TD5. Variables aléatoires

Exercice 1. Soit X une variable aléatoire discrète à valeurs dans N et $f: \mathbb{N} \to \mathbb{Z}$ définie par

$$f(n) = \begin{cases} \frac{n}{2}, & \text{si } n \text{ est paire;} \\ \frac{1-n}{2}, & \text{si } n \text{ est impaire.} \end{cases}$$

On pose Y = f(X). Déterminer la loi de Y dans les cas suivants :

$$X \sim \mathcal{G}(p),$$
 $X \sim \mathcal{P}(\lambda).$

Exercice 2. Soit X et Y deux variables indépendantes suivant toutes deux la loi géométrique de paramètre 1/2. Déterminer la probabilité des événements suivants :

$$\mathbb{P}(X = Y)$$
, $\mathbb{P}(X > Y)$, avec $k \in \mathbb{N}^*$ fixé.

Exercice 3. Soit X une variable aléatoire à valeurs dans \mathbf{N}^* . On suppose que X est sans mémoire, c'est-à-dire, pour $k, \ell \in \mathbf{N}$, on a

$$\mathbb{P}(X > k + \ell | X > k) = \mathbb{P}(X > \ell).$$

Montrer que X suit une loi géométrique.

Exercice 4. On considère X et Y deux variables aléatoires à valeurs dans \mathbb{N} , indépendantes, de même loi. On pose D = X - Y et $I = \min(X, Y)$.

- a) On suppose que pour $k \in \mathbb{N}$, $\mathbb{P}(X = k) = pq^k$, où $p \in]0,1[$ et q = 1 p.
 - i) Déterminer la loi conjointe de (D, I).
 - ii) Déterminer les lois marginales de D et I.
 - iii) Vérifier que D et I sont indépendantes.
- b) On suppose que les variables D et I sont indépendantes et que $\mathbb{P}(X=k) \neq 0$ pour tout $k \in \mathbb{N}$. Montrer qu'il existe $p \in]0,1[$ tel que pour $k \in \mathbb{N}$,

$$\mathbb{P}(X=k) = pq^k.$$

Exercice 5. Pour a < b, notons $N_{a,b}$ le nombre de clients se présentant dans un magasin dans l'intervalle de temps [a,b[. Si a < b < c, on suppose que les variables $N_{a,b}$ et $N_{b,c}$ sont indépendantes, et que pour $n \in \mathbb{N}$, la loi de $N_{a,b}$ sachant $N_{a,c} = n$ est $\mathcal{B}(n,p)$, avec p = (b-a)/(c-a).

a) Montrer que pour $k, \ell \in \mathbf{N}$,

$$\frac{\mathbb{P}(N_{a,b}=k)\mathbb{P}(N_{b,c}=\ell)}{\mathbb{P}(N_{a,c}=k+\ell)} = \binom{k+\ell}{k} p^k (1-p)^{\ell}.$$

b) En déduire qu'il existe une contante λ telle que pour $n \in \mathbb{N}$, on a

$$\mathbb{P}(N_{a,b} = n) = \frac{\lambda}{n} \mathbb{P}(N_{a,b} = n - 1).$$

c) En déduire que $N_{a,b}$ suit une loi de Poisson de paramètre λ .

Exercice 6. Soit \mathcal{P} l'ensemble des nombres premiers. Pour s > 1, on note $\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$ et X une variable aléatoire à valeurs dans \mathbb{N}^* dont la loi est définie pour $n \in \mathbb{N}^*$ par

$$\mathbb{P}(X=n) = \frac{n^{-s}}{\zeta(s)}.$$

- a) Justifier qu'on définit bien ainsi la loi d'une variable aléatoire.
- b) Pour tout $n \in \mathbb{N}^*$, on considère $A_n : \ll n$ divise $X \gg$. Montrer que $(A_p)_{p \in \mathcal{P}}$ est une famille d'événements indépendants. En déduire une preuve probabiliste de

$$\zeta(s) = \prod_{p \in \mathcal{P}} \left(1 - \frac{1}{p^s} \right)^{-1}.$$

c) Montrer que la probabilité qu'aucun carre différentient de 1 ne divise X vaut $\frac{1}{\zeta(2s)}$.

Exercice 7. Montrer que, si X et Y sont des variables aléatoires indépendantes, suivant des lois de Poisson de paramètres respectifs λ et μ , alors la somme X+Y suit une loi de Poisson de paramètre $\lambda + \mu$.

Exercice 8. Soit X et Y deux variables aléatoires sur le même esace probalilisé, à valeurs dans \mathbb{N} , $p \in]0,1[$ et $\lambda > 0$. On suppose que X suit la loi de Poisson de paramètre λ et que, pour $n \in \mathbb{N}$, la conditionnelle de Y sachant $\{X = n\}$ est la loi binomiale de paramètre (n,p). Déterminer la loi de Y.

Exercice 9. On considère une variable aléatoire discrète N à valeurs dans \mathbf{N} telle que pour $n \in \mathbf{N}$, $\mathbb{P}(N=n) \neq 0$. Si la variable N prend la valeur n, on procède à une succession de n épreuves de Bernoulli indépendantes de paramètre $p \in]0,1[$. On note S et E les variables aléatoires représentant respectivement le nombre de succès et d'échecs dans ces n épreuves.

- a) Montrer que si N suit une loi de Poisson de paramètre $\lambda \in \mathbf{R}_+^*$, les variables S et E suivent aussi des lois de Poisson dont on déterminera les paramètres. Montrer que les variables E et S sont indépendantes.
- b) Montrer réciproquement que si E et S sont indépendantes, alors N suit une loi de Poisson. Pour cela, on montrera :
 - i) qu'il existe deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ telles que pour $m,n\in\mathbb{N}$,

$$(m+n)!\mathbb{P}(N=m+n) = u_m v_n.$$

ii) que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont géométriques.