Теоретическая информатика, осень 2020 г. Лекция 7. Синтаксический анализ за кубическое время, построение дерева разбора. Параллельный разбор за время $(\log n)^2$.*

Александр Охотин 22 октября 2020 г.

Содержание

1	Синтаксический анализ за кубическое время	1
2	Параллельный разбор за время $(\log n)^2$	4
3	Неразрешимые задачи для грамматик	11

1 Синтаксический анализ за кубическое время

1.1 Алгоритм Кокка-Касами-Янгера

Синтаксический анализ: для фиксированной грамматики $G = (\Sigma, N, R, S)$ и для данной входной строки $w \in \Sigma^*$, проверить, принадлежит ли w языку L(G) — то есть, синтаксически правильна ли она согласно грамматике G. Если принадлежит, то построить дерево разбора.

Рис. 1: Джон Кокк (1925–2002), Тадао Касами (1930–2007), Дэниел Янгер.

^{*}Краткое содержание лекций, прочитанных студентам 2-го курса факульте-В осеннем семестре 2020 – 2021учебного года. Страница http://users.math-cs.spbu.ru/~okhotin/teaching/tcs_fl_2020/.

Теорема 1. Для всякой грамматики $G = (\Sigma, N, R, S)$ есть алгоритм синтаксического анализа, работающий за время $O(n^3)$, где $n - \partial$ лина входной строки.

Грамматика $G = (\Sigma, N, R, S)$ в н.в.Хомского, входная строка $w = a_1 \dots a_n$. Алгоритм основан на методе динамического программирования. Цель: определить для каждой подстроки $a_{i+1} \dots a_j$ и для каждого нетерминального символа $A \in N$, имеет ли эта подстрока свойство A. Эти сведения записываются в maблицу pastopa $T \in (2^N)^{n \times n}$, в которой всякий элемент $T_{i,j}$, где $0 \le i < j \le n$, содержит множество нетерминальных символов, задающих подстроку между позициями i+1 и j.

$$T_{i,j} = \{ A \in N \mid a_{i+1} \dots a_j \in L_G(A) \}$$

Элементы таблицы заполняются последовательно, от меньших подстрок к большим. Сперва вычисляются свойства всех подстрок длины 1. Чтобы односимвольная подстрока a_i обладала свойством A, необходимо, чтобы в грамматике было правило $A \to a_i$.

$$T_{i-1,i} = \{ A \mid A \to a_i \in R \}$$

Подстрока $a_{i+1} \dots a_j$ длины 2 и более может обладать свойством A, если она определяется некоторым правилом $A \to BC$. Тогда подстрока разбивается на две непустых подстроки, $a_{i+1} \dots a_k$ и $a_{k+1} \dots a_j$, причём первая должна обладать свойством B, а вторая — свойством C. Точка разбиения k может быть любым числом от i+1 до j-1. Так как обе эти подстроки k0 короче, чем вся подстрока, то все сведения об этих более коротких строках k1 этому моменту уже вычислены и занесены в ячейки таблицы k1, и k2, отсюда можно вычислить множество всех нетерминальных символов для подстроки k3, отсюда можно вычислить

$$T_{i,j} = \{ A \mid \exists A \to BC \in R, \exists k \in \{i+1,\ldots,j-1\} : B \in T_{i,k} \land C \in T_{k,j} \}$$

Алгоритм 1 Алгоритм Кокка-Касами-Янгера.

Грамматика $G = (\Sigma, N, R, S)$ в н.в.Хомского, входная строка $w = a_1 \dots a_n$, где $n \geqslant 1$ и $a_i \in \Sigma$. Для всех $0 \leqslant i < j \leqslant n$, пусть $T_{i,j}$ — переменная, принимающая значение подмножества N.

```
1: for i = 1 to n do
            T_{i-1,i} = \{ A \mid A \to a_i \in R \}
 3: for \ell = 2 to n do
            for i = 0 to n - \ell do
 4:
                   пусть j = i + \ell
 5:
                   T_{i,j} = \emptyset
 6:
 7:
                   for all A \to BC \in R do
                           for k = i + 1 to j - 1 do
 8:
 9:
                                  if B \in T_{i,k} \wedge C \in T_{k,j} then
                                          T_{i,j} = T_{i,j} \cup \{A\}
10:
11: принять тогда и только тогда, когда S \in T_{0,n}
```

