[80245013 Machine Learning, Fall, 2020]

Probabilistic Methods for Classification

Jun Zhu

dcszj@mail.tsinghua.edu.cn
http://ml.cs.tsinghua.edu.cn/~jun
State Key Lab of Intelligent Technology & Systems
Tsinghua University

September 29, 2020

Outline

- Probabilistic methods for supervised learning
- Naive Bayes classifier
- Logistic regression
- Exponential family distributions
- Generalized linear models

An Intuitive Example

[Courtesy of E. Keogh]

With more data ...

Build a histogram, e.g., for "Antenna length"

⊠ Katydids

Grasshoppers

Empirical distribution

Histogram (or empirical distribution)

Smoothing with kernel density estimation (KDE):

Classification?

- Classify another insect we find. Its antennae are 3 units long
- Is it more probable that the insect is a Grasshopper or a Katydid?

Classification Probability

$$P(Grasshopper | 3) = 10 / (10 + 2) = 0.833$$

 $P(Katydid | 3) = 2 / (10 + 2) = 0.166$

Classification Probability

$$P(Grasshopper | 7) = 3 / (3 + 9) = 0.250$$

 $P(Katydid | 7) = 9 / (3 + 9) = 0.750$

[Courtesy of E. Keogh]

Classification Probability

$$P(Grasshopper | 5) = 6 / (6 + 6) = 0.500$$

 $P(Katydid | 5) = 6 / (6 + 6) = 0.500$

[Courtesy of E. Keogh]

The simplest "category-feature" generative model:

Category: "bird", "Mammal"

□ Features: "has beak", "can fly" ...

- A mathematic model:
 - **Naive Bayes assumption**: features X_1, \dots, X_d are conditionally independent given the class label Y

♦ A mathematic model:

Inference via Bayes rule:

$$p(y|\mathbf{x}) = \underbrace{\frac{p(\mathbf{x}, y)}{p(\mathbf{x})}}_{p(\mathbf{x})} = \frac{p(y)p(\mathbf{x}|y)}{p(\mathbf{x})}$$

Bayes' decision rule:

$$y^* = \arg\max_{y \in \mathcal{Y}} p(y|\mathbf{x})$$

Bayes Error

Theorem: Bayes classifier is optimal!

Beyes classifier

$$p(error) = \int_{-\infty}^{\infty} p(error|\mathbf{x})p(\mathbf{x})d\mathbf{x}$$

• However, the true distribution is unknown.

Learning!

□ We need to estimate it!

- How to learn model parameters?
 - Assume *X* are *d* binary features, *Y* has 2 possible labels

$$p(y|\pi) = \left\{ \begin{array}{ll} \pi & \text{if } y = 1 \ (i.e., \ \text{bird}) \\ 1 - \pi & \text{otherwise} \end{array} \right. \quad \text{ {bird, mammal}}$$

$$X_1 \qquad X_2 \qquad X_3 \qquad X_4 \qquad \text{{has beak?}} \quad \text{{can fly?}} \quad \text{{has fur?}} \quad \text{{has four legs?}}$$

$$p(x_j|y=0,q) = \begin{cases} q_{0j} & \text{if } x_j = 1\\ 1 - q_{0j} & \text{otherwise} \end{cases}$$
 $p(x_j|y=1,q) = \begin{cases} q_{1j} & \text{if } x_j = 1\\ 1 - q_{1j} & \text{otherwise} \end{cases}$

■ How many parameters to estimate?

Assume *X* are *d* binary features, *Y* has 2 possible labels

D 32

- How to learn model parameters?
 - Assume *X* are *d* binary features, *Y* has 2 possible labels

$$p(y|\pi) = \begin{cases} \pi & \text{if } y = 1 \text{ (i.e., bird)} \\ 1 - \pi & \text{otherwise} \end{cases}$$

$$p(x_j|y=0,q) = \begin{cases} q_{0j} & \text{if } x_j = 1\\ 1 - q_{0j} & \text{otherwise} \end{cases} \qquad p(x_j|y=1,q) = \begin{cases} q_{1j} & \text{if } x_j = 1\\ 1 - q_{1j} & \text{otherwise} \end{cases}$$

□ How many parameters to estimate?

- How to learn model parameters?
- A set of training data:

$$(1, 1, 0, 0; 1)$$

$$(1, 0, 0, 0; 1)$$

$$(0, 1, 1, 0; 0)$$

$$(0, 0, 1, 1; 0)$$

♦ Maximum likelihood estimation (*N*: # of training data)

$$p(\underbrace{\{\mathbf{x}_i, y_i\}_{\pi, q}\}}) = \prod_{i=1}^{N} p(\mathbf{x}_i, y_i|\pi, q)$$

♦ Maximum likelihood estimation (*N*: # of training data)

$$(\hat{\pi}, \hat{q}) = \arg \max_{\pi, q} p(\{\mathbf{x}_i, y_i\} | \pi, q)$$

$$(\hat{\pi}, \hat{q}) = \arg\max_{\pi, q} \log p(\{\mathbf{x}_i, y_i\} | \pi, q)$$

