Math 116 Midterm 1 Proof List Max Guo

- 1) Suppose IIXII denotes a real valued function of a vector x that satisfies all the requirements of a norm except perhaps the triangle inequality. Prove IIXII satisfies the triangle inequality iff K: {x | IIXII s 1} is convex.
 - Proof (=>) Let ||x|| satisfy the triangle inequality. Let x,y \in K. Then consider $0 \le \alpha \le 1$. $||\alpha x + (1-\alpha)y|| \le ||\alpha x|| + ||(1-\alpha)y|| = ||\alpha|||x|| + (1-\alpha)||y|| \le ||\alpha x + ||-\alpha| = 1$, so $||\alpha x + (-\alpha)y| \in$ K. (<=) Let K be convex. Then consider $\frac{x}{||x||}$ and $\frac{y}{||y||}$ as vectors in K, and $||\alpha x|| = \frac{||x||}{||x|| + ||y||}$ s.t. $0 \le \alpha \le 1$. Then $||\alpha x + (-\alpha)y|| = ||\frac{x}{||x|| + ||y||} + \frac{y}{||x|| + ||y||}|| \le 1$ since K is convex, so $||x + y|| \le ||x|| + ||y||$.
- 2) Prove the interior of a convex set C is convex.
 - Proof Let C denote the interior of convex set C. Let x, y \in C. We wish to prove, $\forall x \in [0,1]$, $\exists \in >0$ s.t. $\exists \in (\alpha x + (1-\alpha)y) \subseteq C$. Because $x,y \in C$, $\exists \in (x,y) \subseteq C$. Let $g = \min((x,y)) \subseteq C$. Consider arbitrary we such that ||w|| < g. Then x + w, $y + w \in C$, and $g = \alpha(x + w) + (1-x)(y + w) = \alpha x + (1-\alpha)y + w \in C$, so $g = (\alpha x + (1-x)y) \subseteq C$. $\forall \alpha \in [0,1]$.
- 3) Prove the closure of a convex set (C is convex.
 - Proof Let \overline{C} denote the closure of convex set C. Let $x,y \in \overline{C}$. Then, $\forall \in P$, $y' \in C$ st. $X' \in B_{\epsilon}(x)$ and $y' \in B_{\epsilon}(y)$. Let $\alpha \in [0,1]$, and set $\epsilon \neq 0$, and let x',y' be as mentioned. Then $\alpha \times (1-\alpha)y' \in C$, and $\|\alpha \times (1-\alpha)y' (\alpha \times (1-\alpha)y)\| \le \alpha \|x x'\| + (1-\alpha)\|y y'\| < \alpha \le (1-\alpha)\epsilon = \epsilon$. So $\alpha \times (1-\alpha)y' \in B_{\epsilon}(\alpha \times (1-\alpha)y)$, so $\alpha \times (1-\alpha)y \in C$.
- 4) Prove if the sequence {xn} converges to x and to y, then x=y.

 Proof Let \$70. Then ||x-y|| = ||x-xn+xn-y||

 \$\frac{1}{2} ||x-xn|| + ||xn-y||

 \$\frac{2}{2} + \frac{2}{2} \quad \text{for large enough n}\$

48.

Prove if p.g.>0 satisfy ++ == 1 and x= { x, x, 2, ... } and y - {7, 12, ... }, x elp, y elg, then

Proof Let a = \(\left(\frac{1\frac{\gamma_{i}}{\ll\gamma_{i}}\right)^{\beta}\), b = \(\left(\frac{\gamma_{i}}{\ll\gamma_{i}}\right)^{\beta}\), \(\lambda = \frac{1}{\gamma_{i}}\right)^{\beta}\), \(\lambda = \fra

$$\left[\left(\frac{|x_{1}|}{||x||_{p}} \right)^{1} \right]^{\frac{1}{p}} \left[\left(\frac{|y_{1}|}{||y_{1}|_{p}} \right)^{2} \right]^{\frac{1}{p}} \leq \frac{1}{p} \left(\frac{|x_{1}|}{||x||_{p}} \right)^{1} + \frac{1}{p} \left(\frac{|y_{1}|}{||y_{1}|_{p}} \right)^{2}$$

