Customer Segmentation

```
import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt #Data Visualization
import seaborn as sns #Python library for Vidualization
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
```

dataset = pd.read_csv('/content/Mall_Customers.csv')

dataset.head(10)

_	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
	0 1	Male	19	15	39
	1 2	Male	21	15	81
	2 3	Female	20	16	6
	3 4	Female	23	16	77
	4 5	Female	31	17	40
	5 6	Female	22	17	76
	6 7	Female	35	18	6
	7 8	Female	23	18	94
	8 9	Male	64	19	3
4	9 10	Female	30	19	72

#total rows and colums in the dataset
dataset.shape

→ (200, 5)

dataset.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

		-,.				
#	Column	Non-Null Count	Dtype			
0	CustomerID	200 non-null	int64			
1	Gender	200 non-null	object			
2	Age	200 non-null	int64			
3	Annual Income (k\$)	200 non-null	int64			
4	Spending Score (1-100)	200 non-null	int64			
<pre>dtypes: int64(4), object(1)</pre>						

#Missing values computation
dataset.isnull().sum()

memory usage: 7.9+ KB

dtype: int64

Feature sleection for the model #Considering only 2 features (Annual income and Spending Score) and no Label available X= dataset.iloc[:, [3,4]].values

```
#Building the Model
#KMeans Algorithm to decide the optimum cluster number , KMeans++ using Elbow Mmethod
#to figure out K for KMeans, I will use ELBOW Method on KMEANS++ Calculation
from sklearn.cluster import KMeans
wcss=[]
#we always assume the max number of cluster would be 10
#you can judge the number of clusters by doing averaging
###Static code to get max no of clusters
for i in range(1,11):
    kmeans = KMeans(n_clusters= i, init='k-means++', random_state=0)
    kmeans.fit(X)
    wcss.append(kmeans.inertia_)
    #inertia_ is the formula used to segregate the data points into clusters
#Visualizing the ELBOW method to get the optimal value of K
plt.plot(range(1,11), wcss)
plt.title('The Elbow Method')
plt.xlabel('no of clusters')
plt.ylabel('wcss')
plt.show()
```



```
\#If you zoom out this curve then you will see that last elbow comes at k=5
#no matter what range we select ex- (1,21) also i will see the same behaviour but if we chose higher range it is little difficult to visuali
#that is why we usually prefer range (1,11)
##Finally we got that k=5
#Model Build
kmeansmodel = KMeans(n_clusters= 5, init='k-means++', random_state=0, n_init = 'auto')
y_kmeans= kmeansmodel.fit_predict(X)
#For unsupervised learning we use "fit_predict()" wherein for supervised learning we use "fit_tranform()"
#y_kmeans is the final model . Now how and where we will deploy this model in production is depends on what tool we are using.
#This use case is very common and it is used in BFS industry(credit card) and retail for customer segmenattion.
#Visualizing all the clusters
plt.scatter(X[y_kmeans == 0, 0], X[y_kmeans == 0, 1], s = 100, c = 'red', label = 'Cluster 1')
plt.scatter(X[y_kmeans == 1, 0], X[y_kmeans == 1, 1], s = 100, c = 'blue', label = 'Cluster 2')
plt.scatter(X[y\_kmeans == 2, 0], X[y\_kmeans == 2, 1], s = 100, c = 'green', label = 'Cluster 3')
plt.scatter(X[y\_kmeans == 3, 0], X[y\_kmeans == 3, 1], s = 100, c = 'cyan', label = 'Cluster 4')
plt.scatter(X[y\_kmeans == 4, 0], X[y\_kmeans == 4, 1], s = 100, c = 'magenta', label = 'Cluster 5')
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s = 300, c = 'yellow', label = 'Centroids')
plt.title('Clusters of customers')
plt.xlabel('Annual Income (k$)')
```

plt.ylabel('Spending Score (1-100)')

plt.legend()

plt.show()

###Model Interpretation #Cluster 1 (Red Color) -> earning high but spending less #cluster 2 (Blue Colr) -> average in terms of earning and spending #cluster 3 (Green Color) -> earning high and also spending high [TARGET SET] #cluster 4 (cyan Color) -> earning less but spending more #Cluster 5 (magenta Color) -> Earning less , spending less

