# Методы машинного обучения. Обучение без учителя: векторизация данных

Воронцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-22-23 орг.вопросы по курсу: ml.cmc@mail.ru

МФТИ • 28 февраля 2023

#### Методы обучения без учителя (unsupervised learning)

#### Выявление структуры данных на основе сходства:

- кластеризация (clustering) и квантизация (quantization)
- оценивание плотности распределения (density estimation)
- одноклассовая классификация (anomaly detection)

#### Преобразование признакового пространства:

- метод главных компонент (principal components analysis)
- автокодировщики (autoencoders)
- многомерное шкалирование (multidimensional scaling)
- матричные разложения (matrix factorization)

#### Поиск взаимосвязей в данных или синтез учителя:

- поиск ассоциативных правил (association rule learning)
- частичное обучение (semi-supervised learning)
- самостоятельное обучение (self-supervised learning)

#### Содержание

- 🚺 Сети Кохонена для кластеризации и визуализации
  - Задача кластеризации
  - Модели конкурентного обучения
  - Карты Кохонена
- Автокодировщики
  - Постановка задачи понижения размерности
  - Методы регуляризации
  - Применение автокодировщиков
- Векторные представления графов и текстов
  - Многомерное шкалирование
  - Векторные представления графов
  - Векторные представления текстов

#### Постановка задачи кластеризации и квантизации

#### Дано:

$$X^\ell=\{x_i\}_{i=1}^\ell$$
 — обучающая выборка объектов,  $x_i\in\mathbb{R}^n$   $ho^2(x,w)=\|x-w\|^2$  — евклидова метрика в  $\mathbb{R}^n$ 

#### Найти:

центры кластеров  $w_y \in \mathbb{R}^n$ ,  $y \in Y$ ; алгоритм кластеризации «правило жёсткой конкуренции» (WTA, Winner Takes All):

$$a(x) = \arg\min_{y \in Y} \rho(x, w_y)$$

Критерий: среднее внутрикластерное расстояние

$$Q(w; X^{\ell}) = \sum_{i=1}^{\ell} \rho^{2}(x_{i}, w_{a(x_{i})}) \to \min_{w_{y}: y \in Y}$$

Kвантизация данных — замена  $x_i$  на ближайший центр  $w_{a(x_i)}$ 

#### Сеть Кохонена (сеть с конкурентным обучением)

Структура алгоритма похожа на двухслойную нейросеть:



Градиентный шаг в методе SG: для выбранного  $x_i \in X^\ell$ 

$$w_y := w_y + \eta(x_i - w_y) \big[ a(x_i) = y \big]$$

Если  $x_i$  относится к кластеру y, то  $w_y$  сдвигается в сторону  $x_i$ 

T.Kohonen. Self-organized formation of topologically correct feature maps. 1982.

#### Алгоритм SG (Stochastic Gradient)

```
Вход: выборка X^{\ell}; темп обучения \eta; параметр \lambda;
Выход: центры кластеров w_1, \ldots, w_K \in \mathbb{R}^n;
инициализировать центры w_{v}, y \in Y;
инициализировать текущую оценку функционала:
Q := \sum_{i=1}^{\infty} \rho^{2}(x_{i}, w_{a(x_{i})});
повторять
    выбрать объект x_i из X^{\ell} (например, случайно);
    определить ближайший центр: y := \arg\min_{y \in Y} \rho(x_i, w_y);
    градиентный шаг: w_{v} := w_{v} + \eta(x_{i} - w_{v});
   оценить значение функционала:
     Q := (1 - \lambda)Q + \lambda \rho^2(x_i, w_v);
\mathbf{пока} значение Q и/или веса w не стабилизируются;
```

### Правило жёсткой конкуренции WTA (winner takes all):

$$w_v := w_v + \eta(x_i - w_v)[a(x_i) = y], \quad y \in Y$$

#### Недостатки правила WTA:

- медленная скорость сходимости
- ullet некоторые  $w_{\scriptscriptstyle V}$  могут никогда не выбираться

#### Правило мягкой конкуренции WTM (winner takes most):

$$w_{v} := w_{v} + \eta(x_{i} - w_{v}) K(\rho(x_{i}, w_{v})), \quad y \in Y$$

где ядро K(
ho) — неотрицательная невозрастающая функция

Теперь центры всех кластеров смещаются в сторону  $x_i$ , но чем дальше от  $x_i$ , тем меньше величина смещения

Модели конкурентного обучения

Карты Кохонена

#### Карта Кохонена (Self Organizing Map, SOM)

 $Y = \{1, \dots, M\} \times \{1, \dots, H\}$  — прямоугольная сетка кластеров Каждому узлу (m,h) приписан нейрон Кохонена  $w_{mh} \in \mathbb{R}^n$  Наряду с метрикой  $\rho(x_i,x)$  на X вводится метрика на сетке Y:

$$r((m_i, h_i), (m, h)) = \sqrt{(m - m_i)^2 + (h - h_i)^2}$$

Окрестность $(m_i, h_i)$ :

Teuvo Kohonen. Self-Organizing Maps. 2001.

