Osnovni koncepti

Arhitekture sistema velikih skupova podataka, dr Vladimir Dimitrieski

1

Sadržaj

- Uvod
- Veliki skupovi podataka
- Arhitekture sistema velikih skupova podataka (ASVSP)
- Primena i karakteristike ASVSP
- Sadržaj kursa
- Primeri projekata

Uvod

- U poslednjih 10 godina dolazi do "eksplozije" podataka
 - o veliki skupovi podataka su postojali od 60ih i 70ih godina 20og veka
 - rešenje problema upravljanja njima uključivalo je prelazak na relacione baze podataka
 - oko 2005. godine se uočava se **trend povećanog generisanja podataka** od strane ljudi
 - korišćenjem servisa poput *Facebook-*a i *YouTube-*a i sveprisutnih pametnih uređaja
 - uočavaju se ograničenja tradicionalnih tehnika skladištenja i upravljanja podacima
 - prvenstveno relacionih baza podataka
 - ograničenja se odnose na mogućnost skaliranja i performansi
 - o nakon 2005. godine svakodnevno se povećava količina generisanih podataka
 - trenutno se generiše više od **30.000GB svake sekunde**
 - sa tendencijom da se taj broj drastično poveća
 - o jer osim ljudi podatke sada generiše i sve veći broj loT uređaja
 - mnogo izvora podataka i različitih oblika/formata podataka

′

Uvod

- "Data is the new oil." Clive Humby (UK data scientist)
- "Data really powers everything that we do." Jeff Weiner (LinkedIn ex-CEO)
- "Without big data, you are blind and deaf and in the middle of a freeway." Geoffrey Moore (US business expert)
- "You can have data without information, but you cannot have information without data."—
 Daniel Keys Moran (US programmer and author)
- "Big data is at the foundation of all of the megatrends that are happening today, from social to mobile to the cloud to gaming." – Chris Lynch (US IT entrepreneur)

Uvod

- "With data collection, 'the sooner the better' is always the best answer." Marissa Mayer (Yahoo! ex-CEO)
- "Without a systematic way to start and keep data clean, bad data will happen." Donato Diorio (DtaZ CEO)
- "Big data isn't about bits, it's about talent." Douglas Merrill (US IT entrepreneur)

9

9

Uvod

- Nastaju nove tehnologije i metodologije obrade velikih skupova podataka
 - o pažnja se usmerila na **paralelizaciju** obrade i na **horizontalno skaliranje** sistema
 - uz težnju da se smanji kompleksnost obrade velikih količina podataka
 - o mahom proistekle iz projekata velikih kompanija kao što su *Google* i *Amazon*
 - ali postoji i veliki broj projekata otvorenog koda
 - o nastaju mnoge NoSQL baze podataka
 - sa različitim ciljevima i mogućnostima
 - o algoritmi za paralelnu obradu podataka (npr. *MapReduce*)

Uvod

- Nastaju nove tehnologije i metodologije obrade velikih skupova podataka
 - o teži se ka zameni postojećih sistema skladišta/baza podataka
 - glavni faktori koji utiču na nemogućnost rada sa velikim skupovima podataka
 - brzina traženja na disku
 - koja je niska
 - mogućnost skaliranja
 - o koja nije dovoljno dobra

11

11

Brzina traženja na disku

- Brzina traženja na disku
 - o ne razvija se istim tempom kao i veličina diska niti kao brzina prenosa podataka
 - o buhvata vreme potrebno da se glava diska pozicionira za čitanje sektora
 - o kod tradicionalnih sistema, operacija traženja je dominantna
 - B-stablo je dobro za rad sa manjim delovima baze podataka
 - nepogodno sa ažuriranje ili čitanje većeg dela skladištenih podataka
 - o drastično usporava rad sa velikim količinama podataka
 - koje se vrlo često čitaju u celini

Skaliranje

- Skaliranje u tradicionalnim sistemima
 - o jedan od osnovnih problema tradicionalnih sistema
 - u kojima se koriste relacione baze podataka
 - sa povećanjem količine podataka
 - više se brine o arhitekturi sistema
 - redovi čekanja, particije, replikacija itd.
 - nego o samoj poslovnoj logici
 - relacione baze podataka
 - nisu pogodne za horizontalno particionisanje
 - usled izuzetno loših performansi spojeva
 - mali broj relacionih baza podataka podržava interno horizontalno particionisanje

13

13

Inkrementalne arhitekture

Application Database

izvor: Big Data: Principles and best practices of scalable real-time

data systems, Nathan Marz, James Warren

- Inkrementalne arhitekture
 - veoma rasprostranjene
 - koriste baze podataka za upis i ažuriranje podataka
 - održavajući ažurnu sliku stanja realnog sveta
 - direktnim ažuriranjem prethodne slike stanja
 - inkrementalno ažuriranje podataka
 - o umesto čuvanja svih izvornih podataka čuvaju se agregati
 - npr. ukupan broj pristupa web stranici
 - umesto pojedinačnih pristupa
 - npr. ukupna plata zaposlenog nakon svih povišica
 - umesto osnovne plate i povišica odvojeno
 - o ne zavise od izbora relacione ili NoSQL baze podataka
 - zavise od **pristupa projektovanju** šeme baze podataka
 - zavise od odabira algoritama za rad sa podacima

14

- Inkrementalne arhitekture Primer
 - aplikacija za praćenje analitike posete web prezentacijama
 - omogućava praćenje broja poseta definisanom URL-u
 - potrebno je da podrži izveštaj o 100 najposećenijih URL-ova
 - šema relacione baze podataka
 - id veštački ključ
 - user_id identifikator korisnika sistema koji zahteva praćenje poseta određenoj stranici
 - url adresa stranice za koju se prati broj poseta
 - pageviews ukupan broj pristupa stranici

Column name	Туре
id	integer
user_id	integer
url	varchar(255)
pageviews	bigint

 $izvor: \textit{Big Data: Principles and best practices of scalable real-time data systems, Nathan Marz, \textit{James Warren} \\ \ ^{15}$

