NATIONAL TECHNICAL UNIVERSITY OF ATHENS

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

Dr Constantinos Valagiannopoulos, Assistant Professor

Heroon Polytechniou 9, Athens GR-15773, Greece, Office: 2.1.15, Email: valagiannopoulos@ece.ntua.gr

ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

Αθήνα, 16 Ιουνίου 2025

AK25

ΚΑΝΟΝΙΚΗ ΕΞΕΤΑΣΗ ΣΤΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΑ ΠΕΔΙΑ Α (Ε-Λ)

<u>ΘΕΜΑ 1 [25%]</u>

Διαθέτετε υλικό με σταθερές απώλειες, του οποίου η σχετική μιγαδική επιτρεπτότητα $\varepsilon(\omega)$ και η σχετική μαγνητική επιδεκτικότητα $\mu(\omega)$ δίνονται ως:

$$\varepsilon(\omega) = f(\omega) - i$$

$$\mu(\omega) = g(\omega),$$

όπου $f(\omega)$, $g(\omega)$ πραγματικές συναρτήσεις της συχνότητας.

- (A) Να βρείτε τη μορφή των συναρτήσεων $f(\omega)$, $g(\omega)$ ώστε το μέσο να υποστηρίζει μετάδοση χωρίς παραμόρφωση και το μήκος κύματος που αναπτύσσεται μέσα του να είναι σε κάθε συχνότητα ίσο με αυτό στον κενό χώρο. [14%]
- (B) Να σχεδιαστούν ποιοτικά οι συναρτήσεις $f(\omega)$, $g(\omega)$, στο ίδιο σύστημα συντεταγμένων. [5%]
- (Γ) Για τις διάφορες συχνότητες λειτουργίας $0 < \omega < +\infty$ να χαρακτηρίσετε τα κύματα που αναπτύσσονται στο υλικό ως: (i) μεταδιδόμενα με θετική ή αρνητική διάθλαση και (ii) αποσβενύμενα ή όχι. [6%]

ΘΕΜΑ 2 [30%]

Γραμμικά πολωμένο κύμα κατά τον άξονα x, ταξιδεύει στο κενό κατά τον άξονα +z, έχει μήκος κύματος λ και προσπίπτει κάθετα σε υλικό σχετικής μιγαδικής επιτρεπτότητας ε που καταλαμβάνει τη λωρίδα 0 < z < h. Στην περιοχή z > h υπάρχει αδιαπέραστος τέλεια αγώγιμος (PEC) τοίχος.

- (A) Να υπολογιστεί ο συντελεστής ανάκλασης στην περιοχή z < 0. [10%]
- (B) Αν $h \ll \lambda$, να βρείτε προσεγγιστική έκφραση για το συντελεστή ανάκλασης που να περιέχει τη μιγαδική επιτρεπτότητα ε . [8%]
- (Γ) Χρησιμοποιώντας την παραπάνω προσεγγιστική έκφραση, να βρεθεί η μιγαδική επιτρεπτότητα ε που εξασφαλίζει μηδενικές ανακλάσεις. [6%]
- (Δ) Να αναπαρασταθεί το πραγματικό και φανταστικό μέρος της μιγαδικής επιτρεπτότητας ε που εξασφαλίζει μηδενικές ανακλάσεις, ως συνάρτηση του h/λ στο ίδιο σύστημα συντεταγμένων. [6%]

ΘΕΜΑ 3 [45%]

Ελεύθερο επιφανειακό ρεύμα με μετασχηματισμό Fourier $\mathbf{K}=-\mathbf{\hat{x}}K(\omega)e^{-\mathrm{i}k_0x\sin\theta}$ που ρέει κατά την κατεύθυνση x, βρίσκεται μεταξύ ημιάπειρου κενού χώρου (1) και ημιάπειρου κενού χώρου (2), όπως στο $\mathbf{\Sigma}\mathbf{\chi}$ ήμα \mathbf{I} . Με το σύμβολο $k_0=\omega\sqrt{\varepsilon_0\mu_0}$ εννοούμε τον κυματικό αριθμό στο κενό.

- (Α) Να αιτιολογήσετε γιατί το μαγνητικό πεδίο στους χώρους (1) και (2) έχει μόνο y συνιστώσα. [4%]
- (B) Να υπολογιστεί ο μετασχηματισμός Fourier του μαγνητικού πεδίου στους χώρους (1) και (2). [8%]
- (Γ) Να σχεδιαστούν οι κατευθύνσεις μετάδοσης των κυμάτων στους χώρους (1) και (2). [4%]

Γεμίζουμε την περιοχή z>L (χώρος (3)) με υλικό σχετικής επιτρεπτότητας ε χωρίς απώλειες ($\mathrm{Im}[\varepsilon]=0$), όπως στο Σχήμα II.

- (Δ) Αν απαιτήσουμε μηδενικές ανακλάσεις στην περιοχή 0 < z < L λόγω της παρουσίας του χώρου (3), να αναπαρασταθεί η αναγκαία επιτρεπτότητα ε ως συνάρτηση της γωνίας $0 < \theta < \pi/2$. [8%]
- (E) Αν $\mathbf{K} = -\hat{\mathbf{x}} \left[\kappa_1 \delta(\omega \omega_1) + \kappa_2 \delta(\omega \omega_2) \exp\left(-\mathrm{i} k_0 x \frac{2}{\sqrt{5}}\right) \right]$, να προταθεί σχέση διασποράς $\varepsilon = \varepsilon(\omega)$ με $\varepsilon(\omega_2) \neq 1$, για το υλικό του χώρου (3) προκειμένου να έχουμε μηδενικές ανακλάσεις στην περιοχή 0 < z < L. [9%]
- (Z) Αν $\mathbf{K} = -\hat{\mathbf{x}}\kappa_1\delta(\omega-\omega_1)\exp\left(-\mathrm{i}k_0x\frac{\sqrt{3}}{2}\right)$, να προταθεί αιτιομρατική (causal) σχέση διασποράς $\varepsilon=\varepsilon(\omega)$ με $\varepsilon(\omega_1)\neq 1$, για το υλικό του χώρου (3) προκειμένου να έχουμε μηδενικές ανακλάσεις στην περιοχή 0< z< L. [12%]

