

Международная научная конференция «XII Белорусская математическая конференция»

Материалы конференции

Часть 3

5 – 10 сентября 2016 года Минск, Беларусь

ГОСУДАРСТВЕННОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ «ИНСТИТУТ МАТЕМАТИКИ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК БЕЛАРУСИ» БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Международная научная конференция «XII Белорусская математическая конференция»

Материалы конференции

Часть 3

Вычислительная математика Математическое моделирование и математическая физика Теоретическая и прикладная механика

Редактор С.Г. Красовский

Конференция проводится при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований

XII Белорусская математическая конференция: материалы Междунар. на Д15 конф. Минск, 5-10 сентября 2016 г. В 5 ч. / Ред. С. Г. Красовский. — Часть 3.- М Институт математики НАН Беларуси, 2016. — $110\,\mathrm{c}.$

ISBN 987-985-7160-01-3 (Часть 3) ISBN 978-985-6499-90-9

Сборник содержит тезисы докладов, представленных на XII Белорусской математической кон ренции по следующим направлениям: вычислительная математика, математическое моделиров и математическая физика, теоретическая и прикладная механика.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И МАТЕМАТИЧЕСКАЯ ФИЗИКА

ОСНОВНОЕ КИНЕТИЧЕСКОЕ УРАВНЕНИЕ В ФОРМЕ УРАВНЕНИЯ ЛИУВИЛЛЯ

Э.А. Айрян 1 , А.Д. Егоров 2 , Е.Г. Еферина 3 , Д.С. Кулябов 1,3 , В.Б. Малютин 2 , Л.А. Севастьянов 1,3

¹ Объединённый институт ядерных исследований, Дубна, Россия ayrjan@jinr.ru, yamadharma@gmail.com, leonid.sevast@gmail.com

² Институт математики НАН Беларуси, Минск, Беларусь egorov@im.bas-net.by, malyutin@im.bas-net.by

³ Российский университет дружбы народов, Москва, Россия eg.eferina@gmail.com

Для реализации абстрактного подхода используется представление чисел заполнения. Для изменения состояния системы используют операторы рождения и уничтожения [1]. Методика применения формализма вторичного квантования для неквантовых систем (статистических, детерминированных) была рассмотрена в целом ряде статей [2, 3].

Взаимодействие элементов системы описывается с помощью схем взаимодействия (см. рис. 1, 2):

$$I_j^{i\underline{\alpha}}\varphi^j \overset{+_{k_{\underline{\alpha}}}}{\underset{-_{k_{\alpha}}}{\longleftarrow}} F_j^{i\underline{\alpha}}\varphi^j, \tag{1}$$

здесь греческие индексы задают количество взаимодействий, а латинские — размерность системы. Коэффициенты ${}^+k_{\underline{\alpha}}$ и ${}^-k_{\underline{\alpha}}$ имеют смысл интенсивности (скорости) взаимодействия.

$$I \xrightarrow{a^I} \pi^F$$
 $F = I \xrightarrow{\pi^I} \pi^F$ F Рис. 1. Прямая реакция Рис. 2. Обратная реакция

Здесь используются операторы рождения (π) и уничтожения (a):

$$\pi|n\rangle = |n+1\rangle, \quad a|n\rangle = n|n-1\rangle, \quad [a,\pi] = 1.$$

В формализме чисел заполнения основное кинетическое уравнение переходит в уравнение Лиувилля:

$$\frac{\partial}{\partial t}|\varphi(t)\rangle = L|\varphi(t)\rangle.$$

Оператор Лиувилля, записывается через схемы взаимодействия (1) в следующем виде:

$$L = \sum_{\underline{\alpha},\underline{i}} \left[{}^{+}k_{\underline{\alpha}} \left(\pi_{\underline{i}}^{F^{\underline{i}\underline{\alpha}}} - \pi_{\underline{i}}^{I^{\underline{i}\underline{\alpha}}} \right) a_{\underline{i}}^{I^{\underline{i}\underline{\alpha}}} + {}^{-}k_{\underline{\alpha}} \left(\pi_{\underline{i}}^{I^{\underline{i}\underline{\alpha}}} - \pi_{\underline{i}}^{F^{\underline{i}\underline{\alpha}}} \right) a_{\underline{i}}^{F^{\underline{i}\underline{\alpha}}} \right].$$

При сравнении операторного метода с комбинаторным методом стохастизации одношаговых процессов показана их эквивалентность. Введённый формализм представляется удобным для унифицированного описания стохастических систем.

Работа частично поддержана грантами РФФИ № 14-01-00628, 15-07-08795, 16-07-00556, а также грантом Белорусского республиканского фонда фундаментальных исследований (проект $\Phi 16 \Pi - 002$).

