Itô-Deoblin formula

July 24, 2021

Outline

- ► Texbook: Section 4.4 Shreve II
- ▶ Content: a rule to differentiate $f(B_t)$
 - ► Itô formula for Brownian motion
 - ▶ Itô process and Itô formula for Itô process

► The modern theory of stochastic calculus developed from the work of Itô in 1944.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- ltô defined the integral with respect to Brownian motion.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- Itô defined the integral with respect to Brownian motion.
- ► Ito also developed the change-of-variable formula, commonly called Itô's rule or Itô's formula.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- ltô defined the integral with respect to Brownian motion.
- ► Ito also developed the change-of-variable formula, commonly called Itô's rule or Itô's formula.
- ▶ In February 1940, the French national Academy of Sciences received a document from W.Doeblin, a French soldier on the German front.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- ltô defined the integral with respect to Brownian motion.
- ► Ito also developed the change-of-variable formula, commonly called Itô's rule or Itô's formula.
- ► In February 1940, the French national Academy of Sciences received a document from W.Doeblin, a French soldier on the German front.
- Doeblin died shortly thereafter, and the document remain sealed until May 2000.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- ltô defined the integral with respect to Brownian motion.
- ► Ito also developed the change-of-variable formula, commonly called Itô's rule or Itô's formula.
- ► In February 1940, the French national Academy of Sciences received a document from W.Doeblin, a French soldier on the German front.
- ▶ Doeblin died shortly thereafter, and the document remain sealed until May 2000.
- When it was opened, the document was found to contain a construction of the stochastic integral slightly different from Ito and a clear statement of the change-of-variable formula.

- ► The modern theory of stochastic calculus developed from the work of Itô in 1944.
- ltô defined the integral with respect to Brownian motion.
- ► Ito also developed the change-of-variable formula, commonly called Itô's rule or Itô's formula.
- ► In February 1940, the French national Academy of Sciences received a document from W.Doeblin, a French soldier on the German front.
- ▶ Doeblin died shortly thereafter, and the document remain sealed until May 2000.
- When it was opened, the document was found to contain a construction of the stochastic integral slightly different from Ito and a clear statement of the change-of-variable formula.
- Because of this remarkable development, the change of variable formula is called Itô-Doeblin formula.

Table of Contents

Itô - Doeblin formula for Brownian motion

Formula for Itô Processes

How to differentiate $f(B_t)$ when B_t is non differentiable and has non zero quadratic variation?

Itô - Doeblin formula for Brownian motion

Let f(t,x) be a function for which the partial derivatives $f_t(t,x)$, $f_x(t,x)$ and $f_{xx}(t,x)$ are defined and continuous and $(B_t)_{t\geq 0}$ be a Brownian motion. Then for every T>0,

$$\begin{split} f(T,B_T) = & f(0,B_0) + \underbrace{\int_0^T f_t(t,B_t) dt}_{\text{Riemann integral}} + \underbrace{\int_0^T f_x(t,B_t) dB_t}_{\text{Itô integral}} \\ & + \frac{1}{2} \underbrace{\int_0^T f_{xx}(t,B_t) dt}_{\text{Riemann integral}} \end{split}$$

 dB_t : the change in B_t when t change a little bit dt

Proof for
$$f(x) = \frac{1}{2}x^2$$

► Taylor's formula

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2$$

for $x \approx x_0$

- Remark that f'(x) = x, f''(x) = 1
- Fix T>0 and let $\Pi=[t_0,t_1,...,t_n]$ be a partition of [0,T] then

$$f(B_T) - f(B_0) = \sum_{i=0}^{n-1} f(B_{t_{i+1}}) - f(B_{t_i})$$

$$= \sum_{i=0}^{n-1} f'(B_{t_i})(B_{t_{i+1}} - B_{t_i}) + \frac{1}{2} \sum_{i=0}^{n-1} f''(B_{t_i})(B_{t_{i+1}} - B_{t_i})^2$$

$$= \sum_{i=0}^{n-1} B_{t_i}(B_{t_{i+1}} - B_{t_i}) + \frac{1}{2} \sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2$$

