CALCULUS AND BASIC LINEAR ALGEBRA I MA1200 **LECTURE: CG1**

Chapter 4 Trigonometric Functions and Inverse Trigonometric Functions

Dr. Emily Chan Page 1

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

<u>Trigonometric Functions</u>

In elementary trigonometry, the 3 basic trigonometric functions $(\sin \theta, \cos \theta, \tan \theta)$ are defined as the ratios of sides of a right-angled triangle, and the angles θ are restricted to acute angles, i.e. $0^{\circ} \le \theta < 90^{\circ}$

y = Opposite side

x = Adjacent side

r = Hypotenuse

By definition, $\sin \theta = \frac{opp.}{hvp.} = \frac{y}{r}$, $\cos \theta = \frac{adj.}{hvp.} = \frac{x}{r}$ and

 $\tan \theta = \frac{opp.}{adi} = \frac{y}{x}$

The special angles of sine, cosine and tangent are summarized below.

	30°	45°	60°
sin	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

The six trigonometric functions are sine, cosine, tangent, cosecant, secant and cotangent, which are written as sin, cos, tan, csc (or cosec), sec and cot, respectively.

They are defined as follows:

$$\sin \theta = \frac{y}{r}$$

$$\cos \theta = \frac{x}{r}$$

$$\tan \theta = \frac{y}{x} \text{, i.e. } \tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\csc \theta = \frac{r}{y} \text{, i.e. } \csc \theta = \frac{1}{\sin \theta}$$

$$\sec \theta = \frac{r}{x} \text{, i.e. } \sec \theta = \frac{1}{\cos \theta}$$

$$\cot \theta = \frac{x}{y} \text{, i.e. } \cot \theta = \frac{1}{\tan \theta} = \frac{\cos \theta}{\sin \theta}$$

Dr. Emily Chan Page 3

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

The above results are also true when the point P lies in other quadrants.

Here,

- \triangleright P is a point in the xy-plane with Cartesian coordinates (x,y).
- \triangleright θ is the angle measured from the positive x-axis to the line OP in anticlockwise direction. (θ is positive if the angle is measured in anticlockwise direction; and it is negative if the angle is measured in clockwise direction.)
- $ightharpoonup r = \sqrt{x^2 + y^2}$ (> 0) is the distance from the origin O to the point P.

The signs of x and y depend on the quadrant in which the point P lies.

By using the definitions of the six trigonometric functions and also the fact that r is always positive, the signs of the trigonometric functions can be deduced and the results are summarized by the **CAST rule**:

Dr. Emíly Chan Page 5

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 1

If $\cos \theta = \frac{2}{3}$ and θ is in Quadrant IV, find $\tan \theta$.

Solution

Since θ is in Quadrant IV, x must be positive and y must be negative. $\cos \theta = \frac{x}{r}$ is the ratio of x to r.

Take
$$x=2$$
 and $r=3$. Then $y=-\sqrt{r^2-x^2}=-\sqrt{3^2-2^2}=-\sqrt{5}$.

Thus,
$$\tan \theta = \frac{y}{x} = \frac{-\sqrt{5}}{2}$$
.

If $\sin\theta = -\frac{3}{5}$ and $180^{\circ} < \theta < 270^{\circ}$, find $\sec\theta$ and $\cot\theta$.

Solution

Dr. Emíly Chan Page 7

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Radian Measures

A **radian measure**, denoted by **rad**, is the measure of an angle subtended at the centre of a circle by an arc with length equal to its radius.

Let r = radius of the circle;

s =length of the arc CD; and

 $\theta = \angle COD$, measured in radians.

Then θ is the ratio of the arc length to the radius of the circle, i.e. $\theta = \frac{s}{r}$.

Recall that the circumference of a circle is $2\pi r$.

If $\theta = 360^{\circ}$ (i.e. 360 degrees), then the arc length is $s = 2\pi r$.

Thus, if θ is measured in radians, we have $\theta = \frac{s}{r} = \frac{2\pi r}{r} = 2\pi$ rad.

That is, $\theta = 360^{\circ} = 2\pi \text{ rad} \implies \pi \text{ rad} = 180^{\circ}$.

Therefore, we obtain

$$1^{\circ} = \frac{\pi}{180} \text{ rad} \approx 0.017453 \text{ rad}$$
and
$$1 \text{ rad} = \frac{180}{\pi} \text{ degrees} \approx 57.296^{\circ}.$$

Conversion between radians and degrees:

Dr. Emíly Chan Page 9

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 3

Convert the following angles from degrees to radians.

- (a) 120°
- (b) 45°
- (c) -720°

Solution

(a)
$$120^{\circ} = 120 \times \frac{\pi}{180} \text{ rad} = \frac{2\pi}{3} \text{ rad}$$
 (b) $45^{\circ} = 45 \times \frac{\pi}{180} \text{ rad} = \frac{\pi}{4} \text{ rad}$

(b)
$$45^{\circ} = 45 \times \frac{\pi}{180} \text{ rad} = \frac{\pi}{4} \text{ rad}$$

(c)
$$-720^{\circ} = -720 \times \frac{\pi}{180} \text{ rad} = -4\pi \text{ rad}$$

Example 4

Convert the following angles from radians to degrees.

- (a) $\frac{\pi}{2}$ rad
- (b) $\frac{5\pi}{4}$ rad
- (c) $-\frac{5\pi}{6}$ rad

Solution

(a)
$$\frac{\pi}{2}$$
 rad $=\frac{\pi}{2} \times \frac{180^{\circ}}{\pi} = 90^{\circ}$

(b)
$$\frac{5\pi}{4}$$
 rad $=\frac{5\pi}{4} \times \frac{180^{\circ}}{\pi} = 225^{\circ}$

(c)
$$-\frac{5\pi}{6}$$
 rad $=-\frac{\pi}{6} \times \frac{180^{\circ}}{\pi} = -150^{\circ}$

Graphs of Trigonometric Functions

The graphs of the six trigonometric functions are shown below. Note that x is measured in radians in the following graphs.

1. $f(x) = \sin x$

- $\triangleright Dom(f) = \mathbb{R}$
- ightharpoonup Ran(f) = [-1, 1]
- rightarrow $f(x) = \sin x$ is an odd function, i.e. f(-x) = -f(x), i.e. $\sin(-x) = -\sin x$.
- $ightharpoonup f(x) = \sin x$ is a periodic function with period 2π , i.e. $f(x+2\pi) = f(x)$,

i.e.
$$\sin(x + 2\pi) = \sin x$$
.

Dr. Emily Chan Page 11

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

$$2. \ f(x) = \cos x$$

- $\triangleright Dom(f) = \mathbb{R}$
- ightharpoonup Ran(f) = [-1, 1]
- $ightharpoonup f(x) = \cos x$ is an even function, i.e. f(-x) = f(x), i.e. $\cos(-x) = \cos x$.
- $rackleft f(x) = \cos x$ is a periodic function with period 2π , i.e. $\cos(x+2\pi) = \cos x$.

3. $f(x) = \tan x \left(= \frac{\sin x}{\cos x} \right)$

 $f(x) = \tan x = \frac{\sin x}{\cos x}$ is <u>not</u> defined when $\cos x = 0$,

i.e. when $x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, ... = \frac{(2n+1)\pi}{2}$ for $n \in \mathbb{Z}$.

 $\therefore \ Dom(f) = \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots \right\} = \mathbb{R} \setminus \left\{ x \in \mathbb{R} | x = \frac{(2n+1)\pi}{2} \ \text{for} \ n \in \mathbb{Z} \right\}$

- $\triangleright Ran(f) = \mathbb{R}$
- $rightarrow f(x) = \tan x$ is an odd function, i.e. $\tan(-x) = -\tan x$.
- $ightharpoonup f(x) = \tan x$ is a periodic function with period π , i.e. $\tan(x + \pi) = \tan x$.

