CHAPTER

4

Higher Order Linear Equations

4.1

2. We will first rewrite the equation as $y''' + (\sin t/t)y'' + (4/t)y = \cos t/t$. Since the coefficient functions $p_1(t) = \sin t/t$, $p_2(t) = 4/t$ and $g(t) = \cos t/t$ are continuous for all $t \neq 0$, the solution is sure to exist in the intervals $(-\infty, 0)$ and $(0, \infty)$.

4. The coefficients are continuous everywhere, but the function $g(t)=2\ln t$ is defined and continuous only on the interval $(0,\infty)$. Hence solutions are defined for positive reals.

8. We have

$$W(f_1, f_2, f_3) = \begin{vmatrix} 2t - 3 & 4t^2 + 2 & 3t^2 + t \\ 2 & 8t & 6t + 1 \\ 0 & 8 & 6 \end{vmatrix} = 0$$

for all t. Thus by the extension of Theorem 3.3.1 the given functions are linearly dependent. To find a linear relation we have $c_1(2t-3)+c_2(4t^2+2)+c_3(3t^2+t)=(4c_2+3c_3)t^2+(2c_1+c_3)t+(-3c_1+2c_2)=0$, which is zero when the coefficients are zero. Solving, we find $c_1=1$, $c_2=3/2$ and $c_3=-2$. This implies that $(2t-3)+(3/2)(4t^2+2)-2(3t^2+t)=0$.

13. By direct substitution, for $y_1 = e^t$ we get $y_1''' - 3y_1'' - y_1' + 3y_1 = e^t - 3e^t - e^t + 3e^t = 0$, for $y_2 = e^{-t}$ we get $y_2''' - 3y_2'' - y_2' + 3y_2 = -e^{-t} - 3e^{-t} + e^{-t} + 3e^{-t} = 0$ and for $y_3 = e^{3t}$ we get $y_3''' - 3y_3'' - y_3' + 3y_3 = 27e^{3t} - 27e^{3t} - 3e^{3t} + 3e^{3t} = 0$.

Therefore, y_1, y_2, y_3 are all solutions of the differential equation. We now compute their Wronskian. We have

$$W(y_1, y_2, y_3) = \begin{vmatrix} e^t & e^{-t} & e^{3t} \\ e^t & -e^{-t} & 3e^{3t} \\ e^t & e^{-t} & 9e^{3t} \end{vmatrix} = e^{3t} \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 1 & 1 & 9 \end{vmatrix} = -16e^{3t}.$$

17. We note first that $(\cos^2 t)' = -2\sin t \cos t = -\sin 2t$. Then

$$W(5,\cos^2 t,\cos 2t) = \begin{vmatrix} 5 & \cos^2 t & \cos 2t \\ 0 & -\sin 2t & -2\sin 2t \\ 0 & -2\cos 2t & -4\cos 2t \end{vmatrix} = 5(4\sin 2t\cos 2t - 4\cos 2t\sin 2t) = 0.$$

Also, $\cos^2 t = (1 + \cos 2t)/2 = (1/10)5 + (1/2)\cos 2t$ and hence $\cos^2 t$ is a linear combination of 5 and $\cos 2t$. Thus the functions are linearly dependent and their Wronskian is zero.

19.(a) Note that
$$d^k(t^n)/dt^k = n(n-1)\dots(n-k+1)t^{n-k}$$
, for $k=1,2,\dots,n$. Thus $L[t^n] = a_0 \, n! + a_1 \, [n(n-1)\dots 2] \, t + \dots \, a_{n-1} \, n \, t^{n-1} + a_n \, t^n$.

(b) We have
$$d^k(e^{rt})/dt^k = r^k e^{rt}$$
, for $k = 0, 1, 2, \ldots$ Hence $L[e^{rt}] = a_0 r^n e^{rt} + a_1 r^{n-1} e^{rt} + \ldots + a_{n-1} r e^{rt} + a_n e^{rt} = [a_0 r^n + a_1 r^{n-1} + \ldots + a_{n-1} r + a_n] e^{rt}$.

