AIDE-MÉMOIRE POUR L'EXAMEN 2

1. Lois usuelles

Lois discrètes	Fonction de masse	Espérance μ	Variance σ^2
Bernoulli (p)	$p(k) = p^k (1-p)^{1-k},$ pour $k = 0, 1$	p	p(1-p)
Binomiale (n, p)	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \text{pour } k = 0, 1, \dots, n$	np	np(1-p)
Géométrique (p)	$p(k) = (1-p)^{k-1}p,$ pour $k = 1, 2, 3,$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Pascal (r, p)	$p(k) = {k-1 \choose r-1} p^r (1-p)^{k-r}, \text{ pour } k = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
Poisson (c)	$p(k) = \frac{e^{-c}c^k}{k!},$ pour $k = 0, 1, 2,$	c	c

Lois continues	Fonction de	Espérance μ	Variance σ^2	
Uniforme (a, b)	$f(x) = \frac{1}{b-a},$	pour $a \le x \le b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
Exponentielle (λ)	$f(x) = \lambda e^{-\lambda x},$	pour $x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Gamma (r, λ)	$f(x) = \frac{\lambda}{\Gamma(r)} (\lambda x)^{r-1} e^{-\lambda x},$	pour $x > 0$	$\frac{r}{\lambda}$	$\frac{r}{\lambda^2}$
Normale (μ, σ^2)	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2},$	pour $-\infty < x < \infty$	μ	σ^2

$$\bullet \ E(aX+b) = aE(X) + b$$

•
$$V(X) = E(X^2) - [E(X)]^2$$

•
$$V(aX + b) = a^2V(X)$$

2. Somme de variables aléatoires

Conditions sur X_1, X_2, \dots, X_k	Loi de $Y = X_1 + X_2 + \dots + X_k$
Indépendantes, avec $X_j \sim \text{Bernoulli }(p)$	Binomiale (k, p)
Indépendantes, avec $X_j \sim \text{Binomiale } (n_j, p)$	Binomiale (n, p) avec $n = \sum_{j=1}^{k} n_j$
Indépendantes, avec $X_j \sim$ Géométrique (p)	Pascal (k, p)
Indépendantes, avec $X_j \sim \text{Pascal } (r_j, p)$	Pascal (r, p) avec $r = \sum_{j=1}^{k} r_j$
Indépendantes, avec $X_j \sim \text{Poisson}(c_j)$	Poisson (c) avec $c = \sum_{j=1}^{k} c_j$
Indépendantes, avec $X_j \sim \text{Exponentielle }(\lambda)$	Gamma (r, λ)
Indépendantes, avec $X_j \sim \text{Gamma}(r_j, \lambda)$	Gamma $(r_1 + + r_k, \lambda)$
Indépendantes, avec $X_j \sim \text{Normale } (\mu_j, \sigma_j^2)$	$N(\mu_1 + + \mu_k , \sigma_1^2 + + \sigma_k^2)$

Combinaisons linéaires de v.a. suivant une loi normale

Si $X_1, X_2, ..., X_n$ sont des variables aléatoires

 \rightarrow indépendantes,

 \rightarrow suivant une loi normale,

 \rightarrow de moyenne $E(X_i) = \mu_i$,

 \rightarrow de variance $V(X_i) = \sigma_i^2$,

 \rightarrow et si $a_1, ..., a_n$ sont des constantes,

alors

$$\sum_{i=1}^{n} a_i X_i \sim N\left(\sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2\right)$$

3. Théorème central limite

Si $X_1, X_2, ..., X_n$ sont des variables aléatoires

 \rightarrow indépendantes,

 \rightarrow identiquement distribuées (loi quel
conque),

 \rightarrow de moyenne $\mu < \infty$,

 \rightarrow de variance $\sigma^2 < \infty$,

 \rightarrow et si n est assez grand (disons $n \ge 30$),

alors $\sum_{j=1}^n X_j \approx N(n\mu, n\sigma^2)$

et

$$\overline{X} \approx N\left(\mu, \frac{\sigma^2}{n}\right).$$

(Si les X_j sont des variables aléatoires discrètes, on utilise une correction pour la continuité.)

