2938



Contamination Analysis Report for Environmental Contamination Survey of the Longhorn Army Ammunition Plant, Mashall, Texas

Copy 2
Circulation Copy

### Prepared For

Thiokol Corporation/Longhorn Division Marshall, Texas

### For Submission To

U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Grounds, MD 21010

### **Best Available Copy**

### Prepared By

Environmental Protection Systems, Inc. 7215 Pine Forest Road Pensacola, FL 32506

20070419608

Submitted

March 14, 1983 Revised May 3, 1984 Approved for Public Release
Distribution Unlimited

Contamination Analysis Report for Environmental Contamination Survey of the Longhorn Army Ammunition Plant, Mashall, Texas

### Prepared For

Thiokol Corporation/Longhorn Division Marshall, Texas

### For Submission To

U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Grounds, MD 21010

### Prepared By

Environmental Protection Systems, Inc. 7215 Pine Forest Road Pensacola, FL 32506

Distribution unlimited, approved for public release

### Submitted

March 14, 1983 Revised May 3, 1984

### TABLE OF CONTENTS

| 1. | Introduction                                                                                                                                     | 1   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 2. | Sampling and Analysis                                                                                                                            | 1   |
|    | A. Sampling Methods                                                                                                                              | 1   |
|    | B. Parameters and Analytical Methods                                                                                                             | 2   |
| 3. | Quality Control                                                                                                                                  | 3   |
| 4. | Analytical Results                                                                                                                               | 9   |
|    | A. Data Reports                                                                                                                                  | 9   |
|    | B. Detection Limits                                                                                                                              | 9   |
| 5. | Preliminary Conclusions                                                                                                                          | 9   |
| 6. | Recommendations                                                                                                                                  | 11  |
|    | Table I. EPS Certified Methods                                                                                                                   | 3   |
|    | Appendices                                                                                                                                       |     |
|    | A. Analytical Results for Groundwater<br>Sampling Sites                                                                                          | A-1 |
|    | B. Analytical Results for Surfacewater<br>Sampling Sites                                                                                         | B-1 |
|    | C. Analytical Results for Sediment Sampling Sites                                                                                                | C-1 |
|    | D. Analytical Results for Soil Sampling Sites                                                                                                    | D-1 |
|    | E. Data Management Forms on Batches of Metal Analytes for<br>Which FQAC Had to Override Established Quality Assurance/<br>Quality Control System | E-1 |
|    | F. Screening Analysis Results                                                                                                                    | F-1 |
|    | G. Manual, Field Sampling Protocol                                                                                                               | G-1 |

#### 1. Introduction

The main purpose of this interim report is the transference of analytical data to Thiokol Corporation and the U.S. Army Toxic and Hazardous Materials Agency (USATHAMA) to allow for in-process review and focusing of the remaining geotechnical and analytical effort on those areas found to be of continued concern.

At the outset of this project, nine sites within Longhorn Army Ammunition Plant were designated as potential areas of concern. These areas have been investigated geotechnically and analytically through the logging of existing soil conditions, as well as the sampling of groundwaters, surface waters, sediments, and soils at each of the study areas. The technical results associated with the geotechnical investigation have been submitted under separate cover in November 1982 as Interim Technical Report No. 1. This document contains the analytical data and field sampling methodology used for this survey.

The following sections of this interim report will rely heavily on other documents previously prepared by Environmental Protection Systems, Inc. (EPS) and already submitted to Thiokol and USATHAMA.

### 2. Sampling and Analysis

#### A. Sampling Methods

Sampling methods used during this study are presented in detail in Appendix G of this document. The manual which constitutes appendix G was issued to all field personnel, and the field sampling protocol established in this manual was strictly adhered to. Of notable exception to the methods prescribed in our field sampling protocol manual would be the method used by EPS to collect soil samples. Due to site-specific field conditions encountered during the survey, soil samples were routinely collected from each study area with a very narrow, long-nosed shovel. Specifically, a hole 1 foot deep was dug, and then a slice

approximately 5 inches wide and 1 inch thick was removed from the side of the hole using the shovel.

All other sampling procedures outlined in Appendix G were strictly adhered to. EPS collected all water and sediment samples during a one-week period from November 16-21, 1982. Ninety-seven percent of all samples collected at LHAAP were collected in a three-day period from November 17-20, 1982.

### B. Parameters and Analytical Methods

A list of all parameters for which EPS was certified for the Longhorn AAP Contamination Survey is presented as Table 1A in Appendix G.

Prior to the inititiation of all sampling, EPS underwent a rigorous certification process which was administered by USATHAMA. Before the first samples were collected at LHAAP, EPS achieved certification for the parameters listed in table 1A in Appendix G and all matrices to be tested. Table I provides a list of all parameters for which EPS was specifically certified for this survey, and the associated assigned method numbers and detection limits.

A detailed description of each of the analytical procedures used during this survey can be found in EPS's quality assurance document previously submitted to Thiokol and USATHAMA.

### 3. Quality Control

A detailed description of the quality control plan established for the Longhorn Army Ammunition Plant Contamination Survey is presented in EPS's quality assurance document. All data generated during this survey, unless otherwise noted, met the rigid analytical requirements presented in EPS's quality assurance document. A data summary sheet for each batch of samples (water, soil, and sediment) and analytes which did not meet quality control requirements, including the rationale used by the

Table I

LONGHORN AAP
EPS CERTIFIED METHODS

| <u>Analyte</u> | Test<br>Name | Matrix     | Cert<br>Level | Method<br>Number | Tested Range        | Detection<br>Limit |
|----------------|--------------|------------|---------------|------------------|---------------------|--------------------|
| Mercury        | HG           | WA         | QN            | 10               | 0.5-10 ugl          | 1.3 ugl            |
| Copper         | cu           | WA         | QN            | 1M               | 10-200 ugl          | 23.9 ugl           |
| Zinc           | ZN           | WA         | QN            | 1M               | 10-200 ugl          | 27.1 ug <b>1</b>   |
| Beryllium      | BE           | WA         | sġ            | 1M               | 10-200 ugl          | 10 ugl             |
| Nickel -       | NI           | WA         | SQ            | 1M               | 10-200 ugl          | 30 ug1             |
| Silver         | AG           | WA         | sq            | 1M               | 10-200 ugl          | 10 ugl             |
| Manganese      | MN           | WA         | QN            | 1M               | 10-200 ugl          | 12.1 ugl           |
| Strontium      | SR           | WA         | QN            | 1M               | 25-50 <b>0 u</b> gl | 25 ug1             |
| A1 uminum      | AL           | WA         | QN            | 114              | 10-200 ugl          | 10 ug1             |
| Thallium       | TL           | *WA        | sq            | 1M               | 50-1000 ugl         | 50 ug1             |
| Lead           | РВ           | WA         | QИ            | 1 B              | 5-100 ug7           | 7.49 ugl           |
| Chromium       | CR           | WA         | QИ            | 1 B.             | 5-100 ugl           | 6.64 ugl           |
| Cadmium        | CD           | WA         | QИ            | 1B               | 0.25-5 ugl          | 0.28 ugl           |
| Antimony       | SB           | WA         | QN            | 18               | 10-200 ugl          | 10.2 ugl           |
| Arsenic        | AS           | WA         | SQ            | . 18             | 5-100 ugl           | 6 ugl              |
| Barium         | . B <b>A</b> | WA         | , QN          | 18               | 10-200 ugl          | 11.4 ugl           |
| Selenium       | SE           | WA         | sq            | 1B               | 5-100 ugl           | 6 ugl              |
| Mercury        | HG           | S0         | QN            | 2D               | 0.5-10 ugg          | 2.7 ugg            |
| Chromium       | CR           | \$0        | QN            | 1N .             | 0.5 <b>-10 u</b> gg | 0.6 ugg            |
| Cadmium        | CD           | S0         | QИ            | 1 N              | 0.5-10 ugg          | Q.5 ugg            |
| Copper         | cu           | SO         | QИ            | 1N               | 0.5-10 ugg          | 0.5 ugg            |
| Zinc.          | ZN           | SO         | QN            | 1ห               | <b>0.5-10</b> ugg   | 0.5 ugg            |
| Beryllium      | BE           | <b>S</b> 0 | sq            | 1N .             | 0.5-10 ugg          | 0.5 ugg            |

|   | Analyte_        | Test<br>Name | Matrix     | Cert<br>Level   | Method<br><u>Number</u> | Tested Range           | Detection Limit |
|---|-----------------|--------------|------------|-----------------|-------------------------|------------------------|-----------------|
| , | Nickel          | NI           | <b>S</b> 0 | sq              | 1 N                     | 0.5- <b>10 u</b> gg    | 0.5 ugg         |
|   | Silver          | AG           | <b>S0</b>  | SQ              | 111                     | 0.5-10 ugg             | 0.5 ugg         |
|   | Manganese       | WŅ           | <b>S</b> 0 | Qи              | 111                     | 0.25-5 ugg             | 9.25 ugg        |
|   | Aluminum        | AL           | S <b>0</b> | QN              | 1N                      | 0.25-5 ugg             | 0.36 ugg        |
| ٠ | Strontium       | SR           | <b>SO</b>  | QR              | 1 N                     | 0.5-10 ugg             | 0.5 ugg         |
|   | Thallium        | TL           | <b>S</b> 0 | sq              | 1 N                     | 2.5-50 <b>u</b> gg     | 3 ugg           |
|   | Lead            | PB           | <b>S</b> 0 | QN <sup>.</sup> | 1J                      | 0.5-10 ugg             | 0.89 ugg        |
|   | Arsenic         | AS           | S0         | sq              | 1J                      | 0.25-10 ugg            | 0.3 ugg         |
|   | Barium          | BA           | <b>SO</b>  | QN              | 13                      | 0.5-10 ugg             | 0.99 ugg        |
|   | Antimony        | SB           | S0         | QN              | 1J                      | 0.5-10 ugg             | 0.76 ugg        |
|   | Selenium        | SE           | <b>S</b> 0 | sq              | lJ                      | 0.5-10 ugg             | 0.5 ugg         |
|   | Nitra <b>te</b> | 103          | WA         | QN              | 2 P                     | 500-10000 ugl          | 500 ug1         |
|   | Nitrite         | NO2          | WA         | QИ              | 2 P                     | 250-5000 ugl           | 250 ug1         |
|   | Phosphate       | P04          | ИΑ         | QN              | 2 P                     | 125-2500 ugl           | 125 ugl         |
|   | Sulfate         | S04          | WA         | QN              | 2 P                     | 500-1000 <b>0 ugl</b>  | 580 ug1         |
|   | Chloride        | CL           | WA         | SQ              | 2 P                     | 500-1000 <b>0 ug</b> l | 500 ugl         |
|   | Fluoride        | F            | WA         | so              | 2 P                     | 500-10000 ugl          | 500 <b>ugl</b>  |
|   | Chromate        | CR04         | WA         | SQ              | 2 P                     | 500-10000 ugl          | 500 ugl         |
|   | Thiocyanate     | SCN          | WA         | sq              | 2 P                     | 500-10000 ugl          | 500 ugl         |
|   | Cyanide         | CYN          | WA         | sq              | 2 P                     | 500-10000 ugl          | 600 ugl         |
|   | Nitrate         | и03          | SO.        | sq              | 7U                      | 5-100 <b>u</b> gg      | 5 ugg           |
|   | Nitrite         | NO2          | S0         | QN              | <b>7</b> U              | 5-100 ugg              | 5 ugg           |
|   | Súlfat <b>e</b> | 504          | S0         | QN              | 7u                      | 25-50 <b>0 u</b> gg    | 25 ugg          |
|   | Chloride        | CL           | S0         | sq              | 7 <b>u</b>              | 5-100 ugg              | 7 ugg           |
|   | Fluoride        | F            | SO .       | sq              | 7U                      | 5-100 ugg              | 5 Jugg          |
|   | Chromate        | CRO4         | <b>SO</b>  | sq              | 7U                      | 5-100 ugg              | 5 ugg           |

| Analyte                                          | Test<br>Name      | Matrix     | Cert<br>Level | Number     | Tested Range             | Detection. Limit     |
|--------------------------------------------------|-------------------|------------|---------------|------------|--------------------------|----------------------|
| Thiocyanate                                      | SCN               | S <b>0</b> | sq            | 7 <b>U</b> | 5-100 ugg                | 10 ugg               |
| Cyanide                                          | CYN               | <b>S</b> 0 | S Q           | 7บ         | 5-100 ugg                | g ugg                |
| 1,3-Dinitro-<br>benzene                          | 13DNB             | WA         | QN .          | 7 <b>v</b> | 0.5-10 ug1               | 1.68 ug1             |
| 2,4,6-Trini-<br>toluene:                         | 246TNT            | WA         | QN ·          | 7V         | 0.5-10 ugl               | 1.46 ugl             |
| 1,3,5-Trini-                                     | 135TNB            | WA         | QN            | 71         | 0.5-10 ugl               | 1.08 ugl             |
| trobenzene 2,4-Dinitrotolue 2,6-Dinitro- toluene | ne 24DNT<br>26DNT | NA<br>NA   | QN<br>QN      | 7V<br>7V   | 0.5-10 ugl<br>0.5-10 ugl | 0.89 ugl<br>1.20 ugl |
| Nitrobenzene                                     | NB                | ŃΑ         | QN            | 7٧         | 0.5-10 ugl               | 0.76 ug1             |
| 1,3-Dinitro-<br>benzene                          | 13DNB             | <b>S</b> 0 | QN            | 7W         | 0.5-10 ugg               | 0.75 ugg             |
| 2,4,6-Trini-<br>trotoluene                       | 246TNT            | S0         | QN            | 7 W        | 0.5-10 ugg               | 0.73 ugg             |
| 1,3,5-Trini-<br>trobenzene                       | 135TNB            | \$0        | QN            | 7 W        | 0.5-10 ugg               | 0.71 ugg             |
| 2,4-Dinitro-<br>toluene                          | 24DNT             | <b>SO</b>  | QИ            | 7 W        | 0.5-10 ugg               | 0.5 ugg              |
| 2,6-Dinitro-<br>toluene                          | 26DNT             | <b>S</b> 0 | QИ            | 7W         | 0.5-10 ugg               | 0.61 ugg             |
| Nitrobenzene                                     | NB                | S0         | QИ            | 7 W        | 0.5-10 ugg               | 1.15 ugg             |
| p,p-DDT                                          | PPDDT             | WA         | SQ            | . 2F       | 0.05-1 ugl               | 0.05 ugl             |
| Dieldrin                                         | DLDRN             | WA         | SQ            | 2F         | 0.05-1 ugl               | 0.09 ugl             |
| АВНС                                             | ABHC              | WA         | sq            | 2F         | 0.05-1 ugl               | 0.09 ugl             |
| Heptachlor                                       | HPCL              | WA         | sq            | 2F         | 0.05-1 ug1               | 0.05 ugl             |
| Lindane                                          | LIN               | WA         | sq            | 2F         | 0.05-1 ugl               | 0.09 ug1             |
| Toxaphen <b>e</b>                                | TXPHEN            | WA         | SQ            | 2F         | 2.5-50 ugl               | 4 ug1                |
| PCB 1016                                         | PCB016            | WA         | sq            | 2F         | 0.52-11 ugl              | 0.6 ugl              |
| PCB 1260                                         | PCB260            | WA         | sq            | 2F         | 0.52-11 ugl              | 1 ugl                |

|   | Analyt <b>e</b>             | Test<br>Name | <u>Matrix</u> | Cert<br><u>Level</u> | Method<br>Number |                        | Detection<br>Limit |
|---|-----------------------------|--------------|---------------|----------------------|------------------|------------------------|--------------------|
|   | p,p'-DDT                    | PPDDT        | <b>S</b> 0    | sq                   | 6 <b>V</b>       | 0.05-1 ugg             | 0.09 ugl           |
|   | Dieldrin                    | DLDRN        | 50            | sq                   | 6 <b>V</b>       | 0.05-1 ugg             | 0.05 ugg           |
|   | ABHC                        | ABHC         | SO            | sq                   | 6 <b>V</b>       | 0.05-1 ugg             | 0.05 ugg           |
|   | Heptachlor                  | HPCL         | SO            | SQ                   | 67               | 0.05-1 ugg             | <b>0.</b> 05 ugg   |
|   | Lindan <b>e</b> .           | LIN          | S0            | sq                   | 6 <b>V</b>       | 0.05-1 ugg             | 0.05 ugg           |
|   | Toxaphene                   | TXPHEN       | \$0           | sq                   | б٧               | 2.5-50 ugg             | 4 ugg              |
|   | PCB 1016                    | PCB016       | S0            | sq                   | 6 <b>V</b>       | 0.52-11 ugg            | 0.6 ugg            |
|   | PCB 1260                    | PCB260       | S0            | sq                   | 6 <b>V</b>       | 0.52-11 ugg            | 0.7 ugg            |
|   | Bonzen <b>e</b>             | C6H6         | WA            | sq                   | 2J               | 0.5-10.4 ugl           | 1 ugl              |
|   | Chloroform                  | CHCL3        | WA            | sq                   | 2J               | 0.5-10 ugl             | 1 ugl              |
|   | Trichloro-<br>ethene        | TRCLE        | WA            | sq                   | 2J               | 0.5-10.4 ugl           | l ugl              |
|   | Trichloro-<br>fluoromethane | CCL3F        | WA            | SQ                   | 2J               | 0.5-10 ugl             | 2 ugl              |
|   | Pentachloro-<br>phenol      | PCP          | WA            | SQ                   | 1 X              | 0.43-22.4 ugl          | 2 ugl              |
|   | 2-Chlorophenol              | 2CLP         | WA            | SQ                   | 1X               | 0.46-20.6 ugl          | 0.7 ugl            |
|   | 2,4-Dichloro-<br>phenol     | 24DCLP       | WA            | SQ                   | 1 X              | 0.46-22.2 ugl          | l ugl              |
|   | 2-Fluorophenol              | 2FP          | WA            | sg                   | 1 X              | 1.02-20.4 ugl          | .6 ug1             |
|   | Pentafluoro-<br>phenol      | PFP          | WA            | SQ <sub>.</sub>      | 1 %              | 1.15-23 ugl            | 4 ugl              |
|   | Pheno1-D6                   | PHEND6       | WA            | sq                   | 1 X              | 1.07-21.4 ugl          | 2 ug1              |
|   | Di-N-Butyl-<br>phthalate    | DNBP         | WA            | SQ                   | 17               | 0.502 <b>-20.4 ugl</b> | 2 ugl              |
| ٠ | Diethylphthalate            | DEP          | WA            | SQ                   | 1Z               | 0.53-20.4 ugl          | 2 ug1              |
|   | Nitrobenzene                | NB.          | WA            | SQ                   | 1Z               | 0.49-20.2 ugl          | l ugl              |
|   | 1-Fluoro-<br>naphthalene    | 1FNAP        | WA            | SQ                   | 17               | 1.07-21.4 ugl          | 2 ug1              |

| <u>Analyte</u>                 | Test<br>Name | Matrix     | Cert<br>Level | Method<br>Number | Tested Range           | Detection<br>Limit |
|--------------------------------|--------------|------------|---------------|------------------|------------------------|--------------------|
| 2-Fluorobiphenyl               | 2FBP         | WA         | sq            | 12               | 1.09-21.8 ugl          | 2 ug1              |
| Pentachloro-<br>phenol         | PCP          | <b>SO</b>  | sq            | 1 Y              | 0.43-11.2 ugg          | 1 ugg              |
| 2-Chlorophenol                 | 2CLP         | \$0        | sq            | 1 Y              | 0.46-10.3 ugg          | 0.7 ugg            |
| 2,4-Dichloro-<br>phenol        | 24DLCP       | 02         | sq            | 1 Y              | 0.45-11.1 ugg          | 1 ugg              |
| 2-Fluorophenol                 | 2FP          | <b>SO</b>  | sq            | 1 Y              | 0.51-10.7 ugg          | 3 ugg              |
| Pentafluoro-<br>phenol         | PFP          | SO         | SQ            | 1 Y              | 0.575-11.5 ugg         | 3 ugg              |
| Pheno1-D6                      | PHEND6       | S0         | sq            | 1 Y              | 0.535-10.7 ugg         | 3 ugg              |
| Di-N-Butyl-<br>phthalate       | DNBP         | S0         | SQ            | 2A               | 0.51-10.4 ugg          | 0.7 ugg            |
| Diethyl-<br>phthalate          | DEP          | SO.        | SQ .          | 2A               | 0.51-10.6 ugg          | 1 ugg              |
| Nîtrobenzene                   | NB           | S0         | sq            | 2 A              | 0.49-10.1 ugg          | 0.6 ugg            |
| l-Fluoro-<br>naphthalene       | 1FNAP        | <b>S</b> 0 | SQ            | 2A               | 0.535-10.7 ugg         | 2 ugg              |
| ?-Fluorobi-<br>bhen <b>y</b> l | 2FBP         | S0         | SQ            | 2A               | 1.09 <b>-21.</b> 8 ugg | 2 ugg              |

FQAC to override the system, is presented in Appendix E. All results generated during the analytical portion of the survey for explosives, anions, GC/MS, and GC/EC parameters met the quality control requirements established in EPS's quality control program.

However, considerable problems were encountered in the analysis of metals in natural samples of water and soil collected at LHAAP. samples collected during the survey were analyzed in four groups of 17 batches each, or 68 discrete batches (AAX through ADM). control for each batch included a duplicate and two spikes at different levels. the duplicates analyzed for all four batches of water samples had at least 2 of the 17 parameters being tested out of specifications with respect to precision. Most, if not all, of these problems were caused by the high concentration of a particular element encountered in natural samples, along with the resulting impact of numerous dilutions on The quality control for the spikes indicated the analytical scheme. several conditions under which our analytical process would be considered out of control; however, upon closer examination, it was determined that these problems occurred with the parameters for which EPS was certified semiquantitatively. The body of data which was used in the preparation of the quality control charts was rather limited for these parameters, and after review by the field quality control coordinator, it was determined that a re-calculation of the existing tables was in order. Accordingly, results for all spikes for batches presented in this report for atomic absorption water samples fell within reasonable and expected quality control ranges.

All soil and sediment samples collected at LHAAP were analyzed by EPS in three groups of 17 batches each, or 51 discrete batches (AEU through AGS). Here, too, results for several parameters in certain batches were found to be outside of the pre-established quality control limits set for this project. On closer analysis it was found that these quality control anomalies were all associated with high background levels in the blanks and spiked matrices, and the associated need for several dilutions, as well as, for many of the semiquantitative analytical parameters, an

unrealistic accuracy target range based on limited analytical data generated during the quality assurance certification.

### 4. Analytical Results

### A. Data Reports

All analytical results generated during this survey are presented in Appendices A, B, C, D, and F. Appendix A contains all analytical results generated for goundwater sampling sites. Appendix B contains analytical results for samples collected at all surface water sites. Appendix C contains all analytical results for sediment sampling sites. Appendix D contains analytical results for samples collected at soil sampling sites. Appendix F contains results for all compounds isolated during the screening analyses (HPLC, GC/EC, and GC/MS) which have either been identified, or are being reported as unidentified compounds at this time. All results are presented by analytical category according to each station sample.

#### B. Detection Limits

The detection limits established for this project are presented in Table I. These detection limits were generated during the certification process which EPS underwent for both the Longhorn and Lone Star Army Ammunition Plants, and generally represent a composite detection limit for all analyses conducted by EPS for USATHAMA.

### 5. Preliminary Conclusions

Of the nine areas studied in-depth during this survey, only two have been demonstrated as having the potential for being a source of contamination which might conceivably migrate off-post.

The first area of continued concern is the TNT area. Wells 114 through 119 do not indicate the existence of any groundwater contamination in

this area. The geotechnical results to date indicate that this area has soils of relatively low permeablility, and, therefore, it is not surprising that, although soil contamination does exist at this site, the explosive contaminants present have not penetrated into the groundwater. Our analyses indicated relatively widespread and locally heavy contamination of sites within the TNT area for several of the explosive compounds tested.

Our sampling effort for this project took place during a period of very heavy rainfall. The rainfall (exact meteorological data will be presented in the final report) caused flash flooding in the small creeks and bayous which run through LHAAP just prior to the sampling of the surrounding surface waters associated with the TNT area. Even though the area was subjected to a tremendous flushing from the heavy rainfall, traces of 2,4,6-TNT (0.78 ug/l) were still found in surface water at Station SW006, as well as a relatively high level (206.90 ug/l) of 2,4,6-TNT. Also detected at this station were 2,4-DNT (23.40 ug/l) and 2,6-DNT (13.65 ug/1). Inasmuch as these concentrations of explosive compounds were detected at this site immediately downstream from the TNT area, and additionally considering that traces of 2,4,6-TNT (2.27 ug/l) and nitrobenzene (6.27 ug/l) were found at Station SW002, which is further downstream from the TNT area, this potential source of contamination warrants additional investigation.

During this survey one other site, which had been preliminarily identified as an area of concern, has been tentatively confirmed as a potential contamination source based on the analytical data presented. This area is the current and active burning grounds and associated rocket motor casing washout pond. Many of the wells surrounding the pond have high concentrations of several halogenated organic compounds.

Other sites within the initial nine general areas of concern have been determined to have localized low levels of contamination; however, data gathered to date would not support the imminent potential for migration off LHAAP.

#### 6. Recommendations

A detailed review of the analytical and geotechnical data thus far produced for this survey is now in progress. However, some preliminary recommendations are evident from an initial review of the existing data. These recommendations pertain to those areas found to be of significant continuing concern with respect to their potential for having hazardous substances which might migrate off LHAAP.

- 1. It is recommended that, since major groundwater contamination was found in one area (active burning grounds), the majority of the additional geotechnical investigation be centered on the wells at the active burning grounds, with specific emphasis on those wells surrounding the rocket motor washout pond.
- 2. It is recommended that additional wells be installed in the wooded area between the rocket motor washout pond and the Harrison Bayou This recommendation is based on the fact that many of the wells surrounding the pond were highly contaminated with halogenated organic compounds and that this contamination was not uniformly distributed from the apparent source of the contamination. The data indicates that there are major differences in the amount of contamination in wells that were equally distant from the apparant contamination source (rocket motor washout pond). Because of the fact that this area's soils have relatively higher permeability than other sites within LHAAP, and because the initial geotechnical indicates that this area is probably underlain discontinuous layers of material, it is very possible that the contamination from the rocket motor washout pond follows a very specific and localized pathway into the goundwater. The wells presently installed around the pond are too close to the pond for us establish with any prescision the extent of groundwater contamination in this area. Since it is predicted that the general groundwater flow from this site is towards Harrison Bayou, we recommend that at least six to eight wells be established at

distances of approximately 300 feet and 500 feet from the northeastern and northwestern edges of the rocket motor washout pond.

- 3. It is recommended that additional water and sediment samples be collected along the entire length of the main drainage course leaving the TNT area at Stations SW001, SW002, Additionally, another sampling station should be established in the drainage course leaving the TNT area just prior to its confluence with the north bayou inlet to Caddo Lake. It is suggested that additional samples be collected during a period of normal rainfall. at all sediment sampling points. It is further suggested that water samples be collected at surface water Station SWOO6 every 30 minutes during a storm water hydrograph. Samples collected during the rising and falling hydrograph periods should be analyzed for the presence of explosive compounds. This additional data will be vital in determining whether or not the concentrations previously observed in the surface waters at these sites were an anomaly caused by the very heavy rains in the area, or simply a fraction of the concentrations normally found in the system prior to major flushing.
- 4. It is further recommended that tissue samples from bottom-feeding fishes in the area of the north bayou inlet to Caddo Lake be analyzed for the presence of explosive compounds and their degradation products.
- 5. It is suggested that several additional borings be made in area 080 (the suspected TNT burial site) for analysis of explosive compounds. Since traces of explosives were found in bottom soil from one bore hole in this area, and considering that the sampling at this site was totally random, it is suggested that additional historical information be gathered, if possible, and that more specific, and possibly deeper, bore holes be dug for analysis of sediment samples.

APPENDIX A

ANALYTICAL RESULTS FOR
GROUNDWATER SAMPLING SITES

(WELL 101 - WELL 53)

| ANALYTES     | CON. ug/l | AMALYTES           | CON. ug/l |
|--------------|-----------|--------------------|-----------|
| Explosives:  |           | Copper             | <         |
| 1,3-DNB      | 3.35      | Zinc               | 330.00    |
| 2,4,5 - TNT  | <         | Arsenic            | 5º •      |
| 1,3,5 - TNB  | 15.00     | Beryllium          | <         |
| 2,4 - DNT    | <         | Nickel             | 8].       |
| 2,5 - DNT    | <         | Selenium           | <         |
| Nitrobenzene | <         | Silver             | <         |
|              |           | Thallium           | <         |
| Anions:      |           | Organics (GC/MS):  |           |
| Nitrate      | lesa.     | Renzene            | <         |
| Mitrite      | <         | Chloroform         | <         |
| Phosphates   | <         | Trichlorethylene   | <         |
| Sulfate      | 35500.    | Pentachlorophenol  | <         |
| Chloride     | 2000.     | 0-chlorophenol     | <         |
| Fluoride     | <         | 2,4-dichlorophenol | <         |
| Chromate     | <         | Dibutylphthlate    | <         |
| Thiocyanate  | <         | Diethylphthlate    | <         |
| Cyanide      | <         | Nitrobenzene       | <         |
| Metais:      |           |                    |           |
| Niuminum     | 168.00    | Organics (GC/EC)   | <         |
| Antimony     | <         | p.p'-DDT           | <         |
| Parium       | 279.00    | Dieldrin           | <         |
| Cadmium      | <         | Alpha BHC          | <         |
| Chromium     | 54.34     | Heptachlor         | <         |
| Lead         | 93.60     | Lindane            | <         |
| Manganese    | 452.00    | Toxaphene          | <         |
| Strontium    | 250.00    | Aroclor 1015       | <         |
| Mercury      | <         | Aroclor 1250       |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project

| ANALYTES            | CON. ug/l | ANALYTES<br>Copper        | COM. ug/1<br>54.00 |
|---------------------|-----------|---------------------------|--------------------|
| Fxplosives: 1,3-DNB | 5.74      | Zinc                      | 270.00             |
| 2,4,5 - TNT         | <         | Arsenic                   | 160.               |
| 1,3,5 - TNB         | 53.95     | Beryllium                 | <                  |
| 2,4 - DNT           | <         | Nickel                    | 222.               |
| 2,5 - DNT           | <         | Selenium                  | <                  |
| Nitrobenzene        | <         | Silver                    | <                  |
|                     |           | Thallium                  | <                  |
| Anions:<br>Nitrate  | 498A.     | Organics (GC/MS): Benzene | <                  |
| Nitrite             | <         | Chloroform                | <                  |
| Phosphates          | <         | Trichlorethylene          | <                  |
| Sulfate             | 9690.     | Pentachlorophenol         | <                  |
| Chloride            | 3000.     | O-chlorophenol            | <                  |
| Fluoride            | <         | 2,4-dichlorophenol        | <                  |
| Chromate            | <         | Dibutylphthlate           | <                  |
| Thiocyanate         | <         | Diethylphthlate           | <                  |
| Cyanide             | <         | Nitrobenzene              | <                  |
| Metals: Aluminum    | 382.00    | Organics (GC/EC)          | <                  |
| Antimony            | <         | р.р¹-РПТ                  | *                  |
| Parium              | 365.00    | Dieldrin                  | *                  |
| Cadmium             | 0.56      | Alpha BHC                 | *                  |
| Chromium            | 84.10     | Heptachlor                | *                  |
| Lead                | 57.40     | Lindane                   | *                  |
| Manganese           | 476.00    | Toxaphene                 | *                  |
| Strontium           | 444.00    | Aroclor 1016              | *                  |
| Mercury             | <         | Aroclor 1260              | *                  |
|                     |           |                           |                    |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.(limited sample)</pre>

