Artificial Intelligence

Lecture 9: Learning for PGM

Xiaojin Gong 2022-04-18

Credits: PGM course in Stanford, by D. Koller

Review

- Bayesian network
 - Representation
 - Bayesian network
 - Template models
 - Inference
 - Exact inference
 - Enumeration
 - Variable elimination
 - Approximate inference
 - Sampling
 - Applications
 - Kalman filtering
 - Particle filtering
 - Object tracking
 - Scene parsing

Probabilistic Graphical Models

Bayesian network

Causality relationship

Markov network

Correlation

Markov Network

- Markov network
 - Representation
 - Inference
 - Exact inference
 - Belief propagation
 - Max-Sum elimination
 - Approximate inference
 - Loopy belief propagation
 - Variational methods

Outline

- Learning for Probabilistic Graphical Models
 - Parameter Estimation
 - Maximum Likelihood Estimation
 - Bayesian Estimation
 - Application: Supervised Classification
 - Structure Learning
 - Learning Metrics
 - Learning with Hidden variables
 - Expectation Maximization
 - Application: Unsupervised Clustering

Learning Agents

• An agent is learning if it improves its performance on future tasks after making observations about the world.

Learning Agents

- The improvements depend on four major factors:
 - Which component is to be improved.
 - What prior knowledge the agent already has.
 - What representation is used for the data and the component.
 - Probabilistic graphical models
 - What feedback is available to learn from.
 - Supervised learning
 - Unsupervised learning
 - Reinforcement learning

Learning Scenarios

Known structure, complete data

Input Data

X ₁	X ₂	Υ
X ₁ ⁰	X21	y ⁰
X ₁ ¹	X20	y ⁰
X ₁ ⁰	X ₂ ¹	y ¹
X ₁ ⁰	X20	y ⁰
X ₁ ¹	X ₂ ¹	y ¹
X ₁ ⁰	X21	y ¹
X ₁ ¹	X20	y ⁰

		P(Y	$Y/X_{\nu}X_{2}$	
X_1	X ₂	y ⁰	y^1	
X10	X20	1	0	
$X_1^{\ 0}$	X21	0.2	0.8	
X_1^1	X20	0.1	0.9	
X_1^{1}	X21	0.02	0.98	

Learning Scenarios

- Known structure, complete data
- Unknown structure, complete data
- Known structure, incomplete data
- Unknown structure, incomplete data
- Hidden variables, incomplete data

X ₁	X ₂	Y
X10	X21	y ⁰
X ₁ ¹	X20	y ⁰
X10	X ₂ ¹	y ¹
X ₁ ⁰	X20	y ⁰
X ₁ ¹	X ₂ ¹	y ¹
X ₁ ⁰	X ₂ ¹	y ¹
X ₁ ¹	X20	y ⁰

X ₁	X ₂	Y
?	X ₂ ¹	y ⁰
X_1^{1}	?	y ⁰
?	X ₂ ¹	?
X10	X ₂ ¹ X ₂ ⁰	y 0
?	X ₂ ¹	y ¹
X10	X21	?
X ₁ ¹	?	V ⁰

Learning Tasks

- True distribution P^* , corresponding to a PGM $\mathcal{M}^* = (\mathcal{K}^*, \theta^*)$
- Learning task:
 - Given a data set $\mathcal{D} = \{\xi[1], ..., \xi[M]\}$ of M i.i.d samples from P^*
 - Complete / incomplete data
 - To learn a model $\widetilde{\mathcal{M}}$ that best approximates \mathcal{M}^*
 - Learn θ^* : Parameter estimation
 - Learn \mathcal{K}^* : Structure learning
 - Incorporate prior knowledge or constraints about $\widetilde{\mathcal{M}}$
 - Priors over parameters
 - Priors over structures

Parameter Estimation

- Density estimation:
 - Minimize relative entropy distance / KL-divergence

$$D(P^* \| \tilde{P}) = \mathbb{E}_{\xi \sim P^*} \left[\log \left(\frac{P^*(\xi)}{\tilde{P}(\xi)} \right) \right] = -\mathbb{H}_{P^*}(\mathcal{X}) - \mathbb{E}_{\xi \sim P^*} \left[\log \tilde{P}(\xi) \right]$$

