Introduction to Neural Machine Translation

Andriy Mulyar

Department of Computer Science Virginia Commonwealth University Richmond, VA USA

aymulyar@vcu.edu

November 6 2019

Outline

Goal: Understand how Google Translate worked circa 2015.

- 1 Introduction
- 2 Preliminaries
- 3 Encoder-Decoder Recurrent Neural Networks
- 4 f(Final Remarks) = Remarques finales

My Background

- CS fourth year, Math third year
- Interests in language processing and machine learning.
- Four years exploring these areas under some great mentorship and guidance.

My Background

- CS fourth year, Math third year
- Interests in language processing and machine learning.
- Four years exploring these areas under some great mentorship and guidance.
 - Dr. Bridget McInnes VCU NLP Lab
 - Dr. Bartosz Krawczyk VCU ML and Datastream Mining Lab

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Encoder-Decoder Recurrent Neural Networks
- 4 f(Final Remarks) = Remarques finales

What this talk is:

A mid-level but technical introduction to the machinery powering modern language translation systems.

What this talk is:

- A mid-level but technical introduction to the machinery powering modern language translation systems.
- An excursion into sequence to sequence deep learning with recurrent neural networks towards an interesting natural language processing problem.

What this talk is:

- A mid-level but technical introduction to the machinery powering modern language translation systems.
- An excursion into sequence to sequence deep learning with recurrent neural networks towards an interesting natural language processing problem.
- An introduction individuals of any background can leave having learned something from.

What this talk is:

- A mid-level but technical introduction to the machinery powering modern language translation systems.
- An excursion into sequence to sequence deep learning with recurrent neural networks towards an interesting natural language processing problem.
- An introduction individuals of any background can leave having learned something from.

What this talk is not:

- Exhaustive.
- A demonstration of state-of-the-art techniques (2014).
- Consistent with transposition of matrices (readability).

Talk Pro Tips

- Stop me for questions. If something is unclear to you, then it is surely unclear to someone else.
- It's alright to get more food in the middle of the talk.

Problem

Given a text in language L_1 output a text in language L_2 that humans concede captures the same semantic meaning, obeys language grammar rules and is useful.

A BRIEF HISTORY OF MACHINE TRANSLATION

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Encoder-Decoder Recurrent Neural Networks
- 4 f(Final Remarks) = Remarques finales

- **Token**: an element of a predefined **vocabulary** of size *d*.
 - Ex. the \in { $x : x \in$ English lexicon}, d = number of words in English lexicon.

- **Token**: an element of a predefined **vocabulary** of size *d*.
 - Ex. the $\{x: x \in \text{English lexicon}\}$, d = number of words in English lexicon.
- Token embedding: a discriminating representation of a token w.r.t. vocabulary.
 - **Ex. One hot**: $\vec{the} = (1,0,0,0,0) \in \mathbb{R}^5$ (d=5)

- **Token**: an element of a predefined **vocabulary** of size *d*.
 - Ex. the \in { $x : x \in$ English lexicon}, d = number of words in English lexicon.
- Token embedding: a discriminating representation of a token w.r.t. vocabulary.
 - **Ex.** One hot: $\vec{the} = (1,0,0,0,0) \in \mathbb{R}^5$ (d=5)
 - Observations:
 - Vocabularies are large $d \gg 0$. One hot has large memory footprint.
 - One hot assumes no relationship between tokens (ie. they form a basis in \mathbb{R}^d).

- **Token**: an element of a predefined **vocabulary** of size *d*.
 - Ex. the $\{x: x \in \text{English lexicon}\}$, d = number of words in English lexicon.
- Token embedding: a discriminating representation of a token w.r.t. vocabulary.
 - **Ex.** One hot: $\vec{the} = (1,0,0,0,0) \in \mathbb{R}^5$ (d=5)
 - Observations:
 - Vocabularies are large $d \gg 0$. One hot has large memory footprint.
 - One hot assumes no relationship between tokens (ie. they form a basis in \mathbb{R}^d).
 - A hot research area in NLP:
 - How can we incorporate context when representing a token?

- Token sequence:
 - [the, girl, walks, the, dog, .] = $[x_1, x_2, x_3, x_4, x_5, x_6]$
 - Observation: Text is just a sequence of tokens!

the girl walks the dog.