| ANALYTES        | CON. ug/l | ANALYTES           | CON. ug/l     |
|-----------------|-----------|--------------------|---------------|
| Explosives:     | ,         | Copper             | <             |
| 1,3-DNB         | <         | Zinc               | <             |
| 2,4,6 - TNT     | <         | Arsenic            | <             |
| 1,3,5 - TMB     | <         | Beryllium          | <             |
| 2, A - DNT      | <         | Nickel             | <             |
| 2,6 - DNT       | <         | Selenium           | <             |
| Anions:         |           | Organics (GC/MS):  |               |
| Nitrate         | noje.     | Benzene            | <             |
| Nitrite         | <         | Chloroform         | <             |
| Phosphates      | <         | Trichlorethylene   | <             |
| Sulfate         | 69826.    | Pentachlorophenol  | <             |
| Chloride        | 4]000.    | 0-chlorophenol     | <             |
| Fluoride        | <         | 2,4-dichlorophenol | <             |
| Chromate        | <         | Dibutylphthlate    | <             |
| Thiocyanate     | <         | Diethylphthlate    | <             |
| Cyanide         | <         | Nitrobenzene       | <             |
| <u>Metals</u> : |           |                    |               |
| Aluminum        | 361.00    | Organics (GC/EC)   | <             |
| Antimony        | <         | p.p'-DDT           | <             |
| Barium          | 32.00     | Dieldrin           | <             |
| Cadmium         | 11.52     | Alpha BHC          | <             |
| Chromium        | 13.50     | Heptachlor         | <             |
| Lead            | 15.80     | Lindane            | <             |
| Manganese       | 159.00    | Toxaphene          | <             |
| Strontium       | 398.00    | Aroclor 1816       | · <b>&lt;</b> |
| Mercury         | <         | Aroclor 1260       | <             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  | ,         | Copper<br>Zinc     | <b>&lt;</b> |
| 1,3-DNB      | <         |                    |             |
| 2,4,5 - TNT  | <         | Arsenic            | 21.         |
| 1,3,5 - TNB  | 9.74      | Beryllium          | <           |
| 2,4 - DNT    | <         | Nickel             | 57.         |
| 2,6 - DNT    | <         | Selenium           | <           |
| Nitrobenzene | 1.82      | Silver             | <           |
|              |           | Thallium           | <           |
| Anions:      |           | Organics (GC/MS):  |             |
| Nitrate      | 3500.     | Benzene            | <           |
| Nitrite      | <         | Chloroform         | <           |
| Phosphates   | <         | Trichlorethylene   | <           |
| Sulfate      | 5710.     | Pentachlorophenol  | <           |
| Chioride     | 8000.     | 0-chlorophenol     | <           |
| Fluoride     | <         | 2,4-dichlorophenol | <           |
| Chromate     | <         | Dibutylphthlate    | <           |
| Thiocyanate  | <         | Diethylphthlate    | <           |
| Cyanide      | <         | Nitrobenzene       | <           |
| Metals:      |           |                    |             |
| Aluminum     | 372.00    | Organics (GC/EC)   |             |
| Antimony     | <         | TUU-14.4           | <           |
| Barium       | 67.50     | Dieldrin           | <           |
| Cadmium      | a.07      | Alpha BHC          | <           |
| Chromium     | 45.70     | Heptachlor         | <           |
| Lead         | 34.30     | Lindane            | <           |
| Manganese    | 85.00     | Toxaphene          | <           |
| Strontium    | 96.00     | Aroclor 1015       | <           |
| Mercury      | <         | Aroclor 1260       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l     | ANALYTES                  | COM. ug/l  |
|------------------|---------------|---------------------------|------------|
| Explosives:      | . <b>&lt;</b> | Copper<br>Zinc            | <<br><     |
| 2,4,6 - TNT      | <             | Arsenic                   | <          |
| 1,3,5 - TNB      | <             | Beryllium                 | <          |
| 2,4 - DNT        | <             | Nickel                    | 137.       |
| 2,5 - DNT        | <             | Selenium                  | <          |
| Nitrobenzene     | <             | Silver                    | <          |
|                  |               | Thallium                  | 50.        |
| Anions: Nitrate  | 24000.        | Organics (GC/MS): Benzene | *          |
| Nitrite          | <             | Chloroform                | *          |
| Phosphates       | <             | Trichlorethylene          | *          |
| Sulfate          | 1846690.      | Pentachlorophenol         | *          |
| Chloride         | 820000.       | O-chlorophenol            | *          |
| Fluoride         | <             | 2,4-dichlorophenol        | *          |
| Chromate         | <             | Dibutylphthlate           | *          |
| Thiocyanate      | <             | Diethylphthlate           | *          |
| Cyanide          | <             | Nitrobenzene              | *          |
| Metals: Aluminum | 377.00        | Organics (GC/EC)          |            |
| Antimony         | <             | p.p'-DDT                  | *          |
| Barium           | 32.50         | Dieldrin                  | *          |
| Cadmium          | 9.72          | λlpha BHC                 | *          |
| Chromium         | 11.90         | Heptachlor                | *          |
| Lead             | <             | Lindane                   | *          |
| Manganese        | 3340.00       | Toxaphene                 | *          |
| Strontium        | 6920.00       | Aroclor 1016              | *          |
| Mercury          | <             | Aroclor 1260              | . <b>*</b> |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | COM. ug/l     | ANALYTES                  | CON. ug/l   |
|------------------|---------------|---------------------------|-------------|
| Fxplosives:      | <             | Copper<br>Zinc            | <b>&lt;</b> |
| 2,4,5 - TNT      | <             | Arsenic                   | <           |
| 1,3,5 - TNB      | 4.38          | Beryllium                 | <           |
| 2,4 - DNT        | <             | Nickel                    | 41.         |
| 2,5 - DNT        | <             | Selenium                  | <           |
| Nitrobenzene     | <             | Silver                    | <           |
|                  |               | Thallium                  | <           |
| Anions: Nitrate  | <             | Organics (GC/MS): Renzene | *           |
| Nitrite          | ·             | Chloroform                | *           |
| Phosphates       | <             | Trichlorethylene          | *           |
| Sulfate          | 73300.        | Pentachlorophenol         | *           |
| Chloride         | 137000.       | O-chlorophenol            | *           |
| Fluoride         | <             | 2,4-dichlorophenol        | *           |
| Chromate         | <             | Dibutylphthlate           | *           |
| Thiocyanate      | <             | Piethylphthlate           | *           |
| Cyanide          | <             | Nitrobenzene              | *           |
| Metals: Aluminum | 249.00        | Organics (GC/EC)          |             |
| Antimony         | · <b>&lt;</b> | p.p'-DDT                  | <           |
| Barium           | 13.30         | Dieldrin                  | <           |
| Cadmium          | 3.92          | Alpha BHC                 | <           |
| Chromium         | ۶.50          | Heptachlor                | <           |
| Lead             | 15.10         | Lindane                   | <           |
| Manganese        | 652.00        | Toxaphene                 | <           |
| Strontium        | 272.00        | Aroclor 1015              | <           |
| Mercury          | <             | Aroclor 1260              | <           |
|                  |               |                           |             |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | CON. ug/l  | ANALYTES                  | COM. ug/l   |
|------------------|------------|---------------------------|-------------|
| Explosives:      | <          | Copper<br>Zinc            | <b>&lt;</b> |
| 2,4,6 - TNT      | · · ·      | Arsenic                   | `<br><      |
| 1,3,5 - TNB      | <          | Beryllium                 | ` <b>`</b>  |
| 2,4 - DNT        |            | Nickel                    |             |
|                  | <          |                           | <           |
| 2,5 - DNT        | <          | Selenium                  | <           |
| Nitrobenzene     | <          | Silver                    | <           |
|                  |            | Thallium                  | <           |
| Anions: Nitrate  | <          | Organics (GC/MS): Benzene | 1.          |
| Nitrite          | ` <b>`</b> | Chloroform                | ·           |
| Phosphates       | <          | Trichlorethylene          | <           |
| Sulfate          | 54650.     | Pentachlorophenol         | <           |
| Chloride         | 145000.    | O-chlorophenol            | <           |
| Fluoride         | <          | 2,4-dichlorophenol        | <           |
| Chromate         | <          | Dibutylphthlate           | <           |
| Thiocyanate      | <          | Diethylphthlate           | <           |
| Cyanide          | <          | Nitrobenzene              | <           |
| Metals: Aluminum | 154.00     | Organics (GC/EC)          |             |
| Antimony         | <          | p.p'-DDT                  | *           |
| Barium           | <          | Dieldrin                  | *           |
| Cadmium          | 4.68       | Alpha BHC                 | *           |
| Chromium         | 10.30      | Heptachlor                | *           |
| Lead             | 10.00      | Lindane                   | *           |
| Manganese        | 187.00     | Toxaphene                 | *           |
| Strontium        | 260.00     | Aroclor 1016              | *           |
| Mercury          | ` <        | Aroclor 1260              | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| AMALYTES           | CON. ug/l  | ANALYTES                     | COM. ug/l |
|--------------------|------------|------------------------------|-----------|
| Explosives:        | <          | Copper<br>Zinc               | <b>〈</b>  |
| 2,4,6 - TNT        | <          | Arsenic                      | `<br><    |
| 1,3,5 - TNB        | <          | Beryllium                    | `         |
| 2,4 - DNT          | ` <b>`</b> | Nickel                       | 234.      |
| 2,5 - DNT          | · <b>`</b> | Selenium                     | 19.       |
| Nitrobenzene       |            | Silver                       |           |
| Nicropenzene       | <          |                              |           |
|                    |            | Thallium                     | ខេត       |
| Anions:<br>Nitrate | <          | Organics (GC/MS):<br>Benzene | <         |
| Nitrite            | <          | Chloroform                   | <         |
| Phosphates         | <          | Trichlorethylene             | <         |
| Sulfate            | 1378000.   | Pentachlorophenol            | <         |
| Chioride           | 2734000.   | O-chlorophenol               | <         |
| Fluoride           | <          | 2,4-dichlorophenol           | <         |
| Chromate           | <          | Dibutylphthlate              | <         |
| Thiocyanate        | <          | Diethylphthlate              | <         |
| Cyanide            | <          | Nitrobenzene                 | <         |
| Metals: Aluminum   | 147.60     | Organics (GC/EC)             |           |
| Antimony           | <          | p.p'-DT                      | <         |
| Barium             |            |                              |           |
|                    | 31.60      | Dieldrin                     | <         |
| Cadmium            | 15.38      | Alpha BHC                    | 1.        |
| Chromium           | 12.90      | Heptachlor                   | <         |
| Lead               | <          | Lindane                      | <         |
| Manganese          | 11800.00   | Toxaphene                    | <         |
| Strontium          | 8200.00    | Aroclor 1016                 | <         |
| Mercury            | <          | Aroclor 1250                 | <         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l | ANALYTES                     | CON. ug/l   |
|--------------------|-----------|------------------------------|-------------|
| Explosives:        | <         | Copper<br>Zinc               | <b>&lt;</b> |
| 2,4,6 - TNT        | <         | Arsenic                      | <           |
| 1,3,5 - TNB        | <         | Beryllium                    | <           |
| 2,4 - DNT          | <         | Nickel                       | <           |
| 2,5 - DNT          | ·         | Selenium                     | •           |
| Nitrobenzene       | <         | Silver                       | <           |
| Nicropenzene       | <         | Thallium                     | <           |
| • *                |           |                              | <           |
| Anions:<br>Nitrate | 14000.    | Organics (GC/MS):<br>Benzene | <           |
| Nitrite            | <         | Chloroform                   | <           |
| Phosphates         | <         | Trichlorethylene             | <           |
| Sulfate            | espan.    | Pentachlorophenol            | <           |
| Chloride           | 2037000.  | O-chlorophenol               | <           |
| Fluoride           | 1000.     | 2,4-dichlorophenol           | <           |
| Chromate           | <         | Dibutylphthlate              | <           |
| Thiocyanate        | <         | Diethylphthlate              | <           |
| Cyanide            | <         | Nitrobenzene                 | <           |
| Metals:            |           |                              |             |
| λluminum           | 184.00    | Organics (GC/EC)             |             |
| Antimony           | <         | p.pDDT                       | *           |
| Barium             | 269.00    | Dieldrin                     | *           |
| Cadmium            | 5.78      | Alpha BHC                    | *           |
| Chromium           | 10.40     | Heptachlor                   | *           |
| Lead               | <         | . Lindane                    | *           |
| Manganese          | 15.00     | Toxaphene                    | *           |
| Strontium          | 80.00     | Aroclor 1016                 | *           |
| Mercury            | <         | Aroclor 1260                 | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l     | ANALYTES           | COM. ug/l       |
|--------------|---------------|--------------------|-----------------|
| Explosives:  | . <b>&lt;</b> | Copper<br>Zinc     | <b>&lt;</b>     |
| 2,4,6 - TNT  | <             | Arsenic            | <               |
| 1,3,5 - TNB  | <             | Peryllium          | <               |
| 2,4 - DNT    | <             | Nickel             | 54.             |
| 2,5 - DNT    | <             | Selenium           | 28.             |
| Nitrobenzene | <             | Silver             | <               |
|              |               | Thallium           | <               |
| Anions:      |               | Organics (GC/MS):  |                 |
| Nitrate      | <             | Benzene            | <               |
| Nitrite      | <             | Chloroform         | <               |
| Phosphates   | <             | Trichlorethylene   | <               |
| Sulfate      | 2407100.      | Pentachlorophenol  | <               |
| Chloride     | 1414000.      | 0-chlorophenol     | <               |
| Fluoride     | . <           | 2,4-dichlorophenol | <               |
| Chromate     | <             | Dibutylphthlate    | <               |
| Thiocyanate  | <             | Diethylphthlate    | <               |
| Cyanide      | <             | Nitrobenzene       | <               |
| Metals:      |               |                    |                 |
| Aluminum     | 180.00        | Organics (GC/EC)   |                 |
| Antimony     | <             | TUU-14.d           | <               |
| Barium       | 32.00         | Dieldrin           | <               |
| Cadmium      | 1.44          | Alpha BHC          | <               |
| Chromium     | 10.00         | Heptachlor         | <               |
| Lead         | <             | Lindane            | <               |
| Manganese    | 1570.00       | Toxaphene          | <               |
| Strontium    | 3920.00       | Aroclor 1016       | <               |
| Mercury      | <             | Aroclor 1260       | <b>. &lt;</b> , |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l     | ANALYTES           | CON. ug/l   |
|--------------|---------------|--------------------|-------------|
| Explosives:  | <             | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | · <b>&lt;</b> | Λrsenic            | <           |
| 1,3,5 - TNB  | <             | Beryllium          | <           |
| 2,4 - DNT    | <             | Nickel             | <           |
| 2,6 - DNT    | <             | Selenium           | <           |
| Nitrobenzene | <             | Silver             | <           |
|              |               | Thallium           | <           |
| Anions:      |               | Organics (GC/MS):  |             |
| Nitrate      | 4350.         | Benzene            | <           |
| Nitrite      | <             | Chloroform         | <           |
| Phosphates   | <             | Trichlorethylene   | <           |
| Sulfate      | 54500.        | Pentachlorophenol  | <           |
| Chloride     | 41000.        | 0-chlorophenol     | <           |
| Fluoride     | <             | 2,4-dichlorophenol | <           |
| Chromate     | <             | Dibutylphthlate    | <           |
| Thiocyanate  | <             | Diethylphthlate    | <           |
| Cyanide      | <             | · Nitrobenzene     | <           |
| Metals:      |               |                    |             |
| λiuminum     | 172.00        | Organics (GC/EC)   |             |
| Antimony     | <             | р.рппт             | <           |
| Barium       | 15.60         | Dieldrin           | <           |
| Cadmium      | 13.08         | Alpha BHC          | <           |
| Chromium     | 7.00          | Heptachlor         | <           |
| Lead         | 13.80         | Lindane            | <           |
| Manganese    | 115.00        | Toxaphene          | <           |
| Strontium    | 194.46        | Aroclor 1015       | <           |
| Mercury      | <             | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l     | ANALYTES             | COM. ug/l   |
|------------------|---------------|----------------------|-------------|
| Explosives:      | <             | Copper<br>Zinc       | <<br><      |
| 2,4,6 - TNT      | <             | Arsenic              | <           |
| 1,3,5 - TNB      | 9.00          | Beryllium            | <           |
| 2,4 - DNT        | <             | Nickel               | <           |
| 2,6 - DNT        | <             | Selenium             | <           |
| Nitrobenzene     | <             | Silver               | <           |
|                  |               | Thallium             | <           |
| Anions:          |               | Organics (GC/MS):    |             |
| Nitrate          | 67500.        | Benzene              | <           |
| Mitrite          | <b>&lt;</b> ` | Chloroform           | <           |
| Phosphates       | <             | Trichlorethylene     | <           |
| Sulfate          | 951000.       | Pentachlorophenol    | . <         |
| Chloride         | 820000.       | O-chlorophenol       | <           |
| Fluoride         | 2000.         | . 2,4-dichlorophenol | <           |
| Chromate         | <             | Dibutylphthlate      | <           |
| Thiocyanate      | <             | Diethylphthlate      | <           |
| Cyanide          | <             | Nitrobenzene         | <           |
| Metals: Aluminum | 247.00        | Organics (GC/EC)     |             |
|                  | <             | p.p'-DDT             | <           |
| Antimony         |               | • •                  |             |
| Barium           | 17.19         | Dieldrin             | <b>&lt;</b> |
| Cadmium          | 16.27         | Alpha BHC            | <           |
| Chromium         | 10.10         | Heptachlor           | <           |
| Lead             | <             | Lindane              | <           |
| Manganese        | 3300.00       | Toxaphene            | <           |
| Strontium        | nn.ne         | Aroclor 1016         | <           |
| Mercury          | <             | Aroclor 1250         | <           |
|                  |               |                      |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l  | ANALYTES                  | CON. ug/l |
|--------------------|------------|---------------------------|-----------|
| Explosives:        | ,          | Copper<br>Zinc            | <<br>*    |
| 2,4,6 - TNT        | · <b>〈</b> | Arsenic                   | " ·<br>★  |
|                    |            |                           | *         |
| 1,3,5 - TNB        | <          | Beryllium                 |           |
| 2,4 - DNT          | <          | Nickel                    | *         |
| 2,6 - DNT          | <          | Selenium                  | *         |
| Nitrobenzene       | <          | Silver                    | *         |
|                    |            | Thallium                  | *         |
| Anions:<br>Nitrate | *          | Organics (GC/MS): Benzene | *         |
| Nitrite            | *          | Chloroform                | *         |
| Phosphates         | *          | Trichlorethylene          | *         |
| Sulfate            | *          | Pentachlorophenol         | *         |
| Chloride           | *          | O-chlorophenol            | *         |
| Fluoride           | *          | 2,4-dichlorophenol        | *         |
| Chromate           | *          | Dibutylphthlate           | *         |
| Thiocyanate        | *          | Diethylphthlate           | *         |
| Cyanide            | *          | Nitrobenzene              | *         |
| Metals:            | *          | Organics (GC/EC)          |           |
| Antimony           | *          | p.p'-DDT                  | *         |
| Barium             | *          | Dieldrin                  | *         |
| Cadmium            | *          | Alpha BHC                 | *         |
| Chromium           | *          | Heptachlor                | *         |
| Lead               | *          | Lindane                   | *         |
| Manganese          | *          |                           | *         |
| Strontium          | *          | Toxaphene                 |           |
|                    |            | Aroclor 1015              | *         |
| Mercury            | *          | Aroclor 1260              | *         |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES            | CON. ug/l | ANALYTES                  | COM. ug/l |
|---------------------|-----------|---------------------------|-----------|
| Explosives:         | <         | Copper<br>Zinc            | <<br>*    |
| 2,4,5 - TNT         | `<br><    | Arsenic                   | *         |
| 1,3,5 - TNB         | <         | Beryllium                 | *         |
| 2,1 - DNT           | <         | Nickel                    | *         |
| 2,5 - DNT           | <         | Selenium                  | *         |
| Nitrobenzene        | <         | Silver                    | *         |
|                     |           | Thallium                  | *         |
| Anions: Nitrate     | *         | Organics (GC/MS): Benzene | *         |
| Nitrite             | *         | Chloroform                | *         |
| Phosphates          | *         | Trichlorethylene          | *         |
| Sulfate             | *         | Pentachlorophenol         | *         |
| Chloride            | *         | O-chlorophenol            | *         |
| Fluoride            | *         | 2,4-dichlorophenol        | *         |
| Chromate            | *         | Dibutylphthlate           | *         |
| Thiocyanate         | *         | Diethylphthlate           | *         |
| Cyanide             | *         | Nitrobenzene              | *         |
| Metals:<br>Aluminum | *         | Organics (GC/EC)          |           |
| Antimony            | *         | р.р'-DDT                  | *         |
| Barium              | *         | Dieldrin                  | *         |
| Cadmium             | *         | Alpha BHC                 | *         |
| Chromium            | *         | Heptachlor                | *         |
| Lead                | *         | Lindane                   | *         |
| Manganese           | *         | Toxaphene                 | *         |
| Strontium           | *         | Aroclor 1016              | *         |
| Mercury             | *         | Aroclor 1250              | *         |
| rata ut y           |           | TILOCTOL 15 ()            |           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES                       | CON. ug/i |
|--------------|-----------|--------------------------------|-----------|
| Explosives:  | <         | Copper<br>Zinc                 | <<br>*    |
| 2,4,6 - TNT  | `<br><    | Arsenic                        | *         |
| 1,3,5 - TNB  | <         | Beryllium                      | *         |
| 2,4 - DNT    | `<br><    | Nickel                         | *         |
| 2,6 - DNT    | `<br><    | Selenium                       | *         |
| Nitrobenzene | `<br><    | · Silver                       | *         |
|              | •         | Thallium                       | *         |
| Anions:      |           | Organics (GC/MS):              |           |
| Nitrate      | *         | Benzene                        | *         |
| Nitrite      | *         | Chloroform                     | *         |
| Phosphates   | *         | Trichlorethylene               | *         |
| Sulfate      | *         | Pentachlorophenol              | *         |
| Chloride     | *         | O-chlorophenol                 | *         |
| Fluoride     | *         | 2,4-dichlorophenol             | *         |
| Chromate     | *         | Dibutylphthlate                | *         |
| Thiocyanate  | *         | D'ethylphthlate                | *         |
| Cyanide      | *         | Nitrohenzene                   | *         |
| Metals:      |           |                                |           |
| Aluminum     | *         | Organics (GC/EC)               |           |
| Antimony     | *         | тпп- <sup>•</sup> q <b>.</b> q | *         |
| Barium       | *         | Dieldrin                       | *         |
| Cadmium      | *         | Alpha BHC                      | *         |
| Chromium     | *         | Heptachlor                     | *         |
| Lead         | *         | Lindane                        | *         |
| Manganese    | *         | Toxaphene                      | *         |
| Strontium    | *         | Aroclor 1016                   | *         |
| Mercury      | *         | Aroclor 1250                   | *         |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES<br>Explosives: | CON. ug/l     | ANALYTES<br>Copper        | CON. ug/l |
|-------------------------|---------------|---------------------------|-----------|
| 1,3-DNB                 | <             | Zinc                      | *         |
| 2,4,6 - TNT             | <             | Arsenic                   | *         |
| 1,3,5 - TNB             | <             | . Peryllium               | *         |
| 2,4 - DNT               | · <b>&lt;</b> | Nickel                    | *         |
| 2,6 - DNT               | <             | Selenium                  | *         |
| Nitrobenzene            | <             | Silver                    | * *       |
|                         |               | Thallium                  | *         |
| Anions:<br>Nitrate      | *             | Organics (GC/MS): Renzene | *         |
| Nitrite                 | *             | Chloroform                | *         |
| Phosphates              | *             | Trichlorethylene          | *         |
| Sulfate                 | *             | Pentachlorophenol         | *         |
| Chioride                | *             | O-chlorophenol            | *         |
| Fluoride                | *             | 2,4-dichlorophenol        | *         |
| Chromate                | *             | Dibutylphthlate           | *         |
| Thiocyanate             | *             | Diethylphthlate           | *         |
| Cyanide                 | *             | Nitrobenzene              | *         |
| Metals:                 |               |                           |           |
| λiuminum                | *             | Organics (GC/EC)          |           |
| Antimony                | *             | p.p'-DDT                  | *         |
| Barium                  | *             | Dieldrin                  | *         |
| Cadmium                 | *             | Alpha PHC                 | *         |
| Chromium                | *             | Heptachlor                | *         |
| Lead                    | *             | Lindane                   | *         |
| Manganese               | *             | Toxaphene                 | *         |
| Strontium               | *             | Aroclor 1016              | *         |
| Mercury                 | *             | Aroclor 1260              | *         |
|                         |               |                           |           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES            | CON. ug/l | ANALYTES                  | COM. ug/l |
|---------------------|-----------|---------------------------|-----------|
| Explosives: 1,3-DNB | <         | Copper<br>Zinc            | <<br><    |
| 2,4,6 - TNT         | <         | Arsenic                   | <         |
| 1,3,5 - TNB         | 9.44      | Beryllium                 | <         |
| 2,4 - DNT           | <         | Nickel                    | <         |
| 2,5 - DNT           | <         | Selenium                  | <         |
| Nitrobenzene        | <         | Silver                    | <         |
|                     |           | Thallium                  | <         |
| Anions: Nitrate     | 575aa.    | Organics (GC/MS): Benzene | <         |
| Mitrite             | < .       | · Chloroform              | <         |
| Phosphates          | <         | Trichlorethylene          | <         |
| Sulfate             | 951000.   | Pentachlorophenol         | <         |
| Chioride            | 820000.   | O-chlorophenol            | <         |
| Fluoride            | 2000.     | 2,4-dichlorophenol        | <         |
| Chromate            | <         | Dibutylphthlate           | <         |
| Thiocyanate         | <         | Diethylphthlate           | · <       |
| Cyanide             | <         | Nitrobenzene              | <         |
| Metals: Aluminum    | 247.00    | Organics (GC/EC)          |           |
| Antimony            | <         | p.p'-DDT                  | <         |
| Barium              | 17.10     | Dieldrin                  | <         |
| Cadmium             | 16.27     | Alpha BHC                 | <         |
| Chromium            | 10.10     | Heptachlor                | • <       |
| Lead                | <         | Lindane                   | <         |
| Manganese           | 3300.00   | Toxaphene                 | <         |
| Strontium           | nn.ne     | Aroclor 1016              | <         |
| Mercury             | <         | Aroclor 1250              | <         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l | ANALYTES                  | CON. ug/l        |
|--------------------|-----------|---------------------------|------------------|
| Explosives:        | <         | Copper<br>Zinc            | <b>&lt;</b><br>* |
| 2,4,6 - TNT        | <         | Arsenic                   | *                |
| 1,3,5 - TNB        | <         | Beryllium                 | * ;              |
| 2, A - DNT         | <         | Nickel                    | *                |
| 2,6 - DNT          | <         | Selenium                  | *                |
| Nitrobenzene       | <         | Silver                    | *                |
|                    |           | . Thallium                | *                |
| Anions:<br>Nitrate | *         | Organics (GC/MS): Renzene | *                |
| Nitrite            | *         | Chloroform                | *                |
| Phosphates         | *         | Trichlorethylene          | *                |
| Sulfate            | *         | Pentachlorophenol         | *                |
| Chloride           | *         | O-chlorophenol            | *                |
| Fluoride           | *         | 2,4-dichlorophenol        | *                |
| Chromate           | *         | Dibutylphthlate           | *                |
| Thiocyanate        | *         | Diethylphthlate           | *                |
| Cyanide            | *         | Nitrobenzene              | *                |
| Metals:            |           |                           |                  |
| λluminum           | *         | Organics (GC/EC)          |                  |
| Antimony           | *         | p.pDDT                    | *                |
| Barium             | *         | Dieldrin                  | *                |
| Cadmium            | *         | Alpha BHC                 | *                |
| Chromium           | *         | Heptachlor                | *                |
| Lead               | *         | Lindane                   | *                |
| Manganese          | *         | Toxaphene                 | *                |
| Strontium          | *         | Aroclor 1015              | *                |
| Mercury            | *         | Aroclor 1250              | *                |
|                    |           |                           |                  |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES                  | COM. ug/l |
|--------------|-----------|---------------------------|-----------|
| Explosives:  | · ·       | Copper<br>Zinc            | <<br>*    |
| 2,4,6 - TNT  | `<br><    | Arsenic                   | *         |
| 1,3,5 - TNB  | <         | Beryllium                 | ★         |
| 2,4 - DNT    | <         | Nickel                    | *         |
| 2,5 - DNT    | <         | Selenium                  | *         |
| Nitrobenzene | <         | Silver                    | *         |
|              |           | Thallium                  | *         |
| Anions:      | *         | Organics (GC/MS): Benzene | *         |
| Nitrite      | *         | Chloroform                | *         |
| Phosphates   | *         | Trichlorethylene          | *         |
| Sulfate      | *         | Pentachlorophenol         | *         |
| Chloride     | *         | O-chlorophenol            | *         |
| Fluoride     | *         | 2,4-dichlorophenol        | *         |
| Chromate     | *         | Dibutylphthlate           | *         |
| Thiocyanate  | *         | Diethylphthlate           | *         |
| Cyanide      | *         | Nitrobenzene              | *         |
| Metals:      |           |                           |           |
| Aluminum     | *         | Organics (GC/EC)          |           |
| Antimony     | *         | דתת-יק.                   | *         |
| Barium       | *         | Dieldrin                  | *         |
| Cadmium      | *         | Alpha BHC                 | *         |
| Chromium     | *         | Heptachlor                | *         |
| Lead         | *         | Lindane                   | *         |
| Manganese    | *         | Toxaphene                 | *         |
| Strontium    | *         | Aroclor 1016              | *         |
| Mercury      | *         | Aroclor 1250              | *         |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES                                            | CON. ug/i |
|--------------|-----------|-----------------------------------------------------|-----------|
| Explosives:  | <         | Copper<br>· Zinc                                    | <<br>*    |
| 2,4,6 - TNT  | <         | Arsenic                                             | *         |
| 1,3,5 - TNB  | <         | Beryllium                                           | *         |
| 2,4 - DNT    | <         | Nickel                                              | *         |
| 2,6 - DNT    | <         | Selenium                                            | *         |
| Nitrobenzene | <         | Silver                                              | *         |
|              |           | Thallium                                            | *         |
| Anions:      |           | Organics (GC/MS):                                   |           |
| Nitrate      | *         | Benzene                                             | *         |
| Nitrite      | *         | Chloroform                                          | *         |
| Phosphates   | *         | Trichlorethylene                                    | *         |
| Sulfate      | *         | Pentachlorophenol                                   | *         |
| Chloride     | *         | O-chlorophenol                                      | *         |
| Fluoride     | *         | 2,4-dichlorophenol                                  | *         |
| Chromate     | *         | Dibutylphthlate                                     | *         |
| Thiocyanate  | *         | P'ethylphthlate                                     | *         |
| Cyanide      | *         | Nitrobenzene                                        | *         |
| Metals:      |           |                                                     |           |
| Aluminum     | *         | Organics (GC/EC)                                    |           |
| Λntimony     | *         | P. (7 - T. (7 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - | *         |
| Barium       | *         | Dieldrin                                            | *         |
| Cadmium      | *         | Alpha BHC                                           | *         |
| Chromium     | *         | Heptachlor                                          | *         |
| Lead         | *         | Lindane                                             | *         |
| Manganese    | *         | Toxaphene                                           | *         |
| Strontium    | *         | Aroclor 1016                                        | *         |
| Mercury      | *         | Aroclor 125g                                        | *         |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES                  | CON. ug/l   |
|--------------|-----------|---------------------------|-------------|
| Expiosives:  | <         | Copper<br>Zinc            | <b>&lt;</b> |
| 2,4,6 - TNT  | <         | Arsenic                   | *           |
| 1,3,5 - TNB  | <         | Beryllium                 | *           |
| 2,4 - DNT    | . <       | Nickel                    | *           |
| 2,6 - DNT    | <         | Selenium                  | *           |
| Nitrobenzene | <         | Silver                    | *           |
|              |           | Thallium                  | *           |
| Anions:      | *         | Organics (GC/MS): Renzene | *           |
| Nitrite      | *         | Chloroform                | *           |
| Phosphates   | *         | Trichlorethylene          | *           |
| Sulfate      | *         | Pentachlorophenol         | *           |
| Chioride     | *         | O-chlorophenol            | *           |
| Fluoride     | *         | 2,4-dichlorophenol        | *           |
| Chromate     | *         | Dibutylphthlate           | *           |
| Thiocyanate  | *         | Diethylphthlate           | *           |
| Cyanide      | *         | Nitrobenzene              | *           |
| Metals:      |           |                           |             |
| λiuminum     | *         | Organics (GC/EC)          |             |
| Antimony     | *         | p.p'-DDT                  | *           |
| Barium       | *         | Dieldrin                  | *           |
| Cadmium      | *         | Alpha BHC                 | *           |
| Chromium     | *         | Heptachlor                | *           |
| Lead         | *         | Lindane                   | *           |
| Manganese    | *         | Toxaphene                 | *           |
| Strontium    | *         | Aroclor 1016              | *           |
| Mercury      | *         | Aroclor 1250              | *           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES           | CON. ug/l | ANALYTES           | CON. ug/l        |
|--------------------|-----------|--------------------|------------------|
| Explosives:        | <         | Copper<br>Zinc     | <b>&lt;</b><br>* |
| 2,4,6 - TNT        | <         | Arsenic            | *                |
| 1,3,5 - TNB        | `<br><    | Beryllium          | *                |
| 2,4 - DNT          | `<br><    | Nickel             | *                |
| 2,6 - DNT          | <         | Selenium           | *                |
| Nitrobenzene       | <         | Silver             | *                |
| Wittobenzene       |           | Thallium           | *                |
| Aniona             |           | Organics (GC/MS):  |                  |
| Anions:<br>Nitrate | *         | Benzene            | *                |
| Nitrite            | *         | Chloroform         | *                |
| Phosphates         | *         | Trichlorethylene   | *                |
| Sulfate            | *         | Pentachlorophenol  | *                |
| Chloride           | *         | O-chlorophenol     | *                |
| Fluoride           | *         | 2,4-dichlorophenol | *                |
| Chromate           | *         | Dibutylphthlate    | *                |
| Thiocyanate        | *         | Diethylphthlate    | *                |
| Cyanide            | *         | Nitrobenzene       | *                |
| Metais:            |           |                    |                  |
| Aluminum           | *         | Organics (GC/EC)   |                  |
| Λntimony           | *         | p.p'-DDT           | *                |
| Parium             | *         | Dieldrin           | *                |
| Cadmium            | *         | Alpha BHC          | *                |
| Chromium           | *         | Heptachlor         | *                |
| Lead               | *         | Lindane            | *                |
| Manganese          | *         | Toxaphene          | *                |
| Strontium          | *         | Aroclor 1016       | *                |
| Mercury            | *         | Arodlor 1260       | *                |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES        | CON. ug/l | ANALYTES                  | CON. ug/l |
|-----------------|-----------|---------------------------|-----------|
| Explosives:     | . <       | Copper<br>Zinc            | <<br>*    |
| 2,4,6 - TNT     | <         | Arsenic                   | *         |
| 1,3,5 - TNB     | <         | Beryllium                 | *         |
| 2,4 - DNT       | <         | Nickel                    | *         |
| 2,6 - DNT       | <         | Selenium                  | *         |
| Nitrobenzene    | <         | Silver                    | *         |
|                 |           | Thallium                  | *         |
| Anions: Nitrate | *         | Organics (GC/MS): Benzene | *         |
| Nitrite         | *         | Chloroform                | *         |
| Phosphates      | *         | Trichlorethylene          | *         |
| Sulfate         | *         | Pentachlorophenol         | *         |
| Chloride        | *         | O-chlorophenol            | *         |
| Fiuoride        | *         | 2,4-dichlorophenol        | *         |
| Chromate        | *         | Dibutylphthlate           | *         |
| Thiocyanate     | *         | Diethylphthlate           | *         |
| Cyanide         | *         | Nitrobenzene              | *         |
| Metals:         | *         | Organics (GC/EC)          |           |
| Antimony        | *         | p.p'-DDT                  | *         |
| Barium          | *         | Dieldrin                  | *         |
| Cadmium         | *         | Λlpha BHC                 | *         |
| Chromium        | *         | Heptachlor                | *         |
| Lead            | *         | Lindane                   | *         |
| Manganese       | *         | Toxaphene                 | *         |
| Strontium       | *         | Aroclor 1016              | *         |
| Mercury         | *         | Aroclor 1260              | *         |
| -               |           |                           |           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | <         | Arsenic            | *           |
| 1,3,5 - TNB  | <         | Beryllium          | *           |
| 2,4 - DNT    | <         | Nickel             | *           |
| 2,5 - DNT    | <         | Selenium           | *           |
| Nitrobenzene | <         | Silver             | *           |
|              | ·         | Thallium           | *           |
| Anions:      |           | Organics (GC/MS):  |             |
| Nitrate      | *         | Benzene            | *           |
| Nitrite      | *         | Chloroform         | *           |
| Phosphates   | *         | Trichlorethylene   | *           |
| Sulfate      | *         | Pentachlorophenol  | *           |
| Chioride     | *         | O-chlorophenol     | *           |
| Fluoride     | *         | 2,4-dichlorophenol | *           |
| Chromate     | *         | Dibutylphthlate    | *           |
| Thiocyanate  | *         | Diethylphthlate    | *           |
| Cyanide      | *         | Nitrobenzene       | *           |
| Metals:      |           |                    |             |
| Aluminum     | *         | Organics (GC/EC)   |             |
| Antimony     | *         | p.p"-DDT           | *           |
| Barium       | *         | Dieldrin           | *           |
| Cadmium      | *         | Alpha BHC          | *           |
| Chromium     | *         | Heptachlor         | *           |
| Lead         | *         | Lindane            | *           |
| Manganese    | *         | Toxaphene          | *           |
| Strontium    | *         | Arodlor 1015       | *           |
| Mercury      | *         | Aroclor 1260       | *           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES            | CON. ug/l | ANALYTES           | COM. ug/l   |
|---------------------|-----------|--------------------|-------------|
| Explosives:         | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT         | ·         | Arsenic            | <           |
| 1,3,5 - TNB         | <         | Beryllium          | <           |
| 2,4 - DNT           | <         | Nickel             | 64.         |
| 2,6 - DNT           | <         | Selenium           | <           |
| Nitrobenzene        | <         | Silver             | <           |
|                     |           | Thallium           | <           |
| Anions:             |           | Organics (GC/MS):  |             |
| Nitrate             | 1170000.  | Benzene            | <           |
| Nitrite             | <         | Chloroform         | <           |
| Phosphates          | <         | Trichlorethylene   | <           |
| Sulfate             | 122000.   | Pentachlorophenol  | <           |
| Chloride            | 1375000.  | O-chlorophenol     | <           |
| Fluoride            | 1000.     | 2,4-dichlorophenol | <           |
| Chromate            | <         | Dibutylphthlate    | <           |
| Thiocyanate         | <         | Diethylphthlate    | <           |
| Cyanide             | <         | Nitrobenzene       | <           |
| Metals:<br>Niuminum | 192.00    | Organics (GC/EC)   |             |
| Antimony            | <         | p.p'-DDT           | <           |
| Barium              | 44.20     | Dieldrin           | <           |
| Cadmium             | 5.44      | Alpha BHC          | <           |
| Chromium            | 10.20     | Heptachlor         | <           |
| Lead                | <         | Lindane            | <           |
| Manganese           | 604.00    | Toxaphene          | <           |
| Strontium           | 412.00    | Aroclor 1815       | <           |
| Mercury             | <         | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l       | ANALYTES           | CON. ug/l   |
|--------------|-----------------|--------------------|-------------|
| Explosives:  | <               | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | ·               | Arsenic            | `<br><      |
|              |                 | Beryllium          | <           |
| 1,3,5 - TNB  | <               |                    |             |
| 2,4 - DNT    | <               | Nickel             | <           |
| 2,5 - DNT    | <               | Selenium           | <           |
| Nitrobenzene | <               | Silver             | <           |
|              |                 | Thallium           | <           |
| Anions:      |                 | Organics (GC/MS):  |             |
| Nitrate      | <               | Renzene            | *           |
| Nitrite      | <               | Chloroform         | <b>★</b>    |
| Phosphates   | <               | Trichlorethylene   | *           |
| Sulfate      | 6370 <b>0</b> . | Pentachlorophenol  | *           |
| Chloride     | 82000.          | O-chlorophenol     | *           |
| Fluoride     | <               | 2,4-dichlorophenol | *           |
| Chromate     | <               | Dibutylphthlate    | *           |
| Thiocyanate  | <               | Diethylphthlate    | *           |
| Cyanide      | <               | Nitrobenzene       | *           |
| Metals:      |                 |                    |             |
| λiuminum     | 215.00          | Organics (GC/EC)   |             |
| Antimony     | <               | $P \cdot P' - DDT$ | <           |
| Barium       | 75.10           | Dieldrin           | <           |
| Cadmium      | 5.91            | λlpha BHC          | <           |
| Chromium     | 77.70           | Heptachlor         | <           |
| Lead         | 15.70           | Lindane            | <           |
| Manganese    | 125.00          | Toxaphene          | <           |
| Strontium    | 180.90          | Arocior 1015       | <           |
| Mercury      | <               | Aroclor 1266       | <           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | COM. ug/l     | ANALYTES           | CON. ug/l     |
|------------------|---------------|--------------------|---------------|
| Explosives:      | <             | Copper<br>Zinc     | <<br><        |
| 2,4,6 - TNT      | · <b>&lt;</b> | Arsenic            | <             |
| 1,3,5 - TNB      | <             | Beryllium          | <             |
| 2,4 - DNT        | <             | Nickel             | <             |
| 2,5 - DNT        | <             | Selenium           | <             |
| Nitrobenzene     | <             | Silver             | <             |
|                  |               | Thallium           | <             |
| Anions:          |               | Organics (GC/MS):  |               |
| Nitrate          | <             | Benzene            | <             |
| Nitrite          | <             | Chloroform         | <             |
| Phosphates       | <             | Trichlorethylene   | <             |
| Sulfate          | 122000.       | Pentachlorophenol  | <             |
| Chloride         | 328000.       | O-chlorophenol     | <             |
| Fluoride         | laca.         | 2,4-dichlorophenol | <             |
| Chromate         | <             | Dibutylphthlate    | <b>&lt;</b> · |
| Thiocyanate      | <             | Diethylphthlate    | . <           |
| Cyanide          | <.            | Nitrobenzene       | <             |
| Metals: Aluminum | 352.00        | Organics (GC/EC)   |               |
| Antimony         | <             | p.p'-DDT           | <             |
| -                |               |                    |               |
| Barium           | 217.00        | Dieldrin           | <             |
| Cadmium          | 6.84          | Alpha BHC          | <             |
| Chromium         | 8.70          | Heptachlor         | <             |
| Lead             | <             | Lindane            | <             |
| Manganese        | 4450.00       | Toxaphene          | <             |
| Strontium        | 1112.00       | . Aroclor 1016     | <             |
| Morcury          | <             | Aroclor 1250       | <             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Explosives:      | ,         | Copper<br>Zinc     | <b>&lt;</b> |
| 1,3-DNB          | <         |                    |             |
| 2,1,6 - TNT      | <         | Arsenic            | <           |
| 1,3,5 - TNR      | <         | Beryllium          | <           |
| 2, 1 - DNT       | <         | Nickel             | ΔΔ.         |
| 2,6 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | <         | Silver             | <           |
| •                |           | Thallium           | <           |
| Anions:          |           | Organics (GC/MS):  |             |
| Nitrate          | 20500.    | Benzene            | *           |
| Nitrite          | <         | Chloroform         | *           |
| Phosphates       | <         | Trichlorethylene   | *           |
| Sulfate          | 35580.    | Pentachlorophenol  | *           |
| Chloride         | 24nan.    | O-chiorophenol     | *           |
| Fluoride         | <         | 2,4-dichlorophenol | *           |
| Chromate         | <         | Dibutylphthlate    | *           |
| Thiocyanate      | <         | Diethylphthlate    | *           |
| Cyanide          | <         | Nitrobenzene       | *           |
| Metals: Aluminum | 151.00    | Organics (GC/EC)   |             |
| Antimony         | <         | p.p'-DDT           | <           |
| Barium           | 58.30     | Dieldrin           | <           |
| Cadmium          | 5.27      | λlpha BHC          | <           |
| Chromium         | ካ. ክል     | Heptachlor         | <           |
| Lead             | <         | · Lindane          | <           |
| Manganese        | 72.00     | Toxaphene          | <           |
| Strontium        | 72.00     | Aroclor 1016       | <           |
| Mercury          | <         | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | CON. ug/l   | ANALYTES           | CON. ug/l     |
|------------------|-------------|--------------------|---------------|
| Explosives:      | <           | Copper<br>Zinc     | <b>&lt;</b> < |
| 2,4,6 - TNT      | <           | Arsenic            | <             |
| 1,3,5 - TNB      | 7.31        | Beryllium          | <             |
| 2,4 - DNT        | <           | Nickel             | 78.           |
| 2,6 - DNT        | <           | Sclenium           | <             |
| Nitrobenzene     | <           | Silver             | <             |
|                  |             | Thallium           | <             |
| Anions:          |             | Organics (GC/MS):  |               |
| Nitrate          | 1030.       | Penzene            | <             |
| Nitrite          | <           | Chloroform         | <             |
| Phosphates       | <b>&lt;</b> | Trichlorethylene   | <             |
| Sulfate          | 4700.       | Pentachlorophenol  | <             |
| Chloride         | 29000.      | O-chlorophenol     | <             |
| Fluoride         | <           | 2,4-dichlorophenol | <             |
| Chromate         | <           | Dibutylphthlate    | < .           |
| Thiocyanate      | <           | Diethylphthlate    | <             |
| Cyanide          | <           | Nitrobenzene       | <             |
| Metals: Aluminum | 408.00      | Organics (GC/EC)   |               |
| ∧ntimony         | <           | р.р. тппп          | <             |
| Barium           | 169.00      | Dieldrin           | <             |
| Cadmium          | 7.77        | Alpha BHC          | <             |
| Chromium         | 11.20       | Heptachlor         | <             |
| Lead             | <           | Lindane            | <             |
| Manganese        | 83.00       | Toxaphene          | <             |
| Strontium        | 72.00       | Aroclor 1016       | <             |
| Mercury          | <           | Aroclor 1260       | <             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l      | ANALYTES                  | CON. ug/l   |
|--------------------|----------------|---------------------------|-------------|
| Fxplosives:        | <              | Copper<br>Zinc            | \<br>122.00 |
| 2,4,5 - TNT        | <              | Arsenic                   | <           |
| 1,3,5 - TNB        | 2.58           | Beryllium                 | <           |
| 2,4 - DNT          | <              | Nickel                    | 377.        |
| 2,5 - DNT          | <              | Selenium                  | <           |
| Nitrobenzene       | <              | Silver                    | <           |
|                    |                | Thallium                  | 140.        |
| Anions:<br>Nitrate | 557 <b>0</b> . | Organics (GC/MS): Benzene | <           |
| Nitrite            | <              | Chloroform                | <           |
| Phosphates         | <              | Trichlorethylene          | <           |
| Sulfate            | 4000.          | Pentachlorophenol         | <           |
| Chloride           | 2345000.       | O-chlorophenol            | <           |
| Fluoride           | 1000.          | 2,4-dichlorophenol        | <           |
| Chromate           | <              | Dibutylphthlate           | <           |
| Thiocyanate        | <              | Diethylphthlate           | . <         |
| Cyanide            | <              | Nitrobenzene              | <           |
| Metals: Aluminum   | 21.49          | ·Organics (GC/EC)         |             |
| Antimony           | < <            |                           |             |
| Barium             |                | p.p'-DDT                  | <           |
|                    | 2210.00        | Dieldrin                  | <           |
| Cadmium            | 14.28          | Alpha BHC                 | <           |
| Chromium           | 10.50          | Heptachlor                | <           |
| Lead               | <              | Lindane                   | <           |
| Manganese          | 1340.00        | Toxaphene                 | <           |
| Strontium          | 7440.00        | Aroclor 1816              | <           |
| Mercury            | <              | Aroclor 1260              | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l  | ANALYTES           | CON. ug/l   |
|--------------|------------|--------------------|-------------|
| Explosives:  | <          | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,5 - TNT  |            | λrsenic            | <           |
| 1,3,5 - TNB  | ·          | Beryllium          | ·<br><      |
| 2,4 - DNT    | <          | Nickel             | 114.        |
| 2,6 - DNT    | · <b>·</b> | Selenium           | <           |
| Nitrobenzene | ·          | Silver             | <           |
|              | `          | Thallium           | 120.        |
| λnions:      |            | Organics (GC/MS):  | 1 2.17 •    |
| Nitrate      | 3200.      | Benzene            | <           |
| Nitrite      | <          | Chloroform         | <           |
| Phosphates   | <          | Trichlorethylene   | <           |
| Sulfate      | 4000.      | Pentachlorophenol  | <           |
| Chioride     | 2725000.   | O-chlorophenol     | <           |
| Fluoride     | 1000.      | 2,4-dichlorophenol | <           |
| Chromate     | <          | Dibutylphthlate    | <           |
| Thiocyanate  | <          | Diethylphthlate    | <           |
| Cyanide      | <          | Nitrobenzene       | <           |
| Metals:      |            |                    |             |
| Aluminum     | aus bu     | Organics (GC/EC)   |             |
| Antimony     | <          | p.p"-DDT           | <           |
| Parium       | 333.00     | Dieldrin           | · <         |
| Cadmium      | 3.54       | Alpha BHC          | <           |
| Chromium     | 12.10      | Heptachlor         | <           |
| Lead         | <          | Lindane            | <           |
| Manganese    | 1320.00    | Toxaphene          | <           |
| Strontium    | 7760.00    | Aroclor 1016       | <           |
| Mercury      | <          | Aroclor 1260       | <           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES           | CON. ug/l   | ANALYTES                     | CON. ug/l   |
|--------------------|-------------|------------------------------|-------------|
| Explosives:        | <           | Copper<br>Zinc               | <b>&lt;</b> |
| 2,4,6 - TNT        | <           | Arsenic                      | ·<br><      |
| 1,3,5 - TNB        | <           | Beryllium                    | <           |
|                    |             | , <del>-</del>               |             |
| 2,4 - DNT          | <b>&lt;</b> | Nickel                       | 157.        |
| 2,5 - DNT          | <           | Selenium                     | <           |
| Nitrobenzene       | <           | Silver                       | <           |
|                    |             | Thallium                     | 140.        |
| Anions:<br>Nitrate | <           | Organics (GC/MS):<br>Benzene | *           |
| Nitrite            | <           | Chloroform                   | *           |
| Phosphates         | <           | Trichlorethylene             | *           |
| Sulfate            | 1622000.    | Pentachlorophenol            | *           |
| Chloride           | 832000.     | O-chlorophenol               | *           |
| Fluoride           | 1000.       | 2,4-dichlorophenol           | *           |
| Chromate           | <           | Dibutylphthlate              | *           |
| Thiocyanate        | <           | Diethylphthlate              | *           |
| Cyanide            | <           | Nitrobenzene                 | *           |
| Metals: Aluminum   | 36.90       | Organics (GC/EC)             |             |
| Antimony           | <           | p.p'-DDT                     | *           |
| Barium             | 46.00       | Dieldrin                     | *           |
| Cadmium            | 0.00        | Alpha BHC                    | *           |
| Chromium           | 11.50       | Heptachlor                   | *           |
| Lead               | <           | Lindane                      | *           |
| Manganese          | 1850.00     | Toxaphene                    | *           |
| Strontium          | 3350.00     | Aroclor 1015                 | *           |
| Mercury            | <           | Aroclor 1260                 | *           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l |
|--------------|-----------|--------------------|-----------|
| Explosives:  | <         | Copper<br>Zinc     | <<br><    |
| 2,4,6 - TNT  | <         | Arsenic            | <         |
| 1,3,5 - TNB  | <         | Beryllium          | <         |
| 2,4 - DNT    | <         | Nickel             | 82.       |
| 2,5 - DNT    | <         | Selenium           | <         |
| Nitrobenzene | <         | Silver             | <         |
|              |           | Thallium           | 110.      |
| Λnions:      |           | Organics (GC/MS):  |           |
| Nitrate      | <         | Benzene            | <         |
| Nitrite      | <         | Chloroform         | <         |
| Phosphates   | <         | Trichlorethylene   | <         |
| Sulfate      | 559000.   | Pentachlorophenol  | <         |
| Chloride     | 1000000.  | O-chlorophenol     | <         |
| Fluoride     | <         | 2,4-dichlorophenol | <         |
| Chromate     | <         | Dibutylphthlate    | <         |
| Thiocyanate  | <         | Diethylphthlate    | <         |
| Cyanide      | <         | Nitrobenzene       | <         |
| Metals:      |           |                    |           |
| Aluminum     | 353.00    | Organics (GC/EC)   |           |
| Antimony     | <         | p.pDDT             | *         |
| Barium       | 51.50     | Dieldrin           | *         |
| Cadmium      | 4.59      | Alpha BHC          | *         |
| Chromium     | <         | Heptachlor         | *         |
| Lead         | <         | Lindane            | *         |
| Manganese    | 1088.00   | Toxaphene          | *         |
| Strontium    | 4120.00   | Aroclor 1015       | *         |
| Mercury      | <         | Aroclor 1260       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| AMALYTES         | COM. ug/l     | ANALYTES                   | CON. ug/l   |
|------------------|---------------|----------------------------|-------------|
| Explosives:      | <             | Copper<br>Zinc             | <b>&lt;</b> |
| 2,4,5 - TNT      | <             | Arsenic                    | <           |
| 1,3,5 - TNB      | <             | Beryllium                  | <           |
| 2,4 - DNT        | <             | Nickel                     | 100.        |
| 2,5 - DNT        | <             | Selenium                   | <           |
| Nitrobenzene     | <             | Silver                     | <           |
|                  |               | Thallium                   | 130.        |
| Anions:          |               | Organics (GC/MS):          |             |
| Nitrate          | 99200.        | Benzene                    | <           |
| Nitrite          | <             | Chloroform                 | <           |
| Phosphates       | <             | Trichlorethylene           | <           |
| Sulfate          | 13400.        | Pentachlorophenol          | <           |
| Chloride         | 2592000.      | <pre>( -chlorophenol</pre> | <           |
| Fluoride         | 1000.         | 2,4-dichlorophenol         | <           |
| Chromate         | <             | Dibutylphthlate            | <           |
| Thiocyanate      | <             | Diethylphthlate            | 73.         |
| Cyanide          | <             | Nitrobenzene               | <           |
| Metals: Aluminum | 272.66        | Organics (GC/EC)           |             |
| Antimony         | <             | p.p'-DDT                   | *           |
| Barium           | 431.00        | Dieldrin                   | *           |
| Cadmium          | 9.67          | Alpha BHC                  | . *         |
| Chromium         | 11.40         | Heptachlor                 | *           |
| Lead             | <             | Lindane                    | *           |
| Manganese        | 780.00        | Toxaphene                  | *           |
| Strontium        | 1960.09       | Aroclor 1016               | *           |
| Mercury          | <b>&lt;</b> ' | Aroclor 1260               | *           |
|                  |               |                            |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/l | ANALYTES           | COM. ug/l   |
|---------------------|-----------|--------------------|-------------|
| Explosives: 1,3-DNB | . <       | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT         | <         | ∧rsenic            | <           |
| 1,3,5 - TNB         | <         | Beryllium          | <           |
| 2,4 - DNT           | <         | Nickel             | PJ.         |
| 2,5 - DNT           | <         | Selenium           | <           |
| Nitrobenzene        | <         | Silver             | <           |
|                     |           | Thallium           | loo.        |
| ∧nions:             |           | Organics (GC/MS):  |             |
| Nitrate             | <         | Benzene            | <           |
| Nitrite             | <         | Chloroform         | <           |
| Phosphates          | <         | Trichlorethylene   | <           |
| Sulfate             | 152200.   | Pentachlorophenol  | <           |
| Chioride            | 2348000.  | O-chlorophenol     | <           |
| Fluoride            | 1000.     | 2,4-dichlorophenol | <           |
| Chromate            | <         | Dibutylphthlate    | <           |
| Thiocyanate         | <         | Diethylphthlate    | <           |
| Cyanide             | <         | Nitrobenzene       | <           |
| Metals: Aluminum    | 125.00    | Organics (GC/EC)   |             |
| Antimony            | <         | p.p!-DDT           | *           |
| Barium              | 105.00    | Dieldrin           | *           |
| Cadmium             | 2.22      | Alpha BHC          | *           |
| Chromium            | <         | Heptachlor         | *           |
| Lead                | <         | Lindane            | *           |
| Manganese           | <         | Toxaphene          | *           |
| Strontium           | 1160.00   | Aroclor 1016       | *           |
| Mercury             | <         | Aroclor 1260       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l  | ANALYTES           | CON. ug/l   |
|--------------|------------|--------------------|-------------|
| Explosives:  | <          | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | `<br><     | Arsenic            | <           |
| 1,3,5 - TNB  | · <b>·</b> | Beryllium          | `<br><      |
| 2,4 - DNT    | ·          | Nickel             | 52.         |
| 2,5 - DNT    | ·          | Selenium           | <           |
| Nitrobenzene | <          | Silver             | <           |
|              |            | Thallium           | яr.         |
| Anions:      |            | Organics (GC/MS):  | •           |
| Nitrate      | <          | Renzene            | <           |
| Nitrite      | <          | Chloroform         | <           |
| Phosphates   | <          | Trichlorethylene   | <           |
| Sulfate      | 215600.    | Pentachlorophenol  | <           |
| Chloride     | 27850000.  | O-chlorophenol     | <           |
| Fluoride     | laar.      | 2,4-dichlorophenol | <           |
| Chromate     | <          | Dibutylphthlate    | <           |
| Thiocyanate  | <          | Diethylphthlate    | 52.         |
| Cyanide      | <          | Nitrobenzene       | <           |
| Metals:      |            |                    |             |
| Aluminum     | 222.00     | Organics (GC/EC)   | •           |
| Antimony     | <          | p.p'-DT            | *           |
| Barium       | 47.20      | Dieldrin           | *           |
| Cadmium      | 0.93       | Alpha BHC          | *           |
| Chromium     | <          | Heptachlor         | *           |
| Lead         | <          | Lindane            | *           |
| Manganese    | <          | Toxaphene          | *           |
| Strontium    | 1340.00    | Aroclor 1015       | *           |
| Mercury      | <          | Arocior 1259       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | COM. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Explosives:      | . <       | Copper<br>Zinc     | <b>&lt;</b> |
| •                |           |                    |             |
| 2,4,6 - TNT      | <         | Arsenic            | <           |
| 1,3,5 - TNB      | <         | Beryllium          | <           |
| 2,4 - DNT        | <         | Nickel             | 102.        |
| 2,5 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | <         | Silver             | <           |
|                  |           | Thallium           | lau.        |
| Anions:          |           | Organics (GC/MS):  |             |
| Nitrate          | <         | Benzene            | *           |
| Mitrite          | <         | Chloroform         | *           |
| Phosphates       | <         | Trichlorethylene   | *           |
| Sulfate          | 337000.   | Pentachlorophenol  | *           |
| Chloride         | 10330000. | O-chlorophenol     | *           |
| Fluoride         | 1000.     | 2,4-dichlorophenol | *           |
| Chromate         | <         | Dibutylphthlate    | *           |
| Thiocyanate      | <         | Diethylphthlate    | *           |
| Cyanide          | <         | Nitrobenzene       | *           |
| Metals: Aluminum | 222 44    |                    |             |
|                  | 232.00    | Organics (GC/EC)   |             |
| Antimony         | <         | דתת-יק. ק          | *           |
| Barium           | 53.40     | Dieldrin           | *           |
| Cadmium          | 9.24      | Alpha BHC          | *           |
| Chromium         | 14.50     | Heptachlor         | *           |
| Lead             | 16.30     | Lindane            | *           |
| Manganese        | 1448.00   | Toxaphene          | *           |
| Strontium        | 2640.00   | Aroclor 1016       | *           |
| Mercury          | <         | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l |
|--------------|-----------|--------------------|-----------|
| Explosives:  |           | Copper<br>Zinc     | <         |
| 1,3-DNB      | <         |                    | <         |
| 2,4,6 - TNT  | <         | Arsenic            | <         |
| 1,3,5 - TNB  | <         | Beryllium          | <         |
| 2.4 - DNT    | <         | Nickel             | 50.       |
| 2,6 - DNT    | <         | Selenium           | <         |
| Nitrobenzene | <         | Silver             | <         |
|              |           | Thallium           | 90.       |
| Anions:      |           | Organics (GC/MS):  |           |
| Nitrate      | <         | Renzene            | <         |
| Nitrite      | <         | Chloroform         | <         |
| Phosphates   | <         | Trichlorethylene   | <         |
| Sulfate      | 90500.    | Pentachlorophenol  | <         |
| Chloride     | 227000.   | N-chlorophenol     | <         |
| Fluoride     | laga.     | 2,4-dichlorophenol | <         |
| Chromate     | <         | Dibutylphthlate    | <         |
| Thiocyanate  | <         | Diethylphthlate    | 2.        |
| Cyanide      | <         | Nitrobenzene       | <         |
| Metals:      |           |                    |           |
| λluminum     | 132.00    | Organics (GC/EC)   |           |
| Antimony     | <         | р•р• тппт          | <         |
| Bariun       | 49.70     | Dieldrin           | <         |
| Cadmium      | 3.69      | Alpha BHC          | <         |
| Chromium     | 2.10      | Heptachlor         | <         |
| Lead         | <         | Lindane            | <         |
| Manganese    | 193.00    | Toxaphene          | <         |
| Strontium    | 920.00    | Aroclor 1815       | <         |
| Mercury      | <         | Aroclor 1260       | <         |
|              |           |                    |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | COM. ug/l                               | ANALYTES                     | COM. ug/l     |
|--------------------|-----------------------------------------|------------------------------|---------------|
| Explosives:        | . <                                     | Copper<br>Zinc               | <b>&lt;</b>   |
| 2,4,6 - TNT        | <                                       | Arsenic                      | <             |
| 1,3,5 - TNR        | <                                       | Beryllium                    | <             |
| 2,4 - DNT          | ` <b>`</b>                              | Nickel                       |               |
| 2,6 - DNT          | •                                       |                              | ۶? <b>.</b>   |
| ·                  | <                                       | Selenium                     | <b>&lt;</b>   |
| Nitrobenzene       | <                                       | Silver                       | <             |
|                    |                                         | Thallium                     | luu.          |
| Anions:<br>Nitrate | <                                       | Organics (GC/MS):<br>Benzene | <             |
| Nitrite            | ·                                       | Chloroform                   | <             |
| Phosphates         | <                                       | Trichlorethylene             | <             |
| Sulfate            | 153400.                                 | Pentachlorophenol            | <             |
| Chloride           | 2725000.                                | O-chlorophenol               | <             |
| Fluoride           | 1000.                                   | 2,4-dichlorophenol           | <             |
| Chromate           | <                                       | Dibutylphthlate              | <             |
| Thiocyanate        | <                                       | Piethylphthlate              | . <b>&lt;</b> |
| Cyanide            | <                                       | Nitrobenzene                 | <             |
| Metals: Aluminum   | 36.60                                   | Organics (GC/EC)             |               |
| Antimony           | < · · · · · · · · · · · · · · · · · · · | p.p'-DDT                     | <             |
| Barium             | 20.20                                   | Dieldrin                     |               |
| Cadmium            | 1.26                                    |                              | <             |
|                    |                                         | Alpha BHC                    | <             |
| Chromium           | <                                       | Heptachlor                   | <             |
| Lead               | 54.40                                   | Lindane                      | <             |
| Manganese          | 16.66                                   | Toxaphene                    | <             |
| Strontium          | 1150.00                                 | Aroclor 1015                 | <             |
| Mercury            | <                                       | Arodlor 1260                 | <             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES                          | CON. ug/l | ANALYTES                  | CON. ug/l     |
|-----------------------------------|-----------|---------------------------|---------------|
| Explosives: 1,3-DNB               | 2.25      | Copper<br>Zinc            | <b>&lt;</b>   |
| 2,4,6 - TNT                       | <         | Arsenic                   | <             |
| 1,3,5 - TNB                       | <         | Beryllium                 | <             |
| 2,1 - DNT                         | <         | Nickel                    | 71.           |
| 2,6 - DNT                         | <         | Selenium                  | <             |
| Nitrobenzene                      | <         | Silver                    | · <b>&lt;</b> |
|                                   |           | Thallium                  | 110.          |
| <u> Λnions:</u><br><u>Nitrate</u> | <         | Organics (GC/MS): Benzene | *             |
| Nitrite                           | <         | Chloroform                | *             |
| Phosphates                        | <         | Trichlorethylene          | *             |
| Sulfate                           | 235000.   | Pentachlorophenol         | *             |
| Chloride                          | 200000.   | O-chlorophenol            | *             |
| Fluoride                          | 1000.     | 2,4-dichlorophenol        | *             |
| Chromate                          | <         | Dibutylphthlate           | *             |
| Thiocyanate                       | <         | Piethylphthlate           | *             |
| Cyanide                           | <         | Nitrobenzene              | *             |
| Metals:                           |           |                           |               |
| Aluminum                          | 29.80     | Organics (GC/EC)          |               |
| Antimony                          | <         | р.рпрт                    | <             |
| Barium                            | 14.70     | · Dieldrin                | <             |
| Cadmium                           | 1.99      | Alpha BHC                 | <             |
| Chromium                          | <         | Heptachlor                | <             |
| Lead                              | 14.00     | Lindane                   | <             |
| Manganese                         | 36.00     | Toxaphene                 | <             |
| Strontium                         | 960.00    | Aroclor 1016              | <             |
| Mercury                           | <         | Aroclor 1260              | <             |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | CON. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Explosives:      | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT      | <         | Arsenic            | ·           |
| 1,3,5 - TNB      | <         | Beryllium          | <           |
| 2,4 - DNT        | <         | Nickel             | 165.        |
| 2,5 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | . <       | Silver             | <           |
|                  |           | Thallium           | 160.        |
| <u> Λnions</u> : |           | Organics (GC/MS):  |             |
| Nitrate          | <         | Benzene            | *           |
| Nitrite          | <         | Chloroform         | *           |
| Phosphates       | <         | Trichlorethylene   | *           |
| Sulfate          | 57000.    | Pentachlorophenol  | *           |
| Chloride         | 878000.   | O-chlorophenol     | *           |
| Fluoride         | 1000.     | 2,4-dichlorophenol | *           |
| Chromate         | <         | Dibutylphthiate    | *           |
| Thiocyanate      | <         | Diethylphthlate    | *           |
| Cyanide          | <         | Nitrobenzene       | *           |
| Metals: Aluminum | 235.00    | Organics (GC/EC)   |             |
| Antimony         | <         | p.p*-DDT           | <           |
| Barium           | 156.60    | Dieldrin           | <           |
| Cadmium          | 0.91      | Alpha BHC          | <           |
| Chromium         | ୨.୩୯      | Heptachlor         | <           |
| Lead             | <         | Lindane            | <           |
| Manganese        | 360.00    | Toxaphene          | <           |
| Strontium        | 2920.00   | Aroclor 1015       | <           |
| Mercury          | <         | Aroclor 1250       | <           |
|                  |           |                    |             |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | COM. ug/l       | ANALYTES                     | CON. ug/l   |
|------------------|-----------------|------------------------------|-------------|
| Explosives:      | <               | Copper<br>Zinc               | <b>&lt;</b> |
| 2,4,6 - TNT      | <               | Arsenic                      | <           |
| 1,3,5 - TNB      | <               | Beryllium                    | <           |
| 2,4 - DNT        | <               | Nickel                       | 73.         |
| 2,5 - DNT        | <               | Selenium                     | <           |
| Nitrobenzene     | <               | Silver                       | <           |
|                  |                 | Thallium                     | 140.        |
| Anions: Nitrate  | <               | Organics (GC/MS):<br>Benzene | <           |
| Nitrite          | <               | Chloroform                   | <           |
| Phosphates       | <               | Trichlorethylene             | <           |
| Sulfate          | 67000.          | Pentachlorophenol            | <           |
| Chloride         | 826000.         | 0-chlorophenol               | <           |
| Fluoride         | 2000.           | 2,4-dichlorophenol           | <           |
| Chromate         | <               | Pibutylphthlate              | <           |
| Thiocyanate      | <               | Diethylphthlate              | <           |
| Cyanide          | <               | Nitrobenzene                 | <           |
| Metals: Aluminum | 227 <b>.</b> 00 | Organics (GC/EC)             |             |
| Antimony         | <               | p.p'-DDT                     | <b>&lt;</b> |
| Barium           | 95.50           | Dieldrin                     | <           |
| Cadmium          | 2.97            | Alpha BHC                    | <           |
| Chromium         | 7.60            | Neptachlor                   | <           |
| Lead             | 80.90           | Lindane                      | <           |
| Manganese        | 312.00          | Toxaphene                    | <           |
| Strontium        | 1560.00         | Aroclor 1015                 | <           |
| Mercury          | <               | Aroclor 1260                 | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,5 - TNT  | <         | Arsenic            | <           |
| 1,3,5 - TNB  | <         | Beryllium          | <           |
| 2,4 - DNT    | <         | Nickel             | 74.         |
| 2,6 - DNT    | <         | Selenium           | <           |
| Nitrobenzene | <         | Silver             | <           |
|              |           | Thallium           | 140.        |
| Anions:      |           | Organics (GC/MS):  |             |
| Nitrate      | <         | Benzene            | *           |
| Nitrite      | <         | Chloroform         | *           |
| Phosphates   | <         | Trichlorethylene   | *           |
| Sulfate      | 6150.     | Pentachlorophenol  | *           |
| Chloride     | 728000.   | . O-chlorophenol   | *           |
| Fluoride     | 1000.     | 2,4-dichlorophenol | *           |
| Chromate     | <         | Dibutylphthlate    | *           |
| Thiocyanate  | <         | Diethylphthlate    | *           |
| Cyanide      | <         | Nitrobenzene       | *           |
| Metals:      |           |                    |             |
| Λiuminum     | 229.00    | Organics (CC/EC)   |             |
| Antimony     | <         | P.P'-DDT           | *           |
| Barium       | 953.00    | Dieldrin           | *           |
| Cadmium      | 6.81      | Alpha BHC          | *           |
| Chromium     | 7.10      | Heptachlor         | *           |
| Lead         | 8.80      | Lindane            | *           |
| Manganese    | 595.00    | Toxaphene          | *           |
| Strontium    | 1520.00   | Aroclor 1616       | *           |
| Mercury      | <         | Aroclor 1260       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES          | CON. ug/l | ANALYTES           | CON. ug/l   |
|-------------------|-----------|--------------------|-------------|
| Explosives:       | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT       | `<br><    | Arsenic            | <           |
| 1,3,5 - TNB       | 1327.00   | Beryllium          | `<br><      |
| 2,4 - DNT         | <         | Nickel             | 60.         |
| 2,5 - DNT         | ·         | Selenium           | <           |
| Nitrobenzene      | ·         | Silver             | `<br><      |
|                   | `         | Thallium           | 150.        |
| Anions:           |           | Organics (GC/MS):  | 177.        |
| Nitrate           | <         | Benzene            | <           |
| Nitrite           | <         | Chloroform         | <           |
| Phosphates        | <         | Trichlorethylene   | <           |
| Sulfate           | 1790.     | Pentachlorophenol  | <           |
| Chloride          | 653000.   | O-chlorophenol     | <           |
| Fluoride          | 5000.     | 2,4-dichlorophenol | <           |
| Chromate          | <         | Dibutylphthlate    | <           |
| Thiocyanate       | <         | Diethylphthlate    | <           |
| Cyanide           | <         | Nitrobenzene       | <           |
| Metals:           |           |                    |             |
| Aluminum          | 94.3      | Organics (GC/EC)   |             |
| $\lambda$ ntimony | <         | p.p'-DDT           | *           |
| Barium            | 797.00    | Dieldrin           | *           |
| Cadmium           | 3.78      | Alpha BHC          | *           |
| Chromium          | <         | Heptachlor         | *           |
| Lead              | <         | Lindane            | *           |
| Manganese         | 196.00    | Toxaphene          | *           |
| Strontium         | 1220.00   | Aroclor 1015       | *           |
| Mercury           | <         | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/l | ANALYTES             | COM. ug/l   |
|---------------------|-----------|----------------------|-------------|
| Explosives: 1,3-DNB | <         | Copper<br>Zinc       | <b>&lt;</b> |
| 2,4,6 - TNT         | <         | Arsenic              | <           |
| 1,3,5 - TNB         | <         | Beryllium            | <           |
| 2,4 - DNT           | <         | Nickel               | <           |
| 2,6 - DNT           | <         | Selenium             | <           |
| Nitrobenzene        | <         | Silver               | <           |
|                     |           | Thallium             | 50.         |
| <u> Λnions</u> :    |           | Organics (GC/MS):    |             |
| Nitrate             | 2230.     | Benzene              | *           |
| Mitrite             | <         | Chloroform           | *           |
| Phosphates          | <         | Trichlorethylene     | *           |
| Sulfate             | 3300.     | Pentachlorophenol    | *           |
| Chloride            | 264900.   | 0-chlorophenol       | *           |
| Fluoride            | laga.     | 2,4-dichlorophenol   | *           |
| Chromate            | <         | Pibutylphthlate      | *           |
| Thiocyanate         | <         | Diethylphthlate      | *           |
| Cyanide             | <         | Nitrobenzene         | *           |
| Metals:             |           |                      |             |
| Aluminum            | 50.9      | Organics (GC/EC)     |             |
| Antimony            | <         | דרות- <b>י</b> ק • ק | *           |
| Barium              | <         | Dieldrin             | *           |
| Cadmium             | 0.99      | Alpha BHC            | *           |
| Chromium            | 11.70     | Heptachlor           | *           |
| Lead                | 9.30      | Lindane              | *           |
| Manganese           | 632.00    | Toxaphene            | *           |
| Strontium           | 1420.00   | Aroclor 1015         | *           |
| Mercury             | <         | Aroclor 1250         | *           |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES                   | CON. ug/l   | ANALYTES                  | COM. ug/l |
|----------------------------|-------------|---------------------------|-----------|
| Explosives:                | <           | Copper<br>Zinc            | 29.00     |
| 2,4,5 - TNT                | <           | Arsenic                   | <         |
| 1,3,5 - TNB                | <           | Beryllium                 | <         |
| 2,4 - DNT                  | <           | Nickel                    | 88.       |
| 2,6 - PNT                  | <           | Selenium                  | <         |
| Nitrobenzene               | <           | Silver                    | <         |
|                            |             | Thallium                  | 100.      |
| Anions: Nitrate            | 118100.     | Organics (GC/MS): Benzene | *         |
| Nitrite                    |             | Chloroform                | *         |
| Phosphates                 | ` <b>`</b>  | Trichlorethylene          | *         |
| Sulfate                    | 45480.      | Pentachlorophenol         | *         |
| Chloride                   | 711000.     | O-chlorophenol            | *         |
| Fluoride                   | 7 1 (1/w)·• | 2,4-dichlorophenol        | *         |
| Chromate                   | <           | Dibutylphthlate           | *         |
| Thiocyanate                | <           | Diethylphthlate           | *         |
| Cyanide                    |             |                           |           |
| -                          | <           | Nitrobenzene              | *         |
| <u>Metals:</u><br>Aluminum | 30.50       | Organics (GC/EC)          |           |
| Antimony                   | <           | p.p'-DDT                  | *         |
| Barium                     | 615.00      | Dieldrin                  | *         |
| Cadmium                    | 2.04        | Alpha BHC                 | *         |
| Chromium                   | 8.90        | Heptachlor                | *         |
| Lead                       | <           | Lindane                   | *         |
| Manganese                  | 740.00      | Toxaphene                 | *         |
| Strontium                  | 1820.00     | Aroclor 1015              | *         |
| Mercury                    | <           | Aroclor 1250              | *         |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES<br>Explosives: | CON. ug/l | ANALYTES<br>Copper           | CON. ug/l   |
|-------------------------|-----------|------------------------------|-------------|
| 1,3-DNB                 | <         | Zinc                         | <b>&lt;</b> |
| 2,4,6 - TNT             | <         | Arsenic                      | <           |
| 1,3,5 - TNB             | <         | Beryllium                    | <           |
| 2,4 - DNT               | <         | Nickel                       | ጓጸ.         |
| 2,6 - DNT               | <         | Selenium                     | <           |
| Nitrobenzene            | <         | Silver                       | <           |
|                         |           | Thallium                     | 90.         |
| Anions:<br>Nitrate      | 7724.     | Organics (GC/MS):<br>Benzene | *           |
| Nitrite                 | <         | Chloroform                   | *           |
| Phosphates              | <         | Trichlorethylene             | *           |
| Sulfate                 | 4950.     | Pentachlorophenol            | *           |
| Chloride                | 981000.   | O-chlorophenol               | *           |
| Fluoride                | <         | 2,4-dichlorophenol           | *           |
| Chromate                | <         | Dibutylphthlate              | *           |
| Thiocyanate             | <         | Diethylphthlate              | *           |
| Cyanide                 | <         | Nitrobenzene                 | *           |
| Metals:                 | 40.10     | Organics (GC/EC)             |             |
| Λntimony                | <         | p.pDDT                       | *           |
| Barium                  | 624.60    | Dieldrin                     | *           |
| Cadmium                 | 4.22      | Alpha BHC                    | *           |
| Chromium                | 8.20      | Heptachlor                   | *           |
| Lead                    | 17.40     | Lindane                      | *           |
| Manganese               | 460.00    | Toxaphene                    | *           |
| Strontium               | 2240.00   | Aroclor 1016                 | *           |
| Mercury                 | <         | Aroclor 1250                 | +           |
| =                       |           |                              |             |

<sup>&</sup>lt; less than established detection limit.
\* Analyte or category not tested as per project scope.</pre>

| ANALYTES         | CON. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Fxplosives:      | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT      | ·         | Arsenic            | <           |
| 1,3,5 - TNB      | <         | Peryllium          | <           |
| 2,4 - DNT        | <         | Nickel             | 39.         |
| 2,6 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | <         | Silver             | <           |
|                  |           | Thallium           | 70.         |
| Anions:          |           | Organics (GC/MS):  |             |
| Nitrate          | 720.      | Benzene            | <           |
| Nitrite          | <         | Chloroform         | <           |
| Phosphates       | 2450.     | Trichlorethylene   | <           |
| Sulfate          | ଜନନ୍ମ.    | Pentachlorophenol  | <           |
| Chloride         | 1126000.  | O-chlorophenol     | <           |
| Fluoride         | jean.     | 2,4-dichlorophenol | •           |
| Chromate         | <         | Dibutylphthlate    | <           |
| Thiocyanate      | <         | Diethylphthlate    | 330.        |
| Cyanide          | <         | Nitrobenzene       | <           |
| Metals: Aluminum | 103.70    | Organics (GC/EC)   |             |
| Antimony         | <         | p.p'-DDT           | *           |
| Barium           | 500.00    | Dieldrin           | *           |
| Cadmium          | 7.20      | Alpha BHC          | *           |
| Chromium         | 8.90      | Heptachlor         | *           |
| Lead             | <         | Lindane            | *           |
| Manganese        | 550.00    | Toxaphene          | *           |
| Strontium        | 1240.00   | Arodlor 1016       | *           |
| Mercury          | <         | Aroclor 1250       | *           |
|                  |           |                    |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | COM. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Explosives:      | <         | Copper<br>Zinc     | <<br>44.80  |
| 2,4,6 - TNT      | <         | Arsenic            | <           |
| 1,3,5 - TNB      | <         | Beryllium          | <           |
| 2,4 - DNT        | . <       | Nickel             | 85.         |
| 2,5 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | <         | Silver             | <           |
|                  |           | Thallium           | 80.         |
| Anions:          |           | Organics (GC/MS):  |             |
| Nitrate          | 22350.    | Benzene            | <           |
| Nitrite          | <         | Chloroform         | <           |
| Phosphates       | <         | Trichlorethylene   | <           |
| Sulfate          | 1390.     | Pentachlorophenol  | <           |
| Chloride         | 702000.   | O-chlorophenol     | <           |
| Fluoride         | <         | 2,4-dichlorophenol | <           |
| Chromate         | <         | Dibutylphthlate    | <i>&lt;</i> |
| Thiocyanate      | <         | Diethylphthlate    | 200.        |
| Cyanide          | <         | Nitrobenzene       | <           |
| Metals: Aluminum | 19.60     | 0                  |             |
|                  |           | Organics (CC/EC)   |             |
| Antimony         | <         | p.p'-DDT           | *           |
| Barium           | 32.50     | Dieldrin           | *           |
| Cadmium          | 7.46      | Alpha BHC          | *           |
| Chromium         | <         | Heptachlor         | *           |
| Lead             | <         | Lindane            | *           |
| Manganese        | 140.00    | Toxaphene          | *           |
| Strontium        | 1320.00   | Aroclor 1016       | *           |
| Mercury          | <         | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.</pre>

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l                             | ANALYTES           | CON. ug/l  |
|------------------|---------------------------------------|--------------------|------------|
| Explosives:      | <                                     | Copper<br>Zinc     | 4].da<br>< |
| 2,4,6 - TNT      | · · ·                                 | Arsenic            | <          |
| 1,3,5 - TMP      | · · · · · · · · · · · · · · · · · · · | Beryllium          | <          |
| 2,4 - DNT        | <                                     | Nickel             | 49.        |
| 2,6 - DNT        | <                                     | Selenium           | <          |
| Nitrobenzene     | <                                     | Silver             | <          |
|                  |                                       | Thallium           | 7°.        |
| Anions:          |                                       | Organics (GC/MS):  |            |
| Nitrate          | 16700.                                | Benzene            | <          |
| Nitrite          | <                                     | Chloroform         | <          |
| Phosphates       | <                                     | Trichlorethylene   | <          |
| Sulfate          | 4470.                                 | Pentachlorophenol  | <          |
| Chloride         | 545000.                               | N-chlorophenol     | <          |
| Fluoride         | <                                     | 2,4-dichlorophenol | <          |
| Chromate         | <                                     | Dibutylphthlate    | 16.        |
| Thiocyanate      | <                                     | Diethylphthlate    | <          |
| Cyanide          | <                                     | Nitrobenzene       | <          |
| Metals: Aluminum | 112.00                                | Organias (CC/EC)   |            |
| Antimony         |                                       | Organics (GC/EC)   | *          |
| -                | <                                     | p.p'-PDT           |            |
| Barium           | 18.40                                 | Dieldrin           | *          |
| Cadmium          | 6.20                                  | Alpha BHC          | *          |
| Chromium         | 9.60                                  | Heptachlor         | *          |
| Lead             | <                                     | Lindane            | *          |
| Manganese        | 520.00                                | Toxaphene          | *          |
| Strontium        | 1700.00                               | Aroclor 1916       | *          |
| Mercury          | <                                     | Aroclor 1260       | *          |
|                  |                                       |                    |            |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l | ANALYTES           | CON. ug/l   |
|------------------|-----------|--------------------|-------------|
| Explosives:      | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,5 - TNT      | <         | Arsenic            | <           |
| 1,3,5 - TNB      | <         | Reryllium          | <           |
| 2,4 - DNT        | <         | Nickel             | <           |
| 2,6 - DNT        | <         | Selenium           | <           |
| Nitrobenzene     | <         | Silver             | <           |
|                  |           | Thallium           | 8 M .       |
| Anions:          |           | Organics (GC/MS):  |             |
| Nitrate          | <         | Benzene            | <           |
| Nitrite          | . <       | Chloroform         | <           |
| Phosphates       | <         | Trichlorethylene   | <           |
| Sulfate          | 4470.     | Pentachlorophenol  | <           |
| Chloride         | 545000.   | O-chlorophenol     | <           |
| Fluoride         | <         | 2,4-dichlorophenol | <           |
| Chromate         | <         | Dibutylphthlate    | <           |
| Thiocyanate      | <         | Diethylphthlate    | <           |
| Cyanide          | <         | Nitrobenzene       | <           |
| Metals: Aluminum | 68.90     | Organics (GC/EC)   |             |
| Antimony         | <         | p.p'-DDT           | *           |
| Barium           | 534.00    | Dieldrin           | <           |
| Cadmium          | 0.87      | Alpha BHC          | <           |
| Chromium         | <         | Heptachlor         | <           |
| Lead             | <         | Lindane            | <           |
| Manganese        | 204.00    | Toxaphene          | <           |
| Strontium        | 1592.00   | Aroclor 1015       | < .         |
| Mercury          | <         | Aroclor 1260       | <           |
| <del>-</del>     |           |                    |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/l   | ANALYTES           | CON. ug/l  |
|---------------------|-------------|--------------------|------------|
| Explosives:         | <           | Copper<br>Zinc     | <          |
| 2,4,5 - TNT         | <b>&lt;</b> | Arsenic            | <          |
| 1,3,5 - TNB         | <           | Beryllium          | <          |
| 2,4 - DNT           | <           | Mickel             | 41.        |
| 2,6 - DNT           | <           | Selenium           | <          |
| Nitrobenzene        | <           | Silver             | <u>`</u> < |
|                     |             | Thallium           | <          |
| Anions:             |             | Organics (GC/MS):  | _          |
| Nitrate             | <           | Benzene            | <          |
| Nitrite             | <           | Chloroform         | <          |
| Phosphates          | <           | Trichlorethylene   | <          |
| Sulfate             | 1990.       | Pentachlorophenol  | <          |
| Chloride            | 441666.     | 0-chlorophenol     | <          |
| Fluoride            | <           | 2,4-dichlorophenol | <          |
| Chromate            | <           | Dibutylphthlate    | 5.         |
| Thiocyanate         | <           | Diethylphthlate    | 243.       |
| Cyanide             | <           | Nitrobenzene       | <          |
| Metals:<br>Aluminum | 36.70       | Organics (GC/EC)   |            |
| Antimony            | <           | р.рППТ             | *          |
| Barium              | 539.00      | Dieldrin           | *          |
| Cadmium             | <           | Alpha BHC          | *          |
| Chromium            | 9.00        | Heptachlor         | *          |
| Lead                | <           | Lindane            | *          |
| Manganese           | 584.00      | Toxaphene          | *          |
| Strontium           | 1980.90     | Aroclor 1816       | *          |
| Mercury             | 2.70        | . Aroclor 1250     | *          |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l     | ANALYTES           | COM. ug/l   |
|--------------|---------------|--------------------|-------------|
| Explosives:  | <             | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | <             | Arsenic            | <           |
| 1,3,5 - TNB  | 29.47         | Beryllium          | <           |
| 2,4 - DNT    | · <b>&lt;</b> | Nickel             | 55.         |
| 2,5 - DNT    | <             | Selenium           | <           |
| Nitrobenzene | <             | Silver             | <           |
|              |               | Thallium           | 75.         |
| Anions:      |               | Organics (GC/MS):  |             |
| Nitrate      | <             | Benzene            | <           |
| Nitrite      | <             | Chloroform         | <           |
| Phosphates   | lasman.       | Trichlorethylene   | <           |
| Sulfate      | 2900.         | Pentachlorophenol  | <           |
| Chloride     | 554000.       | O-chlorophenol     | <           |
| Fluoride     | lana.         | 2,4-dichlorophenol | <           |
| Chromate     | <             | Dibutylphthlate    | 8.          |
| Thiocyanate  | <             | Diethylphthlate    | 3.          |
| Cyanide      | <             | Nitrobenzene       | . <         |
| Metals:      |               |                    |             |
| Aluminum     | 33.70         | Organics (GC/EC)   |             |
| Λntimony     | <             | p.p!-DDT           | *           |
| Barium       | ፍላይ . ቀላ      | Dieldrin           | *           |
| Cadmium      | <             | Alpha BHC          | *           |
| Chromium     | 12.40         | Heptachlor         | *           |
| Lead         | 13.40         | · Lindane          | *           |
| Manganese    | 576.00        | Toxaphene          | *           |
| Strontium    | 1500.00       | Aroclor 1016       | *           |
| Mercury      | <             | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l | ANALYTES                                                             | CON. ug/l                             |
|------------------|-----------|----------------------------------------------------------------------|---------------------------------------|
| Explosives:      | <         | Copper<br>Zinc                                                       | < < < < < < < < < < < < < < < < < < < |
| 2,4,6 - TNT      | 9.58      | Arsenic                                                              | <                                     |
| 1,3,5 - TNB      | 106.38    | Beryllium                                                            | <                                     |
| 2,1 - DNT        | <         | Mickel                                                               | <                                     |
| 2,6 - DNT        | <         | Selenium                                                             | <                                     |
| Nitrobenzene     | <         | Silver                                                               | <                                     |
|                  |           | Thallium                                                             | <                                     |
| <u> Anions</u> : |           | Organics (GC/MS):                                                    |                                       |
| Nitrate          | 2990.     | Benzene                                                              | <                                     |
| Nitrite          | <         | Chloroform                                                           | <                                     |
| Phosphates       | <         | Trichlorethylene                                                     | <                                     |
| Sulfate          | 2540.     | Pentachlorophenol                                                    | <                                     |
| Chloride         | 580000.   | O-chlorophenol                                                       | <                                     |
| Fluoride         | lane.     | 2,4-dichlorophenol                                                   | <                                     |
| Chromate         | <         | Dibutylphthlate                                                      | <                                     |
| Thiocyanate      | <         | Diethylphthlate                                                      | • <                                   |
| Cyanide          | <         | Mitrobenzene                                                         | <                                     |
| Metals:          |           |                                                                      |                                       |
| Aluminum         | 98.50     | Organics (GC/EC)                                                     |                                       |
| Λntimony         | <         | $\mathbf{p} = \mathbf{p}^{\dagger} - \mathbf{D}\mathbf{D}\mathbf{T}$ | *                                     |
| Barium           | 85.00     | · Dieldrin                                                           | *                                     |
| Cadmium          | <         | Alpha BHC                                                            | *                                     |
| Chromium         | <         | Heptachlor                                                           | *                                     |
| Lead             | <         | Lindane                                                              | *                                     |
| Manganese        | 468.00    | Toxaphene                                                            | *                                     |
| Strontium        | 1246.00   | Aroclor 1015                                                         | *                                     |
| Mercury          | <         | Aroclor 1250                                                         | *                                     |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l | ANALYTES           | COM. ug/l |
|------------------|-----------|--------------------|-----------|
| Explosives:      | <         | Copper<br>Zinc     | <<br><    |
| 2,4,6 - TNT      | 5.37      | Arsenic            | <         |
| • •              | 34.20     | Reryllium          | <         |
| 1,3,5 - TNB      |           | <u>•</u>           |           |
| 2,4 - DNT        | <         | Nickel             | <b>(</b>  |
| 2,6 - DNT        | <         | Selenium           | <         |
| Nitrobenzene     | <         | Silver             | <         |
|                  |           | Thallium           | <         |
| Anions:          | 1,001,0   | Organics (GC/MS):  | ,         |
| Nitrate          | 10910.    | Benzene            | <         |
| Nitrite          | <         | Chloroform         | <         |
| Phosphates       | <         | Trichlorethylene   | <         |
| Sulfate          | 4270.     | Pentachlorophenol  | <         |
| Chloride         | 580000.   | O-chlorophenol     | <         |
| Fluoride         | 980.      | 2,4-dichlorophenol | <         |
| Chromate         | <         | Dibutylphthlate    | <         |
| Thiocyanate      | <         | Diethylphthlate    | <         |
| Cyanide          | <         | · Nitrobenzene     | <         |
| Metals: Aluminum | 520.00    | Organics (GC/EC)   |           |
| Antimony         | <         | p.p'-DDT           | *         |
| Barium           | 56.7d     | Dieldrin           | *         |
| Cadmium          | 7.98      | Alpha RHC          | *         |
| Chromium         | 9.20      | Heptachlor         | *         |
| Lead             | <         | Lindane            | *         |
| Manganese        | 150.00    | Toxaphene          | *         |
| Strontium        | 900.00    | Aroclor 1916       | *         |
| Mercury          | <         | Aroclor 1256       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l                             | ANALYTES           | COM. ug/l   |
|--------------|---------------------------------------|--------------------|-------------|
| Explosives:  | <                                     | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | <                                     | Arsenic            | <           |
| 1,3,5 - TNB  | 6.09                                  | Peryllium          | <           |
| 2,4 - DNT    | <                                     | Nickel             | ۸٥.         |
| 2,6 - DNT    | <                                     | Selenium           | ·<br><      |
| Nitrobenzene | · · · · · · · · · · · · · · · · · · · | Silver             | <           |
|              | •                                     | Thallium           | <           |
| λnions:      |                                       | Organics (GC/MS):  |             |
| Nitrate      | 1230.                                 | Benzene            | <           |
| Nitrite      | <                                     | Chloroform         | <           |
| Phosphates   | <                                     | Trichlorethylene   | <           |
| Sulfate      | 2110                                  | Pentachlorophenol  | <           |
| Chloride     | sana.                                 | O-chlorophenol     | <           |
| Fluoride     | <                                     | 2,4-dichlorophenol | <           |
| Chromate     | <                                     | Pibutylphthlate    | <           |
| Thiocyanate  | <                                     | Diethylphthlate    | <           |
| Cyanide      | <                                     | Nitrobenzene       | <           |
| Metals:      |                                       |                    |             |
| Aluminum     | 67.74                                 | Organics (GC/EC)   |             |
| Antimony     | <                                     | p.pDDT             | *           |
| Barium       | 42.40                                 | Dieldrin           | *           |
| Cadmium      | <                                     | Alpha BHC          | *           |
| Chromium     | 55.80                                 | Heptachlor         | *           |
| Lead         | 49.60                                 | Lindane            | *           |
| Manganese    | 151.00                                | Toxaphene          | *           |
| Strontium    | 52.00                                 | Aroclor 1016       | *           |
| Mercury      | 3.20                                  | Aroclor 1260       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES        | CON. ug/l                             | ANALYTES           | COM. ug/l |
|-----------------|---------------------------------------|--------------------|-----------|
| Explosives:     | <                                     | Copper<br>Zinc     | <<br><    |
| 2,4,5 - TNT     | <                                     | Arsenic            | <         |
| 1,3,5 - TNB     | `<br><                                | Beryllium          | <         |
| 2,4 - DNT       | `<br><                                | Nickel             | 34.       |
| 2,6 - DNT       | · · · · · · · · · · · · · · · · · · · | Selenium           | <         |
| Nitrobenzene    | `<br><                                | Silver             | <         |
| With Oberraence |                                       | Thallium           | <         |
| Anions:         | •                                     | Organics (GC/MS):  | `         |
| Nitrate         | 700.                                  | Benzene            | <         |
| Nitrite         | <                                     | Chloroform         | <         |
| Phosphates      | 3930.                                 | Trichlorethylene   | <         |
| Sulfate         | 1340.                                 | Pentachlorophenol  | <         |
| Chloride        | 1056000.                              | O-chlorophenol     | <         |
| Fluoride        | genp.                                 | 2,4-dichlorophenol | <         |
| Chromate        | <                                     | Dibutylphthlate    | 7.        |
| Thiocyanate     | <                                     | Diethylphthlate    | <         |
| Cyanide         | <                                     | Nitrobenzene       | <         |
| Metals:         |                                       |                    |           |
| λluminum        | 24.20                                 | Organics (GC/EC)   |           |
| Antimony        | <                                     | p.p'-nnT           | *         |
| Barium          | 50.50                                 | Dieldrin           | *         |
| Cadmium         | <                                     | Alpha BHC          | *         |
| Chromium        | 13.30                                 | Heptachlor         | *         |
| Lead            | <                                     | Lindane            | *         |
| Manganese       | 127.00                                | Toxaphene          | *         |
| Strontium       | 930.00                                | Aroclor 1016       | *         |
| Mercury         | <                                     | Aroclor 1260       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/l | ANALYTES           | COM. ug/l   |
|---------------------|-----------|--------------------|-------------|
| Explosives: 1,3-DNB | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT         | <         | Arsenic            | <           |
| 1,3,5 - TNB         | <         | Peryllium          | <           |
| 2, A - DNT          | <         | Nickel             | <           |
| 2,5 - DNT           | <         | Selenium           | <           |
| Nitrobenzene        | <         | Silver             | <           |
|                     |           | Thallium           | 7¢.         |
| Anions:             |           | Organics (GC/MS):  |             |
| Nitrate             | 1120.     | Benzene            | <           |
| Nitrite             | <         | Chloroform         | <           |
| Phosphates          | 1890.     | Trichlorethylene   | <           |
| Sulfate             | 8570.     | Pentachlorophenol  | <           |
| Chloride            | 319000.   | O-chlorophenol     | <           |
| Fluoride            | <         | 2,4-dichlorophenol | <           |
| Chromate            | <         | Dibutylphthlate    | 5.          |
| Thiocyanate         | <         | Diethylphthlate    | <           |
| Cyanide             | <         | Nitrobenzene       | <           |
| Metals:             |           |                    |             |
| Aluminum            | 22.90     | Organics (GC/EC)   |             |
| Antimony            | <         | p.pDDT             | *           |
| Barium              | <         | Dieldrin           | *           |
| Cadmium             | 3.29      | Alpha BHC          | *           |
| Chromium            | 10.40     | Heptachlor         | *           |
| Lead                | 18.90     | Lindane            | *           |
| Manganese           | 1990.00   | Toxaphene          | *           |
| Strontium           | 1100.00   | Aroclor 1015       | *           |
| Mercury             | <         | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

