EP2 MAC5742-0219: CUDA & OpenMPI

Pedro Bruel, Anderson Andrei, Alfredo Goldman 20 de junho de 2020

1 Introdução

O objetivo do EP2 é utilizar a experiência com análise de desempenho de programas paralelos, adquirida no EP1, para planejar e analisar experimentos para determinar parâmetros de configuração de implementações CUDA e OpenMPI (OMPI) do cálculo do fractal de Mandelbrot.

2 Tarefas

As tarefas do EP2 são:

- 1. Implementar versões CUDA e OMPI do programa sequencial do EP1
 - Bônus: Versões OMPI + OMP, OMPI + CUDA
- 2. Planejar os valores a testar para os seguintes parâmetros (ver Tabela 1):
 - Número de processos (MPI)
 - \bullet Dimensões (x, y) do grid e dos blocos (CUDA)
- 3. Analisar os resultados e determinar os melhores valores para:
 - Número de processos (MPI)
 - Dimensões (x, y) do grid e dos blocos (CUDA)
 - Veja os parâmetros fixos na Tabela 1
- 4. Usando os parâmetros determinados, comparar os desempenhos das seguintes versões do programa:
 - Sequencial (versão do EP1)
 - Pthreads (versão do EP1)
 - OMP (versão do EP1)
 - CUDA
 - OMPI
 - ullet Bônus: Versões OMPI + OMP, OMPI + CUDA

3 Entrega

A entrega no edisciplinas deve ser feita por apenas um dos membros do grupo, até 30/06/2020, e deve consistir de um arquivo .tar contendo:

- 1. Versões do código implementado:
 - Sequencial, Pthreads, OMP, CUDA, OMPI
 - \bullet Bônus: OMPI + OMP, OMPI + CUDA
- 2. Makefile:
 - Um arquivo Makefile com tudo necessário para a compilação dos códigos entregues.
- 3. Jupyter Notebook (Julia, Python, ou R):

- Experimentos, gráficos, e análises de desempenho para determinar os melhores parâmetros para CUDA e OMPI (Bônus: OMPI + OMP, OMPI + CUDA)
- Comparações de desempenho entre as implementações, usando apenas os parâmetros determinados
- 4. Arquivo .pdf exportado do Notebook:
 - O arquivo deve conter as figuras geradas
- 5. Arquivos .csv com os resultados das medições
 - Todos os dados necessários para gerar as figuras do relatório deve ser enviados

4 Determinação Experimental de Parâmetros

Tabela 1: Parâmetros a determinar experimentalmente, para as diferentes bibliotecas de modelos de programação paralela e distribuída. Todos os experimentos devem usar os parâmetros fixos: Repetições = 15, Tamanho da Imagem = 4096, Região: Triple Spiral Valley

Biblioteca	Parâmetros a Determinar Experimentalmente	Trabalho
– (Sequencial)PthreadsOMP	Determinados no EP1	EP1
CUDA OMPI	Dimensões (x, y) do $grid$ e dos $blocos$ Número de processos	EP2
$\mathrm{OMPI} + \mathrm{OMP}$ $\mathrm{OMPI} + \mathrm{CUDA}$	Número de processos, número de $threads$ Número de processos, dimensões (x,y) do $grid$ e dos $blocos$	EP2: Bônus

O planejamento dos experimentos envolve a escolha de uma região de interesse para cada parâmetro. A divisão dessa região determina os valores que serão medidos experimentalmente. A região de interesse para o número de processos OMPI pode ser os valores entre 1 e 64, por exemplo, e uma divisão possível é testar apenas os múltiplos de 8. Neste caso, o experimento consiste em medir o desempenho da implementação OMPI com os números de processos [1, 8, 16, 32, 64].

Após coletar os dados deste experimento e gerar os gráficos, será possível argumentar sobre qual o melhor número de processos a se usar nos cálculos, considerando fixos o tamanho da imagem, a região do conjunto, e o número de repetições.

A determinação das dimensões (x,y) do grid e dos blocos na implementação CUDA vai depender da forma como a divisão de trabalho for escolhida, mas a determinação dos valores a testar segue a mesma metodologia do exemplo para número de processos OMPI acima.

Os melhores parâmetros para as versões Pthreads e OMP já foram determinados nos experimentos feitos no EP1, mas os experimentos devem ser refeitos com o tamanho de imagem e número de repetições padronizados. Nas implementações bônus, os parâmetros para CUDA e OMPI devem ser determinados novamente.

5 Metodologia de Avaliação

A nota do EP2 terá **peso 2** na nota final, vale no máximo **10.0**, e será calculada da seguinte forma:

- 1. Implementações feitas no EP2 (5.0)
 - Programas compilam sem erros e warnings
 - Programas executam sem erros e produzem o resultado correto
- 2. Relatório (5.0)
 - Os gráficos gerados apresentam médias e intervalos de confiança das medições feitas
 - As escolhas dos melhores valores para os parâmetros das versões implementadas no EP2 são fundamentadas pelos gráficos apresentados
 - ullet As comparações de desempenho entre as todas as versões (EP1 e EP2) são fundamentadas pelos gráficos apresentados

As implementações e o relatório para as versões bônus serão avaliados da mesma maneira, e podem valer até 2.0 pontos na média final do curso.