Programação 1 Aula 11

Valeri Skliarov, Prof. Catedrático

Email: skl@ua.pt

URL: http://sweet.ua.pt/skl/

Departamento de Eletrónica, Telecomunicações e Informática Universidade de Aveiro

http://elearning.ua.pt/

Classe Character Classe String

Declaração e definição, objetos, operações, funções (métodos), entrada e saída

- Strings (sequências de carateres)
- Código ASCII
- Classe Character
- Operações com carateres
- Propriedades das Strings
- Leitura e escrita
- Classe String
- Strings como argumentos de funções

Strings (sequências de carateres)

- Existem aplicações informáticas que, para além de necessitarem de processar dados numéricos, também necessitam de processar texto.
- Uma sequência de carateres não é simplesmente uma sequência capaz de armazenar carateres pois estes têm particularidades e necessitam de um conjunto de operações específicas para a sua manipulação.
- Em JAVA existe o tipo de dados referência String para a manipulação de texto.
- Este tipo de dados é promovido pela classe String que disponibiliza um vasto conjunto de funções para a sua manipulação.
- A classe Character tem também um papel importante...

Código ASCII

Código octal	Código decimal	Código hexadecimal

Código binário

010 0001	041	33	21	1
010 0010	042	34	22	
010 0011	043	35	23	#
010 0100	044	36	24	\$
010 0101	045	37	25	%
010 0110	046	38	26	&
010 0111	047	39	27	*
010 1000	050	40	28	(
010 1001	051	41	29)
010 1010	052	42	2A	*
010 1011	053	43	2B	+
010 1100	054	44	2C	
010 1101	055	45	2D	
010 1110	056	46	2E	
010 1111	057	47	2F	1
011 0000	060	48	30	0
011 0001	061	49	31	1
011 0010	062	50	32	2
011 0011	063	51	33	3
011 0100	064	52	34	4
011 0101	065	53	35	5
011 0110	066	54	36	6
011 0111	067	55	37	7
011 1000	070	56	38	8
011 1001	071	57	39	9
011 1010	072	58	ЗА	:

100 0001	101	65	41	Α
100 0010	102	66	42	В
100 0011	103	67	43	С
100 0100	104	68	44	D
100 0101	105	69	45	Ε
100 0110	106	70	46	F
100 0111	107	71	47	G
100 1000	110	72	48	Н
100 1001	111	73	49	T.
100 1010	112	74	4A	J
100 1011	113	75	4B	K
100 1100	114	76	4C	L
100 1101	115	77	4D	M
100 1110	116	78	4E	N
100 1111	117	79	4F	0
101 0000	120	80	50	Р
101 0001	121	81	51	Q
101 0010	122	82	52	R
101 0011	123	83	53	s
101 0100	124	84	54	Т
101 0101	125	85	55	U
101 0110	126	86	56	٧
101 0111	127	87	57	W
101 1000	130	88	58	Х
101 1001	131	89	59	Y
101 1010	132	90	5A	Z

110 0001	141	97	61	а
110 0010	142	98	62	b
110 0011		99	63	C
110 0100	144	100	64	d
110 0101	O TOTAL	101	65	е
110 0110	146	102	66	f
110 0111	147	103	67	g
110 1000		104		h
110 1001	0.00000	105	69	Ē
110 1010		106	6A	
110 1011	153	107	6B	k
110 1100		108	6C	1
110 1101	155	109	6D	m
110 1110	- Carrier	110	6E	n
110 1111	157	111	6F	0
111 0000		112		1000
		113		р
111 0001	161	Taracana.	71	q
111 0010	- Continue	114	72	r
111 0011	163	115	73	S
111 0100	164	116	74	t
111 0101	165	117	75	ш
111 0110	166	118	76	٧
111 0111	167	119	77	W
111 1000		120	78	X
111 1001	171	121	79	у
111 1010	172	122	7A	Z

