Caroline Yao

We recall from Presentation 1 that if $X_1 \sim Pois(\lambda_1)$ is independent of $X_2 \sim Pois(\lambda_2)$, and $N = X_1 + X_2 \sim Pois(\lambda_1 + \lambda_2)$, then $X_1 \mid N = n \sim Binom(n, p)$, for $p = \frac{\lambda_1}{\lambda_1 + \lambda_2}$.

We want to show that with the Poisson representation, the Pearson Chi-square statistic is the sum of squared standardized Poisson variables.

First recall that the Pearson Chi-squared test statistic is defined as

$$\chi^2 = \sum_i \frac{(O_i - E_i)^2}{E_i}$$

where O_i is observed data and E_i is the expected data. We know that for a Poisson distribution with λ , the mean and variance are both each to λ . So we can rewrite the above equation as

$$\chi^2 = \sum_i \frac{(O_i - \lambda)^2}{\lambda} = \sum_i \frac{(O_i - \lambda)^2}{(\sqrt{\lambda})^2} = \sum_i (\frac{O_i - \lambda}{\sqrt{\lambda}})^2$$

It is easy to recognize that $\frac{O_i - \lambda}{\sqrt{\lambda}}$ is the standardized Poisson variable. This may sound like it suggests that we have a chi-square distribution with degree of freedom 4, but this is not true because they are not independent from each other.

Now, let's suppose that we have a 2×2 table and the four counts are independent $Pois(\theta_{ij})$ variables, where i=1,2 and j=1,2. We want to show that conditioning on the row totals result in Binomial variables with probabilities $\phi_1 = \frac{\theta_{11}}{\theta_{11}+\theta_{12}}$ and $\phi_2 = \frac{\theta_{21}}{\theta_{21}+\theta_{22}}$.

Row 1
$$Pois(\theta_{11})$$
 $Pois(\theta_{12})$ Row total Row 2 $Pois(\theta_{21})$ $Pois(\theta_{22})$ T_1 T_2

Table 1: 2 by 2 table where the four counts are independent $Pois(\theta_{ij})$ variables

Then denote $Pois(\theta_{ij})$ as X_{ij} . By part a, we know that $T_1 \sim Pois(\theta_{11} + \theta_{12})$ and $X_{11} \mid T_1 = t \sim Bin(t,\phi_1)$ with $\phi_1 = \frac{\theta_{11}}{\theta_{11}+\theta_{12}}$. Similarly, $T_2 \sim Pois(\theta_{21} + \theta_{22})$ and $X_{21} \mid T_2 = t \sim Bin(t,\phi_2)$ with $\phi_2 = \frac{\theta_{21}}{\theta_{21}+\theta_{22}}$.

We know that Jeffrey's non-informative prior for a Poisson rate θ is $p(\theta) \propto \theta^{-1/2} I(\theta > 0)$. Let's assume independent priors for the four Poisson rates, we want to show that the joint posterior density for the θ_{ij} 's is that of four independent Gamma $(X_{ij} + 1/2, 1)$ random variables, and for ϕ_1 and ϕ_2 it is that of two independent $Beta(X_{i1} + 1/2, X_{i2} + 1/2)$ variables.

We know that posterior $\propto L(\theta_{ij})p_{\theta}(\theta)$ and $L(\theta_{ij}) = \frac{\theta_{ij}^{X_{ij}}}{X_{ij}!}e^{-\theta_{ij}}$ and we are given that $p(\theta_{ij}) \propto$

$$\theta_{ij}^{-1/2}I(\theta_{ij}>0).$$

$$p_{\theta_{ij}|X_{ij}} = \frac{\theta_{ij}^{X_{ij}}}{X_{ij}!} e^{-\theta_{ij}} \cdot \theta_{ij}^{-1/2} I(\theta_{ij} > 0)$$
$$\propto \theta_{ij}^{X_{ij}-1/2} e^{-\theta_{ij}}$$
$$\sim Gamma(X_{ij} + 1/2, 1)$$

As for ϕ_1 and ϕ_2 , recall that we found $\phi_1 = \frac{\theta_{11}}{\theta_{11} + \theta_{12}}$ and $\phi_2 = \frac{\theta_{21}}{\theta_{21} + \theta_{22}}$. From Week 2 presentation problem 4, we know that if $V_1 \sim Gamma(a, \lambda)$ and $V_2 \sim Gamma(b, \lambda)$ independent from each other, then $\frac{V_1}{V_1 + V_2} \sim Beta(a, b)$. So here, we immediately have $\phi_1 \sim Beta(X_{11} + 1/2, X_{12} + 1/2)$ and $\phi_2 \sim Beta(X_{21} + 1/2, X_{22} + 1/2)$.

