Συναρτήσεις Κυρτότηα, Σημεία Καμπής

Κωνσταντίνος Λόλας

Τι μπορούμε να "χαράξουμε"

- ① Το πεδίο ορισμού
- ② Τα σημεία τομής με άξονες
- $oldsymbol{3}$ Τη συμμετρία ως προς x'x ή y'y
- 🐠 Τη συνέχεια
- 💿 Την παραγωγισιμότητα
- ⑤ Τη μονοτονία
- Τα ακρότατα

Έμειναν

- 🕕 Το πώς "ανέρχεται" ή "κατέρχεται" (κυρτότητα)
- Αν πλησιάζει προς ευθείες (ασύμπτωτες).

Τι μπορούμε να "χαράξουμε"

- Το πεδίο ορισμού
- Τα σημεία τομής με άξονες
- 3 Τη συμμετρία ως προς x'x ή y'y
- Φ Τη συνέχεια
- Την παραγωγισιμότητα
- ⑤ Τη μονοτονία
- Τα ακρότατα

Έμειναν

- 1 Το πώς "ανέρχεται" ή "κατέρχεται" (κυρτότητα)
- Αν πλησιάζει προς ευθείες (ασύμπτωτες)

2/22

Τι μπορούμε να "χαράξουμε"

- ① Το πεδίο ορισμού
- ② Τα σημεία τομής με άξονες
- lacktriangle Τη συμμετρία ως προς x'x ή y'y
- Φ Τη συνέχεια
- Την παραγωγισιμότητα
- ⑤ Τη μονοτονία
- 🕖 Τα ακρότατα

Έμειναν

- 📵 Το πώς "ανέρχεται" ή "κατέρχεται" (κυρτότητα)
- ② Αν πλησιάζει προς ευθείες (ασύμπτωτες)

Τι μπορούμε να "χαράξουμε"

- Το πεδίο ορισμού
- ② Τα σημεία τομής με άξονες
- **③** Τη συμμετρία ως προς x'x ή y'y
- 4 Τη συνέχεια
- Την παραγωγισιμότητα
- ⑤ Τη μονοτονία
- Τα ακρότατα

Έμειναν

- Το πώς "ανέρχεται" ή "κατέρχεται" (κυρτότητα)
- Αν πλησιάζει προς ευθείες (ασύμπτωτες)

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

 $\pi.\chi$.

- Κυρτή γωνία
- Κυρτή παραβολή

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

- Κυρτή γωνία $180 < \theta < 360$
- Κυρτή παραβολή $\alpha x^2 + \beta x + \gamma$ με $\alpha > 0$

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

- Κυρτή γωνία $180 < \theta < 360$
- Κυρτή παραβολή $\alpha x^2 + \beta x + \gamma$ με $\alpha > 0$

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

- Κυρτή γωνία $180 < \theta < 360$
- Κυρτή παραβολή $\alpha x^2 + \beta x + \gamma \mu \varepsilon \alpha > 0$

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

- Κυρτή γωνία $180 < \theta < 360$
- Κυρτή παραβολή $\alpha x^2 + \beta x + \gamma$ με $\alpha > 0$

Ορισμός

Ένα σχήμα λέγεται κυρτό, αν-ν κάθε ευθύγραμμο τμήμα με άκρα εσωτερικά σημεία του σχήματος, βρίσκεται εξολοκλήρου στο σχήμα

- Κυρτή γωνία $180 < \theta < 360$
- Κυρτή παραβολή $\alpha x^2 + \beta x + \gamma$ με $\alpha > 0$

Συγκρίσεις παντού

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0 \in A$ μέγιστο, όταν

$$f(x) \le f(x_0)$$
 για κάθε $x \in A$

Ορισμός

Μία συνάρτηση f, με πεδίο ορισμού A, θα λέμε ότι παρουσιάζει στο $x_0 \in A$ τοπικό μέγιστο, όταν υπάρχει $\delta>0$ ώστε

$$f(x) \leq f(x_0)$$
 για κάθε $x \in \mathcal{A} \cap (x_0 - \delta, x_0 + \delta)$

Το x_0 λέγεται θέση ή σημείο τοπικού ακροτάτου, ενώ το $f(x_0)$ τοπικό μέγιστο της f

