Kartik Gupta - 170101030

Assignment 1

Problem

How to ensure continuity while merging cubic Bezier curves?

Bezier Curves

Explicit formulation

Let V_i's be the control points.

Let $\{V_0, ..., V_n\}$ be the control polygon.

An explicit formulation for Q(u):

In general,

$$\mathbf{Q}(\mathbf{u}) = \sum_{i=0}^{n} \mathbf{V}_{i}^{n} \mathbf{C}_{i} \mathbf{u}^{i} (1 - \mathbf{u})^{n-i}$$

Note that $Q(0) = V_0$ and $Q(1) = V_n$ from the above formulation

Ensuring Positional (C⁰) continuity

Let there be two cubic curves B₁ and B₂.

 B_1 has control points V_0 , V_1 , V_2 and V_3 .

 B_2 has control points W_0 , W_1 , W_2 , W_3

Then, $Q_1(u)$ is defined as: $Q_1(u) = (1 - u)^3 V_0 + 3 u (1 - u)^2 V_1 + 3 u^2 (1 - u) V_2 + u^3 V_3$

Also, $Q_2(u)$ is defined as: $Q_2(u) = (1 - u)^3 W_0 + 3 u (1 - u)^2 W_1 + 3 u^2 (1 - u) W_2 + u^3 W_3$

Hence, to ensure Positional (C^0) continuity, $Q_1(1)$ should be equal to $Q_2(0)$.

$$Q_1(1) = V_3$$

$$Q_2(0) = W_0$$

Therefore, $V_3 = W_0$

Ensuring Derivative (C1) continuity

Operator Calculus

We need to use a tool known as operator calculus.

Define the operator D by:

$$\mathbf{D} \mathbf{V}_{i} \equiv \mathbf{V}_{i+1}$$

In general, $V_i = D^i V_0$

Rewriting our explicit formulation in this notation gives:

$$Q(u) = \sum_{i=0}^{n} {}^{n}C_{i} u^{i} (1 - u)^{n-i} V_{i}$$

$$= \sum_{i=0}^{n} {}^{n}C_{i} u^{i} (1 - u)^{n-i} D^{i} V_{0}$$

$$= (uD + 1 - u)^{n} V_{0}$$

Taking the first derivative, we get:

$$Q'(u) = n (uD + 1 - u)^{n-1} (D - 1) V_0$$

Now, (D - 1)
$$V_0 = D V_0 - V_0 = V_1 - V_0$$

Also,
$$\sum_{i=0}^{n-1} {}^{n-1}C_i (uD)^i (1-u)^{n-1-i} = (uD+1-u)^{n-1}$$

Hence,

$$Q'(u) = n \sum_{i=0}^{n-1} {}^{n-1}C_i (uD)^i (1-u)^{n-1-i} (V_1 - V_0)$$

This gives us a general expression for the derivative Q'(u).

Now:

$$Q'(0) = n (V_1 - V_0)$$

 $Q'(1) = n (V_n - V_{n-1})$

Derivative (C1) continuity

For cubic curve (n = 3):

$$Q_1'(1) = 3 (V_3 - V_2)$$

 $Q_2'(0) = 3 (W_1 - W_0)$

Hence, for C¹ continuity, we need to set

$$Q_1'(1) = Q_2'(0)$$
 $V_3 - V_2 = W_1 - V_3$ [Due to C^0 continuity, $V_3 = W_0$]
 $V_3 = \frac{V^2 + W^1}{2}$ OR $W_0 = \frac{V^2 + W^1}{2}$
 $W_1 = 2 V_2 - V_2$

Ensuring Curvature (C²) continuity

We already know that $Q'(u) = n (uD + 1 - u)^{n-1} (D - 1) V_0$

Differentiating it again, we get

$$Q''(u) = n (n-1) (uD + 1 - u)^{n-2} (D-1)^{2} V_{0}$$

Simplifying Further,

$$Q''(u) = n (n-1) \sum_{i=0}^{n-2} {}^{n-2}C_i u^i (1-u)^{n-2-i} D^i (V_2 - 2 V_1 + V_0)$$

This gives us a general expression for the double derivative Q"(u).

$$Q''(0) = n (n-1) (V_2 - 2 V_1 + V_0)$$

$$Q''(1) = n (n-1) (V_n - 2 V_{n-1} + V_{n-2})$$

Curvature (C²) continuity

For cubic curve (n = 3):

$$Q_1''(1) = 6 (V_3 - 2 V_2 + V_1)$$

 $Q_2''(0) = 6 (W_2 - 2 W_1 + W_0)$

Hence, for C² continuity, we need to set

$$Q_1"(1) = Q_2"(0)$$

 $6 (V_3 - 2 V_2 + V_1) = 6 (W_2 - 2 W_1 + W_0)$
 $(V_3 - V_2) - (V_2 - V_1) = (W_2 - W_1) - (W_1 - W_0)$

Also, from C⁰ and C¹ continuities, we have

$$V_3 = W_0$$
 [C^0 continuity]
 $V_3 - V_2 = W_1 - W_0$ [C^1 continuity]

Putting it together,

$$W_2 = 4 (V_3 - V_2) + V_1$$