Combinatorial Mathematics

Mong-Jen Kao (高孟駿)

Monday 18:30 – 20:20

Outline

- The Weak-Duality between Matching and Cover
- The Hungarian Algorithm for Weighted Bipartite Matching
 - General Properties
 - Simple $O(n^4)$ -time implementation
 - Sketch of $O(n^3)$ -time implementation
- Concluding Notes
 - Maximum Weight Matching in General Graphs

The Weak Duality between

Maximum Matching & Minimum Cover

The **weight of minimum vertex cover** is always <u>at least</u> the **weight of maximum matching**.

The Maximum-Weight Matching Problem

■ Input:

- A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.

Output :

- A matching $M \subseteq E$ that has the maximum weight among all possible matchings in G.
 - That is, $\sum_{e \in M} w_e \ge \sum_{e \in M'} w_e$ holds for all matching M' in G.

The Minimum-Weight Vertex Cover Problem

- Input:
 - A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.

- **Definition**. ((Weighted) Vertex Cover)
 - A label (function) $y:V\to\mathbb{R}$ is a vertex cover for G, if $y_u+y_v\geq w_{u,v}$ holds for all $(u,v)\in E$.
 - $w(y) := \sum_{v \in V} y_v$ is defined to be the weight of y.

The Minimum-Weight Vertex Cover Problem

Input:

- A graph G = (V, E) with edge weight $w_{u,v}$ for all $(u, v) \in E$.

Output :

- A vertex cover y for G that has the minimum weight among all possible vertex covers for G.
 - That is, $\sum_{v \in V} y_v \leq \sum_{v \in V} y_v'$ holds all vertex cover y' for G.

Lemma 1. (Weak-Duality between Matching and Vertex Cover)

Let G = (V, E) be a graph with edge weight w_e for all $e \in E$, M be a matching, and y be a vertex cover for G.

Then,
$$w(y) \ge w(M)$$
, i.e.,
$$\sum_{v \in V} y_v \ge \sum_{e \in M} w_e$$
.

- The proof for Lemma 1 is straightforward.
 - Since the endpoints of edges in M are distinct, we obtain

$$\sum_{v \in V} y_v \geq \sum_{(u,v) \in M} (y_u + y_v) \geq \sum_{e \in M} w_e.$$

Remarks.

- Lemma 1 implies that,
 - If w(y) = w(M) holds for some M and y, then they are both optimal.
 - In this case,
 we say that M and y witnesses the optimality of each other.
- The duality between matching and cover can appear in different forms for different problem models.
 - In this lecture, we examine the case on edge-weighted graphs.

The Weighted Matching Problem in Bipartite Graphs

The Maximum Weight Bipartite Matching Problem

■ Input:

- A *bipartite* graph G = (V, E) with *partite sets A and B* and edge weight $w_{i,j} \in \mathbb{R}$ for $i \in A, j \in B$.

Output :

- A matching $M \subseteq E$ that has the maximum weight among all possible matchings in G.

Assumptions

- Without loss of generality, we may assume that...
 - |A| = |B|, and G is a complete bipartite graph.
 - If not, we add redundant vertices and edges with <u>sufficiently small weight</u> to make it so.
 - For example, the weight $\eta := \min_{e \in G} w_e 1$ will do.

Assumptions

Add redundant vertices and edges, so that |A'| = |B'|, and G' is complete bipartite.

- Without loss of generality, we may assume that...
 - |A| = |B|, and G is a complete bipartite graph.
 - If not, we add redundant vertices and edges with <u>sufficiently small weight</u> to make it so.
 - For example, the weight $\eta := \min_{e \in G} w_e 1$ will do.
 - Since $\eta < \min_{e \in G} w_e$, it is never better to replace an existing edge with a redundant edge.

Hence, a maximum weight matching in G corresponds to a maximum weight matching in the new graph G', and vice versa.

Assumptions

- In conclusion, we may assume that
 - |A| = |B|,
 - G is complete bipartite, and
 - The goal is to compute a *maximum weight perfect matching*,
 - i.e., a maximum-weight matching such that every vertex in the graph is matched.

Remark.

- The considered problem is also equivalent to the minimum weight perfect matching problem.
 - When a minimum weight perfect matching is sought, then we take $w'_{i,j} = -w_{i,j}$ and solve the maximum weight perfect matching problem.

A minimum weight perfect matching w.r.t. w is a maximum weight perfect matching w.r.t. w', and vice versa.

The Hungarian Algorithm for Weighted Bipartite Matching

The Hungarian algorithm solves the problem via Primal-Duality of matching and cover.

- The algorithm starts with a trivial M and y.
 - In each iteration,
 the algorithm either improves M or y until their weights are equal.

- The algorithm starts with a trivial M and y.
 - In each iteration,
 the algorithm either improves M or y until their weights are equal.

- The algorithm starts with a trivial M and y.
 - In each iteration,
 the algorithm either improves M or y until their weights are equal.
 - We keep improving M, until it becomes unclear how M can be further improved.
 - Then we guarantee that, there must be a clear way to improve *y*.