APPENDIX B

ANALYTICAL RESULTS FOR

SURFACEWATER SAMPLING SITES

(SW001 - SW021)

| ANALYTES     | COM. ug/l | ANALYTES           | COM. ug/1  |
|--------------|-----------|--------------------|------------|
| Explosives:  | <         | Copper<br>Zinc     | <<br><     |
| 2,4,5 - TNT  | `<br><    | Arsenic            | <          |
| 1,3,5 - TNP  | <         | Beryllium          | <          |
| 2,4 - DNT    | `<br><    | Nickel             | <          |
| 2,5 - DNT    | <         | Selenium           | <          |
| Mitrobenzene | <         | Silver             | <          |
| THE CONCINE  | `         | Thallium           | <b>در.</b> |
| Anions:      |           | Organics (GC/MS):  | •          |
| Nitrate      | 500.      | Benzene            | <          |
| Nitrite      | <         | Chloroform         | <          |
| Phosphates   | <         | Trichlorethylene   | <          |
| Sulfate      | 7120.     | Pentachlorophenol  | <          |
| Chloride     | annn.     | O-chlorophenol     | <          |
| Fluoride     | <         | 2,4-dichlorophenol | <          |
| Chromate     | <         | Dibutylphthlate    | <          |
| Thiocyanate  | <         | Diethylphthlate    | <          |
| Cyanide      | <         | Nitrobenzene       | <          |
| Metals:      |           |                    |            |
| Aluminum     | 27.50     | Organics (GC/EC)   |            |
| Antimony     | <         | р.р'-ппт           | <          |
| Barium       | 14.70     | Dieldrin           | <          |
| Cadmium      | <         | Alpha BHC          | . 95       |
| Chromium     | 10.40     | Heptachlor         | <          |
| Lead         | 11.30     | Lindane            | <          |
| Manganese    | 43.66     | Toxaphene          | <          |
| Strontium    | <         | Aroclor 1916       | <          |
| Mercury      | <         | Aroclor 1258       | <          |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l | ANALYTES           | CON. ug/l |
|------------------|-----------|--------------------|-----------|
| Explosives:      | <         | Copper<br>Zinc     | *         |
| 2,4,6 - TNT      | 205.90    | Arsenic            | *         |
| 1,3,5 - TNB      | <         | Beryllium          | *         |
| 2,4 - DNT        | 22.40     | Nickel             | *         |
| 2,6 - DNT        | 13.55     | Selenium           | *         |
| Nitrobenzene     | <         | Silver             | *         |
|                  |           | Thallium           | *         |
| Anions: Nitrate  | *         | Organics (GC/MS):  | *         |
|                  |           | Benzene            |           |
| Nitrite          | *         | Chloroform         | *         |
| Phosphates       | *         | Trichlorethylene   | *         |
| Sulfate          | *         | Pentachlorophenol  | *         |
| Chloride         | *         | 0-chlorophenol     | *         |
| Fluoride         | *         | 2,4-dichlorophenol | *         |
| Chromate         | *         | Dibutylphthlate    | *         |
| Thiocyanate      | *         | ` Diethylphthlate  | *         |
| Cyanide          | *         | Nitrobenzene       | *         |
| Metals: Aluminum | *         | Organics (GC/EC)   |           |
|                  | *         |                    | *         |
| Antimony         | •         | p.p'-DDT           |           |
| Parium           | *         | Dieldrin           | *         |
| Cadmium          | *         | Alpha BHC          | *         |
| Chromium         | *         | Heptachlor         | *         |
| Lead             | *         | Lindane            | *         |
| Manganese        | *         | Toxaphene          | *         |
| Strontium        | *         | Aroclor 1015       | *         |
| Mercury          | *         | Arocior 1260       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | COM. ug/l        | ANALYTES           | CON. ug/l |
|--------------|------------------|--------------------|-----------|
| Explosives:  | <                | Copper<br>Zinc     | *         |
| 2,4,6 - TNT  | <                | Arsenic            | *         |
| 1,3,5 - TMP  | `<br><b>&lt;</b> | Beryllium          | *         |
| 2,4 - DNT    | ·                | Nickel             | *         |
| 2,6 - DNT    | <                | Selenium           | *         |
| Nitrobenzene | `<br><           | Silver             | *         |
|              | `                | Thallium           | *         |
| Anions:      |                  | Organics (GC/MS):  | -         |
| Nitrate      | *                | Benzene            | *         |
| Mitrite      | *                | Chloroform         | *         |
| Phosphates   | *                | Trichlorethylene   | *         |
| Sulfate      | *                | Pentachlorophenol  | *         |
| Chloride     | *                | O-chlorophenol     | *         |
| Fluoride     | *                | 2,4-dichlorophenol | *         |
| Chromate     | *                | Dibutylphthlate    | *         |
| Thiocyanate  | *                | Diethylphthlate    | *         |
| Cyanide      | *                | Nitrobenzene       | *         |
| Metals:      |                  |                    |           |
| λluminum     | *                | Organics (GC/EC)   |           |
| Antimony     | *                | p.p DDT            | *         |
| Barium       | *                | Dieldrin           | *         |
| Cadmium      | *                | Alpha BHC          | *         |
| Chromium     | *                | Heptachlor         | *         |
| Lead         | *                | Lindane            | *         |
| Manganese    | *                | . Toxaphene        | *         |
| Strontium    | *                | Aroclor 1815       | *         |
| Mercury      | *                | Arocior 1250       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l | ANALYTES                     | CON. ug/l |
|--------------------|-----------|------------------------------|-----------|
| Explosives:        | <         | Copper<br>Zinc               | *         |
| 2,4,6 - TNT        | <         | Arsenic                      | *         |
| 1,3,5 - TMB        | <         | Beryllium                    | *         |
| 2,4 - DNT          | <         | Nickel                       | *         |
| 2,5 - DNT          | <         | Selenium                     | *         |
| Nitrobenzene       | <         | Silver                       | *         |
|                    |           | Thallium                     | *         |
| Anions:<br>Nitrate | *         | Organics (GC/MS):<br>Benzene | *         |
| Nitrite            | *         | Chloroform                   | *         |
| Phosphates         | *         | Trichlorethylene             | *         |
| Sulfate            | *         | Pentachlorophenol            | *         |
| Chloride           | *         | O-chiorophenol               | *         |
| Fluoride           | *         | 2,4-dichlorophenol           | *         |
| Chromate           | *         | Dibutylphthlate              | *         |
| Thiocyanate        | *         | Diethylphthlate              | *         |
| Cyanide            | *         | Nitrobenzene                 | *         |
| Metals:            | *         | Organics (GC/EC)             |           |
| Antimony           | *         | p.p'-DDT                     | *         |
| Barium             | *         | Dieldrin                     | *         |
| Cadmium            | *         | · Alpha BHC                  | *         |
| Chromium           | *         | Heptachlor                   | *         |
| Lead               | *         | Lindane                      | *         |
| Manganese          | *         | Toxaphene                    | *         |
| Strontium          | *         | Aroclor 1015                 | *         |
| Mercury            | *         | Aroclor 1250                 | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES        | CON. ug/l | ANALYTES                     | CON. ug/l    |
|-----------------|-----------|------------------------------|--------------|
| Explosives:     | <         | Copper<br>Zinc               | 32.00        |
| 1,3-PNB         | <         | Arsenic                      | <            |
| 2,4,6 - TNT     | `<br><    | Beryllium                    | <            |
| 1,3,5 - TNB     | <         | Nickel                       | 37.          |
| 2,4 - DNT       | ·         | Selenium                     | <            |
| 2,5 - DNT       | <         | Silver                       | <            |
| Nitrobenzene    | <         | Thallium                     | <            |
|                 |           |                              | •            |
| Anions: Nitrate | 2080.     | Organics (GC/MS):<br>Benzene | <            |
| Nitrite         | <         | Chloroform                   | < 1          |
| Phosphates      | <         | Trichlorethylene             | <            |
| Sulfate         | 5100.     | Pentachlorophenol            | <            |
| Chloride        | 8000.     | O-chlorophenol               | <            |
| Fluoride        | <         | 2,4-dichlorophenol           | <            |
| Chromate        | <         | Dibutylphthlate              | <            |
| Thiocyanate     | <         | Diethylphthlate              | <            |
| Cyanide         | <         | Nitrobenzene                 | <            |
| Metals:         |           | 100 (FC)                     |              |
| λluminum        | 235.00    | Organics (GC/EC)             | ,            |
| Antimony        | <         | p.p'-DDT                     | <b>&lt;</b>  |
| Barium          | 54.]@     | Dieldrin                     | <            |
| Cadmium         | <         | Alpha BHC                    | <b>ሰ.</b> ሰና |
| Chromium        | <         | Heptachlor                   | <            |
| Lead            | <         | Lindane                      | <            |
| Manganese       | 51.00     | Toxaphene                    | <            |
| Strontium       | 158.00    | Aroclor 1015                 | <            |
| Mercury         | <         | Aroclor 1250                 | <            |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES        | CON. ug/l | ANALYTES                  | COM. ug/l   |
|-----------------|-----------|---------------------------|-------------|
| Explosives:     | <         | Copper<br>Zinc            | <b>&lt;</b> |
| 2,4,6 - TNT     | <         | Arsenic                   | <           |
| 1,3,5 - TNB     | <         | Beryllium                 | <           |
| 2,4 - DNT       | <         | Nickel                    | 43.         |
| 2,6 - DNT       | <         | Selenium                  | <           |
| Nitrobenzene    | <         | Silver                    | <           |
|                 |           | Thallium                  | <           |
| Anions: Nitrate | 980.      | Organics (GC/MS): Benzene | *           |
| Nitrite         | <         | Chloroform                | *           |
| Phosphates      | <         | Trichlorethylene          | *           |
| Sulfate         | 11380.    | Pentachlorophenol         | *           |
| Chioride        | 3000.     | O-chlorophenol            | *           |
| Fluoride        | <         | 2,4-dichlorophenol        | *           |
| Chromate        | <         | Dibutylphthlate           | *           |
| Thiocyanate     | <         | · Diethylphthlate         | *           |
| Cyanide         | <         | Nitrobenzene              | *           |
| Metals:         | 236.00    | Organics (GC/EC)          |             |
| Antimony        | <         | р.р!-ППТ                  | *           |
| Barium          | 30.00     | Dieldrin                  | *           |
| Cadmium         | <         | Alpha BHC                 | *           |
| Chromium        | <         | Heptachlor                | *           |
| Lead            | 7.50      | Lindane                   | *           |
| Manganese       | 28.00     | Toxaphene                 | *           |
| Strontium       | 60.00     | Aroclor 1015              | *           |
| Mercury         | <         | Aroclor 1250              | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l     | ANALYTES           | CON. ug/l |
|------------------|---------------|--------------------|-----------|
| Explosives:      | <             | Copper<br>Zinc     | 41.00     |
| 2,4,6 - TNT      | <             | Arsenic            | <         |
| 1,3,5 - TNB      | <             | Beryllium          | <         |
| 2,4 - DNT        | <             | Nickel             | 36.       |
| 2,5 - DNT        | <             | Selenium           | <         |
| Nitrobenzene     | <             | Silver             | <         |
|                  |               | Thallium           | . <       |
| Anions:          |               | Organics (GC/MS):  |           |
| Nitrate          | <             | Penzene            | <         |
| Nitrite          | <             | Chloroform         | <         |
| Phosphates       | <             | Trichlorethylene   | <         |
| Sulfate          | joana.        | Pentachlorophenol  | <         |
| Chioride         | eggg.         | ' O-chlorophenol   | <         |
| Fluoride         | <             | 2,4-dichlorophenol | <         |
| Chromate         | <             | Dibutylphthlate    | <         |
| Thiocyanate      | <             | Diethylphthlate    | <         |
| Cyanide          | <             | Mitrobenzene       | <         |
| Metals: Aluminum | 252.66        | Organics (GC/EC)   |           |
| Antimony         | <             | p.p'-DDT           | <         |
| Barium           | 28.80         | Pieldrin           | <         |
| Cadmium          | <             | λlpha BHC          | <         |
| Chromium         | <             | Heptachlor         | <         |
| Lead             | 11.10         | Lindane            | <         |
| Manganese        | 39.00         | Toxaphene          | <         |
| Strontium        | <b>66.</b> 00 | Aroclor 1015       | <         |
| Mercury          | <             | Aroclor 1260       | <         |
|                  |               |                    |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l   | ANALYTES           | CON. ug/l   |
|------------------|-------------|--------------------|-------------|
| Explosives:      | <           | Copper<br>Zinc     | <<br>44.00  |
| 2,4,6 - TNT      | ·           | Arsenic            | <           |
| 1,3,5 - TNB      | <           | Beryllium          | <           |
| 2,4 - DNT        | <           | Nickel             | 47.         |
| 2,5 - DNT        | <           | Selenium           | <           |
| Nitrobenzene     | <           | Silver             | <           |
|                  |             | Thallium           | <           |
| Λnions:          |             | Organics (GC/MS):  |             |
| Nitrate          | <           | Benzene            | <           |
| Nitrite          | <           | Chloroform         | <           |
| Phosphates       | <           | Trichlorethylene   | <           |
| Sulfate          | 2075.       | Pentachlorophenol  | <           |
| Chloride         | saar.       | O-chlorophenol     | <           |
| Fluoride         | <           | 2,4-dichlorophenol | <           |
| Chromate         | <           | Dibutylphthlate    | <           |
| Thiocyanate      | <           | Diethylphthlate    | <           |
| Cyanide          | <           | Nitrobenzene       | <           |
| Metals: Aluminum | 240.00      | Organics (GC/EC)   |             |
| Antimony         | <           | p.p'-DDT           | <           |
| Barium           | 28.80       | Dieldrin           | <           |
| Cadmium          | ¢.37        | Alpha PHC          | g.1         |
| Chromium         |             | Heptachlor         | <           |
|                  | <           | ·                  | `           |
| Lead             | 10.20       | Lindane            | ·           |
| Manganese        | 50.00       | Toxaphene          | <b>&lt;</b> |
| Strontium        | 70.00       | Aroclor 1016       | <           |
| Mercury          | <b>&lt;</b> | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/l        | ANALYTES           | COM. ug/1   |
|------------------|------------------|--------------------|-------------|
| Explosives:      | <                | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT      | `<br><           | Arsenic            | <           |
| 1,3,5 - TNB      | <                | Beryllium          | <           |
| 2,4 - DNT        | `<br><b>&lt;</b> | Nickel             | 37.         |
| 2,6 - DNT        | <                | Selenium           | <           |
| Mitrobenzene     | <                | Silver             | <           |
|                  |                  | . Thallium         | <           |
| Anions:          |                  | Organics (GC/MS):  |             |
| Nitrate          | <                | Renzene            | <           |
| Nitrite          | <                | Chloroform         | <           |
| Phosphates       | 1000.            | Trichlorethylene   | <           |
| Sulfate          | 17240.           | Pentachlorophenol  | <           |
| Chloride         | onnn.            | O-chlorophenol     | <           |
| Fluoride         | <                | 2,4-dichlorophenol | <           |
| Chromate         | <                | Dibutylphthlate    | <           |
| Thiocyanate      | <                | Diethylphthlate    | <           |
| Cyanide          | <                | Nitrobenzene       | <           |
| Metals: Aluminum | 323.00           | Organics (GC/EC)   |             |
| Antimony         | <                | p.p'-DDT           | <           |
| Barium           | 24.00            | Dieldrin           | <           |
| Cadmium          | <                | Alpha BHC          | <           |
| Chromium         | <                | Neptachlor         | <           |
| Lead             | <                | Lindane            | <           |
| Manganese        | 85.00            | Toxaphene          | <           |
| Strontium        | 74.00            | Aroclor 1016       | <           |
| Mercury          | <                | Aroclor 1260       | <           |
| ~                |                  |                    |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/l                               | ANALYTES                  | COM. ug/l     |
|--------------------|-----------------------------------------|---------------------------|---------------|
| Explosives:        | 4.83                                    | Copper<br>Zinc            | <b>&lt;</b> , |
| 2,4,6 - TNT        | < · · · · · · · · · · · · · · · · · · · | Arsenic                   | <             |
| 1,3,5 - TNP        | `<br><                                  | Beryllium                 | <             |
| 2,4 - DNT          | <                                       | ' Nickel                  | 57.           |
| 2,5 - DNT          | <                                       | Selenium                  | <             |
| Nitrobenzene       | <                                       | Silver                    | <             |
| Microbelizene      |                                         | Thallium                  | <             |
| <b>&gt;</b>        |                                         |                           | •             |
| Anions:<br>Nitrate | 165500.                                 | Organics (GC/MS): Benzene | <             |
| Nitrite            | <                                       | Chloroform                |               |
| Phosphates         | <                                       | Trichlorethylene          | <             |
| Sulfate            | 12250.                                  | Pentachlorophenol         | <             |
| Chloride           | 14000.                                  | O-chlorophenol            | <             |
| Fluoride           | 55000.                                  | 2,4-dichlorophenol        | <             |
| Chromate           | <                                       | Dibutylphthlate           | <             |
| Thiocyanate        | <                                       | Diethylphthlate           | <             |
| Cyanide            | <                                       | Nitrobenzene              | <             |
| Metals:            |                                         |                           |               |
| Aluminum           | 251.00                                  | Organics (GC/EC)          |               |
| Antimony           | <                                       | р.рппт                    | *             |
| Barium             | 1620.00                                 | Dieldrin                  | *             |
| Cadmium            | <                                       | Alpha BHC                 | *             |
| Chromium           | <                                       | Heptachlor                | *             |
| Lead               | 8.80                                    | Lindane                   | *             |
| Manganese          | 25.00                                   | Toxaphene                 | *             |
| Strontium          | 14,400.00                               | Aroclor 1015              | *             |
| Mercury            | <                                       | Aroclor 1250              | *             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/l | ANALYTES           | COM. ug/l   |
|---------------------|-----------|--------------------|-------------|
| Explosives:         | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT         | <         | Arsenic            | <           |
| 1,3,5 - TMB         | <         | Beryllium          | <           |
| 2,4 - DNT           | <         | Nickel             | 52.         |
| 2,5 - DNT           | <         | Selenium           | <           |
| Nitrobenzene        | <         | Silver             | <           |
|                     |           | Thallium           | <           |
| Anions:             |           | Organics (GC/MS):  |             |
| Nitrate             | <         | Benzene            | <           |
| Nitrite             | <         | Chloroform         | <           |
| Phosphates          | <         | Trichlorethylene   | <           |
| Sulfate             | 12850.    | Pentachlorophenol  | <           |
| Chioride            | 14000.    | 0-chlorophenol     | <           |
| Fluoride            | <         | ?,4-dichlorophenol | <           |
| Chromate            | <         | Dibutylphthlate    | . <         |
| Thiocyanate         | <         | Diethylphthlate    | <           |
| Cyanide             | <         | Nitrobenzene       | <           |
| Metals:<br>Aluminum | 126.00    | Organics (GC/EC)   |             |
| Antimony            | <         | р.р'-ппт           | <           |
| Fa <b>rium</b>      | 750.00    | Dieldrin           | <           |
| Cadmium             | 3.90      | Alpha BHC          | 0.07        |
| Chromium            | 7.20      | Heptachlor         | <           |
| Lead                | <         | Lindane            | <           |
| Manganese           | 31.00     | Toxaphene          | <           |
| Strontium           | 132.00    | Aroclor 1016       | <           |
| Mercury             | <         | Aroclor 1260       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/l   | ANALYTES                         | CON. ug/l   |
|---------------------|-------------|----------------------------------|-------------|
| Explosives:         |             | Copper<br>Zinc                   | <b>&lt;</b> |
| 2,4,5 - TNT         | <b>&lt;</b> | Arsenic                          | <           |
| 1,3,5 - TNB         | <           | . Beryllium                      | <           |
| 2,4 - DNT           | <           | Nickel                           | 58.         |
| 2,6 - DNT           | <           | Selenium                         | <           |
| Nitrobenzene        | <           | Silver                           | <           |
|                     |             | Thallium                         | <           |
| Anions: Nitrate     | ዓለሮ.        | <u>Organics (GC/MS):</u> Benzene | <           |
| Nitrate             |             | Chloroform                       | <           |
|                     | <           |                                  |             |
| Phosphates          | <           | Trichlorethylene                 | <           |
| Sulfate             | 10500.      | Pentachlorophenol                | <           |
| Chloride            | 4000.       | O-chlorophenol                   | <           |
| Fluoride            | <           | 2,4-dichlorophenol               | <           |
| Chromate            | <           | Dibutylphthlate                  | <           |
| Thiocyanate         | <           | Diethylphthlate                  | <           |
| Cyanide             | <           | Nitrobenzene                     | <           |
| Metals:<br>Niuminum | 110.00      | Organics (GC/EC)                 |             |
| Antimony            | <           | p.p'-DDT                         | *           |
| Barium              | <           | Dieldrin                         | *           |
| Cadmium             | <           | Alpha BHC                        | *           |
| Chromium            | 34.50       | Heptachlor                       | . *         |
| Lead                | <           | Lindane                          | *           |
| Manganese           | 33.00       | Toxaphene                        | *           |
| Strontium           | 74.00       | Aroclor 1016                     | *           |
| Mercury             | 1.60        | Aroclor 1268                     | *           |
|                     |             |                                  |             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l                             | ANALYTES           | COM. ug/l   |
|--------------|---------------------------------------|--------------------|-------------|
| Explosives:  | <                                     | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | ·                                     | Arsenic            | <           |
| 1,3,5 - TNP  | <                                     | Beryllium          | <           |
| 2,4 - DNT    | <                                     | Nickel             | 82.         |
| 2,5 - DNT    | · · · · · · · · · · · · · · · · · · · | Selenium           | <           |
| Nitrobenzene | <                                     | Silver             | <           |
|              | ·                                     | Thallium           | 40.         |
| Anions:      |                                       | Organics (GC/MS):  |             |
| Nitrate      | <                                     | Benzene            | <           |
| Nitrite      | <                                     | Chloroform         | <           |
| Phosphates   | <                                     | Trichlorethylene   | <           |
| Sulfate      | 817 <b>0</b> .                        | Pentachlorophenol  | <           |
| Chloride     | sooo.                                 | 0-chlorophenol     | <           |
| Fluoride     | <                                     | 2,4-dichlorophenol | <           |
| Chromate     | <                                     | Dibutylphthlate    | <           |
| Thiocyanate  | <                                     | Diethylphthlate    | <           |
| Cyanide      | <                                     | Nitrohenzene       | . <         |
| Metals:      | 227 44                                |                    |             |
| \lum inum    | 337.00                                | Organics (GC/EC)   |             |
| Antimony     | <                                     | p.p'-DDT           | <b>&lt;</b> |
| Barium       | <                                     | Dieldrin           | <           |
| Cadmium      | <                                     | Alpha BHC          | 0.05        |
| Chromium     | 8.40                                  | Heptachlor         | <           |
| Lead         | 20.10                                 | Lindane            | <           |
| Manganese    | 49.00                                 | Toxaphene          | <           |
| Strontium    | 80.00                                 | Arodlor 1815       | <           |
| Mercury      | <                                     | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| AMALYTES            | CON. ug/l     | ANALYTES           | COM. ug/l |
|---------------------|---------------|--------------------|-----------|
| Explosives:         | <             | Copper<br>Zinc     | . <       |
| 2,4,5 - TNT         | <             | Arsenic            | <         |
| 1,3,5 - TNR         | <             | Beryllium          | <         |
| 2,4 - DNT           | <             | Nickel             | 59.       |
| 2,5 - DNT           | <             | Selenium           | <         |
| Mitrobenzene        | <             | Silver             | <         |
|                     |               | Thallium           | <         |
| Anions:             |               | Organics (GC/MS):  | a a       |
| Nitrate             | 68 <b>0</b> . | Benzene            | *         |
| Nitrite             | <             | · Chloroform       | *         |
| Phosphates          | <             | Trichlorethylene   | *         |
| Sulfate             | 8450.         | Pentachlorophenol  | *         |
| Chloride            | 8000.         | 0-chlorophenol     | *         |
| Fluoride            | <             | 2,4-dichlorophenol | *         |
| Chromate            | <             | Dibutylphthlate    | *         |
| Thiocyanate         | <             | Diethylphthlate    | *         |
| Cyanide             | <             | Nitrobenzene       | *         |
| Metals:<br>Aluminum | 407.00        | Organics (CC/EC)   |           |
| Antimony            | <             | p.p*-DDT           | *         |
| Barium              | <             | Dieldrin           | *         |
| Cadmium             | <             | Alpha BHC          | *         |
| Chromium            | 10.50         | Heptachlor         | *         |
| Lead                | 23.90         | Lindane            | * *       |
| Manganese           | 25.00         | Toxaphene          | *         |
| Strontium           | 100.00        | Aroclor 1016       | *         |
| Mercury             | 1.60          | Aroclor 1250       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l | ANALYTES           | COM. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  |           | Copper             | <b>&lt;</b> |
| 1,3-DNB      | <         | Zinc               |             |
| 2,4,6 - TNT  | <         | Arsenic            | <           |
| 1,3,5 - TNB  | <         | Beryllium          | <           |
| 2,4 - DNT    | <         | Nickel             | 47.         |
| 2,6 - DNT    | <         | Selenium           | <           |
| Nitrobenzene | <         | Silver             | <           |
|              |           | . Thallium         | <           |
| Anions:      |           | Organics (GC/MS):  |             |
| Mitrate      | 590.      | Benzene            | <           |
| Nitrite      | <         | Chloroform         | <           |
| Phosphates   | <         | Trichlorethylene   | <           |
| Sulfate      | 5418.     | Pentachlorophenol  | <           |
| Chioride     | ୫ଟ୍ଟେଟ.   | O-chlorophenol     | <           |
| Fluoride     | <         | 2,4-dichlorophenol | <           |
| Chromate     | <         | Dibutylphthlate    | <           |
| Thiocyanate  | <         | Diethylphthlate    | <           |
| Cyanide      | <         | Nitrobenzene       | <           |
| Metais:      |           |                    |             |
| λluminum     | 340.00    | Organics (GC/EC)   |             |
| Λntimony     | <         | р.рппп             | ·           |
| Barium       | <         | Dieldrin           | <           |
| Cadmium      | <         | Alpha BHC          | <           |
| Chromium     | <         | Heptachlor         | <           |
| Lead         | 8.10      | Lindane            | <           |
| Manganese    | 36.00     | Toxaphene          | <           |
| Strontium    | 92.00     | Aroclor 1015       | <           |
| Mercury      | <         | Aroclor 1250       | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l | · ANALYTES         | CON. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | . <       | Arsenic            | <           |
| 1,3,5 - TNB  | <         | Beryllium          | <           |
| 2,4 - DNT    | <         | Nickel             | 60.         |
| 2,6 - DNT    | <         | Selenium           | <           |
| Nitrobenzene | <         | Silver             | <           |
|              |           | Thallium           | <           |
| Anions:      |           | Organics (GC/MS):  |             |
| Nitrate      | <         | Benzene            | <           |
| Nitrite      | <         | Chloroform         | <           |
| Phosphates   | <         | Trichlorethylene   | <           |
| Sulfate      | 6410.     | Pentachlorophenol  | <           |
| Chloride     | 8000.     | O-chlorophenol     | <           |
| Fluoride     | <         | 2,4-dichlorophenol | <           |
| Chromate     | <         | Dibutylphthlate    | <           |
| Thiocyanate  | <         | Diethylphthlate    | <           |
| Cyanide      | <         | Nitrobenzene       | <           |
| Metals:      |           |                    |             |
| Aluminum     | 226.00    | Organics (GC/EC)   |             |
| Antimony     | <         | p.pDDT             | *           |
| Barium       | <         | Dieldrin           | *           |
| Cadmium      | <         | Alpha BHC          | *           |
| Chromium     | 8.20      | Heptachlor         | *           |
| Lead         | 32.50     | Lindane            | *           |
| Manganese    | 38.00     | Toxaphene          | *           |
| Strontium    | A A . M O | Aroclor 1015       | *           |
| Mercury      | <         | Arodlor 1260       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/l | ANALYTES           | CON. ug/l   |
|--------------|-----------|--------------------|-------------|
| Explosives:  | <         | Copper<br>Zinc     | <b>&lt;</b> |
| 2,4,6 - TNT  | ·         | Arsenic            | <           |
| 1,3,5 - TNB  | ·         | Beryllium          | <           |
| 2,4 - DNT    | `<br><    | Nickel             | 7].         |
| 2,5 - DNT    | ·         | Selenium           | <           |
| Nitrobenzene | <         | Silver             | <           |
| 101000000    | ·         | Thallium           | <           |
| Anions:      |           | Organics (GC/MS):  |             |
| Mitrate      | <         | Benzene            | *           |
| Nitrite      | <         | Chloroform         | *           |
| Phosphates   | <         | Trichlorethylene   | *           |
| Sulfate      | 9340.     | Pentachlorophenol  | *           |
| Chloride     | saga.     | O-chlorophenol     | *           |
| Fluoride     | <         | 2,4-dichlorophenol | *           |
| Chromate     | <         | Dibutylphthlate    | *           |
| Thiocyanate  | <         | Diethylphthlate    | *           |
| Cyanide      | <         | Nitrobenzene       | *           |
| Metals:      |           |                    |             |
| Aluminum     | 355.00    | Organics (GC/EC)   |             |
| Antimony     | <         | р.р.т-ппт          | *           |
| Barium       | 404.00    | Dieldrin           | *           |
| Cadmium      | <         | Alpha BHC          | *           |
| Chromium     | 83.70     | Heptachlor         | *           |
| Lead         | <         | Lindane            | *           |
| Manganese    | 115.00    | Toxaphene          | *           |
| Strontium    | 40.00     | Aroclor 1016       | *           |
| Mercury      | <         | Aroclor 1250       | *           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

APPENDIX C

ANALYTICAL RESULTS FOR

SEDIMENT SAMPLING SITES

(Sed001 - Sed003, Sed005 - Sed021)

| ANALYTES<br>Explosives: | CON. ug/g | ANALYTES                               | COM. ug/g   |
|-------------------------|-----------|----------------------------------------|-------------|
| 1,3-DNB                 | <         | Copper                                 | 8.2         |
| 2,4,6 - TNT             | <         | Zinc                                   | <b>ጓ</b> ፍዖ |
| 1,3,5 - TMB             | <         | Arsenic                                | <           |
| 2,4 - DNT               | <         | Beryllium                              | <           |
| 2,5 - DNT               | <         | Nickel                                 | 7.          |
| Mitrobenzene            | <         | Selenium                               | <           |
|                         |           | Silver                                 | <           |
|                         |           | Thallium                               | <           |
| Anions:<br>Nitrate      | <         | Organics (GC/MS):<br>Pentachlorophenol | <           |
| Nitrite                 | <         | O-chlorophenol                         | <           |
| Sulfate                 | 180.19    | 2,4-dichlorophenol                     | <           |
| Chloride                | 79.       | Dibutylphthlate                        | <           |
| Fluoride                | <         | Diethylphthlate                        | <           |
| Chromate                | <         | Nitrobenzene                           | <           |
| Thiocyanate             | <         |                                        |             |
| Cyanide                 | <         |                                        |             |
| Metals:<br>Aluminum     | 643.6     | Organics (GC/EC)                       |             |
| Antimony                | <         | p.p'-DDT                               | <           |
| Parium                  | 92.2      | Dieldrin                               | <           |
| Cadmium                 | <         | Alpha BHC                              | <           |
| Chromium                | 6.8       | Heptachlor                             | <           |
| Lead                    | 15.5      | Lindane                                | <           |
| Manganese               | 83.8      | Toxaphene                              | <           |
| Strontium               | 11.2      | Aroclor Idls                           | <           |
| Mercury                 | <         | Aroclor 1260                           | <           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | P. a      |
| 2,4,6 - TNT         | <         | Zinc                                | 42.3      |
| 1,3,5 - TNB         | <         | Λrsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,6 - DNT           | <         | Nickel                              | 5.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | 0-chlorophenol                      | *         |
| Sulfate             | 212.89    | 2,4-dichlorophenol                  | *         |
| Chloride            | 31.       | Dibutylphthlate                     | *         |
| Fluoride            | <         | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 2116.4    | Organics (GC/EC)                    |           |
| Antimony            | <         | р.р., – пот                         | *         |
| Barium              | 52.0      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC .                         | *         |
| Chromium            | 9.3       | Heptachlor                          | *         |
| Lead                | 14.6      | Lindane                             | *         |
| Manganese           | 130.0     | Toxaphene                           | *         |
| Strontium           | 5.4       | Aroclor 1015                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | CON. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | *         |
| 2,4,6 - TNT         | <         | Zinc                                | *         |
| 1,3,5 - TNB         | <         | Arsenic                             | *         |
| 2, 4 - DN'T         | <         | Peryllium                           | *         |
| 2,5 - PNT           | <         | Nickel                              | *         |
| Mitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | <         |
| Anions: Mitrate     | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | O-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Pibutylphthlate                     | *         |
| Fluoride            | *         | Diethylphthlate                     | *         |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | p.p'-DDT                            | *         |
| Earium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha PHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1016                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.</pre>

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 5.1       |
| 2,4,6 - TNT         | <         | Zinc                                | 29.5      |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,6 - DNT           | <         | Nickel                              | 7.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | N-chlorophenol                      | * *       |
| Sulfate             | 152.81    | 2,4-dichlorophenol                  | *         |
| Chloride            | 14.       | Dibutylphthlate                     | *         |
| Fluoride            | 5.        | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 1007.8    | Organics (GC/EC)                    |           |
| Antimony            | <         | р.р ППТ                             | *         |
| Barium              | 55.7      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 23.4      | Heptachlor                          | *         |
| Lead                | 21.4      | Lindane                             | *         |
| Manganese           | 25.5      | Toxaphene                           | *         |
| Strontium           | 7.0       | Aroclor 1016                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONGTORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SEDIMENT SAMPLING SITE SED COS

| ANALYTES           | COM. ug/g | ANALYTES                            | COM. ug/g |
|--------------------|-----------|-------------------------------------|-----------|
| Explosives:        | <         | Copper                              | *         |
| 2,4,5 - TNT        | 0.78      | Zinc                                | *         |
| 1,3,5 - TNB        | <         | Arsenic                             | *         |
| 2,4 - DNT          | <         | Beryllium                           | *         |
| 2,6 - DNT          | <         | Nickel                              | *         |
| Nitrobenzene       | <         | Selenium                            | *         |
|                    |           | Silver                              | *         |
|                    |           | Thallium                            | *         |
| Anions:<br>Nitrate | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | *         | O-chlorophenol                      | *         |
| Sulfate            | *         | 2,4-dichlorophenol                  | *         |
| Chloride           | *         | Dibutylphthlate                     | *         |
| Fluoride           | *         | Diethylphthlate                     | *         |
| Chromate           | *         | Nitrohenzene                        | *         |
| Thiocyanate        | *         |                                     |           |
| Cyanide            | *         |                                     |           |
| Metals:            |           |                                     |           |
| Aluminum           | *         | Organics (GC/EC)                    |           |
| Antimony           | *         | מתמ−בי • ל                          | *         |
| Parium             | *         | Dieldrin                            | *         |
| Cadmium            | *         | Alpha BHC                           | *         |
| Chromium           | *         | <b>Heptachlor</b>                   | *         |
| Lead               | *         | Lindane                             | *         |
| Manganese          | *         | Toxaphene                           | *         |
| Strontium          | *         | · Aroclor 1816                      | *         |
| Mercury            | *         | Aroclor 1250                        | *         |
|                    |           |                                     |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                               | COM. ug/g |
|---------------------|-----------|----------------------------------------|-----------|
| Explosives:         | <         | Copper                                 | *         |
| 2,4,6 - TNT         | <         | Zinc                                   | *         |
| 1,3,5 - TNB         | <         | Arsenic                                | *         |
| 2,4 - DNT           | <         | Peryllium                              | *         |
| 2,6 - DNT           | <         | Nickel                                 | *         |
| Nitrobenzene        | <         | Selenium                               | *         |
|                     |           | Silver                                 | *         |
|                     |           | Thallium                               | *         |
| Anions:<br>Nitrate  | *         | Organics (GC/MS):<br>Pentachlorophenol | *         |
| Nitrite             | *         | O-chlorophenol                         | *         |
| Sulfate             | *         | 2,4-dichlorophenol                     | *         |
| Chloride            | *         | Dibutylphthlate                        | *         |
| Fluoride            | *         | Diethylphthlate                        | *         |
| Chromate            | *         | Nitrobenzene                           | *         |
| Thiocyanate         | *         |                                        |           |
| Cyanide             | *         |                                        |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                       |           |
| Antimony            | *         | p.p"-DDT                               | *         |
| Barium              | *         | Dieldrin                               | *         |
| Cadmium             | *         | Alpha BHC                              | *         |
| Chromium            | *         | · Neptachlor                           | *         |
| Lead                | *         | Lindane                                | *         |
| Manganese           | *         | Toxaphene                              | *         |
| Strontium           | *         | Arodlor 1816                           | *         |
| Mercury             | *         | Aroclor 1260                           | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONCHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SEDIMENT SAMPLING SITE SED 008

| ANALYTES           | COM. ug/g | AMALYTES                            | COM. ug/g |
|--------------------|-----------|-------------------------------------|-----------|
| Fxplosives:        | <         | Copper                              | *         |
| 2,4,6 - TNT        | <         | Zinc                                | *         |
| 1,3,5 - TNB        | <         | Arsenic                             | *         |
| 2,4 - DNT          | <         | Reryllium                           | *         |
| 2,5 - DNT          | <         | Nickel                              | *         |
| Nitrobenzene       | <         | Selenium                            | *         |
|                    |           | Silver                              | *         |
|                    |           | Thallium                            | *         |
| Anions:<br>Nitrate | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | *         | N-chlorophenol                      | *         |
| Sulfate            | *         | 2,4-dichlorophenol                  | *         |
| Chloride           | *         | Dibutylphthlate                     | *         |
| Fluoride           | *         | Diethylphthlate                     | *         |
| Chromate           | *         | Nitrobenzene                        | *         |
| Thiocyanate        | *         |                                     |           |
| Cyanide            | *         |                                     |           |
| Metals: Aluminum   | *         | Organics (GC/EC)                    |           |
| Antimony           | *         | . р.р                               | *         |
| Barium             | *         | Dieldrin                            | *         |
| Cadmium            | *         | Alpha BHC                           | *         |
| Chromium           | *         | Heptachlor                          | *         |
| Lead               | *         | Lindane                             | *         |
| Manganese          | *         | Toxaphene                           | *         |
| Strontium          | *         | Aroclor 1016                        | *         |
| Mercury            | *         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/g         | ANALYTES                            | COM. ug/g |
|--------------------|-------------------|-------------------------------------|-----------|
| Explosives:        | <                 | Copper                              | 3.6       |
| 2,4,6 - TNT        | <                 | Zinc                                | 19.2      |
| 1,3,5 - TNB        | <                 | Arsenic                             | <         |
| 2,4 - DNT          | <                 | Beryllium                           | <         |
| 2,6 - DNT          | <                 | Nickel                              | ۶.        |
| Nitrobenzene       | <                 | Selenium                            | <         |
|                    |                   | Silver                              | <         |
|                    |                   | Thallium                            | <         |
| Anions:<br>Nitrate | <                 | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite            | <                 | O-chlorophenol '                    |           |
| Sulfate            | 129.18            | 2,4-dichlorophenol                  | <         |
| Chloride           | 7.                | Dibutyiphthlate                     | < ⋅       |
| Fluoride           | <                 | Diethylphthlate                     | <         |
| Chromate           | <                 | Nitrobenzene                        | <         |
| Thiocyanate        | <                 |                                     |           |
| Cyanide            | <                 | •                                   |           |
| Metals:            |                   |                                     |           |
| Aluminum           | 1872.2            | Organics (GC/EC)                    |           |
| Antimony           | <                 | דיות-"ם. פ                          | *         |
| Barium             | 255. <sup>6</sup> | Dieldrin                            | *         |
| Cadmium            | <                 | Alpha BBC                           | *         |
| Chromium           | 7.8               | Neptachlor                          | *         |
| Lead               | 17.0              | Lindane                             | *         |
| Manganese          | 177.1             | Toxaphene                           | *         |
| Strontium          | 17.5              | Arodlor 1016                        | *         |
| Mercury            | <                 | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SEDIMENT SAMPLING SITE SED GIG

| ANALYTES           | CON. ug/g | ANALYTES                            | COM. ug/g |
|--------------------|-----------|-------------------------------------|-----------|
| Explosives:        | <         | Copper                              | 9.1       |
| 2,4,5 - TNT        | <         | 7inc                                | 34.5      |
| 1,3,5 - TNP        | <         | Arsenic                             | <         |
| 2,4 - DNT          | <         | Beryllium                           | <         |
| 2,5 - DNT          | <         | Nickel                              | 8.3       |
| Nitrobenzene       | <         | Selenium                            | <         |
|                    |           | Silver                              | <         |
|                    |           | Thallium                            | <         |
| Anions:<br>Nitrate | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | <         | 0-chlorophenol                      | *         |
| Sulfate            | 34.78     | 2,4-dichlorophenol                  | *         |
| Chloride           | 9.        | Dibutylphthlate                     | *         |
| Fluoride           | sa.       | Diethylphthlate                     | *         |
| Chromate           | <         | Nitrobenzene                        | *         |
| Thiocyanate        | <         |                                     |           |
| Cyanide            | <         |                                     |           |
| Metals: Aluminum   | 1408.0    | Organics (GC/EC)                    |           |
| Antimony           | <         | p.p'-DDT                            | *         |
| Barium             | 91.4      | Dieldrin                            | *         |
| Cadmium            | <         | Alpha BHC                           | *         |
| Chromium           | 16.2      | Heptachlor                          | *         |
| Lead               | 13.3      | Lindane                             | *         |
| Manganese          | 210.7     | Toxaphene                           | *         |
| Strontium          | 14.8      | Aroclor 1015                        | *         |
| Mercury            | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/g | ANALYTES                            | СОМ. uq/g  |
|--------------------|-----------|-------------------------------------|------------|
| Fxplosives:        | <         | Copper                              | <          |
| 2,4,6 - TNT        | <         | Zinc                                | 5.C        |
| 1,3,5 - TNB        | <         | Arsenic                             | 28.4       |
| 2,4 - DNT          | <         | Beryllium                           | <          |
| 2,5 - DNT          | <         | Nickel                              | <b>ه</b> . |
| Nitrobenzene       | <         | Selonium                            | <          |
|                    |           | Silver                              | <          |
| •                  |           | Thallium                            | <          |
| Anions:<br>Nitrate | <         | Organics (GC/MS): Pentachiorophenol | <          |
| Mitrite            | <         | O-chlorophenol                      | <          |
| Sulfate            | 162.17    | · 2,4-dichlorophenol                | <          |
| Chloride           | ۶.        | Dibutylphthlate                     | <          |
| Fluoride           | <         | Diethylphthlate                     | <          |
| Chromate           | <         | Nitrobenzene                        | <          |
| Thiocyanate        | <         |                                     |            |
| Cyanide            | <         |                                     |            |
| Metals:            |           |                                     |            |
| Aluminum           | 1134.6    | Organics (GC/EC)                    |            |
| Antimony           | <         | תותי– וּים מ∙ מ                     | *          |
| Barium             | 67.1      | Dieldrin                            | *          |
| Cadmium            | <         | Alpha BHC                           | *          |
| Chromium           | 7.4       | Heptachlor                          | *          |
| Lead               | 12.3      | Lindane                             | *          |
| Manganese          | 120.5     | Toxaphene                           | *          |
| Strontium          | 13.0      | Aroclor 1016                        | *          |
| Mercury            | <         | Aroclor 1260                        | *          |
|                    |           |                                     |            |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES<br>Explosives: | CON. ug/g | ANALYTES                            | CON. ug/g |
|-------------------------|-----------|-------------------------------------|-----------|
| 1,3-DNP                 | <         | Copper                              | 11.7      |
| 2,4,6 - TNT             | <         | 7.inc                               | 53.       |
| 1,3,5 - TNB             | <         | Arsenic                             | <         |
| 2,0 - DNT               | <         | Beryllium                           | 1.        |
| 2,5 - DNT               | <         | Nickel                              | 14.       |
| Nitrobenzene            | <         | Selenium                            | <         |
|                         |           | Silver                              | <         |
|                         |           | ` Thallium                          | <         |
| <u> Nitr</u> ate        | <         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite                 | <         | 0-chlorophenol                      | <         |
| Sulfate                 | 405.93    | 2,4-dichlorophenol                  | <         |
| Chloride                | 120.      | Dibutylphthlate                     | <         |
| Fluoride                | <         | Diethylphthlate                     | <         |
| Chromate                | <         | Nitrobenzene                        | <         |
| Thiocyanate             | <         |                                     |           |
| Cyanide                 | <         |                                     |           |
| Metals:<br>Aluminum     | 1229.6    | Organics (GC/EC)                    |           |
| Antimony                | <         | p.pDDT                              | <         |
| Barium                  | <         | Dieldrin                            | <         |
| Cadmium                 | <         | λipha BHC                           | <         |
| Chromium                | õ•s       | Heptachlor                          | <         |
| Lead                    | 42.7      | Lindane                             | <         |
| Manganese               | 151.6     | Toxaphene                           | <         |
| Strontium               | 18.3      | Aroclor 1016                        | <         |
| Mercury                 | <         | Aroclor 1250                        | <         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g     | ANALYTES                            | COM. ug/g     |
|---------------------|---------------|-------------------------------------|---------------|
| Explosives:         | <             | Copper                              | 24.8          |
| 2,4,6 - TNT         | <             | Zinc                                | 105.0         |
| 1,3,5 - TNB         | <             | Arsenic                             | <             |
| 2,4 - DNT           | <             | Beryllium                           | 1.            |
| 2,5 - DNT           | <             | · Nickel                            | 24.           |
| Nitrobenzene        | ` <           | Selenium                            | <.            |
|                     |               | Silver                              | <             |
|                     |               | Thallium                            | <             |
| Anions:<br>Nitrate  | <             | Organics (GC/MS): Pentachlorophenol | <             |
| Nitrite             | <             | O-chlorophenol                      | <             |
| Sulfate             | 2078.9        | 2,4-dichlorophenol                  | <             |
| Chloride            | 87.           | Dibutylphthlate                     | <             |
| Fluoride            | <             | Diethylphthlate                     | <             |
| Chromate            | <             | Nitrobenzene                        | <             |
| Thiocyanate         | <             |                                     |               |
| Cyanide             | <             |                                     |               |
| Motals:<br>Aluminum | 2154.7        | Organics (GC/EC)                    |               |
| Antimony            | · <b>&lt;</b> | р.р'-ппт                            | <             |
| Parium              | <             | Dieldrin                            | · <b>&lt;</b> |
| Cadmium             | <             | Alpha BHC                           | <             |
| Chromium            | 16.5          | Heptachlor                          | <             |
| Lead                | 32.9          | Lindane                             | <             |
| Manganese           | 5.9           | Toxaphene                           | <             |
| Strontium           | 42.2          | Aroclor 1016                        | <             |
| Mercury             | <             | Aroclor 1260                        | <             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 59.5      |
| 2,4,6 - TNT         | <         | Zinc                                | 3.3       |
| 1,3,5 - TMB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | ፍ.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions: Nitrate     | <         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite             | <         | O-chlorophenol                      | <         |
| Sulfate             | 75.1      | 2,4-dichlorophenol                  | <         |
| Chloride            | 372.      | Dibutylphthlate                     | <         |
| Fluoride            | 12.       | Diethylphthlate                     | ?.        |
| Chromate            | <         | Nitrobenzene                        | <         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 1142.4    | Organics (GC/EC)                    |           |
| Antimony            | <         | р.р'-ППТ                            | *         |
| Parium              | 1031.4    | Dieldrin                            | *         |
| Cadmium             | <         | Alpha PHC                           | *         |
| Chromium            | 130.5     | Heptachlor                          | *         |
| Lead                | 72.2      | Lindane                             | *         |
| Manganese           | 119.7     | Toxaphene                           | *         |
| Strontium           | 373.2     | Aroclor 1615                        | *         |
| Mercury             | <         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Fxplosives:         | <         | Copper                              | 4.2       |
| 2,4,5 - TNT         | <         | Zinc                                | 18.3      |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,6 - DNT           | <         | Nickel                              | 4.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| <u> Nitr</u> ate    | <         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite             | <         | 0-chlorophenol                      | <         |
| Sulfate             | 64.8      | 2,4-dichlorophenol                  | <         |
| Chloride            | 11.       | Dibutylphthlate                     | <         |
| Fluoride            | <         | Diethylphthlate                     | <         |
| Chromate            | <         | Nitrobenzene                        | <         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | < ,       |                                     |           |
| Metals:<br>Niuminum | 1347.3    | Organics (GC/EC)                    |           |
| Antimony            | <         | р.р.тпп                             | *         |
| Parium              | 138.7     | Dieldrin                            | *         |
| Cadmium             | <         | Alpha PHC                           | *         |
| Chromium            | 6.7       | Heptachlor                          | *         |
| Lead                | 10.1      | Lindane                             | *         |
| Manganese           | 63.8      | Toxaphene                           | *         |
| Strontium           | 10.5      | Aroclor 1016                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/g | ANALYTES                            | COM. ug/g |
|--------------------|-----------|-------------------------------------|-----------|
| Explosives:        | <         | Copper                              | 3.4       |
| 2,4,5 - TNT        | <         | Zinc                                | 18.3      |
| 1,3,5 - TMB        | <         | Arsenic                             | <         |
| 2.4 - DNT          | <         | Beryllium                           | <         |
| 2,6 - DNT          | <         | Nickel                              | 3.        |
| Nitrobenzene       | <         | Selenium                            | <         |
|                    |           | Silver                              | <         |
|                    |           | Thallium                            | <         |
| Anions:<br>Nitrate | 19.62     | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite            | <         | O-chlorophenol                      | <         |
| Sulfate            | 414.40    | 2,4-dichlorophenol                  | <         |
| Chloride           | 55.       | Dibutylphthlate                     | <         |
| Fluoride           | ۲.        | Piethylphthlate                     | <         |
| Chromate           | <         | Mitrobenzene                        | <         |
| Thiocyanate        | <         |                                     |           |
| Cyanide            | <         |                                     |           |
| Metals:            |           |                                     |           |
| Niuminum           | 1281.4    | Organics (GC/EC)                    |           |
| Antimony           | <         | р.p. " – тип                        | *         |
| Barium             | 122.0     | Dieldrin                            | *         |
| Cadmium            | <         | Alpha BHC                           | *         |
| Chromium           | 7.1       | Heptachlor                          | *         |
| Lead               | 9.9       | Lindane                             | *         |
| Manganese          | 73.2      | Toxaphene                           | *         |
| Strontium          | 13.9      | Aroclor 1015                        | *         |
| Mercury            | <         | Aroglor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.</pre>

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | CON. ug/g  | ANALYTES                            | CON. ug/g |
|--------------------|------------|-------------------------------------|-----------|
| Explosives:        | <          | Copper                              | 12.2      |
| 2,4,6 - TNT        | <          | Zinc                                | 3.9       |
| 1,3,5 - TNB        | <          | Λrsenic                             | <         |
| 2,4 - DNT          | • <        | Peryllium                           | <         |
| 2,5 - DNT          | <          | Nickel                              | 15.       |
| Nitrobenzene       | <          | Selenium                            | <         |
|                    |            | Silver                              | <         |
|                    |            | Thallium                            | <         |
| Anions:<br>Nitrate | 12.25      | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite            | <          | 0-chlorophenol                      | <         |
| Sulfate            | 84.92      | 2,4-dichlorophenol                  | <         |
| Chloride           | <b>11.</b> | Dibutylphthlate                     | <         |
| Fluoride           | <          | Diethylphthlate                     | <         |
| Chromate           | <          | Nitrobenzene                        | <         |
| Thiocyanate        | <          |                                     |           |
| Cyanide            | <          |                                     |           |
| Metais:            |            |                                     |           |
| Aluminum           | 1520.7     | Organics (GC/EC)                    |           |
| Antimony           | <          | P.PDDT                              | *         |
| Barium             | 333.       | Pieldrin                            | *         |
| Cadmium            | <          | Alpha PHC                           | *         |
| Chromium           | 9.1        | Heptachlor                          | *         |
| Lead               | 32.1       | Lindane                             | *         |
| Manganese          | 1032.3     | Toxaphene                           | *         |
| Strontium          | 29.5       | Aroclor 1016                        | *         |
| Mercury            | <          | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 3.7       |
| 2,4,5 - TNT         | <         | Zinc                                | 101.5     |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | ۶.        |
| Mitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions: Nitrate     | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | 113.36    | 2,4-dichlorophenol                  | *         |
| Chloride            | 7.        | Dibutylphthlate                     | *         |
| Fluoride            | <         | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         | •                                   |           |
| Cyanide             | <         |                                     |           |
| Metais:<br>Aluminum | 1502.2    | Organics (GC/EC)                    |           |
| Antimony            | <         | p.p*-DDT                            | *         |
| Parium              | 133.0     | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 5.0       | Heptachlor                          | *         |
| Lead                | 11.3      | Lindane                             | *         |
| Manganese           | 426.3     | Toxaphene                           | *         |
| Strontium           | 18.2      | Aroclor 1016                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | COM. ug/g | ANALYTES                               | CON. ug/q |
|------------------|-----------|----------------------------------------|-----------|
| Explosives:      | <         | Copper                                 | ٤.٦       |
| 2,4,6 - TNT      | <         | Zinc                                   | 25.0      |
| 1,3,5 - TMB      | <         | Arsenic                                | <         |
| 2,4 - DNT        | <         | Beryllium                              | <         |
| 2,6 - DNT        | <         | Nickel                                 | 5.        |
| Nitrobenzene     | <         | Selenium                               | <         |
|                  |           | Silver                                 | <         |
|                  |           | Thallium                               | <         |
| Anions: Nitrate  | <         | Organics (GC/MS):<br>Pentachlorophenol | <         |
| Nitrite          | <         | O-chlorophenol                         | <         |
| Sulfate          | 92.54     | . 2,4-dichlorophenol                   | <         |
| Chloride         | 20.       | Dibutylphthlate                        | <         |
| Fluoride         | <         | Diethylphthlate                        | <         |
| Chromate         | <         | Nitrohenzene                           | <         |
| Thiocyanate      | <         |                                        |           |
| Cyanide          | <         |                                        |           |
| Motals: Aluminum | 957.2     | Organics (GC/EC)                       |           |
| Antimony         | <         | p.p'-DDT                               | *         |
| Barium           | 175.8     | Dieldrin                               | *         |
| Cadmium          | <         | Alpha PHC                              | *         |
| Chromium         | 11.4      | Heptachlor                             | *         |
| Lead             | 22.6      | Lindane                                | *         |
| Manganese        | 239.2     | Toxaphene                              | *         |
| Strontium        | 25.7      | Aroclor 1015                           | *         |
| Mercury          | < .       | Aroclor 1250                           | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | COM. ug/g | ANALYTES                            | CON. ug/g     |
|--------------------|-----------|-------------------------------------|---------------|
| Explosives:        | <         | Copper                              | 1.6           |
| 2,1,5 - TNT        | <         | Zinc                                | 3.0           |
| 1,3,5 - TNP        | <         | Λrsenic                             | <             |
| 2,4 - DNT          | <         | Peryllium                           | <             |
| 2,5 - DNT          | < '       | Nickel                              | 2.            |
| Nitrobenzene       | <         | Selenium                            | <             |
|                    |           | Silver                              | <             |
|                    |           | Thallium                            | <             |
| Anions:<br>Nitrate | <         | Organics (GC/MS): Pentachlorophenol | · <b>&lt;</b> |
| Nitrite            | <         | O-chlorophenol                      | <             |
| Sulfate            | 27.]      | 2,4-dichlorophenol                  | <             |
| Chloride           | 73.       | Dibutylphthlate                     | <             |
| Fluoride           | 6.        | Diethylphthlate                     | <             |
| Chromate           | <         | Nitrobenzene                        | <             |
| Thiocyanate        | <         |                                     |               |
| Cyanide            | <         |                                     |               |
| Metals:            |           |                                     |               |
| Aluminum           | 1486.0    | Organics (GC/EC)                    |               |
| Antimony           | <         | p.p.* - TUUT                        | *             |
| Barium             | 42.1      | Pieldrin                            | *             |
| Cadmium            | <         | Alpha BUC                           | *             |
| Chromium           | 4.3       | Heptachlor                          | *             |
| Lead               | 34.7      | Lindane                             | *             |
| Manganese          | 139.6     | Toxaphene                           | *             |
| Strontium          | 3.1       | Aroclor 1015                        | *             |
| Mercury            | <         | Aroclor 1260                        | *             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES           | COM. ug/g   | ANALYTES                            | CON. ug/g |
|--------------------|-------------|-------------------------------------|-----------|
| Explosives:        | <           | Copper                              | 9.3       |
| 2,4,5 - TNT        | <           | Zinc                                | 37.2      |
| 1,3,5 - TNB        | <           | Arsenic                             | <         |
| 2,4 - DNT          | <           | Beryllium                           | <         |
| 2,6 - DNT          | <           | Nickel                              | 6.        |
| Nitrobenzene       | <           | Selenium                            | <         |
|                    |             | * Silver                            | <         |
|                    |             | Thallium                            | <         |
| Anions:<br>Nitrate | <           | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | <           | O-chlorophenol                      | *         |
| Sulfate            | 550.2       | 2, 4-dichlorophenol                 | *         |
| Chloride           | 24.         | Dibutylphthlate                     | *         |
| Fluoride           | ۶.          | Diethylphthlate                     | *         |
| Chromate           | <           | Nitrobenzene                        | *         |
| Thiocyanate        | <           |                                     |           |
| Cyanide            | <           |                                     |           |
| Metals:            |             |                                     |           |
| Aluminum           | 702.        | Organics (GC/EC)                    |           |
| Antimony           | <           | p.p'-DDT                            | <         |
| Parium             | 158.2       | Dieldrin                            | <         |
| Cadmium            | <           | Alpha BHC                           | <         |
| Chromium           | 8.0         | Neptachlor                          | <         |
| Lead               | 30.3        | Lindane                             | <         |
| Manganese          | 143.4       | Toxaphene                           | <         |
| Strontium          | 20.0        | Aroclor 1016                        | <         |
| Mercury            | <b>&lt;</b> | Aroclor 1250                        | <         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

APPENDIX D

ANALYTICAL RESULTS FOR SOIL SAMPLING SITES

SOIL SAMPLING SITES

(AREAS 010 - 080)

| ANALYTES     | COM. ug/g     | ANALYTES                               | C∩M. ug/g |
|--------------|---------------|----------------------------------------|-----------|
| Explosives:  | <             | Copper                                 | ۴.1       |
| 2,4,6 - TNT  | <             | Zinc                                   | 25.4      |
| 1,3,5 - TMB  | <             | Arsenic                                | <         |
| 2, A = DNT   | <             | Beryllium                              | <         |
| 2,5 - DNT    | <             | Nickel                                 | ĸ.        |
| Nitrobenzene | <             | Selenium                               | <         |
|              |               | Silver                                 | <         |
|              |               | Thallium                               | <         |
| Anions:      | <             | Organics (GC/MS):<br>Pentachlorophenol | *         |
| Nitrite      | <             | 0-chlorophenol                         | *         |
| Sulfate      | ۸ <b>۵.</b> 0 | 2,4-dichlorophenol                     | *         |
| Chloride     | <b>6.</b>     | Dibutylphthlate                        | *         |
| Fluoride     | 7.            | Diethylphthlate                        | +         |
| Chromate     | <             | Nitrobenzene                           | *         |
| Thiocyanate  | <             |                                        |           |
| Cyanide      | <             |                                        |           |
| Metals:      |               |                                        |           |
| Aluminum     | 1361.4        | Organics (GC/EC)                       |           |
| Antimony     | <             | יויתו – י יו                           | *         |
| Barium       | 102.5         | Dieldrin                               | *         |
| Cadmium      | <             | Alpha BHC                              | *         |
| Chromium     | 11.2          | Heptachlor                             | *         |
| Lead         | 20.4          | Lindane                                | *         |
| Manganese    | 49.8          | Toxaphene                              | *         |
| Strontium    | 10.1          | Aroclor 1015                           | *         |
| Mercury      | <             | Aroclor 1250                           | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/g | ANALYTES                            | COM. ug/g |
|------------------|-----------|-------------------------------------|-----------|
| Explosives:      | <         | Copper                              | 17.4      |
| 2,4,5 - TNT      | <         | Zinc                                | 55.4      |
| 1,3,5 - TMB      | <         | Arsenic                             | <         |
| 2,4 - DNT        | <         | Beryllium                           | <         |
| 2,5 - PNT        | <         | Nickel                              | 5.        |
| Nitrobenzene     | <         | Selenium                            | <         |
|                  |           | Silver                              | <         |
|                  |           | Thallium                            | <         |
| Anions:          | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite          | <         | 0-chlorophenol                      | *         |
| Sulfate          | 29.7      | 2,4-dichlorophenol                  | *         |
| Chloride         | 5.        | Dibutylphthlate                     | *         |
| Fluoride         | 8.        | Piethylphthlate                     | *         |
| Chromate         | <         | Nitrobenzene                        | *         |
| Thiocyanate      | <         |                                     |           |
| Cyanide          | <         |                                     |           |
| Metals: Aluminum | ]/35.     | Organics (GC/EC)                    |           |
| Antimony         | <         | р.рппт                              | *         |
| Parium           | 105.5     | Pieldrin                            | *         |
| Cadmium          | <         | Alpha PHC                           | *         |
| Chromium         | 12.3      | Heptachlor                          | *         |
| Lead             | 25.1      | Lindane                             | *         |
| Manganese        | 99.4      | Toxaphene                           | *         |
| Strontium        | 9.5       | Aroclor 1016                        | *         |
| Mercury          | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or dategory not tested as per project scope.

