

1 agggagaggc a~~gt~~gaccttg aaggctgtgc tgc~~t~~gccc~~t~~ g~~tt~~ga~~tt~~ggca
51 ggc~~t~~ggccc tgcagccagg cact~~g~~ccct~~t~~g ctgtctact cctgcaa~~a~~gc
101 ccagg~~t~~gagc aac~~g~~aggact~~t~~ g~~c~~c~~t~~g~~c~~agg~~t~~ ggagaact~~t~~gc acccag~~c~~gg
151 gggagc~~t~~g c~~t~~ggacc~~g~~cg~~c~~ cgca~~t~~cc~~g~~cg~~c~~ c~~a~~gt~~t~~ggcc~~t~~ cctg~~a~~cc~~g~~tc
201 a~~t~~cagcaa~~a~~g gc~~t~~g~~c~~ag~~c~~t~~t~~ gaac~~t~~g~~c~~tg~~t~~ g~~a~~rgact~~c~~ac aggact~~a~~ct~~a~~
251 c~~t~~gtggca~~a~~g aagaacat~~c~~a c~~t~~gt~~t~~gt~~t~~ga caccgac~~t~~g t~~g~~caac~~g~~cca
301 g~~c~~ggggccca t~~g~~cc~~t~~g~~c~~ag c~~g~~gg~~c~~t~~g~~cg~~c~~ c~~c~~at~~c~~~~t~~g~~c~~ g~~c~~t~~g~~ct~~c~~cc~~t~~
351 g~~c~~act~~c~~ggcc t~~g~~ct~~g~~ct~~t~~g~~t~~ gggac~~cc~~gg~~c~~ c~~a~~gt~~t~~atgg~~t~~ ct~~c~~tg~~g~~gg~~g~~gg
401 c~~cccc~~gc~~t~~g~~c~~a g~~cc~~cac~~a~~ct~~t~~g~~t~~ g~~gt~~gt~~gg~~tg~~c~~ c~~cc~~agg~~cc~~t~~t~~ t~~gt~~gcc~~a~~c~~t~~
451 ct~~c~~ac~~a~~ga~~a~~c c~~t~~ggccc~~a~~gt~~t~~ gggag~~c~~c~~t~~g~~t~~ c~~t~~tg~~tt~~cc~~t~~ gaggcac~~a~~tc
501 c~~t~~aac~~g~~ca~~a~~g t~~t~~gacc~~a~~tg~~t~~tt~~t~~g~~c~~a c~~cc~~ct~~ttt~~cc~~t~~ c~~tn~~aacc~~t~~g
551 ac~~t~~ttcc~~cc~~at~~t~~ g~~gg~~cc~~ttt~~cc~~t~~ c~~agg~~tt~~cc~~t~~t~~ acc~~t~~gg~~c~~aga t~~c~~ag~~t~~tt~~t~~ag
601 t~~g~~anacanat~~t~~ c~~cg~~ct~~t~~g~~c~~ag~~t~~ g~~tg~~gg~~cc~~ct~~t~~ caac~~ttt~~in~~t~~ t~~gt~~tg~~tt~~gt~~t~~
651 t~~cc~~at~~gg~~cc~~cc~~ agcatt~~ttt~~cc~~t~~ acc~~ttt~~aacc~~t~~ ct~~gt~~gt~~tt~~ca~~g~~ g~~c~~act~~ttt~~cc~~t~~
701 c~~ccc~~ag~~gg~~aa~~g~~ c~~cc~~tt~~cc~~t~~g~~cc~~t~~ c~~c~~ac~~cc~~cc~~t~~tt~~t~~ t~~ta~~gaat~~t~~g~~a~~ g~~cc~~agg~~ttt~~g~~t~~
751 g~~cccc~~gt~~gg~~gg~~t~~ t~~ccccc~~g~~c~~ac~~t~~ c~~ca~~g~~c~~agg~~gg~~g~~t~~ ac~~agg~~cc~~ttt~~tc~~t~~ g~~gg~~g~~gg~~cc~~cc~~
801 a~~gt~~tt~~tt~~gg~~cc~~ t~~g~~gat~~tt~~g~~tt~~g~~t~~ g~~gt~~ct~~tt~~g~~t~~g~~t~~ g~~aa~~c~~tt~~gg~~gg~~g~~t~~ a~~ca~~ag~~tt~~g~~t~~
851 a~~cg~~tt~~gg~~tt~~t~~ c~~tt~~gg~~gg~~tt~~t~~ c~~ca~~g~~tt~~gg~~tt~~g~~t~~ g~~gg~~cc~~tt~~gg~~tt~~g~~t~~ c~~cc~~tt~~gg~~gg~~tt~~g~~t~~
901 g~~gg~~ggcc~~gg~~gc~~t~~ c~~tc~~ac~~ttt~~tg~~t~~ t~~gg~~gg~~ttt~~cc~~t~~ c~~aa~~tt~~gg~~cc~~t~~g~~t~~ c~~t~~g~~ag~~cc~~cc~~cg
951 c~~gt~~tt~~gg~~cc~~cc~~t~~t~~ t~~ttt~~tt~~ttt~~cc~~t~~ c~~tt~~tt~~gg~~tt~~t~~ a~~g~~cc~~ttt~~tt~~ttt~~tt~~t~~ t~~ttt~~tt~~ttt~~tt~~t~~

