ColdRoute: Effective Routing of Cold Questions in Stack Exchange Sites

Jiankai Sun 1 Abhinav Vishnu 2 Aniket Chakrabarti 3 Charles Siegel 2 Srinivasan Parthasarathy 1

¹The Ohio State University

²Pacific Northwest National Laboratory ³Microsoft

ECML PKDD, Sep 2018

Object-Oriented-Programming vs StackOverflow-Oriented-Programming

The Internet will do the remembering for you

Googling for the Regex

Every. Damn. Time.

O RIY? @ThePracticalDev

OLeft pic: https://goo.gl/5vKuaR

O Right pic: https://goo.gl/XAG4DP

from Stack Overflow

O'REILLY*

The Practical Developer @ThePracticalDev

Motivation

- What if you could not find answers for your questions in Stack Overflow? 4.8m unanswered
- Cold questions: newly posted questions without answer (cold questions) asked by new registered (cold askers) or existing askers
- Cold-Start Problem: Find the right experts to answer cold questions

Related Work: Semantic Matching Models

- Leverage textual information to route cold questions
 - \bullet question \to (answer with the highest semantic similarity) \to best answerer
 - cold question → user with the highest semantic similarity
- How to model textual information?
 - BOW: bag of words [Zhou et al. 2012; 2013; Figueroa and Neumann 2013;]
 - LDA: Latent Dirichlet allocation, Topic Modeling [Guo et al. 2008; Ji et al. 2012]
 - Doc2Vec: Distributed Representations of Sentences and Documents [Le and Mikolov 2014; Dong et al. 2015]

Finding best answers by semantic matching

 Precision@3 computes the average number of times that the best answer is ranked top-3 by a specific method

Challenge I:

Find the indicator of the best answerer

- 1. MLP is sensitive to feature scaling. Have you normalzied your data?
- Modify your network structure: add more hidden layers and change number of perceptrons of each layer

3. change activation function to sigmod/tanh/relu etc.

answered Jun 5 '17 at 18:07

zhenv5

4. Change learning rate: learning_rate , learning_rate_init . 5. Toggle early_stopping - ijoseph Apr 10 at 22:13 🖋

How about voting score (up-votes - down-votes)?

UpVotes-Rank: select the answerer with the highest voting score as the best answerer

Model it as A Regression Problem

- How to identify the best answerer for a newly posted question?
 - Model the cold-start problem as a regression problem?

- Predict voting score for each question-answerer pair
- Select the user who has the highest voting score as the best answerer

Challenge II:

How to encode past activities as feature vectors?

Encode Past Activities by One-hot Encoding

Feature Vector \vec{X}											Target \vec{y}							
$\vec{x}^{(1)}$	0	0	1		1	0	0		1	0	0		0	1	0		4	$y^{(1)}$
$\vec{x}^{(2)}$	0	0	1		0	1	0		1	0	0		0	1	0		3	$y^{(2)}$
$\vec{x}^{(3)}$	0	0	1	• • •	0	0	1		1	0	0	• • •	0	1	0		2	$y^{(3)}$
$\vec{x}^{(4)}$	0	1	0		0	0	1		0	0	1		0	0	1		5	$y^{(4)}$
$\vec{x}^{(5)}$	0	1	0		0	1	0		0	0	1		0	0	1		6	$y^{(5)}$
$\vec{x}^{(6)}$	1	0	0		1	0	0		0	1	0		1	1	1		2	$y^{(6)}$
$\vec{x}^{(7)}$	1	0	0		0	0	1		0	1	0		1	1	1	• • •	4	$y^{(7)}$
	q_1	q_2	q_3		u_1	u_2	u_3		a_1	a_2	a_3	• • •	t_1	t_2	t_3	• • •		
	Question			Answerer			Asker			Question Tags								

Challenge III:

