Information Systems Security (SOEN321) RSA

Dr. Amr Youssef

Concordia Institute for Information Systems Engineering (CIISE)

Concordia University

Montreal, Canada

youssef@ciise.concordia.ca

Taxonomy of cryptographic primitives

Famous Number Theory Problems

FACTORING	Given n, find a factor of n
RSAP	find m such that $m^e = c \mod n$
ORP	if , decide whether a is a QR or not.
SQROOT	find x such that $x^2 = a \mod n$
DLP	find x such that $g^x = y \mod p$
GDLP	DLP on a finite cyclic group G
DHP	given $g^a \mod p$, $g^b \mod p$, find $g^{ab} \mod p$
GDHP	DHP on a finite cyclic group <i>G</i>
SUBSETSUM	given $\{a_1, \dots, a_n\}$ and s , find subset of a_j that sums to s

Public Key Cryptography

- Each party has a PAIR (P, S) of keys: P is the public key and S is the secret key.
- Knowing the public-key and the cipher, it is still computationally infeasible to compute the private key (an NP-class problem).
- The public-key may be distributed to anyone wishing to communicate securely with its owner
- \bullet Dec_S(Enc_P(M)) = M

Trapdoor One-way Functions

- Definition:
- A function f: {0,1}* → {0,1}* is a trapdoor one-way function iff f(x) is a one-way function; however, given some extra information it becomes feasible to compute f⁻¹: given y, find x s.t. y = f(x)
- Public key cryptography relies on trapdoor one-way functions

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman Security relies on the difficulty of factoring large composite numbers
- Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems",
 Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978

R

RSA Description

- Key generation:
- Select 2 large prime numbers of about the same size, p and q
- Compute n = pq, and $\Phi(n) = (q-1)(p-1)$
 - Note: Φ(n) is Euler's Phi function
- * Select a random integer e, $1 < e < \Phi(n)$, s.t. $gcd(e,\Phi(n))$ = 1
- Compute d, $1 < d < \Phi$ s.t. ed $\equiv 1 \mod \Phi(n)$
- Public key: (e, n)
- Secret key: d

RSA (Cnt.)

- Encryption
- For the message M, 0 < M < n use public key (e, n) to compute C = Me mod n</p>
- Decryption
- For a message C use private key (d) to compute C^d mod n
 = (M^e mod n)^d mod n = M^{ed} mod n = M

Toy Example

- p = 11, q = 7, n = 77, $\Phi(n) = 60$
- \bullet d = 13, e = 37 (ed = 481; ed mod 60 = 1)

- ◆ Let M = 15 Then
- ◆ C ≡ Me mod n
 - $C \equiv 15^{37} \pmod{77} = 71$
- \bullet M \equiv C^d mod n
 - $M \equiv 71^{13} \pmod{77} = 15$

Proof of correctness (sketch)

- ◆ Want to show that (Me)d (mod n) = M, n = pq
- ed \equiv 1 (mod $\Phi(n)$), so ed = k* $\Phi(n)$ + 1, for some integer k.
- Case one: gcd(M, n) = 1
 - $M^{ed} \equiv M^{k*\Phi(n)} M \equiv 1^k M \equiv M \pmod{n}$
- Case two: gcd(M, n) = p
 - $M^{ed} \mod p = (M \mod p)^{ed} \mod p = 0$
 - so Med ≡ M mod p
 - $M^{ed} \mod q = (M^{k*\Phi(n)} \mod q) (M \mod q) = M \mod q$
 - so Med

 M mod q
 - Since p and q are distinct primes we obtain Med ≡ M mod pq

Implementation

- Select p and q prime numbers
- In general, select numbers, then test for primality
 Many implementations use the Rabin-Miller probabilistic test.
- How to perform the exponentiation
- In practice RSA is used to encrypt a random symmetric key, which is used to encrypt the message.

Square and Multiply Algorithm for Exponentiation

- Computing (x)^c mod n
- Algorithm

```
Square-and-multiply (x, n, c = c_{k-1} c_{k-2} ... c_1 c_0)
```

```
z=1
```

for $i \leftarrow k-1$ downto 0 {

 $z \leftarrow z^2 \mod n$

if $c_i = 1$ then $z \leftarrow (z \times x) \mod n$

}

return z

- Example:
 - c = 110101 = 53
 - $x^c = (((x^2 \cdot x)^2)^2 \cdot x)^2)^2 \cdot x \mod n$

How to speed up the encryption

- To Speed up the encryption, speed up the square andmultiply exponentiation
- The smaller the number of 1 bits, the better
- \bullet Example: $e = 2^{16} + 1 = 65537$

RSA Security

- Based on difficulty of factoring large integers.
- RSA problem:
 - Given n, e, x^e mod n, what is x?
 (conjecture: It is equivalent to factoring n.)
- Bit Security of RSA:
 - Computing LSB(x) is equivalent to computing the whole x.

