Quadratic Convexity and Sums of Squares

Martin Ames Harrison

October 25, 2013

Overview

Introduction

- Motivation
- ▶ Terms and problem statement
- ► Tools: matrices and convexity

Overview

Introduction

- Motivation
- Terms and problem statement
- ► Tools: matrices and convexity

Main Results

- Reformulation and related problems
- Quadratic maps in general
- Necessary condition

Overview

Introduction

- Motivation
- Terms and problem statement
- ► Tools: matrices and convexity

Main Results

- Reformulation and related problems
- Quadratic maps in general
- Necessary condition

Back to SOS

- Application
- Conjecture

Introduction - Why SOS?

Characterizations of positive polynomials allow polynomial optimization because

$$\inf\{p(x) \mid x \in C\} = \sup\{y \mid (p - y)|_C > 0\}.$$

Introduction - Why SOS?

Characterizations of positive polynomials allow polynomial optimization because

$$\inf\{p(x) \mid x \in C\} = \sup\{y \mid (p - y)|_C > 0\}.$$

Positive polynomials can be described in terms of sums of squares.

Introduction - Why SOS?

Characterizations of positive polynomials allow polynomial optimization because

$$\inf\{p(x) \mid x \in C\} = \sup\{y \mid (p - y)|_C > 0\}.$$

Positive polynomials can be described in terms of sums of squares.

SOS approximations are easy to find.

▶ $\mathbb{R}[x_1,...,x_n]_d$ is the space of real homogeneous polynomials in the variables $x_1,...,x_n$, of degree d (plus 0).

- ▶ $\mathbb{R}[x_1,...,x_n]_d$ is the space of real homogeneous polynomials in the variables $x_1,...,x_n$, of degree d (plus 0).
- For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.

- ▶ $\mathbb{R}[x_1,...,x_n]_d$ is the space of real homogeneous polynomials in the variables $x_1,...,x_n$, of degree d (plus 0).
- ► For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.
- $ightharpoonup \Sigma_{n,d}$ denotes the SOS *cone*, sums of squares in $\mathbb{R}[x_1,\ldots,x_n]_{2d}$, i.e.

$$g_1^2 + \ldots + g_k^2$$

for some $g_1, \ldots, g_k \in \mathbb{R}[x_1, \ldots, x_n]_d$ (necessarily).

- ▶ $\mathbb{R}[x_1,...,x_n]_d$ is the space of real homogeneous polynomials in the variables $x_1,...,x_n$, of degree d (plus 0).
- ► For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.
- ▶ $\sum_{n,d}$ denotes the SOS *cone*, sums of squares in $\mathbb{R}[x_1,\ldots,x_n]_{2d}$, i.e.

$$g_1^2 + \ldots + g_k^2$$

for some $g_1, \ldots, g_k \in \mathbb{R}[x_1, \ldots, x_n]_d$ (necessarily).

▶ Degree of x^{α} is $|\alpha| \equiv \sum_{i} \alpha_{i}$.

- ▶ $\mathbb{R}[x_1,...,x_n]_d$ is the space of real homogeneous polynomials in the variables $x_1,...,x_n$, of degree d (plus 0).
- ► For a multi-index $\alpha = (\alpha_1, \dots, \alpha_n) \in (\mathbb{N} \cup \{0\})^n$, $x^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}$.
- $ightharpoonup \Sigma_{n,d}$ denotes the SOS *cone*, sums of squares in $\mathbb{R}[x_1,\ldots,x_n]_{2d}$, i.e.

$$g_1^2 + \ldots + g_k^2$$

for some $g_1, \ldots, g_k \in \mathbb{R}[x_1, \ldots, x_n]_d$ (necessarily).

- ▶ Degree of x^{α} is $|\alpha| \equiv \sum_{i} \alpha_{i}$.
- ▶ For $k \in \mathbb{N}$, $\Sigma_{n,d}(k)$ is the set of sums of k (or fewer) squares.

