Frekvenční závislost multimetrů a měření nesinusových napětí

Úlohu měřil Viktor Procházka a Jakub Kraus 10.10.2024.

Protokol zpracoval Viktor Procházka 16.10.2024.

Úplné zadání úkolu měření

- 1. Zapojte první část úlohy dle obr. 1.1.
- 2. V rozsahu kmitočtů 70 Hz až 300 kHz (od 100 Hz pro kmitočty v řadě l, 3, 10) změřte kmitočtovou závislost předložených číslicových multimetrů. Za kmitočtově nezávislý považujte v tomto frekvenčním rozsahu číslicový voltmetr HP/Agilent 34401 A. Měření proveďte na příslušných rozsazích při hodnotách napětí:
 - a. 1V
 - b. 7 V.
- 3. Frekvenční závislosti změřené dle bodu 2. vyneste do grafů, pro osu x (kmitočet) použijte logaritmické měřítko.
- 4. Zapoite druhou část úlohy dle obr. 1.2.
- 5. Změřte napětí na zátěži, jejíž výkon je regulován obvodem s triakem, pro úhel sepnutí přibližně 0°, 45° a 90° předloženými číslicovými multimetry V1 až V4 a číslicovým osciloskopem v režimu "Meas".
- 6. Z údajů multimetrů naměřených v bodě 4. určete, které z multimetrů měří správně efektivní hodnotu, a určete relativní chybu metody měření efektivní hodnoty u ostatních.
- 7. Z údaje multimetrů, které to umožňují, určete aritmetickou střední hodnotu měřeného průběhu.
- 8. Pro úhel sepnutí alpha = 90° určete aritmetickou střední hodnotu a efektivní hodnotu napětí rovněž výpočtem z definic (viz příprava, Uef hodnota naměřená pro sinusový průběh nejpřesnějším z multimetrů). Vypočtené hodnoty srovnejte s naměřenými a v případě jejich rozdílu analyzujte možné příčiny.

Schéma zapojení

Obr. 1.1. Zapojení pro měření frekvenční závislosti

Obr. 1.2. Zapojení měřicího obvodu

Obr. 1.3. Průběhy měřených napětí

Seznam použitých přístrojů

- 1. Vertical system analog channels Digitizing oscilloscope KEYSIGHT MSO-X 2022 A
 - a. Dále pouze jako osciloskop (OSC)
- 2. INSTEK AFG 2225 Function/Arbitrary Waveform Generator (G)
- 3. Multimeter MY64 (Mastech) (V1)
- 4. Keysight U3400 Series (V2)
- 5. Powerfix K338 (V3)
- 6. HP / Agilent 34401A (V4)

Domácí příprava

Viz sešit, kontrolováno na hodině

Naměřené hodnoty

Tabulka 1:

Pro 1V	Multimetr									
Frekvence [Hz]		70	100	300	1000	3000	10000	30000	100000	300000
	Keysight	1.0158	1.0621	1.0168	1.0157	1.0119	1.0186	1.0201	1.0362	0.0000
	Powerfix	1.0230	1.0210	1.0180	1.0080	0.9370	0.5760	0.1540	0.0300	0.0030
	Mastech	1.0180	1.0190	1.0210	1.0230	1.0250	1.0040	0.8910	0.3460	0.0090
	HP	1.0152	1.0145	1.0151	1.0156	1.0157	1.0157	1.0152	1.0124	1.0048

Tabulka 2:

Pro 7V	Multimetr									
Frekvence [Hz]		70	100	300	1000	3000	10000	30000	100000	300000
	Keysight	7.1310	7.1540	7.139	7.124	7.0840	7.1240	7.1070	7.2410	8.2620
	Powerfix	7.1800	7.1600	7.1400	7.0700	6.6700	4.4200	1.8600	0.7900	0.0000
	Mastech	7.1300	7.1300	7.1400	7.1400	7.2700	9.0200	18.5000	0.0000	13.2200
	HP	7.1670	7.1181	7.1220	7.1236	7.1242	7.1223	7.1230	7.1255	7.1560

Tabulka 3:

45V	Multimetr			
Frekvence [Hz]	Uef	0	45	90
	Keysight	49.55	46.74	34.00
	Powerfix	50.30	43.70	27.80
	Mastech	49.50	43.10	27.50
	HP	49.50	46.57	34.90
	Osciloskop	47.50	47.50	35.90

Zpracování naměřených hodnot

Frekvenční závislosti změřené dle bodu 2. zanesené do grafu s logaritmickou škálou na ose x. Frekvenční závislost multimetrů při napětí 1V (Tabulka 1):

Frekvenční závislost multimetrů při měření 1V

Frekvenční závislost multimetrů při napětí 7V (Tabulka 2):

Na předchozích 2 grafech je vidět že Keysight U3400 je nejkvalitnější multimetr z 3 měřených, jelikož na něm naměřené napětí při vyších frekvencích je neblíže referenčnímu na multimetru HP / Agilent 34401A.

