Задание.

Синтезировать конечный автомат, работающий по принципу автомата Мили. В синтез входит построение схемы КЦУ выхода автомата, временные диаграммы его работы, программа на Verilog HDL для реализации автомата на макете в FPGA CycloneV и диаграмма переходов автомата. Вариант выбирается в соответствии с последней и предпоследней цифрами номера зачетной книжки (студенческого билета). Соответственно: последняя цифра – номер таблицы переходов, предпоследняя — номер таблицы состояний. Сигналы х и х определяются комбинацией связанных сигналов «а» и «b». Переходы регулирует «а», состояния — «b».

Примером такого автомата может служить автомат, регулирующий работу светофора со стрелками боковых поворотов. При трех основных переходах можно получить от 4 до 6-ти возможных состояний. Как переходы, так и события внутри состояний регулируются по времени удержания. Время удержания основного состояния между переходами поглощает время смены событий внутри состояний.

Варианты заданий.

	Таблица переходов 0										
X	S0	S1	S2	S3	S4	S5	S6	S7			
X=0	X=0 S2 S3 S4 S5 S1 S7 S0 S6										
X=1	S1	S4	S6	S7	S2	S3	S5	SO			

Таблица переходов 1											
X S0 S1 S2 S3 S4 S5 S6 S7											
X=0	X=0 S7 S0 S1 S2 S3 S4 S5 S6										
X=1	S1	S5	S6	S7	S0	S3	S4	S2			

	Таблица переходов 2										
X	X S0 S1 S2 S3 S4 S5 S6 S7										
X=0	X=0 S4 S5 S6 S7 S1 S2 S3 S0										
X=1											

	Таблица переходов 3										
X	X S0 S1 S2 S3 S4 S5 S6 S7										
X=0	X=0 S6 S3 S4 S0 S7 S1 S2 S5										
X=1											

	Таблица переходов 4										
X	X S0 S1 S2 S3 S4 S5 S6 S7										
X=0	X=0 S3 S6 S1 S7 S0 S2 S4 S5										
X=1											

	Таблица переходов 5										
X S0 S1 S2 S3 S4 S5 S6 S7											
X=0	X=0 S1 S4 S6 S7 S2 S3 S5 S0										
X=1	S2	S3	S4	S5	S1	S7	S0	S6			

Таблица переходов 6											
X	X S0 S1 S2 S3 S4 S5 S6 S7										
X=0	X=0 S1 S5 S6 S7 S0 S3 S4 S2										
X=1	S7	S0	S1	S2	S3	S4	S5	S6			

Таблица переходов 7											
X S0 S1 S2 S3 S4 S5 S6 S7											
X=0	X=0 S3 S5 S7 S1 S2 S4 S0 S6										
X=1	S4	S5	S6	S7	S1	S2	S3	S0			

Таблица переходов 8											
X S0 S1 S2 S3 S4 S5 S6 S7											
X=0	X=0 S5 S4 S1 S7 S6 S3 S0 S2										
X=1											

Таблица переходов 9											
X S0 S1 S2 S3 S4 S5 S6 S7											
X=0	X=0 S3 S6 S1 S7 S0 S2 S4 S5										
X=1											

Таблица состояний 0											
X* S0 S1 S2 S3 S4 S5 S6 S7											
X*=0	X*=0 0 1 2 3 4 5 6 7										
X*=1											

Таблица состояний 1											
X* S0 S1 S2 S3 S4 S5 S6 S7											
X*=0	X*=0 1 2 3 4 5 6 7 0										
X*=1	X*=1 0 7 6 5 4 3 2 1										

	Таблица состояний 2									
X*	S0	S1	S2	S3	S4	S5	S6	S7		
X*=0	X*=0 2 3 4 5 6 7 0 1									
X*=1	1	0	7	6	5	4	3	2		

	Таблица состояний 3										
X* S0 S1 S2 S3 S4 S5 S6 S7											
X*=0	X*=0 3 4 5 6 7 0 1 2										
X*=1	2	1	0	7	6	5	4	3			

	Таблица состояний 4									
X*	X* S0 S1 S2 S3 S4 S5 S6 S7									
X*=0	X*=0 4 5 6 7 0 1 2 3									
X*=1	3	2	1	0	7	6	5	4		

	Таблица состояний 5										
X*	X* S0 S1 S2 S3 S4 S5 S6 S7										
X*=0	X*=0 5 6 7 0 1 2 3 4										
X*=1	4	3	2	1	0	7	6	5			

	Таблица состояний 6										
X*	S0	S1	S2	S3	S4	S5	S6	S7			
X*=0	X*=0 6 7 0 1 2 3 4 5										
X*=1											

	Таблица состояний 7										
X*	S0	S1	S2	S3	S4	S5	S6	S7			
X*=0	X*=0 7 0 1 2 3 4 5 6										
X*=1	6	5	4	3	2	1	0	7			

	Таблица состояний 8										
X*	S0	S1	S2	S3	S4	S5	S6	S7			
X*=0	X*=0 0 2 4 6 1 3 5 7										
X*=1	1	3	5	7	2	4	6	0			

	Таблица состояний 9									
X*	S0	S1	S2	S3	S4	S5	S6	S7		
X*=0	X*=0 0 7 6 5 4 3 2 1									
X*=1	1	2	3	4	5	6	7	0		

Пример синтеза.

Структура автомата может быть представлена следующим образом (повторение материала лекции 6).

Построим схему автомата Мили, имеющего 3 разряда.

