GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if: féatures action outcome non-linearly target variable is not

linear

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not great if features action outcome non-linearly target variable is not

linear

Workaround in LMs / GLMs:

WorkFeature transformations (e.g., exp or log)

- Including high-order effectsg., exp or log)
- Categorization of features (i.e., intervals/
- buckets of feature (values) (i.e., intervals/ buckets of feature values)

GENERALIZED ADDITIVE MODEL (GAM)

► Hastie and Tibshirani (1986)

Problem: LM not greatif-features action outcome mon-linearly target variable is not linear

Workaround in LMs / GLMs:

Feature transformations (e.g., exp or log)

- Including high-order effectsg., exp or log)
- Categorization of features (i.e., intervals/
- buckets of feature (values) (i.e., intervals/
- buckets of feature values)
 Idea of GAMs:

- Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \rightsquigarrow \text{splines}$
 - Instead of linear terms $\theta_i x_i$, use flexible functions $f_i(x_i) \leadsto \text{splines}$

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p)$$

$$g(\mathbb{E}(y \mid \mathbf{x})) = \theta_0 + f_1(x_1) + f_2(x_2) + \dots + f_p(x_p)$$

- Preserves additive structure and allows to model non-linear effects
- Splines have a smoothness parameter to control flexibility (prevent overfitting)
- SpiNeeds to be chosen e.g. pvia cross-validation flexibility (prevent overfitting) Needs to be chosen, e.g., via cross-validation

GENERALIZED ADDITIVE MODEL (GAM) - EXAMPLE

edf	p-value
5.8	0.00
4.0	0.00
1.7	0.00
8.3	0.00
	5.8 4.0 1.7

- Interpretation needs to be done visually and relative to average prediction, also see PDPs
- Edf (effective degrees of freedom) represents complexity of smoothness

MODEL-BASED BOOSTING • Bühlmann and Yu 2003

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.d univariate, with splines) to ensure interpretability
- Possible to combine BL of same type (with distinct parameters θ and θ^*):

$$b^{[j]}(\mathbf{x}, \boldsymbol{\theta}) + b^{[j]}(\mathbf{x}, \boldsymbol{\theta}^{\star}) = b^{[j]}(\mathbf{x}, \boldsymbol{\theta} + \boldsymbol{\theta}^{\star})$$

- Boosting iteratively combines weak base learners to create powerful ensemble
- Idea: Use simple BLs (e.o. univariate, with splines) to ensure interpretability BL
- Possible to combine BL of same type (with distinct parameters θ and θ^*):
 Possible to combine linear BL of same type (with distinct parameters θ and θ^*):

s linear BL of same type (with distinct particle)
$$g^{[l]}(\mathbf{x}, \boldsymbol{\theta}) \pm g^{[l]}(\mathbf{x}, \boldsymbol{\theta}^z) \equiv g^{[l]}(\mathbf{x}, \boldsymbol{\theta} \pm \boldsymbol{\theta}^z)$$

In each iteration, fit a set of BLs, add best one to model (with step-size ν):

$$\begin{split} \hat{t}^{[1]} &= \hat{t}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]}) \\ \hat{f}^{[2]} &= \hat{t}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]}) \\ \hat{t}^{[3]} &= \hat{t}^{[2]} + \nu b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \\ &= \hat{t}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + b^{[1]}(\mathbf{x}_1, \boldsymbol{\theta}^{[3]}) \right) \\ &= \hat{t}_0 + \hat{t}_3(\mathbf{x}_3) + \hat{t}_1(\mathbf{x}_1) \end{split}$$

Final model is additive GAM, we can read off effect curves

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

- Idea: Use simple linear BL to ensure interpretability (in general also spline BL possibly) $\theta = x_j \theta + \theta_0$ for $j = 1, \dots, p$ \leadsto ordinary linear regression
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):
 Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- In each iteration, fit a set of BLs and add the best BL to previous model (using step-size ν):

1000 iter, with $\nu=0.1$	Intercept	Weights [3]
days_since_2011	-1791.06	04.9 PD (X3, U
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

⇒ Converges to solution of LM

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

- Idea: Use simple linear BL to ensure interpretability (in general also spline BL $\underset{\text{possible}(p)}{b_i^{(j)}}(x_i,\theta) = x_i\theta + \theta_0$ for $j=1,\ldots p$ \leadsto ordinary linear regression
- Possible to combine linear BL of same type (with distinct parameters θ and θ^*):
 Here: Interpretation of weights as in LM
- After many iterations, it converges to same solution as LM
- Early stopping allows feature selection & may prevent overfitting (regularization) step-size ν):

