Data Visualisation with ggplot2

Felix Zaussinger

10.09.2020

Motivation

Motivation

ggplot2

- "The grammar of graphics" -> 3 components make a graph
 - dataset
 - coordinate system
 - o geometries ("geoms"): visual marks representing data points

ggplot2

- geom's have properties -> "aesthetics"
 - o size
 - o color
 - o x, y

Visualisation practice

(Artwork by @allison_horst, Data from https://github.com/allisonhorst/palmerpenguins)

1) Data

ggplot(data=penguins)

2) Coordinate System

```
ggplot(data=penguins) +
   aes(x=bill_length_mm)
```


3) Geometry

```
ggplot(data=penguins) +
  aes(bill_length_mm) +
  geom_histogram()
```


... labeling

Distinguishing species via colors

```
ggplot(data=penguins) +
  aes(bill_length_mm) +
  geom_histogram(
   aes(fill = species)
   ) +
  theme_xaringan()
```


Adding KDE and rug plot

```
ggplot(data=penguins) +
  aes(bill_length_mm) +
  geom_histogram(
    aes(
      fill = species,
      y = ..density..
    alpha=0.3
  geom_density(
    aes(
      color = species)
  geom_rug(aes(color=species)) +
  theme_xaringan()
```


Scatterplot

```
ggplot(data = penguins) +
  aes(x = bill_length_mm,
        y = bill_depth_mm) +
  geom_point(size = 2) +
  theme_xaringan()
```


Add regression line

Distinguish species via colors

```
ggplot(data = penguins) +
  aes(x = bill_length_mm,
    y = bill_depth_mm) +
  geom_point(
  aes(color = species,
        shape = species),
    size = 2) +
  theme_xaringan()
```


Add regression lines

• Simpson's paradox: https://en.wikipedia.org/wiki/Simpson%27s_paradox

```
ggplot(data = penguins) +
  aes(x = bill_length_mm,
    y = bill_depth_mm) +
  geom_point(
    aes(color = species,
        shape = species),
    size = 2
    ) +
  geom_smooth(
    method = "lm",
    se = TRUE,
    aes(color = species)
    ) +
  theme_xaringan()
```


Boxplot

```
ggplot(data = penguins) +
  aes(x = species,
      y = bill_length_mm) +
  geom_boxplot() +
  theme_xaringan()
```


Violinplot

```
ggplot(data = penguins) +
  aes(x = species,
        y = bill_length_mm) +
  geom_violin(alpha=.5) +
  geom_jitter(
      shape=16,
      position=position_jitter(0.2)
      color="red",
      alpha=0.5
      ) +
  geom_boxplot(width=0.1) +
  theme_xaringan()
```


Facetting

```
penguins$year <-
  as.factor(penguins$year)
ggplot(data = penguins) +
  aes(x = year,
      y = bill_length_mm) +
  geom_boxplot(
    aes(group=year,
        color=year),
    width=0.2,
    outlier.alpha = 0.3) +
  geom_smooth(
    aes(x=as.integer(year),
        y=bill_length_mm),
    method="lm",
    color="grey") +
  facet_wrap(vars(species)) +
  theme_xaringan() +
  scale_colour_viridis_d() +
  theme(axis.text.x
        =element_blank())
```


Enough said...