Пример 1. Следующая грамматика в н.в.Хомского задаёт язык Дика без пустой строки.

$$S \rightarrow SS \mid AC$$

$$A \rightarrow a$$

$$B \rightarrow b$$

$$C \rightarrow SB \mid b$$

 $Tаблица разбора для строки <math>w = abaabb \ makoba.$

	0	1	2	3	4	5	6
0		$\{A\}$	$\{S\}$	Ø	Ø	Ø	$\{S\}$
1			$\{B,C\}$	Ø	Ø	Ø	Ø
2				$\{A\}$	Ø	Ø	$\{S\}$
3					$\{A\}$	$\{S\}$	$\{C\}$
4						$\{B,C\}$	Ø
5							$\{B,C\}$
6							

Поскольку $S \in T_{0.6}$, строка принадлежит языку.

1.2 Построение дерева разбора

Пусть для грамматики $G=(\Sigma,N,R,S)$ в н.в.Хомского и для входной строки $w=a_1\dots a_n$ построена таблица разбора.

$$T_{i,j} = \{ A \in N \mid a_{i+1} \dots a_j \in L_G(A) \}$$

Пусть оказалось, что $S \in T_{0,n}$, и, стало быть, $w \in L(G)$. Тогда, используя таблицу, алгоритм 2 строит дерево разбора.

Алгоритм 2 Построение дерева разбора по таблице

Пусть $G = (\Sigma, N, R, S)$ — грамматика в н.в.Хомского, пусть $w = a_1 \dots a_n$, где $n \geqslant 1$ и $a_i \in \Sigma$ — входная строка, и пусть множества $T_{i,j} = \{A \mid a_{i+1} \dots a_j \in L_G(A)\}$ известны для всех $0 \leqslant i < j \leqslant n$.

Дано: $A \in N$, позиции ℓ и m, где $0 \leqslant \ell < m \leqslant n$, причём верно $A \in T_{\ell,m}$.

Построить: дерево разбора подстроки $a_{\ell+1}\dots a_m$ по A.

процедура $parse(A,\ell,m)$, предусловие: $A\in T_{\ell,m}$

```
1: if m-\ell=1 then
         return дерево с корнем A, к которому подсоединён лист a_m
2:
3: else
          for all A \to BC \in R do
4:
                for k = \ell + 1 to m - 1 do
5:
                      if B \in T_{\ell,k} и C \in T_{k,m} then
6:
7:
                             Создать вершину \tau, помеченную A
8:
                            Добавить потомка parse(B, \ell, k) к \tau
                             Добавить потомка parse(C, k, m) к \tau
9:
10:
                            return \tau
```

Время работы пропорционально $n \cdot t$, где t — число вершин в дереве разбора, поскольку

Рис. 2: Лесли Валиант (род. 1949).

при построении каждой вершины выполняется цикл в строке 5. Так как $t = \Theta(n)$, алгоритм работает за время $\Theta(n^2)$, что меньше, чем время построения таблицы.

1.3 Более быстрый алгоритм

Известен алгоритм Валианта [1975] — алгоритм синтаксического анализа, работающий за время $O(n^{\omega})$, где n^{ω} — время умножения матриц размера $n \times n$. Алгоритм основан на методе «разделяй и властвуй» и вычисляет ту же самую таблицу $T_{i,j}$, что и в алгоритме Кокка–Касами–Янгера.

2 Параллельный разбор за время $(\log n)^2$

2.1 Высота дерева разбора

Высота дерева разбора — то есть, длина самого длинного пути в нём — это глубина логических зависимостей в определении строки. Своего рода мера сложности грамматики. Связана с объёмом памяти, требуемым для синтаксического анализа, а также со временем работы параллельных алгоритмов анализа.

Наименьшая возможная высота — логарифмическая от длины строки. Пример: грамматика $S \to SS \mid aSb \mid \varepsilon$ и хорошо подобранная последовательность скобок, такая как aaababbaababbb.