(c) Set
$$y=e^{rt}$$
, and substitute into the ODE. It follows that $r^4-5r^2+4=0$, with $r=\pm 1,\pm 2$. Furthermore, $W(e^t,e^{-t},e^{2t},e^{-2t})=72$.

23. After writing the equation in standard form, observe that $p_1(t) = 2/t$. Based on the results in Problem 20, we find that W' = (-2/t)W, and hence $W = c/t^2$.

25.(a) On the interval
$$(-1,0)$$
, $f(t)=t^2|t|=-t^3=-g(t)$, and on the interval $(0,1)$, $f(t)=t^2|t|=t^3=g(t)$. This shows that on these intervals the functions are linearly dependent.

(b) On the interval (-1,1) these two functions are linearly independent, because if $c_1 f(t) + c_2 g(t) = 0$ for every t, then for t = 1/2 we obtain $c_1 + c_2 = 0$ and for t = -1/2 we get $c_1 - c_2 = 0$, which implies that $c_1 = c_2 = 0$.

(c) The Wronskian is

$$W(f,g)(t) = \begin{vmatrix} t^2|t| & t^3 \\ 3t|t| & 3t^2 \end{vmatrix} = 3t^4|t| - 3t^4|t| = 0.$$

27. Differentiating e^t and substituting into the differential equation we verify that $y = e^t$ is a solution: $(2-t)e^t + (2t-3)e^t - te^t + e^t = 0$. Now, as in Problem 26, we let $y = v(t)e^t$. Differentiating three times and substituting into the differential equation yields $(2-t)e^tv''' + (3-t)e^tv'' = 0$. Dividing by $(2-t)e^t$ and letting w = v'' we obtain the first order separable equation w' = -(t-3)w/(t-2) = (-1+1/(t-2))w. Separating t and w, integrating, and then solving for w yields $w = v'' = c_1(t-2)e^{-t}$. Integrating this twice the gives $v = c_1te^{-t} + c_2t + c_3$ so that

 $y = ve^t = c_1t + c_2te^t + c_3e^t$, which is the complete solution, since it contains the given $y_1(t)$ and three constants.

4.2

- 2. The magnitude of $-2+2\sqrt{3} i$ is $R=\sqrt{16}=4$ and the polar angle is $2\pi/3$. Hence the polar form is given by $-2+2\sqrt{3} i=4\,e^{2\pi/3\,i}$. The angle θ is only determined up to an additive integer multiple of 2π .
- 8. Writing 1+i in the form $Re^{i\theta}$, we have $R=\sqrt{2}$ and $\theta=\pi/4$. Thus $1+i=\sqrt{2}e^{i(\pi/4+2m\pi)}$ (where m is any integer), and hence $(1+i)^{1/2}=\sqrt[4]{2}e^{i(\pi/8+m\pi)}$. We obtain the two square roots by setting m=0,1. They are $\sqrt[4]{2}e^{i\pi/8}$ and $\sqrt[4]{2}e^{i9\pi/8}$.
- 12. The characteristic equation is $r^3 6r^2 + 12r 8 = (r-2)^3 = 0$. The roots are r = 2, 2, 2. The roots are repeated, hence $y = c_1e^{2t} + c_2te^{2t} + c_3t^2e^{2t}$.
- 15. The characteristic equation is $r^6+1=0$. The roots are given by $r=(-1)^{1/6}$, that is, the six sixth roots of -1. They are $e^{-\pi i/6+m\pi i/3}$, $m=0,1,\ldots,5$. Explicitly, $r=(\sqrt{3}-i)/2$, $(\sqrt{3}+i)/2$, i, -i, $(-\sqrt{3}+i)/2$, $(-\sqrt{3}-i)/2$. Note that there are three pairs of conjugate roots. Thus $y=e^{\sqrt{3}\,t/2}\left[c_1\cos{(t/2)}+c_2\sin{(t/2)}\right]+c_3\cos{t}+c_4\sin{t}e^{-\sqrt{3}\,t/2}\left[c_5\cos{(t/2)}+c_6\sin{(t/2)}\right]$.
- 23. The characteristic equation is $r^3 3r^2 + r + 1 = 0$. Using the procedure suggested following Eq.(12) we try, since $a_n = a_0 = 1$, r = 1 as a root and find that indeed it is. Factoring out r 1 we are then left with $r^2 2r 1 = 0$, which has the roots $1 \pm \sqrt{2}$. Hence the general solution is $y = c_1 e^t + c_2 e^{(1+\sqrt{2})t} + c_3 e^{(1-\sqrt{2})t}$.
- 27. The characteristic equation is $12r^4+31r^3+75r^2+37r+5=0$. It can be shown (with the aid of a mathematical software) that $12r^4+31r^3+75r^2+37r+5=(3r+1)(4r+1)(r^2+2r+5)$. This implies that the roots are r=-1/3,-1/4, and $-1\pm 2i$. The solution is $y=c_1e^{-t/3}+c_2e^{-t/4}+c_3e^{-t}\cos 2t+c_4e^{-t}\sin 2t$.
- 29. The characteristic equation is $r^3+r=0$, with roots r=0, $\pm i$. Hence the general solution is $y(t)=c_1+c_2\cos t+c_3\sin t$. Invoking the initial conditions, we obtain the system of equations $c_1+c_2=1$, $c_3=1$, $-c_2=2$, with solution $c_1=3$, $c_2=-2$, $c_3=1$. Therefore the solution of the initial value problem is $y(t)=3-2\cos t+\sin t$, which oscillates about y=3 as $t\to\infty$.

