Problem

Let CFG G be the following grammar.

$$S
ightarrow {
m a} S {
m b} \mid {
m b} Y \mid Y {
m a} Y
ightarrow {
m b} Y \mid {
m a} Y \mid {
m arepsilon}$$

Give a simple description of L(G) in English. Use that description to give a CFG for $\overline{L(G)}$, the complement of L(G).

Step-by-step solution

Step 1 of 2

Consider the context free grammar (CFG) G is as follows: $S \to aSb \mid bY \mid Ya$ $Y \to bY \mid aY \mid \varepsilon$

Language L (G) for the G is as follows:

Consider the productions in the grammar

 $S \rightarrow aSb$

 $S \rightarrow bY$

 $S \rightarrow Ya$

 $Y \rightarrow bY$

 $Y \rightarrow aY$

 $Y \rightarrow \varepsilon$

Case 1:

Consider production $S \rightarrow Ya$ to derive the language.

Substitute Y with production $Y \to \mathcal{E}$ then

 $S \rightarrow \in a$

 $S \rightarrow a$

Case 2:

Consider production $S \rightarrow bY$ to derive the language.

Substitute Y with production $Y \to \varepsilon$ then

 $S \rightarrow \in b$

 $S \rightarrow b$

Case 3:

Consider production $S \rightarrow aSb$ to derive the language

Substitute S with production $S \rightarrow bY$ then

 $S \rightarrow abYb$

Substitute Y with production $Y \rightarrow bY$ then

 $S \rightarrow abbYb$

Substitute Y with production $Y \rightarrow \mathcal{E}$ then

 $S \rightarrow abb \in b$

 $S \rightarrow abbb$

Case 4:

Consider production $S \rightarrow bY$ to derive the language.

Substitute Y with production $Y \rightarrow bY$ then

 $S \rightarrow bbY$

Substitute Y with production $Y \rightarrow \mathcal{E}$ then

 $S \to bb \in$ $S \to bb$

Therefore form the Case 1, Case 2, Case 3 and Case 4 the language obtained is as follows:

 $L(G) = \{a, b, abbb, bb...\}$

Using the grammar G, many more strings can be generated.

Comment

Step 2 of 2

Description of the L (G) is as follows:

The grammar G generates a language L(G) consists of the strings which are described as follows:

- Strings with consecutive number of a's with a length ranging from 1 to infinity.
- Strings with consecutive number of b's with a length ranging from 1 to infinity.
- String with start symbol a followed by number of b's.
- Strings with start symbol b followed by number of a's.
- Strings with \boldsymbol{a} as start symbol and \boldsymbol{b} as end symbol.
- Strings with ${\it b}$ as start symbol and ${\it a}$ as end symbol.
- Strings that contains the same start and end symbols. For example, $aba, \ bab$ etc.

From the above description as L(G) is generating all the possible combination of a's and b's except a^ib^i where $i \ge 0$. The L(G) does not produce strings like \in , ab, aabb, aaabb, aaabb . . .

The complements of L(G) i.e. $\overline{L(G)} = \{ \in, ab, aabb, aaabbb \dots \}$

The grammar for $\overline{L(G)}$ is $a^i b^i$ where $i \ge 0$.

 $S \rightarrow aSb \mid \in$

Comment