Programozási alapok nagyzárthelyi feladatgyűjtemény

Kiss-Bartha Nimród

2023. január 16.

Tartalomjegyzék

1.	"A"	csoport	1
	1.1.	feladat	1
		1.1.1. Specifikáció, struktogram	1
		1.1.2. Visszavezetési táblázat	1
	1.2.	feladat	2
		1.2.1. Specifikáció, struktogram	2
		1.2.2. Visszavezetési táblázat	2
	1.3.	feladat	3
		1.3.1. Specifikáció, struktogram	3
		1.3.2. Visszavezetési táblázat	3
2.	"B"	csoport	4
	2.1.	feladat	4
		2.1.1. Specifikáció, struktogram	4
		2.1.2. Visszavezetési táblázat	4
	2.2.	feladat	4
		2.2.1. Specifikáció, struktogram	4
		2.2.2. Visszavezetési táblázat	5
	2.3.	feladat	5
		2.3.1. Specifikáció, struktogram	5
		2.3.2. Visszavezetési táblázat	5
3.	,,C"	csoport	6
	3.1.	feladat	6
		3.1.1. Specifikáció, struktogram	6
		3.1.2. Visszavezetési táblázat	6
	3.2.	feladat	7
		3.2.1 Specifikáciá atruktogram	7

TARTALOMJEGYZÉK	ii
3.2.2. Visszavezetési táblázat	7
3.3. feladat	8
3.3.1. Specifikáció, struktogram	8
3.3.2. Visszavezetési táblázat	8

1. fejezet

"A" csoport

1.1. feladat

Add meg egy számsorozatnak az a értéknél nagyobbak minimumát.

1.1.1. Specifikáció, struktogram

Tétel: eldöntés, maximumkiválasztás

• Bemenet: $n \in \mathbb{N}, x_{1..n} \in \mathbb{N}^n, a \in \mathbb{N}$

• Kimenet: $minert \in \mathbb{N}, minind \in \mathbb{N}, van \in \mathbb{L}$

• Előfeltétel: (n > 0)

• Utófeltétel: $van := \exists i \in (1 \le i \le n) : x_i > a \land x_i > 0$ $van \implies (minert, minind) := \underset{\substack{i := 2 \\ x_i > a}}{\text{MAX}} x_i$

1.1.2. Visszavezetési táblázat

Eldöntés			
$\overline{}$	\sim	\overline{n}	
X_{1N}	\sim	x_{1n}	
\mathbb{H}	\sim	\mathbb{N}	
Van	\sim	van	
$T(X_i)$	\sim	x[i] > a	

$$\begin{array}{cccc} \text{Maximumkiválasztás} \\ \hline N & \sim & n \\ X_{1..N} & \sim & x_{1..n} \\ \mathbb{H} & \sim & \mathbb{N} \\ MaxErt & \sim & minert \\ MaxInd & \sim & minind \\ T(X_i) & \sim & x[i] > a \end{array}$$

1.2. feladat

Egy karácsonyi vásárban n árus árulja a portékáit és m napon keresztül feljegyzik, hogy az árusok napi bevételét. Add meg, hogy melyik napon volt a legtöbb az összbevétel?

1.2.1. Specifikáció, struktogram

Tételek: összegzés, maximumkiválasztás

• Bemenet: $n \in \mathbb{N}, m \in \mathbb{N}, x_{1..n,1..m} \in \mathbb{N}^{n \times m}$

• Kimenet: $sums_{1..m} \in \mathbb{N}^m, maxind \in \mathbb{N}, maxert \in \mathbb{N}$

• Előfeltétel: (n > 0)

• Utófeltétel: $\forall i \in (1 \leq i \leq m) : sums_i := \sum_{j:=1}^n x_{j,i} \land (maxind, maxert) := \max_{k:=2}^n x_{j,i} \land (maxind, maxert) := \min_{k:=2}^n x_{j,i} \land (maxind, m$

Be: n, x[n]; sums[m], minert, minind			
i := 1 m			
sums[i] := 0			
j := 1 n			
sums[i] := sums[i] + x[j][i]			
maxind := 1; maxert := sums[maxind]			
k := 2 m			
maxert <= sums[k] true false			
maxind := k			
maxert := sums[maxind]			
Ki: maxind			

