OM protein - protein search, using sw model

Run on: April 29, 2004, 10:41:53 ; Search time 54 Seconds (without alignments) 423.821 Million cell updates/sec

Title: Perfect score: US-09-856-840C-2 473

Sequence: 1 MFLLVFLCCLHLVISSHTPD.....VEWVPYSTGQCRTTCIPTVG 81

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

1586107 seqs, 282547505 residues

Total number of hits satisfying chosen parameters: 1586107

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database : A_Geneseq_29Jan04:*
1: geneseqp1980s:*
2: geneseqp1990s:*
3: geneseqp2000s:*
4: geneseqp2001s:* 4 7 6 7 6 geneseqp2003as:*
geneseqp2003bs:* geneseqp2004s:* geneseqp2002s:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	% Query Match	% Query Match Length DB	DB	ID	Description
ų	453	95.8	81	ω	AAY92938	Aay92938 Hirudo me
Ŋ	79	16.7	145	4	AAM87949	Aam87949 Human imm
w	76	16.1	19938	σ	ABP76678	Abp76678 Streptomy
4	75.5	16.0	355	v	ABP69588	Abp69588 Human pol
ທ	75.5	16.0	355	Ŋ	AAU97101	
σ	75.5	16.0	355	7	ADC37275	
7	75.5	16.0	380	S	AAU97114	Aau97114 Human MK6
۵	75	15.9	294	v	ABP95622	Abp95622 Human GPC
9	74.5	15.8	136	v	AAU97103	

4 5	44	ω.	42	41	40	39	38	37	36	ü	34	(J)	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10
67	67	67	67	67	67	67	67	67	67	7.	7.	67.5	7.	7.	68	68	68	68	68	68	00	68.5	œ	œ	68.5	71	71.5	71.5	71.5	71.5		71.5	72	73	73.5
14.2	14.2	4	4.	4.	4.	4	4	Δ.	14.2	4.	4	4	14.3	14.3	14.4	14.4	14.4	14.4	14.4	14.4	14.5	14.5	4	4	4	15.0	15.1	15.1	15.1	15.1	15.1	. 15.1	15.2	15.4	
231	231	ω	w	229	Ν	2	228	227	N	N	00	548	325	74	9	934	∞	288	197	0	93	1214	N	82	82	761	113	85	56	56	56	56	1083	515	0
σ	N	თ	Ν	σ	N	ഗ	ν	σ	2	N	N	7	ω	4	2	w	თ	4	4	N	σ	W	N	σ	4	4	4	w	4	4	4.	4	4	N	7
ADB17633		ADB17634	AAY17677	ADB17635	AAY17678	ADB17636	AAY17679	ADB17578	AAY17648	AAW49698	AAW68510	ADC87345	AAG60058	AA010231	AAW95557	AAU72893	AB007186	ABB12377	6	79		AAY79152				8	ABG30035	AAU97102	ABG59231	AAM64835	AAM77584	AAM37769	ABB60057	AAR48670	122
3 Human	7676 Human	7634 Human	Human	7635 Human	8 Human	6 Human	9 Human	78 Amino	8 Human	Aaw49698 Human Not		Adc87345 Human GPC		Aao10231 Human pol	Mus m	Human		Human		Aaw48795 Homo sapi				7 Propioni	8 Propioni	0973 Droso	0035	7102 Human	1 Human	4835	42	7769 Peptide			Adc31222 Human nov

ALIGNMENTS

Hirudo medicinalis metallocarboxypeptidase inhibitor protein. 08-NOV-2000 (first entry) AAY92938; AAY92938 standard; protein; 81 AA.

Recombinant; leech; metallocarboxypeptidase inhibitor; fibrin; plasma carboxypeptidase B; fibrinolysis inhibitor; plasminogen; blood clot.

Hirudo medicinalis.

X X X A A A A A	Key Peptide Protein WO200031140-Al.	Location/Qualifiers 115 /note= "signal peptide" 1681 /note= "mature metallocarboxypeptidase inhibitor"
βŖž	W0200031140-A1.	
¥ 2 8	02-JUN-2000. 24-NOV-1999;	99WO-ES000378.
Z ž Z		9855-00002524.
K ¥ ¥	(UYBA-) UNIV AU (UYMU-) UNIV MUI	AUTONOMA BARCELONA. MUENCHEN MAXIMILIANS LUDWIG.
RHH	Reverter D, Vendrell Commerhoff CP, Aviles	Vendrell J, Canals F, Horstmann J, Querol E, Fritz´H;), Aviles FX;
# # #	WPI; 2000-400047/34 N-PSDB; AAA11268.	7/34 ·
ййй	New recombinant nucleic acid useful as fibrinolytic agent, medicinalis.	nucleic acid encoding metallocarboxypeptidase inhibitor, nolytic agent, is derived from the leach Hirudo
Rws	Claim 3; Page 17;	7; 23pp; Spanish.
ឧឧឧឧ	This sequence re (leeches) that : carboxypeptidase site, in plasmin	
និតិតន	fibrinolytic agent, thus lysis of blood clots	act:
M B Q	Sequence 81 AA; Query Match Best Local Similarity Matches 78; Conser	AA; 95.8%; Score 453; DB 3; Length 81; larity 97.5%; Pred. No. 2.1e-39; Conservative 0; Mismatches 2; Indels 0; Gaps 0;
¥	1 MELLVE	MELLVELCCLHLVISSHTEDESELCTQEDQVCCEICRGAAPLDSEGECNPHDTAFWCREG 60

1 MFILVFLCCLHLVISSHTPDESFLCYQPDQVCCFICRGAAPLPSEGECNPHPTAPWCREG 60

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

Run on: April 29, 2004, 10:50:09; Search time 42 Seconds 534.580 Million cell updates/sec (without alignments)

Perfect score: US-09-856-840C-2

Sequence: 1 MFLLVFLCCLHLVISSHTPD......VEWVPYSTGQCRTTCIPTVG 81

Scoring table: BLOSUM62 Gapop 10.0 , Gapext 0.5

Searched: 1138120 segs, 277189581 residues

Total number of hits satisfying chosen parameters: 1138120

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Listing first 45 summaries Maximum Match 100%

Published_Applications_AA: *

6: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUBCOMB.pep:*
7: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUBCOMB.pep:*
7: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
9: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
10: /cgn2_6/ptodata/2/pubpaa/USO9_PUBCOMB.pep:*
11: /cgn2_6/ptodata/2/pubpaa/USO9E_PUBCOMB.pep:*
12: /cgn2_6/ptodata/2/pubpaa/USO9C_PUBCOMB.pep:*
12: /cgn2_6/ptodata/2/pubpaa/USO9_RUBCOMB.pep:*
13: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
14: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:*
15: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*
16: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*
17: /cgn2_6/ptodata/2/pubpaa/USO8_NEW_PUB.pep:*
18: /cgn2_6/ptodata/2/pubpaa/USO8_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US07_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/PCT_NEW_PUB.pep:*
/cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:*
/cgn2_6/ptodata/2/pubpaa/US06_PUBCOMB.pep:* /cgn2_6/ptodata/2/pubpaa/US07_NEW_PUB.pep:*

and is derived by analysis of the total score distribution. Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed.

