$11n_{154} (K11n_{154})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.31566 \times 10^{70} u^{49} + 5.59358 \times 10^{70} u^{48} + \dots + 6.53231 \times 10^{69} b - 5.03553 \times 10^{70}, \\ &- 3.55956 \times 10^{70} u^{49} - 1.50298 \times 10^{71} u^{48} + \dots + 6.53231 \times 10^{69} a + 1.72500 \times 10^{71}, \ u^{50} + 4u^{49} + \dots - 6u - 10^{2} \\ I_2^u &= \langle u^{10} - u^9 - 3u^8 + 3u^7 + 4u^6 - 4u^5 - 7u^4 + 6u^3 + 7u^2 + b - 3u - 2, \\ &- 15u^{10} + 10u^9 + 45u^8 - 26u^7 - 61u^6 + 30u^5 + 107u^4 - 44u^3 - 102u^2 + a + 7u + 21, \\ u^{11} - u^{10} - 3u^9 + 3u^8 + 4u^7 - 4u^6 - 7u^5 + 6u^4 + 7u^3 - 4u^2 - 2u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 61 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle 1.32 \times 10^{70} u^{49} + 5.59 \times 10^{70} u^{48} + \dots + 6.53 \times 10^{69} b - 5.04 \times 10^{70}, \ -3.56 \times 10^{70} u^{49} - 1.50 \times 10^{71} u^{48} + \dots + 6.53 \times 10^{69} a + 1.73 \times 10^{71}, \ u^{50} + 4u^{49} + \dots - 6u + 1 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 5.44916u^{49} + 23.0084u^{48} + \dots + 36.9971u - 26.4072 \\ -2.01408u^{49} - 8.56295u^{48} + \dots - 15.0392u + 7.70865 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 3.43508u^{49} + 14.4454u^{48} + \dots + 21.9578u - 18.6986 \\ -2.01408u^{49} - 8.56295u^{48} + \dots - 15.0392u + 7.70865 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 5.50930u^{49} + 23.2971u^{48} + \dots + 37.7925u - 27.1123 \\ -1.94686u^{49} - 8.15972u^{48} + \dots - 13.7847u + 7.15385 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 7.20223u^{49} + 30.4910u^{48} + \dots + 55.1926u - 32.3223 \\ -1.16935u^{49} - 5.08349u^{48} + \dots - 12.3880u + 5.64687 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0754028u^{49} - 0.252955u^{48} + \dots + 13.1088u + 4.21868 \\ 1.44659u^{49} + 5.86887u^{48} + \dots + 6.37477u - 5.35313 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6.55926u^{49} + 27.8864u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 10.3413u + 5.39025 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 6.55926u^{49} + 27.8864u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots + 49.0350u - 30.2341 \\ -1.23352u^{49} - 5.24956u^{48} + \dots - 10.3413u + 5.39025 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $6.39014u^{49} + 28.2211u^{48} + \cdots + 72.9518u 36.4279$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{50} + 8u^{49} + \dots - 87u + 71$
c_2	$u^{50} + 2u^{49} + \dots + 314u + 193$
<i>c</i> ₃	$u^{50} - 6u^{49} + \dots + 10u - 1$
C4	$u^{50} - 5u^{49} + \dots + 304u + 403$
c_5, c_6, c_9	$u^{50} + 4u^{49} + \dots - 6u + 1$
	$u^{50} + u^{49} + \dots + 512u + 29$
c_8, c_{11}	$u^{50} + u^{49} + \dots + 3u^2 + 1$
c_{10}	$u^{50} + 2u^{49} + \dots + 13u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{50} - 20y^{49} + \dots - 590053y + 5041$
c_2	$y^{50} + 46y^{49} + \dots + 780712y + 37249$
<i>c</i> ₃	$y^{50} - 4y^{49} + \dots - 154y^2 + 1$
C ₄	$y^{50} - 45y^{49} + \dots - 1305446y + 162409$
c_5, c_6, c_9	$y^{50} - 12y^{49} + \dots - 48y + 1$
c_7	$y^{50} + 13y^{49} + \dots - 327684y + 841$
c_8, c_{11}	$y^{50} + 31y^{49} + \dots + 6y + 1$
c_{10}	$y^{50} - 2y^{49} + \dots - 35y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.973898 + 0.287950I		
a = -0.695696 + 0.419798I	-1.86387 + 0.30095I	-9.64984 - 1.90143I
b = -0.457776 + 0.369939I		
u = -0.973898 - 0.287950I		
a = -0.695696 - 0.419798I	-1.86387 - 0.30095I	-9.64984 + 1.90143I
b = -0.457776 - 0.369939I		
u = 0.913846 + 0.185540I		
a = -0.335931 + 0.804509I	-2.08438 - 2.77960I	-10.17164 + 4.44197I
b = 0.922990 - 0.289493I		
u = 0.913846 - 0.185540I		
a = -0.335931 - 0.804509I	-2.08438 + 2.77960I	-10.17164 - 4.44197I
b = 0.922990 + 0.289493I		
u = -0.835381 + 0.772928I		
a = 0.47188 + 1.50692I	2.93158 + 5.78038I	-3.00000 - 8.73361I
b = 0.98491 - 1.67790I		
u = -0.835381 - 0.772928I		
a = 0.47188 - 1.50692I	2.93158 - 5.78038I	-3.00000 + 8.73361I
b = 0.98491 + 1.67790I		
u = -0.597674 + 0.996526I		
a = -0.095278 - 0.867392I	0.94420 + 4.84658I	0 16.7858I
b = -0.19400 + 1.85191I		
u = -0.597674 - 0.996526I		
a = -0.095278 + 0.867392I	0.94420 - 4.84658I	0. + 16.7858I
b = -0.19400 - 1.85191I		
u = -0.815937 + 0.186566I		
a = 0.64349 - 1.28176I	-4.23706 - 3.34809I	-10.42134 + 1.19861I
b = -0.673813 + 1.147990I		
u = -0.815937 - 0.186566I		
a = 0.64349 + 1.28176I	-4.23706 + 3.34809I	-10.42134 - 1.19861I
b = -0.673813 - 1.147990I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.963408 + 0.692141I		
a = 1.132490 + 0.483149I	2.51794 - 0.16160I	0
b = -0.25869 - 1.55132I		
u = -0.963408 - 0.692141I		
a = 1.132490 - 0.483149I	2.51794 + 0.16160I	0
b = -0.25869 + 1.55132I		
u = -0.636888 + 1.050190I		
a = 0.675338 + 1.117000I	3.30459 + 1.24081I	0
b = 0.329148 - 1.016950I		
u = -0.636888 - 1.050190I		
a = 0.675338 - 1.117000I	3.30459 - 1.24081I	0
b = 0.329148 + 1.016950I		
u = 0.903142 + 0.837436I		
a = -0.89244 + 1.30977I	4.40850 - 3.12436I	0
b = -0.35436 - 1.78012I		
u = 0.903142 - 0.837436I		
a = -0.89244 - 1.30977I	4.40850 + 3.12436I	0
b = -0.35436 + 1.78012I		
u = -0.557299 + 0.500566I		
a = -1.78993 + 1.80158I	-3.04563 + 6.16036I	-5.83312 - 10.36352I
b = 0.421947 - 0.110229I		
u = -0.557299 - 0.500566I		
a = -1.78993 - 1.80158I	-3.04563 - 6.16036I	-5.83312 + 10.36352I
b = 0.421947 + 0.110229I		
u = -0.736164		
a = -0.886089	-1.37116	-7.85670
b = -0.812664		
u = -0.288799 + 0.670270I		
a = -0.549822 + 0.201160I	-0.74993 + 1.80678I	-3.40421 - 3.27437I
b = -0.231209 + 0.384240I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.288799 - 0.670270I		
a = -0.549822 - 0.201160I	-0.74993 - 1.80678I	-3.40421 + 3.27437I
b = -0.231209 - 0.384240I		
u = 0.710444 + 0.074039I		
a = 1.60904 - 1.03329I	-4.51765 + 4.23526I	-12.34564 - 0.73227I
b = 1.205030 - 0.316628I		
u = 0.710444 - 0.074039I		
a = 1.60904 + 1.03329I	-4.51765 - 4.23526I	-12.34564 + 0.73227I
b = 1.205030 + 0.316628I		
u = 0.965620 + 0.857282I		
a = -0.820961 + 1.063210I	4.33842 - 3.23438I	0
b = -0.18244 - 1.58681I		
u = 0.965620 - 0.857282I		
a = -0.820961 - 1.063210I	4.33842 + 3.23438I	0
b = -0.18244 + 1.58681I		
u = 0.563185 + 0.349209I		
a = 0.166277 + 0.562597I	-3.78607 - 5.93938I	-6.42894 + 12.06653I
b = -2.08804 - 0.12116I		
u = 0.563185 - 0.349209I		
a = 0.166277 - 0.562597I	-3.78607 + 5.93938I	-6.42894 - 12.06653I
b = -2.08804 + 0.12116I		
u = 0.802008 + 1.081440I		
a = 0.618176 - 0.851982I	6.57814 + 2.00021I	0
b = 0.02927 + 1.60011I		
u = 0.802008 - 1.081440I		
a = 0.618176 + 0.851982I	6.57814 - 2.00021I	0
b = 0.02927 - 1.60011I		
u = -0.790681 + 1.114590I		
a = -0.805915 - 0.850484I	3.11102 - 8.02113I	0
b = 0.14947 + 1.53184I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.790681 - 1.114590I		
a = -0.805915 + 0.850484I	3.11102 + 8.02113I	0
b = 0.14947 - 1.53184I		
u = -0.292603 + 0.539944I		
a = 0.367718 + 0.535422I	1.06170 + 1.95789I	2.50049 - 3.97543I
b = 0.956495 + 0.240511I		
u = -0.292603 - 0.539944I		
a = 0.367718 - 0.535422I	1.06170 - 1.95789I	2.50049 + 3.97543I
b = 0.956495 - 0.240511I		
u = 0.549411 + 0.272810I		
a = 0.49144 + 2.18390I	-0.60147 - 2.63277I	0.64260 + 6.35036I
b = -0.042142 - 0.459151I		
u = 0.549411 - 0.272810I		
a = 0.49144 - 2.18390I	-0.60147 + 2.63277I	0.64260 - 6.35036I
b = -0.042142 + 0.459151I		
u = -1.40477		
a = -0.402422	-2.53971	0
b = -0.427165		
u = -1.030240 + 0.960055I		
a = -0.435587 - 0.666622I	-0.48592 + 3.61316I	0
