Design and Implementation of a Processor using Verilog HDL

Self Project Report

1. Introduction

Processor design is a fundamental aspect of computer architecture and digital system design. The project aimed to design and implement a simple CPU in Verilog HDL with a defined instruction set, integrating arithmetic and logic functionalities, memory modules, and control flow instructions. The objective was to optimize resource utilization while maintaining efficient performance and scalability.

2. Methodology

2.1. Processor Architecture

- Designed a Verilog-based CPU consisting of Arithmetic and Logic Unit (ALU), program counter, register file, data memory, and control unit.
- Defined a custom Instruction Set Architecture (ISA) with support for arithmetic, logical, memory access, and branching instructions.

2.2. Functional Modules

- **ALU Integration:** Arithmetic (addition, subtraction) and logical (AND, OR, XOR) operations were implemented.
- Condition Flags: Status flags (Zero, Carry, Negative, Overflow) were included to support decision-making.
- **Memory System:** Program memory and data memory ensured efficient instruction fetch and data storage/retrieval.
- **Control Flow:** Jump and branch instructions enhanced the processor's capability to execute complex programs.

2.3. Implementation and Testing

- The CPU was described in Verilog HDL using both structural and behavioral modeling.
- Testbenches were written to validate ALU operations, memory access, and branching instructions.
- Simulations were performed in HDL simulation tools to check timing and logical correctness.

3. Results

- The processor executed arithmetic and logical operations correctly, with condition flags updated as expected.
- Memory modules enabled efficient program execution and data storage management.
- Jump and branch instructions successfully altered control flow, confirming correct program sequencing.
- The design showed optimized resource utilization while maintaining accuracy and reliability.

4. Conclusion

This project successfully demonstrated the design and implementation of a processor using Verilog HDL, covering the essential components of a CPU such as ALU, memory, and control flow mechanisms.

The inclusion of condition flags, memory modules, and branching instructions provided robustness and flexibility in execution. Through Verilog-based implementation and simulation, the project offered practical insights into processor architecture, digital design principles, and hardware description languages, laying a strong foundation for advanced computer architecture and VLSI design projects.