22. Internationales Rechtsinformatik Symposion IRIS 2019, Rechtsvisualisierung II February 22nd 2019, Salzburg

A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

Felix Härer and Hans-Georg Fill

A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

- 1. Introduction
- 2. Blockchain Foundations
- 3. Classification of Visualization Approaches
 - 3.1. Classification Framework
 - 3.2. Visualization Approaches
- 4. Discussion of Results
- 5. Conclusion

1. Introduction

The Digitalization of Contracts

Today, any individual, legal entity or software may engage in blockchain transactions.

Preconditions:

1. Digitalization of Documents

Written Documents → Digital Documents

Representational Change

2. Digitalization of Transactions

Transaction Records → Blockchain Transactions

Operational Change

How can Effects be Understood, Evaluated and Shaped?

3. Digitalization in the form of a "Crypto-Law System"?

Blockchain Transactions → Algorithmic Enforcement?

Systemic Change?

1. Introduction

Blockchain-based Enforcement of

- Transactions, e.g. in Bitcoin
- Smart Contracts, e.g. in Ethereum

Legal Implications of

- Monetary Transactions
- Actual Contracts

How to Interact with Blockchains from a legal and not necessarily technical point of view?

- 1. Analysis: How can Transactions and Smart Contracts be analysed?
- 2. Design: How can Legal Applications and Smart Contracts be designed?

A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

- 1. Introduction
- 2. Blockchain Foundations
- 3. Classification of Visualization Approaches
 - 3.1. Classification Framework
 - 3.2. Visualization Approaches
- 4. Discussion of Results
- 5. Conclusion

2. Blockchain Foundations - Distributed Ledger Blockchains

Key Concept:

Transaction for the Transfer of Value

Blockchain

2. Blockchain Foundations – Smart Contract Blockchains

Transactions: Transfer OR Create OR Invoke

A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

- 1. Introduction
- 2. Blockchain Foundations
- 3. Classification of Visualization Approaches
 - 3.1. Classification Framework
 - 3.2. Visualization Approaches
- 4. Discussion of Results
- 5. Conclusion

3.1. Classification Framework

Distributed Ledger		Smart Contract	
Design	Analyis	Design	Analysis
3	6	3	4

3.2. DISTRIBUTED LEDGER · DESIGN · MODEL DRIVEN DESIGN

3.2. DISTRIBUTED LEDGER · ANALYSIS · BLOCK/ADDRESS/TRANSACTION

Block Explorer Tools, e.g. OXT.me

Conclusions of Transactions per Block and per Adress

- Sender / Receiver Addresses and, possibly, known Identities
- Date and Time for **Blocks and Transactions**
- Transfer Value

Kuzuno and Karam 2017

Transactions per Address

Kinkeldey et al. 2017

Clustering of Addreses

3.2. DISTRIBUTED LEDGER · ANALYSIS · MANUAL ANALYSIS EXAMPLE

Tool Used: Block Explorer Blockchain.info

1. Address 15yNZjR5CpdhEqojjiJAoYFBjCdtTjD341

Transaction 4707551f3cf507f42968ec3000eb48e05d51bea4ec51e13bdd0f8dccb98e65c1

3. Address 1N1izs1ULXKDnipAuot4939CpJvoKD8JGw

4. Transaction b56b6ee03dfdb96b2cc402122cde72a52938b296d5242cf94efcb2041f601937

Transaction Graph

- Node Address
- Edge Transaction

 Value (per Input / Output)

3.2. DISTRIBUTED LEDGER · ANALYSIS · TRANSACTION-GRAPH

Möser 2013

Walker 2018 / Neo4J.com

McGinn et al. 2018

3.2. SMART CONTRACT · DESIGN · VISUAL PROGRAMMING

EtherScripter.com Website Sales Contract note: *** An Ethereum smart contract to sell a website for "5000 by March" note: First, store buyer's ethereum address: Modify in save slot BUYER put 0x6af26739b9ffef8aa2985252e5357fde State note: Then, store seller's ethereum address: in save v slot (SELLER) put (Oxfeab802c014588f08bfee2741086c375 note: April 1, 2014 is 1396310400 in "computer time" in save v slot DEADLINE put 1396310400 Condition note: If the agreed amount is received on time... when • contract balance ≥ 🔻 5000 ether • and • block timestamp ≤ ▼ data at save v slot DEADLINE note: ... then designate the buyer as the new website admin and pay the seller in save v slot WEBSITE ADMIN put data at save v slot BUYER contract balance spend [data at save slot SELLER Conclude: Send Eth Currency

