EXHIBIT 1

U.S. Patent No. 6,562,130 DISPUTED TERMS

Term(s)	Fox's	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed	Cree's Intrinsic Evidence	Cree's Extrinsic
	Proposed			Construction		Evidence
FOX:	Construction Ear proposes the	hat "axial region of re-crystallized single crystal silicon carbide" / "region	of axially ra arystallized silican	Croo proposes that "s	axial," "an axial region with [3 densities]," and "recrystallized"	he construed congretaly
Axial region of	rox proposes th	carbide" be construed as one term.	or axiany re-crystamzed smcon	Cree proposes that a	axiai, an axiai region with [5 tiensities], and recrystamzed	be constitued separately.
re-crystallized	"axial region of	Specification:	Expert testimony of Michael	Axial:	Axial:	Axial:
single crystal silicon carbide/	re-crystallized single crystal	Col. 3: 15-17 ("The present invention provides a method and apparatus for	Spencer	"axial" [region] means "a	Col. 3:27-36 ("In accordance with the invention, a SiC source and	'026 Patent at abstract; Fig 1
region of axially	silicon carbide" /	growing low dislocation density single crystal silicon carbide.").		region extending in a	a SiC seed crystal of the desired polytype are co-located within a	(Ref Nos. 101 and 105); 2:10-
re-crystallized silicon carbide	"region of axially re-crystallized	Col. 3: 27-34 ("In accordance with the invention, a SiC source and a Sic		direction perpendicular (i.e., normal) to and from the	crucible with the distance separating the source evaporating surface from the growing surface being comparable to the track	34; 2:35-63; 2:64-3:5; 3:8-15; 4:42-51; 8:7-17; 8:39-42; PH.
sincon caroide	silicon carbide"	seed crystal of the desired polytype are co-located within a crucible with		seed crystal"	length of a SiC molecule. The growth zone is denned by the	4.42-31, 6.7-17, 6.39-42, FH.
CREE:	means "A portion	the distance separating the source evaporating surface from the growing			substantially parallel surfaces of the source and the seed in	The VLSI Handbook. See e.g.
"axial" [region]	of a boule grown at least 1 mm in	surface being comparable to the track length of a SiC molecule. The growth zone is define by the substantially parallel surfaces of the source			combination with the side walls of the crucible. Prior to reaching the growth temperature, the crucible is evacuated and sealed,	at p. 13.
	thickness in a	and the seed in combination with the sidewalls of the crucible.).			either directly or through the use of a secondary container housing	
[region of] "re-	direction toward				the crucible.")	USP 6,428,621. See e.g. at col.
crystallized" [silicon carbide	the source substantially	Col. 4: 13-15 ("An axial growth zone 107 is defined by the substantially parallel surfaces of source 101 and seed 103 in combination with sidewalls			Col. 4:10-17 ("According to the invention and as illustrated in	8:19-44.
or single crystal	perpendicular to	109 of crucible 105").			FIG. 1, a silicon carbide (SiC) source 101 and a SiC seed crystal	USP 7,829,443. See e.g. at col.
silicon carbide]	the seed crystal	Col. 5:11-14 ("Oven 111 provides an axial temperature gradient from seed			103 of the desired polytype (e.g., 4H, 6H, 3C, etc.) are co-located within a crucible 105. An axial growth zone 107 is defined by the	8:35-38.
	plane by heating source silicon	103 to source 101, resulting in the evaporation of the SiC of source 101			substantially parallel surfaces of source 101 and seed 103 in	USP 7,101,435. See e.g. at col.
"an axial	carbide to form a	and vapor phase crystallization of SiC on the growing surface of seed			combination with sidewalk 109 of crucible 105. If multiple seed	2: 29-42; 4: 51-62.
regionwith a density of	gaseous phase that condenses	103").			crystals 103 are used as illustrated in FIG. 2, their growth surfaces are located within the same plane and parallel to the evaporating	
dislocations	onto the seed as	Col. 5:22-29 ("If the crystal growing process is run for an extended time			surface of source 101.")	
density of	substantially a	period, for example as required to grow an exceptionally large crystal, the				
micropipes density of	single crystal."	gradually increasing thickness of the grown crystal is accompanied by a corresponding decrease in the thickness of source 101. Accordingly, in			Col. 5: 5-40 ("Preferably crucible 105 is capable of being evacuated and sealed, either directly or indirectly through the use	
secondary phase		order to maintain the growth process, a large source must be used, for			of an external container 301 as illustrated in FIG. 3. In one	
inclusions"		example, a source rod of SiC that can be continuously fed into growth zone 107.")			embodiment of the invention, after crucible 105 is loaded with source 101 and seed 103, it is placed within a high temperature	
		Zone 107.)			oven 111. Oven 111 provides an axial temperature gradient from	
		Col. 5:30-35 ("In the illustrated embodiment, furnace 111 provides the			seed 103 to source 101, resulting in the evaporation of the SiC of	
		required thermal gradient, either through the use of multiple temperature zones (e.g., one zone for source 101 and one zone for seed crystal 103) or			source 101 and vapor phase crystallization of SiC on the growing surface of seed 103. In this embodiment crucible 105 (or	
		other means. During crystal growth, a stable temperature profile must be			container 301) is sealed before the final operating temperature is	
		maintained throughout the entire growth period.")			reached, sealing being accomplished using any of a variety of	
		Col. 5: 46-56 ("By isolating the growth zone from the environment and			sealing systems (e.g., vacuum welding, graphite or other based sealants, etc.). In an alternate embodiment, crucible 105 (or	
		using a crucible exhibiting a depth-variable composition of Ta-Si-C or Nb-			container 301) is evacuated and hermetically sealed prior to	
		Si-C, the vapor phase in the growth zone shifts from the SiC-C system to the SiC-Si system. Furthermore, as the depth-variable composition of Ta-			placement within high temperature furnace 111.	
		Si-C or Nb-Si-C remains relatively unchanged for an extended period of			If the crystal growing process is run for an extended time period,	
		time, a stable composition of the vapor phase within growth zone 107 can			for example as required to grow an exceptionally large crystal, the	
		be achieved, thereby resulting in improvements in both crystal quality and size.")			gradually increasing thickness of the grown crystal is accompanied by a corresponding decrease in the thickness of	
					source 101. Accordingly, in order to maintain the growth process,	
		Col. 7:35-38 ("During growth, the evaporated surface of source 101 was separated from the growing surface of seed 103 by approximately 3 to 18			a large source must be used, for example, a source rod of SiC that can be continuously fed into growth zone 107.	
		millimeters.")			can be continuously led into growth zone 107.	
					In the illustrated embodiment, furnace 111 provides the required	
		Col. 7:46-48 ("The as-grown single crystals were approximately 10 millimeters thick with diameters ranging between 20 and 75 millimeters.")			thermal gradient, either through the use of multiple temperature zones (e.g., one zone for source 101 and one zone for seed crystal	
					103) or other means. During crystal growth, a stable temperature	
		Col. 7: 60-65 ("The seed polytype reproducibility was 80 percent for a 6H			profile must be maintained throughout the entire growth period. Preferably this is achieved by altering the relative positions of	
		SiC seed growing in direction [0001] Si; 70 percent for a 4H SiC seed growing in direction [0001]C; and 100 percent for a 6H SiC seed growing			crucible 105 and furnace 111, for example by moving crucible	
		in a direction lying at an angle of 5 degrees to direction [0001]").			105 within furnace 111 at a rate that is substantially equivalent to	
		See also Abstract.			the growth rate.	
		200 0000 12000000			As previously disclosed, preferably growth zone 107 is evacuated	
1		Claims:			and sealed prior to initiation of the sublimation process. As a	
	1				result, material losses from source 101 are substantially reduced.	

Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
Term(s)		Claim 1 states: "A silicon carbide material comprising an axial region of recrystallized single crystal silicon carbide" See also claims 2-18. Claim 19 states: "A silicon carbide material, comprising a region of axially re-crystallized silicon carbide" See also claims 20-26. Figures Figures Fig. 1 See also Figs. 2, 3. Prosecution History: The Prosecution History supports this construction.	Fox's Extrinsic Evidence	-	Additionally, sealing crucible 105, either directly or through the use of separate container 301, prevents foreign impurities from the environment from entering into growth zone 107.") PH. Recrystallized: Col. 1:27-32 ("The methods most commonly used in producing SiC single crystals are sublimation techniques based on the Lely method, this method utilizing vapor-phase crystallization of evaporated solid silicon carbide. (See, for example, U.S. Pat. Ser. Nos. 2,854,364 and 4,866,005).") [Lely U.S. Patent 2,854,364] Col. 2:64-3:9 ("In known sublimation techniques for growing SiC single crystals, the vapor source may be either a presynthesized SiC powder of the specified dispersity or a polycrystalline or monocrystalline SiC wafer produced, for example, by the Lely method. Although the use of SiC powder is more economical than the use of wafers, providing a continuous supply of powder into the growth zone, as required to grow large single crystals, is quite complicated. Additionally, SiC powder often includes impurities such as graphite or other dust that are transported to the growth surface along with the SiC molecules. These impurities lead to a high density of micropipes and dislocations in the growing crystal, thus substantially impacting the crystal quality.") Col. 4:25-44 ("In the preferred embodiment, source 101 is comprised of SiC ceramics that are produced from SiC powder that has been sintered at a temperature that permits partial oversublimation of the SiC grains. The sintering	Expert Declaration of Michael Dudley. See e.g. at ¶¶ 42-43. Recrystallized: '026 Patent at 6:60-7:5; PH. Webster's Third New International Dictionary, p. 1899 (Merriam-Webster Inc. 1986). Mokhov Article. See e.g. at pp. 320-321. Expert Declaration of Michael Dudley. See e.g. at ¶¶ 34-36. W. F. Knippenberg, Growth Phenomena in Silicon Carbide, Phillips Res. Repts. 18, p. 161-274 (1963). See e.g. at chapter 8, p. 248-257. (Supp. Borchers' Decl. Exh. 27). Y. M. Tairov & V. F. Tsvetkov, General Principles of Growing Large-Size Single Crystals of
					partial oversublimation of the SiC grains. The sintering process is preferably carried out in an inert gas environment (e.g., argon) within a temperature range of 1500 to 2300° C. In addition to achieving partial binding of the powder, during the sintering process basic background impurities and dust are removed from the powder, thus preventing the dust composition from being transferred from the evaporating surface of source 101 in the vapor phase. The SiC ceramics used for source 101 can also be fabricated by compressing SiC powder. Additionally, during the fabrication of the SiC ceramics, a doping agent can be deliberately introduced. By using SiC ceramics in which the dopant has been uniformly distributed throughout the entire volume, a uniformly doped single crystal can be grown. In another embodiment of the invention, a SiC polycrystal or mono-crystal source is used.") Col 5:22-29 ("If the crystal growing process is run for an extended time period, for example as required to grow an exceptionally large crystal, the gradually increasing thickness of the grown crystal is accompanied by a corresponding decrease in the thickness of source 101. Accordingly, in order to maintain the growth process, a large source must be used, for example, a source rod of SiC that can be continuously fed into growth zone 107.") PH Lely U.S. Patent 2,285,364.	Large-Size Single Crystals of Various Silicon Carbide Polytypes, Journal of Crystal Growth 52,146-150 (1981). (Supp. Borchers' Decl. Exh, 24).

