

Mason Competitive Cyber

Take the "Hard" out of Hardware with Science- not really

Agenda

- ▶ whoami
- ► Information Gathering
- ► Tear down
- Debugging port
- ► Firmware / data extraction

whoami

- Security Researcher
 - ▶ @ Uffect Corp / Strange Labs
- ► Competition Officer for MasonCC
- ► Insta: @tthuc_3496; Twitter: @its_EZBB
- ▶ I'm on Slack ping me if you have any question.

Researching/Information Gathering

- As Much Information As Possible.
 - ► THE WEB
 - Google
 - ► Forums / Blogs
 - Manufacture site
- Product specification, design documents, etc.
- Acquiring Hardware:
 - Amazon 2 days shipping <3</p>
 - Ebays
 - ▶ Buy, borrow, rent, ... and don't steal !!
- AND ALSO

ME

- "Making Friends"
 - ▶ Go talk to people for once.
 - You can learn a lot.

Tearing down

- Taking it apart
 - Screws, glues, tapes
- ► GOAL:
 - ▶ To get to the juice aka the main board.
- Lots of time, screws are hidden:
 - Under labels, rubber "thing"
- Guides:
 - https://www.ifixit.com/
 - And https://www.youtube.com/

More Info Gathering

- Chips
 - What they are.
 - ▶ WiFi, RAM, CPU, ...
 - Datasheets
 - ► Search engine: Google, Baidu
 - ▶ Datasheet sites: datasheet360, datasheetcatalog.
 - Alibaba
- ► THGBMBG8D4KBAIR
 - ▶ Let's search for it.

More Info Gathering

Spe

e • MMC™ - PRODUCT LIST

Density	Item Name	Technology	JEDEC Standard	Temperature	Package
4GByte	THGBMBG5D1KBAIT	A19nm	JEDEC 5.0	-25°C to 85°C	153FBGA 11x10
	THGBMAG5A1JBAWR	19nm	JEDEC 4.5	-40°C to 85°C	153FBGA 11.5x13
8GByte	THGBMBG6D1KBAIL	A19nm	JEDEC 5.0	-25°C to 85°C	153FBGA 11.5x13
	THGBMAG6A2JBAWR	19nm	JEDEC 4.5	-40°C to 85°C	153FBGA 11.5x13
16GByte	THGBMBG7D2KBAIL	A19nm	JEDEC 5.0	-25°C to 85°C	153FBGA 11.5x13
	THGBMAG7B2JBAWM	19nm	JEDEC 4.5	-40°C to 85°C	169FBGA 12x16
32GByte	THGBMBG8D4KBAIR	A19nm	JEDEC 5.0	-25°C to 85°C	153FBGA 11.5x13
	THGBMAG8B4JBAWM	19nm	JEDEC 4.5	-40°C to 85°C	169FBGA 12x16
64GByte	THGBMBG9D8KBAIG	A19nm	JEDEC 5.0	-25°C to 85°C	153FBGA 11.5x13

*Valid Q22014

Specifications

EU RoHS	Supplier Unconfirmed 🜳		
Cell Type (1)	Managed NAND		
Chip Density (bit)	256G		
Number of Bits/Word (bit)	1/4/8		
Number of Words (1)	256G/64G/32G		
Programmability (1)	Yes		
Timing Type (1)	Synchronous		
Interface Type (1)	Serial e-MMC		
Minimum Operating Supply Voltage (V)	2.7		
Typical Operating Supply Voltage (V)	3.3		
Maximum Operating Supply Voltage (V)	3.6		
Minimum Operating Temperature (°C)	-25		
Maximum Operating Temperature (°C)	85		
Mounting (1)	Surface Mount		
Package Length (mm) 🐧	13		
Package Width (mm) 🚯	11.5		
PCB changed 1	153		
Standard Package Name	BGA		
Supplier Package (1)	FBGA		
Pin Count (1)	153		
Lead Shape (1)	Ball		

Debugging ports/interfaces

- UART interfaces.
- Baud rate aka bits per sec
 - ▶ 1200, 2400, 4800, 19200, 38400, 57600, 115200.
- ► Tools:
 - Baudrate
 - https://github.com/devttys0/baudrate/blob/master/baudrate.py
 - Miniterm.py
 - https://github.com/pyserial/pyserial/blob/master/serial/tools/miniterm.py
 - And this USB cable! __
 - Multi-Meter

WTf is UART?

