

Advanced Algorithms

Lecture 10
Multithreaded Algorithms

Tung Kieu

tungkvt@cs.aau.dk

Center for Data-intensive Systems

ILO of Lecture 10

- Multithreaded algorithms
 - to understand the model of dynamic multithreading, including nested parallelism and parallel loops;
 - to understand work, span, and parallelism the concepts necessary for the analysis of multithreaded algorithms;
 - to understand and be able to analyze the multithreaded merge sort algorithm.

Agenda

- Background
- Nested parallelism
- Work, span, and parallelism
- Parallel loops
- Multithreaded merge sort

Parallel computers

- Computers with multiple processing units
 - Chip multiprocessors / Low price
 - A single multi-core chip has multiple
 - My laptop: Intel® Core™ i7-7700U F
 - Clusters / Intermediate price.
 - Individual computers that are connection
 - Supercomputers / High price.
 - Combination of custom architectures the highest performance.
- Memory models
 - Shared memory: all processors can memory.
 - Distributed memory: where each processor has a private memory.
 - No agreement on a single architectural model for parallel computers so far.

Static vs. dynamic threading

- Static threading
 - Each thread maintains an associated program counter and executes code independently of the other threads.
 - Threads persist for the duration of a computation.
 - Directly using static threading is difficult and error-prone.
- Dynamic threading
 - Specify parallelism in applications without worrying implementation details.
 - A concurrency platform's scheduler does communication, load balancing, etc.
 - Nested parallelism and parallel loops.

Agenda

- Background
- Nested parallelism
- Work, span, and parallelism
- Parallel loops
- Multithreaded merge sort

Fibonacci Numbers

- Leonardo Fibonacci (1202):
 - We have a rabbit in the beginning.
 - A rabbit starts producing offspring on the second generation after its birth and produces one child each generation.
 - How many rabbits will there be after n generations?

Fibonacci Numbers (2)

- F(n)=F(n-1)+F(n-2)
- F(0) = 0, F(1) = 1
- 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ...

```
FIB(n)

1 if n \le 1

2 return n

3 else x = \text{FIB}(n-1)

4 y = \text{FIB}(n-2)

5 return x + y
```

- Straightforward recursive procedure is very very slow!
- Why? How slow? O(2ⁿ)
- Let's draw the recursion tree.

Fibonacci Numbers (3)

- We keep calculating the same value over and over!
 - Sub-problems are overlapping they share sub-sub-problems.
- Do you still remember how we can avoid calculating the same sub-problems?

Fibonacci Numbers (3)

- We keep calculating the Sub-problems are overlapping
 Sub-problems are overlapping
 Tabulation (Bottom Up)
- Do you still remember how we can same sub-problems?

Fibonacci Numbers (4)

- Recurrence
 - $T(n) = T(n-1) + T(n-2) + \Theta(1)$ Master theorem
- Since $T(n-1) \ge T(n-2)$, we have $T(n) \ge 2T(n-2) + a$
- Solving the recurrence using the repeated substitution method.
 - T(n)=2 T(n-2)+a T(n-2)=2 T(n-4)+a
 - $T(n)=2^{2}T(n-4)+(2+1)a$ T(n-4)=2T(n-6)+a

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

- $T(n)=2^3T(n-6)+(2^2+2+1)a$
- $T(n) = 2^{i}T(n-2^{*}i) + (2^{i-1} + ... + 2 + 1)a = 2^{i}T(n-2^{*}i) + a \sum_{k=0}^{i-1} 2^{k}$
- When i=n/2, $T(n)=2^{n/2}T(0) + a^* 2^{n/2}= (a+1) 2^{n/2}$
- We get
 - T(n) ≥ (a+1) $2^{n/2} \approx$ (a+1) 1.4ⁿ
- Running time is exponential!

Multithreaded version

- What if we can do the two recursive calls in parallel?
- Using the so-called nested parallelism
 - Call a procedure. Don't wait for it to return and go to next step.

