DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 1

Probabilistic Modeling

Probabilistic Modeling

- Where does data come from?
- We might imagine that "Nature" generates it using some random (i.e., probabilistic) process.
- Maybe modeling this probabilistic process will suggest new ways of making predictions?

Example: Flowers

- Suppose there are two species of flower.
- One species tends to have more petals.
- Goal: Given a new flower with X = x petals predict its species, Y.

Example: Flowers

► **Idea:** The number of petals, *X*, and the species, *Y*, are **random variables**.

► **Assumption**: When Nature generates a new flower, it picks *X* and *Y* from some **probability distribution**.

Let's imagine (for now) that we know this distribution.

The Joint Distribution

The **joint distribution** $\mathbb{P}(X = x, Y = y)$ gives us full information.

	Y = 0	Y = 1
X = 0	0%	0%
X = 1	5%	0%
X = 2	10%	5%
X = 3	15%	15%
X = 4	5%	20%
X = 5	0%	15%
X = 6	0%	10%

Observation

- ▶ The entries of the joint distribution table sum to 100%.
- Mathematically: $\sum_{x \in \{0,1,...,6\}} \sum_{y \in \{0,1\}} \mathbb{P}(X = x, Y = y) = 1.$

	Y = 0	Y = 1
X = 0	0%	0%
X = 1	5%	0%
X = 2	10%	5%
X = 3	15%	15%
X = 4	5%	20%
X = 5	0%	15%
<i>X</i> = 6	0%	10%

What is the probability that a new flower has X = 4 petals (regardless of species)?

	Y = 0	Y = 1
X = 0	0%	0%
X = 1	5%	0%
X = 2	10%	5%
X = 3	15%	15%
X = 4	5%	20%
X = 5	0%	15%
<i>X</i> = 6	0%	10%

- The marginal distribution for X is found by summing over values of Y.
- ► That is: $\mathbb{P}(X = x) = \sum_{y \in \{0,1\}} P(X = x, Y = y)$

	Y = 0	Y = 1
X = 0	0%	0%
X = 1 X = 2	5% 10%	0% 5%
X = 3	15%	15%
X = 4 X = 5	5% 0%	20% 15%
<i>X</i> = 6	0%	10%

ioint

X = 0 0% X = 1 5% X = 2 15% X = 3 30% X = 4 25% X = 5 15% X = 6 10%

marginal in X

What is the probability that a new flower is species 1 (regardless of number of petals)?

	Y = 0	Y = 1
X = 0	0%	0%
X = 1	5%	0%
X = 2	10%	5%
X = 3	15%	15%
X = 4	5%	20%
X = 5	0%	15%
X = 6	0%	10%

- ► The marginal distribution for Y is found by summing over values of X.
- ► That is: $\mathbb{P}(Y = y) = \sum_{x \in \{0,...,6\}} P(X = x, Y = y)$

	Y = 0	Y = 1
X = 0 $X = 1$ $X = 2$	0% 5% 10%	0% 0% 5%
X = 3	15%	15%
X = 4 $X = 5$ $X = 6$	5% 0% 0%	20% 15% 10%

joint

Observation

► The probabilities in the marginal distributions also sum to 1.

Exercise

Suppose flower A has 4 petals. What do you predict its species to be?

	Y = 0	Y = 1
X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6	0% 5% 10% 15% 5% 0%	0% 0% 5% 15% 20% 15% 10%

Intuition

It seems **more likely** that a petal with 4 flowers is from species 1.

	Y = 0	Y = 1
X = 0 X = 1 X = 2 X = 3 X = 4 X = 5 X = 6	0% 5% 10% 15% 5% 0%	0% 0% 5% 15% 20% 15%

Conditional Probabilities

This is captured by the **conditional probability** $\mathbb{P}(Y = v \mid X = x) = \mathbb{P}(X = x, Y = v) / \mathbb{P}(X = x)$.

