

NASA Technical Memorandum 101651

**DYNAMICS OF COLUMN STABILITY
WITH PARTIAL END RESTRAINTS**

Peyton B. Gregory

JANUARY 1990

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(NASA-TM-101651) DYNAMICS OF COLUMN
STABILITY WITH PARTIAL END RESTRAINTS
(NASA) 109 p

CSCL 20K

N90-18069

Unclassified
G3/39 0264795

DYNAMICS OF COLUMN STABILITY WITH PARTIAL END RESTRAINTS

ABSTRACT

The purpose of this investigation is to conduct a theoretical study of the dynamic behavior of columns with partial end restraints subjected to an axial dead load and a pulsating load. The governing differential equation is solved using a lumped impulse recurrence formula relative to time and coupled with a finite difference discretization along the member length. A computer program was developed to determine the first two critical frequencies as a function of end stiffness. Results obtained for a pinned ended column case compares very well with an exact analytical solution. Also, the natural frequency and buckling load equations are derived for equal and unequal end restraints.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT.....	i
LIST OF TABLES.....	v
LIST OF FIGURES.....	vi
1. INTRODUCTION.....	1
1.1 Preliminary Remarks.....	1
1.2 Literature Review.....	1
1.3 Problem Statement.....	2
1.4 Objective and Scope.....	3
1.5 Assumptions.....	3
2. THEORETICAL DEVELOPMENT.....	4
2.1 Governing Equations.....	4
2.2 Non-Dimensional Equations.....	6
2.3 Finite Difference Formulation.....	8
2.3.1 Geometric Stiffness Matrix.....	9
2.3.2 Initial Imperfections.....	15
2.3.3 Lumped Impulse Recurrence Formula.....	16
3. RESULTS	18
3.1 Comparative Results.....	18
3.2 Critical Frequencies.....	20
4. CONCLUSIONS AND FUTURE RESEARCH.....	24
4.1 Conclusions.....	24
4.2 Future Research.....	24

TABLE OF CONTENTS - Continued

	<u>Page</u>
NOMENCLATURE	26
REFERENCES	28
APPENDIX A: NATURAL FREQUENCY AND BUCKLING LOAD.....	88
A.1 Equal End Stiffnesses.....	88
A.2 Unequal End Stiffnesses.....	92
APPENDIX B: COMPUTER PROGRAMS.....	96

LIST OF TABLES

<u>Table</u>	<u>Page</u>
1. Comparison of exact solution vs approximate solution for a pinned-pinned column.....	30
2. First Two Natural Frequencies as a Function of KL/EI	31
3. KL/EI vs P_{cr}/P_e for Equal End Stiffness.....	32
4. Dimensionless Natural Period vs KL/EI	38

LIST OF FIGURES

<u>Figure</u>		<u>Page</u>
1.	Graphical Problem Definition	75
2.	Finite Difference Node Definition	76
3.	Plot of Instability Regions for a Pinned-Pinned Column	77
4.	Effect of Time Increment (Δt) on the Numerical Stability of the Program	78
5.	Plot of Ω_1/ω vs KL/EI for Equal End Stiffnesses	79
6.	Plot of Ω_2/ω vs KL/EI for Equal End Stiffnesses	80
7.	Typical Deflection - Time Response at the First Critical Frequency	81
8.	Typical Deflection - Time Response at the Second Critical Frequency	82
9.	Graph of Equation (h) for Certain Values of P/P_e With KL/EI Varying From 0 to 1000. P/P_e Varies From 0 to 3.5 in .5 Increments With the Final One Equal to 3.75	83
10.	Graph of Equation (h) With the Same P/P_e Increments as Figure 9, but with a Smaller Range for KL/EI.....	84
11.	Plot of P_{cr}/P_e vs KL/EI for Equal End Stiffness With KL/EI Varying From 0 to 2000.....	85
12.	Plot of P_{cr}/P_e vs KL/EI for Equal End Stiffness With KL/EI Varying From 0 to 200.....	86

1. INTRODUCTION

1.1 Preliminary Remarks

A column is one of the most basic elements of a structural system. Although a number of studies have investigated the response of a column, the effects of partial end restraints, especially under dynamic loading, has not been well defined in the literature. There are three basic conditions of end restraints; 1) pinned, 2) fixed, and 3) partially restrained. The majority of analyses for a column considers the end restraint as either pinned or fixed; yet, most of the as built connections are neither pinned or fixed; they are partially restrained to some degree. Therefore, the concept of partial restraint is of a great practical interest. Another fairly undefined condition is that of a pulsating load on a column, such as the supports for an unbalanced rotating piece of machinery. Such a pulsating force under the right conditions can result in the instability of a column well below the Euler Buckling load. For pinned-end condition, the pulsating load case can be found in ref. 1, but no references to the case with partial end restraints exists. Therefore, the case of a column with parital end restraints and a pulsating load is of practical interest, and it is the subject of this investigation.

1.2 Literature Review

A literature review of the topic indicates a limited amount of research on the general idea of a pulsating load and no research

was found on the idea of partial end restraints with a pulsating load.

References 1 and 5 give the solution of a pinned-pinned column with a pulsating load $P_0 + S_0 \cos \Omega t$. The solution is in the form of a graph of the instability regions as a function of ω_0 , Ω , P_0 , S_0 , and P_e . Reference 5 gives the instability boundary equations and a supporting table of values. A graph of the instability regions is shown on figure 3.

The case of a column with both ends fixed was discussed by F. Weidenhammer, Ingr.-Arch., vol. 19, page 162, 1951 (in German). Several stability problems under pulsating loads was found in the book by B. B. Bolotin, "Dynamic Stability of Elastic Systems," Moscow, 1956, (Russian).

1.3 Problem Statement

Figure 1 shows a schematic diagram of a column of length L that is bent about its weak axis with rotational end stiffnesses K_1 and K_2 . The modulus of elasticity, E , and the moment of inertia, I , are constant through the length of the beam; and the axial load is represented by $P_0 + S_0 \cos \Omega t$.

The problem is to find the critical frequencies, Ω_i , such that instability occurs before the buckling load is reached, and the critical frequencies should be in general terms of the parameters K , E , I , L , Ω , and ω .

1.4 Objectives and Scope

The objectives of this study are;

1. Solve the differential equation using finite difference techniques.
2. Verify the solution against known bench mark cases.
3. Identify the first two critical frequencies in general terms.
4. Determine the natural frequencies and buckling load of a column with equal and unequal end restraints.

1.5 Assumptions

1. The column has a uniform cross section and is subjected to bending only about its' weak axis
2. The material stress-strain relation is linear elastic
3. The loads pass through the centroid of the beam resulting in no eccentric loading
4. No local instability is considered
5. The period of the pulsating force is very large in comparison with the longitudinal natural period of the column

2. THEORETICAL DEVELOPMENT

2.1 Governing Equations

The governing differential equation of lateral vibrations for a column with damping and a pulsating load, $P_o + S_o \cos \Omega t$, (see fig 1) is:

$$EI \frac{\partial^4 w}{\partial x^4} + (P_o + S_o \cos \Omega t) \frac{\partial^2 w}{\partial x^2} + \rho \frac{\partial^2 w}{\partial t^2} + C \frac{\partial w}{\partial t} = 0 \quad (1)$$

The boundary conditions which include the effects of partial restraints are;

$$EI \frac{\partial^2 w(0)}{\partial x^2} = K_1 \frac{\partial w(0)}{\partial x} \quad (2)$$

$$EI \frac{\partial^2 w(L)}{\partial x^2} = - K_2 \frac{\partial w(L)}{\partial x} \quad (3)$$

$$w(0) = w(L) = 0 \quad (4)$$

Equation (1) is associated with pure buckling. This implies that there is no lateral displacement prior to buckling. That would result in a highly complicated eigenvalue problem which is beyond the scope of this investigation. To circumvent this problem, an initial imperfection will be applied to the column. This will give a continuous displacement response of the column to the load. The exact solution would give discrete regions of instability; whereas with an initial imperfection, the response would asymptotically approach the theoretical regions of instability. Since all as built columns have some degree of imperfection, this assumption is valid. For the subject investigation, the initial imperfection will be of the form;

$$\bar{w} = \delta \sin \frac{\pi x}{L} \quad (5)$$

where δ is the maximum initial displacement at the center of the column. This quantity remains variable so that the smaller δ is made the closer the response gets to the exact solution. With initial imperfections, equation (1) becomes;

$$EI \frac{\partial^4 w}{\partial x^4} + P(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 \bar{w}}{\partial x^2}) + \rho \frac{\partial^2 w}{\partial t^2} + C \frac{\partial w}{\partial t} = 0 \quad (6)$$

If equation (6) is rearranged such that known quantities are on the right hand side, we arrive at;

$$EI \frac{\partial^4 w}{\partial x^4} + P \frac{\partial^2 w}{\partial x^2} + \rho \frac{\partial^2 w}{\partial t^2} + C \frac{\partial w}{\partial t} = - P \frac{\partial^2 \tilde{w}}{\partial x^2} \quad (7)$$

2.2 Non-Dimensional Equations

To generalize the results of this analysis, equation (7) will be put in non-dimensional form. To non-dimensionalize equation (7), the following variables are introduced.

$$\tilde{w} = \frac{w L}{A}$$

$$\tilde{x} = \frac{x}{L} \quad \tilde{t} = \frac{t}{T_0}$$

Substitutiting the above parameters into equation (7) and rearranging, we get;15

$$\frac{\partial^4 \tilde{w}}{\partial \tilde{x}^4} + \frac{P L^2}{EI} \frac{\partial^2 \tilde{w}}{\partial \tilde{x}^2} + \frac{\rho L^4}{EI T_0^2} \frac{\partial^2 \tilde{w}}{\partial \tilde{t}^2} + \frac{C L^4}{EI T_0} \frac{\partial \tilde{w}}{\partial \tilde{t}} = - \frac{P L^2}{EI} \frac{\partial^2 \tilde{w}}{\partial \tilde{x}^2} \quad (8)$$

To simplify equation (8), the following variables are defined;

$$z_1 = \frac{PL^2}{EI} = (P_o + S_o \cos \Omega t) \frac{L^2}{EI}$$

$$z_2 = \frac{\rho L^4}{EIT_o^2}$$

$$z_3 = \frac{C L^4}{EIT_o}$$

Therefore equation (8) becomes;

$$\frac{\partial^4 \bar{w}}{\partial \bar{x}^4} + z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} + z_2 \frac{\partial^2 \bar{w}}{\partial \bar{t}^2} + z_3 \frac{\partial \bar{w}}{\partial \bar{t}} = - z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} \quad (9)$$

The non-dimensional boundary conditions are;

$$\bar{w}(0) = \dot{\bar{w}}(1) = 0 \quad (10)$$

$$\frac{\partial^2 \bar{w}(0)}{\partial \bar{x}^2} = \frac{K_1 L}{EI} \frac{\partial \bar{w}(0)}{\partial \bar{x}} \quad (11)$$

$$\frac{\partial^2 \bar{w}(1)}{\partial \bar{x}^2} = - \frac{K_2 L}{EI} \frac{\partial \bar{w}(1)}{\partial \bar{x}} \quad (12)$$

2.3 Finite Difference Formulation

There are two basic steps in the solution of eq. (9):

1. First, a column of length L is divided into discrete sections of length h; and a central difference equation is written for each node to formulate the geometric stiffness matrix

$$[K]\{\bar{w}\} = \frac{\partial^4 \bar{w}}{\partial x^4} + Z_1 \frac{\partial^2 \bar{w}}{\partial x^2} \quad (13)$$

Where $\{\bar{w}\}$ is a vector of nodal displacements.

The central difference equation's used are (ref. 3);

$$\frac{\partial w}{\partial x} = \frac{1}{2h} (-w_{i-1} + w_{i+1}) \quad (14)$$

$$\frac{\partial^2 w}{\partial x^2} = \frac{1}{h^2} (w_{i-1} - 2w_i + w_{i+1}) \quad (15)$$

$$\frac{\partial^4 w}{\partial x^4} = \frac{1}{h^4} (w_{i-2} - 4w_{i-1} + 6w_i - 4w_{i+1} + w_{i+2}) \quad (16)$$

2. Next, a lumped impulse recurrence formula is used to step the response through a succession of discrete time intervals. The equations used are (ref. 4);

$$w^{(1)} = \frac{1}{2} w^{(0)} (\Delta t)^2 \quad (17)$$

$$w^{(s+1)} = 2w^{(s)} - w^{(s-1)} + w^{(s)} (\Delta t)^2 \quad (18)$$

$$\dot{w}^{(s)} = \frac{w^{(s)} - w^{(s-1)}}{\Delta t} + w^{(s)} \frac{\Delta t}{2} \quad (19)$$

In the above equations, the superscript indicates the time step. The first equation gives the first time step and the second gives each subsequent time step according to the two preceding steps. From this procedure, the column's deflection vs. time can be plotted. If the deflection constantly increases with time, then the column is unstable.

2.3.1 Geometric Stiffness Matrix

The stiffness matrix equation (13), can be formulated for a column of length L divided into 12 sections with 11 unknown displacement nodes (fig. 2). Equation (13) can be written for all eleven nodes. When writing the equation at nodes 10 and 11, the fictitious nodes a and b must be expressed in terms of the other

nodes. To do this, the boundary conditions, equations (10) and (11) are written at the support nodes. The resulting matrix (11 by 11) is a function of the parameters E, I, K_1 , K_2 , L, P_o , S_o , Ω , and t.

To solve for node a, equations (14) and (15) are substituted into equation (11) and rearranged to arrive at;

$$w_a = w_{11} Q_1$$

$$\text{where } Q_1 = \frac{\left(\frac{K_1 L \bar{h}}{2EI} - 1\right)}{\left(\frac{K_1 L \bar{h}}{2EI} + 1\right)}$$

For node b, equations (14) and (15) are substituted into equation (12), resulting in;

$$w_b = w_{10} Q_2$$

$$\text{where } Q_2 = \frac{\left(\frac{K_2 L \bar{h}}{2EI} - 1\right)}{\left(\frac{K_2 L \bar{h}}{2EI} + 1\right)}$$

Note that the non-dimensional element length, \bar{h} is defined as;

$$\bar{h} = \frac{h}{L} = \frac{L}{12L} = \frac{1}{12}$$

Now equations (15) and (16) can substituted into equation (13) at all eleven nodes, resulting in the following nodal equations;

$$1) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_1 - 4\bar{w}_2 - 4\bar{w}_3 + \bar{w}_4 + \bar{w}_5)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_1 + \bar{w}_2 + \bar{w}_3)$$

$$2) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_2 - 4\bar{w}_4 - 4\bar{w}_1 + \bar{w}_3 + \bar{w}_6)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_2 + \bar{w}_4 + \bar{w}_1)$$

$$3) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_3 - 4\bar{w}_1 - 4\bar{w}_5 + \bar{w}_2 + \bar{w}_7)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_3 + \bar{w}_1 + \bar{w}_5)$$

$$4) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_4 - 4\bar{w}_6 - 4\bar{w}_2 + \bar{w}_8 + \bar{w}_1)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_4 + \bar{w}_6 + \bar{w}_2)$$

$$5) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_5 - 4\bar{w}_3 - 4\bar{w}_7 + \bar{w}_1 + \bar{w}_9)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_5 + \bar{w}_3 + \bar{w}_7)$$

$$6) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_6 - 4\bar{w}_8 - 4\bar{w}_4 + \bar{w}_{10} + \bar{w}_2)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_6 + \bar{w}_8 + \bar{w}_4)$$

$$7) \quad \frac{\partial^4 \bar{w}}{\partial \bar{x}^4} = \frac{1}{\bar{h}^4} (6\bar{w}_7 - 4\bar{w}_5 - 4\bar{w}_9 + \bar{w}_3 + \bar{w}_{11})$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial \bar{x}^2} = \frac{z_1}{\bar{h}^2} (-2\bar{w}_7 + \bar{w}_5 + \bar{w}_9)$$

$$8) \quad \frac{\partial^4 \bar{w}}{\partial x^4} = \frac{1}{h^4} (6\bar{w}_8 - 4\bar{w}_{10} - 4\bar{w}_6 + \bar{w}_4)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial x^2} = \frac{z_1}{h^2} (-2\bar{w}_8 + \bar{w}_{10} + \bar{w}_6)$$

$$9) \quad \frac{\partial^4 \bar{w}}{\partial x^4} = \frac{1}{h^4} (6\bar{w}_9 - 4\bar{w}_7 - 4\bar{w}_{11} + \bar{w}_5)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial x^2} = \frac{z_1}{h^2} (-2\bar{w}_9 + \bar{w}_7 + \bar{w}_{11})$$

$$10) \quad \frac{\partial^4 \bar{w}}{\partial x^4} = \frac{1}{h^4} (6\bar{w}_{10} - 4\bar{w}_8 + \bar{w}_6 + \bar{w}_{10} Q_2)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial x^2} = \frac{z_1}{h^2} (-2\bar{w}_{10} + \bar{w}_8)$$

$$11) \quad \frac{\partial^4 \bar{w}}{\partial x^4} = \frac{1}{h^4} (6\bar{w}_{11} - 4\bar{w}_9 + \bar{w}_7 + \bar{w}_{11} Q_1)$$

$$z_1 \frac{\partial^2 \bar{w}}{\partial x^2} = \frac{z_1}{h^2} (-2\bar{w}_{11} + \bar{w}_9)$$

