Solutions to homework #11

1. Problem 1(a)(b) from Section 6.3. Recall that we proved 1(c) in Lecture 22. Give a detailed argument.

Solution: Recall that if A and B are sets, the expression |A| = |B| should not be interpreted as equality of two elements of a certain set – it is just a shortcut for the statement 'There exists a bijection from A to B'. Thus, to prove that \sim is reflexive we need to show that for any set A there exists a bijection $f: A \to A$. An example of such a bijection is the identity function $(f(a) = a \text{ for all } a \in A)$.

To prove that \sim is symmetric we need to show that if there exists a bijection $f:A\to B$, then there exists a bijection $g:B\to A$. An example of such g is the inverse function $f^{-1}:B\to A$ (the inverse f^{-1} exists since f is bijective, and it is clear from the definition that f^{-1} is bijective whenever it exists).

2. Problem 2 from Section 6.4. Note: the problem should say $f^{-1}(\{i\})$ is countable, not $|f^{-1}(\{i\})|$ is countable. **Hint:** Let $A_i = f^{-1}(\{i\})$. How is the collection of sets $\{A_i\}$ related to A?

Solution: First we claim that $\bigcup_{i=1}^{\infty} A_i = A$. The inclusion $\bigcup_{i=1}^{\infty} A_i \subseteq A$ is clear since each A_i is a subset of A. Conversely, take any $a \in A$. Since f is a function from A to \mathbb{N} , we have f(a) = i for some $i \in \mathbb{N}$, so $a \in f^{-1}(\{i\}) = A_i$ and hence $a \in \bigcup_{i=1}^{\infty} A_i$. Thus, $A \subseteq \bigcup_{i=1}^{\infty} A_i$.

Since $A = \bigcup_{i=1}^{\infty} A_i$ and each A_i is countable by assumption, Theorem 23.5 implies that A is also countable.

3. Let A_1, \ldots, A_n be countable sets. Prove that the Cartesian product $A_1 \times A_2 \times \ldots \times A_n$ is countable.

Solution: We argue by induction on n.

Base case: n = 1, 2. If n = 1, there is nothing to prove, and if n = 2, the result is true by Corollary 6.3.10 from the book.

Induction step: Take $n \geq 3$, and assume that $A_1 \times ... \times A_{n-1}$ is countable. We want to show that $A_1 \times ... \times A_n$ is countable.

Let $B = A_1 \times ... \times A_{n-1}$. Since B is countable by the induction hypothesis, Corollary 6.3.10 implies that $B \times A_n$ is countable. On the other hand, there is an obvious bijection between $A_1 \times ... \times A_n$ and $B \times A_n$ (which sends an n-tuple $(a_1, ..., a_n)$ to the pair $((a_1, ..., a_{n-1}), a_n)$). Thus, $|A_1 \times ... \times A_n| = |B \times A_n|$ and hence $A_1 \times ... \times A_n$ is also countable.

4. In Lecture 24 (Tue, April 24) we will prove that \mathbb{Q} is countable using Theorem 23.5 from class (a countable union of countable sets is countable). Give another proof of countability of \mathbb{Q} by constructing a surjective map $g:A\times B\to \mathbb{Q}$ for certain countable sets A and B (and using suitable theorems).

Solution: By definition, the elements of \mathbb{Q} are precisely the numbers of the form $\frac{a}{b}$ where $a, b \in \mathbb{Z}$ and $b \neq 0$. This means that if we let $A = \mathbb{Z}$ and $B = \mathbb{Z} \setminus \{0\}$ and define the function $f: A \times B \to \mathbb{Q}$ by $f((a, b)) = \frac{a}{b}$, then f is surjective.

We proved in class that \mathbb{Z} is countable, and $\mathbb{Z} \setminus \{0\}$ is countable being a subset of a countable set. Thus, A and B are both countable and hence \mathbb{Q} is countable by Theorem 23.4(2).

- **5.** Let A be an uncountable set and B a countable subset of A.
- (a) Prove that $A \setminus B$ is uncountable.
- (b) Prove that A and $A \setminus B$ have the same cardinality.

Hint for (b): Since $A \setminus B$ is infinite by (a), by Theorem 6.3.5 from the book we can choose a countably infinite subset C of $A \setminus B$. Use things proved in class to show that the identity map $f: (A \setminus B) \setminus C \to (A \setminus B) \setminus C$ can be extended to a bijection from $A \setminus B$ and A. Draw a picture!

Solution: (i) We argue by contradiction. Suppose that $A \setminus B$ is countable. Then, $A = (A \setminus B) \cup B$ is a union of two countable sets, hence A is countable, contrary to our hypothesis.

(ii) As suggested in the hint, let C be a countably infinite subset of $A \setminus B$. Note that $(A \setminus B) \setminus C = A \setminus (B \cup C)$.

Since B and C are both countable, their union $B \cup C$ is also countable; moreover $B \cup C$ is infinite since C is infinite. Thus, B and C are both countably infinite, so by definition $|B| = |\mathbb{N}|$ and $|C| = |\mathbb{N}|$, whence |B| = |C| by Problem 1, so there is a bijection $\phi: C \to B \cup C$.

Now define the map $f: A \setminus B \to A$ by

$$f(x) = \left\{ \begin{array}{ll} x & \text{if } x \in (A \setminus B) \setminus C = A \setminus (B \cup C) \\ \phi(x) & \text{if } x \in C. \end{array} \right.$$

It is clear that f is a bijection from $A \setminus B$ to A.