Drawing up a Smart Contract

- Visual programming methods developed e.g. by MIT, Google, applied to Blockchains
- Block-structured languages: Blocks of nested instructions
- Flow-based languages: Connected Instruction Elements

Node Red Language

3.2. SMART CONTRACT · ANALYSIS · MANUAL ANALYSIS

Analysis of Contract Behaviour

- Contract Code stored in non-textual Bytecode
- > Requires manual analysis
- Technical analysis of execution states
- Limitations due to missing semantics, e.g. no function and variable names

A Comparison of Approaches for Visualizing Blockchains and Smart Contracts

- 1. Introduction
- 2. Blockchain Foundations
- 3. Classification of Visualization Approaches
 - 3.1. Classification Framework
 - 3.2. Visualization Approaches
- 4. Discussion of Results
- 5. Conclusion

4. DISCUSSION OF RESULTS

How to Interact with Blockchains from a legal and not necessarily technical point of view?

- Approaches are limited regarding the design of legal contracts
 - Technically applicable, primarily for transfer of ownership
 - For targeted investigations, visualization provides some insight
- However, there are two prerequisites:

Technical knowledge of blockchains and underlaying programming techniques

- ***** Key Reasons:
 - One-by-one substitution of technical elements with visual elements
 - Visual model and technical realization are on the same abstraction level

Visualization by itself is, thus, insufficient

4. DISCUSSION OF RESULTS

Three Main Requirements

- **R1** Analysis or design must be expressible in the language of the domain.
- **R2** Domain concepts must establish their meaning in the context of the analysis or the design <u>by themselves</u>, using visualization techniques.
- **R3** For the design and analysis as part of complex systems, the level of abstraction must match the level of the domain and the level of knowledge of the user.

5. Conclusion

Thank you for your attention!

Further Information:

http://www.knowledge-blockchain.org

felix.haerer@unifr.ch

hans-georg.fill@unifr.ch

BACKUP SLIDES

3.1. Classification Framework

Visualization Approach

Distributed Ledger		Smart Contract	
Design	Analyis	Design	Analysis
 Model-Driven Design of Blockchain Applications Modelling of Blockchain- based software applications Wallet User-Interface- Design 	 Chart-based Statistical Evaluation Block-Transaction Visualization Address-Transaction Visualization Transaction Graph Network Analysis Network Node Map 	 Visual Programming Languages Declarative Logic for Smart Contracts Domain Specific Modelling Languages 	 Chart-based Statistical Evaluation Contract-Transaction- Visualization Smart Contract Decompiler Control Flow Analysis

Smart Contract

3.2. SMART CONTRACT · ANALYSIS · CONTRACT-TRANSACTIONS

0.010918m ETH 0x5a798d3c2e7b786.

Sender

Addresses

DexdexERC20

14:24:07 19/02/19

Conclusions of Contract

- Sender / Receiver
 Addresses and, possibly,
 known Contracts
- Date and Time for Blocks and Transactions
- Transfer Value

Contract Specific:

- Contract creation
- Function Invocation

3.2. DISTRIBUTED LEDGER · ANALYSIS · NETWORK NODE MAP

explorer.acinq.co

Node: Public Key / Address

Edge: Payment Channel

PARTICLE VISUALIZATION

oxt.me/ landscapes

ETHEREUM FORK MONITOR

http://forkmon.ethdevops.io/

DATA ANALYTICS

Bitcoinvisuals.com

BLOCK SIZE IN BITCOIN

Tradeblock.com/bitcoin

BLOCKCHAIN SIMULATION

learnmeabitcoin.com/
browser/node/

ETHEREUM TRANSACTION VISUALIZATION

www.ethviewer.live

