MIDS 1a

Fundamentals of Linear Algebra

• Explain the geometric motivation behind the inner product notation

- Explain the geometric motivation behind the inner product notation
- Define an inner product space

Unit 4: High-Level Objectives

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality

Unit 4: High-Level Objectives

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - o Pythagorean theorem

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - Pythagorean theorem
 - Gram-Schmidt process

Unit 4: High-Level Objectives

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - Pythagorean theorem
 - o Gram-Schmidt process
- Describe some properties of linear maps on inner product spaces

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - Pythagorean theorem
 - Gram-Schmidt process
- Describe some properties of linear maps on inner product spaces
 - Adjoint

Unit 4: High-Level Objectives

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - Pythagorean theorem
 - o Gram-Schmidt process
- Describe some properties of linear maps on inner product spaces
 - Adjoint
 - Singular value decomposition

- Explain the geometric motivation behind the inner product notation
- Define an inner product space
- Describe some of the basic properties of inner product spaces
 - Cauchy-Schwartz inequality
 - Pythagorean theorem
 - Gram-Schmidt process
- Describe some properties of linear maps on inner product spaces
 - Adjoint
 - Singular value decomposition
- Explain how to reduce the least squares regression problem to a related linear system

Vector Geometry		

Vector Geometry

• Geometric properties of two-dimensional vectors:

• Geometric properties of two-dimensional vectors:

Length

Vector Geometry

- Geometric properties of two-dimensional vectors:
 - Length
 - Direction

Vector Geometry

- Geometric properties of two-dimensional vectors:
 - Length
 - o Direction
- Geometric properties of pairs of two-dimensional vectors:

Vector Geometry

- Geometric properties of two-dimensional vectors:
 - o Length
 - Direction
- Geometric properties of pairs of two-dimensional vectors:
 - o Distance

Vector Geometry

- Geometric properties of two-dimensional vectors:
 - Length
 - o Direction
- Geometric properties of pairs of two-dimensional vectors:
 - Distance
 - o Directional similarity

Vector Geometry

- Geometric properties of two-dimensional vectors:
 - Length
 - o Direction
- Geometric properties of pairs of two-dimensional vectors:
 - o Distance
 - Directional similarity
- Note that length, distance, and directional similarity can be represented by a single real number.

• Inner product notation:

Vector Geometry (contd)

- Inner product notation:
 - Length(u) = u u (abbreviated||u||)

Vector Geometry (contd)

- Inner product notation:
 - Length(u)= u u (abbreviated||u||)
 - \circ Distance(u,v)=||u-v||

Vector Geometry (contd)

- Inner product notation:
 - Length(u)= u u (abbreviated||u||)
 - \circ Distance(u,v)=||u-v||
 - o Directional correlation(u,v)= u v || u || || v ||

- Inner product notation:
 - Length(u)= u u (abbreviated||u||)
 - \circ Distance(u,v)=||u-v||
 - o Directional correlation(u,v)= u v || u || || v ||

Inner Product Spaces

Inner	Product	Spaces
-------	----------------	--------

• Vector spaces with an inner product that satisfies:

Inner Product Spaces

- Vector spaces with an inner product that satisfies:
 - Symmetry: u v= v u

Inner Product Spaces

- Vector spaces with an inner product that satisfies:
 - Symmetry: u v= v u
 - Linearity: $\langle u 1 + u 2, v \rangle = u 1 v + u 2 v$ and $\langle au, v \rangle = a u v$

Inner Product Spaces

- Vector spaces with an inner product that satisfies:
 - Symmetry: u v= v u
 - Linearity: $\langle u 1 + u 2, v \rangle = u 1 v + u 2 v$ and $\langle au, v \rangle = a u v$
 - Positive definiteness: u u≥0 and u u=0 iff u=0

Inner Product Spaces: Basic Properties				
Inner Draduct Chases Pasis Dramouties				
Inner Product Spaces: Basic Properties				
 u = u u satisfies the norm axioms: 				

- ||u||= u u satisfies the norm axioms:
 - $\circ \|u\| \ge 0$ and $\|u\| = 0$ iff u = 0

Inner Product Spaces: Basic Properties

- ||u||= u u satisfies the norm axioms:
 - .. ○ ||u||≥0 and ||u||=0 iff u=0
 - o ||au||=|a|||u||

