Session 2 (DAY 2)

Statistical and Machine Learning Models

Workshop on Quantitative Literacy and Statistics

Session 2: Part 1

Supervised Learning

Workshop on Quantitative Literacy and Statistics

Statistical Learning Supervised Unsupervised Learning Learning Regression Classification

Supervised Learning

Supervised Learning

Learning techniques to find a function to <u>predict a response</u> variable from set of dependent variables

$$Y = \hat{f}(x)$$

Supervised Learning: Regression

Learning techniques to find a function to predict a <u>continuous response variable</u> from a set of dependent variables

$$MPG = f(Weight)$$

Supervised Learning: Classification

Learning techniques to find a function to predict a <u>categorical response variable</u> from a set of dependent variables

Heart Disease_{$(Yes\ or\ No)} = f(Cholesterol\ Level)$ </sub>

Regression

Linear Regression

Simple Linear Regression Model: $Y = \beta_0 + \beta_1 X + \text{Error}$

 β_0 - Response when X = 0

 $oldsymbol{eta}_1$ - Increase of Response when X increase by 1-unit

X	Υ
x_1	y_1
x_2	y_2
x_3	y_3
x_4	y_4
ν_	17_

Y - Response e_3

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

 \hat{Y} - Prediction

Residual: $e_i = y_i - \hat{y}_i$

Residual Sum of Square: RSS = $e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2$

$$RSS = \sum (Y - \hat{Y})^2$$

Find β_0 and β_1 which minimize the RSS

X - Predictor

Weight

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb	
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4	
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4	
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1	
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1	
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2	
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1	
Duster 360	14.3	8	360.0	245	3.21	3.570	15.84	0	0	3	4	
Merc 240D	24.4	4	146.7	62	3.69	3.190	20.00	1	0	4	2	
Merc 230	22.8	4	140.8	95	3.92	3.150	22.90	1	0	4	2	
Merc 280	19.2	6	167.6	123	3.92	3.440	18.30	1	0	4	4	
Merc 280C	17.8	6	167.6	123	3.92	3.440	18.90	1	0	4	4	
Merc 450SE	16.4	8	275.8	180	3.07	4.070	17.40	0	0	3	3	
Merc 450SL	17.3	8	275.8	180	3.07	3.730	17.60	0	0	3	3	
Merc 450SLC	15.2	8	275.8	180	3.07	3.780	18.00	0	0	3	3	
Cadillac Fleetwood	10.4	8	472.0	205	2.93	5.250	17.98	0	0	3	4	
	40.4	_	460 0	24.5	2 00	- 424	47.00	_	_	_		

$lm(formula = mpg \sim wt , data = mtcars)$

```
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 37.2851    1.8776   19.858    < 2e-16 ***
wt         -5.3445    0.5591   -9.559   1.29e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 $\widehat{mpg} = 37.28 - 5.34 Weight$

 $\hat{\beta}_0 = 37.28$ $\hat{\beta}_1 = -5.34$

p-value will provide statistical significance β_1 — Weight is a significant variable in estimating MPG

$\widehat{mpg} = 37.28 - 5.34 Weight$

Linear Regression Assumptions

Assumptions

- Linearity of Data
- Constant Variance of residuals
- Normality of Residuals
- No Outliers

Linear Regression: Evaluation Model Performance

R^2 - Coefficient of Determination = 0.75

- How much variability of response is explained by the input variables
- $0 \le R^2 \le 1$
- Higher the better

Adjusted $R^2 = 0.74$

- Panelize for additional input variables
- $R_{adj}^2 \leq 1$
- Higher the better

Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528, Adjusted R-squared: 0.7446
F-statistic: 91.38 on 1 and 30 DF, p-value: 1.294e-10

RMSE – Root mean squared error = 3.04

Lower the Better

Multiple Linear Regression

```
MPG = \beta_0 + \beta_1 Weight + \beta_2 Cylinders + \beta_3 Rear\_axle\_Ratio + Error
```

multiple_linear_regression = lm(formula = mpg ~ wt + cyl + drat ,data = mtcars)
summary(multiple_linear_regression)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 39.7677 6.8729 5.786 3.26e-06 ***

wt -3.1947 0.8293 -3.852 0.000624 ***

cyl -1.5096 0.4464 -3.382 0.002142 **

drat -0.0162 1.3231 -0.012 0.990317

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.613 on 28 degrees of freedom

Multiple R-squared: 0.8302, Adjusted R-squared: 0.812

F-statistic: 45.64 on 3 and 28 DF, p-value: 6.569e-11
```

$$R^2 = 0.83$$

$$R_{adj}^2 = 0.81$$

 $\widehat{MPG} = 39.76 - 3.19 Weight - 1.51 Cylinders - 0.016 Rear_axle_Ratio$

Model Selection: Multiple Linear Regression

Backward Elimination

This method starts with the full model and eliminates unimportant predictor variables from the model.

```
library(MASS)
full_model_linear_regression = lm(formula = mpg ~ . ,data = mtcars)
backward_model = stepAIC(full_model_linear_regression, direction = "backward", trace = FALSE)
summary(backward_model)
```

