明細書

4, 5-ジヒドロナフト[1, 2-b]チオフェン誘導体 技術分野

[0001] 本発明は、新規4,5-ジセドロナフト[1,2-b]チオフェン誘導体に関する。更に詳しくは肝臓中のトリグリセリド低下作用および血糖値低下作用を有し、糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全、糖尿病合併症(例えば腎症、神経障害、網膜症等)、メタボリックシンドローム、シンドロームXの予防・治療薬として有用な新規4,5ージセドロナフト[1,2-b]チオフェン誘導体に関する。

背景技術

- [0002] 糖尿病はインスリン分泌不全およびインスリン作用不全による高血糖状態を呈する慢性疾患である。糖尿病のうち90%以上は生活習慣病に位置づけられる2型糖尿病であり、その多くは肥満や高脂血症といった脂質代謝異常を併発している。高インスリン血症のような糖尿病の病態は肝臓中のトリグリセリド合成やVLDLの放出を促進し高脂血症を悪化させ、脂質代謝異常による遊離脂肪酸やトリグリセリドの上昇は、インスリン作用をさらに悪化させるという悪循環を繰り返す。そのため、血糖降下薬と抗高脂血症薬は併用されることが多い。
- [0003] トリグリセリド低下作用を持つ薬剤にはニコチン酸薬剤、フィブレート系薬剤等が存在する。しかし、ニコチン酸薬剤はむしろ耐糖能を悪化させることが知られており、フィブレート系薬剤についてはベザフィブラートがインスリン抵抗性を改善することにより、併用されるスルホニルウレア系薬剤などの血糖降下作用を強化することはあるが、それ自身が血糖降下作用を示すことはない。
- [0004] 血糖降下作用を有する化合物としては、スルホニルウレア系薬剤、チアゾリジン誘導体、ビグアナイド、αグルコシダーゼ阻害薬などが存在するが、チアゾリジン誘導体以外は脂質への作用を有していない。
- [0005] 本発明の化合物に類似する構造の化合物の4,5-ジヒドロナフト[1,2-b]チオフェン誘導体は、特許文献1に呼吸器疾患治療、免疫調節、悪性腫瘍疾患治療、抗浮腫、静脈疾患治療などに有効であることが記載されている。しかしながら、本発明の

化合物の記載はなく、また、肝臓中のトリグリセリド低下作用および血糖値低下作用 についても記載がない。

[0006] 特許文献1:特開昭61-194081号

発明の開示

発明が解決しようとする課題

- [0007] 本発明は、肝臓中のトリグリセリド低下作用および血糖値低下作用を有する新規な化合物を提供することを目的とする。更に詳しくは、糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全、糖尿病合併症(例えば腎症、神経障害、網膜症等)、メタボリックシンドローム、シンドロームXの予防・治療薬として有用な薬物を提供することである。課題を解決するための手段
- [0008] 本発明者らは前記課題を達成するために鋭意研究を進めた結果、ある種の4,5-ジヒドロナフト[1,2-b]チオフェン誘導体が肝臓中のトリグリセリド産生を抑制し血糖値を低下させることを見出し、本発明を完成した。
 すなわち、本発明は、

1. 式

[0009] [化1]

[0010] (式中、 R^1 は炭素原子数1~10の1~ E^1 にロキシアルキル基又は炭素原子数1~10のアシル基を示し、 R^2 及び R^3 は別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 及び R^3 は独立して、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、水酸基、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルキニルオキシ基、ベンジルオキシ基、ニトロ基又は式 $-NR^4$ R 5 (式中、 R^4 及び R^5 は独立して、水素原子、アセチル基、トリフルオロアセチル基、炭素原子数1~10のアルキル基又はベンジル基を示す。)で表される基を示すか、又は R^2 及び R^3 は共に結合してエチレンジオキシ基を示す。ただし、 R^1 がアシル基であり、 R^2 が水素原子であるとき R^3 は水素原子又はアセチル基を除く。)で表される4、5~

ジヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩である。

- [0011] 2. 上記式で表される4, 5-ジヒドロナフト[1, 2-b]チオフェン誘導体又はその医薬 上許容される塩を含有する医薬組成物である。
- [0012] 3. 上記式で表される4, 5-ジヒドロナフト[1, 2-b]チオフェン誘導体又はその医薬 上許容される塩を有効成分とするトリグリセリド低下剤である。
- [0013] 4. 上記式で表される4, 5-ジヒドロナフト[1, 2-b]チオフェン誘導体又はその医薬 上許容される塩を有効成分とする血糖値低下剤である。
- [0014] 5. 上記式で表される4, 5-ジヒドロナフト[1, 2-b]チオフェン誘導体又はその医薬 上許容される塩を有効成分とする糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全 、糖尿病合併症、メタボリックシンドローム、シンドロームXの予防又は治療剤である。 発明の効果
- [0015] 本発明の化合物は肝臓中のトリグリセリド低下作用および血糖値低下作用を有することにより、糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全、糖尿病合併症(例えば腎症、神経障害、網膜症等)、メタボリックシンドローム、シンドロームXの予防・治療薬として臨床上有用である。

発明を実施するための最良の形態

[0016] 本発明において、炭素原子数1~10の1~ヒドロキシアルキル基とは、直鎖状、分岐 鎖状又は環状の炭素原子数1~10の1~ヒドロキシアルキル基を示し、例えば、ヒドロ キシメチル基、1~ヒドロキシエチル基、1~ヒドロキシプロピル基、1~ヒドロキシブチル 基、1~ヒドロキシイソブチル基、シクロペンチル~ヒドロキシメチル基、シクロヘキシル ~ヒドロキシメチル基が挙げられる。炭素原子数1~10のアシル基とは、直鎖状、分岐 鎖状又は環状の炭素原子数1~10のアシル基を示し、例えば、ホルミル基、アセチ ル基、プロピオニル基、ブチリル基、イソブチリル基、シクロペンチルカルボニル基、 シクロヘキシルカルボニル基が挙げられる。炭素原子数1~10のアルキル基とは、直 鎖状、分岐鎖状又は環状の炭素原子数1~10のアルキル基を示し、例えば、メチル 基、エチル基、プロピル基、t~ブチル基、シクロペンチル基、シクロヘキシル基、シク ロヘキシルメチル基が挙げられる。炭素原子数1~10のアルコキシ基とは、直鎖状、 分岐鎖状又は環状の炭素原子数1~10のアルコキシ基とは、直鎖状、 分岐鎖状又は環状の炭素原子数1~10のアルコキシ基とは、直鎖状、 分岐鎖状又は環状の炭素原子数1~10のアルコキシ基を示し、例えば、メトキシ基、 エトキシ基、プロポキシ基、tーブトキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘキシルメチルオキシ基が挙げられる。炭素原子数1~5のアルケニルオキシ基とは、直鎖状または分岐鎖状の炭素原子数1~5のアルケニルオキシ基を示し、例えば、ビニルオキシ基、アリルオキシ基、イソプロペニルオキシ基、2~イソブテニルオキシ基が挙げられる。炭素原子数1~5のアルキニルオキシ基とは、直鎖状または分岐鎖状の炭素原子数1~5のアルケニルオキシ基を示し、例えば、エチニルオキシ基、2~プロピニルオキシ基が挙げられる。

- [0017] また、本発明において医薬上許容される塩としては、例えば硫酸、塩酸、燐酸などの鉱酸との塩、酢酸、シュウ酸、乳酸、酒石酸、フマール酸、マレイン酸、メタンスルホン酸、ベンゼンスルホン酸などの有機酸との塩などが挙げられる。
- [0018] 本発明の化合物は単一の化合物であっても、あるいは立体異性体の混合物であってもよい。
- [0019] 本発明の化合物は、例えば下記に示す方法に従って製造することができる。
- [0020] 以下、本明細書中では、WSC・HClは1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、DCCはジシクロヘキシルカルボジイミド、HOBtは1-ヒドロキシベンゾトリアゾールを表す。
- [0021] 本発明の化合物で、上記式において、R¹が炭素原子数1~10のアシル基を示し、R²及びR³が別々に6位、7位、8位又は9位のいずれかに置換し、R²がハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルキニルオキシ基、ベンジルオキシ基、ニトロ基を示し、R³が水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルキニルオキシ基、ベンジルオキシ基、ニトロ基を示すか、又はR²及びR³は共に結合してエチレンジオキシ基を示す化合物(5a)は、反応スキーム1~4に示したようにテトラロン誘導体(2a)よりA法もしくはB法によって合成することができる。また、テトラロン誘導体(2a)は、カルボン酸誘導体(1a, b)より合成することができる。
- [0022] すなわち、置換ベンゼンと無水コハク酸無水物をフリーデルクラフト反応させた後に

ケトンを還元し、カルボン酸誘導体(1a)を得る。ここで還元剤としてはトリエチルシラン、ヒドラジン、亜鉛アマルガムなどを用いることができる。また、置換ブロモベンゼンをトリブチルスズ化し、メチルー4ーブロモクロトネートとスティルカップリングさせた後にエステルを加水分解、二重結合を水素添加し、カルボン酸誘導体(1b)を得る。また、置換ベンズアルデヒドをトリエチルホスホノアセテートとホーナーエモンズ反応させた後に二重結合の水素添加、エステルの還元、次いで水酸基をメシル化、ニトリルに置換後、ニトリルを加水分解し、カルボン酸誘導体(1b)を得る。ここでエステルの還元剤としては水素化リチウムアルミニウム、水素化ジイソブチルアルミニウム又はジボランなどを用いることができる。その後カルボン酸誘導体(1a, b)を酸クロライドに変換し、分子内でフリーデルクラフト反応させ、テトラロン誘導体(2a)を得る。

- [0023] A法ではテトラロン誘導体(2a)にビルスマイヤー反応を行いクロロホルミル体へ変換後、チオグリコール酸エチルと反応させチオフェン誘導体(3a)へ導く。次いでエステルを加水分解後、アミドへ変換し化合物(4a)を得る。ここで、アミドへ変換する方法としてはWSC・HCl、DCCなどの縮合剤を用いる方法、あるいは酸クロライドを経由する方法などを用いることができる。次に、ここで得られた化合物をアルキル化し本発明の化合物(5a)を得る。ここで、アルキル化剤としてはメチルマグネシウムブロマイドなどのグリニャール試薬やメチルリチウムなどのアルキル金属を用いることができる。
- [0024] B法ではテトラロン誘導体(2a)にビルスマイヤー反応を行いクロロホルミル体へ変換後、塩基存在下アルキルメルカプトメチルケトンと反応させ、本発明の化合物(5a)を得る。

反応スキーム1-1

[0025] [化2]

[0026] (式中、R⁸はハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基 又はベンジルオキシ基であり、R⁹は水素原子、ハロゲン原子、炭素原子数1~10の アルキル基、炭素原子数1〜5のアルケニル基、炭素原子数1〜5のアルキニル基、 炭素原子数1〜10のアルコキシ基又はベンジルオキシ基を示すか、又はR⁸及びR⁹ は共に結合してエチレンジオキシ基を示す。)

反応スキーム1-2

[0027] [化3]

[0028] (式中、R¹⁰はハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又はニトロ基であり、R¹¹は水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又はニトロ基を示すか、又はR¹⁰及びR¹¹は共に結合してエチレンジオキシ基を示す。)

[0029] [{1:4]

[0030] (式中、R¹²はハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又はニトロ基であり、R¹³は水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又はニトロ基を示すか、

又はR¹²及びR¹³は共に結合してエチレンジオキシ基を示す。) 反応スキーム1-4

(A法)

[0031] [化5]

[0032] (B法)

[0033] [化6]

[0034] (式中、R¹²及びR¹³は前記と同意義であり、R¹⁴は炭素原子数1~10のアルキル基を示す。)

本発明の化合物で、R¹が炭素原子数1~10のアシル基を示し、R²及びR³が別々に6位、7位、8位又は9位のいずれかに置換し、R²が水酸基、R³が水素原子又は水酸基である化合物(5b)は反応スキーム2に示すように、R¹が炭素原子数1~10のアシル基を示し、R²及びR³が別々に6位、7位、8位又は9位のいずれかに置換し、R²がベンジルオキシ基であり、R³が水素原子又はベンジルオキシ基である化合物(5c)の脱ベンジル化を行う事により得ることができる。ここで脱ベンジル化の方法としてはパラジウムー炭素による水素添加、エタンチオール、3フッ化ホウ素又はヨウ化トリメチルシリルなどを用いる方法が挙げられる。

反応スキーム2

[0035] [化7]

[0036] (式中、R¹⁴は前記と同意義であり、R¹⁵はベンジルオキシ基であり、R¹⁶は水素原子又はベンジルオキシ基であり、R¹⁷は水酸基であり、R¹⁸は水素原子又は水酸基を示す。)

また、化合物(5b)は反応スキーム3に示すように、 R^1 が炭素原子数1~10のアシル基を示し、 R^2 及び R^3 が別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 がメトキシ基であり、 R^3 が水素原子又はメトキシ基である化合物(5d)を脱メチル化する事で得ることができる。ここで脱メチル化の方法としてはヨウ化トリメチルシラン、ナトリウムチオエトキシド又は3臭化ホウ素等を用いる方法が挙げられる。

反応スキーム3

[0037] [化8]

[0038] (式中、R¹⁴、R¹⁷及びR¹⁸は前記と同意義であり、R¹⁹はメトキシ基であり、R²⁰は水素原 子又はメトキシ基を示す。)

また、化合物(5b)は反応スキーム4に示すように、 R^1 が炭素原子数1~10のアシル基を示し、 R^2 及び R^3 が別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 がベンゾイルオキシ基であり、 R^3 が水素原子又はベンゾイルオキシ基である化合物(5e)を加水分解して脱ベンゾイル化する事で得ることができる。

反応スキーム4

[0039] [化9]

[0040] (式中、R¹⁴、R¹⁷及びR¹⁸は前記と同意義であり、R²¹はベンゾイルオキシ基であり、R²²

は水素原子又はベンゾイルオキシ基を示す。)

本発明の化合物で、R¹が炭素原子数1~10のアシル基を示し、R²及びR³が別々に6位、7位、8位又は9位のいずれかに置換し、R²が式-NR²³R²⁴(式中、R²³及びR²⁴は独立して炭素原子数1~10のアルキル基又はベンジル基を示す。)で表される基であり、R³が水素原子又は-NR²³R²⁴(式中、R²³及びR²⁴は独立して炭素原子数1~10のアルキル基又はベンジル基を示す。)で表される基である化合物(5f)は反応スキーム5~1に示すようにニトロ化合物(3b)より合成することができる。ここでニトロ基の還元方法としてはパラジウムー炭素による水素添加、鉄、亜鉛又はスズなどを用いる方法が挙げられる。

反応スキーム5-1

[0041] [化10]

[0042] (式中, R^{14} は前記と同意義であり、 R^{25} はニトロ基を示し、 R^{26} は水素原子又はニトロ基を示し、 R^{27} はアミノ基を示し、 R^{28} は水素原子又はアミノ基を示し、 R^{29} は式 $-NR^{23}R^{24}$ (式中、 R^{23} 及び R^{24} は前記と同意義である。)で表される基を示し、 R^{30} は水素原子又は式 $-NR^{23}R^{24}$ (式中、 R^{23} 及び R^{24} は前記と同意義である。)で表される基を示し、 R^{23} 、 R^{24} は独立して炭素原子数1~10のアルキル基、又はベンジル基を示す。)

また、化合物(5f)は反応スキーム5-2に示すように、 R^1 が炭素原子数1〜10のアシル基を示し、 R^2 及び R^3 が別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 がトリフルオロアセトアミド基であり、 R^3 が水素原子又はトリフルオロアセトアミド基であ

