Structure	Point group	Graph	Formula	Dimensionality	Example	Dihedrals	Diagram
1	T_d	K_4	${ m A}_4$	Pyramidal	P_4	$\cos^{-1}\left(\frac{1}{3}\right)$	
2	C_{3v}	S_3	A_3B	Pyramidal	${ m H_3N}$	$\cos^{-1}\left(\frac{\cos\theta(1-\cos\theta)}{\sin^2\theta}\right)$	
3	C_s	S_3	A_2BC	Pyramidal	$\mathrm{Cl_2OS}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
4	D_{2h}	$K_4 - e$	A_2B_2	Planar	$\mathrm{Cl_2Cu_2}$	0 or 180	cu Ci Cu
5	C_{2v}	$K_4 - e$	A_2B_2	Pyramidal	$\mathrm{H_2Si_2}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
6	C_2	P_4	A_2B_2	Pyramidal	$\mathrm{H_2O_2}$	$\cos^{-1}\left(\frac{\cos\theta - \cos^2\varphi}{\sin^2\varphi}\right)$	
7	C_1	P_4	A_2BC	Pyramidal	${ m H_2OS}$	$\cos^{-1}\left(\frac{\cos\theta - \cos\varphi\cos\phi}{\sin\varphi\sin\phi}\right)$	§ — ®
8	D_{3h}	S_3	A_3B	Planar	BH_3	0 or 180	
9	C_s	P_4	A_2BC	Planar	HNSi_2	0 or 180	SI1 — N— (52
10	D_{2h}	C_4	A_2B_2	Planar	$\mathrm{Br_2Na_2}$	0 or 180	
11	C_{2v}	P_4	A_2B_2	Planar	O_2S_2	0 or 180	
12	C_{2v}	S_3	A_2BC	Planar	CFO_2	0 or 180	
13	$D_{\infty h}$	P_4	A_2B_2	Linear	C_2H_2	0 or 180	
14	$C_{\infty v}$	P_4	A_2BC	Linear	$\mathrm{C}_2\mathrm{AuH}$	0 or 180	Au C C
15	C_s	$T_{3,1}$	A_2B_2	Planar	$\mathrm{H_2Si_2}$	0 or 180	H(1) (H(2) (S(2) (
16	C_s	S_3	ABCD	Planar	CBrFO	0 or 180	FOO GR
17	C_{2v}	$K_4 - e$	A_3B	Planar	C_3Si	0 or 180	
18	C_{2v}	$K_4 - e$	A_3B	Planar	C_3Si	0 or 180	s C(1)

Structure	Point group	Graph	Formula	Dimensionality	Example	Dihedrals	Diagram
19	C_{3v}	K_4	A_3B	Pyramidal	AsP_3		
20	C_{2h}	P_4	A_2B_2	Planar	$\mathrm{H_2N_2}$		

Shape 1: P_4

Since all faces of a regular tetrahedron are equilateral triangles, $\theta = 60^{\circ}$. The dihedral angles φ in a regular tetrahedron are given by $\cos^{-1}\left(\frac{1}{3}\right)$. We therefore have the following z-matrix:

 $\begin{array}{|c|c|c|c|c|c|} \hline P & & & & & \\ P & 1 & r & & & \\ P & 1 & r & 2 & \theta_3 & & \\ P & 1 & r & 2 & \theta_3 & 3 & \varphi & \\ \hline \end{array}$

Shape 2: NH₃

Since the three H atoms form an equilateral triangle, $\theta_2 = 60^{\circ}$. Also, (at least some of) the dihedral angles φ are given by the following simplified form for the dihedral law of cosines:

Dihedral angles between various pairs of planes

$$\varphi = \cos^{-1} \left(\frac{\cos \theta \left(1 - \cos \theta \right)}{\sin^2 \theta} \right). \tag{1}$$

We therefore have the following z-matrix:

Shape 3: Cl₂OS

	Information provided
r_1	S-O bond length
r_2	S-Cl bond length
$ heta_1$	Cl-S-O bond angle
$ heta_2$	Cl-S-Cl bond angle
φ	Cl-S-O-Cl dihedral angle
	Information missing
r_3	Cl-O distance
θ_3	
θ_4	
θ_5	
$arphi_i$	Dihedral angles between various other pairs of planes

They gave the dihedral angle but didn't need to, because it's exactly what we would get from the dihedral law of cosines. The missing geometric information is provided below:

$$r_3 = \sqrt{r_1^2 + r_2^2 - 2\cos\theta_1} \tag{2}$$

Shape 4: Cl₂Cu₂

We need to first undersatnd why one pair of atoms has a dashed line between them and the other pair does not.

