Übung: Graphische Darstellungen

1 Aufgabe: Hookesches Gesetz

i	$m_i[g]$	$x_i[cm]$	$m_i - \overline{m}$	$x_i - \overline{x}$	$(m_i - \overline{m})^2$	$(x_i - \overline{x})^2$	$(m_i - \overline{m}) \cdot (x_i - \overline{x})$
1	2	1.6	-2	-1.4	4	1.96	2.8
2	3	2.7	-1	-0.3	1	0.09	0.3
3	4	3.2	0	0.2	0	0.04	0
4	5	3.5	1	0.5	1	0.25	0.5
5	6	4.0	2	1	4	1	$\overline{}$

Für die Mittelwerte gilt: $\overline{m} = \frac{1}{5} \sum_{i=1}^5 m_i = 4$ $\overline{x} = \frac{1}{5} \sum_{i=1}^5 x_i = 3$

$$S_{mm} = \sum_{i=1}^{5} (m_i - \overline{m})^2$$
 $S_{xx} = \sum_{i=1}^{5} (x_i - \overline{x})^2$ $S_{mx} = \sum_{i=1}^{5} (m_i - \overline{m}) \cdot (x_i - \overline{x})^2$

$$S_{mm} = 10$$
 $S_{xx} = 3.34$ $S_{mx} = 5.6$

Für die Ausgleichsgerade $x = a \cdot m + b$ gilt nun:

a: Steigung der Ausgleichsgerade $a=\frac{S_{mx}}{S_{mm}}=0.56$ b: y-Achsenabschnitt der Ausgleichsgerade $b=\overline{x}-a\cdot\overline{m}=0.76$

Daraus folgt die Ausgleichsgerade: x = 0.56m + 0.76

2 Aufgabe: Brennweite einer Linse

a) Linsengleichung:

$$\frac{1}{f} = \frac{1}{g} + \frac{1}{b} \iff \frac{1}{f} = \frac{b+g}{b \cdot g} \iff f = \frac{b \cdot g}{b+g}$$

- f: Brennweite der Linse
- g: Abstand zwischen Lampe und dünne Linse
- b: Abstand zwischen dünne Linse und Schirm

i	Gegenstandsweite g_i [mm]	Bildweite b_i [mm]		$G_i = \frac{1}{g_i}$	$B_i = \frac{1}{b_i}$
1	60	285	$\frac{1140}{23} \approx 49.56$	$\frac{1}{60}$	$\frac{1}{285}$
2	80	142	$\frac{5680}{111} \approx 51.17$	$\frac{1}{80}$	$\frac{1}{142}$
3	100	117	$\frac{11700}{217} \approx 53.91$	$\frac{1}{100}$	$\frac{1}{117}$
4	110	85	$\frac{1870}{39} \approx 47.94$	$\frac{1}{110}$	1 85
5	120	86	$\frac{5160}{103} \approx 50.09$	$\frac{1}{120}$	$\frac{1}{86}$
6	125	82	$\frac{\frac{1140}{23}}{\frac{23}{23}} \approx 49.56$ $\frac{\frac{5680}{10}}{\frac{217}{217}} \approx 51.17$ $\frac{\frac{11700}{217}}{\frac{1870}{39}} \approx 53.91$ $\frac{\frac{1870}{39}}{\frac{103}{103}} \approx 47.94$ $\frac{\frac{5160}{103}}{\frac{10250}{207}} \approx 50.09$ $\frac{10250}{207} \approx 49.51$	$\frac{1}{125}$	$\frac{1}{82}$

Mittelwert: $\overline{f} = \frac{1}{6} \sum_{i=1}^{6} f_i \approx 50.36$ Standardabweichung: $S_f = \sqrt{\frac{1}{(6-1)} \sum_{i=1}^{6} (f_i - \overline{f})^2} \approx 2.026$

Fehler des Mittelwertes: $\Delta \overline{f} = \frac{S_f}{\sqrt{6}} \approx 0.82$ Für genauere Werte siehe Seite 3 (Excel Tabelle).

b) Lineare Regression:

$$B = \frac{1}{b}$$
 $G = \frac{1}{g}$ So folgt daraus: $\frac{1}{f} = G + B \iff f = \frac{1}{G + B}$

3 Aufgabe: Absorptionsgesetz

d[cm]	N [1/60s]	ΔN
0.1	7565	86
0.2	6907	83
0.3	6214	78
0.4	5531	74
0.5	4942	70
1.0	2652	51
1.2	2166	46
1.5	1466	38
2.0	970	31
3.0	333	18
4.0	127	11
5.0	48	6

$$\Delta N = \sqrt{N}$$