The polynomial $p(x, y) = x^4 + x^2y^2 + y^4$ is a sum of 3 squares:

$$p(x,y) = (x^2)^2 + (xy)^2 + (y^2)^2$$

The polynomial $p(x, y) = x^4 + x^2y^2 + y^4$ is a sum of 3 squares:

$$p(x, y) = (x^2)^2 + (xy)^2 + (y^2)^2$$

Will fewer squares suffice?

The polynomial $p(x, y) = x^4 + x^2y^2 + y^4$ is a sum of 3 squares:

$$p(x, y) = (x^2)^2 + (xy)^2 + (y^2)^2$$

Will fewer squares suffice? Yes!

$$p(x,y) = (x^2 - y^2)^2 + (\sqrt{3}xy)^2$$

Will even fewer suffice?

The polynomial $p(x, y) = x^4 + x^2y^2 + y^4$ is a sum of 3 squares:

$$p(x,y) = (x^2)^2 + (xy)^2 + (y^2)^2$$

Will fewer squares suffice? Yes!

$$p(x,y) = (x^2 - y^2)^2 + (\sqrt{3}xy)^2$$

Will *even fewer* suffice? No! The length of p(x, y) is 2.

▶ The length of $\sigma \in \Sigma_{n,d}$ is the smallest natural number k for which $\sigma \in \Sigma_{n,d}(k)$. We write $\ell(\sigma)$ for the length of σ .

- ▶ The length of $\sigma \in \Sigma_{n,d}$ is the smallest natural number k for which $\sigma \in \Sigma_{n,d}(k)$. We write $\ell(\sigma)$ for the length of σ .
- ▶ The pythagoras number $\mathcal{P}(S)$ of a set $S \subseteq \mathbb{R}[x_1, \dots, x_n]_{2d}$ is the maximum of the set $\{\ell(\sigma) \mid \sigma \in S\}$. Equivalently, the smallest k for which $\Sigma_{n,d}(k) = \Sigma_{n,d}$.

- ▶ The length of $\sigma \in \Sigma_{n,d}$ is the smallest natural number k for which $\sigma \in \Sigma_{n,d}(k)$. We write $\ell(\sigma)$ for the length of σ .
- ▶ The pythagoras number $\mathcal{P}(S)$ of a set $S \subseteq \mathbb{R}[x_1, \dots, x_n]_{2d}$ is the maximum of the set $\{\ell(\sigma) \mid \sigma \in S\}$. Equivalently, the smallest k for which $\Sigma_{n,d}(k) = \Sigma_{n,d}$.
- ▶ Known: $\mathcal{P}(\Sigma_{2,d}) = 2$, $\mathcal{P}(\Sigma_{n,1}) = n$ and $\mathcal{P}(\Sigma_{3,2}) = 3$.

- ▶ The length of $\sigma \in \Sigma_{n,d}$ is the smallest natural number k for which $\sigma \in \Sigma_{n,d}(k)$. We write $\ell(\sigma)$ for the length of σ .
- ▶ The pythagoras number $\mathcal{P}(S)$ of a set $S \subseteq \mathbb{R}[x_1, \dots, x_n]_{2d}$ is the maximum of the set $\{\ell(\sigma) \mid \sigma \in S\}$. Equivalently, the smallest k for which $\Sigma_{n,d}(k) = \Sigma_{n,d}$.
- ▶ Known: $\mathcal{P}(\Sigma_{2,d}) = 2$, $\mathcal{P}(\Sigma_{n,1}) = n$ and $\mathcal{P}(\Sigma_{3,2}) = 3$.

How does one compute $\mathcal{P}(\Sigma_{n,d})$?

A subset S of a real vector space is called convex if for all $t \in [0,1]$ and all $x, y \in S$, tx + (1-t)y belongs to S.