índices

```
100 0001 101 65 41
                                                                                                              A
                                                                                                                    110 0001 141 97 61
                                                                                                                                         a
public class String1 {
                                                                                          100 0010 102 66
                                                                                                              В
                                                                                                                    110 0010 142 98 62
                                                                                                                                         b
public static void main (String args[])
                                                                                          100 0011 103 67
                                                                                                                    110 0011 143 99 63
                                                                                                                                        C
 String s = "Aveiro";
                                                                                          100 0100 104 68
                                                                                                              D
                                                                                                                    110 0100 144 100 64
                                                                                                                                        d
                                                                                          100 0101 105 69
                                                                                                                    110 0101 145 101 65
                                                                                                                                        e
 for(int i=0; i < s.length(); i++)
                                                                                          100 0110 106 70
                                                                                                              F
                                                                                                                    110 0110 146 102 66
 System.out.printf("%c - %d\n", s.charAt(i), (int)s.charAt(i));
                                                                                          100 0111 107 71
                                                                                                                    110 0111 147 103 67
                                                                                                                                         g
                                                                                          100 1000 110 72
                                                                                                         48
                                                                                                                    110 1000 150 104 68
                                                                                                                                        h
                                                                                                                    110 1001 151 105 69
                                                                                          100 1001 111 73
                                                                                          100 1010 112 74
                                                                                                                    110 1010 152 106 6A
                                                               010 1011 053 43 2B
                                                                                          100 1011 113 75
                                                                                                              K
                                                                                                                    110 1011 153 107 6B
            65
                                                               010 1100 054 44 2C
                                                                                          100 1100 114 76 4C
                                                                                                              L
                                                                                                                    110 1100 154 108 6C
                                                               010 1101 055 45 2D
                                                                                          100 1101 115 77 4D
                                                                                                              M
                                                                                                                    110 1101 155 109 6D
                                                                                                                                        m
                                                               010 1110 056 46 2E
                                                                                          100 1110 116 78
                                                                                                         4E
                                                                                                              N
                                                                                                                    110 1110 156 110 6E
                                                                                                                                        n
           101
                                                               010 1111 057 47 2F
                                                                                          100 1111 117 79
                                                                                                              0
                                                                                                                    110 1111 157 111 6F
                                                                                                                                        0
                                                               011 0000 060 48
                                                                               30
                                                                                          101 0000 120 80
                                                                                                         50
                                                                                                              P
                                                                                                                    111 0000 160 112 70
                                                                                                                                        p
                                                               011 0001 061 49 31
                                                                                          101 0001 121 81
                                                                                                         51
                                                                                                              Q
                                                                                                                    111 0001 161 113 71
                                                                                                                                         q
           114
                                                               011 0010 062 50
                                                                               32
                                                                                          101 0010 122 82
                                                                                                         52
                                                                                                              R
                                                                                                                    111 0010 162 114 72
           111
                                                               011 0011 063 51
                                                                                          101 0011 123 83
                                                                                                              S
                                                                                                                    111 0011 163 115 73
                                                                               33
                                                                                                         53
                                                                                                                                         S
                                                                                          101 0100 124 84
                                                               011 0100 064 52
                                                                               34
                                                                                                              T
                                                                                                                    111 0100 164 116 74
                                                               011 0101 065 53 35
                                                                                          101 0101 125 85
                                                                                                         55
                                                                                                              U
                                                                                                                    111 0101 165 117 75
                                                                                                                                        u
                    s.length() = 6
                                                               011 0110 066 54
                                                                               36
                                                                                          101 0110 126 86
                                                                                                              ٧
                                                                                                                    111 0110 166 118 76
                                                               011 0111 067 55
                                                                               37
                                                                                          101 0111 127 87
                                                                                                              W
                                                                                                                    111 0111 167 119 77
                                                                                                                                        W
       Α
                                                 0
                        e
                V
                                                               011 1000 070 56
                                                                                          101 1000 130 88
                                                                                                              X
                                                                                                                    111 1000 170 120 78
                                                                                                                                         X
                                                                                                              Y
                                                                                                                    111 1001 171 121 79
                                                               011 1001 071 57
                                                                               39
                                                                                    9
                                                                                          101 1001 131 89
                                                                                                         59
       0
                                                               011 1010 072 58 3A
                                                                                                              Z
                                                                                                                    111 1010 172 122 7A
                                                                                          101 1010 132 90
                                                                                                                                        Z
```

