```
# Carque de Librerías básicas
1
2
    import pandas as pd
3
    import matplotlib.pyplot as plt
4
    import seaborn as sns
5
6
    # Importar tensorflow
7
    import tensorflow as tf
    print("TF version : ", tf.__version__)
8
9
10
    # Necesitaremos GPU
    print("GPU available: ", tf.config.list_physical_devices('GPU'))
11
12
13
    # keras version is 2.11.0
14
    import keras
15
    print("Keras version : ", keras.__version__)
```

→ TF version : 2.15.0 GPU available: []

Keras version : 2.15.0

```
#-----#
debido a que estoy usando COLAB #
#-----#

from google.colab import drive
drive.mount('/content/drive') #/content/drive/MyDrive/pec2/data/xl.pickle
print("GPU available: ", tf.config.list_physical_devices('GPU'))
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call GPU available: []

```
1
   import pandas as pd
2
3
   home = '/content/drive/MyDrive/TFM/'
4
5
   file_path = home + "2017_2023DSTrabajo.xlsx"
6
7
   dsXls = pd.read excel(file path)
   dsXls.head(5)
8
9
   dsXls.info()
10
11
```

```
12 # LIMPIEZA DE DATOS
13
   #1. validar duplicados
14
15
   dsXls.nunique()
16
   #2. validar nulos, rellenar valores faltantes con la mediana
17
   #dsXls.isnull().sum()
18
   dsXls['Dist'].fillna(dsXls['Dist'].median(), inplace=True)
19
   dsXls['Attendance'].fillna(dsXls['Attendance'].median(), inplace=True)
20
21
   dsXls.isnull().sum()
22
23
24
   25
   # ESTADISTICAS
26
   27
   #dsXls.describe().T
28
   dsXls.iloc[:,1:].describe()
29
```


<class 'pandas.core.frame.DataFrame'> RangeIndex: 4092 entries, 0 to 4091 Data columns (total 21 columns):

#	Column	Non-1	Null Count	Dtype
0	Date	4092	non-null	datetime64[ns]
1	Round	4092	non-null	object
2	Day	4092	non-null	object
3	Venue	4092	non-null	object
4	Result	4092	non-null	object
5	GF	4092	non-null	float64
6	GA	4092	non-null	float64
7	Opponent	4092	non-null	object
8	xG	4092	non-null	float64
9	xGA	4092	non-null	float64
10	Poss	4092	non-null	float64
11	Attendance	3212	non-null	float64
12	Season	4092	non-null	int64
13	Team	4092	non-null	object
14	Sh	4092	non-null	float64
15	SoT	4092	non-null	float64
16	Dist	4089	non-null	float64
17	SCA	4092	non-null	float64
18	KP	4092	non-null	float64
19	PPA	4092	non-null	float64
20	CrsPA	4092	non-null	float64

dtypes: datetime64[ns](1), float64(13), int64(1), object(6)

memory usage: 671.5+ KB

	GF	GA	хG	хGА	Poss	Attendance	
count	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4092.000000	4(
mean	1.377810	1.377810	1.346163	1.346163	50.001222	36912.650049	2(
std	1.277631	1.277631	0.796551	0.796551	12.726702	15301.262664	
min	0.000000	0.000000	0.000000	0.000000	18.000000	2000.000000	2(
25%	0.000000	0.000000	0.700000	0.700000	41.000000	29296.000000	20
50%	1.000000	1.000000	1.200000	1.200000	50.000000	32092.500000	20
75%	2.000000	2.000000	1.800000	1.800000	59.000000	51237.000000	20
max	9.000000	9.000000	5.900000	5.900000	82.000000	83222.000000	2(

- #BUSCAR NUMERO OPTIMO DE VECINOS 1
- 2 from sklearn.model_selection import cross_val_score

```
3
4
    k_values = range(1, 20)
5
    cross_val_scores = []
6
7
    for k in k_values:
        knn = KNeighborsClassifier(n_neighbors=k, metric='euclidean')
8
9
        scores = cross_val_score(knn, X_scaled, y, cv=5, scoring='accuracy')
        cross_val_scores.append(scores.mean())
10
11
12
    plt.figure(figsize=(10, 6))
    plt.plot(k_values, cross_val_scores, marker='o')
13
14
    plt.title('Precisión de KNN en función de K con Validación Cruzada')
15
    plt.xlabel('Número de Vecinos (K)')
16
    plt.ylabel('Precisión Promedio')
17
    plt.grid(True)
18
    plt.show()
```



