

Advanced Binary Search

Binary Search Revision

Time Complexity Discussion

We are reducing our search space at every step into half of current search space

Recurrence:

$$T(n) = T(n / 2) + 1$$
 $T(1) = 1$

Time Complexity: O(logn)

$$T(8) = T(y) + 1$$
 $T(y) = T(y) + 1$
 $T(y) = T(y) + 1$
 $T(y) = T(y) + 1$
 $T(y) = y$

$$T(8) = T(4) + 1$$

$$= T(2) + 1 + 1$$

$$= T(1) + 1 + 1 + 1$$

$$= T(1) + 1 + 1 + 1 = 4$$

$$= T(n)_{2} + 1$$

$$= T(n)_{3} + 2$$

$$= T(n)_{4} + 3$$

$$= T(n)_{2} + k$$

$$T(n)_{2k} = 1 - T(1) = 1$$
When $k = \log n$

$$T(n) = T(n)_{2k} + k$$

$$= T(n)_{2\log n} + \log n$$

$$= T(1) + \log n$$

$$= 1 + \log n = o(\log n)$$

Array of Size (n)9mid () amid target amid == torget amid > toget

Time to seasch in axay of size

$$N = \text{Time to seasch in axay}$$

$$N = \text{Time to seasch in axay}$$
of size $\frac{N}{2} + 3$

$$T(n) = T(nl_2) + 3$$

$$T(n) = T(nl_2) + o(1)$$

2 9 1 7 6 13

Searching for 7

Binary Search Revision

Requirement for using Binary Search

Monotonicity

f(x) > f(y) iff x > y (increasing monotonic)
 f(x) < f(y) iff x > y (decreasing monotonic)

 $f(x) = x^2 + x^4 + x^6$ = 102964 100 $02964 = n^2 + n^4 + n^6$ N = [06

 $f(x) = x^2 + x^4 + x^6$ 102964 0(106) 12345 100

increasing derseas inp mid < torpet mid > taget right $\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{1$

in (rawing $\chi_1 > \chi_2$ $f(\chi_1) > f(\chi_2)$ Non derkoning $\frac{\gamma_1}{+} > \frac{\gamma_2}{+}$ increasing mid > target non decreosing increasing monotonic

non decreasing 8

f(x) =

You want to Corr lookm of difanu In every second you cover not of the semoining distanu How much time to cover al

(00 lem ___ 25 25 12.5 6.25 12.5 (), QQQQQ)

log n 109 M 2109n - >0(109y)

Binary Search Revision

Find Number of elements in the range of I to r in a sorted array

									1
		_		_		40	44	40	00
2	3	5	6	[8	10	11	16	20

Ex: Number of Elements in the range 4 to 12 are 6

 $A = no. \text{ of elements} \leq 12$ $B = no. \text{ of elements} \leq 4$ A - R = challer

tind no of element in sorted anay < = inden of the highest numter \[
 \leq 12
 \]
 \[
 \leq 12
 \]
 \[
 \leq 12
 \]
 \[
 \leq 10 11 16 20
 \] 1 2 3 4 5 6 7 8 9 10 11

Considering 1 based indexing

no of elements $\leq X$ = index of higher element $\leq X$

Given a number x, find out of the highest climent / N g 6 N 2i NiNW am = 7 1 2 4 6 9 [11 17] 19 22

Predicate Functions

Functions that return a single TRUE or False for every input. You use predicate functions to check if your input meets some condition or not.

Examples:

- F(x) = True if x > 10 otherwise False
 - setween 10 & 20
- F(x) = True if x is otherwise False
- $F(x) = True if x^2 is an odd number otherwise False$

TATATATA...

Squar et on idd number = 08dd Squar et even noi = even

$$f(n) = \pi + 2$$

Binary Searching on Answer

- Consider a predicate P defined over some ordered set S (the search space).
- The search space consists of candidate answers to the problem.
- We use the predicate to verify if a candidate answer is legal or not.

Example: We have the set of numbers {1, 2, 3, 4, 5, 6}.

Our predicate function could be following:

Return TRUE if the number is less than 3 and FALSE otherwise

Given a took find out the min employees needed to complete the took

Took T ______ min no. if
employees repuired to get it dons = 5 L6 emplyees

Monotonic Predicate Functions

1. TTTTTTTTFFFFFFFF

T	T	T	T	F	F	F	F	ı F

2. FFFFFFFFTTTTTTTT

F	F	F	F	F	F	Т	Т	Т

predicate tunction mon atonicity false = 0

 $f(n) = True if <math>x^2 \leq 100$ and folse $0/\omega$

T F f(n) = True if n is prime and false of w

FFF FFFF no of element in array < x

= inden of higher comunt & x

FairWorkload Problem

Given an array of workloads, split it among **K** workers, such that the maximum work that any worker has to do is minimised (can't change order of workloads).

Eg. [10, 20, 30, 40, 50, 60, 70, 80, 90]

Solution: 10 20 30 40 50 | 60 70 | 80 90

First worker - 150, Second worker - 130, Third worker - 170

Is it possible to partition workload in a way that the highest workload of any worker is less than 170?

assume the monimum work that anybody has to do = 150

assume the monimum work that anybody has 20 20 40 90 60

assume the Monimum work anybody to do = 200 that Nas 20 40 90

Complonity for Binory linu Seaschirf produms D(109 × Time to test Search space I candidate) log (sum of all) × o(n)
element Sum et all eliments - mon in the Man of

Man -> sum it all element

