[Xiao18-ECCV] ELEGANT: Exchanging Latent Encodings with GAN for Transferring Multiple Face Attributes

Presenter: Ji-In Kim

Contents

- ✓Introduction
- ✓ Purpose and Intuition
- ✓Our Method
- ✓ Experiments
- ✓ Conclusion

• Transferring face attributes 에서 source face image 는 targeted attribute 를 가져야 하고, person identity 는 보존되어야 한다.

(a) removing bangs

(b) adding bangs

- Person identity 는 바뀌지 않고 <u>bangs</u> attribute 가 조정된다.
- 각 이미지 쌍에서, 오른쪽 image 는 순전히 왼쪽 image 로부터 만들어진다. (Unsupervised learning)
- 하나의 행에 4개의 images 가 있다. 첫 번째 이미지의 bangs style 이 마지막 이미지로 전이되었다.

• Gardner et al. [3]

- Deep Manifold Traversal 을 제안했다.
- Maximum mean discrepancy (MMD)[6]를 사용해서 source domain 에서 target domain 까지 의 attribute vector 를 계산한다.
- 그러나, 이 방법은 시간이 오래 걸리고 memory cost 가 비싸다.

- Upchurch et al. [24]
 - Linear Feature Space assumptions[1] 을 사용했다.
 - Example : no-bangs image B 에서 bangs image A 로 transferring 을 하자.
 - $A = f^{-1}(f(B) + v_{bangs})$
 - f: Image space 로부터 feature space 까지의 mapping
 - v_{bangs} : bangs images 와 no-bangs images 의 cluster centers of features 차이
 - Universal attribute vector (v_{bangs}) 는 다양한 얼굴에 같은 스타일의 bangs 를 가지는 face

images 를 생성한다. (🍎)(🍎)

• 그러나, 너무 다양한 스타일의 bangs 가 존재한다.

(a) removing bangs

(b) adding bangs

- Visual Analogy-Making [10]
 - 다양성 문제를 해결하기 위해 attribute vector 를 특정하는 데에 한 쌍의 reference images 를 사용한다.
 - 한 쌍의 reference images 는 동일 인물의 두 장의 사진으로 구성된다.
 - 한 장은 특정 attribute 를 가지고 있고 또다른 한 장은 attribute 를 가지고 있지 않다.

• 이 방법은 생성된 이미지들을 풍부하고 다양하게 만들 수 있지만, paired images 를 대량으로

구하는 것은 어렵다.

- 만약 face image 에서 attribute gender 를 transferring 한다고 하자.
- 그러면 동일 인물의 male 과 female images 를 함께 얻어야 하는데, 이것은 불가능하다.

(a) feminizing

(b) virilizing

Fig. 2: Results of ELEGANT in transferring the gender attribute.

In	tro	α		- 17	γ n
	tro	u	u C I		

• 최근에 이런 어려움을 극복하기 위해 GANs[5] 에 기반한 많은 방법들이 제안되었다. [10, 18, 31]

• Dual learning approaches [7, 11, 21, 28, 32]

- Source image domain 과 target image domain 사이에서의 mapping 을 사용한다.
- Invariance of Domain Theorem 에 따르면, 두 이미지의 domains 의 고유한 차원은 같아야 한다.
- 그러나, 두 이미지 domains 의 고유한 차원은 항상 같지 않기 때문에 모순적이다.

Domain A

(a) removing eyeglasses

Domain B

(b) adding eyeglasses

- Domain A: <u>eyeglasses</u> 를 착용한 face images
- Domain B: <u>eyeglasses</u> 를 착용하지 않은 face images
- <u>eveglasses</u> 의 다양성 때문에 A 의 고유한 차원은 B 보다 크다.

- 다른 방법들[15, 23, 30]
 - GAN과 VAE 조합의 변형이다.
 - Autoencoder 구조를 사용한다.
 - 동일하지 않은 고유한 차원들의 문제를 성공적으로 우회한다.
 - 그러나, 오직 하나의 face attribute 만 조정한다는 한계를 가진다.

- Conditional image generation methods [2, 13, 18, 29]
 - 여러 개의 attributes 를 동시에 제어하기 위해 image labels 를 conditions 로 받는다.
 - 그러나, examplars 를 사용해서 이미지를 생성할 수 없다.
 - 결과적으로 생성된 image 에서 attributes 의 스타일은 비슷하게 되어 풍부함과 다양성이 부족 해진다.

. . .