Feature vector is very sparse

- Each feature vector $\vec{x}^{(i)}$ has only $(3 + ||\vec{t_i}||_1)$ ones.
- $||\vec{t_i}||_1$ represents question q_i 's number of tags (number of ones in the vector $\vec{t_i}$).
- Average number of tags per question in our experiments is 2.5

Advantages of Factorization Machine [Rendle et al. 2010, 2012]

- Regression model: $\hat{\vec{y}}(\vec{x}) = w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j=i+1}^p x_i x_j < \vec{v}_i, \vec{v}_j > 0$
- Can handle sparse settings very well in comparison with other regressors such as linear regression
- Gives us the flexibility to explore the different features' relative importance in cold question routing (feature selection)
 - asker
 - tags
 - textual descriptions: question head and question body

A Toy Example

• Given a cold question q_4 asked by a new asker a_4 with tags $t = \{t_1, t_2, t_3\}$, Predict voting score of u_3 ?

Linear Regression

$$\hat{y}(\vec{x}) = w_0 + w_{q_4} + w_{u_3} + w_{a_4} + \sum_{i=1}^{3} w_{t_i} + \sum_{i \in S} \sum_{j \in S, i < j} \langle \vec{v}_i, \vec{v}_j \rangle$$

• where $w_0 \in \mathbb{R}, \vec{w} \in \mathbb{R}^p, \vec{V} \in \mathbb{R}^{p \times k}$

A Toy Example

- Given a cold question q_4 asked by a new asker a_4 with tags $t = \{t_1, t_2, t_3\}$, Predict voting score of u_3 ?
- Linear Regression

$$\hat{y}(\vec{x}) = w_0 + w_{q_4} + w_{u_3} + w_{a_4} + \sum_{i=1}^{3} w_{t_i} + \sum_{i \in S} \sum_{j \in S, i < j} \langle \vec{v}_i, \vec{v}_j \rangle$$

- Interactions among question, asker, answerer, and tags $S = \{q_4, u_3, a_4, t_1, t_2, t_3\}$
- where $w_0 \in \mathbb{R}, \vec{w} \in \mathbb{R}^p, \vec{V} \in \mathbb{R}^{p \times k}$

Putting it all together: Architecture of ColdRoute

Experiments

- Datasets: 8 Stack Exchange Sites (Apple, Physics, Gaming, etc)
- Evaluation metrics: Mean Reciprocal Rank (MRR), Precision@k, and Accuracy
- Two different kinds of cold questions:
 - asked by new registered users
 - asked by existing users (have asked questions before)

Routing Cold Questions Asked by Existing Askers (ColdRoute vs state-of-the-arts)

Precision@3 of Different Approaches on 8 Stack Exchange Sites

Routing Cold Questions Asked by New Askers (ColdRoute vs state-of-the-arts)

Precision@3 of Different Approaches on 8 Stack Exchange Sites

Feature Selection for Routing Cold Questions Asked by New Askers (Evaluated by Precision@3)

	Apple	Ask.	Gaming	Physics	Scifi
BOW	0.3840	0.4357	0.3000	0.3799	0.2484
Doc2Vec	0.3840	0.4096	0.3563	0.3493	0.2547
LDA	0.4487	0.4902	0.4375	0.4672	0.4286
ColdRoute-HB	0.5133	0.4989	0.4625	0.5109	0.4534
ColdRoute-B	0.4829	0.5139	0.4563	0.5284	0.3975
ColdRoute-H	0.4829	0.5468	0.5063	0.5633	0.4907
ColdRoute-T	0.5171	0.6100	0.7000	0.7249	0.7081

Conclusion and Future Work

Conclusion

- Propose ColdRoute for tacking cold questions routing in CQAs
- Overcome 3 challenges
 - Use voting score as the indicator of the best answerer
 - Encode users' past activities by one-hot encoding
 - Address sparse settings by Factorization Machine (FM)
- Simple modes are good like FM which are proven to be better than simple DL algorithms
- Code: https://github.com/zhenv5/ColdRoute

Future work

- Improve over the state-of-the-art models a lot, Still have improvement space
- Combine the power of deep neural network and factorization machines

Acknowledgments

 Acknowledgments: This work is supported by NSF grants CCF-1645599, IIS-1550302, and CNS-1513120, and a grant from the Ohio Supercomputer Center (PAS0166). All content represents the opinion of the authors, which is not necessarily shared or endorsed by their sponsors.