F(6) = 8

 Call Fib(5), we do not need to wait for Fib(5) returns results and we can call Fib(4).

Concurrency keywords

Spawn

- If the keyword spawn precedes a procedure call, it indicates a nested parallelism.
- No need to wait for the procedure with keyword spawn.
 - We do not wait P-FIB(n-1) to complete and we can execute P-FIB(n-2) on another processing unit.

Sync

- Must wait for all spawned procedures to complete before going to the statement after sync.
 - ◆ Before "return x+y", we must wait P-FIB(n-1) to complete.

```
P-FIB(n)

1 if n \le 1
2 return n
3 else x = \text{spawn P-FIB}(n-1)
4 y = \text{P-FIB}(n-2)
5 sync
6 return x + y

FIB(n)

1 if n \le 1
2 return n
3 else x = \text{FIB}(n-1)
4 y = \text{FIB}(n-2)
5 return x + y
```

Analysis

- Recurrence:
 - $T(n) = \max(T(n-1), T(n-2)) + c = T(n-1) + c$
 - Can you try to solve this recurrence?
- Solving the recurrence, we have $T(n) = \Theta(n)$.
- The serial version is exponential whereas the multithreaded version is only linear.

$$T(n) = T(n-1) + c$$

 $T(n-1) = T(n-2) + c$
 $\Rightarrow T(n) = (T(n-2) + c) + c = T(n-2) + 2c$
 $T(n-2) = T(n-3) + c$
 $\Rightarrow T(n) = T(n-3) + 3c$
 $\Rightarrow \dots$
 $\Rightarrow T(n) = T(0) + nc$

Agenda

- Background
- Nested parallelism
- Work, span, and parallelism
- Parallel loops
- Multithreaded merge sort

Work, Span, Parallelism

- Three main concepts (informally):
 - Work the running time on a machine with one-processor (T_1) .
 - Fibonacci: $\Theta(\varphi^n)$
 - Span the running time on a machine with infinite processors (T_{∞}) .
 - ◆ Fibonacci: Θ(n)
 - Parallelism = Work/Span how many processors on average are used by the algorithm.
 - Fibonacci: $\Theta(\varphi^n/n)$
- More formally, work and span are defined using a computation DAG (directed acyclic graph).
 - Vertices are instructions or sets of instructions.
 - Edges represent dependencies between instructions.
 - An edge (u, v) means that u must execute before v.

Computation DAG

Using an example of computing Fibonacci number of 4.

```
P-FIB(n)

1 if n \le 1

2 return n

3 else x = \operatorname{spawn} \operatorname{P-FIB}(n-1)

4 y = \operatorname{P-FIB}(n-2)

5 sync

6 return x + y

Lines 1-3

Lines 4-5

Lines 6
```


Computation DAG

Edge(u, v) means that u must execute before v.

Spawned procedure

Called procedure

Work: number of vertices, 17 Span: the length of the longest path (critical path), 8 1 if $n \le 1$ 2 return n3 else x = spawn P-Fib(n-1)4 y = P-Fib(n-2)5 sync 6 return x + y

Work law and span law

- Notation
 - Work T₁
 - Span T_∞
 - Multithreaded computation on P processors: T_P
- Work law: T_P≥T₁ / P
 - An ideal parallel computer with P processors can do at most P units of work.
- Span law: T_P ≥ T_∞
 - An ideal parallel computer with P processors cannot run any faster than a machine with unlimited number of processors.

Speedup

Speedup: T₁/T_P:

- Work law
- How many times faster the computation on P processors than on a single processor.
- Recall the work law says that $T_P \ge T_1 / P$, so that the speedup must be smaller than or equal to P.
 - The speedup on a P-processor machine can at most be P.
 - If the speedup is P, we have perfect linear speedup.

