Inverted Index Algorithm and Compression

Inverted Index

- Regardless of the retrieval strategy we need a data structure to efficiently store:
 - For each term in the document collection
 - · The list of documents that contain the term
 - · For each occurrence of a term in a document
 - The frequency the term appears in the document (tf)
 - The position in the document for which the term appears (only needed if proximity queries will be supported).
 - » Position may be expressed as section, paragraph, sentence, location within sentence,

Inverted Index Construction: Periodic write to disk

```
For each document d in the collection

Begin

numSubSet = 1

While memory exists:

For each term t in document d

Find term t in the term dictionary

If term t exists, add a node to its posting list

Otherwise, add term t to the term dictionary

Write SubSet of Inverted index to disk

numSubSet = numSubSet + 1

Free memory

End

For I = 1 to numSubSet
```

Compression of Inverted Index

- I/O to read a posting list is reduced if the inverted index takes less storage
- Stop words eliminate about half the size of an inverted index. "the" occurs in 7 percent of English text.
- · Other compression
 - Posting List
 - Term Dictionary
- Half of terms occur only once (hapax legomena) so they only have one entry in their posting list
- Problem is some terms have very long posting lists -- in Excite's search engine 1997 occurs 7 million times.

Things to Compress

• Term name in the term list

Merge SubSet I with Inverted Index

- Term Frequency in each posting list entry
- Document Identifier in each posting list entry

Data Compression

- Applied to posting lists
 - term: (d_1,tf_1) , (d_2,tf_2) , ... (d_n,tf_n)
- Documents are ordered, so each d_i is replaced by the interval difference, namely, d_i - d_{i-1}
- Numbers are encoded using fewer bits for smaller, common numbers
- Index is reduced to 10-15% of database size

Compressing tf: Elias Encoding

	compressing y. Lines Line came							
<u>X</u> 1	$\frac{\gamma}{0}$	To represent a value X:						
2	100	• Ilog VI						
3	10 1	• $\lfloor \log_2 X \rfloor$ ones representing the highest						
4	110 00	power of 2 not exceeding X						
5	110 01	• a 0 marker						
6	110 10	. 11 371						
7	110 11	 ↓log₂ X↓ bits representing to represent 						
8	1110 000	the remainder X - 2^ $\log_2 X$ in						
		binary.						
63	111110 11111	The smaller the integer, the fewer the bits used to represent the value. Most						

tf's are relatively small.

Elias Code

1 = 0 $2 = 1$ $3 = 1$ $4 = 11$ $5 = 11$ $6 = 11$ $7 = 11$ $8 = 111$ $9 = 111$	0 1 00 01 10 11 000 001	 3 parts, not byte aligned 1. n ones, one for each bit in part 3 2. a 0 to mark the end of part 1. 3. the next n numbers in binary
For 63, its 2 [^] 31 in binary (11111 0 1111	[11111]	Instead of two bytes for the tf we now are using only a few bits.

Variable Length Compress Used for Document Identifier

- Document identifiers (the difference) may not all be small
- A generalization of Elias is to develop a vector V with the powers of some integer in its component.
- Examples
 - V <1.2.4.8.16.32>
 - V <2,4,8,16,32,64> ,etc.

Variable Length Encoding (cont.)

- · Choose Vector V
- For an integer x to be compressed, find k such that sum of the vector components is greater than or equal to x.
- Encode k-1 in unary.
- Now subtract the sum of the first k-1 components of V from x. The difference is d.
- Encode a 0 stop bit
- Encode d in binary.

Variable Length Encoding (cont.)

· Formula to find k is...

$$\Sigma_{i=1}^{k-1}(V_i) \ < \ x \ \le \ \Sigma_{i=1}^{k}(V_i)$$

- remainder = $d = x \sum_{i=1}^{k-1} (V_i) 1$
- Now the result will be made of 3 parts
 - Encode *k-1* in unary.
 - Encode a 0 stop bit
 - Encode the remainder d in $[\log_2 V_k]$ bits.