Learning Metrics:

Expected log-likelihood

Likelihood

$$P(\mathcal{D} : \mathcal{M}) = \prod_{m=1}^{M} P(\xi[m] : \mathcal{M})$$

Log-likelihood

$$\log P(\mathcal{D} : \mathcal{M}) = \sum_{m=1}^{M} \log P(\xi[m] : \mathcal{M})$$

Conditional likelihood

$$P(\mathcal{D}:\mathcal{M}) = \prod P(y[m]|x[m]:\mathcal{M})$$

- Biased Coin Example
 - P is a Bernoulli distribution

$$P(x[m]) = \begin{cases} \theta & x[m] = x^{1} \\ 1 - \theta & x[m] = x^{0} \end{cases}$$

- $\mathcal{D} = \{x[1], ..., x[M]\}$ sampled i.i.d from P
- Goal: find $\theta \in [0,1]$ that predicts \mathcal{D} well

$$L(\theta : \mathcal{D}) = \prod_{m} P(x[m] : \theta)$$

 θ is not a random variable

Biased Coin Example (cont'd)

Find θ maximizing likelihood

$$L(\theta:\mathcal{D}) = \theta^{M[1]} (1 - \theta)^{M[0]}$$

$$\ell(\theta : \mathcal{D}) = M[1] \log \theta + M[0] \log(1 - \theta)$$

• Differentiating the log-likelihood and solving for θ

$$\hat{\theta} = \frac{M[1]}{M[1] + M[0]}$$

Data m

P is a Multinomial distribution

$$P(x:\boldsymbol{\theta}) = \theta_k$$
 if $x = x^k$ $\boldsymbol{\theta} \in [0,1]^K : \sum_i \theta_i = 1$

Likelihood

$$L(\mathcal{D}: \boldsymbol{\theta}) = \prod_{k} \theta_{k}^{M[k]}$$

Constrained cost function with a Lagrange multiplier

$$l = \log L(D:\theta) + \lambda(1 - \sum_{k} \theta_{k})$$

$$\frac{\partial l}{\partial \theta_k} = \frac{M[k]}{\theta_k} - \lambda = 0$$

$$\hat{\theta}_k = \frac{M[k]}{M}$$

$$\sum M[k] = \sum \lambda \theta_k = \lambda$$

P is a Gaussian distribution

$$P(x:\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Log likelihood

$$L = \sum_{j=1}^{N} \log \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_j - \mu)^2}{2\sigma^2}} = N(-\log \sqrt{2\pi} - \log \sigma) - \sum_{j=1}^{N} \frac{(x_j - \mu)^2}{2\sigma^2}$$

Differentiating the log-likelihood and solving

$$\frac{\partial L}{\partial \mu} = -\frac{1}{\sigma^2} \sum_{j=1}^{N} (x_j - \mu) = 0 \qquad \Rightarrow \quad \mu = \frac{\sum_j x_j}{N}$$

$$\frac{\partial L}{\partial \sigma} = -\frac{N}{\sigma} + \frac{1}{\sigma^3} \sum_{j=1}^{N} (x_j - \mu)^2 = 0 \qquad \Rightarrow \quad \sigma = \sqrt{\frac{\sum_j (x_j - \mu)^2}{N}}$$

MLE for Bayesian Network

Likelihood for BN

• If the parameter sets $\theta_{X_i|Pa_{X_i}}$ are disjoint, MLE can be computed by maximizing each local likelihood separately

MLE for Bayesian Network

Example

- Given data instance (x[m], y[m])
- Estimate parameters

$$\theta_{x^0}, \theta_{x^1}, \theta_{y^0|x^0}, \theta_{y^1|x^0}, \theta_{y^0|x^1}, \theta_{y^1|x^1}$$

• Likelihood:

	Υ	
X	y ⁰	y ¹
X ⁰	0.95	0.05
X ¹	0.2	8.0

MLE for Bayesian Network

- Example (cont'd)
 - Likelihood:

$$L(\boldsymbol{\theta}:\mathcal{D}) = \left(\prod_{m} P(x[m]:\boldsymbol{\theta}_{X})\right) \left(\prod_{m} P(y[m] \mid x[m]:\boldsymbol{\theta}_{Y\mid X})\right)$$

$$= \prod_{m:x[m]=x^0} P(y[m] \mid x[m] : \theta_{Y|x^0}) \cdot \prod_{m:x[m]=x^1} P(y[m] \mid x[m] : \theta_{Y|x^1})$$

$$\cdot \prod_{m:x[m]=x^1} P(y[m] \mid x[m] : \boldsymbol{\theta}_{Y|x^1})$$

$$\prod_{m:x[m]=x^0}$$

$$\theta_{y^1|x^0} = \frac{M[x^0, y^1]}{M[x^0, y^1] + M[x^0, y^0]} = \frac{M[x^0, y^1]}{M[x^0]}$$

Learning Approaches

- Maximum likelihood estimation
 - Limit: do not encode any prior knowledge & deficiencies with small data sets
 - A coin is tossed 10 times, and comes out 'heads' 7 of the 10 tosses
 - A coin is tossed 10000 times, and comes out 'heads' 7000 of the 10000 tosses
- Bayesian estimation
 - Basic idea: to encode prior knowledge
 - Treat parameters as random variables
 - Learning is then a special case of inference

Bayesian prediction:

- Calculates the probability of each hypothesis, given the data, and make predictions on that basis
- The predictions are made by using all the hypotheses, weighted by their probabilities, rather than by using just a single best hypothesis
- Learning is reduced to probabilistic inference

- Biased Coin Example
 - Treat parameter θ as random variables
 - Given a fixed θ , tosses are independent

- If θ is unknown, tosses are not marginally independent
- Joint probability $P(x[1], \dots, x[M], \theta) = P(x[1], \dots, x[M] \mid \theta) P(\theta)$ $= P(\theta) \prod_{m=1}^{M} P(x[m] \mid \theta)$ $= P(\theta) \theta^{M[1]} (1 \theta)^{M[0]}$
- The posterior distribution over θ

$$P(\theta \mid x[1], \dots, x[M]) = \frac{P(x[1], \dots, x[M] \mid \theta) P(\theta)}{P(x[1], \dots, x[M])}$$

- Biased Coin Example
 - Bayesian prediction:
 - Predict the probability over the next toss

$$P(x[M+1] \mid x[1], ..., x[M]) =$$

$$= \int P(x[M+1] \mid \theta, x[1], ..., x[M]) P(\theta \mid x[1], ..., x[M]) d\theta$$

$$= \int P(x[M+1] \mid \theta) P(\theta \mid x[1], ..., x[M]) d\theta$$

$$= \int P(x[M+1] \mid \theta) \frac{P(x[1], ..., x[M] \mid \theta) P(\theta)}{P(x[1], ..., x[M])} d\theta$$

- The probability depends on the prior distribution
 - Uniform prior
 - Dirichlet prior

- Biased Coin Example
 - Bayesian prediction with uniform prior

$$P(x[M+1] \mid x[1], ..., x[M])$$

$$= \int P(x[M+1] \mid \theta) \frac{P(x[1], ..., x[M] \mid \theta) P(\theta)}{P(x[1], ..., x[M])} d\theta$$

$$P(X[M+1] = x^{1} \mid x[1], \dots, x[M])$$

$$= \frac{1}{P(x[1], \dots, x[M])} \int \theta \cdot \theta^{M[1]} (1-\theta)^{M[0]} d\theta$$

$$= \frac{M[1]+1}{M[1]+M[0]+2}$$

- Biased Coin Example
 - Bayesian prediction with Dirichlet prior

$$P(x[M+1] | x[1],...,x[M])$$

$$= \int P(x[M+1] \mid \theta) \frac{P(x[1], \dots, x[M] \mid \theta) P(\theta)}{P(x[1], \dots, x[M])} d\theta$$

$$P(x[M+1] = x^k \mid \mathcal{D}) = \frac{M[k] + \alpha_k}{M + \alpha}$$

• Larger $\alpha \Rightarrow$ more confidence in prior

- Bayesian prediction:
 - Pros:
 - Bayesian prediction is optimal, whether the data set be small or large
 - Cons:
 - For real learning problems, the hypothesis space is usually very large or infinite, we must resort to approximate or simplified methods such as MAP
- Maximum a posteriori (MAP)

$$P(\theta \mid x[1], \dots, x[M]) = \frac{P(x[1], \dots, x[M] \mid \theta) P(\theta)}{P(x[1], \dots, x[M])}$$

