1. 证明 G 的任意个子群的交仍是子群.

证明. 设 $\{H_i\}_{i\in\Lambda\subset\mathbb{N}}$ 是这些子群. 需要证明

$$\bigcap_{i\in\Lambda}H_i$$

仍是子群.

对于任意的 $a,b \in \bigcap_{i \in \Lambda} H_i$, 也即满足 $\forall i \in \Lambda, a,b \in H_i$, 因为 H_i 对群乘法封闭, 于是 $a,b \in H_i \implies ab \in H_i$. 于是能够知道 $\forall i \in \Lambda(a,b \in H_i \implies ab \in H_i)$, 就有

$$\forall i \in \Lambda(a, b \in H_i) \implies \forall i \in \Lambda(ab \in H_i)$$

于是就有 $a, b \in \bigcap_{i \in \Lambda} H_i \implies ab \in \bigcap_{i \in \Lambda} H_i$, 所以 $\bigcap_{i \in \Lambda} H_i$ 对群乘法封闭.

因为 $\forall i \in \Lambda(e \in H_i)$ 成立, 所以说 $e \in \bigcap_{i \in \Lambda} H_i$ 成立.

同理

$$\forall i \in \Lambda(a \in H_i) \implies \forall i \in \Lambda(a^{-1} \in H_i)$$

成立, 于是有 $a \in \bigcap_{i \in \Lambda} \implies a^{-1} \in \bigcap_{i \in \Lambda} H_i$. 所以, $\bigcap_{i \in \Lambda} H_i$ 是子群.

2. 证明 $GL_n(F)$ 的群中心是 n 阶纯量矩阵.

证明. 因为 $T \in C(\mathrm{GL}_n(F) \iff \forall S \in \mathrm{GL}(F), TS = ST,$ 我们要证明的即是后者. 将群元看作是线性变换. 于是

$$x \in \operatorname{Ker} T \implies Tx = \vec{0} \implies STx = \vec{0} \implies TSx = \vec{0} \implies Sx \in \operatorname{Ker} T$$

设 $S \operatorname{Ker} T = \{Sx \mid x \in \operatorname{Ker} T\}$, 这说明 $S \operatorname{Ker} T \subset \operatorname{Ker} T$. 设 $\operatorname{Ker} T$ 的基底 $\alpha_1, \ldots, \alpha_t$, 该基底可以扩展为 F^n 上的基底, 记为 $\alpha_1, \ldots, \alpha_t, \alpha_{t+1}, \ldots, \alpha_n$. 因为 S 是任意的, 设 S 对基底的作用为:

$$S(\alpha_i) = \begin{cases} \alpha_i & i \neq 1, i \neq t+1 \\ \alpha_1 & i = t+1 \\ \alpha_{t+1} & i = 1 \end{cases}$$

这就是说, 其将 α_1, α_{t+1} 两者的位置进行了互换. 那么说, 可以知道, $\dim \operatorname{Ker} T$ 要么为 n , 要么为 0. 否则 $S \ker T \subset \ker T$ 不成立.

随后, 令 S 为一个投影到 F^n 的一维子空间上的线性变换. 设这个子空间为 $\langle v \rangle = \{kv \mid k \in F\}$. 对于 $v_1 \in \langle v \rangle$ 就有:

$$Tv_1 = T(Sv_1) = S(Tv_1) = \alpha v_1, \alpha \in F$$

 $S(Tv_1) = \alpha v_1$ 成立是因为 S 是一个投影. 对于任意的 $v \in \langle v \rangle$ 有 $Tv = \alpha v$. 也就是说, T 至少有一个特征值. 又有:

$$TS = ST \implies TS - \alpha S = ST - \alpha S \implies (T - \alpha I)S = S(T - \alpha I)$$

由前面对于 $\operatorname{Ker} T$ 的维数的讨论, $\operatorname{Ker} (T-\alpha I)$ 的维数要么为 0 要么为 n. 但是 T 存在特征值 α , 这 是说 $T-\alpha I$ 的行列式为 0, 等价于说 $\dim \operatorname{Ker} (T-\alpha I)$ 的为维数大于等于 1. 于是就有 $\operatorname{Ker} (T-\alpha I)$ 的维数为 n (因为其要么为 0, 要么为 n). 由于:

$$\dim \operatorname{Ker} (T - \alpha I) = n \iff T - \alpha I = \mathbf{0}$$

其中 $\mathbf{0}$ 代表零矩阵. 于是 $T = \alpha I$. 即 T 是纯量矩阵.