In [1]: import pandas as pd import numpy as npimport matplotlib.pyplot as pltimport seaborn as sns df = pd.read_csv('Customer Churn.csv')df

Out[1]:

- ԱԱ									
	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	Intern
0	7590- VHVEG	Female	0	Yes	No	1	No	No phone service	DSL
1	5575- GNVDE	Male	0	No	No	34	Yes	No	DSL
2	3668- QPYBK	Male	0	No	No	2	Yes	No	DSL
3	7795- CFOCW	Male	0	No	No	45	No	No phone service	DSL
4	9237- HQITU	Female	0	No	No	2	Yes	No	Fiber
•••		•••		•••				•••	•••
7038	6840- RESVB	Male	0	Yes	Yes	24	Yes	Yes	DSL
7039	2234- XADUH	Female	0	Yes	Yes	72	Yes	Yes	Fiber
7040	4801- JZAZL	Female	0	Yes	Yes	11	No	No phone service	DSL
7041	8361- LTMKD	Male	1	Yes	No	4	Yes	Yes	Fiber
7042	3186- AJIEK	Male	0	No	No	66	Yes	No	Fiber

7043 rows × 21 columns

In []:

In []:

In [2]:

df.shape

Out[2]:

(7043, 21)

In [3]:

df.info()

<class 'pandas.core.frame.DataFrame'>

```
Data columns (total 21 columns):
# Column
                 Non-Null Count Dtype
____
0 customerID
                  7043 non-null object
1 gender
                7043 non-null object
2 SeniorCitizen
                  7043 non-null int64
3 Partner
                7043 non-null object
4 Dependents
                  7043 non-null object
5 tenure
                7043 non-null int64
6 PhoneService
                   7043 non-null object
7 MultipleLines
                   7043 non-null object
8 InternetService 7043 non-null object
9 OnlineSecurity
                   7043 non-null object
10 OnlineBackup
                    7043 non-null object
11 DeviceProtection 7043 non-null object
12 TechSupport
                   7043 non-null object
13 StreamingTV
                    7043 non-null object
14 StreamingMovies 7043 non-null object
15 Contract
                 7043 non-null object
16 PaperlessBilling 7043 non-null object
17 PaymentMethod
                     7043 non-null object
                     7043 non-null float64
18 MonthlyCharges
19 TotalCharges
                   7043 non-null object
20 Churn
                 7043 non-null object
dtypes: float64(1), int64(2), object(18)
memory usage: 1.1+ MB
replacing blanks with 0 in TotalCharges
In [6]:
df["TotalCharges"] = df["TotalCharges"].replace(" ","0")df["TotalCharges"] =
df["TotalCharges"].astype("float")
In [7]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 21 columns):
# Column
                 Non-Null Count Dtype
0 customerID
                  7043 non-null object
1 gender
                7043 non-null object
```

RangeIndex: 7043 entries, 0 to 7042

2 SeniorCitizen

7043 non-null int64

- 3 Partner 7043 non-null object
- 4 Dependents 7043 non-null object
- 5 tenure 7043 non-null int64
- 6 PhoneService 7043 non-null object
- 7 MultipleLines 7043 non-null object
- 8 InternetService 7043 non-null object
- 9 OnlineSecurity 7043 non-null object
- 10 OnlineBackup 7043 non-null object
- 11 DeviceProtection 7043 non-null object
- 12 TechSupport 7043 non-null object
- 13 StreamingTV 7043 non-null object
- 14 StreamingMovies 7043 non-null object
- 15 Contract 7043 non-null object
- 16 PaperlessBilling 7043 non-null object
- 17 PaymentMethod 7043 non-null object
- 18 MonthlyCharges 7043 non-null float64
- 19 TotalCharges 7043 non-null float64
- 20 Churn 7043 non-null object

dtypes: float64(2), int64(2), object(17)

memory usage: 1.1+ MB

In [8]:

df.isnull().sum()

Out[8]:

customerID 0

gender 0

SeniorCitizen 0

Partner 0

Dependents 0

tenure 0

PhoneService 0

MultipleLines 0

InternetService (

OnlineSecurity 0

OnlineBackup 0

DeviceProtection 0

TechSupport 0

StreamingTV 0

StreamingMovies 0

Contract 0

PaperlessBilling 0

PaymentMethod 0

```
MonthlyCharges
TotalCharges
                 0
Churn
              0
dtype: int64
In [9]:
df.describe()
Out[9]:
```

