Trabajo Práctico N°4 Modelos de Colas

1. Ejercicio 1

Usando el programa mm1.c o el script de *Octave* mm1.m, responder a los siguientes requerimientos:

- (a) Para un modelo de cola M/M/1, mediante simulaciones y con un error menor al 5%, obtener estimaciones del promedio temporal de clientes en el sistema $L=\frac{1}{T}\int_0^T L(t)dt$ en función de la intensidad de tráfico $\rho=\lambda/\mu$, donde L(T) es la cantidad de clientes en el sistema en el instante t, para un tiempo de operación de la cola T. Comparar con el valor teórico.
- (b) Modificar el programa para que compute, tambien el Tiempo Medio en el Sistema por cliente W. Para un error menor al 5%, obtener W como función de ρ . Comparar con el valor teórico.
- (c) Modificar el programa para que simule el siguiente sistema: Llegan clientes a un servicio S₁ con intervalo entre arribos exponencialmente distribuidos con tiempo medio λ. S₁ atiende con tiempos exponencialmente distribuidos con tiempo medio μ₁. Si S₁ está ocupado, el cliente entra en una cola FIFO con capacidad infinita. Una vez atendido el cliente por S₁, debe ser servido por un servidor S₂ con tiempo de atención exponencial de valor medio μ₂. Llamar a este nuevo programa Qserial.c si es en C o Qserial.m si es en Octave. Estimar con un error menor a 5% el la cantidad media de clientes en el sistema en función de λ/(μ₁ + μ₂).

2. Ejercicio 2

Usando el programa $\mathtt{mm1.c}$ o el script de Octave $\mathtt{mm1.m},$ responder a los siguientes requerimientos:

- (a) Para un modelo de cola M/M/1, mediante simulaciones y con un error menor al 5%, obtener estimaciones del promedio temporal de clientes en cola $L_q = \frac{1}{T} \int_0^T q(t) dt$ en función de la *intensidad de tráfico* $\rho = \lambda/\mu$, donde q(T) es la cantidad de clientes en cola en el instante t, para un tiempo de operación de la cola T. Comparar con el valor teórico.
- (b) Modificar el programa para que compute, tambien el Tiempo Medio de Espera en Cola por cliente W_q . Para un error menor al 5%, obtener W_q como función de ρ . Comparar con el valor teórico.
- (c) Modificar el programa para que simule el siguiente sistema: Llegan clientes a dos servicios S₁ y S₂ con intervalo entre arribos exponencialmente distribuidos con tiempo medio λ. S₁ y S₁ atienden con tiempos exponencialmente distribuidos con tiempo medio μ₁ y μ₂, respectivamente. Llamar a este nuevo programa Qparal.c si es en C o Qparal.m si es en Octave. Estimar con un error menor a 5% el la cantidad media de clientes en el sistema en función de λ/(μ₁ + μ₂).

3. Ejercicio 3

Usando el programa mm1.c o el script de *Octave* mm1.m, responder a los siguientes requerimientos:

- (a) Modificar el programa para un modelo de cola M/M/1, para que mediante simulaciones y con un error menor al 5%, compute estimaciones del promedio temporal de clientes en el sistema $L = \frac{1}{T} \int_0^T L(t) dt$ y el promedio temporal de clientes en cola $L_q = \frac{1}{T} \int_0^T q(t) dt$ en función de la intensidad de tráfico $\rho = \lambda/\mu$, donde L(T) es la cantidad de clientes en el sistema y q(t) es la cantidad de clientes en cola en el instante t, para un tiempo de operación de la cola T. Comparar con el valor teórico. Estime con las simulaciones obtenidas L Lq. Comente este resultado.
- (b) Modificar el programa para que compute, tambien el Tiempo Medio en el Sistema por cliente W. Para un error menor al 5%, obtener L y W como función de ρ . Co estos resultados, graficar L vs W Comentar. Comparar con valores teóricos.
- (c) Si por cada cliente que se encuentra esperando en el sistema, se incurre en un costo $c_{\frac{\$}{\text{hora cliente}}}$ y si el servidor tiene un costo de utilización $s_{\frac{\$}{\text{hora}}}$, realizar:
 - i. Modificar el programa para ingresar c y s y que compute el Costo Total Medio $C=\frac{1}{T}\int_0^T c(t)dt$, donde c(t) es el costo total y T es un tiempo de operación.
 - ii. Con las modificaciones realizadas, estimar C como función de $\rho.$