Mini-project Topics – ICT Global Object-Oriented Language and Theory

Nguyen Thi Thu Trang, trangntt@soict.hust.edu.vn

Guidelines:

- All the mini-projects must be designed and implemented in Java and by students themselves. If the teacher find out that students don't write the source code (even a part of it), the score will be 0.
- Milestones:
 - o 8th week: Choosing mini-project topic, starting to study the mini-project
 - Monitor should submit the list of groups and corresponding mini-project topic by the end of Tuesday, 2nd of April 2019.
 - o 9th week: Midterm day off
 - Working in group for the mini-project
 - o 10th-11th week: Normal labs
 - o 12th: Doing and discussion about mini-projects at lab
 - o 13th week: Day off for Reunification Day (30 April). If any compensation, doing and discussion about mini-projects at lab.
 - Deadline for final submission: 4th of May
 - o 14th-15th-16th week: Presenting your results at lab: 15 minutes for each group

Please choose one topic below, but you should keep the balance for the number of groups for each topic. Visual demonstration here means using visual objects/shapes to present laws/algorithm (this is one way to present: https://www.youtube.com/watch?v=es2T6KY45cA).

- 1. An application to (visually) demonstrate Newtons laws of motion
- 2. An application to (visually) demonstrate following data structures and algorithms:
 - a. Stack
 - b. LinkedList
 - c. BalancedTree
- 3. An application to (visually) demonstrate following data structures and algorithms:
 - a. Queue
 - b. ArrayList
 - c. HashTable
- 4. An application to (visually) demonstrate following algorithms:
 - a. Insertion sort
 - b. Shell sort
 - c. Tower of Hanoi Problem
- 5. An application to (visually) demonstrate following sorting algorithms
 - a. Bubble sort
 - b. Quick sort
 - c. Heap sort
 - d. Radix sort

- 6. An application to (visually) demonstrate sorting algorithms
 - a. Bubble sort
 - b. Selection sort
 - c. Merge sort
 - d. Bucket sort
- 7. An application to (visually) demonstrate graph algorithms
 - a. Breadth First Search (BFS)
 - b. Depth First Search (DFS)
 - c. Shortest Path from source to all vertices **Dijkstra**
- 8. An application to (visually) demonstrate searching algorithms
 - a. Sequential searching
 - b. Binary searching
 - c. A* algorithm