AFRE 802 Statistical Methods for Agricultural, Food, & Resource Economists

Hypothesis Testing – Part 3 of 3 (WMS Ch. 10.4, 10.10, 10.12)

November 16, 2017

Nicole Mason Michigan State University Fall 2017

GAME PLAN

- Housekeeping issues
 - Ch. 10 HW due Tuesday, 11/28
- Review
- Graded in-class exercise
- Hypothesis testing Part 3 of 3
 - Hypothesis testing with χ^2 and F statistics
 - Calculating Type II error probabilities and finding the sample size for Z tests
 - · The "power" of statistical tests
 - · Wrap-up of Chapter 10

Review: Hypothesis testing

- Steps essentially the same for large sample hypothesis testing and small sample hypothesis testing about μ but *key difference* is:
 - Large sample tests: can invoke CLT & use Z-stat ~ N(0,1)
 - Small sample tests for μ : use T-stat ~ t with N-1 d.f.; data need to be from approximately normal distribution

Review: Relationship b/w Cls & hypothesis testing

- If testing H₀: θ=θ₀ vs. H₄: θ≠θ₀
 - Fail to reject H_0 in favor of H_1 at the α level if θ_0 lies inside the 100(1- α)% two-sided CI; o.w. reject H_0
- If testing H₀: θ=θ₀ vs. H₁: θ>θ₀ (implicitly H₀: θ≤θ₀)
 - Fail to reject H₀ in favor of H₁ at the α level if θ₀ lies inside the 100(1-α)% lower one-sided CI; o.w. reject H₀
- If testing H_0 : $\theta = \theta_0$ vs. H_1 : $\theta < \theta_0$ (implicitly H_0 : $\theta \ge \theta_0$)
 - Fail to reject H_0 in favor of H_1 at the α level if θ_0 lies inside the 100(1- α)% upper one-sided CI; o.w. reject H_0

SEE HANDOUT FROM LAST CLASS FOR DETAILS 2

Review: p-values

- Definition?
 - **p-value** = the smallest α for which the data suggest the null hypothesis should be rejected (in favor of the alternative)
 - The probability of observing a test "statistic as extreme as we did if the null hypothesis is true" (Wooldridge 2003, p. 129)
- Which is better if want to reject H₀ small or large p-value?
 - The smaller the p-value, the stronger is the evidence <u>against</u> the null (in favor of the alternative)
- How to find the p-value for a test statistic?
 - Follow the usual hypothesis testing steps but rather than picking α and identifying the rejection region, determine the significance level of your test statistic (keeping the alternative hypothesis in mind and thus whether you are dealing with an " α " or " α /2" situation)
 - EX) 2-sided alternative and Z-stat: p=2*P(z > |Z-stat|)
 - EX) 1-sided alternative and Z-stat: p=P(z > |Z-stat|)
 - Similar for T (with appropriate D.F.) because also symmetric
- Suppose you are conducting a hypothesis test at a given α level. What do you conclude if p≤α? What if p>α?

Graded in-class exercise

4

MICHIGAN STATE

Hypothesis testing with χ^2 and F statistics

- We've now worked a lot with Z and t statistics but we don't have enough time in this course to do more hypothesis testing that involves x² and F statistics
- But you'll encounter these more next semester & beyond
- Examples of hypothesis tests with test statistics $\sim \chi^2$
 - Testing hypotheses about the variance of one normal RV
 - The Jarque-Bera test for normality
 - · Ljung-Box Q test for autocorrelation
 - Likelihood ratio tests (hypothesis testing for MLE)
- Applications of F distributions
 - Testing hypotheses about the variances of two normal RVs
 - · Joint hypothesis testing in regression analysis, e.g.,

$$y=\beta_0+\beta_1x_1+\beta_2x_2+u$$

 $H_0: \beta_1=\beta_2=0$ vs. $H_4: \beta_1\neq 0$ and/or $\beta_2\neq 0$

MICHIGAN STATE UNIVERSITY

Calculating the probability of Type II error (β)

- Very difficult for some statistical tests but pretty straightforward for the large-sample tests we covered (Z-stat-based)
- Review: what is type II error?
 - Failing to reject H₀ (in favor of H₁) when H₀ is false
- When calculating β=P(Type II error), must do so for specific values of the target parameter under H₁
 - E.g., if testing H₀: μ=5 vs. H₁: μ > 5, need to pick a specific value of μ > 5 (e.g., 6, 100, whatever)
- Let's work through an example then go over some general rules for finding β=P(Type II error)

6

Calculating the probability of Type II error (β)

Example 10.8 in WMS

Suppose we tested H_0 : μ =15 vs. H_1 : μ > 15 at the α =0.05 level using data from a random sample of size N=36 with sample mean 17 and sample standard deviation 3. (Context is the average # of calls/week made by salespeople at a large corporation.)