Ъ Š 밁

Search completed: April 29, 2004, 10:48:46 Job time: 57 secs

SUMMARIES

Result No. Query Score Match Length DB IJ

Description

	44		42	41	40	39	38	37	36	ω	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	00	7	0	ເກ	44	ω	2	1
67	6.7	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	67	~1		67.5	7.	68	68			71	71.5	71.5	73.5	73.5	73.5	74.5	75	75.5	75.5
14.2		14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2	14.2		14.2	14.2	14.2	14.2	4	14.2	14.2	14.2		14.2	14.3		14.3	14.3	14.4	14.4	14.5	14.5	15.0	15.1	15.1	15.5	<u>ب</u>	15.5	'n		16.0	16.0
250	л	4	248	247	246	245	244	243	242	241	240	239	238	237	236	235	234	233	232	231	230	229	228	227	202	202	2321	1955	548	548	934	455	19695	4660	19725	85	56	485	œ	485	w	294	00	355
9 (o	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	16	9	14	12	15	14	12	12	15	16	15	9	9	14	14	14	v	12	9	9
-09-915-58	09-915-590-53	-10-112-267-5	-10-112-267-	-10-112-267-5	0-112-267-5	US-10-112-267-60	-267-6	US-10-112-267-62	US-10-112-267-63	US-10-112-267-64	0-112-267-6	US-10-112-267-66	0-112-267-	-10-112-267-6	US-10-112-267-69	-10-112-267-7	-10-112-267	US-10-112-267-72	US-10-112-267-73	267-7	US-10-112-267-75	6	67	US-10-112-267-15	US-10-373-809-90	US-09-729-835-90	-356-62	-10-072-012-79	0-292-798-1	-10-017-161-215	-275-107-5	9-2	-084-846A-	-10-464-368-7	US-10-084-846A-4	US-09-948-018-4	US-09-864-761-46095	US-10-063-685-43	US-10-184-634-185	US-10-184-644-185	US-09-948-018-6	US-10-343-650A-54	US-09-948-018-36	US-09-948-018-2
Sequence 69, Appl	בא פחתפתה הא	equence 56.	equence 57,	е 58,	e 59,	e 60,	e 61,	e 62,	e 63,	e 64,	e 65,	e 66,	67,	e 68,	e 69,	70,	71,	e 72,	e 73,	74,	75,	e 76,	77,	e 15,	e 90,	90,	2, A	e 793, 1	1798,	215	ម្ចា	22	W	74	e 4, App	4	46095	43, 1	185,	e 18	6, A	e 54	36,	Sequence 2, Appli

Search completed: April 29, 2004, 10:55:50 Job time: 42 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

April 29, 2004, 10:46:48; Search time 20 Seconds (without alignments) 389.576 Million cell updates/sec

US-09-856-840C-2 473

Title: Perfect score: 1 MFLLVFLCCLHLVISSHTPD......VEWVPYSTGQCRTTCIPTVG 81

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 283366 segs, 96191526 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%
Maximum Match 100% Listing first 45 summaries

PIR_78:*
1: pir1:*
2: pir2:*
3: pir3:*
4: pir4:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Search completed: April 29, 2004, 10:50:36 Job time : 21 secs

GenCore version 5.1.6 Copyright (c) 1993 - 2004 Compugen Ltd.

OM protein - protein search, using sw model

April 29, 2004, 10:43:18 ; Search time 14 Seconds (without alignments)
301.263 Million cell updates/sec

Title: US-09-856-840C-2
Perfect score: 473
Sequence: 1 MFLLVFLCCLHLVISSHTFD.....VEWVPYSTGQCRTTCIFTVG 81

Scoring table: BLOSUM62
Gapop 10.0 , Gapext 0.5

Searched: 141681 segs, 52070155 residues

Total number of hits satisfying chosen parameters: 141681

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

SwissProt_42:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

17	16	15	14	13	12	11	10	9	œ	7	σι	ທ	4	ω	2		Result No.
66.5	66.5	67	67.5	67.5	68	68	68	68	68	68	68	68.5	71	71.5	72	453	Score
14.1	14.1	14.2	14.3	14.3	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.5	15.0	15.1	15.2	95.8	Query Match
1210	159	250	2321	1955	3175	1964	813	441	415	288	159	4660	1106	407	603	81	Query Match Length DB
ب	٢	۳	Ь	-	ب	<u>, , , , , , , , , , , , , , , , , , , </u>	_	ب	Н	۳	۲	_	ᆫ	Ь	Ь	ᆫ	EG .
AT19_MOUSE	KR98_HUMAN	WSP2_HUMAN	NTC3_HUMAN	AGRI_CHICK	RPOA_EAV	NTC4_MOUSE	YTQJ_CAEEL	YK17_SCHPO	PI2R_MOUSE	SPY3_HUMAN	KR93_HUMAN	LRF2_RAT	STC_DROME	YO14_CAEEL	CFAI_MOUSE	MCPI_HIRME	ID
	Q9byq0 homo sapien	076076 homo sapien	Q9um47 homo sapien	P31696 gallus gall	P19811 equine arte	P31695 mus musculu	Q19673 caenorhabdi	Q9hdy3 schizosacch	P43252 mus musculu	043610 homo sapien	Q9byq3 homo sapien	P98158 rattus norv	P40798 drosophila	P34670 caenorhabdi	Q61129 mus musculu	P81511 hirudo medi	Description