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- ① Το μέγιστο είναι και τοπικό ΣΩΣΤΟ
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!!
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- 3 Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο ΛΑΘΟΣ!!!!!!!!!
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- ⑤ Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- ② Το τοπικό μέγιστο είναι το μέγιστο
- Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα ΛΑΘΟΣ!!!!!!!!!!
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- Το τοπικό μέγιστο είναι το μέγιστο
- ③ Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- 🚇 Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα

- 1 Το μέγιστο είναι και τοπικό
- ② Το τοπικό μέγιστο είναι το μέγιστο
- Το μεγαλύτερο από τα τοπικά μέγιστα είναι το μέγιστο
- Αν δεν έχει μέγιστο, δεν έχει και τοπικά μέγιστα
- Υπάρχει συνάρτηση με άπειρα τοπικά μέγιστα ΣΩΣΤΟ

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- 2 Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- \bigcirc Συμπέρασμα για το $f'(x_0)$?

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- ② Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- f 2 Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- \P Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- $\mathbf{2}$ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑥ Συμπέρασμα για το $f'(x_0)$?

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- f 2 Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- ⑤ Συμπέρασμα για το $f'(x_0)$?

- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο δεξί άκρο ενός διαστήματος
- f 2 Συμπέρασμα για το $f'(x_0)$?
- Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος
- Φ Συμπέρασμα για το $f'(x_0)$?
- ⑤ Φτιάξτε συνάρτηση με τοπικό ελάχιστο στο εσωτερικό ενός διαστήματος και να υπάρχει το $f'(x_0)$
- **⑤** Συμπέρασμα για το $f'(x_0)$?

Θεώρημα Fermat

Ορισμός

Έστω μια συνάρτηση f ορισμένη σ' ένα διάστημα Δ και x_0 ένα εσωτερικό σημείο του Δ . Αν η f παρουσιάζει τοπικό ακρότατο στο x_0 και είναι παραγωγίσιμη στο σημείο αυτό, τότε: $f'(x_0)=0$

Απόδειξη

Όλα μαζί

- ① Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Όλα μαζί

- **1** Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Όλα μαζί

- **1** Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

- ① Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Αρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

- **1** Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

- **1** Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- $oldsymbol{2}$ Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα)

Άρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- Τα εσωτερικά που δεν ορίζεται η f
- Τα άκρα

- **1** Αν στο εσωτερικό δεν ισχύει f' = 0 τότε δεν έχω τ.ακρότατο
- ② Αν στο εσωτερικό δεν υπάρχει f' τότε μπορεί να έχω
- ③ Και μένουν τα άκρα (προσοχή, δεν είναι πάντα ακρότατα) Άρα

Πιθανές θέσεις ακροτάτων

- Τα εσωτερικά που f'=0
- ullet Τα εσωτερικά που δεν ορίζεται η f'
- Τα άκρα

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Έλεγχος πιθανών ακροτάτων

Έστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α,β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- Αν f'(x) > 0 στο (α, x_0) και f'(x) < 0 στο (x_0, β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

Ναι, αλλά πότε τα "πιθανά" είναι και "σίγουρα"

Να βρείτε συνθήκη για την f ώστε ένα σημείο της να είναι τοπικό μέγιστο

Έλεγχος πιθανών ακροτάτων

Έστω μια συνάρτηση f παραγωγίσιμη σ' ένα διάστημα (α, β) , με εξαίρεση ίσως ένα σημείο του x_0 , στο οποίο όμως η f είναι συνεχής.

- Φ Αν f'(x)>0 στο (α,x_0) και f'(x)<0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό μέγιστο της f
- Φ Αν f'(x)<0 στο (α,x_0) και f'(x)>0 στο (x_0,β) , τότε το $f(x_0)$ είναι τοπικό ελάχιστο της f
- Αν η f'(x) διατηρεί πρόσημο στο $(\alpha,x_0)\cup(\beta,x_0)$ τότε το $f(x_0)$ δεν είναι τοπικό ακρότατο και η f είναι γνησίως μονότονη στο (α,β)

Έστω η συνάρτηση $f(x)=2\alpha\ln x-\frac{\beta}{x}+3\alpha$, όπου α , $\beta\in\mathbb{R}$. Αν η f παρουσιάζει ακρότατο στο 1 το 5, να βρείτε τα α και β

