# Physique

# **Table des Matières**

| Ph | ysique                     |
|----|----------------------------|
|    | I. Attention, achtung!2    |
|    | II. Incertitude            |
|    | III. Optique Géométrique:  |
|    | IV. Optique Ondulatoire    |
|    | V. L'Éléctronisme:         |
|    | VI. Mécaniques             |
|    | VII. Énergie               |
|    | VIII. Signaux              |
|    | IX. Thermodynamie          |
|    | X. Chimie                  |
|    | XI. Cinétique58            |
|    | XII. Éléctromagnétisme     |
|    | XIII. Mécaniques quantique |
|    | XIV. Truc et astuce        |

# I. Attention, achtung!

dans tout ce document les opérateur gradient, divergence et rotationnel sont noté avec la notation nabla, voir Trucs et Astuce -Nabla pour plus d'information

Ainsi les opérateurs deviennes:

#### II. Incertitude

 1. Méthode statistique:
 2

 2. Méthode probabiliste:
 2

 3. Calcul sur les incertitudes:
 2

# 1. Méthode statistique:

- $\bar{x} = \text{moyenne}$
- u(x) = l'écart type

# 2. Méthode probabiliste:

- $\bar{x} = \text{moyenne}$
- $u(x) = \frac{\text{pr\'ecision}}{\sqrt{3}}$

#### 3. Calcul sur les incertitudes:

| Relation    | Z = X + Y                       | Z = X - Y | $Z = X \times Y$                                          | $Z = \frac{X}{Y}$                                            |
|-------------|---------------------------------|-----------|-----------------------------------------------------------|--------------------------------------------------------------|
| Incertitude | $u(z) = \sqrt{u(x)^2 + u(y)^2}$ |           | $\frac{u(z)}{ z } = \sqrt{\left(\frac{u(z)}{x}\right)^2}$ | $\left(\frac{x}{y}\right)^2 + \left(\frac{u(y)}{y}\right)^2$ |

# III. Optique Géométrique:

| 1. | réfraction                                  | 3 |
|----|---------------------------------------------|---|
| 2. | Longueur d'onde dans un milieu              | 3 |
| 3. | Snell — Descartes                           | 3 |
| 4. | Formulaire de Gauss                         | 3 |
| 5. | Relation de Conjugaison et du Grandissement | 4 |
| 6. | PR & PP                                     | 4 |
| 7. | Grossisement dans une lunette astronomique: | 4 |

#### 1. réfraction

$$n = \frac{c}{v}$$

- n = indice de réfraction
- c= célérité de la lumière  $m.s^{-1}$
- v = célérité dans le milieu  $m.s^{-1}$

# 2. Longueur d'onde dans un milieu

$$\lambda = \frac{\lambda_0}{n}$$

- n =indice de réfraction
- $\lambda =$  longueur d'onde dans le milieu
- $\lambda_0 =$  longueur d'onde dans le vide

# 3. Snell – Descartes

$$n_1\sin(\theta_1)=n_2\sin(\theta_2)$$

- $n_i = {
  m indice}$  de réfraction du milieu i
- $\,\theta_i = {\rm angle} \; {\rm du} \; {\rm rayon} \; {\rm lumineux}$

#### 4. Formulaire de Gauss

- rayons peu incliné par rapport à l'axe optique
- rayons proche de l'axe optique

# 5. Relation de Conjugaison et du Grandissement

|                               | Relation de conjugaison                                             | Formule du grandissement                                          |  |
|-------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Descartes (origine au centre) | $\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{f'}$ | $\gamma = \frac{\overline{OA'}}{\overline{OA}}$                   |  |
| Newton (origine au foyer)     | $\overline{F'A'} 	imes \overline{FA} = f'^2$                        | $\gamma = -\frac{\overline{F'A'}}{f'} = \frac{f'}{\overline{FA}}$ |  |

# 6. PR & PP

- PP: Punctum Remotum, le point le plus éloigné perçus net par l'œuil
- PR: Punctum Proximum, le point le plus proche perçus net par l'œuil

# 7. Grossisement dans une lunette astronomique:

$$G = \frac{\beta}{\alpha} = \frac{f_1'}{f_2'}$$

- G = le grossissement
- $\beta$  (resp.  $\alpha$ ) = l'angle entre le rayon sortant (resp. entrant) et l'axe optique
- $f_1'$  (resp.  $f_2'$ ) = la focale le la lentille 1 (resp. 2)

# IV. Optique Ondulatoire

| inque onautatione               |
|---------------------------------|
| 1. Rayon lumineux 5             |
| 2. Chemin optique               |
| 3. Surface d'onde               |
| Théorème de Malus               |
| 4. Réflexion                    |
| 5. Cas des trains d'ondes       |
| 6. Détécteur                    |
| 7. Cohérance                    |
| 8. Formule de Fresnel           |
| 9. Division du front d'onde     |
| 10. Division du paquet d'onde   |
| 11. Ordre d'interférences       |
| Définition                      |
| Conséquance                     |
| Intuition                       |
| 12. Contraste                   |
| 13. Interféromètre de Michelson |
| Déscription du dispositif       |
| Schéma équivalent 8             |
| Lame d'air                      |
| Coin d'air 10                   |
| Spectre cannelé                 |

# 1. Rayon lumineux

Un rayon lumineux est donné par la ligne champs du vecteur de Poyting Leur marche est donné par l'optique géométrique

et de plus pour un même rayon lumineux:

au point 
$$S:s(S,t)=s_0(S)\cos(\omega t-\varphi(S))$$

au point 
$$M:s(M,t)=s_0(M)\cos(\omega t-\varphi(M))$$

Or le paquet met  $t_{\rm SM}=\frac{SM}{c}$  pour aller de S à M , d'où :  $\varphi(M)=\varphi(S)+\omega t_{\rm SM}$ 

Remarque : Si l'indice de réfraction est variable,  $t_{\mathrm{SM}} = \int_{S}^{M} \frac{n(l)}{c} \, \mathrm{d}l$ 

# 2. Chemin optique

$$L_{SM} = \int_{S}^{M} n(l) \, \mathrm{d}l$$

avec:

•  $L_{SM}=$  le chemin optique

• n(l) = l'indice de réfraction

**Remarque :** Ainsi  $t_{\mathrm{SM}} = \frac{L_{SM}}{c}$ 

#### 3. Surface d'onde

Une surface d'onde  $\Sigma$  est l'ensemble des points tel que  ${\cal L}_{SM}$  est constant

#### Théorème de Malus

Les surfaces d'ondes  $\Sigma$  sont toujours perpendiculaire au chemin optique

#### 4. Réflexion

Dans le cas d'une réflexion (sur un conducteur parfait) on ajoute un déphasage  $\pi$  au champs éléctrique ce qui revient a augmenté  $L_{SM}$  de  $\frac{\lambda_0}{2}$ 

#### 5. Cas des trains d'ondes

Dans le cas de train d'onde de temps caractérise  $\tau_c$ , on a :

$$\tau \sim \frac{1}{\Delta \nu}$$
 avec  $\Delta \nu$  largeur fréquantielle

Or 
$$\Delta \nu = c \left( \frac{1}{\lambda_1} - \frac{1}{\lambda_2} \right) = c \frac{\Delta \lambda}{\lambda_0^2}$$

Sauf que  $c\tau = l_c$  longueur caratéristique

D'où : 
$$l_c = \frac{\lambda_0^2}{\Delta \lambda}$$

#### 6. Détécteur

Un Détécteur est sensible à  $I = k < s^2 >$  avec k une constante (putain), et  $\tau$  le temps caratéristique

#### 7. Cohérance

On dit que deux ondes sont cohérante lorsque

- Même plusation  $\left.\begin{array}{c} \bullet \text{ Même plusation} \\ \bullet \text{ Même source} \end{array}\right\} \text{ Même train d'onde}$
- Même polarisation

### 8. Formule de Fresnel

$$s_{\mathrm{tot}}(M,t) = s_1(M,t) + s_2(M,t)$$

Ce qui donne pour l'intensité:

$$I(M)=I_1(M)+I_2(M)+2\sqrt{I_1(M)I_2(M)}\cos(\varphi)$$

avec 
$$\varphi = \varphi_2 - \varphi_1 = \frac{2\pi}{\lambda_0} \delta$$
, et  $\delta = L_{SM}^{(2)} - L_{SM}^{(1)}$ 

**Remarque :** Pour  $I_0 = I_1 = I_2$  on a:  $I = 2I_0(1 + \cos(\varphi))$ 

#### 9. Division du front d'onde

C'est quand on force deux ondes cohérante à se rencontrer

Ilustré par les fentes de Young

### 10. Division du paquet d'onde

C'est quand on force une même onde à interférer avec elle même, par exemple grâce a un mirroir semi-transparent

Ilustré par un Michelson

#### 11. Ordre d'interférences

#### **Définition**

$$p = \frac{\varphi}{2\pi} = \frac{\delta}{\lambda_0}$$

avec:

- p = l'ordre d'interférences
- $\varphi = la$  différence de phase
- $\delta =$  la différence de marche
- $\lambda_0 = \text{la longueur d'onde}$

#### Conséquance

Si  $p \in \mathbb{N}$  alors il y un maximum d'intensité et des interférences constructive

Si  $p \in \frac{1}{2} + \mathbb{N}$  alors il y a un minimum d'intensité et des interférences destrutrice

#### Intuition

L'ordre d'interférence est le nombre de longueur d'onde de différence de marche entre deux rayons lumineux

#### 12. Contraste

$$C = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

- C = le contraste
- $I_{\rm max}=$ l'intensité maximal
- $I_{\min} =$  l'intensité minimal

Remarque Si  $I = \alpha I_0(1 + f(x)\cos(\varphi))$ , alors C = f(x)

#### 13. Interféromètre de Michelson

L'interféromètre de Michelson est un dispositif de mesure basé sur l'interférence de deux ondes lumineuses par division du paquet d'onde

# Déscription du dispositif



#### avec:

- A.C. = verre anticalorique
- S =le miroir semi-transparent
- C =la componsatrice

# Schéma équivalent

Le schéma équivalent est une variante du schéma réel, où l'on retire la séparatrice en appliquant une superposition des miroir 1 et 2 i.e. refaire le schéma en une seul ligne, ce qui donne:



#### Lame d'air

Le montage en lame d'air consiste à déplacer latéralement le miroir 1

Dans ces conditions, on a :  $L_{LM}^{(1)} = L_{KM}^{(2)} {
m donc} \; \delta = 2IJ - IL$ 

Or

$$\cos(i) = \frac{e}{IJ}$$

$$\sin(i) = \frac{IL}{IK}$$

$$\tan(i) = \frac{IK}{2e}$$



Donc  $\delta = 2e\cos(i)$ 

Comme  $\delta$  est constant a i fixé, on obtient des cercles concentrique

#### Coin d'air

Le montage en coin d'air consiste a tourné le miroir 1 autour de sont centre

Dans ces conditions, on a:  $\delta = 2BH = 2x \tan(\alpha)$ 

Comme  $\delta$  est constant a BH fixé,

on obtient des franges réctiligne

Qand  $\delta$  varie de  $\lambda$ , x varie de i (l'interfrange),i.e.  $i=\frac{\lambda}{2\alpha}$ 



#### Spectre cannelé

Si on place de la lumière blache dans un interféromètre de Michelson, chaque longueurs d'ondes qui compose de la lumière étant non cohérante, alors chaque longueur d'onde interféreras avec elle même mais sur des distance différente on obtient alors un soit des anneau concentrique coloré dans le cas d'une lame d'air, soit des franges réctiligne coloré dans le cas d'un coin d'air



# V. L'Éléctronisme:

| 1. | Les formules à la con:                     |
|----|--------------------------------------------|
| 2. | Circuit linéaire du 1 <sup>er</sup> ordre: |
|    | Méthode de résolution:                     |
|    | Méthode: Bilan de Puissance                |
|    | Oscilateur Non Harmonique:                 |
| 3. | Régime sinusoïdale forcé :                 |
|    | notation complexe:                         |
| 4. | Impédance:                                 |
| 5. | Impédance d'un dipole:                     |
| 6. | Lois de Kirchhoff:                         |
| 7. | Pont comlexe:                              |
| 8. | valeur moyenne/efficace:                   |
| 9. | Développement en série de Fourier:         |
| 10 | Filtrage:                                  |
|    | type de filtarge:                          |
|    | Fonction de transfert:                     |
|    | diagramme de Bode:                         |
|    | Bande passante et pulsation de coupure:    |
|    | pulsation de résonance:                    |
|    | fonction de transfert canonique:           |
|    | les diagrame de bodes associer:            |
| 11 | Porte logique 20                           |

# 1. Les formules à la con:

| Nom              | Formule                               | Variable                         |
|------------------|---------------------------------------|----------------------------------|
|                  | dq                                    | • $i = intensité$                |
|                  | $i = \frac{\mathrm{d}q}{\mathrm{d}t}$ | • $q = la charge$                |
| Lois des Nœuds   | $\sum \varepsilon_k i_k = 0$          | • $i_k = { m intensit\acute{e}}$ |
| Lois des Nœuds   |                                       | • $\varepsilon_k = +1/-1$        |
| Lais des Mailles | $\sum \varepsilon_k u_k = 0$          | • $u_k = $ la tension            |
| Lois des Mailles |                                       | • $\varepsilon_k = +1/-1$        |

| Nom                   | Formule                                          | Variable                                                                                                             |
|-----------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
| Lois d'Ohm            | $u_R=Ri$                                         | • $u_R=$ tension sur une résistance • $R=$ la résistance • $i=$ l'intensité                                          |
|                       | $i = C \frac{\mathrm{d}u_C}{\mathrm{d}t}$        | $ i = \mbox{l'intensit\'e} $ $ C = \mbox{la capacit\'e} $ $ u_C = \mbox{la tension sur} $ $ \mbox{un condensateur} $ |
|                       | $u_L = L \frac{\mathrm{d}i}{\mathrm{d}t}$        | $ i = \mbox{l'intensit\'e} $ $ L = \mbox{l'inductance} $ $ u_L = \mbox{la tension sur} $ $ \mbox{une bobine} $       |
| Pont Diviseur-Tension | $u_k = u \frac{R_k}{\sum R_i}$                   | • $u = \text{une tension}$<br>• $R = \text{une résistance}$                                                          |
| Pont Diviseur-Courant | $i_k = \frac{\frac{1}{R_k}}{\sum \frac{1}{R_i}}$ | • $i =$ une intensité<br>• $R =$ une résistance                                                                      |

# 2. Circuit linéaire du 1er ordre :

# Méthode de résolution :

- Trouver les conditions initiales (les  $u(0^+),q(0^+),$  etc, grâce aux  $u(0^-),q(0^-),$  etc)
- Étudier le régime permanent  $(t \to +\infty)$
- Écrire l'équation à l'aide d'une loi des Mailles / loi des nœuds, sous la forme  $\frac{\mathrm{d}s}{\mathrm{d}t}+\frac{s}{\tau}=\frac{s(\infty)}{\tau}$
- Résoudre l'équa diff

# Méthode: Bilan de Puissance

- reprendre la loi des mailles, la multipliée par i
- interpréter les termes
- intégrer sur le temps de 0 à  $+\infty$

# Oscilateur Non Harmonique:

• Forme Générale des Équa Diff:

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + \frac{\omega_0}{Q} \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = \omega_0^2 s(\infty)$$

Posons  $r_{1,2}$  les racines du polynôme caractéristique

1. Régime pseudo-périodique  $Q>\frac{1}{2} \& \Delta<0$  :

- 
$$s_h(t) = e^{\Re(r)}(A\cos(\Omega t) + B\sin(\Omega t))$$
 avec  $\Omega = \sqrt{1 - \frac{1}{2Q^2}} = \Im(r)$ 

- pseudo-période :  $T = \frac{2\pi}{\Omega}$
- l'amortissement  $\tau = \frac{2Q}{\omega_0}$
- Décrément logarithmimique  $\delta = \ln\Bigl(\frac{A(t)}{A(t+T)}\Bigr)$ , où A(t) = l'amplitude

2. Régime peu amorti  $Q\gg 1$  :

- pseudo-période  $T=\frac{2\pi}{\Omega}\approx T_0$
- Nombre d'oscillations  $N \approx \frac{4\tau}{T} \approx 1, 3Q$

3. Régime apériodique:

- $s_h(t) = Ae^{r_1t} + Be^{r_2t}$
- $\, \tau_2 = -\frac{1}{r_2} \approx \frac{1}{\omega_0 Q}$ en système très amorti $Q \ll 1$

4. Régime Critique:

- $\bullet \ s_h(t) = (At+B)e^{rt}$
- $r = -\omega_0$  et  $\tau = \frac{1}{\omega_0}$

#### 3. Régime sinusoïdale forcé:

Dans le cas du régime sinusoïdale forcé, toutes les grandeurs sont de la forme :

$$s(t) = X_m \cos(\omega t + \varphi)$$

avec:

