Univerza v Ljubljani Fakulteta za matematiko in fiziko

Geometrijsko zvezna gibanja togih teles

Matic Oskar Hajšen in Eva Zmazek

Kazalo

1 Uvod			4	
2	Teoretično ozadje			
	2.1	Homogene in kartezične koordinate	4	
	2.2	Zveza med koordinatami točk v fiksnem koordinatnem sistemu in ko-		
		ordinatami točk v gibajočem se koordinatnem sistemu	4	
	2.3	Gibanje točk v času	5	
3	3 Implementacija			
\mathbf{L}	isti	ngs		
	1	For educational purposes	8	

1 Uvod

Z najino seminarsko bova prikazala, kako se da znanje, pridobljeno pri tem predmetu, uporabiti pri upodobitvi gibanja togih teles, ki se uporabljajo pri računalniških animacijah in v robotiki. Za opis teh gibanj bomo uporabljali kvaternione in bezierjeve krivulje na kvaternionih.

2 Teoretično ozadje

2.1 Homogene in kartezične koordinate

Imejmo vektor p v 3-dimenzionalnem prostoru s homogenimi koordinatami $p = (p_0, p_1, p_2, p_3)^T \in \mathbb{R}^4/\{(0, 0, 0, 0)^T\}$. Če je prva komponenta p_0 neničelna, lahko za točko p definiramo prirejene kartezične koordinate $\underline{p} = (\underline{p_1}, \underline{p_2}, \underline{p_3})^T \in \mathbb{R}^3$, pri čemer velja $\underline{p_i} = \frac{p_i}{p_0}$ za i = 1, 2, 3. Na tak način vektorja p in λp opisujeta isto točko \underline{p} za poljubno neničelno realno število λ . Vektorjem z ničelno prvo komponento priredimo točke v neskončnosti.

2.2 Zveza med koordinatami točk v fiksnem koordinatnem sistemu in koordinatami točk v gibajočem se koordinatnem sistemu

Definirajmo dva koordinatna sistema v \mathbb{R}^3 :

- \bullet fiksen koordinatni sistem E^3 (običajen koordinatni sistem)
- gibajoč se koordinatni sistem \hat{E}^3

Točke lahko predstavimo v enem ali drugem.

Označimo s \underline{p} točko glede na fiksen koordinatni sistem E^3 , s $\underline{\hat{p}}$ pa glede na \hat{E}^3 . Potrebujemo koordinatno transformacijo

$$\hat{E}^3 \to E^3$$

$$\hat{p} \mapsto p$$

Z uporabo homogenih koordinat, lahko transformacijo zapišemo s pomočjo matrike

$$M = \begin{bmatrix} m_{0,0} & 0 & 0 & 0 \\ \hline m_{1,0} & m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,0} & m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,0} & m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix},$$

kjer velja $m_{0,0} \neq 0$. Preslikavo lahko torej zapišemo kot:

$$\underline{\hat{p}} \mapsto \underline{p} = M\underline{\hat{p}}$$

Vektorju $c=M(1,0,0,0)^T=(m_{0,0},m_{1,0},m_{2,3},m_{3,0})^T$ zapisanemu v homogenih koordinatah pripada vektor $\underline{c}=(\frac{m_{1,0}}{m_{0,0}},\frac{m_{2,0}}{m_{0,0}},\frac{m_{3,0}}{m_{0,0}})^T$, zapisan v kartezičnih koordinatah.

Ta vektor opisuje položaj koordinatnega izhodišča gibajočega se koordinatnega sistema \hat{E}^3 glede na koordinatni sistem E^3 . 3×3 matrika

$$\underline{R} = \frac{1}{m_{0,0}} \begin{bmatrix} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{bmatrix}$$

opisuje orientacijo gibajočega se koordinatnega sistema \hat{E}^3 . Pravimo ji **rotacijska** matrika.

