- 1. Fair-aware methods reduce gender biases under multilingual settings, while not generally improve accuracy.
- 2. Translating gendersensitive tokens from English can be effective for multilingual settings.
- 3. Adaptation method is Easy and Effective.

https://github.com/xiaoleihuang/DomainFairness

Name

Regular

Fair

Easy Adaptation to Mitigate Gender Bias in Multilingual Text Classification

Xiaolei Huang
University of Memphis

Fairness / Bias Mult

Group Fairness¹: document classifiers are defined as biased if the classifiers perform better for documents of some groups than for documents of other groups.

Multilingual

First study: adaptation method and multilingual evaluation for fair-aware classifiers.

Two tasks	Source	Lang	Docs	Tokens	F-Ratio	L-Ratio
		EN	44,253	20.533	.498	.355
Hate	HS	IT	2,361	19.848	.310	.235
		PT	1,852	20.007	.554	.222
$Speech^2$		ES	4,831	20.660	.455	.357
	Review	EN	358,219	48.553	.398	.930
$RecSys^3$		FR	324,358	37.102	.429	.931
Recbys		DE	115,367	38.224	.430	.928
		DA	882,080	49.829	.475	.886
1						

Framework

Gender-1 Feature Extractor W ₂ Gender-d Feature Extractor W _k General Feature Extractor	Text Predictor Text Predictor Domain-specific Features Mask and General Features	Trainir Step
Test Data General Feature Extractor	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Testing Step

Feature Augmentation ⁴	Domain-independent encoder: General. Domain-dependent encoder: Female, Male.					
Training	Domain mask	Female: [F _{general} , F _{female} , 0] Male: [F _{general} , 0, F _{male}]				
Testing	General-only	[F _{general} , 0, 0]				

Eval & Apps

Evaluation Methods

1) F1-macro; 2) AUC

Sum (FPED + FNED) of equality differences (ED) of false positive/negative rates (FP-/FN-ED). $FPED = \sum_{g \in G} |FPR_d - FPR|$, where G is the gender and d is a gender group

(e.g., female).

scores: improvements of our method over regular (1st row) & fair-aware (2nd row) baselines.

Hate Speech

English			Spanish			Italian			Portuguese		
F1-macro -0.1		Fair -32.1	1 i			F1-macro 10.7		Fair -14.0	F1-macro 7.5		Fair -57.7
-0.6					6.6			-16.1		2.5	

RecSys

						•					
English			French F1-macro AUC Fair 1.1 0.2 -56.5			German			Danish		
1-macro 1.0	AUC .4	Fair -28.7	F1-macro 1.1	AUC 0.2	Fair -56.5	F1-macro	AUC 0.3	Fair -29.1	F1-macro 0.5	AUC 1.3	Fair -47.7
.9	0.2	-16.7	2.3	0.2	-61.4	0.5	-0.2	-7.4	1.5	1.0	21.1

- 1. Chouldechova, A., & Roth, A. (2018). The frontiers of fairness in machine learning. arXiv preprint arXiv:1810.08810.
- Reference:
 2. Huang, X., Xing, L., Dernoncourt, F., & Paul, M. (2020, May). Multilingual Twitter Corpus and Baselines for Evaluating Demographic Bias in Hate Speech Recognition. LREC.

 Hovy, D., Johannsen, A., & Saggard, A. (2015, May). User review sites as a resource for large-scale sociolinguistic studies. In Proceedings of the 24th international conference of
 - Hovy, D., Johannsen, A., & Søgaard, A. (2015, May). User review sites as a resource for large-scale sociolinguistic studies. In Proceedings of the 24th international conference on World Wide Web (pp. 452-461).
 Daumé III, H. (2007, June). Frustratingly Easy Domain Adaptation. In Proceedings of the 45th Annual Meeting of the Association of Computational Linguistics (pp. 256-263).