МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4 по дисциплине «Алгоритмы и структуры данных» Тема: Сортировки

Студент гр. 9381	Игнашов В.М
Преподаватель	Фирсов М.А.

Санкт-Петербург 2020

Цель работы.

Реализовать алгоритм сортировки. Использовать шаблоны для сортировки разных типов данных.

Задание.

21. Соломонова сортировка.

Выполнение работы.

В коде используется структура данных вектора, подключаемая библиотекой vector, которая является аналогом динамического массива с методами взаимодействия с ним.

Алгоритм использует принципы приблизительного распределения элемента с последующей вставкой:

- 1. Найти минимум, максимум в массиве, на их базе высчитывается дельта:
- 2. «Время разбрасывать камни» С помощью вычисленного значения дельты приблизительно высчитывается должное положение элемента: $NewIndex(A_i) = \frac{A_i A_{min}}{delta} + 1$
- 3. «Время собирать камни» После предыдущего шага на каждой позиции в итоговом массиве могут лежать несколько элементов. В таким случае необходимо отсортировать между собой и последовательно склеить все получившиеся мини-блоки.

Сложность алгоритма(в худшем случае) — $_{O(N^2)}$

Сложность алгоритма(в лучшем случае) — O(N)

void sortSolomon(vector<T>*arr):

Входные данные - вектор шаблонных значений arr.

Этап 1: Создание дельты.

В цикле, проходясь по всему массиву вычисляем наименьшее и наибольшее значение, сравнивая с прошлыми значениями в шаблонных min и max.

Вычисляем значение дельты по формуле.

Создаем вектор векторов, для записи в каждый элемент нескольких элементов исходного массива и переходим к этапу 2.

Этап 2: Время раскидывать камни

Задаем массиву размер исходного массива+2, чтобы не выйти за границы при неожиданных значениях в массиве.

Для каждого элемента в исходном массиве высчитываем его примерную позицию в конечном массиве и записываем его в вектор, содержащийся на этой позиции, фиксируя все промежуточные результаты.

Переходим к этапу 3.

Этап 3: Время собирать камни.

Очищаем исходный массив, чтобы заново перезаписать в него значения в правильном порядке.

Двигаемся по временному вектору и для каждой позиции сортируем стандартно пузырьком те значения, что лежат на этой позиции. Тем самым пройдя по всему массиву мы будем иметь мини-блоки, в котором начальный элемент следующего блока больше последнего в предыдущем, а сами блоки отсортированы, в таком случае склеиваем получившиеся блоки, записывая подряд все значения в главный массив.

В главной функции программы происходит выбор ввода и считывание из него исходного массива, он записывается в два вектора, один – используемый в нашей сортировке, второй – используемый в сортировке методом стандартной библиотеки.

Исходный массив выводится. После чего при условии, что в исходном массиве 1 или 0 элементов — выводим, что нет необходимости запускать сортировку, иначе запускаем сортировку с помощью функции void sortSolomon(vector<T>*). Выводим получившийся после сортировки массив и, отсортировав такой же второй массив стандартным методом — выводим для сравнения.

Разработанный программный код см. в приложении А.

Результаты тестирования см. в приложении В.

Выводы.

Был реализован алгоритм Соломоновой сортировки, также доступной для всех типов значений, которые могут быть преобразованы в числовые значения.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.cpp

```
#include <string>
#include <fstream>
void sortSolomon(vector<T> *arr){//Функция сортировки
   arr->clear();
            for(int k=j;k<tmp[i].size();k++)</pre>
                if (tmp[i][j]>tmp[i][k]) {
```

```
cout << arr[i] << " ";
}

sort(arr2.begin(),arr2.end());
cout << "\n0тсортированный библиотечным методом порядок:\n";
for(int i=0;i<arr2.size();i++) {
    cout << arr2[i] << " ";
}
return 0;
}
```

ПРИЛОЖЕНИЕ Б ТЕСТИРОВАНИЕ

Таблица Б - Примеры тестовых случаев

№ п/п	Входные	меры тестовых случаев Выходные данные	
	данные		
1.	3	Исходный порядок:	
	5	3 5 3 7 8 4 5 5 0 3 8 2 6	
	3	Запуск сортировки:	
	7		
	8	Найдены минимальное и максимальное значения в массиве - 0 и 8	
	4	Высчитана delta по формуле (max-min)/N = 0.615385	
	5	0-й элемент распределен в 5 клетку	
	5	Количество элементов во временном векторе векторов:	
	0	0 0 0 0 1 0 0 0 0 0 0 0 0 0	
	3		
	8	1-й элемент распределен в 9 клетку	
	2	Количество элементов во временном векторе векторов:	
	6 0 0 0 0 1 0 0 0 1 0 0 0 0		
		2-й элемент распределен в 5 клетку	
		Количество элементов во временном векторе векторов:	
		0 0 0 0 2 0 0 0 1 0 0 0 0 0	
	3-й элемент распределен в 12 клетку		
		Количество элементов во временном векторе векторов:	
		0 0 0 0 2 0 0 0 1 0 0 1 0 0	
		4-й элемент распределен в 13 клетку	
		Количество элементов во временном векторе векторов: 0 0 0 0 2 0 0 0 1 0 0 1 1 0	
		5-й элемент распределен в 7 клетку	
		Количество элементов во временном векторе векторов:	
		0 0 0 0 2 0 1 0 1 0 0 1 1 0	
		6-й элемент распределен в 9 клетку	

