

머신러닝 프로젝트 처음부터 끝까지 - Part2 -

4. 머신러닝 알고리즘을 위한 데이터 준비

데이터 준비 과정 자동화

- 머신러닝 모델 재훈련이 필요할 때마다 호출해서 사용할 수 있게끔 데이터를 준비하는 일련의 과정을 함수로 구현하여 자동화하는 것이 바람직함
- 데이터 준비 과정 자동화의 장점
 - ─ 향후 업데이트 된 데이터셋에 대해서도 <u>동일한 데이터 변환(transformation) 과정을 손쉽게 반</u>
 <u>복</u> 가능
 - **데이터 변환 과정 수행을 위한 함수들의 라이브러리 구축**하여 향후 다른 프로젝트에서 재사용
 - 실제 라이브 시스템에서 새로운 데이터를 머신러닝 알고리즘에 주입하기 전에 데이터 변환 과정 수행을 위해 이 함수를 사용할 수 있음
 - 가능한 여러 데이터 변환 방법을 시도해봄으로써 어떤 조합이 가장 적합한지 확인이 용이함

훈련셋 준비

■ 예측에 활용할 9개 입력특성들(predictors)과 타깃 특성(label)을 분리하여 사본 생성

```
housing = strat_train_set.drop("median_house_value", axis=1)
housing_labels = strat_train_set["median_house_value"].copy()
```

medain_house_value

- housing 에는 median_house_value 열이 포함되지 않음
- housing_labels 에는 median_house_value 열의 값들만 포함
- 원본 strat_train_set 에 대해서는 변경 없음

데이터 전처리(Data Preprocessing)

- 주어진 데이터셋을 머신러닝 알고리즘에서 사용할 수 있도록 하기 위해 필요한 변환 작업을 수행하는 것을 의미
- 수치형 특성에 대한 전처리 과정
 - 데이터 정제(data cleaning): e.g., 결측치 처리, 이상치 및 노이즈 데이터 제거
 - 주어진 기존 특성 조합을 통해 새로운 특성 추가
 - 특성 스케일링
- 범주형 특성에 대한 전처리 과정
 - 원-핫 인코딩(one-hot encoding)

```
housing["ocean_proximity"].value_counts()

<1H OCEAN 9136
INLAND 6551
NEAR OCEAN 2658
NEAR BAY 2290
ISLAND 5
Name: ocean proximity, dtype: int64
```


데이터 정제(Data Cleaning)

- **결측치 처리, 이상치 및 노이즈 데이터 제거** 등의 작업을 포함
- 캘리포니아 주택 가격 데이터셋의 구역별 '침실 총 개수'(total_bedrooms) 특성 에 결측치 존재

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_proximity
14452	-120.67	40.50	15.0	5343.0	NaN	2503.0	902.0	3.5962	INLAND
18217	-117.96	34.03	35.0	2093.0	NaN	1755.0	403.0	3.4115	<1H OCEAN
11889	-118.05	34.04	33.0	1348.0	NaN	1098.0	257.0	4.2917	<1H OCEAN
20325	-118.88	34.17	15.0	4260.0	NaN	1701.0	669.0	5.1033	<1H OCEAN
14360	-117.87	33.62	8.0	1266.0	NaN	375.0	183.0	9.8020	<1H OCEAN

 머신러닝 알고리즘은 결측치가 포함된 데이터를 다루지 못하므로 이에 대한 처리 반드시 필요

데이터 정제(Data Cleaning)

```
housing.dropna(subset=["total_bedrooms"], inplace=True) # option 1
housing.drop("total_bedrooms", axis=1) # option 2
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
```

- 결측치 처리 방법
 - 옵션1: 해당 구역 샘플들 제거
 - 옵션2: 결측치가 존재하는 특성(e.g., total_bedrooms)의 column 전체를 삭제
 - 옵션3: 해당 특성의 전체 값들의 평균값(average), 중간값(median), 0 등의 특정 값으로 결측 치 채우기

데이터 정제(Data Cleaning)

```
median = housing["total_bedrooms"].median() # option 3
housing["total_bedrooms"].fillna(median, inplace=True)
```

