Analysis 3: Index of topics Lecture notes, University of Graz based on the lecture by Wolfgang Ring

Lukas Prokop

January 29, 2019

Chapter 0: Connectedness in topological spaces

 \downarrow This lecture took place on 2018/10/02.

- Define a topology
- Define an open set
- Define connectedness of topological spaces [Definition 1]
- Define a trace (= relative) topology
- Prove: Let X, Y be topological spaces. Let f be a continuous map. $f: X \to Y$. Let X be connected. Then f(X) is connected [Theorem 1]
- Prove: Let $A \subseteq \mathbb{R}$ such that $\forall a \leq b \in A$ and $\forall x : a \leq x \leq b : x \in A$. Then A must be an interval [Lemma 1]
- Prove: Connected $A \subseteq \mathbb{R}$ is necessarily an interval [Lemma 2]
- Prove: Interval $I \subseteq \mathbb{R}$ is necessarily connected [Lemma 3]
- \downarrow This lecture took place on 2018/10/03.
- Recognize: The connected subsets of $\mathbb R$ are exactly the intervals in $\mathbb R$
- Define continuous paths in a topological space [Definition 2]

- Define connectedness of two points in topological spaces [Definition 2]
- Define pathwise connectedness [Definition 2]
- Prove: Any pathwise connected topological space is also connected [Theorem 2]

Chapter 1: k-dimensional surfaces in \mathbb{R}^n

- Define a regular parameterization of a k-dimensional surface in \mathbb{R}^n [Definition 1]
- Define immersions [Definition 1]
- \downarrow This lecture took place on 2018/10/09.
- Define reparameterization [Definition 2]
- Define embeddings, ie. embedded manifolds [Definition 3]

Chapter 0: Connectedness in topological spaces

- Path connectedness is a transitive property [Definition 3]
- Prove: Every connected and open set $O \subseteq \mathbb{R}^n$ is pathwise connected [Theorem 3]
- \downarrow This lecture took place on 2018/10/10.

Chapter 1: k-dimensional surfaces in \mathbb{R}^n

- Define homeomorphisms and the homeomorphic property [Definition 4]
- \bullet Define localization and locally parametrized embedded surfaces [Definition 5]
- Define local charts [Definition 5]

- Define embedded manifolds in \mathbb{R}^n [Definition 5]
- Define implicit surfaces [Theorem 1]
- Prove: Let $U \subseteq \mathbb{R}^n$ be an open domain, continuous differentiable $h: U \to \mathbb{R}^{n-k}$. rank $(Dh(x)) = n k \forall x \in U$. $\bar{x} \in U$ and $p = h(\bar{x})$. $S = \{x \in U \mid h(x) = p\}$ is a k-Lpes [Theorem 1]

 \downarrow This lecture took place on 2018/10/16.

- Define the orthogonal group
- Give an example of a differentiable manifold
- Prove: Let S be a Lpes of dimension k. Let $x \in S$ be given and appropriately ordered.

$$x = \begin{bmatrix} x_1 & x_2 & \dots & x_k & x_{k+1} & \dots & x_n \end{bmatrix}^T = \begin{bmatrix} \tilde{x} & \hat{x} \end{bmatrix} \qquad \tilde{x} \in \mathbb{R}^n, \hat{x} \in \mathbb{R}^{n-k}$$

Then there exists neighborhood \tilde{D} of $\tilde{x} \in \mathbb{R}^k$ and neighborhood U of x in \mathbb{R}^n and C^1 -function $\varphi: \tilde{D} \to \mathbb{R}^{n-k}$ such that

$$y = \begin{bmatrix} \tilde{y} \\ \hat{y} \end{bmatrix} \in S \cap U \iff \tilde{y} \in \tilde{D} \land \hat{y} = \varphi(\tilde{y})$$

locally S is the graph of the function φ [Theorem 2]