Token sequence:

[the, girl, walks, the, dog, .] =
$$[x_1, x_2, x_3, x_4, x_5, x_6]$$

- Observation: Text is just a sequence of tokens!
- Embedding sequence:

$$[\vec{\mathsf{the}},\vec{\mathsf{girl}},\vec{\mathsf{walks}},\vec{\mathsf{the}},\vec{\mathsf{dog}},\vec{\;\cdot\;}] = [\vec{\mathsf{x}}_1,\,\vec{\mathsf{x}}_2,\,\vec{\mathsf{x}}_3,\,\vec{\mathsf{x}}_4,\,\vec{\mathsf{x}}_5,\,\vec{\mathsf{x}}_6]$$

the girl walks the dog.

Token sequence:

[the, girl, walks, the, dog, .] =
$$[x_1, x_2, x_3, x_4, x_5, x_6]$$

- Observation: Text is just a sequence of tokens!
- Embedding sequence:

[the, girl, walks, the, dog,
$$\vec{\cdot}$$
] = [\vec{x}_1 , \vec{x}_2 , \vec{x}_3 , \vec{x}_4 , \vec{x}_5 , \vec{x}_6]

■ Observation: A text document comprising n tokens can be represented as a "matrix" $\mathbb{R}^{n \times d}$ where d is vocab size.

the girl walks the dog.

Token sequence:

[the, girl, walks, the, dog, .] =
$$[x_1, x_2, x_3, x_4, x_5, x_6]$$

- Observation: Text is just a sequence of tokens!
- Embedding sequence:

[the, girl, walks, the, dog,
$$\vec{\cdot}$$
] = [\vec{x}_1 , \vec{x}_2 , \vec{x}_3 , \vec{x}_4 , \vec{x}_5 , \vec{x}_6]

- Observation: A text document comprising n tokens can be represented as a "matrix" $\mathbb{R}^{n \times d}$ where d is vocab size.
- Ex. Our sequence of 6 tokens with a one-hot encoding (assume d = 5) yields a matrix $\mathbb{R}^{6 \times 5}$

$$[\vec{\mathsf{the}},\vec{\mathsf{girl}},\vec{\mathsf{walks}},\vec{\mathsf{the}},\vec{\mathsf{dog}},\vec{\cdot}] = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Definitions and Notation: Translation

the girl walks the dog. \rightarrow la fille promène le chien.

We now have the tools to be precise:

■ Translation: Given languages L_1, L_2 with lexicons V_1, V_2 a translation is a function $f: \mathbb{R}^{T \times d} \to \mathbb{R}^{T' \times d}$ mapping a length T sequence of tokens over V_1 to a length T' sequence of tokens over V_2 .

Definitions and Notation: Translation

the girl walks the dog. \rightarrow la fille promène le chien.

We now have the tools to be precise:

■ Translation: Given languages L_1, L_2 with lexicons V_1, V_2 a translation is a function $f: \mathbb{R}^{T \times d} \to \mathbb{R}^{T' \times d}$ mapping a length T sequence of tokens over V_1 to a length T' sequence of tokens over V_2 .

Machine Translation is the task of estimating a model from a set of sample sequences $(x)_T$ over V_1 to sequences $(y)_{T'}$ over V_2 (example translations) that parameterizes all such translation functions f where T, T' vary.

Definitions and Notation: Translation

the girl walks the dog. \rightarrow la fille promène le chien.

We now have the tools to be precise:

■ Translation: Given languages L_1, L_2 with lexicons V_1, V_2 a translation is a function $f: \mathbb{R}^{T \times d} \to \mathbb{R}^{T' \times d}$ mapping a length T sequence of tokens over V_1 to a length T' sequence of tokens over V_2 .

Machine Translation is the task of estimating a model from a set of sample sequences $(x)_T$ over V_1 to sequences $(y)_{T'}$ over V_2 (example translations) that parameterizes all such translation functions f where T, T' vary.

$$\{(x)^i, (y)^i : i \in \{1, ..., n\}\}$$

Almost there!

How do we estimate such a model? What properties should it possess?

■ Independent of L_1, L_2 .

Almost there!

How do we estimate such a model? What properties should it possess?

- Independent of L_1, L_2 .
- Capable of handling translations that require the generation of both short and long sequences.

Almost there!

How do we estimate such a model? What properties should it possess?

