AMENDMENTS TO THE CLAIMS

This listing of Claims shall replace all prior versions, and listings, of

claims in the application:

LISTING OF CLAIMS:

1. (currently amended) A boot method for an In-Circuit Emulation system

having a microcontroller operating in lock-step synchronization with a virtual

microcontroller, comprising:

in the microcontroller, executing a set of boot code;

in the virtual microcontroller, executing a set of timing code to enable

the lock-step synchronization, wherein the timing code is timed to take the

same number of clock cycles as the microcontroller uses to execute the boot

code, and wherein the boot code is stored within the microcontroller and at

least one portion of the boot code is inaccessible to the virtual microcontroller;

and

simultaneously halting both the microcontroller and the virtual

microcontroller.

2. (original) The method according to claim 1, further comprising copying

register contents from the microcontroller to corresponding registers in the

virtual microcontroller.

CYPR-CD01213

Serial No. 10/001,478

Page 2

Examiner: Proctor, J.

- 3. (currently amended) The method according to claim 1, further comprising copying memory contents from memory coupled to the microcontroller to corresponding memory in coupled to the virtual microcontroller.
- 4. (original) The method according to claim 1, wherein after the executing of the boot code, the microcontroller branches to assembly instruction line 0; and wherein after executing the timing code, the virtual microcontroller branches to assembly instruction line 0.
- 5. (original) The method according to claim 1, wherein prior to the executing of the boot code, and prior to executing the timing code, a break is set at assembly instruction line 0.
- 6. (previously presented) The method according to claim 1, wherein the boot code comprises protected initialization code that is not accessible to the In-Circuit Emulation system.
- 7. (original) The method according to claim 1, further comprising:

 prior to the executing of the boot code, and prior to executing the timing

 code, setting a break at assembly instruction line 0; and

CYPR-CD01213 Serial No. 10/001,478 Page 3

Examiner: Proctor, J.

wherein after the executing of the boot code the microcontroller branches to assembly instruction line 0; and

wherein after executing the timing code, the virtual microcontroller branches to assembly instruction line 0.

8. (original) The method according to claim 1, further comprising:

prior to the executing of the boot code, and prior to executing the timing code, setting a break at assembly instruction line 0;

wherein after the executing of the boot code, the microcontroller branches to assembly instruction line 0; and wherein after executing the timing code, the virtual microcontroller branches to assembly instruction line 0;

copying register contents from the microcontroller to corresponding registers in the virtual microcontroller;

copying memory contents from the microcontroller to corresponding memory in the virtual microcontroller;

wherein after the executing of the boot code, the microcontroller branches to assembly instruction line 0; and

wherein after executing the timing code, the virtual microcontroller branches to assembly instruction line zero.

CYPR-CD01213 Serial No. 10/001,478 Page 4

Examiner: Proctor, J.

- 9. (original) The method according to claim 8, further comprising removing the break at assembly line zero after copying the register contents and copying the memory contents.
- 10. (currently amended) A boot method for an In-Circuit Emulation system having a microcontroller operating in lock-step synchronization with a virtual microcontroller, comprising:

resetting the microcontroller and the virtual microcontroller to a halt state; setting a break at assembly instruction line zero;

in the microcontroller, executing a set of boot code;

in the virtual microcontroller, simultaneously executing a set of timing code to enable the lock-step synchronization, wherein the timing code is timed to take the same number of clock cycles as the microcontroller uses to execute the boot code, and wherein the boot code is stored within the microcontroller and at least one portion of the boot code is inaccessible to the virtual microcontroller;

simultaneously halting both the microcontroller and the virtual microcontroller by branching to assembly instruction line zero;

copying register contents from the microcontroller to corresponding registers in the virtual microcontroller;

copying memory contents from the microcontroller to corresponding memory in the virtual microcontroller; and

CYPR-CD01213 Serial No. 10/001,478 Page 5

Examiner: Proctor, J.

removing the break at assembly line zero after copying the register contents and copying the memory contents.

11. (cancelled)

12. (currently amended) A boot method for an In-Circuit Emulation system

having a device under test operating in lock-step synchronization with a

virtual processor, comprising:

in the device under test, executing a set of boot code;

in the virtual processor, executing a set of timing code to enable the

lock-step synchronization, wherein the timing code is timed to take the same

number of clock cycles as the device under test uses to execute the boot code,

wherein the boot code is stored within the microcontroller device under test

and at least one portion of the boot code is inaccessible to the virtual

microcontroller processor; and

simultaneously halting both the device under test and the virtual

processor.

(original) The method according to claim 12, further comprising copying 13.

register contents from the device under test to corresponding registers in the

virtual processor.

CYPR-CD01213 Serial No. 10/001,478 Page 6

Examiner: Proctor, J.

- 14. (currently amended) The method according to claim 12, further comprising copying memory contents from memory coupled to the device under test to corresponding memory in coupled to the virtual processor.
- 15. (original) The method according to claim 12, wherein after the executing of the boot code, the device under test branches to assembly instruction line 0; and wherein after executing the timing code, the virtual processor branches to assembly instruction line 0.
- 16. (original) The method according to claim 12, wherein prior to the executing of the boot code, and prior to executing the timing code, a break is set at assembly instruction line 0.
- 17. (previously presented) The method according to claim 12, wherein the boot code comprises protected initialization code that is not accessible to the In-Circuit Emulation system.
- 18. (original) The method according to claim 12, further comprising:

 prior to the executing of the boot code, and prior to executing the timing code, setting a break at assembly instruction line 0; and

wherein after the executing of the boot code, the device under test branches to assembly instruction line 0; and

CYPR-CD01213 Serial No. 10/001,478

Page 7

Examiner: Proctor, J.

wherein after executing the timing code, the virtual processor branches to assembly instruction line 0.

19. (currently amended) The method according to claim 12, further comprising:

prior to the executing of the boot code, and prior to executing the timing code, setting a break at assembly instruction line 0;

wherein after the executing of the boot code, the device under test branches to assembly instruction line 0; and wherein after executing the timing code, the virtual processor branches to assembly instruction line 0;

copying register contents from the microcontroller device under test to corresponding registers in the virtual processor;

copying memory contents from the device under test to corresponding memory in the virtual microcontroller processor;

wherein after the executing of the boot code, the microcontroller device

under test branches to assembly instruction line 0; and

wherein after executing the timing code, the virtual processor branches to assembly instruction line zero.

20. (original) The method according to claim 19, further comprising removing the break at assembly line zero after copying the register contents and copying the memory contents.

CYPR-CD01213 Serial No. 10/001,478 Page 8

Examiner: Proctor, J.

21. (original) The method according to claim 12, wherein the virtual processor is implemented in a field programmable gate array.

Examiner: Proctor, J.