WHAT IS CLAIMED IS:

1	1.	A method for reducing pain in a subject in need thereof by
2	increasing ion flow t	hrough KCNQ potassium channels in a cell, the method comprising
3	the step of administe	ring to the subject a pharmaceutical composition comprising a
4	pharmaceutically acc	ceptable carrier and a compound able to increase ion flow through
5	KCNQ potassium ch	annels, said composition administered to the subject in a potassium
6	channel-opening amo	ount, thereby reducing pain in the subject.
1	2.	The method of claim 1, wherein the pain is somatic pain.
1	3.	The method of claim 2, wherein the pain is cutaneous.
1	4.	The method of claim 2, wherein the pain is visceral.
1	5.	The method of claim 2, wherein the pain is caused by a burn, a
2	bruise, an abrasion, a	laceration, a broken bone, a torn ligament, a torn tendon, a torn
3	muscle, a viral infect	ion, a bacterial infection, a protozoal infection, a fungal infection,
4	contact dermatitis, in	flammation, or cancer.
1	6.	The method of claim 5, wherein the inflammation is caused by
2	trauma, infection, sur	rgery, burns, or diseases with an inflammatory component.
1	7.	The method of claim 1, wherein the pain is neuropathic.
1	8.	The method of claim 7, wherein the neuropathic pain is caused by
2	injury to the central of	or peripheral nervous system due to cancer, HIV infection, tissue
3	trauma, infection, autoimmune disease, diabetes, arthritis, diabetic neuropathy, trigeminal	
4	neuralgia or drug adr	ninistration.
1	9.	The method of claim 1, wherein the subject is a human.
1	10.	The method of claim 1, wherein the KCNQ channel is a
2	heteromeric channel.	
1	11.	The method of claim 1, wherein the KCNQ channel is a
2	homomeric channel.	-

1	1	The method of claim 10, wherein the heteromeric KCNQ channel
2	comprises a KC	IQ2 polypeptide subunit.
1	1	
2	comprises a KC	IQ3 polypeptide subunit.
1	1	. The method of claim 12, wherein the KCNQ channel is KCNQ2/3.
1	1	. The method of claim 1, wherein the potassium channel-opening
2	amount is 0.1 m	/kg to 200 mg/kg.
1	1	. The method of claim 15, wherein the potassium channel-opening
2	amount is 10 mg	kg to 100 mg/kg.
1	1	The method of claim 1 wherein the commedition is administered
1	1	. The method of claim 1, wherein the composition is administered
2	orally.	
1	1	. The method of claim 1, wherein the composition is administered by
2	injection.	
1	1	The method of claim 1, wherein the composition is administered
2	after a surgical p	ocedure.
1	2	. The method of claim 1, wherein the compound able to increase ion
2		NQ potassium channels has the formula:
2	now unough ixe	X
		Ar^2
3		Ar ¹ N
<i>3</i>	wherein	••
5		and Ar ² are each members independently selected from the group
6	1	consisting of aryl, substituted aryl, heteroaryl and substituted
7		heteroaryl; and
8	X is a member selected from the group consisting of O, S and N-R ¹ ,	
9		herein R^{I} is a member selected from the group consisting of H, (C_1 -
10	V	C_8)alkyl, substituted (C_1 - C_8)alkyl, aryl, substituted aryl, heteroaryl,
10		c_{8} and c_{1} c_{8} c_{1} c_{8} c_{1}

