In-EVM Mina State Verification Circuit Description

Cherniaeva Alisa

a.cherniaeva@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

Shirobokov Ilia

i.shirobokov@nil.foundation

=nil; Crypto3 (https://crypto3.nil.foundation)

October 19, 2021

1 Introduction

High level description according to RfP¹

- 1. Computing several hash values from the data of the proof. This involves using the Poseidon hash function with 63 full rounds both over \mathbb{F}_p and \mathbb{F}_q with round constants and MDS matrix specified for \mathbb{F}_p^2 and for \mathbb{F}_q^3 .
- 2. Checking arithmetic equations.
- 3. Performing one multi-scalar multiplication (MSM) of size $2n_2 + 4 + (2 + 25) = 63$, for which some of the bases are fixed and some are variable.
- 4. For each $i \in \{1, 2\}$, performing a multi-scalar multiplication over \mathbb{G}_i of size 2^{n_i} with a fixed array of bases, and with scalars that can be very efficiently computed from the proof.

Note that for MSM in Step 4:

$$\begin{split} \sum_{i=0}^{2^{n_k}-1} s_i \cdot G_i &= H \\ s_i &\coloneqq \prod_{\substack{0 \leq j \leq n_k \\ \text{bits}(i)[j]=1}} \phi(c_j), \end{split}$$

where:

- $\phi: \{0,1\}^{128} \to \mathbb{F}$ is defined as to_field in the implementation⁴.
- Given an integer $i < 2^{n_k}$, bits(i) is defined as the little-endian bit array of length n representing the binary expansion of i.
- $G_0, ..., G_{2^{n_k-1}} \in \mathbb{G}_k$ is a fixed sequence of group elements⁵.
- $c_0, ..., c_{n_k-1} \in \{0, 1\}^{128}$ is a sequence of challenges.

WIP

¹https://hackmd.io/u_2Ygx8XS5Ss1aObg0FjkA

²https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fp.rs

 $^{^3 \}verb|https://github.com/o1-labs/proof-systems/blob/master/oracle/src/pasta/fq.rs|$

⁴https://github.com/o1-labs/proof-systems/blob/49f81edc9c86e5907d26ea791fa083640ad0ef3e/oracle/src/sponge.rs#L33

⁵https://github.com/o1-labs/proof-systems/blob/master/dlog/commitment/src/srs.rs#L70

2 Preliminaries

2.1 Pasta Curves

Let $n_1 = 17$, $n_2 = 16$. Pasta curves parameters:

- $p = 2^254 + 45560315531419706090280762371685220353$
- $q = 2^254 + 45560315531506369815346746415080538113$
- Pallas:

$$\mathbb{G}_1 = \{(x, y) \in \mathbb{F}_p | y^2 = x^3 + 5\}$$
$$|\mathbb{G}_1| = q$$

• Vesta:

$$\mathbb{G}_2 = \{(x, y) \in \mathbb{F}_q | y^2 = x^3 + 5\}$$

 $|\mathbb{G}_2| = p$

2.2 Verification Algorithm

Proof state (here \mathbb{F}_r is a scalar field for \mathbb{G}):

- DLog Commitments:
 - $-l_{comm}, r_{comm}, o_{comm}, z_{comm} \in \mathbb{G}$ // could each commit contains multiple points?
 - $t_{comm} = (t_{comm,1}, t_{comm,2}) \in (\mathbb{G}^5 \times \mathbb{G})$
- Openings:
 - $-(L_i, R_i) \in \mathbb{G} \times \mathbb{G}$ for $0 \le i < \text{lr_rounds}$ // vector of rounds of L and R commitments
 - $-\delta, SG \in \mathbb{G}$
 - $-z_1,z_2\in\mathbb{F}_r$
- Polynomial Evaluations a, b, for $i = \{1, 2\}$:
 - $-l_i, r_i, o_i, z_i, f_i \in \mathbb{F}_r$ // could each eval contains multiple points irl?
 - $-t\cdot \subset \mathbb{F}^!$
 - $-\ \sigma_{1_i}, \sigma_{2_i} \in \mathbb{F}_r$
- $w \in \mathbb{F}_r^{s_w}$ witness
- previous challenges:

$$-(c_i, p_i) \in (\mathbb{F}_r \times \mathbb{G}) \text{ for } 0 \leq i < \mathtt{prev}$$

