Jacobian

If u& v are function of independent variables x&y

then Jacobian 'J' is defined as
$$J = \frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix}$$

$$J' = \frac{\partial(x,y)}{\partial(u,v)}$$
 where $JJ' = 1$

Jacobian of Implicit function

$$1)f_1(x,y,u,v)=0$$

 $f_2(x,y,u,v)=0$ are two implicit function then

$$\frac{\partial(u,v)}{\partial(x,y)} = (-1)^2 \frac{\partial(f_1,f_2)}{\partial(x,y)} \frac{\partial(f_1,f_2)}{\partial(u,v)}$$

Evaluation of partial derivative

Let
$$f_1(x,y,u,v)=0$$

$$f_2(x,y,u,v)=0$$

from this we can find partial derivatives

$$\frac{\partial u}{\partial x}$$
, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ and so on...

i)
$$\frac{\partial u}{\partial x} = (-1) \frac{\frac{\partial (f_1, f_2)}{\partial (x, v)}}{\frac{\partial (f_1, f_2)}{\partial (u, v)}}$$
ii)
$$\frac{\partial u}{\partial y} = (-1) \frac{\frac{\partial (f_1, f_2)}{\partial (y, v)}}{\frac{\partial (f_1, f_2)}{\partial (u, v)}}$$

ii)
$$\frac{\partial u}{\partial y} = (-1) \frac{\frac{\partial (f_1, f_2)}{\partial (y, v)}}{\frac{\partial (f_1, f_2)}{\partial (u, v)}}$$

iii)
$$\frac{\partial y}{\partial u} = (-1) \frac{\frac{\partial (f_1, f_2)}{\partial (x, u)}}{\frac{\partial (f_1, f_2)}{\partial (x, y)}}$$

iv)
$$\frac{\partial x}{\partial u} = (-1) \frac{\frac{\partial (f_1, f_2)}{\partial (u, y)}}{\frac{\partial (f_1, f_2)}{\partial (x, y)}}$$
 Similarly you can do others

Error And Approximation

i)If z=f(x,y) dz =
$$\frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

- ii) dx,dy,dz are the actual errors in x,y,z
- iii) $\frac{dx}{x}$, $\frac{dy}{y}$, $\frac{dz}{z}$ are the relative error's in x,y,z
- iv) $100 \frac{dx}{x}$, $100 \frac{dy}{y}$, $100 \frac{dz}{z}$ are the Percent error's in x,y,z

Maxima and Minima

1) find
$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$

2) Equating
$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial f}{\partial y} = 0$

we get(a_1,b_1), (a_2,b_2),.... as stationary point.

3) find
$$r = \frac{\partial^2 f}{\partial x^2}$$
 $s = \frac{\partial^2 f}{\partial x \partial y}$ $t = \frac{\partial^2 f}{\partial y^2}$

4)rt-s²>0 & r<0 Maxima rt-s²>0 & r>0 Minima rt-s²<0 Neither maxima nor Minima rt-s²=0 No conclusion

Lagrange's Method of undetermined Multiplier's

1)u=f(x,y,z) and
$$\emptyset$$
(x,y,z)=0
F=u+ λ \emptyset

2) Find
$$\frac{\partial F}{\partial x} = 0$$
, $\frac{\partial F}{\partial y} = 0$, $\frac{\partial F}{\partial z} = 0$

3)Eliminate x,y,z& λ using above two points and then we get equation in terms of u.