

Status Masterarbeit

Themen

Masterarbeit Overleaf

Registration Basics

• Registration Literature

Supervised Registration

• Unsupervised Registration

Supervised Segmentation

Masterarbeit Overleaf

Project

https://de.overleaf.com/project/5e9f188573655800011ff5cd

Synced with OLS

https://pypi.org/project/overleaf-sync/

Registration Basics

Registration Basics

- The SyN algorithm from ANTs was tested on our data set.
- A purely intensity-based metric did not show sufficient results.
 - Image could be enhanced (background information) for better results.
 - An additional label-based metric should be tested.

Registration Literature

• Deep learning approaches for registration were made in several publications.

Property	de Vos et al.	Fan et al.	Krebs et al.	Yang et al.
Registration Model	affine + B-spline	SyN	SVF	LDDMM
Framework	none	ANTs [?]	Log-Euclidean [?]	PyCA [?]
Parametric	true	false	false	false
Diffeomorphic	false	true	true	true
Metric variables	warp	warp +	warp	warp
		displacement		
Metric type	intensity	intensity	intensity	intensity
Metric	MSD, CC, MI	MSD + MSD	CC	SSD
Transformation	linear +	linear +	linear +	linear +
	non-linear	non-linear	non-linear	non-linear
Network Name	DLIR	BIRNet	-	Quicksilver
Network Model	deterministic	deterministic	probabilistic	probabilistic
Network Architecture	custom AE	filled U-Net	CVAE	BNN
Supervision	unsupervised	supervised	unsupervised	supervised
Modalities	inter, intra	intra	intra	inter, intra
Image space	3D	3D	3D	3D

Supervised Registration

Supervised Registration

• Ground truth displacements and affine transformations can be generated with for example SyN. First trials have shown that a pure intensity-based metric is not sufficient.

- If intensity-based approach can not be improved, a label-based metric should be incorporated.
- A composed loss is proposed here similar to the one from Fan et al.
- The loss component coming from the warped and fixed image should take care of an intensity-based (optional label-based) metric.

Unsupervised Registration

Unsupervised Registration

• The unsupervised approach will only work if we can find a proper way to work with intensity-based metrics.

 A label-based metric can not be applied here. This would lead again to a supervised task.

• If the unsupervised registration is feasible, the training can be improved with data synthetization through a probabilistic model. What would be the difference to simple data augmentation?

Supervised Segmentation

Supervised Segmentation

Can we start with a hot-pixel segmentation?

• If we exclude hot-pixel segmentation right away, we need to first generate segmentation masks from the labeled data.

Auxiliary training input like image gradients might be beneficial.