Dr. Emíly Chan Page 13

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

$$4. \ f(x) = \csc x \left(= \frac{1}{\sin x} \right)$$

 $f(x) = \csc x = \frac{1}{\sin x}$ is <u>not</u> defined when $\sin x = 0$,

i.e. when $x=0,\pm\pi,\pm2\pi,\pm3\pi,...=n\pi$ for $n\in\mathbb{Z}.$

 $\therefore Dom(f) = \mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots\} = \mathbb{R} \setminus \{x \in \mathbb{R} | x = n\pi \text{ for } n \in \mathbb{Z}\}$

- $ightharpoonup Ran(f) = (-\infty, -1] \cup [1, \infty)$
- $> f(x) = \csc x$ is an odd function, i.e. $\csc(-x) = -\csc x$.
- $ightharpoonup f(x) = \csc x$ is a periodic function with period 2π , i.e. $\csc(x+2\pi) = \csc x$.

$$5. \ f(x) = \sec x \left(= \frac{1}{\cos x} \right)$$

$$f(x) = \sec x = \frac{1}{\cos x} \text{ is } \underbrace{\text{not}}_{5\pi} \text{ defined when } \cos x = 0,$$

i.e. when
$$x = \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, ... = \frac{(2n+1)\pi}{2}$$
 for $n \in \mathbb{Z}$.

$$\therefore \ Dom(f) = \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \pm \frac{5\pi}{2}, \dots \right\} = \mathbb{R} \setminus \left\{ x \in \mathbb{R} | x = \frac{(2n+1)\pi}{2} \ \text{for} \ n \in \mathbb{Z} \right\}$$

$$ightharpoonup Ran(f) = (-\infty, -1] \cup [1, \infty)$$

$$f(x) = \sec x$$
 is an even function, i.e. $\sec(-x) = \sec x$.

$$ightharpoonup f(x) = \sec x$$
 is a periodic function with period 2π , i.e. $\sec(x+2\pi) = \sec x$.

Dr. Emily Chan Page 15

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

6.
$$f(x) = \cot x \left(= \frac{\cos x}{\sin x} = \frac{1}{\tan x} \right)$$

$$f(x) = \cot x = \frac{\cos x}{\sin x}$$
 is not defined when $\sin x = 0$,

i.e. when
$$x = 0, \pm \pi, \pm 2\pi, \pm 3\pi, ... = n\pi$$
 for $n \in \mathbb{Z}$.

$$\therefore Dom(f) = \mathbb{R} \setminus \{0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots\} = \mathbb{R} \setminus \{x \in \mathbb{R} | x = n\pi \text{ for } n \in \mathbb{Z}\}$$

$$\triangleright Ran(f) = \mathbb{R}$$

$$ightharpoonup f(x) = \cot x$$
 is an odd function, i.e. $\cot(-x) = -\cot x$.

$$ightharpoonup f(x) = \cot x$$
 is a periodic function with period π , i.e. $\cot(x+\pi) = \cot x$.

Consider the function $f(x) = -3\cos\left(2x - \frac{\pi}{2}\right) + 1$.

- (a) Sketch the graph of f(x) from $x = -\pi$ to $x = 2\pi$.
- (b) State the largest possible domain and largest possible range of f(x).
- (c) State the period of f(x).

Solution

- (a) Consider the function $g(x) = \cos x$. We perform a sequence of transformations to obtain the graph of $f(x) = -3\cos\left(2x \frac{\pi}{2}\right) + 1$.
 - **Step 1:** The graph of g(x) is shifted $\frac{\pi}{2}$ units to the right. Function obtained: $g_1(x) = g\left(x \frac{\pi}{2}\right) = \cos\left(x \frac{\pi}{2}\right)$
 - **Step 2:** The graph of $g_1(x)$ is compressed horizontally by a factor of 2. Function obtained: $g_2(x) = g_1(2x) = \cos\left(2x \frac{\pi}{2}\right)$

Dr. Emily Chan Page 17

Semester A, 2020-21

Sketch:

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

- **Step 3:** The graph of $g_2(x)$ is reflected about the x-axis. Function obtained: $g_3(x) = -g_2(x) = -\cos\left(2x \frac{\pi}{2}\right)$
- **Step 4:** The graph of $g_3(x)$ is stretched vertically by a factor of 3. Function obtained: $g_4(x) = 3 \ g_3(x) = -3 \cos \left(2x \frac{\pi}{2}\right)$
- Step 5: The graph of $g_4(x)$ is shifted 1 unit upward. Function obtained: $g_5(x) = g_4(x) + 1 = -3\cos\left(2x \frac{\pi}{2}\right) + 1 = f(x)$

- (b) Dom(f) = , Ran(f) =
- (c) The period of f(x) is

Trigonometric Identities

Basic identities

$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$
, $\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{1}{\tan \theta}$, $\csc \theta = \frac{1}{\sin \theta}$, $\sec \theta = \frac{1}{\cos \theta}$
 $\cos(-\theta) = \cos \theta$, $\sin(-\theta) = -\sin \theta$, $\tan(-\theta) = -\tan \theta$

since $\cos \theta$ is an even function; whereas $\sin \theta$ and $\tan \theta$ are odd functions.

Other useful identities

$$\sin^2 \theta + \cos^2 \theta = 1$$
, $1 + \tan^2 \theta = \sec^2 \theta$, $1 + \cot^2 \theta = \csc^2 \theta$

Proof (for reference):

Consider the right-angled triangle as shown on the right:

Then
$$\sin \theta = \frac{a}{1} \implies a = \sin \theta$$

and $\cos \theta = \frac{b}{1} \implies b = \cos \theta$.

where $\sin^2 \theta = (\sin \theta)^2$ and $\cos^2 \theta = (\cos \theta)^2$.

Dr. Emíly Chan Page 19

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Dividing both sides of $\sin^2 \theta + \cos^2 \theta = 1$ by $\cos^2 \theta$, we have

$$\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} \implies \left(\frac{\sin \theta}{\cos \theta}\right)^2 + 1 = \left(\frac{1}{\cos \theta}\right)^2 \implies \tan^2 \theta + 1 = \sec^2 \theta.$$

Dividing both sides of $\sin^2 \theta + \cos^2 \theta = 1$ by $\sin^2 \theta$, we have

$$\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta} \implies 1 + \left(\frac{\cos \theta}{\sin \theta}\right)^2 = \left(\frac{1}{\sin \theta}\right)^2 \implies \boxed{1 + \cot^2 \theta = \csc^2 \theta}.$$

Compound Angle Formulae

$$\sin(A + B) = \sin A \cos B + \cos A \sin B$$

$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$

$$\cos(A + B) = \cos A \cos B - \sin A \sin B$$

$$\cos(A - B) = \cos A \cos B + \sin A \sin B$$

$$\tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

$$\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}$$

Note that in general, $\sin(A + B) \neq \sin A + \sin B$, $\cos(A - B) \neq \cos A - \cos B$, etc.

Proof (for reference):

Consider the right-angled triangle as shown on the right:

Area of $\triangle PRS$ = Area of $\triangle PQS$ - Area of $\triangle PQR$

$$\Rightarrow \frac{1}{2}(PR)(PS)\sin(A-B) = \frac{1}{2}(PQ)(PS)\sin A - \frac{1}{2}(PQ)(PR)\sin B$$

$$\Rightarrow \sin(A - B) = \frac{PQ}{PR} \sin A - \frac{PQ}{PS} \sin B$$

$$= \cos B = \cos A$$

$$\therefore \quad \sin(A-B) = \sin A \cos B - \cos A \sin B \quad \dots \dots (1)$$

Replace B with -B in (1):

$$\sin(A+B) = \sin A \underbrace{\cos(-B)}_{=\cos B} - \cos A \underbrace{\sin(-B)}_{=-\sin B} = \sin A \cos B + \cos A \sin B$$

$$\therefore \sin(A+B) = \sin A \cos B + \cos A \sin B \dots (2)$$

The proofs of the results for $cos(A \pm B)$ and $tan(A \pm B)$ are omitted.

