

⑯ BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

⑯ Offenlegungsschrift
⑯ DE 196 17 552 A 1

⑮ Int. Cl. 8:
H 01 S 3/133
B 41 C 1/05
G 03 F 7/20
B 23 K 26/00

DE 196 17 552 A 1

⑯ Aktenzeichen: 196 17 552.6
⑯ Anmeldetag: 2. 5. 96
⑯ Offenlegungstag: 6. 11. 97

⑰ Anmelder:
Heidelberger Druckmaschinen AG, 69115
Heidelberg, DE

⑱ Erfinder:
Meyer, Helmut, 69168 Wiesloch, DE; Schunn,
Johann, 69181 Leimen, DE

⑲ Für die Beurteilung der Patentfähigkeit
in Betracht zu ziehende Druckschriften:

DE	42 12 777 C2
DE	27 37 345 C3
DE	33 42 111 A1
DE	93 02 494 U1
DE	93 02 494 U1
DD	2 84 784 A5
US	53 51 617
US	48 84 279
US	43 99 541
EP	04 77 841 A2

Li,D., et.al.: A scanning temperature control system
for laser diodes. In: Meas. Sci. Technol. 4, 1993,
S.1111-1116;
BAUER, Michael: Thermoelektrische
Temperaturstabilisierung von Laserdioden und
Detektoren. In: Opto Elektronik Magazin, Vol.5, No.3,
1989, S.321-324;

⑳ Verfahren und Vorrichtung zur Regelung der Temperatur in einer mit Laserlicht arbeitenden
Druckplatten-Beschriftungseinheit, insbesondere einer Offset-Druckmaschine

㉑ Eine mit Laserlicht arbeitende Druckplatten-Beschrif-
tungsvorrichtung (1) zur Beschriftung einer ebenen oder
einer auf einen Druckmaschinenzylinder (2) aufgespannten
Druckplatte (4) besitzt eine oder mehrere Druckplatten-Beschrif-
tungseinheiten (5), deren Laserdiodeeinheiten (10) im
Gegentakt mit einem in der Nähe der Laserdiodeeinheiten
(10) angeordneten Heizelement (18) betrieben werden, um
dadurch die Temperatur der Laserdiodeeinheiten (10) wäh-
rend des Beschriftungsvorganges im wesentlichen konstant
zu halten.

DE 196 17 552 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 09.97 702 045/362

10/25

Beschreibung

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Regelung der Temperatur in einer mit Laserlicht arbeitenden Druckplatten-Beschriftungseinheit, insbesondere einer Offset-Druckmaschine, gemäß dem Oberbegriff von Anspruch 1 und 8.

Für die Beschriftung von Druckplatten, die in Druckmaschinen Verwendung finden, werden heutzutage neben der herkömmlichen Methode einer Belichtung mittels Filmen in verstärktem Maße digital arbeitende Beschriftungseinheiten eingesetzt, denen die Bildinformation in Form von digitalen, in der Druckvorstufe erzeugten Bit-Mustern zugeführt wird, die von den Beschriftungseinheiten auf die Druckplatte übertragen werden. Die Beschriftungseinheiten besitzen hierfür eine Lichtquelle, deren Licht durch ein optisches Linsensystem auf die jeweilige Stelle der Druckplatte fokussiert wird und die je nach dem, ob auf der Druckplatte an der entsprechenden Stelle ein Bildpunkt erzeugt werden soll, ein- oder ausgeschaltet wird.

Aus der US 5,351,617 ist eine mit Laserlicht arbeitende Beschriftungseinheit für die mit einer speziellen Beschichtung versehene und auf den Druckplattenzyylinder einer Offset-Druckmaschine aufgespannte Druckplatte bekannt, bei der das Laserlicht durch eine Laserdiode erzeugt wird und anschließend über ein optisches Lichtleiterkabel einer nahe dem Druckplattenzyylinder angeordneten optischen Fokussierungseinheit zugeführt wird, die motorisch parallel zur Druckplattenzyllinderlängsachse über die Oberfläche des Druckplattenzyinders bewegt wird und die das Laserlicht auf die entsprechenden Stellen der Druckplatte fokussiert. Durch entsprechendes Drehen des Druckplattenzyinders erfolgt eine Bebilderung der auf den Zylinder aufgespannten Druckplatte auf deren gesamter Fläche.

