Cuestiones tema 1 (parte II-a) Geometría molecular

Selección de las propuestas en el texto de Brown

Geometría molecular, modelo RPECV

- **C 1** (9-21).- ¿Cuántos pares de electrones no enlazantes existen en cada una de las siguientes moléculas: a) $(CH_3)_2S$, b) HCN, c) H_2C_2 , d) CH_3F .
- **C 2 (9-22).-** Describe la geometría ideal para entidades moleculares donde el átomo central se rodee de los siguientes dominios electrónicos (o grupos electrónicos): a) 3, b) 4, c) 5, d) 6.
- C 3 (9-19).- Indica las geometrías de las moléculas del tipo: a) AX₄, b) AX₃E₂, c) AX₅E, d) AX4E₂.
- **C 4 (9-28).-** Representa la estructura de Lewis para cada una de las moléculas o iones y predice su geometría molecular: a) AsF₃, b) CH₃⁺, c) BrF₃, d) ClO₃⁻, e) XeF₂, f) BrO₂⁻.
- C 5 (9-31).- Escribe los valores aproximados para los ángulos de enlace indicados en las moléculas siguientes:

C 6 (9-32).- Escribe los valores aproximados para los ángulos de enlace indicados en las moléculas siguientes:

- **C 7 (9-33).-** ¿En cuál de las siguientes moléculas o iones AF_n hay más de un ángulo de enlace F-A-F de las siguientes moléculas: PF_5 , SF_4 , AsF_3 .
- **C 8** (9-34).- Las tres especies NH_2^- , NH_3 y NH_4^+ tienen ángulos de enlace H-N-H de 105°, 107° y 109°, respectivamente. Explica esta variación en los ángulos de enlace.
- **C 9 (9-35).-** Explica por qué la molécula BrF_4^- es cuadrada plana mientras que la BF_4^- es tetraédrica. (b) El agua, H_2O , es una molécula angular. ¿Cuál seria la forma del ion molecular formado a partir de la molécula de agua si pudiera eliminar cuatro electrones para formar la especie $(H_2O)^{4+}$.
- **C 10** (9-36a).- Explique por qué los siguientes iones tienen diferentes ángulos de enlace: CIO_2^- y NO_2^- . Predice el ángulo de enlace aproximado para cada caso.

12/9/2016 1

C 11 (9-36b).- Explique por qué la molécula de XeF₂ es lineal y no angular.

C 12.- Predecir de acuerdo con la teoría de repulsión de pares de electrones de valencia las estructuras de la siguientes moléculas e iones: a) TeCl₄ b) ICl₂⁺ c) ClF₃ d) SO₂ e) XeF₄ f) OCN⁻

C 13.- Indicar que ángulo de enlace será mayor y por qué en cada uno de lo siguientes pares de moléculas: a) CH₄, NH₃, b) OF₂, OCI₂, c) NH₃, PH₃

C 14.- Determine la forma de las siguientes moléculas e iones haciendo uso del modelo RPECV

a) SH₂, b) PCl₅, c) Cl₂F₃P, d) ICl₂, e) GeCl₄, f) GeCl₃, g) CIF₃, h) BrF₆.

C 15.- Usando el modelo RPECV, determine la geometría de las siguientes moléculas e iones:

a) SbCl₅, b) SO₃, c) CCl₂O, d) PCl₃O, e) IO₃-, f) XeO₂F₂, g)IF₅, h) SF₆, i) I₃-.

C 16.- ¿En cuales de las siguientes moléculas el ángulo de enlace es mayor que 109.5°?

a) H₂O, b) CO₂, c) CCl₄, d) SH₂, e) PCl₃.

C 17.- Describa los ángulos de enlace en el XeOF₄ en función de los ángulos ideales.

Polaridad molecular

C 18 (9-40a).- La molécula de PH_3 es polar. ¿De qué manera esta evidencia experimental demuestra que la molécula no puede ser plana.

C 19 (9-40b).- El ozono, O₃, presenta un momento dipolar pequeño. Explica cómo es esto posible, dado que todos los átomos son iguales.

C 20 (9-42).- a) ¿Qué condiciones se deben cumplir si una molécula con enlaces polares es no polar? B) ¿Qué geometrías darán moléculas no polares para entidades moleculares del tipo AX_2 , AX_3 y AX_4 (sin pares solitarios en torno al átomo central)?

C 21 (9-36).- Predice si cada una de las moléculas siguientes es polar o no polar: a) CCl_4 , b) NH_3 , c) SF_4 , d) XeF_4 , e) CH_3Br , f) GaH_3 .

C 22 (9-46).- El diclorobenceno, $C_6H_4Cl_2$, existe en tres formas isoméricas diferentes, llamados orto, meta y para. ¿Cuál de estos tiene un momento dipolar diferente de cero?

C 23.- ¿Cuales de entre las siguientes moléculas tendrán momento dipolar?

a) CS₂, b) BeCl₂, c) SnCl₂, d) H₂S, e) SCl₂.

C 24.- Los momentos dipolares de SO₂ y CO₂ son 5.37x10⁻³⁰ C m y cero, respectivamente. ¿Qué se puede decir acerca de la forma de estas dos moléculas?.

12/9/2016 2