11	substituted heteroaryl, aryl(C1-C4)alkyl, substituted aryl(C1-	
12	C_4)alkyl, CN, -C(O) R^2 , -OR 3 , -C(O)NR $^3R^4$, and -S(O) $_2$ NR $^3R^4$;	
13	wherein R ² is a member selected from the group consisting of (C ₁ -	
14	C_8)alkyl, substituted (C_1 - C_8)alkyl, aryl, substituted aryl,	
15	heteroaryl, substituted heteroaryl, aryl(C1-C4)alkyl and	
16	substituted aryl(C ₁ -C ₄)alkyl; and	
17	R ³ and R ⁴ are each members independently selected from the group	
18	consisting of hydrogen, (C ₁ -C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl,	
19	heteroaryl, substituted heteroaryl, aryl(C_1 - C_4)alkyl and substituted aryl(C_1 - C_4)alkyl, or R^3	
20	and R ⁴ can be combined with the nitrogen to which each is attached to form a 5-, 6- or 7-	
21	membered ring optionally having additional heteroatoms at the ring vertices.	
1	21. The method according to claim 20, wherein Ar ¹ is a member	
2	selected from the group consisting of phenyl, substituted phenyl, indolyl, substituted	
3	indolyl, benzofuranyl, substituted benzofuranyl, furanyl, substituted furanyl, thienyl,	
4	substituted thienyl, isothiazolyl, substituted isothiazolyl, pyrazolyl and substituted	
5	pyrazolyl.	
1	22. The method according to claim 20, wherein Ar ¹ is substituted	
2	phenyl, substituted or unsubstituted 2-indolyl and substituted or unsubstituted 2-thienyl.	
1	23. The method according to claim 20, wherein X is O.	
1	24. The method according to claim 22, wherein the Ar ¹ substituents are	
2	selected from the group consisting of halogen, alkyl, halo(C1-C4)alkyl, (C1-C4)alkoxy,	
3	halo(C ₁ -C ₄)alkoxy, nitro, cyano, -NHC(O)R ⁷ , -NHR ⁷ , phenyl and substituted phenyl,	
4	wherein	
5	R ⁷ is a member selected from hydrogen, (C ₁ -C ₈)alkyl, substituted	
6	(C_1-C_8) alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl,	
7	heterocyclyl, substituted heterocyclyl, aryl, substituted aryl, heteroaryl, substituted	
8	heteroaryl, aryl(C ₁ -C ₄)alkyl and substituted aryl(C ₁ -C ₄)alkyl, or R ⁷ can be combined with	
9	the nitrogen to which it is attached to form a 5-, 6- or 7-membered ring optionally having	
10	additional heteroatoms at the ring vertices.	
1	25. The method according to claim 20, wherein Ar ² is selected from	
2	the group consisting of heteroaryl and substituted heteroaryl.	

- 1 26. The method according to claim 20, wherein Ar¹ is substituted aryl;
- 2 Ar² is heteroaryl or substituted heteroaryl; and X is O.
- 1 27. The method according to claim 24, wherein Ar² is pyridyl or
- 2 substituted pyridyl.
- 1 28. The method according to claim 27, wherein Ar² is selected from
- 2 the group consisting of 6-methyl-3-pyridyl and 2-chloro-5-pyridyl.
- 1 29. The method according to claim 27, wherein Ar¹ is substituted
- 2 phenyl.
- 1 30. The method according to claim 29, said compound having the
- 2 formula:

3

$$\mathbb{R}^5$$

4 wherein,

Y is a member selected from the group consisting of halogen, C₁-C₄ alkyl, C₁-C₄ substituted alkyl, -OCH₃ and -OCF₃, and R⁵ and R⁶ are members independently selected from the group consisting of H, halogen, alkyl, halo(C₁-C₄)alkyl, nitro, cyano and phenyl, with the proviso that both R⁵ and R⁶ are not H.

- 1 31. The method according to claim 30, wherein R⁵ and R⁶ are members
- 2 independently selected from the group consisting of H, F, and Cl, with the proviso that
- 3 both R^5 and R^6 are not H.
- 1 32. The method of claim 1, wherein the compound able to increase ion 2 flow through KCNQ potassium channels has the formula:

3

4	wherein
5	R ¹ is a member selected from the group consisting of substituted or
6	unsubstituted branched (C3-C8)alkyl, substituted or unsubstituted
7	(C ₃ -C ₈)cycloalkyl, substituted or unsubstituted (C ₃ -
8	C ₈)heterocycloalkyl, substituted or unsubstituted aryl and
9	substituted or unsubstituted heteroaryl;
10	R ² , R ³ , R ⁴ and R ⁵ are each members independently selected from the group
11	consisting of hydrogen, fluorine and substituted or unsubstituted
12	(C_1-C_8) alkyl, or optionally any two of \mathbb{R}^2 , \mathbb{R}^3 , \mathbb{R}^4 and \mathbb{R}^5 are joined
13	together to form a three- to seven-membered ring, having from 0 to
14	3 heteroatoms as ring members, or R ² and R ⁴ taken together form a
15	second bond between the carbon atoms to which each is attached,
16	or R ² , R ³ , R ⁴ and R ⁵ taken together represent a second and third
17	bond between the carbon atoms to which each is attached;
18	R ⁶ , R ⁷ , R ⁸ and R ⁹ are each members independently selected from the group
19	consisting of hydrogen, fluorine and substituted or unsubstituted
20	(C ₁ -C ₈)alkyl, or optionally any two of R ⁶ , R ⁷ , R ⁸ and R ⁹ are joined
21	together to form a three- to seven-membered ring, having from 0 to
22	3 heteroatoms as ring members;
23	R ¹⁰ is a member selected from the group consisting of substituted or
24	unsubstituted (C ₃ -C ₈)cycloalkyl, substituted or unsubstituted (C ₃ -
25	C ₈)heterocycloalkyl, substituted or unsubstituted aryl and
26	substituted or unsubstituted heteroaryl;
27	X is a member selected from the group consisting of O, S and N-R ¹¹ ,
28	wherein R ¹¹ is a member selected from the group consisting of H, (C ₁ -
29	C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl,
30	heteroaryl, substituted heteroaryl, aryl(C1-C4)alkyl, substituted
31	$aryl(C_1-C_4)alkyl, -CN, -C(O)R^{12}, -OR^{13}, -NR^{13}R^{14},$
32	-C(O)NR ¹³ R ¹⁴ , and -S(O) ₂ NR ¹³ R ¹⁴ ;
33	wherein R ¹² is a member selected from the group consisting of (C ₁ -
34	C_8) alkyl, substituted (C_1 - C_8) alkyl, aryl, substituted aryl,
35	heteroaryl, substituted heteroaryl, aryl(C_1 - C_4)alkyl and
36	substituted aryl(C ₁ -C ₄)alkyl; and

37		R ¹³ and R ¹⁴ are each members independently selected from the
38		group consisting of hydrogen, (C1-C8)alkyl, substituted (C
39		C ₈)alkyl, aryl, substituted aryl, heteroaryl, substituted
40		heteroaryl, $aryl(C_1-C_4)$ alkyl and substituted $aryl(C_1-C_4)$
41		C ₄)alkyl, or R ¹³ and R ¹⁴ can be combined with the nitroger
42		to which each is attached to form a 5-, 6- or 7-membered
43		ring optionally having additional heteroatoms at the ring
44		vertices; and
45	m, n,	p and q are each independently an integer of from 0 to 1, with the
46	proviso that at least	one of m, n, p or q is 1.
1	33.	The method of claim 32, wherein X of the compound is O.
1	34.	The method of claim 32, wherein m and n of the compound are
2	zero.	
1	35.	The method of claim 32, wherein m of the compound is 1 and n of
2	the compound is zer	0.
1	36.	The method of claim 32, wherein m and n of the compound are
2	each 1.	
1	37.	The method of claim 32, wherein m and p of the compound are
2	each zero, and n and	q of the compound are each 1.
1	38.	The method of claim 32, wherein m, n, p and q of the compound
2	are each 1.	
1	39.	The method of claim 32, wherein R ² and R ⁴ of the compound,
2	taken together, form	a second bond joining the carbon atoms to which each is attached.
1	40.	The method of claim 32, wherein m and p of the compound are
2	each 1, R^2 , R^3 , R^6 ar	nd R ⁷ of the compound are each hydrogen, n and q of the compound
3	are each zero, and R	of the compound is selected from the group consisting of
4	substituted or unsub	stituted aryl and substituted or unsubstituted heteroaryl.