- A subset S of a real vector space is called convex if for all $t \in [0, 1]$ and all $x, y \in S$, tx + (1 t)y belongs to S.
- ▶ A convex combination takes the form $t_1x_1 + ... + t_kx_k$, where x_i are vectors and $t_i \ge 0$ sum to 1.

- A subset S of a real vector space is called convex if for all $t \in [0,1]$ and all $x, y \in S$, tx + (1-t)y belongs to S.
- ▶ A convex combination takes the form $t_1x_1 + ... + t_kx_k$, where x_i are vectors and $t_i \ge 0$ sum to 1.
- ► The convex hull conv(S) of a set S is the smallest convex set containing S; all convex combinations of elements of S.

- A subset S of a real vector space is called convex if for all $t \in [0,1]$ and all $x, y \in S$, tx + (1-t)y belongs to S.
- A convex combination takes the form $t_1x_1 + ... + t_kx_k$, where x_i are vectors and $t_i \ge 0$ sum to 1.
- ► The convex hull conv(S) of a set S is the smallest convex set containing S; all convex combinations of elements of S.
- ► The conic hull co(S) is the set of all conic combinations of elements of S:

$$co(S) = \{t_1x_1 + \ldots + t_kx_k \mid x_i \in S, t_i \geq 0\}.$$

Carathéodory Convex Hull Theorem

If $S \subset \mathbb{R}^d$, then every element of conv(S) may be expressed as a convex combination of d+1 or fewer elements of S.

Carathéodory Convex Hull Theorem

If $S \subset \mathbb{R}^d$, then every element of conv(S) may be expressed as a convex combination of d+1 or fewer elements of S.

If $C \subset \mathbb{R}^m$ is a closed convex set and $x \notin C$, then there is an affine hyperplane strictly separating x and C.

If $C \subset \mathbb{R}^m$ is a closed convex set and $x \notin C$, then there is an affine hyperplane strictly separating x and C.

That is, there exists a linear functional Λ on \mathbb{R}^m and a real number r such that $\Lambda(y) < r$ for all $y \in C$ and $\Lambda(x) > r$.

If $C \subset \mathbb{R}^m$ is a closed convex set and $x \notin C$, then there is an affine hyperplane strictly separating x and C.

That is, there exists a linear functional Λ on \mathbb{R}^m and a real number r such that $\Lambda(y) < r$ for all $y \in C$ and $\Lambda(x) > r$.

If $C \subset \mathbb{R}^m$ is a closed convex set and $x \notin C$, then there is an affine hyperplane strictly separating x and C.

That is, there exists a linear functional Λ on \mathbb{R}^m and a real number r such that $\Lambda(y) < r$ for all $y \in C$ and $\Lambda(x) > r$.

A special property

Let $S \subset \mathbb{R}^m$ be a convex set. If $\mathring{S} = \emptyset$, then S is contained in a proper affine subspace of \mathbb{R}^m .

The algebra of $N \times N$ matrices over \mathbb{R} is denoted by $M_N(\mathbb{R})$.

The algebra of $N \times N$ matrices over \mathbb{R} is denoted by $M_N(\mathbb{R})$. The set $S_N \subseteq M_N(\mathbb{R})$ consists of the symmetric matrices.

The algebra of $N \times N$ matrices over \mathbb{R} is denoted by $M_N(\mathbb{R})$. The set $\mathcal{S}_N \subseteq M_N(\mathbb{R})$ consists of the symmetric matrices. If $A \in \mathcal{S}_N$ has only nonnegative eigenvalues, then we write $A \in \mathcal{S}_N^+$ and $A \succeq 0$, and we call A positive semidefinite.

The algebra of $N \times N$ matrices over \mathbb{R} is denoted by $M_N(\mathbb{R})$.

The set $S_N \subseteq M_N(\mathbb{R})$ consists of the symmetric matrices.

If $A \in \mathcal{S}_N$ has only nonnegative eigenvalues, then we write $A \in \mathcal{S}_N^+$ and $A \succeq 0$, and we call A positive semidefinite.

