Departamento de Matemática e Aplicações

Cálculo

Critérios sobre séries de números reais

[Condição necessária de convergência] Se $\sum_{n\geq 1}u_n$ é convergente então lim $u_n=0$.

[Condição suficiente de divergência] Se $\lim u_n \neq 0$ então $\sum_{n>1} u_n$ é divergente.

[1.º critério de comparação] Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos não negativos tais que, a partir de certa ordem, $u_n\leq v_n$.

- (a) $\sum_{n>1} v_n$ converge $\Longrightarrow \sum_{n>1} u_n$ converge.
- (b) $\sum_{n>1} u_n$ diverge $\implies \sum_{n>1} v_n$ diverge.

[2.º critério de comparação] Sejam $\sum_{n\geq 1}u_n$ e $\sum_{n\geq 1}v_n$ séries de termos positivos tais que $\ell=\lim_n\frac{u_n}{v_n}$, onde $\ell\in[0,+\infty]$.

- (a) $\ell \neq 0$ ou $\ell \neq +\infty \implies \sum_{n \geq 1} u_n$ e $\sum_{n \geq 1} v_n$ têm a mesma natureza.
- (b) Se $\ell=0$
 - (i) $\sum_{n>1} v_n$ converge $\Longrightarrow \sum_{n>1} u_n$ converge.
 - (ii) $\sum_{n>1} u_n$ diverge $\Longrightarrow \sum_{n>1} v_n$ diverge.
- (c) Se $\ell = +\infty$
 - (i) $\sum_{n\geq 1} v_n$ diverge $\Longrightarrow \sum_{n\geq 1} u_n$ diverge.
 - (ii) $\sum_{n\geq 1} u_n$ converge $\Longrightarrow \sum_{n\geq 1} v_n$ converge.

[Critério da razão (ou D'Alembert)] Sejam $\sum_{n\geq 1}u_n$ uma série de termos positivos e $\ell=\lim \frac{u_{n+1}}{u_n}$.

- (a) $\ell < 1 \Longrightarrow \sum_{n \geq 1} u_n$ é convergente.
- (b) $\ell > 1 \implies \sum_{n \geq 1} u_n$ é divergente.
- (c) $\ell=1$ \Longrightarrow nada se pode concluir sobre a natureza de $\sum_{n\geq 1}u_n$.

[Critério da raiz (ou de Cauchy)] Sejam $\sum_{n\geq 1} u_n$ uma série de termos não negativos e $\ell=\lim \sqrt[n]{u_n}$.

- (a) $\ell < 1 \implies \sum_{n > 1} u_n$ é convergente.
- (b) $\ell > 1 \implies \sum_{n \geq 1} u_n$ é divergente.
- (c) $\ell=1$ \Longrightarrow nada se pode concluir sobre a natureza de $\sum_{n\geq 1}u_n$.

[Critério do integral] Se $f:[1,+\infty[\longrightarrow \mathbb{R}$ é uma função contínua, positiva, decrescente e, para cada $n\in \mathbb{N}$ seja, $f(n)=u_n$ então $\sum_{n\geq 1}u_n$ e $\int_1^{+\infty}f(x)\,dx$ têm a mesma natureza.

[Convergência absoluta] Se $\sum_{n>1} |u_n|$ é convergente então $\sum_{n\geq 1} u_n$ também é convergente.

[Critério de Leibnitz] Seja $(a_n)_n$ uma sucessão decrescente tal que lim $a_n=0$. Então $\sum_{n\geq 1} (-1)^n a_n$ é convergente.

Algumas propriedades das funções trigonométricas

1.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sen}^2 x + \cos^2 x = 1$

2.
$$\forall x \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi : k \in \mathbb{Z}\}$$
 $1 + \operatorname{tg}^2 x = \sec^2 x$

3.
$$\forall x \in \mathbb{R} \setminus \{k\pi : k \in \mathbb{Z}\}$$
 $1 + \operatorname{cotg}^2 x = \operatorname{cosec}^2 x$

4.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sen}(-x) = -\operatorname{sen} x$ (sen é impar)

5.
$$\forall x \in \mathbb{R} \quad \cos(-x) = \cos x \quad (\cos \text{ é par})$$

6.
$$\forall x \in \mathbb{R}$$
 $\cos(\frac{\pi}{2} - x) = \sin x$ e $\sin(\frac{\pi}{2} - x) = \cos x$

7.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sen}(x+2\pi) = \operatorname{sen} x$ (sen tem período 2π)

8.
$$\forall x \in \mathbb{R}$$
 $\cos(x+2\pi) = \cos x$ (cos tem período 2π)

9.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sen}(x+y) = \operatorname{sen} x \cos y + \operatorname{sen} y \cos x$

10.
$$\forall x, y \in \mathbb{R}$$
 $\cos(x+y) = \cos x \cos y - \sin y \sin x$

11.
$$\forall x, y \in \mathbb{R}$$
 $\cos x - \cos y = -2 \sin \frac{x-y}{2} \sin \frac{x+y}{2}$

12.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sen} x - \operatorname{sen} y = 2 \operatorname{sen} \frac{x-y}{2} \cos \frac{x+y}{2}$

Recorde-se que

Algumas propriedades das funções hiperbólicas

1.
$$\forall x \in \mathbb{R}$$
 $\operatorname{ch}^2 x - \operatorname{sh}^2 x = 1$

