

HIỂU BIẾT MỚI VỀ CƠ SỞ DI TRUYỀN CỦA NHỮNG HỘI CHỨNG LOẠN NHỊP TIM

PGS.TS. Vũ Minh Phúc

NỘI DUNG

- 1. Những hội chứng loạn nhịp tim di truyền
- 2. Công nghệ chẩn đoán di truyền các loạn nhịp tim
- 3. Điều trị gen các loạn nhịp tim di truyền

1. NHỮNG HỘI CHỨNG LOẠN NHỊP TIM DI TRUYỀN

1.	Hội chứng QT dài	QT dài Long QT Syndrome (LQTS)	
2.	Hội chứng Brugada	Brugada's Syndrome	0,1-1%
3.	Nhịp nhanh thất đa dạng do cathecholamine	Cathecholaminergic polymorphic ventricular tachycardia (CPVT)	hiếm
4.	Hội chứng QT ngắn	Short QT Syndrome (SQTS)	< 2%
5.	Rung thất vô căn	Idiopathic ventricular Fibrillation (IVF)	Hiếm
6.	Bệnh hệ dẫn truyền tim tiến triển	Progressive cardiac conduction system disease (PCCD)	50% trường hợp block nhĩ-thất

→ LOẠN NHỊP THẤT → ĐỘT TỬ

1.1. HỘI CHỨNG QT DÀI BẨM SINH (LQTS)

- QTc ≥ 480 msec + không triệu chứng hoặc
 QTc ≥ 460 msec + ngất
- Nguyên nhân: đột biến các gen điều khiển sự tổng hợp protein các kênh ion trên màng tế bào cơ tim → kéo dài thời gian tái cưc → QT dài

Cơ chế gây loạn nhịp thất trong LQTS

Type & subtype	NST thường	Di truyền
Romano-Ward syndrome (99%)		
LQT1	11p15.5	Kiểu trội
LQT2	7q36.1	Kiểu trội
LQT3	3p21-24	Kiểu trội
LQT4	4q25-26	Kiểu trội
LQT5-6	22q22.12	Kiểu trội
LQT9	3p25.3	Kiểu trội
LQT10	11q23.3	Kiểu trội
LQT11	7q21.2	Kiểu trội
LQT12	20q11.21	Kiểu trội
LQT13	11q24.3	Kiểu trội
LQT14	14q32.11	Kiểu trội
LQT15	2p21	Kiểu trội
LQT16	19q13.32	Kiểu trội
Jervell & Lange-Nielsen syndrome		
JNL1	11p15.4-5	Kiểu lặn
JNL2	21q22.12	Kiểu lặn
Andersen–Tawil - LQT7	17q24.3	Kiểu trội
Timothy syndrome - LQT8	12p13.33	Kiểu trội

Những đột biến gen liên quan với LQTS

LQTS Type	Gene	Protein	Current	Frequency	
LQT1	KCNQ1	Kv7.1	lKs↓	40%–45%	
LQT2	KCNH2	KV11.1	lKr↓	30%–35%	
LQT3	SCN5A	Nav1.5	lNa↑	10%	
LQT4	ANK2	Ankyrin-B	Na+/K+↓	1%	
LQT5	KCNE1	MinK	lKs↓	1%	
LQT6	KCNE2	MiRP1	lKr↓	Rare	
LQT7	KCNJ2	Kir2.1	IK1↓	Rare	
LQT8	CACNA1C	CaV1.2	ICa-L↑	Rare	
LQT9	CAV3	Caveolin 3	lNa↑	Rare	
LQT10	SCN4B	SCNβ4 subunit	lNa↑	Rare	
LQT11	AKAP9	Yotiao	lKs↓	Rare	
LQT12	SNTA1	Syntrophin-α1	lNa↓	Rare	
LQT13	KCNJ5	Kir3.4	IKACH↓	Rare	
LQT14	CALM1	Calmodulin 1	Calcium signalling	Rare	
LQT15	CALM2	Calmodulin 2	Calcium signalling	Rare	
LQT16	TRDN	Triadin	ICa-L↑	Rare	
Jervell and Lange-Nielsen syndrome (autosomal recessive)					
JLN1	KCNQ1	Kv7.1	lKs↓	Rare	
JLN2	JLN2 KCNE1 MinK		lKs↓	Rare	

