## AJUSTE DE CURVAS

### Fabiola Vázquez

20 de octubre de 2020

### 1. Introducción

Este estudio se realiza con el software R versión 4.0.2 [5], en un cuaderno de Jupyter [3]. Los conjuntos de datos con los que se trabaja fueron, en mayor parte, generados con alguna función en particular. Como un ejemplo real, se consideran los datos obtenidos del INEGI [1], de la población de México en ciertos años.

### 2. Análisis

El objetivo es transformar ciertos conjuntos de datos a una realación lineal. Para ello se hace uso de la transformada de Tukey [4], como se muestra en la ecuación 1. En base a esto, se implementa la función lambda, la cual está definida en el código 1. Esta función toma dos conjuntos x y y, y retorna el valor de  $\lambda$  que maximiza la correlación entre ellos. En dicha función, el conjunto de datos transformados es y.

$$\tilde{x}_{\lambda} = \begin{cases} x^{\lambda}, & \text{si } \lambda > 0, \\ \log x, & \text{si } \lambda = 0, \\ -x^{\lambda}, & \text{si } \lambda < 0. \end{cases}$$
 (1)

```
 | lambda <- function (x,y) \{ \\ if (min(y) < 0) \{ \\ y <- y + abs(min(y)) + 0.01 \}   | cc <- numeric() \\ lambda <- seq(-10, 10, .01)   | for (i in lambda) \{ \\ if (i = 0) \\ cc <- c(cc, cor(x, log(y))) \\ else if (i > 0) \\ cc <- c(cc, cor(x, y**i)) \\ else \\ cc <- c(cc, cor(x, -(y**i))) \}
```

```
return (lambda[which.max(cc)])
}
```

Código 1: Función lambda.

Se automatiza el proceso de ajustar una curva a los conjuntos de datos con los que se trabaja, haciendo uso de la función ajuste\_curva, descrita en el código 2.

```
ajuste\_curva \leftarrow function(x,y){
    if (\min(y) < 0)
        y < -y + abs(min(y)) + 0.01
    lam <- lambda(x,y)
    if (abs(lam) < 0.1)
        fit \leftarrow lm(log(y)^x)
        y2 <- x*fit$coefficients[2]+fit$coefficients[1]
        plot(x,y,col=rgb(0.4,0.4,0.8,0.6),pch=16, cex=1.3, las=1,font.lab=1, cex.
   lab=1.7, xlab="", ylab="")
        lines(x, exp(y2), col = rgb(0,0,0,0.9), pch=16, lwd = 2)
    else if (lam >= 0.1) {
        fit <- lm (y**lam^x)
        y2 \leftarrow x*fit$coefficients[2] + fit$coefficients[1]
        plot(x,y,col=rgb(0.4,0.4,0.8,0.6),pch=16, cex=1.3, las=1,font.lab=1, cex.
   lab=1.7, xlab=""", ylab=""")
        points(x, (y2^(1/lam)), col=rgb(0,0,0,0.5), pch=16, lwd = 2)
    }
        else {
        fit \leftarrow lm (y**lam^x)
        y2 < -x*fit $coefficients [2] - fit $coefficients [1]
        plot(y^x, col=rgb(0.4, 0.4, 0.8, 0.6), pch=16, cex=1.3, las=1, font.lab=1, cex.
   lab=1.7, xlab="", ylab="")
        points(x, y2^{(1/lam)}, col=rgb(0,0,0,0.5), pch=16, lwd=2)
```

Código 2: Función ajuste\_curva.

La figura 1 contiene cuatro ejemplos de funciones a las cuales se les realiza un ajuste de curva con la función mostrada en el código 2.

La primera función considerada es  $y_1 = 4x^2 + r_1$ , donde  $r_1 \sim N(300, 30000)$  es un ruido añadido para ver que tan preciso es el proceso de ajustarle una curva. Haciendo uso de la función **ajuste\_curva** se obtiene la figura 1a. Considerando la función  $y_2 = 4\sqrt{x} + 10 + r_2$ , donde  $r_2 \sim N(1,3)$ , se obtiene la figura 1b. Si se supone que la relación es del tipo  $y_3 = 0.07 * \exp(x) + r_3$ , donde  $r_3 \sim N(0,0.2)$ , se obtiene la figura 1c.