る化合物(5g)を加水分解した後にN-アルキル化を行う事により得ることができる。 反応スキーム5-2

「0043] [化11]

[0044] (式中、 R^{14} 、 R^{29} 及び R^{30} は前記と同意義であり、 R^{31} はトリフルオロアセトアミド基であり、 R^{32} は水素原子又はトリフルオロアセトアミド基を示す。)

本発明の化合物で、 R^1 が炭素原子数 $1\sim10$ のアシル基を示し、 R^2 及び R^3 が別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 が式 $-NR^{33}R^{34}$ (式中、 R^{33} は炭素原子数 $1\sim10$ のアルキル基又はベンジル基を示し、 R^{34} は水素原子を示す。)で表される基であり、 R^3 が水素原子又は式 $-NR^{33}R^{34}$ (式中、 R^{33} は炭素原子数 $1\sim10$ のアルキル基又はベンジル基を示し、 R^{34} は水素原子を示す。)で表される基である化合物($1\sim10$ 0年)というで表される基である化合物($1\sim10$ 0年)は反応スキーム $1\sim10$ 0年)に示すように化合物($1\sim10$ 0年)に示すように化合物($1\sim10$ 0年)に示する方法によっても($1\sim10$ 0年)に示する。ここで、イミノ化後還元する方法によっても($1\sim10$ 0年)に示する。

反応スキーム6-1

[0045] [化12]

[0046] (式中、R¹⁴、R²⁷及びR²⁸は前記と同意義であり、R³⁵は式-NR³³R³⁴(式中、R³³及びR³⁴は前記と同意義である。)で表される基であり、R³⁶は水素原子又は式-NR³³R³⁴(式中、R³³及びR³⁴は前記と同意義である。)で表される基を示す。)

また、本発明の化合物で、 R^1 が炭素原子数1~10のアシル基を示し、 R^2 及び R^3 が 別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 が式 $-NR^{37}R^{38}$ (式中、 R^{37} は

炭素原子数1~10のアルキル基、ベンジル基、アセチル基又はトリフルオロアセチル基を示し、 R^{38} は水素原子を示す。)で表される基であり、 R^{3} が水素原子又は $-NR^{37}R^{38}$ 基である化合物(5i)は反応スキーム6~2に示すように化合物(5g)をN-アルキル化した後に加水分解する事により合成することができる。

反応スキーム6-2

[0047] [化13]

[0048] (式中、R¹⁴、R³¹及びR³²は前記と同意義であり、R³⁹は式-NR³⁷R³⁸(式中、R³⁷、R³⁸は 前記と同意義である。)で表される基であり、R⁴⁰は水素原子又は式-NR³⁷R³⁸(式中、 R³⁷、R³⁸は前記と同意義である。)で表される基を示す。)

本発明の化合物で、 R^1 が炭素原子数1-10のアシル基を示し、 R^2 及び R^3 が別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 が炭素原子数1-10のアルコキシ基、炭素原子数1-5のアルケニルオキシ基又は炭素原子数1-5のアルキニルオキシ基を示し、 R^3 が水素原子、炭素原子数1-10のアルコキシ基、炭素原子数1-5のアルケニルオキシ基又は炭素原子数1-5のアルケニルオキシ基又は炭素原子数1-5のアルケニルオキシ基である化合物(5))は反応スキーム7に示すように化合物(5b)より合成することができる。

反応スキーム7

[0049] [化14]

[0050] (式中、 R^{14} 、 R^{17} 及び R^{18} は前記と同意義であり、 R^{41} は炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基又は炭素原子数1~5のアルキニルオキシ基であり、 R^{42} は水素原子、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基又は炭素原子数1~5のアルキニルオキシ基を示す。)本発明の化合物で、 R^{1} が炭素原子数1~10のアシル基を示し、 R^{2} 及び R^{3} が別々

本発明の化合物で、R'が炭素原子数1~10のアシル基を示し、R'及びR'が別々に6位、7位、8位又は9位のいずれかに置換し、R²が炭素原子数1~10のアルキル

基であり、R³が水素原子又は炭素原子数1~10のアルキル基で示される化合物(5k)は反応スキーム8に示すように化合物(5b)をトリフラート化した後に鈴木-宮浦カップリング反応を行う事により合成することができる。

反応スキーム8

[0051] [化15]

[0052] (式中、R¹⁴、R¹⁷及びR¹⁸は前記と同意義であり、R⁴³は炭素原子数1~10のアルキル 基であり、R⁴⁴は水素原子又は炭素原子数1~10のアルキル基を示す。)

本発明の化合物で、R¹が炭素原子数1~10のヒドロキシルアルキル基を示し、R² 及びR³が別々に6位、7位、8位又は9位のいずれかに置換し、R²がハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又は式-NR⁴⁵R⁴⁶(式中、R⁴⁵及びR⁴⁶は独立して炭素原子数1~10のアルキル基、ベンジル基、アセチル基又はトリフルオロアセチル基示す。)で表される基を示し、R³が水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又は式-NR⁴⁵R⁴⁶(式中、R⁴⁵及びR⁴⁶は独立して炭素原子数1~10のアルキル基、ベンジル基、アセチル基又はトリフルオロアセチル基を示す。)で表される基を示すか、又はR²及びR³は共に結合してエチレンジオキシ基を示す化合物(6)は反応スキーム9に示すように化合物(51)のオキソ基を還元する事で得ることができる。ここで、還元剤としては水素化ホウ素ナトリウム、水素化リチウムアルミニウムなどを用いることができる。

反応スキーム9

[0053] [化16]

- [0054] (式中、R¹⁴は前記と同意義であり、R⁴⁷はハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又は式-NR⁴⁵R⁴⁶(式中、R⁴⁵及びR⁴⁶は前記と同意義である。)で表される基を示し、R⁴⁸は水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基又は式-NR⁴⁵R⁴⁶(式中、R⁴⁵及びR⁴⁶は前記と同意義である。)で表される基を示す。)
- [0055] 本発明の化合物は、経口投与又は非経口投与される。投与量は1回につき1〜1000mgであり、この投与量は、患者の年齢、体重及び症状によって適宜増減することができる。
- [0056] 経口投与する場合は、賦形剤、結合剤、滑沢剤、抗酸化剤、コーティング剤、界面活性剤、可塑剤、着色剤、矯味矯臭剤等を混合して、散剤、顆粒剤、カプセル剤、錠剤等の製剤として投与され、非経口投与する場合は、注射剤、点滴剤、点眼剤等の製剤として投与される。製剤化する際には、通常の製剤化の方法が使用できる。
- [0057] 以下、参考例、実施例及び試験例を挙げて本発明を更に詳細に説明する。なお、 構造式中、BzIOはベンジルオキシ基を示し、BzOはベンゾイルオキシ基を示す。
- [0058] 参考例1

水冷下、mーキシレン100mlとコハク酸無水物3.0gの混合物に塩化アルミニウム12gを加え、室温で一晩攪拌した。反応後氷冷下水を加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し4-(3,4-ジメチルフェニル)-4-オキソブタノイックアシッドの無色固体4.2gを得た。

[0059] ここで得られた化合物4.2gのトリフルオロ酢酸50ml溶液にトリエチルシラン6.8mlを加え室温で一晩攪拌した。反応後氷冷下水、酢酸エチル、10%水酸化ナトリウム水溶液を加え30分間攪拌した。その後水層へ1M塩酸を加え、析出した結晶をろ取

し、4-(3, 4-ジメチルフェニル)ブタノイックアシッド(化合物(1-1)表1-1)の無色結晶3.3gを得た。

- [0060] 同様の方法により表1-1〜表1-2に示す化合物(1-4〜1-11)を得た。
- [0061] 参考例2

窒素置換下、2-フルオロー4-メチルーブロモベンゼン5. 0gのテトラヒドロフラン30 ml溶液に-78℃でn-ブチルリチウム18. 5mlを15分間かけて滴下した。次に塩化トリブチルスズ10. 6mlのテトラヒドロフラン10ml溶液を15分間かけて滴下した後、-78℃で2時間攪拌した。反応終了後飽和炭酸水素ナトリウム水溶液を加え、室温に昇温し、酢酸エチルを用いて抽出、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(ヘキサン)で精製し、2-フルオロ-4-メチルフェニルトリブチルスズの無色油状物質9. 0gを得た。

- [0062] 窒素置換下、ビストリフェニルホスフィンパラジウムジクロライド0.1gのテトラヒドロフラン30ml溶液に水素化ジイソブチルアルミニウム0.5mlを加え、室温で5分間攪拌した。そこに、ここで得られた化合物9.0gとブロモメチルクロトネート2.6mlのテトラヒドロフラン10ml溶液を滴下した後に一晩加熱還流した。反応終了後、減圧下溶媒留去し、シリカゲルカラムクロマトグラフィー(25%酢酸エチルーへキサン)で精製し、メチル(2E)-4-(2-フルオロ-4-メチルフェニル)-2-ブテノエートの無色油状物質を得た。
- [0063] ここで得られた化合物のテトラヒドロフラン50ml、水5mlの混合溶液に水酸化ナトリウム1.8gを加え、4時間加熱還流した。反応後、減圧下溶媒留去し1M塩酸を加え析出した結晶をろ取し、(2E)-4-(2-フルオロ-4-メチルフェニル)-2-ブテノイックアシッドの無色固体2.8gを得た。
- [0064] ここで得られたカルボン酸2.8gをエタノール30ml溶液に10%パラジウムー炭素を加え、水素置換下室温にて一晩攪拌した。反応後セライトろ過した後、減圧下溶媒留去し、4-(2-フルオロ-4-メチルフェニル)ブタノイックアシッド(化合物(1-12)表1-2)の無色固体2.7gを得た。
- [0065] 同様の方法により表1-2〜表1-3に示す化合物(1-13、1-14)を得た。
- [0066] 参考例3

窒素置換下、水素化ナトリウム6.7gのテトラヒドロフラン100ml溶液に氷冷下ジエチルホスホノアセテート20mlを加え、室温下30分間攪拌した。そこに2ーメチルベンズアルデヒド10gのテトラヒドロフラン10ml溶液を滴下し、3時間加熱還流した。反応終了後、氷冷下、水を加え酢酸エチルを用いて抽出した。抽出した有機層を飽和塩化アンモニウム水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、エチル(2E)-3-(3ーメチルフェニル)アクリレートの茶色油状物質14.9gを得た。

- [0067] ここで得られた化合物14.9gのエタノール30ml溶液に10%パラジウムー炭素を加え、水素置換下室温にて一晩攪拌した。反応後セライトろ過した後、減圧下溶媒留去し、エチルー3ー(3ーメチルフェニル)プロピオネートの茶色油状物質14.0gを得た
- [0068] ここで得られた化合物14.0gのテトラヒドロフラン100ml溶液に窒素置換氷冷下水素化リチウムアルミニウム2.76gを加え、室温に昇温して1.5時間攪拌した。反応終了後、氷冷下飽和塩化アンモニウム水溶液を加え、セライトろ過した。酢酸エチルで抽出し、飽和食塩水で洗浄後、硫酸マグネシウムで乾燥、減圧下溶媒留去し、3-(3-メチルフェニル)プロパン-1-オールの黄色油状物質10.8gを得た。
- [0069] ここで得られた化合物10.8gのクロロホルム100ml溶液に氷冷下トリエチルアミン12ml、メシルクロライド6.1mlを加え、室温下2時間攪拌した。反応終了後、氷冷下水を加え、30分間攪拌した後有機層を単離し、水、飽和食塩水で順次洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物をジメチルホルムアミド100mlに溶解し、シアン化ナトリウム4.2gを加え、100℃で一晩攪拌した。反応終了後、氷冷下水を加え、酢酸エチルで抽出、飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、4-(3-メチルフェニル)ブタンニトリルの茶色油状物質13gを得た。
- [0070] ここで得られた化合物13gの水10ml、エタノール100ml混合溶液に水酸化ナトリウム2.9gを加え、一晩加熱還流した。反応終了後、減圧下溶媒留去し1M塩酸を加え析出した結晶をろ取し、4-(3-メチルフェニル)ブタノイックアシッド(化合物(1-15)表1-3)の茶色油状物質10gを得た。

[0071] 同様の方法により表1-3に示す化合物(1-16、1-17)を得た。

[0072] [表1-1]

化合物	R	R'	データ
1-1	3-Ме	4-Me	MS m/z : 191 (M-H)
			¹ HNMR(200MHz,dmso-d ₆) δ (ppm):1.68-1.86
			(m, 2H), 2.17 (s, 3H), 2.18 (s, 3H), 2.49-2.51
			(m, 4H), 6.88 (d, J=7.9Hz, 1H), 6.95 (s, 1H),
			7.03 (d, J =7.9Hz, 1H)
1-4	3-F	4-OMe	MS m/z : 212 (M-H)
			¹ H NMR (300 MHz, dmso-d ₆) δ (ppm):
,			1.55-1.87 (m, 2H), 2.10-2.26 (m, 2H), 2.37-2.64
			(m, 2H), 3.80 (s, 3H), 6.74-7.31 (m, 3H)
1-5	4-Et	Н	MS m/z : 215 (M+Na)*
			¹ H NMR (300 MHz, dmso-d ₆) δ (ppm): 1.16
			(t, J=7.5 Hz, 3 H) ,1.70 - 1.82 (m, 2 H), 2.20 (t,
			J=7.4 Hz, 2 H), 2.45 - 2.62 (m, 4 H), 7.04 - 7.15
			(m, 4 H)
1-6	4-OPr	Н	MS m/z : 205 (M-H)
			¹ H NMR (300 MHz, dmso-d ₆) δ (ppm): 0.88
			(t, J=7.3 Hz, 3 H) ,1.49 - 1.63 (m, 2 H) ,1.70 -
			1.82 (m, 2 H) ,2.46 - 2.57 (m, 4 H) ,7.02 - 7.14
			(m, 4 H)
1-7	4-OPri	Н	MS m/z : 205 (M-H)
			¹ H NMR (300 MHz, CDCl ₃) ō (ppm): 1.24 (d,
			J=6.8 Hz, 6 H), 1.89 - 2.01 (m, 2 H), 2.38 (t,
			J=7.5 Hz, 2 H), 2.64 (t, J=7.5 Hz, 2 H), 2.79 -
			2.96 (m, 1 H) ,7.07 - 7.17 (m, 4 H)

[0073] [表1-2]

化合物	R	R'	データ
1-8	4-cycloHexyl	н	MS m/z : 245 (M-H)
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
			1.14 - 1.49 (m, 5 H), 1.68 - 1.90 (m, 5
			H) ,1.90 - 2.03 (m, 2 H), 2.38 (t, J=7.5
			Hz, 2 H), 2.42 - 2.54 (m, 1 H), 2.64 (t,
			J=7.5 Hz, 2 H), 7.03 - 7.17 (m, 4 H)
1-9	4-F	Н	MS m/z : 181 (M-H)
			1 HNMR(300MHz,dmso-d ₆) δ
			(ppm):1.65-1.88 (m, 2H), 2.20 (m, 2H),
			2.46-2.70 (m, 2H), 6.97-7.16 (m, 2H),
			7.17-7.30 (m, 2H)
1-10	4-Ci	н	MS m/z : 197 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
	1		1.75-2.07 (m,2H), 2.17-2.48 (m,2H),
			2.53-2.71 (m,2H), 6.97-7.19 (m, 2H),
			7.20-7.30 (m, 2H)
1-11	3-Ме	4-OMe	MS m/z : 207 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ ppm
			1.83 - 2.02 (m, 2 H), 2.20 (s, 3 H) ,2.37
			(t, J=7.5 Hz, 2 H), 2.59 (t, J=7.5 Hz, 2
			H), 3.80 (s, 3 H), 6.69 - 6.78 (m, 1
ļ			H) ,6.91 - 7.02 (m, 2 H)
1-12	2-F	4-Me	MS m/z : 195 (M-H)
	İ		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.80-2.03 (m,2H), 2.25-2.44 (m,5H),
			2.55-2.73 (m, 2H), 6.75-6.90 (m, 2H),
			6.96-7.11 (m, 2H)
1-13	3-F	4-Me	MS m/z : 195 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.77-2.02 (m,2H), 2.17-2.43 (m,5H),
			2.51-2.71 (m, 2H), 6.72-6.92 (m, 2H),
			6.96-7.18 (m, 1H)

