EE5907/EE5027 Week 6: Bayesian Statistics

BT Thomas Yeo

ECE, CSC, CIRC, N.1, HMS

Last Week Recap

- Non-parametric approaches do not mean no parameters, but instead parameters grow with more data
 - Do not assume data is from specific distributions, such as Gaussian
 - Less assumptions imply non-parametric approaches need more data
- Two problems: density estimation and classification
- Two approaches
 - Parzen's window: Count number of neighbors inside fixed window size
 - KNN: Expand window until K neighbors are captured

This week

- Problems With MAP estimation
- Bayesian model selection
- Bayesian decision theory

Problems With MAP Estimation

MAP Problems

• Plug-in approximation can overfit (black swan paradox)

MAP Problems

• Mode can be atypical unlike mean and median which account for "volume" of pdf

MAP Problems

- MAP (unlike ML and posterior predictive estimation) is sensitive to parameterization
- $y = f(x) \implies p_Y(y) = p_X(x) \left| \frac{dx}{dy} \right|$ (for f monotonic, invertible)

$$-y_{MODE} \neq f(x_{MODE})$$

$$x \sim \mathcal{N}(6,1)$$

$$x \sim \mathcal{N}(6,1)$$
$$y = \frac{1}{1 + e^{-x+5}}$$

Bayesian Model Selection

Overfitting

- Very complex models can explain training data well, but test data poorly. If models too simple, may explain both training and test data poorly
 - Regularization (explicit or implicit)
 - Cross Validation
- Bayesian model selection tradeoffs complexity with training error

Images from google images

Bayesian Occam's Razor

• Bayesian model selection:

$$\hat{m} = \operatorname*{argmax}_{m} p(m|D) = \operatorname*{argmax}_{m} p(D|m) p(m)$$

$$= \operatorname*{argmax}_{m} p(D|m) \quad \text{assuming } p(m) \propto 1$$

- -p(D|m) is called marginal likelihood
- Recall: suppose we observe D Gaussian samples and want to estimate $\theta = (\mu, \sigma^2)$

$$\theta_{MAP} = \underset{\theta}{\operatorname{argmax}} p(\theta|D) = \underset{\theta}{\operatorname{argmax}} \frac{p(\theta)p(D|\theta)}{p(D)}$$

$$= \text{we drop } p(D) \text{ because does not depend on } \theta$$

- Above implicitly depends on modeling assumptions (e.g., Normal inverse Gamma prior with specific hyperparameters), $\frac{p(\theta)p(D|\theta)}{p(D)}$ can be more explicitly written as $\frac{p(\theta|m)p(D|\theta,m)}{p(D|m)}$ Therefore, the "evidence" term p(D) we throw away for MAP estimation is actually "marginal likelihood" p(D|m)

Why does it work?

- Complex models can explain many things $\implies p(D'|m)$ is non-zero for many different and complex D'.
- However, $\sum_{D'} p(D'|m) = 1$ and many p(D'|m) are non-zero, which means p(D'|m) cannot be very big either
- Example: Dots come from quadratic curve.
 - M_1 (linear curves): cannot fit dots well, so $p(\text{dots}|M_1)$ is small

Why does it work?

- Complex models can explain many things $\implies p(D'|m)$ is non-zero for many different and complex D'.
- However, $\sum_{D'} p(D'|m) = 1$ and many p(D'|m) are non-zero, which means p(D'|m) cannot be very big either
- Example: Dots come from quadratic curve.
 - M_1 (linear curves): cannot fit dots well, so $p(\text{dots}|M_1)$ is small
 - M_3 (linear, quadratic, cubic curves): can fit dots well, but "waste" non-zero probability on cubic curves, so $p(\text{dots}|M_3)$ cannot be too big
 - M_2 (linear, quadratic curves): can fit dots well, non-zero probability only for linear, quadratic curves, so $p(\text{dots}|M_2)$ highest \checkmark

