Modul Kalkulus 2 Teknik Informatika

Pertemuan 6:

Teknik Pengintegralan Substitusi

(Teknik Integral Fungsi Eksponensial Substitusi Aljabar)

A. Tujuan Pembelajaran

Mahasiswa mampu memahami dan menggunakan materi dasar turunan dalam memecahkan permasalahan integral tak tentu dan integral tentu fungsi eksponensial menggunakan metode substitusi aljabar.

B. Uraian Materi

Teknik pengintegralan ini digunakan untuk menyelesaikan suatu permasalahan integral fungsi eksponensial yang belum baku, dengan cara menyederhanakannya ke dalam bentuk $\int e^x dx = e^x + C$.

*) Catatan: tidak semua bentuk integral fungsi eksponensial dapat diselesaikan dengan cara ini, kita perlu memperkirakan bentuk dasar integral yang paling mirip (lihat juga contoh 2 & 3).

Pada contoh 2 & 3, kita juga perlu bisa menurunkan fungsi eksponensialnya. Sekilas mengingat tentang turunan fungsi eksponensial.

$$\frac{d}{dx}(e^x) = e^x \left(\frac{d(x)}{dx}\right)$$

Contoh 1):
$$\frac{d}{dx}(e^{3x}) = e^{3x} \left(\frac{d^{(3x)}}{dx} \right) = 3e^{3x}$$

Contoh 2):
$$\frac{d}{dx}(e^{3x-2}) = e^{3x-2}\left(\frac{d(3x-2)}{dx}\right) = 3e^{3x-2}$$

Contoh 1: Tentukan integral dari $\int \frac{6e^{1/x}}{x^2} dx$

Penyelesaian:

Menyederhanakan $\int \frac{6e^{1/x}}{x^2} dx$

Misal:
$$a = 1/\chi$$
, maka $\frac{da}{dx} = -1/\chi^2$, sehingga $dx = -x^2 da$

Setelah itu, substitusi a dan dx hasil pemisalan tersebut ke dalam $\int \frac{6e^{1/x}}{x^2} dx$ (soal), sehingga:

$$\int \frac{6e^{1/x}}{x^2} dx = \int \frac{6e^a}{x^2} (-x^2 da)$$
$$= -6 \int e^a da$$
$$= -6(e^a) + C$$

Kemudian substitusi a kembali

$$= -6e^{1/x} + C$$

Jadi
$$\int \frac{6e^{1/x}}{x^2} dx = -6e^{1/x} + C$$

Contoh 2: Tentukan integral dari $\int \frac{e^x}{4+9e^{2x}} dx$

Penyelesaian:

Bentuk tersebut mirip dengan $\int \frac{da}{b^2 + a^2} = \frac{1}{b} \tan^{-1} \left(\frac{a}{b} \right) + C$, maka untuk menyelesaikannya kita perlu menyederhanakan $\int \frac{e^x}{4 + 9e^{2x}} dx$ ke dalam bentuk tersebut.

Misal:
$$a = 3e^x$$
, maka $\frac{da}{dx} = 3e^x$, sehingga $dx = \frac{da}{3e^x}$
 $b = 2$.

Setelah itu, substitusi a, b, dan dx hasil pemisalan tersebut ke dalam $\int \frac{e^x}{4+9e^{2x}} dx$ (soal), sehingga:

$$\int \frac{e^x}{4 + 9e^{2x}} dx = \int \frac{e^x}{b^2 + a^2} \left(\frac{da}{3e^x}\right)$$
$$= \frac{1}{3} \int \frac{1}{b^2 + a^2} (da)$$
$$= \frac{1}{3} \frac{1}{b} \tan^{-1} \left(\frac{a}{b}\right) + C$$

Kemudian substitusi a kembali

$$= \frac{1}{3} \frac{1}{2} \tan^{-1} \left(\frac{3e^x}{2} \right) + C$$

$$= \frac{1}{6} \tan^{-1} \left(\frac{3e^x}{2} \right) + C$$

$$\operatorname{Jadi} \int \frac{e^x}{4+9e^{2x}} dx = \frac{1}{6} \tan^{-1} \left(\frac{3e^x}{2} \right) + C$$

Contoh 3: Tentukan integral dari $\int \frac{e^x}{4+e^x} dx$

Penyelesaian:

Bentuk tersebut mirip dengan $\int \frac{1}{x} dx = \ln|x| + C$, maka untuk menyelesaikannya kita perlu menyederhanakan $\int \frac{e^x}{4+e^x} dx$ ke dalam bentuk tersebut.

Misal:
$$a = 4 + e^x$$
, maka $\frac{da}{dx} = e^x$, sehingga $dx = \frac{da}{e^x}$

Setelah itu, substitusi a dan dx hasil pemisalan tersebut ke dalam soal, sehingga:

$$\int \frac{e^x}{4 + e^x} dx = \int \frac{e^x}{a} \left(\frac{da}{e^x}\right)$$
$$= \int \frac{1}{a} (da) = \ln|a| + C$$

Kemudian substitusi a kembali

$$=\ln|4+e^x|+C=\ln(4+e^x)+C$$
 Jadi $\int \frac{e^x}{4+e^x} dx = \ln(4+e^x)+C$

C. Latihan Soal/Tugas

Selesaikan permasalahan integral berikut!

- 1. $\int \frac{\frac{1}{3}e^{1/x^2}}{x^3} dx$
- $2. \quad \int_{1}^{0} \frac{\frac{1}{3}e^{1/x^{2}}}{x^{3}} dx$
- $3. \quad \int \frac{e^x}{9 + e^{2x}} dx$
- $4. \quad \int_0^1 \frac{e^x}{9 + e^{2x}} dx$

D. Daftar Pustaka

Varberg, D., Purcell, E., & Rigdon, S. (2007). Calculus (9th ed). Prentice-Hall.