C2-001_Practice 02

 □ Date	@2022년 8월 8일 오전 9:30
Lecture Note	C2-001 Lecture 02-matrix.pdf
Practice (pdf)	
Solution (pdf)	
≡ Topics	Lecture 02: Matrix & Linear Transformation I
# Week	2

• Please mark what you think is correct answer (O or X) and show why you choose it.

1. The null space of
$$\mathbf{A}=\begin{bmatrix}1&2&2&1\\2&4&6&4\\1&2&0&-1\end{bmatrix}$$
, $N(\mathbf{A})$, is $Span=\begin{pmatrix}\begin{bmatrix}-2\\1\\0\\0\end{bmatrix}$, $\begin{bmatrix}1\\0\\-1\\1\end{bmatrix}$).

2. Null space of matrix \mathbf{A} , $N(\mathbf{A})$, is not equal to null space of the reduced row-echelon form of \mathbf{A} , $N(rref(\mathbf{A}))$.

3. The column space of
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 6 & 4 \\ 1 & 2 & 0 & -1 \end{bmatrix}$$
, $C(\mathbf{A})$, is $Span = \begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 4 \\ -1 \end{bmatrix}$.

4. A set of vector
$$\left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 2\\4\\2 \end{bmatrix}, \begin{bmatrix} 2\\6\\0 \end{bmatrix}, \begin{bmatrix} 1\\4\\-1 \end{bmatrix} \right\}$$
 are a basis of the column space of \mathbf{A} , $C(\mathbf{A})$.

5. A basis of the column space of
$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 4 & 6 & 4 \\ 1 & 2 & 0 & -1 \end{bmatrix}$$
 for $C(\mathbf{A})$ is $\left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 6 \\ 0 \end{bmatrix} \right\}$.

6. If a set of column vectors of matrix \mathbf{A} , $\{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\}$, is linearly independent, then the null space of \mathbf{A} , $N(\mathbf{A})$, contains only zero vector, $\mathbf{0}$.

7. The number of free variables in $rref(\mathbf{A})$ means the number of row vectos of matrix \mathbf{A} .

8. Given $rref(\mathbf{A}) = \begin{bmatrix} 1 & 0 & 0 & -1 & 0 \\ 0 & 1 & 3 & 2 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$, the rank of \mathbf{A} , $rank(\mathbf{A})$, is 4.

9. A given transformation, $\mathcal{T}:\mathbb{R}^2 o\mathbb{R}^3$, $\mathcal{T}\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right)=\begin{bmatrix}x_1-x_2\\3x_2\\2x_1+x_2\end{bmatrix}$, this is a linear transformation.

10. The length of unit vector, $\hat{\mathbf{u}}$, is always 1.