Valeri Skliarov 2019/2020

```
public class String1 {
public static void main (String args[]) {
  String s = "Aveiro";
  for(int i=0; i < s.length(); i++)
  System.out.printf("%c - %d\n", s.charAt(i), (int)s.charAt(i));
}
}</pre>
```

```
Decimal Hexadecimal

100 0001 101 65 41 A

A - 65

v - 118 Carater

e - 101

i - 105

r - 114

o - 111
```

Character: A; Octal: 101; Decimal: 65; Hexadecimal: 41

```
public class String1 {
public static void main (String args[]) {
  String s = "Aveiro";
  for(int i=0; i < s.length(); i++)
  System.out.printf("%c - %d\n", s.charAt(i), (int)s.charAt(i));
}
}</pre>
```

```
Binário

Carater

100 0001 101 65 41 A

A - 65

v - 118

e - 101

i - 105

r - 114

o - 111
```

Character: A; Binário: 1000001

Classe Character

- A classe Character contém um conjunto de funções (métodos) para processamento de carateres (operações sobre carateres).
- As funções (os métodos) disponibilizadas(os) dividem-se, funcionalmente, em dois grupos:
 - funções de teste de carateres que devolvem um valor booleano se o argumento pertence ao "grupo" associado:
 - isLetter, isDigit, isLetterOrDigit, isWhitespace, isLowerCase, isUpperCase, ...
 - funções de conversão que devolvem outro carater:
 - toLowerCase, toUpperCase, ...
- Estas funções utilizam-se tal como as da classe Math:

```
Character.nomeDaFuncao ( ... )

Valeri Skliarov
2019/2020
```

Classe String

- A classe String disponibiliza um vasto conjunto de funções que podemos separar em dois tipos:
 - funções que se aplicam sobre variáveis do tipo String: variavel.nomeDaFuncao();

```
char charAt(int) - devolve o carater numa determinada posição
int length() - devolve a dimensão de uma String
int indexOf(char) - pesquisa a primeira ocorrência do carater
boolean equals(String) - verifica se duas Strings são iguais
boolean compareTo(String) - compara duas Strings
```

- funções que se aplicam sem a necessidade de ter uma variável do tipo String: String.nomeDaFuncao().
- https://docs.oracle.com/javase/8/docs/api/java/lang/String.html
- https://docs.oracle.com/javase/8/docs/api/java/lang/ Character.html

Declaração de variáveis do tipo String

A declaração de variáveis do tipo String obedece às mesmas regras de declaração de tipos referência.

Exemplos:

O operador de atribuição '=' também é capaz de reservar o espaço em memória e atualizar a referência:

```
String s3 = "Aveiro"; // Declaração simplificada
```

```
Exemplo: Letters: 14; Digits: 4; LettersOrDigits: 18; LowerCases: 5; UpperCases 9
```

```
public class StringTeste {
public static void main (String args[])
 String s = "Aveiro (PORTUGAL) 2014";
 int Letters=0,Digits=0,LettersOrDigits=0,LowerCases=0,UpperCases=0;
 for(int i=0; i<s.length();i++) {
  if(Character.isLetter(s.charAt(i)))
                                               Letters++;
  if(Character.isDigit(s.charAt(i)))
                                               Digits++;
                                                                            Pode escrever em
  if(Character.isLetterOrDigit(s.charAt(i)))
                                               LettersOrDigits++;
                                                                              várias linhas
  if(Character.isLowerCase(s.charAt(i)))
                                               LowerCases++;
  if(Character.isUpperCase(s.charAt(i)))
                                               UpperCases++;
  System.out.printf("Letters: %d; Digits: %d; LettersOrDigits: %d; LowerCases: %d; UpperCases %d\n",
            Letters, Digits, Letters Or Digits, Lower Cases, Upper Cases);
```

```
System.out.printf("Letters: %d; Digits: %d; "+
           "LettersOrDigits: %d; LowerCases: %d;"+
           " UpperCases %d\n",
           Letters, Digits, Letters Or Digits,
           LowerCases, UpperCases);
```

```
public class StringTeste {
public static void main (String args[]) {
 String s = " Aveiro (PORTUGAL) 2014";
 int Letters=0, Digits=0, Spaces=0, LettersOrDigits=0, LowerCases=0, UpperCases=0;
 for(int i=0; i<s.length();i++) {
  if(Character.isLetter(s.charAt(i)))
                                              Letters++;
  if(Character.isDigit(s.charAt(i)))
                                              Digits++;
  if(Character.isWhitespace(s.charAt(i)))
                                              Spaces++;
  if(Character.isLetterOrDigit(s.charAt(i)))
                                               LettersOrDigits++;
  if(Character.isLowerCase(s.charAt(i)))
                                              LowerCases++:
  if(Character.isUpperCase(s.charAt(i)))
                                              UpperCases++;
System.out.printf("Letters: %d; Digits: %d; Spaces: %d;"+
           "LettersOrDigits: %d; LowerCases: %d;"+
           " UpperCases %d\n",
            Letters, Digits, Spaces, Letters Or Digits,
            LowerCases, UpperCases);
```

```
Letters: 14; Digits: 4; Spaces: 3; LettersOrDigits: 18; LowerCases: 5; UpperCases 9
```

if(Character.isWhitespace(s.charAt(i))) Spaces++;

Pode utilizar a função isSpace em vez de isWhitespace mas vai aparecer a mensagem seguinte

1 warning found:

File: H:\MostFrequentlyNeeded___2014\Education2011\2014_2015\FirstSemester\Programacao\AulasTeoricas\8_11_11\Exemplos\StringTeste.java [line: 8]
Warning: The method isSpace(char) from the type java.lang.Character is deprecated

javac "StringTeste.java" (in directory: /media/aveiro/My Passport/I

Note: StringTeste.java uses or overrides a deprecated API.

Note: Recompile with -Xlint:deprecation for details.

Compilation finished successfully.

É melhor utilizar a função isWhitespace (ver

https://docs.oracle.com/javase/7/docs/api/java/lang/Character.html para
detalhes adicionais)

Leitura e escrita de Strings

- Uma String pode ser lida do teclado através da função nextLine() do Scanner. Esta função lê todos os carateres introduzidos pelo utilizador até encontrar o '\n'.
- Para imprimir no terminal o conteúdo de uma String, podemos utilizar qualquer uma das funções System.out.print(...), System.out.println(...) e System.out.printf(...).
- No printf utiliza-se o especificador de conversão %s para escrever uma String. Este pode ser precedido de um número com o qual se controla o formato (%10s %-10s).

```
String s = new String();
s = sc.nextLine();
System.out.printf("O texto lido foi %s\n", s);
System.out.println("O texto lido foi " + s);
```

```
// Leitura de carateres até aparecer o '.'
char c;
do{
  System.out.print("Insira uma letra: ");
  c = sc.nextLine.charAt(0); // leitura de um char
  if (Character.isLetter(c))
    System.out.println("Inseriu uma letra");
  else if(Character.isDigit(c))
    System.out.println("Inseriu um digito");
  else
    System.out.println("Não inseriu uma letra ou digito");
} while(c != '.');
```

```
import java.util.*;

public class Format_s {
    public static void main(String[] args) throws Exception {
        String str = "Hello world!";
        System.out.println("println "+'\t'+'\t'+str);
        System.out.print("print "+'\t'+'\t'+str+'\n');
        System.out.printf("printf %s\n",str);
        System.out.printf("printf %%30s %%30s %30s%30s\n",str,str);
        System.out.printf("printf %%-30s %%-30s %-30s%-30s\n",str,str);
    }
}
```

```
println Hello world!
print Hello world!
printf Hello world!
printf %30s %30s Hello world! Hello world!
printf %-30s %-30s Hello world! Hello world!
```

```
// Escrita dos carateres de uma String
String frase = new String();
char letra;
System.out.print("Escreva uma frase: ");
frase = sc.nextLine();
System.out.printf("A frase tem as letras:\n");
for(int i = 0 ; i < frase.length() ; i++)
    System.out.println(frase.charAt(i));</pre>
```