	Y = 0	<i>Y</i> = 1
X = 0	0%	0%
X = 1	5%	0%
X = 2	10%	5%
X = 3	15%	15%
X = 4	5%	20%
X = 5	0%	15%
X = 6	0%	10%
	'	
	joint	
	Joint	

Conditional Probabilities

► The conditional probability

$$\mathbb{P}(X=x\mid Y=y)=\mathbb{P}(X=x,Y=y)/\mathbb{P}(Y=y).$$

X = 1 5 $X = 2$ 10 $X = 3$ 15)% 09 5% 09	%
	5% 59 5% 159 5% 209 5% 159	%

$$\begin{array}{c|cccc} \mathbb{P}(X=x \mid Y=0) \\ X=0 & 0\% \\ X=1 & 14.2\% \\ X=2 & 28.5\% \\ X=3 & 42.8\% \\ X=3 & 42.8\% \\ X=4 & 14.2\% \\ X=5 & 0\% \\ X=6 & 0\% \\ \end{array}$$

joint

Observation

- ► Conditional probabilities sum to 1 as well.
- For any fixed *x*:

$$\sum_{Y} \mathbb{P}(Y = y \mid X = x) = 1$$

For any fixed *y*:

$$\sum_{X} \mathbb{P}(X = X \mid Y = y) = 1$$

Five Distributions

- ► We've seen five distributions:
 - ▶ Joint: $\mathbb{P}(X = x, Y = y)$
 - ► Marginal in X: $\mathbb{P}(X = x)$
 - ► Marginal in Y: $\mathbb{P}(Y = y)$
 - ightharpoonup Conditional on X: $\mathbb{P}(Y = y \mid X = x)$
 - ► Conditional on Y: $\mathbb{P}(X = x \mid Y = y)$
- If we know the **joint** distribution, we can compute any of the others.

Bayes' Theorem

Bayes' Theorem relates conditional probabilities and provides another way of computing them:

$$\mathbb{P}(Y=y\mid X=x)=\frac{\mathbb{P}(X=x\mid Y=y)\mathbb{P}(Y=y)}{\mathbb{P}(X=x)}$$

Bayes' Theorem

Derivation:

Bayes Decision Theory

- ► **Goal**: Given a new flower with *X* = *x* petals, predict its species, *Y*.
- ▶ **Idea**: Predict species 1 if $\mathbb{P}(Y = 1 \mid X = x) > \mathbb{P}(Y = 0 \mid X = x)$; otherwise predict species 0.
- ► That is, pick whichever species is more likely.

Bayes Classification Rule

- ► This is the **Bayes classification rule**:
 - Predict class 1 if $\mathbb{P}(Y = 1 \mid X = x) > \mathbb{P}(Y = 0 \mid X = x)$;
 - Otherwise, predict class 0.

Bayes Decision Theory

- Using Bayes' rule, $\mathbb{P}(Y = y \mid X = x) = \mathbb{P}(X = x \mid Y = y)\mathbb{P}(Y = y)/\mathbb{P}(X = x)$
- Bayes classification rule (original form):
 - Predict class 1 if $\mathbb{P}(Y = 1 \mid X = x) > \mathbb{P}(Y = 0 \mid X = x)$;
 - Otherwise, predict class 0.
- **Bayes classification rule** (alternative form):
 - Predict class 1 if $\mathbb{P}(X = x \mid Y = 1)\mathbb{P}(Y = 1) > \mathbb{P}(X = x \mid Y = 0)\mathbb{P}(Y = 0)$
 - Otherwise, predict class 0.

Main Idea

If we know the conditional probability of the label Y given feature X, the Bayes classification rule is a natural way to make predictions.

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 2

Continuous Distributions

Example: Penguins

- Suppose there are two species of penguin.
- One species tends to have longer flippers.
- Goal: given a new penguin with flipper length X = x, predict its species, Y.

Five Distributions

- In this situation, what do the five distributions look like?
 - Joint distribution of X and Y
 - Marginal distribution in X
 - Marginal distribution in Y
 - Conditional on X
 - Conditional on Y

Marginal in Y

- What is the probability that Nature generates a penguin from species Y?
 - ► Marginal distribution: $\mathbb{P}(Y = y)$.
- This is a discrete distribution, as before.
- Example:

Marginal in X

- What is the probability that Nature generates a flipper length of x, without regard to species?
- Flipper length is a **continuous** random variable.
- ▶ Distribution is described by a **probability density** function (pdf), $p : \mathbb{R} \to \mathbb{R}^+$.

Recall: Density Functions

A probability density function (pdf) for a random variable X is a function $p : \mathbb{R} \to \mathbb{R}^+$ satisfying:

$$\mathbb{P}(a < X < b) = \int_a^b p_X(x) \, dx$$

- That is, the pdf p describes how likely it is to get a value of X in any interval [a, b].
- Note: $\int_{-\infty}^{\infty} p_X(x) dx = 1$, but p(x) can be larger than one.

Marginal in X

The distribution of flipper lengths is described by a density function, $p_X(x)$.

Exercise

What is the probability that Nature generates a penguin with flipper length equal to 10 cm?

Solution

Zero!