ALIGNMENTS

88	유 F	RT	RT	RT	RΑ	R.A	RX	Ŗ₽	R	ö	8	გ	20	B	þ	ij	ΡŢ	AC	ij	MCPI_H
types of	-!- FUNCTION	expression,	medicinalis.	"A carboxype	Fritz H., Sc	Reverter D.,	MEDLINE=9904	SEQUENCE FRO	Ξ	NCBI_TaxID=6421;	Arhynchobdel	Eukaryota; N	Hirudo medic	Metallocarbo	10-OCT-2003	15-JUL-1999	15-JUL-1999	P81511;	MCPI_HIRME	MCPI_HIRME
types of pancreatic-like carboxypeptidases PTM: The cysteine residues are involved in	J. Biol. Chem. 273:32927-32933(1998).	expression, and characterization.";	Isolation, se	"A carboxypeptidase inhibitor from the medical leech Hirudo	Fritz H., Sommerhoff C.P.;	Vendrell J.,	MEDLINE=99047680; PubMed=9830043;	SEQUENCE FROM N.A., AND SEQUENCE OF 16-81.		421;	Arhynchobdellida; Hirudiniformes; Hirudinidae; Hirudo.	etazoa; Anneli	Hirudo medicinalis (Medicinal leech).	Metallocarboxypeptidase inhibitor precursor (LCI).	10-OCT-2003 (Rel. 42, Last annotation update)	(Rel. 38, Last sequence update)	(Rel. 38, Created)		STANDARD;	
ke carboxyp dues are in	ing, compet	zation.";	quence anal	tor from th		Canals F.,	830043;	QUENCE OF 1			formes; Hir	da; Clitell	nal leech).	hibitor pre	annotation	sequence u	ted)		PRT;	
eptidases. volved in	itive inhi		ysis, cDNA	e medical		Horstmann		6-81.			udinidae;	ata; Hirud		cursor (LC	update)	pdate)			81 AA.	
types of pancreatic-like carboxypeptidases!- PTM: The cysteine residues are involved in intrachain disulfide	J. Blot. Chem. 273:32927-32933(1998)!- FUNCTION: Tightly binding, competitive inhibitor of different		medicinalis. Isolation, sequence analysis, cDNA cloning, recombinant	leech Hirudo		Reverter D., Vendrell J., Canals F., Horstmann J., Aviles F.X.,					Hirudo.	Eukaryota; Metazoa; Annelida; Clitellata; Hirudinida; Hirudinea;		H).						

뫄	δ	Дb	γQ		ŠŠ	FT	FT	FT	ΤŦ	X.	DR	DR	DR	cc	2	റ്റ	S	റ്റ	റ്റ	22	റ്റ	റ്റ	റ്റ	8
61 AVEWVPYSTGQCRTTCIPYV 80	61 AVEWVEYSTGQCRITCIPTV 80	1 MELLVELCCLHLVISSHTPDESFLCYQPDQVCCFICRGAAPLPSEGECNPHPTAPMCREG 60	1 MELLVELCCLHLVISSHTPDESELCTQPDQVCCEICRGAAPLPSEGECNPHPTAPMCREG 60	Query Match 95.8%; Score 453; DB 1; Length 81; Best Local Similarity 97.5%; Pred. No. 6.4e-41; Matches 78; Conservative 0; Mismatches 2; Indels 0; Gaps 0;	SEQUENCE 81 AA; 9068 MW; 7D7E175E6933922A CRC64;	SIMILARITY).	ACT_SITE 80 80 INTERACTION WITH CARBOXYPEPTIDASE (BY	CHAIN 16 81 METALLOCARBOXYPEPTIDASE INHIBITOR.	SIGNAL 1 15	Metalloenzyme inhibitor; Signal; 3D-structure.	PDB; 1DTV; 19-JUL-00.	PDB; 1DTD; 12-JUL-00.	EMBL; AJ010948; CAA09422.1;		or send an email to license@isb-sib.ch).	entities requires a license agreement (See http://www.isb-sib.ch/announce/	modified and this statement is not removed. Usage by and for commercial	use by non-profit institutions as long as its content is in no way	the European Bioinformatics Institute. There are no restrictions on its	between the Swiss Institute of Bioinformatics and the EMBL outstation -	This SWISS-PROT entry is copyright. It is produced through a collaboration		-!- MASS SPECTROMETRY: MW=7326; METHOD=MALDI; RANGE=16-81.	bonds.

Search completed: April 29, 2004, 10:49:12 Job time : 16 secs

OM protein - protein search, using sw model

April 29, 2004, 10:46:18; Search time 39 Seconds
(without alignments)
655.307 Million cell updates/sec

Title: Perfect score: US-09-856-840C-2 473

1 MFLLVFLCCLHLVISSHTPD.....VEWVPYSTGQCRTTCIPTVG 81

Scoring table: BLOSUM62

Gapop 10.0 , Gapext 0.5

Searched:

Total number of hits satisfying chosen parameters: 1017041

1017041 segs, 315518202 residues

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries

Database :

SPTREMBL_25:*

1: sp_archea:*
2: sp_bacteria:*
3: sp_fungi:*
4: sp_funan:*
5: sp_invertebrate:*
6: sp_mammal:*
7: sp_mhc:*
8: sp_organele:*
9: sp_phage:*
10: sp_plant:*
11: sp_rodent:*
12: sp_virus:*
13: sp_vertebrate:*
14: sp_unclassified:*
15: sp_rvirus:*
16: sp_bacteriap:*
17: sp_archeap:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

