

TTK4135 – Lecture 10 Model Predictive Control

Lecturer: Lars Imsland

Model Predictive Control – control based on optimization

MPC: Applications

Model predictive control (MPC)

Open-loop optimization with linear state-space model

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{x,t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{u,t} u_t + \frac{1}{2} \Delta \underline{u}_t^{\top} S \Delta u_t$$

subject to

$$x_{t+1} = A_t x_t + B_t u_t, \quad t = \{0, \dots, N-1\}$$

$$x^{\text{low}} \le x_t \le x^{\text{high}}, \quad t = \{1, \dots, N\}$$

$$u^{\text{low}} \le u_t \le u^{\text{high}}, \quad t = \{0, \dots, N-1\}$$

$$-\Delta u^{\text{high}} \le \Delta u_t \le \Delta u^{\text{high}}, \quad t = \{0, \dots, N-1\}$$

QP

where

$$x_0$$
 and u_{-1} is given

$$\Delta u_t := u_t - u_{t-1}$$

$$z^{\top} := (u_0^{\top}, x_1^{\top}, \dots, u_{N-1}^{\top}, x_N^{\top})$$

$$n = N \cdot (n_x + n_u)$$

$$Q_t \succeq 0 \quad t = \{1, \dots, N\}$$

$$R_t \succ 0 \quad t = \{0, \dots, N-1\}$$

Open-loop dynamic optimization problem as QP

$$x_{t+1} = Ax_t + Bu_t, \quad t = \{0, \dots, N-1\}$$

$$x^{\text{low}} \le x_t \le x^{\text{high}}, \quad t = \{1, \dots, N\}$$
 $u^{\text{low}} \le u_t \le u^{\text{high}}, \quad t = \{0, \dots, N-1\}$

where

$$x_0$$
 is given $z^{\top} := (u_0^{\top}, x_1^{\top}, \dots, u_{N-1}^{\top}, x_N^{\top})$ $Q \succeq 0, \quad R \succ 0$

Norwegian University of Science and Technology

Model predictive control principle

At each sample time:

- Measure or estimate current state x(t)
- Find optimal open-loop input sequence $U^* = (u_0^*)u_1^*, \dots, u_{N-1}^*)$
- Implement only the first element of sequence: $u(t) = u_0^*$

Model predictive control principle

Plant state x(t)

Why? This introduces feedback!

8

Chess analogy

(The process/disturbance)

The opponent, choosing a counter move

Carlsen's move

Opponent's move

Carlsen, planning many moves into the future

(The MPC controller)

Model predictive control principle

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Open-loop optimization with linear state-space model

$$\min_{z \in \mathbb{R}^n} f(z) = \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q_{t+1} x_{t+1} + d_{x,t+1} x_{t+1} + \frac{1}{2} u_t^{\top} R_t u_t + d_{u,t} u_t + \frac{1}{2} \Delta u_t^{\top} S \Delta u_t$$

subject to

$$x_{t+1} = A_t x_t + B_t u_t, \quad t = \{0, \dots, N-1\}$$

$$x^{\mathrm{low}} \leq x_t \leq x^{\mathrm{high}}, \quad t = \{1, \dots, N\}$$
 Is this always possible?
$$u^{\mathrm{low}} \leq u_t \leq u^{\mathrm{high}}, \quad t = \{0, \dots, N-1\}$$

$$-\Delta u^{\mathrm{high}} \leq \Delta u_t \leq \Delta u^{\mathrm{high}}, \quad t = \{0, \dots, N-1\}$$

QP

where

$$x_0$$
 and u_{-1} is given
$$\Delta u_t := u_t - u_{t-1}$$

$$z^\top := (u_0^\top, x_1^\top, \dots, u_{N-1}^\top, x_N^\top)$$

$$n = N \cdot (n_x + n_u)$$

$$Q_t \succeq 0 \quad t = \{1, \dots, N\}$$

$$R_t \geqslant 0 \quad t = \{0, \dots, N-1\}$$

The **feasibility** problem: Inequality constraints on states may imply that for some x_0 , there are no solutions to the MPC QP

"Exact penalty": glarge enough \$ == 0 who never possible

Open-loop vs closed-loop trajectories

$$\min \sum_{t=0}^{4} x_{t+1}^2 + 4 u_t^2$$
s.t. $x_{t+1} = 1.2x_t + 0.5u_t, \quad t = 0, \dots, 4$

- Closed-loop trajectories different from open-loop (optimized) trajectories!
- It is the closed-loop trajectories that must analyzed for stability

Example: Is MPC alway stable?

Design MPC for $x_{t+1} = 1.2x_t + u_t$, no constraints, N = 2

Example: Is MPC alway stable?

Design MPC for $x_{t+1} = 1.2x_t + u_t$, no constraints, N = 2

Since convex + no constraints: solution given by 21 =0, i=1,2 Of = 1.2x0+40+1.2(1.44x0+1.240+4,)+140=0 $\frac{\partial f}{\partial t} = (1.47 \times 41.240 + 4.1240) + -4.1240)$ $U_6 = -\frac{1.2 + 2.64r}{1 - 3.2r - r^2} \times_{o}$

□ NTNU |

* MPC controller

MPC optimality implies stability?

MPC and stability

Nominal vs robust stability

- "Nominal stability": Stability when optimization model = plant model
 - No "model-plant mismatch", no disturbances
- "Robust stability": Stability when optimization model ≠ plant model
 - "Model-plant mismatch" and/or disturbances (more difficult to analyze, not part of this course)

Requirements for nominal stability:

- Stabilizability ((A,B) stabilizable)
- Detectability ((A,D) detectable)
 - D is a matrix such that $Q = D^TD$ (that is, "D is matrix square root of Q")
 - Detectability: No modes can grow to infinity without being "visible" through Q
- But more is needed to guarantee stability...