```
1 # APLICAR KNN
2 from sklearn.preprocessing import OneHotEncoder, MinMaxScaler
3 from sklearn.compose import ColumnTransformer
4 from sklearn.pipeline import Pipeline
5
6
7 from sklearn.model_selection import train_test_split
8 from sklearn.neighbors import KNeighborsClassifier
9 from sklearn.metrics import accuracy_score
10
11 # Selecciono columnas categóricas y numéricas
12 categorical_features = ['Day', 'Venue', 'Opponent']
13 numeric_features = ['GF', 'GA', 'xG', 'xGA', 'Poss', 'Sh', 'SoT', 'Dist', 'SC 14
```

```
15 # uso transformadores en las transformaciones de codificación y escalado
16 categorical_transformer = OneHotEncoder(sparse=False)
17 numeric transformer = MinMaxScaler()
18
19 # Combinar transformadores
20 preprocessor = ColumnTransformer(
21
      transformers=[
22
           ('num', numeric_transformer, numeric_features),
23
           ('cat', categorical_transformer, categorical_features)
24
      ])
25
26 # Aplicando las transformaciones
27 X = dsXls.drop(['Date', 'Round', 'Result', 'Team'], axis=1)
28 # campo objetivo jam
29 y = dsXls['Result']
30
31 # Pipeline de transformaciones
32 pipeline = Pipeline(steps=[('preprocessor', preprocessor),
                              ('classifier', KNeighborsClassifier(n_neighbors=10
33
34
35 # Divido los datos en entrenamiento y de prueba relacion 80/20
36 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, rand
37
38 # Entrenar
39 pipeline.fit(X_train, y_train)
40
41 # Evaluando el modelo
42 y_pred = pipeline.predict(X_test)
43 accuracy = accuracy_score(y_test, y_pred)
44 print(f'Precisión de KNN: {accuracy:.2f}')
45
46 #Precision con 5 vecinos = 59%
47 #Precision con 2 vecinos = 47%
48 #Precision con 4 vecinos = 55%
49 #Precision con 6 vecinos = 57%
50 #Precision con 10 vecinos = 62%
```

Precisión de KNN: 0.62
/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_encoders.py:868
warnings.warn(

```
1 from sklearn.model_selection import train_test_split
2 from sklearn.neighbors import KNeighborsClassifier
3 from sklearn.preprocessing import StandardScaler
```

```
4 from sklearn.metrics import accuracy_score
 5 from sklearn.metrics import classification_report, confusion_matrix, accuracy
 6 from sklearn.model selection import cross val score
 8
 9 #y = dsXls['Result']
10 #X_pca = pca.fit_transform(X_scaled)
11
12 # Dividir los datos en conjuntos de entrenamiento y prueba
13 #X_train, X_test, y_train, y_test = train_test_split(X_pca, y, test_size=0.2,
14
15
16
17 X = features_scaled
18 y = dsXls['Result']
19
20 # Estandarización de los datos
21 scaler = StandardScaler()
22 X_scaled = pca.fit_transform(X) #scaler.fit_transform(X)
23
24 # Dividir los datos en entrenamiento y prueba
25 X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.
26
27 # Crear el modelo KNN con distancia Euclidiana
28 knn = KNeighborsClassifier(n_neighbors=13, metric='euclidean')
29 #10 0.7851037851037851
30 #8 0.7924297924297924
31 #5 0.7887667887667887
32 #2 0.7081807081807082
33
34 # Entrenar el modelo
35 knn.fit(X_train, y_train)
36
37 # Predecir y evaluar el modelo
38 y_pred = knn.predict(X_test)
39 accuracy = accuracy_score(y_test, y_pred)
40 print("Accuracy:", accuracy)
41
42 import matplotlib.pyplot as plt
43 from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay
44
45 # debido a que y_pred y y_test definidos
46 # Matriz de confusión
47 cm = confusion_matrix(y_test, y_pred)
48 disp = ConfusionMatrixDisplay(confusion_matrix=cm, display_labels=['W','L','D
```

```
49 disp.plot()
50 plt.show()
51
52 # Reporte de clasificación
53 print("Classification Report:\n", classification_report(y_test, y_pred))
54
55 # Validación cruzada
56 cross_val_accuracy = cross_val_score(knn, X_scaled, y, cv=13, scoring='accura
57 print("Cross-validated Accuracy:", cross_val_accuracy.mean())
58
```


Accuracy: 0.8070818070818071

Classification	Report:
----------------	---------

CIASSIIIC	acion	precision	recall	f1-score	support
	D	0.60	0.55	0.58	185
	L	0.83	0.91	0.87	289
	W	0.89	0.86	0.87	345
accur	асу			0.81	819
macro	avg	0.77	0.77	0.77	819
weighted	avg	0.80	0.81	0.80	819

Cross-validated Accuracy: 0.7939789863356742