■ 여기서는 옵션3을 이용하여 total_bedrooms 특성의 결측치를 중간값(median)으로 채움

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	ocean_pro
14452	-120.67	40.50	15.0	5343.0	434.0	2503.0	902.0	3.5962	
18217	-117.96	34.03	35.0	2093.0	434.0	1755.0	403.0	3.4115	<11
11889	-118.05	34.04	33.0	1348.0	434.0	1098.0	257.0	4.2917	<1H
20325	-118.88	34.17	15.0	4260.0	434.0	1701.0	669.0	5.1033	<11-
14360	-117.87	33.62	8.0	1266.0	434.0	375.0	183.0	9.8020	<11-

SimpleImputer를 활용한 결측치 처리

■ 옵션3 구현에 이용 가능한 사이킷런 변환기 클래스(Scikit-Learn transformer class)

```
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(strategy="median")
```

- 각 특성별 결측치를 해당 특성값들의 median으로 채우기 위한 SimpleImputer 객체 생성

```
housing_num = housing.select_dtypes(include=[np.number])
```

median strategy는 수치형 특성에 대해서만 사용 가능하므로 텍스트 타입의 범주형 특성인 ocean_proximity를 제거한 데이터 사본(housing_num) 생성
 simpleImputer
 가 .

SimpleImputer를 활용한 결측치 처리

■ 옵션3 구현에 이용 가능한 사이킷런 변환기 클래스(Scikit-Learn transformer class)

imputer.fit(..) 함수 실행을 통해 housing_num 내 각 특성별 median 값이 계산되며,
 statistics_ 인스턴스 변수에 저장됨

SimpleImputer를 활용한 결측치 처리

- 옵션3 구현에 이용 가능한 사이킷런 변환기 클래스(Scikit-Learn transformer class)
 - X = imputer.transform(housing num)
 - imputer.transform(..) 함수 실행을 통해 각 특성별 median 값을 학습한 imputer가 housing_num 내 결측치를 해당 특성의 median 값으로 채우게 됨
- SimpleImputer의 가능한 strategy
 - strategy="mean": 각 특성별 mean 값으로 결측치를 채움
 - 수치형 특성에 대해서만 적용 가능
 - strategy="most_frequent": 각 특성별 most freq 값으로 결측치를 채움
 - strategy="constant", fill_value=..: fill_value에 명시된 특정 값으로 결측치를 채움
 - 수치형 특성 외에도 적용 가능

사이킷런(Scikit-Learn)에서 제공하는 3가지 클래스(객체) 유형

Estimator(추정기)

- 주어진 데이터셋을 기반으로 모델 파라미터들을 추정(estimate)하는 객체를 estimator 라고 칭함
 - E.g., 앞서 사용했던 SimpleImputer 객체가 estimator에 해당함
 - 주어진 housing_num 데이터셋에 대해 각 특성별 median 값을 추정
 - 결과적으로 각 특성 별 median 값이 데이터셋으로부터 SimpleImputer가 학습한 파라미터 값 에 해당함
- estimator 객체의 fit(..) 함수 호출을 통해 파라미터 추정 작업이 실행됨
 - E.g., imputer.fit(housing_num)
- (estimator의 모델 파라미터가 아닌) 추정 과정이 어떻게 실행되어야 하는지를 가이드하기 위한 파라미터들은 하이퍼파라미터(hyperparameter)라고 칭함
 - E.g., SimpleImputer 객체 생성 시 설정한 strategy가 하이퍼파리미터에 해당함
- 하이퍼파라미터는 estimator 객체의 인스턴스 변수로 저장됨

imputer.strategy

'median'

Transformer(변환기)

- estimator 객체들 중 일부는 주어진 데이터에 대한 변환 작업도 수행할 수 있으며,
 이런 것들을 transformer 라고 칭함
 - E.g., 결과적으로 앞서 사용한 SimpleImputer 객체는 estimator이면서 동시에 transformer에도 해당함
- transformer 객체의 transform(..) 함수 호출을 통해 주어진 데이터에 대한 변환 작업이 실행되며, 변환된 데이터셋이 함수 실행 결과로 반환됨
 - E.g., X = imputer.transform(housing_num)
- 데이터 변환 작업은 SimpleImputer 객체의 경우와 같이 학습된 모델 파라미터 (e.g., 특성별 median)에 기반해서 이루어짐
- 모든 transformer는 fit()과 transform()이 순차적으로 호출되도록 하는 fit_transform() 함수 또한 제공함
 - Fit_transform()이 최적화가 적용되서 더 효율적임

Predictor(예측기)

