6/5/2016 question4.html

Created with

Company Name IIT-M Project Title Group/Team Name Subtitle

Designer satish Job Number Question4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Design Conclusion

Finplate Pass

Finplate

Connection Properties

Connection

Connection Title Single Finplate
Connection Type Shear Connection

Connection Category

Connectivity Column web-Beam web

Beam Connection Bolted
Column Connection Welded

Loading (Factored Load)

Shear Force (kN) 200

Components

Column Section ISSC 200

Material Fe 410

Beam Section ISMB 400

Material Fe 410

Hole STD

Plate Section 330X80X12

Thickness (mm) 12
Width (mm) 80
Depth (mm) 330
Hole STD

Weld

Type Double Fillet

Size (mm) 10

Bolts

Type Black Bolt

Grade 9.8
Diameter (mm) 12
Bolt Numbers 6
Columns (Vertical Lines) 1
Bolts Per Column 6
Gauge (mm) 0

6/5/2016 question4.html

> Pitch (mm) 54 End Distance (mm) 30 Edge Distance (mm) 30

Assembly

Column-Beam Clearance (mm) 20

Created with

Company Name **Project Title** IIT-M Group/Team Name Subtitle

Designer Job Number Question4 satish

05 /06 /2016 Method Limit State Design (No Earthquake Load) Date

Design Check			
Check	Required	Provided	Remark
Bolt shear capacity (kN)		$\begin{split} V_{\rm dsb} &= \\ (900*0.6126*12*12)/(\sqrt{3}*1.25*1000) \\ &= 35.126 \\ [\text{cl. } 10.3.3] \end{split}$	
Bolt bearing capacity (kN)		$V_{\rm dpb}$ = (2.5*0.519*12*8.9*410)/(1.25*1000) = 45.452 [cl. 10.3.4]	
Bolt capacity (kN)		Min (35.126, 45.452) = 35.126	
No. of bolts	200/35.126 = 5.7	6	Pass
No.of column(s)	≤ 2	1	
No. of bolts per column		6	
Bolt pitch (mm)	$\geq 2.5* 12 = 30, \leq Min(32*8.9, 300)$ = 285 [cl. 10.2.2]	54	Pass
Bolt gauge (mm)	$\geq 2.5*12 = 30, \leq Min(32*8.9, 300) = 285$ [cl. 10.2.2]	0	
End distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Edge distance (mm)	$\geq 1.7*13 = 22.1, \leq 12*8.9 = 106.8$ [cl. 10.2.4]	30	Pass
Block shear capacity (kN)	≥ 200	$V_{\rm db} = 549$	Pass
Plate thickness (mm)	(5*200*1000)/(330*250) = 12.12 [Owens and Cheal, 1989]	12	Pass
Plate height (mm)	\geq 0.6*400=240.0, \leq 400-16-14-10=330.0 [cl. 10.2.4, Insdag Detailing Manual,	330	Pass

6/5/2016 question4.html

2002]

Plate width (mm) 100

Plate moment capacity (kNm) $(2*35.126*54^2)/(54*1000) = 17.071$ $M_d = (1.2*250*Z)/(1000*1.1) = 59.4$ [cl. 8.2.1.2]

Effective weld length (mm) 330-2*12 = 306

Weld strength $\sqrt{[(17071*6)/(2*306^2)]^2} + f_v = (0.7*10*410)/(\sqrt{3}*1.25)$

 $\begin{array}{c} \text{(kN/mm)} & [200/(2*306)]^2 & = 1.591 \\ = 0.637 & \text{[cl. 10.5.7]} \end{array}$

 $Max((0.637*1000*\sqrt{3}*1.25)/(0.7*$

Weld thickness 410, 12*0.8) = 9.6

(mm) [cl. 10.5.7, Insdag Detailing Manual, 10

2002]

Created with

Company Name IIT-M Project Title Group/Team Name Subtitle

Designer satish Job Number Question4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Views

Created with

Company Name IIT-M Project Title Group/Team Name Subtitle

Designer satish Job Number Question4

Date 05 /06 /2016 Method Limit State Design (No Earthquake Load)

Additional Comments