Let $\|\Pi\| \to 0$, then the first time converges to an Itô integral

$$\sum_{i=0}^{n-1} B_{t_i} (B_{t_{i+1}} - B_{t_i}) \to \int_0^T B_t dB_t$$

while the second term

$$\frac{1}{2} \sum_{i=0}^{n-1} (B_{t_{i+1}} - B_{t_i})^2 \to \frac{1}{2} \langle B \rangle(T) = \frac{1}{2} T$$

Hence

$$f(B_T) - f(B_0) = \int_0^T B_t dB_t + \frac{1}{2}T$$

The Itô - Doeblin holds for $f(x) = \frac{1}{2}x^2$

$$B_T^2 - B_0^2 = \int_0^T B_t dB_t + \frac{1}{2}T$$

Proof for general f(t, x)

Taylor's expansion for f(t,x)

$$\begin{split} &f(t_{i+1},x_{i+1}) - f(t_i,x_i) \\ &= f_x(t_i,x_i)(x_{i+1} - x_i) + f_t(t_i,x_i)(t_{i+1} - t_i) \\ &+ \frac{1}{2} f_{xx}(t_i,x_i)(x_{i+1} - x_i)^2 + f_{tx}(t_i,x_i)(t_{i+1} - t_i)(x_{i+1} - x_i) \\ &+ \frac{1}{2} f_{tt}(t_i,x_i)(t_{i+1} - t_i)^2 + \text{ higher - order terms} \end{split}$$

$$f(T, B_T) - f(0, B_0) = \sum_{i=0}^{n-1} \left(f(t_{i+1}, B_{t_{i+1}}) - f(t_i, B_{t_i}) \right)$$

$$= \sum_{i=0}^{n-1} f_x(t_i, B_{t_i}) (B_{t_{i+1}} - B_{t_i}) + \sum_{i=0}^{n-1} f_t(t_i, B_{t_i}) (t_{i+1} - t_i)$$

$$+ \frac{1}{2} \sum_{i=0}^{n-1} f_{xx}(t_i, B_{t_i}) (B_{t_{i+1}} - B_{t_i})^2$$

$$+ \sum_{i=0}^{n-1} f_{tx}(t_i, B_{t_i}) (t_{i+1} - t_i) (B_{t_{i+1}} - B_{t_i})$$

$$+ \sum_{i=0}^{n-1} \frac{1}{2} f_{tt}(t_i, B_{t_i}) (t_{i+1} - t_i)^2 + \text{ higher - order terms}$$

Let $\|\Pi\| \to 0$,

► The first term converges to an Itô integral

$$\sum_{i=0}^{n-1} f_x(t_i, B_{t_i})(B_{t_{i+1}} - B_{t_i}) \to \int_0^T f_x(u, B_u) dB_u$$

▶ The second term converges to a Riemann integral

$$\sum_{i=0}^{n-1} f_t(t_i, B_{t_i})(t_{i+1} - t_i) \to \int_0^T f_t(u, B_u) du$$

▶ Approximate $(B_{t_{i+1}} - B_{t_i})^2$ by $t_{i+1} - t_i$ in the 3rd term to get

$$\frac{1}{2} \sum_{i=0}^{n-1} f_{xx}(t_i, B_{t_i}) (B_{t_{i+1}} - B_{t_i})^2$$

$$\approx \frac{1}{2} \sum_{i=0}^{n-1} f_{xx}(t_i, B_{t_i}) (t_{i+1} - t_i) \to \frac{1}{2} \int_0^T f_{xx}(u, B_u) du$$

► The 4th term contributes to 0

$$\begin{split} &\left| \sum_{i=0}^{n-1} f_{tx}(t_i, B_{t_i})(t_{i+1} - t_i)(B_{t_{i+1}} - B_{t_i}) \right| \\ &\leq \sum_{i=0}^{n-1} \left| f_{tx}(t_i, B_{t_i})(t_{i+1} - t_i)(B_{t_{i+1}} - B_{t_i}) \right| \\ &\leq \max_{0 \leq i \leq n-1} \left| B_{t_{i+1}} - B_{t_i} \right| \sum_{i=0}^{n-1} \left| f_{tx}(t_i, B_{t_i}) \right| (t_{i+1} - t_i) \\ &= \max_{0 \leq i \leq n-1} \left| B_{t_{i+1}} - B_{t_i} \right| \int_0^T \left| f_{tx}(u, B_u) \right| du \\ &\to 0 \int_0^T \left| f_{tx}(u, B_u) \right| du = 0 \end{split}$$

