UFV- CCE - DET

EST 105 - 3^a avaliação - 1^0 semestre de 2015 - $20/\mathrm{junho}/15$

Nome:	Matrícula:
Assinatura:	Favor apresentar documento com foto
FAVOR CONFERIR ANTATENÇÃO: informe a segu gada no sistema SAPIENS	uir em qual turma está matriculado (sua nota será divul- s).
TURMA HORÁRIO	SALA PROFESSOR
EST 085 T1 5=18:30-20:	10 PVA102 - Monitor II - Gabi Nunes
	10 PVA254 - Monitor II - Gabi Nunes
	PVB300 - Paulo Cecon
T2: 3=10-12 e 6=8-10	PVB109 - Ana Carolina
T3: 3=14-16 e 5=16-18	PVB109 - Chos e Policarpo
T4: 2=14-16 e 4=16-18	
	20:30-22:10 PVB208 - Camila
T6: 4=14-16 e 6=16-18	
T7: 2=16-18 e 5=14-16	PVB307 - Ana Carolina
	=20:30-22:10 PVA353 - Moysés

- Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova!
- É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão. NOTA ZERO se mostrar a resposta correta e não apresentar os cálculos.
- BOA SORTE e BOA PROVA !!!.

FORMULÁRIO

Para
$$k = 1, 2, \dots, n < \infty$$
 $E(X^k) = \sum_{x} x^k P(x)$ ou $E(X^k) = \int x^k f(x) dx$

$$E(XY) = \sum_{x} \sum_{y} xy P(x, y)$$
 ou $E(XY) = \int \int xy f(x, y) dx dy$

$$COV(X,Y) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{COV(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - [E(X)]^2$$

$$X \sim N(\mu, \sigma^2), E(X) = \mu e V(X) = \sigma^2 Z = \frac{X - \mu}{\sigma}, Z \sim N(0, 1)$$

$$P(x) = \binom{N}{x} p^x (1-p)^{N-x} \qquad \binom{N}{x} = \frac{N!}{x!(N-x)!} \qquad E(X) = Np \ V(X) = Np(1-p)$$

$$P(x) = \frac{e^{-m}m^x}{x!} \qquad E(X) = V(X) = m$$

$$\chi^2 = \sum_{i=1}^h \sum_{j=1}^k \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
 com *n* graus de liberdade $n = (h-1)(k-1)$

$$Z = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$

$$t = \frac{\left(\overline{X}_A - \overline{X}_B\right)}{\sqrt{S^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} \qquad S^2 = \frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}$$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

z	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	$0,\!1026$	$0,\!1064$	0,1103	$0,\!1141$
0,3	0,1179	$0,\!1217$	$0,\!1255$	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	$0,\!1517$
0,4	0,1554	$0,\!1591$	0,1628	0,1664	$0,\!1700$	$0,\!1736$	0,1772	$0,\!1808$	$0,\!1844$	$0,\!1879$
0,5	0,1915	0,1950	$0,\!1985$	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	$0,\!2703$	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	$0,\!2967$	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	$0,\!3289$	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	$0,\!3531$	0,3554	0,3577	$0,\!3599$	0,3621
1,1	0,3643	0,3665	0,3686	$0,\!3708$	$0,\!3729$	$0,\!3749$	0,3770	$0,\!3790$	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	$0,\!4115$	0,4131	$0,\!4147$	$0,\!4162$	0,4177
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	$0,\!4279$	$0,\!4292$	0,4006	0,4319
1,5	0,4332	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	$0,\!4394$	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	$0,\!4545$
1,7	0,4554	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	0,4608	$0,\!4616$	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	$0,\!4678$	$0,\!4686$	0,4693	0,4699	$0,\!4706$
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$	$0,\!4750$	$0,\!4756$	$0,\!4761$	$0,\!4767$
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	$0,\!4798$	$0,\!4803$	$0,\!4808$	$0,\!4812$	0,4817
2,1	0,4821	$0,\!4826$	$0,\!4830$	0,4834	0,4838	$0,\!4842$	$0,\!4846$	$0,\!4850$	0,4854	0,4857
2,2	0,4861	$0,\!4864$	$0,\!4868$	0,4871	0,4875	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	$0,\!4960$	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	$0,\!4978$	0,4979	0,4979	$0,\!4980$	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	$0,\!4984$	0,4985	0,4985	$0,\!4986$	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	$0,\!4989$	0,4989	0,4989	0,4990	0,4990

