

Recurrent Neural Networks

Quiz, 10 questions

Congratulations! You passed!

Next Item

1/1 point

Suppose your training examples are sentences (sequences of words). Which of the following refers to the j^{th} word in the i^{th} training example?

 $x^{(i) < j >}$

We index into the i^{th} row first to get the i^{th} training example (represented by parentheses), then the j^{th} column to get the j^{th} word (represented by the brackets).

- $x^{< i > (j)}$
- $x^{(j) < i >}$
- $x^{< j > (i)}$

1/1 point

2.

Consider this RNN:

This specific type of architecture is appropriate when:

$$T_x = T_u$$

It is appropriate when every input should be matched to an output.

- - $T_x < T_y$
- - $T_x > T_y$
- $T_x = 1$

Recurrent Neural Networks

3.

To which of these tasks would you apply a many-to-one RNN architecture? (Check all that apply).

Speech recognition (input an audio clip and output a transcript)

Un-selected is correct

Sentiment classification (input a piece of text and output a 0/1 to denote positive or negative sentiment)

Correct

Correct!

Image classification (input an image and output a label)

Un-selected is correct

Gender recognition from speech (input an audio clip and output a label indicating the speaker's gender)

Correct

Correct!

1/1 point

4

You are training this RNN language model.

At the t^{th} time step, what is the RNN doing? Choose the best answer.

- $\qquad \qquad \mathsf{Estimating}\ P(y^{<1>},y^{<2>},\dots,y^{< t-1>})$
- Stimating $P(y^{< t>})$
- Consisting $P(y^{< t>} \mid y^{< 1>}, y^{< 2>}, \ldots, y^{< t-1>})$

Correct

	Yes,	in	a
_	R	e	C

es, in a language model we try to predict the next step based on the knowledge of all prior steps.

Recurrent Neural	Network	ΚS
------------------	---------	----

Quiz, 10	0 questions			
Est	imating $P(y^{< t>})$	$\mid y^{<1>}, \mid$	$y^{<2>},$.	$\dots, y^{< t>})$

1/1 point

5.

You have finished training a language model RNN and are using it to sample random sentences, as follows:

What are you doing at each time step t?

- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass the ground-truth word from the training set to the next time-step.
- (i) Use the probabilities output by the RNN to pick the highest probability word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.
- (i) Use the probabilities output by the RNN to randomly sample a chosen word for that time-step as $\hat{y}^{< t>}$. (ii) Then pass this selected word to the next time-step.

Correct

Yes!

1/1 point

6.

You are training an RNN, and find that your weights and activations are all taking on the value of NaN ("Not a Number"). Which of these is the most likely cause of this problem?

- Vanishing gradient problem.
- Exploding gradient problem.

Correct

- ReLU activation function g(.) used to compute g(z), where z is too large.
- Sigmoid activation function g(.) used to compute g(z), where z is too large.

Recuprent Neural Networks

Quiz, 10 questions

100

Suppose you are training a LSTM. You have a 10000 word vocabulary, and are using an LSTM with 100- $x \le t > W$ but in the disconsist of Γ of each time at $x \ge t$	dimensional activations
$a^{< t>}$. What is the dimension of Γ_u at each time step?	
O 1	

Correct

Correct, Γ_u is a vector of dimension equal to the number of hidden units in the LSTM.

300

1/1 point

Here're the update equations for the GRU.

Alice proposes to simplify the GRU by always removing the Γ_u . I.e., setting Γ_u = 1. Betty proposes to simplify the GRU by removing the Γ_r . I. e., setting Γ_r = 1 always. Which of these models is more likely to work without vanishing gradient problems even when trained on very long input sequences?

Alice's model (removing Γ_u), because if $\Gamma_rpprox 0$ for a timestep, the gradient can propagate back through that timestep
without much decay.

Alice's model (removing Γ_u), because if $\Gamma_r pprox 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

Betty's model (removing Γ_r), because if $\Gamma_u pprox 0$ for a timestep, the gradient can propagate back through that timestep without much decay.

Correct

Yes. For the signal to backpropagate without vanishing, we need $c^{< t>}$ to be highly dependant on $c^{< t-1>}$.

Betty's model (removing Γ_r), because if $\Gamma_u \approx 1$ for a timestep, the gradient can propagate back through that timestep without much decay.

1/1 point

9.

Here are the equations for the GRU and the LSTM:

Recurrent Neural Networks

Quiz, 10 questions

From these, we can see that the Update Gate and Forget Gate in the LSTM play a role similar to _____ and ____ in the GRU. What should go in the the blanks?

 Γ_u and $1-\Gamma_u$

Correct

Yes, correct!

 \bigcap Γ_u and Γ_r

 \bigcap $1-\Gamma_u$ and Γ_u

 \bigcap Γ_r and Γ_u

1/1 point

10.

You have a pet dog whose mood is heavily dependent on the current and past few days' weather. You've collected data for the past 365 days on the weather, which you represent as a sequence as $x^{<1>},\dots,x^{<365>}$. You've also collected data on your dog's mood, which you represent as $y^{<1>},\dots,y^{<365>}$. You'd like to build a model to map from $x\to y$. Should you use a Unidirectional RNN or Bidirectional RNN for this problem?

- Bidirectional RNN, because this allows the prediction of mood on day t to take into account more information.
- Bidirectional RNN, because this allows backpropagation to compute more accurate gradients.
- Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< 1>}, \dots, x^{< t>}$, but not on $x^{< t+1>}, \dots, x^{< 365>}$

Correct

Yes!

Unidirectional RNN, because the value of $y^{< t>}$ depends only on $x^{< t>}$, and not other days' weather.

₹ F