Mappeoppgave Visualisering og Simulering

Anders P. Åsbø | kandidat.nr.: 843 Høgskolen i Innlandet

Sammendrag

Innhold

Introduksjon	1
Metode	2
Punktsky og triangulering	2
Vertekser	2
Indeksering	3
Ball på trekantflate	3
B-Splines og simulering av vassdrag	3
Resultater	3
Diskusjon	3
Konklusjon	3

Introduksjon

Et viktig aspekt av moderne beredskap er forståelsen av ekstremvær og dets effekt på lokal natur. Derfor er det nødvendig å kunne lage digitale representasjoner av virkelige terreng, samt simulere fysikk ved bruk av datamaskin på slike representasjoner. I denne rapporten presenterer jeg en metode for å modellere, samt simulere effekten av nedbør på terreng konstruert fra punktskydata.

Rapporten fokuserer på hvordan lage en regulært indeksert trekantflate som representerer terrenget, samt hvordan bruke B-Splines til å kartlegge vassdrag som dannes ved ekstrem nedbør, og hvordan simulere effekten et slik vassdrag har på løsmateriale.

Metode

Punktsky og triangulering

Vertekser

Moderne målinger av terreng gjøres med LiDAR, og resulterer i rådata i form av en uorganisert samling punkter i \mathbb{R}^3 relativt til et valgt koordinatsystem (Berger mfl., 2017). Jeg har valgt å laste ned punktdata fra Kartverket sin database 'hoydedata.no' i '.laz'-format, som jeg så konverterer til en rentekst-fil ved hjelp av programvaren 'LASzip' (Isenburg, 2019). Den resulterende tekstfilen inneholder da n antall punkter fordelt på formen

$$x_0 \quad y_0 \quad z_0$$
 $x_1 \quad y_1 \quad z_1$
 $\dots \quad \dots$
 $x_{n-1} \quad y_{n-1} \quad z_{n-1}$

hvor hver linje svarer til et punkt. For å kunne visualisere punktskyen som en sammenhengende overflate, så konstruerer jeg et regulært rutenett i xy-planet med dimensjoner $\mathbf{width} = x_{\max} - x_{\min}$ og $\mathbf{height} = y_{\max} - y_{\min}$. Hvor x_{\max} , x_{\min} , y_{\max} og y_{\min} er henholdsvis største og minste verdi for x- og y-koordinatene til punktene. Jeg velger så at hver rute i det regulære rutenettet er et kvadrat med areal $10 \,\mathrm{m}^2$ (steglengde $h = 10 \,\mathrm{m}$), slik at $n_x = \lceil \mathbf{width}/h \rceil$ og $n_y = \lceil \mathbf{height}/h \rceil$ er henholdsvis antall ruter i x- og y- retning. Hvert punkt kan så sorteres inn i ruten som dekker x- og y-koordinatene dens ved å regne ut rad- og kolonneindeks i og j i rutenettet som

$$i = \lfloor \frac{x - x_{\min}}{h} \rfloor$$
$$j = \lfloor \frac{y - y_{\min}}{h} \rfloor.$$

For hver rute kan det regnes ut en gjennomsnittlig z-koordinat ved å ta gjennomsnittet av z-koordinatene til alle punktene med tilsvarende rad- og kolonneindeks

$$\bar{z}_{i,j} = \frac{1}{n_{i,j}} \sum_{k=0}^{n_{i,j}} z_{i,j,k},$$

hvor $n_{i,j}$ er antall punkter innenfor ruten som tilsvarer rad i kolonne j. Hvis en rute skulle vise seg å ikke inneholde punkter, så kan gjennomsnittshøyden i den ruten regnes som gjennomsnittet av gjennomsnittshøydene til naborutene

$$\bar{z}_{i,j} = \frac{1}{8} \sum_{k=i-1}^{i+1} \sum_{\substack{l=j-1\\k\neq i \lor l\neq j}}^{j+1} \bar{z}_{k,l}.$$

Hvis dette må regnes ut for en rute på kanten av rutenettet, så må alle naboer som ikke eksisterer ekskluderes fra beregningen over. Et sett med regulært fordelte punkter i xy-planet, sentrert rundt origo, kan skrives til fil på formatet

$$n_x \cdot n_y$$

$$(i \cdot h - n_x \cdot h/2, \quad \bar{z}_{i,j} - (z_{\max-z_{\min}})/2, \quad j \cdot h - n_y \cdot h/2)$$
...

for alle $j = 0, 1, 2, ..., n_y - 1$ for alle $i = 0, 1, 2, ..., n_x - 1$. Første linjen i filen inneholder antall punkter. Videre er hver koordinat translatert slik at origo er sentrert, og y- og z- koordinaten er byttet om for innlesning i Unity («Unity Engine», 2023) som bruker et venstrehendt koordinatsystem med positiv y-akse som oppoverretning.

Indeksering

For å kunne tegne en trekantflate av de regulært fordelte punktene i underseksjonen 'Vertekser', så må det konstrueres en regulær triangulering med punktene som vertekser i trekanter. Dette gjøres ved å ta for seg en rute med hjørner $\vec{v}_{j+i\cdot n_y}$, $\vec{v}_{(j+1)+i\cdot n_y}$, $\vec{v}_{j+(i+1)\cdot n_y}$ og $\vec{v}_{(j+1)+(i+1)\cdot n_y}$, hvor \vec{v}_k er de regulært fordelte punktene, og $j=0,1,2,...,n_y-1$ for alle $i=0,1,2,...,n_x-1$. Videre er det to trekanter $T_{2(j+i\cdot (n_y-1))}$ og $T_{2(j+i\cdot (n_y-1))+1}$ per rute

Ball på trekantflate

B-Splines og simulering av vassdrag

(Alexander & Cooker, 2016, s.7)

Resultater

Diskusjon

Konklusjon

Referanser

Alexander, J., & Cooker, M. J. (2016). Moving boulders in flash floods and estimating flow conditions using boulders in ancient deposits (V. Manville, Red.). Sedimentology, 63(6), 1582–1595. https://doi.org/10.1111/sed.12274

Berger, M., Tagliasacchi, A., Seversky, L. M., Alliez, P., Guennebaud, G., Levine, J. A., Sharf, A., & Silva, C. T. (2017). A Survey of Surface Reconstruction from Point Clouds. *Computer Graphics Forum*, 36(1), 301–329. https://doi.org/10.1111/cgf.12802

Isenburg, M. (2019 november). LASzip. https://laszip.org/ Unity Engine. (2023 mars). Hentet 20. april 2023, fra https://unity.com