PLANEJAMENTO E PROJETO DE REDES

Material adaptado do professor:
Joelson Tadeu Vendramin
joelson@dainf.cefetpr.br

Marcelo Almeida
Universidade Salgado de Oliveira
http://www.profmagf.com

Metodologia Top-Down:

- É uma forma que ensina a pensarmos no desenvolvimento lógico de uma rede, incluindo softwares e decisões que implicam diretamente nos negócios do cliente, antes mesmo de pensarmos na solução física dessa rede.
- Isso significa que devemos pensar, antes de implementar. Uma decisão errada, além do retrabalho, implica em um não-funcionamento dessa rede.

- Inspira-se no "modelo OSI":
- Descer as "OITO" camadas no projeto da rede.
 - Focalizar as metas do negócio do cliente, suas expectativas, seus objetivos.
 - Focalizar os aplicativos, as sessões e o transporte de dados.
 - Selecionar roteadores, switches e a mídia utilizada nas camadas mais baixas.
- É um processo iterativo:
 - Projetista adquire um "quadro geral" e desce até os detalhes dos requisitos e especificações técnicas.
 - Admite-se alterações ao longo desse processo.

Camada 7:

Aplicação. Camada que trata dos aplicativos. Esses aplicativos, entre outros, tratam do gerenciamento de desempenho de uma Rede, por exemplo, apontando para o desperdício de Largura de Banda, causada por um dispositivo de Rede mal posicionado.

Camada 6:

Apresentação. Camada responsável pela conversão, criptografia e compactação de dados. É nessa camada que são feitas, por exemplo, as conversões dos dados digitados em um e-mail para um formato que seja possível de enviar através de uma rede.

Camada 5:

Sessão. Camada
 responsável pelo
 estabelecimento,
 gerenciamento e
 encerramento das sessões. É
 ela que estabelece um
 caminho virtual para que os
 dados possam trafegar entre
 a origem e o destino.

Camada 4:

Transporte. Como o próprio nome diz, essa Camada é responsável por transportar os dados. É aqui que trabalham os Protocolos TCP (Transfer Control Protocol) e o UDP (User Datagram Protocol) que são, respectivamente, protocolos com entrega garantida e melhor entrega possível.

Camada 3:

 Rede. Entre as diversas funções dessa Camada, estão os endereços IPs (Internet Protocol) e os Roteadores.

Camada 2:

 Enlace de Dados. Aqui estão os endereços físicos MAC (Media Access Control), as placas de rede, as bridges e os switches...

Camada 1:

Física. Hubs,
 repetidores, cabos,
 conectores e parte elétrica.

Então qual é a "Oitava Camada"?

É a política local de cada empresa, ou seja, para garantir que seu projeto dê certo e seja bemsucedido, você deve conhecer a fundo essas políticas e normas internas que possam interferir diretamente o seu projeto. Entre os conhecimentos que devem ser adquiridos, estão, por exemplo, os hábitos dos funcionários, a integração entre os departamentos, o conhecimento real de cada um sobre o seu trabalho, tipos de gastos da empresa (se possível) etc.

- Identificação das Necessidades e Objetivos do Cliente
- Projeto Lógico da Rede
- Projeto Físico da Rede
- Documentação do Projeto de Rede

Ciclo do projeto de rede

Análise de Requisitos

Como o cliente explicou...

Como o líder de projeto entendeu...

Como o analista projetou...

Como o programador construiu...

Como o Consultor de Negócios descreveu...

Como o projeto foi documentado...

Que funcionalidades foram instaladas...

Como o cliente foi cobrado...

Como foi mantido...

O que o cliente realmente queria...

Conhecer o cliente

- Saber a divisão departamental, linhas de negócio, fornecedores, parcerias, escritórios locais e remotos...
- Entenda qual é a meta do projeto de rede:
 - Por que o cliente está embarcando no projeto de desenvolvimento de rede?
 - Para que será usada a rede?
 - De que maneira o cliente terá mais "sucesso" com esse novo empreendimento?
- Compreender bem o que é "sucesso" para o seu cliente...(expansão do negócio? / aumento de produtividade? / novas filiais? / ...)
 - Entender que as metas de projeto (técnicas) são normalmente diferentes das metas de negócio.

