Прохождение внешнего курса 1 часть

Безопасность в сети

Кроитору Екатерина НБИ-бд-03-22

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	10
5	Выводы	25

Список иллюстраций

4.1	Тест 1	10
4.2	Тест 2	1
4.3	Тест 3	1
4.4	Тест 4	12
4.5	Пояснение ответа	12
4.6	Тест 5	13
4.7	Тест 6	13
4.8	Тест 7	4
4.9	Тест 8	4
4.10	Тест 9	15
4.11	Тест 10	15
4.12	Тест 11	16
4.13	Тест 12	16
4.14	Тест 13	17
4.15	Тест 14	17
4.16	Тест 15	9
4.17	Тест 16	19
4.18	Тест 17	20
4.19	Тест 18	20
4.20	Пояснение ответа	21
4.21	Тест 19	21
4.22	Пояснение ответа	22
4.23	Тест 20	22
4.24	Тест 21	23
4.25	Тест 22	24

Список таблиц

1 Цель работы

Понять, что происходит при открытии ссылки в браузере, как работает персонализация сети, Браузер TOR, анонимизация и беспроводные сети Wi-fi.

2 Задание

Выполнить тестовую часть курса

3 Теоретическое введение

Сетевой протокол - это некая последовательность правил, по которым, вопервых, устанавливается соединение между устройствами сети, то есть между вашим роутером, который, скорее всего, стоит у вас дома, и другими устройствами сети. И во-вторых, когда соединение установлено, начинается обмен данных, то есть с вашей стороны идет запрос в Сеть на открытие страницы поисковика, а к вам из Сети приходит страница этого поисковика.

Современные сетевые протоколы удобно описывать в виде модели протоколов, и современный Интернет работает в так называемой модели ТСР/IР. Название ТСР/IР состоит из двух самых популярных сетевых протоколов: это протокол ТСР и протокол IP. Мы более подробно изучим эти протоколы далее в этой лекции. Сейчас важно понимать следующее: протокол ТСР, если переводить его с английского, означает протокол управления передачей, и этот протокол отвечает за формирование пакетов данных. Все данные, которые передаются по сети, сформированы в некие пакеты, то есть в кусочки данных, в сегменты. И все данные, которые мы отправляем или получаем, мы получаем сегментировано по пакетам. Второй протокол - протокол IP, ответственный за передачу этих пакетов от одной машины к другой машине. Иными словами, он ответственен за корректную адресацию пакетов в Сети.

В модели TCP/IP существует несколько уровней, а именно 4. И сейчас мы рассмотрим последовательно все четыре уровня модели TCP/IP. На самом верхнем уровне, прикладном работают пользовательские программы, и задача прикладного уровня - обеспечить доступ для этих пользовательских программ к услугам Интернет. Мы с вами пользуемся достаточно большим спектром программ в интернете, и каждая программа использует свой протокол. Например, браузеры и веб-страницы используют протокол НТТР или его современную версию HTTPS. Ни для кого не секрет, что URL странички начинается с HTTP или HTTPS. S означает, что мы общаемся с веб-страницей по зашифрованному каналу. И более подробно мы рассмотрим протокол HTTPS в следующей лекции. Вообще, протокол HTTP(S) является примером протокола прикладного уровня, по которому передаются веб-страницы. Кроме того, мы с вами можем скачивать или загружать какие-то файлы: для этого часто используется протокол FTP. Кроме того, мы с вами пользуемся почтой, и для доставки и отправки имейлов существуют другие протоколы - протокол SMTP или протокол POP3. И в зависимости от того, что мы делаем интернете, работает тот или иной протокол прикладного уровня. Вообще, cookies переводится с английского как печенье, хотя в терминологии веб-браузинга cookie никак не переводится, термин так и остаётся куки или cookie(s). Так вот, куки - это данные, которые передаются от сервера клиенту для его идентификации. Мы далее с вами разберём, что мы понимаем под идентификацией. Вообще, cookie есть полезные, они позволяют нам комфортно проводить некоторые вещи в сети. Так, например, они сохраняют сессионную информацию. Примером является тот факт, что, когда вы, например, заходите на какой-то интернет-магазин, наполняете корзину каким-то покупками, но не завершайте покупку, а закрываете эту страницу, а потом открываете её когданибудь снова, часто получается так, что содержимое корзины запоминается. Интернет-магазин запомнил те товары, которые вы выбрали в прошлый раз, и не удалил их. Сохранил и запомнил он эту информацию как раз с помощью этих куки, которые позволили ему идентифицировать вас (ваш браузер) как человека, который хотел купить какие-то конкретные вещи. Кроме этого, куки позволяют персонализировать страницы: например, смена языка страницы, или когда браузер спрашивает, нужно ли перевести эту страницу на русский язык. А если вы попадаете на страницу с финским языком, и вы не часто или почти никогда

