I. Introduction

Introduction

Overview Use cases

Mode

Submode

Likelihood

Inference

QNEM

Evaluation

Conclusion

 Deal with the problem of joint modeling of longitudinal data and censored durations Introduction

Overview

Use cases

Model

Notations

Notations

Inference

Penalization QNEM

Evaluation

Conclusion

- Deal with the problem of joint modeling of longitudinal data and censored durations
- ► Large number of both longitudinal and time-independent features are available

Introduction

Overview

Use cases

Model

Notations

Inference

Penalization QNEM

Evaluation

Conclusion

- Deal with the problem of joint modeling of longitudinal data and censored durations
- Large number of both longitudinal and time-independent features are available
- Flexibility in modeling the dependency between the longitudinal features and the event time with appropriate penalties

Introduction

Overview

Use case

Model

Notations

Inference Penalization

Conclusion

- Deal with the problem of joint modeling of longitudinal data and censored durations
- Large number of both longitudinal and time-independent features are available
- Flexibility in modeling the dependency between the longitudinal features and the event time with appropriate penalties
- Inference achieved using an efficient and novel
 Quasi-Newton Expectation Maximization algorithm

Introduction

Overview

Use cases

Model Submodels

Notations Likelihood

Penalization

Evaluation

Conclusion

Predict the risk for an event of interest to occur quickly, taking into account simultaneously a huge number of longitudinal signals in a high-dimensional context Introduction

Overview Use cases

Use case:

Model

Submodol

Notation:

Inference

Penalization ONEM

 $\mathsf{Evaluation}$

Conclusion

- Predict the risk for an event of interest to occur quickly, taking into account simultaneously a huge number of longitudinal signals in a high-dimensional context
- Provides powerful interpretability by automatically pinpointing significant time-dependent and time-independent features

ntroduction

Use cases

Use case:

Model

Notations

Likelinood

Penalization

Evaluation

Conclusion

- Predict the risk for an event of interest to occur quickly, taking into account simultaneously a huge number of longitudinal signals in a high-dimensional context
- Provides powerful interpretability by automatically pinpointing significant time-dependent and time-independent features

Real-time decision support

Medical context → event of interest: survival time, re-hospitalization, relapse or disease progression; longitudinal data: biomarkers or vital parameters measurements ntroductio

Use cases

Framewo

C 1 11

Notations

nference

QIVEIVI

Conclusion

Conclusion

- Predict the risk for an event of interest to occur quickly, taking into account simultaneously a huge number of longitudinal signals in a high-dimensional context
- Provides powerful interpretability by automatically pinpointing significant time-dependent and time-independent features

Real-time decision support

- Medical context → event of interest: survival time, re-hospitalization, relapse or disease progression; longitudinal data: biomarkers or vital parameters measurements
- Customer's satisfaction monitoring context → event of interest: time when a client churns; longitudinal data: the client's activity recorded from account opening throughout the duration of the business relationship

ntroduction

Use cases

Framewo

Notations

nference

QNEM

. . .

Conclusion

Survival analysis

$$T = T^{\star} \wedge C$$
 and $\Delta = \mathbb{1}_{\{T^{\star} \leq C\}}$

Introduction

Overview

Framework

Model

o

Notations

Inference

Penalization QNEM

Evaluation

Conclusion

Survival analysis

$$T = T^{\star} \wedge C$$
 and $\Delta = \mathbb{1}_{\{T^{\star} \leq C\}}$

▶ Time-independent features $X \in \mathbb{R}^p$ with $p \gg n$

Introduction

Overview

Framework

Model

C., h.,

Notations Likelihood

Inference

Penalization QNEM

Conclusion

Survival analysis

$$\mathcal{T} = \mathcal{T}^\star \wedge \mathcal{C} \quad \text{and} \quad \Delta = \mathbb{1}_{\{\mathcal{T}^\star \leq \mathcal{C}\}}$$