- 일부 estimator는 새롭게 주어진 데이터 샘플에 대해 예측을 만들 수 있으며, 이런 것들을 predictor 라고 칭함
 - E.g., 앞서 사용했던 LinearRegression 객체가 predictor에 해당함
 - 어떤 국가의 1인당 GDP 값이 주어지면, 그것을 기반으로 삶의 만족도 값을 예측 estimator predictor
- Predictor 객체의 **predict(..)** 함수
 - 입력: 예측하고자 하는 샘플 데이터(e.g., Cyprus의 1인당 GDP)
 - 출력: 입력으로 주어진 샘플에 대해 만들어진 예측(e.g., Cyprus의 삶의 만족도 지수 예측값)
- Predictor 객체의 score(..) 함수
 - 주어진 데이터셋(e.g., 테스트셋)을 이용하여 predictor의 예측 성능을 측정하기 위한 함수

기타 사이킷런 관련

- Estimator 객체의 하이퍼파라미터는 객체의 public 인스턴스 변수를 통해 직접 접 근 가능함
 - E.g., imputer.strategy
- Estimator 객체가 학습한 모델 파라미터도 객체의 public 인스턴스 변수를 통해 직접 접근 가능함
 - E.g., imputer.statistics_ (인스턴스 변수명 마지막에 밑줄 추가됨)

범주형 특성(Categorical Features) 다루기

범주형 특성 다루기

- 지금까지는 수치형 특성만 다루었음
- 주어진 데이터셋에 텍스트나 범주형 특성 또한 포함될 수 있음
 - E.g., ocean_proximity(해안 근접도) 특성이 범주형 특성에 해당. 특성 값으로 총 5가지 범주(category)가 포함되었음 '<1H OCEAN', 'INLAND', 'ISLAND', 'NEAR BAY', 'NEAR OCEAN'

```
>>> housing cat = housing[["ocean proximity"]]
>>> housing cat.head(8)
     ocean proximity
13096
             NEAR BAY
14973
           <1H OCEAN
3785
               INLAND
14689
               INLAND
20507
          NEAR OCEAN
1286
               INLAND
18078
        <1H OCEAN
4396
            NEAR BAY
```

■ 대부분의 머신러닝 알고리즘은 숫자만을 다룰 수 있음. 따라서 ocean_proximity 특성의 텍스트 값을 숫자 값으로 변환해주어야 함

OrdinalEncoder를 이용한 단순 수치화

■ 사이킷런의 OrdinalEncoder 클래스를 이용하여 ocean_proximity 특성을 다음

과 같이 수치화 가능

가

범주	수치값
<1H OCEAN	0
INLAND	1
ISLAND	2
NEAR BAY	3
NEAR OCEAN	4

- 문제점
 - ML 알고리즘은 가까운 두 수치값이 상대적으로 떨어져 있는 두 값보다 더 비슷하다고 간주
 - E.g., bad, avg, good, excellent와 같이 순서가 있는 범주들의 경우 문제되지 않음
 - 하지만 ocean_proximity 특성의 경우 범주 0(<1H OCEAN)과 1(INLAND) 보다 범주 0과 4(NE AR OCEAN)가 더 의미적으로 비슷함 → 모델 훈련 과정에서 숫자값들의 크기 때문에 잘못된 학습이 이루어질 수 있음

원-핫 인코딩(One-hot Encoding)

- 범주형 특성을 구성하는 값들의 순서가 의미를 갖지 않는 상황에서 단순 수치화 했을 때 수치값 간의 크기 비교에서 야기되는 문제를 피하기 위한 방안
- 범주형 특성을 범주 수 만큼의 더미(dummy) 특성으로 대체
 - E.g., ocean_proximity 특성에 원-핫 인코딩을 적용하면 5개의 더미 특성으로 대체됨

ocean_	prox	imitv
0000	P-0	

13096	NEAR BAY
14973	<1H OCEAN
3785	INLAND
14689	INLAND
20507	NEAR OCEAN
1286	INLAND
18078	<1H OCEAN
4396	NEAR BAY

	1.0	0			
	ocean_proximity_<1H OCEAN	ocean_proximity_INLAND	ocean_proximity_ISLAND	ocean_proximity_NEAR BAY	ocean_proximity_NEAR OCEAN
13096	0.0	0.0	0.0	1.0	0.0
14973	1.0	0.0	0.0	0.0	0.0
3785	0.0	1.0	0.0	0.0	0.0
14689	0.0	1.0	0.0	0.0	0.0
20507	0.0	0.0	0.0	0.0	1.0
1286	0.0	1.0	0.0	0.0	0.0
18078	1.0	0.0	0.0	0.0	0.0
4396	0.0	0.0	0.0	1.0	0.0