1	41. The me	thod of claim 40, wherein R ¹⁰ of the compound is	
2	2 substituted aryl having from o	ne to three substituents selected from the group consisting	
3	of halogen, halo(C ₁ -C ₄)alkyl,	halo(C ₁ -C ₄)alkoxy, (C ₁ -C ₄)alkyl, (C ₁ -C ₄)alkoxy, nitro,	
4	cyano, phenyl and methylened	lioxy.	
1	42. The me	thod of claim 32, wherein m, n, p and q of the compound	
		R^6 , R^7 , R^8 and R^9 of the compound are each hydrogen.	
2	are each I, and R, R, R, R,	R, R, R and R of the compound are each hydrogen.	
1	43. The me	thod of claim 32, wherein m, n, p and q of the compound	
2	are each 1; R^2 , R^3 , R^4 , R^5 , R^6 ,	R^7 , R^8 and R^9 of the compound are each hydrogen; and R^{10}	
3	of the compound is selected fr	om the group consisting of substituted or unsubstituted ary	
4	and substituted or unsubstitute	ed heteroaryl.	
1	44. The me	thod of claim 43, wherein R ¹ of the compound is selected	
2	2 from the group consisting of s	ubstituted or unsubstituted branched (C ₃ -C ₈)alkyl, and	
3	substituted or unsubstituted (C	C ₃ -C ₈)cycloalkyl.	
1	45. A meth	od for reducing anxiety in a subject in need thereof by	
2		CNQ potassium channels in a cell, the method comprising	
3		e subject a pharmaceutical composition comprising a	
4		arrier and a compound able to increase ion flow through	
5			
6		KCNQ potassium channels, said composition administered to the subject in a potassium channel-opening amount, thereby reducing anxiety in the subject.	
U	o chamier-opening amount, there	by reducing anxiety in the subject.	
1	46. The me	thod of claim 45, wherein the anxiety is caused by panic	
2	disorder, generalized anxiety of	lisorder, or stress disorder.	
1	47. The me	thod of claim 46, wherein the stress disorder is acute stress	
2			
1	40 Th	de de Calaine 45 andrewein des entricet is a transce	
1	48. The me	thod of claim 45, wherein the subject is a human.	
1	49. The me	thod of claim 45, wherein the KCNQ channel is a	
2	heteromeric channel.		
1	50. The me	thod of claim 45, wherein the KCNQ channel is a	
2	homomeric channel.		

12

1		51.	The method of claim 50, wherein the heteromeric KCNQ channel
2	comprises a K	CNQ2	2 polypeptide subunit.
1		52.	The method of claim 50, wherein the heteromeric KCNQ channel
2	comprises a K	CNQ3	3 polypeptide subunit.
1		53.	The method of claim 52, wherein the KCNQ channel is KCNQ2/3
1		54.	The method of claim 45, wherein the potassium channel-opening
2	amount is 0.1	mg/kg	g to 200 mg/kg.
1		55.	The method of claim 54, wherein the potassium channel-opening
2	amount is 10 i	ng/kg	to 100 mg/kg.
1		56.	The method of claim 45, wherein the composition is administered
2	orally.		
1		57.	The method of claim 45, wherein the composition is administered
2	by injection.		
1		58.	The method of claim 45, wherein the compound able to increase
2	ion flow throu	ıgh KC	CNQ potassium channels has the formula:
			Ar^1 N Ar^2
3	la aurai	_	Н
4 5	wherei		nd Ar ² are each members independently selected from the group
6		7x1 a	consisting of aryl, substituted aryl, heteroaryl and substituted
7			heteroaryl; and
8		X is a	member selected from the group consisting of O, S and N-R ¹ ,
9			ein R ¹ is a member selected from the group consisting of H, (C ₁ -
10			C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl, heteroaryl
11			substituted heteroaryl, $aryl(C_1-C_4)alkyl$, substituted $aryl(C_1-C_4)alkyl$

 C_4)alkyl, CN, $-C(O)R^2$, $-OR^3$, $-C(O)NR^3R^4$, and $-S(O)_2NR^3R^4$;