- $X_m = l$ 'amplitude
- $\omega = \text{la pulsation}$
- $\varphi = \text{le déphasage}$

#### notation complexe:

$$\underline{s}(t) = X_m e^{j\omega t} e^{j\varphi} = \underline{X_m} e^{j\omega t}$$

- $\underline{s}(t) = \text{la notation complexe}$
- +  $\underline{X_m} = X_m e^{j\varphi} =$  l'amplitude complexe

• Avantage:

1. dérivation:  $\frac{\mathrm{d}\underline{s}}{\mathrm{d}t} = j\omega\underline{s}$ 

2. integration:  $\int \underline{s} \, dt = \frac{\underline{s}}{j\omega} + K$ 

3. dephasage:  $\varphi_{2/1} = \arg\left(\frac{\underline{s_2}}{\underline{s_1}}\right)$ 

4. Impédance :

 $\underline{Z} = \frac{\underline{u}}{\underline{i}}$ 

avec:

•  $\underline{Z} = l$ 'impédance

•  $\underline{u} = \text{la tension}$ 

•  $\underline{i} =$  l'intensité

• Admittance:  $\underline{Y} = \frac{1}{\underline{Z}}$ 

5. Impédance d'un dipole :

|                                  | Résistance                      | Condensateur                          | Bobine                                |  |
|----------------------------------|---------------------------------|---------------------------------------|---------------------------------------|--|
| Impédance                        | Z = R                           | $z - \frac{1}{z}$                     | $\underline{Z} = j\omega L$           |  |
| complexe                         | $\underline{\underline{z}} - n$ | $\underline{Z} = \frac{1}{j\omega C}$ |                                       |  |
| Impédance                        | Z = R                           | $Z = \frac{1}{\omega C}$              | $Z = \omega L$                        |  |
| Admittance                       | v _ 1                           | $Y = j\omega C$                       | $V = \frac{1}{1}$                     |  |
| complexe                         | $\underline{Y} = \frac{1}{R}$   | $\underline{I} = J\omega C$           | $\underline{Y} = \frac{1}{j\omega L}$ |  |
| $\omega \longrightarrow 0$       | $Z \longrightarrow R$           | $Z \longrightarrow +\infty$           | $Z \longrightarrow 0$                 |  |
| $\omega \longrightarrow 0$       | $Z \longrightarrow R$           | interupteur ouert                     | fils                                  |  |
| (1)                              | $Z\longrightarrow R$            | $Z \longrightarrow 0$                 | $Z \longrightarrow +\infty$           |  |
| $\omega \longrightarrow +\infty$ | $Z \longrightarrow R$           | fils                                  | interupteur ouert                     |  |

# 6. Lois de Kirchhoff:

• Loi des nœuds:

$$\sum \varepsilon_k \underline{i_k} = 0$$

• Loi des mailles:

$$\sum \varepsilon_k \underline{u_k} = 0$$

#### 7. Pont comlexe:

• Pont Diviseur-Courant:

$$\underline{i_k} = \underline{i} \frac{1/R_k}{\sum 1/R_i}$$

• Pont Diviseur-Tension:

$$\underline{u_k} = \underline{u} \frac{R_k}{\sum R_i}$$

#### 8. valeur moyenne/efficace:

• Valeur moyenne:

$$\langle s(t) \rangle = \frac{1}{T} \int_0^T X(t) dt$$

• Valeur efficace:

$$S_{ ext{eff}} = \sqrt{\langle s^2 \rangle} = \sqrt{\frac{1}{T} \int_0^T X^2(t) \, dt}$$

• Mesures au multimètre:

| Mode    | Grandeur mesurée             | Pour $u(t) = U_0 + U_m \cos(\omega t + \varphi)$ |
|---------|------------------------------|--------------------------------------------------|
| DC      | Valeur moyenne               | $U_0$                                            |
| AC      | Valeur efficace de la partie | $U_m$                                            |
| AC      | variable du signal           | $\overline{\sqrt{2}}$                            |
| AC + DC | Valeur efficace de tout le   | $\int_{T_{n}^{2}}U_{m}^{2}$                      |
| AC + DC | signal                       | $\sqrt{U_0^2 + \frac{U_m^2}{2}}$                 |

# 9. Développement en série de Fourier :

$$s(t) = A_0 + \sum_{n=1}^{+\infty} (A_n \cos(2\pi n f_n t + \varphi_n))$$

- $A_0 =$ la composante continue
- $A_n =$  l'amplitude de la composante sinusoïdale
- $f_n=$  la fréquence de l'armonique de rang n, (la fréquence fondamentale est  $f_1=\frac{1}{T}$ )
- $\varphi_n =$  le déphasage de l'harmonique de rang n

# 10. Filtrage:

# type de filtarge:

- Passe-bas: seul les signaux de basse fréquence passe
- Passe-haut: seul les signaux de haute fréquence passe
- Passe-bande: seul les signaux de fréquence dans une bande donnée passe
- Coupe-bande : seul les signaux de fréquence hors d'une bande donnée passe

#### Fonction de transfert:

$$\underline{\underline{H}} = \underline{\underline{\underline{u}_s}}_{\underline{\underline{u}_e}}$$

avec:

- $\underline{H}$  = la fonction de transfert
- $\underline{u_s} =$ la tension de sortie
- $u_e = \text{la tension d'entrée}$
- 1. le module de la fonction de transfert est le gain :  $G = |\underline{H}|$
- 2. l'argument de H est la phase :  $\phi = \arg(\underline{H})$
- On admet que toute fonction de transfert peut s'écrire sous la forme:

$$\underline{H} = \frac{\underline{N}}{\underline{D}}$$

avec: N et D deux polynôme premier entre eux, alors on appelle l'ordre du filtre le degré de D

#### diagramme de Bode:

- en Gain:  $G_{\mathrm{db}} = 20 \log(G)$
- en Phase:  $\varphi = \arg(\underline{H})$

Attention: ces diagrammes sont en échelle logarithmique

# Bande passante et pulsation de coupure:

• Bande passante: c'est la bande de fréquence pour laquelle le gain est supérieur à -3 dB:

$$G > \frac{G_{ ext{max}}}{\sqrt{2}} \Leftrightarrow G_{ ext{dB, max}} > G_{ ext{dB}} - 3 \text{ dB}$$

On définie ainsi la pulsation de coupure:

$$G(\omega_c) = \frac{G_{\rm max}}{\sqrt{2}} \Leftrightarrow G_{\rm dB,\; max}(\omega_c) = G_{\rm dB} - 3 \ {\rm dB}$$

# pulsation de résonance :

c'est la plusation pour la quel les filtres du second ordre on leur maximum s'il existe

Dans le cas des filtre du second ordre, il y a résonance si  $Q>\frac{1}{\sqrt{2}}$ 

# fonction de transfert canonique:

| Туре        | Fonction de transfert                                                                                                     | Gain - cas au limites |                                                                       | Phase - cas au<br>limites | pulsation caractérisique                                                  |
|-------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------|---------------------------|---------------------------------------------------------------------------|
| Passe-bas   | $H = \frac{H_0}{1 + i\frac{\omega}{}}$                                                                                    | $\omega \to +\infty$  | $\sim 20\log\biggl(\frac{\omega}{H_0\omega_0}\biggr)$                 | $-\frac{\pi}{2}$          | $\omega_c=\pm\omega_0$                                                    |
| 1er ordre   | $I \cap J_{\omega_0}$                                                                                                     | $\omega \to 0$        | $\sim -20\log(H_0)$                                                   | 0                         |                                                                           |
| Passe-haut  | $H_0 \times j \frac{\omega}{}$ H.                                                                                         | $\omega \to +\infty$  | $\sim -20\log(H_0)$                                                   | 0                         |                                                                           |
| 1er ordre   | $H = \frac{H_0 \times j\frac{\omega}{\omega_0}}{1 + j\frac{\omega}{\omega_0}} = \frac{H_0}{1 - j\frac{\omega_0}{\omega}}$ | $\omega \to 0$        | $\sim -20\log\biggl(H_0\frac{\omega}{\omega_0}\biggr)$                | $rac{\pi}{2}$            | $\omega_c = \pm \omega_0$                                                 |
| Passe-bande | $H=rac{H_0}{1+jQ\Big(rac{\omega}{\Omega c}-rac{\omega_0}{\Omega}\Big)}$                                                | $\omega \to +\infty$  | $\sim 20 \log \biggl( \frac{Q}{H_0} \frac{\omega}{\omega_0} \biggr)$  | $-rac{\pi}{2}$           | $\omega_c = \frac{\omega_0}{2Q} \Big( 1 \pm \sqrt{1 + 4Q^2} \Big)$        |
| 2eme ordre  | ne ordre $1+jQ\Big(rac{\omega}{\omega_0}-rac{\omega_0}{\omega}\Big)$                                                    | $\omega \to 0$        | $\sim -20 \log \biggl( \frac{H_0}{Q} \frac{\omega}{\omega_0} \biggr)$ | $rac{\pi}{2}$            | $\Delta\omega = \frac{\omega_0}{Q}$                                       |
| Passe-haut  | $H = \frac{H_0}{1 - \frac{\omega^2}{2} + \frac{j}{O} \frac{\omega}{\omega}}$                                              | $\omega \to +\infty$  | $\sim 40 \log \biggl( \sqrt{H_0} \frac{\omega}{\omega_0} \biggr)$     | $\pi$                     | $\omega_c = \pm \omega_0$ $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$ |
| 2eme ordre  | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                      | $\omega \to 0$        | $\sim -20\log(H_0)$                                                   | 0                         | $\omega_r = \omega_0 \sqrt{1-2Q^2}$                                       |
| Passe-bas   | $H_0$                                                                                                                     | $\omega \to +\infty$  | $\sim -20\log(H_0)$                                                   | 0                         | $\omega_c = \pm \omega_0$                                                 |
| 2eme ordre  | $H = \frac{H_0}{1 - \frac{\omega_0^2}{\omega^2} - \frac{j}{Q} \frac{\omega_0}{\omega}}$                                   | $\omega \to 0$        | $40\log\biggl(\sqrt{H_0}\frac{\omega}{\omega_0}\biggr)$               | $-\pi$                    | $\omega_r = \omega_0 \sqrt{1 - \frac{1}{2Q^2}}$                           |

# les diagrame de bodes associer:

Sur l'axe des abssice est repésenté seulement la puissance de

• Passe-bas:



Passe-haut:



Passe-bande:



Passe-haut,  $2^{\text{\'e}me}$  ordre :



Passe-ba, 2<sup>éme</sup> ordre:



# 11. Porte logique

| Opérateur        | équation<br>logique                                | symbole<br>AFNOR | symbole ASGS  | table de vérité                                                                                                                                                                               | schéma à contact |
|------------------|----------------------------------------------------|------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| OUI              | S = a                                              | a 1S             | aS            | a S<br>0 0<br>1 1                                                                                                                                                                             | \$               |
| NON              | $S = \overline{a}$                                 | a — 1 — S        | aS            | a S<br>0 1<br>1 0                                                                                                                                                                             | \$               |
| OU               | S = a + b                                          | a ≥ 1s           | a<br>b        | a b S<br>0 0 0 0<br>0 1 1<br>1 0 1<br>1 1 1                                                                                                                                                   | \[\bar{b}\]\$    |
| ET               | S = a.b                                            | a&               | a             | a         b         S           0         0         0           0         1         0           1         0         0           1         1         1                                         | - b - 5          |
| INHIBITION       | $S = \overline{a}.b$                               | a &s             | a s           | a b S<br>0 0 0<br>0 1 1<br>1 0 0<br>1 1 0                                                                                                                                                     | La               |
| NAND<br>(NON ET) | $S = \overline{a.b} = \overline{a} + \overline{b}$ | a&S              | aS            | a         b         S           0         0         0         1           0         1         1         1           1         0         1         1           1         1         0         0 | 5 &              |
| NOR<br>(NON OU)  | $S = \overline{a+b} = \overline{a}.\overline{b}$   | a ≥ 1            | а<br>bs       | a         b         S           0         0         0         1           0         1         0         1           1         0         0         0           1         1         0         0 | T                |
| OU<br>EXCLUSIF   | $S = a \oplus b$                                   | a = 1s           | а<br>b ———— s | a b S<br>0 0 0<br>0 1 1<br>1 0 1<br>1 1 0                                                                                                                                                     | 1 5 S            |
| IDENTITE         | $S = \overline{a \oplus b}$                        | as               | а<br>b ———— s | a         b         S           0         0         1           0         1         0           1         0         0           1         1         1                                         | 1 p              |

# VI. Mécaniques

| 1. Loi de Hook                                        | 22 |
|-------------------------------------------------------|----|
| 2. Force centrale:                                    | 22 |
| 3. Force Newtonienne:                                 | 22 |
| 4. Force de Gravitation:                              | 22 |
| 5. Loi de Coulomb:                                    | 22 |
| 6. Force de frottement fluide:                        | 23 |
| 7. Poussée d'Archimède:                               | 23 |
| 8. Lois de Newton                                     | 23 |
| 9. Force de Lorentz                                   | 23 |
| 10. Force de Laplace                                  | 23 |
| 11. champ éléctrique dans un condensateur             | 23 |
| 12. Champs magnétique                                 | 24 |
| Champs caractéristique                                | 24 |
| Bobines de Helmoltz                                   | 24 |
| Moment magnétique                                     | 24 |
| 13. Rails de Laplace                                  | 25 |
| 14. Spire rectangulaire en rotation                   | 25 |
| 15. Lois de Kepler                                    | 25 |
| 1 <sup>er</sup> lois                                  | 25 |
| 2 <sup>eme</sup> lois: Lois des aires                 | 26 |
| 3 <sup>eme</sup> lois                                 | 26 |
| 16. Satéllite Géostationnaire                         | 26 |
| 17. Vitesse remarquable dans un champs de gravitation | 26 |
| Vitesse en orbite basse                               | 26 |
| Vitesse de l'ibération                                | 27 |
| 18. Vecteur rotation                                  | 27 |
| 19. Loi de Coulomb pour le frottement                 | 27 |
| Cas de non glissement                                 | 27 |
| Cas de glissement                                     | 27 |
| 20. Référentiel non galiléen                          | 27 |
| Loi de composition des vitesses                       | 28 |
| Loi de composition des accélérations                  | 28 |

| Accélération de Coriolis                         | 28 |
|--------------------------------------------------|----|
| Cas de la translation:                           | 28 |
| Cas de la rotation uniforme autour d'un axe fixe | 28 |
| Pseudo-force d'inertie d'entrainement            | 29 |
| Pseudo-force d'inertie de Coriolis               | 29 |

#### 1. Loi de Hook

$$\overrightarrow{F_{\mathrm{\acute{e}l}}} = -k(l(t)-l_0)\vec{u}$$

- k = konstante de raideur
- $\,l_0 = {\rm longueur}$  dans le vide du ressort

#### 2. Force centrale:

Une force centrale est une force constament dirigé vers un centre O, et si le centre O est le centre du repère sphèrique et/ou cylindrique, alors on peut la metre sous la forme:  $\vec{f} = f \vec{u_r}$ 

#### 3. Force Newtonienne:

Toute force centrale consevative qui s'exprime sous la forme:

$$\vec{f} = -\frac{k}{r^2} \vec{u_r}$$

Sont des forces Newtonienne

De plus, sont énergie potentielle est:  $E_p = -\frac{k}{r} + C$ 

#### 4. Force de Gravitation:

$$\overrightarrow{F_{A/B}} = -G \frac{m_A m_B}{d^2} \vec{u_r}$$

- G =la constante de Gravitation
- m =la masse de l'astre considéré
- d = la distance entre A et B

#### 5. Loi de Coulomb:

$$\overrightarrow{F_{A/B}} = rac{1}{4\piarepsilon_0} rac{q_A q_B}{r^2} \overrightarrow{u_r}$$

- $\varepsilon_0 =$  permittivité du vide
- q =la charge du corps considéré
- r =la distance entre A et B

#### 6. Force de frottement fluide:

$$\vec{f} = -k_1 \vec{v}$$
 à faible vitesse

$$\vec{f} = -k_2 v \vec{v}$$
vitesse élever

• 
$$k_{1,2} = \text{des coefficients}$$

#### 7. Poussée d'Archimède:

$$\overrightarrow{\Pi_A} = -m \vec{g}$$

$$\overrightarrow{\Pi_A} = -\rho V \vec{g}$$

• 
$$m=$$
 masse du fluide d'éplacée

• 
$$g = l$$
'accélération de pesanteur

• 
$$\rho =$$
 masse volumique du fluide

• 
$$V = \text{Volume du fluide d'éplacé}$$

#### 8. Lois de Newton

1. Principe d'inertie: Dans un référentiel galiléen, tout corps isolé est soit en mouvement rectiligne uniforme, soit immobile

2. 
$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \sum \overrightarrow{F_{\mathrm{ext}}}$$

