ANALYTICS FOR HOSPITALS'HEALTH-CARE DATA

TEAM ID: PNT2022TMID41523

TEAM LEADER

M.SUBA-621119104020

TEAM MEMBERS

S.PRIYA JENCY - 621119104014

SB.SNEHA - 621119104017

Bachelor of Engineering

In

Computer Science & Engineering

TEAM MEMBER

C.MAGIMAI ILAKKIYA MARY - 621119205004

Bachelor of Technology

In

Information Technology

IDHAYA ENGINEERING COLLEGE FOR WOMEN

TABLE OF CONTENT

INTRODUCTION	1
1.1 Project Overview	4
1.2 Purpose	5
LITERATURE SURVEY	6
2.1 Existing Problem	9
2.2 Problem Definition	9
2.3 References	9
IDEATION AND PROPOSED SOLUTION	11
3.1 Empathy Map	11
3.2 Ideation and Brainstorming	12
3.3 Proposed Solution	15
3.4 Problem Solution Fit	17
REQUIREMENT ANALYSIS	18
4.1 Functional Requirements	18
4.2 Non-Functional Requirements	19
PROJECT DESIGN	21
5.1 Dataflow Diagram	21
5.2 User Stories	21
5.2 Technical Architecture	23
PROJECT PLANNING AND SCHEDULING	24
6.1 Sprint Planning & Estimation	24
6.2 Sprint Delivery Schedule	25
6.3 Reports for JIRA	26
CODING AND SOLUTION	45
TESTING	52
8.1 Test Cases	55
8.2 User Acceptance Testing	55
RESULTS	57
9.1 Performance Metrics	57
PROS AND CONS	58

CONCLUSION	59
FUTURE WORKS	60
APPENDIX	61
13.1 Source Code	61
13.2 GitHub & Project Demo Link	68

PROJECT REPORT

TEAM ID	PNT2022TMID41523
PROJECT NAME	Analytics For Hospitals' Health- Care Data

TEAM MEMBERS:

Team leader : SUBA M

Team member 1 : MAGIMAI ILAKKIYA MARY C

Team member 2 : PRIYA JECY S

Team member 3 : SNEHA SB

1.INTRODUCTION

This project deals with the analytics for hospital's health care data using data analytics. Data analytics (DA) is the process of examining data sets in order to findtrends and draw conclusions about the information they contain. Increasingly, data analytics is done with the aid of specialized systems and software. Data analytics technologies and techniques are widely used in commercial industries to enable organizations to make more informed business decisions.

1.1.Project Overview

Health care management is the planning, administration, and management of all health care systems, hospitals, and other medical facilities. Health care management roles are crucial to the overall operations of the health care system.

Covid-19 recently, one of the most neglected areas to concentrate on has come under scrutiny due to the pandemic: healthcare management. While data science has many applications in healthcare administration,

If one wants to increase the effectiveness of healthc are management in a hospital, patient length of stay is one crucial indicator to track and forecast. At the time of admission, this metric aids hospitals in identifying patients who are at high LOS-risk (patients who will stay longer). Once identified, patients at high risk for LOS can have their treatment plans improved to reduce LOS and reduce the risk of infection in staff or visitors. Additionally, prior awareness of LOS might help with planning logistics like room and bed allotment.

1.2.Purpose

In healthcare, data analytics are crucial. According to the Harvard Business School, it aids healthcare organisations in the evaluation and training of practitioners, the identification of scan anomalies, and the forecasting of disease outbreaks. Additionally, data analytics can improve business intelligence and cut expenses for healthcare firms. Hospital data analytics can review patient records and any medication prescribed to identify improper dosages or prescriptions and notify doctors and patients, reducing human error and hospital costs. As a result, better insights are gained, and healthcare professionals are able to make wise decisions.

2.LITERARTURE SURVEY

The healthcare sector is widely considered as one of the most important industries in information technology (Wager 2005). More and more, information technology has been considered as a practice that facilitates healthcare performance through using data and information efficiently within the healthcare sectors. Therefore, Wager et al. (2005) said that in order to understand the relation between information technologies and healthcare, we first need to understand what are the technologies used in healthcare The healthcare sector is widely considered as one of the most important industries in information technology (Wager 2005).

More and more, information technology has been considered as a practice that facilitates healthcare performance through using data and information efficiently within the healthcare sectors. Therefore, Wager et al (2005) said that in order to understand the relation between information technologies and healthcare, we first need to understand what are the technologies used in healthcareThe healthcare sector is widely considered as one of the most important industries in information technology (Wager 2005). More and more, information technology has been considered as a practice that facilitates healthcare performance through using data and information efficiently within the healthcare sectors. Therefore, Wager et al (2005) said that in order to understand the relation between information technologies and healthcare, we first need to understand what are the technologies used in healthcare The healthcare sector is widely considered as one of the most important industries in information technology. More and more, information technology has been considered as a practice that facilitates healthcare performance through using data and information efficiently within the healthcare sectors.

Therefore, Wager et al(2005) said that in order to understand the relation between information technologies and healthcare, we first need to understand what are the technologies used in healthcareIn the mid-80,'s information technology changed the healthcare industry and brought many benefits when they used microcomputers, which were a small in shape, fast and very powerful for that time. Moreover, this allowed hospitals to develop clinical applications for various medical care settings. As a result, hospitals started to purchase and adopt information

systems in the healthcare industries, and after that, challenges began to emerge when professionals tried to integrate data among these systems (Wager et al 2005).

The healthcare industry has generated large amount of data generated from record keeping, compliance and patient related data. In today's digital world, it is mandatory that these data should be digitized. To improve the quality of healthcare by minimizing the costs, it's necessary that large volume of data generated should be analysed effectively to answer new challenges. Similarly government also generates petabytes of data every day. It requires a technology that helps to perform a real time analysis on the enormous data set. This will help the government to provide value added services to the citizens. Big data analytics helps in discovering valuable decisions by understanding the data patterns and the relationship between them with the help of machine learning Algorithms (1). This paper provides an overview of big data analytics in healthcare and government systems. It describes about big data generated by these systems, data characteristics, security issues in handling big data and how big data analytics helps to gain a meaningful insight on these data set.