Let g_r , g_q are generators of \mathbb{F}_r and \mathbb{F}_q accordingly. Verification algorithm:

- 1. for each \mathcal{P} :
 - 1.1 $p_{comm} = \text{MSM}(\text{lgr_comm}, \text{proof.public}) \in \mathbb{G}$ // public input verification
 - 1.2 $ORACLES \rightarrow \{digest, (\beta, \gamma, \alpha', \alpha, \zeta, v, u, \zeta', v', u'),$

 α_2 , (pub_1, pub_2) , evlp, polys, ζ_1 , combined inner product}:

- 1.2.1 $H_{\mathbb{F}_q}$.absorb $(p_{comm}||l_{comm}||r_{comm}||o_{comm})$
- 1.2.2 $\beta = H_{\mathbb{F}_q}.squeeze()$
- 1.2.3 $\gamma = H_{\mathbb{F}_q}.squeeze()$
- 1.2.4 $H_{\mathbb{F}_q}.absorb(z_{comm})$
- 1.2.5 $\alpha' = H_{\mathbb{F}_q}.squeeze()$
- 1.2.6 $\alpha = \phi(\alpha', endo_r)$
- 1.2.7 $H_{\mathbb{F}_q}$.absorb $(t_{comm,1}||\infty||...||\infty||t_{comm,2})$ // input size?
- 1.2.8 $\zeta' = H_{\mathbb{F}_q}.squeeze()$
- 1.2.9 $\zeta = \phi(\zeta', endo_r)$
- 1.2.10 digest = $H_{\mathbb{F}_a}.digest()$
- 1.2.11 $\zeta_1 = \zeta^n$
- $1.2.12 \ \zeta_{\omega} = \zeta * g_r$

```
1.2.13 \alpha_2 = [\alpha^2, ..., \alpha^1 9]
```

- 1.2.14 compute Lagrange base evaluation denominators
- 1.2.15 evaluate public input polynomials (return pub_1 , pub_2)
- 1.2.16 $H_{\mathbb{F}_r}$. $absorb(pub_1||pub_2)$
- 1.2.17 $v' = H_{\mathbb{F}_r}.squeeze()$
- 1.2.18 $v = \phi(v', endo_r)$
- 1.2.19 $u' = H_{\mathbb{F}_r}.squeeze()$
- $1.2.20 \ u = \phi(u', endo_r)$
- 1.2.21 $elvp = \zeta^{mpl}, \zeta_{\omega}^{mpl}$
- 1.2.22 prev_chal_evals
- 1.2.23 inner product calculations
- 1.3 arithmetic operations:
 - 1.3.1 polynomial evaluation over a, b (proof evaluations)
 - 1.3.2 polynomial evaluation over ${\tt zkpm}$ at ζ
 - 1.3.3 perm_scalars
- 1.4 $f_{comm} = MSM(p, s)$
- 1.5 linearization polynomial evaluation consistency:
- 2. srs.verify:
 - $2.1 \dots$
 - 2.2 MSM:

$$\sum_{i} r^{i} (c_{i}Q_{i} + delta_{i} - (z_{1,i}(G_{i} + b_{i}U_{i}) + z_{2,i}H))$$

WIP

3 Multi-Scalar Multiplication Circuit

WIP

4 Poseidon Circuit

- 4.1 \mathbb{F}_p
- 4.2 \mathbb{F}_a

WIP

5 Other Circuits

WIP

6 Bringing it all together

WIP

References