K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS DC CIRCUITS

Numerical 1: Calculate V_o and I_o for the circuit shown in Figure 1.

Figure 1: Circuit 1

Solution:

Figure 2: Simplified circuit

Consider I_1 , I_2 and I_3 flowing through mesh 1, 2 and 3 clockwise.

Applying KVL to mesh 1,

$$200 - 70(I_1 - I_2) - 20(I_1 - I_3) = 0$$

 $90I_1 - 70 I_2 - 20 I_3 = 200$ —(i)

Applying KVL to mesh 2,

$$-70(I_2 - I_1) - 30I_2 = 0$$

$$70I_1 - 100I_2 = 0$$
—(ii)

Applying KVL to mesh 3,

$$-20(I_3 - I_1) - 5I_3 = 0$$

$$20I_{1}-25I_{3}=0 \qquad \qquad --(iii)$$
 From Eqs. (i), (ii) and (iii) we get,
$$I_{1}=8A$$

$$I_{2}=5.6A$$

$$I_{3}=6.4A$$
 Hence,
$$I_{o}=-I_{2}=-5.6A$$

$$V_{o}=V_{R4}=I_{R4}\times R4$$

$$=6.4A\times 5\Omega$$

$$V_o = 32V I_o = -5.6 A$$

=32V

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 3: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
V_o	32 V	32 V
I_o	-5.6 A	-5.6 A

Table 1: Numerical 1

Numerical 2: Calculate equivalent resistance R_{ab} at terminals a-b for each of the following circuits in Figure 4 and Figure 5.

(a)

Figure 4: Circuit 2

(b)

Figure 5: Circuit 3

Solution:

(a)

Figure 6: Circuit 2 Simplified Circuit (1)

$$R1||R2 = 10 \ \Omega \ || \ 40 \ \Omega$$

$$= 8 \ \Omega$$

$$R3||R4 = 5 \ \Omega \ || \ 20 \ \Omega$$

$$= 4 \ \Omega$$

R1||R2 + R3||R4 = 10
$$\Omega$$
 || 40 Ω + 5 Ω || 20 Ω = 12 Ω

Figure 7: Circuit 2 Simplified Circuit (2)

 $R_{ab} = 12~\Omega$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 8: Circuit Schematic

Paramete	rs Theoretical Values	Simulated Values
R_{ab}	12 Ω	$12.0004~\Omega$

Table 2: Numerical 2 (a)

(b)

Figure 9: Circuit 3 Simplified Circuit (1)

R1||R2||R3 = 60
$$\Omega$$
 || 20 Ω || 30 Ω = 10 Ω

Figure 10: Circuit 3 Simplified Circuit (2)

R1||R2||R3 +R5 =
$$\frac{10 \Omega}{10 \Omega}$$
 = $\frac{10 \Omega}{10 \Omega}$

Figure 11: Circuit 3 Simplified Circuit (3)

R1||R2||R3 +R5 || R4 = 20
$$\Omega$$
 || 80 Ω = 16 Ω

$$R_{ab} = 16 \Omega$$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 12: Circuit Schematic

Comparison of theoretical and Simulated Results

Parameters	Theoretical Values	Simulated Values
R_{ab}	$16~\Omega$	16 Ω

Table 3: Numerical 2 (b)

Numerical 3: Apply Superposition theorem to compute current across 2Ω resistor in figure 13

Figure 13: Circuit 4

Solution:

Case 1:

Taking I_1 as the source, I_2 will be open circuited, figure 14

Figure 14: Circuit 4 keeping I_1 as source

Current through 2Ω resistor = i_1

Total current through the circuit $I_T = 24A$

$$R_{eq} = R_2 + R_3$$

$$= 2\Omega + 6\Omega$$

$$= 8\Omega$$

$$i_1 = I_T \frac{R_1}{R_1 + R_{eq}}$$

$$= 24 \times \frac{4}{4 + 8}$$

$$= 8A$$

 $i_1 = 8A \text{ (clockwise)}$

Case 2:

Taking I_2 as the source, I_1 will be open circuited, figure 15

Current through 2Ω resistor = i_2

Total current through the circuit $I_T = 6A$

$$R_{\rm eq}=R_1 +\, R_2$$

Figure 15: Circuit 4 keeping I_2 as source

$$= 4\Omega + 2\Omega$$

$$= 6\Omega$$

$$i_2 = I_T \frac{R_1}{R_1 + R_{eq}}$$

$$= 6 \times \frac{6}{6 + 6}$$

$$= 3A$$

 $i_2 = 3A$ (anticlockwise)