- Independent of L_1, L_2 .
- Capable of handling translations that require the generation of both short and long sequences.
- Be able to translate input sequences un-seen during creation (training). This means generalize!

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Encoder-Decoder Recurrent Neural Networks
- 4 f(Final Remarks) = Remarques finales

Idea: Consider translation as estimating a conditional distributional!

Assume the output of a translation $Y = (y)_{T'}$ is a random variable conditioned on the input $X = (x)_{T}$:

$$p(Y|X) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ..., x_T)$$

Idea: Consider translation as estimating a conditional distributional!

Assume the output of a translation $Y = (y)_{T'}$ is a random variable conditioned on the input $X = (x)_{T}$:

$$p(Y|X) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ..., x_T)$$

Problem: The first conditional is mind boggling to estimate (Y is product of random variables each with sample space V_2).

Idea: Consider translation as estimating a conditional distributional!

Assume the output of a translation $Y = (y)_{T'}$ is a random variable conditioned on the input $X = (x)_{T}$:

$$p(Y|X) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ..., x_T)$$

Problem: The first conditional is mind boggling to estimate (Y is product of random variables each with sample space V_2).

Solution: Factorize into a product of auto-regressive terms:

$$=\prod_{t=1}^{T'}p(y_t|x_1,x_2,...,x_T;y_1,...,y_{t-1})$$

Idea: Consider translation as estimating a conditional distributional!

Assume the output of a translation $Y = (y)_{T'}$ is a random variable conditioned on the input $X = (x)_{T}$:

$$p(Y|X) = p(y_1, y_2, ..., y_{T'}|x_1, x_2, ..., x_T)$$

■ **Problem**: The first conditional is mind boggling to estimate (Y is product of random variables each with sample space V_2).

Solution: Factorize into a product of auto-regressive terms:

$$=\prod_{t=1}^{T'}p(y_t|x_1,x_2,...,x_T;y_1,...,y_{t-1})$$

Why conditional estimation? Why can we factorize?

Framework cont.

■ For a given language pair how do we estimate the distribution:

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

Framework cont.

For a given language pair how do we estimate the distribution:

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

- By making a mountain of assumptions.
 - 1 p can be parameterized by a recurrent neural network.

Framework cont.

For a given language pair how do we estimate the distribution:

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

- By making a mountain of assumptions.
 - 1 p can be parameterized by a recurrent neural network.
 - 2 Our sequences are appropriately pre-processed.
 - Special tokens are added to vocabulary indicating end of sentences.
 - Vocabulary is shrunk down (lower casing inputs, etc).

Ex. the, girl, walked, the, dog, . \rightarrow the, girl, walked, the, dog, ., <EOS>

•

Recurrent Neural Networks (high level)

Reccurrent Neural Networks: A general technique for mapping an input sequence to a same length output sequence (each with elements in \mathbb{R}^d).

Recurrent Neural Networks (high level)

- **Reccurrent Neural Networks**: A general technique for mapping an input sequence to a same length output sequence (each with elements in \mathbb{R}^d).
 - For those with ML background, this is a special type of multi-layered perceptron (neural network). Connections between layers are bottle necked in order to provide hints as to the temporal structure of the input sequence.

- **Reccurrent Neural Networks**: A general technique for mapping an input sequence to a same length output sequence (each with elements in \mathbb{R}^d).
 - For those with ML background, this is a special type of multi-layered perceptron (neural network). Connections between layers are bottle necked in order to provide hints as to the temporal structure of the input sequence.

$$\mathrm{RNN}(x_t,h_{t-1})=y_t$$

 At each time-step (token embedding!), the affine-linear¹ transformations

$$ec{h}_t = anh\left(W_1^{h imes d} ec{x}_t + W_2^{h imes h} ec{h}_{t-1}
ight)$$
 $ec{y}_t = W_3^{y imes h} ec{h}_t$

are applied followed by a differentiable non-linearity.

 $¹_{\mbox{\footnotesize But wait your equation is wrong!}}$ Affine means we need origin shift (bias)! Not included for simplicity.

$$\mathrm{RNN}(x_t,h_{t-1}) = y_t$$

 At each time-step (token embedding!), the affine-linear¹ transformations

$$ec{h}_t = anh\left(W_1^{h imes d} ec{x}_t + W_2^{h imes h} ec{h}_{t-1}
ight)$$
 $ec{y}_t = W_3^{y imes h} ec{h}_t$

are applied followed by a differentiable non-linearity.

