CS 6890: Linear and Integer Programming

Vladimir Kulyukin Department of Computer Science Utah State University

July 8, 2017

Learning Objectives

- 1. Linear Program Formulation
- 2. Converting Linear Programs to Standard Form
- 3. Solving LPs Graphically
- 4. Convex and Polyhedral Sets

Introduction

This is a pencil and paper assignment. When a problem asks you to solve an LP problem graphically, make sure that your graph is legible and the extreme points are clearly marked.

Problem 1 (1 point)

Transform the following LP into the standard form

- minimize $z = 2x_1 3x_2 + 5x_3 + x_4$ subject to
 - 1. $-x_1 + 3x_2 x_3 + 2x_4 \le -12$
 - $2. 5x_1 + x_2 + 4x_3 x_4 \ge 10$
 - $3. \ 3x_1 2x_2 + x_3 x_4 = -8$
 - 4. $x_1, x_2, x_3, x_4 \ge 0$.

Problem 2 (2 points)

Nick's Furniture, LLC produces two types of wooden chairs - A and B. The manufacture of chair A requires 2 hours of assembly time and 4 hours of finishing. Chair B requires 3 hours to assemble and 3 hours to finish. The company estimates that next week 72 hours will be available for assembly operations and 108 hours for finishing. The unit profits for chairs A and B are \$10 and \$9, respectively. It is also estimated that the maximum demand for chair B will be 16. Formulate an LP model and solve it graphically to answer the question of what is the optimal product mix for the company next week.

Problem 3 (1 point)

Solve the following LP graphically.

- minimize $z = 4x_1 + 5x_2$ subject to
 - 1. $3x_1 + 2x_2 \le 24$
 - 2. $x_1 \ge 5$
 - 3. $3x_1 x_2 \le 6$
 - 4. $x_1, x_2 \ge 0$.

Problem 4 (1 point)

Solve the following LP graphically.

- minimize $z = x_1 4x_2$ subject to
 - 1. $x_1 + x_2 \le 12$
 - 2. $-2x_1 + x_2 \le 4$
 - 3. $x_2 \le 8$
 - 4. $x_1 3x_2 \le 4$
 - 5. $x_1, x_2 > 0$.

Problem 5 (1 point)

Solve the following LP graphically.

- maximize $z = 6x_1 + 8x_2$ subject to
 - 1. $x_1 + 4x_2 \le 16$
 - $2. \ 3x_1 + 4x_2 \le 24$
 - 3. $3x_1 4x_2 \le 12$
 - 4. $x_1, x_2 \ge 0$.

Problem 6 (1 point)

Solve the following LP graphically.

- maximize $z = x_1 + 2x_2$ subject to
 - 1. $-2x_1 + x_2 \le 2$
 - $2. \ 2x_1 + 5x_2 \ge 10$
 - 3. $x_1 4x_2 \le 2$
 - 4. $x_1, x_2 \geq 0$.

Problem 7 (2 points)

Given the polyhedral set $S = \{(x_1, x_2) | x_1 + x_2 \le 10, -x_1 + x_2 \le 6, x_1 - 4x_2 \le 0\}.$

- 1. Find all extreme points of S.
- 2. Represent the point $\mathbf{x} = (2,4)$ as a convex combination of the extreme points.

Problem 8 (1 point)

Let S_1 and S_2 be convex sets. Is $S_1 \cap S_2$ convex? Is $S_1 \cup S_2$ convex? You can either state your answers as proofs or, if you do not feel comfortable with proofs, justify your answers with a few sentences.

What To Submit

Type your answers in your favorite math-friendly editor and submit your answers in a pdf document through Canvas. You can also write your answers legibly and submit their images through Canvas.