Machine Intelligence:: Deep Learning Week 7

Beate Sick, Elvis Murina, Oliver Dürr

Institut für Datenanalyse und Prozessdesign Zürcher Hochschule für Angewandte Wissenschaften

Part I: Preliminary, might change slightly before lecture

Winterthur, 7. April. 2020

1

Dropout

Recall: Classical Dropout only during training

Using dropout during training implies:

- In each training step only weights to not-dropped units are updated → we train a sparse sub-model NN
- For non-Bayesian NN we freeze the weights after training to a value $w \cdot p^*$

Recall: Dropout fights overfitting in a CIFAR10 CNN

Recall: Nice properties of CNNs

CNNs yield high accuracy and calibrated probabilities, but...

A non-Bayesian NN cannot ring the alarm

What happens if we present a novel class to the CNN?

We need some error bars!

From Dropout during training to MC Dropout during test time

Bayesian NN via MC Dropout

Yarin Gal et al. (2015):

Via Dropout training we learned a whole weight distribution for each connection. We can sample from this Bernoulli-kind distribution by performing dropout during test time and use the dropout-trained NN as Bayesian NN.

Gal showed that doing dropout approximates VI with a Bernoulli-kind variational distribution (instead of a Gaussian).

MC dropout NN

Weights have Bernoulli-kind distribution

When using Dropout only during training

For non-Bayesian NN we freeze the weights after training to a value $w \cdot p^*$ and use then the trained NN for prediction:

Probability of predicted class: **p**_{max}

Input: image pixel values

Recall: Classical Dropout only during training

Using dropout during training implies:

- In each training step only weights to not-dropped units are updated → we train a sparse sub-model NN
- For non-Bayesian NN we freeze the weights after training to a value $w \cdot p^*$

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

Stochastic dropout of units

MC Dropout during test time yields a multivariate predictive distribution for the parameters

Remark: Mean of marginal give components of mean in multivariate distribution.

Experiment with unknown phenotype

Probability distribution from MC dropout runs

Image with known class 15

100 MC predictions for an image with known phenotype 15

Probability distribution from MC dropout runs

Image with known class 15

100 MC predictions for an image with known phenotype 15

Image with unknown class

100 MC predictions for an image with an unknown phenotype

Comparing non-Bayesian with Bayesian NN

Non-Bayesian and Bayesian NNs

Comparing different Network types

A Non-Baysian NN learns one set of weights: the same input same output A Bayesian NN learns distribution of weights: same input different outputs

Uncertainty measures in classification

Uncertainty in non-Bayesian classification

Multinomial CPD $MN(p_1(x, w), p_2(x, w), ..., p_9(x, w))$

In a non-Bayesian NN we make for each input x ONE CPD:

Image x
MN(p1(x,w), ..., p9(x,w))

Uncertainty measures capturing the **aleatoric** uncertainty:

Negative log-Likelihood: $NLL = -\log(p_{pred})$

Entropy: $H = -\sum_{k=1}^{9} p_k \cdot \log(p_k)$

Uncertainty in Bayesian classification

In a Bayesian NN we sample T-times from the weight distributions and get each time a slightly different multinomial CPD

predict_no	Image x
1	MN(p1(x,w1),, p9(x,w1))
2	MN(p1(x,w2),, p9(x,w2))
•••	
Т	MN(p1(x,wT),, p9(x,wT))

For each class k $(k \in \{1,2,...,9\})$ we determine the mean probability: $p_k^* = \frac{1}{T} \sum_{i=1}^T p_{k_i}$

The predicted class has the highest mean probability: $p_{pred}^* = \max(p_k^*)$

Uncertainty measures including aleatoric and epistemic contributions:

Negative log-Likelihood: $NLL^* = -\log(p_{pred}^*)$

Entropy: $H^* = -\sum_{k=1}^9 p_k^* \cdot \log(p_k^*)$

Total variance: $V_{tot} = \sum_{k=1}^{9} var(p_k) = \sum_{k=1}^{9} \sum_{i=1}^{T} (p_{kt} - p_k^*)^2$

Hands-on Time

Train a CNN with only 9 of the 10 classes and investigate if the uncertainties are different when predicting images from known or unknown classes.

Looking at the predictive distribution!

Do known/novel classes yield different values for probability and uncertainty measures?

Filtering experiment based on uncertainty

Goal: Get higher accuracy by filter only predictions which are quite certainly correct

- Each prediction has an attached uncertainty measure
- Sort predictions according to the uncertainty measures
- The prediction with lowest uncertainty should yield highest prediction performance
- By successively adding predictions with increasing uncertainties should yield an decreasing prediction performance (e.g. accuracy)

Filtering experiment to compare uncertainty measures

Uncertainty from non-Bayesian NN is less good in identifying wrong classifications than uncertainty measures from Bayesian variants of the NN.

Uncertainty measures in regression

Uncertainty in non-Bayesian NN

We do predictions for 400 x-values between -10 and 30 yielding for each x a Gaussian CPD.

x1= -10	x2= -9.9		x400= 30		
$N\left(\mu_{x_{1,w}},\sigma_{x_{1,w}}\right)$	$N\left(\mu_{x_{2,w}},\sigma_{x_{2,w}}\right)$		$N\left(\mu_{x_{400,w}},\sigma_{x_{400,w}}\right)$		

Uncertainty measures capturing the **aleatoric** uncertainty at *x*:

Standard deviation: σ_x

95% CI: $\mu_x \pm 1.96 \cdot \sigma_x$

Remark:

We could also estimate the 95% CI at position x by sampling several times from the CPD and determine the 0.025 and 0.975 quantiles, yielding :

95% CI: $[q_{0.025}; q_{0.975}]$

The problem of non-Bayesian NN

Problem:
A non-Bayesian NN does extrapolation with very small uncertainty

Uncertainty in Bayesian regression NN

In a Bayesian NN we sample T-times from the weight distributions and get each time a slightly different CPD. In regression the CPD is often Gaussian.

We do predictions for 400 x-values between -10 and 30 yielding in each of the T runs a different Gaussian CPD at each x-position.

predict_no	x1= -10	x2= -9.9	 x400= 30
1	N(x1,w1,x1,w1)	N(x2,w1,x2,w1)	N(x400,w1,x400,w1)
2	N(x1,w2,x1,w2)	N(x2,w2,x2,w2)	N(x400,w2,x400,w2)
Т	N(x1,wT,x1,wT)	N(x2,wT,x2,wT)	N(x400,wT,x400,wT)

Uncertainty measures including aleatoric and epistemic contributions:

To estimate the 95% CI at position x by from each of the T CPDs and determine the 0.025 and 0.975 quantiles, yielding :

95% CI: $[q_{0.025}; q_{0.975}]$

How Bayesian NN indicate uncertainty

Conclusion

- Standard neural networks (NNs) fail to express their uncertainty (can't talk about the elephant in the room).
- Bayesian neural networks (BNNs) can express their uncertainty.
- BNNs often yield better performance than their non-Bayesian variant.
- Novel classes can be better identified with BNNs, which combine epistemic and aleatoric uncertainties compared to standard NNs.
- Variational inference (VI) and Monte Carlo dropout (MC dropout) are approximation methods that allow you to fit deep BNNs.
- TFP provides easy to use layers for fitting a BNN via VI.
- MC dropout can be used in Keras for fitting BNNs.