	1000 iter, with $\nu=0.1$	Intercept	Weights (3)	20 iter, with $\nu=0.1$	Intercept	Weights
	days_since_2011	-1791.06	04.9 DD (X3, 011)	days_since_2011	-1210.27	3.3
	hum	1,953.05	131.1			WINTER: -276.9
	season	0	SPRING: 539.5) season	0	SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
			FALL: 67.2	temp	-1118.94	73.2
-	temp	-1839.85	120.4	offset	4504.35	
-	windspeed	725.70	-56.9			
-	offset	4504.35				

[⇒] Converges to solution of LM

⇒ 3 BLs selected after 20 iter. (feature selection)

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature

- Idea: Use simple linear BL to ensure interpretability (in general also soline BL E.g. iteration 1: days since 2011 with risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature θ and θ^*):

In-bag-risk: 434,686,0+ ν ($b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]})$ + In-bag-risk: 693,505.0 OOB risk (10-fold CV): 446,450.0 OOB risk (10-fold CV): 705,776.0 = \hat{t}_0 + \hat{t}_0 + \hat{t}_0 - Difference in risk: 258,819.0 Difference in OOB risk: 259,326.0

Importance

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL/types (1000 iter.) [Ebaniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical to releason possible)
- ullet Possible to combine linear BL of same type (with distinct parameters eta and eta^{\star}):

$$b^{[j]}(\mathbf{x}, \boldsymbol{\theta}) + b^{[j]}(\mathbf{x}, \boldsymbol{\theta}^{\star}) = b^{[j]}(\mathbf{x}, \boldsymbol{\theta} + \boldsymbol{\theta}^{\star})$$

• In each iteration, fit a set of BLs and add the best BL to previous model (using step-size ν):

$$\begin{split} \hat{f}^{[1]} &= \hat{f}_0 + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]}) \\ \hat{f}^{[2]} &= \hat{f}^{[1]} + \nu b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[2]}) \\ \hat{f}^{[3]} &= \hat{f}^{[2]} + \nu \\ &= \hat{f}_0 + \nu \left(b^{[3]}(\mathbf{x}_3, \boldsymbol{\theta}^{[1]} + \boldsymbol{\theta}^{[2]}) + \right. \\ &= \hat{f}_0 + \hat{f}_3(\mathbf{x}_3) + \end{split}$$

 Final model is additive (as GAMs), where each component function is interpretable

NON-LINEAR EXAMPLE: INTERPRETATION PLE

Simple: model on bike data with different BETypes (1000 iter.) (ercept) as Blue 2018

BLs; linear and centered splines for numeric features, categorical for season

MODEL-BASED BOOSTING - LINEAR EXAMPLE

Simple case: Use linear model with single feature (including intercept) as BL

$$b^{[j]}(x_j, \theta) = x_j \theta + \theta_0$$
 for $j = 1, \dots p$ \leadsto ordinary linear regression

 Early stopping allows feature selection and might prevent overfitting (regularization)

1000 iter, with $\nu = 0.1$	Intercept	Weights
days_since_2011	-1791.06	4.9
hum	1953.05	-31.1
season	0	WINTER: -323.4 SPRING: 539.5 SUMMER: -280.2 FALL: 67.2
temp	-1839.85	120.4
windspeed	725.70	-56.9
offset	4504.35	

20 iter, with $\nu=0.1$	Intercept	Weights
days_since_2011	-1210.27	3.3
season	o	WINTER: -276.9 SPRING: 137.6 SUMMER: 112.8 FALL: 20.3
temp	-1 118.94	73.2
offset	4504.35	

⇒ 3 BLs selected after 20 iter. (feature selection)

[⇒] Converges to solution of LM

LINEAR EXAMPLE: INTERPRETATION

Feature importance: aggregated change in risk in each iteration per feature.

- E.g. iteration 1: days_since_2011 causes a risk reduction (MSE) of 140,782.94
- For every iteration the change in risk can be attributed to a feature

Overall risk: 434,686.0 OOB risk (10-fold CV): 446,450.0

Overall risk: 693,505.0 OOB risk (10-fold CV): 705,776.0

⇒ Difference in risk: 258,819.0 Difference in OOB risk: 259,326.0

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

NON-LINEAR EXAMPLE: INTERPRETATION

- Fit model on bike data with different BL types (1000 iter.) Daniel Schalk et al. 2018
- BLs: linear and centered splines for numeric features, categorical for season

- ⇒ In-bag-Risk: 250,202.0 ; OOB risk (10-fold CV): 267,497.0 (Difference: 178,953.0)
- Feature importance (risk reduction over iter.)

 days_since_2011 most important
- Total effect for days_since_2011
 Combination of partial effects of linear BL and centered spline BL