Face image generation by examplars

• BicycleGAN [33]

• 다양성을 증가시키기 위해 noise term 을 도입하지만, 특정한 attributes 를 가진 images 를 생성하지 못한다.

- TD-GAN [25] & DNA-GAN [27]
 - 장점
 - Examplars 를 사용해 images 를 생성할 수 있다.
 - 단점
 - TD-GAN
 - 명시적인 identity 정보를 label 로 사용해서 person identity 를 유지한다. Labeled identity information 이 없는 많은 dataset 에서 이 방법을 적용할 수 없다.
 - DNA-GAN
 - 고화질 images 에서 훈련하는 것이 어렵다.

- 또한 많은 다른 방법들 [14]이 존재하지만 그것들의 결과는 시각적으로 만족스럽지 않다.
- 생성된 이미지들은 저 화질이거나 artifacts 가 많다.

- Transferring face attributes 을 하는 많은 접근법 대부분은 한가지 이상의 제약을 가진다.
 - 1. Examplars 로 image 를 생성할 수 없다.
 - 2. 여러 face attributes 를 동시에 transfer 할 수 없다.
 - 3. 생성된 이미지에서 low-resolution 또는 artifacts 와 같은 low quality 를 만든다.

• 이 세가지 제약들을 극복하기 위해, multiple face attribute transfer 를 제안한다.

1. Examplars 로 image 를 생성할 수 없다.

- Examplars 로 images 를 생성하기 위해, model 은 conditional image generation 을 위한 reference 를 받 아야 한다.
- Labels 를 reference 로 사용
 - 이전 방법들 [2, 13, 17, 18]의 대부분은 Conditional image generation 을 guiding 하기 위해 labels 를 직접적으로 사용한다.
 - 그러나, label 이 제공하는 정보는 매우 제한적이며 해당 label 의 다양한 이미지에 비례하지 않는다.
 - 즉, 다양한 종류의 smiling faces 는 smiling 으로 분류되지만, label smiling 으로부터 smiling faces 가 생성될 수 없다.
- Latent encodings 를 reference 로 사용 → Ours
 - Encoder 가 image 의 unique identifier 로 간주될 수 있기 때문에, images 의 latent encodings 를 reference 로 설정한다.
 - 이런 방식으로 생성된 이미지는 reference images 의 attributes 와 정확히 같은 스타일의 attribute 를 갖는다.

2. 여러 face attributes 를 동시에 transfer 할 수 없다.

• 여러 개의 attributes 를 동시에 조정하기 위해서, image 의 latent encodings 는 여러 parts 로 나눠진다.

- 각 part (a_i) 는 한 가지 attribute [27] 정보를 encode 한다.
- 이렇게 여러 attributes 는 disentangled manner 로 encode 된다.

3. 생성된 이미지에서 low-resolution 또는 artifacts 와 같은 low quality 를 만든다.

- 생성된 이미지의 quality 를 향상시키기 위해, Residual learning [8, 21]과 Multi-scale discriminators [26]를 사용한다.
- Residual Learning (for local property)
 - Face attributes 의 local 속성은 face attributes transfer 에서 unique 하다.
 - Local 속성을 사용하면 image 의 local part 만 수정하여 face attributes 를 transfer 할 수 있으므로 훈련 난이도를 완화할 수 있다.
- Multi-scale discriminators
 - Different levels of information (local + global)을 포착할 수 있다.
 - 이것은 전체적인 부분과 지역적인 부분 모두를 transfer 하는 데에 유용하다.

ELEGANT = Exchanging Latent Encodings with GAN for Transferring multiple face attributes

3.1 The ELEGANT Model

- ELEGANT model 의 inputs
 - Positive set : Attribute 를 가진다. (A)
 - Negative set : Attribute 를 가지지 않는다. (B)
 - Positive set 의 identity 가 Negative set 의 identity 와 같을 필요는 없다.

n개의 transferred attributes 는 미리 정의된다.