Но чаще высота дерева будет линейной (более чем линейной она быть не может).

Пример 2. Грамматика для языка $\{a^nb^n \mid n \ge 0\}$.

$$S \to aSb \mid \varepsilon$$

Дерево разбора строки $w = a^8 b^8$ дано на рис. 3.

Упражнение 1. Доказать, что всякая грамматика, задающая язык $\{a^nb^n \mid n \geqslant 0\}$, определяет деревья разбора линейной высоты.

План: найти промежуточную вершину; отдельно вывести (а) это поддерево и (б) всё кроме этого поддерева; объединить их.

Рис. 3: Дерево разбора строки a^8b^8 по грамматике из примера 2: символы помечены своими номерами, $a_1 \dots a_8b_8 \dots b_1$; серая область — поддерево с дыркой $\frac{S}{S}(a_1 \dots a_4 : b_4 \dots b_1)$.

Лемма 1. Пусть $G = (\Sigma, N, R, S)$ — грамматика в н.в.Хомского. Тогда всякое дерево разбора с n листьями содержит вершину, в чьём поддереве более чем $\frac{1}{3}n$ листьев, и самое большее $\frac{2}{3}n$.

Доказательство. Путь строится сверху, каждый раз выбирается большее поддерево. Поскольку ветвление двоичное, искомая вершина рано или поздно найдётся.

2.2 Как обеспечить малую высоту зависимостей?

Идея: чтобы доказать утверждение φ , независимо доказать некоторое утверждение ξ и условное утверждение вида «если ξ , то φ », и затем вывести из них φ . Если утверждение ξ выбрано хорошо, глубина доказательства ополовинится.

В определении грамматик через логический вывод все утверждения имеют вид A(u), где A — нетерминальный символ (т.е., свойство подстрок), а u — подстрока. Условные утверждения «если ξ , то φ » тогда принимают вид «если D(x), то A(uxv)», где $A,D\in N,$ $u,v\in \Sigma^*$ а x — переменная, обозначающая некоторую подстроку. Точнее сказать, x означает $\partial upry$, оставленную в строке со свойством A для более короткой строки со свойством D. Обозначение: $\frac{A}{D}(u:v)$.

Утверждение $\frac{A}{D}(u:v)$, где $A, D \in N$ и $u, v \in \Sigma^*$, означает, что есть дерево разбора с корнем $A \in N$ и с дыркой в виде D без потомков, содержащее |u| + |v| листьев, образующих строку u слева от D и строку v справа от D.

Пример 3. Для грамматики в примере 2, все условные утверждения имеют вид $\frac{S}{S}(u,v)$, и используются следующие правила вывода.

$$\frac{\frac{S}{S}(a:b)}{\frac{S}{S}(u:v),S(w)}$$
 (затыкание дырки)
$$\frac{\frac{S}{S}(u:v),\frac{S}{S}(x:y)}{\frac{S}{S}(u:v),\frac{S}{S}(x:y)}$$
 (соединение условных утверждений)

 $Ha\ puc.\ 4\ nokasano\ dokasamerьcmво\ малой\ высоты\ dля\ утверждения\ S(aaaaaaaabbbbbbbb).$ Последний шаг доказательства таков.

$$\frac{S}{S}(a^4:b^4), S(a^4b^4) \vdash S(a^8b^8)$$

На рис. З этот шаг показан в виде соединения дерева с дыркой $\frac{S}{S}(a^4:b^4)$ и стандартного дерева $S(a^4b^4)$.

Рис. 4: Доказательство $S(a^8b^8)$ малой высоты по грамматике из примера 2; символы помечены номерами: $a_1\dots a_8b_8\dots b_1$.

В общем случае, пусть грамматика — в н.в.Хомского. Тогда используется система вывода

Рис. 5: (i) Дерево с дыркой, соответствующее условному утверждению $\frac{A}{D}(u:v)$; (ii) Полное дерево, соответствующее обычному утверждению D(w); (iii) Полное дерево разбора строки uwv из D, полученное соединением этих двух утверждений; (iv) Соединение двух условных утверждений.

со следующими правилами.