The following variables are defined;

$$\alpha = \frac{6}{h^4} - \frac{2PL^2}{h^2 EI}$$

$$\beta = \frac{PL^2}{h^2 EI} - \frac{4}{h^2}$$

$$\gamma = \frac{1}{h^4}$$

$$\eta_1 = \frac{(6 + Q_1)}{h^4} - \frac{2PL^2}{h^2 EI}$$

$$\eta_2 = \frac{(6 + Q_2)}{h^4} - \frac{2PL^2}{h^2 EI}$$

Using the above variables and the eleven nodal equations, the following stiffness matrix is formed.

$$(K) \quad (\bar{u}) = \begin{bmatrix} \alpha & \beta & \beta & \gamma & \gamma & 0 & 0 & 0 & 0 & 0 & 0 \\ \beta & \alpha & \gamma & 0 & \gamma & 0 & 0 & 0 & 0 & 0 & 0 \\ \beta & \gamma & \alpha & 0 & 0 & \gamma & 0 & 0 & 0 & 0 & 0 \\ \gamma & 0 & 0 & \alpha & 0 & 0 & \gamma & 0 & 0 & 0 & 0 \\ \gamma & 0 & 0 & 0 & \alpha & 0 & 0 & \gamma & 0 & 0 & 0 \\ 0 & \gamma & \gamma & 0 & 0 & \alpha & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \gamma & 0 & 0 & 0 & \alpha & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \gamma & 0 & 0 & 0 & \alpha & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \gamma & 0 & 0 & 0 & \alpha & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \alpha \end{bmatrix} \begin{bmatrix} \bar{u}_1 \\ \bar{u}_2 \\ \bar{u}_3 \\ \bar{u}_4 \\ \bar{u}_5 \\ \bar{u}_6 \\ \bar{u}_7 \\ \bar{u}_8 \\ \bar{u}_9 \\ \bar{u}_{10} \\ \bar{u}_{11} \end{bmatrix} \quad (20)$$

SYMMETRIC

2.3.2 Initial Imperfections

The initial imperfection, equation (5), and its second, derivative in non-dimensional form are;

$$\tilde{w} = \frac{\delta L}{A} \sin \pi \bar{x}$$

$$\frac{\partial^2 \tilde{w}}{\partial \bar{x}^2} = - \frac{\delta L \pi^2}{A} \sin \pi \bar{x}$$

Now the vector $\{\tilde{w}_{xx}\}$ is defined as the non-dimensional initial imperfection curvatures;

$$\{\tilde{w}_{xx}\} = - \frac{\delta L \pi^2}{A} \begin{bmatrix} 1 \\ \sin 7\pi/12 \\ \sin 7\pi/12 \\ \sin 8\pi/12 \\ \sin 8\pi/12 \\ \sin 9\pi/12 \\ \sin 9\pi/12 \\ \sin 10\pi/12 \\ \sin 10\pi/12 \\ \sin 11\pi/12 \\ \sin 11\pi/12 \end{bmatrix} \quad (21)$$

2.3.3 Lumped Impulse Recurrence Formula

To apply the recurrence formulas equations (17), (18) and (19), the differential equation (9) is put into vector form. Using equations (20) and (21) and defining the following vectors,

$$\{\ddot{w}\} = \frac{\partial^2 \tilde{w}}{\partial \bar{t}^2}$$

$$\{\dot{\tilde{w}}\} = \frac{\partial \tilde{w}}{\partial \tilde{t}}$$

we arrived at the vector matrix form of equation (9) as;

$$[K] \{\dot{\tilde{w}}\} + z_2 \{\tilde{w}\} + z_3 \{\dot{\tilde{w}}\} = -z_1 \{\tilde{w}_{xx}\} \quad (22)$$

The non-dimensional time used in this formulation is;

$$\tilde{t} = \frac{t}{T_o}$$

$$\Delta \tilde{t} = \frac{\tilde{t}_i - \tilde{t}_{i-1}}{T_o} = \frac{\Delta t}{T_o}$$

For the first time step, the acceleration vector is found from equation (21) to be;

$$\{\ddot{\tilde{w}}\}^{(s)} = -\frac{1}{z_2} \left[[K] \{\dot{\tilde{w}}\}^{(s)} + z_3 \{\dot{\tilde{w}}\}^{(s)} + z_1^{(s)} \{\tilde{w}_{xx}\} \right] \quad (23)$$

If the above equation is substituted into equation (17), accounting for the condition that all terms are zero except the initial imperfection curvature at time $t = 0$, we get;

$$\{\tilde{w}\}^{(1)} = -\frac{z_1}{2z_2} \{\tilde{w}_{xx}\} (\Delta\bar{t})^2 \quad (24)$$

Equation (24) is the first interval of the time sequence. For the rest of the intervals, we first substitute equation (19) into equation (23) and get;

$$\{\tilde{w}\}^{(s)} = -\frac{1}{z_2} \left[[K] \{\tilde{w}\}^{(s)} + z_1^{(s)} \{\tilde{w}_{xx}\} + z_3 \left[\frac{\{\tilde{w}\}^{(s)} - \{\tilde{w}\}^{(s-1)}}{\Delta\bar{t}} + \{\tilde{w}\}^{(s)} \frac{\Delta\bar{t}}{2} \right] \right]$$

Then after solving the above equation explicitly for the acceleration vector and substituting it into equation (18), we get;

$$\{\tilde{w}\}^{(s)} = \frac{[K] \{\tilde{w}\}^{(s)} + z_1^{(s)} \{\tilde{w}_{xx}\} + \frac{z_3}{\Delta\bar{t}} \left[\{\tilde{w}\}^{(s)} - \{\tilde{w}\}^{(s-1)} \right]}{(z_2 + \frac{z_3 \Delta\bar{t}}{2})}$$

$$\{\tilde{w}\}^{(s+1)} = 2 \{\tilde{w}\}^{(s)} - \{\tilde{w}\}^{(s-1)} - \left[\frac{[K] \{\tilde{w}\}^{(s)} + z_1^{(s)} \{\tilde{w}_{xx}\} + \frac{z_3}{\Delta\bar{t}} \left[\{\tilde{w}\}^{(s)} - \{\tilde{w}\}^{(s-1)} \right]}{(z_2 + \frac{z_3 \Delta\bar{t}}{2})} \right] \Delta t^2 \quad (25)$$

Equations (24) and (25) are the equations needed to step the response of the column through time.

3. RESULTS

3.1 Comparative Results

The case of a column with pinned ends and a pulsating force $P_0 + S_0 \cos \Omega t$ has been well documented, ref (1) and (5). The solution of the differential equation (1) with no damping takes the form;

$$w = A f(t) \sin \frac{\Omega x}{L}$$

First, the above equation is substituted into the differential equation (1). Then the following variables are defined;

$$\omega_0^2 = \frac{\pi^4 EI}{\rho L^4}$$

$$\tau = \Omega t$$

$$P_e = \frac{\pi^2 EI}{L^2}$$

$$P = \frac{P_0}{P_e}$$

$$S = \frac{S_0}{P_e}$$

Using the above variables, the transformed differential equation has the form;

$$\frac{d^2 f(\tau)}{d\tau^2} + (a + b \cos \tau) f(\tau) = 0$$

where: $a = \frac{\omega_0^2}{\Omega^2} (1-p)$

$$b = -\frac{\omega_0^2}{\Omega^2} s$$

The above differential equation is known as the Mathieu equation, and the character of the solution depends on the values of a and b. For a particular set of values of a and b, the solution is either stable or unstable. The unstable conditions are indicated by vibration which grow with time. Figure (3) is a plot of a vs b with the shaded region representing a stable condition and the unshaded areas indicating the regions of instability.

The computer program can now be compared to the pinned-pinned case as given by the Mathieu equation. The program was run using fixed values of a and Ω with $K_1=K_2=0$ for the pinned-pinned case. Then S_0 was increased by increments of 1 lb until the response became unstable. Six cases were evaluated for the

condition of $P_0=0$ and ten cases with $P = 1/2 P_{cr}$. The variables used in the program are listed below;

$$E = 30 \times 10^6 \text{ psi}$$

$$I = .0021 \text{ in}^4$$

$$L = 144 \text{ in}$$

$$A = .0859 \text{ in}^2$$

$$\rho = 6.3 \times 10^{-5}$$

$$T_0 = .41749$$

The results are shown in table (1). The exact value of a corresponding to the value of b is from Figure (3) and a table of values from Reference (5). The comparison between the approximate solution and the exact solution is very good.

3.2 Critical Frequencies

The most valued result from this investigation would be to have an envelope similar to that of figure (3) as a function of K , L , E , I , Ω , w , ρ , P_0 , and S_0 . This would require the generation of hundreds of data points and a search for the correct relationship between the variables involved. An attempt was made to use an analogous axis of figure 3 with the exception that w_0 became w as a function of end stiffness and axial load. The results showed that there was not a direct correlation between the two, and that there was a shift along the a axis as the end stiffness increased. As a result, the idea of a total envelope was abandoned and only that of a more practical interest was pursued.

There are several practical considerations which would narrow the areas of practical interest. From Figure 3, there are stable regions such that $P_o + S_o \geq P_{cr}$; however, any practical design code would tend to limit the maximum load $P_o + S_o$ to be less than P_{cr} . This will limit our concern to the lower half of the diagonal $a = b$.

In addition the areas of critical interest are those areas in which very low values of S_o cause instability, and the first few critical frequencies cause such instability. Therefore, the first few frequencies will be determined for a range of end stiffnesses such that $P_o + S_o \leq P_{cr}$.

The results of this analysis, to find the critical frequencies, do not include the effects of damping or unequal end restraints. In the program, the parameter C was set equal to zero and K_1 was always equal to K_2 . To locate the critical frequencies the program was run repeatedly, starting with $K=0$ and its known critical frequencies and then K was increased and its subsequent frequencies were found.

The first two critical frequencies were easily determined for $S_o \geq 5\% P_{cr}$. The remaining critical frequencies were more difficult to find; and they are not included in this report. Table 2 shows the first two critical frequencies for KL/EI varying from 0 to 2286 with $P_o = 0$. At KL/EI equal to 2000, P_{cr}/P_e is 3.992 which has a .2% difference with that of the fixed-fixed case. Consequently with $KL/EI = 2000$, the ends are essentially fixed. It was found that as P_o increased, the relationship of Ω/ω remained constant when ω is the natural frequency as a

function of end stiffness K and axial load P_o . It was also found that there was a finite relationship between KL/EI and Ω/ω . Figures 5 and 6 are graphs of Ω_1/ω vs KL/EI and Ω_2/ω vs KL/EI , respectively. From these two graphs, the first two critical frequencies can be determined if K , L , E , I , and ω are known. The graphs start at Ω_1 equal to $2\omega_o$ and Ω_2 equal to ω_o with $K=0$ which is consistent with the pinned-pinned case. At $KL/EI = 2000$ Ω_1 is equal to 1.91ω and Ω_2 is equal to $.955\omega$. Changing the variables did little to effect the general behavior of the response at the critical frequencies. A typical response of Ω_1 and Ω_2 is on figures 7 and 8 respectively. The center plot on figures 7 and 8 is the critical frequency while the upper and lower plots show its stability at slightly above and below the critical frequency. Figure 7 shows a double beat corresponding to the critical frequency at about twice the natural frequency; and at the critical frequency, the double beat fades as it becomes unstable.

Appendix A formulates the natural frequency and buckling load for a column with equal and unequal end restraints. Figures 9 and 10 are graphs of the dimensionless natural period vs KL/EI for a range of axial loads. From the graph, either the natural period or the stiffness can be determined if the other is known. With the natural period and the end stiffness known, the first two critical frequencies can be determined from figures 5 and 6. In addition P_{cr}/P_e vs KL/EI is graphed on figures 11 and 12 with specific values of the graph in table 3. Therefore, if the end stiffness or the natural frequency can be estimated or determined

experimentally, the first two critical frequencies can be found by using figures 5, 6, 9 and 10, and the static buckling load can be determined from figures 11 and 12 or table 3.

4. CONCLUSIONS AND FUTURE RESEARCH

4.1 Conclusions

The following conclusions can be made from this report:

1. A numerical analysis program is written (Appendix B) such that all input quantities are variable and the response of deflection vs time can be plotted.
2. The program gives results which compare very well for the pinned-pinned case (table 1).
3. The natural frequencies and buckling load formulas of a column with equal and unequal end restraints have been developed (Appendix A).
4. The dimensionless natural period vs KL/EI has been plotted for a range of axial loads (figures 9 and 10).
5. The first two critical frequencies have been determined (figures 5 and 6) as a function of K , L , E , I , and ω .
6. If either the end stiffness K or the natural period T_0 is known, the other can be evaluated from figures 9 and 10. With the end stiffness and natural period known, the first two critical frequencies can be found from figures 5 and 6.

4.2 Future Research

Although the solution procedure presented in this report did include damping and unequal end restraints, no studies have been conducted concerning the effects of these two variables. Therefore, future research can be performed to investigate the effect of damping and unequal end restraints on the critical frequencies. Future work may also include determining all the

critical frequencies as only two have been determined in this report. Also, the effects of material plasticity on the critical frequencies could be the subject of future investigations. In addition, testing could be conducted to verify the results herein.

NOMENCLATURE

A area

C damping coefficient

E modulus of elasticity

f natural frequency

h finite difference element length

\bar{h} dimensionless finite difference element length

I moment of inertia

K geometric stiffness matrix

K_1 rotational stiffness at end 1

K_2 rotational stiffness at end 2

L length of column

P $P_o + S_o \cos \Omega t$

P_{cr} critical buckling load

P_e Euler buckling load

P_o dead load

S_o pulsating load

T_o natural period

t time

\bar{t} dimensionless time

w deflection

\tilde{w} initial imperfection displacement

\bar{w} dimensionless deflection

$\tilde{\bar{w}}$ dimensionless initial imperfection

\dot{w} velocity

$\dot{\bar{w}}$ dimensionless velocity

w_c centerline deflection excluding initial imperfection

- \ddot{w} acceleration
- $\ddot{\bar{w}}$ dimensionless acceleration
- X axial distance
- \bar{X} dimensionless axial distance
- ρ density per unit length
- δ maximum centerline initial imperfection
- ω natural frequency with effects of end stiffness K and axial load P_0
- Ω_1 first critical frequency
- Ω_2 second critical frequency
- Ω forcing function

REFERENCES

1. Timoshenko, S.P.; and Gere, J.M.: Theory of Elastic Stability, 2nd Edition, pp. 158-160, McGraw-Hill Book Company, New York, 1961
2. Razzaq, Z.; Voland, R.T.; Bush, H.G.; and Mikulas, M.M., Jr.: Stability, Vibration, and Passive Damping of Partially Restrained Imperfect Columns. NASA Technical Memorandum 85697, October , 1983.
3. James, M.L.; Smith, G.M.; and Wolford, J.C.: Applied Numerical Methods for Digital Computation, 2nd Edition, p. 346, Harper & Row Publishers, New York, 1977
4. Biggs, J.M.: Introduction to Structural Dynamics pp. 4-7, McGraw-Hill Book Company, New York, 1964
5. Lubkin, S.; and Stoker, J.J.: Stability of Columns and Strings Under Periodically Varying Forces. Quarterly Applied Mathematics, Volume 1, No. 3, p. 215, 1943

TABLES

Table 1. Comparison of Exact vs Computer Approximation for
for a Pinned-Pinned Column

$P=0$	$P_{cr}=29.986$	$\omega_0 = 15.05$		
b	Ω	Scr	a	a
Computer Results				Exact
.229	41.74	53	.13	.129
0	30.1	0	.25	.25
1.8	17.378	72	.75	.743
0	15.05	0	1.0	1.0
1.5	9.518	18	2.5	2.48
3.73	8.044	32	3.5	3.43

$P=\frac{1}{2} P_{cr} = 14.993$				
.225	29.515	26	.13	.131
0	21.284	0	.25	.25
.567	15.05	17	.5	.488
0	10.642	0	1.0	1.0
1.30	8.689	13	1.5	1.43
2.93	7.525	22	2.0	1.95
3.75	7.095	25	2.25	2.22
2.6	6.144	13	3.0	2.93
9.6	5.321	36	4.0	3.92
4.0	4.759	12	5.0	4.81

Table 2. First Two Natural Frequencies as a Function of KL/EI

K	Ω_1	Ω_2	ω	KL/EI	Ω_1/ω	Ω_2/ω
0	30.1	15.05	15.05	0	2	1
500	35.6	17.7	17.99	1.143	1.979	.984
1000	39.7	19.7	20.14	2.286	1.971	.978
2000	45.2	22.4	23.11	4.571	1.956	.970
5000	53.1	26.4	27.52	11.43	1.930	.960
10000	58.2	29.0	30.32	22.86	1.920	.957
20000	61.8	30.8	32.25	45.71	1.916	.955
52500	64.6	32.2	33.72	120	1.915	.955
87500	65.3	32.6	34.12	200	1.914	.955
1×10^6	66.3	33.1	34.7	2286	1.910	.955

Variables used; $E = 30 \times 10^6$ psi
 $I = .0021 \text{ in}^4$
 $L = 144 \text{ in}$
 $L/r = 920$

