```
Sequence Listing could not be accepted due to errors.
See attached Validation Report.
If you need help call the Patent Electronic Business Center at (866)
217-9197 (toll free).
Reviewer: markspencer
Timestamp: [year=2009; month=4; day=29; hr=15; min=19; sec=24; ms=251; ]
_____
Reviewer Comments:
1.
E355
              Empty lines found between the amino acid numbering and
the proteins SEQID ( 22 )
E321
              No. of Bases conflict, this line has no nucleotides
SEQID (22) POS (0)
<210>
     22
<211>
     27
<212>
     DNA
<213>
     Artificial Sequence
<220>
<223> Oligonucleotide having Bam HI site
* * * * * * * *
                                                               27
ggcggatccg tctcccagtt gttcttc
<210>
     23
<211>
<212> DNA
<213> Helianthus annuus
Please remove the extra "7" between SEQ ID \# 22 and SEQ ID \# 23.
2. .
              Invalid field content in <220> in SEQ ID (30)
E311
E249
              Order Sequence Error <223> -> ; Expected Mandatory Tag:
<400> in SEQID ( 30 )
```

Structural Validation Error; Sequence listing may not be

E250

```
<210>
      30
<211>
      66
<212>
     PRT
<213>
      Artificial Sequence
<220>
      30
<223>
      Synthetic fragment of Hahb-4
Ala Glu Lys His Gln Glu Lys Thr Ser Ser Gly Ser Gly Glu Glu
                                                         15
Ser Asp Asp Arg Phe Thr Asn Ser Pro Asp Val Met Phe Gly Gln Glu
            20
                                25
                                                     30
Met Asn Val Pro Phe Cys Asp Gly Phe Ala Tyr Phe Glu Glu Gly Asn
                            40
                                                 45
Ser Leu Leu Glu Ile Glu Glu Gln Leu Pro Asp Pro Gln Lys Trp Trp
    50
                        55
                                             60
Glu Phe
65
```

Numeric identifier <220> must remain blank. Please remove the number "30" from numeric identifier <220> in SEQ ID # 30. Numeric identifier <400> is mandatory. Please insert numeric identifier <400>, with the correct response, before the sequence in SEQ ID # 30.

3.

<110> Chan, Lia Raquel
 Gonzalez, Daniel H.
 Dezar, Carlos A.
 Gago, Gabriela Marisa
 Dunan, Claudio Marcelo

<120> Transcription Factor Gene Induced by Water Deficit Conditions and

Abscisic Acid from Helianthus Annuus, Promoter and Transgenic Plants

<130> 2510.0040000/JAG/SAC

<140> 10/520,333

```
<141> 2003-05-02
```

<150> PCT/US2003/013770

<151> 2003-05-02

<160> 30

<170> PatentIn version 3.1

Numeric identifier <140> must contain the current application number. Please change "10/520,333" to the correct application number "US 10/520,033."

4.											
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(4)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(5)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(6)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(7)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(8)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(9)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(11)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(12)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(13)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(14)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(15)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(16)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(17)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(18)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(19)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(20)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(21)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(22)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(25)	
W213	Artificial	or	Unknown	found	in	<213>	in	SEQ	ID	(26)	This
error has occure	ed more than	n 20) times,	will r	not	be dis	spla	ayed			

Validated By CRFValidator v 1.0.3

Application No: 10520033 Version No: 4.0

Input Set:

Output Set:

Started: 2009-04-29 14:31:05.500 **Finished:** 2009-04-29 14:31:07.691

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 191 ms

Total Warnings: 24
Total Errors: 5

No. of SeqIDs Defined: 30

Actual SeqID Count: 30

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	213	Artificial or Unknown found in <213> in SEQ ID (12)
W	213	Artificial or Unknown found in <213> in SEQ ID (13)
W	213	Artificial or Unknown found in <213> in SEQ ID (14)
W	213	Artificial or Unknown found in <213> in SEQ ID (15)
W	213	Artificial or Unknown found in <213> in SEQ ID (16)
W	213	Artificial or Unknown found in <213> in SEQ ID (17)
W	213	Artificial or Unknown found in <213> in SEQ ID (18)
W	213	Artificial or Unknown found in <213> in SEQ ID (19)
W	213	Artificial or Unknown found in <213> in SEQ ID (20)
W	213	Artificial or Unknown found in <213> in SEQ ID (21)
W	213	Artificial or Unknown found in <213> in SEQ ID (22)
E	355	Empty lines found between the amino acid numbering and the
E	321	No. of Bases conflict, this line has no nucleotides SEQID (22)

Input Set:

Output Set:

Started: 2009-04-29 14:31:05.500 **Finished:** 2009-04-29 14:31:07.691

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 191 ms

Total Warnings: 24

Total Errors: 5

No. of SeqIDs Defined: 30

Actual SeqID Count: 30

Error code		Error Description
W	213	Artificial or Unknown found in <213> in SEQ ID (25)
W	213	Artificial or Unknown found in <213> in SEQ ID (26) This error has occured more than 20 times, will not be displayed
E	311	Invalid field content in <220> in SEQ ID (30)
E	249	Order Sequence Error <223> -> ; Expected Mandatory Tag: <400> in SEQID (30)
E	250	Structural Validation Error; Sequence listing may not be indexable

SEQUENCE LISTING

<110>	Chan, Lia Raqu Gonzalez, Dani Dezar, Carlos Gago, Gabriela	el H. A. Marisa				
	Dunan, Claudio	Marcelo				
<120>	=		_		cit Conditions and Transgenic	
<130>	2510.0040000/3	JAG/SAC				
<140>	10/520,333					
<141>	2003-05-02					
	PCT/US2003/013 2003-05-02	3770				
<160>	30					
<170>	PatentIn versi	on 3.1				
<210>	1					
<211>	774					
<212>						
<213>	Helianthus ann	nuus				
<400>	1					
tcactac	gtac cataatatto	c acaaacacac	acacctcaga	aacgaagctt	gcacataatg	60
tctcttc	caac aagtacccac	c aacagaaaca	accaccagga	agaaccgaaa	cgaggggcgg	120
aaacgat	tta ccgacaaaca	a aataagtttc	ctagagtaca	tgtttgagac	acagtcgaga	180
cccgagt	taa ggatgaaaca	a ccagttggca	cataaactcg	ggcttcatcc	tcgtcaagtg	240
gcgatat	ggt tecagaacaa	a acgcgcgcga	tcaaagtcga	ggcagattga	gcaagagtat	300
aacgcgd	ctaa agcataacta	a cgagacgctt	gcgtctaaat	ccgagtctct	aaagaaagag	360
aatcago	gece tactcaatea	a ggtatggttg	caaacttaca	atgttgcatt	caactattta	420
agtagtt	ttg aatttttgto	g acaataaaga	ttgacaaatg	ttgtttgata	attgattaac	480
agttgga	aggt gctgagaaat	gtagcagaaa	agcatcaaga	gaaaactagt	agtagtggca	540
gcggtga	aaga atcggatgat	. cggtttacga	actctccgga	cgttatgttt	ggtcaagaaa	600
tgaatgt	tcc gttttgcgad	ggttttgcgt	actttgaaga	aggaaacagt	ttgttggaga	660
ttgaaga	aaca actgccagad	c cctcaaaagt	ggtgggagtt	ctaaagagta	aagaaggatg	720