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores χ^2 na distribuição de qui-quadrado com n graus de liberdade tais que $P\left(\chi_n^2 \geq \chi^2\right) = p \times 100\%$.

n	p=99%	98%	$97,\!5\%$	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	$2,\!5\%$	2%	1%	$0,\!2\%$	0,1%	n
1	$0.0^3 16$	$0.0^3 63$	0,001	0,004	0,016	0,064	$0,\!148$	0,455	1,074	1,642	2,706	3,841	4,218	5,024	5,412	6,635	9,550	$10,\!827$	1
2	0,020	0,040	0,051	0,103	0,211	0,446	0,713	1,386	2,408	3,219	4,605	5,991	6,438	7,378	7,824	9,210	$12,\!429$	13,815	2
3	0,115	$0,\!185$	0,216	0,352	0,584	1,005	1,424	2,366	3,665	4,642	6,251	7,815	8,311	9,348	9,837	11,345	14,796	16,266	3
4	0,297	0,429	0,484	0,711	1,064	1,649	2,195	3,357	4,878	5,989	7,779	9,488	10,026	11,143	11,668	13,277	16,924	18,467	4
5	0,554	0,752	0,831	1,145	1,610	2,343	3,000	4,351	6,064	7,289	9,236	11,070	$11,\!644$	12,832	13,388	15,086	18,907	20,515	5
6	0,872	1,134	1,237	1,635	2,204	3,070	3,828	5,348	7,231	8,558	10,645	$12,\!592$	13,198	14,449	15,033	16,812	20,791	22,457	6
7	1,239	1,564	1,690	2,167	2,833	3,822	4,671	6,346	8,383	9,803	12,017	14,067	14,703	16,013	16,622	18,475	22,601	24,322	7
8	1,646	2,032	2,180	2,733	3,490	4,594	5,527	7,344	9,524	11,030	13,362	$15,\!507$	$16,\!171$	$17,\!534$	18,168	20,090	$24,\!352$	26,125	8
9	2,088	2,532	2,700	3,325	4,168	5,380	6,393	8,343	10,656	12,242	14,684	16,919	17,608	19,023	19,679	21,666	26,056	27,877	9
10	2,558	3,059	3,247	3,940	4,865	$6,\!179$	7,267	9,342	11,781	13,442	15,987	18,307	19,021	$20,\!483$	21,161	23,209	27,722	29,588	10
11	3,053	3,609	3,816	4,575	$5,\!578$	6,989	8,148	10,341	$12,\!899$	14,631	17,275	$19,\!675$	$20,\!412$	21,920	22,618	24,725	29,354	31,264	11
12	3,571	$4,\!178$	4,404	5,226	6,304	7,807	9,034	11,340	14,011	$15,\!812$	$18,\!549$	$21,\!026$	21,785	23,337	24,054	26,217	30,957	32,909	12
13	4,107	4,765	5,009	5,892	7,042	8,634	9,926	12,340	15,119	16,985	19,812	$22,\!362$	23,142	24,736	$25,\!472$	$27,\!688$	$32,\!535$	$34,\!528$	13
14	4,660	5,368	5,629	6,571	7,790	9,467	10,821	13,339	16,222	18,151	21,064	$23,\!685$	24,485	26,119	26,873	29,141	34,091	36,123	14
15	5,229	5,985	6,262	7,261	8,547	10,307	11,721	14,339	17,322	19,311	22,307	24,996	$25,\!816$	$27,\!488$	28,259	$30,\!578$	35,628	37,697	15