Лемма 2. $Bc\ddot{e}$, что доказывается в расширенной системе, доказывается и в стандартной, с использованием лишь утверждений вида A(w).

Действительно, это же обычные деревья разбора, просто строящиеся по кускам! Строгое доказательство — индукцией по длине доказательства в расширенной системе.

Лемма 3. В расширенной системе всякое утверждение $\frac{A}{D}(u:v)$ или A(w) имеет доказательство высоты не более чем $4\log_{3/2} n$, где n — число листьев, т.е., n=|uv| или n=|w|.

Доказательство. Индукция по n.

Для дерева разбора A(w) по лемме 1 находится промежуточная вершина, и записывается вывод по правилу затыкания дырки, из двух посылок содержащих не более $\frac{2}{3}n$ листьев каждая — и по предположению индукции у них есть доказательства логарифмической высоты.

Для условного утверждения $\frac{A}{D}(u:v)$ промежуточная вершина в дереве с дыркой находится точно так же, однако, в зависимости от её положения в дереве, нужно рассмотреть несколько случаев. Если поддерево промежуточной вершины содержит дырку — то есть,

Рис. 6: Два случая разбиения доказательства условного утверждения, в зависимости от положения промежуточной вершины.

включает в себя некоторый суффикс u и некоторый префикс v — то пусть $u=u_1u_2$ и $v=v_1v_2$, и пусть промежуточная вершина помечена нетерминальным символом $E\in N$. Тогда $\frac{A}{D}(u:v)$ выводится из $\frac{A}{E}(u_1:v_2)$ и $\frac{E}{D}(u_2:v_1)$ по правилу соединения условных утвержлений.

Пусть поддерево промежуточной вершины содержит только листья из u. Тогда рассматривается наибольшее поддерево, включающее в себя данное поддерево и содержащее только листья из u. Пусть $u=u_1u_2u_3$, где u_2 — листья этого большего поддерева, пусть $B\in N$ — нетерминальный символ в корне поддерева, пусть $E\in N$ — нетерминальный символ в его родителе, и пусть $C\in N$ — второй потомок E (используется правило $E\to BC$). Поскольку в поддереве C есть листья из v, пусть $v=v_1v_2$, где v_1 — листья в поддереве C. Тогда $\frac{A}{D}(u:v)$ выводится так.

$$\frac{\frac{B(u_2)}{\frac{E}{C}(u_2 : \varepsilon)} \quad \frac{C}{D}(u_3 : v_1)}{\frac{E}{D}(u_2 u_3 : v_1)}$$

$$\frac{\frac{A}{D}(u : v)}{\frac{A}{D}(u : v)}$$

Поскольку u_2 содержит не менее чем $\frac{1}{3}n$ листьев, два других условных утверждения содержат не более чем $\frac{2}{3}n$ листьев каждое, и потому, по предположению индукции, оба имеют доказательства небольшой высоты. Для дерева без дырки $B(u_2)$ уже установлено существование доказательства небольшой высоты, в котором дерево u_2 из B на первом шаге разбивается на поддерево с дыркой и обычное поддерево с примерно равным числом листьев. Стало быть, искомое поддерево с n листьями выводится из поддеревьев не более чем с $\frac{2}{3}n$ листьями в доказательстве высоты не более 4 — отсюда константа 4 в формулировке леммы.

2.3 Разбор с использованием памяти $(\log n)^2$

Теорема 2. Алгоритм 3 определяет принадлежность строки длины n языку L(G) за время $n^{O(\log n)}$, используя $O((\log n)^2)$ битов памяти.

Алгоритм 3 Алгоритм Льюиса–Стирнса–Хартманиса

Пусть $G = (\Sigma, N, R, S)$ — грамматика в н.в.Хомского. Пусть $w = a_1 \dots a_n$, где $n \geqslant 1$ и $a_i \in \Sigma$, — входная строка.

- Процедура A(i,j;d), для $A \in N$, определяет, есть ли доказательство $A(a_{i+1} \dots a_j)$ высоты не более чем d в расширенной системе.
- Процедура $\frac{A}{D}(i,k,\ell,j;d)$, для $A,D \in N$, определяет, есть ли доказательство $\frac{A}{D}(a_{i+1}\ldots a_k:a_{\ell+1}\ldots a_j)$ высоты не более чем d в расширенной системе.