Table 3. KL/EI vs P_{cr}/P_e for Equal End Stiffness

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
.0	1.0000	4.8	2.2632
.1	1.0402	4.9	2.2996
.2	1.0797	5.0	2.3157
.3	1.1185	5.1	2.3315
.4	1.1567	5.2	2.3470
.5	1.1942	5.3	2.3623
.6	1.2310	5.4	2.3774
.7	1.2671	5.5	2.3922
.8	1.3026	5.6	2.4067
.9	1.3374	5.7	2.4210
1.0	1.3715	5.8	2.4351
1.1	1.4050	5.9	2.4490
1.2	1.4378	6.0	2.4626
1.3	1.4701	6.1	2.4760
1.4	1.5017	6.2	2.4892
1.5	1.5327	6.3	2.5022
1.6	1.5631	6.4	2.5149
1.7	1.5929	6.5	2.5275
1.8	1.6221	6.6	2.5399
1.9	1.6508	6.7	2.5521
2.0	1.6789	6.8	2.5641
2.1	1.7065	6.9	2.5759
2.2	1.7335	7.0	2.5875
2.3	1.7600	7.1	2.5990
2.4	1.7860	7.2	2.6103
2.5	1.8115	7.3	2.6214
2.6	1.8365	7.4	2.6324
2.7	1.8611	7.5	2.6432
2.8	1.8851	7.6	2.6538
2.9	1.9088	7.7	2.6643
3.0	1.9319	7.8	2.6746
3.1	1.9547	7.9	2.6848
3.2	1.9770	8.0	2.6948
3.3	1.9988	8.1	2.7047
3.4	2.0203	8.2	2.7144
3.5	2.0414	8.3	2.7241
3.6	2.0621	8.4	2.7335
3.7	2.0824	8.5	2.7429
3.8	2.1024	8.6	2.7521
3.9	2.1219	8.7	2.7612
4.0	2.1412	8.8	2.7701
4.1	2.1600	8.9	2.7790
4.2	2.1786	9.0	2.7877
4.3	2.1968	9.1	2.7963
4.4	2.2147	9.2	2.8048
4.5	2.2323	9.3	2.8132
4.6	2.2495	9.4	2.8214
4.7	2.2665	9.5	2.8296

Table 3. continued

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
9.6	2.8376	14.4	3.1289
9.7	2.8456	14.5	3.1334
9.8	2.8534	14.6	3.1380
9.9	2.8612	14.7	3.1424
10.0	2.8688	14.8	3.1469
10.1	2.8764	14.9	3.1512
10.2	2.8838	15.0	3.1556
10.3	2.8912	15.1	3.1599
10.4	2.8984	15.2	3.1641
10.5	2.9056	15.3	3.1684
10.6	2.9127	15.4	3.1725
10.7	2.9197	15.5	3.1767
10.8	2.9266	15.6	3.1808
10.9	2.9334	15.7	3.1848
11.0	2.9402	15.8	3.1888
11.1	2.9468	15.9	3.1928
11.2	2.9534	16.0	3.1967
11.3	2.9599	16.1	3.2006
11.4	2.9663	16.2	3.2045
11.5	2.9727	16.3	3.2083
11.6	2.9790	16.4	3.2121
11.7	2.9852	16.5	3.2159
11.8	2.9913	16.6	3.2196
11.9	2.9974	16.7	3.2233
12.0	3.0033	16.8	3.2269
12.1	3.0093	16.9	3.2306
12.2	3.0151	17.0	3.2342
12.3	3.0209	17.1	3.2377
12.4	3.0266	17.2	3.2412
12.5	3.0323	17.3	3.2447
12.6	3.0379	17.4	3.2482
12.7	3.0434	17.5	3.2516
12.8	3.0489	17.6	3.2550
12.9	3.0543	17.7	3.2584
13.0	3.0597	17.8	3.2617
13.1	3.0650	17.9	3.2650
13.2	3.0702	18.0	3.2683
13.3	3.0754	18.1	3.2716
13.4	3.0805	18.2	3.2748
13.5	3.0856	18.3	3.2780
13.6	3.0906	18.4	3.2812
13.7	3.0955	18.5	3.2843
13.8	3.1005	18.6	3.2874
13.9	3.1053	18.7	3.2905
14.0	3.1101	18.8	3.2936
14.1	3.1149	18.9	3.2966
14.2	3.1196	19.0	3.2996
14.3	3.1243		

Table 3. continued

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
20.0	3.3284	68.0	3.7761
21.0	3.3549	69.0	3.7792
22.0	3.3795	70.0	3.7822
23.0	3.4023	71.0	3.7851
24.0	3.4235	72.0	3.7880
25.0	3.4432	73.0	3.7907
26.0	3.4617	74.0	3.7934
27.0	3.4790	75.0	3.7960
28.0	3.4952	76.0	3.7986
29.0	3.5105	77.0	3.8011
30.0	3.5249	78.0	3.8035
31.0	3.5384	79.0	3.8059
32.0	3.5512	80.0	3.8082
33.0	3.5634	81.0	3.8105
34.0	3.5749	82.0	3.8127
35.0	3.5858	83.0	3.8149
36.0	3.5961	84.0	3.8170
37.0	3.6060	85.0	3.8191
38.0	3.6154	86.0	3.8211
39.0	3.6244	87.0	3.8231
40.0	3.6329	88.0	3.8250
41.0	3.6411	89.0	3.8269
42.0	3.6489	90.0	3.8287
43.0	3.6564	91.0	3.8305
44.0	3.6636	92.0	3.8323
45.0	3.6705	93.0	3.8341
46.0	3.6771	94.0	3.8358
47.0	3.6835	95.0	3.8374
48.0	3.6896	96.0	3.8391
49.0	3.6954	97.0	3.8407
50.0	3.7011	98.0	3.8422
51.0	3.7066	99.0	3.8438
52.0	3.7118	100.0	3.8453
53.0	3.7169	101.0	3.8468
54.0	3.7218	102.0	3.8482
55.0	3.7265	103.0	3.8496
56.0	3.7311	104.0	3.8510
57.0	3.7355	105.0	3.8524
58.0	3.7398	106.0	3.8537
59.0	3.7440	107.0	3.8551
60.0	3.7480	108.0	3.8564
61.0	3.7519	109.0	3.8576
62.0	3.7557	110.0	3.8589
63.0	3.7593	111.0	3.8601
64.0	3.7629	112.0	3.8613
65.0	3.7663	113.0	3.8625
66.0	3.7697	114.0	3.8637
67.0	3.7730	115.0	3.8649

Table 3. continued

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
116.0	3.8660	164.0	3.9044
117.0	3.8671	165.0	3.9050
118.0	3.8682	166.0	3.9055
119.0	3.8693	167.0	3.9061
120.0	3.8703	168.0	3.9066
121.0	3.8714	169.0	3.9072
122.0	3.8724	170.0	3.9077
123.0	3.8734	171.0	3.9082
124.0	3.8744	172.0	3.9088
125.0	3.8754	173.0	3.9093
126.0	3.8763	174.0	3.9098
127.0	3.8773	175.0	3.9103
128.0	3.8782	176.0	3.9108
129.0	3.8791	177.0	3.9113
130.0	3.8800	178.0	3.9118
131.0	3.8809	179.0	3.9123
132.0	3.8818	180.0	3.9127
133.0	3.8827	181.0	3.9132
134.0	3.8835	182.0	3.9137
135.0	3.8844	183.0	3.9141
136.0	3.8852	184.0	3.9146
137.0	3.8860	185.0	3.9150
138.0	3.8868	186.0	3.9155
139.0	3.8876	187.0	3.9159
140.0	3.8884	188.0	3.9164
141.0	3.8892	189.0	3.9168
142.0	3.8899	190.0	3.9172
143.0	3.8907	191.0	3.9177
144.0	3.8914	192.0	3.9181
145.0	3.8922	193.0	3.9185
146.0	3.8929	194.0	3.9189
147.0	3.8936	195.0	3.9193
148.0	3.8943	196.0	3.9197
149.0	3.8950	197.0	3.9201
150.0	3.8957	198.0	3.9205
151.0	3.8963	199.0	3.9209
152.0	3.8970	200.0	3.9213
153.0	3.8977	201.0	3.9217
154.0	3.8983	202.0	3.9221
155.0	3.8990	203.0	3.9225
156.0	3.8996	204.0	3.9228
157.0	3.9002	205.0	3.9232
158.0	3.9008	206.0	3.9236
159.0	3.9015	207.0	3.9239
160.0	3.9021	208.0	3.9243
161.0	3.9026	209.0	3.9246
162.0	3.9032	210.0	3.9250
163.0	3.9038		

Table 3. continued

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
220.0	3.9284	700.0	3.9772
230.0	3.9314	710.0	3.9776
240.0	3.9342	720.0	3.9779
250.0	3.9368	730.0	3.9782
260.0	3.9392	740.0	3.9785
270.0	3.9415	750.0	3.9788
280.0	3.9435	760.0	3.9790
290.0	3.9455	770.0	3.9793
300.0	3.9472	780.0	3.9796
310.0	3.9489	790.0	3.9798
320.0	3.9505	800.0	3.9801
330.0	3.9520	810.0	3.9803
340.0	3.9534	820.0	3.9806
350.0	3.9547	830.0	3.9808
360.0	3.9560	840.0	3.9810
370.0	3.9571	850.0	3.9812
380.0	3.9583	860.0	3.9815
390.0	3.9593	870.0	3.9817
400.0	3.9603	880.0	3.9819
410.0	3.9613	890.0	3.9821
420.0	3.9622	900.0	3.9823
430.0	3.9631	910.0	3.9825
440.0	3.9639	920.0	3.9827
450.0	3.9647	930.0	3.9829
460.0	3.9655	940.0	3.9830
470.0	3.9662	950.0	3.9832
480.0	3.9669	960.0	3.9834
490.0	3.9676	970.0	3.9836
500.0	3.9682	980.0	3.9837
510.0	3.9688	990.0	3.9839
520.0	3.9694	1000.0	3.9841
530.0	3.9700	1010.0	3.9842
540.0	3.9705	1020.0	3.9844
550.0	3.9711	1030.0	3.9845
560.0	3.9716	1040.0	3.9847
570.0	3.9721	1050.0	3.9848
580.0	3.9726	1060.0	3.9850
590.0	3.9730	1070.0	3.9851
600.0	3.9735	1080.0	3.9852
610.0	3.9739	1090.0	3.9854
620.0	3.9743	1100.0	3.9855
630.0	3.9747	1110.0	3.9856
640.0	3.9751	1120.0	3.9858
650.0	3.9755	1130.0	3.9859
660.0	3.9759	1140.0	3.9860
670.0	3.9762	1150.0	3.9861
680.0	3.9766	1160.0	3.9862
690.0	3.9769	1170.0	3.9864

Table 3. continued

KL/EI	P_{cr}/P_e	KL/EI	P_{cr}/P_e
1180.0	3.9865	1660.0	3.9904
1190.0	3.9866	1670.0	3.9904
1200.0	3.9867	1680.0	3.9905
1210.0	3.9868	1690.0	3.9906
1220.0	3.9869	1700.0	3.9906
1230.0	3.9870	1710.0	3.9907
1240.0	3.9871	1720.0	3.9908
1250.0	3.9872	1730.0	3.9908
1260.0	3.9873	1740.0	3.9908
1270.0	3.9874	1750.0	3.9909
1280.0	3.9875	1760.0	3.9909
1290.0	3.9876	1770.0	3.9910
1300.0	3.9877	1780.0	3.9910
1310.0	3.9878	1790.0	3.9911
1320.0	3.9879	1800.0	3.9912
1330.0	3.9880	1810.0	3.9912
1340.0	3.9881	1820.0	3.9913
1350.0	3.9882	1830.0	3.9913
1360.0	3.9883	1840.0	3.9914
1370.0	3.9883	1850.0	3.9914
1380.0	3.9884	1860.0	3.9915
1390.0	3.9885	1870.0	3.9915
1400.0	3.9886	1880.0	3.9915
1410.0	3.9887	1890.0	3.9916
1420.0	3.9888	1900.0	3.9916
1430.0	3.9888	1910.0	3.9917
1440.0	3.9889	1920.0	3.9917
1450.0	3.9890	1930.0	3.9918
1460.0	3.9891	1940.0	3.9918
1470.0	3.9891	1950.0	3.9919
1480.0	3.9892	1960.0	3.9919
1490.0	3.9893	1970.0	3.9919
1500.0	3.9894	1980.0	3.9920
1510.0	3.9894	1990.0	3.9920
1520.0	3.9895	2000.0	3.9921
1530.0	3.9896	2010.0	3.9921
1540.0	3.9896	2020.0	3.9921
1550.0	3.9897	2030.0	3.9922
1560.0	3.9898	2040.0	3.9922
1570.0	3.9898	2050.0	3.9922
1580.0	3.9899	2060.0	3.9922
1590.0	3.9900	2070.0	3.9923
1600.0	3.9900	2080.0	3.9923
1610.0	3.9901	2090.0	3.9924
1620.0	3.9901	2100.0	3.9924
1630.0	3.9902	2110.0	3.9924
1640.0	3.9903	2120.0	3.9925
1650.0	3.9903	2130.0	3.9925

Table 4. Dimensionless Natural Period vs KL/EI ($P/P_e = 0$)

$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
.0	.6366
.1	.6242
.2	.6126
.3	.6018
.4	.5917
.5	.5822
.6	.5732
.7	.5648
.8	.5569
.9	.5494
1.0	.5423
1.1	.5355
1.2	.5291
1.3	.5230
1.4	.5172
1.5	.5117
1.6	.5064
1.7	.5014
1.8	.4966
1.9	.4919
2.0	.4875
2.1	.4833
2.2	.4792
2.3	.4753
2.4	.4715
2.5	.4679
2.6	.4644
2.7	.4610
2.8	.4577
2.9	.4546
3.0	.4516
3.1	.4486
3.2	.4458
3.3	.4431
3.4	.4404
3.5	.4378
3.6	.4353
3.7	.4329
3.8	.4306
3.9	.4283
4.0	.4261
4.1	.4240
4.2	.4219
4.3	.4199
4.4	.4179
4.5	.4160
4.6	.4141
4.7	.4123
4.8	.4105
4.9	.4088
5.0	.4071
5.1	.4055
5.2	.4039
5.3	.4023
5.4	.4008
5.5	.3993
5.6	.3979
5.7	.3964
5.8	.3950
5.9	.3937
6.0	.3924
6.1	.3911
6.2	.3898
6.3	.3886
6.4	.3874
6.5	.3862
6.6	.3850
6.7	.3839
6.8	.3828
6.9	.3817
7.0	.3806
7.1	.3796
7.2	.3785
7.3	.3775
7.4	.3766
7.5	.3756
7.6	.3746
7.7	.3737
7.8	.3728
7.9	.3719
8.0	.3710
8.1	.3701
8.2	.3693
8.3	.3685
8.4	.3676
8.5	.3668
8.6	.3661
8.7	.3653
8.8	.3645
8.9	.3638
9.0	.3630
9.1	.3623
9.2	.3616
9.3	.3609
9.4	.3602
9.5	.3595

Table 4. Continued ($P/P_e = 0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
9.6	.3588	14.4	.3356
9.7	.3582	14.5	.3355
9.8	.3575	14.6	.3351
9.9	.3569	14.7	.3348
10.0	.3563	14.8	.3344
10.1	.3556	14.9	.3341
10.2	.3550	15.0	.3338
10.3	.3544	15.1	.3335
10.4	.3538	15.2	.3331
10.5	.3533	15.3	.3328
10.6	.3527	15.4	.3325
10.7	.3521	15.5	.3322
10.8	.3516	15.6	.3319
10.9	.3510	15.7	.3316
11.0	.3505	15.8	.3313
11.1	.3499	15.9	.3310
11.2	.3494	16.0	.3307
11.3	.3489	16.1	.3304
11.4	.3484	16.2	.3301
11.5	.3479	16.3	.3299
11.6	.3474	16.4	.3296
11.7	.3469	16.5	.3293
11.8	.3464	16.6	.3290
11.9	.3459	16.7	.3288
12.0	.3455	16.8	.3285
12.1	.3450	16.9	.3282
12.2	.3445	17.0	.3280
12.3	.3441	17.1	.3277
12.4	.3436	17.2	.3274
12.5	.3432	17.3	.3272
12.6	.3428	17.4	.3269
12.7	.3423	17.5	.3267
12.8	.3419	17.6	.3264
12.9	.3415	17.7	.3262
13.0	.3411	17.8	.3259
13.1	.3407	17.9	.3257
13.2	.3403	18.0	.3255
13.3	.3399	18.1	.3252
13.4	.3395	18.2	.3250
13.5	.3391	18.3	.3248
13.6	.3387	18.4	.3245
13.7	.3383	18.5	.3243
13.8	.3380	18.6	.3241
13.9	.3376	18.7	.3238
14.0	.3372	18.8	.3236
14.1	.3369	18.9	.3234
14.2	.3365	19.0	.3232
14.3	.3361	19.1	.3230