1.2. HỘI CHỨNG BRUGADA

- Tần suất: cao ở châu Á, cao nhất ở Đông Nam Á, cao ở BN tâm thần phân liệt
- **Giới:** Nam:nữ = 9:1
- Tuổi trung bình lúc chẩn đoán: 41 tuổi
- Nguyên nhân: đột biến các gen điều khiển sự tổng hợp protein các kênh ion trên màng tế bào, di truyền trên NST thường thể trội
 - → bất thường dòng ion ra vào tế bào cơ tim qua các kênh
 - → Chênh lệch điện thế xuyên màng
- Sốt là yếu tố kích động dẫn tới ngưng tim

Bình thường

Điện thế hoạt động

V1

Туре	Gen	Vị trí	Protein	Tần suất
BrS1	SCN5A	3p22.2	α-subunit Nav1.5 sodium channel	20-25%
BrS2	GPD1L	3p22.3	Glycerol-3-phosphate dehydrogenase 1-like	Hiếm
BrS3	CACNA1C	12p33.3	α -subunit α 1C Cav β 2b calcium channel	1-2%
BrS4	CACNB2	10p12.33-p12.31	β-subunit Cavβ2b calcium channel	1-2%
BrS5	SCN1B	19q13.11	β -subunit Nav β 1 sodium channel	Hiếm
BrS6	KCNE3	11q13.4	β -subunit MiRP2 potassium channel	Hiếm
BrS7	SCN3B	11q24.1	β -subunit Nav β 3 sodium channel	Hiếm
BrS8	HCN4	15q24.1	Hyperpolarization-activated cyclic nucleotide-gated channel 4	Hiếm
BrS9	KCND3	1p13.2	α -subunit KV4.3 potassium channel	Hiếm
BrS10	KCNJ8	12p12.1	α -subunit KIR6.1 potassium channel	Hiếm
BrS11	CACNA2D1	7q21.11	$\alpha\text{-subunit Cav}\alpha\text{-}2\delta\text{1}$ calcium channel	Hiếm
BrS12	KCNE5	Xq23	β-subunit potassium channel	Hiếm
BrS13	RANGRF	17p13.1	RAN guanine nucleotide release factor	Hiếm
BrS14	KCND2	7q31.31	α -subunit KV4.2 potassium channel	Hiếm
BrS15	TRPM4	19q13.33	Calcium-activated nonselective ion channel	Hiếm
BrS16	SCN2B	11q23.3	β -subunit Nav β 2 sodium channel	Hiếm
BrS17	PKP2	12p11.21	Plakophillin 2	Hiếm
BrS18	ABCC9	12p12.1	ATP-sensitive potassium channel	Hiếm
BrS19	SLMAP	3p14.3	Sarcolemma-associated protein	Hiếm
BrS20	KCNH2	7q36.1	α -subunit of HERG potassium channel	Hiếm
BrS21	SCN10A	3p22.2	α-subunit NAv1.8 sodium channel	1-16%
BrS22	FGF12	3q28-q29	Fibroblast growth factor 12	Hiếm
BrS23	SEMA3A	7q21.11	Semaphorin family protein	Hiếm

Type 1: ST chênh lên dạng vòm

- Điểm J≥0,2 mV

Α

- STmax > ST max40 > STmax80
- Sóng T: dưới hoặc trên đường đẳng điện
- 0,4 mV ≥ Stmax-STmax40

Type 2/3: ST chênh lên dạng yên xe

- Điểm J≥0,2 mV
- Điểm J≥STmin
- Đỉnh T > STmin > 0 mV

Type S: ST chênh lên dạng vòm nhẹ

- 0,2 mV > điểm J ≥ 0,1 mV
- STmax > ST max40 > STmax80
- Sóng T: dưới hoặc trên đường đẳng điện
- $0.4 \text{ mV} \ge \text{STmax-STmax} 40 \ge 0.04 \text{ mV}$
- STmax40-STmax80 ≥ 0,04 mV

Cơ chế sinh loạn nhịp tim trong HC Brugada

1.3. NHIP NHANH THẤT ĐA DẠNG DO CATHECHOLAMINE (Cathecholaminergic polymorphic ventricular tachycardia: CPVT)

- **Chẩn đoán:** Khi cathecholamine máu tăng, nhịp tim > 100/phút → CPVT xảy ra với QRS nhiều dạng khác nhau trên cùng 1 chuyển đạo.
- Nguyên nhân: đột biến các gen sau

Type	Gen	Vị trí	Di truyền	Ghi chú
CPVT1	RYR2	1q42.1-q43	Kiểu trội	Thụ thể Ryanodine - phóng thích calcium từ lưới võng nội mô
CPVT2	CASQ2	1p13.3-p11	Kiểu lặn	Calsequestrin - protein gắn calcium trong lưới võng nội mô
CPVT3	TECRL	7p22-p14	Kiểu lặn	Protein going men trans-2,3-enol-CoA reductase - tương tác với thụ thể ryanodine & calsequestrin
CPVT4	CALM1	14q32.11	Kiểu trội	Calmodulin - ổn định thụ thể ryanodine
CPVT5	TRDN	6q22.31	Kiểu lặn	Triadin - tạo phức hợp với calsequestrin để tương tác với thụ thể ryanodine

