```
In [113]: # Import Libraries
    import numpy as np
    import pandas as pd
    import seaborn as sns
    from sklearn.metrics import f1_score, mean_squared_error
    from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
    from sklearn import linear_model, metrics
    from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import r2_score
    import xgboost as xgb
```

In [91]: # Reading datasets and storing them in a dataframe
train_data = pd.read_csv('C:/Users/hp/Desktop/EAI 6000 Project/Features_Variant_1

In [93]: # Defining the columns for the dataset attributes
train_data.columns = ['Comments','Checkins','TalkingAbout','Category','Derived5']

In [94]: # Describing the dataset
train_data.describe()

Out[94]:

	Comments	Checkins	TalkingAbout	Category	Derived5	Derived6	
count	4.094800e+04	40948.000000	4.094800e+04	40948.000000	40948.000000	40948.000000	4094
mean	1.313830e+06	4676.247949	4.480133e+04	24.255348	1.586280	443.324998	5
std	6.785834e+06	20593.423357	1.109349e+05	19.950496	20.753426	496.698029	8
min	3.600000e+01	0.000000	0.000000e+00	1.000000	0.000000	0.000000	
25%	3.673400e+04	0.000000	6.980000e+02	9.000000	0.000000	45.000000	
50%	2.929110e+05	0.000000	7.141000e+03	18.000000	0.000000	241.000000	2
75%	1.204214e+06	99.000000	5.026400e+04	32.000000	0.000000	717.000000	7
max	4.869723e+08	186370.000000	6.089942e+06	106.000000	2341.000000	2341.000000	234

8 rows × 54 columns

In [95]: # To get the info of the training dataset train_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 40948 entries, 0 to 40947
Data columns (total 54 columns):

Data	columns (total 54 columns):	
#	Column	Non-Null Count	Dtype
0	Comments	40948 non-null	int64
1	Checkins	40948 non-null	int64
2	TalkingAbout	40948 non-null	int64
3	Category	40948 non-null	int64
4	Derived5	40948 non-null	int64
5	Derived6	40948 non-null	int64
6	Derived7	40948 non-null	float64
7	Derived8	40948 non-null	float64
8	Derived9	40948 non-null	float64
9			
	Derived10	40948 non-null	int64
10	Derived11	40948 non-null	int64
11	Derived12	40948 non-null	float64
12	Derived13	40948 non-null	float64
13	Derived14	40948 non-null	float64
14	Derived15	40948 non-null	int64
15	Derived16	40948 non-null	int64
16	Derived17	40948 non-null	float64
17	Derived18	40948 non-null	float64
18	Derived19	40948 non-null	float64
19	Derived20	40948 non-null	int64
20	Derived21	40948 non-null	int64
21	Derived22	40948 non-null	float64
22	Derived23	40948 non-null	float64
23	Derived24	40948 non-null	float64
24	Derived25	40948 non-null	int64
25	Derived26	40948 non-null	int64
26	Derived27	40948 non-null	float64
27	Derived28	40948 non-null	float64
28	Derived29	40948 non-null	float64
29	CC1	40948 non-null	int64
30	CC2	40948 non-null	int64
31	CC3	40948 non-null	int64
32	CC4	40948 non-null	int64
33	CC5	40948 non-null	int64
34	BaseTime	40948 non-null	int64
35	PostLength	40948 non-null	int64
36	PostShareCount	40948 non-null	int64
37	PostPromotionStatus	40948 non-null	int64
38	HLocal	40948 non-null	int64
39	PostPublishedWeekday40	40948 non-null	int64
40	Post PublishedWeekday 41	40948 non-null	int64
41	Post published weekday42	40948 non-null	int64
42	Post published weekday43	40948 non-null	int64
43	Post published weekday44	40948 non-null	int64
44	Post published weekday45	40948 non-null	int64
45	Post published weekday46	40948 non-null	int64
46	Base DateTime weekday47	40948 non-null	int64
47	Base DateTime weekday48	40948 non-null	int64
48	Base DateTime weekday49	40948 non-null	int64
+0	Dase Date Time weekday45	-07-0 HOH-HUII	111CO4

49	Base DateTime weekday50	40948 non-null	int64
50	Base DateTime weekday51	40948 non-null	int64
51	Base DateTime weekday52	40948 non-null	int64
52	Base DateTime weekday53	40948 non-null	int64
53	Targets	40948 non-null	int64