- ▶ Time-independent features $X \in \mathbb{R}^p$ with $p \gg n$
- ▶ L longitudinal outcomes such that $L \gg n$ and

$$Y(t) = \left(Y^1(t), \ldots, Y^L(t)
ight)^ op \in \mathbb{R}^L$$

Introduction

Overview

Framework

Model

iviodei

Notations

nference

Penalization

Evaluation

Conclusion

Survival analysis

$$\mathcal{T} = \mathcal{T}^\star \wedge \mathcal{C} \quad \text{and} \quad \Delta = \mathbb{1}_{\{\mathcal{T}^\star \leq \mathcal{C}\}}$$

- ▶ Time-independent features $X \in \mathbb{R}^p$ with $p \gg n$
- ▶ L longitudinal outcomes such that $L \gg n$ and

$$Y(t) = \left(Y^1(t), \dots, Y^L(t)
ight)^ op \in \mathbb{R}^L$$

Heterogeneity of the population: latent subgroups

$$G\in\{0,\ldots,K-1\}$$

Introduction

Overview

Framework

.

Model

Notations

nference

QNEM

c . .

Conclusion

Survival analysis

$$T = T^* \wedge C$$
 and $\Delta = \mathbb{1}_{\{T^* \leq C\}}$

- ▶ Time-independent features $X \in \mathbb{R}^p$ with $p \gg n$
- ▶ L longitudinal outcomes such that $L \gg n$ and

$$Y(t) = \left(Y^1(t), \dots, Y^L(t)
ight)^ op \in \mathbb{R}^L$$

► Heterogeneity of the population: latent subgroups

$$\textit{G} \in \{0, \ldots, \textit{K}-1\}$$

Softmax link function for the latent class membership probability given time-independent features

$$\pi_{\xi_k}(x) = \mathbb{P}[G = k | X = x] = \frac{e^{x^\top \xi_k}}{\sum_{k=0}^{K-1} e^{x^\top \xi_k}}$$

Introduction

Overview

Framework

Model

Notations

nference Penalization

Evaluation

Conclusion

II. Model

Introduction

Overview Use cases

Model

Submodels Notations Likelihood

Inference

QNEM

Canalisaian

Deferences

Group-specific marker trajectories

▶ $h_l(\mathbb{E}[Y^l(t)|b^l,G=k]) = m_k^l(t) = u^l(t)^\top \beta_k^l + v^l(t)^\top b^l$ with fixed effect parameters $\beta_k^l \in \mathbb{R}^{q_l}$ and subject-and-longitudinal outcome specific random effects $b^l \in \mathbb{R}^{r_l} \sim \mathcal{N}(0,D_l)$

Introduction

Overviev

Use cases

Model

Submodels

Notations Likelihoo

> nterence Penalization

QNEM

Conclusion

Group-specific marker trajectories

- ▶ $h_l(\mathbb{E}[Y^l(t)|b^l,G=k]) = m_k^l(t) = u^l(t)^\top \beta_k^l + v^l(t)^\top b^l$ with fixed effect parameters $\beta_k^l \in \mathbb{R}^{q_l}$ and subject-and-longitudinal outcome specific random effects $b^l \in \mathbb{R}^{r_l} \sim \mathcal{N}(0,D_l)$
- $ightharpoonup \operatorname{Cov}[b^I,b^{I'}] = D_{II'}$ and

$$D = \begin{bmatrix} D_{11} & \cdots & D_{1L} \\ \vdots & \ddots & \vdots \\ D_{1L}^\top & \cdots & D_{LL} \end{bmatrix}$$

the global variance-covariance matrix

Introduction

Use cases

Model

Submodels

Notations Likelihood

Penalization

Evaluation

Conclusion

Group-specific risk of event

Introduction

Overvie

F-----

Mod

Submodels

Notations

Inference

Penalization ONEM

Evaluation

Conclusion

Group-specific risk of event

- ightharpoonup Fetures Ψ are extracted from Y by the Python library tsfresh
- ► TODO: Add descriptions

Introduction

Overview

Use case:

Model

Submodels

Notations

Inference

Penalization QNEM

Lvaldation

Conclusion

 Graphical representation of a joint model of a time-to-event submodel and K-multivariate longitudinal outcomes submodel

ntroduction

Overviev

Framework

/lodel

Submodels Notations

Likelihood

Penalization

Evaluation

Conclusion

$$\mathcal{D}_{n} = \left\{ (x_{1}, y_{1}^{1}, \dots, y_{1}^{L}, t_{1}, \delta_{1}, \Psi_{1}), \dots, (x_{n}, y_{n}^{1}, \dots, y_{n}^{L}, t_{n}, \delta_{n}, \Psi_{n}) \right\}$$
 with $y_{i}^{l} = (y_{i1}^{l}, \dots, y_{in_{i}^{l}}^{l})^{\top} \in \mathbb{R}^{n_{i}^{l}}$ and $y_{ij}^{l} = Y_{i}^{l}(t_{ij}^{l})$

Introduction

Overview .

Use cases

Model

Notations

Likelihoo

nference

QNEM

Conclusion

Conclusion

- $\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1, \Psi_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n, \Psi_n) \right\}$ with $y_i^l = (y_{i1}^l, \dots, y_{in_i^l}^l)^\top \in \mathbb{R}^{n_i^l}$ and $y_{ij}^l = Y_i^l(t_{ij}^l)$
- $y_i = (y_i^{1^\top} \cdots y_i^{L^\top})^\top \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^L n_i^l$

Introduction

Overview Use case:

Use cases Framewor

Submodels

Notations

lu.fauau aa

Penalization

Evaluation

Conclusion

$$\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1, \Psi_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n, \Psi_n) \right\}$$
 with $y_i^l = (y_{i1}^l, \dots, y_{in_i^l}^l)^\top \in \mathbb{R}^{n_i^l}$ and $y_{ij}^l = Y_i^l(t_{ij}^l)$

$$y_i = (y_i^{1^\top} \cdots y_i^{L^\top})^\top \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^L n_i^l$$

$$lacksquare$$
 $b_i = (b_i^{1^\top} \cdots b_i^{L^\top})^\top \in \mathbb{R}^r$ with $r = \sum_{l=1}^L r_l$

Introduction

Overview Use cases

Use cases

Submodels

Notations

Likelihood

Inference

QNEM

Conclusion

- $\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1, \Psi_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n, \Psi_n) \right\}$ with $y_i^l = (y_{i1}^l, \dots, y_{in!}^l)^\top \in \mathbb{R}^{n_i^l}$ and $y_{ij}^l = Y_i^l(t_{ij}^l)$
- $y_i = (y_i^{1\top} \cdots y_i^{L\top})^{\top} \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^{L} n_i^l$
- $lackbox{b}_i = (b_i^{1^\top} \cdots b_i^{L^\top})^\top \in \mathbb{R}^r \text{ with } r = \sum_{l=1}^L r_l$
- Design matrices

$$U_i = \begin{bmatrix} U_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & U_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times q} \text{ and } V_i = \begin{bmatrix} V_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & V_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times r}$$

with $q = \sum_{l=1}^{L} q_l$ and where for all l = 1, ..., L, one writes

$$\left\{ \begin{array}{ll} U_{il} &= \left(u_i^l(t_{i1}^l)^\top \cdots u_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times q_l}, \\ V_{il} &= \left(v_i^l(t_{i1}^l)^\top \cdots v_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times r_l}. \end{array} \right.$$

