Automation Integration Via Machine Learning: Dermason Bean Classification

By: Andrew Reusche

Outline

- Business Problem
- The Data
- Methodology
- Baseline Results
 - Logistic Regression
 - Decision Tree
- Tuned Results
 - Logistic Regression
 - Decision Tree
- Final Results
- Conclusions
- Next Steps

Business Problem

- Area of concern: Can machine learning assisted automation help improve manufacturing efficiency?
- **Metric of success**: Minimize false positive rate of classification
- Data extraction: Bean's dimensional data taken from computer vision program
- Technologies utilized: Machine Learning classification models paired with Stratified-K-Fold cross-validation and grid search optimization

The Data

Source: "Dry Bean." UCI Machine Learning Repository,

2020, https://doi.org/10.24432/C50S4B.

Contains

(7) bean types

Converted to (1)
Dermason
binary classifier

13,611 data instances

16 dimensional variables

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 13611 entries, 0 to 13610
Data columns (total 17 columns):

#	Column	Non-Null Count	Dtype		
0	Area	13611 non-null	int64		
1	Perimeter	13611 non-null	float64		
2	MajorAxisLength	13611 non-null	float64		
3	MinorAxisLength	13611 non-null	float64		
4	AspectRation	13611 non-null	float64		
5	Eccentricity	13611 non-null	float64		
6	ConvexArea	13611 non-null	int64		
7	EquivDiameter	13611 non-null	float64		
8	Extent	13611 non-null	float64		
9	Solidity	13611 non-null	float64		
10	roundness	13611 non-null	float64		
11	Compactness	13611 non-null	float64		
12	ShapeFactor1	13611 non-null	float64		
13	ShapeFactor2	13611 non-null	float64		
14	ShapeFactor3	13611 non-null	float64		
15	ShapeFactor4	13611 non-null	float64		
16	Class	13611 non-null	object		
dtypes: float64(14), int64(2), object(1)					

The Data

Limitations

Unconfirmed Classifications

Unconfirmed Measurements

Lack of additional descriptive metrics like weight and color

Data and Model Manipulation Methodology

Data Preprocessing

- DistributionNormalization
- Value Scaling
- Class Imbalance Modification

Hyperparameter Tuning

- Logistic Regression
 - **C**: regularization strength
 - solver: weights algorithm
 - fit_intercept: include intercept bias?
 - penalty: type of regularization

Hyperparameter Tuning

- Decision Tree
 - criterion: method of split quality measurement
 - max_depth : max # of decision nodes
 - min_samples_split: min # of samples required to split node
 - min_samples_leaf: min # of samples required to split be in leaf
 - max_features: max # of variables considered for each node split

Baseline Model Results: Logistic Regression

Average Cross-Validation Score for

Training Data

Specificity: 96.146%

Precision: 88.582%

Recal: 85.499%

Validation Data

Specificity: 96.187%

Precision: 88.769%

Recal: 85.613%

1

0

Baseline Model Results: Decision Tree

Average Cross-Validation Score for

Training Data

Specificity: 100%

Precision: 100%

Recal: 100%

Validation Data

Specificity: 96.352%

Precision: 89.575%

Recal: 89.389%

Predicted label

TUNING TIME

Tuned Model Results: Logistic Regression

Average Cross-Validation Score for

Training Data

Specificity: 98.004%

Precision: 93.440%

Recal: 81.224%

Validation Data

Specificity: 97.983%

Precision: 93.396%

Recal: 81.172%

	v_avg_spec	v_avg_prec	v_avg_rec	v_Kwargs_hyp_para	scaler	v_SM_RU	normalized
82	0.979831	0.933961	0.811720	{'C': 10, 'solver': 'liblinear', 'fit_intercept': True, 'penalty': 'l2'}	False	False	X_train_Norm
56	0.976966	0.929386	0.861462	{'C': 1, 'solver': 'liblinear', 'fit_intercept': False, 'penalty': 'l2'}	MinMaxScaler()	False	X_train
57	0.976966	0.929386	0.861462	{'C': 1, 'solver': 'saga', 'fit_intercept': False, 'penalty': 'l2'}	MinMaxScaler()	False	X_train
24	0.976855	0.928979	0.860518	{'C': 1, 'solver': 'liblinear', 'fit_intercept': True, 'penalty': 'l2'}	MinMaxScaler()	False	X_train
25	0.976745	0.928565	0.859885	{'C': 1, 'solver': 'saga', 'fit_intercept': True, 'penalty': 'l2'}	MinMaxScaler()	False	X_train
114	0.978949	0.927953	0.772675	{'C': 10, 'solver': 'liblinear', 'fit_intercept': False, 'penalty': 'l2'}	False	False	X_train_Norm
125	0.975533	0.927688	0.892632	{'C': 10000, 'solver': 'saga', 'fit_intercept': False, 'penalty': 'l2'}	MinMaxScaler()	False	X_train_Norm
127	0.975533	0.927672	0.892318	{'C': 100000, 'solver': 'saga', 'fit_intercept': False, 'penalty': 'l2'}	MinMaxScaler()	False	X_train_Norm
124	0.975092	0.927163	0.902389	{'C': 10000, 'solver': 'liblinear', 'fit_intercept': False, 'penalty': 'l2'}	MinMaxScaler()	False	X_train_Norm

Tuned Model Results: Decision Tree

Average Cross-Validation Score for

Training Data

Specificity: 98.668%

Precision: 98.390%

Recal: 81.428%

Validation Data

Specificity: 98.677%

Precision: 95.563%

Recal: 80.668%

	v_avg_spec	v_avg_prec	v_avg_rec	v_hyp_para	scaler	v_SM_RU	normalized
10	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.05, 'criterion': 'gini', 'min_samples_leaf': 0.1425,	False	True	X_train
22	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.05, 'criterion': 'gini', 'min_samples_leaf': 0.1425, 'max_features': 4}	False	True	X_train
34	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.1, 'criterion': 'gini', 'min_samples_leaf': 0.1425,	False	True	X_train
46	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.1, 'criterion': 'gini', 'min_samples_leaf': 0.1425,	False	True	X_train
58	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.15, 'criterion': 'gini', 'min_samples_leaf': 0.1425, 'max_features': 4}	False	True	X_train
70	0.986774	0.955633	0.806682	{'max_depth': 2, 'min_samples_split': 0.15, 'criterion': 'gini', 'min_samples_leaf': 0.1425,	False	True	X_train

FINAL TEST

Final Model: Decision Tree

Preprocessing

Scaler: None

Normalization: False

SMOTE/RandUnd: True

Hyperparameters

max_depth: 2

min_samples_split: 0.05

criterion: gini

min_samples_leaf: 0.1425

max_features: 4

Performance Scores:

Specificity: 98.286%

Precision: 94.444%

Recal: 78.108%

Conclusion

Classification via Supervised Machine Learning can help implement process automation.

Up to 78% of the target beans could be classified, and the rest can still be sold for profit.

<2% of non-target beans are falsely classified, and <6% of beans classified as target are falsely classified. The need for manual bean filtering could be significantly reduced, but maybe not completely eliminated.

Next Steps

More Sensors = Better Results?

New Models = Better Results?

New Metrics = Grade and Quality
Classifications

Thank you!

• Email: A.J.Reusche@gmail.com

• Github:

https://github.com/AndrewReusche

• LinkedIn:

https://www.linkedin.com/in/andrew-reusche-1397bb311/

