

Network Security (Part 2)

Andy Carpenter (Andy.Carpenter@manchester.ac.uk)

Elements these slides come from Kurose and Ross, authors of "Computer Networking: A Top-down Approach", and are copyright Kurose and Ross

Confidentiality: Secure Email

- Alice:
 - generates random symmetric private key, K_S
 - encrypts message with K_S (for efficiency)
 - also encrypts K_S with Bob's public key
 - sends both K_S(m) and K_B⁺ (K_S) to Bob

Confidentiality: Secure Email

- Bob:
 - uses his private key to decrypt and recover K_S
 - uses K_S to decrypt $K_S(m)$ to recover m

Sender Authentication: Secure Email

- Alice:
 - digitally signs message.
 - sends both message (in the clear) and digital signature.

Sender Authentication: Secure Email

 Alice wants to provide secrecy, <u>sender authentication</u>, message integrity.

Alice uses three keys: her private key, Bob's public key, newly created symmetric key

Public Key Distribution

Remember man-in-the-middle

- Cryptography depends on knowing public keys
- Sending keys without protection means no confirmation of owner
- But, modification protection requires a key ...
- Use digital certificates; aspects:
 - using digital certificates to verify public keys
 - building "chains of trust" using certificates

Digital Certificates

Certificates: Chains of Trust

P&D: 8.2.3

Digital Certificates: Revocation

- Necessary if, for example, private key becomes known
- This permits impersonation; so, must invalidate:
 - all certificates associated with compromised key
- Basic mechanism is CAs publish, at known location:
 - signed certificate revocation lists (CRLs)
- When receiver is validating a certificate:
 - consults CAs CRL to check certificate is not revoked
- One reason for lifetime of certificates,
 - means can eventually be removed from CRLs

Certificates: Example x509 Certificate

```
Certificate:
        Data:
           Version: 1 (0x0)
            Serial Number: 1 (0x1)
                                                                   Issuer/CA
            Signature Algorithm: md5WithRSAEncryption
            Issuer: C=UK, L=Manchester, O=University of Manchester,
   Certificate
               Not Before: Apr 16 13:28:56 2003 GMT
   lifetime
                                                           Entity being
                Not_After: Apr 13 13:28:56 2013 GMT
            Subject: ..., CN=Andy.Carpenter@cs.man.ac.uk
                                                           certified
            Subject Public Key Info:
                                                            Key algorithm
                Public Key Algorithm: rsaEncryption
                RSA Public Key: (1024 bit)
                                                            and
                   Modulus (1024 bit):
                       00:b9:d8:c6:d0:19:d6:e8:3a:00:9c:74:6b:75:45:
                                                                        Key
Signature
                   Exponent: 65537 (0x10001)
algorithm: md5WithRSAEncryption
            27:de:40:31:54:ce:55:29:1f:26:29:42:e7:bd:9e:a0:8a:92:
    COMP28411: Computer Networks
                                            Network Applications
                                                                             53
```


Implementing Network Security

- Implemented various levels of network
- Application, e.g. PGP, SSH
 - provides application-to-application security
 - each application must implement its own security
- Transport, e.g. TLS/SSL
 - provides application-to-application security
 - single implementation for all applications
- Network, e.g. IPSEC
 - used to build complete secure networks

Transport Layer Security (TLS)/SSL

normal application

application with SSL

- Transport protocol with built-in security mechanisms
- Provides security to any TCP-based application
 - e.g., e-commerce via web (https)
- Security services:
 - server authentication, data encryption
 - client authentication (optional)

handshake: ClientHello

handshake: ServerHello

handshake: Certificate

handshake: ServerHelloDone

handshake: ClientKeyExchange ChangeCipherSpec

handshake: Finished

ChangeCipherSpec

handshake: Finished

application_data

application_data

Alert: warning, close_notify

TCP FIN follows

everything

henceforth

is encrypted

Real SSL

connection

IPSEC

P&D: 8.3.4

- Framework providing security services including
 - access control, integrity, authentication
 - protection against replay, confidentiality
- Modula
- Allows section of security services used
- Granularity secured, e.g. single TCP connection, all comms

Virtual Private Networks (VPNs)

Firewalls

firewall

isolates organization's internal net from larger Internet, allowing some packets to pass, blocking others.

Firewalls: Why?

prevent denial of service attacks:

 SYN flooding: attacker establishes many bogus TCP connections, no resources left for "real" connections

prevent illegal modification/access of internal data.

 e.g., attacker replaces CIA's homepage with something else

allow only authorized access to inside network (set of authenticated users/hosts)

three types of firewalls:

- stateless packet filters
- stateful packet filters
- application gateways

Stateless packet filtering

- internal network connected to Internet via router firewall
- router filters packet-by-packet, decision to forward/drop packet based on:
 - source IP address, destination IP address
 - TCP/UDP source and destination port numbers
 - ICMP message type
 - TCP SYN and ACK bits

Stateful packet filtering

action	source address	dest address	protocol	source port	dest port	flag bit
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK

- stateless packet filter: heavy handed tool
 - admits packets that "make no sense,"
- stateful packet filter: track status of TCP connections
 - track connection setup (SYN), teardown (FIN): can determine whether incoming, outgoing packets "makes sense"
 - timeout inactive connections at firewall: no longer admit packets

Stateful packet filtering

action	source address	dest address	proto	source port	dest port	flag bit	check conxion
allow	222.22/16	outside of 222.22/16	TCP	> 1023	80	any	
allow	outside of 222.22/16	222.22/16	TCP	80	> 1023	ACK	X
allow	222.22/16	outside of 222.22/16	UDP	> 1023	53		
allow	outside of 222.22/16	222.22/16	UDP	53	> 1023		X
deny	all	all	all	all	all	all	

 ACL augmented to indicate need to check connection state table before admitting packet

Application gateways

- filters packets on application data as well as on IP/TCP/UDP fields.
- example: allow select internal users to telnet outside.

- require all telnet users to telnet through gateway.
- 2. for authorized users, gateway sets up telnet connection to dest host. Gateway relays data between 2 connections
- 3. router filter blocks all telnet connections not originating from gateway.

Limitations of firewalls and gateways

- IP spoofing: router can't know if data "really" comes from claimed source
- if multiple app's. need special treatment, each has own app. gateway.
- client software must know how to contact gateway.
- e.g., must set IP address of proxy in Web browser

- filters often use all or nothing policy for UDP.
- tradeoff: degree of communication with outside world, level of security
- many highly protected sites still suffer from attacks.

Typical Enterprise Environments

Summary

- Keystone of security is encryption
- For authentication public-key algorithms are used
- Once authorised, participants use shared (session) key
- Session keys are used to implement privacy
- Core is mechanism used to distribute public keys
- Elements now used to build secure Internet applications
- Can implement at application, transport or network level
- Until networks fully secure:
 - firewalls provide protection from external threats