Question Number	Scheme	Marks
3	$x = 1$, $y^2 = 4 \Rightarrow y = \pm 2$	B1
	Volume = $\pi \int_{-2}^{2} (5 - y^2) dy - \pi \int_{-2}^{2} 1 dy$, = $(\pi) \left(\left[5y - \frac{y^3}{3} \right]_{-2}^{2} - \left[y \right]_{-2}^{2} \right)$	M1,M1
	$= \left(\pi\right) \left\{ \left(10 - \frac{8}{3}\right) - \left(-10 - \frac{-8}{3}\right) - \left(2 - 2\right) \right\} = \frac{32\pi}{3} \text{(units}^3\text{)}$	dM1A1cao
ALT	B1 Limits as above	
	Volume = $\pi \int_{-2}^{2} (5 - y^2) dy - \pi \times 1 \times 4 = \pi \left[5y - \frac{y^3}{3} \right]_{-2}^{2} - 4\pi$ M1M1	
	$= \pi \left\{ \left(10 - \frac{8}{3} \right) - \left(-10 - \frac{-8}{3} \right) \right\} - 4\pi = \frac{32\pi}{3} \text{(units}^3\text{)} $ M1A1	
	Notes cover either method	[5]
B1	Correct y coords for points of intersection (shown explicitly or only seen as limits)	
M1	Use $\pi \int x^2 dy$ for volume of curve, with an attempt to obtain an integrand in terms of y, and	
1411	cylinder by integral or standard volume formula. This mark can only be awarded when	
	evidence of a difference of these volumes is seen. Limits not needed.	
M1	Attempt the integration of their dimensionally correct curve integral. (ie not square	d).
	Integration must be wrt y. Limits and π not needed.	
13.54	Algebraic integration must be seen.	0.1
dM1	Substitute their limits in their integrated function and obtain a value for the volume of the	
A1cao	cylinder using consistent values. π not needed. Depends on 2nd M mark (but not first) Correct volume (as shown or equivalent multiple of π eg 10.7 π)	
Aicau	NB: All marks are available if work is done without π but π included in the final answer.	