For $A \in \mathcal{S}_N$, the following are equivalent:

- i) A is positive semidefinite.
- ii) $A = B^2$ for some $B \in \mathcal{S}_N$.
- iii) $x^T A x \ge 0$ for all $x \in \mathbb{R}^N$.
- iv) The principal minors of A are nonnegative.
- v) $A = LL^T$ for some $L \in M_N(\mathbb{R})$.

The algebra of $N \times N$ matrices over \mathbb{R} is denoted by $M_N(\mathbb{R})$.

The set $S_N \subseteq M_N(\mathbb{R})$ consists of the symmetric matrices.

If $A \in \mathcal{S}_N$ has only nonnegative eigenvalues, then we write $A \in \mathcal{S}_N^+$ and $A \succeq 0$, and we call A positive semidefinite.

For $A \in \mathcal{S}_N$, the following are equivalent:

- i) A is positive semidefinite.
- ii) $A = B^2$ for some $B \in \mathcal{S}_N$.
- iii) $x^T A x \ge 0$ for all $x \in \mathbb{R}^N$.
- iv) The principal minors of A are nonnegative.
- v) $A = LL^T$ for some $L \in M_N(\mathbb{R})$.

Finally, $K_N^+ \equiv S_N^+ \cap \{x \in M_N(R) \mid \text{trace}(x) = 1\}$ (example of a spectrahedron).

$$\blacktriangleright \text{ Fix } p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2.$$

- $\blacktriangleright \text{ Fix } p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2.$
- $g_i = \sum_{\alpha} g_{i,\alpha} x^{\alpha}$

- Fix $p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2$.
- $ightharpoonup g_i = \sum_{\alpha} g_{i,\alpha} x^{\alpha}$
- ▶ $\mathbf{g_i} \equiv (g_{i,\alpha})_{|\alpha|=d}^T \in \mathbb{R}^N$ and $\mathbf{m} = (x^{\alpha})_{|\alpha|=d}^T \in \mathbb{R}[x_1, \dots, x_n]_d^N$

- Fix $p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2$.
- $ightharpoonup g_i = \sum_{\alpha} g_{i,\alpha} x^{\alpha}$
- ▶ $\mathbf{g_i} \equiv (g_{i,\alpha})_{|\alpha|=d}^T \in \mathbb{R}^N$ and $\mathbf{m} = (x^\alpha)_{|\alpha|=d}^T \in \mathbb{R}[x_1,\dots,x_n]_d^N$
- $ightharpoonup g_i^2 = \mathbf{g_i}^T \mathbf{mm}^T \mathbf{g_i} = \text{trace}(\mathbf{g_i} \mathbf{g_i}^T \mathbf{mm}^T)$, and

- Fix $p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2$.
- $ightharpoonup g_i = \sum_{\alpha} g_{i,\alpha} x^{\alpha}$
- ▶ $\mathbf{g_i} \equiv (g_{i,\alpha})_{|\alpha|=d}^T \in \mathbb{R}^N$ and $\mathbf{m} = (x^{\alpha})_{|\alpha|=d}^T \in \mathbb{R}[x_1, \dots, x_n]_d^N$
- $ightharpoonup g_i^2 = \mathbf{g_i}^T \mathbf{mm}^T \mathbf{g_i} = \text{trace}(\mathbf{g_i} \mathbf{g_i}^T \mathbf{mm}^T)$, and
- $p = trace(\mathbf{mm}^T(\sum_i \mathbf{g_i} \mathbf{g_i}^T)).$