Затем достаточно вызвать $S(0, n; 4\log_{3/2} n)$.

```
процедура A(i, j; d)
 1: if d = 0 then
          return false
                                                                             /* одиночный символ */
 3: if i+1=j \land A \rightarrow a_j \in R then
          return true
 5: for all k, \ell: i \leq k \leq \ell \leq j do
          for all D \in N do
                 if \frac{A}{D}(i,k,\ell,j;d-1) \wedge D(k,\ell;d-1) then
                                                                            /* затыкание дырки */
 7:
                        return true
 9: return false
процедура \frac{A}{D}(i,k,\ell,j;d)
 1: if d = 0 then
          return false
 3: if \ell = j then
          for all A \to BD \in R do
                                                                        /* создание дырки справа */
                 if B(i, k; d-1) then
 5:
                        return true
 7: if i = k then
          for all A \to DC \in R do
                 if C(\ell, j; d-1) then
                                                                         /* создание дырки слева */
 9:
                        return true
10:
11: for all s, t: i \leq s \leq k, \ \ell \leq t \leq j, \ (s, t) \neq (i, j), \ (s, t) \neq (k, \ell) do
          for all E \in N do
12:
                 if \frac{A}{E}(i,s,t,j;d-1) \wedge \frac{E}{D}(s,k,\ell,t;d-1) then
                                                                                    /* соединение */
13:
                        return true
15: return false
```


Рис. 7: Филипп Льюис (род. 1931), Ричард Стинрс (род. 1936), Юрис Хартманис (род. 1928).

Доказательство. Глубина рекурсии — не более чем $4\log_{3/2} n$, поскольку она явна задана параметром. На каждом уровне в стеке размещено $O(\log n)$ битов — отсюда верхняя оценка объёма используемой памяти $O((\log n)^2)$. На каждом уровне делается не более чем n^2 рекурсивных вызовов — и отсюда верхняя оценка времени работы $n^{2\cdot 4\log_{3/2} n}$.

2.4 Параллельный разбор за время $(\log n)^2$

Алгоритм Брента-Гольдшлягера-Риттера.

Рис. 8: Ричард Брент (род. 1946), Войцех Риттер (род. 1948).

Теорема 3 (Руззо [1980], Брент и Гольдшлягер [1984]; Риттер [1985]). Для всякой грамматики $G = (\Sigma, N, R, S)$ в н.в.Хомского и для всякой длины строк $n \geqslant 1$, существует булева схема глубины $O(\log^2 n)$, имеющая $|\Sigma| \cdot n$ входов, через которые вводится строка $w = a_1 \dots a_n$, $O(n^6 \log n)$ промежуточных булевых элементов, а также один выходной элемент, сообщающий принадлеженость w языку L(G).

Доказательство. Схема содержит следующие элементы.

- Для всех i, j, где $0 \le i < j \le n$, есть элемент $x_{A,i,j}$, в котором вычисляется значение $A(a_{i+1} \dots a_j)$, то есть, принадлежит ли строка $a_{i+1} \dots a_j$ языку $L_G(A)$.
- Элемент $y_{A,i,j,D,k,\ell}$, где $A,D \in N, \ 0 \le i \le k < \ell \le j \le n$ и $(k-i)+(j-\ell) \ge 0$. Этот элемент определяет, существует ли дерево разбора $a_{i+1} \dots a_j$ из A, с дыркой вместо

поддерева $a_{k+1} \dots a_{\ell}$ из D, так что в нём вычисляется значение 1 тогда и только тогда, когда верно условное утверждение $\frac{A}{D}(a_{i+1} \dots a_k : a_{\ell+1} \dots a_j)$.

Всего таких элементов $\Theta(n^4)$, и каждый из них соответствует запуску одной из процедур алгоритма 3 с некоторыми значениями аргументов. В схеме значение этого элемента вычисляется по тем же формулам, что и в соответствующих процедурах.

3 Неразрешимые задачи для грамматик

Кодирование неразрешимых задач в грамматиках: метод *историй вычисления машины Тьюринга*, открытый Хартманисом [1967].

