

키넥트를 이용한 홈 트레이닝

졸업작품 제안서

2016152025 양수연 | 2015172039 정유하 | 2012181003 김두환

목차

GRADUATION PORFOLIO

0. 지적 사항

1. 종합 설계 개요

2. 관련 연구 및 사례

3. 시스템 수행 시나리오

4. 시스템 구성도

5. 시스템 모듈 상세 설계

6. 개발 내용 및 개발 환경

7. 업무 분담

8. 종합 설계 수행 일정

9. 필요 기술 및 참고문헌

지적 사항

	지난 발표에서의 <mark>지적사항</mark>	지적 사항에 대한 <mark>답변</mark>	관련 페이지
1	일치도에 대한 연구가 더 필요함	기존의 x, y좌표로 골격을 인식하는 것이 아니라 z좌표 까지 추가하여 정확도를 높임	p.26
2	운동 시 지연이 일어났을 경우 넘어 갈 수 있는 수준의 일치도 경계 값 추출	레퍼런스 영상을 바로 따라할 수 있게 실시간 영상 레이어 위에 반투명 레퍼런스 영상을 재생 함으로써 동작 지연을 방지함.	P.35
3	난이도 상중하에 따른 일치도 추출	일치율 오차범위에 차이를 둠	P.36
4	의미 있는 일치 율 을 뽑아야 함. (데이터 정제)	총 10개의 골격 사이의 각도 값을 구하고 데이터를 정제하 여 이해할 수 있는 일치율을 보여줌	р.37
5	다양한 운동 동작 구현	신체 골격 각도를 제대로 활용 할 수 있는 운동을 선별함	

개발 배경

성인남녀 57%, 집에서 운동하는 '홈트족'

* 성인남녀 831명 대상 설문조사 결과, 자료제공 : 잡코리아X알바몬

개발 배경

자료: 다음소프트

✓ 홈트레이닝 장점

- 기존 PT에 비해 금전적 절약
- 시간과 공간의 제약에 자유로움
- 자신의 체력을 고려하여 계획한
- 프로그램 일정 대로 운동 가능

개발 배경

- 올바른 자세를 코칭 해줄 전문가 부재
- 잘못된 자세로 운동하여 부상의 위험 증가
 - → 자세분석 기술의 필요성

개발 목표

• 키넥트의 모션 인식 기능을 활용하여

• 운동 자세 분석 및 교정을 위한

• 홈 트레이닝 프로그램 개발

관련 연구 및 사례:

나이키 키넥트

✔ 나이키 키넥트

- 단순히 영상을 따라하는 정도의 기능
- 자세 개선 정도는 분석 불가능

관련 연구 및 사례:

카카오 홈트

✔ 카카오 홈트

- 나이키 키넥트와 비슷한 정도의 기능 (자세 개선 정도 분석 불가능)
- 원격 트레이닝 기능 부재

관련 연구 및 사례:

엔핏

- 자세 분석 기능 부재 → 부상 위험으로 이어짐
- 육체적인 서비스가 불가능

운동관리

식단관리

일상관리

성과

시스템 수행 시나리오: 메인

시스템 수행 시나리오:

트레이닝

시스템 수행 시나리오:

운동 일기

• 한달 동안의 운동 동작 별 정확도 & 운동 시간 시각적으로 확인 가능

시스템 구성도:

과정

<전문가 자세 DB>

<사용자 정보 DB>

<TV(사용자 화면)>

전문가 자세와 사용자 골격정보 비교 알고리즘 수행 후 결과 송출

개발 환경

<Kinect for Winodws v2>

	권장 사양
OS	Windows 8 이상
컴파일러	Visual Studio 2012 이상
연결 단자	USB 3.0
CPU	Intel Core I7 3.1GHz
GPU	DirectX 11.0
RAM	4.0GB

시스템 모듈 상세 설계: 데이터 베이스 설계

ref_fit_info

- fit_code 운동 코드
- fit_core 운동 핵심 부위
- fit_video 영상 리소스
- fit_index1_x 비교 부위1.x
- fit_index1_y 비교 부위1.y
- fit_index2_x 비교 부위2.x
- fit_index2_y 비교 부위2.y
- fit_index3_x 비교 부위3.x
- fit_index3_y 비교 부위3.y