Results (count frequency! Exercise?):

$$\hat{q}_{0j} = \frac{N_1}{N} \qquad \hat{q}_{0j} = \frac{N_0^j}{N_0} \qquad \hat{q}_{1j} = \frac{N_1^j}{N_1}$$

$$N_k = \sum_{i=1}^{n} \mathbf{I}(y_i = k)$$
: # of data in category k

$$N_k^j = \sum \mathbf{I}(y_i = k, \ x_{ij} = 1): \ \# \text{ of data in category } k \text{ that has feature } j$$

Data scarcity issue (zero counts problem):

$$\hat{\pi} = N_1 \qquad \hat{q}_{0j} = N_0 \qquad q_{1j} = N_1^j$$

- How about if some features do not appear?
- Laplace smoothing (Additive smoothing)

$$\hat{q}_{0j} = N_0^{ij} + \alpha \qquad 0$$

$$\hat{q}_{0j} = N_0^{ij} + \alpha \qquad 0$$

$$\alpha > 0$$

$$\hat{q}_{1j} = \frac{N_1^j + \alpha}{N_1 + 2\alpha}$$

A Bayesian Treatment

Put a prior on the parameters

$$p_0(q_{0j}|\alpha_1,\alpha_2) = \text{Beta}(\alpha_1,\alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} q_{0j}^{\alpha_1 - 1} (1 - q_{0j})^{\alpha_2 - 1}$$

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

$$\hat{q} = \arg\max_{q} \log p(q|\{\mathbf{x}_i, y_i\}) \propto |\mathcal{P}(q)| + \log p(\{\mathbf{x}_i, y_i\}) = \arg\max_{q} \log p_0(q) + \log p(\{\mathbf{x}_i, y_i\}) = \log p(\{\mathbf{x}_i, y_i\}) + \log p(\{\mathbf{x}_i, y_i\}) = \log p(\{\mathbf{x}_i, y_i\}) + \log p(\{\mathbf{x}_i, y_i\}) + \log p(\{\mathbf{x}_i, y_i\}) = \log p(\{\mathbf{x}_i, y_i\}) + \log p(\{\mathbf{x}_i, y_i\}) + \log p(\{\mathbf{x}_i, y_i\}) = \log p(\{\mathbf{x}_i, y_i\}) + \log p$$

Results (Exercise?):

$$\hat{q}_{0j} = N_0^j + \alpha_1 - 1$$

$$\hat{q}_{1j} = N_1^j + \alpha_1 - 1$$

$$N_1^j + \alpha_1 - 1$$

$$N_1 + \alpha_1 + \alpha_2 - 2$$

A Bayesian Treatment

Maximum a Posterior Estimate (MAP):

$$\hat{q}_{0j} = \frac{N_0^j + \alpha_1 - 1}{N_0 + \alpha_1 + \alpha_2 - 2}$$

- If $\alpha_1 = \alpha_2 = 1$ (non-informative prior), no effect
 - □ MLE is a special case of Bayesian estimate
- Increase α_1, α_2 , lead to heavier influence from prior

Bayesian Regression

Goal: learn a function from noisy observed data

Linear
$$\mathcal{F}_{linear} = \{f: f = wx + b, w, b \in \mathbb{R}\}$$

 $\begin{array}{ll} & \text{Polynomial} & \mathcal{F}_{polynomial} = \{f: \ f = \sum_k w_k x^k, \ w_k \in \mathbb{R}\} \\ & \dots \end{array}$

•

Bayesian Regression

Noisy observations

$$y = f(\mathbf{x}) + \mathbf{g}$$
, where $\epsilon \sim \mathcal{N}(0, \sigma_n^2)$

• Gaussian likelihood function for linear regression $f(\mathbf{x}_i) = \mathbf{w}^{\top} \mathbf{x}_i$

$$p(\mathbf{y}|X,\mathbf{w}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i,\mathbf{w}) = \mathcal{N}(X^{\top}\mathbf{w}, \sigma_n^2 I)$$

Gaussian prior (Conjugate)

$$\mathbf{w} \sim \mathcal{N}(0, \Sigma_d)$$

- Inference with Bayes' rule
 - Posterior $p(\mathbf{w}|X,\mathbf{y}) = \mathcal{N}(\frac{1}{\sigma_n^2}A^{-1}X\mathbf{y}, A^{-1}), \text{ where } A = \sigma_n^{-2}XX^\top + \Sigma_d^{-1}$
 - Marginal likelihood
 - Prediction

$$p(\mathbf{y}|X) = \int p(\mathbf{y}|X, \mathbf{w})p(\mathbf{w})d\mathbf{w}$$

$$p(f_*|\mathbf{x}_*, X, \mathbf{y}) = \int p(f_*|\mathbf{x}_*, \mathbf{w}) p(\mathbf{w}|X, \mathbf{y}) d\mathbf{w} = \mathcal{N}\left(\frac{1}{\sigma_n^2} \mathbf{x}_*^\top A^{-1} X \mathbf{y}, \mathbf{x}_*^\top A^{-1} \mathbf{x}_*\right)$$