Table 4. Continued ($P/P_e = 0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
19.2	.3228	60.0	.2922
19.3	.3225	61.0	.2920
19.4	.3223	62.0	.2917
19.5	.3221	63.0	.2915
19.6	.3219	64.0	.2912
19.7	.3217	65.0	.2910
19.8	.3215	66.0	.2908
19.9	.3213	67.0	.2906
20.0	.3211	68.0	.2904
21.0	.3192	69.0	.2901
22.0	.3175	70.0	.2899
23.0	.3159	71.0	.2898
24.0	.3144	72.0	.2896
25.0	.3130	73.0	.2894
26.0	.3117	74.0	.2892
27.0	.3105	75.0	.2890
28.0	.3094	76.0	.2889
29.0	.3083	77.0	.2887
30.0	.3073	78.0	.2885
31.0	.3064	79.0	.2884
32.0	.3055	80.0	.2882
33.0	.3047	81.0	.2881
34.0	.3039	82.0	.2879
35.0	.3031	83.0	.2878
36.0	.3024	84.0	.2876
37.0	.3018	85.0	.2875
38.0	.3011	86.0	.2874
39.0	.3005	87.0	.2872
40.0	.2999	88.0	.2871
41.0	.2994	89.0	.2870
42.0	.2989	90.0	.2869
43.0	.2983	91.0	.2868
44.0	.2979	92.0	.2866
45.0	.2974	93.0	.2865
46.0	.2970	94.0	.2864
47.0	.2965	95.0	.2863
48.0	.2961	96.0	.2862
49.0	.2957	97.0	.2861
50.0	...	98.0	.2860
51.0	.2953	99.0	.2859
52.0	.2950	100.0	.2858
53.0	.2946	101.0	.2857
54.0	.2943	102.0	.2856
55.0	.2940	103.0	.2855
56.0	.2936	104.0	.2854
57.0	.2933	105.0	.2853
58.0	.2930	106.0	.2852
59.0	.2928	107.0	.2851
	.2925		

Table 4. Continued ($P/P_e = 0$)

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
108.0	.2851	156.0	.2822
109.0	.2850	157.0	.2822
110.0	.2849	158.0	.2821
111.0	.2848	159.0	.2821
112.0	.2847	160.0	.2821
113.0	.2846	161.0	.2820
114.0	.2846	162.0	.2820
115.0	.2845	163.0	.2819
116.0	.2844	164.0	.2819
117.0	.2844	165.0	.2819
118.0	.2843	166.0	.2818
119.0	.2842	167.0	.2818
120.0	.2841	168.0	.2818
121.0	.2841	169.0	.2817
122.0	.2840	170.0	.2817
123.0	.2839	171.0	.2817
124.0	.2839	172.0	.2816
125.0	.2838	173.0	.2816
126.0	.2837	174.0	.2816
127.0	.2837	175.0	.2815
128.0	.2836	176.0	.2815
129.0	.2836	177.0	.2815
130.0	.2835	178.0	.2814
131.0	.2834	179.0	.2814
132.0	.2834	180.0	.2814
133.0	.2833	181.0	.2813
134.0	.2833	182.0	.2813
135.0	.2832	183.0	.2813
136.0	.2832	184.0	.2812
137.0	.2831	185.0	.2812
138.0	.2831	186.0	.2812
139.0	.2830	187.0	.2811
140.0	.2830	188.0	.2811
141.0	.2829	189.0	.2811
142.0	.2829	190.0	.2811
143.0	.2828	191.0	.2810
144.0	.2828	192.0	.2810
145.0	.2827	193.0	.2810
146.0	.2827	194.0	.2810
147.0	.2826	195.0	.2809
148.0	.2826	196.0	.2809
149.0	.2825	197.0	.2809
150.0	.2825	198.0	.2808
151.0	.2824	199.0	.2808
152.0	.2824	200.0	.2808
153.0	.2823	201.0	.2808
154.0	.2823	202.0	.2807
155.0	.2823	203.0	.2807

Table 4. Continued ($P/P_e = .5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
108.0	.3056	156.0	.3023
109.0	.3055	157.0	.3022
110.0	.3054	158.0	.3022
111.0	.3053	159.0	.3021
112.0	.3052	160.0	.3021
113.0	.3051	161.0	.3020
114.0	.3050	162.0	.3020
115.0	.3049	163.0	.3019
116.0	.3048	164.0	.3019
117.0	.3047	165.0	.3019
118.0	.3046	166.0	.3018
119.0	.3046	167.0	.3018
120.0	.3045	168.0	.3017
121.0	.3044	169.0	.3017
122.0	.3043	170.0	.3016
123.0	.3043	171.0	.3016
124.0	.3042	172.0	.3016
125.0	.3041	173.0	.3015
126.0	.3040	174.0	.3015
127.0	.3040	175.0	.3015
128.0	.3039	176.0	.3014
129.0	.3038	177.0	.3014
130.0	.3037	178.0	.3013
131.0	.3037	179.0	.3013
132.0	.3036	180.0	.3013
133.0	.3035	181.0	.3012
134.0	.3035	182.0	.3012
135.0	.3034	183.0	.3012
136.0	.3034	184.0	.3011
137.0	.3033	185.0	.3011
138.0	.3032	186.0	.3011
139.0	.3032	187.0	.3010
140.0	.3031	188.0	.3010
141.0	.3031	189.0	.3010
142.0	.3030	190.0	.3009
143.0	.3029	191.0	.3009
144.0	.3029	192.0	.3009
145.0	.3028	193.0	.3008
146.0	.3028	194.0	.3008
147.0	.3027	195.0	.3008
148.0	.3027	196.0	.3007
149.0	.3026	197.0	.3007
150.0	.3026	198.0	.3007
151.0	.3025	199.0	.3006
152.0	.3025	200.0	.3006
153.0	.3024	201.0	.3006
154.0	.3024	202.0	.3006
155.0	.3023	203.0	.3005

Table 4. Continued ($P/P_e = .5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
19.2	.3503	60.0	.3139
19.3	.3501	61.0	.3136
19.4	.3498	62.0	.3133
19.5	.3496	63.0	.3130
19.6	.3493	64.0	.3127
19.7	.3491	65.0	.3125
19.8	.3488	66.0	.3122
19.9	.3486	67.0	.3120
20.0	.3483	68.0	.3117
21.0	.3460	69.0	.3115
22.0	.3439	70.0	.3113
23.0	.3420	71.0	.3110
24.0	.3402	72.0	.3108
25.0	.3385	73.0	.3106
26.0	.3370	74.0	.3104
27.0	.3355	75.0	.3102
28.0	.3342	76.0	.3100
29.0	.3329	77.0	.3098
30.0	.3317	78.0	.3096
31.0	.3306	79.0	.3094
32.0	.3296	80.0	.3092
33.0	.3286	81.0	.3091
34.0	.3277	82.0	.3089
35.0	.3268	83.0	.3087
36.0	.3259	84.0	.3086
37.0	.3251	85.0	.3084
38.0	.3244	86.0	.3083
39.0	.3237	87.0	.3081
40.0	.3230	88.0	.3080
41.0	.3223	89.0	.3078
42.0	.3217	90.0	.3077
43.0	.3211	91.0	.3075
44.0	.3205	92.0	.3074
45.0	.3200	93.0	.3073
46.0	.3195	94.0	.3071
47.0	.3190	95.0	.3070
48.0	.3185	96.0	.3069
49.0	.3180	97.0	.3068
50.0	.3176	98.0	.3066
51.0	.3171	99.0	.3065
52.0	.3167	100.0	.3064
53.0	.3163	101.0	.3063
54.0	.3160	102.0	.3062
55.0	.3156	103.0	.3061
56.0	.3152	104.0	.3060
57.0	.3149	105.0	.3059
58.0	.3145	106.0	.3058
59.0	.3142	107.0	.3056

Table 4. Continued ($P/P_e = .5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
9.6	.3954	14.4	.3663
9.7	.3945	14.5	.3659
9.8	.3937	14.6	.3655
9.9	.3929	14.7	.3651
10.0	.3921	14.8	.3647
10.1	.3913	14.9	.3643
10.2	.3905	15.0	.3639
10.3	.3897	15.1	.3635
10.4	.3890	15.2	.3631
10.5	.3882	15.3	.3627
10.6	.3875	15.4	.3623
10.7	.3868	15.5	.3619
10.8	.3861	15.6	.3615
10.9	.3854	15.7	.3612
11.0	.3847	15.8	.3608
11.1	.3840	15.9	.3604
11.2	.3834	16.0	.3601
11.3	.3827	16.1	.3597
11.4	.3821	16.2	.3594
11.5	.3814	16.3	.3590
11.6	.3808	16.4	.3587
11.7	.3802	16.5	.3583
11.8	.3796	16.6	.3580
11.9	.3790	16.7	.3577
12.0	.3784	16.8	.3573
12.1	.3778	16.9	.3570
12.2	.3772	17.0	.3567
12.3	.3767	17.1	.3564
12.4	.3761	17.2	.3560
12.5	.3756	17.3	.3557
12.6	.3750	17.4	.3554
12.7	.3745	17.5	.3551
12.8	.3740	17.6	.3548
12.9	.3734	17.7	.3545
13.0	.3729	17.8	.3542
13.1	.3724	17.9	.3539
13.2	.3719	18.0	.3536
13.3	.3714	18.1	.3533
13.4	.3709	18.2	.3531
13.5	.3704	18.3	.3528
13.6	.3700	18.4	.3525
13.7	.3695	18.5	.3522
13.8	.3690	18.6	.3519
13.9	.3686	18.7	.3517
14.0	.3681	18.8	.3514
14.1	.3677	18.9	.3511
14.2	.3672	19.0	.3509
14.3	.3668	19.1	.3506

Table 4. Continued ($P/P_e = .5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
.0	.9003	4.8	.4645
.1	.8661	4.9	.4621
.2	.8360	5.0	.4598
.3	.8092	5.1	.4575
.4	.7852	5.2	.4553
.5	.7636	5.3	.4531
.6	.7439	5.4	.4510
.7	.7259	5.5	.4490
.8	.7095	5.6	.4470
.9	.6943	5.7	.4450
1.0	.6803	5.8	.4432
1.1	.6673	5.9	.4413
1.2	.6552	6.0	.4395
1.3	.6439	6.1	.4378
1.4	.6333	6.2	.4361
1.5	.6234	6.3	.4344
1.6	.6141	6.4	.4328
1.7	.6053	6.5	.4312
1.8	.5970	6.6	.4296
1.9	.5892	6.7	.4281
2.0	.5818	6.8	.4266
2.1	.5748	6.9	.4252
2.2	.5681	7.0	.4238
2.3	.5617	7.1	.4224
2.4	.5556	7.2	.4210
2.5	.5499	7.3	.4197
2.6	.5443	7.4	.4184
2.7	.5391	7.5	.4171
2.8	.5340	7.6	.4159
2.9	.5292	7.7	.4146
3.0	.5245	7.8	.4134
3.1	.5201	7.9	.4123
3.2	.5158	8.0	.4111
3.3	.5117	8.1	.4100
3.4	.5077	8.2	.4089
3.5	.5039	8.3	.4078
3.6	.5002	8.4	.4067
3.7	.4966	8.5	.4057
3.8	.4932	8.6	.4046
3.9	.4899	8.7	.4036
4.0	.4867	8.8	.4027
4.1	.4836	8.9	.4017
4.2	.4806	9.0	.4007
4.3	.4777	9.1	.3998
4.4	.4749	9.2	.3989
4.5	.4722	9.3	.3980
4.6	.4696	9.4	.3971
4.7	.4670	9.5	.3962

Table 4. Continued ($P/P_e = 1.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
.1	3.1754	4.9	.5438
.2	2.2546	5.0	.5401
.3	1.8485	5.1	.5365
.4	1.6075	5.2	.5331
.5	1.4437	5.3	.5298
.6	1.3233	5.4	.5265
.7	1.2302	5.5	.5234
.8	1.1555	5.6	.5204
.9	1.0938	5.7	.5174
1.0	1.0419	5.8	.5146
1.1	.9975	5.9	.5118
1.2	.9589	6.0	.5091
1.3	.9250	6.1	.5065
1.4	.8949	6.2	.5040
1.5	.8680	6.3	.5015
1.6	.8438	6.4	.4991
1.7	.8218	6.5	.4968
1.8	.8018	6.6	.4945
1.9	.7835	6.7	.4923
2.0	.7667	6.8	.4901
2.1	.7511	6.9	.4880
2.2	.7367	7.0	.4859
2.3	.7232	7.1	.4839
2.4	.7107	7.2	.4820
2.5	.6990	7.3	.4800
2.6	.6880	7.4	.4782
2.7	.6777	7.5	.4764
2.8	.6680	7.6	.4746
2.9	.6588	7.7	.4728
3.0	.6502	7.8	.4711
3.1	.6420	7.9	.4695
3.2	.6342	8.0	.4678
3.3	.6268	8.1	.4662
3.4	.6197	8.2	.4647
3.5	.6130	8.3	.4632
3.6	.6066	8.4	.4617
3.7	.6005	8.5	.4602
3.8	.5946	8.6	.4588
3.9	.5890	8.7	.4574
4.0	.5837	8.8	.4560
4.1	.5785	8.9	.4546
4.2	.5736	9.0	.4533
4.3	.5688	9.1	.4520
4.4	.5643	9.2	.4508
4.5	.5599	9.3	.4495
4.6	.5556	9.4	.4483
4.7	.5515	9.5	.4471
4.8	.5476	9.6	.4459

Table 4. Continued ($P/P_e = 1.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
9.7	.4448	14.5	.4065
9.8	.4436	14.6	.4060
9.9	.4425	14.7	.4054
10.0	.4414	14.8	.4049
10.1	.4403	14.9	.4044
10.2	.4393	15.0	.4039
10.3	.4382	15.1	.4033
10.4	.4372	15.2	.4028
10.5	.4362	15.3	.4023
10.6	.4352	15.4	.4018
10.7	.4343	15.5	.4013
10.8	.4333	15.6	.4008
10.9	.4324	15.7	.4004
11.0	.4314	15.8	.3999
11.1	.4305	15.9	.3994
11.2	.4296	16.0	.3990
11.3	.4288	16.1	.3985
11.4	.4279	16.2	.3980
11.5	.4271	16.3	.3976
11.6	.4262	16.4	.3971
11.7	.4254	16.5	.3967
11.8	.4246	16.6	.3963
11.9	.4238	16.7	.3958
12.0	.4230	16.8	.3954
12.1	.4222	16.9	.3950
12.2	.4215	17.0	.3946
12.3	.4207	17.1	.3942
12.4	.4200	17.2	.3938
12.5	.4192	17.3	.3934
12.6	.4185	17.4	.3930
12.7	.4178	17.5	.3926
12.8	.4171	17.6	.3922
12.9	.4164	17.7	.3918
13.0	.4157	17.8	.3914
13.1	.4150	17.9	.3910
13.2	.4144	18.0	.3907
13.3	.4137	18.1	.3903
13.4	.4131	18.2	.3899
13.5	.4125	18.3	.3896
13.6	.4118	18.4	.3892
13.7	.4112	18.5	.3889
13.8	.4106	18.6	.3885
13.9	.4100	18.7	.3882
14.0	.4094	18.8	.3878
14.1	.4088	18.9	.3875
14.2	.4082	19.0	.3871
14.3	.4077	19.1	.3868
14.4	.4071	19.2	.3865

Table 4. Continued ($P/P_e = 1.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
19.3	.3861
19.4	.3858
19.5	.3855
19.6	.3852
19.7	.3849
19.8	.3845
19.9	.3842
20.0	.3839
20.0	.3839
21.0	.3810
22.0	.3783
23.0	.3759
24.0	.3736
25.0	.3715
26.0	.3696
27.0	.3678
28.0	.3661
29.0	.3646
30.0	.3631
31.0	.3617
32.0	.3604
33.0	.3592
34.0	.3581
35.0	.3570
36.0	.3559
37.0	.3550
38.0	.3540
39.0	.3532
40.0	.3523
41.0	.3515
42.0	.3508
43.0	.3500
44.0	.3493
45.0	.3487
46.0	.3480
47.0	.3474
48.0	.3468
49.0	.3463
50.0	.3457
51.0	.3452
52.0	.3447
53.0	.3442
54.0	.3438
55.0	.3433
56.0	.3429
57.0	.3424
58.0	.3420
59.0	.3417

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
60.0	.3413
61.0	.3409
62.0	.3406
63.0	.3402
64.0	.3399
65.0	.3395
66.0	.3392
67.0	.3389
68.0	.3386
69.0	.3383
70.0	.3381
71.0	.3378
72.0	.3375
73.0	.3373
74.0	.3370
75.0	.3368
76.0	.3365
77.0	.3363
78.0	.3361
79.0	.3359
80.0	.3356
81.0	.3354
82.0	.3352
83.0	.3350
84.0	.3348
85.0	.3346
86.0	.3345
87.0	.3343
88.0	.3341
89.0	.3339
90.0	.3338
91.0	.3336
92.0	.3334
93.0	.3333
94.0	.3331
95.0	.3330
96.0	.3328
97.0	.3327
98.0	.3325
99.0	.3324
100.0	.3322
101.0	.3321
102.0	.3320
103.0	.3318
104.0	.3317
105.0	.3316
106.0	.3315
107.0	.3313