The healthcare industry has generated large amount of data generated from record keeping, compliance and patient related data. In today's digital world, it is mandatory that these data should be digitized. To improve the quality of healthcare by minimizing the costs, it's necessary that large volume of data generated should be analysed effectively to answer new challenges. Similarly government also generates petabytes of data every day. It requires a technology that helps to perform a real time analysis on the enormous data set. This will help the government to provide value added services to the citizens, data analytics helps in discovering valuable decisions by understanding the data patterns and the relationship between them with the help of machine learning algorithms. This paper provides an overview of data analytics in healthcare and government systems. It describes about data generated by these systems, data characteristics, security issues in handling data and how big data analytics helps to gain a meaningful insight on these data set.

TITLE :Historical Review of Health Policy Making AUTHOR : Ravi Duggal

Health policy making and health planning in India is not a post-independence phenomenon. In fact, the most comprehensive health policy and plan document ever prepared in India was on the eve of Independence in 1946. This was the 'Health Survey and Development Committee Report' popularly referred to as the Bhore Committee. This Committee prepared a detailed plan of a National Health Service for the country, which would provide a universal coverage to the entire population free of charges through a comprehensive state run salaried health service.

Such a well-studied and minutely documented plan has not as yet been prepared in Independent India. Health services in India today in terms of accessibility are as inadequate and underdeveloped as they were during the time of the Bhore Committee. The analysis of the health situation by the Bhore Committee in the early forties would hold good if a similar enquiry were undertaken today, over half a century later. Instead of the National Health Service that the Bhore Committee had envisaged, which would be available to one and all irrespective of their ability to pay, further commodification of health care services took place strengthening the operation of market forces in this sector. The enclave pattern of development of the health sector continues even today - the poor, the villagers, women and other underprivileged sections of society, in other words the majority, still do not have access to affordable basic health care of any credible quality ventricular tachycardia(3.4%)which includes cardiogenic shock (1.4%)to hypotension (0.3%).

Disadvantages

To put more Extensive effort into building these predictive models.

2.1.EXISTING PROBLEM

- The already existing model istrained with minimal parameters
- > Low accuracy in prediction
- ➤ No feature extractiondone
- ➤ High complexity

2.2.PROBLEM STATEMENT AND DEFINITION

- The aim is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning.
- The length of stay is divided into 11 different classes ranging from 0- 10 days to more than 100 days.

2.3.REFERENCES

[1] Data analytics for the sustainable use of resources in hospitals: Predicting the length of stay for patients with chronic diseases

httP-s://www.sciencedirect.com/science/article/P-iilS0378720619301594

[2] Robust Length of Stay Prediction Model for Indoor Patients

httP-s://www.researchgate.net/P-ublication/355174497 Robust Length of Stay : Predicti on Model _for_Indoor_Patients

[3] Predicting length of stay in hospitals intensive care unit using general admission features http-s://www.sciencedirect.com/science/article/P-iilS2090447921001349

[4]] Using Data Analytics to Improve Hospital Quality Performance	
	s:// jou rnals.lww.com/ jhmonline/ Fulltext/ 2020/08000/Using_Data A pital_Qualtiy.9.aspx	nalytics_to Improve
[5] surviv	Big Data analytics on Diabetic Retinopathy Study (DRS) on real-time val time and length of stay	e data set identifying
https:/	://www.sciencedirect.com/science/article/pii/S1877050916304926	

3.IDEATION & PROPOSED SOLUTION

3.1.EMPATHY MAP CANVAS

3.2.IDEATION & BRAINSTORMING

Brainstorm & Idea Prioritization Template:

Reference: https://www.mural.co/templates/empathy-map-canvas

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Groupin

Step-3: Idea Prioritization

3.3.PROPOSED SOLUTION

Project team shall fill the following information in proposed solution template.

S.No.	Paramete r	Descriptio n
1	ProblemStatement Problemtobesolve)	During the covid-19 pandemic, we have faced one of the difficult times of our life. Everyone seeks to survive from the great disaster. At the time of pandemic, no one get to know about which hospital has vacant beds (free beds) to admit themselves or others infected by covid. This situation made the death rate higher.
2	Idea/Solutiond escription	Predictive analytics can create patient journey dashboards and disease trajectories that helps us to know about the patient'speriodofstay. It improves effective allocation of beds and other resources, treatment delivery, improves efficiencies, and soon.

3	Novelty/Uniquene	Healthcare data frequently resides in several locations.		
	ss	TheCollected data should be stored in central system(like		
		centralizedstorage). This data becomes accessible and		
		usable when it		
		iscombinedintoasingle,centralsystem,suchasanenterprisedat		
		awarehouse (EDW). Uniqueness of our project is that we		
		can ableto use data for different things such as which		
		medicine is moreeffective and for understanding		
		behavioural pattern of particulardisease.		
4	SocialImpact/Cust	effectiveuseofresourceEnhanced		
	omerSatisfaction	diagnosisImprovedTreatment		
		enhancing the overall quality oftreatmentandlifeofpatients		
5	BusinessModel(R	With the gathered data, redirecting the patients to		
	evenueModel)	particularhospitalbasedonthevacancy,leadingretailersusedm		
		ethodslikemarket-basket analysis to discover insights about		
		consumerpurchase behaviour and used these insights to		
		optimize thephysical store experience, target relevant ads		
		and streamline thesupplychain,		
		amongotherstrategicinitiatives.		

6	ScalabilityoftheSolution	A variety of institutions must store, evaluate, and take action onthe			
		massive amounts of data being produced by the health			
		caresectorasitexpandsquickly.Indiaisavast,culturallyvariednationwith			
		a sizable population that is increasingly able to			
		accesscentralisedhealthcareservices.			

3.4.PROBLEM SOLUTION FIT

1. CUSTOMERSEGMENT(S)

- Patients
- ➤ HospitalManagement

6. JSTOMERSTATE

Inadequate informationaboutavailability ofrequiredresource

D.