Die US 5,351,617 zeigt weiterhin eine Vorrichtung, bei der mehrere optische Fokussierungseinheiten, die über optische Lichtleiterkabel an entsprechende Laserlichtquellen angeschlossen sind, über eine ebene Druckplatte bewegt werden und diese an den entsprechenden Stellen belichten.

Bei den beschriebenen, mit Laserdioden arbeitenden Beschriftungs- oder Bebildierungseinheiten tritt das Problem auf, daß die Intensität des Laserlichts in hohem Maße von der Temperatur der jeweiligen Laserlichtquelle, in diesem Falle einer Laserdiode, beeinflußt wird. So sind aufgrund der bekannterweise im wesentlichen exponentiellen Abhängigkeit der Intensität des erzeugten Laserlichts von der Temperatur bei einer Laserdiode bereits Temperaturschwankungen im Bereich von 0,5° bis 2°C ausreichend, um das Beschriftungsergebnis derart nachteilig zu beeinflussen, daß die dadurch hervorgerufenen Qualitätseinbußen im fertigen Druckbild ohne weiteres durch das menschliche Auge wahrgenommen werden können.

Die Qualitätseinbußen ergeben sich dadurch, daß bei einer schwankenden Lichtintensität des Laserlichts, die auf eine zu geringe oder zu hohe Temperatur der jeweiligen Laserdiode zurückzuführen ist, auf der Druckplatte zu erzeugende Bildpunkte stark variieren, so daß das mit der Druckplatte erzeugte Druckbild Fehler aufweist, die zu den oben beschriebenen wahrnehmbaren Qualitätseinbußen führen.

Die Temperaturschwankungen der Laserdioden werden bei der Beschriftung einer Druckplatte insbesondere dadurch erzeugt, daß die Laserdioden im eingeschalteten Zustand einen Großteil der ihnen zugeführten

elektrischen Energie in Joulsche-Wärme umwandeln, und im ausgeschalteten Zustand, d. h. an den Stellen, an denen keine Bebilderung erfolgt, von den Laserdioden keine Wärme erzeugt wird. In der Praxis treten hierdurch insbesondere in den Bereichen der Druckplatte, in denen von der entsprechenden Laserdiode nur vereinzelte Bildpunkte gesetzt werden, hohe Qualitäts-einbußen auf, da die über einen längeren Zeitraum ausgeschaltete Laserdiode zwischenzeitlich abkühlt und hierdurch beim Wiedereinschalten, bedingt durch die zum Aufheizen der Laserdiode notwendige Zeitdauer, eine geringere Lichtintensität erzeugt.

Durch die Erfindung soll die Aufgabe gelöst werden, ein Verfahren zur Regelung der Temperatur in einer mit Laserlicht arbeitenden Druckplatten-Beschriftungseinheit zu schaffen, mit welchem die Temperatur der das Laserlicht erzeugenden Laserlichtquelle, insbesondere einer Laserdiode, in hohem Maße und mit einfachen Mitteln konstant gehalten werden kann.

Weiterhin ist es eine Aufgabe der vorliegenden Erfindung, eine Vorrichtung zu schaffen, mit der sich die Temperatur der Laserlichtquelle einer Druckplatten-Beschriftungseinheit, insbesondere einer Laserdiode, mit einfachen Mitteln in effizienter und kostengünstiger Weise konstant halten läßt.

Diese Aufgabe wird gemäß der Erfindung durch die Merkmale von Anspruch 1 und 8 gelöst.

Weitere Merkmale der Erfindung sind in den Unter-ansprüchen enthalten.

Durch die Erfindung ergibt sich insbesondere der Vorteil, daß sich auch bei Beschriftungseinheiten mit einer größeren Anzahl von einzelnen Laserdiode-einheiten und zugehörigen Fokussierungsoptiken eine hohe Konstanz und damit verbunden eine hohe Qualität bei der Erzeugung der einzelnen Bildpunkte auf der Druckplatte über das gesamte Bild hinweg erzielen läßt.

Weiterhin besitzt die erfundungsgemäße Vorrichtung den Vorteil, daß sie sich in einfacher und kostengünstiger Weise bei bestehenden Druckplatten-Beschrif-tungseinheiten, sowohl für ebene Druckplatten als auch für auf einen Druckplattenzyylinder aufgespannte Druckplatten nachrüsten läßt.

Die Erfindung wird im folgenden mit Bezug auf die Zeichnungen anhand bevorzugter Ausführungsformen beschrieben.

