Res Use Use Use Mil (MI 3.0 Or Res Use Mil Exa At : 1 R _T	Sher sistance at $54^{\circ}\text{C} = 0.95 - 1.0 \text{ (k}\Omega\text{)}$ (1) e of resistors in parallel formula (1) e of $V = IR$ (1) lliammeter reading = 9.0 (mA)	
Or Res Use Use Mil $ \underline{Exa} $ At: $ \frac{1}{R_T} $	1 2 can only be awarded if the thermistor resistance is added to	
$\begin{array}{c} \text{Use} \\ \text{Use} \\ \text{Mil} \\ \\ \frac{\text{Exa}}{\text{At}} \\ \\ \frac{1}{R_T} \end{array}$	$k\Omega$ prior to using the formula).	
$\frac{1}{R_T}$	sistance at $54^{\circ}C = 0.95 - 1.0 \text{ (k}\Omega)$ (1) e of $V = IR$ to calculate current in $2.0 \text{ k}\Omega$ resistor e of resistors in series formula and $V = IR$ (1) lliammeter reading = 9.0 (mA)	4
	ample of calculation 54°C, resistance of thermistor (read from graph) = 1.0 k Ω . $= \frac{1}{2000 \Omega} + \frac{1}{(3000+1000)\Omega}, \text{ so } R_T = 1333 \Omega$ $\frac{V}{R} = \frac{12 V}{1333 \Omega} = 9.0 \text{ mA}$	
(Th incr	sistance (of thermistor) increases nermistor takes a larger share of the pd) so voltmeter reading reases (1)	2
12(b)(ii) Eitl Pote Pov Or Cur	rential difference (across 2.0 k Ω resistor) is constant wer dissipated (by 2.0 k Ω resistor) remains the same because $P = V^2/R$ (1) rrent (in 2.0 k Ω resistor) is constant wer dissipated (by 2.0 k Ω resistor) remains the same because $P = I^2R$ (1)	1
Pote Pov	tential difference and current (for $2.0 \text{ k}\Omega$ resistor) are both constant wer dissipated (by $2.0 \text{ k}\Omega$ resistor) remains the same because $P = VI$ (1)	1