▶ The 5th term contributes to 0

$$\begin{split} &\left| \sum_{i=0}^{n-1} f_{tt}(t_i, B_{t_i})(t_{i+1} - t_i)^2 \right| \\ &\leq \sum_{i=0}^{n-1} \left| f_{tt}(t_i, B_{t_i})(t_{i+1} - t_i)^2 \right| \\ &\leq \max_{0 \leq i \leq n-1} |t_{i+1} - t_i| \sum_{i=0}^{n-1} |f_{tt}(t_i, B_{t_i})| (t_{i+1} - t_i) \\ &= \max_{0 \leq i \leq n-1} |t_{i+1} - t_i| \int_0^T |f_{tt}(u, B_u)| du \\ &\to 0 \int_0^T |f_{tt}(u, B_u)| du = 0 \end{split}$$

► The higher-order terms likewise contribute zero to the final answer

Differential form of Itô- Doeblin formula

Taylor's expansion

$$df(t, B_t) = f_t(t, B_t)dt + f_x(t, B_t)dB_t + \frac{1}{2}f_{xx}(t, B_t)dB_t dB_t$$
$$+ f_{tx}((t, B_t)dtdB_t + \frac{1}{2}f_{tt}(t, B_t)dtdt$$

but $dB_tdB_t=dt$, dtdt=0 and $dtdB_t=0$. So

$$df(t, B_t) = f_t(t, B_t)dt + f_x(t, B_t)dB_t + \frac{1}{2}f_{xx}(t, B_t)dt$$

 dB_t^2

Find

 dB_t^2

Solution

• Choose f such that $f(t, B_t) = B_t^2$

$$dB_t^2$$

- ► Choose f such that $f(t, B_t) = B_t^2$
- $f(t,x) = x^2$

$$dB_t^2$$

- ► Choose f such that $f(t, B_t) = B_t^2$
- $f(t,x) = x^2$
- $ightharpoonup f_t = 0$, $f_x = 2x$, $f_{xx} = 2$

Find

 dB_t^2

Solution

- Choose f such that $f(t, B_t) = B_t^2$
- $f(t,x) = x^2$
- $ightharpoonup f_t = 0$, $f_x = 2x$, $f_{xx} = 2$

$$dB_{t}^{2} = df(t, B_{t}) = f_{t}(t, B_{t})dt + f_{x}(t, B_{t})dB_{t} + \frac{1}{2}f_{xx}(t, B_{t})dt$$
$$= 0dt + 2B_{t}dB_{t} + \frac{1}{2}2dt$$
$$= 2B_{t}dB_{t} + dt$$

▶ Remark that integral form is $B_T^2 = B_0^2 + 2 \int_0^T B_t dB_t + \int_0^T dt$ or $\int_0^T B_t dB_t = \frac{1}{2} B_T^2 + \frac{1}{2} T$

Exercise

Compute

- 1. $d(tB_t)$
- 2. $d(B_t^3)$
- 3. $d\sin(B_t)$
- 4. $d\left(e^{tB_t}\right)$

Table of Contents

Itô - Doeblin formula for Brownian motior

Formula for Itô Processes

Itô processes

Let $(B_t)_{t\geq 0}$ and $(\mathcal{F}_t)_{t\geq 0}$ be an associated filtration. An Itô process is a stochastic process of the integral form:

$$X_T = X_0 + \int_0^T \mu_t dt + \int_0^T \sigma_t dB_t$$

or the differential form:

$$dX_t = \underbrace{\mu_t}_{\text{drift coefficient}} dt + \underbrace{\sigma_t}_{\text{diffusion coefficient}} dB_t.$$

Here μ_t (drift term) and σ_t (diffusion term) are adapted process of the filtration $(\mathcal{F}_t)_{t\geq 0}$.