Model Selection: Multiple Linear Regression

Stepwise Method

Systematically add and remove predictor variables from the model.

```
library(MASS)
full_model_linear_regression = lm(formula = mpg ~ . ,data = mtcars)
stepwise_model = stepAIC(full_model_linear_regression, direction = "both", trace = FALSE)
summary(stepwise_model)
```

```
## Call:
## lm(formula = mpg ~ wt + qsec + am, data = mtcars)
## Residuals:
              10 Median 30 Max
## -3.4811 -1.5555 -0.7257 1.4110 4.6610
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.6178 6.9596 1.382 0.177915
              -3.9165 0.7112 -5.507 6.95e-06 ***
## asec
            1.2259 0.2887 4.247 0.000216 ***
            2.9358 1.4109 2.081 0.046716 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.459 on 28 degrees of freedom
## Multiple R-squared: 0.8497, Adjusted R-squared: 0.8336
## F-statistic: 52.75 on 3 and 28 DF, p-value: 1.21e-11
```

Random Forest: Regression

Regression Trees (Decision Trees)

Partition the data set into decision boundaries.

Random Forest Regression use the "Bagging" Technique

Source: https://levelup.gitconnected.com/random-forest-regression-209c0f354c84

Comparison of Linear Regression and Random Forest

Linear Regression	Random Forest
Linear Model Works well when data is linear	Non-linear Model Work well with both linear and nonlinear data Ensemble Technique Take the average prediction of multiple models
Multicollinearity exists Model parameter estimates will not be accurate when there is a significant relationship between input variables (features)	Multicollinearity is not an issue
Model Interpretation A better interpretation of variables	Model Interpretation is moderate Not best as linear regression

Classification

Logistic Regression

Cholesterol	Age	Heart Disease
180	30	0
200	44	1
195	32	1
245	23	1
205	57	1
130	62	0
155	34	0
260	37	1
175	30	0
286	73	1
180	30	0
200	44	1
195	32	1
245	23	1

Logit Function: $f(x) = \frac{\exp(x)}{1 + \exp(x)}$

Y – Probability of Getting a Heart Disease

$$Logit \{Y\} = \beta_0 + \beta_1 Cholesterol$$

Logit
$$Y = Log\left[\frac{Y}{1-Y}\right] = \beta_0 + \beta_1 Cholesterol$$

This is also equivalent to:

$$Y = \frac{\exp(\beta_0 + \beta_1 Cholesterol)}{1 + \exp(\beta_0 + \beta_1 Cholesterol)}$$

Coefficients:

$$logit(\widehat{Y}) = -25.24 + 0.13$$
 Cholesterol

$$\hat{Y} = \frac{\exp(-25.24 + 0.13 \text{ Cholesterol})}{1 + \exp(-25.24 + 0.13 \text{ Cholesterol})}$$

 \hat{Y} - Probability of getting a heart disease given the Cholesterol Level

If $Y > 0.5 \rightarrow \text{Heart Disease}$

We can change 0.5 to a different probability threshold.

$$logit(\hat{Y}) = -24.3 + 0.10 Cholesterol + 0.09 Age$$

$$\hat{Y} = \frac{\exp(-24.3 + 0.10 \ Cholesterol + 0.09 \ Age)}{1 + \exp(-24.3 + 0.10 \ Cholesterol + 0.09 \ Age)}$$

- \widehat{Y} Probability of approving the loan when income and age is known
- The odds of getting a heart disease will increase by 11% (i.e., $\exp(0.10) = 1.11$) when the Cholesterol level increases by 1 unit.
- The odds of getting heart disease will increase by 10% (i.e., $\exp(0.09) = 1.10$) when the age increases by 1 year.

Random Forest: Classification

```
library(randomForest)
```


Comparison of Logistic Regression and Random Forest

Logistic Regression	Random Forest Classification
Linear Model Works well when data is linear	Non-linear Model Work well with both linear and nonlinear data Ensemble Technique Take the average prediction of multiple models
Works with two classes - Multinomial logistic regression shall be used to for than 2 classes	Can extend for multiple classes
Model Interpretation A better interpretation of variables	Model Interpretation is moderate Not best as the logistic regression