Tim bình thường trong thì tâm thu

Tim bình thường trong thì tâm trương

- phóng thích calcium từ lưới võng nội mô vào nội bào trong thì tâm trương
- → quá tải calcium nội bào
- > chậm tái cực & hoạt động lẩy cò
- → ngoại tâm thu → nhịp nhanh thất, rung thất

1.4. HỘI CHỨNG QT NGẮN (SQTS)

• Rautaharju's formula: QT predicted (QTp) = 656/(1+ heart rate/100)

• **QT ngắn** : QTc < 88% QTp

QT rất ngắn : QTc < 80% QTp

ECG 12 chuyển đạo cho thất khoảng QT ngắn & những sóng T cao, nhọn.

Serhat Koca, Ozcan Ozeke, Serkan Cay, Firat Ozcan, Fazil Arisoy, Omer Alyan, Serkan Topaloglu, Dursun Aras. Dynamic T-wave Changes with Hump Appearance from a Higher Intercostal Space in a Short QT Syndrome. *European Journal of Arrhythmia & Electrophysiology*, 2017;3(1):21–2

DOI: https://doi.org/10.17925/EJAE.2017.03.01.21

Nguyên nhân: đột biến các gen điều khiển sự tổng hợp protein các kênh ion trên màng tế bào

rút ngắn thời gian tái cực

QT ngắn lại

Туре	Gen đột biến	Vị trí	Ghi chú
SQT1	KCNH2	7q36.1	↑ I _{Kr}
SQT2	KCNQ1	11p15.5- p15.4	↑ I _{Ks}
SQT3	KCNJ2	17q24.3	↑ I _{K1}
SQT4	CACNB2b	10p12.33-p12.31	↓ I _{ca(L)}
SQT5	CACNA1C	12p13.33	↓ I _{ca(L)}
SQT6	CACNA2D1	7q21.11	↓ I _{ca(L)}
SQT7	SLC22A5	5q31.1	↓ carnitine - ↑ I _{Kr}
SQT8	SLC4A3	2q35	pHi-[Cl] (chất trao đổi bicarbonate/chloride)

Michael H. Gollob, Calum J. Redpath and Jason D. Roberts. The short QT syndrome. *Journal of the American College of Cardiology*. Volume 57. Issue 7, February 2011. DOI: 10.1016/j.jacc.2010.09.048

1.5. RUNG THẤT VÔ CĂN (IVF)

- Rung thất vô căn: BN ngưng tim được hồi sức, ECG có rung thất nhưng không tìm thấy nguyên nhân khác như: bệnh lý chuyển hoá, hô hấp, nhiễm trùng, ngộ độc, bệnh bệnh tim (bao gồm bệnh lý kênh khác & bệnh tim cấu trúc).
- Cơ chế: ngoại tâm thu thất có khoảng ghép ngắn do điện thế của sợi Purkinje dẫn tới nhịp nhanh thất đa dạng.
- Nguyên nhân: đột biến gen, di truyền trên NST thường, kiểu trội

Gen đột biến	Vị trí	Protein
DPP6	7q36.2	Dipeptidyl Peptidase VI
CALM1	14q32.11	Calmodulin 1
RyR2 H29D	1q43	Ryanodine receptor 2
IRX3	16q12.2	Iroquois homeobox protein 3

Michel Häissaguerre, Wee Nademanee, Mélèze Hocini, Josselin Duchateau, Clementine André, Thomas Lavergne, Masa Takigawa, Frederic Sacher, Nicolas Derval, Thomas Pambrun, Pierre Jais, Rick Walton, Mark Potse, Ed Vigmond, Remi Dubois, Olivier Bernus. The Spectrum of Idiopathic Ventricular Fibrillation and J-Wave Syndromes Novel Mapping Insights. *Card Electrophysiol Clin* 11 (2019) 699–709. https://doi.org/10.1016/j.ccep.2019.08.011

1.6. BỆNH HỆ DẪN TRUYỀN TIM TIẾN TRIỂN

Block nhĩ thất gia đình

- block ở những vị trí khác nhau,
 mức độ tiến triển theo thời gian
- được chẩn đoán < 50 tuổi
- không có bệnh lý cơ xương
- ± bệnh tim cấu trúc
- **Nguyên nhân:** đột biến gen, di truyền trên NST thường, kiểu trội

