Exam 2 - MAT345

Name: _____

1 True/False (100 points; 10 points each)

Problem 1.1. In class, you need only provide a T/F (make it clear!) As usual, you may earn back up to 50% of the lost points by supplying justifications afterward.

i) True Let $S \in M_3$ be invertible, then $SM_{3\times3}S^{-1} = \{SAS^{-1} \mid A \in M_{3\times3}\}$ is a subspace of $M_{3\times3}$.

We must show that this set is closed under linear combinations:

$$S(\alpha_1 A_1 + \alpha_2 A_2)S^{-1} = \alpha_1 S A_1 S^{-1} + \alpha_2 S A_2 A^{-1}$$

ii) True The map mean: $\mathbb{R}^n \to \mathbb{R}$ is linear where mean $(\boldsymbol{x}) = \frac{1}{n} \sum_{i=1}^n x_i$.
This is clear:

$$\operatorname{mean}(\alpha \boldsymbol{x} + \beta \boldsymbol{y}) = \frac{1}{n} \sum_{i=1}^{n} (\alpha x_i + \beta y_i) = \alpha \frac{1}{n} \sum_{i} x_i + \beta \frac{1}{n} \sum_{i} y_i = \alpha \operatorname{mean}(\boldsymbol{x}) + \beta \operatorname{mean}(\boldsymbol{y})$$

iii) False It is clear that for any $u \in \mathbb{R}^n$, the map $l_u : \mathbb{R}^n \to \mathbb{R}$ given by $l_u(v) = \langle v, u \rangle = u^T v$ is linear. There are however some linear $l : \mathbb{R}^n \to \mathbb{R}$ such that $l \neq l_u$ for any $u \in \mathbb{R}^n$.

Let
$$\mathbf{u}^T = [l]_{\mathcal{E}}$$
, then $l(\mathbf{v}) = [l(\mathbf{v})]_{\mathcal{E}} = [l]_{\mathcal{E}}[\mathbf{v}]_{\mathcal{E}} = \mathbf{u}^T \mathbf{v}$.

iv) False For all linear $L: V \to W$, if $\{v_1, \ldots, v_k\}$ is independent, then $\{L(v_1), \ldots, L(v_k)\}$ is independent.

This is trivially false. L could just be the $\mathbf{0}$ map, that is, $L(\mathbf{v}) = \mathbf{0}$ for all $\mathbf{v} \in V$. This would be true if $\ker(L) = \{\mathbf{0}\}$.

v) True For all linear $L: V \to W$, if $\{L(\boldsymbol{v}_1), \ldots, L(\boldsymbol{v}_k)\}$ is independent, then $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k\}$ is independent.

Suppose $\sum \alpha_i \mathbf{v}_i = \mathbf{0}$, then $L(\sum \alpha_i \mathbf{v}_i) = \sum \alpha_i L(\mathbf{v}_i) = L(\mathbf{0}) = \mathbf{0}$. Since $\{L(\mathbf{v}_1), \dots, L(\mathbf{v}_k)\}$ is independent it follows that $\alpha_i = 0$ for all i and hence that $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is independent.

vi) True Let c_1, c_2, c_3, c_4 be distinct real numbers, then the polynomials $p_1(x) = x - c_1$, $p_2(x) = (x - c_1)(x - c_2), p_3(x) = (x - c_1)(x - c_2)(x - c_3), p_4(x) = (x - c_1)(x - c_2)(x - c_3)(x - c_4)$ is a basis for $S = \{p(x) \in \mathbb{P}_4(x) \mid p(x) = \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3 + \alpha_4 x^4\}.$

Clearly dim(S) = 4 so we just need to see that $\{p_1, p_2, p_3, p_4\}$ is linearly independent. Suppose $p(x) = \alpha_1 p_1(x) + \alpha_2 p_2(x) + \alpha_3 p_3(x) + \alpha_4 p_4(x) = \mathbf{0}$. then $p(c_2) = \alpha_1(c_2 - c_1) = 0$ so $\alpha_1 = 0$. So $p(x) = \alpha_2 p_2(x) + \alpha_3 p_3(x) + \alpha_4 p_4(x) = \mathbf{0}$. Now $p(c_3) = \alpha_2(c_3 - c_1)(c_3 - c_2) = 0$ so $\alpha_2 = 0$. Thus $p(x) = \alpha_3 p_3(x) + \alpha_4 p_4(x) = \mathbf{0}$.