dtypes: float64(15), int64(39)
memory usage: 16.9 MB

```
In [56]: # Testing for the null values in all the datasets
          train data.isnull().sum()
Out[56]: Comments
                                        0
          Checkins
                                        0
                                        0
          TalkingAbout
          Category
                                        0
          Derived5
                                        0
          Derived6
                                        0
                                        0
          Derived7
          Derived8
                                        0
                                        0
          Derived9
          Derived10
                                        0
                                        0
          Derived11
          Derived12
                                        0
                                        0
          Derived13
          Derived14
                                        0
          Derived15
                                        0
                                        0
          Derived16
                                        0
          Derived17
          Derived18
                                        0
                                        0
          Derived19
          Derived20
                                        0
                                        0
          Derived21
                                        0
          Derived22
                                        0
          Derived23
          Derived24
                                        0
          Derived25
                                        0
          Derived26
                                        0
                                        0
          Derived27
                                        0
          Derived28
                                        0
          Derived29
          CC1
                                        0
          CC2
                                        0
          CC3
                                        0
          CC4
                                        0
          CC5
                                        0
          BaseTime
                                        0
          PostLength
                                        0
          PostShareCount
                                        0
          PostPromotionStatus
                                        0
                                        0
          HLocal
          PostPublishedWeekday40
                                        0
          Post PublishedWeekday 41
                                        0
          Post published weekday42
                                        0
          Post published weekday43
                                        0
          Post published weekday44
                                        0
          Post published weekday45
                                        0
          Post published weekday46
                                        0
          Base DateTime weekday47
                                        0
          Base DateTime weekday48
                                        0
          Base DateTime weekday49
                                        0
          Base DateTime weekday50
                                        0
          Base DateTime weekday51
                                        0
          Base DateTime weekday52
                                        0
          Base DateTime weekday53
                                        0
```

Targets dtype: int64

ets

Out[98]:

	Comments	Checkins	TalkingAbout	Category	Derived5	Derived6	Derived7	Deri
Comments	1.000000	0.044838	0.623436	-0.042171	0.059575	0.158716	0.166424	0.14
Checkins	0.044838	1.000000	0.166848	-0.060189	-0.002830	0.169241	0.154965	0.12
TalkingAbout	0.623436	0.166848	1.000000	-0.148700	0.181431	0.482027	0.518602	0.45
Category	-0.042171	-0.060189	-0.148700	1.000000	-0.041649	-0.313588	-0.229955	-0.18
Derived5	0.059575	-0.002830	0.181431	-0.041649	1.000000	0.127578	0.474401	0.55

5 rows × 54 columns

Out[99]:

	Comments	Checkins	TalkingAbout	Category	Derived5	Derived6	Derived7	Derive
Base DateTime weekday50	0.003839	-0.006828	0.020420	-0.003172	0.004395	0.010831	0.005507	0.0013
Base DateTime weekday51	0.006069	0.000311	0.024482	-0.002929	0.006180	0.005465	0.013241	0.0127
Base DateTime weekday52	-0.003046	0.000871	-0.011427	0.011919	-0.000474	-0.001986	-0.001629	-0.0012
Base DateTime weekday53	-0.008856	-0.004316	-0.022733	-0.001766	-0.009083	-0.006290	-0.011291	-0.0096
Targets	0.058918	0.022981	0.177329	-0.073680	0.156940	0.231437	0.334984	0.3253
5 rows × 54 columns								

```
In [100]: # Plotting a heatmap
    f,ax = plt.subplots(figsize=(18, 18))
    sns.heatmap(train_data.corr(), annot=True, linewidths=.5, fmt= '.1f',ax=ax)
    # To Show the heatmap
    plt.show()
```



```
In [101]: # Defining the input and output variables
          x = train data[['Comments','Checkins','TalkingAbout','Category','Derived5','Deriv
          y = train data['Targets']
In [104]: # 3. Split the data into 90% training and 10% test sets.
          # Splitting the dataset into train and test datsets into 90% an 10% respectively
          x_train_data, x_test_data, y_train_data, y_test_data = train_test_split(x, y, test
In [105]: # Standardization of the input data
          stdScalar = StandardScaler()
          X_train_data_std = stdScalar.fit_transform(x_train_data)
          X test data = stdScalar.transform(x test data)
In [109]: # 4. Build a Linear Regressor and 2nd the Mean Squared Error(MSE) and R2 for the
          # Linear Regression Model
          linModel = linear model.LinearRegression()
          linModel.fit(X_train_data_std, y_train_data)
Out[109]: LinearRegression()
In [111]: print(linModel.intercept )
          print(linModel.coef )
          7.392044549964865
          [ 1.43330237e-01 -1.93791082e-01 -2.42341662e+00 -2.42116181e-01
           -1.83255240e+01 1.11778887e+01 9.67648046e+01 1.61059819e+01
           -2.42363073e+01 -2.29734638e+00 -2.22318148e+00 -4.12833461e+08
            2.97391219e+00 -2.21293786e+00 5.05524470e-01 5.05286277e+00
            3.50356788e+08 7.02593143e-01 -9.75333142e+00 1.54988674e+01
           -1.22523819e+01 -9.62719814e+01 -1.69214789e+01 2.85868513e+01
            2.51400373e-01 1.54406046e+00 1.93349264e+08 1.14033954e+00
            1.01610566e+00 7.88179866e+00 -3.03862219e+13 2.82968991e+13
           -1.08084370e+01 3.71333520e+13 -4.09838867e+00 -7.42187500e-02
            2.95166016e+00 -6.67167670e+12 8.09570312e-01 -3.00036610e+13
           -3.20788983e+13 -3.26184670e+13 -3.32997793e+13 -3.20537108e+13
           -3.22167363e+13 -3.14294352e+13 1.36492292e+13 1.32702676e+13
            1.34958287e+13 1.39577778e+13 1.39911098e+13 1.37090142e+13
            1.37843711e+13
In [112]: # Predicting the output
          y_predcited = Linear_model.predict(X_test_data)
          print(y predcited)
          [-14.43022108 11.12837267 17.60884142 ... 0.96040392 -4.45365858
            -3.18022108]
```

```
In [119]: # Mean Square Error and Model Scores
          print(metrics.mean_squared_error(y_test_data,y_predcited))
          print(np.sqrt(metrics.mean_squared_error(y_test_data,y_predcited)))
          print(r2 score(y test data,y predcited ))
          684.410967436207
          26.161249347770205
          0.3245565925529871
In [114]: # 5. Build a Decision Tree Regressor and 🛭 Ind the Mean Squared Error for the test
          # Decision tree Regression
          tree reg = tree.DecisionTreeRegressor(max depth=6)
          tree_reg.fit(X_train_data_std, y_train_data)
Out[114]: DecisionTreeRegressor(max_depth=6)
In [115]: | print(tree_reg.score(X_test_data,y_test_data))
          y_pred = tree_reg.predict(X_test_data)
          0.4664504352216271
In [116]: |print('Mean Squared Error:', metrics.mean_squared_error(y_test_data, y_pred))
          Mean Squared Error: 540.6332636887569
In [117]:
          importantFeatures = tree_reg.feature_importances_
          print(importantFeatures)
          [3.97192644e-03 1.77276266e-02 0.00000000e+00 1.35992570e-02
           5.65110851e-04 1.58726424e-03 1.48889506e-02 5.03765294e-03
           0.00000000e+00 1.06562896e-04 0.00000000e+00 3.44842224e-02
           0.0000000e+00 0.00000000e+00 0.0000000e+00 0.0000000e+00
           0.0000000e+00 0.0000000e+00 7.05741371e-03 0.00000000e+00
           2.21231290e-03 0.00000000e+00 0.00000000e+00 3.84810387e-02
           0.00000000e+00 0.00000000e+00 2.07156604e-03 0.00000000e+00
           0.0000000e+00 0.00000000e+00 3.50044665e-01 0.00000000e+00
           5.91085182e-02 2.76528428e-03 2.74154006e-01 0.00000000e+00
           1.65706025e-01 0.00000000e+00 0.0000000e+00 0.00000000e+00
           0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
           0.0000000e+00 0.00000000e+00 0.0000000e+00 0.0000000e+00
           0.00000000e+00 6.43059535e-03 0.00000000e+00 0.00000000e+00
           0.0000000e+00]
```

```
In [118]: tree.plot tree(tree reg)
                                   amples = 94\nvalue = 36.989'),
                                     Text(14.556521739130435, 15.531428571428563, 'mse = 1133.568 \nsamples = 93 \n
                                  value = 33.957'),
                                      Text(20.37913043478261, 15.531428571428563, 'mse = 0.0\nsamples = 1\nvalue =
                                  319.0'),
                                     Text(34.93565217391304, 77.65714285714284, 'X[30] <= 0.588 \times = 3662.217 \times = 3662.217
                                   samples = 406\nvalue = 50.293'),
                                      Text(29.11304347826087, 46.59428571428572, X[34] <= -1.663 \times = 2865.975
                                   \n in samples = 359\n invalue = 42.616'),
                                      Text(26.20173913043478, 15.531428571428563, 'mse = 5888.113\nsamples = 109\n
                                  value = 75.183'),
                                      Text(32.02434782608696, 15.531428571428563, 'mse = 884.243\nsamples = 250\nv
                                   alue = 28.416'),
                                      Text(40.75826086956522, 46.59428571428572, 'X[33] <= 1.461 \times = 5854.911 
                                  samples = 47\nvalue = 108.936'),
                                     Text(37.84695652173913, 15.531428571428563, 'mse = 5418.715\nsamples = 43\nv
                                  alue = 100.512'),
                                      Text(43.6695652173913, 15.531428571428563, 'mse = 1579.25\nsamples = 4\nvalu
                                   e = 199.5'),
                                     Text(65.50434782608696, 108.72, 'X[23] \le 2.521 \times 2.5
   In [86]: # 6. Build a GBM OR XgBoost Regressor model and @nd the Mean Squared Error for the
                                  # XG Boost Regressor Analysis
                                  xgbRegressor = xgb.XGBRegressor(
                                               n estimators=100,
                                               reg_lambda=1,
                                               gamma=0,
                                               max depth=3
                                  xgbRegressor.fit(X train data std, y train data)
                                  # Predicted the output
                                  y pred = xgbRegressor.predict(X test data)
                                  #7. What model gives the best results in terms of the MSE?
                                  mean squared error(y test data, y pred)
```

Out[86]: 363.13131254355744

Linear Regression Model gives the best results in terms of the MSE