

Universidade do Minho

Escola de Engenharia Mestrado Integrado em Engenharia Informática

Unidade Curricular de Comunicações por Computador

Ano Letivo de 2022/2023

TP2 - Implementação de Sistema DNS

Grupo 3.08

A91775 José Pedro Batista Fonte A94942 Miguel Velho Raposo

25 de novembro de 2022

Resumo

O presente relatório é referente ao trabalho prático desenvolvido pelo grupo 8 do turno TP3 no âmbito da Unidade Curricular de Comunicações por Computador, lecionada no curso de Mestrado Integrado em Engenharia Informática no 1° Semestre do ano letivo 2022/2023.

O projeto visa o desenvolvimento de um Sistema DNS e apresenta todas a etapas do seu desenvolvimento. Sendo que este relatório é referente à primeira fase, o trabalho apresentado adiante foca-se, primeiramente, numa introdução ao tema e ao trabalho em geral - objetivos, ferramentas de desenvolvimento. Depois no aborda-se o sistema contruido para simular um sistema de DNS - todos os componentes, os seus requisitos, algumas decisões tomadas, etc. Depois, apresenta-se as diferentes formatações que compões os ficheiros do trabalho assim como os modelos de comunicação seguidos.

Área de Aplicação: Sistema de DNS, Internet, Comunicações entre Computadores

Palavras-Chave: Domínios de DNS, Protocolos de Transportes(TCP/IP e UDP), Sockets, Queries, Servidor de Topo, Servidor Primário, Servidor Secundário, Servidor Resolução, Cliente.

Índice

	Lista	a de Figuras	4			
	Lista	a de Tabelas	4			
1	Intro	odução	5			
	1.1	Contextualização - A Internet				
	1.2	Tema em Estudo e Desenvolvimento - DNS				
	1.3	Objetivos				
	1.4	Ferramentas de Desenvolvimento do Software	8			
2	-	uitetura do Sistema e Planeamento	9			
	2.1	Identificação dos Elementos do Sistema				
	2.2	Levantamneto dos Requisitos do Sistema				
	2.3	Descrição da Topologia da Rede Concebida				
	2.4	Identificação dos Componentes de Software	14			
3	Mod	Modelo de Informação				
	3.1	Especificação da Sintaxe e Semântica dos ficheiros				
	3.2	Estrutura das Mensagens de DNS				
	3.3	Tratamento de erros				
	3.4	Mecanismo de Codificação Binária	22			
4	Mod	delo de Comunicação	23			
	4.1	Comunicação entre Componentes	23			
	4.2	Processamento das Queries	23			
	4.3	Funcionamento dos Componentes				
		4.3.1 Cliente				
		4.3.2 Servidor Secundário				
		4.3.3 Servidor Primário				
	4.4	Ambiente de Teste				
		4.4.1 Ficheiros de Configuração				
		4.4.2 Ficheiros de Base de Dados	26			
5	Con	clusão	28			
6	Δne	ayos	20			

Lista de Figuras

1.1	Mapa parcial Internet	5
1.2	OSI & TCP/IP	5
2.1	Topologia da rede concebida	L3
3.1	Lógica da mensagem DNS no sistema	20
	Topologia da rede concebida	

Lista de Tabelas

1 Introdução

O presente relatório é referente ao trabalho prático desenvolvido pelo grupo 8 do turno TP3 no âmbito da Unidade Curricular de Comunicações por Computador, lecionada no curso de Mestrado Integrado em Engenharia Informática no 1° Semestre do ano letivo 2022/2023.

O projeto visa o desenvolvimento de um Sistema DNS e apresenta todas a etapas do seu desenvolvimento. Sendo que este relatório é referente à primeira fase, o trabalho apresentado adiante foca-se, primeiramente, numa breve contextualização do tema e na especificação do caso em estudo, assim como os objetivos do grupo e as ferramentas de trabalho a utilizar.

1.1 Contextualização - A Internet

A Internet é um sistema global de redes de computadores interligados que utilizam um conjunto próprio de protocolos com o propósito de servir progressivamente usuários no mundo inteiro. O avanço exponencial da sociedade deve-se em grande parte à internet, que desbloqueou um novo mundo virtual, um mundo de conhecimento partilhado, de comunicação virtualmente instantânea, de entretenimento ilimitado e toda uma nova economia digital.

A Internet conta já com quase 5 biliões de usuários (mais de 60% da população mundial) o que naturalmente eleva a exigência nos protocolos que a regem. A stack de protocolos TCP/IP é o conjunto de protocolos de comunicação que regem a internet.

Figura 1.1: Mapa parcial Internet

OSI seven-layer model		TCP/IP four-layer model
Application		
Presentation		Application
Session	!	
Transport		Transport
Network		Internet
Data-link		Network
Physical		Network

Figura 1.2: OSI & TCP/IP

1.2 Tema em Estudo e Desenvolvimento - DNS

O tema proposto pela equipa docente foi a implementação de um sistema DNS, semelhante ao mundialmente implementado. O Sistema de Nomes de Domínio, mais conhecido pela nomenclatura em Inglês Domain Name System (DNS), é um sistema hierárquico e distribuído de gestão de nomes para computadores, serviços ou qualquer máquina conectada à Internet ou a uma rede privada. O DNS na sua utilização mais convencional associa nomes de domínios, mais facilmente memorizáveis, a endereços IP numéricos, necessários à localização e identificação de serviços e dispositivos.

Na prática o DNS funciona da seguinte forma: por exemplo, se o José quiser aceder à página do Departamento de Informática pesquisa www.di.uminho.pt e não pelo seu endereço IP 193.136.19.38.

A pesquisa por nomes torna possível o que seria, de outro modo, uma pesquisa impossível. O ser humano consegue, em média, memorizar 5 a 9 números seguidos a curto prazo. Sendo que o IPV4 pode ter até 12 números, a tarefa de saber mais do 10 endereços torna-se extremamente difícil.

O sistema DNS permite ao ser humano ter apenas conhecimento do nome do que pretende pesquisar e com uma estrutura de domínios e subdomínios é possivel mapear o endereço IP do servidor onde está alujado o serviço pretendido.

1.3 Objetivos

Objetivos Gerais

- Consolidação dos conhecimentos sobre o serviço DNS da arquitetura TCP/IP e sobre os protocolos de transporte UDP e TCP.
- Saber especificar um PDU e as primitivas de serviço dum protocolo aplicacional utilizando um protocolo de transporte orientado à conexão e um protocolo de transporte não orientado à conexão.
- Consolidar competências de programação de aplicações distribuídas utilizando o paradigma dos sockets.

Objetivos para a 1^{2} Fase - Arquitetura do Sistema e Planeamento

- Arquitetura do Sistema: Descrição do sistema e especificação completa dos requisitos funcionais esperados para cada elemento do sistema; descrição dos componentes de software a utilizar e os módulos que os compõem.
- Modelo de Informação: Especificação completa da sintaxe e da semântica de todos os ficheiros e do comportamento dos elementos em situação de erro de leitura, do PDU/mensagens DNS e eventual mecanismo de codificação binária.
- **Modelo de Comunicação:** Especificação completa de todas as interações possíveis e do comportamento dos elementos em situação de erro.
- Planeamento do Ambiente de Teste: Descrição e especificação completa do ambiente de testes a utilizar na fase 2, incluindo o conteúdo dos ficheiros de configuração e de dados.
- Protótipo SP e SS em modo debug: Implementação dum componente que implemente um SP e um SS em modo debug conciso que suporte a receção de queries e responda, no mínimo, com a inclusão simples de apenas o campo de resposta direta; inclusão do mecanismo de transferência de zona simples sem verificação das versões das bases de dados.
- Protótipo CL em modo debug: Implementação dum componente que implemente um CL em modo debug conciso que suporte o envio de queries e permita, no mínimo, visualizar o campo de resposta direta.

Objetivos para a 2ª Fase - Implementação e Testes

- Atualização da Arquitetura do Sistema: Correção e adição de novos aspetos na especificação da arquitetura.
- Atualização do Modelo de Informação: Correção e adição de novos aspetos na especificação respetiva.
- Atualização do Modelo de Comunicação: Correção e adição de novos aspetos na especificação respetiva.
- Planeamento do Ambiente de Teste: Correção e adição de novos aspetos da descrição e especificação completa do ambiente de testes.
- Implementação de SP, SS, ST, SDT e SR em modo debug e normal: Implementação completa do componente que implemente um SP, tendo em consideração que um ST, um SDT e um SR são apenas casos particulares de implementações de SP ou SS configurados de forma adequada e incluindo um mecanismo de cache.

- CL em modo debug e modo normal : Implementação completa dum componente que implemente um CL .
- Implementação do Ambiente de Teste : Implementação e teste da especificação construida 1ª Fase .

1.4 Ferramentas de Desenvolvimento do Software

Para assegurar as funcionalidades pretendidas, o grupo utilizou as seguintes ferramentas para construir,:

- Modelação, Concepção e Análise da Rede: Core, Wireshark.
- Software de Desenvolvimento: Python, Visual Studio Code.
- Software de Gestão do Projeto: Overleaf, GitHub.

2 Arquitetura do Sistema e Planeamento

Neste capitulo descreve-se em detalhe o sistema desenvolvido. Primeiramente, descreve-se os elementos que compõe o sistema e todos os requisitos que devem cumprir. De seguida, expõe-se a topologia concebida para responder aos requisitos e algumas decisões tomadas. Por último, descreve-se os componentes de software, a sua organização e função.

2.1 Identificação dos Elementos do Sistema

Tendo em consideração as normas que especificam o sistema DNS da Internet, podemos identificar quatro tipos de elementos fundamentais que podem interagir: Servidor Primário (SP), Servidor Secundário (SS), Servidor de Resolução (SR) e Cliente (CL). Outros elementos fundamentais são os Servidores de Topo(ST) e os Servidores de Domínio de Topo(SDT).

- Cliente (CL): Uma aplicação cliente de DNS é o processo que precisa da informação da base de dados de DNS dum determinado domínio. Envia queries de DNS e recebe respostas.
- Servidor de Resolução(SR): Servidor DNS que responde a, e efetua, queries DNS sobre qualquer domínio, mas que não tem autoridade sobre nenhum pois serve apenas de intermediário. Normalmente guarda em cache as respostas para agilizar o resolução de DNS.
- Servidor Secundário (SS): Servidor DNS que responde a, e efetua, queries DNS além de ter autorização e autoridade para possuir (e tentar manter atualizada) uma réplica da base de dados original do SP autoritativo dum domínio DNS
- Servidor Primário (SP) : Servidor DNS que responde a, e efetua, queries DNS e que tem acesso direto à base de dados dum domínio DNS, sendo a autoridade que o gere.
- Servidor de Domínio de Topo(SDT): Servidor autoritativo sobre um domínio, isto
 é, responde tem autorização para responder a queries sobre esse domínio. No contexto
 do trabalho os SPs e SSs autoritativos sobre os domínios são SDTs.
- Servidor de Topo(SR): Servidor de root de DNS, que redireciona para os SDTs. Com um funcionamento semelhante a um SP mas tem na sua base de dados os endereços de IP dos SDTs.

2.2 Levantamneto dos Requisitos do Sistema

Os elementos do sistema apresentam uma lista de requisitos para o seu funcionamento na $1^{\underline{a}}$ Fase:

• Cliente (CL)

- Input : $\{endereço IP\} \{nome\} \{tipo valor\} \{(R)\}$
- Ler o input
- Construi queries de DNS válidas
- Enviar Query
- Receber uma resposta da Query
- Output : Resposta à query

• Servidor Secundário (SS) :

- Input : Linha de comando. {ficheiro de configuração } {porta de atendimento}
 {timeout}
- Registar toda atividade nos ficheiros logs
- Ler o input
- Ler ficheiro de configuração
- Copiar a DB do SP do seu dominío
- Criar e guardar em cache a BD copiada
- Receber queries
- Processar as queries
- Enviar resposta

• Servidor Primário (SP) :

- Input : {ficheiro de configuração } {porta de atendimento} {timeout}
- Registar toda atividade nos ficheiros logs
- Ler o input
- Ler ficheiro de configuração
- Criar cache e ler a sua base de dados

- Enviar uma cópia da DB para o SS
- Receber queries
- Processar as queries
- Enviar as respostas

2.3 Descrição da Topologia da Rede Concebida

A Topologia de Rede criada deve seguir algumas normas impostas no enunciado do trabalho. Os requisitos são os seguintes:

- Dois Servidores de Topo;
- Os Servidores Domínio de Topo para dois domínios de topo;
- Um domínio de topo nomeado de .reverse onde estarão pendurados os domínios de DNS reverso;
- Um subdomínio em cada domínio de topo;
- Um Servidor Primário e dois Sevidores Secundários paraara cada domínio de topo e os seus subdomínios
- Num dos subdomínios devem instalar um SR que, pelo menos, implemente caching positivo;
- Numa host qualquer instalar o programa que implementa o CL
- Para um dos domínios de topo devem instalar-se e configurar-se os respetivos servidores
 SP e SS para implementar o respetivo reverse mapping;

O backbone da topologia criada é retirada da topologia disponibilizada no TP1, no entanto corrigiu-se os problemas de conexão. Assim sendo, o core da topologia apresenta uma rede de 7 routers interligados, que representam uma distância física entre servidores.

De acordo com os requisitos é necessário 2 domínios e 1 subdomínio em cada. O grupo optou pelos seguintes domínios: .bra e .brg, e subdomínios: .bcl.bra e .mdd.brg - inspirados na localização dos autores do trabalho, o José Fonte oriundo de Barcelos(.bcl), Braga(.bra) e o Miguel Raposo de Miranda do Douro(.mdd), Bragança(.brg).

O sistema implementa obrigatoriamente dois servidores de topo ligados diretamente ao core, e um servidor de resolução chamado .reverve Cada domínio e subdomínio é composto por um Servidor Primário(SP) e por 2 Servidores Secundários(SS). Os SPs também desempenham função de SDT pois são autoritativos sobre o seu domínio. O grupo também inclui dois servidores de Mail (M) e um de Web(W) por cada domínio e subdomínio. Deste modo a topologia apresenta os seguintes servidores:

• Servidores de Topo (vermelho)

- ST1: 10.0.13.10

- ST2: 10.0.14.10

• Domínio .bra (vermelho)

- SP-bra: 10.0.12.10

- SDT-bra: 10.0.12.10

- SS1-bra: 10.0.17.12

- SS2-bra :10.0.16.11

- M1-bra: 10.0.19.10

- M2-bra: 10.0.16.12

- W-bra: 10.0.18.11

• Subdomínio .bcl.brg (azul)

- SP-bcl: 10.0.17.10

- SDT-bcl: 10.0.17.10

- SS1-bcl: 10.0.20.11

- SS2-bcl: 10.0.21.12

- M1-bcl: 10.0.20.12

- M2-bcl: 10.0.21.11

- W-bcl: 10.0.19.12

• **Domínio** .brg (verde)

- SP-brg: 10.0.20.10

- SDT-brg :10.0.20.10

- SS1-brg: 10.0.15.11

- SS2-brg: 10.0.12.11

- M1-brg: 10.0.15.12

- M2-brg: 10.0.18.12

- W-brg : 10.0.15.10

• Subdomínio .mdd.brg (amarelo)

- SP-mdd :10.0.21.10

- SDT-mdd :10.0.21.10

- SS1-mdd: 10.0.18.10

- SS2-mdd: 10.0.17.11

- SR-mdd: 10.0.23.10

- M1-mdd: 10.0.18.13

- M2-mdd: 10.0.19.11

- W-mdd: 10.0.15.10

Quanto aos domínios e subdomínios decidiu-se separá-los por vários switchs que estão ligados ao core, garantindo que nenhum SP e SS do mesmo domínio/subdomínio estam ligados ao mesmo switch, o mesmo se aplica aos servidores mail do mesmo domínio/subdomínio.

Esta decisão garante que caso hajam erros nas ligações ou em componentes da rede existe sempre um backup localizado noutro local físico, para assim, manter estabilidade e fiabilidade na rede.

Quanto á localização do servidor resolução criamos apenas um servidor de resolução (dentro do subdomínio .mdd.brg), ligado diretamente ao core.

Figura 2.1: Topologia da rede concebida

2.4 Identificação dos Componentes de Software

A estrutura de software construída para a 1ª Fase do trabalho é a seguinte:

• Ficheiros dos Componentes Principais:

- client.py : executa o cliente
- server.py : inicializa o servidor correto de acordo com o ficheiro de configuração
- sp.py: inicializa o servidor primário com as suas configurações
- ss.py: inicializa o servidor secundário com as suas configurações

• Ficheiros de Estruturas complementares:

- logs.py: estrutura de dados dos logs e métodos de escrita para os ficheiros(e em modo DEBUG)
- cache.py: estrutura de dados da cache e métodos auxiliares da cache(procurar, inserir, limpar)
- query.py: estrutura de dados de uma query, métodos de parse e fomatação de queries.
- parser.py: todos os parsers: parser do ficheiro de configuração, do input do Cliente.

Na primeira fase de desenvolvimento os objetivos da implementação são bastante básicos, assim sendo, o grupo implementou um cliente totalmente funcional (envia e recebe queries DNS por UDP), um servidor principal e secundário parcialmente funcionais - escreve a atividade em logs, lê o ficheiro de configuração, recebe e envia queries DNS, executa transferências de zona entre SP e SS (faltando a parte de obter a resposta de uma querie procurando na sua cache, parte esta que foi hard-coded com o exemplo apresentado no enunciado).

Para verificar as funcionalidades da fase 1, basta executar em 3 terminais diferentes:

```
$ python3 server.py config_files/SP-bra.conf 8888 0
$ python3 server.py config_files/SS1-bra.conf 9999 0
$ python3 client.py 127.0.0.1 example.com. MX
```

Example 1: Execução dos servidores e clientes

3 Modelo de Informação

O Modelo de Informação trata da sintaxe e semântica de todos os ficheiros configuração do sistema, das mensagens de DNS enviadas e do seu mecanismo de codificação binária.

3.1 Especificação da Sintaxe e Semântica dos ficheiros

Para este projeto são definidos alguns ficheiros de configuração, de dados e de log com uma sintaxe predefinida. Os ficheiros de configuração são apenas lidos e processados no arranque do componente de software a que dizem respeito e moldam o seu comportamento. Os ficheiros de dados também são consultados apenas no arranque e a sua informação é armazenada em memória. Os ficheiros de log mantém um registo de atividade de todos os componentes.

Se for necessário atualizar o comportamento dos servidores com informação modificada nos ficheiros de configuração ou de dados que lhes dizem respeito a única alternativa é reiniciar esses servidores.

Ficheiros de Configuração dos Servidores SP, SS e SR

Este ficheiro tem uma sintaxe com as seguintes regras:

- As linhas começadas por '#' são consideradas comentários e são ignoradas;
- As linhas em branco também devem ser ignoradas;
- Deve existir uma definição de parâmetro de configuração por cada linha seguindo esta sintaxe:

{parâmetro} {tipo do valor} {valor associado ao parâmetro}

Tipos de valores aceites (todas as referências a domínios, quer nos parâmetros quer nos valores, são considerado nomes completos):

- **DB** o valor indica o ficheiro da base de dados com a informação do domínio indicado no parâmetro (o servidor assume o papel de SP para este domínio);
- SP o valor indica o endereço IP[:porta] do SP do domínio indicado no parâmetro (o

servidor assume o papel de SS para este domínio);

- SS o valor indica o endereço IP[:porta] dum SS do domínio indicado no parâmetro (o servidor assume o papel de SP para este domínio) e que passa a ter autorização para pedir a transmissão da informação da base de dados (transferência de zona); podem existir várias entradas para o mesmo parâmetro (uma por cada SS do domínio);
- DD o valor indica o endereço IP[:porta] dum SR, dum SS ou dum SP do domínio por defeito indicado no parâmetro; quando os servidores que assumem o papel de SR usam este parâmetro é para indicar quais os domínios para os quais devem contactar diretamente os servidores indicados se receberem queries sobre estes domínios (quando a resposta não está em cache), em vez de contactarem um dos ST; podem existir várias entradas para o mesmo parâmetro (uma por cada servidor do domínio por defeito); quando os servidores que assumem o papel de SP ou SS usam este parâmetro é para indicar os únicos domínios para os quais respondem (quer a resposta esta em cache ou não), i.e., nestes casos, o parâmetro serve para restringir o funcionamento dos SP ou SS a responderem apenas a queries sobre os domínios indicados neste parâmetro;
- ST o valor indica o ficheiro com a lista dos ST (o parâmetro deve ser igual a "root");
- LG o valor indica o ficheiro de log que o servidor deve utilizar para registar a atividade do servidor associada ao domínio indicado no parâmetro; só podem ser indicados domínios para o qual o servidor é SP ou SS; tem de existir pelo menos uma entrada a referir um ficheiro de log para toda a atividade que não seja diretamente referente aos domínios especificados noutras entradas LG (neste caso o parâmetro deve ser igual a "all").

Ficheiro com a Lista de Servidores de Topo

Este ficheiro tem a lista de Servidores de Topo e a sua predefinição indica que em cada linha deve existir um endereço IP[:porta] de um ST.

As linhas começadas por '#' ou em branco devem ser ignoradas.

Ficheiros de log

Estes ficheiros registam toda a atividade relevante do componente; deve existir uma entrada de log por cada linha do ficheiro. A sintaxe de cada entrada é a seguinte :

```
{etiqueta temporal} {tipo de entrada} {endereço IP[:porta]} {dados da entrada}
```

A etiqueta temporal é a data e hora completa do sistema operativo na altura em que aconteceu a atividade registada e não a data e hora em que foi registada. Os tipos de entradas aceites são:

- QR/QE foi recebida/enviada uma query do/para o endereço indicado; os dados da entrada devem ser os dados relevantes incluídos na query; a sintaxe dos dados de entrada é a mesma que é usada no PDU de query no modo debug de comunicação entre os elementos;
- RP/RR foi enviada/recebida uma resposta a uma query para o/do endereço indicado; os dados da entrada devem ser os dados relevantes incluídos na resposta à query; a sintaxe dos dados de entrada é a mesma que é usada no PDU de resposta às queries no modo debug de comunicação entre os elementos;
- ZT foi iniciado e concluído corretamente um processo de transferência de zona; o
 endereço deve indicar o servidor na outra ponta da transferência; os dados da entrada
 devem indicar qual o papel do servidor local na transferência (SP ou SS) e, opcionalmente, a duração em milissegundos da transferência e o total de bytes transferidos;
- EV foi detetado um evento/atividade interna no componente; o endereço deve indicar 127.0.0.1 (ou localhost ou @); os dados da entrada devem incluir informação adicional sobre a atividade reportada (por exemplo, ficheiro de configuração/dados/ST lido, criado ficheiro de log, etc.);
- ER foi recebido um PDU do endereço indicado que não foi possível descodificar corretamente; opcionalmente, os dados da entrada podem ser usados para indicar informação adicional (como, por exemplo, o que foi possível descodificar corretamente e em que parte/byte aconteceu o erro);
- EZ foi detetado um erro num processo de transferência de zona que não foi concluída corretamente; o endereço deve indicar o servidor na outra ponta da transferência; os dados da entrada devem indicar qual o papel do servidor local na transferência (SP ou SS);
- FL foi detetado um erro no funcionamento interno do componente; o endereço deve indicar 127.0.0.1; os dados da entrada devem incluir informação adicional sobre a situação de erro (por exemplo, um erro na descodificação ou incoerência dos parâmetros de algum ficheiro de configuração ou de base de dados);
- TO foi detetado um timeout na interação com o servidor no endereço indicado; os dados da entrada devem especificar que tipo de timeout ocorreu (resposta a uma query ou tentativa de contato com um SP para saber informações sobre a versão da base de dados ou para iniciar uma transferência de zona);
- SP a execução do componente foi parada; o endereço deve indicar 127.0.0.1; os dados da entrada devem incluir informação adicional sobre a razão da paragem se for possível obtê-la;
- **ST** a execução do componente foi iniciada; o endereço deve indicar 127.0.0.1; os dados da entrada devem incluir informação sobre a porta de atendimento, sobre o valor do timeout usado (em milissegundos) e sobre o modo de funcionamento (modo "shy" ou modo debug).

Ficheiros de Dados do Servidor Primário

Este ficheiro tem uma sintaxe com as seguintes regras:

- As linhas começadas por '#' são consideradas comentários e são ignoradas;
- As linhas em branco também devem ser ignoradas;
- Deve existir uma definição de parâmetro de dados por cada linha seguindo esta sintaxe:

```
{parâmetro} {tipo do valor} {valor} {tempo de validade} {prioridade}
```

O tempo de validade (TTL) é o tempo máximo em segundos que os dados podem existir numa cache dum servidor (tanto serve para cache normal como para cache negativa, se for suportada). Quando o TTL não é suportado num determinado tipo, o seu valor deve ser igual a zero.

O campo *prioridade* é um valor inteiro menor que 256 e que define uma ordem de prioridade de vários valores associados ao mesmo parâmetro. Quanto menor o valor, maior a prioridade. Para parâmetros com um único valor ou para parâmetros em que todos os valores têm a mesma prioridade, o campo não deve existir.

Os nomes completos de e-mail, domínios, servidores e hosts devem terminar com um '.' (exemplo de nome completo de domínio: example.com.). Quando os nomes não terminam com '.' subentende-se que são concatenados com um prefixo por defeito definido através do parâmetro @ do tipo DEFAULT.

Tipos de valores a suportar (os tipos marcados com '*' são de implementação opcional e os tipos de valores que devem suportar o campo da prioridade são indicados explicitamente):

- DEFAULT* define um nome (ou um conjunto de um ou mais símbolos) como uma macro que deve ser substituída pelo valor literal associado (não pode conter espaços nem o valor dum qualquer parâmetro DEFAULT); o parâmetro @ é reservado para identificar um prefixo por defeito que é acrescentado sempre que um nome não apareça na forma completa (i.e., terminado com '.'); o valor de TTL deve ser zero;
- **SOASP** o valor indica o nome completo do SP do domínio (ou zona) indicado no parâmetro;
- SOAADMIN o valor indica o endereço de e-mail completo do administrador do domínio (ou zona) indicado no parâmetro; o símbolo '@' deve ser substituído por '.' e '.' no lado esquerdodo '@' devem ser antecedidos de '\';
- SOASERIAL o valor indica o número de série da base de dados do SP do domínio (ou zona) indicado no parâmetro; sempres que a base de dados é alterada este número deve ser incrementado;

- SOAREFRESH o valor indica o intervalo temporal em segundos para um SS perguntar ao SP do domínio indicado no parâmetro qual o número de série da base de dados dessa zona;
- SOARETRY o valor indica o intervalo temporal para um SS voltar a perguntar ao SP do domínio indicado no parâmetro qual o número de série da base de dados dessa zona, após um timeout;
- SOAEXPIRE o valor indica o intervalo temporal para um SS deixar de considerar a sua réplica da base de dados da zona indicada no parâmetro como válida, deixando de responder a perguntas sobre a zona em causa, mesmo que continue a tentar contactar o SP respetivo;
- SOAEXPIRE o valor indica o intervalo temporal para um SS deixar de considerar a sua réplica da base de dados da zona indicada no parâmetro como válida, deixando de responder a perguntas sobre a zona em causa, mesmo que continue a tentar contactar o SP respetivo;
- NS o valor indica o nome dum servidor que é autoritativo para o domínio indicado no parâmetro, ou seja, o nome do SP ou dum dos SS do domínio; este tipo de parâmetro suporta prioridades;
- A o valor indica o endereço IPv4 dum host/servidor indicado no parâmetro como nome; este tipo de parâmetro suporta prioridades;
- CNAME o valor indica um nome canónico (ou alias) associado ao nome indicado no parâmetro; um nome canónico não deve apontar para um outro nome canónico nem podem existir outros parâmetros com o mesmo valor do nome canónico;
- MX o valor indica o nome dum servidor de e-mail para o domínio indicado no parâmetro; este tipo de parâmetro suporta prioridades;
- PTR o valor indica o nome dum servidor/host que usa o endereço IPv4 indicado no parâmetro; a indicação do IPv4 é feita como nos domínios de DNS reverso (rDNS) quando se implementa reverse-mapping;

3.2 Estrutura das Mensagens de DNS

Todas as interações assíncronas (não orientadas à conexão) possíveis neste sistema são feitas através de mensagens DNS encapsuladas no protocolo UDP. Todas as mensagens DNS devem ser implementadas usando a sintaxe da mesma unidade de dados protocolar (PDU). Uma mensagem DNS deve ter um cabeçalho de tamanho fixo e uma parte de dados que deve ocupar até 1 KByte. A parte de dados contém sempre quatro partes distintas: i) os dados duma query original; ii) os resultados diretos a essa query original; iii) informação sobre os servidores que têm informação autoritativa sobre os dados da resposta e iv) informação adicional indiretamente ligada aos resultados ou aos dados da query original.

Ver a Figura 3.1 com a representação lógica duma mensagem DNS usada neste sistema.

Figura 3.1: Lógica da mensagem DNS no sistema

Os campos do cabeçalho devem ser implementados de tal forma que:

- Message ID identificador de mensagem (número inteiro entre 1 e 65535, gerado aleatoriamente pelo CL ou servidor que faz a query original) que irá ser usado para relacionar as respostas recebidas com a query original;
- **FLAGS** devem ser suportadas as flags Q, R e A; a flag Q ativa indica que a mensagem é uma query, senão é uma resposta a uma query; se a flag R estiver ativa na query indica que se deseja que o processo opere de forma recursiva e não iterativa (que é o modo por defeito); se a flag R estiver ativa na resposta indica que o servidor que respondeu suporta o modo recursivo;se a flag A estiver ativa na resposta indica que a resposta é autoritativa (o valor da flag A é ignorada nas queries originais);
- **RESPONSE CODE** indica o código de erro na resposta a uma query; se o valor for zero então não existe qualquer tipo de erro e a resposta contém informação que responde diretamente à query; a resposta deve ser guardada em cache; se houver erros, o sistema deve suportar os seguintes códigos de erro :
 - erro 1, o domínio incluído em NAME existe mas não foi encontrada qualquer informação direta com um tipo de valor igual a TYPE OF VALUE (o campo de resultados vem vazio mas o campo com a lista de valores de autoridades válidas para o domínio e o campo com a lista de valores com informação extra podem ser incluídos); este caso é identificado como resposta negativa e pode ser guardada em cache para que a um pedido semelhante, num horizonte temporal curto, o servidor possa responder mais rapidamente;
 - erro 2, o domínio incluído em NAME não existe (o campo de resultados vem vazio mas o campo com a lista de valores de autoridades válidas onde a resposta foi obtida e o campo com a lista de valores com informação extra podem ser incluídos); este caso também é identificado como resposta negativa e pode ser guardada em cache;
 - erro 3, a mensagem DNS não foi descodificada corretamente;

- NUMBER OF VALUES número de entradas relevantes (num máximo de 255) que respondem diretamente à query (i.e., as entradas a cache ou na base de dados do servidor autoritativo e que têm um parâmetro igual a NAME e um tipo de valor igual a TYPE OF VALUE) e que fazem parte da lista de entradas incluídas no campo RESPONSE VALUES:
- NUMBER OF AUTHORITIES número de entradas (num máximo de 255) que identificam os servidores autoritativos para o domínio incluído no RESULT VALUES;
- NUMBER OF EXTRA VALUES número de entradas (num máximo de 255) com informação adicional relacionada com os resultados da query ou com os servidores da lista de autoridades;
- QUERY.INFO informação do parâmetro da query (NAME) e o tipo de valor associado ao parâmetro (TYPE OF VALUE); os tipos suportados são os mesmos suportados na sintaxe dos ficheiros de base de dados dos SP; na resposta a queries, os servidores devem copiar a informação do QUERY INFO e incluí-la na mensagem de resposta;
- RESPONSE VALUES lista das entradas que fazem match no NAME e TYPE OF VALUE incluídos na cache ou na base de dados do servidor autoritativo; cada entrada deve ter a informação completa tal como é definida na base de dados DNS do SP do domínio referente ao NAME;
- AUTHORITIES VALUES lista das entradas que fazem match com o NAME e com o tipo de valor igual a NS incluídos na cache ou na base de dados do servidor autoritativo; cada entrada deve ter a informação completa tal como é definida na base de dados DNS do SP do domínio referente ao NAME;
- EXTRA VALUES lista das entradas do tipo A (incluídos na cache ou na base de dados do servidor autoritativo) e que fazem match no parâmetro com todos os valores no campo RESPONSE VALUES e no campo AUTHORITIES VALUES de forma a que o elemento que o CL ou servidor que recebe a resposta não tenha que fazer novas queries para saber os endereços IP dos parâmetros que vêm como valores nos outros dois campos; cada entrada deve ter a informação completa tal como é definida na base de dados DNS do SP do domínio referente ao NAME.

3.3 Tratamento de erros

Na primeira parte do projeto o foco do projeto não é o do tratamento integral dos erros possíveis, desse modo o grupo implementou poucos a quase nenhuns mecanismos que lidam com erros. No entanto, o grupo já sabe o que implementar e como o fazer na próxima fase. O tratamento de erros irá realizar as seguintes verificações :

 Erros no Cliente A mensagem do cliente será analizada para verificar se a estrutura da mensagem enviada esta bem contruida segundo a estrutura de uma mensagem DNS, incluindo o numero correto de elementos e argumentos válidos. Em caso de erro a mensagem será eliminada e o cliente encerado.

 Erros nos Servidores Quando se inicializar os SP e SS será realizada uma análise dos ficheiros de configuração para verificar a coerência dos parâmetros dos ficheiros. No caso de existir erros, o servidor regista nos logs e encerra o componente.
 Durante a execução do servidor deteta erros como : erros a descodificar o PDU, erros na TZ, erros internos do componente.

Todos os erros encontrados serão registados em dois ficheiros logs, sendo um deles o ficheiro com todos os logs (all.log) e o segundo o ficheiro log do componente onde o erro ocorreu, com exceção de erros no cliente.

3.4 Mecanismo de Codificação Binária

À semelhança do tratamento de erros, a primeira fase do trabalho não se foca neste tópico logo o grupo não tem uma implementação detalhada do mecanismo, ainda assim, utilizou-se a a codificação padronizada UTF-8 para todas as mensagens DNS.

4 Modelo de Comunicação

4.1 Comunicação entre Componentes

A ligação entre componentes é estabelicida através de dois protocolos de transporte diferentes, o protocolo UDP e o protocolo TCP.

- Protocolo UDP: utilizado nas QUERIES DE DNS. A maior parte da comunicação entre os componentes do sistema utiliza o protocolo não orientado à conexão. O UDP permite que a aplicação envie um datagrama encapsulado num pacote IPv4 para um destino muito rapidamente, porém sem qualquer tipo de garantia que o pacote chega corretamente.
- Protocolo TCP: utilizado na TRANSFERÊNCIA DE ZONA. O protocolo TCP é um protocolo orientado à conexão e, portanto, inclui vários mecanismos para iniciar, manter e encerrar a comunicação, negociar tamanhos de pacotes, detectar e corrigir erros, evitar congestionamento do fluxo e permitir a retransmissão de pacotes corrompidos, independente da qualidade do meio físicos. A transferência de zona trata-se de um mecanismo de atualização da base de dados do Servidor Secundário. Quando o SS verifica que a sua BD está desatualizada envia um pedido de uma cópia da BD do SP do seu domínio. É importante assegurar a conexão, daí utilizar-se o TCP, para garantir que o SS não tem informação corrompida.

4.2 Processamento das Queries

Todas as interações começam com o envio duma query DNS para um servidor. Essa query vem dum CL ou dum outro qualquer servidor DNS. A query é transportada numa mensagem DNS. Na mensagem da query só são usados os campos assinalados com '*'. Os restantes campos do cabeçalho são ignorados (campos devem ser colocados a zero) e os restantes campos dos dados são nulos (não são sequer incluídos) na mensagem.

Um servidor deve processar a query recebida e se a descodificação da informação da query for correta o servidor deve tentar encontrar informação direta que responda à query em dois locais, segundo a ordem apresentada:

 Na Cache. No caso do servidor não encontrar resposta direta à query na sua cache (i.e., não encontrou na cache uma entrada com NAME e valores do tipo TYPE OF VALUE) então deve reenviar a query para um SDT que seja o servidor do domínio de topo incluído no NAME (ou tem a informação desse SDT em cache ou tem de a obter enviando uma query a um ST). O processo continua duma forma iterativa ou recursiva (seguindo os mesmos dois tipos de operação da norma DNS) até o servidor obter uma resposta final.

 Na Base de Dados (depois de verificar a cache e se for um servidor autoritativo para o domínio do NAME)

4.3 Funcionamento dos Componentes

4.3.1 Cliente

O cliente constrói queries de DNS e envia-as para o endereço IP indicado como input.

De seguida, fica à espera de uma resposta desse mesmo endereço na forma de uma querie de DNS.

Em caso de erro de formatação no input ou na resposta recebida, o cliente encerra o processo com uma mensagem de erros.

4.3.2 Servidor Secundário

O SS utiliza os dois protocolos de comunicação. Nas suas queries de DNS normais utiliza o UDP, quando recebe ou envia queries sobre o seu domínio. Na transferência de zona utiliza o protocolo TCP.

O funcionamento simplicado do SS passa por depois de executar os procedimentos padrão (ler ficheiro de configuração, alocar espaço para a cache, registar nos logs) o SS faz um pedido ao SP para o envio da sua Base de Dados. A transferência de zona do lado do SS consiste no envio de uma mensagem a indicar o dóminio do qual quer a BD, depois de verificado, recebe o número de entradas a receber, confirma o número e por último recebe linha a linha o ficheiro de Base de Dados do SP do domínio.

Depois da operação estar encerrada, encontra-se preparado para receber e responder a queries de DNS, até à próxima verificação denotar que a sua BD está desatualizada.

4.3.3 Servidor Primário

O SS utiliza também utiliza os dois protocolos de comunicação. Nas suas queries de DNS normais utiliza o UDP, quando recebe ou envia queries sobre o seu domínio. Na transferência de zona utiliza o protocolo TCP.

O funcionamento simplicado do SP passa por receber e responder a queries, no entanto, assim que recebe uma querie "DBU" (DataBaseUpdate request) o SP inicia o processo de

transferência de zona. A transferência de zona do lado do SP consiste na receção de uma mensagem a indicar o dóminio que o cliente pretende copiar a DB, depois verifica que o seu domínio e o indicado são iguais, e envia o número de entradas a transferir, recebe a confirmação que o SS está pronto e por último envia linha a linha do seu ficheiro de Base de Dados.

Depois da operação estar encerrada, continua preparado para receber e responder a queries de DNS.

4.4 Ambiente de Teste

O Ambiente de Teste é composto pelos ficheiros de configuração e pelos ficheiros de Base de Dados de todos os componentes apresentados na topologia. Como mencionado anteriormente, o ficheiro de configuração estipula o comportamento do componente de software e as suas base de dados a sua capacidade de responder a certas queries. O grupo construi:

• Ficheiros de Configuração - 15 Ficheiros: 4 Servidores Primários, 8 Servidores Secundários, 2 Servidores de Topo e 1 Servidor de DNS Reverso.

```
ST1.conf - Servidor de Topo 1 (.)
ST2.conf - Servidor de Topo 2 (.)
SP-bra.conf - Servidor Primário Braga (.bra.)
SP-brg.conf - Servidor Primário Bragança (.brg.)
SP-bcl.conf - Servidor Primário Barcelos (bcl.)
SP-mdd.conf - Servidor Primário Miranda do Douro (mdd.)
SS1-bra.conf - Servidor Secundário Braga (.bra.)
SS2-bra.conf - Servidor Secundário Braga (.bra.)
SS1-brg.conf - Servidor Secundário Bragança (.brg.)
SS2-brg.conf - Servidor Secundário Bragança (.brg.)
SS2-brg.conf - Servidor Secundário Barcelos (bcl.)
SS1-bcl.conf - Servidor Secundário Barcelos (bcl.)
SS2-bcl.conf - Servidor Secundário Miranda do Douro (mdd.)
SS2-mdd.conf - Servidor Secundário Miranda do Douro (mdd.)
SS2-mdd.conf - Servidor Secundário Miranda do Douro (mdd.)
SR-mdd.conf - Servidor de Resolução
```

• Ficheiros de Base de Dados - 4 Ficheiros : 2 Servidores Primários, 2 para Servidores

de Topo e 1 Lista de servidores de topo.

```
bra.db - Servidor Primário Braga (.bra.)
brg.db - Servidor Primário Bragança (.bra.)
st1.db - Servidor de Topo 1 (.)
st2.db - Servidor de Topo 2 (.)
rootservers.db - Lista de servidores de topo
```

4.4.1 Ficheiros de Configuração

Os ficheiros de configuração foram todos contruídos com a formatação sintática apresentada no capitulo "Modelo de Informação" na subsecção "Ficheiros de Configuração SP, SS e SR".

O exemplo apresentado corresponde ao Ficheiro de Configuração do Servidor Principal do domínio .bra

```
# Configuration file for primary server for .bra
.bra DB /var/dns/bra.db
.bra SS 10.0.17.12
.bra SS 10.0.16.11
.bra DD 127.0.0.1
.bra LG /var/dns/bra.log
all LG /var/dns/all.log
root ST /var/dns/rootservers.db
```

Example 2: Ficheiro de Configuração do SP .bra

Como se pode ver no exemplo o SP do domínio .bra tem na sua configuração os endereços dos SS com quem partilha o domínio e o endereço de domínio default, assim como, tem os caminhos para os ficheiros relevantes: a lista de ST, a sua Base de Dados, o ficheiro de Logs do componente e o de Logs geral.

Depois de ser analisado, todas as informações são guardadas em memória volátil numa estrutura de dados config().

4.4.2 Ficheiros de Base de Dados

Os ficheiros de configuração foram todos contruídos com a formatação sintática apresentada no capítulo "Modelo de Informação" na subsecção "Ficheiros de Dados do Servidor Primário". O exemplo apresentado corresponde ao ficheiro de Base de Dados do SP do domínio .bra.

```
# DNS database file for domain .bra
# It also includes a pointer to the primary server
# of the bcl.bra subdomain
@ DEFAULT .bra
TTL DEFAULT 86400
@ SOASP ns1.bra TTL
@ SOAADMIN dns\.admin.bra.
@ SOASERIAL 0117102022 TTL
@ SOAREFRESH 14400 TTL
@ SOARETRY 3600 TTL
@ SOAEXPIRE 604800 TTL
@ NS ns1.bra.
               TTL
@ NS ns2.bra.
               TTL
@ NS ns3.bra.
               TTL
bcl.@ NS sp.bcl.bra.
@ MX mx1.bra.
               TTL 10
@ MX mx2.bra.
               TTL 20
ns1 A 10.0.12.10 TTL
ns2 A 10.0.17.12 TTL
ns3 A 10.0.16.11 TTL
sp.bcl A 10.0.10.10 TTL
mx1 A 10.0.19.10 TTL
mx2 A 10.0.16.12 TTL
www A 10.0.18.11 TTL 200
ftp A 193.136.130.20 TTL
sp CNAME ns1 TTL
ss1 CNAME ns2 TTL
ss2 CNAME ns3 TTL
mail1 CNAME mx1 TTL
mail2 CNAME mx2 TTL
```

Example 3: Ficheiro de Base de Dados do SP .bra

5 Conclusão

Com a realização desta primeira fase do trabalho, o grupo acredita que já domina os conceitos teóricos e práticos necessários para realização do resto do trabalho - desde os protocolos de transporte, à estrutura da sua rede, assim como os requisitos dos seus componentes. Deste modo o grupo sente-se confiante para terminar a segunda fase do trabalho com todos os objetivos cumpridos.

6 Anexos

Figura 6.1: Topologia da rede concebida

Figura 6.2: Legenda da rede concebida