

Regressão Polinomial - Teoria

≡ Ciclo	Ciclo 07: Outros algoritmos Classificação e Regressão
# Aula	57
Created	@March 30, 2023 6:30 PM
☑ Done	
☑ Ready	▽

Objetivo da Aula:

- O processo de treinamento
- Resumo
- ☐ Próxima aula

Conteúdo:

▼ 1. O que é Regressão Polinomial?

A regressão polinomial é um método estatístico utilizado para modelar a relação entre uma variável independente e uma variável dependente, assumindo que essa relação possa ser aproximada por uma função polinomial.

As relações entre as variáveis podem ser representadas pelas interações dos

▼ 1.1 Tipos de interações entre as variáveis

▼ 1.1.1 Polinômio com 1 varáveis exploratórias

▼ 1. Polinômio de grau 1:

$$Y = \beta_0 + \beta_1 X_1 + \epsilon$$

▼ 2. Polinômio de grau 2:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \epsilon$$

Nessa fórmula, temos os seguintes termos:

- β_0 é o coeficiente do termo constante.
- β_1 é o coeficiente linear que representa o efeito da variável X na variável dependente Y.
- β₂ é o coeficiente quadrático que representa o efeito da variável X² (X ao quadrado) na variável dependente Y.
- ε é o termo de erro, que captura a variação não explicada pelo modelo.
- ▼ 3. Polinômio de grau 3:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + \epsilon$$

Nessa fórmula, temos os seguintes termos:

- β_0 é o coeficiente do termo constante.
- β1 é o coeficiente linear que representa o efeito da variável X na variável dependente Y.
- β₂ é o coeficiente quadrático que representa o efeito da variável X² (X ao quadrado) na variável dependente Y.
- β₃ é o coeficiente cúbico que representa o efeito da variável X³ (X ao cubo) na variável dependente Y.
- ε é o termo de erro, que captura a variação não explicada pelo modelo.

▼ 1.1.2 Polinômio com 2 varáveis exploratórias

▼ 1. Polinômio de grau 1:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Nessa fórmula, temos os seguintes termos:

- β₀ é o coeficiente do termo constante.
- β1 é o coeficiente que representa o efeito da variável X1 na variável dependente Y.
- β_2 é o coeficiente que representa o efeito da variável X_2 na variável dependente Y.
- ε é o termo de erro, que captura a variação não explicada pelo modelo.

▼ 2. Polinômio de grau 2:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \epsilon$$

Nessa fórmula, temos os seguintes termos:

- β_0 é o coeficiente do termo constante.
- β_1 e β_2 são os coeficientes lineares para as variáveis X_1 e X_2 , respectivamente.
- β₃ e β₄ são os coeficientes quadráticos para as variáveis X₁² e X₂², respectivamente.
- β_5 é o coeficiente da interação linear entre X_1 e X_2 (X_1*X_2).
- ε é o termo de erro, que captura a variação não explicada pelo modelo.

▼ 3. Polinômio de grau 3:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \beta_6 X_1^3 + \beta_7 X_2^3 + \beta_8 X_1^2 X_2 + \beta_9 X_1 X_2^2 + \epsilon_7 X_1^2 + \beta_8 X_1^2 X_2 + \beta_8$$

Nessa fórmula, temos os seguintes termos:

- β₀ é o coeficiente do termo constante.
- β_1 e β_2 são os coeficientes lineares para as variáveis X_1 e X_2 , respectivamente.
- β₃ e β₄ são os coeficientes quadráticos para as variáveis X₁² e X₂², respectivamente.
- β₅ é o coeficiente da interação linear entre X₁ e X₂ (X₁*X₂).
- β_6 e β_7 são os coeficientes cúbicos para as variáveis X_1^3 e X_2^3 , respectivamente.
- β₈ e β₉ são os coeficientes das interações entre o termo quadrático de X₁ (X₁²) e X₂, e entre X₁ e o termo quadrático de X₂ (X₂²), respectivamente.
- ε é o termo de erro, que captura a variação não explicada pelo modelo.

▼ 2. O processo de treinamento

▼ 2.1 Exemplo visual do funcionamento

▼ 2.2 Os 4 passos para treinar a Regressão Linear

Passo 01: Carregue os dados

Passo 02: Faça limpeza e substituição de dados faltantes

Passo 03: Transforme o conjunto de dados para incluir os termos polinomiais e de interação entre as variáveis exploratória.

Passo 04: Realize o treinamento sobre o conjunto de dados expandido com as interações para encontrar os coeficientes.

▼ 3. Resumo

- A regressão polinomial é um método estatístico utilizado para modelar a relação entre uma variável independente e uma variável dependente, assumindo que essa relação possa ser aproximada por uma função polinomial.
- Existem diferentes tipos de interações entre as variáveis e que podem ser modeladas pelas interações polinomiais.
- O processo de treinamento envolve carregar os dados, fazer limpeza e substituição de dados faltantes, transformar
 o conjunto de dados para incluir os termos polinomiais e de interação entre as variáveis exploratórias e realizar o
 treinamento sobre o conjunto de dados expandido com as interações para encontrar os coeficientes.

▼ 4. Próxima aula

Regressão Polinomial - Prática