實驗六:碰撞 結報

實驗數據:

1. 各物體質量測量結果:

	_ , ,		·	I		_	
	第一次	第二次	第三次	第四次	第五次	平均	標準差
後車+光	391.45	391.48	391.47	391.47	391. 48	391.470	0.012247
電板+橡							
皮筋(g)							
前車	404.10	404.14	404.12	404. 08	404. 10	404. 108	0.022804
+arduino							
板+插銷							
(g)							
arduino	14. 90	14. 91	14. 90	14. 90	14. 88	14. 898	0.010954
板(g)							
橡皮筋	11. 12	11.12	11.10	11.08	11.10	11.104	0.016733
(g)							
插銷(g)	9. 90	9. 91	9. 93	9. 89	9. 90	9. 906	0. 015166
磁鐵 A	30. 20	30. 22	30. 23	30. 18	30. 20	30. 206	0. 019494
(g)							
磁鐵B	30. 20	30. 21	30. 19	30. 22	30. 20	30. 204	0. 011402
(g)							
插黏土	10.00	9. 98	10.02	10.00	9. 99	9. 998	0. 014832
的針(g)							
黏土(g)	9. 43	9. 42	9. 40	9. 44	9. 43	9. 424	0. 015166
砝碼A	50.00	50.02	50.02	49. 97	50.00	50.002	0. 020494
(g)							
砝碼 B	10. 15	10.14	10.14	10.14	10.15	10.144	0.005477
(g)							
砝碼 C	50.07	50.10	50.09	50.10	50.06	50.084	0. 018166
(g)							
光電板	12. 70	12.72	12. 71	12.69	12.69	12. 702	0. 013038
(g)							

▲表一,各物體質量(原始數據、平均值、標準差)

2. 彈性碰撞:(Arduino+光電閘)

橡皮筋;

前車質量約大於後車質量:

▲圖一, Arduino+光電閘(橡皮筋)x-t 圖(前車質量>後車質量)

▲圖二, Arduino+光電閘(橡皮筋)碰撞前 x-t 圖(前車質量>後車質量)

▲圖三, Arduino+光電閘(橡皮筋)碰撞後 x-t 圖(前車質量>後車質量)

使前車質量大於後車(前車 $m_1 = 504.194 \pm 0.036g$,後車 $m_2 = 401.614 \pm 0.013g$),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後的速度分別為 68.66cm/s 和 9.47cm/s,,光電閘測得後車速度分別為 0cm/s 和 72.33cm/s 根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $34618.968 \pm 0.038 \ g \cdot cm/s = 3.4618968 \times 10^{-2} \pm 3.8 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $33822.449 \pm 0.038 \ g \cdot cm/s = 3.3822449 \times 10^{-2} \pm 3.8 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0796519 \times 10^{-2} \pm 3.8 \times 10^{-8} kg \cdot m/s$

實驗誤差:2.3%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $1188503.805 \pm 0.038 \ g \cdot cm^2/s^2 = 1.188503805 \times 10^{-3} \pm 3.8 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $1073146.442 \pm 0.038 \ g \cdot cm^2/s^2 = 1.073146442 \times 10^{-3} \pm 3.8 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $0.115357363 \times 10^{-3} \pm 3.8 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:9.7%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\vartheta} - v_{\vartheta}} \right|$, 恢復係數:0.957

前車質量約等於後車質量:

▲圖四, Arduino+光電閘(橡皮筋)x-t 圖(前車質量~~後車質量)

▲圖五, Arduino+光電閘(橡皮筋)碰撞前 x-t 圖(前車質量~~後車質量)

▲圖六, Arduino+光電閘(橡皮筋)碰撞後 x-t 圖(前車質量~~後車質量)

將前車與後車調質量調整至大致相同後(前車 $m_1=404.108\pm0.023$ g,後車 $m_2=401.614\pm0.013$ g),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後的速度分別為 57.81cm/s 和 3.29cm/s,光電閘測得後車速度分別為 0cm/s 和 56.64cm/s,根據動量公式 P=mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $24237.994 \pm 0.026g \cdot cm/s = 2.4237994 \times 10^{-2} \pm 2.6 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $23729.399 \pm 0.026 \ g \cdot cm/s = 2.3729399 \times 10^{-2} \pm 2.6 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0508595 \times 10^{-2} \pm 2.6 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:2.1%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