13	wherein R ² is a member selected from the group consisting of (C ₁ -	
14	C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl,	
15	heteroaryl, substituted heteroaryl, aryl(C_1 - C_4)alkyl and	
16	substituted aryl(C_1 - C_4)alkyl; and	
17	R ³ and R ⁴ are each members independently selected from the group	
18	consisting of hydrogen, (C ₁ -C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl,	
19	heteroaryl, substituted heteroaryl, aryl(C_1 - C_4)alkyl and substituted aryl(C_1 - C_4)alkyl, or R^3	
20	and R ⁴ can be combined with the nitrogen to which each is attached to form a 5-, 6- or 7-	
21	membered ring optionally having additional heteroatoms at the ring vertices.	
1	59. The method according to claim 58, wherein Ar ¹ is a member	
2	selected from the group consisting of phenyl, substituted phenyl, indolyl, substituted	
3	indolyl, benzofuranyl, substituted benzofuranyl, furanyl, substituted furanyl, thienyl,	
4	substituted thienyl, isothiazolyl, substituted isothiazolyl, pyrazolyl and substituted	
5	pyrazolyl.	
1	60. The method according to claim 58, wherein Ar ¹ is substituted	
2	phenyl, substituted or unsubstituted 2-indolyl and substituted or unsubstituted 2-thienyl.	
1	61. The method according to claim 58, wherein X is O.	
1	62. The method according to claim 60, wherein the Ar ¹ substituents are	
2	selected from the group consisting of halogen, alkyl, halo(C ₁ -C ₄)alkyl, (C ₁ -C ₄)alkoxy,	
3	halo(C ₁ -C ₄)alkoxy, nitro, cyano, -NHC(O)R ⁷ , -NHR ⁷ , phenyl and substituted phenyl,	
4	wherein	
5	R ⁷ is a member selected from hydrogen, (C ₁ -C ₈)alkyl, substituted	
6	(C ₁ -C ₈)alkyl, cycloalkyl, substituted cycloalkyl, heteroalkyl, substituted heteroalkyl,	
7	heterocyclyl, substituted heterocyclyl, aryl, substituted aryl, heteroaryl, substituted	
8	heteroaryl, aryl(C1-C4)alkyl and substituted aryl(C1-C4)alkyl, or R7 can be combined with	
9	the nitrogen to which it is attached to form a 5-, 6- or 7-membered ring optionally having	
10	additional heteroatoms at the ring vertices.	
1	63. The method according to claim 58, wherein Ar ² is selected from	
2	the group consisting of heteroaryl and substituted heteroaryl.	

- 1 64. The method according to claim 58, wherein Ar¹ is substituted aryl;
- 2 Ar² is heteroaryl or substituted heteroaryl; and X is O.
- 1 65. The method according to claim 62, wherein Ar² is pyridyl or
- 2 substituted pyridyl.
- 1 66. The method according to claim 65, wherein Ar² is selected from
- 2 the group consisting of 6-methyl-3-pyridyl and 2-chloro-5-pyridyl.
- 1 67. The method according to claim 65, wherein Ar¹ is substituted
- 2 phenyl.
- 1 68. The method according to claim 67, said compound having the
- 2 formula:

3

$$R^5$$

4 wherein,

Y is a member selected from the group consisting of halogen, C₁-C₄ alkyl, C₁-C₄ substituted alkyl, -OCH₃ and -OCF₃, and R⁵ and R⁶ are members independently selected from the group consisting of H, halogen, alkyl, halo(C₁-C₄)alkyl, nitro, cyano and phenyl, with the proviso that both R⁵ and R⁶ are not H.

- 1 69. The method according to claim 68, wherein R⁵ and R⁶ are members 2 independently selected from the group consisting of H, F, and Cl, with the proviso that 3 both R⁵ and R⁶ are not H.
- 1 70. The method of claim 45, wherein the compound able to increase 2 ion flow through KCNQ potassium channels has the formula:

3

4	wherein
5	R ¹ is a member selected from the group consisting of substituted or
6	unsubstituted branched (C3-C8)alkyl, substituted or unsubstituted
7	(C ₃ -C ₈)cycloalkyl, substituted or unsubstituted (C ₃ -
8	C ₈)heterocycloalkyl, substituted or unsubstituted aryl and
9	substituted or unsubstituted heteroaryl;
10	R ² , R ³ , R ⁴ and R ⁵ are each members independently selected from the group
11	consisting of hydrogen, fluorine and substituted or unsubstituted
12	(C ₁ -C ₈)alkyl, or optionally any two of R ² , R ³ , R ⁴ and R ⁵ are joined
13	together to form a three- to seven-membered ring, having from 0 to
14	3 heteroatoms as ring members, or R ² and R ⁴ taken together form a
15	second bond between the carbon atoms to which each is attached,
16	or R ² , R ³ , R ⁴ and R ⁵ taken together represent a second and third
17	bond between the carbon atoms to which each is attached;
18	R ⁶ , R ⁷ , R ⁸ and R ⁹ are each members independently selected from the group
19	consisting of hydrogen, fluorine and substituted or unsubstituted
20	(C_1-C_8) alkyl, or optionally any two of R^6 , R^7 , R^8 and R^9 are joined
21	together to form a three- to seven-membered ring, having from 0 to
22	3 heteroatoms as ring members;
23	R ¹⁰ is a member selected from the group consisting of substituted or
24	unsubstituted (C ₃ -C ₈)cycloalkyl, substituted or unsubstituted (C ₃ -
25	C ₈)heterocycloalkyl, substituted or unsubstituted aryl and
26	substituted or unsubstituted heteroaryl;
27	X is a member selected from the group consisting of O, S and N-R ¹¹ ,
28	wherein R ¹¹ is a member selected from the group consisting of H, (C ₁ -
29	C ₈)alkyl, substituted (C ₁ -C ₈)alkyl, aryl, substituted aryl,
30	heteroaryl, substituted heteroaryl, aryl(C ₁ -C ₄)alkyl, substituted
31	$aryl(C_1-C_4)alkyl, -CN, -C(O)R^{12}, -OR^{13}, -NR^{13}R^{14},$
32	$-C(O)NR^{13}R^{14}$, and $-S(O)_2NR^{13}R^{14}$;
33	wherein R ¹² is a member selected from the group consisting of (C ₁ -
34	C_8)alkyl, substituted (C_1 - C_8)alkyl, aryl, substituted aryl,
35	heteroaryl, substituted heteroaryl, aryl(C1-C4)alkyl and
36	substituted aryl(C ₁ -C ₄)alkyl; and