Inner Product Spaces: Basic Properties

- ||u||= u u satisfies the norm axioms:
 - $\circ \|u\| \ge 0$ and $\|u\| = 0$ iff u = 0
 - o ||au||=|a|||u||
 - $\circ ||u+v|| \le ||u|| + ||v||$

Inner Product Spaces: Basic Properties

- ||u||= u u satisfies the norm axioms:
 - $\circ \|u\| \ge 0$ and $\|u\| = 0$ iff u = 0
 - ||au||=|a|||u||
 - o ||u+v||≤||u||+||v||
- Cauchy-Schwartz inequality:

| u v|≤||u||||v||

Inner Product Spaces: Basic Properties

- ||u||= u u satisfies the norm axioms:
 - $\circ \|u\| \ge 0$ and $\|u\| = 0$ iff u = 0
 - ||au||=|a|||u||
 - $\circ \|u+v\| \le \|u\| + \|v\|$
- Cauchy-Schwartz inequality:

| u v|≤||u||||v||

• Parallelogram law:

||x+y| | 2+||x-y| | 2=2(||x| | 2+||y| | 2)

Inner Product Spaces: Basic Properties

- ||u||= u u satisfies the norm axioms:
 - $\circ \|u\| \ge 0$ and $\|u\| = 0$ iff u = 0
 - ||au||=|a|||u||
 - $\circ \ ||u+v|| \leq ||u|| + ||v||$
- Cauchy-Schwartz inequality:

| u v|≤||u||||v||

• Parallelogram law:

||x+y|| 2+||x-y|| 2=2(||x|| 2+||y|| 2)

• Pythagorean theorem: If x y=0,

||x-y|| 2 = ||x|| 2 + ||y|| 2 = ||x+y|| 2

Orthonormal Sets of Vectors				

Orthonormal Sets of Vectors

• A set of vectors u 1,..., u m is

Orthonormal Sets of Vectors

- A set of vectors u 1,..., u m is
 - ∘ **Orthogonal** if $\langle u i, u j \rangle = 0$ for $i \neq j$

Orthonormal Sets of Vectors

- A set of vectors u 1,..., u m is
 - o **Orthogonal** if $\langle u i, u j \rangle = 0$ for i≠j
 - o **Orthonormal** if, in addition, ⟨ u i, u i⟩=1 for each i

Orthonormal Sets of Vectors

- A set of vectors u 1,..., u m is
 - ∘ **Orthogonal** if $\langle u i, u j \rangle = 0$ for $i \neq j$
 - Orthonormal if, in addition, (u i, u i)=1 for each i
- **Gram-Schmidt process:** takes a set of vectors and produces a new set that is orthonormal and has the same span

Orthonormal Sets of Vectors

- A set of vectors u 1,..., u m is
 - o **Orthogonal** if $\langle u i, u j \rangle = 0$ for $i \neq j$
 - Orthonormal if, in addition, (u i, u i)=1 for each i
- **Gram-Schmidt process:** takes a set of vectors and produces a new set that is orthonormal and has the same span
 - Orthogonalization is first.

Orthonormal Sets of Vectors

- A set of vectors u 1,..., u m is
 - ∘ **Orthogonal** if $\langle u i, u j \rangle = 0$ for $i \neq j$
 - o **Orthonormal** if, in addition, ⟨ u i, u i⟩=1 for each i
- **Gram-Schmidt process:** takes a set of vectors and produces a new set that is orthonormal and has the same span
 - o Orthogonalization is first.
 - o Normalization is second.

Adjoints			

 Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:

Adjoints

- Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:
 - \circ T *(u) is the unique v \in V such that u $\cdot \circ$ T = v \cdot

Adjoints

- Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:
 - ∘ T *(u) is the unique $v \in V$ such that $u \cdot \circ T = v \cdot$
 - u ·∘T=⟨ T *(u),·⟩
 - ∘ $\langle u,T(v)\rangle = \langle T^*(u),v\rangle$ for every $u\in V$

Adjoints

- Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:
 - o T*(u) is the unique v∈V such that u ·oT= v ·
 - $\circ \ u \cdot \circ T = \langle \ T \ *(u), \cdot \rangle$
 - ∘ $\langle u,T(u)\rangle = \langle T^*(u),u\rangle$ for every $u\in V$
- Matrix of T * is the transpose of the matrix of T.