Mini quiz

- Considering the case for computing P-Fib(4).
- We already know that the work $T_1 = 17$ and the span $T_{\infty} = 8$
- Consider the following setups, each setup corresponds to a machine with P processing units. Which one is the most likely setup to achieve the *perfect linear speedup*?
- P=2, P=3, P=4, P=5, P=10

Mini quiz

- Considering the case for computing P-Fib(4). We already know that the work T₁ =17 and the span T∞ = 8
- Consider the following setups, each setup corresponds to a machine with P processing units. Which one is the most likely setup to achieve the *perfect linear speedup*?
- P=2, P=3, P=4, P=5, P=10
- Span law: T_P ≥ T_∞
 - P=2, having perfect linear speedup indicates T₂ =17/2=8.5 ≥ T_∞, which is possible.
 - P=3, having perfect linear speedup indicates $T_3 = 17/3 = 5.7 \le T_{\infty}$, which is impossible.
 - So for P=4, P=5, and for any P if P is greater than 2.

Parallelism and Slackness

- Parallelism: T₁ / T_∞:
 - The maximum possible speedup that can be achieved on any number of processors.
 - Once the number of processors exceeds the parallelism, the computation cannot possibly achieve the perfect linear speedup.
- Slackness: Parallelism/P = T₁ / PT_∞
 - Assume that P increases from 1 each time by 1.
 - Slackness drops from Parallelism to 1 and then from 1 to 0.
 - Slackness >=1: closer to perfect linear speedup.
 - Slackness <1: diverges further away from perfect linear speedup.
- Example: parallelism = 10.
 - P=2, slackness=5, perfect linear speedup is possible.
 - P=10, slackness=1, perfect linear speedup is possible but more difficult than when P=2
 - P=20, slackness=0.5, impossible to achieve perfect linear speedup, i.e., 20 speed up, due to the parallelism=10

Parallelism and Slackness

- Parallelism: T₁ / T_∞:
 - The maximum possible speedup that you hieved on any number of processors.
 - Once the number of processors exceeds the paralle im, the computation cannot possibly achieve the perfect or speedup.
- Slackness: Parallelism/P ≥
 - Assume that P increas
 - Slackness drops from Paran
 - Slackness >=1: closer to
 - Slackness <1: diverges further ay
- Example: parallelism = 10.
 - P=2, slackness=5, perfect linear speed is possible.
 - P=10, slackness=1, perfect linear speedup is possible but more difficult than when P=2
 - P=20, slackness=0.5, impossible to achieve perfect linear speedup, i.e., 20 speed up, due to the parallelism=10

17/P8

17/8

 $P=1 \to 17/8$

 $P=2 \to 17/16$

 $P=3 \rightarrow 1//24$ and dup.

To Summarize

Notation	Meaning				
T ₁	Work, the running time on a machine with one processor.				
T_∞	Span, the running time on a machine with infinite processors.				
T _P	The running time on a machine with P processors.				
$T_P \ge T_1 / P$	Work law				
$T_P \geq T_{\infty}$	Span law				
T_1/T_P	Speedup. Speedup must be ≤ P according to the work law. When speedup is equal to P, it achieves <i>perfect speed up</i> .				
T_1/T_{∞}	Parallelism. The maximum possible speedup that can be achieved on any number of processors				
T ₁ / PT ∞	Slackness = Parallelism/P. The larger the slackness, the more likely to achieve perfect speed up. When slackness is less than 1, it is impossible to achieve perfect speed up.				

