國立勤益科技大學資訊工程系實務專題進度報告

××××	×××××××××××××	$\langle \times \times \times \times \rangle$
*		*
*		×
×	人工智慧黑白棋	×
×		×
*		×
$\times \times \times \times$	*****	$\times \times \times \times$

執 行 期 間 : 107學年度上學期至107學年度下學期

專題參與人員:劉彥震

部別:日間部

組別:第58組

班別:四訊三乙 座號:30 姓名:劉彥震

指導老師: 林灶生

中 華 民 國108年 5月 31日

目錄

首頁	3
前言	4
專題簡介	5
一.製作目的	5
二.方法	6
(一)棋盤	6
(二)神經網路	8
(三)MCTS蒙地卡羅搜索樹	9
(四)Self-play訓練	10
(五)影像辨識	12
三.結果	14
製作理論探討	16
一.神經網路	16
(一)CNN捲積層	16
(二)Relu激勵函數,	18
(三)Softmax激勵函數,	19
(四)tanh激勵函數	20
(五)損失函數	21
(六)Adam優化方法	23
二.MCTS蒙地卡羅樹	26
(一)多臂吃角子老虎Multi-arm Bandit問題	26
(二)PUCT算法	26
(三) dirichlet 狄利克雷噪點	26
(四) Temperature	27
三.訓練流程圖	27
四.遊玩流程圖	29
軟體分析	30
一.掃描棋盤	30
二.建立MCTS	31
測試結果	33
結論	35
建議	35
參考文獻	35

首頁

人工智慧黑白棋

Artificial wisdom reversi

組員:劉彥震 指導老師:林灶生 Liu Yan Zhen, Jzau-Sheng Lin 國立勤益科技大學資訊工程系

Department of Computer Science and Information Engineering National Chin-Yi University of Technology

摘要

這個專題是我學習alphazero論文的知識後,然後訓練一個黑白棋AI,接著使用影像辨識應用至遊戲上的一個實作,在此報告中會簡單講解alphazero的原理,以及我採取的神經網路架構、參數、MCTS、各種用於強化學習探索的公式,還有我是如何建立黑白棋棋盤的。

This topic is after I learned the knowledge of alphazero papers, then trained an Othello AI, and then used the image recognition application to a game implementation. In this report, I will briefly explain the principle of alphazero and the neural network architecture I adopted. , parameters, MCTS, various formulas for intensive learning and exploration, and how I built the Othello chess board.

前言

約一年前踏入deep learning的坑,一開始覺得AI很酷,但在學習的途中才發現這是一個相當艱深的課程,深度學習牽扯到很多的數學,而且資料的預處理也相當的困難,如何將一批的資料整理並輸入網路就有非常多的方式,好在深度學習已經是出來一段時間的東西了,現在網路的開放式課程相當的多,一天看一個章節也能有最基本的了解,數學公式網路上也有淺顯易懂的解釋,而在寫程式時也有很多東西要學,從基本的numpy套件到深度學習的tensorflow套件、以及影像辨識,我總共看了三本書,最後我才開始碰到深度學習中的強化學習,強化學習通常用在訓練遊戲AI上,而且還不需要預先準備訓練資料,訓練資料由AI自己產生,不但有趣也省了很多麻煩,因此我選擇了棋類的AI當作我的專題。

在一開始其實我是決定要做五子棋的,首先我做了一個15*15棋格的五子棋遊戲,並且配合強化學習中一個最基本的架構DQN,下去訓練15*15棋盤,然而不管訓練了多久,AI絲毫沒有學會任何東西,完全只會亂下,灰心之下在google上搜尋到了大神們是如何訓練的,這才想起來前幾年相當火紅的alphago,然而簡單了解後其訓練所需的時間、設備完全不是普通人所能承擔的,尤其是棋盤越大的規則越複雜的,不過好在2017年alphago團隊釋出了一篇新的論文alphazero,其所需的配備大幅降低,讓我又重新燃起了希望,並且我也將15*15五子棋換成8*8的翻轉棋(俗稱黑白棋),於是這個專題就是我對於alphazero的一個了解並訓練後應用至遊戲上的一個實驗。

