Naïve Bayes Classification

From the text book and from other lecture notes on Bayesian

1

Background

Important ML taxonomy for learning models

probabilistic models vs non-probabilistic models discriminative models vs generative models

2

Probability Basics

- Prior, conditional and joint probability for random variables
 - Prior probability: P(x)
 - Conditional probability: $P(x_1 | x_2), P(x_2 | x_1)$
 - Joint probability: $\mathbf{x} = (x_1, x_2), P(\mathbf{x}) = P(x_1, x_2)$
 - Relationship: $P(x_1, x_2) = P(x_2 | x_1)P(x_1) = P(x_1 | x_2)P(x_2)$
 - Independence:

$$P(x_2 | x_1) = P(x_2), P(x_1 | x_2) = P(x_1), P(x_1, x_2) = P(x_1)P(x_2)$$

• Bayesian Rule

3

Probabilistic Classification Principle

- Establishing a probabilistic model for classification
 - Discriminative model

$$P(c \mid \mathbf{x}) \quad c = c_1, \dots, c_L, \mathbf{x} = (x_1, \dots, x_n)$$

- To train a discriminative classifier regardless its probabilistic or nonprobabilistic nature, all training examples of different classes must be jointly used to build up a single discriminative classifier.
- Output L probabilities for L class labels in a probabilistic
- description of the classifier while a single label is achieved by a non-

Λ

Probabilistic Classification Principle

- Establishing a probabilistic model for classification (cont.)
 - Generative model (must be probabilistic)

$$P(\mathbf{x} \mid c) \quad c = c_1, \dots, c_L, \mathbf{x} = (x_1, \dots, x_n)$$

$$\mathbf{x} = (x_1, x_2, \dots, x_n)$$

- L probabilistic models have to be trained independently
- Each is trained on only the examples of the same label
- Output L probabilities for a given input with L models
- "Generative" means that such a model produces data subject to the distribution via sampling.

5

5

Probabilistic Classification Principle

- Maximum A Posterior (MAP) classification rule
 - For an input x, find the largest one from L probabilities output by a discriminative probabilistic classifier $P(c_1 \mid \mathbf{x}), ..., P(c_r \mid \mathbf{x})$.
 - Assign x to label c^* if $P(c^*|x)$ is the largest.
- Generative classification with the MAP rule
 - Apply Bayesian rule to convert them into posterior probabilities

$$P(c_i \mid \mathbf{x}) = \frac{P(\mathbf{x} \mid c_i)P(c_i)}{P(\mathbf{x})} \propto P(\mathbf{x} \mid c_i)P(c_i)$$

$$for i = 1, 2, \dots, L$$
Common factor for all L probabilities

Then apply the MAP rule to assign a label

6

Naïve Bayes

Bayes classification

$$P(c \mid \mathbf{x}) \propto P(\mathbf{x} \mid c)P(c) = P(x_1, \dots, x_n \mid c)P(c)$$
 for $c = c_1, \dots, c_L$.

Difficulty: learning the joint probability is infeasible!

- Naïve Bayes classification $P(x_1, \dots, x_n \mid c)$
 - Assume all input features are class conditionally independent!

$$P(x_{1}, x_{2}, \dots, x_{n} | c) = P(x_{1} | x_{2}, \dots, x_{n}, c) P(x_{2}, \dots, x_{n} | c)$$

$$= P(x_{1} | c) P(x_{2}, \dots, x_{n} | c)$$

$$= P(x_{1} | c) P(x_{2} | c) \dots P(x_{n} | c)$$

Apply the MAP classification rule: assign $\mathbf{x}' = (a_1, a_2, \dots, a_n)$ to c^* if

 $[P(a_1 | c^*) \cdots P(a_n | c^*)]P(c^*) > [P(a_1 | c) \cdots P(a_n | c)]P(c), c \neq c^*, c = c_1, \dots, c_L$

estimate of $P(a_1, \dots, a_n \mid c^*)$

esitmate of $P(a_1, \dots, a_n \mid c)$

7

Some Applications Include

- Identifying the types of iris flower
 - Given a set of features of iris flower, identify the specific class.
- Medical Diagnosis
 - Given a list of symptoms, predict whether a patient has cancer or not
- Weather
 - Based on temperature, humidity, etc... predict if it will rain tomorrow

Bayesian Classification

- Problem statement:
 - o Given features X₁,X₂,...,Xn
 - Predict a label Y

9

Another Application

■ Digit Recognition (from the MNIST fata set)

- $X_1,...,X_n \in \{0,1\}$ (Black vs. White pixels)
- Y ∈ {5,6} (predict whether a digit is a 5 or a 6)

The Bayes Classifier

A good strategy is to predict:

$$\arg\max_{Y} P(Y|X_1,\ldots,X_n)$$

- (for example: what is the probability that the image represents a 5 given its pixels?)
- So ... how do we compute that?

11

The Bayes Classifier

Use Bayes Rule!

$$P(Y|X_1,\ldots,X_n) = \frac{P(X_1,\ldots,X_n|Y)P(Y)}{P(X_1,\ldots,X_n)}$$

Normalization Constant

Why did this help? Well, we think that we might be able to specify how features are "generated" by the class label

The Bayes Classifier

Let's expand this for our digit recognition task:

$$P(Y = 5|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 5)P(Y = 5)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

$$P(Y = 6|X_1, ..., X_n) = \frac{P(X_1, ..., X_n|Y = 6)P(Y = 6)}{P(X_1, ..., X_n|Y = 5)P(Y = 5) + P(X_1, ..., X_n|Y = 6)P(Y = 6)}$$

 To classify, we'll simply compute these two probabilities and predict based on which one is greater

13

Model Parameters

 For the Bayes classifier, we need to "learn" two functions, the likelihood and the prior

How many parameters are required to specify the prior for our digit recognition example?

