Congestion Analyzer

EatCoder

지도 교수 : 장재영

김한솔 - 1292011

이승헌 - 1292034

황희재 - 1292047

용영재 - 1292027

Intro

- 1. 프로젝트 개요
- 2. 프로젝트 구조
- 3. 프로젝트 세부사항
- 4. Q&A

인원이 집중되는 장소

특정 시간대, 특정 칸, 특정 구역

프로젝트 구조

프로젝트 구조

METRO_SECTION

LINE_NO	TRAIN_NO	SECTION_ONE	SECTION_TWO	SECTION_THREE	SECTION_FOUR	SECTION_FIVE	SECTION_SIX	SECTION_SEVEN	SECTION_EIGHT	SECTION_NINE	SECTION_TEN
001	0001	0001001	0001002	0001003	0001004	0001005	0001006	0001007	0001008	0001009	0001010
001	0002	0002001	0002002	0002003	0002004	0002005	0002006	0002007	0002008	0002009	0002010
001	0003	0003001	0003002	0003003	0003004	0003005	0003006	0003007	0003008	0003009	0003010
001	0004	0004001	0004002	0004003	0004004	0004005	0004006	0004007	0004008	0004009	0004010
001	0005	0005001	0005002	0005003	0005004	0005005	0005006	0005007	0005008	0005009	0005010
001	0006	0006001	0006002	0006003	0006004	0006005	0006006	0006007	0006008	0006009	0006010
001	0007	0007001	0007002	0007003	0007004	0007005	0007006	0007007	0007008	0007009	0007010
001	8000	0008001	0008002	0008003	0008004	0008005	0008006	0008007	8008000	0008009	0008010
001	0009	0009001	0009002	0009003	0009004	0009005	0009006	0009007	0009008	0009009	0009010
001	0010	0010001	0010002	0010003	0010004	0010005	0010006	0010007	0010008	0010009	0010010
001	0011	0011001	0011002	0011003	0011004	0011005	0011006	0011007	0011008	0011009	0011010
001	0012	0012001	0012002	0012003	0012004	0012005	0012006	0012007	0012008	0012009	0012010

SECTION_CONGESTION

LINE_NO	SECTION_NO	TRAIN_NO	CONGESTION	VACANCY	IMAGE_NM
002	2301001	2301	1	42	002 2301001 180816.ipa
002	2301002	2301	2	40	002 2301002 180831.ipa
002	2301003	2301	2	36	002 2301003 180847.ipa
002	2301004	2301	4	0	002 2301004 180903.ipa
002	2301005	2301	5	0	002 2301005 180916.ipa
002	2301006	2301	4	0	NULL
002	2301007	2301	2	6	NULL
002	2301008	2301	2	18	NULL
002	2301009	2301	3	0	NULL
002	2301010	2301	1	25	NULL
NULL	NULL	NULL	NULL	NULL	NULL

프로젝트 세부사항(Deep learning)

CNN(Inception v3)

Input – Conv – RELU – Pool – RELU – Conv – RELU – Pool – Fully connected

프로젝트 세부사항

Inception-v3

모델 구성

type	patch size/stride or remarks	input size			
conv	3×3/2	299×299×3			
conv	3×3/1	149×149×32			
conv padded	3×3/1	147×147×32			
pool	3×3/2	147×147×64			
conv	3×3/1	73×73×64			
conv	3×3/2	71×71×80			
conv	3×3/1	$35 \times 35 \times 192$			
3×Inception	As in figure 5	$35 \times 35 \times 288$			
5×Inception	As in figure 6	17×17×768			
2×Inception	As in figure 7	8×8×1280			
pool	8 × 8	$8 \times 8 \times 2048$			
linear	logits	$1 \times 1 \times 2048$			
softmax	classifier	$1 \times 1 \times 1000$			

Train data

LEVEL1::94개 LEVEL2::155개 LEVEL3:182개 LEVEL4:160개 LEVEL5:131개

input data

result

Protocol

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [3]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [6]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [4]	Inception-ResNet-v2 [19]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [18]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [13]	DarkNet-19 [13]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [9, 2]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [2]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [7]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [7]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608 × 608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

Table 3. I'm seriously just stealing all these tables from [7] they take soooo long to make from scratch. Ok, YOLOv3 is doing alright. Keep in mind that RetinaNet has like $3.8 \times$ longer to process an image. YOLOv3 is much better than SSD variants and comparable to state-of-the-art models on the AP $_{50}$ metric.

Figure 3. Again adapted from the [7], this time displaying speed/accuracy tradeoff on the mAP at .5 IOU metric. You can tell YOLOv3 is good because it's very high and far to the left. Can you cite your own paper? Guess who's going to try, this guy \rightarrow [14].

Custom Training 이후 정확도 상향

프로젝트 세부사항(Android)

프로젝트 세부사항