- Prove [kind of local extension]: Let $S \subseteq \mathbb{R}^n$ be a Lpes of dimension k. Let $x \in S$ and $f: D \subseteq \mathbb{R}^k \to \mathbb{R}^n$ be a local chart for S with x = f(u). Then there exists neighborhoods \hat{U} of $\begin{bmatrix} U \\ 0 \end{bmatrix} \in \mathbb{R}^n$ and U of $x \in \mathbb{R}^n$ and a diffeomorphism $F: \hat{U} \to U$ such that $F(\begin{bmatrix} V \\ 0 \end{bmatrix}) = f(v) \in S \forall \begin{bmatrix} V \\ 0 \end{bmatrix} \in \hat{U}$ [Theorem 3]
- \downarrow This lecture took place on 2018/10/17.

Tangent vectors and tangent space

• Define tangent vectors and the tangent space in a k-Lpes [Definition 6]

- Let S be a k-Lpes, $x \in S$ and $f: D \to S$ be a local chart f(u) = x. Then $T_xS = \mathrm{image}(Df(u))$ is a linear subspace of \mathbb{R}^n and $(X_j)_{j=1,\dots,k}$ is a basis in T_xS with $X_j := Df(u) \cdot e_j$. Furthermore $Df(u) : \mathbb{R}^k \to T_xS$ is a linear isomorphism [Lemma 2]
- Define the tangent to S at x [Definition 7]
- Define the orthogonal complement [Definition 7]
- Define the normal space to S at x [Definition 7]
- Prove: Let S be a k-Lpes. $x = f(u) \in S$. $f: D \to S$ is a local chart. Then $W \in N_x S \iff (Df(u))^t \cdot W = 0 \iff W \in \text{kernel}(Df(u))^t$. $(Df(u))^t \in \mathbb{R}^{k \times n}$ [Lemma 3]
- Prove: Let S be a k-Lpes. $x = f(u) \in S$ and $F : \hat{U} \to U$ is an extension of f as in Theorem 3. Then $(W_{k+j})_{j=1}^{n-k}$ is a basis in $N_x S$ where W_l is the l-th column of $(DF(\begin{bmatrix} u \\ 0 \end{bmatrix}))^{-t}$ [Lemma 4].
- Define the wedge product of n-1 vectors in \mathbb{R}^n [Definition 8]
- Prove: Let $w = v_1 \wedge \cdots \wedge v_{n-1}$. Then [Lemma 5]
 - 1. For any $b \in \mathbb{R}^n$, $\langle b, w \rangle = \det([b, V])$
 - 2. $\langle w, v_j \rangle = 0 \text{ for } j = 1, ..., n-1$
- \downarrow This lecture took place on 2018/10/23.
- Define orientability of (n-1)-Lpes [Definition 9]
- Give an example of a non-orientable surface
- Define the Gauss map of an (n-1)-Lpes [Definition 9a]
- Prove: Let $U \subseteq \mathbb{R}^n$ be a domain. $h: U \to \mathbb{R}^{n-k}$ be C^1 . Let $\operatorname{rank}(Dh(x)) = n-k \forall x \in U$. Let $S := \{x \in U \mid h(x) = 0\} \neq \emptyset$ is a k-Lpes. Then the tangent space of implicitly defined surfaces is given by $T_x S = \operatorname{kernel}(Dh(x))$ with $Dh(x) \in \mathbb{R}^{(n-k) \times n}$ [Theorem 4]

Maps into surfaces

• Prove: Let $S \subseteq \mathbb{R}^n$ be a k-Lpes. Let $f: D \to V \subseteq S$ be a local chart $f(u) = x \ (V = f(D))$. Let $\varphi: W \subseteq \mathbb{R}^m \to V \subseteq S$ be given $(\varphi \text{ is a map into } S)$. Then the following statements are equivalent [Theorem 5]:

- $-\varphi: W \to \mathbb{R}^n \text{ is } C^1$ $-f^{-1} \circ \varphi: W \to D \subseteq \mathbb{R}^k \text{ is } C^1$
- Let S be a k-Lpes and let $\varphi: S \to \mathbb{R}^m$ be continuous. Then the following statements are equivalent:
 - For any $x \in S$, there exists some neighborhood U of x in \mathbb{R}^n and a C^1 function $\hat{\varphi}: U \to \mathbb{R}^m$ such that $\tilde{\varphi}|_{U \cap S} = \varphi$ ($\tilde{\varphi}$ is an extension of φ)
 - For any $x \in S$, there exists some local chart $f: D \to S$ with f(u) = x such that $\varphi \circ f: D \to \mathbb{R}^m$ is C^1
 - For any $x \in S$ and any local chart $f: D \to S$ with f(u) = x the composition $\varphi \circ f: D \to \mathbb{R}^m$ is C^1 [Theorem 6]

Maps on surfaces

• Define continuously differentiable on k-Lpes S [Definition 10]

Maps between surfaces

- Define a map on S_1 and a map into S_2 [Definition 11]
- When is a map on a k-Lpes C^1 [Definition 11]

 \downarrow This lecture took place on 2018/10/24.

Derivative of a map $\varphi: S_1 \to S_2$

- Let $\varphi: S_1 \to S_2$ with $\varphi \in C^1$ and S_1 as k-Lpes in \mathbb{R}^n and S_2 as l-Lpes in \mathbb{R}^m . Define the derivative $D\varphi(x)$ [Definition 12]
- Recognize that we calculate $D\varphi$ be choosing bases in T_xS_1 and in $T_{\varphi(x)}S_2$ and calculate the matrix representation of $D\varphi(x)$ wrt. these chosen bases.
- The matrix representation of $D\varphi(x)$ wrt. $(\partial_{u_i})_{i=1}^k$ is the basis in T_xS_1 and $(\partial_{v_j})_{j=1}^l$ is the basis in $T_{\varphi(x)}S_2$ is given by $D(f_2^{-1}\circ\varphi\circ f_1)(u)$.
- Let $D \subseteq \mathbb{R}^k$ be a domain. Then we can interpret D as a k-dimensional Lpes in \mathbb{R}^k . Local parameterization is given by $f: D \to D$, f(x) = x $(f = \mathrm{id})$.
- What is central projection?

- What does concentric mean?
- What are spherical coordinates?

 \downarrow This lecture took place on 2018/10/30.

Two-dimensional surfaces in \mathbb{R}^3

- Define the scalar product on tangent space T_xS of $S \subseteq \mathbb{R}^3$ as 2-Lpes with $x \in S$ [Definition 13]
- Define the first fundamental form of S at x [Definition 13]
- Give the length of the tangent vector X [Definition 14]
- Define the angle between two tangent vectors X and Y [Definition 14]
- Define an angle-preserving/conformal map g [Definition 15]
- Prove: Let $g: S_1 \to S_2$ be a C^1 map. S_i are 2-Lpes in \mathbb{R}^3 . g is conformal if one of the following equivalent conditions are met [Lemma 6]:

$$-\frac{I_{S_1}(X,Y)}{I_{S_1(X)\cdot I_{S_1}(Y)}} = \frac{I_{S_2}(D_{g(x)}X,D_{g(x)}Y)}{I_{S_2}(D_{g(x)}X)I_{S_2}(D_{g(x)}Y)}$$