Table 4. Continued ($P/P_e = 1.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
108.0	.3312	156.0	.3273
109.0	.3311	157.0	.3272
110.0	.3310	158.0	.3272
111.0	.3309	159.0	.3271
112.0	.3308	160.0	.3271
113.0	.3307	161.0	.3270
114.0	.3305	162.0	.3270
115.0	.3304	163.0	.3269
116.0	.3303	164.0	.3269
117.0	.3302	165.0	.3268
118.0	.3301	166.0	.3267
119.0	.3300	167.0	.3267
120.0	.3299	168.0	.3267
121.0	.3298	169.0	.3266
122.0	.3298	170.0	.3266
123.0	.3297	171.0	.3265
124.0	.3296	172.0	.3265
125.0	.3295	173.0	.3264
126.0	.3294	174.0	.3264
127.0	.3293	175.0	.3263
128.0	.3292	176.0	.3263
129.0	.3291	177.0	.3262
130.0	.3291	178.0	.3262
131.0	.3290	179.0	.3261
132.0	.3289	180.0	.3261
133.0	.3288	181.0	.3261
134.0	.3287	182.0	.3260
135.0	.3287	183.0	.3260
136.0	.3286	184.0	.3259
137.0	.3285	185.0	.3259
138.0	.3284	186.0	.3258
139.0	.3284	187.0	.3258
140.0	.3283	188.0	.3258
141.0	.3282	189.0	.3257
142.0	.3282	190.0	.3257
143.0	.3281	191.0	.3257
144.0	.3280	192.0	.3256
145.0	.3280	193.0	.3256
146.0	.3279	194.0	.3255
147.0	.3278	195.0	.3255
148.0	.3278	196.0	.3255
149.0	.3277	197.0	.3254
150.0	.3276	198.0	.3254
151.0	.3276	199.0	.3254
152.0	.3275	200.0	.3253
153.0	.3275	201.0	.3253
154.0	.3274	202.0	.3253
155.0	.3273	203.0	.3252

Table 4. Continued ($P/P_e = 1.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
1.5	3.5051
1.6	2.5213
1.7	2.0764
1.8	1.8099
1.9	1.6278
2.0	1.4935
2.1	1.3894
2.2	1.3057
2.3	1.2365
2.4	1.1782
2.5	1.1282
2.6	1.0848
2.7	1.0466
2.8	1.0127
2.9	.9824
3.0	.9550
3.1	.9302
3.2	.9076
3.3	.8869
3.4	.8678
3.5	.8502
3.6	.8338
3.7	.8186
3.8	.8044
3.9	.7911
4.0	.7787
4.1	.7670
4.2	.7559
4.3	.7455
4.4	.7356
4.5	.7263
4.6	.7174
4.7	.7089
4.8	.7009
4.9	.6933
5.0	.6859
5.1	.6790
5.2	.6723
5.3	.6659
5.4	.6597
5.5	.6538
5.6	.6482
5.7	.6427
5.8	.6375
5.9	.6325
6.0	.6276
6.1	.6229
6.2	.6184

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
6.3	.6140
6.4	.6098
6.5	.6057
6.6	.6017
6.7	.5979
6.8	.5942
6.9	.5906
7.0	.5871
7.1	.5837
7.2	.5804
7.3	.5772
7.4	.5741
7.5	.5711
7.6	.5682
7.7	.5653
7.8	.5625
7.9	.5598
8.0	.5572
8.1	.5546
8.2	.5521
8.3	.5497
8.4	.5473
8.5	.5450
8.6	.5427
8.7	.5405
8.8	.5383
8.9	.5362
9.0	.5341
9.1	.5321
9.2	.5301
9.3	.5282
9.4	.5263
9.5	.5245
9.6	.5226
9.7	.5209
9.8	.5191
9.9	.5174
10.0	.5158
10.1	.5141
10.2	.5125
10.3	.5110
10.4	.5094
10.5	.5079
10.6	.5064
10.7	.5050
10.8	.5035
10.9	.5021
11.0	.5008

Table 4. Continued ($P/P_e = 1.5$)

$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
KL/EI	KL/EI
11.1	.4994
11.2	.4981
11.3	.4968
11.4	.4955
11.5	.4943
11.6	.4930
11.7	.4918
11.8	.4906
11.9	.4894
12.0	.4883
12.1	.4872
12.2	.4860
12.3	.4849
12.4	.4839
12.5	.4828
12.6	.4818
12.7	.4807
12.8	.4797
12.9	.4787
13.0	.4777
13.1	.4768
13.2	.4758
13.3	.4749
13.4	.4739
13.5	.4730
13.6	.4721
13.7	.4713
13.8	.4704
13.9	.4695
14.0	.4687
14.1	.4678
14.2	.4670
14.3	.4662
14.4	.4654
14.5	.4646
14.6	.4638
14.7	.4631
14.8	.4623
14.9	.4616
15.0	.4608
15.1	.4601
15.2	.4594
15.3	.4587
15.4	.4580
15.5	.4573
15.6	.4566
15.7	.4559
15.8	.4553
15.9	.4546
16.0	.4539
16.1	.4533
16.2	.4527
16.3	.4520
16.4	.4514
16.5	.4508
16.6	.4502
16.7	.4496
16.8	.4490
16.9	.4484
17.0	.4479
17.1	.4473
17.2	.4467
17.3	.4462
17.4	.4456
17.5	.4451
17.6	.4446
17.7	.4440
17.8	.4435
17.9	.4430
18.0	.4425
18.1	.4420
18.2	.4415
18.3	.4410
18.4	.4405
18.5	.4400
18.6	.4395
18.7	.4390
18.8	.4385
18.9	.4381
19.0	.4376
19.1	.4372
19.2	.4367
19.3	.4363
19.4	.4358
19.5	.4354
19.6	.4349
19.7	.4345
19.8	.4341
19.9	.4337
20.0	.4333
20.1	.4328
20.2	.4324
20.3	.4320
20.4	.4316
20.5	.4312
20.6	.4308

Table 4. Continued ($P/P_e = 1.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
20.7	.4304	62.0	.3764
20.8	.4301	63.0	.3760
20.9	.4297	64.0	.3755
21.0	.4293	65.0	.3751
21.1	.4289	66.0	.3747
21.2	.4286	67.0	.3744
21.3	.4282	68.0	.3740
21.4	.4278	69.0	.3736
22.0	.4257	70.0	.3733
23.0	.4224	71.0	.3729
24.0	.4194	72.0	.3726
25.0	.4166	73.0	.3723
26.0	.4140	74.0	.3719
27.0	.4117	75.0	.3716
28.0	.4094	76.0	.3713
29.0	.4074	77.0	.3710
30.0	.4055	78.0	.3708
31.0	.4037	79.0	.3705
32.0	.4020	80.0	.3702
33.0	.4004	81.0	.3700
34.0	.3989	82.0	.3697
35.0	.3975	83.0	.3694
36.0	.3961	84.0	.3692
37.0	.3949	85.0	.3690
38.0	.3937	86.0	.3687
39.0	.3925	87.0	.3685
40.0	.3914	88.0	.3683
41.0	.3904	89.0	.3681
42.0	.3894	90.0	.3678
43.0	.3885	91.0	.3676
44.0	.3876	92.0	.3674
45.0	.3867	93.0	.3672
46.0	.3859	94.0	.3670
47.0	.3851	95.0	.3668
48.0	.3844	96.0	.3667
49.0	.3837	97.0	.3665
50.0	.3830	98.0	.3663
51.0	.3823	99.0	.3661
52.0	.3817	100.0	.3659
53.0	.3811	101.0	.3658
54.0	.3805	102.0	.3656
55.0	.3799	103.0	.3654
56.0	.3793	104.0	.3653
57.0	.3788	105.0	.3651
58.0	.3783	106.0	.3650
59.0	.3778	107.0	.3648
60.0	.3773	108.0	.3647
61.0	.3769	109.0	.3645

Table 4. Continued ($P/P_e = 1.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
110.0	.3644	158.0	.3596
111.0	.3642	159.0	.3596
112.0	.3641	160.0	.3595
113.0	.3640	161.0	.3594
114.0	.3638	162.0	.3594
115.0	.3637	163.0	.3593
116.0	.3636	164.0	.3592
117.0	.3634	165.0	.3592
118.0	.3633	166.0	.3591
119.0	.3632	167.0	.3590
120.0	.3631	168.0	.3590
121.0	.3630	169.0	.3589
122.0	.3628	170.0	.3589
123.0	.3627	171.0	.3588
124.0	.3626	172.0	.3587
125.0	.3625	173.0	.3587
126.0	.3624	174.0	.3586
127.0	.3623	175.0	.3586
128.0	.3622	176.0	.3585
129.0	.3621	177.0	.3585
130.0	.3620	178.0	.3584
131.0	.3619	179.0	.3584
132.0	.3618	180.0	.3583
133.0	.3617	181.0	.3582
134.0	.3616	182.0	.3582
135.0	.3615	183.0	.3581
136.0	.3614	184.0	.3581
137.0	.3613	185.0	.3580
138.0	.3612	186.0	.3580
139.0	.3611	187.0	.3579
140.0	.3610	188.0	.3579
141.0	.3609	189.0	.3578
142.0	.3609	190.0	.3578
143.0	.3608	191.0	.3577
144.0	.3607	192.0	.3577
145.0	.3606	193.0	.3577
146.0	.3605	194.0	.3576
147.0	.3604	195.0	.3576
148.0	.3604	196.0	.3575
149.0	.3603	197.0	.3575
150.0	.3602	198.0	.3574
151.0	.3601	199.0	.3574
152.0	.3601	200.0	.3573
153.0	.3600	201.0	.3573
154.0	.3599	202.0	.3573
155.0	.3598	203.0	.3572
156.0	.3598	204.0	.3572
157.0	.3597	205.0	.3571

Table 4. Continued ($P/P_e = 2.0$)

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
3.5	3.0741	8.3	.7147
3.6	2.5086	8.4	.7097
3.7	2.1762	8.5	.7049
3.8	1.9514	8.6	.7002
3.9	1.7867	8.7	.6957
4.0	1.6595	8.8	.6913
4.1	1.5575	8.9	.6871
4.2	1.4735	9.0	.6829
4.3	1.4027	9.1	.6789
4.4	1.3422	9.2	.6750
4.5	1.2895	9.3	.6712
4.6	1.2433	9.4	.6675
4.7	1.2023	9.5	.6639
4.8	1.1657	9.6	.6605
4.9	1.1326	9.7	.6571
5.0	1.1026	9.8	.6537
5.1	1.0753	9.9	.6505
5.2	1.0503	10.0	.6474
5.3	1.0272	10.1	.6443
5.4	1.0059	10.2	.6413
5.5	.9862	10.3	.6384
5.6	.9678	10.4	.6356
5.7	.9506	10.5	.6328
5.8	.9346	10.6	.6301
5.9	.9195	10.7	.6274
6.0	.9053	10.8	.6248
6.1	.8919	10.9	.6223
6.2	.8793	11.0	.6198
6.3	.8674	11.1	.6174
6.4	.8561	11.2	.6150
6.5	.8453	11.3	.6127
6.6	.8351	11.4	.6104
6.7	.8254	11.5	.6082
6.8	.8161	11.6	.6060
6.9	.8072	11.7	.6039
7.0	.7987	11.8	.6018
7.1	.7906	11.9	.5997
7.2	.7829	12.0	.5977
7.3	.7754	12.1	.5957
7.4	.7683	12.2	.5938
7.5	.7614	12.3	.5919
7.6	.7543	12.4	.5900
7.7	.7484	12.5	.5882
7.8	.7423	12.6	.5864
7.9	.7364	12.7	.5847
8.0	.7307	12.8	.5829
8.1	.7252	12.9	.5812
8.2	.7198	13.0	.5796

Table 4. Continued ($P/P_e = 2.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
13.1	.5780	17.9	.5232
13.2	.5763	18.0	.5224
13.3	.5748	18.1	.5217
13.4	.5732	18.2	.5209
13.5	.5717	18.3	.5201
13.6	.5702	18.4	.5193
13.7	.5687	18.5	.5186
13.8	.5673	18.6	.5179
13.9	.5658	18.7	.5171
14.0	.5644	18.8	.5164
14.1	.5631	18.9	.5157
14.2	.5617	19.0	.5150
14.3	.5604	19.1	.5143
14.4	.5591	19.2	.5136
14.5	.5578	19.3	.5129
14.6	.5565	19.4	.5122
14.7	.5552	19.5	.5115
14.8	.5540	19.6	.5109
14.9	.5528	19.7	.5102
15.0	.5516	19.8	.5096
15.1	.5504	19.9	.5089
15.2	.5492	20.0	.5083
15.3	.5481	20.1	.5077
15.4	.5470	20.2	.5070
15.5	.5459	20.3	.5064
15.6	.5448	20.4	.5058
15.7	.5437	20.5	.5052
15.8	.5426	20.6	.5046
15.9	.5416	20.7	.5040
16.0	.5405	20.8	.5034
16.1	.5395	20.9	.5029
16.2	.5385	21.0	.5023
16.3	.5375	21.1	.5017
16.4	.5365	21.2	.5012
16.5	.5355	21.3	.5006
16.6	.5346	21.4	.5001
16.7	.5336	21.5	.4995
16.8	.5327	21.6	.4990
16.9	.5318	21.7	.4985
17.0	.5309	21.8	.4979
17.1	.5300	21.9	.4974
17.2	.5291	22.0	.4969
17.3	.5282	22.1	.4964
17.4	.5274	22.2	.4959
17.5	.5265	22.3	.4954
17.6	.5257	22.4	.4949
17.7	.5249	22.5	.4944
17.8	.5241	22.6	.4939

Table 4. Continued ($P/P_e = 2.0$)

$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI
.4934	22.7
.4929	22.8
.4925	22.9
.4920	23.0
.4915	23.1
.4911	23.2
.4906	23.3
.4901	23.4
.4875	24.0
.4834	25.0
.4797	26.0
.4762	27.0
.4730	28.0
.4700	29.0
.4672	30.0
.4646	31.0
.4622	32.0
.4600	33.0
.4578	34.0
.4558	35.0
.4540	36.0
.4522	37.0
.4505	38.0
.4489	39.0
.4474	40.0
.4459	41.0
.4446	42.0
.4433	43.0
.4420	44.0
.4408	45.0
.4397	46.0
.4386	47.0
.4376	48.0
.4366	49.0
.4356	50.0
.4347	51.0
.4339	52.0
.4330	53.0
.4322	54.0
.4314	55.0
.4307	56.0
.4299	57.0
.4292	58.0
.4286	59.0
.4279	60.0
.4273	61.0
.4267	62.0
.4261	63.0

$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI
.4255	64.0
.4249	65.0
.4244	66.0
.4239	67.0
.4234	68.0
.4229	69.0
.4224	70.0
.4219	71.0
.4215	72.0
.4210	73.0
.4206	74.0
.4202	75.0
.4198	76.0
.4194	77.0
.4190	78.0
.4186	79.0
.4183	80.0
.4179	81.0
.4176	82.0
.4172	83.0
.4169	84.0
.4166	85.0
.4163	86.0
.4160	87.0
.4157	88.0
.4154	89.0
.4151	90.0
.4148	91.0
.4145	92.0
.4143	93.0
.4140	94.0
.4138	95.0
.4135	96.0
.4133	97.0
.4130	98.0
.4128	99.0
.4125	100.0
.4123	101.0
.4121	102.0
.4119	103.0
.4117	104.0
.4115	105.0
.4113	106.0
.4110	107.0
.4109	108.0
.4107	109.0
.4105	110.0
.4103	111.0

Table 4. Continued ($P/P_e = 2.0$)

$$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$$

KL/EI	
112.0	.401
113.0	.4099
114.0	.4097
115.0	.4096
116.0	.4094
117.0	.4092
118.0	.4091
119.0	.4089
120.0	.4087
121.0	.4086
122.0	.4084
123.0	.4083
124.0	.4081
125.0	.4080
126.0	.4078
127.0	.4077
128.0	.4075
129.0	.4074
130.0	.4073
131.0	.4071
132.0	.4070
133.0	.4069
134.0	.4068
135.0	.4066
136.0	.4065
137.0	.4064
138.0	.4063
139.0	.4061
140.0	.4060
141.0	.4059
142.0	.4058
143.0	.4057
144.0	.4056
145.0	.4055
146.0	.4054
147.0	.4052
148.0	.4051
149.0	.4050
150.0	.4049
151.0	.4048
152.0	.4047
153.0	.4046
154.0	.4045
155.0	.4045
156.0	.4044
157.0	.4043
158.0	.4042
159.0	.4041

$$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$$

KL/EI	
160.0	.4040
161.0	.4039
162.0	.4038
163.0	.4037
164.0	.4036
165.0	.4036
166.0	.4035
167.0	.4034
168.0	.4033
169.0	.4032
170.0	.4032
171.0	.4031
172.0	.4030
173.0	.4029
174.0	.4028
175.0	.4028
176.0	.4027
177.0	.4026
178.0	.4026
179.0	.4025
180.0	.4024
181.0	.4023
182.0	.4023
183.0	.4022
184.0	.4021
185.0	.4021
186.0	.4020
187.0	.4019
188.0	.4019
189.0	.4018
190.0	.4017
191.0	.4017
192.0	.4016
193.0	.4016
194.0	.4015
195.0	.4014
196.0	.4014
197.0	.4013
198.0	.4013
199.0	.4012
200.0	.4012
201.0	.4011
202.0	.4010
203.0	.4010
204.0	.4009
205.0	.4009
206.0	.4008
207.0	.4008

