13. Sea p un número primo impar. Encuentre los valores de p que hacen que $\frac{2p-1}{p}$ sea un cuadrado perfecto.

Este problema es el 04.49 del volumen 4 de Problemas de oposiciones de Editorial Deimos y allí figura resuelto.

SOLUCIÓN: El número p es primo y distinto de 2, luego no es divisor de éste y, según el $Pequeño\ Teorema\ de$ Fermat, será $2^{p-1} \equiv 1 \pmod{p}$, o lo que es igual, $2^{p-1}-1$ es divisible por p y por tanto el cociente $\frac{2^{p-1}-1}{p}$ es un número entero (natural). Veamos qué primos impares p hacen que dicho cociente sea un cuadrado perfecto.

Supongamos entonces que $\frac{2^{p-1}-1}{p}$ es un cuadrado perfecto. Al ser p primo impar, podemos escribir p=2n+1, con $n \ge 1$, y entonces:

$$\frac{2^{p-1}-1}{p} = \frac{2^{2n}-1}{p} = \frac{(2^n-1)(2^n+1)}{p} \in \mathbb{Z}$$

es decir, p es divisor del producto $(2^n-1)(2^n+1)$. Como p es primo, p divide a uno de los dos factores, y sólo a uno, pues $mcd(2^n-1,2^n+1) = mcd(2^n-1,2) = 1$ por ser 2^n-1 número impar. Distinguimos entonces:

i) Si p es divisor de $2^n - 1$, entonces

$$\frac{2^{p-1} - 1}{p} = \frac{2^n - 1}{p} \cdot (2^n + 1)$$

es un cuadrado perfecto. Como los dos factores de la derecha no tienen divisores comunes por ser $mcd(2^n-1,2^n+1)=1$, ambos son cuadrados perfectos y entonces

$$2^n + 1 = a^2$$

para cierto $a \in \mathbb{N}$. Esta igualdad puede ser escrita así:

$$2^n = a^2 - 1 = (a - 1)(a + 1)$$

y de ello deducimos que a-1 y a+1 son dos potencias de 2 que difieren en dos unidades, es decir, a-1=2 y a+1=4, y por tanto a=3. Se tiene así:

$$2^{n} = 3^{2} - 1 = 8 \implies n = 3 \implies p = 2n + 1 = 7$$

El valor obtenido para p cumple efectivamente la condición del enunciado, pues $\frac{2^{7-1}-1}{7}=9$ es cuadrado perfecto.

ii) Si p es divisor de $2^n + 1$, un razonamiento análogo al usado en i) conduce a la existencia de $b \in \mathbb{N}$ tal que

$$2^n - 1 = b^2$$

academia@academiadeimos.es

Al restar una unidad en ambos miembros, se deduce

academiadeimos.es

$$2^{n} - 2 = b^{2} - 1$$
 \Rightarrow $2(2^{n-1} - 1) = (b-1)(b+1)$

Por tanto, los números b-1 y b+1 son pares, así que $b^2-1=(b-1)(b+1)$ es múltiplo de 4, luego $2^{n-1}-1$ es múltiplo de 2, es decir, $2^{n-1}-1=0$, luego n=1 y p=2n+1=3. Este valor p=3 es efectivamente solución del problema porque $\frac{2^{3-1}-1}{3}=1$ es un cuadrado perfecto, así que las únicas soluciones son:

$$p = 3$$
, $p = 7$.