Betriebssysteme

Stoffübersicht Betriebsysteme

- Einleitung
- Prozessverwaltung
- Memoryverwaltung
- Dateisysteme
- Ein- Ausgabesteuerung
- Theorie + Systemprogrammierung (UNIX + C)

Einleitung

- Aufgabe von Betriebssystemen
- Historische Entwicklung von Betriebssystemen
- Unterschiedliche Arten von Betriebssystemen
- Komponenten und Konzepte von Betriebssystemen
 - Prozesse und Threads
 - Speichermanagement
 - Dateisysteme
 - Konzepte der Ein- und Ausgabe

Aufgaben von Betriebssystemen

Aufgaben von Betriebssystemen

- Ein Betriebssystem ist ein Computerprogramm (Software) mit folgenden grundsätzlichen Funktionen:
 - Bereitstellen einer Abstraktionsschicht der Betriebssystem-Komponenten für Programmierer
 - "Erweiterte Maschine"
 - Verwaltung und Schutz von Systemressourcen
 - beispielsweise in einer Mehrbenutzerumgebung
 - Bereitstellung einer Umgebung zur Ausführung von Anwendungsprogrammen

Bereitstellung einer Abstraktionsschicht

- Abstraktion von detailliertem Verhalten der zugrunde liegenden Komponenten auf möglichst hohem Niveau
- "Verstecken" von
 - realer Hardware-Eigenschaften vor dem Programmierer
 - Systemdiensten und Systemfunktionen
- **Ziel:** Leichte Programmierbarkeit/Portierbarkeit und Sicherheit
 - Beispiel: Datenspeicherung auf einem Datenträger
 - Entlastung des Programmierers von komplizierten Details wie Einschalten des Motors, Bewegung des Plattenarms etc.
 - => Hardware-Abstraktion
 - Einfache Programmierschnittstelle zum Schreiben und Lesen einer Datei (open(), read(), write()) unabhängig von dem verwendeten Dateisystem (FAT, NTFS, ext3, etc)
 - => Abstraktion von Systemdiensten und Systemfunktionen

Schichtenmodell

Benutzer

Applikationen (Textverarbeitung, Tabellenkalkulation, usw.)

Betriebsystem (UNIX, Windows, usw.)

Hardware (CPU, Memory, Disk, usw.)

Systemaufrufe (system calls)

Maschinencode

Bereitstellung einer Abstraktionsschicht

- Das Betriebssystem stellt dem Programmierer eine abstrakte Programmierschnittstelle zur Verfügung
- Das Betriebssystem bietet einen Satz von Kommandos (Systemaufrufe / system calls):
 - zum Zugriff auf E/A-Geräte
 - z.B. Lesen und Schreiben einer Datei
 - zur Prozesskontrolle
 - z.B. Starten und Stoppen eines Anwendungsprogramms
 - zur Speicherverwaltung
 - Überwachung und Kontrolle von Ressourcen

Verwaltung von Systemressourcen

- Verwaltung aller Bestandteile eines komplexen Systems
- Bestandteile sind z.B.
 - Prozessoren und Rechenzeit, Speicher, Uhren, Platten, Terminals, Magnetbandgeräte, Netzwerkschnittstellen, Drucker etc.
- Bestandteile eines Rechnersystems bezeichnet man auch als Betriebsmittel.
- Betriebssystemaufgabe:
 - Geordnete und kontrollierte Zuteilung von Betriebsmitteln an konkurrierende Prozesse / Benutzer.
 - Schutz des Systems und der individuell zugeordneten Betriebsmittel
 - Beispiel: Ein defektes Programm sollte nicht das Verhalten anderer Programme oder das ganze System beeinträchtigen können.
 - Beispiel: Schutz von Dateien auf Mehrbenutzersystemen

Betriebssystem als Ressourcenmanager

- Aufgaben beim Verwalten von Systemressourcen:
 - "Gerechte" Zuteilung von gemeinsam genutzten Betriebsmitteln
 - Auflösung von Konflikten bei der Betriebsmittelanforderung
 - Schutz verschiedener Benutzer gegeneinander
 - z.B. Zugriffskontrolle bei Dateien
 - Effiziente Verwaltung von Betriebsmitteln
 - Protokollieren der Ressourcennutzung
 - Abrechnung der Betriebsmittelnutzung
 - Fehlererkennung, Fehlerbehandlung
 - Hardware (Gerätefehler) und Software (Programmfehler)
 - Grundsätzliche Zugriffskontrolle zum System
- Ressourcenverwaltung in zwei Dimensionen:
 - Zeit: Verschiedene Benutzer erhalten Betriebsmittel nacheinander.
 - Raum: Verschiedene Benutzer erhalten verschiedene Teile einer Ressource.