summing over all it we obtain

$$\frac{1}{\|x\|_{p}\|y\|_{q}} \sum_{i=1}^{\infty} \|y_{i}\|_{q_{i}} \leq \frac{1}{p} \sum_{i=1}^{\infty} \frac{\|y_{i}\|_{p}^{p}}{\|x\|_{p}^{p}} + \frac{1}{s} \sum_{i=1}^{\infty} \frac{\|y_{i}\|_{p}^{p}}{\|y\|_{q}^{p}}$$

$$= \lim_{n \to \infty} 3n \text{ and } 4n$$

which implies our result.

6) The Hölder inequality states that, for an n-dimensional vector space, if p.q. >0 and +++==1, and x. {3,,..., 3, and y= }71, ..., 7,3, xelp, yelf, then

Prove the Minkowski inequality using this, that lixtyllp & lixilp + lighp, for an n-dimensional vector space.

$$\sum_{i=1}^{n} |\mathbf{z}_{i} + \eta_{i}|^{p-1} \leq \sum_{i=1}^{n} |\mathbf{z}_{i} + \eta_{i}|^{p-1} |\mathbf{z}_{i}| + \sum_{i=1}^{n} |\mathbf{z}_{i} + \eta_{i}|^{p-1} |\eta_{i}|$$

$$\leq \left(\sum_{i=1}^{n} |\mathbf{z}_{i} + \eta_{i}|^{p-1} |\mathbf{z}_{i}|^{p}\right)^{1/p} \left(\left(\sum_{i=1}^{n} |\mathbf{z}_{i}|^{p}\right)^{1/p} + \left(\sum_{i=1}^{n} |\eta_{i}|^{p}\right)^{1/p}\right)$$

7) Prove every convergent sequence is a Cauchy sequence and every Cauchy sequence is bounded.

Proof Let $\{x_n\}$ be a convergent sequence. Let 2 > 0. Then $\exists N \text{ s.t. } \forall n > N$, $\|x_n - x_n\| < \frac{2}{2}$, where x is the limit of $\{x_n\}$. Thus, $\forall m > N$, $\|x_m - x_n\| = \|x_m - x_t\| < 0$. $\|x_m - x_n\| + \|x_m - x_n\| < 0$, $\|x_m - x_n\| < 0$, so $\{x_n\}$ is Cauchy.

To prove boundedness, Fix ε = 1. Then $\exists N$ s.t. $\forall n \in \mathbb{N}$, $\|x_n - x_m\| < \varepsilon$. Thus, letting m = Nt1, $\forall n \in \mathbb{N}$, $\|x_n\| = \|x_n - x_{n+1}\| + \|x_n - x_{n+1}\| + \|x_n\| + \|x_n\|$

3) Prove le v a Banach space.

Proof The main problem is to show Ip is complete. Let {x(n)} be a Chucky sequence in lq, where $x^{(n)} = \{x_1^{(n)}, x_2^{(n)}, x_3^{(n)}, x_3$

Because $3_i^{(n)}$ are reals, we know $3_i^{(n)} \rightarrow 3_i$. Let $x = \{3_1, 3_2, ...\}$. I claim x is our desired limit for $\{x^{(n)}\}$. First, we show $x \in \mathbb{Z}_p$. Fix k > 0 (finite), and since $\{x^{(n)}\}$ is Cauchy, let N upper bound $\|x^{(n)}\|$.

=>
$$\sum_{i=1}^{k} |3_{i}^{(n)}|^{1} < M^{p}$$

 $\lim_{n\to\infty} \sum_{i=1}^{k} |3_{i}^{(n)}|^{p} = \sum_{i=1}^{k} \lim_{n\to\infty} |3_{i}^{(n)}|^{p} = \sum_{i=1}^{k} |3_{i}|^{p} \leq M^{p}$

Now let k->00 => ||x||; = \frac{\infty}{2} |\frac{\infty}{3}il' & Mi, so \chiefle.