We see that this agrees with assuming independent Beta(1/2,1/2) prior densities for ϕ_1 and ϕ_2 . We see that $X_{11} \mid X_{11} + X_{12} \sim Bin(X_{11} + X_{12}, \phi_1)$. So we find the likelihood to be $L(\phi_1) = p(X_{11} \mid X_{11} + X_{12}, \phi_1) \propto \phi_1^{X_{11}} (1 - \phi_1)^{X_{12}}$.

$$p(\phi_1 \mid X_{11}, X_{12}) \propto \phi_1^{X_{11}} (1 - \phi_1)^{X_{12}} \cdot \phi_1^{-1/2} \cdot (1 - \phi_1)^{-1/2}$$
$$\propto \phi_1^{X_{11} - 1/2} (1 - \phi_1)^{X_{12} - 1/2}$$
$$\sim Beta(X_{11} + 1/2, X_{12} + 1/2)$$

We leave the case for ϕ_2 to the readers.

Let's find a Bayes posterior 95% interval for $\phi_1 - \phi_2$ for the coffee data and compare to the large-sample CI.

According to the data given, $\phi_1 \sim Beta(34.5, 80-34+1/2) = Beta(34.5, 46.5)$ and $\phi_2 \sim Beta(24.5, 40-24+1/2) = Beta(24.5, 16.5)$.

We use R to simulate data to find the posterior. We use the following code given by Phil:

$$x11 = 34$$
; $x12 = 80-34$; $x21 = 24$; $x22 = 40-24$
phi1 = rbeta(100000, $x11+0.5$, $x12 + 0.5$); phi2 = rbeta(100000, $x21+0.5$, $x22 + 0.5$)
quantile(phi2-phi1, c(0.025, 0.975)

We should get (-0.015, 0.351) as the final answer.

As for large sample, we find the proportion to be $p_1 = \frac{34}{80}$ and $p_2 = \frac{24}{40}$. We find $SE = \sqrt{\frac{0.425 \cdot (1 - 0.425)}{80} + \frac{0.6 \cdot (1 - 0.6)}{40}} = 0.095$. With $z^* = 1.96$, we get $(0.6 - 0.425) \pm 1.96 \cdot 0.095 = (-0.0112, 0.3612)$. We see that these intervals are consistent with each other.

Finally, let's carry out a chi-square test on the data provided.

	0 cups	1-4 cups	5 or more	Total
Fr	29 [24.375]	11 [11.625]	5 [9]	45
So	21 [18.96]	9[9.042]	5 [7]	35
Jr	10 [13.54]	7 [6.458]	8 [5]	25
Sr	5 [8.125]	4 [3.875]	6 [3]	15
	65	31	24	120

Table 2: Data provided with expected value calculated in brackets

We first calculated the expected value as row total divide by total and multiply by column total. Next, we apply the Chi-square formula.

$$\chi^{2} = \sum_{i,j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} = \frac{(29 - 24.375)^{2}}{24.375} + \frac{(11 - 11.625)^{2}}{11.625} + \frac{(5 - 9)^{2}}{9} + \frac{(21 - 18.96)^{2}}{18.96} + \frac{(9 - 9.042)^{2}}{9.042} + \frac{(5 - 7)^{2}}{7} + \frac{(10 - 13.54)^{2}}{13.54} + \frac{(7 - 6.458)^{2}}{6.458} + \frac{(8 - 5)^{2}}{5} + \frac{(5 - 8.125)^{2}}{8.125} + \frac{(4 - 3.875)^{2}}{3.875} + \frac{(6 - 3)^{2}}{3} = 10.458$$

We know that the degree of freedom is $(row - 1) \times (column - 1)$. So here it is $(4 - 1) \times (3 - 1) = 6$. This has a p-value of 0.1066, which is not significant at p < 0.05.

We can try to tell what contributed most to the plot by finding out the signed square roots of the chi-square contributions. We see that SR with 5 or more, JR with 5 or more, FR with 5 or mote and SR with 0 cups relatively contributed more to the Chi-square statistics. Also notice that the middle column (1-4 cups) are relatively low and they have approximately the same height across different categories on the plot.

Figure 1: Mosaic Plot

coffee			
year	0 cups	1-4	5 or more
1:FR	0.93678391	-0.18330889	-1.33333333
2:50	0.46890489	-0.01385685	-0.75592895
3:JR	-0.96243548	0.21314340	1.34164079
4:SR	-1.09632252	0.06350006	1.73205081

Figure 2: Signed square roots of the chi-square contributions