15

Inkrementalne arhitekture

- Inkrementalne arhitekture Primer
 - Problem 1: porast broja korisnika dovodi do problema sa uvećavanjem brojača
 - greška Timeout error on inserting to the database
 - prouzrokovana nemogućnošću baze podataka da isprati broj poseta i ažuriranja
 - Rešenje 1: umesto pojedinačnog uraditi paketna ažuriranja
 - uvesti red čekanja između aplikativnog servera i baze podataka
 - periodično preuzimati podatke iz reda i raditi paketno (objedinjeno) ažuriranje BP
 - obrada u radnom čvoru (engl. worker)
 - npr. na svakih 100 elemenata u redu

izvor: Big Data: Principles and best practices of scalable real-time data systems, Nathan Marz, James Warren

- Inkrementalne arhitekture Primer
 - Problem 2: prepunjava se red usled prevelikog broja zahteva
 - Rešenje 2.1: povećati broj radnih čvorova
 - ponovo dolazi do zagušenja BP usled prevelikog broja ažuriranja
 - vraćamo se na problem 1
 - Rešenje 2.2: povećati broj radnih čvorova i horizontalno particionisati BP (engl. sharding)
 - svaka particija sadrži deo sadržaja tabele
 - postoji direktna veza između particije i ključa torke
 - npr. pronalazi se hash ključa i smešta se u particiju čija se adresa dobije kao ostatak pri deljenju hash-a sa brojem particija
 - uniformna raspoređenost vrednosti ključeva po particijama
 - aplikativni server može biti svestan particionisanja ili prepustiti upravljanje SUBP-u
 - postojanje particija dovodi do povećanja kompleksnosti upita
 - kako pronaći 100 najposećenijih URL-ova?

17

17

Inkrementalne arhitekture

- Inkrementalne arhitekture Primer
 - Problem 3: dolazi do zagušenja na particijama usled prevelikog broja zahteva
 - Rešenje 3: povećati broj particija
 - svako povećanje broja particija zahteva ponovno reparticionisanje podataka
 - usled potrebe za uniformnom obradom podataka
 - potrebno obezbediti što manji gubitak novih podataka
 - nastao zbog nedostupnosti servera usled reparticionisanja baze podataka

- Inkrementalne arhitekture Primer
 - o **Problem 4**: hardver na kojima se nalaze particije otkazuje
 - engl. fault-tolerance issues
 - sto je veći broj particija to je veća verovatnoća da će doći do otkaza
 - o Rešenje 4: uvesti replikaciju i redundantne redove
 - radni čvorovi pišu u redundantne redove
 - dok se ne oporavi particija
 - svaka particija se replicira na odgovarajući broj drugih particija
 - replikacione kopije služe isključivo za čitanje
 - o više vremena se brinemo o arhitekturi sistema nego o samoj poslovnoj logici!

19

19

Inkrementalne arhitekture

- Inkrementalne arhitekture Primer
 - Problem 5: slučajno propagiranje i akumulacija greške
 - engl. corruption issues
 - slučajno uvedena greška koja uveća brojač za 2
 - nije moguće smanjiti brojače
 - Rešenje 5: izmena šeme baze podataka???
 - odbacivanje inkrementalnog pristupa obradi podatka

- Inkrementalne arhitekture izazovi i problemi
 - operaciona složenost
 - prouzrokovana složenošću upravljanja infrastrukturom nad kojom se izvršava aplikacija
 - npr. sažimanje indeksa u bazama podataka
 - intenzivna operacija koja zahteva dosta procesorskog vremena
 - zahteva izuzetno pažljivo podešavanje baze podataka
 - o i planiranje u ranim fazama projektovanja sistema
 - može da prouzrokuje zagušenje sistema pa čak i otkaz
 - o ako nije konfigurisana na odgovarajući način

21

21

Inkrementalne arhitekture

- Inkrementalne arhitekture izazovi i problemi
 - konvergentna konzistentnost
 - CAP teorema za distribuirane sisteme
 - nije moguće istovremeno imati konzistentan sistem, dostupan sistem i sistem koji toleriše razdvojenost svojih delova
 - žrtvuje se konzistentnost
 - dozvoljeno je da u pojedinim trenucima sistem bude nekonzistentan
 - ali nakon razdvojenosti sistema da se vrati u konzistentno stanje
 - kako bi se izbeglo gubljenje podataka
 - zahteva pažljivo projektovanje šeme baze podataka i pristupa skladištenju podataka
 - zahteva pažljivu koordinaciju aplikacija i replikacije podataka

- Inkrementalne arhitekture izazovi i problemi
 - o konvergentna konzistentnost primer

izvor: Big Data: Principles and best practices of scalable real-time data systems, Nathan Marz, James Warren

23

Inkrementalne arhitekture

- Inkrementalne arhitekture izazovi i problemi
 - o nedovoljna otpornost na ljudske greške
 - ažuriranje stanja u bazi podataka se obavlja čak i u prisustvu ljudske greške
 - često nije moguće oporaviti se od greške
 - zbog kumulativne/agregatne osobine izmenjenog podatka
 - može se rešiti bez kompletne izmene arhitekture
 - dovoljno je uočiti problem prilikom projektovanja arhitekture i šeme baze podataka
 - umesto agregata čuvati pojedinačne zapise o svakom događaju iz realnog sveta

- Inkrementalne arhitekture izazovi i problemi
 - o nedovoljna otpornost na ljudske greške rešenje

izvor: Big Data: Principles and best practices of scalable real-time data systems, Nathan Marz, James Warren

25

Inkrementalne arhitekture

- Rešavanje problema u tradicionalnim sistemima za upravljanje podacima
 - o potrebno pronaći nove načine za upravljanje podacima
 - o potrebno pronaći nove načine za unapređenje obrade podataka
 - vertikalno ili horizontalno skaliranje
 - povećanje procesne moći
 - povećanje prostora skladištenja
 - ne postoji jedinstveno rešenje
 - različiti problemi zahtevaju različite pristupe
 - postoje tehnologije i arhitekturini principi koji mogu doprineti lakšem upravljanju velikom količinom podataka

27

Veliki skupovi podataka

- Veliki skup podataka
 - o engl. *big data*
 - šta je veliki skup podataka?
 - šta veliki skup podataka čini velikim?
 - ne postoji jasna i opšte prihvaćena definicija
 - različite kompanije imaju različito poimanje pojma **veliki skup podataka**
 - istorijski prva i najčešće korišćena/citirana definicija koju je dao *Doug Laney*
 - često se naziva i 3 V definicija
 - veliki skup podataka je skup podataka koji sadrži raznovrsne podatke (engl. variety) koji se prikupljaju u sve većem obimu (engl. volume) i sve većom brzinom (engl. velocity).