- > Tableaucloud
- TextMining
- > InformationRetrieval

2. PROBLEMS/ PAINS

- ➤ Effective Resourceallocatio
- Reduce Waiting timefor patients inHospitals

9. ROOT/CAUS

No proper systemor less efficientPredictio nSystem

√. BEHAVIOR

Tracking the information withtheavailableTechnologies

J. SERSTOACT

- CovidPandemic
- > EmergencySituations

10. YOURSOLUTION

Existing: ratio of discharges ingiven period of time to no. ofbeds in hospital during the timeperiod

Proposing: Using predictiveanalysispowered bvAI

CHANNELSOFBEHAVIOR

ONLINE:Useofdatafromallre gion(dataExploration)

OFFLINE:UseofdataCollectfr omnearbyfacilities

4. EMOTIONS

- BEFORE: Feeling bad
 &Frustrated
- AFTER: Feeling better&Relaxed

4.REQUIREMENT ANALYSIS

4.1.FUNCTIONAL REQUIREMENT

Following are the functional requirements of the proposed solution.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-Task)
FR-1	User Registration	Registration through Form Registration through Gmail
FR-2	User Confirmation	Confirmation via Email Confirmation via Message
FR-3	Interoperability	Dashboard helps to share the patient's information interoperable to the hospitals in timely manner.
FR-4	Accuracy	Dashboard helps predict the patient's Health risks accurately based on LOS (Length of Stay).
FR-5	Compliance	The compliance of a dashboard is like to use very interactively in real time by the hospitals
FR-6	Concise	These dashboards are clear, intuitive, and customizable and interactive in manner.

4.2. Non-functional Requirement

Following are the non-functional requirements of the proposed solution.

FR NO		
	Non-Functional Requirement	Description
NFR-1		
	Usability	This Dashboards are designed to offer
		comprehensive overview of patient's L
		and do so through the use of data
		visualization tools like charts
		and graphs.
NFR-2		
	Security	The Dashboard helps to indicate the
		current threat level to the Hospitals; an
		indication of events and incidents that
		have occurred; a record of
		authentication errors; unauthorized
		access
NFR-3	Reliability	This dashboard will be consistent and
		reliable to the
		users and helps the user to use in
		effective, efficient and reliable manner.
NFR-4	Performance	This dashboard can scan the backend users
		and analyzing the frequency in which they
		visit the dashboard helps understand how
		useful and helpful
		the data displayed is for tasks.
NFR-5	Availability	The dashboard can available to meet

		user's demand in timely manner and it is	
		also helps to provide	
		necessary information to the user's dataset	
NFR-6	Scalability	The layers used in the dashboard are a	
		hosted feature	
		layer, feature layer view, or hosted tile layer	

5.PROJECT DESIGN

5.1.DATA FLOW DIAGRAM

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

5.2.User Stories

Use the below template to list all the user stories for the product.

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the dashboard by entering my email, and password, and confirming my password.	I can access my account in the dashboard	High	Sprint-1
		USN-2	As a user, I will receive a confirmation email once I have registered for the dashboard	I can receive a confirmation email & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the dashboard through Social Media	I can register & access the dashboard with Social Media Login	Low	Sprint-2
		USN-4	As a user, I can register for the dashboard through Gmail	I can register and access dashboard with Gmail	Medium	Sprint-2
	Login	USN-5	As a user, I can log into the application by entering email & password	I can login to the account in my email login.	High	Sprint-2
	Dashboard	USN-6	As a user ,I can use my account in my dashboard for uploading dataset.	I can login to the account for uploading dataset.	Medium	Sprint-3
Customer (Web user)	Website	USN-7	As a user ,I can use my dashboard in website	I can login into the dashboard by visiting website.	Medium	Sprint-3
Customer Care Executive		USN-8	As a user ,I can contact Customer care Executive for my login.	I can contact customer executive for my login.	High	Sprint-4
Administrator		USN-9	As a user ,I can contact administrator for my queries.	I can contact administrator for solving my queries.	High	Sprint-4
Exploration	Dashboard	USN-10	As a user, I can prepare data by using Exploration Techniques.	I can prepare data by using Exploration Techniques.	High	Sprint-3
Presentation	Dashboard	USN-11	As a user, I can Present data in my dashboard.	I can present data by using my account in dashboard.	High	Sprint-4
Visualization	Dashboard	USN-12	As a user, I can Prepare Data by using Visualization Techniques.	I can prepare data by using Visualization Techniques.	High	Sprint-3

SOLUTION AND TECHNICAL ARCHITECTURE

5.3.SOLUTION ARCHITECTURE

ETL PROCESS (DATAINTEGRATIONPROCESS)

6.PROJECT PLANNING AND SCHEDULING

6.1.Sprint Delivery Plan I

Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points).

Product Backlog, Sprint Schedule, and Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Retrieve Data	USN-1	As a user, I should get clearer clinical context for AIDS patient's unique case	10	Medium	M.Suba C.Magimai illakkiya mary
Sprint-1	Visualize the data	USN- 2	As a user,I need nicely visualized dashboard of number of beds occupied and number of free beds in hospital.	20	High	M.Suba C.Magimai illakkiya mary S.Priya jency SB.Sneha
Sprint-2	Track of patient visit of Hospital	USN-3	Tracking a patient Health care over years of visit and Screening of data they have in hospital.	10	Medium	M.Suba C.Magimai illakkiya mary S.Priya jency SB.Sneha
Sprint -2	Dashboard	USN - 4	As a user, I want the interactive dashboard to analyze the data. Have the data in terms of Graph.	20	High	M.Suba C.Magimai illakkiya mary S.Priya jency SB.Sneha
Sprint-3	Detailed EHR's of patient	USN-5	Provided greater details in the EHR's of individual patient with clear idea of what to do.	10	Medium	C.Magimai illakkiya mary S.Priya jency SB.Sneha
Sprint- 3	Story Creation	USN-6	As a user , I need the story animation of the data set with insights	20	High	M.Suba C.Magimai illakkiya mary S.Priya jency SB.Sneha
Sprint-4	Predict LOS	USN-7	As a user, I want the flawless system to predict the length of stay of the patients	20	High	M.Suba C.Magimai illakkiya mary S.Priya jency SB.Sneha