Case 2:10-cv-00314-RBS -FBS Document 84-1 Filed 02/24/11 Page 4 of 10

Term(s) Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
			an axial region with [3 densities]: "an axial regionwith a density of dislocationsdensity of secondary phase inclusions" means "measuring the three referenced densities throughout the entirety of the axial region."	an axial region with [3 densities]: Col. 3: 15-27 ("The present invention provides a method and apparatus for growing low dislocation density single crystal silicon carbide. Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴ per square centimeter, preferably less than 10 ³ per square centimeter, and more preferably less than 10 ³ per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentrationof tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.") Col. 5:56-67 ("For example, the present invention allows SiC single crystals to be grown with a dislocation density of less than 104 per square centimeter, preferably less than 103 per square centimeter, and more preferably less than 102 per square centimeter. The density of micropipes in the 60 as-grown material is less than 102 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 65 1017 per cubic centimeter and typically in the range of 1016 to 1017 per cubic centimeter, dislocations was in the range of 102 and 104 per square centimeter, the density being dependent upon the doping. The density of dislocations was in the range of 102 and 104 per square centimeter, the density being dependent upon the doping. The density of micropipes was less than 10 per square centimeter while the density of secondary-phase inclusions (i.e., carbon and silicon) was 10 per cubic centimeter. The measured concentration of background impurities was 10 ¹⁶ per cubic centimeter for boron; and 10 ¹⁶ to 10 ¹⁷ per cubic centimeter for tantalum. Ther	an axial region with [3 densities]: Dudley Article. See e.g. at p. 431. Expert Declaration of Michael Dudley. See e.g. ¶¶ 30-33.

Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
FOX:	0 022507 0002022	Fox proposes that "density of dislocations" be construed as one	term.	(Cree proposes that "density" and "dislocation" be construed separ	ately.
Density of dislocations CREE: [seed or region] [having or with] "a density of" [defects, dislocations, micropipes or secondary phase inclusions] "dislocation"	"Density of dislocations" means "Concentration of defects where lines of atoms in a crystal structure are displaced."	Abstract ("Utilizing the system, silicon carbide can be grown with a dislocation density of less than 10^ per square centimeter.") Col. 1: 47-49 ("[e]xcessive silicon in the growth zone may result in the formation of defects on the growing surface") Col. 3: 15-19 ("The present invention provides a method and apparatus for growing low dislocation density single crystal silicon carbide. utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10^4 per square centimeter, preferably less than 10^3 per square centimeter, and more preferably less than 10^2 per square centimeter.") Col. 5: 56-60 ("For example, the present invention allows SiC single crystals to be grown with a dislocation density of less than 10^4 per square centimeter, preferably less than 10^3 per square centimeter, and more preferably less than 10^2 per square centimeter, and more preferably less than 10^2 per square centimeter.") Col. 7: 49-51 ("the density of dislocations was in the range of 10^2-10^4 per square centimeter, the density being dependent upon the doping"). Claims: Claim 1 states: "with a density of dislocations of less than 10^4 per square centimeter" See also claims 2-26. Prosecution History: The prosecution history supports this construction.	See U.S. Patent No. 6,534,026 ("The dislocations in (0001) silicon carbide (SiC) seed crystals are primarily threading and screw dislocations in <0001> crystal direction.") Exhibit 2, Advances in Silicon Carbide Processing and Applications, Chp. 1, (Saddow et al. ed., Artech House, Inc. 2004). Exhibit 3, Wan et al., "A Comparative Study of Micropipe Decoration and Counting in Conductive and Semi-Insulating Silicon Carbide Wafers," J. of Electronic Materials, Vol. 34 no. 10, 2005, at p. 1-2 (2005); Exhibit 4, Wu et al., "Characterization of Dislocations and Micropipes in 4H n+ SiC Substrates," Mat. Sci. Forum Vols. 600-603, p. 333-336 (2009); Exhibit 5, Kuhr et al., "Hexagonal voids and the formation of micropipes during SiC sublimation growth," J. Applied Physics, Vol. 89, No. 8,	[seed or region] [having or with] "a density of" [defects, dislocations, micropipes or secondary phase inclusions] means "a measure of how many defects are present in a quantity of material" (i.e., in the seed or region). For a dislocation, which is a line defect, this is defined as "the total length of dislocation per unit volume", consequently, the units are centimeters per cubic centimeter, which is equivalent to "per square centimeter." For a secondary phase inclusion, which is a volume defect, this is defined "as the number of inclusions per unit volume", consequently, the units are "per cubic centimeter."	Adensity of: Col. 2:29-36 ("Single crystals obtained by this technique show defects such as secondaryphase inclusions (predominantly, graphite), micropipes with a density of more than 100 per square centimeter, and dislocations of at least 10 ⁴ per square centimeter. These crystals also have relatively high concentrations of residual impurities such as boron, oxygen, etc.") Col. 3:17-26 ("Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴ per square centimeter, preferably less than 10 ³ per square centimeter, and more preferably less than 10 ² per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.") Col. 7:47-54 ("The as-grown single crystals were approximately 10 millimeters thick with diameters ranging between 20 and 75 millimeters. The density of dislocations was in the range of 10 ² and 10 ⁴ per square centimeter, the density being dependent upon the doping. The density of micropipes was less than 10 per square centimeter while the density of secondary-phase inclusions (i.e., carbon and silicon) was 10 per cubic centimeter.")	'026 Patent at abstract; 1:38-49; 2:1-7; PH. http://www.matter.org.uk/gloss ary/index.asp?dbid=547 The Theory of Transformations in Metals and Alloys (Pergamon Press 2002). See e.g. at pp. 313-314. Introduction to Dislocations (Butterworth Heinemann). See e.g. at p. 20. Dislocations and Plastic Flow in Crystals, (Oxford at the Clarendon Press, 1958). See e.g. at p 18.
			p. 4625-26 (April 15, 2001); Exhibit 6, Weyher et al., "Defect-selective etching of SiC," phys. stat. sol (a) 202, No. 4, 578-583 (2005). Testimony of Expert Witnesses: Expert testimony of Michael Spencer	Dislocation: "dislocation" means "a crystallographic defect or irregularity within a crystal structure, including but not limited to threading, screw, edge and basal plane dislocations."	Dislocation: Col. 3:4-8 ("Additionally, SiC powder often includes impurities such as graphite or other dust that are transported to the growth surface along with the SiC molecules. These impurities lead to a high density of micropipes and dislocations in the growing crystal, thus substantially impacting the crystal quality.") Col. 3:17-26 ("Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴ per square centimeter, preferably less than 10 ³ per square centimeter, and more preferably less than 10 ² per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.") Col. 7:47-54 ("The as-grown single crystals were approximately 10 millimeters thick with diameters ranging between 20 and 75 millimeters. The density of dislocations was in the range of 10 ² and 10 ⁴ per square centimeter, the density being dependent upon the doping. The density of micropipes was less than 10 per square centimeter while the density of secondary-phase inclusions (i.e., carbon and silicon) was 10 per cubic centimeter.")	Dislocation: '026 Patent at abstract; 4:14-16; 4:60-64; 9:8-11; 10:1-6; PH. Dictionary of Science and Technology, p. 558, (Chambers 1999). Dictionary of Science and Technology, p. 659, (Academic Press, 1992). Dudley et al, Silicon Carbide and Related materials – 1999 part 1. Materials Science Forum Vols. 431-436 (2000). ("Dudley Article"). See e.g. at p. 431. Mokhov et al, Growth of Silicon Carbide Bulk Crystals by the Sublimation Sandwich Method, Materials Science and Engineering B46 (1997). ("Mokhov Article"). See e.g. at p. 319. Y.A. Vodakov et al., Use of Ta-Container for Sublimation Growth and Doping of SiC Bulk Crystals and Epitaxial Layers, Phys. Stat. Sol. (b), 202, 177-