- Veliki skup podataka
 - veliki skup podataka je definisan kroz tri V osobine
 - **količina podataka** (engl. *volume*) količina prikupljenih podataka koju treba obraditi
 - najčešće je potrebno obraditi nestrukturirane podatke
 - u zavisnosti od kompanije, meri se u stotinama GB pa čak i u desetinama ZB

izvor: Fundamentals of Big Data, Databricks, https://academy.databricks.com/

29

Veliki skupovi podataka

- Veliki skup podataka
 - o veliki skup podataka je definisan kroz tri V osobine
 - brzina prikupljanja podataka (engl. velocity) količina podataka koji su prikupljeni u jedinici vremena
 - nekada se posmatra i kao brzina po kojoj se prikupljaju i analiziraju podaci
 - najbrže prikupljanje podataka je ono koje smešta podatke u radnu memoriju

izvor: Fundamentals of Big Data, Databricks, https://academy.databricks.com

30

- Veliki skup podataka
 - o veliki skup podataka je definisan kroz tri V osobine
 - raznolikost podataka (engl. variety) dostupnost različitih tipova podataka u skupu
 - tradicionalni skupovi podataka su bili strukturirani sa jasno definisanim tipovima
 - danas, podaci se često prikupljaju u nestrukturiranom ili polustrukturiranom obliku

izvor: Fundamentals of Big Data, Databricks, https://academy.databricks.com/

31

Veliki skupovi podataka

• Veliki skup podataka - pet V osobina

izvor: The 5 Vs of Big Data, Oracle, https://blogs.oracle.com/step/the-5-vs-of-big-data-and-fujitsu-m10

32

- Veliki skup podataka dodatne osobine
 - vrednost podataka (engl. value) vrednost koja može biti dobijena kao rezultat analize sprovedene nad prikupljenim podacima
 - karakteristika bitna za menadžment kompanije
 - vrednost koja im se može vratiti ulaganjem u prikupljanje i obradu velikih količina podataka
 - o verodostojnost podataka (engl. veracity) stepen istinitosti i tačnosti podataka
 - skup podataka može da sadrži i pogrešno/delimično prikupljene podatke, maliciozne podatke itd.
 - definiše da li su prikupljeni podaci odgovarajući za problem koji se rešava
 - od svih V osobina, najteže je obezbediti verodostojnost podataka

33

33

Veliki skupovi podataka

- Veliki skup podataka alternativne definicije
 - veliki skup podataka je skup podataka koji je prevelik za skladištenje u tradicionalnim bazama podataka ili previše složen za obradu u tradicionalnim informacionim sistemima
 - različite kompanije imaju različite informacione sisteme
 - drugačija granica kada skup podataka postaje prevelik i previše kompleksan
 - 100 GB ~ 100 TB ~ 100 PB ~ 10 ZB
 - veliki skup podataka je skup strukturiranih i nestrukturiranih podataka koji dozvoljava kompaniji da putem naprednih tehnika analize podataka izvuče informacije od vrednosti za njeno poslovanje
 - novija definicija usled razvoja IS-ova i BP-a
 - inherentno obuhvata i velike količine podataka
 - iako veličina nije ključna osobina već dobijena vrednost iz podataka

- Veliki skup podataka
 - o raznolikost podataka
 - izuzetno je bitna jer utiče na **način na koji se obrađuju podaci**
 - tipovi podataka prema strukturi
 - strukturirani podaci
 - nestrukturirani podaci
 - polustrukturirani podaci

35

35

Veliki skupovi podataka

- Tipovi podataka prema strukturi
 - o strukturirani podaci
 - postoji **šema** koja definiše format podataka
 - striktno zadovoljavaju predefinisani format
 - u praksi, očekuje se da takva šema bude razrađena do potrebnog stepena detaljnosti
 - uobičajeno pogodni za analizu
 - primer
 - podaci u relacionoj bazi podataka
 - o sve torke imaju isti format

Order	CustID	Month	Item	Color	Price
101	20051	Dec	Pen	Red	2.99
102	20045	Mar	Pencil	Blue Yellow Red	3.99
103	29584	May	Eraser	Blue	1.25
104	29584	May	Pen	White	2.25
105	29584	May	Pencil	Blue Yellow Red	2.99
106	27485	Jan	Eraser	Blue Yellow	2.75
107	29574	Jan	Marker	Green	1.75
108	24447	Feb	Marker	Yellow Blue	7.25
109	26466	Jul	Pen	Black Red	5.25
110	27467	Jun	Pencil	Black	2.95

izvor: Fundamentals of Big Data, Databricks. https://academy.databricks.com/

3

37

Veliki skupovi podataka

- Tipovi podataka prema strukturi
 - o nestrukturirani podaci
 - (A) može postojati šema koja definiše format podataka
 - tipovi podataka su, međutim, često "preširoki"
 - nedovoljno detaljni sa stanovišta semantike podataka
 - (B) ne postoji ni šema koja definiše format podataka
 - ne postoji nikakav ugrađeni format kojeg podaci prate
 - moguće je da postoji nekakav eksterni format koji opisuje semantiku podataka, ali on ne pripada strukturi
 - najrasprostranjeniji tip podataka
 - po IDC, 90% svih podataka su nestrukturirani
 - primeri
 - objave sa socijalnih mreža ili email poruke
 - tekstualni ili multimedijalni dokumenti
 - o podaci su nestrukturirani sa stanovišta sistema za njihovo skladištenje

