Алгебра 8

Igor Engel

1

Определение 1.1. Знакопеременная группа $A_n = \{ \sigma \in S_n \mid \sigma$ - чётная $\}$ Оно группа, так-как равна ядру гомоморфизма знака.

Лемма 1.1.1.

$$|A_n| = \frac{n!}{2}.$$

Теорема 1.1. Знак перестановки равен $(-1)^{\text{кол-во циклов чётной длины}}$

Лемма 1.1.1. $\operatorname{sgn} \sigma \in S_n = (-1)^{n-k},$ где k - число орбит.

Доказательство. Каждая орбита раскладывается в $|\Omega|-1$ транспозиций, сумма порядков орбит равна n, сумма -1 равна k.

Теорема 1.2. Пусть $c = (a_1 \dots a_k)$, тогда

$$gcg^{-1} = (g(a_1) \dots g(a_K)).$$

Доказательство.

итд.

$$gcg^{-1}(g(a_1)) = gc(a_1) = g(a_2).$$

Лемма 1.2.1. Пусть $\sigma \in S_n = c_1 c_2 c_3 \dots c_k$, тогда

$$g\sigma g^{-1} = gc_1g^{-1}gc_2g^{-1}\dots gc_kg^{-1}$$
.

Где gc_ig^{-1} - независимые циклы.

Определение 1.2. Цикловый (цикленный) тип перестановки $\sigma \in S_n$ - набор пар $(1, k_1), \ldots, (n, k_n)$, где k_i - количество орбит длины i относительно σ .

Лемма 1.2.1.

 $\forall \sigma_1, \sigma_2 \in S_n \quad (\exists g \in S_n \quad g\sigma_1 g^{-1} = \sigma_2) \iff$ циклинный типы σ_1 и σ_2 равны.

Доказательство. Необходимость тривиальна.

Достаточность: Пронумеруем все циклы в σ_1 и σ_2 , так, чтобы циклы меньшей длины имели меньший номер.

Запишем каждый цикл начиная с наименьшего элемента в нём.

$$\sigma_1 = (a)(b)(c)(d, e) \dots$$

$$\sigma_2 = (a')(b')(c')(d', e') \dots$$

Тогда можно построить перестановку g, так-как элементы в разложении не повторяются.

Теорема 1.3. Пусть $G = \langle g_1, \ldots, g_n \rangle$.

Тогда $h_1, \ldots h_k$ порождают G, тогда и только тогда когда g_i выражается через h_j .

Теорема 1.4. S_n порождена транспозициями вида (1,i), где $i \in [2;n]$.

Доказательство.

$$(a,b) = (1,a)(1,b)(1,a)$$

Теорема 1.5.

$$S_n = \langle \tau = (12), c = (1 \dots n) \rangle$$
.

Доказательство. По индукции.

При n=2 тривиально.

Заметим, что $S_{n-1} \leq S_n$.

Построим $\sigma' \in S_{n-1}$ из $\sigma \in S_n$.

Пусть $\sigma(n) = i$, тогда $(\sigma c^{n-i-1})(n) = (n)$.

По индукции σ' выражается через τ и c'.

Заметим, что $\tau c = (2...n)$.

Тогда $c^{-1}\tau c^2 = (1\dots n-1) = c'$.

Теорема 1.6.

$$A_n = \langle (123), (124), \dots, (12n) \rangle$$
.

Доказательство. По индукции.

 $\sigma \in A_n$.

 $\sigma[n] = i$.

$$(12n)^2(12i)\sigma = \sigma' \in A_{n-1}.$$

Теорема 1.7. Пусть $g_1 = \langle h_1, \dots, h_n \rangle$, $g_2 = \langle g_1, \dots, g_m \rangle$. Тогда $g_1 \times g_2 = \langle (h_1, e_2), \dots, (h_n, e_2), (e_1, g_1), \dots, (e_1, g_n) \rangle$.

Определение 1.3. Пусть $G_1, G_2 \leq G, G$ раскладывается в прямое произведение, если $f: G_1 \times G_2 \mapsto G, f(g_1, g_2) = g_1g_2$ - изоморфизм.

Теорема 1.8. Пусть $G_1, G_2 \leq G$, то G раскладывается в прямое произведение G_1 и G_2 тогда и только тогда, когда выполнятются три условия:

- 1. $g_1 \cap g_2 = \{1\}$
- 2. $\forall x \in G_1, y \in G_2 \quad xy = yx$
- 3. $\langle G_1, G_2 \rangle = G$

Доказательство. Необходимость очевидна.

Докажем что f гомоморфизм.

$$f((h_1, h_2) \cdot (g_1, g_2)) = f((h_1g_1, h_2g_2)) = h_1g_1h_2g_2 = g_1g_2h_1h_2 = (g_1g_2, h_1h_2) = f(g_1, g_2)f(h_1, h_2).$$

Образ f содержит G_1 и G_2 , значит содержит порождённую ими группу, которая равна G.

$$(g_1, g_2) \in \ker f \iff g_1 g_2 = e \iff g_1 = g_2^{-1} \iff g_1 = g_2 = e.$$

Значит, ядро тривиально, и f инъективно.

Теорема 1.9. Если $H_1, H_2 \leq G, H_1 = \langle h_1, \dots h_\ell, H_2 = \langle g_1, \dots, g_k \rangle$.

Тогда

$$\forall x \in H_1, y \in H_2 \quad xy = yx \iff \forall h_i, g_i \quad h_i g_i = g_i h_i.$$