Rob J Hyndman George Athanasopoulos

FORECASTING PRINCIPLES AND PRACTICE

7. Time series regression models

7.4 Some useful predictors

OTexts.org/fpp3/

Trend

Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

3

Nonlinear trend

Piecewise linear trend with bend at au

$$x_{1,t} = t$$

$$x_{2,t} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

Dummy variables

If a categorical variable takes only two values (e.g., 'Yes' or 'No'), then an equivalent numerical variable can be constructed taking value 1 if yes and 0 if no. This is called a dummy variable.

	Α	В
1	Yes	1
2	Yes	1
3	No	0
4	Yes	1
5	No	0
6	No	0
7	Yes	1
8	Yes	1
9	No	0
10	No	0
11	No	0
12	No	0
13	Yes	1
14	No	0

Dummy variables

If there are more than two categories, then the variable can be coded using several dummy variables (one fewer than the total number of categories).

	Α	В	С	D	Е
1	Monday	1	0	0	0
2	Tuesday	0	1	0	0
3	Wednesday	0	0	1	0
4	Thursday	0	0	0	1
5	Friday	0	0	0	0
6	Monday	1	0	0	0
7	Tuesday	0	1	0	0
8	Wednesday	0	0	1	0
9	Thursday	0	0	0	1
10	Friday	0	0	0	0
11	Monday	1	0	0	0
12	Tuesday	0	1	0	0
	Wednesday	0	0	1	0
14	Thursday	0	0	0	1
15	Friday	0	0	0	0

Beware of the dummy variable trap!

- Using one dummy for each category gives too many dummy variables!
- The regression will then be singular and inestimable.
- Either omit the constant, or omit the dummy for one category.
- The coefficients of the dummies are relative to the omitted category.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Public holidays

■ For daily data: if it is a public holiday, dummy=1, otherwise dummy=0.

Regression model

$$y_t = \beta_0 + \beta_1 t + \beta_2 d_{2,t} + \beta_3 d_{3,t} + \beta_4 d_{4,t} + \varepsilon_t$$

 $d_{i,t} = 1$ if t is quarter i and 0 otherwise.

```
fit_beer <- recent_production |> model(TSLM(Beer ~ trend() + season()))
report(fit_beer)
```

```
## Series: Reer
## Model: TSLM
## Residuals:
     Min 10 Median 30 Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
        Estimate Std. Error t value Pr(>|t|)
## (Intercept) 441.8004 3.7335 118.33 < 2e-16 ***
## trend() -0.3403 0.0666 -5.11 2.7e-06 ***
## season()vear2 -34.6597 3.9683 -8.73 9.1e-13 ***
## season()vear3 -17.8216   4.0225   -4.43   3.4e-05 ***
## season()vear4 72.7964 4.0230 18.09 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
```

```
augment(fit_beer) |>
  ggplot(aes(x = Quarter)) +
  geom_line(aes(y = Beer, colour = "Data")) +
  geom_line(aes(y = .fitted, colour = "Fitted")) +
  labs(y = "Megalitres", title = "Australian quarterly beer production") +
  scale_colour_manual(values = c(Data = "black", Fitted = "#D55E00"))
```



```
augment(fit_beer) |>
  ggplot(aes(x = Beer, y = .fitted, colour = factor(quarter(Quarter)))) +
  geom_point() +
  labs(y = "Fitted", x = "Actual values", title = "Quarterly beer production") +
  scale_colour_brewer(palette = "Dark2", name = "Quarter") +
  geom_abline(intercept = 0, slope = 1)
```



```
fit_beer |>
  forecast() |>
  autoplot(recent_production)
```


Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right) \qquad c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$$
$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t)\right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough K.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

Harmonic regression: beer production

```
fourier_beer <- recent_production |> model(TSLM(Beer ~ trend() + fourier(K = 2)))
report(fourier_beer)
```

```
## Series: Reer
## Model: TSLM
## Residuals:
    Min 10 Median 30 Max
## -42.9 -7.6 -0.5 8.0 21.8
##
## Coefficients:
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) 446.8792 2.8732 155.53 < 2e-16 ***
## trend()
          ## fourier(K = 2)C1 4 8.9108 2.0112 4.43 3.4e-05 ***
## fourier(K = 2)S1 4 -53.7281 2.0112 -26.71 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 12.2 on 69 degrees of freedom
## Multiple R-squared: 0.924, Adjusted R-squared: 0.92
## F-statistic: 211 on 4 and 69 DF, p-value: <2e-16
```


0 984 -1234

0.984 - 1232

5 K5

6 K6

0.985

0.985

```
fit <- aus cafe |>
  model(
    K1 = TSLM(log(Turnover) ~ trend() + fourier(K = 1)),
    K2 = TSLM(log(Turnover) ~ trend() + fourier(K = 2)),
    K3 = TSLM(log(Turnover) ~ trend() + fourier(K = 3)),
    K4 = TSLM(log(Turnover) ~ trend() + fourier(K = 4)),
    K5 = TSLM(log(Turnover) ~ trend() + fourier(K = 5)),
    K6 = TSLM(log(Turnover) ~ trend() + fourier(K = 6))
glance(fit) |> select(.model, r_squared, adj_r_squared, AICc)
## # A tibble: 6 x 4
## .model r_squared adj_r_squared AICc
  <chr>
            <dbl>
                <dbl> <dbl>
                      0.962 -1085.
## 1 K1
            0.962
## 2 K2
           0.966
                      0.965 -1099.
## 3 K3
            0.976
                      0.975 -1160.
## 4 K4
            0.980
                      0.979 -1183.
```


Intervention variables

Spikes

Equivalent to a dummy variable for handling an outlier.

Intervention variables

Spikes

■ Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Intervention variables

Spikes

■ Equivalent to a dummy variable for handling an outlier.

Steps

■ Variable takes value 0 before the intervention and 1 afterwards.

Change of slope

■ Variables take values 0 before the intervention and values $\{1, 2, 3, ...\}$ afterwards.

Holidays

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

```
marathon <- boston_marathon |>
  filter(Event == "Men's open division") |>
  select(-Event) |>
  mutate(Minutes = as.numeric(Time) / 60)
marathon |> autoplot(Minutes) + labs(y = "Winning times in minutes")
```



```
fit_trends <- marathon |>
  model(
    # Linear trend
  linear = TSLM(Minutes ~ trend()),
    # Exponential trend
  exponential = TSLM(log(Minutes) ~ trend()),
    # Piecewise linear trend
  piecewise = TSLM(Minutes ~ trend(knots = c(1940, 1980)))
)
```

fit_trends

```
## # A mable: 1 x 3
## linear exponential piecewise
## <model> <model> <model> <TSLM> <TSLM>
```

```
fit_trends |>
forecast(h = 10) |>
autoplot(marathon)
```