- The Hungarian algorithm solves the weighted bipartite matching problem in $O(n^3)$ time.
 - We will first introduce the algorithm framework, which can be implemented in a simple way to run in $O(n^4)$ time.
 - Then we describe the $O(n^3)$ implementation of the algorithm.
 - It's more sophisticated, but can still be implemented in a nice and clean way.

Key Notions and Properties

Defined according to the current y.

Equality Subgraph G_y

- Let y be a vertex cover for the input graph G.
 - Define the equality subgraph $G_y = (V, E_y)$ to be the graph with
 - Vertex set V
 - Edge set $E_y \coloneqq \{ (u,v) : y_u + y_v = w_{u,v} \}.$

Intuitively, two vertices u and v are connected in G_y if and only if the weight y uses to cover the edge (u, v) is the least possible.

$$y_{u_1} = 6$$
, $y_{u_2} = 6$, $y_{v_1} = 12$, $y_{v_2} = 2$,

■ If there exists *a perfect matching*, say, M, in G_y ,

then w(M) = w(y) must hold, and both y and M are optimal for G.

The Goal – Looking for a Perfect Matching in G_y

- If we have a perfect matching for the equality subgraph G_y , then w(M) = w(y) must hold, and both M and y are optimal by Lemma 1.
 - Hence, it suffices to come up with a y, such that G_y has a perfect matching.
 - How do we make this happen?

The Goal – Looking for a Perfect Matching in G_y

- Suppose that we have a vertex cover y and a matching M in the equality graph G_y .
 - Let $U \subseteq A$ be the set of unmatched vertices in A and $U' \neq \emptyset$ be an arbitrary nonempty subset of U.
 - Explore for M-augmenting paths for vertices in U' in $G_{\mathcal{V}}$.
 - If found, then the size of M can be increased by 1.
 - If not...

- Consider a set U' of unmatched vertices. If there exists no M-augmenting path for U' in $G_{\mathcal{V}}$, then...
 - Let S be the set of vertices in A that are reachable from U' via M-alternating paths.
 - Let T be the set of vertices to which vertices in $S \setminus U'$ are matched by M.

Observations

- Since |U'| > 0, it follows that |S| > |T|.
- By the definition of S and T, there is no edge between S and $B \setminus T$ in G_y .
 - In order to form an augmenting path for U', we need to create at least one edge between them.

By adjusting the vertex cover *y* properly.

Adjusting the Cover *y*

while maintaining its feasibility.

For such an edge, say, (a, b), to appear in the equality graph G_y , where $a \in S$, $b \in B \setminus T$,

 $y_a + y_b$ needs to be decreased by the amount $(y_a + y_b) - w_{a,b}$.

We call this the "**slack**" of edge (a, b).

This suggests the following procedure for adjusting y.

■ Define $\epsilon = \min_{\substack{a \in S, \\ b \in B \setminus T}} (y_a + y_b - w_{a,b})$.

 ϵ is the minimum "slack" of the edges between S and $B \setminus T$.

- Observe that, if we
 - Decrease y_a by ϵ for all $a \in S$,
 - Increase y_b by ϵ for all $b \in T$,

The resulting y is still a valid vertex cover for G.

More vertices can be reached from U' via alternating paths.

- At least one edge between S and $B \setminus T$ will appear in G_v .
- Both the edges between S and T and
 the edges between A\S and B\T are unaffected.

All the matched edges remain in G_{ν} .

■ We lose the edges between $A \setminus S$ and T.

These edges play no role in M. So, we don't care.

The Adjusting Procedure on y w.r.t. U'

Define
$$\epsilon = \min_{\substack{a \in S, \\ b \in B \setminus T}} (y_a + y_b - w_{a,b}).$$

- Decrease y_a by ϵ for all $a \in S$ and increase y_b by ϵ for all $b \in T$. Then,
 - y remains a valid vertex cover for G.
 - The edges in M remain in G_y .
 - More vertices can be reached from U' via M-alternating paths.
- Since |S| > |T|, w(y) is strictly decreased by $\epsilon \cdot |U'|$.

Looking for an Augmenting Path in G_y

- When y is adjusted, at least one edge between S and $B \setminus T$ appears anew in G_y .
- Then, we **continue** to explore for M-augmenting paths for U'.
 - If found, the size of *M* can be increased by 1.
 - If not, we repeat the above procedure and adjust y until an M-augmenting path is found for some vertex in U'.

Description of the Algorithm

■ The algorithm starts with

$$M = \{\emptyset\}$$
 and y defined as

$$y_v \coloneqq \begin{cases} \max_{b \in B} w_{v,b} , & \text{if } v \in A, \\ 0, & \text{if } v \in B. \end{cases}$$

It is easy to verify that the initial y is a feasible vertex cover for G.

- Repeat the following, until |M| = n.
 - Pick an unmatched vertex $v \in A$.
 - Repeat the following, until an M-augmenting path P for v in G_y is found.
 - $S \leftarrow \text{vertices in } A$, reachable from $v \text{ via } M\text{-alternating paths in } G_y$. $T \leftarrow \text{vertices in } B$, to which vertices in $S \setminus \{v\}$ are matched by M.
 - Compute $\epsilon = \min_{a \in S, b \in B \setminus T} (y_a + y_b w_{a,b})$.