- Iterative training strategy 를 사용한다.
 - 반대의 attribute 를 가진 한 쌍의 이미지를 inputs 으로 한다. (A, B)
 - 매번 특정 attribute 에 대해 모델을 훈련시킨다. (a_i)
 - 모든 attribute 를 반복적으로 훈련한다. $(a_1, ..., a_n)$

- 현재 iteration 에서 i-th attribute 인 <u>smiling</u> 에 대해서 ELEGANT 를 훈련시키는 경우
 - Inputs
 - Smiling images 의 집합
 - Non-smiling images 의 집합
 - A 와 B 의 attribute labels
 - $Y^A = (y_1^A, ..., 1_i, ..., y_n^A)$: i-th attribute $7 + 1 \rightarrow Smiling$
 - $Y^B = (y_1^B, ..., 0_i, ..., y_n^B)$: i-th attribute $\nearrow 0 \rightarrow \text{Non-smiling}$

Encoder

• Encoder 로 Images A 와 B 의 latent encodings (z_A, z_B) 를 얻는다.

$$z_A = \text{Enc}(A) = [a_1, \dots, a_i, \dots, a_n], \qquad z_B = \text{Enc}(B) = [b_1, \dots, b_i, \dots, b_n]$$
 (1)

• a_i (or b_i) : Image A(or B)의 <u>smiling</u> 정보를 encode 하는 feature tensor.

$$z_A = \text{Enc}(A) = [a_1, \dots, a_i, \dots, a_n], \qquad z_B = \text{Enc}(B) = [b_1, \dots, b_i, \dots, b_n]$$
 (1)

Encoder

• z_A 와 z_B 의 latent encodings 에서 i-th part 를 교환해서 z_C 와 z_D 를 얻는다.

$$z_A = \text{Enc}(A) = [a_1, \dots, a_i, \dots, a_n], \qquad z_B = \text{Enc}(B) = [b_1, \dots, b_i, \dots, b_n]$$
 (1)
$$z_C = [a_1, \dots, b_i, \dots, a_n], \qquad z_D = [b_1, \dots, a_i, \dots, b_n]$$
 (2)

• z_C 가 image A 의 non-smiling version 의 encodings, z_D 가 image B 의 smiling version의 encodings 라고 기대된다.

Encoder

Fig. 6: The ELEGANT model architecture.

Decoder

• Original image 를 학습하는 것보다 residual image 를 학습하는 것이 더 낫다. (Sec 2)

$$Dec([z_A, z_A]) = R_A, A' = A + R_A$$

 $Dec([z_B, z_B]) = R_B, B' = B + R_B$

- $Dec([z_A, z_A]) = R_A, A' = A + R_A Dec([z_C, z_A]) = R_C, C = A + R_C (3)$
- $Dec([z_B, z_B]) = R_B, B' = B + R_B \qquad Dec([z_D, z_B]) = R_D, D = B + R_D$ (4)
- R_A , R_B , R_C , R_D : Residual images
- A', B': Reconstructed images
- *C*,*D* : Images of novel attributes

• $[z_C, z_A]$ 대신 $|z_C - z_A|$ 를 사용할 수 있지만, concatenation 을 사용하는 이유는 subtraction 연산이 Dec 에 의해 학습될 수 있기 때문이다.

Encoder + Decoder

- 더 나은 시각적 결과를 위해 U-NET[20] 구조를 사용한다.
- Enc 와 Dec 의 구조는 대칭적이고, 그들의 중간 layers 는 shortcuts 로 연결된다.
- Shortcuts 는 original images 를 content condition 으로 가져오고, 이것은 매끄러운 novel attributes 를 만든다.

Discriminators

- Enc 와 Dec 는 모두 generator 역할을 하고, adversarial training 을 위해 discriminators 가 필요하다.
- 그러나, 단일 discriminator 의 receptive field 는 input 이미지의 크기가 커질 때 제한이 있다.

Discriminators

- 이 문제를 해결하기 위해, multi-scale discriminators [26] 을 채택한다.
 - 두 개의 discriminators 는 동일한 network 구조를 가지지만, 서로 다른 크기의 image 에서 동작한다.
- Larger scale 에서 동작 : D_1
 - $D_1 \in D_2$ 보다 작은 receptive field 를 가진다.
 - D_1 은 세부적인 것을 만들기 위해 Enc 와 Dec 를 guiding 한다.
- Smaller scale 에서 동작 : D₂
 - D_2 는 전체적인 image 를 다룬다.

Discriminators

- Discriminators 역시 image labels 를 conditional inputs 으로 받아야 한다.
- 전체 n 개의 attributes 가 있다.
- 각 iteration 에서 discriminators 의 output 은 하나의 attribute 에 대해서 생성된 이미지들이 얼마나 실제와 같게 보이는지를 반영한다.
- 각 iteration 에서 어떤 attribute 를 다루는지 discriminators 가 알아야 한다.
- 수학적으로는 $D_1(A|Y^A)$ 로 나타낸다.
 - Label Y^A 가 주어졌을 때 image A 에 대한 D_1 output score

Discriminators

• C와 D의 attribute labels 는 novel attributes 를 가지기 때문에 거기에 집중해야 한다.

$$Y^{A} = (y_1^{A}, \dots, 1_i, \dots, y_n^{A}) \quad Y^{B} = (y_1^{B}, \dots, 0_i, \dots, y_n^{B})$$
 (5)

$$Y^{C} = (y_1^{A}, \dots, 0_i, \dots, y_n^{A}) \quad Y^{D} = (y_1^{B}, \dots, 1_i, \dots, y_n^{B})$$
 (6)

• Y^C 는 Y^A 의 i-th element 인 1을 0으로 바꾼 것이다.