專題簡介

一.製作目的

使用alphazero的方法訓練一個黑白棋AI,並且應用至遊戲上,希望至少能打贏電腦。

圖 1

二.方法

(一)棋盤

1.建立棋盤

	0	1	2	3	4	5	6	7
7	56	57	58	59	60	61	62	63
6	48	49	50	51	52	53	54	55
5	40	41	42	43	44	45	46	47
4	32	33	34	35	36	37	38	39
3	24	25	26	27	28	29	30	31
2	16	17	18	19	20	21	22	23
1	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7

圖 2

如圖所示,這是我在程式中所建立的棋盤,8*8並且每個位子以0~63編號,後面皆以動作替代位子來表示。

2.黑白棋規則

棋盤共有8行8列共64格。開局時,棋盤正中央的4格先置放黑白相隔的4枚棋子(亦有求變化相鄰放置)。通常黑子先行。雙方輪流落子。只要落子和棋盤上任一枚己方的棋子在一條線上(橫、直、斜線皆可)夾著對方棋子,就能將對方的這些棋子轉變為我己方(翻面即可)。如果在任一位置落子都不能夾住對手的任一顆棋子,就要讓對手下子。當雙方皆不能下子時,遊戲就結束,子多的一方勝。

3.棋盤掃描

在最一開始以及每次下完棋後都要進行掃描以取得合法落子點,我的方式是每個棋子進行八個方向的掃瞄,掃描到合法落子點時,利用python的字典將沿途會被翻轉的對手棋儲存起來。

然而以我的棋盤表示方式,進行掃描時會碰到一些問題,例如動作30位於第3行第6列,往右上掃描時,可以很自然的使用列尾7-6=1,來進行只掃描一格的任務,然而如果是52往右上掃描,我們無法用列尾7來做判斷,必須改用行尾才行,因此在掃描時要將動作進行分類。

如圖所示,經過推算,紅線分類可解決右上、左下掃描問題,藍線分類可解決左上、右下掃描問題。

(二)神經網路

b Neural network training

圖 4

Alphazero採用策略價值網路,輸入為當下棋盤的狀態,策略輸出為Al認為當前局面要下在64個動作的概率,價值輸出為Al認為當前局面是好還是壞。

batch_size個[2,8,8]形狀的矩陣 全連接層 64個神經元 CNN log_softmax 尣 64個動作 filter=4 的機率 CNN filter=32 全連接層 64個神經元 kernel=[3,3] CNN relu tanh filter=2 CNN filter=64 1個神經元 局面的評價 kernel=[3,3] relu CNN filter=128 relu kernel=[3,3]

圖 5

然而Alphazero 所使用的神經網路架構還是太難訓練,因此我參考了網路上一個訓練8*8五子棋的架構,圖5為其架構,輸入局面表示為2張8*8的矩陣,分別表示為當前局面我方的棋子以及對方的棋子,而矩陣剛好適合使用CNN來進行輸出,經過3個CNN後分別輸入至策略端以及價值端,策略端經過1層CNN後再經過一層64個神經元的全連接層後輸出,價值端經過1層CNN後經過一層64個神經元的全連接層後再經過一個神經元輸出價值。

(三)MCTS蒙地卡羅搜索樹

MCTS為alphazero的主體,是一種搜索演算法,由於我們不可能計算所有的可能性(黑白棋空間複雜度為 10^{28}),故需要盡可能的搜索找出當前局面下合法落子點的價值,以選擇動作。

所以MCTS在拿到當前局面後,便會開始模擬下棋,不只我方會下,還會幫對方下棋 ,模擬n次後,根據整顆樹的情況,決定合法落子點的輸出機率。

而在模擬下棋中,動作將會以節點的方式來儲存狀態,儲存的有輸出該動作的機率、 動作的價值、拜訪次數、父節點、子節點

MCTS有三個步驟:

圖 7

1.Select

輸入當前局面,取得合法落子點,接著創建節點,假如此節點已被用過,要把指標指向最下面的根節點,接著在此根節點下選擇,擁有最大動作價值的合法動作,下在模擬的棋盤上。

2.Expand and evaluate

將模擬棋盤送入神經網路中,策略端取得64個動作機率,價值端取得當前局面的價值,接著在Select取得的動作節點下再拜訪所有64個動作節點,並將策略端取得64個動作的機率賦值上去

