The problem with parameters: using information theory to evaluate models

Max Joseph

March 16, 2017

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8 + \beta_9 x^9$$

Overfitting

Parameters begin to fit to noise

- good fit to training data
- bad predictions for out of sample data

$$\hat{y} = \beta_0 + \beta_1 x$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8$$

$$\hat{y} = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 x^4 + \beta_5 x^5 + \beta_6 x^6 + \beta_7 x^7 + \beta_8 x^8 + \beta_9 x^9$$

Underfitting

Model is too simplistic to capture signal

Today

Working toward information criteria to balance:

- model complexity
- out of sample predictive power

Roadmap

- 1. Information entropy
- 2. Kullback-Leiber divergence
- 3. Deviance
- 4. Akaike's information criterion

Information entropy

Uncertainty contained in a probability distribution

$$H(p) = -\sum_{i=1}^{n} p_i \log(p_i)$$

- \vdash H(p): information entropy of a distribution p
- n: the number of possible outcomes
- p_i: the probability of outcome i

Activity

Compute the information entropy for your die!

$$H(p) = -\sum_{i=1}^{n} p_i \log(p_i)$$

What if we didn't know anything about dice?

Find an estimate of information entropy:

- **1.** Estimate $p_1, p_2, p_3, ...$
- 2. Compute information entropy of your estimated distribution:

$$H(\hat{p}) = -\sum_{i=1}^{n} \hat{p}_{i} \log(\hat{p}_{i})$$

Divergence

How far off is our model from the true distribution?

Example

We used \hat{p} to estimate p

▶ What's the "divergence" between \hat{p} and p?

Kullback-Leibler divergence

How far off is our model q from the true distribution p?

$$D_{\mathsf{KL}} = \sum_{i=1}^{n} p_{i} \log \left(\frac{p_{i}}{q_{i}} \right)$$

Activity

Calculate KL divergence for the following sample sizes:

- **>** 5
- **1**0
- **>** 20
- **1000**

$$D_{\mathsf{KL}} = \sum_{i=1}^{n} p_i (\log(p_i) - \log(q_i))$$

Average difference in log probability between p and q

Bonus

What happens when our approximation q is exactly the same as p?

The problem with reality

We almost never know the true probability of events!

What do we have

Typically we have data $y_1, y_2, ..., y_n$ and some models (let's say two)

q, r

So we can ask

Which model seems closer to the true distribution p?

$$D_{\mathsf{KL}}(p,q) - D_{\mathsf{KL}}(p,r) = -(E\log(q_i) - E\log(r_i))$$

Deviance

We want to compare divergence of two models q and r:

$$D_{\mathsf{KL}}(p,q) - D_{\mathsf{KL}}(p,r) = -(E\log(q_i) - E\log(r_i))$$

In practice we use the Deviance

$$E \log(q_i) \propto$$

$$D(q) = -2\sum_{i=1}^{n} log(q_i)$$

where D(q) is the **Deviance**