Литература

- 1. Hnatic M., Eferina E. G., Korolkova A. V. Kulyabov D. S., Sevastyanov L. A. Operator Approach to the Master Equation for the One-Step Process // EPJ Web of Conferences. 2016. Vol. 108.
- 2. Doi M. Second quantization representation for classical many-particle system // Journal of Physics A: Mathematical and General. 1976. Vol. 9.
- 3. Demidova A. V., Korolkova A. V., Kulyabov D. S., Sevastianov L. A. The method of stochastization of one-step processes // Mathematical Modeling and Computational Physics. Dubna: JINR, 2013.

ОЦЕНКА КРИТИЧЕСКИХ ЗНАЧЕНИЙ ПАРАМЕТРОВ СОЦИАЛЬНОЙ СИСТЕМЫ, ПРИ КОТОРЫХ ВОЗМОЖНА ЕЕ ДЕСТАБИЛИЗАЦИЯ

Е.К. Басаева¹, Е.С. Каменецкий², З.Х. Хосаева²

¹ Южный математический институт — филиал ВНЦ РАН, Владикавказ, Россия helen@smath.ru

² Владикавказский научный центр РАН, Владикавказ, Россия esk@smath.ru, hzaiac83@mail.ru

В работе [1] предложена модель напряженности, возникающей при взаимодействии двух социальных групп — элиты и трудящихся. Напряженность каждой социальной группы описывается дифференциальным уравнением:

$$\frac{dP_i}{dt} = \gamma_i [1 - \eta_i (1 - \beta_i)] U_i + \gamma_i [\eta_i (U_i + \beta_i (1 - 2U_i)) - 1] P_i, \quad i = 1, 2,$$
(1)

где $P_i \in [0,1]$ — напряженность группы ($P_i = 0$ соответствует полному полному отсутствию напряженности, $P_i = 1$ — максимально возможной напряженности); U_i — управляющий параметр, характеризующий влияние изменения экономической ситуации или другой социальной группы $U_i \in [0,1]; \ \gamma_i$ — интенсивность восприятия воздействия; η_i — внутренняя тенденция к усилению воздействия, $\eta_i \in [0,1]; \ \beta_i$ — склонность к восприятию воздействия, $\beta_i \in [-1,1].$

В [1] рассматривался частный случай этой модели. А именно, в уравнении для трудящихся (i=1) склонность к восприятию воздействия элиты считалась максимальной $(\beta_1=1)$, а в уравнении для элиты (i=2) внутренняя тенденция к усилению воздействия трудящихся на элиту отсутствовала $(\eta_2=0)$. Было получено, что соответствующая система дифференциальных уравнений в области допустимых значений P_i , i=1,2, при различных значениях управляющих параметров U_i может иметь одну стационарную точку, две или не иметь ни одной [1].

Общий случай включает в себя множество частных случаев взаимодействия любых двух (или более) социальных групп. Например, подобные системы уравнений можно использовать для описания взаимодействия групп разделенных по этническому, конфессиональному, возрастному и т. п. признакам. Представляет интерес качественный анализ общей модели с произвольными значениями коэффициентов из допустимых диапазонов.

СОДЕРЖАНИЕ

Вычислительная математика

Айрян Э.А., Егоров А.Д., Кулябов Д.С., Малютин В.Б., Севастьянов В.А. Метод
функциональных интегралов для стохастических уравнений
Баханович С.В., Соболевский П.И. Применение двухуровневого тайлинга при отобра-
жении алгоритмов на параллельные вычислительные системы
Бобков В.В. Построение вычислительных алгоритмов для начальных задач с использова-
нием принципа обратной связи 5
Бондарь И.В., Фалейчик Б.В. Обратно-смещенный предобусловливатель для обобщен-
ных итераций Пикара 6
Дирвук Е.В. Разработка библиотеки процедур для приближенного вычисления интегралов 7 Ивановский Л.И. Фазовые перестройки динамических систем с импульсными воздействи-
ями
костной капли в капилляре
Лемешевский С.В. Численное решение смешанных задач для волнового уравнения с
негладкими входными данными
Лиходед Н.А., Толстиков А.А. Получение коммуникационных операций параллельных
зернистых алгоритмов
Малютин В.Б. Использование последовательностей Штурма для решения уравнений Фок-
${\sf кера}-{\sf П}{\sf ланка}\dots$ 12
Мартыненко С.И., Толкалиев П.Д., Волохов В.М., Волохов А.В., Янов-
ский В.С. Многосеточные методы: достижения и проблемы
Матус П.П. О монотонных и разностных схемах повышенного порядка точности
шения некорректных задач
Матюшкин И.В. Особенности численного решения классических уравнений математиче-
ской физики на гексагональной сетке с помощью клеточных автоматов с непрерывными значе-
ниями
Михайлов А.В. Операторные уравнения первого рода с нормальными операторами 17 Полещук М.А., Лиходед Н.А. Построение двумерных зернистых вычислительных про-
цессов
Поляков Д.Б. О согласованных двусторонних оценках решений квазилинейных параболи-
ческих уравнений и их аппроксимаций
Репников В.И. Использование групповых свойств дифференциальной задачи при ее чис-
ленном решении
Туен В.Т.К. Монотонные разностные схемы для одномерной нелинейной модели Biot 21
Фалейчик Б.В. Безматричные двухшаговые итерационные процессы с подавлением мед-
ленных компонент
Хиеу Л.М. Монотонные разностные схемы для параболического уравнения
Чуйко М.М., Королева О.М. Исследование устойчивости неявной разностной схемы для
нелинейного уравнения переноса
Якименко Т.С. Прямой метод решения сингулярных интегральных уравнений первого рода
с кратными ядрами Гильберт
Янович Л.А., Игнатенко М.В. Интерполяционные формулы для функций, заданных на
множестве квадратных матриц с умножением по Йордану
Янович Л.А., Худяков А.П. Формулы квадратичной матричной итерполяции на множе-
стве некоммутируемых матриц
Atanasova P., Georgieva A., Popova L. Fixed point method for solving two-dimensional
nonlinear Fredholm fuzzy functional integral equation