6.2.SPRINT DELIVERY SCHEDULE

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Project Planning Phase

Milestones & Tasks

MILESTONES	TASKS
MILESTONE-1	COLLECTION OF DATA
MILESTONE-2	UPLOADING THE REQUIRED DATASON THE PLATFORM (IBM COGNOS)
MILESTONE-3	EXPLORATION AND VISUALIZATIONOF DATA

MILESTONE-4	CREATING THE INTERACTIVEDASHBOARD.
MILESTONE-5	DISPLAY THE INSIGHTS IN THEDASHBOARD

MILESTONE-6	PREPARE A STANDARDIZED
	DATASET AND USING THE
	DATA REQUIRED WITH THE
	HELP OF PYTHON PROGRAM

MILESTONE-7	USAGE OF VARIOUS ALGORITHM TO OBTAIN THE DESIRED RESULT WITH MORE ACCURACY USING GOOGLE COLAB.
MILESTONE-8	DISPLAY THEM IN THE REQUIREDFORMAT
MILESTONE-9	DEPLOYED IN THE GITHUB

PROJECT DEVELOPMENT PHASE

Sprint Delivery Plan I

Importing Data Sets of Analytics for Hospitals Health Care Data Using Cognos Analysis:

USN-1:

As a User I can enter the details of the patients working in our organization of the details. Uploading the dataset of test_data.csv and train_data.csv file to IBM Cognos Analytics.

Data Analysis

Analysation of health data:

FIVE TYPES OF HEALTHCARE DATA ANALYTICS:

Exploratory Data Analysis

TEAM ID: PNT2022TMID41523

Exploratory Data Analysis:

Required libraries:

```
In [1]: Aspect pands as pd

import numpy as mp

import matplotlib.pyplot as plt

import semborn as sns

*matplotlib inline

In [2]: dr= pd.read_csv(*C;/Users/vp/OneDrive/Desktop/Mealthcare_Data/train_data.csv*)

In [3]: df
```

To (21)

Ou t[3]:

	ca se _ld	Hospital_code	Hospital_type_code	City_Code_Hospital	Hospital_region_code	Av allabi Exti Room s Hosp	ra Department Ward_Type In	Ward_Facility_Code	Grad e	Bed patientio	I Clty_Code_Patient	A d mi s	Type of sion	Severity Vi of Illness	sitors with Patient	Age A
0	1		8	С	3	Z	3 radiotherapy	R	F	2.0	31 39 7	7.0	E mer g enc y	Extre me	2	60
1	2		2	С	5	Z	2 radioth erap y	s	F	2.0	31 39 7	7.0	Trauma	E xtre me	2	51- 60
2	3	10)	e	1	x	2 anest hesi a	s	E	2.0	31397	7.0	Trauma	Extreme	2	51- 60
3	4	2	26	b	2	Y	2 radioth erap y	R	D	2.0	31397	7.0	Trauma	E xtre me	2	51- 60
4	5	2	26	b	2	Y	2 radioth erap y	s	D	2.0	31397	7.0	ırauma	∟xtreme	2	60
		-		-	-	-		-		_				-		
31 84 33	318434		6	a	6	x	3 radiotherapy	Q	F	4.0	86499	23.0	Emergency	Mod erate	3	41- 50
31 84 34	318 43 5	:	24	a	1	x	2 anest hesi a	Q	E	4.0	32.5	8.0	Urg en	t Moderate	4	81- 90
31 84 35	318436		7	a	4	x	3 g ynec olog y	R	F	4.0	12 52 35	10.0	Emergency	Minor	3	71- 80
31 84 36	318 43 7		11	b	2	Y	3 anest hesi a	Q	D	3.0	91 08 1	8.0	Trauma	Minor	5	11- 20
31 84 37	318438		19	a	7	Y	5 g ynec olog y	Q	С	2.0	21641	8.0	E mer g enc y	Minor	2	11- 20
318438	rows × 1	8 columns														

In [4]: df .head()

h [3]: df

at[3]:

1:		ca se _ld	Hospital_code	Hospital_type_code	City_Code_Hospital	Hospital_region_code	Av allab Ext Room s Hosp	ra Dep in	artment Ward_Type	Ward_Facility_Code	Grad e	Bed patientid	City_Code_Patient	A d mi s		Severity Vi of Illness	sitors with Patient	Age A
	0			8	c	3	z	3	radioth erap y	R	F	2.0	31397	7.0	E mer g enc y	Extre me	2	60
	1	:	!	2	c	5	z	2	radioth erap y	s	F	2.0	31397	7.0	Trauma	E xtre me	2	51- 60
	2	3	1	0	e	1	x	2	anest hesi a	s	E	2.0	313 9 7	7.0	Trauma	Extreme	2	51- 60
	3	4	:	26	b	2	Y	2	radioth erap y	R	D	2.0	31397	7.0	Trauma	E xtre me	2	51- 60
	4	5		26	b	2	Y	2	radioth erap y	S	D	2.0	31397	7.0	ırauma	⊨xtreme	2	60
						_	-	-	_	_		-	***		-	-		
:	31 84 33	318434		6	a	6	x	3	radioth erap y	Q	F	4.0	86499	23.0	Emergency	Mod erate	3	41- 50
	31 84 34	318435		24	a	1	x	2	anest hesi a	Q	E	4.0	32 5	8.0	Urg ent	M od er ate	4	81- 90
	31 84 35	318436		7	a	4	x	3	g ynec olog y	R	F	4.0	12 52 35	10.0	Emergency	Minor	3	71- 80
	31 84 36	318 43 7		11	b	2	Y	3	anest hesi a	Q	D	3.0	91081	8.0	Trauma	Minor	5	11- 20
	31 84 37	318438		19	a	7	Y	5	g ynec olog y	Q	С	2.0	21641	8.0	E mer g enc y	Minor	2	11- 20
	318438	rows × 1	8 columns															

In [5]: df .tail()

