BRAKE AND BLINKER LIGHTS DETECTION FOR VEHICLE SAFETY APPLICATIONS

Ho Chi Minh City University of Information Technology

Instructor:

MS. Nguyễn Văn Kiệt BS. Lưu Thanh Sơn

Group members:

Trần Đăng Khoa – 18520936

Hoàng Đình Quang – 18521294

Nguyễn Thế Mạnh – 18521084

Content

- Introduction
- Dataset
- Approach
- Experiment results & Evaluation
- Conclusion
- Future works
- Demonstration

Introduction

Input: a image or video of traffic on the road.

Output: a image or video has been detected signal lights.

Input

Output

Collected data: 6392 images

30512 annotated object (average 4-7 objects/image)

Training set: 4473 images Validation set: 1280 images

Test set: 639 images

	Motobike	Automobile		
Phanh	Brake Light	Auto Brake Light		
Xi nhan trái	Left Blinker	Auto Left Blinker		
Xi nhan phải	Right Blinker	Auto Right Blinker		
Xi nhan trái và Phanh	Left Blinker & Brake	Auto Left Blinker & Brake		
Xi nhan phải và Phanh	Right Blinker & Brake	Auto Right Blinker & Brake		

- Data is labeled according to the following rules:
- Tool: LabelImg

Approach

- For the best experiment results, we use 3 models and compared the results:
 - Faster R-CNN
 - YOLOv4
 - YOLOv5
- The obtained results are evaluated based on IoU (Intersection over Union) and mAP (mean Average Precision).

Faster R-CNN

YOLOv4 & YOLOv5

YOLOV4 & YOLOV5

- Backbone: CSPDarknet53
- Neck: FPN, PAN, NAS-FPN, BiFPN...
- Head: tương tự như YOLOv3
- Bag of Freebies: data augmentation, class imbalance, cost function, soft labeling...
- Bag of Specials: feature, skip-connection, FPN (Feature Paramyd Network), NMS (Non Maximum Suppression)...

Intersaction over Union (IoU)

- Intersection over Union is an evaluation metric used to measure the accuracy of an object detector on a particular dataset.
- An Intersection over Union score > 0.5 is normally considered a "good" prediction.

Mean Average Precision (mAP)

$$AP = \sum (r_{n+1} - r_n) p_{interp}(r_{n+1})$$

$$p_{interp}(r_{n+1}) = \max_{\tilde{r} \ge r_{n+1}} p(\tilde{r})$$

Experiment results & Evaluation

mAP

Model	mAP@0.5	mAP@0.75	F1-Score@0.5	F1-Score@0.75
Faster R-CNN	0.810	0.5677	0.83	0.59
YOLOv4	0.962	0.717	0.94	0.71
YOLOv5	0.981	0.609	0.96	0.69

Model	Brake Light	Left Blinker	Right Blinker	Left Blinker & Brake	Right Blinker & Brake	Auto Brake Light	Auto Left Blinker	Auto Right Blinker	Auto Left Blinker & Brake	Auto Right Blinker & Brake
Faster R-CNN	0.7317	0.6500	0.6140	0.5249	0.6710	0.4483	0.4926	0.5270	0.4720	0.5459
YOLOv4	0.8268	0.8371	0.8005	0.8088	0.8234	0.4886	0.5880	0.6872	0.6462	0.6633
YOLOv5	0.9730	0.9457	0.8714	0.8329	0.8544	0.2370	0.3192	0.3478	0.3510	0.3640

Experiment results & Evaluation

• IoU

Model	Average IOU
Faster R - CNN	57.23
YOLOv4	65.08
YOLOv5	62.20

Conclusion

- YOLOv4 model is the best of the 3 experimented models because it gives relatively good results in all classes.
- Although YOLOv5 model gives good results in the motorcycle classes, the results in the auto classes are very bad.
- Faster R-CNN model gives low results in all classes

Future Works

- Increasing the amount of data.
- Applying method Kalman filter to boost accuracy.

Feature Work