- Consider $X_t = B_t^2$.
- ▶ Apply Itô formula for $f(X_t)$ with $f(x) = x^2$, we have

$$dX_t = 2B_t dB_t + dt$$

• $(B_t^2)_{t\geq 0}$ is a Itô process with drift coefficient $\mu=1$ and diffusion coefficient $\sigma=2B_t$

- ightharpoonup Consider $X_t = \ln B_t$.
- ▶ Apply Itô formula for $f(X_t)$ with $f(x) = \ln x$, we have

$$dX_t = \frac{1}{B_t}dB_t - \frac{1}{B_t^2}dt$$

• $(\ln B_t)_{t\geq 0}$ is a Itô process with drift coefficient $\mu=-\frac{1}{B_t^2}$ and diffusion coefficient $\sigma=\frac{1}{B_t}$

To understand the volatilities of Itô process, need to determine the rate at which they accumulate quadratic variation

Quadratic variation of Itô process

$$\langle X \rangle(T) = \int_0^T \sigma_u^2 du$$

at each time t, the process X is accumulating quadratic variation at rate $\sigma_{\scriptscriptstyle t}^2$ per unit time

Easy way to remember rate of accumulating quadratic variation

Write in differential form

$$dX_t = \mu_t dt + \sigma_t dB_t$$

$$dX_t dX_t = \mu_t^2 dt dt + 2\mu_t \sigma_t dB_t dt + \sigma_t^2 dB_t dB_t$$

• Use $dtdt = dtdB_t = 0$ and $dB_tdB_t = dt$ to get

$$dX_t dX_t = \sigma_t^2 dt$$

Integral with respect to an Itô process

Let $(X_t)_{t>0}$ be an Itô process given by

$$X_t = X_0 + \int_0^t \mu_s ds + \int_0^t \sigma_s dB_s$$

and $(\Gamma_t)_{t\geq 0}$ be an adapted process.

Then

$$\int_0^T \Gamma_s dX_s = \int_0^T \Gamma_s \mu_s ds + \int_0^T \Gamma_s \sigma_s dB_s$$

is an integral with respect to the Itô process $(X_t)_{t\geq 0}$

Itô-Doeblin formula for an Itô process

Let $(X_t)_{t\geq 0}$ be an Itô process

$$X_t = X_0 + \int_0^t \sigma_u dB_u + \int_0^t \mu_u du$$

and let f(t,x) be a function for which partial derivatives $f_t(t,x)$, $f_x(t,x)$ and $f_{xx}(t,x)$ are defined and continuous. Then for every T>0

$$f(T, X_T) = f(0, X_0) + \int_0^T f_t(t, X_t) dt + \int_0^T f_x(t, X_t) dX_t$$

$$+ \frac{1}{2} \int_0^T f_{xx}(t, X_t) d\langle X \rangle(t)$$

$$= f(0, X_0) + \int_0^T f_t(t, X_t) dt + \int_0^T f_x(t, X_t) \sigma_t dB_t$$

$$+ \int_0^T f_x(t, X_t) \mu_t dt + \frac{1}{2} \int_0^T f_{xx}(t, X_t) \sigma_t^2 dt$$

Differential form of Itô-Doeblin formula for an Itô process

$$df(t,X_t)=f_t(t,X_t)dt+f_x(t,X_t)dX_t+\frac{1}{2}f_{xx}(t,X_t)dX_tdX_t$$
 with
$$dX_tdX_t=\sigma_t^2dt$$