• W_1, W_2, W_3 are each just a single layer of perceptrons!

¹But wait your equation is wrong! Affine means we need origin shift (bias)! Not included for simplicity.

$$\mathrm{RNN}(x_t,h_{t-1})=y_t$$

 At each time-step (token embedding!), the affine-linear¹ transformations

$$\begin{split} \vec{h}_t &= \tanh\left(W_1^{h\times d} \vec{x}_t + W_2^{h\times h} \vec{h}_{t-1}\right) \\ \vec{y}_t &= W_3^{y\times h} \vec{h}_t \end{split}$$

are applied followed by a differentiable non-linearity.

- W_1, W_2, W_3 are each just a single layer of perceptrons!
- W_i can be adjusted (trained!) to satisfy some objective via modified form of gradient descent (back-propagation through time).

¹But wait your equation is wrong! Affine means we need origin shift (bias)! Not included for simplicity.

Gradient what?

 W_i can be adjusted (trained!) to satisfy some objective via modified form of gradient descent.

- RNN's can directly be applied to temporal problems where output sequence is same length as input.
 - Tagging (NER)
- But in machine translation, input and output sequences have un-bounded length!

- RNN's can directly be applied to temporal problems where output sequence is same length as input.
 - Tagging (NER)
- But in machine translation, input and output sequences have un-bounded length!
- **Solution:** Utilize two RNN's. One to encode a sequence representation and one to decode a sequence!

- RNN's can directly be applied to temporal problems where output sequence is same length as input.
 - Tagging (NER)
- But in machine translation, input and output sequences have un-bounded length!
- **Solution**: Utilize two RNN's. One to encode a sequence representation and one to decode a sequence!
 - What is our objective? Find set of W_i for each RNN (parameters θ) such that

$$\max_{\theta} \quad p(Y|X) = \max_{\theta} \quad \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

where Y is a text in L_2 and X text in L_1 .

- RNN's can directly be applied to temporal problems where output sequence is same length as input.
 - Tagging (NER)
- But in machine translation, input and output sequences have un-bounded length!
- **Solution:** Utilize two RNN's. One to encode a sequence representation and one to decode a sequence!
 - What is our objective? Find set of W_i for each RNN (parameters θ) such that

$$\max_{\theta} \quad p(Y|X) = \max_{\theta} \quad \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

where Y is a text in L_2 and X text in L_1 .

• Why? Given new X we can auto-regressively decode Y by sampling p with tokens from V_2 !

Idea:

1 Encoder RNN₁ unrolls over input sequence $(x)_T$.

- **1** Encoder RNN₁ unrolls over input sequence $(x)_T$.
- **2** Final internal state of RNN_1 , \vec{h}_T , initializes decoder RNN_2 .

- **I** Encoder RNN₁ unrolls over input sequence $(x)_T$.
- **2** Final internal state of RNN_1 , \vec{h}_T , initializes decoder RNN_2 .
- **3** RNN₂ auto-regressively decodes y_t until reaching $\langle EOS \rangle$ token.

- **I** Encoder RNN₁ unrolls over input sequence $(x)_T$.
- **2** Final internal state of RNN_1 , \vec{h}_T , initializes decoder RNN_2 .
- **3** RNN₂ auto-regressively decodes y_t until reaching $\langle EOS \rangle$ token.

- **I** Encoder RNN₁ unrolls over input sequence $(x)_T$.
- **2** Final internal state of RNN_1 , \vec{h}_T , initializes decoder RNN_2 .
- **3** RNN₂ auto-regressively decodes y_t until reaching $\langle EOS \rangle$ token.

Encoder-Decoder RNN Training

Encoder-Decoder RNN's parameterize our factorized distribution¹!

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$
$$= p(y_1|X) \cdot ...$$

¹With appropriate output constraints.

Encoder-Decoder RNN Training

Encoder-Decoder RNN parameterizes our factorized distribution!

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$
$$= p(y_1|X) \cdot p(y_2|X; y_1) \cdot ...$$

Encoder-Decoder RNN Training/Inference

■ During each decoding time step, p (our coupled RNN's) estimates the probability of each token in V_2 conditioned on our previous translated tokens and input sequence.