	SeniorCitizen	tenure	MonthlyCharges	TotalCharges	
count	7043.000000	7043.000000	7043.000000	7043.000000	
mean	0.162147	32.371149	64.761692	2279.734304	
std	0.368612	24.559481	30.090047	2266.794470	
min	0.000000	0.000000	18.250000	0.000000	
25%	0.000000	9.000000	35.500000	398.550000	
50%	0.000000	29.000000	70.350000	1394.550000	
75%	0.000000	55.000000	89.850000	3786.600000	
max	1.000000	72.000000	118.750000	8684.800000	

In [10]:

df.duplicated().sum()

Out[10]:

np.int64(0)

In [11]:

def conv(value):

if value == 1: return "yes"

else:

return "no"

df["SeniorCitizen"] = df["SeniorCitizen"].apply(conv)

In [12]: df.head()

Out[12]:

-	_									
		customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetS
	- 11	1/590-	Female	no	Yes	No	1	No	No phone service	DSL
	- 11	5575- GNVDE	Male	no	No	No	34	Yes	No	DSL
	- 11	3668- QPYBK	Male	no	No	No	2	Yes	No	DSL
[3	7795-	Male	no	No	No	45	No	No phone	DSL

customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetS
CFOCW							service	
9237- HQITU	Female	no	No	No	2	Yes	No	Fiber opt

5 rows × 21 columns

In [92]:

 $plt.figure(figsize=(20,6))d = sns.countplot(\ x = 'tenure' \ , \ data = df) for \ bars \ in$

d.containers:

 $d.bar_label(bars)plt.xlabel('total months')plt.ylabel('count')plt.show()$

In []:

With this graph, you can directly observe:

For each tenure value, how many customers churned versus stayed. Whether churn occurs more frequently for shorter tenures, longer tenures, or is evenly distributed. In [93]:

c = sns.countplot(x = 'Churn', data = df) for bars in c.containers:

c.bar_label(bars)plt.show()

In [27]: $plt.figure(figsize=(4,4))gb = \\ df.groupby("Churn").agg(\{'Churn':"count"\})plt.pie(gb['Churn'],labels=gb.index , \\ autopct='%1.2f\%'')plt.title('Percentage of Churned Customer')plt.show()$

Percentage of Churned Customer

from above pie chart we can conclude 26.54 people churned out . In [38]:

plt.figure(figsize=(5,5))g= sns.countplot(x = 'gender',data =df', hue = 'Churn')for bars in g.containers:

g.bar_label(bars)plt.title('Churn by gender')plt.show()

In [97]: plt.figure(figsize=(5,5))g= sns.countplot(x = 'SeniorCitizen',data =df)for bars in g.containers:

g.bar label(bars)plt.show()

In [49]: h = sns.countplot(x = 'InternetService', data = df, hue = 'gender') for bars in h.containers:

h.bar_label(bars)plt.show()

WIth the help of above figure we can conclude that most INTERNET SERVICE are of Fiber optic most by Female than male and male with DSL followed by female and no IS by male

In [51]:

c = sns.countplot(x = 'Contract', data = df', hue = 'Churn')plt.title('Count of Contract')for bars in c.containers:

c.bar_label(bars)plt.show()

In the above graph we can clearly see total contracts of people on monthly to yearly basis mostly on month to month basis where people month to month to contract more people are churning out than that of year to two . # SO, try to make people in longer plans

fig.delaxes(axes[i])

Adjust layoutplt.tight_layout()plt.show()

majority custorms have not churn out in DSL but for internet services , phone services with online services enabeled where as customer who churned out are online support , techsupport and streaming services

In [96]:

plt.figure(figsize=(10, 5))

p = sns.countplot(x='PaymentMethod', data=df , hue = 'gender') for bar in p.containers:

p.bar_label(bar)plt.xlabel('Payment Method', fontsize=12)plt.ylabel('Count', fontsize=12)plt.title('Distribution of Payment Methods', fontsize=14)plt.xticks(rotation=45)plt.show()

most of payment is done in electronic check and done by male and most payment are done by male than female

In [45]:

df.to_csv('new churn.csv')