2.
$$\forall x \in \mathbb{R}$$
 $\operatorname{th}^2 x + \operatorname{sech}^2 x = 1$

3.
$$\forall x \in \mathbb{R} \setminus \{0\}$$
 $\coth^2 x - \operatorname{cosech}^2 x = 1$

4.
$$\forall x \in \mathbb{R}$$
 $\operatorname{sh}(-x) = -\operatorname{sh} x$ (a função sh é ímpar)

5.
$$\forall x \in \mathbb{R}$$
 $\mathsf{ch}(-x) = \mathsf{ch}\,x$ (a função ch é par)

6.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{sh} y \operatorname{ch} x$

7.
$$\forall x, y \in \mathbb{R}$$
 $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} y \operatorname{sh} x$

8.
$$\forall n \in \mathbb{N} \quad \forall x \in \mathbb{R}$$
 $(\operatorname{ch} x + \operatorname{sh} x)^n = \operatorname{ch}(nx) + \operatorname{sh}(nx)$

Regras de derivação

(Omitem-se os domínios das funções e considera-se a uma constante apropriada.)

(a)' = 0 $(x^a)' = a x^{a-1}$ $\log_a' x = \frac{1}{x \ln a}$ $(a^x)' = a^x \ln a$ sen' x = cos x $\cos' x = - \sin x$ $\cot g' x = -\csc^2 x$ $tg'x = sec^2x$ $\sec' x = \sec x \, \operatorname{tg} x$ $\csc' x = -\csc x \cot x$ sh'x = chxch'x = shx $th'x = \operatorname{sech}^2 x$ $coth' x = -\operatorname{cosech}^2 x$ $\operatorname{\mathsf{cosech}}' x = -\operatorname{\mathsf{cosech}} x \operatorname{\mathsf{coth}} x$ $\operatorname{sech}' x = -\operatorname{sech} x \operatorname{th} x$ $\arcsin' x = \frac{1}{\sqrt{1-x^2}}$ $\arccos' x = \frac{-1}{\sqrt{1-x^2}}$ $\operatorname{arctg}' x = \frac{1}{1 + r^2}$ $\operatorname{arccotg}' x = \frac{-1}{1 + x^2}$ $\operatorname{arcsec}' x = \frac{1}{x\sqrt{x^2 - 1}}$ $\operatorname{arccosec}' x = \frac{-1}{x\sqrt{x^2 - 1}}$ $\operatorname{argch}' x = \frac{1}{\sqrt{m^2-1}}$ $\operatorname{argsh}' x = \frac{1}{\sqrt{1 + x^2}}$ $\operatorname{argth}' x = \frac{1}{1 - x^2}$ $\operatorname{argcth}' x = \frac{1}{1 - x^2}$ $\operatorname{argcosech}' x = \frac{-1}{x\sqrt{1 + x^2}}$ $\operatorname{argsech}' x = \frac{-1}{x_1/1 - x^2}$

Recorde-se ainda que

$$[f(x) \pm g(x)]' = f'(x) \pm g'(x)$$

$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$

$$[f^{-1}]'(y) = \frac{1}{f'(f^{-1}(y))}$$

$$[f(x)g(x)]' = f'(x)g(x) + f(x)g'(x)$$

$$[g \circ u]'(x) = g'(u(x))u'(x)$$

Primitivas imediatas

 $(u\colon I\longrightarrow \mathbb{R}$ é uma função derivável num intervalo I e $\mathcal C$ denota uma constante real arbitrária)

$$\int a \, dx = ax + \mathcal{C} \qquad \qquad \int u' \, u^{\alpha} \, dx = \frac{u^{\alpha+1}}{\alpha+1} + \mathcal{C} \, \left(\alpha \neq -1\right)$$

$$\int \frac{u'}{u} \, dx = \ln |u| + \mathcal{C} \qquad \qquad \int a^{u} \, u' \, dx = \frac{a^{u}}{\ln a} + \mathcal{C} \, \left(\alpha \in \mathbb{R}^{+} \setminus \{1\}\right)$$

$$\int u' \cos u \, dx = \sin u + \mathcal{C} \qquad \qquad \int u' \sin u \, dx = -\cos u + \mathcal{C}$$

$$\int u' \sec^{2} u \, dx = \tan |\cos u| + \mathcal{C} \qquad \qquad \int u' \cos^{2} u \, dx = -\cot u + \mathcal{C}$$

$$\int u' \cot u \, dx = \ln |\sec u + \tan u| + \mathcal{C} \qquad \qquad \int u' \csc^{2} u \, dx = \ln |\csc u - \cot u| + \mathcal{C}$$

$$\int \frac{u'}{\sqrt{1-u^{2}}} \, dx = \operatorname{arcsen} u + \mathcal{C} \qquad \qquad \int \frac{-u'}{\sqrt{1-u^{2}}} \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int \frac{u'}{1+u^{2}} \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \ln |\csc u - \cot u| + \mathcal{C}$$

$$\int \frac{-u'}{1+u^{2}} \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \ln |\csc u - \cot u| + \mathcal{C}$$

$$\int u' \cot u \, dx = \ln |\csc u - \cot u| + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int u' \cot u \, dx = \operatorname{arccos} u + \mathcal{C}$$

$$\int$$