#### Обучение карты Кохонена

```
Вход: X^{\ell} — обучающая выборка; \eta — темп обучения;
Выход: w_{mh} \in \mathbb{R}^n — векторы весов, m = 1..M, h = 1..H;
w_{mh} := \text{random}\left(-\frac{1}{2MH}, \frac{1}{2MH}\right) - \text{инициализация весов};
повторять
    выбрать объект x_i из X^\ell случайным образом;
    WTA: вычислить координаты кластера:
    (m_i, h_i) := a(x_i) \equiv \arg\min \rho(x_i, w_{mh});
    для всех (m, h) \in \mathsf{O}крестность(m_i, h_i)
    WTM: сделать шаг градиентного спуска: w_{mh} := w_{mh} + \eta(x_i - w_{mh}) \, K \big( r((m_i, h_i), (m, h)) \big);
пока кластеризация не стабилизируется;
```

#### Интерпретация карт Кохонена

Два типа графиков — цветных карт  $M \times H$ :

- Цвет узла (m,h) локальная плотность в точке (m,h) среднее расстояние до k ближайших точек выборки
- По одной карте на каждый признак: цвет узла (m,h) значение j-й компоненты вектора  $w_{m,h}$

**Пример:** задача UCI house-votes (US Congress voting patterns) Объекты — конгрессмены

Признаки — результаты голосования по различным вопросам Есть целевой признак «партия»  $\in$  {демократ, республиканец}







#### Интерпретация карт Кохонена (продолжение примера)

#### Пример: задача UCI house-votes (US Congress voting patterns)



#### Достоинства и недостатки карт Кохонена

#### Достоинства:

• Возможность визуального анализа многомерных данных

#### Недостатки:

- **Субъективность.** Карта зависит не только от кластерной структуры данных, но и от...
  - свойств сглаживающего ядра;
  - (случайной) инициализации;
  - (случайного) выбора  $x_i$  в ходе итераций.
- Искажения. Близкие объекты исходного пространства могут переходить в далёкие точки на карте, и наоборот.

Рекомендуется только для разведочного анализа данных.

#### Построение автокодировщика — задача обучения без учителя

$$X^\ell = \{x_1, \dots, x_\ell\}$$
 — обучающая выборка

$$f: X \to Z$$
 — кодировщик (encoder), кодовый вектор  $z = f(x, \alpha)$ 

$$g:Z\! o\! X$$
 — декодировщик (decoder), реконструкция  $\hat{x}\!=\!g(z,eta)$ 

Суперпозиция  $\hat{x} = g(f(x))$  должна восстанавливать исходные  $x_i$ :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) = \sum_{i=1}^{\ell} \mathscr{L}(\mathbf{g}(\mathbf{f}(\mathbf{x}_i,\alpha),\beta),\mathbf{x}_i) \to \min_{\alpha,\beta}$$

Квадратичная функция потерь:  $\mathscr{L}(\hat{x},x) = \|\hat{x} - x\|^2$ 

**Пример 1**. Линейный автокодировщик:  $x \in \mathbb{R}^n$ ,  $z \in \mathbb{R}^m$ 

$$f(x,A) = \underset{m \times n}{A} x, \qquad g(z,B) = \underset{n \times m}{B} z$$

**Пример 2**. Двухслойная сеть с функциями активации  $\sigma_f, \sigma_g$ :

$$f(x,A) = \sigma_f(Ax + a), \qquad g(z,B) = \sigma_g(Bz + b)$$

#### Обучение и использование автокодировщиков

#### Метод обучения:

ullet Стохастический градиент (SG) по параметрам (lpha,eta)

#### Способы использования:

- Векторизация данных:
  - понижение размерности (dimensionality reduction)
  - синтез более удачных признаков (feature generation)
  - сжатие данных с минимальной потерей информации
- Обучение с учителем в новом пространстве признаков
- Векторизация объектов для нейронных сетей
- Генерация синтетических объектов, похожих на реальные

Rumelhart, Hinton, Williams. Learning internal representations by error propagation. 1986. David Charte et al. A practical tutorial on autoencoders for nonlinear feature fusion:

taxonomy, models, software and guidelines. 2018.