 Decrease y_v by ϵ for all $v \in S$ and increase y_v by ϵ for all $v \in T$.
 - Use P to match v and increase |M| by 1.
- \blacksquare Output M and y.

- The algorithm starts with a trivial M and y.
 - In each iteration,
 the algorithm either improves M or y until their weights are equal.

Correctness of the Algorithm

- By the previous observation, when an M-augmenting path is not found, the current y can be improved, and |T| strictly increases.
 - Since $T \subseteq B$, an augmenting path can be found in O(|B|) = O(n) number of updates on y.
 - Hence, the size of M can be increased until |M| = n.
 - In this case, M is a perfect matching in G_y , and both M and y are optimal.

Time Complexity of the Algorithm

- It takes *n* iterations to compute a perfect matching.
 - For each of the iteration, y is updated O(n) times.
 - In total, it takes $O(n^2)$ updates on M and y before the algorithm terminates.
- If we use a straightforward way for updating y in $O(n^2)$ time, then the algorithm takes $O(n^4)$ time.
 - Later we will see that, the Hungarian algorithm can be implemented to run in $O(n^3)$ time.

Simple $O(n^4)$ Time Implementation

Hungarian Algorithm in $O(n^4)$ Time.

- If we use the recursive procedure Aug-Path() from Slides #8, then the implementation is very simple, done as follows.
- For each unmatched vertex $u \in A$, do the following.
 - 1. Mark all vertices as unvisited.
 - 2. Repeat the following, until the procedure Aug-Path(u) on $G_y = (V, E_y)$ returns true.
 - \blacksquare Adjust y.
 - Remark all vertices as unvisited.

Hungarian Algorithm in $O(n^4)$ Time.

- Since the Procedure Aug-Path() takes $O(n^2)$ time, this implementation takes $O(n^4)$ time.
- Note that, we don't need to construct G_y .
 - It suffices to *traverse only tight edges* during DFS or BFS.
- Also note that, the set S and T needed to update y is already given by the information stored during the calls to Aug-Path() (i.e., DFS or BFS).

Just need to figure it out carefully.

Sketch of

the $O(n^3)$ Time Implementation

Hungarian Algorithm in $O(n^3)$ Time.

- Consider the algorithm framework in P.37. To make the algorithm run in $O(n^3)$ time, it is crucial that each iteration needs to be done in $O(n^2)$ time.
 - Since DFS or BFS already takes $O(n^2)$ time, it is important to **continue** from the **currently unfinished exploration** each time when y is updated, rather than restarting a new traversal.
 - Since y can be updated O(n) times, the computation of ϵ needs to be done in O(n) time.

Computing ϵ in O(n) Time

- Recall that $\epsilon = \min_{a \in S, b \in B \setminus T} (y_a + y_b w_{a,b}).$
 - To speed up the computation, we define for each $b \in B \setminus T$ a slack variable

$$\ell(b) \coloneqq \min_{a \in S} \left(y_a + y_b - w_{a,b} \right).$$

- Then ϵ can be computed in O(n) time when needed, i.e.,

$$\epsilon = \min_{b \in B \setminus T} \ell(b) .$$

- The total time we spent for computing ϵ in each iteration is $O(n^2)$.

Computing ϵ in O(n) Time

- Define for each
$$b \in B \setminus T$$
 a slack variable

$$\ell(b) \coloneqq \min_{a \in S} \left(y_a + y_b - w_{a,b} \right).$$

- The values $\ell(b)$ for all $b \in B \setminus T$ need to be updated, <u>each time</u> when a new vertex is added to the set S during DFS or BFS.
 - This can be done in O(n) time for each of such updates.
 - The total time it takes to update the values of $\ell(b)$ in each iteration is $O(n^2)$.

Concluding Notes

Maximum Weight Matching in Bipartite Graphs

- In this lecture, we introduced the Hungarian algorithm that solves the maximum weight matching and minimum weight vertex cover problems in bipartite graphs.
- The algorithm is also a constructive proof on the strong duality between matching and cover in bipartite graphs.
 - That is, $w(M^*) = w(y^*)$ must hold for any bipartite graph, whereas M^* and y^* are the optimal matching and vertex cover.

Maximum Weight Matching in General Graphs

- It is easy to see that, for general graphs,
 we do not have the strong duality between matching and vertex cover.
 - There are simple examples for which $w(M^*) < w(y^*)$.

In fact, computing a minimum weight vertex cover in general graphs is an NP-hard problem.

Maximum Weight Matching in General Graphs

- However, strong duality still exists between matching and some combinatorial object, and it leads to a polynomial time algorithm.
- The maximum weight matching in general graphs can be computed by the Edmonds' Path-Tree-Flower algorithm in $O(n^2m) = O(n^4)$ time.
 - The running time can be improved to $O(nm \log n) = O(n^3 \log n)$.
 - It is a generalization of the Blossom algorithm.