Analyzing multithreaded algorithms

- We have two sub-computations A and B.
- If they are joined in series:

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$

Span: $T_{\infty}(A \cup B) = T_{\infty}(A) + T_{\infty}(B)$

If they are joined in parallel:

Work: $T_1(A \cup B) = T_1(A) + T_1(B)$

Span: $T_{\infty}(A \cup B) = \max(T_{\infty}(A), T_{\infty}(B))$

Analyzing multithreaded Fibonacci

•
$$T_{\infty}(n) = \max(T_{\infty}(n-1), T_{\infty}(n-2)) + c$$

•
$$T_{\infty}(n) = T_{\infty}(n-1) + c$$

$$T_{\infty}(n-2) \leq T_{\infty}(n-1)$$

$$T_{\infty}(n-1) = \max(T_{\infty}(n-2) + T_{\infty}(n-3)) + c$$

- $T_{\infty}(n) = T_{\infty}(0) + nc$
- $T_{\infty}(n) = \Theta(n)$.
- Parallelism of P-FIB(n) is T₁(n)/ T ∞(n) = Θ(φⁿ/ n)
 - As n increases, the parallelism grows.

Agenda

- Background
- Nested parallelism
- Work, span, and parallelism
- Parallel loops
- Multithreaded merge sort

Concurrency keywords: parallel

29

- Parallel for parallel loops
 - Just like a for loop but loop executions run concurrently

```
ArrayCopy(A, B)
01 parallel for i = 1 to sizeof(A) do
02 B[i] = A[i]
```

Implemented in a divide-and-conquer manner by using spawn.

```
ArrayCopyRecursive (A, B, 1, r)Here, we only make 1 spawn.

01 if 1 > r then return What if we make 2 spawns?

02 if 1 = r then B[1] = A[r] And what if we make n-1 spawns?

03 else

04  q = \[ (1+r)/2 \]

05  spawn \[ ArrayCopyRecursive(A, B, 1, q-1) \]

\[ ArrayCopyRecursive(A, B, q, r) \]
```

```
Span: T_{\infty}(n) = \max(T_{\infty}(n/2), T_{\infty}(n/2)) = T_{\infty}(n/2) + c = \Theta(\lg n)
Work: T_{1}(n) = 2T_{1}(n/2) + c = \Theta(n)
```

Why not spawn n-1 times?

- Creating a thread is not free, but takes some time.
 - Assume that it takes constant time c.
- Implemented in a divide-and-conquer manner by using one (or a constant number of) spawn(s).

Using one spawn

```
• Span: T_{\infty}(n) = \max(T_{\infty}(n/2), T_{\infty}(n/2)) + \mathbf{c}

• T_{\infty}(n) = T_{\infty}(n/2) + \mathbf{c}

• \Theta(\lg n)

• Work: T_{1}(n) = T_{1}(n/2) + T_{1}(n/2)

• T_{1}(n) = 2T_{1}(n/2) + \mathbf{c}

• \Theta(n)
```

Why not spawn n-1 times?

- Creating a thread is not free, but takes some time.
 - Assume that it takes constant time c.
- Using two spawns
 - Span: $T_{\infty}(n) = \max(T_{\infty}(n/3), T_{\infty}(n/3), T_{\infty}(n/3)) + 2c$
 - $T_{\infty}(n) = T_{\infty}(n/3) + 2c$
 - $\Theta(\lg n)$
 - Work: $T_1(n) = 3T_1(n/3) + 2c$
 - Θ(n)

Why not doing n copies in parallel?

- Creating a thread is not free but takes some time.
 - Assume that it takes constant time c.
- If we make n-1 spawn threads and each thread copies one element, then we have the following:

```
    Span: T<sub>∞</sub>(n) = max(T<sub>∞</sub>(n/n), ..., T<sub>∞</sub>(n/n)) + (n-1)*c=
        T<sub>∞</sub>(n) = a+(n-1)*c
        Θ(n)
    Work: T<sub>1</sub>(n) = nT<sub>1</sub>(1) + (n-1)*c
        Θ(n)
```

Why not doing n copies in parallel?

