

Linear Algebra: Subspaces

Tutorial Class — notes from [Poo14]

Xinye Chen xinye.chen@manchester.ac.uk

Definition (Subspaces)

A subspace of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

- 1. The zero vector v is in S
- 2. If u and v are in S, then u+v is in S (S is closed under addition)
- 3. If u is in S and α is a scalar, then αu is in S (S is closed under scalar multiplication)

e.g., if v_1,v_2,\dots,v_k are vectors in \mathbb{R}^n . Then $\mathrm{span}(v_1,v_2,\dots,v_k)$ is a subspace of \mathbb{R}^n .

Definition (Basis)

A basis for a subspace S of \mathbb{R}^n is a set of vectors in S that

- 1. spans S
- 2. is linearly independent

Definition (Dimension)

If S is a subspace of \mathbb{R}^n , then the number of vectors in a basis for S is called the dimension of S, denoted dimS.

MANCHESTER The Rank Theorem

Definition (Rank)

The rank of a matrix A is the dimension of its row and column spaces and is denoted by rank(A).

Theorem (The Rank Theorem (Rank–Nullity Theorem))

If A is an $m \times n$ matrix ($m \ge n$), then

$$rank(A) + nullity(A) = n,$$

where nullity(A) is the dimension of the null space of a matrix A, i.e., dim Ker(A)).

MANCHESTER Proof of the Rank Theorem

Let R be the reduced row echelon form of A, and suppose that rank(A) = r. Then R has r leading variables and n - r free variables in the solution to Ax = 0. Since dim Ker(A) = n - r, we have

$$\mathsf{rank}(A) + \mathsf{nullity}(A) = r + (n - r) = n.$$

MANCHESIER Statements of Invertible Matrices

Let A be an $n \times n$ ($m \ge n$) matrix. The following statements are equivalent:

- 1. A is invertible
- 2. Ax = b has a unique solution for every $b \in \mathbb{R}^n$
- 3. Ax = b has only the trivial solution
- 4. The reduced row echelon form of A is I_n
- 5. *A* is a product elementary matrices
- 6. $\operatorname{rank}(A) = n$
- 7. $\operatorname{nullity}(A) = 0$
- 8. The column vectors (resp., the row vectors) are linearly independent

Theorem

Let $A \in \mathbb{R}^{m \times n}$, then:

- 1. $rank(A^TA) = rank(A)$
- 2. The $n \times n$ matrix A^TA is invertible if and only if $\operatorname{rank}(A) = n$

Proof.

For 1., It is obvious ${\rm rank}(A)+{\rm nullity}(A)=n={\rm rank}(A^TA)+{\rm nullity}(A^TA).$ We can obtain

- 1. If $x \in \dim Ker(A)$, then $A^TAx = A^T(Ax) = 0$
- 2. If $x \in \dim \operatorname{Ker}(A^TA)$, then $(Ax)^T(Ax) = xA^TAx = 0$ and hence Ax = 0

Therefore, $\operatorname{nullity}(A) = \operatorname{nullity}(A^TA)$ and $\operatorname{rank}(A) = \operatorname{rank}(A^TA)$. For 2., A^TA is invertible if and only if $\operatorname{rank}(A^TA) = n$ and then we naturally have A^TA is invertible if and only if $\operatorname{rank}(A) = n$.

Thanks for your attention!

David Poole.

Linear Algebra: A Modern Introduction.

Cengage Learning, 2014.