3	(a)	D - t:	velocity.
• •	121	ΙΙΔΤΙΝΔ	VAIOCITV
•	u		V CIUCILV.

[41

(b) A car travels in a straight line up a slope, as shown in Fig. 3.1.

Fig. 3.1

The car has mass $850\,\mathrm{kg}$ and travels with a constant speed of $9.0\,\mathrm{m\,s^{-1}}$. The car's engine exerts a force on the car of $2.0\,\mathrm{kN}$ up the slope.

A resistive force F_{D} , due to friction and air resistance, opposes the motion of the car.

The variation of $F_{\rm D}$ with the speed v of the car is shown in Fig. 3.2.

Fig. 3.2

(i)	State and explain whether the car is in equilibrium as it moves up the slope.
	[2]
(ii)	Consider the forces that act along the slope. data from Fig. 3.2 to determine the component of the weight of the car that acts down the slope.
	component of weight =N [2]
(iii)	Show that the power output of the car is $1.8 \times 10^4 \text{W}$.
	[2]
iv)	The car now travels along horizontal ground. The output power of the car is maintained at 1.8×10^4 W. The variation of the resistive force F_D acting on the car is given in Fig. 3.2.
	Calculate the acceleration of the car when its speed is 15 m s ⁻¹ .
	acceleration =ms ⁻² [3]
	[Total: 10]