Dr. Emíly Chan Page 21

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

\succ Trigonometric Functions of $(90^{\circ}n\pm heta)$ or $\left(rac{n\pi}{2}\pm heta ight)$

For n=1: Trigonometric Functions of $(90^{\circ} \pm \theta)$ or $(\frac{\pi}{2} \pm \theta)$:

	$90^{\circ} - \theta \left(or \frac{\pi}{2} - \theta \right)$	$90^{\circ} + \theta \left(or \frac{\pi}{2} + \theta\right)$
sin	$\cos heta$	$\cos heta$
cos	$\sin heta$	$-\sin\theta$
tan	$\cot \theta$	$-\cot\theta$

For n=2: Trigonometric Functions of $(180^{\circ} \pm \theta)$ or $(\pi \pm \theta)$:

	$180^{\circ} - \theta \ (or \ \pi - \theta)$	$180^{\circ} + \theta \ (or \ \pi + \theta)$
sin	$\sin \theta$	$-\sin\theta$
cos	$-\cos\theta$	$-\cos\theta$
tan	- an heta	tan θ

For n=3: Trigonometric Functions of $(270^{\circ} \pm \theta)$ or $(\frac{3\pi}{2} \pm \theta)$:

	$270^{\circ} - \theta \left(or \frac{3\pi}{2} - \theta \right)$	$270^{\circ} + \theta \left(or \ \frac{3\pi}{2} + \theta \right)$
sin	$-\cos\theta$	$-\cos\theta$
cos	$-\sin\theta$	$\sin heta$
tan	$\cot \theta$	$-\cot\theta$

For n=4: Trigonometric Functions of $(360^{\circ} \pm \theta)$ or $(2\pi \pm \theta)$:

	$360^{\circ} - \theta \ (or \ 2\pi - \theta)$	$360^{\circ} + \theta \ (or \ 2\pi + \theta)$
sin	$-\sin\theta$	$\sin heta$
cos	$\cos \theta$	$\cos \theta$
tan $-\tan \theta$		$\tan \theta$

Dr. Emily Chan Page 23

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Remarks:

- 1. The results for $450^{\circ} \pm \theta = (360^{\circ} + 90^{\circ}) \pm \theta$ are the same as the corresponding results for $90^{\circ} \pm \theta$.
 - Similarly, the results for $540^{\circ} \pm \theta = (360^{\circ} + 180^{\circ}) \pm \theta$ are the same as the corresponding results for $180^{\circ} \pm \theta$, etc.
- 2. The results for $\csc(90^{\circ}n \pm \theta)$, $\sec(90^{\circ}n \pm \theta)$ and $\cot(90^{\circ}n \pm \theta)$ can be deduced from the fact that $\csc\theta = \frac{1}{\sin\theta}$, $\sec\theta = \frac{1}{\cos\theta}$ and $\cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{1}{\tan\theta}$, together with the results from the tables on the previous 2 pages.

For example,
$$\csc(90^{\circ} - \theta) = \frac{1}{\sin(90^{\circ} - \theta)} = \frac{1}{\cos \theta} = \sec \theta$$
,
$$\sec(270^{\circ} + \theta) = \frac{1}{\cos(270^{\circ} + \theta)} = \frac{1}{\sin \theta} = \csc \theta$$
,
$$\cot(180^{\circ} - \theta) = \frac{1}{\tan(180^{\circ} - \theta)} = \frac{1}{-\tan \theta} = -\cot \theta$$
, etc.

Proof (for reference)

E.g. By using the compound angle formulae

$$\sin(A+B) = \sin A \cos B + \cos A \sin B$$
 and
$$\cos(A+B) = \cos A \cos B - \sin A \sin B,$$
 we obtain
$$\sin(90^\circ + \theta) = \underbrace{\sin 90^\circ}_{=1} \cos \theta + \underbrace{\cos 90^\circ}_{=0} \sin \theta = \cos \theta$$
 and
$$\cos(90^\circ + \theta) = \underbrace{\cos 90^\circ}_{=0} \cos \theta - \underbrace{\sin 90^\circ}_{=1} \sin \theta = -\sin \theta.$$
 Thus,
$$\tan(90^\circ + \theta) = \underbrace{\frac{\sin(90^\circ + \theta)}{\cos(90^\circ + \theta)}}_{=0} = \frac{\cos \theta}{-\sin \theta} = -\cot \theta.$$

Similar method can be used to find the other results.

To proof the other results, we will use the following results of sine and cosine as well:

$$\sin 90^{\circ} = 1$$
, $\sin 180^{\circ} = 0$, $\sin 270^{\circ} = -1$, $\sin 360^{\circ} = 0$
 $\cos 90^{\circ} = 0$, $\cos 180^{\circ} = -1$, $\cos 270^{\circ} = 0$, $\cos 360^{\circ} = 1$

The proofs of the other results are omitted.

Dr. Emíly Chan Page 25

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Double Angle Formulae

$$\sin 2A = 2\sin A\cos A$$
$$\cos 2A = \cos^2 A - \sin^2 A$$

Proof (for reference)

By putting B = A into the compound angle formula

$$\sin(A+B) = \sin A \cos B + \cos A \sin B,$$

we get $\sin(A + A) = \sin A \cos A + \cos A \sin A = 2 \sin A \cos A$, i.e. $\sin(2A) = 2 \sin A \cos A$.

Similarly, by putting B = A into the compound angle formula

$$cos(A + B) = cos A cos B - sin A sin B$$
,

we get $\cos(A + A) = \cos A \cos A - \sin A \sin A$,

i.e.
$$\cos 2A = \cos^2 A - \sin^2 A$$
.

Half Angle Formulae

$$\cos^2 A = \frac{1}{2}(1 + \cos 2A)$$
$$\sin^2 A = \frac{1}{2}(1 - \cos 2A)$$

By replacing A with $\frac{A}{2}$, we obtain the following results:

$$\cos^2 \frac{A}{2} = \frac{1}{2}(1 + \cos A)$$
$$\sin^2 \frac{A}{2} = \frac{1}{2}(1 - \cos A)$$

Proof (for reference)

Consider the double angle formula

$$\cos 2A = \cos^2 A - \underbrace{\sin^2 A}_{=1 - \cos^2 A} = 2\cos^2 A - 1 \implies \boxed{\cos^2 A = \frac{1}{2}(1 + \cos 2A)}$$
Also, $\cos 2A = \underbrace{\cos^2 A}_{=1 - \sin^2 A} - \sin^2 A = 1 - 2\sin^2 A \implies \boxed{\sin^2 A = \frac{1}{2}(1 - \cos 2A)}$

Dr. Emíly Chan Page 27

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Product-to-Sum Formulae

$$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$

$$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

$$\sin A \sin B = -\frac{1}{2} [\cos(A+B) - \cos(A-B)]$$

Proof (for reference)

Consider the compound angle formulae $\sin(A + B) = \sin A \cos B + \cos A \sin B$... (1)

and
$$\sin(A - B) = \sin A \cos B - \cos A \sin B$$
 ... (2).

(1) + (2) gives $\sin(A + B) + \sin(A - B) = 2 \sin A \cos B$

$$\Rightarrow \sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$$

Similar method can be used to prove the other results.

Sum-to-Product Formulae

$$\sin x + \sin y = 2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\sin x - \sin y = 2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$$

$$\cos x + \cos y = 2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$$

$$\cos x - \cos y = -2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$$

Proof (for reference)

By putting $A = \frac{x+y}{2}$ and $B = \frac{x-y}{2}$ into the product-to-sum formula

 $\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)],$ we obtain

$$\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right) = \frac{1}{2}\left\{\sin\left[\left(\frac{x+y}{2}\right) + \left(\frac{x-y}{2}\right)\right] + \sin\left[\left(\frac{x+y}{2}\right) - \left(\frac{x-y}{2}\right)\right]\right\} = \frac{1}{2}\left(\sin x + \sin y\right)$$

$$\Rightarrow \sin x + \sin y = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right).$$

Similar method can be used to prove the other results.

Dr. Emíly Chan Page 29

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 6

Evaluate each of the following without using calculators. Leave your answers in surd form.