- There exists a linear isometry $O:T_xS_1\to T_{y(x)}S_2$, i.e. $\|OX\|=\|X\|\,\forall X\in T_xS_1$ and a real number s>0 such that $Dg(x)=s\cdot O$
- Let G_1 be the metric tensor to S_1 at x wrt. the basis $\{\partial_{u_1}, \partial_{u_2}\}$ and G_2 the metric tensor for S_2 at y = g(x) wrt. the basis $\{\partial_{v_1}, \partial_{v_2}\}$. Let moreover M_u^v be the matrix representation of Dg(x) wrt. $\{\partial_{u_1}, \partial_{u_2}\}$ ars basis in T_xS_1 and $\{\partial_{v_1}, \partial_{v_2}\}$ as basis in $T_{g(x)}S_2$. Then $\exists s > 0 : s^2 \cdot G_1 = (M_u^v)^t \cdot G_2 \cdot M_u^v$.
- \downarrow This lecture took place on 2018/10/31.
- Let $g: S_1 \to S_2$ be C^1 . Give three equivalent conditions when g is an isometry [Definition 16]
- Define the Weingarten map/shape operator of S in x
- Prove: Consider Weingarten map $W_x: T_xS \to T_xS$. Suppose S is C^2 . $I_x(X,Y) = \langle X,Y \rangle$ defines a scalar product on T_xS . W_x is symmetric/self-adjoint on T_xS wrt. I_x . This means $\forall X,Y \in T_xS: I_x(W_xX,Y) = I_x(X,W_xY)$ [Theorem 7]

- Give the Rayleigh quotient
- Define $II_x(X,Y)$ (second fundamental form of S at x) [Definition 18]
- Which properties does $II_x(X,Y)$ have? [Definition 18]
- What do you call the eigenvalues κ_1 and κ_2 ? [Definition 18]
- What do you call the eigenvectors V_1 and V_2 ? [Definition 18]
- What do we call the mean curvature of S in x? [Definition 18]
- Define the Gauss curvature of S in x? [Definition 18]
- \downarrow This lecture took place on 2018/11/06.
- Give Meusnier's formula
- Define the minimal/maximal normal curvature
- Which quantities are defined without reference to a local chart $f: D \to S$?
- What is the metric tensor of S in x? What does it depend on?
- Prove: Let $\{\partial_{u_1}, \partial_{u_2}\}$ be a local basis in T_xS . $X = x_{u_1} \cdot \partial_{u_1} + x_{u_2}\partial_{u_2}; Y = y_{u_1}\partial_{u_1} + y_{u_2}\partial_{u_2}$, ie. $\begin{bmatrix} x_{u_1} \\ x_{u_2} \end{bmatrix}$ and $\begin{bmatrix} y_{u_1} \\ y_{u_2} \end{bmatrix}$ are coordinate vectors of X and Y wrt. $\{\partial_{u_1}, \partial_{u_2}\}$.
 - We set $h_{ij} = II_x(\partial_{u_i}, \partial_{u_j}) = \langle \partial_{u_i}, W_x \partial_{u_j} \rangle$. $\kappa = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix}$. Then $II_x(X, Y) = \begin{bmatrix} x_{u_1} & x_{u_2} \end{bmatrix} \cdot \kappa \cdot \begin{bmatrix} y_{u_1} \\ y_{u_2} \end{bmatrix}$.
 - Let W be the matrix representation of W_p , ie. $X = x_{u_1}\partial_{u_1} + x_{u_2}\partial_{u_2}$. Then $W_x X = x_{u_1}W_x\partial_{u_1} + x_{u_2}W_x\partial_{u_2}$. $W_x\partial_{u_i} = w_i^1\partial_{u_1} + w_i^2\partial_{u_2}$.
 - The matrix representation of W_x has the form $W = \begin{bmatrix} W_1^1 & W_2^1 \\ W_1^2 & W_2^2 \end{bmatrix}$ and $W \cdot \begin{bmatrix} x_{u_1} \\ x_{u_2} \end{bmatrix}$ is a coordinate vector of $W_x \cdot X$ wrt. $\{\partial_{u_1}, \partial_{u_2}\}$.
 - G is metric tensor with $g_{ij} = I_x(\partial_{u_i}, \partial_{u_i})$.

Then $\kappa = W \cdot G$, and accordingly $W = \kappa \cdot G^{-1}$ and $G^{-1} = (g^{ij})_{i,i=1}^2$.

 \downarrow This lecture took place on 2018/11/06.

Chapter 2: Integration on surfaces

- Define a generalized parallelogram in \mathbb{R}^n
- What properties is a volume supposed to satisfy?
- Define the volume $vol(P(v_1, ..., v_n))$
- Define the k-dimensional volume in \mathbb{R}^n [Definition 1]
- Prove: $\operatorname{vol}_k(v_1,\ldots,v_k) = \sqrt{\det(V^t V)}$ with $V = \begin{bmatrix} v_1 & \ldots & v_k \end{bmatrix} \in \mathbb{R}^{n \times k}$ [Lemma 1]
- Define integration on one signal chart [Definition 2]
- Define the Gram determinant [Definition 2]
- Prove: The definition of the integral (by Definition 1) is independent of the chosen parametrization [Lemma 2]
- Prove: Let $v_1, ..., v_{n-1} \in \mathbb{R}^n$ with $V := \begin{bmatrix} v_1 & ... & v_{n-1} \end{bmatrix}$. Then $\det(V^t \cdot V) = \text{vol}_{n-1}(v_1, ..., v_{n-1})^2 = \|v_1 \wedge v_2 \wedge \cdots \wedge v_{n-1}\|^2$
- \downarrow This lecture took place on 2018/11/13.
- Define the base of a topology [Definition 3]
- Give the base for the standard topology in \mathbb{R}^n
- Define: second countable topological space [Definition 4]
- Define: $Q \subseteq X$ is dense in X [Definition 4]
- Define separability of topologies [Definition 4]
- Define the interior of M
- Show: Q^n is dense in \mathbb{R}^n
- Prove: Every separable metric space is second countable
- Prove: Every second countable space is separable

- Define neighborhood filters of x [Definition 5]
- Define the base for neighborhood filters [Definition 5]
- Define: first countable topological space [Definition 5]
- Define: locally compact [Definition 6]
- Show: \mathbb{R}^n is locally compact
- Define: Banach space
- Show: Let $S \subseteq \mathbb{R}^n$ be a k-Lpes. Then S is locally compact [Lemma 4]
- Prove: For every $S \subseteq \mathbb{R}^n$ as k-Lpes, there exists a countable base for the topology on S: $\{V_i\}_{i\in\mathbb{N}}$ with the property that $\overline{V_i}$ is compact $\forall i$ [Lemma 5]
- \downarrow This lecture took place on 2018/11/14.
- Prove: Let $S \subseteq \mathbb{R}^n$ be a k-Lpes. Then there exists an exhaustion of S with compact sets $\{K_i\}_{i\in\mathbb{N}}$ [Lemma 6]
- Prove: Let S be a k-Lpes in \mathbb{R}^n . Then there exist at most countably many charts $f_i: D_i \to f_i(D_i) =: V_i \subseteq S$ such that $S = \bigcup_{i=1}^{\infty} V_i$ [Corollary 1]
- Define: partition of unity [Definition 7]
- Prove: Let $S \subseteq \mathbb{R}^n$ be a k-Lpes. Let $\{U_s\}_{s\in I}$ be a given open cover of S. Then there exists a partition of unity $\{\varepsilon_i\}_{i\in\mathbb{N}}$ subordinate to $\{U_s\}_{s\in I}$ [Theorem 1]
- Define: Let $S\subseteq \mathbb{R}^n$ be a k-Lpes. Let $h:S\to \mathbb{R}$ be continuous. Define $\int_S h\,dS$ [Definition 8]
- \downarrow This lecture took place on 2018/11/20+21.
- Prove: Let S be a k-Lpes. $f: D \to V = f(D)$ be a local chart. Let $h: S \to \mathbb{R}$ be a such that $\operatorname{supp}(h) \subseteq V$. Let $(\varepsilon_i)_{i \in \mathbb{N}}$ be a partition of unity on S. Then h is integrable on S iff the following two conditions are satisfied:
 - $\forall i \in \mathbb{N}$ the product $\varepsilon_i h$ is integrable on S
 - $-\sum_{i\in\mathbb{N}}\int_{S}|\varepsilon_{i}\cdot h|\ ds<\infty$

If true, then $\int_{S} h \, ds = \sum_{i \in \mathbb{N}} \int_{S} \varepsilon_{i} h \, dS$ [Lemma 7].