Oglejmo si, kaj naredi matrika M z vektorjem $[1, b_M, c_M, d_M]$:

$$M \cdot \left[egin{array}{c} 1 \\ b_M \\ c_M \\ d_M \end{array}
ight] = \left[egin{array}{c} m_{0,0} \\ m_{2,0} \\ m_{3,0} \end{array}
ight] + \left[egin{array}{cccc} 0 & 0 & 0 \\ m_{1,1}b_M & m_{1,2}c_M & m_{1,3}d_M \\ m_{2,1}b_M & m_{2,2}c_M & m_{2,3}d_M \\ m_{3,1}b_M & m_{3,2}c_M & m_{3,3}d_M \end{array}
ight]$$

Dobimo vektor v homogeni obliki, ki ima na prvi komponenti vrednost $m_{0,0}$, preostale tri komponente pa predstavlja vektor

$$\left[\begin{array}{c} m_{1,0} \\ m_{2,0} \\ m_{3,0} \end{array} \right] + \left[\begin{array}{ccc} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{array} \right] \cdot \left[\begin{array}{c} b_M \\ c_M \\ d_M \end{array} \right]$$

Ker je to vektor v homogeni obliki in ker je prva komponenta neničelna $(m_{0,0} \neq 0)$, je njemu prirejen vektor v kartezični obliki enak

$$\frac{1}{m_{0,0}} \left[\begin{array}{c} m_{1,0} \\ m_{2,0} \\ m_{3,0} \end{array} \right] + \frac{1}{m_{0,0}} \left[\begin{array}{cccc} m_{1,1} & m_{1,2} & m_{1,3} \\ m_{2,1} & m_{2,2} & m_{2,3} \\ m_{3,1} & m_{3,2} & m_{3,3} \end{array} \right] \cdot \left[\begin{array}{c} b_M \\ c_M \\ d_M \end{array} \right],$$

ki pa je enak vsoti $\underline{c} + R \cdot \hat{p}$

Transformacijo $\hat{p} \mapsto p$ tako zapišemo kot:

$$\underline{p} = M \cdot \underline{\hat{p}} = \underline{c} + R\underline{\hat{p}}$$

2.3 Gibanje točk v času

Kadar je c = c(t) in R = R(t), govorimo o gibanju togega telesa:

$$\hat{E}^3 \times I \to E^3$$

$$(\underline{\hat{p}},t) \mapsto \underline{c}(t) + R(t)\underline{\hat{p}} =: \underline{p}(t)$$

Krivulji p(t) pravimo **trajektorija** točke \hat{p}

Če je $\underline{c}(t) = (0, 0, 0)$, potem trajektorija poljubne točke $\underline{\hat{p}}$ leži na sferi z radijem $||\underline{\hat{p}}||$.

Rotacijski del gibanja R(t) opisuje gibanje po enotski sferi, zato se imenuje tudi sferični del gibanja togega telesa. Problem je konstrukcija matrike R, ki mora

biti ortogonalna. $(RR^T = R^T R = I, \det R = 1)$.

Pri opisovanju rotacij si lahko pomagamo s **kvaternioni**. Prostor kvaternionov H je 4-dimenzionalni vektorski prostor s standardno bazo

$$\underline{1} = (1, (0, 0, 0)^T)
\underline{i} = (0, (1, 0, 0)^T)
\underline{j} = (0, (0, 1, 0)^T)
\underline{k} = (0, (0, 0, 1)^T)$$

Vsak kvaternion \mathcal{A} lahko zapišemo kot:

 $\mathcal{A}=(a_0,\underline{a}),\ a_0\in\mathbb{R}$ skalarni del
, $\underline{a}=(a_1,a_2,a_3)^T$ vektorski del

$$\mathcal{A} + \mathcal{B} = (a_0, \underline{a}) + (b_0, \underline{b}) = (a_0 + b_0, \underline{a} + \underline{b})$$
$$\mathcal{A} \cdot \mathcal{B} = (a_0 \cdot b_0 - \underline{a} \cdot \underline{b}, a_0 \underline{b} + b_0 \underline{a} + \underline{a} \times \underline{b})$$