In den Zeichnungen zeigen

Fig. 1 eine schematische Darstellung von zwei an einem Druckplattenzyylinder einer Druckmaschine angeordneten Druckplatten-Beschriftungseinheiten mit erfundungsgemäßen Temperaturregelungsvorrichtungen,

Fig. 2 einen elektrischen Schaltplan einer bevorzugten Ausführungsform der erfundungsgemäßen Tempe-ratur-Regelungsvorrichtung,

Fig. 3 einen Verlauf der am Widerstand beziehungs-weise an der Laserdiode anliegenden elektrischen Span-nung beziehungsweise der vom Widerstand bzw. der Diode abgegebenen Wärmemenge bei einer ersten Aus-führungsform der Erfindung, bei der die am Widerstand anliegende Spannung bei Einschalten der Laserdiode auf Null heruntergefahren wird,

Fig. 4 eine weitere Ausführungsform der Erfindung, bei der am Heizelement bei ausgeschalteter Laserdiode-einheit eine bestimmte Wärmemenge erzeugt wird, die nach Einschalten der Laserdiode ein um eine vorherbestimmten Wert verringert wird.

Die in Fig. 1 dargestellte Vorrichtung 1 zum Beschrif-ten einer auf einen Druckplattenzyylinder 2 einer Druck-maschine aufgespannten Druckplatte 4 weist eine oder

mehrere, beispielsweise 16 einzelne Druckplatten-Beschriftungseinheiten 5 auf, von denen in Fig. 1 insgesamt aus darstellungstechnischen Gründen lediglich zwei Einheiten gezeigt sind. In gleicher Weise wie zum Beschriften einer auf einen Druckmaschinenzylinder 2 aufgespannten Druckplatte 4 können die Beschriftungseinheiten 5 ebenfalls zur Beschriftung von ebenen Druckplatten eingesetzt werden. Jede der Beschriftungseinheiten 5 umfaßt eine in der Nähe der Druckplatte 4 angeordnete Fokussierungsoptik 6, die über einen optischen Lichtleiter 8 an eine Laserdiodeeinheit 10 angeschlossen ist. Die optische Fokussierungsoptik 6 fokussiert das von der Laserdiodeeinheit 10 erzeugte Laserlicht auf einen, auf der Druckplatte 4 zu erzeugenden Bildpunkt, wo es einen dem Bildpunkt entsprechenden Bereich aus der Oberflächenschicht der Druckplatte 4 entfernt, so daß eine darunterliegende, Druckfarbe annehmende Schicht freigelegt wird. Der Aufbau und die Zusammensetzung einer solchen Druckplatte sind beispielsweise aus der US 5,351,617 bekannt und werden hier nicht weiter beschrieben.

Die Steuerung der Laserdiodeeinheit 10 erfolgt über eine Steuerungseinrichtung 12, die die Laserdiodeeinheit in Abhängigkeit von einem zu setzenden oder nicht zu setzenden Bildpunkt entsprechend einem in der Druckvorstufe erzeugten Bit-Muster ein- oder ausschaltet.

Bei der bevorzugten, in Fig. 1 dargestellten Ausführungsform der Erfindung sind die Laserdiodeeinheiten 10 in einem Gehäuse 14 untergebracht, welches auf einem Grund- oder Trägerkörper 16 befestigt ist. In der Nähe der Laserdiodeeinheit 10, vorzugsweise innerhalb des Gehäuses 14, ist ein Heizelement 18 angeordnet, welches durch die Steuerungseinrichtung 12 betätigt wird. Die Betätigung des Heizelements 18 erfolgt dabei durch die Steuerungseinrichtung 12 im Wechsel oder im Gegentakt mit der Laserdiodeeinheit 10 in der Weise, daß bei ausgeschalteter Laserdiodeeinheit 10 das Heizelement 18 betätigt wird und dies die abgeschaltete Laserdiodeeinheit 10 erwärmt. Beim Einschalten der Laserdiodeeinheit 10, d. h. beim Beschriften der Druckplatte 4 mit einem Bildpunkt, wird das Heizelement 18 ausgeschaltet, so daß von ihm während der Zeit, in der die Laserdiodeeinheit 10 eingeschaltet ist, keine Wärmeenergie erzeugt wird. Bei der bevorzugten Ausführungsform der Erfindung wird das Heizelement 18 durch einen Ohmschen Widerstand gebildet, der im Wechsel mit der Laserdiodeeinheit 10 entsprechend an eine hohe oder an eine niedrige elektrische Spannung angeschlossen wird. In gleicher Weise kann das Heizelement 18 durch ein beliebiges sonstiges Joulsche Wärme erzeugendes elektronisches Bauteil gebildet werden, das im Gegentakt zur Laserdiodeeinheit 10 an eine entsprechende Strom- und/oder Spannungsquelle angeschlossen wird. Ein solches Bauteil kann beispielsweise ein Transistor, eine Diode oder ein sogenanntes Peltier-Element etc. sein.