Introduction

Use cases

Model

Notations

nference Penalization

Evaluation

Conclusion

- $\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1, \Psi_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n, \Psi_n) \right\}$ with $y_i^l = (y_{i1}^l, \dots, y_{in!}^l)^\top \in \mathbb{R}^{n_i^l}$ and $y_{ij}^l = Y_i^l(t_{ij}^l)$
- $y_i = (y_i^{1\top} \cdots y_i^{L\top})^{\top} \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^{L} n_i^l$
- $lackbox{b}_i = (b_i^{1^\top} \cdots b_i^{L^\top})^\top \in \mathbb{R}^r \text{ with } r = \sum_{l=1}^L r_l$
- Design matrices

$$U_i = \begin{bmatrix} U_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & U_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times q} \text{ and } V_i = \begin{bmatrix} V_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & V_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times r}$$

with $q = \sum_{l=1}^{L} q_l$ and where for all l = 1, ..., L, one writes

$$\left\{ \begin{array}{ll} U_{il} &= \left(u_i^l(t_{i1}^l)^\top \cdots u_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times q_l}, \\ V_{il} &= \left(v_i^l(t_{i1}^l)^\top \cdots v_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times r_l}. \end{array} \right.$$

$$\beta_k = (\beta_k^{1^\top} \cdots \beta_k^{L^\top})^\top \in \mathbb{R}^q$$

Introduction

Use cases

Submodels

Notations

nference Penalization

Evaluation

Conclusion

- $\mathcal{D}_n = \left\{ (x_1, y_1^1, \dots, y_1^L, t_1, \delta_1, \Psi_1), \dots, (x_n, y_n^1, \dots, y_n^L, t_n, \delta_n, \Psi_n) \right\}$ with $y_i^l = (y_{i1}^l, \dots, y_{inl}^l)^\top \in \mathbb{R}^{n_i^l}$ and $y_{ij}^l = Y_i^l(t_{ij}^l)$
- $y_i = (y_i^{1\top} \cdots y_i^{L\top})^{\top} \in \mathbb{R}^{n_i} \text{ with } n_i = \sum_{l=1}^{L} n_i^l$
- $lackbox{b}_i = (b_i^{1^\top} \cdots b_i^{L^\top})^\top \in \mathbb{R}^r \text{ with } r = \sum_{l=1}^L r_l$
- Design matrices

$$U_i = \begin{bmatrix} U_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & U_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times q} \text{ and } V_i = \begin{bmatrix} V_{i1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & V_{iL} \end{bmatrix} \in \mathbb{R}^{n_i \times r}$$

with $q = \sum_{l=1}^{L} q_l$ and where for all l = 1, ..., L, one writes

$$\left\{ \begin{array}{ll} U_{il} &= \left(u_i^l(t_{i1}^l)^\top \cdots u_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times q_l}, \\ V_{il} &= \left(v_i^l(t_{i1}^l)^\top \cdots v_i^l(t_{in_i^l}^l)^\top\right)^\top \in \mathbb{R}^{n_i^l \times r_l}. \end{array} \right.$$

- $M_{ik} = U_i \beta_k + V_i b_i \in \mathbb{R}^{n_i}$

Introduction

Use cases

Model

Notations

Inference

QNEM

Evaluation

Conclusion

$$\blacktriangleright \ \theta = \left(\xi_0^\top \cdots \xi_{K-1}^\top, \beta_0^\top \cdots \beta_{K-1}^\top, \phi^\top, \mathsf{vech}(D), \lambda_0^\top, \gamma_0^\top \cdots \gamma_{K-1}^\top\right) \in \mathbb{R}^\vartheta$$

Introduction

Overvie

Eramow

Model

Submode

Likelihood

Inference

enalization

Evaluation

Conclusion

$$\blacktriangleright \ \theta = \left(\xi_0^\top \cdots \xi_{K-1}^\top, \beta_0^\top \cdots \beta_{K-1}^\top, \phi^\top, \mathsf{vech}(D), \lambda_0^\top, \gamma_0^\top \cdots \gamma_{K-1}^\top\right) \in \mathbb{R}^\vartheta$$

$$f(y_i|b_i, G_i = k) = \exp\left\{(y_i \odot \Phi_i)^\top M_{ik} - c_\phi(M_{ik}) + d_\phi(y_i)\right\} \text{ with } \Phi_i = (\phi_1^{-1} \mathbf{1}_{n_i^1}^\top \cdots \phi_L^{-1} \mathbf{1}_{n_i^L}^\top)^\top \in \mathbb{R}^{n_i}$$

