Question 1

Proof. Let m and n be integers. We want to show that if m is even and n is odd, then m+n is odd. Since m is even, we can write m=2k for some integer k. Likewise, since n is odd, we can write n=2l+1 for some integer l. Then,

$$m + n = 2k + 2l + 1$$

= $2(k + l) + 1$.

Since k + l is an integer, m + n is odd.

Question 2

Proof. Let a, b, c, k and l be integers. We want to show that if $a \mid b$ and $a \mid c$, then $a \mid (bk+cl)$. Since $a \mid b$, we can write b = am for some integer m. Likewise, since $a \mid c$, we can write c = an for some integer n. Thus, we can write

$$bk + cl = amk + anl$$
$$= a(mk + nl).$$

Since mk + nl is an integer, we have shown that a divides bk + cl.

Question 3

Proof. Let m be an odd integer. We want to show that for all integers m, if m is odd, then there exists some integer k such that $m^2 = 8k + 1$. By definition, m can be written as m = 2n + 1 for some integer n. We can then substitute this into m^2 to get

$$m^{2} = (2n + 1)^{2}$$
$$= 4n^{2} + 4n + 1$$
$$= 4(n^{2} + n) + 1.$$

By Lemma 1, $n^2 + n$ is even for all integers n. Thus, we can write $n^2 + n = 2k$ for some integer k. Substituting this into m^2 , we get

$$m^2 = 4(2k) + 1$$

= $8k + 1$.

Now we have found an integer k such that $m^2 = 8k + 1$.

Question 4

Proof. Let n be an integer. We want to show that for any integer n, $n^2 + n - 9$ is odd. In the case that n is even, we can write n = 2k for some integer k. Thus, we can write

$$n^{2} + n - 9 = (2k)^{2} + 2k - 9$$

$$= 4k^{2} + 2k - 9$$

$$= 4k^{2} + 2k - 10 + 1$$

$$= 2(2k^{2} + k - 5) + 1.$$

Since $2k^2 + k - 5$ is an integer, $n^2 + n - 9$ is odd for even n. In the case that n is odd, we can write n = 2k + 1 for some integer k. Then, we can substitute as follows:

$$n^{2} + n - 9 = (2k + 1)^{2} + 2k + 1 - 9$$

$$= 4k^{2} + 4k + 1 + 2k + 1 - 9$$

$$= 4k^{2} + 6k - 8 + 1$$

$$= 2(2k^{2} + 3k - 4) + 1.$$

Since $2k^2 + 3k - 4$ is an integer, $n^2 + n - 9$ is odd for odd n. Therefore, we have shown that $n^2 + n - 9$ is odd for all integers n.