39

Veliki skupovi podataka

- Tipovi podataka prema strukturi
 - o polustrukturirani podaci
 - imaju definisanu strukturu ali postoje i odstupanja
 - atributi mogu da postoje
 - o u svim entitetima
 - samo u nekim entitetima
 - prikazuju se, često, putem grafova i stabala
 - moguće je definisati šemu
 - koja specificira moguće elemente
 - o koji učestvuju u strukturi
 - o mogu ali ne moraju svi da postoje
 - primer
 - HTML kôd

40

41

Veliki skupovi podataka

- Obrada podataka
 - o esencijalna za dobijanje vrednosti iz podataka
 - podaci
 - kolekcija znakova, cifara i simbola, bez predefinisanog značenja
 - potrebno je staviti podatke u kontekst radi dobijanja semantike
 - informacije
 - obrađeni podaci kojima je pridodato značenje
 - obično nastaju kao posledica (automatizovane) obrade podataka
 - znanje
 - usvojene informacije koje se mogu koristiti za rešavanje problema
 - može biti eksplicitno i implicitno

- Obrada podataka
 - o potrebno primeniti različite tehnike obrade nad podacima
 - radi dolaska do zaključaka i izvlačenja informacija i znanja iz podataka
 - o najpopularnije tehnike koje se primenjuju
 - veštačka inteligencija
 - mašinsko učenje
 - duboko učenje
 - nauka o podacima

43

43

Proces rada u okviru nauke o podacima Sharing data insights Data science workflow Analyzing data Preparing data izvor: Fundamentals of Big Data, Databricks, https://academy.databricks.com/

45

Arhitekture sistema velikih skupova podataka

- Arhitektura sistema velikih skupova podataka (ASVSP) Definicija
 - o engl. big data architecture
 - arhitektura sistema velikih skupova podataka je arhitektura sistema koja je projektovana tako da omogući obuhvat, obradu i analizu velikih skupova podataka
 - obuhvat (engl. ingestion) mogućnost prijema i skladištenja velikih količina podataka koji dolaze sa visokom učestanošću
 - obrada (engl. processing) transformacija podataka u oblike pogodne za izvršenje upita i analizu podataka
 - analiza (engl. analysis) rad sa podacima u cilju dobijanja informacije od vrednosti za osobu ili kompaniju koja je sprovodi

- ASVSP Poželjne karakteristike
 - o robusnost i tolerancija na otkaze
 - engl. robustness and fault tolerance
 - samo otkaz svih komponenti sistema može dovesti do otkaza sistema kao celine
 - što viši stepen tolerancije na ljudske greške
 - o brzo čitanje i pisanje
 - engl. low latency reads and updates
 - bez uticaja na robustnost sistema
 - o mogućnost skaliranja
 - engl. scalability
 - obuhvata mogućnost očuvanja performansi u uslovima povećanja opterećenja
 - dodavanjem novih resursa

47

47

Arhitekture sistema velikih skupova podataka

- ASVSP Poželjne karakteristike
 - generalizacija
 - engl. generalization
 - mogućnost pružanja podrške/usluga različitim aplikacijama
 - proširivost
 - engl. extensibility
 - dodavanje novih funkcionalnosti bez ili sa minimalnim narušavanjem postojeće arhitekture i minimalnom migracijom podataka
 - o podrška za *ad hoc* upite
 - engl. ad hoc queries
 - usled potrebe za izvlačenjem nepredviđenih informacija iz postojećih podataka
 - potencijalno omogućava unapređenje poslovanja

- ASVSP Poželjne karakteristike
 - lako održavanje
 - engl. minimal maintenance
 - odabiranje komponenti sa što nižom implementacionom kompleksnošću
 - komponente koje su na pravom stepenu apstrakcije za domen u kojem se koriste
 - pažnja usmerena ka implementaciji poslovne logike
 - mogućnost pronalaženja grešaka
 - engl. debuggability
 - usled postojanja više komponenti, praćenje podataka od osnovnog oblika do njegovog krajnjeg oblika
 je esencijalno

49

49

Arhitekture sistema velikih skupova podataka

- Aspekti koji utiču na izbor elemenata ASVSP
 - tip analize podataka (engl. analysis type)
 - definiše da li je potrebna analiza podataka u realnom vremenu ili je potrebna paketna obrada podataka
 - utiče na izbor alata, gotovih rešenja, hardvera i izvora podataka
 - metodologija obrade podataka (engl. processing methodology)
 - definiše tip tehnike primenjene na obradu podataka
 - prediktivna analiza, ad hoc upiti ili izveštavanje
 - utiče na izbor alata i algoritama obrade podataka
 - učestanost obuhvata podataka i veličina podataka (engl. data frequency and size)
 - definiše koliko podataka se očekuje i kojom brzinom (količina/vreme) pristižu novi podaci
 - utiče na izbor mehanizma skladištenja i formata podataka kao i na izbor alata za pretprocesiranje podataka

- Aspekti koji utiču na izbor elemenata ASVSP
 - tip podataka (engl. data type)
 - semantički tip podataka koji će biti obrađeni
 - istorijski podaci, meta podaci, transakcioni podaci itd.
 - utiče na algoritme skladištenja i pisanja/čitanja podataka iz skladišta
 - strukturiranost podataka (engl. content format)
 - definiše nivo strukturiranosti podataka
 - strukturirani, nestrukturirani i polustrukturirani podaci.
 - utiče na izbor alata za procesiranje, prečišćavanje i skladištenje pristiglih podataka
 - o **izvor podataka** (engl. *data source*)
 - definiše izvore iz kojih se podaci učitavaju
 - identifikacija svih potrebnih izvora podataka pomaže u definisanju opsega rešenja
 - sa tehnološke ali i poslovne tačke gledišta
 - utiče na izbor alata za procesiranje i prečišćavanje podataka

51

51

Arhitekture sistema velikih skupova podataka

- Aspekti koji utiču na izbor elemenata ASVSP
 - o odredišta podataka (engl. data consumers)
 - definišu entitete za koje su podaci prikupljani, obrađeni i kojima su podaci na kraju i prezentovani
 - npr. osobe ili poslovne aplikacije
 - utiče na izbor alata i prezentacionih formata i formi
 - o hardver (engl. hardware)
 - definiše tip hardvera na kojem će se svi podaci skladištiti i sve obrade podataka biti pokrenute
 - utiče na izbor alata i algoritama za obradu podataka

