Chapitre 8

Fonctions de référence

I. Fonction carré

1) <u>Définition</u>

Définition:

La fonction carré est la fonction f définie sur \mathbb{R} qui, à chaque réel x, associe son carré x^2 .

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \longmapsto x^2$$

Exemples:

- L'image de -1 et de 1 par f est 1.
- L'image de $\sqrt{3}$ et de $\sqrt{3}$ par f est 3.
- 16 a deux antécédents par f qui sont 4 et -4.
- -7 n'admet aucun antécédent par f.

2) Variations

Théorème:

La fonction $f: x \mapsto x^2$ définie sur \mathbb{R} est :

- strictement croissante sur l'intervalle $[0; +\infty[$
- strictement décroissante sur l'intervalle $]-\infty;0]$

Démonstration :

• Démontrons que f est strictement croissante sur $I = [0; +\infty[$.

Il suffit donc de démontrer que si u et v sont deux nombres de I tels que u < v, alors f(u) < f(v).

Or
$$f(u) - f(v) = u^2 - v^2 = (u - v)(u + v)$$
.

Par hypothèse, u et v sont deux nombres de I tels que u < v. Donc $0 \le u < v$.

Ainsi u < v d'où u - v < 0 et, puisque $u \ge 0$ et v > 0, u + v > 0.

Donc d'après la règle des signes (u-v)(u+v)<0 donc f(u)-f(v)<0 et f(u)< f(v).

• Pour démontrer que f est strictement décroissante sur $J=]-\infty;0]$, il suffit de démontrer que si u et v sont des nombres de J tels que u < v, alors f(u) > f(v). Ici les hypothèses s'écrivent $u < v \le 0$. Et on obtient u - v < 0 et u + v < 0 donc (u-v)(u+v) > 0 c'est-à-dire f(u) > f(v).

Remarques:

- La fonction carré admet un **minimum** en 0, de valeur 0. Pour tout nombre réel x, $x^2 \ge 0$.
- Tableau de variations

Exemples:

- 4,2 < 7,9 donc, puisque la fonction carré est strictement croissante sur $[0;+\infty[$, on a l'inégalité : $4,2^2 < 7,9^2$
- -8<-3,2 donc, puisque la fonction carré est strictement décroissante sur $]-\infty;0]$, on a l'inégalité : $(-8)^2>(-3,2)^2$

3) Représentation graphique

Définition:

La courbe représentative de la fonction carré dans un repère orthogonal (O ; I, J) est appelé **parabole**.

Cette parabole \mathcal{P} , a pour équation $v=x^2$ dans le repère (O; I, J).

Remarque:

- L'origine O du repère est appelé **sommet** de la parabole.
- M(x; y) appartient à \mathcal{P} si et seulement si $y=x^2$

Propriété:

La courbe représentative de la fonction carré est symétrique par rapport à l'axe des ordonnées. L'axe des ordonnées est **axe de symétrie** de la parabole.

Démonstration :

Pour tout nombre réel x, $(-x)^2 = x^2$, donc f(-x) = f(x). Ainsi les points M(x; f(x)) et M'((-x); f(-x)) sont symétriques par rapport à l'axe des ordonnées.

Remarques:

Pour tous nombres a et b positifs :

$$a < b$$
 équivaut à $a^2 < b^2$

Deux nombres **positifs** sont rangés dans le **même ordre** que leurs carrés.

Pour tous nombres a et b négatifs :

$$a < b$$
 équivaut à $a^2 > b^2$

Deux nombres **négatifs** sont rangés dans l'**ordre inverse** de leurs carrés.

II. Fonction inverse

4

1) <u>Définition</u>

Définition:

La **fonction inverse** est la fonction f définie sur \mathbb{R}^* qui à chaque réel non nul x, associe son inverse $\frac{1}{x}$.

$$f:]-\infty;0[\cup]0;+\infty[\to \mathbb{R}$$

$$x \longmapsto \frac{1}{x}$$

Exemples:

- L'image de 1 par f est 1.
- L'image de 3 par f est $\frac{1}{3}$.
- 7 a un antécédent par f qui est $\frac{1}{7}$.
- 0 n'admet pas d'antécédent par f.

Remarque:

La fonction inverse n'est pas définie en 0.

2) <u>Variations</u>

Théorème:

La fonction $f: x \mapsto \frac{1}{x}$ définie sur \mathbb{R}^* est :

- strictement **décroissante** sur l'intervalle $]0;+\infty[$
- strictement **décroissante** sur l'intervalle $]-\infty;0[$

Démonstration:

• Démontrons que f est strictement décroissante sur $I =]0; +\infty[$. Il suffit donc de démontrer que si u et v sont deux nombres de I tels que u < v, alors f(u) > f(v).

Or
$$f(u) - f(v) = \frac{1}{u} - \frac{1}{v} = \frac{v}{uv} - \frac{u}{uv} = \frac{v - u}{uv}$$
.

Par hypothèse, u et v sont deux nombres de I tels que u < v. Donc 0 < u < v. Ainsi u < v d'où v - u > 0 et, puisque u > 0 et v > 0, uv > 0.

Donc d'après la règle des signes $\frac{v-u}{uv} > 0$ donc f(u) - f(v) > 0 et f(u) > f(v).

- Pour démontrer que f est strictement décroissante sur $J =]-\infty;0[$, il suffit de démontrer que si u et v sont des nombres de J tels que u < v, alors f(u) > f(v).
 - Ici les hypothèses s'écrivent u < v < 0. Et on obtient v u > 0 et uv > 0 donc $\frac{v u}{uv} > 0$ c'est-à-dire f(u) > f(v).

Remarque:

On a donc le tableau de variations suivant :

Exemples:

- 0.8 < 3.5, donc puisque la fonction inverse est strictement décroissante sur $]0;+\infty[$, on a l'inégalité : $\frac{1}{0.8} > \frac{1}{3.5}$.
- -9 < -1.5, donc puisque la fonction inverse est strictement décroissante sur $]-\infty;0[$, on a l'inégalité : $\frac{1}{-9} > \frac{1}{-1.5}$.

3) Représentation graphique

Définition:

La courbe représentative de la fonction inverse dans un repère orthonormal (O ; I, J) est appelé **hyperbole**.

Cette hyperbole \mathcal{H} , a pour équation $y = \frac{1}{x}$ dans le repère (O; I, J).

Remarque:

M(x;y) appartient à \mathcal{H} si et seulement si $y = \frac{1}{x}$

Propriété:

La courbe représentative de la fonction inverse est symétrique par rapport à l'origine O du repère. L'origine du repère est centre de symétrie de l'hyperbole.

Démonstration:

Pour tout nombre réel non nul x, donc $f(-x) = \frac{1}{-x} = -\frac{1}{x}$ et

$$-\frac{1}{x} = -f(x)$$
 donc $f(-x) = -f(x)$.

 $-\frac{1}{x} = -f(x) \text{ donc } f(-x) = -f(x).$ Ainsi les points M(x; f(x)) et M'((-x); f(-x)) sont symétriques par rapport à O.

Remarques:

Pour tous nombres a et b non nuls de même signe a < b équivaut à $\frac{1}{a} > \frac{1}{b}$

Deux nombres non nuls de même signe sont rangés dans l'ordre contraire de leurs inverses.