Gen đột biến	Vị trí	Ghi chú
SCN5A	19q13, 3p21	lpha-subunit Nav1.5 Na+ channel
TRPM4	19q13.33	Calcium-activated nonselective ion channel
SCN1B	19q13.11	β-subunit Navβ1 Na+ channel
SCN10A	3p22.2	lpha-subunit NAv1.8 Na+ channel
KCNK17	6p21.2	acid-sensitive K+ channel 4 alkaline ph-activated K+ channel 2
NKX2.5	5q35.1	regulating tissue-specific gene expression essential for tissue differentiation
GATA4	8P23.1	gata-binding protein 4
LMNA	1q22	Lamin A & C structural protein components of the nuclear lamina, a protein network underlying the inner nuclear membrane that determines nuclear shape and size. The lamins constitute a class of intermediate filaments
DES	2q35	Desmin: muscle-specific member of the intermediate filament (IF) protein family

2. CÔNG NGHỆ CHẨN ĐOÁN DI TRUYỀN CÁC LOẠN NHỊP TIM

NEXT-GENERATION SEQUENCING

CHIẾN LƯỢC GIẢI TRÌNH TỰ

3 ti nucleotide 20,000 gen (WGS: whole genome sequencing) Exome chỉ chiếm 1% bộ gen, nhưng chứa 85% đột biến gây bệnh 20,000 gen (WES: whole exome sequencing)

(CES: clinical exome sequencing = G4500)

<20 gen (DiagSure)

ĐÁNH GIÁ KHẢ NĂNG GÂY BỆNH CỦA CÁC ĐỘT BIẾN GEN

Dựa trên

- Kết quả xét nghiệm di truyền
- Tiêu chuẩn xác định khả năng gây bệnh

(American College of Medical Genetics & Genomes)

https://blueprintgenetics.com/wp-content/uploads/2019/04/Variant Classification WP VARA41-05-1.pdf

No mutation Benign Likely benign VUS Likely pathogenic Pathogenic identified

VUS: Variant of Uncertain Significance

Greatest clinical ultility

TƯƠNG TÁC KIỂU GEN-KIỂU HÌNH CỦA CÁC LOẠN NHỊP TIM DI TRUYỀN

Belinda Gray & Elijah R Behr. New Insights Into the Genetic Basis of Inherited Arrhythmia Syndromes. *Cardiovascular Genetics*. 2016;9:569–577.

https://doi.org/10.1161/CIRCGENETICS.116.001571

Oscar Campuzano, Georgia Sarquella-Brugada, Ramon Brugada, Josep Brugada. Genetics of channelopathies associated with sudden cardiac death. *Global Cardiology Science and Practice* 2015:39. http://dx.doi.org/10.5339/gcsp.2015.39

3. ĐIỀU TRỊ GEN CÁC LOẠN NHỊP TIM DI TRUYỀN

Vassilios J. Bezzerides, Maksymilian Prondzynski, Lucie Carrier, William T. Pu. Gene therapy for inherited arrhythmias. *Cardiovascular Research* (2020) 116, 1635–1650.

Vector siêu vi

Adenovirus tái tổ hợp (rAAV: adeno-associated virus). Lấy một đoạn nhỏ chuỗi đơn DNA (ssDNA: small single stranded DNA), chứa 2 mảnh nhỏ, không mã hoá của bộ gen. Chọn serotype 6,8,9 hướng tim nhất, serotype 9 thường được dùng nhất

Oligonucleotides

Oligonucleotides là những phân tử ngắn DNA hoặc RNA (của vector virus AAV9 hoặc tổng hợp hoá học) → bắt cặp Watson-Crick base với RNA của tế bào đích → kết nối, độ bền vững hoặc dịch mã của RNA bị biến đổi.

mRNA cải biến

mRNA cải biến được tổng hợp bằng sao chép trong phòng thí nghiệm, được thiết kế cho phép RNA vào trong tế bào mà không kích thích đáp ứng miễn dịch bẩm sinh. Tiêm mRNA vào mô cơ tim \rightarrow dịch mã thành protein

Những chiến lược điều trị gen

DNA-acting stategies

Thay thế gen

Đưa gen khoẻ mạnh vào tế bào thay thế gen bệnh & được sao chép bổ sung Delivery of healthy gene copy

Resulting in episomal gene expression

Disease-causing mutation in DNA

Cas9 cuts endogenous DNA

Resulting in alteration of the mutant gene product, e.g. altered splicing or suppressed translation

Bất hoạt gen đột biến

Cas9 cắt DNA nội sinh

→ thay đổi sản phẩm
của gen đột biến, ví dụ
như thay đổi kết nối 2
đầu hoặc ức chế dịch
mã

Điều biến những con đường tín hiệu

Đưa vào tế bào 1 gen ức chế cơ chế sinh bệnh, được dùng như là một điều trị gen độc lập E.g. CaMKII inhibition in CPVT

Modification of signaling pathways required for CPVT mutations to exhibit a phenotype

Cas9 induces mutation repair

Sửa đột biến

Cas9 cắt DNA → sửa chữa định hướng & phục hồi 1 chuỗi gen khoẻ mạnh.

