Miscalleneous

- Hiwi-Job-Angebot DFKI (siehe read.mi)
- ► Hinweis: QIS-Anleitung (siehe read.mi)
- ▶ Slides letztes Kapitel (Feedback) nachholen

Applications of Artificial Intelligence

- Winter Term 21/22 -

Chapter 04

Natural Language Processing

Prof. Dr. Adrian Ulges

RheinMain University of Applied Sciences

Outline

- 1. Fundamentals
- 2. Preprocessing and Heuristics
- Statistical Word Similarity
- 4. Syntactical Word Similarity

Recommended Read [3]

Natural Language Processing: Some Tasks¹

Part-of-Speech Tagging

Abraham Lincoln was the 16th President of the United States. He was shot by stage actor John Wilkes Booth. It was in his interest ...

Coreference Resolution

Abraham Lincoln was the 16th President of the United States. He was assassinated by stage actor John Wilkes Booth on April 14, 1865.

Named Entity Recognition

Abraham Lincoln was the 16th President of the United States He was assassinated by stage actor John Wilkes Booth on April 14, 1865.

Information Extraction

Abraham Lincoln was the 16th President of the United States. He was assassinated by stage actor John Wilkes Booth on April 14, 1865.

Question Answering

> "Who killed Abe Lincoln?"

Abraham Lincoln was the 16th President of the United States. He was assassinated by stage actor John Wilkes Booth on April 14, 1865.

Goal-oriented Dialog Understanding

USEr
> What's a good diner nearby?
> How far is this?

> "How about Italian ones?"

restaurant groceries travel plan travel plan
japanese italian french ethiopian turkish

The Natural Language Decathlon: https://github.com/salesforce/decaNLP

Natural Language Processing: Basics

Morphology

▶ analyzes the structure and parts of words (walk - ed).

Syntax (greek "order together")

How are words ordered? What is a sentence's structure?

Semantics

- What is the meaning of a word/sentence?
- Goal of many NLP techniques
 - classification of sentences / questions
 - extraction of entities / facts

Text → Semantics?

Transferring natural language into a formal description is **not entirely solved** so far.

Example: The Research Project Read The Web²

cracking new year is a monarch	1045	30-mar-2017	96.3 🦾 🕏	tuna is a type of large_predatory_fish	1046	02-apr-2017
start_search_field is a research project	1046	02-apr-2017	98.8 🗫 🕏	tampa_bay_devil_rays is headquartered in the state or province new_york	1050	19-apr-2017
adrianne_curry is a fashion model	1045	30-mar-2017	99.8 🏖 🕏	man is an animal that can develop disability	1046	02-apr-2017

7

²http://rtw.ml.cmu.edu/rtw/

Outline

- 1. Fundamentals
- 2. Preprocessing and Heuristics
- 3. Statistical Word Similarity
- 4. Syntactical Word Similarity

Text Preprocessing

Often, the first step in NLP systems is preprocessing text. Here, two possible steps are:

1. Segmentation

- Segmenting text into sentences
- Segmenting sentences intox words/terms/tokens ("house", "rock 'n roll", "#nlproc", "getStringFromObject()"?)
- ► This is often done using **regular expressions**.

2. Normalization

- reducing words to their base form (aka 'lemma').
- e.g., lemmatization, stemming, compound splitting.

Text Preprocessing (cont'd)

3. Vocabulary

- ▶ Collect all tokens from the corpus in a vocabulary $\{t_1,...,t_m\}$.
- Usually, we filter tokens that are too frequent, too infrequent, numbers, special tokens, etc.

Regular Expressions

- ... match patterns in strings, using a compact formal language.
- ▶ Symbols in []-brackets: logical OR.

[Ww]ood	Wood / wood	Woodstock is small indeed.
[0 – 9] or \d	some digit	Beverly Hills 90210.
yours mine	alternative: pipe symbol	Brace yourself.
[a-z]	Kleinbuchstaben	Woodstock is small indeed.

▶ Negation: [^X] means "not X".

