E. Analysis of Pathes in Functional Graph

time limit per test: 2 seconds memory limit per test: 512 megabytes input: standard input output: standard output

You are given a *functional graph*. It is a directed graph, in which from each vertex goes exactly one arc. The vertices are numerated from 0 to n - 1.

Graph is given as the array $f_0, f_1, ..., f_{n-1}$, where f_i — the number of vertex to which goes the only arc from the vertex i. Besides you are given array with weights of the arcs $w_0, w_1, ..., w_{n-1}$, where w_i — the arc weight from i to f_i .

The graph from the first sample test.

Also you are given the integer k (the length of the path) and you need to find for each vertex two numbers s_i and m_i , where:

- s_i the sum of the weights of all arcs of the path with length equals to k which starts from the vertex i;
- m_i the minimal weight from all arcs on the path with length k which starts from the vertex i.

The length of the path is the number of arcs on this path.

Input

The first line contains two integers n, k ($1 \le n \le 10^5$, $1 \le k \le 10^{10}$). The second line contains the sequence $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le n$) and the third — the sequence $w_0, w_1, ..., w_{n-1}$ ($0 \le w_i \le 10^8$).

Output

Print n lines, the pair of integers s_i , m_i in each line.

Examples

```
input

7 3
1 2 3 4 3 2 6
6 3 1 4 2 2 3

output

10 1
8 1
7 1
10 2
8 2
7 1
9 3
```

```
input

4 4

0 1 2 3

0 1 2 3

output

0 0

4 1

8 2

12 3
```

input

5 3 1 2 3 4 0 4 1 2 14 3	
output	
7 1	
17 1	
19 2	
21 3	
8 1	