

Detailed Course 2.0 on Linear Algebra For IIT JAM' 23

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Gajendra Purohit

Enroll Now

USE CODE GPSIR FOR 10% OFF

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months
Save 67%

Total ₹ 21,780

You get 6 months extra for free

Offer expires 15 Jun 2022

12 months	₹ 1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹ 2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

(11)
$$f(m) = f(x') = h$$

Infinux pih

1200 A (NO. 4 (N

Non-homogeneous system of equation :A system of equation Ax = b is called non-homogeneous iff $b \neq 0$.

Consistency & inconsistency : A non-homogeneous system Ax = b is called consistency if it has a solution otherwise it is called inconsistent.

Augmented matrix: Let Ax = b be a given system of equation then [A:b] is called augmented matrix.

Necessary and sufficient condition for solution:

Ax = b has a solution iff

- (i) $\rho(A:b) = \rho(A)$
- (ii) b is linear combination of c₁, c₂,, c_n where c_i are column of A.

Note: If $\rho(A:b) \neq \rho(A)$ then Ax = b has no solution.

Analysis of solution of non-homogeneous system of equation:

- (1) Unique solution :Let Ax = b has a unique solution iff $Ker(A) = \{0\}$ i.e. $\eta(A) = 0$ and $\rho(A : b) = \rho(A)$
- (2) Infinite solution : A non-homogeneous system Ax = b has infinite solution iff $\rho(A : b) = \rho(A)$ and $\eta(A) > 0$.

(3) No solution:

If $\rho(A:b) \neq \rho(A)$

Then system AX = b has no solution.

Q1. Consider the system

$$2x + ky = 2 - k$$

$$kx + 2y = k$$

$$ky + kz = k - 1$$

in three unknowns and one real parameter k. For which of the following values of k is the system of linear equation consistent?

(0+4k+0)-103 $4k-k^{3}=0$ $k(4-k^{3}=0)$ かみ チンマーろ (con on Thems) · The System ip カナツナ かっち 7+2y+47=16

かったかったかり ナッチ = 4 ツリナンかっナチャイニ 5 かりナンメンナンメ3十1××4= 3 (B) 5 (d) 9 11:4 0157.1 0001

(T)2 2 4:5 (T)3 5 K:5 [1 1 1:4' 0 2 3:1 0 2 4 kH:1

Q.2. The system of equation

$$x + 3y + 2z = k$$

$$2x + y - 4z = 4$$

$$5x - 14z = 10$$

(a) has unique solution for k = 2

(b) has infinitely many solution for
$$k = 2$$

(c) has no solution for
$$k = 2$$

(d) has unique solution for any
$$k \neq 2$$

Q.3. Let
$$A = \begin{bmatrix} 2 & 0 & 5 \\ 1 & 2 & 3 \\ -1 & 5 & 1 \end{bmatrix}$$
. The system of linear equations

AX = Y has a solution

(a) only for
$$Y = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
, $x \in R$

(b) only for
$$Y = \begin{pmatrix} 0 \\ y \\ 0 \end{pmatrix}$$
, $y \in R$

(c) only for
$$Y = \begin{pmatrix} 0 \\ y \\ z \end{pmatrix}$$
, $y, z \in \mathbb{R}$

(d) for all $Y \in \mathbb{R}^3$

$$AX = (1)$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo
Save 67%	₹ 21,700 ₹ 19,602
You get 6 months extra for free	Offer expires 15 Jun 2022

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Q4. Let A be an m × m matrix with real entries and let x be an m × 1 vector of unknowns. Now consider the two statements given below:

There exists non-zero vector $b_1 \in \mathbb{R}^m$ such that the linear system $Ax = b_1$ has no solution.

II There exist non-zero vectors b_2 , $b_3 \in \mathbb{R}^m$, with $b_2 \neq cb_3$ for any $c \in \mathbb{R}$, such that the linear systems $Ax = b_2$ and $Ax = b_3$ have solutions.

Which of the following statements are true?

- (a) II is true whenever A is singular
- (b) I is true whenever A is singular
- (c) Both I and II can be true simultaneously
- (d) If m = 2, then at least one of I and II is false.

Q.5. The system of equations:

1.
$$(x) + 2(x^2) + 3. (xy) + 0(y) = 6$$

$$2 \cdot x + 1 \cdot x^2 + 3 \cdot xy + 1 \cdot y = 5$$

1.
$$x - 1$$
. $x^2 + 0$. $xy + 1$. $y = 7$

- (a) has solution in rational numbers
- (b) has solutions in real numbers
- (c) has solutions in complex numbers
- (d) has no solution

Q.6 Let m > 1 and n > 1 be integers. Let A be an $m \times n$ matrix such that for some $m \times 1$ matrix b_1 , the equation $AX = b_1$ has infinitely many solutions. Let b_2 denote an $m \times 1$ different from b_1 . Then $AX = b_2$ has

- (a) infinitely many solutions for some b2.
- (b) a unique solution for some b₂.
 - (c) finitely many solutions for some b₂.
 - (d) no solution for some b2.

- Q.7 Let A be an $n \times n$ real matrix. Let b be an $n \times 1$ vector. Suppose Ax = b has no solution. Which of the following statements are true?
 - (a) There exists an $n \times 1$ vector c such that Ax = c has a unique solution
 - (b) There exist infinitely many vectors c such that Ax = c has no solution
 - (c) If y is the first column of A then Ax = y has a unique solution
 - (d) $\det A = 0$

Q.8. Number of solution of system of linear equation

$$3x + 4y - z - 6w = 0$$

$$2x + 3y + 2z - 3w = 0$$

$$2x + y - 14z - 9w = 0$$

$$x + 3y + 13z + 3w = 0$$

- (a) unique solution (b) two solution
- (c) more than 2 but finite solution
- (d) infinite solution

RANK BOOSTER COURSE UNIT 2 CSIR NET 2022

23rd AUGUST

Gajendra Purohit

Enroll Now

GPSIR
FOR 10% OFF

Enroll Now

GPSIR FOR 10% OFF

unacademy

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 • 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

12 months	₹1,248 / mo
Save 54%	Total ₹ 14,974
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

3 months	₹ 2,269 / mo
Save 17%	Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

24 months	₹ 817 / mo	
Save 67%	₹ 21,700 ₹ 19,602	
You get 6 months extra for free	Offer expires 15 Jun 2022	

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹ 12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹-6,807-₹6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR