LECTURE NOTES

MATH 3 / FALL 2012

Week 6

Differential equations

A **first-order differential equation** is an equation involving a variable x, a function y and its derivative $y' = \frac{dy}{dx}$. A **solution** to such an equation is a function y = f(x) which, together with its derivative, y' = f'(x) fit the equation.

Every antiderivative problem y' = g(x) is a first-order differential equation whose solutions are the antiderivatives of g(x)

Example

The solutions to y' = cos(x) are all of the form y = sin(x) + C

The differential equation y' = ay

Example

The equation y' = ay has the solution $y = e^{ax}$ and also $y = 3e^{ax}$ and $y = e^{ax+b}$.

More generally, the solutions are $y = Ke^{ax}$ for some constant K.

Because: we can rewrite the equation as $\frac{y'}{}=a$

The left-hand side is the derivative of $\ln y$ (assuming y > 0)

The right-hand side is the derivative of ax + b

Therefore $\ln y = ax + b$ or $y = e^{ax+b} = Ke^{ax}$, where $K = e^b$

A similar analysis works when y < 0...

Slope fields

Solving a differential equation for y' tells you what the slope of a solution going through (x, y) ought to be...

Slope fields

To get a graphical solution, just go with the flow!

Separation of variables

Sometimes, we can find analytic solutions. . .

A **separable differential equation** is one that can be put in the form

$$\frac{dy}{dx} = \frac{f(x)}{g(y)}$$
 or $g(y) dy = f(x) dx$

Then, we have

$$\int g(y)\,dy=\int f(x)\,dx$$

and we can find a solution by integrating both sides and solving for y...

Separation of variables: y' = (x - 1)yIf $\frac{dy}{dx} = (x - 1)y$ then $\frac{dy}{y} = (x - 1)dx$

Separation of variables: y' = (x - 1)y

Integrating both sides of $\frac{dy}{y} = (x - 1) dx$, we get

$$\ln y = \frac{x^2}{2} - x + C \qquad (y > 0)$$

Or:

$$y = e^{x^2/2 - x + C} = Ke^{(x-1)^2/2}$$

These are all the solutions to y' = (x - 1)y

Separation of variables: y' = (x - 1)y

Existence and uniqueness

Although there is no simple recipe to find solutions of differential equations, we sometimes know that solutions do exist...

Theorem (Peano Existence/Picard Uniqueness)

Suppose G(x,y) is a continuous function of two variables. Given any point (x_0,y_0) , there is a function f such that $f(x_0)=y_0$ and f'(x)=G(x,f(x)) when $|x-x_0|<\delta$. If, moreover, $\partial G(x,y)/\partial y$ is also continuous, then there is exactly one such function f.

Existence and uniqueness

The equation $y' = y^{1/3}$ has several solutions with y(0) = 0

More slope fields...

$$y' = \sin \pi x$$
 $y' = \cos \pi y$ $y' = (x - 1)y$ $y' = \frac{x}{y - 1}$

We're looking at a separable equation

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}.$$

This is often written in the form

$$h(y) dy = g(x) dx$$

which suggests integrating both sides. Sounds reasonable but ...

Why does this work?

Let H(y) be a particular antiderivative of h(y). In other words:

$$H'(y) = h(y).$$

Then, by the chain rule,

$$\frac{d}{dx}\left[H(y)\right] = h(y)\frac{dy}{dx}.$$

Our original equation is

$$\frac{dy}{dx} = \frac{g(x)}{h(y)}.$$

Combining the two, we have

$$\frac{d}{dx}[H(y)] = g(x).$$

In other words, H(y) is an antiderivative of g(x):

$$\frac{d}{dx}[H(y)] = g(x)$$
 or $H(y) = \int g(x) dx$.

Since $H(y) = \int g(x) dx$, if G(x) is a particular antiderivative of g(x) then

$$H(y) = G(x) + C$$

for some constant C.

Therefore, every solution y is implicitly defined by

$$H(y) = G(x) + C$$

for some choice of constant C.

More separable equations...

- (a) Separate the x's and the y's
- (b) Integrate both sides
- (c) Solve for y

1.
$$y' = -\pi$$

2.
$$y' = y^2 x$$

3.
$$y' = yx^2$$

$$4. \ y' = \sin(x)\tan(y)$$

5.
$$y' = e^x \cos^2(y)$$

6.
$$y' = x(x-2)/y$$

7. $y' = x^2 e^{-y} - 2xe^{-y}$

$$8. \ y'\sqrt{y-x^2y}=-xy$$

9.
$$x^2 + 2yy' = 3x$$

10.
$$x^2y' + 2xy = 3x$$

Newton's Law of Cooling

$$\frac{dT}{dt} = -k(T - T_{\rm ambient})$$

Separation of variables leads to

$$\frac{dT}{(T - T_{\text{ambient}})} = -k \, dt.$$

Integrating both sides:

$$\ln|T - T_{\rm ambient}| = -kt + C$$

Or

$$T = Ae^{-kt} + T_{\text{ambient}}$$

for some constant A.

Exponential growth & decay

$$y' = Ay$$

The rate of change of y is proportional to y

The general solution is $y = Ke^{Ax}$ for some constant K

Exponential growth & decay

Bacterial growth

Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

- ▶ Model: $N(t) = N_0 e^{kt}$
- ► $700 = N(0) = N_0 e^{k0}$ so $N_0 = 700$
- ▶ $900 = N(12) = N_0 e^{k12}$ so $k = \frac{1}{12} \ln(900/700) = 0.021$
- ► Therefore: $N(24) = N_0 e^{k24} \approx 1159$

Half life & doubling time

If $f(t) = Ke^{At}$ then the offset t such that

$$B = rac{f(t_0 + t)}{f(t_0)} = rac{Ke^{A(t_0 + t)}}{Ke^{At_0}} = e^{At}$$

depends only on A and not on t_0 . Namely, $t = \frac{\ln B}{\Delta}$.

- ▶ In an exponential growth scenario (A > 0)
 - the **doubling time** is $\frac{\ln 2}{\Delta}$
- ▶ In an exponential decay scenario (A < 0)

the **half life** is
$$\frac{\ln 1/2}{A} = -\frac{\ln 2}{A}$$

Bacterial growth revisited

Suppose a bacteria culture grows at a rate proportional to the number of cells present. If the culture contains 700 cells initially and 900 after 12 hours, how many will be present after 24 hours?

- ► Model: $N(t) = N_0 e^{kt}$
- N(12)/N(0) = 900/700
- N(24)/N(12) = 9/7 because 24 12 = 12 0
- ► Therefore: $N(24) = \frac{9}{7} \cdot 900 \approx 1159$

Carbon dating

Apokalips Web Comic http://myapokalips.com

Carbon dating

The half life of the isotope Carbon-14 is about 5 730 years. If there is only 20% left of the Carbon-14 originally present in an object, how old is the object?

Suppose the amount of Carbon-14 at time t is Ke^{At}

First,
$$5730 = -\frac{\ln 2}{A}$$
 so $A = -1.21 \times 10^{-4}$.

Now, the age of the object is $\frac{\ln 0.2}{A}$, about 13 300 years.

Euler's method: graphically

To graphically solve y' = G(x, y), follow the flow on the slope field.

Euler's method: numerically

To numerically solve y' = G(x, y) with $y(x_0) = y_0$, successively compute

$$x_{n+1} = x_n + h,$$
 $y_{n+1} = y_n + hG(x_n, y_n)$

n	X _n	Уn
0	0.0	0.500
1	0.1	0.550
2	0.2	0.595
3	0.3	0.634
4	0.4	0.668
5	0.5	0.695
:	:	:

$$G(x,y) = y - x$$
with $h = 0.1$
and $(x_0, y_0) = (0, 1/2)$

$$x_3 = 0.2 + 0.1 = 0.3$$

$$y_3 = 0.595 + 0.1G(0.2, 0.595) = 0.634$$

Euler's method: y' = y - x with h = 0.1

Euler's method: y' = y - x with h = 0.05

Euler's method: y' = y - x with h = 0.02

Runge-Kutta method (RK2)

To numerically solve y' = G(x, y) with $y(x_0) = y_0$, successively compute

$$x_{n+1} = x_n + h, \quad y_{n+1} = y_n + hG(x_n + \frac{h}{2}, y_n + \frac{k}{2})$$
 where $k = hG(x_n, y_n)$

n	Xn	Уn	
0	0.0	0.500	G(x,y)=y-x
1	0.1	0.548	$h = 0.1$ $(x_0, y_0) = (0, 1/2)$
2	0.2	0.589	(50,90) (0,1/2)
3	0.3	0.625	k = 0.1G(0.2, 0.589) = 0.039
4	0.4	0.655	$\kappa = 0.10(0.2, 0.309) = 0.039$
5	0.5	0.676	$y_3 = 0.589 + 0.1G(0.2 + 0.05, 0.589 + 0.0195)$
6	0.6	0.690	$= 0.589 + 0.1 \times 0.358 = 0.625$
:	:	:	$-0.309 + 0.1 \times 0.330 - 0.023$
•	•	•	

RK2 method: G(x, y) = y - x with h = 0.1

Runge-Kutta method (RK4)

To numerically solve y' = G(x, y) with $y(x_0) = y_0$, successively compute

$$x_{n+1} = x_n + h$$
, $y_{n+1} = y_n + \frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6}$.

Where:

$$k_1 = hG(x_n, y_n)$$

$$k_2 = hG(x_n + h/2, y_n + k_1/2)$$

$$k_3 = hG(x_n + h/2, y_n + k_2/2)$$

$$k_3 = hG(x_n + h, y_n + k_3)$$