FIGURE 1A

MKA VLL ALL MAG LAL QPG TALL CYS CK A QVS X ED CLQ V
E\CT QL GE QC W T A R I R A V G L L T V I SK G C S L N C V D D S
QD Y Y V G K K N I T C C D T D L C N A S G A H A L Q P A A A I L A L L P A L
G L L W G P G Q L

FIGURE 1B

ATGAAGACAGTTTTTTATCCTGCTGGCCACCTACTTAGCCCTGCATCCAGGTGCTGCT
 1 TACTTCTGTCAAAAAAAATAGGACGACCGGTGGATGAATGGGACGTAGGTCCACGACGA 60
 M K T V F F I L L A T Y L A L H P G A A
 CTGCAGTGCTATTACATGCCACAGCACAGATGAACAAACAGAGACTGTCGAATGTACAGAAC
 61 GACGTACGATAAGTACGTGTCGTCTACTTGTGTCTGACAGACTTACATGTCTTG 120
 L Q C Y S C T A Q M N N R D C L N V Q N
 TGAGCCTGGACCAGCACAGTTCTTACATCGCGCATCCGGCCATTGGACTCGTGACA
 121 ACAGTCGGACCTGGTCGTGTCACGAAATGTAGCGCGTAGGCCCCGTAACCTGAGCACTGT 180
 C S L D Q H S C F T S R I R A I G L V T
 GTTATCAGTAAGGGCTGCAGCTCACAGTGTGAGGATGACTCGGAGAACTACTATTTGGC
 181 CAATAGTCATTCCGACGTCGAGTGTACACTCCTACTGAGCCTTTGATGATAAACCCG 240
 V I S K G C S S Q C E D D S E N Y Y L G
 AAGAAGAACATCACGTGCTGCTACTCTGACCTGTGCAATGTCAACGGGGCCCACACCTG
 241 TTCTTCTGTAGTCACGACGATGAGACTGGACACGTTACAGTTGCCCGGGTGTGGGAC 300
 K K N I T C C Y S D L C N V N G A H T L
 AAGCCACCCACCCACCCCTGGGGCTGCTGACCGTGCTCTGCAGCCCTGTTGCTGGGGCTCC
 301 TTCCGTGGGTGGTGGGACCCCGACGACTGGCACGAGACGTCGGACAACGACACCCCGAGG 360
 K P P T T L G L L T V L C S L L L W G S
 AGCCGTCTGTAGGCTCTGGGAGAGCCTACCATAGCCGATTGTGAAGGGATGAGCTGCAC
 361 TCGGCAGACATCCGAGACCCCTCTGGATGGTATGGCTAACACTCCCTACTGACGTG 420
 S R L *
 TCCACCCCCACCCCCACACAGG
 421 AGGTGGGGTGGGGTGTGCC 441