#### Линейный автокодировщик и метод главных компонент

Линейный автокодировщик: f(x,A) = Ax, g(z,B) = Bz,

$$\mathscr{L}_{AE}(A,B) = \sum_{i=1}^{\ell} \| \frac{BAx_i - x_i}{AB} \|^2 \rightarrow \min_{A,B}$$

Метод главных компонент:  $f(x, U) = U^{\mathsf{T}} x$ , g(z, U) = U z, в матричных обозначениях  $F = (x_1 \dots x_\ell)^{\mathsf{T}}$ ,  $U^{\mathsf{T}} U = I_m$ , G = F U,

$$||F - GU^{\mathsf{T}}||^2 = \sum_{i=1}^{\ell} ||UU^{\mathsf{T}} x_i - x_i||^2 \to \min_{U}$$

#### Автокодировщик обобщает метод главных компонент:

- ullet не обязательно  $B=A^{\mathsf{T}}$  (хотя часто именно так и делают)
- ullet произвольные A,B вместо ортогональных
- нелинейные модели  $f(x,\alpha)$ ,  $g(z,\beta)$  вместо Ax,Bz
- ullet произвольная функция потерь  ${\mathscr L}$  вместо квадратичной
- SG оптимизация вместо сингулярного разложения SVD

#### Разреживающие автокодировщики (Sparse AE)

Применение  $L_1$  или  $L_2$ -регуляризации к векторам весов  $\alpha, \beta$ :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) + \lambda \|\alpha\| + \lambda \|\beta\| \to \min_{\alpha,\beta}$$

Применение  $L_1$ -регуляризации к кодовым векторам  $z_i$ :

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) + \lambda \sum_{i=1}^{\ell} \sum_{j=1}^{m} |f_j(x_i,\alpha)| \to \min_{\alpha,\beta}$$

Энтропийная регуляризация для случая  $f_j \in [0,1]$ :

$$\mathscr{L}_{AE}(\alpha,\beta) + \lambda \sum_{j=1}^{m} KL(\varepsilon || \bar{f}_{j}) \rightarrow \min_{\alpha,\beta},$$

где  $ar f_j=rac{1}{\ell}\sum_{i=1}^\ell f_j(x_i,lpha); \quad arepsilon\in (0,1)$  — близкий к нулю параметр,

$$\mathsf{KL}(arepsilon\|
ho) = arepsilon\lograc{arepsilon}{
ho} + (1-arepsilon)\lograc{1-arepsilon}{1-
ho}$$
 —  $\mathsf{KL}$ -дивергенция.

D.Arpit et al. Why regularized auto-encoders learn sparse representation? 2015.

#### Шумоподавляющий автокодировщик (Denoising AE)

Устойчивость кодовых векторов  $z_i$  относительно шума в  $x_i$ :

$$\mathscr{L}_{\mathsf{DAE}}(\alpha,\beta) = \sum_{i=1}^{\ell} \mathsf{E}_{\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}}|\mathbf{x}_i)} \mathscr{L}\big( g(f(\tilde{\mathbf{x}},\alpha),\beta), x_i \big) \to \min_{\alpha,\beta}$$

Вместо вычисления  $\mathsf{E}_{\tilde{x}}$  в методе SG объекты  $x_i$  сэмплируются и зашумляются по одному:  $\tilde{x} \sim q(\tilde{x}|x_i)$ .

#### Варианты зашумления $q(\tilde{x}|x_i)$ :

- $\bullet$   $\tilde{x} \sim \mathcal{N}(x_i, \sigma^2 I)$  добавление гауссовского шума
- ullet обнуление компонент вектора  $x_i$  с вероятностью  $p_0$
- такие искажения  $x_i \to \tilde{x}$ , относительно которых реконструкция  $\hat{x}_i$  должна быть устойчивой

P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML-2008.

