

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2016/2017 - UC 47166 (1º Ano/2º Sem)

Teste T1 (Avaliação Discreta) - 19/04/2017

Duração: 2h

1. Supondo p e q proposições atómicas, considere a fórmula bem formada:

$$(p \Rightarrow q) \land (\neg p \Rightarrow q)$$

Sem recorrer a tabelas de verdade e indicando todas as leis da lógica que usar na sua resposta, averigue se a fórmula dada é uma tautologia, é inconsistente ou nem uma coisa nem outra.

- 2. Seja A o conjunto dos alunos da Universidade de Aveiro (UA).
 - (a) Considere $\mathcal{R} \subseteq A \times A$ a relação binária definida por:

 $\mathcal{R} = \{(x, y) \in A \times A : x \in y \text{ são alunos da UA que estão inscritos numa mesma disciplina}\}.$

Verifique se a relação \mathcal{R} é reflexiva, simétrica, antissimétrica e transitiva.

- (b) Dê um exemplo de uma relação de equivalência definida em A. Justifique.
- 3. Admita que o universo do discurso é o conjunto dos animais e considere os seguintes predicados:
 - gato(x) \equiv "x \(\'e\) um gato";
 - $\tilde{cao}(x) \equiv "x \in um \tilde{cao}";$
 - $gosta(x, y) \equiv "x gosta de y"$.
 - (a) Usando os predicados acima definidos, represente em lógica de primeira ordem cada uma das seguintes afirmações:
 - F1. Os gatos não gostam de cães.
 - F2. Existe um gato que gosta do Pi.
 - F3. O Pi não é um cão.
 - (b) Aplique o princípio da resolução para mostrar que F3 é consequência lógica de F1 e F2.
- 4. Considere a sucessão de números reais $a_1, a_2, \ldots, a_n, \ldots$, definida pela fórmula recursiva

$$a_{n+1} = \frac{a_n}{a_n + 2}$$
, para $n \ge 1$, com $a_1 = 1$.

Calcule a_2 , a_3 , a_4 e, usando indução matemática, prove que o termo geral da referida sucessão é dado por $a_n=\frac{1}{2^n-1}$, com $n\geq 1$.

- 5. Seja $A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$ e $P_4(A)$ o conjunto dos subconjuntos de A com 4 elementos.
 - (a) Determine a cardinalidade do conjunto $P_4(A)$.
 - (b) Mostre que escolhendo arbitrariamente 7 conjuntos de $P_4(A)$, pelo menos dois deles têm o mesmo maior elemento.
- 6. Considere o desenvolvimento de $(2x+y-z)^n$ com $x,y,z\in\mathbb{R}$ e $n\in\mathbb{N}$.
 - (a) Usando a fórmula multinomial calcule o coeficiente do termo xyz^{n-2} no desenvolvimento dado.
 - (b) Quantos termos existem no referido desenvolvimento? Justifique devidamente.

$\underline{ ext{Cota}_{ ilde{ ilde{o}} ext{es:}}}$	1.	2.(a)	2.(b)	3.(a)	3.(b)	4.	5. (a)	5. (b)	6.(a)	6.(b)
	1.5	2.5	1.5	2.0	2.5	2.5	1.5	2.0	2.0	2.0

MD 2016-2017 Teste T1 1/1