TE EXTC RSA 2021-22 Test 2 Examination

TE EXTC RSA 2021-22 Test 2 Examination

Email * vishwakarmavivek-extc@atharvacoe.ac.in
Name * Vivek Vishwakarma
Roll No. * 36
Division * TE ET-1 TE ET-2
Email Address * vishwakarmavivek-extc@atharvacoe.ac.in
Mobile Number * 8655689594

Answer the following questions

✓ The random variables X and Y have variances 0.2 and 0.5 respectively. Let Z= 5X-2Y. The variance of Z is? *
○ 3
O 4
5
✓ Which of the following is equal to Var(2X –3Y), where X and Y are random variableson S? *
2Var(X) - 6Cov(X, Y) + 3Var(Y)
● 4Var(X) - 12Cov(X, Y) + 9Var(Y)
4Var(X) + 12Cov(X, Y) + 9Var(Y)
2Var(X) + 6Cov(X, Y) + 3Var(Y)
✓ Why is the central limit theorem so important in the study of the sampling distributions? *
It allows us to disregard the size of the sample when the sample size is large enough.
It allows us to disregard when the population is not normal.
It allows us to estimate the sampling distribution of the population when the sample size is large enough.
Insufficient Data

✓ If the original samples from which samples were drawn is not normally distributed the sampling distribution of the mean will befor large sample sizes? *
same as distribution of original data
unidentifiable
normal
approximately normal
✓ Consider a large population with mean of 160 and standard deviation of 25 a random sample of sample size 64 is taken from this population, what is the standard deviation of the sample mean? *
O 2.5
3.75
5.625
✓ Stochastic processes are *
Random in nature
Functions of time
none of the above
Random in nature and functions of time

✓	✓ The minimum and maximum values of the correlation coefficient are *				
	-1 and 1 respectively				
0	0 and 1 respectively				
\bigcirc	-0.5 and 0.5 respectively				
0	-0.25 and -0.25 respectively				
✓ Define SSS *					
•	its finite dimensional distributions are invariant under translation of time parameter				
0	its infinite dimensional distributions are variant under translation of time parameter				
0	its finite dimensional distributions are variant under translation of time parameter				
0	its infinite dimensional distributions are invariant under translation of time parameter				
✓	Define WSS *				
0	if mean is not constant and the auto correlation depends only on the time difference.				
	if mean is a constant and the auto correlation depends only on the time difference.				
0	if mean is a constant and the auto correlation does not depends only on the time difference.				
0	if mean is a not constant and the auto correlation does not depends only on the time difference.				

A random process with time averages equal to ensemble averages is called as *
gaussian process
ergodic process
rayleigh process
erlang process
✓ Define Markov chain *
If X(t) is a Markov process which does not posses Markov property which takes only discrete values whether t is continuous or discrete is called Markov chain.
none of the above.
If X(t) is a Markov process which posses Markov property which takes only discrete values whether t is continuous or discrete is called Markov chain.
If X(t) is not a Markov process which posses Markov property which takes only discrete values whether t is continuous or discrete is called Markov chain.
✓ Regression between variables gives the relationship between them *
false
O Indeterminate
true in an interval
• true

Regression between X and Y is the same as that between Y and X *
true in an interval
true
false
indeterminate
✓ X and Y are independent random variables with variance 2 and 3. Find the variance of 3X+4Y *
● 66
O 72
O 64
O 68
✓ The regression lines of X on Y and Y on X are $5x - y = 22$, $64x - 45y = 24$ respectively. Find the means of X and Y *
12,16
3,4
24,32

The random process at a particular time instant is a *		
0	Deterministic Variable Indeterministic variable	
•	Random Variable	✓
0	none of the above	
✓	the difference of two independent Poisson Processes *	
•	is not a poisson process	✓
0	is a poisson process	
0	is a gaussian process	
0	is not a gaussian process	
~	The poisson process is an independent increment process with Markov property. *	
•	true	✓
0	false	
0	true in an interval	
0	indeterministic	

A random pr	rocess is called Deterministic if*	
all the future	values can be predicted from the past observations	
Never is a ran	dom process deterministic	
all the future	values cannot be predicted from the past observations	
Random proc	ess is always deterministic.	
✓ define irredu	ucible Markov chain *	
	of for some n and for all i &j,then every state can be reached from hen this condition is satisfied,the Markov is said to be irreducible	
()	1 for some n and for all i &j,then every state can be reached from other his condition is satisfied,the Markov is said to be irreducible	
() , , ,	Pij (nn) < 00 for some n and for all i &j,then every state can be reached from other te.When this condition is satisfied,the Markov is said to be irreducible	
()	1 for some n and for all i &j,then every state can be reached from other nis condition is satisfied,the Markov is said to be irreducible	

This form was created inside of Atharva College of Engineering.

Google Forms