[^A-Z]	anything but capital letters	Woodstock.
[^sS]	anything but s or S	Sure you can.
a^b	a^b (no negation, since not in brackets)	Sure you can.

Other Options:

colou?r	u is optional	colors and colours.
ye*ah	0 or more occurrences	yah! yeah! yeeeah!
ye+ah	1 or more occurrences	yah! yeah! yeeeah!
beg.n	any symbol except \n	begn begin began beg3n
.*	any sequence of symbols	abcdefghijklmnop
yeah\$	yeah at end of string	yeah yeah <mark>yeah</mark>

Regular Expressions in Python

Applications (e.g. in QA)

- ▶ **Segmenting**, rule-based **recognition** of dates, prices, ...
- ► Features for QA's machine learning components (found abbreviation? → maybe question of type "definition").

Rule-based Inference with RegExp: Hearst Patterns [1]


```
NP such as {NP,}* {(and/or)} NP

Football teams, such as the Eagles or the Patriots, ...

NP, especially {NP,}* {and/or} NP

I really like animals, especially birds of prey.
```

- Lexico-syntactic patterns to recognize hyponymy.
- NP>s are so-called **noun phrases**, such as birds of prey or the Eagles (more later).
- ► Typical for pattern-based approaches: high precision ②, low recall ②.
- ▶ Some Patterns in Python ³ (47 patterns total) are below.

```
1 [
2  '(<NP>\\w+ (, )?such as (<NP>\\w+ ?(, )?(and / or )?)+)',
3  '(such <NP>\\w+ (, )?as (<NP>\\w+ ?(, )? (and / or )?)+)',
4  '((<NP>\\w+ ?(, )?)+(and / or )? other <NP>\\w+)'
5 ]
```

³https://github.com/mmichelsonIF/hearst_patterns_python

Words: Reduction to Base Forms

- ▶ Words are the smallest **meaningful units** of a language.
- Words come in a baseform and multiple variants.
- Often, we normalize/canonicalize words to their base form.

Canonicalization

• from flexion form to base form

$$Hauses \rightarrow Haus$$

 $went \rightarrow go$

derivational forms to base form

```
Bücherei → Buch
```

▶ from **compounds** into components (especially for German)

```
Haustür → Haus + Tür
Osterei → Ostern + Ei
Malerei ≁ Maler + Ei
```

Words: Reduction to Base Forms

Lemmatization

- ▶ flexion form \rightarrow base form (above, e.g. housing \rightarrow house).
- A simple form of lemmatization is stemming: simply truncate a word suffix (housing → hous).

Stemming: Approaches

1. Lexical Methods

- store base form in dictionaries
- creation and maintenance of dictionary costly ©
- interesting for languages with **strong flexion** (e.g., German)

2. Rule-based Methods

- use rules to change / remove suffixes
- example: Porter Stemmer for English [3]

```
ing \rightarrow -: walking \rightarrow walk

ies \rightarrow i: ponies \rightarrow poni
```

Parts of Speech (dt. Wortarten)

The four most important "open" parts of speech.

Nouns (dt. Nomen)

- ... refer to concrete things (ship), abstract things (bandwidth), actions (belief), events (inspection), ...
- ... can be accompanied by determiners (<u>some</u> bandwidth) und possessives (<u>his</u> ship).
- special case: proper nouns (dt. Eigennamen), e.g. Colorado.

Verbs

- ... refer to activities and actions
- ... are changed through flexion: eat, eats, ate, eaten

Adjectives

... refer to properties of nouns (red ship)

Adverbs

... refer to properties of verbs (he walked slowly)

How many Parts of Speech are there in English?

45 (in the famous "Penn Treebank")

Tag	Description	Example	Tag	Description	Example
CC	coordin. conjunction	and, but, or	SYM	symbol	+,%, &
CD	cardinal number	one, two	TO	"to"	to
DT	determiner	a, the	UH	interjection	ah, oops
EX	existential 'there'	there	VB	verb base form	eat
FW	foreign word	mea culpa	VBD	verb past tense	ate
IN	preposition/sub-conj	of, in, by	VBG	verb gerund	eating
JJ	adjective	yellow	VBN	verb past participle	eaten
JJR	adj., comparative	bigger	VBP	verb non-3sg pres	eat
JJS	adj., superlative	wildest	VBZ	verb 3sg pres	eats
LS	list item marker	1, 2, One	WDT	wh-determiner	which, that
MD	modal	can, should	WP	wh-pronoun	what, who
NN	noun, sing. or mass	llama	WP\$	possessive wh-	whose
NNS	noun, plural	llamas	WRB	wh-adverb	how, where
NNP	proper noun, sing.	IBM	\$	dollar sign	\$
NNPS	proper noun, plural	Carolinas	#	pound sign	#
PDT	predeterminer	all, both	"	left quote	' or "
POS	possessive ending	's	,,	right quote	' or "
PRP	personal pronoun	I, you, he	(left parenthesis	[, (, {, <
PRP\$	possessive pronoun	your, one's)	right parenthesis],), }, >
RB	adverb	quickly, never	,	comma	,
RBR	adverb, comparative	faster		sentence-final punc	. ! ?
RBS	adverb, superlative	fastest	:	mid-sentence punc	: ;
RP	particle	up, off			

Part-of-Speech (POS) Tagging

Parts of Speech (at least in English) are (highly) ambiguous!

```
book that flight. vs. hand me this book.
book that flight. vs. I know that you stink.
```

- Most words (86%) have only one part of speech, but some frequent words have multiple POSs (that, back, set, ...).
- ► English texts contain $\approx 60\%$ ambiguous tokens.

Part-of-speech-Tagging (POS-Tagging)

- = given a text, determine each token's POS.
 - Core step for many applications: recognizing entities, parsing, key word detection ...
- ▶ 92% accuracy by simple baseline (choosing most frequent POS per word), 97% accuracy by **machine learning** (later).

POS-Tagging in Python


```
1 import nltk
  text = "We watched the sunset over the castle on the hill."
4
  tokens = nltk.word_tokenize(text)
6
7 result = nltk.pos_tag(tokens)
8
  print(result)
10
  > [('We', 'PRP'),
                            # OK (personal pronoun)
11
  ('watched', 'VBD'),
                            # OK (verb past tense)
12
   ('the', 'DT'),
                            # OK (determiner)
13
  ('sunset', 'NN'),
                      # OK (noun singular)
14
   ('over', 'IN'),
                            # OK (preposition)
15
   ('the', 'DT'),
                           # OK (determiner)
16
   ('castle', 'NN'),
                      # OK (noun singular)
17
   ('on', 'IN'),
                             # OK (preposition)
18
    ('the', 'DT'),
                           # OK (determiner)
19
     ('hill', 'NN'),
                             # OK (noun singular)
20
21
     ('.', '.')]
```

Outline

- 1. Fundamentals
- 2. Preprocessing and Heuristics
- 3. Statistical Word Similarity
- 4. Syntactical Word Similarity

Statistical Word Similarity

Q: Which **insurance** company is based in **Wiesbahden**? A: The R+V, a big **insurer**, resides in **Wiesbaden**.

- For QA (and many other applications), it is interesting to find similar words.
- Example: query expansion: (laptop → notebook).
- There are several forms of similarity (semantic, statistical, syntactic).
- Sometimes, we can identify similar words by syntactic similarity (i.e., similarity of the word form).
- In other cases, this is not enough:

```
insurance \rightarrow insurer \sqrt{\phantom{a}} laptop \rightarrow notebook \frac{1}{2}
```

Statistical Word Similarity

Statistical Word Similarities

- ... learn word similarity from a text corpus.
- Words are similar if their contexts are similar!

"You shall know a word by the company it keeps."

(J.R.Firth (1957))

Example: What other words is "tesgüino" similar to?

A bottle of **tesgüino** is on the table.

Tesgüino makes you drunk.

We make tesgüino out of corn.

Statistical Word Similarity

There are two kinds of statistical similarity

- first-order ("collocations"): w₂ is similar to w₁, if w₂ appears in w₁'s context frequently (e.g. wrote → book).
- second-order: w₂ is similar to w₁ if w₁ and w₂ tend to appear in similar contexts (e.g. vodka → whisky).
- ▶ Context usually refers to a local window of $\pm(1-8)$ words.

Computing Statistical Word Similarities

- **Given**: vocabulary of n words + text corpus.
- ▶ **Goal**: compute an $n \times n$ -matrix A (term-term matrix), such that A_{ij} is the similarity between w_i and w_j .
- ▶ Naive solution:

 $A_{ij} := \#$ occurrences of w_j in the contexts of w_i

Why is this solution bad?

	wrote	book	:	carbon	dioxide	:	. <u>s</u>	o
wrote	-	128		3	1		223	351
book		-		4	3		278	624
carbon				-	46		98	75
dioxide					-		44	52
is							-	9748
of								-

PPMI Word Similarity

Positive Pointwise Mutual Information (PPMI) ([3], Chapter 15)

Let w_i be a word, w_j be a "context word", and A the term-term matrix (see above).

We calculate

▶ The probability of w_i appearing in a random local word pair:

$$P(w_i) \coloneqq \sum_j A_{ij} / \sum_{i',j'} A_{i'j'}$$

The probability of w_j appearing as a context term:

$$P(w_j) \coloneqq \sum_i A_{ij} / \sum_{i',j'} A_{i'j'}$$

The probability that both words appear in the same pair:

$$P(w_i,w_j)\coloneqq A_{ij}/\sum_{i',j'}A_{i'j'}$$

PMI Word Similarity

▶ We know (statistics): If both words are independent, then:

$$P(w_i, w_j) \approx P(w_i) \cdot P(w_j)$$

We are interested in word pairs appearing unusually frequently, i.e.:

$$P(w_i, w_j) \gg P(w_i) \cdot P(w_j)$$

This leads to the definition of Pointwise Mutual Information (PMI):

$$PMI(w_i, w_j) \coloneqq log_2\left(\frac{P(w_i, w_j)}{P(w_i) \cdot P(w_j)}\right)$$

PMI Word Similarity

- ▶ The **higher** PMI, the more **similar** two words.
- **► Example**: The top-10 and bottom-10 pairs from Wikipedia.

word 1	word 2	count word 1	count word 2	count of co-occurrences	PMI
puerto	rico	1938	1311	1159	10.0349081703
hong	kong	2438	2694	2205	9.72831972408
los	angeles	3501	2808	2791	9.56067615065
carbon	dioxide	4265	1353	1032	9.09852946116
prize	laureate	5131	1676	1210	8.85870710982
san	francisco	5237	2477	1779	8.83305176711
nobel	prize	4098	5131	2498	8.68948811416
ice	hockey	5607	3002	1933	8.6555759741
star	trek	8264	1594	1489	8.63974676575
car	driver	5578	2749	1384	8.41470768304
it	the	283891	3293296	3347	-1.72037278119
are	of	234458	1761436	1019	-2.09254205335
this	the	199882	3293296	1211	-2.38612756961
is	of	565679	1761436	1562	-2.54614706831
and	of	1375396	1761436	2949	-2.79911817902
a	and	984442	1375396	1457	-2.92239510038
in	and	1187652	1375396	1537	-3.05660070757
to	and	1025659	1375396	1286	-3.08825363041
to	in	1025659	1187652	1066	-3.12911348956
of	and	1761436	1375396	1190	-3.70663100173

From PMI to PPMI

Since we are not interested in negative values, we clip them to zero, and obtain the **Positive Pointwise Mutual Information (PPMI)**:

$$PPMI(w_i, w_j) := max \Big(log_2 \Big(\frac{P(w_i, w_j)}{P(w_i) \cdot P(w_i)} \Big), 0 \Big)$$

	wrote	book	÷	carbon	dioxide	÷	<u>.v</u>	of
wrote	-	2.9		0.5	0		0	0.1
book		-		0.2	0.2		0	0.1
carbon				-	7.2		8.0	0
dioxide					-		0.1	0
is							-	0
of								-

PPMI Word Similarity

Remarks

- ► Challenge: very frequent words that co-occur spuriously sometimes get extreme PPMI values. Therefore, we smooth the term-term matrix A before computing PPMI by adding a constant (1 2).
- ▶ PPMI ist ein measure for **first-order**-similarity, but we can also compute second-order similarity from *A* [2].

Outline

- 1. Fundamentals
- 2. Preprocessing and Heuristics
- 3. Statistical Word Similarity
- 4. Syntactical Word Similarity

Syntactical Word Similarity: Edit Distances

Now: Syntactical Word Similarity

- ... measures how similar two strings are in terms of their characters.
- useful for typos or variations of the same word (above).
- ► Common approach: **string edit distances**.

Edit Distances

- Given two words/strings s₁, s₂ of length n₁, n₂, an edit distance corresponds to the number of operations required to transform s₁ into s₂.
- Different distances allow different operations:
 - Levenshtein distance: inserting/deleting/replacing 1 character.
 - Damerau-Levenshtein distance: also, transpose two adjacent characters.
 - **.**..

Levenshtein Distance: Examples

- ▶ D('typos', 'typohs') = 1
- ▶ D('Weisbahdn', 'Wiesbaden') = 4

Computing Levenshtein: Dynamic Programming

- Create a $(n_1 \times n_2)$ cost matrix D.
- Initialize D's first row (+column) with $0, 1, ..., n_1$ $(0, 1, ..., n_2)$.
- ▶ traverse D row-wise, and every row from left to right. Compute each cell (i, j):

$$D_{i,j} \leftarrow \min \Big(\underbrace{1 + D_{i-1,j}}_{\text{delete}}, \ \underbrace{1 + D_{i,j-1}}_{\text{insert}}, \ \underbrace{\mathbf{1}_{s_1(i) \neq s_2(j)} + D_{i-1,j-1}}_{\text{replace}}\Big)$$

▶ Finally, D_{n_1,n_2} contains the Levenshtein distance.

Levenshtein Distance: Speed

- ▶ Complexity? $\rightarrow O(n_1 \cdot n_2) \odot$
- Problem: In practice, we want to compare a query q string/word with 100,000s of other words!
- Example: query=wiesbahden, find the most similar vocabulary word to correct the typo.

Approach

Build **index structures** for fast term similarity matching:

- 1. Symspell ("reduction indexing")
- 2. Min Hashing

Symspell

- ▶ a method for fast string indexing: Symspell by Wolf Garbe⁴.
- Step 1: For each string s in the vocabulary: delete $\Delta = 1, 2, ..., K$ characters and store the resulting versions s' in a hash map.

 $^{^4} https://github.com/wolfgarbe/SymSpell~(C\#), \\ https://github.com/mammothb/symspellpy~(Python)$

Symspell

- Step 2: Given a query q, perform the same delete operations, and lookup all reduced queries q' in the hash map.
- ▶ If q' = s', we know that $D(q, s) \le \Delta(s, s') + \Delta(q, q')$.
- ▶ In the example: $D(think, tank) \le \Delta(think, tnk) + \Delta(tnk, think) = 3$ (in fact, D(think, tank) = 2).

Symspell

Remarks

- Huge efficiency gain, partiularly because replaces and inserts are avoided (think languages with huge alphabets like Chinese).
- For each candidate s' we find, we can compute the exact distance D(q,s).
- ▶ The reduced versions q' are iterated by increasing the number of deletes. Thus, we can stop once we cannot find a better version than the best match so far.

References I

[1] Marti A. Hearst.

Automatic acquisition of hyponyms from large text corpora. In Proceedings of the 14th Conference on Computational Linguistics - Volume 2, COLING '92, pages 539–545, Stroudsburg, PA, USA, 1992. Association for Computational Linguistics.

[2] A. Islam and D. Inkpen. Second order co-occurrence PMI for determining the semantic similarity of words. In Proc. LREC 2006, pages 1033–1038, 2006.

[3] Daniel Jurafsky and James H. Martin.
Speech and Language Processing: An Introduction to Natural Language Processing (3rd Edition Draft Chapters).
2017.