INTERFACING METHOD	COMPENSATION PROVISIONS	COMPENSATION CODE LEVEL	λ_p	α	β	λ_o	LOSS FREQUENCY		
													SEE COMPONENT FAILURE RATES	COMPENSATION CODE LEVEL	
FC-2	PROVIDE HIGH PRESSURE TO FC-2 SUBSTRATE FUNCTIONS	102.000 01	LOSE HYDRAULIC PRESSURE PUMP FAILURE/ SUSYSTEN LEAK	LEADING EDGE FLAP INDICATOR ACTUATOR, PITCH AUTOPilot REDUCED PERFORMANCE; ROLL FEEL ISOL. ACTUATOR, AERONAUTICAL ACTUATORS, RUBBER AND MET ACTUATORS	FUNCTION LOSS OF: PRESSURE LEADING EDGE FLAP INDICATOR ACTUATOR, PITCH AUTOPilot REDUCED PERFORMANCE; ROLL FEEL ISOL. ACTUATOR, AERONAUTICAL ACTUATORS, RUBBER AND MET ACTUATORS	FC-1 POWER SYSTEM EMERGENCY POWER SYSTEM (IF PUMP FAILS)	242 11 361	11							

IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE MODE	FAILURE CAUSES		FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	LOSS FREQUENCY
				LOCAL EFFECTS	END RESULTS	INTERNAL AND EXTERNAL LEAKAGE	INTERNAL LEAKAGE			
RESERVOIR FC-2	STORAGE OF FLUID	002.002-002-01	HIGH PRESSURE DYNAMIC SEAL WEAR / SCORING LEVEL INDIC.	CONTAMINATION / WEAR / SCORING LEVEL INDIC / FAILING	INTERNAL AND EXTERNAL LEAKAGE	INTERNAL - HOME EXTERNAL - FLUID	HOME	FC-1	301 : 11	251.5 : 0.30 10.10 : 7.55
	FLUID AND SYSTEM SECTION FLUID.	002.002-002-02	PISTON SEAL WEAR / FAILING	CONTAMINATION / WEAR / SCORING LEVEL INDIC / FAILING	INTERNAL AND EXTERNAL LEAKAGE	INTERNAL LEAKS, EXTERNAL LEAKS INFLUENTIAL WEAR EVENTUALLY CAUSES LOSS OF FLUID AND FC-2 PRESSURE.	LEVEL CHECKS & VISUAL CHECKS INSPECTIONS	FC-1 SUBSYSTEM	915 : 10	0.20
	PISTON	002.002-002-03	WEAR / JAMMED PISTON	CONTAMINATION / WEAR / SCORING LEVEL INDIC / FAILING	INTERNAL AND EXTERNAL LEAKAGE	EVENTUAL LOSS OF SYSTEM FLUID	VISUAL HOME LOSS OF FC-2 PRESSURE.	FC-1 SUBSYSTEM	301 : 11	0.30 10.10 : 7.55
	PISTON	002.002-002-04	WEAR / JAMMED PISTON	IDENTED CASE FUMES	LOSS OF PRESSURE TO PUMP INLET / FUME CAVITATION	IMPOSSIBLE LOSS OF PRESSURE IND. / PRESSURE IND. PRESSURE	INFLUENTIAL PRESSURE CHECKS	FC-1 SUBSYSTEM	155 : 11	0.10 10.10 : 2.52
	PISTON	002.002-002-05	WEAR / JAMMED PISTON	FATIGUE OR DAMAGE	INTERNAL LEAKAGE	LOSS OF FLUID	IMPOSSIBLE LOSS OF PRESSURE IND. / PRESSURE IND. PRESSURE	FC-1 SUBSYSTEM	190 : 11	0.30 0.10 : 7.55
	PISTON	002.002-002-06	WEAR / JAMMED PISTON	FATIGUE OR DAMAGE	INTERNAL LEAKAGE	LOSS OF FLUID	IMPOSSIBLE LOSS OF PRESSURE IND. / PRESSURE IND. PRESSURE	FC-1 SUBSYSTEM	361 : 11	0.30 0.10 : 7.55
	RELIEF VALVE - PROVIDE OVER PRESSURE RELEASE	002.004-001	PREMATURE OPENING / LEAKING PROJECT FOR PRESSURE SYSTEM	WEAK OR DAMAGED SEATING / DAMAGED PUMP SEAT / INTEGRITY	PREMATURE BUMP OF FLUID TO RETURN LINE	PRESSURE LOSS / HYDRAULIC FLUID RETURN LINE	HOME	FC-1 SUBSYSTEM	070 : 11	101.8 : 0.10 10.50 : 5.09
	RELIEF VALVE - PROVIDE OVER PRESSURE RELEASE	002.004-002	VALVE STUCK CLOSED	CONTAMINANTS / CORROSION / INTERNAL DAMAGE	VALVE FAILS TO OPEN	IF PUMP TURNS, TELESCOPIC PRESSURE BUILDUP CAN CAUSE SYSTEM DAMAGE	HOME	FC-1 SUBSYSTEM	117 : 11	101.8 : 0.10 10.50 : 5.09
	RELIEF VALVE - PROVIDE OVER PRESSURE RELEASE	002.004-003	SEAL FAILURE EXTERNAL DAMAGE	CONTAMINANTS / VIBRATION / EXTERNAL DAMAGE	INTERNAL LEAKAGE	LOSS OF SYSTEM FLUID	VISUAL LEVEL INDICATOR	FC-1 SUBSYSTEM	190 : 11	0.80 0.10 : 8.14

LNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	1.0. NUMBER	FAILURE MODE		FAILURE EFFECT		END RESULTS	DETECTION METHOD	COMPENSATING PROVISIONS	LOSS FREQUENCY	
			LOCAL EFFECTS	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR				λ_0	α
RETURN FITTING FC-1 CONTAMINANTS SEAL FLUID	FC-007-03	CRACKED HOUSING / FATIGUE / FITTINGS; SEAL FAILURE	EXTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FE-1 SUBSYSTEM	190 : 11 690 : 381	190 : 11 690 : 381	0.80 : 0.10 : 38.79	α_0
CLOSED BAG IN + ILKA FC-1 CONTAMINANTS SEAL FLUID	FC-008-01	SEALER CLOSER; MANIFOLD FAILS TO ACTUATE DUE TO CLOSED ELEMENT; CONTAMINANTS;	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FE-1 SUBSYSTEM	135 : 111 690 : 381	135 : 111 690 : 381	359.7 : 0.10 : 30.79	α
FC-008-02	FALSE ACTUATION; PRESSURE SURGE	INTERNAL LEAKAGE / PRESSURE ELEMENT REPLACEMENT ELEMENT	INTERNAL LEAKAGE / PRESSURE ELEMENT REPLACEMENT ELEMENT	INTERNAL LEAKAGE / PRESSURE ELEMENT REPLACEMENT ELEMENT	INTERNAL LEAKAGE / PRESSURE ELEMENT REPLACEMENT ELEMENT	LEVEL INDICATOR	-----	202 : 1V	202 : 1V	0.10 : 0.30 : 10.79	β
FC-008-03	CRACKED HOUSING / FATIGUE / FITTINGS; SEAL FAILURE	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FE-1 SUBSYSTEM	190 : 11 690 : 381	190 : 11 690 : 381	0.80 : 0.10 : 38.78	α_0
PROTECFS SUBSTRATE FC-2 PRESSURE SURGES AND FLUID TRANSPORTS	FC-010-01	CLOSED FILTER CONTAMINANTS/ DUST	SHOWER DOES NOT INDICATE; MANIFOLD PROPERLY INDICATED	INTERNAL LEAKAGE / PRESSURE INDICATOR	INTERNAL LEAKAGE / PRESSURE INDICATOR	Maintenance CHECKS	132 : IV	132 : IV	5.7	0.20 : 0.30 : 0.34	
FC-010-02	CRACKED HOUSING / FATIGUE / FITTINGS; SEAL FAILURE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FE-1 SUBSYSTEM	190 : 11 690 : 381	190 : 11 690 : 381	0.80 : 0.10 : 0.46	
SENSES BOTTEN PRESSURE SWITCH FC-2	FC-011-01	INTERNAL DAMAGE; HIGH PRESSURE / FATIGUE	ERODIMENT ON TRANSMITTER TO INDICATOR	INDICATION OF TRANSMITTER ON NO INDICATION OF SYSTEM PRESSURE	INDICATION OF TRANSMITTER ON NO INDICATION OF SYSTEM PRESSURE	LEVEL INDICATOR	FC-1 SUBSYSTEM	242 : II	242 : II	295.7 : 0.80 : 60 : 68.25	
BLEEDS AIR FROM SYSTEM INHIBITALLY; FC-2	FC-011-02	CRACKED HOUSING / FATIGUE / FITTINGS	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FE-1 SUBSYSTEM	190 : 11 690 : 381	190 : 11 690 : 381	0.20 : 0.10 : 5.91	
FC-012-01	VALVE STUCK CLOSED	VALVE FAILS TO OPEN	CANNOT BLEED AIR FROM SYSTEM	CANNOT BLEED AIR FROM SYSTEM	CANNOT BLEED AIR FROM SYSTEM	Maintenance CHECKS	170 : 1II 690 : 381	170 : 1II 690 : 381	6.7 : 0.10 : 7.0 : 0.47		
FC-012-03	CRACKED HOUSING / FATIGUE / SEAL FAILURE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FC-1 SUBSYSTEM	190 : 1II 690 : 381	190 : 1II 690 : 381	0.80 : 0.10 : 0.54	

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE NUMBER	FAILURE CAUSES		FAILURE EFFECT		DEFECTIVE METHOD	COMPENSATING MEASURE	LOSS FREQUENCY
				LOCAL EFFECTS	END RESULTS	INTERNAL LEAKAGE	EXTERNAL LEAKAGE			
RELIEF VALVE FC-2	RELEASE FOR EMERGENCY OVER PRESSURE IN THE SYSTEM AND RAI IS	02.013-01	VALVE NOT HOLD CHARGE	CRACKED HOUSING/ NO BOOTSTRAP BAD PISTON SEAL	LOSS OF EMERGENCY PRESSURE GAGE CAPABILITY	---	---	135 11	03.3 0.20 1.06 12.47	
RELIEF VALVE FC-2	RELEASE FOR EMERGENCY OVER PRESSURE IN THE SYSTEM AND RAI IS	02.013-02	CRACKED HOUSING/ FATIGUE/ FITTINGS	EMERGENCY POWER PACKAGES	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FF-1 SUBSYSTEM	165 11 670 11 381 11	0.80 0.10 6.47	
PRESSURE GAUGE FC-2	DISPLAYS VISUAL INDICATION OF PRESSURE CHANGE	102.014-01	BRKEN/FRACTIC READINGS	INTERNAL DAMAGE VIBRATION	INDICATOR ERROR OVER PRESSURE / WEAR / VIBRATION	ACCUMULATOR CHARGE/ERIAD BEARING / MAINTENANCE PRESSURE CANOT / BE DETERMINED	MAINTENANCE CHECKS	020 11	37.1 1.00 10.80 29.68	
SILENT DUMP SAUL OFF SEAL/VALVE	VALVE - NOISY SNAP PRESSURE GAGE	102.015-01	VALVE STICK OPEN/CONTAMINANTS/ INTERNAL DAMAGE / CLOSE	VALVE FAILS TO OPEN / CONTAMINANTS / INTERNAL DAMAGE	LOSS OF FC-2 POWER & EMERGENCY SYSTEMS	MAINTENANCE	---	135 11	14.2 0.10 0.20 0.28	
VALVE - NOISY SNAP PRESSURE GAGE	102.015-02	VALVE STICK CLOSED	VALVE FAILS TO OPEN UPON REHEAT	VALVE FAILS TO OPEN UPON REHEAT	FLUID NOT DUMPED / MAINTENANCE OPEN SIGNALLED	MAINTENANCE CHECKS	135 11 170 11	0.65 0.00 0.00		
VALVE - NOISY SNAP PRESSURE GAGE	102.015-03	VALVE ELIMINED	CONTAMINANTS / VIRT	INTERNAL DAMAGE CONTAMINANTS / ACCUMLATOR WEAR/TEAR PRESSURE	TUMBLE TO DUMP ACCUMLATOR PRESSURE	---	180 11 306 11	0.05 0.00 0.00		
VALVE - NOISY SNAP PRESSURE GAGE	102.015-04	CRACKED HOUSING/ FATIGUE/ SEAL FAILURE	INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	LEVEL INDICATOR	FC-1 SUBSYSTEM	190 11 381 11 670 11	0.80 0.10 1.13		
GUICK DISCONNECT- SUPPLY CONNECTION; ISOLATING TEST	GROUND TEST DISCONNECT- SUPPLY CONNECTION; ISOLATING TEST	102.016-01	HAL FUNCTION	INTERNAL WEAR/ FATIGUE/CRACKED/ VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	190 11 381 11 670 11	97.6 1.00 0.10 9.74	
GUICK DISCONNECT- SUPPLY CONNECTION; ISOLATING TEST	102.017-01	HAL FUNCTION	INTERNAL WEAR/ FATIGUE/CRACKED/ VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	---	---	670 11	67.9 1.00 0.10 6.74		
GUICK DISCONNECT- SUPPLY CONNECTION; ISOLATING TEST	102.018-01	HAL FUNCTION	INTERNAL WEAR/ FATIGUE/CRACKED/ VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	---	---	670 11	345.0 1.00 0.10 34.50		

