

ECE-345-001 (Fall 2020)

Course Home > Module 2 >

Review Test Submission: Quiz 2.2

User	David Kirby
Course	Intro to Control Systems - Fall 2020 Section Group I67
Test	Quiz 2.2
Started	8/24/20 7:52 PM
Submitted	8/24/20 7:55 PM
Status	Completed
Attempt Score	4 out of 4 points
Time Elapsed	3 minutes
	d Submitted Answers, Incorrectly Answered Questions

Question 1 1 out of 1 points

Which of the following is NOT a Laplace transform pair?

Selected Answer:

$$\delta(t) \leftrightarrow \frac{1}{s}$$

Question 2

1 out of 1 points

Since
$$\sin(\omega t) \leftrightarrow \frac{\omega}{s^2 + \omega^2}$$
, it is also true that

Selected Answer:

$$2\sin(\omega t) \leftrightarrow 2\frac{\omega}{s^2 + \omega^2}$$

Question 3

1 out of 1 points

For a signal x(t) with Laplace transform X(s), and with x(0) = 3, the time-derivative of the signal is described by

Selected Answer:

$$\mathcal{L}\left\{\frac{dx}{dt}\right\} = sX(s) - 3$$

Question 4

1 out of 1 points

For a signal x(t) with Laplace transform X(s), its integral is described by

Selected Answer:

$$\mathcal{L}\left\{\int_0^t x(\tau)d\tau\right\} = X(s)/s$$

Wednesday, September 30, 2020 11:20:35 AM MDT