Computer Organization and Application

Introduction

Xiangzhong FANG xzfang@sjtu.edu.cn

Reference Books

《Computer Organization and Design – the Hardware/Software Interface 4th Edition》 (ARM Edition)

作者:

David A. Patterson, John L. Hennessy

出版社:

4th英文版(Elsevier出版)2008; ARM版(机械工业出版社英文影印版) 2010.4

英文原版教材在网络上可下载到扫描电子文档

Reference Books

计算机组成与设计—硬件/软件接口 (第三版)

Computer Organization And Design:
The Hardware/Software Interface
Third Edition

作者: David A. Patterson, John L.

Hennessy

中译者:郑纬民等译 机械工业出版社 2007.4

英文原版教材在网络上可下到 pdf 电子文档

Reference Books

计算机组成与体系结构-性能设计(第8版)

Computer Organization and Architecture:

Designing for

Performance(Eighth Edition)

作者: William Stallings

中译者:彭曼曼等译

机械工业出版社 2011.6

Question

Is a computer intelligent?

NO! It is you that make a compute to appear to be intelligent

Levels of Program Code

- High-level language
 - Level of abstraction closer to problem domain
 - Provides for productivity and portability
- Assembly language
 - —Textual representation of instructions
- Hardware representation
 - —Binary digits (bits)
 - —Encoded instructions and data

000000001010000100000000000011000

Binary machine

language program (for MIPS)

Below Your Program

- Application software
 - -Written in high-level language
- System software
 - —Compiler: translates HLL code to machine code
 - —Operating System: service code
 - Handling input/output
 - Managing memory and storage
 - Scheduling tasks & sharing resources
- Hardware
 - —Processor, memory, I/O controllers

Relation

What is Computer Architecture?

In its broadest definition, computer architecture is the *design of the abstraction layers* that allow us to implement information processing applications efficiently using available manufacturing technologies.

9

Abstraction Layers in Modern Systems

Architecture continually changing

Computing Devices Then...

EDSAC, University of Cambridge, UK, 1949

Computing Devices Now

Uniprocessor Performance

• RISC + x86: ??%/year 2002 to present

The End of the Uniprocessor Era

Single biggest change in the history of computing systems

Question

- You develop a program and run it on a computer.
- What factors affect the performance of your program?

Understanding Performance

- Algorithm
 - —Determines number of operations executed
- Programming language, compiler, architecture
 - Determine number of machine instructions executed per operation
- Processor and memory system
 - -Determine how fast instructions are executed
- I/O system (including OS)
 - —Determines how fast I/O operations are executed

Architecture: Conceptual Design

- Architecture is those attributes visible to the programmer
 - —Instruction set,
 - –number of bits used for data representation
 - -I/O mechanisms
 - —addressing techniques
- e.g. Is there a multiply instruction?

Architecture: Hardware/Software Interface

Organization

- Organization is how features are implemented
 - —Control signals
 - -Interfaces
 - -Memory technology
- e.g. Is there a hardware multiply unit or is it done by repeated addition?

Architecture & Organization

- Contents of computer architecture
 - Instruction set design, performance evaluation, pipelining, vector machine, SMP, clusters, parallel processing
- Contents of computer organization
 - -Arithmetic operations, ALU
 - —Memory and memory organization
 - —Instruction set and addressing
 - —Central processing unit (CPU)
 - -Bus
 - -1/0

Architecture & Organization

- All <u>Intel x86 family</u> share the same basic architecture
- The <u>IBM System/370 family</u> share the same basic architecture
- This gives code compatibility
 —At least backwards
- Organization differs between different versions

Intel 8086

Intel Core duo

AMD Athlon

Opening the Box

Components of a Computer

The BIG Picture

- Same components for all kinds of computer
 - —Desktop, server, embedded
- Input/output includes
 - —User-interface devices
 - Display, keyboard, mouse
 - —Storage devices
 - Hard disk, CD/DVD, flash
 - —Network adapters
 - For communicating with other computers

Inside the Processor (CPU)

- · Datapath: performs operations on data
- Control: sequences datapath, memory, ...
- Cache memory
 - —Small fast SRAM memory for immediate access to data

Inside the Processor

AMD Barcelona: 4 processor cores

Structure & Function

- Structure is the way in which components relate to each other
 - —How different components, like ALU, control, I/O, memory are connected?
 - —How they interface with each other?
- Function is the operation of individual components as part of the structure
 - —What is the function of a component?

Function

- All computer functions are:
 - —Data processing
 - —Data storage
 - -Data movement
 - —Control

Functional View

Operations (a) Data movement

Operations (b) Storage

Operation (c) Processing from/to storage

Operation (d) Processing from storage to I/O

Structure - The Control Unit

Outline of the Course

- Computer Evolution and Performance
- Computer Interconnection Structures
- Internal Memory
- External Memory
- Input/Output
- Operating Systems Support
- Computer Arithmetic
- Instruction Sets

Outline of the Course (2)

- CPU Structure and Function
- Reduced Instruction Set Computers
- Superscalar Processors
- Control Unit Operation
- Microprogrammed Control
- Multiprocessors and Vector Processing

Why Study COA?

- It is a core course for computer science or computer engineering
 - -As recommended by IEEE/ACM Curricula 2008
- To write better programs that run more efficiently on a real machine
- To understand the tradeoff among various components, such as CPU speeds and memory size
 - —Spending more for various alternatives

What You Will Learn

- How programs are translated into the machine language
 - -And how the hardware executes them
- The hardware/software interface
- What determines program performance
 - —And how it can be improved
- How hardware designers improve performance
- What is parallel processing

Acknowledgements

- These slides contain material developed and copyright by:
 - —Arvind (MIT)
 - —Krste Asanovic (MIT/UCB)
 - —John Kubiatowicz (UCB)
 - —David Patterson (UCB)
 - —Geng Wang (SJTU)
 - —Yanmin Zhu (SJTU