Now we have $p(c_4) = \alpha_3(c_4 - c_1)(c_4 - c_2)(c_4 - c_3) = 0$, so $\alpha_3 = 0$. So we have $p(x) = \alpha_4 p_4(x) = 0$. Take $d \notin \{c_1, c_2, c_3, c_4\}$, then $p(d) = \alpha_4 (d - c_1)(d - c_2)(d - c_3)(d - c_4) = 0$ and so $\alpha_4 = 0$. So all $\alpha_i = 0$ and hence the set is independent and thus must span.

vii) True Given any basis $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4\}$, from \mathbb{R}^4 and any four matrices $M_1, M_2, M_3, M_4 \in \mathbb{R}^{2\times 3}$ there is a unique linear transformation $L: \mathbb{R}^4 \to \mathbb{R}^{2\times 3}$ where $L(\boldsymbol{v}_i) = M_i$.

Existence: Define $L\left(\sum_{i=1}^4 \alpha_i \boldsymbol{v}_i\right) = \sum_{i=1}^4 \alpha_i M_i$. This is a well-defined function $L: \mathbb{R}^4 \to \mathbb{R}^{2\times 3}$.

Showing that this is linear is just a computation: Let $\mathbf{v} = \sum_{i=1}^4 \alpha_i \mathbf{v}_i$ and $\mathbf{u} = \sum_{i=1}^4 \beta + i \mathbf{v}_i$, then

$$L(\gamma \boldsymbol{v} + \boldsymbol{u}) = L\left(\gamma \sum_{i=1}^{4} \alpha_{i} \boldsymbol{v}_{i} + \sum_{i=1}^{4} \beta_{i} \boldsymbol{v}_{i}\right) = L\left(\sum_{i=1}^{4} (\gamma \alpha_{i} + \beta_{i}) \boldsymbol{v}_{i}\right)$$
$$= \sum_{i=1}^{4} (\gamma \alpha_{i} + \beta_{i}) W_{i} = \gamma \sum_{i=1}^{4} \alpha_{i} \boldsymbol{W}_{i} + \sum_{i=1}^{4} \beta_{i} W_{i} = \gamma \cdot L(\boldsymbol{v}) + L(\boldsymbol{u})$$

Uniqueness: Suppose $L': V \to W$ is linear and sends \boldsymbol{v}_i to \boldsymbol{W}_i , then for $\boldsymbol{v} \in V$, $\boldsymbol{v} = \sum_{i=1}^4 \alpha_i \boldsymbol{v}_i$ and $L'(\boldsymbol{v}) = L'\left(\sum_{i=1}^4 \alpha_i \boldsymbol{v}_i\right) = \sum_{i=1}^4 \alpha_i M_i = L(\boldsymbol{v})$ and thus L = L'.

- viii) <u>False</u> There is an invertible (one-to-one) linear map $L : \mathbb{R}^2 \to \mathbb{R}$. $\dim(\ker(L)) + \dim(\operatorname{Img}(L)) = 2$, but $\dim(\ker(L)) + \dim(\operatorname{Img}(L)) \leq \dim(\ker(L)) + \dim(\operatorname{Img}(L)) \leq \dim(\operatorname{Img}(L)) \leq \dim(\operatorname{Img}(L)) = 2$
 - ix) True Let

$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\0\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1 \end{bmatrix} \right\}$$

be a basis for \mathbb{R}^3 . If $[\boldsymbol{v}]_{\mathcal{B}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$ then $\boldsymbol{v} = \begin{bmatrix} 3\\3\\4 \end{bmatrix}$

$$\begin{bmatrix} 3\\3\\4 \end{bmatrix} = (1) \begin{bmatrix} 1\\2\\3 \end{bmatrix} + (1) \begin{bmatrix} 2\\0\\2 \end{bmatrix} + (1) \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$$

x) <u>False</u> Given a linear transformation $L: V \to V$ where $\dim(V) = n$ and \mathcal{B} is a basis for V, the value of $\det([L]_{\mathcal{B}})$ depends on the choice of basis \mathcal{B} .

