A Gaussian Variational Inference Approach to Motion Planning

Hongzhe Yu and Yongxin Chen

School of Aerospace Engineering, Georgia Tech

Background – Motion Planning under uncertainty

- Robot facing uncertainty in
 - System model and sensor noise
 - Imperfect controller and input noise
 - Model uncertainty as a stochastic process

$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{F}(t)\mathbf{w}(t) + \mathbf{b}(t)$$

- Trajectory optimization formulated as
 - Probabilistic inference (Mukadam et al. (2018))

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{arg max}} p(\mathbf{x}|\mathbf{z})$$
$$= \underset{\mathbf{x}}{\operatorname{arg max}} p(\mathbf{z}|\mathbf{x})p(\mathbf{x})$$

Solve inference problem – Variational Inference

- Probabilistic motion planning
 - Posterior p(x|z): probability of a feasible trajectory
 - Prior p(x): trajectory joint probability induced by uncontrolled SDE
 - Likelihood p(z|x): probabilistic collision-free factor
- In the case of linear SDE

• Dynamics:
$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{F}(t)\mathbf{w}(t) + \mathbf{b}(t)$$

• Dynamics:
$$\dot{\mathbf{x}}(t) = \mathbf{A}(t)\mathbf{x}(t) + \mathbf{F}(t)\mathbf{w}(t) + \mathbf{b}(t)$$
• Prior:
$$p(\mathbf{X}) = \tilde{p}(\mathbf{X}|O_{t_N}) \propto \exp(-\frac{1}{2}(\|\mathbf{X} - \boldsymbol{\mu}\|_{\mathbf{K}^{-1}}^2))$$

• Likelihood:
$$p(\mathbf{z}|\mathbf{x}) \propto \exp(-\|\mathbf{h}(\mathbf{x})\|_{\mathbf{\Sigma}_{obs}^{-1}}^2)$$

Gaussian VI - Gaussian trajectory distribution

- Objective:
 - To sample from or to solve the target distribution with density p(x|z)
- Methods:
 - MAP: find the state that **maximizes the probability** p(x|z)
 - VI: find a **proposal** distribution that is close to p(x|z) by minimizing

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \operatorname{KL}[q(\mathbf{x})||p(\mathbf{x}|\mathbf{z})]$$

Gaussian VI: Gaussian proposal

Algorithm - Natural Gradient Descent GVI

Parameterize the Gaussian proposal

$$Q \triangleq \mathcal{N}(\mu_{\theta}, \Sigma_{\theta})$$

NGD updates

$$\mu_{\theta} \leftarrow \mu_{\theta} + \eta^R \, \delta \mu_{\theta}, \quad \Sigma_{\theta}^{-1} \leftarrow \Sigma_{\theta}^{-1} + \eta^R \, \delta \Sigma_{\theta}^{-1}$$

Key computations: **3 Expectations** w.r.t. the proposal Gaussian

$$\frac{\partial J(q)}{\partial \mu_{\theta}} = \Sigma_{\theta}^{-1} \mathbb{E}[(\mathbf{X} - \mu_{\theta})\psi]$$

$$\frac{\partial J(q)}{\partial \mu_{\theta}} = \Sigma_{\theta}^{-1} \mathbb{E}[(\mathbf{X} - \mu_{\theta})\psi] \qquad \frac{\partial^{2} J(q)}{\partial \mu_{\theta} \partial \mu_{\theta}^{T}} = \Sigma_{\theta}^{-1} \mathbb{E}[(\mathbf{X} - \mu_{\theta})(\mathbf{X} - \mu_{\theta})^{T}\psi] \Sigma_{\theta}^{-1} - \Sigma_{\theta}^{-1} \mathbb{E}[\psi]$$

How: **Decomposition**

$$\psi(\mathbf{X}) = -\log p(\mathbf{X}|Z) = \|\mathbf{h}(\mathbf{X})\|_{\Sigma_{\text{obs}}}^2 + \frac{1}{2}\|\mathbf{X} - \boldsymbol{\mu}\|_{\mathbf{K}^{-1}}^2$$

 \sim

collision Factor: Nonlinear prior factor: Gaussian **Gauss-Hermite Known closed-form** quadratures

Algorithm - Sparsity and Factor graph

- Motion Planning problem has a sparsity pattern
 - Prior factors: only consecutive 2 states
 - Collision factors: only 1 state
- Write the joint probability into factors

$$\psi(\mathbf{X}) = \sum_{l=1}^{L} \psi_{\ell}(\mathbf{X}) \triangleq -\log p(\mathbf{X}_{\ell}|Z)$$

Factor graph (Mukadam et al. (2018))

- Marginals have the same prior and collision factors as the joint level
 - Why? Compute the joint-level expectation is costly!

Experiment results

Convergence

Factor and total costs

Arm Robot: sampled trajectories

DETROITIEEE/RSJ International Conference

OCTOBER 1-5, 2023

on Intelligent Robots and Systems

Sampled trajectories

Trajectory distributions

Experiment results

Entropy regularized robust motion planning

$$q^* = \operatorname*{arg\,min}_{q \in \mathcal{Q}} \operatorname{KL}[q(\mathbf{X})||p(\mathbf{X}|Z)] = \operatorname*{arg\,max}_{q \in \mathcal{Q}} \mathbb{E}_q[\log p(\mathbf{X}) + \log p(Z|\mathbf{X})] + H(q(\mathbf{X}))$$

Higher entropy = wider-spread distribution = probabilistic safer

environments

Go Through Plan

Go Around Plan

Fig. 3: Entropy regularized motion planning [35].

	Prior	Collision	MP	Entropy	Total
Left	34.4583	9.1584	43.6168	44.1752	87.7920
Right	42.9730	2.0464	45.0193	39.9193	84.9387

Trade-off risk V.S. distance and smoothness

Paper

Thanks!

Contact: https://github.com/hzyu17/VIMP