3.Backup

查看select的模擬下棋是否有造成遊戲結束,我方贏時代表我方節點是好的動作,所以全部更新正面價值,對於對方節點來說則是不好的動作,所以更新負面價值,我方輸時則相反,如果還沒結束,則使用價值端取得的局面價值進行更新。

以上便完成了一次的搜索,每步我將其設定為搜索400次,全部搜索結束後我們會回到整顆樹的最上方,即我們select的那一排的合法動作的節點,而因為是第一次select,代表它也是現實棋盤的合法動作,動作機率則是根據其拜訪次數進行處理後輸出。

(四)Self-play訓練

圖 8

有了三個主要的架構後,只要把它們串起來運行即可進行訓練了,訓練時在每次MCTS搜索完時要儲存3個東西S、 π 、Z:

每次模擬時當前的局面S:

圖 9

由於黑白棋擁有旋轉以及鏡像翻轉的特性如圖所示,以上8種的局面是一模一樣的,這代表我們可以擴充訓練的資料至8張。

- 2.當前局面每個動作的機率 π
- 3.一張全1、0、-1分別代表贏、平手、輸的矩陣Z

S用於輸入神經網路,還原當時的情況,以此得到當時的策略、價值輸出接著 π 用於策略的損失函數,Z用於價值的損失函數,最後使用Adam優化器更新網路,根據下圖,由於我的神經網路較小,學習率我選擇一個中間值使用5e-3

Thousands of steps	Reinforcement learning	Supervised learning
0-200	10^{-2}	10^{-1}
200-400	10^{-2}	10^{-2}
400-600	10^{-3}	10^{-3}
600-700	10^{-4}	10^{-4}
700-800	10^{-4}	10^{-5}
>800	10^{-4}	-

Extended Data Table 3: Learning rate schedule. Learning rate used during reinforcement learning and supervised learning experiments, measured in thousands of steps (mini-batch updates).

(五)影像辨識

(1) 擷取棋盤畫面

圖 11 使用python的win32gui套件擷取遊戲視窗的棋盤畫面,

(2) 將棋盤畫面二值化

圖 12

二值化是一種最簡單的圖像分割方法,將大於閥值的像素設為255, 小於的設為0, 從而實現圖12右邊兩個影像的效果,所謂灰度值就是從黑到白的等級,總共是0(黑)~255(白), 所以在二值化前通常要將圖片轉為灰度圖再進行二值化,但經我的實驗,只要調整閥值,直接用RGB圖下去二值化即可。

(3) 分割畫面並計算像素的頻率

依照擷取畫面的大小,將畫面分割成8*8格,接著使用一種分類資料的方法K-means 將像素顏色分為兩種。

接著計算頻率,所謂的頻率即是在這格中一種像素佔了多少比例,我們用程式計算出第二種顏色佔了多少比例。

(4) 將方格分類並取得AI輸出後顯示

從圖可以看到我左下角有設定一個閥值,根據調整頻率門檻來判斷此格是不是空格,接著再根據畫面是二值化後的黑棋還是白棋進行分類,白棋為1,黑棋為2,到此我們便取得了當前的棋盤狀態,接下來只需要將棋盤輸入進MCTS取得AI的動作,最後繪製顯示於畫面,在遊玩時我會看最左邊的圖是否更新到了最新的局面,接著按照AI給出的位子Here手動在遊戲上下棋。

三.結果

圖 13

已可以打敗7級的AI,約有9成的勝率,根據我自身遊玩的經驗,邊緣跟角落是黑白棋的重點 ,猜想AI最基本應該要很喜歡下邊緣跟角落。

圖 14

圖 15

圖 16

根據好幾場的觀察(圖14、15),AI是有學到的,然而卻導致圖16的狀況很常發生,當下在 Here處時,其下方仍然有一個黑棋,很顯然的,只要黑棋方再往Here處上面下,便可奪回邊緣 的優勢,這也是為什麼過不了8級電腦的原因,看來AI的棋力需要再進一步的提升。

製作理論探討

一.神經網路

(一)CNN捲積層

CNN - Convolution

1	<u>-</u> 1	-1	
-1	1	-1	ı
-1	-1	1	

Filter 1

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

簡單介紹一下CNN,在CNN中,有一個東西叫做filter,又叫做掃描器,它也可以看做是一個神經元,所以它自帶有參數,如圖18所示,filter大小為3x3,當一張6x6的圖進來時,filter將會以自身大小選取跟輸入同樣大小的一個區塊(例如圖中紅框),接著進行矩陣相乘得到一個值,然後filter移動stride格一樣進行計算,如此將整個6x6的圖掃描後就成了右下角4x4的形狀。

