

IN THE CLAIMS

Claim 1 (currently amended):

1. A method for making an optical fiber, comprising the steps of:
providing an optical fiber preform having a longitudinal axis;
heating at least a portion of the optical fiber preform in a heat source as
the optical fiber preform passes therethrough;
~~rotating the optical fiber preform about its longitudinal axis and with
respect relative to the heat source at a rotation rate that is less than
approximately 600 revolutions per minute (rpm); and~~
~~drawing an optical fiber from the heated, rotated optical fiber preform; and~~
~~spinning the optical fiber as it is being drawn from the heated optical fiber
preform.~~

Claim 2 (canceled)

Claim 3 (currently amended):

3. The method as recited in claim 1, wherein the ~~rotating step rotates the
optical fiber preform about its longitudinal axis and with respect to the heat
source at a constant rate of relative rotation is constant.~~

Claim 4 (canceled)

Claim 5 (currently amended):

5. The method as recited in claim 1, wherein the ~~rotating step rotates the
optical fiber preform about its longitudinal axis and with respect to the heat
source in a first direction of relative rotation is unidirectional.~~

Claim 6 (canceled)

Claim 7 (currently amended):

7. The method as recited in claim 1, wherein the ~~rotating step further comprises the steps of maintaining the heat source~~ is maintained rotationally stationary and ~~rotating the optical fiber preform~~ is rotated about its longitudinal axis.

Claim 8 (currently amended):

8. ~~A method for making an optical fiber, comprising the steps of:~~
~~providing an optical fiber preform having a longitudinal axis;~~
~~heating at least a portion of the optical fiber preform in a heat source as~~
~~the optical fiber preform passes therethrough;~~
The method as recited in claim 1, wherein maintaining the optical fiber preform is maintained rotationally stationary [[;]] and
rotating the heat source is rotated about the longitudinal axis of the optical fiber preform.

Claim 9 (canceled)

Claim 10 (original):

10. The method as recited in claim 1, wherein the optical fiber has a PMD coefficient less than approximately 0.2 picoseconds/(kilometer)^{1/2}.

Claim 11 (currently amended):

11. The method as recited in claim 1, wherein the heat source ~~further comprises a furnace.~~

Claims 12-21 (canceled)