In gleicher Weise, wie bei der in Fig. 1 gezeigten Anordnung des Heizelements 18 im Gehäuse 14 der Laserdiodeeinheit 10, kann das Heizelement 18 ebenfalls außerhalb des Gehäuses 14 beispielsweise auf diesem oder auf dem Grundkörper 16 angeordnet sein. Bei einer weiteren Ausführungsform der Erfindung kann es ferner vorgesehen sein, den die Beschriftungseinheit 5 tragenden Grundkörper 16 der Vorrichtung 1 konstant zu kühlen oder zu heizen, beispielsweise dadurch, daß der Grundkörper 16 im Inneren hohl ausgebildet ist und der Innenraum von einem entsprechenden Kühl- oder Wär-

me-Transportmedium gewünschter Temperatur, wie durch die Pfeile 20, 22 angedeutet, durchströmt wird. Anstelle eines von einem Kühl- oder Wärmemedium durchströmten Grundkörpers 16 kann dieser in gleicher Weise auch elektrisch beheizt werden. Hierdurch läßt sich unabhängig von der Regelung der Temperatur durch das Heizelement 18 der Laserdiodeeinheit 10 und/oder dem Heizelement 18 eine unabhängige Vor temperatur aufprägen, so daß beispielsweise der Arbeitspunkt einer aus mehreren, z. B. aus 16 Druckplatten-Beschriftungseinheiten 5 aufgebauten Druckplatten-Beschriftungsvorrichtung 1, beispielsweise in Abhängigkeit von der jeweiligen Umgebungstemperatur für alle Beschriftungseinheiten 5 gemeinsam verändert werden kann.

Die Regelung der Temperatur der Laserdiodeeinheit 10 durch das Heizelement 18 kann beispielsweise mit einer in Fig. 2 dargestellten elektronischen Schaltungsanordnung 30 vorgenommen werden. Die Schaltungsanordnung 30 besitzt eine Strom- und/oder Spannungsquelle 32, an deren einen Pol beispielsweise den Plus-Pol, die Steuerungseinrichtung 12 sowie das Heizelement 18 und parallel dazu die Laserdiodeeinheit 10 angeschlossen sind. Das Heizelement 18 sowie die Laserdiodeeinheit 10 sind weiterhin über jeweils zugeordnete Leistungstransistoren 34 und 36 mit dem zweiten Pol der Strom- und/oder Spannungsquelle 32 verbunden. Die Basis des Leistungstransistors 34 des Heizelements 18 ist vorzugsweise über einen festen oder regelbaren Widerstand 35 mit der Steuerungseinrichtung 12 verbunden. Die Basis des Leistungstransistors 36 der Laserdiodeeinheit 10 ist vorzugsweise über einen zweiten festen oder regelbaren Widerstand 37 sowie eine invertierende Schmitt-Triggerschaltung 38 mit der Steuerungseinrichtung 12 verbunden. Die Steuerungseinrichtung 12 steuert die Basen der Leistungstransistoren 34 und 36 im Gegentaktbetrieb, so daß bei ausgeschalteter Laserdiodeeinheit 10 das Heizelement 18 von einem Strom durchflossen wird, dessen Größe über den Widerstand 35 für das jeweilige Heizelement 18 einer Druckplatten-Beschriftungseinheit 5 entsprechend eingestellt werden kann. Hierbei wird aufgrund des invertierenden Schmitt-Triggers 38 das an der Basis des Leistungstransistors 36 der Laserdiodeeinheit 10 anliegende Signal invertiert, so daß der Leistungstransistor 36 sperrt und die Laserdiodeeinheit 10 ausgeschaltet bleibt. Zum Einschalten der Laserdiodeeinheit 10 wird von der Steuerungseinrichtung 12 ein Signal umgekehrter Polarität erzeugt und entsprechend der Leistungstransistor 34 des Heizelements 18 gesperrt sowie der Leistungstransistor 36 aufgrund der invertierenden Wirkung der Schmitt-Triggerschaltung 38 durchgeschaltet, so daß die Laserdiodeeinheit 10 von einem Strom durchflossen wird, dessen Größe über den Widerstand 37 einstellbar ist. Das Erzeugen der Signale durch die Steuerungseinrichtung 12 erfolgt dabei in Abhängigkeit von einem zu setzenden Bildpunkt auf der Druckplatte 4.