53

Arhitekture sistema velikih skupova podataka

- Aspekti koji utiču na izbor elemenata ASVSP
 - o poslovni aspekti i korisnički zahtevi (funkcionalni i nefunkcionalni)
 - ne samo da utiču na izbor komponenti arhitekture
 - već i na podešavanja i multiplicitet komponenti
 - o željeni nivo otpornosti na otkaze
 - sve otkazuje!
 - najviše uticaja na ASVSP imaju strategije za:
 - visoku dostupnost (engl. high availability)
 - otpornost na otkaze (engl. fault tolerance)
 - oporavak od otkaza (engl. disaster recovery)
 - veoma bitno razlikovati visoku dostupnosti od otpornosti na otkaze

- Visoka dostupnost
 - o osobina da je sistem kontinualno dostupan duži vremenski period
 - o minimizacija nedostupnosti sistema
 - sistem može biti nedostupan jedan period vremena
 - predviđeno ugovorom sa pružaocem usluga
 - 99.9% = 8.77 sati godišnje dozvoljene nedostupnosti
 - 99.999% = 5.26 minuta godišnje dozvoljene nedostupnosti

izvor:AWS Architect Associate, Learn Cantrill, http://learn.cantrill.io

55

55

Arhitekture sistema velikih skupova podataka

- Otpornost na otkaze
 - osobina sistema da nastavlja da neometano radi čak i u prisustvu delimičnog otkaza komponenti
 - projektovanje da se potpuni otkaz ne može dogoditi
 - ili da je verovatnoća otkaza minimalna

izvor:AWS Architect Associate, Learn Cantrill, http://learn.cantrill.io

56

- Oporavak od otkaza
 - obuhvata skup polisa, alata i procedura koje obezbeđuju oporavak ili nastavak izvršavanja esencijalnih infrastrukturnih elemenata ili sistema nakon otkaza
 - o izvršava se ukoliko osobine visoke dostupnost ili otpornosti na otkaze nisu bile ispunjene
 - o dve bitne karakteristike
 - u odnosu na koje se takođe vrši izbor i konfiguracija komponenti ASVSP
 - **ciljna tačka oporavka** (engl. recovery point objective, RPO)
 - količina podataka koja može biti izgubljena prilikom oporavka od otkaza
 - o često merena kao jedinica vremena a ne količine podataka
 - ciljno vreme oporavka (engl. recovery time objective, RTO)
 - vreme za koje mora biti uspostavljen normalan rad sistema nakon otkaza
 - kako bi se izbegle neželjene posledice po poslovanje organizacije

57

57

Arhitekture sistema velikih skupova podataka

- Tipični procesi podržani od strane ASVSP
 - paketna obrada velike količine uskladištenih podataka
 - o obrada podataka koji se prikupljaju u realnom vremenu
 - o interaktivna pretraga ("istraživanje") uskladištenih podataka
 - o prediktivna analiza trendova u podacima i podrška za mašinsko učenje

- Elementi ASVSP
 - o uobičajni elementi arhitekture (ne moraju svi biti prisutni u svakoj arhitekturi)

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/

59

Arhitekture sistema velikih skupova podataka

- Elementi ASVSP
 - izvori podataka (engl. data sources)
 - obuhvataju sve digitalne entitete iz kojih se mogu dobiti podaci
 - često generišu nestrukturirane ili polustrukturirane podatke
 - koji se u takvom obliku preuzimaju i skladište u sistemu
 - izuzetno bitno imati pouzdane izvore podataka
 - kako prikupljeni podaci ne bi doveli do pogrešnih rezultata prilikom analize
 - utiče na verodostojnost podataka
 - npr. baze podataka, datoteke različitih namena i uređaji koji šalju podatke u realnom vremenu

- Elementi ASVSP
 - skladišta podataka (engl. data storage)
 - skladište velike količine podataka projektovano sa ciljem da podaci budu obrađeni u režimu paketne obrade
 - često su u pitanju distribuirani sistemi datoteka
 - optimizovani za horizontalno skaliranje
 - paketna obrada podataka (engl. batch processing)
 - obrada velike količine podataka radi transformacije podataka u oblik pogodan za analizu
 - obrađuju se paketi podataka a ne pojedinačni podaci
 - skladište mora biti optimizovano za čitanje i pisanje paketa podataka
 - o naglasak je na paketnom čitanju
 - dugotrajna i paralelna obrada podataka
 - prisutno horizontalno skaliranje resursa

61

61

Arhitekture sistema velikih skupova podataka

- Elementi ASVSP
 - obuhvat podataka u realnom vremenu (engl. real-time message ingestion)
 - potreban u slučaju postojanja izvora podataka koji šalje podatke u realnom vremenu
 - npr. loT uređaji
 - sve poruke dospele od izvora u realnom vremenu potrebno je prihvatiti i skladištiti
 - obuhvata redove čekanja i buffer zone
 - obično se zahteva da garantuje isporuku i obradu poruka
 - jer je ponovno generisanje i slanje poruke od izvora često nemoguće
 - obrada tokova podataka (engl. stream processing)
 - obrada podataka primljenih od izvora u realnom vremenu radi transformacije podataka u oblik pogodan za analizu
 - potrebno da obrada traje kraće nego što je slučaj sa paketnom obradom
 - jer se očekuje kraći odziv sistema i brže davanje odgovora na postavljene upite

- Elementi ASVSP
 - skladište podataka spremnih za analizu (engl. analytical data store)
 - obuhvata podatke spremne za analizu i za postavljanje upita
 - rezultati paketne i obrade tokova podataka
 - često obuhvata strukturirane podatke
 - može da obuhvata relacione BP, relaciona skladišta podataka ali i NoSQL BP
 - o analiza podataka i izveštavanje (engl. analysis and reporting)
 - cilj većine ASVSP je da pružaju usluge izveštavanja i analize velikih količina podataka
 - i kroz te aktivnosti da kreiraju vrednost i pruže nove informacije od interesa
 - orkestracija (engl. orchestration)
 - omogućava funkcionisanje ASVSP kao celine
 - osim velikog broja elemenata, svaki od elemenata može da bude implementiran kao distribuirani sistem na kojem se izvršava više instanci procesa