Erweiterbarkeit und Entwicklungsfähigkeit

- Änderungen des Betriebssystems erforderlich durch
 - Neue Hardware
 - Neue Protokolle etc.
 - Neue Anforderungen der Benutzer
 - Korrekturen (z.B. Schließen von Sicherheitslöchern)
- ► Betriebssystem sollte
 - modular und klar strukturiert aufgebaut sein
 - gut dokumentiert sein.

- Verschiedene Entwicklungsstadien:
 - Serielle Systeme
 - Einfache Stapelverarbeitungssysteme
 - Mehrprogrammfähige Stapelverarbeitungssysteme
 - Timesharing-Systeme
 - (Systeme mit Graphischen Benutzeroberflächen)
 - Netzwerkbetriebssysteme
 - Verteilte Betriebssysteme

- Serielle Systeme (1945-1955)
 - Betrieb von Rechnern ohne Betriebssystem
 - Programmierung von Rechnern durch
 - Einschieben von Steckkarten
 - Später: Einlesen von Lochkarten
 - Zuteilung von Rechenzeit durch Reservierung mit Hilfe Papieraushang

Einfache Stapelverarbeitungssysteme, 1955 für IBM

- Unterscheidung zwischen
 - Programmentwickler und Operateure, die Rechner ("Mainframes") betrieben
- Sammlung von Programmen (Jobs) auf Lochkarten
- Einlesen der gesammelten Jobs durch kleine Rechner (z.B. IBM 1401),
 Speichern auf Band
- Abarbeitung des Bandes durch Hauptrechner (z.B. IBM 7094):
 - Lese ersten Job ein
 - Führe ersten Job aus
 - Ausgaben auf zweites Band
 - Dann weiter mit zweitem Job etc.
- Serielle Abarbeitung der Jobs gesteuert durch kleines Softwareprogramm, genannt Monitor.
- Ausgabe der Ergebnisse auf Band durch kleinen Rechner (z.B. IBM 1401)
- Fortschritt: Eingabe von Lochkarte, Rechnen, Ausgabe auf Drucker parallel.

- Mehrprogrammfähige Stapelverarbeitungssysteme, ab 1965
 - Verarbeitung durch einzigen Rechner (IBM 360 + Nachfolger)
 - Spooling (Simultaneous Peripheral Operation On Line):
 - Einlesen von Jobs auf Lochkarten, Speichern auf Platte
 - Nach Beenden des aktuellen Jobs: Laden eines neuen Jobs von Platte + Ausführung
 - Mehrprogrammfähigkeit bzw. Multiprogramming

 Mehrprogrammfähigkeit bzw. Multiprogramming

Beobachtung:

- Viel Rechenzeit wird verschwendet durch Warten der CPU auf Beendigung von Ein-/ Ausgabeoperationen.
- Bis zu 90% der Zeit verschwendet bei Hochleistungs-Datenverarbeitung.

• Idee:

- Führe aus Effizienzgründen Jobs nicht streng sequentiell aus.
- Aufteilung des Speichers in mehrere Bereiche
- Eigene Partition pro aktiven Job
- Wartezeiten auf Beendigung von Ein-/ Ausgabeoperationen genutzt durch Rechenzeit für andere Jobs.

Timesharing-Systeme

- Nachteil mehrprogrammfähiger Stapelverarbeitungssysteme:
- kein interaktives Arbeiten mehrerer Benutzer möglich
 - Abhilfe durch Timesharing-Systeme
 - Variante des Multiprogrammings
 - Online-Zugang zum System für alle Benutzer
 - Mehrprogrammbetrieb mit schnellem Umschalten von Benutzer zu Benutzer.

• Idee:

- Interaktives Arbeiten eines Benutzers erfordert nicht die komplette Rechenzeit eines Rechners.
- Bei schnellem Umschalten bemerkt der Einzelnutzer nicht, dass er die Maschine nicht für sich allein hat.