Conhecer o cliente

- Pesquisar o negócio do cliente:
 - Em qual mercado se encontra?
 - Fornecedores, serviços, concorrentes ...
 - Estrutura organizacional da empresa.
- Identificação do escopo (ou abrangência) do projeto:
 - Somente um segmento / um conjunto de LANs / a rede de acesso remoto / uma WAN / toda a empresa.
- Identificação dos aplicativos de rede do cliente:
 - Classificação em grau de importância, tipo de tráfego gerado. Ex.: Controle de vendas, compartilhamento de arquivos, ...

Conhecer o cliente

- Trabalhar com o impacto de um possível "fracasso":
 - O que acontecerá se o projeto falhar? Ou se a rede não atende às especificações desejadas?
 - Qual será a visibilidade do projeto para a gerência de nível superior?
 - O sucesso (ou a falha) será perceptível para os executivos?
 - Até que ponto um comportamento imprevisto da nova rede poderia provocar a ruptura das operações da empresa?
- Em Resumo: Tentar colher o máximo possível de informações!

Política x Religião

- Políticas do cliente (melhor "ouvir" que "falar"):
 - Programas de trabalho oculto;
 - Hostilidades;
 - Tendências;
 - Descobrir seus defensores e seus oponentes.

Política x Religião

Política x Religião

- Políticas do cliente (melhor "ouvir" que "falar"):
 - Programas de trabalho oculto;
 - Hostilidades;
 - Tendências;
 - Descobrir seus defensores e seus oponentes.
- Religiões tecnológicas (preferências do cliente):
 - Plataformas abertas X patenteadas;
 - Padronizações de protocolos, equipamentos, etc.
 - Distribuição de autoridades. Quem é o responsável pela tomada de decisões?
 - Cada depto. controla suas próprias aquisições / Quem terá autoridade sobre o gerenciamento e controle da(s) rede(s)

Na ânsia de chegar aos requisitos técnicos, às vezes os projetistas ignoram detalhes não técnicos, e isto é um grande equívoco para o sucesso do projeto.

Analisar requisitos

- Pesquisar políticas e normas da empresa.
 - Procurar não ir de encontro as "regras existentes" de trabalho.
 - Analisar o que poderia levar seu projeto a fracassar.
 - Descobrir a distribuição de "autoridades" sobre a rede.
- Restrições orçamentárias e de pessoal
 - Quanto o cliente "quer" gastar (ou "pode" gastar)?
- Regra geral: Conter os custos!
 - Previsão de compra de equipamentos, licenças de software, contratos de manutenção / suporte / treinamento.

Analisar requisitos

- Planejar visando a expansão da rede (nos próximos 1 ou 2 anos):
 - Mídia (UTP CAT.5/6) / Capacidade de switches / Disponibilidade de pontos de rede.
- Requisitos de disponibilidade da rede.
 - Identificar aplicativos "críticos".
 - Dimensionar o "custo" do tempo de inatividade.
 - Seleção de equipamentos: Upgrades"on-the-fly".
- Analisar desempenho e eficiência esperados.
 - Parâmetros de desempenho

Analisar requisitos

- Questão da segurança versus facilidade de uso.
 - Definição de políticas de segurança (física / lógica)
 - Facilidades de uso [do ponto de vista do usuário]
 - Facilidades de gerenciamento [do ponto de vista do(s) administradores]
- Análise da inter-rede existente.
 - Caracterização da infra-estrutura existente (cabeamento/ interligações / equipamentos).
 - Caracterização da "saúde" da rede (pontos de "gargalo" / tempos de resposta dos aplicativos / reclamações freqüentes).

Agrupando informações

- Lembrar que a maioria das informações coletadas pode ser agrupada nas características:
 - Preocupações com o cliente
 - Necessidades do cliente
 - Especificações de hardware
 - Especificações de software
 - Especificação de links e conectividade

- Projetar uma topologia de rede é o primeiro passo na fase de projeto lógico da metodologia de projeto de redes TOP-DOWN.
- Projetando uma topologia lógica antes de uma implementação física, pode-se aumentar a probabilidade de satisfazer às metas de facilidade de escalonamento, adaptabilidade e desempenho de um cliente.