CNN我還設定了參數: padding="same",它的功用如圖所示,一般是為了解決stride步伐過大,導致無法完整掃描的問題,例如一張7*7的圖,如果stride為2,在移動三步後便無法繼續移動導致邊緣掃描不到,因此padding在邊緣上補0解決了此問題,但我的stride為1不會有這個問題,之所以添加是為了更好的獲取邊緣的資訊,因為按照CNN工作原理,不加padding的話邊緣通常只會被掃描到一次。

以上我了解到為何deepmind選擇CNN當作神經網路的主體,相比於直接創建64個神經元的全連接層作為主體,它更能夠獲取棋盤的資訊。

(二)Relu激勵函數,

Relu是一個在神經網路中很常被使用的一個激勵函數,它解決了其他激勵函數(如tanh、sigmoid)造成的梯度消失的問題,這是因為sigmoid會將大的輸入壓縮成小的輸出,如圖21所示,代表了如果輸入有很大的變化時,經過多層的傳遞之後,傳到損失函數早已消失了。

因此圖20右上角, Relu激勵函數解決了這個問題, 當輸入小於0時會直接輸出0, 而大於0則是 直接傳遞。

(三)Softmax激勵函數,

Multi-class Classification (3 classes as example)

[Bishop, P209-210]

$$C_3$$
: w^3 , b_3 $z_3 = w^3 \cdot x + b_3$

$$\blacksquare \sum_i y_i = 1$$

在神經網路的策略端我們說到最後輸出是透過一個softmax得到的,如圖22所示,可以把神經

元所有的輸出壓縮在1~0內,並且總和為1,相當適合作為機率的輸出。

(四)tanh激勵函數

如圖所示,tanh相當會將輸入壓縮成-1~1之間的值,相當適合拿來輸出局面價值。

(五)損失函數

$$l = (z - v)^2 - \boldsymbol{\pi}^{\top} \log \mathbf{p} + c||\boldsymbol{\theta}||^2$$

圖24為alphago在策略與價值網路中所定義的損失函數,依序為價值端、策略端的損失函數, 最後一項則為L2 regularization。

- 1. 價值端: Z為下完一盤棋後根據贏、輸、平手所儲存的一個1、-1、0的值,做為價值端的正答案, V為價值端的輸出,損失函數使用均方根(root mean square)來表示,之所以使用均方根是因為直接z-v的話有可能會出現負數,這會導致損失函數一下負一下正,損失難以進行更新。
- 2. 策略端: ^元 為MCTS模擬出一步時的動作機率, P則是策略端的輸出, 損失函數使用 cross-entropy來表示, 所謂的cross-entropy主要是表示資料的不確定性, 當我們每個動作的機率都很平均時, 此值會相當的大, 當機率偏向某一個動作時會小, 由於我們就是希望 AI能夠學會某些特定落子, 例如在黑白棋中, AI應該要很看重邊緣及角落的合法動作, 理 所當然的這些動作的機率應該會大於其他動作很多, 因此以cross-entropy來表示。
- 3. L2 regularization:它是神經網路中才用來解決輸入對輸出敏感的問題,來讓神經網路平滑化,當在loss時加入L2正則化時,當輸入變化了一個 Δ xi,輸出的變化會是wi* Δ xi,而當w小時(通常w都不大),就代表了輸出的變化很小,如此輸出便會對輸入不敏感,擁有了抗雜訊的能力。

$$y = b + \sum_{i=1}^{\infty} w_i x_i + w_i \Delta x_i$$

圖 25

圖26為其實際的公式,透過計算梯度,並且代入更新w權重後推導可知,每次在權重更新前,w會先乘上(1-學習率 $^{\lambda}$),是一個小於1的數,如此來減少w更新的量, $^{\lambda}$ 為L2的自定義參數,在alphago裡使用1e-4。

L2 regularization:

Regularization

$$\|\theta\|_2 = (w_1)^2 + (w_2)^2 + \dots$$

· New loss function to be minimized

$$\begin{split} \mathbf{L}'\!\left(\theta\right) &= L\!\left(\theta\right) + \lambda \, \frac{1}{2} \left\|\theta\right\|_2 \quad \text{Gradient:} \quad \frac{\partial \mathbf{L}'}{\partial w} = \frac{\partial \mathbf{L}}{\partial w} + \lambda w \end{split}$$
 Update:
$$w^{t+1} \to w^t - \eta \, \frac{\partial \mathbf{L}'}{\partial w} = w^t - \eta \left(\frac{\partial \mathbf{L}}{\partial w} + \lambda w^t\right)$$

 $= \underbrace{(1 - \eta \lambda) w^{t}}_{t} - \eta \underbrace{\frac{\partial L}{\partial w}}_{t}$ Weight Decay

Closer to zero

圖 26

(六)Adam優化方法

由於Adam是由兩個優化方法RMSprop以及Momentum得來的,故要先了解這兩個優化方法。 **1.RMSProp**

RMSProp

Error Surface can be very complex when training NN.

圖 27

RMSProp是為了解決在更新時遇到梯度變化的問題,如圖27所式,以w1進行考慮,綠色的線從梯度圖上來看,圈圈離很遠代`表較為平坦,需要較小的學習率,而在紅色的線卻突然變得非常陡峭,需要大的學習率,同樣的參數變化,梯度卻有了相當大的改變,為了自適應,所以RMSProp就是加上了考慮過往的梯度的算法。

RMSProp

如圖28所示,在更新參數時,學習率會除以一個 σ 值, σ 值代表了過往的梯度,並且我們可以自定義 π 值來決定要相信新的梯度還是過往的梯度。

2.Momentum

In physical world

Momentum

圖 29

顧名思義,Momentum就是加入了動量的算法,記錄過去移動的方向以及大小,來考慮下一步該怎麼更新。

Momentum

因此在更新參數時加入參數v代表動量,原本要更新的是紅線的反方向,然而考慮動量後移動的卻是綠線的方向,在計算v時,會加入上一次的v,並且用自定義的 $^{\lambda}$ 控制權重。於是Adam就出來了,同時考慮這兩個因素的優化方法

Adam

RMSProp + Momentum

```
Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise
square g_t \odot g_t. Good default settings for the tested machine learning problems are \alpha = 0.001,
\beta_1 = 0.9, \beta_2 = 0.999 and \epsilon = 10^{-8}. All operations on vectors are element-wise. With \beta_1^t and \beta_2^t
we denote \beta_1 and \beta_2 to the power t.
Require: \alpha: Stepsize
Require: \beta_1, \beta_2 \in [0,1): Exponential decay rates for the moment estimates
Require: f(\theta): Stochastic objective function with parameters \theta
Require: \theta_0: Initial parameter vector \bullet
   m_0 \leftarrow 0 (Initialize 1<sup>st</sup> moment vector) \rightarrow for momentum v_0 \leftarrow 0 (Initialize 2<sup>nd</sup> moment vector)
                                                               * for RMSprop
   t \leftarrow 0 (Initialize timestep)
   while \theta_t not converged do
      t \leftarrow t + 1
      g_t \leftarrow \nabla_{\theta} f_t(\theta_{t-1}) (Get gradients w.r.t. stochastic objective at timestep t)
      m_t \leftarrow \beta_1 \cdot w_{t-1} + (1 - \beta_1) \cdot g_t (Update biased first moment estimate) v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2 (Update biased second raw moment estimate) \widehat{m}_t \leftarrow m_t/(1 - \beta_1^t) (Compute bias-corrected first moment estimate)
       \hat{v}_t \leftarrow v_t/(1-\beta_2^t) (Compute bias-corrected second raw moment estimate)
       \theta_t \leftarrow \theta_{t-1} - \alpha \cdot \widehat{m}_t / (\sqrt{\widehat{v}_t} + \epsilon) (Update parameters)
   end while
   return \theta_t (Resulting parameters)
                                                                                                                              Created with EverCam
```