3. Principe d'aciton-réaciton : 
$$\overrightarrow{F_{A \to B}} = -\overrightarrow{F_{B \to A}}$$

#### 9. Force de Lorentz

$$\vec{f} = q \left( \vec{E} + \vec{v} \wedge \vec{B} \right)$$

• 
$$q = la charge$$

• 
$$\vec{E}=$$
 champ électrique

- 
$$\vec{v}=$$
 la vitesse de la particule

• 
$$\vec{B} = \text{le champ magnétique}$$

#### 10. Force de Laplace

$$\vec{F}_{\mathcal{L}} = \int_{P \in \widehat{MN}} I \vec{dl}_P \wedge \overrightarrow{B_{\mathrm{ext}}}(P)$$

avec:

• 
$$\widehat{MN} = \text{le fil conducteur}$$

• 
$$I = l$$
'intensité

• 
$$\overrightarrow{B_{\mathrm{ext}}} =$$
 le champs magnétique extérieur

#### 11. champ éléctrique dans un condensateur

$$E = \frac{U}{d}$$

- d =la distance entre les plaques
- U =la tension entre les plaques



# 12. Champs magnétique

### Champs caractéristique

Ici:

• 
$$\mu_0 = 4\pi \cdot 10^{-7}$$

• i=l'intensité du courant

• l =la longueur de la bobine

• N =Le nombre de spire

• r = rayon de la bobine/spire

| Où               | champ produit                                 |
|------------------|-----------------------------------------------|
| Fils infini      | $\frac{\mu_0 i}{2\pi r} \vec{u}_\theta$       |
| Spire circulaire | proche de l'axe $\mu_0 i$                     |
|                  | $\frac{\mu_0 \imath}{2r} \vec{u}_z$           |
| opire enculaire  | loin de l'axe                                 |
|                  | $\frac{\mu_0 i}{2} \frac{r^2}{z^3} \vec{u}_z$ |
| Solénoïde        | à l'intérieur:                                |
|                  | $\frac{\mu_0 Ni}{l} \vec{u}_z$                |
|                  | à l'extérieur:                                |
|                  | 0                                             |
| Bobine plate     | proche de l'axe:                              |
|                  | $\frac{\mu_0 Ni}{2r} \vec{u}_z$               |

La bobine plate  $(l \ll r)$  est comme une spire juste N fois plus forte, donc sufie de multipliée par N le cas de la spire

#### **Bobines de Helmoltz**

C'est un dispositif composé de deux bobines concentrique de même rayon R et de même nombre de spire N espacé d'une distance L, tel que  $R \ll L$ ,

Ce dispositif permet de créé un champs uniforme entre les deux bobines

# Moment magnétique

Pour une spire

$$\vec{m} = I\vec{S}$$

avec:

•  $\vec{m} =$ le moment magnétique

• I=l'intensité du courant

•  $\vec{S} =$ le vecteur surface

Dans le cas de plusieur spire

$$\vec{m} = IN\vec{S}$$

avec N le nombre de spire

Pour un aiment permanent

 $\|\vec{m}\| = \text{volume de l'aiment} \times \text{aimantation volumique}$ 

De plus on a:

$$\vec{B} \propto \vec{m}$$

# 13. Rails de Laplace



· Résultante:

$$\vec{F}_{\mathcal{L}} = i \overrightarrow{MN} \wedge \overrightarrow{B_{\mathrm{ext}}}$$

• Puissance:

$$ec{P}_{\mathcal{L}} = \left(i\overrightarrow{MN} \wedge \overrightarrow{B_{ ext{ext}}}
ight) \cdot ec{v}$$

# 14. Spire rectangulaire en rotation

Dans une spire carré en rotation autour de l'axe  ${\cal O}_z$ 

• Moment:

$$\vec{\Gamma}_{\mathcal{L}} = \vec{m} \wedge \overrightarrow{B_{\mathrm{ext}}} = i \vec{S} \wedge \overrightarrow{B_{\mathrm{ext}}}$$

• Puissance:

$$\vec{P}_{\mathcal{L}} = \Gamma_{\!\!\mathcal{L}} \times \omega$$

# 15. Lois de Kepler

1er lois

Tout astre suit une orbite elliptique, dont le soleil est un des foyers

#### 2eme lois: Lois des aires

Les aires  ${\mathscr A}$  balayées par la ligne astre-soleil durant un même  $\Delta t$ , sont égaux :

$$\frac{\mathrm{d}\,\mathscr{A}}{\mathrm{d}t} = \frac{1}{2}r^2\dot{\theta} = \frac{C}{2}$$

où  $C = r^2 \dot{\theta}$  est la constante des aires

3eme lois

$$\frac{T^2}{a^3} = \frac{4\pi^2}{\mathcal{G} M}$$

avec:

- T =La période de révolution
- a = Le demi grand axe
- $\mathcal{G} = \text{La constante de gravitation}$
- M= La masse de l'astre atracteur

#### 16. Satéllite Géostationnaire

C'est un satéllite (naturelle ou non), qui reste au-dessus du même point de la surface de l'astre attracteur, en ce cas:

$$r = \sqrt[3]{\frac{GMT^2}{4\pi^2}}$$

avec:

- r =le rayon de l'orbite géostationnaire
- G =la constante de gravitation
- M =la masse de l'astre attracteur
- T =la période de rotation de l'astre attracteur

### 17. Vitesse remarquable dans un champs de gravitation

Vitesse en orbite basse

$$v_{\mathrm{b}} = \sqrt{rac{GM}{\mathscr{R}}}$$

- $v_{\rm b} =$  la vitesse en orbite basse
- G =la constante de gravitationç
- M= la masse de l'astre attracteur
- $\mathcal{R} =$  le rayon le l'astre attracteur

#### Vitesse de l'ibération

$$v_l = \sqrt{\frac{2GM}{\mathcal{R}}}$$

avec:

- $v_l = \text{vitesse de l'ibération}$
- G = constante de gravitation
- M= la masse de l'astre attracteur
- $\mathcal{R} =$  Le rayon de l'astre attracteur

#### 18. Vecteur rotation

$$\frac{\mathrm{d}\overrightarrow{AB}}{\mathrm{d}t} = \vec{\Omega} \wedge \overrightarrow{AB}$$

avec:

- $\vec{\Omega} =$ le vecteur rotation
- $\overrightarrow{AB}$  = le vecteur position

#### 19. Loi de Coulomb pour le frottement

#### Cas de non glissement

$$\left\|\overrightarrow{R_T}\right\| \le \mu_s \left\|\overrightarrow{R_N}\right\|$$

avec:

- $\overrightarrow{R_T}$  = la réaction tangentiel
- $\overrightarrow{R_N} =$  la réaction normal
- $\mu_s=$  le coefficient de frottement statique

# Cas de glissement

$$\left\|\overrightarrow{R_T}\right\| = \mu_d \left\|\overrightarrow{R_N}\right\|$$

avec:

- $\overrightarrow{R_T} =$  la réaction tangentiel
- $\overrightarrow{R_N}$  = la réaction normal
- $\mu_d=$  le coefficient de frottement dynamique

Remarque :  $\mu_s \geq \mu_d$  et dans le cas de glissement  $\overrightarrow{R_T}$  est opposé à  $\overrightarrow{v_g}$ 

De plus on passe du cas de non glissement au cas de glissement si  $\left\|\overrightarrow{R_T}\right\| = \mu_s \left\|\overrightarrow{R_N}\right\|$ 

### 20. Référentiel non galiléen

On travaille avec  $R_0 = \left(O_0, \vec{\imath}_0, \vec{\jmath}_0, \vec{k}_0\right)$  comme référentiel absolut

Et  $R = \left( O, \vec{\imath}, \vec{\jmath}, \vec{k} \right)$  comme référentiel relatif

### Loi de composition des vitesses

$$\vec{v}(M)_{R_0} = \left(\frac{\mathrm{d} \overline{O_0 O}}{\mathrm{d} t}\right)_{R_0} + \vec{\Omega} \wedge \overline{OM} + \dot{x} \vec{\imath} + \dot{y} \vec{\jmath} + \dot{z} \vec{k}$$

avec:

- $\vec{v}(M)_{R_0}=$  la vitesse dans le référentiel  $R_0$
- $\left(\frac{\mathrm{d}\overline{O_0O}}{\mathrm{d}t}\right)_{R_0}=$  la vitesse du référentiel R par rapport a  $R_0$
- $\vec{\Omega} =$ le vecteur rotation

### Loi de composition des accélérations

$$\vec{a}_a = \vec{a}_r + \vec{a}_c + \vec{a}_e$$

avec:

- $\vec{a}_a =$  l'accélération absolue
- $\vec{a}_r =$  l'accélération relative
- $\vec{a}_c =$  l'accélération de Coriolis
- $\vec{a}_e =$  l'accélération d'entrainement

#### Accélération de Coriolis

$$\vec{a}_c = 2\vec{\Omega} \wedge \vec{v}_r$$

avec:

- $\vec{a}_c =$  l'accélération de Coriolis
- $\vec{\Omega} =$ le vecteur rotation
- $\vec{v}_r = \text{la}$  vitesse relative

#### Cas de la translation:

On a:

$$\begin{split} \vec{a}_c &= 0 \\ \vec{a}_e &= \frac{\mathrm{d}^2 \overline{O_0 \mathcal{O}}}{\mathrm{d} t^2} \end{split}$$
 Donc 
$$\vec{a}_a &= \vec{a}_r + \frac{\mathrm{d}^2 \overline{O_0 \mathcal{O}}}{\mathrm{d} t^2} \end{split}$$

# Cas de la rotation uniforme autour d'un axe fixe

On considère une rotation  $\omega$  constante, et la distance de l'axe de rotation  $\vec{\Delta}=\vec{u}_z$  au point M constante égale a R

$$\vec{a}_a = -R\omega^2\vec{u}_r$$

$$\vec{a}_e = -\omega^2 \overrightarrow{HM}$$

$$\vec{\Omega} = \omega \vec{u}_z$$

$$\label{eq:Donc} \text{Donc } -R\omega\vec{u}_r = \vec{a}_r - \omega^2 \overrightarrow{HM} + \omega\vec{u}_z \wedge \vec{v}_r$$

Pseudo-force d'inertie d'entrainement

$$\vec{f}_e = -m\vec{a}_e$$

avec:

- $\vec{f}_e =$  pseudo-force d'inertie d'entrainement
- m = la masse
- $\vec{a}_e =$  l'accélération d'entrainement

Pseudo-force d'inertie de Coriolis

$$\vec{f}_c = -m\vec{a}_c = -2m\vec{\Omega} \wedge \vec{v}_r$$

avec:

- $\vec{f}_c =$  pseudo-force d'inertie de Coriolis
- m = la masse
- $\vec{a}_c =$  l'accélération d'entrainement

**Remarque :** la pseudo-force de Coriolis ne traivaille pas, en effet  $-2m \Big( \vec{\Omega} \wedge \vec{v}_r \Big) \cdot \vec{v}_r = 0$ 

# VII. Énergie

| 1. | Travaille élémentaire:                                          | 30 |
|----|-----------------------------------------------------------------|----|
| 2. | Travaille                                                       | 30 |
| 3. | Puissance                                                       | 31 |
| 4. | Théorème de la puissance cinétique                              | 31 |
| 5. | Théorème de l'énergie cinétique                                 | 31 |
| 6. | Énergie Potentiel                                               | 31 |
| 7. | Énergie mecanique                                               | 31 |
| 8. | Théorème de la puissance mécanique                              | 31 |
| 9. | Équilibre                                                       | 31 |
|    | Équilibre stable                                                | 31 |
|    | Équilibre instable                                              | 31 |
| 10 | les Énergies                                                    | 32 |
| 11 | . Énergies potentielles effectives                              | 32 |
| 12 | . Puissance et travaille des actions mécanique extérieur sur un |    |
|    | solide                                                          | 32 |
|    | Puissance                                                       | 32 |
|    | Travaille                                                       | 33 |
| 13 | . Théorème de la puissance cinétique                            | 33 |
| 14 | . Théorème de l'énergie cinétique                               | 33 |
| 15 | . Énergie emmagasinée par une bobine                            | 33 |

# 1. Travaille élémentaire :

$$\delta W_{/R} \left( \vec{f} \right) = \vec{f} \cdot \mathrm{d} \overrightarrow{OM}$$

- $\vec{f}$ : une force
- ${\rm d}\overrightarrow{OM}$  : un chemin élémentaire

# 2. Travaille

$$W_{A \to B} = \int_{M \in AB} \delta \left( \vec{f} \right) = \int_{M \in AB} \vec{f} \cdot \mathrm{d} \overrightarrow{OM}$$

#### 3. Puissance

$$\mathcal{P}_{\!/R}\!\left(ec{f}
ight)=ec{f}\cdot\overrightarrow{v_{M/R}}$$

$$\mathcal{P}_{/R}(\vec{f}) dt = \delta W_{/R}(\vec{f})$$

# 4. Théorème de la puissance cinétique

$$\frac{\mathrm{d}E_c}{\mathrm{d}t} = \sum \mathcal{P}(\vec{f}_i) = \sum \vec{f}_i \cdot \vec{v}$$

### 5. Théorème de l'énergie cinétique

$$\Delta E_c = \sum W_{A \to B} \! \left( \vec{f}_i \right)$$

Au niveau infinitésimal:

$$\mathrm{d}E_c = \sum \delta W(\vec{f}_i) = \sum \vec{f}_i \cdot \mathrm{d}\overrightarrow{OM}$$

# 6. Énergie Potentiel

$$\Delta_{AB}E_p = -W_{AB}\left(\overrightarrow{f_C}\right)$$

•  $\vec{f_c}$ : une force non conservative

# 7. Énergie mecanique

$$E_m = E_c + E_p$$

#### 8. Théorème de la puissance mécanique

$$\frac{\mathrm{d}E_m}{\mathrm{d}t} = \sum \mathcal{P}(\overrightarrow{f_{NC}})$$

-  $E_m$  : L'énergie mécanique

•  $\overrightarrow{f_{NC}}$ : une force non consevative

#### 9. Équilibre

Il y a équilibre en P lors que  $\sum \vec{f}_i = \vec{0} \Longleftrightarrow \overline{\mathrm{grad}} \big( E_p(P) \big) = \vec{0}$ 

#### Équilibre stable

On dit que l'équilibre est stable si pour une légère perturbation il revient à cette possition P ou si

$$\left(\frac{\mathrm{d}^2 E_p}{\mathrm{d}q_i^2}\right)_P > 0$$

avec  $q_i$  les coordonnées généraliser, i.e.  $q_1=x, q_2=y$  et  $q_3=z$  en cartésien ou  $q_1=r, q_2=\theta$  et  $q_3=z$  en cylindrique

#### Équilibre instable

On dit que l'équilibre est instable si pour une légère perturbation il séloigne de cette possition P ou si

$$\left(\frac{\mathrm{d}^2 E_p}{\mathrm{d} q_i^2}\right)_P < 0$$

# 10. les Énergies

| Nom              | Formule                                                |
|------------------|--------------------------------------------------------|
| cinétique        | $\frac{1}{2}mv^2$                                      |
| cinétique        | $\sum_i \frac{1}{2} m_i \ \vec{v}_i\ ^2$               |
| du solide        |                                                        |
| translation      | $\frac{1}{2}m\ \vec{v}\ ^2$                            |
| rotation         | $\frac{1}{2}J_{\Delta}\omega^2$                        |
| Potentielles     |                                                        |
| Pesanteur        | mgz                                                    |
| Gravitationnelle | $-G\frac{m\times m_A}{r}$                              |
| Élastique        | $\boxed{\frac{1}{2}k(l-l_0)^2}$                        |
| Électrostatique  | $q \left( - \vec{E} \cdot \overrightarrow{OM} \right)$ |
| Force centrale   | $-rac{k}{r}$                                          |
| Mécaniques       |                                                        |
| Gravitationnelle | $-\mathscr{G}rac{mm_O}{2r_O}$                         |

# 11. Énergies potentielles effectives

Dans le cas d'une force centrale l'énergie mécanique peut ce mettre sous cette forme:

$$E_m = \frac{1}{2} m \dot{r}^2 + E_{p, \text{ eff}}(r)$$

• dans le cas de la force de Gravitation  $E_{p, \text{ eff}} = \frac{1}{2} m \frac{C^2}{r^2} + E_p(r)$ , avec C la constante des aires, et  $E_p(r)$  l'énergie potentielles de gravitation

# 12. Puissance et travaille des actions mécanique extérieur sur un solide

# **Puissance**

$$\mathscr{P}^{\mathrm{ext}} = \mathscr{M}_{\Delta}^{\mathrm{ext}} \times \omega$$

avec:

•  $\mathcal{M}_{\Delta}^{\mathrm{ext}} = \mathrm{les}$  moment exterieurs

- $\mathscr{P}^{\mathrm{ext}} = \mathrm{la}$  puissance des actions mecaniques exterieurs
- $\omega =$  la vitesse de rotation du solide