63

63

Arhitekture sistema velikih skupova podataka

- ASVSP obrada podataka
 - o obrada podataka je glavna svrha svake ASVSP
 - i često se elementi biraju upravo prema tipu i karakteristikama obrade podataka
 - u zavisnosti od svrhe sistema, tipa obuhvaćenih podataka ali i drugih karakteristika
 - paketna obrada podataka
 - obrada podataka u realnom vremenu

- Paketna obrada podataka
 - efikasna obrada velike količine podataka
 - pristupa se svim podacima
 - obrađuje pakete podataka a ne pojedinačne podatke
 - o obrađuje podatke koji su prikupljani duži vremenski period
 - npr. dani, meseci, godine
 - obrada traje duži vremenski period
 - dovoljno dugo da se ova obrada ne bi posmatrala kao obrada u realnom vremenu
 - trajanje obrade se meri u minutima ili satima
 - o koriste alati/radni okviri kao što su Hadoop i MapReduce
 - koristi se kada je potrebnija dublja i detaljnija analiza podataka
 - od brze analize i dobijanja odgovora
 - o npr. obrada u sistemima za obračun plate i fakturisanje

65

65

Arhitekture sistema velikih skupova podataka

Paketna obrada podataka

izvor: Big Data Battle: Batch Processing vs Stream Processing, Gowthamy Vaseekaran, https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103

- Paketna obrada podataka
 - prednosti
 - pogodna i optimizovana za obradu velike količine podataka
 - visoka otpornost na uticaj ljudskih grešaka
 - obrada se može izvršavati neovisno od svakodnevnih aktivnosti sistema
 - kada je sistem slobodan ili manje zauzet
 - u slučaju korišćenja cloud platforme kada je iznajmljivanje resursa povoljnije
 - održava trag obrade podataka
 - u svakom koraku obrade mogu se videti izvršene transformacije i oblik koji su podaci imali pre i nakon obrade
 - mane
 - kašnjenje između obuhvata novih podataka i dobijanja rezultata obrade
 - obrađeni podaci ne moraju biti najsvežiji u svakom trenutku
 - obrada podataka koju treba izvršiti samo jednom je obično veoma spora
 - jer usled prirode ovakve obrade često se ne piše na optimalan način

67

67

Arhitekture sistema velikih skupova podataka

Paketna obrada podataka

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/batch-processing

68

- Obrada podataka u realnom vremenu
 - o obuhvata kontinualni obuhvat i obradu podataka
 - obrađuje pojedinačne podatke
 - može prikupljene podatke i da spoji u mikro-pakete i tako ubrza obradu
 - o obrađuje podatke koji su prikupljani kraći vremenski period
 - npr. sekunde ili minute
 - obrada traje kratko
 - mala količina podataka koja se obrađuje
 - obrada se događa pre snimanja pristiglih podataka na disk
 - koriste alati/radni okviri kao što su Kafka i Storm
 - o koristi se kada je potrebnija brza analiza i reakcija na neki događaj
 - npr. detekcija neovlašćenog pristupa ili detekcija pokušaja prevare ili napada
 - o često se zapravo radi o obradi u skoro realnom vremenu (engl. near-realtime data processing)
 - jer postoji kašnjenje reda veličine nekoliko sekundi u dobijanju odgovora
 - o npr. obrada u bankomatima i radarskim sistemima

69

69

Arhitekture sistema velikih skupova podataka

Obrada podataka u realnom vremenu

izvor: Big Data Battle: Batch Processing vs Stream Processing, Gowthamy Vaseekaran, https://medium.com/@gowthamy/big-data-battle-batch-processing-vs-stream-processing-5d94600d8103

- Obrada podataka u realnom vremenu
 - prednosti
 - nema bitnijeg kašnjenja obrade podataka u odnosu na obuhvat podataka
 - obrađeni podaci predstavljaju najsvežiju sliku stanja sistema
 - jer se tek pristigli podaci skoro pa trenutno obrađuju
 - omogućava kompanijama i pojedincima da brzo reaguju na novootkrivene informacije
 - mane
 - algoritmi obrade podataka u realnom vremenu su po prirodi dosta kompleksni
 - kompleksno održavanje traga obrade podataka
 - manja otpornost na ljudske greške

71

71

Arhitekture sistema velikih skupova podataka

Obrada podataka u realnom vremenu

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-quide/big-data/real-time-processing

72

- Skladištenje podataka
 - o podaci koji se obrađuju moraju biti skladišteni
 - i to u distribuiranom skladištu podataka velikog kapaciteta
 - o najčešći načini skladištenja podataka
 - skladišta podataka (engl. Data Warehouse)
 - jezera podataka (engl. *Data Lake*)
 - platforme sa jezerom podataka (engl. Data Lake Platforms)

73

73

Arhitekture sistema velikih skupova podataka

- Skladištenje podataka
 - skladišta podataka
 - nastala 1980-ih godina
 - obično sadrže strukturirane i prečišćene podatke
 - podaci su često organizovani pomoću relacionog modela podataka
 - prednosti
 - stabilni i dugo postoje
 - zbog podrške samo za strukturirane podatke, laka su za održavanje i vršenje upita
 - mane
 - teško skaliraju
 - gube na vrednosti usled podrške samo za strukturirane podatke
 - skupi za održavanje i korišćenje
 - zajedno se naplaćuju i procesna moć i skladišni prostor

- Skladištenje podataka
 - o jezera podataka
 - sadrže sirove (engl. raw) podatke
 - mogu da sadrže i nestrukturirane podatke
 - prednosti
 - podrška za različite tipove podataka
 - lako skaliranje dodavanjem novih čvorova
 - odvojeno zakupljivanje procesne moći i skladišnog prostora
 - mane
 - teža navigacija kroz podatke usled nestrukturiranosti
 - usled velike količine podataka i nestrukturiranosti brzina upita može biti spora
 - o potrebno ručno podešavanje upita i izvršilaca kôda