From Case 1 and Case 2,

$$\begin{split} I_{2\Omega} &= i_1 + i_2 \\ &= 8A - 3A \\ &= 5A \text{ (clockwise)} \end{split}$$

 $I_{2\Omega} = 5A$ (clockwise)

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 16: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
$I_{2\Omega}$	5A	5A

Table 4: Numerical 3

Numerical 4: Use Superposition theorem to calculate voltage across 3Ω resistor in figure 17

Figure 17: Circuit 5

Solution:

Case 1:

Taking V_1 as the source, I_1 and I_2 will be open circuited, figure 18

Figure 18: Circuit 5 keeping V_1 as source

$$R_{eq} = (R_1 || (R_2 + R_3)) + R_4$$

$$= (6 || (1+2) + 3)$$

$$= 5\Omega$$

$$I_T = \frac{V_1}{R_{eq}} = \frac{20}{5} = 4A$$

$$V_{A1} = I_T \times R_4$$

$$= 4 \times 3$$

$$= 12V$$

Case 2:

Taking I_1 as the source, V_1 will be short circuited and I_2 will be open circuited, figure 19

Figure 19: Circuit 5 keeping I_1 as source

Using Mesh analysis in Mesh 1, 2 and 3 we get,

Applying KVL in Mesh 1,

$$-6I_1 - 2(I_1 - I_2) - 1(I_1 - I_3) = 0$$

-9I₁ + 3I₂ + I₃ = 0 —(i)

Applying KVL in Supermesh,

$$-2(I_2 - I_1) - 3I_2 - 1(I_3 - I_1) = 0$$

$$3I_1 - 5I_2 - I_3 = 0$$
—(ii)

From the figure 7,

$$-I_1 + I_2 = -15$$
 —(iii)

From Eqs. (i), (ii) and (iii) we get,

 $I_1 = 1A$

 $I_2 = -2A$

 $I_3 = 17A$

Current through 3Ω resistor = -2A

Voltage across 3Ω resistor $V_{A2} = -2 \times 3 = -6V$

Case 3:

Taking I_2 as the source, V_1 will be short circuited and I_1 will be open circuited, figure 20 Using Mesh analysis in Mesh 1, 2 and 3 we get,

Applying KVL in Mesh 3,

$$-3I_3 -1(I_3 - I_1) -2(I_3 - I_2) = 0$$

$$I_1 + 2I_2 -6I_3 = 0$$
 —(i)

Applying KVL in Supermesh,

$$-1(I_1 - I_3) -6I_1 -2(I_2 - I_3) = 0$$

-7I₁ -2I₂ +3I₃ = 0 —(ii)

Figure 20: Circuit 5 keeping I_2 as source

From the figure 20,
$$-I_1+I_2=-15 \qquad \qquad -(iii)$$
 From Eqs. (i), (ii) and (iii) we get,
$$I_1=2A \\ I_2=-13A \\ I_3=4A$$
 Current through 3Ω resistor $=4A$ Voltage across 3Ω resistor $V_{A3}=4\times 3=12V$ From Case 1, Case 2 and Case 3, Net voltage across $R_4=V_{A1}+V_{A2}+V_{A3} \\ = 12V-6V-12V$

 $V_{3\Omega} = 18V(clockwise)$

SIMULATED RESULTS:

The given circuit is simulated in LTspice and the results obtained are as follows:

= 18V (clockwise)

Figure 21: Circuit Schematic and Simulated Results

Parameters	Theoretical Values	Simulated Values
$V_{3\Omega}$	18V	18V

Table 5: Numerical 4

Numerical 5: Find the Thevenin's equivalent of the circuit as seen by looking into terminals A-B in figure 22.