1.2.2. Visszavezetési táblázat

Összegzés			
N	\sim	n	
X_{1N}	\sim	x_{1n}	
\mathbb{H}	\sim	\mathbb{N}	
S	\sim	$\sum_{j:=1}^{n} x_{j,i}$	

$$\begin{array}{cccc} \text{Maximumkiv\'alaszt\'as} \\ \hline N & \sim & n \\ X_{1..N} & \sim & x_{1..n} \\ \mathbb{H} & \sim & \mathbb{N} \\ MaxErt & \sim & maxert \\ MaxInd & \sim & maxind \\ \end{array}$$

1.3. FELADAT

1.3. feladat

Az egyetemen (oktató, tárgy) formában tárolják, hogy ki milyen órát tart. Add meg azokat az oktatókat, akik csak egyféle tárgyat tanítanak!

1.3.1. Specifikáció, struktogram

Tételek: eldöntés, kiválogatás

• Definíció: $orak := rec(oktato \in \mathbb{S} \times targy \in \mathbb{S})$ $eleme : \mathbb{S}^n \to \mathbb{N} \to \mathbb{S} \to \mathbb{L}$ $eleme(y, n, oktato) := \underset{i := 1}{\overset{n}{\exists}} y_i == oktato$

• Bemenet: $n \in \mathbb{N}, x_{1..n} \in orak^n$

• Kimenet: $db \in \mathbb{N}, y_{1..n} \in \mathbb{S}^n$

• Előfeltétel: –

1.3.2. Visszavezetési táblázat

Eldöntés			
\overline{N}	~	n	
X_{1n}	\sim	y_{1n}	
\mathbb{H}	\sim	\mathbb{N}	
T(X[i])	\sim	$y_i == oktato$	

2. fejezet

"B" csoport

2.1. feladat

2.1.1. Specifikáció, struktogram

Tételek: aaa, bbb

• Bemenet: $n \in \mathbb{N}$

• Kimenet:

• Előfeltétel:

• Utófeltétel:

2.1.2. Visszavezetési táblázat

tartalom...

 ${\rm tartalom}...$

2.2. feladat

2.2.1. Specifikáció, struktogram

Tételek: aaa, bbb

• Bemenet: $n \in \mathbb{N}$

• Kimenet:

• Előfeltétel:

• Utófeltétel:

Ве	n, x[n]; sums[m], minert, minind				
i :=	i := 1 m				
	sums[i] := 0				
	j := 1 n				
	sums[i] := sums[i] + x[j][i]				
ma	maxind := 1; maxert := sums[maxind]				
k := 2 m					
	maxert <= sums[k]	false			
	maxind := k				
	maxert := sums[maxind]				
Ki:	maxind				

2.3. FELADAT 5

2.2.2. Visszavezetési táblázat

tartalom... tartalom...

2.3. feladat

2.3.1. Specifikáció, struktogram

Tételek: aaa, bbb

• Bemenet: $n \in \mathbb{N}$

 \bullet Kimenet:

• Előfeltétel:

• Utófeltétel:

Be: n, x[n]; sums[m], minert, minind			
i := 1 m			
sums[i] := 0			
j := 1 n			
sums[i] := sums[i] + x[j][i]			
maxind := 1; maxert := sums[maxind]			
k := 2 m			
maxert <= sums[k] false			
maxind := k			
maxert := sums[maxind]			
Ki: maxind			

2.3.2. Visszavezetési táblázat

tartalom... tartalom...

3. fejezet

"C" csoport

3.1. feladat

Add meg egy számsorozatnak a b értéknél kisebbek maximumát!

