静安区 2024 学年度第一学期期末教学质量调研

九年级数学试卷

(满分 150 分, 用卷时间 100 分钟)

考生注意:

- 1. 本试卷含三个大题, 共25题;
- 2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
- 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置写出证明或计算的主要步骤.
- 一、选择题: (本大题共6题,每题4分,满分24分)

【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上。】

1.	下列代数式中,	不是单项式的是		
	(A) 3mn;	(B) $\frac{1}{2\pi}$;	(C) 0;	(D) $\frac{a+b}{2}$.

- 2. 下列各组数中,不相等的一组是
 - (A) $(-2)^3$ 和 -2^3 :

(B) $(-2)^2$ 和 -2^2 ;

(C) |-2|³和2³;

- (D) $2 和 \sqrt[3]{-2^3}$.
- 3. 泰勒斯是古希腊时期的思想家、科学家、哲学家,他曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的
 - (A) 图形的相似;

(B) 图形的平移;

(C) 图形的旋转;

- (D) 图形的翻折.
- 4. 已知 \vec{a} 、 \vec{b} 、 \vec{c} 都是非零向量,下列条件中不能判定 \vec{b} // \vec{c} 的是
 - (A) $\vec{a}//\vec{c}$, $\vec{a}//\vec{b}$;

(B) $\vec{c} = 3\vec{b}$;

(C) $|\vec{b}| = |\vec{c}|$;

- (D) $\vec{a} = 3\vec{b}$, $\vec{c} = -2\vec{a}$.
- 5. 如果锐角 A 的余弦值为 $\frac{2}{3}$,下列关于锐角 A 的取值范围的说法中,正确的是
 - (A) $0^{\circ} < \angle A < 30^{\circ}$;

(B) 30° <∠A<45°;

(C) $45^{\circ} < \angle A < 60^{\circ}$;

(D) $60^{\circ} < \angle A < 90^{\circ}$.

九年级数学试卷 第1页 共6页

6. 如果一次函数 $y_1 = mx - 6(m \neq 0)$ 、 $y_2 = nx - 2(n \neq 0)$ 的图像都经过 C(1, -3),那么函 数 y=y1・y2 的大致图像是

- 二、填空题: (本大题共12题,每题4分,满分48分)
- 7. 函数 $y = \frac{1}{x-1}$ 的定义域是____.
- 8. 计算: $(-a^2)^3 \div a^2 = A$.
- 9. 如果 2x = 3y,那么 $\frac{x}{y}$ 的值是 \triangle
- 10. 把一个三角形放大为与它相似的三角形,如果它的面积扩大为原来的9倍,那么它的 周长扩大为原来的 ▲ 倍.
- 11. 抛物线 $y = (a+1)x^2 x$ 在对称轴左侧的部分是上升的,那么 a 的取值范围是 \triangle .
- 12. 已知一坡面的坡度 i=1: $\sqrt{3}$,那么这个坡角等于 ▲ °.
- 13. 如图,点D、E 分别在边AB、AC上,且 $\frac{AD}{BD} = \frac{1}{2}$,DE // BC. 设 $\overrightarrow{AD} = \overrightarrow{a}$, $\overrightarrow{EC} = \overrightarrow{b}$, 那么用向量 \vec{a} 、 \vec{b} 表示向量 \overline{BC} 为_ \blacktriangle .

14. 我们把常用的 A4 纸的短边与长边的比叫作"白银比",把这样的矩形称为"白银矩 形". 如图,一张规格为 A4 的矩形纸片 ABCD,将其长边对折 (EF 为折痕), 得到 两个全等的 A5 矩形纸片, 且 A4、A5 这两种规格的矩形纸片相似, 那么这个"白银 比"为_▲_.