Find
$$d(tX_t^2)$$
 if

$$dX_t = 2dt + dB_t.$$

Find
$$d(tX_t^2)$$
 if
$$\label{eq:def} dX_t = 2dt + dB_t.$$

Solution

Find f(t,x) such that $f(t,X_t)=tX_t^2$

Find
$$d(tX_t^2)$$
 if
$$dX_t = 2dt + dB_t.$$

- Find f(t,x) such that $f(t,X_t)=tX_t^2$
- $f(t,x) = tx^2$

Find
$$d(tX_t^2)$$
 if

$$dX_t = 2dt + dB_t.$$

- ▶ Find f(t,x) such that $f(t,X_t) = tX_t^2$
- $f(t,x) = tx^2$
- $f_t = x^2, f_x = 2tx, f_{xx} = 2t$
- lacktriangle Apply Itô formula for $f(t,X_t)$ we have

$$d(tX_t^2) = f_x(t, X_t)dX_t + f_t(t, X_t)dt + \frac{1}{2}dX_t dX_t$$

= $X_t^2 dX_t + X_t^2 dt + \frac{1}{2}2t dB_t dB_t$
= $X_t^2 (2dt + dB_t) + X_t^2 dt + dt = (3X_t^2 + 1)dt + X_t^2 dB_t$

Example - Generalized Geometric Brownian Motion

Asset price

$$S_t = S_0 e^{X_t}$$

with

$$X_t = \int_0^t \sigma_s dB_s + \int_0^t (\alpha_s - \frac{1}{2}\sigma_s^2) ds$$

 $ightharpoonup dS_t = ?$

Solution

- Let $f(x) = S_0 e^x$ then $f_t = 0$, $f_x = f_{xx} = S_0 e^x$
- Apply Itô Doeblin formula

$$dS_t = S_0 e^{X_t} dX_t + \frac{1}{2} S_0 e^{X_t} dX_t dX_t$$
$$= S_t (\sigma_t dB_t + (\alpha_t - \frac{1}{2} \sigma_t^2) dt) + \frac{1}{2} S_t \sigma_t^2 dt$$

 $dS_t = \sigma_t S_t dB_t + \alpha_t dt$

The asset price S_t has instantaneous mean rate of return α_t and volatility σ_t . Both the instantaneous mean rate of return and the volatility are allowed to be time-varying and random. In the case of time-varying and random α_t , we will call this the instantaneous mean rate of return since it depends on the time (and the sample path) where it is evaluated.

Let

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

Find dY_t if $Y_t = \ln S_t$

Let

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

Find dY_t if $Y_t = \ln S_t$

$$Y_t = f(t, S_t) = \ln S_t$$

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

Find dY_t if $Y_t = \ln S_t$

- $Y_t = f(t, S_t) = \ln S_t$
- $f(t,x) = \ln x$
- $ightharpoonup f_t = 0$, $f_x = \frac{1}{x}$, $f_{xx} = -\frac{1}{x^2}$

$$dS_t = \mu S_t dt + \sigma S_t dB_t$$

Find dY_t if $Y_t = \ln S_t$

$$Y_t = f(t, S_t) = \ln S_t$$

$$f(t,x) = \ln x$$

$$f_t = 0$$
, $f_x = \frac{1}{x}$, $f_{xx} = -\frac{1}{x^2}$

$$dY_t = df(t, S_t) = f_t(t, S_t)dt + f_x(t, S_t)dS_t + \frac{1}{2}f_{xx}(t, S_t)dS_t dS_t$$

$$= 0 + \frac{1}{S_t}(\mu S_t dt + \sigma S_t dB_t) + \frac{1}{2}\left(-\frac{1}{S_t^2}\right)\underbrace{(\sigma S_t)^2}_{\sigma_t}dt$$

$$= \mu dt + \sigma dB_t - \frac{1}{2}\sigma^2 dt = \left(\mu - \frac{1}{2}\sigma^2\right)dt + \sigma dB_t$$

Integral form

$$Y_T = Y_0 + \int_0^T \left(\mu - \frac{1}{2}\sigma^2\right) dt + \sigma dB_t = \left(\mu - \frac{1}{2}\sigma^2\right) T + \sigma B_T$$

And hence

$$S_T = e^{Y_T} = e^{Y_0} e^{\left(\mu - \frac{1}{2}\sigma^2\right)T + \sigma B_T}$$

Remark that $e^{-\frac{1}{2}\sigma^2T+\sigma B_T}$ is a martingale and so μ is the rate of return.

Practice

Find
$$d(e^{-t}X_t)$$
 if
$$\label{eq:def} dX_t = X_t dt + dB_t$$