FIGURE 2

1 M E R I F E P V I T T R E N L I G V S R A S S NSCA-2
1 M R A V I L A U L M A G C A A V O P G T A NPSCA
1 M E R I F E P L I M A T Y H A L H P G A A MPSCA

21 E M C F S C L N Q K S N L Y C E K P T I
21 E L C Y S C K A Q V S N S D C L D Q V I E N
21 L Q C Y S C T A Q M H N N R D C L N V Q N

41 C T S D Q D N Y C V T V S A S A X G I G N L
41 C T Q L G E Q C W T H A R I R A V G L L T
41 C S L Q Q H S C F T S R I R A I G L V T

61 V T F G H S L S K T C I S P A C P I P E G
61 V - - - - I S K G C S L N C V D D S Q
61 V - - - - I S K G C S S Q C E D D S E

81 V N V G V A S M G I S C C Q S F E C C N F
76 D Y Y V V G K K - N L T C C O T D I C L C N S A
76 N Y Y L G K K - N P I T C C Y S D E C N V

101 S A A D G G I R A S V T T E G A G M L
95 S G R A H A L O P A A A I T A L L P A D G
95 N G A H T L K P O T T L G E T T V D G S

121 S I T P A L I R F G P
115 L L L W G P G O L - -
115 L L L W G S S R L - -

FIGURE 3

FIGURE 4

FIGURE 5

Support by 98% R.L.
Normal tissue
11/14/81

Western Blot

1:100
198

prostate (Kunz)
prostate (Babk)
prostate (dick)
Bladder (Kunz)
Bladder (dick)
Bladder (Rob)
Kidney (NL084)
Kidney (NL02)
Testis
Sm. Intest.

LAPC9

FIGURE 6

Legend: untranslated region of p5CA

translated region of p5CA

FIG. 8A

murine
p5CA

FIG. 8B

FIGURE 8

mature
p5CA

FIG. 8C

human
p5CA

PSCA / PSA Expression in Benign Prostate vs. Prostate Cancer Xenograft

FIGURE 9A

FIG. 9B

FIG. 10-1

FIG. 10-2

FIG. 10-3

FIG. 11A

DO NOT REMOVE FROM THIS SHEET

FIG. 11B

0 0 0 0 0 0 0 0 0 0 0 0

FIG. 11C

FIG. 12A

FIG. 12B

FIGURE 12C

PSCA Maps to Chromosome 8q24.2

Fluorescent
in Situ Hybridization
Analysis of PSCA

FIGURE 13

FIGURE 14

A

Epitope.map

mAb	Isotype	EL(18-98)	N(2-50)	M(46-109)	C(85-123)
1G8	IgG1	k	2.039	0.007	0.628
2H9	IgG1	k	1.318	0.863	0.032
3C5	IgG2a	k	2.893	1.965	0.016
3E6	IgG3	k	0.328	0.024	0.069
4A10	IgG2a	k	2.039	1.315	0.000
2A2	IgG2a	k	1.366	0.733	0.010
3G3	IgG2a	k	2.805	1.731	0.004