사이킷런의 OneHotEncoder Transformer(변환기)

- OneHotEncoder 변환기(transformer)를 이용하여 범주형 특성에 대한 원-핫 인 코딩 가능
- OneHotEncoder 객체 생성 시 sparse 인자 설정을 통해 변환 결과 형태 지정 가능
 - <u>기본값은 sparse=True</u>이며, SciPy sparse matrix 형태로 원-핫 인코딩 결과를 리턴
 - Sparse matrix는 대부분 0으로 채워진 행렬을 효율적으로 표현(행렬 내 소수의 1의 위치만 저장)
 - 굉장히 많은 수의 범주값들로 구성된 범주형 특성을 원-핫 인코딩 할 때 효과적(그만큼 행렬 내 많은 수의 0이 존재할 것이기 때문)

```
from sklearn.preprocessing import OneHotEncoder

cat_encoder = OneHotEncoder()
housing_cat_1hot = cat_encoder.fit_transform(housing_cat)

housing_cat_1hot
```

<16512x5 sparse matrix of type '<class 'numpy.float64'>'
 with 16512 stored elements in Compressed Sparse Row format>

사이킷런의 OneHotEncoder Transformer(변환기)

- OneHotEncoder 변환기를 이용하여 범주형 특성에 대한 원-핫 인코딩 가능
- OneHotEncoder 객체 생성 시 sparse 인자 설정을 통해 변환 결과 형태 지정
 - <u>sparse=False로 지정</u>할 경우 NumPy 이차원 배열 형태로 결과 리턴 가.(False)

사이킷런의 OneHotEncoder Transformer(변환기)

- fit()(또는 fit_transform()) 함수 실행을 통해 OneHotEncoder 객체는 주어진 데이터 선생의 범주형 특성에 어떤 범주들이 포함되는지를 학습하게 됨
 - OneHotEncoder 객체의 categories_ public 인스턴스 변수에 학습된 범주들에 대한 정보가 저장됨

특성 스케일링(FEATURE SCALING)

특성 스케일링(Feature Scaling)

- <u>수치형 특성</u>에 대한 전처리 과정임
- 머신러닝 알고리즘은 입력 데이터셋의 각 특성 값들의 스케일(scale, 범위)가 다르면 제대로 작동하지 않음
 - e.g., total number of rooms 특성 값들의 범위는 6~39320 인데 반해 median_income 특성 값들의 범위는 0~15 로 스케일 차이가 큼 → total number of rooms 특성에 초점을 맞추도록 머신러닝 모델이 편향될 수 있음
- 따라서 모든 특성값들의 스케일을 통일시키는 특성 스케일링(feature scaling) 작업이 반드시 필요
- 다음 두가지 스케일링 방식이 일반적으로 사용됨
 - Min-max 스케일링
 - 표준화(standardization)
- 타깃(레이블) 특성에 대해서는 스케일링 필요 없음

Min-max 스케일링

- 다음 식을 통해 각 특성 값 x를 변환하는 것이며, 정규화(normalization)라고도 불림
 - $-\frac{x-min}{max-min}$ max/min: x가 속한 특성의 값들 중 최대값/최소값
- 사이킷런의 MinMaxScaler 변환기를 이용하여 가능
 - Min-max 스케일링 결과 값의 범위를 0~1이 아닌 다른 범위로 하고자 할 경우 feature_range 하이퍼파라미터를 통해 지정 가능

```
from sklearn.preprocessing import MinMaxScaler
min_max_scaler = MinMaxScaler(feature_range=(-1, 1))
housing num min max scaled = min max scaler.fit transform(housing num)
```

- 이상치에 매우 민감
 - E.g., 매우 큰 이상치가 포함된 경우 분자에 비해 분모가 훨씬 크게 되어 min-max 스케일링을
 통해 변환된 값들이 0 근처에 몰리게 됨

표준화(standardization)