#### Реляционный автокодировщик (Relational AE)

Наряду с потерями реконструкции объектов минимизируем потери реконструкции отношений между объектами:

$$\mathscr{L}_{\mathsf{AE}}(\alpha,\beta) + \lambda \sum_{i < j} \mathscr{L}(\sigma(\hat{x}_i^\intercal \hat{x}_j), \sigma(x_i^\intercal x_j)) \to \min_{\alpha,\beta}$$

где  $\hat{x}_i = g(f(x_i, \alpha), \beta)$  — реконструкция объекта  $x_i$ ,  $x_i^{\mathsf{T}} x_j$  — скалярное произведение (близость) пары объектов,  $\sigma(s) = (s-s_0)_+$  — пороговая функция с параметром  $s_0$  (если векторы не близки, то неважно, насколько),  $\mathscr{L}(\hat{s}, s)$  — функция потерь, например,  $(\hat{s}-s)^2$ .

Эксперимент: улучшается качество классификации изображений с помощью кодовых векторов на задачах MNIST, CIFAR-10

Qinxue Meng et al. Relational autoencoder for feature extraction. 2018.

#### Автокодировщики для обучения с учителем

**Данные:** размеченные  $(x_i, y_i)_{i=1}^k$ , неразмеченные  $(x_i)_{i=k+1}^\ell$  **Совместное обучение** кодировщика, декодировщика и предсказательной модели (классификации, регрессии или др.):

$$\sum_{i=1}^{\ell} \mathcal{L}(g(f(x_i,\alpha),\beta),x_i) + \lambda \sum_{i=1}^{k} \tilde{\mathcal{L}}(\hat{y}(f(x_i,\alpha),\gamma),y_i) \to \min_{\alpha,\beta,\gamma}$$

$$z_i = f(x_i, \alpha)$$
 — кодировщик  $\hat{x}_i = g(z_i, \beta)$  — декодировщик  $\hat{y}_i = \hat{y}(z_i, \gamma)$  — предиктор

#### Функции потерь:

$$\mathscr{L}(\hat{x}_i,x_i)$$
 — реконструкция  $\tilde{\mathscr{L}}(\hat{y}_i,y_i)$  — предсказание



Dor Bank, Noam Koenigstein, Raja Giryes. Autoencoders. 2020

#### Многомерное шкалирование (multidimensional scaling, MDS)

**Дано:**  $(i,j) \in E$  — выборка рёбер графа  $\langle V, E \rangle$ ,  $R_{ij}$  — расстояния между вершинами ребра (i,j). Например,  $R_{ij}$  — длина кратчайшего пути по графу (IsoMAP).

**Найти:** векторные представления вершин  $z_i \in \mathbb{R}^d$ , так, чтобы близкие (по графу) вершины имели близкие векторы.

Критерий стресса (stress):

$$\sum_{(i,j)\in E} w_{ij} (\rho(z_i,z_j)-R_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V\times d},$$

где  $\rho(z_i, z_j) = \|z_i - z_j\|$  — обычно евклидово расстояние,  $w_{ij}$  — веса (какие расстояния важнее, большие или малые).

Обычно решается методом стохастического градиента (SG).

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

#### Многомерное шкалирование для визуализации данных

#### При d=2 осуществляется проекция выборки на плоскость





- Используется для визуализации кластерных структур
- Форму облака точек можно настраивать весами и метрикой
- Недостаток искажения неизбежны
- Популярная современная разновидность метода t-SNE

## Метод векторного представления соседства (Stochastic Neighbor Embedding, SNE)

**Дано**: исходные точки  $x_i \in \mathbb{R}^n$ ,  $i=1,\ldots,\ell$ 

Найти: точки на карте-проекции  $z_i \in \mathbb{R}^d$ ,  $i=1,\ldots,\ell$ ,  $d \ll n$  Критерий: расстояния  $\|z_i-z_i\|$  близки к исходным  $\|x_i-x_i\|$ 

Вероятностная модель события  $\ll j$  является соседом  $i\gg$  на основе перенормированных гауссовских распределений:

$$p(j|i) = \displaystyle \operatorname*{norm}_{j 
eq i} \exp \left( - \frac{1}{2\sigma_i^2} \|x_i - x_j\|^2 \right) -$$
в исходном пространстве;

$$q(j|i) = \displaystyle \operatorname*{norm} \exp igl( -\|z_i - z_j\|^2 igr) - ext{в пространстве проекции};$$

где 
$$p_j = \operatorname{norm}(v_j) = rac{v_j}{\sum_k v_k}$$
 — операция нормировки вектора  $v$ .

