IoT Engineering o: Syllabus

CC BY-SA, Thomas Amberg, FHNW (Unless noted otherwise) Slides: tmb.gr/iot-o

 $\mathbf{n}|w$

Overview

The syllabus makes sure you know what's up:

What you can expect from this course.

What is expected from you.

0

Hello

Thomas Amberg (@tamberg), Software Engineer.

"Prof. of Internet of Things" at FHNW since 2018.

Founder of Yaler, secure remote access for IoT.

Organising an open IoT Meetup group in Zürich.

Email thomas.amberg@fhnw.ch

3

Beta alert

IoT Engineering is a relatively new course.

Content might still be incomplete.

Things will go wrong.

Found a bug? Let me know! Feedback is welcome.

Language

Slides are in English.

In class we speak German.

You can write German or English.

Gar kein Englisch? Kontaktieren Sie mich.

Programming language

On microcontroller devices we will use (Arduino) C.

On Raspberry Pi, backend and client, you choose:

Java*, Javascript or Python (for your own code).

Examples will be in Javascript with Node.js.

*Bluetooth libraries might not be available.

Baseline

Which modules did you finish already?

Which languages can you write code in?

Which semester are you in right now?

Reply here*: tmb.gr/iot-baseline

*Redirects to a Google Form, no login required.

Module iot

15 * 3 = 45 hours of lessons, including hands-on.

- + 13 hours of private study (reading or video).
- + 32 hours (per person) IoT team project.
- => 90 hours per person.
- => 3 ECTS credits.

Q

Learning targets

Understanding IoT systems and their fundamental concepts, including the acquisition, transport and visualisation of sensor measurements, as well as integration with 3rd-party systems or services.

Developing the software part, without electronics*, of an end-to-end IoT system based on IoT platforms.

*But including embedded programming.

9

Lessons 2021 — class 5ibb1

20.09.	Introduction to the Internet of Things*	18.10.	Local Connectivity with Bluetooth LE
27.09.	Microcontrollers, Sensors & Actuators*	25.10.	Raspberry Pi as a Local IoT Gateway
04.10.	Sending Sensor Data to IoT Platforms*	01.11.	Messaging Protocols and Data Formats
11.10.	Internet Protocols, HTTP and CoAP*	08.11.	Long Range Connectivity with LoRaWAN

*Online lessons

10

Lessons 2021 - class 5ibb1 (ff.)

13.12. Raspberry Pi as an IoT Edge Device

15.11.	Dashboards and Apps for Sensor Data	20.12.	From Prototype to Connected Product
22.11.	Rule Based Integra-	27.12.	No class
	tion of IoT Devices	03.01.	No class
29.11.	Project week	10.01.	Assessment
06.12.	Voice Control for	17.01.	Demo Day
	Connected Products	,	

Learning target assessment

A mandatory, written assessment of 90 minutes. A graded team project, due on *Demo Day*, o am. Counting 50% each for the overall performance. The final grade will be rounded to one-tenth.

There is no Modulschlussprüfung (MSP).

Assessment

90 minutes, closed book, written assessment.

1 A4 sheet of handwritten notes allowed.

No other material (slides, books, ...).

No communication (phone, ...).

Here are example assessments: FS19, HS19.

Team project

 ${\bf 2}$ person teams, building an IoT system.

32 hours of work per person, 1 prototype.

10' presentation of the project at *Demo Day*.

Project source code and setup steps on GitHub.

Both team members are able to explain the project.

Details follow. Here's an example project.

. .

Team project code

GitHub repo with the following parts:

- 1) Embedded code / microcontroller firmware.
- 2) Glue Code used on the gateway or "in the cloud".
- 3) App or Web UI code, or IoT platform setup steps.

GitHub repo URL will be provided.

15

Team project presentation

- 1) Use-case.
- 2) Reference model.
- 3) Short, one slide interface docs.
- 4) Issues you faced, how you solved them.
- + Live demo of the end-to-end IoT system prototype.

Slides to be submitted as PDF.

Team project prototype demo

Working end-to-end prototype, "device to cloud".

- 1) Sensor input on a IoT device triggers an event.
- 2) The event / measurement shows up online.
- 3) The event triggers actuator output*.

*Same or separate device, details are up to you.

Plagiarism

Unfortunately has to be mentioned, sanctions apply.

From Betrug und Plagiate bei Leistungsnachweisen:

"Wer in Arbeiten im Rahmen des Studiums Eigenund Fremdleistung nicht unterscheidet, wer plagiiert, macht sich strafbar." - M. Meyer

Using 3rd-party code? Make it clear, check license.

Lessons

You will need a laptop with admin rights.

There will be quite some hardware involved.

Content of slides and hands-on will be assessed.

Slides come as PDF with many links, to learn more.

19

Hands-on sessions

"Be excellent to each other", asking / helping is OK.

Google (DDG.co, ...) error messages to fix issues.

Copying blindly does not lead to new insight.

Reading other people's code helps a lot.

20

Slides, code & hands-on materials

https://github.com/tamberg/fhnw-iot

01/

README.md → Slides, Hands-on

02/

Arduino/ESP8266 Blink/ESP8266 Blink.ino

••

21

Hands-on and project results

https://github.com/fhnw-iot-5ibb1

fhnw-iot-work-01 Repo template w/ link fhnw-iot-work-01-USER Repo fork per user README.md Hands-on exercise my_result.ino "Private", tutor & user

Why GitHub? Professional tool and reliable backup. Why a repo per lesson? Easier than updating forks.

10

Communication

https://fhnw-iot.slack.com/

#general Questions and announcements.
#random Off-topic, random posts.
#arduino Arduino questions.
#... More channels.

• tamberg Direct messages to a person.

Slack App is recommended, mobile or desktop.

Books on IoT

A book is not required for this course.

We will read individual articles on demand.

The Wiki has a list of books on a range of topics.

9.4

Tools

Terminal (MacOS) or cmd (Windows).

Arduino IDE, text editor, e.g. nano.

C (easy parts), Java, JS, Python.

Code version control with git.

Simple tools, no "magic" => deep understanding.

Hardware

The course is based on the following hardware:

Raspberry Pi Zero W Linux, I/O, Wi-Fi, BLE Feather Huzzah ESP8266 Microcontroller, Wi-Fi Feather nRF52840 Express Microcontroller, BLE FeatherWing RFM95W Extension, LoRaWAN

Grove Sensors & Actuators Plug & play

Why? Here's some background.

~ (

Logistics

The hardware will be sent to you*.

Provide a valid address via email.

Don't throw away the packaging.

*To be returned at the end of the semester.

08

Motivation

I'm highly motivated to provide the best experience.

Hardware takes a lot of trial and error to master.

If something does not work, try again, twice.

It's worth the effort, IoT is here to stay.

Feedback or questions?

Write me on https://fhnw-iot.slack.com/

Or email thomas.amberg@fhnw.ch

Thanks for your time.

30