2021 STAT 5010 Final

Tony

- 1. Same as Q1 in 5010 final, fall 2020
- 2. $X_i \sim N(\theta_i, 1), i = 1, ..., n, Loss = \sum_{i=1}^n (\delta(X)_i \theta_i)^2, \delta(X)_i = X_i$, why is δ minimax? Is it the unique minimax?
- 3. $X_i \sim Unif(1,2), i.i.d.$
 - (a). Prove that the harmonic mean H_n converges to a constant c in prob, identify c.
 - (b). Find the limiting distribution of $\sqrt{n}(H_n c)$
- 4. (X_i, Y_i) i.i.d.mutually independent. $X_i \sim N(0, 1), Y_i | X_i \sim N(x\theta, 1)$
 - (a). MLE $\hat{\theta}$
 - (b). Asymptotic distribution of $\sqrt{n}(\hat{\theta} \theta)$
 - (c). (d). Complicated and limited time, didn't give a shot and don't remember.
- 5. (a). $Exp(\theta, 1)$ (location parameter θ), simple test $\theta_0 \ vs \ \theta_1$. UMPT?
 - (b). Normal mean test, double sided, is there UMPT?
- 6. $EX = \mu$, $Var(X) = \sigma^2$ (or $N(\mu, \sigma^2)$). Prove that $k\bar{X}$, $k \in (0, 1)$ has smaller MSE. Drawbacks?