30. The characteristic equation is $r^4+1=0$, with roots $r=\pm\sqrt{2}/2\pm i\sqrt{2}/2$, Hence the general solution is $y(t)=c_1e^{\sqrt{2}t/2}\cos(\sqrt{2}t/2)+c_2e^{\sqrt{2}t/2}\sin(\sqrt{2}t/2)+c_3e^{-\sqrt{2}t/2}\cos(\sqrt{2}t/2)+c_4e^{-\sqrt{2}t/2}\sin(\sqrt{2}t/2)$. Invoking the initial conditions, we obtain that the solution of the initial value problem is $y(t)=-e^{\sqrt{2}t/2}\sin(\sqrt{2}t/2)+e^{-\sqrt{2}t/2}\sin(\sqrt{2}t/2)$, which oscillates with an exponentially growing amplitude as $t\to\infty$.

31. The characteristic equation is $r^4-4r^3+r^2=0$, with roots $r=0,\ 0,\ 2,\ 2$. Hence the general solution is $y(t)=c_1+c_2t+c_3e^{2t}+c_4te^{2t}$. Invoking the initial conditions, we obtain that the solution of the initial value problem is y(t)=-5+2t, which grows without bound as $t\to\infty$.

34. The characteristic equation is $4r^3+r+5=0$, with roots $r=-1,\ 1/2\pm i.$

Hence the general solution is $y(t) = c_1 e^{-t} + c_2 e^{t/2} \cos t + c_3 e^{t/2} \sin t$. Invoking the initial conditions, we obtain that the solution of the initial value problem is $y(t) = (2/13)e^{-t} + e^{t/2}[(24/13)\cos t + (3/13)\sin t]$, which oscillates with an exponentially growing amplitude as $t \to \infty$.

37. The approach for solving the differential equation would normally yield $y(t) = c_1 \cos t + c_2 \sin t + c_5 e^t + c_6 e^{-t}$ as the solution. Since $\cosh t = (e^t + e^{-t})/2$ and $\sinh t = (e^t - e^{-t})/2$, y(t) can be written as $y(t) = c_1 \cos t + c_2 \sin t + c_3 \cosh t + c_4 \sinh t$, where $c_3 = c_5 + c_6$ and $c_4 = c_5 - c_6$. It is more convenient to use this form because the initial conditions are given at t = 0, and the functions $\cosh t$ and $\sinh t$ and all their derivatives are 0 or 1 at t = 0, so the algebra is simplified. If y(0) = 0, y'(0) = 0, y''(0) = 1 and y'''(0) = 1, then the resulting system of equations is $c_1 + c_3 = 0$, $c_2 + c_4 = 0$, $-c_1 + c_3 = 1$, and $-c_2 + c_4 = 1$, which yields immediately that $c_1 = -1/2$, $c_3 = 1/2$, $c_2 = -1/2$ and $c_4 = 1/2$, so the solution is $y(t) = -(1/2)(\cos t + \sin t) + (1/2)(\cosh t + \sinh t)$

- 38.(a) Since $p_1(t) = 0$, $W = ce^{-\int 0 dt} = c$.
- (b) $W(e^t, e^{-t}, \cos t, \sin t) = -8$.
- (c) $W(\cosh t, \sinh t, \cos t, \sin t) = 4$.