Максимизация правдоподобия (стохастическим градиентом):

$$\sum_i \sum_{j \neq i} p(j|i) \ln q(j|i) \rightarrow \max_{\{z_i\}}$$

#### Преимущества метода SNE

- Преобразование расстояний в вероятности устраняет дисбалансы между большими и малыми расстояниями
- Дисбаланс между точками с большой и малой плотностью соседей выравнивается настройкой  $\sigma_i$  по перплексии

$$H(i) = -\sum_{j} p(j|i) \log_2 p(j|i)$$
 — энтропия распределения  $p(j|i)$ ;  $2^{H(i)}$  — перплексия = «эффективное число соседей у  $x_i$ » (если  $p(j|i) = \frac{1}{k}$ , то  $2^{H(i)} = k$ ); обычно перплексия = 5..50.

Выбор перплексии может существенно влиять на вид проекции:



G.E. Hinton, S. T. Roweis. Stochastic Neighbor Embedding. 2002.

#### Вероятностная модель t-SNE: два усовершенствования SNE

**Проблема скученности в SNE**: окрестность вмещает гораздо больше точек в n-мерном пространстве, чем в d-мерном

• Использование t-распределения Стьюдента с более тяжёлым хвостом и симметричного совместного распределения q(i,j):



$$q(i,j) = \underset{(i,j): i \neq j}{\mathsf{norm}} (1 + ||z_i - z_j||^2)^{-1}$$

ullet Использование совместного распределения p(i,j):

$$p(i,j) = \frac{1}{2\ell} (p(j|i) + p(i|j))$$

Максимизация правдоподобия (стохастическим градиентом):

$$\sum_{(i,j):\,j
eq i} p(i,j) \ln q(i,j) 
ightarrow \max_{\{z_i\}}$$

L.J.P. van der Maaten, G.Hinton. Visualizing data using t-SNE. 2008

#### Преимущества и недостатки t-SNE

Лучшее представление структур сходства по сравнению с другими методами многомерного шкалирования (mnist)



Ложные кластерные структуры при низкой перплексии Размеры кластеров и расстояния между ними неинформативны Трудно отличить реальные структуры от артефактов метода Нет ясного критерия качества для подбора перплексии

M. Wattenberg, F. Viegas, I. Johnson (Google). How to use t-SNE effectively. 2016. https://distill.pub/2016/misread-tsne

#### Матричные разложения графа (graph factorization)

**Дано:**  $(i,j) \in E$  — выборка рёбер графа  $\langle V, E \rangle$ ,  $S_{ii}$  — близость между вершинами ребра (i,j).

Например,  $S_{ij} = [(i,j) \in E]$  — матрица смежности вершин.

**Найти:** векторные представления вершин, так, чтобы близкие (по графу) вершины имели близкие векторы.

**Критерий** для **не**ориентированного графа (S симметрична):

$$\|S - ZZ^{\mathsf{T}}\|_{E} = \sum_{(i,j)\in E} (\langle z_i, z_j \rangle - S_{ij})^2 \to \min_{Z}, \quad Z \in \mathbb{R}^{V \times d}$$

**Критерий** для ориентированного графа (S несимметрична):

$$\left\|S - \Phi\Theta^{\mathsf{T}}\right\|_{\mathcal{E}} = \sum_{(i,j)\in\mathcal{E}} \left(\langle arphi_i, heta_j 
angle - S_{ij}
ight)^2 
ightarrow \min_{\Phi,\Theta}, \quad \Phi,\Theta \in \mathbb{R}^{V imes d}$$

Обычно решается методом стохастического градиента (SG).

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

#### Векторные представления графов как автокодировщики

Все рассмотренные выше методы векторных представлений графов суть автокодировщики данных о рёбрах:

- ullet многомерное шкалирование:  $R_{ij} 
  ightarrow \|z_i z_j\|$
- SNE и t-SNE:  $p(i,j) o q(i,j) \propto K(\|z_i z_j\|)$
- ullet матричные разложения:  $S_{ij} 
  ightarrow \langle arphi_i, heta_j 
  angle$

#### Вход кодировщика:

ullet  $W_{ij}$  — данные о ребре графа (i,j)

#### Выход кодировщика:

векторные представления вершин z;