не смотрите страницы на финском языке, то вас спрашивают, стоит изменить язык на какой-то другой. В этой лекции мы с вами посмотрим, как работает браузер Tor и какие механизмы существуют для анонимизации пользователя в сети. Что такое Tor? Tor - это аббревиатура от the onion router или луковая маршрутизация. То есть Тог - это сеть, которая использует так называемую луковую маршрутизацию. Вообще, Tor - это еще название проекта, который предоставляет бесплатный браузер, работающий как раз вот по этой модели луковой маршрутизации. Основные задачи, которые преследуют разработчики этого браузера – это, во-первых, анонимность пользователя, и во-вторых, конфиденциальность информации, которая передается по сети с помощью браузера Tor. Вообще, WiFi - это технология беспроводной локальной сети, она основана на стандарте IEEE 802.11. IEEE – это организация, которая описывает вообще любые стандарты того, как работает интернет. В частности, она описывает, как должен работать беспроводной интернет, и номер этого стандарта 802.11, и все последующие модификации (этот стандарт модифицируется с течением времени) носят название 802.11 и далее какие-то буквы.

4 Выполнение лабораторной работы

Прикладной уровень • доступ для пользовательских программ к службам Интрнета Примеры: HTTP(S), FTP, SSH (рис. 4.1).

Рис. 4.1: Тест 1

Транспортный уровень • надежная передча данных между процессами в машине (хосте) • адрессация (для какого процесса пришел пакет) Примеры: TCP, UDP (рис. 4.2).

Рис. 4.2: Тест 2

Адрес IPv4 — набор из 4х чисел от 0 до 255, разделенные точкой (рис. 4.3).

Рис. 4.3: Тест 3

DNS (Domain Name Server) — сервер доменных имён (рис. 4.4).

Рис. 4.4: Тест 4

(рис. 4.5).

Рис. 4.5: Пояснение ответа

(рис. 4.6).

Рис. 4.6: Тест 5

Протокол http считается не надежным (рис. 4.7).

Рис. 4.7: Тест 6

Протокол https считается надежным, потому что данные шифруются (рис. 4.8).

Рис. 4.8: Тест 7

TCP = Transmission Control Protocol (протокол управления передачей), он управляет передачей и зависит и от сервера и от клиента (рис. 4.9).

Рис. 4.9: Тест 8

TLS-рукопожатие — это процесс, который запускает сеанс связи, использующий TLS (рис. 4.10).

Рис. 4.10: Тест 9

Куки, как правило, хранят в себе список параметров и их значений. Этими параметрами могут быть іd пользователя, іd сессии, иногда описан тип браузера и время запросов и некоторые действия пользователей. Опять же, если это интернет-магазин, то в куки может храниться то, что мы просматривали, какие страницы мы посещали (рис. 4.11).

Рис. 4.11: Тест 10

(рис. 4.12).

Рис. 4.12: Тест 11

куки - это данные, которые передаются от сервера клиенту для его идентификации (рис. 4.13).

Рис. 4.13: Тест 12

Откуда, например, известно, сколько раз вы посетили какой-то сайт - это записывается в куках. Хотя они и называются постоянными, как правило, у всех кук

есть срок жизни, и он также записан в ещё одном значении в куках.

Мы как пользователи не управляем, какой тип куки используется на конкретном сайте, этим занимается разработчик (рис. 4.14).