Ou t[5]: Avabable
Table
Rooms Department Ward_Type Ward_Facility_Code Grade pathentid City_Code_Pathent Admitsalon
of with Age A
Illness Pathent
Hospital case_id Hospital_code Hospital_type_code C#ty_Code_Hospital Hospital_region_code F 4.0 86499 31 84 33 318 43 4 23.0 Emergency Moderate 3 radiotherapy 8.0 Urgent Moderate 50 4 81-90 71-3 80 5 11-20 Q E 4.0 325 R F 4.0 125235 X 2 an esth esi a 31 84 34 318 43 5 31 84 35 318 43 6 3 g ynec olog y 10.0 Emergency Minor 8.0 Trauma Minor D 3.0 91081 31 84 36 318 43 7 3 an esth esi a 20 11-C 2.0 21641 31 84 37 318 43 8

In [6]: df .info() In [7]: df .dtypes In [7]: dr.dtypes
Oot[7]: case_id

Nospital_code
Nospital_code
Nospital_type_code
City_Code_Nospital
Nospital_region_code
Available Extra Rooms in Hospital
Department
Hard_Type
Na of_Teallity_Code
Red Grade
patientid
City_Code_Tailent
Type of Admission
New with reliable
Tailors with Patient
Admission_Deposit
City_Code_Deposit
City_Cod int64
int64
de ject
int64
de ject
fromme in Nospital int6
do ject
do ject
do ject
do ject
int64
int64
do ject
se do ject
int64
do ject
do ject In [8]: df.shape Out[8]: (318438, 18) Before Null Values checking: In [22]: df.isnull().sum().sum() Ou t[22]: 46 45 In [7]: df .dtypes dtype: object In [8]: df.shape Out[8]: (318438, 18)

	ca se _ld	Hospital_cod e	Cft y_Code_Hospital	Avaliable Extra Rooms in Hospital	Bed Grade	p at lent ld	City_Code_Patient Visitors	with Patient Admis	sion _D eposit
ount	31 84 3 8.00 0 00 0	31 84 38.00 00 00	31 84 38. 00 00 0 0	31 84 38. 00 00 00	318 3 25.0 0 00 00	318 43 8.0 00 00 0	313 9 06.0 0 00 00	3 18 43 8.0 00 00 0	31 84 38. 00 00 00
e an	159 21 9.5 00 0 00	18.318841	4.77 1717	3.197627	2.62 5 80 7	65747.579472	7.25 1 85 9	3.284099	48 80. 74 93 9
at d	919 25. 27 6 84 7	8.633755	3.10 2 53 5	1.168171	0.87 3 14 6	379 7 9.9 36 44 0	4.745266	1.76 4 06 1	10 86. 77 62 54
min	1.000000	1.00 00 00	1.000000	0.000000	1.00 0 00 0	1.00 00 00	1.00 0 00 0	0.000000	18 00.00 00 00
25%	796 1 0.25 0 00 0	11.0 00 00 0	2.000000	2.000000	2.00 0 00 0	32847.000000	4.000000	2.000000	41 86. 00 00 00
50%	159 2 19.5 0 00 00	19.000000	5.000000	3.00 0 00 0	3.00 0 00 0	657 2 4.5 00 00 0	8.00 0 00 0	3.00 0 00 0	47 41. 00 00 00
75%	238 8 28.7 5 00 00	26.000000	7.000000	4.000000	3.00 0 00 0	98470.000000	8.000000	4.00 0 00 0	54 09. 00 00 00
ma x	318 43 8.0 00 00 0	32.000000	13.0 0 00 00	24.0 0 00 00	4.00 0 00 0	131 6 24.0 0 00 00	38.0 0 00 00	32.0 0 00 00	11 00 8.0 00 00 0

In [11]:	df .corr()									
Ou t[11]:		ca se _ld	Hospital_code	City_Code_Hospital	Available Extra Rooms in Hospital Bed	Grade p	atlentid City_Co	ode_Patient Visitors with Pat	lent Admission_0) epo att
	ca se_id	1.00 00 00	-0.043 02 3	-0.011 35 2	0.04 2 58 0	0.01 37 02	-0.004150	0.06 5 19 6	0.001309	-0.045 97 2
	Hospital_code	-0.04 30 23	1.00 0 00 0	0.128294	-0.059 63 8	-0.01 37 39	0.002291	-0.015 53 0	-0.028 50 0	0.04 5 44 6
	City_Code_Hospital	-0.011352	0.128294	1.00 0 00 0	-0.045 77 1	-0.04 93 09	0.000750	-0.023 98 8	0.018184	-0.034 45 5
	Avaliable Extra Rooms in Hospital	0.04 25 80	-0.059638	-0.045771	1.00 0 00 0	-0.115868	0.000921	- 0.009 68 1	0.096714	- 0.143 73 9
	Bed Grade	0.0 13 70 2	-0.0 13 7 39	-0.049 30 9	-0.115 86 8	1.000000	0.00 16 45	-0.008 10 5	0.088945	0.073833
	p at len tid	-0.00 41 50	0.0 02 29 1	0.00 0 75 0	0.00 0 92 1	0.00 16 45	1.0 00 00 0	0.00 2 00 2	0.00 6 88 9	-0.000 87 7
	City_Code_Patient	0.06 51 96	-0.015 53 0	-0.023 98 8	-0.009 68 1	-0.008105	0.0 02 00 2	1.00 0 00 0	-0.012 07 4	0.02 5 83 7
	Visitors with Patient	0.0 01 3 09	-0.028 50 0	0.018184	0.09 6 71 4	0.08 89 45	0.006889	-0.012 07 4	1.000000	-0.150 35 8
	Ad mission _ Deposit	-0.045972	0.045446	-0.034 45 5	-0.143 73 9	0.07 38 33	-0.00 08 77	0.02 5 83 7	-0.150 35 8	1.00 0 00 0

In [28]: df.isnull().sum().sum()