■ 다음 식을 통해 각 특성 값 x를 변환

$$-rac{x-\mu}{\sigma}$$
 μ/σ : x가 속한 특성 값들의 평균/표준편차

- 표준화 스케일링이 적용된 특성 값들의 분포는 평균값 0, 표준편차 1인 표준정규 분포를 따르며, 이상치에 상대적으로 덜 민감함
- 사이킷런의 StandardScaler 변환기를 이용하여 가능

```
from sklearn.preprocessing import StandardScaler

std_scaler = StandardScaler()
housing num std scaled = std scaler.fit transform(housing num)
```


변환기 관련 주의사항

- fit(): 오직 훈련셋에 대해서만 호출해야 함(테스트셋에 대해서는 사용해서는 안됨)
- transform(): 테스트셋 포함 모든 데이터셋에 대해 사용 가능
 - fit() 함수 실행을 통해 변환기가 훈련셋을 학습하고 나면 훈련을 마친 변환기에 대한 transform() 함수는 테스트셋에 대해서도 사용 가능함.
- 훈련셋을 이용하여 변환기를 fit 한 다음(훈련셋을 분석하여 특성 값 변환에 필요한 파라미터들을 학습), 그 변환기를 이용하여 전체 데이터셋(훈련셋 + 테스트셋)을 변화

사용자 정의 변환기(Custom Transformers)

■ 필요에 따라서 개발자가 필요한 변환기를 직접 구현할 수 있음

- 방법1: 사이킷런의 FuctionTransformer 클래스를 이용하여 커스텀 변환기 생성
 - fit() 함수 우선 호출 없이 transform() 함수를 바로 적용해도 되는 변환기의 경우는 사이킷런의 FuctionTransformer 클래스를 이용하여 간단히 생성 가능
- 방법2: 사용자 정의 변환기 클래스 구현
 - fit() 함수 우선 실행을 통해 변환에 필요한 정보 학습 후 transform() 함수 호출이 가능한 변환기를 직접 구현하고자 할 경우 변환기 클래스를 직접 구현해야 함

방법1 예: 로그 함수 적용 변환

■ 특성 값들이 heavy tail 분포를 따르는 경우(아래 왼쪽) 스케일링(e.g., min-max 스케일링)을 적용하기 전에 우선 특성 값들에 로그 함수를 적용하여 좌우 균형 잡힌 분포(아래 오른쪽)로 변환하는 것이 바람직함.

■ 이를 위한 커스텀 변환기 생성 방법

from sklearn.preprocessing import FunctionTransformer

```
log_transformer = FunctionTransformer(np.log, inverse_func=np.exp)
log_pop = log_transformer.transform(housing[["population"]])
```

방법1 예: 비율 계산 커스텀 변환기

- 두 특성 간 비율을 계산하여 새로운 특성을 생성하는 커스텀 변환기
 - 데이터셋에 대한 학습이 필요치 않은 경우에 해당함

방법1 예: Multimodal 분포를 따르는 특성값 전처리

- 특성 값들이 multimodal 분포를 따르는 경우 각 특성 값과 특정 mode 간 유사도를 나타내는 새로운 특성을 추가
 - Multimodal 분포는 아래 그림의 막대 그래프(housing_median_age 특성 값들의 분포)와 같이 봉우리가 여러 개인 분포를 의미하며 각 봉우리를 mode 라고 부름

■ 주어진 입력 값과 특정 고정 지점 간의 유사도 측정을 위해 RBF(radial basis function) 함수를 이용함

방법1 예: Multimodal 분포를 따르는 특성값 전처리

- Gaussian RBF 함수: p는 특정 지점을 가리키며, 입력 값x가 p에서 조금만 멀어져도 함수 결과값이 급격히 작아짐
 - $\phi(\mathbf{x}, \mathbf{p}) = \exp(-\gamma \|\mathbf{x} \mathbf{p}\|^2)$
 - 하이퍼파라미터 γ(gamma)는 x가 p로부터 멀어질 수록 함수 결과값이 얼마나 빠르게 감소되도록 할지를 결정. γ 값이 클 수록 좁은 종 모양의 그래프가 그려지게 됨.
- rbf_kernel()(Guassian RBF 함수)를 이용하여 housing_median_age 특성의 각각의 값과 35(특 정 지점) 간의 유사도를 나타내는 새로운 특성 생성


```
from sklearn.metrics.pairwise import rbf_kernel

age_simil_35 = rbf_kernel(housing[["housing_median_age"]], [[35]], gamma=0.1)
```