- A port for communication
- Security? What security.
 - ▶ Many IoT, routers will just drop you straight to root shell. C Y B E R!
- You can do a lot with bootloader/uboot.
- PINS:
 - Power
 - Ground
 - TX Transmit
 - RX Receive

Identify PINS

- Soldering
 - ► <u>Video</u>
- TX and RX
 - ► Have bus going from PINS to chip
 - ► If it's not TX, it's RX
- Power and Ground
 - Multi-meter
 - ► Touch the ground pad and a pin
 - ▶ If *BEEP*, it's ground

Connect to it

- ► GND BLACK
- RX YELLOW
- ► TX ORANGE
- VCC IF YOU HAVE A POWER CABLE!
 - No need
- ▶ Else, VCC -RED. 3.3 V
 - Still no power?
 - External power source

ME

- https://github.com/devttys0/baudrate
- Magic command:
 - sudo ./baudrate.py -p /dev/ttyUSB0
 - replace /dev/ttyUSB0 to be the correct port
- Most UART occurs at system boot!!
- UP & DOWN arrow SUPER ADVANCED
- Step
 - Choose a rate to start
 - Turn on device
 - ▶ If text is READABLE -> that the baudrate you want.
 - If not turn off, change rate, repeat!

Interacting with UART

- Miniterm
 - https://github.com/pyserial/pyserial/tree/master/serial/tools
- Command:
 - sudo ./miniterm.py <DEVICE> <BAUDRATE>
 - DEVICE: /dev/tty____: Should know this from Baudrate brute forcing
 - ▶ BAUDRATE: We knew this from the hackery thing we did.
 - Final command:
 - sudo ./miniterm.py /dev/ttyUSB0 115200
- ▶ WE SHOULD GET A SHELL. lit
- Documentation:
 - http://pyserial.readthedocs.io/en/latest/tools.html

ME

- Control?
 - What kind of control we have
- What we can do?
- Can we have a /bin/sh shell?
- Bootloader/Uboot init modification?
- Login credentials?
- Binary exploitation?
- More info the better
- KNOWLEDGE!

Getting the firmware/filesystem

ME

- Memory chips!
 - ► How do u know? From reconnaissance.
- ► Types of memory chip:
 - EEPROM
 - ► FLASH
 - NOR
 - NAND
 - eMMC
- Interfaces:
 - ► SPI 1
 - ▶ Parallel 2
 - ► BGA 3

3.

2.

Reading SPI?!?!

- ► Tools:
 - spiflash-winbond
 - ► https://github.com/devttys0/libmpsse/tree/master/src/examples
 - binwalk
 - https://github.com/devttys0/binwalk
 - file
 - Magic USB cable
 - ► Soic clip
 - The datasheet

Connecting the cable

- Datasheet
- THE DOT
 - ▶ Pin 1
- http://www.datasheets360.com/pdf/34730753952930

Pin Arrangement

Pin Description

Pin name	Function	
С	Serial clock	
D	Serial data input	
D Q S	Serial data output	
S	Chip select	
W	Write protect	
HOLD	Hold	
Vcc	Supply voltage	
V _{SS}	Ground	

016081

BE1537

Connect the cable

- Spiflash gives you the pins and colors
 - ▶ Don't connect the power cord if you have VCC plugged in
 - ► ELSE it's gonna be REAL LIT
- Plug into your computer

Descript:	ion SPI Flas	n Pin FTDI Pin	C232HM Cable Color Code
CS	1	ADBUS3	Brown
MISO	2	ADBUS2	Green
WP	3	ADBUS4	Grey
GND	4	N/A	Black
MOSI	5	ADBUS1	Yellow
CLK	6	ADBUS0	Orange
HOLD	7	ADBUS5	Purple
Vcc	8	N/A	Red

Spiflash and pull the goods

- ./spiflash -r <filename.bin> -s <bytes>
- Read 8MBs???
- ./spiflash -r thegoodness.bin -s \$((0x800000)) -v
 - thegoodness.bin > the output file will be named this
 - -s \$((0x800000)) -> Read 8 M bytes
 - -v -> Verifying the read by reading it 2x and compare both.
 - ▶ Identical -> good!
- **NOTE : If it says "read all 0x00's"
 - ► Incorrect input, output