- Fix $p = \sum_{\alpha} p_{\alpha} x^{\alpha} = g_1^2 + \ldots + g_k^2$.
- $g_i = \sum_{\alpha} g_{i,\alpha} x^{\alpha}$
- ▶ $\mathbf{g_i} \equiv (g_{i,\alpha})_{|\alpha|=d}^T \in \mathbb{R}^N$ and $\mathbf{m} = (x^{\alpha})_{|\alpha|=d}^T \in \mathbb{R}[x_1, \dots, x_n]_d^N$
- $ightharpoonup g_i^2 = \mathbf{g_i}^T \mathbf{mm}^T \mathbf{g_i} = \text{trace}(\mathbf{g_i} \mathbf{g_i}^T \mathbf{mm}^T)$, and
- $p = trace(\mathbf{mm}^T(\sum_i \mathbf{g_i} \mathbf{g_i}^T)).$
- ▶ System of $\binom{n+2d-1}{2d}$ equations $p_{\alpha} = \text{trace}(A_{\alpha} \sum_{i} \mathbf{g_{i}g_{i}})$, where

$$(A_{\alpha})_{\beta,\gamma} = egin{cases} 1, & ext{if } eta + \gamma = lpha \ 0, & ext{otherwise} \end{cases}$$

 $ightharpoonup \sum_{i} \mathbf{g_i} \mathbf{g_i}^T$ is positive semidefinite

- $ightharpoonup \sum_{i} \mathbf{g_i} \mathbf{g_i}^T$ is positive semidefinite
- ▶ Conversely, $X \in \mathcal{S}_N^+$ satisfying $p_\alpha = \text{trace}(A_\alpha X)$ yields a sum of squares. Write $U^T D U = X$.

$$p = \text{trace}(\mathbf{m}\mathbf{m}^T X) = \text{trace}(\mathbf{m}^T U^T D U \mathbf{m}) = \sum_i \lambda_i (U_i \mathbf{m})^2$$

- $ightharpoonup \sum_{i} \mathbf{g_i} \mathbf{g_i}^T$ is positive semidefinite
- ▶ Conversely, $X \in \mathcal{S}_N^+$ satisfying $p_\alpha = \operatorname{trace}(A_\alpha X)$ yields a sum of squares. Write $U^T D U = X$.

$$p = \operatorname{trace}(\mathbf{m}\mathbf{m}^T X) = \operatorname{trace}(\mathbf{m}^T U^T D U \mathbf{m}) = \sum_i \lambda_i (U_i \mathbf{m})^2$$

▶ $\ell(p) = \min\{\operatorname{rank}(X) \mid X \in S(p)\}$, where S(p) is the set of all Gram matrices for p.

- $ightharpoonup \sum_{i} \mathbf{g_i} \mathbf{g_i}^T$ is positive semidefinite
- ▶ Conversely, $X \in \mathcal{S}_N^+$ satisfying $p_\alpha = \operatorname{trace}(A_\alpha X)$ yields a sum of squares. Write $U^T D U = X$.

$$p = \text{trace}(\mathbf{m}\mathbf{m}^TX) = \text{trace}(\mathbf{m}^TU^TDU\mathbf{m}) = \sum_i \lambda_i (U_i\mathbf{m})^2$$

- ▶ $\ell(p) = \min\{\operatorname{rank}(X) \mid X \in S(p)\}$, where S(p) is the set of all Gram matrices for p.
- $\blacktriangleright \ \mathcal{P}(\Sigma_{n,d}) \leq \binom{n+d-1}{d}$

Quadratic Maps

$$A = (A_1, \dots, A_M)$$
, M -tuple of elements of S_N

$$A(x) \equiv (x^T A_1 x, \dots, x^T A_M x)^T \in \mathbb{R}^M$$
, A is a quadratic map.

▶ When is $A(\mathbb{R}^N) \equiv \{(x^T A_1 x, \dots, x^T A_M x) \mid x \in \mathbb{R}^N\}$ convex?

Quadratic Maps

$$A = (A_1, \dots, A_M)$$
, M -tuple of elements of S_N

$$A(x) \equiv (x^T A_1 x, \dots, x^T A_M x)^T \in \mathbb{R}^M$$
, A is a quadratic map.