726885.313 ± 0.026 $g \cdot cm^2/s^2 = 7.26885313 \times 10^{-4} \pm 2.6 \times 10^{-11} kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $645399.957 \pm 0.026 \ g \cdot cm^2/s^2 = 6.45399957 \times 10^{-4} \pm 2.6 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $0.81485356 \times 10^{-4} \pm 2.6 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:11.2%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\vartheta} - v_{\vartheta}} \right|$, 恢復係數:0.904

前車質量小於後車質量:

▲圖七,Arduino+光電閘(橡皮筋)x-t 圖(前車質量<後車質量)

▲圖八, Arduino+光電閘(橡皮筋)碰撞前 x-t 圖(前車質量<後車質量)

▲圖九, Arduino+光電閘(橡皮筋)碰撞後 x-t 圖(前車質量<後車質量)

使前車質量小於後車(前車 $m_1 = 404.108 \pm 0.023$ g,後車 $m_2 = 501.700 \pm 0.031$ g),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後的速度分別為 61.77cm/s 和-5.91cm/s,光電閘測得後車速度分別為 0cm/s 和 53.20cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $24962.559 \pm 0.038 \ g \cdot cm/s = 2.4962559 \times 10^{-2} \pm 3.8 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $24302.727 \pm 0.038 \ g \cdot cm/s = 2.4302727 \times 10^{-2} \pm 3.8 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0659832 \times 10^{-2} \pm 3.8 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:2.6%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

770993.609 \pm 0.038 $g \cdot cm^2/s^2 = 7.70993609 <math>\times$ 10⁻⁴ \pm 3.8 \times 10⁻¹¹ $kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

717019.723 ± 0.038 $g \cdot cm^2/s^2 = 7.17019723 \times 10^{-4} \pm 3.8 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失:0.53973886 × 10⁻⁴ ± 2.6 × 10⁻¹¹ $kg \cdot m^2/s^2$

實驗誤差:7.0%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\vartheta} - v_{\vartheta}} \right|$, 恢復係數:0.957

磁鐵: 前車質量約大於後車質量:

▲圖十, Arduino+光電閘(磁鐵)x-t 圖(前車質量>後車質量)

▲圖十一, Arduino+光電閘(磁鐵)碰撞前 x-t 圖(前車質量>後車質量)

▲圖十二, Arduino+光電閘(磁鐵)碰撞後 x-t 圖(前車質量>後車質量)

使前車質量大於後車(前車 $m_1 = 524.494 \pm 0.043$ g,後車 $m_2 = 420.714 \pm 0.024$ g),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後的速度分別為 54.23cm/s 和 7.22cm/s,光電閘測得後車速度分別為 0cm/s 和 56.29cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $28442.785 \pm 0.050 \ g \cdot cm/s = 2.8442785 \times 10^{-2} \pm 5.0 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $27469.939 \pm 0.050 \ g \cdot cm/s = 2.7469939 \times 10^{-2} \pm 5.0 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0972846 \times 10^{-2} \pm 5.0 \times 10^{-8} \, kg \cdot m/s$

實驗誤差: 3.4%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

771211.897 \pm 0.050 $g \cdot cm^2/s^2 = 7.71211897 <math>\times$ 10⁻⁴ \pm 5.0 \times 10⁻¹¹ $kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $680208.108 \pm 0.050 \ g \cdot cm^2/s^2 = 6.80208108 \times 10^{-4} \pm 5.0 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $0.91003789 \times 10^{-4} \pm 5.0 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:11.8%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\eta} - v_{\eta}} \right|$, 恢復係數:0.905

前車質量約等於後車質量:

▲圖十三, Arduino+光電閘(磁鐵)x-t 圖(前車質量~~後車質量)

▲圖十四, Arduino+光電閘(磁鐵)碰撞前 x-t 圖(前車質量~~後車質量)

▲圖十五, Arduino+光電閘(磁鐵)碰撞後 x-t 圖(前車質量~~後車質量)