Adjoints

- Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:
 - o T*(u) is the unique v∈V such that u ·oT= v ·
 - u ·∘T=⟨ T *(u),·⟩
 - ∘ $\langle u,T(u)\rangle = \langle T^*(u),u\rangle$ for every $u\in V$
- Matrix of T * is the transpose of the matrix of T.
- T∈L(V) is self-adjoint if T *=T.

Adjoints

- Adjoint of a linear map T∈L V U is a linear map T *∈L U V defined by:
 - o T*(u) is the unique v∈V such that u ·oT= v ·
 - $\circ \ u \cdot \circ T = \langle \ T \ *(u), \cdot \rangle$
 - ∘ $\langle u,T(u)\rangle = \langle T^*(u),u\rangle$ for every $u\in V$
- Matrix of T * is the transpose of the matrix of T.
- TEL(V) is self-adjoint if T *=T.
 - Matrix of a self-adjoint linear map is symmetric.

Singular Value Decomposition	

Singular Value Decomposition

• TEL(V) is called positive if

- $T \in L(V)$ is called positive if
 - o T is self-adjoint

- T∈L(V) is called positive if
 - o T is self-adjoint
 - o It has positive eigenvalues

Singular Value Decomposition

- T∈L(V) is called positive if
 - o T is self-adjoint
 - o It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).

- T∈L(V) is called positive if
 - T is self-adjoint
 - o It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.

Singular Value Decomposition

- T∈L(V) is called positive if
 - o T is self-adjoint
 - o It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.
- Singular values of T are the eigenvalues of T * T.

- T∈L(V) is called positive if
 - o T is self-adjoint
 - o It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.
- Singular values of T are the eigenvalues of T * T.
- S∈L(V) is an isometry if ||S(v)||=||v|| for every v∈V.

Singular Value Decomposition

- T∈L(V) is called positive if
 - o T is self-adjoint
 - It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.
- Singular values of T are the eigenvalues of T * T.
- S∈L(V) is an isometry if ||S(v)||=||v|| for every v∈V.
- Singular value decomposition theorem:

- T∈L(V) is called positive if
 - T is self-adjoint
 - It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.
- Singular values of T are the eigenvalues of T * T.
- S∈L(V) is an isometry if ||S(v)||=||v|| for every v∈V.
- Singular value decomposition theorem:
 - Every invertibleT∈L(V) has a factorization S∘ T * T∘U
 where S and U are isometries.

- T∈L(V) is called positive if
 - o T is self-adjoint
 - It has positive eigenvalues
- T *T= T *∘T is positive for any invertible T∈L(V).
- Every positive T has a uniquely defined square root T.
- Singular values of T are the eigenvalues of T * T.
- S∈L(V) is an isometry if ||S(v)||=||v|| for every v∈V.
- Singular value decomposition theorem:
 - Every invertibleT∈L(V) has a factorization S∘ T * T∘U where S and U are isometries.
 - o Given any basis of V, isometries S and U can be found so that $M(T)=M(S)\cdot \Sigma\cdot M(U)$ where Σ is a diagonal matrix with the singular values of T along the diagonal.

Orthogonal Projections				

• proj vu: component of u in the direction of v

Orthogonal Projections

- proj vu: component of u in the direction of v
 - Expression: proj vu=[directional-correlation u v·||u||]· v | |
 v | |

Orthogonal Projections

- proj vu: component of u in the direction of v
 - Expression: proj vu=[directional-correlation u v·||u||]· v | | v | |
 - o Computed using: proj vu= u v v v v

Orthogonal Projections

- proj vu: component of u in the direction of v
 - Expression: proj vu=[directional-correlation u v·||u||]· v | | $v \mid |$
 - o Computed using: proj vu= u v v v v
- Geometric property: proj vu is the unique vector in the direction of v with minimal distance to u

Least Squares Regression

• What vector x minimizes||Ax-b|| for overdetermined linear system [A|b]?

Least Squares Regression

• What vector x minimizes||Ax-b|| for overdetermined linear system [A|b]?

• Using projections, any solution x is also a solution to the linear system [A TA| A Tb].

Least Squares Regression

- What vector x minimizes||Ax-b|| for overdetermined linear system [A|b]?
 - Using projections, any solution x is also a solution to the linear system [A TA| A Tb].
 - The solution to [ATA|ATb] is unique whenever the columns of A are linearly independent.