This we discussed in class, given any other basis \mathcal{B}' we have

$$[L]_{\mathcal{B}'} = [\mathrm{id}]_{calB,B'}[L]_{\mathcal{B},\mathcal{C}}[\mathrm{id}]_{\mathcal{B}',\mathcal{B}}$$

Letting $S = [id]_{calB,B'}$ and so $S^{-1} = [id]_{calB',B}$. (A common *change of basis* scenario.) So $[L]_{\mathcal{B}'}$ and $[L]_{\mathcal{B}}$ are similar and thus have the same determinant. This way we can define $\det(L)$ for L a linear transformation, not just a matrix.

2 Long Answer (90 points)

Show all computations so that you make clear what your thought processes are.

Problem 2.1 (30 pts). Consider A given by

$$A = \begin{bmatrix} 2 & -2 & 2 & 2 & 1 \\ -4 & 2 & -5 & -3 & -4 \\ -2 & 4 & -1 & -5 & 1 \\ -4 & 6 & -3 & -7 & 0 \end{bmatrix}$$

Find a basis for each of NS(A), CS(A), and RS(A). (10 points each)

$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 0 & \frac{3}{2} & 0 & \frac{3}{2} \\ 0 & 1 & \frac{1}{2} & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

From this we know:

$$CS(A) = span\{(-2, -4, -2, -4), (-2, 2, 4, 6), (2, -3, -5, -7)\}$$

$$RS(A) = span\{(1, 0, \frac{3}{2}, 0, \frac{3}{2}), (0, 1, \frac{1}{2}, 0, 1), (0, 0, 0, 1, 0)\}$$

Note: RS(A) is not the span of the first three rows of A.

To find a basis for NS(A) we are looking for solutions to Ax = 0. First, we have back-substitution: x_3 and x_5 are free, let $x_3 = s$ and $x_5 = t$, then

$$x_{5} = t$$

$$x_{4} = 0$$

$$x_{3} = s$$

$$x_{2} = -\frac{1}{2}s - t$$

$$x_{1} = -\frac{3}{2}s - \frac{3}{2}t$$

Any vector x satisfying, Ax = 0 can be written as:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2}s - \frac{3}{2}t \\ -\frac{1}{2}s - t \\ s \\ 0 \\ t \end{bmatrix} = s \begin{bmatrix} -\frac{3}{2} \\ -\frac{3}{2} \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} -\frac{3}{2} \\ -1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

So $\{(-\frac{3}{2}, -\frac{1}{2}, 1, 0, 0), (-\frac{3}{2}, -1, 0, 0, 1)\}$ is a basis for NS(A), that is,

$$NS(A) = span\{(-\frac{3}{2}, -\frac{1}{2}, 1, 0, 0), (-\frac{3}{2}, -1, 0, 0, 1)\}$$

Problem 2.2 (20 pts). Consider the map $L: \mathbb{R}^3 \to \mathbb{R}^3$ that projects a point in \mathbb{R}^3 onto the line $l: \left\{t \begin{bmatrix} -\frac{1}{2} \end{bmatrix} \mid t \in \mathbb{R}\right\}$ along the plane P: 3x - 2y + z = 0.

- i) (8 points) Find a basis \mathcal{B} for \mathbb{R}^3 so that $[L]_{\mathcal{B}}$ is simple. Give both \mathcal{B} and $[L]_{\mathcal{B}}$.
- ii) (8 points) Next, find [L] using some change of basis and the $[L]_{\mathcal{B}}$ that you found.
- iii) (4 points) Finally, find L((4, -4, 0)).

Note: Points on P are mapped to $\mathbf{0}$, that is, $\ker(L) = P$, while points in l are fixed. This is similar to, but different from, the examples done in class. In that example, we were projecting onto a plane along a line, while here, we are projecting onto a line along a plane.