Extensions of NB

- We covered the case with binary features and binary class labels
- NB is applicable to the cases:
 - Discrete features + discrete class labels
 - Continuous features + discrete class labels
 - **...**

- More dependency between features can be considered
 - Tree augmented NB
 - **...**

Bayosian Nethort

Gaussian Naive Bayes (GNB)

- \bullet E.g.: character recognition: feature X_i is intensity at pixel i:
- The generative process is

$$Y \sim \text{Bernoulli}(\pi)$$

$$P(X_i|Y=y) = \mathcal{N}(\mu_{iy}, \sigma_{iy}^2)$$

- \Box Different mean and variance for each class k and each feature i
- Sometimes assume variance is:
 - independent of Y (i.e., σ_i)
 - or independent of X (i.e., σ_y)
 - or both (i.e., σ)

Estimating Parameters & Prediction

$$\hat{\sigma}_{ik}^2 = \frac{1}{\sum_n \mathbb{I}(y_n = k)} \sum_n (x_{ni} - \hat{\mu}_{ik})^2 \mathbb{I}(y_n = k)$$

Prediction:

$$h(\mathbf{x}) = \underset{y}{\operatorname{argmax}} P(y) \prod_{i} P(x_i|y)$$

What you need to know about NB classifier

What's the assumption

Naine Benjes

Why we use it

♦ How do we learn it

Why is Bayesian estimation (MAP) important

Linear regression and linear classification

Linear fit

Linear decision boundary

What's the decision boundary of NB?

- Is it linear or non-linear?

There are several diffributions that lead to a linear decision boundary, e.g., GNI with equal variance

$$P(X_i|Y=y) = \mathcal{N}(\mu_{iy}, \sigma_i^2)$$

Decision boundary (??):

cision boundary (??):
$$\log \frac{\prod_{i=1}^{d} P(X_{i}|Y=0)P(Y=0)}{\prod_{i=1}^{d} P(X_{i}|Y=1)P(Y=1)} = 0$$

$$\Rightarrow \log \frac{1-\pi}{\pi} + \sum_{i} \frac{\mu_{i1}^{2} - \mu_{i0}^{2}}{2\sigma_{i}^{2}} + \sum_{i} \frac{\mu_{i0} - \mu_{i1}}{\sigma_{i}^{2}} x_{i} = 0$$

$$\Rightarrow w_{0} + \sum_{i} w_{i} x_{i} = 0$$

Gaussian Naive Bayes (GNB)

Decision boundary (the general multivariate Gaussian case):

$$P_1 = P(Y = 0), \quad P_2 = P(Y = 1)$$

 $p_1(X) = p(X|Y = 0) = \mathcal{N}(M_1, \Sigma_1)$
 $p_2(X) = p(X|Y = 1) = \mathcal{N}(M_2, \Sigma_2)$

The predictive distribution of **GNB**

Understanding the predictive distribution

$$p(y=1|\mathbf{x},\mu,\Sigma,\pi) = \frac{p(y=1,\mathbf{x}|\mu,\Sigma,\pi)}{p(\mathbf{x}|\mu,\Sigma,\pi)}$$

• Under naive Bayes assumption:

$$p(y = 1 | \mathbf{x}, \mu, \Sigma, \pi) = \frac{1}{1 + \underbrace{\frac{y(y = 0, \mathbf{x} | \mu, \Sigma, \pi)}{y(y = 1, \mathbf{x} | \mu, \Sigma, \pi)}}}_{1 + \underbrace{\frac{1}{\mathbf{x} - \pi} \prod_{i} \mathcal{N}(x_{i} | \mu_{i0}, \sigma_{i}^{g})}_{\mathbf{x} - \mathbf{x} - \mathbf{x}_{0}}}_{\mathbf{x} - \mathbf{x}_{0}}$$

$$= \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x} - w_{0})}$$

Note: For multi-class, the predictive distribution is softmax!

Generative vs. Discriminative Classifiers

- ♦ Generative classifiers (e.g., Naive Bayes)
 - Assume some functional form for P(X,Y) (or P(Y) and P(X|Y))
 - Estimate parameters of P(X,Y) directly from training data
 - Make prediction

$$\hat{y} = \underset{y}{\operatorname{argmax}} P(\mathbf{x}, Y = y)$$

But, we note that

$$\hat{y} = \operatorname*{argmax}_{y} P(Y = y | \mathbf{x})$$

- Discriminative classifiers (e.g., Logistic regression)
 - $lue{}$ Assume some functional form for P(Y | X)
 - Estimate parameters of P(Y | X) directly from training data

Logistic Regression

- Recall the predictive distribution of GNB!
- \diamond Assume the following functional form for P(Y | X)

$$P(y=1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{W}(w_0 + \mathbf{w}^\top \mathbf{x}))}$$

■ Logistic function (or Sigmoid) applied to a linear function of the

$$\psi_{\alpha}(v) = \underbrace{\frac{1}{1 + \exp(-\alpha v)}}_{1}$$

$$a \to \infty : \text{step function}$$

$$\frac{1.2}{0.8}$$

$$0.6$$

$$0.4$$

$$0.2$$

$$0.2$$

$$0 \to -8 \to -6 \to 4 \to 2 \quad 0 \quad 2 \to 4 \to 6 \quad 8 \to 10$$

use a large α can be good for some neural networks

What's the decision boundary of logistic regression? (linear or nonlinear?)