정확도 알고리즘에 사용

fit_info

- fit_code 운동 코드
- fit_name 운동 이름
- ▸ fit_core 운동 핵심 부위
- fit_video 영상 리소스
- fit_plan 운동 설명

user_info

- user_id 아이디
- user_passwd 비밀번호
- user_name 이름
- user_gender 성별
- user_age Ltol
- user_height 31
- user_weight 몸무게
- user_phone 번호

fit_record

- ▶ user_id 사용자 아이디
- fit_code 운동 코드
- fit_time 운동 시간
- fit_accuracy 정확도
- fit_date 운동 날짜

user_info:

회원 개인 정보와 운동기록 관리

fit info:

운동 관련 정보와 영상 리소스 경로 저장

fit_record :

회원 별 운동 기록 저장

ref_fit_info :

레퍼런스 운동 관련 정보 저장

시스템 모듈 상세 설계: 키넥트 어플리케이션

회원가입 모듈 - WPF어플리케이션

~ 클래스

기능

- 1. 회원가입에 필요한 정보 관리
- 2. 개인 별 운동 정보를 넣음
- 3. user_id, user_passwd, user_age, user_height, user_gender, user_weight, user_phone

다루는 정보

- client.Base∧ddress 서버와 연결
- client.Post∧sJson∧sync() 객체를 JSON타입으로 웹 서버에 보낸다.

회원가입을 DB에 반영하는 시점

사용자가 가입에 필요한 정보를 모두 올바르게 기입 하고 회원가입 버튼을 눌렀을 때.

아이디 :	7]:
비밀번호 :	몸무게 :
이름 :	전화번호 :
성별 :	
나이:	회원가입

시스템 모듈 상세 설계: 키넥트 어플리케이션

btn_goto_login_Click()		
형식	void btn_goto_login_Click(object sender, RoutedEvent∧rgs e)	
리턴값	Void (실행)	
설명	페이지 간의 전환 • var login = new LoginPage(); //전환하고자 하는 페이지 • This.Content = login;	
예시	btn_goto_login_Click(object sender, RoutedEvent∧rgs e)	

시스템 모듈 상세 설계: 회원가입 페이지 - 1

btn_user_post_Click()		
형식	private async void btn_user_post_Click(object sender, RoutedEventArgs e)	
리턴값	Void (실행)	
설명	 사용자 정보를 관리하기 위한 회원가입 함수 회원가입 페이지(JoinPage.xml) 폼에서 입력 값 매핑 된 Uri로 POST방식으로 웹서 버 통해 DB user_info 테이블에 저장 	
예시	btn_goto_login_Click(object sender, RoutedEvent∧rgs e)	

시스템 모듈 상세 설계: 회원가입 페이지 - 2

GetUsers();	
형식	private async void GetUsers(object sender, RoutedEventArgs e)
리턴값	Void (실행)
설명	데이터베이스에 있는 값을 얻어온다. 회원 정보와 회원 전용 운동 정보를 얻어 올 수 있다.
예시	private async void GetUsers(object sender, RoutedEventArgs e)

시스템 모듈 상세 설계:

서버 - 컨트롤러 패키지

UserRestController: 클라이언트 요청을 웹서버 Url 맵핑하여 해당 서비스 분기

String joinUserPost()	
형식	String joinUserPost() (UserVO uservo)
리턴값	String
설명	클라이언트 회원가입 폼을 통해 POST 요청 시 입력 받은 정보를 uservo 도메인 객체에 매핑 하여 회원 추가 서비스 호출

Respon	ResponseEntity <uservo> readUserGet()</uservo>	
형식	ResponseEntity <uservo> readUserGet(String userid)</uservo>	
리턴값	ResponseEntity <uservo> return 객체는 HTTP 응답 메시지에 해당 회원 정보 도메인, 헤더 정보, 상태 코드 바인딩하여 리턴</uservo>	
설명	클라이언트에서 회원 별 정보 확인을 위해 GET 요청 시 id 값을 userid 인자에 매핑하여 해당 회원 정보 읽기 서비스 호출	

시스템 모듈 상세 설계:

서버 - 도메인 패키지

UserVO: 회원정보라는 현실의 추상적 개념 -> 논리적 속성으로 표현한 클래스, DB user_info 테이블 컬럼명과 변수명 동일하게 맵핑

UserVO	
설명	- private String user_id; - private String user_passwd; // 사용자 비밀번호 - private String user_name; // 사용자 이름 - private String user_gender; // 사용자 성 - private int user_age; // 사용자 나이 - private int user_height; // 사용자 키 - private int user_weight; // 사용자 몸무게 - private String user_phone; // 사용자 번호