Dále mám graf napětí na zátěži přes triak (Tabulka 3):

Na tomto grafu je vidět divergence multimetrů Powerfix a Mastech od ostatních měření. Osciloskop, Keysight U3400 a HP / Agilent 34401A měří správně efektivní hodnotu.

$$U_{\text{ef }\alpha} = \sqrt{\frac{2}{T} \int_{t_1}^{T/2} U_{\text{m}}^2 \sin^2 \omega t \, dt} = \sqrt{\frac{1}{\pi} \int_{\alpha}^{\pi} U_{\text{m}}^2 \sin^2 x \, dx} = \frac{U_{\text{m}}}{\sqrt{\pi}} \sqrt{\int_{\alpha}^{\pi} \frac{1 - \cos 2x}{2} \, dx}$$

Obrázek 1. Výpočet efektivní hodnoty pro obecný úhel

Výpočet efektivní hodnoty pro Powerfix a Mastech:

• 0°:
$$U_{ef} = U_{meas} / \sqrt{2}$$

• 45°:
$$U_{ef} = \sqrt{\frac{3\pi}{8} + 1/4} * U_{meas} / \sqrt{\pi}$$

• 90°:
$$U_{ef} = U_{meas}/2$$

Výpočet relativní chyby měření ($\Delta U_{ef} = Uef - U_{ef-HP}$) s multimetrem HP jako reference:

$$\varepsilon_R = \frac{\left|\Delta U_{ef}\right|}{U_{ref}}$$

Efektivní napět	í na nekvalitní	ch multim	etrech [V]
Úhel triaku [°]	0	45	90
Powerfix	35.57	29.46	13.90
Mastech	35.00	30.48	19.45
Relativní chy	ba měření [V]	
Úhel triaku [°]	0	45	90
Powerfix	0.2815	0.3673	0.6017
Mastech	0.2929	0.3456	0.4428
Relativní chy	ba měření [%	6]	
Úhel triaku [°]	0	45	90
Powerfix	28.1	36.7	60.2
Mastech	29.3	34.6	44.3

Dále výpočet usměrněné aritmetické střední hodnoty méně kvalitních multimetrů (Powerfix a Mastec):

$$U_{USAR} = U_{meas}/1.11$$

Usměrněr	Usměrněná aritemtická hodnota					
Úhel tr [°]	0	45	90			
Powerfix	45.31532	39.36937	25.04505			
Mastech	44.59459	38.82883	24.77477			

Následné srovnání hodnot s vypočítaným z teoretického úvodu:

Závěrečné porovnání hodnot pro alpha = 90° [V]						
Přístroj	Uef změřená					
Keysight	34.00					
Powerfix		25.04505				
Mastech		24.77477				
HP	34.90					
Osciloskop	35.90					
Výpočet	49.40	22.24				

Závěrečné vyhodnocení

Při provedených měřeních bylo zjištěno, že Keysight U3400 je nejpřesnější multimetr v testovaných podmínkách, blíže referenčnímu napětí oproti ostatním přístrojům. Tento multimetr vykazuje pouze minimální odchylky i při vyšších frekvencích. Naproti tomu multimetry Powerfix a Mastech vykazují odlišné hodnoty a jejich měření efektivní hodnoty není spolehlivé. Osciloskop, Keysight U3400 a HP/Agilent 34401A byly identifikovány jako přístroje poskytující správné měření efektivní hodnoty. Při analýze bylo zjištěno, že rozdíly ve měřených a vypočtených hodnotách mohou být způsobeny různou kvalitou konstrukce multimetrů a jejich způsobem zpracování signálu. V příštích měřeních by bylo vhodné se více zaměřit na způsob kalibrace a přesnost jednotlivých přístrojů při různých podmínkách zatížení.