#### Выход декодировщика:

ullet аппроксимация  $\hat{W}_{ij}$ , вычисляемая по  $(z_i,z_j)$ 

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

#### GraphEDM: обобщённый автокодировщик на графах

#### Graph Encoder Decoder Model — обобщает более 30 моделей:



 $W \in \mathbb{R}^{V imes V}$  — входные данные о рёбрах

 $X \in \mathbb{R}^{V imes n}$  — входные данные о вершинах, признаковые описания

 $Z \in \mathbb{R}^{V imes d}$  — векторные представления вершин графа

 $\mathsf{DEC}(Z;\Theta^D)$  — декодер, реконструирующий данные о рёбрах

 $\operatorname{DEC}(Z;\Theta^S)$  — декодер, решающий supervised-задачу

 $y^S$  — (semi-)supervised данные о вершинах или рёбрах

 $\mathcal{L}$  — функции потерь

I. Chami et al. Machine learning on graphs: a model and comprehensive taxonomy. 2020.

#### Постановка задачи векторизации слов

**Дано:** текст  $(w_1 \dots w_n)$ , состоящий из слов словаря W

**Найти:** векторные представления (embedding) слов  $v_w \in \mathbb{R}^d$ , так, чтобы близкие по смыслу слова имели близкие векторы

**Модель Skip-gram** для предсказания вероятности слов контекста  $C_i = (w_{i-k} \dots w_{i-1} w_{i+1} \dots w_{i+k})$  по слову  $w_i$ :

$$p(w|w_i) = \mathsf{SoftMax}\langle u_w, \frac{\mathbf{v}_{w_i}}{\mathbf{v}_{w_i}}\rangle \equiv \underset{w \in W}{\mathsf{norm}} (\mathsf{exp}\langle u_w, \frac{\mathbf{v}_{w_i}}{\mathbf{v}_{w_i}}\rangle),$$

 $v_w$  — вектор предсказывающего слова,

 $u_w$  — вектор предсказываемого слова, в общем случае  $u_w 
eq v_w.$ 

**Критерий** максимума  $\log$ -правдоподобия,  $U, V \in \mathbb{R}^{|W| \times d}$ :

$$\sum_{i=1}^n \sum_{w \in C_i} \log p(w|w_i) \to \max_{U,V}$$

T.Mikolov et al. Efficient estimation of word representations in vector space, 2013.

#### Почему эмбединги слов отражают их смыслы

Основная гипотеза дистрибутивной семантики [Harris, 1954]: «Смысл слова определяется множеством его контекстов»

#### Задача семантической аналогии слов:

по трём словам угадать четвёртое



Z. Harris. Distributional structure. 1954.

J.R. Firth. A synopsis of linguistic theory 1930-1955. Oxford, 1957.

P. Turney, P. Pantel. From frequency to meaning: vector space models of semantics. 2010.

#### Подмена задачи: классификация пар слов на два класса

Критерий log-loss для SGNS (Skip-gram Negative Sampling):

$$\sum_{i=1}^n \sum_{w \in C_i} \left( \log p(+1|w,w_i) + \log p(-1|\bar{w},w_i) \right) \to \max_{U,V}$$

где  $p(y|w,w_i) = \sigma(y\langle u_w,v_{w_i}\rangle)$  — модель классификации,  $y=\pm 1$ ; y=+1, если пара слов  $(w,w_i)$  находится в общем контексте; y=-1, если пара слов  $(w,w_i)$  не находится в общем контексте;  $\bar{w}\sim p(w)^{3/4}$  сэмплируется из  $W\backslash C_i$  в методе SG.

#### Эвристики и прочие замечания:

- ullet Dynamic window: случайный выбор  $k \sim [3..10]$
- Итоговые векторы слов:  $\alpha v_w + (1 \alpha) u_w$
- Приём NS полезен, когда не хватает второго класса

#### Модель векторных представлений FastText

**Идея:** векторное представление слова w определяется как сумма векторов всех его буквенных n-грамм G(w):

$$u_w = \sum_{g \in G(w)} u_g$$

В Skip-gram вместо векторов слов  $u_w$  обучаются векторы  $u_g$ 

**Пример:** G(дармолюб $) = \{ \langle да, арм, рмо, мол, олю, люб, юб<math>\rangle \}$ 

#### Преимущества:

- Это решает проблемы новых слов и слов с опечатками
- Подходит для обработки текстов социальных медиа
- ullet Словарь 2- и 3-грамм обычно меньше словаря W
- Существует много предобученных моделей

#### Разновидности векторизации данных:

- Квантизация сокращение объёма выборки, замена объектов ближайшими центрами кластеров
- Автокодировщики синтез векторных представлений (эмбедингов) объектов, обычно с понижением размерности
- MDS, t-SNE, GF, word2vec, graph2vec и др. синтез эмбедингов объектов по данным об их взаимодействии

#### Методы обучения — на основе SG

#### Тексты — это разновидность графов:

- слова вершины графа, сочетаемость пары слов ребро
- слова и документы вершины двух разных долей графа, вхождение слова в документ — ребро двудольного графа