16	5,812	6,614	6,908	7,962	9,312	11,152	12,624	15,338	18,418	20,465	$23,\!542$	$26,\!296$	27,136	28,845	29,633	32,000	37,146	$39,\!252$	16
17	6,408	7,255	7,564	8,672	10,085	12,002	13,531	16,338	19,511	21,615	24,769	$27,\!587$	28,445	30,191	30,995	33,409	38,648	40,790	17
18	7,015	7,906	8,231	9,390	10,865	12,857	14,440	17,338	20,601	22,760	25,989	28,869	29,745	$31,\!526$	32,346	$34,\!805$	40,136	42,312	18
19	7,633	8,567	8,906	10,117	11,651	13,716	15,352	18,338	21,689	23,900	27,204	30,144	31,037	32,852	33,687	36,191	41,610	43,820	19
20	8,260	9,237	9,591	10,851	12,443	14,578	16,266	19,337	22,775	25,038	28,412	31,410	32,321	34,170	35,020	$37,\!566$	43,072	45,315	20
21	8,897	9,915	10,283	11,591	13,240	15,445	17,182	20,337	23,858	26,171	29,615	32,671	33,597	35,479	36,343	38,932	44,522	46,797	21
22	9,542	10,600	10,982	12,338	14,041	16,314	18,101	21,337	24,939	27,301	30,813	33,924	34,867	36,781	37,659	40,289	45,962	48,268	22
23	10,196	11,293	11,688	13,091	14,848	17,187	19,021	22,337	26,018	28,429	32,007	35,172	36,131	38,076	38,968	41,638	47,391	49,728	23
24	10,856	11,992	12,401	13,848	15,659	18,062	19,943	23,337	27,096	29,553	33,196	36,415	37,389	39,364	40,270	42,980	48,812	51,179	24
25	11,524	12,697	13,120	14,611	16,473	18,940	20,867	24,337	28,172	30,675	34,382	37,652	38,642	40,646	$41,\!566$	44,314	50,223	52,620	25
26	12,198	13,409	13,844	15,379	17,292	19,820	21,792	25,336	29,246	31,795	35,563	38,885	39,889	41,923	42,856	45,642	51,627	54,052	26
27	12,879	14,125	14,573	16,151	18,114	20,703	22,719	26,336	30,319	32,912	36,741	40,113	41,132	43,194	44,140	46,963	53,022	$55,\!476$	27
28	13,565	$14,\!847$	15,308	16,928	18,939	21,588	23,647	27,336	31,319	34,027	37,916	41,337	$42,\!370$	44,461	45,419	48,278	54,411	56,893	28
29	14,256	$15,\!574$	16,047	17,708	19,768	22,475	24,577	28,336	32,461	35,139	39,087	42,557	43,604	45,722	46,693	49,588	55,792	58,302	29
30	14,953	16,306	16,791	18,493	20,599	23,364	25,508	29,336	33,530	36,250	$40,\!256$	43,773	44,834	46,979	47,962	50,892	57,167	59,703	30
n	p=99%	98%	97,5%	95%	90%	80%	70%	50%	30%	20%	10%	5%	4%	2,5%	2%	1%	0,2%	0,1%	n
			· · · · · · · · · · · · · · · · · · ·											· ·			· ·	· · · · · · · · · · · · · · · · · · ·	