| ANALYTES            | CON. ug/g | ANA L.YTES                          | CON. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Fxplosives: 1,3-DNB | <         | Copper                              | 15.4      |
| 2,4,6 - TNT         | <         | Zinc                                | 17.2      |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Peryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | 5.        |
| Nitrobenzene        | <         | Selenium                            | <         |
| •                   |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions: Witrate     | *<br>8.33 | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | ላሴ. ላሪ    | 2,4-dichlorophenol                  | *         |
| Chloride            | 7.        | Dibutylphthlate                     | *         |
| Fluoride            | ٥.        | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:             |           |                                     |           |
| Aluminum            | 1128.6    | Organics (GC/EC)                    |           |
| Antimony            | <         | p.pnnr                              | *         |
| Parium              | 98.4      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 14.4      | Heptachlor                          | *         |
| Lead                | 28.4      | Lindane                             | *         |
| Manganese           | 122.1     | Toxaphene                           | *         |
| Strontium           | 9.4       | Aroclor 1016                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES     | CON. ug/g    | ANALYTES                            | COM. ug/q |
|--------------|--------------|-------------------------------------|-----------|
| Explosives:  | **           | Copper                              | *         |
| 2,4,6 - TNT  | **           | Zinc                                | *         |
| 1,3,5 - TNB  | **           | Arsenic                             | *         |
| 2,4 - DNT    | **           | Beryllium                           | *         |
| 2,5 - DNT    | **           | Nickel                              | *         |
| Nitrobenzene | * *          | Selenium                            | *         |
|              |              | Silver                              | *         |
|              |              | Thallium                            | *         |
| Anions:      | *            | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite      | *            | O-chlorophenol                      | <         |
| Sulfate      | *            | 2,4-dichlorophenol                  | <         |
| Chloride     | *            | Dibutylphthlate                     | <         |
| Fluoride     | *            | Diethylphthlate                     | <         |
| Chromate     | *            | Nitrobenzene                        | <         |
| Thiocyanate  | *            |                                     |           |
| Cyanide      | *            |                                     |           |
| Metals:      | *            | Organics (GC/EC)                    |           |
| Λntimony     | *            | р.р'-DT                             | *         |
| Parium       | *            | Pieldrin                            | *         |
| Cadmium      | *            | Alpha BHC                           | *         |
| Chromium     | <del>*</del> | Heptachlor                          | *         |
| Lead         | *            | Lindane                             | *         |
| Manganese    | *            | Toxaphene                           | *         |
| Strontium    | *            | Aroclor 1015                        | *         |
| Mercury      | *            | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

<sup>\*\*</sup> Samples 0101, 0102 and 0103 each screened individually for organics by HPLC.

| ANALYTES         | CON. ug/g   | ANALYTES           | CON. ug/g |
|------------------|-------------|--------------------|-----------|
| Explosives:      | Con Congres |                    |           |
| 1,3-DNB          | <           | Copper             | *         |
| 2, 4, 6 - TNT    | <           | 7.inc              | *         |
| 1,3,5 - TMP      | <           | Arsenic            | *         |
| 2,4 - DNT        | <           | Beryllium          | *         |
| 2,6 - DNT        | <           | Nickel             | *         |
| Nitrobenzene     | <           | Sclenium           | *         |
|                  |             | Silver             | *         |
|                  |             | Thallium           | *         |
| Anions:          |             | Organics (GC/MS):  |           |
| Mitrate          | *           | Pentachlorophenoi  | *         |
| Nitrite          | *           | O-chlorophenol     | *         |
| Sulfate          | *           | 2,/-dichlorophenol | *         |
| Chioride         | *           | Dibutylphthlate    | *         |
| Fluorid          | *           | Diethylphthlate    | *         |
| Chromate         | *           | Nitrobenzene       | *         |
| Thiocyanate      | *           |                    |           |
| Cyanide          | *           |                    |           |
| Metals:          |             |                    |           |
| Aluminum         | *           | Organics (GC/EC)   |           |
| Antimony         | *           | P.P'-DDT           | *         |
| Barium           | *           | Dieldrin           | *         |
| Cadm <b>i</b> um | *           | Alpha BHC          | *         |
| Chromium         | *           | Heptachlor         | *         |
| Lead             | *           | Lindane            | *         |
| Manganese        | *           | Toxaphene          | *         |
| Strontium        | *           | Aroclor 1815       | *         |
| Mercury          | *           | Aroclor 1250       | *         |
| -                |             |                    |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| AMALYTES                                          | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------------------------------------|-----------|-------------------------------------|-----------|
| Explosives:                                       | <         | Copper                              | *         |
| 2,4,6 - TNT                                       | <         | Zinc                                | *         |
| 1,3,5 - TNB                                       | <         | Arsenic                             | *         |
| 2,4 - DNT                                         | <         | Beryllium                           | *         |
| 2,6 - DNT                                         | <         | Nickel                              | *         |
| Nitrobenzene                                      | <         | Selenium                            | *         |
|                                                   |           | Silver                              | *         |
|                                                   |           | Thallium                            | *         |
| Anions: Nitrate                                   | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                                           | *         | 0-chlorophenol                      | *         |
| Sulfate                                           | *         | 2,4-dichlorophenol                  | *         |
| Chloride                                          | *         | pibutylphthlate                     | *         |
| Fluoride                                          | *         | Diethylphthlate                     | *         |
| Chromate                                          | *         | Nitrobenzene                        | *         |
| Thiocyanate                                       | *         |                                     |           |
| Cyanide                                           | *         |                                     |           |
| Metais:<br>// // // // // // // // // // // // // | *         | Organics (GC/EC)                    |           |
| Antimony                                          | *         | TUU-, d• d                          | *         |
| Parium                                            | *         | Dieldrin                            | *         |
| Cadmium                                           | *         | Alpha FHC                           | *         |
| Chromium                                          | *         | Heptachlor                          | *         |
| Lead                                              | *         | Lindane                             | *         |
| Manganese                                         | *         | Toxaphene                           | *         |
| Strontium                                         | *         | Aroclor 1016                        | *         |
| Mercury                                           | *         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | COM. ug/g | ANALYTES                            | COM. ug/g |
|------------------|-----------|-------------------------------------|-----------|
| Explosives:      | <         | Copper                              | <b>*</b>  |
| 2,4,6 - TMT      | <b>~</b>  | Zinc                                | *         |
| 1,3,5 - TNB      | <         | Arsenic                             | *         |
| 2, / - DNT       | <         | Peryllium                           | *         |
| 2,5 - DNT        | <         | Nickel                              | *         |
| Nitrobenzene     | <         | Selonium                            | *         |
| , 10103020       |           | Silver                              | *         |
|                  |           | Thallium                            | *         |
| Anions: Nitrate  | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite          | *         | N-chlorophenol                      | *         |
| Sulfate          | *         | 2,4-dichlorophenol                  | *         |
| Chioride         | *         | Dibutylphthlate                     | *         |
| Fluoride         | *         | Piethylphthlate                     | *         |
| Chromate         | *         | Nitrobenzene                        | *         |
| Thiocyanate      | *         |                                     |           |
| Cyanide          | *         |                                     |           |
| Metals: Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony         | *         | דיחת-יק. ק                          | *         |
| Barium           | *         | Dieldrin                            | *         |
| Cadmium          | *         | Alpha BHC                           | *         |
| Chromium         | *         | Neptachlor                          | *         |
| Lead             | *         | Lindane                             | *         |
| Manganese        | *         | Toxaphene                           | *         |
| Strontium        | *         | Aroclor 1916                        | *         |
| Mercury          | *         | Arodlor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | CON. ug/g | ANALYTES                            | CON. ug/g |
|------------------|-----------|-------------------------------------|-----------|
| Explosives:      | <         | Copper                              | *         |
| 2,4,5 - TNT      | 328.76    | Zinc                                | *         |
| 1,3,5 - TNB      | 10.35     | Arsenic                             | *         |
| 2,4 - DNT        | <         | Peryllium                           | *         |
| 2,6 - DNT        | <         | Nickel                              | *         |
| Nitrobenzene     | <         | Selenium                            | *         |
|                  |           | Silver                              | *         |
|                  |           | Thallium                            | *         |
| Anions:          | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite          | *         | O-chlorophenol                      | *         |
| Sulfate          | *         | 2,4-dichlorophenol                  | *         |
| Chioride         | *         | Dibutylphthlate                     | *         |
| Fluoride         | *         | Diethylphthlate                     | *         |
| Chromate         | *         | Nitrobenzene                        | *         |
| Thiocyanate      | *         |                                     |           |
| Cyanide          | *         |                                     |           |
| Metals: Aluminum | *         | Organias (CC/EC)                    |           |
| Antimony         | *         | Organics (GC/EC)                    |           |
| -                |           | p.p'-DDT                            | *         |
| Barium           | *         | Dieldrin                            | *         |
| Cadmium          | *         | Alpha BHC                           | *         |
| Chromium         | *         | Heptachlor                          | *         |
| Lead             | *         | Lindane                             | *         |
| Manganese        | *         | Toxaphene                           | *         |
| Strontium        | *         | Aroclor 1016                        | *         |
| Mercury          | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| man and the state of the state |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Explosives: 1,3-DNB < Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * |
| 2,4,5 - TNT 7545.58 Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * |
| 1,3,5 - TNB 54.65 Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * |
| 2,4 - DNT 13.50 Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | * |
| 2,5 - DNT < Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | * |
| Nitrobenzene < Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * |
| Anions: Organics (GC/MS): Nitrate * Pentachlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * |
| Nitrite * 0-chlorophenol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * |
| Sulfate * 2,4-dichlorophenoi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * |
| Chloride * Dibutylphthlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * |
| Fluoride * Piethylphthlate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | * |
| Chromate * Nitrohenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | * |
| Thiocyanate *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |
| Cyanide *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| Metals:  Λluminum * Organics (GC/EC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |
| Antimony * p.p'-DDT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * |
| Rarium * Dieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * |
| Cadmium * Alpha BHC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | * |
| Chromium * Heptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * |
| Lead * Lindane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * |
| Manganese * Toxaphene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | * |
| Strontium * Aroclor 1616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * |
| Mercury * Aroclor 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * |

<sup>&</sup>lt; less than established detection limit.</pre>

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g     | ANALYTES                            | COM. ug/g |
|---------------------|---------------|-------------------------------------|-----------|
| Explosives:         | <             | Copper                              | *         |
| 2,4,5 - TNT         | 42.44         | Zinc                                | *         |
| 1,3,5 - TNB         | <             | Arsenic                             | *         |
| 2,4 - DNT           | · <b>&lt;</b> | Beryllium                           | *         |
| 2,6 - DNT           | <             | Nickel                              | *         |
| Nitrobenzene        | <             | Selenium                            | *         |
|                     |               | Silver                              | *         |
|                     |               | Thallium                            | *         |
| Anions:             | *             | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *             | O-chlorophenol                      | *         |
| Sulfate             | *             | 2,4-dichlorophenol                  | *         |
| Chloride            | *             | Dibutylphthlate                     | *         |
| Fluoride            | *             | Diethylphthlate                     | *         |
| Chromate            | *             | Nitrobenzene                        | *         |
| Thiocyanate         | *             |                                     |           |
| Cyanide             | *             |                                     |           |
| Metals:<br>Aluminum | * _           | Organics (GC/EC)                    |           |
| Antimony            | *             | р.р'-DDT                            | *         |
| Barium              | *             | Dieldrin                            | *         |
| Cadmium             | *             | Alpha BHC                           | *         |
| Chromium            | *             | Heptachlor                          | *         |
| Lead                | *             | Lindane                             | *         |
| Manganese           | * .           | Toxaphene                           | *         |
| Strontium           | *             | Aroclor 1815                        | *         |
| Mercury             | *             | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | *         |
| 2,4,6 - TNT         | 0.90      | Zinc                                | *         |
| 1,3,5 - TNB         | <         | Arsenic                             | *         |
| 2,4 - DNT           | <         | Beryllium                           | *         |
| 2,5 - DNT           | <         | Nickel                              | *         |
| Nitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions: Nitrate     | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | O-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fluoride            | *         | Diethylphthlate                     | * .       |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | * '       |                                     |           |
| Metais:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | p.p*-DDT                            | *         |
| Barium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1015                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | CUM. nd/d |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | *         |
| 2,4,5 - TNT         | 6.03      | Zinc                                | *         |
| 1,3,5 - TNB         | 2.82      | Arsenic                             | *         |
| 2,4 - DNT           | <         | Beryllium                           | *         |
| 2,5 - DNT           | <         | Nickel                              | *         |
| Nitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions:<br>Nitrate  | * *       | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | 0-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fiuoride            | *         | Diethylphthlate                     | * ,       |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | p.p TTT                             | *         |
| Barium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | λlpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1615                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |
|                     |           |                                     |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL SAMPLING SITE

| ANALYTES            | COM. ug/g  | ANALYTES                            | COM. ug/g |
|---------------------|------------|-------------------------------------|-----------|
| Explosives:         | <          | Copper                              | *         |
| 2,4,5 - TNT         | <          | Zinc                                | *         |
| 1,3,5 - TMP         | <          | Arsenic                             | *         |
| 2,4 - DNT           | <          | Beryllium                           | *         |
| 2,5 - DNT           | <          | Nickel                              | *         |
| Nitrobenzene        | <          | Selenium                            | *         |
|                     |            | Silver                              | *         |
|                     |            | Thallium                            | *         |
| Anions:             | *          | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *          | O-chlorophenol                      | *         |
| Sulfate             | *          | 2,4-dichlorophenol                  | *         |
| Chloride            | *          | Dibutylphthlate                     | *         |
| Fluoride            | *          | Diethylphthlate                     | *         |
| Chromate            | *          | Nitrobenzene                        | *         |
| Thiocyanate         | *          |                                     |           |
| Cyanide             | *          |                                     |           |
| Metals:<br>Aluminum | *          | Organics (GC/EC)                    |           |
| Antimony            | <b>.</b> * | p.p'-DT                             | *         |
| Barium              | *          | Dieldrin                            | *         |
| Cadmium             | *          | Alpha BHC                           | *         |
| Chromium            | *          | · Heptachlor                        | *         |
| Lead                | *          | Lindane                             | *         |
| Manganese           | *          | Toxaphene                           | *         |
| Strontium           | *          | Aroclor 1816                        | *         |
| Mercury             | *          | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES                                      | COM. ug/g | ANALYTES                            | COM. ug/g |
|-----------------------------------------------|-----------|-------------------------------------|-----------|
| Explosives:                                   | <         | Copper                              | *         |
| 2,4,6 - TNT                                   | 20.77     | Zinc                                | *         |
| 1,3,5 - TMP                                   | <         | Arsenic                             | *         |
| 2,4 - DNT                                     | <         | Reryllium                           | *         |
| 2,5 - DNT                                     | <         | Nickel                              | . *       |
| Nitrobenzene                                  | <         | Selenium                            | *         |
| ,, <b>, , , ,</b> , , , , , , , , , , , , , , |           | . Silver                            | *         |
|                                               |           | Thallium                            | *         |
| Anions:                                       | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite .                                     | *         | C-chlorophenol                      | *         |
| Sulfate                                       | *         | 2,4-dichlorophenol                  | *         |
| Chloride                                      | *         | Dibutylphthlate                     | *         |
| Fluoride                                      | *         | Diethylphthlate                     | *         |
| Chromate                                      | *         | Nitrobenzene                        | *         |
| Thiocyanate                                   | *         |                                     |           |
| Cyanide                                       | *         |                                     |           |
| Metals:                                       | *         | Organics (GC/EC)                    |           |
| Antimony                                      | *         | p.p'-DDT                            | *         |
| Parium                                        | *         | Dieldrin                            | *         |
| Cadmium                                       | *         | Alpha PNC                           | *         |
| Chromium                                      | *         | Heptachlor                          | *         |
| Lead                                          | *         | Lindane                             | * .       |
| Manganese                                     | *         | Toxaphene                           | *         |
| Strontium                                     | *         | Aroclor 1016                        | *         |
| Mercury                                       | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | <b>+</b>  |
| 2,4,6 - TNT         | 5588.82   | Zinc                                | *         |
| 1,3,5 - TNB         | 17.55     | Arsenic                             | *         |
| 2,4 - DNT           | 16.20     | Beryllium                           | *         |
| 2,5 - DMT           | <         | Nickel                              | *         |
| Nitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions:<br>Nitrate  | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | O-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fluoride            | *         | Diethylphthlate                     | *         |
| Chromate            | *         | Nitrobenzene .                      | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | דיִתה-יִּם, ק                       | *         |
| Barium              | <b>*</b>  | Dieldrin                            | *         |
| Cadmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1015                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.</pre>

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/g | ANALYTES                            | CON. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 2.7       |
| 2,4,5 - TNT         | 10.15     | Zinc                                | 8.1       |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2, 1 - DNT          | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | 1.        |
| Nitrobenzene        | <         | Solenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | 15.8      | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | 0-chlorophenol                      | *         |
| Sulfate             | 38.2      | 2,4-dichlorophenol                  | *         |
| Chloride            | <         | Pibutylphthlate                     | *         |
| Fluoride            | 5.        | Diethylphthlate                     | *         |
| Chromate            | <         | Mitrobenzene                        | *         |
| Thiocyanate         | <         | •                                   |           |
| Cyanide             | <         |                                     |           |
| Metais:<br>Aluminum | 1,009.8   | Organics (GC/EC)                    |           |
| Antimony            | <         | P.P'-DDT                            | *         |
| Parium              | 87.0      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 16.3      | Heptachlor                          | *         |
| Lead                | 25.5      | Lindane                             | *         |
| Manganese           | 90.0      | Toxaphene                           | *         |
| Strontium           | 5.0       | Arodlor 1015                        | *         |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or dategory not tested as per project scope.

| ANALYTES            | COM. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives: 1,3-DNB | <         | Copper                              | 4].]      |
| 2,4,6 - TNT         | 4.61      | Zinc                                | 17.4      |
| 1,3,5 - TNR         | <         | , Arsenic                           | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | Λ.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | 22.3      | Organics (GC/MS): Pentachiorophenol | *         |
| Nitrite             | <         | N-chlorophenol                      | *         |
| Sulfate             | 37.5      | 2,4-dichlorophenol                  | *         |
| Chloride            | <         | Pibutylphthlate                     | *         |
| Fluoride            | 5.        | Diethylphthlate                     | *         |
| Chromate            | . <       | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 1386.4    | Organics (GC/EC)                    |           |
| Antimony            | <         | р.р'-ППТ                            | *         |
| Parium              | 135.5     | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 12.3      | Heptachlor                          | *         |
| Lead                | 25.3      | Lindane                             | *         |
| Manganese           | 199.2     | Toxaphene                           | *         |
| Strontium           | n • h     | Aroclor 1016                        | *         |
| Mercury             | <         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/g | ANALYTES                            | CC⋈. nd/d |
|---------------------|-----------|-------------------------------------|-----------|
| Fxplosives:         | <         | Copper                              | 2.8       |
| 2,4,5 - TNT         | <         | Zinc                                | 0.3       |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2.4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | 2.2       |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:             | a . o.c   | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | N-chlorophenol                      | *         |
| Sulfate             | 33.25     | 2,4-dichlorophenol                  | *         |
| Chloride            | <         | Dibutylphthlate                     | *         |
| Fluoride            | ۴.        | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 1426.1    | Organics (GC/EC)                    |           |
| Antimony            | <         | p.pnnT                              | *         |
| Barium              | 57.2      | Dieldrin                            | *         |
| Cadmium             | <         | _Alpha_BHC                          | *         |
| Chromium            | 10.3      | Heptachlor                          | *         |
| Lead                | 24.6      | Lindane                             | *         |
| Manganese           | 137.5     | Toxaphene                           | *         |
| Strontium           | 4.3       | Aroclor 1015                        | *         |
| Mercury             | <         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES               | CON. ug/g | ANALYTES                            | CON. ug/g |
|------------------------|-----------|-------------------------------------|-----------|
| Explosives:            | **        | Copper                              | *         |
| 2,4,6 - TNT            | **        | Zinc                                | *         |
| 1,3,5 - TNB            | **        | Arsenic                             | *         |
| 2.4 - DNT              | **        | Beryllium                           | *         |
| 2,6 - DNT              | **        | Nickel                              | *         |
| Nitrobenzene           | **        | Selenium                            | *         |
|                        |           | Silver                              | *         |
|                        |           | Thallium                            | *         |
| <u>Λnions:</u> Nitrate | *         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite                | *         | 0-chlorophenol                      | <         |
| Sulfate                | *         | 2,4-dichlorophenol                  | <         |
| Chioride               | *         | Dibutylphthlate                     | <         |
| Fluoride               | *         | . Diethylphthlate                   | <         |
| Chromate               | *         | Nitrobenzene                        | <         |
| Thiocyanate            | *         |                                     |           |
| Cyanide                | *         |                                     |           |
| Metais:<br>Niuminum    | *         | Organics (GC/EC)                    |           |
| Antimony               | *         | р•р* <b>-</b> ппп                   | *         |
| Barium                 | *         | Dieldrin                            | *         |
| Cadmium                | *         | Alpha PHC                           | *         |
| Chromium               | *         | Heptachlor                          | *         |
| Lead                   | *         | Lindane                             | *         |
| Manganese              | *         | Toxaphene                           | *         |
| Strontium              | *         | Aroclor 1016                        | *         |
| Mercury                | *         | Aroclor 1250                        | *         |
|                        |           |                                     |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES               | COM. ug/g     | ANALYTES                            | CON. ug/g |
|------------------------|---------------|-------------------------------------|-----------|
| Explosives:<br>1,3-DMP | <             | Copper                              | 3.3       |
| 2,4,6 - TNT            | :             | Zinc                                | 6.3       |
| 1,3,5 - TMB            | <             | Arsenic                             | <         |
| 2,4 - DNT              | <             | Beryllium                           | · <       |
| 2,6 - DNT              | <             | Nickel                              | 4.        |
| Nitrobenzene           | <             | Selenium                            | <         |
|                        |               | Silver                              | <         |
|                        |               | Thallium                            | <         |
| Anions:<br>Mitrate     | թ <b>.</b> րս | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                | <             | 0-chlorophenol                      | *         |
| Sulfate                | 51.03         | ?,4-dichlorophenol                  | *         |
| Chloride               | 5.            | Dibutylphthlate                     | *         |
| Fluoride               | 6.            | Diethylphthlate                     | *         |
| Chromate               | <             | Nitrohenzene                        | *         |
| Thiocyanate            | <             | •                                   |           |
| Cyanide                | <             |                                     |           |
| Metais:<br>Aiuminum    | 1128.6        | Organics (GC/EC)                    |           |
| Antimony               | <             | р.рппт                              | *         |
| Rarium                 | 227.8         | Dieldrin                            | *         |
| Cadmium                | <             | λlpha BHC                           | *         |
| Chromium               | 8.4           | Heptachlor                          | *         |
| Lead                   | 27.5          | Lindane                             | *         |
| Manganese              | 742.0         | Toxaphene                           | *         |
| Strontium              | 9.4           | Aroclor 1016                        | *         |
| Mercury                | <             | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANAI.YTES                           | COM. ug/q |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 2.7       |
| 2,4,5 - TNT         | <         | 7inc                                | 30.1      |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | . <       | Peryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | 5.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions: Witrate     | 7.41      | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | 28.83     | 2,4-dichlorophenol                  | *         |
| Chloride            | <         | Dibutylphthlate                     | *         |
| Fluoride            | ۶.        | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Nluminum | 1105.5    | Organics (GC/EC)                    |           |
| Antimony            | <         | ₽• <b>ף'</b> -⊓חת                   | *         |
| Barium              | 155.8     | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 9.2       | Heptachlor                          | *         |
| Lead                | 25.5      | Lindane                             | *         |
| Manganese           | 499.5     | Toxaphene                           | *         |
| Strontium           | 11.8      | . Arodlor 1016                      | *         |
| Mercury             | <         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | CON. ug/g | ANALYTES                            | CON. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 2.0       |
| 2,4,6 - TNT         | <         | Zinc                                | 11.1      |
| 1,3,5 - TMB         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | ٨.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | 41.04     | 2,4-dichlorophenol                  | *         |
| Chloride            | <         | Dibutylphthlate                     | *         |
| Fluoride            | <         | Diethylphthlate                     | *         |
| Chromate            | <         | Mitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 3.6       | Organics (GC/EC)                    |           |
| Antimony            | <         | דחת-ים. ק                           | *         |
| Parium              | 6].0      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 9.4       | Heptachlor                          | *         |
| Lead                | 25.5      | Lindane                             | *         |
| Manganese           | 140.8     | Toxaphene                           | *         |
| Strontium           | 3.0       | Aroclor 1816                        | <b>*</b>  |
| Mercury             | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES         | COM. ug/g | ANALYTES                            | COM. ug/g |
|------------------|-----------|-------------------------------------|-----------|
| Pxplosives:      | **        | Copper                              | *         |
| 2,4,6 - TNT      | **        | 7inc                                | *         |
| 1,3,5 - TNB      | **        | Arsenic                             | *         |
| 2.4 - DNT        | · * *     | Reryllium                           | *         |
| 2,6 - DNT        | **        | Nickel                              | *         |
| Nitrobenzene     | **        | Selenium                            | *         |
|                  |           | Silver                              | *         |
|                  |           | Thallium                            | *         |
| Anions:          | *         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite          | *         | 0-chlorophenol                      | <         |
| Sulfate          | *         | 2,/-dichlorophenol                  | <         |
| Chloride         | *         | Dibutylphthlate                     | <         |
| Fluoride         | *         | Diethylphthlate                     | <         |
| Chromate         | *         | Nitrohenzene                        | <         |
| Thiocyanate      | *         |                                     |           |
| Cyanide          | *         |                                     |           |
| Metals: Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony         | *         | p.p'-DDT                            | *         |
| Barium           | *         | Dieldrin                            | *         |
| Cadmium          | *         | Alpha PHC                           | *         |
| Chromium         | *         | Heptachlor                          | *         |
| Lead             | *         | Lindane                             | *         |
| Manganese        | *         | Toxaphene                           | *         |
| Strontium        | *         | Aroclor 1015                        | *         |
| Mercury          | *         | Aroclor 1250                        | *         |
|                  |           |                                     |           |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/g | ANALYTES                            | CON. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 23.8      |
| 2,4,6 - TNT         | <         | Zinc                                | 25.9      |
| 1,3,5 - TNB         | <         | Arsenic                             | <         |
| $2 \cdot A - DNT$   | <         | Beryllium                           | <         |
| 2,6 - DNT           | <         | Nickel                              | ۶.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | <         |
| Anions:<br>Nitrate  | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | 70.50     | 2,4-dichlorophenol                  | *         |
| Chloride            | 21.       | Dihutylphthlate                     | *         |
| Fluoride            | 11.       | Piethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metals:<br>Aluminum | 3.7       | Organics (GC/EC)                    |           |
| Antimony            | <         | P.P'-DDT                            | *         |
| Barium              | 126.2     | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            |           | Heptachlor                          | *         |
| Lead                | 27.0      | Lindane                             | *         |
| Manganese           | 141.6     | Toxaphene                           | *         |
| Strontium           | 14.5      | Aroclor 1916                        | *         |
| Mercury             | <         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES                  | CON. ug/g     | ANALYTES                            | COM. ug/g |
|---------------------------|---------------|-------------------------------------|-----------|
| Explosives:               | <             | Copper                              | 4.7       |
| 2,4,6 - TNT               | <             | Zinc                                | 52.0      |
| 1,3,5 - TMB               | <             | Arsenic                             | <         |
| 2,4 - DNT                 | <             | Peryllium                           | <         |
| 2,5 - DMT                 | <             | Nickel                              | 3.        |
| Mitrobenzene              | <             | Selenium                            | <         |
|                           |               | · Silver                            | <         |
|                           |               | Thallium                            | <         |
| <u>Λnions:</u><br>Nitrate | 14.94         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                   | <             | 0-chlorophenol                      | *         |
| Sulfate                   | 411.05        | 2,4-dichlorophenol                  | *         |
| Chloride                  | 1224.         | Dibutylphthlate                     | *         |
| Fluoride                  | <             | Diethylphthlate                     | *         |
| Chromate                  | <             | Nitrobenzene                        | *         |
| Thiocyanate               | <             |                                     |           |
| Cyanide                   | <             |                                     |           |
| Metals:<br>Aluminum       | 1276.7        | Organics (GC/EC)                    |           |
| Antimony                  | <             | p.p'-DDT                            | *         |
| Barium                    | 83.8          | Dieldrin                            | *         |
| Cadmium                   | <             | Alpha BHC                           | *         |
| Chromium                  | 6.0           | Heptachlor                          | *         |
| Lead                      | 27.3          | Lindane                             | *         |
| Manganese                 | 51.2          | Toxaphene                           | *         |
| Strontium                 | 5.5           | Aroclor 1016                        | *         |
| Mercury                   | · <b>&lt;</b> | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| AMALYTES                   | COM. ug/g    | ANALYTES                            | COM. ug/g |
|----------------------------|--------------|-------------------------------------|-----------|
| <u>Txplosives:</u> 1,3-DNB | <            | Copper                              | 9.4       |
| 2,4,5 - TNT                | <            | Zinc                                | NO.0      |
| 1,3,5 - TNB                | <            | Arsenic                             | <         |
| 2,4 - DNT                  | <            | Reryllium                           | <         |
| 2,5 - DNT                  | <            | Nickel                              | 7.        |
| Mitrobenzene               | <            | Selenium                            | <         |
| 101000000000               |              | Silver                              | <         |
|                            |              | Thallium                            | <         |
| Anions:                    | 12.23        | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                    | <            | O-chlorophenol                      | *         |
| Sulfate                    | 148.72       | 2,4-dichlorophenol                  | *         |
| Chioride                   | 89.          | pibutylphthlate                     | *         |
| Fluoride                   | ŷ.           | Diethylphthlate                     | *         |
| Chromate                   | <            | Nitrobenzene                        | *         |
| Thiocyanate                | <            |                                     |           |
| Cyanide                    | <            |                                     |           |
| Metals:                    | 1105.5       | Organics (GC/EC)                    |           |
| Antimony                   | <            | p.p'-DDT                            | *         |
| Barium                     | 105.1        | Dieldrin                            | *         |
| Cadmium                    | <            | Alpha BHC                           | *         |
| Chromium                   | ۶ <b>.</b> ۶ | Neptachlor                          | *         |
| Lead                       | 27.1         | Lindane                             | *         |
| Manganese                  | 152.2        | Toxaphene                           | *         |
| Strontium                  | 10.5         | Aroclor 1016                        | *         |
| Mercury                    | <            | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | **        | Copper                              | *         |
| 2,4,6 - TNT         | **        | 7inc                                | *         |
| 1,3,5 - TNB         | **        | Arsenic                             | *         |
| 2,4 - DNT           | **        | Reryllium                           | *         |
| 2,6 - DNT           | **        | Nickel                              | *         |
| Nitrobenzene        | **        | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions:             | *         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite             | *         | O-chlorophenol                      | <         |
| Sulfate             | *         | 2,4-dichlorophenol                  | <         |
| Chioride            | *         | Dibutylphthlate                     | <         |
| Fluoride            | *         | Diethylphthlate                     | <         |
| Chromate            | *         | Nitrobenzene                        | . <       |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metais:<br>Niuminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | דחת-יק.ק                            | *         |
| Parium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | * .       |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1016                        | *         |
| Mercury             | *         | Aroclor 1260                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONCHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILG701T

| ANALYTES            | CON. ug/g     | ANALYTES                            | COM. ug/g |
|---------------------|---------------|-------------------------------------|-----------|
| Explosives:         | <             | Copper                              | 156.1     |
| 2,4,6 - TNT         | <             | Zinc                                | 18.5      |
| 1,3,5 - TNB         | <             | Arsenic                             | <         |
| 2,4 - PNT           | <             | Reryllium                           | <         |
| 2,5 - DNT           | <             | Nickel                              | 7.        |
| Nitrobenzene        | <             | Selenium                            | <         |
|                     |               | Silver                              | <         |
|                     |               | Thallium                            | <         |
| Anions:             | <             | Organics (GC/MS): Pentachlorophenol | *         |
| Mitrite             | <             | O-chlorophenol                      | *         |
| Sulfate             | 244.02        | 2,4-dichlorophenol                  | *         |
| Chloride            | 72.           | Dibutylphthlate                     | *         |
| Fluoride            | 13.           | Diethylphthlate                     | *         |
| Chromate            | <             | Nitrobenzene                        | *         |
| Thiocyanate         | · <b>&lt;</b> |                                     |           |
| Cyanide             | <             |                                     |           |
| Metals:<br>Aluminum | 1054.3        | Organics (GC/EC)                    |           |
| Antimony            | <             | ₽.ף'−דחת                            | *         |
| Parium              | 557.3         | Dieldrin                            | *         |
| Cadmium             | 2.3           | Alpha BHC                           | *         |
| Chromium            | 14.5          | . Heptachlor                        | *         |
| Lead                | 27.2          | Lindane                             | *         |
| Manganese           | 121.0         | Toxaphene                           | *         |
| Strontium           | 153.0         | Aroclor 1016                        | *         |
| Mercury             | <             | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES<br>Explosives: | CON. ug/g | ANALYTES           | COM. ug/g |
|-------------------------|-----------|--------------------|-----------|
| 1,3-DNB                 | <         | Mercury<br>Copper  | 153.9     |
| 2,4,5 - TNT             | <         | 7inc               | 472.0     |
| 1,3,5 - TNP             | <         | Arsenic            | <         |
| 2,4 - DNT               | <         | Beryllium          | <         |
| 2,5 - DNT               | <         | Nickel             | 18.       |
| Nitrobenzene            | <         | Selenium           | <         |
|                         |           | Silver             | <         |
|                         |           | . Thallium         | <         |
| Anions:                 |           | Organics (GC/MS):  |           |
| Nitrate                 | <         | Pentachlorophenol  | *         |
| Nitrite                 | <         | O-chlorophenol     | *         |
| Sulfate                 | 57.44     | 2,4-dichlorophenol | *         |
| Chloride                | 14.       | Dibutylphthlate    | *         |
| Fluoride                | 9.        | Diethylphthlate    | *         |
| Chromate                | <         | Nitrobenzene       | *         |
| Thiocyanate             | <         |                    |           |
| Cyanide                 | <         |                    |           |
| Metals:                 |           |                    |           |
| Aluminum                | 1067.0    | Organics (GC/EC)   |           |
| Antimony                | <         | р.р. – рот         | *         |
| Parium                  | 290.4     | Dieldrin           | *         |
| Cadmium                 | 5.2       | Alpha BHC          | *         |
| Chromium                | 22.5      | <b>Heptachlor</b>  | *         |
| Lead                    | <         | Lindane            | *         |
| Manganese               | 3.1       | Toxaphene          | *         |
| Strontium               | 232.9     | Arodlor 1015       | *         |
| Mercury                 | <         | Aroclor 1250       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

| ANALYTES            | COM. ug/g         | ANALYTES           | COM. ug/q |
|---------------------|-------------------|--------------------|-----------|
| Explosives:         | <                 | Copper             | 5.1       |
| 2,4,5 - TNT         | <                 | 7inc               | 37.0      |
| 1,3,5 - TMB         | <                 | Arsenic            | <         |
| 2,0 - PNT           | <                 | Beryllium          | <         |
| 2,5 - DNT           | <                 | Nickel             | r .       |
| Nitrobenzene        | <                 | Selenium           | <         |
|                     |                   | Silver             | <         |
|                     |                   | Thallium           | <         |
| Anions:             | F 40              | Organics (GC/MS):  | *         |
| Nitrate             | 7.09              | Pentachlorophenol  | *         |
| Nitrite             | <                 | O-chlorophenol     |           |
| Sulfate             | 236.89            | 2,4-dichlorophenol | *         |
| Chloride            | 120.              | Dibutylphthlate    | *         |
| Fluoride            | ν.                | Diethylphthlate    | *         |
| Chromate            | <                 | Nitrobenzene       | *         |
| Thiocyanate         | <                 |                    |           |
| Cyanide             | <                 |                    |           |
| Metais:<br>Aluminum | 1461.5            | Organics (GC/EC)   |           |
| Antimony            |                   | p.p'-DDT           | *         |
| •                   | <<br>0.00 F       | -                  | *         |
| Parium              | 208.5             | Dieldrin           |           |
| Cadmium             | <                 | Alpha BHC          | *         |
| Chromium            | $\dot{v} \cdot u$ | Heptachlor         | *         |
| Lead                | <                 | Lindane            | *         |
| Manganese           | 39 <b>0.</b> 1    | Toxaphene          | *         |
| Strontium           | 25.0              | Aroclor 1616       | *         |
| Mercury             | <                 | Aroclor 1250       | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY AMALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL@7@28

| ANALYTES           | COM. ug/g                             | ANALYTES                            | COM. ug/q |
|--------------------|---------------------------------------|-------------------------------------|-----------|
| Explosives:        | · · · · · · · · · · · · · · · · · · · | Copper                              | 53.6      |
| 2,4,6 - TNT        | <i>&lt;</i>                           | 7inc                                | 133.0     |
| 1,3,5 - TNB        | <                                     | Arsenic                             | <         |
| 2,4 - DNT          | <                                     | Reryllium                           | <         |
| 2,6 - DNT          | <                                     | Nickel                              | ۴.        |
| Mitrobenzene       | <                                     | Selenium                            | <         |
|                    |                                       | Silver                              | <         |
|                    |                                       | Thallium                            | 5.        |
| Anions:<br>Nitrate | <                                     | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | <                                     | O-chlorophenol                      | *         |
| Sulfate            | 469.17                                | 2,4-dichlorophenol                  | *         |
| Chloride           | 236.                                  | Dibutylphthlate                     | *         |
| Fluoride           | 3 c.                                  | Diethylphthlate                     | *         |
| Chromate           | <                                     | Nitrobenzene                        | *         |
| Thiocyanate        | <                                     |                                     |           |
| Cyanide            | <                                     |                                     |           |
| Metals:<br>Numinum | 1452.5                                | Organics (GC/EC)                    |           |
| Antimony           | <                                     | p.p'-DDT                            | *         |
| Barium             | 201.9                                 | · Pieldrin                          | *         |
| Cadmium            | 1.3                                   | Alpha BHC                           | *         |
| Chromium           | 16.5                                  | Heptachlor                          | *         |
| Lead               | <                                     | Lindane                             | *         |
| Manganese          | 352.3                                 | Toxaphene                           | *         |
| Strontium          | 344.9                                 | Aroclor 1016                        | *         |
| Mercury            | <                                     | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL0703T

| ANALYTES<br>Explosives: | CON. ug/g    | ANALYTES                            | COM. ug/g |
|-------------------------|--------------|-------------------------------------|-----------|
| 1,3-DNB                 | <            | Copper                              | 23.9      |
| 2,4,6 - TNT             | <            | Zinc                                | ነፍዮ.ፍ     |
| 1,3,5 - TNB             | <            | Arsenic                             | <         |
| 2,  - DNT               | <            | Reryllium                           | <         |
| 2,5 - DNT               | <            | Nickel                              | ۶.        |
| Mitrobenzene            | <            | Selenium                            | <         |
|                         |              | Silver                              | <         |
|                         |              | Thallium                            | 5.        |
| Anions: Mitrate         | 24.45        | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                 | <            | 0-chlorophenol                      | *         |
| Sulfate                 | 1323.09      | 2,4-dichlorophenol                  | *         |
| Chioride                | 102.         | Pibutylphthlate                     | *         |
| Fluoride                | 72.          | Diethylphthlate                     | *         |
| Chromate                | <            | Nitrobenzene                        | *         |
| Thiocyanate             | <            |                                     |           |
| Cyanide                 | <            |                                     |           |
| Metals:                 | 504.2        | Organics (GC/EC)                    |           |
| Antimony                | <            | P.p'-DDT                            | *         |
| Barium                  | 991.1        | Pieldrin                            | *         |
| Cadmium                 | <            | Alpha PHC                           | *         |
| Chromium                | 95.4         | Heptachlor                          | *         |
| Lead                    | <            | Lindane                             | *         |
| Manganese               | 234.3        | Toxaphene                           | *         |
| Strontium               | 91.2         | Aroclor 1015                        | *         |
| Mercury                 | <b>6.</b> 00 | Aroclor 1280                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONGHORM ARMY AMMUNITION PLANT CONTAMINATION STRVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILCTGR

| ANALYTES            | COM. nd/d | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | 24.5      |
| 2,4,5 - TNT         | <         | Zinc                                | 132.6     |
| 1,3,5 - TNP         | <         | Arsenic                             | <         |
| 2,4 - DNT           | <         | Beryllium                           | <         |
| 2,5 - DNT           | <         | Nickel                              | ٠.        |
| Nitrobenzene        | <         | Selenium                            | <         |
|                     |           | Silver                              | <         |
|                     |           | Thallium                            | 5.        |
| Anions: Nitrate     | <         | Organics (GC/MS): Pentachlorophenol | *         |
| Mitrite             | <         | O-chlorophenol                      | *         |
| Sulfate             | 446.25    | 2,4-dichlorophenol                  | *         |
| Chloride            | 100.      | Pibutylphthlate                     | *         |
| Fluoride            | 10.       | Diethylphthlate                     | *         |
| Chromate            | <         | Nitrobenzene                        | *         |
| Thiocyanate         | <         |                                     |           |
| Cyanide             | <         |                                     |           |
| Metais:<br>Aluminum | 1152.2    | Organics (GC/EC)                    |           |
| Antimony            | <         | p.p'-DDT                            | *         |
| Parium              | 42.5      | Dieldrin                            | *         |
| Cadmium             | <         | Alpha BHC                           | *         |
| Chromium            | 17.9      | Heptachlor                          | *         |
| Lead                | <         | Lindane                             | *         |
| Manganese           | 184.6     | Toxaphene                           | *         |
| Strontium           | 116.3     | Aroclor 1015                        | *         |
| Mercury             | <         | Arodior 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

#### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILCTOAT

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g    |
|---------------------|-----------|-------------------------------------|--------------|
| Explosives:         | <         | Copper                              | <i>٩</i> 6.5 |
| 2,4,5 - TNT         | 13.6      | Zinc                                | 750.2        |
| 1,3,5 - TMP         | <         | Arsenic                             | <            |
| 2, 4 - DNT          | <         | Beryllium                           | <            |
| 2,6 - DNT           | <         | Nickel                              | 1e.          |
| Nitrobenzene        | <         | Selenium                            | <            |
|                     |           | Silver                              | <            |
|                     |           | Thallium                            | 5.           |
| Anions:<br>Nitrate  | <         | Organics (GC/MS): Pentachlorophenol | *            |
| Nitrite             | <         | O-chlorophenol                      | *            |
| Sulfate             | 187.26    | 2,4-dichlorophenol                  | *            |
| Chloride            | 426.      | Dibutylphthlate                     | *            |
| Fluoride            | 17.       | Diethylphthlate                     | *            |
| Chromate            | <         | Nitrobenzene                        | *            |
| Thiocyanate         | <         |                                     |              |
| Cyanide             | <         | •                                   |              |
| Metals:<br>Aluminum | 1799.2    | Organics (GC/EC)                    |              |
| Antimony            | <         | p.p                                 | *            |
| Parium              | 151.8     | Dieldrin                            | *            |
| Cadmium             | ٦١.٠      | ∧lpha BHC                           | *            |
| Chromium            | 7 G . 7   | Heptachlor                          | *            |
| Lead                | <         | Lindane                             | *            |
| Manganese           | 5.2       | Toxaphene                           | *            |
| Strontium           | 1071.2    | Aroclor 1016                        | *            |
| Mercury             | <         | Arodlor 1250                        | *            |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

# LONCHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY AMALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL0704B

| ANALYTES            | COM. ug/g | ANALYTES                            | COM. ug/g  |
|---------------------|-----------|-------------------------------------|------------|
| Explosives:         | <         | Copper                              | 53.5       |
| 2,4,6 - TNT         | <         | Zinc                                | אַ בַּרִיר |
| 1,3,5 - TMB         | <         | Arsenic                             | <          |
| 2,4 - DNT           | <         | Beryllium                           | <          |
| 2,5 - DNT           | <         | Nickel                              | 10.        |
| Nitrobenzene        | <         | Selenium                            | <          |
|                     |           | Silver                              | <          |
|                     |           | Thallium                            | ς.         |
| Anions: Nitrate     | <         | Organics (GC/MS): Pentachlorophenol | *          |
| Nitrite             | <         | 0-chlorophenol                      | *          |
| Sulfate             | 239.56    | 2,4-dichlorophenol                  | *          |
| Chloride            | ajų.      | Dibutylphthlate                     | *          |
| Fluoride            | JO.       | Diethylphthlate                     | *          |
| Chromate            | <         | Nitrobenzene                        | *          |
| Thiocyanate         | <         |                                     |            |
| Cyanide             | <         |                                     |            |
| Metals:<br>Aluminum | 2024.5    | Organics (GC/EC)                    |            |
| Antimony            | <         | דיוין יין                           | *          |
| Barium              | 178.1     | Dieldrin                            | *          |
| Cadmium             | 15.9      | Alpha BHC                           | *          |
| Chromium            | 58.3      | Heptachlor                          | *          |
| Lead                | <         | Lindane                             | *          |
| Manganese           | 2.        | Toxaphene                           | *          |
| Strontium           | 1378.     | Aroclor 1016                        | *          |
| Mercury             | <         | Aroclor 1260                        | *          |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL0705T

| AMALYTES<br>Explosives: | CON. ug/g | ANALYTES                            | COM. uq/g |
|-------------------------|-----------|-------------------------------------|-----------|
| 1,3-DNB                 | <         | Copper                              | 8.2       |
| 2,4,6 - TNT             | <         | Zinc                                | 53.2      |
| 1,3,5 - TMP             | <         | Arsenic                             | <         |
| 2,4 - DNT               | <         | Beryllium                           | <         |
| 2,6 - DNT               | <         | Nickel                              | 5.        |
| Nitrobenzene            | <         | Selenium                            | <         |
|                         |           | Silver                              | <         |
|                         |           | Thallium                            | 5.        |
| Anions:<br>Nitrate      | 5.9n      | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite                 | <         | O-chlorophenol                      | *         |
| Sulfate                 | 54.45     | 2,4-dichlorophenol                  | *         |
| Chloride                | 5.        | Dibutylphthlate                     | *         |
| Fluoride                | 7.        | Diethylphthlate                     | *         |
| Chromate                | <         | Nitrobenzene                        | *         |
| Thiocyanate             | <         |                                     |           |
| Cyanide                 | <         |                                     |           |
| Metals:                 |           |                                     |           |
| Aluminum                | 2230.1    | Organics (GC/EC)                    |           |
| Antimony                | <         | p.pDTT                              | *         |
| Barium                  | 240.5     | Dieldrin                            | *         |
| Cadmium                 | <         | Alpha BHC                           | *         |
| Chromium                | 10.0      | Heptachlor                          | *         |
| Lead                    | 12.8      | Lindane                             | *         |
| Manganese               | 325.3     | Toxaphene                           | *         |
| Strontium               | 32.8      | Aroclor 1815                        | *         |
| Mercury                 | <         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

 $<sup>\</sup>star$  Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILG705B

| ANALYTES            | COM. ug/g | ANALYTES                            | COM. ug/g  |
|---------------------|-----------|-------------------------------------|------------|
| Explosives:         | <         | Copper                              | 80.3       |
| 2,4,5 - TNT         | <         | 7inc                                | 23.0       |
| 1,3,5 - TNB         | <         | Arsenic                             | <          |
| 2,4 - DNT           | <         | Beryllium                           | <          |
| 2,5 - DNT           | <         | Nickel                              | 7.         |
| Nitrobenzene        | <         | Selenium                            | <          |
|                     |           | Silver                              | <.         |
|                     |           | Thallium                            | <b>E</b> • |
| Anions: Nitrate     | 10.43     | Organics (GC/MS): Pentachlorophenol | *          |
| Nitrite             | <         | O-chlorophenol                      | *          |
| Sulfate             | 152.76    | 2,4-dichlorophenol                  | *          |
| Chloride            | б.        | , Dibutylphthlate                   | *          |
| Fluoride            | Ģ.        | Piethylphthlate                     | *          |
| Chromate            | <         | Nitrobenzene                        | *          |
| Thiocyanate         | . <       |                                     |            |
| Cyanide             | <         |                                     |            |
| Metals:<br>Aluminum | 1501.2    | Organics (GC/EC)                    |            |
| Antimony            | <         | p.p'-DDT                            | *          |
| Barium              | 188.2     | Dieldrin                            | *          |
| Cadmium             | 2.7       | Alpha BUC                           | *          |
| Chromium            | 15.5      | Heptachlor                          | *          |
| Lead                | 4.0       | Lindane                             | *          |
| Manganese           | 40.0      | Toxaphene                           | *          |
| Strontium           | 137.3     | Arodlor 1016                        | *          |
| Mercury             | <         | Aroclor 1256                        | *          |
|                     |           |                                     |            |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILEZOCT

| ANALYTES            | COM. ug/g | ANALYTES                            | CCM. nd/d     |
|---------------------|-----------|-------------------------------------|---------------|
| Explosives:         | **        | Copper                              | *             |
| 2,4,5 - TNT         | **        | Zinc                                | *             |
| 1,3,5 - TNB         | **        | Arsenic                             | *             |
| 2,4 - DN'T          | **        | Peryllium                           | *             |
| 2,6 - DNT           | **        | Nickel                              | *             |
| Nitrobenzene        | * *       | Selenium                            | *             |
|                     |           | Silver                              | *             |
|                     |           | Thallium                            | <b>,</b>      |
| Anions: Nitrate     | *         | Organics (GC/MS): Pentachlorophenol | <             |
| Nitrite             | *         | <sub>O-c</sub> hlorophenol          | <             |
| Sulfate             | *         | 2,4-dichlorophenol                  | <             |
| Chloride            | *         | Pibutylphthlate                     | <b>&lt;</b> · |
| Fluoride            | *         | Piethylphthlate                     | <             |
| Chromate            | *         | Nitrobenzene                        | <             |
| Thiocyanate         | *         |                                     |               |
| Cyanide             | *         |                                     |               |
| Metais:<br>Aluminum | *         | Organics (GC/EC)                    |               |
| Antimony            | *         | p.p*-DDT                            | *             |
| Barium              | *         | Dieldrin                            | *             |
| Cadmium             | *         | Alpha BHC                           | *             |
| Chromium            | *         | Heptachlor                          | *             |
| Lead                | *         | Lindane                             | *             |
| Manganese           | *         | Toxaphene                           | *             |
| Strontium           | *         | Aroclor 1016                        | *             |
| Mercury             | *         | Arodlor 1256                        | *             |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORM ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILCOZOCE

| ANALYTES            | CON. ug/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives: 1,3-DNB | **        | Copper                              | *         |
| 2,4,6 - TNT         | **        | Zinc                                | *         |
| 1,3,5 - TNB         | **        | Arsenic                             | *         |
| 2,4 - DNT           | * *       | Beryllium                           | *         |
| 2,6 - DNT           | **        | Nickel                              | *         |
| Mitrobenzene        | **        | Sclenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions:<br>Nitrate  | *         | Organics (GC/MS): Pentachlorophenol | <         |
| Nitrite             | *         | O-chlorophenol                      |           |
| Sulfate             | *         | 2,4-dichlorophenol                  | <         |
| Chioride            | *         | Dibutylphthlate                     | <         |
| Fluoride            | *         | Diethylphthlate                     | <         |
| Chromate            | *         | Nitrobenzene                        | <         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Niuminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | р.р РПТ                             | *         |
| Parium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1016                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILGROIT

| ANALYTES            | CON. ug/g | AMALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Exprosives:         | <         | Copper                              | *         |
| 2,4,6 - TMT         | <         | Zinc                                | *         |
| 1,3,5 - TNB         | <         | Arsenic                             | *         |
| 2,4 - DHT           | <         | Reryllium                           | *         |
| 2,5 - DNT           | <         | Mickel                              | *         |
| Nitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions: Nitrate     | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | 0-chlorophenol                      | *         |
| Sulfate             | *         | 2,/-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fluoride            | *         | Diethylphthlate                     | *         |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metais:<br>λluminum | *         | Organics (GC/FC)                    |           |
| Antimony            | *         | р.р'-ППТ                            | *         |
| Barium              | *         | Dieldrin                            | *         |
| Codmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1016                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILCROIP

| ANALYTES           | CON. ug/g | ANALYTES                            | com. ug/q |
|--------------------|-----------|-------------------------------------|-----------|
| Explosives:        | <         | Copper                              | *         |
| 2,4,5 - TNT        | 1.85      | Zinc                                | *         |
| 1,3,5 - TMB        | <         | Arsenic                             | *         |
| 2,4 - DNT          | <         | Beryllium                           | *         |
| 2,5 - DNT          | <         | Nickel                              | *         |
| Nitrobenzene       | <         | Selenium                            | *         |
|                    |           | Silver                              | *         |
| •                  |           | Thəllium                            | *         |
| Anions:<br>Nitrate | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | *         | O-chlorophenol                      | *         |
| Sulfate            | *         | 2,4-dichlorophenol                  | *         |
| Chloride           | *         | Pibutylphthlate                     | *         |
| Fluoride           | *         | Diethylphthlate                     | *         |
| Chromate           | *         | Nitrobenzene                        | *         |
| Thiocyanate        | *         |                                     |           |
| Cyanide            | *         |                                     |           |
| Metals:            | *         | Organias (CC/EC)                    |           |
| Aluminum           | *         | Organics (GC/EC)                    | *         |
| Antimony           |           | p.p'-PDT                            | *         |
| Parium             | *         | Dieldrin                            |           |
| Cadmium            | *         | Alpha BHC                           | *         |
| Chromium           | *         | Heptachlor                          | *         |
| Lead               | *         | Lindane                             | *         |
| Manganese          | *         | Toxaphene                           | *         |
| Strontium          | *         | Aroclor 1016                        | *         |
| Mercury            | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

## LONGHORN APMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILEROZT

| ANALYTES            | CON. uq/g | ANALYTES                            | COM. ug/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives: 1,3-DNB | <         | Copper                              | *         |
| 2,4,6 - TNT         | <         | Zinc                                | *         |
| 1,3,5 - TMP         | <         | Arsenic                             | *         |
| 2,4 - DNT           | <         | Reryllium                           | *         |
| 2,6 - DNT           | <         | Nickel                              | *         |
| Nitrobenzene        | <         | Selenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions: Nitrate     | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | 0-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fluoride            | *         | Piethylphthlate                     | *         |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | p.p'-DDT                            | *         |
| Parium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha BHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1015                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOIL@802B

| ANALYTES            | CON. ug/g | ANALYTES                            | CCM. uq/g |
|---------------------|-----------|-------------------------------------|-----------|
| Explosives:         | <         | Copper                              | *         |
| 2,4,6 - TNT         | <         | Zinc                                | *         |
| 1,3,5 - TNB         | <         | Arsenic                             | *         |
| 2,4 - DNT           | <         | Beryllium                           | *         |
| 2,6 - DNT           | <         | Nickel                              | *         |
| Nitrobenzenc        | <         | Sclenium                            | *         |
|                     |           | Silver                              | *         |
|                     |           | Thallium                            | *         |
| Anions: Nitrate     | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite             | *         | 0-chlorophenol                      | *         |
| Sulfate             | *         | 2,4-dichlorophenol                  | *         |
| Chloride            | *         | Dibutylphthlate                     | *         |
| Fluoride            | *         | Diethylphthlate                     | *         |
| Chromate            | *         | Nitrobenzene                        | *         |
| Thiocyanate         | *         |                                     |           |
| Cyanide             | *         |                                     |           |
| Metals:<br>Aluminum | *         | Organics (GC/EC)                    |           |
| Antimony            | *         | p.p'-DDT                            | *         |
| Farium              | *         | Dieldrin                            | *         |
| Cadmium             | *         | Alpha PHC                           | *         |
| Chromium            | *         | Heptachlor                          | *         |
| Lead                | *         | Lindane                             | *         |
| Manganese           | *         | Toxaphene                           | *         |
| Strontium           | *         | Aroclor 1015                        | *         |
| Mercury             | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILGEGST

| ANALYTES                       | CON. ug/g | ANALYTES                            | сом. ug/g    |
|--------------------------------|-----------|-------------------------------------|--------------|
| <pre>Explosives: 1,3-DNB</pre> | . <       | Copper                              | *            |
| 2,4,6 - TNT                    | <         | Zinc                                | *            |
| 1,3,5 - TNB                    | <         | Arsenic                             | *            |
| 2,4 - DNT                      | <         | Beryllium                           | *            |
| 2,6 - DNT                      | <         | Nickel                              | *            |
| Nitrobenzene                   | <         | Selenium                            | *            |
|                                |           | Silver                              | *            |
|                                |           | Thellium                            | *            |
| Anions:                        | *         | Organics (CC/MS): Pentachlorophenol | *            |
| Nitrite                        | *         | N-chlorophenol                      | *            |
| Sulfate                        | *         | 2,4-dichlorophenol                  | *            |
| Chloride                       | *         | Pibutylphthlate                     | *            |
| Fluoride                       | *         | Diethylphthlate                     | *            |
| Chromate                       | *         | Nitrobenzene                        | *            |
| Thiocyanate                    | *         |                                     |              |
| Cyanide                        | *         |                                     |              |
| Metals:<br>Aluminum            | *         | Organics (GC/EC)                    |              |
| Antimony                       | *         | р.р!-прт                            | *            |
| Barium                         | *         | Dieldrin                            | *            |
| Cadmium                        | *         | Alpha BHC                           | *            |
| Chromium                       | *         | Heptachlor                          | *            |
| Lead                           | *         | Lindane                             | *            |
| Manganese                      | *         | Toxaphene                           | *            |
| Strontium                      | *         | Aroclor 1016                        | *            |
| Mercury                        | *         | Aroclor 1250                        | <del>*</del> |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY ANALYTICAL RESULTS FOR SOIL SAMPLING SITE SOILCROIR

| ANALYTES           | CON. ug/g | ANALYTES                            | CON. ug/g |
|--------------------|-----------|-------------------------------------|-----------|
| Explosives:        | <         | Copper                              | *         |
| 2,4,5 - TNT        | <         | Zinc                                | *         |
| 1,3,5 - TNB        | <         | Arsenic                             | *         |
| 2,4 - DNT          | <         | Peryllium                           | *         |
| 2,5 - DNT          | <         | Nickel                              | *         |
| Mitrobenzene       | <         | Selenium                            | *         |
|                    |           | Silver                              | *         |
|                    |           | Thallium                            | *         |
| Anions:<br>Nitrate | *         | Organics (GC/MS): Pentachlorophenol | *         |
| Nitrite            | *         | O-chlorophenol                      | *         |
| Sulfate            | *         | 2,4-dichlorophenol                  | *         |
| Chloride           | *         | Pibutylphthlate                     | *         |
| Fluoride           | *         | Diethylphthlate                     | *         |
| Chromate           | *         | Nitrobenzene                        | *         |
| Thiocyanate        | *         |                                     |           |
| Cyanide            | *         |                                     |           |
| Metais:            | *         | Organics (GC/EC)                    |           |
| Antimony           | *         | TOO-19.9                            | *         |
| Barium             | *         | Dieldrin                            | *         |
| Cadm <b>ium</b>    | *         | Alpha BHC                           | *         |
| Chromium           | *         | Heptachlor                          | *         |
| Lead               | *         | Lindane                             | *         |
| Manganese          | *         | Toxaphene                           | *         |
| Strontium          | *         | Arodlor 1015                        | *         |
| Mercury            | *         | Aroclor 1250                        | *         |

<sup>&</sup>lt; less than established detection limit.

<sup>\*</sup> Analyte or category not tested as per project scope.

