PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: (11) International Publication Number: WO 99/41850 H04B 7/005 A2 (43) International Publication Date: 19 August 1999 (19.08.99)

(21) International Application Number: PCT/F199/00110

(22) International Filing Date: 12 February 1999 (12.02.99)

(30) Priority Data:

16 February 1998 (16.02,98) 980348 FI 981811 24 August 1998 (24.08.98) FI

(71) Applicant (for all designated States except US): NOKIA TELECOMMUNICATIONS OY [FI/FI]; Keilalahdentie 4, FIN-02150 Espoo (FI).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): AALTO, Risto [FI/FI]; Hämeenkatu 58 A 6, FIN-11000 Riihimäki (FI). KOHO-NEN, Pekka [FI/FI]; Kaksoiskiventie 49 C 24, FIN-02760 Espoo (FI). LONGONI, Fabio [IT/FI]; Visamäki 5 E 38, FIN-02130 Espoo (FI). MARJELUND, Pekka [FI/FI]; Kirjurinkuja 1 E 80, FIN-02600 Espoo (FI). SALONAHO, Oscar [FI/FI]; Oksasenkatu 4 bA 8, FIN-00100 Helsinki (FI).
- (74) Agent: JOHANSSON, Folke; Nokia Corporation, P.O. Box 226, FIN-00045 Nokia Group (FI).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI. FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: A METHOD AND A SYSTEM FOR CONTROLLING A MACRODIVERSITY CONNECTION THROUGH AT LEAST TWO RADIO NETWORK CONTROLLERS

(57) Abstract

A method of changing connection parameters in a cellular radio system comprising terminals (100), base stations (101, 102), and radio network controllers (201, 202), and where at least one terminal is in a macrodiversity connection wherein at least one diversity branch goes between the serving radio network controller (201) and the terminal (100) through the drift radio network controller (202) and the drift base station (102), and which further comprises a load control (207, 208) wherein the radio network controller monitors and balances the use of radio resources in the base stations that operate under it, and a call control (209, 210) wherein the serving radio network controller sets and changes the connection parameters of its connections, and being characterized in that it comprises observing that the load control of the drift radio network controller demands a change in the connection parameters of the terminal communicating through the base station that operates under it, and controlling the serving radio network controller to change the connection parameters of said terminal.