Adaptada de Bussab, W. O. e Morettin, P. A. Estatística Básica - Métodos Quantitativos, Editora Atual.

Tabela 3: Valores positivos t na distribuição t_n de Student com n graus de liberdade em níveis de 10% a 0,1% de probabilidade = $2 \times P(t_n \ge t)$, tabela bilateral.

	nível de probabilidade bilateral									
n	10%	5%	$\frac{10 \text{ prose}}{2\%}$	1%	0,5%	0,1%				
1	6,31	12,71	31,82	63,66	127,32	636,62				
2	2,92	4,30	6,97	9,92	14,09	31,60				
3	2,35	3,18	4,54	5,84	7,45	12,94				
4	2,13	2,78	3,75	4,60	5,60	8,61				
5	2,02	2,57	3,37	4,03	4,77	6,86				
6	1,94	2,45	3,14	3,71	4,32	5,96				
7	1,90	2,36	3,10	3,50	4,03	5,41				
8	1,86	2,31	2,90	3,36	3,83	5,04				
9	1,83	2,26	2,82	3,25	3,69	4,78				
10	1,81	2,23	2,76	3,17	3,58	4,59				
11	1,80	2,20	2,72	3,11	3,50	4,44				
12	1,78	2,18	2,68	3,06	3,43	4,32				
13	1,77	2,16	2,65	3,01	$3,\!37$	$4,\!22$				
14	1,76	2,14	2,62	2,98	3,33	4,14				
15	1,75	2,13	2,60	2,95	$3,\!29$	4,07				
16	1,75	2,12	$2,\!58$	2,92	$3,\!25$	4,02				
17	1,74	2,11	$2,\!57$	2,90	$3,\!22$	3,97				
18	1,73	2,10	$2,\!55$	2,88	3,20	3,92				
19	1,73	2,09	$2,\!54$	2,86	$3,\!17$	3,88				
20	1,73	2,09	2,53	2,84	$3,\!15$	3,85				
21	1,72	2,08	2,52	2,83	$3,\!14$	3,82				
22	1,72	2,07	2,51	2,82	3,12	3,79				
23	1,71	2,07	2,50	2,81	3,10	3,77				
24	1,71	2,06	2,49	2,80	3,09	3,75				
25	1,71	2,06	2,49	2,79	3,08	3,73				
26	1,71	2,06	2,48	2,78	3,07	3,71				
27	1,70	2,05	2,47	2,77	3,06	3,69				
28	1,70	2,05	2,47	2,76	3,05	$3,\!67$				
29	1,70	2,04	2,46	2,76	3,04	3,66				
30	1,70	2,04	2,46	2,75	3,03	3,65				
40	1,68	2,02	2,42	2,70	2,97	$3,\!55$				
60	1,67	2,00	2,39	2,66	2,92	3,46				
120	1,65	1,98	$2,\!36$	2,62	$2,\!86$	$3,\!37$				
∞	1,65	1,96	2,33	2,58	2,81	3,29				

Adaptada de Frederico Pimentel Gomes, Curso de Estatística Experimental, 12^a ed.

1 (8 pontos). Sejam $X \sim N(\mu_X; \sigma_X^2)$ e $Y \sim N(\mu_Y; \sigma_Y^2)$ variáveis aleatórias independentes, isto é, X e Y são normalmente distribuídas com,

$$E(X) = \mu_X$$
 $V(X) = \sigma_X^2$ $E(Y) = \mu_Y$ $V(Y) = \sigma_Y^2$ e $COV(X, Y) = 0$.

Seja W = aX + bY + c, então pelo **Teorema da Combinação Linear (TCL)**, W também é normalmente distribuída com média $E(W) = a\mu_X + b\mu_Y + c$ e variância $V(W) = a^2\sigma_X^2 + b^2\sigma_Y^2$, em que a, b e c são constantes finitas. Aplique o TCL no seguinte problema: O peso de um produto (W), em Kg, é a soma do peso da embalagem (X) e do conteúdo líquido da embalagem (Y). Admita X e Y independentes e também que $W \sim N(90;6)$ e $X \sim N(2;0,25)$. Calcule a probabilidade do conteúdo líquido da embalagem ser no máximo 85,5 Kg.

