Tutorstvo iz Fizike I, 8. 12. 2014

Rešitev domače naloge dne 26. 11. 2014:

1. Vsota navorov je enaka nič, ker sistem miruje.

$$m'gR\sin\varphi = mgR \Rightarrow \sin\varphi = \frac{m}{m'} \Rightarrow \varphi = 27.4^{\circ}$$
 (1)

2. Napišemo energijski zakon za naš primer: (koti so v radianih!)

$$(R - R\cos\varphi)m'g = \frac{m'v^2}{2} + \frac{Mv^2}{4} + \frac{mv^2}{2} + mgR\varphi \Rightarrow v = 0.24 \text{ m/s}$$
 (2)

3. Velja Newtonov zakon za vrtenje: $\sum M = J_{sis.}\alpha$. Velja tudi $a = R\alpha$. Tako je pospešek:

$$\alpha = \frac{gR(m'\sin\varphi - m)}{\frac{MR^2}{2} + (m' + m)R^2} = 1.84 \text{ s}^{-1}$$
(3)

4. Enačba nihanja, ki ste jo izpeljali na predavanjih velja le za majhne kotne odmike, ki pa tu niso. Sprememba potencialne energije obeh uteži mora biti enaka. Definirajmo γ kot kot, ki gre v negativno smer glede na φ . Torej je dvojna amplituda $\varphi + \gamma$. Dobimo transcendentno enačbo za γ :

$$m'(\cos\gamma - \cos\varphi) = m(\gamma + \varphi) \tag{4}$$

S pomočjo kalkulatorja ali kakšnega programa na računalniku lahko γ numerično izračunamo. Pazimo seveda, da so koti v radianih. Dobimo $\gamma=0.175=10.05$ °.

$$h = (\varphi + \gamma)R = 0.112 \,\mathrm{m} \tag{5}$$