Exercises for K-Means

Jordan Boyd-Graber Digging into Data

April 7, 2013

1 Clustering Example

2 K-means Algorithm

Input: A set of data points $X \equiv \{x_1, x_2, \dots x_N\}$, a number of clusters K, and initial means $M = \{\mu_1, \dots \mu_K\}$.

Output: Updated means $\{\mu_1, \dots \mu_K\}$ and cluster assignments $\{z_1, \dots z_N\}$. Such that $f(X, Z, M) = \sum_i ||x_i - \mu_{z_i}||$ is minimized.

While f(X, Z, M) has not converged:

- 1. Assign each x_i to the mean c such that $d(\mu_c, x_i)$ is smallest $(z_i = c)$.
- 2. Recompute each of the means: $\mu_j = \frac{1}{V_j} \sum_i \mathbbm{1}[z_i = j] x_i$

3 K-means Warmup

3.1 Two Cluster 1

Updated Means:

$$\mu_A = \frac{1}{4} ((-3,3) + (3,-3) + (4,-3) + (4,-4))$$

=

$$\mu_B = \frac{(-4,3) + (-4,4)}{2}$$

=

3.2 Two Cluster 2

Updated Means:

$$\mu_A = \frac{(3,-3) + (4,-3) + (4,-4)}{3}$$

=

$$\mu_B = \frac{(-4,3) + (-4,4) + (-3,3)}{3}$$

=

3.3 Two Cluster 3

Updated Means:

$$\mu_A = \frac{(3, -3) + (4, -3) + (4, -4)}{3}$$

=

$$\mu_B = \frac{(-4,3) + (-4,4) + (-3,3)}{3}$$

=

4 Four Clusters

4.1 Four Clusters 1

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$

4.2 Four Clusters 2

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$

4.3 Four Clusters 3

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$

4.4 Four Clusters 4

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$

5 Strange Initialization

5.1 Strange Initialization 1

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$

5.2 Strange Initialization 2

Updated Means:

$$\mu_A =$$

$$\mu_B =$$

$$\mu_C =$$

$$\mu_D =$$