Q & A

21 / 27

Appendix

FM as a regressor

Consider a 2-way FM (d = 2) as an example:

$$\hat{\vec{y}}(\vec{x}) = w_0 + \sum_{i=1}^p w_i x_i + \sum_{i=1}^p \sum_{j=i+1}^p x_i x_j < \vec{v}_i, \vec{v}_j >$$
 (1)

where the model parameters that have to be estimated are:

$$w_0 \in \mathbb{R}, \vec{w} \in \mathbb{R}^p, \vec{V} \in \mathbb{R}^{p \times k}$$
 (2)

And $\langle \cdot, \cdot \rangle$ is the dot product of two vectors of size k:

$$<\vec{v}_i, \vec{v}_j> = \sum_{f=1}^k v_{i,f} v_{j,f}$$
 (3)

where a row $\vec{v_i} \in \vec{V}$ describes the *i*-th variable with $k \in \mathbb{N}_0^+$ factors. k represents the dimensionality of the factorization.

Gradient descent to update parameters

$$\frac{\partial}{\partial \theta} \hat{\vec{y}}(\vec{x}) = \begin{cases} 1, & \text{if } \theta \text{ is } w_0 \\ x_i, & \text{if } \theta \text{ is } w_i \\ x_i \sum_{j=1}^p v_{j,f} x_j - v_{i,f} x_i^2, & \text{if } \theta \text{ is } v_{i,f} \end{cases} \tag{4}$$

Evaluation Metric MRR.

The MRR measure is given by

$$MRR = \frac{1}{|Q|} \sum_{q \in Q} \frac{1}{r_{best}^q} \tag{5}$$

where r_{best}^q is the position of question q's best answerer in the predicted ranking list. It's worth mentioning that MRR is equivalent to Mean Average Precision (MAP) since the number of correct elements (the best answerer) in the predicted ranking list is just 1.

Evaluation Metric

Precision@k.

The Precision@k is applied to measure the average number of times that the best answerer is ranked on top-k by a certain algorithm.

$$Precision@k = \frac{\{q \in Q | r_{best}^q <= k\}}{|Q|}$$
 (6)

Accuracy. The Accuracy is used to measure the ranking quality of the best answerer, given by

$$Accuracy = \frac{1}{|Q|} \sum_{q \in Q} \frac{|R^q| - r_{best}^q}{|R^q| - 1} \tag{7}$$

Where Accuracy = 1 (best) means that the best answerer returned by an algorithm always ranks on top while Accuracy = 0 means the opposite.

Statistics of Stack Exchange Sites (Ask., Ser. are short for AskUbuntu and Serverfault respectively)

			Gaming					Unix
# Questions	80,466	257,173	75,696	93,529	38,026	238,764	129,182	111,505
# Answers	119,878	337,198	130,294	137,258	78,652	398,470	169,354	171,016
# Unique Users	65,851	189,955	51,192	41,115	26,673	130,951	48,049	65,279
# Questions having Best Answers	29,765	85,843	45,798	38,094	21,740	117,275	76,862	53,856
# Unique Tags	1,048	3,020	4,437	876	2,349	3,514	1,525	2,438
Avg # Tags per Question	2.824	2.6982	1.2823	2.9634	2.1967	2.882	2.2752	2.7868
# Askers			25,153					
# Asker (asked only 1 question) (%)	76.74%	75.88%	74.23%	63.26%	74.71%	64.04%	62.55%	68.48%
Avg # Questions per Asker	1.9758	1.8557	2.9689	2.8849	3.0031	2.4411	2.9851	2.4022

