Дискретная математика Введение в булеву алгебру. ДНФ, СДНФ, КНФ, СКНФ

Сергей Михайлович Авдошин <u>savdoshin@hse.ru</u>
Екатерина Николаевна Береснева <u>eberesneva@hse.ru</u>
Мария Константиновна Горденко <u>mgordenko@hse.ru</u>

Универсум

- ullet Пусть U есть некоторое множество.
- A есть подмножество множества U, если всякий элемент из множества A принадлежит множеству U.
- Множество U универсально (универсум), если все рассматриваемые множества есть подмножества множества U.

Основные определения

- Пусть A, B, C есть произвольные подмножества множества U;
- *a*, *b*, *c* есть элементы множества *U*.
- \emptyset пустое множество, то есть множество без элементов.

Основные неопределяемые отношения в теории множества:

- a = b, элементы a и b равны (совпадают);
- $a \neq b$, элементы a и b не равны (не совпадают);
- $a \in A$, элемент a принадлежит множеству A.
- $a \notin A$, элемент a не принадлежит множеству A.

Обозначения

- \iff , \leftrightarrow , \equiv если и только если, эквивалентность
- &, ∧, — конъюнкция
- V, + дизъюнкция
- ¬ отрицание
- ⇒,→ **—** импликация
- *⇒* , *→* коимпликация
- \bigoplus сложение по модулю 2
- | штрих Шеффера
- ∘, ↓ функция Вебба, стрелка Пирса
- ∀ квантор общности
- 3 квантор существования
- 3! квантор существования единственного элемента

Множества и подмножества

• $A \subseteq B \iff \forall a \ (a \in A \to a \in B)$ — отношение включения множеств, при этом множество A называется подмножеством множества B, а множество B называется надмножеством множества A;

•
$$A \supseteq B \iff B \subseteq A$$

- $A = B \iff A \subseteq B \& A \supseteq B$, отношение равенства множеств
- $A \subset B \iff A \subseteq B \& A \neq B$, отношение строгого включения множеств
- $A \supset B \iff B \subset A$

Булеан множества

- P(A) или 2^A множество всех подмножеств , множества A;
- $A = \{a, b, c\}$
- $P(A) = 2^A = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, A\}$
- \emptyset и A несобственные (тривиальные) подмножества множества A
- $\{a\}$, $\{b\}$, $\{c\}$, $\{a,b\}$, $\{a,c\}$, $\{b,c\}$ собственные подмножества множества A

 $A \cup B = \{x \in U : x \in A \lor x \in B\}$, объединение множеств A и B; $A \cap B = \{x \in U : x \in A \& x \in B\}$, пересечение множеств A и B; $A - B = \{x \in U : x \in A \& x \notin B\}$, разность множеств A и B; $\overline{A} = U - A$, дополнение к множеству A; $A \div B = (A \cup B) - (A \cap B)$, симметрическая разность множеств A и B; $A \times B = \{(a, b) : a \in A \& b \in B\}$, декартово произведение множеств A и B.

Под натуральным числом понимаем количество элементов конечного множества. Количество элементов пустого множества есть 0.

Распространим декартово произведение на несколько сомножителей:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n): a_1 \in A_1, a_2 \in A_2, ..., a_n \in A_n\}.$$

Определим декартову степень множества

$$A^n = A \times A \times ... \times A$$
 (*n* pas), $A^0 = \emptyset$.

Множества \emptyset и A называются несобственными (тривиальными) подмножествами множества A. Если $A \subset B \& A \neq \emptyset$, то A есть собственное подмножество множества B.

Иногда пишут $A \cdot B$ или AB вместо $A \cap B$.

Примем следующие обозначения.

Множество натуральных чисел $\mathbb{N} = \{0, 1, 2, ...\}$.

Множество положительных натуральных чисел $\mathbb{N}_{+} = \{1, 2, ...\}$.

Множество целых чисел $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$.