Case 2:10-cv-00314-RBS -FBS Document 84-1 Filed 02/24/11 Page 6 of 10

Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
						Article"). See e.g. at Fig. 15. Neudeck, P.G. "SiC Technology" The VLSI Handbook, (Boca Raton: CRC Press LLC, 1998). ("The VLSI Handbook"). See e.g. at p. 16.

Case 2:10-cv-00314-RBS -FBS Document 84-1 Filed 02/24/11 Page 7 of 10

Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
FOX:		Fox proposes that "density of micropipes" be construed as one	term.	(Cree proposes that "density" and "micropipe" be construed separ	ately.
Density of micropipes	"density of micropipes"	Specification:	Testimony of Expert Witnesses:	Adensity of:	Adensity of:	Adensity of:
CREE: [seed or region] [having or with] "a density of" [defects, dislocations, micropipes or secondary phase inclusions]	means "Concentration of screw dislocations with empty cores, also called microtubes, micropores, or pores"	Abstract ("Utilizing the system, silicon carbide can be grown with a micropipe density of less than 10 per square centimeter") Col.1: 21-22 ("The density of micropipes in the as-grown material is less than 10 per square centimeter.") Col. 5: 61-61 ("The density of micropipes in the as-grown material is less than 10^2 per square centimeter.") Col. 51-52 ("The density of micropipes was less than 10 per square centimeter") Claims: Claims: Claim 1 states: "with a density of micropipes of less than 10 per square centimeter" See also claims 7, 13, and 19. Prosecution History: The prosecution history supports this construction.	Expert testimony of Michael Spencer	[seed or region] [having or with] "a density of" [defects, dislocations, micropipes or secondary phase inclusions] means "a measure of how many defects are present in a quantity of material" (i.e., in the seed or region).	Col. 2:29-36 ("Single crystals obtained by this technique show defects such as secondaryphase inclusions (predominantly, graphite), micropipes with a density of more than 100 per square centimeter, and dislocations of at least 10 ⁴ per square centimeter. These crystals also have relatively high concentrations of residual impurities such as boron, oxygen, etc.") Col. 3:17-26 ("Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴ per square centimeter, preferably less than 10 ³ per square centimeter, and more preferably less than 10 ² per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.") Col. 7:47-54 ("The as-grown single crystals were approximately 10 millimeters thick with diameters ranging between 20 and 75 millimeters. The density of dislocations was in the range of 10 ² and 10 ⁴ per square centimeter, the density being dependent upon the doping. The density of micropipes was less than 10 per square centimeter while the density of secondary-phase inclusions (i.e.,	'026 Patent at abstract; 1:38-49; 2:1-7; PH. http://www.matter.org.uk/gloss ary/index.asp?dbid=547 The Theory of Transformations in Metals and Alloys (Pergamon Press 2002). See e.g. at pp. 313-314. Introduction to Dislocations (Butterworth Heinemann). See e.g. at p. 20. Dislocations and Plastic Flow in Crystals, (Oxford at the Clarendon Press, 1958). See e.g. at p 18.
					carbon and silicon) was 10 per cubic centimeter.") PH.	
Гегт	Agreed Upon Construction				111.	<u> </u>
Micropipe	screw dislocations with empty cores, also called microtubes, micropores, or pores					

Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
FOX:		Fox proposes that "density of secondary phase inclusions" be construed	l as one term.		Cree proposes that "density" and "inclusion" be construed separa	tely.
Density of secondary phase	"density of secondary phase	Specification:	Exhibit 2, Advances in Silicon Carbide Processing and	Adensity of:	Adensity of:	Adensity of:
inclusions CREE:	inclusions" means "Concentration of	Col. 1: 49-54 ("On the other hand, excessive silicon in the growth zone may result in the generation of polytypes differing from the seed polytype").	Applications, Chp. 1, (Saddow et al. ed., Artech House, Inc. 2004).	[seed or region] [having or with] "a density of" [defects, dislocations,	Col. 2:29-36 ("Single crystals obtained by this technique show defects such as secondaryphase inclusions (predominantly, graphite), micropipes with a density of more than 100 per square	'026 Patent at abstract; 1:38-49; 2:1-7; PH.
[seed or region]	polytypes different than the polytype of the	Col. 2: 36-55 ("It was shown that the inclusion of Tantalum during the sublimation growth of monocrystalline SiC resulted in the vapor medium	Exhibit 3, Wan et al., "A Comparative Study of Micropipe Decoration and Counting in	micropipes or secondary phase inclusions] means "a measure of how many	centimeter, and dislocations of at least 10 ⁴ per square centimeter. These crystals also have relatively high concentrations of residual impurities such as boron, oxygen, etc.")	http://www.matter.org.uk/gloss ary/index.asp?dbid=547
[having or with] "a density of" [defects, dislocations,	bulk silicon carbide crystal material and/or precipitates of	produced in the growth zone being close to SiC-Si system[u]nfortunately, it was also found that during the early stages of growth, secondary phase inclusions of tantalum or its compounds were formed.)	Conductive and Semi-Insulating Silicon Carbide Wafers," J. of Electronic Materials, Vol. 34 no. 10, 2005, at p. 1-2 (2005);	defects are present in a quantity of material" (i.e., in the seed or region).	Col. 3:17-26 ("Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴ per square centimeter, preferably less than 10 ³ per square	The Theory of Transformations in Metals and Alloys (Pergamon Press 2002). See e.g. at pp. 313-314.
micropipes or secondary phase inclusions]	silicon, carbon, and tantalum or niobium, and their compounds."	Col. 3: 22-24 ("The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter.") <i>See also</i> col. 5: 61-64.	Exhibit 4, Wu et al., "Characterization of Dislocations and Micropipes in 4H n+ SiC Substrates," Mat. Sci. Forum	For a dislocation, which is a line defect, this is defined as "the total length of dislocation per unit	centimeter, and more preferably less than 10 ² per square centimeter. The density of micropipes in the as-grown material is less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and	Introduction to Dislocations (Butterworth Heinemann). See e.g. at p. 20.
"secondary phase inclusion"		Col. 7: 52-54 ("while the density of secondary-phase inclusions (i.e., carbon and silicon)")	Vols. 600-603, p. 333-336 (2009); Exhibit 5, Kuhr et al., "Hexagonal voids and the formation of micropipes during	volume", consequently, the units are centimeters per cubic centimeter, which is equivalent to "per square	preferably less than 1 per cubic centimeter. Depending upon the construction of the crucible, the concentration of tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.")	Dislocations and Plastic Flow in Crystals, (Oxford at the Clarendon Press, 1958). See
		Claims: Claim 1 states: "with a density of secondary phase inclusions of less than 10 per square centimeter" See also claims 2-26.	SiC sublimation growth," J. Applied Physics, Vol. 89, No. 8, p. 4625-26 (April 15, 2001); Exhibit 6, Weyher et al., "Defect-	centimeter." For a secondary phase inclusion, which is a volume	Col. 7:47-54 ("The as-grown single crystals were approximately 10 millimeters thick with diameters ranging between 20 and 75 millimeters. The density of dislocations was in the range of 10 ² and 10 ⁴ per square centimeter, the density being dependent upon	e.g. at p 18.
