Matrix:

	_	-	_	_
α	γ	Total Episodes	Avg Return	Avg Steps
0.01	0.9	2000	-200	200
0.001	0.9	2000	-200	200
0.2	0.9	2000	9. 3	11.7
0.1	0.2	2000	-94. 3	104.8
0. 1	0.3	2000	-74.6	87.2
0. 1	0.9	2000	-34. 3	51. 1

 $\alpha=0.01$ and $\alpha=0.001$: Learning is very bad. They achieve a return of -200.0 which is the worst performance. The agent took the maximum allowed steps 200, indicating it was unable to optimize its decisions. $\alpha=0.2$ shows significantly better performance. This is able to indicate that a higher learning rate lead to faster Q-table updates, leading to better policy convergence.

Also, lower discount factors , $\gamma=0.2$, 0.3, led to worse performance compared to $\gamma=0.9$. $\gamma=0.2$ performed the not good, with an avg return of -94.3 and 104.8 avg steps. This could show that the agent failed to learn effective long-term strategies. $\gamma=0.3$ was slightly better, but still significantly worse than $\gamma=0.9$. The comparison might suggesting that future rewards is crucial for optimal performance.

Based on the findings, the best hyperparameter combination is $\alpha=0.2$, $\gamma=0.9$. This combination has faster convergence with lower steps per episode and higher average return compared to suboptimal \u03b1 and \u03b3 values.