No.	Result	
Score		
Match Length DB	Query	
ID		
Descriptio		

5	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	œ	7	0,	υī	4	ω	N	Н
5	65.5	'n	'n	5	66	66	6		66.5		66.5	67	67	67	67	67	67.5	67.5	67.5	68	68	68	68	68.5	68.5	69	70	70	70	70	71	71	71.5	72	72	72	74	74	74	75.5	75.5	77	80	8 1
13.8	13.8	13.8	13.8	13.8	14.0	14.0	14.1	14.1	14.1	14.1	14.1	14.2	4	14.2	14.2	14.2	14.3	14.3	14.3	14.4	14.4	14.4	14.4	4.	14.5	14.6		14.8	4	4.	'n	15.0	'n	<u>ب</u>	ŗ	ŗ		15.6	'n	•	16.0	16.3	16.9	17.1
845	833	809	ហ	324	1064	847	2026	1149	1059	769	159	649	527	400	355	241	4007	869	325	3175	358	212	159	765	502	218	420	419	335	335	1069	451	340	1106	φ	335	340	340	4	821	v	572	421	340
11	11	11	4	10	ហ	13	4	4	ហ	ψ	4	თ	υ	12	13	υı	4	13	10	12	տ	11	4.	S	16	ហ	υ	Ŋ	IJ	Ŋ	ιn	Ŋ	ហ	U	ß	ហ	ហ	υ	ഗ	v	4	v	ហ	U
Q8BNJ2	Q8K384	Q8CA82	Q86UZ4	Q9SM86	Q7YU01	Q90W12	000468	Q13577	Q9W493	Q8MRL5	Q9BYQ0	Q28657	P91835	Q81108	Q802V2	045522	Q86XX4	042126	Q8LG72	Q91DM2	Q9U362	662280	Q9BYQ3	Q9NL50	Q7UE37	Q19618	Q9NA61	Q9NA38	Q9NF70	Q9NF69	Q9VBN2	Q86KC7	Q25319	220Y60	Q8IP49	Q9N6L3	Q9GQN7	Q9GQM5	Q8WT30	Q22631	Q9H665	Q19594	Q86JD6	P90627
Q8bnj2 mus musculu	Q8k384 mus musculu	Q8ca82 mus musculu	: "	Q9sm86 oryza sativ	Q7yu01 drosophila	2 oncc	homo		dros	dros		Q28657 oryctolagus	5 caenorhabdi		Q802v2 brachydanio	aeno		042126 xenopus lae		Q91dm2 equine arte	Q9u362 caenorhabdi	9 mus		0	7			Q9na38 caenorhabdi			10	dictyoste			49		Q9gqn7 leishmania	3	30	Q22631 caenorhabdi	665 hom	4	96	P90627 leishmania

Search completed: April 29, 2004, 10:50:04 Job time : 41 ${\tt secs}$

Database : Genambl:* 1	occessing: M	Minimum DB seq length: 0 Maximum DB seq length: 2000000000	Searched: 3470272 segs, 21671516995 residues Total number of hits satisfying chosen parameters: 6940	table:	Title: US-09-856-840C-1 Perfect score: 465 Sequence: 1 gacttggtaactcattcgattaaaaaaaaag	Run on: April 30, 2004, 06:56:35 ; Search time 2007: (without alignmen: 10042.108 Million
			6940544		tаааааааааадаваааааа 465	M 11 me

40: 41:	37: 38: 39:	365.	332 I	29:
em_htgo_mus:* em_htgo_other:*	em_htg_vrt:* em_sy:* em_htgo_hum:*	em_htg_rod: * em_htg_rod: *	em_ntg_inv:* em_htg_other:* em_htg_mus:*	em_un:* em_vi:* em_htg_hum:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Regult		2 *				
No.	Score	Match	Length	80	ID	criptio
ָר בּ	465	100.0	465	w	HME010948	AJ010948 Hirudo
2		100.0	ď	σ	6084	
ω		10.8	110000	ω	AC116305_1	Continuation (2 o
4	49.8	10.7	182870	ω	AC116960	AC116960 Dictyost
ហ	49.2	10.6	642	ω	AC116924	
6	49.2	10.6	110000	N	PFMAL13_17	
7	48.4	10.4	13138	ω	AC116305_4	Continuation
œ	48.4	10.4	110000	N	DEMATSET_01	Continuation
9	48.4	10.4	110000	ω	AC116305_3	Continuation
10	48.4	10.4	302156	ω	AC116977	AC116977 Dictyost
11	48	10.3	110000	N	PFMAL6P1_12	
12	47.6	10.2	3016	ω	DDU31631	U31631 Dictyosteli
13	47.6	10.2	169546	Ν	AC004157	AC004157 Plasmodiu
c 14	47.6	10.2	250707	w	AE014848	
15	•	10.2	349954	σ	AX196297	7
16		10.2	2523	9	BC038509	
c 17		10.2	132254	ω	AC116330	
18	47.2	10.2	2917	9	BC054514	
c 19	.7	10.2	110000	ω	AC116957_0	
20	.7	10.2	257109	ω	AC115577	
21	47	10.1	27694	œ	HASMT	μ-
c 22	47	10.1	125623	w	AC115599	9
23	46.8	10.1	57203	w	AC116989	AC116989 Dictyoste
24	46.6	10.0	31343	2	AC115576	σ
25	46.6	10.0	31712	œ	AP000415	
c 26	46.6	10.0	33270	w	AC116921	AC116921 Dictyoste
27	46.6	10.0	110000	2	PFMAL7P1_08	Continuation (9 of
	46.6	10.0	117113	œ	AC146575	AC146575 Medicago
c 29	46.6	10.0	234081	ω	PFMAL4P2	AL035475 Plasmodiu
30	46.6	10.0	254733	ω	AC117075	AC117075 Dictyoste
c 31	46.6	10.0	257109	ω	AC115577	
	,	•		J		л 0
32	4	10.0	154071	u	AC115598	ACTIONS DICKYOSCE

				O				Ŋ	a		
4 10	44	43	42	41	40	39	38	37	36	35	34
44 UT .00	46	46	46	46.2	46.2	46.2	46.2	46.2	46.2	46.4	46.4
9.	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	9.9	10.0	10.0
6694	64394	40880	4325	9.9 266544	250029	2177	1976	286	286	254449	10.0 251551
9	9	œ	10	ω	ω	v	9	∞	(L)	w	w
HSM808397	AL928596	SPCC1235	BC060196	AC116956	AE014839	BC063356	BC025253	DDACT3	DDIACT21	AE014817	AE014844
BX648249 Homo sapi	AL928596 Human DNA	AL031764 S.pombe c	BC060196 Mus muscu	AC116956 Dictyoste	AE014839 Plasmodiu	BC063356 Silurana	BC025253 Homo sapi	V00184 Slime mold	J01267 Dictyosteli	AE014817 Plasmodiu	AE014844 Plasmodiu

