Содержание

Рис. 1: Геометрия отклика от плоской поверхности.

В работе [1] отмечалось, что ... Посчитаем теоретически отклик плоской морской поверхности P_{FS} на сигнал с радиолокатора с известной диаграммой направленности $G(\theta, hueta)$. Принятный радиолокатором импульс можно вычислить как свертку излученного сигнала с импульсной характеристикой плоской морской поверхности.

Форма функции P_{FS} ...

Из работы [2]

$$P_{FS}(t) = \frac{\lambda^2}{(4\pi)^3 L_p} \int_{(A)} \frac{\delta(t - \frac{2r}{c}) G^2(\theta, \omega) \sigma^o(\psi, \varphi)}{r^4} dA$$

где λ — длина волны радиолокатора L_p — набег в две стороны $\delta(t-\frac{2r}{c})$ — дельта функция $G(\theta,\omega)$ — диаграмма направленности r — расстояние от спутника и элементарной рассеивающей поверхностью

Элемент поверхности можно записать как $\mathrm{d}A=\rho\mathrm{d}\rho\mathrm{d}\psi$, однако нам нужна только θ как функция ρ и φ для интегрирования по углу. Используя тригонометрию, получим

$$\cos \theta = \frac{\cos \xi + \frac{\rho}{h} \sin \xi \cos(\tilde{\varphi} - \varphi)}{\sqrt{q + (\frac{\rho}{h})^2}}$$

Диаграмму направленности аппроксимируем следующей функцией

$$G(\theta) \approx G_0 e^{-\frac{2}{\gamma}\sin^2\theta}$$

с учетом
$$r = \sqrt{h^2 + \rho^2}$$

$$P_{FS}(t) = \frac{G_0^2 \lambda^2}{G_0^2 \lambda^2 (4\pi)^3 L_p h^4} \int_0^\infty \int_0^{2\pi} \frac{\delta\left(t - \frac{2h}{c}\sqrt{1 + \varepsilon^2}\right)}{(1 + \varepsilon^2)^2} \sigma^o(\psi)$$
$$\cdot \exp\left\{-\frac{4}{\gamma} \left[1 - \frac{\cos^2 \xi}{1 + \varepsilon^2}\right] + b + a\cos(\tilde{\varphi} - \varphi) - b\sin^2(\tilde{\varphi} - \varphi)\right\} d\varphi \rho d\rho,$$

где
$$\varepsilon = \frac{\rho}{h}$$
, $a = \frac{4\varepsilon}{\gamma} \frac{\sin 2\xi}{(1+\varepsilon^2)}$, $b = \frac{4\varepsilon^2}{\gamma} \frac{\sin^2 \xi}{(1+\varepsilon^2)}$,

поскольку интегрирование идет по полному периоду косинуса и синуса, то мы можем игнорировать $\tilde{\varphi}$. Разложим в ряд экспоненту, пользуясь малостью b

$$e^{-b\sin^2\varphi} = \sum_{n=0}^{\infty} \frac{(-1)^2 b^n \sin^{2n}\varphi}{n!}$$

Браун в своей работе [1] вычислил этот интеграл и показал, что он равен

$$\begin{split} P_{FS} &= \frac{G_0^2 \lambda^2 c}{4(4\pi)^2 L_p h^3} \cdot \frac{\sigma^o(\psi)}{(\frac{ct}{2h})^3} \cdot \exp\left\{-\frac{4}{\gamma} \left[\cos^2 \xi - \frac{\cos 2\xi}{(\frac{ct}{2h})^2}\right]\right\} \\ & \cdot (1+\varepsilon^2)^2 \sum_{n=0}^\infty \frac{(-1)^n \Gamma(n+\frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \left[\left(\frac{ct}{2h}\right)^2 - 1 \tan \xi\right]^n \\ & \cdot I_n \left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{n}} \sin 2\xi\right), \text{ при } t \geq 2h/c \end{split}$$

и $P_{FS}=0$ при t<2h/c

Это выражение можно упростить, переходя к новому времени $\tau=t-2h/c$, где 2h/c – время задержки между излучением и приемом сигнала. Учитывая, что в масштабах спутниковой альтиметрии $\frac{c\tau}{h}\ll 1$, получим

$$P_{FS}(\tau) = \frac{G_0^2 \lambda^2 c \sigma^o(\psi_0)}{4(4\pi)^2 L_p h^3} \exp\left\{-\frac{4}{\gamma} \sin^2 \xi - \frac{4c}{\gamma h} \tau \cos 2\xi\right\}$$
$$\cdot \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma(n+\frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \left[\sqrt{\frac{c\tau}{h}} \tan \xi\right]^n I_n\left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{h}} \sin 2\xi\right) \text{ при } \tau \ge 0 \quad (1)$$

