DIAGNOSIS ON EMBEDDED SYSTEMS

Riccardo Orizio

Prof. Gregory Provan

Department of Computer Science University College Cork

16 May 2017

THREE TANKS

Diagnosis of errors in high-fidelity models using a data-driven approach

THREE TANKS

Differential equation:
$$\delta(h_i) = \frac{in_i - out_i}{h_{max}}$$

NON LINEAR MODEL:

$$out_i = \mathsf{Valve}_i \cdot \sqrt{\max(0, 2 \cdot g \cdot h_{max} \cdot (h_i - h_{i+1}))}$$

LINEAR MODEL:

$$out_i = \mathsf{Valve}_i \cdot \max(0, 2 \cdot g \cdot h_{max} \cdot (h_i - h_{i+1}))$$

THREE TANKS SIMULATION

CORRECTION FUNCTION

Types of problems

- Valve problems

Types of problems

- Valve problems
- Different type of inputs

Types of problems

- Valve problems
- Different type of inputs
- Combinations of the above

VALVE PROBLEMS

DIFFERENT INPUTS

COMBINATIONS OF ISSUES

BEST CORRECTIVE FUNCTION

Can we find the best corrective function for our linear model?

BEST CORRECTIVE FUNCTION

Can we find the best corrective function for our linear model?

We are looking for a corrective function that could work in anytime for anything

Combine different corrective function and find the optimal between them

OBSERVATIONS

- Multi issues independent

OBSERVATIONS

- Multi issues independent
- Initial adapting time

OBSERVATIONS

- Multi issues independent
- Initial adapting time
- Require smoothing on spikes

DIAGNOSIS

Reversing the process and try to understand which issue has arisen knowing how the surrogate model behaved in that scenario

DIAGNOSIS

Reversing the process and try to understand which issue has arisen knowing how the surrogate model behaved in that scenario

SERIES OF SVM : train an SVM for each known problem and use it to identify it when it occurs

NEURAL NETWORK