Table 4. Continued ($P/P_e = 2.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
6.5	3.7009
6.6	3.0719
6.7	2.6870
6.8	2.4211
6.9	2.2235
7.0	2.0693
7.1	1.9448
7.2	1.8416
7.3	1.7543
7.4	1.6792
7.5	1.6138
7.6	1.5562
7.7	1.5050
7.8	1.4591
7.9	1.4176
8.0	1.3799
8.1	1.3455
8.2	1.3139
8.3	1.2848
8.4	1.2578
8.5	1.2328
8.6	1.2095
8.7	1.1877
8.8	1.1672
8.9	1.1481
9.0	1.1300
9.1	1.1130
9.2	1.0968
9.3	1.0816
9.4	1.0671
9.5	1.0534
9.6	1.0403
9.7	1.0278
9.8	1.0159
9.9	1.0045
10.0	.9936
10.1	.9832
10.2	.9732
10.3	.9636
10.4	.9544
10.5	.9455
10.6	.9370
10.7	.9288
10.8	.9208
10.9	.9132
11.0	.9058
11.1	.8987
11.2	.8918

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
11.3	.8851
11.4	.8787
11.5	.8724
11.6	.8664
11.7	.8605
11.8	.8548
11.9	.8492
12.0	.8439
12.1	.8386
12.2	.8336
12.3	.8286
12.4	.8238
12.5	.8192
12.6	.8146
12.7	.8102
12.8	.8058
12.9	.8016
13.0	.7975
13.1	.7935
13.2	.7896
13.3	.7858
13.4	.7820
13.5	.7784
13.6	.7748
13.7	.7714
13.8	.7680
13.9	.7646
14.0	.7614
14.1	.7582
14.2	.7551
14.3	.7520
14.4	.7490
14.5	.7461
14.6	.7432
14.7	.7404
14.8	.7377
14.9	.7350
15.0	.7323
15.1	.7297
15.2	.7272
15.3	.7247
15.4	.7222
15.5	.7198
15.6	.7174
15.7	.7151
15.8	.7128
15.9	.7106
16.0	.7084

Table 4. Continued ($P/P_e = 2.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
16.1	.7062	20.9	.6334
16.2	.7041	21.0	.6323
16.3	.7020	21.1	.6313
16.4	.7000	21.2	.6302
16.5	.6979	21.3	.6292
16.6	.6960	21.4	.6282
16.7	.6940	21.5	.6272
16.8	.6921	21.6	.6262
16.9	.6902	21.7	.6252
17.0	.6883	21.8	.6242
17.1	.6865	21.9	.6233
17.2	.6847	22.0	.6223
17.3	.6829	22.1	.6214
17.4	.6812	22.2	.6204
17.5	.6795	22.3	.6195
17.6	.6778	22.4	.6186
17.7	.6761	22.5	.6177
17.8	.6745	22.6	.6168
17.9	.6728	22.7	.6159
18.0	.6713	22.8	.6151
18.1	.6697	22.9	.6142
18.2	.6681	23.0	.6133
18.3	.6666	23.1	.6125
18.4	.6651	23.2	.6117
18.5	.6636	23.3	.6108
18.6	.6622	23.4	.6100
18.7	.6607	23.5	.6092
18.8	.6593	23.6	.6084
18.9	.6579	23.7	.6076
19.0	.6565	23.8	.6068
19.1	.6551	23.9	.6060
19.2	.6538	24.0	.6053
19.3	.6525	24.1	.6045
19.4	.6512	24.2	.6038
19.5	.6499	24.3	.6030
19.6	.6486	24.4	.6023
19.7	.6473	24.5	.6015
19.8	.6461	24.6	.6008
19.9	.6449	24.7	.6001
20.0	.6437	24.8	.5994
20.1	.6425	24.9	.5987
20.2	.6413	25.0	.5980
20.3	.6401	25.1	.5973
20.4	.6390	25.2	.5966
20.5	.6378	25.3	.5959
20.6	.6367	25.4	.5953
20.7	.6356	25.5	.5946
20.8	.6345	25.6	.5939

Table 4. Continued ($P/P_e = 2.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
25.7	.5933
25.8	.5926
25.9	.5920
26.0	.5913
26.1	.5907
26.2	.5901
26.3	.5895
26.4	.5889
27.0	.5853
28.0	.5797
29.0	.5746
30.0	.5699
31.0	.5656
32.0	.5615
33.0	.5577
34.0	.5542
35.0	.5509
36.0	.5478
37.0	.5449
38.0	.5421
39.0	.5395
40.0	.5371
41.0	.5348
42.0	.5326
43.0	.5305
44.0	.5285
45.0	.5267
46.0	.5249
47.0	.5231
48.0	.5215
49.0	.5199
50.0	.5185
51.0	.5170
52.0	.5156
53.0	.5143
54.0	.5131
55.0	.5118
56.0	.5107
57.0	.5096
58.0	.5085
59.0	.5074
60.0	.5064
61.0	.5054
62.0	.5045
63.0	.5036
64.0	.5027
65.0	.5019
66.0	.5010

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
67.0	.5002
68.0	.4995
69.0	.4987
70.0	.4980
71.0	.4973
72.0	.4966
73.0	.4959
74.0	.4953
75.0	.4947
76.0	.4940
77.0	.4934
78.0	.4929
79.0	.4923
80.0	.4918
81.0	.4912
82.0	.4907
83.0	.4902
84.0	.4897
85.0	.4892
86.0	.4887
87.0	.4883
88.0	.4878
89.0	.4874
90.0	.4870
91.0	.4865
92.0	.4861
93.0	.4857
94.0	.4853
95.0	.4850
96.0	.4846
97.0	.4842
98.0	.4839
99.0	.4835
100.0	.4832
101.0	.4828
102.0	.4825
103.0	.4822
104.0	.4819
105.0	.4815
106.0	.4812
107.0	.4809
108.0	.4806
109.0	.4804
110.0	.4801
111.0	.4798
112.0	.4795
113.0	.4793
114.0	.4790

Table 4. Continued ($P/P_e = 2.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
115.0	.4787	163.0	.4702
116.0	.4785	164.0	.4700
117.0	.4782	165.0	.4699
118.0	.4780	166.0	.4698
119.0	.4778	167.0	.4697
120.0	.4775	168.0	.4696
121.0	.4773	169.0	.4694
122.0	.4771	170.0	.4693
123.0	.4768	171.0	.4692
124.0	.4766	172.0	.4691
125.0	.4764	173.0	.4690
126.0	.4762	174.0	.4689
127.0	.4760	175.0	.4688
128.0	.4758	176.0	.4687
129.0	.4756	177.0	.4686
130.0	.4754	178.0	.4684
131.0	.4752	179.0	.4683
132.0	.4750	180.0	.4682
133.0	.4748	181.0	.4681
134.0	.4746	182.0	.4680
135.0	.4744	183.0	.4679
136.0	.4742	184.0	.4678
137.0	.4740	185.0	.4677
138.0	.4739	186.0	.4676
139.0	.4737	187.0	.4676
140.0	.4735	188.0	.4675
141.0	.4734	189.0	.4674
142.0	.4732	190.0	.4673
143.0	.4730	191.0	.4672
144.0	.4729	192.0	.4671
145.0	.4727	193.0	.4670
146.0	.4725	194.0	.4669
147.0	.4724	195.0	.4668
148.0	.4722	196.0	.4667
149.0	.4721	197.0	.4667
150.0	.4719	198.0	.4666
151.0	.4718	199.0	.4665
152.0	.4716	200.0	.4664
153.0	.4715	201.0	.4663
154.0	.4714	202.0	.4662
155.0	.4712	203.0	.4662
156.0	.4711	204.0	.4661
157.0	.4709	205.0	.4660
158.0	.4708	206.0	.4659
159.0	.4707	207.0	.4658
160.0	.4705	208.0	.4658
161.0	.4704	209.0	.4657
162.0	.4703	210.0	.4656

Table 4. Continued ($P/P_e = 3.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
12.5	3.3257	17.3	1.1913
12.6	3.0693	17.4	1.1827
12.7	2.8661	17.5	1.1743
12.8	2.7000	17.6	1.1662
12.9	2.5611	17.7	1.1583
13.0	2.4427	17.8	1.1506
13.1	2.3402	17.9	1.1432
13.2	2.2505	18.0	1.1359
13.3	2.1711	18.1	1.1288
13.4	2.1001	18.2	1.1219
13.5	2.0363	18.3	1.1152
13.6	1.9785	18.4	1.1086
13.7	1.9258	18.5	1.1022
13.8	1.8775	18.6	1.0960
13.9	1.8331	18.7	1.0899
14.0	1.7921	18.8	1.0840
14.1	1.7541	18.9	1.0782
14.2	1.7186	19.0	1.0725
14.3	1.6856	19.1	1.0670
14.4	1.6546	19.2	1.0616
14.5	1.6256	19.3	1.0563
14.6	1.5983	19.4	1.0511
14.7	1.5725	19.5	1.0460
14.8	1.5481	19.6	1.0411
14.9	1.5251	19.7	1.0362
15.0	1.5032	19.8	1.0315
15.1	1.4825	19.9	1.0269
15.2	1.4627	20.0	1.0223
15.3	1.4439	20.1	1.0178
15.4	1.4259	20.2	1.0135
15.5	1.4087	20.3	1.0092
15.6	1.3923	20.4	1.0050
15.7	1.3766	20.5	1.0009
15.8	1.3615	20.6	.9968
15.9	1.3470	20.7	.9929
16.0	1.3331	20.8	.9890
16.1	1.3197	20.9	.9852
16.2	1.3069	21.0	.9814
16.3	1.2945	21.1	.9777
16.4	1.2825	21.2	.9741
16.5	1.2710	21.3	.9706
16.6	1.2593	21.4	.9671
16.7	1.2491	21.5	.9637
16.8	1.2386	21.6	.9603
16.9	1.2286	21.7	.9570
17.0	1.2183	21.8	.9537
17.1	1.2094	21.9	.9505
17.2	1.2002	22.0	.9474

Table 4. Continued ($P/P_e = 3.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
22.1	.9443
22.2	.9412
22.3	.9382
22.4	.9353
22.5	.9324
22.6	.9295
22.7	.9267
22.8	.9240
22.9	.9212
23.0	.9186
23.1	.9159
23.2	.9133
23.3	.9108
23.4	.9082
23.5	.9057
23.6	.9033
23.7	.9009
23.8	.8985
23.9	.8961
24.0	.8938
24.1	.8915
24.2	.8893
24.3	.8871
24.4	.8849
24.5	.8827
24.6	.8806
24.7	.8785
24.8	.8764
24.9	.8743
25.0	.8723
25.1	.8703
25.2	.8684
25.3	.8664
25.4	.8645
25.5	.8626
25.6	.8607
25.7	.8589
25.8	.8570
25.9	.8552
26.0	.8535
26.1	.8517
26.2	.8500
26.3	.8482
26.4	.8465
26.5	.8449
26.6	.8432
26.7	.8416
26.8	.8399

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
26.9	.8383
27.0	.8368
27.1	.8352
27.2	.8336
27.3	.8321
27.4	.8306
27.5	.8291
27.6	.8276
27.7	.8262
27.8	.8247
27.9	.8233
28.0	.8219
28.1	.8205
28.2	.8191
28.3	.8177
28.4	.8163
28.5	.8150
28.6	.8137
28.7	.8123
28.8	.8110
28.9	.8098
29.0	.8085
29.1	.8072
29.2	.8060
29.3	.8047
29.4	.8035
29.5	.8023
29.6	.8011
29.7	.7999
29.8	.7987
29.9	.7975
30.0	.7964
30.1	.7952
30.2	.7941
30.3	.7930
30.4	.7919
30.5	.7908
30.6	.7897
30.7	.7886
30.8	.7875
30.9	.7865
31.0	.7854
31.1	.7844
31.2	.7833
31.3	.7823
31.4	.7813
31.5	.7803
31.6	.7793

Table 4. Continued ($P/P_e = 3.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
31.7	.7783
31.8	.7773
31.9	.7764
32.0	.7754
32.1	.7745
32.2	.7735
32.3	.7726
32.4	.7716
33.0	.7662
34.0	.7578
35.0	.7500
36.0	.7428
37.0	.7361
38.0	.7299
39.0	.7240
40.0	.7186
41.0	.7135
42.0	.7087
43.0	.7041
44.0	.6999
45.0	.6958
46.0	.6920
47.0	.6884
48.0	.6850
49.0	.6817
50.0	.6786
51.0	.6756
52.0	.6728
53.0	.6701
54.0	.6675
55.0	.6650
56.0	.6627
57.0	.6604
58.0	.6582
59.0	.6561
60.0	.6541
61.0	.6522
62.0	.6503
63.0	.6485
64.0	.6468
65.0	.6451
66.0	.6435
67.0	.6420
68.0	.6404
69.0	.6390
70.0	.6376
71.0	.6362
72.0	.6349

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
73.0	.6336
74.0	.6324
75.0	.6312
76.0	.6300
77.0	.6289
78.0	.6278
79.0	.6267
80.0	.6256
81.0	.6246
82.0	.6236
83.0	.6227
84.0	.6217
85.0	.6208
86.0	.6199
87.0	.6191
88.0	.6182
89.0	.6174
90.0	.6166
91.0	.6158
92.0	.6151
93.0	.6143
94.0	.6136
95.0	.6129
96.0	.6122
97.0	.6115
98.0	.6108
99.0	.6102
100.0	.6095
101.0	.6089
102.0	.6083
103.0	.6077
104.0	.6071
105.0	.6066
106.0	.6060
107.0	.6054
108.0	.6049
109.0	.6044
110.0	.6039
111.0	.6034
112.0	.6029
113.0	.6024
114.0	.6019
115.0	.6014
116.0	.6010
117.0	.6005
118.0	.6001
119.0	.5996
120.0	.5992

Table 4. Continued ($P/P_e = 3.0$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
121.0	.5988	169.0	.5847
122.0	.5984	170.0	.5845
123.0	.5979	171.0	.5843
124.0	.5975	172.0	.5841
125.0	.5972	173.0	.5839
126.0	.5968	174.0	.5837
127.0	.5964	175.0	.5835
128.0	.5960	176.0	.5833
129.0	.5956	177.0	.5831
130.0	.5953	178.0	.5829
131.0	.5949	179.0	.5827
132.0	.5946	180.0	.5825
133.0	.5942	181.0	.5824
134.0	.5939	182.0	.5822
135.0	.5936	183.0	.5820
136.0	.5932	184.0	.5818
137.0	.5929	185.0	.5817
138.0	.5926	186.0	.5815
139.0	.5923	187.0	.5813
140.0	.5920	188.0	.5812
141.0	.5917	189.0	.5810
142.0	.5914	190.0	.5808
143.0	.5911	191.0	.5807
144.0	.5908	192.0	.5805
145.0	.5905	193.0	.5804
146.0	.5902	194.0	.5802
147.0	.5899	195.0	.5800
148.0	.5896	196.0	.5799
149.0	.5894	197.0	.5797
150.0	.5891	198.0	.5796
151.0	.5888	199.0	.5794
152.0	.5886	200.0	.5793
153.0	.5883	201.0	.5792
154.0	.5881	202.0	.5790
155.0	.5878	203.0	.5789
156.0	.5876	204.0	.5787
157.0	.5873	205.0	.5786
158.0	.5871	206.0	.5785
159.0	.5869	207.0	.5783
160.0	.5866	208.0	.5782
161.0	.5864	209.0	.5781
162.0	.5862	210.0	.5779
163.0	.5860	211.0	.5778
164.0	.5857	212.0	.5777
165.0	.5855	213.0	.5775
166.0	.5853	214.0	.5774
167.0	.5851	215.0	.5773
168.0	.5849	216.0	.5772

Table 4. Continued ($P/P_e = 3.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
30.0	3.6597	34.8	1.9853
30.1	3.5609	34.9	1.9725
30.2	3.4702	35.0	1.9601
30.3	3.3866	35.1	1.9479
30.4	3.3091	35.2	1.9360
30.5	3.2370	35.3	1.9243
30.6	3.1698	35.4	1.9130
30.7	3.1070	35.5	1.9018
30.8	3.0481	35.6	1.8910
30.9	2.9926	35.7	1.8803
31.0	2.9404	35.8	1.8699
31.1	2.8910	35.9	1.8597
31.2	2.8443	36.0	1.8497
31.3	2.8000	36.1	1.8399
31.4	2.7580	36.2	1.8303
31.5	2.7179	36.3	1.8209
31.6	2.6798	36.4	1.8117
31.7	2.6434	36.5	1.8027
31.8	2.6086	36.6	1.7938
31.9	2.5753	36.7	1.7851
32.0	2.5435	36.8	1.7766
32.1	2.5129	36.9	1.7682
32.2	2.4836	37.0	1.7600
32.3	2.4554	37.1	1.7520
32.4	2.4283	37.2	1.7440
32.5	2.4021	37.3	1.7363
32.6	2.3770	37.4	1.7286
32.7	2.3527	37.5	1.7211
32.8	2.3293	37.6	1.7137
32.9	2.3067	37.7	1.7065
33.0	2.2846	37.8	1.6994
33.1	2.2636	37.9	1.6923
33.2	2.2431	38.0	1.6855
33.3	2.2233	38.1	1.6787
33.4	2.2041	38.2	1.6720
33.5	2.1854	38.3	1.6654
33.6	2.1673	38.4	1.6590
33.7	2.1498	38.5	1.6526
33.8	2.1327	38.6	1.6464
33.9	2.1161	38.7	1.6402
34.0	2.1000	38.8	1.6342
34.1	2.0843	38.9	1.6282
34.2	2.0690	39.0	1.6223
34.3	2.0542	39.1	1.6165
34.4	2.0397	39.2	1.6108
34.5	2.0256	39.3	1.6052
34.6	2.0118	39.4	1.5997
34.7	1.9984	39.5	1.5942