Work With Null Values:

```
In [32]: df['Bed Grade'].fillna(df['Bed Grade'].mean(),inplace=True)
In [33]: df['Bed Grade'].isnull().sum()
Out[33]: 0
In [34]: df .isnull(). sum()
Out[34]: case_id
                                                   0
         Hospital_code
                                                   0
         Hospital_type_code
                                                   0
         City_Code_ Ho spital
                                                  0
         Hospital_region_code
                                                  0
         Available Extra Rooms in Hospital
         Department
         Ward_Type
         Ward_Facil it y_Code
                                                  0
         Bed Grade
                                                 0
         patientid
         City_Code_Patient
                                              45 32
         Type of Admission
                                                 0
         Severity of Illness
                                                  0
         Visitors with Patient
                                                 0
                                                  0
         Age
         Admission_Deposit
                                                  0
         Stay
         dtype: int64
```

```
In [35]: df["City_Code_Patient"] . fi ll na( df["City_Code_Patient"] . m ea n(), in pl ace =Tr ue )
In [36]: df["City_Code_Patient"] . is null() . sum()
Out[36]: 0
```

After Cleaning Process:

Total Null Values Checking:

```
In [37]: df .isnull(). sum()
Out[37]: case_id
         Hospital code
          Ho sp ital_t yp e_code
         City_Code_ Ho spital
         Hospital_region_code
         Available Extra Rooms in Hospital
         Department
          Ward_Type
         Ward_Facil it y_Code
          Bed Grade
          patientid
          City_Code_Patient
          Type of Admission
          Severity of Illness
          Visitors with Patient
          Admi ssion_ De posit
          dtype: int64
```

Total Null Values:

```
In [38]: df.isnull().sum().sum()
Out[38]: 0
In [39]: df.cov()
```

Out[39]:

	ca se _ld	Hospital_cod e	City_Code_Hospital Av	rallable Extra Rooms in Hospital	Bed Grade	patientid City	_Code_Patient Visitors	with Patient Admiss	lon_Deposit
ca se_ld	8.45 02 57 e+ 0 9	-341 45.2 5 59 36	-3237.513037	45 72, 48 41 77	10 99.46 42 09	-1.448858e+07	28 03 6.6 39 47 6	212.260614	-4.592730e+06
Hospital_code	-3.4 14 5 26 e+ 0 4	74.5 4 17 23	3.43 6 54 1	-0.601495	-0.103 51 6	7.511144e+02	-0.627 29 8	-0.434 07 3	4.26 4 13 5e+ 02
City_Code_Hospital	-3.237513e+03	3.43 6 54 1	9.625726	-0.165 88 7	-0.133 54 9	8.841958e+01	-0.348 16 5	0.099525	-1.161750e+02
Available Extra Rooms in Hospital	4.57 24 84 e+0 3	-0.601 49 5	-0.165 88 7	1.36 4 62 4	-0.118 14 5	4.085839e+01	-0.052 88 8	0.199302	-1.824827e+02
Bed Grade	1.0 99 46 4e+ 03	-0.103 51 6	-0.133 54 9	-0.118 14 5	0.76 2 11 3	5.45 28 83 e+0 1	-0.033 07 5	0.136962	7.00 4 05 2e+ 01
p at lent id	-1.448858e+07	75 1.1 14 36 4	88.4 1 95 78	40.8 5 83 95	54.5 2 88 34	1.44 24 76 e+ 0 9	35 5.7 29 93 1	46 1.5 76 36 9	-3.620715e+04
City_Code_Patient	2.80 36 64 e+ 0 4	-0.627 29 8	-0.348 16 5	-0.052 88 8	-0.033 07 5	3.557299e+02	22.19 70 75	-0.099496	1.31 2 73 6e+ 02
Visitors with Patient	2.122606e+02	-0.434 07 3	0.099525	0.19 9 30 2	0.136962	4.61 57 64 e+0 2	-0.099496	3.111913	-2.882567e+02
Ad mil selon _ Depo sit	-4.59 27 3 0e+ 06	42 6.4 13 52 4	-116.175038	- 182.4 82 6 76	70.0 4 05 18	-3.62 07 15 e+ 0.4	131.273639	-288.2 56 6 79	1.18 1 08 3e+ 06

df("Admission_Deposit"] . hi st (bins =10)
In [41]:
 plt.title("Histogram for Admission_Deposit ")

df["Ward_Type"] . hi st (bins = 10)

In [42]: plt.title("Histogram for Ward_Type ")

plt.show()

Histogram for Ward_Type
126006
106000
60000
40000

Sprint Delivery Plan II

Cleaning, Exploring data and creating model of Analytics for Hospitals Health Care Data Using Cognos Analysis:

USN-4,5

- As an Analyst I can create a Exploratory data analysis to identify the important factors of a patient data set.
- As a Data analyst, I create a predicted model by also preparing story card with using explored data.
- Create an Data Exploration of the dataset of test_data.csv and train_data.csv file to IBM Cognos Analytics first.

Creating Relationships

Explore data relationships Reset to original Test_data module Q Age × Edit diagram Available Extra Rooms in Hospital Age Severity of Illness Visitors with Patient Select single or multiple nodes to see visualizations. Relationship diagram 10% 100%

Ward_Type

Visitors with patient

Explore data relationships

Test_data module Reset to original

Q Visitors with Patient × Edit diagram

Select single or multiple nodes to see visualizations.

Relationship diagram

10% ●● 100%

Create a Visualization type using test_data.csv IBM Cognos Analytics: Visitors with Patient by Ward_Type colored by Ward_Type

- ➤ Across all values of **Ward_Type** and **Ward_Type**, the sum of **Visitors with Patient** is over 450 thousand.
- ➤ For **Visitors with Patient**, the most significant values of **Ward_Type** are R, Q, and S, whose respective **Visitors with Patient** values add up to over 438 thousand, or 97.4 % of the total
- ➤ The summed values of **Visitors with Patient** range from 8 to over 171 thousand.
- ➤ Visitors with Patient is unusually high when the combinations of Ward_Type and Ward_Type are R and R and Q and Q.
- ➤ Visitors with Patient is unusually high when Ward_Type is R and Q

Available Extra Rooms in Hospital by Department:

- > The total number of results for **Available Extra Rooms in Hospital**, across all **departments**, is over 137 thousand.
- ➤ The most common value of **Department** is gynecology, occurring over 107 thousand times, which is 78.2 % of the total.
- ➤ The count is unusually high when **Department** is gynecology.