Множество $\mathbb{Z}_n = E_n = \{0, 1, 2, ..., n-1\}.$

Множество рациональных чисел $\mathbb{Q} = \{\frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N}_+\}.$

Множество вещественных чисел $\mathbb{R} = (-\infty, +\infty)$.

Множество неотрицательных вещественных чисел $\mathbb{R}_{+} = [0, +\infty)$.

Множество комплексных чисел $\mathbb{C}=\{x+i\ y\colon x\in\mathbb{R},y\in\mathbb{R}\}$, здесь $i^2=-1$.

Задачи

- Чему равна мощность множества $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\}$?
- Какие утверждения истины?
 - 1) $\{1,2,3\} \in \{1,2,3,\{1,2,3\}\}$
 - 2) $\{2\} \subset \{1,2,3,4,5\}$
 - 3) $\emptyset = \{\emptyset\}$
 - 4) $\{2\} \in \{1,2,3,4,5\}$
 - 5) $\{1,2,3\} \subseteq \{1,2,3,\{1,2,3\}\}$

Функция

Пусть А и В есть два множества.

 Φ ункция f: $A \to B$ есть **отображение**, которое каждому элементу x из A ставит в соответствие некоторый элемент y из B.

Это обстоятельство записывается как y = f(x).

Булевы функции от одной переменной

\boldsymbol{A}	0	\boldsymbol{A}	\overline{A}	1
0	0	0	1	1
1	0	1	0	1

Булевы функции от двух переменных

Α	В	0	$A \cdot B$	$A \not\Rightarrow B$	A	$A \not\leftarrow B$	В	$A \oplus B$	A + B
0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Α	В	$A \circ B$	$A \equiv B$	$\overline{m{B}}$	$A \Leftarrow B$	\overline{A}	$A \Rightarrow B$	A B	1
0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1

Количество булевых функций от N переменных

 2^{2^N}

Какие высказывания синтаксически верны?

1.
$$A \land \neg \neg B$$

2.
$$\overline{A \lor B \neg \oplus A} \oplus A$$

3.
$$\bar{A} \& B \Rightarrow B$$

4.
$$\bar{A}BC \Rightarrow B$$

5.
$$A + \overline{A} + \overline{B + \overline{C} \rightarrow A} \rightarrow B \rightarrow C$$

6.
$$\bar{\bar{B}} \vee \bar{A}$$

7.
$$K \wedge \wedge L$$

Различные формы задания булевых функций

- Описать (задать, определить, представить) функциональное соответствие множества двоичных наборов аргументов (области определения) и множества значений булевой функции можно различным образом.
- Мы рассмотрим следующие формы представления булевых функций:
 - Табличная
 - Цифровая
 - Геометрическая
 - Карты Карно
 - Алгебраическая
 - Бинарная диаграмма решений

Табличная форма задания булевой функции

• y = F(X, Y, Z)

X	Υ	Z	F(X, Y, Z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Цифровая форма задания булевой функции

- $\sum (0,1,4,5,7)$
- $\Pi(2,3,6)$

X	Y	Z	F(X, Y, Z)	Десятичный эквивалент
0	0	0	1	0
0	0	1	1	1
0	1	0	0	2
0	1	1	0	3
1	0	0	1	4
1	0	1	1	5
1	1	0	0	6
1	1	1	1	7

Геометрическая форма задания

X	Υ	Z	F(X, Y, Z)
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

4-мерное булево пространство

5-мерное булево пространство

Алгебраическая форма записи

•
$$\overline{A+B}+C$$

Бинарная диаграмма решений

Как построить таблицу истинности для сложного высказывания $\bar{A} \to B \wedge C \oplus B$?

A	B	С	\overline{A}	$B \wedge C$	$B \land C \oplus B$	$\bar{A} \to B \land C \oplus B$
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	1	0	1	1
0	1	1	1	1	0	0
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	1	1
1	1	1	0	1	0	1