decentralized systems & blockchain networks

decentralized systems: introduction

decentralized - definition

architectural

物理分布式运行,能tolerate fault

political

系统权力和控制分布,decentralized没有单点控制

logical

a simple heuristic: 切开后两部分仍能独立运行

example with Bitcoin

Bitcoin is a decentralised payment network

- Not controlled by any single company or institution
- Introduces its own digital currency unit known as a bitcoin (<u>Bitcoin</u> = the network/protocol, <u>bitcoin</u> = the currency)
- Payment transactions are communicated over a peer-topeer network
- Each **node** in the network **verifies** the validity of each transaction
- Valid transactions become part of a global, replicated, public ledger
- The network creates its own money supply according to a fixed algorithm
- · Users are pseudonymous

(pseudonymous 与anonymous相比,可被提供更多信息还原原身份)

rather than a single-party clearing house, use

blockchain: a replicated database, append-only, to store transactions

blockchain networks are replicated state machines!

"the life of a blockchain transaction"

- step 1: clients submit signed transactions
- step 2: validators validate and gossip transactions validator keeps an unordered set ("mempool") of incoming transactions collects, validates, broadcasts transactions using gossip to other peers

 step 3: a validator produces a block of transactions some validators, some transactions,
 ("miners" / "staking validators")

 step 4: validators gossip block and append to blockchain gossip, the block is broadcast to all validators
 each validator checks again if valid
 append -> local transaction log (the blockchain)

tokens, transaction fees, mining rewards

tokens pay for transaction fee, and to **reward validators** for contributing hardware resources

validators can earn additional tokens by producing valid blocks -> incentive mechanism to keep validators honest

cryptographic building blocks of a blockchain

签名ECDSA, 哈希SHA-256

hash pointers

unique identifier (to lookup with) && a digest (only append, no edit)

"tamper-evident"

consensus in blockchain networks

who can be a validator

type1: permissionless - group membership is open

type2: permissioned - group membership is closed

problem: diverging histories

if anyone can easily produce a valid block and add it directly -> quick growing *tree* of blocks

possible solution: organize a vote?
 vote randomly a single validator node to propose the next block
 but voting rights ("identity") is cheap to create, sybil attack

organize a lottery

fair - everyone can buy a ticket proportional - the more tickets bought, the higher winning chance verifiable - everyone can verify whether the winning ticket is valid "proof-of-X": 证明自己有某种稀缺资源,不同系统用的资源不同

 The integrity of the blockchain is guaranteed as long as a majority of the network, weighted by their resource ownership, is controlled by well-behaved validators

<u>"51% attack"</u>: if an attacker controls >50% of the scarce resources, they effectively control the production of new blocks

cannot fake signed transactions (steal tokens), can **censor** transactions & **approve double-spend** of their own tokens

for permissioned blockchain: can avoid sybil attacks
 no need to "lottery", can use standard CFT / BFT consensus algorithms

	Permissionless	Permissioned
Network peers	Are fully anonymous and untrusted	May or may not be anonymous. May have some level of trust based on external (business) incentives.
Consensus achieved via	Lottery-based algorithms, based on proof of owning some scarce resource (e.g. Proof-of-Work, Proof-of-Stake)	Voting-based algorithms, such as Byzantine Fault-tolerant (BFT) consensus algorithms (e.g. PBFT)
Peer membership	Open (anyone can join, no need to ask "permission" to join)	Closed (an administrator manages membership, or pre- existing members vote to update the membership list)
Energy-efficiency	Very low for Proof-of-Work High for Proof-of-Stake	High (similar to a standard replicated databases)
Transaction rate	Low (3-4 tx/sec for Bitcoin, 15-20 tx/sec for Ethereum). Generally: the larger the consensus group, the lower the TPS	High (10,000 or more TPS) (TPS = transactions per second)
Transaction finality	Slow . E.g. in Bitcoin transactions are considered "final" after 6 blocks, and each block takes ~10 minutes to produce)	Fast. Block production times on the order of a few seconds, 1 block confirmation is often sufficient.
Security (51% attacks)	Scales to large networks of <i>O</i> (1000s) nodes making it very expensive for an attacker to disrupt a majority of peers.	Deployed with O(10-100) nodes making it more feasible (bu still difficult) for an attacker to disrupt a majority of peers.