Количество элементов во временном векторе векторов: $0\ 0\ 0\ 0\ 2\ 0\ 1\ 0\ 2\ 0\ 0\ 1\ 1\ 0$ 7-й элемент распределен в 9 клетку Количество элементов во временном векторе векторов: $0\ 0\ 0\ 0\ 2\ 0\ 1\ 0\ 3\ 0\ 0\ 1\ 1\ 0$ 8-й элемент распределен в 1 клетку Количество элементов во временном векторе векторов: 10002010300110 9-й элемент распределен в 5 клетку Количество элементов во временном векторе векторов: 10003010300110 10-й элемент распределен в 13 клетку Количество элементов во временном векторе векторов: 10003010300120 11-й элемент распределен в 4 клетку Количество элементов во временном векторе векторов: $1\ 0\ 0\ 1\ 3\ 0\ 1\ 0\ 3\ 0\ 0\ 1\ 2\ 0$ 12-й элемент распределен в 10 клетку Количество элементов во временном векторе векторов: 10013010310120 По итогу имеем следующий временный вектор: 1:0 0: 0: 1 · 2 3:333 0: 1:4 0:

		3: 5 5 5
		1: 6
		0:
		1: 7
		2: 8 8
		0:
		Последовательно загоняем блоки, отсортировав их:
		0 2
		0 2 3 3 3
		0 2 3 3 3 4
		0 2 3 3 3 4 5 5 5
		0 2 3 3 3 4 5 5 5 6
		0 2 3 3 3 4 5 5 5 6 7
		0 2 3 3 3 4 5 5 5 6 7 8 8
		Отсортированный порядок:
		0 2 3 3 3 4 5 5 5 6 7 8 8
		Отсортированный библиотечным методом порядок:
		0 2 3 3 3 4 5 5 5 6 7 8 8
2.	-1	Исходный порядок:
	1	-1 1 0
	0	Запуск сортировки:
		Найдены минимальное и максимальное значения в массиве1 и 1
		Высчитана delta по формуле (max-min)/N = 0.666667
		0-й элемент распределен в 1 клетку
		Количество элементов во временном векторе векторов:
		1 0 0 0
		1-й элемент распределен в 4 клетку
		Количество элементов во временном векторе векторов:
		1 0 0 1
		2-й элемент распределен в 2 клетку
		Количество элементов во временном векторе векторов:
		1 1 0 1
	L	

			1
		По итогу имеем следующий временный вектор:	
		1: -1	
		1: 0	
		0:	
		1: 1	
		Последовательно загоняем блоки, отсортировав их:	
		-1	
		-1 0	
		-1 0 1	
		Отсортированный порядок:	
		-1 0 1	
		Отсортированный библиотечным методом порядок:	
		-1 0 1	
3.		Исходный порядок:	
		Нет необходимости запускать сортировку	
		Отсортированный порядок:	
		Отсортированный библиотечным методом порядок:	
4.	1	Исходный порядок:	
		1 Нет необходимости запускать сортировку	
		Отсортированный порядок:	
		1	
		Отсортированный библиотечным методом порядок:	
		1	
5.	0.34534	Исходный порядок:	Изменены
	0.213	0.34534 0.213 0.3	типы для
	0.3	Запуск сортировки:	входных
			значений в
		Найдены минимальное и максимальное значения в массиве -	главной
		0.213 и 0.34534	функции,
		Высчитана delta по формуле (max-min)/N = 0.0441133	функция
		0-й элемент распределен в 4 клетку	solomonSort(ve
		Количество элементов во временном векторе векторов:	ctor <t>*)</t>
		0 0 0 1	осталась
			неизменна
		1-й элемент распределен в 1 клетку	

		Количество элементов во временном векторе векторов:	
		1 0 0 1	
		2-й элемент распределен в 2 клетку	
		Количество элементов во временном векторе векторов:	
		1 1 0 1	
		По итогу имеем следующий временный вектор:	
		1: 0.213	
		1: 0.3	
		0:	
		1: 0.34534	
		Последовательно загоняем блоки, отсортировав их:	
		0.213	
		0.213 0.3	
		0.213 0.3 0.34534	
		Отсортированный порядок:	
		0.213 0.3 0.34534	
		Отсортированный библиотечным методом порядок:	
		0.213 0.3 0.34534	
6.	S	Wrong input!	В случае с
			целочисленны
			ми вводимыми
			данными
			добавлена
			проверка если
			std::atoi()
			некорректно
			выполняется