Der Verlauf der am Heizelement 18 anliegenden Spannung U_R sowie der zur gleichen Zeit an der Laserdiodeeinheit 10 anliegende Spannung U_{LD} sind in Fig. 3 in idealisierter Form dargestellt. Wie sich aus Fig. 3 erkennen läßt, wird das Heizelement 18 während der Vorwärmphase V mit der Spannungsquelle 32 oder in äquivalenter Weise mit einer entsprechenden Stromquelle verbunden und gibt dabei eine bestimmte Wärmemenge Q_R ab, deren Größe über den regelbaren Widerstand 35 vorzugsweise so eingeregelt wird, daß sich

die Temperatur der zu dieser Zeit abgeschalteten Laserdiodeeinheit 10 auf eine gewünschte Arbeitstemperatur einstellt. Die an der Laserdiodeeinheit 10 während der Vorwärmphase V bei dieser Ausführungsform der Erfindung anliegende Spannung U_{LD} beträgt vorzugsweise 0 Volt, so daß auch die von der Laserdiodeeinheit 10 erzeugte Wärmemenge pro Zeiteinheit entsprechend 0 J (Joule) beträgt. In der sich anschließenden Beschriftungsphase B wird die Laserdiodeeinheit 10 durch Anlegen der Spannung U_{LD} eingeschaltet und zur gleichen Zeit, d. h. im Wechsel oder im Gegenakt dazu das Heizelement 18 ausgeschaltet. Bei dieser Ausführungsform der Erfindung sind die von der Laserdiodeeinheit 10 abgegebene Wärmemenge pro Zeiteinheit Q_{LD} und die vom Heizelement 18 abgegebene Wärmemenge pro Zeiteinheit Q_R vorzugsweise im wesentlichen gleich, wobei in Abhängigkeit von der Anordnung des Heizelements 18 beziehungsweise der Vortemperierung des Grundkörpers 16 oder der insgesamt abgestrahlten thermischen Leistung, die vom Heizelement 18 abgestrahlte Wärmemenge Q_R auch kleiner oder größer als die von der Laserdiodeeinheit 10 abgestrahlte Wärmemenge Q_{LD} sein kann. Ein Abgleich der Wärmemengen kann beispielsweise über die regelbaren Widerstände 35, 37 der in Fig. 2 dargestellten Schaltungsanordnung erfolgen, wobei der Abgleich vorzugsweise so erfolgt, daß die Temperaturschwankungen zwischen Ein- und Ausschalten der Laserdiodeeinheit möglichst klein sind.

Bei einer weiteren Ausführungsform der Erfindung wird das Heizelement 18, wie in Fig. 4 gezeigt, auch bei eingeschalteter Laserdiodeeinheit 10 mit einer vorzugsweise einstellbaren Grundspannung U_{R1} , beziehungsweise einem entsprechenden Grundstrom versorgt und gibt dabei eine erste Grundwärmemenge Q_{R1} ab, die im oberen Diagramm von Fig. 4 als gestrichelte Linie dargestellt ist. Bei ausgeschalteter Laserdiodeeinheit 10 ist das Heizelement 18 an eine zweite höhere Spannung U_{R2} angeschlossen, wodurch es die Wärmemenge Q_{R2} pro Zeiteinheit erzeugt. Die Differenz zwischen den in dieser Ausführungsform der Erfindung vom Heizelement 18 abgegebenen Wärmemengen Q_{R1} und Q_{R2} ist vorzugsweise so gewählt, daß die Temperaturschwankungen beziehungsweise die Temperaturdifferenz der Laserdiodeeinheit 10 zwischen ausgeschaltetem und eingeschaltetem Zustand minimal wird. Bevorzugterweise besitzt die vom Heizelement 18 bei eingeschalteter Laserdiodeeinheit 10 erzeugte Wärmemenge Q_{R1} einen Wert, dessen Größe der Wärmemenge Q_{R2} vermindert um die Differenz aus der von der Laserdiodeeinheit 10 abgegebenen Wärmemenge Q_{LD} und der Wärmemenge Q_{R2} entspricht; oder in Formeln ausgedrückt:

$$Q_{R1} = Q_{R2} - (Q_{LD} - Q_{R2}),$$

wobei vorzugsweise die Wärmemenge Q_{R2} kleiner als die Wärmemenge Q_{LD} ist.