		Prosecution History:	selective etching of SiC," phys. stat. sol (a) 202, No. 4, 578-583 (2005).	defect, this is defined "as the number of inclusions per unit volume", consequently,	the doping. The density of micropipes was less than 10 per square centimeter while the density of secondary-phase inclusions (i.e., carbon and silicon) was 10 per cubic centimeter.")	
		The prosecution history supports this construction.	Exhibit 5, Kuhr et al., "Hexagonal voids and the formation of micropipes during	the units are "per cubic centimeter.	PH.	
			SiC sublimation growth," J. Applied Physics, Vol. 89, No.8, p. 4625-26 (April 15, 2001).	Secondary Phase Inclusion:	Secondary Phase Inclusion: Col. 1:47-57 ("Excessive carbon in the growth zone leads to	Secondary Phase Inclusion: Dictionary of Mechanical
			Testimony of Expert Witnesses:	An inclusion is a "feature in a material not identical to the material matrix."	source graphitization, crystal quality degradation, and eventually the discontinuation of the growth process. On the other hand, excessive silicon in the growth zone may result both in the	Engineering, p. 180 (Butterworths, 1985).
			Expert testimony of Michael Spencer	In the case of the Fox patents and silicon carbide having a primary phase, a	formation of defects on the growing surface of the SiC crystal, primarily due to the precipitation of excess silicon drops, and in the generation of polytypes differing from the seed polytype. Accordingly, it has been established that the best characteristics	Dictionary of Scientific and Technical Terms, p. 947(McGraw-Hill Book Company 1989). ("McGraw Dictionary").
				"secondary phase inclusion" is "an inclusion of material other than the primary phase such as other polytypes of	for the as-grown SiC single crystal are achieved when the vapor composition in the growth zone is shifted the towards the vapor phase corresponding to the SiC—Si system.")	Mokhov et al, SiC Growth in Tantalum Containers by Sublimation Sandwich Method,
				silicon carbide, inclusions of carbon, silicon, tantalum or their compounds."	Col. 2:41 ("inclusion of tantalum"). Col. 2: 47-48 ("secondary phase of tantalum or its compounds were formed")	Growth of Silicon Carbide Bulk Crystals by the Sublimation Sandwich Method, Journal of
					were formed") Col. 3:17-26 ("Utilizing the system of the invention, silicon carbide can be grown with a dislocation density of less than 10 ⁴	Crystal Growth, 181 (1997), pp. 254-258. See e.g. at abstract and p. 256.
					per square centimeter, preferably less than 10 ³ per square centimeter, and more preferably less than 10 ² per square centimeter. The density of micropipes in the as-grown material is	P.G. Baranov, et al., Use of Sublimation Sandwich Method for Growth of Good Quality
					less than 10 per square centimeter. The density of secondary phase inclusions is less than 10 per cubic centimeter and preferably less than 1 per cubic centimeter. Depending upon the	Monocrystals of the Most Promising Wide-Band-Gap Semiconductors SiC and GaN
					construction of the crucible, the concentration of tantalum or niobium impurities is less than 10 ¹⁷ per cubic centimeter.")	with Controllable Properties, Ioffe Institute Prize Winners, 1995. ("Baranov Article"). See
					Col. 7:53-54 ("while the density of secondary phase inclusions (i.e., carbon and silicon")	e.g. at p. 25

Case 2:10-cv-00314-RBS -FBS Document 84-1 Filed 02/24/11 Page 9 of 10

Col. 8:35 ("The silicon carbide material of claim 1, wherein	Term(s)	Fox's Proposed Construction	Fox's Intrinsic Evidence	Fox's Extrinsic Evidence	Cree's Proposed Construction	Cree's Intrinsic Evidence	Cree's Extrinsic Evidence
						,	Mokhov Article. See e.g. at p. 321. Vodakov Article. See e.g. at 195, Figs. 12, 13 and 14.

Term(s)	Agreed Upon
	Construction
Seed crystals	The parties have
	agreed upon the
	following
	construction for
	"seed crystal":
	crystal on which
	another crystal is
	grown