- Define: atlas of a topology
- Define the integral over some k-Lpes S [Definition 8]
- Let S be a k-Lpes, $h: S \to \mathbb{R}$. Let (f_j, D_j, V_j) be an atlas for $S; f_j: D_j \to V_j = f(D_j) \subseteq S$ and let $(\varepsilon_i)_{i \in \mathbb{N}}$ be a partition of unity subordinate to $(V_j)_{j \in \mathbb{N}}$. We suppose
 - $\forall i \in \mathbb{N} \ (\exists j \in \mathbb{N} \ \text{such that } \operatorname{supp}(\varepsilon_i h) \subseteq \operatorname{supp}(\varepsilon_i) \subseteq V_j)$: $\varepsilon_i h$ is integrable on S
 - $-\sum_{i\in\mathbb{N}}\int_{S}|h|\,\varepsilon_{i}\,ds<\infty$

Then for any other atlas (g_l, E_l, W_l) and any partition of unity $(\eta_m)_{m \in \mathbb{N}}$ subordinate to $(W_l)_{l \in \mathbb{N}}$ the same two conditions hold. Moreover the value $\sum_{i \in \mathbb{N}} \int_S \varepsilon_i \cdot h \, ds$ does not depend on the specific choice of the Atlas or on the choice of the partition of unity $(\varepsilon_i)_{i \in \mathbb{N}}$. We define $\sum_{i \in \mathbb{N}} \int_S \varepsilon_i \cdot h \, ds \coloneqq \int_S h \, dS$. If both conditions hold, we say that h is integrable on S [Theorem 2]

• Define: k-dimensional zero set [Definition 9]

Polar coordinates and the unit ball in \mathbb{R}^n

- Prove: $\det(DP_n) = r^{n-1} \prod_{k=1}^{n-1} \cos^{k-1}(\varphi_k)$ [Lemma 8]
- Define spherical shells
- Give the transformation theorem for integrals
- \downarrow This lecture took place on 2018/11/27.
- Define: Euler's Gamma function
- Euler's Gamma function is the only function satisfying which 3 properties?
- Give Fubini's Theorem
- Give the volume of the n-dimensional unit sphere

The Divergence Theorem of C.F. Gauss

- (Give Gauss' Divergence theorem?) (occurs later in other form?!)
- Define C^1 -smooth boundaries $\partial\Omega$ where $\Omega\subseteq\mathbb{R}^n$ is a bounded domain [Definition 10]

\downarrow This lecture took place on 2018/11/28.

- Define vector fields [Definition 11]
- Define C^1 vector fields [Definition 11]
- Define tangential vector fields
- Define: Continuous vector field F is integrable on (n-1)-Lpes S [Definition 12]
- Define: Divergence of $F:\Omega\to\mathbb{R}^n$ as C^1 vector field on open domain $\Omega\subset\mathbb{R}^n$ [Definition 13]
- Give Gauss' Divergence theorem [Theorem 3]
- Recognize: Gauss' Divergence theorem is a generalization of the fundamental theorem of calculus into n dimensions
- Prove: Let $\Omega \subseteq \mathbb{R}^n$ be an open domain $f \in C_0^1(\Omega)$, ie. $\mathrm{supp}(f) \subset \Omega$ where $\mathrm{supp}(f)$ is compact. Let $C_0^k(\Omega) = \{g \in C^k(\Omega) \mid \mathrm{supp}(g) \subseteq \Omega \text{ is compact}\}$. Then we have $\forall i \in \{1, \ldots, n\} : \int_{\Omega} f_{x_i}(x) \, dx = 0$ [Lemma 9]
- Give Cramer's rule
- What can Cramer's rule be used for (besides solving a linear equation system)?
- Define the cofactor matrix [Definition 14]
- Define the adjunct matrix [Definition 14]

\downarrow This lecture took place on 2018/12/04.