- a. We obtain Z=4. $z_{\alpha=0.05}=1.645$ so do we reject or fail to reject H_0 in favor of H_1 ? What is the p-value for our test?
- b. Now suppose we want to know β =P(Type II error) for testing H₀: μ =15 vs. H₁: μ = 16 given α =0.05.

Steps:

- 1. Find the cutoff for the RR in terms of Z (under H_0 and for the given α), then express it in terms of \overline{Y} . Let k be this cutoff value for \overline{Y} .
- 2. $P(\text{Type II error}) = P(\text{fail to reject H}_0 \text{ in favor of H}_1 \text{ when H}_0 \text{ is false and H}_1 \text{ is true})$
 - = $P(\overline{Y} \text{ is } \underline{\text{not}} \text{ in the rejection region when } H_0 \text{ is false and } H_1 \text{ is true})$
 - = $P(\overline{Y} \le k \text{ when } H_0 \text{ is false and } H_1 \text{ is true})$
 - \Rightarrow Find this probability by converting $\overline{Y} = k$ to a Z-statistic **under H**₁.

 α =P(Type I error)=P(reject H₀ when H₀ is true) Example 10.8 β =P(Type II error)=P(fail to reject H₀ when H₀ is false (cont'd) and H₁ is true given specific values of H₁ and α) = $P(\overline{Y} \text{ is } \underline{\text{not}} \text{ in the rejection region when H}_0 \text{ is false and H}_1 \text{ is true})$ = $P(\overline{Y} \le k \text{ when } H_0 \text{ is false and } H_1 \text{ is true}))$ $\mu_0 = 15$ $16 = \mu_a$ Accept H_0 Reject H_0 k=15.8225 is the cutoff for the sample mean for our rejection region for H₀: μ =15 vs. H₁: μ > 15 (specifically μ = 16) at the α=0.05 level. That is, we reject H₀ in favor of H₁ if the sample mean is ≥ 15.8225.

Calculating β =P(Type II error)

General approach for H_0 : $\theta = \theta_0$ vs. H_1 : $\theta > \theta_0$ for a specific value of the target parameter under H_1 (call it θ_1 , where $\theta_1 > \theta_0$)

- 1. Find the cutoff for the RR in terms of Z (**under H**₀ and for the **given** α), then express it in terms of the estimator, $\hat{\theta}$. Let k be this cutoff value for $\hat{\theta}$, i.e.: $RR = [k, \infty)$
- 2. $P(\text{Type II error}) = P(\text{fail to reject H}_0 \text{ in favor of H}_1 \text{ when H}_0 \text{ is false and H}_1 \text{ is true})$ = $P(\hat{\theta} \text{ is not in the rejection region when H}_0 \text{ is false and H}_1 \text{ is true})$ = $P(\hat{\theta} \le k \text{ when H}_0 \text{ is false and H}_1 \text{ is true, i.e., when } \theta = \theta_1)$

Find this probability by converting k to a Z-statistic **under H**₁, i.e.:

$$P(z \le Z = \frac{k - \theta_1}{\sigma_{\hat{\theta}}})$$

Note: Will need to reverse signs in the steps above if H_1 : $\theta \le \theta_0$

Another example

Suppose N=40, sample mean = 128.6, and sample standard deviation is 2.1. Find the probability of type II error for testing H_0 : μ =130 vs. H_1 : μ = 128 given α =0.05.