- $\triangleright p_X(x)$ is **not** the probability that X = x.
- Instead, $\mathbb{P}(X = x) = \mathbb{P}(x < X < x) = \int_x^X p_X(x) dx = 0$
- ► The **probability** of a continuous random variable being *exactly* a certain value is zero.

Example

What is the probability that Nature generates a penguin whose flipper length is between 7.5 and 10 cm?

$$\mathbb{P}(7.5 < X < 10) = \int_{7.5}^{10} p_X(x) \, dx$$

Conditional on Y

- What is the probability of a certain flipper length, given that the species is y?
- Also a continuous distribution, described by conditional density p(x | Y = y).
- Two conditional density functions: one for Y = 0 and one for Y = 1.
 - Each integrates to one.

Conditional on Y

Conditional on *X*

- What is the probability that the species is y given a flipper length of x?
- ► The conditional distribution of Y given X.

Exercise

Is this distribution continuous or discrete?

Conditional on X

- Answer: discrete, because Y is discrete.
- One distribution P(Y = y | X = x) for each possible value of X (infinitely many).

Conditional on X

Although for any fixed x, $\mathbb{P}(Y = y \mid X = x)$ is discrete, we can plot the functions $f_0(x) = \mathbb{P}(Y = 0 \mid X = x)$ and $f_1(x) = \mathbb{P}(Y = 1 \mid X = x)$

Bayes' Rule

► Bayes' Rule applies to densities, too:

$$\mathbb{P}(Y = y \mid X = x) = \frac{p(x \mid Y = y)\mathbb{P}(Y = y)}{p_x(x)}$$

Bayes Decision Theory

- Bayes classification rule:
 - Predict class 1 if $\mathbb{P}(Y = 1 \mid X = x) > \mathbb{P}(Y = 0 \mid X = x)$;
 - Otherwise, predict class 0.
- Bayes classification rule (alternative form):
 - Predict class 1 if $p(x \mid Y = 1)\mathbb{P}(Y = 1) > p(X = x \mid Y = 0)\mathbb{P}(Y = 0)$
 - Otherwise, predict class 0.

Exercise

Penguins with flippers of length 0, 3, and 12 are observed. What are their predicted species according to the Bayes' classification rule?

Joint

- ► The **joint** distribution in this case is neither totally continuous nor totally discrete.
- From Bayes' rule:

$$p(x, 0) = p(x | Y = 0)\mathbb{P}(Y = 0)$$

 $p(x, 1) = p(x | Y = 1)\mathbb{P}(Y = 1)$

Joint Distribution

Exercise

Where does the Bayes decision rule make a prediction for class 1?

- Predict class 1 if $p(x | Y = 1)\mathbb{P}(Y = 1) > p(X = x | Y = 0)\mathbb{P}(Y = 0)$
- Otherwise, predict class 0.

Multivariate Distributions

- ► In binary classification, $y \in \{0, 1\}$.
- ▶ But we usually deal with feature vectors, \vec{x} .
- The previous applies with straightforward changes.

Example: Penguins

- Again consider penguins of two species, but now consider both flipper length and body mass.
- Each penguin's measurements are a random vector: X.
- Densities are now functions of a vector.
 - ► E.g., marginal: $p_x(\vec{x}) : \mathbb{R}^2 \to \mathbb{R}^+$

Marginal in \vec{X}

Conditional on Y

Conditional on *X*

DSC 140A Probabilistic Modeling & Machine Kearning

Lecture 8 | Part 3

Bayes Error

Bayes Error

- ► If we know the joint distribution, the Bayes classification rule is a natural approach to making predictions.
- It is also the **best you can do**, in a sense.

Intuition

Error Probability

- In binary classification, there are two kinds of errors:
 - Predicted 0, but the right answer is 1 (Case 1).
 - Predicted 1, but the right answer is 0 (Case 2).
- The probability of an error is:

$$\mathbb{P}(\text{error}) = \mathbb{P}(\text{Case 1}) + \mathbb{P}(\text{Case 2})$$

Example

- Case 1: Predicted 0, but the right answer is 1.
- Case 2: Predicted 1, but the right answer is 0.

Example

- Case 1: Predicted 0, but the right answer is 1.
- Case 2: Predicted 1, but the right answer is 0.

Optimality

- The Bayes decision rule achieves the minimum possible error probability.
 - ► Sometimes called the Bayes classifier.
- In most cases, the minimum possible error probability is >0.

What's next?

- ► The Bayes classifier is optimal.
- But it requires knowing the joint distribution; we almost never know this.
- Next time: **estimating** probability distributions from data.