Figure 22: Circuit 6

Solution:

Step 1: Calculation of V_{th}

Figure 23: Finding V_{th}

Apply KVL to mesh 1,

$$i_1 = 4A \text{ (anticlockwise)}$$
 —(i)

Apply KVL to mesh 2,

$$-6i_2 - 4i_2 - 6(i_2 - i_1) = 0$$

-16i_2 - 6i_1 = 0 —(ii)

Solving (i) and (ii),

 $i_2 = 1.5 A$ (anticlockwise)

$$V_{AB} = i_2 \times R_2 = 6V$$

$$V_{th} = V_{AB} = 6V$$

$$V_{th} = 6\mathbf{V}$$

Step 2: Calculation of R_{th}

For finding R_{th} , deactivate all the independent sources,

Figure 24: Finding R_{th}

Equivalent resistance across AB =
$$R_{th} = (R_1 + R_3)||R_2|$$

= $(6 + 6)||4|$
= 3Ω

$$R_{th} = 3\Omega$$

Thevenin's Equivalent Circuit

Figure 25: The venin's equivalent circuit

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 26: Circuit Schematic and Simulated Results for V_{th}

Figure 27: Circuit Schematic and Simulated Results for R_{th}

Parameters	Theoretical Values	Simulated Values
V_{th}	6V	6V
R_{th}	3Ω	3.00Ω

Table 6: Numerical 5

Numerical 6: For the circuit in figure 28, find the Thevenin's equivalent of the circuit across terminals A-B.

Figure 28: Circuit 7

Solution:

Step 1: Calculation of V_{th}

Figure 29: Finding V_{th}

From figure 29,

$$i_1 - i_3 = 3A - (i)$$

$$i_2 = -2A$$
 —(ii)

Applying KVL in Supermesh,

$$-10 - 5i_1 - 6(i_1 - i_2) - 4(i_3 - i_2) + 18 = 0$$

$$11i_1 - 10 - i_2 + 4i_3 = 8$$
—(iii)

Solving (i), (ii) and (iii),

$$i_1 = 0A, i_3 = -3A$$

$$V_{th} = V_2 + i_1 \times R_2$$

= 10 + 0 × 5
= 10V

Step 2: Calculation of R_{th}

For finding R_{th} , deactivate all the independent sources,

Figure 30: Finding R_{th}

Equivalent resistance across AB =
$$R_{th}$$
 = $(R_1 + R_2)||R_3$
= $(4+6)||5$
= 3.3333Ω

 $R_{th} = 3.3333\Omega$

Thevenin's Equivalent Circuit

Figure 31: Thevenin's equivalent circuit

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 32: Circuit Schematic and Simulated Results for V_{th}

Figure 33: Circuit Schematic and Simulated Results for R_{th}

Parameters	Theoretical Values	Simulated Values
V_{th}	10V	10V
R_{th}	3.3333Ω	3.3333Ω

Table 7: Numerical 6

Numerical 7: Using Norton's theorem, find the current which would flow in a 25Ω resistor connected between points N and O in figure 34.

Figure 34: Circuit 8

Solution:

Step 1: Calculation of I_{sc}

Short Circuit NO to find I_{sc}

Figure 35: Finding I_{sc}

$$I_{sc} = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}$$
$$= \frac{10}{3} + \frac{20}{10} - \frac{30}{20}$$
$$= 2.5A$$

$$I_{sc} = 2.5A$$

Step 2: Calculation of R_N

Deactivate all independent sources to find R_N

Figure 36: Finding R_N

$$\begin{split} \frac{1}{R_{\mathrm{N}}} &= \frac{1}{R_{1}} + \frac{1}{R_{\mathrm{N}}} + \frac{1}{R_{3}} \\ &= \frac{1}{5} + \frac{1}{10} + \frac{1}{20} \\ &= \frac{7}{20} \end{split}$$

 $R_N = 2.857\Omega$

Norton's Equivalent Circuit

Figure 37: Norton's equivalent circuit

For finding current across 25Ω resistor

Open circuit voltage through NO

$$V_{NO} = I_{SC} \times R_N$$

$$= 2.5 \times 2.857$$

$$= 7.1425 \text{V}$$

Current through 25Ω resistor across NO

Current through
$$I_{RL} = \frac{V_{\text{NO}}}{R_{\text{L}}}$$

$$= \frac{7.4125}{25}$$

$$= 0.2857 \text{A}$$

 $I_{25\Omega} = \mathbf{0.2857A}$

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 38: Circuit Schematic and Simulated Results for $I_{25\Omega}$

Parameters	Theoretical Values	Simulated Values
$I_{25\Omega}$	0.2857A	0.2564A

Table 8: Numerical 7

Numerical 8: Find the Norton's equivalent and Thevenins's equivalent of the circuit across terminals A-B of the circuit in figure 39.