Những chiến lược điều trị gen

mRNA-acting strategies

Vấn đề

AON: Antisense Oligonucleotides

PTM: Pre-Trans Splicing

BN mang đột biến dịch khung hoặc sai nghĩa \rightarrow mRNA bị cắt bớt hoặc mã hoá cho một protein với một kiểu hình GoF

Disease-causing mutation alters RNA transcript

Làm gen im lặng

Gắn gen đặc
hiệu
shRNA/AON vào
mRNA đột biến
→ ức chế gen
đột biến, không
ảnh hưởng gen
nguyên thuỷ

Binding of allele-specific shRNA/AON to mutant mRNA shRNA/AON

Resulting in degradation of mutant mRNA

Điều biến kết nối

Gắn AONs vào bộ phận làm tang kết nối exon → bỏ qua exon trong khung

Binding of AON to exonic splicing enhancers

AON

Resulting in in-frame exon skipping

Ghép nối

Gắn 1 phân tử
tiền ghép nối
ngắn hơn (PTM)
vào mRNA →
phản ứng ghép
nối → mRNA dài
đầy đủ & khoẻ
manh

Binding of PTM to mutant mRNA induces trans-splicing reaction

Resulting in healthy

Figure 3 Strategies for gene therapy in CPVT. Cardiomyocyte depolarization drives Ca²⁺ through the Litype Ca²⁺ channel (CaV1.2) stimulating Ca²⁺ release from RYR2. Adrenergic stimulation activates PKA and CaMKII, which alters Ca²⁺ handling by phosphorylating multiple targets. In CPVT, CaMKII phosphorylation of RYR2 unmasks the abnormalities caused by RYR2 or CASQ2 mutations, resulting in increased Ca²⁺ leak and arrhythmia. Strategies for CPVT gene therapy target key signalling events in the pathogenesis of the disorder; (1) AAV-mediated expression of wild-type CASQ2 restores levels in SR to correct the autosomal recessive form of CPVT. (2) Ablation or suppression of mutant RYR2 allele by CRISPR or RNA interference results in more wild-type. RYR2 tetramers. (3) Inhibition of CaMKII using an AAV-delivered selective inhibitory peptide suppresses abnormal Ca2+ release. Abbreviations: AON, antisense oligonucleotides; siRNA, small-interfering RNA; RYR2 ryanodine receptor 2; CASQ2, calsequestinn 2; CaMKII, Ca²⁺/cal-modulin-dependent protein kinase II; CaV1.2, L-type Ca²⁺ channel, PKA, protein kinase A; AC, adenylate cyclase; (\$AR, beta-adrenergic receptor.)

Nucleic acid therapeutics

AAV

AON

Figure 4 Strategies for gene therapy in HCM. HCM is mainly caused by dominant mutations in sarcomere genes, with the majority of mutations found in MHY7 or MYBPC3. The mechanisms by which HCM mutations in sarcomere genes cause arrhythmias are incompletely understood. Gene therapy strategies that have been tested to prevent arrhythmias and other HCM phenotypes have included: (1) gene replacement, (2) allele-specific silencing, and (3) modulation of Ca²⁺ signalling pathways. Abbreviations: AON, antisense oligonucleotides; siRNA, small-interfering RNA; GoF, gain-of-function; CaMKII, Ca²⁺/calmodulin-dependent protein kinase II.

Nucleic acid therapeutics

AON AAV

KẾT LUẬN

- 1. Hiểu biết về những RLNT di truyền ngày càng nhiều và liên tục phát triển.
- 2. Thầy thuốc nên cẩn thận khi diễn giải những biến thể di truyền & khi sử dụng chúng để xử trí cho BN RLNT & gia đình họ.
- 3. Kỷ nguyên của giải trình tự gen thế hệ mới mở ra những cơ hội để phát hiện những biến thể quan trọng, khả năng gây bệnh, cơ chế gây bệnh của những RLNT di truyền.
- 4. Điều trị gene cho các RLNT di truyền có nhiều triển vọng trong tương lai.

Thank