${\bf Homework}~{\bf 4-Algebraic~Structures}$

Ch 7: 3.1, 3.3, 3.4, 4.7, 4.9, 5.3, 5.6, 5,7, 5.12, 6.4, 6.5 Pre-lect: 5.1 Blake Griffith
Exercise (7.3.1). Prove the Fixed Point Theorem (7.3.2).
Proof.
Exercise (7.3.3). A nonabelian group G has order p^3 , where p is prime.
1. What are the possible orders of the center Z ?
2. Let x be an element of G that isn't in Z . What is the order of its centralizer $Z(x)$?
3. What are the possible class equations for G?
Proof.
Exercise (7.3.4). Classify groups of order 8.
Proof.
Exercise (7.4.7). Let G be a group of order n that operates nontrivially on a set of order r . Prove that if $n > r!$, then G has a proper normal subgroup.
Proof.
Exercise (7.4.9). Let x be an element of a group G , not the identity, whose centralizer $Z(x)$ has order pq , where p and q are primes. Prove that $Z(x)$ is abelian.
Proof.
Exercise (7.5.3). Determine the orders of the elements of the symmetric group S_7 .
Proof.
Exercise (7.5.6). Find all subgroups of S_4 of order 4, and decide which ones are normal.

Proof.	
Exercise (7.5.7). Prove that A_n is the only subgroup of S_n	of index 2.
Proof.	
Exercise (7.5.12). Determine the class equations of S_6 and	dA_6 .
Proof.	
Exercise (7.6.4). Let H be a normal subgroup of prime of group G . Suppose that p is the smallest prime that divides Prove that H is in the center $Z(G)$.	
Proof.	
Exercise (7.6.5). Let p be a prime integer and let G be a be a proper subgroup of G . Prove that the normalizer $N(H \text{larger than } H)$, and that H is contained in a normal subgroup.) of H is strictly
Proof.	
Pre-Lecture Problems	
Exercise (7.5.1). 1. Prove that the transpositions (12), (see generate the symmetric group S_n .	$(23), \dots (n-1, n)$
2. How many transpositions are needed to write the cycle	e (123 n)?
3. Prove that the cycles $(12 \dots \mathbf{n})$ and (12) generate the S_n .	symmetric group
Proof.	