Monitoring computers in a data center

Choose features that might take on unusually large or small values in the event of an anomaly.

 \rightarrow x_1 = memory use of computer

 $\rightarrow x_2$ = number of disk accesses/sec

 $\rightarrow x_3 = CPU load <$

 $\rightarrow x_4$ = network traffic \leftarrow

User rates m					
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	
Love at last	5	5	0	6	
Romance forever	5	3.4.5	30	0	$\rightarrow n_u$ = no. users
Cute puppies of love	?)5	4	0	? 0	$n_m = \text{no. movies}$ r(i, j) = 1 if user j has
Nonstop car chases	0	07	15	47	rated movie i
Swords vs. karate	0	0	5	?)4.	$y^{(i,j)}$ = rating given by
nu =	4	n _m = 5		6,.	user j to movie i (defined only if $r(i,j)=1$)

Content-base	ed recomr	nende	r systems	Nu = 4	, nm=5	SX X	0.9
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	(action)	[0]
X Love at last	5	5	0	0	→ 0.9	-> 0 J	
Romance forever 2	5	?	?	0	-> 1.0	→ 0.01	
Cute puppies of love	74.95	4	0	?	0.99	> 0	
Nonstop car chases 4	0	0	5	4	→ 0.1	→ 1.0	
Swords vs. karate 5	0	0	5	?	→ 0	→ 0.9	n=2
			District				

 \Rightarrow For each user j, learn a parameter $\underline{\theta^{(j)} \in \mathbb{R}^3}$. Predict user j as rating movie i with $(\theta^{(j)})^T x^{(i)}$ stars.

$$\chi^{(3)} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} \\ 1 \end{array} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \begin{pmatrix} O^{(1)} \end{pmatrix}^T \chi^{(3)} = 5 \times 0.99 \\ 1 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} \\ 1 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} O^{(1)} \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0 \end{bmatrix} \longrightarrow \begin{array}{c} 0.99 \\ 0 \end{array} = \begin{bmatrix} 0.99 \\ 0$$

Problem formulation

- $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)
- $y^{(i,j)} = \text{rating by user } j \text{ on movie } i \text{ (if defined)}$
- $\theta^{(j)}$ = parameter vector for user j
- $\rightarrow x^{(i)}$ = feature vector for movie i
- \Rightarrow For user j, movie i, predicted rating: $(\underline{\theta^{(j)}})^T(x^{(i)})$
- O(2) E RN+1

 $m^{(j)} = \text{no. of movies rated by user } j$ To learn $\theta^{(j)}$:

$$\min_{\Theta_{(j)}} \frac{1}{2^{m_{(j)}}} \sum_{i:r(i,j)=1}^{(i,j)} \left((\Theta_{(i)})_{i}(x_{(i)}) - A_{(i,j)} \right)_{j} + \frac{1}{2^{m_{(i)}}} \sum_{k=1}^{k} (\Theta_{(i)}^{k})_{s}$$

Optimization objective:

To learn $\theta^{(j)}$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)},...,\theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \ (\text{for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \ (\text{for } k \neq 0)$$

$$\frac{\partial}{\partial \theta_k^{(j)}} \ \mathcal{I}(\theta^{(i)}, \dots, \theta^{(n_n)})$$

Z(0(1) 0(N(1))

Problem n	notivat	1	1	X0=			
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)	
X(1) Love at last	75	75	20	20	7.1.0	40.	0
Romance forever	5	?	?	0	?	?	X0= [10]
Cute puppies of love	?	4	0	?		?	(0.0]
Nonstop car chases	0	0	5	4	[}	?	~(1)
Swords vs. karate	0	0	5	?	5	?	Cu Ten
$\Rightarrow \boxed{\theta^{(1)}} =$	$\theta^{(2)}$	$ \begin{array}{c} $	$\theta^{(3)} = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$	11-(1)		(1	(O(1)) ^T x(1) ² 2 5 (O(2)) ^T x(1) ² 2 5 (O(2)) ^T x(1) ² 2 0 (U)) ^T x(1) ² 2 0 Andrew Ng

Optimization algorithm

Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, to learn $\underline{x}^{(i)}$:

$$= \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\underline{\theta^{(j)}})^T x^{(i)} - \underline{y^{(i,j)}})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$$

