Energy Efficient Computing

Benjamin Czaja HPC Advisor SURF May 2025

Energy-aware focus

Remember our simple CPU (processor)

A modern Processor has:

- Multiple logical cores
- Hierarchy of memory

Remember our simple CPU (processor)

Image Credit HP (from LUMI course)!!!

What takes longer....

- Data Movement?
- Compute?

Transition @ AI ==
Peak GFLOP/s / Peak GB/s ==
'Machine Balance'

Poor performance regime:

 May be even lower for entire applications

Application Efficiency

Application Efficiency

GPU Application Efficiency

Monitoring Tutorial Hints!!!

- Gromacs CPU
 - Vary MPI ranks and OMP threads / rank
- Gromacs GPU
 - Vary OMP threads per GPU
 - Keep 1 MPI Rank per GPU
- Palabos
 - Vary processes per Node
 - CPU binding options?
- PyTorch
 - Vary batch size
 - Try reduced precision