Solução: Temos que W = X + Y e, Cov(X, Y) = 0. Assim

$$E(W) = E(X + Y) = E(X) + E(Y)$$

$$E(Y) = E(W) - E(X) = 90 - 2 = 88$$

$$V(W) = V(X + Y) = V(X) + V(Y)$$

$$V(Y) = V(W) - V(X) = 6 - 0,25 = 5,75.$$

Pelo TCL $Y \sim N$ (88; 5, 75), logo

$$P(Y \le 85, 5) = P\left(Z \le \frac{85, 5 - 88}{\sqrt{5, 75}}\right) = P(Z \le -1, 04)$$
$$= P(Z \ge 1, 04) = 0, 5 - P(0 \le Z \le 1, 04) = 0, 5 - 0, 3508 = 0, 1492$$

Observação:

Ganha 6 pontos se erroneamente fizer:

$$E(Y) = E(W) - E(X) = 90 - 2 = 88$$

$$V(Y) = V(W) + V(X) - 2Cov(W, X) = 6 + 0, 25 - 2 \times 0 = 6, 25$$

Y = W - X

$$P(Y \le 85, 5) = P\left(Z \le \frac{85, 5 - 88}{\sqrt{6, 25}}\right) = P(Z \le -1, 00)$$
$$= P(Z \ge 1, 00) = 0, 5 - P(0 \le Z \le 1, 00) = 0, 5 - 0, 3413 = 0, 1587$$

2.(8 pontos) Um fabricante interessado na compra de um novo equipamento para produzir ferramentas, especificou que o equipamento não deve exigir, em média, mais do que 10 minutos de manutenção para cada hora de operação. O agente de compras visitou uma companhia onde está instalado o equipamento e verificou que uma amostra de 40 horas de operação, aleatoriamente selecionadas, exigiu um total de 7 horas e 30 minutos de manutenção. Adote como desvio padrão do tempo de manutenção, por hora de trabalho, o valor $\sigma=3 \text{ minutos}$. Pede-se: Com base nesse resultado o equipamento atende as exigências sobre o tempo de manutenção? Conclua ao nível de significância de 1% com um teste de hipóteses.

 $\mathbf{a.}(1 \ \mathbf{pt})$ Hipóteses estatísticas (complete H_1).

 H_0 : $\mu = 10$ minutos de manutenção por hora de trabalho

 H_1 : $\mu > 10$ minutos de manutenção por hora de trabalho

b.(2 pontos) Valor tabelado.

 $Z_{(1\%,\text{unilateral})} = 2,33 \text{ (na tabela área } 0,4901)$

c.(3 pontos) Valor calculado (estatística do teste).

7h e 30min = 7.5h = 450min

$$\begin{array}{ccc}
450 \min & --- & 40 h \\
\overline{X} & --- & 1 h
\end{array}$$

Resolvendo-se a regra de três acima, temos:

$$\bar{X} = \frac{450}{40} = 11,25$$
min/h,

assim

$$Z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{11,25 - 10}{\frac{3}{\sqrt{40}}} \cong 2,64,$$

sendo que temos n = 40 intervalos de 1h.

d.(2 pontos) Decisão do teste. Explique o que concluir quanto à compra do equipamento.

Como Z calculado sob H_0 é 2,64, isto é, $Z_0=2,64$, que é maior que o valor de Z tabelado $Z_\alpha=Z_{1\%}=2,33$ então rejeita-se H_0 em favor de H_1 . Desta forma, o equipamento NÃO deve ser comprado, pois, em média, a 1% de significância $\mu>10$ min/h.

3.(8 pontos) Para uma amostra de $n_1=10$ lâmpadas, a vida útil média foi $\overline{X}_1=4.000$ horas, com desvio padrão $S_1=200$ horas. Para outra marca de lâmpadas, cuja vida útil também supõe-se ser normalmente distribuída, uma amostra aleatória de $n_2=8$ lâmpadas apresentou uma média amostral $\overline{X}_2=4.300$ horas e um desvio padrão $S_2=250$ horas. Verifique, ao nível de significância de 5%, se existe diferença entre a vida útil média das duas marcas de lâmpadas.

a.(1 ponto) Hipóteses estatísticas (complete H_1).

$$H_0: \mu_1 = \mu_2$$
 e $H_1: \mu_1 \neq \mu_2$

b.(2 pontos) Valor tabelado.

$$gl = (10 - 1) + (8 - 1) = 9 + 7 = 16,$$

 $t_{(5\%:16)} = 2, 12.$

c.(3 pontos) Valor calculado (estatística do teste).