- Define the whole group in $\mathbb{R}^{n\times n}$ [Lemma 10]
- Is $GL(n) \subseteq \mathbb{R}^{n \times n}$ open in $\mathbb{R}^{n \times n}$?

- Prove: Jacobi Formula [Lemma 11]
- Give the Jacobi Formula in the special case $A \in \mathrm{GL}(n)$ [Lemma 11]
- Prove: Let $A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$ (column vectors) and $A \in GL(n)$. Let $\hat{A} = \begin{bmatrix} a_1 & a_2 & \dots & a_{n-1} \end{bmatrix} \in \mathbb{R}^{n \times n 1}$. $\hat{A}^t \hat{A} \in \mathbb{R}^{(n-1) \times (n-1)}$. Then $\det(\hat{A}^t \hat{A}) = \|A^{-t} e_n\|^2 \det(A^t A)$ [Lemma 12]
- Prove: Let $\Omega \subseteq \mathbb{R}^n$ be a bounded open domain with C^2 -smooth boundaries. Let $\Psi: U \to V$ be a local diffeomorphism with the properties in Definition 10. Let $f: U \to \mathbb{R}$ be continuously differentiable with supp $\subseteq U$. Then

$$\int_{U^+} f_{x_i} dx = \int_{U \cap \Omega} f_{x_i} dx = \int_{U \cap \partial \Omega} f \cdot \nu_i ds$$

where ν_i is the i-th component of $\nu(x)$ und $\nu(x)$ is the normalized exterior normal vector field to $\partial\Omega$ [Lemma 13]

 \downarrow This lecture took place on 2018/12/05.

Apparently, we only did proofs.

- \downarrow This lecture took place on 2018/12/11.
- Assume $\partial\Omega$ is only C^1 . Does Gauss' divergence theorem still hold?
- Define a regular boundary point [Definition 15]
- Define a singular boundary point [Definition 15]
- Define a regular \mathbb{C}^1 polyhedron [Definition 15]
- Define the Laplace operator [Definition 16]
- Define harmonic functions [Definition 16]
- Give and prove Greens formula [Theorem 4]
- Give and prove the mean value theorem of harmonic functions [Theorem 5]
- Define radially symmetric functions.

 \downarrow This lecture took place on 2018/12/12.

• Define the Maximum Principle for Harmonic Functions [Corollary]

Surfaces (manifolds) with boundary

- Define a k-dimensional locally parameterized embedded surface with boundary (k-Lpesb) [Definition 17]
- Define a interior point [Definition 17]
- Define a boundary point [Definition 17]
- Define boundary ∂S [Definition 17]
- When does ∂S correspond to the topological boundary?
- Define the curl of F [Definition 18]
- Give Stokes' Theorem [Theorem 6]
- \downarrow This lecture took place on 2019/01/08.
- Define the exterior unit normal vector field to $\partial\Omega$ [Lemma 14]
- Let $\Omega \subseteq \mathbb{R}^n$ be bounded, connected, C^1 -smooth boundary, $f, g \in C^1(\overline{\Omega})$. Let $[v_1, \dots, v_n]^T$ be the exterior unit normal vector field. Show [Lemma 14]:

$$\int_{\Omega} f_{x_i} \cdot g \, dx = -\int_{\Omega} f \cdot g_{x_i} \, dx + \int_{\partial \Omega} f \cdot g \cdot \nu_i \, dS$$

- Prove Stokes' Theorem
- \downarrow This lecture took place on 2019/01/09.

Classical Theory of surfaces

- What is Einstein's summation convention?
- Define a metric tensor.
- Define the second fundamental form on S at x.
- Define the principal curvatures of S in x.
- Define the Christoffel symbol of second kind.
- Derive the Gauss-Weingarten equations.