39.(a) As in Section 3.7, the force that the spring designated by k_1 exerts on mass m_1 is $-3u_1$. By an analysis similar to that shown in Section 3.7, the middle spring exerts a force of $-2(u_1 - u_2)$ on mass m_1 and a force of $-2(u_2 - u_1)$ on mass m_2 . Thus Newton's law gives $m_1u_1'' = -3u_1 - 2(u_1 - u_2)$ and $m_2u_2'' = -2(u_2 - u_1)$, where u_1 and u_2 are measured from their equilibrium positions. Setting the masses equal to 1 and rewriting each equation yields Eq.(i). In all cases the positive direction is taken in the direction shown in Figure 4.2.4.

(b) Clearly, $u_2 = u_1''/2 + (5/2)u_1$, so by differentiating this twice and using the other equation $u_2'' + 2u_2 = 2u_1$ we get that $u_1''''/2 + (5/2)u_1'' + u_1'' + 5u_1 = 2u_1$, which turns into $u_1'''' + 7u_1'' + 6u_1 = 0$ after a multiplication by 2. The characteristic equation is $r^4 + 7r^2 + 6 = 0$, or $(r^2 + 1)(r^2 + 6) = 0$. Thus the general solution of Eq.(ii) is $u_1(t) = c_1 \cos t + c_2 \sin t + c_3 \cos \sqrt{6}t + c_4 \sin \sqrt{6}t$.

(c) We see that $u_1''=2u_2-5u_1$, so $u_1''(0)=2\cdot 2-5\cdot 1=-1$ and by differentiating the previous equation, $u_1'''=2u_2'-5u_1'$, so $u_1'''(0)=0$. Substituting these initial conditions into the previous general solution we obtain the solution $u_1(t)=\cos t$. Also, $2u_2=u_1''+5u_1=4\cos t$ so $u_2(t)=2\cos t$.

(d) As in part (c), $u_1''=2u_2-5u_1$, so $u_1''(0)=2\cdot 1-5\cdot (-2)=12$ and $u_1'''=2u_2'-5u_1'$, so $u_1'''(0)=0$. Substituting these initial conditions into the general solution we obtain the solution $u_1(t)=-2\cos\sqrt{6}t$. Then $2u_2=u_1''+5u_1=2\cos\sqrt{6}t$ so $u_2(t)=\cos\sqrt{6}t$.

(e)

4.3

- 1. First solve the homogeneous equation. The characteristic equation for this is $r^3 r^2 r + 1 = 0$, the roots are r = -1, 1, 1, so $y_c(t) = c_1 e^{-t} + c_2 e^t + c_3 t e^t$. Using the superposition principle, we can write a particular solution as the sum of the particular solutions corresponding to the differential equations $y''' y'' y' + y = 4e^{-t}$ and y''' y'' y' + y = 3. Our initial choice for $Y_1(t)$ is Ae^{-t} , but because this is a solution of the homogeneous equation we need $Y_1(t) = Ate^{-t}$. The second equation gives us $Y_2(t) = B$. The constants A and B can be determined by substituting into the individual equations. We obtain A = 1 and B = 3. Thus the general solution is $y(t) = c_1 e^{-t} + c_2 e^t + c_3 t e^t + t e^{-t} + 3$.
- 5. The characteristic equation is $r^4 4r^2 = r^2(r^2 4) = 0$, so $y_c(t) = c_1 + c_2t + c_3e^{-2t} + c_4e^{2t}$. For the particular solution corresponding to t^2 we assume $Y_1(t) = t^2(At^2 + Bt + C)$ and for the particular solution corresponding to $4e^t$ we assume $Y_2(t) = De^t$. The constants A, B, C, and D can be determined by substituting into the individual equations. We obtain that the general solution is $y(t) = c_1 + c_2t + c_3e^{-2t} + c_4e^{2t} t^4/48 t^2/16 4e^t/3$.