방법1 FunctionTransformer 이용한 변환기 예: 유사도 특성 추가

■ rbf_kernel()을 이용하여 <u>각 구역(district)과 샌프란시스코(sf_coords) 간 지리적</u> 유사도를 나타내는 새로운 특성(sf_simil) 추가하기 위한 FunctionTransformer 객 체 생성 예

방법2: 사용자 정의 변환기 클래스

- 결측치를 채우기 위한 SimpleImputer 변환기 경우처럼 fit() 함수 우선 실행을 통해 각 특성 별 mean, median 등 학습 후 transform() 함수 적용이 가능한 변환기를 직접 구현하고자 할 경우 변환기 클래스를 직접 구현해야 함.
- 사이킷런의 다른 변환기와의 호환을 위해 fit(), transform() 등 메서드 구현 필요

방법2: 사용자 정의 변환기 클래스 예

- 캘리포니아 주택 가격 데이터에서 지리적으로 서로 근접한 샘플들의 클러스터를 확인 후
- 각 샘플(district)과 n_clusters개 클러스터 각각의 center 와의 유사도 특성을 추가하기 위한 커스텀 변환기 클래스
 - fit() 함수에서 <u>K-means 클러스터링 알고리즘을 이용하여 훈련셋 내 근접한 구역들의 군집을 알아내며</u>, 총 몇개의 군집 들로 나눌 것인지는 하이퍼파라미터 n_clusters를 통해 지정
 - transform() 함수에서 <u>rbf_kernel() 이용하여 주어진 샘플 X와 각 군집 center와의 유사도를 측정하여 리턴</u>. 결과적으로 샘플 X에 대해 n_clusters개 유사도 특성이 추가됨

```
class ClusterSimilarity(BaseEstimator, TransformerMixin):
    def __init__(self, n_clusters=10, gamma=1.0, random_state=None):
        self.n_clusters = n_clusters
        self.gamma = gamma
        self.random_state = random_state

def fit(self, X, y=None, sample_weight=None):
        self.kmeans_ = KMeans(self.n_clusters, random_state=self.random_state)
        self.kmeans_.fit(X, sample_weight=sample_weight)
        return self # always return self!

def transform(self, X):
        return rbf_kernel(X, self.kmeans_.cluster_centers_, gamma=self.gamma)

def get_feature_names_out(self, names=None):
        return [f"Cluster {i} similarity" for i in range(self.n_clusters)]
```


사용자 정의 변환기 클래스 예

 ClusterSimilarity 커스텀 변환기 클래스를 이용하여 housing 데이터셋의 모든 샘플들에 대해서 n_clusters개 유사도 특성을 생성하는 코드 예

```
class ClusterSimilarity(BaseEstimator, TransformerMixin):
    def __init__(self, n_clusters=10, gamma=1.0, random_state=None):
        self.n_clusters = n_clusters
        self.gamma = gamma
        self.random_state = random_state

def fit(self, X, y=None, sample_weight=None):
        self.kmeans_ = KMeans(self.n_clusters, random_state=self.random_state)
        self.kmeans_.fit(X, sample_weight=sample_weight)
        return self # always return self!

def transform(self, X):
    return rbf_kernel(X, self.kmeans_.cluster_centers_, gamma=self.gamma)

def get_feature_names_out(self, names=None):
    return [f"Cluster {i} similarity" for i in range(self.n_clusters)]
```


변환 파이프라인(Transformation Pipelines)

- 데이터 전처리 과정은 여러 세부 변환 단계들로 이루어지며 올바른 순서로 진행되어야 함
- <u>사이킷런의 Pipeline 클래스</u>를 이용하여 여러 변환기들에 의한 일련의 데이터 변환 단계들이 순서대로 실행되도록 하는 데이터 변환 파이프라인 생성 가능

수치형 특성에 대한 변환 파이프라인 예

```
from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
          ("impute", SimpleImputer(strategy="median")),
          ("standardize", StandardScaler()),
])
```

- Pipeline 객체 생성 시 각 데이터 변환 단계을 위해 적용할 객첵 및 식별 이름 쌍들의 리스트를 입력 으로 받는다.
 - E.g., num_pipeline은 "impute" 변환기와 "standardize" 변환기로 이루어진 변환 파이프라인
- 파이프라인의 마지막 객체를 제외한 모든 객체는 fit_transform()을 지원하는 변환기(transformer) 객체이어야 함
 - 파이프라인의 마지막 객체로는 transformer, predictor, or estimator 객체 모두 가능함
- 정의된 파이프라인이 estimator, transformer, predictor 중 어느 유형에 해당하는지는 파이프라 인의 마지막 객체 유형에 의해 결정됨
 - e.g., num_pipeline의 마지막 객체가 StandardScaler() 변환기이므로 num_pipeline도 변환기에 해당한다.
 - 따라서 num_pipeline.transform(), num_pipeline.fit_transform() & num_pipeline.fit() 모두 가능함