Introduction

Use cases

Use case:

Model

Notations

Likelihood

Inference

enalization

_valuation

Conclusion

- $\bullet = \left(\xi_0^\top \cdots \xi_{K-1}^\top, \beta_0^\top \cdots \beta_{K-1}^\top, \phi^\top, \text{vech}(D), \lambda_0^\top, \gamma_0^\top \cdots \gamma_{K-1}^\top\right) \in \mathbb{R}^{\vartheta}$
- $f(y_i|b_i,G_i=k) = \exp\left\{ (y_i \odot \Phi_i)^\top M_{ik} c_\phi(M_{ik}) + d_\phi(y_i) \right\} \text{ with }$ $\Phi_i = (\phi_1^{-1} \mathbf{1}_{n_i^1}^\top \cdots \phi_l^{-1} \mathbf{1}_{n_l^L}^\top)^\top \in \mathbb{R}^{n_i}$
- Survival part:

$$f(t_i, \delta_i | G_i = k, \Psi_i; \theta) = \left[\lambda(t_i | G_i = k, \Psi_i)\right]^{\delta_i} \times \exp\left\{-\int_0^{t_i} \lambda(s | G_i = k, \Psi_i) ds\right\}$$

Likelihood

$$\bullet = \left(\xi_0^\top \cdots \xi_{K-1}^\top, \beta_0^\top \cdots \beta_{K-1}^\top, \phi^\top, \text{vech}(D), \lambda_0^\top, \gamma_0^\top \cdots \gamma_{K-1}^\top\right) \in \mathbb{R}^{\vartheta}$$

$$f(y_i|b_i, G_i = k) = \exp\left\{ (y_i \odot \Phi_i)^\top M_{ik} - c_\phi(M_{ik}) + d_\phi(y_i) \right\} \text{ with } \Phi_i = (\phi_1^{-1} \mathbf{1}_{n_i^1}^\top \cdots \phi_L^{-1} \mathbf{1}_{n_i^L}^\top)^\top \in \mathbb{R}^{n_i}$$

Survival part:

$$f(t_i, \delta_i | G_i = k, \Psi_i; \theta) = \left[\lambda(t_i | G_i = k, \Psi_i) \right]^{\delta_i}$$

$$\times \exp \left\{ - \int_0^{t_i} \lambda(s | G_i = k, \Psi_i) ds \right\}$$

Then, the likelihood writes

$$\ell_n(\theta) = n^{-1} \sum_{i=1}^n \log \sum_{k=0}^{K-1} \int_{\mathbb{R}^r} \pi_{\xi_k}(x_i) f(t_i, \delta_i | b_i, G_i = k, \Psi_i; \theta)$$

$$\times f(y_i | b_i, G_i = k, \Psi_i; \theta) f(b_i; \theta) db_i$$

$$= n^{-1} \sum_{i=1}^n \log \sum_{k=0}^{K-1} \pi_{\xi_k}(x_i) f(t_i, \delta_i | G_i = k, \Psi_i; \theta) f(y_i | G_i = k; \theta) db_i$$

Introduction

Use cases

odel

Notations Likelihood

nference Penalization

Conclusion

III. Inference

Introduction

Overvie

Framewo

Model

Notation

Likelihood

Inference

Penalizatio

Evaluation

Conclusion

Penalization

Penalized objective

$$\ell_n^{\text{pen}}(\theta) = -\ell_n(\theta) + \sum_{k=0}^{K-1} \zeta_{1,k} \|\xi_k\|_{\text{en},\eta} + \zeta_{2,k} \|\gamma_k\|_{\text{sg} I_1,\tilde{\eta}}$$

with the elasticnet penalty

$$\|z\|_{\mathsf{en},\eta} = (1-\eta)\|z\|_1 + \frac{\eta}{2}\|z\|_2^2$$

and the sparse group lasso penalty

$$||z||_{\operatorname{sg} I_1, \tilde{\eta}} = (1 - \tilde{\eta})||z||_1 + \tilde{\eta} \sum_{l=1}^{L} ||z^l||_2$$

