# **Amplificador Operacional - CIA 2024**

### 1 Descrição

O Amplificador operacional abordado neste *datasheet* foi desenvolvido durante a disciplina de *Circuitos Integrados Analógicos*, ministrada pelo professor Cesar Augusto Prior no primeiro semestre de 2024.

O dispositivo pode ser utilizado para construção de circuitos que necessitam de um aplificador operacional, uma vez que possui um ganho de tensão elevado e uma estabilidade garantida pelos valores de margem de ganho e margem de fase.

O circuito integrado foi projetado utilizando a ferramenta *Virtuoso* com a biblioteca *gpdk45*.

### 2 Aplicações

- Comparadores
- Multivibradores
- · Amplificadores DC
- Filtros ativos
- Amplificadores somadores
- Integradores ou diferenciadores



Figura 1: Aplicação típica (amplifcador inversor)

## Sumário

| 1                                                 | Descrição                                                   | 1  |  |  |  |  |  |  |  |  |
|---------------------------------------------------|-------------------------------------------------------------|----|--|--|--|--|--|--|--|--|
| 2                                                 | 2 Aplicações                                                |    |  |  |  |  |  |  |  |  |
| 3 Especificações técnicas<br>4 Diagrama de Blocos |                                                             |    |  |  |  |  |  |  |  |  |
|                                                   |                                                             |    |  |  |  |  |  |  |  |  |
| 6 Análise DC                                      |                                                             |    |  |  |  |  |  |  |  |  |
|                                                   | 6.1 Ganho e Offset                                          | 5  |  |  |  |  |  |  |  |  |
|                                                   | 6.2 CMIR - Faixa de entrada em modo comum                   | 5  |  |  |  |  |  |  |  |  |
|                                                   | 6.3 Output Swing - Faixa de saída                           | 6  |  |  |  |  |  |  |  |  |
| 7                                                 | Análise AC                                                  | 7  |  |  |  |  |  |  |  |  |
|                                                   | 7.1 Estabilidade do circuito                                | 8  |  |  |  |  |  |  |  |  |
|                                                   | 7.2 Margem de ganho                                         | 9  |  |  |  |  |  |  |  |  |
|                                                   | 7.3 Margem de fase                                          | 9  |  |  |  |  |  |  |  |  |
|                                                   | 7.4 Frequência de corte e GBW (Produto de Largura de Banda) | 10 |  |  |  |  |  |  |  |  |
|                                                   | 7.5 CMRR (Taxa de Rejeição de Modo Comum)                   | 10 |  |  |  |  |  |  |  |  |
|                                                   | 7.6 PSRR (Taxa de Rejeição de Fonte de Alimentação)         | 11 |  |  |  |  |  |  |  |  |
| 8                                                 | Análise Transiente                                          | 12 |  |  |  |  |  |  |  |  |
|                                                   | 8.1 Settling Time                                           | 13 |  |  |  |  |  |  |  |  |
|                                                   | 8.2 Slew Rate                                               | 13 |  |  |  |  |  |  |  |  |

## 3 Especificações técnicas

| Propriedade          | Valor   | Unidade        |
|----------------------|---------|----------------|
| Power voltage        | 2       | $\overline{V}$ |
| Consumo              | 0.53    | mW             |
| Ganho DC             | 1235    |                |
| Offset DC            | 1       | V              |
| CMIR                 | 0 - 1.9 | V              |
| Output Swing         | 1.9 - 0 | V              |
| Ganho (malha aberta) | 61.8    | dB             |
| Margem de ganho      | 13.91   | dB             |
| Margem de fase       | 55.59   | graus (°)      |
| Frequência de corte  | 63      | kHz            |
| GBW                  | 77.8    | MHz            |
| CMRR                 | 64.9    | dB             |
| $PSRR_{DC}$          | 66.35   | dB             |
| Settling Time        | 38.5    | ns             |
| Slew Rate            | 72      | $\frac{V}{uS}$ |

