Resumo Circuitos 1 Primeira Unidade

Henrique da Silva hpsilva@proton.me

11 de julho de 2022

Sumário

1	Introdução	
	1.1	A ponte de Wheatstone
	1.2	Obtendo $R_4 \ldots \ldots \ldots$
	1.3	Resultados preliminares
•	-	• 1 4•

- 2 Descricao da pratica
- 3 Resultados
- 4 Conclusao

1 Introdução

Neste relatório, vamos discutir a ponte de Wheatstone e um metodo experimental para obter uma resistencia desconhecida a partir de um circuito ja conhecido

Todos arquivos utilizados para criar este relatorio, e o relatorio em si estao em: https://github.com/Shapis/ufpe_ee/tree/main/4thsemester/labcircuitos

1.1 A ponte de Wheatstone

Esta tem como função principal determinar uma resistencia desconhecida R_4 a partir de três resistencias e uma corrente previamente conhecidas, que vamos chamar aqui de V_{cc} e R_1 , R_2 , e R_3 .

1.2 Obtendo R_4

Para obter essa resistencia desconhecida, o que faremos é inicialmente determinar as resistencias de V_a e V_b em função das resistencias e da tensão Vcc. E apartir dessas determinar uma expressão para R_4

Montando o sistema e equações e lembrando da soma de resistores em série e em paralelos teremos:

$$V_{a} = \frac{R_{3}}{R_{1} + R_{3}} V_{cc}$$

$$V_{b} = \frac{R_{4}}{R_{2} + R_{4}} V_{cc}$$
(1)

Daí tiramos que o nosso V_{ab} sendo este $V_a - V_b$ será:

$$V_{ab} = V_a - V_b = \left(\frac{R_3}{R_1 + R_3} - \frac{R_4}{R_2 + R_4}\right) V_{cc} \quad (2)$$

Resolvendo isolando o R_4 teremos:

$$R_4 = \frac{R2(R3(V_{cc} - V_{ab}) - R_1 V_{ab})}{R_1(V_{cc} + V_{ab}) + R_3 V_{ab}}$$
(3)

Com isso conseguimos facilmente isolar nossa resistencia desconhecida R_4 a partir de valores conhecidos do sistema

1.3 Resultados preliminares

Inicialmente montarei o sistema no simulador de circuitos online Falstad. Clique aqui para acessar

Para o exemplo preliminar com o seguintes valores iniciais:

$$V_{cc}=10V$$
 , $R_1=15k\Omega$, $R_2=47k\Omega,$ $R_3=22k\Omega$ e $R_4=10k\Omega$

Resolvendo em python (clique aqui para acessar) as equacoes (1) e (2) teremos o seguinte valores para V_a V_b e V_{ab} :

$$V_a = 5.946V$$
$$V_b = 1.754V$$
$$V_{ab} = 4.191V$$

2 Descricao da pratica

3 Resultados

4 Conclusao