Tabla 1: Fragmento de datos generados.

|                | (a)              |                            |                | (b)                      |
|----------------|------------------|----------------------------|----------------|--------------------------|
| $\overline{x}$ | $y = 4x^2 + r_1$ | $y = 4\sqrt{x} + 10 + r_2$ | $\overline{x}$ | $y = 0.07 \exp(x) + r_3$ |
| 355            | 193132.87        | 88.00                      | 0.00           | -0.04                    |
| 134            | 301924.31        | 67.48                      | 0.05           | 0.11                     |
| 356            | 116678.83        | 53.53                      | 0.10           | -0.00                    |
| 253            | 1034167.41       | 37.23                      | 0.15           | 0.15                     |
| 470            | 155104.76        | 31.39                      | 0.20           | -0.06                    |
| 123            | 515293.85        | 14.45                      | 0.25           | 0.24                     |

Tabla 2: Población total de México por año.

| Año  | Población        |
|------|------------------|
| 1910 | 15,160,369       |
| 1921 | 14,334,780       |
| 1930 | $16,\!552,\!722$ |
| 1940 | 19,653,552       |
| 1950 | 25,791,017       |
| 1960 | 34,923,129       |
| 1970 | 48,225,238       |
| 1980 | 66,846,833       |
| 1990 | 81,249,645       |
| 1995 | 91,158,290       |
| 2000 | 97,483,412       |
| 2005 | 103,263,388      |
| 2010 | 112,336,538      |
| 2015 | 119,938,473      |

#### 2.1. Población mexicana

Se considera la población por año en México, cuyos datos se obtuvieron del INEGI [1]. Estos se muestran en el cuadro 2. Usando el mismo procedimiento que en la sección precedente, se ajusta una curva a la curva de crecimiento poblacional de México. El resultado de este ajuste se observa en la figura 1d.

# 2.2. Aproximación de polinomios

Se consideran los polinomios  $y_1 = 0.1x^3 - 0.5x^2 - x + 10 + r_3$  y  $y_2 = 0.1x^5 + 0.5x^3 - 0.4x^2 - 0.3x + 20 + r_4$ . Un fragmento de los datos generados con estas funciones se muestra en el cuadro 3. Para ajustar curvas a este tipo de funciones [2] se trabaja con la función  $lm(y \sim w)$ , donde w es la suma de las diferentes potencias de x con las que cuenta el polinomio a ajustar. Por ejemplo, en el primer caso, la función utilizada es  $lm(y \sim x + I(x \land 2) + I(x \land 3))$  ya que es un polinomio de grado tres. La figura 2a muestra, en línea roja, la curva ajustada al polinomio  $y_1$  y la figura 2b, la curva ajustada al polinomio  $y_2$ .



- (a) Ajuste de una curva cuadrática.
- (b) Ajuste de una curva con radicales.

RealAjustada

400



- (c) Ajuste de una curva exponencial.
- (d) Ajuste de datos obtenidos del INEGI.

Figura 1: Ajuste de curvas con la función ajuste\_curva.

Tabla 3: Fragmento de datos generados por polinomios.

|                | (a)                                  |   |         | (b)                                              |
|----------------|--------------------------------------|---|---------|--------------------------------------------------|
| $\overline{x}$ | $y = 0.1x^3 - 0.5x^2 - x + 10 + r_3$ | - | x       | $y = 0.1x^5 + 0.5x^3 - 0.4x^2 - 0.3x + 20 + r_4$ |
| -8.05          | -64.49                               |   | -413.88 | 3,820,341,696,610.39                             |
| -5.07          | -12.48                               |   | -673.99 | -15,187,467,243,469.90                           |
| -5.24          | -8.56                                |   | 817.58  | 42,608,724,664,634.36                            |
| -8.28          | -74.01                               |   | 949.80  | 70,229,446,578,344.88                            |
| 4.26           | 5.58                                 |   | 445.92  | 1,198,984,909,305.33                             |
| -8.25          | -55.56                               | _ | 118.82  | 5,554,388,743,064.81                             |





- (a) Ajuste de una curva polinomial de grado dos.
- (b) Ajuste de una curva polinomial de grado cinco.

Figura 2: Ajuste de curvas con la función ajuste\_curva.

#### 2.3. Multivariada

Se considera una función de tres variables independientes  $y = x_1 + .4 \log(x_2) + 4x_3$ . Haciendo uso de la función 1m, se obtienen los siguientes resultados.

```
Call:

lm(formula = y \sim x1 + log(x2) + x3)
```

Coefficients:

# Referencias

- [1] Instituto Nacional de Estadística y Geografía. Población total. https://www.inegi.org.mx/temas/estructura/.
- [2] R graph gallery. Scatterplot with polynomial curve fitting. https://www.r-graph-gallery.com/44-polynomial-curve-fitting.html#:~:text=First%20of%20all%2C%20a%20scatterplot,plot%20it%20with%20line()%20.
- [3] Thomas Kluyver, Benjamin Ragan-Kelley, Pérez, et al. Jupyter notebooks—a publishing format for reproducible computational workflows. In *Positioning and Power in Academic Publishing: Players, Agents and Agendas: Proceedings of the 20th International Conference on Electronic Publishing*, page 87. IOS Press, 2016.

- [4] David M. Lane. *Introduction to Statistics*. Online edition. http://onlinestatbook.com/ Online\_Statistics\_Education.pdf.
- [5] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2020.