Deep Learning - Assignment 3

Diez Pérez María i6268086 - Vico Gianluca i6183186 - Gianzina Alexandra i629435

1 Introduction

The data-set consists of several documents with magnetoencephalography data. The goal is to classify the task that the subject was performing during the recording: resting, math and story task, working memory, and motor task. To do so, we implemented a CNN model and trained it with the available training data. We also compared the accuracy of intra-subject and cross-subject classification. Furthermore, we analyzed the influence of some hyper-parameters on the result and the difference between the training and testing accuracy.

2 Implementation Details

We implement a Convolutional Neural Network model with Residual Blocks. The number of residual blocks is configurable but during the training, we are using 3 blocks that contain 3 1D convolution layers and applies batch normalization. The activation function for these blocks is ReLU. The CNN model is also holding 1D convolutional layers and a linear one. Since we are dealing with a classification problem, the activation function for the output layer is softmax. We have the measurements of 248 sensors with a sampling rate is 2034 Hz. We resample the signal to 500 Hz: in this way we have a smaller dataset which fit in memory and we can also filter out some higher frequency noise. Then, we take windows of 1 second as training examples. Between one window and the next one there are 5 time steps.

3 Training the models

We training the data for ten epochs. We train the model with the train data of cross and intra data, the train and validation loss is shown in Figure 1. To measure the performance of the classification model we are using the loss function Cross-Entropy for all the experiments and the optimizer is Adam.

Looking into the Intra case, shown in the image 1 on the left, we can see how the training loss decreased in the first epoch and then remains falling until almost the end of the graph, epoch 8, when suddenly appears a significant increment, caused by over-fitting. The accuracy, precision, and recall obtained in testing Intra classification are 99% and the confusion matrix shows a good performance in the classification.

Figure 1: Train and validation loss for Intra (left) and Cross (right) classification

Analyzing the Cross loss plot, the right image in Figure 1, we can see an unstable loss that is getting higher in the latest epochs. The accuracy with this classifier is worse than with Intra, having a 47% in the first and second set and a 25% in the third. The confusion matrix shows an unsatisfactory performance.

4 Explain the choices of hyper-parameters

We train the models, as described in section 3, then we performed a random search on the number and the size of the residual blocks of the network. We perform this experiment on the model train and tested on the intra-subject data and the model trained and tested on the cross-subject data. The learning rate is always constant and equal to 0.00002 and the down-sample rate is 0.5. Then, we report the best model's accuracy as well as the hyper-parameters that resulted in the best model. In Table 1 you see the parameters and accuracy of the best models for Intra and Cross data.

Data	res. blocks	res. block size	training loss	testing loss	accuracy
Intra	5	2	0.00064	0.0080	99.96 %
Cross	5	3	0.00035	1.390	75.77 %

Table 1: Parameter values, loss values and accuracy of the best models. The learning rate is 2e-5. The input channels depend on the data, in this case is 248.

The random search is able to find hyper-parameters that gives a better accuracy on the Cross data case. For the Intra data case, we still have an high accuracy (Table 2). So, as we can see the number of residual blocks and the learning rate plays significant role in predicting the labels for the Cross data. For the Intra data these parameters don't play significant role.

Data	res. blocks	res. block size	training loss	testing loss	accuracy
Intra	3	2	0.00002	0.0023	99.96 %
Cross	3	2	0.00008	5.9360	55.10 %

Table 2: Original parameter values, loss values and accuracy of the best models before performing the random search.

5 Difference between cross-subject and intra-subject classifiers

You can see all the accuracy values in Table 3, 4, 5, 6. But in Table 4, 6 we notice that the accuracy from training and testing the Cross data are significantly different. The reason for this is because Cross data have information for different subjects, so the prediction is more challenging in comparison to Intra data that contain only one subject. As we already discussed in section 4, to increase the accuracy of the prediction for the Cross data we changed the number of residual blocks for our architecture and increased the learning rate. This way the model learns to predict with higher accuracy.

	Γ	Accuracy		Precision			Recall	
Intra Classifier 0.99978583666		64763	0.9997857958251795		0.9997	859181692926		
	·			Pr	edicted			
			rest	math	memory	motor		
		rest	3498	0	0	0	•	
	True		1	3503	0	0		
			1	1	3501	0		
			0	0	0	3503		

Table 3: Intra Classifier tested on the intra-subject test set

	Accuracy	Precision	Recall		
Cross Classifier test1	0.47458595088520844	0.5873462657444807	0.47451891282029235		
Cross Classifier test2	0.4634494574528841	0.37507179598025275	0.46331960430438224		
Cross Classifier test3	0.24757281553398058	0.30834797222467675	0.24746681889539032		
	Predicted				

		Predicted				
		rest	math	memory	motor	
	rest	1906/5989/3394	1/693/1906	0/0/0	5090/324/1707	
True	math	7/2/1	3739/60/0	3261/6936/1885	0/0/5109	
True	memory	1/6978/0	1108/1/1	733/27/110	5164/0/6986	
	motor	0/0/1	1/1/2314	87/97/1260	6981/6908/3432	

Table 4: Cross Classifier tested on the three cross-subject test sets. As we can see, the results varies a lot between the set. Also, some task are easier to distinguish that others (e.g., motor is rarely classified as rest).

		Accuracy]]	Precision		Recall	
Intra Classific	er test	0.9937178754997145		0.993	0.9938675199798368		37206261234662	
				Pr	Predicted			
			rest	math	memory	motor		
		rest	3498	0	0	0	-	
	Thurs	$_{\mathrm{math}}$	0	3457	47	0		
True	True	memory	0	1	3502	0		
		motor	0	0	40	3463		

Table 5: Cross Classifier tested on the intra test set. Surprisingly, the model has an accuracy similar to the Intra Classifier

	Accuracy	Precision	Recall
Cross Classifier test1	0.3999143346659052	0.41695500276041	0.3997835950032526
Cross Classifier test2	0.7884066247858367	0.7881226823312776	0.788342038429152
Cross Classifier test3	0.37896202170188464	0.5805638158424381	0.3788066268460427

		Predicted					
		rest	$_{ m math}$	memory	motor		
	rest	1/7005/3503	0/0/0	6066/1/3504	930/100/0		
True	math	1/0/0	3264/3934/112	3742/3064/300	0/0/6583		
rrue	memory	1/19/1	816/2841/2	936/4145/0	5253/1/7004		
	motor	1/1/0	2/0/0	0/1/5	7003/7004/7002		

Table 6: Intra Classifier tested on the three cross test sets. Again we can see that some classes are easier to classify. Also, the performance changes a lot between the different test sets.

6 Conclusion

Training big data is challenging, but using techniques like down sampling, and splitting the data into batches we manage to reduce the training time and are able to train the data with different models and increase the prediction accuracy. So, this was very significant as the architecture we implemented has good results. For the Intra case, we have an extremely high accuracy. The Cross case is more difficult, so we have lower accuracy. The random search is able to find a better architecture for the model and effectively increase the accuracy on the cross-subject data. It is using the largest values we allowed for those parameters, so it also suggests that a deeper model might further improve the results.