(a)
$$\sin \frac{5\pi}{6}$$

(b)
$$\tan\left(-\frac{3\pi}{4}\right)$$

(c)
$$\sec(-75^{\circ})$$

Solution

(a)
$$\sin \frac{5\pi}{6} = \sin \left(\pi - \frac{\pi}{6}\right) = \sin \left(\frac{\pi}{6}\right) = \frac{1}{2}$$
. (Note that $\frac{\pi}{6}$ $rad. = 30^{\circ}$.)

(b)
$$\tan\left(-\frac{3\pi}{4}\right) = -\tan\left(\frac{3\pi}{4}\right) = -\tan\left(\pi - \frac{\pi}{4}\right) = -\left[-\tan\left(\frac{\pi}{4}\right)\right] = 1$$
 (Note that $\frac{\pi}{4}$ $rad. = 45^{\circ}$.)

(c)
$$\sec(-75^{\circ}) = \frac{1}{\cos(-75^{\circ})} = \frac{1}{\cos(75^{\circ})} = \frac{1}{\cos(45^{\circ} + 30^{\circ})}$$

$$= \frac{1}{\cos(45^{\circ})\cos(30^{\circ}) - \sin(45^{\circ})\sin(30^{\circ})} \text{, by using the compound angle formula}$$

$$= \frac{1}{\left(\frac{\sqrt{2}}{2}\right)\left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right)\left(\frac{1}{2}\right)} = \frac{1}{\frac{\sqrt{6}}{4} - \frac{\sqrt{2}}{4}} = \frac{4}{\sqrt{6} - \sqrt{2}} = \frac{4(\sqrt{6} + \sqrt{2})}{(\sqrt{6} - \sqrt{2})(\sqrt{6} + \sqrt{2})} = \frac{4(\sqrt{6} + \sqrt{2})}{6 - 2}$$

$$= \sqrt{6} + \sqrt{2}$$

Simplify each of the following expressions.

(a)
$$1 + \tan^2(270^\circ - \theta)$$
 (b) $\frac{\cos(360^\circ - A)\sin(90^\circ - A)\tan(A - 180^\circ)}{\sin(-A)\sin(180^\circ + A)\cot(-A)}$

(c)
$$\frac{\cos\left(A - \frac{3\pi}{2}\right)\cot(A - \pi)}{\tan\left(A + \frac{\pi}{2}\right)}$$
 (d)
$$\frac{\cos\left(\frac{3\pi}{2} - 2x\right)\csc\left(\frac{\pi}{2} + x\right)}{\tan(x - \pi)}$$

Solution

(a)
$$1 + \tan^2(270^\circ - \theta) = 1 + [\tan(270^\circ - \theta)]^2 = 1 + (\cot \theta)^2 = 1 + \cot^2 \theta = \csc^2 \theta$$

(b)
$$\frac{\cos(360^{\circ} - A)\sin(90^{\circ} - A)\tan(A - 180^{\circ})}{\sin(-A)\sin(180^{\circ} + A)\cot(-A)} = \frac{\cos A \cos A \tan[-(180^{\circ} - A)]}{(-\sin A)(-\sin A)(-\cot A)}$$
$$= \frac{\cos A \cos A [-\tan(180^{\circ} - A)]}{-\sin A \sin A \cot A}$$
$$= \frac{\cos^{2} A [-(-\tan A)]}{-\sin^{2} A \cot A} = -\frac{\cos^{2} A \tan^{2} A}{\sin^{2} A} = -1$$

Dr. Emily Chan Page 31

Semester A, 2020-21 MA1200 Calculus and Basic Linear Algebra I Chapter 4

(c) $\frac{\cos\left(A - \frac{3\pi}{2}\right)\cot(A - \pi)}{\tan\left(A + \frac{\pi}{2}\right)} = \frac{\cos\left[-\left(\frac{3\pi}{2} - A\right)\right]\cot[-(\pi - A)]}{-\cot A}$ $= \frac{\cos\left(\frac{3\pi}{2} - A\right)\left[-\cot(\pi - A)\right]}{-\cot A}$ $= \frac{(-\sin A)[-(-\cot A)]}{-\cot A}$ $= \sin A$

(d)
$$\frac{\cos\left(\frac{3\pi}{2} - 2x\right)\csc\left(\frac{\pi}{2} + x\right)}{\tan(x - \pi)} = \frac{(-\sin 2x) \cdot \frac{1}{\sin\left(\frac{\pi}{2} + x\right)}}{\tan[-(\pi - x)]}$$
$$= \frac{(-2\sin x\cos x) \cdot \frac{1}{\cos x}}{-\tan(\pi - x)}$$
$$= \frac{-2\sin x}{-(-\tan x)} = \frac{-2\sin x}{\frac{\sin x}{\cos x}} = -2\cos x$$

Prove that $\sin(30^{\circ} + x) + \cos(60^{\circ} + x) - \cos x = 0$.

Solution

L. H. S. =
$$\sin(30^{\circ} + x) + \cos(60^{\circ} + x) - \cos x$$

= $(\sin 30^{\circ} \cos x + \cos 30^{\circ} \sin x) + (\cos 60^{\circ} \cos x - \sin 60^{\circ} \sin x) - \cos x$

by using Compound angle formulae

$$= \left(\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x\right) + \left(\frac{1}{2}\cos x - \frac{\sqrt{3}}{2}\sin x\right) - \cos x$$
$$= 0$$
$$= R. H. S.$$

$$\sin(30^{\circ} + x) + \cos(60^{\circ} + x) - \cos x = 0$$

Dr. Emíly Chan Page 33

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 9

Find the value of the following in surd form.

(b)
$$\cos \frac{5\pi}{12}$$

Solution

(a)
$$\sin 15^\circ = \sin(45^\circ - 30^\circ)$$

 $= \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$ by using Compound angle formula
 $= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2}$
 $= \frac{\sqrt{6} - \sqrt{2}}{4}$

(b)
$$\cos \frac{5\pi}{12} = \cos \left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \cos \frac{\pi}{4} \cos \frac{\pi}{6} - \sin \frac{\pi}{4} \sin \frac{\pi}{6}$$
 by using **Compound angle formula**
$$= \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Prove the following identities.

(a)
$$\sin x (\tan x + \cot x) = \sec x$$

(b)
$$\frac{\tan x}{1 + \tan^2 x} = \sin x \cos x$$

(c)
$$2\sin^2\left(\frac{x}{2}\right)\tan x = \tan x - \sin x$$

(d)
$$\sin^2\theta\cos^2\theta = \frac{1}{8} - \frac{1}{8}\cos 4\theta$$

(e)
$$\sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y$$

(f)
$$\frac{\sin(A+B) - \sin 4B}{\cos(A+B) + \cos 4B} = -\tan\left(\frac{3B-A}{2}\right)$$

$$(g) \quad \cos^4 x - \sin^4 x = \cos 2x$$

(h)
$$\frac{1-\cos x}{\sin x} = \tan\left(\frac{x}{2}\right)$$

Solution

(a) L.H.S.
$$= \sin x (\tan x + \cot x) = \sin x \left(\frac{\sin x}{\cos x} + \frac{\cos x}{\sin x} \right) = \sin x \left(\frac{\sin^2 x + \cos^2 x}{\sin x \cos x} \right) = \frac{1}{\cos x}$$

 $= \sec x = \text{R.H.S.}$

$$\therefore \sin x (\tan x + \cot x) = \sec x$$

Dr. Emily Chan Page 35

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

(b) L.H.S.
$$=\frac{\tan x}{1+\tan^2 x} = \frac{\frac{\sin x}{\cos x}}{\sec^2 x} = \frac{\sin x}{\cos x} \cdot \cos^2 x = \sin x \cos x = \text{R.H.S.}$$

 $\therefore \frac{\tan x}{1+\tan^2 x} = \sin x \cos x$

(c) L.H.S. =
$$2 \sin^2 \left(\frac{x}{2}\right) \tan x = 2 \cdot \frac{1}{2} (1 - \cos x) \tan x$$
 by **Half-angle formula**
= $\tan x - \cos x \cdot \frac{\sin x}{\cos x} = \tan x - \sin x = \text{R.H.S.}$
 $\therefore 2 \sin^2 \left(\frac{x}{2}\right) \tan x = \tan x - \sin x$

