CMSC 277: Homework #3

Jesse Farmer

20 Obctober 2005

1. For each $\varphi \in \text{Form}_{P}$ give a deduction showing that $\varphi \vdash \neg \neg \varphi$.

$\{\varphi, \neg \varphi\} \vdash \varphi$	(Assumption)	(1)
$\{\varphi,\neg\varphi\}\vdash\neg\varphi$	(Assumption)	(2)
$\varphi \vdash \neg \neg \varphi$	(Contr on (1) and (2))	(3)

2. (a) For each $\varphi, \psi \in \text{Form}_{P}$ give a deduction showing that $\neg \varphi \vdash \neg (\varphi \land \psi)$.

(b) For each $\varphi, \psi \in \text{Form}_{P}$ give a deduction showing that $\neg(\varphi \land \psi) \vdash (\neg \varphi) \lor (\neg \psi)$.

$\{\neg(\varphi \land \psi), \varphi, \psi\} \vdash \varphi$	(Assumption)	(1)
$\{\neg(\varphi \wedge \psi), \varphi, \psi\} \vdash \psi$	(Assumption)	(2)
$\{\neg(\varphi \wedge \psi), \varphi, \psi\} \vdash \varphi \wedge \psi$	$(\wedge I \text{ on } (1) \text{ and } (2))$	(3)
$\{\neg(\varphi \wedge \psi), \varphi, \psi\} \vdash \neg(\varphi \wedge \psi)$	(Assumption)	(4)
$\{\neg(\varphi \wedge \psi), \varphi\} \vdash \neg \psi$	(Contr on (3) and (4))	(5)
$\{\neg(\varphi \land \psi), \varphi\} \vdash (\neg\varphi) \lor (\neg\psi)$	$(\forall IR \text{ on } (5))$	(6)
$\{\neg(\varphi \wedge \psi), \neg\varphi\} \vdash \neg\varphi$	(Assumption)	(7)
$\{\neg(\varphi \wedge \psi), \neg\varphi\} \vdash (\neg\varphi) \vee (\neg\psi)$	$(\forall IL \text{ on } (7))$	(8)
$\neg(\varphi \land \psi) \vdash (\neg\varphi) \lor (\neg\psi)$	$(\neg PC \text{ on } (6) \text{ and } (8))$	(9)

3. (a) Show that if $\Gamma \vdash \varphi$ then $\Gamma \vDash \varphi$.

Let $\varphi \in \text{Form}_{P}$ be such that $\Gamma \vdash \varphi$ but $\Gamma \not\vDash \varphi$. Then there exists a truth assignment $v : P \to \{0, 1\}$ such that $\bar{v}(\Gamma) = \{1\}$ and $\bar{v}(\varphi) = 0$. Hence Γ is satisfiable. Moreover, $\Gamma \cup \{\neg \varphi\}$ is also satisfiable since $\bar{v}(\neg \varphi) = 1$. Therefore by soundness both Γ and $\Gamma \cup \{\neg \varphi\}$ are consistent. However, as $\Gamma \cup \{\neg \varphi\} \vdash \varphi$ by Proposition 3.53 and $\Gamma \cup \{\neg \varphi\} \vdash \neg \varphi$ by assumption, it follows that $\Gamma \cup \{\neg \varphi\}$ is inconsistent – a contradiction.

(b) Show that every consistent set of formulas is satisfiable.

Assume Γ is consistent and that for every truth assignment $v: P \to \{0,1\}$ there exists some $\varphi \in \Gamma$ such that $\bar{v}(\varphi) = 0$. Then $\Gamma \vDash \psi$ for all $\psi \in \operatorname{Form}_{P}$, vacuously. In particular $\Gamma \vDash \varphi$ and $\Gamma \vDash \neg \varphi$. But then $\Gamma \vDash \varphi$ and $\Gamma \vDash \neg \varphi$ by completeness, so that Γ is inconsistent – a contradiction.

- 4. Suppose that $\theta \vdash \gamma$ and $\gamma \vdash \theta$. Show that if $\Gamma \vdash \varphi$ then $\Gamma \vdash \text{Subst}_{\theta,\gamma}(\varphi)$.
 - Since θ and γ are syntactically equivalent, by soundness and completeness they are also semantically equivalent and hence for any truth assignment $v:P\to\{0,1\}$ we have that $\bar{v}(\theta)=barv(\gamma)$. If $\Gamma\vdash\varphi$ then by soundness $\Gamma\vDash\varphi$. From the first problem on the previous homework it follows that $\bar{v}(\varphi)=\mathrm{Subst}_{\theta,\gamma}(\varphi)$. Hence $\Gamma\vDash\mathrm{Subst}_{\theta,\gamma}(\varphi)$ and by completeness $\Gamma\vdash\mathrm{Subst}_{\theta,\gamma}(\varphi)$
- 5. Suppose we eliminate the \rightarrow E rule, the $\neg PC$ rule and the Contr rule. Show that the completeness theorem no longer holds.
- 6. Fix $k \in \mathbb{N}^+$. Let P be a poset such that such that every finite subset of P is the union of k chains. Show that P itself is the union of k chains.

Fix $k \in \mathbb{N}^+$ and define

$$\Gamma = \{C_{a,1} \vee \cdots \vee C_{a,k} \mid a \in P\}$$

$$\cup \{\neg (C_{a,i} \wedge C_{b,i}) \mid a \text{ and } b \text{ are incomparable}\}$$

Intuitively each $C_{a,i}$ corresponds to the element a being in one of k chains but incomparable elements being in different chains. We include the possibility of there only being "one" chain, e.g., a one element subset is the union of k chains, viz., itself k times. Let $\Gamma_0 \subset \Gamma$ be a finite subset and let $A = \{a_1, \ldots, a_n\}$ be the set of all $a \in P$ such that $C_{a,i}$ occurs in some element of Γ_0 for some $i \in \{1, \ldots, k\}$. By hypothesis we can write A as the union of k chains which corresponds to a truth assignment witnessing that Γ_0 is satisfiable.

Since every such Γ_0 is satisfiable it follows from compactness that Γ itself is satisfiable, and hence P can be written as the union of k chains.