9. The characteristic equation for the related homogeneous differential equation is $r^3+4r=0$ with roots $r=0,\pm 2i$. Hence $y_c(t)=c_1+c_2\cos 2t+c_3\sin 2t$. The initial choice for Y(t) is At+B, but because B is a solution of the homogeneous equation we assume Y(t)=t(At+B). A and B are found by substituting this into the differential equation, which gives us A=1/8 and B=0. Thus the general solution is $y=c_1+c_2\cos 2t+c_3\sin 2t+t^2/8$. Applying the initial conditions at this point we obtain that $y(0)=c_1+c_2=0$, $y'(0)=2c_3=0$ and $y''(0)=-4c_2+1/4=2$. This gives $c_2=-7/16$, $c_1=7/16$ and $c_3=0$. The solution is $y=7/16-(7/16)\cos 2t+t^2/8$. We can see that for $t=\pi,2\pi,\ldots$ the graph will be tangent to $t^2/8$ and for large t values the graph will be approximated by $t^2/8$.

13. The characteristic equation for the homogeneous equation is $r^3 - 2r^2 + r = 0$, with roots r = 0, 1, 1. Hence the complementary solution is $y_c(t) = c_1 + c_2 e^t + c_3 t e^t$. We consider the differential equations $y''' - 2y'' + y' = 3t^3$ and $y''' - 2y'' + y' = 2e^t$ separately. Our initial choice for a particular solution Y_1 of the first equation is $A_0 t^3 + A_1 t^2 + A_2 t + A_3$; but since a constant is a solution of the homogeneous equation we must multiply this by t. Thus $Y_1(t) = t(A_0 t^3 + A_1 t^2 + A_2 t + A_3)$. For the second equation we first choose $Y_2(t) = Be^t$, but since both e^t and te^t are solutions of the homogeneous equation, we multiply by t^2 to obtain $Y_2(t) = Bt^2 e^t$. Then $Y(t) = Y_1(t) + Y_2(t)$ by the superposition principle and $y(t) = y_c(t) + Y(t)$.

17. The characteristic equation for the homogeneous equation is $r^4 - r^3 - r^2 + r = r(r-1)(r^2-1) = 0$, with roots r=0,1,1,-1. Hence the complementary solution is $y_c(t) = c_1 + c_2 e^{-t} + c_3 e^t + c_4 t e^t$. We consider the differential equations $y^{(4)} - y''' - y'' + y' = t^2 + 8$ and $y^{(4)} - y''' - y'' + y' = t \sin t$ separately. Our initial choice for a particular solution Y_1 of the first equation is $A_0 t^2 + A_1 t + A_2$; but since a constant is a solution of the homogeneous equation we must multiply this by t. Thus $Y_1(t) = t(A_0 t^2 + A_1 t + A_2)$. For the second equation our initial choice $Y_2(t) = (B_0 t + B_1) \cos t + (C_0 t + C_1) \sin t$ does not need to be modified. Thus $Y(t) = Y_1(t) + Y_2(t)$ by the superposition principle and $y(t) = y_c(t) + Y(t)$.

20. We get $(D-a)(D-b)f = (D-a)(Df-bf) = D^2f - (a+b)Df + abf$ and $(D-b)(D-a)f = (D-b)(Df-af) = D^2f - (b+a)Df + baf$. Thus we find that the given equation holds for any function f.

22. (13) The equation in Problem 13 can be written as $D(D-1)^2y=t^3+2e^t$. Since D^4 annihilates t^3 and D-1 annihilates $2e^t$, we have $D^5(D-1)^3y=0$, which corresponds to Eq.(ii) of Problem 21. The solution of this equation is $y(t)=A_1t^4+A_2t^3+A_3t^2+A_4t+A_5+(B_1t^2+B_2t+B_3)e^t$. Since A_5 and $(B_2t+B_3)e^t$ are solutions of the homogeneous equation related to the original differential equation, they may be deleted and thus $Y(t)=A_1t^4+A_2t^3+A_3t^2+A_4t+B_1t^2e^t$.

