Búsqueda por Similitud

Profesor Heider Sanchez

El objetivo del laboratorio es aplicar la búsqueda por rango y la búsqueda de los k vecinos más cercano sobre un conjunto de vectores característicos.

Se toma como referencia la colección de imágenes de flores *Iris* (https://archive.ics.uci.edu/ml/datasets/iris), en donde cada imagen es representada por un vector característico de 4 dimensiones que recoge información del ancho y largo del sépalo y del pétalo. Además, las imágenes están agrupadas en tres categorías: *versicolor*, *setosa* y *virginica*.

Iris Versicolor

Iris Setosa

Iris Virginica

P1. Búsqueda por Rango

Implementar en cualquier lenguaje de programación el algoritmo lineal de búsqueda por rango, el cual recibe como parámetro el objeto de consulta y un **radio de cobertura**. Luego usando la distancia Euclidiana (ED) se retorna todos los elementos que son cubiertos por el radio.

```
- Aplique la para 3 de la (Q15, Q82, tres valores r1 < r2 < r3).
```

```
El objeto de
debe ser
```

```
Algorithm RangeSearch(Q, r)

1. result = []

2. for all objects C_i in the collection

3. dist = ED(Q, C_i)

4. if dist < r

5. append(result, C_i)

6. endif

7. endfor

8. return result
```

búsqueda elementos colección Q121) y para de radio (

consulta retirado de la

- colección antes de aplicar la búsqueda.

 Para saber que valores de radio sele
- Para saber que valores de radio seleccionar, debe primero realizar un análisis de la distribución de las distancias computando N veces la distancia entre dos elementos aleatorios de la colección.
- Para evaluar la efectividad del resultado se debe usar la medida de Precisión ¿Cuántos de los objetos recuperados pertenecen a la misma categoría de la consulta?:

$$PR = \frac{\&ObjetosRelevantesRecuperados}{\&ObjetosRecuperados}$$

A continuación, se proporciona el cuadro que debe ser llenado por el alumno.

PR	Q_{15}	Q_{82}	Q_{121}
r1=i			
r2= ċ			
r3= <mark>¿</mark>			

P2. Búsqueda KNN

Usando los mismos objetos de consulta del ejercicio anterior, implementar y aplicar el algoritmo lineal de búsqueda de los k vecinos más cercanos (KNN) variando el kentre {2, 4, 8, 16, 32}.

Algorithm KnnSearch(Q, k)			
1.	result = []		
2. 3.	for all objects C _i in the collection		
3.	$dist = \mathbf{ED}(Q, C_i)$		
4.	append(result, $\{C_i, dist\}$)		
5.	5. endfor		
4. 5. 6. 7.	orderByDist(result)		
7.	return result[1:k]		

** La mejor forma de implementación es gestionando la lista de resultado como una cola de prioridad máxima. Analice la complejidad.

PR	Q_{15}	Q_{82}	Q_{121}
k=2			
k=4			
k=8			
k = 16			
k = 32			

Preguntas:

- 1- ¿Cuál es la complejidad computacional de ambos métodos de búsqueda en función de cálculos de la ED?
- 2- ¿Cuál de los dos métodos de búsqueda usted usaría en un ambiente real de recuperación de la información? Sustente su respuesta.