

CS5228: Knowledge Discovery and Data Mining

Lecture 3 — Clustering II

Course Logistics — Update

- Assignment 1
 - Topics: EDA, Data Preparation & Clustering
 - Submission deadline: Thu, Sep 18 (11.59 pm)
- Reminder: Honor Code
 - Cheat and plagiarism is serious academic offence
 - Do not read, copy, steal, etc. others code
 - Lecture slides & videos should easily suffice

Quick Recap — Tutorial

- Alternative encoding of nominal attributes: "proxy encoding"
 - Replace nominal values with 1 or more numerical values
 - Numerical values should reflect underlying assumption of the impact of attribute
 - Example: "What makes 'state' a potentially useful attribute?"

Interpretation		Encoding through replacement
Average Political learning	→	Percentage of democrats/republicans
State education budget	→	Dollar-per-student value
School system	→	Rate of homeschooling
Urbanization	→	#universities per capita
	→	

Quick Recap — Tutorial

- Important: "careless" encoding may imply questionable interpretation
 - Question: "What is the interpretation of my encoding, and is it meaningful?"
 - In practice, often very difficult to answer

Encoding		Interpretation
Ordinal values	→	PA < OK < FL < CT < WV <
Latitude/Longitude	→	Geographic location of state matters
#KFC per capita	→	Proliferation of fast food matters
	→	

It **might** be correct, even if only incidentally!

Quick Recap — Lecture

Clustering

- Grouping data points based on their similarities
- No single definition for cluster or clustering → different meaningful intuitions
- General-purpose data mining method ("only" distance/similarity measure required)

Algorithms discussed so far:

- K-Means (centroid-based, partitional, exclusive, complete)
- DBSCAN (density-based, partitional, exclusive, partial)

Outline

- Clustering
 - Overview
 - Concepts
 - Applications
- Clustering algorithms
 - K-Means
 - DBSCAN
 - Hierarchical Clustering
- Cluster Evaluation

Hierarchical Clustering

Basic characteristics

- Clusters: depends...
- Clustering: hierarchical (duh!), complete, exclusive (at each level!)
- No parameterization (in principle)
 - In practice, typically number of clusters is specified (similar to K-means)
 - Different choices of measures to calculate distances between clusters

Dendrograms

greek: Wee

- Dendrogram: Visualization of hierarchical relationships
 - Binary tree showing how clusters are hierarchically merged/split
 - Each node is a cluster
 - Each leaf is a singleton cluster
 - Height reflects distance between clusters (e.g., large distance between A/B and C/D/E/F clusters)

Hierarchical Clustering — **Dendrograms**

A clustering can be obtained by cutting a dendrogram at the desired level

4 clusters

Hierarchical Clustering — 2 Main Types

Agglomerative

(bottom-up)

- Start with each point being its own cluster
- At each step, merge closest pair of clusters
- Stop when only one cluster is left

Divisive

(top-down)

- Start with one cluster containing all points
- At each step, split a cluster
- Stop when each cluster contains a single point

AGNES (AGglomerative NESting)

DIANA (DIvise ANAlysis)

Quick Quiz

What is the **minimum** and **maximum** possible **depth** of a dendrogram for a dataset with *N* data points?

(assume O-notation)

Min: $\log_2 N$ Max: N

Min: \sqrt{N} Max: $N \log_2 N$

Min: \sqrt{N} Max: N

Min: $\log_2 N$ Max: $N \log_2 N$

AGNES — Basic Algorithm

1. Initialization: Each point forms its own cluster

2. Repeat

2a) Merge the two closest clusters into one

Until only 1 cluster remains

• Implementation using distance matrix

Initial clustering: each cluster, one point

Distance between clusters = distance between points

	C _A	C _B	C _c	C _D	CE	C _F
C _A	∞	2.25	5.32	9.06	9.79	9.49
C _B		∞	6.08	7.85	9.86	9.21
C _c			∞	6.73	4.81	5.02
C _D				∞	5.51	4.00
CE					∞ (1.53
C _F						80

• What's the distance between clusters? (beyond containing single points)

Clustering after merging C_F and C_F to C_{FF}

	C _A	C _B	C _c	C _D	C _{EF}
C _A	∞	2.25	5.32	9.06	???
C _B		∞	6.08	7.85	???
C _c			∞	6.73	???
C _D				∞	???
C _{EF}					∞

Quick "Quiz"

Which 2 clusters should get merged next?