Λόλας 11/22 Συναρτήσεις

Δίνεται η συνάρτηση $f(x) = e^x - \alpha x$, για την οποία ισχύει

$$f(x) \ge 1$$
 για κάθε $x \in \mathbb{R}$

Να αποδείξετε ότι $\alpha=1$

Λόλας 12/22 Συναρτήσεις

Αν για κάθε x > 0 ισχύει

$$\alpha \ln x \le x - 1, \alpha \in \mathbb{R}$$

να βρείτε την τιμή του α

Λόλας Συναρτήσεις 13/22

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0) = 1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0 = 0$

Λόλας Συναρτήσεις 14/22

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0) = 1 και ισχύει

$$f(x) \geq 2e^x - x - 1$$
 για κάθε $x \in \mathbb{R}$

- Να βρείτε την εφαπτομένη της C_f στο $x_0 = 0$
- Να υπολογίσετε το $\lim_{x \to +\infty} f(x)$

Λόλας Συναρτήσεις 14/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία παραγωγίσιμη συνάρτηση με f(0)=1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $f(x) \ge 1$ για κάθε $x \in \mathbb{R}$
- f''(x) > 0 για κάθε $x \in \mathbb{R}$

Να μελετήσετε τη συνάρτηση f ως προς τη μονοτονία

Λόλας Συναρτήσεις 15/22

Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- Τις πιθανές θέσεις ακροτάτων της η
- ③ Το σύνολο τιμών της ქ

Λόλας Συναρτήσεις 16/22

Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- f 0 Τα κρίσιμα σημεία της f
- 2 Τις πιθανές θέσεις ακροτάτων της f
- Το σύνολο τιμών της f

Λόλας Συναρτήσεις 16/22

Δίνεται η συνάρτηση
$$f(x)= \begin{cases} x^3 &, -1 \leq x < 1 \\ (x-2)^2 &, 1 \leq x \leq \frac{5}{2} \end{cases}$$
 . Να βρείτε

- f 0 Τα κρίσιμα σημεία της f
- $oldsymbol{ ilde{Q}}$ Τις πιθανές θέσεις ακροτάτων της f
- 3 Το σύνολο τιμών της f

Λόλας Συναρτήσεις 16/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη και ισχύει:

$$f^3(x) + 3f(x) = x^3 + x$$
 για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας Συναρτήσεις 17/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(0)=1 και ισχύει:

$$f^3(x) + e^x = f(f(x)) + x$$
 για κάθε $x \in \mathbb{R}$

Να δείξετε ότι η f δεν έχει ακρότατα

Λόλας Συναρτήσεις 18/22

Έστω $f: \mathbb{R} \to \mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(1) = 1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- **1** Να βρείτε την εφαπτομένη της C_f στο $x_0 = 1$

Λόλας Συναρτήσεις 19/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(1) = 1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- **1** Να βρείτε την εφαπτομένη της C_f στο $x_0 = 1$
- Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα

Λόλας Συναρτήσεις 19/22

Έστω $f:\mathbb{R}\to\mathbb{R}$ μία συνάρτηση η οποία είναι παραγωγίσιμη με f'(1) = 1 η οποία είναι δύο φορές παραγωγίσιμη και ισχύουν:

- $f(x) \ge x$ για κάθε $x \in \mathbb{R}$
- $(f^2(x))' \neq 0$ για κάθε $x \in \mathbb{R}$
- **1** Να βρείτε την εφαπτομένη της C_f στο $x_0 = 1$
- Να αποδείξετε ότι η f δεν έχει ακρότατα και είναι γνησίως αύξουσα
- 3 Να βρείτε το $\lim_{r\to 0^+} f\left(\frac{1}{r}\right)$

Λόλας Συναρτήσεις 19/22

Δίνεται η συνάρτηση $f(x)=|e^x+\alpha x-1|$, $x\in\mathbb{R}$ η οποία είναι παραγωγίσιμη.

① Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

② Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x) = e^x - x - 1, x \in \mathbb{R}$$

③ Αν η f είναι ορισμένη στο B = [-1, 1], να βρείτε το f(B)

Λόλας Συναρτήσεις 20/22

Δίνεται η συνάρτηση $f(x) = |e^x + \alpha x - 1|, x \in \mathbb{R}$ η οποία είναι παραγωγίσιμη.