(d) L.H.S.
$$= \sin^2 \theta \cos^2 \theta = (\sin \theta \cos \theta)^2 = \left(\frac{1}{2}\sin 2\theta\right)^2$$
 by **Double-angle formula**

$$= \frac{1}{4}\sin^2 2\theta = \frac{1}{4} \cdot \frac{1}{2}(1 - \cos 4\theta)$$
 by **Half-angle formula**

$$= \frac{1}{8} - \frac{1}{8}\cos 4\theta = \text{R.H.S.}$$

$$\therefore \sin^2 \theta \cos^2 \theta = \frac{1}{8} - \frac{1}{8}\cos 4\theta$$

(e) L.H.S. =
$$\sin(x + y)\sin(x - y)$$

$$= -\frac{1}{2} \{\cos[(x+y) + (x-y)] - \cos[(x+y) - (x-y)]\}, \text{ by Product-to-sum formula}$$

$$= -\frac{1}{2} (\cos 2x - \cos 2y)$$

$$= -\frac{1}{2} [(\cos^2 x - \sin^2 x) - (\cos^2 y - \sin^2 y)], \text{ by Double angle formula}$$

$$= -\frac{1}{2} [(1 - \sin^2 x - \sin^2 x) - (1 - \sin^2 y - \sin^2 y)]$$

$$= -\frac{1}{2} [-2 \sin^2 x - (-2 \sin^2 y)]$$

$$= \sin^2 x - \sin^2 y = \text{R.H.S.}$$

$$\therefore \sin(x+y)\sin(x-y) = \sin^2 x - \sin^2 y$$

(f) L.H.S. =
$$\frac{\sin(A+B) - \sin 4B}{\cos(A+B) + \cos 4B}$$
$$= \frac{2\cos\left[\frac{(A+B) + 4B}{2}\right]\sin\left[\frac{(A+B) - 4B}{2}\right]}{2\cos\left[\frac{(A+B) + 4B}{2}\right]\cos\left[\frac{(A+B) - 4B}{2}\right]}$$
by **Sum-to-product formulae**

Dr. Emíly Chan Page 37

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

$$= \frac{\sin\left(\frac{A-3B}{2}\right)}{\cos\left(\frac{A-3B}{2}\right)} = \tan\left(\frac{A-3B}{2}\right) = \tan\left[-\left(\frac{3B-A}{2}\right)\right] = -\tan\left(\frac{3B-A}{2}\right) = \text{R.H.S.}$$

$$\therefore \frac{\sin(A+B) - \sin 4B}{\cos(A+B) + \cos 4B} = -\tan\left(\frac{3B-A}{2}\right)$$

(g) L.H.S. =
$$\cos^4 x - \sin^4 x = \left(\underbrace{\cos^2 x + \sin^2 x}_{=1}\right) \left(\underbrace{\cos^2 x - \sin^2 x}_{=\cos 2x}\right) = \cos 2x = \text{R.H.S.}$$

$$\therefore \cos^4 x - \sin^4 x = \cos 2x$$

(h) L.H.S.
$$=\frac{1-\cos x}{\sin x} = \frac{2\sin^2(\frac{x}{2})}{2\sin(\frac{x}{2})\cos(\frac{x}{2})}$$
 $\sin^2 \theta = \frac{1}{2}(1-\cos 2\theta)$ (Half angle formula)

& $\sin 2\theta = 2 \sin \theta \cos \theta$ (**Double angle formula**)

$$= \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \tan\left(\frac{x}{2}\right) = \text{R.H.S.}$$

$$\therefore \frac{1-\cos x}{\sin x} = \tan\left(\frac{x}{2}\right)$$

Simplify each of the following expressions.

(a)
$$\frac{\cos 3\theta - \cos \theta}{\sin \theta + \sin 3\theta}$$

(b)
$$\frac{\cot \theta}{1 + \cot^2 \theta}$$

(c)
$$\cos(x + y)\cos y + \sin(x + y)\sin y$$

(d)
$$\frac{\cos^2 A - \sin^2 A}{\cos 3A \cos A + \sin 3A \sin A}$$

Solution

(a)
$$\frac{\cos 3\theta - \cos \theta}{\sin \theta + \sin 3\theta} = \frac{-2\sin\left(\frac{3\theta + \theta}{2}\right)\sin\left(\frac{3\theta - \theta}{2}\right)}{2\sin\left(\frac{\theta + 3\theta}{2}\right)\cos\left(\frac{\theta - 3\theta}{2}\right)} \text{ by Sum-to-product formula}$$
$$= \frac{-\sin 2\theta \sin \theta}{\sin 2\theta \cos(-\theta)}$$
$$= -\frac{\sin \theta}{\cos \theta}$$
$$= -\tan \theta$$

Dr. Emily Chan Page 39

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

(b)
$$\frac{\cot \theta}{1 + \cot^2 \theta} = \frac{\frac{\cos \theta}{\sin \theta}}{\csc^2 \theta} = \frac{\frac{\cos \theta}{\sin \theta}}{\frac{1}{\sin^2 \theta}} = \sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$$
, by **Double angle formula**

(c)
$$\cos(x+y)\cos y + \sin(x+y)\sin y = \cos[(x+y)-y]$$
 by Compound angle formula
= $\cos x$

(d)
$$\frac{\cos^2 A - \sin^2 A}{\cos 3A \cos A + \sin 3A \sin A} = \frac{\cos 2A}{\cos (3A - A)}$$
 by **Double angle formula** and **Compound angle formula**
$$= \frac{\cos 2A}{\cos 2A}$$
$$= 1$$

Find the largest possible domain and largest possible range of $f(x) = 1 - 3 \sin x \cos x$.

Solution

The function $f(x) = 1 - 3\sin x \cos x$ is defined for all real values of x.

 $\therefore Dom(f) = \mathbb{R}.$

 $f(x) = 1 - 3\sin x \cos x = 1 - \frac{3}{2}\sin 2x$ by using the **double angle formula**.

For any $x \in Dom(f) = \mathbb{R}$, we have $-1 \le \sin 2x \le 1$

$$\Rightarrow \qquad -\frac{3}{2} \le \frac{3}{2} \sin 2x \le \frac{3}{2}$$

$$\Rightarrow \qquad -\left(-\frac{3}{2}\right) \ge -\frac{3}{2} \sin 2x \ge -\frac{3}{2}$$

$$\Rightarrow \qquad -\frac{3}{2} \le -\frac{3}{2} \sin 2x \le \frac{3}{2}$$

$$\Rightarrow \qquad \underbrace{1 - \frac{3}{2}}_{=-\frac{1}{2}} \le \underbrace{1 - \frac{3}{2} \sin 2x}_{=f(x)} \le \underbrace{1 + \frac{3}{2}}_{=\frac{5}{2}}$$

 $\therefore Ran(f) = \left[-\frac{1}{2}, \frac{5}{2} \right].$

Dr. Emily Chan Page 41

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 13

Express $\sin 3x$ in terms of $\sin x$ and powers of $\sin x$.

Solution

$$\sin 3x = \sin(2x + x)$$

 $= \sin 2x \cos x + \cos 2x \sin x$, by using Compound angle formula

= $(2 \sin x \cos x) \cos x + (\cos^2 x - \sin^2 x) \sin x$, by using **Double angle formulae**

 $= 2\sin x \cos^2 x + \sin x \cos^2 x - \sin^3 x$

= $3 \sin x (1 - \sin^2 x) - \sin^3 x$, since $\cos^2 x = 1 - \sin^2 x$

 $= 3\sin x - 4\sin^3 x$

Express $\sin^4 x$ as the sum of a constant and various $\cos kx$ terms, for some $k \in \mathbb{N}$.

