Integration & Acceptance Test THD Analyzer

Bob Cordell's article (part 3) describes this as "Intermediate Check-Out" (page 57) and "Test and Calibration" (page 58-59). The system itself is tested slightly different from Bob's tests. This is because we use the μ C board (PCB4) to control all switches.

Date test conducted:		
PCB1, PCB2, PCB3 hardware version:	V0.30 V0.21 V0.21	
End-result of test	OK / NOK	

Intermediate Check-Out

Nr.	Description			
0	Entry-criteria: - a tested and working μC control-board (PCB4) is needed for these tests Unit-tests for PCB1, PCB2 and PCB3 boards have been done and no errors were found Flat-cables (4) are connected between: • PCB1 and PCB4, PCB2 and PCB4 and between PCB3 and PCB4 • PCB2 and PCB3 inter-connect - Function-generator, oscilloscope, true-RMS multimeter For PCB1, PCB2, PCB3 and PCB4: Connect ±15 V and GND to +15 V, GND and -15 V.			
	Description	Result		
		Expected	Measured	OK?
1.1	- Connect MAIN.OUT (PCB1) to the Input on PCB2 Use the Level potmeter on PCB1 to set PCB2 input- voltage to 1 V _{rms} . Use a true-RMS multimeter to measure this value as accurate as possible Set Frequency to 2 kHz Set Output-level to 5V Set Input-level to 3V Set Sensitivity to 0.3% Adjust R59 (freq.) and R62 (ampl.) as necessary	- Analyzer has locked itself - E8 between -1V and -4V - E22 between -1V and -4V - E23 between -1V and -4V - No oscillations		OK/NOK
1.2	 Inject a distortion signal (6 kHz, 150 mV_{rms}) from a 2nd function-generator through a 62 kΩ into PCB2 input. Calibrate the 0.3% Sensitivity setting as follows: UART: type 'c11' and write down the value. c11_new = (x * c11) / (y * z), with: x = 150 mV_{rms} (2nd function-generator output) y = PCB1 output-value in mV_{rms} z = value on SSD4 (e.g. 0.15) Enter this new value by typing 'c11 c11_new', with c11_new being the number calculated. Check that SSD4 now displays 0.150 %. 	- Distortion is 0.15 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c11_new =	c11 =	OK/NOK
1.3	- Set Sensitivity to 1.0 % Inject a distortion signal (6 kHz, 500 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input Calibrate the 1.0% Sensitivity setting as follows: • UART: type 'c10' and write down the value. • c10_new = (x * c10) / (y * z), with: • x = 500 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 0.500) - Enter this new value by typing 'c10 c10_new', with c10_new being the number calculated Check that SSD4 now displays 0.500 %.	- Distortion is 0.5 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c10_new =	c10 =	OK/NOK

1.4	- Set Sensitivity to 3.0 % Inject a distortion signal (6 kHz, 1.5 V _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input Calibrate the 3.0% Sensitivity setting as follows: • UART: type 'c9' and write down the value. • c9_new = (x * c9) / (y * z), with: • x = 1500 V _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 1.500) - Enter this new value by typing 'c9 c9_new', with c9_new being the number calculated Check that SSD4 now displays 1.500 %.	- Distortion is 1.5 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c9_new =	c9 =	OK/NOK
1.5	- Set Sensitivity to 10.0 %. - Inject a distortion signal (6 kHz, 5 V _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input. - Calibrate the 10.0% Sensitivity setting as follows: • UART: type 'c8' and write down the value. • c8_new = (x * c8) / (y * z), with: • x = 5000 V _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 5.000) - Enter this new value by typing 'c8 c8_new', with c8_new being the number calculated. - Check that SSD4 now displays 5.000 %.	- Distortion is 5.0 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c8_new =	c8 =	OK/NOK
1.6	- Set Sensitivity to 0.1 % Inject a distortion signal (6 kHz, 50 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input Calibrate the 0.1% Sensitivity setting as follows: • UART: type 'c12' and write down the value. • c12_new = (x * c12) / (y * z), with: • x = 50 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 0.05) - Enter this new value by typing 'c12 c12_new', with c12_new being the number calculated Check that SSD4 now displays 0.050 %.	- Distortion is 0.05 %, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c12_new =	c12 =	OK/NOK
1.7	- Set Sensitivity to 300 ppm , increase Input-level to 10V and use the Level potmeter on PCB1 to increase the PCB1 output-voltage to 4.5 V _{rms} . Use a true-RMS multimeter to measure this value as accurate as possible. - Inject a distortion signal (6 kHz , 90 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input. - Calibrate the 300 ppm Sensitivity setting as follows: • UART: type 'c13' and write down the value. • c13_new = (x * c13 * 1E+4) / (y * z), with: • x = 90 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 200 ppm) - Enter this new value by typing 'c13 c13_new', with c13_new being the number calculated. - Check that SSD4 now displays 200 ppm .	- Distortion is 200 ppm, SSD4 reading should be close to this value. - Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c13_new =	c13 =	OK/NOK

1.8	- Set Sensitivity to 100 ppm Inject a distortion signal (6 kHz, 30 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input Calibrate the 100 ppm Sensitivity setting as follows: • UART: type 'c14' and write down the value. • c14_new = (x * c14 * 1E+4) / (y * z), with: • x = 30 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 67 ppm) - Enter this new value by typing 'c14 c14_new', with c14_new being the number calculated Check that SSD4 now displays 66.7 ppm .	- Distortion is 66.7 ppm, SSD4 reading should be close to this value Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c14_new =	c14 =	OK/NOK
1.9	- Set Sensitivity to 30 ppm Inject a distortion signal (6 kHz, 12 mV _{rms}) from a 2 nd function-generator through a 62 kΩ into PCB2 input Calibrate the 30 ppm Sensitivity setting as follows: • UART: type 'c15' and write down the value. • c15_new = (x * c15 * 1E+4) / (y * z), with: • x = 12 mV _{rms} (2 nd function-generator output) • y = PCB1 output-value in mV _{rms} • z = value on SSD4 (e.g. 20 ppm) - Enter this new value by typing 'c15 c15_new', with c15_new being the number calculated Check that SSD4 now displays 26.7 ppm .	- Distortion is 26.7 ppm, SSD4 reading should be close to this value. - Check signal at E40 (DIST.OUT), this should be a clean 6 kHz signal c15_new =	c15 =	OK/NOK