Table 4. Continued ($P/P_e = 3.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
39.6	1.5888	44.4	1.3973
39.7	1.5835	44.5	1.3944
39.8	1.5783	44.6	1.3914
39.9	1.5731	44.7	1.3885
40.0	1.5680	44.8	1.3856
40.1	1.5630	44.9	1.3828
40.2	1.5581	45.0	1.3799
40.3	1.5532	45.1	1.3771
40.4	1.5484	45.2	1.3744
40.5	1.5436	45.3	1.3716
40.6	1.5390	45.4	1.3689
40.7	1.5343	45.5	1.3662
40.8	1.5298	45.6	1.3635
40.9	1.5253	45.7	1.3609
41.0	1.5208	45.8	1.3583
41.1	1.5164	45.9	1.3557
41.2	1.5121	46.0	1.3531
41.3	1.5078	46.1	1.3506
41.4	1.5036	46.2	1.3481
41.5	1.4994	46.3	1.3456
41.6	1.4953	46.4	1.3431
41.7	1.4912	46.5	1.3406
41.8	1.4872	46.6	1.3382
41.9	1.4832	46.7	1.3358
42.0	1.4793	46.8	1.3334
42.1	1.4754	46.9	1.3311
42.2	1.4716	47.0	1.3287
42.3	1.4678	47.1	1.3264
42.4	1.4641	47.2	1.3241
42.5	1.4604	47.3	1.3218
42.6	1.4567	47.4	1.3196
42.7	1.4531	47.5	1.3173
42.8	1.4495	47.6	1.3151
42.9	1.4460	47.7	1.3129
43.0	1.4425	47.8	1.3107
43.1	1.4390	47.9	1.3085
43.2	1.4356	48.0	1.3064
43.3	1.4322	48.1	1.3043
43.4	1.4289	48.2	1.3022
43.5	1.4256	48.3	1.3001
43.6	1.4223	48.4	1.2980
43.7	1.4191	48.5	1.2959
43.8	1.4159	48.6	1.2939
43.9	1.4127	48.7	1.2919
44.0	1.4096	48.8	1.2899
44.1	1.4065	48.9	1.2879
44.2	1.4034	49.0	1.2859
44.3	1.4004	49.1	1.2840

Table 4. Continued ($P/P_e = 3.5$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
49.2	1.2820
49.3	1.2801
49.4	1.2782
49.5	1.2763
49.6	1.2744
49.7	1.2725
49.8	1.2707
49.9	1.2688
50.0	1.2670
51.0	1.2496
52.0	1.2333
53.0	1.2182
54.0	1.2042
55.0	1.1910
56.0	1.1786
57.0	1.1670
58.0	1.1561
59.0	1.1458
60.0	1.1360
61.0	1.1268
62.0	1.1180
63.0	1.1097
64.0	1.1018
65.0	1.0943
66.0	1.0871
67.0	1.0803
68.0	1.0737
69.0	1.0675
70.0	1.0615
71.0	1.0557
72.0	1.0502
73.0	1.0449
74.0	1.0399
75.0	1.0350
76.0	1.0303
77.0	1.0257
78.0	1.0214
79.0	1.0172
80.0	1.0131
81.0	1.0092
82.0	1.0054
83.0	1.0017
84.0	.9981
85.0	.9947
86.0	.9914
87.0	.9881
88.0	.9850
89.0	.9820

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
90.0	.9790
91.0	.9762
92.0	.9734
93.0	.9707
94.0	.9681
95.0	.9655
96.0	.9630
97.0	.9606
98.0	.9583
99.0	.9560
100.0	.9537
101.0	.9515
102.0	.9494
103.0	.9473
104.0	.9453
105.0	.9434
106.0	.9414
107.0	.9395
108.0	.9377
109.0	.9359
110.0	.9342
111.0	.9324
112.0	.9308
113.0	.9291
114.0	.9275
115.0	.9259
116.0	.9244
117.0	.9229
118.0	.9214
119.0	.9200
120.0	.9186
121.0	.9172
122.0	.9158
123.0	.9145
124.0	.9132
125.0	.9119
126.0	.9106
127.0	.9094
128.0	.9082
129.0	.9070
130.0	.9059
131.0	.9047
132.0	.9036
133.0	.9025
134.0	.9014
135.0	.9003
136.0	.8993
137.0	.8983

Table 4. Continued ($P/P_e = 3.5$)

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
138.0	.8973	186.0	.8632
139.0	.8963	187.0	.8627
140.0	.8953	188.0	.8622
141.0	.8943	189.0	.8617
142.0	.8934	190.0	.8612
143.0	.8924	191.0	.8607
144.0	.8915	192.0	.8602
145.0	.8906	193.0	.8598
146.0	.8897	194.0	.8593
147.0	.8889	195.0	.8589
148.0	.8880	196.0	.8584
149.0	.8872	197.0	.8580
150.0	.8863	198.0	.8575
151.0	.8855	199.0	.8571
152.0	.8847	200.0	.8567
153.0	.8839	201.0	.8562
154.0	.8832	202.0	.8558
155.0	.8824	203.0	.8554
156.0	.8816	204.0	.8550
157.0	.8809	205.0	.8546
158.0	.8801	206.0	.8542
159.0	.8794	207.0	.8538
160.0	.8787	208.0	.8534
161.0	.8780	209.0	.8530
162.0	.8773	210.0	.8526
163.0	.8766	211.0	.8522
164.0	.8759	212.0	.8518
165.0	.8753	213.0	.8515
166.0	.8746	214.0	.8511
167.0	.8740	215.0	.8507
168.0	.8733	216.0	.8504
169.0	.8727	217.0	.8500
170.0	.8721	218.0	.8496
171.0	.8715	219.0	.8493
172.0	.8709	220.0	.8489
173.0	.8703	221.0	.8486
174.0	.8697	222.0	.8483
175.0	.8691	223.0	.8479
176.0	.8685	224.0	.8476
177.0	.8680	225.0	.8473
178.0	.8674	226.0	.8469
179.0	.8668	227.0	.8466
180.0	.8663	228.0	.8463
181.0	.8658	229.0	.8460
182.0	.8652	230.0	.8456
183.0	.8647	231.0	.8453
184.0	.8642	232.0	.8450
185.0	.8637	233.0	.8447

Table 4. Continued ($P/P_e = 3.75$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
70.0	3.1424
70.1	3.1280
70.2	3.1138
70.3	3.0999
70.4	3.0861
70.5	3.0726
70.6	3.0593
70.7	3.0463
70.8	3.0334
70.9	3.0207
71.0	3.0082
71.1	2.9958
71.2	2.9837
71.3	2.9717
71.4	2.9600
71.5	2.9483
71.6	2.9369
71.7	2.9256
71.8	2.9144
71.9	2.9035
72.0	2.8926
72.1	2.8819
72.2	2.8714
72.3	2.8610
72.4	2.8507
72.5	2.8406
72.6	2.8306
72.7	2.8207
72.8	2.8110
72.9	2.8014
73.0	2.7919
73.1	2.7825
73.2	2.7733
73.3	2.7641
73.4	2.7551
73.5	2.7462
73.6	2.7374
73.7	2.7286
73.8	2.7200
73.9	2.7115
74.0	2.7031
74.1	2.6948
74.2	2.6866
74.3	2.6785
74.4	2.6705
74.5	2.6626
74.6	2.6547
74.7	2.6470

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
74.8	2.6393
74.9	2.6317
75.0	2.6242
75.1	2.6168
75.2	2.6095
75.3	2.6022
75.4	2.5950
75.5	2.5879
75.6	2.5809
75.7	2.5740
75.8	2.5671
75.9	2.5603
76.0	2.5535
76.1	2.5468
76.2	2.5402
76.3	2.5337
76.4	2.5272
76.5	2.5208
76.6	2.5145
76.7	2.5082
76.8	2.5020
76.9	2.4958
77.0	2.4897
77.1	2.4837
77.2	2.4777
77.3	2.4718
77.4	2.4659
77.5	2.4601
77.6	2.4543
77.7	2.4486
77.8	2.4430
77.9	2.4374
78.0	2.4318
78.1	2.4263
78.2	2.4209
78.3	2.4155
78.4	2.4101
78.5	2.4048
78.6	2.3996
78.7	2.3944
78.8	2.3892
78.9	2.3841
79.0	2.3790
79.1	2.3740
79.2	2.3690
79.3	2.3641
79.4	2.3592
79.5	2.3543

Table 4. Continued ($P/P_e = 3.75$)

KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	KL/EI	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
79.6	2.3495	84.4	2.1576
79.7	2.3447	84.5	2.1543
79.8	2.3400	84.6	2.1510
79.9	2.3353	84.7	2.1477
80.0	2.3306	84.8	2.1444
80.1	2.3260	84.9	2.1412
80.2	2.3214	85.0	2.1380
80.3	2.3168	85.1	2.1348
80.4	2.3123	85.2	2.1316
80.5	2.3079	85.3	2.1285
80.6	2.3034	85.4	2.1253
80.7	2.2990	85.5	2.1222
80.8	2.2947	85.6	2.1191
80.9	2.2903	85.7	2.1160
81.0	2.2860	85.8	2.1130
81.1	2.2818	85.9	2.1100
81.2	2.2775	86.0	2.1070
81.3	2.2733	86.1	2.1040
81.4	2.2692	86.2	2.1010
81.5	2.2650	86.3	2.0980
81.6	2.2609	86.4	2.0951
81.7	2.2569	86.5	2.0922
81.8	2.2528	86.6	2.0893
81.9	2.2488	86.7	2.0864
82.0	2.2448	86.8	2.0835
82.1	2.2409	86.9	2.0807
82.2	2.2370	87.0	2.0779
82.3	2.2331	87.1	2.0751
82.4	2.2292	87.2	2.0723
82.5	2.2254	87.3	2.0695
82.6	2.2216	87.4	2.0667
82.7	2.2178	87.5	2.0640
82.8	2.2141	87.6	2.0613
82.9	2.2103	87.7	2.0586
83.0	2.2066	87.8	2.0559
83.1	2.2030	87.9	2.0532
83.2	2.1993	88.0	2.0505
83.3	2.1957	88.1	2.0479
83.4	2.1921	88.2	2.0453
83.5	2.1886	88.3	2.0427
83.6	2.1850	88.4	2.0401
83.7	2.1815	88.5	2.0375
83.8	2.1780	88.6	2.0349
83.9	2.1746	88.7	2.0324
84.0	2.1711	88.8	2.0298
84.1	2.1677	88.9	2.0273
84.2	2.1643	89.0	2.0248
84.3	2.1609	89.1	2.0223

Table 4. Continued ($P/P_e = 3.75$)

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$	$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
89.2	2.0198	130.0	1.5486
89.3	2.0174	131.0	1.5432
89.4	2.0149	132.0	1.5379
89.5	2.0125	133.0	1.5327
89.6	2.0101	134.0	1.5277
89.7	2.0076	135.0	1.5227
89.8	2.0053	136.0	1.5179
89.9	2.0029	137.0	1.5132
90.0	2.0005	138.0	1.5087
91.0	1.9775	139.0	1.5042
92.0	1.9558	140.0	1.4998
93.0	1.9351	141.0	1.4955
94.0	1.9155	142.0	1.4913
95.0	1.8969	143.0	1.4872
96.0	1.8791	144.0	1.4832
97.0	1.8621	145.0	1.4793
98.0	1.8459	146.0	1.4754
99.0	1.8304	147.0	1.4716
100.0	1.8156	148.0	1.4679
101.0	1.8014	149.0	1.4643
102.0	1.7878	150.0	1.4608
103.0	1.7747	151.0	1.4573
104.0	1.7621	152.0	1.4539
105.0	1.7500	153.0	1.4506
106.0	1.7384	154.0	1.4473
107.0	1.7272	155.0	1.4441
108.0	1.7164	156.0	1.4409
109.0	1.7059	157.0	1.4378
110.0	1.6959	158.0	1.4348
111.0	1.6861	159.0	1.4318
112.0	1.6767	160.0	1.4288
113.0	1.6677	161.0	1.4260
114.0	1.6589	162.0	1.4231
115.0	1.6503	163.0	1.4204
116.0	1.6421	164.0	1.4176
117.0	1.6341	165.0	1.4149
118.0	1.6263	166.0	1.4123
119.0	1.6188	167.0	1.4097
120.0	1.6115	168.0	1.4072
121.0	1.6044	169.0	1.4047
122.0	1.5975	170.0	1.4022
123.0	1.5908	171.0	1.3998
124.0	1.5843	172.0	1.3974
125.0	1.5779	173.0	1.3950
126.0	1.5717	174.0	1.3927
127.0	1.5657	175.0	1.3905
128.0	1.5599	176.0	1.3882
129.0	1.5542	177.0	1.3860

Table 4. Continued ($P/P_e = 3.75$)

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
226.0	1.3085
227.0	1.3074
228.0	1.3063
229.0	1.3051
230.0	1.3040
231.0	1.3030
232.0	1.3019
233.0	1.3008
234.0	1.2998
235.0	1.2987
236.0	1.2977
237.0	1.2967
238.0	1.2956
239.0	1.2946
240.0	1.2936
241.0	1.2927
242.0	1.2917
243.0	1.2907
244.0	1.2898
245.0	1.2888
246.0	1.2879
247.0	1.2870
248.0	1.2861
249.0	1.2852
250.0	1.2843
251.0	1.2834
252.0	1.2825
253.0	1.2816
254.0	1.2808
255.0	1.2799
256.0	1.2791
257.0	1.2783
258.0	1.2774
259.0	1.2766
260.0	1.2758
261.0	1.2750
262.0	1.2742
263.0	1.2734
264.0	1.2726
265.0	1.2718
266.0	1.2711
267.0	1.2703
268.0	1.2696
269.0	1.2688
270.0	1.2681
271.0	1.2673
272.0	1.2666
273.0	1.2659

$\frac{KL}{EI}$	$\frac{T_0}{L^2} \sqrt{\frac{EI}{\rho}}$
178.0	1.3839
179.0	1.3817
180.0	1.3796
181.0	1.3776
182.0	1.3755
183.0	1.3735
184.0	1.3715
185.0	1.3696
186.0	1.3677
187.0	1.3658
188.0	1.3639
189.0	1.3621
190.0	1.3602
191.0	1.3585
192.0	1.3567
193.0	1.3550
194.0	1.3532
195.0	1.3515
196.0	1.3499
197.0	1.3482
198.0	1.3466
199.0	1.3450
200.0	1.3434
201.0	1.3419
202.0	1.3403
203.0	1.3388
204.0	1.3373
205.0	1.3358
206.0	1.3344
207.0	1.3329
208.0	1.3315
209.0	1.3301
210.0	1.3287
211.0	1.3273
212.0	1.3259
213.0	1.3246
214.0	1.3233
215.0	1.3220
216.0	1.3207
217.0	1.3194
218.0	1.3181
219.0	1.3169
220.0	1.3156
221.0	1.3144
222.0	1.3132
223.0	1.3120
224.0	1.3108
225.0	1.3097

FIGURES

Figure 1. Problem Definition

Figure 2. Finite Difference Node Definition

Figure 3. Plot of Instability Regions for a Pinned-Pinned Column (Ref. 1 and 5)

Figure 4. Effect on the Time Increment (Δt) on the Numerical Stability of the Program

Figure 5. Plot of Ω_1/ω vs KL/EI for Equal End Stiffness

Figure 6. Plot of Ω_2/ω vs KL/EI for Equal End Stiffness

$$\Omega = 2\omega$$

$$\Omega = 1.956\omega$$

$$\Omega = 1.912\omega$$

Figure 7. Typical Deflection - Time Response at the First Critical Frequency ($K=2000$, $S=4$)

$$\Omega = \omega$$

(Critical Frequency)

$$\Omega = .97\omega$$

$$\Omega = .94\omega$$

Figure 8. Typical Deflection - Time Response at the Second Critical Frequency ($K=2000$, $S=4$)

Figure 9. Graph of Equation (h) for Certain Values of P/\bar{P}_e with KL/EI Varying From 0 to 1000. P/\bar{P}_e Varies From 0 to 3.5 in .5 Increments With the Final One Equal to 3.75.

Figure 10. Graph of Equation (h) With the Same P/P_e increments as Figure 9, but With a Smaller Range for KL/EI .

Figure 11. Plot of P_{cr}/P_e vs KL/EI for Equal End Stiffness
With KL/EI Varying From 0 to 2000

Figure 12. Plot of P_{cr}/P_e vs KL/EI for Equal End Stiffness
With KL/EI Varying From 0 to 200

APPENDIX A

APPENDIX A

NATURAL FREQUENCY AND BUCKLING LOAD

A.1 Equal End Stiffnesses

To obtain the natural frequency consider equation (1) with no pulsating force, $S_o = 0$. Then the differential equation (1) becomes;

$$EI \frac{\partial^4 w}{\partial x^4} + P_o \frac{\partial^2 w}{\partial x^2} + \rho \frac{\partial^2 w}{\partial t^2} + C \frac{\partial w}{\partial t} = 0 \quad (a)$$

This partial differential equation can be separated into two ordinary differential equations by separation of variables.