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^{\top} \mathbf{x}))}$$

- Linear
- **B** Nolinear
- Don' t know

Logistic Regression

• What's the decision boundary of logistic regression? (linear or nonlinear?)

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^{\top}\mathbf{x}))}$$

$$\log \frac{P(\mathbf{Y} = 1|\mathbf{x})}{P(y = 0|\mathbf{x})} = 0$$

$$\mathbf{w}^{\top}\mathbf{x} + w_0 = 0$$

Logistic regression is a linear classifier!

Representation

Logistic regression

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(w_0 + \mathbf{w}^\top \mathbf{x}))}$$

For notation simplicity, we use the augmented vector:

input features :
$$\begin{pmatrix} \mathbf{1} \\ \mathbf{x} \end{pmatrix}$$
 model weights : $\begin{pmatrix} w_0 \\ \mathbf{w} \end{pmatrix}$

□ Then, we have

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})}$$

Multiclass Logistic Regression

 \bullet For more than 2 classes, where $y \in \{1, \dots, K\}$, logistic regression classifier is defined as

$$\forall k < K : P(Y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^{\top} \mathbf{x})}$$

$$P(Y = K | \mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^{\top} \mathbf{x})}$$

$$\mathcal{D}(\mathbf{w}_j^{\top} \mathbf{x})$$

- Well normalized distribution! No weights for class K!
- Is the decision boundary still linear?

What's the decision boundary of multiclass logistic regression?

$$\forall k < K : P(Y = k | \mathbf{x}) = \frac{\exp(\mathbf{w}_k^{\top} \mathbf{x})}{1 + \sum_{i=1}^{K-1} \exp(\mathbf{w}_i^{\top} \mathbf{x})}$$

A Linear

$$P(Y = K | \mathbf{x}) = \frac{1}{1 + \sum_{j=1}^{K-1} \exp(\mathbf{w}_j^{\mathsf{T}} \mathbf{x})}$$

- Piecewise linear
- Smoothly nonlinear
- Don' t know

Training Logistic Regression

• We consider the binary classification

$$P(y = 1|\mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top}\mathbf{x})}$$

- Training data $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$
- How to learn the parameters?
- Can we do MLE?

$$\hat{\mathbf{w}}_{MLE} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1} P(\mathbf{x}_i, y_i | \mathbf{w})$$

ullet No! Don't have a model for P(X) or $P(X \mid Y)$

Maximum Conditional Likelihood Estimate

• We learn the parameters by solving

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$

Discriminative philosophy – don't waste effort on learning P(X), focus on P(Y | X) – that's all that matters for classification!

Maximum Conditional Likelihood Estimate

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$

$$P(y = 1 | \mathbf{x}) = \frac{1}{1 + \exp(-\mathbf{w}^{\top} \mathbf{x})}$$

• We have:

$$\mathcal{L}(\mathbf{w}) = \log \prod_{i=1}^{N} P(y_i | \mathbf{x}_i, \mathbf{w})$$

$$= \sum_{i} \left[y_i \mathbf{w}^{\top} \mathbf{x}_i - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_i)) \right]$$

Maximum Conditional Likelihood Estimate

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \mathcal{L}(\mathbf{w})$$

$$\mathcal{L}(\mathbf{w}) = \sum_{i} \left[y_{i} \mathbf{w}^{\top} \mathbf{x}_{i} - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_{i})) \right]$$

- Bad news: no closed-form solution!
- \diamond Good news: $\mathcal{L}(\mathbf{w})$ is a concave function of w!
 - Is the original logistic function concave?

Read [S. Boyd, Convex Optimization, Chap. 1] for an introduction to convex optimization.

Optimizing concave/convex function

- Conditional likelihood for logistic regression is concave
- Maximum of a concave function = minimum of a convex function
 - Gradient ascent (concave) / Gradient descent (convex)

Gradient:

$$abla_{\mathbf{w}} \mathcal{L}(\mathbf{w}) = \left(\begin{array}{c} rac{\partial \mathcal{L}(\mathbf{w})}{\partial w_0} \\ dots \\ rac{\partial \mathcal{L}(\mathbf{w})}{\partial w_d} \end{array}
ight)$$

Update rule:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

Gradient Ascent for Logistic Regression

Property of sigmoid function

$$\Rightarrow \nabla_{\nu}\psi = \psi(1-\psi)$$

Gradient ascent algorithm iteratively does:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \sum_{i=1}^{N} \mathbf{x}_i \left(y_i - \mu_i^t \right)$$