• When the prior is a uniform distribution, MAP reduces to MLE

Application: Supervised Classification

Model-based classification with Naive Bayes

Example: Spam Filter

- Input: an email
- Output: spam / ham

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails
- Features: The attributes used to make the spam/ham decision
 - Words: FREE!
 - Text Patterns: \$dd, CAPS
 - Non-text: SenderInContacts

•

Example: Digit Recognition

- Input: images / pixel grids
- Output: a digit 0-9

MNIST database

- Setup:
 - Get a large collection of example images, each labeled with a digit
 - Note: someone has to hand label all this data!
 - Want to learn to predict labels of new, future digit images
- Features: The attributes used to make the digit decision
 - Pixels: (6,8)=ON
 - Shape Patterns: NumComponents, AspectRatio, NumLoops
 - •

Model-based Classification

Model-based approach

- Build a model (e.g. Bayes' net) where both the label and features are random variables
- Instantiate any observed features
- Query for the distribution of the label conditioned on the features

Challenges

- What structure should the BN have?
- How should we learn its parameters?

Naive Bayes Model

• Independence:

$$\forall F_i, F_j, \qquad (F_i \perp F_j | Y)$$

Joint distribution:

$$P(Y, F_1, \dots, F_n) = P(Y) \prod_i P(F_i | Y)$$

Classifier:

$$\max P(Y = y_j | f_1, \dots, f_n) = \max \frac{P(Y = y_j) \prod_i P(f_i | Y = y_j)}{P(f_1, \dots, f_n)}$$

- Assume all features are independent effects of the label
- Simple digit recognition version:
 - One feature (variable) F_{ij} for each grid position $\langle i, j \rangle$
 - Feature values are on / off, based on whether intensity is more or less than 0.5 in underlying image
 - Each input maps to a feature vector, e.g.

- Here: lots of features, each is binary valued
- Naïve Bayes model: $P(Y, F_1, ..., F_n) \propto P(Y) \prod_i P(F_i | Y)$
- What do we need to learn?

A general Naive Bayes model:

 $|Y| \times |F|^n$ values

 $n \times |F| \times |Y|$ parameters

- We only have to specify how each feature depends on the class
- Total number of parameters is linear in n
- Model is very simplistic, but often works anyway

- Inference:
 - Goal: compute posterior distribution over label variable Y
 - Step 1: get joint probability of label and evidence for each label

$$P(Y, f_1 \dots f_n) = \begin{bmatrix} P(y_1, f_1 \dots f_n) \\ P(y_2, f_1 \dots f_n) \\ \vdots \\ P(y_k, f_1 \dots f_n) \end{bmatrix} \longrightarrow \begin{bmatrix} P(y_1) \prod_i P(f_i|y_1) \\ P(y_2) \prod_i P(f_i|y_2) \\ \vdots \\ P(y_k) \prod_i P(f_i|y_k) \end{bmatrix}$$

Step 2: sum to get probability of evidence

• Step 3: normalize by dividing Step 1 by Step 2

$$P(Y|f_1 \dots f_n)$$

- What do we need in order to use Naïve Bayes?
 - Inference method
 - Start with a bunch of probabilities: P(Y) and the $P(F_i|Y)$ tables
 - Use standard inference to compute $P(Y|F_1 ... F_n)$
 - Nothing new here
 - Estimates of local conditional probability tables
 - P(Y), the prior over labels
 - $P(F_i|Y)$ for each feature (evidence variable)
 - These probabilities are collectively called the parameters of the model and denoted by θ
 - They typically come from training data counts

Conditional probability tables

Training and Testing

- Data: labeled instances
 - Training set
 - Validation set
 - Test set
- Features: attribute-value pairs which characterize each x
- Experimentation cycle
 - Learn parameters (e.g. model probabilities) on training set
 - (Tune hyperparameters on validation set)
 - Compute accuracy of test set
 - Very important: never "peek" at the test set!
- Evaluation
 - Accuracy: fraction of instances predicted correctly

Generalization and Overfitting

Generalization:

Want a classifier which does well on test data

• Overfitting:

• Fitting the training data very closely, but not generalizing well

Example: Overfitting

Example: Overfitting

2 wins!!