Рис. 4.14: Тест 13

В браузере Тог всегда есть три роутера, их не больше и не меньше (рис. 4.15).

Рис. 4.15: Тест 14

Посмотрим теперь, за счет чего достигается конфиденциальность. Допустим, у

нас с вами есть отправитель, мы обозначим его буквой S, и три узла: охранный А, промежуточный В и выходной С. Первым делом алгоритм выбирает выходной узел С, затем два других узла. Это выбирает встроенный алгоритм в вашем браузере, который знает, кому в итоге пакет должен прийти и какие узлы могут доставить ваш пакет тому, куда он должен прийти. Далее отправитель генерирует общие ключи с помощью определенного криптографического алгоритма, того же самого, который используется в TLS-протоколе. Он генерирует общие ключи последовательно с охранным узлом А, далее с промежуточным узлом В, а потом и с выходным узлом С. Вначале он непосредственно генерирует общий ключ KSA, то есть между отправителем S и охранным узлом A, потом охранный узел помогает сгенерировать общий ключ между S и между B, промежуточным узлом. Он перенаправляет данные, которые идут от отправителя к промежуточному узлу. Таким образом, охранный узел не знает, какой ключ между ними сгенерировался, то есть он не знает KSB. Однако он помогает при передаче публичной информации, с помощью которой два узла могут сгенерировать общий ключ. И то же самое с последним выходным узлом, тут уже и А, и В помогают перенаправлять данные в процессе генерации этого ключа.

В общем, в итоге отправитель сгенерировал общие ключи с тремя промежуточным узлами. Далее он шифрует свои данные под каждым из этих ключей. В начале он шифрует данные для выходного узла, сверху он шифрует зашифрованные уже данные с помощью ключа промежуточного узла, и наконец он шифрует данные с помощью ключа с охранным узлом и отправляет это тройное шифрование в сеть.

Первым этот шифр-текст получает охранный узел, и он его дешифрует под своим ключом, поскольку он может его корректно дешифровать. При дешифровке он понимает, что следующий в сети должен быть узел В, и он отправляет дешифрованные под своим ключом данные в узел В. Узел В видит, что ему пришли какие-то данные, у него есть свой ключ для того, чтобы дешифровать эти данные. Он дешифрует их и видит, что этот пакет должен идти в узел С, и направляет этот пакет зашифрованный уже только под одним ключом С соответственно в узел С (рис. 4.16).

Рис. 4.16: Тест 15

(рис. 4.17).

Рис. 4.17: Тест 16

(рис. 4.18).

Рис. 4.18: Тест 17

WiFi – это технология беспроводной локальной сети на основе стандартов IEEE 802.11 (рис. 4.19).

Рис. 4.19: Тест 18

(рис. 4.20).

Рис. 4.20: Пояснение ответа

(рис. 4.21).

Рис. 4.21: Тест 19

(рис. 4.22).

Рис. 4.22: Пояснение ответа

(рис. 4.23).

Рис. 4.23: Тест 20

В WPA алгоритмах используется шифрование AES. Это симметричное шифрование. Это означает, что на моем смартфоне или на моем компьютере, а также на роутере есть какой-то общий секретный ключ длиннее 128 бит. Общий сек-

ретный ключ мы генерируем, когда мы подключаемся к WiFi сети с помощью пароля. Так, мы задаем какой-то пароль у себя, дальше происходит генерация общего ключа, с помощью которого на моей стороне (на смартфоне) происходит шифрование данных, а на роутере происходит дешифрование этих же самых данных с помощью того же общего ключа. Кроме того, что мы шифрует данные, мы также хотим, чтобы они были аутентифицированы, то есть чтобы не было возможности у стороннего человека подключиться к нашей сети WiFi (рис. 4.24).

Рис. 4.24: Тест 21

WPA2 Personal: аутентификация по паролю (используется в домашних сетях) (рис. 4.25).

Рис. 4.25: Тест 22

5 Выводы

Мы поняли, что происходит при открытии ссылки в браузере, как работает персонализация сети, Браузер TOR, анонимизация и беспроводные сети Wi-fi.