Reti Logiche T

Esercizi reti combinatorie

Esercizio 1

La tabella della verità della seguente funzione di 5 ingressi non è riportata integralmente, ma è riportato il valore dell'uscita come funzione di x_0 , x_1 , e x_2 quando le altre variabili di ingresso sono fissate ad una delle loro 4 possibili configurazioni. Prima di procedere alla sintesi sarà quindi necessario riempire le mappe di Karnaugh effettuando la valutazione delle funzioni.

X4	X3	X2	X 1	X0	U
0	0				$x_0 \cdot x_1 \cdot x_2 + \overline{x_0} \cdot \overline{x_1} \cdot x_2$
0	1				$x_0 + x_1 + x_2$
1	0				$(x_0 \oplus x_1 \oplus x_2) + \overline{x_2}$
1	1				$\overline{\mathbf{x}_0 \cdot \mathbf{x}_1 \cdot \mathbf{x}_2}$

- Si esegua la sintesi minima SP e PS.
- Si disegni lo schema a NAND (assumendo di avere a disposizione segnali in forma vera e negata).
- Si disegni lo schema con multiplexer a 5 bit di indirizzo ai cui bit di indirizzo siano collegati (dal meno al più significativo) gli ingressi x₀, x₁, x₂, x_{3 e} x₄.
- Si disegni lo schema con multiplexer a 2 bit di indirizzo a cui siano collegati (dal meno al più significativo) gli ingressi x₃ e x₄.

Esercizio 2

Scrivere l'espressione generale PS di *n* variabili. Qual è il numero di interconnessioni di una rete che realizza l'espressione generale PS di *n* variabili?

Disegnare una rete che realizza l'espressione generale PS di 3 variabili.

Data l'espressione dell'algebra di commutazione

$$Z = ((a + b) \cdot (c + d) + a \cdot (b + c')) \cdot (a + d')$$

- Se ne disegni lo schema logico a NOR.
- Si arrivi ad una forma SP, applicando prima il teorema di espansione alla variabile **a**, e poi le opportune equivalenze notevoli. Quella ottenuta è la forma che consente la sintesi di costo minimo SP? In caso negativo, come andrebbe modificata?

Esercizio 4

Siano 11010 e 00100 due stringhe di bit che rappresentano numeri binari con segno rappresentati in complemento a 2. Se ne esegua la somma e la si verifichi in base 10. Si disegni lo schema del circuito necessario ad eseguire la somma basato su full-adder, e si valuti il ritardo di caso peggiore della rete nell'ipotesi che il ritardo introdotto da un full-adder sia di 10 ns.

Esercizio 5

Sia data la funzione rappresentata dalla tabella della verità riportata di seguito.

- Eseguire la sintesi di costo minimo SP.
- Eseguire la sintesi di costo minimo PS.
- Eseguire la sintesi di costo minimo con soli gate NAND.
- Eseguire la sintesi di costo minimo con soli gate NOR.

a	b	c	d	e	Z
0	0	0	0	0	1
0	0	0	0	1	1
0	0	0	1	0	1
0	0	0	1	1	0
0	0	1	0	0	ı
0	0	1	0	1	1
0	0	1	1	0	0
0	0	1	1	1	1
0	1	0	0	0	1
0	1	0	0	1	0
0	1	0	1	0	1
0	1	0	1	1	-
0	1	1	0	0	0
0	1	1	0	1	0
0	1	1	1	0	0
0	1	1	1	1	0

a	b	c	d	e	Z
1	0	0	0	0	1
1	0	0	0	1	1
1	0	0	1	0	1
1	0	0	1	1	0
1	0	1	0	0	1
1	0	1	0	1	1
1	0	1	1	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	0	1	1	0
1	1	1	0	0	1
1	1	1	0	1	1
1	1	1	1	0	-
1	1	1	1	1	1
					·

Realizzare la funzione specificata all'esercizio precedente, riportando i collegamenti necessari tra righe e colonne nello schema sottostante, usando la notazione compatta che abbiamo introdotto per le ROM:

Esercizio 7

Si effettuino due sintesi della seguente mappa per ottenere:

- l'espressione di costo minimo SP
- l'espressione di costo minimo PS

X1 X0	00	01	11	10
X3 X2				
00	0	0	0	1
01	0	0	0	1
11	0	1	1	1
10	0	1	1	1

	X1 X0	00	01	11	10
2	X3 X2				
(00	1	1	1	1
(01	0	1	1	0
-	11	0	1	1	0
-	10	0	0	0	0

$$x_4 = 0$$
 $x_4 = 1$

Si esegua la sintesi di costo minimo SP di un encoder "1 su 3", e si consideri il comportamento in presenza di configurazioni di ingresso proibite. Si modifichi la sintesi per ottenere un encoder a priorità, ovvero un encoder che in presenza di configurazioni proibite riporti in uscita il numero binario più grande tra i possibili ingressi a 1. Ad esempio, un encoder con priorità risponde alla configurazione X1 = 1, X2 = 0, X3 = 1 con il numero 3, mentre risponde a X1 = 1, X2 = 1, X3 = 0 con il numero 2.

Fsercizio 9

Si esegua la sintesi di costo minimo PS e SP di una rete combinatoria con 5 segnali di ingresso (a, b, c, d, e) e un 1 segnale di uscita (z) definita dalla seguente tabella della verità.

а	Ь	U	d	e	Z	a	Ь	C	d	e	Z
0	0	0	0	0	-	1	0	0	0	0	1
0	0	0	0	1	0	1	0	0	0	1	1
0	0	0	1	0	1	1	0	0	1	0	-
0	0	0	1	1	-	1	0	0	1	1	1
0	0	1	0	0	0	1	0	1	0	0	-
0	0	1	0	1	0	1	0	1	0	1	-
0	0	1	1	0	0	1	0	1	1	0	-
0	0	1	1	1	1	1	0	1	1	1	0
0	1	0	0	0	-	1	1	0	0	0	-
0	1	0	0	1	0	1	1	0	0	1	0
0	1	0	1	0	-	1	1	0	1	0	1
0	1	0	1	1	0	1	1	0	1	1	0
0	1	1	0	0	1	1	1	1	0	0	1
0	1	1	0	1	1	1	1	1	0	1	0
0	1	1	1	0	0	1	1	1	1	0	-
0	1	1	1	1	0	1	1	1	1	1	0

Esercizio 10

Una rete combinatoria ha 4 ingressi (*a, b, cbi, s/d'*) e 2 uscite (*u, cbo*) e deve poter funzionare come adder o subtracter. La rete presenta i seguenti ingressi: *a* e *b* operandi, *cbi* carry in per la somma e prestito richiesto dalle colonne precedenti (*borrow in*) per la differenza, *s/d'* ingresso di controllo che stabilisce se eseguire la somma o la differenza quando vale rispettivamente 1 o 0. In uscita, la rete presenta *u*, bit di somma/differenza e *cbo*, carry out per la somma e prestito da richiedere alle colonne successive per la differenza. Realizzare la sintesi di costo minimo SP e PS e quella tramite MUX, assumendo di avere a disposizione solo MUX a 4 vie.

Date due ROM da 1 KB, che memorizzano al loro interno numeri con segno a 8 bit rappresentati in complemento a 2, si disegni lo schema della rete logica combinatoria che ha in ingresso un bus A[?..0] che indica l'indirizzo di una cella nella prima ROM e della cella con lo stesso indirizzo nella seconda ROM, e produce in uscita la differenza dei due numeri sul bus D[?..0], indicando se il risultato non è valido sul bit O. Quanti ingressi e quante uscite ha la rete?

Esercizio 12

Per ognuno dei seguenti intervalli numerici, ottenere tramite sintesi **diretta** (senza usare Karnaugh o sintesi a mux) e minimizzando l'utilizzo di risorse, la rete che prende in ingresso un numero codificato nel bus N e produce l'uscita Y pari a 1 se il numero in input è compreso nell'intervallo considerato, pari a 0 altrimenti (es. intervallo [9, 12], input: $10 \rightarrow$ uscita 1, input $6 \rightarrow$ uscita 0). Per ogni intervallo, si consideri di rappresentare i numeri con la codifica ed il numero di bit indicati.

INTERVALLO	CODIFICA	# BIT
[-3, 1]	Complemento a 2	4
[41, 63]	Interi senza segno	7
[-288, -1]	Complemento a 2	10
[15, 40]	Interi senza segno	7