AGNES — Single Linkage

- Single Linkage Clustering
 - Distance between clusters = minimum distance between two points from each cluster

$$d_{single}(C_i,C_j) = \min_{p \in C_i, q \in C_j} d(p,q)$$

AGNES — Single Linkage

non-ldob-like?

• Strength: Can handle non-globular shapes

AGNES — Single Linkage

- Weakness: Very susceptible to noise → "Chaining"
 - A single point may cause two clusters get merged

AGNES — Complete Linkage

- Complete Linkage Clustering
 - Distance between clusters = **maximum distance** between two points from each cluster

AGNES — Complete Linkage

• Strength: Less susceptible to noise or outliers

Single Linkage, #cluster = 3

Complete Linkage, #cluster = 3

AGNES — Complete Linkage

Weaknesses

- Bias towards globular clusters
- Tends to break large clusters

#cluster = 2

#cluster = 2

AGNES — Average Linkage

- Complete Linkage Clustering (compromise between single and complete linkage)
 - Distance between clusters = average distance between two points from each cluster

AGNES — Linkage Alternatives

- Centroid linkage
 - Distance between clusters = distance between the centroids of each cluster

$$d_{centroid}(C_i,C_j) = d(\underbrace{m_i,m_j})$$
 centroid of cluster i and j (m for mean)

Ward linkage

$$d_{Ward}(C_i,C_j) = \sum_{k \in C_i \cup C_j} \frac{\text{Variance of C}_{_{ij}}}{||x_k - m_{ij}||^2} - \sum_{k \in C_i} \frac{||x_k - m_i||^2}{||x_k - m_i||^2} - \sum_{k \in C_j} \frac{\text{Variance of C}_{_{j}}}{||x_k - m_i||^2}$$

$$= \frac{n_i n_j}{n_i + n_j} ||m_i - m_j||^2$$

n_i = #points in cluster C_i

Ward Linkage — Intuition

$$d_{Ward}(C_i,C_j) = \overbrace{\sum_{k \in C_i \cup C_j} ||x_k - m_{ij}||^2}^{\text{Variance of C}_{ij}} - \overbrace{\sum_{k \in C_i} ||x_k - m_i||^2}^{\text{Variance of C}_i} - \overbrace{\sum_{k \in C_j} ||x_k - m_j||^2}^{\text{Variance of C}_{ij}}$$

Example for Ward Linkage

■ Each blob: 100 data points

$$d_{Ward}(Red, Blue) = 1,635 - 195 - 200 = 1,240$$

$$d_{Ward}(Blue, Green) = 1,450 - 200 - 10 = 1,240$$

AGNES

Linkage comparison

 $\underline{\text{https://scikit-learn.org/stable/auto_examples/cluster/plot_linkage_comparison.html}}$

Quick Quiz

Which linkage method has intuitively the **highest chance** of returning a clustering where the dendrogram has a **depth of** *N***-1**?

Single

B

Complete

C

Average

D

No difference

Distance matrix after merging Cluster C_F and C_F + Average Linkage

Clustering after merging C_F and C_F to C_{FF}

	C _A	C _B	C _c	C _D	C _{EF}	
C _A	∞ (2.25	5.32	9.06	9.64	1
C _B		∞	6.08	7.85	9.54	
C _c			∞	6.73	4.92	
C _D				∞	4.76	
C _{EF}					8	