b = -0.65359 + 1.43821I		
u = -1.030240 - 0.960055I		
a = -0.435587 + 0.666622I	-0.48592 - 3.61316I	0
b = -0.65359 - 1.43821I		
u = 0.91934 + 1.08476I		
a = -0.616459 + 1.203170I	4.11263 - 3.83167I	0
b = -0.238685 - 1.355140I		
u = 0.91934 - 1.08476I		
a = -0.616459 - 1.203170I	4.11263 + 3.83167I	0
b = -0.238685 + 1.355140I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.11330 + 0.90983I		
a = 0.632047 - 0.971558I	5.57747 - 9.21703I	0
b = 0.65462 + 1.62579I		
u = 1.11330 - 0.90983I		
a = 0.632047 + 0.971558I	5.57747 + 9.21703I	0
b = 0.65462 - 1.62579I		
u = -1.12578 + 0.90724I		
a = -0.566919 - 1.147900I	2.0157 + 15.3090I	0
b = -0.72405 + 1.73806I		
u = -1.12578 - 0.90724I		
a = -0.566919 + 1.147900I	2.0157 - 15.3090I	0
b = -0.72405 - 1.73806I		
u = -1.21156 + 0.89742I		
a = 0.397984 + 0.889144I	1.55527 + 5.89362I	0
b = 0.173869 - 1.329530I		
u = -1.21156 - 0.89742I		
a = 0.397984 - 0.889144I	1.55527 - 5.89362I	0
b = 0.173869 + 1.329530I		
u = 1.51600 + 0.17015I		
a = 0.324411 + 0.071542I	-7.03500 - 5.35259I	0
b = -0.043698 - 0.329284I		
u = 1.51600 - 0.17015I		
a = 0.324411 - 0.071542I	-7.03500 + 5.35259I	0
b = -0.043698 + 0.329284I		
u = 0.234313 + 0.025877I		
a = -3.28109 + 3.13603I	0.24228 - 2.13866I	-2.49155 + 4.03852I
b = -0.065339 - 0.963971I		
u = 0.234313 - 0.025877I		
a = -3.28109 - 3.13603I	0.24228 + 2.13866I	-2.49155 - 4.03852I
b = -0.065339 + 0.963971I		

$$I_2^u = \langle u^{10} - u^9 + \dots + b - 2, -15u^{10} + 10u^9 + \dots + a + 21, u^{11} - u^{10} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} + u^{9} + 3u^{8} - 3u^{7} - 4u^{6} + 4u^{5} + 7u^{4} - 6u^{3} - 7u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 14u^{10} - 9u^{9} + \cdots - 4u - 19 \\ -u^{10} + u^{9} + 3u^{8} - 3u^{7} - 4u^{6} + 4u^{5} + 7u^{4} - 6u^{3} - 7u^{2} + 3u + 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 20u^{10} - 14u^{9} + \cdots - 11u - 26 \\ u^{10} - u^{9} - 2u^{8} + 2u^{7} + 2u^{6} - 2u^{5} - 5u^{4} + 4u^{3} + 2u^{2} - u + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -21u^{10} + 10u^{9} + \cdots - u + 42 \\ -10u^{10} + 6u^{9} + \cdots + 3u + 16 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 13u^{10} - 11u^{9} + \cdots - 15u - 16 \\ 8u^{10} - 5u^{9} + \cdots - 2u - 14 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -19u^{10} + 10u^{9} + \cdots - 148u^{2} + 35 \\ -6u^{10} + 3u^{9} + \cdots - u + 10 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -19u^{10} + 10u^{9} + \cdots - 148u^{2} + 35 \\ -6u^{10} + 3u^{9} + \cdots - u + 10 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$37u^{10} - 17u^9 - 120u^8 + 48u^7 + 172u^6 - 57u^5 - 289u^4 + 70u^3 + 294u^2 + 3u - 78$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$ u^{11} + u^{10} - u^9 - 4u^8 + u^6 - 2u^5 - 3u^4 + 3u^3 + 2u^2 - u - 1 $
c_2	$u^{11} + u^{10} + 2u^9 + 4u^8 - 2u^7 + u^6 - 2u^5 - 9u^4 + 9u^3 + 2u^2 - 4u + 1$
c_3	$u^{11} + 5u^{10} + \dots + 4u + 1$
c_4	$u^{11} - 6u^{10} + \dots + 4u - 1$
c_5, c_6	$u^{11} + u^{10} - 3u^9 - 3u^8 + 4u^7 + 4u^6 - 7u^5 - 6u^4 + 7u^3 + 4u^2 - 2u - 1$
c_7	$u^{11} + 2u^{10} + 5u^9 + 9u^8 + 9u^7 + 2u^6 + 5u^5 + 12u^4 + 10u^3 - 2u - 1$
C ₈	$u^{11} + 4u^9 - 2u^8 + 6u^7 - 8u^6 + u^5 - 13u^4 - 4u^3 - 7u^2 - 2u - 1$
<i>C</i> 9	$u^{11} - u^{10} - 3u^9 + 3u^8 + 4u^7 - 4u^6 - 7u^5 + 6u^4 + 7u^3 - 4u^2 - 2u + 1$
c_{10}	$u^{11} + u^{10} - 2u^9 - 3u^8 + 3u^7 + 2u^6 - u^5 + 4u^3 + u^2 - u - 1$
c_{11}	$u^{11} + 4u^9 + 2u^8 + 6u^7 + 8u^6 + u^5 + 13u^4 - 4u^3 + 7u^2 - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	<u>.</u>
c_1	$y^{11} - 3y^{10} + \dots + 5y - 1$	
c_2	$y^{11} + 3y^{10} + \dots + 12y - 1$	-
<i>C</i> 3	$y^{11} - 3y^{10} + \dots + 20y^2 - 1$	•
c_4	$y^{11} - 4y^{10} + 18y^8 + 40y^7 + 28y^6 + 45y^5 + 75y^4 + 70y^3 + 5y^2 - 6y^4 + 40y^7 + 28y^6 + 45y^5 + 75y^4 + 70y^3 + 5y^2 - 6y^4 + 10y^7 + 10y^7$, j — 1
c_5, c_6, c_9	$y^{11} - 7y^{10} + \dots + 12y - 1$	
	$y^{11} + 6y^{10} + \dots + 4y - 1$	-
c_8, c_{11}	$y^{11} + 8y^{10} + \dots - 10y - 1$	
c_{10}	$y^{11} - 5y^{10} + \dots + 3y - 1$	•

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.775260 + 0.879276I		
a = 0.187286 + 0.932840I	0.70704 + 4.35639I	-5.54956 - 2.55288I
b = 0.21109 - 1.51914I		
u = -0.775260 - 0.879276I		
a = 0.187286 - 0.932840I	0.70704 - 4.35639I	-5.54956 + 2.55288I
b = 0.21109 + 1.51914I		
u = -0.780915 + 0.043107I		
a = 0.35176 + 1.37931I	-1.14703 + 2.08475I	-5.67789 + 0.04134I
b = -0.495745 - 0.113579I		
u = -0.780915 - 0.043107I		
a = 0.35176 - 1.37931I	-1.14703 - 2.08475I	-5.67789 - 0.04134I
b = -0.495745 + 0.113579I		
u = 0.874107 + 0.934732I		
a = -0.74222 + 1.34614I	3.59148 - 3.42396I	-7.58514 + 2.00100I
b = -0.34039 - 1.50546I		
u = 0.874107 - 0.934732I		
a = -0.74222 - 1.34614I	3.59148 + 3.42396I	-7.58514 - 2.00100I
b = -0.34039 + 1.50546I		
u = 1.380430 + 0.112956I		
a = 0.051000 + 0.348587I	-7.66458 - 5.46030I	-13.6502 + 4.8917I
b = -0.660833 - 0.171838I		
u = 1.380430 - 0.112956I		