#### Travaille

$$W_{A o B}^{ ext{ext}} = \int_{t_A}^{t_B} \mathscr{P}^{ ext{ext}} \, \mathrm{d}t = \int_{ heta_A}^{ heta_B} \mathscr{M}_{\Delta}^{ ext{ext}} \, \mathrm{d} heta$$

avec:

- $\mathcal{M}_{\Delta}^{\mathrm{ext}} = \mathrm{les}$  moment exterieurs
- $\mathcal{P}^{\text{ext}}$  = la puissance des actions mecaniques exterieurs
- $W_{A o B}^{
  m ext}$  le travaille des actions mecaniques exterieurs entre  $A(t_A, \theta_A)$  et  $B(t_B, \theta_B)$

#### 13. Théorème de la puissance cinétique

$$\frac{\mathrm{d}E_c}{\mathrm{d}t} = \sum \mathscr{P}^{\mathrm{ext}} = \sum \mathscr{M}_{\Delta}^{\mathrm{ext}} \times \omega$$

avec:

- $E_c =$  L'énergie cinétique
- $\mathscr{P}^{\mathrm{ext}} =$  la puissance des actions mecaniques exterieurs
- $\mathscr{W}_{\Delta}^{\mathrm{ext}}=$  le moment des actions mecaniques exterieurs
- $\omega = \text{la}$  vitesse de rotation du solide

# 14. Théorème de l'énergie cinétique

Entre les instant  $t_A$  et  $t_B$ :

$$\Delta_{t_A \to t_B} E_c = \sum W_{t_A \to t_B}^{\rm ext}$$

avec:

- $\Delta_{t_A \to t_B} E_c =$  la variation d'énergie cinétique entre les deux instants
- $W^{
  m ext}_{t_A o t_B} =$  le travaille des actions mecaniques exterieurs entre les deux instants

### 15. Énergie emmagasinée par une bobine

$$E_{\rm mag} = \frac{1}{2} L i^2$$

- L = l'inductence de la bobine
- i=l'intensité du courant qui parcour la bobien

# VIII. Signaux

| 1. | Signaux unidirectionelle                                            |
|----|---------------------------------------------------------------------|
|    | Represantation temporelle                                           |
|    | Represantation spacial                                              |
| 2. | Onde progressive sinusoïdale                                        |
|    | Définition 3                                                        |
|    | caractéristique3                                                    |
|    | Méthode : calcule du déphasage 3                                    |
| 3. | Diffration                                                          |
|    | Formule de la diffration:                                           |
|    | Interférences constructive, déstructive et différence de marche . 3 |
|    | conditions d'interférences constructive/déstructive:                |
| 4  | Fente de Young                                                      |

# 1. Signaux unidirectionelle

# Represantation temporelle

$$s(x,t) = f\left(t - \frac{x}{c}\right)$$

En particulier

$$s(x,t) = s\left(0, t - \frac{x}{c}\right)$$

# Represantation spacial

$$s(x,t) = F(x - ct)$$

En particulier

$$s(x,t) = s(x - ct, 0)$$

# 2. Onde progressive sinusoïdale

#### **Définition**

$$s(x,t) = A\cos\left(\omega\left(t - \frac{x}{c}\right) + \varphi\right) = A\cos(\omega t - kx + \varphi)$$

- A = l'emplitude
- $\omega = \text{la pulsation}$
- c=la célérité
- $\varphi =$  un déphasage
- $k = \frac{\omega}{c} = \text{la pulsation spacial}$

# caractéristique

| caractéristique temporelle                                     | caractéristique spacial                                |
|----------------------------------------------------------------|--------------------------------------------------------|
| période temporelle                                             | longueur d'onde (période spacial)                      |
| T en $s$                                                       | $\lambda$ en $m$                                       |
| fréquence temporelle                                           |                                                        |
| $f = \frac{1}{T}$ en Hz                                        |                                                        |
| pulsation temporelle                                           | pulsation spacial                                      |
| $\omega = 2\pi f = \frac{2\pi}{T} \text{ en rad} \cdot s^{-1}$ | $k = \frac{2\pi}{\lambda} \text{ en rad} \cdot m^{-1}$ |

# Méthode: calcule du déphasage

- 1. Mesurer la période T
- 2. déterminer si  $s_2$  est en avance sur  $s_1$  ou non :
  - si  $s_2$  est en avance alors  $\Delta \varphi_{2/1} > 0$
  - $\Delta \varphi_{2/1} < 0 \ {\rm sinon}$
- 3. Mesurer le retard  $\Delta t$
- 4. Déterminer la formule suivante :  $\left|\Delta\varphi_{2/1}\right|=\frac{2\pi\Delta t}{T}$ 
  - Démo:

Soit  $s_1(t)=S_m\cos\left(\omega t-\frac{\omega}{c}x_1\right)$  et  $s_2(t)=S_m\cos\left(\omega t-\frac{\omega}{c}x_2\right)$  deux mesures du même signale en l'abscisse  $x_1$  et  $x_2$ , ainsi  $\varphi_1=-\frac{\omega}{c}x_1$  et  $\varphi_2=-\frac{\omega}{c}x_2$ , donc :

$$\Delta \varphi_{2/1} = \varphi_2 - \varphi_1 = -\omega \underbrace{\frac{x_2 - x_1}{c}}_{=\Delta t} = -\omega \Delta t = -\frac{2\pi \Delta t}{T}$$

- 5. Calculer  $\Delta \varphi_{2/1}$
- 3. Diffration

#### Formule de la diffration:

• Dans le cas d'une OPPM

$$\sin(\theta) = \frac{\lambda}{a}$$

- $\theta$  = valeur de l'angle de diffraction pour la première extinction
- $\lambda = \text{longueur d'onde}$
- a = taille de l'ouverture

### Interférences constructive, déstructive et différence de marche

1. Interférences constructive:

Quand l'amplitude des deux ondes est en phase (est maximale)

2. Interférences déstructive:

Quand l'amplitude des deux ondes est en opposition de phase (est minimale)

3. Différence de marche:

La différence de marche est la différence de distance parcourue par les deux ondes,

noté 
$$\delta(M) = d_2(M) - d_1(M)$$

4. Relation entre déphasage et différence de marche:

$$arphi_{2/1}(M) = -rac{2\pi}{\lambda}\delta_{2/1}(M)$$

# conditions d'interférences constructive/déstructive:

• Constructive:

$$\Delta \varphi_{2/1}(M) = 2n\pi \Leftrightarrow \delta_{2/1}(M) = n\lambda \text{ avec } n \in \mathbb{Z}$$

• Déstructive :

$$\Delta\varphi_{2/1}(M)=(2n+1)\pi\Leftrightarrow\delta_{2/1}(M)=(2n+1)\frac{\lambda}{2}$$
 avec  $n\in\mathbb{Z}$ 

#### 4. Fente de Young



$$d_1 = D\sqrt{1 + \frac{y^2}{D^2} + \frac{\left(x - \frac{a}{2}\right)^2}{D^2}} \approx D + \frac{y^2 + \left(x - \frac{a}{2}\right)^2}{2D} \approx D + \frac{y^2 + x^2 + \frac{a^2}{4} - ax}{2D}$$

$$d_2 = D\sqrt{1 + \frac{y^2}{D^2} + \frac{\left(x + \frac{a}{2}\right)^2}{D^2}} \approx D + \frac{y^2 + \left(x + \frac{a}{2}\right)^2}{2D} \approx D + \frac{y^2 + x^2 + \frac{a^2}{4} + ax}{2D}$$

$$\delta_{2/1}(M) = d_2(M) - d_1(M) \approx \frac{ax}{D}$$

1. Pour les interférences constructive :

$$\delta_{2/1}(M) = n\lambda \Leftrightarrow \frac{ax}{\overline{D}} = n\lambda \Leftrightarrow x = n\lambda \frac{D}{a}$$

2. L'interfrange:

distance entre deux interférences constructive

$$i = \tfrac{\lambda D}{a}(n+1-1) = \tfrac{\lambda D}{a}$$

# IX. Thermodynamie

| 1. | Équilibre Thermodynamique                         | 39 |
|----|---------------------------------------------------|----|
| 2. | Pression                                          | 40 |
| 3. | Modéle du gaz parfait                             | 40 |
|    | Hypothèse                                         | 40 |
|    | Vitesse moyenne                                   | 40 |
| 4. | Température cinétique:                            | 41 |
| 5. | Pression d'un gaz parfait:                        | 41 |
| 6. | Équation du gaz parfait:                          | 41 |
| 7. | Énergie interne:                                  | 41 |
| 8. | Capacité thermique à volume constant:             | 41 |
| 9. | Énergie interne d'un gaz parfait monoatomique:    | 42 |
| 10 | . Première loi de Joule:                          | 42 |
| 11 | . L'énergie interne d'une phase condensée:        | 42 |
| 12 | transformation thermodynamique:                   | 42 |
| 13 | Lois phénoménologiques de Newton:                 | 42 |
| 14 | . Entalpie:                                       | 43 |
| 15 | . Capacité thermique à pression constante:        | 43 |
| 16 | . 2 <sup>e</sup> lois de Joule:                   | 43 |
| 17 | . 1 <sup>er</sup> principe de la thermodynamique: | 43 |
|    | Formulation énérgétique:                          | 43 |
|    | Formulation enthalpique:                          | 44 |
| 18 | transformation réversible                         | 44 |
| 19 | . Entropie                                        | 44 |
| 20 | . 2 <sup>nd</sup> principe de la Thermodynamie    | 44 |
|    | Énoncer                                           | 44 |
|    | Cas d'un système isolé                            | 45 |
|    | Cas d'une transformation adiabatique réversible   | 45 |
|    | Cas d'une transformation Monotherme               | 45 |
| 21 | . Variation d'entropie pour une phase condensée   | 45 |
| 22 | . Variation d'entropie d'un gaz parfait           | 45 |
| 23 | . Loi de Laplace                                  | 46 |
| 24 | . phase                                           | 47 |

| 25. | Diagramme $(P,T)$                             |
|-----|-----------------------------------------------|
|     | Définition                                    |
|     | Point remarquable                             |
| 26. | Diagramme ( $P,V$ ) ou Diagramme de Clapeyron |
|     | Définition                                    |
|     | titre massique gaz/liquide                    |
| 27. | Théorème des moments                          |
| 28. | Enthalpie de transition de phase              |
| 29. | Entropie de transition de phase               |
| 30. | Machine thermique                             |
|     | Définition                                    |
|     | Représentation                                |
|     | Théorème de Carnot                            |
|     | Cogénération                                  |
|     | Rendement                                     |
|     | Diagramme de Raveau                           |
| 31. | Transfert thermique                           |
|     | Modes de Transfert                            |
|     | Flux thermique                                |
|     | Loi de Fourier                                |
|     | Équation de la diffusion thermique            |
|     | conditions au limites entre deux solides:53   |
|     | Loi phénoménologique de Newton:53             |
|     | Exemple classique: ailette de refroidissement |
|     | Étude en régime permanent53                   |
| 32. | Corps opaque                                  |
| 33. | Corps Noir                                    |
| 34. | Loi de Stefan-Boltzmannb 54                   |
| 35. | Loi de Wien                                   |
| 36. | Loi de Plank:55                               |

## 1. Équilibre Thermodynamique

Un système est dit en équilibre thermodynamique macroscopique si :

• toutes ces grandeurs d'états sont constantes au cours du temps

• et il es isolé (i.e. il n'échange ni énérgie, ni matières avec l'extérieur)

C'est a dire que le système est en équilibre thermodynamique si:

- 1. Équilibre thermique:
  - La température est uniforme dans tout le système
  - au niveau d'une paroi diatherme, la température est la même des deux cotés
- 2. Équilibre mécanique:
  - · La pression est uniforme dans tout le système
  - aucun élément mobile ne bouge
- 3. Équilibre chimique:
  - La concentration est uniforme dans tout le système
  - les réactions chimiques sont à l'arrêt
- 4. aucun échange de matière ni d'énergie avec l'extérieur
- 2. Pression

$$P = \frac{F}{S}$$

avec:

- P =la pression
- F =la force exercée par le gaz sur la surface
- S =la surface
- 3. Modéle du gaz parfait

### Hypothèse

- les particules sont poncutelles
- les particules sont sans interactions entre elles

## Vitesse moyenne

1. Vecteur vitesse moyenne:

$$<\vec{v}> = \frac{1}{N} \sum_{i=1}^{N} \vec{v_i}$$

2. vitesse quadratique moyenne, noté u:

$$u = \sqrt{\langle v^2 \rangle} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} v_i^2}$$

avec:

- N =le nombre de particules
- $v_i =$ la vitesse de la particule i

• u =la vitesse quadratique moyenne

## 4. Température cinétique:

$$\mathscr{E}_{c,1} = \frac{3}{2} k_B T = <\frac{1}{2} m v^2 > = \frac{1}{2} m u^2$$

avec:

- $\mathscr{C}_{c,1} =$  l'énergie cinétique moyenne par particule
- $k_B =$  la constante de Boltzmann (1, 38 ×  $10^{-23} \mathrm{J} \cdot \mathrm{K}^{-1}$ )
- T =la température
- m =la masse de la particule
- u =la vitesse quadratique moyenne

## 5. Pression d'un gaz parfait:

$$P = \frac{1}{3}n^*mu^2$$

avec:

- P =la pression
- $n^* =$  le nombre de particules par unité de volume
- m =la masse de la particule

## 6. Équation du gaz parfait:

$$PV = n \mathcal{R} T$$

avec:

- P =la pression
- V = le volume
- n = le nombre de mole
- $\mathcal{R} = \text{la constante des gaz parfait } (8,31 \text{J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1})$
- T =la température

## 7. Énergie interne:

$$U = \mathscr{E}_{c,\mathrm{micro}} + \mathscr{E}_{p,\mathrm{int}}$$

avec:

- $\mathscr{E}_{c,\mathrm{micro}} =$  l'énergie cinétique microscopique
- $\mathscr{E}_{p,\mathrm{int}} =$  l'énergies potentielles interactions

## 8. Capacité thermique à volume constant :

$$dU = C_V dT \Leftrightarrow C_V = \left(\frac{dU}{dT}\right)_V$$

avec:

- $C_V =$  la capacité thermique à volume constant
- U = l'énergie interne
- T =la température

## 9. Énergie interne d'un gaz parfait monoatomique :

$$U_m = \frac{3}{2} \, \mathcal{R} \, T$$

e

$$C_{Vm} = \frac{3}{2} \; \mathcal{R}$$

avec:

- $U_m =$ l'énergie interne molaire
- $C_{Vm} =$  la capacité thermique molaire à volume constant
- T =la température
- $\mathcal{R} =$ la constante des gaz parfait

## 10. Première loi de Joule :

- L'énergie interne molaire  $U_m$  d'un gaz parfait ne dépend que de la température :

$$U_m = U_{m(T)}$$

Ainsi l'énergie interne au cours d'une transformation est:

$$\Delta U_m = U_m \big(T_f\big) - U_m(T_i) = \int_{T_i}^{T_f} C_{Vm}(T) \,\mathrm{d}T$$

## 11. L'énergie interne d'une phase condensée :

$$\Delta U_m = U_m \big(T_f\big) - U_m(T_i) = \int_{T_i}^{T_f} C_{Vm}(T) \,\mathrm{d}T$$

## 12. transformation thermodynamique:

• Isobare: P = cst

• Isochore: V = cst

• Isotherme: T = cst

• Adiabatique: Q = 0

• Monobare :  $P_{\rm ext} = cst$ 

- Thermostat :  $T_{\rm ext} = cst$ 

### 13. Lois phénoménologiques de Newton:

$$\Phi_{s\to f}=h\big(T_s-T_f\big)S$$

avec:

•  $\Phi_{s \to f} = \text{le flux de chaleur}$ 

- h =le coefficient de conductivité thermique
- $T_s = {\rm la}$  température du solide
- $T_f =$  la température du fluide
- S =la surface de contact

### 14. Entalpie:

$$H = U + PV$$

avec:

- H = l'entalpie
- U = l'énergie interne
- P = la pression
- V = le volume

## 15. Capacité thermique à pression constante :

$$dH = C_P dT \Leftrightarrow C_P = \left(\frac{dH}{dT}\right)_P$$

avec:

- $C_P =$  la capacité thermique à pression constante
- H = l'entalpie
- T =la température

## 16. 2e lois de Joule:

$$\Delta H_m = H_m \big(T_f\big) - H_m(T_i) = \int_{T_i}^{T_f} C_P(T) \,\mathrm{d}T$$

avec:

- $H_m =$  l'entalpie molaire
- $C_P =$  la capacité thermique molaire à pression constante
- T =la température

## 17. 1er principe de la thermodynamique :

## Formulation énérgétique:

1. Cas Générale:

$$\Delta E_{\mathrm{tot}} = W + Q$$

2. Pour un système au repos macroscopique

$$\Delta U = W + Q$$

avec:

•  $\Delta U =$ la variation d'énergie interne

- W =le travaille échangé
- Q =la chaleur échangée

## Formulation enthalpique:

$$\Delta H = W' + Q$$

avec:

- $\Delta H =$ la variation d'entalpie
- W' =le travaille des forces exterieurs
- Q = la chaleur échangée

### 18. transformation réversible

Une transformation est dite réversible si on peut la ramener dans sont état initiale

Pour q'une transformation soit réversible, il faut que:

- elle soit infiniment lente
- à chaque étape de la transformation, elle doit être à l'équilibre avec le milieux exterieurs
- les phénomènes disipatif sont négligeable (ex: frottement)

Si un des cas suivant apparait, alors la transformation n'est plus réversible:

- 1. Des forces de frottements
- 2. Des phénomènes de diffusion, (ex: goutte d'encre dans de l'eau)
- 3. Des réactions chimiques
- 4. Le passage d'un courant éléctrique dans une résistance

## 19. Entropie

On définie pour tout système, une fonction d'état extensive noté S, telle que l'évolution d'un système isolé s'acompagne d'une augmentation d'Entropie

- Dans le cas non réversible :  $S_{
  m finale} > S_{
  m initial}$
- Dans le cas réversible :  $S_{\mathrm{finale}} = S_{\mathrm{initial}}$

## 20. 2<sup>nd</sup> principe de la Thermodynamie

### Énoncer

Pour un système fermé:

$$\Delta S = S_{\text{\'ech}} + S_{\text{cr\'e\'e}}$$

avec:

•  $S_{
m \acute{e}ch}=$ l'entropie échangée, l'orsque le système est en contact avec un thermostat

$$S_{
m \acute{e}ch} = \sum_i rac{Q_i}{T_i}$$

avec  $Q_i$  transfert thermique reçu par le thermostat  $T_i$ 

+  $S_{\rm cré\acute{e}e} < 0$  : transformation impossible

+  $S_{\mathrm{cré\acute{e}e}}=0$  : transformation réversible

+  $S_{
m cré\acute{e}e} > 0$  : transformation non réversible

### Cas d'un système isolé

Dans le cas d'un système isolé  $S_{\rm \acute{e}ch}=0$  , donc  $\Delta S=S_{\rm cr\acute{e}\acute{e}e}\geq 0$  .