75

75

Arhitekture sistema velikih skupova podataka

- Skladištenje podataka
 - o platforme sa jezerom podataka
 - jezero podataka kao servis
 - upravljan od strane druge, spoljne organizacije
 - prednosti
 - sve prednosti jezera podataka
 - jednostavnije kreiranje, održavanje i upravljanje
 - mane
 - zaključavanje za organizaciju koja nudi uslugu
 - nemogućnost finog podešavanja jezera podataka

- ASVSP Primeri arhitektura Lambda
 - predlaže rešenje problema dugog čekanja na postavljeni upit kod sistema sa paketnom obradom podataka
 - podaci koji dođu u sistem, nikada se ne menjaju
 - samo se obrađuju i kreiraju se pogledi nad kojima se vrše upiti
 - paketna obrada
 - sa ponovnim sračunavanjem pogleda
 - traje dugo i izvršava se periodično u pozadini
 - o obrada u realnom vremenu
 - samo nad podacima pristiglim od trenutka poslednjeg izračunavanja pogleda

77

77

Arhitekture sistema velikih skupova podataka

ASVSP - Primeri arhitektura - Lambda

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/

78

- ASVSP Primeri arhitektura Kappa
 - o predlaže rešenje problema dvostruke implementacije algoritama obrade arhitekture Lambda
 - o podaci koji dođu u sistem, nikada se ne menjaju
 - samo se obrađuju i kreiraju se pogledi nad kojima se vrše upiti
 - svi podaci se šalju preko tokova podataka
 - jedna putanja podataka od izvora do konačnog obrađivača
 - moguće i ponovno sračunavanje svih pogleda
 - ponavljanjem toka podataka od početka

79

79

Arhitekture sistema velikih skupova podataka

• ASVSP - Primeri arhitektura - Kappa

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/

80

- ASVSP Primeri arhitektura IoT
 - o arhitektura zasnovana na obradi događaja (engl. event-driven architecture)
 - npr. priključivanje, isključivanje i generisanje podataka od strane velikog broja IoT uređaja
 - o lokalni agregatori podataka (engl. field gateway)
 - skupljaju podatke od grupa uređaja koji su sa njima povezani
 - mogu filtrirati ili transformisati podatke i protokole
 - šalju podatke globalnom agregatoru podataka
 - o globalni agregator podataka (engl. cloud gateway)
 - implementiran kao sistem za razmenu poruka sa brzim odzivom i malim kašnjenjima
 - prihvata podatke od svih uređaja
 - prosleđuje podatke obrađivačima tokova podataka
 - koji obrađuju podatke i smeštaju ih po potrebi u druge komponente ASVSP-a

81

81

Arhitekture sistema velikih skupova podataka

ASVSP - Primeri arhitektura - IoT

izvor: Big data architectures, Microsoft, https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/

83

Primena i karakteristike ASVSP

- ASVSP
 - o razmotriti primenu ASVSP u slučajevima kada je potrebno
 - skladištiti i obraditi veliku količinu podataka
 - preveliku za tradicionalne baze podataka
 - transformisati nestrukturirane podatke za dalju analizu i izveštavanje
 - skladištiti, obraditi i analizirati neprekidan tok podataka u realnom vremenu
 - ili sa malim veoma malim vremenom trajanja obrade

- Slučajevi korišćenja ASVSP
 - o razvoj proizvoda u kompanijama
 - kreiraju se prediktivni modeli za nove proizvode i servise koje kompanije nude
 - klasifikacija po ključnim obeležjima starih i novih proizvoda
 - modelovanje veze između tih atributa i komercijalnog uspeha proizvoda
 - o prediktivno održavanje uređaja
 - predikcija održavanja uređaja u fabrikama
 - pre nego što se oni pokvare
 - omogućava naručivanje delova unapred kao i preventivne popravke
 - posmatranjem karakteristika uređaja, logova, podataka sa senzora i opisa i karakteristika prethodnih kvarova svih uređaja

85

85

Primena i karakteristike ASVSP

- Slučajevi korišćenja ASVSP
 - unapređenje korisničkog iskustva
 - skupljanjem velike količine podataka o korisniku moguće je
 - ponuditi mu prilagođene usluge i proizvode
 - sprečiti pojavu problema proaktivnim delovanjem
 - unapređenje sigurnosti
 - uočavanje šablona koji su indikatori prevare
 - skupljanje velike količine podataka kako bi se omogućilo slanje što preciznijih izveštaja
 - obično vlastima, gde je to zahtevano
 - mašinsko učenje
 - kvalitetno obučavanje algoritama za mašinsko učenje zahteva velike količine podataka
 - što veći broj uzoraka nad kojima algoritam uči

- Slučajevi korišćenja ASVSP
 - o efikasnost operative
 - analiza proizvodnje, povratnih informacija od korisnika i problema i vraćanja proizvoda
 - mogu rešiti potencijalne probleme u operativi pre nego što nastanu
 - mogu predvideti buduće potrebe tržišta
 - mogu uticati na poboljšanje odluka menadžmenta u skladu sa predviđenim i trenutnim kretanjima tržišta
 - pokretanje inovacija u kompanijama
 - analizom zavisnosti između ljudi, institucija, procesa i drugih entiteta
 - koji se mogu uočiti u prikupljenim podacima
 - može dovesti do
 - novih odluka o ulaganjima
 - boljih finansijskih planova

87

87

Primena i karakteristike ASVSP

- Slučajevi korišćenja ASVSP
 - o unapređenje zdravstvene zaštite
 - unapređenje procesa otkrivanja bolesti
 - identifikacija ranih znakova bolesti i elemenata koji utiču na njenu pojavu i napredovanje
 - razvoj novih lekova
 - predviđanje i reagovanje na prirodne i nepogode izazvane od strane čoveka
 - analiza podataka sa postavljenih senzora
 - za predviđanje zemljotresa i vulkanskih aktivnosti
 - analiza šablona ljudskog ponašanja
 - za pomoć prilikom organizovanja pomoći preživelima ili ugroženima
 - za sigurno preseljavanje izbeglica izvan zona ratnih dejstava
 - sprečavanje zločina
 - na osnovu analize dosijea, prethodnih slučajeva, snimaka sigurnosnih kamera
 - moguće bolje rasporediti policijske snage
 - moguće bolje preventivno reagovati gde je to potrebno