What went wrong here?

Generalization and Overfitting

- Relative frequency parameters will overfit the training data!
 - Just because we never saw a 3 with pixel (15,15) on during training doesn't mean we won't see it at test time
 - In general, we can't go around giving unseen events zero probability
- To generalize better:
 - we need to smooth or regularize the estimates

Parameter Estimation

- Estimating the distribution of a random variable
- Empirically: use training data (learning!)
 - E.g.: for each outcome x, look at the empirical rate of that value:

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total \ samples}}$$
 r r b $P_{\mathsf{ML}}(r) = 2/3$

This is the estimate that maximizes the likelihood of the data

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

Maximum Likelihood Estimation

Relative frequencies are the MLE

$$\theta_{ML} = \arg\max_{\theta} P(\mathbf{X}|\theta)$$

$$= \arg\max_{\theta} \prod_{i} P_{\theta}(X_{i})$$

$$P_{\text{ML}}(x) = \frac{\text{count}(x)}{\text{total samples}}$$

 Another option is to consider the most likely parameter value given the data - MAP

$$\theta_{MAP} = \arg \max_{\theta} P(\theta|\mathbf{X})$$

$$= \arg \max_{\theta} P(\mathbf{X}|\theta)P(\theta)/P(\mathbf{X})$$

$$= \arg \max_{\theta} P(\mathbf{X}|\theta)P(\theta)$$

Laplace Smoothing

- Laplace's estimate:
 - Pretend you saw every outcome once more than you actually did

$$P_{LAP}(x) = \frac{c(x) + 1}{\sum_{x} [c(x) + 1]}$$

$$= \frac{c(x) + 1}{N + |X|}$$

$$P_{ML}(X) = \left\langle \frac{2}{3}, \frac{1}{3} \right\rangle$$

$$P_{LAP}(X) = \left\langle \frac{3}{5}, \frac{2}{5} \right\rangle$$

- Can derive this estimate with Dirichlet priors
 - Bayesian estimation

Laplace Smoothing

- Laplace's estimate (extended):
 - Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0?
- k is the strength of the prior

$$P_{LAP,0}(X) =$$

- Laplace for conditionals:
 - Smooth each condition independently: $P_{LAP,1}(X) =$

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$
 $P_{LAP,100}(X) =$

Linear Interpolation

- In practice, Laplace often performs poorly for P(X|Y):
 - When |X| is very large
 - When |Y| is very large
- Another option: linear interpolation
 - Also get the empirical P(X) from the data
 - Make sure the estimate of P(X|Y) isn't too different from the empirical P(X)

$$P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 - \alpha)\hat{P}(x)$$

• What if α is 0? 1?

Tuning on Validation Set

- Now we've got two kinds of unknowns
 - Parameters: the probabilities P(X|Y), P(Y)
 - Hyperparameters: e.g. the amount / type of smoothing to do, k, α
- What should we learn where?
 - Learn parameters from training data
 - Tune hyperparameters on different data
 - For each value of the hyperparameters, train and test on validation se
 - Choose the best value and do a final test on the test data

Model-based Classification

- Bayes rule lets us do diagnostic queries with causal probabilities
- The naïve Bayes assumption takes all features to be independent given the class label
- We can build classifiers out of a naïve Bayes model using training data
- Smoothing estimates is important in real systems

Structure Learning

Importance of Accurate Structure

Missing an arc

Adding an arc

- Incorrect independencies
- Correct distribution P* cannot be learned
- But could generalize better

- Spurious dependencies
- Can correctly learn P*
- Increases # of parameters
- Worse generalization

Learning Metrics

- Likelihood structure score
- Bayesian Information Criterion (BIC) score
- Bayesian score