將前車與後車調質量調整至大致相同後(前車 $m_1=424.408\pm0.034g$,後車 $m_2=420.714\pm0.024g$),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後的速度分別為 43.75cm/s 和 1.31cm/s,光電閘測得後車速度分別為 0cm/s 和 41.85cm/s,根據動量公式 P=mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $18567.001 \pm 0.049g \cdot cm/s = 1.8567001 \times 10^{-2} \pm 4.9 \times 10^{-8} kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $18164.638 \pm 0.049 \ g \cdot cm/s = 1.8164638 \times 10^{-2} \pm 4.9 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0004024 \times 10^{-2} \pm 4.9 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:2.2%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $406134.584 \pm 0.049 \ g \cdot cm^2/s^2 = 4.06134584 \times 10^{-4} \pm 4.9 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $368790.485 \pm 0.049 \ g \cdot cm^2/s^2 = 3.68790485 \times 10^{-4} \pm 4.9 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $3.7344099 \times 10^{-5} \pm 4.9 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:9.2%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\vartheta} - v_{\vartheta}} \right|$, 恢復係數:0.927

前車質量小於後車質量:

▲圖十六, Arduino+光電閘(磁鐵)x-t 圖(前車質量<後車質量)

▲圖十七, Arduino+光電閘(磁鐵)碰撞前 x-t 圖(前車質量<後車質量)

▲圖十八, Arduino+光電閘(磁鐵)碰撞後 x-t 圖(前車質量<後車質量)

使前車質量小於後車(前車 $m_1=424.408\pm0.034$ g,後車 $m_2=520.800\pm0.037$ g),於軌道上碰撞,並將碰撞前與碰撞後的 x-t 圖擬合,求得碰撞前後前車的速度分別為 55.94cm/s 和-3.55cm/s,光電閘測得後車速度分別為 0cm/s 和 46.78cm/s,根據動量公式 P=mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $23741.384 \pm 0.050 \ g \cdot cm/s = 2.3741384 \times 10^{-2} \pm 5.0 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $22854.551 \pm 0.050 \ g \cdot cm/s = 2.2854551 \times 10^{-2} \pm 5.0 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0008868 \times 10^{-2} \pm 5.0 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:3.7%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $664046.497 \pm 0.050 \ g \cdot cm^2/s^2 = 6.64046497 \times 10^{-4} \pm 5.0 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $572531.915 \pm 0.050 \ g \cdot cm^2/s^2 = 5.72531915 \times 10^{-4} \pm 5.0 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $9.1514582 \times 10^{-5} \pm 5.0 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:13.8%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\delta} - v_{\delta}} \right|$, 恢復係數: 0.900

3. 彈性碰撞(光電閘+光電閘):

橡皮筋:

前車質量約大於後車質量:

使前車質量大於後車(前車 $m_1 = 501.998 \pm 0.040$ g,後車 $m_2 = 401.614 \pm 0.013$ g), 於軌道上碰撞,由光電閘測得碰撞前後的前車速度分別為 74. 48cm/s 和 8. 30cm/s, 後車速度分別為 0cm/s 和 80.13cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $37388.811 \pm 0.042 \ g \cdot cm/s = 3.7388811 \times 10^{-2} \pm 4.2 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $36347.913 \pm 0.042 \ g \cdot cm/s = 3.6347913 \times 10^{-2} \pm 4.2 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0010409 \times 10^{-2} \pm 4.2 \times 10^{-8} kg \cdot m/s$

實驗誤差:2.8%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $1392359.323 \pm 0.042 \ g \cdot cm^2/s^2 = 1.392359323 \times 10^{-3} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $1306636.300 \pm 0.042 \ g \cdot cm^2/s^2 = 1.306636300 \times 10^{-3} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $8.5723023 \times 10^{-5} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:6.2%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\delta} - v_{\delta}} \right|$, 恢復係數:0.964

前車質量約等於後車質量:

將前車與後車調質量調整至大致相同後(前車 $m_1=401.912\pm0.028$ g,後車 $m_2=401.614\pm0.013$ g),於軌道上碰撞,由光電閘測得碰撞前後前車的速度分別為 57.18cm/s 和 0cm/s,後車速度分別為 0cm/s 和 57.11cm/s,根據動量公式 P=mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $22981.328 \pm 0.031g \cdot cm/s = 2.2981328 \times 10^{-2} \pm 3.1 \times 10^{-8} kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $21329.720 \pm 0.031 \ g \cdot cm/s = 2.1329720 \times 10^{-2} \pm 3.1 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0016516 \times 10^{-2} \pm 3.1 \times 10^{-8} \ kg \cdot m/s$