Solution

$$\sin^4 x = (\sin^2 x)^2$$
= $\left[\frac{1}{2}(1 - \cos 2x)\right]^2$ by Half angle formula
$$= \frac{1}{4}[1 - 2\cos 2x + \cos^2 2x]$$
= $\frac{1}{4}\left[1 - 2\cos 2x + \frac{1}{2}(1 + \cos 4x)\right]$ by Half angle formula
$$= \frac{3}{8} - \frac{1}{2}\cos 2x + \frac{1}{8}\cos 4x$$

Dr. Emily Chan Page 43

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Additional Exercise

It is given that $\sin A = -\frac{12}{13}$ where $-90^\circ < A < 0^\circ$, and that $\cos B = -\frac{4}{5}$ where $180^\circ < B < 270^\circ$. Without using calculator,

- (i) find the value of sin(A + B),
- (ii) find the value of cos(A + B),
- (iii) deduce that $90^{\circ} < A + B < 180^{\circ}$,
- (iv) find the value of $\cos(\frac{B}{2})$.

Inverse Trigonometric Functions

In this section, we will study the inverse functions of $\sin x$, $\cos x$ and $\tan x$.

\triangleright Inverse function of $\sin x$:

Consider the graph of $y = \sin x$.

The function $g(x) = \sin x$, where $x \in \mathbb{R}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of sine function is defined as $f(x) = \sin x$, where $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \sin^{-1} x$$
, for $x \in [-1, 1]$.

This is called the inverse sine (or arcsine) function, denoted by \sin^{-1} (or arcsin).

$$y = \sin^{-1} x \iff x = \sin y \text{ for } -1 \le x \le 1 \text{ and } -\frac{\pi}{2} \le y \le \frac{\pi}{2}.$$

Dr. Emíly Chan Page 45

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Thus, (i) $\sin(\sin^{-1} x) = x$ for $-1 \le x \le 1$.

(ii)
$$\sin^{-1}(\sin y) = y$$
 for $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$.

Graphs of $y = \sin x$ and its inverse $y = \sin^{-1} x$:

$$f(x) = \sin x$$
$$f^{-1}(x) = \sin^{-1} x$$

Note: $Dom(f) = Ran(f^{-1}) = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \leftarrow \text{principal range}$ $Ran(f) = Dom(f^{-1}) = [-1, 1]$

Is $f^{-1}(x) = \sin^{-1} x$ an odd function, even function, or neither of them?

\triangleright Inverse function of $\cos x$:

Consider the graph of $y = \cos x$.

The function $g(x) = \cos x$, where $x \in \mathbb{R}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of cosine function is defined as $f(x) = \cos x$, where $x \in [0, \pi]$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \cos^{-1} x$$
, for $x \in [-1, 1]$.

This is called the inverse cosine (or arccosine) function, denoted by \cos^{-1} (or arccos).

$$y = \cos^{-1} x \iff x = \cos y \text{ for } -1 \le x \le 1 \text{ and } 0 \le y \le \pi.$$

Dr. Emíly Chan Page 47

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Thus, (i) $\cos(\cos^{-1} x) = x$ for $-1 \le x \le 1$.

(ii)
$$\cos^{-1}(\cos y) = y$$
 for $0 \le y \le \pi$.

Graphs of $y = \cos x$ and its inverse $y = \cos^{-1} x$:

$$f(x) = \cos x$$
$$f^{-1}(x) = \cos^{-1} x$$

Note: $Dom(f) = Ran(f^{-1}) = [0, \pi] \leftarrow \text{principal range}$

$$Ran(f)=Dom(f^{-1})=[-1,1]$$

Is $f^{-1}(x) = \cos^{-1} x$ an odd function, even function, or neither of them?

\triangleright Inverse function of tan x:

The function $g(x) = \tan x$, where $x \in \mathbb{R} \setminus \left\{ \pm \frac{\pi}{2}, \pm \frac{3\pi}{2}, \dots \right\}$, is not one-to-one, so g(x) has no inverse.

The **principal part** of tangent function is defined as $f(x) = \tan x$, where $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then f(x) is one-to-one and therefore its inverse $f^{-1}(x)$ exists.

$$f^{-1}(x) = \tan^{-1} x$$
, for $x \in \mathbb{R}$.

This is called the inverse tangent (or arctangent) function, denoted by tan^{-1} (or arctan).

$$y = \tan^{-1} x \iff x = \tan y$$
 for every real number x and $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Dr. Emíly Chan Page 49

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Thus, (i) $\tan(\tan^{-1} x) = x$ for $x \in \mathbb{R}$.

(ii)
$$\tan^{-1}(\tan y) = y$$
 for $-\frac{\pi}{2} < y < \frac{\pi}{2}$.

Graphs of y = tan x and its inverse $y = tan^{-1} x$:

$$f(x) = \tan x$$
$$f^{-1}(x) = \tan^{-1} x$$

Note: $Dom(f) = Ran(f^{-1}) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \leftarrow \text{principal range}$

$$Ran(f) = Dom(f^{-1}) = \mathbb{R}$$

Is $f^{-1}(x) = \tan^{-1} x$ an odd function, even function, or neither of them?

Remarks:

- $\sin^2 x = (\sin x)^2$, $\sin^3 x = (\sin x)^3$, etc. However, $\sin^{-1} x \neq (\sin x)^{-1} = \frac{1}{\sin x}$. (Similarly for $\cos^{-1} x$ and $\tan^{-1} x$.)
- 2. The ranges of the inverse trigonometric functions are known as the **principal ranges**.

Inverse functions of cosecant, secant and cotangent

Similarly, we use the notations csc^{-1} , sec^{-1} and cot^{-1} to denote the inverse functions of cosecant, secant and cotangent, respectively.

Dr. Emily Chan Page 51

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 15

Find the value of each of the following.

(a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right)$$

(b)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

(c)
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$$

(d)
$$\cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right)$$
 (e) $\sin^{-1}(\sin 10^{\circ})$

(e)
$$\sin^{-1}(\sin 10^{\circ})$$

(f)
$$\sin^{-1}(\sin 380^{\circ})$$

(g)
$$\sin^{-1}\left(\sin\left(-\frac{5\pi}{6}\right)\right)$$
 (h) $\cos^{-1}\left(\cos\left(-\frac{\pi}{6}\right)\right)$

(h)
$$\cos^{-1}\left(\cos\left(-\frac{\pi}{6}\right)\right)$$

(i)
$$\cos^{-1}(\cos 300^{\circ})$$

(j)
$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$$

(k)
$$\sin^{-1}(\cos 390^{\circ})$$

(I)
$$\cos^{-1}\left(\sin\frac{5\pi}{4}\right)$$

Solution

(a)
$$\sin^{-1}\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4}$$
 (in radians) or 45° (in degrees)

(b)
$$\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$
 (in radians) or 150° (in degrees)

(c)
$$\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right) = -\frac{\pi}{6}$$
 (in radians) or -30° (in degrees)

(d)
$$\cos\left(\cos^{-1}\left(\frac{1}{4}\right)\right) = \frac{1}{4}$$

- (e) $\sin^{-1}(\sin 10^\circ) = 10^\circ$ (since 10° lies in the principal range $[-90^\circ, 90^\circ]$.)
- (f) $\sin^{-1}(\sin 380^\circ) = \sin^{-1}(\sin(360^\circ + 20^\circ)) = \sin^{-1}(\sin(20^\circ)) = 20^\circ$ (which lies in the principal range $[-90^\circ, 90^\circ]$.)

$$\begin{split} & (\mathrm{g}) \quad \sin^{-1}\left(\sin\left(-\frac{5\pi}{6}\right)\right) = \sin^{-1}\left(\sin\left(\frac{\pi}{6} - \pi\right)\right) = \sin^{-1}\left(-\sin\left(\pi - \frac{\pi}{6}\right)\right) \\ & = \sin^{-1}\left(-\sin\frac{\pi}{6}\right) = \sin^{-1}\left(\sin\left(-\frac{\pi}{6}\right)\right) = -\frac{\pi}{6} \\ & \qquad \qquad \text{(which lies in the principal range } \left[-\frac{\pi}{2}, \frac{\pi}{2}\right].) \end{split}$$

- (h) $\cos^{-1}\left(\cos\left(-\frac{\pi}{6}\right)\right) = \cos^{-1}\left(\cos\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$ (which lies in the principal range $[0,\pi]$.)
- (i) $\cos^{-1}(\cos 300^\circ) = \cos^{-1}(\cos(360^\circ 60^\circ)) = \cos^{-1}(\cos 60^\circ) = 60^\circ$ (which lies in the principal range $[0^\circ, 180^\circ]$.)