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

Encoder-Decoder RNN Training/Inference

■ During each decoding time step, p (our coupled RNN's) estimates the probability of each token in V_2 conditioned on our previous translated tokens and input sequence.

$$p(Y|X) = \prod_{t=1}^{T'} p(y_t|x_1, x_2, ..., x_T; y_1, ..., y_{t-1})$$

 At each time step, parameters of both RNNs are adjusted to assign higher probability to the correct sub-translation (via modified form of gradient descent).

■ The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).

- The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).
- First time a purely machine learning based approach was competitive with traditional statistical and phrase-based machine translation.

- The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).
- First time a purely machine learning based approach was competitive with traditional statistical and phrase-based machine translation.
- Sutskever trained on a massive English-French parallel corpus.
 - 12 million sentence pairs.

- The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).
- First time a purely machine learning based approach was competitive with traditional statistical and phrase-based machine translation.
- Sutskever trained on a massive English-French parallel corpus.
 - 12 million sentence pairs.
 - Encoder-Decoder contained 348M parameters.

- The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).
- First time a purely machine learning based approach was competitive with traditional statistical and phrase-based machine translation.
- Sutskever trained on a massive English-French parallel corpus.
 - 12 million sentence pairs.
 - Encoder-Decoder contained 348M parameters.
 - $V_1 = 160k, V_2 = 80k.$
 - Parallelized parameters and data across 8 GPU's during training. Still took 10 days.

- The Seq2Seq learning paradigm was first applied successfully to MT in (Sutskever, 2014).
- First time a purely machine learning based approach was competitive with traditional statistical and phrase-based machine translation.
- Sutskever trained on a massive English-French parallel corpus.
 - 12 million sentence pairs.
 - Encoder-Decoder contained 348M parameters.
 - $V_1 = 160k, V_2 = 80k.$
 - Parallelized parameters and data across 8 GPU's during training. Still took 10 days.
 - BLEU score: \sim 34.8 (current SOTA sits at \sim 45)
 - BLEU (Bilingual Evaluation Understudy) is a metric assessing MT performance with high correlation to human judgement.

Outline

- 1 Introduction
- 2 Preliminaries
- 3 Encoder-Decoder Recurrent Neural Networks
- 4 f(Final Remarks) = Remarques finales

- This presentation showcased a vanilla RNN cell.
 - In practice, a RNN cell with more parameters and differing connections, the LSTM, is utilized.
 - LSTM Long Short Term Memory RNN

- This presentation showcased a vanilla RNN cell.
 - In practice, a RNN cell with more parameters and differing connections, the LSTM, is utilized.
 - LSTM Long Short Term Memory RNN
- Reversing translated sentences during training/inference yields large performance gains.

- This presentation showcased a vanilla RNN cell.
 - In practice, a RNN cell with more parameters and differing connections, the LSTM, is utilized.
 - LSTM Long Short Term Memory RNN
- Reversing translated sentences during training/inference yields large performance gains.
- Language vocabularies are large utilizing arbitrary space-delimited sequences of characters tends towards computational infeasability.
 - WordPiece tokenization (Google) a domain specific tokenization based on a trained language model.
 - Boosts training and inference time by turning 120k token vocabularies into 30k tokens.

- This presentation showcased a vanilla RNN cell.
 - In practice, a RNN cell with more parameters and differing connections, the LSTM, is utilized.
 - LSTM Long Short Term Memory RNN
- Reversing translated sentences during training/inference yields large performance gains.
- Language vocabularies are **large** utilizing arbitrary space-delimited sequences of characters tends towards computational infeasability.
 - WordPiece tokenization (Google) a domain specific tokenization based on a trained language model.
 - Boosts training and inference time by turning 120k token vocabularies into 30k tokens.
- And finally ... as of 2017 top performing MT models **do not** use recurrent neural networks!
 - Same encoder-decoder framework holds, but non-recurrent seq2seq based neural network architectures now prevail. Why?
 - Transformer

Conclusion

Thank you for your attention! Questions?

Link to slides https://bit.ly/33nykuh

aymulyar@vcu.edu www.andriymulyar.com

Supplement: LSTM

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

Supplement: Actual Architecture (Sutskever, 2014)

- I did say 340M weights right?
- Note that this is really during inference during training we need need to incorporate our objective!

Supplement: Decoding at Inference

- But decoding is difficult too (recalled p is but an estimate)!
- Usually several most likely next translations are explored and pruned in a tree like fashion:
 - Beam Search