22. (14) If $y=te^{-t}$, then $Dy=-te^{-t}+e^{-t}$ and $D^2y=te^{-t}-2e^{-t}$, which means $(D+1)^2y=(D^2+2D+1)y=0$ and thus $(D+1)^2$ annihilates te^{-t} . Likewise, D^2-1 annihilates $2\cos t$. Thus $(D+1)^2(D^2+1)$ annihilates the right side of the differential equation.

22. (17) $D^3(D^2+1)^2$ annihilates the right side of the differential equation.

4.4

1. The characteristic equation is $r(r^2+1)=0$. Hence the homogeneous solution is $y_c(t)=c_1+c_2\cos t+c_3\sin t$. The Wronskian is evaluated as $W(1,\cos t,\sin t)=1$. Now compute the three determinants

$$W_1(t) = \begin{vmatrix} 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \\ 1 & -\cos t & -\sin t \end{vmatrix} = 1, \quad W_2(t) = \begin{vmatrix} 1 & 0 & \sin t \\ 0 & 0 & \cos t \\ 0 & 1 & -\sin t \end{vmatrix} = -\cos t,$$

$$W_3(t) = \begin{vmatrix} 1 & \cos t & 0 \\ 0 & -\sin t & 0 \\ 0 & -\cos t & 1 \end{vmatrix} = -\sin t.$$

The solution of the system of Equations (11) is

$$u_1'(t) = \frac{2 \tan t \, W_1(t)}{W(t)} = 2 \tan t, \quad u_2'(t) = \frac{2 \tan t \, W_2(t)}{W(t)} = -2 \sin t,$$

$$u_3'(t) = \frac{2 \tan t W_3(t)}{W(t)} = -2 \sin^2 t / \cos t.$$

Hence $u_1(t) = -2\ln(\cos t)$, $u_2(t) = 2\cos t$, $u_3(t) = 2\sin t - 2\ln(\sec t + \tan t)$. The particular solution becomes $Y(t) = -2\ln(\cos t) + 2 - 2\sin t\ln(\sec t + \tan t)$, since $\sin^2 t + \cos^2 t = 1$. The constant is a solution of the homogeneous equation, therefore the general solution is

$$y(t) = c_1 + c_2 \cos t + c_3 \sin t - 2 \ln(\cos t) - 2 \sin t \ln(\sec t + \tan t).$$

4. Similarly to Problem 1, the characteristic equation is $r(r^2+1)=0$. Hence the homogeneous solution is $y_c(t)=c_1+c_2\cos t+c_3\sin t$. The Wronskian is evaluated

as $W(1, \cos t, \sin t) = 1$. Now compute the three determinants

$$W_1(t) = \begin{vmatrix} 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \\ 1 & -\cos t & -\sin t \end{vmatrix} = 1, \quad W_2(t) = \begin{vmatrix} 1 & 0 & \sin t \\ 0 & 0 & \cos t \\ 0 & 1 & -\sin t \end{vmatrix} = -\cos t,$$

$$W_3(t) = \begin{vmatrix} 1 & \cos t & 0 \\ 0 & -\sin t & 0 \\ 0 & -\cos t & 1 \end{vmatrix} = -\sin t.$$

The solution of the system of Equations (11) is

$$u_1'(t) = \frac{\sec t W_1(t)}{W(t)} = \sec t, \quad u_2'(t) = \frac{\sec t W_2(t)}{W(t)} = -1,$$

$$\sec t W_3(t)$$

$$u_3'(t) = \frac{\sec t W_3(t)}{W(t)} = -\sin t/\cos t.$$

Hence $u_1(t) = \ln(\sec t + \tan t)$, $u_2(t) = -t$, $u_3(t) = \ln(\cos t)$. The particular solution becomes $Y(t) = \ln(\sec t + \tan t) - t \cos t + \sin t \ln(\cos t)$.

