

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claim 1 (Currently Amended) An electroluminescent material represented by the following Formula B1:

Formula B1

wherein Ar₄₁ and Ar₄₂ are each independently an aryl group or an aromatic heterocyclic group; L₁₂ and L₁₃ is each an atom or a group of atoms necessary to form an aromatic 5-membered heterocyclic ring, provided that at least one of L₁₁, L₁₂ and L₁₃ is =N-, -N(R₄₁)-, -S- or -O-, in which R₄₁ is a hydrogen atom or a substituent, provided that at least one two of Ar₄₁, Ar₄₂ and R₄₁ is are each a biaryl group having a bond capable of giving an internal rotational isomerism or a group comprising the biaryl group, provided that adjacent

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

substituent groups existing in the molecule represented by formula B1 may be condensed with each other to form a ring.

Claim 2. (Currently Amended) An electroluminescence element comprising an electroluminescence material and an inorganic fluorescent substance capable of emitting light having a wavelength of a maximum emission different from that of light emitted from the electroluminescent material upon absorption of the light emitted from the electroluminescent material, and the electroluminescent material is a compound by the following formula B1:

Formula B1

wherein Ar_{41} and Ar_{42} are each independently an aryl group or an aromatic heterocyclic group; L_{11} , L_{12} and L_{13} is each an atom or a group of atoms necessary to form an aromatic 5-membered heterocyclic ring, provided that at least one of L_{11} , L_{12} and L_{13} is $=\text{N}-$, $-\text{N}(\text{R}_{41})-$, $-\text{S}-$ or $-0-$, in which R_{41} is a

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

hydrogen atom or a substituent, provided that at least one two of Ar₄₁, Ar₄₂ and R₄₁ ~~is~~ are each a biaryl group having a bond capable of giving an internal rotational isomerism or a group comprising the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula B1 may be condensed with each, other to form a ring.

Claim 3. (Original) The electroluminescent element of claim 2, wherein said inorganic fluorescent substance is an inorganic fluorescent substance prepared by a Sol-Gel method.

Claim 4. (Original) The electroluminescent element of claim 2, wherein the wavelength of a maximum emission of the light emitted from said inorganic fluorescent substance is within a range of from 400 nm to 700 nm.

Claim 5. (Original) The electroluminescent element of claim 2, wherein the wavelength of a maximum emission of the light emitted from said inorganic fluorescent substance is within a range of from 600 nm to 700 nm.

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

Claim 6. (Original) The electroluminescent element of claim 2, wherein the wavelength of a maximum emission of the light emitted from the electroluminescent material is not more than 430 nm.

Claim 7. (Original) The electroluminescent element of claim 2, wherein the wavelength of a maximum emission of light emitted from the electroluminescent material is within a range of from 400 to 430 nm.

Claim 8. (Currently Amended) An electroluminescent element which comprises an electroluminescent material and a rare earth metal complex capable of emitting light having a wavelength of maximum emission different from that of light emitted from the electroluminescent material upon absorption of the light emitted from the electroluminescent material and the electroluminescent material is a compound represented by the following Formula Bl:

Formula Bl

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

wherein Ar₄₁ and Ar₄₂ are each independently an aryl group or an aromatic heterocyclic group; L₁₁, L₁₂ and L₁₃ is each an atom or a group of atoms necessary to form an aromatic 5-membered heterocyclic ring, provided that at least one of L₁₁, L₁₂ and L₁₃ is =N-, -N(R₄₁)-, -S- or -O-, in which R₄₁ is a hydrogen atom or a substituent, provided that at least one two of Ar₄₁, Ar₄₂ and R₄₁ is are each a biaryl group having a bond capable of giving an internal rotational isomerism or a group comprising the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula B1 may be condensed with each other to form a ring.

Claim 9. (Original) The electroluminescent element of claim 8, wherein the wavelength of a maximum emission of the light emitted from the rare earth metal complex is within a range of from 400 nm to 700 nm.

Claim 10. (Original) The electroluminescent element of claim 8, wherein the wavelength of a maximum emission of the light emitted from the rare earth metal complex is within a range of from 600 nm to 700 nm.

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

Claim 11. (Original) The electroluminescent element of claim 8, wherein the wavelength of a maximum emission of the light emitted from the electroluminescent material is not more than 430 nm.

Claim 12. (Original) The electroluminescent element of claim 8, wherein the wavelength of a maximum emission of light emitted from the electroluminescent material is within a range of from 400 nm to 430 nm.

Claim 13. (Currently Amended) An electroluminescent element comprising an anode and a cathode and a compound represented by the following Formula B1:

Formula B1

wherein Ar_{41} and Ar_{42} are each independently an aryl group or an aromatic heterocyclic group; L_{11} , L_{12} and L_{13} is each an atom or a group of atoms necessary to form an aromatic 5-membered

Appl. No. 10/656,098
Reply to Office Action of January 22, 2007

heterocyclic ring, provided that at least one of L₁₁, L₁₂ and L₁₃ is =N-, -N(R₄₁)-, -S- or -O-, in which R₄₁ is a hydrogen atom or a substituent, provided that at least ~~one~~ two of Ar₄₁, Ar₄₂ and R₄₁ ~~is are each~~ are each a biaryl group having a bond capable of giving an internal rotational isomerism or a group comprising the biaryl group, provided that adjacent substituent groups existing in the molecule represented by formula B1 may be condensed with each other to form a ring.