Código completo:

Diferença entre as funções next e nextLine da classe Scanner

```
import java.util.*;
public class next_nextLine {
    static final Scanner read = new Scanner(System.in);
public static void main (String args[]) {
    String s;
    System.out.print("Linha ? ");
    s = read.nextLine();
    System.out.println("s = "+s);
    }
}
Linha ? Universidade de Aveiro

s = Universidade de Aveiro

Color

October 1982

October 298

System.out.println("s = "+s);

Aveiro 1982

October 298

October 29
```

```
import java.util.*;
public class next_nextLine {
  static final Scanner read = new Scanner(System.in);
public static void main (String args[]) {
  String s;
  System.out.print("Linha ? ");
  s = read.next();
  System.out.println("s = "+s);
  }
}
```

```
Linha ? Universidade de Aveiro

s = Universidade

Ok
```

mas os resultados são diferentes

```
import java.util.*;
public class next_nextLine {
static final Scanner read = new Scanner(System.in);
public static void main (String args[])
String s;
System.out.print("Linha ?");
s = read.next();
System.out.println("s = "+s);
s = read.next();
System.out.println("s = "+s);
s = read.next();
System.out.println("s = "+s);
```

```
Linha ? Universidade de Aveiro

s = Universidade

s = de

s = Aveiro
```

Problema:

```
import java.util.*;
public class next_nextLine {
                                                             Inteiro
 static final Scanner read = new Scanner(System.in);
                                                                                123
public static void main (String args[])
                                                             a = 123
String s;
                                                             Linha
int a;
                                                             >
System.out.print("Inteiro ? ");
 a = read.nextInt();
System.out.println("a = "+a);
 read.skip("\n"); <-</pre>
                                                          Solução
System.out.print("Linha ? ");
s = read.nextLine();
 System.out.println("s = "+s);
                                                        Inteiro
                                                                        123
                                                        a = 123
                                                        Linha ?
                                                                     Universidade de Aveiro
                                                        s = Universidade de Aveiro
```

Problema:

```
import java.util.*;
public class next nextLine charAt {
 static final Scanner read = new Scanner(System.in);
public static void main (String args[])
 char c:
                                      char ?
 int a:
                                      c = R
 System.out.print("char ? ");
                                             java.lang.StringIndexOutOfBoundsException: String index out of range: 0
 c = read.nextLine().charAt(0);
                                             at java.lang.String.charAt(Unknown Source)
 System.out.println("c = "+c);
                                             at next nextLine charAt.main(next nextLine charAt.java:21)
                                             at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 System.out.print("int ?");
                                             at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
                                             at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
 a = read.nextInt();
                                             at java.lang.reflect.Method.invoke(Unknown Source)
                                             at edu.rice.cs.drjava.model.compiler.JavacCompiler.runCommand(JavacCompiler.java:271)
 System.out.println("a = "+a);
 read.skip("\n"); <
                                                                       Solução
 System.out.print("char ? ");
                                                                            char
 c = read.nextLine().charAt(0);
 System.out.println("c = "+c);
                                                                            int
                                                                                             123
                                                                            char
                                                  Valeri Skliarov
                                                   2019/2020
```