Department by Severity of Illness with points for Available Extra Rooms in Hospital .

CHAPTER 7

SOURCE CODE:

HOME PAGE;

Index.html

```
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
 <div class="container-fluid">
  <div class="navbar-header">
   <a class="navbar-brand" href="about.html">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
```

```
<a href="#">Home</a>
  <a href="dashboard.html">Dashboard</a>
 <a href="report.html">Report</a>
  <a href="story.html">Story</a>
 </div>
</nav>
<div class="jumbotron">
<center> <h4><i><b>Team ID : PNT2022TMID41523 </b></i></h4></center>
</div>
Team Leader
  Suba M
  Team member
  Magimai ilakkiya mary C
```

```
Team member
   priya jency S
  Team member
   Sneha SB
 </body>
</html>
ABOUT PAGE:
About.html
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"</pre>
```

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">

```
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
<div class="container-fluid">
  <div class="navbar-header">
  <a class="navbar-brand" href="#">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
  <a href="index.html">Home</a>
  <a href="dashboard.html">Dashboard</a>
  <a href="report.html">Report</a>
  <a href="story.html">Story</a>
 </div>
</nav>
<div class="container">
<br/>b>Analytics For Hospitals' Health-Care Data</b>
<br><br>>
```

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus:

HealthcareManagement.

While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

Suppose you have been hired as Data Scientist of Health Man a not for profit organization dedicated to manage the functioning of Hospitals in a professional and optimal manner.

<

< Goal:

> The goal is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning. The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days.

< Technical Architecture:

<

```
</div>
</body>
</html>
Dashboard.html
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
<div class="container-fluid">
  <div class="navbar-header">
   <a class="navbar-brand" href="#">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
   <a href="index.html">Home</a>
```

class="active">Dashboard
Report
Story
<div class="container"></div>
<pre><iframe allow="encrypted-media" allowfullscreen="" frameborder="0" gesture="media" height="900" src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.my_folders%2Fsprint 3&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=false&shareMode= embedded&action=view&mode=dashboard&subView=model000001848bea4a5e_00000 000" width="1000"></iframe> </pre>

OUTPUT:

Analysis of dataset

Distrib tion of volues,

rlospita Lood e

```
train.Hospital_code.value_counts()
      26 IS12S
      2J 19595
      5
           1484.7
      2B 13 J4 1
           1.2-591
      u
           1.312
       <)
           8828
      1)
            3888
           8312
      12
      32
          75:19
      25
      10
           7:2:57
      IS 6%5
      11
      2.4
            5863
      17
          ,mis
            411 -
           3974
      n
            394-0
      30
           37e7
            36Eld
      31
            3651
      22
           2140
      15
           2119
          9135
      2.0
            1,5.1
      la ... Hospital_ccde, dtype; int 6'l
```

plt:,fi sure (fi c:si ze {10,7))

train. HOspi ta 1_co<ie value_t OUnts() , plot (ki ml="bar +, co_or = ['grloen'l>

Importing required Packages

impert numpy as np impert pandas as pd impert marphorlib.pyslot as plt impert seaborn as sns Numarphorlib inline sns.set_style("dark_background") plt.style.use("dark_background")

Importing the dataset

In [73]:
 train = pd.read_csv('/content/input/training_data.csv')
 text = pd.read_csv('/content/input/testing_data.csv')
 Paramters_Description = pd.read_csv('/content/input/parameter_description.csv')
 sample = pd.read_csv('/content/input/testing_target.csv')

Viewing dataset

[74]:	train.	read(5)								
[74]:	case	d Hospital_code	Hospital_type_code	City_Code_Hospital	Hospital_region_code	Available_Extra_Rooms_in_Hospital	Department	Ward_Type	Ward_Facility_Code	Bed_Grade
	0	1 8	e	3	I	3	redotherapy	R		2.5
	1	2 2	•	5	2	2	redictherapy	5		20
	2	3 10		1	×	2	anazzhoùa	5	I	2.0
	3	4 .26		2	у	2	redictherapy	R	0	2.0
	4	5 26	b	2	Y	2	radiotherapy	5	0	2.0

13-98 557!1 fl, 111 3038 1 - 10 0 8E.# rIIIL;nrlQ: Ag;2, dsyp: in-::64

ITAge dismillurion ph fight is (fight c (1 1, 7)) to ain . Age, well us_1 it us to (), illiGe (ki mJa'bur', clill 0r = ['Vc. 1o,i'])

Hospital_:type_code

train.Hospital_type_code.value_counts()

107545

e 19105 d USH 166 S ::7118

rlarra: Hdsqftirl! _:29-05 yp.a.mdc, dtype: lnt64

:Hhospirot.type:_ode_diter.bUTillen $p : 5: sus_1(5:si:2a+si0,7) \\ tus_1s_1sin_0 + is_1 : 1b^*pe_eode_i + be_eomen_i) : plat(k ind $= 0pi = old^* = \{Floi: 1\}$)$

Hospital_region_code

$$\label{eq:local_problem} \begin{split} & \textit{LALD}_{f}(u), \textit{train_instance}, \\ & \textit{p.} \textit{I sample in } lar(u, t, t) \\ & \textit{train_instance}, \\ & \textit{tra$$

Availal11gExt ra_Rooms_in_Hospta

train.Available_Extra_Rooms_in_Hospital.value_counts()

tmin. Dopal mont, vari oomis() gyoecology

R 788 Q 77797

8.CHATER TESTING

8.1.TEST CASES

- > verify user is able to see home page
- > verify user is able to see dashboard page
- > verify user is able to naivigate to story page
- > verify filters are working

8.2 USER ACCEPTANCE TESTING

1.Purpose of Document

The purpose of this document is to briefly explain the test coverage and open issues of the [ProductName] project at the time of the release to User Acceptance Testing (UAT).

Defect Analysis

This report shows the number of resolved or closed bugs at each severity level, and how they were resolved.