ALIGNMENTS

	CDS	FEATURES	AUTHORS TITLE JOURNAL	JOURNAL MEDLINE PUBMED	REFERENCE AUTHORS TITLE	RESULT 1 HMEO10948 LOCUS DEFINITION ACCESSION VERSION KEYWORDS SOURCE ORGANISM
/codon_start=1 /evidence=experimental /product="metallocarboxypeptidase inhibitor" /protein_id="CAA09422.1" /db_xref="GI:395433" /db_xref="SWISS-PROT:P81511" /db_xref="SWISS-PROT:P81511"	/organism="Hirudo medicinalis" /mol_type="mRNA" /db_xref="taxon:6421" 22267	SPAIN Location/Qualifiers 1465	Aviles,F.X. Direct Submission Submitted (10-SEP-1998) Aviles F.X., Institut de Biologia Fonamental, Universitat Autonoma de Barcelona, Bellaterra, 08193,		Eukaryota; Metazoa; Annelida; Clitellata; Hirudinida; Hirudinea; Arhynchobdellida; Hirudiniformes; Hirudinidae; Hirudo. 1 1 1 Reverter,D., Vendrell,J., Canals,F., Horstmann,J., Aviles,F.X., Fritz,H. and Sommerhoff,C.P. A carboxypeptidase inhibitor from the medical leech Hirudo	HME010948 Hirudo medicinalis mRNA for metallocarboxypeptidase inhibitor. AJ010948 AJ010948.1 GI:3954832 metallocarboxypeptidase inhibitor. Hirudo medicinalis (medicinal leech) Hirudo medicinalis

```
KEYWORDS
SOURCE
ORGANISM
                                                                                                                                    DEFINITION
ACCESSION
                                                                                                                                                                    RESULT 2
AX026084
LOCUS
                                                                                                                                                                                                                                                         밁
                                                                                                                                                                                                                                                                                        Ş
                                                                                                                                                                                                                                                                                                                          Βb
                                                                                                                                                                                                                                                                                                                                                      Ş
                                                                                                                                                                                                                                                                                                                                                                                            멼
                                                                                                                                                                                                                                                                                                                                                                                                                        S
                                                                                                                                                                                                                                                                                                                                                                                                                                                          밁
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            Ś
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Ď,
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Дb
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                Ş
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Дb
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Ś
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    B
                     REFERENCE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Ś
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          ORIGIN
                                                                                                                     VERSION
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Query Match 100.0%; Score 465; DB 3; Length 465; Best Local Similarity 100.0%; Pred. No. 9.9e-95; Matches 465; Conservative 0; Mismatches 0; Indels
AUTHORS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       sig_peptide
mat_peptide
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       polyA_signal
                                                                                                                                                                                                                                                        361 AATTATTTTGCTGAGTTAAAATAATAATAATATTGAAGCATTATTTAATAATGTTCTC 420
                                                                                                                                                                                                                                                                                                                                             361 AATTATTTTGCTGAGTTAAAATAAATAAATAATATTGAAGCATTATTTAATAATGTTCTC 420
                                                                                                                                                                                                                                                                                                                                                                                            301 CTCTCATTATTTTCCTGAACGCATCCTTGTTGAAATTTAAGGGCATTTCTCTTCTTGACT 360
                                                                                                                                                                                                                                                                                                                                                                                                               241 ACAACCTGCATCCCATATGTCGAGTAGATGACCCATCGTGTCACTGATGCGAGGCTAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                              241 ACAACCTGCATACCCATATGTCGAGTAGATGACCCATCGTGTGTCACTGATGCGAGGCTAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              181 GCACCCTGGTGCCGGGAAGGGGCTGTAGAGTGGGTTCCCTACTGGTCAATGTCGC 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                181 GCACCCTGGTGCCGGGAAGGGGGCTGTAGAGTGGGTTCCCTACTCTACTGGTCAATGTCGC 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                121 TTCATTTGCAGAGGAGCGGCACCTTTGCCTTCAGAAGGGGAATGCAATCCACATCCTACA 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  121 TTCATTTGCAGAGGGGCGCCCTTTGCCTTCAGAAGGGGAATGCAATCCACATCCTACA 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  Sequence 1 from Patent W00031140.
                                                              Hirudo medicinalis (medicinal leech)
Fritz, H., Horstmann, J., Sommerhoff, C.P., Aviles, F.X., Canals, F.,
                              Eukaryota; Metazoa; Annelida; Clitellata; Hirudinida; Hirudinea;
Arhynchobdellida; Hirudiniformes; Hirudinidae; Hirudo.
                                                                                                                     AX026084.1 GI:10187517
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        /product="metallocarboxypeptidase inhibitor" 426. .431
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          EGECNPHPTAPWCREGAVEWVPYSTGQCRTTCIPYVE"
22. .66
67. .264
                                                                                                                                                                      DNA
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    0; Indels 0; Gaps
                                                                                                                                                                      linear PAT 16-SEP-2000
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0
```

```
Ър
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ₽
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       FEATURES
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Matches 465; Conservative
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      Query Match 100.0%; Score 465; DB 6; Length 465; Best Local Similarity 100.0%; Pred. No. 9.9e-95;
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     CDS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    source
                                                                                                                                                                                                                                                                                          301 CTCTCATTATTTTCCTGAACGCATCCTTGTTGAAATTTAAGGGCATTTCTCTTCTTGACT 360
301 CTCTCATTATTTTCCTGAACGCATCCTTGTTGAAATTTAAGGGCATTTCTCTTCTTGACT 360
                                                                                                                                                                                                                                                                                                                                                                                                                                          241 ACAACCIGCATCCCATATGTCGAGTAGATGACCCATCGTGTGTCACTGATGCGAGGCTAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   241 ACAACCTGCATCCCATATGTCGAGTAGATGACCCATCGTGTGTCACTGATGCGAGGCTAA 300
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    181 GCACCCTGGTGCCGGGAAGGGGCTGTAGAGTGGGTTCCCTACTCTACTGGTCAATGTCGC 240
                                                                                                                                               361 AATTATTTTGCTGAGTTAAAATAATAATAATATTGAAGCATTATTTAATAATGTTCTC 420
                                                                                                                                                                                                                 361 AATTATTTTGCTGAGTTAAAATAATAATAATATTGAAGCATTATTTAATAATGTTCTC 420
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             181 GCACCCTGGTGCCGGGAAGGGGCTGTAGAGTGGGTTCCCTACTCTACTGGTCAATGTCGC 240
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            121 TTCATTTGCAGAGGAGCGGCACCTTTGCCTTCAGAAGGGGAATGCAATCCAACATCCTACA 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  121 TTCATTTGCAGAGGAGCGGCACCTTTGCCTTCAGAAGGGGAATGCAATCCAACATCCTACA 180
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   61 ATTTCGTCGCATACACCAGATGAGAGTTTCTTGTGCTACCCAACCAGACCAGACCAGGTGTGCTT 120
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        1 GACTIGGIAACICATICGATCATGITTICIGCICGITTITCCTGTGCCTGCCTCCACCTGGTG 60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             1 GACTIGGIAACTCATTCGATCATGITTCTGCTCGTTTTCCTGTGCTGCCTCCACCTGGTG 60
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Querol, E., Reverter, D. and Vendrell, J.
Inhibitor of metalocarboxypeptidases as fibrinolytic agent
Patent: WO 0011140-A 1 02-UN-2000;
FRITZ HANS (DE); HORSTMANN JEANNY (DE); LUDWIG MAXIMILIANS UNI
MUENCHE (DE); SOMMERHOFE CHRISTIAN P (DE); AVILES FRANCESC X (ES);
UNIV BARCELONA AUTONOWA (ES); CANALS FRANCESC (ES); QUEROL
ENRIQUE (ES); REVERTER DAVID (ES); VENDRELL JOSEP (ES)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        /mol_type="unassigned DNA"
/db_xref="taxon:6421"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              /protein_id="CAC09071.1"
/db_xref="GI:10187518"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     22. .267
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Location/Qualifiers
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             EGECNPHPTAPWCREGAVEWVPYSTGQCRTTCIPYVE"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        /db_xref="REMTREMBL:CAC09071"
/translation="MFLLVFLCCLHLVISSHTPDESFLCYQPDQVCCFICRGAAFLPS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           /codon_start=1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          /note="unnamed protein product; Product=LCI"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             /organism="Hirudo medicinalis"
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   0; Mismatches
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0; Indels 0; Gaps
```

