Review of Lecture 2

Is Learning feasible?

Yes, in a probabilistic sense.

$$\mathbb{P}\left[|E_{\text{in}}(h) - E_{\text{out}}(h)| > \epsilon \right] \leq 2e^{-2\epsilon^2 N}$$

Since g has to be one of h_1, h_2, \cdots, h_M , we conclude that

If:

$$|E_{\mathsf{in}}(g) - E_{\mathsf{out}}(g)| > \epsilon$$

Then:

$$|E_{\mathsf{in}}(h_1) - E_{\mathsf{out}}(h_1)| > \epsilon$$
 or

$$|E_{\mathsf{in}}(h_2) - E_{\mathsf{out}}(h_2)| > \epsilon$$
 or

. . .

$$|E_{\mathsf{in}}(h_M) - E_{\mathsf{out}}(h_M)| > \epsilon$$

This gives us an added M factor.

Learning From Data

Yaser S. Abu-Mostafa California Institute of Technology

Lecture 3: Linear Models I

Outline

• Input representation

• Linear Classification

• Linear Regression

• Nonlinear Transformation

A real data set

Input representation

'raw' input $\mathbf{x} = (x_0, x_1, x_2, \cdots, x_{256})$

linear model: $(w_0,w_1,w_2,\cdots,w_{256})$

Features: Extract useful information, e.g.,

intensity and symmetry $\mathbf{x}=(x_0,x_1,x_2)$

linear model: (w_0, w_1, w_2)

Illustration of features

 $\mathbf{x} = (x_0, x_1, x_2)$ x_1 : intensity x_2 : symmetry

5/23

What PLA does

Evolution of E_{in} and E_{out}

Final perceptron boundary

The 'pocket' algorithm

PLA:

Pocket:

Classification boundary - PLA versus Pocket

PLA: Pocket:

Outline

• Input representation

• Linear Classification

• Linear Regression $regression \equiv real-valued output$

Nonlinear Transformation

Credit again

Classification: Credit approval (yes/no)

Regression: Credit line (dollar amount)

Input: $\mathbf{x} =$

age	23 years
annual salary	\$30,000
years in residence	1 year
years in job	1 year
current debt	\$15,000
• • •	• • •

Linear regression output: $h(\mathbf{x}) = \sum_{i=0}^d w_i \; x_i = \mathbf{w}^{\scriptscriptstyle\mathsf{T}} \mathbf{x}$

The data set

Credit officers decide on credit lines:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

 $y_n \in \mathbb{R}$ is the credit line for customer \mathbf{x}_n .

Linear regression tries to replicate that.

How to measure the error

How well does $h(\mathbf{x}) = \mathbf{w}^{\mathsf{T}}\mathbf{x}$ approximate $f(\mathbf{x})$?

In linear regression, we use squared error $(h(\mathbf{x}) - f(\mathbf{x}))^2$

in-sample error:
$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} (h(\mathbf{x}_n) - y_n)^2$$

12/23

Illustration of linear regression

The expression for E_{in}

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{w}^{\mathsf{T}} \mathbf{x}_{n} - \mathbf{y}_{n})^{2}$$
$$= \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^{2}$$

where
$$\mathbf{X} = \begin{bmatrix} -\mathbf{x}_1^\mathsf{T} - & y_1 & y_2 & y_2 & y_3 & y_4 & y_5 & y_6 & y_$$

Minimizing E_{in}

$$E_{\mathsf{in}}(\mathbf{w}) = \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

$$\nabla E_{\mathsf{in}}(\mathbf{w}) = \frac{2}{N} \mathbf{X}^{\mathsf{T}} (\mathbf{X} \mathbf{w} - \mathbf{y}) = \mathbf{0}$$

$$X^{\mathsf{T}}X\mathbf{w} = X^{\mathsf{T}}\mathbf{y}$$

$$\mathbf{w} = \mathrm{X}^\dagger \mathbf{y}$$
 where $\mathrm{X}^\dagger = (\mathrm{X}^\intercal \mathrm{X})^{-1} \mathrm{X}^\intercal$

 X^{\dagger} is the 'pseudo-inverse' of X

The pseudo-inverse

$$\mathbf{X}^{\dagger} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}$$

The linear regression algorithm

Construct the matrix X and the vector \mathbf{y} from the data set $(\mathbf{x}_1,y_1),\cdots,(\mathbf{x}_N,y_N)$ as follows

- Compute the pseudo-inverse $X^\dagger = (X^\intercal X)^{-1} X^\intercal$.
- 3: Return $\mathbf{w} = X^\dagger \mathbf{y}$.

Linear regression for classification

Linear regression learns a real-valued function $y=f(\mathbf{x})\in\mathbb{R}$

Binary-valued functions are also real-valued! $\pm 1 \in \mathbb{R}$

Use linear regression to get \mathbf{w} where $\mathbf{w}^{\mathsf{T}}\mathbf{x}_n \approx y_n = \pm 1$

In this case, $sign(\mathbf{w}^\mathsf{T}\mathbf{x}_n)$ is likely to agree with $y_n = \pm 1$

Good initial weights for classification

Linear regression boundary

Average Intensity

Outline

• Input representation

• Linear Classification

• Linear Regression

Nonlinear Transformation

Linear is limited

Data: Hypothesis:

Another example

Credit line is affected by 'years in residence'

but **not** in a linear way!

Nonlinear $[[x_i < 1]]$ and $[[x_i > 5]]$ are better.

Can we do that with linear models?

Linear in what?

Linear regression implements

$$\sum_{i=0}^{d} \mathbf{w_i} \ x_i$$

Linear classification implements

$$\operatorname{sign}\left(\sum_{i=0}^{d} \boldsymbol{w_i} \ x_i\right)$$

Algorithms work because of linearity in the weights

Transform the data nonlinearly

$$(x_1, x_2) \xrightarrow{\Phi} (x_1^2, x_2^2)$$

