Tuesday, October 20, 2020

4:21 PM

Unweighted graph

Suppose that w(u, v) = 1 for all $(u, v) \in E$. Can Dijkstra's algorithm be improved?

The PQ we have improved path,

have dramatic chttps://eduassistpro.github.io/

Assignment Project Exam Help

for each $v \in Adj[u]$ do if $d[v] = \infty$

Add We hat edu_assist_pro

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

Assignment Project Exam Help

Running time: O(V + E)

- W
- "https://eduassistpro.github.io/

Determi

Question: remove negative edge weight by adding x t smallest edge weight the hard by Do we still have the same problem? For they h

- ➤ Design a counter example showing that this ide
 No! the problem changes!! The shortest path changes!!
 - No! the problem changes!! The shortest path changes!! The addition may affect the path multiple times
- This modification based on for each path, we add number of edges times x to the shortest path.

Negative-weight cycles

Time = O(VE).

If a graph G = (V, E) contains a negative weight cycle, then some shortest paths may not exist.

Bellman-Ford algorithm: Finds all shortest-path lengths from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

• Figure out if there exist negative cycles

for each
$$v \in V - \{s\}$$
 initialization $\operatorname{do} d[v] \leftarrow \infty$ for $i \leftarrow 1$ to $|V| - 1$ do for each edge $(u, v) \in E$ $\operatorname{do} \operatorname{if} d[v] > d[u] + w(u, v)$ then $d[v] \leftarrow d[u] + w(u, v)$ f for each edge $(u, v) \in E$ $\operatorname{do} \operatorname{if} d[v] > d[u] + w(u, v)$ then report that a negative-weight cycle exists At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles.

// do relaxation when found better path
How many times we do relaxation? In which order we do?
Does not matter (matters for Dijkstra)
N - 1 pass maximum (at most n - 1 ledges for n vertices)

N - 1 pass maximum. (at most n - 1 edges for n vertices) After n -1 relaxations, if it still can do relaxations, then there is negative cycle.*

Order of edge relaxation.

https://eduassistpro.github.io/ Assignment Project Exam Help

- One node can be update more than one time in single i
- If one whole pass doesn't change any ting, done

Add WeChat edu_assist_pro

Theorem. If G = (V, E) contains no negative weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

Assignment Project Exam Help

https://eduassistpro.github.io/ Add WeChat edu_assist_pro

Corollary. If a value d[v] fails to converge after |V|-1 passes, there exists a negative-weight cycle in G reachable from s.