Introductio

Overviev Use case

1odel

Notations

Inference

Penalization QNEM

Evaluation

Conclusion

Penalization

Penalized objective

$$\ell_n^{\text{pen}}(\theta) = -\ell_n(\theta) + \sum_{k=0}^{K-1} \zeta_{1,k} \|\xi_k\|_{\text{en},\eta} + \zeta_{2,k} \|\gamma_k\|_{\text{sg} I_1,\tilde{\eta}}$$

with the elasticnet penalty

$$||z||_{\mathsf{en},\eta} = (1-\eta)||z||_1 + \frac{\eta}{2}||z||_2^2$$

and the sparse group lasso penalty

$$||z||_{\operatorname{sg} I_1, \tilde{\eta}} = (1 - \tilde{\eta})||z||_1 + \tilde{\eta} \sum_{l=1}^{L} ||z^l||_2$$

Resulting optimization problem

$$\hat{ heta} \in \operatorname{argmin}_{ heta \in \mathbb{R}^{artheta}} \ell^{\mathsf{pen}}_{n}(heta)$$

Introductio

Overviev Use case

1odel

Notations

Inference

Penalization QNEM

Evaluation

Conclusion

QNEM algorithm (1/2)

$$\blacktriangleright \ \ell_n^{\text{comp}}(\theta) = \ell_n^{\text{comp}}(\theta; \mathcal{D}_n, \boldsymbol{b}, \boldsymbol{G})$$

E-step

Introduction

Overvie

Use case:

Model

Notation

Inference

Penalization QNEM

Evaluation

Conclusion

QNEM algorithm (1/2)

$$\blacktriangleright \ \ell_n^{\text{comp}}(\theta) = \ell_n^{\text{comp}}(\theta; \mathcal{D}_n, \boldsymbol{b}, \boldsymbol{G})$$

E-step

Introduction

Overview

Use case

Model

Notations

Likelihoo

nterence

Penalization QNEM

Evaluation

Conclusion

QNEM algorithm (1/2)

 $\blacktriangleright \ \ell_n^{\mathsf{comp}}(\theta) = \ell_n^{\mathsf{comp}}(\theta; \mathcal{D}_n, \boldsymbol{b}, \boldsymbol{G})$

E-step

- ▶ Requires to compute expectations of the form

$$\mathbb{E}_{\theta^{(w)}}[g(b_i,G_i)|t_i,\delta_i,y_i] = \sum_{k=0}^{K-1} \pi_{ik}^{\theta^{(w)}} \int_{\mathbb{R}^r} g(b_i,G_i) f(b_i|t_i,\delta_i,y_i;\theta^{(w)}) \mathrm{d}b_i$$

for different functions g, where we denote

$$\pi_{ik}^{\theta^{(w)}} = \mathbb{P}_{\theta^{(w)}}[G_i = k | t_i, \delta_i, y_i]$$

Introduction

Overview

Use cases Framewor

Model

Notations

Likelihood

Penalization
ONEM

Evaluation

Conclusion

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \operatorname{argmin}_{\boldsymbol{\theta}} \, \mathcal{Q}_n(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\operatorname{en}, \eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\operatorname{sg}l_1, \tilde{\eta}}$$

Introduction

Overviev

Casi

Model

viouei

Notations

nterence

Penalization QNEM

Evaluation

Conclusion

Quasi-Newton M-step

- $\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \operatorname{argmin}_{\boldsymbol{\theta}} \, \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\operatorname{en}, \eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\operatorname{sg} l_1, \tilde{\eta}}$