Dr. Emily Chan Page 53

Semester A, 2020-21 MA1200 Calculus and Basic Linear Algebra I Chapter 4

(j) $\tan^{-1}\left(\tan\frac{7\pi}{6}\right) = \tan^{-1}\left(\tan\left(\pi+\frac{\pi}{6}\right)\right) = \tan^{-1}\left(\tan\left(\frac{\pi}{6}\right)\right) = \frac{\pi}{6}$ (which lies in the principal range $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$.)

(k)
$$\sin^{-1}(\cos 390^{\circ}) = \sin^{-1}(\cos(360^{\circ} + 30^{\circ})) = \sin^{-1}(\cos(30^{\circ}))$$

 $= \sin^{-1}(\cos(90^{\circ} - 60^{\circ})) = \sin^{-1}(\sin(60^{\circ})) = 60^{\circ}$
(which lies in the principal range $[-90^{\circ}, 90^{\circ}]$.)

(I)
$$\cos^{-1}\left(\sin\frac{5\pi}{4}\right) = \cos^{-1}\left(\sin\left(\frac{\pi}{2} + \frac{3\pi}{4}\right)\right) = \cos^{-1}\left(\cos\left(\frac{3\pi}{4}\right)\right) = \frac{3\pi}{4}$$
 (which lies in the principal range $[0,\pi]$.)

General Solutions of Trigonometric Equations

Sine function:

Find the general solution of $\sin x = \frac{1}{2}$.

 $\alpha = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$ (: the principal range of $\alpha = \sin^{-1}(x)$ is $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$.)

The solutions of $\sin x = \frac{1}{2}$ in $[0, 2\pi)$ are

$$x = \alpha = \frac{\pi}{6}$$
 and $x = \pi - \alpha = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$.

Since $y = \sin x$ is periodic with period 2π ,

$$x = \frac{\pi}{6} + (2\pi)m$$
 and $x = \pi - \frac{\pi}{6} + (2\pi)m$,

where $m \in \mathbb{Z}$, are also solutions of $\sin x = \frac{1}{2}$.

Dr. Emíly Chan Page 55

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

That is,
$$x = \underbrace{(2m)}_{even\,no.} \pi + \frac{\pi}{6}$$
 and $x = \underbrace{(2m+1)}_{odd\,no.} \pi - \frac{\pi}{6}$, where $m \in \mathbb{Z}$.

 \therefore The **general solution** of the equation $\sin x = \frac{1}{2}$ is

$$x = n\pi + (-1)^n \cdot \alpha$$
, where $n \in \mathbb{Z}$ and $\alpha = \sin^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{6}$.

That is, $x = n\pi + (-1)^n \cdot \frac{\pi}{6}$, where $n \in \mathbb{Z}$.

Cosine function:

Find the general solution of $\cos x = \frac{1}{\sqrt{2}}$.

$$\alpha = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$
 (: the principal range of $\alpha = \cos^{-1}(x)$ is $0 \le \alpha \le \pi$.)

The solutions of $\cos x = \frac{1}{\sqrt{2}}$ in $(-\pi, \pi]$ are

$$x = \alpha = \frac{\pi}{4}$$
 and $x = -\alpha = -\frac{\pi}{4}$ (: $\cos(-x) = \cos x$).

Since $y = \cos x$ is periodic with period 2π ,

$$x = \frac{\pi}{4} + (2\pi)n = 2n\pi + \frac{\pi}{4}$$
 and $x = -\frac{\pi}{4} + (2\pi)n = 2n\pi - \frac{\pi}{4}$,

where $n \in \mathbb{Z}$, are also solutions of $\cos x = \frac{1}{\sqrt{2}}$.

Dr. Emily Chan Page 57

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

 \therefore The general solution of the equation $\cos x = \frac{1}{\sqrt{2}}$ is

$$x = 2n\pi \pm \alpha$$
 , where $n \in \mathbb{Z}$ and $\alpha = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$ (since $0 \le \alpha \le \pi$).

That is, $x=2n\pi\pm\frac{\pi}{4}$, where $n\in\mathbb{Z}$.

Tangent function:

Find the general solution of $\tan x = \sqrt{3}$.

 $\alpha = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$ (: the principal range of $\alpha = \tan^{-1}(x)$ is $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$.)

The solution of $\tan x = \sqrt{3}$ in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is

$$x = \alpha = \frac{\pi}{3}.$$

Since $y = \tan x$ is periodic with period π ,

$$x=n\pi+\frac{\pi}{3},$$

where $n \in \mathbb{Z}$, are also solutions of $\tan x = \sqrt{3}$.

Dr. Emíly Chan Page 59

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

 \therefore The **general solution** of the equation $\tan x = \sqrt{3}$ is

$$\boxed{x=n\pi+\alpha}$$
 , where $n\in\mathbb{Z}$ and $\boxed{\alpha=\tan^{-1}\left(\sqrt{3}\right)=\frac{\pi}{3}}$ (since $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$).

That is, $x = n\pi + \frac{\pi}{3}$, where $n \in \mathbb{Z}$.

The results are summarized on the next page.

Summary

ightharpoonup The general solution of $\sin x = k$ (where $-1 \le k \le 1$) is

$$x = n\pi + (-1)^n \alpha,$$

for $n \in \mathbb{Z}$, where $\alpha = \sin^{-1} k$ and $-\frac{\pi}{2} \le \alpha \le \frac{\pi}{2}$.

ightharpoonup The general solution of $\cos x = k$ (where $-1 \le k \le 1$) is

$$x = 2n\pi \pm \alpha$$

for $n \in \mathbb{Z}$, where $\alpha = \cos^{-1} k$ and $0 \le \alpha \le \pi$.

ightharpoonup The general solution of $\tan x = k$ (where $k \in \mathbb{R}$) is

$$x = n\pi + \alpha$$

for $n \in \mathbb{Z}$, where $\alpha = \tan^{-1} k$ and $-\frac{\pi}{2} < \alpha < \frac{\pi}{2}$.

Dr. Emily Chan Page 61

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 16

Find, in radians, the general solution of the equation $\sin \theta + \cos \theta = 0$, and give all the values of θ which lie between 0 and 2π .

Solution

$$\sin \theta + \cos \theta = 0 \implies \sin \theta = -\cos \theta \implies \frac{\sin \theta}{\cos \theta} = -1 \implies \tan \theta = -1$$

∴ The general solution of the equation is

$$\theta = n\pi + \alpha$$
,

where $\alpha = \tan^{-1}(-1) = -\frac{\pi}{4}$ and $n \in \mathbb{Z}$,

i.e.
$$\theta = n\pi - \frac{\pi}{4}$$
 for $n \in \mathbb{Z}$.

When
$$n = 1$$
, $\theta = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$.

When
$$n = 2$$
, $\theta = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$.

 \therefore The solutions of the equation which lie between 0 and $\,2\pi\,$ are

$$\theta = \frac{3\pi}{4}$$
 and $\theta = \frac{7\pi}{4}$

Find, in radians, the general solution of the equation $2 \sin 5x = -1$.

Solution

$$2\sin 5x = -1 \quad \Rightarrow \quad \sin 5x = -\frac{1}{2}$$

... The general solution of the equation is

$$5x = n\pi + (-1)^n \alpha,$$

where
$$\alpha = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$
 and $n \in \mathbb{Z}$.

That is,
$$x = \frac{n\pi}{5} + \frac{(-1)^n \left(-\frac{\pi}{6}\right)}{5} = \frac{n\pi}{5} + (-1)^n \left(-\frac{\pi}{30}\right)$$
 for $n \in \mathbb{Z}$

Dr. Emily Chan Page 63

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 18

Find the general solution of the equation $\sin x = \cos 2x$.