Variable Length Encoding (Example 1)

- For x = 7
- Using Vector <1,2,4,8,16>, it requires the sum of <1,2,4> to exceed *x*. Hence the index *k* is 3 and *k-1* is 2. Encode 2 in unary.
- The remainder is 7 (1+2) 1 = 3, encode this in binary after the stop bit.
- To encode *x* use *11011*

Example 2

- To encode 9 with vector of <1, 2, 4, 8, 16, 32>
 - If k=3:1+2+4=7
 - And if k = 4: 1+2+4+8 = 15
 - We select k = 4 So encode (k -1) in unary (which is 111)
 - Encode the stop bit 0
 - Encode r = 9 7 1 = 1, encode this in binary as 001 {we encode in 3 bits as $[\log_2 8] = 3$
 - So we have 1110001 (seven bits)
- To encode 9 with new vector that starts with 2 of <2, 4, 8, 16, 32>
- If k=3
 - we get the equation as: (2+4)=6 < 9 <= 14 = (2+4+8)
- we select k = 3 ... so encode encode (k-1) in unary (which is 11) - Encode the stop bit 0
- Encode r = 9 -6 1 = 2, encode this in binary as 010 {we encode in 3 bits as $[\log_2 8] = 3$ }
- So we have 110010 (six bits)

Changing V

- If V contains larger values, fewer bits will be needed to represent larger values.
- A constant b can be varied such that V is b, 2b, 4b, 8b, 16b, 32b, 64b.
- b can be varied for each posting list
- · Use the median of the document identifier differences for each posting list.
- Requires knowledge of how large a posting list, but you know this in the final stages of index development.

Example 3

· Suppose a posting list had:

term --> d_4 d_{10} d_{20} d₃₀ d₃₅

- Differences are 6, 10, 10, 5 so median is 10 = b
- V is now <10, 20, 30, 40>
- · To encode the differences we have:

410	6 ₁₀	10_{10}	10_{10}	5 ₁₀
00011	00101	01001	01001	00100

· Note: We never needed any leading bits. With a vector of <1.2.4.8.16> we would have had:

 10_{10} 410 $\mathbf{5}_{\mathbf{10}}$ 6_{10} 11000 1110010 1110010 11001

Variable length we used 25 bits. Regular Elias we used 29 bits.

Byte-Aligned codes

0-6300xxxxxx64-16K O1xxxxxx xxxxxxxx 16K-4M 10xxxxxx xxxxxxxx xxxxxxx 4M-1G 11xxxxxx xxxxxxxx xxxxxxx xxxxxxx 00000000 1 00000001 63 00111111

64 01000000 00000000 65 01000000 00000001

The hope here is that the document distance between posting list nodes will be small.

Compression Summary

- Pro
 - Can reduce I/O for query of inverted index.
 - Reduce storage requirements of inverted index.
- Con
 - Takes longer to build the inverted index.
 - Software becomes much more complicated.
 - Uncompress required at query time note that this time is usually offset by dramatic reduction in I/O.

Top Docs

- Other structures may be built at index creation to optimize performance.
- Instead of retrieving the whole posting list, we might want to only retrieve the top xdocuments where the documents are ranked by weight.
- A separate structure with sorted, truncated posting lists may be produced.

Top Doc Summary

- Pro
 - Avoids need to retrieve the entire posting list
 - Dramatic savings on efficiency for large posting lists
- Con
 - Not feasible for Boolean queries
 - Can miss some relevant documents due to truncation

Query Threshold Consider a query with terms t_1 , t_2 , t_3 , ..., t_n . Sort the terms by their frequency across the collection (least frequent terms appear first). Define a threshold as the percentage of terms taken in the original query in a newly created reduced query. $\frac{\text{term1}}{\text{term2}}$ $\frac{\text{term2}}{\text{term3}}$ $\frac{\text{term3}}{\text{term6}}$ $\frac{\text{term4}}{\text{term9}}$ $\frac{\text{term5}}{\text{term9}}$ $\frac{\text{term6}}{\text{term9}}$ $\frac{\text{term8}}{\text{term9}}$ $\frac{\text{term9}}{\text{term9}}$ $\frac{\text{threshold} = 80\%}{\text{threshold} = 80\%}$

Threshold Summary

- Pro
 - Avoids large posting lists
 - Dramatic savings on efficiency when large posting list is not retrieved
 - Effectiveness does not degrade (as long as we do not threshold too much) because we are omitting only those terms with long posting lists
- Con
 - Still can have some very long posting lists