

www.twosigma.com

Huohua 火花 Distributed Time Series Analysis Framework For Spark

Wenbo Zhao

Spark Summit 2016

June 10, 2016

About Me

- Focus on analytics related tools, libraries and Systems

We view everything as a time series

- Stock market prices
- Temperatures
- Sensor logs
- Presidential polls

...

What is a time series?

- · A sequence of observations obtained in successive time order
- Our goal is to forecast future values given past observations

Multivariate time series

- We can forecast better by joining multiple time series
- Temporal join is a fundamental operation for time series analysis
- Huohua enables fast distributed temporal join of large scale unaligned time series

What is temporal join?

- A particular join function defined by a matching criteria over time
- Examples of criteria
 - look-backward find the most recent observation in the past
 - look-forward find the closest observation in the future

time	weather
08:00 AM	60 °F
10:00 AM	70 °F 😃
12:00 AM	80 °F 🔵

time	corn price
08:00 AM	
11:00 AM	

time	weather	corn price
08:00 AM		
10:00 AM		
12:00 AM		

time	weather
08:00 AM	60 °F
10:00 AM	70 °F 绌
12:00 AM	80 °F 🔵

time	corn price
08:00 AM	
11:00 AM	

time	weather	corn price
08:00 AM	60 °F	00
10:00 AM		
12:00 AM		

weather
60 °F
70 °F 绌
80 °F 🔵

time	corn price
08:00 AM	
11:00 AM	

	time	weather	corn price
	08:00 AM	60 °F	66
•	10:00 AM	70 °F 急	
	12:00 AM		

time	weather
08:00 AM	60 °F
10:00 AM	70 °F 绌
12:00 AM	80 °F 🔵

time	corn price
08:00 AM	9 9
11:00 AM	

time	weather	corn price
08:00 AM	60 °F	
10:00 AM	70 °F 🐣	
12:00 AM	80 °F 🔵	

We need fast and scalable distributed temporal join

Issues with existing solutions

- A single time series may not fit into a single machine
- Forecasting may involve hundreds of time series
- Existing packages don't support temporal join or can't handle large time series
 - MatLab, R, SAS, Pandas
 - Even Spark based solutions fall short
 - PairRDDFunctions, DataFrame/Dataset, spark-ts

Huohua – a new time series library for Spark

- Goal
 - provide a collection of functions to manipulate and analyze time series at scale
 - group, temporal join, summarize, aggregate ...
- How
 - build a time series aware data structure
 - extending RDD to TimeSeriesRDD
 - optimize using temporal locality
 - reduce shuffling
 - reduce memory pressure by streaming

What is a TimeSeriesRDD in Huohua?

- TimeSeriesRDD extends RDD to represent time series data
 - associates a time range to each partition
 - tracks partitions' time-ranges through operations
 - preserves the temporal order

TimeSeriesRDD-an RDD representing time series

time	temperature	RDD
6:00 AM	60°F	(6:00 AM, 60°F) (6:01 AM, 61°F)
6:01 AM	61°F	
7:00 AM	70°F	(7:00 AM, 70 °F) (7:01 AM, 71 °F)
7:01 AM	71°F	
8:00 AM	80°F	(8:00 AM, 80°F) (8:01 AM, 81°F)
8:01 AM	81°F	
•••		

TimeSeriesRDD-an RDD representing time series

			0
	time	temperature	TimeSeriesRDD
ĺ	6:00 AM	60°F	(6:00 AM, 60°F) range: (6:01 AM, 61°F) [06:00 AM, 07:00 AM)
	6:01 AM	61°F	
ı	7:00 AM	70°F	(7:00 AM, 70°F) range: (7:01 AM, 71°F) [07:00 AM, 8:00 AM)
	7:01 AM	71°F	
	8:00 AM	80°F	(8:00 AM, 80°F) range: (8:01 AM, 81°F) [8:00 AM, ∞)
	8:01 AM	81°F	

Group function

· A group function groups rows with exactly the same timestamps

time	city	temperature	
1:00 PM	New York	70°F	group 1
1:00 PM	San Francisco	60°F	J group 1
2:00 PM	New York	71°F	group 2
2:00 PM	San Francisco	61°F	J group 2
3:00 PM	New York	72°F	group 3
3:00 PM	San Francisco	62°F	J gloup's
4:00 PM	New York	73°F	group 4
4:00 PM	San Francisco	63°F	group

Group function

• A group function groups rows with nearby timestamps

time	city	temperature	-
1:00 PM	New York	70°F	
1:00 PM	San Francisco	60°F	group 1
2:00 PM	New York	71°F	group
2:00 PM	San Francisco	61°F	
3:00 PM	New York	72°F	
3:00 PM	San Francisco	62°F	group 2
4:00 PM	New York	73°F	group 2
4:00 PM	San Francisco	63°F	

Groups rows with exactly the same timestamps

· Data is shuffled and materialized

Data is shuffled and materialized

Data is shuffled and materialized

· Temporal order is not preserved

Another sort is required

Another sort is required

Back to correct temporal order

Back to temporal order

Data is grouped locally as streams

TimeSeriesRDD

Data is grouped locally as streams

Data is grouped locally as streams

Data is grouped locally as streams

Benchmark for group

- Running time of count after group
 - * 16 executors (10G memory and 4 cores per executor)
 - data is read from HDFS

- A temporal join function is defined by a matching criteria over time
- A typical matching criteria has two parameters
 - * direction whether it should look-backward or look-forward
 - window how much it should look-backward or look-forward

look-backward temporal join

- A temporal join function is defined by a matching criteria over time
- A typical matching criteria has two parameters
 - * direction whether it should look-backward or look-forward
 - window how much it should look-backward or look-forward

look-backward temporal join

· Temporal join with criteria look-back and window of length 1

- Temporal join with criteria look-back and window of length 1
 - How do we do temporal join in TimeSeriesRDD?

- Temporal join with criteria look-back and window of length 1
 - partition time space into disjoint intervals

- Temporal join with criteria look-back and window of length 1
 - Build dependency graph for the joined TimeSeries RDD

- Temporal join with criteria look-back and window 1
 - Join data as streams per partition

- Temporal join with criteria look-back and window 1
 - · Join data as streams

- Temporal join with criteria look-back and window 1
 - Join data as streams

- Temporal join with criteria look-back and window 1
 - Join data as streams

Benchmark for temporal join

- Running time of count after temporal join
 - 16 executors (10G memory and 4 cores per executor)
 - · data is read from HDFS

Functions over TimeSeriesRDD

- group functions such as window, intervalization etc.
- temporal joins such as look-forward, look-backward etc.
- summarizers such as average, variance, z-score etc. over
 - windows
 - Intervals
 - cycles

Open Source

- Not quite yet ...
- https://github.com/twosigma

Future work

- Dataframe / Dataset integration
 - · Speed up
 - Richer APIs
- Python bindings
- More summarizers

Key contributors

- Christopher Aycock
- Jonathan Coveney
- Jin Li
- David Medina
- David Palaitis
- Ris Sawyer
- Leif Walsh
- Wenbo Zhao

Thank you

• QA