수치형 특성에 대한 변환 파이프라인 예

```
from sklearn.pipeline import Pipeline

num_pipeline = Pipeline([
          ("impute", SimpleImputer(strategy="median")),
          ("standardize", StandardScaler()),
])
```

- num_pipeline.fit() 호출 시
 - 파이프라인의 마지막 객체 이전 각 변환기에 대해서 fit_transform() 함수가 순서대로 호출됨
 - 파이프라인의 마지막 객체에 대해서는 대해서는 fit() 함수가 최종 호출됨
- num_pipeline.fit_transform() 호출 시
 - 파이프라인의 마지막 객체를 포함된 모든 변환기 각각에 대해서 fit_transform() 함수가 순서대로 호출됨

수치형 특성에 대한 변환 파이프라인 예

```
from sklearn.pipeline import make_pipeline
num_pipeline = make_pipeline(SimpleImputer(strategy="median"), StandardScaler())
```

- 파이프라인에 포함되는 객체의 식별 이름이 필요치 않다면 make_pipeline() 함수를 이용하여 pipeline 객체 생성 가능
- 파이프라인을 구성하는 각 객체의 이름은 자동 부여됨
 - SimpleImputer(..) 변환기의 이름은 "simpleimputer"로 자동 부여됨
 - StandardScaler() 변환기의 이름은 "standardscaler"로 자동 부여됨

ColumnTransformer 클래스

- ColumnTransformer 클래스를 이용하여 특성 별로 다른 전처리 과정을 지정할 수 있다.
- 수치형 특성과 범주형 특성을 구분해서 서로 다른 전처리 과정이 적용되도록 하는 통합 파이프라인 구성 가능
 - 수치형 특성들에 대해서는 앞서 이미 정의한 num_pipeline 변환기 적용

- 범주형 특성에 대해서는 cat_pipeline(SimpleImputer와 OneHotEncoder 순으로 구성) 변환

기 적용

make_column_selector() 함수

- ColumnTransformer 이용하여 변환 파이프라인 구성 시 각 변환기를 적용할 특성을 일일이 나열하기는 것이 번거로움
- 이때 make_column_selector() 함수를 이용하여 지정된 자료형의 특성들만을 선별 가능

- make_column_selector(dtype_include=np.number) 실행 결과로 np.number 타입의 수치 형 특성들에 대한 리스트가 리턴되며, 따라서 수치형 특성들에 대해서 num_pipeline 변환기가 적용됨
- object 타입의 범주형 특성에 대해서는 cat_pipeline 변환기 적용

make_column_transformer() 함수

- make_pipeline() 함수와 유사
- ColumnTransformer 파이프라인에 포함되는 각 객체에게 특정 이름을 부여할 필요가 없다면 make_column_transformer() 함수를 이용할 수 있음

- num_pipeline에 대해서는 "pipeline-1"로 이름 자동 부여됨
- cat_pipeline에 대해서는 "pipeline-2"로 이름 자동 부여됨

make_column_selector() 함수

■ make_column_transformer() 함수를 이용하여 파이프라인 구성 시에도 make_column_selector() 함수 사용이 가능함

- np.number 타입의 수치형 특성들에 대해서는 num_pipeline 변환기 적용
- object 타입의 범주형 특성들에 대해서는 cat_pipeline 변환기 적용

캘리포니아 주택 가격 데이터셋 전처리를 위한 변환 파이프라인 구성

- 캘리포니아 주 주택 가격 데이터셋에 적용할 모든 전처리 과정들을 변환 파이프라 인으로 구성해보자.
- 결측치 처리(imputation)
 - 수치형 특성의 결측치는 각 특성 별 median 값으로 채움(i.e., SimpleImputer(strategy="median"))
 - 범주형 특성의 결측치는 most frequent 값으로 채움(i.e., SimpleImputer(strategy="most_frequent"))
- 범주형 특성에 대해 원-핫 인코딩 적용 (i.e., OneHotEncoder(handle_unknown="ignore"))
- 다음 3가지 ratio 특성들을 계산해서 추가
 - bedrooms_ratio(= total_bedrooms/total_rooms)
 - rooms_per_house(= total_rooms/households)
 - people_per_house(= population/households)

