Sage Quick Reference: Elementary Number Theory

William Stein Sage Version 3.4

http://wiki.sagemath.org/quickref GNU Free Document License, extend for your own use

Everywhere m, n, a, b, etc. are elements of ZZ ZZ = Z = all integers

Integers

 $\dots, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \dots$ n divided by m has remainder n % m $\gcd(n,m)$, $\gcd(list)$ extended \gcd $g = sa + tb = \gcd(a,b)$: $g,s,t=x\gcd(a,b)$ $\liminf coefficient \binom{m}{n} = \liminf (m,n)$ digits in a given base: n.digits(base)number of digits: n.ndigits(base)(base is optional and defaults to 10)
divides $n \mid m$: n.divides(m) if nk = m some kdivisors - all d with $d \mid n$: n.divisors()factorial -n! = n.factorial()

Prime Numbers

 $2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, \dots$ factorization: factor(n) primality testing: is_prime(n), is_pseudoprime(n) prime power testing: is_prime_power(n) $\pi(x) = \#\{p : p \le x \text{ is prime}\} = \text{prime_pi(x)}$ set of prime numbers: Primes() $\{p: m \le p \le n \text{ and } p \text{ prime}\} = prime_range(m,n)$ prime powers: prime_powers(m,n) first n primes: primes_first_n(n) next and previous primes: next_prime(n), previous_prime(n), next_probable_prime(n) prime powers: next_prime_power(n), pevious_prime_power(n) Lucas-Lehmer test for primality of $2^p - 1$ def is_prime_lucas_lehmer(p): $s = Mod(4, 2^p - 1)$ for i in range(3, p+1): $s = s^2 - 2$

return s == 0

Modular Arithmetic and Congruences

k=12; m = matrix(ZZ, k, [(i*j)%k for i in [0..k-1] for j in [0..k-1]]); m.plot(cmap='gray')

Euler's $\phi(n)$ function: euler_phi(n)

Kronecker symbol $\left(\frac{a}{b}\right) = \text{kronecker_symbol(a,b)}$ Quadratic residues: quadratic_residues(n)

Quadratic non-residues: quadratic_residues(n)

ring $\mathbf{Z}/n\mathbf{Z} = \text{Zmod(n)} = \text{IntegerModRing(n)}$ $a \mod n$ as element of $\mathbf{Z}/n\mathbf{Z}$: Mod(a, n)

primitive root modulo $n = \text{primitive_root(n)}$ inverse of $n \pmod m$: n.inverse_mod(m)

power $a^n \pmod m$: power_mod(a, n, m)

Chinese remainder theorem: $\mathbf{x} = \text{crt(a,b,m,n)}$

finds x with $x \equiv a \pmod m$ and $x \equiv b \pmod n$ discrete log: $\log(\text{Mod}(6,7), \text{Mod}(3,7))$ order of $a \pmod n = \text{Mod}(a,n)$.multiplicative_order() square root of $a \pmod n = \text{Mod}(a,n)$.sqrt()

Special Functions

complex_plot(zeta, (-30,5), (-8,8))

$$\begin{split} &\zeta(s) = \prod_p \frac{1}{1-p^{-s}} = \sum \frac{1}{n^s} = \mathtt{zeta(s)} \\ &\operatorname{Li}(x) = \int_2^x \frac{1}{\log(t)} dt = \operatorname{Li(x)} \\ &\Gamma(s) = \int_0^\infty t^{s-1} e^{-t} dt = \mathtt{gamma(s)} \end{split}$$

Continued Fractions

continued_fraction(pi)

$$\pi = 3 + \frac{1}{7 + \frac{1}{15 + \frac{1}{1 + \frac{1}{292 + \cdots}}}}$$

continued fraction: $c=continued_fraction(x, bits)$ convergents: c.convergents() convergent numerator $p_n = c.pn(n)$ convergent denominator $q_n = c.qn(n)$ value: c.value()

Elliptic Curves

EllipticCurve([0,0,1,-1,0]).plot(plot_points=300,thickness=3)

E = EllipticCurve([a_1, a_2, a_3, a_4, a_6]) $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$

conductor N of E =E.conductor() discriminant Δ of E =E.discriminant() rank of E = E.rank() free generators for $E(\mathbf{Q})$ = E.gens() j-invariant = E.j_invariant() N_p = #{solutions to E modulo p} = E.Np(prime) $a_p = p + 1 - N_p$ =E.ap(prime) $L(E,s) = \sum \frac{a_n}{n^s}$ = E.lseries() ord_{s=1}L(E,s) = E.analytic_rank()

Elliptic Curves Modulo p

EllipticCurve(GF(997), [0,0,1,-1,0]).plot()

$$\begin{split} &\texttt{E = EllipticCurve(GF(p), } [a_1,a_2,a_3,a_4,a_6])\\ \#E(\mathbf{F}_p) &= \texttt{E.cardinality()}\\ &\text{generators for } E(\mathbf{F}_p) = \texttt{E.gens()}\\ E(\mathbf{F}_p) &= \texttt{E.points()} \end{split}$$