История вычисления — все конфигурации, записанные одна за другой. Если машина останавливается, это конечная строка. Множество всех историй принимающих вычислений: VALC(M), где M — машина Тьюринга.

Пусть $M=(\Sigma,\Gamma,Q,q_0,\delta,q_{acc})$ — детерминированная МТ, где $\Gamma\supset \Sigma$ — её рабочий алфавит, содержащий символ пробела $\zeta\in \Gamma\setminus \Sigma$, и Q — множество состояний, не пересекающееся с Γ . Пусть M работает на односторонней бесконечной ленте и никогда не пытается заехать левее самого левого входного символа. Начальное состояние — $q_0\in Q$. Машина принимает, переходя в состояние q_{acc} , и отвергает, зацикливаясь.

Пусть $\Omega = \Gamma \cup Q \cup \{\#,\$\}$ — алфавит, используемый для представления историй вычисления. Когда M, находясь в состоянии $q \in Q$, видит символ $a \in \Gamma$, и на ленте слева от головки лежит строка $u \in \Gamma^*$, а справа — строка $v \in \Gamma^*$ (не считая пробелов, которые ещё не посещались), то такая конфигурация обозначается строкой $uqav \in \Gamma^*Q\Gamma^+$. Для всякой входной строки $w \in \Sigma^*$, конфигурация МТ после i шагов вычисления обозначается так.

$$C_i = C_i(M, w) = uqav$$

Если M останавливается на w после n шагов, то история её вычисления имеет следующий вид.

$$C_M(w) = C_0 \# C_1 \# C_2 \# \dots \# C_{n-1} \# C_n \$ C_n^R \# C_{n-1}^R \# \dots \# C_2^R \# C_1^R \# C_0^R$$

Наконец, определяется язык историй вычисления машины Тьюринга M.

$$VALC(M) = \{ C_M(w) \mid w \in L(M) \}$$

Лемма 4. Для всякой машины Тьюринга M существуют u могут быть эффективно построены такие грамматики G_1 u G_2 , что $L(G_1) \cap L(G_2) = \text{VALC}(M)$. Кроме того, существуют грамматики G_1' u G_2' , задающие дополнения этих языков: $L(G_i') = \overline{L(G_i)}$ для $i \in \{1,2\} - u$ потому есть u грамматика, задающая язык $\overline{\text{VALC}(M)}$.

Доказательство. Общий вид историй вычисления и способ их проверки с помощью пересечения двух языков изображены на рис. 9. Каждая i-я конфигурация встречается в истории вычисления дважды: в своём первоначальном виде C_i в левой части строки, и в перевёрнутом виде C_i^R в правой части. Грамматика G_1 сравнивает каждую i-ю конфигурацию C_i с перевёрнутой следующей конфигурацией C_{i+1}^R , проверяя правильность одного шага машины Тьюринга. Кроме того, G_1 проверяет, что конфигурация C_n — принимающая, а C_0^R — это обращение начальной конфигурации на какой-то строке.

Грамматика G_2 всего лишь задаёт палиндромы со знаком доллара посередине.

Построение грамматики G_1 требует рассмотреть разные виды переходов машины Тьюринга, и потому приведённая ниже грамматика относительно велика; но ничего особенно сложного в ней нет.

Рис. 9: Представление VALC(M) в виде $L(G_1) \cap L(G_2)$: общая структура сравнений, задаваемых двумя грамматиками.

Грамматика G_1 сперва задаёт вид конфигурации C_0^R — это может быть любая начальная конфигурация машины Тьюринга, записанная в конце строки в обратном порядке.

$$S_1 \to Baq_0$$
 $(a \in \Sigma)$
 $B \to Ba$ $(a \in \Sigma)$
 $B \to A\#$

Случай пустой строки $(w = \varepsilon)$ рассматривается отдельно.

$$S_1 \to A \# _q q_0$$

Далее, нетерминальный символ A сравнивает каждую конфигурацию C_i слева с перевёрнутой следующей конфигурацией C_{i+1}^R справа, чтобы убедиться, что это действительно последовательные конфигурации машины M.

