RACHUNEK PRAWDOPODOBIEŃSTWA 1R Lista zadań nr 7

 ${f 1.}$ Pokaż, że jeżeli zmienna losowa X ma rozkład dyskretny skoncentrowany na liczbach całkowitych nieujemnych, to

$$\mathbb{E}X = \sum_{k=1}^{\infty} \mathbb{P}(X \ge k).$$

2. Wykaż, że jeżeli $X \geq 0$ oraz $\mathbb{E} X < \infty$, to

$$\mathbb{E}X = \int_0^\infty (1 - F(t))dt,$$

gdzie F oznacza dystrybuantę X. Wywnioskuj, że jeżeli p>0, to

$$\mathbb{E}X^p = p \int_0^\infty t^{p-1} \mathbb{P}(X \ge t) dt.$$

- 3. Zmienne losowe X i Y są niezależne i mają rozkład wykładniczy z parametrem 1. Udowodnić, że zmienne X/Y oraz X+Y są niezależne.
- **4.** Niech X i Y będą ograniczonymi zmiennymi losowymi (tzn. istnieje M takie, że $\mathbb{P}(|X| < M) = \mathbb{P}(|Y| < M) = 1$) takimi, że dla każdego $k \in \mathbb{N}$ mamy $\mathbb{E}X^k = \mathbb{E}Y^k$. Pokaż, że X i Y mają ten sam rozkład.
- 5. Liczby 1,2,..,n ustawiono losowo w ciąg $(a_1,..,a_n)$. Niech N oznacza największą taką liczbę, że $a_k>a_{k-1}$ dla $k\leq N$. Oblicz $\mathbb{E}N$.
- 6*. Dany jest ciąg niezależnych zmiennych losowych o rozkładzie wykładniczym z parametrem 1.
 - Oblicz

$$a_n = \mathbb{E}\big[\max_{i \le n} X_i\big].$$

• Dla każdego t > 0 oblicz

$$\lim_{n \to \infty} \mathbb{P}[\max_{i \le n} X_i - a_n \le t].$$

- 7. Zmienne losowe X, Y spełniają warunki: varX=3, Cov(X,Y)=-1, varY=2. Oblicz var(4X-3Y) oraz Cov(2X-Y,2X+Y).
- 8. Zmienne losowe X_1, X_2, \ldots, X_k są niezależne o jednakowym rozkładzie równomiernym na zbiorze $\{0, 1, \ldots, n-1\}$. Wyznacz rozkład (dystrybuantę) zmiennej losowej $X = \min_{1 \le i \le k} X_i$. Znajdź rozkład graniczny dla $k \to \infty$ gdy $n/k \to \lambda > 0$. Co to za rozkład?
- 9. Niech X,Y będą niezależnymi zmiennymi losowymi o rozkładach z dystrybuantami F_1,F_2 i gestościami f_1,f_2 odpowiednio. Znajdź
 - a) dystrybuantę i gestość zmiennej losowej U = X Y;
 - b) dystrybuantę i gęstość zmiennej losowej V = XY;
- 10. Wyznacz dystrybuantę oraz gęstość zmiennej losowej Z=XY, jeśli X,Y są niezależnymi zmiennymi losowymi o rozkładach:
 - a) jednostajnych U([0,a]), U([0,b]) odpowiednio;
 - b) wykładniczych $\text{Exp}(\lambda)$, $\text{Exp}(\mu)$ odpowiednio;
- **11.** Wyznacz dystrybuantę wektora losowego (X,Y) o rozkładzie jednostajnym na przekątnej kwadratu jednostkowego $[0,1]^2$, łączącej punkty (0,0) i (1,1). Wyznacz rozkłady brzegowe, oblicz $\mathbb{E}X$, $\mathbb{E}Y$, $\mathrm{Var}(X)$, $\mathrm{Var}(Y)$, $\mathrm{Cov}(X,Y)$, $\mathrm{Var}(X+Y)$ oraz sprawdź czy zmienne losowe X i Y są niezależne.