- ▶ When is $A(\mathbb{R}^N) \equiv \{(x^T A_1 x, \dots, x^T A_M x) \mid x \in \mathbb{R}^N\}$ convex?
- ▶ When is $A(S^{N-1}) \equiv \{(x^T A_1 x, ..., x^T A_M x) \mid x \in S^{N-1}\}$ convex?

Quadratic Maps

$$A = (A_1, \dots, A_M)$$
, M -tuple of elements of S_N

- $A(x) \equiv (x^T A_1 x, \dots, x^T A_M x)^T \in \mathbb{R}^M$, A is a quadratic map.
 - ▶ When is $A(\mathbb{R}^N) \equiv \{(x^T A_1 x, \dots, x^T A_M x) \mid x \in \mathbb{R}^N\}$ convex?
 - ▶ When is $A(S^{N-1}) \equiv \{(x^T A_1 x, ..., x^T A_M x) \mid x \in S^{N-1}\}$ convex?
 - Who cares, and what does this have to do with pythagoras numbers?

Quadratic Convexity - motivation

Relaxation of systems of quadratic equations

$$x^T A_i x = a_i$$

 $a=(a_1,\ldots,a_M)$ outside the convex hull of $A(\mathbb{R}^N)$ can be separated by a hyperplane...

Quadratic Convexity - motivation

Relaxation of systems of quadratic equations

$$x^T A_i x = a_i$$

 $a=(a_1,\ldots,a_M)$ outside the convex hull of $A(\mathbb{R}^N)$ can be separated by a hyperplane...

▶ SDP - find y such that

$$y_1(A_1 - a_1I) + \ldots + y_M(A_M - a_MI) > 0$$

Quadratic Convexity - motivation

Relaxation of systems of quadratic equations

$$x^T A_i x = a_i$$

 $a=(a_1,\ldots,a_M)$ outside the convex hull of $A(\mathbb{R}^N)$ can be separated by a hyperplane...

▶ SDP - find y such that

$$y_1(A_1 - a_1I) + \ldots + y_M(A_M - a_MI) > 0$$

▶ Joint numerical range of a tuple of hermitian operators - applications in *quantum* physics

$$w(A) = \{(z^*A_1z, \dots, z^*A_Mz) \mid z \in \mathbb{C}^N \text{ and } ||z|| = 1\}$$

Quadratic Convexity - pythagoras numbers

 $ightharpoonup \Sigma_{n,d}(k)$ is the image of a quadratic map

Quadratic Convexity - pythagoras numbers

- $ightharpoonup \Sigma_{n,d}(k)$ is the image of a quadratic map
- ▶ $I_k \otimes A \equiv (I_k \otimes A_\alpha)_{|\alpha|=2d}$, where I_k is the $k \times k$ identity matrix and \otimes is the Kronecker product.

Quadratic Convexity - pythagoras numbers

- $ightharpoonup \Sigma_{n,d}(k)$ is the image of a quadratic map
- ▶ $I_k \otimes A \equiv (I_k \otimes A_\alpha)_{|\alpha|=2d}$, where I_k is the $k \times k$ identity matrix and \otimes is the Kronecker product.
- ▶ The set $\Sigma_{n,d}(k)$ is convex exactly when

$$\Sigma_{n,d} = \Sigma_{n,d}(k),$$

i.e., exactly when $\mathcal{P}(\Sigma_{n,d}) \leq k$.

Quadratic Convexity - first observations

Suppose that $A : \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map. Let \mathbb{B} denote the unit ball $\{x \in \mathbb{R}^N \mid ||x|| \le 1\}$ in \mathbb{R}^N .

Then $A(\mathbb{R}^N)$ is convex whenever $A(\mathbb{B})$ is convex, and $A(\mathbb{B})$ is convex whenever $A(S^{N-1})$ is convex.

Quadratic Convexity - first observations

Suppose that $A : \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map. Let \mathbb{B} denote the unit ball $\{x \in \mathbb{R}^N \mid ||x|| \le 1\}$ in \mathbb{R}^N .