- Creating a thread is not free but takes some time.
 - Assume that it takes constant time c.
- Assume that we have P processing units, and we make P-1 spawn threads.

```
• Span: T_P(n) = \max(T_P(n/P), ..., T_P(n/P)) + (P-1)*c
```

$$T_{P}(n) = T_{P}(n/P) + (P-1)*c$$

- Assume that P=2, $T_P(n) = \Theta(2\lg_2 n) = \Theta(\lg n)$
- Assume that P=3, $T_P(n) = \Theta(3lg_3n) = \Theta(lgn)$
- Assume that P=n, $T_P(n) = \Theta(n | g_n n) = \Theta(n)$

Race conditions

- Race conditions happen when
 - Two logically parallel instructions access the same memory location and at least one of the instructions performs a write.

```
RACE-EXAMPLE()

1 \quad x = 0
2 parallel for i = 1 to 2
3 x = x + 1
4 print x
```

- How to avoid?
 - Need to make sure that the two threads are independent no writing to memory that other threads are reading from.

Matrix-vector multiplication

A n*n matrix multiplies a n*1 vector. We get a n*1 vector.

$$y_i = \sum_{j=1}^n a_{ij} x_j$$
 j: row *j*: column

```
x1
x2
...
x8
```

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

5 parallel for i = 1 to n

6 for j = 1 to n

7 y_i = y_i + a_{ij}x_j

8 return y Can we make this also a parallel loop?
```

- The first parallel loop: same with ArrayCopy that we just saw.
- The second parallel loop: a bit complicated.
 - Still use D&C and Spawn.
 - Base case is the for loop with j.

Matrix-vector multiplication

A n*n matrix multiplies a n*1 vector.

a11 a21	a12a22	 a18 a28 a88	x^2
 a81	 a82	 a88	 x8

```
MAT-VEC(A, x)

1 n = A.rows

2 let y be a new vector of length n

3 parallel for i = 1 to n

4 y_i = 0

5 parallel for i = 1 to n

6 for j = 1 to n

7 y_i = y_i + a_{ij}x_j

8 return y Can we make this also a parallel loop?
```

- The first parallel loop: same with ArrayCopy that we just saw.
- The second parallel loop: a bit complicated.
 - Still use D&C and Spawn.
 - Base case is the for loop with j.

The second parallel loop

```
5 parallel for i = 1 to n
6 for j = 1 to n
7 y_i = y_i + a_{ij}x_j
```

```
MAT-VEC-MAIN-LOOP(A, x, y, n, i, i') A: input matrix.

1 if i == i' X: input vector.

2 for j = 1 to n y: output vector.

3 y_i = y_i + a_{ij}x_j n: the dimension of the vector.

4 else mid = \lfloor (i + i')/2 \rfloor i and i': start and end positions.

5 spawn MAT-VEC-MAIN-LOOP(A, x, y, n, i, mid)