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D. Number	FAILURE MODE	FAILURE EFFECT		DETECTION METHOD	COMPENSATING MEASURE	LOSS FREQUENCY
				LOCAL EFFECTS	END RESULTS			
VALVE FUNCTION: LINE TO FLOW TURB SECTION FC-2	FUNCTIONS VALVE	02.027-01	INTERNAL WEAR/ FATIGUE CRACKED/ VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	1.80 : 1.00 11 : 690 ; 381 : 626 :	365.0 : 1.00 10.10 : 36.50
VALVE FUNCTION: LOSE DRAIN FC-1	FUNCTIONS VALVE	02.026-01	INTERNAL WEAR/ FATIGUE CRACKED/ VIBRATION	INTERNAL WEAR / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	1.80 : 1.00 11 : 690 ; 381 : 626 :	365.0 : 1.00 10.10 : 36.50
VALVE PROVIDE INLET RELIABILITY FC-2	PROVIDE INLET RELIABILITY	02.027-01	VALVE STUCK OPEN / CONTAMINANTS / INTERNAL DAMAGE / DIRT	VALVE FAILS TO CLOSE CHARGE ACCUMULATOR	PRESSURE GAGE / MAINTENANCE CHECKS	---	1.35 : 111 163 : 170 :	6.9 : 0.10 10.70 : 0.48
VALVE PROVIDE INLET RELIABILITY FC-1	PROVIDE INLET RELIABILITY	02.027-02	VALVE STUCK CLOSED	VALVE FAILS TO OPEN INTERNAL DAMAGE	CHARGE ACCUMULATOR	---	1.35 : 111 163 : 170 :	6.10 : 0.40 10.42
CHEK VALVE- FOR RETURN FLOW PATH WHEN ISOLATED	PROVIDES RETURN FLOW PATH WHEN ISOLATED	02.048-01	VALVE STUCK OPEN / INTERNAL DAMAGE / DIRT	VALVE FAILS TO CLOSE INTERNAL DAMAGE	CHARGE ACCUMULATOR	---	1.35 : 11 163 : 170 :	6.7 : 0.10 10.40 : 0.27
CHEK VALVE- FOR RETURN FLOW PATH WHEN ISOLATED	PROVIDES RETURN FLOW PATH WHEN ISOLATED	02.048-02	VALVE STUCK CLOSED	FLUID CANNOT FLOW / VALVE FAILS TO OPEN INTERNAL DAMAGE	SYSTEM PRESSURE INDICATOR	FC-1 SUBSYSTEM	1.80 : 11 306 : 381 :	0.80 : 0.10 10.10 : 0.55
CHEK VALVE- FOR MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	PROVIDES MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	02.048-03	LEACHED HOUSING / FATIGUE / VIBRATION / INTERNAL DAMAGE / DIRT	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	1.80 : 11 306 : 381 :	0.80 : 0.10 10.10 : 0.54
CHEK VALVE- FOR MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	PROVIDES MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	02.049-01	VALVE STUCK OPEN / INTERNAL DAMAGE / DIRT	FLUID CAN BYPASS / CONTAMINATED FILTER	NONE	NORMAL	1.35 : 111 163 : 170 :	6.7 : 0.10 10.40 : 0.40
CHEK VALVE- FOR MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	PROVIDES MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	02.049-02	VALVE STUCK CLOSED	CONTAMINANTS / DIRT	SPRING ACTUATOR RESPONSE	---	1.35 : 111 163 : 170 :	6.10 : 0.10 10.70 : 0.47
CHEK VALVE- FOR MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	PROVIDES MALEUP FLUID DURING ONE SYSTEM DRAWDOWN	02.049-03	LEACHED HOUSING / FATIGUE / VIBRATION / INTERNAL SHOCK	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	1.80 : 11 306 : 381 :	0.80 : 0.10 10.10 : 0.54

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	NUMBER	1-B.	FAILURE MODE	FAILURE EFFECT		DEFECTIVE METHOD	COMPENSATING ACTION	LOSS FREQUENCY
					LOC. EFFECTS	END RESULTS			
CHECK VALVE - ISOLATION	FC-1 EMERGENCY OPERATION	101.049A-01	VALVE STUCK OPEN (INTERNAL DAMAGE) DIRT	LOSED, BOOTSTRAP PRESSURE WHEN PUMP IS SHUT DOWN CAPABILITY LOST	LOSS OF EMERGENCY SYSTEM RESPONSE INCHETS	FC-1 SUBSYSTEM	135 : 11 30s	6.7 : 0.20 : 0.60 0.81	
CHECK VALVE - ISOLATION	FC-2 EMERGENCY OPERATION	102.049A-02	CRACKED HOUSING/ SEAL FAILURE	FATIGUE/ VIBRATION/ INTERNAL DAMAGE	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	FC-1 SUBSYSTEM	190 : 11 30s	0.80 : 0.10 0.51	
CHECK VALVE - PREVENTS BACK FLOW THROUGH FILTER	FC-2	102.051-01	VALVE STUCK OPEN (INTERNAL DAMAGE) DIRT	FEELS ALLOWED TO SEPARATE ACTION BLACK FLUID THROUGH CLOSED BY BAITY BACKING BACK FILTER	VISIBLE LOSS OF FLUID	---	155 : 11 30s	6.7 : 0.10 : 0.70 0.47	
CHECK VALVE - PREVENTS BACK FLOW THROUGH FILTER	FC-2	102.051-02	VALVE STUCK CLOSED	CONTAMINANTS/ DIRT	EXCESSIVE REACTION CLOGGED FLOW PRESSURE AND THROUGH FILTER POSSIBLE PUMP LEAKAGE	---	185 : 11 30s	0.10 : 0.40 0.40	
CHECK VALVE - RETURNS EMERGENCY RETURN FLOW INTO CIRCUIT	FC-2 SYSTEM FC-2	102.051A-01	VALVE STUCK OPEN (INTERNAL DAMAGE) DIRT	FLUID ALIGNED TO LOWER PRESSURE THROUGH PRESSURE PISTONNE FUND REGULATOR DAMAGE	SYSTEM CHECKS FLUID	FC-1 SUBSYSTEM	190 : 11 30s	0.80 : 0.10 0.51	
CHECK VALVE - RETURNS EMERGENCY RETURN FLOW INTO CIRCUIT	FC-2 SYSTEM FC-2	102.051A-02	VALVE STUCK CLOSED	CONTAMINANTS/ DIRT	PREVENTS EMERGENCY FLUID FLOW CAPABILITY	---	135 : 11 30s	6.7 : 0.10 : 0.60 0.40	
CHECK VALVE - PREVENTS PUMP FORces NOT WORKING WHEN FLUID IS SHUT DOWN	FC-2	102.052-01	VALVE STUCK OPEN (INTERNAL DAMAGE) DIRT	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-1 SUBSYSTEM	190 : 11 30s	0.80 : 0.10 0.51	
CHECK VALVE - PREVENTS PUMP FORces NOT WORKING WHEN FLUID IS SHUT DOWN	FC-2	102.052-02	VALVE STUCK CLOSED	CONTAMINANTS/ DIRT	PUMP CANNOT FLUID CAN NOT PRESSURIZE : PRESSURE SYSTEM/ROBUSTINE : INDICATOR PUMP DAMAGE	FC-1 SUBSYSTEM	185 : 11 30s	0.10 : 0.40 0.40	

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	E.D. NUMBER	FAILURE MODE	FAILURE CAUSES			FAILURE EFFECT			COMPENSATING PROVISIONS	LOSS FREQUENCY
				LOCAL EFFECTS	END RESULTS	FAILURE METHOD					
CHEM. VALVE - PUMP PRESSURE SYSTEM FILL	SEGMENTS PUMP SYSTEM ROTATIONAL MOVEMENT	102-052-05	CRACKED HOUSING/ FATIGUE/ SEAL FAILURE	INTERNAL LEAKAGE SYSTEM INTERNAL DAMAGE	LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	190 11 650 381	0.80 10.10 0.40	0.54	
CHEM. VALVE - SYSTEM FILL	REVERSE FLOW IN FILL LINE	102-053-01	VALVE STUCK OPEN INTERNAL BARRIER / VIBRATION/ INTERNAL DAMAGE	VALVE FAILS TO CLOSE	LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	195 11 306	0.7 0.10 0.40	0.40	
CHEM. VALVE - SYSTEM FILL	REVERSE FLOW IN FILL LINE	102-053-02	VALVE STUCK CLOSED	CONTAMINANTS/ VIBRATION	VALVE CANNOT MANAGE TO FILL SYSTEM	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	195 11 306	0.10 0.20	0.47	
CHEM. VALVE - SYSTEM FILL	REVERSE FLOW IN FILL LINE	102-053-03	CRACKED HOUSING/ FATIGUE/ SEAL FAILURE	INTERNAL LEAKAGE INTERNAL DAMAGE	LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	190 11 650 381	0.80 10.10 0.54	0.54	
CHEM. VALVE - SYSTEM FILL	VALVE STUCK FLUID LEAK	102-055-01	VALVE STUCK OPEN INTERNAL DAMAGE / VIBRATION	VALVE FAILS TO CLOSE	POSSIBLE EXCESSIVE FLUID PRESSURE	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	195 11 306	0.7 0.10 0.30	0.34	
CHEM. VALVE - SYSTEM FILL	VALVE STUCK FLUID LEAK	102-055-02	VALVE STUCK CLOSED	CONTAMINANTS/ CHAMFER/DAM	VALVE FAILS TO OPEN	BASE PRESSURE FLUID	FC-1 SUBSYSTEN	195 11 306	0.10 0.20	0.39	
CHEM. VALVE - SYSTEM FILL	VALVE STUCK FLUID LEAK	102-055-03	CRACKED HOUSING/ FATIGUE/ SEAL FAILURE	INTERNAL LEAKAGE INTERNAL DAMAGE	LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1 SUBSYSTEN	190 11 650 381	0.80 10.10 0.54	0.54	

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		FAILURE MECHANISM HEAT	COMPENSATING PROVISIONS	LOSS FREQUENCY	
					LOCAL EFFECTS	END RESULTS				
HOSE - PIPE PRESSURE SYSTEM	TRANSFERS HIGH PRESSURE FLUID TO SYSTEM	102-068-01	RUSTURED HOSE	STRESS FATIGUE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 381	73.6 0.10 11.00 7.36	
FC-2		102-069-02	CRACKED FITTING / VIBRATION / CONNECTOR	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 380	0.60 10.10 4.41		
HOSE - PIPE SUCTION FROM RESERVOIR	DEGRADED / LEAKING HOSE	102-068-03	VIBRATION AND/OR TORNED HOSE OR CHAFING	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL / INSPECTIONS HOSE FAILURE	FC-1 SUBSYSTEM	0.20 14 381	0.30 10.00 17.65		
FC-2	HTC PUMP	102-070-01	RUSTURED HOSE	STRESS FATIGUE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 380	110.3 0.10 11.00 11.03	
HOSE - PIPE CASE WITH FUEL PUMP LINE IN	DEGRADED / LEANING HOSE	102-070-02	CRACKED FITTING / STRESS FATIGUE / CONNECTOR	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 380	0.40 10.10 4.42		
FC-2	INTERNAL LEAKAGE	102-070-03	VIBRATION AND/OR TORNED HOSE OR CHAFING	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL / INSPECTIONS HOSE FAILURE	FC-1 SUBSYSTEM	0.20 14 381	0.30 10.00 26.47		
VALVE - PREVENTS REVERSE FLOW OR HGS DEFENSE	OPEN	102-072-01	RUSTURED HOSE	STRESS FATIGUE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 380	73.6 0.10 11.00 7.36	
FC-2	OPERATION	102-072-02	CRACKED FITTING / VIBRATION / CONNECTOR	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1 SUBSYSTEM	0.0 11 380	0.60 10.10 4.41		
VALVE - CLOSED	DEGRADED / LEAKING HOSE	102-072-03	VIBRATION AND/OR TORNED HOSE OR CHAFING	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL / INSPECTIONS HOSE FAILURE	FC-1 SUBSYSTEM	0.20 14 380	0.30 10.00 17.65		
VALVE - CLOSED	HTC	102-073-01	VALVE STUCK	INTERNAL BURST / OVER PRESSURE DAMAGE	IMPOSSIBLE PUMP HOME	---	135 11 381	6.7 0.10 10.70 0.47		
FC-2	OPERATION	102-073-02	VALVE STUCK OPEN / CONTAMINANTS / DIRT	NOSE	LOSS OF ENERGY / HOME OPERATION	---	165 11 380	0.10 10.40 0.40		
VALVE - CLOSED	SEAL FAILURE	102-073-03	CRACKED HOUSING / STRESS FATIGUE / INTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL / LOSS OF ENERGY / PRESSURE INDICATOR	FC-1 SUBSYSTEM	190 11 381	0.80 10.10 0.54		
PRESSURE MANIFOLD	PROVIDES COMMON FLUID ACCESS	102-074-01	CRACKED MANIFOLD / STRESS FATIGUE / SEAL FAILURE	INTERNAL LEAKAGE / INTERNAL SHOCK	LOSS OF FLUID CAPABILITY	FC-1 SUBSYSTEM	190 11 380	1.0 1.00 10.10 0.10		
FC-2	FLUID ACCESS, PRESSURE SWING, FILL VALVE, A VALVE JACK CHARGE LINE									