4. Statistiques descriptives de l'échantillon observé $x_1, ..., x_n$

• Moyenne et variance échantillonnales

Туре	Moyenne	Variance
Données brutes	$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$
Données discrètes, groupées par modalité	$\overline{x} = \frac{1}{n} \sum_{j=1}^{k} f_j x_j$	$s^{2} = \frac{1}{n-1} \sum_{j=1}^{k} f_{j}(x_{j} - \overline{x})^{2}$
Données continues, groupées par intervalles	$\overline{x} \approx \frac{1}{n} \sum_{j=1}^{k} f_j m_j$	$s^{2} \approx \frac{1}{n-1} \sum_{j=1}^{k} f_{j} (m_{j} - \overline{x})^{2}$

– Pour les données groupées, f_j représente la fréquence (le nombre d'observations) pour la j^e modalité ou dans le j^e intervalle et m_j dénote le point milieu du j^e intervalle $(j = 1, \dots, k)$.

- Rappels:
$$\sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \quad \text{et} \quad \sum_{j=1}^{k} f_j (x_j - \overline{x})^2 = \sum_{j=1}^{k} f_j x_j^2 - n\overline{x}^2$$

• Quartiles échantillonnaux

Soit l'échantillon ordonné $x_{(1)}, x_{(2)}..., x_{(n)}$.

Les trois quartiles échantillonnaux sont définis comme suit :

$$Q1 = x_{(0,25n+0,5)}$$
 $Q2 = \tilde{x} = x_{(0,50n+0,5)}$ $Q3 = x_{(0,75n+0,5)}$

(Dans les cas où la position du quartile n'est pas entière, on prend la moyenne des deux observations les plus proches.)

• Représentations graphiques des variables continues

Diagramme en boîte

- Représentation graphique des quartiles, des barrières *observées* et des données extrêmes.
- Écart interquartile : EIQ = Q3 Q1.
- Les barrières théoriques inférieure et supérieure du diagramme en boîte sont : $b_{inf} = Q1 1.5 \times EIQ$ et $b_{sup} = Q3 + 1.5 \times EIQ$.

Histogramme

- Représentation graphique des fréquences de données groupées par intervalles.
- La surface des rectangles est proportionnelle à la fréquence des classes qu'ils représentent.

5. Estimation ponctuelle

Soit X_1, \ldots, X_n un échantillon aléatoire de taille n d'une population dont les paramètres sont inconnus.

Paramètre	Estimateur issu de l'échantillon	Espérance	Erreur-type de l'estimateur
μ	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$	μ	$\frac{\sigma}{\sqrt{n}}$
σ^2	$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$	σ^2	$\sqrt{\frac{2\sigma^4}{n-1}}$ $\left(\begin{array}{c} \text{seulement si} \\ X_1,, X_n \sim N(\mu, \sigma^2) \end{array}\right)$
p	$\hat{p} = \frac{\text{nombre de cas}}{n}$	p	$\sqrt{\frac{p(1-p)}{n}}$

6. Lois échantillonnales et intervalles de confiance

Intervalles de confiance pour la moyenne μ d'une population								
Situation	Loi échant.	Intervalle de niveau $1-\alpha$ pour μ						
$X_1, X_2,, X_n$ i.i.d. $N(\mu, \sigma^2)$ μ inconnue et σ^2 connue	$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0, 1)$	$\left[\overline{X} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}\right]$						
$X_1, X_2,, X_n \text{ i.i.d. } N(\mu, \sigma^2)$	$T = \frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$	$ \left[\overline{X} - t_{\alpha/2;n-1} \frac{S}{\sqrt{n}}, \overline{X} + t_{\alpha/2;n-1} \frac{S}{\sqrt{n}} \right] $						
μ et σ^2 inconnues	$E(T) = 0, V(T) = \frac{n-1}{n-3}$							
$X_1, X_2,, X_n$ i.i.d., loi quelconque,	$Z_* = \frac{\overline{X} - \mu}{S/\sqrt{n}} \approx N(0, 1)$	$\left[\overline{X} - z_{\alpha/2} \frac{S}{\sqrt{n}}, \overline{X} + z_{\alpha/2} \frac{S}{\sqrt{n}}\right]$						
μ et σ^2 inconnues, n grand		(intervalle approximatif)						

Intervalle de confiance pour la variance σ^2 d'une population									
Situation	Loi échant.	Intervalle de niveau $1 - \alpha$ pour σ^2							
$X_1, X_2,, X_n \text{ i.i.d. } N(\mu, \sigma^2)$	$U = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$	$\left[\frac{(n-1)S^2}{\chi^2_{\alpha/2;n-1}}, \frac{(n-1)S^2}{\chi^2_{1-\alpha/2;n-1}}\right]$							
μ et σ^2 inconnues	E(U) = n - 1, V(U) = 2(n - 1)								