Ainsi dans un système isloé l'entropie ne fait qu'augmenté jusqu'à atteindre sont max à l'équilibre thermodynamique

## Cas d'une transformation adiabatique réversible

Dans ce cas  $S_{\rm \acute{e}ch}=0$  car adiabatique et  $S_{\rm cr\acute{e}\acute{e}e}=0$  car réversible,

donc  $\Delta S = 0$ , ainsi la transformation est dite isentropique

### Cas d'une transformation Monotherme

Dans ce cas le milieux exterieur est un thermostat de température  $T_e={
m cst}$ , alors on à :

$$S_{\rm \acute{e}ch} = \frac{Q}{T_e}$$

avec Q = le transfert thermique entre le système est l'exterieur

## 21. Variation d'entropie pour une phase condensée

• Écriture molaire:

$$S_m(T) = C_m \ln \left(\frac{T}{T_{\rm ref}}\right) + S_{m, \; {\rm ref}}$$

• Écriture massique:

$$s(t) = c \ln \left( rac{T}{T_{
m ref}} 
ight) + s_{
m ref}$$

avec  $C_m$  (resp c) la capacité thermique molaire (resp massique)

• Variation d'entropie entre les deux état A et B:

$$\Delta S = nC_m \ln \left(\frac{T_B}{T_A}\right) = mc \ln \left(\frac{T_B}{T_A}\right)$$

### 22. Variation d'entropie d'un gaz parfait

- Écriture molaire:
  - 1. En fonction de T et V:

$$S_m(T,V) = \frac{\mathscr{R}}{\gamma - 1} \ln \biggl( \frac{T}{T_{\mathrm{ref}}} \biggr) + \mathscr{R} \ln \biggl( \frac{V}{V_{\mathrm{ref}}} \biggr) + S_{m,\;\mathrm{ref}}$$

2. En fonction de T et P:

$$S_m(T,P) = \frac{\mathcal{R} \ \gamma}{\gamma - 1} \ln \biggl( \frac{T}{T_{\rm ref}} \biggr) - \mathcal{R} \ln \biggl( \frac{P}{P_{\rm ref}} \biggr) + S_{m, \ {\rm ref}}$$

3. En fonction de P et V:

$$S_m(P,V) = \frac{\mathcal{R}}{\gamma - 1} \ln\!\left(\frac{P}{P_{\text{ref}}}\right) + \frac{\mathcal{R} \ \gamma}{\gamma - 1} \ln\!\left(\frac{V}{V_{\text{ref}}}\right) + S_{m, \text{ ref}}$$

Avec 
$$\gamma = \frac{C_P}{C_V} = \frac{C_{P,m}}{C_{V,m}} = \frac{c_P}{c_V}$$

- Écriture massique:
  - 1. En fonction de T et V:

$$s(T,V) = \frac{\mathcal{R}}{M(\gamma-1)} \ln\!\left(\frac{T}{T_{\rm ref}}\right) + \frac{\mathcal{R}}{M} \ln\!\left(\frac{V}{V_{\rm ref}}\right) + s_{\rm ref}$$

2. En fonction de T et P:

$$s(T,P) = \frac{\mathcal{R} \ \gamma}{M(\gamma-1)} \ln\!\left(\frac{T}{T_{\rm ref}}\right) - \frac{\mathcal{R}}{M} \ln\!\left(\frac{P}{P_{\rm ref}}\right) + s_{\rm ref}$$

3. En fonction de P et V:

$$s(P,V) = \frac{\mathcal{R}}{M(\gamma-1)} \ln\!\left(\frac{P}{P_{\rm rof}}\right) + \frac{\mathcal{R}\;\gamma}{M(\gamma-1)} \ln\!\left(\frac{V}{V_{\rm rof}}\right) + s_{\rm ref}$$

- Variation d'entropie:
  - 1. En fonction de T et V:

$$\Delta S = nC_{V,m} \ln \left(\frac{T_B}{T_A}\right) + n \, \mathcal{R} \ln \left(\frac{V_B}{V_A}\right)$$

2. En fonction de T et P:

$$\Delta S = nC_{P,m} \ln \left(\frac{T_B}{T_A}\right) + n \, \mathcal{R} \ln \left(\frac{P_B}{P_A}\right)$$

3. En fonction de P et V:

$$\Delta S = nC_{V,m} \ln \left( \frac{P_B}{P_A} \right) + nC_{P,m} \ln \left( \frac{V_B}{V_A} \right)$$

## 23. Loi de Laplace

- · dans un système fermé, constitué d'un gaz parfait
- subissant une transformation adiabatique réversible ou isentropique
- n'échangeant que un travaille de pression

Alors:

$$P \times V^{\gamma} = cst$$

$$T \times V^{\gamma - 1} = cst'$$

$$T^{\gamma} \times P^{1-\gamma} = cst''$$

## 24. phase

Une phase est quand les variable d'état intensive sont continue, suivant les conditions de pression et de température, un corps peut se présenté sous différente phase: solide, liquide, gazeux

## 25. Diagramme (P,T)

## Définition

C'est un diagrame qui présente les différentes phases d'un corps pur, en fonction de la pression et la température



Fig. 12. – Diagramme (P, T), cas usuel (à gauche) et cas rare (à droite)

### Point remarquable

- Pression de vapeur saturante : la pression d'équilibre liquide-gaz à la température T est appelée pression de vapeur saturante et est noté :  $P_{\rm sat}(T)$
- Point triple : c'est le point du diagramme (t sur la firgure 7) où les trois phase peuvent coéxisté
- Point critique: c'est le point du diagramme (C sur la firgure 7) à partire du quel il n'y a plus de distinction entre liquide et gaz

## 26. Diagramme (P, V) ou Diagramme de Clapeyron

#### **Définition**

Il représente les différente phase (et zone diphasé), en fonction de la pression et du volume, il permet de connaître la proprortion du corps dans chaqu'une des phase



Fig. 13. – Diagramme de Clapeyron

## titre massique gaz/liquide

Ces deux grandeur représente la proprortion de gaz/liquide du corps pur pour une pression et un volume donnés

• Titre massique en gaz:

$$x_g = \frac{\text{masse du corps pur sous forme gazeuse}}{\text{masse totale du corps pur}} = \frac{m_g}{m}$$

• Titre massique en liquide:

$$x_l = \frac{\text{masse du corps pur sous forme liquide}}{\text{masse totale du corps pur}} = \frac{m_l}{m}$$

On a donc  $x_q + x_l = 1$ 

### 27. Théorème des moments

À partir d'un diagramme de Clapeyron on peut déterminer le titre massique en gaz, par la formule suivante :

$$x_g = \frac{v - v_l}{v_g - v_l}$$

## 28. Enthalpie de transition de phase

Ça correspond au transfert tehermique Q pour passer de la phase  $\varphi_1$  à la phase  $\varphi_2$ , noté et calculé par:

$$\Delta_{\varphi_1\to\varphi_2}H_m(T)=H_{m,\varphi_2}(T)-H_{m,\varphi_1}(T)$$

ou sous forme massique

$$\Delta_{\varphi_1\to\varphi_2}h(T)=h_{\varphi_2}(T)-h_{\varphi_1}(T)$$

### 29. Entropie de transition de phase

Exactement la même chose que l'enthalpie de transition de phase mais avec l'entropie pour les formules remplaces H par S

Liens avec l'enthalpie de transition de phase:

$$\Delta_{\varphi_1 \to \varphi_2} s(T) = \frac{\Delta_{\varphi_1 \to \varphi_2} h(T)}{T}$$

## 30. Machine thermique

### **Définition**

C'est un dispositif dans le quel un fluide faits un cycle dans le but de réaliser une conversion d'énergie thermique en énergie mécanique ou réciproquement

### Représentation

On réprésente une machine thermique par un diagramme, avec

- la machine au centre
- deux thermostat (un froid  $Q_F$  et un chaud  $Q_C$ ) en indiquand le signe de l'échange thermique et en les reliant à la machine au centre
- le travaille également en indiquand sont signe et en le reliant à la machine

#### Théorème de Carnot

L'éfficacité d'une machine thermique ditherme cyclique réeele est toujours inférieur à l'éfficacité de Carnot (qui ne dépend que de la température des thermostat)

### Cogénération

Cela consite à utiliser la chaleur produit dans le cas d'un moteur, et donc rendre  ${\cal Q}_C$  utile

### Rendement

$$\eta = \frac{\text{énergie échangée utile}}{\text{énergie échangée qui coute}}$$

| type de machine     | Rendement                 | Rendement de Carnot (utile) |
|---------------------|---------------------------|-----------------------------|
| Moteur              | $-rac{W}{Q_C}$           | $1-rac{T_F}{T_C}$          |
| machine figorifique | $\frac{Q_F}{W}$           | $\frac{T_F}{T_C-T_F}$       |
| pompe à chaleur     | $-rac{Q_C}{W}$           | $\frac{T_C}{T_C-T_F}$       |
| Cogénération        | $\frac{ W_u + Q_u }{Q_C}$ |                             |

## Diagramme de Raveau

On peut représenté les différentes type de machine en fonction de  ${\cal Q}_C$  et  ${\cal Q}_F$  dans un diagramme



## 31. Transfert thermique

## **Modes de Transfert**

- 1. Rayonement:
  - Pas de support
  - $\vec{\Pi} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$
- 2. Convection:
  - · liée a un mouvement de fluide
  - dommine dans les fluides
- 3. Conduction:
  - transfert de proche en proche
  - sans déplacement macroscopique de la matière

## Flux thermique

flux thermique passant par une surface S:

$$\phi = \iint_S ec{\jmath}_{
m th} \, \mathrm{d}ec{S}$$

avec:

- $\phi = \text{le flux thermique en } W$
- +  $\vec{\jmath} =$  le vecteur densité de flux thermique en  $W \cdot m^{-2}$

Remarque:  $\delta Q = \phi \, \mathrm{d}t$ 

Loi de Fourier

$$\vec{\jmath}_{
m th} = -\lambda \vec{\nabla} T$$

avec:

- $\lambda = \text{la conductivit\'e thermique en } W \cdot m^{-1} \cdot K^{-1}$
- T =la température
- $\vec{\jmath} =$  le vecteur densité de flux thermique

### Équation de la diffusion thermique

$$\rho c \frac{\partial T}{\partial t} = \lambda \Delta T$$

avec:

- $\rho = \text{la masse volumique en kg} \cdot m^{-3}$
- c=la capacité thermique massique en  $J\cdot \mathrm{kg}^{-1}\cdot K^{-1}$
- T =la température
- $\lambda =$  la conductivité thermique en  $W \cdot m^{-1} \cdot K^{-1}$

**Remarque** : 
$$\rho c \frac{\delta T}{t_c} \sim \lambda \frac{\delta T}{L^2} \Longrightarrow t_c \sim \frac{\rho c L^2}{\lambda} = \frac{L^2}{a}$$
 avec  $a = \frac{\lambda}{\rho c}$ 

### conditions au limites entre deux solides:

La température étant continue on impose que au contact entre deux milieux solide 1 et 2 on a:

$$\begin{cases} T_{1}(P,t){=}T_{2}(P,t) \\ \vec{\jmath}_{\text{th},1}(P,t).\vec{n}_{12}{=}\vec{\jmath}_{\text{th},2}(P,t).\vec{n}_{12} \end{cases}$$

N.B.: pour un contact entre un fluide et un solide voir loi phénoménologique de Newton

## Loi phénoménologique de Newton:

$$\vec{\jmath}_{\rm th} = h \big( T(P,t) - T_f \big)$$

avec:

- h= le coefficient de conductivité thermique en  $W\cdot m^{-2}\cdot K^{-1}$
- T =la température
- $T_f =$  la température du fluide

## Exemple classique: ailette de refroidissement

Par le 1er principe de la thermodynamie, on a :  $\mathrm{d}U = \delta Q$ 

Or 
$$dU = \rho S dx c (T(x, t + dt) - T(x, t))$$

Et 
$$\delta Q = j_{th}(x,t)S dt - j_{th}(x+dx)S dt - h(T(x,t)-T_a) dt 2\pi r dx$$

D'où après simplification:

$$\rho c \frac{\partial T}{\partial t} = -\lambda \frac{\partial^2 T}{\partial x^2} - \frac{2h}{r} (T(x,t) - T_a)$$

ensuite on en faits soit une simulation numérique

soit une étude en régime permanent



## Étude en régime permanent

Ici on étudie le cas d'une tige en métal calorifugé sur les cotés de longueur L et dont les températures aux extrémités sont  $T_1$  et  $T_2$  Ainsi l'équation de le propagation de la chaleur s'écrit sous la frome :

 $\rho c \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2}$ , mais le résonement se généralise très bien à d'autre cas

En régime permanent on a :  $\rho c \frac{\partial T}{\partial t} = 0$  d'où  $\frac{\partial^2 T}{\partial x^2} = 0$ 

D'où  $T(x) = \frac{T_2 - T_1}{L} x + T_1$  avec L la longueur

Donc  $j_{\rm th}=rac{\lambda}{L}(T_1-T_2)$  et donc  $\phi=rac{\lambda S}{L}(T_1-T_2)$  avec S la section de la tige

On peut poser la resistance thermique  $R_{\rm th} = \frac{T_1 - T_2}{\phi}$ 

qui ici vaut  $R_{
m th}=rac{L}{\lambda S}$ 

On remarque donc une analogie avec l'éléctronique:

| thermo                                      | éléctro                                |  |
|---------------------------------------------|----------------------------------------|--|
| $ec{\jmath}_{ m th} = -\lambda ec{ abla} T$ | $\vec{\jmath} = \gamma \vec{\nabla} V$ |  |
| $\phi$                                      | i                                      |  |
| $T_A - T_B$                                 | $u_A - u_B = u_{AB}$                   |  |

Ainsi la résistance thermique est analoge à la résistance  $R=\frac{L}{\gamma S}$ 

## 32. Corps opaque

Dans le cas d'un corps opaque on a:

$$\varphi_i = \varphi_r + \varphi_a$$

avec:

- $\varphi_i = \text{le flux incident}$
- $\varphi_r =$  le flux réfléchi
- $\varphi_a =$  le flux absorbé

On pose alors  $\varphi_p=\varphi_r+\varphi_e$  le flux partant, avec  $\varphi_e$  le flux émis par le corps

Et 
$$\varphi^R = \varphi_p - \varphi_i = \varphi_e - \varphi_a$$

## 33. Corps Noir

Un corps noir est une entité qui absorbe toute les radiation et rayon lumineux (d'où le nom) et retransmet la totalité sous forme de chaleur

i.e. 
$$\varphi_r=0$$
 donc  $\varphi_i=\varphi_a$  et  $\varphi_p=\varphi_e$ 

## 34. Loi de Stefan-Boltzmannb

$$\int_0^{+00} L_{\Omega,\nu}^{\circ} \,\mathrm{d}\nu = \sigma T^4$$

avec:

• 
$$\sigma = \frac{2\pi^5 k_B^4}{h^5 c^2} = 5.67 \cdot 10^{-8}$$
 la constante de Stefan-Boltzmann

## 35. Loi de Wien

$$\lambda_{\rm max} T = 2.9 \cdot 10^{-3}$$

avec:

- $\lambda_{\rm max} =$  la longueur d'onde pour la quel le flux est maximal
- T =la température du corps noir

36. Loi de Plank:

$$\varphi_{\lambda}^{e} = \frac{2hc^{2}}{\lambda^{5}} \frac{1}{e^{\frac{hc}{k_{B}\lambda T}} - 1}$$

avec:

•  $\lambda = \text{la longueur d'onde}$ 

• h =la constant de plank

• c= la célérité de la lumière dans le vide

- T= la température du corps noir

• k =la constante de Boltzmann



## X. Chimie

 1. Acide/Bases
 56

 Définitions
 56

 Cas de l'eau
 56

 pH
 56

 Constante d'acidité
 56

 Relation  $pK_a/pH$  57

### 1. Acide/Bases

## **Définitions**

Un acest une espèce chimique capable de céder un proton  $H^+$ : AH

Une base est une espèce chimique capable de capter un proton  $H^+:A^-$  recte acide/base  $AH/A^-$  est un couple d'espèces chimiques qui peut se transformer l'une en l'autre par échange d'un protonrect amphotère : une espèce chimique qui peut se comporter comme un acide ou une base (Ex:  $H_2O$ )

### Cas de l'eau

1. Autoprolyse de l'eau:

$$2H_2O = H_3O^+ + HO^-$$

2. Produit ionique de l'eau:

$$K_e = [H_3 O^+][HO^-] = 10^{-14}$$
 a 25°C

pН

$$pH = -\log[H_3O^+]$$

- On définie aussi  $pOH = -\log([HO^-])$
- Relation entre pH et  $pOH\colon pH+pOH=pK_e=14~$  a 25°C

#### Constante d'acidité

Pour les acides:

$$K_a = [A^-] \frac{[H_3 O^+]}{[AH]}$$

et

$$pK_a = -\log K_a$$

Pour les bases:

$$K_b = [AH] \frac{[HO^-]}{[A^-]}$$

e

$$pK_b = -\log K_b$$

- Relation entre  $K_a$  et  $K_b \colon K_a K_b = K_e = 10^{-14}$ 

Relation  $pK_a/pH$ 

$$pK_a = pH + \log\frac{[A^-]}{[AH]}$$

## XI. Cinétique

| 1. | Moment cinétique du point                   | 58 |
|----|---------------------------------------------|----|
| 2. | Moment cinétique d'une force:               | 58 |
| 3. | Bras de levier:                             | 58 |
| 4. | Théorème du moment cinétique                | 59 |
| 5. | Moment d'inertie                            | 59 |
| 6. | Moment cinétique d'un solide                | 59 |
| 7. | Moment du poids sur un solide               | 60 |
| 8. | couple                                      | 60 |
| 9. | Théorème du moment cinétique pour un solide | 60 |

## 1. Moment cinétique du point

• par rapport a un point:

$$\overrightarrow{L_A(M/R)} = \overrightarrow{AM} \wedge \overrightarrow{p(M/R)} = \overrightarrow{AM} \wedge \overrightarrow{mv(M/R)}$$

• par rapport a un axe:

$$\overrightarrow{L_{\Delta}(M/R)} = \overrightarrow{L_{A}(M/R)} \cdot \overrightarrow{u_{\Delta}}$$

## 2. Moment cinétique d'une force :

• par rapport a un point:

$$\overrightarrow{\mathscr{M}_A}ig(ec{f}ig) = \overrightarrow{AM} \wedge ec{f}$$

• par rapport a un axe:

$$\mathscr{M}_{\Delta}\!\left(\vec{f}\right) = \overrightarrow{\mathscr{M}_A}\!\left(\vec{f}\right) \cdot \vec{u}_{\Delta}$$

## 3. Bras de levier:



$$\left|\mathcal{M}_{\Delta}\!\left(\vec{f}\right)\right| = d \times \left\|\vec{f}\right\|$$

Le signe se détermine grâce à la règle de la main droite (dans le même sens : positif, négatif sinon)

## 4. Théorème du moment cinétique

• par rapport à un point:

$$\left(\frac{\mathrm{d}\overline{L_O(M/R)}}{\mathrm{d}t}\right)_{/R} = \sum_i \overrightarrow{\mathcal{M}_O}\left(\overrightarrow{f}_i\right)$$

• par rapport à un axe:

$$\left(\frac{\mathrm{d}L_{\Delta}(M/R)}{\mathrm{d}t}\right)_{/R} = \sum_{i} \mathcal{M}_{\Delta}\!\left(\vec{f}_{i}\right)$$

## 5. Moment d'inertie

$$J_{\Delta} = \sum_i J_{\Delta}(M_i) = \sum_i \bigl(m_i r_i^2\bigr)$$

| Solide                      | $J_{\Delta}$       |
|-----------------------------|--------------------|
| cylindre vide               | $mR^2$             |
| de rayon ${\cal R}$         |                    |
| cylindre plein              | $\frac{1}{2}mR^2$  |
| de rayon ${\cal R}$         | 2                  |
| sphère                      | $\frac{2}{3}mR^2$  |
| de rayon ${\cal R}$         | 3                  |
| boulle                      | $\frac{2}{5}mR^2$  |
| de rayon ${\cal R}$         | 5                  |
| barre (axe au centre)       | $\frac{1}{12}mL^2$ |
| de longueur ${\cal L}$      | 12                 |
| barre (axe à une extrémité) | $\frac{1}{3}mL^2$  |
| de longueur ${\cal L}$      | 3                  |
| anneau                      | $mR^2$             |
| de rayon ${\cal R}$         |                    |
| disque                      | $\frac{1}{2}mR^2$  |
| de rayon $R$                | 2                  |

## 6. Moment cinétique d'un solide

$$L_{\Delta}(S/R) = \sum L_{\Delta}(M_i/R) = J_{\Delta}(S) \times \omega$$

avec:

• S =Le solide

- $M_i \in S$ , la masse des point qui constitue le solide
- $\Delta = (O; \vec{u}_\Delta)$ , l'axe de rotation
- $J_{\Delta}=$  dans le cas où l'axe de rotation est fixe, le moment d'inertie du solide par rapport a l'axe  $\Delta$

## 7. Moment du poids sur un solide

$$\overrightarrow{M}_O\!\left(\vec{P}\right) = \overrightarrow{OG} \wedge m\vec{g}$$

avec:

- OG =la distance du point O au barycentre G
- m =la masse du solide
- $\vec{g}=$ l'accélération de la gravitation

## 8. couple

Un couple est l'ensemble des actions mécaniques de résultante nul et de moment non nul

## 9. Théorème du moment cinétique pour un solide

$$\frac{\mathrm{d} L_{\Delta}(S)}{\mathrm{d} t} = \sum \mathcal{M}_{\Delta}^{\mathrm{ext}} \Leftrightarrow J_{\Delta} \frac{\mathrm{d} \omega}{\mathrm{d} t} = \sum \mathcal{M}_{\Delta}^{\mathrm{ext}}$$

# XII. Éléctromagnétisme

| 1. Induction magnétique                     | 62 |
|---------------------------------------------|----|
| Loi de modératino de Lenz                   | 62 |
| Flux d'un champ magnétique                  | 62 |
| 2. Loi de Faraday (1831)                    | 63 |
| 3. Inductence propre                        | 63 |
| 4. fem auto-induite                         | 63 |
| 5. Inductence mutuelle                      | 63 |
| Cas de deux Solénoïde concentrique          | 63 |
| 6. Théorème de Gauss                        | 64 |
| Énoncer                                     | 64 |
| Exemple : fil infini de rayon $R$           | 64 |
| 7. Théorème d'Ampère:                       | 64 |
| Énoncer                                     | 64 |
| Exemple : fil infini de rayon $R$           | 64 |
| 8. Équation de Maxwell                      | 65 |
| 9. Analogie avec le champs Gravitationnelle | 65 |
| 10. Équation de propagation dans le vide    | 66 |
| 11. A.R.Q.S.                                | 66 |
| 12. Dipôle Éléctrosatique                   | 66 |
| Définition                                  | 66 |
| Potentiel éléctrosatique                    | 66 |
| Action d'un champs exterieur                | 67 |
| 13. Dipôle magnétique                       | 67 |
| Définition                                  | 67 |
| Aciton d'un champ exterieur                 | 67 |
| 14. Densité volumique de courant            | 67 |
| 15. Équation de conservation de la charge   | 67 |
| 16. Loi local d'Ohm                         | 68 |
| 17. Aspect énergétique:                     | 68 |
| Équation de Poyting:                        | 68 |
| 18. Polarisation                            | 68 |
| Définition                                  | 68 |
| Polarisateur                                | 68 |

|     | Théorème de Malus                      | . 68 |
|-----|----------------------------------------|------|
| 19. | OPPM                                   | . 68 |
|     | Définition                             | . 68 |
|     | Vitesse de phase et de groupe          | . 68 |
| 20. | Porpagation dans un plasma dilué       | . 69 |
|     | Relation de strucutre                  | 69   |
|     | Relation de dispersion                 | . 69 |
|     | $\operatorname{Cas} \omega > \omega_p$ | . 69 |
|     | $\operatorname{Cas} \omega < \omega_p$ | 69   |
| 21. | Paquet d'onde                          | . 69 |
|     | Définition                             | 69   |
|     | caractérise                            | . 69 |
|     | interpretation                         | . 70 |
|     | dans le cas de l'éléctromagnétisme     | . 70 |
| 22. | matériau conducteur                    | . 70 |
|     | Équation de propagation                | . 70 |
|     | résolution                             | . 70 |

## 1. Induction magnétique

Phénomène d'apparition d'un courant dans un circuit fermé à l'approche d'un champ magnétique en mouvement

## Loi de modératino de Lenz

Les effets produit par un phénomène d'induction s'opposent toujours aux causes qui leur ont donné naissance pour faire plus simple: à l'approche d'un champ magnétique la bobine va en créé un de même norme mais de sens opposé pour pour annulé le champ initial

## Flux d'un champ magnétique

Dans le cas où une spire de vecteur de surface  $\vec{S}$  est traversé par un champ magnétique  $\vec{B}$ , alors

$$\Phi = \vec{B} \cdot \vec{S}$$

De plus si le champ traverse N spire identique :  $\Phi = N \vec{B} \cdot \vec{S}$ 

• Dans le cas générale le flux ce calcule avec une double intégrale :

$$\Phi = \iint_{M \in S} \vec{B}(M) \vec{\mathrm{d}S}$$

On parle aussi de flux propre  $\Phi_P$ , c'est le flux induit par le champs magnétique luis même induit par l'intensité du courant dans le circuit

### 2. Loi de Faraday (1831)

$$e_{\rm ind} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t}$$

avec:

- $e_{\mathrm{ind}} = \mathrm{la}$  fem induite
- $\Phi =$  le flux formé par le champ magnétique  $\vec{B}$

Dans un circuit on représenteras la fem par un généateur, dont la flèche est dans le même sens que la flèche du cournat induit d'intensité i qui oriente le circuit

## 3. Inductence propre

On appelle inductence propre le coefficient  $L \geq 0$  entre le flux propre et l'intensité

$$\Phi_P = Li$$

### 4. fem auto-induite

tout circuit par couru par un courant d'intensité i dépendant du temps, s'auto-gène avec un champ magnétique auto-induit Dans ce cas :

$$e_P = -\frac{\mathrm{d}\Phi_P}{\mathrm{d}t} = -L\frac{\mathrm{d}i}{\mathrm{d}t}$$

Note: On retrouve ici le phénomène de bobine dans un circuit

### 5. Inductence mutuelle

Dans le cas où deux circuit  $\mathscr{C}_1$  et  $\mathscr{C}_2$  sont proche, l'un va géner l'autre avec sont champ magnétique auto-induit, dans ce cas on a :

$$\Phi_{k\to k'}(t) = M\times i_k(t)$$

avec:

- $\Phi_{k \to k'} = \operatorname{le}$  flux généré par le circuit k sur k'
- $i_k(t) =$  l'intensité du courant dans le circuit k
- M= inductence mutuelle entre les deux circuit

## Cas de deux Solénoïde concentrique

$$M = \frac{N_1 N_2}{l} \mu_0 S$$

avec:

- M = l'inductence mutuelle
- $N_i =$  le nombre de spire de la bobine i
- l= la longueur des bobines
- S =la section des bobines
- $\mu_0 = 4\pi \cdot 10^{-7}$

### 6. Théorème de Gauss

### Énoncer

$$\iint_{S} \vec{E} \cdot \mathrm{d}\vec{S} = \frac{Q_{\mathrm{int}}}{\varepsilon_{0}}$$

avec:

- $\vec{E} = \text{le champ \'el\'ectrique}$
- $Q_{\rm int} =$  la charge intérieur à la surface S
- $\varepsilon_0 = 8.85 \cdot 10^{-12}$ la permittivité du vide

## Exemple : fil infini de rayon ${\cal R}$

On sait que  $\vec{E} = E(r)\vec{u}_r$  (Voir Invariance et Symétrie)

On a sur une longueur H du fil:

$$\iint \vec{E} \cdot \mathrm{d}\vec{S} = 2\pi r H E(r)$$

Or

pour 
$$R > r : Q_{\text{int}} = \rho_0 \pi R^2 H$$

pour 
$$R < r : Q_{\text{int}} = \rho_0 \pi r^2 H$$

Donc par théorème de gauss:

pour 
$$R > r : E(r) = \frac{\rho_0 R^2}{2\varepsilon_0 r}$$

pour 
$$R < r : E(r) = \frac{\rho}{2} \varepsilon_0 r$$



## 7. Théorème d'Ampère:

#### Énoncer

$$\oint_{\mathscr{C}} \vec{B} \cdot \mathrm{d}\vec{l} = \mu_0 I_{\mathrm{enlac\acute{e}}}$$

avec:

- $\vec{B} =$  le champ magnétique
- $I_{\mathrm{enlac\acute{e}}} =$  le courant enlacé par la courbe  $\mathscr C$

## Exemple : fil infini de rayon R

On sait par symétrie et invariance que  $\vec{B} = B(r) \vec{u}_{\theta}$ 

$$\oint \vec{B} \cdot d\vec{l} = 2\pi r B(r)$$

Or

pour 
$$R > r : I_{\rm enlac\acute{e}} = j\pi R^2$$

$${\rm pour} \ R < r : I_{\rm enlac\acute{e}} = j \pi r^2$$

Donc par théorème de gauss:

$$pour R > r : B(r) = j \frac{\mu_0 R^2}{2r}$$

$$\text{pour } R < r : B(r) = j \frac{\mu_0}{2} r$$



## 8. Équation de Maxwell

Gauss 
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

Flux 
$$\vec{\nabla} \cdot \vec{B} = 0$$

Faraday 
$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

Faraday 
$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$
 Ampère  $\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{\jmath} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$ 

avec:

- $\vec{E} = \text{le champ \'el\'ectrique}$
- $\vec{B} = \text{le champ magnétique}$
- $\rho = \text{la densit\'e de charge}$
- $\vec{\jmath} =$ la densité de courant
- c= la célérité de la lumière dans le vide
- $\varepsilon_0 =$  la permittivité du vide
- $\mu_0 =$  la perméabilité du vide

**N.B.** 
$$\varepsilon_0 \times \mu_0 \times c^2 = 1$$

## 9. Analogie avec le champs Gravitationnelle

Le Théorème de Gauss et la lois de Maxwell-Gauss peuvent se réécrire pour le champs Gravitationnelle en réalisant les équivalences suivantes:

Ainsi le Théorème de Gauss et la loi de Maxwell-Gauss deviennes :

- Théorème de Gauss :  $\oiint_S \mathcal{G} \cdot \mathrm{d}\vec{S} = 4\pi G M_{\mathrm{int}}$ 

• Maxwell-Gauss:  $\vec{\nabla} \cdot \vec{\mathcal{G}} = -4\pi G \rho$ 

## 10. Équation de propagation dans le vide

Dans le vide on a  $\vec{\jmath}=\rho=0$ , d'où

$$\vec{\nabla} \wedge \vec{B} = \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \qquad \vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{\nabla} \cdot \vec{E} \ = 0$$

Après le calcule de  $\vec{\nabla} \wedge \left( \vec{\nabla} \cdot \vec{E} \right)$  de deux manière différente, on trouve :

$$\vec{\Delta}\vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \left( \Box \vec{E} = 0 \right)$$

avec:

- $\vec{\Delta}=$  l'opérateur laplacien
- c =la célérité de la lumière dans le vide
- $\vec{E}=$  le champ éléctrique
- $\square =$  l'opérateur d'alembertien ( $\square = \vec{\Delta} \frac{1}{c^2} \frac{\partial^2}{\partial t^2}$ )

on trouve de manière analoge  $\Box \vec{B} = \vec{\Delta} \vec{B} - \frac{1}{c^2} \frac{\partial^2 \vec{B}}{\partial t^2} = 0$ 

## 11. A.R.Q.S.

Approximation des régime quasi-stationaire

i.e. que l'information du système met un temps très petit devant le temps caractérise du système,

ou que la longueur d'onde de l'onde éléctromagnétique est très grande devant les longueurs caractéristiques du système

Ainsi 
$$\frac{\partial \vec{E}}{\partial t}\approx 0$$
, donc  $\vec{\nabla}\wedge\vec{B}=\mu_0\vec{\jmath}$ 

## 12. Dipôle Éléctrosatique

### Définition

On appelle dipôle éléctrosatique un système constitué d'une charge +q en P et -q en N, dont on observe des effets à des distances grandes devantNP

On caractérise un tel dipôle par:

$$\vec{p}=q\overrightarrow{NP}$$

### Potentiel éléctrosatique

$$V(M) = -\frac{q}{4\pi\varepsilon_0 NM} + \frac{q}{4\pi\varepsilon_0 PM} = \frac{p\cos(\theta)}{4\pi\varepsilon_0 r^2}$$

avec:

•  $\theta =$  l'angle formé par le vecteur  $\vec{p}$  et le vecteur  $\overrightarrow{OM}$ , avec O le barycentre éléctrosatique du dipôle

- r= la distance entre le point M et le barycentre éléctrosatique

## Action d'un champs exterieur

Dans le cas où  $\vec{E}_{\rm ext} = \vec{E}_0$  uniforme, alors

- $\bullet \ E_p = -\vec{p} \cdot \overrightarrow{E_0}$
- la résultante des forces  $\mathcal{R}=0$
- Le moment  $\vec{\Gamma} = \vec{p} \wedge \overrightarrow{E_0}$

Dans le cas où  $\vec{E}_{\mathrm{ext}}$  est quasi-uniforme :

- $\bullet \ E_p = -\vec{p} \cdot \overrightarrow{E_0}$
- la résultante des forces  $\mathcal{R} \neq 0$
- Le moment  $\vec{\Gamma} = \vec{p} \wedge \overrightarrow{E_0}$

## 13. Dipôle magnétique

## Définition

De manière analoge au dipôle éléctrique on définie un dipôle magnétique par

$$\overrightarrow{M} = i \overrightarrow{S}$$

avec:

- $\vec{S} =$ le vecteur surface
- i = l'intensité du courant

### Aciton d'un champ exterieur

On a:

- Le moment  $\vec{\Gamma} = \overrightarrow{M} \wedge \vec{B}_{\mathrm{ext}}$
- $E_p = -\overrightarrow{M} \cdot \overrightarrow{B}_{\mathrm{ext}}$

## 14. Densité volumique de courant

$$\vec{\jmath} = \rho_m \vec{v}$$

avec:

- $\rho_m =$  la densité volumique de charge moblie
- $\vec{v} =$  la vitesse du courant

Remarque : le vecteur densité de courant est définie tel que  $\mathrm{d}q=\vec{\jmath}\cdot\mathrm{d}\vec{S}\,\mathrm{d}t$ 

## 15. Équation de conservation de la charge

$$\vec{\nabla} \cdot \vec{\jmath} + \frac{\partial \rho}{\partial t} = 0$$

avec:

- $\rho$  = la densité de charge
- $\vec{\jmath} =$ la densité de courant

**Remarque:** en régime permanent  $\frac{\partial \rho}{\partial t} = 0$ , donc  $\vec{\nabla} \cdot \vec{\jmath} = 0$ , et on en déduit la loi des nœuds (voir l'intuition derière la divergence)

### 16. Loi local d'Ohm

$$\vec{\jmath} = \gamma \vec{E}$$

avec:

- $\gamma =$ la conductivité éléctrique
- $\vec{\jmath} =$ la densité de courant
- $\vec{E}=$  le champ éléctrique

## 17. Aspect énergétique:

## **Équation de Poyting:**

$$\frac{\partial u}{\partial t} + \vec{\nabla} \cdot \vec{\Pi} = -\vec{\jmath} \cdot \vec{E}$$

avec:

- u= densité volumique énérgétique =  $\varepsilon_0 \frac{\vec{E}}{2} + \frac{\vec{B}}{2} \mu_0$
- $\vec{\Pi} = \text{le vecteur de Poyting} = \frac{\vec{E} \wedge \vec{B}}{\mu_0}$
- $\vec{\jmath} \cdot \vec{E} =$  énérgie cédée à la matière

#### 18. Polarisation

#### **Définition**

La polarisation d'une onde c'est la courbe décrite par  $\vec{E}$  quand vois arriver l'onde sur nous

#### Polarisateur

Un polarisateur filtre les ondes polarisées pour sortir que des ondes polarisées dans le sens du polarisateur

#### Théorème de Malus

A ne pas confondre avec l'autre Théorème de Malus en optique géométrique

Après le passage par un polarisateur suivants  $\vec{u}_p$ , l'intensité  $I_0$  devient  $I_0\cos(\theta)$  avec  $\theta$  l'angle entre la polarisation précédente et  $\vec{u}_p$ 

#### **19. OPPM**

#### **Définition**

Une onde plane progressive monochorme est une onde de la forme  $s(\vec{r},t)=S_0e^{i\left(\omega t-\vec{k}\vec{r}
ight)}$ 

### Vitesse de phase et de groupe

1. Vitesse de phase

On définis la vitesse de phase par  $v_{\varphi} = \frac{\omega}{k}$ ,

cette vitesse représente la vitesse de la phase a l'origine de l'onde

ou encore la vitesse des ocsilation de l'onde

Attention: cette vitesse n'a pas de sens physique car peut aller plus vite que la vitesse de la lumière dans le vide

1. Vitesse de Groupe

On définie la vitesse de groupe par  $v_g = \frac{\mathrm{d}\omega}{\mathrm{d}k}$ 

Cette vitesse représente la vitesse réelle de l'onde,

## 20. Porpagation dans un plasma dilué

Dans un plasma dilué on a  $\rho = 0$ , ainsi

$$\vec{\nabla} \wedge \vec{B} = \mu_0 \vec{\jmath} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t} \qquad \vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \wedge \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \vec{\nabla} \cdot \vec{E} \qquad = 0$$

Ainsi on trouve:

$$\Box \vec{E} = \vec{\Delta} \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \mu_0 \frac{\mathrm{d}\vec{\jmath}}{\mathrm{d}t}$$

Relation de strucutre

$$\vec{B} = \frac{\vec{k} \wedge \vec{E}}{\omega}$$

Relation de dispersion

$$k^2 = \frac{\omega^2 - \omega_p^2}{c^2}$$

avec:

•  $\omega_p=$  la fréquence de plasma

$$\begin{array}{l} \operatorname{Cas}\,\omega>\omega_p\\ \operatorname{On}\,\mathrm{a}\,k=\frac{\omega}{c}\sqrt{1-\frac{\omega_p}{\omega}}\lim(\longrightarrow,+\infty)\frac{\omega}{c} \end{array}$$

Donc a haute fréquence le plasma se comporte comme le vide

Cas 
$$\omega<\omega_p$$
 On a  $k^2=\frac{\omega^2-\omega_p^2}{c^2}<0$ , donc soit  $k=\pm ik$ ' avec  $k'=\sqrt{\frac{\omega_p^2-\omega^2}{c^2}}$ 

Si k=ik' est impossible car l'onde divergerais

Si k=-ik', on obtient une onde évanéssante,  $\vec{E}$ '  $=\vec{E}_0$  ' $e^{-k'z}e^{i\omega t}$ 

## 21. Paquet d'onde

### **Définition**

On définis un paquet d'onde par la transformer de fourier, i.e.

$$\vec{E}(\vec{r},t) = \int_0^+ \infty g(\omega) e^{i\left(\omega t - \vec{k}\vec{r}\right)} \,\mathrm{d}\omega \vec{u}_r$$

#### caractérise

Un paquet d'onde respecte les caractérises suivantes :

- $\omega_0 = 2\frac{\pi}{T_0}$
- $\delta\omega\sim\frac{1}{\delta t}$

• 
$$k(\omega) \approx k(\omega_0) + (\omega - \omega_0) \frac{\mathrm{d}k}{\mathrm{d}\omega} = k_0 + \frac{\omega - \omega_0}{v_g}$$

## interpretation

Un paquet d'onde peut être vue comme une somme infinie d'OPPM légèrement différentes en faites la transformer de fourier peut est une base continue de fonction, avec ici les OPPM comme vecteurs de base

## dans le cas de l'éléctromagnétisme

On a par la relation de dispersion 
$$k^2=\frac{\omega^2}{c^2}-\frac{\omega_p^2}{c^2}\Longleftrightarrow \frac{\omega}{k}\frac{\mathrm{d}\omega}{\mathrm{d}k}=c^2=v_\pi v_g$$
 Or  $v_\pi=\frac{c}{\sqrt{1-\frac{\omega_p^2}{\omega^2}}}$ , donc  $v_g=c\sqrt{1-\frac{\omega_p^2}{\omega^2}}$ 

### 22. matériau conducteur

## Équation de propagation

Dans un matériau conducteur on peut considéré  $\rho=0$ , donc par les équations de Maxwell:

$$\frac{\partial \vec{j}}{\partial t} \gamma \mu_0 = \vec{\Delta} \vec{j}$$
 équation de diffusion

#### résolution

On cherche une solution de la forme  $\vec{\jmath}=\vec{\jmath}_{0}e^{-i\omega t}e^{-kx}$  et  $\underline{k^{2}}=-\gamma\mu_{0}i\omega$ on trouve alors  $\underline{k}=\pm \frac{1-i}{\delta}$ , avec  $\delta=\sqrt{\frac{2}{\gamma\mu_0\omega}}$  l'épaisseur de peau et ainsi

$$\vec{\jmath} = \vec{\jmath}_0 e^{i(\omega t - \frac{x}{\delta})} e^{-\frac{x}{\delta}} + \vec{\jmath}_1 e^{i(\omega t + \frac{x}{\delta})} e^{\frac{x}{\delta}}$$

## XIII. Mécaniques quantique

| 1. | Relation de de Broglie                        | 1 |
|----|-----------------------------------------------|---|
| 2. | Relation de Plank-Einstein                    | 1 |
| 3. | Effet photoéléctrique                         | 2 |
| 4. | Longueur d'onde de Broglie                    | 2 |
|    | Définition                                    | 2 |
|    | Interprétation                                | 2 |
| 5. | Fonction d'onde                               | 2 |
| 6. | Équation de Shrödinger                        | 3 |
|    | Définition                                    | 3 |
|    | Interprétation des termes                     | 3 |
| 7. | Équation de Schrödinger indépendante du temps | 3 |
| 8. | Particule libre                               | 3 |
| 9. | Courant de probabilité                        | 4 |
| 10 | . Inégalité de Heisenberg                     | 4 |
| 11 | . Superposition d'état                        | 4 |
| 12 | . Énergie de Confinement                      | 4 |
| 13 |                                               | 5 |

## 1. Relation de de Broglie

pour toute particule on peut luis associer une onde de matière, ainsi

$$\lambda = \frac{h}{p}$$

### avec:

- $\lambda =$ la longueur d'onde de la particule
- h =la constante de plank
- p=mv= la quantité de mouvement de la particule avec m sa masse et v sa vitesse

## 2. Relation de Plank-Einstein

Le rayonement éléctromagnétique monochormatique est constitué de photon qui:

- sont de masse nulle
- se déplace à la vitesse de la lumière dans le vide
- d'énergie :  $E=h\nu$ , avec h la constante de plank et  $\nu$  la fréquence du rayonement
- de quantité de mouvement  $p=\frac{h}{\lambda}$

### 3. Effet photoéléctrique

C'est un phénomène dans le quel un matériaux émet un des éléctrons (sous la forme d'un courant généralement) sous l'effet d'un rayonement à haute fréquence

$$E_{c, \text{max}} = h\nu - W_0$$

avec:

- $E_{c, \text{ max}} =$  l'énérgie cinétique maximale de l'éléctrons
- $\nu = \text{la fréquence de la lumière}$
- h = la constante de plank
- $W_0 =$  un travaille minimum a fournir pour arraché l'éléctrons, qui est propre au matériau

### 4. Longueur d'onde de de Broglie

#### Définition

$$\lambda_{\mathrm{DB}} = \frac{h}{p} = \frac{h}{mv}$$

avec:

- $\lambda_{\mathrm{DB}} =$  la longueur d'onde de de Broglie
- h = la constante de plank
- p =la quantité de mouvement de la particule
- m =la masse de la particule
- v =la vitesse de la particule

#### Interprétation

On peut y voir dans la quantité de mouvement p les caractéristique « classique » de la particule, que l'on vient comparer à la constante de planck h qui représente « l'échelle quantique »

Ainsi si cette comparaison entre « monde classique » et « monde quantique » est de l'ordre ou plus grande que l'échelle d'étude, alors le caratére ondulatoire de la particule seras manifeste. A contrario si cette comparaison est plus grande alors le caractère corpusculaire de la particule ne seras pas preceptible, et on pourra la traiter comme une particule classique l est l'odre de grandeur des longueurs caractéristiques de l'étude, alors :

Si 
$$\lambda_{\rm DB} \gtrsim l \iff$$
 Mécanique Quantique

Si 
$$\lambda_{\mathrm{DB}} < l \iff$$
 Mécanique Classique

### 5. Fonction d'onde

La fonction d'onde, noté  $\Psi(M,t)$ , associé à une particule est une fonction complexe qui décri l'état de la particule au point M et à l'instant t

seul elle n'a aucun sens physique, mais pour une particule sans spin (ne venez pas me demander) sont module au carré  $|\Psi|^2$  représente la densité de probabilité, autrement dit  $\mathrm{d}P=|\Psi|^2\,\mathrm{d}\tau$  dans l'espace (en 1D,  $\mathrm{d}P=|\Psi|^2\,\mathrm{d}x$ )

Ainsi on a comme conditions

$$\int_{-\infty}^{+\infty} |\Psi|^2 \, \mathrm{d}x = 1$$

i.e. que la probabilité de trouver la particule dans l'espace est de 1

## 6. Équation de Shrödinger

#### **Définition**

$$-\frac{\hbar^2}{2m}\Delta\Psi + V\Psi = i\hbar\frac{\mathrm{d}\Psi}{\mathrm{d}t}$$

avec:

- $\Psi = \text{la fonction d'onde}$
- m =la masse de la particule
- V= le l'énergie potentiel de la particule (ici appelé juste potentiel)
- $\hbar = \text{la constante de planck réduite}$

Remarque: On peut remarquer la ressemblance entre cette équation et l'équation de propagation de la chaleurs

## Interprétation des termes

Tout d'abord chaque terme est homogène à une énérgie, ainsi l'équation peut être interprétée comme la consenservation de l'énergie méchanique

Ainsi:

- $-\frac{\hbar^2}{2m}\Delta\Psi$  peut être interprété comme l'énergie cinétique de la particule
- $V\Psi$  peut être interprété comme l'énergie gagné par les forces appliquées à la particule,

où comme l'énergie potentielle (bien que les deux visions sont équivalentes)

-  $i\hbar \frac{\mathrm{d}\Psi}{\mathrm{d}t}$  Si quelqu'un à une bonne interprétation je suis preneur

## 7. Équation de Schrödinger indépendante du temps

Dans le cas d'un état stationaire (i.e. V(M,t) = V(M)), l'équation de Schrödinger devient:

$$-\frac{\hbar^2}{2m}\Delta\varphi + V\varphi = E\varphi$$

avec

- $\varphi$  tel que  $\Psi(M,t)=\varphi(M)e^{-i\frac{E}{\hbar}t}$
- E = l'énergie de la particule
- m =la masse de la particule

**Remarque:** On obtient cette équation en procédant à une séparation de variable de  $\Psi(x,t)=\varphi(x)f(t)$ 

Et on trouve que  $f(t)=e^{-i\frac{E}{\hbar}t}$ 

De plus  $|\Psi(x,t)|^2 = |\varphi(x)|^2$ 

## 8. Particule libre

Dans le cas de la particule libre on a V=0, ainsi en résolvant l'équation de Schrödinger indépendante du temps on trouve que:

$$\varphi(x) = \underbrace{Ae^{ikx}}_{\text{particule progressant suivant }\vec{u}_x} + \underbrace{Be^{-ikx}}_{\text{particule progressant suivant }-\vec{u}_x}$$

avec 
$$k=2m\frac{E}{\hbar}$$

Or dans le cas où seul des particule vienne de  $-\infty$ , alors  $\Psi(x,t)=Ae^{ikx}$ , ce qui donne  $|\Psi|^2=|A|^2$  ce qui ne respecte pas a condition de normalisation, il faut donc considéré un paquet d'onde  $\Psi(x,t)=\int_{-\infty}^{+\infty}g(k)e^{i(kx-\omega t)}\,\mathrm{d}k$  On obtient alors que la vitesse de groupe  $v_g=\frac{\hbar k}{m}=$  la vitesse de l'éléctronique