Schadinskii D.A. The role of conservation laws in blow-up problems for nonlinear parabolic equations	29
•	
Математическое моделирование и математическая физика	
Айрян Э.А., Егоров А.Д., Еферина Е.Г., Кулябов Д.С., Малютин В.Б., Севастья-	
нов Л.А. Основное кинетическое уравнение в форме уравнения Лиувилля	30
ров социальной системы, при которых возможна ее дестабилизация	3
волоконных усилителей на основе вынужденного комбинационного рассеяния	32
Ватульян А.О., Юров В.О. О спектральных пучках операторов и их приложениях к исследованию дисперсионных соотношений для пьезоэлектрических волноводов с затуханием	33
	34
Вирченко Ю.П., Субботин А.В. Четномерные обратимые динамические системы Волков В.М., Гуревский А.Н. Двухпараметрическая оптимизация компактных разност-	
ных схем спектрального разрешения для нелинейных уравнений Шредингера	3
ных эллиптических задач анизотропной диффузии	36
прямоугольном канале в задаче о течении Пуазейля	37
Громыко Г.Ф., Жерело А.В., Баханович С.В. Трехмерное моделирование турбулентных течений в сжимаемых средах на суперкомпьютерах с.распределенной памятью	38
Громыко Г.Ф., Мацука Н.П., Ильющенко А.Ф., Шевцов А.И. Математическое мо-	0(
делирование СВС-процесса при формировании износостойких композиционные покрытий типа	
связующее звено — карбидная фаза	40
Ермаков В.В., Табатадзе В.В. Математическая модель возникновения волн сгущения в	-
транспортном потоке	41
Ерофеенко В.Т., Громыко Г.Ф., Заяц Г.М. Численное моделирование нелинейных кра-	
евых задач экранирования с интегральными граничными условиями	42
Заика Ю.В. Моделирование ТДС-спектра дегидрирования с учетом сжатия и теплопогло-	
щения	43
Заика Ю.В., Костикова Е.К. Моделирование термодесорбции водорода	44
Заика Ю.В., Родченкова Н.И. Моделирование гидрирования циркониевого сплава	45
Игнатенко В.В. Линейные математические модели в лесной промышленности	46
Карнилович С.П., Ловецкий К.П., Севастьянов Л.А., Щесняк Е.Л. Сейсмоизоли-	
рующие системы на основе кинематических опор А. М. Курзанова	48
Корзюк В.И., Винь Н.В. Классические решения задач для гиперболического уравнения четвертого порядка	49
Корзюк В.И., Козловская И.С. Классические решения смешанных задач со смешанными	
граничными условиями	50
Корзюк В.И., Мандрик А.А. Классические решение граничной задачи для нестрого ги-	F 1
перболического уравнения третьего порядка	51
Корзюк В.И., Наумовец С.Н. Классическое решение первой смешанной задачи одномер-	
ного волнового уравнения с дифференциальными полиномами второго порядка в граничных условиях	52
Корзюк В.И., Пузырный С.И. Классическое решение смешанных задач для одномерного	02
волнового уравнения с негладкими условиями Коши	52
Куликов А.Н., Куликов Д.А. Уравнение Курамото — Сивашинского. Существование	-
аттрактора, все решения на котором неустойчивы	53
Куликов А.Н., Секацкая А.В. О влиянии выбора краевых условий на динамику решений	
обобщенного уравнения Курамото — Сивашинского	54
Курочка К.С., Комракова Е.В. Конечно-элементная математическая модель	
напряженно-деформированного состояния пластины с учетом термоупругости	56