# BIO4J PABLO PAREJA GRAPHDEVROOM 2014

# WHAT IS BIO4J

#### IN ONE SENTENCE

**Bio4j** is a bioinformatics *graph*-based data platform **integrating** most data available in the most representative **open data sources** around **protein information** available today.

#### DATA

- UniProt KB (SwissProt + Trembl)
- Gene Ontology (GO)
- UniRef (50,90,100)
- RefSeq
- NCBI taxonomy
- Expasy Enzyme DB

#### OPEN!

- code AGPLv3
- data integrates only open data
- implementation & release process is 100% public and totally transparent

# WHY BIO4J?

## **BIOLOGY & DBS TODAY**

Highly **interconnected** overlapping knowledge **spread** through different databases





# WHY GRAPHS

In most cases all data is modeled in or sometimes even just as plain *CSV* .

#### WHY GRAPHS

That might be OK for simple scenarios but as the **amount** and **diversity** of **data grows**, **domain models** become crazily **complicated**!

#### Doesn't look very compelling right?:)



## WHY GRAPHS

With a relational paradigm the double implication

Entity <-> Table

does not go both ways

#### NOT-SO-GOOD IMPLICATIONS

- Auxiliary tables
- Artificial IDs
- Dealing with raw tables (in spite of Entity-relationship diagrams)
- Integrating new knowledge becomes difficult

#### BIOLOGY != TABLE

**Life** in general and **biology** in particular are probably not 100% like a graph...

but one thing's sure, they

#### WHY GRAPH DATABASES

- Data stored in a way that semantically represents its own structure
- Incorporating new data is easy -> scalability

#### WHY GRAPH DATABASES

 Vertex-centric (local) indices allow for complex traversals -> overcoming supernode problem

# CLOUD

- data as a service
- machine configurations

# DETAILS ABOUT BIO4J

# A BIT OF HISTORY

From the beginnings to the BigData platform it is today

#### **HOW IT ALL STARTED**

- Need for massive access to Gene Ontology annotations
- BG7 bacterial genome annotation system
- Need for massive direct access to protein information

#### MORE AND MORE DATA!

- As other data sources were becoming a bottleneck they were being added to Bio4j
- First it was Uniprot KB, then Uniref and we didn't stop yet:)

## **NUMBERS**

- 10<sup>9</sup> edges
- $2 \times 10^8$  nodes
- 6 × 10<sup>8</sup> properties
- 150 edge types
- 40 node types

#### BIO4J STRUCTURE

Bio4j importing process is **modular** and **customizable** allowing you to import just the data you are interested in.

## DATA SOURCES - MODULES I

- Gene Ontology (GO)
- ExPASy Enzyme DB
- RefSeq

#### DATA SOURCES - MODULES II

- UniRef -> 50, 90, 100
- NCBI taxonomy tree -> GI index
- Uniprot KB -> Swissprot/Trembl, interactions...

#### DATA SOURCES - MODULES III

Just keep in mind that you must be **coherent**e.g. you cannot import protein interactions if you didn't import any
protein yet!

# **BIO4J APIS**

- 1. abstract domain model
- 2. Blueprints implementation
- 3. technology-specific versions

#### DOMAIN MODEL

Bio4j database has a **well-defined** domain model and all nodes and relationships comply with this abstract model



#### WHY DOMAIN MODEL?

- abstract over Blueprints
- more precise typing
- implementations can use technology-specific features

#### **KEY ADVANTAGE**

Different graph topologies at the storage level, same domain model.

Example: use type nodes in Titan, labels in Neo4j.

#### **BLUEPRINTS LAYER**

A default Blueprints implementation of the abstract model.

Apart from the set of interfaces developed as the **first layer** for the *domain model* there's an **extra layer** that uses *Blueprints*. This way we're going one step further for making the domain model **independent** from the choice of *database technology* 

# TECHNOLOGY-SPECIFIC

Optimizations, features, etc.

- Neo4j
- Titan (WIP)
- OrientDB (planned)

# WHY NEO4J

- wide adoption
- stable
- Cypher

# WHY TITAN

- local! indexes
- on-disk access
- **type** definitions -> *constraints!*

## **BIO4J AND THE CLOUD**

- Interoperability and data distribution
- Backup and storage
- Scalability
- Applications and service providers on the cloud
- Cost-effective

# **DEV AND RELEASE PROCESS**

- coordinate data and code
- Semantic Versioning
- Cloud integration, distribution, deployment, ...

### HOW?

- Statika cloud, data + code, modules (see next talk)
- sbt build Java + Scala, automated Bio4j-specific test & release
- git + github versioning, docs, collaboration, coordination

# HOW TO USE BIO4J?

# **HOW WE USE IT**

- bg7 genome annotation
- mg7 metagenomics analysis
- comparative genomics, network analysis, genome assembly, ...

## CASE STUDY II

#### **Ohio State University**

- Integration and analysis of Chip-seq data
- Modeling genomic information and gene regulatory networks

## CASE STUDY III

#### **Berkeley Phylogenomics Group**

 Graph database for Big Data challenges in genomics developed on top of Bio4j

# **COMMUNITY**

- @bio4j twitter
- bio4j github org
- bio4j-user google group
- bio4j linkedin

# WHO'S DOING BIO4J?

# OH NO SEQUENCES!

#### Era7 bioinformatics R&D group

- web -> ohnosequences.com
- **Github** -> ohnosequences

## **TEAM**

- Pablo Pareja project leader & main dev
- Eduardo Pareja-Tobes technology & architecture
- Raquel Tobes bio data integration

# **TEAM**

- Alexey Alekhin
   Statika, release process, dev
- Marina Manrique bio data integration
- Evdokim Kovach dev