- Do que consiste?
 - Projeto da Topologia da Rede (Mapa de Alto Nível).
 - Projeto do Modelo de Endereçamento e Nomenclatura.
 - Seleção de switches e roteamento.
 - Desenvolvimento da Segurança da Rede e de Estratégias de Gerenciamento

- Desenvolvimento da segurança na rede.
 - Autenticação / Autorização / Auditoria (logs)
 - Uso da criptografia
 - Uso de Firewalls e filtros de pacotes
 - Segurança física da rede
- Processos de gerenciamento de redes.
 - Gerenciamento de desempenho / falhas / configuração / segurança / contabilidade (\$).

- Determinação da topologia a ser empregada.
 - Plana ou hierárquica.
 - Análise da redundância: Caminhos / serviços backup.
- Planos de endereçamento e nomenclatura.
 - Distribuição adequada de endereços IP.
 - Uso do endereçamento dinâmico (DHCP), uso de endereços particulares e uso do NAT (tradução de endereços).

Projeto da rede lógica: topologias

Topologia da rede

- Topologia é um mapa da inter-rede que indica os segmentos da rede, os pontos de interconexão e as comunidades de usuários.
- O propósito é mostrar a "geometria" da rede, não a "geografia física" ou implementação da mesma.
 - Análogo a um projeto arquitetônico: Mostra a localização e as dimensões das salas mas não os materiais usados na construção das mesmas!
- Modelo a ser estudado: Hierárquico

Topologia da rede

Topologia Hieráquica

Topologia Hieráquica

Rede Hierárquica

- Divide-se a rede em camadas, onde cada uma delas tem uma função bem específica.
- Permite a agregação e filtragem do tráfego em níveis sucessivos de roteamento e comutação.
- No exemplo anterior:
 - Camada de núcleo: Formada por roteadores e switches de alta tecnologia, otimizados visando à viabilidade e desempenho.
 - Camada de distribuição: Formada por roteadores e switches de velocidade "média". A principal função desses é a implementação de normas.
 - Camada de acesso: Conecta os usuários finais (workstations) por meio de switches de várias portas, hubs e outros dispositivos (normalmente de custo menor).

Vantagens da Hierarquia em Redes

- Redução dos domínios de difusão.
 - Excessivos pacotes de difusão degradam diretamente o desempenho das CPUs (conforme já visto).
- Limitar o número de roteadores trocando informações sobre rotas.
 - Lembrar que o desempenho do roteador cai quando a tabela de roteamento é grande.
- Redução de custos pela compra de equipamentos adequados a cada camada.
- Melhor planejamento das necessidades (largura de banda) de cada camada.
- Possibilidade de administração descentralizada.

Vantagens da Hierarquia em Redes

- Facilidade de entendimento do projeto como um todo.
- Facilita as mudanças futuras.
 - As alterações e eventuais interrupções na rede ficam restritas a um pequeno subconjunto da rede global.
- Os protocolos de roteamento de convergência rápida foram projetados para topologias hierárquicas.
- A técnica de totalização (ou agregação) de rotas exige a topologia hierárquica.

- □ É o backbone de alta velocidade da inter-rede.
 - Deve ser projetada com componentes redundantes (é crítica para a interconectividade).
 - Deve ser altamente confiável e adaptar-se rapidamente à mudanças.
- No caso de conexões a outras empresas (extranet ou mesmo Internet) a camada de núcleo deverá incluir esse link.
 - Conexões próprias à extranet e Internet devem ser desencorajadas nas outras camadas (distribuição e acesso).

Modelo Hierárquico: A camada de Distribuição

- □ É o ponto de demarcação entre as camadas de acesso e a de núcleo da rede.
- Tem diversos papéis:
 - Controle de acesso à recursos, por razões de segurança.
 - Controle do tráfego de rede que atravessa o núcleo, por razões de desempenho.

