Οθόνη LED

Για να μπορούμε να ενημερωνώμαστε κάθε χρονική στιγμή για τις καιρικές συνθήκες που επικρατούν χρησιμοποιήθηκε μια οθόνη LED διαστάσεων 128X64 pixel.

Κύκλωμα Ελέγχου Λειτουργίας

Για να ελέγξουμε τη λειτουργία της οθόνης δημιουργούμε το ακόλουθο κύκλωμα.

Η συνδεσμολογία έχει ως ακολούθως

 $VCC \rightarrow 5V$

GND → GND

 $SCL \rightarrow A5$

 $SDA \rightarrow A4$

Το πρόγραμμα παράγει την ακόλουθη έξοδο στην οθόνη

20 %

1.00 mbar

23.60 C

Αναλυτικά

```
// Απαραίτητες Βιβλιοθήκες
#include <SPI.h>
                             // Βιβλιοθήκη Σύνδεσης
#include <Wire.h>
                             // Βιβλιοθήκη Σύνδεσης
#include <Adafruit_GFX.h>
                             // Βιβλιοθήκες της Εταιρίας της Οθόνης
#include <Adafruit_SSD1306.h> // Ο τύπος της Οθόνης
#define SCREEN_WIDTH 128
                             // Πλάτος της οθόνης σε pixels
#define SCREEN_HEIGHT 64
                             //Ύψος της οθόνης σε pixels
#define OLED RESET 4
                             // Καθορίζεται ως Reset pin το 4
#define ONE_WIRE_BUS 2
                             // Σύνδεση pin Δεδομένων (DATA) της θερμοκρασίας στο pin 2
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET); // Μεταβλητή Οθόνης
```

```
void setup() { //Αρχικές Ρυθμίσεις
void loop() { // Κυρίως Πρόγραμμα
displayText(); // Συνάρτηση προβολής μηνύματος στην οθόνη
delay(1000);
void displayText(void){ // Συνάρτηση προβολής μηνύματος στην οθόνη
display.clearDisplay();
                           // Καθάρισε την Οθόνη
display.setTextSize(2);
                           // Μέγεθος κειμένου 2
display.setTextColor(WHITE);// Χρώμα Κειμένου: ΛΕΥΚΟ
display.setCursor(0,0);
                           // Κέρσορας στο (0,0)
display.println("20%"); // Υποθετική τιμή Υγρασίας
display.println("1.00 mbar"); // Υποθετική τιμή Ατμοσφαιρικής Πίεσης
display.println("23.60 C"); // Υποθετική τιμή Θεμροκρασίας
display.display(); // Προβολή πληροφοριών στην Οθόνη
```

Arduino Κώδικας Προβολής Μετρήσεων

Σε περίπτωση που θέλετε να υλοποιήσετε ένα έργο προβολής μετρήσεων θερμοκρασίας, υγρασίας και πίεσης σε οθόνη LED χρησιμοποιείστε το ακόλουθο κύκλωμα.

Ο κώδικας υλοποίησης παρατίθεται ακολούθως.

Το πρόγραμμα αφού διαβάσει, εμφανίζει τις τιμές θερμοκρασίας, υγρασίας και πίεσης στην ακόλουθη μορφή

Now @ School

Τ: <τιμή θερμοκρασίας> C

Η: <τιμή υγρασίας> %

P: <τιμή πίεσης> mbar

Στον κώδικα υλοποίησης έχουμε προσθέσει σχόλια που αντιστοιχούν μόνο στις επιπλέον εντολές.

```
#include <SPI.h>
#include <Wire.h>
#include <Adafruit_GFX.h>
#include <Adafruit SSD1306.h>
#include "DHT.h" // Βιβλιοθήκη χειρισμού του Αισθητήρα DHT11
#include <Adafruit_Sensor.h> // Βιβλιοθήκες της εταιρίας Adafruit για χειρισμό του
#include <Adafruit_BMP280.h> // αισθητήρα BMP280
#define SCREEN_WIDTH 128
#define SCREEN HEIGHT 64
#define OLED_RESET 4
#define DHTPIN 6 // Το Ψηφιακό Pin 6 θα χρησιμοποιηθεί για διάβασμα δεδομένων
#define DHTTYPE DHT11 // Ο Αισθητήρας της οικογένειας DHT που θα χρησιμοποιηθεί είναι ο DHT 11
#define BMP_SCK 5
                      // Έξοδος SCK του αισθητήρα στο Pin 5 του Arduino
#define BMP_MISO 4
                      // Έξοδος SDO του αισθητήρα στο Pin 4 του Arduino
#define BMP_MOSI 3
                      // Έξοδος SDI του αισθητήρα στο Pin 3 του Arduino
#define BMP_CS 2
                      // Έξοδος CS του αισθητήρα στο Pin 2 του Arduino
```

```
Adafruit_SSD1306 display(SCREEN_WIDTH, SCREEN_HEIGHT, &Wire, OLED_RESET);
DHT dht(DHTPIN, DHTTYPE); // Βασικό Αντικείμενο για αποθήκευση Μετρήσεων του DHT11
float hum; // Μεταβλητή Υγρασίας
Adafruit_BMP280 bmp(BMP_CS, BMP_MOSI, BMP_MISO, BMP_SCK); // Βασικό Αντικείμενο Μετρήσεων του
                                                  // αισθητήρα ΒΜΡ280
float temperature; // Μεταβλητή Θερμοκρασίας
float pressure; // Μεταβλητή Ατμοσφαιρικής Πίεσης
String msg = ""; // Μεταβλητή Μηνύματος που πρόκειται να τυπωθεί στην οθόνη
void setup() {
dht.begin(); // Εκκίνηση λειτουργίας του αισθητήρα DHT11
bmp.begin(); // Εκκίνηση λειτουργίας του αισθητήρα BMP280
void loop() {
displayText();
delay(2000);
void displayText(void){
display.clearDisplay();
display.setTextSize(2);
display.setTextColor(WHITE);
display.setCursor(0,0);
display.println("Now@School");
display.print("T:");
                                       // Εμφάνισε Τ:
display.print((bmp.readTemperature()));
                                       // Εμφάνισε την τιμή της θερμοκρασίας
display.println(" C");
                                       // Εμφάνισε τη μονάδα μέτρησης C
display.print("H:");
                                       // Εμφάνισε Η:
display.print((dht.readHumidity()));
                                      // Εμφάνισε την τιμή της υγρασίας
display.println(" %");
                                      // Εμφάνισε τη μονάδα μέτρησης %
display.print("P:");
                                      // Εμφάνισε Ρ:
display.print(int(bmp.readPressure()/100)); // Εμφάνισε την τιμή της ατμοσφαιρκής πίεσης
display.println("mbar"); // Εμφάνισε τη μονάδα μέτρησης mbar
display.display();
```