Предположим, таблица переходов и таблица состояний автомата будут иметь следующий вид:

	Таблица переходов										
X	S0	S1	S2	S3	S4	S5	S6	S7			
X=0	S2	S3	S4	S5	S6	S0	S7	S1			
X=1	S3	S5	S4	S1	S6	S7	S0	S2			

	Таблица состояний										
X*	S0	S1	S2	S3	S4	S5	S6	S7			
X*=0	X*=0 1 3 5 7 0 2 4 6										
X*=1											

Значит, при х=0 автомат будет совершать переходы:

A при x=1

При этом изменение x^* будет сказываться на выходе автомата следующим образам:

При х*=0 эквивалентность состояний следующая:

При х*=1:

$$S0==2, S1==4, S2==6, S3==0, S4==1, S5==3, S6==5, S7==7;$$

Принимая во внимание, что S всего лишь – State (состояние), по этим данным запишем таблицу истинности для второго КЦУ автомата, именуя входы S_i - M[2..0], а выходы P_i - N[2..0].

X*	M_2	M_1	M_0	N_2	N_1	N_0
0	0	0	0	0	0	1
0	0	0	1	0	1	1
0	0	1	0	1	0	1
0	0	1	1	1	1	1
0	1	0	0	0	0	0
0	1	0	1	0	1	0
0	1	1	0	1	0	0
0	1	1	1	1	1	0
1	0	0	0	0	1	0
1	0	0	1	1	0	0
1	0	1	0	1	1	0
1	0	1	1	0	0	0
1	1	0	0	0	0	1
1	1	0	1	0	1	1
1	1	1	0	1	0	1
1	1	1	1	1	1	1

Запишем выражения для выходов, используя карты Карно.

Для N_0

$$N_0 = \overline{X} \& \overline{M}_2 \lor X \& M_2$$

					π	M ₁		
		_	00	_	И ₀	11	10	
78.		00	0		1 1	1 3	2	
IV.	12	01	4		1 5	1 7	6	
X		11	12		1 13	1 15	14	
	-	10	1 8		9	11	1 10	

Для N_1

 $N_1 = \overline{X} \& M_0 \lor M_2 \& M_0 \lor X \& \overline{M}_2 \& \overline{M}_0$

Для N_2

$$N_2 = M_1 \& \overline{M}_0 \lor \overline{X} \& M_1 \lor M_2 \& M_1 \lor X \& \overline{M}_2 \& \overline{M}_1 \& M_0$$

На основании выведенных уравнений построим структурную схему второго КЦУ.

Структурная схема КЦУ.

Для построения функциональной диаграммы работы КЦУ записываем программу:

```
(input x, input [2:0]m, output n0,n1,n2);

assign\ n0 = \sim x \& \sim m[2] / x \& m2;

assign\ n1 = \sim x \& m[0] / m[2] \& m[0] / x \& \sim m[2] \& \sim m[0];

assign\ n2 = m[1] \& \sim m[0] / \sim x \& m[1] / m[2] \& m[1] / x \& \sim m[2] \& \sim m[1] \& m[0];
```

endmodule

Module block2

Программа работы устройства будет состоять из двух частей: программирования переходов в следующее состояние на момент подачи импульса синхронизации (первое КЦУ), и программирование соответствия состояния определенному числу (второе КЦУ). Принимаем x==a; x*==b.

```
module mealy_3
(input clk,a, b, reset,
output reg [2:0] out);
reg [2:0] state;
assign in1=a\&(\sim b)/a;
assign in2=b\&(\sim a)/b;
parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3, S4 = 4, S5 = 5, S6 = 6, S7 = 7;
always @ (posedge clk or posedge reset)
begin
      if (reset)
      state <= S0;
             else
             case (state)
                   S0:
                   if (in1)
                   begin
                   state \le S3;
                   end
                          else
                          begin
                          state <= S2;
                          end
                   S1:
                   if (in1)
                   begin
                   state \le S5;
                   end
                          else
                          begin
                          state \le S3;
                          end
                   S2:
                   if (in1)
                   begin
                   state \le S4;
                   end
                          else
                          begin
                          state \le S4;
```

```
end
S3:
if (in1)
begin
state <= S1;
end
      else
      begin
      state <= S5;
      end
S4:
if (in1)
begin
state <= S6;
end
      else
      begin
      state <= S6;
      end
S5:
if (in1)
begin
state <= S7;
end
      else
      begin
      state <= S0;
      end
S6:
if (in1)
begin
state <= S0;
end
      else
      begin
      state <= S7;
      end
S7:
if (in1)
begin
state <= S2;
end
      else
      begin
      state <= S1;
```

endcase

```
end
always @ (state or in2)
      begin
            case (state, in2)
            S0:
            if (in2)
            begin
            out = 3'b010;
            end
                  else
                  begin
                  out = 3'b001;
                  end
            S1:
            if (in2)
            begin
            out = 3'b100;
            end
                  else
                  begin
                  out = 3'b011;
                  end
            S2:
            if (in2)
            begin
            out = 3'b110;
            end
                  else
                  begin
                  out = 3'b101;
                  end
            S3:
            if (in2)
            begin
            out = 3'b000;
            end
                  else
                  begin
                  out = 3'b111;
                  end
            S4:
            if (in2)
            begin
```

```
out = 3'b001;
            end
                  else
                  begin
                  out = 3'b000;
                  end
            S5:
            if (in2)
            begin
            out = 3'b011;
            end
                  else
                  begin
                  out = 3'b010;
                  end
            S6:
            if (in2)
            begin
            out = 3'b101;
            end
                  else
                  begin
                  out = 3'b100;
                  end
            S7:
            if (in2)
            begin
            out = 3'b111;
            end
                  else
                  begin
                  out = 3'b110;
                  end
            endcase
      end
endmodule
```