Вb

Ş B

á 맑 δ δÃ

В Ş Ş

5

밁

Search completed: April 30, 2004, 09:28:17 Job time: 2012 secs

TITLE JOURNAL

OM nucleic - nucleic search, using sw model

	Run on:	
5792.997 Million cell updates/sec	April 30, 2004, 06:54:50 ; Search time 341 Seconds (without alignments)	

Sequence:	Perfect score: 465	Title:
l gacttggtaactcattcgattaaaaaaaaaaagaaaaaaa 465	465	US-09-856-840C-1

Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0

Total number of hits satisfying chosen parameters: 6747726

3373863 seqs, 2124099041 residues

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

				Database :
9: geneseqn2003cs:* 10: geneseqn2004s:*	7: geneseqn2003as:* 8: geneseqn2003bs:*	6: geneseqn2002s:*	 2: genesegn1990s:*	<pre>N_Geneseq_29Jan04:* 1: geneseqn1980s:*</pre>

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result		Query	Query	3	;	
				1		
ب	465	100.0	465	w	AAA11268	Aaall268 Hirudo me
N	47.6	10.2	10.2 110000	ഗ	AAI61373_2	Continuation (3 of
c u	45	9.7	266	ഗ	ABV07596	Abv07596 Human pro
4	45	9.7	887	w	AAC59297	Aac59297 Human sec
ი 5	45	9.7	6071	σ	ABL32367	Abl32367 Human imm
c 6	45	9.7	6071	σ	ABL34483	Abl34483 Human met
c 7	45	9.7	6071	δ	ABL70154	Abl70154 Chemicall

	000	a	o o	n	n	0 0 0 0		000000
4421	39 40	3 3 3 3 4 4 7 8 7 8	32	26 27 28 29	23 24 25	19 20 21 22	14 15 16 17	8 10 11 11 13
	42.2 42.2 42			4 4 4 4 2 2 2 3 3 5 6 6 6		42.8 42.8 42.8	4 4 4 3	44444 4444 44400 884480
	9.1 9.0	9.1	9.1				4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
929 929 929 929 929	19124 19124 843	464 1262 1262 10039	377 3138 3549 423	1781 1781 6731 8056	473 631 631	40862 294 299 332	110000 970 1333 425 3197	337 8779 370 19131 372 5511
87776	σων	4 4 00 00	7 3 2 7	1000	0,0,00	0404	00140	ν ο υ 4 υ ο
ABK33574 ACA66879 ACD68631 ACA68535 ABT44264	AAT72882 AAZ98287 ABV16074	AAH33241 AAC79885 ABK70506 ABL34042	ABX42254 AAQ11712 AAA70223 ABX38651	ADE58028 ADE58032 ABK39963 ABZ10246	ACH26237 ABQ25138 ABQ25139	ABL34072 AAH70082 AAV21217 AAH70043	ABA92787_1 ABQ54211 ACA96036 AAI92310 ACF05254	ABX41811 AAS61382 ABV07958 AAS46716 ABV37528 ABL33871
3574 cDNA 6879 cDNA 8631 Novel 8535 Novel 4264 Human	Aat72882 Plasmodiu Aaz98287 Plasmodiu Abv16074 Human pro	Aah33241 Human col Aac79885 Human sec Abk70506 Human cDN Ab134042 Human imm	Abx42254 Bovine ES Aaq11712 Shuttle v Aaa70223 Plasmodiu Abx38651 Bovine ES	8028 8032 9963 0246	7 Human 8 Oligo 9 Oligo		Continuation (2 of Abg54211 Human ova Aca96036 Trifolium Aai92310 Human pol Acf05254 Plasmodiu	Abx41811 Bovine ES Aas61382 Human gen Abv07958 Human pro Aas46716 Tumour su Abv37528 Human pro Abl33871 Human imm

ALIGNMENTS

RESULT 1 AAA11268 ID AAA11 XX AAA11 XC AAA11 XX OB-NO XX Hirud XX Recom KW Recom KW Plasm KW Blooc XX XX

AAA11268 standard; cDNA; 465 BP.

AAA11268;

08-NOV-2000 (first entry)

Hirudo medicinalis metallocarboxypeptidase inhibitor cDNA.

Recombinant; leech; metallocarboxypeptidase inhibitor; fibrin; plasma carboxypeptidase B; fibrinolysis inhibitor; plasminogen; blood clot; ds.