- where $\mu_i^t = P(y = 1 | \mathbf{x}_i, \mathbf{w}_t)$ is the prediction made by the current model
- Until the change (of objective or gradient) falls below some threshold

Issues

- Gradient descent is the simplest optimization methods, faster convergence can be obtained by using
 - E.g., Newton method, conjugate gradient ascent, IRLS (iterative reweighted least squares)
- The vanilla logistic regression often over-fits; using a regularization can help a lot!

 | (w) | (|w|) -

Effects of step-size

- \bullet Large $\eta =>$ fast convergence but larger residual error; Also possible oscillations
- \bullet Small η => slow convergence but small residual error

The Newton's Method

AKA: Newton-Raphson method

The Newton's Method

To maximize the conditional likelihood

$$\mathcal{L}(\mathbf{w}) = \sum_{i} \left[y_i \mathbf{w}^{\top} \mathbf{x}_i - \log(1 + \exp(\mathbf{w}^{\top} \mathbf{x}_i)) \right]$$

We need to find w* such that

$$\nabla \mathcal{L}(\mathbf{w}^*) = 0$$

So we can perform the following iteration:

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

• where *H* is known as the Hessian matrix:

$$H = \nabla_{\mathbf{w}}^2 \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

Newton's Method for LR

The update equation

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t - H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t}$$

• where the gradient is:

$$\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_t} = \sum_i (y_i - \mu_i) \mathbf{x}_i = X(\mathbf{y} - \boldsymbol{\mu})$$
$$\mu_i = \psi(\mathbf{w}_t^{\top} \mathbf{x}_i)$$

□ The Hessian matrix is:

$$H = \nabla_{\mathbf{w}}^{2} \mathcal{L}(\mathbf{w})|_{\mathbf{w}_{t}} = -\sum_{i} \mu_{i} (1 - \mu_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{\top} = -XRX^{\top}$$
where $R_{ii} = \mu_{i} (1 - \mu_{i})$

Iterative reweighted least squares (IRLS)

In least square estimate of linear regression, we have

$$\mathbf{w} = (XX^{\top})^{-1}X\mathbf{y}$$

Now, for logistic regression

$$\mathbf{w}_{t+1} = \mathbf{w}_t - H^{-1} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w}_t)$$

$$= \mathbf{w}_t - (XRX^{\top})^{-1} X (\boldsymbol{\mu} - \mathbf{y})$$

$$= (XRX^{\top})^{-1} \left\{ XRX^{\top} \mathbf{w}_t - X (\boldsymbol{\mu} - \mathbf{y}) \right\}$$

$$= (XRX^{\top})^{-1} XR\mathbf{z}$$

where
$$\mathbf{z} = X^{\top} \mathbf{w}_t - R^{-1} (\boldsymbol{\mu} - \mathbf{y})$$

Convergence curves

- □ Legend: X-axis: Iteration #; Y-axis: classification error
- □ In each figure, red for IRLS and blue for gradient descent

LR: Practical Issues

- ♦ IRLS takes $O(N + d^3)$ per iteration, where N is # training points and d is feature dimension, but converges in fewer iterations
- Quasi-Newton methods, that approximate the Hessian, work faster
- lacktriangle Conjugate gradient takes O(Nd) per iteration, and usually works best in practice
- Stochastic gradient descent can also be used if N is large c.f. perceptron rule

Gaussian NB vs. Logistic Regression

<u>GNB</u> Gaussian parameters

VS

<u>LR</u> Regression parameters

- Representation equivalence
 - But only in some special case! (GNB with class independent variances)
- What's the differences?
 - \angle LR makes no assumption about P(X|Y) in learning
 - They optimize different functions, obtain different solutions

Marx Pexigi

maxp(y1X)

Generative vs. Discriminative

Given infinite data (asymptotically)

(1) If conditional independence assumption holds,
 discriminative and generative NB perform similar

 (2) If conditional independence assumption does NOT hold, discriminative outperform generative NB

$$\epsilon_{
m Dis,\infty} < \epsilon_{
m Gen,\infty}$$

Generative vs. Discriminative

Given finite data (N data points, d) features)

$$\epsilon_{\text{Dis},n} \leq \epsilon_{\text{Dis},\infty} + O\left(\sqrt{\frac{d}{N}}\right)$$

$$\epsilon_{\text{Gen},n} \leq \epsilon_{\text{Gen},\infty} + O\left(\sqrt{\frac{\log d}{N}}\right)$$

- Naive Bayes (generative) requires $N = O(\log d)$ to converge to its asymptotic error, whereas logistic regression (discriminative) requires N = O(d).
- Why?
 - "Independent class conditional densities" parameter estimates are not coupled, each parameter is learnt independently, not jointly, from training data

Experimental Comparison

• UCI Machine Learning Repository 15 datasets, 8 continuous features, 7 discrete features