a = 0.051000 - 0.348587I	-7.66458 + 5.46030I	-13.6502 - 4.8917I
b = -0.660833 + 0.171838I		
u = -1.42602		
a = 0.376679	-2.78763	-26.4320
b = 0.724774		
u = 0.514652 + 0.025908I		
a = 0.96384 + 2.00148I	-3.96271 - 5.00716I	-8.32130 + 5.65788I
b = 1.42350 - 0.12348I		

	Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	0.514652 - 0.025908I		
a =	0.96384 - 2.00148I	-3.96271 + 5.00716I	-8.32130 - 5.65788I
b =	1.42350 + 0.12348I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u^{11} + u^{10} - u^9 - 4u^8 + u^6 - 2u^5 - 3u^4 + 3u^3 + 2u^2 - u - 1)$ $\cdot (u^{50} + 8u^{49} + \dots - 87u + 71)$
c_2	$(u^{11} + u^{10} + 2u^9 + 4u^8 - 2u^7 + u^6 - 2u^5 - 9u^4 + 9u^3 + 2u^2 - 4u + 1)$ $\cdot (u^{50} + 2u^{49} + \dots + 314u + 193)$
c_3	$ (u^{11} + 5u^{10} + \dots + 4u + 1)(u^{50} - 6u^{49} + \dots + 10u - 1) $
c_4	$ (u^{11} - 6u^{10} + \dots + 4u - 1)(u^{50} - 5u^{49} + \dots + 304u + 403) $
c_5, c_6	$(u^{11} + u^{10} - 3u^9 - 3u^8 + 4u^7 + 4u^6 - 7u^5 - 6u^4 + 7u^3 + 4u^2 - 2u - 1)$ $\cdot (u^{50} + 4u^{49} + \dots - 6u + 1)$
c_7	$(u^{11} + 2u^{10} + 5u^9 + 9u^8 + 9u^7 + 2u^6 + 5u^5 + 12u^4 + 10u^3 - 2u - 1)$ $\cdot (u^{50} + u^{49} + \dots + 512u + 29)$
<i>c</i> ₈	$(u^{11} + 4u^9 - 2u^8 + 6u^7 - 8u^6 + u^5 - 13u^4 - 4u^3 - 7u^2 - 2u - 1)$ $\cdot (u^{50} + u^{49} + \dots + 3u^2 + 1)$
<i>C</i> 9	$(u^{11} - u^{10} - 3u^9 + 3u^8 + 4u^7 - 4u^6 - 7u^5 + 6u^4 + 7u^3 - 4u^2 - 2u + 1)$ $\cdot (u^{50} + 4u^{49} + \dots - 6u + 1)$
c_{10}	$(u^{11} + u^{10} - 2u^9 - 3u^8 + 3u^7 + 2u^6 - u^5 + 4u^3 + u^2 - u - 1)$ $\cdot (u^{50} + 2u^{49} + \dots + 13u - 1)$
c_{11}	$(u^{11} + 4u^9 + 2u^8 + 6u^7 + 8u^6 + u^5 + 13u^4 - 4u^3 + 7u^2 - 2u + 1)$ $\cdot (u^{50} + u^{49} + \dots + 3u^2 + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y^{11} - 3y^{10} + \dots + 5y - 1)(y^{50} - 20y^{49} + \dots - 590053y + 5041)$
c_2	$(y^{11} + 3y^{10} + \dots + 12y - 1)(y^{50} + 46y^{49} + \dots + 780712y + 37249)$
c_3	$(y^{11} - 3y^{10} + \dots + 20y^2 - 1)(y^{50} - 4y^{49} + \dots - 154y^2 + 1)$
c_4	$(y^{11} - 4y^{10} + 18y^8 + 40y^7 + 28y^6 + 45y^5 + 75y^4 + 70y^3 + 5y^2 - 6y - 1)$ $\cdot (y^{50} - 45y^{49} + \dots - 1305446y + 162409)$
c_5,c_6,c_9	$(y^{11} - 7y^{10} + \dots + 12y - 1)(y^{50} - 12y^{49} + \dots - 48y + 1)$
C ₇	$(y^{11} + 6y^{10} + \dots + 4y - 1)(y^{50} + 13y^{49} + \dots - 327684y + 841)$
c_8, c_{11}	$(y^{11} + 8y^{10} + \dots - 10y - 1)(y^{50} + 31y^{49} + \dots + 6y + 1)$
c_{10}	$(y^{11} - 5y^{10} + \dots + 3y - 1)(y^{50} - 2y^{49} + \dots - 35y + 1)$