Introduction

Overviev

Use case

Model

viouci

Notations

nference

Penalization QNEM

Evaluation

Conclusion

Quasi-Newton M-step

- $\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \mathsf{argmin}_{\boldsymbol{\theta}} \; \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\mathsf{en}, \, \boldsymbol{\eta}} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\mathsf{sgl}_1, \, \tilde{\boldsymbol{\eta}}}$
- $D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta^{(w)}}[b_i b_i^{\top} | t_i, \delta_i, y_i]$
- $\begin{array}{l} \blacktriangleright & R_{n,k}^{(w)}(\beta_k) = \\ & -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik} | t_i, \delta_i, y_i] \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik}) | t_i, \delta_i, y_i] \right] \end{array}$

Introduction

Overview

Use case:

Model

Submodels

Notations

nference

QNEM

. . .

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \mathsf{argmin}_{\boldsymbol{\theta}} \; \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\mathsf{en},\eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\mathsf{sgl}_1,\tilde{\eta}}$$

$$D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta^{(w)}}[b_i b_i^{\top} | t_i, \delta_i, y_i]$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik}|t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik})|t_i, \delta_i, y_i] \right]$$

 $\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} \, R_{n,k}^{(w)}(\beta_k)$

Introduction

Overview

Use case

Model

Notations

Likelihood

Penalization ONFM

.....

c . .

Deferences

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \mathsf{argmin}_{\boldsymbol{\theta}} \; \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\mathsf{en},\eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\mathsf{sgl}_1,\tilde{\eta}}$$

$$D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta^{(w)}}[b_i b_i^{\top} | t_i, \delta_i, y_i]$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik} | t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik}) | t_i, \delta_i, y_i] \right]$$

$$\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} R_{n,k}^{(w)}(\beta_k)$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

ntroduction

Overview

Use case

Model

Notations

Likelihood

Penalization

QNEM

Conclusion

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \mathsf{argmin}_{\boldsymbol{\theta}} \; \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\mathsf{en},\eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\mathsf{sgl}_1,\tilde{\eta}}$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik}|t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik})|t_i, \delta_i, y_i] \right]$$

$$\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} \, R_{n,k}^{(w)}(\beta_k)$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

Introduction

Overview

Use case

Model

Notations

Likelihood

Penalization ONFM

Evaluation

Conclusion

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \operatorname{argmin}_{\boldsymbol{\theta}} \, \mathcal{Q}_n(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\operatorname{en}, \eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\operatorname{sg} l_1, \tilde{\eta}}$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik} | t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik}) | t_i, \delta_i, y_i] \right]$$

$$\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} \, R_{n,k}^{(w)}(\beta_k)$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

▶ L-BFGS-B to solve the problem

Introduction

Overviev

Use case:

Model

Submodels

Likelihood

Penalization

ONFM

Evaluation

Conclusion

Quasi-Newton M-step

$$\qquad \qquad \boldsymbol{\theta}^{(w+1)} \in \mathsf{argmin}_{\boldsymbol{\theta}} \; \mathcal{Q}_{\boldsymbol{n}}(\boldsymbol{\theta}, \boldsymbol{\theta}^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\boldsymbol{\xi}_k\|_{\mathsf{en},\eta} + \zeta_{2,k} \|\boldsymbol{\gamma}_k\|_{\mathsf{sgl}_1,\tilde{\eta}}$$

$$D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta^{(w)}}[b_i b_i^{\top} | t_i, \delta_i, y_i]$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik}|t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik})|t_i, \delta_i, y_i] \right]$$

$$\qquad \qquad \beta_k^{(w+1)} \in \operatorname{argmin}_{\beta_k \in \mathbb{R}^q} \, R_{n,k}^{(w)}(\beta_k)$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

- ▶ L-BFGS-B to solve the problem
- Proximal gradient method to estimate $\gamma_k^{(w+1)}$