Likelihood Score

Maximum likelihood estimation

$$\max_{\mathcal{G}, \boldsymbol{\theta}_{\mathcal{G}}} L(\langle \mathcal{G}, \boldsymbol{\theta}_{\mathcal{G}} \rangle : \mathcal{D}) = \max_{\mathcal{G}} [\max_{\boldsymbol{\theta}_{\mathcal{G}}} L(\langle \mathcal{G}, \boldsymbol{\theta}_{\mathcal{G}} \rangle : \mathcal{D})]$$

$$= \max_{\mathcal{G}} [L(\langle \mathcal{G}, \hat{\boldsymbol{\theta}}_{\mathcal{G}} \rangle : \mathcal{D})]$$

Likelihood score

$$score_L(\mathcal{G} : \mathcal{D}) = \ell(\hat{\boldsymbol{\theta}}_{\mathcal{G}} : \mathcal{D})$$

- Limits:
 - Adding edges can't hurt, and almost always helps
 - Score maximized for fully connected network
- Avoid overfitting
 - Restrict # of parents or # of parameters
 - Penalize complexity

BIC Score

Bayesian Information Criterion (BIC) score

$$\operatorname{score}_{BIC}(\mathcal{G} : \mathcal{D}) = \ell(\hat{\boldsymbol{\theta}}_{\mathcal{G}} : \mathcal{D}) - \frac{\log M}{2} \operatorname{Dim}[\mathcal{G}]$$

$$= M \sum_{i=1}^{n} \mathbf{I}_{\hat{P}}(X_i; \operatorname{Pa}_{X_i}) - M \sum_{i=1}^{n} \mathbf{H}_{\hat{P}}(X_i) - \frac{\log M}{2} \operatorname{Dim}[\mathcal{G}]$$

- Also known as minimum description length (MDL)
- To explicitly penalize complexity
- Mutual information grows linearly with *M* while complexity grows logarithmically with *M*
 - As M grows, more emphasis is given to fit to data
- BIC is asymptotically consistent:
 - If data generated by G^* , networks I-equivalent to G^* will have highest score as M grows to ∞

Bayesian Score

Bayesian score

$$score_B(\mathcal{G} : \mathcal{D}) = log P(\mathcal{D} \mid \mathcal{G}) + log P(\mathcal{G})$$

Incorporate structure priors and parameter priors

Bayesian Score

- Bayesian score averages over parameters to avoid overfitting
 - Can naturally incorporate prior knowledge
 - I-equivalent networks have same score
- Bayesian score
 - Asymptotically equivalent to BIC
 - Asymptotically consistent
 - But for small M, BIC tends to underfit

Learning with Hidden Variables

- Why hidden variables?
 - Reduce the number of parameters
 - Reduce the amount of data needed to learn the parameters

Each variable has 3 values

78 parameters
Incomplete data

708 parameters

Expectation Maximization (EM)

- EM is designed for optimizing likelihood functions
- Intuition:
 - Parameter estimation is easy given complete data
 - Computing probability of missing data (= inference) is easy given parameters

Expectation Maximization (EM)

• Algorithm:

- Pick a start point for parameters
- Iterate
 - E-Step (Expectation): Complete the data using current parameters
 - M-Step (Maximization): Estimate parameters relative to data completion, using MLE

Learning Mixtures of Gaussians

• The mixture distribution:

$$P(\mathbf{x}) = \sum_{i=1}^{k} P(C=i) P(\mathbf{x} \mid C=i)$$

- EM algorithm
 - E-step: Compute the probabilities

$$p_{ij} = P(C = i \mid \mathbf{x}_j)$$
$$= \alpha P(\mathbf{x}_j \mid C = i)P(C = i)$$

• M-step: Compute the new mean, covariance and component weights

$$\mu_i \leftarrow \sum_j p_{ij} \mathbf{x}_j / n_i$$

$$\Sigma_i \leftarrow \sum_j p_{ij} (\mathbf{x}_j - \mu_i) (\mathbf{x}_j - \mu_i)^\top / n_i$$

$$w_i \leftarrow n_i / N$$

Learning Mixtures of Gaussians

• EM algorithm:

- Increases the log-likelihood of the data at every iteration
- Local optima are unavoidable, local optima can be very different
- Initialization is critical

Readings

- Artificial Intelligence
 - Chapter 18.1-18.2, 18.4
 - Chapter 20
- Assignment:
 - Homework 5