B1G8
2A2
3C5

FIGURE 15

Prostate Stem Cell Antigen (PSCA) is a GPI-anchored Protein

1	I F W P V D E L A A I L I G N R E A L I	hSCA-2
1	A G H R L A T Q M M A G D I A L I Q P G I T A	hPSCA
1	W T A M I F L D P E A T I T L A L I H P G I A A	mPSCA
21	M A C E S C C I D N Q I S N * Y C L P E I	
21	E C C C C K A Q I V S N E D C L I V V N *	
21	Q C C S C C T A Q I M N N P D C L I N V V N *	
41	C S C I C C I T V I A S A I I I	
41	C S C I C C I N T I A R I R A V G L I T	
41	C S C I C C I T I R I R A V G L I T	
61	V I - - - - - S K C S I A C I - - - - -	
61	V I - - - - - I S K G C S I I N C I V D D S	
61	V I - - - - - I S K G C S I I N C I S D D S	
81	W N T S G V A S H G I I S C C I Q S I F L C N *	
76	D W X Y T G R E K - N I I T C C C I Q S I F L C N *	
76	D W X Y T G R E K - N I I T C C C I V S D I F L C N *	
101	S A V D G I G A R A I S C I I L I L A A I L I L	
95	S A V D G I G A R A I S C I I L I L A A I L I L	
95	S A V D G I G A R A I S C I I L I L A A I L I L	
121	S T I P P A D I L R F	
115	S T I P P A D I L R F	
115	S T I P P A D I L R F	

(Reiter, R.E., et al., 1997, *PNAS*)

FIGURE 16

FISH Analysis of PSCA and c-myc in Prostate Cancer

Gain Chromosome 8

Amplification

R. Jenkins

FIGURE 17

FIGURE 18

FIGURE 19

FIGURE 20

PSCA Immunostaining of Primary Tumors

FIGURE 21

FIGURE 22

FIGURE 23

FIGURE 24

098663200000

Albion & PSC
1923/4 Her exp

FIGURE 25

FIGURE 26

FIGURE 27

PSCA Immunostaining of Bony Metastases

FIGURE 28

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

FIGURE 29

FIGURE 30

FIGURE 31

0 0 0 0 0 0 0 0 0 0 0

FIGURE 32

PSCA Expression in LAPC-9 Xenograft by FACS

FIGURE 33

FIGURE 34

Immunofluorescent Staining of LNCaP-PSCA Cells

FIGURE 35

FIGURE 36

FIGURE 37

Immunohistochemical Staining of Normal Prostate

Normal: Isotype Control

Normal: PSCA mAb 3E6

Normal: PSCA mAb 1G8

Atrophy: PSCA mAb 2H9

FIGURE 38

FIGURE 39

Targeting of Mouse PSCA Gene

B. Genomic Southern Analysis of ES Cells

- * ex1, 2, and 3 are the exons of PSCA gene.
- * Black boxes of ex2 and ex3 encode PSCA mature protein sequences.
- * ES genomic DNAs were digested with EcoRI, followed by Southern hybridization using 3' probe.

FIGURE 4C

Transgenic Mouse Models of Prostate Cancer

Transgene	Target tissues	Characteristics
C3(1) (-3 kb)/ SV40 large+small T <i>Maroulakou et al. 1994 PNAS</i>	prostate (secretory cells) urethral, mammary and sweat gland	Low-grade PIN 8-12 wks High-grade PIN 8-12 wks Invasive carcinoma 28 wks No metastases
Probasin (-426 bp)/ SV40 large+small T <i>Greenberg et al. 1995 PNAS</i>	prostate (secretory cells)	Low-grade PIN 5-8 wks High-grade PIN 8-12 wks Invasive carcinoma 12 wks Metastases in lymph node, lung, liver and bone
Cryptdin2 (-6.5 kb)/ SV40 large+small T <i>Garabedian et al. 1998 PNAS</i>	prostate (neuroendocrine cells) small intestine	Low-grade PIN 8-12 wks High-grade PIN 8-12 wks Invasive carcinoma 16 wks Metastases in lymph node, lung, liver and bone

Reporter Gene Constructs for Transfection Assay

FIGURE 42

FIGURE 43

Identification of Prostate-Specific Elements Within PSCA Promoter Sequences

FIGURE 44

Update of Transgenic Mouse Projects

FIGURE 45

Negative tissues

Stomach
Small intestine
Colon
Seminal Vesicle
Urethra
Testis
Liver
Kidney
Lung
Brain
Heart
Skeletal muscle
Ovary
Uterus