[0074] [表1-3]

化合物	R	R'	データ
1-14	2-F	4-Me	MS m/z : 211 (M-H)
	Ì		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.78-2.03 (m, 2H), 2.37 (t, J=7.4Hz, 2H),
			2.64 (t, J=7.3Hz, 2H), 3.77 (s, 3H), 6.46-6.72
	_		(m, 2H), 6.93-7.14 (m, 1H)
1-15	3-F	н	MS m/z : 181 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.77-2.11 (m, 2H), 2.38 (m, 2H), 2.56-2.79
			(m, 2H), 6.78-7.03 (m, 3H), 7.13-7.34 (m,
			1H)
1-16	3-C1	н	MS m/z: 197 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.86-2.07 (m,2H), 2.26-2.46 (m,2H),
			2.58-2.74 (m, 2H), 7.11-7.37 (m, 4H)
1-17	3-Ме	Н	MS m/z: 177 (M-H)
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.84-2.06 (m,2H), 2.28-2.46 (m,5H),
			2.54-2.74 (m, 2H), 6.86-7.32 (m, 4H)

[0075] 参考例4

参考例1で得られた化合物(1-1)3.3gのクロロホルム60ml溶液に室温下塩化チオニル2.5mlを加え、10時間加熱還流した。反応後、減圧下溶媒留去し4-(3,4-ジメチルフェニル)ブタノイルクロライドを得た。

- [0076] ここで得られた化合物のクロロホルム100ml溶液に氷冷下塩化アルミニウム4.5g を加え、室温下2時間攪拌した。反応後、氷冷下水を加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(10%酢酸エチルーへキサン)で精製し、6,7-ジメチルテトラロン(化合物(2-2)表2-1)の無色固体1.7gを得た。
- [0077] 同様の方法により表2-1〜表2-4に示す化合物(2-3、2-9、2-11〜2-23)を得た。

[0078] [表2-1]

化合物	R	R'	データ
2-2	6-Ме	7-Me	MS m/z : 175 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.14-2.17 (m, 2H), 2.26 (s, 3H), 2.30 (s, 3H),
			2.62 (t, J=6.4Hz, 2H), 2.90 (t, J=6.4Hz, 2H),
			7.03 (s, 1H), 7.81 (s, 1H)
2-3	7-Me	Н	MS m/z : 183 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.05-2.18 (m, 2H), 2.36 (s, 3H), 2.64 (t,
			J=6.3Hz, 2H), 2.91 (t, J=6.3 Hz, 2H), 7.14
•			(d, J=7.9Hz, 1H), 7.29 (d, J=7.9Hz, 1H), 7.85
			(s, 1H)
2-9	6,7-Ethylenedioxy		MS m/z : 227 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.02-2.15 (m,2H), 2.58(t,J=5.9Hz,2H), 2.84 (t,
			J=5.9Hz, 2H), 4.20-4.38 (m, 4H), 6.71 (s, 1H),
		· · · · · · · · · · · · · · · · · · ·	7.56 (s, 1H)
2-10	7-F	н	MS m/z : 165 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.06-2.23 (m,2H), 2.55-2.72 (m,2H),
			2.84-3.00 (m, 2H), 7.03-7.31 (m, 2H), 7.68
			(dd, J=9.3, 2.6Hz, 1H)
2-11	6-F	7-OMe	MS m/z : 195 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.05-2.20(m,2H), 2.50-2.68 (m, 2H),
			2.80-2.96 (m, 2H), 6.95 (d, J=11.4Hz, 1H),
			7.62 (d, J=9.0Hz, 1H)

[0079] [表2-2]

化合物	R	R'	データ
2-12	7-Et	н	MS m/z : 197 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.24
			(t, J=7.5 Hz, 3 H), 2.04 - 2.20 (m, 2 H), 2.58 -
			2.75 (m, 4 H), 2.93 (t, J=6.2 Hz, 2 H), 7.17 (d,
			J=8.0 Hz, 1 H), 7.32 (dd, J=8.0 Hz, J=1.8 Hz,
			1 H), 7.83 - 7.93 (m, J=1.8 Hz, 1 H)
2-13	7- Pr	Н	MS m/z : 211 (M+Na)*
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 0.93
			(t, J=7.3 Hz, 3 H), 1.57 - 1.72 (m, 2 H), 2.07 -
			2.18 (m, 2 H), 2.56 - 2.68 (m, 4 H), 2.93 (t,
			J=6.1 Hz, 2 H), 7.17 (d, J=7.8 Hz, 1 H), 7.30
			(dd, J=7.8, 2.0 Hz, 1 H), 7.85 (d, J=2.0 Hz, 1
			н)
2-14	7- Pr ⁱ	Н	MS m/z : 211 (M+Na) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.25
	·		(d, J=6.8 Hz, 6 H), 2.05 - 2.20 (m, 21 H), 2.58
			- 2.69 (m, 2 H), 2.87 - 2.99 (m, 3 H), 7.19 (d,
			J=7.9 Hz, 1 H), 7.35 (dd, J=7.9, 2.0 Hz, 1 H),
			7.91 (d, <i>J</i> =2.0 Hz, 1 H)
2-15	7- cycloHexyl	Н	MS m/z : 251 (M+Na)*
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.16 -
			1.51 (m, 5 H), 1.68 - 1.91 (m, 5 H), 2.06 -
			2.20 (m, 2 H), 2.43 - 2.58 (m, 1 H), 2.60 -
			2.69 (m, 2 H), 2.89 - 2.97 (m, 2 H), 7.18 (d,
			J=7.8 Hz, 1 H), 7.33 (dd, J=7.8, 2.0 Hz, 1 H),
			7.89 (d, J=2.0 Hz, 1 H)

[0080] [表2-3]

化合物	R	R'	データ
2-16	7-CI	Н	MS m/z : 181 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.04-2.23 (m,2H), 2.57-2.72 (m,2H),
			2.86-3.01 (m, 2H), 7.19 (d, J=8.4Hz, 1H),
			7.42 (dd, J=8.4, 2.2Hz, 1H), 7.99 (d, J=2.2Hz,
			1H)
2-17	6-Me	7-OMe	MS m/z : 191 (M+H)*
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 2.04 -
			2.16 (m, 2 H), 2.25 (s, 3 H), 2.57 - 2.66 (m,
		,	2 H), 2.86 (t, J=6.1 Hz, 2 H), 3.86 (s, 3 H),
			7.02 (s, 1 H), 7.45 (s, 1 H)
2-18	5-F	7-Me	MS m/z : 179 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.05-2.22 (m, 4H), 2.36 (s, 3H), 2.56-2.74 (m,
			2H), 2.83-2.95 (m, 2H), 7.05 (d, J=9.7Hz,
			1H), 7.65 (s, 1H)
2-19	6-F	7-Me	MS m/z: 179 (M+H) ⁺
1			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.07-2.45 (m,5H), 2.47-2.75 (m,2H),
			2.78-2.99 (m, 2H), 6.87 (d, J=9.7Hz, 1H),
			7.90 (d, <i>J</i> =8.4Hz, 1H)
2-20	5-F	7-OMe	MS m/z : 195 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.93-2.20 (m,2H), 2.49-2.75 (m,2H),
			2.77-3.03 (m, 2H), 3.83 (s, 3H), 6.83 (dd,
			J=10.6, 2.4Hz, 1H), 7.35 (d, J=2.4Hz, 1H)
2-21	6-F	Н	MS m/z : 187 (M+Na)+
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.89-2.27 (m,2H), 2.48-2.73 (m,2H),
			2.81-3.05 (m, 2H), 6.74-7.09 (m, 2H), 8.06
			(dd, J=8.6, 5.9Hz, 1H)

[0081] [表2-4]

化合物	R	R'	データ
2-22	6-CI	Н	MS m/z : 181 (M+H)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.99-2.29 (m,2H), 2.53-2.76 (m,2H),
			2.87-3.10 (m, 2 H), 7.13-7.37 (m, 1H),
			7.38-7.59 (m, 1H), 7.88-8.12 (m, 1H)
2-23	6-Me	н	MS m/z : 161 (M+H)*
			¹H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.98-2.23 (m, 2H), 2.37 (s, 3H), 2.47-2.76 (m,
	1		2H), 2.75-3.03 (m, 2H), 7.06 (s, 1H), 7.11 (d,
			J=7.9Hz, 1H), 7.93 (d, J=7.9Hz, 1H)

[0082] 参考例5

[0084] [表3-1]

5ーヒドロキシテトラロン4. Ogのジメチルホルムアミド50ml溶液に窒素置換氷冷下t ーブトキシカリウム3. 1gを加え、同温度下15分間攪拌した後ベンジルブロマイド3. 2 mlを加え同温度下2時間攪拌した。反応後水を加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(20%酢酸エチルーへキサン)で精製し、5ーベンジルオキシテトラロン(化合物(2-7)表3-1)の無色固体6. 3gを得た。

[0083] 同様の方法により表3-1〜表3-2に示す化合物(2-8、2-24〜2-28)を得た。

化合物	R	R'	データ
2-7	5-OBzl	н	MS m/z : 253 (M+H) ⁺
			¹H NMR (300 MHz, CDCl ₃) δ (ppm):
			2.04-2.18 (m, 2H), 2.64 (t, J=6.0Hz, 2H),
			2.99 (t, J=6.0Hz, 2H), 5.11 (s, 2H), 7.09 (d,
			J=7.9Hz, 1H), 7.25 (t, J=7.9Hz, 1H),
			7.32-7.51 (m, 5H), 7.67 (d, J=7.9Hz, 1H)
2-8	6-OBzl	Н	MS m/z : 275 (M+Na) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
			2.08-2.18 (m, 2H), 2.61 (t, J=6.1Hz, 2H),
			2.92 (t, J=6.1Hz, 2H), 5.12 (s, 2H), 6.79 (d,
			J=2.5Hz, 1H), 6.90 (dd, J=8.7, 2.5Hz, 1H),
			7.29-7.48 (m, 5H), 8.01 (d, J=8.7Hz, 1H)
2-24	6-OEI	Н	MS m/z : 213 (M+Na)+
]			¹ H NMR (300 MHz, CDCl ₃) δ (ppm):1.43
			(i, J=7.0 Hz, 3 H), 2.06 - 2.16 (m, 2 H),
			2.57 - 2.63 (m, 2 H), 2.92 (t, J=6.1 Hz, 2
			H), 4.09 (q, J=7.0 Hz, 2 H), 6.69 (d,
			J=2.5 Hz, 1 H), 6.81 (dd, J=8.7, 2.5 Hz, 1
			H), 8.00 (d, J=8.7 Hz, 1 H)
2-25	6-O-cycloHexylmethyl	Н	MS m/z : 281 (M+Na)*
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm):0.96
			- 1.40 (m, 5 H), 1.65 - 1.91 (m, 6 H), 2.06 -
			2.16 (m, 2 H), 2.55 - 2.64 (m, 2 H), 2.92
			(t, J=6.0 Hz, 2 H), 3.80 (d, J=6.2 Hz, 2
			H), 6.69 (d, J=2.5 Hz, 1 H), 6.81 (dd,
			J=8.7, 2.5 Hz, 1 H), 8.00 (d, J=8.7 Hz, 1 H)

[0085] [表3-2]

化合物	R	R'	データ
2-26	6- OPr	Н	MS m/z : 227 (M+Na) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.04
			(t, J=7.5 Hz, 3 H), 1.75 - 1.89 (m, 2 H),
			2.06 - 2.18 (m, 2 H), 2.56 - 2.66 (m, 2 H),
		Ì	2.91 (t, J=6.1 Hz, 2 H), 3.97 (t, J=6.6 Hz, 2
		ĺ	H), 6.70 (d, J=2.5 Hz, 1 H), 6.81 (dd, J=8.8,
			2.5 Hz, 1 H), 8.00 (d, J=8.8 Hz, 1 H)
2-27	6- OPri	Н	MS m/z : 227 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.36
			(d, J=6.2 Hz, 6 H), 2.04 - 2.21 (m, 2 H),
			2.52 - 2.67 (m, 2 H), 2.91 (t, J=6.2 Hz, 2
			H), 4.51 - 4.75 (m, 1 H), 6.67 (d, J=2.6 Hz,
			1 H), 6.79 (dd, J=8.6, 2.6 Hz, 1 H), 7.99 (d,
			J=8.6 Hz, 1 H)
2-28	6-OBz	Н	MS m/z : 289 (M+Na) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 2.11
			- 2.23 (m, 2 H), 2.64 - 2.71 (m, 2 H), 3.01
			(t, J=6.1 Hz, 2 H), 7.13 - 7.19 (m, 2 H),
		Ì	7.49 - 7.57 (m, 2 H), 7.62 - 7.74 (m, 1 H),
			8.10 - 8.23 (m, 3 H)

[0086] 参考例6

6-アセトアミドテトラロン9. Ogのメタノール80ml、水20ml混合溶液に水酸化カリウム12. 4gを加え、9時間加熱環流した。反応後、減圧下溶媒留去し、水を加え酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、6-アミノテトラロンの褐色固体6. 5gを得た。

ここで得られた化合物6.5gのテトラヒドロフラン70ml溶液に氷冷下、無水トリフルオロ酢酸6.8ml、トリエチルアミン8.4mlを加え、氷冷下4時間攪拌した。反応後、氷冷下水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、6ートリフルオロアセトアミドテトラロンの(化合物(2-29))褐色固体10gを得た。

化合物(2-29)

[0087] [化17]

 $MS m/z : 256 (M-H)^{-}$

¹H NMR (200 MHz, CDCl₃) δ (ppm):2.06-2.12 (m, 2H), 2.67 (t, J=6.2Hz, 2H), 2.99 (t, J=6.2Hz, 2H) 7.37 (dd, J=8.4, 2.0Hz, 1H), 7.70 (d, J=2.0Hz, 1H), 8.07 (d, J=8.4Hz, 1H)

[0088] 参考例7

氷冷下ジメチルホルムアミド4.5mlにオキシ塩化リン3.5mlを滴下後、室温に昇温し30分間攪拌した。そこに5,7ージメチルテトラロン5.0gのクロロホルム100ml溶液を室温下加え、一晩加熱還流した。反応後、水を加え30分間攪拌した後、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(5%酢酸エチルーへキサン)で精製し、1ークロロー2ーホルミルー3,4ージヒドロナフタレンの褐色固体5.8gを得た。

[0089] ここで得られた化合物5.8gのアセトニトリル50ml溶液にチオグリコール酸エチル3.2ml、炭酸カリウム8.3gを加え、室温下一晩攪拌した。反応後、酢酸エチルを加え、有機層を水、10%水酸化ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(2.5%酢酸エチルーへキサン)で精製し、エチル4、5ージヒドロー6、8ージメチルナフト[1,2-b]チオフェンー2ーカルボキシレート(化合物(3-1)表4-1)の褐色固体4.9gを得た。

[0090] 同様の方法により表4-1~表4-3に示す化合物(3-2~3-11、3-25)を得た。 [0091] [表4-1]