實驗誤差:7.2%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $657036.172 \pm 0.031 \ g \cdot cm^2/s^2 = 6.57036172 \times 10^{-4} \pm 3.1 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $566410.702 \pm 0.031 \ g \cdot cm^2/s^2 = 5.66410702 \times 10^{-4} \pm 3.1 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $9.0625470 \times 10^{-5} \pm 3.1 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:13.8%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\star} - v_{\star}} \right|$, 恢復係數: 0.929

前車質量小於後車質量:

使前車質量小於後車(前車 $m_1 = 401.912 \pm 0.028g$,後車 $m_2 = 501.700 \pm 0.031g$),於軌道上碰撞,由光電閘測得碰撞前後的速度分別為 70.75cm/s 和-6.52cm/s,後車速度分別為 0cm/s 和59.45cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $28435.274 \pm 0.042 \ g \cdot cm/s = 2.8435274 \times 10^{-2} \pm 4.2 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $27205.599 \pm 0.042 \ g \cdot cm/s = 2.7205599 \times 10^{-2} \pm 4.2 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0012297 \times 10^{-2} \pm 4.2 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:4.3%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $1005897.818 \pm 0.042 \ g \cdot cm^2/s^2 = 1.005897818 \times 10^{-3} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $895122.502 \pm 0.042 \ g \cdot cm^2/s^2 = 8.95122502 \times 10^{-4} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $1.10775316 \times 10^{-4} \pm 4.2 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:11.0%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\star} - v_{\star}} \right|$, 恢復係數:0.932

磁鐵:

前車質量約大於後車質量:

使前車質量大於後車(前車 $m_1 = 522.298 \pm 0.047g$,後車 $m_2 = 420.714 \pm 0.024g$), 於軌道上碰撞,由光電閘測得碰撞前後的前車速度分別為 46.13cm/s 和 7.05cm/s, 後車速度分別為 0cm/s 和 47.42cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $24093.607 \pm 0.053 \ g \cdot cm/s = 2.4093607 \times 10^{-2} \pm 5.3 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 23632.459 ± 0.053 $g \cdot cm/s = 2.3632459 \times 10^{-2} \pm 5.3 \times 10^{-8}$ $kg \cdot m/s$ 動量損失: $0.0044579 \times 10^{-2} \pm 5.3 \times 10^{-8}$ $kg \cdot m/s$

實驗誤差:1.9%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $555719.040 \pm 0.053 \ g \cdot cm^2/s^2 = 5.55719040 \times 10^{-4} \pm 5.3 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 486000.373 ± 0.053 $g \cdot cm^2/s^2 = 4.86000373 \times 10^{-4} \pm 5.3 \times 10^{-11}$ $kg \cdot m^2/s^2$ 動能損失: $6.9718667 \times 10^{-5} \pm 5.3 \times 10^{-11}$ $kg \cdot m^2/s^2$

實驗誤差:12.5%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\delta} - v_{\delta}} \right|$, 恢復係數:0.875

前車質量約等於後車質量:

將前車與後車調質量調整至大致相同後(前車 $m_1=422.212\pm0.038g$,後車 $m_2=420.714\pm0.024g$),於軌道上碰撞,由光電閘測得碰撞前後前車的速度分別為 55. 91cm/s 和 0cm/s,後車速度分別為 0cm/s 和 55. 25cm/s,根據動量公式 P=mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $23605.873 \pm 0.045g \cdot cm/s = 2.3605873 \times 10^{-2} \pm 4.5 \times 10^{-8} kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

23244.449 ± 0.045 $g \cdot cm/s = 2.3244449 \times 10^{-2} \pm 4.5 \times 10^{-8} \ kg \cdot m/s$ 動量損失:0.0003614 × $10^{-2} \pm 4.5 \times 10^{-8} \ kg \cdot m/s$