5. The characteristic equation is $r^3-r^2+r-1=(r-1)(r^2+1)=0$. Hence the homogeneous solution is $y_c(t)=c_1e^t+c_2\cos t+c_3\sin t$. The Wronskian is evaluated as $W(e^t,\cos t,\sin t)=2e^t$. (This also can be found by using Abel's identity: $W(t)=ce^{-\int p_1(t)\,dt}=ce^t$, where W(0)=2, so c=2 and again $W(t)=2e^t$.) Now compute the three determinants

$$W_1(t) = \begin{vmatrix} 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \\ 1 & -\cos t & -\sin t \end{vmatrix} = 1, \quad W_2(t) = \begin{vmatrix} e^t & 0 & \sin t \\ e^t & 0 & \cos t \\ e^t & 1 & -\sin t \end{vmatrix} = e^t(\sin t - \cos t),$$

$$W_3(t) = \begin{vmatrix} e^t & \cos t & 0 \\ e^t & -\sin t & 0 \\ e^t & -\cos t & 1 \end{vmatrix} = -e^t(\sin t + \cos t).$$

The solution of the system of equations (10) is

$$u_1'(t) = \frac{2e^{-t}\sin t\,W_1(t)}{W(t)} = e^{-2t}\sin t,\ u_2'(t) = \frac{2e^{-t}\sin t\,W_2(t)}{W(t)} = e^{-t}(\sin^2 t - \sin t\cos t),$$

$$u_3'(t) = \frac{2e^{-t}\sin t W_3(t)}{W(t)} = -e^{-t}(\sin^2 t + \sin t \cos t).$$

Hence $u_1(t) = -e^{-2t}(\cos t + 2\sin t)/5$, $u_2(t) = -e^{-t}/2 + 3e^{-t}\cos 2t/10 - \sin 2t/10$, $u_3(t) = e^{-t}/2 + e^{-t}\cos 2t/10 + 3e^{-t}\sin 2t/10$. Substitution into $Y = u_1e^t + u_2\cos t + u_3\sin t$ yields the desired particular solution.

7. Similarly to Problem 5, the characteristic equation for the differential equation is $r^3 - r^2 + r - 1 = (r - 1)(r^2 + 1) = 0$. Hence the homogeneous solution is $y_c(t) = c_1 e^t + c_2 \cos t + c_3 \sin t$. The Wronskian is evaluated as $W(e^t, \cos t, \sin t) =$

 $2e^t$. (Also, as in Problem 5, this can be found by using Abel's identity.) Now compute the three determinants

$$W_1(t) = \begin{vmatrix} 0 & \cos t & \sin t \\ 0 & -\sin t & \cos t \\ 1 & -\cos t & -\sin t \end{vmatrix} = 1, \quad W_2(t) = \begin{vmatrix} e^t & 0 & \sin t \\ e^t & 0 & \cos t \\ e^t & 1 & -\sin t \end{vmatrix} = e^t(\sin t - \cos t),$$

$$W_3(t) = \begin{vmatrix} e^t & \cos t & 0 \\ e^t & -\sin t & 0 \\ e^t & -\cos t & 1 \end{vmatrix} = -e^t(\sin t + \cos t).$$

The solution of the system of equations (10) is

$$u_1'(t) = \frac{\sec t W_1(t)}{W(t)} = \frac{e^{-t} \sec t}{2}, \quad u_2'(t) = \frac{\sec t W_2(t)}{W(t)} = \frac{\sec t (\sin t - \cos t)}{2},$$
$$u_3'(t) = \frac{\sec t W_3(t)}{W(t)} = -\frac{\sec t (\sin t + \cos t)}{2}.$$

Hence $u_1(t)=(1/2)\int_{t_0}^t e^{-s} \sec s \, ds$, $u_2(t)=-t/2-\ln(\cos t)/2$, and $u_3(t)=-t/2+\ln(\cos t)/2$. Substitution into $Y=u_1e^t+u_2\cos t+u_3\sin t$ yields the desired particular solution.

11. Since the differential equation is the same as in Problem 7. we may use the complete solution from there, with $t_0 = 0$. Thus $y(0) = c_1 + c_2 = 2$, $y'(0) = c_1 + c_3 - 1/2 + 1/2 = -1$ and $y''(0) = c_1 - c_2 + 1/2 - 1 + 1/2 = 1$. A computer algebra system may be used to find the respective derivatives. Note that the solution is valid only for $0 \le t < \pi/2$, where we see the vertical asymptote.