#### APPENDIX E

DATA MANAGEMENT FORMS ON BATCHES OF METAL ANALYTES

FOR WHICH FQAC HAD TO OVERRIDE ESTABLISHED QA/QC SYSTEM

| =      | -                                       | ABD                                         | Calculated                               |   |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-----------------------------------------|---------------------------------------------|------------------------------------------|---|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Sample                                  | Lab                                         | Concentration                            |   |                                         | +01 Analytice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|        | Point                                   | I.D.                                        | Uncorrected For                          | X | Dilution                                | = Actual FOAC #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Batch  |                                         | #                                           | Dilution Factor                          |   | Factor                                  | Concentration Note:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|        | 2xD<br>Spike                            | 1 2 1                                       |                                          |   | <del></del>                             | .580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | Spike                                   | 1-3-1                                       | 46                                       |   |                                         | 46 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 101                                     | 1-3-2                                       | 1/3                                      |   | 4                                       | 452 002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 102                                     | 1-3-3                                       | 119                                      |   | <del></del>                             | $\frac{452}{476}  \frac{002}{003}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | 104                                     | 1-3-4                                       | 85                                       |   | -                                       | 85 004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Dyp.   | <u>≯103</u><br>105                      | 1-3-7                                       | <u> 16 1</u><br>33, 4                    |   | 10.0                                    | 169 00 5<br>3340 00 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2 abil | <u>≯[83</u>                             | 1 - 3 - 17                                  | $\frac{-\frac{33}{90}}{-\frac{3}{20}}$ . |   | 100                                     | $\frac{3370}{360}$ $\frac{006}{007}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        | 106                                     | 1 - 3 - 8                                   | 16.3                                     |   | <del></del>                             | 167 00 5<br>3340 00 6<br>360 00 7<br>652 00 8<br>187 00 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 106                                     | 1-3-9                                       | -10/87 ·                                 |   |                                         | 187 009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 108<br>109<br>110                       | 1 - 3 - 10                                  | 118                                      | • | 100                                     | 1/800 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | 109                                     | 1-3-11                                      |                                          |   |                                         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 110                                     | 1 - 3 - 12                                  | 757                                      |   | 10                                      | 1590 012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | <u> </u>                                | 1-3-13                                      | 24                                       |   | 4                                       | 1/6 013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 112<br>120                              | 7-3-17                                      | 330                                      |   | 100                                     | 3300 014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 120                                     | 1 - 3 - 15                                  | <u></u>                                  |   |                                         | <u>604</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|        | 121-                                    | 1 - 3 - 16                                  | 11/6                                     |   | 100                                     | 126 016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|        | 122<br>123<br>5×°Spike                  | $\frac{1}{1} - \frac{3}{2} - \frac{11}{12}$ | 112                                      |   |                                         | 72 018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| £      | Spike                                   | 1 - 3 - 19                                  | 129                                      |   |                                         | 129 019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| •      | ) _= <u>P</u> 0.~                       |                                             |                                          |   | · ·                                     | anticomental Conferences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | *************************************** |                                             |                                          |   | *************************************** | the state of the s |

SUPPLEMENTARY DATA SHEET USED

出铁)。 . ach White Heat A

|                            |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                               |                | Expected                    | l                                     |              |                                       |                    |
|----------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|----------------|-----------------------------|---------------------------------------|--------------|---------------------------------------|--------------------|
| Analyst<br>Spike>          | Found<br>Value<br>19/ -            | Backgrou<br>Value<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | Recovered<br>centration<br>49 |                | oncentrat<br>Of Spike<br>50 |                                       | Recovery     | WL<br>207                             | CL<br>30           |
| Blind<br>Spike<br>FQAC>    | 46<br>129 -<br>ion (Rep            | olicates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    | 46                            | — <del>!</del> | 50 <b>49</b><br>125         | X<br>100                              | 292°L        | 10-52<br>96.8<br>2                    | <u>1043</u><br>947 |
| Analyst<br>Replicat        | Foun<br>Valu<br>I<br>e> <u>140</u> | ie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Found<br>Value<br>II<br><u>142</u> |                               |                | culated<br>Range<br>40      | _                                     | UCL<br>Found | lished<br>For<br>Range                |                    |
| Blind<br>Replicat<br>FQAC> | e <u>169</u>                       | <u>_</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 360                                |                               | <del></del>    |                             | -                                     |              |                                       |                    |
| Analyst'                   | s Report                           | to Depar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                    | Supervi<br>Amplyti            |                | Q.C.                        |                                       |              |                                       |                    |
| DEPARTME                   | NTAL DAT                           | TA REVIEW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                               |                |                             | · · · · · · · · · · · · · · · · · · · |              |                                       |                    |
| DS check                   | calcula                            | ations on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | sample                             | s noted b                     | y FQA          | .C: 💢 Pi                    | essed                                 | ( ) Fā       | ailed                                 |                    |
| NOTES:                     |                                    | Nov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | c No                               | ted                           |                |                             |                                       |              | · · · · · · · · · · · · · · · · · · · |                    |
|                            | on unco                            | orrected o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | rations f                     | or ra          | nge requ                    | iremen                                | t:           |                                       |                    |
| NOTES:                     | #11                                | Smiples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | between                            | ur 10                         | 0-200          | 14/6                        |                                       |              | · · · · · · · · · · · · · · · · · · · |                    |
|                            |                                    | су: (X) I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                               |                |                             |                                       |              |                                       |                    |
| NOTES:                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                               | <del></del>    |                             |                                       |              | ····                                  |                    |
| DS check                   | precis                             | ion: (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Passed                             | ( ) Fail                      | ed             |                             |                                       |              |                                       |                    |
| NOTES:                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                               | ····           |                             |                                       | ·            |                                       |                    |
| DS check                   | reject                             | ion trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | criter                             | ia: 💢                         | Passe          | ed () W                     | arning                                | ( ) Fa       | ailed                                 |                    |
| NOTES:                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                               |                |                             | <del> </del>                          |              |                                       |                    |
|                            | CATION:<br>E EPS que               | rvisor Date of | Vane<br>n ()<br>urance             |                               |                |                             |                                       |              | h compli<br>ontamina                  | ance<br>ition      |

| DATA SHEET # 82 588 C                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                      |
| FQAC check blind replicates (precision): ( ) Passed (X) Failed                                                                                                                                                                                                                         |
| OTES: FOAC checked Analysist replicates precision of treated differently.  FOAC will override standard Q.C. one dityted.                                                                                                                                                               |
| FOAC check blind spike (30 accuracy): (X) Passed () Failed                                                                                                                                                                                                                             |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC check blind spike (20 accuracy): (X) Passed ( ) Failed                                                                                                                                                                                                                            |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC check trend rejection criteria: (X) Passed ( ) Warning ( ) Falled                                                                                                                                                                                                                 |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                   |
| date                                                                                                                                                                                                                                                                                   |
| FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                              |
| Certification/Authorization: I (X) can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, (X) can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |

Signed \

Batch ABE

|   | Sample<br>Point                                                    | Lab<br>I.D.             | Calculated Concentration Uncorrected For Dilution Factor | x | Dilution<br>Factor | æ | Actual<br>Concentration                            | POAC<br>Note                           |
|---|--------------------------------------------------------------------|-------------------------|----------------------------------------------------------|---|--------------------|---|----------------------------------------------------|----------------------------------------|
| • | 2 KD<br>Spike                                                      | 1-3-1                   | <u>47</u><br>260                                         |   | -                  |   | <u>477</u>                                         | 001                                    |
|   | 101<br>102<br>104                                                  | 1 - 3 - 3<br>1 - 3 - 4  | 16                                                       |   |                    |   | 11.114                                             | 003                                    |
| • | 103 A                                                              | p1 - 3 - 5<br>1 - 3 - 6 | 173                                                      |   | 40                 |   | 6925                                               | 006                                    |
|   | 106                                                                | $\frac{1-3-9}{1-3-9}$   | -54<br>-272<br>-260 .                                    |   |                    |   | - <del>7 7</del> 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 007                                    |
|   | 108<br>108                                                         | 1-3-10                  | 80                                                       |   |                    |   | 73.90<br>80                                        | 009<br>010<br>011<br>012<br>013<br>014 |
|   | 110.<br>111.                                                       | $\frac{1-3-12}{1-3-13}$ | <u>98</u><br>                                            |   | 2/.,               |   |                                                    | 013                                    |
|   | 107<br>108<br>109<br>110<br>111<br>112<br>120<br>121<br>122<br>123 | 1 - 3 - 16              | 110<br>110                                               |   |                    |   | 13.0                                               | 016                                    |
|   | 122<br>123<br>5 <u>20 Spi</u> ks                                   | $\frac{1-3-17}{1-3-18}$ | 71) (2<br>112 (12 (12 (12 (12 (12 (12 (12 (12 (12        |   |                    |   | 1/12                                               | 017                                    |
|   |                                                                    |                         |                                                          |   |                    |   |                                                    | and the same                           |

Land Ballet & rec

SUPPLEMENTARY DATA SHEET USED

|                        |                      |                        |         |                        |                           | Expected                              |                                         |                                 |                   |        |
|------------------------|----------------------|------------------------|---------|------------------------|---------------------------|---------------------------------------|-----------------------------------------|---------------------------------|-------------------|--------|
| hn.l.um.h              | Found                |                        |         | Recovered              | Co                        | ncentrat                              | ion                                     |                                 | WL                | CL     |
| Analyst<br>Spike>      | 994 -                | value (3)              | = Conc  | centration<br>53       | 1                         | f Spike $\mathcal{EO}$                | X                                       | ecovery<br>106                  | 28                | 30     |
| Blind                  |                      |                        |         |                        | <del></del> , <del></del> |                                       | 100                                     |                                 | 105:->            | 113.7. |
| Spike                  |                      | _                      |         |                        |                           |                                       |                                         |                                 | 811.1             | 713.0  |
| FQAC>                  | 47 -                 | 0                      | _ =     | 47<br>126              |                           | 50                                    | X<br>1øø                                | 94                              | 07.1              | 811.8  |
| Precis                 | 126<br>ion (Rep      | licates)               |         | 126                    | •                         | 1 25                                  | 100                                     | 100.8                           |                   |        |
|                        | Foun                 | a                      | Found   |                        |                           |                                       |                                         | Fotab                           | lished            |        |
|                        | Valu                 |                        | Value   |                        | Calc                      | ulated                                |                                         |                                 | For               |        |
| Analyst                | I 12/                |                        | II      |                        |                           | ange                                  |                                         | Found<br>24,                    | Range             |        |
| керттсас               | e> <u>221</u>        |                        | 199     |                        | ~                         | <u> </u>                              | -                                       | <u>~~~~</u>                     |                   |        |
| Blind<br>Replicat      | •                    |                        | _       |                        |                           |                                       |                                         |                                 |                   |        |
| FQAC>                  | 398                  | 3                      | 454     | •                      |                           | 56                                    |                                         |                                 |                   |        |
| Analysti               | s Report             | to Denar               | tmental | l Supervis             | sor•                      |                                       | _                                       |                                 |                   |        |
| Anaryse                | a Report             | to bepar               |         | Supervis               | 101.                      | y-1:00                                | a c                                     | ····                            |                   |        |
|                        |                      |                        |         |                        |                           |                                       |                                         |                                 |                   |        |
| DEPARTME               | NTAL DAT             | A REVIEW:              |         |                        | <del></del>               |                                       | *************************************** |                                 |                   |        |
| ns check               | calcula              | tions on               | cample  | s noted by             | u ምርአር                    | '. (\sqrt                             | seed                                    | / \ Pa                          | ilad              |        |
| DD CHECK               | Carcula              |                        | -       | •                      |                           | , ,                                   | isseu                                   | ( ) Fa                          | rieu              |        |
| NOTES:                 |                      |                        | 10      | v.e v                  | 11:51                     | <del></del>                           | <del></del>                             |                                 | <del></del>       |        |
| (X) P                  | assed                | ( ) Fail               | led     | rations fo             |                           |                                       |                                         |                                 |                   |        |
| NOTES:                 |                      | r l                    | 1 51    | ) .) (e.,              | berei                     | ./:                                   | 25                                      | (1) jl                          | <u> </u>          |        |
| DS check               | accurac              | y: (X) F               | Passed  | () Faile               | ed                        |                                       |                                         |                                 |                   |        |
| NOTES:                 |                      | `                      |         |                        |                           |                                       |                                         |                                 |                   |        |
| DS check               | precisi              | on: (X) F              | Passed  | ( ) Faile              | eđ                        |                                       |                                         |                                 |                   |        |
| NOTES:                 |                      |                        |         |                        |                           | ···                                   |                                         |                                 |                   |        |
| DS check               | rejecti              | on trend               | criter  | ia: (∀́) :             | Passed                    | ( ) Wa                                | arning                                  | ( ) Fa                          | ileđ              |        |
| NOTES:                 |                      |                        |         |                        |                           |                                       |                                         |                                 |                   |        |
|                        | <del></del>          | visor Dat              |         |                        |                           |                                       |                                         |                                 |                   |        |
| NAME CERTIFIC with the | CATION: /<br>EPS qua | I (X) car<br>lity assu | n ()    | cannot ce<br>program e | DATE_<br>rtify<br>stabli  | $\frac{12-13-8}{2}$ this datashed for | a as b                                  | CIME 8:<br>Deing in<br>LSAAP Co | compli<br>ntamina | ance   |
| Survey.                |                      |                        | Λ       | ,                      |                           |                                       |                                         |                                 |                   |        |
|                        | Si                   | gned                   | SAM     | y W                    | (W. 20                    | <u>'</u>                              |                                         |                                 |                   |        |
|                        |                      |                        | /       | 1/                     |                           |                                       |                                         |                                 |                   |        |

| DATA SHEET # 82 589 C                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                      |
| FQAC check blind replicates (precision): (X) Passed () Failed Limited Data base for precision Results Accepted by FQACOTES: As within Regard.                                                                                                                                          |
| FQAC check blind spike (30 accuracy): (X) Passed ( ) Failed                                                                                                                                                                                                                            |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC check blind spike (20 accuracy): (X) Passed () Failed                                                                                                                                                                                                                             |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC check trend rejection criteria: (X) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                                 |
| NOTES:                                                                                                                                                                                                                                                                                 |
| FQAC sent memo report # to Principle Investigator on date                                                                                                                                                                                                                              |
| FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                              |
| Certification/Authorization: I (X) can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, (X) can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |

#### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION STUDY DATA MANAGEMENT FORM

|                                    |                              | TAMINATION S          | STUDY DATA  | MANAGEME                               | NT FORM        |                                       |                                       |
|------------------------------------|------------------------------|-----------------------|-------------|----------------------------------------|----------------|---------------------------------------|---------------------------------------|
| MANAGEMENT                         |                              | .).                   | Pinsi       | . 0                                    |                |                                       |                                       |
| Analyst(s                          | ) Name(s)                    | Nonexen.              |             | Time                                   | 9:25           |                                       | <del></del>                           |
|                                    |                              | ed 12-16-8.           | IICA        | THAMA Meth                             |                | B                                     |                                       |
| Matrix \                           | (ITETAIS)                    | Alumium<br>Category   | <b>3</b>    |                                        | ~~             | Δ                                     |                                       |
|                                    | alibeation                   | : (×) Passed          |             |                                        |                |                                       |                                       |
| Instrum                            |                              | : (x) Passed          | ID#         | 1160                                   |                |                                       |                                       |
| NOTES:                             | enc #                        |                       | ID#         |                                        |                |                                       |                                       |
| NO123:                             | <del></del>                  |                       |             |                                        |                |                                       |                                       |
|                                    |                              |                       |             |                                        |                |                                       |                                       |
| مع معاملات الأسيسود فيوند الأسادية |                              |                       |             |                                        |                |                                       | <del></del>                           |
| ANALYTICAL                         | RESHLTS:                     |                       |             |                                        |                |                                       |                                       |
| Designated                         | Location                     | f Permanent           | Lab Reco    | rds: Book                              | * <            | . Page                                | # 43                                  |
| File #                             |                              | 2 1 01 11 11 11 11 11 |             |                                        | "              |                                       | " <del></del>                         |
| NOTES:                             | ·                            | n/1                   | burns       | 1000                                   | 16618          |                                       |                                       |
|                                    |                              |                       |             |                                        | <del></del>    | · · · · · · · · · · · · · · · · · · · |                                       |
| Standard                           | Expe                         | ected                 | Found       | Fo                                     | und            | Found                                 |                                       |
| Levels                             |                              | ntration              | Value #     | l Val                                  | ue #2          | Value #                               | 3                                     |
| <u> </u>                           | <del></del>                  | <del></del>           |             |                                        |                |                                       |                                       |
| ø.5x <sub>D</sub>                  |                              | 10                    | 8.9         |                                        | 10.6           |                                       |                                       |
| 2.0XD                              |                              | 50                    | 53.8        |                                        | 48.5           |                                       |                                       |
| 10.0XD                             | <del></del>                  | 100                   | 98.3        |                                        | 72.6           |                                       |                                       |
| Blank                              |                              | 0                     | <u></u>     |                                        | 0              |                                       |                                       |
|                                    |                              | <u> </u>              |             |                                        |                |                                       |                                       |
|                                    |                              |                       |             |                                        |                | •                                     |                                       |
| Standard Co                        | irve Data                    |                       | Slope:      | 0.0                                    | 180            |                                       |                                       |
| Corr. Co                           |                              | 9943                  | Y-inī       | O.C.                                   | 0.00000        |                                       |                                       |
| 00111                              | <u> </u>                     | <u> </u>              |             | • •                                    |                |                                       |                                       |
| DATA:                              |                              |                       |             |                                        |                |                                       |                                       |
|                                    |                              | Calculat              | ed          |                                        |                |                                       |                                       |
| Sample                             | Lab                          | Concentra             | tion        |                                        |                |                                       |                                       |
| Point                              | I.D.                         | Uncorrecte            | d For X     | Dilution                               | = Act          | tual                                  | FOAC                                  |
| 3O +                               | #                            | Dilution F            | actor       | Factor                                 | Concer         | ntration                              | Notes                                 |
| ΔΔ                                 | <del></del>                  | <del></del>           | <del></del> |                                        |                |                                       |                                       |
| 125                                | - 3 -20                      | 21.4                  |             |                                        | 3              | 164                                   |                                       |
| 36 L 124                           | - 3 -21                      | 40.8                  |             | 10                                     |                | 458                                   |                                       |
| 303 126                            | - 3 - 22                     | 30.8                  |             | 10                                     |                | 308                                   | · · · · · · · · · · · · · · · · · · · |
| 1240                               | $\frac{3}{1} - \frac{22}{3}$ | 200                   |             |                                        |                | 0.50                                  |                                       |
| 005 - <del>27</del> -              | 1 - 3 - 24                   | 36.9                  | <del></del> | <del></del>                            |                | 36.9                                  |                                       |
|                                    |                              |                       |             |                                        |                |                                       |                                       |
| CG 128                             | <u>1 - 3 -25</u>             | 35.3                  |             | 10                                     |                | 153                                   |                                       |
| 007 129                            | 1 - 3 -26                    | 24,2<br>125<br>22,2   |             |                                        |                | 2/2                                   |                                       |
| 130                                | 1 - 3 -27                    | <u></u>               |             | <del></del>                            |                | 125                                   |                                       |
| JUY 131 240                        | 1 - 3 -28                    | 22.2                  |             | ************************************** |                | 222                                   |                                       |
| Spike2xD                           | - 3 -29                      | 97.5                  |             |                                        |                | 9715                                  |                                       |
|                                    | <u> - 3 -30</u>              | 23,2                  |             | 10                                     |                | 9 :2                                  |                                       |
| UIL Spike                          | 1 - 3 -31                    | 27.2                  |             | 10                                     |                | 27/2                                  |                                       |
| იც <u>133</u>                      | 1 - 2 -20                    | 132                   |             | ·                                      | gurbarra a - a | 132                                   |                                       |
| OH 3H                              | 1 - 3 -33                    | 36,6                  |             |                                        |                | 33.6                                  |                                       |
| 015 35                             | 1 - 3 - 34                   | 2918                  | •           |                                        |                | 29,8                                  |                                       |
| 3/6 3/6                            | 1 - 3 -35                    | 23.6                  | ,           | 70                                     |                | 236                                   |                                       |
| 37                                 | 1 - 3 -36                    | 22.7                  |             | 10                                     |                | 236<br>222                            |                                       |
| ાં <u>38</u>                       | 1 - 3 -37                    | 73, 4                 |             | 10                                     |                | 229                                   |                                       |
| 76 - 36 -                          | 1 - 2 -20                    |                       | <del></del> |                                        |                | 023                                   |                                       |

SUPPLEMENTARY DATA SHEET USED

|                                        |                                     |                                                  | Expected                     |           |                                                  |                |
|----------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------|-----------|--------------------------------------------------|----------------|
| Analyst V                              |                                     | nd Recovered Concentration =  \( \frac{10}{1} \) | Concentrat                   | Rec<br>X/ | % WL.<br>overy 20°<br>O/,/                       | CL<br>30T      |
| Blind Spike FQAC> 9 Precisio           | 7.5 - 0<br>77.0 0<br>n (Replicates) | = <u>97.5</u><br>มาว                             | 100<br>250                   | ^         | 7.5 \(\frac{1\left(\pi\)}{8\tilde{6}\tilde{5}}\) | 17.6           |
| Analyst<br>Replicate>                  | Found<br>Value<br>I<br>93,3         | Found<br>Value<br>II<br>2%6                      | Calculated<br>Range<br>S.//O |           | E ablished<br>UCL For<br>Found Range             |                |
| Blind<br>Replicate<br>FQAC>            | 408                                 | 200                                              |                              |           |                                                  |                |
| Analyst's                              | Report to Depar                     | tmental Supervis                                 |                              | <u></u>   |                                                  |                |
| DEPARTMENT                             | TAL DATA REVIEW:                    |                                                  |                              |           | <u>.</u>                                         |                |
| DS check o                             | calculations on                     | samples noted by                                 | FQAC: (🔀 Pa                  | ssed (    | ) Failed                                         |                |
| NOTES:                                 | Nevi                                | Neted                                            |                              |           |                                                  |                |
|                                        | on uncorrected of seed ( ) Fail     | concentrations fo<br>led                         | r range requi                | rement:   |                                                  |                |
| NOTES:                                 | 11) Sugar                           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1         | Same from                    | 1 forter  | 1.                                               |                |
|                                        | •                                   | Passed ( ) Faile                                 |                              |           |                                                  |                |
| NOTES:                                 |                                     |                                                  |                              |           |                                                  |                |
| DS check p                             | precision: (📈 I                     | Passed ( ) Faile                                 | d                            |           |                                                  |                |
| NOTES:                                 |                                     |                                                  |                              |           |                                                  |                |
|                                        | ejection trend                      | criteria: (X) P                                  | assed ( ) Wa                 | rning (   | ) Failed                                         |                |
| NOTES:                                 | -                                   |                                                  |                              |           |                                                  |                |
| Department                             | Supervisor Dat                      | ta:                                              |                              |           |                                                  |                |
| NAME DAY CERTIFICAT with the E Survey. | EPS quality assu                    | ( ) cannot cer<br>grance program es              | tablished for                | the LSA   | AP Contamin                                      | iance<br>ation |
|                                        |                                     | //                                               |                              |           |                                                  |                |

#### FQAC DATA REVIEW:

| FOAC check blind replicates (prec                                                                                                 | ision): Pas                         | ssed () Failed<br>Same bottle                                                                                  | FOAC        |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|
| FOAC check blind replicates (prec<br>Out of Range Analysist P<br>OTES: OK field duplicates Ain                                    | dicate wide YAR                     | intion in sample qualit                                                                                        | Y. based or |
| FQAC check blind spike (30 accura                                                                                                 | _                                   | ssed ( ) Failed                                                                                                | data        |
| NOTES:                                                                                                                            | `                                   |                                                                                                                |             |
| FQAC check blind spike (20 accura                                                                                                 | cy): (XX) Pa:                       | ssed ( ) Failed                                                                                                |             |
| NOTES:                                                                                                                            |                                     |                                                                                                                |             |
| FQAC check trend rejection criter                                                                                                 | ia: Passed                          | () Warning () Fai                                                                                              | leđ         |
| NOTES:                                                                                                                            |                                     | Prillianti viil 1818–1814–1844 valkaada optaja ida viiliannassa viinaalada valtati syomeydaystaisis kin eska v |             |
| FQAC sent memo report #                                                                                                           | to Princ                            | iple Investigator on                                                                                           |             |
| date                                                                                                                              | •                                   |                                                                                                                |             |
| FQAC DATA: NAME                                                                                                                   | DATE                                | TIME                                                                                                           | <del></del> |
| Certification/Authorization: I being in compliance with the EPS the LSAAP Contamination Survey. authorize its release for incorpo | quality assurand<br>I, furthermore, | ce program establishe                                                                                          | as<br>d for |

#### LONGHORN ARMY AMMUNITION PLANT CONTAMINATION STUDY DATA MANAGEMENT FORM

| !                                                                                       | Parameter<br>Matrix                              | Name(s)<br>es Analyz<br>Metals) P                                                                                                                                                            | ed 12:00<br>ARium<br>Category<br>: (\) Passe                                                            | us/<br><b>3</b>     | Time<br>ATHAMA Metho<br>Batch          | 2.            | )<br>  B                                                        |                         |
|-----------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|---------------|-----------------------------------------------------------------|-------------------------|
| }                                                                                       | ANALYTICAL F<br>Designated I<br>File #<br>NOTES: | RESULTS:<br>Location o                                                                                                                                                                       | f Permanent                                                                                             | Lab Rec             | ords: Book                             | <u>6</u>      | , Page                                                          | •                       |
|                                                                                         | Standard<br>Levels                               |                                                                                                                                                                                              | cted<br>tration                                                                                         | Found<br>Value      |                                        | und<br>ue #2  | Found<br>Value #                                                | 3                       |
|                                                                                         | 0.5XD<br>2.0XD<br>10.0XD<br>Blank                | 1,                                                                                                                                                                                           | (5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                | 29375<br>29375<br>0 | ()                                     | 00]<br>06<br> |                                                                 | mands<br>mands<br>mands |
|                                                                                         | Standard Cur<br>Corr. Cof                        | rve Data                                                                                                                                                                                     | <u>1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>                                                          | Slope:<br>Y~in      | <u> </u>                               |               | <u> </u>                                                        | i.                      |
|                                                                                         | DATA:                                            |                                                                                                                                                                                              | Calculat                                                                                                | - ed                | •                                      |               |                                                                 |                         |
| ABG                                                                                     | Sample<br>Point                                  | Lab<br>I.D.                                                                                                                                                                                  | Concentra<br>Uncorrecte<br>Dilution I                                                                   | ation<br>ed For X   | Dilution<br>Factor                     |               | tual<br>htration                                                | PQAC<br>Note:           |
| 001<br>003<br>006<br>006<br>006<br>007<br>001<br>001<br>001<br>001<br>001<br>001<br>001 | 39 1                                             | - 3 - 20<br>- 3 - 21<br>- 3 - 22<br>- 3 - 23<br>- 3 - 24<br>- 3 - 25<br>- 3 - 27<br>- 3 - 29<br>- 3 - 30<br>- 3 - 31<br>- 3 - 32<br>- 3 - 33<br>- 3 - 35<br>- 3 - 37<br>- 3 - 38<br>- 3 - 38 | 3313<br>3313<br>4414<br>2714,7<br>2714,7<br>2714<br>2714<br>2714<br>2714<br>2714<br>2714<br>2714<br>271 |                     | 10<br>10<br>10<br>10<br>10<br>10<br>10 |               | 710<br>77<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73<br>73 |                         |

SUPPLEMENTARY DATA SHEET USED

|                | Found            | Backgrou                              | ınd Recov                  | vered                | Expected<br>Concentrat                  |                                        | 8                                       | WL           | CL             |
|----------------|------------------|---------------------------------------|----------------------------|----------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|--------------|----------------|
| Analyst        | Value            | Value                                 |                            |                      | Of Spike                                |                                        | Recovery                                | 20           | 300            |
| Spike>         | <u> 1600 -</u>   |                                       | _ =                        | <del></del>          |                                         | X<br>1øø                               | 1 6                                     |              |                |
| Blind          |                  |                                       |                            |                      |                                         | 2,7,17                                 |                                         | L(A)         | 1274           |
| Spike          |                  |                                       | 20                         | 2                    | 200                                     |                                        | 1016                                    |              | 13.7           |
| FQAC>          |                  |                                       | = 20                       |                      |                                         | , X                                    | 101.5                                   | , ,          | ,              |
| Precis         | ion (Rep         | licates)                              | 489                        | 8 .                  | 500                                     | 100                                    | 97.6                                    |              |                |
|                | Foun             | đ                                     | Found                      |                      |                                         |                                        |                                         | lished       |                |
|                | Valu             |                                       | Value                      | (                    | Calculated                              |                                        |                                         | For          |                |
| Analyst        | I                |                                       | ŢŢ                         |                      | Range                                   | •                                      |                                         | Range        |                |
| webticar       | e> <u>47. 1.</u> |                                       |                            |                      | 7,5                                     | -                                      | 81                                      | /            |                |
| Blind          |                  |                                       |                            |                      |                                         |                                        |                                         |              |                |
| Replicat FQAC> | 169              |                                       | 92.1                       |                      |                                         |                                        |                                         |              |                |
| A              |                  | ha Dones                              | tmontol Cur                |                      |                                         | -                                      | *************************************** |              |                |
| Maryst         | з керогс         |                                       | tmental Sur                |                      |                                         |                                        |                                         | <del> </del> |                |
|                |                  |                                       |                            |                      |                                         |                                        |                                         |              |                |
|                |                  |                                       |                            |                      |                                         |                                        | <del></del>                             |              | <del></del>    |
| DEPARTME       | NTAL DAT         | A REVIEW                              |                            |                      |                                         |                                        |                                         | • .          |                |
| DS check       | calcula          | tions on                              | samples not                | ted by I             | FOAC: (~) Pa                            | assed                                  | ( ) Fa                                  | iled         |                |
|                | 0                |                                       |                            |                      | ( , ,                                   |                                        | ( )                                     |              |                |
| NOTES:         |                  | <u> </u>                              | <u> </u>                   |                      |                                         | · · · · · · · · · · · · · · · · · · ·  | ·                                       |              |                |
| DS check       | on unco          | rrected o                             | concentratio               | ons for              | range requi                             | iremen                                 | t:                                      |              |                |
| ( ·′ ) F       | assed            | ( ) Fai:                              | led                        | *                    |                                         |                                        |                                         |              |                |
| NOTES:         | $p_{\perp}$      | 111                                   |                            |                      |                                         |                                        |                                         |              |                |
|                |                  | ,                                     | Passed ( )                 |                      | •                                       |                                        |                                         |              |                |
| NOTES:         |                  | •                                     |                            |                      |                                         |                                        |                                         |              |                |
| DS check       | precisi          | on: (\)                               | Passed ( )                 | Failed               |                                         |                                        |                                         |              |                |
|                | , p. 00101       | · · · · · · · · · · · · · · · · · · · |                            |                      |                                         |                                        |                                         |              |                |
| NOTES:_        | <del></del>      |                                       |                            |                      |                                         |                                        |                                         |              |                |
| DS check       | rejecti          | on trend                              | criteria:                  | M Pas                | ssed ( ) W                              | arning                                 | ( ) Fa                                  | iled         |                |
| NOTES:         |                  |                                       |                            |                      |                                         | ······································ |                                         |              | ··········     |
| Departme       | nt Super         | visor Da                              | ta:                        | •                    |                                         |                                        |                                         |              |                |
| илме           |                  |                                       | 10 m                       | נמ                   | TE 2 - 25 ×                             | 9                                      | TIME /                                  |              |                |
| CERTIFIC       | ATION:           | I (x) can<br>lity ass                 | n () canno<br>urance progr | ot cert:<br>ram esta | fy this da<br>ablished fo               | ta as<br>r the                         | being in<br>LSAAP Co                    | complination | lance<br>ation |
|                | Si               | gned                                  |                            | 11                   | , , , , , , , , , , , , , , , , , , , , |                                        |                                         |              |                |

( ) Failed ( Y Passed

( Passed ( ) Failed

FQAC check trend rejection criteria: ( ) Fassed ( ) Warning ( ) Failed

FQAC sent memo report # \_\_\_\_\_ to Principle Investigator on

FQAC DATA: NAME

DATE

Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.

Signed

#### LONGHORN ARMY AMMUNITION PLANT

|                                                                                                                                             | CON                                                                                                                | TAMINATION                                                                            | STUDY DAT                                                                                   | A MANAGEME | NT FORM                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| MANAGEMENT                                                                                                                                  | DATA:                                                                                                              | 1) Jy Jy Jy P<br>ed 12 - 17 -<br>CAdmium<br>Category                                  | 1):, (                                                                                      | 11/11-C.   |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date Samp                                                                                                                                   | oles Analyz                                                                                                        | ed /2- 7-                                                                             |                                                                                             | Time       | 11:00                                 | /) .\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Parameter                                                                                                                                   | (Metals)                                                                                                           | CAdmium                                                                               | USA                                                                                         | THAMA Meth | od +/                                 | ·기                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Systems (                                                                                                                                   | alibration                                                                                                         | Category<br>: (X) Passe                                                               | <b>d</b> ( ) Fa                                                                             | iled       | <u></u>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Instrum                                                                                                                                     | ent #                                                                                                              |                                                                                       | ID#                                                                                         |            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NOTES:                                                                                                                                      |                                                                                                                    |                                                                                       |                                                                                             |            | <del></del>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <del></del>                                                                                                                                 |                                                                                                                    |                                                                                       |                                                                                             |            | · · · · · · · · · · · · · · · · · · · | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ANALYTICAL<br>Designated<br>File #<br>NOTES:                                                                                                | Location o                                                                                                         | f Permanent                                                                           | Lab Reco                                                                                    | rds: Book  | 6                                     | , Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Standard<br>Levels                                                                                                                          |                                                                                                                    | ected<br>itration                                                                     | Found<br>Value                                                                              |            | ound<br>lue #2                        | Found<br>Value #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <i>a</i>                                                                                                                                    |                                                                                                                    | <u> </u>                                                                              | 24                                                                                          |            | 1.52                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.5X <sub>D</sub><br>2.0X <sub>D</sub>                                                                                                      |                                                                                                                    | .7. <sub>1</sub>                                                                      | 2166                                                                                        |            | 4.95                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| עמימד ארי                                                                                                                                   |                                                                                                                    | 100                                                                                   | 10,08                                                                                       |            | 977 1                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Blank                                                                                                                                       | <u> </u>                                                                                                           | 2                                                                                     |                                                                                             |            | <u> </u>                              | With the same of t |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corr. Co  DATA:  Sample                                                                                                                     | ff.:                                                                                                               | 2.9981<br>Calculat                                                                    | ed .                                                                                        | ercept:    | 0,0000                                | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| BR Point                                                                                                                                    | I.D.                                                                                                               | Uncorrecte                                                                            | d For X                                                                                     |            |                                       | tual .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | POAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                             |                                                                                                                    | Dilution I                                                                            | Factor                                                                                      | Factor     | Conce                                 | ntration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 001 125<br>002 124<br>003 124<br>004 124<br>005 127<br>006 128<br>007 129<br>008 130<br>009 131<br>010 Spike 2*0<br>011 Spike 5*0<br>013 33 | -3 -20<br>  -3 -21<br>  -3 -22<br>  -3 -23<br>  -3 -24<br>  -3 -25<br>  -3 -27<br>  -3 -29<br>  -3 -30<br>  -3 -30 | 1.428<br>2.171<br>3.151<br>3.151<br>2.151<br>2.151<br>2.101<br>1.18<br>2.101<br>2.101 | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | 10         |                                       | 14,28<br>4,99<br>3,59<br>3,75<br>1,59<br>4,69<br>4,69<br>2,72<br>2,73<br>12,35<br>12,35<br>12,35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company of the Compan |
| 013 33<br>014 34<br>015 35<br>016 36<br>017 37<br>018 38<br>019 39                                                                          | 1 - 3 - 32<br>1 - 3 - 33<br>1 - 3 - 34<br>1 - 3 - 35<br>1 - 3 - 36<br>1 - 3 - 37<br>1 - 3 - 38                     | 100<br>3.00                                                                           | 2<br><u>0</u><br>0<br>1                                                                     |            |                                       | 101<br>125<br>127<br>127<br>207<br>207<br>208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

SUPPLEMENTARY DATA SHEET USED

. . Mailie Landon

| Analyst                                 | Found<br>Value    | Background<br>Value | Recovered<br>Concentratio    | d Concentration Of Spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ion   | Recovery     |                        | CL<br>3ø                                      |
|-----------------------------------------|-------------------|---------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------|------------------------|-----------------------------------------------|
| Spike> Blind Spike FQAC>                |                   |                     |                              | /0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100   |              | 11:                    | 1305<br>56.3                                  |
| Precis                                  | ion (Rep          | olicates)           | 24.64                        | 25. 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100   | 98.56        | •                      |                                               |
| Analyst<br>Replicat                     | Foun<br>Valu<br>I | id E                | Pound<br>7alue<br>II<br>2005 | Calculated<br>Range<br>0:31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | UCL<br>Found | lished<br>For<br>Range |                                               |
| Blind<br>Replicat<br>FQAC>              | e <u>7.7</u>      | <u>7</u> <u>:</u>   | 3.5 <b>4</b>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | -            |                        |                                               |
| Analyst'                                | s Report          |                     | nental Superv                | isor:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ····  |              |                        |                                               |
|                                         |                   |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        | <del>,</del>                                  |
| DEPARTME                                | NTAL DAT          | TA REVIEW:          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| DS check                                | calcula           | tions on sa         | amples noted                 | by FQAC: (╭) Pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ssed  | ( ) Fa       | iled                   |                                               |
| NOTÈS:                                  |                   |                     | NONC                         | Noted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |              |                        |                                               |
| (X) F                                   | assed             | ( ) Failed          | 3                            | for range requi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| NOTES:                                  |                   | <i>y</i> ) .        |                              | 2 1 37 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | .) . ,       | /                      | <u>/ !                                   </u> |
|                                         |                   |                     | ssed ( ) Fai                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| NOTES:                                  |                   |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| DS check                                | precisi           | ion: (📐 Pa:         | ssed ( ) Fai                 | led                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |              |                        |                                               |
| NOTES:                                  | <del></del>       |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| DS check                                | rejecti           | ion trend c         | riteria: (১)                 | Passed ( ) Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rning | ( ) Fa       | iled                   |                                               |
| NOTES:                                  |                   |                     |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| Departme                                | nt Supe           | rvisor Data         | :                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |
| NAME<br>CERTIFIC<br>with the<br>Survey. | EPS qua           | ality assura        | ance program                 | DATE / A Control of the control of t | the   | LSAAP Co     | complintamina          | ance                                          |
|                                         | S                 | igned               | <u>Amny h</u>                | him -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 7 7          |                        |                                               |
|                                         |                   |                     | (1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |              |                        |                                               |

Certification/Authorization: I can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for inderpoxation into USATHAMA DATA SYSTEM.

Signed

|                   |             | Calculated      |   |                                         |                 |                      |
|-------------------|-------------|-----------------|---|-----------------------------------------|-----------------|----------------------|
| Analytical sample | Lab         | Concentration   |   |                                         |                 |                      |
| Nd. Point         | I.D.        | Uncorrected For | Х | Dilution                                | = Actual        | POAC                 |
| <b>****</b>       |             | Dilution Factor |   | Factor                                  | Concentration   | Note                 |
| ABS               | <del></del> |                 |   |                                         |                 | <del></del>          |
| 001 125           | 1 - 3 -20   | 10,5            |   |                                         | 10,5            |                      |
| 002 J245 2        | 7 31        | 77.2            |   |                                         | 4.2             |                      |
| 003 126           | - 3 -22     | 72.7            |   |                                         | 1211            |                      |
| 004 1242          | 1 - 3 -23   | 76.6            |   |                                         | 26,6            |                      |
| 005 127           | 1 - 3 - 24  | 11.6            |   |                                         | 11.6            |                      |
| 006 128           | 1 - 3 -25   | <6.6            |   |                                         | 26.6            |                      |
| 007 129           | 1 - 3 -26   | 11.4            |   |                                         |                 | ****                 |
| 008 130           | 1 - 3 -27   | 16.6            |   |                                         | <u> </u>        | -                    |
| 009 121           | 1 - 3 -28   | <6.6            |   |                                         | <u> </u>        | ***********          |
| 010 Spike 2xp     | 1 - 3 -29   | 20,2            |   |                                         | 20.2            | -                    |
| 011 132           | 1 - 3 -30   | 14,5            |   |                                         | 14,5            | -                    |
| OIZ Sakes         | 1 - 3 -31   | 48.0            |   | <del></del>                             | 45.0            | application and a co |
| 013 33            | 1 - 3 - 32  | 811             |   | ******                                  | 811             | -                    |
| 014 34            | 1 - 3 -33   |                 |   |                                         | - LEVE          |                      |
| 015 35            | 1 - 3 - 34  | < 6.6           |   |                                         | - <u> </u>      | ***                  |
| 016 36            | 1 - 3 -35   | 9.0             |   |                                         |                 | ***********          |
| 017.37            | 1 - 3 - 36  | 7.6             |   |                                         | 1/1.6           |                      |
| 018 38            | 1 3 -37     | <u>'/:/</u>     |   | ,                                       | <del>////</del> |                      |
| ois <u>39</u>     | 1 - 3 - 38  | 36,6            |   | *************************************** | L lor le        | Without or and       |
|                   | - <u> </u>  |                 |   |                                         |                 | ***********          |

Compagitive section in the

SUPPLEMENTARY DATA SHEET USED

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expected                                                                  |             |                             |           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------|-----------------------------|-----------|
| Found Background Recovered Nalyst Value Value Concentration Spike> $22/\theta - \frac{2}{2} = $ |                                                                           | Recover     | WL<br>y 20                  | CL<br>3a  |
| Blind Spike FQAC> = 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                        | 100°        | 109                         | 113<br>84 |
| Precision (Replicates) 48.0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50                                                                        | 199 96,0    | <b>!</b>                    |           |
| Found Found Value Value Analyst I II Replicate>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Calculated<br>Range                                                       | UC          | blished<br>L For<br>d Range |           |
| Blind Replicate FQAC> #.0 < 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |             |                             |           |
| Analyst's Report to Departmental Supervis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |             |                             |           |
| - Little grant to the same of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           | Spinor -    |                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                           |             |                             |           |
| DEPARTMENTAL DATA REVIEW:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                           |             |                             |           |
| DS check calculations on samples noted by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | , FOAC: (✓ Pas                                                            | ssed () F   | ailed                       |           |
| NOTES: Asset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                     |             |                             |           |
| DS check on uncorrected concentrations fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | r range requir                                                            | rement:     |                             |           |
| NOTES: // // // // // //                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 5700                                                                    | 11:1, 1 (   |                             |           |
| DS check accuracy: ( /) Passed ( ) Faile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           | 7           |                             |           |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |             |                             |           |
| DS check precision: (() Passed () Faile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ed                                                                        |             |                             |           |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |             |                             |           |
| DS check rejection trend criteria: (🔨 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Passed ( ) War                                                            | ening () F  | ailed                       |           |
| NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | annaniar espira un manifer alle andre alle Annania espira anche del maire |             |                             |           |
| Department Supervisor Data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                           |             |                             |           |
| NAME /// can () cannot cer with the EPS quality assurance program es Survey.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | stablished for                                                            | the LSAAP C | ontamina                    | ance      |
| Signed 1977my (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Rilling C. V.                                                             | <del></del> |                             |           |

| FOAC check bli        | nd replicates | (precision):                                                                                      | ( Passed    | ( ) Failed                  |                                                 |        |
|-----------------------|---------------|---------------------------------------------------------------------------------------------------|-------------|-----------------------------|-------------------------------------------------|--------|
| .OTES: Tridds         | iample has    | CURRET DISEC                                                                                      | 15132 to    | be poor                     | on this                                         | SAMPLO |
|                       |               | accuracy):                                                                                        |             |                             |                                                 | •      |
| NOTES:                |               | /                                                                                                 |             |                             |                                                 |        |
| FQAC check bli        | nd spike (20  | accuracy):                                                                                        | ) Passed    | ( ) Failed                  |                                                 |        |
| NOTES:                |               | /                                                                                                 | •           |                             |                                                 |        |
| FQAC check tre        | end rejection | criteria:                                                                                         | Passed ( )  | Warning (                   | ) Failed                                        |        |
| FQAC sent memo        | report #      | to                                                                                                | Principle   | Investigato                 | r on                                            |        |
| date<br>FQAC DATA: NA | ME            | DATE                                                                                              |             | TIME                        | a an distribution was write around the table of |        |
| being in compl        | iance with th | EPS quality                                                                                       | assurance p | rogram estab                | lished fo                                       | r      |
| authorize its         | release for   | vey. I, furth                                                                                     | ermore, (7) | can ( ) can<br>A DATA SYSTE | not)<br>M.                                      |        |
| Cia                   | ined /\l      | $\sim \sim $ | . /         |                             |                                                 |        |

the groups of

SUPPLEMENTARY DATA SHEET USED . .

|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | Expected                                            |                                  |                                        |                                         |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------|
| Analyst<br>Spike>                       | Found Backgro<br>Value Value<br>23.2 - <0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Concentration                          | Concentrat                                          | ion % Recovery X //6             | WL<br>20°                              | CL<br>30T                               |
| Blind<br>Spike<br>FQAC>                 | ion (Replicates)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 21.2<br>53.8.                        | <u> </u>                                            | x 106<br>100 107.6               | 125.7<br>16.7                          | <u>14372</u><br>C.S                     |
| Analyst<br>Replicat                     | Found<br>Value<br>I<br>e> <u>\\'\-'i' </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Found<br>Value<br>II<br><u></u>        | Calculated<br>Range                                 | Establ<br>UCL<br>Found           | For<br>Range                           |                                         |
| Blind<br>Replicat<br>FQAC>              | e <7,49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 36.L                                   |                                                     |                                  |                                        |                                         |
|                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r samples noted by                     | / FQAC: ∭ Pa                                        | ssed ( ) Fai                     | iled                                   |                                         |
| NOTES:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cove Voled                             |                                                     | z am an h                        |                                        | *************************************** |
| (X) I                                   | Passed ( ) Fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | concentrations fo                      |                                                     |                                  | _                                      |                                         |
| NOTES:                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Passed () Faile                        | 1 11 8 50                                           | - 10 PM/-C                       |                                        |                                         |
| DS check                                | accuracy: X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Passed ( ) Faile                       | ed                                                  |                                  | ······································ |                                         |
| DS check                                | precision: (X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Passed ( ) Faile                       | ed                                                  |                                  |                                        |                                         |
| DS check                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d criteria: (X                         | Passed () Wa                                        | rning ( ) Fa                     | iled                                   |                                         |
| Departme                                | ent Supervisor Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ata:                                   |                                                     |                                  |                                        |                                         |
| NAME<br>CERTIFIC<br>with the<br>Survey. | CATION: 1 (<) constitution of the constitution | an () cannot cer<br>surance program es | DATE $\frac{12-23}{2}$ ctify this datstablished for | TIME a as being in the LSAAP Cor | complintamina                          | ance<br>ition                           |
| -                                       | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        |                                                     |                                  |                                        |                                         |

| DATA SHEET # 82 60                                                                                             | <b>4</b> c                                                     |                                                  |
|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------|
| FQAC DATA REVIEW:                                                                                              |                                                                |                                                  |
| FOAC check blind replicate OTES: POOR fie                                                                      | es (precision): () Pa<br>Ll duplinate 5 Ample<br>with a Number | ssed () Failed NAS CAUSE PROBLEMS - METAL        |
| FQAC check blind spike (36                                                                                     | accuracy): Pa                                                  |                                                  |
| FQAC check blind spike (20 NOTES:                                                                              | accuracy): (() Pa                                              | ssed ( ) Failed                                  |
| FQAC check trend rejection                                                                                     | n criteria: ( Passed                                           | ( ) Warning ( ) Failed                           |
| FQAC sent memo report #                                                                                        | to Princ                                                       | iple Investigator on                             |
| FQAC DATA: NAME                                                                                                | DATE                                                           | TIME                                             |
| Certification/Authorization being in compliance with the LSAAP Contamination Stauthorize in release for Signed | the EPS quality assuran<br>Dryey. I, furthermore,              | ce program established for<br>** can ( ) cannot) |

## Accuracy (Spikes)

|                                         |                    |                                 |           |                                          | Expec                                |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|-----------------------------------------|--------------------|---------------------------------|-----------|------------------------------------------|--------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------|
| Analyst<br>Spike>                       | Found<br>Value<br> | Backgrou<br>Value<br><u>a'/</u> | Concen    |                                          | Concent<br>Of Spi                    | ke<br>X         | Recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | WL<br>20                              | CL<br>3ør    |
| Blind                                   |                    |                                 |           |                                          | ·                                    | 100             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105,2                                 | 10%3         |
| Spike<br>SQAC>                          | 52 -<br>127        |                                 | . =       |                                          | 50                                   |                 | 101,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96.8                                  | 9/1          |
| Precis                                  | ion (Repl          | icates)                         |           | •                                        | ,                                    |                 | 10110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |              |
|                                         | Found              |                                 | Found     |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lished                                |              |
| 1 1                                     | Value              |                                 | Value     |                                          | Calculate                            |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | For                                   |              |
| Analyst<br>Replicat                     | e> 27              |                                 | 11<br>24  |                                          | Range<br>?                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Range<br>754                          |              |
| _                                       |                    | •                               |           | •                                        |                                      | <del>,,</del>   | ## *** <u>***</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |              |
| Blind<br>Replicat<br>FQAC>              | .e 50              |                                 | 35        |                                          | 15                                   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| -                                       | -                  |                                 |           |                                          |                                      |                 | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |              |
| Analyst'                                | s Report           | to Depar                        |           |                                          | or :<br>م                            | <del></del>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|                                         |                    |                                 |           | 7 7 7 7                                  |                                      | <u> </u>        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|                                         |                    |                                 |           |                                          |                                      | ·               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| DEPARTME                                | NTAL DATA          | REVIEW:                         |           |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| DS check                                | calculat           | ions on                         | samples r | noted_by                                 | FOAC: (X)                            | Passed          | ( ) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ailed                                 |              |
| HOTES:                                  |                    |                                 | More      | 7510                                     | <u>:/</u>                            |                 | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · · · · · · · · · · · · · · · · · · · |              |
|                                         | Passed             | () Fail                         | ed        |                                          | r range re                           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| NOTES:                                  |                    |                                 | p/1 3     | in plas                                  | 199-1                                | 06 /v           | ر الرار ا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | ·            |
| DS check                                | accuracy           |                                 |           |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| NOTES:_                                 |                    |                                 |           |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| DS check                                | precisio           | on: (½) P                       | assed (   | ) Faile                                  | đ                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| NOTES:_                                 |                    |                                 |           |                                          | ,                                    |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| DS check                                | rejectio           | on trend                        | criteria  | : (× P                                   | assed ( )                            | Warning         | j ( ) Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ailed                                 |              |
| NOTES:                                  |                    |                                 |           |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
|                                         | ent Superv         |                                 | _         |                                          |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |
| NAME<br>CERTIFIC<br>with the<br>Survey. | : EPS qual         | ity assu                        | rance pro | ogram es                                 | DATE 12-16<br>tify this<br>tablished | data as for the | TIME 47<br>being in<br>LSAAP Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n compli<br>ontamina                  | ance<br>tion |
|                                         | Sig                | ned                             | <u> </u>  | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | C. Com                               |                 | and the same of the same and th |                                       |              |
|                                         |                    |                                 |           | <i>n</i>                                 |                                      |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |              |

| DATA SHEET #                                                                               | 82 639                             | С                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •       |
|--------------------------------------------------------------------------------------------|------------------------------------|----------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| FOAC DATA REVIEW:                                                                          |                                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| FQAC check blind                                                                           | replicates                         | (precision):               | ( ) Passed                   | ( )y Failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |
| OTES: Sample                                                                               | UARALLY                            | overile Sys                | en                           | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |
| FQAC check blind                                                                           | spike (30 a                        | ccuracy):                  | (\$\rightarrow Passed        | ( ) Failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| NOTES:                                                                                     |                                    |                            |                              | programming and approximate the programming and the second second and the second secon |         |
| FQAC check blind                                                                           | spike (20 a                        | ccuracy):                  | Passed                       | ( ) Failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |
| NOTES:                                                                                     |                                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| FQAC check trend                                                                           | rejection c                        | riteria: ( )               | Passed ( )                   | Warning ( ) F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ailed   |
| NOTES:                                                                                     |                                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| FQAC sent memo re                                                                          | port #                             |                            | to Principle                 | Investigator o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n       |
| date                                                                                       |                                    |                            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |
| FQAC DATA: NAME_                                                                           |                                    | DATE                       |                              | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |
| Certification/Aut<br>being in complian<br>the LSAAP Contami<br>authorize its rel<br>Signed | ce with the nation Survease for in | EPS quality<br>ey. N, furt | assurance pr<br>hermore, (X) | ogram establis<br>can ( ) cannot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | hed for |
|                                                                                            | -                                  | U                          |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |

## Accuracy (Spikes)

|                                         | •                               |                                                  |            | Expected                  |        |                       |                 |             |
|-----------------------------------------|---------------------------------|--------------------------------------------------|------------|---------------------------|--------|-----------------------|-----------------|-------------|
| Analyst<br>Spike>                       |                                 | ound Recove<br>Concentra<br>= 41                 |            | ncentrat<br>f Spike<br>40 | Re     | %<br>ecovery<br>102,5 | WL<br>20°       | CL<br>30°   |
| Blind                                   |                                 |                                                  |            |                           | 100    |                       | 152.7           | 195.5       |
| Spike                                   | 41                              |                                                  |            | шĸ                        | .,     |                       | 61,5            | 38,7        |
| FQAC>                                   | 71 -                            |                                                  |            | 102                       | -1 X   | 02.5                  |                 | ,           |
| Precis                                  | ion (Replicates                 | <u>)</u>                                         |            | 100                       | 4,,,,  | 98.0                  |                 |             |
|                                         | Found                           | Found                                            |            |                           |        | Establ                | iched           |             |
|                                         | Value                           | Value                                            | Calc       | ulated                    |        | UCL                   |                 |             |
| Analyst                                 | 124                             | II                                               |            | ange                      |        | Found                 |                 |             |
| Replicat                                | e> <u>&lt;29.1</u>              | <u> 220.1                                   </u> | 0          |                           |        |                       | 3,7             |             |
| Blind<br>Replicat                       | e <b>∠27.</b> (                 | a d                                              |            | 16.9                      |        |                       |                 |             |
| FQAC>                                   | 2211                            | <u> </u>                                         |            | 16.1                      |        |                       |                 |             |
| Analyst'                                | s Report to Dep                 |                                                  | _          |                           |        |                       |                 |             |
|                                         |                                 | PASSES                                           | in Hillia  | Q.C.                      |        |                       |                 | ·           |
|                                         |                                 |                                                  |            |                           |        |                       |                 |             |
| DEPARTME                                | NTAL DATA REVIE                 | <u>w</u> :                                       |            |                           |        |                       |                 |             |
| DS check                                | calculations o                  | n samples not                                    | ed by FQAC | : (🏏 Pa                   | ssed   | ( ) Fai               | led             |             |
|                                         |                                 |                                                  |            | 1                         |        |                       |                 |             |
| NOTES:                                  |                                 |                                                  | Vove NOT   | 10                        |        |                       |                 |             |
|                                         | on uncorrected<br>Passed ( ) Fa |                                                  | ns for ran | ge requi                  | rement | :                     |                 |             |
| NOTES:                                  |                                 |                                                  | •          |                           |        |                       |                 |             |
| DS check                                | accuracy: (X)                   |                                                  |            |                           |        |                       |                 |             |
| NOTES:                                  |                                 |                                                  |            |                           |        |                       |                 |             |
| DS check                                | precision:                      | Passed ()                                        | Failed     |                           |        |                       |                 |             |
| NOTES:                                  | ·                               |                                                  |            |                           |        |                       |                 | ·           |
| DS check                                | rejection tren                  | d criteria:                                      | X) Passed  | ( ) Wa                    | rning  | ( ) Fa:               | iled            |             |
| NOTES:                                  |                                 |                                                  |            |                           |        |                       |                 |             |
|                                         | ent Supervisor D                |                                                  |            |                           |        |                       |                 |             |
| NAME<br>CERTIFIC<br>with the<br>Survey. | CATION: 1 (1) constitution as   |                                                  |            |                           |        |                       | compliantaminat | ince<br>ion |
|                                         | Signed_                         | Samy                                             | (Varion    |                           |        | - <del></del>         |                 |             |

82 643 DATA SHEET # FQAC DATA REVIEW: FQAC check blind replicates (precision): ( ) Passed ( ) Failed tell below detection limit which to low for Actual Field Samples.

Accuracy): Passed () Failed NOTES: ONE SAMPLE MAY be SET FQAC check blind spike (30 accuracy): FQAC check blind spike (20 accuracy): ( Y Passed ( ) Failed FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed FQAC sent memo report # \_\_\_\_\_ to Principle Investigator on date FOAC DATA: NAME DATE TIME Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. Signed

٠. ت

| Accura                                | cy (Spikes)                                                                                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------|-----------------------------------------|------------------------|----------|
| Analyst<br>Spike>                     | Found Backgrow<br>Value Value 1280 - 1210                                                                       | Concentr             | ration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Expected Concentration of Spike $\theta_i \hat{x} \hat{y}$ | on Reco<br>X 100          | overy<br>875                            | WL<br>20               | CL<br>3Ø |
| Blind<br>Spike<br>FQAC><br>Precis     | 1420 _ 1390<br>1460<br>ion (Replicates)                                                                         | = 3                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40                                                         |                           | 5%<br>7.5%                              | <u> </u>               | •        |
| Analyst<br>Replicat                   | Found<br>Value<br>I<br>:e> <u>/0/</u> 0                                                                         | Found<br>Value<br>II | . Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lculated<br>Range                                          |                           | Establi<br>UCL F<br>Found F             | for                    |          |
| Blind<br>Replicat<br>FQAC>            | 1 <u>350</u><br>635                                                                                             | 1160<br>1360         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>/(20</del> )                                          |                           | *************************************** |                        |          |
| Analyst'                              | s Report to Depa                                                                                                | rtmental Su          | pervisor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.6.13                                                     |                           |                                         |                        |          |
|                                       |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
| DEPARTM                               | ENTAL DATA REVIEW                                                                                               | :                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
| DS chec                               | k calculations on                                                                                               | samples no           | ted by F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | QAC: (/) Pas                                               | ssed (                    | ) Fai                                   | led                    |          |
| NOTES:                                | and the state of the | 1/21/1               | 67/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | /                                                          |                           |                                         |                        |          |
| DS check                              | k on uncorrected<br>Passed ( ) Fai                                                                              | concentrati<br>led   | ons for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | range requi                                                |                           |                                         |                        |          |
| NOTES:_                               | p/1 c/                                                                                                          | oplo bell            | 1.00 Oc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ? 5.0                                                      | 0 /0/3                    | <u> </u>                                | •                      |          |
|                                       | k accuracy: ( )                                                                                                 | Passed (  )          | Failed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            | ,                         |                                         |                        |          |
| DS chec                               | k precision: 🏹                                                                                                  |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
| NOTES:_                               |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
| DS chec                               | k rejection trend                                                                                               | criteria:            | ( Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sed (') Wa                                                 | rning (                   | ) Fai                                   | led                    |          |
| NOTES:_                               |                                                                                                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
|                                       | ent Supervisor D                                                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |                           |                                         |                        |          |
| NAME<br>CERTIFI<br>with th<br>Survey. | CATION: I / ) c. e EPS quality as:                                                                              | L L                  | a de la companya de l |                                                            | TIM<br>a as being the LSA | ing in                                  | 30<br>compli<br>tamina | ance     |
|                                       | Signed                                                                                                          | Simm                 | 2/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | arm                                                        |                           |                                         |                        |          |

| DATA SHEET # 82 754 C DATA SHEET SERIES (A-C) of 17                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FOAC DATA REVIEW:                                                                                                                                                                                                                                                                            |
| POAC check blind replicates (precision): X) Passed () Failed Dilution factor Caused imprecision NOTES: Very close UCL NA for RANGE                                                                                                                                                           |
| FQAC check blind spike (30 accuracy): (X) Passed ( ) Failed                                                                                                                                                                                                                                  |
| NOTES: ONE Spike slightly out of RANGE but great considering background                                                                                                                                                                                                                      |
| FQAC check blind spike (20 accuracy): (X) Passed ( ) Failed                                                                                                                                                                                                                                  |
| NOTES:                                                                                                                                                                                                                                                                                       |
| FQAC check trend rejection criteria: (X) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                                       |
| NOTES:                                                                                                                                                                                                                                                                                       |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                         |
| date FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                               |
| Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.  Signed |

DATA SHEET #

| Standard<br>Levels                |                   | Expected<br>Concentration | Found Value #1       | Found<br>Value #2         | Found Value #3 |
|-----------------------------------|-------------------|---------------------------|----------------------|---------------------------|----------------|
| Ø.5XD<br>2.ØXD<br>1Ø.ØXD<br>Blank | 411<br>11<br>21 1 | 0.40<br>1.00<br>2,00      | 0,42<br>0,98<br>1,39 | 0,42<br>1,05<br>1,78<br>0 |                |

 Landard Curve Data
 Slope:
 0.1500

 Corr. Coff.:
 0.9915
 Y-intercept:
 0.0956

| AESample Point           | Lab<br>I.D.                                                                                                                                                                                                                  | Calculated<br>Concentration<br>Uncorrected For<br>Dilution Factor                                                                      | x | Dilution<br>Factor                                       | 112 | Actual<br>Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FQAC<br>Notes |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                          | 3 - 3 - 1<br>3 - 3 - 3<br>3 - 3 - 3<br>3 - 3 - 4<br>3 - 3 - 6<br>3 - 10<br>112<br>133<br>134<br>135<br>137<br>137<br>137<br>137<br>137<br>137<br>137<br>137 | 7,02<br><0.99<br>6,15<br>6,15<br>9,02<br>9,02<br>6,62<br>5,62<br>70,79<br>5,82<br>9,48<br>6,52<br>1,29<br>1,29<br>1,29<br>1,29<br>1,33 |   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |     | 70.2<br><0.99<br>61.5<br>65.5<br>252.0<br>70.2<br>66.2<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99<br><0.99 |               |
| ************************ |                                                                                                                                                                                                                              |                                                                                                                                        |   |                                                          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |

DATA SHEET SERIES (A-C) of \_\_\_\_\_

DATA SHEET # 82 756

R

| DATA SHEET # 82 756 C DATA SHEET SERIES (A-C) of                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                            |
| FQAC check blind replicates (precision): (C) Passed ( ) Failed                                                                                                                                                                                                                               |
| NOTES:                                                                                                                                                                                                                                                                                       |
| FOAC check blind spike (30 accuracy): Passed () Failed  NOTES: Spike only 10th of total CON. Recovery good  FOAC check blind spike (20 accuracy): (7) Passed () Failed                                                                                                                       |
| FQAC check blind spike (20 accuracy): (7) Passed ( ) Failed  NOTES:                                                                                                                                                                                                                          |
| FQAC check trend rejection criteria: ( Passed ( ) Warning ( ) Failed                                                                                                                                                                                                                         |
| FOAC sent memo report # to Principle Investigator on  date  FOAC DATA: NAME DATE TIME                                                                                                                                                                                                        |
| Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.  Signed |

FEB 81983

DATA SHEET # 82 760 A DATA SHEET SERIES (A-C) 7 OF 17

|                                  |                                       | MY AMMUNITION PLAN                 |                  |                                              |
|----------------------------------|---------------------------------------|------------------------------------|------------------|----------------------------------------------|
| ANAGEMENT DATA:                  |                                       |                                    |                  |                                              |
| Analyst(s) Name                  | (s) (////)<br>alyzed (-3/-)           | Time                               | 166. 3.1         |                                              |
| Date Samples An                  | no social (Modul                      | Z USATHAMA Meth                    | 10:00 h 11       |                                              |
| Matrix 3                         | Category                              | 3 Batch                            |                  |                                              |
| Systems Calibra                  | tion: (X) Passed                      | S) USATHAMA Method Batch () Failed |                  |                                              |
| Instrument   NOTES:              |                                       |                                    |                  |                                              |
| MO1 DD .                         |                                       |                                    |                  | -                                            |
|                                  |                                       |                                    |                  |                                              |
| ANALYTICAL RESULT                | rs.                                   |                                    |                  |                                              |
| Designated Locati                | on of Permanent                       | Lab Records: Book                  | # /3 , Page      | * 17 ·                                       |
| File #                           |                                       |                                    |                  |                                              |
| NOTES:                           | 1/(1)+1                               | 1 111 11/L                         |                  | .,                                           |
| Standard                         |                                       | • /                                | und Found        |                                              |
|                                  | oncentration                          |                                    | ue #2 Value #    | 3                                            |
| <u> </u>                         | 0.01                                  |                                    |                  |                                              |
| 0.5X <sub>D</sub> —              | <u> </u>                              | 0.25                               | 2.026<br>2,500   |                                              |
| 10.0XD                           |                                       | 2153                               | <del>(1)</del>   |                                              |
| Blank                            |                                       | ^                                  | j                |                                              |
|                                  |                                       |                                    |                  | •                                            |
| andard Curve D                   | ata                                   | Slope:                             | NIP              |                                              |
| _andard Curve D. Corr. Coff.:    | 1/1/                                  | Slope:<br>Y-intercept:             | 1110             |                                              |
| D1 m1                            |                                       |                                    | •                |                                              |
| DATA: ALA                        | Calculate                             | a                                  |                  |                                              |
| Sample Lab                       |                                       |                                    |                  |                                              |
| Point I.D                        |                                       |                                    |                  | FOAC                                         |
|                                  | Dilution Fa                           | ctor Factor                        | Concentration    | Notes                                        |
| 3 - 3                            | -1 0.82                               | 100                                | 82               |                                              |
| 3 - 3                            | -2 1.08                               | 100                                | 108              |                                              |
| 3-3                              | $\frac{-3}{429}$                      | 100                                | 129              | -                                            |
|                                  | -4 0184<br>-5 1175                    | 100                                | <u>84</u><br>175 | -                                            |
| 3 - 3                            | - lo 2.08                             | 193                                | 208              |                                              |
| 3 - 3                            | <del>-7</del> <u>1:19</u>             | . 100                              | 119              | Market # # # # # # # # # # # # # # # # # # # |
| <del> 3-3</del>                  | -8 0,58<br>-9 1,43                    | <u> </u>                           | 58<br>143        | -                                            |
| 3 3                              | $\frac{1}{10}$ $\frac{173}{50}$       | . 100                              | 5.0              |                                              |
| 3 - 3<br>3 - 3<br>3 - 3<br>3 - 3 | -11 2.89                              | 100                                | 289              |                                              |
| $\frac{3-3}{3-3}$                | -12 /110<br>-13 2190                  | 100                                | 110              | *****                                        |
| $\frac{3-3}{3-3}$                | -14 A170                              | 190<br>100                         | 63               |                                              |
| 3-3                              | <u>-15</u> 2.92                       | 100                                | <u> </u>         |                                              |
| 3-3                              | -16 0172                              | 100                                | 72               |                                              |
| <del>- 3:4</del>                 | $\frac{-17}{-18}$ $\frac{0.93}{0.03}$ | 1000<br>1000                       | 930              |                                              |
|                                  | <u> </u>                              |                                    | -/               | Sept 44 months again.                        |
|                                  |                                       |                                    |                  |                                              |

82 760 B DATA SHEET SERIES (A-C) \_\_\_\_\_\_ of \_\_\_\_\_

DATA SHEET #

| DATA SHEET # 82 760 C DATA SHEET SERIES (A-C) of                                                                                                                                                                                                                                    |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                   |    |
| FQAC check blind replicates (precision): (X) Passed ( ) Failed                                                                                                                                                                                                                      |    |
| NOTES: UCL established for lower RANGE clup. Samples not gre                                                                                                                                                                                                                        | 'n |
| FQAC check blind spike (30 accuracy): () Passed () Failed                                                                                                                                                                                                                           |    |
| NOTES: Soke far to low to obtain good recovery                                                                                                                                                                                                                                      |    |
| NOTES: UCL established for lower RANGE clup. Samples not green for check blind spike (30 accuracy): (7) Passed () Failed NOTES: Spike far to low to obtain good recovery FOAC check blind spike (20 accuracy): (8) Passed () Failed                                                 |    |
| NOTES:                                                                                                                                                                                                                                                                              |    |
| FQAC check trend rejection criteria: () Passed () Warning () Failed                                                                                                                                                                                                                 |    |
| NOTES:                                                                                                                                                                                                                                                                              |    |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                |    |
| date FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                      |    |
| Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established fo the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. | r  |

DATA SHEET SERIES (A-C) OF 17 82 771 DATA SHEET # LONGHORN ARMY AMMUNITION PLANT CONTAMINATION STUDY DATA MANAGEMENT FORM MANAGEMENT DATA: Analyst(s) Name(s) Date Samples Analyzed 2-6-13/ Time Parameter Aluminum (1 Matrix 3 ANd 4 Category Systems Calibration: ( ) Passed ( ) Failed Instrument # ID# NOTES: ANALYTICAL RESULTS: Designated Location of Permanent Lab Records: Book # 7 , Page # 70, File # 11.1175 NOTES: Standard Ex'pected Found Found Found Levels Value #2 Concentration Value #1 Value #3 0.5X<sub>D</sub> 2.0X<sub>D</sub> 10.0X<sub>D</sub> Blank 0.84 0,80 0.75 1193 2100 11:00 1/162 3,94 tandard Curve Data Slope: 0.9991 Y-intercept: Corr. Coff.: **DFL** DATA: Calculated Concentration Sample Lab Point I.D. Uncorrected For X Dilution = Actual FOAC # # Dilution Factor Factor Concentration Notes 019 1100 0190 020 1520 1000 1,48 1480 )생 <u>021</u> 30% <u>0101</u> 1000 61 1.34 1011 70 0103 1140 1000 14.0 w7, <u>0103</u> ಎಸ್ **೧ 40**1 1.5 04<u>05</u> 11 0402 11 0402 1,26 1000 1:35 1000 0+03 0501 0502 0502 1390 1.39 1000 1.03 1.200 1114 1100 1.10 100 BIANK 1.68 1:00 3.60 3.6 1.10 100 510601 3.60 3,6

NAME DATE 2-9-3 TIME // MECERTIFICATION: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey.