實驗誤差:1.5%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $659902.178 \pm 0.045 \ g \cdot cm^2/s^2 = 6.59902178 \times 10^{-4} \pm 4.5 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $642127.890 \pm 0.045 \ g \cdot cm^2/s^2 = 6.42127890 \times 10^{-4} \pm 4.5 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能損失: $1.7774288 \times 10^{-5} \pm 4.5 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:2.7%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\star} - v_{\star}} \right|$, 恢復係數: 0.988

前車質量小於後車質量:

使前車質量小於後車(前車 $m_1 = 422.212 \pm 0.038g$,後車 $m_2 = 520.800 \pm 0.037g$),於軌道上碰撞,由光電閘測得碰撞前後的速度分別為 39.29cm/s 和-3.27cm/s,後車速度分別為 0cm/s 和 33.89cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = m_1v_1' + m_2v_2'$$

動量理論值:(碰撞前以數據推導)

 $16588.709 \pm 0.053 \ g \cdot cm/s = 1.6588709 \times 10^{-2} \pm 5.3 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $16269.279 \pm 0.053 \ g \cdot cm/s = 1.6269279 \times 10^{-2} \pm 5.3 \times 10^{-8} \ kg \cdot m/s$ 動量損失: $0.0003194 \times 10^{-2} \pm 5.3 \times 10^{-8} \ kg \cdot m/s$

實驗誤差:1.9%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $325885.198 \pm 0.053 \ g \cdot cm^2/s^2 = 3.25885198 \times 10^{-4} \pm 5.3 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 301335.094 ± 0.053 $g \cdot cm^2/s^2 = 3.01335094 \times 10^{-4} \pm 5.3 \times 10^{-11}$ $kg \cdot m^2/s^2$ 動能損失: $2.4550104 \times 10^{-5} \pm 5.3 \times 10^{-11}$ $kg \cdot m^2/s^2$

實驗誤差:7.5%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\delta} - v_{\delta}} \right|$, 恢復係數:0.946

4. 非彈性碰撞:

黏土:

前車質量約大於後車質量:

使前車質量大於後車(前車 $m_1 = 502.090 \pm 0.045$ g,後車 $m_2 = 387.232 \pm 0.047$ g),於軌道上碰撞,由光電閘測得碰撞前後的速度分別為 119.28cm/s 和 62.33cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1v_1 + m_2v_2 = (m_1 + m_2)v'$$

動量理論值:(碰撞前以數據推導)

 $59889.295 \pm 0.065 \ g \cdot cm/s = 5.9889295 \times 10^{-2} \pm 6.5 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $55431.440 \pm 0.065 \ g \cdot cm/s = 5.5431440 \times 10^{-2} \pm 6.5 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0044579 \times 10^{-2} \pm 6.5 \times 10^{-8} \, kg \cdot m/s$

實驗誤差:7.4%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $3571797.566 \pm 0.065 g \cdot cm^2/s^2 = 3.571797566 \times 10^{-3} \pm 6.5 \times 10^{-11} kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $1727520.836 \pm 0.065 \ g \cdot cm^2/s^2 = 1.727520836 \times 10^{-3} \pm 6.5 \times 10^{-11} \ kg \cdot m^2/s^2$

動能損失理論值:1.55524581 × 10^{-3} ± 1.4 × 10^{-10} $kg \cdot m^2/s^2$

動能損失實驗值: $1.844276730 \times 10^{-3} \pm 6.5 \times 10^{-11} kg \cdot m^2/s^2$

實驗誤差:8.1%

恢復係數公式 $\left|\frac{v_{\star}-v_{\star}}{v_{\eta}-v_{\eta}}\right|$,恢復係數:0

前車質量約等於後車質量:

將前車與後車調質量調整至大致相同後(前車 $m_1 = 402.004 \pm 0.035$ g,後車 $m_2 = 387.232 \pm 0.039$ g),於軌道上碰撞,由光電閘測得碰撞前後速度分別為 112.06cm/s 和 51.64cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1 v_1 = (m_1 + m_2) v'$$

動量理論值:(碰撞前以數據推導)

 $45048.568 \pm 0.052 g \cdot cm/s = 4.5048568 \times 10^{-2} \pm 5.2 \times 10^{-8} kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $40756.147 \pm 0.052 \ g \cdot cm/s = 4.0756147 \times 10^{-2} \pm 5.2 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0042924 \times 10^{-2} \pm 5.2 \times 10^{-8} \text{ kg} \cdot \text{m/s}$

