Fundamentos de Tolerância a Falhas

Taxonomia Taisy Silva Weber

Falhas: classificação

- inúmeras classificações diferentes
 - a classificação muda mesmo entre artigos do mesmo autor
 - exemplo: artigos do Avizienis
- classificação não é lei
 - apenas ajuda a entender os fenômenos e falar a mesma língua
- falhas maliciosas
 - mais importantes agora

Avizienis, Laprie, Randell, Landwehr. **Basic Concepts** and **Taxonomy of Dependable and Secure Computing**. IEEE Trans. on dep. and secure comp. 2004

Classes elementares de falhas

- fase:
 - desenvolvimento
 - ou operacional
- limites:
 - interna
 - externa
- causa:
 - natural
 - humana
- dimensão:
 - falha de hardware
 - falha de software

- objetivo:
 - maliciosa
 - não maliciosa
- intenção:
 - deliberada
 - não deliberada
- capacidade:
 - acidental
 - devida a incompetência
- persistência:
 - permanente
 - temporária

Classes de falhas

Avizienis, Laprie, Randell, Landwehr. Basic Concepts and Taxonomy of Dependable and Secure Computing. 2004

FIGURA 4

Classes elementares de falhas

- 8 classes
 - podem ser combinadas entre si
 - nem todas as combinações fazem sentido
 - as classes combinadas levam a 3 grupos parcialmente sobrepostos

falhas de desenvolvimento

todas que ocorrem durante o desenvolvimento

grupos de falhas

falhas de interação

todas as falhas externas

falhas físicas

todas as falhas que afetam o hardware

Falhas: grupos

falhas físicas, que afetam diretamente o hardware, foram mais estudadas

Classes elementares de falhas

- fase:
 - desenvolvimento
 - ou operacional
- limites:
 - interna
 - externa
- causa:
 - natural
 - humana
- dimensão:
 - falha de hardware
 - falha de software

- objetivo:
 - maliciosa
 - não maliciosa
- intenção:
 - deliberada
 - não deliberada
- capacidade:
 - acidental
 - devida a incompetência
- persistência:
 - permanente
 - temporária

Falhas naturais classe: causa

naturais

falhas causadas por fenômenos naturais sem participação humana

- durante desenvolvimento
 - problemas de produção (production defects)
- durante operação
 - interna: processos naturais de envelhecimento e deterioração física
 - externa: processos naturais originados fora dos limites do sistema que causam interferência física
 - radiação
 - transientes de potência
 - ruídos nas linhas de sinais, ...

Falhas humanas classe: causa

- fase:
 - desenvolvimento
 - ou operacional
- limites:
 - interna
 - externa
- causa:
 - natural
 - humana
- dimensão:
 - de hardware
 - de software

objetivo:

- maliciosa
- não maliciosa
- intenção:
 - deliberada
 - não deliberada

capacidade:

- acidental
- devida a incompetência
- persistência:
 - permanente
 - temporária

Falhas humanas

Falhas humanas não-maliciosas

podem ocorrer na **fase** de desenvolvimento ou na **fase** de operação do sistema

Defeitos

- de serviço
- de desenvolvimento
- de dependabilidade e segurança

Defeitos de serviço

de serviço de desenvolvimento

de dependabilidade e segurança

 quando o serviço oferecido se desvia de sua função

> não quando se desvia da descrição da função, ou seja, da sua especificação

cuidado:

- a especificação do sistema identifica se um sistema é correto ou não
- mas a especificação pode conter falhas

Defeitos de serviço: pontos de vista

Sistemas com controle de defeito

- sistemas projetados e controlados para apresentar defeito apenas nos modos de defeitos descritos na sua especificação de dependabilidade
- fail-halt ou fail-stop
 - defeitos de parada apenas
- fail-passive
 - serviço travado (congelado)
- fail-silent
 - defeito silencioso
- fail-safe
 - severidade mínima

Defeitos de desenvolvimento

de serviço
de desenvolvimento
de dependabilidade e segurança

tipos

- defeitos completos de desenvolvimento
- defeitos parciais
- defeitos que só se manifestam na fase operacional

origem

- falhas de desenvolvimento
 - introduzidas por desenvolvedores ou
 - ferramentas de desenvolvimento ou
 - métodos de produção

aspectos

- orçamento
- prazos

Defeitos de desenvolvimento: causas

- complexidade do sistema subestimada
 - especificações incompletas ou com falhas
 - número excessivo de mudanças na especificação
 - projeto inadequado com respeito a funcionalidade ou desempenho
 - muitas falhas de desenvolvimento
 - capacidade inadequada de remoção de falhas
 - dependabilidade ou segurança computacional insuficiente
 - falha na estimativa dos custos de desenvolvimento

Defeitos de dependabilidade

de serviço
de desenvolvimento
de dependabilidade e segurança

- a especificação de dependabilidade deve conter:
 - os objetivos de cada um dos atributos: disponibilidade, confiabilidade, segurança funcional, integridade, facilidade de manter, ...
 - identificação das classes de falhas
 - ambiente de uso (operação)
 - essa especificação também pode conter falhas
- defeito de dependabilidade
 - quando o sistema sofre defeitos de serviço mais frequentes ou severos do que o aceitável

Erros

Zzzz... erros presentes mas falha não detectados são !!! latentes um erro é detectado se sua presença é indicada por uma mensagem de defeito erro ou sinal de erro

Erros

classificação considerando:

defeitos de serviço que originam

a **falha** que originou o erro e seu espalhamento

número de bits afetados (na área de códigos de detecção e correção de erros) erro **simples**: falha afetou um único componente

erros **múltiplos** relacionados: falha afetou mais de um componente

erro simples, erro duplo, erro triplo, rajada, etc...

Bibliografia

artigos

- Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, Carl Landwehr.
 Basic Concepts and Taxonomy of Dependable and Secure Computing.
 IEEE trans. on dependable and secure computing, V. 1, n. 1, jan 2004, pp 11-33
- VINCENZO DE FLORIO and CHRIS BLONDIA. A Survey of Linguistic Structures for Application-Level Fault Tolerance. ACM Computing Surveys, Vol. 40, No. 2, April 2008.

capítulo de livro

Johnson, Barry. An introduction to the design na analysis of the fault-tolerante systems, cap 1. Fault-Tolerant System Design. Prentice Hall, New Jersey, 1996