IV Semester, B.Sc, (Hons) Zoology

Course Title: Gene Technology Immunology and Computational Biology	Course Code: DSCC5ZOOT4
Course Type: Discipline Core Theory, L-T-P: 4-0-0	Course Credits: 4
Total Contact Hours: 56	Duration of ESA: 2Hrs.
Formative Assessment Marks:40	Summative Assessment Marks:60

At the end of the course the student should be able to:

- 1. Acquaint knowledge on versatile tools and techniques employed in genetic engineering and recombinant DNA technology.
- 2. An understanding on application of genetic engineering techniques in basic and applied experimental biology.
- 3. To acquire a fundamental working knowledge of the basic principles of immunology.
- 4. To understand how these principles, apply to the process of immune function.
- 5. Use, and interpret results of, the principal methods of statistical inference and design; helps to communicate the results of statistical analyses accurately and effectively; helps in usage of appropriate tool of statistical software.

Course Content	Hrs.
Unit I	14
Chapter 1: Principles of Gene Manipulation	
 Recombinant DNA Technology: Introduction, steps involved. Restriction Enzymes and Ligases and Nucleic acid modifying enzyme. Gene cloning Vector: Concept of plasmids-pBR322, Lamdaphage vectors, cosmids Gene transfer techniques (Direct and indirect). Screening and selection of recombinant colonies 	
Chapter 2:Applications of Genetic Engineering	
 Transgenic animals (Transgenic cow, Transgenic Fish); Transgenic plants (cryprotein); Gene silencing (Knockout and Knock in mouse). Production of Human Recombinant insulin and Hybridoma technology: Synthesis and applications of Monoclonal antibodies Gene Therapy (SCID) Biosensors and its applications 	
Unit II	14

Chapter3:IntroductiontotheImmuneSystem	07
 Defense against diseases: Introduction, First and second line of defense, Innate and acquired immunity; Antigen presenting cells (APC's), Role of Band T-lymphocytes (humoral immunity and cell mediated immunity), primary and secondary immune response. Types of immunity Functional aspects of organs of the Immune system-Thymus and bone Marrow, spleen, Lymph Node, Small intestine and Liver (Peyer's patches and Von Kupffer cells). 	07
Chapter 4: Antigens and Antibodies	
 Antigens and haptens: Properties (foreignness, molecular size, heterogeneity). Band T cellepitopes. Structure of Ig Gandfunctions of different classes of immune globulins. Major histo compatibility complex –Structure of MHCI&II. 	
Unit III	14
Chapter5: Clinical Immunology	07
 Immunity against diseases of viral, bacterial and protozoan infections. Vaccines: Types and Uses-Immunization schedule for children. Transplantation immunology: Transplantation of organ- Types, graft rejection and Immuno-suppressors. 	
Chapter6:Bioinformatics	07
Databases:Sequence and structural	07
 Sequence analysis (homology):Pair wise and Multiple Sequence alignment-BLAST, CLUSTALW, Sequence alignment-FASTA. Scope and applications of Bioinformatics. 	
Unit-IV	14
Chapter7:BiostatisticsI	07
 Measures of central tendency: Mean, Median, Mode. Data summarizing: Frequency distribution, Graphical presentation - bar diagram, pie diagram, histogram. Elementary idea of probability and its applications. 	
Chapter8:BiostatisticsII	
 Measures of dispersion: Range, Standard Deviation, Variance. Correlation and Regression. 	
 Tests of significance-test, ANOVA, t-test and Chisquare test. 	07

Topics Suggested for Assignment/Formative Assessment:

1. Q/A, Short Question, Quiz, MCQ, Assignment etc.

Recommended Books:

- 1. Primrose & Twyman.Principles of Genome Analysis and Genomics. Blackwell (2003).
- 2. Hartl&Jones.Genetics: principles&AnalsysisofGenes&Genomes.Jones&Bartlett (1998).
- 3. Sambrooketal. Molecular Cloning Vols I, II, III. CSHL (2001).
- 4. Primrose.Molecular Biotechnology.Panima (2001).
- 5. Clark & Switzer. Experimental Biochemistry. Freeman (2000)
- 6. Sudbery. Human Molecular Genetics. Prentice-Hall (2002).
- 7. Wilson.ClinicalGenetics-AShort Course, Wiley (2000).
- 8. Pasternak. An Introduction to Molecular Human Genetics. Fritzgerald (2000).
- 9. Biostatistical Analysis (Fourth Edition) by Jerrold H.Zarr, Pearson Education Inc., Delhi.