化合物	R	R'	データ
3-1	6-Me	8-Me	MS m/z : 309 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.38 (t,
			J= 7.1Hz, 3H), 2.30 (s, 3H), 2.32 (s, 3H),
			2.69-3.01 (m, 4H), 4.35 (q, J=7.1Hz, 2H), 6.94
			(s, 1H), 7.14 (s, 1H), 7.59 (s, 1H)
3-2	7-Me	8-Me	MS m/z : 309 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.38 (t,
			J= 7.0Hz, 3H), 2.26 (s, 6H), 2.65-2.98 (m,
			4H), 4.35 (q, J=7.0Hz, 2H), 7.01 (s, 1H), 7.22
			(s, 1H), 7.59 (s, 1H)
3-3	8-Me	н	MS m/z : 295 (M+Na)+
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.39 (t,
			J=7.3Hz,3H), 2.36 (s,3H), 2.73-3.00 (m, 4H),
			4.38 (q,J=7.3Hz,2H), 7.04 (d, J=7.3Hz, 1H),
			7.13 (d, J=7.3Hz, 1H), 7.26 (s, 1H), 7.61 (s, 1H)
3-4	6-OMe	Н	MS m/z : 311 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.39 (t,
			J= 7.0Hz, 3H), 2.69-3.08 (m, 4H), 3.89 (s, 3H),
			4.36 (q, J=7.0Hz, 2H), 6.83 (d, J=7.7Hz, 1H),
			7.08 (d, J=7.7Hz, 1H), 7.21 (t, J=7.7Hz, 1H),
	i I		7.60 (s, 1H)
3-5	7-OMe	н	MS m/z : 311 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.39 (t,
			J= 7.0Hz, 3H), 2.73-3.03 (m, 4H), 3.84 (s, 3H)
			4.37 (q, J=7.0Hz, 2H), 6.75-6.81 (m, 2H), 7.37
			(d, J=9.2Hz, 1H), 7.58 (s, 1H)

[0092] [表4-2]

化合物	R	R'	データ
3-6	8-OMe	Н	MS m/z : 311 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.40 (t,
			J= 7.2Hz, 3H), 2.68-3.05 (m, 4H), 3.84 (s, 3H),
			4.37 (q, J=7.2Hz, 2H), 6.77 (dd, J=2.4, 8.1Hz,
			1H), 6.98 (d, J=2.4Hz, 1H), 7.16 (d, J=8.1Hz,
			1H), 7.60 (s, 1H)
3-7	6-OBzl	Н	MS m/z : 365 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.38 (t,
			J=7.1Hz, 3H), 2.76-2.98 (m, 4H), 4.35 (q,
			J=7.1Hz, 2H), 5.09 (s, 2H), 6.81 (d, J=2.6Hz,
			1H), 6.88 (s, 1H), 7.30-7.46 (m, 6H), 7.60 (s,
!			1H)
3-8	7-OBzl	н	MS m/z : 365 (M+H)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.40 (t,
			J= 7.0Hz, 3H), 2.81 (t, J=7.7Hz, 2H), 3.06 (t,
İ			J=7.7Hz, 2H), 4.37 (q, J=7.0Hz, 2H), 5.11 (s,
			2H), 6.90 (d, J =7.3Hz, 1H), 7.10 (d, J =7.3Hz,
			1H), 7.17 (t, J=7.3Hz,1H), 7.34-7.49 (m, 5H),
			7.60 (s, 1H)
3-9	6,7-Ethylenedioxy		MS m/z : 339 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.38 (t,
			J= 7.1Hz, 3H), 2.72-2.90 (m, 4H), 4.27 (s, 4H),
			4.37 (q, J=7.1Hz, 2H), 6.74 (s, 1H), 6.96 (s, 1H),
			7.57 (s, 1H)
3-10	8-F	Н	MS m/z : 277 (M+H) ⁺
			¹H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.39 (t, J=7.0Hz, 3H), 2.69-3.02 (m, 4H), 4.36
			(q, J=7.0Hz, 2H), 6.78-6.96 (m, 1H), 7.05 - 7.23
			(m, 2H), 7.60 (s, 1H)

[0093] [表4-3]

化合物	R	R'	データ
3-11	7-F	8-OMe	MS m/z : 307 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.39 (t, J=7.3Hz, 3H), 2.73-2.94 (m, 4H), 3.92
			(s, 3H), 4.36 (q, J=7.3 Hz, 2H), 6.96 (d,
			J=11.4Hz, 1H), 6.99 (d, J=7.9Hz, 1H), 7.59 (s,
			1H)
3-25	8-NO ₂	Н	¹ H NMR (200 MHz, CDCl ₃) δ (ppm):1.41 (t,
			J=8.2Hz, 3H), 2.83-2.98 (m, 2H), 3.01-3.13 (m,
			2H), 4.38 (q, J=8.2Hz, 2H), 7.40 (d, J=8.0Hz,
			1H), 7.63 (s, 1H), 8.07 (dd, J=2.5, 8.0Hz, 1H),
			8.24(d, <i>J</i> =2.5Hz, 1H)

[0094] 参考例8

参考例7で得られた化合物 (3-25) 12gのエタノール120ml、水12mlの混合溶液に鉄11g、塩化アンモニウム1. 3gを加え、2時間加熱還流した。反応後、不溶物をろ取し、ろ液中に析出した結晶をろ取し8-アミノー4, 5-ジヒドロナフト[1, 2-b]チオフェンー2-カルボン酸 エチルエステル (化合物 (3-26)) の無色結晶7. 1gを得た。化合物 (3-26)

[0095] [化18]

[0096] 1 H NMR (200 MHz, CDCl₃) δ (ppm):1.37 (t, J=8.2Hz, 3H), 2.67–2.93 (m, 4H), 3.40–3.90 (br, 2H), 4.35 (q, J=8.5Hz, 2H), 6.58 (dd, J=2.5, 8.0Hz, 1H), 6.78 (d, J=2.5Hz, 1H), 7.02 (d, J=8.0Hz, 1H), 7.59 (s, 1H)

[0097] 参考例9

参考例7で得られた化合物(3-1)4.9gのエタノール100ml、水10mlの混合溶液に水酸化ナトリウム0.82gを加え、80℃で一晩攪拌した。反応後、減圧下溶媒留去し1M塩酸を加え析出した結晶をろ取し、4,5-ジヒドロー6,8-ジメチルナフト[1,2-b]チオフェンー2-カルボン酸の無色結晶4.4gを得た。

[0098] ここで得られた化合物とN, Oージメチルヒドロキシルアミン塩酸塩2. Og、1ーヒドロキシベンゾトリアゾール3. Og、トリエチルアミン3. 1mlのジメチルホルムアミド100ml溶液に1ーエチルー3ー(3ージメチルアミノプロピル)カルボジイミド塩酸塩4. 2gを加え室温下5時間攪拌した。反応後、酢酸エチルを加え飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(25%酢酸エチルーへキサン)で精製し、4,5ージヒドロー6,8ージメチルナフト[1,2ーb]チオフェンー2ーN,Oージメチルヒドロキシルカルボキサミド(化合物(4-1)表5-1)の褐色固体4.7gを得た。

[0099] 以下、同様の方法により表5-1〜表5-3に示す化合物(4-2〜4-12)を得た。

[0100] [表5-1]

化合物	R	R'	データ
4-1	6-Me	8-Me	MS m/z : 302 (M+H) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm):2.30 (s, 3H),
			2.31 (s, 3H), 2.70-2.96 (m, 4H), 3.38 (s, 3H), 3.83
			(s, 3H), 6.93 (s, 1H), 7.16 (s, 1H), 7.75 (s, 1H)
4-2	7-Me	8-Me	MS m/z : 302 (M+H)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.26 (s, 3H),
			2.27 (s, 3H), 2.68-3.09 (m, 4H), 3.39 (s, 3H), 3.84
			(s, 3H), 7.02 (s, 1H), 7.26 (s, 1H), 7.76 (s, 1H)
4-3	8-Me	Н	MS m/z : 310 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.36 (s, 3H),
			2.75-3.01 (m, 4H), 3.39 (s, 3H), 3.83 (s, 3H), 7.02
	ľ		(d, $J=7.9$ Hz, 1H), 7.13 (d, $J=7.9$ Hz, 1H), 7.30 (s,
			1H), 7.76 (s, 1H)
4-4	6-OMe	Н	MS m/z : 304 (M+H)*
			¹ H NMR (200MHz, CDCl ₃) δ (ppm):2.68-3.11 (m,
			4H), 3.39 (s, 3H), 3.80 (s, 3H), 3.88 (s, 3H), 6.82
			(d, J=7.0Hz, 1H), 7.11 (d, J=7.0Hz, 1H), 7.18 (t,
			J=7.0Hz, 1H), 7.77 (s, 1H)
4-5	7-OMe	Н	MS m/z : 304 (M+H) ⁺
			¹ H NMR (200MHz, CDCl ₃) δ (ppm):2.77-2.99 (m,
			4H), 3.40 (s, 3H), 3.81 (s, 3H), 3.84 (s, 3H), 6.73
			(d, J=2.6Hz, 1H), 6.81 (s, 1H), 7.38 (d, J=2.6Hz,
			1H), 7.76 (s, 1H)

[0101] [表5-2]

化合物	R	R'	データ
4-6	8-OMe	Н	MS m/z : 304 (M+H)*
			¹ H NMR (200MHz, CDCl ₃) δ (ppm):2.71-2.95
			(m, 4H), 3.40 (s, 3H), 3.83 (s, 3H), 3.85 (s, 3H),
			6.77 (dd, J=2.6, 8.4Hz, 1H), 7.01 (d, J=2.6Hz,
			1H), 7.14 (d, J=8.4Hz, 1H), 7.76 (s, 1H)
4-7	6-OBzl	н	MS m/z: 402 (M+Na) ⁺
			¹ H NMR (200MHz, CDCl ₃) δ (ppm):2.71-3.15
			(m, 4H), 3.38 (s, 3H), 3.83 (s, 3H), 5.11 (s, 2H),
			6.89 (dd, J=1.8, 7.5Hz, 1H), 7.06-7.49 (m, 7H),
			7.77 (s, 1H)
4-8	7-OBzl	н	MS m/z : 402 (M+Na)*
			¹ H NMR (200MHz, CDCl ₃) δ (ppm):2.77-2.98
			(m, 4H), 3.38 (s, 3H), 3.82 (s, 3H), 5.10 (s, 2H),
			6.82 (d, J=2.6Hz, 1H), 6.88 (s, 1H), 7.33-7.48
			(m, 6H), 7.75 (s, 1H)
4-9	6,7-Ethylenedioxy		MS m/z : 354 (M+Na)*
			¹ H NMR (200MHz,CDCl ₃) δ (ppm): 2.72-2.91
			(m, 4H), 3.38 (s, 3H), 3.80 (s, 3H), 4.26 (s, 4H),
			6.74 (s, 1H), 6.99 (s, 1H), 7.73 (s, 1H)
4-10	8-F	Н	MS m/z : 314 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.58-3.01 (m, 4H), 3.39 (s, 3H), 3.82 (s, 3H),
			6.75-6.98 (m, 1H), 7.05-7.24 (m, 2H), 7.77 (s,
			1H)
4-11	7-F	8-OMe	MS m/z : 344 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			2.64-3.04 (m, 4H), 3.39 (s, 3H), 3.83 (s, 3H),
			3.94 (s, 3H), 6.84-7.11 (m, 2H), 7.75 (s, 1H)

[0102] [表5-3]

化合物	R	R'	データ
4-12	8-NH ₂	Н	¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 2.68-2.93
			(m, 4H), 3.37 (s, 3H), 3.80 (s, 3H), 4.53 (brs,
			2H), 6.56 (dd, J=2.5,8.0Hz, 1H), 6.81(d,
			J=2.5Hz, 1H), 7.02 (d, J=8.0Hz, 1H), 7.72 (s,
			1H)

[0103] 参考例10

参考例9で得られた化合物(4-12)0.52gのジメチルホルムアミド10ml溶液に、ヨウ化メチル1.1ml、炭酸水素ナトリウム0.46gを加え、室温下一晩攪拌後100℃油浴上で6時間攪拌した。反応後、酢酸エチルを加え有機層を水、飽和食塩水で順次洗浄し、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、4,5-ジヒドロ-8-(ジメチルアミノ)ナフト[1,2-b]チオフェン-2-N,O-ジメチルヒドロキシルカルボキサミド(化合物(4-13))の褐色油状物質0.36gを得た。

化合物(3413)

[0104] [化19]

[0105] ¹H NMR (200 MHz, CDCl₃) δ (ppm):2.73–2.90 (m, 4H), 2.98(s, 6H), 3.39 (s, 3H), 3.83 (s, 3H), 6.64 (dd, J=2.5,8.0Hz, 1H), 6.83(d, J=2.5Hz, 1H), 7.11 (d, J=8.0Hz, 1H), 7.76 (s, 1H)

同様の方法により化合物(4-14, 4-15)を得た。 化合物(4-14) [0106] [化20]

[0107] ¹H NMR (200 MHz, CDCl₃) δ (ppm): 1.14(t, J=8.5Hz, 6H), 2.72-2.92 (m, 4H), 3.36(q, J=8.5Hz, 4H), 3.38(s, 3H), 3.83 (s, 3H), 6.58 (dd, J=2.5,8.0Hz, 1H), 6.89(d, J=2.5Hz, 1H), 7.08 (d, J=8.0Hz, 1H), 7.74 (s, 1H) 化合物 (4-15)

[0108] [化21]

[0109] 1 H NMR (200 MHz, CDCl₃) δ (ppm):2.77-2.92 (m, 4H), 3.36(s, 3H), 3.76 (s, 3H), 4.66(s, 4H), 6.62 (dd, J=2.5,8.0Hz, 1H), 6.88(d, J=2.5Hz, 1H), 7.02 (d, J=8.0Hz, 1H), 7.15-7.42(m, 10H), 7.72 (s, 1H)

[0110] 参考例11

参考例9で得られた化合物(4-12)1.8gのテトラヒドロフラン10ml溶液に、氷冷下トリエチルアミン1.1ml、トリフルオロ酢酸無水物1.1mlを順次加え同温度下2時間攪拌した。反応後、氷を加え酢酸エチルで抽出し飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。残留物を酢酸エチルで洗浄し、4,5-ジヒドロー8-(トリフルオロアセチルアミノ)ナフト[1,2-b]チオフェンー2-N,O-ジメチルヒドロキシルカルボキサミドの淡褐色結晶1.3gを得た。

[0111] 次いで、60%油性水素化ナトリウム0.15gをヘキサンで洗浄後、ジメチルホルムアミド8 ミド5mlを加えた。氷冷下、前反応で得られた化合物1.3gのジメチルホルムアミド8 ml溶液を加え、同温度下20分間攪拌した。氷冷下ヨウ化メチル0.28mlを加え、室温下一晩攪拌した。反応後、水を加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。残留物をシリカゲルカラムクロマトグラフィー(30%酢酸エチルーヘキサン)で精製し、4,5ージヒドロー8ー(トリフ

ルオロアセチルメチルアミノ)ナフト[1,2-b]チオフェン-2-N,O-ジメチルヒドロキシルカルボキサミドの無色固体1.3gを得た。

[0112] ここで得られた化合物1.3gのメタノール13ml、水1.3ml混合溶液に炭酸カリウム 0.51gを加え、室温下6時間攪拌した。溶媒を減圧下留去後、酢酸エチルを加え有 機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。残留 物をシリカゲルカラムクロマトグラフィー(35%酢酸エチルーへキサン)で精製し、4,5 ージヒドロー8ー(メチルアミノ)ナフト[1,2-b]チオフェンー2-N,Oージメチルヒドロキシ ルカルボキサミド(化合物(4-16))の褐色油状物1.1gを得た。

[0113] [化22]