Attacks on RSA

- Possible Goals
 - recover secret key d
 - decrypt one message
 - learn information from the cipher texts
- Key recovery attacks
- Brute force key search
- Timing attacks
- Mathematical attacks

Timing Attacks

- Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems (1996), Paul C. Kocher
- By measuring the time required to perform decryption (exponentiation with the private key as exponent), an attacker can figure out the private key
- Possible countermeasures:
 - use constant exponentiation time
 - add random delays

Math Attacks

- Three possible approaches:
 - Factor n = pq
 - Determine Φ(n)
 - Find the private key d directly
- All the above are equivalent to factoring n

Factoring large numbers

- Three most effective algorithms are
 - quadratic sieve
 - elliptic curve factoring algorithm
 - number field sieve
- One idea many factoring algorithms use:
 - Suppose one find $x^2 \equiv y^2 \pmod{n}$ and $x \neq y \pmod{n}$ and
 - $x\neq -y$ (mod n). Then n | (x-y)(x+y). Neither (x-y) or (x+y) is divisible by n; thus, gcd(x-y,n) has a non-trivial factor of n

Factoring records

- quadratic sieve:
 - $O(e^{(1+o(1))\operatorname{sqrt}(\ln n \ln \ln n)})$

for $n=2^{1024}$, $O(e^{68})$

- elliptic curve factoring algorithm
 - $-O(e^{(1+o(1))sqrt(2 \ln p \ln \ln p)})$, where p is the smallest prime factor
- number field sieve
 - $O(e^{(1.92+o(1))(\ln n)^{1/3}(\ln \ln n)^{2/3}})$

some records:

1996: 432 bits/130 digits

1999: 512 bits/155 digits

2003: 576 bits/174 digits

Extrapolation:

2010: 768 bits/233 digits

2018: 1024 bits/310 digits

Knowing Φ(n) implies factorization

- Knowing both n and Φ(n), one knows
- ♠ n = pq
- \bullet $\Phi(n) = (p-1)(q-1) = pq p q + 1 = n p n/p + 1$
- * $p2 (n \Phi(n) + 1) p + n = 0$ (solve 2^{nd} order equation to get p)

Protocol failure

- Example for how to break RSA without factoring n
 - Low exponent attack
 - Common modulus attack

Low exponent attack

- Broadcast problem with low exponent
- \bullet Bob, Bart, Bert all use e = 3 with mods n_1 , n_2 , n_3 .
- Alice sends the same message x to all:

```
x³ mod n<sub>1</sub>
x³ mod n<sub>2</sub>
x³ mod n<sub>3</sub>
```

- Eve computes $y = x^3 \mod n_1 n_2 n_3$ by the CRT.
- Which is $y = x^3$, since $x < n_1$, n_2 , n_3 , and x is the cube root of y.

Common Modulus attack

- Each entity must choose its own modulus
- Assume Alice and Bob generated keys using the same modulus n, ((e₁, n), d₁)) and ((e₂, n), d₂)) then an eavesdropper can recover the plaintext
- \bullet C₁ = M^{e1} mod n,
- \bullet C₂ = M^{e2} mod n
- \bullet (e1)a + (e2) b = 1 if gcd(e1,e2)=1
- \bullet M = $C_1^a C_2^b \mod n$

Forward search attack

- If message space is small, the attacker can create a dictionary of encrypted messages (public key known, encrypt all possible messages and store them)
- When the attacker 'sees' a message on the network, compares the encrypted messages, so he finds out what particular message was encrypted

Multiplicative property

- \bullet $c_1c_2 = m_1^e m_2^e \mod n = (m_1m_2)^e \mod n$
- Adaptive chosen ciphertext attack (goal is to find m) c = me mod n
- ◆ Attacker chooses x and computes c' = c xe mod n
- \bullet Asks Alice to decrypt it so, $c'^d = c^d \times mod = m \times mod = m$
- Now the attacker can compute m.
- Countermeasure: padding