What you need to know

- LR is a linear classifier
 - Decision boundary is a hyperplane
- LR is learnt by maximizing conditional likelihood
 - No closed-form solution
 - Concave! Global optimum by gradient ascent methods
- GNB with class-independent variances representationally equivalent to LR
 - Solutions differ because of objective (loss) functions
- ♦ In general, NB and LR make different assumptions
 - ullet NB: features independent given class, assumption on $P(X \mid Y)$
 - \blacksquare LR: functional form of P(Y | X), no assumption on P(X | Y)
- Convergence rates:
 - GNB (usually) needs less data
 - □ LR (usually) gets to better solutions in the limit

Exponential family

lacktriangle For a numeric random variable $oldsymbol{X}$

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x}) - A(\boldsymbol{\eta})\right)$$
$$= \frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x})\right)$$

is an **exponential family distribution** with natural (canonical) parameter η

- \diamond Function T(x) is a sufficient statistic.
- ightharpoonup Function A(η) = log Z(η) is the log normalizer.
- Examples: Bernoulli, multinomial, Gaussian, Poisson, gamma,...

Recall Linear Regression

• Let us assume that the target variable and the inputs are related by the equation:

$$y_i = \boldsymbol{\theta}^{\top} \mathbf{x}_i + \epsilon_i$$

where \mathcal{E} is an error term of unmodeled effects or random noise

 \bullet Now assume that ε follows a Gaussian $N(0,\sigma)$, then we have:

$$p(y_i|\mathbf{x}_i,\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y_i - \boldsymbol{\theta}^{\top}\mathbf{x}_i)^2}{2\sigma^2}\right)$$

Recall: Logistic Regression (sigmoid classifier)

The condition distribution: a Bernoulli

$$p(y|\mathbf{x}) = \mu(\mathbf{x})^y (1 - \mu(\mathbf{x}))^{1-y}$$

where μ is a logistic function

$$\mu(\mathbf{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\top} \mathbf{x}}}$$

• We can use the brute-force gradient method as in LR

 \diamond But we can also apply generic laws by observing the p(y|x) is an exponential family function, more specifically, a generalized linear model!

Example: Multivariate Gaussian Distribution

 \diamond For a continuous vector random variable $\mathbf{x} \in \mathbb{R}^d$:

$$\begin{split} p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) &= \frac{1}{(2\pi)^{d/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\top}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) \\ &= \frac{1}{(2\pi)^{d/2}} \exp\left(-\frac{1}{2}\mathrm{tr}(\boldsymbol{\Sigma}^{-1}\mathbf{x}\mathbf{x}^{\top}) + \boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\mathbf{x} - \frac{1}{2}\boldsymbol{\mu}^{\top}\boldsymbol{\Sigma}^{-1}\boldsymbol{\mu} - \log|\boldsymbol{\Sigma}|\right) \end{split}$$

Exponential family representation

$$\boldsymbol{\eta} = \left[\Sigma^{-1} \boldsymbol{\mu}; -\frac{1}{2} \mathrm{vec}(\Sigma^{-1}) \right] = \left[\boldsymbol{\eta}_1; \mathrm{vec}(\boldsymbol{\eta}_2) \right], \ \boldsymbol{\eta}_1 = \Sigma^{-1} \boldsymbol{\mu} \ \mathrm{and} \ \boldsymbol{\tilde{\eta}}_2 = -\frac{1}{2} \Sigma^{-1}$$

Natural parameter

$$T(\mathbf{x}) = [\mathbf{x}; \text{vec}(\mathbf{x}\mathbf{x}^{\top})]$$

$$A(\boldsymbol{\eta}) = \frac{1}{2} \boldsymbol{\mu}^{\top} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} + \log |\boldsymbol{\Sigma}| = -\frac{1}{2} \operatorname{tr}(\boldsymbol{\eta}_2 \boldsymbol{\eta}_1 \boldsymbol{\eta}_1^{\top}) - \frac{1}{2} \log(-2|\boldsymbol{\eta}_2|)$$
$$h(\mathbf{x}) = (2\pi)^{-d/2}$$

Note: a **d**-dimensional Gaussian is a $(d+d^2)$ -parameter distribution with a $(d+d^2)$ -element vector of sufficient statistics (but because of symmetry and positivity, parameters are constrained and have lower degree of freedom)

Example: Multinomial distribution

• For a binary vector random variable $\mathbf{x} \sim \text{multi}(\mathbf{x}|\pi)$:

$$p(\mathbf{x}|\pi) = \prod_{i=1}^{d} \pi_i^{x_i} = \exp\left(\sum_i x_i \ln \pi_i\right)$$

$$= \exp\left(\sum_{i=1}^{d-1} x_i \ln \pi_i + \left(1 - \sum_{i=1}^{d-1} x_i\right) \ln \left(1 - \sum_{i=1}^{d-1} \pi_i\right)\right)$$

$$= \exp\left(\sum_{i=1}^{d-1} x_i \ln \frac{\pi_i}{1 - \sum_{i=1}^{d-1} \pi_i} + \ln \left(1 - \sum_{i=1}^{d-1} \pi_i\right)\right)$$

Exponential family representation

$$\eta = \left[\ln(\pi_i/\pi_d); 0\right]$$

$$T(\mathbf{x}) = \mathbf{x}$$

$$A(\eta) = -\ln\left(1 - \sum_{i=1}^{d-1} \pi_i\right) = \ln\left(\sum_{i=1}^{d} e^{\eta_i}\right)$$

$$h(\mathbf{x}) = 1$$

Why exponential family?