시스템 모듈 상세 설계: 서버 - 익셉션 패키지

Exception	
형식	DataNotFoundException: Exception UserControllerAdvice: Exception
리턴	오류 예방
설명	 DataNotFoundException: Exception 클래스를 상속 예외 발생 클래스 UserController∧dvice: Exception 발생 시 예외 관련 정보 노출을 막기 위해 별도 에러 페이지 리턴 String handleException(Exception e) String handleException(DataNotFoundException e)

시스템 모듈 상세 설계: 서버 - 퍼시스턴스

UserD∧O	
형식	 UserDΛO: DB의 user_info 테이블 CRUD를 위한 인터페이스 UserDΛOImpl: UserDΛO 구현 객체 DB user_info SQL통한 액세스
리턴값	
설명	- UserVO read(String user_id): user_id와 일치하는 회원 정보 리턴 - List <uservo> readList(): user_info 테이블에 모든 회원 정보 리턴 - void add(UserVO uservo): 회원 추가 - void update(UserVO uservo): 회원 정보 수정 - void delete(String user_id): 회원 삭제</uservo>

시스템 모듈 상세 설계: 서버 - 서비스 패키지

UserService		
형식	 UserService: DB의 user_info 테이블 CRUD 및 비즈니스 로직 포함한 서비스 인터페이스 UserServiceImpl: UserService 구현 객체, DAO 메소드 호출을 통한 비즈니스 로직 처리 	
리턴값		
설명	 - UserVO readMember(String user_id) - List<uservo> readMemberList()</uservo> - void addMember(UserVO uservo) - void updateMember(UserVO uservo) - void deleteMember(String user_id) 	

Math. Atan 2:

```
매개변수: y포인터, x포인터
리턴 값: -pi ~ +pi
반환 받은 Radian값을 일반 각도 값으로 변환
음수 값이 반환 되는 경우
리턴 값+360 처리하여
0~360 도 사이의 각도 값 반환
```


(1) Head-Neck

double Head_Neck_xy=Math.Atan2(Head_y - Neck_y, Head_x - Neck_x) * (180.0 / Math.PI); double Head_Neck_xz=-Math.Atan2(Head_z - Neck_z, Head_x - Neck_x) * (180.0 / Math.PI);

(2) ShoulderLeft-ElbowLeft

double ElbowLeft_ShoulderLeft_xy = Math.Atan2(ElbowLeft_y-ShoulderLeft_y,ElbowLeft_x-ShoulderLeft_x) * (180.0 / Math.PI); double ElbowLeft_ShoulderLeft_xz = -Math.Atan2(ElbowLeft_z - ShoulderLeft_z, ElbowLeft_x - ShoulderLeft_x) * (180.0 / Math.PI);

(3) ElbowLeft-WristLeft

double ElbowLeft_WristLeft_xy = Math.Atan2(WristLeft_y - ElbowLeft_y, WristLeft_x-ElbowLeft_x) * (180.0 / Math.PI); double ElbowLeft_WristLeft_xz = -Math.Atan2(WristLeft_z-ElbowLeft_z, WristLeft_x-ElbowLeft_x) * (180.0 / Math.PI);

(4) Neck - SpinBase

double Neck_SpineBase_xy = Math.Atan2(Neck_y - SpineBase_y, Neck_x - SpineBase_x) * (180.0 / Math.PI); double Neck_SpineBase_xz = -Math.Atan2(Neck_z - SpineBase_z, Neck_x - SpineBase_x) * (180.0 / Math.PI);

시스템 모듈 상세 설계 : 자세 데이터 수집 방법

•••	10(프레임)	•••	20(프레임)	•••	30(프레임)
•••		•••		•••	

10프레임당 한 개의 자세 기울기 각도 데이터를 뽑아서 이차원 배열에 저장한다.

1	2	3	4	5	6	7	8	9	10	골격 번호
										10프레임
										20프레임
										•••

ቃ시스템 모듈 상세 설계 : 자세 데이터 베이스 테이블

< 운동 1개당 2개의 테이블이 존재 >

ex) 30프레임에서 수집된 3번 뼈 x-y 기울기 각도 값

ex) 30프레임에서 수집된 3번 뼈 x-z 기울기 각도 값

시스템 모듈 상세 설계 : 자세 데이터 비교

[mySQL]

[Visual Studio]

골격	1	2	3	4	5	6	7	8	9	10
10 (프레임)										
20 (프레임)										
30 (프레임)										
40 (프레임)										

- 1. 선택한 운동의 데이터 테이블을 DB에서 가져온다.
- 2. 사용자가 운동을 시작하면 사용자의 자세를 10프레임 간격으로 가져온다.
- 3. DB에서 가져온 정보와 실시간으로 들어오는 자세를 비교한다.

