Krmilnik Arduino Nano

Krmilnik Arduino Nano je relativno cenovno ugoden (cca. 3-5€) in ker je programirljiv, ga lahko uporabimo v najrazličnejših aplikacijah. Razporeditev njegovih priključkov pa pa lahko vidimo na naslednji sliki [@fig:20-Arduino-Nano-pinout.png].

Slika 1: Razporeditev priključkov na krmilniku Arduino Nano.

Testni program "BLINK.ino"

Preden bomo krmilnik uporabili v našem vezju, ga bomo preizkusili. S programskim orodjem "Arduino IDE" bomo na krmilnik naložili program "blink.ino" in s tem preverili, da vse komponente na krmilniku delujejo pravilno. To je priporočljivo narediti pred vsakim projektom.

```
VAJA: Preizkus delovanja krmilnika Arduino Nano.

1. Krmilnik Arduino Nano povežite z računalnikom preko USB povezave,

2. zaženite program Arduino IDE in ga pravilno nastavite:

- Tools -> Processor : Arduino Nano,

- Tools -> Port : USB2

3. Odprite primer 01-BLINK.ino in

4. prenesite program na krmilnik.
```

Program je napisan v programskem jeziku C++, ki uporablja nekaj funkcij za lažje rokovanje s krmilnikom.

```
1
      void setup() {
2
        // initialize digital pin LED_BUILTIN as an output.
3
        pinMode(LED_BUILTIN, OUTPUT);
4
5
6
      // the loop function runs over and over again forever
7
      void loop() {
8
        digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH is the
            voltage level)
9
        delay(1000);
                                            // wait for a second
10
        digitalWrite(LED_BUILTIN, LOW);
                                            // turn the LED off by making the
            voltage LOW
11
        delay(1000);
                                            // wait for a second
      }
12
```

Napajanje krmilnika Arduino Nano

Krmilnik Arduino Nano lahko vstavimo tudi v prototipno ploščico in ga napajamo z zunanjim napajanjem.

```
VAJA: Uporaba krmilnika Arduino Nano na prototipni ploščici.
Vstavite krmilnik Arduino Nano v prototipno ploščico in ga povežite kot prikazuje naslednja shema.
Priključite tudi upor in LED na priključek 13.
```


Slika 2: Priključitev napajanja in dodatne LED na izhodni priključek.

Slika 3: Shema vezave krmilnika Arduino Nano na prototipni ploščici.

Model semaforja

Vezje bomo preoblikovali tako, da bo delovalo kot semafor na cestnem križišču. Uporabili bomo tri LED svetila različnih barv in preoblikovali program.

Slika 4: Shema vezave treh LED na krmilnik Arduino Nano.

Slika 5: Ter shema vezave na prototipni ploščici.

```
VAJA: Model semaforja.

Preoblikujte vezje po shemi, ki je prikazana na sliki [@fig:20-Model-semaforja.png]. In uporabite naslednji program ter ga ustrezno preoblikujte. Program, ki zagotavlja podobno delovanje kot pri sestnem semaforju dokumentirajte in komentirajte uporabljenej programske stavke (t.j. programske ukaze).
```

Preskustite naslednji program in ga ustrezno preoblikujte.

```
void setup() {
1
2
         pinMode(0, OUTPUT);
3
         pinMode(1, OUTPUT);
         pinMode(2, OUTPUT);
4
5
6
7
      void loop() {
8
         digitalWrite(0, HIGH);
9
         digitalWrite(1, HIGH);
        digitalWrite(2, HIGH);
11
        delay(1000);
        digitalWrite(0, LOW);
12
13
        digitalWrite(1, LOW);
14
        digitalWrite(2, LOW);
15
        delay(1000);
16
      }
```

Analiza vezja

Elektronski elementi so omejeni z njihovo največjo dopustno električno moč. Če to električno moč prekoračimo, jih bomo najverjetneje uničili.

Naprimer: Največja dopustna moč, ki se še lahko troši na uporih, ki jih uporabljate (premer upora = 2.4 mm) je 0,25 W.

Električno moč lahko izračunamo po enačbi:

$$P = UI$$

Pri nekaterih drugih elementih (kot na primer pri LED) pa so omejitveni pogoji postavljeni že s samim tokom.

Na primer za običajne 5mm LED je najpogosteje največji tok, ki lahko teče skoznjo 20 mA.

Tok skozi element lahko izračunamo po Ohmovem zakonu:

$$I_R = \frac{U_R}{R}$$

Če ne vemo kolikšno upornost ima element (tako kot je to v primeru LED), si največkrat pomagamo z izračunom toka skozi drug zaporedno vezan element. Kajti v tem primeru je tok isti.

VAJA: Električni tok skozi elemente.

Izračunajte kolikšen električni tok teče skozi elemente R1, R2, R3, LED1
, LED2 in LED3 ter preverite kakšne so električne omejitve tega elementa.

Izračunajte tudi električno moč, ki se troši na tem elementu.

Element	U [V]	I [V]	P[W]
R1			
R2			
R3			
LED1			
LED2			
LED3			