Google Nasil Isler?

Ozdeger/Vektor Hesabinda Ust Metot (Power Method)

Diyelim ki bir A matrisinin, ki $A \in \mathbb{R}^{n \times n}$, ozdegerleri $\lambda_1, ..., \lambda_n$ ve ozvektorleri $v_1, ..., v_n$ olarak verilmis. Bu demektir ki her i = 1, ..., n icin $Av_i = \lambda_i v_i$.

Farzedelim ki bu matrisin tum ozvektorleri bir "ozbaz (eigenbasis)" olusturuyor ve bu baz ile \mathbb{R}^n 'deki herhangi bir vektoru temsil edebiliyoruz. Yine farzedelim ki $|\lambda_1| > |\lambda_2| > ... > |\lambda_n|$. Biz bu yazida λ_1 'e baskin (dominant) ozdeger diyecegiz.

Simdi herhangi bir $v_0 \in \mathbb{R}^n$ 'i alalim. Usttekiler isiginda $\mu_1, ..., \mu_n$ olarak katsayilar olmalidir, ki

$$v_o = \mu_1 v_1 + ... + \mu_n v_n$$

cunku ozvektorler bir baz olusturuyorlar. Simdi her iki tarafi soldan A ile carpalim, ayrica $Av_i = \lambda_i v_i$ esitliginden hareketle ikinci bir esitligi de en sagda belirtelim,

$$Av_o = \mu_1 A v_1 + \dots + \mu_n A v_n = A \lambda_1 v_1 + \dots + A \lambda_n v_n$$

Simdi ustteki ifadeyi A ile bir daha, hatta birkac defa carpalim, diyelim toplam m kere,

$$A^{m}v_{o} = \mu_{1}A^{m}v_{1} + ... + \mu_{n}A^{m}v_{n} = A^{m}\lambda_{1}v_{1} + ... + A^{m}\lambda_{n}v_{n}$$

Kaynaklar

http://www.math.mcgill.ca/feys/documents/tutnotesR18.pdf

Murphy, K., CS340: Machine Learning Lecture Notes, www.ugrad.cs.ubc.ca/~cs340