Three different theoretical solutions:

- 1. Choose prediction horizon equal to infinity $(N = \infty)$
 - Usually not possible (unless no constraints: LQR)

$$\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$$
s.t. $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$

$$x^{\text{low}} \leq x_{t} \leq x^{\text{high}}, \quad t = 1, \dots, N$$

$$u^{\text{low}} \leq u_{t} \leq u^{\text{high}}, \quad t = 0, \dots, N-1$$

$\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$ $\text{s.t.} \quad x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$ $x^{\text{low}} \le x_{t} \le x^{\text{high}}, \quad t = 1, \dots, N$ $u^{\text{low}} \le u_{t} \le u^{\text{high}}, \quad t = 0, \dots, N-1$

Three different theoretical solutions:

- 1. Choose prediction horizon equal to infinity $(N = \infty)$
 - Usually not possible (unless no constraints: LQR)
- 2. For given N, design Q and R such that MPC is stable (cf. example)
 - Difficult in general! And usually we want to design ("tune") Q and R for performance, not for stability

Three different theoretical solutions:

- 1. Choose prediction horizon equal to infinity $(N = \infty)$
 - Usually not possible (unless no constraints: LQR)
- 2. For given N, design Q and R such that MPC is stable (cf. example)
 - Difficult in general! And usually we want to design ("tune") Q and R for performance
- 3. Change the optimization problem: Terminal cost + terminal constraint
 - Choose terminal cost + terminal constraint such that cost of new problem is a feasible upper bound on cost of infinite horizon problem
 - General theory for finding such terminal cost & terminal constraint exist, not difficult, but may be somewhat impractical for "real" problems

$$\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$$
s.t. $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$

$$x^{\text{low}} \leq x_{t} \leq x^{\text{high}}, \quad t = 1, \dots, N$$

$$u^{\text{low}} \leq u_{t} \leq u^{\text{high}}, \quad t = 0, \dots, N-1$$

Terminal cost

$$\min_{z} \sum_{t=0}^{N-1} \left(\frac{1}{2} x_{t}^{\top} Q x_{t} + \frac{1}{2} u_{t}^{\top} R u_{t} \right) + \frac{1}{2} x_{N}^{\top} P x_{N}$$
s.t.
$$x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$$

$$x^{\text{low}} \leq x_{t} \leq x^{\text{high}}, \quad t = 1, \dots, N$$

$$u^{\text{low}} \leq u_{t} \leq u^{\text{high}}, \quad t = 0, \dots, N-1$$

$$x_{N} \in \mathcal{S}$$

Terminal constraint

Three different theoretical solutions:

- 1. Choose prediction horizon equal to infinity $(N = \infty)$
 - Usually not possible (unless no constraints: LQR)
- 2. For given N, design Q and R such that MPC is stable (cf. example)
 - Difficult in general! And usually we want to design ("tune") Q and R for performance
- 3. Change the optimization problem: Terminal cost + terminal constraint
 - Choose terminal cost + terminal constraint such that cost of new problem is a feasible upper bound on cost of infinite horizon problem
 - General theory for finding such terminal cost & terminal constraint exist, not difficult, but may be somewhat impractical for "real" problems

$\min_{z} \sum_{t=0}^{N-1} \frac{1}{2} x_{t+1}^{\top} Q x_{t+1} + \frac{1}{2} u_{t}^{\top} R u_{t}$ s.t. $x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$ $x^{\text{low}} \leq x_{t} \leq x^{\text{high}}, \quad t = 1, \dots, N$ $u^{\text{low}} < u_{t} < u^{\text{high}}, \quad t = 0, \dots, N-1$

Terminal cost

$$\min_{z} \sum_{t=0}^{N-1} \left(\frac{1}{2} x_{t}^{\top} Q x_{t} + \frac{1}{2} u_{t}^{\top} R u_{t} \right) + \frac{1}{2} x_{N}^{\top} P x_{N}$$
s.t.
$$x_{t+1} = A x_{t} + B u_{t}, \quad t = 0, 1, \dots, N-1$$

$$x^{\text{low}} \leq x_{t} \leq x^{\text{high}}, \quad t = 1, \dots, N$$

$$u^{\text{low}} \leq u_{t} \leq u^{\text{high}}, \quad t = 0, \dots, N-1$$

$$x_{N} \in \mathcal{S}$$

Terminal constraint

What is the usual practical solution?

- Choose N "large enough"
 - Can show: stability guaranteed for N large enough, but difficult/conservative to compute this limit
 - So what is "large enough" in practice? Rule of thumb: longer than "dominating dynamics"
 - (...but not too large, as large *N* might give robustness issues...)

Why MPC over PID control?

Advantages of MPC:

- MPC handles constraints in a transparent way
 - Physical constraints (actuator limits), performance constraints, safety limits, ...
- Intuitive and easy to tune (...relatively, at least)
- MPC is by design multivariable (MIMO)
- MPC gives "optimal" performance (but what is the optimal objective?)

Disadvantage with MPC

- Online complexity (but only solving a QP, so not so bad)
- Requires models! Increased commisioning cost?
- Difficult to maintain?

"Squeeze and shift"

How MPC (or improved/advanced control in general) improves profitability

"Squeeze and shift"

How MPC (or improved/advanced control in general) improves profitability

"Squeeze and shift"

How MPC (or improved/advanced control in general) improves profitability

