Introduction

Tuesday, October 26, 2021 7:25 AM

What is a differential equation? (phương trình vi phân)

. Find a function
$$y(x)$$
 satisfying $y'(x) = y(x)$.

Guess:
$$y(x) = Ke^{x}$$
 (K constant)

Check:
$$y'(x) = Ke^x = y(x)$$

Check: $y'(x) = Ke^x = y(x)$

$$y(x) = Ke^{x}$$
 is called a solution to $\begin{bmatrix} y'(x) = y(x) \end{bmatrix}$

. Find a function
$$y(x)$$
 satisfying $y''(x) = -y(x)$.

Guess:
$$y(x) = \sin x$$
, $y_2(x) = \cos x$

Check =
$$y_1 = \sin x$$
 $y_2 = \cos x$ $y_1' = \cos x$ $y_2' = -\sin x$

$$y_{1}^{11} = -\sin x = -y_{1}(x)$$
 $y_{2}^{11} = -\cos x = -y_{2}(x)$

. Observations.

$$y = y(x)$$
,
and derivatives $y', y'', y^{(3)}, \dots, y^{(n)}$.

Find a function
$$y(x)$$
 satisfying $\begin{cases} y'(x) = y(x) \\ y(0) = 2021 \end{cases}$ (initial value condition) $(yx) = Ke^x$ satisfies $y' = y$

INITIAL VALUE PROBLEM

$$y(0) = 2021$$

$$\Rightarrow 2021 = K \cdot e^{0} \Rightarrow K = 2021.$$
So $y(x) = 2021 \cdot e^{x}$ (unique solution)

Differential Equations

Tuesday, October 26, 2021 7:54 AM

A differential equation has the form
$$F\left(x, y, y', y'', \dots, y^{(n)}\right) = 0$$

Order of a differential equation
$$\cdot$$

If a differential equation involves $y^{(n)}$ but not $y^{(k)}$ $(k \ge n)$, then we say the differential equation has order n .

.
$$y'' = -y$$
 second-order differential equation

We will start with first-order differential equations.

Cauchy's differential equation: (Initial Value Problem IVP)
$$\begin{cases} y' = f(x, y) & \text{(first-order differential equation)} \\ y(x_0) = y_0 & \text{(first-order differential equation)} \end{cases}$$

$$y(x_0) = y_0$$

$$\begin{cases} y' = y \\ y'(0) = 2021 \end{cases} \begin{cases} y' = e^{x} \cdot y \\ y'(0) = 2021 \end{cases}$$

Existence and Uniqueness of Solution

Tuesday, October 26, 2021 8:03 AM

Theoren: Consider the differential equation

y' = f(x, y)

Suppose that f(x,y) are continuous in a domain D; $f_y(x,y)$

 $(\kappa_{\circ}, y_{\circ}) \in D$.

Then there is an open neighborhood $(x_o - \varepsilon, x_o + \varepsilon)$ of x_o

such that there exists a unique function y(x)

defined on $(x_0 - \varepsilon, x_0 + \varepsilon)$ satisfying y' = f(x, y)

and $y(x_0) = y_0$

local solution

The theorem is useful when we have a method

to find a solution to the IVP.

It is not easy to find such a solution!

We will learn many methods to solve an IVP

a first-order differential equation

Separable First-order Differential Equations

Tuesday, October 26, 2021

Separable equation A separable equation is a differential equation reduced to the form f(x) dx = g(y) dy. · example y' = y $\frac{dy}{dx} = y$ separable equation $\frac{dy}{y} = dx$ Solving f(x) dx = g(y) dy = $\int f(x) dx = \int g(y) dy$ F(x) = G(y) + k (k constant) solution of f(x) dx = g(y) dy

Examples of separable equations

Tuesday, October 26, 2021 8:22 AM

$$(1+x)y dx + (1-y)x dy = 0$$

move x to one side, move y to the other side

$$(1+x)ydx = (y-1)xdy$$

$$\frac{1+x}{x} dx = \frac{y-1}{y} dy$$

$$\left(1+\frac{1}{x}\right)dx = \left(1-\frac{1}{y}\right)dy$$

$$\int \left(1 + \frac{1}{x}\right) dx = \left(1 - \frac{1}{y}\right) dy$$

$$x + \ln|x| = y - \ln|y| + k$$

$$l_n |xy| + x - y = k$$
 (k constant)

This is a solution when $x \neq 0$, $y \neq 0$

$$\begin{cases} \frac{dy}{dx} = \frac{y^2 - 1}{x} \\ y(1) = 2 \end{cases}$$

IVP

move x to one side, move y to the other side

$$\frac{dy}{dx} = \frac{1}{x}$$

$$\int \frac{dy}{y^2-1} = \int \frac{dx}{x}$$

$$\frac{1}{2} \ln \left| \frac{y-1}{y+1} \right| = \ln |x| + k$$

$$\ln \left| \frac{1-1}{y+1} \right| = \ln |x|^2 + 2k \quad (k \text{ constant})$$

$$\left| \frac{y-1}{y+1} \right| = |x|^2 \quad K \quad (K = e^{2k} > 0 \text{ constant})$$