$$S^{2} = \frac{(10-1) \times 200^{2} + (8-1) \times 250^{2}}{(10-1) + (8-1)} = \frac{795500}{16} = 49843, 75 \cong (223, 26)^{2},$$

$$t_0 = \frac{\left(\bar{X}_1 - \bar{X}_2\right) - (\mu_1 - \mu_2)}{\sqrt{S^2\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{4000 - 4300}{\sqrt{49843,75\left(\frac{1}{10} + \frac{1}{8}\right)}} = \frac{-300}{105,900} \cong -2,83.$$

d.(2 pontos) Decisão do teste. Explique o que concluir quanto à vida útil média das duas marcas de lâmpadas.

Como o módulo de t calculado sob H_0 , isto é, $|t_0|$ dado por $|t_0| = |-2,83| = 2,83$ é maior que $t_{(5\%;16)} = t$ crítico da tabela = 2,12, rejeita-se H_0 em favor de H_1 .

Desta maneira, a vida útil média das lâmpadas do fabricante dois é MAIOR a 5% pelo teste t.

Perde um ponto se na resposta não houver a conclusão prática como mostrado na caixa acima.

- 4.(8 pontos) Modelos Poisson e Binomial.
- **a.(4 pontos)** Admita que uma variável aleatória X segue o modelo Poisson com parâmetro m. Pede-se: Se P(X=0)=2P(X=1), calcule P(X>2).

$$P\left(X=x\right) = \frac{e^{-m}m^x}{x!}$$

Temos que

$$P(X=0) = \frac{e^{-m}m^0}{0!} = e^{-m}$$

е

$$P(X = 1) = \frac{e^{-m}m^1}{1!} = e^{-m}m.$$

Como P(X=0)=2P(X=1), temos que $e^{-m}=2e^{-m}m$, logo $2m=1\Rightarrow m=\frac{1}{2}$.

$$P(X > 2) = \sum_{x=3}^{+\infty} P(X = x) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - P(X = 0) - P(X = 1) - P(X = 2)$$

$$= 1 - \frac{e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{0}}}{0!} - \frac{e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{1}}}{1!} - \frac{e^{-\frac{1}{2}\left(\frac{1}{2}\right)^{2}}}{2!}$$

$$= 1 - 0,6065 - 0,3033 - 0,0758 = 1 - 0,9856$$

$$= 0,0144.$$

b.(4 pontos) Admita que vinte por cento (20%) dos alunos de uma escola são do grupo sanguíneo A. Se 6 alunos dessa escola são escolhidos aleatoriamente, utilize o modelo Binomial para avaliar a probabilidade de que exatamente dois sejam do grupo sanguíneo A.

Temos que $p=0,2,\,N=6$ e X= número de alunos do grupo sanguíneo A. Assim

$$P(X = 2) = {6 \choose 2} 0, 2^2 \times 0, 8^4 = 15 \times 0, 04 \times 0, 4096 \cong 0, 2458.$$

5.(8 pontos) Sejam X e Y duas variáveis aleatórias, tais que,

$$E(X) = 2$$
 $V(X) = 5$ $V(Y) = 1$ e $V(2X - 3Y + 5) = 5$.

Pede-se: Utilize as informações acima para calcular,

a.(4 pontos) $E(3X^2 + 1)$.

$$E(3X^{2} + 1) = 3E(X^{2}) + 1 = 3[V(X) + (E(X))^{2}] + 1$$
$$= 3(5 + 2^{2}) + 1 = 3 \times 9 + 1 = 28$$

b.(4 pontos) COV(X, Y).

$$V(2X - 3Y + 5) = 4V(X) + 9V(Y) - 12Cov(X, Y)$$

$$5 = 4 \times 5 + 9 \times 1 - 12Cov(X, Y)$$

$$12Cov(X, Y) = 20 + 9 - 5 = 24$$

$$Cov(X, Y) = \frac{24}{12} = 2$$

$$Cov(X, Y) = 2.$$