



## 1.1 Introdução ao TCP (2)

- Os projetistas queriam uma interface direta para as Aplicações:
  - Capacidade de apontar os dados não apenas para um host, mas para uma aplicação, utilizando-se da mesma conexão lógica no transporte dos dados.
  - Um mecanismo de multiplexação (aceitar dados de várias aplicações e direcioná-los para uma saída na Camada Internet).
  - Um mecanismo de demultiplexação (aceitar os dados da Camada Internet e direcioná-los para várias Aplicações).
  - Outro aspecto do MUX/DEMUX é que uma única aplicação pode manter conexões com vários hosts simultaneamente.







# 1.1 Introdução ao TCP (6)

Exemplos de Portas TCP:

| Serviço   | Número de<br>Porta | Descrição                                 |
|-----------|--------------------|-------------------------------------------|
| echo      | 7                  | Eco                                       |
| ftp       | 21                 | File Transfer Protocol (FTP)              |
| telnet    | 23                 | Conexão de rede de terminal               |
| smtp      | 25                 | Simple Mail Transport Protocol (e-mail)   |
| gopher    | 70                 | Gopher service (Web anterior ao WWW)      |
| finger    | <b>79</b>          | Finger (Busca de informações em uma rede) |
| http      | 80                 | Serviço da WWW                            |
| pop3      | 110                | Post Office Protocol v. 3 (POP-3)         |
| nntp      | 119                | Network News Transfer Protocol (News)     |
| nbsession | 139                | Serviço de sessão do NetBIOS              |
| news      | 144                | Notícias                                  |

# 1. Protocolo TCP

# 1.1 Introdução ao TCP (7)

Exemplos de Portas UDP:

| Serviço    | Número de<br>Porta | Descrição                          |
|------------|--------------------|------------------------------------|
| echo       | 7                  | Eco                                |
| nameserver | 53                 | <b>Domain Name Server (DNS)</b>    |
| tftp       | 69                 | Trivial File Transfer Protocol     |
| sunrpc     | 111                | Remote Procedure Call (RPC)        |
| ntp        | 123                | Network Time Protocol              |
| nbname     | 137                | Nome do NetBIOS                    |
| snmp       | 161                | Simple Network Management Protocol |

### 1.2 Características do Serviço TCP

- É o protocolo mais complexo e importante da pilha TCP/IP.
- Responsável por prover às Aplicações um DATA STREAM (fluxo de dados) que apresente :
  - Confiabilidade (RELIABILITY)
  - Controle de Fluxo
  - Controle de Erro
  - Multiplexação entre Aplicações
- Orientação à conexão: estabelecimento, transferência e encerramento.
- Comunicação ponto-a-ponto: cada conexão tem exatamente duas extremidades.
- Confiabilidade completa: garante que todos os dados serão entregues livres de erros e na ordem correta.
- Estabelecimento de conexão confiável: garante que dados de conexões anteriores não interferirão com a nova conexão.
- Encerramento de conexão gracioso: garante que todos os dados serão entregues antes da conexão ser fechada.

# 1. Protocolo TCP

## 1.3 Controle de Erros e de Perdas (1)

- Segmentos são encapsulados em datagramas IP:
  - Podem chegar com erros ou podem ser perdidos.
- O controle de erros e de perdas de segmentos é baseado em mecanismos de:
  - Detecção de erros
    - Checksum gerado pelo emissário e verificado pelo destinatário.
  - Confirmação positiva de recebimento com Retransmissão
    - PAR Positive Acknowledgment with Retransmission;
    - Emissário retransmite o segmento de tempos em tempos até receber uma confirmação do destinatário (ACK);
    - Quando um destinatário recebe um segmento com checksum válido ele envia um pacote de confirmação (ACK).
  - Temporização
    - Adaptativa estima atraso de ida-e-volta (round-trip delay).





#### 1.4 Ordenação e Confirmação de Segmentos

- Segmentos são encapsulados em datagramas IP:
  - Podem chegar fora de ordem ou podem ser perdidos.

#### Ordenação de segmentos:

- No estabelecimento da conexão, cada extremidade conhece o número de sequência inicial da outra extremidade:
- Cada segmento carrega seu número de sequência (ordem do primeiro byte do segmento dentro do stream);
- Reordenação com uso de buffers.