 $oldsymbol{1}$ Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x)=e^x-x-1, x\in\mathbb{R}$$

Λόλας Συναρτήσεις 20/22

Δίνεται η συνάρτηση $f(x) = |e^x + \alpha x - 1|, x \in \mathbb{R}$ η οποία είναι παραγωγίσιμη.

 $oldsymbol{1}$ Να αποδείξετε ότι η f παρουσιάζει ελάχιστο και στη συνέχεια ότι

$$f'(0) = 0$$

Να βρείτε την τιμή του α και να δείξετε ότι

$$f(x)=e^x-x-1, x\in\mathbb{R}$$

3 Αν η f είναι ορισμένη στο B = [-1, 1], να βρείτε το f(B)

Λόλας Συναρτήσεις 20/22

Έστω $f:[0,2]\to\mathbb{R}$ μια συνάρτηση με f(0)=1, f(1)=0, f(2)=3 η οποία είναι παραγωγίσιμη. Αν $f'\uparrow(0,2)$, να δείξετε ότι υπάρχει μοναδικό $x_0\in(0,2)$ τέτοιο ώστε $f'(x_0)=0$

Λόλας Συναρτήσεις 21/22

Έστω $f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha,f(\alpha))$ και $(\beta,f(\beta))$ και η C_f είναι πάνω από τη C_q στο διάστημα (α,β) . Να δείξετε ότι:

- ① Υπάρχει $\xi \in (\alpha, \beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_g , να γίνεται μέγιστη
- ② Οι εφαπτόμενες των C_f και C_g στα σημεία $(\xi,f(\xi))$ και $(\xi,g(\xi))$ είναι παράλληλες

Λόλας Συναρτήσεις 22/22

Έστω $f,g:\mathbb{R}\to\mathbb{R}$ δύο συναρτήσεις παραγωγίσιμες που έχουν κοινά σημεία τα $(\alpha,f(\alpha))$ και $(\beta,f(\beta))$ και η C_f είναι πάνω από τη C_g στο διάστημα (α,β) . Να δείξετε ότι:

- ① Υπάρχει $\xi \in (\alpha, \beta)$, τέτοιο ώστε η κατακόρυφη απόσταση των σημείων με τετμημένη ξ των C_f και C_g , να γίνεται μέγιστη
- ② Οι εφαπτόμενες των C_f και C_g στα σημεία $(\xi,f(\xi))$ και $(\xi,g(\xi))$ είναι παράλληλες

Λόλας Συναρτήσεις 22/22

Έστω ότι η f έχει τοπικό μέγιστο στο x_0 . Άρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 .

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Apa $0 \le k \le 0$, of Adolf $f(x_0) = 0$ (1100 of 1000)

1/1

Έστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Αρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ Πίσω στη θεωρία

Έστω ότι η f έχει τοπικό μέγιστο στο x_0 . Άρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Αρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ (Πίσω στη θεω

Έστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$\begin{split} f'(x_0) &= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R} \\ \operatorname{Fia} x < x_0 &\implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg} \\ &\qquad \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \\ \operatorname{Fia} x > x_0 &\implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg} \\ &\qquad \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \leq 0 \end{split}$$

 $\mathsf{A}\mathsf{p}\mathsf{a}\ 0 \leq k \leq 0$, $\delta\mathsf{\eta}\lambda\mathsf{a}\delta\mathsf{\dot{\eta}}\ f'(x_0) = 0$.Πίσω στη θεωρία

Έστω ότι η f έχει τοπικό μέγιστο στο x_0 . Αρα $f(x) \leq f(x_0)$ για κάθε x γύρω από το x_0 . Αφού f παραγωγίσιμη, θα υπάρχει το όριο

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = k \in \mathbb{R}$$

$$\operatorname{Fia} x < x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} > 0 \text{ arg}$$

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

$$\operatorname{Fia} x > x_0 \implies \frac{f(x) - f(x_0)}{x - x_0} < 0 \text{ arg}$$

$$\lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

$$\operatorname{Arg} 0 < k < 0 \text{ arg} \text{ arg} \text{ brown}$$

Άρα $0 \leq k \leq 0$, δηλαδή $f'(x_0) = 0$ Πίσω στη θεωρία