Basic Computer Organization

Muhammad Afzaal m.afzaal@nu.edu.pk

Book Chapter

- "Assembly Language for x86 processors"
- Author "Kip R. Irvine"
- 6th Edition
- Chapter 2
 - Section 2.1

Organization and Architecture

- Computer Architecture
 - Attributes of a computer that have a direct impact on the logical program execution
 - e.g. I/O mechanisms, memory addressing techniques
- Computer Organization
 - Operational units and their interconnection that realizes the architectural specifications
 - e.g. control signals, interconnection between computer and its peripherals

Basic Computer Organization (1/2)

- Computer has 3 main components
 - Processor, also called Central Processing Unit (CPU)
 - Memory and Storage Devices
 - I/O Devices
- These components communicate with each other through
 - Data Bus
 - I/O Bus
 - Address Bus
 - Control Bus

Basic Computer Organization (2/2)

Central Processing Unit (CPU)

- Generally called Processor
- Contains
 - Clock
 - Registers
 - Arithmetic Logic Unit (ALU)
 - Performs arithmetic and logic instructions
 - Control Unit (CU)
 - Generates the control signals required to execute the instructions

Clock (1/2)

- Clock cycle is basic unit of time for machine instructions
- Synchronizes Processor and Bus operations
- Clock cycle = Clock period = 1/(Clock Rate)
- Clock Rate = Clock Frequency = Cycles per sec
 - 1 Hz clock produces 1 Clock Cycle in 1 second
 - 1 KHz clock produces 1000 Clock Cycles in 1 second
 - 1 MHz clock produces 1,000,000 cycles in 1 second
 - 1 GHz clock produces 1,000,000,000 cycles in 1 second

Clock (2/2)

Clock Frequency	Clock Period (sec)	Time to execute one instruction
1 Hz	1	1 sec
1 KHz	0.001	1 ms (millisecond)
1 MHz	0.000,001	1 μs (microsecond)
1 GHz	0.000,000,001	1 ns (nanosecond)

Memory (1/2)

- Ordered sequence of bytes
 - Sequence number is called memory address
- Byte addressable memory
 - Each byte has a unique address
- Physical address space
 - Determined by the address bus width
 - Pentium has 32-bit address bus
 - Physical address space of Pentium = 2³² bytes = 4 GB
 - Itanium with 64-bit address bus can support up to 2⁶⁴ bytes of physical address space

Memory (2/2)

- Address of location to be read/written is placed on the address bus
- Data to be read/written is places on the data bus by memory/processor
- Two control signals read and write decide the reading or writing operations

Physical Address Space

 Address space is the set of addressable memory locations (bytes)

Reading from Memory

- Multiple clock cycles are required
- Memory responds much more slowly than CPU
- Reading process is carried out in this way
 - Address is placed on the address bus
 - Read Line (RL) goes low indicating that processor wants to read
 - CPU waits for memory to respond
 - Read Line (RL) goes high indicating that data has been placed on the data bus

Memory Read and Write Cycles

- In Read Cycle, the Processor
 - places address on address bus
 - asserts the memory read control signal
 - waits for memory to place data on the data bus
 - reads the data from data bus
 - drops the memory read signal
- In Write Cycle, the Processor
 - places address on the address bus
 - asserts the memory write control signal
 - places the data on the data bus
 - waits for memory to store the data
 - drops the memory write signal

Reading from Memory

Memory Hierarchy

Registers

Fastest storage elements

Cache Memory

Stores recently used instructions

Main Memory

Magnetic Disk

Stores data permanently

Magnetic Tape

Next Lecture

- IA-32 Registers
 - General Purpose Registers
 - Special-Purpose and Segment Registers
 - EFLAGS Registers