Finding the sample size for Z-tests

- In Example 10.8, with N=36 and α=0.05, we calculated that β=0.36 → high P(Type II error)
- A key way to reduce β is to increase the sample size
- The flip side of determining β given N and α is to determine N given desired values of α and β
- Suppose you want to test H_0 : $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ for given values of α and β (and where β is evaluated at specific value $\mu_1 > \mu_0$ under H_1). Then:

Sample size for a one-tailed Z-test for μ for given levels of α , β , μ_0 (value of μ under H_0) and μ_I (value of μ under H_I): $N = \frac{(z_\alpha + z_\beta)^2 \sigma^2}{(\mu_I - \mu_0)^2}$ rounded up to the nearest whole number

Same formula works for H_1 : $\mu < \mu_0$. See WMS p. 509 for proof.

14

Finding the sample size for Z-tests - example

Example 10.9 in WMS

Find the sample size, N, for testing H_0 : μ =15 vs. H_1 : μ =16 with α = β =0.05. Assume a variance of 9. (Context is the average # of calls/week made by salespeople at a large corporation.)

Sample size for a one-tailed Z-test for μ for given levels of α , β , μ_0 (value of μ under H_0) and μ_I (value of μ under H_I):

$$N = \frac{(z_{\alpha} + z_{\beta})^2 \sigma^2}{(\mu_l - \mu_0)^2}$$
 rounded up to the nearest whole number

The "power" of statistical tests

- We have discussed β=P(Type II Error)
 =P(fail to reject H₀ when H₀ is false and H₁ is true)
- The "power" of a statistical test is 1-β, i.e., the
 probability that we do reject H₀ when H₀ is false and
 H₁ is true. More power is better than less power!
 - As with β , the power of a test depends on the parameter value specified under $H_1\left(\theta_1\right)$
- How does β change as N increases?
- So how does power change as N increases?

The "power" of statistical tests (cont'd)

- Final note on power:
 - Do you think statistical tests have more power for parameter values under $H_1(\theta_1)$ that are close to or farther away from the value under the $H_0(\theta_0)$? Why?
 - It is easier to detect that H_0 is false (more power) when θ_1 is **farther** from θ_0

Figure: A typical power curve for the test of H_0 : $\theta=\theta_0$ vs. H_1 : $\theta=\theta_1$ for various values of θ_1

Summary

- In Chapters 8 and 9, we talked about how to estimate numerical values of target parameter θ
 - Point estimates & confidence intervals (CIs)
 - Desirable properties of estimators (consistency, unbiasedness, efficiency, low MSE)
 - Methods of estimation (MOM, MLE, least squares)
- In Chapter 10, we talked about:
 - Testing hypotheses related to θ for large samples, and for μ for small samples
 - The relationship between hypothesis testing and CIs
 - p-values
 - Probabilities of Type I (α) and Type II (β) errors, and the power of a statistical test (1-β) → these probabilities tell us how 'good' our inferences are (i.e., how much faith we can put in the results of our hypothesis tests)
 - Computing the sample size for Z tests

Homework:

- WMS Ch. 10 (cont'd):
 - Type II error probabilities & sample size for Z tests: 10.38, 10.39, 10.41, 10.42
- **All Ch. 10 HW is due on Tuesday, Nov. 28

Remaining lectures – only 5 left – time flies!

- Tuesday: Review, answer your questions; tie up Ch. 10 loose ends
- 4 classes after Thanksgiving break: introduction to OLS (hurray!) and course wrap-up

Reading for Tuesday after break

- Optional: WMS Ch. 11 (sections 11.1-11.3)
- Required: Wooldridge Introductory Econometrics (2003) pp. 22-37 – on D2L

20

				MICHIGAN STATE UNIVERSITY
Table 8.1 Expected values and standard errors of some common point estimators				
Target Parameter θ	Sample Size(s)	Point Estimator $\hat{\theta}$	Square of variation of esting $E(\hat{ heta})$	ince From
μ	n	\overline{Y}	μ	$\frac{\sigma}{\sqrt{n}}$
p	n	$\hat{p} = \frac{Y}{n}$	p	$\sqrt{\frac{pq}{n}}$
$\mu_1 - \mu_2$	n_1 and n_2	$\overline{Y}_1 - \overline{Y}_2$	$\mu_1 - \mu_2$	$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}^{*\dagger}$
$p_1 - p_2$	n_1 and n_2	$\hat{p}_1 - \hat{p}_2$	$p_1 - p_2$	$\sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}^{\dagger}$

 $[\]sigma_1^2$ and σ_2^2 are the variances of populations 1 and 2, respectively.

Cengage Learnin

[†]The two samples are assumed to be independent.