NADC-79024-60

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.B. NUMBER	FAILURE MODE		FAILURE EFFECT		DETECTION METHOD		COMPENSATING INFLATABLE POSITIONS		LOSS FREQUENCY	
			FAILURE CAUSES	LOCATION	LOCAL EFFECTS	END RESULTS	NAME	CODE LEVEL	λ_p	α	β	λ_o
RELIEF VALVE RELEASED - L-1	PRESSURE RELIEF REDUCTION FOR PRESSURE SYSTEM	03-001-01	PREMATURE OPENING/ LEAKAGE OF PUMP SEAT	MEAN OR DAMAGED CONTAMINANTS	PREMATURE OPEN	PUMP LOSS/ HYDRAULIC FLUID OVERHEATING	NAME	---	070.11	101.8	0.10	0.50
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-001-02	VALVE STICK CLOSED	CONTAMINANTS/ INTERNAL DAMAGE	VALVE FAILS TO OPEN	IF PUMP FUNCTIONS NAME	---	---	080.	117.	---	---
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-001-03	TRAPPED WORKING FLUID	INTERNAL DAMAGE/ VIBRATION/ SEAL FAILURE	INTERNAL LEAKAGE	SYSTEM DAMAGE	VISUAL LOSS OF LEVEL INDICATOR	381	135.11	165.	0.10	0.40
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-021-01	INOPERATIVE	CONTAMINANTS/ INTERNAL DAMAGE	VALVE FAILS TO OPEN	LOSS OF SPEED IF FLUID COMMAND	NO ACTUATOR RESPONSE; SPEED BARE OPERATIONAL; CHECKS	---	135.11	340.2	0.42	0.40
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-021-02	VALVE LEAKAGE	INTERNAL LEAKAGE	POSSIBLE FLUID LEAKAGE	PUMP LOSS/ HYDRAULIC FLUID OVERHEATING	---	185	170.	381	0.45	0.40
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-021-03	TRAPPED WORKING FLUID	INTERNAL DAMAGE/ VIBRATION/ SEAL FAILURE	INTERNAL LEAKAGE	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	---	190.	11	0.13	0.10
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-028-01	RESTRICTOR CLOSED	CONTAMINANTS/ INTERNAL LEAKAGE	IF FLUID RESTRICTION	REDUCED FLUID FLOW	REDUCED OPERATING SPEED IF SEALS NAME	---	180.111	34.7	0.20	0.30
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-028-02	TRAPPED WORKING FLUID	INTERNAL VIBRATION/ SEAL FAILURE	INTERNAL DAMAGE	EXTERNAL LEAKAGE	VISIBLE LOSS OF FLUID	306	190.11	381	0.71	0.10
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-031-01	LEAKAGE	INTERNAL LEAKAGE	SEALS	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	---	190.	11	0.45	0.10
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-031-02	TRAPPED WORKING FLUID	INTERNAL VIBRATION/ SEAL FAILURE	INTERNAL DAMAGE	EXTERNAL LEAKAGE	VISIBLE LOSS OF FLUID	---	190.	11	0.45	0.10
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-031-03	LEAKAGE	INTERNAL LEAKAGE	SEALS	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	---	190.	11	0.45	0.10
SPEED VALVE RELEASED UPON ACTION OF FAULT VALVE	VALVE BLOW BACK	03-031-04	LEAKAGE	INTERNAL LEAKAGE	SEALS	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	---	190.	11	0.45	0.10

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I-D.	FAILURE MODE	FAILURE CAUSES	LOCAL EFFECTS	END RESULTS	FAILURE DETECTION METHOD			COMPENSATING MEASURE			LOSS FREQUENCY		
							PROVISIONS	SCORE	ITEM	λ_p	α	β	λ_a		
SPEED VALVE - CHEM. VALVE - PRESSURE	SPREADERS, MAINTAIN FLUID FOR SPEED	103.044-01	VALVE STUCK OPEN / INTERNAL DAMAGE / SEAL FAILURE	VALVE FAILS TO CLOSE	LOSS OF SYSTEM / SPEED BRAKE OPERATIONAL CHECKS	VALVE FAILS TO OPEN	ISPEED BRAKE CONTROL	---	135 11	4.7	0.10	0.50	0.34		
	VALVE ACTUATOR								306						
	REFRACTORY DUSTING														
	VALVEMAKER	103.044-02	VALVE STUCK CLOSED	CONTAMINANTS / CORROSION / OPEN	VALVE FAILS TO OPEN	IMPROPER FLUID INLET NOT IN POSITION	ISPEED BRAKE	---	135 11	0.10	0.50	0.34			
									185 1						
		103.044-03	CRACKED HOUSING / FATIGUE / SEAL FAILURE	INTERNAL DAMAGE	EXTERNAL LEAKAGE	LOSS OF SYSTEM	ISUPPLY	---	170						
SPEED VALVE - CHEM. VALVE - PRESSURE	PROVIDER FOR FLUID IN FINAL EXPANSION	103.045-01	VALVE STUCK OPEN / INTERNAL DAMAGE / SEAL FAILURE	VALVE FAILS TO CLOSE	FLUID WILL BYPASS SPEED BRAKE STICK	---	ISPEED BRAKE / ISUPPLY	---	135 11	4.7	0.10	0.50	0.34		
							SELECTOR VALVE IN REACTOR POSITION	---	306						
		103.045-02	VALVE STUCK CLOSED	CONTAMINANTS / CORROSION / OPEN	VALVE FAILS TO OPEN	POSSIBLE DAMAGE : TUBE	---	---	135 11	0.10	0.50	0.34			
							INTERNAL EXPANSION	---	185 1						
		103.045-03	CRACKED HOUSING / FATIGUE / SEAL FAILURE	INTERNAL DAMAGE	EXTERNAL LEAKAGE	LOSS OF SYSTEM	ISUPPLY	---	170						
SPEED VALVE - CHEM. VALVE - PRESSURE	SPREADING FLUID	103.047-01	VALVE STUCK OPEN / INTERNAL DAMAGE / SEAL FAILURE	VALVE FAILS TO CLOSE	FLUID WILL BYPASS SPEED BRAKE STICK	---	ISPEED BRAKE / ISUPPLY	---	135 11	4.7	0.01	0.60	0.04		
							SELECTOR VALVE IN EJECT POSITION	---	306						
		103.047-02	VALVE STUCK CLOSED	CONTAMINANTS / CORROSION / INTERNAL DAMAGE	VALVE FAILS TO OPEN	FLUID CANNOT FLOW	---	ISUPPLY	---	135 11	0.10	0.70	0.47		
							RETURN TO MANIFOLD / DURING SPEED BRAKE / IN CHARGE	---	185 1						
		103.047-03	CRACKED HOUSING / FATIGUE / SEAL FAILURE	INTERNAL DAMAGE	EXTERNAL LEAKAGE	LOSS OF SYSTEM	ISUPPLY	---	170						
SPEED VALVE - CHEM. VALVE - PRESSURE	PREVENT PRESSURE SURGES FROM ENTERING SYSTEM DURING SPEED	103.050-01	VALVE STUCK OPEN / INTERNAL DAMAGE / SEAL FAILURE	VALVE FAILS TO CLOSE	IMPOSSIBLE PRESSURE : NONE	---	ISURGES MAY ENTER MAIN SYSTEM	---	190 11	0.00	0.10	0.54			
									306						
		103.050-02	VALVE STUCK CLOSED	CONTAMINANTS / CORROSION / INTERNAL DAMAGE	VALVE FAILS TO OPEN	LOSS OF SPEED / IM ACTUATOR	---	---	135 11	6.7	0.10	0.50	0.34		
							HANDLE CONT. RESPONSE	---	185 1						
									170						

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES		LOCAL EFFECTS	END RESULTS	FAILURE DETECTION METHOD	COMPENSATING MEASURE	LOSS FREQUENCY
				NUMBER	DESCRIPTION					
SPEED BRAKE Circuit Valves - Inlet/Outlet (Cir. Valve)	PREPVENT PRESSURE CHANGES/FLOW	03-105-03	SEATED MOISTING / FATIGUE / VALVE/VALVE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	EXTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.80 10.10
SPEED BRAKE Inlet/Outlet (Cir. Valve)	INTEGRITY SYSTEM FLUID LEVEL									
SPEED BRAKE	SWINGING SPEED SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-106-01	CRAZED MANIFOLD / FATIGUE / VALVE CONNECTIONS / VIBRATION / EXTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.80 10.10			
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-01	DAMAGED ROD SEAL / INTEGRITY/WEAR / DETERIORATION / INSTALLATION / DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	TWO STAGE ROD SEALS	1.00 10.10			
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-02	DENT PISTON ROD / FATIGUE / EXTERNAL CYLINDER DENTING / DENT EXTENSION / FIRE	INTERNAL LEAKAGE / EXHAUST / FIRE	INTERNAL LEAKAGE / EXHAUST / FIRE	INTERNAL LEAKAGE / EXHAUST / FIRE	INTERNAL LEAKAGE / EXHAUST / FIRE	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.02 10.30
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-03	SCORCHED / PITTED PISTON ROD / CONTAMINATION	INTERNAL LEAKAGE / INCREASED ROD THICKNESS / INTERNAL FLUID	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.11 10.10			
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-04	DAMAGED PISTON SEAL / GLAND / DETERIORATION / INSTALLATION / DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / SEALER ENTENED - FASTER RETRACT IN SEAL / SWIRLING CHECKS / REBOLDED	INTERNAL LEAKAGE / SEALER ENTENED - FASTER RETRACT IN SEAL / SWIRLING CHECKS / REBOLDED	INTERNAL LEAKAGE / SEALER ENTENED - FASTER RETRACT IN SEAL / SWIRLING CHECKS / REBOLDED	INTERNAL LEAKAGE / SEALER ENTENED - FASTER RETRACT IN SEAL / SWIRLING CHECKS / REBOLDED	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.13 10.30
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-05	SCORCHED / PITTED DISTINCTED PISTON ROD / INTERNAL DAMAGE	INTERNAL LEAKAGE / POSSIBLE INTERNAL LEAKAGE / CYLINDER / SCORING / SWIRLING	INTERNAL LEAKAGE / POSSIBLE INTERNAL LEAKAGE / CYLINDER / SCORING / SWIRLING	INTERNAL LEAKAGE / POSSIBLE INTERNAL LEAKAGE / CYLINDER / SCORING / SWIRLING	INTERNAL LEAKAGE / POSSIBLE INTERNAL LEAKAGE / CYLINDER / SCORING / SWIRLING	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.01 10.30
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-06	SCORCHED / PITTED CYL INNER WALL / CONTAMINATION	INTERNAL LEAKAGE / INTERNAL DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / INTERNAL DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / INTERNAL DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / INTERNAL DAMAGE / CONTAMINATION	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.01 10.00
SPEED BRAKE	SWINGING SPEED									
SPEED BRAKE	SWINGING SPEED	03-107-07	SCORCHED MOISTING / CAP / CONNECTOR / INTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	NO PROVISIONS	0.15 10.10			
SPEED BRAKE	SWINGING SPEED									