Конфигурация C_i имеет общий вид $u\alpha v$, где α — несколько символов вокруг головки, затрагиваемые переходом, а $u,v\in\Gamma^*$ — все остальные символы на ленте, остающиеся неизменными на этом шаге. Тогда следующая конфигурация имеет вид $C_{i+1}=u\beta v$, или $C_{i+1}^R=v^R\beta^Ru^R$ в перевёрнутом виде. Правила грамматики для A сперва сопоставляют друг другу символы начального куска ленты u, с которых начинается C_i и которыми заканчивается C_{i+1}^R . Это делается следующими правилами.

$$A \to cAc$$
 $(c \in \Gamma)$

Далее наступает очередь перехода машины Тьюринга на данном шаге. Пусть $\delta \colon Q \times \Gamma \to Q \times \Gamma \times \{-1, +1\}$ — функция переходов M, где $\delta(q, a)$ определяет действие M в состоянии $q \in Q$ при виде символа $a \in \Gamma$: машина переходит в указанное новое состояние, заменяет a на указанный новый символ и перемещает головку в указанном направлении.

Пусть переход в i-конфигурации перемещает головку налево, то есть, $C_i = ubqav$ и $\delta(q,a) = (q',a',-1)$. Тогда вслед за конфигурацией $C_i = ubqav$ идёт конфигурация $C_{i+1} = uq'ba'v$, или $C_{i+1}^R = v^Ra'bq'u^R$ в перевёрнутом виде. Соответственно, дойдя до подстроки bqa слева, грамматика требует, чтобы справа была подстрока a'bq', как показано на рис. 10(левом). Это делается правилами следующего вида.

$$A \to bqaAa'bq'$$
 $(\delta(q, a) = (q', a', -1), b \in \Gamma)$

Если же машина перемещает головку направо и $\delta(q,a)=(q',a',+1)$, то конфигурация вида $C_i=uqacv$ сменяется конфигурацией $C_{i+1}=ua'q'cv$, записанной в виде $C_{i+1}^R=v^Rcq'a'u^R$. Тогда грамматика сопоставляет символам aq слева символы a'q' справа. Этот случай показан на рис. 10(правом).

$$A \to qaAq'a' \qquad (\delta(q, a) = (q', a', +1))$$

Рис. 10: Представление VALC $(M) = \{ C_M(w) \mid w \in L(M) \}$ в виде $L(G_1) \cap L(G_2)$: как первая грамматика обеспечивает, что для всякой конфигурации C_i , на другой стороне находится обращение следующей конфигурации C_{i+1} .

Остальные символы из C_i сравниваются с соответствующими символами из C_{i+1}^R с помощью правила $A \to cAc$. Когда все эти символы пройдены, грамматика переходит или к сравнению следующей пары конфигураций, или к проверке, что осталась одна принимающая конфигурация.

$$A \to \#A\#$$

 $A \to \#C\$$

Также нужно рассмотреть особый случай перехода от одной конфигурации к другой, когда машина Тьюринга перемещается направо от самого правого символа ленты. В этом случае $C_i = uq$, и отсутствующий символ под q считается пробелом.

$$\begin{split} A &\to bq \# A \# a' b q' & (\delta(q, \llcorner) = (q', a', -1), \ b \in \Gamma) \\ A &\to bq \# C \$ a' b q' & (\delta(q, \llcorner) = (q', a', -1), \ b \in \Gamma) \\ A &\to q \# A \# q' a' & (\delta(q, \llcorner) = (q', a', +1)) \\ A &\to q \# C \$ q' a' & (\delta(q, \llcorner) = (q', a', +1)) \end{split}$$

Наконец, грамматика G_1 должна задать условие, что последняя конфигурация C_n^R — принимающая. Это делается нетерминальным символом C.

$$C \to cC$$
 $(c \in \Gamma)$ $C \to q_{\rm acc}C$ $C \to \varepsilon$

Вторая грамматика G_2 просто проверяет, что два экземпляра каждой конфигурации соответствуют друг другу — то есть, одна является обращением другой. Для этого достаточно проверить, что строка — палиндром.

$$S_2 \to sS_2s \qquad (s \in \Omega)$$

$$S_2 \to \$$$

Грамматики G'_1 и G'_2 , задающие дополнения этих двух языков, строятся по одному и тому же принципу, причём для G'_2 (не-палиндромов) технически существенно проще.