 \downarrow This lecture took place on 2019/01/15.

"Vector fields and the covariant derivative"

- Give the Riesz representation theorem
- Define the Gradient (also called "contravariant") representation of $D\varphi$.
- Define the directional derivative of φ in direction V [Definition 1].
- Prove: Let X, Y be smooth tangential vector fields on S. Let $\varphi: S \to \mathbb{R}$ be an arbitrary smooth scalar function. Then $\partial_X(\partial_y \varphi) \partial_Y(\partial_X \varphi)$ is a smooth scalar function on S and there exists a unique, tangential vector field $Z: S \to \mathbb{R}^n$ such that $\partial_X(\partial_y \varphi) \partial_Y(\partial_X \varphi) = \partial_Z \varphi$ ($\forall \varphi: S \to \mathbb{R}$ smooth). If $X = \xi^i X_{u_i}$ and $Y = \eta^i X_{u_i}$, then $Z = \alpha^j X_{u_j}$ with $\alpha^j = \xi^i \eta^j_{u_i} \eta^i \cdot \xi^j_{u_i}$ [Lemma 1].
- Define the Lie bracket [Definition 2]
- \downarrow This lecture took place on 2019/01/16.
- Define the vector field on S along γ [Definition 3].
- Define the covariant derivative of V along γ : $\frac{\nabla}{dt}V(t)$ [Definition 4]
- Let S be a 2-Lpes in \mathbb{R}^3 , $\gamma:I\to S$ be a regular curve. Let $V,W:I\to\mathbb{R}^3$ be vector fields along γ . Let γ be smooth and let $\varphi:J\to I$ be a diffeomorphism, i.e. $\tilde{\gamma}:J\to S$. Let $\tilde{\gamma}=\gamma\circ\varphi$ be a reparametrization of γ . Give the 4 laws of covariant derivatives. [Lemma 2]

- \downarrow This lecture took place on 2019/01/22.
- Define the covariant derivative of the vector field V in direction X [Definition 5]
- Give a characterization of $\nabla_x V$
- Define the tangential vector field [Definition 6]
- Rules for covariant derivatives [Lemma 3]
- Define the second covariant derivative of smooth vector field Z [Definition 7]
- Prove: Let V, W and Z be smooth vector fields on S. Then with $V = v^i X_i$, $W = w^i X_i$, $Z = z^i X_i$ [Lemma 4].

$$\begin{split} \nabla^2_{v,w} Z &= \left[z^m_{u_i u_j} v^i w^j + \Gamma^m_{ij} z^i_{u_k} (v^i w^k + v^k w^i) - \Gamma^k_{ij} z^m_{u_k} v^i w^j \right. \\ &\left. + \left((\Gamma^m_{kj})_{u_i} + (\Gamma^m_{li} \Gamma^l_{kj} - \Gamma^l_{kl} \Gamma^l_{ij}) \right) \cdot v^i w^j z^k \right] \end{split}$$

- Define the second covariant derivative of the vector field Z on S [Definition 8]
- \downarrow This lecture took place on 2019/01/23.
- Define the Riemann curvature tensor on a surface [Definition 9]

Inner geometry of surfaces

- Define geometric quantities [Definition 10]
- Define geometric quantities of an inner geometry on S [Definition 10]
- Prove: $R(V, W)Z = I_2(W, Z) \cdot S_x V I_2(V, Z) \cdot S_x W$ [Theorem 1]
- \downarrow This lecture took place on 2019/01/29.
- Give and prove the Theorema Egregium by Gauss [Theorem 2]

- $\bullet\,$ Give a consequence of the Theorema Egregium
- Give and prove the symmetries of the Riemannian curvatures [Lemma 5]
- What is the result for local coordinates? [Lemma 6]
- Give R(V, W)X in matrix and coordinate form. What does it determine? Prove it [Lemma 7]