10 0 90

opp to

37	R ¹³ and R ¹⁴ are each members independently selected from t	he
38	group consisting of hydrogen, (C1-C8)alkyl, substitut	ed (C ₁ -
39	C ₈)alkyl, aryl, substituted aryl, heteroaryl, substituted	l
40	heteroaryl, aryl(C_1 - C_4)alkyl and substituted aryl(C_1 -	
41	C ₄)alkyl, or R ¹³ and R ¹⁴ can be combined with the nit	rogen
42	to which each is attached to form a 5-, 6- or 7-member	ered
43	ring optionally having additional heteroatoms at the r	ing
44	vertices; and	
45	m, n, p and q are each independently an integer of from 0 to 1, with	the
46	proviso that at least one of m, n, p or q is 1.	
1	71. The method of claim 70, wherein X of the compound is O.	
1	72. The method of claim 70, wherein m and n of the compound a	are
2	zero.	
1	73. The method of claim 70, wherein m of the compound is 1 an	d n of
2	the compound is zero.	u 11 01
1	74. The method of claim 70, wherein m and n of the compound a	ire
2	each 1.	
1	75. The method of claim 70, wherein m and p of the compound a	ıre
2	each zero, and n and q of the compound are each 1.	
1	76. The method of claim 70, wherein m, n, p and q of the compo	und
2	are each 1.	uii u
1	77. The method of claim 70, wherein R^2 and R^4 of the compound	•
2	taken together, form a second bond joining the carbon atoms to which each is attach	ied.
1	78. The method of claim 70, wherein m and p of the compound a	ıre
2	each 1, R ² , R ³ , R ⁶ and R ⁷ of the compound are each hydrogen, n and q of the compound	ound
3	are each zero, and R ¹⁰ of the compound is selected from the group consisting of	
4	substituted or unsubstituted aryl and substituted or unsubstituted heteroaryl.	

ti tili titi un

1	79. The method of claim 78, wherein R^{10} of the compound is
2	substituted aryl having from one to three substituents selected from the group consisting
3	of halogen, halo(C ₁ -C ₄)alkyl, halo(C ₁ -C ₄)alkoxy, (C ₁ -C ₄)alkyl, (C ₁ -C ₄)alkoxy, nitro,
4	cyano, phenyl and methylenedioxy.
1	80. The method of claim 70, wherein m, n, p and q of the compound
2	are each 1, and R ² , R ³ , R ⁴ , R ⁵ , R ⁶ , R ⁷ , R ⁸ and R ⁹ of the compound are each hydrogen.
1	81. The method of claim 70, wherein m, n, p and q of the compound
2	are each 1; R ² , R ³ , R ⁴ , R ⁵ , R ⁶ , R ⁷ , R ⁸ and R ⁹ of the compound are each hydrogen; and R ¹⁰
3	of the compound is selected from the group consisting of substituted or unsubstituted aryl
4	and substituted or unsubstituted heteroaryl.
1	82. The method of claim 81, wherein R ¹ of the compound is selected
2	from the group consisting of substituted or unsubstituted branched (C3-C8)alkyl, and
3	substituted or unsubstituted (C ₃ -C ₈)cycloalkyl.