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Collaborative filtering

Given $\underline{x^{(1)}, \dots, x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)}, \dots, \theta^{(n_u)}}$

Given
$$\underbrace{\theta^{(1)},\ldots,\theta^{(n_u)}}_{\mathsf{can}}$$
, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Collaborative filtering optimization objective

$$\rightarrow \operatorname{Given} x^{(1)}, \dots, x^{(n_m)}, \operatorname{estimate} \theta^{(1)}, \dots, \theta^{(n_u)} : \\ \qquad \longrightarrow \left[\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \left\{ \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta^{(j)}_k)^2 \right\} \right\}$$

 \rightarrow Given $\theta^{(1)}, \ldots, \theta^{(n_u)}$, estimate $x^{(1)}, \ldots, x^{(n_m)}$:

$$= \sum_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

Minimizing $x^{(1)}, \dots, x^{(n_m)}$ and $\theta^{(1)}, \dots, \theta^{(n_u)}$ simultaneously:

$$J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}) = \frac{1}{2} \sum_{(i,j): r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_u} \sum_{k=1}^n (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^n (\theta_k^{(j)})^2 + \frac{\lambda}{2}$$

Collaborative filtering algorithm

 \rightarrow 2. Minimize $J(x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, ..., n_u, i = 1, ..., n_m$:

3. For a user with parameters θ and a movie with (learned) features x , predict a star rating of $\theta^T x$.

$$(Q_{(i)})_{\perp}(x_{(i)})$$

Collaborative filtering

$$(\mathcal{O}_{(j)})_{\perp}(\mathsf{x}_{(ij)})$$

Predicted ratings:

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ ? & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

$$Predicted ratings: (75)$$

$$\frac{(\theta^{(1)})^T(x^{(1)})}{(\theta^{(1)})^T(x^{(1)})} \underbrace{(\theta^{(2)})^T(x^{(1)})}_{(\theta^{(2)})^T(x^{(2)})} \dots \underbrace{(\theta^{(n_u)})^T(x^{(1)})}_{(\theta^{(n_u)})^T(x^{(2)})} \\ \vdots & \vdots & \vdots & \vdots \\ \theta^{(1)})^T(x^{(n_m)}) \underbrace{(\theta^{(2)})^T(x^{(n_m)})}_{(\theta^{(2)})^T(x^{(n_m)})} \dots \underbrace{(\theta^{(n_u)})^T(x^{(n_m)})}_{(\theta^{(n_u)})^T(x^{(n_m)})}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(2)})^{T} - \end{bmatrix}$$

$$= \begin{bmatrix} -(x^{(1)})^{T} \\ -(x^{(1)})^{T} - \end{bmatrix}$$

Finding related movies

For each product i, we learn a feature vector $x^{(i)} \in \mathbb{R}^n$.

How to find movies j related to movie i?

small
$$||x^{(i)} - x^{(j)}|| \rightarrow movie 0 and i are "similar"$$

5 most similar movies to movie *i*:

 \rightarrow Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Users who have not rated any movies

					V					
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	г.			0 0	n
→ Love at last	5	5	0	0	3 0		5	0	0 %	
Romance forever	5	?	?	0	? (6	V) (0 7	
Cute puppies of love	?	4	0	?	? 0	$Y = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	4	0	1 3	
Nonstop car chases	0	0	5	4	? 0		0 0	5	4 !	
Swords vs. karate	0	0	5	?	? 🖸	Ľ	0	Э	0	

$$\min_{\substack{x^{(1)}, \dots, x^{(n_m)} \\ \theta^{(1)}, \dots, \theta^{(n_u)}}} \frac{1}{2} \sum_{\substack{(i,j): r(i,j)=1 \\ (i,j): r(i,j)=1}} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n} (x_k^{(i)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} (\theta_k^{$$

Mean Normalization:

$$\mu = \begin{bmatrix} 2.5 \\ 2.5 \\ 2.25 \\ 1.25 \end{bmatrix} \rightarrow \underline{Y} = \begin{bmatrix} 2.5 \\ 2 \\ 1.25 \end{bmatrix}$$

For user j, on movie i predict:

User 5 (Eve):