

Tópicos I – Morfometria Geométrica

Recapitulando

Método **eficiente** em descrever a forma

Morfometria geométrica

Recapitulando

Landmarks: marcos anatômicos tomados como homólogos dentro da amostra

Como classificar os tipos de landmarks e qual a "qualidade" da informação anatômica transmitida

Fred. L. Bookstein

Tipo II

Precisão Anatômica: média

Tipo II

Pontos definidos pela geometria da estrutura, mas sem necessariamente uma característica anatômica distinta

Tipo II

Pontos definidos pela geometria da estrutura, mas sem necessariamente uma característica anatômica distinta

E.g.: ponto mais convexo de uma curva ou o ponto mais largo de uma estrutura

Tipo III

Precisão Anatômica: baixa

Tipo III

Pontos de referência com localização arbitrária ou de difícil identificação precisa, com significado anatômico limitado

Tipo III

Pontos de referência com localização arbitrária ou de difícil identificação precisa, com significado anatômico limitado

E.g.: ponto no meio de uma superfície lisa, sem características anatômicas marcantes

Tipo I

Precisão Anatômica: alta

Tipo I

Pontos anatômicos fixos, com significado biológico claro e bem definido

Tipo I

Pontos anatômicos fixos, com significado biológico claro e bem definido

E.g.: interseções de suturas, junções de ossos, etc

Medical Image Analysis (1996/7) volume 1, number 3, pp 225–243 © Oxford University Press

Landmark methods for forms without landmarks: morphometrics of group differences in outline shape

Institute of Gerontology, University of Michigan, 300 North Ingalls Building, Ann Arbor, MI

Fred. L. Bookstein

Se, por um lado, landmarks são pontos anatômicos precisos (especialmente os de tipo I e II)

Os semilandmarks são pontos definidos ao longo de curvas/superfícies de modo a seguir a geometria de uma estrutura

Será que todos esses pontos devem ter a mesma importância (biológica e estatística)?

Será que todos esses pontos devem ter a mesma importância (biológica e estatística)?

Semilandmarks podem gerar mais ruído

n_{land} = n_{semiland}

Se tratarmos da mesma maneira

Se tratarmos da mesma maneira

Se tratarmos da mesma maneira

Consiste na aplicação de uma GPA local

 Minimização da energia de bending

Conformação que menos distorce a grade tps após uma análise de Procrustes aplicada aos semilandmarks

Minimizando a energia de bending (MEB)

Comparando

s/ correção

correção por MEB

 Minimização de Distância **Procrustes**

> Semilandmarks são ajustados para minimizar a distância Procrustes do que seria um "morfoespaço" gerado para as curvas

E se desse pra analisar a forma sem usar landmarks?

Transformada de Fourier Elíptica

COMPUTER GRAPHICS AND IMAGE PROCESSING 18, 236-258 (1982)

Elliptic Fourier Features of a Closed Contour¹

FRANK P. KUHL

U.S. Army Armament Research and Development Command, Dover, New Jersey 07801

AND

CHARLES R. GIARDINA

Fairleigh Dickinson University, Teaneck, New Jersey 07070

Received June 22, 1981

Transformada de Fourier Elíptica

 É a decomposição de contornos de um objeto em harmônicos elípticos

Confiem em mim kkkk

Confiem em mim kkkk

Confiem em mim kkkk

Transformada de Fourier Elíptica

- É a decomposição de contornos de um objeto em harmônicos elípticos
- Aplicável a:
 - Formas fechadas
 - o 2D

$$x(t) = a_0 + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)]$$

$$y(t) = c_0 + \sum_{n=1}^{\infty} [c_n \cos(nt) + d_n \sin(nt)]$$

$$x(t) = a_0 + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)]$$

$$y(t) = c_0 + \sum_{n=1}^{\infty} [c_n \cos(nt) + d_n \sin(nt)]$$

$$x(t) = a_0 + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)]$$

$$y(t) = c_0 + \sum_{n=1}^{N} [c_n \cos(nt) + d_n \sin(nt)]$$

Número de harmônicos

$$x(t) = a_0 + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)]$$

$$y(t) = c_0 + \sum_{n=1}^{N} [c_n \cos(nt) + d_n \sin(nt)]$$

Coeficientes dos harmônicos

Exemplo

Agora, vamos pro

Landmarks que usaremos

ZOOLOGICAL Journal of the Journal Linnwen Society

Zoological Journal of the Linnean Society, 2016. With 7 figures

Geographical variation in head shape of a Neotropical group of toads: the role of physical environment and relatedness

LUCAS N. BANDEIRA $^{1}\ast,$ JOÃO ALEXANDRINO $^{2},$ CÉLIO F. B. HADDAD 1 and MARIA TEREZA C. THOMÉ 1

Landmarks que usaremos

Zoological Journal of the Linnean Society, 2016. With 7 figures

Geographical variation in head shape of a Neotropical group of toads: the role of physical environment and relatedness

LUCAS N. BANDEIRA $^{1*},$ JOÃO ALEXANDRINO $^{2},$ CÉLIO F. B. HADDAD 1 and MARIA TEREZA C. THOMÉ 1

Semilandmarks que usaremos

- Curva 1:
 - o MA, n=30
- Curva 2:
 - STe, n=10
- Curva 3:
 - ∘ ieE, n=30
- Curva 4:
 - LC, n=20

Todos posicionados de baixo pra cima

Zoological Journal of the Linnean Society, 2016. With 7 figures

Geographical variation in head shape of a Neotropical group of toads: the role of physical environment and relatedness

LUCAS N. BANDEIRA 1* , JOÃO ALEXANDRINO 2 , CÉLIO F. B. HADDAD 1 and MARIA TEREZA C. THOMÉ 1

Arquivos de Zoologia

Museu de Zoologia da Universidade de São Paulo

www.mz.usp.br/publicacoes www.revistasusp.sibi.usp.br ISSN impresso: 0066-7870

Taxonomic revision of *Rhinella granulosa* species group (Amphibia, Anura, Bufonidae), with a description of a new species

Patrícia Narvaes^{1,2} Miguel Trefaut Rodrigues^{1,3}

tpsUtil

(pontos)

semilandmarks (curvas) landmarks Para add semiland no tpsDig 277, 1466 = CDC1BF Reference length defined n=5

tpsDig2 ver. 2.30: teste.TPS

- - X

🖫 🔼 # 🖊 🖺 🐧 fit + 🗕 0.467

tpsDig

Por fim:

clique com
botão direito
sobre a curva >
Resample curve
> indique o nº de
landmarks

