Task A – Gender Classification (Binary)

OBJECTIVE: To build a deep learning-based model that accurately classifies facial images as either Male (0) or Female (1) while accounting for variations in lighting, pose, and facial expressions.

TEAM NAME: Script Sentries

MODEL ARCHITECTURE:

- **Backbone:** EfficientNetV2-S (transfer learning via timm)
- **Classifier Head:**
 - Linear (in features \rightarrow 256)
 - ReLU + Dropout(0.5)
 - Linear $(256 \rightarrow 1)$
 - Sigmoid activation for binary probability

TRAINING STRATEGY:

Loss Function: Binary Cross-Entropy with Logits (BCEWithLogitsLoss) and class imbalance weighting

Optimizer: AdamW

Scheduler: CosineAnnealingWarmRestarts **Transformations (Albumentations):**

- RandomCrop, HorizontalFlip, Brightness/Contrast adjustments
- CoarseDropout for robustness

EVALUATION RESULT: Evaluation was performed on the best-performing checkpoint selected by F1-score on the validation set.

Dataset	Accuracy	Precision	Recall	F1-Score	Correct / Total
Train	99.79%	98.99%	100.00%	99.49%	1922 / 1926
Validation	97.87%	94.44%	97.14%	95.77%	413 / 422

The model shows excellent generalization with nearly perfect accuracy on training data and strong performance on unseen validation samples.

Task B – Face Recognition (Multi-class)

OBJECTIVE: To develop a face recognition model that generates 512-dimensional embeddings capable of identifying individuals—even under heavy image distortions like blur, noise, low-light, and fog—using similarity-based matching.

MODEL ARCHITECTURE:

- **Backbone:** ResNet50 (no final classification head)
- Feature Output: 2048-D vector from final layer
- **Embedding Projection:** Linear layer \rightarrow 512-D embedding
- Normalization: L2 (unit vector embeddings) for cosine similarity
- Output: 512-D normalized embedding used for FAISS-based retrieval

TRAINING STRATEGY:

- Loss Function: Triplet Margin Loss (Anchor, Positive, Negative)
- Dataset Strategy: Triplet sampling from both original and distorted images
- Data Augmentations: Blur, CoarseDropout, Contrast, etc.
- **Evaluation Pipeline:**
 - Embeddings indexed using FAISS
 - Identity matching via cosine similarity
 - Threshold-based verification (best @ 0.80)

EVALUATION RESULT: Evaluation metrics were computed using FAISS similarity search on the best model (selected via macro-F1 score on validation set).

Dataset	Accuracy	Precision	Recall	Macro-F1	Threshold
Train	85.83%	85.95%	85.04%	85.38%	0.80
Validation	88.39%	88.23%	88.58%	88.32%	0.80

The model performs robustly on identity recognition despite distortions, maintaining high generalization and precision in a multi-class scenario.