SOC542 Statistical Methods in Sociology II Count outcomes

Thomas Davidson

Rutgers University

April 4, 2022

Course updates

- ► Homework 4 will be released new week
 - Count outcomes
 - Categorical and ordered outcomes

Plan

- Count outcomes
- Poisson regression
- Overdispersion and negative-binomial regression
- Offsets
- Zero-inflated models

- ▶ Count outcomes are variables defined as *non-negative integers*.
 - ► Values must be 0 or greater.
 - Numbers must not contain any fractional component.

- ▶ In general, we obtain count variables by counting discrete events over space and time. Many social processes produce counts:
 - ► How many people live in a census tract?
 - ► How many siblings does someone have?
 - How many times has someone been arrested?

Modeling counts using OLS

- We could treat counts like continuous variables and model them using OLS.
- Such a strategy might be appropriate if a count variable is normally distributed.
 - ▶ This could occur if a continuous variable was rounded.
- But like the LPM, we might run into problems when making predictions:

Data

Twitter and political parties in Europe

Data

Twitter and political parties in Europe

Histogram of data\$tweet_count

Modeling counts using OLS

	OLS	OLS FE	OLS FE (Log)
(Intercept)	2372.846***	1341.047	6.557***
	(555.477)	(1267.149)	(0.563)
populist	1457.289*	1184.876*	0.264
	(625.378)	(538.252)	(0.239)
left_right	-79.666	-76.613	-0.051
	(99.156)	(86.319)	(0.038)
seats_per	24.056	52.538**	0.022**
	(19.043)	(16.387)	(0.007)
Num.Obs.	255	255	255
R2	0.029	0.428	0.419
R2 Adj.	0.018	0.351	0.341
Log.Lik.	-2451.473	-2384.101	-415.757
F	2.520	5.580	5.375
	-		

Country FE omitted.

Making predictions with OLS

Histogram of predict(ols.fe, data)

Making predictions with OLS

Histogram of exp(predict(ols.fe.log, data

Modeling counts as Poisson processes

- ► The Poisson distribution is a discrete probability distribution that indicates the number of events in a fixed time or space. These counts can be considered as rates of events per unit.¹.
- The probability mass function is defined by a single parameter λ , where the probability of observing k events is equal to

$$P(x=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

For any Poisson distributed random variable, x

$$E(x) = \lambda = Var(x)$$

¹The distribution gets its name from French mathematician Siméon Denis Poisson [1781-1840])

Modeling counts as Poisson processes

- ► Let's say the average number of visits to the dentist in a single year is 1.6.
- We can model the probabilities of observing different numbers of visits given $\lambda = 1.6$:

$$P(k ext{ visits a year}) = rac{1.6^k e^{-1.6}}{k!}$$
 $P(0 ext{ visits a year}) = rac{1.6^0 e^{-1.6}}{0!} = rac{e^{1.6}}{1} pprox 0.2$
 $P(1 ext{ visits a year}) = rac{1.6^1 e^{-1.6}}{1!} = rac{1.6 e^{-1.6}}{1} pprox 0.4$

Poisson distributions


```
Poisson distributions, E[x] = \lambda = Var(x)

round(mean(x),2)

## [1] 1.57

round(var(x),2)

## [1] 1.54
```

► The Poisson regression model assumes that the outcome is Poisson distributed, conditional on the observed predictions.

$$y \sim Poisson(\lambda)$$

► To ensure that our estimates are positive, we can use a logarithmic *link function*, thus

$$y = log(\lambda) = \beta_0 + \beta_1 x_1 + \beta_2 x_1 + ... + \beta_k x_k$$

▶ Like logistic regression, this equation can equivalently be expressed using the *inverse* of the logarithm function:

$$\lambda = e^{\beta_0 + \beta_1 x_1 + \beta_2 x_1 + \dots + \beta_k x_k}$$

Fitting a model

	OLS FE (Log)	Poisson
(Intercept)	6.557***	7.233***
	(0.563)	(0.010)
populist	0.264	0.354***
	(0.239)	(0.003)
left_right	-0.051	-0.019***
	(0.038)	(0.001)
seats_per	0.022**	0.018***
	(0.007)	(0.000)
Num.Obs.	255	255
R2	0.419	
R2 Adj.	0.341	
Log.Lik.	-415.757	-211788.969

Country FE omitted.

$$+$$
 p $<$ 0.1, * p $<$ 0.05, ** p $<$ 0.01, *** p $<$ 0.001

Interpretation

- ▶ The intercept β_0 is the *logged* average value of the outcome when all other predictors are equal to zero.
- ▶ Each coefficient β_i indicates the effect of a unit change of x_i on the *logarithm* of the outcome.
 - e.g., $\beta_{populism} = 0.354$ implies that the expected log number of tweets for populist parties is higher than non-populists by 0.354.
- Coefficients can be interpreted as multiplicative changes after exponentiation
 - e.g., $e^{\beta_{populism}} = e^{0.354} \approx 1.425$. This implies that populist parties tweet 1.425 times as frequently or 42.5% more frequently than non-populists.
 - ► These coefficients are sometimes referred to as textbf{incident rate ratios (IRRs)}.