Intervalle de confiance pour une proportion p								
Situation	Loi échant.	Intervalle approximatif de niveau $1 - \alpha$ pour p						
$X_1, X_2,, X_n$ i.i.d. Bernoulli (p) p inconnue et n grand	$\frac{\hat{p} - p}{\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}} \approx N(0, 1)$	$\left[\hat{p} - z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p} + z_{\alpha/2}\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right]$						

 Table II
 Les valeurs de la fonction de répartition de la loi normale centrée réduite*

$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{-u^2}{2}} du$											
	Deuxième décimale de z										
z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09	
0,0	0,500 00	0,503 99	0,507 98	0,511 97	0,515 95	0,519 94	0,523 92	0,527 90	0,531 88	0,535 86	
0,1	0,539 83	0,543 79	0,547 76	0,551,72	0,555 67	0,559 62	0,563 56	0,567 49	0,571 42	0,575 34	
0,2	0,579 26	0,583 17	0,587 06	0,590 95	0,594 83	0,598 71	0,602 57	0,606 42	0,610 26	0,614 09	
0,3	0,617 91	0,621 72	0,625 51	0,629 30	0,633 07	0,636 83	0,640 58	0,644 31	0,648 03	0,651 73	
0,4	0,655 42	0,659 10	0,662 76	0,666 40	0,670 03	0,673 64	0,677 24	0,680 82	0,684 38	0,687 93	
0,5	0,691 46	0,694 97	0,698 47	0,701 94	0,705 40	0,708 84	0,712 26	0,715 66	0,719 04	0,722 40	
0,6	0,725 75	0,729 07	0,732 37	0,735 65	0,738 91	0,742 15	0,745 37	0,748 57	0,751 75	0,754 90	
0,7	0,758 03	0,761 15	0,764 24	0,767 30	0,770 35	0,773 37	0,776 37	0,779 35	0,782 30	0,785 23	
0,8	0,788 14	0,791 03	0,793 89	0,796 73	0,799 54	0,802 34	0,805 10	0,807 85	0,810 57	0,813 27	
0,9	0,815 94	0,818 59	0,821 21	0,823 81	0,826 39	0,828 94	0,831 47	0,833 97	0,836 46	0,838 91	
1,0	0,841 34	0,843 75	0,846 13	0,848 49	0,850 83	0,853 14	0,855 43	0,857 69	0,859 93	0,862 14	
1,1	0,864 33	0,866 50	0,868 64	0,870 76	0,872 85	0,874 93	0,876 97	0,879 00	0,881 00	0,882 97	
1,2	0,884 93	0,886 86	0,888 77	0,890 65	0,892 51	0,894 35	0,896 16	0,897 96	0,899 73	0,901 47	
1,3	0,903 20	0,904 90	0,906 58	0,908 24	0,909 88	0,911 49	0,913 08	0,914 65	0,916 21	0,917 73	
1,4	0,919 24	0,920 73	0,922 19	0,923 64	0,925 06	0,926 47	0,927 85	0,929 22	0,930 56	0,931 89	
1,5	0,933 19	0,934 48	0,935 74	0,936 99	0,938 22	0,939 43	0,940 62	0,941 79	0,942 95	0,944 08	
1,6	0,945 20	0,946 30	0,947 38	0,948 45	0,949 50	0,950 53	0,951 54	0,952 54	0,953 52	0,954 48	
1,7	0,955 43	0,956 37	0,957 28	0,958 18	0,959 07	0,959 94	0,960 80	0,961 64	0,962 46	0,963 27	
1,8	0,964 07	0,964 85	0,965 62	0,966 37	0,967 11	0,967 84	0,968 56	0,969 26	0,969 95	0,970 62	
1,9	0,971 28	0,971 93	0,972 57	0,973 20	0,973 81	0,974 41	0,975 00	0,975 58	0,976 15	0,976 70	
2,0	0,977 25	0,977 78	0,978 31	0,978 82	0,979 32	0,979 82	0,980 30	0,980 77	0,981 24	0,981 69	
2,1	0,982 14	0,982 57	0,983 00	0,983 41	0,983 82	0,984 22	0,984 61	0,985 00	0,985 37	0,985 74	
2,2	0,986 10	0,986 45	0,986 79	0,987 13	0,987 45	0,987 78	0,988 09	0,988 40	0,988 70	0,988 99	

Première décimale de z

*Les valeurs figurant dans cette table sont celles de $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du$, où $Z \sim N(0, 1)$. La première décimale de z est indiquée dans la 1^{re} colonne, et sa deuxième décimale est indiquée sur la 1^{re} ligne. Par exemple, $\Phi(1,23) = 0.890$ 65.