и $P_{FS}=0$, при $\tau<0$

Рассмотрим теперь отдельно сумму из уравнения (1). Если переобозначить $Y=\frac{4}{\gamma}\sqrt{\frac{c\tau}{h}}\sin 2\xi$, то сумма примет вид

$$I_0(Y) \cdot \left\{ 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \cdot \frac{I_n(Y)}{I_0(Y)} \left[\frac{\gamma Y}{8 \cos^2 \xi} \right]^n \right\}$$

Поскольку $Y\ll 1$ и $\xi\ll 1$, то множитель $\left[\frac{\gamma Y}{8\cos^2\xi}\right]^n$ будет быстро сходиться к нулю. Следовательно сумму n слагаемых мы можем приближенно заменить лишь одним слагаемым при n=0.

$$P_{FS}(\tau) = \frac{G_0^2 \lambda^2 c \sigma^o(\psi_0)}{4(4\pi)^2 L_p h^3} \exp\left\{-\frac{4}{\gamma} \sin^2 \xi - \frac{4c}{\gamma h} \tau \cos 2\xi\right\}$$
$$\cdot I_0\left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{h}} \sin 2\xi\right) \text{ при } \tau \ge 0 \quad (2)$$

Зная отклик плоской морской поверхности на сигнал с радиовысотомера мы можем перейти к вычислению отклика на взволнованную морскую поверхность. С точки зрения физики, различия будут в том, что теперь не вся поверхность может отражать сигнал в нужном направлении, а только зеркально ориентированные площадки на поверхности. С радиотехнической точки зрения, взволнованная морская поверхность является линейным фильтром с импульсной переходной характеристикой q(t). Тогда отклик взволнованной поверхности можно вычислить выполняя свертку

$$P_{RS}(t) = q(z) * P_{FS}(t) \tag{3}$$

Результирующая форму импульса будет сверткой функции отклика на плоскую поверхность P_{FS} и функции распределения зеркальных площадок q

$$P(\tau) = \frac{c}{\tau} \int_{-\infty}^{\infty} q\left(\frac{c\tau}{2} - \frac{c\tilde{\tau}}{2}\right) P_{FS}(\tilde{\tau}) d\tilde{\tau}$$

Функция P_{FS} изменяется гораздо медленне функции плотности зеркальных точек q, а значит можно записать приближенное равенство

$$P pprox egin{dcases} P_{FS}(0) \int\limits_0^\infty rac{c}{2} q \left(rac{c au}{2} - rac{c ilde{ au}}{2}
ight) \mathrm{d} ilde{ au} \,, & ext{при } au < 0 \ P_{FS}(au) \int\limits_0^\infty rac{c}{2} q \left(rac{c au}{2} - rac{c ilde{ au}}{2}
ight) \mathrm{d} ilde{ au} \,, & ext{при } au < 0 \end{cases}$$

Согласно теореме о среднем, при большом на-на-на мы можем предположить распределение Гауссовым

$$\frac{c}{2}q\left(\frac{c\tau}{2}\right) = \frac{1}{\sqrt{2\pi\left(\frac{2\sigma_s^2}{c}\right)}} \exp\left\{-\frac{\tau^2}{2\pi\left(\frac{2\sigma_s^2}{c}\right)^2}\right\} \tag{4}$$

Посчитав свертку, получаем, что

$$P(\tau) \approx P_{FS}(\tau) \left[1 + \operatorname{erf} \left(\frac{c\tau}{2\sqrt{2}\sigma_s} \right) \right]$$

Можно прибегнуть к ещё одному упрощению и разложить в ряд функцию Бесселя в уравнении (2):

$$I_0(\zeta)=\sum_{n=0}^{\infty}\left(rac{\zeta^2}{4}
ight)^n\cdot\left(rac{1}{n!}
ight)^2,$$
 где $\zeta=rac{4}{\gamma}\sqrt{rac{c au}{h}}\sin2\xi$

согласно статье [3] можно оставить только два первых члена разложения, которые, в свою очередь, совпадают с разложением экспоненты

$$I_0(\zeta) \approx 1 + \frac{\zeta^2}{4} = e^{\frac{\zeta^2}{4}}$$

Тогда функция P_{FS} примет вид

$$P_{FS}(\tau) = A \exp\left\{-\frac{4}{\gamma}\sin^2\xi\right\} \exp\left\{-\frac{4c}{\gamma h}\left(\cos 2\xi - \sin^2 2\xi\right)\tau\right\}$$
 (5)

Согласно статье [?] можно связать дисперсию σ_p в (??) с временным разрешением альтиметра r_t :

$$\sigma_p = \frac{1}{2\sqrt{2\ln 2}}r_t$$

Согласно работе Брауна [1], мы можем выразить FSSR

Напоследок, следует учесть, что наш приемник (радиолокатор) тоже является линейной системой с некоторой импульсной характеристикой $P_T(t)$. Поэтому необходимо к уравнению (3) добавить ещё одну свертку. Тогда, результирующий импульс будет равен

$$P(t) = P_{FS}(t) * q(t) * P_T(t)$$
(6)

В свертке (6), с учетом (5),(??) и (4), каждый множитель представляет собой экспоненту. Свертка от трех экспонент несложно считается.