Figure 39: Circuit 9

Solution:

Step 1: Calculation of I_{sc}

Short Circuit AB to find I_{sc}

Figure 40: Finding I_{sc}

Apply KVL to mesh 1,

$$i_1 = 8A \text{ (clockwise)}$$
 —(i)

Apply KVL to mesh 2,

$$-20i_2 - 10(i_2 - i_1) = 0$$

$$i_2 = 2.667$$
A (clockwise) —(ii)

Apply KVL to mesh 3,

$$-40i_3 - 50(i_3 - i_1) = 0$$

$$i_3 = 4.444$$
A (clockwise) —(iii)

From (ii) and (iii),

$$I_{sc} = i_3 - i_2$$

= 4.444 - 2.667
= 1.777A (clockwise)

 $I_{sc} = 1.777A$ (clockwise)

Step 2: Calculation of R_N

Deactivate all independent sources to find \mathcal{R}_N

Figure 41: Finding R_N

$$R_N = (R_1 + R_3) || (R_2 + R_4)$$

= $(10 + 20) || (50 + 40)$
= 22.5Ω

$$R_N = 22.5\Omega$$

Norton's Equivalent Circuit

Figure 42: Norton's equivalent circuit

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 43: Circuit Schematic and Simulated Results for I_{sc}

Figure 44: Circuit Schematic and Simulated Results for R_N

Parameters	Theoretical Values	Simulated Values
I_{sc}	1.777A	1.7777A
R_N	22.5Ω	22.5002Ω

Table 9: Numerical 8 Norton's Theorem

Thevenin's Theorem

Step 1: Calculation of V_{th}

Figure 45: Finding V_{th}

Apply KVL to mesh 1,

$$i_1 = 8A \text{ (clockwise)}$$
 —(i)

Apply KVL to mesh 2,

$$-20i_2 - 40i_2 - 4i_2 - 10(i_2 - i_1) - 50(i_2 - i_1) = 0$$

$$60i_1 - 120i_2 = 0$$
 —(ii)

Solving (i) and (ii),

 $i_2 = 4A$ (anticlockwise)

$$V_B = i_2 \times R_3$$

$$= 4 \times 20$$

$$= 80$$

$$V_A = i_2 \times R_1$$

$$= 4 \times 10$$

$$V_{AB} = V_B - V_A$$
$$= 80 - 40$$
$$= 40$$

= 40

$$V_{th} = V_{AB} = 40V$$

$$V_{th} = 40 \mathrm{V}$$

Step 2: Calculation of R_{th}

For finding R_{th} , deactivate all the independent sources,

Figure 46: Finding R_{th}

$$R_{th} = (R_1 + R_3) || (R_2 + R_4)$$

= $(10 + 20) || (50 + 40)$
= 22.5Ω

$$R_{th} = 22.5\Omega$$

Thevenin's Equivalent Circuit

Figure 47: Thevenin's equivalent circuit

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 48: Circuit Schematic and Simulated Results for V_{th}

Figure 49: Circuit Schematic and Simulated Results for R_{th}

Parameters	Theoretical Values	Simulated Values
V_{th}	40V	40V
R_{th}	22.5Ω	22.500Ω

Table 10: Numerical 8 Thevenin's theorem

Numerical 9: For the circuit in figure 50, find the Norton's equivalent circuit at terminals A-B.

Figure 50: Circuit 10

Solution:

Step 1: Calculation of I_{sc}

Short Circuit AB to find I_{sc}

Figure 51: Finding I_{sc}

From figure 51,

$$i_3 = 2A$$
 —(i)

$$i_4 - i_3 = 3A --(ii)$$

Applying KVL in Mesh 1,

$$-10 - 5(i_1 - i_2) = 0$$

 $-5i_1 + 5i_2 = 10$ —(iii)

Applying KVL in Supermesh,

$$-18 - 4(i_4 - i_3) - 6(i_2 - i_3) - 5(i_2 - i_1) + 10 = 0$$

$$5i_1 - 11i_2 + 10i_3 - 4i_4 = 10$$
 —(iv)

Solving (i), (ii), (iii) and (iv),
$$i_1 = 3A, i_2 = -1A$$

$$I_{sc} = i_1 = 3A$$

$$I_{sc} = \mathbf{3A}$$

Step 2: Calculation of R_N

Deactivate all independent sources to find R_N

Figure 52: Finding R_N

Equivalent resistance across AB =
$$R_N = (R_1 + R_2)||R_3|$$

= $(4+6)||5|$
= 3.3333Ω

 $R_N = 3.3333\Omega$

Norton's Equivalent Circuit

Figure 53: Norton's equivalent circuit

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 54: Circuit Schematic and Simulated Results for I_{sc}

Figure 55: Circuit Schematic and Simulated Results for R_N

Parameters	Theoretical Values	Simulated Values
I_{sc}	3A	3A
R_N	3.33Ω	3.33Ω

Table 11: Numerical 9

Numerical 10: Calculate the value of R_L which will absorb maximum power from the circuit in figure 56. Also compute the value of maximum power.