Table III Les quantiles de la loi du khi-carré*

					Proba	ıbilité					
v α	0,995	0,990	0,975	0,950	0,900	0,500	0,100	0,050	0,025	0,010	0,005
1	0,00+	0,00+	0,00+	0,00+	0,02	0,45	2,71	3,84	5,02	6,63	7,88
2	0,01	0,02	0,05	0,10	0,21	1,39	4,61	5,99	7,38	9,21	10,60
3	0,07	0,11	0,22	0,35	0,58	2,37	6,25	7,81	9,35	11,34	12,84
4	0,21	0,30	0,48	0,71	1,06	3,36	7,78	9,49	11,14	13,28	14,86
5	0,41	0,55	0,83	1,15	1,61	4,35	9,24	11,07	12,83	15,09	16,75
6	0,68	0,87	1,24	1,64	2,20	5,35	10,65	12,59	14,45	16,81	18,55
7	0,99	1,24	1,69	2,17	2,83	6,35	12,02	14,07	16,01	18,48	20,28
8	1,34	1,65	2,18	2,73	3,49	7,34	13,36	15,51	17,53	20,09	21,96
9	1,73	2,09	2,70	3,33	4,17	8,34	14,68	16,92	19,02	21,67	23,59
10	2,16	2,56	3,25	3,94	4,87	9,34	15,99	18,31	20,48	23,21	25,19
11	2,60	3,05	3,82	4,57	5,58	10,34	17,28	19,68	21,92	24,72	26,76
12	3,07	3,57	4,40	5,23	6,30	11,34	18,55	21,03	23,34	26,22	28,30
13	3,57	4,11	5,01	5,89	7,04	12,34	19,81	22,36	24,74	27,69	29,82
14	4,07	4,66	5,63	6,57	7,79	13,34	21,06	23,68	26,12	29,14	31,32
15	4,60	5,23	6,27	7,26	8,55	14,34	22,31	25,00	27,49	30,58	32,80
16	5,14	5,81	6,91	7,96	9,31	15,34	23,54	26,30	28,85	32,00	34,27
17	5,70	6,41	7,56	8,67	10,09	16,34	24,77	27,59	30,19	33,41	35,72
18	6,26	7,01	8,23	9,39	10,87	17,34	25,99	28,87	31,53	34,81	37,16
19	6,84	7,63	8,91	10,12	11,65	18,34	27,20	30,14	32,85	36,19	38,58
20	7,43	8,26	9,59	10,85	12,44	19,34	28,41	31,41	34,17	37,57	40,00
21	8,03	8,90	10,28	11,59	13,24	20,34	29,62	32,67	35,48	38,93	41,40
22	8,64	9,54	10,98	12,34	14,04	21,34	30,81	33,92	36,78	40,29	42,80
23	9,26	10,20	11,69	13,09	14,85	22,34	32,01	35,17	38,08	41,64	44,18
24	9,89	10,86	12,40	13,85	15,66	23,34	33,20	36,42	39,36	42,98	45,56
25	10,52	11,52	13,12	14,61	16,47	24,34	34,28	37,65	40,65	44,31	46,93
26	11,16	12,20	13,84	15,38	17,29	25,34	35,56	38,89	41,92	45,64	48,29
27	11,81	12,88	14,57	16,15	18,11	26,34	36,74	40,11	43,19	46,96	49,65
28	12,46	13,57	15,31	16,93	18,94	27,34	37,92	41,34	44,46	48,28	50,99
29	13,12	14,26	16,05	17,71	19,77	28,34	39,09	42,56	45,72	49,59	52,34
30	13,79	14,95	16,79	18,49	20,60	29,34	40,26	43,77	46,98	50,89	53,67
40	20,71	22,16	24,43	26,51	29,05	39,34	51,81	55,76	59,34	63,69	66,77
50	27,99	29,71	32,36	34,76	37,69	49,33	63,17	67,50	71,42	76,15	79,49
60	35,53	37,48	40,48	43,19	46,46	59,33	74,40	79,08	83,30	88,38	91,95
70	43,28	45,44	48,76	51,74	55,33	69,33	85,53	90,53	95,02	100,42	104,22
80	51,17	53,54	57,15	60,39	64,28	79,33	96,58	101,88	106,63	112,33	116,32
90	59,20	61,75	65,65	69,13	73,29	89,33	107,57	113,14	118,14	124,12	128,30
100	67,33	70,06	74,22	77,93	82,36	99,33	118,50	124,34	129,56	135,81	140,17

^{*}Les valeurs figurant dans cette table sont les quantiles $\mathcal{X}^2_{\alpha;\nu}$ tels que $P(U > \mathcal{X}^2_{\alpha;\nu}) = \alpha$, où $U \sim \mathcal{X}^2_{\nu}$.

