Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021

Prólogo

Este trabajo ha sido el resultado de un esfuerzo constante por más 10 años en mi labor como docente impartiendo las materias de Matemáticas Actuariales del Seguro de Personas I y II.

El objetivo de las notas es facilitar la comprensión y entendimiento de las matemáticas actuariales aplicadas los seguros de vida bajo tres enfoques:

- Clásico: a partir de tablas de mortalidad y valores conmutados.
- Probabilístico: Considerando variables aleatorias discretas y continuas.
- Estocástico: a partir de cadenas de Markov en tiempo discreto y tiempo continúo.

En cada capítulo encontrarán explicaciones, demostraciones y aplicaciones.

Contenido

Vidas Múltiples

Ejemplo: Supongamos que dos vidas (x) y (y), con tiempos de vida T_x y T_y , son independientes e idénticamente distribuidas

$$f_{T_x}(t) = 0.02(10 - t)$$
 $0 < t < 10$

Calcular
$$F_{T_x}(t)$$
, $S_{T_x}(t)$, μ_{x+t} , $f_{T_xT_y}(s,t)$, $F_{T_xT_y}(s,t)$ y $S_{T_xT_y}(s,t)$

Solución:

De forma marginal, para T_x tenemos:

$$F_{T_x}(t) = \int_0^t f_{T_x}(s)ds = \int_0^t 0.02(10 - s)ds$$

$$= 0.02 \left[\frac{-(10 - s)^2}{2} \Big|_0^t \right] = \frac{0.02}{2} \left[-(10 - t)^2 + 10^2 \right]$$

$$= 0.01 \left[10^2 - (10 - t)^2 \right] = 0.01 \left[10^2 - (10^2 - 20t + t^2) \right]$$

$$= 0.2t - 0.01t^2$$

$$S_{T_x}(t) = 1 - F_{T_x}(t) = 1 - (0.2t - 0.01t^2)$$

= $1 - 0.2t + 0.01t^2 = 0.01(10 - t)^2$

$$\mu_{x+t} = -rac{d}{dt} \ln ig(S_{\mathcal{T}_x}(t) ig) = rac{f_{\mathcal{T}_x}(t)}{S_{\mathcal{T}_x}(t)} = rac{0.02(10-t)}{0.01(10-t)^2} = rac{2}{10-t}$$

Por lo tanto,

•
$$f_{T_x}(t) = 0.02(10 - t)$$

$$\bullet$$
 $F_{T_{\nu}}(t) = 0.2t - 0.01t^2$

•
$$S_{T_x}(t) = 0.01(10 - t)^2$$

$$\bullet \ \mu_{x+t} = \frac{2}{10-t}$$

Las funciones son las mismas para (y), ya que son idénticamente distribuidas.

Para las funciones conjuntas, tenemos:

$$f_{T_x T_y}(s, t) = f_{T_x}(s) f_{T_y}(t)$$

$$= [0.02(10 - s)] [0.02(10 - t)]$$

$$= 0.02^2 (10 - s)(10 - t)$$

$$F_{T_x T_y}(s, t) = F_{T_x}(s) F_{T_y}(t)$$

$$= (0.2s - 0.01s^2) (0.2t - 0.01t^2)$$

$$= 0.2^2 (s - 0.05s^2) (t - 0.05t^2)$$

$$egin{aligned} S_{_{TxTy}}(s,t) &= S_{_{Tx}}(s) \ S_{_{Ty}}(t) \ &= [0.01(10-s)^2] \ [0.01(10-t)^2] \ &= (0.01)^2 \ (10-s)^2 \ (10-t)^2 \end{aligned}$$

Por lo tanto,

$$f_{_{T \times T_y}}(s,t) = \left\{ egin{array}{ll} (0.02)^2 (10-s)(10-t) & ext{si} & 0 < s, \, t < 10 \ 0 & ext{e.o.c} \end{array}
ight.$$

$$F_{_{\mathcal{T}_{x}\mathcal{T}_{y}}}(s,t) = \left\{ egin{array}{ll} (0.2)^{2}(s-0.05s^{2})(t-0.05t^{2}) & ext{si} & 0 < s < 10, \ 0 < t < 10 \ F_{_{\mathcal{T}_{x}}}(s) = 0.2s - 0.01s^{2} & ext{si} & 0 < s < 10, \ t > 0 \ F_{_{\mathcal{T}_{y}}}(t) = 0.2t - 0.01t^{2} & ext{si} & s > 10, \ 0 < t < 10 \ 1 & ext{si} & s > 10, \ t > 10 \end{array}
ight.$$

$$S_{_{TxTy}}(s,t) = \left\{ egin{array}{ll} (0.01)^2(10-s)^2(10-t)^2 & ext{si} & 0 < s < 10, \ 0 < t < 10 \ S_{_{Tx}}(s) = (0.1)(10-s)^2 & ext{si} & 0 < s < 10, \ t > 0 \ S_{_{Ty}}(t) = (0.1)(10-t)^2 & ext{si} & s > 10, \ 0 < t < 10 \ 0 & ext{si} & s > 10, \ t > 10 \ \end{array}
ight.$$

Contenido

Vidas Múltiples

Bibliografia

- Título: Models for Quantifying Risk. Autor: Stephen Camilli
- Título: Actuarial Mathematics for Life Contingent Risks. Autor: David Dickson
- Título: Actuarial Mathematics. Autor: Newton Bowers
- Título: Basic Life Insurance Mathematics Autor: Ragnar Norberg
- Título: Actuarial Mathematics and Life-Table Statistics Autor: Eric Slud
- Título: Life Contingencies Autor: Chester Wallace Jordan
- Título: Matemáticas Actuariales y Operaciones de Seguros Autor: Sandoya

Matemáticas Actuariales del Seguro de Personas II

Jorge Luis Reyes García

Universidad Nacional Autónoma de México Facultad de Ciencias

jorgeluis.reyes@ciencias.unam.mx

Noviembre 2021