- 10. Statistical Methods (Eighth Edition) by G. W. Snecdecor and W.G. Cochran, Willey Blackwell
- 11. Biostatistics (Tenth Edition) by W.W.Danieland C. L.Cross, Wiley
- 12. Introductory Biological Statistics (Fourth Edition) by John E. Havel, Raymond E.Hampton and Scott J.Meiners
- 13. Westheadetal Bioinformatics:InstantNotes.VivaBooks (2003)
- 14. Genetic engineering:Sandhya Mitra BITS,Pilani
- 15. Principles of Biostatistics Khan and Khan am
- 16. Transgenic animals:Ranga

Web Sources:

Semester: IV

Course Lab Content

Course Title: Gene Technology, Immunology and Computational Biology	CourseCredits:02
Course Type: Minor Discipline Core Practical, L-T-P:0-0-4	CorseCode:DSCC5ZOOP4
Total Contact Hours: 56	DurationofESA:4 Hours
Formative Assessment Marks:25	Summative Assessment Marks: 25

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Accurately, safely and appropriately use all the equipment regularly used in Molecular Biology (DNA manipulation, including balances, pipettes, electrophoresis and centrifuges).
- 2. Prepare chemical solution and reagents to the precision appropriate to the task.
- 3. Demonstrate knowledge of the biochemical basis underpinning the molecular biology techniques.

Lab IV Course Content

	List of labs to be conducted	Hours 56
1.	Calculate the mean, median, mode and standard deviation (Measurement	2
	of pre and post clitellar lengths (with suitable examples).	2
2.	Measure the height and weight of all students in the class and apply statistical measures.	1
3.	Determination of ABO Blood group and Rh factor.	1
4.	To study Restriction enzyme digestion using teaching kits (Demonstration only).	2
5.	To detect genetic mutations by Polymerase Chain Reaction (PCR) using teaching kits (Demonstration only).	2
6.	Demonstration of agarose gel electrophoresis for detection of DNA.	
7.	Demonstration of Polyacrylamide Gel Electrophoresis (PAGE) for detection of proteins.	1
8.	To calculate molecular weight of unknown DNA and protein fragments from gel pictures.(https://youtube/mCiCiO0cfbg)	1
9.	To learn nucleotide sequence database.	1
10.	To learn sequence alignment: Pairwise alignment (Protein/DNA).	_
		1

Open Elective Course Content

Semester: IV Zoology

Course Title: Animal Behaviour CourseCode: OEC5ZOOT4	CourseCredits:3
TotalContactHours:42	DurationofESA:2Hours
Formative Assessment Marks: 40	SummativeAssessmentMarks:60
Model Syllabus Authors:	

Course Outcomes (COs):

At the end of the course the students will be able to:

- 1. Examine and critically to evaluate the emergence of ideas that have shaped how we observe and collect data on animal behavior.
- 2. Understandthemainhistoricalideasthatunderpinanimalbehaviourtheory
- 3. Critically review hypotheses to explain animal behavior
- 4. Understand different methods for collecting data on animal behaviour
- 5. Have advanced their written and oral presentation skills.

Course Content

	Content	42Hrs
	Unit- 1	•
Chapter	1.: Introduction to Animal Behaviour	14
	Brief contributions of Karl Von Frish, Ivan Pavlov, Konrad Lorenz,	
	NikoTinbergen.	
•	Proximate and ultimate causes of behaviour.	
Chapter	2.PatternsofBehaviour	
	Stereotyped Behaviors- Orientation and Reflex.	
•	Individual Behavioural patterns: Instinct and Learned Behaviour	
•	Associative learning, classical and operant conditioning, Habituation, Imprinting.	
	Unit-2	14
Chapte	r3.SocialBehaviour:	
•	Social organization in termites and honeybees.	
•	Social behaviour: Altruism.	
•	Conflict behaviour.	
Chap	ter4.SexualBehaviour	
•	Sexual dimorphism, Mate choice in peacock.	
•	Intra-sexual selection (male rivalry in red deer).	
•	Kinship theory: Relatedness & inclusive fitness.	
•	Parental care in fishes (Nest Building & cost benefit)	
Unit-	3	14

Chapter 5. Chronobiology

- Brief historical developments in chronobiology.
- Adaptive significance of biological clocks.
- Biological Rhythms

Chapter6: Communications in an imals

- Bioluminescence in deep sea fishes and insects
- Territoriality in Monkeys and Dogs
- Role of pheromones in animal communication- Insects and Vertebrates,
- Communication in Honeybees (Waggle Dance)

Suggested Readings:

- 1. Animal Behaviour by Drickamar.
- 2. John Alcock, Animal Behaviour, Sinauer Associate Inc., USA.
- 3. Paul W. Sherman and John Alcock, Exploring Animal Behavior, Sinauer Associate Inc., Massachusetts, USA.
- 4. Chronobiology Biological Timekeeping: Jay. C. Dunlap, Jennifer. J. Loros, Patricia J. DeCoursey(ed).2004, Sinauer Associates, Inc.Publishers, Sunderland,MA,USA
- 5. Insect Clocks D.S. Saunders, C.G.H. Steel, X., Afopoulou (ed.) R.D. Lewis. (3rdEd) 2002 Barens and Noble Inc. New York, USA
- 6. Biological Rhythms: Vinod Kumar (2002) Narosa Publishing House, Delhi/Springer-Verlag, Germany.