3.2 Loss Functions

- Loss function for Discriminators
 - Multi-scale discriminators D_1 과 D_2 는 standard adversarial loss 를 사용한다.

$$L_{D_{1}} = -\mathbb{E}(\log(D_{1}(A|Y^{A}))) - \mathbb{E}(\log(1 - D_{1}(C|Y^{C})))$$

$$-\mathbb{E}(\log(D_{1}(B|Y^{B}))) - \mathbb{E}(\log(1 - D_{1}(D|Y^{D})))$$

$$L_{D_{2}} = -\mathbb{E}(\log(D_{2}(A|Y^{A}))) - \mathbb{E}(\log(1 - D_{2}(C|Y^{C})))$$

$$-\mathbb{E}(\log(D_{2}(B|Y^{B}))) - \mathbb{E}(\log(1 - D_{2}(D|Y^{D})))$$

$$L_{D} = L_{D_{1}} + L_{D_{2}}$$
(9)

• L_D 를 최소화할 때, 우리는 실제로 real images (A, B) 에 대한 scores 를 최대화 시키는 동안 fake image (C, D) 에 대한 scores 를 최소화 시킨다.

- Loss function for Generator (Enc + Dec)
 - Reconstruction loss
 - Encoding 과 Decoding 을 한 후 original image 가 얼마나 잘 reconstructed 되는지 측정 한다.

$$L_{reconstruction} = ||A - A'|| + ||B - B'|| \tag{10}$$

- Standard adversarial loss
 - 생성된 이미지가 얼마나 realistic 한지 측정한다.

$$L_{adv} = -\mathbb{E}(\log(\mathcal{D}_1(C|Y^C))) - \mathbb{E}(\log(\mathcal{D}_1(D|Y^D))) - \mathbb{E}(\log(\mathcal{D}_2(C|Y^C))) - \mathbb{E}(\log(\mathcal{D}_2(D|Y^D)))$$
(11)

Total loss

$$L_G = L_{reconstruction} + L_{adv}. (12)$$

4 Experiments

Dataset

- CelebaA[16]
 - large-scale for database including 202599 face images of 10177 identities
 - 각각은 40개의 attributes annotations 가 있고 5 landmark locations 가 있다.
 - 우리는 5-point landmarks 를 모든 face 를 align 하는데 쓰고 그것들을 256x256 크기로 crop 한다.

Implementation

- Encoder: 5 layers of Conv-Norm-LeakyReLU block
- Decoder: 5 layers of Deconv-Norm-LeakyReLU block
- Multi-scale discriminators: 5 layers of Conv-Norm-LeakyReLU blocks + fully connected layer
- Optimizer : Adam[12]
- Learning rate: 2e-4
- $\beta_1 = 0.5, \beta_2 = 0.999$
- 모든 input images 는 [-1, 1]로 normalize 한다.
- Input image 와 output image 차이가 최대 2이기 때문에, Decoder 의 마지막 layers 는 2·tanh 를 사용해서 [-2, 2]로 고정한다.
- Out-of-range error 를 피하기 위해 Input image 에 residual image 를 더한 후 output image value 를 [-1, 1]로 고정한다.

이 페이지는 완벽하기 이해하지 못했다.

이유: Moving statistics (moving mean, moving variance) 에 대한 이해 부족.

• ELEGANT 는 inputs 으로 반대의 attribute 를 가진 두 개의 미니배치 크기의 이미지들을

받는다.

- 그러므로 각 레이어에서 두 미니배치 크기의 이미지들의 moving mean 과 moving variance 는 큰 차이를 만들어야 한다.
- 만약 Batch Normalization 을 사용하면, 각 layer 에서 이러한 running statistics 는 항상 진동할 것이다.

• 이 문제를 해결하기 위해, BN 대신 ℓ_2 normalization 을 사용했다.