Definicija 2.1. Preslikava $\chi : \mathbb{H} \setminus \{0\} \to SO_3$ oblike

$$Q \mapsto \frac{1}{q_0^2 + q_1^2 + q_2^2 + q_3^2} \begin{bmatrix} q_0^2 + q_1^2 - q_2^2 - q_3^2 & 2(q_1q_2 - q_0q_3) & 2(q_1q_3 + q_0q_2) \\ 2(q_1q_2 + q_0q_3) & q_0^2 - q_1^2 + q_2^2 - q_3^2 & 2(q_2q_3 - q_0q_1) \\ 2(q_1q_3 - q_0q_2) & 2(q_2q_3 + q_0q_2) & q_0^2 - q_1^2 - q_2^2 + q_3^2 \end{bmatrix}$$

$$Q = (q_0, (q_1, q_2, q_3)^T)$$

se imenuje kinematična preslikava.

Matika $\chi(Q)$ je rotacijska matrika.

Velja pa tudi obratno. Vsako rotacijsko matriko R lahko zapišemo v zgornji obliki, to je lahko jo preslikamo v dva **antipodna kvaterniona** oblike

$$\pm Q = \pm (q_0, (q_1, q_2, q_3)^T),$$

 $q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1$

Kinematična preslikava poda korespondenco med 3D rotacijami in parom antipodnih točk na 4D enotski sferi $S^3 \subseteq R^4$.

Z uporabo kinematične preslikave lahko za konstrukcijo sferičnih gibanj uporabimo Bezierjeve krivulje.

Izberemo kontrolne kvaternione Q_0, Q_1, \ldots, Q_n

$$Q(t) = \sum_{i=0}^{n} Q_i B_i^n(t)$$

$$\chi(Q(t)) = R(t)$$

Izberemo $\underline{c}(t) = \frac{w(t)}{||Q(t)||^2}$.

3 Implementacija

Ker si pri opisovanju rotacij pomagamo s kvaternioni, sva jih najprej prevedla iz seznama v vektorsko obliko:

```
function Q = array2quat(a, b, c, d)
1
2
  %input:
3
 %a, b, c, d
                   komponente
4
 %output:
5
                   kvaternion
  %Q
6
7
  Q = [a, b, c, d];
  end
```

S funcijo $quad\ vec(Q)$ pridobima vektorski del kvaterniona.

```
function v = quat_vec(Q)
2
  %input:
3
  %Q
                   kvaternion (q0, q1, q2, q3)
4
  %output:
5
  %V
                   vektorski komponenta Q—ja, (q1, q2, q3)
6
8
  v = [Q(2) Q(3) Q(4)];
9
  end
```

S funcijo quat rot mat oblikujeva rotacijsko matrako iz definicije 2.1:

```
1
  function H = quat_rot_mat(Q)
2 %input:
3 |%0
                kvaternion
4
5
  %output:
6
   %H
                rotacijska matrika za sfericno gibanje
7
                (hi v zapiskih)
8
9
  H = zeros(3,3);
10
  h = sum(Q.^2);
11
12
   if h == 0
13
       H = eye(3,3);
14
   else
15
       H(1,1) = Q(1)^2+Q(2)^2 - Q(3)^2 - Q(4)^2;
16
       H(1,2) = 2*(Q(2)*Q(3) - Q(1)*Q(4));
17
       H(1,3) = 2*(Q(2)*Q(4) + Q(1)*Q(3));
18
19
       H(2,1) = 2*(Q(2)*Q(3) + Q(1)*Q(4));
20
       H(2,2) = Q(1)^2 - Q(2)^2 + Q(3)^2 - Q(4)^2;
21
       H(2,3) = 2*(Q(3)*Q(4) - Q(1)*Q(2));
```

```
22

23 H(3,1) = 2*(Q(2)*Q(4) - Q(1)*Q(3));

24 H(3,2) = 2*(Q(3)*Q(4) + Q(1)*Q(2));

25 H(3,3) = Q(1)^2 - Q(2)^2 - Q(3)^2 + Q(4)^2;

26 H = 1/h.*H;

end

29 H = 1/h.*H;
```

Listing 1: For educational purposes

```
1
   % example of while loop using placeholders
2
   while \langle condition \rangle
     if \langle something-bad-happens \rangle
3
        break
4
5
     else
        % do something useful
6
7
     end
8
     % do more things
9
  end
```