There are many choices for \mathcal{B} , I will use the two vectors $\mathbf{v}_1 = (1, 1, -1)$ and $\mathbf{v}_2 = (0, 1, 2)$ in P and $\mathbf{v}_3 = (1, -1, 2)$ in L. So

$$\mathcal{B} = \{oldsymbol{v_1}, oldsymbol{v_2}, oldsymbol{v_3}\} = \left\{\left[egin{smallmatrix} 1 \ 1 \ -1 \end{smallmatrix}
ight], \left[egin{smallmatrix} 1 \ 1 \ 2 \end{smallmatrix}
ight], \left[egin{smallmatrix} 1 \ -1 \ 2 \end{smallmatrix}
ight]
ight\}$$

and

$$[L]_{\mathcal{B}} = \left[[L(\boldsymbol{v}_1)]_{\mathcal{B}} [L(\boldsymbol{v}_2)]_{\mathcal{B}} [L(\boldsymbol{v}_3)]_{\mathcal{B}} \right] = \left[[\boldsymbol{0}]_{\mathcal{B}} [\boldsymbol{0}]_{\mathcal{B}} [\boldsymbol{v}_3]_{\mathcal{B}} \right] = \left[\begin{smallmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{smallmatrix} \right]$$

Finding [L] is now trivial.

$$[L] = B[L]_{\mathcal{B}}B^{-1} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & -1 \\ -1 & 2 & 2 \end{bmatrix}^{-1} = \frac{1}{7} \begin{bmatrix} 3 & -2 & 1 \\ -3 & 2 & -1 \\ 6 & -4 & 2 \end{bmatrix}$$

and

$$L\left(\left[\begin{array}{c} 4\\ -4\\ 0 \end{array}\right]\right) = \frac{20}{7} \left[\begin{array}{c} -1\\ -1\\ 2 \end{array}\right]$$

Problem 2.3 (20 pts). The green (dashed/filled) house has been transformed to the red (solid) house by a linear transformation $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Desmos

- i) (10 points) Find [L] by first choosing basis \mathcal{G} (for the green house) and basis \mathcal{R} (for the red house) and find $[L]_{\mathcal{G},\mathcal{R}}$.
- ii) (10 points) Find [L] by using appropriate change of basis matrices together with $[L]_{\mathcal{G},\mathcal{R}}$

There are many options here. In all cases, you might have chosen a different basis than I did, but the final matrix is the same.

(Exactly as done in class!) Take

$$\mathcal{G} = \{ oldsymbol{v}_1, oldsymbol{v}_2 \} = \left\{ egin{bmatrix} 1 \\ 2 \end{bmatrix}, egin{bmatrix} -2 \\ 1 \end{bmatrix}
ight\}$$

and

$$\mathcal{R} = \{ \boldsymbol{u}_1, \boldsymbol{u}_2 \} = \left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ -2 \end{bmatrix} \right\}$$

Then

$$[L]_{\mathcal{G},\mathcal{R}} = \begin{bmatrix} [L(\boldsymbol{v}_1)]_{\mathcal{R}} [L(\boldsymbol{v}_2)]_{\mathcal{R}} \end{bmatrix} = \begin{bmatrix} [\boldsymbol{u}_1]_{\mathcal{R}} [\boldsymbol{u}_2]_{\mathcal{R}} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

and

$$[L] = R[L]_{\mathcal{G},\mathcal{R}}G^{-1} = RG^{-1} = \begin{bmatrix} -2 & -2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 2 & 1 \end{bmatrix}^{-1}$$
$$= \begin{bmatrix} -2 & -2 \\ 1 & -2 \end{bmatrix} \frac{1}{5} \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 2 & -6 \\ 5 & 0 \end{bmatrix}$$

Problem 2.4 (20 points). Show that if $L: V \to W$ is linear and $\ker(L) = \{0\}$, then for any linearly independent set $\{v_1, \ldots, v_k\}$ from $V, \{L(v_1), \ldots, L(v_k)\}$ is independent.

Suppose $\sum \alpha_i L(\mathbf{v}_i) = \mathbf{0}$, then we can use linearity to get

$$L\left(\sum \alpha_i \boldsymbol{v}_i\right) = \boldsymbol{0}$$

But since $\ker(L) = \{\mathbf{0}\}$ we have $\sum \alpha_i \mathbf{v}_i = \mathbf{0}$ and as the \mathbf{v}_i 's are independent we know $\alpha_i = 0$ for all i and so the $L(\mathbf{v}_i)$'s are shown independent.