Then $A(\mathbb{R}^N)$ is convex whenever $A(\mathbb{B})$ is convex, and $A(\mathbb{B})$ is convex whenever $A(S^{N-1})$ is convex.

The converses are false, but we can reduce the question to one about a *compact* set.

Quadratic Convexity - Positive maps

Suppose $A: \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map and $A(\mathbb{R}^N)$ spans \mathbb{R}^M . TFAE

- i) $0 \notin A(K_N^+) \equiv \operatorname{conv} A(S^{N-1})$
- ii) There is a linear functional ℓ on \mathbb{R}^M such that $\ell \cdot A \equiv \sum_j \ell_j A_j$ is positive definite.
- iii) There is an invertible linear operator T on \mathbb{R}^M such that $T \circ A$ is positive definite in each coordinate.

Positive maps - Corollary

▶ Suppose that $A : \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map and conv $A(S^{N-1})$ does not contain 0.

Then there is an invertible linear operator L on \mathbb{R}^N such that $A(\mathbb{R}^N)$ is convex exactly when $A \circ L(S^{N-1})$ is convex.

Positive maps - Corollary

▶ Suppose that $A : \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map and conv $A(S^{N-1})$ does not contain 0.

Then there is an invertible linear operator L on \mathbb{R}^N such that $A(\mathbb{R}^N)$ is convex exactly when $A \circ L(S^{N-1})$ is convex.

▶ If $A(\mathbb{R}^N)$ is closed and contains no lines, then there is a linear transformation T from \mathbb{R}^k to \mathbb{R}^N , for some $k \leq N$, such that $A(\mathbb{R}^N)$ is convex exactly when $A \circ T(S^{k-1})$ is convex.

Quadratic Convexity - A rank condition

 Recall a property of convex sets: nonempty interior or lower dimension

Quadratic Convexity - A rank condition

- ► Recall a property of convex sets: nonempty interior *or* lower dimension
- Sard's Theorem: Critical values have measure zero.

Quadratic Convexity - A rank condition

- Recall a property of convex sets: nonempty interior or lower dimension
- ▶ Sard's Theorem: Critical values have measure zero.
- ▶ A quadratic map is polynomial, and so is the derivative.

Quadratic Convexity - Squashing images

If $A: \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map, then...

there is a linear operator $T: \mathbb{R}^M \to \mathbb{R}^k$ satisfying

- i) $(T \circ A)(\mathbb{R}^N)$ is contained in no proper subspace of \mathbb{R}^k , and
- ii) $(T \circ A)(\mathbb{R}^N)$ is convex if and only if $A(\mathbb{R}^N)$ is convex.

Quadratic Convexity - Squashing images

If $A: \mathbb{R}^N \to \mathbb{R}^M$ is a quadratic map, then...

there is a linear operator $T: \mathbb{R}^M \to \mathbb{R}^k$ satisfying

- i) $(T \circ A)(\mathbb{R}^N)$ is contained in no proper subspace of \mathbb{R}^k , and
- ii) $(T \circ A)(\mathbb{R}^N)$ is convex if and only if $A(\mathbb{R}^N)$ is convex.

there is a linear operator $T: \mathbb{R}^M \to \mathbb{R}^k$ satisfying

- i) $(T \circ A)(S^{N-1})$ is contained in no proper affine subspace of \mathbb{R}^k , and
- ii) $(T \circ A)(S^{N-1})$ is convex if and only if $A(S^{N-1})$ is convex.

SOS revisited

Summary

 Convexity of a quadratic image equivalent to that of a compact set

Summary

- Convexity of a quadratic image equivalent to that of a compact set
- Necessary condition on rank of derivative, applicable to all quadratic maps after modification

Summary

- Convexity of a quadratic image equivalent to that of a compact set
- Necessary condition on rank of derivative, applicable to all quadratic maps after modification
- ► Lower bounds on pythagoras numbers, smallest pythagoras number of a nonempty open subset