	Poisson	
(Intercept)	1384.634***	
	(0.010)	
populist	1.425***	
	(0.003)	
left_right	0.982***	
	(0.001)	
seats_per	1.018***	
	(0.000)	
Num.Obs.	255	
Log.Lik.	-211788.969	
F	14872.576	

Country FE omitted.

$$+ p < 0.1$$
, * p < 0.05, ** p < 0.01, *** p < 0.001

- A random variable is **overdispersed** if the observed variability is greater than the variability expected by the underlying probability model.
- ▶ In this case, we can see that the variance is far larger than the mean.
 - ▶ We could see this in the descriptive statistics, but the issue can only be properly diagnosed after fitting a model (note that the variance of the data is more than two times as large as the predicted values)
- ▶ **Underdispersion** occurs if the variability is lower than expected, but it is rarely an issue.

Negative binomial distribution and regression

The **negative binomial** distribution (aka the gamma-Poisson distribution) includes an additional parameter θ to account for dispersion, referred to as a **scale parameter**.

$$y = NegativeBinomial(\lambda, \theta)$$

- In negative binomial regression, θ is estimated from the data. The value must be positive.
 - ► Lower values indicate greater overdispersion.
 - ▶ Negative binomial becomes Poisson as $\lim_{\theta\to\infty}$.

Fitting a negative binomial regression

The procedure for estimating a negative binomial regression via Maximum Likelihood is not implemented in glm. Instead, we use the modified glm.nb function from the MASS package.

Comparing Poisson and negative binomial regression

	Poisson	Negative binomial
(Intercept)	1384.634***	1614.471***
	(0.010)	(0.410)
populist	1.425***	1.320
	(0.003)	(0.174)
left_right	0.982***	0.950 +
	(0.001)	(0.028)
seats_per	1.018***	1.023***
	(0.000)	(0.005)
Num.Obs.	255	255
Log.Lik.	-211788.969	-2120.171
F	14872.576	9.935

Country FE omitted. Exponentiated coefficients. + p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

```
nb$theta

## [1] 1.0883

nb$SE.theta

## [1] 0.08578371
```


Bayesian estimation

Poisson posterior predictive check

Negative binomial posterior predictive check

Poisson PSIS plot

PSIS diagnostic plot

Negative binomial PSIS plot

Negative binomial regression

Comparing Poisson and negative binomial models

```
loo_compare(1.pois, 1.nb)

## elpd_diff se_diff

## nb.b 0.0 0.0

## pois.b -215832.9 24353.1
```

Negative binomial regression

Bayesian estimate of θ

Intuition

- Assume a count outcome *y* is measured over varying time intervals *t*. The level of *y* will vary both as a function of the underlying count process and the length of **exposure**.²
- We can add an **offset** to our model to account for varying exposures.
- ▶ The outcome of a model with an offset is now $\frac{y}{t}$.

²The same logic would apply if we measured quantities over varying spatial units, e.g. counting people in blocks versus census tracts.

Explanation

- ▶ The mean of a Poisson process, λ is implicitly $\lambda = \frac{\mu}{\tau}$, the expected number of events, μ , over the duration τ .
- Assume a Poisson process where λ_i is the expected number of events for the i^{th} observation. We can write the link function as

$$y = Poisson(\lambda)$$
 $log(\lambda) = log(\frac{\mu}{\tau}) = \beta_0 + \beta_1 x$

This can be re-written as

$$= log(\mu) - log(\tau) = \beta_0 + \beta_1 x$$

Explanation

• We can think of τ as the number of **exposures** for each observation. Thus, we can write out a new model for μ :

$$y \sim Poisson(\mu)$$

$$log(\mu) = log(\tau) + \beta_0 + \beta_1 x$$

Simulated example

```
N <- 1000
tweets <- sample(c(1:100), N, replace = TRUE)
ideology <- rbinom(N,1,0.4)
likes <- c()
for (i in 1:N) {
    y <- sum(rpois(tweets[i], exp(1 + 1*ideology + rnorm(1))))
    likes[i] <- y
}
sims <- as_tibble(cbind(tweets, likes, ideology))</pre>
```

Simulated example

```
head(sims)
## # A tibble: 6 x 3
    tweets likes ideology
##
##
     <int> <int>
                    <int>
## 1
        15
             231
                        0
## 2
        15
           26
## 3
            30
           109
## 4
        48
## 5
        6
            46
## 6
        47
              93
```

Specification and interpretation

- The model is specified by adding the logarithm of exposures (e.g. $log(\tau)$) as an **offset** using the offset function.
 - The coefficient for the logarithm of exposures is fixed to $\beta_{\text{offset}} = 1$.
- ► The model is now interpreted as predicting a rate rather than a count.
- ▶ We could also directly include the logarithm of exposures as a predictor and let the model determine the coefficient.