- 15. 如图,已知 $\triangle ABC$ 的三个顶点均在小正方形的方格顶点上,那么 $\sin C$ 的值是 \triangle .
- 16. 在两条直角边长分别是 20 和 15 的直角三角形的内部作矩形 ABCD, 如果 $AB \setminus AD$ 分别在两条直角边上(如图所示),AD: AB=1: 2,那么矩形 ABCD 的面积是 \triangle .
- 17. 如图,点 O 在四边形 ABCD 的内部, $\angle COD = \angle ABC = 90^{\circ}$,AB = BC,OD = OC,如果 BO = a,那么 AD 的长为_____. (用含字母 a 的式子表示)

- 18. 如图,在 $\triangle ABC$ 中,BD 是 $\triangle ABC$ 的中线,BC=2BD, $AC=6\sqrt{5}$, $\tan A=\frac{1}{2}$,那么 AB 的长为______.
- 三、解答题: (本大题共7题,满分78分)
- 19. (本题满分10分)

计算:
$$\sin^2 30^\circ - \frac{1}{2 - \tan 60^\circ} - \left(\frac{\cot 45^\circ}{\cot 30^\circ}\right)^{-1}$$
.

20. (本题满分10分)

二次函数 $y=ax^2+bx+c$ 的部分图像如图所示,已知它与 x 轴的一个交点坐标是(6,0),且对称轴是直线 x=2.

- ① *a* 与 *b* 的数量关系为: *b*=_▲__;
- ② 图像与x轴的另一个交点坐标为 $_{\bot}$.
- (2) 如果该函数图像经过点(0, -3),求它的顶点坐标.

第 20 题图

21. (本题满分 10 分)

如图,在 Rt $\triangle ABC$ 与 Rt $\triangle DEF$ 中, $\angle C = \angle F = 90^{\circ}$, $\frac{DE}{AB} = \frac{DF}{AC}$.

求证: $\triangle DEF \sim \triangle ABC$.

第21题图

以下是小明同学证明本题的过程:

- (1)有同学认为小明的证明过程不正确,那么你认为他是从第_▲_部分开始出现问题(填①或②或③或④).请简述小明出错的原因;
- (2) 小红认为:本题可以用添加辅助线——平行线,构造熟悉的基本图形解决. 请你用小红的思路完成本题的证明过程.

22. (本题满分10分)

舞狮文化源远流长,其中高桩舞狮是一项集体育与艺术于一体的竞技活动,也被广泛应用于各种庆典活动,成为传承中国传统文化的重要载体(如图 22-①所示). 在舞狮表演中,梅花桩 AB、CD、EF 垂直于地面,且 B、D、F 在一直线上(如图 22-②所示). 如果在桩项 C 处测得桩项 A 和桩项 E 的仰角分别为 35° 和 47°,且 AB 桩与 EF 桩的高度 差为 1 米,两桩的距离 BF 为 2 米.

- (1) 舞狮人从A 跳跃到C,随后再跳跃至E,所成的角 $\angle ACE = _$ ___。;
- (2) 求桩 AB 与桩 CD 的距离 BD 的长. (结果精确到 0.01 米)

23. (本题满分 12 分)

已知:如图,在梯形 ABCD 中,AB//CD,联结 $AC \setminus BD$, $\triangle ABC$ 是等边三角形,DE//BC,DE = AC 交于点 E, $\angle ADB = 2 \angle DBC$.

- (1) 求证: △ADE∽△DBC;
- (2) 求证: 点 E 是线段 AC 的黄金分割点.

24. (本题满分12分)

已知抛物线 $y = ax^2 + bx + c$ ($a \neq 0$) 上,其 y = 5x 部分对应值如下表:

x	•••	-3	-1	0	3	2	
у	•••	-8	0	2	0	2	•••

- (1) 求此抛物线的表达式;
- (2) 设此抛物线的顶点为P,将此抛物线沿着平行于x轴的直线l翻折,翻折后得新抛物线.
 - ①设此抛物线与x轴的交点为A、B(点A在点B的左侧),且 $\triangle ABP$ 的重心G 恰好落在直线I上,求此时新抛物线的表达式;
 - ②如果新抛物线恰好经过原点,求新抛物线在直线 / 上所截得的线段长.

25. (本题满分14分)

如图,在 $\triangle ABC$ 中,AB=AC=5,BC=8,D 是 BC 中点,E 在 BA 延长线上,F 在 AC 边上(F 不与点 A、C 重合), $\angle EDF=\angle B$.

- (1) 求证: △BDE ∽ △CFD;
- (2) 求证: ED 平分 \(\subseteq BEF; \)
- (3) 设 CF=x, EF=y, 求 y 关于 x 的函数解析式,并写出定义域;
- (4) 联结 AD、CE,如果四边形 ADCE 有两个内角互补,求 CF 的长.

