

Winning Space Race with Data Science

Diogo Gomes 2022-11

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection (API and web scraping)
 - Data Wrangling
 - EDA Exploratory Data Analysi, with further Data Visualization
 - Interactive Visual Analytics Folium
 - Machine Learning Predictions
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive analytics in screenshots
 - Predictive Analytics result

Introduction

- Project background and context
 - The object is to evaluate how viable would be for company SpaceY to compete with Space X
- Problems you want to find answers
 - Can we predict if a rocket will land successfully?
 - Identify the features that determine the success rate or rocket landing

Methodology

Executive Summary

- Data collection methodology:
 - Dataset was collected using SpaceX API and web scraping
- Perform data wrangling
 - Categorical features were processed to be represented as one-hot-encoding
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Dataets collected from spaceX api: https://api.spacexdata.com/v4/rockets/
- Web scraping from wikipedia

Data Collection – SpaceX API

SpaceX offers a public api

• Source code:

https://github.com/diogosmg/coursera-DSCapstone/blob/master/Data%2 OCollection%20API.ipynb

Data Collection - Scraping

 Web scraping from Wikipedia using Beautiful soup

 https://github.com/diogosmg /coursera DSCapstone/blob/master/Dat a%20Collection%20API.ipyn
 b

```
1. Apply HTTP Get method to request the Falcon 9 rocket launch page
In [4]: static_url = "https://en.wikipedia.org/w/index.php?title=List_of_Falcon_9_and_Falcon_Heavy_launches&oldid=1027686922"
          # use requests.get() method with the provided static url
           # assign the response to a object
          html_data = requests.get(static_url)
          html_data.status_code
Out[5]: 200
    2. Create a BeautifulSoup object from the HTML response
           # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
           soup = BeautifulSoup(html_data.text, 'html.parser')
          Print the page title to verify if the BeautifulSoup object was created properly
           # Use soup.title attribute
           soup.title
          <title>List of Falcon 9 and Falcon Heavy launches - Wikipedia</title>
       Extract all column names from the HTML table header
          column_names = []
          # Apply find all() function with "th" element on first launch table
          # Iterate each th element and apply the provided extract column from header() to get a column name
          # Append the Non-empty column name ('if name is not None and len(name) > 0') into a list called column names
          element = soup.find all('th')
          for row in range(len(element)):
                 name = extract_column_from_header(element[row])
                 if (name is not None and len(name) > 0):
                    column names.append(name)
                 pass
```

Data Wrangling

- EDA performed to determine the training labels.
- https://github.com/diogosmg/coursera-DSCapstone/blob/master/EDA%20-%20Data%20wrangling.ipynb

EDA with Data Visualization

- Scatterplots and barplots
- https://github.com/diogosmg/coursera-DSCapstone/blob/master/EDA%20with%20Data%20Visualization.ipynb

EDA with SQL

• SQL Queries:

- The names of unique launch sites in the space mission.
- The total payload mass carried by boosters launched by NASA (CRS)
- The average payload mass carried by booster version F9 v1.1
- The total number of successful and failure mission outcomes
- The failed landing outcomes in drone ship, their booster version and launch site names.

• https://github.com/diogosmg/coursera-DSCapstone/blob/master/EDA%20with%20SQL.ipynb

Build an Interactive Map with Folium

- Launch sites were added to the map as markers, circles and lines
- https://github.com/diogosmg/coursera-DSCapstone/blob/master/Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

Build a Dashboard with Plotly Dash

- Percentage of launches by site and payload range
- https://github.com/diogosmg/coursera-DSCapstone/blob/master/Interactive%20Visual%20Analytics%20with%20Folium%20lab.ipynb

Predictive Analysis (Classification)

- Dataset was loaded as pandas dataframe, and split into training and testing dataset
- We developed different ML models to identify the best performing algorithm
- https://github.com/diogosmg/coursera-DSCapstone/blob/master/MLPrediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

Launch Site Names Begin with 'CCA'

Out[11]:		date	time	boosterversion	launchsite	payload	payloadmasskg	orbit	customer	missionoutcome	landingoutcome
	0	2010-04- 06	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
	1	2010-08- 12	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
	2	2012-05- 22	07:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
	3	2012-08- 10	00:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
	4	2013-01- 03	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

Total Payload Mass

```
Display the total payload mass carried by boosters launched by NASA (CRS)

In [12]:

task_3 = '''

SELECT SUM(PayloadMassKG) AS Total_PayloadMass
FROM SpaceX
WHERE Customer LIKE 'NASA (CRS)'

create_pandas_df(task_3, database=conn)

Out[12]:

total_payloadmass

0 45596
```

Average Payload Mass by F9 v1.1

```
Display average payload mass carried by booster version F9 v1.1

In [13]:

task_4 = '''

SELECT AVG(PayloadMassKG) AS Avg_PayloadMass
FROM SpaceX
WHERE BoosterVersion = 'F9 v1.1'

'''

create_pandas_df(task_4, database=conn)

Out[13]:

avg_payloadmass
0 2928.4
```

First Successful Ground Landing Date

Successful Drone Ship Landing with Payload between 4000 and 6000

```
List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

In [15]: 

**sql select BOOSTER_VERSION from SPACEX where LANDING_OUTCOME='Success (drone ship)' and PAYLOAD_MASS_KG_ BETWEEN 40

**ibm_db_sa://xtw67748:***@b70af05b-76e4-4bca-a1f5-23dbb4c6a74e.clogj3sd0tgtu0lqde00.databases.appdomain.cloud:32716/bludb
Done.

Out[15]: 

**booster_version**

F9 FT B1022

F9 FT B1021.2

F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

2015 Launch Records

	Done.						
Dut[19]:	1	mission_outcome	booster_version	launch_site			
	1	Success	F9 v1.1 B1012	CCAFS LC-40			
	2	Success	F9 v1.1 B1013	CCAFS LC-40			
	3	Success	F9 v1.1 B1014	CCAFS LC-40			
	4	Success	F9 v1.1 B1015	CCAFS LC-40			
	4	Success	F9 v1.1 B1016	CCAFS LC-40			
	6	Failure (in flight)	F9 v1.1 B1018	CCAFS LC-40			
	12	Success	F9 FT B1019	CCAFS LC-40			

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

Section 3 **Launch Sites Proximities Analysis**

<Folium Map Screenshot 1>

<Folium Map Screenshot 2>

Dashboard

< Dashboard Screenshot 2>

Section 5 **Predictive Analysis** (Classification)

Classification Accuracy

```
models = {'KNeighbors':knn cv.best score ,
              'DecisionTree':tree cv.best score ,
              'LogisticRegression':logreg_cv.best_score_,
               'SupportVector': svm cv.best score }
bestalgorithm = max(models, key=models.get)
print('Best model is', bestalgorithm,'with a score of', models[bestalgorithm])
if bestalgorithm == 'DecisionTree':
    print('Best params is :', tree cv.best params )
if bestalgorithm == 'KNeighbors':
    print('Best params is :', knn cv.best params )
if bestalgorithm == 'LogisticRegression':
    print('Best params is :', logreg cv.best params )
if bestalgorithm == 'SupportVector':
    print('Best params is :', svm cv.best params )
Best model is DecisionTree with a score of 0.8732142857142856
Best params is : {'criterion': 'gini', 'max depth': 6, 'max features': 'auto', 'min samples leaf': 2, 'min samples split': 5, 'splitter': 'random'}
```

Confusion Matrix

Conclusions

- Launches above 7ton are less risky
- Launch success rate increased from 2013 on.
- Decision Tree classified is the algorithm that performed the best for this task

Appendix

