FÓRMULA DE HAVERSINE

$$\Delta$$
lat = lat2- lat1

Δ long = long2- long1

$$a = \sin^2(\Delta lat/2) + \cos(lat1) \cdot \cos(lat2) \cdot \sin^2(\Delta long/2)$$

$$c = 2 \cdot atan2(\sqrt{a}, \sqrt{1-a})$$

$$d = R \cdot c$$

$$\Delta$$
lat = lat2- lat1

$$\Delta \text{long} = \text{long2} - \text{long1}$$
 $a = \left(\frac{AB}{2}\right)$

$$a = \sin^2(\Delta lat/2) + \cos(lat1) \cdot \cos(lat2) \cdot \sin^2(\Delta long/2)$$

$$c = 2 \cdot atan2(\sqrt{a}, \sqrt{(1-a)})$$

$$d = R \cdot c$$

$$AB = 2\sin\left(\frac{\theta}{2}\right)$$

$$\Delta$$
lat = lat2- lat1

$$\Delta long = long2 - long1$$
 $a = \left(\frac{AB}{2}\right)^{-1}$

$$a = \sin^2(\Delta lat/2) + \cos(lat1) \cdot \cos(lat2) \cdot \sin^2(\Delta long/2)$$

$$c = 2 \cdot atan2(\sqrt{a}, \sqrt{(1-a)})$$

$$d = R \cdot c$$

$$\Delta$$
lat = lat2- lat1

$$a = \sin^2(\Delta |at/2) + \cos(|at1) \cdot \cos(|at2) \cdot \sin^2(\Delta |ong/2)$$

$$c = 2 \cdot atan2(\sqrt{a}, \sqrt{(1-a)})$$
 $c = 2 \cdot atan(\frac{\sqrt{a}}{\sqrt{1-a}})$

$$d = R \cdot c$$

$$d = R$$

$$\Delta$$
lat = lat2- lat1

 $c = 2 \cdot atan2(\sqrt{a}, \sqrt{1-a})$

$$a = \sin^2(\Delta |at/2) + \cos(|at1) \cdot \cos(|at2) \cdot \sin^2(\Delta |ong/2)$$

$$d = R$$

$$d = R \cdot c$$