Evaluate Model Performance in Classification

Confusion Matrix

Actual Classes

Predicted Classes

	0	1
0	True Negative	False Negative
1	False Positive	True Positive

$$Accuracy = \frac{TP + TN}{N}$$

$$Precision = \frac{TP}{TP + FP}$$

Sensitivity = True Positive Rate =
$$\frac{TP}{TP + FN}$$

Specificity = 1 – False Positive Rate =
$$\frac{TN}{TN + FP}$$

Evaluate Model Performance in Classification

```
library(caret)

random_forest_prediction = predict(Random_Forest_Classifier)

observed_data = as.factor(heart_df$heart_disease)

confusionMatrix( random_forest_prediction, observed_data, positive = '1')
```

Confusion Matrix and Statistics

Reference

Prediction 0 1

0 3 2

1 2 7

Accuracy : 0.7143

95% CI : (0.419, 0.9161)

No Information Rate : 0.6429 P-Value [Acc > NIR] : 0.4007

Kappa : 0.3778

Mcnemar's Test P-Value : 1.0000

Sensitivity: 0.7778 Specificity: 0.6000

Pos Pred Value: 0.7778

Neg Pred Value : 0.6000 Prevalence : 0.6429

Detection Rate : 0.5000

Detection Prevalence: 0.6429

Balanced Accuracy: 0.6889

Evaluate Model Performance in Classification

Receiver Operating Characteristic (ROC) Curve

Logistic Regression

Random Forest Classifier

- ROC curve is a plot between the Sensitivity and Specificity of a classification model
- If the area under the curve is 0.5, we are making random guesses
- If the area under the curve is close to 1, we are making accurate predictions

Sensitivity =
$$\frac{TP}{TP + FN}$$

Specificity =
$$\frac{TN}{TN + FP}$$

Overfitting & Cross-Validation

Overfitting in Regression

Underfit

– less complex model

Better Fit - moderately complex model

Overfit

– high complex model

Overfitting in Classification

Underfit

– less complex model

Better Fit
- moderately complex model

Overfit

– high complex model

How to Overcome Overfitting

Train/Test Data Split

Test Data

How to Overcome Overfitting

K-Fold Cross-Validation

Train	Train	Train	Train	Validation
Data	Data	Data	Data	Data
Train	Train	Train	Validation	Train
Data	Data	Data	Data	Data
Train	Train	Validation	Train	Train
Data	Data	Data	Data	Data
Train	Validation	Train	Train	Train
Data	Data	Data	Data	Data
Validation	Train	Train	Train	Train
Data	Data	Data	Data	Data

K-Fold Cross Validation Error

Take average of all Validation Errors

How to Overcome Overfitting

K-Fold Cross-Validation

K-Fold Cross Validation Error

Hyperparameter Tuning

Equipment 1 Settings

Equipment 2 Settings

Hyperparameter Tuning

Model 1 Settings

Model 2 Settings

Hyperparameter Tuning

Hyperparameters

- Model specific parameters which can not be estimated with data
- Example: ntrees and mtry in Random Forest

Grid Search

Require to find optimal values with a search

Training Data

Use to Train Model

Validation Data

- Use to control overfit
- Use to tune model parameters

Test Data

Test model with unseen data

Session 2: Part 2

Unsupervised Learning

Workshop on Quantitative Literacy and Statistics

Unsupervised Learning

Learning techniques to find a patterns and cluster unlabeled data

K-Means Clustering

K-Means Clustering

```
set.seed(123)
k_means_clustering <- kmeans(mtcars, centers = 2)
print(k_means_clustering$cluster)</pre>
```

Mazda RX4	Mazda RX4 Wag	Datsun 710	Hornet 4 Drive	Hornet Sportabout	Valiant	Duster 360
1	1	1	1	2	1	2
Merc 240D	Merc 230	Merc 280	Merc 280C	Merc 450SE	Merc 450SL	Merc 450SLC
1	1	1	1	2	2	2
Cadillac Fleetwood	Lincoln Continental	Chrysler Imperial	Fiat 128	Honda Civic	Toyota Corolla	Toyota Corona
2	2	2	1	1	1	1
Dodge Challenger	AMC Javelin	Camaro Z28	Pontiac Firebird	Fiat X1-9	Porsche 914-2	Lotus Europa
2	2	2	2	1	1	1
Ford Pantera L	Ferrari Dino	Maserati Bora	Volvo 142E			
2	1	2	1			

Plot K-Means Clustering

library(factoextra)

fviz_cluster(k_means_clustering,
data = mtcars)

Hierarchical Clustering

```
library(ggdendro)
set.seed(123)
mtcars_distance = dist(mtcars, method = 'euclidean')
h_clustering = hclust(mtcars_distance)
ggdendrogram(h_clustering)
```


Hierarchical-Means Clustering based heatmaps are popular in analyzing gene expression data

Principal Component Analysis Biplot

library(FactoMineR)

pca_mtcars <- PCA(mtcars, graph = FALSE)

fviz_pca_biplot(pca_mtcars, repel = TRUE)</pre>

PCA Biplot can be used to understand the correlation structure of the variables

Thank you!