圖 31

比較特別的是由於動量m以及過往梯度v一開始初始化為0,Adam作者計算出會有問題,因此在倒數2、3行,動量m以及過往梯度v除以了(1-變數 β),做為偏差修正。

二.MCTS蒙地卡羅樹

在簡介中, 我並沒有提到蒙地卡羅樹的一些公式, 以及強化學習都有的探索問題, 以下在這邊 進行補充。

(一)多臂吃角子老虎Multi-arm Bandit問題

吃角子老虎機 (bandit) 是一種賭場常見的機器,玩家將硬幣投入後拉下拉桿,接著會隨機出現不同圖案,如果停止時出現符合相同或特定相同圖案連線,則可以根據賠率得到特定的報酬 (reward)。

因為報酬是隨機的,我們常以「期望報酬」(expected reward,概念上指的是玩吃角子老虎機非常多次後得到的平均報酬)去思考吃角子老虎機問題。

多臂吃角子老虎機 (multi-armed bandit), 指的則是很多台吃角子老虎機給玩家選擇,每一台機器可以得到的期望報酬皆不一樣。站在玩家的立場,目標應該是透過機器的選擇,在遊戲中獲得最大「期望報酬」。

所以想要獲得最大報酬,勢必得去探索其他台吃角子老虎機,而不能一直開發同一台,所以如何兼顧探索與開發便是多拉桿吃角子老虎機策略的核心問題。

(二)PUCT算法

$$U(s, a) = c_{\text{puct}}P(s, a) \frac{\sqrt{\sum_b N(s, b)}}{1 + N(s, a)}$$

圖 32

在蒙地卡羅樹中,每個節點的動作價值主要由Q值以及U值組成,Q值在簡介的backup中已經提過,而U值公式如圖32,P為該節點的動作機率,N(s,b)為父節點的拜訪次數,N(s,a)為子節點的拜訪次數,cpuct為控制此項的權重,透過這公式可知,當父節點拜訪次數越大,子節點的拜訪次數越少,則U值便會越大,透過拜訪次數決定價值,顯然是MCTS中探索的一個方法Cpuct在alphago的論文裡是設為1,而我設為了5。

(三) dirichlet狄利克雷噪點

在select之後,我們會從神經網路得到64個動作的機率,在這alphago將其25%的機率改為從狄利克雷分布中採樣的機率作為替代,此也是一種探索的方法,狄利克雷分布是根據先驗訊息所給出的一個機率分布,例如投擲硬幣,我們都知道正反的機率為50%,然而如果投了三次恰好全都是正面呢?,總不可能直接3/3=100%為正面,故狄利克雷分布便是建立在已投擲過50次正面50次反面的事件上,再加入3次正面所計算出來的機率分布。

Dirichlet noise $Dir(\alpha)$ was added to the prior probabilities in the root node; this was scaled in inverse proportion to the approximate number of legal moves in a typical position, to a value of $\alpha = \{0.3, 0.15, 0.03\}$

Alphago中選擇了以0.3、0.15、0.03作為α參數(棋盤越大越複雜則該值越小),而動作有64個,就代表了我要從一個已經投擲了0.3次的一個64面骰子,得到64個骰子的機率,我透過實驗將其改成投擲1000次,結果每個機率都很接近1/64 = 1.5,而為何是0.3場,由於論文中並沒有提到,故我想應該是他們實驗出來的。

(四) Temperature

act_probs = softmax(1.0/temp * np.log(np.array(visits) + 1e-10)) 再MCTS完成n次搜索後,最後我們會回到整棵樹的最上方,取得合法落子點以及其機率,這邊就是對這些機率再動手腳,同樣是探索的手段,在alphago中,self-play實際下棋的前30步temp為1,之後設為0,代表不再探索,使用自己最強的選擇來輸出,而我是一直設為1,乘以log是因為策略端的損失函數同樣輸出也是log,接著透過softmax輸出機率。

三.訓練流程圖

圖 33

四.遊玩流程圖

圖 34

軟體分析

由於程式頗大,在這裡我選擇說明一些我認為比較難的程式

一.掃描棋盤

首先我的棋盤主要以字典的方式儲存棋盤內容, key為動作0~64, 值為數值, 2(黑棋)或1(白棋)。

for move in [27,36]:
 self.states[move] = self.players[1] #黑棋
for move in [28,35]:
 self.states[move] = self.players[0] #白旗