6 MAT-VEC-MAIN-LOOP(A, x, y, n, mid + 1, i')

7 sync
```


Analysis

Recurrence for the span.

•
$$T_{\infty}(n) = \begin{cases} \Theta(n), & \text{if } n=1\\ \max(T_{\infty}(n/2), T_{\infty}(n/2)) + c = T_{\infty}(n/2) + c, & \text{if } n>1 \end{cases}$$

We need to solve the recurrence.

•
$$T_{\infty}(n) = T_{\infty}(n/2) + c$$
 $T_{\infty}(n/2) = T_{\infty}(n/4) + c$
• $T_{\infty}(n/2) + 2c$ $T_{\infty}(n/4) = T_{\infty}(n/8) + c$
• $T_{\infty}(n/2) + 3c$
• $T_{\infty}(n/2) + 3c$
• $T_{\infty}(n/2) + 3c$

In order to get to the base case, let 2ⁱ=n, so i=lgn.

•
$$T_{\infty}(n) = T_{\infty}(n/2^{i}) + i*c$$

• $= T_{\infty}(1) + Ign*c$
• $= \Theta(n) + \Theta(Ign)$
• $= \Theta(n)$

So the span is Θ(n).

Analysis

Recurrence for the work.

•
$$T_1(n) = \begin{cases} \Theta(n), & \text{if } n=1 \\ 2T_1(n/2) + c, & \text{if } n>1 \end{cases}$$

- The work is Θ(n²) due to the nested loops in 5-7
- The parallelism $\Theta(n^2)/\Theta(n) = \Theta(n)$

Analysis of parallel loops

• $T_{\infty}(n) = \Theta(\lg n) + \max_{1 \le i \le n} iteration_{\infty}(i)$

iteration_∞(*i*): the span of the i-th iteration in the parallel loop.

Height of the recursion tree is Θ (Ig*n*)

Arraycopy

 $max_{1 \leq i \leq n}$ iteration_∞(*i*)

- $\max_{1 \le i \le n}$ iteration_∞(i) = $\Theta(1)$, constant time, because of no iteration.
- $T_{\infty}(n) = \Theta(\lg n) + \Theta(1) = \Theta(\lg n)$
- Matrix-vector multiplication
 - $max_{1 \le i \le n}$ iteration_∞(*i*) = Θ(*n*)
 - $T_{\infty}(n) = \Theta(\lg n) + \Theta(n) = \Theta(n)$

Agenda

- Background
- Nested parallelism
- Work, span, and parallelism
- Parallel loops
- Multithreaded merge sort

Merge sort

- Run-time?
 - $T(n)=2T(n/2)+\Theta(n)$
 - Θ(nlgn)

T(n) = aT(n/b) + f(n)
a=2, b=2, f(n) = n

$$\rightarrow n^{\log_b a} = n^{\log_2 2} = n == f(n)$$

T(n) = $\Theta(n \log n)$

Multithreaded merge sort

43

```
Merge-Sort'(A, p, r)
01 if p < r then
02    q = [(p+r)/2]
03    spawn Merge-Sort'(A, p, q)
04    Merge-Sort'(A, q+1, r)
05    sync
06    Merge(A, p, q, r)</pre>
```

- Work: use W to denote T₁
 - $W(n)=2W(n/2)+\Theta(n)$
 - =Θ(*nlgn*), the same with serialized merge sort.
- Span: use S to denote T_∞
 - $S(n)=max(S(n/2), S(n/2)) + \Theta(n)$
 - $= S(n/2) + \Theta(n)$
 - $=\Theta(n)$
- Parallelism
 - $W(n)/S(n) = \Theta(nlgn)/\Theta(n) = \Theta(lgn)$.

The parallelism is rather low.
Can we do better, i.e., higher parallelism?
If yes, which part can we further

improve?

Merge

The bottleneck: the Merge() function is very serial.

- At the top level, only one processor does Θ(n) work in serial!
- At the second level, only two processors do $\Theta(n)$ work.
- · ...
- Can we make Merge more parallel?

Multithreaded merge

Main idea – make Merge() divide-and-conquer and use nested parallelism.

3. Place the pivot to the output, do 4 and 5 in parallel 4. Merge left halfs, place the result to the left of pivot

5. Merge right halfs, place the result to the right of pivot

P-Merge

T: input array.

p1... r1 and p2..r2 in T: two sorted sub-arra

A: output array.

P-MERGE $(T, p_1, r_1, p_2, r_2, A, p_3)$ p3: starting position in A.

- $1 \quad n_1 = r_1 p_1 + 1$
- $2 \quad n_2 = r_2 p_2 + 1$

3	if $n_1 < n_2$	$/\!\!/$ ensure that $n_1 \ge n_2$
	1 2	\cdots

- 4 exchange p_1 with p_2
- 5 exchange r_1 with r_2
- 6 exchange n_1 with n_2

7 **if**
$$n_1 == 0$$
 // both empty?

8 return

9 **else**
$$q_1 = |(p_1 + r_1)/2|$$

10
$$q_2 = \text{BINARY-SEARCH}(T[q_1], T, p_2, r_2)$$

11
$$q_3 = p_3 + (q_1 - p_1) + (q_2 - p_2)$$

$$12 A[q_3] = T[q_1]$$

13 **spawn** P-MERGE
$$(T, p_1, q_1 - 1, p_2, q_2 - 1, A, p_3)$$

14 P-MERGE
$$(T, q_1 + 1, r_1, q_2, r_2, A, q_3 + 1)$$

Merge the left and right halves in parallel.

Why do we need to make sure $n_1 \ge n_2$?

 q_1 : the middle element's index. $T[q_1]$: the pivot

element.
Binary search for

 $T[q_1]$ from p_2 to r_2 elements in T.

Place the pivot in the right place in A

P-Merge

- Why do we need to make sure n₁≥ n₂?
- It makes sure that the maximum number of elements in either of the divide-and-conquer marge calls is 3n/A

•
$$n_2 = (n_2 + n_2)/2 \le (n_1 + n_2)$$

- We have Ln₁/2 elen
- We have n₂ elements

•
$$L_{n_1/2} + n_2$$

$$\bullet \le n_1/2 + n_2 = n_1/2 + n_2/2 + n_2/2$$

$$\bullet = (n_1 + n_2)/2 + n_2/2$$

$$\bullet = n/2 + n_2/2$$

•
$$\leq$$
 n/2 + n/4

$$\bullet = 3n/4$$

If we select any of these elements in red as a pivot, then both L and R will have size $\leq \frac{3}{4}n$.

Running time for binary search.

Span: S(n)=max(S(
$$\alpha$$
 n), S((1- α)n)) + $\Theta(Ign)$

• =
$$S(3n/4) + \Theta(Ign)$$
. See exercise 4.6-2, CLRS.

•
$$S(n) = \Theta(Iq^2n)$$

Extension to Master Method.

Multithreaded Merge Sort with P-Merge