Signed

Sanity /1/1

| DAVA-SHEET # 82 771 C DATA SHEET SERIES (A-C) of                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------|
| FOAC DATA REVIEW:                                                                                                                    |
| FOAC check blind replicates (precision): \wp Passed ( ) Failed                                                                       |
| NOTES: Overide due to sample concentration                                                                                           |
| FQAC check blind spike (30 accuracy): Passed ( ) Failed                                                                              |
| NOTES:                                                                                                                               |
| FQAC check blind spike (20 accuracy): Passed ( ) Failed                                                                              |
| NOTES:                                                                                                                               |
| FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed                                                               |
| NOTES:                                                                                                                               |
| FQAC sent memo report # to Principle Investigator on                                                                                 |
| date                                                                                                                                 |
| FQAC DATA: NAME DATE TIME                                                                                                            |
| Certification/Authorization: I ( ) can ( ) cannot certify this data as                                                               |
| being in compliance with the EPS quality assurance program established for                                                           |
| the LSAAP Contamination Survey. F. furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |
| Signed Aut )                                                                                                                         |

2197

7,2

77.7

Boile

1513

10 100

10

100

DS check rejection trend criteria: (X) Passed () Warning () Failed

NOTES:

Department Supervisor Data:

NAME PAINTY OF DATE 2/14/83 TIME 5:00 CERTIFICATION: 1/() can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey.

Signed

| DATA*               | SHEET                  | #                       | 82                      | 773                          | С                                  | DATA SI                   | HEET SERIES                                    | (A-C)                | of _                                              | *************************************** |
|---------------------|------------------------|-------------------------|-------------------------|------------------------------|------------------------------------|---------------------------|------------------------------------------------|----------------------|---------------------------------------------------|-----------------------------------------|
| FQAC                | DATA                   | REVI                    | EW:                     |                              |                                    |                           | •                                              |                      |                                                   |                                         |
| FQAC<br>NOTE        | chec<br>Ove<br>S: (Y   | k bli<br>gride<br>lenla | nd ri                   | eplicat<br>ue do             | es (pr<br>Poo                      | ecision):                 | le qua                                         | ssed ( )             | Failed                                            | r                                       |
| FQAC                | chec                   | k bli                   | nd s                    | pike (3                      | _                                  | racy):                    |                                                |                      |                                                   |                                         |
| FQAC                | S:<br>chec<br>S:       | k bli                   |                         |                              | Ø accu                             | racy);                    | ( ) Pa                                         | ssed (               | ) Failed                                          |                                         |
| FQAC                |                        | k tre                   |                         | ejectio                      |                                    | `                         | Passed                                         | ( ) War              | ning ()                                           | Failed                                  |
|                     |                        |                         | •                       | -                            |                                    |                           |                                                |                      | estigator                                         | on                                      |
| FQAC                | date<br>DATA           | : N                     | AME                     |                              |                                    | DAT                       | €                                              |                      | TIME                                              |                                         |
| Cert<br>bein<br>the | ifica<br>g in<br>LSAAP | tion,<br>comp<br>Con    | /Auth<br>lianc<br>tamin | orizati<br>e with<br>ation S | on: I<br>the EF<br>urvey.<br>inçor | can<br>Squality<br>I, fur | ( ) cann<br>y assuran<br>thermore,<br>into USA | ot certi<br>ce progr | fy this da<br>am establi<br>() canno<br>TA SYSTEM | lshed for<br>ot)                        |

DATA SHEET #

FEB 8 1983

| DATA SHEE                               | $_{T} * 82 \%$                   | 81 A D                  | ATA SHEET        | SERIES (A                              | -c) <u>     </u> | OF 1        | <u></u>                       |
|-----------------------------------------|----------------------------------|-------------------------|------------------|----------------------------------------|------------------|-------------|-------------------------------|
|                                         | CON                              | LONGHORN AI             |                  |                                        |                  |             |                               |
| ANAGEMEN                                | T DATA                           | <del></del>             | 7                |                                        | TFURM            |             |                               |
| Analyst                                 | (s) Name(s)                      | DONA WE                 | : Vin            | smoke                                  |                  |             |                               |
| Date Sa                                 | mples Analyzoner Zinc<br>3 ANA 4 | ed 1-27-83              |                  | Time                                   | 4,               | 00          |                               |
| Paramet                                 | er Zinc                          | taM)                    | UE) ABVI         | HAMA Metho                             | d #              | <del></del> |                               |
| Systems                                 | Calibration                      | · (V) Passed            | / \ Fai          | led                                    | ·                |             |                               |
| instr                                   | ument #                          |                         | 1D#              |                                        |                  |             |                               |
| NOTES:_                                 |                                  |                         |                  |                                        |                  |             |                               |
| <del>~~~~~~~~</del>                     |                                  |                         |                  | ·····                                  | <del></del>      |             |                               |
| ANALYTICA                               | L RESULTS:                       |                         |                  |                                        |                  |             |                               |
| Designate                               | d Location o                     | f Permanent             | Lab Recor        | ds: Book                               | <u>• /3</u>      | _, Page     | 1/Z.                          |
| File #                                  | •                                | Wits                    | 1110             | 112/6                                  |                  |             |                               |
| NOTES:                                  |                                  | 0/11/13                 | //I·E            | 17/7                                   | <del></del>      |             |                               |
| Standa                                  | ard Expe                         | cted                    | Found            | For                                    | ınd              | Found       |                               |
| Leve                                    | Ls Concen                        | tration                 | Value #1         | Valu                                   | 1e #2            | Value #:    | <u> </u>                      |
| Ø.5X,                                   | 0                                | 50                      | 0.60             |                                        | 5,40             |             |                               |
| 2.ØX                                    | $\frac{1}{\sqrt{2}}$             | 20                      | 0.60             | · ———————————————————————————————————— | ,00              | <del></del> | ••                            |
| 10.0X;                                  | 5                                | .00                     | 5100             |                                        | ,20              |             | •••                           |
| Blan                                    | K                                | 0                       |                  |                                        | 0                |             | ···· .                        |
|                                         |                                  |                         |                  |                                        | 1/1/1            |             |                               |
|                                         | Curve Data                       | NIA                     | Slope:<br>Y-inte |                                        | NA               | <del></del> |                               |
| Corr.                                   | Coff.:                           | 10/1                    | Y-inte           | ercept:                                | V /Y             | <u> </u>    |                               |
| DATA:                                   | AFV                              |                         |                  |                                        |                  |             |                               |
|                                         | -                                | Calculate               |                  |                                        |                  |             |                               |
| Sample<br>Point                         |                                  | Concentrate Uncorrected |                  | Dilution                               | = Ac             | tual        | PQAC                          |
| *                                       | *                                | Dilution F              |                  | Factor                                 |                  | ntration    | Notes                         |
|                                         | 2 2                              | 0.11                    | <del></del>      |                                        |                  |             | Security distance or other or |
|                                         | 3-3-19                           | 214                     | _                | 10                                     |                  | 24.0        |                               |
| -                                       | 3 - 3 - 20                       | 3.0                     | -                |                                        |                  | 3.0         |                               |
|                                         | 3 - 3 - 22                       | 3,6                     | -                | 10                                     | 7                | 3610        |                               |
| *********                               | 4 - 3 - 23                       | 2,5                     | <del>-</del>     | 10                                     |                  | 15.10       |                               |
| ********                                | # = 3 = 34                       | <u> </u>                | -                | 10                                     |                  | 46,0        | •                             |
| *************************************** | 4 - 3 - 26                       | 7.0                     |                  |                                        |                  | 8.0         | -                             |
| *******                                 | 4 - 3 - 27                       | 8,10                    |                  |                                        | ,                | 8:0         |                               |
| *************************************** | 4 - 3 - 28                       | 1.7                     | -                |                                        |                  | 9.0         |                               |
|                                         | <del>리 - &gt; - 스</del>          | <u> </u>                | ***              |                                        | *****            | 6.0         |                               |
|                                         | 4 - 3 - 31                       | 1.3                     | <b>-</b>         | 10                                     |                  | 13.0        | ***                           |
| ********                                | 4 - 3 - 32                       | 10:0                    |                  |                                        |                  | 19.0        |                               |
| ******                                  | 4 - 3 -33                        | 10.0                    | <b></b>          | - 70                                   | <del></del>      | 11.11       | •                             |
| ******                                  | 1 - 1 - 2                        | <del></del>             |                  | 10                                     |                  | 11.0        |                               |
|                                         | 4 - 3 - 36                       | 216                     |                  | 10                                     |                  | 2/.10       |                               |
| -                                       |                                  |                         |                  |                                        |                  |             |                               |

| Accura                                | cy (Spikes)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------------|-------------------------------------|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------|
| Analyst<br>Spike>                     | Found Background Value 21.0 - 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Conce                       | ecovered<br>entration    | Expected<br>Concentrati<br>Of Spike |                            | very                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WL<br>20                                | CL<br>30          |
| Blind<br>Spike<br>FQAC>               | $\frac{/3.0}{/(1.0)} = \frac{/0.0}{(Replicates)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =                           | <u>3.</u>                | <u>5</u><br>2                       | -x 6                       | 0 \\ \overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\nabla}_{\overline{\overline{\nabla}_{\overline{\nabla}_{\overline{\overline{\nabla}_{\overline{\overline{\nabla}_{\overline{\overline{\nabla}_{\overline{\overline{\overline{\nabla}_{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\ov | <u>108</u><br>88                        | <u> (83</u><br>83 |
| Analyst<br>Replicat                   | Found<br>Value<br>I<br>e> 8:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Found<br>Value<br>II<br>8:0 | -                        | Calculated<br>Range<br>OrO          | F                          | UCL<br>Found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ished<br>For<br>Range                   |                   |
| Blind<br>Replicat<br>FQAC>            | .e <u>24.</u> 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21.0                        | -                        | 3                                   | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| Analyst.                              | s Report to Depa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rtmental                    | Superviso                | or:<br>Anni-licat (                 | VC i                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | <del></del>       |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| DEPARTME                              | ENTAL DATA REVIEW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ':                          |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
|                                       | c calculations on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                           | noted by                 | FQAC: (/) Pa                        | ssed (                     | ) Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ileđ                                    |                   |
|                                       | Nove V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ,                           |                          | ,<br>                               |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| DS check                              | k on uncorrected<br>Passed ( ) Fai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | concentr<br>led             |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| NOTES:                                | All spipe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | beti.                       | 10N 01                   | 5-60 100                            | 14/5                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | <del></del>       |
| DS check                              | k accuracy: 💢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Passed                      | ( ) Faile                | đ                                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| NOTES:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                                     | <del> </del>               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *************************************** |                   |
| DS chec                               | k precision: (火)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Passed                      | ( ) Faile                | đ                                   |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| NOTES:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                                     | ····                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| DS chec                               | k rejection trend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d criter:                   | ia: 🚫 F                  | Passed ( ) Wa                       | arning (                   | ) Fa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | iled                                    |                   |
| NOTES:                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
|                                       | ent Supervisor D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <del></del>                 |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
| NAME<br>CERTIFI<br>with th<br>Survey. | CATION: I/(/) concerning the constitution of t | an () surance               | cannot cer<br>program es | DATE 2-2 6 stablished for           | TIM<br>ta as being the LSA | ng In<br>AP Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | compl<br>ntamin                         | lance<br>ation    |
|                                       | Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 800                         | 112/                     | Marc                                |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                          |                                     |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                   |

DATA SHEET # 82 781 B DATA SHEET SERIES (A-C) \_\_\_\_\_\_ of \_\_\_\_\_

| DATA SHEET # 82 781 C DATA SHEET SERIES (A-C) of                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                                                                                                                                                                                   |
| FOAC DATA REVIEW:                                                                                                                                                                                                                                                                   |
| FQAC check blind replicates (precision): $(X)$ Passed ( ) Failed                                                                                                                                                                                                                    |
| NOTES: SAMPLE CONCONTENTION And VARIABLY Account for NONCOMPTAN                                                                                                                                                                                                                     |
| FQAC check blind spike (30 accuracy): (/) Passed ( ) Failed                                                                                                                                                                                                                         |
| NOTES: Cop. of sample to high for spike  FOAC check blind spike (20 accuracy): (7) Passed () Failed                                                                                                                                                                                 |
| FQAC check blind spike (20 accuracy): (7) Passed ( ) Failed                                                                                                                                                                                                                         |
| NOTES:                                                                                                                                                                                                                                                                              |
| FQAC check trend rejection criteria: (>) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                              |
| NOTES:                                                                                                                                                                                                                                                                              |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                |
| date                                                                                                                                                                                                                                                                                |
| FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                           |
| Certification/Authorization: I D can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |
| Sianed                                                                                                                                                                                                                                                                              |

1.68 1.96

1,81

9.92

168,0

196.0

198,0

100 .

100 .

100

100

| Accur | acy | (Spik | (es) |
|-------|-----|-------|------|
|       |     |       |      |

| nalyst<br>Spike>                       | Found I<br>Value                         | Value    | Conce                       | ecovered<br>entration<br>%,0 | Expected<br>Concentrat<br>Of Spike       | Re<br>X      | %<br>covery<br><u>⊱⊘</u>     |                                                | CL<br>30       |
|----------------------------------------|------------------------------------------|----------|-----------------------------|------------------------------|------------------------------------------|--------------|------------------------------|------------------------------------------------|----------------|
| Blind<br>Spike<br>FQAC><br>Precis      | 69.1<br>73.4<br>ion (Repl                | 64.1     | _ =                         | 5.0<br>9.3                   | 5 10                                     | X<br>1ØØ -   | 100 <sup>16</sup> 6          | <u>/// ,                                 </u>  | <u>/~</u>      |
| Analyst<br>Replicat                    | Found<br>Value<br>I<br>:e> <u>///</u> // |          | Found<br>Value<br>II<br>168 |                              | Calculated<br>Range<br>400               |              | UCL<br>Found                 | lished<br>For<br>Range                         |                |
| Blind<br>Replicat<br>FOAC><br>Analyst' | s Report                                 |          |                             |                              |                                          | -            |                              |                                                |                |
|                                        |                                          |          | Ppc                         | Can Aray                     | Horri a Ci                               |              |                              |                                                |                |
|                                        | ENTAL <u>DATA</u><br>k calculat          |          | samples                     | noted by                     | r FQAC: K) Pa                            | assed        | ( ) Fa                       | iled                                           |                |
| NOTES:_                                |                                          |          | No                          | we Not                       | od                                       |              |                              |                                                |                |
| DS chec                                | k on uncor<br>Passed                     | rected o | oncentr<br>ed               | ations fo                    | or range requ                            | lrement      | :                            |                                                |                |
| NOTES:_                                | All Sr                                   | 1 ples 1 | x-fine un                   | 0,5                          | 10 100                                   | 11:15 .      | . · · · · .                  | dille                                          | , v            |
|                                        | k accuracy                               | •        |                             |                              |                                          | , ,          |                              |                                                |                |
| NOTES:                                 |                                          | ,<br>    | p/ ):                       | PIPILL                       | 1 wel                                    |              |                              |                                                |                |
| DS chec                                | k precisio                               |          |                             |                              |                                          |              |                              |                                                |                |
| NOTES:                                 |                                          |          |                             |                              | Danasa / 3 N                             |              |                              |                                                |                |
|                                        | K rejectio                               | on trena | criteri                     | ιa: (χ) Ι                    | Passed () W                              | arning       | () re                        | allea                                          |                |
| NOTES:                                 |                                          |          | <del></del>                 |                              | <del></del>                              | <del> </del> | <del></del>                  |                                                | <del></del>    |
|                                        | ent Super                                |          |                             |                              | 1 10                                     |              |                              | 0 -                                            |                |
| NAME<br>CERTIFI<br>with th<br>Survey.  | ie EPS qua                               | litý ass | urance p                    | program e                    | DATE $2//5/8$ rtify this dastablished fo | ta as h      | TIME<br>being in<br>LSAAP Co | אָני <u>מיט און Si3ט</u><br>n compl<br>ontamin | lance<br>ation |
|                                        | Si                                       | aned     | 111111                      | · /                          | Miller -                                 |              |                              |                                                |                |

| DATA SHEET #                      | 82 790                        | C DAT                   | A SHEET SERIES (                                                 | (A-C)                       | · f ·                 |
|-----------------------------------|-------------------------------|-------------------------|------------------------------------------------------------------|-----------------------------|-----------------------|
| FOAC DATA REV                     | IEW:                          |                         |                                                                  |                             |                       |
| FOAC check bl<br>ANALYT<br>NOTES: | ind replicate                 | es (precisio            | not Considur                                                     | sed () Fall                 | ed<br>buttle          |
| FQAC check bl                     |                               |                         |                                                                  |                             |                       |
| FQAC check bl                     | ind spike (2)                 | accuracy):              | (A) Pass                                                         | sed ( ) Fail                | led                   |
| FQAC check tr                     |                               |                         | T) Passed                                                        | ( ) Warning                 | ( ) Failed            |
| FQAC sent mem                     | no report #                   |                         | to Princip                                                       | ple Investig                | ator on               |
| date<br>FQAC DATA: 1              | NAME                          | ·                       | DATE                                                             | TIME                        |                       |
| being in comp<br>the LSAAP Cor    | oliance with<br>ntamination S | the EPS qualurvey. I, i | can ( ) canno<br>lity assurance<br>furthermore,<br>lon into USAT | e program es<br>( ) can ( ) | tablished for cannot) |

| DATA SHEET # 82 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 92 a dat          | FEB 8             | 1983<br>SHRIES (A   | -c) <u>5</u>      | _OF               | <u>1</u>                                |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------------|-------------------|-------------------|-----------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LONGHORN ARM      |                   |                     |                   |                   |                                         |  |  |  |  |
| The state of the s | NTAMINATION STU   |                   |                     |                   |                   |                                         |  |  |  |  |
| Analyst(s) Name(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Daypar            | Buch              | 101-6               |                   |                   |                                         |  |  |  |  |
| Analyst(s) Name(s) Date Samples Analy Parameter Chromic Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | zed 1-29-8        | 3                 | Time                | 12.15             | 1.                |                                         |  |  |  |  |
| Parameter Chromin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Jm (Meta          | USATI             | HAMA Metho<br>Batch | ሷ <del></del>     | 11/               |                                         |  |  |  |  |
| Systems Calibratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n: (X) Passed     | () Fai.           | led                 | <u> </u>          |                   |                                         |  |  |  |  |
| Matrix 4 Category 3 Batch 3  Systems Calibration: Passed () Failed  Instrument ID#.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                   |                     |                   |                   |                                         |  |  |  |  |
| NUIES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | NOTES:            |                   |                     |                   |                   |                                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | <del></del>       |                     |                   |                   | -                                       |  |  |  |  |
| ANALYTICAL RESULTS: Designated Location File # NOTES:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   | ab Record         | ,                   | 13                | , Page            | 03.                                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Found<br>Value #1 | Fou<br>Valu         |                   | Found<br>Value #3 | <u>3</u>                                |  |  |  |  |
| Ø.5X <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.60              | 0,60              | 01                  | 50                |                   |                                         |  |  |  |  |
| 2.ØXD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.20              | 1,30              |                     | 70                |                   | -                                       |  |  |  |  |
| 10.0XD<br>Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                 | <u> </u>          | <u>_6.</u>          | 00                |                   | -                                       |  |  |  |  |
| candard Curve Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | Slope:            | . ———<br>1/         | 10                |                   | <b>.</b>                                |  |  |  |  |
| Corr. Coff.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N/P               | Y-inte            | rcept:              | ر بر<br>الميز / ا |                   |                                         |  |  |  |  |
| DATA: AGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculated        | 1                 |                     |                   |                   |                                         |  |  |  |  |
| Sample Lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Concentrati       | on                |                     |                   |                   |                                         |  |  |  |  |
| Point I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uncorrected       |                   | Dilution            | = Acti            |                   | FQAC                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dilution Fac      | cor               | Factor              | Concent           | ration            | Notes                                   |  |  |  |  |
| 4-3-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,8               |                   | ~                   | 5                 | 8                 |                                         |  |  |  |  |
| $\frac{4-3-36}{1-2-26}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{8.5}{9.6}$ |                   |                     |                   | 5                 | <del></del>                             |  |  |  |  |
| 4-3-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,4               |                   | 10 -                | 14                | (f)<br>(**()      |                                         |  |  |  |  |
| 4 - 3 - 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/3               |                   | 10                  | 13                | 10                | •                                       |  |  |  |  |
| 4-3-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{30}{8.5}$  |                   |                     | <del></del>       | 3.0               |                                         |  |  |  |  |
| 4 - 3 - 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.6               |                   | 10                  |                   | 10                |                                         |  |  |  |  |
| 4 - 3 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{9.6}{2.9}$ |                   | $\frac{1}{2}$       |                   | 110<br>1710       | *************************************** |  |  |  |  |
| 4 - 3 - 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.8               |                   | 7)                  |                   |                   | ***********                             |  |  |  |  |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,5               |                   | 10                  | 7                 | 5,0               |                                         |  |  |  |  |
| 4-3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.0               |                   | 10                  |                   | 5.0               |                                         |  |  |  |  |
| 4 - 3 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2:0               | •                 | 10                  |                   | 10.0              | *************************************** |  |  |  |  |
| 4-3-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u> </u>          |                   |                     |                   | <del>318</del>    | -                                       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                   |                     |                   | <i>L'</i>         |                                         |  |  |  |  |

B DATA SHEET SERIES (A-C) \_\_\_\_\_ of \_\_\_\_

82 792

DATA SHEET #

| DATA SHEET #                                        | 82                   | 792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | С                  | DATA SH                    | EET SERIES       | (A-C)       | 01                                |                      |
|-----------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------|------------------|-------------|-----------------------------------|----------------------|
| FOAC DATA F                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            | •                |             |                                   |                      |
| FQAC check                                          | blind r              | eplicate<br>Gualit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s (preci           | sion):<br>Replica          | they poor        | sed         | ( ) Failed                        |                      |
| FQAC check                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            |                  |             |                                   |                      |
| <del></del>                                         |                      | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del>        |                            | <del></del>      | <del></del> | <del></del>                       |                      |
| FQAC check                                          | blind s              | pike (20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | accurac            | cy):                       | Pas              | ssed        | ( ) Failed                        |                      |
| NOTES:                                              |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                            | <u> </u>         |             |                                   |                      |
| FQAC check                                          |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ia: ()                     | Passed           | ( ) W       | arning (                          | ) Failed             |
| NOTES:                                              |                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                            |                  |             | ·                                 |                      |
| FQAC sent i                                         |                      | ort #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                            | to Princ         | iple I      | nvestigato                        | r on                 |
| date<br>FQAC DATA:                                  | NAME_                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | DATE                       | ·                |             | TIME                              |                      |
| Certificat<br>being in co<br>the LSAAP<br>authorize | ompliano<br>Contamin | e with the state of the state o | the EPS/<br>urvey. | quality<br>I, <b>£</b> wrt | bssuranchermore, | ce pro      | g <b>ram es</b> tak<br>an ( ) car | olished for<br>nnot) |

4/170

7,50 ,304

3115

411

11.15

: . .**۶**.۱۰۱

10

82 793 B

DA A SHEET #

DATA SHEET SERIES (A-C) of \_\_\_\_\_

| DATA SHEET # 82 783 C DATA SHEET SERIES (A-C) of                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                   |
| FQAC check blind replicates (precision): (>) Passed ( ) Failed                                                                                                                                                                                                                      |
| NOTES: Replicate poor many metals do not check                                                                                                                                                                                                                                      |
| NOTES: Replicate poor MANY metals do not check  FOAC check blind spike (30 accuracy): (1) Passed () Failed                                                                                                                                                                          |
| NOTES:                                                                                                                                                                                                                                                                              |
| FQAC check blind spike (20 accuracy): Passed () Failed                                                                                                                                                                                                                              |
| NOTES:                                                                                                                                                                                                                                                                              |
| FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                              |
| NOTES:                                                                                                                                                                                                                                                                              |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                |
| date FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                      |
| Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |

| DATA SHEET                              | 82 75                                     | 4 A D                                 | ATA SHEET                                                | FERIES (A-             | ·c)                                     | OF                                      |                                         |
|-----------------------------------------|-------------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|
|                                         |                                           | LONGHORN A                            | RMY AMMUNI                                               | TION PLANT             | •                                       |                                         |                                         |
|                                         |                                           | AMINATION S                           | TUDY DATA                                                | MANAGEMENT             | FORM                                    |                                         |                                         |
| ANAGEMENT                               | DATA: s) Name(s)                          | 50000                                 | Marred                                                   | ,                      |                                         |                                         |                                         |
|                                         |                                           | · · · · · · · · · · · · · · · · · · · |                                                          | <b></b>                | 21.12                                   | ) 1                                     |                                         |
| Paramete                                | r Mangane                                 | se (Me                                | TUS USATI                                                | IAMA Methog            |                                         | //                                      |                                         |
| Systems                                 | Calibration:                              | (/) Passed                            | () Fall                                                  | Batch                  | <u>a</u>                                |                                         | ····                                    |
| Tiipcfn                                 | ment #                                    | · //                                  | TD#                                                      |                        |                                         |                                         | -                                       |
| NOTES:                                  |                                           |                                       |                                                          | <del> </del>           | <del></del>                             | <del></del>                             |                                         |
|                                         |                                           |                                       |                                                          |                        |                                         |                                         |                                         |
| ANALYTICAL                              | DECUL MC.                                 |                                       |                                                          |                        |                                         |                                         |                                         |
| Designated                              | Location of                               | Permanent                             | Lab Recore                                               | ds: Book               | 13                                      | , Page #                                |                                         |
| File #                                  | · ·                                       |                                       | 71 Ass. 1                                                | •                      |                                         | -                                       |                                         |
| NOTES:                                  |                                           | 1/4/                                  | 1 . ///                                                  | <del>(', ', ', '</del> |                                         |                                         |                                         |
| Standar                                 | •                                         | cted                                  | Found                                                    | Fou                    |                                         | Found                                   |                                         |
| Levels                                  | <u>Concen</u>                             | tration                               | Value #1                                                 | Valu                   | e #2                                    | Value #                                 | 3                                       |
| Ø.5X <sub>D</sub>                       |                                           | 25<br>50                              | 0,24                                                     | 21                     | 24                                      |                                         | _                                       |
| 2.0Xn                                   | <b>4</b>                                  | <u>70</u><br>170                      | $\frac{\partial_1 \mathcal{Y}}{\partial x^2 \partial x}$ |                        | - 1                                     |                                         | -                                       |
| 10.0XD<br>Blank                         |                                           | 15,0                                  |                                                          |                        | 0                                       |                                         | -                                       |
|                                         | <del></del>                               | <del></del>                           |                                                          |                        | ,                                       | *************************************** |                                         |
| candard (                               | Curve Data                                |                                       | Slope:                                                   |                        | NA                                      |                                         |                                         |
| Corr. Co                                |                                           | NIP                                   | Y-inte                                                   | rcept:                 | NA                                      |                                         |                                         |
| DATA:                                   | 4 GI                                      | •                                     |                                                          |                        | ,                                       |                                         |                                         |
| <u> </u>                                | 407                                       | Calculat                              |                                                          |                        |                                         |                                         |                                         |
| Sample<br>Point                         | Lab<br>I.D.                               | Concentra<br>Uncorrecte               |                                                          | Dilution               | = Act                                   | ual                                     | FOAC                                    |
| #                                       | #                                         | Dilution F                            |                                                          | Factor                 |                                         | ntration                                | Notes                                   |
|                                         | Д 2 27                                    | A 570                                 | ***************************************                  | 10.5                   |                                         |                                         |                                         |
| *************************************** | $\frac{7-5-31}{4-3-38}$                   | <u>0,59</u><br>1,56                   |                                                          | 100 -                  | - <del>- 1</del> 5                      | 6                                       | •                                       |
|                                         | 4 - 3 -39                                 | 3.07                                  |                                                          | 100 -                  | 30                                      |                                         | ************************                |
|                                         | 4 - 3 - 40                                | 1114<br>3108                          |                                                          | <u> </u>               |                                         | <u> </u>                                | •=====                                  |
| *************                           | 4 - 3 - 42                                | 3103                                  |                                                          |                        |                                         | 7.0                                     |                                         |
| -                                       | 4 - 3 - 43                                | 318.2                                 |                                                          | 100                    | *************************************** |                                         |                                         |
| *********                               | 4 - 3 - 44<br>1 - 3 - 45                  | 27.27<br>27.27                        |                                                          | 100                    |                                         | 7,7                                     | *************************************** |
|                                         | 4 - 3 - 46                                | 1181                                  | 00-000<br>00-000                                         | 100                    |                                         | £7                                      |                                         |
|                                         | \frac{1}{1} = \frac{3}{2} = \frac{41}{12} | 2:00<br>2:00                          | <del></del>                                              | <del></del>            |                                         | 5.0                                     |                                         |
| ************                            | 4 - 3 - 49                                | 37/8                                  | <del></del>                                              | 100                    |                                         | 78                                      |                                         |
| *************************************** | 11 - 3 -50                                | 27.73                                 |                                                          | 100                    |                                         | 78                                      |                                         |
|                                         | H - 3 -52                                 | <u>2198</u><br>3105                   | <del></del>                                              | 100                    | -                                       | 205                                     |                                         |
| *************************************** | 4 - 3 -53                                 | 1.79                                  |                                                          | 1000                   |                                         | 190                                     |                                         |
| *************                           |                                           |                                       | . •                                                      |                        | *******                                 |                                         |                                         |
| ***********                             |                                           |                                       |                                                          |                        | ******                                  |                                         |                                         |
| SUPPLEM                                 | MENTARY DATA                              | SHEET USED                            | , · · · ·                                                |                        |                                         |                                         |                                         |
|                                         |                                           |                                       |                                                          |                        |                                         |                                         |                                         |

| Accura                                | cy (Spik                        | es)                                   |                             |         |                                                                |                |                                                  |                        |                       |
|---------------------------------------|---------------------------------|---------------------------------------|-----------------------------|---------|----------------------------------------------------------------|----------------|--------------------------------------------------|------------------------|-----------------------|
| Analyst<br>Spike>                     | Found<br>Value<br><u>3,30</u> - | Backgroun<br>Value                    | Concent                     | ration  | Expected<br>Concentrat<br>Of Spike                             | ion Re         | を<br>ecovery<br>メン                               |                        | CL<br>3Ø              |
| Blind<br>Spike<br>FQAC>               |                                 | 305                                   | =                           | 2       |                                                                | X<br>X         |                                                  | 111/11<br>8 - 17       | 121.2.                |
| Analyst:                              | Foun Valu                       | e                                     | Found<br>Value<br>II<br>2,0 |         | Calculated<br>Range<br>A.U                                     | _              | UCL<br>Found                                     | lished<br>For<br>Range |                       |
| Blind<br>Replicat<br>FQAC>            | :e <u>48</u>                    | ,<br>                                 | 218                         |         |                                                                |                | <del>*************************************</del> |                        |                       |
| Analyst'                              | 's Report                       | to Depart                             | mental Su                   | pervis  | or:                                                            |                |                                                  |                        |                       |
|                                       |                                 |                                       | 77110                       | (1)     |                                                                |                |                                                  |                        |                       |
| I)FDA DTMI                            | פא מייער                        | TA REVIEW:                            |                             |         |                                                                |                | er gegen der Merkelle beschieben delen einer     |                        |                       |
|                                       |                                 |                                       | samples no                  | nted hu | FQAC: (.) P                                                    | happe          | / \ Fa                                           | fled.                  |                       |
| NOTES:                                | r calcula                       |                                       | ampres no                   | , -     | tyno: (x) r                                                    | a3560          | ( ) ra                                           | 1160                   |                       |
| DS chect                              | k on unco<br>Passed             |                                       | oncentrat                   |         | r range requ                                                   | irement        | ::                                               |                        |                       |
| NOTES:                                | <b>p</b>                        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | between                     | 10 OI   | 23.40 5,00                                                     | 1.             | p i                                              | 1000                   | ·                     |
|                                       |                                 | cy: (χ') P                            |                             |         |                                                                |                |                                                  |                        |                       |
| NOTES:_                               |                                 |                                       |                             | •       |                                                                |                |                                                  |                        |                       |
| DS chec                               | k precis                        | ion: (x) P                            | assed (                     | ) Faile | ed                                                             |                |                                                  |                        |                       |
| NOTES:                                |                                 |                                       |                             |         |                                                                |                |                                                  |                        |                       |
| DS chec                               | k reject                        | ion trend                             | criteria:                   | (×) 1   | Passed ( ) V                                                   | arning         | ( ) Fa                                           | iled                   |                       |
| NOTES:_                               |                                 |                                       |                             |         |                                                                |                |                                                  |                        |                       |
| Departm                               | ent Supe                        | rvisor Dat                            | <u>a</u> :                  |         |                                                                |                |                                                  |                        |                       |
| NAME<br>CERTIFI<br>with th<br>Survey. | CATION:<br>e EPS qu             |                                       | 1                           |         | DATE $\frac{2}{3}$ / $\frac{8}{8}$ rtify this dastablished for | ata as lor the | TIME<br>being in<br>LSAAP Co                     | compl<br>ontamir       | //<br>lance<br>lation |
|                                       | s                               | igned                                 | 11/1/1/2                    | v 12    |                                                                |                |                                                  |                        |                       |

DATA SHEET # 82 784 B DATA SHEET SERIES (A-C) \_\_\_\_\_\_ of \_\_\_\_\_

| -DATA SHEET # 82 794 C DATA SHEET SERIES (A-C) of                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                    |
| FQAC check blind replicates (precision): (XX) Passed ( ) Faile                                                                                                                                                                                                                       |
| NOTES: DISREGARD this Replicate                                                                                                                                                                                                                                                      |
| NOTES: Diske (30 accuracy): is passed () Failed  NOTES: Spike for to SMAIL                                                                                                                                                                                                           |
| NOTES: SPIKE TAY to SMAll                                                                                                                                                                                                                                                            |
| FQAC check blind spike (20 accuracy): ( ) Passed ( ) Failed                                                                                                                                                                                                                          |
| NOTES:                                                                                                                                                                                                                                                                               |
| FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                               |
| NOTES:                                                                                                                                                                                                                                                                               |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                 |
| date FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                       |
| Certification/Authorization: I () can () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |
| Cianod                                                                                                                                                                                                                                                                               |

FEB 8 1983

DATA SHEET SERIES (A-C) 8 of 17 DATA SHEET # 82 795 Α LONGHORN ARMY AMMUNITION PLANT CONTAMINATION STUDY DATA MANAGEMENT FORM .ANAGEMENT DATA: DINA PER VINSMOTE Analyst(s) Name(s) Date Samples Analyzed /-3/-83 Time Parameter Strontium (Category (Metals) USATHAMA Method Matrix Category
Systems Category
Category Patch 3 Instrument # ID# NOTES: ANALYTICAL RESULTS: Designated Location of Permanent Lab Records: Book # /3 , Page # 3/, 111113 NOTES: Standard Expected Found Found Found Value #1 Value #2 Value #3 Levels Concentration 0160 0.5X<sub>D</sub> 2.0X<sub>D</sub> 217.7 1.00 10.0XD Blank candard Curve Data Slope:  $1/\ell^2$ Y-intercept: Corr. Coff.: DATA: Calculated Sample Lab Concentration Uncorrected For X Dilution = Actual POAC Point I.D. # Dilution Factor Factor Concentration Notes # 0.64 614 1104 101-1 0,85 8 100 148 --4/5 2.27 100 2.27 10 105 .-16 015% 100 9 1. 14 00 114 1030 1,03 1000 1,30 1000 1300 •--321 3,21 10 . 1,32 100 104 1,04 100 263 10 1110 10

SUPPLEMENTARY DATA SHEET USED

| Accuracy (Spikes)                                                                               |                                                                                                 |                   |                            |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|----------------------------|
| Found Background Recovered  Analyst Value Value Concentration  Spike> 1300 - 1300 = 1           |                                                                                                 | Recovery<br>X     | WL CL<br>20 30             |
| Blind Spike $8.5 - 6.2 = 2.3$ Precision (Replicates) 5.3                                        | 2.5<br>S                                                                                        | x 9252<br>100 706 | <u>109 114</u><br>81 82    |
| Found Found Value Value Analyst I II Replicate> 1.37 /27                                        | Calculated<br>Range                                                                             | UCL<br>Found      | Librica                    |
| Blind Replicate 132 104 FQAC>                                                                   |                                                                                                 | N/A               |                            |
| Analyst's Report to Departmental Supervise                                                      | or:                                                                                             |                   |                            |
| high chart of single                                                                            | n. x51.                                                                                         | 100 00            |                            |
|                                                                                                 | Prince Super-report region and a super-graph Philosophic Parish States vigor region (1988-1988) |                   |                            |
| DEPARTMENTAL DATA REVIEW:                                                                       |                                                                                                 |                   |                            |
| DS check calculations on samples noted by                                                       | FQAC: (X) Pass                                                                                  | ed () Fa          | iled                       |
| NOTES: NOTES: World                                                                             |                                                                                                 | <del></del>       |                            |
| DS check on uncorrected concentrations fo (/) Passed () Failed                                  | r range require                                                                                 | ment:             |                            |
| NOTES: 111 to des believes de                                                                   | 210 mil 1910                                                                                    |                   | ). V                       |
| DS check accuracy: ( ) Passed (\sqrt{\infty} Faile                                              |                                                                                                 |                   |                            |
| NOTES:                                                                                          |                                                                                                 |                   |                            |
| DS check precision: (\) Passed () Faile                                                         | •d                                                                                              |                   |                            |
| NOTES:                                                                                          |                                                                                                 |                   |                            |
| DS check rejection trend criteria: (K)                                                          | Passed ( ) Warr                                                                                 | ning ( ) Fa       | iled                       |
| NOTES:                                                                                          |                                                                                                 |                   |                            |
| Department Supervisor Data:                                                                     |                                                                                                 |                   |                            |
| NAME  CERTIFICATION: I (') can (X) cannot cer with the EPS quality assurance program es Survey. | stablished for t                                                                                | the LSAAP Co      | compliance<br>ontamination |
| Signed /                                                                                        | 111616                                                                                          | <del></del>       |                            |
|                                                                                                 |                                                                                                 |                   |                            |

DATA SHEET # 82 795 B DATA SHEET SERIES (A-C) \_\_\_\_\_\_ of \_\_\_\_\_

| DATA SHEET # 82 795 C                                                                             | DATA SHEET SERIES (A-C) of                                                                                                                            |
|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                 | :                                                                                                                                                     |
| FQAC check blind replicates (pred                                                                 |                                                                                                                                                       |
| NOTES: RAME                                                                                       | W/A POOR Replicate quality                                                                                                                            |
| FQAC check blind spike (30 accura                                                                 | acy): ( ) Passed ( ) Failed                                                                                                                           |
| FQAC check blind spike (20 accura                                                                 |                                                                                                                                                       |
|                                                                                                   | ria: ( Passed ( ) Warning ( ) Failed                                                                                                                  |
| •                                                                                                 | to Principle Investigator on                                                                                                                          |
| date FQAC DATA: NAME                                                                              | DATE TIME                                                                                                                                             |
| being in compliance with the EPS the LSAAP Contamination Survey. authorize its release for incorp | (1) can () cannot certify this data as quality assurance program established for I furthermore, () can () cannot) poration into USATHAMA DATA SYSTEM. |

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION STUDY DATA MANAGEMENT FORM

| ANAGEMENT DATA:                                | A                   | Δ.                |                   |                                       |                                         |
|------------------------------------------------|---------------------|-------------------|-------------------|---------------------------------------|-----------------------------------------|
| Analyst(s) Name(s) Date Samples Analyze        | 1111122             | PinsA             | 12, €             |                                       |                                         |
| Date Samples Analyze                           | d 1/25/5            | - VUCAMUAA        | Time              | 1 - 7                                 | -                                       |
| Parameter Copper Matrix 4 Systems Calibration: | ategory             | STOPATHAN         | Ratch 2           | · · · · · · · · · · · · · · · · · · · | · • • • • • • • • • • • • • • • • • • • |
| Systems Calibration:                           | (X) Passed          | ( ) Falled        | 1                 |                                       |                                         |
| instrument #                                   | <b>(</b> , <b>)</b> | ID#               |                   |                                       |                                         |
| NOTES:                                         |                     |                   |                   |                                       |                                         |
|                                                |                     |                   |                   | <del></del>                           |                                         |
|                                                | <del></del>         |                   |                   |                                       |                                         |
| ANALYTICAL RESULTS:                            |                     |                   |                   |                                       |                                         |
| Designated Location of                         | Permanent La        | b Records         | : Book #          | <u>//</u> , Page                      | 1 <u>47</u> ,                           |
| File #                                         | 4 . s. *            |                   | 116               |                                       |                                         |
| NOTES:                                         | 111/12 1            | 7- 1 P            | <i>(/_)</i>       |                                       |                                         |
| Standard Exped                                 | cted                | Found             | Foun              | d Found                               |                                         |
|                                                |                     | alue #1           | Value             |                                       | 3                                       |
| <del></del>                                    |                     |                   | **************    |                                       |                                         |
| Ø.5X <sub>D</sub>                              | <u> </u>            | 0,50              | 1,0               | 5.0                                   | *                                       |
| 2.0XD                                          | 100                 | 5,10              |                   |                                       |                                         |
| 10.0XD<br>Blank                                |                     | 5.70              | /                 | 7                                     |                                         |
| 224117                                         |                     |                   |                   |                                       |                                         |
|                                                |                     |                   |                   |                                       |                                         |
| andard Curve Data                              | S                   | lope:<br>Y-interc |                   | 1 12                                  |                                         |
| Corr. Coff.:                                   | NIA                 | Y-interc          | ept:              | VIII                                  |                                         |
| DATA: AGL                                      |                     |                   |                   |                                       |                                         |
| WAL.                                           | Calculated          |                   |                   |                                       |                                         |
| Sample Lab                                     | Concentration       |                   | <b>'</b> .        |                                       |                                         |
| Point I.D.                                     | Uncorrected F       |                   |                   | Actual                                | PQAC                                    |
|                                                | Dilution Fact       | or F              | actor             | Concentration                         | Notes                                   |
| 4 - 3 -37                                      | 4.0                 |                   |                   | 4,0                                   |                                         |
| 4 - 2 - 39                                     | - <del>10</del>     |                   |                   | 9.0                                   |                                         |
| 4-3-39                                         | 8.0                 | •••               | <del></del>       | 8.0                                   | •                                       |
| 4 - 3 - 40                                     | 1.5                 |                   | 100 -             | 150.0                                 |                                         |
| 4 - 3 - 40                                     | /, /                | -                 | 10                | 11.0                                  |                                         |
| 4 - 3 - 42                                     | 115                 | -                 | 110               | 750.0                                 |                                         |
| 4 - 3 - 111                                    | <u> </u>            |                   | 7/2               | 5.0                                   |                                         |
| 1 - 3 - 45                                     | <del></del>         | -                 | <del>- 10</del> - |                                       |                                         |
| 1 - 3 - 46                                     |                     | -                 | <del>770 -</del>  |                                       |                                         |
| 4 - 3 - 47                                     | 314                 | _                 | 10                | 5410                                  | ***************                         |
| 4 - 3 - 48                                     | 6.0                 | ••                | 1.0               | 60,0                                  | -                                       |
| 4-3-4                                          | <u>£10</u>          | -                 | - 2               | 8.0                                   |                                         |
| - <del>1 2 2</del>                             | 8.3                 | -                 | 1.7               | 23.0<br>4.0.0                         |                                         |
| <del></del>                                    | <del></del>         | •                 | 10                | 6,0                                   |                                         |
| 4-3-53                                         | 310                 | -                 |                   | 810                                   |                                         |
|                                                |                     | -                 |                   |                                       | **************************************  |
|                                                |                     | -                 |                   |                                       |                                         |
|                                                |                     | -                 |                   | -                                     |                                         |
|                                                | SHEET USED          |                   |                   |                                       |                                         |

| Accura                     | cy (Spik                     | es)             |                             |                                       | •             |                            |              |                        |                                                  |                       |
|----------------------------|------------------------------|-----------------|-----------------------------|---------------------------------------|---------------|----------------------------|--------------|------------------------|--------------------------------------------------|-----------------------|
| \nalyst<br>Spike>          | Found Value                  | Value           | Conce                       | ecovered<br>entration                 | Conc<br>Of    | pected<br>entrati<br>Spike | R<br>X       | %<br>ecovery<br>/∂≎    |                                                  | CL<br>30              |
| Blind<br>Spike<br>FQAC>    | - کرن<br>۱۱. ن<br>Ion (Rep   | 60              |                             | 3                                     |               | <u>2,5</u>                 | X<br>X       | 120                    | 1/2<br>80                                        | 118                   |
| Analyst                    | Foun<br>Valu<br>I<br>(e) //S | d<br>e          | Found<br>Value<br>II<br>/,! | •                                     | Calcul<br>Ran |                            |              | Establ<br>UCL<br>Found | lished                                           |                       |
| Blind<br>Replicat<br>FQAC> | e <u>83</u>                  |                 | 40                          |                                       | •             |                            |              |                        |                                                  |                       |
| Analyst'                   | s Report                     | to Depai        | tmental                     | Supervis                              | or:<br>////   | , (                        |              | ······                 |                                                  |                       |
|                            |                              |                 |                             |                                       |               |                            |              |                        |                                                  |                       |
| DS check                   | c calcula                    | N/              | samples  V( V(              | noted by                              |               | ······                     | <del> </del> |                        | ileđ                                             | Married to Antoniosis |
| . ~                        |                              | ( ) Fai<br>p(   |                             | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ). •          |                            | 77.          | 14.7                   | 7 - E                                            |                       |
| DS check                   | caccurac                     | :y: <u>⟨</u> ⁄) | i<br>Passed                 | ( ) Faile                             | ed            |                            |              | 1717                   |                                                  |                       |
| ****                       |                              | lon: 🚫          | Passed                      | ( ) Faile                             | ed            |                            |              |                        |                                                  |                       |
| DS chec                    | k reject:                    | ion trend       | criteri                     | a: (X)                                | Passed        | ( ) Wa                     | rning        | ( ) Fa                 | iled                                             |                       |
| NOTES:_                    |                              | <del></del>     |                             |                                       |               |                            |              |                        | <del>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</del> |                       |
|                            | CATION:<br>e EPS qu          |                 | n () curance p              | cannot ce<br>program e                |               | i                          |              |                        | complination                                     | lance<br>ation        |
|                            | S                            | igned           |                             | Solver -                              | <u> </u>      |                            | <del></del>  |                        |                                                  |                       |

DATA SHEET # 82 797 B DATA SHEET SERIES (A-C) \_\_\_\_\_\_ of \_\_\_\_\_

| 82 737 C DATA SI                                                                                                                                               | EET SERIES (A-C) OT             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| FOAC DATA REVIEW:                                                                                                                                              |                                 |
| FQAC check blind replicates (precision):  NOTES:  Poor Replicate                                                                                               | ( Passed ( ) Failed             |
| NOTES:                                                                                                                                                         |                                 |
| FQAC check blind spike (30 accuracy):                                                                                                                          | () Passed () Failed             |
| NOTES:                                                                                                                                                         | (                               |
| FQAC check blind spike (20 accuracy):                                                                                                                          | () Passed () Failed             |
| NOTES:                                                                                                                                                         | 1                               |
| FQAC check trend rejection criteria: ()                                                                                                                        | Passed ( ) Warning ( ) Failed   |
| NOTES:                                                                                                                                                         |                                 |
| FQAC sent memo report #                                                                                                                                        | to Principle Investigator on    |
| date FQAC DATA: NAME DATE                                                                                                                                      | TIME                            |
| Certification/Authorization: I () can being in compliance with the EPS quality the LSAAP Contamination Survey. I, furt authorize its release for incorporation | ( ) cannot certify this data as |
| ~                                                                                                                                                              |                                 |

\_ date 2 /2

CERTIFICATION: I () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination

Survey.

Signed

DATA SHEET #

SUPPLEMENTARY DATA SHEET USED

Control of the contro

NO 310

017.37 019\_39\_ 36

360 512

|                                         |                                      |                          |                                    |                             | Expect                          | ced                        |                                         |                        |           |
|-----------------------------------------|--------------------------------------|--------------------------|------------------------------------|-----------------------------|---------------------------------|----------------------------|-----------------------------------------|------------------------|-----------|
| Analyst<br>Spike>                       | Found<br>Value<br>191 -              | Backgrou<br>Value<br>/42 |                                    | ecovered<br>entration<br>49 | Concenti                        | ration<br>ce I             | Recovery                                | WL<br>20               | CL<br>30T |
| Blind<br>Spike<br>FQAC>                 | 49.5 -<br>121.6<br>Non (Rep.         | licates)                 | =                                  | 49.5<br>127.                |                                 | ^                          | 99                                      | 105,2<br>96.8          | 94.1      |
| Analyst<br>Replicat                     | Found<br>Value<br>I<br>e> <u>146</u> | 9                        | Found<br>Value<br>II<br><u>142</u> |                             | Calculated<br>Range<br>4.0      | 1                          | UCL                                     | lished<br>For<br>Range |           |
| Blind<br>Replicat<br>FQAC>              | e <u>83</u>                          | -                        | <u>63</u>                          | `,                          |                                 | ramananana                 | *************************************** |                        |           |
| Analyst'                                | s Report                             | to Depar                 | tmental                            | Supervis<br>PASSOS          | or:<br>Anuly-lic                | Al Q                       | .c.i                                    |                        |           |
|                                         |                                      |                          |                                    |                             |                                 |                            |                                         |                        |           |
| DEPARTME                                | NTAL DATE                            | A REVIEW:                |                                    |                             |                                 |                            |                                         | •                      |           |
| DS check                                | calcula                              | tions on                 |                                    |                             | FQAC: (X)                       | Passed                     | ( ) Fa                                  | iled                   |           |
| NOTES:                                  |                                      |                          |                                    | IONE                        | voled                           |                            |                                         |                        |           |
| DS check                                | on uncor                             | rrected c<br>( ) Fail    | oncentr<br>ed                      | ations fo                   | r range re                      | quiremen                   | t:                                      |                        |           |
| NOTES:                                  |                                      | A                        | 11 SAM                             | , les bor                   | ween 10-                        | - 200 M                    | 3/8                                     |                        |           |
|                                         |                                      |                          | •                                  | ( ) Faile                   |                                 |                            |                                         |                        |           |
| NOTES:                                  |                                      |                          |                                    |                             |                                 |                            |                                         |                        |           |
| DS check                                | precisi                              | on: (🂢 P                 | assed                              | ( ) Faile                   | eđ                              |                            |                                         |                        |           |
| NOTES:                                  |                                      |                          | <del></del> .                      |                             |                                 |                            | <del> </del>                            |                        |           |
| DS check                                | rejecti                              | on trend                 | criteri                            | a: 💢) F                     | Passed ( )                      | Warning                    | ( ) Fa                                  | iled                   |           |
| NOTES:_                                 | <del></del>                          | ·                        | <del></del>                        |                             |                                 |                            |                                         |                        |           |
| Departme                                | ent Super                            | visor Dat                | <u>a</u> :                         |                             |                                 |                            |                                         |                        |           |
| NAME<br>CERTIFIC<br>with the<br>Survey. |                                      |                          |                                    |                             | DATE /2-/ortify this stablished | 0-82<br>data as<br>for the | TIME 4<br>being in<br>LSAAP Co          | complintamina          | ance      |
| vey i                                   | Sic                                  | gned                     | Saimu                              | y Wa                        | ijum                            |                            | ·                                       |                        |           |
|                                         |                                      |                          | (                                  | <i>!</i> /                  |                                 |                            |                                         |                        |           |

FQAC DATA REVIEW: FQAC check blind replicates (precision): ( A Passed ( ) Failed Sample Precision Passed ( ) Failed FQAC check blind spike (30 accuracy): NOTES: FQAC check blind spike (20 accuracy): () Passed () Failed NOTES: FQAC check trend rejection criteria: ( // Passed ( ) Warning ( ) Failed NOTES: FQAC sent memo report # \_\_\_\_\_ to Principle Investigator on date DATE FQAC DATA: NAME Certification/Authorization: I ( ) can ( ) cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. Signed

المستوادية والمنافية والموارث والمراث

SUPPLEMENTARY DATA SHEET USED .

|                                          |                                 |                                       |               |           |          | xpectea   |           |             |                      |      |
|------------------------------------------|---------------------------------|---------------------------------------|---------------|-----------|----------|-----------|-----------|-------------|----------------------|------|
|                                          | Found                           | -                                     |               | lecovered |          | centrat   |           | 8           | WL                   | CL   |
| •                                        | Value                           | Value                                 | Cond          | entration |          | Spike     |           | Recovery    | 1 28                 | 30   |
| Spike>                                   |                                 |                                       | _ =           |           | _        | <u>20</u> | X<br>1øø- | 95          | 1                    |      |
| Blind                                    |                                 |                                       |               | _         |          |           | -50       |             | 103.1                | 1092 |
| Spike                                    | 16                              |                                       |               | 18        |          | 20        |           | 90          | 16.3                 | 94.6 |
| FQAC>                                    | · · · ·                         |                                       | _ =           | 1.0       |          |           | , X       | 10          | 1 10, 3              |      |
| Precisi                                  | 48<br>on (Repl                  | icates)                               |               | 18<br>78. |          | 50        | 100       | 46%         | •                    |      |
| •                                        | Found                           | 1                                     | Found         |           |          |           |           | Estab       | olished              |      |
|                                          | Value                           | •                                     | Value         |           |          | lated     |           |             | For                  |      |
| Analyst<br>Replicate                     | i < 10                          |                                       |               |           | _        | inge      |           |             | 1 Range<br>64        | •    |
| -                                        | 710                             | -                                     | <u> </u>      |           |          |           | •         |             | <u>e 1 </u>          |      |
| Blind<br>Replicate                       | <b>410</b>                      |                                       | ८१०           |           |          |           |           |             |                      |      |
| PQAC>                                    | ~10                             |                                       |               |           | -        |           | •         |             |                      | 1    |
| Analyst's                                | Report                          | to Depar                              | tmental       | Supervis  | sor:     | PANO      | <u> </u>  | يم ، أ أع ع | i ü.C.               |      |
|                                          |                                 |                                       |               |           |          |           |           |             |                      |      |
|                                          |                                 |                                       |               |           |          |           |           |             |                      |      |
| DEPARTMEN                                | TAL DATA                        | REVIEW:                               |               |           |          |           |           |             |                      |      |
| ne chook                                 | anloul at                       | ione on                               | annle:        | noted by  | r EOAC.  | (\/\ Do   | .co.d     | / E         | 1104                 |      |
| DS Check                                 | Calcula                         | cions on                              | samples       | noted by  | A LÖWC:  | (X) Pa    | ssed      | ( , F       | 31160                |      |
| NOTES:                                   |                                 |                                       |               |           |          |           |           |             |                      |      |
|                                          |                                 | rected (                              |               | ations fo | or rang  | je requi  | remen     | : <b>:</b>  |                      |      |
| NOTES:                                   |                                 | <b>p</b> //                           | Spilo         | ples be   | 1 (10000 | 10-       | 200 (:    | : j.l.      |                      |      |
|                                          |                                 | /: (X) I                              | Passed        | ( ) Faile | eđ       | 1         | ,         |             |                      |      |
| NOTES:                                   |                                 |                                       | pl            | Impilio,  | level    | /<br>     |           |             |                      |      |
| DS check                                 | precisio                        | on: (×) 1                             | Passed        | ( ) Faile | eđ       |           |           |             |                      |      |
| NOTES:                                   |                                 |                                       |               |           |          |           |           |             |                      |      |
| DS check                                 | rejecti                         | on trend                              | criteri       | ia: 💢) 1  | Passed   | ( ) Wa    | rning     | ( ) F       | ailed                |      |
| NOTES:                                   |                                 | · · · · · · · · · · · · · · · · · · · | , <del></del> |           |          |           |           |             |                      |      |
| Departmen                                | واستعمارات فيتمارات والمستوارات | والمستقوب والمستقوب والمستقوب         |               |           |          |           |           |             |                      |      |
| NAME<br>CERTIFICA<br>with the<br>Survey. |                                 |                                       |               |           |          |           |           |             | n compli<br>ontamina | ance |
| -                                        | Sic                             | gned                                  | <u> </u>      | ig 100    |          |           |           |             |                      |      |
|                                          |                                 |                                       |               | 1         |          |           |           |             |                      |      |
|                                          |                                 |                                       | •             |           |          |           |           |             |                      |      |

FQAC DATA REVIEW: FQAC check blind replicates (precision): 🙀 Passed ( ) Failed ..OTES: () Passed () Failed FQAC check blind spike (30 accuracy): NOTES: ONE Spike ches ust chart out but our control was very NAMED AND bruel on limited DATA OUPTIDE FOAC check blind spike (20 accuracy): A Passed () Failed NOTES: FQAC check trend rejection criteria: ( Passed ( ) Warning ( ) Failed NOTES: FQAC sent memo report # \_\_\_\_\_ to Principle Investigator on date DATE FQAC DATA: NAME TIME being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATMAMA DATA SYSTEM.

| Malyfical Sample                 | Lab                                         | Calculated<br>Concentration       |                                         |                 |             |
|----------------------------------|---------------------------------------------|-----------------------------------|-----------------------------------------|-----------------|-------------|
| No. Point                        | I.D.                                        |                                   | X Dilution                              | = Actual        | POAC        |
| 4                                | #                                           | Dilution Factor                   | Factor                                  | Concentration   | Note:       |
|                                  |                                             |                                   |                                         |                 |             |
| ACB 125                          | 1 - 3 -20                                   | 311:11                            | <u></u>                                 | 371/            | -           |
| 002 124 KDUP                     |                                             | <u></u>                           | -                                       | <del></del>     |             |
| 003_1262 _                       | 1 - 3 - 22                                  |                                   |                                         | 114             | -           |
| 005 <u>124</u><br>005 <u>127</u> | 1 - 3 - 63                                  | 1517                              |                                         | <del>- 91</del> | *********** |
| ock 128                          | 1 - 3 -25                                   | 82                                | *************************************** | Y : 2.          | -           |
| 001129                           | 1 - 3 -26                                   | 109                               |                                         | [3]             |             |
| 008 130                          | 1 - 3 -27                                   | 31                                |                                         | - 27            | ***         |
| COG_131                          | 1 - 3 -28                                   | / 3                               |                                         |                 | -           |
| 010514220                        | 1 - 3 - 30                                  | <u> </u>                          |                                         | <del></del>     | -           |
| 011 131<br>02 50 KL 5KD          | $\frac{1}{1} - \frac{3}{3} - \frac{30}{31}$ | / 1/2 -                           |                                         | 100             | -           |
| 013 33                           | 1 - 3 -32                                   | 59                                | <del></del>                             | 59              | 1989/444    |
| 014 34                           | 1 - 3 -33                                   | 62.                               |                                         | 6.2             | -           |
| 015_35                           | 1 - 3 - 34                                  | <u> </u>                          |                                         |                 | -           |
| 010_30                           | 1 - 3 -35                                   | $\frac{\int_{\mathcal{S}} S}{O3}$ | <del></del>                             | <del>//3</del>  |             |
| 017_37 -                         | 1 - 3 - 36                                  | $\frac{-93}{nI}$                  | *************************************** | 73              |             |
| 018-38-<br>019-39                | 1 - 3 -38                                   | 60                                | a state of the state of the state of    |                 |             |
| U17                              | <u></u>                                     |                                   | *************************************** |                 | ******      |

and the distance

SUPPLEMENTARY DATA SHEET USED

|                                                          |                                    | Expected                                               |                                          |                          |
|----------------------------------------------------------|------------------------------------|--------------------------------------------------------|------------------------------------------|--------------------------|
| Found Background Nalyst Value Value Spike> 101 - 60 =    | Recovered<br>Concentration         | Concentration Of Spike                                 | n &<br>Recovery<br>X 108.5               | WL CL<br>20° 30°         |
|                                                          |                                    | 1                                                      | 100                                      |                          |
| Blind<br>Spike                                           |                                    |                                                        | 00.0                                     | 101.9 112.2<br>89.1 84.4 |
| FQAC> 38 - =                                             | -                                  | 40                                                     | x 95.0                                   | 84.1 84.4                |
| Precision (Replicates)                                   |                                    | 160                                                    | 102                                      |                          |
| recession (nepricates)                                   | •                                  |                                                        |                                          |                          |
|                                                          | ound<br>alue C                     | lalaulatad                                             | Establ:<br>UCL                           |                          |
| Analyst I                                                | II                                 | Calculated<br>Range                                    | Found 1                                  |                          |
|                                                          | 44                                 | 6.0                                                    | 6,5                                      |                          |
| Blind                                                    |                                    |                                                        |                                          |                          |
| Poplicate                                                | <u> </u>                           | ######################################                 | <del>*</del> ,                           |                          |
| Analyst's Report to Departme                             | ental Supervisor                   | :                                                      |                                          |                          |
|                                                          | PASUS POPlyto                      | CPI D.C                                                |                                          |                          |
|                                                          |                                    |                                                        | -                                        |                          |
| DEPARTMENTAL DATA REVIEW:                                |                                    |                                                        |                                          | :                        |
| DS check calculations on sam                             | nples noted by F                   | FQAC: (X) Pass                                         | ed () Fai                                | led                      |
|                                                          |                                    | , "                                                    |                                          |                          |
| NOTES: No.                                               | 12 100120                          |                                                        |                                          |                          |
| DS check on uncorrected cond () Passed () Failed         |                                    | _                                                      |                                          |                          |
| NOTES:                                                   | All Sapples                        | betieven                                               | 10-200 Pg                                |                          |
| OS check accuracy: (火) Pass                              |                                    |                                                        |                                          |                          |
| NOTES:                                                   |                                    |                                                        |                                          |                          |
| DS check precision: (X) Pass                             | sed ( ) Failed                     |                                                        |                                          |                          |
| NOTES:                                                   |                                    |                                                        |                                          |                          |
| DS check rejection trend cr                              | iteria: 💢 Pas                      | ssed ( ) Warn                                          | ing ( ) Fai                              | leđ                      |
| NOTES:                                                   |                                    |                                                        |                                          | <del></del>              |
| Department Supervisor Data:                              |                                    |                                                        |                                          |                          |
| UAME SANNY VAN CAN With the EPS quality assurant Survey. | () cannot cert<br>nce program esta | ATE <u>/2-/3-82</u><br>ify this data<br>ablished for t | TIME 5:7-<br>as being in<br>he LSAAP Con | compliance<br>tamination |
|                                                          | Sanny Lucion                       | Di C                                                   |                                          |                          |
|                                                          | //                                 |                                                        |                                          |                          |

