EE2000 Logic Circuit Design

Lecture 3 – Combinational System Design

A security gate system has a binary output Z that is used to control the gate "open and close" where Z=1 for the gate to open. The gate will close when the system detects the first two displayed numbers from a user's ID card $\{00, 01, 02, ..., 15\}$ with the number 06, 07, 11, 12, 13, 14, or 15. The variables a, b, c, and d determine a 4-digit binary code to represent the first two decimal numbers shown on the ID card.

Determine the truth table for the above security gate system.

State the case

Design a circuit to control the gate

- The gate is closed when ID numbers are 06, 07, 11, 12, 13, 14, 15.
- The gate is open for other ID numbers.
- Open/Close gate is a binary decision output (Z): 1 for Open and 0 for Close.
- 4-digit binary codes are the inputs (a, b, c, d).

f(a, b, c, d) = Z = 0 when ID numbers 06, 07, 11, 12, 13, 14 or 15

Else Z = 1

Decimal numbers		Inp	uts		Output
Decimal numbers	а	b	С	d	Z
00	0	0	0	0	1
01	0	0	0	1	1
02	0	0	1	0	1
03	0	0	1	1	1
04	0	1	0	0	1
05	0	1	0	1	1
06	0	1	1	0	0
07	0	1	1	1	0
08	1	0	0	0	1
09	1	0	0	1	1
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	0
13	1	1	0	1	0
14	1	1	1	0	0
15	1	1	1	1	0

$$f(a, b, c, d)$$

= $a'b' + a'c' + b'c' + b'd'$

$$f'(a,b,c,d) = ab + bc + acd$$

$$f(a,b,c,d)$$

= $(a' + b')(b' + c')(a' + c' + d')$

Design a logic circuit that perform code conversion

- ■Input is BCD 8421 code
- ■Output is BCD 2421 code

State the case

Design a circuit to convert the BCD 8421 to the BCD 2421 code

- A, B, C, D are the input.
- W, X, Y, Z are the output.
- The output functions are:

Formulation

Decimal numbers	Inj	puts	(842	21)	Out	tput	s (24	121)
Decimal numbers	A	В	C	D	W	X	Y	Z
0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1
2	0	0	1	0	0	0	1	0
3	0	0	1	1	0	0	1	1
4	0	1	0	0	0	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	1	0	0
7	0	1	1	1	1	1	0	1
8	1	0	0	0	1	1	1	0
9	1	0	0	1	1	1	1	1
Unused	Х	Х	Х	Х	Х	X	X	Х
Unused	Х	Х	Х	Х	Х	X	X	X
Unused	Х	Х	Х	Х	Х	X	X	Х
Unused	Х	Х	Х	Х	Х	Х	Х	Х
Unused	Х	Х	Х	Х	Х	X	X	Х
Unused	Х	Х	X	X	X	X	X	X

```
W(A, B, C, D)
=\sum m(5,6,7,8,9)
+\sum d(10,11,12,13,14,15)
X(A,B,C,D)
= \sum m(4,6,7,8,9)
+\sum d(10,11,12,13,14,15)
Y(A, B, C, D)
= \sum m(2,3,5,8,9)
+ \sum d(10,11,12,13,14,15)
Z(A,B,C,D)
=\sum m(1,3,5,7,9)
+\sum d(10,11,12,13,14,15)
```

K-maps

	K-map for Y:									
CD	B 00	01	11	10						
00			x	1						
01		1	х	1						
11	1		х	X						
10	1		х	х						

	D	K-map	for X	
CDA	⁸ 00	01	11	10
00		1	x	1
01			х	1
11		1	х	х

K-map for Z:

	K-111ap 101 Z.									
CD	^B 00	01 11		10						
00			x							
01	1	1	x	1						
11	1	1	х	x						
10		-	х	x						

Simplification

Logic Circuit

$$W = A + BC + BD = A + B(C + D)$$

 $X = A + BC + BD' = A + B(C + D') = A + B(C'D)'$
 $Y = A + B'C + B(C'D)$
 $Z = D$

^{*}Using only Two-input Gates and NOT Gates.