Solution By using the **Double angle formula**, we have

$$\cos 2x = \cos^2 x - \sin^2 x = (1 - \sin^2 x) - \sin^2 x = 1 - 2\sin^2 x.$$

Then
$$\sin x = \cos 2x$$
 \Rightarrow $\sin x = 1 - 2\sin^2 x$
 $\Rightarrow 2\sin^2 x + \sin x - 1 = 0$
 $\Rightarrow (2\sin x - 1)(\sin x + 1) = 0$
 $\Rightarrow 2\sin x - 1 = 0$ or $\sin x + 1 = 0$
 $\Rightarrow \sin x = \frac{1}{2}$ or $\sin x = -1$

... The general solution of the equation is

$$x=n\pi+(-1)^n\ \alpha_1,\quad \text{where}\ \ \alpha_1=\sin^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{6}\ ,\quad \text{for}\ \ n\in\mathbb{Z},$$
 and
$$x=n\pi+(-1)^n\ \alpha_2,\quad \text{where}\ \ \alpha_2=\sin^{-1}(-1)=-\frac{\pi}{2}\ ,\quad \text{for}\ \ n\in\mathbb{Z}.$$
 That is,
$$\boxed{x=n\pi+(-1)^n\left(\frac{\pi}{6}\right)}\quad \text{or}\quad \boxed{x=n\pi+(-1)^n\left(-\frac{\pi}{2}\right)},\quad \text{for}\ \ n\in\mathbb{Z}.$$

Find the general solution of the equation $2\sin^2 4x + 3\cos 4x = 3$.

Solution

 $2\sin^2 4x + 3\cos 4x = 3$

$$\Rightarrow$$
 2(1 - cos² 4x) + 3 cos 4x = 3

$$\Rightarrow$$
 2 cos² 4x - 3 cos 4x + 1 = 0

$$\Rightarrow$$
 $(2\cos 4x - 1)(\cos 4x - 1) = 0$

$$\Rightarrow$$
 2 cos 4x - 1 = 0 or cos 4x - 1 = 0

$$\Rightarrow \cos 4x = \frac{1}{2}$$
 or $\cos 4x = 1$

... The general solution of the equation is

$$4x = 2n\pi \pm \alpha_1$$
, where $\alpha_1 = \cos^{-1}\left(\frac{1}{2}\right) = \frac{\pi}{3}$, for $n \in \mathbb{Z}$,

and $4x = 2n\pi \pm \alpha_2$, where $\alpha_2 = \cos^{-1}(1) = 0$, for $n \in \mathbb{Z}$.

That is,
$$x = \frac{2n\pi \pm \frac{\pi}{3}}{4} = \frac{n\pi}{2} \pm \frac{\pi}{12}$$
 or $x = \frac{2n\pi \pm 0}{4} = \frac{n\pi}{2}$, for $n \in \mathbb{Z}$.

Dr. Emíly Chan Page 65

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 20

Find, in radians, the general solution of the equation

$$2\sin^2(2x) - 2\sin x \cos x - 1 = 0,$$

and give all the values of x which lie between 0 and 2π .

Solution

$$2\sin^2(2x) - \underbrace{2\sin x \cos x}_{=\sin 2x} - 1 = 0$$

$$\Rightarrow$$
 $2\sin^2(2x) - \sin(2x) - 1 = 0$ (by using the **Double angle formula**)

$$\Rightarrow$$
 $[2\sin(2x) + 1][\sin(2x) - 1] = 0$

$$\Rightarrow$$
 $2\sin(2x) + 1 = 0$ or $\sin(2x) - 1 = 0$

$$\Rightarrow$$
 $\sin(2x) = -\frac{1}{2}$ or $\sin(2x) = 1$

:. The general solution of the equation is

$$\begin{aligned} \mathbf{2} x &= n\pi + (-1)^n \; \alpha_1 \;\; , \quad \text{where} \;\; \alpha_1 = \sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6} \;\; , \quad \text{for} \;\; n \in \mathbb{Z}, \\ \text{and} \;\; \mathbf{2} x &= n\pi + (-1)^n \; \alpha_2 \;\; , \quad \text{where} \;\; \alpha_2 = \sin^{-1}(1) = \frac{\pi}{2} \;\; , \quad \text{for} \;\; n \in \mathbb{Z}. \end{aligned}$$

That is,
$$x = \frac{n\pi}{2} + (-1)^n \cdot \left(-\frac{\pi}{12}\right)$$

$$\left|\frac{1}{5}\right|$$

$$x = \frac{n\pi}{2} + (-1)^n \cdot \frac{\pi}{4}$$
, where $n \in \mathbb{Z}$.

For
$$x = \frac{n\pi}{2} + (-1)^n \cdot \left(-\frac{\pi}{12}\right)$$
:

When
$$n = 1$$
, $x = \frac{\pi}{2} + \frac{\pi}{12} = \frac{7\pi}{12}$

When
$$n=2$$
, $x=\frac{2\pi}{2}-\frac{\pi}{12}=\frac{11\pi}{12}$

When
$$n = 3$$
, $x = \frac{3\pi}{2} + \frac{\pi}{12} = \frac{19\pi}{12}$

When
$$n = 4$$
, $x = \frac{4\pi}{2} - \frac{\pi}{12} = \frac{23\pi}{12}$

For
$$x = \frac{n\pi}{2} + (-1)^n \cdot \frac{\pi}{4}$$
:

When
$$n = 1$$
, $x = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$

When
$$n = 2$$
, $x = \frac{2\pi}{2} + \frac{\pi}{4} = \frac{5\pi}{4}$

(When
$$n = 3$$
, $x = \frac{3\pi}{2} - \frac{\pi}{4} = \frac{5\pi}{4}$)

Hence, the solutions which lie between 0 and $\,2\pi\,$ are

$$\frac{7\pi}{12}$$
, $\frac{11\pi}{12}$, $\frac{19\pi}{12}$, $\frac{23\pi}{12}$, $\frac{\pi}{4}$, $\frac{5\pi}{4}$

Dr. Emily Chan Page 67

Semester A, 2020-21

MA1200 Calculus and Basic Linear Algebra I

Chapter 4

Example 21

Find the general solution of the equation $\sin x + \cos x = 1$.

Solution

$$\sin x + \cos x = 1 \qquad \Rightarrow \quad \sin x = 1 - \cos x$$

$$\Rightarrow \quad 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) = 2\sin^2\left(\frac{x}{2}\right)$$

$$\Rightarrow \quad 2\sin\left(\frac{x}{2}\right)\left[\cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right)\right] = 0$$

$$\Rightarrow \quad 2\sin\left(\frac{x}{2}\right) = 0 \quad \text{or} \quad \cos\left(\frac{x}{2}\right) - \sin\left(\frac{x}{2}\right) = 0$$

$$\Rightarrow \quad \sin\left(\frac{x}{2}\right) = 0 \quad \text{or} \quad \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = 1$$

$$\Rightarrow \quad \sin\left(\frac{x}{2}\right) = 0 \quad \text{or} \quad \tan\left(\frac{x}{2}\right) = 1$$

... The general solution of the equation is

$$\frac{x}{2} = n\pi + (-1)^n \alpha_1$$
, where $\alpha_1 = \sin^{-1}(0) = 0$, for $n \in \mathbb{Z}$,

and $\frac{x}{2} = n\pi + \alpha_2$, where $\alpha_2 = \tan^{-1}(1) = \frac{\pi}{4}$, for $n \in \mathbb{Z}$.

That is,
$$x = 2n\pi$$
 or $x = 2n\pi + \frac{\pi}{2}$, for $n \in \mathbb{Z}$.

Additional Exercise

- (a) Express $3\cos 4x+\sqrt{3}\sin 4x$ in the form $R\cos(4x-\phi)$, where R>0 and $0<\phi<\frac{\pi}{2}.$
- (b) Find the general solution of $\cos 4x + \frac{1}{\sqrt{3}}\sin 4x = 1$.