Para função next pode utilizar separadores. Exemplo:

```
import java.util.*;
public class Deliminer {
public static void main (String args[])
 String cidades = "cidade Lisboa cidade Porto"+
   "cidade Coimbra cidade Aveiro cidade Braga cidade Faro";
 Scanner read = new Scanner(cidades).useDelimiter("\\s*cidade\\s*");
 while (read.hasNext()) System.out.printf("%s\n",read.next());
 read.close();
              Lisboa
              Porto
              Coimbra
              Aveiro
              Braga
              Faro
```

26 caracteres

Operações com carateres

Para transformar um carater noutro carater temos que recorrer ao código ASCII. Exemplo do deslocamento de carateres 3 posições para a frente:

```
if (Character.isLowerCase(letra)) {
    // posição relativa de letra
    pos = (int) (letra - 'a');
    // deslocamento circular ???
    novaPos = (pos + 3) % 26;
    novaLetra = (char) ('a' + novaPos); // nova letra...
}
else if (Character.isUpperCase(letra)) {
    pos = (int) (letra - 'A');
    novaPos = (pos + 3) % 26;
    novaLetra = (char) ('A' + novaPos);
} ...
```

100 0001	101	65	41	Α
100 0010	102	66	42	В
100 0011	103	67	43	С
100 0100	104	68	44	D
100 0101	105	69	45	Е
100 0110	106	70	46	F
100 0111	107	71	47	G
100 1000	110	72	48	Н
100 1001	111	73	49	1
100 1010	112	74	4A	J
100 1011	113	75	4B	K
100 1100	114	76	4C	L
100 1101	115	77	4D	М
100 1110	116	78	4E	N
100 1111	117	79	4F	0
101 0000	120	80	50	Р
101 0001	121	81	51	Q
101 0010	122	82	52	R
101 0011	123	83	53	s
101 0100	124	84	54	Т
101 0101	125	85	55	U
101 0110	126	86	56	V
101 0111	127	87	57	W
101 1000	130	88	58	Х
101 1001	131	89	59	Υ
101 1010	132	90	5A	Z

Código completo:

```
import java.util.*;
public class Deslocamento {
 static final Scanner read = new Scanner(System.in);
public static void main (String args[])
 char letra.novaLetra = '0':
                                              Letra
 int pos, novaPos;
 System.out.print("Letra ? ");
                                              Nova letra = B
 letra = read.nextLine().charAt(0);
 if(Character.isLowerCase(letra)){
 pos = (int)(letra - 'a'); // posição relativa de letra
 novaPos = (pos + 3) % 26; // deslocamento circular ???
 novaLetra = (char)('a' + novaPos); // nova letra...
else if(Character.isUpperCase(letra)){
 pos = (int)(letra - 'A');
                                            Letra
 novaPos = (pos + 3) \% 26;
 novaLetra = (char)('A' + novaPos);
                                            Nova letra
 System.out.println("Nova letra = "+novaLetra);
```


Propriedades das Strings

- Em JAVA a sequência de carateres é um tipo de dados referência com propriedades limitadas ao nível da alteração do seu conteúdo.
- O maior problema na gestão das sequências de carateres tem a ver com o fato de cada uma ter um número diferente de carateres.
- A dimensão e <u>conteúdo</u> de uma sequências de carateres fica definida quando esta é criada, <u>não sendo possível mais tarde</u> <u>modificar o seu conteúdo</u> (é imutável).
- Na passagem como argumento a funções, apesar de ser um tipo de referência, o seu conteúdo não pode ser modificado (veremos mais à frente...).

```
import java.util.*;
public class ChangedString {
  static final Scanner read = new Scanner(System.in);
public static void main (String args[]) {
  String s = "Universidade de Aveiro";
  System.out.println(s);
  s = s.replace('i', 'I');
  System.out.println(s);
  }
}
```