6. A real number α is called algebraic if α is a root of a (nonzero) polynomial with **integer** coefficients, that is, if there exist integers c_0, \ldots, c_n , not all 0 such that $\sum_{k=0}^{n} c_k \alpha^k = 0$. Note that all rational numbers are algebraic (if $\alpha = \frac{p}{q}$, then α is a root of the polynomial qx - p), but many irrational numbers are algebraic as well (e.g. $\sqrt{2}$ is algebraic as $\sqrt{2}$ is a root of $x^2 - 2$).

The goal of this problem is to prove that the set of all algebraic numbers is countable.

- (a) For a fixed integer $n \geq 0$, let Z_n be the set of all polynomials of degree at most n with integer coefficients, that is, Z_n is the set of all polynomials of the form $\sum_{k=0}^{n} c_k x^k$ with each $c_i \in \mathbb{Z}$. Prove that each Z_n is countable. **Hint:** Construct a bijection between Z_n and a Cartesian product of finitely many countable sets and use the result of Problem 2.
- (b) Now use (a) (and a suitable theorem) to show that the set of polynomials with integer coefficients (of arbitrary degree) is countable.
- (c) Finally use (b) and the fact that every polynomial has finitely many roots to show that the set of all algebraic numbers is countable.

Solution: (a) Let $\mathbb{Z}^{n+1} = \underbrace{\mathbb{Z} \times \ldots \times \mathbb{Z}}_{n+1 \text{ times}}$ be the Cartesian product of n+1 copies of \mathbb{Z} . Define the function $f: \mathbb{Z}^{n+1} \to Z_n$ by $f((c_0, \ldots, c_n)) = \sum_{k=0}^n c_k x^k$.

copies of \mathbb{Z} . Define the function $f: \mathbb{Z}^{n+1} \to Z_n$ by $f((c_0, \ldots, c_n)) = \sum_{k=0}^n c_k x^k$. Then f is surjective (by definition of Z_n); also, f is injective since two polynomials are equal if and only if they have the same coefficients in every degree. Thus, f is bijective. Since \mathbb{Z}^{n+1} is countable by Problem 3, we conclude that Z_n is also countable.

- (b) By definition, the set of all polynomials with integer coefficients is equal to $\bigcup_{n=1}^{\infty} Z_n$. Since each Z_n is countable by (a), $\bigcup_{n=1}^{\infty} Z_n$ is also countable by Theorem 23.5.
- (c) Let Z be the set of all polynomials with integer coefficients. Since Z is countable, there is a sequence p_1, p_2, \ldots containing all elements of Z (and where each $p_i \in Z$). Thus, if we denote by A_i the set of roots of p_i , then $\bigcup_{i=1}^{\infty} A_i$ is the set of all algebraic numbers. On the other hand, each A_i is finite, hence countable, and therefore $\bigcup_{i=1}^{\infty} A_i$ is countable.

The above argument can be made a bit more elegant using a slightly more general form of Theorem 23.5 which says the following:

Theorem 23.5': If I is any countable set and $\{A_i \mid i \in I\}$ is a collection of sets indexed by I such that each A_i is countable, then $\bigcup_{i \in I} A_i$ is countable.

Note that Theorem 23.5' is what the statement "A countable union of countable sets is countable" really refers to. Theorem 23.5 corresponds to the case where $I = \mathbb{N}$ or $I = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Let us apply Theorem 23.5' with I = Z. For each polynomial $p \in I$ let A_p be the set of its roots. Then the set of all algebraic numbers is $\bigcup_{p \in I} A_p$.

Since each A_p is finite and I is countable, we can conclude that $\bigcup_{p \in I} A_p$ is countable.

7. Problem 3 from Section 6.3. For parts (a) and (b) construct an explicit bijection between the given sets; one way to solve (c) is to use a suitable theorem from Section 6.4.

Solution: (a) By basic calculus the function $f: \mathbb{R} \to (0, \infty)$ given by $f(x) = e^x$ is a bijection, so $|\mathbb{R}| = |(0, \infty)|$.

- (b) It is straightforward to check that the function $f:[0,1] \to [a,b]$ given by f(x) = a + (b-a)x is a bijection, so |[0,1]| = |[a,b]|.
- (c) We will solve (c) without using the Schroeder-Bernstein theorem, but we will use transitivity of equality for cardinalities. By (a) we know $|\mathbb{R}| = |(0,\infty)|$. In HW#9 we showed that the function $f:[0,\infty) \to [0,1)$ given by $f(x) = \frac{x}{x+1}$ is bijection; the same argument shows that the same f is a bijection from $(0,\infty)$ to (0,1), so $|(0,\infty)| = |(0,1)|$.

Thus, to prove that $|\mathbb{R}| = |[0,1]|$ it suffices to prove that |(0,1)| = |[0,1]|. Similarly to the end of Lecture 24, we have the following explicit bijection $f:(0,1) \to [0,1]$:

 $f(\frac{1}{2}) = 0$; $f(\frac{1}{3}) = 1$; $f(\frac{1}{n}) = \frac{1}{n-2}$ for all $n \in \mathbb{Z}_{\geq 4}$ and finally f(x) = x for all $x \in (0,1) \setminus \{\frac{1}{n} \mid n \in \mathbb{Z}_{\geq 2}\}$.