tagaagtagt agagtaaaaa ctaaaacata ccagatagtt ggtttacact ttgt 774

<210> 2 <211> 673 <212> DNA <213> Helianthus annuus <400> 2 60 tcactagtac cataatattc acaaacacac acacctcaga aacgaagctt gcacataatg tctcttcaac aagtacccac aacagaaaca accaccagga agaaccgaaa cgaggggggg 120 180 aaacgattta ccgacaaaca aataagtttc ctagagtaca tgtttgagac acagtcgaga cccgagttaa ggatgaaaca ccagttggca cataaactcg ggcttcatcc tcgtcaagtg 240 qcqatatqqt tccaqaacaa acqcqcqcqa tcaaaqtcqa qqcaqattqa qcaaqaqtat 300 360 aacgcgctaa agcataacta cgagacgctt gcgtctaaat ccgagtctct aaagaaagag aatcaggccc tactcaatca gttggaggtg ctgagaaatg tagcagaaaa gcatcaagag 420 aaaactagta gtagtggcag cggtgaagaa tcggatgatc ggtttacgaa ctctccggac 480 gttatgtttg gtcaagaaat gaatgttccg ttttgcgacg gttttgcgta ctttgaagaa 540 600 ggaaacagtt tgttggagat tgaagaacaa ctgccagacc ctcaaaagtg gtgggagttc taaagagtaa agaaggatgt agaagtagta gagtaaaaac taaaacatac cagatagttg 660 673 gtttacactt tgt <210> 3 <211> 1221 <212> DNA <213> Helianthus annuus <220> <221> promoter <222> (1)..(1221) <223> Large allele <400> 3 gatccaattg gaccacctgg cacatcgtat cttatctctt ttgtcgtttc caacacacca 60 caacacacct acaaacgtgt caattcacac ttcaccaatt tcatttcctt ttagtcaatc 120 atattaaaag tagtagcccc cacccccatt tgttacctac catttcccac tttaataatc 180 240 acccacgcta tgtccacttg tacttttgtt tgcacacaac tcttcccata aaatatcaaa 300 ccaaattttt tttagtggaa aacaaattcc ccaaatagaa tactaacgaa attcatcgca tcagaataca ctcatctctg aacagtggcg aagcttgacg ttttcgacgg ggggtcggaa 360

aacgtatgta cccgaaattt ctatagaatc ggggggtcga aaacgtatat acccaaaatt

tctatad	cgaa	aactacatat	ataacactac	tgagcaaaaa	gttcgggggt	tcgggcgccc	480
ctcccg	gccc	cttcaaagct	tcgccaatgt	ctctgaaccg	aagaaaaccc	tcactcgtct	540
actage	caat	gaatcctcac	cagggaaacc	ctcactcgtc	ttactggact	attggcgctt	600
ccaaato	ggac	tacttgcgaa	attcaccaca	tcgggataca	ctcgtctact	gcggtgaggt	660
aaaacco	cgct	tggctcaagg	atcgaactag	cgattgctgc	ctactcgcct	aatctcccat	720
catcaad	cagg	tgccgccgaa	acaaaatgct	gggggcggga	gttgaaccta	ggtccagtga	780
cgcacco	catg	aattttttt	ctagggatgc	gaacgagtgg	tttaaccata	cttttaagag	840
gtgcgat	tcgg	aaattttacc	tataaaatac	actaaaaaag	ttccaagggt	ccacccaccc	900
cttaaco	ctaa	gtccgccttt	gtctggatca	cgtgaaacat	caggtctctc	ccttaccagt	960
ccagcta	acga	ctcattgaca	aaatatcaaa	accatatgat	tttgagtttt	atctcaaccg	1020
aaagtga	acat	catgacagag	aatcgacata	accaaaacgt	gtaaacgtac	aactcaccat	1080
tgcgtt	gaaa	aggacaaaac	aggtaggatt	cttgtcaaat	tcaacgcgta	cacctgtgct	1140
tcatcta	aaac	cccatacttt	aagaaccttt	ataaagacca	ctcactatat	atacacatat	1200
ataatat	tcac	ttatcaaacc	С				1221
<210>	4						
<211>	28						
<212>	DNA						
<213>	Arti	ificial Sequ	uence				
<220>							
<223>	Desi	igned oligor	nucleotide k	pased on the	e promoter a	and having	Hind I