+					
Resolution	Severity 1	Severity 2	Severity 3	Severity 4	Subtotal
By Design	8	5	0	3	16
Duplicate	1	0	4	0	7
External	0	3	5	1	5
Fixed	13	4	3	18	32
Not Reproduced	0	1	0	1	2
Skipped	1	2	0	0	1
Won't Fix	0	5	2	1	8
Iotals	23	14	13	26	75

3.Test Case Analysis

This report shows the number of test cases that have passed, failed,and untested

Section	Total Cases	Not Tested	Fail	Pass
Print Engine	6	0	0	6
Client Application	51	0	0	51
Security	1	0	0	1
Outsource Shipping	3	0	0	3
Exception Reporting	6	0	0	6
Final Report Output	2	0	0	2
Version Control	1	1	ļ	1

CHAPTER 9

9.RESULT

9.1.PERFORMANCE METRICS:

10.PROS AND CONS:

One of the major drawbacks in the application of big data in healthcare industry is the issue of lack of privacy. Application of big data technologies involves monitoring of patient's data, tracking of medical inventoryand assets, organizing collected data, and visualization of data on the dashboard and the reports. So visualization of sensitive medical data especially that of the patients creates negative impression of big data as it violets privacy

CHAPTER 11

11.CONCLUSION

The impact of data analytics in healthcare has already made a substantial difference in the abiley of healthcare providers to offer patients high-quality car in an efficient, cost-effective manner. However, the role of data analytica in improving patientoutcomes and bethcare processes continues to grow and expand as more types of data become allcle and new tools are developed that make the results of the analytics clear and easy for healthcare professionals to access.

Realing the potential of data analytics to transform the healthcare industry begins by understanding how the technology can be applied to addres heathcare providers challenges Including stat recitment and the utilization operational efficiencies, and enhanced patent experiences Pre-centred that depends on knowing what patients want and need. Data analytics holds the hity to unlockingthis vital Information.

12.FUTURE SCOPE:

Artificial Intelligence (AI) will play a significant role in data analytics in healthcare for the next decade. For example, the field of AI-enabled clinical decision support is just emerging. This type of support can compare patients who fit similar profiles within a system, then it can alert doctors to trends in data that may have been overlooked. The use of big data in healthcare will include testing for drug interactions that small studies are unlikely to catch and prevent patients from takingharmful drugcombinations.

Decisions made by physicians, like what test or treatments to give a particular patient, makeup 80-90% of all healthcare spending, so using artificial intelligence to make more educated decisions will bring down healthcare costs. It's crucial to have informed leaders at the vanguard of these innovations in healthcare.

CHAPTER 13 13.APPENDIX

SOURCE CODE:

HOME PAGE;

Index.html

```
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
<div class="container-fluid">
  <div class="navbar-header">
   <a class="navbar-brand" href="about.html">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
```

```
<a href="#">Home</a>
  <a href="dashboard.html">Dashboard</a>
 <a href="report.html">Report</a>
  <a href="story.html">Story</a>
 </div>
</nav>
<div class="jumbotron">
<center> <h4><i><b>Team ID : PNT2022TMID41523 </b></i></h4></center>
</div>
Team Leader
  Suba M
  Team member
  Magimai ilakkiya mary C
```

```
Team member
   priya jency S
  Team member
   Sneha SB
 </body>
</html>
ABOUT PAGE:
About.html
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet"</pre>
```

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">

```
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
<div class="container-fluid">
  <div class="navbar-header">
  <a class="navbar-brand" href="#">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
  <a href="index.html">Home</a>
  <a href="dashboard.html">Dashboard</a>
  <a href="report.html">Report</a>
  <a href="story.html">Story</a>
 </div>
</nav>
<div class="container">
<br/>b>Analytics For Hospitals' Health-Care Data</b>
<br><br>>
```

Recent Covid-19 Pandemic has raised alarms over one of the most overlooked areas to focus: HealthcareManagement.

While healthcare management has various use cases for using data science, patient length of stay is one critical parameter to observe and predict if one wants to improve the efficiency of the healthcare management in a hospital.

This parameter helps hospitals to identify patients of high LOS-risk (patients who will stay longer) at the time of admission. Once identified, patients with high LOS risk can have their treatment plan optimized to minimize LOS and lower the chance of staff/visitor infection. Also, prior knowledge of LOS can aid in logistics such as room and bed allocation planning.

Suppose you have been hired as Data Scientist of Health Man a not for profit organization dedicated to manage the functioning of Hospitals in a professional and optimal manner.

<

< Goal:

> The goal is to accurately predict the Length of Stay for each patient on case by case basis so that the Hospitals can use this information for optimal resource allocation and better functioning. The length of stay is divided into 11 different classes ranging from 0-10 days to more than 100 days.

< Technical Architecture:

<

```
</div>
</body>
</html>
Dashboard.html
<!DOCTYPE html>
<html lang="en">
<head>
<title>Data Analytics</title>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet"</pre>
href="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/css/bootstrap.min.css">
<script src="https://ajax.googleapis.com/ajax/libs/jquery/3.6.0/jquery.min.js"></script>
<script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.4.1/js/bootstrap.min.js"></script>
</head>
<body>
<nav class="navbar navbar-inverse">
<div class="container-fluid">
  <div class="navbar-header">
   <a class="navbar-brand" href="#">Analytics for Hospitals' Health-Care Data</a>
  </div>
  ul class="nav navbar-nav">
   <a href="index.html">Home</a>
```

class="active">Dashboard
Report
Story
<div class="container"></div>
<iframe< td=""></iframe<>
src="https://us3.ca.analytics.ibm.com/bi/?perspective=dashboard&pathRef=.my_folders%2Fsprint3&closeWindowOnLastView=true&ui_appbar=false&ui_navbar=false&shareMode=embedded&action=view&mode=dashboard&subView=model000001848bea4a5e_000000000000000000000000000000000000

DEMO LINK:				
https://youtu.be/Rg	g04FdYY1A			
<u>Links GitHub</u>				
https://github.com/IE	BM-EPBL/IBM-Proje	ect-18081-1659678	<u>8980</u>	

