AMENDMENTS TO THE ABSTRACT

Please amend the Abstract as follows:

An electric power steering system includes: a band-stop filter 15a having a transfer function G₁(s) for suppressing resonance, and a phase compensator 15b having a transfer above function $G_1(s)$ is represented by an expression function $G_2(s)$. The $G_1(s)=(s^2+2\zeta_{11}\omega_1+\omega_1^2)/(s^2+2\zeta_{12}\omega_1+\omega_1^2)$, where s:s is a Laplace operator, $\xi_{11}:=\zeta_{11}$ is a damping coefficient, ξ_{12} : ξ_{12} is a damping coefficient, and ω_{1} : ω_{1} is an angular frequency. On the other expression represented hand, above function $G_2(s)$ $G_2(s)=(s^2+2\zeta_{21}\omega_2+\omega_2^2)/(s^2+2\zeta_{22}\omega_2+\omega_2^2)$, where $s=\underline{s}$ is a Laplace operator, $\xi_{21}=\underline{\zeta_{21}}$ is a damping coefficient, ξ_{22} : ξ_{22} is a damping coefficient, and ω_1 : ω_1 is an angular frequency. Furthermore, the above damping coefficients ζ_{21} , ζ_{22} satisfy an expression $\zeta_{21} \ge \zeta_{22} \ge 1$. Thus, a filter such as a phase compensator may attain a design freedom while preventing the increase of arithmetic load, whereby both the suppression of resonance and a good assist response in a normal steering speed region, for example, may be achieved.

3 PCL/GH/ma