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION NUMBER	FUNCTION	A.D. NUMBER	FAILURE MODE		FAILURE EFFECT		DETECTION METHOD	COMPENSATION / HALF ISW PROVISIONS		LOSS FREQUENCY		
			LOCAL EFFECTS	END RESULTS	INTERNAL DAMAGE / SPEED BRAKE CONTAMINATION	NO EXTENSION POSITION		SPEED BRAKE PERFORMANCE CHECKS	λ_p	α	β	λ_o
SPD BRAKE ACTUATOR INTAKE MECHANISM MOVEMENT OF SPEED BRAKE	EDUCATES FLUID INTAKE INTO MECHANISM	103-107-08	ARMED LOCK	INTERNAL DAMAGE / SPEED BRAKE CONTAMINATION POSITION	NO EXTENSION INTRACTABLE	-----	135 / 11 185	0.01 10.00 3.05				
		103-107-09	BROKEN LOCKING MECHANISM	FATIGUE / INTERNAL DAMAGE SEEING	NO EFFECT IN INTERNAL DAMAGE FLIGHT	SURFACE DROOPS AFTER SLOW DOWN	-----	070 / IV CHECKS	0.08 10.20 2.04			
RFI ACTUATOR	EDUCATES FLUID	104-047-01	TRACKED TURBINE / COILED TUBING - FLUID CONNECTION PCU - PRESSURE AREA TO RFI ACTUATOR	FRACED TURBINE / FATIGUE / LEAKING FITTINGS VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	-----	070 / 11 190 / 381	106.5 / 1.00 10.40 13.70			
RFI ACTUATOR	EDUCATES FLUID	104-050-01	TRACKED TURBINE / COILED TUBING - FLUID CONNECTION PCU - PRESSURE AREA TO RFI ACTUATOR	FRACED TURBINE / FATIGUE / LEAKING FITTINGS VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	-----	070 / 11 190 / 381	106.5 / 1.00 10.40 13.70			
KBL FEEL	EDUCATES FLUID	104-105-01	DAMAGED ROD SEAL ACTUATOR PILOTS NEUTS FROM ASES FUEL ACTUATOR	INFLATING / WEAR DETERIORATION / INSTALLATION / DAMAGE / FAILURES	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	1 TWO STAGE ROD SEALS	117 / 185 185 / 381	300.0 / 0.00 10.10 2.41			
		104-105-02	SENT ACTUATOR FEEDING BACK TO PILOT'S STICK	WEAR / EXTERNAL CYLINDER BOUNDING PISTON AD	WEAR / EXTERNAL CYLINDER BOUNDING IF FORCE	WEAR / EXTERNAL CYLINDER BOUNDING IF FORCE	ACTUATOR PERFORMANCE CHECKS	135 / 11 180 / 381	0.02 10.40 3.61			
		104-105-03	SCORED / PITTED ACTUATOR PISTON ROD	WEAR / BITE / WEAR / INCREDSED RAD CONTAMINATION	LOSS OF SYSTEM SEAL WEAR / IF FLUID	LOSS OF SYSTEM POSSIBLE EXTERNAL LEAKAGE	-----	135 / 11 170 / 185 185 / 381	0.00 10.10 2.41			
		104-105-04	DAMAGED PISTON SEAL / GLAND	INFLATING / WEAR / DETERIORATION / INSTALLATION / DAMAGE / CONTAMINATION	INTERNAL LEAKAGE / NONE	INTERNAL LEAKAGE / NONE	-----	120 / 11 180 / 381	0.00 10.00 0.00			
		104-105-05	CHACKED / SCORED / DISTORTED ACTUATOR PISTON	INTERNAL / EXTERNAL POSSIBLE INTERNAL POSSIBLE DAMAGE / FATIGUE / CLEANAGE	INTERNAL POSSIBLE IF PI OPERATION	RFI ACTUATOR PERFORMANCE CHECKS	DUAL TANDEN CYL INDEX	190 / 111 195 / 180 180 / 381	0.06 10.30 5.41			

LNG FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.O. NUMBER	FAILURE MODE	FAILURE CAUSES		FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	LOSS OF SYSTEM CORE 110W	LOSS FREQUENCY				
				LOCAL EFFECTS	END RESULTS	NAME	CODE 110W				λ_p	α	β	λ_e	
BOIL FEEL	SIGNATURE FLUID	104-105-06	SCORED/BITTER	EXOROSION/WEAR / INTERNAL BULL	INTERNAL DAMAGE / SEAL WEAR	EXCESSIVE PISTON INTRUSION	---	NAME	---	---	0.06	10.00	0.00		
ACTUATOR	ACTUATOR RELEASED	104-105-07	SEALANT DEFECT	CONTAMINATION	---	---	---	CYLINDER	135	---					
ACTUATOR	ACTUATOR RELEASED	104-105-07	CRACKED ACTUATOR / FAIETURE / HOLE IN CAP	---	---	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	---	---	FC-1/FC-2 SUBSYSTEM	190	1	0.08	10.10	2.41	
FEEDING BACK TO T-LOOT'S STICK	104-105-08	---	---	---	---	LOSS OF BOTH FC	---	---	---	---					
FEEDING BACK TO T-LOOT'S STICK	104-105-08	---	---	---	---	ICRACK PROPAGATES ACROSS PARTITION	---	---	---	---					
SPRING ASSEMBLY	104-105-09	---	DAMAGED PRELOAD	FAIETURE / EXTERNAL FREE-PLAY IN INTERNAL DAMAGE	---	LOSS OF REGENERATION SERVO VALVE CONTROL	---	HOLD ATTS PERFORMANCE CHECKS	---	---	135	1	0.05	10.40	6.02
SPRING ASSEMBLY	104-105-09	---	---	---	---	MECHANICAL JOINT/IN ACTUATOR PERFORMANCE	---	---	---	---	780	---			
SEAL IN SERVO VALVE	104-105-10	---	DAMAGED SPOOL ROTATING/MEAN/ INSTALATION	WEAR/ERODATION / INSTALLATION	---	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	---	---	---	---	135	IV	0.04	10.30	1.41
SEAL IN SERVO VALVE	104-105-11	---	IDENT SERVO VALVE ISPOUL	TRAVEL / EXTERNAL SPOOL BIASING/ FORCE	---	POOR OR NO RF / ACTUATOR RESPONSE PERFORMANCE	---	---	---	---	780	---			
VALVE SPAN.	104-105-12	---	SCORED/BITTER	CONTAMINATION / LINEAR CORROSION	INCREASED RAD LEAKAGE	LOSS OF SYSTEM FLUID	---	---	---	---	135	II	0.02	10.40	2.41
VALVE SPAN.	104-105-12	---	SEVO VALVE ISPOUL	---	SEAL WEAR / LOSSABLE EXTERNAL LEAKAGE	---	---	---	---	---	780	---			
VALVE SPAN.	104-105-13	---	WORN/SCREW/SCREW/CONTAMINATION / INTERING EDGES	---	INCREASED RAD LEAKAGE	INCREASED POWER PERFORMANCE CHECKS	---	---	FC-1/FC-2 SUBSYSTEM	190	III	0.06	10.50	1.32	
VALVE SPAN.	104-105-14	---	CRACKED SERVO FC-1 CONNECTOR	FAIETURE / INTERNAL DAMAGE	---	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	---	---	---	---	190	II	0.08	10.10	2.41
VALVE SPAN.	104-105-14	---	---	---	---	---	---	---	---	---	380	---			

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES			FAILURE EFFECT			DEFECTIVE	LOSS FREQUENCY		
				NUMBER	LOCAL EFFECTS	END RESULTS	METHOD	PRIORITIES	CODE LEVEL		λ_p	α	β
FALL FEEL	PROVIDES FLUID	104-105-35	JAMMED SERVO	1	1. FATIGUE DAMAGED SPRING GUIDE	3. SLIGHT DEFORMATION/ACTUATOR	1. DUAL TANDEM CYLINDER	1	135 / IV	0.04	10.30	3.41	
104-105-10	1. ACTIVATION OF VALVE FAULT		2. VALVE FAULT			3. MECHANICAL JOINT IN ACTUATOR							
104-105-10A	1. FAULT INPUTS (CIRCUIT BOARD)		2. SPRING			4. PERFORMANCE CHECKS							
PREVENTS FAULT	FROM ACT'S FAULT	104-105-16	SEATO VALVE / ACTUATOR	1	1. FAATIGUE / VIBRATION / CONNECTOR DAMAGE / EROSION	2. EXTERNAL LEAKAGE / LOSS OF SYSTEM	3. INVISIBLE LOSS OF FLUID	4. ----	190 / II	0.08	10.10	2.41	
ACTUATOR FROM FEEDING BACK TO PILOT'S STAB			CONNECTOR DAMAGE / EROSION										
AUTOPilot	DIRECTS SYSTEM	105-025-01	VALVE FAILING / IMPERFECT	1	1. CONTAMINANTS / INTERNAL DAMAGE	2. VALVE FAILS TO OPEN/CLOSE	3. LOSS OF AUTOPilot OPERATIONAL CONTROL, REFL. / FLITCHY/GAIN	4. FC-1/FCC-2 SUBSYSTEM	180 / II	15.1	0.30	10.40	1.81
SYSTEM - SELECTIVE VALVE AUTOPilot			SETTINGS; VIBRATION / SEAL FAILURE										
105-025-01A			SEAL FAILURE										
AFES	ACCEPT ELECTRICAL	105-106-01	DAMAGED ROB SEA. INITIALIZING/NEARBY	1	1. EXTERNAL LEAKAGE	2. LOSS OF SYSTEM	3. INVISIBLE LOSS OF FLUID	4. FC-1/FCC-2 SUBSYSTEM	190 / II	0.70	0.10	1.04	
ACTUATOR	INPUT SIGNALS FOR: (PITCH, ROLL, YAW) AUTOMATIC CONTROL		1. INSTALLATION			5. INTEGRATION	6. CHECKS						
105-106-01A			2. DAMAGE / CONTAMINATION										
			3. CONFINEMENT										
			4. INTEGRATION										
			5. INTEGRATION										
			6. INTEGRATION										
			7. INTEGRATION										
			8. INTEGRATION										
			9. INTEGRATION										
			10. INTEGRATION										
			11. INTEGRATION										
			12. INTEGRATION										
			13. INTEGRATION										
			14. INTEGRATION										
			15. INTEGRATION										
			16. INTEGRATION										
			17. INTEGRATION										
			18. INTEGRATION										
			19. INTEGRATION										
			20. INTEGRATION										
			21. INTEGRATION										
			22. INTEGRATION										
			23. INTEGRATION										
			24. INTEGRATION										
			25. INTEGRATION										
			26. INTEGRATION										
			27. INTEGRATION										
			28. INTEGRATION										
			29. INTEGRATION										
			30. INTEGRATION										
			31. INTEGRATION										
			32. INTEGRATION										
			33. INTEGRATION										
			34. INTEGRATION										
			35. INTEGRATION										
			36. INTEGRATION										
			37. INTEGRATION										
			38. INTEGRATION										
			39. INTEGRATION										
			40. INTEGRATION										
			41. INTEGRATION										
			42. INTEGRATION										
			43. INTEGRATION										
			44. INTEGRATION										
			45. INTEGRATION										
			46. INTEGRATION										
			47. INTEGRATION										
			48. INTEGRATION										
			49. INTEGRATION										
			50. INTEGRATION										
			51. INTEGRATION										
			52. INTEGRATION										
			53. INTEGRATION										
			54. INTEGRATION										
			55. INTEGRATION										
			56. INTEGRATION										
			57. INTEGRATION										
			58. INTEGRATION										
			59. INTEGRATION										
			60. INTEGRATION										
			61. INTEGRATION										
			62. INTEGRATION										
			63. INTEGRATION										
			64. INTEGRATION										
			65. INTEGRATION										
			66. INTEGRATION										
			67. INTEGRATION										
			68. INTEGRATION										
			69. INTEGRATION										
			70. INTEGRATION										
			71. INTEGRATION										
			72. INTEGRATION										
			73. INTEGRATION										
			74. INTEGRATION										
			75. INTEGRATION										
			76. INTEGRATION										
			77. INTEGRATION										
			78. INTEGRATION										
			79. INTEGRATION										
			80. INTEGRATION										
			81. INTEGRATION										
			82. INTEGRATION										
			83. INTEGRATION										
			84. INTEGRATION										
			85. INTEGRATION										
			86. INTEGRATION										
			87. INTEGRATION										
			88. INTEGRATION										
			89. INTEGRATION										
			90. INTEGRATION										
			91. INTEGRATION										
			92. INTEGRATION										
			93. INTEGRATION										
			94. INTEGRATION										
			95. INTEGRATION										
			96. INTEGRATION										
			97. INTEGRATION										
			98. INTEGRATION										
			99. INTEGRATION										
			100. INTEGRATION										
			101. INTEGRATION										
			102. INTEGRATION										
			103. INTEGRATION										
			104. INTEGRATION										
			105. INTEGRATION										
			106. INTEGRATION										
			107. INTEGRATION										
			108. INTEGRATION										
			109. INTEGRATION										
			110. INTEGRATION										
			111. INTEGRATION										
			112. INTEGRATION										
			113. INTEGRATION										
			114. INTEGRATION										
			115. INTEGRATION										
			116. INTEGRATION										
			117. INTEGRATION										
			118. INTEGRATION										
			119. INTEGRATION										
			120. INTEGRATION										
			121. INTEGRATION										
			122. INTEGRATION										
			123. INTEGRATION										
			124. INTEGRATION										
			125. INTEGRATION										
			126. INTEGRATION										
			127. INTEGRATION										
			128. INTEGRATION										
			129. INTEGRATION										
			130. INTEGRATION										
			131. INTEGRATION										
			132. INTEGRATION										
			133. INTEGRATION										
			134. INTEGRATION										
			135. INTEGRATION										
			136. INTEGRATION										
			137. INTEGRATION										
			138. INTEGRATION										
			139. INTEGRATION										
			140. INTEGRATION										