Universidade de Aveiro Universidade de Aveiro

Passagem de Strings a funções

- Na passagem de Strings como argumento de funções, apesar de ser um tipo de referência o seu conteúdo não pode ser modificado, dado que são objetos imutáveis.
- Isto quer dizer que, quando atribuímos um novo valor a uma String, o seu endereço na memória do computador muda.

```
String frase = new String("Aveiro");
f(frase); // argumento da função passa a referenciar frase
System.out.printf("%s\n", frase); //imprime "Aveiro"

public static void f(String s) {
  s = "ola"; // s passa a referenciar algo diferente...
System.out.printf("%s\n", s);
}
```

Código completo:

```
import java.util.*;
                                                                  ola
public class Slide13 {
                                                                  Aveiro
static final Scanner sc = new Scanner(System.in);
public static void main (String args[])
String frase = new String("Aveiro");
f(frase); // argumento da função passa a referenciar frase
 System.out.printf("%s\n", frase);
                                           //imprime "Aveiro"
 public static void f(String s){
                                           //imprime "Aveiro"
 System.out.printf("%s\n", s);
 s = "ola":
                                          // s passa a referenciar algo diferente...
 System.out.printf("%s\n", s);
```

Aveiro

Exemplo: Algumas funções da classe *String*

```
Aveiro PORTUGAL
Aveiro
AveiroPORTUGAL
aveiro
AVEIRO
```

Exemplo: Algumas funções da classe *String*

```
public class String Digits {
public static void main (String args[]) {
  String inteiro = String.valueOf(987);
  String s = "Universidade de Aveiro (Portugal)";
 System.out.printf("String = %s\n", String.valueOf(123.4567)); // String = 123.4567
 System.out.printf("String (inteiro) = %s\n", inteiro);
                                                    // String (inteiro) = 987
 System.out.println(s.substring(16,22));
                                                            // Aveiro
 System.out.println(s.replaceFirst("Aveiro","Porto"));
                                                            // Universidade de Porto (Portugal)
 System.out.println(s.split(" ")[0]);
                                                       // Universidade
 System.out.println(s.split(" ")[1]);
                                                       // de
                                                      // Aveiro
 System.out.println(s.split(" ")[2]);
 System.out.println(s.split(" ")[3]);
                                                      // (Portugal)
 System.out.println(s.split("Aveiro")[0]); // Universidade de
 System.out.println(s.split("Aveiro")[1]); // (Portugal)
                           string = 123.4567
                           String (inteiro) = 987
                           Aveiro
                           Universidade de Porto (Portugal)
                           Universidade
                           de
                           Aveiro
                           (Portugal)
                           Universidade de
                            (Portugal)
```

Revisão da aula anterior

Tarefas:

- 1) Criar uma função G que permite gerar lados A e B aleatoriamente no intervalo 2.0-10.0.
- 2) Criar uma função *Diag* que retorna diagonal de retângulo.
- 3) Criar uma função Dif que retorna a diferença entre os lados A e B.

```
static Random rand = new Random();

public static void G(Rectangulo R)
{
    R.ladoA = (double)(rand.nextInt(8) + 2);
    R.ladoB = (double)(rand.nextInt(8) + 2);
}
```

Tarefas:

1) Criar uma função *G* que permite gerar lados A e B aleatoriamente no intervalo 2.0-10.0.

```
import java.util.*;
public class rect
{ static Random rand = new Random();
public static void main(String[] args)
{ Rectangulo rect = new Rectangulo();
   G(rect);
   System.out.println("lado A = "+rect.ladoA);
   System.out.println("lado B = "+rect.ladoB);
public static void G(Rectangulo R)
R.ladoA = (double)(rand.nextInt(8) + 2);
R.ladoB = (double)(rand.nextInt(8) + 2);
class Rectangulo
         double ladoA;
         double ladoB;
         double diagonal;
```

rand.nextDouble(); // não tem argumentos

lado
$$A = 8.0$$

lado $B = 3.0$

Tarefas:

2) Criar uma função *Diag* que retorna diagonal de retângulo.

$$return \sqrt{(ladoA^2 + ladoB^2)}$$

Tarefas:

2) Criar uma função *Diag* que retorna diagonal de retângulo.

```
import java.util.*;
public class rect
 public static void main(String[] args)
  Rectangulo rect = new Rectangulo();
   rect.ladoA = 4.0;
                                                          diagonal = 5.0
   rect.ladoB = 3.0;
   System.out.println("diagonal = "+Diag(rect));
public static double Diag(Rectangulo R)
   return Math.sqrt(Math.pow(R.ladoA,2)+Math.pow(R.ladoB,2)); }
class Rectangulo
double ladoA;
double ladoB;
double diagonal;
```

Tarefas:

3) Criar uma função Dif que retorna a diferença entre os lados A e B.

```
public static double Dif(Rectangulo R)
{ return Math.abs(R.ladoA - R.ladoB); }
```

Tarefas:

3) Criar uma função Dif que retorna a diferença entre os lados A e B.

```
public class rect
public static void main(String[] args)
   Rectangulo rect = new Rectangulo();
   rect.ladoA = 7.0;
   rect.ladoB = 10.0;
   System.out.println("diferenca = "+Dif(rect));
public static double Dif(Rectangulo R)
  return Math.abs(R.ladoA - R.ladoB); }
class Rectangulo
double ladoA;
double ladoB;
double diagonal;
```

diferenca = 3.0

Código completo:

```
import java.util.*;
public class rect
{ static Random rand = new Random();
public static void main(String[] args)
{ Rectangulo rect = new Rectangulo();
   G(rect);
   System.out.println("lado A = "+rect.ladoA);
                                                         lado A = 7.0
   System.out.println("lado B = "+rect.ladoB);
   System.out.println("diagonal = "+Diag(rect));
                                                         lado B = 3.0
   System.out.println("diferenca = "+Dif(rect));
                                                         diagonal = 7.615773105863909
                                                         diferenca = 4.0
public static void G(Rectangulo R)
R.ladoA = (double)(rand.nextInt(8) + 2);
R.ladoB = (double)(rand.nextInt(8) + 2); }
public static double Diag(Rectangulo R)
{ return Math.sqrt(Math.pow(R.ladoA,2)+Math.pow(R.ladoB,2)); }
public static double Dif(Rectangulo R)
{ return Math.abs(R.ladoA - R.ladoB); }
class Rectangulo
double ladoA;
double ladoB;
double diagonal;
```

O que é uma referência

```
dados d = new dados();
//....
class dados
{ int a = 10, int b = 20; }
```

- 1. Para os tipos novos (para registos) memória deve ser reservada, por exemplo, **new** dados();
- 2. Na linha dados d = **new** dados(); d é uma referência que significa onde fica na memória o objeto novo que foi criado
- 3. De notar que memória foi reservada fora de funções
- 4. Vamos chamar uma função f e passar d como argumento f(d);
- 5. Agora o argumento d dentro da função f pode utilizar dados na memoria fora da função f
- 6. Quando a função f terminar a memória da função vai ser distruída mas a memória fora da função não vai ser distruída. Por isso todas as alterações do objeto feitas pela função f são válidas depois de terminação da função.
- 7. Para aceder um campo do objeto é necessário utilizar: *referencia.nome_do_campo*, por exemplo: d.a

O que é uma referência

```
import java.util.*;
public class trocar
 public static void trocar(dados d, int a, int b)
  int tmp;
  tmp = d.a; d.a = d.b; d.b = tmp;
  tmp = a; a = b; b = tmp;
public static void main(String[] args)
 dados d = new dados();
 int a=10, b=20;
 System.out.printf("d.a = %d; d.b= %d\n", d.a, d.b);
 System.out.printf("a = %d; b= %d\n", a, b);
 trocar(d,a,b);
 System.out.printf("d.a = %d; d.b= %d\n", \cap
 System.out.printf("a = %d; b= %d\n", a, b)
}}
class dados
\{ int a = 10; \}
  int b = 20; }
```


Troca de valores foi feita através de referências e não foi feita através de valores