Modelo Hierárquico: A camada de Acesso

- Fornece aos usuários de segmentos locais acesso à inter-rede.
- Compreende roteadores, switches, bridges e hubs.
- Para inter-redes de pequenas filiais ou mesmo pessoas que trabalham em casa, esta camada oferece acesso à inter-rede por meio de tecnologias como: ISDN, ADSL, Frame Relay ou linhas telefônicas

Diretrizes Gerais para Redes Hierárquicas

- Manter o controle do "diâmetro" da rede.
 - Mantém a latência baixa e previsível
 - Ajuda a prever caminhos de roteamento, fluxos de tráfego e requisitos de capacidade.
- Controlar a topologia da rede na camada de acesso: Ela é muito suscetível à "violações de diretrizes de projetos".
 - Adição de "cadeias": Consiste no acréscimo de uma "quarta camada", por exemplo, para a ligação de uma filial a outra.
 - Criação de "porta dos fundos": Consiste em conectar diretamente dispositivos na mesma camada, através de um roteador, ponte ou switche xtra. Isso pode causar problemas inesperados de roteamento além de tornar a documentação e a solução de problemas mais difíceis.
- Projetar primeiro a camada de acesso, em seguida a de distribuição e por fim a de núcleo.

Projeto da rede física

Projeto da rede física (escopo)

- Rede de um campus (LAN):
 - Projeto da planta de cabeamento.
- Redes corporativas (WAN):
 - Modems / x-DSL
 - Escolha da tecnologia WAN: Linha dedicada, MPLS, Frame Relay, ATM.
 - Seleção de provedores de serviço / operadoras.

Projeto da rede física

Condições "físicas" do ambiente:

- Condições elétricas adequadas:
 - Aterramento adequado
 - Dimensionamento de cargas
 - Circuitos de segurança
- Dimensionamento de um ambiente refrigerado
 - Problemas com superaquecimento de equipamentos.

João Pessoa

Natal

Planos de expasão

- O projeto de rede proposto deve ser capaz de se adaptar aos aumentos na utilização e no escopo da rede.
- Procurar identificar as metas de expansão a curto prazo:
 - Quantas instalações locais adicionais serão acrescentadas no próximo ano? E nos próximos dois anos?
 - Qual será a amplitude das redes em cada nova instalação?
 - Quantos usuários a mais terão acesso à inter-rede corporativa no próximo ano? E nos próximos dois anos?
 - Quantos servidores a mais serão acrescentados à inter-rede no próximo ano? E nos próximos dois anos?

Restrições Ambientais e de Arquitetura

- Evitar os locais onde cabos poderiam ser danificados (áreas industriais, tráfego de veículos, etc.)
- Questões de cabeamento que devem atravessar vias públicas.
- Dentro dos edifícios: Localização de dutos de ventilação, vigas e paredes que impeçam a passagem de conduítes e canaletas.
- No caso de transmissões sem fio: Existência de fontes de interferência eletromagnética.
- No caso de transmissões por infravermelho: Verificar a existência de obstáculos que impeçam a "visada direta".

Mapa da rede

Mapa da rede

Mapa da rede

Itens Comuns em um Mapa de Rede

- Informações geográficas (países, estados, cidades, campus).
- Conexões de WANs entre países, estados e cidades.
- Edifícios e andares e, possivelmente, salas ou compartimentos.
- Conexões de WANs e LANs entre edifícios e entre campus.
- Indicação da tecnologia da camada de enlace de dados para WANs e LANs (Frame Relay, ATM, Ethernet10 / 100 Mbps, ...)
- O nome do provedor de serviços para WANs.
- Localização de roteadores e switches, embora não necessariamente de hubs.
- Localização e alcance de todas as VPNs que conectam os sites da empresa através da WAN de um provedor de serviços.

Itens Comuns em um Mapa de Rede

- Localização dos principais servidores.
- Localização de mainframes (se houver).
- Localização das estações de administração da rede.
- Localização e alcance de todas as LANs virtuais (VLANs).
- Topologia de qualquer sistema de segurança por firewall.
- Localização de qualquer sistema de discagem.
- Alguma indicação da localização das estações de trabalho (não é necessária a localização explícita de cada uma delas).
- Representação da topologia lógica ou da arquitetura da rede.

