T1C01 - Corps pur et mélanges

E. Machefer

10 janvier 2024

1 Corps purs et mélanges

1.1 Espèce chimique

La matière est constitué d'entités chimiques (atomes, molécules ou ions). Une espèce chimique correspond à un ensemble d'entités chimiques identiques.

Elle est caractérisée par :

- son aspect physique (état, couleur,...)
- ses propriétés physiques (températures de fusion et d'ébullition, masse volumique,...)
- ses propriétés chimiques (réaction avec une autre entité)
- sa formule chimique

1.2 Corps pur et mélange

\mathbf{D} éfinition $\mathbf{1}$.

- Un **corps pur** est constitué d'une seule espèce chimique.
- U mélange est constitué de plusieurs espèces chimiques
- Le charbon (C) et le dioxygène sont des corps purs
- l'air est un mélange

2 Propriétés physiques

2.1 Masse volumique

Définition:

La masse volumique (notée ρ) d'une espèce chimique ou d'un mélange, correspond au rapport de la masse m de l'échantillon sur son volume V

```
\rho=m/V avec m en g, V en L et en g · L<sup>1</sup> .
```

Remarques:

- La masse volumique est différente pour chaque espèce chimique.
- La masse volumique varie selon la température et la pression.

2.2 Température de changement d'état

Température de fusion :

Température pour passer de l'état solide à liquide.

Pour identifier une espèce chimique, on utilise un banc Kofler.

Température d'ébullition :

Température pour passer de l'état liquide à gazeux.

Remarque:

— la température d'un corps pur ne varie pas lorsqu'il change d'état.

3 Propriétés chimiques

3.1 Tests de présence

Eau (H₂O_{nil})

Mise en évidence par un test au sulfate de cuivre anhydre qui passe du blanc au bleu en présence d'eau.

Dioxyde de carbone (CO_2)

Sa présence trouble l'eau de chaux.

Dioxygène (O₂)

Ravive la flamme d'une buchette incandescente.

Dihydrogène (H₂)

Provoque une détonation à l'approche d'une allumette.

3.2 Chromatographie sur couche mince (CCM)

Définition

La CCM est une méthode d'analyse permettant la séparation et l'identification des espèces chimiques d'un mélange.

Principe

La CCM utilise les différences de miscibilités des espèces chimiques, afin de les faire migrer plus ou moins vite par capilarité de l'éluant.

4 Composition d'un mélange

4.1 Homogène et hétérogène

- Un mélange est homogène si les deux espèces chimiques sont **miscibles**.
- Un mélange est hétérogène si les deux espèces chimiques sont **non miscibles**

4.2 Notion de densité

- La densité d d'un liquide ou d'un solide est d = ρ / $\rho_{\rm eau}$
- La densité d d'un gaé est d = ρ / $\rho_{\rm air}$

Dans un mélange hétérogène, l'espèce chimique qui a la plus forte densité (ou masse volumique) se situe en dessous.

4.3 Proportions en masse et en volume

Dans un mélange :

- la proportion en masse d'une espèce E correspond au quotient de la masse m(E) de l'espèce sur la masse totale du mélange m_{tot}
- la proportion en volume d'une espèce E correspond au quotient du volume V(E) de l'espèce sur le volume total V_{tot}

Lorsqu'ils sont exprimés en % ces rapports sont nommés **pourcentage massique** et **pourcentage volumique**.

5 Exercices

PRES

5.1 Quel est ce matériau?

Le cadre d'une vélo peut être fait de plusieurs matériaux, les deux principaux sont le carbone et l'aluminium.

On assimile le cadre à un cylindre.

- 1. Calculer le volume d'un cylindre de hauteur h=1,0 m et de rayon r=2,0 cm.
- 2. Le vélo a une masse m = 3.4 kg. Quel est le matériau utilisé?

Données

- $-\rho_{Al} = 2700 \text{ kg} \cdot \text{m}^{-3}$ $-\rho_{C} = 1800 \text{ kg} \cdot \text{m}^{-3}$
- 5.2 5 p 24
- 5.3 9 p 24

5.4 12 p 25

$$d=\rho_E$$
 / $\rho_{\rm eau}$ $\rho_E=d\times\rho_{\rm eau}=0.71\times1.0=0.71~kg/L=m/V$

5.5 TODO 20 p 26

- 1. Les espèces chimiques d'un mélange sont entraînées par l'éluant montant par capilarité dans un papier.
- 2. Afin de révéler les espèces à analyser on peut utiliser
 - une lampe UV pour révéler les tâches
 - un révélateur chimique
- 3. Les espèces chimiques identifiables sont le menthol et l'eucalyptol.

5.6 TODO **21** p **26**

- $m_{\rm max}=210~{\rm g}$
- -d = 2.28
- $\rho = 2.28 \text{ g/mL}$
- $m_L = m_{max} m_0 = 210.0 140.84 = 69.1 g (inf)$
- $-V = m/\rho = 69.1 / 2.28 = 30.3 \text{ mL}$

5.7 TODO 24 p 27

 $--0.914\times 40.0 < m_h < 0.918\times 40.0$ $\begin{array}{l} 36.56~{\rm g} < {\rm m_h} < 36.72~{\rm g} \\ -2.48~\% < \frac{m_{ao}}{m_h} < 2.49~\% \\ \text{Cette huile n'a pas de qualités nutritionnelles.} \end{array}$

5.8 TODO **25** p **27**

- 1. La différence de masse volumique est trop faible ($\Delta \rho = 0.04~\mathrm{g/mL})$
- 2. Expérience de solubilité dans de l'eau (acide maléique très soluble 780 g/L)
 - Test point de fusion
- 3. (a) Acide maléique car $T_f = 132$ °C
 - (b) On la considère comme pure car $\Delta \theta < 1\%$, et la présence d'impureté se traduit par une baisse de la température de fusion

5.9 TODO **QCM p 21**