You want pics??

user:examples\$./spiflash-winbond -r 25Q64BVSIG.bin -s 1000 -v
FT232H Future Technology Devices International, Ltd initialized at 15000000 hertz
Reading 1000 bytes starting at address 0x0...saved to 25Q64BVSIG.bin.
Verifying...read all 0x00's.

user:examples\$./spiflash-winbond -r 25Q64BVSIG.bin -s 1000 -v FT232H Future Technology Devices International, Ltd initialized at 15000000 hertz Reading 1000 bytes starting at address 0x0...saved to 25Q64BVSIG.bin. Verifying...reads are identical, verification successful. user:examples\$./spiflash-winbond -r 25Q64BVSIG.bin -s 8000000 -v FT232H Future Technology Devices International, Ltd initialized at 15000000 hertz Reading 8000000 bytes starting at address 0x0...saved to 25Q64BVSIG.bin. Verifying...reads are identical, verification successful. user:examples\$

PAILEDII

Oo HELL YEAH, SUCCEED

What to do with the *.bin file?

- file
- Binwalk
 - Extract binwalk -e

user:winbond\$ ls
25Q64BVSIG.bin
user:winbond\$ file 25Q64BVSIG.bin
25Q64BVSIG.bin: u-boot legacy uImage, SPI Flash Image, Linux/MIPS, Sta
327680
(Not compressed), 137172 bytes, Mon Aug 29 23:06:28 2011, Load Addres
Entry Point: 0x80200000, Header CRC: 0x14C106AB, Data CRC: 0x6D684DFC
: 33554

```
user:winbond$ binwalk -e 25064BVSIG.bin
DECIMAL
              HEXADECIMAL
                              DESCRIPTION
                              uImage header, header size: 64 bytes, header CRC: 0x14C
106AB, created: 2011-08-30 03:06:28, image size: 137172 bytes, Data Address: 0x802000
00, Entry Point: 0x80200000, data CRC: 0x6D684DFC, OS: Linux, CPU: MIPS, image type:
Standalone Program, compression type: none, image name: "SPI Flash Image"
                              U-Boot version string, "U-Boot 1.1.3 (Aug 30 2011 - 11:
              0x1A2B0
107184
06:24) (ALPHA)"
                              CRC32 polynomial table, little endian
107808
              0x1A520
123984
              0x1E450
                              HTML document header
124339
              0x1E5B3
                              HTML document footer
124348
              0x1E5BC
                              HTML document header
124540
              0x1E67C
                              HTML document footer
124708
              0x1E724
                              HTML document header
125401
              0x1E9D9
                              HTML document footer
                              gzip compressed data, maximum compression, from Unix, l
262160
              0x40010
ast modified: 2000-01-02 05:12:57
                              SEAMA firmware header, big endian, meta size: 36, image
              0x50000
 size: 4583456
                              LZMA compressed data, properties: 0x5D, dictionary size
327744
              0x50040
: 33554432 bytes, uncompressed size: 3805904 bytes
                              PackImg section delimiter tag, little endian size: 1574
1638464
              0x190040
1184 bytes; big endian size: 3272704 bytes
WARNING: Extractor.execute failed to run external extractor 'unsquashfs -d '%%squashf
s-root%%' '%e'': [Errno 2] No such file or directory
1638496
                              Squashfs filesystem, little endian, version 4.0, compre
              0x190060
ssion:lzma, size: 3272456 bytes, 1863 inodes, blocksize: 65536 bytes, created: 2015-0
8-06 11:55:00
user:winbondS
```


ME

NEW SKILLZ

QUESTIONS?

Cooperate Rant - Who is Strange Labs

- R&D group Under Uffect
 - Humanity cause
 - Human-trafficking
- I break stuff
- We all break stuff
- Work Environment
 - ► Casual, like SUPER casual
 - Benefits? Pretty dang good!
- Internship? Part-time? Full-time?
 - Students?
 - ► Education first !!!!!
- Bonnie.King@strange-labs.com
- Or Me!

