Computación Gráfica 2019

Unidad 4 Espacios y Transformaciones

Definición

Transformación: función o mapeo que hace corresponder cada punto del espacio con otro punto del mismo espacio.

$$\hat{\underline{P}} = T(\underline{P})$$

Transformaciones en el Pipeline

Procesamiento de Vértices: Model Matrix

Procesamiento de Vértices: View Matrix

Procesamiento de Vértices: Vertex Shading

Procesamiento de Vértices: Vertex Shader

Procesamiento de Vértices: Projection

Procesamiento de Vértices: Projection Matrix

Procesamiento de Primitivas: Clipping

Procesamiento de Vértices y Primitivas

Espacio Vectorial - Combinación Lineal

$$\mathbf{v}_{1} = \begin{vmatrix} \mathbf{v}_{1}^{1} \\ \mathbf{v}_{1}^{2} \\ \mathbf{v}_{1}^{3} \\ \cdots \\ \mathbf{v}_{1}^{n} \end{vmatrix} \in \mathbb{R}^{n}$$

$$\begin{array}{c} \text{n componentes} \\ \text{en} \\ \text{n filas} \\ \end{array}$$

$$\{\mathbf{v}_i\} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$$
 Superindice = fila
$$\mathbf{v} = \sum_{i=1}^m \alpha^i \ \mathbf{v}_i$$
 Conjunto de m vectores = vector
$$\begin{vmatrix} \alpha^1 \\ \alpha^2 \\ \alpha^3 \\ \dots \\ \alpha^m \end{vmatrix}$$
 m factores
$$\mathbf{v} = \sum_{i=1}^m \alpha^i \ \mathbf{v}_i$$
 subindice = columna o ítem
$$\mathbf{v} = \mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3 \ \dots \mathbf{v}_m \ \begin{vmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \mathbf{v}_3 \\ \dots \\ \mathbf{v}_m \end{vmatrix}$$

Independencial Lineal - Base

$$\mathbf{v} = \left| \begin{array}{c} \mathbf{v}^1 \\ \mathbf{v}^2 \\ \mathbf{v}^3 \\ \cdots \\ \mathbf{v}^n \end{array} \right| \in \mathbb{R}^n$$

n componentes

$$\{\mathbf{e}_i\} \ \text{LI} \Leftrightarrow \big(\sum_{i=1}^n \alpha^i \ \mathbf{e}_i = 0 \Rightarrow \alpha^i = 0, \ \forall i\big) \qquad \text{Independencia Lineal (LI)}$$

$$\underline{(\alpha^1 \mathbf{e}_1 + \alpha^2 \mathbf{e}_2 = 0 \Rightarrow \mathbf{e}_2 = -\alpha^1/\alpha^2 \ \mathbf{e}_1)}$$
no se puede despejar uno en función del resto

$$\begin{aligned} \{\boldsymbol{e}_i\} &= \{\boldsymbol{e}_1,\,\boldsymbol{e}_2,\,\dots,\,\boldsymbol{e}_n\} \\ \boldsymbol{v} &= \sum_{i=1}^n \,\boldsymbol{v}^i \,\,\boldsymbol{e}_i \end{aligned} \quad \text{base = n vectores LI}$$

Transformación Lineal

Es **Lineal** sii preserva la combinación lineal:

$$T (\alpha \underline{P}_1 + \beta \underline{P}_2) = \alpha T (\underline{P}_1) + \beta T (\underline{P}_2)$$

$$\hat{\underline{P}} = \underline{\underline{M}} \underline{P}$$

Puede representarse como matriz. Aplicar la transformación equivale a premultiplicar por la matriz correspondiente.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} Ax + By \\ Cx + Dy \end{bmatrix}$$

Transformación Lineal

Transformación Lineal

Dos formas de ver una transformación:

Vector original:
$$\underline{v} = \sum v_i \underline{e_i}$$

- (1) Componentes transformadas: $\hat{v} = \sum \hat{v}_i \underline{e}_i$
- (2) Base transformada: $\hat{v} = \sum v_i \hat{e_i}$

$$\underline{\mathbf{M}} = \begin{bmatrix} \hat{e}_x^1 & \hat{e}_x^2 \\ \hat{e}_y^1 & \hat{e}_y^2 \end{bmatrix}$$

Composición de Transformaciones

Aplicación de sucesivas transformaciones. Ejemplo:

- 1. Desplazar (\boldsymbol{T}^1) : $\hat{\underline{P}}^1 = \boldsymbol{T}^1(\underline{P})$
- 2. Escalar (\boldsymbol{T}^2) : $\hat{\underline{P}}^2 = \boldsymbol{T}^2(\hat{\underline{P}}^1) = \boldsymbol{T}^2(\boldsymbol{T}^1(\underline{P}))$
- 3. Rotar (T^3) : $\hat{\underline{P}}^3 = T^3(\hat{\underline{P}}^2) = T^3(T^2(T^1(\underline{P})))$

