实验报告

(实验六 数字通信中的帧检测及频偏校正)

班级: 通信2班

姓名: 颜梓杰

学号: 210210221

课程名称: 通信原理实验

指导教师: 高爽

日期: 2023.12.18

实验六 数字通信中的帧检测及频偏校正

一、 实验目的

理解帧同步和频偏校正的原理和实现方法。

二、实验预习

了解帧同步和频偏校正的基本原理,以及基于训练序列相关性的帧同步算法和基于 Moose 算法的频偏校正算法。

三、实验内容

本实验包含发送端和接收端两个主程序。发送端主程序的前面板如实验指导书中图 6.1 所示,首先是 USRP 的基本参数设置,包括 IP 地址、载波频率、采样率等;接下来是信道设置,包括信道模型和噪声能量等;然后是调制设置,包括调制类型和脉冲成形的相关参数;最后是调制后的星座图、眼图和 IQ 波形。接收端主程序的前面板如实验指导书中图 6.2 所示,开始的设置与发送端基本相同,在解调显示部分是接收解调后的文本以及它的星座图、眼图、 IQ 波形和误码率曲线。可以通过这些来判断程序是否正确。

在本次实验中,需要完成 Exercises Sliding Correlator.vi 帧同步子程序和 Exercises Moose.vi 频偏校正子程序,并打开发送和接收主程序,查看实验效果。 完成实验后,需要提交上述子程序,并完成实验报告。

四、 实验任务

3.1 完成 Exercises Sliding Correlator.vi 的完整设计图

3.2 完成 Exercises Moose.vi 的完整设计图

3.3 配置 USRP 参数,运行主程序,记录并分析结果。

实验8 帧同步RX

误码率为0,星座图清晰,说明接收无误码,效果良好

五、 扩展问题

1、(帧同步)使用 AWGN 信道,设置信道的噪声功率为 5dB,当关闭信道延时估测超过 1 个码元时间($d \neq d$)时,系统的误码率会发生怎样的变化?

误码率将会基本不变,此时信号已经完全失真,R(n)几乎由噪声 v(n)决定,因此当改不改变 s(n-d)对于 R(n) 的结果都不会有显著影响

$$R[n] = \left| \sum_{k=0}^{N_t - 1} t^*[k] hs[n - d] + \sum_{k=0}^{N_t - 1} t^*[k] v[n] \right|^2$$

2、(频偏校正)描述采样误差和过采样因子 N 之间的关系,并从发送端程序前面板的信号星座图观察这一关系。

过采样因子过大和过小都会导致采样误差增大,即星座图噪点多,几乎失真

六、 总结和实验心得

对帧同步的原理有了更加清晰的掌握,对其 labview 的实现有了初步的认识,掌握了 moose 算法的实现。