VaR on option portfolio

Authors: Tia Krofel, Brina Ribič, Matej Rojec Mentor: dr. Aleš Ahčan

> University of Ljubljana School of Economics and Business Slovenia

Option

An option gives its owner the right, but not the obligation, to call (buy) or put (sell) an underlying asset at a strike price on a fixed expiration date.

Option

An option gives its owner the right, but not the obligation, to call (buy) or put (sell) an underlying asset at a strike price on a fixed expiration date.

Option

An option gives its owner the right, but not the obligation, to call (buy) or put (sell) an underlying asset at a strike price on a fixed expiration date.

european options

Option

An option gives its owner the right, but not the obligation, to call (buy) or put (sell) an underlying asset at a strike price on a fixed expiration date.

- european options
- american options

Option

An option gives its owner the right, but not the obligation, to call (buy) or put (sell) an underlying asset at a strike price on a fixed expiration date.

- european options
- american options
- exotic options

European options

Value of european option at its expiration time:

• Call:
$$C_T = \max\{S_T - K, 0\}$$

European options

Value of european option at its expiration time:

- Call: $C_T = \max\{S_T K, 0\}$
- Put: $P_T = \max\{K S_T, 0\}$

Black-Scholes model

Price of european call option:

•
$$V_t = S_t \Phi(d_1) - Ke^{-R(T-t)} \Phi(d_2)$$

- K ... strike price
- R . . . risk-free interest rate
- ullet S_t ... the underlying asset's value at time t

$$\bullet \ d_1 = \frac{\ln(\frac{S_0}{K}e^{RT}) + \frac{\sigma^2}{2}T}{\sigma\sqrt{T}}$$

•
$$d_2 = d_1 - \sigma \sqrt{T}$$

VaR

VaR definition

Let X be a random variable on a probability space $(\Omega, \mathcal{F}, \mathcal{P})$ and $\alpha \in (0,1)$. VaR $_{\alpha}(X)$ is defined as the $(1-\alpha)$ quantile of -X. Then

$$\mathsf{VaR}_{\alpha}(X) := -\inf\{x \in \mathbb{R} \mid F_X(x) > \alpha\} = F_{-X}^{-1}(1-\alpha).$$

Non-linear VaR

payoff.jpg

The Delta

$$\Delta = \frac{\partial V}{\partial S}$$

The Delta

$$\Delta = \frac{\partial \textit{V}}{\partial \textit{S}}$$

• Call: $\Delta \in [0,1]$

The Delta

$$\Delta = \frac{\partial \textit{V}}{\partial \textit{S}}$$

- Call: $\Delta \in [0,1]$
- Put: $\Delta \in [-1, 0]$

The Delta

$$\Delta = \frac{\partial \textit{V}}{\partial \textit{S}}$$

- Call: $\Delta \in [0,1]$
- Put: $\Delta \in [-1, 0]$
- european call option: $\Phi(d_1)$

The Gamma

The Gamma

$$\Gamma = \frac{\partial^2 V}{\partial S^2}$$

The Gamma

The Gamma

$$\Gamma = \frac{\partial^2 V}{\partial S^2}$$

• european call option: $e^{-R(T-t)} \frac{\Phi(d1)}{S_t \sigma \sqrt{T-t}}$

The Theta

The Theta

$$\Theta = \frac{\partial V}{\partial t}$$

The Vega

The Vega

$$\mathcal{V} = \frac{\partial V}{\partial \sigma}$$

Delta-Gamma-Theta Approach

Importance of the three Greeks used for VaR calculation:

- Delta: the potential change in the option's value associated with a unit shift in the underlying asset's price;
- Gamma: important role in VaR calculations as the underlying asset price fluctuates more significantly;
- Theta: time decay is a major factor in the approximation of the overall risk of the portfolio.