14. Using Problem 7 (or Problem 5) again, we get that $Y = u_1 e^t + u_2 \cos t + u_3 \sin t$, where

$$u_1'(t) = \frac{g(t) W_1(t)}{W(t)} = \frac{g(t)e^{-t}}{2}, \quad u_2'(t) = \frac{g(t) W_2(t)}{W(t)} = \frac{g(t)(\sin t - \cos t)}{2},$$
$$u_3'(t) = \frac{g(t) W_3(t)}{W(t)} = -\frac{g(t)(\sin t + \cos t)}{2}.$$

Thus we obtain that

$$Y(t) = \frac{1}{2} \left[e^t \int_{t_0}^t e^{-s} g(s) \, ds + \cos t \int_{t_0}^t (\sin s - \cos s) g(s) \, ds - \sin t \int_{t_0}^t (\sin s + \cos s) g(s) \, ds \right].$$

We can move e^t , $\cos t$ and $\sin t$ inside the integrals and use trigonometric identities to obtain the desired formula.

16. The characteristic equation for the differential equation is $r^3 - 3r^2 + 3r - 1 = (r-1)^3 = 0$. Hence the homogeneous solution is $y_c(t) = c_1 e^t + c_2 t e^t + c_3 t^2 e^t$. The Wronskian is evaluated as $W(e^t, te^t, t^2 e^t) = 2e^{3t}$. Now compute the three determinants

$$W_{1}(t) = \begin{vmatrix} 0 & te^{t} & t^{2}e^{t} \\ 0 & e^{t} + te^{t} & 2te^{t} + t^{2}e^{t} \\ 1 & 2e^{t} + te^{t} & 2e^{t} + 4te^{t} + t^{2}e^{t} \end{vmatrix} = t^{2}e^{2t},$$

$$W_{2}(t) = \begin{vmatrix} e^{t} & 0 & t^{2}e^{t} \\ e^{t} & 0 & 2te^{t} + t^{2}e^{t} \\ e^{t} & 1 & 2e^{t} + 4te^{t} + t^{2}e^{t} \end{vmatrix} = -2te^{2t},$$

$$W_{3}(t) = \begin{vmatrix} e^{t} & te^{t} & 0 \\ e^{t} & e^{t} + te^{t} & 0 \\ e^{t} & 2e^{t} + te^{t} & 1 \end{vmatrix} = e^{2t}.$$

The solution of the system of equations (10) is

$$u_1'(t) = \frac{g(t) W_1(t)}{W(t)} = \frac{g(t) t^2 e^{-t}}{2}, \quad u_2'(t) = \frac{g(t) W_2(t)}{W(t)} = -g(t) t e^{-t},$$
$$u_3'(t) = \frac{g(t) W_3(t)}{W(t)} = \frac{g(t) e^{-t}}{2}.$$

Thus we obtain that

$$Y(t) = e^{t} \int_{t_{0}}^{t} \frac{g(s)s^{2}e^{-s}}{2} ds - te^{t} \int_{t_{0}}^{t} g(s)se^{-s} ds + t^{2}e^{t} \int_{t_{0}}^{t} \frac{g(s)e^{-s}}{2} ds =$$

$$= \int_{t_{0}}^{t} \frac{g(s)e^{t-s}(s^{2} - 2ts + t^{2})}{2} ds = \int_{t_{0}}^{t} \frac{g(s)e^{t-s}(s - t)^{2}}{2} ds.$$

If $g(t) = t^{-2}e^t$, then this formula gives

$$Y(t) = \int_{t_0}^t \frac{s^{-2}e^s e^{t-s}(s-t)^2}{2} \, ds = e^t \int_{t_0}^t \frac{s^{-2}(s-t)^2}{2} \, ds = e^t \int_{t_0}^t \frac{1}{2} - \frac{t}{s} + \frac{t^2}{2s^2} \, ds.$$

Note that terms involving t_0 become part of the complementary solution, so we obtain that $Y(t) = -te^t \ln t$ only.