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION NUMBER	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	LOCAL EFFECTS	END RESULTS	DETECTION METHOD	COMPENSATING MEASURE PROVISIONS	CODE LEVEL	LOSS FREQUENCY		
										λ_p	α	β
4065 Actuator (11) (CONTINUED)	ACCEPTS ELECTRICAL INPUT SIGNALS & FOR: ROLL, PITCH, YAW, STABILITY CONTROL	05-106-06	SCORED/BURIED CYLINDER WALL	CRACKED/HEAR/ INTERNAL DAMAGE / SEAL WEAR CONTAMINATION	LEAKES/PISTON HOME INTERNAL DAMAGE / SEAL WEAR CONTAMINATION	ACTUATOR DISASSEMBLY	ACTUATOR DISASSEMBLY	ISOLATED PARALLEL CYLINDERS	IV	0.13	10.00	0.00
		05-106-07	GRANDED ACTUATOR / FATIGUE / VIBRATION / EXTERNAL DAMAGE	SERVO VALVE INHIBIT/CAP / CONNECTOR	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	ISOLATED CYLINDERS	IV	0.16	10.10	5.35
		05-106-08	DAMAGED FACE / INHIBILIS / SEALS IN SERVO DETERIORATION	VALVE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	ISOLATED CYLINDERS	IV	0.18	10.10	6.02
4065 SOLEEK ACTUATOR FE-1 FLEXES, ANEL, ACTUATOR	COILED TUBING - PROVIDES FLEXIBLE TO: 406-01 FLUID CONNECTION / TO SPOILER ACTUATOR / TO SPOILER FE-1 FLEXES, ANEL, ACTUATOR	05-106-09	GRANDED TUBING / FATIGUE / LEAKING FITTINGS VIBRATION	GRANDED TUBING / FATIGUE / LEAKING FITTINGS VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.70	11	106.5
		06-077-01	GRANDED HOSE / HOSE CONNECTION / TO AILERON HOSE / PRESSURE FC-1 PRESSURE	GRANDED HOSE / HOSE CONNECTION / TO AILERON GRANDED HOSE / PRESSURE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.10	10.40	43.90
		06-077-02	GRANDED FITTING / FATIGUE / CONNECTOR VIBRATION	GRANDED FITTING / FATIGUE / CONNECTOR VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.10	11	106.5
		06-077-03	GRANDED / VIBRATION AND/OR CRACKED HOSE OR LEAKING	GRANDED / VIBRATION AND/OR CRACKED HOSE OR LEAKING	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.30	10.80	27.70
		106-078-01	GRANDED HOSE / FLUID CONNECTION / TO AILERON FLUID CONNECTION / TO AILERON	GRANDED HOSE / FLUID CONNECTION / TO AILERON	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.40	10.10	4.95
		106-078-02	GRANDED FITTING / FATIGUE / CONNECTOR VIBRATION	GRANDED FITTING / FATIGUE / CONNECTOR VIBRATION	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	FC-1/FEC-2 SUBSYSTEM	IV	0.60	11	105.0

LNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.B. NUMBER	FAILURE MODE	FAILURE EFFECT		DETECTION METHOD	COMPENSATING FAIL/SER PROVISIONS	CODE LEVEL	LOSS FREQUENCY			
				LOCAL EFFECTS	END RESULTS				λ_p	α	β	λ_e
ALLCON NOSE - FLUID CONNECTION FC-2 PRESSURE (CENTRALIZED) ACTUATOR	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.070-03	DEGRADED/ LEAKING NOSE	VIBRATION AND/OR CHAFED NOSE OR CHAFING	ICOULD RESULT IN BURN SPOTS INSOE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	020 : IV 690 :	0.30	0.10	27.79	
ALLCON NOSE - FLUID CONNECTION FC-1 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.070-01	RUPTURED NOSE	FAATIGUE/ VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	070 : II 381 :	115.8	0.10	11.58	
ALLCON NOSE - FLUID CONNECTION FC-1 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.070-02	FRACED FITTING / CONNECTOR	VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	190 : II 690 :	0.40	0.10	6.95	
ALLCON NOSE - FLUID CONNECTION FC-1 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.070-03	DEGRADED/ LEAKING NOSE	VIBRATION AND/OR CHAFED NOSE OR CHAFING	ICOULD RESULT IN BURN SPOTS INSOE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	020 : IV 690 :	0.30	0.10	27.79	
ALLCON NOSE - FLUID CONNECTION FC-1 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.080-01	RUPTURED NOSE	FAATIGUE/ VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	070 : II 381 :	115.8	0.10	11.58	
ALLCON NOSE - FLUID CONNECTION FC-1 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.080-02	FRACED FITTING / CONNECTOR	VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	190 : II 690 :	0.40	0.10	6.95	
ALLCON NOSE - FLUID CONNECTION FC-2 PRESSURE ACTUATOR	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.080-03	DEGRADED/ LEAKING NOSE	VIBRATION AND/OR CHAFED NOSE OR CHAFING	ICOULD RESULT IN BURN SPOTS INSOE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	020 : IV 690 :	0.30	0.10	27.79	
ALLCON NOSE - FLUID CONNECTION FC-2 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.082-01	RUPTURED NOSE	FAATIGUE/ VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	070 : II 381 :	115.8	0.10	11.58	
ALLCON NOSE - FLUID CONNECTION FC-2 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.082-02	FRACED FITTING / CONNECTOR	VIBRATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	190 : II 690 :	0.40	0.10	6.95	
ALLCON NOSE - FLUID CONNECTION FC-2 KETTEN	PROVIDES FLEXIBLE FLUID CONNECTION TO ALLCON ACTUATOR	04.082-03	DEGRADED/ LEAKING NOSE	VIBRATION AND/OR CHAFED NOSE OR CHAFING	ICOULD RESULT IN BURN SPOTS INSOE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	020 : IV 690 :	0.30	0.10	27.79	

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATING MEASURE	LOSS FREQUENCY
					LOCAL EFFECTS	END RESULTS			
VALVE	SEAL/FLUID CONNECTION	106-083-01	RAIL/TUER NOSE	TAUTENESS/ VIBRATION	EXTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	0.70 : 11	115.0 : 0.10 11.00 : 11.50
FC-1 RETURN	FC-1 RETURN	106-083-02	CRACKED FITTING	TAUTENESS/ VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	0.60 : 11	0.60 : 0.10 : 6.95
ACTUATOR	ACTUATOR	106-083-03	DEGRADATION/ LEAKING NOSE	TAUTENESS AND/OR CHAFING	COULD RESULT IN HOSE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	0.20 : IV	0.30 10.80 : 27.79
AUXILIARY	SPANNING ELEMENT	106-084-01	RAIL/TUER NOSE	TAUTENESS/ VIBRATION	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PRESSURE INDICATOR	FC-1/FC-2 SUBSYSTEM	0.70 : 11	115.0 : 0.10 11.00 : 11.50
HOSE	FLUID CONNECTION	106-084-02	DEGRADATION/ LEAKING NOSE	CHAFING	COULD RESULT IN HOSE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	0.60 : 11	0.60 : 0.10 : 6.95
FC-1 PRESSURE	ACTUATOR	106-084-03	DEGRADATION/ LEAKING NOSE	CHAFING	COULD RESULT IN HOSE FAILURE	VISUAL INSPECTIONS	FC-1/FC-2 SUBSYSTEM	0.20 : IV	0.30 10.80 : 27.79
ACTUATOR	ACTUATOR	106-101-01	DAMAGED ROD SEAL	INFLATING/HEAR	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	TWO STAGE ROD SEALS	300 : 380	454.2 : 0.08 10.10 : 1.63	
MECHANICAL	MOVEMENT OF	106-101-01	DEFLECTION/ INSTALLATION	FORCE	INTERNAL LEAKAGE	PERFORMANCE INDEXES	---	780	---
VALVE CONTROL	VALVE CONTROL	106-101-01	DEFLECTION/ INSTALLATION	FORCE	INTERNAL LEAKAGE	PERFORMANCE INDEXES	---	780	---
VALVES	VALVES	106-101-02	SEEN PISTON ROD	IF AT/GE/EXTERNAL HEAR/CHASION	CYLINDER BINNING THROUGH EXTENSION/ ACTUATOR	---	135 : IV	0.02 10.40 : 5.15	
LIQUID	ENERGY INTO	106-101-03	SCORED/PITTED PISTON ROD	INCREASED ROD HEAR/CHASION	LOSS OF SYSTEM FLUID	---	105 : 11	0.08 10.10 : 1.63	
ACTUATOR	ACTUATOR	106-101-04	SEAL/SLAB	LEAKAGE	LOSS OF SYSTEM FLUID	---	935 : 170	---	
LIQUID	LIQUID	106-101-04	SEAL/SLAB	DEGRADATION/ INSTALLATION	ACTUATOR ASSEMBLY	FC-1/FC-2 SUBSYSTEM	0.20 : IV	0.03 10.00 : 0.40	
LIQUID	LIQUID	106-101-04	SEAL/SLAB	DEGRADATION/ INSTALLATION	RUB TANDEN CYLINDER	300 : 380	---		