Moment generating property (proof?)

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \nabla_{\boldsymbol{\eta}} \log Z(\boldsymbol{\eta}) = \cdots = \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\eta})}[T(\mathbf{x})]$$

$$\nabla_{\boldsymbol{\eta}}^2 A(\boldsymbol{\eta}) = \dots = \operatorname{Var}[T(\mathbf{x})]$$

Moment estimation

- We can easily compute moments of any exponential family distribution by taking the derivatives of the log normalizer $A(\eta)$.
- \bullet The q^{th} derivative gives the q^{th} centered moment.

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \text{mean}$$

$$\nabla_{\boldsymbol{\eta}}^2 A(\boldsymbol{\eta}) = \text{variance}$$

:

Moment vs canonical parameters

The moment parameter μ can be derived from the natural (canonical) parameter

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \mathbb{E}_{p(\mathbf{x}|\boldsymbol{\eta})}[T(\mathbf{x})] \triangleq \boldsymbol{\mu}$$

 $A(\eta)$ is convex since

$$\nabla_{\boldsymbol{\eta}}^2 A(\boldsymbol{\eta}) = \text{Var}[T(\mathbf{x})] > 0$$

♦ Hence we can invert the relationship and infer the canonical parameter from the moment parameter (1-to-1):

$$\eta \triangleq \psi(\mu)$$

A distribution in the exponential family can be parameterized not only by η – the canonical parameterization, but also by μ – the moment parameterization.

IID Sampling for Exponential Family

♦ For exponential family distribution, we can obtain the sufficient statistics by inspection once represented in the standard form

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x}) \exp(\boldsymbol{\eta}^{\top} T(\mathbf{x}) - A(\boldsymbol{\eta}))$$

Sufficient statistics:

$$T(\mathbf{x})$$

For IID sampling, the joint distribution is also an exponential family

$$p(D|\boldsymbol{\eta}) = \prod_{i} h(\mathbf{x}_{i}) \exp\left(\boldsymbol{\eta}^{\top} T(\mathbf{x}_{i}) - A(\boldsymbol{\eta})\right)$$
$$= \left(\prod_{i} h(\mathbf{x}_{i})\right) \exp\left(\boldsymbol{\eta}^{\top} \sum_{i} T(\mathbf{x}_{i}) - NA(\boldsymbol{\eta})\right)$$

Sufficient statistics:

$$\sum_{i} T(\mathbf{x}_i)$$

MLE for Exponential Family

♦ For *iid* data, the log-likelihood is

$$\mathcal{L}(\boldsymbol{\eta}; D) = \sum_{n} \log h(\mathbf{x}_n) + \left(\boldsymbol{\eta}^{\top} \sum_{n} T(\mathbf{x}_n)\right) - NA(\boldsymbol{\eta})$$

◆ Take derivatives and set to zero:

$$\nabla_{\boldsymbol{\eta}} \mathcal{L}(\boldsymbol{\eta}; D) = \sum_{n} T(\mathbf{x}_{n}) - N \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = 0$$

$$\nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta}) = \frac{1}{N} \sum_{n} T(\mathbf{x}_{n})$$

$$\hat{\boldsymbol{\mu}}_{MLE} = \frac{1}{N} \sum_{n} T(\mathbf{x}_{n}) \quad \text{Only involve sufficient stiatistics!}$$

- This amounts to moment "matching.
- lacktriangledow We can infer the canonical parameters using $\hat{m{\eta}}_{MLE}=\psi(\hat{m{\mu}}_{MLE})$

Examples

• Gaussian:
$$\eta = \left[\Sigma^{-1} \mu; -\frac{1}{2} \text{vec}(\Sigma^{-1}) \right]$$

$$T(\mathbf{x}) = \begin{bmatrix} \mathbf{x}; \operatorname{vec}(\mathbf{x}\mathbf{x}^{\top}) \end{bmatrix} \Rightarrow \hat{\boldsymbol{\mu}}_{MLE} = \frac{1}{N} \sum_{n} T_{1}(\mathbf{x}_{n}) = \frac{1}{N} \sum_{n} \mathbf{x}_{n}$$
$$A(\boldsymbol{\eta}) = \frac{1}{2} \boldsymbol{\mu}^{\top} \Sigma^{-1} \boldsymbol{\mu} + \log |\Sigma|$$

$$h(\mathbf{x}) = (2\pi)^{-d/2}$$

$$\boldsymbol{\eta} = [\ln(\pi_i/\pi_d); 0]$$

$$T(\mathbf{x}) = \mathbf{x}$$

$$A(\boldsymbol{\eta}) = \mathbf{X}$$

$$A(\boldsymbol{\eta}) = -\ln\left(1 - \sum_{i=1}^{d-1} \pi_i\right) \qquad \Rightarrow \hat{\boldsymbol{\mu}}_{MLE} = \frac{1}{N} \sum_{n} \mathbf{X}_n$$

$$h(\mathbf{X}) = 1$$

$$\bullet$$
 Poisson: $\eta = \log \lambda$

Poisson:
$$\eta = \log \lambda$$

 $T(x) = x$

$$T(x) = x$$

$$A(\eta) = \lambda = e^{\eta}$$

$$h(x) = \frac{1}{x!}$$

$$\Rightarrow \hat{\mu}_{MLE} = \frac{1}{N} \sum_{n} x_{n}$$

Generalized Linear Models (GLIMs)