Simulated example

	Poisson	Poisson (Log exposure)	Poisson (Offset)
(Intercept)	5.888***	2.073***	1.989***
	(0.002)	(0.014)	(0.002)
ideology	-0.150***	-0.175***	-0.176***
	(0.004)	(0.004)	(0.004)
log(tweets)	, ,	0.980***	, ,
,		(0.003)	
Num.Obs.	1000	1000	1000
Log.Lik.	-231359.705	-165445.532	-165464.738
F	1738.806	45275.265	2388.381

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

	Poisson	Poisson (Log exposure)	Poisson (Offset)
(Intercept)	360.718***	7.947***	7.309***
	(0.002)	(0.014)	(0.002)
ideology	0.861***	0.839***	0.839***
	(0.004)	(0.004)	(0.004)
log(tweets)	, ,	2.663***	, ,
-,		(0.003)	
Num.Obs.	1000	1000	1000
Log.Lik.	-231359.705	-165445.532	-165464.738
F	1738.806	45275.265	2388.381

Exponentiated coefficients.

$$+$$
 p $<$ 0.1, * p $<$ 0.05, ** p $<$ 0.01, *** p $<$ 0.001

Example: Predicting retweet rates

- ► Three models of yearly retweets
 - No offset
 - Log(tweets) included as predictor
 - Log(tweets) included as offset

Example: Predicting retweet rates

	NB	NB (Log exposure)	NB (Offset)
(Intercept)	9.795***	0.336	2.570***
, ,	(0.599)	(0.561)	(0.456)
populist	0.375	0.068	0.163
	(0.255)	(0.189)	(0.194)
left_right	-0.047	0.000	-0.017
	(0.041)	(0.030)	(0.031)
seats_per	0.039***	0.020***	0.026***
	(0.008)	(0.006)	(0.006)
log(tweet_count)		1.324***	
,		(0.053)	
Num.Obs.	255	255	255
Log.Lik.	-2858.070	-2752.504	-2762.354
F	25.315	56.445	13.570

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Using offsets

- Include an offset if there are differences in measurement intervals across observations.
- Offsets allow models to be interpreted as rates rather than counts.
- ► The logarithm of exposures can also be directly modeled, but interpretation is less intuitive.

Intuition

- Some count outcomes have high rates of zeros. What if the outcomes with a value of zero are generated by a different kind of process?
- Zero-inflated models allow us to separately model the process determining whether counts are non-zero and the expected count for each observations.

Specification

► The zero-inflated Poisson model consists of a mixture of two linear models, a logistic regression predicting the probability of a zero and a Poisson model predicting the count outcome.

$$y_i = ZIPoisson(p, \lambda)$$

 $logit(p) = \beta_{0p} + \beta_{1p}x$

$$\log(\lambda) = \beta_{0\lambda} + \beta_{1\lambda} x$$

► Each model has its own parameters. These can be specified to model each process.

Example: Books borrowed from the library

```
N <- 100
prob_lib <- 0.6
lib <- rbinom(N, 1, prob_lib)
sum(lib)/N
## [1] 0.47</pre>
```

Example: Books borrowed from the library

```
x <- rnorm(N)
books <- c()
for (i in 1:N) {
    if (lib[i] == 1) {
        b \leftarrow rpois(1, lambda = exp(1 + 0.3*x[i] + rnorm(1)))
        books[i] <- b
    else {books[i] <- 0}</pre>
mean(books)
## [1] 2.37
max(books)
## [1] 62
```

Two kinds of zeros

```
sum(books == 0)
## [1] 65
sum(books == 0 & lib == 1)
## [1] 12
sum(books == 0 & lib == 0)
## [1] 53
```

Histogram of books

Estimating a Poisson model

Rutgers University

Estimating a zero-inflated Poisson model

We must use the brms library to implement Bayesian zero-inflated Poisson regression.

Truncated to focus on lower predicted values

Comparing standard and zero-inflated models

```
## elpd_diff se_diff
## zip 0.0 0.0
## pois.m -175.8 75.2
```

Summary

- Standard linear models are generally unsuitable for count data
- Poisson regression can be used for most count outcomes
- Overdispersion occurs when variation higher than expected under Poisson model
 - Negative binomial regression includes a scale parameter
- Zero-inflated models are used to decompose processes generating zeros and counts

Next week

- Categorical outcomes
 - Multinomial and ordered logistic regression