LNG FAILURE MODE AND EFFECT ANALYSIS

ITEM IDENTIFICATION : FORMATION	FAILURE NUMBER	I-O.	FAILURE CLASS			FAILURE EFFECT	DETECTION METHOD	LOSS FREQUENCY		
			LOCAL EFFECTS	END RESULTS	PROVISIONS			COMPENSATING HALF SEVR	PROBABILITY LEVEL	λ_p
ALUMINUM CONVERT FLUID SYSTEM, ING. STRUCTURAL DEFORMATION (COMBINING) MOVEMENT OF SILICATE CONTROL SURFACES	101-05		CRACKED/SCORED / DISLODGED PARTICLE / Piston CONTAMINATION	INTERNAL LEAKAGE /IMPOSSIBLE DRAWS ISOLATING CONTAMINATION	PROD ACTUATOR RESPONSE	FC-1/FC-2 SUBSYSTEM	DUAL TANDEN CYLINDER	190 / 111 935 / 381	0.03 / 0.30 4.09	
	101-06		SCREWED/PITTED CORROSION/WEAR / CYLINDER WALL CONTAMINATION	INCREASED PISTON WEAR SEAL WEAR CONTAMINATION	ACTUATOR DISASSEMBLY	FC-1/FC-2 SUBSYSTEM	DUAL TANDEN CYLINDER	520 / IV 935 / 110	0.07 / 0.00 0.00	
	101-07		CHANGED ACTUATOR / SEAL VALVE VIBRATION / THROTTLE/CAP / CONNECTOR	EXTERNAL LEAKAGE /LOSS OF SYSTEM FLUID / LOSS OF FLUID / SYSTEM IF: CRACK PROPAGATES	INVISIBLE LOSS OF FLUID / ACTUATOR PERFORM.	FC-1/FC-2 SUBSYSTEM	DUAL TANDEN CYLINDER	190 / I 480 / 381	0.09 / 0.10 4.09	
	101-08		DAMAGED ACTUATOR / EXTERNAL DAMAGE / FATIGUE / EXTERNAL FREE-PLAY IN HARDWARE	IMPERATIVE ACTUATOR RESPONSE CHECKS	INVISIBLE LOSS OF FLUID / ACTUATOR PERFORM.	---	135 / 1 780 /	135 / 1 780 /	0.04 / 0.40 7.27	
	101-09		DAMAGED PRELOAD / SPRING ASSEMBLY SHOCK	Mechanical jointing performance	SIGHT INSPECTION /ACTUATOR PERFORMANCE / CHECKS	---	135 / IV 780 /	135 / IV 780 /	0.04 / 0.10 5.45	
	101-10		DAMAGED SPOOL ROD / BINDING /WEAR / SEAL IN SERVO VALVE INSTALLATION	EXTERNAL LEAKAGE /LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	DUAL TANDEN CYLINDER	020 / II 306 / 381	0.08 / 0.01 0.36		
	101-11		BENT SERVO VALVE / SPUDL ROD FORCE	POOR OR NO TAILERON ACTUATOR RESPONSE	INVISIBLE LOSS OF FLUID / ACTUATOR PERFORM.	---	135 / 11 780 /	135 / 11 780 /	0.02 / 0.46 3.63	
	101-12		SCREWED/PITTED CONTAMINATION	INCREASED ROD SEAL WEAR	INVISIBLE LOSS OF SYSTEM FLUID	DUAL TANDEN CYLINDER	170 / II 935 / 520	170 / II 935 / 520	0.07 / 0.10 3.18	
	101-13		DAMAGED SEAL SOD / SLEEVE / VALVE SIGNAL METERING EDGES	INTERNAL /EXTERNAL POSSIBLE LOSS OF SYSTEM FLUID LEAKAGE	INVISIBLE LOSS OF FLUID / ACTUATOR DISASSEMBLY	DUAL TANDEN CYLINDER	020 / II 165 / 381	0.08 / 0.10 3.63		
	101-14		WORN/SCREWED SERVO CONTAMINATION / VALVE SIGNAL METERING EDGES	INCREASED POWER LOSS	INVISIBLE LOSS OF FLUID / ACTUATOR PERFORM. / CHECKS	DUAL TANDEN CYLINDER	170 / II 935 / 633	0.04 / 0.30 9.08		

LISS FAILURE MODE AND EFFECT ANALYSIS

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT			RECTION	COMPENSATING MEASURE	LOSS FREQUENCY
					LOCAL EFFECTS	END RESULTS	METHOD PROVISIONS			
SE016 m.102-08 INERTIAL (C) (C) (IMBEDDED)	CONTAIN FLUID INERTIAL LOAD	102-102-08	DAMAGED ACTUATOR / FATIGUE/BURSTING	SERVO VALVE INTERNAL DAMAGE	NO SPOTLER ACTUATOR PERFORMANCE	ACTUATOR RESPONSE CHECKS	135 : I 780 : IV	0.05 10.40	5.78	
SE017 m.102-09 SPOTLER/REFLECTOR CONTROL SURFACES	MOVEMENT OF SPOTLER/REFLECTOR	102-102-09	DAMAGED PAYLOAD / FATIGUE / EXTERNAL FREE-PLAY IN SPRING ASSEMBLY	MECHANICAL JOINT/IN PERFORMANCE TRAMBLE	SLIGHT DEGRADATION ACTUATOR PERFORMANCE	ACTUATOR PERFORMANCE CHECKS	135 : IV 780 : IV	0.04 10.30	2.27	
SE018 m.102-10	DAMAGED SPRING/UNBALANCING/WEAR/ VALVE	102-102-10	DAMAGED SPRING/UNBALANCING/WEAR / SEAL IN SERVO VALVE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISIBLE LOSS OF SERVO ACTUATOR RESPONSE	DUAL TANDEM CYLINDER	020 : II 306 : III 361 : IV	0.01 10.10	1.32	
SE019 m.102-11	BENT SERVO VALVE / SPOTLER ADJ.	102-102-11	BENT SERVO VALVE / INTERNAL /SPOTLER BENDING	SPOTLER OR NO SPOTLER ACTUATOR RESPONSE	ACTUATOR PERFORMANCE	ACTUATOR CHECKS	135 : II 780 : III	0.02 10.40	1.51	
SE020 m.102-12	SIGNS OF PITTED SERVO VALVE SPOTLER ADJ.	102-102-12	CORROSION/WEAR / CONTAMINATION	INCREASED ROB SEAL WEAR	Possible LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	DUAL TANDEM CYLINDER	170 : II 185 : III 935 : IV	0.09 10.10	1.70
SE021 m.102-13	DAMAGED SEALS ON INTERNAL/EXTERNAL SERVO VALVE SLEEVE	102-102-13	INTERNAL/EXTERNAL POSSIBLE LOSS OF CLEARAGE / DAMAGE / CONTAMINATION	INTERNAL/EXTERNAL POSSIBLE LOSS OF CLEARAGE / SYSTEM FLUID	VISIBLE LOSS OF FLUID / ACTUATOR DISASSEMBLY	DUAL TANDEM CYLINDER	020 : II 185 : III 361 : IV	0.07 10.10	1.32	
SE022 m.102-14	INHIBIT SERVO CONTAMINATION / VALVE SEAL THE TEARING EDGES	102-102-14	INCREASED EROSION/CONTAMINATION INTERNAL LEAKAGE	INCREASED POWER CHECKS	ACTUATOR PERFORMANCE CHECKS	DUAL TANDEM CYLINDER	170 : II 185 : III 935 : IV	0.06 10.50	5.67	
SE023 m.102-15	DEGRADED SERVO VALVE HOUSING / ICP/CONNECTION	102-102-15	FATIGUE / VIBRATION / INTERNAL DAMAGE	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-IFC-2 SUBSYSTEM	020 : II 381 : III	0.07 10.10	1.32	
SE024 m.102-16	DAMAGED SERVO SPRING GUIDE	102-102-16	FATIGUE / MANAGED FREE-PLAY IN MECHANICAL JOINT/IN ACTUATOR PERFORMANCE	SLIGHT DEGRADATION ACTUATOR PERFORMANCE	DUAL TANDEM CYLINDER	135 : IV	0.04 10.40	3.03		
SE025 m.102-17	SERVO VALVE / TALONATOR CONNECTOR CHUCKING	102-102-17	TEARING / VIBRATION / DAMAGE / CORROSION / CHUCKING	INTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	FC-IFC-2 SUBSYSTEM	190 : II 195 : III 381 : IV 170 : V	0.07 10.10	1.32	

LHS FAILURE MODE AND EFFECT ANALYSIS

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		DETECTION METHOD	COMPENSATING PROVISIONS	HALF SYSTEM SCORE	λ_p	α	β	λ_e	LOSS FREQUENCY		
					LOCAL EFFECTS	END RESULTS										
LEADING EDGE FLAP RESTRICTOR - EXTENSION DUE. WEI. (1)	LIMITS PISTON SEED BIRING RESTRICTION - EXTENSION	107.030-01	PUPPET STUCK CLOSED	CONTAMINANTS/ CORROSION/ INTERNAL DAMAGE	FLUID RESTRICTION; E. FLAPS MOVE IN BOTH ISOLATED DURING RETRACTION	OPERATIONAL CHECKS	---	---	135 111	34.7	0.19	0.50	3.30	---		
		107.030-02	VALVE CLOSER	CONTAMINANTS/ DIRT	FLUID RESTRICTION; POSSIBLE LOSS OF OPERATIONAL E. FLAP CONTROL CHECKS	---	---	105 11	0.11	10.50	1.91	---	306	---		
		107.030-03	CRACKED HOUSING / FATIGUE / FORCES FAIL. VIBRATION / LEAKAGE	CONTAMINANTS/ INTERNAL DAMAGE	EXTERNAL LEAKAGE; LOSS OF SYSTEM FLUID	VISUAL LOSS OF FLUID; PRESSURE INDICATOR	---	---	190 11	0.70	10.10	2.43	---	670	---	
LEADING EDGE FLAP RESTRICTOR - EXTENSION DUE. WEI. (1)	LIMITS PISTON SEED BIRING RESTRICTION - EXTENSION	107.031-01	PUPPET STUCK CLOSED	CONTAMINANTS/ CORROSION/ INTERNAL DAMAGE	FLUID RESTRICTION; E. FLAPS MOVE IN BOTH ISOLATED DURING RETRACTION	OPERATIONAL CHECKS	---	---	135 111	34.7	0.19	0.50	3.29	---	381	---
		107.031-02	VALVE CLOSER	CONTAMINANTS/ DIRT	FLUID RESTRICTION; POSSIBLE LOSS OF OPERATIONAL E. FLAP CONTROL CHECKS	---	---	105 11	0.11	10.50	1.91	---	306	---		
		107.031-03	CRACKED HOUSING / FATIGUE / FORCES FAIL. VIBRATION / LEAKAGE	CONTAMINANTS/ INTERNAL DAMAGE	EXTERNAL LEAKAGE; LOSS OF SYSTEM FLUID	VISUAL LOSS OF FLUID; PRESSURE INDICATOR	---	---	190 11	0.70	10.10	2.43	---	670	---	
LEADING EDGE FLAP RESTRICTOR - EXTENSION & TAD WEI. (1)	LIMITS PISTON SEED BIRING RESTRICTION - EXTENSION & RETRACTION	107.032-01	PUPPET STUCK CLOSED	CONTAMINANTS/ INTERNAL DAMAGE	FLUID RESTRICTION; E. FLAPS MOVE IN BOTH ISOLATED DURING RETRACTION	OPERATIONAL CHECKS	---	---	135 111	34.7	0.19	0.50	3.30	---	381	---
		107.032-02	VALVE CLOSER	DIRT	FLUID RESTRICTION; POSSIBLE LOSS OF OPERATIONAL E. FLAP CONTROL CHECKS	---	---	105 11	0.11	10.50	1.91	---	306	---		
		107.032-03	CRACKED HOUSING / FATIGUE / FORCES FAIL. VIBRATION / LEAKAGE	CONTAMINANTS/ INTERNAL DAMAGE	EXTERNAL LEAKAGE; LOSS OF SYSTEM FLUID	VISUAL LOSS OF FLUID; PRESSURE INDICATOR	---	---	190 11	0.70	10.10	2.43	---	670	---	
LEADING EDGE FLAP OUTBOARD & CENTRE SECTION PRESS. & KEY. (1a)	PROVIDES ELEMENT OF HAI-01 FLUID CONNECTION 107.043-01 OUTBOARD & CENTRE SECTION PRESS. & KEY.	107.085-01	TRANSMISSION / IMPROVEMENT INTERNAL FITTINGS VIBRATION	INTERNAL DAMAGE / IMPROVEMENT INTERNAL FITTINGS	VALVE FAILS TO OPEN DUE TO VALVE COMMAND	LOSS OF L.E. FLAP CONTROL	NO ACTUATOR RESPONSE / OPERATIONAL CHECKS	---	135 11	15.1	0.30	10.40	1.81	---	306	---
	LEADING EDGE FLAP SELECTOR VALVE COMMAND	107.085-02	FLUID FLUID TO ACTUATOR'S OPEN COMMAND	---	---	---	---	---	381	---	---	---	---	---	---	---