化合物(4-16)

[0114] ¹H NMR (200 MHz, CDCl₃) δ (ppm):2.73-2.94 (m, 4H), 2.88(s, 3H), 3.39 (s, 3H), 3.82 (s, 3H), 6.52 (dd, J=2.5,8.0Hz, 1H), 6.71(d, J=2.5Hz, 1H), 7.06 (d, J=8.0Hz, 1H), 7.76 (s, 1H)

実施例

[0115] 実施例1

(A法)

窒素置換下、参考例9で得られた化合物(4-1)4.7gのテトラヒドロフラン100ml溶液へ、氷冷下3Mメチルマグネシウムブロマイドのジエチルエーテル溶液13mlを加え、同温度下3時間攪拌した。反応後、氷冷下10%塩酸を加え酢酸エチルで抽出し、有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(25%酢酸エチルーへキサン)で精製後、エタノールで再結晶し、2-アセチルー4、5-ジヒドロー6、8-ジメチルナフト[1、2ーb]チオフェン(表6-1)の黄色結晶3.8gを得た。

(B法)

氷冷下ジメチルホルムアミド1.6mlにオキシ塩化リン1.3mlを滴下後、室温に昇温

し30分間攪拌した。そこに5,7ージメチルテトラロン1.8gのクロロホルム50ml溶液を室温下加え、一晩加熱環流した。反応後、水を加え30分間攪拌した後、有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(5%酢酸エチルーヘキサン)で精製し、1ークロロー2ーホルミルー3,4ージヒドロナフタレンの褐色固体2.0gを得た。

- [0116] 次に2,5-ジヒドロキシ-2,5-ジメチル-1,4-ジチアン0.9gのエタノール10ml溶液にトリエチルアミン1.4mlを滴下後、室温下30分間攪拌した。そこに先に得られた1-クロロ-2-ホルミル-3,4-ジヒドロナフタレンのエタノール10ml溶液を室温下加え、一晩加熱還流した。反応後、減圧下溶媒留去し氷冷下、水、2M水酸化ナトリウム水溶液を順次加え、酢酸エチルで抽出した。有機層を飽和塩化アンモニウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルクロマトグラフィー(20%酢酸エチルーへキサン)で精製後、エタノールで再結晶し、2-アセチル-4,5-ジヒドロ-6,8-ジメチルナフト[1,2-b]チオフェン(表6-1)の黄色結晶1.6gを得た。
- [0117] 以下、同様の方法により表6-1〜表6-7に示す実施例2〜36の化合物を得た。
- [0118] [表6-1]

実施例	R	R'	R"	データ
1	6-Me	8-Me	Me	MS m/z : 257 (M+H) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.29 (s,
				3H), 2.31 (s, 3H), 2.54 (s, 3H), 2.73-2.95 (m,
				4H), 6.96 (s, 1H), 7.18 (s, 1H), 7.50 (s, 1H)
2	7-Me	8-Me	Me	MS m/z : 257 (M+H) ⁺
ı				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.26 (s,
				3H), 2.27 (s, 3H), 2.54 (s, 3H), 2.68-3.10 (m,
				4H), 7.03 (s, 1H), 7.25 (s, 1H), 7.49 (s, 1H)
3	8-Me	Н	Me	MS m/z : 243 (M+H)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):2.35 (s,
				3H), 2.54 (s, 3H), 2.75-2.98 (m, 4H), 7.06 (d,
				J=9.0Hz, 1H), 7.14 (d, J=9.0Hz, 1H), 7.50 (s,
				1H)
4	6-OMe	Н	Me	MS m/z : 259 (M+H) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.56 (s,
				3H), 2.77-3.03 (m, 4H), 3.90 (s, 3H), 6.85 (d,
				J=6.8Hz, 1H), 7.11 (d, J=6.8Hz, 1H), 7.21 (d,
				J=6.8Hz, 1H), 7.51 (s, 1H)
5	7-OMe	Н	Me	MS m/z : 259 (M+H) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.54 (s,
				3H), 2.74-3.05 (m, 4H), 3.85 (s, 3H),
				6.72-6.90 (m, 2H), 7.41 (d, J=8.8Hz, 1H),
				7.49 (s, 1H)

[0119] [表6-2]

実施例	R	R'	R"	データ
6	8-OMe	Н	Me	MS m/z : 259 (M+H)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.55 (s,
				3H), 2.77-2.96 (m, 4H), 3.84 (s, 3H), 6.79
				(dd, J=8.4, 2.7Hz, 1H), 7.01 (d, J=2.7Hz, 1H),
				7.15 (d, J=8.4Hz, 1H), 7.49 (s, 1H)
7	6-OBzl	н	Me	MS m/z: 357 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):2.77 (s,
				3H), 2.77-3.12 (m, 4H), 5.13 (s, 2H), 6.91
				(dd, J=1.8, 7.9Hz, 1H), 7.10-7.53 (m, 8H)
8	7-OBzl	Н	Me	MS m/z : 335 (M+H)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):2.54 (s,
				3H), 2.77-2.99 (m, 4H), 5.09 (s, 2H), 6.84 (d,
				J=2.5Hz, 1H), 6.87 (s, 1H), 7.31-7.47 (m,
				6H), 7.48 (s, 1H)
9	6,7-Ethylenedioxy		Me	MS m/z : 309 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 2.53
				(s,1H), 2.76-2.90 (m, 4H), 4.29 (s, 4H), 6.75
				(s, 1H), 7.03 (s, 1H), 7.47 (s, 1H)
10	8-F	Н	Me	MS m/z : 269 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.55 (s, 3H), 2.74-3.08 (m, 4H), 6.77-7.06 (m,
				1H), 7.07-7.32 (m, 2H), 7.50 (s, 1H)
11	7-F	8-OMe	Me	MS m/z : 299 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.55 (s, 3H), 2.74-3.01 (m, 4H), 3.93 (s, 3H),
				6.89 - 7.11 (m, 2H), 7.50 (s, 1H)

[0120] [表6-3]

実施例	R	R'	R"	データ
12	6-Me	8-Me	Et	MS m/z : 271 (M+H)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.25
				(t, J=7.3 Hz, 3 H), 2.30 (s, 3 H), 2.32 (s, 3 H),
		1		2.76 - 2.88 (m, 4 H), 2.91 (q, J=7.3 Hz, 2 H),
				6.95 (s, 1 H), 7.17 (s, 1 H), 7.50 (s, 1 H)
13	6-Me	8-Me	Pr	MS m/z : 285 (M+H)*
			ļ	¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.02 (t,
			ŀ	J=7.5 Hz, 3 H), 1.70 - 1.89 (m, 2 H), 2.30 (s,
				3 H), 2.32 (s, 3 H), 2.75 - 2.95 (m, 6 H), 6.95
				(s, 1 H), 7.17 (s, 1 H), 7.50 (s, 1 H)
14	6-Ме	8-Me	Pr ^j	MS m/z : 285 (M+H)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.26
				(d, J=6.8 Hz, 6 H), 2.30 (s, 3 H), 2.32 (s, 3 H),
				2.77 - 2.93 (m, 4 H), 3.25 - 3.47 (m, 1 H),
				6.95 (s, 1 H), 7.18 (s, 1 H), 7.52 (s, 1 H)
15	8-Et	н	Me	MS m/z : 257 (M+H) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.26
				(t, J=7.6 Hz, 3 H), 2.55 (s, 3 H), 2.66 (q,
		İ		J=7.6 Hz, 2 H), 2.78 - 3.01 (m, 4 H), 7.08 (d,
				J=8.0 Hz 1 H), 7.15 (d, J=8.0 Hz 1 H), 7.28
				(s, 1 H), 7.50 (s, 1 H)
16	8-Рт	н	Me	MS m/z : 293 (M+Na)+
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 0.97 (t,
ļ				J=7.3 H, 3 H), 1.67 (m, 2 H), 2.52 - 2.65 (m,
			Į	5 H), 2.78 - 3.01 (m, 4 H), 7.07 (d, J=9.0 H, 1
				H), 7.16 (d, J=9.0 H, 1 H), 7.29 (s, 1 H), 7.51
				(s, 1 H)

[0121] [表6-4]

実施例	R	R'	R"	データ
17	8-Pr ⁱ	н	Me	MS m/z : 271 (M+H) ⁺
		1		¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.27
				(d, J=6.8 Hz, 6 H), 2.55 (s, 3 H), 2.79 - 2.99
				(m, 4 H), 7.08 - 7.20 (m, 2 H), 7.33 (s, 1 H),
				7.50 (s, 1 H)
18	8-cycloHexyl	н	Me	MS m/z : 311 (M+H)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.18 -
				1.52 (m, 5 H) 1.70 - 1.96 (m, 5 H) 2.44 - 2.57
				(m, 4 H) 2.78 - 2.98 (m, 4 H) 7.09 (d, <i>J</i> =6.0
				Hz, 1 H) 7.16 (d, J=6.0 Hz, 1 H) 7.31 (s, 1 H)
				7.49 (s, 1 H)
19	8-Cl	Н	Me	MS m/z : 263 (M+H) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
				2.55 (s, 3H), 2.79-2.99 (m, 4H), 7.13-7.22 (m,
				2H), 7.42 (d, <i>J</i> =1.9Hz, 1H), 7.50 (s, 1H)
20	7-Me	8-OMe	Me	MS m/z : 295 (M+Na) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 2.22
				(s, 3 H), 2.55 (s, 3 H), 2.72 - 2.92 (m, 4 H),
				3.87 (s, 3 H), 6.90 (s, 1 H) 7.01 (s, 1 H), 7.49
				(s, 1 H)
21	6-F	8-Me	Me	MS m/z : 261 (M+H)*
.				¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 2.35 (s,
				3H), 2.55 (s, 3H), 2.73-3.07 (m, 4H), 6.82 (d,
}				J=10.1Hz, 1H), 7.08 (s, 1H), 7.49 (s, 1H)
22	7-F	8-Me	Me	MS m/z : 283 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.54 (s, 3H), 2.73-2.99 (m, 4H), 6.89 (d,
				J=10.1Hz, 1H), 7.27 (d, J=7.5Hz, 1H), 7.48
				(s, 1H)
23	6-F	8-OMe	Me	MS m/z : 299 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.56 (s, 3H), 2.72-3.02 (m, 4H), 3.83 (s, 3H),
				6.57 (dd, J=11.0, 2.4Hz, 1H), 6.82 (d, J=2.4
				Hz, 1H), 7.50 (s, 1H)

[0122] [表6-5]

寒施例	R	R'	R"	データ
24	7-F	Н	Me	MS m/z : 247 (M+H)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.55 (s, 3H), 2.73-3.10 (m, 4 H), 6.75-7.07
				(m, 2H), 7.36-7.47 (m, 1H), 7.49 (s, 1H)
25	7-Cl	н	Me	MS m/z : 263 (M+H)*
			Į.	¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.55 (s, 3H), 2.75-3.06 (m, 4H), 7.13-7.32 (m,
				2 H), 7.38-7.60 (m, 2H)
26	7-Me	н	Me	MS m/z : 265 (M+Na)+
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				2.35 (s, 3H), 2.55 (s, 3H), 2.73-3.03 (m, 4H),
				6.95-7.15 (m, 2H), 7.36 (d, J=8.4Hz, 1H),
				7.49 (s, 1H)
27	7-OEt	Н	Me	MS m/z : 295 (M+Na)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.43
				(t, J=7.0 Hz, 3 H), 2.53 (s, 3 H), 2.78 - 2.99
				(m, 4 H), 4.06 (q, J=7.0 Hz, 2 H), 6.73 - 6.82
				(m, 2 H), 7.39 (d, J=9.2 Hz, 1 H), 7.48 (s, 1
				н)
28	7-O-cycloHexylmethyl	Н	Me	MS m/z : 363 (M+Na) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 0.95 -
				1.40 (m, 5 H), 1.65 - 1.94 (m, 6 H), 2.53 (s, 3
				H), 2.72 - 2.99 (m, 4 H), 3.77 (d, J=6.2 Hz, 2
		ŀ		H), 6.73 - 6.81 (m, 2 H), 7.38 (d, J=9.0 Hz, 1
				H), 7.48 (s, 1 H)
29	7- OPt	Н	Me	MS m/z : 309 (M+Na)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.05
		1		(t, J=7.4 Hz, 3 H), 1.82 (tq, J=7.4, 7.0 Hz, 2
			1	H), 2.53 (s, 3 H), 2.77 - 2.98 (m, 4 H), 3.95 (t,
1				J=7.0 Hz, 2 H), 6.73 - 6.82 (m, 2 H), 7.39 (d,
ļ				J=9.0 Hz, 1 H), 7.48 (s, 1 H)

[0123] [表6-6]

実施例	R	R'	R"	データ
30	7-OBz	Н	Me	MS m/z : 371 (M+Na)+
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
				2.56 (s, 3 H), 2.82 - 3.06 (m, 4 H), 7.07 -
				7.16 (m, 2 H), 7.49 - 7.56 (m, 4 H), 7.61 -
				7.70 (m, 1 H), 8.16 - 8.25 (m, 2 H)
31	7- OPri	Н	Ме	MS m/z : 309 (M+Na)+
				¹H NMR (300 MHz, CDCl ₃) δ (ppm):
				1.36 (d, J=6.1 Hz, 6 H), 2.54 (s, 3 H),
				2.78 - 2.99 (m, 4 H), 4.52 - 4.66 (m, 1 H),
				6.73 - 6.81 (m, 1 H), 7.39 (d, J=9.2 Hz, 1
				H), 7.49 (s, 1 H)
32	7-NHTFA	Н	Me	MS m/z : 340 (M+H)*
				¹H NMR (200 MHz, CDCl₃) δ (ppm):
				2.56 (s, 3H), 2.77-3.06 (m, 4H),
				7.31-7.41 (m, 2H), 7.42-7.54 (m, 1H),
				7.59 (s, 1H)
33	8-NMe ₂	н	Me	MS m/z : 294 (M+Na)+
				¹H NMR (200 MHz, CDCl₃) δ (ppm):
				2.54(s, 3H), 2.75-2.93 (m, 4H), 2.95(s,
	1			6H), 6.67 (dd, J=2.5,8.0Hz, 1H), 6.83(d,
				J=2.5Hz, 1H), 7.11 (d, J=8.0Hz, 1H),
		_		7.49 (s, 1H)
34	8-NEt ₂	н	Ме	MS m/z : 322 (M+Na) ⁺
				¹ H NMR (200MHz,CDCl ₃) δ (ppm):
				1.18(t, $J=8.5$ Hz, 6H), 2.55(s, 3H),
				2.74-2.94 (m, 4H), 3.38(q, J=8.5Hz, 4H),
				6.61 (dd, J=2.5,8.0Hz, 1H), 6.79(d,
				J=2.5Hz, 1H), 7.08 (d, $J=8.0$ Hz, 1H),
				7.50 (s, 1H)

[0124] [表6-7]

実施例	R	R'	R"	データ
35	8-NBzl₂	н	Me	MS m/z: 446 (M+Na) ⁴ ¹ H NMR(200MHz,CDCl ₃) δ (ppm): 2.52(s, 3H), 2.71-2.92 (m, 4H), 4.67(s, 4H), 6.63 (dd, J=2.5,8.0Hz, 1H), 6.87(d, J=2.5Hz, 1H), 7.04 (d, J=8.0Hz, 1H), 7.16-7.42(m, 10H), 7.47 (s, 1H)
36	8-NHMe	Н	Ме	MS m/z : 280 (M+Na) ⁺ ¹ H NMR(200MHz,CDCl ₃) δ (ppm): 2.55(s, 3H), 2.73-2.93 (m, 4H), 2.86 (s, 3H), 3.63-3.84 (br, 1H), 6.53 (dd, J =2.5,8.0Hz, 1H), 6.72 (d, J =2.5Hz, 1H), 7.06 (d, J =8.0Hz, 1H), 7.49 (s, 1H)