Š B 8 В δ Query Match 100.0%; Score 465; DB 3; Length 465; Best Local Similarity 100.0%; Pred. No. 4.6e-99; Matches 465; Conservative 0; Mismatches 0; Indels This sequence represents a recombinant nucleic acid that codes for a procein derived from Hirudo medicinalis (leeches) that inhibits metallocarboxypeptidases, particularly of plasma carboxypeptidase B which inhibits fibrinolysis by destroying the binding site, in plasminogen, for fibrin. The inhibitor is useful as a fibrinolytic agent, thus promotes CDS Sequence 465 BP; 129 A; 99 C; 96 G; 141 T; 0 U; 0 Other; Claim 2; Page 17; 23pp; Spanish. New recombinant nucleic acid encoding metallocarboxypeptidase inhibitor, useful as fibrinolytic agent, is derived from the leech Hirudo Hirudo medicinalis. activity of plasminogen and speeds up lysis of blood clots 24-NOV-1999; mat_peptide P-PSDB; AAY92938. WPI; 2000-400047/34. Sommerhoff CP, Aviles FX; Reverter D, (UYBA-) UNIV AUTONOMA BARCELONA. (UYMU-) UNIV MUENCHEN MAXIMILIANS LUDWIG. 25-NOV-1998; 02-JUN-2000. WO200031140-A1 sig_peptide 121 TICATTIGCAGAGGAGCGGCACCTTTGCCTTCAGAAGGGGAATGCAATCCACATCCTACA 180 61 ATTTCGTCGCATACACCAGATGAGAGTTTCTTGTGCTACCCAACCAGACCAGGTGTGCGTT 120 1 GACTTGGTAACTCATTCGATCATGTTTCTGCTCGTTTTCCTGTGCTGCCTCCACCTGGTG 60 1 GACTIGGIAACICAIICGAICAIGIITICIGCICGIITITCCIGIGCIGCCICCACCIGGIG 60 Vendrell J, 98ES-00002524. 99WO-ES000378. /*tag= b 67. .264 /product= "metallocarboxypeptidase inhibitor"
22. .66 Location/Qualifiers /*tag= c /*tag= a .267 σ Canals F, Horstmann J, Querol E, Fritz H; 0; Gaps

DЪ	Q	Db	Ş	Db	γQ	Db	Qy	Дb	νQ	В
421 GTTTGAATAAAATATGATCGAAAGATAAAAAAAAAAAAA	421 GTTTGAATAAAATATGATCGAAAGATAAAAAAAAAAAAA	361 AATTATTTTGCTGAGTTAAAATAAATAATAATAATATTGAAGCATTATTTAATAATAATGTTCTC 420	361 AATTATTTTGCTCAGGTTAAAATAATAAATAATAATTGAAGCATTATTTAATAATATGTTCTC 420	301 CTCTCATTATTTTCCTGAACGCATCCTTGTTGAAATTTTAAGGGCATTTCTCTTGACT 360	301 CTCTCATTATTTTCCTGAACGCATCCTTGTTGAAATTTAAGGGCATTTCTCTTGTTGACT 360	241 ACAACCTGCATCCCATATGTCGAGTAGATGACCCATCGTGTGTCACTGATGCGAGGCTAA 300	241 ACAACCTGCATCCCATATGTCGAGTAGATGACCCATCGTGTCTCACTGATGCGAGGCTAA 300	181 GCACCCTGGTGCCGGGAAGGGGCTGTAGAGTGGGTTCCCTACTCTACTCGTCAATGTCGC 240	181 GCACCCTGGTGCCGGGAAGGGGCTGTAGAGTGGGTTCCCTACTCTACTGGTCAATGTCGC 240	121 TTCATTTGCAGAGGAGCGGCACCTTTGCCTTCAGAAGGGGAATGCAATCCACATCCTACA 180

Search completed: April 30, 2004, 08:54:36 Job time : 345 secs

No.

Match Length DB

IJ

Description

GenCore version 5.1.6
Copyright (c) 1993 - 2004 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on: April 30, 2004, 09:28:21 ; Search time 323 Seconds 6512.108 Million cell updates/sec (without alignments)

Perfect score: 465 US-09-856-840C-1

gacttggtaactcattcgat.....taaaaaaaaaaagaaaaaaa 465

Scoring table: Gapop 10.0 , Gapext 1.0

2936184 seqs, 2261732022 residues

Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0
Maximum DB seq length: 2000000000

Post-processing: Minimum Match 0%

Maximum Match 100% Listing first 45 summaries

Database : Published_Applications_NA: * /cgn2_6/ptodata/1/pubpna/US07_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/PCT_NEW_PUB.seq:*

/cgn2_6/ptodata/1/pubpna/USO6_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/USO6_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/USO7_NEW_pub.seq:*
/cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/USO8_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/USO8_NEWCOMB.seq:*

/Cgn2_6/ptodata/1/pubpna/US093_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09C_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US09_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*
/cgn2_6/ptodata/1/pubpna/US10A_PUBCOMB.seq:*

_6/ptodata/1/pubpna/US10C_PUBCOMB.seq:*

/cgn2_6/ptodata/1/pubpna/US10_NEW_PUB.seq:*
/cgn2_6/ptodata/1/pubpna/US60_NEW_PUB.seq:* _6/ptodata/1/pubpna/US60_PUBCOMB.seq:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed,

and is derived by analysis of the total score distribution.