Получаем окончательную формулу для сигнала на приемнике радилокатора

$$P(t) = Ae^{-v}(1+\mathrm{erf}(u)), \ \mathrm{где} \eqno(7)$$

$$u = \frac{t-\alpha\sigma_c^2}{\sqrt{2}\sigma_c}, \ v = \alpha(t-\frac{\alpha}{2}\sigma_c^2), \ \mathrm{B} \ \mathrm{которыx} \ \alpha = \delta - \frac{\beta^2}{4} = \frac{4}{\gamma} \cdot \frac{c}{h} \Big(\cos 2\xi - \frac{\sin^2 2\xi}{\gamma}\Big)$$

$$A = A_0 \exp\Big\{\frac{-4}{\gamma}\sin^2\xi\Big\} \ \mathrm{u} \ \mathrm{т.д} \ (\mathrm{формула} \ \mathrm{Брауна} \ \mathrm{без} \ \mathrm{изменений}, \ \mathrm{не} \ \mathrm{хочется} \ \mathrm{рас-}$$
 писывать все обозначения целиком).

График функции (7) изображен на рис. 2.

Рис. 2: Качественный вид импульса

0.1. Восстановление параметров морской поверхности.

Зная зависимость принятого сигнала от параметров взволнованной морской поверхности, мы можем восстанавливать их по форме импульса. Это можно сделать, аппроксимируя практический импульс теоретической формулой и извлекая из получившегося графика необхожимые коэффициенты.

Браун в своей работе вывел формулу, описывающего форму импульса в предположении гауссовой плотности вероятности зеркальных площадок на морской поверхности.

Однако решать подобную задачу для формулы (7) довольно сложно из-за сложной зависимости восстанавливаемых параметров и в их большом количестве. Это может приводить к большим вычислительным ошибкам даже при большом соотношении сигнал-шум.

Рис. 3: Качественная форма импульса с обозначением основных параметров.

Поэтому для решения задачи ретрекинга предлагается, использовать менее физичную, но более наглядную запись формулы (7):

$$P(t) = A \exp\left\{S_T(t - \frac{\tau}{2})\right\} \left(1 + \operatorname{erf}\frac{t - \tau}{\sigma_L}\right), \text{ где}$$
 (8)

 S_T — коэффициент наклона заднего фронта импульса, au — эпоха σ_L — ширина переднего фронта импульса,

Поиск наклона заднего фронта Формула (11), хороша тем, что можно найти некоторые коэффициенты, не прибегая к сложным методам оптимизации. После прохождения пика импульса, функция ошибок становится медленно меняющейся функцией и можно записать равенство

$$P(t) = 2A \exp\left\{S_T\left(t - \frac{\tau}{2}\right)\right\}, \text{ при } t > t_{max},\tag{9}$$

где t_{max} – ордината пика импульса.

Логарифмируя (9)

$$\ln P(t) = \ln 2A + S_T(t - \frac{\tau}{2}) = S_T t + \text{const}$$

мы получаем линейную функцию времени. Значит, построив логарифм формы импульса при $t > t_{max}$ и найдя коэффициент наклона получившейся прямой мы можем найти наклон заднего фронта S_T . Подобная процедура проведена на рис.??

Поиск ширины переднего фронта Как видно из рис.??, при $t < t_{max}$ функция ошибок erf $\left(\frac{t-\tau}{\sigma_L}\right)$ ведет себя быстрее экспоненты, а значит можно написать приближенное равенство

$$P(t) \approx A \left(1 + \operatorname{erf} \frac{t - \tau}{\sigma_L} \right)$$
 (10)

Аппроксимируя импульс при $t < t_{max}$ формулой (10) мы получим оценку коэффициентов $A, \ \tau, \ \sigma_L.$

Имея оценки параметров аппроксимации по различным участкам функции P(t) мы можем использовать формулу (11) для всего импульса

$$P(t) = A \exp\left\{S_T(t - \frac{\tau}{2})\right\} \left(1 + \operatorname{erf}\frac{t - \tau}{\sigma_L}\right). \tag{11}$$

с начальными условиями для параметров A, S_T, τ, σ_L , полученных на предыдущих этапах.

На рисунках ниже продемострированы результаты работы этого алгоритма на различных формах импульса (меняются углы отклонения антенны).

[4]

Список литературы

[1] Brown G. The average impulse response of a rough surface and its applications // IEEE Transactions on Antennas and Propagation. — 1977. — Vol. 25, no. 1. — P. 67–74.

- [2] Moore R., Williams C. Radar terrain return at near-vertical incidence // Proceedings of the IRE. -1957. Vol. 45, no. 2. P. 228–238.
- [3] Amarouche L., Thibaut P., Zanife O. Improving the jason-1 ground retracking to better account for attitude effects // Marine Geodesy. 2004. Vol. 27, no. 1-2. P. 171–197.
- [4] Басс Ф.Г. и Фукс И. Рассеяние волн на статически неровной морской поверхности. Москва : Наука, 1972.