FIGURE 47

FIG. 48

A

FIG. 49

mAb	Isotype	F(18-98)	N(2-50)	M(46-109)	C(85-123)
1G8	IgG1	1.485	0.004	1.273	0.003
2A2	IgG2a	0.973	0.631	0.023	0.010
2H9	IgG1	1.069	1.026	0.002	0.001
3C5	IgG2a	1.916	1.709	0.006	0.002
3E6	IgG3	1.609	0.036	1.133	2.118
3G3	IgG2a	2.805	1.731	0.004	0.000
4A10	IgG2a	1.053	0.493	0.000	0.001

B

FIG. 50

A

Engineered mammalian secreted form

B

Anti-IgG2a HRP

Anti-PSCA mAbs 3C5+4A10+2A2 (IgG2a)

PSCA

Affinity purified anti-peptide polyclonal
+ mAb 1G8 (IgG1)

FIG. 51

A

B

<u>Sample</u>	<u>OD+range (n=2)</u>	<u>ng/ml</u>
vector	0.005+0.001	ND
vector+hu serum	0.004+0.001	ND
secPSCA	2.695+0.031	32.92
secPSCA+hu serum	2.187+0.029	26.55

FIG. 52

FIG. 53

FIG. 54

FIG. 55

FIG. 56

FIG. 57

FIG. 58

TGCTTCTCCTGATGGCAGTGGTTAGGAGTCAGAGGTTAGCTGCAGCAGTCT 60
C F F L M A V V I G V N S E V Q L Q Q S 20

GGGGCAGAACCTGTGAGGTCAAGGGCCTCAGTCAGTTGTCCTGCACAGCTCTGGCTTC 120
G A E L V R S G A S V K L S C T A S G F 40

CDR1
AACATTAAAGACTACTATACACTGGGTGAATCAGAGGCCTGACCAGGGCTGGAGTGG 180
N I K D Y Y I H W V N Q R P D Q G L E W 60

CDR2
ATTGGATGGATTGATCCTGAGAATGGTGACACTGAATTGTCCTCGAAGTTCCAGGGCAAG 240
I G W I D P E N G D T E F V P K F O G K 80

GCCACTATGACTGCAGACATTTCTCCAACACAGCCTACCTGCACCTCAGCAGCCTGACA 300
A T M T A D I F S N T A Y L H L S S L T 100

CDR3
TCTGAAGACACTGCCGTCTATTACTGTAAAACGGGGGGTTCTGGGGCCAAGGGACTCTG 360
S E D T A V Y Y C K T G G F W G Q G T L 120

GTCACTGTCTCTGCAGCCAAACGACACCCCCATCTGTCTATCCACTG
V T V S A A K T T P P S V Y P L

FIG. 59

TTGGTAGAACAGCCTCAGATGTCCACTCCCAGGTCCAAC TGCAACCTGGGTCTGAA 60
L V A T A S D V H S Q V Q L Q Q P G S E 20

CTGGTGAGGCCTGGAACCTTCAGTGAAGCTGTCCTGCAAGGCTCTGGCTATACATTCTCC 120
L V R P G T S V K L S C K A S G Y T F S 40
CDR1

AGCTACTGGATGCAC TGGTGAAGCAGAGGCCTGGACAAGGCC TTGAGTGGATTGGAAAT 180
S Y W M H W V K Q R P G Q G L E W I G N 60

ATTGACCCTGGTAGTGGTTACACTAACTACGCTGAGAACCTCAAGACCAAGGCCACACTG 240
I D P G S G Y T N X A E N L K T K A T L 80
CDR2

ACTGTAGACACATCCTCCAGCACAGCCTACATGCAGCTCAGCAGCCTGACATCTGAGGAC 300
T V D T S S S T A Y M Q L S S L T S E D 100

TCTGCAGTCTATTACTGTACAAGCCGATCTACTATGATTACGACGGGATTGCTTACTGG 360
S A V Y Y C T S R S T M I T T G F A Y W 120
CDR3