LHS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D.	FAILURE MODE	FAILURE EFFECT		DETECTION METHOD	COMPENSATING MEASURE	LOSS FREQUENCY				
				NUMBER	LOCAL EFFECTS				PROVISIONS	CODE LEN	λ_p	α
LEADING EDGE	MOVES FLUID TO FLUID	107-105-02	VALVE LEAKING	INTERNAL FAILED	IMPOSSIBLE FLUID FLOW	IGNORABLE LOSS OF FLUID	HOME	---	105 111	0.40	10.30	4.33
SOLVENT	ACTUATORS UPON SELECTIVE VALUE TOIRECT/CON- TROL/FADE/ER CUMULATIVE	107-105-03	CHACKED HOUSING/ TRACTION/ FITTINGS	SEAL	INTERNAL DAMAGE	OVERHEATING	---	300	---	---	---	---
LEADING EDG (I.E.)	CONTAIN FLUID ENERGY INTO FLUID THEATICAL INDUCED OR S)	107-108-01	DAMAGED ROD SEAL, INTERNAL/MEAN/ DEFORMATION/ INSTALLATION DAMAGE/ CONTAMINATION	INTERNAL LEAKAGE/ SYSTEM FLUID	LOSS OF SYSTEM FLUID	VISIBLE LOSS OF FLUID	---	100 111	0.10	10.10	0.15	
107-108-02	INTERNAL PISTON ROD SEATGE/EXTERNAL FORCE	INTERNAL LEAKAGE/ IRON DUMPING RETRACTION/	---	---	---	---	100 STAGE ROD SEALS	300 11	40.2	0.40	10.10	1.01
107-108-03	SCREW/PITIED PISTON ROD	CONTAMINATION/ INCREASED ROD SEAL WEAR POSSIBLE EXTERNAL/ LEAKAGE	INTERNAL LEAKAGE/ IRON DUMPING RETRACTION/	INTERNAL LEAKAGE/ SYSTEM FLUID	LOSS OF SYSTEM FLUID	PERFORMANCE EFFECTS	ACTUATOR	700	---	---	---	---
107-108-04	DAMAGED PISTON SEAL/SEAL	INTERNAL/MEAN/ INSTALLATION DAMAGE/ CONTAMINATION	INTERNAL LEAKAGE/ IMPOSSIBLE CHANGE IN ACTUATION LEAD/NP/RET	INTERNAL LEAKAGE/ SYSTEM FLUID	LOSS OF SYSTEM FLUID	REBURNANT EFFECTS	ACTUATOR	100 111	0.11	10.10	0.14	
107-108-05	CHACKED/SECURED DISLOGED PISTON	INTERNAL/INTERNAL/POSSIBLE INTERNAL/IMPOSSIBLE ROUGH SETERNA LEAKAGE/ CLEANAGE/ C/N LUBE/OPTION CONTAMINATION/ SIGNING	INTERNAL/INTERNAL/POSSIBLE INTERNAL/IMPOSSIBLE ROUGH SETERNA LEAKAGE/ CLEANAGE/ C/N LUBE/OPTION CONTAMINATION/ SIGNING	INTERNAL/INTERNAL/POSSIBLE INTERNAL/IMPOSSIBLE ROUGH SETERNA LEAKAGE/ CLEANAGE/ C/N LUBE/OPTION CONTAMINATION/ SIGNING	INTERNAL/INTERNAL/POSSIBLE INTERNAL/IMPOSSIBLE ROUGH SETERNA LEAKAGE/ CLEANAGE/ C/N LUBE/OPTION CONTAMINATION/ SIGNING	REBURNANT EFFECTS	ACTUATOR	300	---	0.15	10.30	1.01
107-108-07	CHACKED HOUSING/ CCW/CONNECTOR	INTERNAL/ LEAKAGE/ SYSTEM FLUID	INTERNAL LEAKAGE/ LOSS OF SYSTEM FLUID	---	---	---	---	100 111	0.15	10.10	0.10	
107-108-08	SPRING FAILURE	INTERNAL DAMAGE/ IF HINGES WILL NOT AFFECTED I.E. FLAP ACTUATOR TRACTION/ IF HINGES WILL NOT AFFECTED I.E. FLAP ACTUATOR LOCK ACTUATOR IN CHAMOT BE CROCKED PERFORMANCE IF RETRACT/EXTEND IN RETRACT/EXTEND TIERS POSITION	---	---	---	---	REBURNANT ACTUATOR	700	---	0.03	10.40	0.22

NADC-79024-60

LEADS FAILSAFE MODE AND EFFICIENCY

IDENTIFICATION	FUNCTION	FAILURE EFFECT			FAILURE			FAILURE			LOSS FREQUENCY		
		I.D.	FAILURE MODE	FAILURE CAUSES	LOCAL EFFECTS	END RESULT IS	DETCTION	COMPENSATING PROVISIONS	IMMEDIATE SEEN				
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-108-09	DAMAGED MEDIUM SWITCH	FATIGUE / INTERNAL DAMAGE / CORROSION	ENDURE	IF SEE INDICATION ACTUATOR / TO PILOT ABOUT POSITION OF FLAPS / CHECKS	---	---	0.70	111	0.40	10.20	0.40
(6)	(CONTINUE)								110		6.7	0.10	10.30
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-108-10	VALVE STUCK IN FULL POSITION	VALVE STUCK OPEN / INTERNAL DAMAGE / VALVE FAILS TO CLOSE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	---	364		6.7	0.10	10.30
(7)	(CONTINUE)										6.7	0.10	10.30
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-108-11	IMBALANCE OF PRESSURE	VALVE STICK FAILURE	CONTAMINANTS / VALVE FAILS TO OPEN / VALVE FAILS TO CLOSE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	135	11	6.10	10.30	0.30
(8)	(CONTINUE)								185		6.10	10.30	0.30
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-108-12	VALVE STICK	VALVE STICK / LEAKED	INTERNAL DAMAGE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	170		6.40	10.10	0.50
(9)	(CONTINUE)								680		6.40	10.10	0.50
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-108-03	LEAKED MEDIUM	FATIGUE / SEAL FAILURE	EXTERNAL LEAKAGE / VALVE / VIBRATION / EXTERNAL DAMAGE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	190	11	6.40	10.10	0.50
(10)	(CONTINUE)								381		6.40	10.10	0.50
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-01	DAMAGED PISTON ROD	INTERNAL WEAR / INTERIOR/ INSTALLATION DAMAGE / CONTAMINATION	EXTERNAL LEAKAGE / LOSS OF SYSTEM FLUID	ENDURE	FC-LIVE-2 SUBSYSTEM	---	320	11	298.4	0.24	10.10
(11)	(CONTINUE)								306		298.4	0.24	10.10
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-02	DAMAGED PISTON ROD	FRAGILE EXTERNAL / CYLINDER BORING / CRACK / CONTAMINATION / FORCE	INTERNAL WEAR / INJECTION / REACTION / INCREASED AND POSSIBLE EXTERNAL LEAKAGE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	750		9.04	10.30	5.97
(12)	(CONTINUE)								135	111	9.04	10.30	5.97
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-03	SCORED/PITTED PISTON ROD	INTERNAL WEAR / CORROSION / CRACK / CONTAMINATION	INTERNAL WEAR / POSSIBLE EXTERNAL LEAKAGE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	935		11.17	10.10	5.07
(13)	(CONTINUE)								170		11.17	10.10	5.07
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-04	DAMAGED PISTON SEAL / SEAL AND INSTALLATION	INTERNAL WEAR / DETERIORATION / DAMAGE / CONTAMINATION	INTERNAL WEAR / POSSIBLE INTERNAL LEAKAGE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	520		11.17	10.10	5.07
(14)	(CONTINUE)								361		11.17	10.10	5.07
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-05	LEAKED / SCREWED PISTON	FATIGUE / INTERNAL / EXTERNAL DAMAGE / INTERNAL LEAKAGE / POSSIBLE RUSH OF PISTON ACTUATOR / RESPONSE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	190	111	6.16	0.20	9.55	
(15)	(CONTINUE)								935		6.16	0.20	9.55
LEADING EDGE FLAP SYSTEM	CONVERT FLUID FROM INTL INTO MECHANICAL ACTUATOR FOR FLAPS	10-103-06	STUCK PISTON	INTERNAL WEAR / CORROSION / POSSIBLE INTERNAL LEAKAGE / POSSIBLE RUSH OF PISTON ACTUATOR / RESPONSE	ENDURE	FC-LIVE-2 SUBSYSTEM	---	780		361			

LHS FAMILIES MEET AND GREET 1 APRIL 1995

NADC-79024-60

LNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION NUMBER	FUNCTION	L.O. NUMBER	FAILURE MODE	FAILURE CAUSES		END RESULTS	DETECTION METHOD	COMPENSATING PROVISIONS	LOSS FREQUENCY			
				LOCAL EFFECTS	END EFFECTS				λ_p	α	β	λ_e
111-104-02	DAMAGED PISTON ROD		FATIGUE/EXTERNAL STRESS	CYLINDER BLOWING, BLOWN CYLINDER	ACTUATOR FAILURE	---	---	---	115	111	---	0.03 10.40 5.22
HORIZONTAL LINKAGE IN TALL UNIT	Mechanical		FORCE	REACTION	PERFORMANCE CHECKS	---	---	---	780	111	---	---
ACTUATOR MOVEMENT OF UNIT SURFACES	(12)	111-104-03	SCORED/PLATED	CONTAMINATION/ INCREASED ROB WEAR/EROSION	LOSS OF SYSTEM SEAL WEAR FLUID	IVISBLE LOSS OF FLUID	---	---	105	111	---	0.06 10.10 1.74
(CONTINUED)			FATIGUE/EXTRUSION	IMPOSSIBLE EXTERNAL LEAKAGE	---	---	---	530	111	---	---	
			IL FAULT	IL FAULT	---	---	---	170	111	---	---	
			IL FAULT	IL FAULT	---	---	---	175	111	---	---	
111-104-04	DAMAGED PISTON SEAL/ALG		INIBILITY/WEAR/ DEGRADATION/ INSTALATION	IMPOSSIBLE INTERNAL/EXTERNAL LEAKAGE	ACTUATOR DISASSEMBLY	FC-1/FC-2	0.00	IV	0.05 10.40	0.40	---	---
			CHARGE/ CONTAMINATION	CHARGE/ CONTAMINATION	---	---	---	581	111	---	---	
111-104-05	SCREWED/SCREWED/ LOOSE/STRIKED		FATIGUE/INTERNAL /INTERNAL LEAKAGE/LOSS/STEAM EXTERNAL DAMAGE / LOADING	LEAKAGE	POOR ACTUATOR RESPONSE	FC-1/FC-2	190	111	0.04 10.30	3.10	---	---
			CONTAMINATION	CONTAMINATION	---	---	---	535	111	---	---	
111-104-06	SCORED/PLATED COLLIDER WALL		CORROSION/WEAR / INCREASED PISTON THROTTLE CONTAMINATION	INCREASED PISTON THROTTLE SEAL WEAR	ACTUATOR DISASSEMBLY	FC-1/FC-2	570	IV	0.03 10.40	0.40	---	---
			CONTAMINATION	CONTAMINATION	---	---	---	535	111	---	---	
111-104-07	FRACRED ACTUATOR THRUSTING/CAP/ CONNECTOR		FATIGUE/ VIBRATION/ EXTERNAL DAMAGE	INTERNAL LEAKAGE/LOSS OF INTERNAL DAMAGE	IVISBLE LOSS OF FLUID / LOSS OF INTERNAL SYSTEMS IF TECH. PROBLEMS	FC-1/FC-2	190	1	0.06 10.10	2.32	---	---
			SCREWS PARTITION	SCREWS PARTITION	---	---	---	581	111	---	---	
111-104-08	DAMAGED ACTUATOR ARM		FATIGUE/THROTTLES / SERVO VALVE EXTERNAL DAMAGE	INTERNAL LEAKAGE / INERTIAIVE PRESSURE	NO UNIT ACTUATOR PERFORM.	---	---	115	1	0.04 10.40	4.64	---
			CONTAMINATION	CONTAMINATION	---	---	---	780	111	---	---	
111-104-09	DAMAGED PRELOAD SPRING ASSEMBLY		FATIGUE / INTERNAL FREE-PLAY IN BRAKE	INTERNAL LEAKAGE / MECHANICAL JOINTS IN PERFORMANCE	IVISBLE LOSS OF FLUID	---	---	115	IV	0.03 10.30	2.41	---
			CONTAMINATION	CONTAMINATION	---	---	---	780	111	---	---	
111-104-10	DAMAGED SPOOL SEAL IN SERVO		ROD/BRAKING/WEAR/ VALVE	INTERNAL LEAKAGE / LCS OF SISTER NETE/ROTATION / VALVE BRAKE	IVISBLE LOSS OF FLUID	---	---	520	111	0.09 10.10	2.61	---
			CONTAMINATION	CONTAMINATION	---	---	---	306	111	---	---	
111-104-11	TENT SERVO VALVE ISPOOL RD		ROD/BRAKING/WEAR/ FORCE	IVISBLE LOSS OF FLUID	ACTUATOR PERFORM. CHECKS	---	---	115	111	0.02 10.40	2.32	---
			RESPONSE	RESPONSE	---	---	---	780	111	---	---	

