COMPUTER SCIENCE CHEAT SHEET

Greek Alphabet

-									
	A	α	Alpha	I	ι	Iota	P	ρ	Rho
	B	β	Beta	K	κ	Kappa	\sum	σ	Sigma
	Γ	γ	Gamma	Λ	λ	Lambda	T	τ	Tau
	Δ	δ	Delta	M	μ	mu	Y	v	Upsilon
	E	ϵ	Epsilon	N	ν	nu	Ф	ϕ	Phi
	Z	ζ	Zeta		ξ	Xi	X	χ	Chi
	H	η	Eta	O	0	Omicron	Ψ	ψ	Psi
	\bigcirc	А	Theta	П	π	Pi	\bigcirc	(,)	Omega

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

$$\frac{1}{e} = \lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n$$

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

$$e = \lim_{x \to 0} (1 + x)^{\frac{1}{x}}$$

Abstract Algebra

Field

A set F with two binary operations + and \cdot ia a *field* if: $1. + \text{and} \cdot \text{are commutative}$

 $2. + \text{and} \cdot \text{are associative}$

 $3. + \text{ and } \cdot \text{ have identities}, 0 \text{ and } 1 \text{ respectively}, 0 \neq 1$ 4. every element $a \in F$ has inverse for +, written -a5. every element $a \in F$ has inverse for \cdot , written a^{-1}

 $6. \, \forall a, b, c \in F, \ a \cdot (b+c) = a \cdot b + a \cdot c$

Linear Algebra

Probability

Complexity

Inequalities

$$1 + x \le e^x$$

$$\left(\prod_{i=1}^{n} a_i\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{i=1}^{n} a_i$$