Teorema di Bolzano (Esistenza degli zeri):

Sia $f:[a,b]\to\mathbb{R}$ una funzione continua. Se $f(a)\cdot f(b)<0$, allora esiste almeno un punto $c\in(a,b)$ tale che f(c)=0.

Dimostrazione (Metodo di Bisezione)

Consideriamo la funzione continua f definita sull'intervallo chiuso [a, b]. Senza perdita di generalit, possiamo assumere f(a) < 0 e f(b) > 0.

Sapendo che il punto medio dell'intervallo $I_0 = [a,b]$, cio il punto che ha come ascissa

$$c_0 = \frac{a+b}{2} \tag{1}$$

La funzione $f(c_0)$ pu assumere diversi valori che ricadranno in questi tre casi:

- $f(c_0) = 0$, abbiamo indiviudato in maniera esatta la nostra radice
- $f(c_0) > 0$
- $f(c_0) < 0$

Supponiamo di trovarci nella situazione in cui la ricerca della radice non finita, suddivdiamo l'intervallo [a,b] in due sottointervalli $[a,c_0]$ e $[c_0,b]$, facendo questo abbiamo fatto una **bisezione** dell'intervallo I_0

Supponiamo di trovarci nel caso in cui $f(c_0) > 0$ (analogo per $f(c_0) < 0$) Rinonminiamo un po' i nostri elementi

- $a = a_1$
- $c_0 = b_1$
- $[a, c_0] = [a_1, b_1] = I_1$

Possiamo quindi ripetere il procedimento questa volta sull'intervallo I_1 , considerando quindi

$$c_1 = \frac{a_1 + b_1}{2} \tag{2}$$

e studiando il segno di $f(c_1)$. Se $f(c_1) = 0$, allora abbiamo trovato la nostra radice, altrimenti passiamo allo studio degli altri intervalli e questo procedimento pu continuare in modo indefinito

Come gia' detto in precedenza, a ogni passo le dimensioni dell'intervallo si dimezzano. Quindi se indichiamo con $|I_k|$ la lunghezza dell intervallo I_k , otteniamo:

$$|I_n| = \frac{1}{2}|I_n - 1| = \frac{1}{2}\left(\frac{1}{2}|I_n - 2|\right) = \frac{1}{2^2}|I_n - 2| = \dots = \frac{1}{2^n}|I_0|$$
 (3)

Osserivamo anche che abbiamo costruito con questo procedimento due successioni

• (a_n) $n \in \mathbb{N}$, crescente e superiormente limitata da b;

• (b_n) $n \in \mathbb{N}$, decrescente e inferiormente limitata da a

Visto che sono due successioni monotone, la prima crescente e la seconda decrescente, esse ammettono limite, nel primo caso l'estremo superiore di (a_n) nel secondo quello inferiore di (b_n) Chiamamo a' l'estremo superiore di a_n e b' l'estremo inferiore di b_n

Poiche' a' < b' e

$$\lim_{n \to \inf} (b_n - a_n) = \lim_{n \to \inf} |I_n| = \lim_{n \to \inf} \frac{|I_0|}{2^n} = 0$$
 (4)

Abbiamo che a'=b'. Tale punto e' candidato a essere radice della nostra f e quindi lo chiamiamo c

Supponiamo per assurdo che $f(c) \neq 0$, poniamo f(c) < 0, e per continuit della funzione f si ha:

$$\lim_{n \to \inf} f(b_n) = f(c) < 0 \tag{5}$$

Per il Teorema della permanenza del segno, dato che $f(b_n)$ ha limite negativo ma, per costruzione sappiamo che $f(b_n)$ $n \in \mathbb{N}$ e' **positiva**, abbiamo quindi un assurdo. Ragionamento analogo anche nel caso f(c) > 0

$$\lim_{n \to \inf} f(a_n) = f(c) < 0 \tag{6}$$

Quindi, per non contraddire il Teorema della permanenza del segno, l'unica possibilit che f(c) = 0, come si voleva dimostrare.