SUMMARIES

Query

Result

000000 00 0 0 0 0 0 O იიიი 43.8 43.8 5511 5511 640681 970 3673778 3673778 3673778 302 302 302 19131 461 496 577 406 708 708 40862 397 397 397 746 513509 491 1413 8779 2 13 US 10.424.599.52762
2 13 US 10.424.599.65293
78 15 US-10.312-841.2
6 10 US-09.814.355-1490
6 10 US-09.814.355-11195
8 10 US-09.814.355-2045
10 US-09.814.353-3881
2 15 US-10.914.353-3881
2 15 US-09.814.353-3881
2 16 US-09.814.353-511854
3 10 US-09.814.353-511854
3 10 US-09.814.353-11854
6 10 US-09.814.353-12175
6 11 US-09.814.353-12175
6 11 US-09.814.353-12175
6 10 US-09.814.353-12175
6 10 US-09.814.353-12175
6 10 US-09.814.353-327
0 10 US-09.814.353-327
0 10 US-09.814.353-327 78 15 US-10-312-841-1
70 US-09-814-353-5335
71 US-09-814-353-11622
71 US-09-814-353-11625
71 US-09-814-353-1855
71 US-08-814-353-1855
71 US-10-421-90-13598
71 US-10-424-599-13598
71 US-10-424-599-13598
71 US-10-311-455-1844
71 US-10-311-455-1844
71 US-10-311-455-1844 15 10 10 13 13 13 13 16 US-10-264-049-91 15 US-10-312-841-1 13 13 13 15 US-10-240-485-36 9 US-09-960-352-6976 US-09-814-353-4900
US-09-814-53-11195
US-09-814-353-2035
US-09-814-353-2035
US-09-814-353-2035
US-09-814-353-11854
US-09-814-353-11854
US-09-814-353-12175
US-09-814-353-12175
US-09-814-353-12175 US-09-960-352-7419 US-09-754-853A-4 US-09-814-353-17579 US-10-424-599-71272 US-10-424-599-142220 US-10-424-599-123899 US-10-424-599-112225 US-10-221-613-345 US-10-424-599-106126 US-10-257-166-44 US-10-264-049-91 US-09-814-353-11856 US-10-401-038-2 US-10-311-455-340 Sequence 2, Appli Sequence 490%, Ap Sequence 11195, Ap Sequence 2035, Ap Sequence 2045, Ap Sequence 2045, Ap Sequence 11844, A Sequence 13149, Ap Sequence 13149, Ap Sequence 1215, A Sequence 1215, A Sequence 1215, A Sequence 1216, Ap Sequence 44, Appl Sequence 7419, Ap Sequence 1, Appli Sequence 91, Appli Sequence 1, Appli Sequence 5335, Ap Sequence 11622, A Sequence 441, App Sequence 6976, Ap Sequence 5569, Ap Sequence 11856, A Sequence 36762, A Sequence 65293, A Sequence 13378, A Sequence 1844, Ap Sequence 18559, A Sequence 890, App Sequence 135986, Sequence 340, App Sequence 36, Appl Sequence 4, Appli Sequence 17579, A Sequence 71272, A Sequence 106126, Sequence 345, App Sequence 1, Appli Sequence 2, Appli Sequence 9552, Sequence Sequence 112225, Sequence 142220, Sequence 123899, Αp

Search completed: April 30, 2004, 11:15:23

Job time : 333 secs

OM nucleic - nucleic search, using sw model

OM nucleic - nucleic search, using sw model
Run on: April 30, 2004, 07:51:05 , Search time 2507 Seconds (without alignments) 5538.857 Million cell updates/sec
Title: US-09-856-840C-1 Perfect score: 465 Sequence: 1 gacttggtaactcattcgattaaaaaaaaaaaaaa
Scoring table: IDENTITY NUC Gapop 10.0 , Gapext 1.0
Searched: 27513289 segs, 14931090276 residues
Total number of hits satisfying chosen parameters: 55026578
Minimum DB seq length: 0 Maximum DB seq length: 2000000000
Post-processing: Minimum Match 10% Maximum Match 100% Listing first 45 summaries
TST
1: em_estba:* 2: em_estbum:*
3: em_estin:*
6: em_estpl:* 7: em_estro:*
19: em_gss_thr:
em_gss
24: em_gss_mus:*
em_gss
em_gs

27: em_gss_vrl:*

28: gb_gss1:* 29: gb_gss2:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

																								-																							
					c	,								O		a	O	Ω	n				O			o			O	n	n				n	a					ი		ი		1.	אפטעדר	D
44	43	42	41	4			ر د	נ נ נ	2 (, N	3 4	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	0	9	œ	7	σ	v	4	ω	2	ь		2 5	†
œ	ω.	48.6	48.6	40.0	9 0	٠.	4. 0 0.	٠.	0 0	48.8	49	49	49.6	49.6	49.6	49.8	49.8	50	50	50.2	0	0.	0	0.	50.4	0.	0.	50.8	ഗ	51.2	۲.		۲		_	51.8		52.4	52.6		53	54.8	56.8	59		2	
0			10.5	(o.		•	, i	٠.			•	10.5	10.7	10.7	10.7	10.7	10.7		0	0	10.8	10.8	10.8		10.8	10.9	10.9	0	•				-		μ.				11.3	11.4	11.4		12.2	12.7	Pige Coll		م م
716	υ Θ	324	264	0.57		2 0	ν σ 1 Κ 2 υ	1 6	n 4	274	248	173	994	506	243	1201	381	1162	501	1201	970	908	409	441	425	1201	1201	392	1104	1201	392	386	316	1121	179	970	776	427	1045	1201	937	1162	1201	452	101901		
13	29	14	14	v	٠ ١	, ,	2 6) (3	14	12	29	9	14	13	3	9	14	13	29	13	13		14	9	9	13	ø	13	13	13	14	13	φ	29	29	13	29		29	9	13	13		100	
C22772	CNS0440G	CF545077	CF622488	AUU/3206) 0	CNSOSNAT	CNSUSBAZ		DY446000	BX446690	CF383673	BJ423644	CNS04NOJ	AL514791	CF383661	BX458623	BX425197	AL513719	CF302974	X35619	CNS0182E	BX429815	BX425137	CF980752	CF980658	AL513975	AL513975	BX424882	AL513809	76	BX424882	C90680	CF545414	BX338325	AI275113	CNS0182E	CNS012G8	BX403499	CNS03YE4	BX446296	CNS006XP	AL513719	BX446296			1	
	77	CF545077 lad92d04.	CF622488 lae32h01.	AU0/3206 AU0/3206	0/07 200000	4 TELEGOO	9/63 Tetr	, 0	0 0	BX44669		BJ423644 BJ423644	AL298972 Tetraodon	AL514791 AL514791	CF383661 lac08d05.	ω	BX425197 BX425197	Þ	4	X356198	0		7	2 re08f02.	8		5 AL51397	2 BX4248	AL513809	BX40376	BX424882 BX424882	90680 Dic	CF545414 lae79a03.	BX338325 BX338325	Q				AL266197 Tetraodon	σ	9	9	96 BX44	46269 BX4462		J	

Search completed: April 30, 2004, 10:10:17 Job time : 2511 secs