МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФАКУЛЬТЕТ ОБЩЕЙ И ПРИКЛАДНОЙ ФИЗИКИ

		_ ~		~ •	
KVPCOBAЯ	РАБОТА	11O BI	ЫЧИСЛИТЕЛЬ	НОИ МАТЕЛ	ЛАТИКЕ

« Реализация схемы расщепления для двумерного уравнения теплопроводности. »

Работу выполнил: Студента 3 курса группы Б02-114 **Лямин Василий Сергеевич**

Долгопрудный, 2023

Содержание

1.	Физическая постановка задачи	3
2.	Математическая постановка задачи	3
3.	Метод численного решения, его свойства	3
4.	Тестирование программы на точном решении	4
5.	Результаты расчётов	4
6.	Выводы	5
7.	Список литературы	5

1. Физическая постановка задачи

Представим себе металлическую пластину, части которой получают тепло от источкика. Задача состоит в том, чтобы определить распределение температуры в каждый момент времени. Источником тепла может быть, например, нагревательный элемент, равномерно нагревающий одну сторону пластины. Мы хотим знать, как температура будет распределяться по плате благодаря этому эффекту и как быстро произойдет это изменение.

2. Математическая постановка задачи

Рассмотрим двумерную область в форме квадрата $\Omega = [0,L] \times [0,L]$ с координатами (x,y). Температура внутри области описывается функцией u(x,y,t), где t - время, k - коэффициент тепропроводности. Уравнение теплопроводности для неоднородной среды в области Ω имеет вид:

$$\frac{\partial u}{\partial t} = k \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + f(x, y, t) \tag{1}$$

с начальным условием:

$$u(x,y,0) = u_0(x,y) \tag{2}$$

и граничными условиями на квадратной границе, которые задаются следующим образом:

$$u(x,0,t) = g_1(x,t), \quad u(x,L,t) = g_2(x,t)$$
 при $0 \le x \le L$ (3)

$$u(0,y,t) = h_1(y,t), \quad u(L,y,t) = h_2(y,t)$$
 при $0 \le y \le L$ (4)

3. Метод численного решения, его свойства

Для решения поставленной задачи воспользуемся методом расщепления. Так как дифференциальный оператор в правой части уравнения теплопроводности представим в виде суммы, то и дифференциальный опратор тоже можн опредсатвить в виде суммы и решать уравнение в два шага: сначала по одной координате, затем по второй.

$$\frac{u^{n+1} - u^{n+1/2}}{\tau} = \Lambda_{xx} u^{n+1} \tag{5}$$

$$\frac{u^{n+1/2} - u^n}{\tau} = \Lambda_{yy} u^{n+1/2} + f^n \tag{6}$$

Найдем невязку для этого метода, подставляя выражение для $u^{n+1/2}$ из первого уравнения во второе и разкладывая в ряд Тейлора.

$$r_n = \frac{\tau}{2}u_{tt}'' - \tau u_{yyt}''' - \frac{h^2}{12}u_{xxxx}'''' - \frac{h^2}{12}u_{yyyy} + O(h^4, \tau^2, \frac{\tau}{h^2})$$
 (7)

$$r_n = O(h^2, \tau, \sigma) \tag{8}$$

Метод имеет первый порядок аппроксимации по времени и второй по пространству. Теперь рассмотрим устойчивость. Схема будет устойчива, если каждый из ее шагов устойчив. Сделаем подстановку $u_m^n=\lambda^n e^{im\phi}$ и найдем значение λ

$$\lambda = \frac{1}{1 + 4\sigma \sin^2 \frac{\phi}{2}} < 1 \tag{9}$$

Значения λ получились меньше 1 при любых значениях параметров, а значит метод является абсолютно устойчивым, что и следовало ожидать от неявного метода.

4. Тестирование программы на точном решении

Протестируем программу известном точном решении. Рассмотрим начальное условие $u_0 = \exp(-(x^2 + y^2))$ на на квадрате с единичной длиной сторны. Граничные условия возьмем ограничение функции $g = \exp(\frac{-(x^2+y^2)}{1+4t})/(1+4t)$ на стононы квадрата. Тогда решением уравнения должна являться сама фукция g. Построим график зависимости ошибки от шпга по времени

5. Результаты расчётов

Содержание раздела "Результаты расчётов".

6. Выводы

Содержание раздела "Выводы".

7. Список литературы

Содержание раздела "Список литературы".