Figure 56: Circuit 11

Solution:

Step 1: Calculation of V_{th}

For finding V_{th} , remove resistor R_L and find voltage across AB.

Figure 57: Finding V_{th}

Apply KVL to loop 1,

$$120 - 10i_1 - 5(i_1 - i_2) = 0$$

$$15i_1 - 5i_2 = 120$$
 —(i)

Apply KVL to loop 2,

From (i) and (ii),

$$i_1 = 6A$$

$$V_{th} = V_{AB} = 120 - 6 \times 10 - 5(6 - 6) = 60$$

$$V_{th} = 60 V$$

Step 2: Calculation of R_{th}

For finding R_{th} , deactivate all the independent sources,

Figure 58: Finding R_{th}

Equivalent resistance across AB =
$$R_{th}$$
 = $R_1 || R_2$
= $5 || 10$
= 3.333Ω

$$R_{th} = 3.333\Omega$$

Thevenin's Equivalent Circuit

Figure 59: Thevenin's equivalent circuit

For maximum power transfer $R_L = R_{th} = 3.333\Omega$

$$R_L = 3.333\Omega$$

Maximum power can be calculated as

$$P_{max} = \frac{V_{\text{th}}^2}{4R_{\text{th}}}$$
$$= \frac{60^2}{4 \times 3.333}$$
$$= 270.0027W$$

Maximum Power = 270.0027W

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 60: Circuit Schematic and Simulated Results for V_{th}

Figure 61: Circuit Schematic and Simulated Results for R_{th}

Figure 62: Circuit Schematic and Simulated Results for Maximum Power

Parameters	Theoretical Values	Simulated Values
V_{th}	60V	60V
R_{th}	3.333Ω	3.333Ω
Maximium Power	270.0027W	270.0026W

Table 12: Numerical 10

Numerical 11: Calculate the value of R_L which will absorb maximum power from the circuit in figure 63. Also compute the value of maximum power.

Figure 63: Circuit 12

Solution:

Step 1: Calculation of V_{th}

For finding V_{th} , remove resistor R_L and find voltage across AB.

Figure 64: Finding V_{th}

Applying Mesh analysis,

$$8 - 10i_1 - 20i_1 = 0$$

$$i_1 = 0.2667A$$

$$V_{th} = V_{AB} = 12 - 8 + 10 \times i_1$$

$$= 12 - 8 + 10 \times 0.2667$$

$$= 6.6667V$$

 $V_{th} = 6.6667 V$

Step 2: Calculation of R_{th}

For finding R_{th} , deactivate all the independent sources,

Figure 65: Finding R_{th}

Equivalent resistance across AB =
$$R_{th} = R_1 || R_2$$

= $10 || 20$
= 6.6667Ω

$$R_{th} = 6.6667\Omega$$

Thevenin's Equivalent Circuit

Figure 66: Thevenin's equivalent circuit

For maximum power transfer $R_L = R_{th} = 6.6667\Omega$

$$R_L = 6.6667\Omega$$

Maximum power can be calculated as

$$P_{max} = \frac{{V_{\rm th}}^2}{4R_{\rm th}}$$
$$= \frac{6.6667^2}{4 \times 6.6667}$$
$$= 1.666675 \mathrm{W}$$

Maximum Power = 1.666675W

The given circuit is simulated in LTspice and the results obtained are as follows:

Figure 67: Circuit Schematic and Simulated Results for V_{th}

Figure 68: Circuit Schematic and Simulated Results for R_{th}

Figure 69: Circuit Schematic and Simulated Results for Maximum Power

Parameters	Theoretical Values	Simulated Values
V_{th}	$6.6667\mathrm{V}$	6.6667 V
R_{th}	6.6667Ω	6.6667Ω
Maximium Power	1.666675W	1.666675W

Table 13: Numerical 11