Introduction

Overview

Use case

Model

Notations

Inference

QNEM

Conclusion

Quasi-Newton M-step

$$\theta^{(w+1)} \in \operatorname{argmin}_{\theta} \mathcal{Q}_n(\theta, \theta^{(w)}) + \sum\nolimits_{k=0}^{K-1} \zeta_{1,k} \|\xi_k\|_{\operatorname{en}, \eta} + \zeta_{2,k} \|\gamma_k\|_{\operatorname{sg} l_1, \tilde{\eta}}$$

$$D^{(w+1)} = n^{-1} \sum_{i=1}^{n} \hat{\mathbb{E}}_{\theta^{(w)}}[b_i b_i^{\top} | t_i, \delta_i, y_i]$$

$$P_{n,k}^{(w)}(\beta_k) = \\ -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \left[(y_i \odot \Phi_i^{(w)})^\top \hat{\mathbb{E}}_{\theta^{(w)}}[M_{ik}|t_i, \delta_i, y_i] - \hat{\mathbb{E}}_{\theta^{(w)}}[c_{\phi^{(w)}}(M_{ik})|t_i, \delta_i, y_i] \right]$$

$$P_{n,k}^{(w)}(\xi_k) = -n^{-1} \sum_{i=1}^n \hat{\pi}_{ik}^{\theta^{(w)}} \log \pi_{\xi_k}(x_i)$$

- ▶ L-BFGS-B to solve the problem
- Proximal gradient method to estimate $\gamma_k^{(w+1)}$
- Predictive marker $\hat{\mathcal{R}}_{ik} = \frac{\pi_{\hat{\xi}_k}(x_i)\hat{f}(t_i^{max},y_i|G_i=k,\Psi_i;\hat{\theta})}{\sum_{k=0}^{K-1}\pi_{\hat{\xi}_k}(x_i)\hat{f}(t_i^{max},y_i|G_i=k,\Psi_i;\hat{\theta})}$, which is an estimate of $\mathbb{P}_{\theta}[G_i=k|T_i^{\star}>t_i^{max},y_i]$

Introduction

Overviev

Use case:

Vlodel

Notations

Penalization
ONEM

Evaluation

Conclusion

V. Evaluation

Introduction

Overview

Framewo

Model

Submode

Notation

Inference

Penalization

Evaluation

Conclusion

Experiments

Introduction

Overview Use cases

Submodels

Notations Likelihood

nference

enalization

Evaluation

Conclusion

VI. Conclusion

Introduction

Overview

Framewo

Model

Submode

Likelihoo

Inference

Penalization ONFM

Evaluation

Conclusion

Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting

ntroduction

Use case:

Model

Notation

Inference

QNEM

Evaluation

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting
- New efficient estimation algorithm (QNEM) has been derived

ntroductio

Use case:

iviodei

Notations Likelihood

Populization

QNEM

Evaluation

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting
- New efficient estimation algorithm (QNEM) has been derived
- Automatically determines significant prognostic longitudinal features

ntroductio

Use cases

iviodei

Notations Likelihood

Populization

QNEM

Evaluation

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting
- New efficient estimation algorithm (QNEM) has been derived
- Automatically determines significant prognostic longitudinal features

Python 3 package

Available at https://github.com/Califrais/lights

ntroductio

Use case:

Model

Notations

nterence

QNEM

Evaluation

Conclusion

- Prognostic method called lights introduced to deal with the problem of joint modeling of longitudinal data and censored durations, where a large number of longitudinal features are available
- Penalization of the likelihood in order to perform feature selection and to prevent overfitting
- New efficient estimation algorithm (QNEM) has been derived
- Automatically determines significant prognostic longitudinal features

Python 3 package

- Available at https://github.com/Califrais/lights
- Applications of the model available soon on an arXiv paper.

ntroductio

Use cases

iviodei

Notations

nterence

QNEM

Lvaldation

Conclusion

Thank you!

Introduction

Overview

Framewo

Model

Submodel Notations

Likelihoo

Interence

Penalization

Evaluation

Conclusion

References

Introduction

Overv

Use cas

Mode

Submod

Notation

Inference

Penalizatio ONEM

Evaluation

Conclusion