実施例37

[0125] 実施例7で得られた化合物210mgのエタノール4ml、テトラヒドロフラン2ml混合溶液に10%パラジウムー炭素を加え、水素置換下室温にて一晩攪拌した。反応後セライトろ過した後、減圧下溶媒留去し、2-アセチルー4,5-ジヒドロー6-ヒドロキシナフト[1,2-b]チオフェンの無色固体30mgを得た。

[0126] [化23]

[0127] MS m/z: 267 (M+Na)⁺

¹H NMR (200 MHz, CDCl₃) δ (ppm):2.56 (s, 3H), 2.81-3.02 (m, 4H), 4.84 (s, 1H), 6.76 (t, J=1.8Hz, 1H), 7.11 (s, 1H), 7.14 (d, J=1.8Hz, 1H), 7.51 (s, 1H) 実施例38

[0128] 実施例6で得られた化合物100mgのジクロロメタン2ml溶液へ、窒素置換-78℃ 冷却下1M三臭化ホウ素ジクロロメタン溶液0.46mlを加え、室温に昇温し一晩攪拌 した。反応後氷冷下、飽和炭酸水素ナトリウム水溶液を加え、酢酸エチルで抽出し、 有機層を飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、 残留物をシリカゲルカラムクロマトグラフィー(35%酢酸エチルーへキサン)で精製し、 2-アセチル-4, 5-ジヒドロ-8-ヒドロキシナフト[1, 2-b]チオフェンの褐色固体40 mgを得た。

[0129] [化24]

[0130] MS m/z : 267 $(M+Na)^{+}$

¹H NMR (200 MHz, CDCl₃) δ (ppm):2.59 (s, 3H), 2.80–2.94 (m, 4H), 5.76 (br, 1H), 6.74 (dd, J=2.6, 8.4Hz, 1H), 7.10–7.14 (m, 2H), 7.52 (s, 1H) 実施例39

[0131] 実施例30で得られた化合物21. 25gのエタノール200ml、テトラヒドロフラン200m l混合溶液に水酸化カリウム水溶液(水酸化カリウム6. 8g、水60ml)を滴下し、室温下1時間攪拌した。反応後、減圧下溶媒留去し、12M塩酸を加えた。析出した結晶をろ取、乾燥し、エタノールで再結晶し、2ーアセチルー4,5ージヒドロー7ーヒドロキシナフト[1,2-b]チオフェンの褐色結晶12. 2gを得た。

[0132] [化25]

[0133] MS m/z: $267 (M+Na)^{+}$

 1 H NMR (300 MHz, dmso^{-d}) δ (ppm): 2.67–2.94 (m, 4 H) 6.62–6.75 (m, 2 H) 7.30 (d, J=8.1 Hz, 1H) 7.77 (s, 1 H) 9.79 (s, 1 H)

実施例40

[0134] 実施例32で得られた化合物1.2gの水10ml、メタノール10ml混合溶液に炭酸カリウム0.73gを加え、室温下一晩攪拌した。減圧下溶媒留去し、水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、2-アセチル-4,5-ジヒドロ-7-アミノナフト[1,2-b]チオフェンの褐色粉末1.0gを得た。

[0135] ここで得られた化合物0.6gのジメチルホルムアミド10ml溶液に氷冷下ヨウ化メチ

ル0. 78ml、炭酸水素ナトリウム1. 04gを加え、室温下一晩攪拌した後100℃で10時間攪拌した。反応後、水を加え酢酸エチルで抽出し、有機層を水、飽和食塩水で順次洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(10%酢酸エチルーへキサン)で精製し、2-アセチルー4,5-ジヒドロー7-(ジメチルアミノ)ナフト[1,2-b]チオフェンの黄色粉末50mgを得た。

[0136] [化26]

[0137] MS m/z: 272 (M+H) †

¹H NMR (200 MHz, CDCl₃) δ (ppm):2.52 (s, 3H), 2.72–2.98 (m, 4H), 3.01 (s, 6H), 6.51–6.68 (m, 2H), 7.36 (d, J=8.8Hz, 1H), 7.46 (s, 1H)

実施例41

[0138] 実施例32で得られた化合物の1gのジメチルホルムアミド10ml溶液にヨウ化メチル 0.22ml、炭酸カリウム0.61gを加え、80℃で一晩攪拌させた。反応後水を加え、酢酸エチルで抽出し、有機層を水、飽和食塩水で順次洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物の水50ml、メタノール50ml混合溶液に炭酸カリウム0.78gを加え、室温下一晩攪拌させた。減圧下溶媒留去し、水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(10%酢酸エチルーへキサン)で精製し、2−アセチルー4、5−ジヒドロー7−(メチルアミノ)ナフト[1,2-b]チオフェンの黄色粉末0.61gを得た。

[0139] [化27]

[0140] MS m/z: 258 (M+H)⁺

 1 H NMR (200 MHz, CDCl₃) δ (ppm):2.52 (s, 3H), 2.64–3.06 (m, 7H), 6.38 – 6.59

(m, 2 H), 7.31 (d, J=8.4Hz, 1H), 7.45 (s, 1H) 同様の方法により実施例42の化合物を得た。

実施例42

[0141] [化28]

[0142] MS m/z : 286 $(M+H)^{\dagger}$

¹H NMR (200 MHz, CDCl₃) δ (ppm):1.01 (t, J=7.3Hz, 3H), 1.57–1.77 (m, 2H), 2.52 (s, 3H), 2.70–2.97 (m, 4H), 3.12 (t, J=7.0 Hz, 2H), 6.39–6.55 (m, 2 H), 7.29 (d, J=8.4Hz, 1H), 7.45 (s, 1H)

実施例43

- [0143] 実施例32で得られた化合物1.2gの水10ml、メタノール10ml混合溶液に炭酸カリウム0.73gを加え、室温下一晩攪拌した。減圧下溶媒留去し、水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、2-アセチル-4,5-ジヒドロ-7-アミノナフト[1,2-b]チオフェンの褐色粉末1.0gを得た。
- [0144] ここで得られた化合物0.1gのピリジン5ml溶液に無水酢酸0.06mlを加え、室温下一晩攪拌した。反応後水を加え、酢酸エチルで抽出した。抽出した有機層を1M塩酸、飽和食塩水で順次洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去し、2ーアセチルー4,5ージヒドロー7ーアセトアミドナフト[1,2-b]チオフェンの橙色粉末90mgを得た。

[0145] [化29]

[0146] MS m/z : 286 (M+H)⁺

¹H NMR (200 MHz, CDCl₃) δ (ppm):2.20 (s, 3H), 2.54 (s, 3H), 2.73–3.07 (m, 4H), 7.16–7.32 (m, 2 H), 7.40 (d, J=8.0Hz, 1H), 7.48 (s, 1H), 7.53–7.65 (m, 1H)

実施例44

- [0147] 実施例39で得られた化合物0.5gのジメチルホルムアミド10ml溶液にヨウ化ブチル0.46ml、炭酸カリウム0.83gを加え、80℃で2時間攪拌した。反応後水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(10%酢酸エチルーヘキサン)で精製後、エタノールで再結晶し、2ーアセチルー4、5ージヒドロー7ー(nーブチルオキシ)ナフト[1,2ーb]チオフェン(表7-1)の黄色結晶0.48gを得た。
- [0148] 同様の方法により表7-1〜表7-3に示す実施例45〜55の化合物を得た。
- [0149] [表7-1]

実施例	R	R'	データ
44	7-OBu	Н	MS m/z : 323 (M+Na) ⁺
	,		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
		l	0.98 (t, J=7.3Hz, 3H), 1.36-1.62 (m, 2H),
			1.66-1.91 (m, 2H), 2.53 (s, 3H), 2.72-3.07 (m,
			4H), 3.98 (t, J=6.4Hz, 2H), 6.67-6.88 (m, 2
			H), 7.38 (d, J=9.2Hz, 1H), 7.47 (s, 1H)
45	7-OBui	н	MS m/z : 301 (M+H) ⁺
			¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.03
			(d, J=6.8 Hz, 6 H), 2.02 - 2.16 (m, 1 H), 2.53
			(s, 3 H), 2.76 - 2.99 (m, 4 H), 3.74 (d, J=6.5
			Hz, 2 H), 6.72 - 6.81 (m, 2 H), 7.39 (d, J=8.7
			Hz, 1H), 7.48 (s, 1 H)
46	7-O-Pentyl	Н	MS m/z : 314 (M+H) ⁺
:			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			0.81-1.04 (m, 3H), 1.26-1.55 (m, 4H),
			1.65-1.96 (m, 2H), 2.53 (s, 3H), 2.70-3.08 (m,
			4H), 3.98 (t, J=6.6Hz, 2H), 6.61-6.90 (m,
	,		2H), 7.39 (d, J=8.8Hz, 1H), 7.47 (s, 1H)
47	7-O-Hexyl	Н	MS m/z : 351 (M+Na)*
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			0.83-0.98 (m, 3H), 1.17-1.55 (m, 6H),
			1.64-1.91 (m, 2H), 2.53 (s, 3H), 2.72-3.10 (m,
			4H), 3.98 (t, J=6.6Hz, 2H), 6.63-6.89 (m,
<u> </u>			2H), 7.38 (d, J=9.3Hz, 1H), 7.47 (s, 1H)

[0150] [表7-2]

実施例	R	R'	データ
48	7-0~	н	MS m/z : 299 (M+H)*
	1,00		¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 0.32 -
			0.39 (m, 2 H), 0.62 - 0.71 (m, 2 H), 1.20 -
			1.36 (m, 1 H), 2.53 (s, 3 H), 2.77 - 2.99 (m, 4
			H), 3.83 (d, J=7.0 Hz, 2 H), 6.74 - 6.82 (m, 2
			H), 7.39 (d, J=8.7 Hz, 1 H), 7.48 (s, 1 H)
49	B	Н	MS m/z : 335 (M+Na) ⁺
	7-0		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
ŀ			1.49-2.00 (m, 8H), 2.53 (s, 3H), 2.72-3.02 (m,
			4 H), 4.62-4.90 (m, 1H), 6.61-6.85 (m, 2H),
	<u> </u>		7.37 (d, J=9.2Hz, 1H), 7.47 (s, 1H)
50	7-0~	Н	MS m/z : 315 (M+H) ⁺
	' ' '		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
		İ	1.04 (s, 9H), 2.53 (s, 3H), 2.69-3.05 (m, 4H),
			3.61 (s, 2H), 6.65-6.88 (m, 2H) 7.38 (d, J=8.8
			Hz, 1H), 7.47 (s, 1H)
51	7-0~	н	MS m/z : 285 (M+H) ⁺
	' "		¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 2.54
	ŧ		(s, 3 H), 2.77 - 3.00 (m, 4 H), 4.54 - 4.60 (m,
			2 H), 5.28 - 5.35 (m, 1 H), 5.38 - 5.48 (m, 1
			H), 5.98 - 6.14 (m, 1 H), 6.77 - 6.83 (m, 2 H),
			7.40 (d, J=9.0 Hz, 1 H), 7.48 (s, 1 H)
52	7-0~	Н	MS m/z : 298 (M+H) ⁺
	' ' '		¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.84
			(s, 1 H), 2.53 (s, 3 H), 2.78 - 2.98 (m, 4 H),
			4.46 (s, 2 H), 4.99 - 5.02 (m, 1 H), 5.07 - 5.12
		[(m, 1 H), 6.77 - 6.83 (m, 2 H), 7.39 (d, J=8.9
			Hz, 1 H), 7.48 (s, 1 H)

[0151] [表7-3]

実施例	R	R'	データ
53	7-0^	Н	MS m/z: 283 (M+H) ⁺ ¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 2.52 - 2.58 (m, 4 H), 2.78 - 3.04 (m, 4 H), 4.67 - 4.78 (m, 2H), 6.81 - 6.91 (m, 2 H), 7.38 - 7.46 (m, 1 H), 7.49 (s, 1 H)
54	8-OEt	н	MS m/z : 295 (M+Na) ⁺ ¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 1.43 (t, J =6.8Hz, 3H), 2.55 (s, 3H), 2.73-2.97 (m, 4H), 4.06 (q, J =6.8 Hz, 2H), 6.78 (dd, J =8.4, 2.6Hz, 1H), 6.99 (d, J =2.6Hz, 1H), 7.13 (d, J =8.4Hz, 1H), 7.49 (s, 1H)
55	8-OBzl	Н	MS m/z : 357 (M+Na) ⁺ ¹ H NMR (200 MHz, CDCl ₃) δ (ppm): 2.55 (s, 3 H), 2.68-3.14 (m, 4H), 5.09 (s, 2H), 6.86 (dd, J=8.1, 2.6Hz, 1H), 7.09 (d, J=2.6 Hz, 1H), 7.14 (d, J=8.1Hz, 1H), 7.28-7.51 (m, 6H)

実施例56

- [0152] 実施例39で得られた化合物5gのピリジン50ml溶液に氷冷下トリフルオロメタンスルホン酸無水物5mlを加え、同温度下2時間攪拌した。反応後、同温度下水を加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下溶媒留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(25%酢酸エチルーヘキサン)で精製し、2-アセチルー4、5-ジヒドロ-7-(トリフルオロメタンスルホニルオキシ)ナフト[1、2-b]チオフェンの黄色粉末6、24gを得た。
- [0153] ここで得られた化合物1.0g、n-ブチルボラン酸0.3g、[1,1-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド0.19g、炭酸カリウム1.1g、酸化銀1.5g のテトラヒドロフラン10ml懸濁溶液を窒素置換下80℃で20時間攪拌した。反応後、氷冷下30%過酸化水素水15ml、10%水酸化ナトリウム水溶液15mlを加え、酢酸エチルで抽出した。抽出した有機層を飽和食塩水で洗浄、硫酸マグネシウムで乾燥

後、減圧下溶媒留去した。得られた残留物をシリカゲルカラムクロマトグラフィー(10%酢酸エチルーへキサン)で精製し、2-アセチルー4,5-ジヒドロー7-(n-ブチル)ナフト[1,2-b]チオフェン(表8)の黄色粉末0.18gを得た。

[0154] 同様の方法により表8に示す実施例57、58の化合物を得た。

[0155] [表8]

実施例	R	R'	データ
56	7-Bu	Н	MS m/z : 285 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			0.94 (t, J=7.3 Hz, 3H), 1.23 - 1.49 (m, 2H),
			1.50 - 1.72 (m, 2H), 2.54 (s, 3H), 2.52-2.68
			(m, 2H), 2.73-3.05 (m, 4 H), 7.01-7.13 (m,
			2H), 7.38 (d, J=8.4Hz, 1H), 7.49 (s, 1H)
57	7-Pr	Н	MS m/z : 271 (M+H) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			0.96(t, J=7.3 Hz, 3H), 1.56-1.76(m, 2 H),
			2.54(s, 3H), 2.52-2.62(m, 2H), 2.75-3.03(m,
			4H), 7.02 - 7.11(m, 2 H), 7.38(d, J=8.4 Hz,
			1H), 7.49(s, 1H)
58	7-Et	Н	MS m/z : 279 (M+Na) ⁺
			¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1.25(t, J= 7.6Hz, 3H), 2.54(s, 3H), 2.64(q, J=
			7.6Hz, 2H), 2.79-3.00 (m, 4H), 7.03-7.14 (m,
			2H), 7.39 (d, J=8.4Hz, 1H), 7.49 (s, 1H)