3.1.1. Specifikáció, struktogram

Tételek: eldöntés, kiválogatás, maximumkiválasztás

- Bemenet: $n \in \mathbb{N}, x_{1..n} \in \mathbb{R}^n, b \in \mathbb{R}$
- Kimenet: $van \in \mathbb{L}, db \in \mathbb{N}, y_{1..n} \in \mathbb{R}^n,$ $maxert \in \mathbb{R}, maxind \in \mathbb{N}$
- Előfeltétel: (n > 0)
- $\begin{array}{c} \bullet \ \ \text{Ut\'ofelt\'etel:} \ van := \exists i \in (1 \leq i \leq n) : x_i < b \quad \wedge \\ van \implies (db,y) := \underset{\substack{i:=1\\x_i < b}}{\text{KIVALOGAT}} x_i \quad \wedge \\ van \implies (maxert, maxind) := \underset{j:=2}{\overset{db}{\text{MAX}}} y_i \\ \end{array}$

3.1.2. Visszavezetési táblázat

Eldöntés			
N	~	n	
X_{1N}	\sim	x_{1n}	
\mathbb{H}	\sim	\mathbb{R}	
Van	\sim	van	
$T(X_i)$	\sim	x[i] < b	

$$\begin{array}{cccc} \text{Kiv\'alogat\'as} \\ N & \sim & n \\ X_{1..N} & \sim & x_{1..n} \\ Db & \sim & db \\ Y_{1..N} & \sim & y_{1..n} \\ \mathbb{H} & \sim & \mathbb{R} \\ T(X_i) & \sim & x[i] < b \end{array}$$

$$N \sim n$$
 $X_{1..N} \sim x_{1..n}$
 $\mathbb{H} \sim \mathbb{R}$
 $MaxErt \sim maxert$
 $MaxInd \sim maxind$
 $T(X_i) \sim x[i] < b$

3.2. FELADAT

3.2. feladat

n hallgató ír f feladatot tartalmazó évfolyamzh-t, ahol minden feladatra 10 pont kapható. Add meg azokat a hallhatókat, akik legfeljebb k feladatból kaptak maximális pontszámot!

3.2.1. Specifikáció, struktogram

Tételek: megszámlálás, kiválogatás

• Bemenet: $n, f, k \in \mathbb{N}, x_{1..n,1..f} \in \mathbb{N}^{n \times f}$

• Kimenet: $y_{1...n} \in \mathbb{N}^n, db \in \mathbb{N}, z_{1...n} \in \mathbb{N}^n$

• Előfeltétel: n>0 \land f>0 \land $0 \le k \le f$ \land \forall \forall $0 \le k \le f$ \land $0 \le k \le f$

• Utófeltétel: $\forall i \in \{1..n\}: y_i := \sum_{\substack{i:=1\\x_{i,j}=10}}^f 1 \land (db,z) := \text{KIVALOGAT } y_i$

3.2.2. Visszavezetési táblázat

Megszámlálás			
N	~	f	
X_{1n}	\sim	$x_{1n,1f}$	
\mathbb{H}	\sim	\mathbb{N}	
Db	\sim	y_i	
T(X[i])	\sim	$x_{i,j} = 10$	

$$\begin{array}{cccc} \text{Kiv\'alogat\'as} \\ \hline N & \sim & n \\ X_{1..n} & \sim & y_{1..n} \\ Db & \sim & db \\ Y_{1..n} & \sim & z_{1..n} \\ \mathbb{H} & \sim & \mathbb{N} \\ T(X[i]) & \sim & y[i] \leq k \\ \hline \end{array}$$

3.3. FELADAT

3.3. feladat

Az egyetemen (oktató, tárgy) formában tárolják, hogy ki milyen órát tart. Add meg, hogy hány oktató dolgozik az egyetemen!

3.3.1. Specifikáció, struktogram

Tételek: eldöntés, kiválogatás

• Definíció: $orak := rec(oktato \in \mathbb{S} \times targy \in \mathbb{S})$ $eleme : \mathbb{S}^n \to \mathbb{N} \to \mathbb{S} \to \mathbb{L}$ $eleme(y, n, oktato) := \underset{i := 1}{\overset{n}{\exists}} y_i == oktato$

• Bemenet: $n \in \mathbb{N}, x_{1..n} \in orak^n$

• Kimenet: $db \in \mathbb{N}, y_{1..n} \in \mathbb{S}^n$

• Előfeltétel: –

3.3.2. Visszavezetési táblázat

Eldöntés			
\overline{N}	~	n	
X_{1n}	\sim	y_{1n}	
\mathbb{H}	\sim	\mathbb{N}	
T(X[i])	\sim	$y_i == oktato$	