UNS FAILURE MODE AND EFFECT ANALYSIS

NADC-79024-60

IDENTIFICATION	FUNCTION	I.D. NUMBER	FAILURE MODE	FAILURE CAUSES	FAILURE EFFECT		INJECTION METHOD	COMPENSATING PROVISIONS	CODE ITEM	LOSS FREQUENCY			
					LOCAL EFFECTS	END RESULTS				λ_p	α	β	λ_e
UNIT MECHANICAL FAIL (UNIT) INDEPENDENT OF AC UNIT (2)	COMPACT FLUID SYSTEM INTO HORIZONTAL TANK (UNIT)	111-104-12	SCREWED/PITTED SEAL VALVE SPRING ROD	CORROSION/WEAR CONTAMINATION	INCREASED RAD SEAL WEAR	Possible LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	DUAL TANKER	170 : 11	0.07	10.10	2.03	
UNIT SURFACES (CONTINUED)		111-104-13	DAMAGED SEALS ON SERVO VALVE SLEEVE	WIBBLING/WEAR/ INSTALLATION DAMAGE/ CONTAMINATION	INTERNAL/EXTERNAL POSSIBLE LOSS OF SYSTEM FLUID LEAKAGE	INTERNAL/EXTERNAL POSSIBLE LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID/ ACTUATOR TOSSSEMBLY	DUAL TANKER	020 : 11	0.06	10.10	1.74	
		111-104-14	THORN/SCREW/SEAL CONTAMINATION/ VIBRATION HEATING ENDS	INCREASED FRICTION/CONTACT INTERNAL LEAKAGE LOSS	INCREASED POWER FACTOR	INCREASED POWER FACTOR	INVISIBLE LOSS OF FLUID	DUAL TANKER	170 : 11	0.05	10.40	5.80	
		111-104-15	BACKER SERVO VALVE HOUSING/ LIP/CONNECTOR	FATIGUE/ VIBRATION/ EXTERNAL DAMAGE	EXTERNAL LEAKAGE LOSS OF SYSTEM FLUID	PERFORMANCE CHECKS	PERFORMANCE CHECKS	DUAL TANKER	170 : 11	0.03	10.40	2.32	
		111-104-16	BACKER SERVO VALVE PELLET SPRING	FATIGUE/DAMAGE FREE-PLAY IN SPRING GUIDE	ISOLANT DEGRADATION ACTUATOR MECHANICAL JOINT/IN ACTUATOR PERFORMANCE CHECKS	ISOLANT DEGRADATION ACTUATOR MECHANICAL JOINT/IN ACTUATOR PERFORMANCE CHECKS	INVISIBLE LOSS OF FLUID	FC-1/FC-2 SUBSISTEN	190 : 11	0.06	10.10	2.32	
		111-104-17	SEAL VALVE/ ACTUATOR CONNECTOR DAMAGE / CORROSION REAKING	FATIGUE/ VIBRATION/ CONNECTOR DAMAGE / CORROSION REAKING	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	INTERNAL LEAKAGE LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	FC-1/FC-2 SUBSISTEN	190 : 11	0.06	10.10	2.32	
FITTINGS/FITTINGS PROVIDES PATH/ ROUTING FOR SYSTEM FLUID		---	CRACKED/BROKEN VIBRATION	EXTERNAL LEAKAGE LOSS OF SYSTEM FLUID	EXTERNAL LEAKAGE LOSS OF SYSTEM FLUID	INVISIBLE LOSS OF FLUID	INVISIBLE LOSS OF FLUID	FC-1/FC-2 SUBSISTEN	190 : 11	721.5	1.00	10.10	72.15

NADC-79024-60

APPENDIX G

LHS SPECIFICATIONS

General
Specifications

- LHS-8800 REV A Hydraulic System Aircraft, 8000 PSI, Design and Installation Requirements for, dated 15 August 1985
- LHS-8801 REV A Hydraulic System Components, 8000 PSI, Aircraft, General Specification for, dated 15 August 1985

Component
Specifications

- LHS-8810 REV A Pumps, Hydraulic, Variable Delivery, 8000 PSI, dated 15 August 1985
- LHS-8811 Accumulators, Hydraulic, Cylindrical, 8000 PSI, Aircraft, dated 15 June 1980
- LHS-8812 REV A Cylinders, Hydraulic, 8000 PSI, dated 15 August 1985
- LHS-8813 Valves, Aircraft Power Brake, 8000 PSI, dated 15 July 1980
- LHS-8814 Valves, Check, Hydraulic, 8000 PSI, Aircraft, dated 15 June 1980
- LHS-8815 REV A Filter and Filter Elements, Fluid Pressure, Hydraulic Line, 5 Micron Absolute, 8000 PSI, dated 15 August 1985
- LHS-8816 REV A Fittings, Fluid Connection, Aircraft, 8000 PSI, dated 15 August 1985
- LHS-8817 Valve; Aircraft Hydraulic Flow Regulator, 8000 PSI, dated 2 July 1980
- LHS-8818 REV A Hose Assemblies, Hydraulic, 8000 PSI, Aircraft, dated 15 August 1985
- LHS-8819 Motors, Aircraft Hydraulic, Constant Displacement, 8000 PSI, dated 7 August 1980
- LHS-8821 REV A Gland Design; Seals, Hydraulic, 8000 PSI, dated 15 August 1985
- LHS-8822 Gage, Pressure, Dial Indicating, 8000 PSI, Aircraft, dated 15 June 1980
- LHS-8823 Valve; Aircraft Hydraulic Pressure Reducer, 8000 PSI, dated 1 July 1980
- LHS-8824 Snubber, Hydraulic Pressure, 8000 PSI, Aircraft, dated 15 June 1980
- LHS-8825 Pressure Switch, Aircraft, Hydraulic, 8000 PSI, dated 23 July 1980

NADC-79024-60

LHS-8826	Transmitter, Pressure, Hydraulic, 8000 PSI, Aircraft, dated 24 June 1980
LHS-8827	Valve; Aircraft Hydraulic Priority, 8000 PSI, dated 28 July 1980
LHS-8828 REV A	Coupling, Quick Disconnect, Self-Sealing, Hydraulic, 8000 PSI, Aircraft, dated 15 August 1985
LHS-8829	Valve, Hydraulic Pressure Relief, 8000 PSI, Aircraft, dated 19 June 1980
LHS-8830	Reservoirs; Aircraft, Hydraulic Separated Type, dated 19 June 1980
LHS-8831	Restrictor, Hydraulic, 8000 PSI, Aircraft, dated 15 June 1980
LHS-8833	Valve, Bleed, Hydraulic, 8000 PSI, Aircraft, dated 18 August 1980
LHS-8834	Valve, Direct Drive, Electro-hydraulic, Servo Control, 8000 PSI, Aircraft, dated 19 August 1980
LHS-8835	Valve, Aircraft Hydraulic Directional Control, Rotary Selector, 8000 PSI, dated 15 August 1980
LHS-8836	Valve, Shuttle, Hydraulic, 8000 PSI, Aircraft, dated 28 August 1980
LHS-8837 REV A	Valve, Hydraulic Control, Solenoid Operated, 8000 PSI, Aircraft, dated 15 August 1985
LHS-8838	Joint, Swivel, Hydraulic, 8000 PSI, Aircraft, dated 15 June 1980
LHS-8839	Tubing, Steel, Corrosion Resistant (21-6-9), Hydraulic, 8000 PSI, Aircraft, dated 15 June 1980
LHS-8842	Tubing, 3AL-2.5V Titanium Alloy, Hydraulic, 8000 PSI, Aircraft, dated 15 August 1985

NADC-79024-60

THIS PAGE LEFT BLANK INTENTIONALLY

NADC-79024-60

APPENDIX H

BLACK RESIDUE INVESTIGATION

Scientific & Laboratory Services Dept.

October 28, 1985

Telescopy

To: Mr. William Bickel
 Mr. Robert Hanning
 North American Aircraft Division
 Rockwell International, Columbus, Ohio
 Teletcopy No.: (614) 239-4800

cc: E. Kirnbauer
 G. Bishop
 G. Dow
 W. Needelman
 C. Sun

SLS Proj. Files: H1215, H1275,
 H1635, H1656

From: Daniel R. Uhr, Jr., Ph.D.
 Staff Scientist
 Pall Corporation
 Scientific and Laboratory Services Depart.
 Glen Cove, New York

Subject: Summary of Results and Conclusions Regarding the Analysis of Composition of "Black Residue" and Results of Recent Contamination Analyses Conducted on Samples of MIL-H-83282 from the Prototype 8,000 psi Lightweight Hydraulic System (LHS).

I. Results of Elemental Analysis of Particles Contributing to "Black Residue" and APM Filter Location Where Particle Type Was Found in Largest Amount

<u>Black Particle Type</u>	<u>XES⁽¹⁾ Elemental Analyses</u>	<u>Found Most In Filter Location</u>
A	Organic particles (i.e. no response to XES)	pressure-line
B	major aluminum; minor sulfur; traces of chromium and zinc	pressure-line
C	major iron; trace of chromium	case drain
D	major chromium	return-line

(1) XES - X-ray fluorescent emission spectroscopy.

Note: Black particle types C and D were dark under oblique lighting and reflective under perpendicular lighting.

AD-A169 884 FABRICATION AND TESTING OF LIGHTWEIGHT HYDRAULIC SYSTEM 4/4
SIMULATOR HARDWARE (U) ROCKWELL INTERNATIONAL COLUMBUS
ON NORTH AMERICAN AIRCRAFT OB W N BICKEL ET AL
UNCLASSIFIED JAN 86 NA-85-0134 NADC-79024-60 F/G 13/7 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Scientific & Laboratory Services Dept. Page 2

II. Analysis of "Black Residue" Particle Size Range and Percent of Black Particles in Collection of Particles From Filter Locations

Note: Data is presented for two system configurations. Fluid samples from the filter bowl were used as the source of particles for comparison. See attached System Configurations I and II.

System	Pressure-line		Return-line		Case Drain	
	% by No.	Micron Range	% by No.	Micron Range	% by No.	Micron Range
Configuration I	67	1 to 120	41	1 to 300	73	1 to 120
Configuration II	54	1 to 200	48	1 to 350	60	1 to 350

III. Particle Count Data on Fluid Samples Submitted in June 1985 re. 500 Hour Test, Rockwell LHS with APM (5 micron absolute) Filtration

Fluid Sample Designation ⁽²⁾	~NAS 1638 Class ⁽¹⁾	No. of particles per milliliter ⁽³⁾					
		1-5u	5-15u	15-25u	25-50u	50-100u	>100u
1) FC-1 (No. 1)	~Class 3	618	252	71	68	15	3.5
2) FC-1 (No. 2)	~Class 1	45	20	7	3	2	1
3) FC-2 (No. 1)	~Class 1	26	42	23	7	1	0.3
4) FC-2 (No. 2)	~Class 0	45	26	13	3	1	0.4
5) Reservoir,LHS	~Class 0	436	51	8	2	0.7	0.3

- Note:
- 1) ~NAS 1638 Class is determined here based on particle size range larger than 5 microns and highest particle count for each sample.
 - 2) APM 5 micron absolute filtration is employed in this system in pressure-line, return-line and case drain locations.
 - 3) Particle Counting - Method - SAE ARP-598A.

IV. Results of Elemental Analysis of Seal Debris from Rockwell LHS Actuator, Submitted June 1985

The gelatinous material was analyzed by XES and found to contain silicon, chlorine and chromium.

Scientific & Laboratory Services Dept.

Page 3

V. Results of Miscellaneous Analyses on the LHS Reservoir Fluid
Sample Submitted June 1985

A. Gravimetric Analysis (Method ARP-785)

-Membrane - 0.2 um
-Solvent - Freon

Results: 2.0 mg/liter of particulate

B. Total Water (Method - Karl Fischer per DIN51-777)

Results: 134 ppm H₂O

Comments

- 1) The data reported in this Teletcopy is to be included in a final comprehensive report of all useful data generated on samples submitted from two years of assistance on this project.
- 2) The results of analysis provided in this teletcopy shows that "black residue" is a composite of four particle types. Organic black particles (A) are most numerous (i.e. contain no element heavier than sodium). Aluminum containing black particles (B) are completely black and not distinguishable from organic particles when examined microscopically.

Iron containing particles (C) and chromium containing particles (D) have a black appearance when viewed under an oblique (<90°) light source. Therefore, it is estimated that the later two particle types (C and D) contribute significantly to the black appearance of filtered particles. The case drain filters held a predominance of iron containing particles. The return-line filters held a large number of chromium containing particles.

Organic and aluminum containing particles were found in greatest number on the pressure-line filter.

- 3) The results of particle counting fluid samples from the LHS FC-1 and FC-2 hydraulic loops show that APM, 5 micron absolute filtration is maintaining particulate contamination at levels represented by NAS 1638 Class 1 or cleaner. It is believed that sample 1 (i.e. FC-1, No. 1) is not representative of the rest of the samples collected. Excess contaminants may have been introduced into sample 1 during the sampling procedure.

Daniel R. Uhr, Jr.

Daniel R. Uhr, Jr., Ph.D.
Staff Scientist

DRU:kmg

NADC-79024-60

SYSTEM CONFIGURATION I

NADC-79024-60

SYSTEM CONFIGURATION II

END
DATE
FILMED

8 - 86