# **RW-ST01D 2.0 Digital Load Cell Transmitter**



- Waterproof design and good sealing
- 24 bit ADC resolution and high-speed microprocessor
- Digital filter inside
- RS232 or RS485 interface, supporting MODBUS RTU protocol
- Simple communication command
- Excellent temperature stability
- Application: All full bridge stain gauge load cells for weighing, tension, compression, torque, etc.

# **Specification**

| Overall Precision     | 0.1%±2digit                       | %F.S. |
|-----------------------|-----------------------------------|-------|
| Resolution            | >50000                            | Digit |
| Load cell Sensitivity | 0.5-2                             | mV/V  |
| Interface             | RS232/RS485(notice us when order) |       |
| Power Supply          | 12-24 Vdc                         |       |
| Power                 | <1W ( single 350Ω load cell)      |       |
| Working Environment   | -30-85°C, 85%RH                   |       |

# **Dimension (mm)**





| Connection    | No. | Description               |                           |       |                   |  |
|---------------|-----|---------------------------|---------------------------|-------|-------------------|--|
|               | 1   | Load cell Excitation +    |                           |       |                   |  |
|               | 2   | Load cell Signal Output + |                           |       |                   |  |
| Load Cell     | 3   |                           | Load cell Signal Output - |       |                   |  |
|               | 4   | Load cell Excitation -    |                           |       |                   |  |
|               | 5   | Shield                    |                           |       |                   |  |
| Dower Supply  | 6   | 24VDC+                    |                           |       |                   |  |
| Power Supply  | 7   | 24VDC-                    |                           |       |                   |  |
| Communication | 8   |                           | Data Transmit             |       | DATA+/A           |  |
|               | 9   | RS232                     | Data Receive              | RS485 | DATA-/B           |  |
|               | 10  |                           | Common                    | ]     | Common (Optional) |  |

Note: when wiring, please disconnect all the equipments' power supplies at both sides of communication terminal.

# **MODBUS RTU protocol**

- 1. Default Format:
  - 9600bps, 1 start bit, 8 data bits, no parity, 1 stop bit, communication speed and parity bit revisable
- 2. Default address 01, support address range:1-254. 0 is broadcast address. Please do not use broadcast address, if parallel connection more than (include two) two transmitters on same RS485 bus.

All the operation of host towards transmitter can be done by revising holding register. See attached table 1.

Table 1: Transmitter parameters and MODBUS holding register

| Parameter           | Register Address | Register Address | Access | Value Range    | Remarks                                     |
|---------------------|------------------|------------------|--------|----------------|---------------------------------------------|
|                     | (hex)            | (decimal)        | Mode   |                |                                             |
| Measured Value      | 0000-0001        | 40001-40002      | R/W    | 32-bit integer | Write this register to clear or             |
|                     |                  |                  |        |                | preset displayed value                      |
| Device Address      | 0002-0003        | 40003-40004      | R/W    | 1-254          | MODBUS slave address                        |
| Zero Value          | 0004-0005        | 40005-40006      | R/W    | 32-bit integer |                                             |
| Calibration point   | 0006-0007        | 40007-40008      | R/W    | 2-9            |                                             |
| AVP1                | 0008-0009        | 40009-40010      | R/W    | 32-bit integer | 1 <sup>st</sup> calibration point AD value  |
| AVP2                | 000A-000B        | 40011-40012      | R/W    | 32-bit integer | 2 <sup>nd</sup> calibration point AD value  |
| AVP3                | 000C-000D        | 40013-40014      | R/W    | 32-bit integer | 3 <sup>rd</sup> calibration point AD value  |
| AVP4                | 000E-000F        | 40015-40016      | R/W    | 32-bit integer | 4 <sup>th</sup> calibration point AD value  |
| AVP5                | 0010-0011        | 40017-40018      | R/W    | 32-bit integer | 5 <sup>th</sup> calibration point AD value  |
| AVP6                | 0012-0013        | 40019-40020      | R/W    | 32-bit integer | 6 <sup>th</sup> calibration point AD value  |
| AVP7                | 0014-0015        | 40021-40022      | R/W    | 32-bit integer | 7 <sup>th</sup> calibration point AD value  |
| AVP8                | 0016-0017        | 40023-40024      | R/W    | 32-bit integer | 8 <sup>th</sup> calibration point AD value  |
| AVP9                | 0018-0019        | 40025-40026      | R/W    | 32-bit integer | 9 <sup>th</sup> calibration point AD value  |
| PVP1                | 001A-001B        | 40027-40028      | R/W    | 32-bit integer | 1 <sup>st</sup> calibration displayed value |
| PVP2                | 001C-001D        | 40029-40030      | R/W    | 32-bit integer | 2 <sup>nd</sup> calibration displayed value |
| PVP3                | 001E-001F        | 40031-40032      | R/W    | 32-bit integer | 3 <sup>rd</sup> calibration displayed value |
| PVP4                | 0020-0021        | 40033-40034      | R/W    | 32-bit integer | 4 <sup>th</sup> calibration displayed value |
| PVP5                | 0022-0023        | 40035-40036      | R/W    | 32-bit integer | 5 <sup>th</sup> calibration displayed value |
| PVP6                | 0024-0025        | 40037-40038      | R/W    | 32-bit integer | 6 <sup>th</sup> calibration displayed value |
| PVP7                | 0026-0027        | 40039-40040      | R/W    | 32-bit integer | 7 <sup>th</sup> calibration displayed value |
| PVP8                | 0028-0029        | 40041-40042      | R/W    | 32-bit integer | 8 <sup>th</sup> calibration displayed value |
| PVP9                | 002A-002B        | 40043-40044      | R/W    | 32-bit integer | 9 <sup>th</sup> calibration displayed value |
| ADC speed           | 0034-0035        | 40053-40054      | R/W    | 0/1            | 10 or 40times per second                    |
| Filter Class        | 0056-0057        | 40087-40088      | R/W    | 0-5            |                                             |
| Filter Band         | 0058-0059        | 40089-40090      | R/W    | 0-1000         |                                             |
| Baud Rate           | 005A-005B        | 40091-40092      | R/W    | 0-10           | 300-115200bps, see table 2                  |
| Zero tracking       | 005C-005D        | 40093-40094      | R/W    | 0-50           | Time unit:0.1 second                        |
| delay               |                  |                  |        |                |                                             |
| Zero tracking       | 005E-005F        | 40095-40096      | R/W    | 0-10000        |                                             |
| band                |                  |                  |        |                |                                             |
| Stability Criterion | 0060-0061        | 40097-40098      | R/W    | 1-50           | Time unit:01 second                         |
| of time             |                  |                  |        |                |                                             |
| Stability Criterion | 0062-0063        | 40099-40100      | R/W    | 1-100          | Unit:0.5 display code                       |
| condition           |                  |                  |        |                |                                             |
| Displayed           | 0064-0065        | 40101-40102      | R/W    | 1-250          |                                             |
| Division            |                  |                  |        |                |                                             |
| Parity Checking     | 0066-0067        | 40103-40104      | R/W    | 0-4            | Serial communication parity bit,            |
| Bit                 |                  |                  |        |                | see table 3                                 |
| AD Code             | 1F40-1F41        | 48001-48002      | RO     | 32-bit integer | AD value without calibration                |

Table 2: Baud rate setting value

| Value | Actual Baud Rate(bps) |
|-------|-----------------------|
| 0     | 300                   |
| 1     | 600                   |
| 2     | 1200                  |
| 3     | 2400                  |
| 4     | 4800                  |
| 5     | 9600                  |
| 6     | 19200                 |
| 7     | 28800                 |
| 8     | 38400                 |
| 9     | 57600                 |
| 10    | 115200                |

Table 3: Parity bit setting value

| Value | Calibration Mode |
|-------|------------------|
| 0     | No parity        |
| 1     | Odd parity       |
| 2     | Even parity      |
| 3     | MARK             |
| 4     | SPACE            |

## **Communication Example:**

 Read measured value: use function code 03 to read holding register. Register No. of measured value is 0000-0001(40001-40002), Length is 4 byte signed long integer. Dimension is related with calibration. For example, if load cell range is 800kg, and calibration is 800000, which means the data read is actual measured value, and unit is g. If calibration is 80000, the value unit read is 0.01kg. This transmitter does not support decimal point.

#### Query message from Host:

01 03 00 00 02 C4 0B (slave address: 01, function 03, read 2 consecutive holding register from 0000, the last is CRC calibration code)

## Responsive message from transmitter:

01 03 04 00 01 05 E2 28 EA (slave address: 01, function: 03, responsive 4 byte data: 00 01 05 E2, which means decimal 67042, that is, measured value is 67042, the last is CRC calibration code)

2. Setting transmitter device address: use function code 10 to write many holding register. For example: the original device address is 01, need to revise to 10.

#### Query message from Host:

01 10 00 02 00 02 04 00 00 00 0A F2 71 (slave address is 01, function:10, write 2 consecutive holing register from 0002, total data bytes:4, new address 10 is changed to 32-byte hex 00 00 0A, the last is CRC calibration code)

### Responsive message from transmitter:

01 10 00 02 00 02 E0 08 (slave address: 01, function: 10, write 2 consecutive holding register from 0002, the last is CRC calibration code)

3. Clear: write measured value register 0 directly. If need to show other value, please write the corresponding value to make display presetting. However, please note that this operation could not save zero value in the inner part of transmitter, when power up next time, it will return to original set value.

## Query Message from Host:

01 10 00 00 00 02 04 00 00 00 F3 AF (slave address:01, function: 10, write 2 consecutive holding register from 0000, total data bytes: 4, set displayed value 0, the last is CRC calibration code)

## Responsive Message from transmitter:

01 10 00 00 02 41 C8 (slave address: 01, function 10, write 2 consecutive holding register from 0000, the last is CRC calibration code).

# 4. Zero setting:

First read present displayed value, and then write it into transmitter zero point register. Please note that do not make clear before this operation. Writing zero tracing value 0 is used for factory testing. So we suggest using clear function, so as not to shorten service life of inner part of transmitter,

#### 5. MODBUS Command Calibration

We suggest using transmitter as AD module, and make calibration calculation on host. Please check below methods to make transmitter calibration through MODBUS command.

- Weighing nothing, read AD code 32 times (register 1F40-1F41), get average value, write it into AVP1 and write 0 for PVP1
- For standard loading, read AD code 32 times (register 1F40-1F41), get average value, write it into AVP2, write standard load value for PVP2. Please note that this value decides (affect) resolution of transmitter. For example, if standard load is 10kg and need resolution to show 1g, 10000 must be wrote.
- If write calibration point 2, calibration is finished.
- If need to make multi-calibration, make standard load incremented repeatedly, read AD code, write into corresponding register and revise register value of calibration point.