- Izazovi ASVSP
 - o privatnost podataka
 - čuvanje osetljivih i ličnih podataka o nekom pojedincu ili kompanije
 - koliko je dozvoljeno takvih podataka čuvati?
 - koliko je potrebno takvih podataka čuvati?
 - GDPR <u>https://eugdpr.org/</u>
 - sigurnost podataka
 - mehanizmi za sprečavanje neovlašćenog pristupa osetljivim i ličnim podacima
 - o diskriminacija uzrokovana podacima
 - moguće je namerno ili nenamerno izvršiti diskriminaciju nad tom osobom
 - nakon sakupljanja velike količine ličnih podataka o osobi
 - primeri: osiguranje i kreditiranje

89

89

Primena i karakteristike ASVSP

- Izazovi ASVSP
 - količina podataka koja se konstantno uvećava
 - količina podataka se udvostručuje svake dve godine
 - potrebno efikasno i dovoljno veliko skladište podataka
 - verodostojnost podataka
 - posedovanje čistih i relevantnih podataka
 - staranje o podacima postaje imperativ a zahteva dosta vremena i resursa
 - osobe koje rade sa podacima, provedu 50-80 posto vremena samo čisteći podatke i pripremajući ih za analizu
 - praćenje razvoja tehnologija
 - veliki broj projekata i pristupa se razvija
 - bez garancije da će i jedan od njih biti uspešan
 - ali sa mogućnošću da će neki zameniti trenutno de facto standardne alate i pristupe

- Uloge u timu za rad sa podacima
 - više članova tima za rad sa podacima
 - usled kompleksnosti sistema i složenosti zadataka
 - o članovi tima mogu biti tehnička ali i netehnička lica
 - o u malim organizacijama, ne mora postojati različita osoba za svaku ulogu
 - o četiri različite uloge u timovima koji rade sa podacima:
 - **administratori platforme** (engl. *platform administrators*)
 - inženjeri podataka (engl. data engineers)
 - analitičari podataka (engl. data analysts)
 - istraživači podataka (engl. data scientists)

izvor: Fundamentals of Big Data, Databricks, https://academy.databricks.com/

91

Primena i karakteristike ASVSP

- Uloge u timu za rad sa podacima
 - o administratori platforme
 - održavaju infrastrukturu nad kojom se izvršava ASVSP
 - nadgledanje, konfiguracija, ažuriranje
 - IT podrška ostalim članovima tima a u vezi s ASVSP
 - o inženjeri podataka
 - kreiraju i održavaju strukture i mehanizme za rad sa podacima
 - omogućavaju da podaci dolaze do potrebnih osoba ili organizacija
 - definišu "aplikativni" sloj koji koriste analitičari i istraživači podataka

- Uloge u timu za rad sa podacima
 - o analitičari podataka
 - izvlače informacije iz podataka pripremljenih od strane inženjera podataka
 - pripremaju prezentaciju podataka koja se sastoji od grafikona itd.
 - obučeni da kreiraju vizuelizacije podataka i poznaju koncepte poslovnog izveštavanja
 - komuniciraju sa rukovodstvom u cilju izvlačenja uvida i semantike podataka i njihovog značaja za poslovno okruženje
 - istraživači podataka
 - izvlače informacije iz podataka pripremljenih od strane inženjera podataka
 - koriste matematičke i statističke metode, kreiraju modele mašinskog učenja
 - obučeni kako matematičkim i statističkim veštinama tako i programerskim

93

93

- Sadržaj kursa glavne teme
 - virtualizacija, kontejnerizacija i orkestracija procesa
 - Docker, Docker-Compose, Kubernetes
 - paketna obrada podataka
 - Hadoop, MapReduce i Spark
 - obrada podataka u realnom vremenu
 - međuprocesna komunikacija i sistemi za razmenu poruka
 - Kafka
 - Storm i Spark
 - o arhitekture Serverless
 - arhitekture Lambda i Kappa

 $izvor: \textit{Big data architectures, Microsoft,} \ \underline{\textit{https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-data/}}^{96}$

Primeri projekata

97

Projekat - Dinamičko pronalaženje putanje

- Dejan Grubišić, ASVSP, MSc rad
 - sistem za pronalaženje najkraće putanje između lokacija
 - sa težinama putanja promenljivim u realnom vremenu
 - zasnovan na arhitekturi Lambda
 - primenljiv na veliki broj domena u kojima su podaci predstavljeni pomoću grafa
 - npr. pronalaženje najboljeg puta između traženih lokacija i njegovo ažuriranje u realnom vremenu
 - paketna obrada prethodno skladištenih informacija
 - npr. informacija o putevima na mapi koja se posmatra
 - radi inicijalnog pronalaženja najboljeg puta
 - obrada u realnom vremenu informacija koje pristižu
 - npr. saobraćajne nezgode, blokirani semafori, kolone itd.
 - radi ažuriranja rang liste puteva

Projekat - Dinamičko pronalaženje putanje

Demo

101

Projekat - Sistem za analizu nepogoda u USA

- Nebojša Horvat, ASVSP, projekat
 - o sistem za analizu nepogoda u USA
 - javno dostupan skup podataka
 - nepogode obuhvataju jače kiše, uragane, poplave sa materijalnom štetom i smrtnim ishodima
 - paketna obrada prethodno skladištenih informacija
 - dugotrajne analize
 - npr. broj žrtava i šteta po tipu nepogode, najgore nepogode koje su se dogodile, nepogode koje predstavljaju outlier-e
 - obrada u realnom vremenu informacija koje pristižu
 - npr. brojač i alarm za obaveštavanje o nepogodama koje se dešavaju

Projekat - Sistem za praćenje nepogoda u USA

Arhitektura sistema

103

Literatura

- Nathan Marz, James Warren Big Data: Principles and best practices of scalable real-time data systems
- Doug Laney 3D Data Management: Controlling Data Volume, Veracity, and Variety
 https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf