Aufgabe 1.

- a) Aus Funktionsplot ergibt sich: Bijektiv (für x gegen -1 nähert sich der Wert ∞ an) mit $f^{-1} = f$.
- b) Bijektiv mit $g^{-1}(x) = \frac{x+1}{3}$.
- c) Nicht injektiv, $h_1(-1) = -3 = h_1(1)$ aber surjektiv (für alle $y \in [-4, \infty)$ gibt es ein $x \in \mathbb{R}$ mit $y = x^2 4$ weil $\sqrt{y+4} \in \mathbb{R}$).
- d) Injektiv weil es gibt keine ungleichen x_1, x_2 mit $x_1^2 = x_2^2$, also auch keine mit $x_1^2 k = x_2^2 k$. Nicht surjektiv weil es kein $x \in \mathbb{R}$ (geschweige denn $x \in [0, \infty)$) gibt mit $x^2 4 = -5$ bzw. $x^2 = -1$.

Aufgabe 2.

Aufgabe 3.

a) Assoziativität, Kommutativität und Distributivität können angenommen werden. Es gibt Neutralelemente zur Addition (0, 0) und Multiplikation (1, 0). Jedes Element (x, y) hat ein additives Inverses (-x, -y) und ein multiplikatives Inverses ()

Aufgabe 4.

a) Sei $n = \deg(a)$ und $m = \deg(b)$. Dann ist die Addition

$$(a_n x^n + \dots + a_1 x + a_0) + (b_m x^m + \dots + b_1 x + b_0)$$

= $a_n x^n + \dots + (a_m + b_m) x^m + \dots + (a_1 + b_1) x + (a_0 + b_0)$

wieder in P weil

- für n > m gilt, dass lc(a + b) = lc(a) und wir wissen, dass $lc(a) \ge 0$
- für n < m gilt, dass lc(a + b) = lc(b) und wir wissen, dass lc(a) > 0
- für n=m gilt, dass lc(a+b)=lc(a)+lc(b) und wir wissen, dass $lc(a)\geq 0$ und $lc(b)\geq 0$ und somit $lc(a)+lc(b)\geq 0$.

Die Multiplikation

$$(a_n x^n + \dots + a_1 x + a_0) + (b_m x^m + \dots + b_1 x + b_0)$$

$$= \sum_{k=0}^{n} (a_k b_m x^{m+k} + \dots + a_k b_1 x^{1+k} + a_k b_0 x^k)$$

ist ebenfalls wieder in P weil in der ausgerechneten Summe der erste Term $a_n b_m x^{m+n}$ sein wird, und $a_n b_m \ge 0$ wie oben.

b) • Reflexivität. $a \leq a$ ist trivialerweise in P weil $lc(a-a=0)=0 \geq 0$.

• Antisymmetrie. Wenn $a \leq b$ (also $b-a \in P$) und $b \leq a$ (also $a-b \in P$) dann muss a=b.

$$(b_m x^m + \dots + b_1 x + b_0) - (a_n x^n + \dots + a_1 x + a_0)$$

$$= -a_n x^n + \dots + (b_m - a_m) x^m + \dots + (b_1 - a_1) x + (b_0 - a_0)$$

$$(a_n x^n + \dots + a_1 x + a_0) - (b_m x^m + \dots + b_1 x + b_0)$$

$$= a_n x^n + \dots + (a_m - b_m) x^m + \dots + (a_1 - b_1) x + (a_0 - b_0)$$

Es muss also $\deg(a) = \deg(b)$ sonst ist für eines der Polynome der erste Koeffizient sicher negativ. Aus demselben Grund muss $a_m \geq b_m$ und $b_m \geq a_m$ und somit $a_m = b_m$. Wenn aber $a_m = b_m$ dann ist $a_m - b_m = b_m - a_m = 0$. Dann werden a_{m-1} und a_{m-1} die führenden Koeffizienten, für die nun wieder dasselbe gilt. Also muss a - b = 0 bzw. a = b.

• Transitivität. Wenn $a \leq b$ und $b \leq c$ dann muss $a \leq c$.

$$(b_m x^m + \dots + b_1 x + b_0) - (a_n x^n + \dots + a_1 x + a_0)$$

$$= -a_n x^n + \dots + (b_m - a_m) x^m + \dots + (b_1 - a_1) x + (b_0 - a_0)$$

$$(c_k x^k + \dots + c_1 x + c_0) - (b_m x^m + \dots + b_1 x + b_0)$$

$$= -b_m x^m + \dots + (c_k - b_k) x^k + \dots + (c_1 - b_1) x + (c_0 - b_0)$$

Es muss $\deg(b) \ge \deg(a)$ und $\deg(c) \ge \deg(b)$ wegen der Implikationsannahme $a,b,c \in P$. Also muss auch $\deg(c) \ge \deg(a)$. Deswegen muss im Polynom c-a also der führende Koeffizient jener von c sein, $\operatorname{lc}(c-a) = c_k$. Somit $c-a \in P$ bzw. $a \le c$.

• Totalität. Es muss immer $a \leq b$ und/oder $b \leq a$ gelten. Wenn $a \leq b$ nicht gilt, dann ist lc(b-a) < 0 — also entweder deg(a) > deg(b) oder n = deg(a) = deg(b) und $a_n > b_n$. In beiden Fällen gilt klarerweise $b \leq a$.

Aufgabe 5. Angenomen ein Polynom f hat eine Nullstelle $\frac{s}{t} \in \mathbb{Q}$, dann

$$a_n x^n + \dots + a_1 x + a_0 = 0$$

$$a_n \left(\frac{s}{t}\right)^n + a_n \left(\frac{s}{t}\right)^{n-1} + \dots + a_1 \left(\frac{s}{t}\right) + a_0 = 0$$

$$a_n s^n + a_n s^{n-1} t + \dots + a_1 s t^{n-1} + a_0 t^n = 0$$

$$s \left(a_n s^{n-1} + a_n s^{n-2} t + \dots + a_1 t^{n-1}\right) = -a_0 t^n$$

Also $s \mid a_0 t^n$. Gemäß der Annahme sind s und t teilerfremd, also $s \mid a_0$. Der selbe Prozess kann auch für $t \mid a_n$ angewendet werden $(a_n s^n)$ auf rechte Seite, links t herausheben).

Aufgabe 6.

a) Die Werte von \sqrt{p} sind äquivalent zu den Nullstellen der Funktion $f(x) = x^2 - p$. Wenn p prim ist dann sind die möglichen rationalen Nullstellen von f also $\pm p$. Klarerweise sind das keine Nullstellen, also hat f keine rationalen Nullstellen wenn p prim ist, bzw. \sqrt{p} keine rationalen Werte.

b) 2 und 3 sind Primzahlen also sind $\sqrt{2}$ und $\sqrt{3}$ irrational. Die Summe zweier irrationalen Zahlen kann nicht rational sein.

Die rationalen Nullstellen von $32x^4 - 12x^3 - 55x^2 - 17x + 3$ sind alle jene $\frac{s}{t} \in \mathbb{Q}$ mit $s \mid 3$ und $t \mid 32$. Also $-\frac{3}{4}$ und $\frac{1}{8}$.

Aufgabe 7.

Aufgabe 8.

$$\frac{BC}{AB} = \frac{BH}{BC} \quad \text{und} \quad \frac{AC}{AB} = \frac{AH}{AC}$$

$$BC^2 = AB \cdot BH \quad \text{und} \quad AC^2 = AB \cdot AH$$

$$BC^2 + AC^2 = AB \cdot BH + AB \cdot AH$$

$$BC^2 + AC^2 = AB \cdot (BH + AB)$$

$$BC^2 + AC^2 = AB^2$$