UiO IN-BIOS5000/9000

RNA-seq differential expression analysis

Arvind Sundaram Nov 07, 2024

Norwegian Sequencing Centre OUS, Ullevål, Oslo

Transcriptome

A transcriptome is a snapshot in time of all RNAs present in a sample isolated from a given cell, tissue or organism

Transcription

Copying information from DNA to a RNA molecule for regulation or translation to protein

Eukaryotic mRNA processing

Eukaryotic mRNA processing

Splicing

Transcriptome

Study individual variation

Obtaining transcriptome

- * Sanger sequencing
 - mRNA converted to the more stable cDNA
 - cDNA cleaved and ligated into vectors
 - * Vectors amplified (cloned) in *E. coli*
 - * DNA isolated = cDNA library
 - Sequenced on Sanger
 - Low throughput
 - * High accuracy

Quantifying expression

- * Quantitative RT-PCR
 - * qRT-PCR requires knowledge of gene sequence
 - Hard manual work
 - Low throughput
 - Expression level relative to control (house-keeping gene)

Quantifying expression

* Microarray

- * Requires gene sequences for probe design
- High throughput compared to qRT-PCR
- * Possibility of outsourcing
- Expression results relative to all probes

Quantifying expression

* RNA-seq

- * Transcriptome and expression in one go
- * No need for gene sequence information
- * High throughput
- * Can be outsourced
- Costly, but effective
- Expression results relative to all transcripts

Sequence data analysis

- * Is genome available?
- * Well annotated?

- * De novo approach
- Reference based approach
- * Transcriptome
- Genome+Transcriptome
- * Mixed approach??

Short reads (Illumina) + Long reads (PacBio, ONT)

Mapping sequence data

Library prep (Illumina)

- RNA sequencing
 - Total RNA
 - * mRNA
 - * small RNA
 - Ribosome profiling

- TruSeq Stranded Total RNA kit
- * TruSeq Stranded mRNA kit
- * TruSeq small RNA kit

- High quality and quantity of RNA
- Do you want to sequence rRNA??

Depth

More

depth

- * RNA sequencing
 - Highly expressed known transcripts
 - Novel isoforms
 - Low expressed/rare transcripts

Counting

- * Feature genes, transcript or exon
- * How many reads aligned to each feature of interest?
- * What is the length of the feature?

- * Raw count calculated from BAM files using featureCounts, HTSeq, etc
- * Most (all) DE tools would require raw count file and not (pre) scaled data.

Differential expression

- * Genes
- Transcripts (Isoforms)
- Allele specific expression
- Exon level expression

Normalisation

- Normalisation within and across samples
- Count gets converted to RPKM, FPKM or TPM
- RPKM (Reads Per Kilobase Million)

Scaling factor = Total number reads / 1,000,000

RPM = Read count per feature / scaling factor

RPKM = RPM / Feature length in kilo bases

FPKM (Fragments Per Kilobase Million)

FPM = Fragment count per feature / scaling factor

FPKM = FPM / Feature length in kilo bases

TPM (Transcripts Per Kilobase Million)

RPK = Read count per feature / Feature length in kilo bases

Scaling factor = sum of RPK / 1,000,000

TPM = RPK / Scaling factor

DESeq2 (or edgeR) is different!! https://www.youtube.com/watch?v=UFB993xufUU

DESeq2

- * Generalised linear model fit
 - Using negative binomial distortion (aka gamma-Poisson distribution)
- Empirical Bayes shrinkage
 - for within-group variability, i.e., variability between replicates
- Fold change estimation
- Not just pair-wise comparison. Allows for complicated nested designs to be compared

Multiple hypothesis testing and FDR

Multiple hypothesis testing

- Thousands of genes = thousands of hypothesis tests (simultaneously)
- Increased chance of false positives! (Type I error)
 - e.g. you test for differential expression in 1000 genes that are not differentially expressed
 - * You would expect $1000 \times 0.05 = 50$ of them to have a *P*-value < 0.05
- Individual P-values not useful: Need multiple testing statistic instead

False Discovery date (Benjamini & Hochberg 1995)

- * The expected proportion of Type I errors among the rejected hypotheses
 - i.e. the proportion of false positives
 - * Tends to be conservative if many genes are DE
 - * FDR = 0.05 common for exploratory/broad scope studies
 - * FDR < 0.05 common for medical applications and hunts for candidate genes

DESeq2

- plotDispEsts(): To look at the dispersion plots
- plotPCA(): To find outliers
- plotMA(): Exploring DE results

DE list. What next?

* Heatmap

- Possible to make heatmaps using cummeRbund,
 DESeq2 and edgeR or in R
- * Tool: MeV TM4
- Using normalised count information

DE list. What next?

- Clustering
 - Gene (feature level)
 - Sample level
 - Hierarchical
 - CAST: Clustering Affinity Search
 Technique
- Personal favorite MeV TM4
 - * Possible in R

DE list. What next?

- Functional profiling of gene lists
 - Gene Ontology (GO) enrichment analysis
 - Biological process
 - Cellular components
 - Molecular function
 - KEGG pathway enrichment analysis
- * Tools
 - * GOrilla (http://cbl-gorilla.cs.technion.ac.il/)
 - * Comprehensive tool g:Profiler (http://biit.cs.ut.ee/gprofiler/)