$$\frac{y-1}{y+1} = K_1 \cdot x^2 \quad (K_1 = \pm K \text{ constant})$$
Now we use the subsol value $y(1) = 2$,
$$\frac{2-1}{2+1} = K_1 \cdot 1^2 = K_1 = \frac{1}{3}$$

$$\frac{y-1}{y+1} = \frac{x^2}{3}$$
We can solve for $y = 1 - \frac{1}{y+1} = \frac{x^2}{3}$

$$\frac{1}{y+1} = 1 - \frac{x^2}{3} = \frac{3-x^2}{3}$$

$$\frac{1}{y+1} = \frac{3}{3-x^2}$$

 $y = \frac{3}{3-x^2} - 1 = \frac{x^2}{3-x^2}$

An equation without y has the form $F\left(x,y'\right)=0$

We may solve for x (in terms of y') x = g(y') or solve for y' (in terms of x) y' = h(x)

If we have y' = h(x): we have a separable equation

If we have x = g(y'):

we make a change of variable: put t = y'

and transform the original equation (not separable in x and y)

into an equation separable in t and y.

Examples of equations without y

Tuesday, October 26, 2021 8:43 AM

Example 1

$$F(x, y') = 0$$

$$y' = x \cdot e^{x}$$

$$fhis equation is separable$$

$$\frac{dy}{dx} = x e^{x}$$

$$\int dy = \int x \cdot e^{x} dx$$

$$integrate by parts$$

$$y = x e^{x} - e^{x} + k$$

Example 2:
$$x = y' + y'^2$$

thus equation is not separable

Change variable: put $t = y'(x) = \frac{dy}{dx}$
 $x = t + t^2$, $dx = (1 + 2t) dt$

from $t = \frac{dy}{dx}$, we have

 $dy = t dx$
 $dy = t (1 + 2t) dt$ (separable in y and t)

 $dy = \int t(1 + 2t) dt$
 $y = \frac{t^2}{2} + \frac{2t^3}{3} + k$ (k constant)

Therefore we have $\begin{cases} x = t + t^2 \\ y = \frac{t^2}{2} + \frac{2t^3}{3} + k \qquad (k \text{ constant}) \end{cases}$ Is this a solution for $x = y' + y'^2$? Check: $y' = y'(x) = \frac{dy}{dx} = \frac{dy}{dx}/dt$ $= \frac{t + 2t^2}{1 + 2t} = t$ $y' + y'^2 = t + t^2 = z$ Yes, this is a solution in terms of a parameter t parametnzed solution/
parametric solution

Equations without x

Tuesday, October 26, 2021 8:56 AM

F(y,y') = 0may solve for y in terms of y y = g(y')y' = h(y)or solve for y' in terms of y y' = h(y), then $\frac{dy}{dx} = h(y)$ we have a separable equation If y = g(y'), we make a charge of variables. t = y'. Then we transform the original equation without x (not separable in x and y) to an equation separable in x and t.

Examples of equations without x

Tuesday, October 26, 2021 8:59 AM

Example 1
$$\frac{dy}{dx} = y^{2} + 4$$

$$\frac{dy}{dx} = y^{2} + 4$$

$$\int \frac{dy}{y^{2} + 4} = \int dx$$

$$\frac{1}{2} \arctan \frac{4}{2} = x + k \quad (k \text{ constant})$$

$$y = 2 \tan \left(2x + k_1\right) \quad (k_1 = 2k \quad constant)$$

Example 2
$$y = y' + y'^3$$

Thus is not separable in x and y .

We charge variables Put $t = y'(x) = \frac{dy}{dx}$
 $y = t + t^3$, $dy = (1 + 3t^2) dt$

from $t = \frac{dy}{dx}$, we have

 $dy = t dx$
 $(1 + 3t^2) dt = t dx$ (separable in x and t)

$$\int (\frac{1}{t} + 3t) dt = \int dx$$

So
$$\begin{cases} x = \frac{3}{2}t^2 + k = x & (k \text{ constant}) \\ x = \frac{3}{2}t^2 + \ln|t| + k & (k \text{ constant}) \end{cases}$$
Is thus a solution for $y = y' + y'^3$?

$$y' = y'(x), \text{ not } y'(t)!$$

$$y'(x) = \frac{dy}{dx} = \frac{dy}{dx/dt}$$

$$= \frac{1+3t^2}{3t+\frac{1}{t}} = t$$
Therefore $y' + y'^3 = t + t^3 = y$.

Thus we have a solution for $y = y' + y'^3$!

First-order Differential Equations

Tuesday, November 2, 2021 7:26 AM

F(x, y, y') = 0 first -order differential equation

- . separable first-order differential equation g(y)dy = h(x) clx
- . DE without x F(y,y')=0
- . DE without y F(x, y') = 0

Homogenous first-order differential equations

Tuesday, November 2, 2021 9:26 AM

$$\frac{dy}{dx} = f\left(\frac{y}{x}\right)$$

Put
$$u = \frac{y}{x}$$
 (charge variable to make the equation separable)

$$y' = ux$$

$$y' = u'x + u$$

$$u'x + u = f(u)$$

$$u'x = f(u) - w$$

$$\frac{du}{f(u) - u} = \frac{dx}{x}$$