微分積分 問題集

2024年3月21日

数列の極限

- 1.1 第 n 項が次の式で表される数列の極限を求めよう.
 - (1) $\frac{\sin n}{n}$

- (2) $\frac{1+(-1)^n}{n}$
- (3) $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n}$
- 1.2 数列 $\{a_n\}$ が次の漸化式と初期条件を満たすとする.

$$a_{n+1} = \frac{a_n}{2} + \frac{1}{a_n}, \quad a_1 = -2$$

- (1) $\{a_n\}$ が上に有界であることを確認しよう
- (2) $\{a_n\}$ が狭義単調増加であることを確認しよう.
- (3) $\{a_n\}$ の極限を求めよう.
- (4) a_2^2 , a_3^2 , a_4^4 を具体的に計算し、小数表示してみよう.
- 1.3 次の漸化式と初期条件を満たす数列 $\{a_n\}$ の極限を求めよう.

$$a_{n+1} = \frac{2a_n}{3} + \frac{1}{a_n^2}, \quad a_1 = 3$$

関数の極限 2

2.1 次の極限を求めよう.

(1)
$$\lim_{x \to +0} \sqrt{x} \sin \frac{1}{x}$$
 (2)
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

(2)
$$\lim_{x \to \infty} \frac{\sin x}{x}$$

(3)
$$\lim_{x \to \infty} \frac{x - \tan^{-1} x}{x}$$

2.2 次の関数 f が x=0 で連続となるような定数 A の値を求めよう.

(1)
$$f(x) = \begin{cases} 2x+3 & (x>0) \\ -3x+A & (x \le 0) \end{cases}$$

(2)
$$f(x) = \begin{cases} e^{-x} & (x > 0) \\ \cos^{-1} x + A & (x \le 0) \end{cases}$$

(3)
$$f(x) = \begin{cases} \tan^{-1}\left(x - \frac{1}{2}\right) & (x > 0) \\ \sin^{-1} A & (x \le 0) \end{cases}$$
 (4) $f(x) = \begin{cases} \frac{\sin 3x}{2x} & (x > 0) \\ x^2 + A & (x \le 0) \end{cases}$

(4)
$$f(x) = \begin{cases} \frac{\sin 3x}{2x} & (x > 0) \\ x^2 + A & (x \le 0) \end{cases}$$

(5)
$$f(x) = \begin{cases} e^{-\frac{1}{x}} & (x > 0) \\ A & (x \le 0) \end{cases}$$

(6)
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & (x \neq 0) \\ A & (x = 0) \end{cases}$$

3 導関数

3.1 次の関数 f が x=0 で微分可能か否かを判定し、微分可能なら f'(0) の値を求めよう.

(1)
$$f(x) = \begin{cases} x \log |x| & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

(2)
$$f(x) = \begin{cases} \frac{1 - \cos x}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

(3)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

(4)
$$f(x) = \begin{cases} \sqrt{|x|} \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

3.2 次の関数 f が開区間 (-1,1) で C^2 級となるような定数 A,B,C の値を求めよう.

$$f(x) = \begin{cases} \cos x & (x > 0) \\ Ax^2 + Bx + C & (x \le 0) \end{cases}$$

3.3 次の関数 f に対し、3 次関数 $g(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ が

$$f(0) = g(0), \quad f'(0) = g'(0), \quad f''(0) = g''(0), \quad f^{(3)}(0) = g^{(3)}(0)$$

を満たすとき, g(x) の係数 a_0, a_1, a_2, a_3 の値を求めよう.

(1)
$$f(x) = \sin x$$

(2)
$$f(x) = e^x$$

$$(3) f(x) = \log(1+x)$$

4 不定形の極限

4.1 次の関数 f が x=0 で連続となるような定数 A の値を求めよう.

(1)
$$f(x) = \begin{cases} x \log x & (x > 0) \\ A & (x \le 0) \end{cases}$$

(2)
$$f(x) = \begin{cases} x^x & (x > 0) \\ -x + A & (x \le 0) \end{cases}$$

(3)
$$f(x) = \begin{cases} \frac{x - \sin x}{x^3} & (x \neq 0) \\ A & (x = 0) \end{cases}$$

$$(4) f(x) = \begin{cases} \frac{(1 - \cos x)\sin x}{x - \sin x} & (x \neq 0) \\ A & (x = 0) \end{cases}$$

4.2 次の関数 f が x=0 で微分可能となるような定数 A,B の値を求めよう.

