

Background

Motivation: Are tornados that scary?

- The data set is about US Tornado 1950-2021, capturing various attributes like date, location, magnitude, injuries and fatalities, and details of the tornado's path.
- The raw data is from NOAA. The latest update on Kaggle was in 2023.
- We would like to think the population is all tornadoes that have occurred in the US.

We chose this data for 4 major reasons:

- 1. Large enough for us to perform any analysis.
- 2. Result of meteorological data collection—no ethical issues.
- A good combination of quantitative variables and categorical (or potential categorical) variables.
- 4. Real data from official government organizations—relatively credible and clean.

About Dataset - Overview

- Original dataset: 14 variables, 67558 observations
- Used the Fujita Scale before February,
 2007 and then switched to the Enhance
 Fujita Scale afterwards—excluded any
 observations before 2008
- converted mo and mag from int to fac

Enhanced Fujita Scale EFU Unknown No surveyable damage EF0 65–85 mph Light damage EF1 86–110 mph Moderate damage 111–135 mph Considerable damage 136–165 mph Severe damage 166-200 mph Devastating damage EF5 >200 mph Incredible damage

About Dataset - Overview

```
'data.frame': 17167 obs. of 4 variables:
$ mo : Factor w/ 12 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 1 ...
$ mag: Factor w/ 7 levels "0","1","2","3",..: 1 1 2 1 2 4 1 1 1 1 ...
$ fat: int 0 0 0 0 0 0 0 0 0 ...
$ len: num 0.1 0.1 2.6 2.35 3 13.2 0.07 0.17 0.3 0.25 ...
```

	mo	mag	fat	len
5	:3765	0:8941	Min. : 0.00000	Min. : 0.010
4	:3000	1:5713	1st Qu.: 0.00000	1st Qu.: 0.390
6	:2507	2:1455	Median : 0.00000	Median : 1.470
7	:1377	3:366	Mean : 0.07212	Mean : 3.559
3	:1217	4: 79	3rd Qu.: 0.00000	3rd Qu.: 4.140
8	:1136	5 : 8	Max. :158.00000	Max. :168.530
(Other):4165 -9: 605		-9: 605		

EDA– Quantitative

Number of tornados that did not produce any fatalities: 16893

About fatalities:

- Most tornadoes do not result in major fatalities
- However, the <u>maximum value of 158</u>
 indicates that tornadoes in extreme cases
 can still cause serious injuries and deaths

EDA– Quantitative

EDA – Qualitative

EDA – Qualitative

September has the "highest" red bar (highest proportion) which is a proportion of just over 60%.

May has one of the relatively higher red bars and November has what might be one of the shortest red bars.

2 specific proportions we are interested in are: p_{May} =0.5469, p_{Nov} =0.3826

Test for a Difference in Two Means

Does magnitude level 4 (Devastating) tornados necessarily cause more fatalities than magnitude level 3 (Severe) tornados on average in the US?

$$H_0: \mu_{m4} - \mu_{m3} = 0$$

Magnitude level 4 (Devastating) tornados cause the same amount of fatalities as magnitude level 3 (Severe) tornados

$$H_a: \mu_{m4} - \mu_{m3} > 0$$

Magnitude level 4 (Devastating) tornados cause the same amount of fatalities as magnitude level 3 (Severe) tornados

Does magnitude level 4 (Devastating) tornados necessarily cause more fatalities than magnitude level 3 (Severe) tornados on average in the US?

$$\begin{aligned} \text{p-value}_{permutation} &= 0.00001 \\ \text{p-value}_{parametric} &\approx 0.00005631403 \end{aligned}$$

Does magnitude level 4 (Devastating) tornados necessarily cause more fatalities than magnitude level 3 (Severe) tornados on average in the US?

$$p-value_{permutation} = 0.00001$$
$$p-value_{parametric} \approx 0.00005631403$$

- On a 5% significance level, both tests were statically significant and thus provide evidence for H_A that magnitude level 4 tornadoes result in more fatalities than magnitude level 3 tornadoes on average in the U.S.
- The distribution of the variable fat (fatalities) is highly skewed right. And while
 our permutation distribution captures that, our t-distribution doesn't since it is
 always symmetric—the permutation test might be more accurate.

Test for a Difference in Two Props

In the US, are magnitude level 0 (Light) tornados more likely to occur in May or November?

$$H_0: p_{May} - p_{Nov} = 0$$

Magnitude level 0 (Light) tornados are equally likely to occur in May and November

$$H_a: p_{May} - p_{Nov} \neq 0$$

The likelihood of magnitude level 0 (Light) tornados occurring in May and November are not the same

In the US, are magnitude level 0 (Light) tornados more likely to occur in May or November?

$$p-value_{permutation} = 0.00002$$
 (with correction)
$$p-value_{parametric} = 4.77848240302163 \times 10^{-13}$$

In the US, are magnitude level 0 (Light) tornados more likely to occur in May or November?

$$p-value_{permutation} = 0.00002$$
 (with correction)
$$p-value_{parametric} = 4.77848240302163 \times 10^{-13}$$

- On a 5% significance level, both tests were statically significant and thus provide evidence for H_A that magnitude level 0 (Light) tornados are indeed more likely to occur in May than November on average in the U.S.
- In our permutation test, we did the resample only $N=10^5$ times, which means that for a two-tail test, the p-value_{permutation} can only go as small as $2 \times \frac{1}{10^5}$ which is 0.00002.

Conclusion

- Higher magnitude tornadoes, specifically those of magnitude level 4, indeed result in a higher number of fatalities compared to magnitude level 3 tornadoes on average in the US.
- Light tornadoes (magnitude level 0) are more likely to occur in May than in November on average in the US.
- These results have potential implications for climate policy and emergency management strategies.

Possible Future Work

- Can we generalize the trends in May and November into seasonal trends with more climatology research and analysis?
- Longitudinal trends in tornado magnitude and frequency -Investigating whether climate change is influencing the intensity and frequency of tornadoes.
- Impact of geographical factors on tornado outcomes Include geographical features to model the path, magnitude, and impact of tornadoes.
- Are fatalities linked to any other geographical characteristics of the tornado, such as length of track and width?