GGCCAAGGGACTCTGGTCACTGTCTCTGCAGCTACAACAAACAGCCCCATCTGTCTATCCA 420
G Q G T L V T V S A A T T T A P S V Y P 160

CTGGCC
L A

FIG. 60

AATGACTTCGGGTTGAGCTGGGTTTATTATTGTTCTTTAAAGGGGTCCGGAGTGAA 60
N D F G L S W V F I I V L L K G V R S E 20

GTGAGGCTTGAGGAGTCTGGAGGAGGCTGGGTGCAACCTGGAGGGATCCATGAAACTCTCC 120
V R L E E S G G G W V Q P G G S M K L S 40

TGTGTAGCCTCTGGATTTACTTCAGTAATTACTGGATGACTTGGGTCCGCCAGTCTCCA 180
C V A S G F T F S N Y W M T W V R Q S P 60
CDR1

GAGAAGGGGCTTGAGTGGGTTGCTGAAATTGAGATCTGAAAATTATGCAACACAT 240
E K G L E W V A E I R L R S E N Y A T H 80
CDR2

TATGCGGAGTCTGTGAAAGGGAAATTCAACCCTCAAGAGATGATTCCAGAACAGTC 300
Y A E S V K G K F T I S R D D S R S R L 100

TACCTGCAAATGAACAACTTAAGACCTGAAGACAGTGAATTATTACTGTACAGATGGT 360
Y L Q M N N L R P E D S G I Y Y C T D G 120

CTGGGACGACCTAACTGGGCCAAGGGACTCTGGTCACTGTCTCTGCAGCCAAACGACA 420
L G R P N W G Q G T L V T V S A A K T T 140
CDR3

CCCCCATCTGTCTATCCACTGGCCCTTGTGTA
P P S V Y P L A P C V

FIG. 61

CDR1 Comparisons

1G8	1gG _{1k}	Middle	G F N I K D Y Y I H
2H9	1gG _{1k}	N-Term.	G F T F S N Y W M T
4A10	1gG _{2ak}	N-Term.	G Y T F S S Y W M H

CDR2 Comparisons

1G8	1gG _{1k}	W I D P E N G D T E F V P K F Q G
2H9	1gG _{1k}	E I R L R S E N Y A T H Y A E S V K G
4A10	1gG _{2ak}	N I D P G S G Y T N Y A E N L K T

CDR3 Comparisons

1G8	1gG _{1k}	G G F
2H9	1gG _{1k}	L G R P N
4A10	1gG _{2ak}	R S T M I T T G F A Y

FIG. 62

FIG. 63

1. Prostate
2. LAPC-4 AD
3. LAPC-4 AI
4. LAPC-9 AD
5. LAPC-9 AI
6. PANC-1
7. BxPC-3
8. HPAC
9. Capan-1

FIG. 64

anti-1G8

1. LAPC-4 AD
2. LAPC-9 AI
3. LNCaP
4. LNCaP-PSCA

5. HPAC
6. Capan-1
7. ASPC-1

FIGURE 65

A)

B)

Figure 66

Figure 67

A)

B)

Figure 68

Figure 69

Figure 70

PSCA 3C5 MAb Localizes within LAPC9AD Xenograft Tissue

3C5 Treated

mIgG Treated

Figure 71

3C5 Anti-PSCA MAb is Localized to Established LAPC-9 Tumors

Western blot developed with α -mlgG/K

Figure 72

SPECIFIC TARGETING OF THE 1G8 ANTI-PSCA MAB TO ESTABLISHED LAPC-9 TUMORS

Method: Mice bearing established LAPC-9 tumors ($>100 \text{ mm}^3$) were injected with either mIgG or the anti-PSCA MAb 1G8. Tumors were harvested a week later and made into protein lysates for Western analysis.

Figure 73