#### Confirmação de segmentos:

- Cada segmento de confirmação carrega um número que diz ao emissário quantos bytes (em ordem) já foram recebidos;
- Se a confirmação demora, o emissário retransmite os segmentos a partir da última confirmação.

# 1. Protocolo TCP

# 1.5 Controle de Fluxo de Segmentos (1)

- Buffers para reordenação de segmentos são limitados.
- O controle de fluxo de segmentos é baseado no mecanismo de janelas deslizantes (sliding windows) com adição de anúncio do tamanho da janela (window advertisement).
  - Cada segmento carrega, além do número de confirmação, um tamanho de janela que indica ao emissário quantos bytes o destinatário dispõe no buffer;
  - O emissário pode transmitir segmentos até o limite da janela, então deve parar e esperar pela confirmação de segmentos;
  - O tamanho da janela pode ser alterado dinamicamente para controlar o fluxo de segmentos:
    - Janela = zero → pare de transmitir.

14

# 1. Protocolo TCP1.5 Controle de Fluxo de Segmentos (2)

- 1.5 Controle de Fluxo de Beginentos (2
- Método das Janelas Deslizantes
  - O tamanho da janela é regulado para manter a rede completamente saturada de pacotes.
  - Permite transmissão eficiente com controle de fluxo.



# 1. Protocolo TCP

- 1.6 Estabelecimento Confiável de Conexão (1)
- Conexão lógica (virtual) fim-a-fim.
- Baseado no mecanismo three-way handshake:
  - Host interessado em estabelecer conexão envia um segmento com a flag SYN ativada, contendo o número de sequência gerado aleatoriamente (segmento de sincronização);
  - Host destino responde com outro segmento com as flags SYN e ACK ativadas, contendo um número de sequência também gerado aleatoriamente e o número de sequência do segmento que ele espera receber;
  - O host que iniciou a conexão confirma o estabelecimento da conexão enviando um segmento com a flag ACK ativada, com o número de sequência que o destino espera, e com o número de sequência que ele está esperando.

16





#### 1. Protocolo TCP 1.7 Formato de Segmento TCP (2) Porta Origem Porta Destino Número de Sequência Número de reconhecimento - ACK Tamanho do cabeçalho Reservado Janela Checksum Ponteiro de urgência **Padding Opções Dados** Flags de controle (1 bit cada): - URG: segmento urgente. - ACK: reconhecimento. - PSH: forçar envio. - RST: um valor 1 reinicia a conexão. - SYN: pede estabelecer conexão - números de seq. serão sincronizados. - FIN: valor 1 anuncia término de conexão.

## 1. Protocolo TCP 1.7 Formato de Segmento TCP (3) Porta Origem Porta Destino Número de Sequência Número de reconhecimento - ACK Tamanho do cabeçalho Reservado Janela **Opções Padding** Janela (16 bits) – disponibilidade, em octetos, do buffer de recepção. Checksum (16 bits) – verificação de integridade dos dados. Ponteiro de urgência (16 bits) - posição relativa ao início do campo de dados, em que se encerra uma sequência que deve ser entregue com urgência à aplicação. • Opções – especifica um pequeno conjunto de valores opcionais, como por exemplo o tamanho máximo (Maximum Segment Size - MSS). Padding – bits zero extras (conforme necessidade de preenchimento de campo). Dados – identifica os dados sendo transmitidos.





# 2. Protocolo UDP

## 2.3 Formato do Datagrama do UDP

| Porta Origem | Porta Destino |  |  |  |
|--------------|---------------|--|--|--|
| Tamanho      | CheckSum      |  |  |  |
| Dados        |               |  |  |  |

- Porta Origem (16 bits) e Porta Destino (16 bits).
- Tamanho (16 bits): tamanho em octetos do cabeçalho + dados.
- CheckSum: gerado a partir do cabeçalho e dos dados (16 bits). Item opcional e um valor zero nesse campo indica que a soma não foi realizada.

3. Encapsulamento TCP/UDP

3.1 Ilustração das Camadas do TCP/IP

Aplicação

UDP/TCP

Internet

Interface
de rede