Signed

FQAC DATA REVIEW: FQAC check blind replicates (precision): Passed () Failed .OTES: Slighty out of precision range poor field replicate (() Passed () Failed FQAC check blind spike (30 accuracy): NOTES: ( ) Passed ( ) Failed FQAC check blind spike (20 accuracy): NOTES: FQAC check trend rejection criteria: ( Passed ( ) Warning ( ) Falled NOTES: FQAC sent memo report # to Principle Investigator on date FQAC DATA: NAME DATE Certification/Authorization: I 💋 can ( ) cannot certify this data as being in compliance with the EPS(quality assurance program established for the LSAAP Contamination Survey. I, furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.

|                            |                                   |                          |                                                |                      | Expect                                    | ed          |                                |             |                |
|----------------------------|-----------------------------------|--------------------------|------------------------------------------------|----------------------|-------------------------------------------|-------------|--------------------------------|-------------|----------------|
| Analyst<br>Spike>          | Value                             | Backgrou<br>Value<br>/50 |                                                | tration              | Concentra<br>Of Spike                     | <b>:</b>    | Recovery                       | WL<br>207   | 30°            |
| Blind                      |                                   |                          |                                                |                      |                                           | 101         | 106.0                          | 13.2        | 104.4          |
| Spike                      | 106 -                             |                          | =                                              |                      | 100                                       | ×           | 420                            | 98.4        | 9%,2           |
| FQAC>                      |                                   |                          |                                                |                      | 2 So                                      | 1 ĝ         | , 42.9                         | 7           |                |
| Precis                     | ion (Repl                         | icates)                  |                                                | •                    | 230                                       |             | V                              |             |                |
|                            | Found                             |                          | Found                                          |                      |                                           |             | Estab                          | lished      |                |
| _                          | Value                             |                          | Value                                          |                      | Calculated                                |             | UCL                            | . For       |                |
| Analyst<br>Replicat        | ie> /50                           |                          | 11<br>/50                                      |                      | Range<br><i>O</i>                         |             | Found<br>4                     | Range       |                |
| prica.                     |                                   |                          |                                                | _                    |                                           |             | <del>7</del> '                 | <u> </u>    |                |
| Blind<br>Replicat<br>FQAC> | e <u>450</u>                      | •                        | <u> &lt;60</u>                                 | _                    |                                           |             | <del></del>                    |             |                |
| Analyst'                   | s Report                          | to Depar                 | tmental S                                      | uperviso             | or:                                       |             |                                |             |                |
|                            |                                   |                          | 105                                            | 25 Par               | PHICAL CO                                 | . C.        |                                |             |                |
|                            |                                   |                          |                                                |                      |                                           |             |                                |             |                |
| DEPARTME                   | NTAL DATA                         | REVIEW:                  |                                                |                      |                                           | •           |                                |             |                |
| DS check                   | calculat                          | ions on                  | samples n                                      | oted by              | FOAC: K)                                  | Passed      | ( ) Fa                         | iled        |                |
| NOTES:                     |                                   |                          | 4                                              | IONC A               | unted                                     |             |                                |             |                |
|                            |                                   | ····                     | , , , , , , , , , , , , , , , , , , ,          |                      |                                           | <del></del> | <del></del>                    | <del></del> | <del></del>    |
| (X) F                      | Passed                            | ( ) Fail                 | .ed                                            |                      | range requ                                |             | _                              |             |                |
| NOTES:                     |                                   | A(1                      | SA: pl                                         | s bet                | WINV 50                                   | 1360        | My/X                           |             |                |
|                            |                                   |                          | assed (                                        |                      |                                           |             |                                |             |                |
| NOTES:                     |                                   |                          |                                                |                      |                                           |             |                                |             |                |
| DS check                   | precisio                          | n: (X) P                 | assed (                                        | ) Failed             | 3                                         |             |                                |             |                |
| NOTES:                     |                                   |                          |                                                |                      |                                           |             |                                |             |                |
| DS check                   | rejectio                          | n trend                  | criteria:                                      | ( <u>/</u> ) Pā      | assed ( )                                 | Warnin      | g ( ) Fa                       | ailed       |                |
| NOTES:_                    |                                   | <del></del>              |                                                |                      | <del></del>                               |             |                                |             |                |
| Departme                   | ent Superv                        | isor Dat                 | <u>a</u> :                                     | •                    |                                           |             |                                |             |                |
|                            | SAMAIA<br>CATION: I<br>e EPS qual | () car<br>ity assu       | (p) (san can can can can can can can can can c | not cert<br>gram est | DATE 12- 15<br>tify this d<br>tablished f | ata as      | TIME /<br>being ir<br>LSAAP Co | n compliant | lance<br>ation |
| Survey.                    | Sig                               | ned                      | Salliv                                         | y W                  | 0141                                      |             |                                |             |                |
|                            |                                   |                          | <i>[:</i>                                      | /                    |                                           |             |                                |             |                |

| DATA SHEET # 82 615 C                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FQAC DATA REVIEW:                                                                                                                                                                                                                                                                        |
| FQAC check blind replicates (precision): ( ) Passed ( ) Failed                                                                                                                                                                                                                           |
| .4OTES:                                                                                                                                                                                                                                                                                  |
| FQAC check blind spike (30 accuracy): ( ) Passed ( ) Failed                                                                                                                                                                                                                              |
| NOTES: Kesults are within 10% but because of limited                                                                                                                                                                                                                                     |
| NOTES: Results are within 10% but because of limited  Data of for thallium our contin line were very warren.  FOAC check blind spike (20 accuracy): (4 Passed () Failed                                                                                                                  |
| NOTES:                                                                                                                                                                                                                                                                                   |
| FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed                                                                                                                                                                                                                   |
| NOTES:                                                                                                                                                                                                                                                                                   |
| FQAC sent memo report # to Principle Investigator on                                                                                                                                                                                                                                     |
| date                                                                                                                                                                                                                                                                                     |
| FQAC DATA: NAME DATE TIME                                                                                                                                                                                                                                                                |
| Certification/Authorization: I ( ) can ( ) cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, (/) can ( ) cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM. |

Signed

|                                                                                              | CON                                                                                                                                                                  | LONGHORN ARMY A                                                                                                                                 |                                   |                                                                                                                                                         |            |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Date Sam Paramete Matrix Systems                                                             | s) Name(s) ples Analyz r(Metals) +2                                                                                                                                  | Category<br>: (x) Passed ( )                                                                                                                    | Time USATHAMA Meth 3 Batch Failed | 3                                                                                                                                                       |            |
| ANALYTICAL<br>Designated<br>File #<br>NOTES:                                                 |                                                                                                                                                                      | f Permanent Lab R $(l), (rac{1}{2})$                                                                                                           |                                   | k #, Page                                                                                                                                               | <u> 63</u> |
| Standar<br>Levels                                                                            |                                                                                                                                                                      | cted Fou<br>tration Valu                                                                                                                        |                                   | ound Found<br>lue #2 Value                                                                                                                              |            |
| 0.5X <sub>D</sub><br>2.0X <sub>D</sub><br>10.0X <sub>D</sub><br>Blank                        | 100<br>50<br>100<br>6                                                                                                                                                | <u> </u>                                                                                                                                        | 7.7                               | 9,5<br>446<br>9813                                                                                                                                      |            |
| Standard C                                                                                   | Curve Data                                                                                                                                                           | Slop                                                                                                                                            |                                   | 0,0066                                                                                                                                                  |            |
| DATA:                                                                                        |                                                                                                                                                                      | Calculated                                                                                                                                      |                                   |                                                                                                                                                         |            |
| Sample Point                                                                                 | Lab<br>I.D.<br>#                                                                                                                                                     | Concentration Uncorrected For Dilution Factor                                                                                                   | X Dilution<br>Factor              | = Actual<br>Concentration                                                                                                                               | FQA:       |
| 40<br>41<br>42<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43<br>43 | 1 - 3 - 39<br>1 - 3 - 40<br>1 - 3 - 41<br>1 - 3 - 42<br>1 - 3 - 44<br>1 - 3 - 45<br>1 - 3 - 46<br>1 - 3 - 48<br>1 - 3 - 48<br>1 - 3 - 50<br>1 - 3 - 50<br>1 - 3 - 50 | $ \begin{array}{c c} 50.9 \\ 30.5 \\ 40.1 \\ 103.7 \\ 19.8 \\ 112 \\ 68.1 \\ 33.7 \\ -36.7 \\ 98.5 \\ 210 \\ 59.0 \\ 69.7 \\ 69.7 \end{array} $ |                                   | 50(1)<br>30(5)<br>40.1<br>103.7<br>17.8<br>17.2<br>67.1<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7<br>33.7 |            |

SUPPLEMENTARY DATA SHEET USED

|                     |            |                                        |                       |                                                | Expeated                  |             |                   |         |            |
|---------------------|------------|----------------------------------------|-----------------------|------------------------------------------------|---------------------------|-------------|-------------------|---------|------------|
| 1 n 1 . m h         |            |                                        | d Recovere            |                                                | ncentrat                  |             | 8.                | WL      | CL         |
| Analyst<br>Spike>   |            | 337/                                   | Concentrat:<br>       |                                                | f Spike                   |             | Recovery<br>10619 | 20      | 38         |
| Blind               |            |                                        |                       |                                                |                           | X<br>1øø-   |                   | 1111    | e de const |
| Blina<br>Spike      |            |                                        | 0 - 4                 |                                                |                           |             | 0-1               |         | 1/7/       |
| FQAC>               |            |                                        | = 93.6                | <del></del>                                    | 601                       | X           | 93.6              | 1015    | 1116       |
| Precis              | ion (Repl  | icates)                                | 242                   |                                                | 260                       | 100         | 96.8              |         |            |
|                     | Found      |                                        | Found                 |                                                |                           |             | Est ab            | lished  |            |
|                     | Value      |                                        | Value                 |                                                | ulated                    |             |                   | For     |            |
| Analyst<br>Replicat | .e> 33,7   | _                                      | II<br>See             | К                                              | ange<br>/,/0 <sup>2</sup> | _           | rouna             | Range   |            |
| Blind               |            |                                        |                       |                                                |                           | -           |                   |         |            |
| Replicat            | .e 0, 7    |                                        | 4                     |                                                |                           |             |                   |         |            |
| FQAC>               | 36.7       | •                                      | <10                   |                                                |                           | •           |                   | -       |            |
| Analyst'            | s Report   | to Depart                              | mental Syper          |                                                |                           |             |                   |         |            |
|                     |            |                                        | Proce                 | <u> </u>                                       |                           | ٠, ١٢, ٢    |                   |         |            |
|                     |            |                                        |                       |                                                |                           |             |                   |         |            |
| DEPARTME            | NTAL DATA  | REVIEW:                                |                       |                                                |                           |             |                   |         |            |
| DS check            | calculat   | ions on s                              | amples noted          | by FQAC                                        | : (√) Pa                  | ssed        | ( ) Fa            | iled    |            |
|                     |            |                                        | Neve Ve               |                                                |                           |             |                   |         |            |
| NOTES:              |            |                                        |                       |                                                |                           |             |                   |         |            |
|                     |            | rected co                              | ncentrations<br>d     | for ran                                        | ge requi                  | rement      | ::                |         |            |
| NOTES:              | pll        | C 12                                   | WHOLV                 | 10- 200                                        | <u>, 1,/</u>              | potion.     | 1:1:1             | 194     |            |
| DS check            | accuracy   | /: ( <u>〉</u> ) Pa                     | ssed ( ) Fa           | iled                                           | ,                         |             |                   |         |            |
| NOTES:              |            | ······································ |                       |                                                |                           |             |                   |         |            |
| DS check            | precisio   | on: (🂢 Pa                              | ssed ( ) Fa           | iled                                           |                           |             |                   |         |            |
| NOTES:              |            |                                        |                       |                                                |                           |             |                   |         | -          |
| DS check            | rejectio   | on trend o                             | riteria: 🏋            | ) Passed                                       | ( ) Wa                    | arning      | ( ) Fa            | iled    |            |
| NOTES:              |            |                                        |                       |                                                | ·                         |             |                   |         |            |
| Departme            | ent Superv | visor Data                             | :                     |                                                |                           |             |                   |         |            |
| NAME                | Calva      | 15 /2                                  | -<br>カテルスピ            | DATE                                           | 17-711-8                  | 2 ,         | rtme 4            | 1.7524  |            |
| CERTIFIC            | ATION:     | (/) can                                | ( ) cannot            | certify                                        | this dat                  | a as        | peing in          | compli  | ance       |
| with the Survey.    | e EPS qual | lity assur                             | ance program          | establi                                        | shed for                  | the !       | LSAAP Co          | ntamina | tion       |
|                     | ٥.         |                                        | \<br>1                | 1.                                             |                           |             |                   |         |            |
|                     | 510        | jnea                                   | $\lambda_{(DM)_{fr}}$ | . <u>// /                                 </u> |                           | <del></del> |                   |         |            |
|                     |            |                                        | (/                    |                                                |                           |             |                   |         |            |

82 616 <sub>c</sub>

DATA SHEET #

| FQAC DATA REVIEW:                   |                                                                                                         |
|-------------------------------------|---------------------------------------------------------------------------------------------------------|
| FQAC check blind replicates (precis | ion): ( ) Passed 🔀 Failed                                                                               |
| .OTES: FOAC overide Analysist       | · precision very good.                                                                                  |
| OTES: FOAC overide Analysist        | ): Passed ( ) Failed                                                                                    |
| NOTES:                              |                                                                                                         |
| FQAC check wiind spike (20 accuracy | ): Passed ( ) Failed                                                                                    |
| NOTES:                              |                                                                                                         |
| FQAC check trend rejection criteria | : Passed () Warning () Failed                                                                           |
| NOTES:                              |                                                                                                         |
| FQAC sent memo report #             | to Principle Investigator on                                                                            |
| date FQAC DATA: NAME                | DATETIME                                                                                                |
| Certification/Authorization: I      | can ( ) cannot certify this data as ality assurance program established fo furthermore, can ( ) cannot) |

SUPPLEMENTARY DATA SHEET USED

| cted                                                                      |
|---------------------------------------------------------------------------|
| tration & WL CL ike Recovery 20 30 2 100                                  |
| 105.2 109.3<br>105.2 109.3<br>109 1009                                    |
|                                                                           |
|                                                                           |
|                                                                           |
|                                                                           |
| ) Passed ( ) Failed                                                       |
|                                                                           |
| equirement:                                                               |
| 15-200 19/1C                                                              |
|                                                                           |
|                                                                           |
|                                                                           |
| ······································                                    |
| ) Warning ( ) Failed                                                      |
|                                                                           |
| TIME #:25P/<br>data as being in compliance<br>for the LSAAP Contamination |
|                                                                           |

#### FQAC DATA REVIEW: FQAC check blind replicates (precision): (Passed () Failed OF RUX Pricusion FQAC check blind spike (30 accuracy): ( ) Failed 7 Passed did N51 NOTES: Ohe FQAC check blind spike (20 accuracy): Passed ( ) Failed NOTES: FQAC check trend rejection criteria: ( ) Passed ( ) Warning ( ) Failed NOTES: FQAC sent memo report # to Principle Investigator on date FQAC DATA: DATE NAME Certification/Authorization: I () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, furthermore, (a) can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.

SUPPLEMENTARY DATA SHEET USED

-51

<u>ن</u> ت

A market at 1

013

014 015

810

016 001 017 Spike 200

OIG Spike 500

|               |              |              |               |              | Expected                                    |            |             |                                                |       |
|---------------|--------------|--------------|---------------|--------------|---------------------------------------------|------------|-------------|------------------------------------------------|-------|
|               | Found        | Background   | d Recove      |              | Concentrat                                  | ion        | 8           | WL                                             | CL    |
| Analyst       | Value        | Value        | Concentra     |              | Of Spike                                    | F          | Recovery    | 200                                            | 30    |
| Spike>        | <i></i>      | 75           | = 102         |              | - 100                                       | X          | 102         |                                                |       |
| Blind         |              |              |               |              | •                                           | 100        |             | 1022                                           | InU L |
| Sp <b>ike</b> |              |              |               |              |                                             |            | <b>X</b> 7  | 10512                                          | 107.7 |
| FQAC>         | 91) -        |              | =             |              | 100                                         | x          | 90%         | 58.4                                           | 99.2  |
| . 0           | 250          |              |               |              | 250                                         | 1øø        |             |                                                |       |
| Precis        | ion (Repl    | licates)     |               | •            | 250                                         |            |             |                                                |       |
|               |              |              |               |              |                                             |            |             |                                                |       |
|               | Found        |              | Found         |              | - • · •                                     |            |             | lished                                         |       |
|               | Value        | 9            | Value         | (            | Calculated                                  |            |             | For                                            |       |
| Analyst       | I O          |              | II            |              | Range                                       |            |             | Range                                          |       |
| Replicat      | e> <u>70</u> | <del>-</del> | 20            |              |                                             | -          | 4.0         | <u>e                                      </u> |       |
| Blind         |              |              |               |              |                                             |            |             |                                                |       |
| Replicat      | e            |              |               |              |                                             |            |             |                                                |       |
| FQAC>         | <b>~</b> <50 |              | <b>&lt;50</b> |              |                                             |            |             |                                                |       |
| •             |              | <b>-</b>     |               |              | ······································      | •          |             |                                                |       |
| Analyst'      | s Report     | to Depart    | mental Supe   | rviso        | <b>:</b>                                    |            |             |                                                |       |
|               |              |              |               |              |                                             |            |             |                                                |       |
|               |              |              | VASSOS        | 44.64        | lytical a                                   |            | ·           | <del></del>                                    |       |
|               |              |              |               | <del> </del> |                                             |            | <del></del> |                                                |       |
| DEPARTME      | NTAL DATA    | A REVIEW:    |               |              |                                             |            |             | \$                                             |       |
|               |              |              |               |              |                                             |            |             |                                                |       |
| DS check      | calculat     | tions on s   | amples note   | d by I       | FOAC: (X) Pa                                | sseđ       | ( ) Fa:     | iled                                           |       |
| MOMPIG.       |              |              | Nove          | 11 -10 1     | /                                           |            |             |                                                | •     |
| NOIES:        |              |              | 100.00        | VO 100       |                                             |            |             |                                                |       |
| DS check      | on unco      | rrected co   | ncentration   | s for        | range requi                                 | rement     | <b>:</b>    |                                                |       |
|               |              | ( ) Faile    |               |              |                                             |            | - <b>·</b>  |                                                |       |
|               |              |              |               |              |                                             |            | !           |                                                |       |
| NOTES:        |              | /            | 111 SP-11     | 13 b         | 146WLON 50                                  | - 105      | 6 6 J. K    |                                                |       |
|               |              |              | ,             |              |                                             |            |             |                                                |       |
| DS check      | accuracy     | y: (X) Pa    | ssed ( ) F    | alled        |                                             |            |             |                                                | •     |
| NOTES:        |              |              |               |              |                                             |            |             |                                                |       |
| MOTES         | <del></del>  |              |               |              | <del></del>                                 |            |             |                                                |       |
| DS check      | precision    | on: (🗸) Pa   | ssed ( ) F    | ailed        |                                             |            |             |                                                |       |
|               | •            | Χ.           | • •           |              |                                             |            |             |                                                |       |
| NOTES:        |              |              |               |              |                                             |            |             |                                                |       |
|               |              |              | • . •         |              |                                             |            |             |                                                |       |
| DS check      | rejection    | on trend c   | riteria:      | (X) Pa       | ssed ( ) Wa                                 | arning     | ( ) Fa      | lied                                           |       |
| NOTES:        |              |              |               |              |                                             |            |             |                                                |       |
|               |              |              |               |              |                                             |            |             |                                                |       |
| Departme      | nt Super     | visor Data   | :             |              |                                             |            | •           |                                                |       |
|               |              |              |               |              | 1. (3                                       | <i>c</i> - | /3          | , _                                            |       |
| NAME          | SAMIN        | 10111        | سرم           | D/           | ATE $/2 - /3 -$                             | 82         | rime 8:     | كامر                                           |       |
| CERTIFIC      | CATION: //   | I(X) can     | ( ) cannot    | cert         | ATE /2-/3-<br>ify this data<br>ablished for | a as       | being in    | compli                                         | lance |
| with the      | EPS qua      | lity assur   | ance progra   | am est       | adlished to                                 | tne        | LSAAP CO    | ntamina                                        | tion  |
| Survey.       |              | •            | 0.            | 11           |                                             |            |             |                                                |       |
|               | Si           | aned         | Sominy        | [11/1        | かいし                                         |            |             |                                                |       |
|               | O.I.         | ····         |               | . 000        |                                             |            |             |                                                |       |

Certification/Authorization: I (Acan () cannot certify this data as being in compliance with the EPS quality assurance program established for the LSAAP Contamination Survey. I, (furthermore, () can () cannot) authorize its release for incorporation into USATHAMA DATA SYSTEM.

Signed

| ACW                             | Sample<br>Point                                                    | Lab<br>I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Concentration Uncorrected For Dilution Factor                                                                          | x | Dilution<br>Factor                                       | = | Actual<br>Concentration                                                                          | FOAC<br>Notes |
|---------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------|---|--------------------------------------------------------------------------------------------------|---------------|
| 5),<br>5),<br>5),<br>50,<br>6), | 012<br>013<br>013<br>014<br>015<br>016<br>017<br>020<br>020<br>020 | 2 - 3 - 58<br>2 - 3 - 59<br>2 - 3 - 60<br>2 - 3 - 62<br>2 - 3 - 63<br>2 - 3 - 64<br>2 - 3 - 65<br>2 - 3 - 65<br>2 - 3 - 69<br>2 - 3 - 71<br>2 - 3 - 71<br>3 - 71 | 2315<br>2316<br>2513<br>2410<br>3213<br>178<br>2511<br>186<br>110<br>100<br>3317<br>2414<br>4017<br>3410<br>210<br>210 |   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |   | 235<br>236<br>236<br>236<br>237<br>198 V<br>251<br>100<br>237<br>409<br>237<br>240<br>240<br>210 |               |

SUPPLEMENTARY DATA SHEET USED

|                             |                                      |              |                             |                         | Expecte                                            |         |                       |                        |          |
|-----------------------------|--------------------------------------|--------------|-----------------------------|-------------------------|----------------------------------------------------|---------|-----------------------|------------------------|----------|
| Analyst<br>Spike>           | Found<br>Value<br>360 -              | Value 250    |                             | Recovered<br>centration | Of Spike                                           | 1       | Decovery              | WL<br>20               | CL<br>3ø |
| Blind<br>Spike<br>FQAC>     |                                      | KJO          |                             | /00                     | 100<br>250                                         | x       | 100%                  | 14.1                   | 121.0    |
| Precis                      | ion (Repl                            | licates)     |                             | 244 <sub>.</sub>        | 250                                                | 100     | 97,69                 | <b>.</b>               |          |
| Analyst<br>Replicate        | Found<br>Value<br>I<br>e> <u>351</u> | 9            | Found<br>Value<br>II<br>247 |                         | Calculated<br>Range<br>2,0                         |         | Estab<br>UCL<br>Found | lished<br>For<br>Range |          |
| Blind<br>Replicate<br>FQAC> | • <u>240</u>                         | -            | 178                         |                         | 62                                                 | <b></b> |                       |                        |          |
| Analyst's                   | s Report                             | to Depar     | tmenta:                     | l Supervis              | or:                                                | ٠. ٢.   |                       |                        |          |
| DEPARTME                    | NTAL DATA                            | A REVIEW:    |                             | ,                       |                                                    |         |                       | :                      |          |
|                             |                                      |              |                             | s noted by              | FQAC: (\) P                                        | assed   | ( ) Fa                | iled                   |          |
| NOTES:                      |                                      | Nove         | _                           | ,                       |                                                    |         | ( )                   |                        |          |
| DS check                    |                                      | rrected o    | concent                     |                         | r range requ                                       | iremen  | t:                    |                        |          |
| NOTES:                      | p[1]                                 | 15910        | 121/11                      | · v 10- 2               | 200 1315                                           | ASTIC.  | 11.                   | L                      |          |
| DS check                    | accurac                              | y: (\start 1 | Passed                      | ( ) Faile               | <i>r (;</i>                                        |         |                       |                        |          |
| NOTES:                      |                                      | /            |                             |                         |                                                    |         |                       |                        |          |
| DS check                    | precisi                              | on: (        | Passed                      | ( ) Faile               | eđ                                                 |         |                       |                        |          |
| NOTES:                      |                                      |              |                             |                         |                                                    |         |                       |                        |          |
| DS check                    | rejecti                              | on trend     | criter                      | ia: (\) F               | Passed ( ) W                                       | arning  | ( ) Fa                | iled                   |          |
| NOTES:                      |                                      |              |                             | , \.                    |                                                    |         |                       |                        |          |
| Departme                    |                                      |              |                             |                         |                                                    |         |                       |                        |          |
|                             |                                      |              | <del></del>                 |                         | DATE 10-24                                         | 5       | TIME 4                | 1:30                   |          |
| CERTIFIC with the Survey.   | EPS qua                              | lity assu    | ırance<br>!                 | program es              | DATE $\frac{12^{2}}{2}$ tify this dastablished for | r the   | LSAAP Co              | compli                 | ance     |
|                             | Sic                                  | gned         | 1.6                         | May Wit                 | mon ·                                              |         |                       |                        |          |
|                             |                                      |              |                             | (/                      |                                                    |         |                       |                        |          |

| FQAC | DATA | REVIEW: | : |
|------|------|---------|---|
|------|------|---------|---|

| FOAC check blind replicates (precision) Analyst Check of Replicates from                                                                                     | : () Passed () Failed on one sample of                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| FOAC check blind replicates (precision) Analyst check of Replicates to                                                                                       | Auge Samplany Problem                                                                       |
| FQAC check blind spike (30 accuracy):                                                                                                                        | <del>_</del>                                                                                |
| NOTES:                                                                                                                                                       |                                                                                             |
| FQAC check blind spike (20 accuracy):                                                                                                                        | Passed ( ) Failed                                                                           |
| NOTES:                                                                                                                                                       |                                                                                             |
| FQAC check trend rejection criteria: (X                                                                                                                      | Passed ( ) Warning ( ) Failed                                                               |
| NOTES:                                                                                                                                                       |                                                                                             |
| FQAC sent memo report #                                                                                                                                      | to Principle Investigator on                                                                |
| date                                                                                                                                                         |                                                                                             |
| FQAC DATA: NAME DAT                                                                                                                                          | D MTHD                                                                                      |
| - And District Million                                                                                                                                       | E TIME                                                                                      |
| Certification/Authorization: I () can being in compliance with the EPS qualit the LSAAP Contamination Survey. I, fur authorize its release for incorporation | ( Cannot certify this data as y assurance program established for thermore, Can ( ) cannot) |
| Certification/Authorization: I ( ) can<br>being in compliance with the EPS qualit<br>the LSAAP Contamination Surgey. I, fur                                  | ( Cannot certify this data as y assurance program established for thermore, Can ( ) cannot) |

| DATA SHEET                                 | 82 635                        | A DATA SHE                             | EET SERIES (A-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -c) 3 of                       | 17       |
|--------------------------------------------|-------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|
|                                            | LONG                          | GHORN ARMY AMM                         | UNITION PLANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                              |          |
| MANAGEMENT DA<br>Analyst(s)<br>Date Sample | TA:                           | ATION STUDY DA                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                    |          |
| Matrix 2<br>Systems Cal<br>Instrumen       | ibration: (X)                 | Passed () I                            | Batch Gailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4*                             |          |
| NOTES:                                     |                               | 101                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |
| ANALYTICAL RE                              | SULTS:                        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |
| Designated Lo<br>File #<br>NOTES:          | cation of Peri                | manent Lab Rec<br>グンペイーク               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Ó, Page                       | <b>*</b> |
| Standard<br>Levels                         | Expected<br>Concentration     | Found<br>on Value                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |
| 0.5x <sub>D</sub><br>2.0x <sub>D</sub>     | 7.7                           |                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |          |
| 10.0XD<br>Blank                            |                               | <u> </u>                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510                            |          |
| Standard Curv                              | e Data                        | Slope                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |
|                                            | e Data<br>:                   | Y-ir                                   | tercept:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 00 1<br>22 000 1             |          |
| DATA: Sample                               |                               | lculated<br>centration                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |
| Point                                      | I.D. Unco                     |                                        | C Dilution * Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual Concentration           | FQ<br>No |
| 009 2 -                                    | 3 -58                         | 30.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.67.1                         | -        |
| 0127 2 -                                   | 3-6                           | 100 g S                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                       |          |
| 013 2 3 014 2 015 2 016 2 016 2 016 2 0 3  | $\frac{3-62}{3-63}$           | C410<br>13                             | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.70                           |          |
| 015 2 -                                    | 3-66                          | 162.0<br>75.0<br>75.4                  | 727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |          |
| 017 2-                                     | 3-69                          | 780 ·                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 180                            |          |
| Sp.ke5x0 2 - 018 2 - 020 2 - 021 2 - 005   | $\frac{3-69}{3-70}$           |                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 543<br>                        |          |
| $\frac{020}{021}$ $\frac{2}{3}$            | $\frac{3}{3} - \frac{72}{13}$ | 10.4<br>20.4<br>10.77<br>10.77<br>21.4 | Andreado com apara de la composición del composición de la composición del composición de la composición de la composición del composición de la composición de la composición del composición | \$ 11 -1<br>\$ 11 -1<br>\$ 117 |          |
| 021 2 -<br>005 2 -<br>002 3 -              |                               | 101/10                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1010                           |          |
| ***************************************    |                               | <del></del>                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |          |

SUPPLEMENTARY DATA SHEET USED

| Analyst<br>Spike>                       | Found<br>Value                | Backgrou<br>Value | nd R<br>Conc                                  | ecovered<br>entration                 | Expecte<br>Concentra<br>Of Spike                | tion<br>X       | ፄ<br>Recovery<br>/ / / / / |                                       | CL<br>3ør              |
|-----------------------------------------|-------------------------------|-------------------|-----------------------------------------------|---------------------------------------|-------------------------------------------------|-----------------|----------------------------|---------------------------------------|------------------------|
| Blind<br>Spike<br>FQAC>                 |                               | w                 |                                               | 180                                   | 200                                             | 100<br>X<br>100 | 90%<br>108.6               | 1117                                  | $\frac{E}{i \gamma_j}$ |
| Precis                                  | ion (Rep                      | licates)          |                                               | 543 .                                 | 500                                             |                 | 700,6                      |                                       |                        |
| Analyst<br>Replicat                     | Found<br>Value<br>I<br>(e) // | е                 | Found<br>Value<br>II                          | ,                                     | Calculated<br>Range<br>्रोक्स्                  |                 | UCL<br>Found               | lished<br>For<br>Range                |                        |
| Blind<br>Replicat<br>FQAC>              | e <u>28.</u>                  | <u> </u>          | <i>13</i> 9.5                                 |                                       |                                                 |                 |                            |                                       |                        |
|                                         |                               |                   | tmental                                       | Supervis                              | or:                                             |                 |                            |                                       |                        |
|                                         |                               |                   |                                               | · · · · · · · · · · · · · · · · · · · |                                                 |                 |                            | · · · · · · · · · · · · · · · · · · · |                        |
|                                         |                               |                   |                                               |                                       |                                                 |                 |                            |                                       |                        |
| DEPARTME                                | NTAL DAT                      | A REVIEW:         |                                               |                                       |                                                 |                 |                            |                                       | ,                      |
| DS check                                | calcula                       | tions on          | samples                                       | noted by                              | · FQAC: (χ) ε                                   | assed           | ( ) Fa                     | ileđ                                  |                        |
| NOTES:                                  |                               |                   |                                               | Marc                                  | 11.7.                                           |                 |                            |                                       | <del></del>            |
| · (·) F                                 | Passed                        | ( ) Fail          | eđ                                            |                                       | r range requ                                    |                 |                            |                                       |                        |
| NOTES:                                  | <i>"</i>                      | 1.1.1             |                                               | 11.14                                 | 1 says from                                     | 11.             | /                          | :                                     |                        |
|                                         | accurac                       | y: (\(\) P        | assed                                         | ( ) Faile                             | eđ ,                                            |                 |                            |                                       | , .                    |
| NOTES:                                  |                               | .;                | <u>, , , , , , , , , , , , , , , , , , , </u> |                                       | . (                                             | <del></del>     |                            |                                       |                        |
| DS check                                | precisi                       | on: (¾) P         | assed                                         | ( ) Faile                             | eđ                                              |                 |                            |                                       |                        |
| NOTES:                                  |                               |                   |                                               | •                                     |                                                 |                 |                            |                                       |                        |
| DS check                                | rejecti                       | on trend          | criteri                                       | .a: (ˈx) F                            | Passed ( ) V                                    | Varning         | ( ) Fa                     | iled                                  |                        |
| NOTES:                                  |                               |                   |                                               |                                       |                                                 |                 |                            |                                       |                        |
|                                         |                               | visor Dat         |                                               |                                       |                                                 |                 |                            |                                       |                        |
| NAME<br>CERTIFIC<br>with the<br>Survey. | : EPS qua                     | iity assu         | rance p                                       | orogram es                            | DATE /) tify this dastablished for              | or the          | LSAAP CO                   | compli<br>ontamina                    | ance                   |
|                                         | Si                            | gned              | <u>, , , , , , , , , , , , , , , , , , , </u> | 1111 y                                | <u> 1910 -                                 </u> |                 |                            |                                       |                        |

### FQAC DATA REVIEW:

| FOAC check blind replicates (precision)  LARGE difference must be so  OTES: all othe Q.C. check out | : () Passed (X) Failed Ample Replicate Problem Analyst Precision good                                 | overd <sub>e</sub><br>PW |
|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------|
| FQAC check blind spike (30 accuracy):                                                               |                                                                                                       | 119                      |
| NOTES:                                                                                              |                                                                                                       |                          |
| FQAC check blind spike (20 accuracy):                                                               | Passed () Failed                                                                                      |                          |
| NOTES:                                                                                              |                                                                                                       |                          |
| FQAC check trend rejection criteria: (                                                              | arphi Passed ( ) Warning ( ) Failed                                                                   |                          |
| NOTES:                                                                                              |                                                                                                       |                          |
| FQAC sent memo report #                                                                             | to Principle Investigator on                                                                          |                          |
| -                                                                                                   |                                                                                                       |                          |
| date                                                                                                |                                                                                                       |                          |
| FQAC DATA: NAME DAT                                                                                 | TIME                                                                                                  |                          |
| FQAC DATA: NAME DAT  Certification/Authorization: I (X) can being in compliance with the EPS qualit | ( ) cannot certify this data as<br>y assurance program established for                                | r                        |
| FQAC DATA: NAME DAT  Certification/Authorization: I (X) can                                         | () cannot certify this data as<br>y assurance program established for<br>thermore, (X) can () cannot) | r                        |

## APPENDIX F

LISTING OF ALL COMPOUNDS (IDENTIFIED AND UNIDENTIFIED)

IN SCREENING ANALYSIS OF WELL AND SURFACE WATERS

# LONCHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY LISTING OF OTHER IDENTIFIED AND UNIDENTIFIED COMPOUNDS FOUND DURING HPLC SCREENING OF GROUNDWATER AND SURFACEWATER SAMPLES

| Site | <u>ID</u>  | Analytical No.           | Compound<br>Name | Con.<br>ug/l |
|------|------------|--------------------------|------------------|--------------|
| Weli | 30         | SUDGEN                   | UKNO25           | 45.          |
|      | 30         | VVDuud                   | UKNC19           | 23.          |
| Weil | 39         | ΑΛΩααθ                   | UKNEZE           | 18.          |
| Wcli | 30         | VVDaas                   | UKNC21           | ]8.          |
| Well | 30         | פטטמעע                   | UKNCCS           | 77.          |
| Weii | 30         | ΑΝησασ                   | UKN022           | 24.          |
| Well | 39         | ለአከርብያ                   | UKN@23           | 10.          |
| Wcii | ວບໍ        | ννρασδ                   | NKNU54           | 11.          |
| Well | 44         | VVEGG5                   | በKN4 ] 8         | 12.          |
| Veli | ŅΛ         | <u> እ</u> አድሮ <u></u> የ2 | UKNG@2           | к.           |
| Weil | 11         | VVEGG5                   | UKNO17           | 3.           |
| Weii | 44         | አአድሮባ2                   | UKNG12           | 5.           |
| Well | ^ A        | ANEGG2                   | UKNC]]           | 3.           |
|      | 15         | AAEGGA                   | UKNC J 8         | 20.          |
|      | 45         | AVEGG4                   | OKNGG 2          | 5.           |
|      | 45         | ላ አ ይር ር ላ               | UKNC17           | 3.           |
| -    | 45         | እአ E ወ ያ 4               | UKNC12           | 9.           |
| hc11 | 15         | ANECCA                   | UKNCIC           | 2.           |
|      | ٨٦         | AAECC5                   | nknul8           | 36.          |
|      | 47         | ANEGG5                   | UKNCC2           | 13.          |
|      | 47         | <u>አ</u> አድሮላ5           | UKNCGA           | 5°.          |
|      | 17         | AAEGG5                   | UKNC16           | 13.          |
|      | 17         | AAECC5                   | UKNCCS           | 10.          |
| Rell | 17         | AAECC5                   | NKNG13           | 21.          |
| Well | 17         | AAECC5                   | <b>UKNUJ</b> C   | .5.          |
|      | 4.2        | AAECOS                   | UKNCCC           | 21.          |
|      | No         | <b>YVE</b> uae           | UKNOOZ           | 13.          |
|      | <b>48</b>  | VVEGGS                   | UKNG 15          | J / .        |
| Weii | <b>√</b> ₺ | AAEdds                   | UKNOJE           | 7.           |
|      | 40         | <b>yyEqus</b>            | עאממז            | 20.          |
|      | V C        | አአድሮ <u>ወ</u> ያ          | UKMGG2           | 14.          |
|      | 40         | VVEGG8                   | UKNACA           | sc.          |
|      | ΝÜ         | <b>VVECUS</b>            | UKNOOS           | 11.          |
|      | ψÜ         | ያል ድሮሮያ                  | UKNAA7           | 45.          |
|      | 49         | AVEGGS                   | ΠΚΝισαδ          | 54.          |
| _    | ۷ó         | አአድር <u></u> ወያ          | Πκημασό          | Λ.           |
|      | 40         | VVEGUE                   | ПКИСТС           | 7.           |
| Meli | γċ         | አአድሮ <u>ወ</u> ደ          | UKNOTI           | 10.          |

| Site ID   | Analytical<br>No.                                    | Compound<br>Name             | Con.<br>ug/i |
|-----------|------------------------------------------------------|------------------------------|--------------|
|           | descriptions open a sum officers with a sum officers | gassa e van gimentale enquis |              |
| Well 50   | <u>አ</u> አደወርዓ                                       | <b>NKNGGS</b>                | 5.           |
| - Well 50 | AAECO9                                               | AKNLUE                       | 16.          |
| Meli 50   | AVEUG9                                               | UKNCC7                       | 13.          |
| Well 50   | NNE009                                               | UKNOOS                       | З.           |
| Weil 50   | <b>VVEGG</b> 3                                       | (IKNU] (I                    | 2.           |
| Well 5]   | AVEQ10                                               | UKNCA7                       | 1.           |
| Weii 51   | ANEC]C                                               | UKNC12                       | 2.           |
| Well 51   | አአ <u>ቸባ</u> ኒባ                                      | пкиотз                       | ₹.           |
| Well 51   | <b>VVEGT</b> @                                       | UKNGJA                       | s.           |
| Well 51   | NIDBAA                                               | <b>UKNUJ</b> G               | 12.          |
| SW014     | AAGCO5                                               | UKNOOS                       | 11.          |

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY LISTING OF OTHER IDENTIFIED AND UNIDENTIFIED COMPOUNDS FOUND DURING GC/EC SCREENING OF GROUNDWATER AND SURFACE WATER SAMPLES

| Site  | 5 1D  | Analytical No. | Test Name    | CON<br>ug/l |
|-------|-------|----------------|--------------|-------------|
| Weii  | 101   | AEFOO1         | Beta-BIIC    | 0.05        |
| Woll  | 308   | AEF006         | Aldrin       | 0.15        |
|       | •     |                | Endosulfan I | 0.07        |
| Weii  | 121   | AEG002         | Deita-BHC    | 0.11        |
|       |       |                | Endrin       | 0.11        |
| reii. | 122   | AEG001         | Delta-BHC    | e.es        |
|       |       |                | Endosulfan I | 0.11        |
|       |       |                | p,p-DDE      | 0.07        |
|       |       |                | endrin       | u•1u        |
| Fe11  | 123   | AEG004         | Endosulfan I | 0.07        |
|       |       |                | p,p-DDE      | 0.17        |
|       |       |                | endrin       | 0.19        |
| Weii  | 2.1   | AEH001         | דתת          | 0.27        |
| Weii  | 35    | AEH004         | DDT          | g.24        |
| Weil  | 37    | AEHOO6         | gamma∸BHC    | 0.05        |
|       |       |                | beta-BHC     | 0.07        |
| SW    | וחח   | AEH007         | gamma-BHC    | 0.05        |
| SW    | 011   | AE1002         | p,p-DDE      | 0.63        |
| SW    | 012   | AEI001         | gamma-PHC    | n.d7        |
|       |       |                | delta-BHC    | 0.05        |
|       |       |                | beta-BHC     | 0.1         |
|       |       |                | p,p-DPE      | 6.38        |
| ¿M.   | ūјз   | AEI004         | p,p-DDE      | 0.56        |
| SW.   | 015   | AE1006         | beta-BHC     | Ø.JJ        |
| SW    | r ነ ን | AE1008         | gamma-BHC    | ଗ.ଜନ        |
|       |       |                | beta-BHC     | o.j7        |
|       |       |                | p,p-DDE      | C.35        |

# LONGHORN ARMY AMMUNITION PLANT CONTAMINATION SURVEY LISTING OF OTHER IDENTIFIED AND UNIDENTIFIED COMPOUNDS FOUND DURING GC/MS SCREENING OF GROUNDWATER AND SURFACEWATER SAMPLES

| Site ID  | Analytical<br>No. | Test Name                     | nd/J<br>COM |
|----------|-------------------|-------------------------------|-------------|
| Well inj | ADNO01            | Dichloromethane               | 123.        |
| Well 101 | ADNO01            | Pentane                       | 24.         |
| Well JC1 | ADNO01            | Trichlorethene                | 28.         |
| Well 101 | ADNO01            | Hexane                        | 2.          |
| Well 161 | ADO001            | di-N-butylphenol              | 2.          |
| Well 10] | ADPOO1            | phthalic acid                 | 78.         |
| Weii 102 | ADRO01            | A-decene, 2, 2-dimethyl       | 12.         |
| Well 102 | ADRO01            | 2-pentanone,4-hydroxy-        |             |
|          |                   | 4-methyl                      | 5.          |
| Well 102 | ADROO1            | 3,4-hexanedione,2,2,5,5-      |             |
|          |                   | tetramethyl-monooxime         | 7.          |
| Well 102 | ADRO01            | cyclohexane,chloro            | 5.          |
| Weil 102 | ADS001            | ethanol,2-(1,1-diethylethoxy) | 12.         |
| Well 102 | ADS001            | phenol                        | 2.          |
| Well 103 | ADNO03            | Dichloromethane               | 45.         |
| Well 103 | ADN003            | Pentane                       | 3.          |
| Well 104 | ADNO02            | Dichloromethane               | Δ.          |
| Well 107 | ADNO04            | Dichloromethane               | 2.          |
| Well 107 | ADNO04            | Pentane                       | 1.          |
| Well 167 | ADNO04            | Trichloroethane               | 9.          |
| Well 107 | ADNO04            | Trichloromethane              | 1.          |
| Well 107 | ADNO04            | Trichloroethene               | 1.          |
| Weil 107 | ADNO04            | Penzene                       | 1.          |

| Site ID                                           | Analytical<br>No. | Test Name                        | CON.  |
|---------------------------------------------------|-------------------|----------------------------------|-------|
| to white relayer - allower combined the different | 4D0004            |                                  |       |
| Weil 107                                          | ADO004            | Glycine, N-acctyl-N-             |       |
|                                                   | AD0004            | (trifluoroacety1) -, methylester | ٨.    |
| Well 107                                          | ADO004            | Cyclopentane,1-bromo-2-          |       |
|                                                   | 100001            | methoxy                          | 2.    |
| Weil 107                                          | AD0004            | diethylphthalate                 | 3.    |
| Well 107                                          | AD0004            | di-N-butylphthalate              | 1.    |
| Well 102                                          | ADQ003            | Dichloromethane                  | 2.    |
| Well 108                                          | ADQ003            | Toluene                          | 24.   |
| Well 108                                          | ADRO03            | ethanol,2-(1,1 dimethylethoxy)   | 2.    |
| Neil 100                                          | ADQ011            | Dichloromethane                  | 12.   |
| Well 100                                          | ADQ011            | 1,2-dichlorethane                | 1.    |
| Well 109                                          | ADQ011            | Tetrahydrofuran                  | 3.    |
| Mott 100                                          | ADQ011            | 1,2-dichlorotehene               | 3.    |
| Well 109                                          | ADQ011            | 1,1,2-trichloroethane            | 45.   |
| Well 189                                          | ADQ011            | Trichloroethene                  | 29.   |
| Well 109                                          | ADRO10            | 1,1'-bicyclohexyl                | 4.    |
| Well 109                                          | ADR010            | ethanol,2-(1,1-dimethylethoxy)   | Λ.    |
|                                                   |                   | ,                                |       |
| Well 110                                          | ADNO08            | Dichloromethane                  | 13.   |
| Well lic                                          | ADNO08            | l,l'-oxybisethane                | 2.    |
| Well 110                                          | ADNO08            | Pentane                          | 1.    |
| Well 310                                          | ADN008            | Trichloroethene                  | 31.   |
| Well 111                                          | AD0006            | butyric acid ester with          |       |
|                                                   |                   | p-hydroxybenzonitrile            | 3.    |
| Weil 112                                          | ADN010            | Dichloromethane                  | 14.   |
| Well 112                                          | ADNO10            | 1,1'oxybisethane                 | 11.   |
| Well 112                                          | ADN010            | Pentane                          | 20.   |
| Well 126                                          | ADNO07            | Dichloromethane                  | 168.  |
| Weii 120                                          | ADO007            | methanamine,N-methoxy            | 3.    |
| Well 120                                          | ADP007            | Phosphoric acid                  | 18.   |
| · /                                               |                   | a montproper was consisted       | 3 V • |

| Site ID  | Analytical No. | Test Name                                  | CON. |
|----------|----------------|--------------------------------------------|------|
| Well 122 | ADQ002         | Dichloromethane                            | 1.   |
| Well 122 | ADQ002         | 1,1'-oxybisethane                          | 2.   |
| Well 122 | ADQ002         | Pentane                                    | 1.   |
| Well 122 | ADRO02         | 4-decene,2,2-dimethyl                      | 12.  |
| Well 122 | ADRO02         | <pre>2 pentanone,4-hydroxy- 4-methyl</pre> | 5.   |
| Well 122 | ADRO02         | 3,4-hexanedione,2,2,5,5-                   |      |
|          |                | tetramethyl-monooxime                      | 7.   |
| Well 122 | ADRO02         | cyclohexane,chloro                         | 5.   |
| Well 122 | ADRO02         | ethanol,2-(],1-dimethylethoxy)             | 12.  |
| Well 122 | ADS002         | phenoi                                     | 2.   |
| Well 124 | ADQ004         | Dichloromethane                            | 7.   |
| Well 124 | ADQ004         | Trichioromethane                           | 312. |
| Well 124 | ADQ004         | Pentane                                    | 1.   |
| Well 124 | ADQ004         | Methylcyclopentane                         | 24.  |
| Well 124 | ADQ004         | 2-chlorobutane                             | 5.   |
| Well 124 | ADQ004         | Tetrachioroethene                          | 4.   |
| Well 124 | ADRO04         | ethanol,2-(1,1-dimethylethoxy)             | 2.   |
| Well 125 | ADQ009         | Dichloromethane                            | 7.   |
| Weii 125 | ADQ009         | 1,2-dichloroethane                         | 2.   |
| Weil 125 | ADQ009         | 2,2-dichloroethane                         | 8.   |
| Well 125 | ADQ009         | 1,1,2-trichloroethane                      | 354. |
| Well 125 | ADQ009         | Toluene                                    | 55.  |
| Well 125 | ADRO09         | 1,1'bicyclohexyl                           | Λ.   |
| Well 125 | ADS009         | cyclohexane,1,3-dichloro                   | 18.  |
| Well 125 | ADS009         | 2-propanone,1,3-dichloro                   | 38.  |
| Well 125 | ADS009         | 2H-pyran-4-ol,tetrahydro-                  |      |
|          |                | 2-(iodomethyl)-G-methoxy                   | 5.   |

| Site ID  | Analytical<br>No. | Tost Name                      | COM.<br>ug/l |
|----------|-------------------|--------------------------------|--------------|
| Weil 126 | ADQ007            | Dichloromethane                | Λ.           |
| Weil 125 | ADQ007            | Trichloromethane               | 1.           |
| Well 125 | ADRO07            | 1,1'-bicyclohexyl              | o.           |
| Well 126 | ADRO07            | ethanol,2-(1,1-dimethylethoxy) | 16.          |
| Well 125 | ADS007            | 2-dibenzofuranol               | 3.           |
| Well 129 | ADU006            | 1,1'-bicyclohexyl              | 5.           |
| Well 129 | ADU006            | di-N-butylphthalate            | 2.           |
| Well 129 | ADV006            | ethanol,2-(1,1-dimethylethoxy) | 12.          |
| Well 129 | ADU006            | diethylphthalate               | 73.          |
| Weii 130 | ADT010            | Dichloromethane                | 153.         |
| Well 130 | ADT010            | Tetrahydrofuran                | 45.          |
| Well 130 | ADT010            | Trichloroethene                | 9.           |
| Well 130 | ADV009            | ethanol,2-(1,1-dimethylethoxy) | 9.           |
| Weli 131 | ADU004            | 1,1'bicyclohexyl               | 9.           |
| Well 131 | ADV004            | ethanol,2-(1,1-dimethylethoxy) | 24.          |
| Veil 131 | ADU004            | diethylphthalate               | 52.          |
| Well 33  | ADU001            | diethylphthalate               | 2.           |
| Well 34  | ADU003            | 1,1'-bicyclohexyl              | 11.          |
| Well 30  | ADT009            | Dichloromethane                | 95,960.      |
| Well 39  | ADT009            | Trichloroethane                | 1120.        |
| Well 30  | ADU008            | ethanol,2-(],1-dimethylethoxy) | 9.           |
| Well 43  | ADW001            | Dichloromethane                | 30.          |
| Well 43  | ADW001            | 1,2-dichioroethene             | 3.           |
| Weil 4?  | ADW001            | 1,2-dichioroethane             | 12.          |
| Well 43  | ADW001            | 1,1,2-trichloroethane          | 2.           |
| Well 43  | ADW001            | Trichloroethene                | 53.          |
| Mott vs  | ADY001            | cyclohexanol,2-bromo           | 5.           |
| Well 43  | ADY001            | diethylphthalate               | 330.         |

| Site ID | Analytical No. | Test Name                  | CON.<br>ug/l |
|---------|----------------|----------------------------|--------------|
| Well 44 | ADW003         | Dichloromethane            | 251.         |
| Well AA | ADW003         | 1,2-dichloroethane         | 3.           |
| Well 44 | ADW003         | Pentane                    | û•           |
| Well AA | ADW003         | Trichloroethene            | 36.          |
| Well 44 | ADW003         | Hexane                     | 1.           |
| Well 44 | ADY003         | diethylphthalate           | 266.         |
| Well 45 | ADW005         | Dichloromethane            | 205.         |
| Well 45 | ADW005         | 1,2-dichloroethene         | 1.           |
| Well 45 | ADW005         | 1,2-dichloroethane         | 5.           |
| Well 45 | ADW005         | Tetrahydrofuran            | 53.          |
| Well 45 | ADW005         | Pentane                    | 7.           |
| Well 45 | ADW005         | Trichloroethene            | 63.          |
| Well 45 | ADX005         | di-N-butylphthalate        | 15.          |
| Well 46 | ADW007         | Dichloromethane            | 7.           |
| Well 46 | ADX006         | di-N-butylphthalate        | 12.          |
| Well 45 | ADY006         | naphtalene,5-ethyl-        |              |
| •       |                | 1,2,3,4-tetrahydro         | Λ.           |
| Well 47 | ADW002         | Dichloromethane            | 712.         |
| Well 47 | ADW002         | 1,2-dichioroethene         | 45.          |
| Well 47 | ADW002         | 1,2-dichloroethane         | 17.          |
| Well 47 | ADW002         | Pentane                    | 5.           |
| Well 47 | ADW002         | Cyclohexane                | O; •         |
| Well 47 | ADW002         | Trichloroethene            | 398.         |
| Well 47 | ADX002         | benzene,1,2,3-trimethyl    | 2.           |
| Well 47 | ADX002         | benzothiazole,2-butyl      | <b>ና</b> •   |
| Well 47 | ADY002         | diethylphthalate           | 3.           |
| Well 47 | ADX002         | ∂i-N-butylphthalate        | 5.           |
| Well A7 | ADY002         | cyclohexane,3-(2-propynyl) | 5.           |
| Well 47 | ADY002         | diethylphthalate           | 240.         |

•

•

| Site | <u>ID</u> | Analytical<br>No. | Test Name                       | CON.  |
|------|-----------|-------------------|---------------------------------|-------|
| Well | 48        | ADW011            | 1,2-dichioroethene              | 55.   |
| Weli | 48        | ADW011            | Trichloromethane                | 24.   |
| Weil | 46        | ADW011            | 1,1,2-trichloroethane           | 72.   |
| Well | 4.8       | ADW011            | Trichloroethene                 | 1232. |
| Well | 4.6       | ADW011            | Tetrachloroethene               | 72.   |
| Well | 48        | ADYO10            | diethylphthalate                | 3.    |
| Well | 48        | ADX010            | di-N-butyiphthalate             | 8.    |
| Weil | 49        | ADZ002            | 1,2-dichloroethene              | 126.  |
| Well | 40        | ADZ002            | 1,2-dichioroethane              | 800.  |
| Well | 49        | ADZ002            | 1,1,2-trichloroethane           | 2150. |
| Well | 49        | ADZ002            | Trichloroethene                 | 7200. |
| Well | Δo        | AEA002            | benzene,l-ethyl-4-methyl        | 12.   |
| Well | 49        | AEA002            | 1-hexanol,2-ethyl               | 19.   |
| Well | 49        | AEA002            | benzaldehyde                    | 34.   |
| Weil | 49        | AEA002            | benxenemethanol                 | 17.   |
| Well | 49        | AEAOO2            | ethanone,l-phenyl               | 58.   |
| Well | 49        | AEA002            | heptadecane                     | 34.   |
| Well | 49        | AEA002            | phosphoric acid, triethylester  | 84.   |
| Well | 49        | AEA002            | hydroxylamine, d-decyl          | 52.   |
| Well | νü        | AEA002            | naphthalene,1-methyl            | 31.   |
| Well | 49        | AEA002            | dimethylphthalate               | 52.   |
| Well | 19        | AEA002            | decane,2-methyl                 | 5.    |
| Well | 49        | AEA002            | benzene,1,2,3-trimethy1         | 13.   |
| Weil | 19        | AEA002            | diethylphthalate                | 35.   |
| Weil | ΝĠ        | AEB002            | pentanoic acid                  | 4.    |
| Well | 40        | AEB002            | tetradecanoic acid              | ٨.    |
| Well | 49        | AEBO02            | butanoic acid, 4 chloro         | 2.    |
| F011 | ΝĠ        | AEB002            | 4-methylphenol                  | 3.    |
| Weil | ΝÖ        | AEB002            | phthalic acid, monomethyl ester | 8.    |
| Weli | 49        | AEB002            | benzoic acid                    | 32.   |
| Well | ΝÖ        | AEB002            | benzene acetic acid             | 215.  |

| Site ID | Analyticai<br>No. | Test Name                 | CON.         |
|---------|-------------------|---------------------------|--------------|
| Well 50 | ADZ003            | Dichloromethane           | 85.          |
| Well 50 | ADZ003            | Tetrahydrofuran           | 21.          |
| Well 50 | ADZ003            | 1,2-dichloroethene        | 118.         |
| Well 50 | ADZ003            | Trichloromethane          | 94.          |
| Well 50 | ADZ003            | 1,1,2-trichloroethane     | 2295.        |
| Well 50 | AEA003            | heptadecane,2-methyl      | 50.          |
| Well 50 | AEA003            | naphthalene               | 22.          |
| Well 50 | AEA003            | dodecane,2,5,11-trimethyl | 24.          |
| Well 50 | AEA003            | naphthalene,l-methyl      | 3 <b>0</b> • |
| Well 50 | AEA003            | undecane,4,5-dimethyl     | 2.           |
| Well 50 | AEA003            | tetradecane,2-methyl      | 5.           |
| Well 50 | AEA003            | eicosane,10-methy1        | ۶.           |
| Well 51 | ADZ001            | Pentane                   | 1.           |
| Well 52 | ADW009            | Dichloromethane           | 24.          |
| Weil 52 | ADW009            | Tetrahydrofuran           | ja.          |
| Well 52 | ADW009            | Trichloromethane          | 1 C .        |
| Weil 52 | ADX008            | di-N-butylphthalate       | 7.           |
| Well 53 | ADW008            | Dichloromethane           | 48.          |
| Woli 53 | ADW008            | Pentane                   | 3.           |
| Well 53 | ADX008            | di-N-butylphthalate       | ۴.           |
| SWCC1   | ADZ007            | Dichloromethane           | 7.           |
| 5Mac 1  | AEB006            | 4-methylphenol            | 3.           |
| SWC (19 | ADZ011            | Trichloroethene           | 2.           |
| SW011   | AEA004            | 2-hexanone,5-bromo        | saaa.        |
| 5M012   | ADZ010            | Dichloromethane           | 9.           |
| SMu13   | ADZ008            | Dichloromethane           | ۴.           |

| Site ID         | Analytical No. | Test Name                       | CON.<br>ug/l |
|-----------------|----------------|---------------------------------|--------------|
| SV.6.1 4        | AEC001         | Dichloromethane                 | 87.          |
| SWC14           | AEC001         | 2-pentanone                     | 23.          |
| SWC14           | AEC001         | Pentane                         | 2.           |
| SWOLA           | AEC001         | Trichloroethene                 | 45.          |
| SW014           | AEC001         | Tetrachloroethene               | 35.          |
| รพ.ต. 1.4       | AED001         | ethanol,2-(1,1-dimethylethoxy)  | 45.          |
| SW014           | AED001         | phosphoric acid, triethylester  | 345.         |
| SW014           | AED001         | ethanol,2-(1,1-dimethylethoxy)  | 3.           |
| SWCIA           | AEE001         | phosphoric acid                 | 4.           |
| SW014           | AEE001         | 2-nitrophenol                   | 5.           |
| SWC15           | AED008         | 1,1'bicyclohexyl                | 32.          |
| SWC15           | AEE008         | phenol                          | 12.          |
| SW015           | AEE008         | tetradecanoic acid              | 35.          |
| SWO16           | AEEOO7         | phenol                          | 14.          |
| 5WC] 7          | AEC003         | pentane                         | 1.           |
| <b>ድ</b> ሦቦ ፤ 7 | AED003         | 1,1'-bicyclohexyl               | 17.          |
| SW017           | AED003         | 2-quinolinecarboxaldehydo,      |              |
|                 |                | 8-hydroxy,oxime                 | 10.          |
| SWO17           | AEE003         | phenol                          | 10.          |
| SW019           | AED005         | 2-hexanone,5-bromo              | 346.         |
| SWOLD           | AED005         | cyclohexane,(cyclopentylmethyl) | 27.          |
| e Lows          | AED005         | phenol                          | ۶.           |
| <i>SWC</i> 20   | AEE002         | phenol                          | 12.          |

APPENDIX G

MANUAL FIELD SAMPLING PROTOCOL

AND SAMPLE LOG BOOK

#### Manual

Field Sampling Protocol and Sample Log Book for Environmental Contamination Survey of the Longhorn Army Ammunition Plant, Marshall, Texas

## Prepared For

Thiokol Corporation/Longhorn Division Marshall, Texas

## For Submission To

U.S. Army Toxic and Hazardous Materials Agency Aberdeen Proving Grounds, MD 21010

### Prepared By

Environmental Protection Systems, Inc. Rt. 10 Box 698 Pensacola, Florida 32506

Submitted November 10, 1982

# Table of Contents

|                                                                                         | PAGE                 |
|-----------------------------------------------------------------------------------------|----------------------|
| Introduction                                                                            | 1                    |
| General Sampling Sites and Required Samples and Analysis                                | 1                    |
| Preparation and Selection of Specific Sampling Sites                                    |                      |
| <ol> <li>Wells</li> <li>Surface Water</li> <li>Sediment</li> <li>Soil</li> </ol>        | 13<br>13<br>15<br>15 |
| Collection of Samples                                                                   |                      |
| <ol> <li>Well Water</li> <li>Surface Water</li> <li>Sediments</li> <li>Soils</li> </ol> | 15<br>16<br>17<br>17 |
| Treatment in the Field                                                                  | 18                   |
| Labeling and Logging in of Field Samples                                                |                      |
| Preparation of CDIR Form 13-2.1, 1 September 1978                                       | 21                   |
| Preparation of Sample Manifests                                                         | 2.4                  |
| Maintenance of Chain of Custody of Samples                                              | 26                   |
| Transportation of Samples to Laboratory                                                 | 26                   |
| Transfer of Sample Custody                                                              | 28                   |
| TABLES                                                                                  |                      |
| Table 1A, Analytes Determined for the Longhorn Army Ammunition Plant Survey             | 2                    |
| Table 2A, Groundwater Sampling Points and Analytical Requirements                       | 3                    |
| Table 3A, Surface Water/Sediment Points and Analytical Requirements                     | 5                    |
| Table 4A, Soil Sampling Points and Analytical Requirements                              | 6                    |

# Table of Contents (Continued)

| Table 5A, Standing Water Volumes In A Two-Inch Monitoring Well                                              | 14                                      |
|-------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| FIGURES                                                                                                     |                                         |
| Figure 1A, Longhorn Army Ammunition Plant<br>Monitor Well Locations                                         | 7                                       |
| Figure 2A, Longhorn Army Ammunition Plant Sediment/Surface Water Sampling Points                            | 8                                       |
| Figure 3A, Longhorn Army Ammunition Plant<br>Soil Sample Areas                                              | 9                                       |
| Figure 4A, Longhorn Army Ammunition Plant Existing AEHA Wells Near Evaporation Point in the Burning Grounds | 10                                      |
| Figure 5A, Longhorn Army Ammunition Plant Existing AEHA Wells Near Old Landfill                             | 11                                      |
| Figure 6A, Longhorn Army Ammunition Plant Existing AEHA Wells At Current Landfill                           | 12                                      |
| Figure 7A, Installation Restoration, Sampling and Analysis - Chemical (Form 13-2.1, 1 Sept. 1978)           | 22                                      |
| Figure 8A, Longhorn AAP, Contamination Survey Sample and Transference Manifest                              | 25                                      |
| Figure 9A, Certifications                                                                                   | 27                                      |
| List of Log Books                                                                                           |                                         |
| 3. Sediment Pages                                                                                           | 30-135<br>136-142<br>143-146<br>147-152 |

#### INTRODUCTION

The importance of a well-planned, well executed and documented sampling program cannot be overstated. It is the foundation on which the analyses and, ultimately, all decisions are based. Because of this fact, EPS has developed the following document to provide in one book all of the information which should be needed by the field sampling crew to comply with the LHAAP contamination survey Sope of Work and, additionally, to insure a specific predetermined protocol is regorously implemented. This document contains the sampling plan which will be used. Deviation from this plan cannot be accepted except under the most unusual of circumstances and then only with the approval of the FQAC and the proper documentation.