시스템 모듈 상세 설계 : 동작 지연 방지

레퍼런스 영상을 바로 따라할 수 있게 실시간 영상 레이어 위에 반투명 레퍼런스 영상을 재생 함으로써 동작 지연을 방지함.

필요성	사람들마다 유연성과 지구력이 다름							
해결 방안	유연성마다 난이도를 조절함							
	일치율 오차범위에 차이를 둠							
구체적 방법	난이도 평가	₩ 상	ੂ ਨੂ	및 하				
	Perfect	95 이상	90 이상	80 이상				
	Excellent	90 ~ 95	80 ~ 90	70 ~ 80				
	Good	85 ~ 90	70 ~ 80	60 ~ 70				

80 ~ 85

75 ~ 80

Bad

Miss

60 ~ 70

50 ~ 60

50 ~ 60

40 ~ 50

→시스템 모듈 상세 설계 : 일치율 도출 식

레퍼런스 기울기 - 실시간 기울기
$$\left(1-\frac{|Ref.lean|-Real.lean|}{360}\right) imes 100$$

의미 있는 일치율 값을 출력하기 위하여 자세의 정확도를 백분율로 표현함

시스템 모듈 상세 설계 : 운동 일기

필요성	• 단순히 운동을 하는 기능에서 끝나면 지속적인 운동을 하기 어려움						
해결방안	 운동일기를 통해 운동시간 , 운동을 기록함 데이터베이스 정보를 가져옴 						
구체적 방법	 데이터 베이스 fit_record 테이블에서 사용자의 운동 정보와 기록을 C#과 연동 C# Xaml과 cs파일에서 사용자 정의 코드를 사용함 						

개발 내용

• 실시간으로 skeleton 값 비교

데이터베이스에 저장 되어있는

"레퍼런스 skeleton값"과 "사용자의 skeleton값"을 비교 분석

→ 분석 알고리즘 구현

• 사용자의 운동 시간과 운동 자세 분석

사용자의 운동 자세와 운동 시간을 DB에 저장하여 그래프로 제시

개발 환경

<Kinect for Winodws v2>

속성	수치
해상도 / FPS	1920X1080 30fps
인물 영역	6명
관절	25관절
검출 범위	0.5 ~ 4.5m
각도(수평 / 수직)	70도 60도
손의 개폐 상태 인식	SDK에서 가능

개발 환경

✓ MySQL

- 표준 데이터베이스 질의 언어인 SQL을 사용하는 공개 소스의 관계형 데이터베이스 관리 시스템
- 매우 빠름, 유연함, 사용하기 쉬움
- · 다중사용자, 다중 스레드 지원
- C, C++, 자바, 파이선 스크립트 등을 위한 응용 프로그램 인터페이스(API)제공

개발 환경

✓ Kinect SDK

- Microsoft Research에서 발표
- 32비트 및 64비트 지원
- 장치드라이버 , API 프레임워크 제공
- 예제와 문서 제공

업무 분담:

	양수연	<u>김두환</u>	정유하				
자료수집	Kinect 사용법 , 클라이언트 개발	데이터베이스 / 서버 구현	비교 알고리즘 구현				
설계	자료 설계	구조 설계	구조 설계				
구현	WPF 구현	Skeleton 정보 DB 연동 모션 인식	Kinect skeleton 비교 알고리즘				
테스트	Skeleton 테스트 DB 연동 테스트 모션인식 테스트						

종합 설계 수행 일정 : 진행과정

		12월	01월	02월	03월	04월	05월	06월	07월	08월	09월
시스템 설계	시스템 설계										
시스템 설계	시스템 설계										
시험 및 보완	시스템 시험										
	시스템 보완										
문서화	졸업작품 논문 작성										
산업기술대전	산업기술대전 참가										

개발 환경 - sw

	양수연	김두환	정유하
Github ID	vcindyvdandi	carinodudu	yooha9621
Github Address	https://gi	thub.com/vcindyv	<u>/dandi</u>

필요 기술 및 참고문헌:

- KITness : 키넥트 센서를 활용한 인터렉티브 운동 자세 분석 시스템
- https://developer.microsoft.com/ko-kr/windows/Kinect: 키넥트 스튜디오

Kinect for Windows SDK 2.0

Windows 10용 데스크톱 응용 프로그램을 빌드하거나 Microsoft Store에서 Kinect v2 UWP 앱을 판매하여 고유한 Windows 런타임 기능을 활용하고 배포를 확장합니다.

KINECT FOR WINDOWS SDK 다운로드 >

감사합니다!