Tabela 1: Especificações técnicas

## 4 Diagrama de Blocos



Figura 2: Diagrama de blocos no Virtuoso

| Mosfet | W                           | L             | Mult | lds    | Vgs    | Vds    | Gm                  | Rout        | Região*   |
|--------|-----------------------------|---------------|------|--------|--------|--------|---------------------|-------------|-----------|
| Mosiet | <b>(</b> <i>um</i> <b>)</b> | ( <i>um</i> ) | Muit | (uA)   | (mv)   | (mv)   | <b>(</b> S <b>)</b> | $(k\Omega)$ | (0, 1, 2) |
| M0     | 10u                         | 800n          | 1    | 23.39  | 594.96 | 993.30 | 321.3u              | 270.44      | 2         |
| M1     | 5.5u                        | 800n          | 1    | 23.39  | 601.6  | 606.1  | 242.52u             | 202.13      | 2         |
| M2     | 5.5u                        | 800n          | 1    | 23.39  | 601.6  | 606.1  | 242.52u             | 202.16      | 2         |
| M3     | 5.66u                       | 800n          | 8    | 208.62 | 601.3  | 1.04   | 2.1m                | 28.59       | 2         |
| M4     | 10u                         | 800n          | 1    | 23.39  | 594.96 | 993.30 | 321.3u              | 270.44      | 2         |
| M5     | 1u                          | 800n          | 5    | 46.79  | 678.6  | 405    | 361.14u             | 65.52       | 2         |
| M6     | 1u                          | 800n          | 1    | 10     | 678.6  | 678.6  | 76u                 | 541.94      | 2         |
| M7     | 1u                          | 800n          | 1    | 208.62 | 678.6  | 951.29 | 1.56m               | 36          | 2         |

Tabela 2: Tabela de parâmetros dos dispositivos

## 5 Layout



Figura 3: Layout do circuito na ferramenta Virtuoso

<sup>\*</sup> Regiões 0, 1 e 2 representam corte, triodo e saturação, respectivamente. A capacitância C0 possui valor de 0.5pF.

#### 6 Análise DC

#### 6.1 Ganho e Offset

Para esta análise, foi realizada uma varredura de 0V a 2V no nível DC da entrada não-inversora enquanto a entrada inversora foi mantida em 1V DC. O circuito está apresentado na figura a seguir:



Figura 4: Esquemático do circuito de teste de ganho e offset DC no Virtuoso



Figura 5: Offset DC (gáfico superior) e ganho DC (gráfico inferior)

#### 6.2 CMIR - Faixa de entrada em modo comum

Para a análise da CMIR, foi construído um amplificador de ganho unitário no qual a entrada não inversora sofreu uma variação linear de 0V a 2V.



Figura 6: Esquemático do circuito de teste de CMIR no Virtuoso



Figura 7: Gráfico da faixa de entrada em modo comum

### 6.3 Output Swing - Faixa de saída

Para a análise da faixa de saída, foi construído um amplificador inversor.



Figura 8: Esquemático do circuito de teste da faixa de saída Virtuoso



Figura 9: Gráfico da faixa de saída

### 7 Análise AC

Para os testes de estabilidade e resposta em frequência (5.1, 5.2, 5.3 e 5.4), foi mantido o nível DC de 1V em ambas as fontes enquanto foi realizada uma varredura em frequência na entrada não-inversora de 1G a 10G com 10 pontos por década.



Figura 10: Esquemático do circuito de estabilidade e resposta em frequência no Virtuoso

#### 7.1 Estabilidade do circuito



Figura 11: Marcadores nos pontos de ganho igual 0dB e inversão de fase, respetivamente.

Conforme apresentado na figura anterior, o circuito do amplificador operacional estudado é estável, uma vez que a frequência na qual ocorre a inversão de fase (239.1MHz) é superior a frequência na qual o ganho é 0dB (72.27MHz).

### 7.2 Margem de ganho



Figura 12: Gráfico da margem de ganho

### 7.3 Margem de fase



Figura 13: Gráfico da margem de fase

#### 7.4 Frequência de corte e GBW (Produto de Largura de Banda)



Figura 14: Gráfico da frequência de corte

O produto de largura de banda é:

$$GBW = Av_{DC} \cdot f_c = 1235 \cdot 63kHz = 77.8MHz$$

### 7.5 CMRR (Taxa de Rejeição de Modo Comum)

Para a taxa de rejeição em modo comum, a varredura em frequência foi realizada em ambas as fontes de sinal de entrada.



Figura 15: Esquemático de CMRR Virtuoso



Figura 16: Gráfico da taxa de rejeição em modo comum

#### 7.6 PSRR (Taxa de Rejeição de Fonte de Alimentação)

Para a taxa de rejeição em modo comum, a varredura em frequência foi realizada na fonte de alimentação.



Figura 17: Esquemático de PSRR Virtuoso



Figura 18: Gráfico da taxa de rejeição de fonte de alimentação

### 8 Análise Transiente

Para a análise transiente, foi aplicada uma onda quadrada na entrada inversora com período de 50u, tempo de subida e queda de 20ps e largura de pulso de 25us.



Figura 19: Esquemático do circuito de análise transiente no Virtuoso

### 8.1 Settling Time



Figura 20: Gráfico de settling time

### 8.2 Slew Rate



Figura 21: Gráfico de slew rate