實驗誤差:9.5%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $2524071.278 \pm 0.052 \ g \cdot cm^2/s^2 = 2.524071278 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $1052323.717 \pm 0.052 \ g \cdot cm^2/s^2 = 1.052323717 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$

動能損失理論值: $1.23841432 \times 10^{-3} \pm 1.4 \times 10^{-10} \ kg \cdot m^2/s^2$ 動能損失實驗值: $1.471747562 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:9.2%

恢復係數公式 $\left| \frac{v_{\star} - v_{\star}}{v_{\vartheta} - v_{\vartheta}} \right|$, 恢復係數:0

前車質量小於後車質量:

使前車質量小於後車(前車 $m_1 = 402.004 \pm 0.035$ g,後車 $m_2 = 487.318 \pm 0.039$ g),於軌道上碰撞,由光電閘測得碰撞前後的速度分別為 126.10cm/s 和 51.79cm/s,根據動量公式 P = mv,與動量守恆定理

$$m_1 v_1 = (m_1 + m_2) v'$$

動量理論值:(碰撞前以數據推導)

 $50692.704 \pm 0.052 \ g \cdot cm/s = 5.0692704 \times 10^{-2} \pm 5.2 \times 10^{-8} \ kg \cdot m/s$ 動量實驗值:(碰撞後測得之實驗數據)

 $46057.986 \pm 0.052 \ g \cdot cm/s = 4.6057986 \times 10^{-2} \pm 5.2 \times 10^{-8} \ kg \cdot m/s$

動量損失: $0.0046347 \times 10^{-2} \pm 5.2 \times 10^{-8} \ kg \cdot m/s$

實驗誤差:9.1%

根據動能公式 $E_k = \frac{1}{2}mv^2$,與動能守恆定理,

動能理論值:(碰撞前以數據推導)

 $3196175.012 \pm 0.052 \ g \cdot cm^2/s^2 = 3.196175012 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$ 動能實驗值:(碰撞後測得之實驗數據)

 $1192671.557 \pm 0.052 \ g \cdot cm^2/s^2 = 1.192671557 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$

動能損失理論值:1.75139445× $10^{-3}\pm1.4\times10^{-10}$ $kg\cdot m^2/s^2$

動能損失實驗值: $2.003503455 \times 10^{-3} \pm 5.2 \times 10^{-11} \ kg \cdot m^2/s^2$

實驗誤差:7.9%

恢復係數公式 $\left|\frac{v_{\star}-v_{\star}}{v_{\vartheta}-v_{\vartheta}}\right|$,恢復係數:0

誤差分析:

1. 滑車輪子非完美圓形:

實驗過程中,由 Arduino 測量出前車的的數據並繪製成 x-t 圖,我們發現滑車並非做等減速度運動,而是會出現不規則的速度變化(如圖十九、圖二十)。此情況並非只出在單一實驗中,故我們推測滑車輪子不是圓形或是趨近於圓形,而是已經損壞成不規則的形狀,進而增加了動量與動能的損耗。

▲圖十九,光電閘+光電閘(橡皮筋)碰撞後 x-t 圖(前車質量<後車質量)

▲圖二十, Arduino+光電閘(磁鐵)碰撞後 x-t 圖(前車質量<後車質量)

2. 軌道未水平:

由於軌道量測方法不夠精準,故軌道並不一定水平,如圖二十一所示,滑車會受到 $mgsin \theta$ 影響而影響實驗數據結果。

▲圖二十一, 軌道未水平示意圖

3. 使用 Arduino 與光電閘測量前車速度差異:

以 Arduino 測量時,所測得的數據即為碰撞後反應的結果,但若是使用光電閘,我們必須等待滑車慢慢滑過光電閘,此過程中會因摩擦力使動量與動能流失,尤其如第一點所述,滑車的輪子非常的不圓,故 Arduino 測出的數據更加精準。

心得:

此次實驗數據非常多,計算與整理時非常地令人頭痛,加上滑車的輪子太不圓了,誤差 常常一不小心就超過規定範圍,導致一直重新調整軌道,耽誤了不少時間,對於調整軌 道水平我們應該要更加耐心,盡可能地把我們能減少的誤差降低。