Now we show x(n) -> X. Fix k >0 (finite) again. Let E>O. I N st Ym, n > N,

Letting m-200, we have: $\left(\sum_{i=1}^{K} |3_{i}^{(n)} - 3_{i}|^{p}\right)^{1/p} \le \frac{\epsilon}{2}$

Finally, letting $k \rightarrow \infty$: $\left(\sum_{i=1}^{\infty} |3_i^{(n)} - 3_i|^p\right)^{1/p} \leq \epsilon/2 < \epsilon \implies \chi^{(n)} \rightarrow \chi$.

The Weierstrass polynomial theorem states for any 200 and any continuous 7(t) on [a,b], we can find polynomial p(t) such that ||x(t)-p(t)||<2. Use this and the fact that the collection of all finte Cartesian products of a countable set is countable, prove C[3/1] is separable.

Proof Let R be the set of all finite degree rational polynomials. This is countable because of the fact in the problem statement, and so it suffices to prove any x(4) & C [O,1] is sufficiently well approximated by some polynomical in Ril By the Weierstrass polynomial theorem, 3 p(t) polynomial so [1x(1)-p(t)]|< \(\xi/2\). Now by the deaseness of Q in IR, if we let

consider

=> ||p(+)-r(+)|| = ||ropoll+ ||ri-pilt+...+ ||ropoll+

Ellro-poll+ 11, pill+ ... + 11 myoul since te Cont

$$\leq \frac{\epsilon}{2(N+1)}(N+1) = \frac{\epsilon}{2}$$

so overall,

||x(t)-r(t)|| = ||x(t)-p(t)|| + ||p(t)-r(t)|| < 2.

10) Suppose X is a Hilbert Space and M is a closed subspece of X. Let x be a vector in X and let Mo be the closest vector to x in M. Prove mo exists and x-mo is arthogonal to M.

Proof Let S = inf 11x-mll. Construt sequence mi, mz,.. EM such that lim 11 ma-x11 = 8.

I claim {mi} is Couchy. Let E > 0. Then by the parallelogram law,

3 N s.t. V ij>N, lk-m; l² < 8²+ 874 and ||x-m; ||² < 8²+ 82/4. Note also that ||x- mitmill² ≥ 8²

=> ||m,-m; ||2 < &2 => ||m;-m; || < &0 fm; } is Cauchy.

X is Hilbert and M is absect so mi converges to mo in X, and mot M, which proves existence.

Note that this proof also works if M is a absed convex subset of X, since Mitm.

Orthogonality (requires M to be absorbed subspace) Suppose for contradiction x-m. is not orthogonal to M, so I unit vector M st. (x-Mo/M) = 8 > 0 Let m, a motom. Then ||x-Mi||² = ||x-mo+mo-mi||² = ||x-mo||² + ||m-mi||² - 2(x+o|mi-mo)| = ||x-mo||² + 8² - 28² = ||x-mo||² - 8², contradicting minimality of ||x-mo||².

Let K be a closed convex subspace of Hillert space H, and Let x be a vector outside of K. Suppose & & K minimizes 11x-kll. Show. (x-ka|k,-ka) 20 4 k, & K.

Proof Let ka = xko + (1-x)k, EK. Then we have that

$$||x-k_{e}||^{2} = ||x-\alpha k_{0}-(1-\alpha)k_{1}||^{2}$$

$$= ||\alpha(x-k_{0})+(1-\alpha)(x-k_{1})||^{2}$$

$$= ||\alpha(x-k_{0})||^{2} \cdot ||(1-\alpha)(x-k_{1})||^{2} + 2(\alpha(x-k_{0})|(1-\alpha)(x-k_{1})|)$$

$$= \alpha^{2} ||x-k_{0}||^{2} \cdot ||(1-\alpha)^{2} ||x-k_{1}||^{2} + 2\alpha(1-\alpha)(x-k_{0})(x-k_{0})$$

Note that $||x-k_{w}||^{2}$ is a convex function of α and his minimum at $\alpha = 0$, so $\frac{d}{d\alpha} ||x-k_{w}||^{2} \ge 0$ for all $\alpha \in [0,1]$. Thus, plugging in $\alpha = 1$

=>
$$(\pi-k_0)$$
 k_1-k_0) ≥ 0 as desired.