	Information provided
$r_1 \\ \theta_1$	
	Information missing
r_2 θ_2 φ_i	Dihedral angles between various pairs of planes

We therefore have the following z-matrix:

$$\begin{array}{|c|c|c|c|c|c|} \hline \textbf{N} & & & & & \\ \textbf{H} & 1 & r_2 & & & \\ \textbf{H} & 1 & r_2 & 2 & \theta_1 & \\ \textbf{H} & 1 & r_2 & 2 & \theta_1 & 3 & \varphi \\ \hline \end{array}$$

Shape 5: H_2Si_2

Information p	provided
---------------	----------

- r_1 Si-Si bond length
- r_2 Si-H bond length
- φ Dihedral angle between two Si-Si-H planes

Information missing

- r_3 H-H distance
- θ_1 H-Si-H bond angle
- θ_2 Si-H-Si bond angle
- θ_3 Si-Si-H bond angle
- θ_4 H-H-Si angle
- φ_i Dihedral angles between various other pairs of planes

For a z-matrix, in addition to the information provided we would need at least one planar angle, despite none being provided from the experimental paper. The missing geometric information can be provided based on the information provided from the experimental paper though:

$$r_3 = \sin\frac{\varphi}{2}\sqrt{4r_2^2 - r_1^2},\tag{3}$$

$$\theta_1 = \cos^{-1} \left(\frac{\cos \varphi \left(4r_1^2 - r_2^2 \right) + r_2^2}{4r_1^2} \right),\tag{4}$$

$$\theta_2 = \cos^{-1}\left(1 - \frac{1}{2}\left(\frac{r_1}{r_2}\right)^2\right),\tag{5}$$

$$\theta_3 = \cos^{-1}\left(\frac{r_1}{2r_2}\right),\tag{6}$$

$$\theta_4 = \frac{\pi - \theta_1}{2}.\tag{7}$$

An alternative formula for θ_1 is:

$$\theta_1 = \sin^{-1}\left(\frac{\sin\left(\frac{\varphi}{2}\right)\sqrt{4r_2^2 - r_1^2}}{r_2}\right). \tag{8}$$

For the first column of the z-matrix, we have 6 possibilities which are listed below along with the possible planar angles that could be used for each of these possibilities:

This means that if we know θ_3 or θ_4 then we have enough to complete the planar angles column of the z-matrix, but if we only know θ_1 or θ_2 , we would need to determine two of the angles rather than one. Since θ_3 is a "bond angle" in the original reference and θ_4 is not, we will present a formula for θ_3 :

We can now write a z-matrix. Since the first option in the above table will lead to usage of r_1 and r_2 in lexicographical order (these bond angles are presented as they were in Landolt-Bornstein), we will use that option:

Shape 6: H_2O_2

	Information provided
r_1	H-O bond length
r_2	O-O bond length
$ heta_1$	H-O-O bond angle
φ	H-O-O-H dihedral angle
	Information missing
r_3	Information missing HH distance
r_3 r_4	
•	HH distance
r_4	HH distance OH distance
$r_4 \\ heta_2$	HH distance OH distance H-H-B bond angle

We therefore have the following z-matrix:

Shape 7: H₂OS

Peilin's molecule

	Information provided
r_1	H-O bond length
r_2	O-S bond length
r_3	S-H bond length
$ heta_1$	H-O-S bond angle
θ_2	H-S-O bond angle
φ	H-O-S-H dihedral angle
	Information missing
r_4	HH distance
r_5	HO distance
r_6	HS distance
θ_3	HH-O angle
θ_4	HHO angle
θ_5	H-OH angle
θ_6	HO-S angle
θ_7	H-SH angle
θ_8	HS-O angle
φ_i	Dihedral angles between various pairs of planes

We therefore have the following z-matrix:

Shape 8: BH₃

Hemanth's molecule

	Information provided
r_1	B-H bond length
	Information missing
r_2 θ_1 θ_2 θ_3 φ_i	H-H distance H-B-H bond angle H-H-B bond angle H-H-H angle Dihedral angles between various pairs of planes

Since the three H atoms form an equilateral triangle, $\theta_3=60^\circ.$ We therefore have the following z-matrix:

Shape 9: HNSi₂

Mia finished this but still needs to type it in LaTeX.

	Information provided				
r_1	H-Si bond length				
r_2	Si-N bond length				
r_3	N-Si bond length				
$ heta_1$	Si-N-Si bond angle				
θ_2	H-Si-N bond angle				
	Information missing				
r_4	NH distance				
r_5	SiSi distance				
r_6	SiH distance				
θ_3	N=SiSi angle				
$ heta_4$	HSiSi angle				
θ_5	H-SiSi angle				
θ_6	HSi-N angle				
φ_i	Dihedral angles between various other pairs of planes				

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

Shape 10: Br_2Na_2

Abdul's molecule

	Information provided
$r_1 \\ \theta_1$	Br-Na bond length Br-Na-Br bond angle
	Information missing
r_2	BrBr distance
r_3	NaNa distance
$ heta_1$	BrBr-Na angle
θ_2	Br-NaNa angle
θ_3	Na-Br-Na angle
φ_i	Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Abdul): But we can make the z-matrix with only information given to us originally:

Si						
N	1	r_1				
Si	2	r_2	1	$ heta_1$		
H	3	r_3	2	$ heta_2$	1	φ

Shape 11: O_2S_2

Abdul's molecule

	Information provided
r_1 r_2	O-S bond length S-S bond length
θ_1	O-S-S bond angle
	Information missing
r_3	OO distance
r_4	OS distance
θ_2	OO-S angle
θ_3	OOS angle
$ heta_4$	O-SO angle
θ_5	OS-S angle
φ_i	Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Abdul): But we can make the z-matrix with only information given to us originally:

Shape 12: CBrO₂

Hemanth's molecule

Information	provided

- r_1 C-Cl bond length
- r_2 C=O bond length
- θ_1 Cl-C-Cl bond angle

Information missing

- r_3 Cl...Cl distance
- r_4 Cl...O distance
- θ_2 C-Cl...Cl angle
- θ_3 C-Cl...O angle
- θ_4 C-O...Cl angle
- θ_5 Cl-C...O angle
- θ_6 Cl...Cl...O angle
- θ_7 Cl...O-C angle
- θ_8 Cl...O...Cl angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information:

$$r_3 = \sqrt{2r_1^2 - 2r_1^2 \cos \theta_1},\tag{9}$$

$$r_4 = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos\theta_2},\tag{10}$$

$$_{2} = \tag{11}$$

But we can make the z-matrix with only information given to us originally:

Shape 13: C_2H_2

Aimun's molecule

Information provided

- r_1 H-Si bond length
- r_2 Si-N bond length
- r_3 N-Si bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

Si						
N	1	r_1				
Si	2	r_2	1	$ heta_1$		
Н	3	r_3	2	θ_2	1	φ

Shape 15: H_2Si_2

Justin's molecule

Information provided

- r_1 Si-Si bond length
- r_2 Si-N bond length
- r_3 N-Si bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

Shape 16: CBrFO

Hemanth's molecule

Information provided

- r_1 C-F bond length
- r_2 C=O bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

Si						
N	1	r_1				
Si	2	r_2	1	$ heta_1$		
Н	3	r_3	2	θ_2	1	φ

Shape 17: C₃Si

Sam's molecule

Information	provided

- r_1 H-Si bond length
- r_2 Si-N bond length
- r_3 N-Si bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

Shape 18: C₃Si

Sam's molecule

Information provided

- r_1 H-Si bond length
- r_2 Si-N bond length
- r_3 N-Si bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Si} & & & & & \\ \text{N} & 1 & r_1 & & & \\ \text{Si} & 2 & r_2 & 1 & \theta_1 & & \\ \text{H} & 3 & r_3 & 2 & \theta_2 & 1 & \varphi \\ \hline \end{array}$$

Shape 19: AsP_3

Sichao's molecule

Information provided			
r_1	As-P bond length		
r_2	P-P bond length		
Information missing			
θ_1	P-As-P angle		
$ heta_2$	As-P-P angle		
θ_3	P-P-P angle		
φ_1	Dihedral angle between AsP_2 plane and AsP_2 plane		
φ_2	Dihedral angle between AsP_2 plane and P_3 plane		

We have the following expressions for the missing geometric information:

$$\theta_1 = \cos^{-1}\left(\frac{2r_1^2 - r_2^2}{2r_1^2}\right)$$

$$\theta_2 = \frac{180 - \theta_1}{2}$$

$$\theta_3 = 60$$

$$\varphi_1 = \cos^{-1}\left(\frac{\cos\theta_1(1 - \cos\theta_1)}{\sin^2\theta_1}\right)$$

$$\varphi_2 = \cos^{-1}\left(\frac{\cos\theta_2}{\sqrt{3}\sin\theta_2}\right)$$

We are able to construct the z-matrix using just the information on r_1, θ_1 and φ_1 :

Shape 20: H_2N_2

Justin's molecule

Information	provided
mormanon	provided

- r_1 H-Si bond length
- r_2 Si-N bond length
- r_3 N-Si bond length
- θ_1 Si-N-Si bond angle
- θ_2 H-Si-N bond angle

Information missing

- r_4 N...H distance
- r_5 Si...Si distance
- r_6 Si...H distance
- θ_3 N=Si...Si angle
- θ_4 H...Si...Si angle
- θ_5 H-Si...Si angle
- θ_6 H...Si-N angle
- φ_i Dihedral angles between various other pairs of planes

We have the following expressions for the missing geometric information (waiting for Mia): But we can make the z-matrix with only information given to us originally:

$$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \text{Si} & & & & & \\ \text{N} & 1 & r_1 & & & \\ \text{Si} & 2 & r_2 & 1 & \theta_1 & & \\ \text{H} & 3 & r_3 & 2 & \theta_2 & 1 & \varphi \\ \hline \end{array}$$