Endereço e nomenclatura

- Que tipos de entidades precisam de nomes? Servidores? Roteadores? Impressoras? Host?
- Qual a estrutura do nome? Ele identifica um dispositivo?
- Como os nomes são armazenados, administrados e acessados?
- Quem atribui os nomes?
- Como os hosts mapeiam um nome para um endereços? O sistema será dinâmico ou estático?
- De que maneira um host aprende seu próprio nome?

Endereço e nomenclatura

- Se o endereçamento é dinâmico, os nomes também serão dinâmicos e mudarão quando um endereço se alterar?
- Se forem usados servidores de nomes, quanta redundância será necessária?
- Como o sistema de nomes selecionado afetará a segurança da rede?

Endereçamento e Nomenclatura

- Ver o padrão usado atualmente para nomear os elementos de rede.
 - Indicação de dispositivo: sw (switch), rtr (roteador), prn (impressora)...
 - Indicação da cidade: rec, spo, rjo, ...
- Ver (se existir!) os padrões de distribuição de endereços IP.
 - Ex.: Uma sub-rede por andar
 - Uso ou não de números IP inválidos (rede falsa).
 - Trabalhar com possibilidades de agregação de rotas (supernetting).

Regras de nomenclatura

- Os nomes devem ser curtos, significativos, nãoambíguos e distintos
 - □ Podem ser utilizados prefixos como: "rtr", "srv", "sw"
 - Utilização de sigal de localidade: "rce", "slz"
 - Contradição: Segurança! Indicação
- Evitar o uso de números
- □ Evitar carecteres não usuais: "-,_,\$,+", etc
- Não misturar letras maísculas com minúsculas

Documentação

Documentação (modelo completo)

Conteúdo de um documento de projeto de rede

- Resumo executivo
- Meta do projeto
- Escopo do projeto
- Requisitos do projeto
- Metas do negócio
- Metas técnicas
- Comunidades de usuários e locais de armazenamento de dados
- Aplicativos de rede
- O estado atual da rede

Documentação (modelo completo)

- Projeto lógico
- Projeto físico
- Resultado de eventuais testes do projeto de rede
- Plano de implementação
- Cronograma do projeto
- Orçamento do projeto
- Retorno do investimento
- Apêndices
- Evidentemente, este é o modelo completo (isto é, admite-se simplificações).

1) Resumo Executivo

O conteúdo deve estar focado no negócio

2) Objetivo

Apresentar a proposta do projeto;

3) Escopo

O que é coberto pelo projeto e o que não faz parte;

Requisitos (de negócio e técnicos)

 Objetivos em ordem de prioridade, evidenciando os objetivos críticos;

5) Estado da rede atual

 Mapa de alto nível para mostrar a estrutura e baseline de desempenho da rede atual;

6) Projeto da rede lógica

 Topologia da rede representada através de um modelo;

7) Projeto físico

Inclui as tecnologias de rede empregadas, os dispositivos utilizados, a escolha de provedor de serviços e preços praticados;

8) Testes

 São mostradas as evidências de que o projeto da rede vai funcionar;

9) Plano de Implementação

Inclui as recomendações sobre a implantação da rede;

10) Orçamento

 Inclui o orçamento disponível para a elaboração e execução do projeto;

11) Apêndice

Inclui toda informação suplementar pertinente ao projeto

- No apêndice incluir
 - O desenho da planta do cliente:
 - Diagrama lógico desenho simples, não está preso a termos e diagramas técnicos e deverá ser o mais simples possível.
 - Diagrama físico este desenho deverá ser o mais bem detalhado possível. É recomendado incluir especificações técnicas como tipo de cabeamento, equipamentos, etc.
 - Cronograma detalhado com uma lista de tarefas, duração em horas, data de início, data de fim e o tempo total do projeto.

Orçamento

Orçamento

- Adaptar o projeto ao orçamento do cliente:
 - Compra de equipamentos;
 - Licenças de software;
 - Contratos de manutenção e suporte;
 - Treinamento e formação de equipes técnicas;
 - Despesas com terceiros.
- Adaptar o projeto ao pessoal:
 - Existe uma equipe com bastante experiência?(exemplo: Linux X Windows)
 - Devem ser recomendados programas de treinamento abrangentes?

