Math2310 - Fall '22

Syllabus - Lecture 15

BY GENNADY URALTSEV

Review

1 Optimization on the interior

- <u>defn</u> interior points
- <u>defn</u> critical points
- <u>defn</u> local extrema
- thm interior local extrema are critical points
- thm partial derivatives of smooth functions commute
- defn the Hessian: the matrix of second derivatives

Topics

1 Optimization on the interior

- the second derivative test: motivation
- an example of a function with prescribed value, gradient, and hessian at a point
 - the function $f(x,y) = \frac{1}{2}(ax^2 + 2bxy + cy^2)$ and the various shapes of its graph
 - saddles
 - o paraboloid up
 - o paraboloid down
 - o cylindrical paraboloid
- <u>defn</u> principal curvature values and principle curvature directions of the graph $\frac{1}{2}(ax^2 + 2bxy + cy^2)$
- thm The determinant of the Hessian is the product of the two principle curvature directions
- consequences:
 - using the Hessian D^2f to determine the shape of the graph of $f(x,y) = \frac{1}{2}(ax^2 + 2bxy + cy^2)$
- defn definite, indefinite, semidefinite matrices

1.1 The second derivative test:

- adaptation of the above to study critical points of functions
- counterexamples when matrices are semi-definitite.

2 Optimization on the boundary - parametric aproach

- parameterizing the boundary of a domain and optimizing in lower dimensions.
- exmpl $f(x,y) = xe^y$ on $\left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x \ge 1, y \ge \frac{1}{2}, xy \le 2 \right\}$

3 Optimization on the boundary - Lagrange multipliers

- directions of gradients and boundary tangent directions
- <u>defn</u> constraints
- optimization under constraints
- the method of Lagrange multipliers
 - motivation
 - method of Lagrange multipliers
 - the role of the multiplier λ
 - $\circ \quad \underline{\text{exmpl}} \ f(x,y) = x \, e^y \ \text{on} \ \left\{ \left(\begin{array}{c} x \\ y \end{array} \right) \colon x \geq 1, \, y \geq \frac{1}{2}, \, x \, y \leq 2 \right\}$
 - o shortcomings: once candidate is found, no "second derivative test" is available

References

Textbook

- [Ste] Chap 14.7 (complete) Maximum and minimum values
- [Ste] Chap 14.8 (complete) Lagrange multipliers.

Videos

- The Hessian matrix | Multivariable calculus | Khan Academy YouTube
- \bullet Multi-variable Optimization & the Second Derivative Test YouTube
- Lagrange multipliers, using tangency to solve constrained optimization YouTube
- Lagrange Multipliers | Geometric Meaning & Full Example YouTube
- Lagrange Multipliers YouTube

Geogebra applets

• Second derivative test - classification of quadratic forms - GeoGebra