Combinación: Utilizando las matrices asociadas:

$$\underline{P}^{3} = T^{3}(T^{2}(T^{1}(\underline{P}))) = \\
= \underline{\underline{M}}^{3} \cdot (\underline{\underline{M}}^{2} \cdot (\underline{\underline{M}}^{1} \cdot \underline{P})) = \\
= \underline{\underline{M}}^{3} \cdot \underline{\underline{M}}^{2} \cdot \underline{\underline{M}}^{1} \cdot \underline{P} = \underline{\underline{M}}^{*}(\underline{P})$$

$$\underline{\underline{M}}^{*}$$

Notar que el orden altera el resultado

Orden de Interpretación

Orden de Interpretación

escalar girar dibujar objeto trasnformad

ČG2019

Ejemplo

Transformaciones Lineales

$$\underline{\mathbf{M}} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$$

Rotación:

$$\underline{\mathbf{M}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Transformaciones Lineales

Shear/Deslizamiento:

Transformaciones Lineales

Traslación/Desplazamiento:

Peeero....
$$\underline{\underline{M}} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+t_x \\ y+t_y \end{bmatrix}$$

Esto no es Z! $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \end{bmatrix}$

Espacio Afín: Puntos vs. Vectores

Espacio Afín

Expansión afín:

La expansión afín de N+1 puntos genera un espacio N-dimensional

Transformación afín:

transformación lineal + traslación del origen

Transformación Afín

Es **Afín** sii preserva la combinación afín:

$$T(\alpha \underline{P}_1 + \beta \underline{P}_2) = \alpha T(\underline{P}_1) + \beta T(\underline{P}_2), \quad \alpha + \beta = 1$$

Una **traslación** sí preserva la combinación afín

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} A \, 0 + B \, 0 \\ C \, 0 + D \, 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

No Puede representarse como matriz en R^N.

Transformación Afín

Es **Afín** sii preserva la combinación afín:

$$T(\alpha \underline{P}_1 + \beta \underline{P}_2) = \alpha T(\underline{P}_1) + \beta T(\underline{P}_2), \quad \alpha + \beta = 1$$

$$\hat{\underline{P}} = \underline{\underline{M}} \, \underline{P}$$

Sí puede representarse como matriz en "RN+1".
$$\begin{bmatrix} A & B & T_x \\ C & D & T_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} Ax + By + 1T_x \\ Cx + Dy + 1T_y \\ 0x + 0y + 1 \end{bmatrix}$$

Ejemplo

Transformación de Tangentes y Normales

Vector Normal: vector ortogonal a todos los vectores tangente

$$\underline{t}(\underline{P}) = \lim_{Q \to \underline{P}} (Q - \underline{P})$$
 $\underline{n} \cdot \underline{t} = 0$

En una transformación afín, la transformación de la normal original no es igual a la normal de la curva transformada

Transformación de Tangentes y Normales

Para una transformación afín A:

$$n \cdot t = 0$$

$$n^{T} \underbrace{(A^{-1} \hat{t})}_{t} = 0$$

$$(n^{T} A^{-1}) \hat{t} = 0$$

$$\underbrace{((A^{-1})^{T} n)^{T}}_{\hat{x}^{T}} \hat{t} = 0$$

$$\hat{n} = (A^{-1})^{T} n$$

Espacio Proyectivo y Plano Ideal

Punto ideal:

- Si $w \ne 0$: la recta corta al plano en (x/w,y/w,1)
- Si w=0: la recta es horizontal, y se corresponde con un punto ideal, en el infinito, definido por un "vector" dirección.

Transformaciones Proyectivas

El efecto de una transformación lineal en \mathbb{R}^3 sobre los puntos de \mathbb{P}^2 se denomina transformación proyectiva.

No proyecta

Transformaciones Afines en P²

Transformaciones Afines en P³

Planos por el Origen en P^2 = Rectas en R^2

Planos por el Origen en P^2 = Rectas en R^2

En el espacio proyectivo todo par de rectas tiene un punto común.

Transformación Proyectiva General

El plano ideal puede inclinarse

Transformación Proyectiva General

Proyecciones

Transformación no invertibles, de rango incompleto.

Transformación Proyectiva General 3D

Ejemplo: Perspectiva Central

¿Preguntas?

$$\begin{bmatrix} \cos 90^{\circ} & \sin 90^{\circ} \\ -\sin 90^{\circ} & \cos 90^{\circ} \end{bmatrix} \begin{bmatrix} \alpha_{1} \\ \alpha_{2} \end{bmatrix} = \begin{bmatrix} 2 & 2 \\ 2 & 2 \end{bmatrix}$$