ORÇAMENTO DO PROJETO

CIDADE	QUANT.	EQUIPAMENTOS	Valor P/ Equipamento	Valor Total (R\$)
	03.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 7.500,00
	118.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 153.400,00
RECIFE	05.	Switch Cisco	R\$ 780,00	R\$ 3.900,00
	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
	04.	Roteadores Cisco	R\$ 2.500,00	R\$ 10.000,00
	10.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 13.000,00
MACEIÓ	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
WACEIO	02.	Switch Cisco	R\$ 780,00	R\$ 1.560,00
	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
	35.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 45.500,00
SALVADOR	03.	Switch Cisco	R\$ 780,00	R\$ 2.340,00
SALVADOR	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
	30.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 39.000,00
FORTALEZA	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
FORTALLZA	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
	03.	Switch Cisco	R\$ 780,00	R\$ 2.340,00
	15.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 19.500,00
SÃO LUIZ	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
SAO LOIZ	02.	Switch Cisco	R\$ 780,00	R\$ 1.560,00
	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
	02.	Switch Cisco	R\$ 780,00	R\$ 1.560,00
ARACAJÚ	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
ARACADO	01.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 2.500,00
	15.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 19.500,00
	50.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 65.000,00
BELÉM	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 50.000,00
DELEWI	05.	Switch Cisco	R\$ 780,00	R\$ 3.900,00
	02.	Servidores Power Edge 4GB RAM Xeon	R\$ 2.500,00	R\$ 5.000,00
	30.	P4 1GB de RAM Completo	R\$ 1.300,00	R\$ 39.000,00
MANAUS	01.	Windows Xp Professional 2GB 500GB Firewall	R\$ 2.500,00	R\$ 2.500,00
WANAUS	04.	Switch Cisco	R\$ 780,00	R\$ 3.120,00
	02.	Roteadores Cisco	R\$ 2.500,00	R\$ 5.000,00
TOTAL DE EQUIPAMENTOS	-	-	-	R\$ 534.180,00

CUSTO - SOFTWARES - LICENÇAS

SOFTWARES	QUANT.	VALOR P/ SOFTWARE	VALOR TOTAL
Sist. Operacional	311	R\$ 250,00	R\$ 77.750,00
Antivirus Kaspersky	303	R\$ 40,00	R\$ 12.120,00
TOTAL - SOFTWARES	614	•	R\$ 89.870,00

CUSTO - FOLHA SALARIAL DURANTE 03 MESES

FORMAÇÃO	QUANT.	VALOR SALÁRIO BASE	VALOR TOTAL	VALOR TOTAL 03 MESES
ADM. DE REDES	02.	R\$ 8.000,00	R\$16.000,00	R\$ 48.000,00
TÉCNICO DE REDES	04.	R\$800,00	R\$3.200,00	R\$ 9.600,00
PEDREIROS E AJUDANTES	10.	R\$900,00.	R\$ 9.000,00	R\$ 27.000,00
AJUDA DE CUSTO/TRANSPORTE/ALIM.	-	R\$ 30.000,00	R\$ 30.000,00	R\$ 90.000,00
TOTAL FOLHA PGMTO.	16.	R\$ 15.700,00	R\$ 15.700,00	R\$ 174.600,00

CUSTO ADICIONAL								
EQUIP. E SERVIÇOS	QUANT.	VALOR POR EQUIPAMENTO	VALOR TOTAL					
NO BREAK GERENCIÁVEL 1400VA ENGETRON	14	R\$ 450,00	R\$ 6.300,00					
LINK MPLS OI VELOX (TELEMAR) 2MB	02.	R\$ 5.000,00	R\$ 10.000,00					
MONITORAMENTO LINK MPLS	SEM QUANT.	R\$ 4.000	R\$ 4.000,00					
GERENCIAMENTO EQUIPE PROJETO	SEM QUANT.	R\$ 25.000,00	R\$ 25.000,00					
TOTAL EQUIP. E SERVIÇOS	16.	R\$ 45.300,00	R\$ 45.300,00					