Formulation

State the case

Design a circuit to convert the BCD 8421 to the 7-segment display

- w, x, y, z are the input.
- a, b, c, d, e, f, g are the output.

$$a(w, x, y, z) =$$

numbers		Inp	uts	,		7-se	egm	ent	dis	play	′
Hullibers	w	x	y	Z	а	b	С	d	e	f	g
0	0	0	0	0	1	1	1	1	1	1	0
1	0	0	0	1	0	1	1	0	0	0	0
2	0	0	1	0	1	1	0	1	1	0	1
3	0	0	1	1	1	1	1	1	0	0	1
4	0	1	0	0	0	1	1	0	0	1	1
5	0	1	0	1	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	1	1	1	1
7	0	1	1	1	1	1	1	0	0	0	0
8	1	0	0	0	1	1	1	1	1	1	1
9	1	0	0	1	1	1	1	1	0	1	1
10	1	0	1	0	Х	Х	Х	Х	Х	Х	Х
11	1	0	1	1	Х	Х	Х	Х	Х	Х	Х
12	1	1	0	0	Х	Х	Х	Х	Х	Х	Х
13	1	1	0	1	Х	Х	Х	Х	Х	Х	Х
14	1	1	1	0	Х	Х	Х	Х	Х	Х	Х
15	1	1	1	1	Х	Х	Х	Х	Х	Х	Х

 $\Sigma m (0,2,3,5,6,7,8,9) + \Sigma d(10,11,12,13,14,15)$

K-map for segment 'a'

$$a(w,x,y,z) = \Sigma m(0,2,3,5,6,7,8,9) + \Sigma d(10,11,12,13,14,15)$$

yz WX	00	01	11	10
00	1		х	1
01		1	Х	1
11	1	1	Х	х
10	1	1	Х	Х

$$a(w, x, y, z) = w + y + xz + x'z'$$

K-map for segment 'c'

$$c(w, x, y, z) = \Sigma m(0,1,3,4,5,6,7,8,9) + \Sigma d(10,11,12,13,14,15)$$

$$c(w, x, y, z) = x + y' + z$$

K-map for segment 'e'

$$e(w, x, y, z) = \Sigma m(0,2,6,8) + \Sigma d(10, 11, 12, 13, 14, 15)$$

yz wx	00	01	11	10
00	1		х	1
01		-	Х	8
11			Х	х
10	1	1	Х	х

$$e(w, x, y, z) = x'z' + yz'$$

Assume that the propagation delay of each gate are as shown above.

Work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (x, y, z) = (1,1,0) to (1,1,1).

No hazard!!!

Assume that the propagation delay of all gates is $\Delta \tau$.

Work out the timing diagram to identify the presence of any timing hazard when the input condition changes from (w, x, y, z) = (0,0,0,0) to (0,0,0,1).

Static-O hazard!!!

Determine the Hamming code using both odd and even parity bit for a data core of 11100

For a 5-bit data
$$d_5d_4d_3d_2d_1$$
, $n = 5$
$$2^k \ge 6 + k$$

Therefore, minimum value of *k* is 4. We need **4 parity** bits!

Step 2: Place Parity Bits in the positions of powers of 2.

Hamming	<i>H</i> ₉	H ₈	H ₇	H_6	H_5	H_4	H_3	H_2	H_1
Code	d ₅	p_4	d_4	d_3	d_2	p ₃	d_1	p_2	p_1
Bit	9	8	7	6	5	4	3	2	1

Step 2: Place Parity Bits in the positions of powers of 2.

Hamming	H_9	H ₈	H_7	H_6	H_5	H_4	H_3	H_2	H_1
Code	d_5	p_4	d_4	d_3	d_2	p ₃	d_1	p_2	p_1
Bit	9	8	7	6	5	4	3	2	1
Binary Code	1001	1000	0111	0110	0101	0100	0011	0010	0001
p_1	1		1		0		0		
p_2			1	1			0		
p ₃			1	1	0				
p_4	1								
Even Parity	1	1	1	1	0	0	0	0	0
Odd Parity	1	0	1	1	0	1	0	1	1

Step 3: Calculate the number of '1' in each parity bits

Step 4: Place '1' if odd number of '1' for even parity; else '0'; Place '0' if odd number of '1' for odd parity; else '1'

Example: data $d_4d_3d_2d_1 = 1000$

Hamming Code	H_7	H_6	H_5	H_4	H_3	H_2	H_1
	d_4	d_3	d_2	p_3	d_1	p_2	p_1
Bit	7	6	5	4	3	2	1
Binary Code	0111	0110	0101	0100	0011	0010	0001
p_1	1		0		0		
p_2	1	0			0		
p ₃	1	0	0				
Even Parity	1	0	0	1	0	1	1
Odd Parity	1	0	0	0	0	0	0

Consider odd parity and if we receive a code of 1001000, check the parity bits

$$c_1 = (H_7 \oplus H_5 \oplus H_3 \oplus H_1)' = (1 \oplus 0 \oplus 0 \oplus 0)' = 0$$

 $c_2 = (H_7 \oplus H_6 \oplus H_3 \oplus H_2)' = (1 \oplus 0 \oplus 0 \oplus 0)' = 0$
 $c_3 = (H_7 \oplus H_6 \oplus H_5 \oplus H_4)' = (1 \oplus 0 \oplus 0 \oplus 1)' = 1$
 $c_3 c_2 c_1 = (100)_2 = 4$