- The graphical model
 - Linear regression
 - Discriminative linear classification
 - Commonality:

model
$$\mathbb{E}_p[y] = \mu = f(\boldsymbol{\theta}^\top \mathbf{x})$$

- What is p()? the cond. dist. of Y.
- What is f()? the response function.

GLIM

- The observed input \boldsymbol{x} is assumed to enter into the model via a linear combination of its elements $\boldsymbol{\xi} = \boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}$
- The conditional mean μ is represented as a function $f(\xi)$ of ξ , where f is known as the response function
- The observed output \mathbf{y} is assumed to be characterized by an exponential family distribution with conditional mean μ .

GLIM, cont.

$$\theta \longrightarrow \xi \qquad \qquad f \qquad \psi \qquad p(y|\eta) = h(y) \exp\left\{\eta^{T}(x)y - A(\eta)\right\}$$

$$\Rightarrow p(y|\eta,\phi) = h(y,\phi) \exp\left\{\frac{1}{\phi}\left(\eta^{T}(x)y - A(\eta)\right)\right\}$$

- lacktriangle The choice of exp family is constrained by the nature of the data $oldsymbol{Y}$
 - Example: y is a continuous vector → multivariate Gaussian
 y is a class label → Bernoulli or multinomial
- ♦ The choice of the response function
 - □ Following some mild constrains, e.g., [0,1]. Positivity ...
 - Canonical response function:
 - In this case $\theta^{\mathsf{T}} \mathbf{X}$ directly corresponds to canonical parameter η .

$$f = \psi^{-1}(\cdot)$$

MLE for GLIMs

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} (\eta_n y_n - A(\eta_n))$$
where $\eta_n = \psi(\mu_n), \ \mu_n = f(\xi_n) \text{ and } \xi_n = \boldsymbol{\theta}^{\top} \mathbf{x}_n$

Derivative of Log-likelihood

$$\nabla_{\theta} \mathcal{L} = \sum_{n} \left(y_n \nabla_{\theta} \eta_n - \frac{dA(\eta_n)}{d\eta_n} \nabla_{\theta} \eta_n \right)$$

$$=\sum_{n}(y_n-\mu_n)\nabla_{\boldsymbol{\theta}}\eta_n$$

This is a fixed point function because μ is a function of θ

MLE for GLIMs with canonical response

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} (\boldsymbol{\theta}^{\top} \mathbf{x}_n y_n - A(\eta_n))$$

Derivative of Log-likelihood

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \sum_{n} \left(\mathbf{x}_{n} y_{n} - \frac{dA(\eta_{n})}{d\eta_{n}} \nabla_{\boldsymbol{\theta}} \eta_{n} \right)$$
$$= \sum_{n} (y_{n} - \mu_{n}) \mathbf{x}_{n}$$
This is a

$$=X(\mathbf{y}-\boldsymbol{\mu})$$

This is a fixed point function because μ is a function of θ

- Online learning for canonical GLIMs
 - Stochastic gradient ascent = least mean squares (LMS) algorithm: $\mathbf{a} = \mathbf{a} + \mathbf{a} \cdot \mathbf{a}$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t + \rho(y_n - \mu_n^t)\mathbf{x}_n$$

where $\mu_n^t = f(\boldsymbol{\theta}_t^{\top} \mathbf{x}_n)$ and ρ is a step size

MLE for GLIMs with canonical response

Log-likelihood

$$\mathcal{L}(\boldsymbol{\theta}; D) = \sum_{n} \log h(y_n) + \sum_{n} (\boldsymbol{\theta}^{\top} \mathbf{x}_n y_n - A(\eta_n))$$

Derivative of Log-likelihood

$$\nabla_{\boldsymbol{\theta}} \mathcal{L} = \sum_{n} \left(\mathbf{x}_{n} y_{n} - \frac{dA(\eta_{n})}{d\eta_{n}} \nabla_{\boldsymbol{\theta}} \eta_{n} \right)$$
$$= \sum_{n} (y_{n} - \mu_{n}) \mathbf{x}_{n}$$
This is a

$$= X(\mathbf{y} - \boldsymbol{\mu})$$

This is a fixed point function because μ is a function of θ

- Batch learning applies
 - E.g., the Newton's method leads to an Iteratively Reweighted Least Square (IRLS) algorithm

What you need to know

- Exponential family distribution
- Moment estimation
- Generalized linear models
- Parameter estimation of GLIMs