캘리포니아 주택 가격 데이터셋 전처리를 위한 변환 파이프라인 구성

- 캘리포니아 주 주택 가격 데이터셋에 적용할 다음 전처리 과정들을 변환 파이프라 인으로 구성해보자.
- 샘플들(district)의 longitude, latitude 특성 값에 대해서 앞서 구현한 ClusterSimilarity 커스텀 변환기 적용
 - 샘플들 간 지리적 근접도를 기준으로 샘플들을 총 10개 클러스터로 나누고, 각 클러스터 별 center에 해당하는 (longitude, latitude) 값 조합을 찾음(K-means 클러스터링 이용)
 - 샘플 $x^{(i)}$ 와 10개 클러스터 center 각각과의 유사도에 대한 특성 추가(rbf_kernel() 이용하여 유사도 계산)
 - 결과적으로 기존 longitude, latitude 2개 특성이 cluster0_similarity부터 cluster9_similarity까지 10개의 특성으로 대체되도록 구현

캘리포니아 주택 가격 데이터셋 전처리를 위한 변환 파이프라인 구성

- 캘리포니아 주 주택 가격 데이터셋에 적용할 다음 전처리 과정들을 변환 파이프라 인으로 구성해보자.
- Heavy tail 분포를 보이는 다음 5개 특성들에 대해서는 로그 함수 변환 적용 후 StandardScaler()(표준화 스케일링) 적용
 - e.g., total_bedrooms, total_rooms, population, households, median_income

■ 그 외 수치형 특성에 대해서는 결측치 처리 후 StandardScaler()만 적용

9개 수치형 특성에 대한 히스토그램

```
housing.hist(bins=50, figsize=(12, 8))
# save_fig("attribute_histogram_plots") # 그림 저장용
plt.show()
```


캘리포니아 주택 가격 데이터셋에 대한 변환 파이프라인

```
def column ratio(X):
    return X[:, [0]] / X[:, [1]]
def ratio name(function transformer, feature names in):
   return ["ratio"] # feature names out
def ratio pipeline():
   return make pipeline(
        SimpleImputer(strategy="median"),
        FunctionTransformer(column ratio, feature names out=ratio name),
        StandardScaler())
log pipeline = make pipeline(
   SimpleImputer(strategy="median"),
   FunctionTransformer(np.log, feature names out="one-to-one"),
    StandardScaler())
cluster simil = ClusterSimilarity(n clusters=10, gamma=1., random state=42)
default num pipeline = make pipeline(SimpleImputer(strategy="median"),
                                     StandardScaler())
preprocessing = ColumnTransformer([
        ("bedrooms", ratio pipeline(), ["total bedrooms", "total rooms"]),
        ("rooms per house", ratio pipeline(), ["total rooms", "households"]),
        ("people per house", ratio pipeline(), ["population", "households"]),
        ("log", log pipeline, ["total bedrooms", "total rooms", "population",
                               "households", "median_income"]),
        ("geo", cluster simil, ["latitude", "longitude"]),
        ("cat", cat_pipeline, make_column_selector(dtype_include=object)),
   ],
   remainder=default num pipeline) # one column remaining: housing median age
```


캘리포니아 주택 가격 데이터셋에 대한 변환 파이프라인

■ preprocessing 변환 파이프라인을 이용한 훈련셋 전처리

- original 데이터셋인 housing 데이터프레임의 특성 수는 총 9개 였음

캘리포니아 주택 가격 데이터셋에 대한 변환 파이프라인

■ preprocessing 변환 파이프라인을 이용한 훈련셋 전처리

- preprocessing 변환 파이프라인을 통한 전처리 결과
 - 3가지 ratio 특성들이(bedrooms__ratio, rooms_per_house__ratio, people_per_house__ratio) 추가됨
 - longitude & latitude → geo__Cluster 0 ~ Cluster 9 similarity 10개 특성들로 대체
 - ocean_proximity → cat__ocean_proximity_<1H OCEAN ~ NEAR OCEAN 5개 특성들로 대체
 - 따라서 전처리 결과 특성 수 3+10+5+ (5(log__*) + 1(remainder__*))=24개