Systeme mit Graphischen Benutzeroberflächen

- GUI (Graphical User Interface)
- Geht zurück auf D. Engelbart, Stanford Research Institute, 60er Jahre
- Elemente: Fenster, Icons, Menüs, Maus
- Übernommen durch
 - Apple Macintosh
 - Später durch Microsoft Windows
 - 1985-1995: Graphische Umgebung, aufsetzend auf MS-DOS
 - Windows95, ..., WindowsXP, Windows Vista, Windows 7
 - Betriebssystem und GUI stark miteinander verschränkt

UNIX / LINUX:

- GUI als Aufsatz auf Betriebssystem
- X-Windows-System (M.I.T.): Grundlegende Funktionen zur Fensterverwaltung
- Komplette GUI-Umgebungen basierend auf X-Windows: z.B. Motif

Netzwerkbetriebssysteme und verteilte Betriebssysteme

- Netzwerkbetriebssysteme:
 - Benutzer kennt mehrere vernetzte Rechner
 - Einloggen auf entfernten Rechnern möglich
 - Datenaustausch möglich
 - Auf Einzelrechnern: Lokales Betriebssystem, lokale Benutzer
 - Netzwerkbetriebssystem = "normales Betriebssystem mit zusätzlichen Fähigkeiten"
- Verteilte Betriebssysteme:
 - Mehrere vernetzte Rechner
 - Erscheinen Benutzern wie Einplatzsystem
 - Datenspeicherung und Programmausführung verteilt auf mehreren Rechnern
 - Verwaltung transparent und effizient (?) durch Betriebssystem
 - Probleme: Nachrichtenverzögerungen, Datenkonsistenz

- Mainframe-Betriebssysteme
 - Betriebssysteme f
 ür Gro
 ßrechner
 - Sehr hohe Ein-/Ausgabebandbreite
 - Viele Prozesse gleichzeitig mit hohem Bedarf an schneller E/A
 - 3 Arten der Prozessverwaltung
 - Batch-Verfahren: Erledigung umfangreicher Aufgaben ohne Benutzerinteraktion
 - Transaktionsverfahren: Große Anzahl kleiner Aufgaben von verschiedenen Nutzern
 - Zeitaufteilungsverfahren: Quasi-parallele Durchführung vieler Aufgaben durch mehrere Benutzer
 - Bsp.: IBM OS/390

- Server-Betriebssysteme
 - Betriebssysteme f
 ür sehr große PCs, Workstations oder auch Mainframes
 - Viele Benutzer über Netzwerk bedient
 - Zuteilung von Hard- und Softwareressourcen
 - Bsp.: Unix, Linux, Solaris, Windows, usw.
- PC-Betriebssysteme
 - Betriebssysteme f
 ür Personalcomputer
 - Meist nur 1 Benutzer (oder wenige über Netzwerk)
 - Mehrere Programme pro Benutzer "quasi-parallel"
 - Bsp.: Windows , Linux

Echtzeit-Betriebssysteme

- Betriebssysteme zur Steuerung maschineller Fertigungsanlagen etc.
- Einhalten harter Zeitbedingungen, gefordert ist
 - nicht "im Durchschnitt schnell", sondern
 - Abschließen von Operationen in fest vorgegebenen Zeitintervallen (in jedem Fall)
- Bsp.: VxWorks, QNX, OSEK-OS

Betriebssysteme f ür Eingebettete Systeme

- Eingebettete Systeme = "Computer, die man nicht unmittelbar sieht"
- z.B. in Fernseher, Mikrowelle, Mobiltelefon, KfZ
- Meist Echtzeitanforderungen
- Wenig Ressourcen:
 - Kleiner Arbeitsspeicher
 - Geringer Stromverbrauch
- Bsp.: WindowsCE, Symbian, Linux

Zusammenfassung

- Ein Betriebssystem ist ein Softwareprogramm.
- Liefert eine abstrakte Schnittstelle zum Rechner.
- Verwaltet und sichert Systemressourcen.
- Historische Entwicklung in mehreren Stadien.
- Verschiedene Arten von Betriebssystemen aufgrund verschiedener Anforderungen in unterschiedlichen Anwendungsgebieten.

 Moderne Betriebssysteme sind in der Regel Timesharing-Systeme mit vielen zusätzlichen Eigenschaften.