Table IV Les quantiles de la loi t de Student*

					Prol	oabilité				
v	0,40	0,25	0,10	0,05	0,025	0,01	0,005	0,0025	0,001	0,0005
1	0,325	1,000	3,078	6,314	12,706	31,821	63,657	127,32	318,31	636,62
2	0,289	0,816	1,886	2,920	4,303	6,965	9,925	14,089	23,326	31,598
3	0,277	0,765	1,638	2,353	3,182	4,541	5,841	7,453	10,213	12,924
4	0,271	0,741	1,533	2,132	2,776	3,747	4,604	5,598	7,173	8,610
5	0,267	0,727	1,476	2,015	2,571	3,365	4,032	4,773	5,893	6,869
6	0,265	0,718	1,440	1,943	2,447	3,143	3,707	4,317	5,208	5,959
7	0,263	0,711	1,415	1,895	2,365	2,998	3,499	4,029	4,785	5,408
8	0,262	0,706	1,397	1,860	2,306	2,896	3,355	3,833	4,501	5,041
9	0,261	0,703	1,383	1,833	2,262	2,821	3,250	3,690	4,297	4,781
10	0,260	0,700	1,372	1,812	2,228	2,764	3,169	3,581	4,144	4,587
11	0,260	0,697	1,363	1,796	2,201	2,718	3,106	3,497	4,025	4,437
12	0,259	0,695	1,356	1,782	2,179	2,681	3,055	3,428	3,930	4,318
13	0,259	0,694	1,350	1,771	2,160	2,650	3,012	3,372	3,852	4,221
14	0,258	0,692	1,345	1,761	2,145	2,624	2,977	3,326	3,787	4,140
15	0,258	0,691	1,341	1,753	2,131	2,602	2,947	3,286	3,733	4,073
16	0,258	0,690	1,337	1,746	2,120	2,583	2,921	3,252	3,686	4,015
17	0,257	0,689	1,333	1,740	2,110	2,567	2,898	3,222	3,646	3,965
18	0,257	0,688	1,330	1,734	2,101	2,552	2,878	3,197	3,610	3,922
19	0,257	0,688	1,328	1,729	2,093	2,539	2,861	3,174	3,579	3,883
20	0,257	0,687	1,325	1,725	2,086	2,528	2,845	3,153	3,552	3,850
21	0,257	0,686	1,323	1,721	2,080	2,518	2,831	3,135	3,527	3,819
22	0,256	0,686	1,321	1,717	2,074	2,508	2,819	3,119	3,505	3,792
23	0,256	0,685	1,319	1,714	2,069	2,500	2,807	3,104	3,485	3,767
24	0,256	0,685	1,318	1,711	2,064	2,492	2,797	3,091	3,467	3,745
25	0,256	0,684	1,316	1,708	2,060	2,485	2,787	3,078	3,450	3,725
26	0,256	0,684	1,315	1,706	2,056	2,479	2,779	3,067	3,435	3,707
27	0,256	0,684	1,314	1,703	2,052	2,473	2,771	3,057	3,421	3,690
28	0,256	0,683	1,313	1,701	2,048	2,467	2,763	3,047	3,408	3,674
29	0,256	0,683	1,311	1,699	2,045	2,462	2,756	3,038	3,396	3,659
30	0,256	0,683	1,310	1,697	2,042	2,457	2,750	3,030	3,385	3,646
40	0,255	0,681	1,303	1,684	2,021	2,423	2,704	2,971	3,307	3,551
60	0,254	0,679	1,296	1,671	2,000	2,390	2,660	2,915	3,232	3,460
120	0,254	0,677	1,289	1,658	1,980	2,358	2,617	2,860	3,160	3,373
∞	0,253	0,674	1,282	1,645	1,960	2,326	2,576	2,807	3,090	3,291

Source: E. S. Pearson et H. O. Hartley, 1966, *Biometrika Tables for Statisticians*, 3e éd., Cambridge: Cambridge University Press, vol. 1. Table adaptée avec l'autorisation des administrateurs de Biometrika.

*Les valeurs figurant dans cette table sont les quantiles $t_{\alpha;\,v}$ tels que $P(T>t_{\alpha;\,v})=\alpha$, où $T\sim t_v$.