Graph and discrete structure

Myriam Preissman (GSCOP) - 4 lectures. *Lecture 4*

Reminder

Response to question

Intersection of tree.

$$G=(V,E)$$
 $v\in V o S_v=\{e\in E, v \ ext{is incident to } e\}$ $vw\in E\Leftrightarrow S_v\cap S_w
eq \emptyset$

Special chordal graph

Interval graph is special chordal graph.

Last time

G(V,E) chordal graph \Rightarrow simplicial ordering of $V\Rightarrow \forall W\subseteq V$

Greedy sequencial coloring gives an optimal coloring in chordal graph (if V is simplicial in G, it is simplicial in any subgraph of G).

Course

Definition

Definition: perfect order

An order θ on V(G) is a *perfect order* if $\forall W \subseteq V$ the greedy seq alg based on θ/W gives an optimal coloring.

Definition: perfectly orderable

G is said *perfectly orderable* if there exists a perfect order of V(G).

Remark

The smallest graph for wich there exists a non perfect order of the vertices

$$\chi(P_4)=2$$

if a < b and d < c gives a 3-coloration.

Theorem Chatwal

G is perfectly orderable $\Leftrightarrow \exists$ perfect orientation of G.

- No circuit.
- No obstruction.

Proof

Idea of the proof

In a DAG without circuit there $\exists v$ such that no edge is entering in v.

(assume not ? c ?)

 v_1, v_2, \cdots, v_n on the vertices give an order witch is perfect.

In $G\setminus\{v_1\}$

$Proof \Rightarrow$

No circuit

 \exists a perfect order \Rightarrow orientation without circuit.

No obstruction

The order is perfect : gives an optimal coloring for all subgraph \Rightarrow no obstruction.

Counter exemple : P_4 wich is not perfectly color.

$Proof \Leftarrow$

 $\overrightarrow{G} \text{ perfect orientation} \Rightarrow \text{ordering on } V.$

Lemma

 $\exists s \in S \text{ if } K \text{ is a clique of } G, S \text{ stable set, } p:K \mapsto S$

p(w)w is a clique of s.

It is enough to prove that the greedy sequencial algorithm v_1, v_2, \cdots, v_n gives an optimal coloring of G.

Assume this algorithm gives a k-coloring.

If G contains a clique of size k then the k-coloring is optimal.

 $i_0=min\{i, ext{ such that there exists in } G ext{ a clique } K ext{ made of vertices made of colors } k,k-1,k-2\}$

Assume $i_0 \geq 1$.

By the lemma there exists a vertex $s \in S \ni K \cup \{s\}$ is a clique $K \cup \{s\}$ a contradiction of i_0 .

Complexity

The problem of deciding in a graph G is perfectly orderable is *NP-complete*.

Definition

G is perfect.

$$\chi(G') = \omega(G'), \forall G' \text{ induced subgraph of } G.$$

Two conjecture about perfect grpahs by Claude berge (1960, prooved in 2002).

- G perfect $\Leftrightarrow \overline{G}$ is perfect. ($\overline{G}=G(V,\overline{E})$). G perfect $\Leftrightarrow G$ contains no C_{2k+1} , no $\overline{C_{2k+1}}, k\geq 2$

Theorem

There exists a polynomial algorithm to optimally color the vertices of a perfect graph to obtain a maximum clique stable set.

Polynomial algorithm: based on ellipsoid method no usable in practice.

Exercice

Witch classes does belong those graph:

