Unit 2 Let Project

MCKINLEY XIE

October 15, 2021

Example (Komal Problem B. 5188)

Prove that the height of a circumscribed trapezium cannot be greater than the geometric mean of the bases.

Proof. Consider the left-hand side of the following diagram:

Observe that AP = AS and PO = OS, and $\angle OSA = \angle OPA = 90^{\circ}[2]$, so $\triangle APO \cong$ $\triangle ASO$. Similarly, $\triangle ORD \cong \triangle ODS$.

Because AO bisects $\angle POS$ and DO bisects $\angle SOR$, $\angle AOD = \frac{180^{\circ}}{2} = 90^{\circ}$. Because

 $\angle SAO = \angle OAS$, $\triangle AOD \sim \triangle ASO$. Similarly, $\triangle OSD \sim \triangle AOD$. Let r be the radius of circle ω and $c = \frac{SO}{AS}$. Then $AS = \frac{r}{c}$, and by similar trinagles SD = rc.

Repeating this argument for the right-hand side we have $BQ = \frac{r}{d}$, OQ = r, and OC = rd for some constant d.

Let g be the geometric mean of the bases.

$$g = \sqrt{\left(\frac{r}{c} + \frac{r}{d}\right)(rc + rd)}$$
$$= r\sqrt{\left(\frac{1}{c} + \frac{1}{d}\right)(c + d)}$$
$$= r\sqrt{1 + \frac{c}{d} + \frac{d}{c} + 1}$$

Finally, by AM-GM[1] on $\frac{c}{d} + \frac{d}{c}$,

$$g \ge r\sqrt{1+2+1} = 2r$$

And since 2r is equal to the height of the trapezium, we are done.

References

- [1] Eric W. Weisstein. Arithmetic-Geometric Mean. URL: https://mathworld.wolfram.com/Arithmetic-GeometricMean.html.
- [2] Eric W. Weisstein. Circle Tangent Line. URL: https://mathworld.wolfram.com/CircleTangentLine.html.
- [3] Eric W. Weisstein. Similar Triangles. URL: https://mathworld.wolfram.com/SimilarTriangles.html.