H9.00004: Thermocapillarity Driven Instabilities in Thin Liquid Layers Subject to Long-wave Analysis

Aneet Dharmavaram Narendranath*, James C. Hermanson+, Robert W. Kolkka**, Allan A. Struthers**, Jeffrey S. Allen*

*Mechanical Engineering/Michigan Technological University, **Mathematical Sciences/Michigan Technological University, +Aeronautics & Astronautics/University of Washington

November 16, 2012

Objective

Overall objective

To study the effect of thermal (evaporation rates, effect of zero/micro gravity) and mechanical (periodic, free and pinned) boundary conditions on the dynamics of non-evaporating and evaporating liquid films through the augmented liquid film evolution equation.

Objective within the purview of this presentation

- Evaporating liquid films in zero gravity
- ► Effect of initial conditions
- Dichloromethane liquid film in zero gravity

Non-linear evolution equation

$$h_{T} + \underbrace{\frac{E}{(h+K)}}_{\text{Evaporation}} + \underbrace{\frac{S(h^{3}h_{XXX})_{X}}{\text{surface tension}} - \underbrace{\frac{Ga}{3}(h^{3}h_{X})_{X}}_{\text{Gravity}} + \underbrace{E^{2}D^{-1}\left[\frac{h^{3}h_{X}}{(h+K)^{3}}\right]_{X}}_{\text{vapor recoil}} + \underbrace{\frac{E^{2}D^{-1}\left[\frac{h^{2}h_{X}}{(h+K)^{2}}\right]_{X}}_{\text{thermocapillarity}} + \underbrace{\frac{5Ra}{48\text{Pr}}\left[\frac{K^{2}}{(h+K)^{2}}h^{4}h_{X} + h^{4}h_{X}\right]}_{\text{buoyancy driven instabilities}} = 0$$

$$(1)$$

Fastest growing wavelength, λ_{max}

- Derived using linear stability theory on the evolution equation
- Describes that wavelength of perturbation that grows the fastest for a certain set of conditions

$$\lambda_{max} = 2\pi/q_{max}$$

$$q_{\max} = \left[\frac{-Bo + \delta(h+K)^{-3} + mh^{-1}(Bih+K)^{-2}) + R\{\frac{K}{(h+K)^2} - 1\}h}{2} \right]^{\frac{1}{2}}$$

Here, Bo =
$$G/S$$
, $\delta=E^2/DS$, $m=MK/PrS$, $\epsilon=E/S$, $R=Ra/(\Pr S)$ and $\bar{h}=-K+\sqrt{(K+1)^2-2\epsilon t}$. Here, \bar{h} is the basic X-independent state and is a Lighning layer.

G=0.0, S=100, M=35.1, Pr=7.02, E=0.0001, R=0

5 / 19

G=0.0, S=100, M=35.1, Pr=7.02, E=0.0001, R=0

6 / 19

G=0.0, S=100, M=35.1, Pr=7.02, E=0.0001, R=0

Perturbation wavenumber (k/L)=3

Effect of initial conditions: Slowly evaporating liquid film in zero gravity for varying domain sizes

Mean curvature variation with change in domain size $(1 - 0.05(\cos[2\pi x/L] + \sin[2\pi x/L])\cos[2\pi y/L])$

Mean curvature variation from change in perturbation

$L = n\lambda_{\text{max}}$, where n = 1, 2, 3 E=0.0001, G=0.0, S=100, M=35.1, Pr=7.02, R=0

$L = n\lambda_{\text{max}}$, where n = 1, 2, 3 E=0.0001, G=0.0, S=100, M=35.1, Pr=7.02, R=0

Evaporating 2.35 mm thick Dichloromethane liquid film

	$g = 9.81 m/s^2$ or $g = 0.0 m/s^2$	Math fluid
G	$4.11 \times 10^6 / 0$	0.333/0
S	143×10^{3}	100
Μ	122×10^3	35.1
Pr	3.9	7.02
ϵ	6.01×10^{-8}	0
δ	5.19×10^{-7}	0

Terrestrial gravity, film depletion in \sim 57seconds

Initial condition

DFT, Initial condition

Rupture

DFT, rupture

Zero gravity, film rupture in \sim 4 seconds

Initial condition

Rupture

DFT, rupture

Conclusions

- ► For evaporating liquid films in zero gravity, as the domain size increases, the complexity of structures increases
- ▶ When perturbations with fractional λ_{max} are applied, secondary structures (fractional wavelengths) appear
- ► Curvature of the initial condition affects film evolution
- For DCM films, long wave theory is applicable when $h_0 \leq 100 \mu m$ in terrestrial gravity while it is applicable for $h_0 \sim 2.5 mm$ in zero gravity

Acknowledgements

The presenter would like to thank,

- Michigan Technological University, and the Microfluidics and Interfacial Transport Laboratory, where this research was performed.
- ► National Science Foundation and NASA, who supported the work.
- Dr. James C. Hermanson, Juan Carlos Gonzales (PhD Candidate) from the University of Washington.
- ► Dr. Robert W. Kolkka, Dr. Alan Struthers and Dr. Jeffrey S. Allen from Michigan Technological University.

Questions? Comments?

Brief Bibliography