Die Wärmemengen Q_{R1} , Q_{R2} und Q_{LD} sowie die entsprechenden Spannungen U_{R1} , U_{R2} und U_{LD} , insbesondere die Differenz zwischen Q_{R2} und Q_{R1} , können jedoch auch einen anderen Wert besitzen, der in Abhängigkeit von der an die Umgebung abgestrahlten Wärmemenge pro Zeiteinheit, der thermischen Leitfähigkeit der einzelnen Bauelemente, der Anordnung und Ausbildung des Heizelementes 18, der Vortemperierung des Trägerkörpers 16 oder Gehäuses 14 etc. vorzugsweise empirisch durch Einstellen der Spannung und/oder des

Stromes über die einstellbaren Widerstände 35, 37 in der Weise bestimmt wird, daß die Temperaturdifferenzen der Laserdiodeeinheit 10 möglichst klein werden.

Das Einschalten der Laserdiodeeinheit 10 und das entsprechende Ausschalten des Heizelements 18 erfolgen vorzugsweise gleichzeitig. Es kann jedoch auch vorgesehen sein, daß sich die Zeitspannen, in denen die Laserdiodeeinheit 10 ein- und das Heizelement 18 ausgeschaltet ist, überschneiden, so daß das Heizelement 18 z. B. schon kurze Zeit vor dem Ausschalten der Laserdiodeeinheit 10 eingeschaltet werden kann. In gleicher Weise kann das Heizelement 18 anschließend eine kurze Zeitspanne über den Zeitpunkt des Einschaltens der Laserdiodeeinheit 10 hinaus eingeschaltet bleiben.

Bei einer weiteren, in den Zeichnungen nicht dargestellten Ausführungsform der Erfindung kann es ferner vorgesehen sein, den Grundkörper 16 beziehungsweise die Laserdiodeeinheiten 10 und/oder deren Gehäuse mit einer Schicht aus thermischem Isolationsmaterial zu versehen, so daß Schwankungen der Umgebungstemperatur einen geringeren oder fast gar keinen Einfluß auf die Temperatur der Laserdiodeeinheiten 10 haben.

Bezugszeichenliste

- 25 1 Druckplatten-Beschriftungsvorrichtung
- 2 2 Druckmaschinenzylinder
- 4 4 Druckplatte
- 5 5 Druckplatten-Beschriftungseinheit
- 30 6 optische Fokussierungseinrichtung
- 8 8 optische Lichtleiter
- 10 10 Laserdiodeeinheit
- 12 12 Steuereinrichtung
- 14 14 Gehäuse
- 35 16 Trägerkörper
- 8 8 Heizelement
- 20 20 Pfeil
- 22 22 Pfeil
- 30 30 Schaltungsanordnung
- 40 32 Strom/Spannungsquelle
- 34 34 Leistungstransistor für Heizelement
- 35 35 regelbarer Widerstand für Heizelement
- 36 36 Leistungstransistor für Laserdiodeeinheit
- 37 37 regelbarer Widerstand für Laserdiodeeinheit
- 45 38 invertierende Schmitt-Triggerschaltung
- V Vorwärmphase
- B Beschriftungsphase

Patentansprüche

1. Verfahren zur Regelung der Temperatur in einer mit Laserlicht arbeitenden Druckplatten-Beschriftungseinheit einer Druckmaschine, insbesondere einer Offset-Druckmaschine, wobei das Laserlicht durch eine Laserdiodeeinheit erzeugt wird, die in Abhängigkeit von dem auf der Druckplatte zu erzeugenden Bildmuster ein- und ausgeschaltet wird, dadurch gekennzeichnet, daß eine in der Nähe der Laserdiodeeinheit angeordnete Wärmequelle im Wechsel mit der Laserdiodeeinheit in der Weise betrieben wird, daß die Temperatur der Laserdiodeeinheit möglichst konstant ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die pro Zeiteinheit von der Wärmequelle abgegebene Wärmemenge bei ausgeschalteter Laserdiodeeinheit erhöht und bei eingeschalteter Laserdiodeeinheit verringert wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch ge-

kennzeichnet, daß die von der Wärmequelle pro Zeiteinheit abgegebene Wärmemenge im wesentlichen der von der Laserdiodeneinheit pro Zeiteinheit abgegebenen Wärmemenge entspricht.

