Übungen zum Ferienkurs Theoretische Mechanik

Hamilton und Kleine Schwingungen

Übungen, die mit einem Stern ★ markiert sind, werden als besonders wichtig erachtet.

3.1 Zentralpotential

Betrachten Sie ein Teilchen in einem Zentralpotential mit Lagrangefunktion

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\phi}^2) - V(r).$$

Finden Sie die zu r und ϕ gehörigen kanonischen Impulse p_r und p_{ϕ} und stellen Sie die Hamiltonfunktion auf. Stellen Sie die Hamiltonschen Gleichungen auf und zeigen Sie, dass eine Lösung durch r(t) = R, $\phi(t) = \omega t$ mit geeignetem R, ω gegeben ist. Wie lautet die Beziehung zwischen R, ω und V'(R)?

3.2 Kraftstoss auf Oszillator

Ein gedämpfter Oszillator ruht in seiner Gleichgewichtslage. Dann bekommt er einen Kraftstoss. Die Bewegungsgleichung dieses Oszillators ist folgende:

$$f(t)\ddot{x} + 2\lambda\dot{x} + \omega_0^2 x \tag{1}$$

wobei $\lambda < \omega_0$.Der Kraftstoss hat folgende Form:

$$f(t) = \begin{cases} v_0/T, & \text{falls } 0 \le t \le T < \theta \\ 0, & \text{sonst} \end{cases}$$
 (2)

Bestimmen Sie die Auslenkung x(t).

3.3 Lineare Kette mit festen Randbedingungen

Drei gleichgroße Massen sind über vier gleiche Federn der Federkonstante k miteinander und mit 2 Wänden verbunden. Die Auslenkung aus der Gleichgewichtslage ist folgendermasen:

$$x_n(t) = y_n(t) - y_n^0 \tag{3}$$

Geben Sie die Lagrangefunktion an. Geben Sie des weiteren die beiden Matrizen T und V an. Bestimmen Sie außerdem die Eigenfrequenzen sowie Eigenvektoren.

3.4 Und noch einmal Doppelpendel

Auch das Doppelpendel lässt sich mit der methode Kleiner Schwingungen Lösen. Aus der gestrigen Vorlesung ist die Lagrangefunktion bereits bekannt:

$$\begin{split} L &= T - V \\ &= \frac{1}{2} m_1 \dot{\mathbf{r}}_1^2 + m_1 g y_1 + \frac{1}{2} m_2 \dot{\mathbf{r}}_2^2 + m_2 g y_2 \\ &= \frac{1}{2} m_1 l_1^2 \dot{\phi_1}^2 + \frac{1}{2} m_2 \left(l_1^2 \dot{\phi}_1^2 + l_2^2 \dot{\phi}_2^2 + 2 l_1 l_2 \cos(\phi_1 - \phi_2) \dot{\phi}_1 \dot{\phi}_2 \right) + m_1 g l_1 \cos \phi_1 + m_2 g \left(l_1 \cos \phi_1 + l_2 \cos \phi_2 \right) \\ &= \frac{1}{2} (m_1 + m_2) l_1^2 \dot{\phi_1}^2 + \frac{1}{2} m_2 \left(l_2^2 \dot{\phi}_2^2 + 2 l_1 l_2 \cos(\phi_1 - \phi_2) \dot{\phi}_1 \dot{\phi}_2 \right) + (m_1 + m_2) g l_1 \cos \phi_1 + m_2 g l_2 \cos \phi_2 \end{split}$$

Bestimmen sie die Normalmoden und die Amplituden für $l_1=l_2$ und $m_1=m_2$. Nähern sie die Auftretenden Funktionen Quadratisch, und den $cos(\phi_1-\phi_2)$ linear.

3.5 Normalkoordinaten

In der Vorlesung wurde ein System aus 3 Massepunkten und 2 Federn betrachtet. Transformieren sie die Auslenkungen $(x_1,x_2 \text{ und } x_3)$ in die Normalkoordinaten. Die Eigenvektoren waren:

$$A_1 = \begin{pmatrix} 1\\1\\1 \end{pmatrix} \tag{4}$$

$$A_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \tag{5}$$

$$A_3 = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \tag{6}$$

Hieraus folgt, dass a folgende Form hat:

$$a = a_{ik} = (\vec{A}_{1_i}, \vec{A}_{2_i}, \vec{A}_{3_i}) \tag{7}$$

wobei \vec{A}_{1_i} die i-te komponente von \vec{A}_1 ist.