実施例59

[0156] 実施例1で得られた化合物0.50gのエタノール10ml溶液に、窒素置換氷冷下水素化ホウ素ナトリウム0.18gを加え、室温下2時間攪拌した。反応後、減圧下溶媒留去し、氷冷下飽和塩化アンモニウム水溶液を加え、酢酸エチルで抽出し、有機層を

飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧下溶媒留去し、残留物をシリカゲルカラムクロマトグラフィー(25%酢酸エチルーへキサン)で精製し、2-(2-ヒドロキシエチル)-4,5-ジヒドロ-6,8-ジメチルナフト[1,2-b]チオフェン(表9-1)の褐色固体0.50gを得た。

[0157] 同様の方法により表9-1~表9-11に示す実施例60~104の化合物を得た。

[0158] [表9-1]

実施例	R	R'	R"	データ
59	6-Me	8-Me	Me	MS m/z : 281 (M+Na)+
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):1.62 (d,
				J=8.0Hz, 3H), 2.28 (s, 3H), 2.30 (s, 3H),
				2.67-2.96 (m, 4H), 4.96-5.21 (m, 1H), 6.79 (s,
				1H), 6.86 (s, 1H), 7.05 (s, 1H)
60	6-OMe	н	Me	MS m/z : 242 (M-OH)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.6Hz, 3H), 2.66-3.06 (m, 4H),
				3.85 (s, 3H), 4.12 (m, 1H), 6.68-6.84 (m, 2H),
				6.92-7.03 (m, 1H), 7.08-7.22 (m, 1H)
61	7-OMe	н	Me	MS m/z : 283 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.61 (d, J=6.4Hz, 3H), 2.65-2.98 (m, 4H),
				4.99-5.14 (m, 1H), 6.68-6.80 (m, 2H), 7.23 (s,
				1H)
62	8-OMe	н	Me	MS m/z : 283 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):1.62 (d,
				J=6.2Hz, 3H), 2.71-2.92 (m, 4H), 3.82 (s,
				1H), 5.02-5.19 (br, 1H), 6.67 (dd, J=2.6,
	1			8.4Hz, 1H), 7.10-7.14 (m, 2H), 7.52 (s, 1H)

[0159] [表9-2]

実施例	R	R'	R"	データ
63	6-OBzl	н	Me	MS m/z : 319 (M-OH) ⁺
				¹H NMR (300 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.4 Hz,3H), 2.68-2.81 (m, 2H),
				2.93-3.07 (m, 2H), 5.03-5.18 (m,3H), 6.79 (s,
				1H), 6.82 (d, J=7.9Hz, 1H), 7.00(d, J=7.9Hz,
			ĺ	1H), 7.14 (i, J=7.9Hz ,1H), 7.27-7.51 (m, 5
				н)
64	7-OBzl	Н	Me	MS m/z : 319 (M-OH) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
		1		1.61 (d, J=6.6Hz, 3H), 2.53-3.15 (m, 4H),
	l l	ł		4.89-5.20 (m, 3H), 6.65-6.92 (m, 3H),
				7.11-7.60 (m, 6H)
65	8-F	Н	Me	MS π/z : 230 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.6Hz, 3H), 2.63-3.00 (m, 4H),
			į.	4.89-5.21 (m, 1H), 6.75-6.85 (m, 2H),
				6.97-7.16 (m, 2H)
66	7-F	8-OMe	Me	MS m/z : 260 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.4Hz, 3H), 2.61-2.94 (m, 4H),
				3.91 (s, 3H), 5.10 (q, J=6.4Hz, 1H), 6.79 (s,
				1H), 6.85-7.03 (m, 2H)
67	6-Me	8-Me	Et	MS m/z : 295 (M+Na) ⁺
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 1.00
	:			(t, J=7.5 Hz, 3 H), 1.80 - 1.99 (m, 3 H), 2.28
				(s, 3 H), 2.30 (s, 3 H), 2.70 - 2.91 (m, 4 H),
				4.72 - 4.85 (m, 1 H), 6.78 (s, 1 H), 6.85 (s, 1
				H), 7.03 (s, 1 H)

[0160] [表9-3]

実施例	R	R'	R"	データ
68	6-Me	8-Me	Pr	MS m/z : 309 (M+Na)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm): 0.97 (t,
				J=7.5 Hz, 3 H), 1.32 - 1.54 (m, 2 H), 1.72 - 1.99
			1	(m, 3 H), 2.28 (s, 3 H), 2.30 (s, 3 H), 2.68 - 2.90
				(m, 4 H), 4.80 - 4.93 (m, 1 H), 6.77 (s, 1 H), 6.85
				(s, 1H), 7.03 (s, 1H)
69	6-Me	8-Me	Pr	MS m/z : 309 (M+Na)*
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 0.92 (d,
				J=6.8 Hz, 3 H) 1.07 (d, J=6.7 Hz, 3 H) 1.89 - 2.10
				(m, 3 H) 2.28 (s, 3 H) 2.29 (s, 3 H) 2.67 - 2.91 (m,
				4 H) 4.51 - 4.60 (m, 1 H) 6.75 (s, 1 H) 6.84 (s, 1
i				H) 7.03 (s, 1 H)
70	8-Et	н	Me	MS m/z : 281 (M+Na) ⁺
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.25 (t,
				J=7.6 Hz, 3 H) 1.62 (d, J=6.4 Hz, 3 H) 1.91 - 1.95
			İ	(m, 1 H) 2.63 (q, J=7.6 Hz, 2 H) 2.72 - 2.94 (m, 4
				H) 5.04 - 5.15 (m, 1 H) 6.79 (s, 1 H) 6.98 (d, J=7.5
				Hz, 1 H) 7.11 (d, J=7.5 Hz, 1 H) 7.16 (s, 1 H)
71	8-Pr	н	Me	MS m/z : 295 (M+Na)+
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 0.96 (t,
				J=7.3 Hz, 3 H) 1.58 - 1.74 (m, 5 H) 1.89 - 1.97 (m,
				1 H) 2.57 (t, J=7.5 Hz, 2 H) 2.71 - 2.94 (m, 4 H)
				5.02 - 5.18 (m, 1 H) 6.79 (s, 1 H) 6.95 (d, J=7.6
				Hz, 1 H) 7.10 (d, J=7.6 Hz, 1 H) 7.13 (s, 1 H)

[0161] [表9-4]

実施例	R	R'	R"	データ
72	8-Pr ⁱ	Н	Me	MS m/z : 295 (M+Na) ⁺
	ā			1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.26 (d,
				J=7.0 Hz, 6 H) 1.62 (d, J=6.3 Hz, 3 H) 1.94 (br
				s, 1 H) 2.70 - 2.95 (m, 5 H) 5.10 (q, J=6.3 Hz, 1
				H) 6.79 (s, 1 H) 7.01 (d, J=7.5 Hz, 1 H) 7.12 (d,
				J=7.5 Hz, 1 H) 7.18 (s, 1 H)
73	8-cycloHexyl	Н	Me	MS m/z : 335 (M+Na)*
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.27 -
				1.57 (m, 5 H) 1.62 (d, J=6.5 Hz, 3 H) 1.69 -
				1.97 (m, 5 H) 2.34 - 2.59 (m, 1 H) 2.66 - 2.97
				(m, 4 H) 5.02 - 5.16 (m, 1 H) 6.79 (s, 1 H) 6.98
				(d, J=7.7 Hz, 1 H) 7.11 (d, J=7.7 Hz, 1 H) 7.16
				(s, 1 H)
74	8-C1	H	Me	MS m/z : 245 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			:	1.62 (d, J=6.4Hz, 3H), 2.67-2.98 (m, 4H), 5.10
				(q, J=6.4Hz, 1H), 6.80 (s, 1H), 7.01-7.18 (m,
				2H), 7.26-7.31 (m, 1H)
75	7-Me	8-OMe	Ме	MS m/z : 297 (M+Na) ⁺
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.62 (d,
				J=6.4 Hz, 3 H), 1.93 (d, J=4.5 Hz, 1 H), 2.20 (s,
				3 H),2.68 - 2.88 (m, 4 H)m 3.86 (s, 3 H)m 5.03 -
				5.16 (m, 1 H) m6.79 (s, 2 H) m6.96 (s, 1 H)
76	6-F	8-Me	Me	MS m/z : 245 (M-OH) ⁺
				¹H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.6Hz, 3H), 2.32 (s, 3H), 2.63-3.01
				(m, 4H), 4.88-5.21 (m, 1H), 6.71 (d, J=11.0 Hz,
			<u> </u>	1H), 6.79 (s, 1H), 6.93 (s, 1H)

[0162] [表9-5]

実施例	R	R'	R"	データ
77	7-F	8-Me	Me	MS m/z : 245 (M-OH)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.6Hz, 3H), 2.26 (s, 6H), 2.70-2.91
				(m, 4H), 4.78-5.33 (m, 1H), 6.78 (s, 1H), 6.85
				(d, J=10.1Hz, 1H), 7.11 (d, J=7.5Hz, 1H)
78	6-F	8-OMe	Me	MS m/z: 301 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.2Hz, 3H), 2.65-3.01 (m, 4H),
				3.81 (s, 3H), 5.10 (q, J=6.2Hz, 1H), 6.47 (dd,
			ļ	J=11.0, 2.2 z, 1H), 6.68 (d, J=2.2 Hz, 1H),
				6.80 (s, 1H)
79	7-F	н	Me	MS m/z : 231 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.2Hz, 3H), 2.72-2.97 (m, 4H),
				5.09 (q, J=6.2Hz, 1H), 6.73-6.99 (m, 3H),
				7.17-7.33 (m, 1H)
80	7-Cl	н	Me	MS m/z : 247 (M-OH) ⁺
		Ì		¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.3Hz, 3H), 2.62-3.03 (m, 4H),
				5.09 (q, J=6.3Hz, 1H), 6.79 (s, 1H), 7.02-7.49
				(m, 3H)
81	7-Me	н	Ме	MS m/z : 227 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.62 (d, J=6.6Hz, 3H), 2.32 (s, 3H), 2.62-3.06
				(m, 4H), 4.89-5.27 (m, 1H), 6.78 (s, 1H),
				6.94-7.08 (m, 2H), 7.12-7.31 (m, 1H)

[0163] [表9-6]

実施例	R	R'	R"	データ
82	7-OEt	н	Me	MS m/z : 297 (M+Na) ⁺
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.41
				(t, J=7.0 Hz, 3 H) 1.61 (d, J=6.4 Hz, 3 H)
				1.91 (d, J=4.2 Hz, 1 H) 2.68 - 2.94 (m, 4 H)
<u> </u>				4.04 (q, J=7.0 Hz, 2 H) 4.99 - 5.15 (m, 1 H)
				6.66 - 6.79 (m, 3 H) 7.23 (d, J=8.2 Hz, 1 H)
83	7-O-cycloHexylmethyl	Н	Me	MS m/z : 365 (M+Na) ⁺
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 0.97 -
Ì				1.40 (m, 5 H), 1.61 (d, J=6.5 Hz, 2 H), 1.65 -
				1.93 (m, 7 H), 2.66 - 2.96 (m, 4 H), 3.75 (d,
				J=6.2 Hz, 2 H), 5.01 - 5.14 (m, 1 H), 6.68 -
				6.79 (m, 3 H), 7.23 (d, J=8.1 Hz, 1 H)
84	7- OPr	Н	Me	MS m/z : 311 (M+Na)*
				1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.04
				(t, J=7.5 Hz, 3 H), 1.61 (d, J=6.4 Hz, 3 H),
				1.74 - 1.87 (m, 2 H), 1.91 (br s, 1 H), 2.70 -
•			1	2.94 (m, 4 H), 3.93 (t, J=6.5 Hz, 2 H), 5.08 (q,
				J=6.0 Hz, 1 H), 6.67 - 6.80 (m, 3 H), 7.23 (d,
		l		J=8.1 Hz, 1 H)
85	7- OPr ⁱ	Н	Me	MS m/z : 311 (M+Na)*
			l	1H NMR (300 MHz, CDCl ₃) δ (ppm): 1.34
				(d, J=6.1 Hz, 6 H), 1.61 (d, J=6.4 Hz, 3 H),
				1.92 (br s, 1 H), 2.69 - 2.94 (m, 4 H), 4.47 -
				4.62 (m, 1 H), 5.02 - 5.13 (m, 1 H), 6.67 -
				6.79 (m, 3 H), 7.22 (d, J=8.2 Hz, 1 H)

[0164] [表9-7]

実施例	R	R'	R"	データ
86	7-OH	Н	Me	MS m/z : 269 (M+Na)*
				1HNMR(300MHz,dmso-d6) δ (ppm):1.41
				(d, J=6.4 Hz, 3 H) 2.56 - 2.88 (m, 4 H) 4.62
				- 5.05 (m, 1 H) 5.46 (m, 1 H) 6.60 (dd,
				J=8.2, 2.6 Hz, 1 H) 6.65 (d, J=2.6 Hz, 1 H)
				6.73 (d, J=0.9 Hz, 1 H) 7.06 (d, J=8.2 Hz, 1
				H) 9.40 (br s, 1 H)
87	7-NMe ₂	н	Me	MS m/z : 274 (M+H) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.61 (d, J=6.2Hz, 3H), 2.59-3.13 (m, 4H),
				2.96 (s, 6H), 4.81-5.24 (m, 1H) 6.46-6.71
				(m, 2H) 6.76 (s, 1H) 7.21 (d, J=9.2Hz, 1H)
88	7-NHMe	н	Me	MS m/z : 260 (M+H)*
	İ			¹H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.61 (d, J=6.6Hz, 3H), 2.60-3.02 (m, 7H),
				4.91-5.17 (m, 1H), 6.38-6.57 (m, 2H), 6.75
				(s, 1H), 7.17 (d, J=8.8Hz, 1H)
89	7-NHPr	н	Me	MS m/z : 288 (M+H)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.00 (t, J=7.1Hz, 3H), 1.55-1.75 (m, 5H),
				2.63-2.95 (m, 4H), 3.10 (t, J=7.1Hz, 2H),
				5.06 (q, J=6.4Hz, 1H), 6.35-6.57 (m, 2 H),
				6.74 (s, 1H), 7.15 (d, <i>J</i> =8.8Hz, 1H)
90	7-NHAc	н	Me	MS m/z : 288 (M+H) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
			1	1.62 (d, J=6.2Hz, 3H), 2.18 (s, 3H), 2.65 -
				3.05 (m, 4H), 6.78 (s, 1H), 7.02-7.17 (m,
1				1H), 7.18-7.34 (m, 2H), 7.38-7.54 (m, 1H)

[0165] [表9-8]

実施例	R	R'	R"	データ
91	7-OBu	Н	Me	MS m/z : 325(M+Na)*
				¹ H NMR (300 MHz, CDCl ₃) δ (ppm):
				0.98 (t, J=7.3 Hz, 3H), 1.35-1.68 (m,
				2H), 1.61 (d, J=6.6Hz, 3H), 1.68-1.88 (m,
				2H), 2.59-3.03 (m, 4 H), 3.96 (t,
				J=6.4Hz, 2H), 5.03-5.12 (m, 1H),
				6.63-6.83 (m, 3H), 7.22 (d, J=7.9Hz, 1H)
92	7-OBu ⁱ	Н	Me	MS m/z : 325 (M+Na)+
				1H NMR (300 MHz, CDCl ₃) δ (ppm):
				1.03 (d, J=6.7 Hz, 6 H), 1.61 (d, J=6.5
				Hz, 3 H), 1.92 (br s, 1 H), 2.00 - 2.16 (m,
	ı			1 H), 2.68 - 2.95 (m, 4 H), 3.72 (d, J=6.5
				Hz, 2 H), 4.97 - 5.18 (m, 1 H), 6.64 - 6.80
				(m, 3 H), 7.23 (d, J=8.2 Hz, 1 H)
93	7-O-Pentyl	Н	Me	MS m/z : 339 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				0.94 (t, J=7.0Hz, 3H), 1.31-1.54 (m, 4H),
		İ		1.61 (d, J=6.6Hz, 3H), 1.68-1.89 (m, 2H),
l				2.65-3.01 (m, 4 H), 3.95 (t, J=6.6Hz,
1				2H), 4.89-5.24 (m, 1H), 6.61-6.88 (m,
				3H), 7.23 (d, <i>J</i> =7.9Hz, 1H)
94	7-0~	Н	Me	MS m/z : 283 (M-OH) ⁺
	·			1H NMR (300 MHz, CDCl ₃) δ (ppm):
				0.32-0.38 (m, 2H) 0.62-0.68 (m, 2H) 1.23
				-1.32 (m, 1 H) 1.61 (d, J=6.3 Hz, 3 H)
				1.90 (br s, 1 H) 2.72 - 2.92 (m, 4 H) 3.80
				(d, J=6.9 Hz, 2 H) 5.06 - 5.10 (m, 1 H)
				6.71 - 6.77 (m, 3 H) 7.23 (d, J=8.1 Hz, 1
				н)

