Name _____

COMPLEX VARIABLES QUALIFYING EXAM

Fall 1998

(Burckel & Nagy)

Do any 6 of the 8 problems. Standard notation throughout is: \mathbb{Z} is the set of integers; \mathbb{C} is the set of complex numbers; $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$; Ω is a non-void open, connected subset of \mathbb{C} . $H(\Omega)$ is the set of all holomorphic functions in Ω .

- 1. $f \in H(\Omega)$ is zero-free.
 - (a) Show that if Ω is convex, then $\exists g \in H(\Omega)$ such that $f = e^g$.
 - (b) Give an example of an Ω and an f for which no such g exists.
- **2.** Compute $\int_0^\infty \frac{dx}{1+x^n}$ for each integer $n \ge 2$.

<u>Hint</u>: Use the contour

3. $f: \mathbb{D} \times \mathbb{D} \to \mathbb{C}$ is bounded and has the property that for each fixed $w \in \mathbb{D}$, f(w,z) is a holomorphic function of z, and for each $z \in \mathbb{D}$, f(w,z) a holomorphic function of w. Show that f is (jointly) continuous on $\mathbb{D} \times \mathbb{D}$.

<u>Hint</u>: Use Cauchy's integral representation in both variables simultaneously.

4. $f \in H(\mathbb{C})$ and $f(\mathbb{C}) \subset \{z \in \mathbb{C} : -1 < Rez < 1\}$. Show that f is constant.

1

- **5.** The usual topology on $H(\Omega)$ is the c.c. topology: the topology of uniform convergence on compact subsets of Ω .
 - (a) Show that $f \mapsto f'$ is a continuous mapping of $H(\Omega)$ into itself.
 - (b) Give an example of an Ω for which the mapping $f \mapsto f'$ is not surjective.
- **6.** $f \in H(\Omega)$, A, B, k are positive real constants and $|f(z)| \leq A + B|z|^k$ for all z. Show that f is a polynomial.
- 7. (a) P, Q are polynomials, $\deg(Q \geq 2 + \deg(P))$, $f = \frac{P}{Q}$, $S = \{p_1, \ldots, p_k\}$ are the poles of f and they satisfy $S \cap \mathbb{Z} = \omega$. Show that

$$\sum_{n \in \mathbb{Z}} f(n) = -\sum_{j=1}^{k} Res(g; p_j)$$

where $g(z) = \pi f(z) \cot(\pi z)$ for all $z \in \mathbb{C} \setminus \mathbb{Z}$.

<u>Hint</u>: Consider integrating over the contour which is a square having vertices $\pm (n + \frac{1}{2}) \pm (n + \frac{1}{2})i$, $n \in \mathbb{Z}$.

- (b) Use a variation on the idea in (a) to compute $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- **8.** For $f:\Omega\to\mathbb{C}$ three fundamental properties are equivalent:
 - (a) f is locally of power-series type.
 - (b) f satisfies Cauchy's integral formula for circles.
 - (c) f satisfies the Cauchy-Riemann equation(s).

State these properties precisely and prove one of the six implications.