

混沌压缩感知算法的设计与实现

网络空间安全学院 赵秋涵 Allen_zqh@bupt.edu.cn

- 压缩感知与混沌系统
- 混沌压缩感知
- 结语

01

压缩感知与混沌系统

简介与仿真

压缩比	30%	50%	80%
高 斯 随 机			1
矩阵	Say of	AF S	1 343
的重			
构效			
PSNR	22. 8686	27. 4488	31. 5374

• 初值敏感性

• 分形性

• 随机性与有界性

• 遍历性

湿池压缩感知观测矩阵的构建

2-1 混沌压缩感知通信模型

传统CS模型中测量矩阵的缺陷:

- 测量矩阵不够可控和稳定 作"伪随机"和有界性
- 信道负载大
- 安全性不足

- 信道无需传输观测矩阵
- 抵抗惟密文攻击

2-1 混沌压缩感知通信模型

2-2 观测矩阵的构建

一维混沌系统Logistic为例: $x_{n+1} = ux_n(1-x_n), u = 4$

生成混沌序列,并由 $v_{k+1} = 1 - 2x_{n+kd}$,d = 15采样,得到生成序列用于构建观测矩阵;其中,设n = 0作简化,d为采样步长,后续将对其进行讨论。

矩阵的构建方法

$$\Phi = \sqrt{\frac{2}{M}} \begin{pmatrix} v_0 & \dots & \dots & v_{M(N-1)} \\ v_1 & \dots & \dots & v_{M(N-1)+1} \\ \dots & \dots & \dots & \dots \\ \dots & \dots & \dots & \dots \\ v_{M-1} & \dots & \dots & v_{MN-1} \end{pmatrix}_{M \times N}$$

仿真效果 隔的讨论

仿真效果

采样点数(混沌系统迭代次数)为 $M\times N\times d$ 。采样比为80%情况下,若采样间隔为 10^2 级别,则混沌系统迭代次数需达到 $80\%\times 256\times 256\times 100=5242880$ 。

仿真效果 福的讨论

η d	5	15
30%	23.6244	24.3024
50%	27.2398	27.5780
80%	31.8654	32.2302

仍具效果 4-3 小川明隔

仿真效果 法的优化

一维混沌系统Logistic为例: $x_{n+1} = ux_n(1-x_n), u = 4$

生成混沌序列后经过采样间隔d=15得到采样序列,做符号映射得到生成序列 a_k :

$$a_k = \left\{ \begin{array}{ll} 1 & v_k \ge 0 \\ 0 & v_k < 0 \end{array} \right.$$

矩阵的构建方法

$$\Phi = \begin{pmatrix} a_N & a_{N-1} & \dots & \dots & a_2 & a_1 \\ a_1 & a_N & a_{N-1} & \dots & \dots & a_2 \\ \dots & \dots & \dots & \dots & \dots \\ a_{M-1} & a_{M-2} & \dots & a_N & \dots & a_M \end{pmatrix}_{M \times N}$$

仿真效果 法的优化

一维混沌系统Logistic为例: x_{n-1}

生成混沌序列后经过采样间隔d

$$a_k = \left\{ \begin{array}{ll} 1 & v_k \ge 0 \\ 0 & v_k < 0 \end{array} \right.$$

矩阵的构建方法

	采样比	30%	50%	80%
n⊣	高随矩的构果斯机阵重效			
, _	PSNR	22. 8686	27. 4488	31. 5374
_	一维 Logis -tic 混沌 系统			
	PSNR	24. 3024	27.5780	32. 2302
-1	改后一 Logis tic混系			
	PSNR	24. 4117	27. 9926	33. 5710

惟密文攻击

在攻击者已知系统控制参数情况下:

二维ル形统 $U(10^{-1})$

 $O(10^{-1})$

3 结语工作总结和亮点

3-1工作总结

通过理论和仿真相结合的方法, 讨论压缩感知和混沌系统相关 性质。

从理论角度对每种混沌序列构 建观测矩阵的方法进行RIP性质 证明,并完成仿真与分析。

使用统计学方法确定低计算复 杂度下的采样步长,并仿真对 比重构效果。

提出混沌压缩通信模型,并对 其优点和安全性进行详细分析 和仿真。

3-2 亮点

感谢聆听!

混沌压缩感知算法的设计与实现

网络空间安全学院 赵秋涵 Allen_zqh@bupt.edu.cn