Model Parameters

- How many parameters are required to specify the likelihood?
 - (Supposing that each image is 30x30 pixels)

15

Model Parameters

- The problem with explicitly modeling $P(X_1,...,X_n|Y)$ is that there are usually way too many parameters:
 - We'll run out of space
 - We'll run out of time
 - And we'll need tons of training data (which is usually not available)

The Naïve Bayes Model

- The Naïve Bayes Assumption: Assume that all features are independent given the class label Y
- Equationally speaking:

$$P(X_1,\ldots,X_n|Y) = \prod_{i=1}^n P(X_i|Y)$$

(We will discuss the validity of this assumption later)

17

Why is this useful?

- # of parameters for modeling $P(X_1,...,X_n|Y)$:
 - o 2(2ⁿ-1)
- # of parameters for modeling $P(X_1|Y),...,P(X_n|Y)$
 - o 2n

Naïve Bayes Training

Now that we've decided to use a Naïve Bayes classifier, we need to train it with some data:

MNIST Training Data

19

Naïve Bayes Training

- Training in Naïve Bayes is easy:
 - Estimate P(Y=v) as the fraction of records with Y=v

$$P(Y=v) = \frac{Count(Y=v)}{\#\ records}$$

 Estimate P(X_i=u|Y=v) as the fraction of records with Y=v for which X_i=u

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v)}{Count(Y = v)}$$

(This corresponds to Maximum Likelihood estimation of model parameters)

Naïve Bayes Training

- In practice, some of these counts can be zero
- Fix this by adding "virtual" counts:

$$P(X_i = u | Y = v) = \frac{Count(X_i = u \land Y = v) + 1}{Count(Y = v) + 2}$$

- (This is like putting a prior on parameters and doing MAP estimation instead of MLE)
- This is called Smoothing

21

Naïve Bayes Training

 For binary digits, training amounts to averaging all of the training fives together and all of the training sixes together.

23

Outputting Probabilities

- What's nice about Naïve Bayes (and generative models in general) is that it returns probabilities
 - These probabilities can tell us how confident the algorithm is
 - So... don't throw away those probabilities!

Performance on a Test Set

Naïve Bayes is often a good choice if you don't have much training data!

25

Naïve Bayes Assumption

- Recall the Naïve Bayes assumption:
 - o that all features are independent given the class label Y

Does this hold for the digit recognition problem?

Exclusive-OR Example

- For an example where conditional independence fails:
 - \circ Y=XOR(X₁,X₂)

X ₁	X ₂	P(Y=0 X ₁ ,X ₂)	P(Y=1 X ₁ ,X ₂)
0	0	1	0
0	1	0	1
1	0	0	1
1	1	1	0

27

- Actually, the Naïve Bayes assumption is almost never true
- Still... Naïve Bayes often performs surprisingly well even when its assumptions do not hold

Numerical Stability

- It is often the case that machine learning algorithms need to work with very small numbers
 - Imagine computing the probability of 2000 independent coin flips
 - MATLAB thinks that $(.5)^{2000}=0$

29

Numerical Stability

- Instead of comparing $P(Y=5|X_1,...,X_n)$ with $P(Y=6|X_1,...,X_n)$,
 - Compare their logarithms

$$\log (P(Y|X_1, ..., X_n)) = \log \left(\frac{P(X_1, ..., X_n|Y) \cdot P(Y)}{P(X_1, ..., X_n)}\right)$$

$$= \text{constant} + \log \left(\prod_{i=1}^n P(X_i|Y)\right) + \log P(Y)$$

$$= \text{constant} + \sum_{i=1}^n \log P(X_i|Y) + \log P(Y)$$

Recovering the Probabilities

Suppose that for some constant K, we have:

$$\log P(Y=5|X_1,\ldots,X_n)+K$$

And

$$\log P(Y=6|X_1,\ldots,X_n)+K$$

How would we recover the original probabilities?

31

Recovering the Probabilities

- Given: $\alpha_i = \log a_i + K$
- Then for any constant C:

$$\frac{a_i}{\sum_i a_i} = \frac{e^{\alpha_i}}{\sum_i e^{\alpha_i}}$$

$$= \frac{e^C \cdot e^{\alpha_i}}{\sum_i e^C \cdot e^{\alpha_i}}$$

$$= \frac{e^{\alpha_i + C}}{\sum_i e^{\alpha_i + C}}$$
estion: set C such that

• One suggestion: set C such that the greatest α_i is shifted to zero:

$$C = -\max_{i} \{\alpha_i\}$$

Recap

- We defined a Bayes classifier but saw that it's intractable to compute P(X₁,...,X_n|Y)
- We then used the Naïve Bayes assumption that everything is independent given the class label Y
- A natural question: is there some happy compromise where we only assume that some features are conditionally independent?

33

Conclusions

- Naïve Bayes is:
 - Really easy to implement and often works well
 - Often a good first thing to try
 - Commonly used as a "punching bag" for smarter algorithms