4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Wärmequelle bei eingeschalteter Laserdiodeneinheit eine vorgegebene Grundwärmemenge pro Zeiteinheit abgibt, die kleiner als die von der Laserdiodeneinheit abgegebene Wärmemenge pro Zeiteinheit ist und daß die Wärmequelle bei ausgeschalteter Laserdiodeneinheit eine zweite größere Wärmemenge abgibt, wobei die ersten und zweiten Wärmemengen in der Weise gewählt sind, daß die Temperaturdifferenz der Laserdiodeeinheit zwischen ein- und ausgeschaltetem Zustand minimal wird.

5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Differenz zwischen der ersten und der zweiten Wärmemenge im wesentlichen der Differenz zwischen der von der eingeschalteten Laserdiodeneinheit abgegebenen Wärmemenge und der zweiten Wärmemenge entspricht.

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Laserdiodeneinheit und/oder die Wärmequelle auf eine vorbestimmte Vor temperatur erwärmt oder gekühlt werden.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Laserdiodeneinheiten und/oder die Wärmequellen gegenüber der Umgebung thermisch isoliert sind.

8. Vorrichtung zur Regelung der Temperatur in einer mit Laserlicht arbeitenden Druckplatten-Beschriftungseinheit einer Druckmaschine, insbesondere einer Offset-Druckmaschine, in der das Laserlicht durch mindestens eine Laserdiodeneinheit erzeugt wird, die in Abhängigkeit von dem auf der Druckplatte zu erzeugenden Punktmuster ein- und ausgeschaltet wird, dadurch gekennzeichnet, daß in der Umgebung der Laserdiodeneinheit (10) ein elektrisches Heizelement (18) angeordnet ist, das im Wechsel mit der Laserdiodeneinheit (10) bei eingeschalteter Laserdiodeneinheit (10) eine erste Wärmemenge (Q_{R1}) und bei ausgeschalteter Laserdiodeneinheit (10) eine zweite, größere Wärmemenge (Q_{R2}) erzeugt.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die zweite Wärmemenge (Q_{R2}) im wesentlichen der von Laserdiodeneinheit (10) erzeugten Wärmemenge (Q_{LD}) entspricht und daß die erste, kleinere Wärmemenge (Q_{R1}) einen Wert von 0 besitzt.

10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die vom Heizelement (18) bei ausgeschalteter Laserdiodeneinheiten (10) erzeugte zweite Wärmemenge (Q_{R2}) eine solche Größe besitzt, daß die Temperatur der Laserdiodeneinheit (10) einem vorherbestimmten Soll-Wert entspricht.

11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die vom Heizelement (18) bei eingeschalteter Laserdiodeneinheit (10) erzeugte erste Wärmemenge (Q_{R1}) einen Wert besitzt, dessen Größe der zweiten Wärmemenge (Q_{R2}) vermindert um die Differenz aus der von der Laserdiodeneinheit (10) erzeugten Wärmemenge (Q_{LD}) und der zweiten Wärmemenge (Q_{R2}) entspricht.

12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß das Heizelement (18)

durch ein joulsche Wärme erzeugendes elektrisches Bauelement gebildet wird, das entsprechend der zu erzeugenden Wärmemenge an eine elektrische Spannungs- und/oder Stromquelle (32) angeschlossen wird.

13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, daß eine elektronische Gegentakt schaltung (30) mit einem durch die Steuerungseinrichtung (12) gesteuerten, den Stromfluß durch das Heizelement (18) bestimmenden ersten Leistungs transistor (34) sowie einem von der Steuerungseinrichtung (12) über eine invertierende Schmitt-Trig gerschaltung (38) gesteuerten, den Strom durch die Laserdiodeeinheit (10) bestimmenden zweiten Leistungstransistor (36) vorgesehen ist.

Hierzu 3 Seite(n) Zeichnungen

Fig.1

Fig.2

Docket # A - 3868

702 045/362

Appl. #

Applicant: Andreas Dofmers et al.

Lerner and Greenberg, P.A.
 Post Office Box 2480
 Hollywood, FL 33022-2480
 Tel: (954) 925-1100 Fax: (954) 925-1101