掃描儲存的方式也是字典,儲存為self.availables,key為合法落子點,值為會被翻轉的黑棋掃描的步驟如下

- 1. 取得一顆棋子,查看它是不是當前玩家,是的話才需要掃描
- 2. 取得其行列
- 3. 判斷它屬於哪類(圖3), 以決定掃描方式
- 4. 掃描第一顆判斷是不是我方棋、空格,不是代表這顆是對方棋,將此棋儲存至 store opponent串列裡,接著繼續掃描
- 5. 直到掃描到空白處,途中如果掃描到我方棋則離開掃描,或是掃描到了終點
- 6. 掃描到空白處後,查看是否重複掃描(已建立此合法落子點),是的話將沿途掃描到的黑棋加入至該字典,不是則建立該值於字典當中。
- 7. store_opponent清空,繼續下一個方向的掃描

```
def scanning_for_availables(self):
      self.availables={}
       store_opponent = []
      for m in self.moved: #看每個已做過的動作
          w = m // self.width #取整數 看動作在第幾列
          h = m % self.width #取餘數 看動作在第幾行 以設定究竟要檢查幾格 解決超出邊疆的問題
          h_class=0
          w_class=0
          right_upperleft=0
          if h >= w :
             h_{class} = 1
          elif \bar{h} < w:
             w_class = 1
          if w > self.upperleft[str(h)][0] :
             right_upperleft = 1
          player= self.states[m] #查看這個動作在state上是上面哪一個玩家的符號
          if player == self.current_player: #如果是當前玩家的旗子 則開始掃描該棋子以找出可下的點
             #往右檢查
             for i in range(m+1,m+(7-h+1)):
                #首先檢查這顆是自己的棋以及檢查第一顆是不是空白處 都代表不需要繼續掃描 跳出迴圈
break
                elif self.states.get(i,-1) == -1: #接下來繼續掃描 如果碰到空白處 此處即是可下
的點(因有黑棋間隔著)
                    if self.availables.__contains__(i):#此句在確認是否重複掃描 沒有的話
availables[i]會被蓋掉
                       self.availables[i].extend(store_opponent) #以此可下的點為首 與沿途
掃描到的黑棋 存成字典
                    else:
                       self.availables[i]=store opponent
                    break
                else:
                    if (self.states.get(i,-1) == self.current_player):
                       break
                    else:
                       #如果是對手棋 就把對手的棋子加入到
                       store_opponent.append(i)
             store opponent=[]
                                   圖 35
```

二.建立MCTS

節點使用python的class建立,每個都有其方法、資訊

```
class TreeNode(object):
    def __init__(self, parent, prior_p):
        self._parent = parent
        self._children = {} # a map from action to TreeNode
        self._n_visits = 0
        self._Q = 0
        self._u = 0
        self._P = prior_p #預設是1.0 因為最初初始化時最初的節點"選擇率"肯定是100%
```

圖 36

```
def select(self, c_puct):
          ""Select action among children that gives maximum action value Q
        plus bonus u(P).
        Return: A tuple of (action, next_node)
        #max函數:首先key是一個函數會對self._children.items()進行處理
        #1.一開始_children為空的 呼叫items會返回一個空的字典 而正常_children是表示父節點的"下一排"所有
可能的子節點 因為我們要選擇哪一個為下一個子節
        #2.key是一個function 會套用到_children.items()上 呼叫_children.items的get_value
        #3.就會得到這個_children.items最新的Q值
        #4.運行max選出Q值最大的 選擇他 return
        return max(self._children.items(),
                    key=lambda act_node: act_node[1].get_value(c_puct))
                                              圖 37
    def update(self, leaf_value):
    self._n_visits += 1
    self._Q += 1.0*(leaf_value - self._Q) / self._n_visits
    def update_recursive(self, leaf_value):
    if self._parent:
        self._parent.update_recursive(-leaf_value)
         self.update(leaf_value)
    def get_value(self, c_puct):
        也就是計算這個節點的value Q值即被visit的次數
         self._u = (c_puct * self._P *
                    np.sqrt(self._parent._n_visits) / (1 + self._n_visits)) #np.sqrt返回平方
根
         return self._Q + self._u
    def is_leaf(self):
    """Check if leaf node (i.e. no nodes below this have been expanded)."""
    return self._children == {}
    def is_root(self):
         return self._parent is None
```