<210> 5 <211> 28

<400> 4

<212> DNA

<213> Artificial Sequence

gcgaagcttg atgcgaacga gtggttta

II site

<220>

<223> Designed oligonucleotide based on the promoter and having $% \left(1\right) =\left(1\right) +\left(1\right) +\left($ site

<400> 5

gcggtcgaca cctggcacat cgtatctt

28

28

<210> 6 <211> 27

```
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter and having Bam HI
      site
<400> 6
cgcggatccg agggtttgat aagtgat
                                                                     27
<210> 7
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter and having Hind I
      II site
<400> 7
cccaagctta acctaagtcc gcctttg
                                                                     27
<210> 8
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter and having Hind II
       I site
<400> 8
ggcaagctta tctcaaccga aagtgac
                                                                      27
<210> 9
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the 5' promoter
<400> 9
atttcgcaag tagtccatt
                                                                     19
<210> 10
<211> 1015
<212> DNA
<213> Helianthus annuus
<400> 10
gatccaattg gaccacctgg cacatcgtat cttatctctt ttgtcgtttc caacacacca
                                                                     60
```

caacacacct	acaaacgtgt	caattcacac	ttcaccaatt	tcatttcctt	ttagtcaatc	120
atattaaaag	tagtagcccc	cacccccatt	tgttacctac	catttcccac	tttaataatc	180
acccacgcta	tgtccacttg	tacttttgtt	tgcacacaac	tcttcccata	aaatatcaaa	240
ccaaattttt	tttaatggaa	aacaaatact	tcaaatgcac	tattggtgaa	attcaccaca	300
tcagaataca	cccgtctcta	ctcatctact	ggccaacgaa	tcttcacggg	ggaaaccctc	360
actcgtctac	tgggactact	ggcgcttcaa	aatggactac	tgacaaaatt	caccacatcg	420
ggatacactt	gtctactgcg	gtgaggtaaa	atccgccgct	cagctcaatg	atcgaactag	480
cgatcgccac	ccactcacct	tgtctcccat	catcaccagg	tgccgccaaa	acaaaatgtt	540
gggggcggga	attgaaccta	ggtccagtgg	cgcacccatg	aattttttt	ctagggatgc	600
gaacgagtga	tttaaccata	cttttaagag	gtgcgatcgg	aaattttacc	tataaaatat	660
actaaaaaaa	tttcaagggt	ccgcccaccc	accccttaac	ctaagtccgc	ctctgcctgg	720
atcacgtgaa	acatcaggtc	tctctcttac	cagttcacct	acaactcatt	gacaaaatat	780
caaaaccata	tgattttgag	ttttatctca	accgaaagtg	acatcatgac	agagaatcga	840
cataaccaaa	acgtgtaaac	gtacaactca	ccattgcgtt	gaaaaggaca	aaacaggtag	900
gattcttgtc	aaattcaacg	cgtacacctg	tgcttcatct	aaaccccata	ctttaagaac	960
ctttataaag	accactcact	atatatacac	atatataata	tcacttatca	aaccc	1015

<210> 11

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

 $<\!\!223\!\!>$ Designed oligonucleotide that matches nucleotides 81-100 of the H ahb-4 cDNA sequence and having Bam HI site

<400> 11

ggcggatcca acagaaacaa ccaccagg 28

<210> 12

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

 $<\!223\!>$ Designed oligonucleotide for cloning 5' cDNA and having $\,$ Bam HI s ite

<400> 12

```
<211> 34
<212> DNA
<213> Artificial Sequence
<220>
<223>
      oligonucleotide based on 5' cDNA and having Xho I site
<400> 13
                                                                     34
gaggactcga gctcaagttt tttttttt tttt
<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223>
      Oligonucleotide based on 5' cDNA and having Xho I site
<400> 14
                                                                     18
gaggactcga gctcaagc
<210> 15
<211> 29
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter and having Eco RI
      site
<400> 15
                                                                      29
gccgaattca gattgagcaa gagtataac
<210> 16
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter
<400> 16
                                                                     19
acctttataa agaccactc
<210> 17
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Designed oligonucleotide based on the promoter
```

