Optimum Pollution and Externalities

Natural Resource Economics

Aditya KS

May 22, 2025

ICAR-Indian Agricultural Research Institute

Contact: adityaag68@gmail.com

Website: https://adityaraoks.github.io/

Outline

Introduction

Causes and Consequences

Pollution as a Negative Externality

Empirical Evidence and Valuation

Internalizing Externalities: Theory

Policy in Practice

Advanced Topics

Summary and Discussion

References

Introduction

Introduction

- Externalities are central to environmental economics.
- Pollution is a classic example of a negative externality.
- Understanding externalities is crucial for policy design and sustainable development.

What are Externalities?

- Externality: An uncompensated cost or benefit imposed on a third party by an economic activity.
- Can be positive (benefits) or negative (costs).
- Not reflected in market prices, leading to market failure.

Types of Externalities

- **Negative:** Pollution, noise, congestion.
- Positive: Vaccination, education, research spillovers.
- **Production:** Arise from production (e.g., factory emissions).
- Consumption: Arise from consumption (e.g., second-hand smoke).

Causes and Consequences

Causes of Externalities

- Poorly defined property rights.
- Common pool resources (tragedy of the commons).
- Market mechanisms fail to price social costs/benefits.

Market Failure

- Negative externalities: Overproduction (e.g., pollution-heavy industries).
- Positive externalities: Underproduction (e.g., clean energy).
- ullet Divergence from Pareto optimality: Marginal social benefit eq marginal social cost.

Government Failure

- Incomplete information.
- Implementation challenges.
- Policy misalignment and unintended consequences.

Pollution as a Negative Externality

Pollution as a Negative Externality

- Pollution imposes costs on society not borne by polluters.
- Examples: Air and water pollution, greenhouse gases, noise.
- Pollution shirking: Firms avoid abatement due to lack of penalties.

Key Economic Concepts

- Marginal Private Cost (MPC): Cost to producer/consumer.
- Marginal External Cost (MEC): Cost to society (health, environment).
- Marginal Social Cost (MSC): MSC = MPC + MEC.
- Marginal Abatement Cost (MAC): Cost to reduce pollution by one unit.

Private vs Social Optima

- **Private Optimum:** MPC = MPB (ignores external costs).
- **Social Optimum:** MSC = MSB (accounts for external costs).
- \bullet Negative externalities \rightarrow market produces too much pollution.

Why Not Zero Pollution?

- Thermodynamics: All production generates some waste.
- Zero pollution is not feasible or economically optimal.
- The goal: Find the **optimum** (efficient) level of pollution.

Optimum Pollution: Graphical Analysis

 $\textbf{Figure 1:} \ \, \mathsf{Optimum} \ \, \mathsf{Pollution} \ \, \mathsf{using} \ \, \mathsf{MSC} \ \, \mathsf{and} \ \, \mathsf{MB}$

Optimum Pollution: MAC and MDC

Figure 2: Optimum Pollution using Marginal Damage and Abatement Costs

Empirical Evidence and Valuation

Empirical Studies on Pollution

- Pollution affects health, property values, and ecosystems.
- \bullet Example: 1% reduction in particulates \to 0.35% reduction in infant mortality (Chay & Greenstone).
- Improved air quality increases property values.

Valuing Damage from Pollution

- Difficult to measure due to lack of markets.
- Methods: Hedonic pricing, contingent valuation, cost of illness.
- Important for setting optimal policy levels.

Internalizing Externalities: Theory

Internalizing Externalities

- Align private incentives with social welfare.
- Main approaches:
 - Coase Theorem (bargaining)
 - Pigouvian taxes
 - Tradable permits
 - Standards and regulations

The Coase Theorem

- If property rights are well-defined and transaction costs are low, private bargaining can achieve efficient outcomes.
- Outcome is efficient regardless of who holds rights.
- Limitations: High transaction costs, many parties, power imbalances.

Pigouvian Taxes

- Tax imposed equal to marginal external cost at social optimum.
- Shifts private cost to align with social cost.
- Challenges: Measuring external cost, enforcement.

Pigouvian Tax: Diagram

Pigouvian Tax: Magnitude

Figure 4: Pigovian taxation - magnitude

Tradable Permits

- Cap is set on total emissions; permits are allocated or auctioned.
- Firms trade permits, achieving pollution reduction at lowest cost.
- Challenges: Initial allocation, market manipulation, local hotspots.

Standards and Regulations

- Government sets emission limits or technology mandates.
- Ensures compliance through monitoring and penalties.
- Challenges: Inflexibility, high administrative costs, stifled innovation.

Comparison of Mechanisms

Table 1: Comparison of Internalization Mechanisms

Mechanism	Туре	Key Features / Limitations
Coase Theorem	Market-based	Needs low transaction costs, property rights
Pigouvian Tax	Fiscal policy	Accurate measurement, enforcement needed
Tradable Permits	Market-based	Cost-efficient, allocation issues
Standards/Regulation	Direct control	High admin cost, inflexible

Policy in Practice

Case Study: Carbon Pricing

- Carbon taxes: Sweden, British Columbia.
- Cap-and-trade: EU Emissions Trading System.
- Results: Emissions reductions, revenue for public investment.

Case Study: Water Pollution

- Effluent charges in Germany.
- Tradable permits in the US (Clean Water Act).
- Challenges: Monitoring, enforcement, equity.

Distributional Impacts

- Pollution control can affect income distribution.
- Taxes may be regressive; permit allocation may favor incumbents.
- Policy design can mitigate negative impacts (e.g., recycling tax revenue).

Political Economy of Pollution Policy

- Lobbying by affected industries.
- Public awareness and demand for clean environment.
- International coordination for global pollutants (e.g., CO_2).

Advanced Topics

Dynamic Considerations

- Technological change can lower abatement costs.
- Policies can incentivize innovation (e.g., R&D subsidies, flexible standards).
- Long-term vs. short-term tradeoffs.

Uncertainty and Risk

- Damage costs and abatement costs are uncertain.
- Price vs. quantity instruments: Weitzman rule.
- Precautionary principle for irreversible damages.

Global Externalities

- Climate change: Global public good problem.
- International agreements (Kyoto, Paris).
- Free-rider problem and enforcement challenges.

Tragedy of the Commons

- Common pool resources (air, water) are overused.
- Solutions: Privatization, regulation, community management.
- Examples: Fisheries, groundwater, atmosphere.

Summary and Discussion

Summary

- Externalities cause market failure; pollution is a key example.
- Internalization mechanisms: taxes, permits, bargaining, regulation.
- Policy choice depends on context, costs, and institutional capacity.

Discussion Questions

- Why is zero pollution not optimal?
- Compare Pigouvian taxes and tradable permits.
- When does the Coase theorem fail?
- How do we value environmental damages?
- What are the distributional impacts of pollution policy?

Assignments

- 1. Identify a local negative externality and suggest an internalization mechanism.
- 2. Compare effectiveness of Pigouvian taxes vs. tradable permits for air pollution.
- 3. Discuss challenges of applying the Coase theorem to climate change.
- 4. Write a one-page summary on the tragedy of the commons and externalities.

References

References

- Baumol, W.J. & Oates, W.E. (1988). The Theory of Environmental Policy.
- Tietenberg, T. (2019). Environmental and Natural Resource Economics.
- Chay, K.Y. & Greenstone, M. (2003). The Impact of Air Pollution on Infant Mortality.