圖 38

進行搜索時:

```
def _playout(self, state):
       node = self._root #得到最初的節點
       while(1):
          if node.is_leaf(): #如果到達最後的葉子則break (偵測當前的node是不是下面沒有children了)
            #那為什麼下面還可能會有children呢? 因為我們設定MCTS 2000次 也就是每次都會從"頭"開始搜索
所以有可能選擇到上次選擇的move 直到選到葉尾的棋子
              break
          # Greedily select next move. 運行MCTS的select部分
          action, node = node.select(self._c_puct)
          state.do move(action)
       action_probs, leaf_value = self._policy(state)
       end, winner = state.game_end() #改成scanning_number來偵測剩多少棋子來判斷是否結束
       if not end:
          node.expand(action probs)
       else:
          # for end state, return the "true" leaf value
          if winner == -1: # tie
              leaf_value = 0.0
          else:
              leaf value = (
                  1.0 if winner == state.get_current_player() else -1.0
       node.update_recursive(-leaf_value) #這邊是更新select的節點 因為此點是代表我們父點動作的對手
所以價值要更新負的
       #所以也就是從根到select的整根樹枝都會更新
```

圖 39

測試結果

為了提高棋力我調整了很多參數進行實現,在最初,我參考8*8五子棋的方式,棋盤狀態用4個局面表示,前兩個為雙方的棋子分布,第三個為對方最後一步的位子,第四個為表示當前是我方還是對手方的一個全1或全0的矩陣,以五子棋的思維,第三個局面是因為我們通常會下在對手剛下的位子附近,第四個則是因為五子棋對於先後手方有極大的優勢,再經過3天的訓練3000場後,損失函數來到了2附近,然而我將其進行互相對打發現1500場後棋力便沒再提升了。

由於黑白棋不一定下在對方最後一步附近、先後手也沒有特別大的優勢,因此我選擇只以前兩個局面進行實驗:

total_loss

圖 40

可見總loss上升了0.6左右,然而一樣再訓練約1500場之後loss便卡再了2.8左右,同樣約為1500場,實際測試依然1500場後便無法再提升,將其與4個局面的AI對打後,發現旗鼓相當,這代表了2個局面是可行的。

猜想,可能是因為神經網路太小了,目前便已是它的極限,因此我再加了一層128個filter的

CNN_o

total_loss

圖 41

然而遺憾的是依然沒有太大的成效,或許是訓練的不多,1500場對決3000場依然是1500場的 AI獲勝。

猜想是探索參數的問題,我把探索調得太高了,可能導致在每次都在瞎搜而學不到東西,因此我將狄利克雷噪點由0.3改為0.015,C_puct從5調成3,temp依舊,發現並沒有多大的轉變,loss反而變高了,看來在小算力的情況下,探索手段縮小沒什麼用。

total_loss

結論

雖然很想直接套用alphago的神經網路架構來進行訓練,無奈我的程式實在太慢了,3000場訓練就要3天,GPU加速也只有加速一點點,因為大部分時間耗在了MCTS身上,未來改良可能當務之急就是將建立MCTS的方式改掉,alphazero是使用一種叫做hash table的方式儲存,它有點類似python的字典,而python也有提供該函數為namespace,接著加入multiprocessing,並且將棋盤表示方式改為更加有效的bitboard,即一個64位元的數值。

建議

我建議想要製作AI的盡早學習完畢,把重點放在程式上面,因為實驗所需要的時間相當的長 ,也建議先多多尋找github上開源的代碼,從他人的開始學起,才會事半功倍。

參考文獻

- [1].AlphaZero: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm https://discovery.ucl.ac.uk/id/eprint/10045895/1/agz_unformatted_nature.pdf
- [2].AlphaGo Zero: Mastering the game of Go without human knowledge https://arxiv.org/pdf/1712.01815.pdf
- [3].程式碼架構主要來自: https://juejin.im/entry/6844903569817239565
- [4].機器學習理論學習自李弘毅老師的教程: https://youtu.be/CXgbekl66jc
- [5].影像辨識以及GUI(checker程式)學習自此書: https://www.books.com.tw/products/0010768933
- [6]. 莫凡python基礎、神經網路程式基礎: https://mofanpy.com/
- [7].AlphaGo 圍棋演算法原理解析: https://youtu.be/pgX4JSv4J70