•
$$\hat{x} = \frac{x}{\|x\|_2} \cdot \alpha + \beta$$
 (α 와 β 는 learnable parameters)

• Moving statistics 를 계산하지 않아도, ELEGANT 는 안정적으로 수렴되고 face attributes 를 효과적으로 swap 한다.

4.1 Face Image Generation by Examplars

• Model 이 examplars 에 의해 face images 를 생성할 수 있다는 것을 설명하기 위해, 대조 군으로 UNIT[15], CycleGAN[32], StarGAN[2] 를 선택했다.

- Face image generation by examplars.
 - Yellow box: Input images outside the training data
 - Green box : Reference images
 - Red box : Results of ELEGANT
 - Blue box : Results of other methods

- ELEGANT
 - Reference images 와 정확히 같은 스타일의 attribute 를 가진 다른 face images 를 만든다.
- 다른 방법들
 - 흔한 스타일의 attribute 을 가진 face images 를 만든다.

(a) bangs

(b) smiling

- 여기서 볼 수 있는 StarGAN 단점
 - StarGAN 은 여러 개의 attributes 를 transfer 할 수 있다. 그러나, 한 가지 attribute 를 transferring 할 때 다른 attributes 도 바꾼다.

 Fei-Fei Li 와 Andrew Ng 에게 bangs 를 입혔을 때 age 도 함께 바뀐다. (더 어려졌다.)

(a) bangs

- 이것은 StarGAN 이 input image 에 확실한 label 을 요구하기 때문이다.
- 이 두개의 images (Fei-Fei Li 와 Andrew Ng)는 attribute <u>young</u> 에서 1로 확실하게 labeled 된다.
- 그러나, 두 개의 사진 모두 middle-aged 이고 <u>young</u> 이나 <u>old</u> 둘 중 하나로 간단히 labeled 될 수 없다.

- ELEGANT model 에서 latent encodings 를 교환하는 구조는 효과적으로 StarGAN 의 문제를 해결한다.
- ELEGANT 는 현재 다루고 있는 attribute 에 초점을 맞추고, testing 단계에서 input images 를 위한 labels 를 요구하지 않는다.

• 더욱이, ELEGANT 는 reference images 의 다른 bangs style 사이에서 미묘한 차이를 학습할 수 있다.

4.2 Dealing with Multiple Attributes Simultaneously

- ELEGANT 와 DNA-GAN[27] 을 비교한다.
 - 공통점
 - 다수의 face attribute 를 조정할 수 있다.
 - Examplars 에 의해 images 를 생성할 수 있다.
- 세 개의 attributes(bangs, smiling, mustache)에 대해서 실험한다.
- 두개의 모델에 동일한 face images 와 reference images 를 사용해서 실험한다.

ELEGANT DNA-GAN

Original image

Reference images of the first attributes

(a) Bangs and Smiling

(b) Smiling and Mustache

- ELEGANT 는 DNA-GAN 의 결과보다 훨씬 낫다.
- ELEGANT 는 특히 미세한 details 를 잘 만든다.
- DNA-GAN 과 비교해서 ELEGANT 가 개선한 것은 residual learning 의 결과와 multi-scale discriminators 이다.

• Residual learning 은 훈련의 어려움을 감소시킨다.

DNA-GAN

- DNA-GAN 은 훈련이 불안정하다. (특히 고화질 images 에서)
- 그것은 generator 와 discriminator 사이가 불균형하기 때문이다.
- DNA-GAN 의 훈련의 초기 단계에서, generator 는 터무니 없는 것을 출력한다.
- 그래서 discriminator 는 실제 이미지로부터 생성된 이미지를 구별 하는 방법을 쉽게 배우게 되고, 이것은 균형을 깨뜨린다.

ELEGANT

- ELEGANT 는 residual learning 의 idea 를 채택했기 때문에, generator 의 outputs 은 초기 단계에서 거의 original image 와 동일하다.
- 이러한 방식으로, discriminator 는 빠르게 훈련될 수 없게 되고, 그것은 training process 를 안정화 시킨다.
- 반면, 이미지의 크기가 더 커지면서 generator 의 부담이 discriminator 보다 커지게 된다.
- Generator 의 출력 크기는 더 커지지만, discriminator 는 여느 때와 같이 오직 숫자만을 출력하기 때문이다.
- 그러나, ELEGANT 는 적은 수의 pixels 를 수정해야 하는 residual images 를 학습함으로써 generator 의 출력 크기의 차원을 효과적으로 줄인다.