TOTAL GERAL	R\$ 850.250,00
-------------	----------------

- O prazo de entrega de cada subproduto em cada fase do projeto deve estar bem acordado com o cliente.
- Existem diversas ferramentas para o desenvolvimento de cronogramas que incluem marcos, atribuições de recursos, análise de caminho crítico, amarrações entre atividades, entre outros.
 - Entre as ferramentas temos o Microsoft Project, Project Builder, etc.
- Um cronograma macro pode ser elaborado na etapa de desenvolvimento do projeto, podendo ser detalhado à medida que se planeja a execução de uma determinada fase do projeto.

Estabelecer prazos finais e marcos principais.

Atividades	Ju	nho	Julho Julho											Agosto																									
	29	30	1	2	3 4	5	6 7	8	9 1	1	1 12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	1	2	3	4	5	6	7	8	9
Responder RFP e SLA											Í																												Ī
1. Análise de Requisitos						П	2000		0000	725					ľ						9		. 6																
2. Análise de Viabilidade		8		1000	= 3 2		63k	8 .	88	(2)	2		(8)	3	13: 13				Ī		1	\$7 - 8X	= 3			-	8-3											Г	50
3. Análise de Domínio				0000	-8-		9238	::::::::::::::::::::::::::::::::::::::		- C			.0		20.00				2 0		85	9 - 11																	::3
4. Análise de Informações									00.504																														
5. Projeto do Domínio										Ì																													Ĭ
6. Projeto dos Componentes				-	67		200	-		Î	Q.	İ			1 7			T					- 2																
7. Implementação dos Componentes		100		WW	-32		38tr	88 1	V2.53		92				10-10	:			8-8		8	S - 50	3				8 8	9											32
8. Projeto da Aplicação				000	-8-				0000	8			Q.								8	3															8		
9. Implementação da Aplicação																																							
10. Apresentação da Fábrica																																						Г	

	ABR	MAY	JUN	JUL - DIC 2005
Análisis previo			1 1	
Documentación				
Diseño Arquitectura				
Diseño Interfaz Ppal		[17]		7
Reunión de control				
Diseño Interfaces			3 3	
Desarrollo Contenidos			1 3	
Programación				
Reunión de control				
Ajustes del sistema				
Lanzamiento				
Mantenimiento y dinam.				

Compromisso entre Requisitos para Projetar uma Rede

Requisitos de um Projeto de Rede

Com base no que já foi estudado, podemos destacar os seguintes requisitos para projetar uma rede:

1. Facilidade no escalonamento da rede.

Planejar visando a expansão.

2. Disponibilidade da rede.

Minimização, quando importante, dos tempos de inatividade.esperado da rede.

3. Metas de Desempenho

Parâmetros de desempenho

4. Metas de segurança necessária para a rede.

Requisitos de um Projeto de Rede

5. Facilidade de gerenciamento da rede.

Ponto de vista do Administrador (ou Gerente) da rede.

6. Facilidade de uso

Ponto de vista do Usuário da rede.

7. Facilidade de adaptação

Upgrades de equipamentos, condições ambientais, etc.(efetividade do custo) do projeto da rede.

8. Viabilidade

Retorno do investimento no projeto da rede.

Compromissos no Projeto de Redes

 Concluindo a parte de Análise de Requisitos (do negócio e técnicas), deve-se procurar distribuir "pontos" aos vários requisitos desejados, de modo que somem 100 (por exemplo)

 Facilidade de escalonamento: 	20	
- Disponibilidade:	30	
 Desempenho da rede: 	15	
- Segurança:	5	Lembrar que, às vezes, um requisito vai de encontro a
 Facilidade de gerenciamento: 	5	outro!
- Facilidade de uso:	5	
 Facilidade de adaptação: 	5	
- Viabilidade:	15	
- SOMA:	100	

PLANEJAMENTO E PROJETO DE REDES

Material adaptado do professor: Joelson Tadeu Vendramin joelson@dainf.cefetpr.br Marcelo Almeida
Universidade Salgado de Oliveira
http://www.profmagf.com