<210> 13

<400>	17					
acgcaat	cgcaatggt gagttgtac 19					
<210>	18					
<211>	24					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	oligonucleotide to DNA-binding assays					
<400>	18					
aattca	gatc tcaataattg agag	24				
<210>	19					
<211>	24					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<220>	alimental to DID hinding again					
<223>	oligonucleotide to DNA-binding assays					
<400>	19					
	ctca attattgaga tctg	24				
gacccc	seca accarryaya cory	24				
<210>	20					
<211>	30					
<212>	DNA					
<213>	Artificial Sequence					
	•					
<220>						
<223>	Oligonucleotide having Bam HI site					
<400>	20					
gcgggat	tcca ccatgtctct tcaacaagta	30				
<210>	21					
<211>	30					
<212>	DNA					
<213>	Artificial Sequence					
<220>						
<223>	Oligonucleotide having Sac I site					
<400>	21					
gccgag	ctct tagaactcca accacttttg	30				
<210>	22					
<211>	27					
<212>	DNA					
<213>	Artificial Sequence					

```
<220>
<223> Oligonucleotide having Bam HI site
<400> 22
                                                            27
ggcggatccg tctcccagtt gttcttc
7
<210> 23
<211> 9
<212> DNA
<213> Helianthus annuus
<220>
<221> misc_feature
<222> (5)..(5)
<223> n is a or t
<400> 23
caatnattg
                                                             9
<210> 24
<211> 181
<212> PRT
<213> Helianthus annuus
<400> 24
Met Ser Leu Gln Gln Val Pro Thr Thr Glu Thr Thr Thr Arg Lys Asn
1 5
                        10
                                               15
Arg Asn Glu Gly Arg Lys Arg Phe Thr Asp Lys Gln Ile Ser Phe Leu
          20
                 25
Glu Tyr Met Phe Glu Thr Gln Ser Arg Pro Glu Leu Arg Met Lys His
                                        45
      35
                      40
Gln Leu Ala His Lys Leu Gly Leu His Pro Arg Gln Val Ala Ile Trp
   50 55 60
Phe Gln Asn Lys Arg Ala Arg Ser Lys Ser Arg Gln Ile Glu Gln Glu
                70
                                 75
65
                                                   80
Tyr Asn Ala Leu Lys His Asn Tyr Glu Thr Leu Ala Ser Lys Ser Glu
            85 90
                                       95
```

100 105 110

Arg Asn Val Ala Glu Lys His Gln Glu Lys Thr Ser Ser Gly Ser
115 120 125

Gly Glu Glu Ser Asp Asp Arg Phe Thr Asn Ser Pro Asp Val Met Phe 130 135 140

Glu Gly Asn Ser Leu Leu Glu Ile Glu Glu Gln Leu Pro Asp Pro Gln 165 170 175

Lys Trp Trp Glu Phe 180

<210> 25

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-1

<400> 25

Leu Pro Glu Lys Lys Arg Arg Leu Thr Thr Glu Gln Val His Leu Leu 1 5 10 15

Glu Lys Ser Phe Glu Thr Glu Asn Lys Leu Glu Pro Glu Arg Lys Thr
20 25 30

Gln Leu Ala Lys Lys Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp 35 40 45

Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Arg Asp 50 55 60

Tyr Asp Leu Leu Lys Ser Thr Tyr Asp Gln Leu Leu Ser Asn Tyr Asp 65 70 75 80

Ser Ile Val Met Asp Asn Asp Lys Leu Arg Ser Glu Val Thr Ser Leu
85 90 95

<210> 26 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Hd-Zip domain of Athb-6 <400> 26 Leu Ser Glu Lys Lys Arg Arg Leu Ser Ile Asn Gln Val Lys Ala Leu 5 10 Glu Lys Asn Phe Glu Leu Glu Asn Lys Leu Glu Pro Glu Arg Lys Val 25 Lys Leu Ala Gln Glu Leu Gly Leu Gln Pro Arg Gln Val Ala Val Trp 35 40 Phe Gln Asn Arg Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Asp 50 55 Tyr Gly Val Leu Lys Thr Gln Tyr Asp Ser Leu Arg His Asn Phe Asp 75 70 65 Ser Leu Arg Arg Asp Asn Glu Ser Leu Leu Gln Glu Ile Ser Lys Leu 85 90 95 Lys Thr Lys <210> 27 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Hd-Zip domain of Athb-7 <400> 27