- Multi-scale discriminators 는 생성된 이미지의 quality 를 향상시킨다.
 - 작은 크기의 이미지에서 동작하는 discriminator 는 전체적인 image content generation 을 guide 한다.
 - 큰 크기의 이미지에서 동작하는 discriminator 는 generator 가 finer details 를 만드는 것을 돕는다.

이 페이지는 완벽하기 이해하지 못했다. 이유 : DNA-GAN 을 잘 모름.

• 더욱이,

DNA-GAN

- Additional part 를 사용해서 face id 와 background information 을 encode 한다.
- 이 방법은 문제점을 가진다 : Loss constraints 를 충족하기 위해 두 개의 입력 이미지들이 직접적으로 swap 될 수 있다.
- Xiao et al. [27] 은 이 문제를 해결하기 위해 annihilating operation 을 제안했다. 그러나 이 연산은 parameter spaces 에서 왜곡을 만들어 훈련을 어렵게 한다.

ELEGANT

- 변화를 책임지는 residual images 를 학습해서 face id 와 background information 을 자동으로 보존한다.
- ELEGANT 는 latent encodings 에서 annihilating operation 과 additional part 를 제거함으로써 framework 전체를 더 멋들어지고 이해하기 쉽게 만든다.

4.3 High-quality Generated Images

• 더 면밀히 살펴보기 위해, Large 크기의 이미지에서 다른 여러가지 attributes 에 대한 ELEGANT 의 결과를 보여준다.

Fig. 1 Fig. 2 Fig. 3 (a) feminizing (a) removing eyeglasses (b) adding eyeglasses (a) removing bangs (b) virilizing (b) adding bangs

Fig. 4

(b) adding smile

(a) removing smile

- 생성된 이미지의 quality 를 측정하기 위해 Fréchet Inception Distance [9] (FID) 를 사용한다.
- FID 는 두 분포 사이의 거리를 다음과 같이 측정한다.

$$d^{2} = ||\mu_{1} - \mu_{2}||^{2} + \text{Tr}(C_{1} + C_{2} - 2(C_{1}C_{2})^{1/2}).$$
(13)

• (μ_1, C_1) 과 (μ_2, C_2) 는 두 distributions 의 means 와 variance metrices 이다.

Table 1: FID of Different Methods with respect to five attributes. The + (-) represents the generated images by adding (removing) the attribute.

FID	bangs		smiling		mustache		eyeglasses		male	
	+	_	+	_	+		+	_	+	_
UNIT	135.41	137.94	120.25	125.04	119.32	131.33	111.49	139.43	152.16	154.59
CycleGAN	27.81	33.22	23.23	22.74	43.58	55.49	36.87	48.82	60.25	46.25
StarGAN	59.68	71.07	51.36	78.87	99.03	176.18	70.40	142.35	70.14	206.21
DNA-GAN	79.27	76.89	77.04	72.35	126.33	127.66	75.02	75.96	121.04	118.67
ELEGANT	30.71	31.12	25.71	24.88	37.51	49.13	47.35	60.71	59.37	56.80

- 다른 여러가지 attributes 에 대해서 실제 이미지의 분포와 생성된 이미지의 분포 사이에서 FID 를 계산한다.
- ELEGANT 는 다른 방법들과 비교해서 좋은 결과를 낸다. (낮을 수록 quality 가 좋다.)
- FID score 는 다음 두 가지 이유 때문에 참고만 하는 용도로 쓰인다.
 - 이유 1: ELEGANT 와 DNA-GAN 은 examplars 에 의해 images 를 생성할 수 있고, 이것은 다른 종류의 image translation methods 보다 더 일반적이고 어렵다. 그래서 어떤 종류의 qualitative measures 를 사용하는 것이 여전히 불공평하다.
 - 이유 2: GAN 을 위한 합리적인 qualitative measure 는 아직 정해지지 않았다.

5 Conclusion

Conclusion

- 1. Transferring multiple face attributes 를 위해 ELEGANT 를 만들었다.
- 2. ELEGANT 는 다른 attributes 를 구분된 부분으로 encode 하고, latent encodings 의 특정 부분을 교환해서 novel attributes 와 함께 이미지들을 생성한다.
- 3. 오직 이미지의 local 부분만 바뀌어야 하기 때문에, 고화질 이미지에서 훈련을 쉽게 하기 위해 residual learning 을 채택한다.
- 4. U-Net 구조와 multi-scale discriminators 는 이미지의 품질을 향상시킨다.
- 5. CelebA face database 에서의 실험 결과는 ELEGANT 가 세가지의 일반적인 제약을 성 공적으로 극복했다는 것을 보여준다.

Thank you