K-Nearest neighbors (kNN)

Ejemplo 1: Hay los siguientes datos de flores del género Iris, donde cada flor está caracterizada por dos variables: <u>Sepal Length</u> y <u>Sepal Width</u>. Además, se conoce la especie de cada flor: **Setosa, Versicicolor** y **Virginica**.

El objetivo es predecir la especie de una nueva flor desconocida basándose en la similitud con las flores existentes en el conjunto de datos usando el algoritmo de *K-Nearest Neighbors* (*kNN*) para predecir la especie de la nueva flor.

Nueva flor	Sepal Length	Sepal Width	· C .	k=1	k=3
	5.9	2.8	Specie	W Virginica	* Versicicolor
Sepal Length	Sepal Wid	lth Sp		Distancia euclidiana $d(A,B) = \sqrt{(X_B - X_A)}$	
5.3	3.7	Se		$\frac{u(A,B) - \sqrt{(A_B - A_A)}}{9 - 5.3)^2 + (2.9 - 3.7)^2} = 3$	
5.1	3.8	Se	etosa	1.2806	42
7.2	3.0	Vir	ginica	1.3152	43
5.4	3.4	Se	etosa	0.7810	7
5.1	3.3	Se	etosa	0.9433	9
5.4	3.9	Se	etosa	1.2083	11
7.4	2.8	Vir	ginica	1.5	15
6.1	2.8	Vers	icicolor	0.2	3
7.3	2.9	Vir	Virginica 1.4035		14
6.0	2.7	Vers	icicolor	0.1414	2
5.8	2.8	Vir	ginica	0.1	1
6.3	2.3	Vers	icicolor	0.6403	6
5.1	2.5	Vers	icicolor	0.8544	8
6.3	2.5	Vers	icicolor	0.5	4
5.5	2.4	Vers	icicolor	0.5656	5

- a) Realiza el gráfico de dispersión de los datos obtenidos.
- b) Calcula la distancia euclidiana entre la nueva flor y cada flor del conjunto de datos y clasificalas de menor a mayor distancia.
- c) ¿Cuál sería la especie de la nueva flor si $k=1\,$ o $\,k=3?$ Razona la respuesta.