```
P-MERGE-SORT (A, p, r, B, s)

1  n = r - p + 1

2  if n == 1

3  B[s] = A[p]

4  else let T[1..n] be a new array

5  q = \lfloor (p + r)/2 \rfloor

6  q' = q - p + 1

7  spawn P-MERGE-SORT (A, p, q, T, 1)

8  P-MERGE-SORT (A, q + 1, r, T, q' + 1)

9  sync

10  P-MERGE (T, 1, q', q' + 1, n, B, s)
```

- Work: $W(n) = \Theta(n \lg n)$
- Span: $S(n)=max(S(n/2)+S(n/2))+\Theta(Ig^2n)=S(n/2)+\Theta(Ig^2n)$
 - \bullet $\Theta(Ig^3n)$
- Parallelism: $\Theta(n | lgn) / \Theta(lg^3n) = \Theta(n / lg^2n)$
 - This is a better (higher) parallelism compared to Θ(lgn).

P-Merge-Sort P-Merge

To summarize

• Work: $\Theta(nlgn)$

	Merge Procedure	Span	Parallelism
Naïve merge	Θ(<i>n</i>)	Θ(<i>n</i>)	Θ(<i>lgn</i>)
P-Merge	$\Theta(Ig^2n)$	$\Theta(Ig^3n)$	$\Theta(n / lg^2n)$

Goal of the multi-threaded algorithm design

- Goal of the multi-threaded algorithm design increase parallelism.
 - Parallelism = work / span
 - Usually achieved by decreasing span
 - MergeSort without P-Merge and with P-Merge
 - $\Theta(n)$ vs. $\Theta(lg^3n)$
 - It may pay off to slightly increase work, if span can be decreased significantly (in practice, relevant for highly parallel systems, such as supercomputers, GPUs)

ILO of Lecture 10

- Multithreaded algorithms
 - to understand the model of dynamic multithreading, including nested parallelism and parallel loops;
 - to understand work, span, and parallelism the concepts necessary for the analysis of multithreaded algorithms;
 - to understand and be able to analyze the multithreaded merge sort algorithm.