

0%

0.00%

SIMILARITY OVERALL

POTENTIALLY A

SCANNED ON: 21 JUL 2025, 10:53 AM

AI Detector Results

Highlighted sentences with the lowest perplexity, most likely generated by AI.

Report #27596937

1 Methods 1.1 Generalised Bernoulli social equation We model the density of interaction ties $\rho(r, t)$ in an n-dimensional social phase space. Inspired by incompressible fluid flow, we propose the continuity-like equation $\partial \rho \partial t + \nabla \cdot (\rho v) = 0$, (1) with velocity field $v = -\alpha \nabla \Phi + \beta r$, (2)) where $\Phi = \ln \rho$ is a potential akin to information pressure, α > modulates entropic attraction, and β > encodes centrifugal social cost. Combining both gives the **generalised Bernoulli equation** $\partial \Phi \partial t + \alpha 2$ teady state ($\partial t \Phi = 0$), the density $\rho *$ admits a scaling form $\rho *$ (r) \propto r -(D 1 +1) for r in the mesoscopic range. We estimate the capa city (D), information (D1) and correlation (D2) dimensions via a standard box-counting scheme[?]. D q = $\lim \epsilon \rightarrow 0.1 q - 1 \log Pip$ q i log \in , (q \in R). (4) 1.3 Entropy-based stability criterion Table 1 : Symbols and units used throughout the manuscript Symbol Meaning Unit (SI) $\rho(r, t)$ Social tie density ties m -n v Social flow velocity m s -1 Φ Informational potential ln $\rho - \alpha$ Entropic attraction coefficient m 2 s -1 β Radial cost coefficient s -1 D ,1,2 Fractal dimensions — H Shanno n entropy nat $\partial \rho \partial t + \nabla \cdot (\rho v) = 0$, (5) $v = -\alpha \nabla \Phi + \beta r$, (6) Define the Shannon entropy of degree distribution p k as H = - P k p k l

og p k . We posit global stability when dH dt = and d 2 H dt

2 ☑ ☑ ☑ crit > 0. (7) Substituting Eq. (??) yields the critical rati

REPORT #27596937

o D /D 1 \approx 1.37 \pm 0.05, at which the social layer sizes naturally quan tise to 5, 15, 50, 150. Abstract 2 Introduction 3 Methods 3.1 Generalised Bernoulli Equation 4 Results 5 Discussion 6 Conclusion 1