

 \square $\stackrel{\sim}{\to}$ $\mathring{\mathbb{O}}$

AI共學社群 > Python資料科學 > D11 pandas 類別資料與缺失值處理

D11 pandas 類別資料與缺失值處理

簡報閱讀

範例與作業

問題討論

學習心得(完成)

重要知識點

• 認識缺值處理方法與應用函式

認識類別資料

變數的特徵屬於非數值型態。需利用一組的標記、 類別、性質或名稱以區別每個基本單位的特徵、屬 性。無法以數值表示的統計資料,如航班編號、性 別、學歷、旅遊同伴、頭髮顏色、宗教等。類別資 料中可以分為兩類順序性與一般性兩種。

- 順序性:類別之間存在順序性,例如:衣服 尺寸[XL,L,M]、長度[短,中,長]
- 一般性:類別之間沒有順序關係,例如:顏色[黃,綠,藍]、性別[男,女]

大部分的模型都是基於數學運算,字串無法套入數學模型進行運算,在此先對其進行 encoding 編碼 (將類別資料轉成數字)才能進一步對其做分析。

- 對於順序性的類別資料,需要有順序性的 encoding 方法,可以使用 sklearn 中的 LabelEncoder()。
- 對於一般性的類別資料,則不需要有順序的編碼,可以使用 pandas 中的get_dummies()

認識類別資料:順序性

LabelEncoder()

類別之間會有順序關係 0<1<2<....,排序依照 python 內建順序,可以藉由 ord() 查看內建順序。

lenght	sex	size	color	
short	male	M	green	0
normal	female	L	red	1
long	male	XL	blue	2

[3] from sklearn.preprocessing import LabelEncoder df['size_label'] = LabelEncoder().fit_transform(df['size'].values) df

	color	size	sex	lenght	size_label
0	green	М	male	short	1
1	red	L	female	normal	0
2	blue	XL	male	long	2

[3] from sklearn.preprocessing import LabelEncoder df['size_label'] = LabelEncoder().fit_transform(df['size'].values) df

	color	size	sex	lenght	size_label
0	green	M	male	short	1
1	red	L	female	normal	0
2	blue	XL	male	long	2

認識類別資料:一般性

get_dummies()

資料表的欄位代表所屬的類別,如下欄位 color 中有 green、red、blue 將他們——編入欄位中 color_blue、color_green、color_red 這個一對一的關係通常稱為 One-hot Encoding(一位有效編碼) 是沒有順序性的編碼。

認識缺值處理方法與應用函式

資料缺失時常發生在問卷資料上,填寫人時常會漏寫或不願意填寫,導致資料上有缺失值,只要缺失值將會填上 nan 代替缺失值,大部分的模型不能處理缺失值的問題,一般來說會將有缺失值的資料整筆直接刪除,但是這樣會損失其它欄位的資料,所以如果缺失情況不嚴重,傾向於將缺失值補上數值,以下最常見兩種補值方式。

1. 定值補值:將缺失值都補上一個定值

2. 前(後)補值:補前(後)一列的值

認識缺值處理方法與應用函式:定值

函式 fillna() 可以將所有缺失值填補上固定的數值

[21] #以0填補

temp_data.fillna(0)

	date	current_temp
0	2020-11-01	24.8
1	2020-11-02	24.8
2	2020-11-03	0.0
3	2020-11-04	25.0

也可以補上平均值、中位數、....等的數值

[20] #以該欄位所有資料的算術平均數做填補 temp_data.fillna(temp_data.current_temp.mean())

	date	current_temp
0	2020-11-01	24.800000
1	2020-11-02	24.800000
2	2020-11-03	24.866667
3	2020-11-04	25.000000

[24] #以該欄位所有資料的中位數做填補 temp_data.fillna(temp_data.current_temp.median())

	date	current_temp
0	2020-11-01	24.8
1	2020-11-02	24.8
2	2020-11-03	24.8
3	2020-11-04	25.0

前(後)補值最常使用在金融上,有時候因為颱風天導致沒有開盤,這時沒開盤那天的數值空了通常都會補前一天的價錢。

函式一樣使用 fillna(),我們只需要進一步運用參數 method='ffill' 即可填補前一列數值, method='bfill' 填補後一列數值。

[26] temp_data	.fillna	(method='	ffill')	
----------------	---------	-----------	---------	--

	date	current_temp
0	2020-11-01	24.8
1	2020-11-02	24.8
2	2020-11-03	24.8
3	2020-11-04	25.0

[27] temp_data.fillna(method='bfill')

	date	current_temp
0	2020-11-01	24.8
1	2020-11-02	24.8
2	2020-11-03	25.0
3	2020-11-04	25.0

知識點回顧

- a. 順序性 LabelEncoder()
- b. 一般性 get_dummies()
- 缺值處理方法共有三種
 - a. 定值補值
 - b. 前(後)補值

參考資料

使用 get_dummies 進行 one-hot 編碼

網站: itread01.com

離散特徵的編碼分為兩種情況:

- 1、離散特徵的取值之間沒有大小的意義,比如color: [red,blue],那麼就使用one-hot編碼
- 2、離散特徵的取值有大小的意義,比如size:[X,XL,XXL],那麼就使用數值的對映 $\{X:1,XL:2,XXL:3\}$

使用pandas可以很方便的對離散型特徵進行one-hot編碼

說明:對於有大小意義的離散特徵,直接使用對映就可以了,{'XL':3,'L':2,'M':1}

Г	color	size	prize	class label
0	green	1	10.1	0
1	red tp	2/b	13.5	≰dn. net/
2	blue	3	15.3	0

1 | Using the get_dummies will create a new column for every unique string in a^{\blacksquare}

Label encoding

網站:<u>初學Python手記#3-資料前處理(標籤編</u>

<u>碼,一種熱編碼)</u>

重要知識點

認識腦則容約

AI共學社群 我的

認識類別資料:順序性 LabelEncoder()

認識類別資料:一般性

get_dummies()

認識缺值處理方法與應用 函式

認識缺值處理方法與應用 函式:定值補值

認識缺值處理方法與應用

函式:前(後)補值

Apple	1	95	
Chicken	2	231	
Broccoli	3	50	٦

}	1	0	0	95	
	0	1	0	231	
	0	0	1	50	

. .

1.標籤編碼

import numpy as np import pandas pd country = ['Taiwan', 'Australia', 'Ireland', 'Australia', 'Ireland', 'Taiwan'] age = [25,30,45,35,22,36] 薪金 = [20000,32000,59000,60000,43000,52000] dic = {'Country': country, 'Age': age, 'Salary': salary} data = pd.DataFrame (dic) data

	Country	Age	Salary
0	Taiwan	25	20000
1	Australia	30	32000
2	Ireland	45	59000
3	Australia	35	60000
4	Ireland	22	43000
5	Taiwan	36	52000

下一步:閱讀範例與完成作業