[0166] [表9-9]

実施例	R	R'	R"	データ
95	\Box	Н	M¢	MS m/z : 337 (M+Na)*
	7-0			¹H NMR (300 MHz, CDCl₃) δ (ppm):
				1.44-1.98 (m, 8H), 1.61 (d, J=6.2Hz, 3H),
				2.53-3.06 (m, 4 H), 4.64-4.91 (m, 1H),
				4.94-5.25 (m, 1 H), 6.54-6.90 (m, 3H),
				7.22 (d, <i>J</i> =8.8Hz, 1H)
96	7-0~	н	Me	MS m/z : 299 (M-OH) ⁺
	•			¹H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.03 (s, 9H), 1.61 (d, J=6.4Hz, 3H),
				2.64-2.98 (m, 4H), 3.59 (s, 3H), 5.07 (q,
				J=6.4Hz, 1H), 6.67-6.82 (m, 2H), 7.22 (d,
				J=7.9Hz, 1H)
97	7-0~	н	Me	MS m/z : 269 (M-OH) ⁺
				1H NMR (300 MHz, CDCl ₃) δ (ppm):
				1.61 (d, J=6.5 Hz, 3 H) 1.92 (d, J=4.5 Hz,
				1 H) 2.70 - 2.94 (m, 4 H) 4.50 - 4.57 (m,2
				H) 5.02 - 5.14 (m, 1 H) 5.25 - 5.33 (m, 1
				H) 5.36 - 5.47 (m, 1 H) 5.99 - 6.14 (m, 1
				H) 6.72 - 6.80 (m, 3 H) 7.23 (d, J=8.2 Hz,
				1 H)
98	7-0~	Н	Me	MS m/z : 323 (M+Na) ⁺
	Ţ			¹H NMR (300 MHz, CDCl₃) δ (ppm):
				1.61 (d, J=6.34 Hz, 3 H), 1.84 (s, 3 H),
				1.91 (d, J=4.5 Hz, 1 H), 2.69 - 2.96 (m, 4
				H), 4.44 (s, 2 H), 4.95 - 5.13 (m, 3 H),
				6.71 - 6.80 (m, 3 H), 7.23 (d, J=8.2 Hz, 1
<u></u>			1	н)

[0167] [表9-10]

実施例	R	R'	R"	データ
99	7-0^>	Н	Me	MS m/z : 307 (M+Na)*
	' 0			1H NMR (300 MHz, CDCl ₃) δ (ppm):
				1.61 (d, J=6.5 Hz, 3 H), 1.93 (d, J=4.5
				Hz, 1 H), 2.53 (t, J=2.4 Hz, 1 H), 2.70 -
1]			2.98 (m, 4 H), 4.69 (d, J=2.4 Hz, 2 H),
			ļ	4.98 - 5.15 (m, 1 H), 6.72 - 6.86 (m, 3
]		İ		H), 7.20 - 7.29 (m, 1 H)
100	8-OEt	Н	Ме	MS m/z : 297 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				1.42 (t, J=6.9Hz, 3H), 1.62 (d,
		:		J=6.5Hz, 3H), 2.58-2.97 (m, 4H), 4.04
				(q, J =6.9Hz, 2H), 5.09 (q, J =6.5Hz,
				1H), 6.67 (dd, <i>J</i> =8.4, 2.4Hz, 1H), 6.79
				(s, 1H), 6.87 (d, J=2.4Hz, 1H) 7.08 (d,
				J=8.4Hz, 1H)
101	8-OBzl	Н	Me	MS m/z : 359 (M+Na)*
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
		Ĭ		1.62 (d, J=6.2Hz, 3H), 2.67-2.96 (m,
				4H), 5.01-5.16 (m, 3H), 6.74 (dd,
				J=8.2, 2.6Hz, 1H), 6.79 (s, 1H), 6.97
į				(d, J=2.6Hz, 4 H), 7.09 (d, J=8.2Hz,
				1H), 7.26-7.50 (m, 5H)
102	7-Bu	Н	Me	MS m/z : 258 (M+Na) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				0.93 (t, $J=7.3$ Hz, 3H), 1.27-1.48 (m,
				2H), 1.49-1.72 (m, 5H), 2.50-2.65 (t,
				J=7.5Hz, 2H), 2.69-3.01 (m, 4H),
				4.96-5.23 (m, 1H), 6.78 (s, 1H),
				6.90-7.10 (m, 2H), 7.23 (m, 1H)

[0168] [表9-11]

実施例	R	R'	R"	データ
103	7-Pr	Н	Me	MS m/z : 255 (M-OH) ⁺
				¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
				0.95 (t, J=7.3Hz, 3H), 1.47-1.79 (m,
				5H), 2.55(t, J=7.5Hz, 2H), 5.08 (q,
				J=6.6Hz, 1H), 6.78 (s, 1H), 6.93-7.08
			.	(m, 2 H), 7.23 (d, J=9.7Hz, 1H)
104	7-Et	Н	Me	MS m/z : 241 (M-OH)*
			ł	¹ H NMR (200 MHz, CDCl ₃) δ (ppm):
ļ				1.24 (t, J=7.7Hz, 3H), 1.62 (d,
				J=6.4Hz, 3H), 2.62 (q, J=7.7Hz, 2H),
				2.69-3.01 (m, 4H), 5.08 (q, J=6.4Hz,
				1H), 6.78 (s, 1H), 6.95-7.12 (m, 2 H),
				7.24 (d, <i>J</i> =8.4Hz, 1H)

[0169] 試験例

2型糖尿病モデルであるKKAyマウスの雄(11~12週齢)(各n=6)を使用した。実施例1および59の化合物へ11%スルホブチルエーテル-β-シクロデキストリンを添加し、3mg/5ml/kgの用量を1日2回2週間連続で皮下投与した。コントロール群は基剤投与群とし、正常群としては同様に基剤投与したC57BL/6Jの雄(11~12週齢)(n=6)を使用した。肝臓を採取し、トリグリセライドEテストワコー(和光純薬)を用いて肝臓中のトリグリセリド量を定量した。結果を表10(表中、*はP〈0.05、**はP〈0.01を示す)に示す。また、血液を眼窩静脈叢から採取し、分離した血清中のグルコースをLタイプワコーGLU2(和光純薬)を用いて、酵素法により定量した。結果を表11(表中、**はP〈0.01を示す。)に示す。

[0170] [表10]

	肝臓中のトリグリセリド
	(mg/g Liver)
コントロール群	61. 7
実施例 1	47.5*
実施例 5 9	34. 8**
正常群	12. 5

[0171] [表11]

	血中グルコース値(mg/dl)
コントロール群	532
実施例 1	491
実施例 5 9	269**
正常群	211

[0172] よって、本発明の化合物は、コントロール群に比較して有意に肝臓中のトリグリセリドを低下させ、さらに血清中のグルコースを低下させることが示された。したがって、本発明化合物は糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全、糖尿病合併症(例えば腎症、神経障害、網膜症等)、メタボリックシンドローム、シンドロームXの予防及び治療薬として有用である。

請求の範囲

[1] 式

[化1]

(式中、 R^1 は炭素原子数1~10の1~ヒドロキシアルキル基又は炭素原子数1~10のアシル基を示し、 R^2 及び R^3 は別々に6位、7位、8位又は9位のいずれかに置換し、 R^2 及び R^3 は独立して、水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、水酸基、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルキニルオキシ基、ベンジルオキシ基、ニトロ基又は式 $-NR^4$ R^5 (式中、 R^4 及び R^5 は独立して、水素原子、アセチル基、トリフルオロアセチル基、炭素原子数1~10のアルキル基又はベンジル基を示す。)で表される基を示すか、又は R^2 及び R^3 は共に結合してエチレンジオキシ基を示す。ただし、 R^1 がアシル基であり、 R^2 が水素原子であるとき R^3 は水素原子又はアセチル基を除く。)で表される4、5~ジヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩。

- [3] R^1 はアセチル基を示し、 R^2 はハロゲン原子、炭素原子数1~10のアルキル基、水酸基、炭素原子数1~10のアルコキシ基、炭素原子数1~5のアルケニルオキシ基、炭素原子数1~5のアルキニルオキシ基、ベンジルオキシ基、ニトロ基又は式 $-NR^4R^5$ (式中、 R^4 及び R^5 は独立して、水素原子、アセチル基、トリフルオロアセチル基、炭素

原子数1~10のアルキル基又はベンジル基を示す。)で表される基を示し、R³は水素原子、ハロゲン原子、炭素原子数1~10のアルキル基、炭素原子数1~5のアルケニル基、炭素原子数1~5のアルキニル基、水酸基、炭素原子数1~10のアルコキシ基、ベンジルオキシ基、ニトロ基又は式 -NR⁶R⁷(式中、R⁶及びR⁷は独立して、水素原子、アセチル基、トリフルオロアセチル基、炭素原子数1~10のアルキル基又はベンジル基を示す。)で表される基を示すか、又はR²及びR³は共に結合してエチレンジオキシ基である請求項1記載の4、5~ジヒドロナフト[1、2~b]チオフェン誘導体又はその医薬上許容される塩。

- [4] R¹は1-ヒドロキシエチル基を示し、R²及びR³は独立して、炭素原子数1〜10のアルキル基又は炭素原子数1〜10のアルコキシ基である請求項2記載の4,5-ジヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩。
- [5] R¹はアセチル基を示し、R²及びR³は独立して、炭素原子数1~10のアルキル基又は炭素原子数1~10のアルコキシ基である請求項3記載の4,5-ジヒドロナフト[1,2 -b]チオフェン誘導体又はその医薬上許容される塩。
- [6] 請求項1~5のいずれかに記載の4,5-ジヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩を含有する医薬組成物。
- [7] 請求項1〜5のいずれかに記載の4,5ージヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩を有効成分とするトリグリセリド低下剤。
- [8] 請求項1〜5のいずれかに記載の4,5-ジヒドロナフト[1,2-b]チオフェン誘導体又 はその医薬上許容される塩を有効成分とする血糖値低下剤。
- [9] 請求項1〜5のいずれかに記載の4,5ージヒドロナフト[1,2-b]チオフェン誘導体又はその医薬上許容される塩を有効成分とする糖尿病、高脂血症、脂肪肝、肥満症、耐糖能不全、糖尿病合併症、メタボリックシンドローム、シンドロームXの予防又は治療剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP2004/010944

	1	T							
Α.	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D333/74, 495/04, A61K31/381, A61P3/04, 3/06, 3/10								
Acc	According to International Patent Classification (IPC) or to both national classification and IPC								
B.	FIELDS SEA	ARCHED							
Min	imum docum	entation searched (classification system followed by classification system	ssification symbols)						
	Int.Cl ⁷ C07D333/74, 495/04, A61K31/381, A61P3/04, 3/06, 3/10								
	•	•	•						
Doc	numentation s	earched other than minimum documentation to the exter	it that such documents are included in the	fields searched					
	Jitsuyo	Shinan Koho 1926-1996 Jit	tsuyo Shinan Toroku Koho	1996 - 2004					
	Kokai Ji	tsuyo Shinan Koho 1971-2004 To	roku Jitsuyo Shinan Koho	1994–2004					
Elec		ase consulted during the international search (name of d'REGISTRY/MARPAT (STN)	ata base and, where practicable, search ter	rms used)					
	CWLT09/	WOOTOLLIAMENT (OIN)	•						
C.	DOCUMEN	ITS CONSIDERED TO BE RELEVANT							
	Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.					
	A	CLARKE, K et al., Naphtho[1,2		1-9					
		Part 2. Substitution reaction	s of derivatives	_ -					
		with one or more substituents							
		ring and of the 4,5-dihydro-d of the Chemical Society, Perk							
		Organic and Bio-Organic Chemi	stry, 1977, No.1,						
		pages 63 to 68, particularly,	page 68						
	A	JP 61-194081 A (Zyma S.A.),		1-9					
		28 August, 1986 (28.08.86),	4707414 7						
		· ·	4797414 A 8600654 A						
			1284326 A1						
	•								
	•		-						
] Further do	ocuments are listed in the continuation of Box C.	See patent family annex.						
* "A"	document d	gories of cited documents: efining the general state of the art which is not considered	"T" later document published after the inte date and not in conflict with the applic	ation but cited to understand					
"E"	earlier appli	icular relevance cation or patent but published on or after the international	"X" document of particular relevance; the	claimed invention cannot be					
"L"		which may throw doubts on priority claim(s) or which is	considered novel or cannot be consi step when the document is taken alone	•					
	cited to establish the publication date of another citation or other "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is								
"O"	"O" document referring to an oral disclosure, use, exhibition or other means combined with one or more other such documents, such combination								
["P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family								
Da	te of the actua	al completion of the international search	Date of mailing of the international sear	rch report					
		ober, 2004 (15.10.04)	. 02 November, 2004						
Na	Name and mailing address of the ISA/ Authorized officer								
	Japane	se Patent Office	1						
Fac	csimile No.		Telephone No.						

A. 発明の属する分野の分類(国際特許分類(IPC)) Int. Cl' C07D333/74, 495/04, A61K31/381, A61P3/04, 3/06, 3/10			
B. 調査を行った分野			
調査を行った最小限資料(国際特許分類(IPC)) Int. Cl ⁷ C07D333/74, 495/04, A61K31/381, A61P3/04, 3/06, 3/ 10			
最小限資料以外の資料で調査を行った分野に含まれるもの 日本国実用新案公報 1926-1996年 日本国公開実用新案公報 1971-2004年 日本国実用新案登録公報 1996-2004年 日本国登録実用新案公報 1994-2004年			
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)			
CAPLUS/REGISTRY/MARPAT (STN)			
.C. 関連すると認められる文献			
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	さは、その関連する箇所の表示	関連する 請求の範囲の番号
A	CLARKE, K et al, Naphtho[1,2-b]thiophene. Part 2. Substitution reactions of derivatives with one or more substituents in the thiophene ring and of the 4,5-dihydro-derivative, Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1977, No. 1, p. 63-8, 特にp. 68参照 JP 61-194081 A (ズイマ ソシエテ アノニム) 1986.08.28,		1-9
	& EP 193493 A2 & US 4797414 A & FI 8600738 A & NO 8600654 A & ES 552284 A1 & CA 1284326 A1		
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する大文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願 「A」特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの「&」同一パテントファミリー文献			
国際調査を完了した日 15.10.2004 国際調査報告の発送日 02.11.20			004
国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100-8915 東京都千代田区額が関三丁目4番3号		特許庁審査官(権限のある職員) 安川 聡 電話番号 03-3581-1101	4C 3039 内線 3452