Glu Met Met Phe Glu Ser Glu Thr Arg Leu Glu Pro Arg Lys Lys Val

Asn Lys Asn Asn Gln Arg Arg Phe Ser Asp Glu Gln Ile Lys Ser Leu 1 5 10 15

20 25 30

Gln Leu Ala Arg Glu Leu Gly Leu Gln Pro Arg Gln Val Ala Ile Trp 35 40 45

Phe Gln Asn Lys Arg Ala Arg Trp Lys Ser Lys Gln Leu Glu Thr Glu 50 55 60

Tyr Asn Ile Leu Arg Gln Asn Tyr Asp Asn Leu Ala Ser Gln Phe Glu 65 70 75 80

Ser Leu Lys Lys Glu Lys Gln Ala Leu Val Ser Glu Leu Gln Arg Leu 85 90 95

Lys Glu Ala

<210> 28

<211> 99

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthetic Hd-Zip domain of Athb-12

<400> 28

Lys Ser Asn Asn Gln Lys Arg Phe Asn Glu Glu Gln Ile Lys Ser Leu 1 5 10 15

Glu Leu Ile Phe Glu Ser Glu Thr Arg Leu Glu Pro Arg Lys Lys Val 20 25 30

Gln Val Ala Arg Glu Leu Gly Leu Gln Pro Arg Gln Met Thr Ile Trp 35 40 45

Phe Gln Asn Lys Arg Ala Arg Trp Lys Thr Lys Gln Leu Glu Lys Glu 50 55 60

Tyr Asn Thr Leu Arg Ala Asn Tyr Asn Asn Leu Ala Ser Gln Phe Glu 65 70 75 80

Ile Met Lys Lys Glu Lys Gln Ser Leu Val Ser Glu Leu Gln Arg Leu
85 90 95

<210> 29 <211> 99 <212> PRT <213> Artificial Sequence <220> <223> Synthetic Hd-Zip domain of Hahb-4 <400> 29 Arg Asn Glu Gly Arg Lys Arg Phe Thr Asp Lys Gln Ile Ser Phe Leu 1 5 10 Glu Tyr Met Phe Glu Thr Gln Ser Arg Pro Glu Leu Arg Met Lys His 25 Gln Leu Ala His Lys Leu Gly Leu His Pro Arg Gln Val Ala Ile Trp 40 Phe Gln Asn Lys Arg Ala Arg Ser Lys Ser Arg Gln Ile Glu Gln Glu 50 55 60 Tyr Asn Ala Leu Lys His Asn Tyr Glu Thr Leu Ala Ser Lys Ser Glu 70 75 80 65 Ser Leu Lys Lys Glu Asn Gln Ala Leu Leu Asn Gln Leu Glu Val Leu 85 90 95 Arg Asn Val <210> 30 <211> 66 <212> PRT <213> Artificial Sequence <220> 30 <223> Synthetic fragment of Hahb-4 Ala Glu Lys His Gln Glu Lys Thr Ser Ser Gly Ser Gly Glu Glu

Ser Asp Asp Arg Phe Thr Asn Ser Pro Asp Val Met Phe Gly Gln Glu

25

Met Asn Val Pro Phe Cys Asp Gly Phe Ala Tyr Phe Glu Glu Gly Asn 35 40 45

Ser Leu Leu Glu Ile Glu Glu Gln Leu Pro Asp Pro Gln Lys Trp Trp 50 55 60

Glu Phe