# General Sampling Sites and Required Sample and Analytical Categories

The monitoring station locations, parameter coverage, and sampling frequency have been specified by USATHAMA in a manner suitable to meet all objectives of this study. The design has taken into consideration past and existing ambient monitoring programs which may have been conducted, as well as the existing environmental conditions and past history associated with the utilization of the different sampling site locations.

Table 1A provides a list of analytical categories being investigated during this study. Tables 2A-4A provide a brief sampling point description and listing of stations to be sampled and analytical categories to be tested associated with well water, surface water/sediments and soils respectively. Figures 1A-6A provide the general location of well water, surface water/sediment and soil sampling points as well as site specific locations for selected monitoring well sites.

Table 1A

Analytes Determined for the Longhorn Army Ammunition Plant Survey

| Analytical<br>Category | Analyte                                                                      | <u>Matrix</u> |
|------------------------|------------------------------------------------------------------------------|---------------|
| 1                      | 1,3 Dinitrobenzene (1,3 DNB)                                                 | All           |
| -                      | 2,4,6-Trinitrotoluene (2,4,6 TNT)                                            | All           |
|                        | 1,3,5-Trinitrobenzene (1,3,5,-TNB)                                           | A11           |
|                        | 2,4-Dinitrotoluene (2,4 DNT)                                                 | All           |
|                        | 2,6-Dinitrotoluene (2,6-DNT)                                                 | All           |
|                        | Nitrobenzene (NB)                                                            | A11           |
| 2                      | Nitrates                                                                     | All           |
|                        | Nitrites                                                                     | A11           |
|                        | Phosphates                                                                   | All           |
|                        | Sulfates                                                                     | A11           |
|                        | Chloride*                                                                    | All           |
|                        | Fluoride*                                                                    | All           |
|                        | Chromate*                                                                    | All           |
|                        | Thiocyanate*                                                                 | A11           |
|                        | Acetate*                                                                     | All           |
|                        | Cyanide*                                                                     | All           |
| 3                      | Aluminum                                                                     | All           |
|                        | Antimony                                                                     | All           |
|                        | Barium                                                                       | A11           |
|                        | Cadmium                                                                      | A11           |
|                        | Chromium                                                                     | All           |
|                        | Lead                                                                         | All           |
|                        | Manganese                                                                    | A11           |
|                        | Strontium                                                                    | A11           |
|                        | Mercury*                                                                     | A11           |
|                        | Copper*                                                                      | A11           |
|                        | Zinc*                                                                        | A11           |
|                        | Arsenic*                                                                     | A11           |
|                        | Beryllium*                                                                   | A11           |
|                        | Nickel*                                                                      | A11           |
|                        | Selenium*                                                                    | A11           |
|                        | Silver*                                                                      | All           |
|                        | Thallium*                                                                    | All           |
| 4                      | GC-MS (Volatiles)                                                            | W             |
|                        | GC-MS (Acid fraction)                                                        | All           |
|                        | GC-MS (Base/neutral fraction)                                                | A11           |
| 5                      | HPLC (Screen of general organic compounds)                                   | All           |
| 6                      | GC-EC (Screen for pesticides, organochlorines, PCB's, and related compounds) | All           |

<sup>\*</sup>Semi-Quantitative Determination W=Surface/Well water S = Sediment and Soil

Groundwater Sampling Points and Analytical Requirements

Table 2A

| Sample Point | Analytical Categ | ory Approximate Location                       |
|--------------|------------------|------------------------------------------------|
| 101          | 123456           | N Boundary, NW of Plant 2                      |
| 102          | 123456           | N Boundary, N of Plant 3                       |
| 103          | 123456           | E of Magazine Area, near Starr Ranch<br>Rd     |
| 104          | 123456           | E of Inert Burning Ground                      |
| 105          | 123              | E of Plant 3, near Independence Ave.           |
| 106          | 1236             | NW of Igniter Area                             |
| 107          | 12345            | E of Static Test Area                          |
| 108          | 123456           | SSE of Harrison Bayou inlet into<br>Coddo Lake |
| 109          | 12345            | E Boundary, N of Long Point Rd.                |
| 110          | 123456           | S Boundary, E of Harrison Bayou                |
| 111          | 123456           | SW Boundary, W of Ave. P                       |
| 112          | 123456           | W Boundary, W of Classification Yard           |
| 113          | 1                | NE of TNT Waste Disposal Plant                 |
| 114          | 1                | WNW of TNT Area, Near 1st Street               |
| 115          | 1                | TNT Area, Near Ave K                           |
| 116          | 1                | NE of TNT Area, Near Ave D                     |
| 117          | 1                | ENE of TNT Area, Near Ave D and 18th St        |
| 118          | 1                | SE of TNT Area, Near 18th St                   |
| 119          | 1                | SSW of TNT Area, Near 18th St                  |
| 120          | 123456           | NE of Intersection, Ave P and Ave Q            |
| 121          | 1236             | SSW of Current Landfill                        |
| 122          | 123456           | E of Old Landfill                              |
| 123          | 1236             | WNW of Burning Ground                          |
| 124          | 123456           | NNW of Burning Ground                          |
| 125          | 123456           | NNE of Burning Ground                          |
| 126          | 123456           | SE of Burning Ground                           |
| 127          | 123              | WNW of Ground Signal Test Area                 |
| 128          | 12345            | NE of Ground Signal Test Area                  |
| 129          | 12345            | SSE of Ground Signal Test Area                 |
| 130          | 12345            | WNW of South Test Area                         |
| 131          | 12345            | NE of South Test Area                          |
| 132          | 123              | SE of South Test Area                          |

Table 2A (Continued)

|              |              | ·        |    |      |     |                  | AEHA   |
|--------------|--------------|----------|----|------|-----|------------------|--------|
| Sample Point | Analytical C | ategory  |    | App  | rox | imate Location   | Desig. |
| 33           | 123456       | Existing | 2" | well | at  | Current Landfill | BH20   |
| 34           | 123456       | Existing | 2" | well | at  | Current Landfill | BH19   |
| 35           | 1236         | Existing | 2" | well | at  | Current Landfill | . BH18 |
| 36           | 1236         | Existing | 2" | well | at  | Old Landfill     | BH16   |
| 37           | 123456       | Existing | 2" | well | at  | Old Landfill     | BH14   |
| 38           | 123          | Existing | 2" | well | at  | Burning Ground   | BH22   |
| 39           | 12345        | Existing | 2" | well | at  | Burning Ground   | BH 5   |
| 4 Ø          | 123          | Existing | 2" | well | аt  | Burning Ground   | BH 7   |
| 41           | 123          | Existing | 2" | well | at  | Burning Ground   | BH 3   |
| 42           | 123          | Existing | 2" | well | at  | Burning Ground   | BH 1   |
| 43           | 12345        | Existing | 2" | well | at  | Burning Ground   | BH 8   |
| 44           | 12345        | Existing | 2" | well | аt  | Burning Ground   | ВН 9   |
| 45           | 12345        | Existing | 2" | well | at  | Burning Ground   | BHlØ   |
| 46           | 12345        | Existing | 2" | well | аt  | Burning Ground   | BH 4   |
| 47           | 12345        |          |    |      |     | Burning Ground   | BH 2   |
| 48           | 12345        |          |    |      |     | Burning Ground   | вн 6   |
| 49           | 12345        |          |    |      |     | Burning Ground   | BHll   |
| 5Ø           | 12345        | Existing | 2" | well | аt  | Burning Ground   | BH21   |
| 51           | 12345        | Existing | 2" | well | at  | Old Landfill     | BH12   |
| 52           | 12345        | Existing | 2" | well | at  | Old Landfill     | BH13   |
| 53           | 12345        | Existing | 2" | well | at  | Current Landfill | BH17   |

TABLE 3A

Surface Water/Sediment Sampling Points and Analytical Requirements

| Sar ie<br>Point | Water<br><u>Analyses</u> | Sediment<br>Analysis | Approximate Location                   |
|-----------------|--------------------------|----------------------|----------------------------------------|
| 001             | 123456                   | 12345                | North Bayou inlet into Caddo Lake      |
| 002             | 123                      | 123                  | North Bayou, E of Plant 3              |
| 003             | 16                       | 1                    | North Bayou, W of Plant 3              |
| 004             | 123                      | -                    | Foundation of TNT Waste Disposal Plant |
| 005             | 123                      | 123                  | Pumphouse Pond in TNT Area             |
| 006             | 1                        | 1                    | NE of TNT Area                         |
| 007             | 1                        | 1                    | S of TNT Area, Near Avenue N           |
| 800             | 1                        | . 1                  | S of TNT Area, Near Avenue E           |
| 009             | 123456                   | 12345                | At W Boundary, S of Admin. Area        |
| 010             | 123                      | 123                  | Central Creek, E of Avenue P           |
| 011             | 123456                   | 12345                | NW of Current Landfill                 |
| 012             | 123456                   | 12345                | Central Creek Inlet into Caddo Lake    |
| 013             | 123456                   | 12345                | Harrison Bayou Inlet into Caddo Lake   |
| 014             | 12345                    | 12345                | Rocket Motor Casing Washout Pond       |
| 015             | 123456                   | 12345                | NW of Burning Ground                   |
| 016             | 12345                    | 12345                | NW of Flashing Area                    |
| 017             | 123456                   | 12345                | E of Old Landfill                      |
| 018             | 123                      | 123                  | Harrison Bayou, S of Avenue Q          |
| 019             | 123456                   | 12345                | At S Boundary, Harrison Bayou          |
| 020             | 12345                    | 12345                | Saunders Branch inlet into Caddo Lake  |
| 021             | 123                      | 123                  | Saunders Branch, S of Longpoint Rd.    |

Soil Sampling Points and Analytical Requirements

TABLE 4A

| Area # | Sample<br>Type | # Sample<br>Points* | Analytical<br>Category | Area<br><u>Description</u> |
|--------|----------------|---------------------|------------------------|----------------------------|
| 010    | 1' Cores       | 3                   | 123(45)**              | Inert Burning Ground       |
| 020    | 1' Cores       | 3                   | 1                      | TNT Waste Disposal Plant   |
| 030    | 1' Cores       | 8                   | 1                      | TNT Area                   |
| 040    | 1' Cores       | 3                   | 123(45)**              | South Test Area            |
| 050    | 1' Cores       | 3                   | 123(45)**              | Ground Signal Test Area    |
| 060    | 1' Cores       | 3                   | 123(45)**              | Static Test Area           |
| 070    | 5' Cores       | 5                   | 123(45)**              | Old Landfill               |
| 080    | 5' Cores       | 3                   | 1                      | Suspect TNT Burial Site    |

<sup>\*</sup> Each area will have the number of sample points specified above and identified, for example, as 0101, 0102, and 0103, or 0701T, 0701B, 0702T, 0702B, etc.

<sup>\*\*</sup> GC/MS and HPLC will be performed only on the composite sample (identified for example as 010C) made up of equal portions taken from each of the sample points in an area. For area 070 a composite sample will be made up of equal portions taken from each of the upper sections of the five-foot cores and one made from the lower sections (identified as 070CT and 070CB, respectively).

FIGURE 1A

# LONGHORN ARMY AMMUNITION PLANT MONITORING WELL LOCATIONS \*



\* SPECIFIC LOCATIONS OF EXISTING AEHA WELLS DEPICTED ON FIGURES 4A-6A

#### FIGURE 4A

# LONGHORN ARMY AMMUNITION PLANT EXISTING AEHA WELLS NEAR EVAPORATION POND IN THE BURNING GROUNDS



The Preparation and Selection of Specific Sampling Sites

Monitoring well sampling site preparation. arrival at the monitoring well sampling site, the upper well casing shall be cleaned using approved water and wiped dry befor unplugging. A clean piece of polyethylene plastic sheet shall be placed on the ground to protect against possible contaminants caused by sampling equipment touching the ground. The height of the water column shall be determined and a calculation done to determine the standing volume of water in the well casing. times this calculated volume of standing water shall be removed prior to the extraction of any well water samples for analysis. Table 5A contains a list of standing water heights with associated water volumes for 2" monitoring wells. water shall be bailed out into a calibrated pail in order to determine volume removed. The pail shall be attached via a hook to the existing well protection pipes and the bailing pipe shall be coiled into the pail as the bailer is removed from the well. Before dumping the contents of the pail, the conductivity of the water which has been purged out will be determined. If the well recharge rate is very slow, i.e., six hours or more required to achieve 90% recovery an alternate purging method may be used. This method will involve the bailing of the well twice to remove all standing water, allowing a minimum of 16 hours between the bailing cycles and after the final cycle before the sample is Once the appropriate volume has been bailed from the test well, the well water sample can be collected as outlined in the subsequent section.

No. 2: Surface Water Sampling Site Selection. The surface water sampling sites have been generally located on Figure 2B. The exact location of the surface water sampling sites shall be determined at the time of sampling. The determination shall be jointly agreed to by representatives of EPS and the LHAAP representative. The site should be chosen for their ease of sampling and for their representativeness of the water course under investigation. Attempts should be made to select the site which has relatively calm or slow moving water. Sampling sites

TABLE 5A
Standing Water Volumes in a Two-Inch Monitoring Well

| 10       1.63       8.15         11       1.79       8.96         12       1.96       9.78         13       2.12       10.50         14       2.28       11.41         15       2.44       12.22         16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.54       27.71                                                | Height of<br>Water<br>Column (ft) | Standing<br>Volume of<br>Water (gal) | Required Purge<br>Volume (gal) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------------------|--------------------------------|
| 12       1.96       9.78         13       2.12       10.50         14       2.28       11.41         15       2.44       12.22         16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15 <tr< td=""><td></td><td></td><td></td></tr<> |                                   |                                      |                                |
| 13       2.12       10.50         14       2.28       11.41         15       2.44       12.22         16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 14       2.28       11.41         15       2.44       12.22         16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 15       2.44       12.22         16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 16       2.61       13.04         17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 17       2.77       13.86         18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 18       2.93       14.67         19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 19       3.10       15.48         20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 20       3.26       16.30         21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.06         44       7.17       35.86         45       7.34       36.70 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 21       3.42       17.12         22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       32.60         41       6.85       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 22       3.59       17.93         23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12 <t< td=""><td></td><td></td><td></td></t<>  |                                   |                                      |                                |
| 23       3.75       18.74         24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94 <td></td> <td></td> <td></td>               |                                   |                                      |                                |
| 24       3.91       19.56         25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                               |                                   |                                      |                                |
| 25       4.08       20.38         26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                               |                                   |                                      |                                |
| 26       4.24       21.19         27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                   |                                   |                                      |                                |
| 27       4.40       22.00         28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                     |                                   |                                      |                                |
| 28       4.56       22.82         29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                     |                                   |                                      |                                |
| 29       4.72       23.64         30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                       | •                                 | ,                                    |                                |
| 30       4.89       24.45         31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                         |                                   |                                      |                                |
| 31       5.05       25.26         32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                           |                                   |                                      |                                |
| 32       5.22       26.08         33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                             |                                   |                                      |                                |
| 33       5.38       26.89         34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.86         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                               |                                   |                                      |                                |
| 34       5.54       27.71         35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                 |                                   |                                      |                                |
| 35       5.70       28.52         36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                      |                                |
| 36       5.87       29.34         37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                   |                                      |                                |
| 37       6.03       30.15         38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                      |                                |
| 38       6.19       30.97         39       6.36       31.78         40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37                                | 6.03                                 |                                |
| 40       6.52       32.60         41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38                                |                                      |                                |
| 41       6.68       33.42         42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                                |                                      | 31.78                          |
| 42       6.85       34.23         43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 Ø                               | 6.52                                 | 32.60                          |
| 43       7.01       35.04         44       7.17       35.86         45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 6.68                                 | 33.42                          |
| 44     7.17     35.86       45     7.34     36.70       46     7.49     37.49       47     7.66     38.30       48     7.82     39.12       49     7.99     39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | 6.85                                 | 34.23                          |
| 45       7.34       36.70         46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                                      |                                |
| 46       7.49       37.49         47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                      | 35.86                          |
| 47       7.66       38.30         48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                      | 36.70                          |
| 48       7.82       39.12         49       7.99       39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                                      |                                |
| 7.99 39.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   |                                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                      |                                |
| 50 8.15 40.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |                                      |                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                                | 8.15                                 | 40.75                          |

should be located, if at all possible, upstream from manmade water course obstructions such as bridges and roadway culverts. Prior to the sampling at any of these points, the contractor will be responsible for providing a means of marking the sampling point to insure that a reoccupation of the sampling site can be accomplished within a reasonable period of time (3/4 iron pipe with Station # inscribed). The contractor will also make a permanent record of these sampling points on an installation map which will be provided by the LHAAP representative.

- No. 3. Sediment Sampling Point: The sediment sampling points will be at the same location as the surface water sampling points. The specific selection criteria outlined above takes into consideration the requirements for identification of a specific sampling point for sediment analyses.
- No. 4: Soil Sampling Point Selection and Preparation. general areas of soil sampling have been indicated on Figure 3A. Within each of these areas the exact sampling points remain to be selected. This process will take place by a joint inspection with a representative of EPS, USATHAMA and a representative of The contractor will mark each of the specific five sampling points within each sampling area, which will be sampled surface soils. The contractor will be responsible for developing a sketch of each area and the location of the representative sampling sites. Prior to the collection of any sample at any one of the points within the eight identified areas, the sampling crew will carefully remove all surface vegetation, rocks, leaves, and other organic debris. An area of approximately four feet square should be prepared in this way in order to insure no contamination from surface organic material.

#### The Collection of Samples

No. 1: Well Water. After the well has been prepared as outlined above, well water samples can be drawn for the variety of analyses to be conducted. The field sampling crew should consult the LHAAP, groundwater sampling log sheet (Matrix 1) to determine the exact type and number of specific samples which are

required at the particular well being sampled. The log book will indicate the sampling site identification number for each bottle as well as the specific categories being tested and whether or not duplicate samples will be required for this particular station. Each log sheet will contain data on the ground water volumes which need to be removed status and Prior to filling the bottles both the bottles and each well. their caps will be thoroughly rinsed with the well water being The field technicians will take every precaution to insure that the sample bottles and well samples are not contaminated by surrounding soil or wind-blown material. the bottles have been rinsed they are to be filled quickly and capped. In order to insure that no cross contamination takes place during sampling of ground water for the Longhorn Army Amunition Plant Contamination Survey, EPS Laboratories will install a discrete PVC Bailer in each of the 53 monitoring wells. This bailer will pre-cleaned at EPS's Laboratory and will be used For those monitoring only in this pre-designated well site. wells which require modified or protracted bailing operations, the sampling equipment will be temporarily left hanging inside the wells throughout the sampling period.

No. 2: Surface Water Sampling. Surface water samples will be collected directly in the bottles provided for use by EPS. The field sampling technician will wade into the creek or stream at the pre-designated location and will hold the sample bottle upstream from his location at a depth equal to approximately one half of the total depth of the sampling point. samples may be taken in the sample bottles with a hand held apparatus which can be used from a boat off a bridge. technician will remove the cap from the bottle and allow the bottle to be filled at the appropriate depth. The first sample taken in each bottle will be discarded and used to rinse the The field sampling technician will field sampling container. The field repeat this process to collect his field sample. sample will be immediately capped after collection. The field sampler will take every precaution to insure that bottom sediments are not disturbed to the point where they are collected in the water sample. It should be noted that bottom sampling may be taking at the same time as the collection of water samples (immediately after water samples).

No. 3: Sediment Sampling. Sediment samples will be taken at each of the 20 sites listed in Table 3A. The sampling at each station will consist of the collection of at least five (5) two inch cores of surface sediment, which will be taken across the stream profile. These cores will be taken with a one foot long, two inch inside diameter stainless steel coring device with lexan The cores will be placed in a one gallon glass core liners. Enough material will be collected to fill a one container. gallon glass container with sedimentary deposits. The field technician should collect extra cores at various locations across the stream profile in order to insure that one full gallon of sedimentary material is collected at each site. As in the case with water samples, all of the coring devices shall be thoroughly washed with deionized water after the collection of samples from each individual station and the pre-cleaned lexan liner changed to avoid any cross contamination of future sampling sites.

No. 4: Soil Samples. Soil samples will be taken from each of the eight areas indicated in Figure 3A and described on Table Within each of these eight areas, several discreet one gallon samples will be collected. Each of these discreet samples will be made up of several cores taken in a four foot square The samples will be collected with a one foot long, one and one half inch inside diameter stainless steel coring tube or a small hand held auger. Approximately eight to 12 cores will be collected to fill the one gallon bottle in each of the five sampling points associated with each of the eight areas designated in Figure 3A. A total of 31 specific sampling sites The field sampling technicians will be will be sampled. collecting one duplicate sample in every one of the six general sampling areas (as designated in the soil sampling log book In those cases where duplicate samples are being Matrix 4). taken, they should be done simultaneously and every other core removed from the sampling site should be placed in an alternate one gallon sample container. All sampling equipment should be thoroughly rinsed with deionized water between each specific sampling site to avoid any possible cross contamination.

several locations, five foot deep cores will be taken and these cores split in an upper and lower half to determine the potential location of specific contaminants. This will be accomplished by driving a two inch core one foot into the ground and removing the material for analysis and then by augering down one foot and taking an additional one foot core from this location and so on down to the five foot level. This methodology will elliminate the potential for cross contamination of a single five foot core driven from the surface down to the five foot level.

#### Treatment in the Field

A great deal of the sample treatment will be accomplished once the samples are received at the analytical laboratory. However, we will review each analytical category being sampled for and any special treatment which is necessary for water samples being taken for each of these samples. Soil Samples will not require any special sampling treatment. Samples being taken for analytical category one and five, which will be analyzed by high performance liquid chromatography (HPLC), will not have any field preservative added to them. These samples will be collected in a one gallon amber bottle. They should be filled to the top of the bottle and sealed as tightly as possible. These samples should be stored from the point of collection at 4 °C until they are delivered to the laboratory.

Samples being collected for analytical category number two from wells and surface water sites will also not be preserved in the field in any way. These samples will be collected in one quart amber bottles which have been stored with deionized water in them. The deionized water will be poured out, the sample collected and filled to the top of the bottle, and the cap immediately placed on the bottle. These samples will also be stored at 4  $^{\circ}$ C until their arrival at the main laboratory.

Samples collected for analytical category number three from well waters will not be preserved in any way. They will be stored at 4  $^{\circ}\text{C}$  after collection and after arrival at the main

laboratory they will be filtered and then preserved with nitric acid to a pH of less than two.

Samples collected for analytical category number three from surface waters will be preserved in the field, using nitric acid. One half of a millimeter of Ultrix Nitric Acid will be added to each of these samples before they are capped and stored at  $^{\rm O}$ C.

Samples collected for analytical category number four will require the collection of a one gallon water sample as well as a small 40 ml water sample (collected in duplicate). Neither of these two samples will be preserved; however, care should be taken to insure that the 40 ml sample collected in the specially provided vial is filled to the very top and that no air space exist prior to the placement of the vial cap back on the sample. Both the 40 ml sample and the one gallon sample destined for analysis in category four will be stored at 4 °C.

Samples collected for analytical category number six will require the collection of samples in one gallon amber bottles. Once again these samples will not be preserved in the field; however, they should be stored at  $^{\rm OC}$  prior to reaching the main analytical laboratory.

### Labeling and Logging-in of Field Samples

The positive identification of field samples requires that a systematic approach be taken to the labeling and recording of collection data at each specific sampling site. Therefore, a log book system has been developed and incorporated into this document for use during this survey.

There are four specific log books provided, one for each matrix type. These log books are located on the pages listed below.

| Log Book Pages |
|----------------|
| 30-135         |
| 136-142        |
| 143-146        |
| 147-152        |
|                |

In association with the sampling log books provided, a complete set of stick-on labels and tie-on tags have been prepared for each sample bottle to be collected. These labels are contained within individual packets which have been identified for each station. The field sampling technician should consult the appropriate log book to check on the number and kind of samples to be collected at each site. Once he has collected all of the samples, the bottles should be thoroughly wiped dry, then the packet of labels associated with each sampling site should be removed from its box and each label affixed to the appropriate bottle. Additionally, each tag should be tied or wired to the appropriate bottle as well. sampling technician should not leave a particular sampling site until all of the labels provided are attached to the appropriate bottle which now contains the sample. In those cases where duplicate sets of samples are being taken as designated on the field sampling sheets, two packets of labels are provided for the duplicate bottles which will need to be collected. provided in the individual packets have already had the sampling station number, the matrix number, and the analytical category It will be the responsible of the field number affixed to them. sampling technician to put the sampling time and sampling date, as well as checking the appropriate field preparation notes and signing each tag with his initials. Once all of the samples have been collected, labeled, and tagged, the field technician will be responsible for checking the appropriate boxes on the field log book and writing down the date and time of the field sampling and any other pertinent notes in the boxes provided. Once all of the samples have been collected and checked in the manner outlined above, the field sampling technician will initial in the provided in each line, or on each sheet of the log book. initialling in this box indicates that all of the samples have been collected and checked and are now ready for storage for ultimate transportation to the laboratory. All of the different size and type bottles used in the collection of field water samples should be placed back into their original containers. Once each container has been filled with bottles, a sample manifest will be prepared as discussed in a subsequent section. 20

Soil and sediment samples will be labeled and logged in in their respective log books. A complete set of tags has been provided for all soil and sediment samples just as was done with the water samples. In the case of soils and sediment samples, however, only one sample (two samples in case of duplicate stations) will be collected at each site. Although this will be simpler than the water sampling, because of the fact that only one sample will exist from each site, the importance associated with that sample will be much greater for there will be no chance for utilization of alternate samples should a sample be found to be nonexistant. Therefore, upon collection of a particular soil sample, the bottle should be wiped clean and the stick-on label should be affixed immediately. The appropriate information which should be provided by the field technician should be added on to the already partially completed label. Additionally, the tag provided should be wired onto the neck of the bottle in a secure fashion and the same information should be added onto the tag. The appropriate boxes should be checked and filled in on the sediment and soil log book, and once the sample has been labeled secured, the field sampling technician should sign the particular line of the log book indicating that a complete sample had been taken and identified for future use.

The Preparation of the CDIR Form 13-2.1, 1 September, 1978

The chief of the field sampling crew will be responsible for making an entry on the CDIR Form 13-2.1, 1 September, 1978, for each sample bottle taken during this survey. A copy of this form is included as Figure 7A. In the upper left hand corner of this form there are seven slots under the title of Gang Punch. Slots 1 and 2 should be filled in with the initials LS. Slot 3 and 4 should have the initials SA. Slot 5 should have the initials C. Slot 6 and 7 will vary depending on the type of sample being collected. For our use the following initials will be placed in slots 6 and 7 as is needed:

- 1. GW -- Groundwater
- 2. SW -- Surface Water
- 3. SE -- Sediments
- 4. SO -- Soils

INSTALLATION RESTORATION SAMPLING AND ANALYSIS - CHEMICAL

CRNO PUNCH

|      |                        |     |   |          | • | F                | =                      | ( | 31 | U      | F         | ? [   | = |     |   | 7. | Α          |    |   |        |              |     |       |           |   |           |        |          |         |          |                                                             |
|------|------------------------|-----|---|----------|---|------------------|------------------------|---|----|--------|-----------|-------|---|-----|---|----|------------|----|---|--------|--------------|-----|-------|-----------|---|-----------|--------|----------|---------|----------|-------------------------------------------------------------|
| 90   | 1 11                   |     |   | Ţ        | 7 | <del>- , -</del> | Γ                      | Ţ |    | Ī      | _         |       | T | _   |   | Ţ  |            | Γ  | 丁 |        | Τ            | 7   | <br>1 | _         |   | Ţ         |        | _        | 1       |          |                                                             |
| 78   | INS ANA-<br>IR LYSI    | _   | - | _        | 1 | _                | _                      | 4 |    | 1      | _         |       | ŀ | _   |   | 4  | -          | -  | - |        | _            | 4   | <br>+ | _         |   | +         | _      |          | +       |          |                                                             |
| 94   | PRE 1N                 |     |   | -        | 1 |                  | -                      | - |    | }      | -]        |       | 1 | _   |   | 1  |            | }  | - |        | $\vdash$     | -   | <br>- | -         |   | 1         |        | _        | 1       |          |                                                             |
| 74   | ······                 | _   |   | -        | + |                  | -                      | 7 |    | +      | -         |       | + | _   |   | +  |            | +  | 4 |        | ╁            | +   | <br>+ | -         |   | +         |        | _        | +       |          |                                                             |
| 70   | ACCUR                  |     |   |          | 1 | -                |                        | - |    | 1      | 4         |       |   | 1-1 |   | 1  | •          | 1_ | 1 | -      | 1            | 1   | 1     | -         |   | 1         | -      |          | 1       | +        |                                                             |
| •    | UNITS                  | -   |   |          | = | -                |                        | 7 |    | -      | -         |       |   | -   |   | -  | •          |    | - |        |              | -   |       | -         |   | -         |        |          | 7       |          |                                                             |
| 99   |                        | _   | - | _        | 4 |                  | <u> </u>               | 4 |    | 1      | _         |       | 1 | _   | _ | +  | _          | 1  | 4 |        | L            | 4   | <br>+ | _         |   | +         | _      |          | +       | _        |                                                             |
| 63   | HER<br>EXPON           | -   | - |          | 1 | -                |                        | 1 |    | 1      | -         |       | 1 | 1   |   | 1  | •          |    | - |        |              | +   |       | -         |   | 1         | -      |          | 1       | 1        | -78                                                         |
|      | 3<br>1888              | 4   | - |          | - | -                |                        | - |    | -      | -         |       |   | 1.1 |   | 1  | •          |    | - | -      |              | -   | T     | 7         |   | 7         | -      |          | -       | -        | REVISED 1-78                                                |
| 58   | HER<br>HANTISSA        | 4   | • |          | 1 | -                |                        | + | •  |        | 4         |       |   | 1   | 7 | 7  | , .<br>(7) |    |   | b      |              | +   | 1     | 4         |   | 1         | -      |          | 4       | 4        | VIS                                                         |
| 56.5 | NEA<br>BOO             |     |   |          | 7 | -                |                        | 7 |    |        | -         |       |   | _   |   | 7  | <u> </u>   |    | 4 | 5      | 0            | , - | <br>† | 7         |   | +         |        |          | 7       |          | 82                                                          |
| 54   | нтн                    | -   | - |          | 1 | -                |                        | 3 |    | $\bot$ | _         |       |   | 1   |   | 3  |            |    | - |        |              | ]   |       | _         |   | 1         | _      |          | 3       |          |                                                             |
|      | <u>μ. μ</u>            |     | - |          | 1 | -                |                        | 4 | •  | 1      | +         |       |   | 1   |   | 4  | •          |    | - | -      |              | +   | 1     | 1         |   | 1         | -      |          | 1       | ‡        | ı<br>I                                                      |
|      | TEST<br>NAME           | -   |   |          | 7 | -                |                        | 7 |    | 1      | 7         |       | 1 | -   |   | 1  | •          | 1  | + |        | 1            | 1   | 1     | 4         |   | 1         | -      |          | 7       | 1        |                                                             |
| 48   |                        |     |   | -        | 7 |                  | -                      | - |    | }      | -         |       | } | _   | _ | 7  | _          | }  | - |        | -            | -   | <br>} |           | _ | 7         |        | -        | -       | $\dashv$ |                                                             |
|      | SAMPLE<br>NUMBER       | 4   | • |          | + | -                |                        | 4 | •  | 1      | 4         |       | 1 | -   |   | 1  |            | 1  | 4 | •      |              | -   | 1     | 1         |   | 1         | -      |          | 1       | 4        | <b>3</b> -                                                  |
| 42   | S S                    |     |   |          | 7 | -                | 1                      | 7 |    |        | +         |       | 1 | -   |   | 7  |            | 1  | + | •      |              | 4   | 7     | 1         |   | 1         | -      |          | 1       | +        | Z I                                                         |
| 40   | LAB                    | -   |   |          | 7 |                  |                        | 7 |    | +      | -         |       | 1 | -   |   | 7  |            | +  | - |        | <del> </del> | 4   | <br>† | -         |   | +         | _      | -        | 7       | -        | PRECISION<br>= INSTRUMENT<br>= EXPONENT                     |
|      | rs1S<br>TE             | 1   |   |          | 1 | -                |                        | 1 | •  | -      | 1.1       |       | 1 | -   |   | -  |            | Ī  | - |        |              | -   |       | 1 1       |   | 1         | -      |          | 3       | -        | PREC<br>IN                                                  |
|      | ANALYSIS<br>DRIE       | -   | • | 1        | 4 | -                |                        | + | •  | 1      | -         |       | 1 | -   |   | 4  |            |    | + |        |              | -   | 7     | 1.1       |   | 1         | -      |          | 1       | ‡        | PRE = INSTR                                                 |
| 34   |                        |     | _ | -        | 1 |                  | F                      | 7 |    | ‡      |           |       | + |     | _ | 7  |            | F  |   |        | -            | _   | <br>+ |           |   | ‡         |        | -        | 1       | $\dashv$ | RIX                                                         |
| 0    | SAMPLI<br>DEP TH       |     |   |          | ] | -                |                        | - |    | ]      | 7         |       | ] | -   |   | -  |            | ]  | - |        |              | 1   |       | 1         |   | 1         | -      |          | 1       | -        |                                                             |
| 30   |                        | -   |   | -        | + |                  | $\vdash$               | 1 |    | +      | 7         |       | + | _   |   | 1  |            | -  | 4 |        | -            | 4   | <br>+ | _         |   | $\dagger$ |        | <u> </u> | ╁       |          | SAMPLING TECHN. CODE<br>METHOD<br>MERSUREHENT               |
|      | SITE<br>IDENIJFICALION | 1   |   | 1        | 1 | -                |                        | 1 |    | 1      | 1         |       |   | -   |   | 1  |            | 1  | + | •      |              | 4   | 7     | 4         |   | 1         | -      |          | 4       | 4        | ¥                                                           |
|      | SITE                   | • ] |   | ]        | ] | -                |                        | ] |    | ]      | 1         | 1     |   | >   |   | -  |            |    | 3 | ٠      |              | -   | ]     | 1         |   | 1         | -      |          | -       | ]        | TEC                                                         |
|      | DEN                    | -   | - |          | 1 | -                |                        | 4 |    | 1      | 4         |       | 1 |     | 1 | 4  | L          |    | _ |        | 1            | 1   | 1     | =         |   | 1         | -      |          | 1       | 1        | 1NG<br>000<br>586<br>586                                    |
| 20   |                        | -   | - | -        | 4 |                  | _                      | 4 |    | 1      | _         |       | 1 | _   |   | +  | 1          | 5  | 9 |        | <u> </u>     | 4   | <br>1 | 4         |   | 1         | -      | _        | 4       | _        | AMPL<br>HETH                                                |
|      | SITE                   |     |   | ]        | = | -                | 1                      | 1 | •  | ]      | }         |       | ] | -   |   | 1  | •          |    | 1 |        | ]            | 1   | ]     | 7         |   | 1         | -      |          | +       | +        | ,, (1 1)                                                    |
| 16   |                        |     |   | $\vdash$ | 1 |                  | -                      |   |    | -      | $\exists$ |       | - |     | - | 1  |            | +  | - |        | -            | -   | <br>} | $\exists$ |   | 1         |        | -        | 1       |          | SC.                                                         |
| 13   | SHPL                   |     |   | 1        | 1 |                  | _                      | 4 |    | 1      | ᅼ         |       | 1 | _   |   | +  |            | 1  | 4 | •      | _            | 4   | <br>+ | _         |   | 1         | -      | L        | 4       |          | Œ                                                           |
|      | SAMPLE<br>DRTE         |     |   | 1        | 1 | -                | 1                      | 4 |    | 1      | +         |       |   | -   |   | 1  | •          | 1  | + | -      | 1            | +   | 1     | +         |   | 1         | -      |          | 1       | +        | INS = INSTALLATION<br>FA = FUNCTIONAL AREA<br>I = OATA TYPE |
| 60   | SA                     | -   |   | <u> </u> | 1 | -<br>-           | 1                      | ] | ·  | ].     | _]        | · , , | ] | -   |   | 1  |            | 1  | 1 | -<br>- |              | -   | 1     |           |   | 1         |        | _        | -       |          | LLRT                                                        |
|      |                        |     |   |          |   |                  | $\left  \cdot \right $ |   |    |        |           |       | 1 | -   |   | -  |            |    | H |        |              |     | 4     |           |   | +         |        |          |         |          | STAI<br>CTI                                                 |
|      |                        |     |   |          |   |                  | #                      |   |    | -      |           |       | 4 | -   |   |    |            |    |   |        |              | 1   | 111   | 1111      |   |           | -      |          | 1 1 1 1 |          | = 11A                                                       |
|      |                        |     |   |          | ] |                  | 1                      | ] |    | 1      |           |       | 1 | -   |   |    |            |    |   |        |              |     | 1     |           |   | 1         | <br> - |          |         |          | INS<br>II II                                                |

Columns number eight through 12 need to be filled in with the Julian date for sample collection. For the purposes of this project, the Julian date will be construed as meaning the numerical day of the year preceded by the year date. Therefore, January 1, 1982, will be 82001 and November 16, 1982, will be 82320. Columns 13-15 should be filled in with the initials PRI (Preliminary Sruvey Phase I). Column 16-19 should be filled in with the site type which will be a four letter abbreviation for the particular types of areas to be sampled and will provide you with the following list which may be used during the study:

- Creek -- (CREK)
- Ditch or Drainage -- (DTCH)
- 3. Lake -- (LAKE)
- 4. Pond -- (POND)
- 5. River -- (RVER)
- 6. Spring -- (SPRG)
- 7. Stream -- (STRM)
- 8. Standing Water -- (STWA)
- 9. Sump -- (SUMP)
- 10. Soil Surface -- (SURF)
- 11. Well -- (WELL)

Columns 20-29 should be filled in with the site identification which should be left justified and should be listed as LHAAP and the Station number. Sampling depth should be listed in centimeters in columns 30-33. The sample technicque should be listed in column 34 and the following is a list of letters which will be used for the types of sample which will be conducted:

- B = Bailer
- G = Single graph sampler
- T = Tube core sampling

Columns number 35-39 should be left blank by the field sampling crew as well as columns 40 and 41. Columns number 42-47 should be filled in with the sample number code on each label. The code will consist of the sample number up to three digits, a one digit matrix code, and a one digit category code. The rest of the CDIR form can be left blank until a later date.

### The Preparation of a Sample Manifest

After samples have been collected and logged in and the CDIR Form 13-2.1 has been completed, the samples should be placed in their shipping cases for transport to EPS Laboratory. process should take place at the sample collection site if at all possible, and as different types of samples are placed back into their respective cases, certain specific information about each of them needs to be recorded on the sample manifest form . copy of this sample manifest has been included as Figure 8A of The chief field sampling technician will log each this document. sample bottle in; he will write in the site number, matrix code and analytical code (these three pieces of information make up the sample identification). He will also put the date and time of the log-in down and he will then put the number of the shipping case in its appropriate spot and also include any notes about the sample condition or any other pertinent information. Once all of this information has been logged in;, the chief sampling technician will initial the second to the last column on the manifest indicating that the sample has been secured in an appropriate case and has been logged in for shipment. manifest has been designed to hold information on 20 discreet samples and, in many cases, this will mean that one manifest will hold information about bottles contained in up to five different The manifest will be maintained by the chief of shipping cases. the field sampling crew and will be transmitted along with the samples at the time of shipping to the laboratory facility.

LONGHORN AAP, CONTAMINATION SURVEY SAMPLE SHIPPING AND TRANSFER MANIFEST

| (Sheet_of_) | No or around | (Field) (Lab) |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|-------------|--------------|---------------|---|---|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|---|
|             |              | Fiel (        |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             | 0            | CASE NO.      |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             |              | NOTES         |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             | LOG IN       | TIME          |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             | 100          | DATE          |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             |              | ANAL.<br>CODE |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             | SAMPLE I.D.  | MATRIX        |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             | S            | SITE          |   |   |   |   |   |   |   |   |   |   |   |    |    |    |    |    |    |    |    |   |
|             |              | ITEM<br>NO.   | - | 2 | ო | 4 | က | 9 | 7 | ∞ | 6 | 2 | = | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 8 |

## Maintenance of Chain of Custody of Samples

The chief of the field sampling crew will be responsible for the maintenance of a clear chain of custody of each of the samples taken during the LHAAP Contamination Survey. The field sampling crew chief will see that once samples are logged in on the manifest and in the sample collection book that they are secured in a location which only he has direct access to (an example of this would be a locked refrigeration unit, room or a locked and refrigerated vehicle). The samples should be maintained either in direct site of the field sampling chief or under a locked condition until such time as they are transfered to an employee of EPS to transport the samples to the designated EPS laboratory. On the back of each sample manifest sheet is a certification statement which will allow for the documentable transfer of samples from the custody of the chief of the field sampling crew to the individual assigned with the responsibility of transporting the samples to the analytical laboratory. appropriate information needs to be commpleted on each manifest at the time of transference of the samples for transport. example of the certification statement for transference of samples is included as Figure 9A.

## Transportation of Samples to the Laboratory

Water samples will be transported to EPS under refrigeration either using large insolated ice chest or a refrigerated truck. Samples which are destine for analysis in the laboratory should be transported as soon as possible to limit the holding time for those analytes particularly prone to degradation after collection. All water and soil samples collected should be maintained at approximately 4 °C until they are received at EPS's Jackson and Pensacola facilities.

| Field technician checked sample | es against collection l | og books:              |
|---------------------------------|-------------------------|------------------------|
| Name                            |                         | Date                   |
| Samples transfered to Name      |                         |                        |
| byName                          |                         | on<br>Date             |
| Time for                        | r transport to EPS Lab. | . Samples delivered to |
| EPS Lab on                      | by Name                 |                        |
| Received by Name                |                         | Time                   |
| Samples checked against manifes | st and certified in ord | der by                 |
| Name                            | Date                    | e Time                 |
|                                 | COMMENTS                |                        |
|                                 |                         |                        |
|                                 |                         |                        |
| •                               | ,                       |                        |
|                                 |                         |                        |
|                                 |                         |                        |
|                                 |                         |                        |
|                                 |                         |                        |
|                                 |                         |                        |
|                                 |                         |                        |

## The Transference of Sample Custody

The sample custody transference document has been incorporated into the certification statement on the back of each manifest sheet. See Figure 9A. At the time samples are delivered to EPS's Jackson and Pensacola facility, they will be checked in by the FQAC and he will initial each line indicating that each sample has been received. Additionally, he will sign the certification document in the appropriate spot certifying the receipt, time and date.

LOG BOOK 1
GROUNDWATER

## LONGHORN AAP GROUNDWATER SAMPLING LOG SHEET (MATRIX 1)

| PART I:  | ,                                                             | WELL NO.                                     | (STATION)                          |
|----------|---------------------------------------------------------------|----------------------------------------------|------------------------------------|
| Date:    |                                                               | Time:                                        | _ (Hours)                          |
|          | lished *Depth to Botto<br>11(ft)                              |                                              |                                    |
| = Len    | gth of Water Column                                           | (ft) X Ø.8                                   | 15 =                               |
| Volum    | e To Be Removed Before                                        | Sampling                                     |                                    |
|          |                                                               |                                              |                                    |
| PART II: | Water Removal Begun:                                          | Date:Time                                    | :(Hrs.)                            |
| Volum    | e of Water Removed:                                           | (gal) Sampler                                | :                                  |
| Condu    | ctivity(umho                                                  | 's)                                          |                                    |
| Well     | Dry or Removal Complet                                        | e Time:                                      | (hours)                            |
| Remai    | ning Volume To Be Bail                                        | ed (if any)                                  | (gal)                              |
| If Vo    | lume of Water Removed                                         | Equals That Required                         | , Proceed to Part                  |
|          |                                                               |                                              |                                    |
| PART III | : After at Least 16 He Well, Proceed to Ba Volume.            | ours From First Atte<br>il Well and Remove R | mpt to Purge<br>emaining Required  |
| Date:    | Time:                                                         | (Hours) Sam                                  | pler                               |
| *Dist    | ance to Top of Water:                                         | (ft)                                         |                                    |
| Volum    | e of Water Removed                                            | + Previous V                                 | olume Removed                      |
|          | =                                                             |                                              |                                    |
|          | Total Volu                                                    | me Removed                                   |                                    |
| Condu    | ctivity(umho                                                  | 's)                                          |                                    |
| Proce    | tal Volume Removed Is ed Immediately to Part ed with Part IV. | Equal to Required Re IV. If Not, Wait S      | moval Volume,<br>ixteen Hours-then |
|          |                                                               |                                              | . door was now down that they down |

(CONTINUED ON BACK)

LOG BOOK 2 SURFACEWATER

LHAAP, SURFACEWATER SAMPLING

| <del> </del>                                                                 | <u> </u>                  |              | <u>-</u> |            | -   |            |            |              | ·          | <u></u> |     |            |     |            | <del></del> |
|------------------------------------------------------------------------------|---------------------------|--------------|----------|------------|-----|------------|------------|--------------|------------|---------|-----|------------|-----|------------|-------------|
| titative<br>Screening<br>ategory No. 3)                                      | Dup Sample<br>Ot Amber Bt | ID 001-2-3   |          | X          |     | X          |            | $\downarrow$ | X          |         | X   | X          |     | X          |             |
| Metal Quantitative<br>Analysis & Screening<br>(Analytical Category No        | Sample<br>Ot. Amber Bt    | ID 001-2-3   |          | ID 002-2-3 |     |            | ID 004-2-3 |              | ID 005-2-3 |         |     |            |     | X          |             |
| Quantitative<br>18c8EE8RNingo. 2)                                            |                           |              |          | X          |     | X          | X          |              | X          |         |     |            |     | X          |             |
| Anion Quantitative<br>(AABAJYSisl <sup>&amp;</sup> c&EEGBRJ <sup>n</sup> Ao. | Sample                    | D 001-2-2    |          | ID 002-2-2 |     | X          | ID 004-2-2 |              | ID 005-2-2 |         | X   |            |     | X          |             |
| Quantitative<br>Jrg HPLC Screen                                              | Dup. Sample               | D 001        |          | X          |     |            | X          |              |            |         |     |            |     | X          |             |
| Explosive Comp. Quantitative Analysis & Gen Org HPLC Screen                  | Sample Sample Ambox 8+    | ID 001-2-1&5 |          | ID 002-2-1 |     | ID 003-2-1 | 10 004-2-1 |              | ID 005-2-1 |         |     | 1-2-/00 01 |     | ID 008-2-1 |             |
| Description                                                                  | of<br>Site                |              |          |            |     |            |            |              |            |         |     |            |     |            |             |
| Sample                                                                       | Point                     |              | 100      | 000        | 700 | 003        | 004        | <del> </del> |            | 900     | 900 |            | 200 | 000        | 000         |

LOG SHEET (MATRIX 2)

| Sampler's Notes<br>and Initials                                                                                    |             |   |   |   |   |   |           |   |
|--------------------------------------------------------------------------------------------------------------------|-------------|---|---|---|---|---|-----------|---|
| Sampl.<br>Date<br>and<br>Time                                                                                      |             |   |   |   |   |   |           |   |
| Pesticides & Related unds Screening Analysis cical Category No. 6)  Puble Bt   Dup. Sample unber Bt   Gal Amber Bt | ID 001-2-6  |   |   | X |   | X | $\bigvee$ |   |
| GC/EC Pesticide<br>Compounds Scree<br>(Analytical Cate<br>Sample<br>1 Gal Amber Bt                                 | ID 001-2-6  |   |   |   | X |   |           |   |
| sis<br>40 ml Dup.<br>Vial/2 ea                                                                                     | 1D 00       | X | X | X |   | X | X         | X |
| Screening Analysis Category No. 4)                                                                                 | ID 001-2-4V | X |   | X |   | X | X         | X |
| Organic                                                                                                            | ID 001-2-4  | X |   |   | X | X |           |   |
| 6C/MS<br>(Am                                                                                                       | ID 001-2-4  | X |   |   | X | X |           | X |

LHAAP, SUBEACEMATER SAMPLING

| aßtitatiing<br>Category No. 3)                      | Dup. Sample<br>1 Ot Amb Bt  | X            |            |              | ID 012-2-3   |              |              |              |              |
|-----------------------------------------------------|-----------------------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|
| S C                                                 | Sample<br>1 Ot Amb Bt       | ID-009-2-3   | ID 010-2-3 | ID 011-2-3   | ID 012-2-3   | ID 013-2-3   | ID 014-2-3   | ID 015-2-3   | ID 016-2-3   |
| Quantitative<br>s & Screening<br>al Category No. 2) | Dup. Sample<br>1 Qt Amb Bt  | X            |            |              | ID 012-2-2   |              | X            |              | X            |
| Anion Que<br>Analysis &<br>(Analytical              | Sample<br>1 Qt Amb Bt       | ID 009-2-2   | ID 010-2-2 | ID 011-2-2   | ID 012-2-2   | ID 013-2-2   | ID 014-2-2   | ID 015-2-2   | ID 016-2-2   |
| Quantitative<br>Qrg HPLC SCR<br>Category            | Dup. Sample<br>1 Gal Amb Bt | /            |            |              | ID 012-2-1&5 |              |              |              | $\bigvee$    |
| Expl. Comp. Quantit.<br>Analysis & Gen Org Hi       | Sample<br>1 Gal. Amb Bt     | ID 009-2-1&5 | ID 010-2-1 | ID 011-2-185 | ID 012-2-185 | ID 013-2-1&5 | ID 014-2-185 | ID 015-2-185 | ID 016-2-1&5 |
| Description<br>of                                   |                             |              |            |              |              |              |              |              |              |
| Sample<br>Boirt                                     | 3<br>=<br>-<br>-<br>-<br>-  | 600          | 010        |              | 012          | 013          | 014          | 015          | 016          |

LOG SHEET (MATRIX 2)

| Sampler's Notes<br>and Initials                                                     |                               |            |   |            |            |            |             |            |            |
|-------------------------------------------------------------------------------------|-------------------------------|------------|---|------------|------------|------------|-------------|------------|------------|
| Sampl.<br>Date<br>and                                                               | Time                          |            |   |            |            |            |             |            |            |
| IDES & RELATED<br>ening Analysis<br>ategory No. 6)                                  | Jup. Sample<br>1 Gal Amber Bt |            |   |            | 10012-2-6  |            |             |            |            |
| GC/EC PESTICIDES & RELATED Compounds Screening Analysis (Analytical Category No. 6) | Sample<br>1 Gal Amber Bt      | 10009-2-6  | X | ID011-2-6  | I D012-2-6 | 10013-2-6  |             | 10015-2-6  | X          |
| 1 1                                                                                 | 40 ml Dup.<br>Vial/2ea        | X          | X |            | I D012-2-4 | X          | X           | X          | X          |
| EENI                                                                                | 40 ml Sample<br>Vial/2ea      | 10009-2-4V | X | 10011-2-4V | ID012-2-4V | ID013-2-4V | I D014-2-4V | 10015-2-4V | ID016-2-4V |
| GANIC<br>tical                                                                      | Dup. Sample40<br>1 Ga Am Bt   | X          | X | X          | 10012-2-4  | X          | X           | X          | X          |
| GC/M                                                                                | Sample<br>1 Gal Amb B         |            | X | I DO11-2-4 | 10012-2-4  | 10013-2-4  | 10014-2-4   | 10015-2-4  | ID-16-2-4  |

Lynn, Superceinter Sampling

| Quantitative<br>& Screening<br>al Category No. 3)                        | 1 Dyp. Angmate             |                 |     | $\searrow$ |     |             |     | ID020-2-3   |     | X           |     | X |           |                                   |
|--------------------------------------------------------------------------|----------------------------|-----------------|-----|------------|-----|-------------|-----|-------------|-----|-------------|-----|---|-----------|-----------------------------------|
| Metal Quanti<br>Analysis & Scr<br>(Analytical Cat                        | Sample<br>1 Ot Amb Bt      | I DO17-2-3      |     | 10018-2-3  |     | I DO19-2-2  |     | 10020-2-3   |     | ID021-2-3   |     | X |           |                                   |
| Quantitative<br>s & Screening<br>1 Category No. 2)                       | Dup. Sample<br>1 Ot Amb Bt |                 |     |            |     |             |     | 10020-2-2   | ·   |             |     | X |           |                                   |
| Anion Quant<br>Analysis & S<br>(Analvtical Cat                           | 1 .                        | 912             |     | I D018-2-2 |     | I D019-2-2  |     | I D020-2-2  |     | I DO21-2-2  |     | X |           | $\bigvee$                         |
| Quantitative<br>g HPLC Screen                                            | 1 100 1                    |                 |     |            |     |             |     | ID020-2-1&5 |     |             |     | X | $\langle$ |                                   |
| Explosive Comp. Quanti<br>Analysis & Gen Org HPLC (Analytical Category 1 | Sample<br>Sample           | 1 Gd I AMID BL. |     | 10018-2-1  |     | 10019-2-185 |     | 10020-2-1&5 |     | 10021-2-1   |     |   |           |                                   |
| Description                                                              |                            |                 |     |            |     |             |     |             |     |             |     |   |           |                                   |
| o Lume A                                                                 | Point                      |                 | 017 |            | 018 |             | 019 |             | 020 | caracate na | 021 |   |           | . A de descondidados filosoficios |

LOG SHEET (PATRIX 2)

| Sampler's Notes<br>and Initials                                  |                             |            |   |            | •          |   |   |   |   |
|------------------------------------------------------------------|-----------------------------|------------|---|------------|------------|---|---|---|---|
| Sampl.<br>Date<br>and                                            | ט<br>=                      |            |   |            |            |   |   |   |   |
| ides & Related<br>eening Analysis<br>Category No. 6)             | Dup. Sample<br>  Gal Amb Bt |            |   |            | X          |   | X | X |   |
| GC/EC Pesticides &<br>Compounds Screening<br>(Analytical Categor | Sample<br>1 Gal Amb Bt      | 10017-2-6  |   | 10019-2-6  |            | X | X |   |   |
| sis                                                              | 40 ml Dup.<br>Vial/2ea      | ~          | X | X          | ID020-2-4V | X | X | X | X |
| Screening Analysis<br>Category No. 4)                            | 40 ml Samp.<br>Vial/2ea     | ID017-2-4V | X | ID019-2-4V | ID020-2-4V | X | X | X | X |
| GC/MS Organic Scr<br>(Analytical Cat                             | Dup. Sample40 ml            |            | X | X          | 10020-2-4  | X | X | X | X |
| GC/M<br>(A                                                       | Sample<br>1 Gal Amb Rt      | 10017-2-4  | X | 10019-2-4  | 10020-2-4  | X | X |   |   |

LOG BOOK 3
SEDIMENTS

LHAAP, SENIMENT SAMPLING ING SHEET (MATRIX 3)

| Samul | Description | Sediment Sam<br>in all Analytic | Sediment Sample for Uses<br>all Analytical Categories | Sampl. | Sampler's Notes<br>and Initials |
|-------|-------------|---------------------------------|-------------------------------------------------------|--------|---------------------------------|
|       | or<br>Site  | Sample<br>1 Gal. Clear Jar      | Dup. Sample<br>1 Gal. Clear Jar                       |        |                                 |
|       |             | I D001-3-A11                    | ID001-3-A11                                           |        |                                 |
|       |             | ID002-3-A11                     |                                                       |        |                                 |
|       |             | I D003-3-A11                    |                                                       |        |                                 |
|       |             | I D005-3-A11                    |                                                       |        |                                 |
|       |             | I D006-3-A11                    |                                                       |        |                                 |
|       |             | ID007-3-A11                     |                                                       |        |                                 |
|       |             | I D008-3-A11                    |                                                       |        |                                 |
|       |             | I D009-3-A11                    |                                                       |        |                                 |

LHAAP, SEDIMENT SAMPLING LOG SHEET (MATRIX 3)

| Sampler's Notes                                          | מווס דווירומו א                |             |              |             |             |             |             |             |             |
|----------------------------------------------------------|--------------------------------|-------------|--------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Sampl.<br>Date                                           | and<br>Time                    |             |              |             |             |             |             |             |             |
| Sediment Sample for Uses<br>in all Analytical Categories | Dup. Sample<br>1 Gal Clear Jar |             | ID 011-3-A11 |             |             |             |             |             |             |
| Sediment Sampin Sampin Semi                              | Sample<br>1 Gal Clear Jar      | ID010-3-A11 | 1D011-3-A11  | ID012-3-A11 | ID013-3-A11 | ID014-3-A11 | ID015-3-A11 | ID016-3-A11 | ID017-3-A11 |
| Description                                              |                                |             |              |             |             |             |             |             |             |
| Şamp1                                                    | Polnt                          | 010         | 110          | 0]2         | 013         | 014         | 015         | 016         | 017         |

LHAAP, SEDIMENT SAMPLING LOG SHEET (MATRIX 3)

| Sampler's Notes<br>and Initials                          |                                 |             |              |             |             |  |  |
|----------------------------------------------------------|---------------------------------|-------------|--------------|-------------|-------------|--|--|
| Sampl.<br>Date                                           | and<br>Time                     |             |              |             |             |  |  |
| ole for Uses<br>cal Categories                           | Dup. Sample<br>1 Gal. Clear Jar |             | ID 019-3-A11 |             |             |  |  |
| Sediment Sample for Uses<br>in all Analytical Categories | Sample<br>1 Gal. Clear Jar      | ID018-3-A11 | ID019-3-A11  | ID020-3-A11 | ID021-3-A11 |  |  |
| Description                                              | Site                            |             |              |             |             |  |  |
| Samp.                                                    | Point                           | 018         | 019          | 020         | 021         |  |  |

LOG BOOK 4 SOILS

LHAAP, SOIL SAMPLING LOG SHEET (MATRIX 4)

LHAAP, SOIL SAMPLING LOG SHEET (MATRIX 4)

| Sampler's Notes<br>and Initials                   |                                 |               |               |               |               |               |               |               |               |
|---------------------------------------------------|---------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Sampl.<br>Date                                    | and<br>Time                     |               |               |               |               |               |               |               |               |
| Soil Sample for Uses<br>all Analytical Categories | Dup. Sample<br>1 Gal. Clear Jar |               |               |               |               |               |               | ID 0401-4-A11 |               |
| Soil Samp<br>in all Analyt                        | Sample<br>1 Gal. Clear Jar      | ID 0303-4-A11 | ID 0304-4-All | ID 0305-4-A11 | ID 0306-4-A11 | ID 0307-4-A11 | ID 0308-4-A11 | ID 0401-4-A11 | ID 0402-4-A11 |
| Description<br>of                                 | Site                            |               |               |               |               |               |               |               |               |
| Sample<br>Point                                   |                                 | 0303          | 0304          | 0305          | 0306          | 0307          | 0308          | 0401          | 0402          |

| Sampler's Notes<br>and Initials            |                                 |               |               |               |               |               |               |               |                |
|--------------------------------------------|---------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|
| Sampl.<br>Date                             | and<br>Time                     |               |               |               |               |               |               |               |                |
| l Sample for Uses<br>Analytical Categories | Dup. Sample<br>l Gal. Clear Jar |               | ID 0501-4-All |               |               |               |               |               |                |
| Soil Sample<br>in all Analytica            | Sample<br>1 Gal. Clear Jar      | ID 0403-4-A11 | ID 0501-4-A11 | ID 0502-4-All | ID 0503-4-A11 | ID 0601-4-A11 | ID 0602-4-A11 | ID 0603-4-All | ID 0701T-4-A11 |
| Description                                | Site                            |               |               |               |               |               |               |               |                |
| Sample                                     | 2                               | 0403          | 0501          | 0502          | 0203          | 1090          | 0602          | 0903          | T1070          |

| Sample<br>Point | Description<br>of<br>Site | Soil Sample for Uses in all Analytical Categories Sample 1 Gal. Clear Jar 1 Gal. C | for Uses<br>1 Categories<br>Dup. Sample<br>1 Gal. Clear Jar | Sampl.<br>Date<br>and<br>Time | Sampler's Notes<br>and Initials |
|-----------------|---------------------------|------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------|---------------------------------|
|                 |                           | ID 0701B-4-A11                                                                     |                                                             |                               |                                 |
|                 |                           | ID 07028-4-A11                                                                     |                                                             |                               |                                 |
|                 |                           | ID 0703T-4-A11                                                                     |                                                             |                               |                                 |
| 1               |                           | ID 0703B-4-All                                                                     |                                                             |                               |                                 |
| 1               |                           | ID 0704T-4-All                                                                     |                                                             |                               |                                 |
| i               |                           | ID 0705B-4-A11                                                                     | ID 0705B-4-A11                                              |                               |                                 |
| 1               |                           | ID 0801T-4-A11                                                                     |                                                             |                               |                                 |

| Sampler's Notes<br>and Initials                   |                            |                |                |                 |                |                |  |  |
|---------------------------------------------------|----------------------------|----------------|----------------|-----------------|----------------|----------------|--|--|
| Samp1.                                            | and<br>Time                |                |                |                 |                |                |  |  |
| Soil Sample for Uses<br>all Analytical Categories | Sample<br>1 Gal. Clear Jar |                |                |                 |                |                |  |  |
| Soil Sa<br>in all Anal                            | Sample<br>1 Gal. Clear Jar | ID 0801B-4-A11 | ID 0802T-4-A11 | ID 0802B-4-A11. | ID 0803T-4-All | ID 0803B-4-A11 |  |  |
| Description                                       | Site                       |                |                |                 |                |                |  |  |
| Sample                                            | Point                      | 08018          | 0802T          | 0802B           | 0803T          | 08038          |  |  |