## 9. Courant de probabilité

On pose par analogie avce la densité de courant:

$$ec{J} = \underbrace{|\Psi|^2}_{\leftrightarrow 
ho_m} \underbrace{rac{\hbar ec{k}}{m}}_{\leftrightarrow ec{v}}$$

avec:

- $\vec{J}=$  le courant de probabilité
- $\Psi = \text{la fonction d'onde}$
- $\hbar = \text{la constante de planck réduite}$
- $\vec{k} =$ le vecteur d'onde de la particule
- m =la masse de la particule

### 10. Inégalité de Heisenberg

$$\Delta x \Delta p \geq \frac{h}{2} \Longleftrightarrow \Delta x \Delta k \geq \frac{1}{2}$$

$$\Delta t \Delta E \geq \frac{h}{2} \Longleftrightarrow \Delta t \Delta \omega \geq \frac{1}{2}$$

avec:

- $\Delta x = 1$ 'incertitude sur la position
- $\Delta p =$  l'incertitude sur la quantité de mouvement
- $\Delta k =$  l'incertitude sur le vecteur d'onde
- $\Delta t = 1$ 'incertitude sur le temps
- $\Delta E =$  l'incertitude sur l'énergie
- $\Delta \omega =$  l'incertitude sur la pulsation

## 11. Superposition d'état

Comme l'équation de Shrödinger est linéaire, alors si  $\Psi_1$  et  $\Psi_2$  sont des solutions de l'équation, alors  $\Psi=a\Psi_1+b\Psi_2$  est aussi une solution de l'équation

## 12. Énergie de Confinement

Dans un espace de dimension a, on a donc  $\Delta x \sim \frac{a}{2}$ , Donc par l'inégalité de Heisenberg on a : $\Delta p \sim \frac{\hbar}{a}$  Ainsi :

$$E = \frac{(\Delta p)^2}{2m} = \frac{\hbar^2}{2ma^2}$$

**13.** 

## XIV. Truc et astuce

| 1. | Constantes:                                    |
|----|------------------------------------------------|
| 2. | Vecteur surface                                |
| 3. | Symétrie                                       |
|    | Plan de Symétrie77                             |
|    | Plan de Anti-Symétrie                          |
|    | Utilité:78                                     |
|    | Exemple                                        |
| 4. | Invariance                                     |
|    | Principe de Curie :                            |
|    | Exemple                                        |
| 5. | Théorème de Stokes                             |
| 6. | Théorème de Green-Ostrograski                  |
| 7. | Intuition sur la divergence et le rotationnel: |
| 8. | Nabla                                          |
| 9. | Formulaire d'analyse vectorielle               |
|    | Définition des opérateurs                      |
|    | Composition des opérateurs80                   |

## 1. Constantes:

| Nom                                | symbole         | Valeur                                          | Origine                       |  |
|------------------------------------|-----------------|-------------------------------------------------|-------------------------------|--|
| Éléctromagnétisme                  |                 |                                                 |                               |  |
| vitesse de la lumière dans le vide | c               | $3\cdot 10^8 ms^{-1}$                           | Par définition                |  |
| Charge élémentaire                 | e               | $1,6\cdot 10^{-19}C$                            | Par définition                |  |
| Perméabilité du vide               | $\mu_0$         | $4\pi \cdot 10^{-7} TmA^{-1}$                   | $\frac{2\alpha h}{e^2c}$      |  |
| Permittivité diélectrique du vide  | $\varepsilon_0$ | $8,85 \cdot 10^{-12} Fm^{-1}$                   | $\frac{1}{\mu_0 c^2}$         |  |
| Constante de Coulomb               | k               | $8,99 \cdot 10^9 Nm^2C^{-2}$                    | $\frac{1}{4\pi\varepsilon_0}$ |  |
|                                    | Gr              | avitation                                       |                               |  |
| Constante gravitationnelle         | G               | $6,67 \cdot 10^{-11} m^3 \text{kg}^{-1} s^{-2}$ | Mesure                        |  |
| Accélération de pesanteur          | g               | $9,81ms^{-2}$                                   | Convention                    |  |
| Rayon de la terre                  | $R_T$           | $6,4\cdot 10^6 m$                               | Mesure                        |  |
| Masse de la terre                  | $M_T$           | $5,97 \cdot 10^{24} \text{ kg}$                 | Mesure                        |  |
| Rayon du Soleil                    | $R_{\odot}$     | $6,96\cdot 10^8 m$                              | Mesure                        |  |

| Nom                           | symbole      | Valeur                                 | Origine                                  |
|-------------------------------|--------------|----------------------------------------|------------------------------------------|
| Masse du Soleil               | $M_{\odot}$  | $1.99 \cdot 10^{30} \text{ kg}$        | Mesure                                   |
| Unité astronomique            | U.A.         | $1,5\cdot 10^{11}m$                    | Distance terre soleil                    |
| Année lumière                 | al           | $9,46 \cdot 10^{15} m$                 | $c \times 1$ ans                         |
|                               | Physic       | co-Chimique                            |                                          |
| Pression de l'atmosphère      | atm          | $1,01325 \cdot 10^5 \text{ Pa}$        | Convention                               |
| Nombre d'Avogadro             | $N_A$        | $6,02\cdot 10^{23} { m mol}^{-1}$      | Définition de la mole                    |
| Constante des gaz parfait     | R            | $8,31 J \text{mol}^{-1} \text{K}^{-1}$ | $k_B N_A$                                |
| Constante de Boltzmann        | $k$ ou $k_B$ | $1,38\cdot 10^{-23} J \mathrm{K}^{-1}$ | Par définition du Kelvin                 |
| Constante de Stefan-Boltzmann | σ            | $5,67 \cdot 10^{-8} Wm^{-2}K^{-4}$     | $\frac{2\pi^{5}k_{B}^{4}}{15h^{3}c^{2}}$ |
|                               | Atomiq       | ue et nucléaire                        |                                          |
| Masse du Proton               | $m_p$        | $1,67\cdot 10^{-27} \text{ kg}$        | Mesure                                   |
| Masse du Neutron              | $m_n$        | $1,67\cdot 10^{-27} \text{ kg}$        | Mesure                                   |
|                               |              |                                        | Mesure et                                |
| Masse de l'Electron           | $m_e$        | $9,11\cdot 10^{-31} \text{ kg}$        | $\approx \frac{m_p}{2000}$               |
|                               | Unite        | é de Planck                            |                                          |
| Constante de Planck           | h            | $6,63\cdot 10^{-34}Js$                 | Par définition                           |
| Constante de Planck réduite   | ħ            | $1, 1\cdot 10^{-34}Js$                 | $\frac{h}{2\pi}$                         |
| longueur de Planck            | $l_p$        | $1,6\cdot 10^{-35}m$                   | $\sqrt{rac{\hbar G}{c^3}}$              |
| Masse de Planck               | $m_p$        | $2,2\cdot 10^{-8}~\mathrm{kg}$         | $\sqrt{rac{\hbar c}{G}}$                |
| Temps de Planck               | $t_p$        | $5,4\cdot 10^{-44}s$                   | $\sqrt{rac{\hbar G}{c^5}}$              |

## 2. Vecteur surface

On définie de Vecteur surface  $\vec{S}$  par :

• direction: orthogonal à la surface

• sens : donnée par la règle de la main droite la plus par du temps (mais reste très intuitif dans le sens choisir)

- norme : la surface S

## 3. Symétrie

## Plan de Symétrie

Soit un plan  $\mathscr{P}$  et  $M \in \mathscr{P}$ , alors

- $\vec{E}(M) \in \mathscr{P}$
- soit  $M' = \operatorname{sym}_{\mathscr{P}}(M)$ , alors  $\vec{E}(M') = \operatorname{sym}_{\mathscr{P}}\left(\vec{E}(M)\right)$

## Plan de Anti-Symétrie

Soit un plan  $\Pi$  et  $M \in \Pi$ , alors

- $\vec{E}(M) \perp \Pi$
- soit  $M' = \operatorname{sym}_{\Pi}(M)$ , alors  $\vec{E}(M') = -\operatorname{sym}_{\Pi}\left(\vec{E}(M)\right)$

#### Utilité:

Permet de retiré directement des composantes des vecteurs étudiés

### Exemple

Dans un fils infini uniformément chargée, soit M un point de l'espace

alors tout les plans passant par  $\left( \vec{O}_{z}\right)$  sont des plans de symétrie

de même pour le plan perpendiculaire à  $\vec{O}_z$  passant par M Ainsi  $\vec{E} = E_r \vec{u}_r + E_\theta \vec{u}_\theta + E_z \vec{u}_z = E_r \vec{u}_r$ 

### 4. Invariance

## Principe de Curie:

Les symétries des causes se retrouvent dans les effets. Les effets peuvent avoir plus de symétries que les causes.

### **Exemple**

On a déjà vue que dans le cas du fil infini uniformément chargée, on a  $\vec{E}(r,\theta,z)=E_r(r,\theta,z)\vec{u}_r$ 

Donc Ici on a invariance par rotation autour de  $\vec{O}_z$  et par translation suivant  $u_z$ 

Ainsi 
$$\vec{E}(r, \theta, z) = \vec{E}(r)$$

## 5. Théorème de Stokes

$$\oint_{\mathscr{C}} \vec{A} \cdot d\vec{l} = \iint_{\mathcal{S}} (\vec{\nabla} \wedge \vec{A}) \cdot d\vec{S}$$

avec:

- $\vec{A} = \text{un champ vectoriel}$
- 6. Théorème de Green-Ostrograski

$$\iint_{S} \vec{A} \cdot d\vec{S} = \iiint_{V} \vec{\nabla} \cdot \vec{E} \, d\tau$$

avec:

•  $\vec{A} = \text{un champ vectoriel}$ 

## 7. Intuition sur la divergence et le rotationnel:

La divergence noté div ou  $\vec{\nabla}$  · représente intuitivement « la quantité » de vecteur qui sort ou rentre d'un espace donné Tandis que le rotationnel, noté rot ou  $\vec{\nabla}$   $\wedge$  représente intuitivement « la quantité » de vecteurs qui tournent autour d'un point donné.

## Exemple:

Sur un aiment la divergence du champs magnétique est nul car les vecteurs du champs « sorte » du pôle nord et « rerentre » au pôle sud.

Mais dans le cas de la gravitation le champs gravitationnelle semble comme sortir du centre de la planète, et donc la divergence est positif et serait négatif si celle-ci semblais rentrer dans la planète

Si un mobile bouge en translation le rotationnel est nul car aucun des vecteurs vitesses attachés en chaque points du mobile ne « tourne ».

Alors que si ce même mobile est en rotation par rapport à sont centre, alors le rotationnel serait tantôt positif ou négatif (régle de la main droite) car chaqu'un des vecteurs vitesses semble tourner autour de l'axe de rotation

#### 8. Nabla

Le vecteur nabla est un opérateur différentiel qui permet de définir des opérations sur les champs scalaires et vectoriels, noté  $\vec{\nabla}$  Et est définie dans  $\mathbb{R}^3$  par:  $\vec{\nabla} = \frac{\partial}{\partial x} \vec{i} + \frac{\partial}{\partial y} \vec{j} + \frac{\partial}{\partial z} \vec{k}$ , avec  $\left\{ \vec{i}, \vec{j}, \vec{k} \right\}$  une base de  $\mathbb{R}^3$ 

Un des avantage de cette notation, et que dans le cas des coordonnées cartésien, calculer un opérateur vectoriel est équivalent a calculer le produit, produit scalaires, produit vectoriel entre la grandeur et le vecteur nabla

## 9. Formulaire d'analyse vectorielle

### Définition des opérateurs

| Opérateur               | Cartésien                                                                                                                     | Cylindrique                                                                                                                                         | Sphérique                                                                                                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\vec{\nabla} f$        | $\frac{\partial f}{\partial x} \vec{u}_x + \frac{\partial f}{\partial y} \vec{u}_y + \frac{\partial f}{\partial z} \vec{u}_x$ | $\frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta + \frac{\partial f}{\partial z} \vec{u}_z$ | $\frac{\partial f}{\partial r} \vec{u}_r + \frac{1}{r} \frac{\partial f}{\partial \theta} \vec{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \varphi} \vec{u}_\varphi$                                 |
| $ec{ abla} \cdot ec{A}$ | $\frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$                         | $\frac{1}{r}\frac{\partial (rA_r)}{\partial x} + \frac{1}{r}\frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$                      | $\boxed{ \frac{1}{r^2} \frac{\partial (r^2 A_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (A_\theta \sin \theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial A_\varphi}{\partial \varphi} }$ |
| $ec{ abla}\wedgeec{A}$  | $\left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \vec{u}_x$                                    | $\bigg(\frac{1}{r}\frac{\partial A_z}{\partial \theta} - \frac{\partial A_\theta}{\partial z}\bigg) \vec{u}_r$                                      | $\frac{1}{r\sin\theta} \Biggl( \frac{\partial \Bigl(A_\varphi \sin\theta\Bigr)}{\partial\theta} - \frac{\partial A_\theta}{\partial\varphi} \Biggr) \vec{u}_r$                                                          |
|                         | $+igg(rac{\partial A_x}{\partial z}-rac{\partial A_z}{\partial x}igg)ec{u}_y$                                               | $+ \bigg(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\bigg) \vec{u}_\theta$                                                    | $+ \Bigg( \frac{1}{r \sin \theta} \frac{\partial A_r}{\partial \varphi} - \frac{1}{r} \frac{\partial \Big( r A_\varphi \Big)}{\partial r} \Bigg) \vec{u}_\theta$                                                        |
|                         | $+ \Bigg( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \Bigg) \vec{u}_z$                                 | $+\frac{1}{r}\bigg(\frac{\partial (rA_{\theta})}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\bigg)\vec{u}_{z}$                               | $+\frac{1}{r}\bigg(\frac{\partial (rA_{\theta})}{\partial r}-\frac{\partial A_{r}}{\partial \theta}\bigg)\vec{u}_{\varphi}$                                                                                             |

| Opérateur         | Cartésien                                                                                                   | Cylindrique                                                                                                                                                                   | Sphérique                                                                                                                                                                                                               |
|-------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta f$        | $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$ | $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right) + \frac{1}{r^2}\frac{\partial^2 f}{\partial \theta^2} + \frac{\partial^2 f}{\partial z^2}$ | $\frac{1}{r^2} \frac{\partial}{\partial r} \left( r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial f}{\partial \theta} \right)$ |
|                   |                                                                                                             |                                                                                                                                                                               | $+\frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial \varphi^2}$                                                                                                                                                     |
| $ec{\Delta}ec{A}$ | $\Delta A_x \vec{u}_x + \Delta A_y \vec{u}_y + \Delta A_z \vec{u}_z$                                        | $\bigg(\Delta A_r - \frac{A_r}{r^2} - \frac{2}{r^2}\frac{\partial A_\theta}{\partial \theta}\bigg) \vec{u}_r$                                                                 |                                                                                                                                                                                                                         |
|                   |                                                                                                             | $+ \bigg( \Delta A_{\theta} - \frac{A_{\theta}}{r^2} - \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} \bigg) \vec{u}_{\theta}$                                            | Voir ci-dessous                                                                                                                                                                                                         |
|                   |                                                                                                             | $+(\Delta A_z)\vec{u}_z$                                                                                                                                                      |                                                                                                                                                                                                                         |

Le laplacien en coordonnées sphériques est donné par:

$$\vec{\Delta} \vec{A} = \begin{pmatrix} \Delta A_r - 2 \frac{A_r}{r^2} - 2 \frac{A_\theta}{r^2} \frac{\cos \theta}{\sin \theta} - \frac{2}{r^2} \frac{\partial A_\theta}{\partial \theta} - \frac{2}{r^2 \sin^2 \theta} \frac{\partial A_\varphi}{\partial \varphi} \\ \Delta A_\theta - \frac{A_\theta}{r^2 \sin^2 \theta} + \frac{2}{r^2} \frac{\partial A_r}{\partial \theta} - \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\varphi}{\partial \varphi} \\ \Delta A_\varphi - \frac{A_\varphi}{r^2 \sin^2 \theta} + \frac{2}{r^2 \sin \theta} \frac{\partial A_r}{\partial \varphi} + \frac{2 \cos \theta}{r^2 \sin^2 \theta} \frac{\partial A_\theta}{\partial \varphi} \end{pmatrix}$$

## Composition des opérateurs