Letting $w(x, t) = W(x)T(t)$ we get;

$$\frac{d^4 W}{dx^4} + k^2 \frac{d^2 W}{dx^2} - \lambda W = 0 \quad (b)$$

$$\frac{d^2 T}{dt^2} + \frac{C}{\rho} \frac{dT}{dt} + \omega^2 T = 0 \quad (c)$$

$$\text{where } \omega = \sqrt{\frac{EI\lambda}{\rho}} \quad (\text{natural circular frequency}) \quad (d)$$

$$k = \sqrt{\frac{P_o}{EI}} \quad (e)$$

The exact solution to equation (b) leads to a transcendental equation which cannot be solved explicitly. Approximate solutions have been formulated and one in particular will be discussed here (ref. 2). In the solution of (b), from ref. 2, a shape function was chosen to satisfy the boundary conditions then the error was minimized by invoking the Galerkin criterion to solve for λ . The shape function used was;

$$W(x) = A \left[\sin \frac{\pi x}{L} + B(1 - \cos \frac{2\pi x}{L}) \right] \quad (f)$$

where B can be determined from the boundary conditions, equation (2) and (3);

$$B = \frac{KL}{4\pi EI} \quad (g)$$

After invoking Galerkins criterions an explicit expression for λ is obtained. By using equation (d) to get the undamped circular frequency and noting that the natural frequency is;

$$f = \frac{\omega}{2\pi} \text{ (cps)}$$

we get the natural frequency of a column with equal end restraints to be;

$$f = \frac{1}{2L} \sqrt{\frac{EI}{\rho} \left[\frac{12(\pi EI)^2 \left(\frac{\pi^2}{L^2} - \frac{P}{EI} \right) + 32 EIKL \left(\frac{5\pi^2}{2L^2} - \frac{P}{EI} \right) + 3(KL)^2 \left(\frac{4\pi^2}{L^2} - \frac{P}{EI} \right)}{12(\pi EI)^2 + 32 EIKL + \frac{9}{4} (KL)^2} \right]}$$

As P goes to the buckling load P_{cr} , the natural frequency goes to zero. Therefore by setting $f = 0$ we get the buckling load to be;

$$P_{cr} = \frac{\pi^2 EI}{L^2} \left[\frac{12(\pi EI)^2 + 80 EIKL + 12(KL)^2}{12(\pi EI)^2 + 32 EIKL + 3(KL)^2} \right]$$

The frequency and buckling equations above can be put into a useful graph form by setting the independent variable to be KL/EI . By doing this the following equations are formed;

$$\frac{T_o}{L^2} \sqrt{\frac{EI}{\rho}} = \frac{2}{\pi} \sqrt{\frac{12\pi^2 + 32(\frac{KL}{EI}) + \frac{9}{4}(\frac{KL}{EI})^2}{12\pi^2(1 - \frac{P}{P_e}) + 32(\frac{KL}{EI})(\frac{5}{2} - \frac{P}{P_e}) + 3(\frac{KL}{EI})^2(4 - \frac{P}{P_e})}} \quad (h)$$

$$\frac{P_{cr}}{P_e} = \frac{12\pi^2 + 80(\frac{KL}{EI}) + 12(\frac{KL}{EI})^2}{12\pi^2 + 32(\frac{KL}{EI}) + 3(\frac{KL}{EI})^2} \quad (i)$$

For equation (i), when $K = 0$ we get the buckling load to be;

$$P_{cr} = \frac{\pi^2 EI}{L^2}$$

which is correct for a pinned-pinned column as $K = \infty$ we get the buckling load to be;

$$P_{cr} = 4 \frac{\pi^2 EI}{L^2}$$

which is correct for a fixed-fixed column. Since the upper and

lower bounds of the equation are correct, and since the Galerkin method minimizes the error continuously through the domain, then equation (J) is a very good approximation to the buckling load of a column with equal end restraints. Equation h is graphed on figures 9 and 10, and equation i is graphed on figure 11.

A.2 Unequal End Stiffnesses

To obtain the natural frequency and buckling load of a column with unequal end stiffnesses a polynominal shape function was used with the Galerkin criterion. The differential equation (b) was solve using the following shape function;

$$w = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4$$

To satisfy the boundary conditions the above shape function becomes;

$$w = a_1 \left[x + \frac{(K_1 K_2 L^4 + 6 EI K_1 L^3)}{(2 EI K_2 L^4 + 12(EI)^2 L^3)} x^2 \right]$$

$$+ \frac{(2K_1 K_2 L^3 + 6 EI K_2 L^2 + 10 EI K_1 L^2 + 24 (EI)^2 L)}{(2 EI K_2 L^4 + 12 (EI)^2 L^3)} x^3$$

$$+ \frac{(K_1 K_2 L^2 + 4 EI K_2 L + 4 EI K_1 L + 12 (EI)^2)}{(2 EI K_2 L^4 + 12 (EI)^2 L^3)} x^4 \right]$$

After invoking Galerkins criterion, the natural frequency of a column with unequal end stiffnesses is obtained.

$$f = \frac{1}{2\pi} \sqrt{\frac{EI}{\rho} \frac{(C_4 L^4 + C_3 L^3 + \dots + C_0) - P (B_6 L^6 + B_5 L^5 + \dots + B_2 L^2)}{(D_8 L^8 + D_7 L^7 + \dots + D_4 L^4)}}$$

where;

$$C_0 = 435456 (EI)^5$$

$$C_1 = 199584 (EI)^4 (K_1 + K_2)$$

$$C_2 = 18144 (EI)^3 [K_1^2 + 13 K_1 K_2/3 + K_2^2]$$

$$C_3 = 6552 (EI)^2 [K_1 K_2^2 + K_1^2 K_2]$$

$$C_4 = 504 EI K_1^2 K_2^2$$

$$B_2 = 44064 (EI)^4$$

$$B_3 = 11232 (EI)^3 (K_1 + K_2)$$

$$B_4 = 864 (EI)^2 [K_1^2 + 35 K_1 K_2/12 + K_2^2]$$

$$B_5 = 180 EI (K_1 K_2^2 + K_1^2 K_2)$$

$$B_6 = 12 K_1^2 K_2^2$$

$$D_4 = 4464 (EI)^5$$

$$D_5 = 1140 (EI)^4 (K_1 + K_2)$$

$$D_6 = 76 (EI)^3 [K_1^2 + 68 K_1 K_2/19 + K_2^2]$$

$$D_7 = 17 (EI)^2 (K_1 K_2^2 + K_1^2 K_2)$$

$$D_8 = EI K_1^2 K_2^2$$

As P goes to the buckling load P_{cr} , the natural frequency goes to

zero. Therefore by setting $f = 0$ we get the buckling load to be;

$$P_{cr} = \frac{(C_4 L^4 + C_3 L^3 + \dots + C_0)}{(B_6 L^6 + B_5 L^5 + \dots + B_2 L^2)}$$

APPENDIX B

APPENDIX B

THE COMPUTER PROGRAM

The program was written in Fortran 5 and the program listing is on page , Appendix B. There are seven main components of the program.

1. **Constants;** This is where the constants in the program are set up including the columns properties and several dummy variables that are used in the program.
2. **Initial Imperfections;** This is where the initial imperfections are set up using equation 21.
3. **First and Second Data Points;** This portion defines the first two data points. The first being at time zero and the second at the first time step using equation 24.
4. **Remaining Data Points;** This section defines the remaining data points using equation 25.

During each time increment the deflection of all eleven nodes are calculated but only the center node (node 1) is saved for all time steps. This reduces the amount of array storage needed for each run which intern enables an increased number

of time steps to be saved per run due to computer storage limitations.

5. **Check Data;** This routine checks the data to determine if the response is stable or unstable. Essentially the routine checks each peak and if two successive peaks are less than the preceding peak then the response is stable. Due to the wide range of possible responses, this routine is not 100% reliable. Therefore this routine is only an indication of the response and should not be used as a definite check on the stability of the response.

6. **Plot Results;** This routine plots the dimensionless displacement vs dimensionless time. This routine is particular to the computer being used and it therefore cannot be used on any other computer that does not have the plotting subroutines available.

7. **Stiffness Matrix Subroutine;** This subroutine evaluates the stiffness matrix as described by equation (20).

One critical considerations in this analysis is the time step to be used. The program was tested with constants from Section 3.1 and $P/P_{cr} = .5$, $S/P_{cr} = .5$, $K = 2000$, $\Omega = 20$ and the time step was varied between .001 to .0035. Figure 4 shows the maximum mid-span deflection, w_c (in.) vs time, t (sec.) and it shows that the maximum time step that can be used is .0033 sec. At $\Delta T = .0034$ sec. and greater the analysis becomes numerically unstable. The

critical time step was particular to the variables used and it is recommended that the time interval be no larger than one percent of the natural period of the column. The initial imperfection was chosen to be two orders of magnitude smaller than the tolerance of a typical column.

```

*****
*          COMPUTER PROGRAM
*          FINITE DIFFERENCE ROUTINE TO DETERMINE THE
*          DYNAMIC RESPONSE OF A COLUMN TO A DEAD LOAD
*          AND A PULSATING LOAD WITH UNEQUAL END RESTRAINTS
*
*****
PROGRAM COLBUCK
DIMENSION WI(11),K(11,11),WBAR(11),XD(5000),YD(5000)
DIMENSION ZZ1(11),ZZ2(11),ZZ3(11),ZZ5(11),WIM1(11),WIM2(11)
REAL KK1,KK2,L,IX,E,H
CHARACTER*20 XCHAR
CHARACTER*20 YCHAR
*
5   PRINT *, 'INPUT OMEGA,S'
READ *,OMEGA,S
*
***** CONSTANTS *****
*
DT=.0020
PI=3.1415927
DELTA=.00001
E=30E+6
IX=.0021
L=144.
H=1/12.
KK1=87500.0
KK2=87500.0
AA=.0859
F=58.8
TO=.260413
RHO=6.3E-5
CC0=0.0
DTB=DT/TO
EI=E*IX
Z2=RHO*L**4/(EI*TO**2)
Z3=CC0*L**4/(EI*TO)
Q1=(KK1*L*H/(2.0*EI)-1)/(KK1*L*H/(2.0*EI)+1)
Q2=(KK2*L*H/(2.0*EI)-1)/(KK2*L*H/(2.0*EI)+1)
IFLAG=0
*
***** INITIAL IMPERFECTIONS *****
*
BI=0.0
WBAR(1)=- (PI**2)*L*DELTA/AA
DO 10 I=2,10,2
BI=BI+1
WBAR(I)=WBAR(1)*SIN(PI*(6+BI)/12)
10 WBAR(I+1)=WBAR(I)
*

```

```

*
***** FIRST & SECOND DATA POINTS *****
*
      DO 20 I=1,11
      WIM1(I)=0.0
  20  WI(I)=((P+S)*L**2*WBAR(I)*DTB**2)/(2*Z2*EI)
*
      YD(1)=WIM1(1)
      YD(2)=WI(1)
      XD(1)=0.0
      XD(2)=DT
*
***** REMAINING DATA POINTS *****
*
      DO 30  I=3,5000
      DO 35 J=1,11
      WIM2(J)=WIM1(J)
  35  WIM1(J)=WI(J)
      XD(I)=DT*(I-1)
      T=DT*(I-2)
      Z1=(P+S*COS(OMEGA*T))*L**2/EI
      CALL XKM(Z1,H,Q1,Q2,K)
      DO 40 II=1,11
      SUM=0
      DO 50 JJ=1,11
      SUM=SUM+K(II,JJ)*WIM1(JJ)
  50  ZZ3(II)=SUM
  40  ZZ3(II)=SUM
      DO 60 J=1,11
      ZZ1(J)=2*WIM1(J)-WIM2(J)
      ZZ2(J)=Z1*WBAR(J)+ZZ3(J)+(Z3/DTB)*(WIM1(J)-WIM2(J))
      ZZ5(J)=(ZZ2(J)*DTB**2)/(Z2+Z3*DTB/2)
  60  WI(J)=ZZ1(J)-ZZ5(J)
      YD(I)=WI(1)
  30  CONTINUE
*
***** CHECK DATA *****
*
      YDPKNEW=0.0
      ICOUNT=0
      DO 55 I=2,4999
      YB=YD(I-1)
      YN=YD(I)
      YA=YD(I+1)
      IF(YB.LT.YN.AND.YA.LT.YN)THEN
      YDPKOLD=YDPKNEW
      YDPKNEW=YN
      IF(YDPKNEW.GT.YDPKOLD)ICOUNT=0
      IF(YDPKNEW.LT.YDPKOLD)ICOUNT=ICOUNT+1
      IF(ICOUNT.EQ.2)GOTO 65
      END IF
  55  CONTINUE
      PRINT *, '*** UNSTABLE ***'
      IFLAG=2
      GOTO 75
  65  PRINT *, '*** STABLE ***'

```

```

      IFLAG=1
75   CONTINUE
      IF(IFLAG.EQ.2)GOTO 200
200   CONTINUE
*
      PRINT *, ' TYPE'
      PRINT *, ' 1) TO PLOT'
      PRINT *, ' 2) TO TRY AGAIN'
      READ *, IIIFLAG
      IF(IIIFLAG.EQ.2)GOTO 5
*
***** PLOT RESULTS *****
*
      XCHAR='T/T0
      YCHAR='WL/A
      CALL PSEUDO
      CALL INFOPLT(1,5000,XD,1,YD,1,.0,
*.0,.0,.0,13,XCHAR,16,YCHAR,0)
      CALL CALFLT(0,0,99)
*
*
      STOP
      END
*
***** STIFFNESS MATRIX SUBROUTINE *****
*
      SUBROUTINE XKM(Z1,H,O1,O2,K)
      DIMENSION K(11,11)
      REAL K,H,H2,H4
      H2=1.0/H**2
      H4=1.0/H**4
      A=6*H4-2*Z1*H2
      B=Z1*H2-4*H4
      C=H4
      D1=H4*(6+O1)-2*Z1*H2
      D2=H4*(6+O2)-2*Z1*H2
      K(1,1)=A
      K(1,2)=B
      K(1,3)=B
      K(1,4)=C
      K(1,5)=C
      K(1,6)=0.0
      K(1,7)=0.0
      K(1,8)=0.0
      K(1,9)=0.0
      K(1,10)=0.0
      K(1,11)=0.0
      K(2,2)=A
      K(2,3)=C
      K(2,4)=B
      K(2,5)=0.0
      K(2,6)=C
      K(2,7)=0.0
      K(2,8)=0.0
      K(2,9)=0.0

```

```

K(2,10)=0.0
K(2,11)=0.0
K(3,3)=A
K(3,4)=0.0
K(3,5)=B
K(3,6)=0.0
K(3,7)=C
K(3,8)=0.0
K(3,9)=0.0
K(3,10)=0.0
K(3,11)=0.0
K(4,4)=A
K(4,5)=0.0
K(4,6)=B
K(4,7)=0.0
K(4,8)=C
K(4,9)=0.0
K(4,10)=0.0
K(4,11)=0.0
K(5,5)=A
K(5,6)=0.0
K(5,7)=B
K(5,8)=0.0
K(5,9)=C
K(5,10)=0.0
K(5,11)=0.0
K(6,6)=A
K(6,7)=0.0
K(6,8)=B
K(6,9)=0.0
K(6,10)=C
K(6,11)=0.0
K(7,7)=A
K(7,8)=0.0
K(7,9)=B
K(7,10)=0.0
K(7,11)=C
K(8,8)=A
K(8,9)=0.0
K(8,10)=B
K(8,11)=0.0
K(9,9)=A
K(9,10)=0.0
K(9,11)=B
K(10,10)=D2
K(10,11)=0.0
K(11,11)=D1
DO 15 I=1,11
DO 15 J=1,11
15 K(J,I)=K(I,J)
RETURN
END

```


Report Documentation Page

1. Report No. NASA TM-101651	2. Government Accession No.	3. Recipient's Catalog No.	
4. Title and Subtitle Dynamics of Column Stability with Partial End Restraints		5. Report Date January 1990	
7. Author(s) Peyton B. Gregory		6. Performing Organization Code	
9. Performing Organization Name and Address NASA Langley Research Center Hampton, VA 23665-5225		8. Performing Organization Report No.	
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, DC 20546-0001		10. Work Unit No. 506-43-41-02	
15. Supplementary Notes		11. Contract or Grant No.	
16. Abstract The aim of this investigation is to conduct a theoretical study of the dynamic behavior of columns with partial end restraints and loads consisting of a dead load and a pulsating load. The differential equation is solved using a lumped impulse recurrence formula relative to time coupled with a finite difference discretization along the member length. A computer program is written from which the first critical frequencies are found as a function of end stiffness. The case of a pinned ended column compares very well with the exact solution. Also, the natural frequency and buckling load formulas are derived for equal and unequal end restraints.		13. Type of Report and Period Covered Technical Memorandum	
17. Key Words (Suggested by Author(s)) Column Stability Dynamics Finite Difference Partial End Restraints		18. Distribution Statement Unclassified - Unlimited	
		Subject Category 39	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of pages 109	22. Price A06