Distance matrix after merging Cluster C_A and C_B + Average Linkage

Clustering after merging C_A and C_B to C_{AB}

	C _{AB}	c _c	C _D	C _{EF}	
C _{AB}	∞	5.70	8.45	9.59	
C _c		∞	6.73	4.92	
C _D			∞ /	4.76	
C _{EF}				®	

Distance matrix after merging Cluster C_C and C_{DEF} + Average Linkage

Clustering after merging C_D and C_{EF} to C_{DEF}

	C _{AB}	c _c	C _{DEF}
C _{AB}	∞	5.70	9.21
c _c		∞	5.51
C _{DEF}			∞

Distance matrix after merging Cluster C_{AB} and C_{CDEF} + Average Linkage

Clustering after merging C_C and C_{DEF} to C_{CDEF}

	C _{AB}	C _{CDEF}
C _{CDEF}	∞	8.33

Distance matrix after merging Cluster C_{AB} and C_{CDEF} + Average Linkage

Clustering after merging \mathbf{C}_{AB} and $\mathbf{C}_{\mathsf{CDEF}}$ to $\mathbf{C}_{\mathsf{ABCDEF}}$

→ Done!

AGNES — Complexity Analysis

- Space Complexity: O(N²)
 - Storing distance matrix
- Time Complexity
 - Baseline: $O(N^3)$ (N-1) steps, each step $O(N^2)$ to scan distance matrix
 - Using more sophisticated data structures, e.g, heap or priority queue: O(N² log N)
 - Special optimization for Single Linkage Clustering: O(N²)

DIANA — Divisive Analysis

- Top-Down Hierarchical Clustering
 - Start with all points forming one cluster
 - Recursively split one cluster until all cluster have size 1
- Challenge: 2ⁿ ways to split a cluster with *n* points
 - Heuristics needed to restrict search space
 - Generally slower and less common than AGNES
- Cases where DIANA can perform better
 - No complete clustering needed → early stopping
 - Splitting can utilize global knowledge (merging based on local knowledge only)

Source: https://scikit-learn.org/stable/modules/clustering.html

Outline

- Clustering
 - Overview
 - Concepts
 - Applications
- Clustering algorithms
 - K-Means
 - DBSCAN
 - Hierarchical Clustering
- Cluster Evaluation

Cluster Evaluation

- Problem 1: Just eyeballing the clustering is rarely possible
 - High-dimensional data (≥ 3 dimensions) difficult to impossible to visualize
 - Difficult to assess "nature" of clusters a-priori (e.g., variations in shape, size, density, etc)
 - Presence and distribution of noise or outliers

Your data usually does not look like this

Cluster Evaluation

- Problem 2: Clustering algorithms will always find some clusters
 - Example: K-Means, DBSCAN and AGNES applied to random data

Cluster Evaluation

- Purpose of cluster evaluation
 - Comparing the results of different clustering algorithms
 - Comparing the results of a clustering algorithm with different parameters
 - Minimizing the effects of noise on the clustering
- → Getting a sense of the "goodness" of a clustering
- Two main approaches
 - External quality measures: evaluate a clustering against a ground truth (if available)
 - Internal quality measures: evaluate clustering from the data itself

Cluster Evaluation — External Quality Measures

- Ground truth: Labeled data
 - Labels indicate that two points "belong together"
 - If cluster reflect this → good clustering

External Quality Measures — Cluster Purity

Cluster purity P

■ N: #points, C: set of cluster, L: set of labels

$$P = \frac{1}{N} \sum_{c \in C} \underbrace{\max_{l \in L} |c \cap l|}^{\text{\#points with most common}}$$

Purity for ex	xample:
---------------	---------

$$P = \frac{1}{8}(3+4) = 0.875$$

Cluster	Label
Red	0
Red	0
Red	0
Red	1
Blue	
Blue	1
Blue	1
Blue	1

Limitations

- Purity does not penalize having many cluster
 - → P=1 easy to achieve with all cluster containing single point

P= 1 (1+1+1=1)	$P = \frac{1}{8}$	(1+1+1=1)
----------------	-------------------	-----------

External Quality Measures: Information Retrieval Metrics

Established metrics from classification tasks

TP — true positives same cluster, same label (A/B, A/C, B/C, E/F, ..., G/H)

TN — true negatives different clusters, different labels (A/E, A/F, A/G, A/H, B/E, ..., C/H)

■ **FP** — false positives same cluster, different labels (A/D, B/D, C/D)

■ FN — false negatives
different cluster, same label
(D/E, D/F, D/G, D/H)

For the example:

- **TP** = 9
- TN = 12
- **FP** = 3
- FN = 4

ID	Custer	Label	
Α	Red	0	
В	Red	0	
С	Red	0	
D	Red	1 ,	C
Е	Blue	1	
F	Blue	1	
G	Blue	1	
Н	Blue	1	

External Quality Measures — Information Retrieval Metrics

- Rand Index RI
 - Reflects accuracy

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

 $RI_{example} = 0.75$

Precision P, Recall R, F1-Score

$$P = \frac{TP}{TP + FP} \qquad \qquad R = \frac{TP}{TP + FN} \qquad \qquad F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$P_{example} = 0.75$$

$$R_{example} = 0.69$$

$$P_{example} = 0.75$$
 $R_{example} = 0.69$ $F1_{example} = 0.72$

...and other metrics based on TP, TN, FP, FN

Internal Quality Measures — SSE

Use SSE to select number of clusters

input data

Internal Quality Measures — SSE

- Also applicable to more complicated data
 - But inherently "favors" globular clusters

input data

SEE for different K

Internal Quality Measures — SSE

- Limitation of SSE as quality measure
 - SSE does not penalize large number of clusters
 - SSE decreases for increasing cluster counts
 - Applicable beyond K-Means, but less intuitive interpretation (in case of non-globular clusters)

Quick Quiz

If K << N, can SSE=0?
Why or why not?

- Intuition: A good clustering has
 - High inter-cluster distances
 - Low intra-cluster distances

- For each data point x, define
 - **Cohesion** a(x): average distance to points in the same cluster
 - **Separation** b(x): minimum average distance to points in a different cluster
 - Silhouette:

$$s(x) = \frac{b(x) - a(x)}{max\{a(x), b(x)\}}, \text{ if } |C_x| > 1$$
 $s(x) = 0, \text{ if } |C_x| = 1$

$$x \in C_X$$

$$a(x) = \frac{1}{|C_X - 1|} \sum_{p \in C_X, p \neq x} d(x, p)$$

$$b(x) = \min_{X \neq K} \frac{1}{|C_K|} \sum_{p \in C_K} d(x, p)$$

the smaller, the better

the larger, the better

$$s(x) = 0$$
, if $|C_x| = 0$

$$s(x) = \frac{b(x) - a(x)}{max\{a(x), b(x)\}}$$

Interpretation

$$-1 \le s(x) \le +1$$

• Silhouette Coefficient SC:

$$SC = \frac{1}{N} \sum_{i=1}^{N} s(x_i)$$

• Example: K-Means

Example: K-Means

• Example: K-Means

Example: DBSCAN

SC for random data (K-Means)

Note: DBSCAN on random data quickly results in 0 or 1 cluster, for which SC is not defined

Cluster Evaluation — Comments

- In practice, choice of "best" clustering often more pragmatic:
 - Fixed number of clusters (problematic for DBSCAN)
 - Parameters defined by tasks
 (e.g., "areas with more than 5 McDonalds within a radius of 500m")
 - Maximum, minimum, or average size of clusters
 - Focus in individual clusters instead of whole clustering (e.g., biggest/smallest cluster, cluster that contains certain points)
 - Set K "too high" and merge later if needed
 - ...

Outline

- Clustering
 - Overview
 - Concepts
 - Applications
- Clustering algorithms
 - K-Means
 - DBSCAN
 - Hierarchical Clustering
- Cluster Evaluation

Summary — Clustering

- Clustering: Finding patterns (here: cluster/groups) in unlabeled data
 - Very important concept in data mining
 - Wide range of clustering algorithms with varying characteristics (pros & cons)
- → No "one-size-fits-all" algorithm

- Discussed algorithms: K-Means, DBSCAN, AGNES
 - Focus on the arguably intuitive conceptual inner workings
 - Emphasis on algorithms' strength and weaknesses
 - Many tweaks and optimizations to improve performance
- Major challenge: cluster evaluation
 - No fool-proof method to find the best algorithm or parameters (at least for unlabeled data)

Solutions to Quick Quizzes

- Slide 11: A
- Slide 15: A and/or B
- Slide 26: A
- Slide 46: A (in case of duplicates and K < #unique points)