В верхней части дерева разбора проверяются все те же условия, что в грамматике для палиндромов, при этом задаются префикс u и суффикс v — и так do nepeoù $ouub\kappa u$, когда оказывается, что ни одна строка вида uxv исходной грамматикой не задаётся. Тогда,

какие бы дополнительные символы x ни лежали внутри, строка должна задаваться новой грамматикой.

$$S_2 \to sS_2s$$
 $(s \in \Omega)$
 $S_2 \to sXt$ $(s, t \in \Omega, s \neq t)$
 $X \to sX$ $(s \in \Omega)$
 $X \to \varepsilon$

Грамматика G'_1 , задающая дополнение языка $L(G_1)$, строится так же, только нужно рассмотреть много видов ошибок: чтобы одна конфигурация не следовала за другой, определение перехода машины Тьюринга должно где-то нарушаться.

Построив грамматики $G_1' = (\Sigma, N_1, R_1, S_1)$ и $G_2' = (\Sigma, N_2, R_2, S_2)$, можно добавить к ним правила $S \to S_1 \mid S_2$ и получить грамматику для дополнения языка VALC(M).

Проверка пустоты языка, распознаваемого данной машиной Тьюринга M — это неразрешимая задача. Поскольку язык $\mathrm{VALC}(M)$ пуст тогда и только тогда, когда пуст L(M), задача проверки $\mathrm{VALC}(M)$ на пустоту также неразрешима.

Теорема 4. Следующие задачи неразрешимы:

- 1. пустота пересечения для двух данных грамматик;
- 2. определяет ли данная грамматика множество всех строк;

Доказательство. Пусть есть алгоритм, определяющий пустоту пересечения двух данных грамматик. Тогда существует следующий алгоритм, проверяющий, пуст ли язык, распознаваемый данной машиной Тьюринга M. Алгоритм сперва построит грамматики G_1 и G_2 как в лемме 4, и затем проверит, пусто ли пересечение $L(G_1) \cap L(G_2) = \text{VALC}(M)$. Если пересечение пусто, он примет, а если непусто, то отвергнет. Поскольку VALC(M) пуст тогда и только тогда, когда L(M) пуст, алгоритм работает правильно. Но такого алгоритма существовать не может, поскольку пустота МТ неразрешима по теореме Райса.

Если по данной машине M построить грамматику для языка VALC(M), то окажется, что она задаёт язык Σ^* тогда и только тогда, когда язык VALC(M) пуст — что неразрешимо. \square

Список литературы

- [1984] R. P. Brent, L. M. Goldschlager, "A parallel algorithm for context-free parsing", Australian Computer Science Communications, 6:7 (1984), 7.1–7.10.
- [1965] T. Kasami, "An efficient recognition and syntax-analysis algorithm for context-free languages", Report AF CRL-65-758, Air Force Cambridge Research Laboratory, USA, 1965.
- [1965] P. M. Lewis II, R. E. Stearns, J. Hartmanis, "Memory bounds for recognition of context-free and context-sensitive languages", *IEEE Conference Record on Switching Circuit Theory and Logical Design*, 1965, 191–202.
- [1980] W. L. Ruzzo, "Tree-size bounded alternation", Journal of Computer and System Sciences, 21:2 (1980), 218–235.

- [1985] W. Rytter, "On the recognition of context-free languages", Fundamentals of Computation Theory (FCT 1985, Cottbus, Germany), LNCS 208, 315–322.
- [1975] L. G. Valiant, "General context-free recognition in less than cubic time", *Journal of Computer and System Sciences*, 10:2 (1975), 308–314.
- [1967] D. H. Younger, "Recognition and parsing of context-free languages in time n^3 ", Information and Control, 10 (1967), 189–208.
- [1967] J. Hartmanis, "Context-free languages and Turing machine computations", *Proceedings of Symposia in Applied Mathematics*, Vol. 19, AMS, 1967, 42–51.