(1)
$$f(x) = \begin{cases} \frac{\sin x}{x} & (x > 0) \\ Ax + B & (x \le 0) \end{cases}$$

(2)
$$f(x) = \begin{cases} \frac{x - \tan^{-1} x}{x^2} & (x > 0) \\ Ax + B & (x \le 0) \end{cases}$$

テイラーの定理 5

- 5.1 テイラーの定理を用いて次の値の近似値を誤差精度 0.01 以内で求め、小数表示しよう. な お、 $\pi = 3.141592653589793 \cdots$ であることは適宜利用しよう.
 - $(1) \sin 3$
- $(2) \cos 1.6$
- (3) \sqrt{e}
- (4) $\log 1.2$ (5) $\tan^{-1} 0.02$
- $5.2 \ f(x) = \log \frac{1+x}{1-x}$ をうまく利用して、以下の値の小数点以下第 3 位までを確定させよう.
 - $(1) \log 2$

 $(2) \log 3$

- $(3) \log 5$
- $5.3 f_n(x) = \sqrt[n]{1+x}$ をうまく利用して、以下の値の小数点以下第 3 位までを確定させよう.
 - $(1) \sqrt{1.2}$

 $(2) \sqrt[3]{1.01}$

- $(3) \sqrt[5]{0.8}$
- 5.4 以下の条件を満たす関数 f に対し、f(1) の値の小数点以下第 4 位までを確定させよう.

$$f'(x) = e^{-x^2}, \quad f(0) = 0$$

5.5 以下の条件を満たす関数 f に対し、f の 5 次マクローリン多項式

$$P(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5$$

を求めよう. また、指定された a に対して P(a) の値を求めよう.

- (1) f'(x) = f(x), f(0) = 1 (a = 1/2)
- (2) 2f''(x) + 5'f(x) 3f(x) = 0, f(0) = 1, f'(0) = 1/2 (a = 1)
- (3) $f(x) + \log(f'(x)) = 0$, f(0) = 0 (a = 0.2)
- 5.6 関数 f が以下の条件を満たすとする.

$$f''(x) = -f(x), \quad f(\pi) = 0, \ f'(\pi) = -1$$

このとき、f の $x = \pi$ の周りの 4 次テイラー多項式

$$P(x) = f(\pi) + f'(\pi)(x - \pi) + \frac{f''(\pi)}{2!}(x - \pi)^2 + \frac{f^{(3)}(\pi)}{3!}(x - \pi)^3 + \frac{f^{(4)}(\pi)}{4!}(x - \pi)^4$$

と P(3) の値を求めよう.

解答

- 1.1 (1) $0 \le \left| \frac{\sin n}{n} \right| \le \frac{1}{n} \to 0$ より、はさみうちの原理から $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.
 - $(2) \ 0 \leqq \left| \frac{1 + (-1)^n}{n} \right| \leqq \frac{2}{n} \to 0 \ \text{より, はさみうちの原理から} \lim_{n \to \infty} \frac{1 + (-1)^n}{n} = 0.$
 - (3) k を $2^k < n \le 2^{k+1}$ となる自然数とする. $n \to \infty$ のとき $k \to \infty$ なので

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \ge 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \dots + \left(\dots + \frac{1}{2^k}\right)$$

$$\ge 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \dots + \left(\frac{1}{2^k} + \dots + \frac{1}{2^k}\right)$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \dots + \frac{1}{2} = 1 + \frac{k}{2} \to \infty \ (k \to \infty)$$

 $\sharp \, \mathfrak{h} \, , \lim_{n \to \infty} \left(1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} \right) = \infty.$

- 1.2 (1) $a_1 = -2 < 0$ と漸化式から任意の n で $a_n < 0$ なので、 $\{a_n\}$ は上に有界である.
 - (2) まず、 $a_2=-\frac{3}{2}>a_1$ である。 $n\geq 2$ に対しては $a_{n+1}-a_n=\frac{2-a_n^2}{2a_n}=-\frac{(a_{n-1}^2-2)^2}{4a_{n-1}^2\cdot 2a_n}\geq 0$ である。ここで、 a_1 が有理数なのと漸化式の形から $\{a_n\}$ の各項は有理数である。従って、 $a_{n-1}^2\neq 2$ なので $a_{n+1}-a_n>0$ である。よって、 $\{a_n\}$ は狭義単調増加である。
 - (3) (1), (2) から $\{a_n\}$ は収束するので,その極限値を α とする. とする. $\alpha = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \left(\frac{a_n}{2} + \frac{1}{a_n}\right) = \frac{\alpha}{2} + \frac{1}{\alpha}$ より, $\alpha^2 = 2$ である. 任意の n に対して $a_n < 0$ なので $\lim_{n \to \infty} a_n = -\sqrt{2}$ である.
 - (4) 漸化式から直接計算して、以下のように 2 に近づいていることがわかる.

$$a_2^2 = \left(-\frac{3}{2}\right)^2 = 2.25, \ a_3^2 = \left(-\frac{17}{12}\right)^2 = 2.0069 \cdots, \ a_4^2 = \left(-\frac{577}{408}\right)^2 = 2.000006 \cdots$$

 $1.3\ a_1=3>0$ と漸化式から任意の n で $a_n>0$ なので, $\{a_n\}$ は下に有界である.さらに, $n\ge 2$ に対して $a_n-a_{n+1}=rac{a_n^3-3}{3a_n^2}=rac{(8a_{n-1}^3+3)(a_{n-1}^3-3)^2}{27a_{n-1}^6\cdot 3a_n^2}\ge 0$ なので, $\{a_n\}$ は $(n\ge 2$ で)単調減少である.よって, $\{a_n\}$ は収束するので,その極限値を α とすれば,前問と同様に漸化式から $\alpha=rac{2}{3\alpha}+rac{1}{a^2}$ が成り立つので, $\alpha^3=3$ である.従って, $\lim_{n\to\infty}a_n=\sqrt[3]{3}$ である.