Computing Marginal Likelihood / Evidence

- Previous class: $p(\theta|D,m) \propto p(\theta|m)p(D|\theta,m) \implies$ ignore denominator p(D|m) as "constant" because only consider one model
- Now need to compare models, so p(D|m) is quantity of interest!
- For conjugate distributions, posterior $p(\theta|D)$ easy to compute, so can just solve for p(D) using Bayes' rule: $p(D) = \frac{p(D|\theta)p(\theta)}{p(\theta|D)}$
- Example: $p(D|\theta) = \text{Bin}(N_0, N_1|\theta), p(\theta) = \text{Beta}(a, b), p(\theta|D) = \text{Beta}(a + N_1, b + N_0)$, then

$$\text{evidence } p(D) = \frac{ \left(\frac{1}{B(a,b)} \theta^{a-1} (1-\theta)^{b-1} \right) \left(\binom{N}{N_1} \theta^{N_1} (1-\theta)^{N_0} \right) }{ \frac{1}{B(a+N_1,b+N_0)} \theta^{a+N_1-1} (1-\theta)^{b+N_0-1} }$$

posterior

Computing Marginal Likelihood / Evidence

- Previous class: $p(\theta|D,m) \propto p(\theta|m)p(D|\theta,m) \implies$ ignore denominator p(D|m) as "constant" because only consider one model
- Now need to compare models, so p(D|m) is quantity of interest!
- For conjugate distributions, posterior $p(\theta|D)$ easy to compute, so can just solve for p(D) using Bayes' rule: $p(D) = \frac{p(D|\theta)p(\theta)}{p(\theta|D)}$
- Example: $p(D|\theta) = \text{Bin}(N_0, N_1|\theta), p(\theta) = \text{Beta}(a, b), p(\theta|D) = \text{Beta}(a + N_1, b + N_0)$, then

$$\begin{split} p(D) &= \frac{\left(\frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1}\right)\left(\binom{N}{N_1}\theta^{N_1}(1-\theta)^{N_0}\right)}{\frac{1}{B(a+N_1,b+N_0)}\theta^{a+N_1-1}(1-\theta)^{b+N_0-1}} \\ &= \binom{N}{N_1}\frac{B(a+N_1,b+N_0)}{B(a,b)} & \bullet \quad \text{Does not depend on } \Theta & \to \text{"Betabinomial compound distribution" parameterized by a and b} \end{split}$$

- Bayesian Information Criteria (BIC): $\log p(D) \approx \log p(D|\theta_{ML}) (\operatorname{dof}(\theta)/2) \log N$ BIC cost: $-2 \log p(D) \approx -2 \log p(D|\theta_{ML}) + \operatorname{dof}(\theta) \log N$
- θ_{MAP} may work better than θ_{ML}

Bayes Factor

- Suppose two models M_0 and M_1 . Bayes factor $BF_{1,0} = \frac{p(D|M_1)}{p(D|M_0)}$
 - Bayes alternative to hypothesis testing in frequentist statistics

Bayes factor $BF(1,0)$	Interpretation
$BF < \frac{1}{100}$	Decisive evidence for M_0
$BF < \frac{1}{10}$	Strong evidence for M_0
$\frac{1}{10} < BF < \frac{1}{3}$	Moderate evidence for M_0
$\frac{1}{10} < BF < \frac{1}{3}$ $\frac{1}{3} < BF < 1$	Weak evidence for M_0
$1 < BF < 3$ Weak evidence for M_1	
3 < BF < 10	Moderate evidence for M_1
BF > 10	Strong evidence for M_1
BF > 100	Decisive evidence for M_1

• Assuming $p(M_1) = p(M_0) = 0.5$, then $p(M_0|D) = \frac{1}{BF_{1,0}+1}$

Example: Is a coin fair?

• M_0 : fair coin, $M_1: \theta \sim \text{Beta}(1,1)$, observe N_1 heads in N tosses

$$- p(D|M_0) = {N \choose N_1} \frac{1}{2^N}$$
$$- p(D|M_1) = {N \choose N_1} \frac{B(1+N_1,1+N_0)}{B(1,1)}$$

• Ignore $\binom{N}{N_1}$ which appears in both models (so $p(D|M_0)$ is a constant):

Bayesian Decision Theory

Posterior Expected Loss

- Posterior probability is nice but need to convert into real world action
- Game against nature
 - Nature picks $y \in \mathcal{Y}$ and then generates observation $x \in \mathcal{X}$
 - We then choose action $a \in \mathcal{A}$, resulting in some loss L(y, a) based on compatibility between y and a. Example: $L(y, a) = (y a)^2$
 - Pick action by minimizing posterior expected loss:

$$\delta(x) = \operatorname*{argmin}_{a \in \mathcal{A}} E[L(y, a)] \stackrel{\triangle}{=} \operatorname*{argmin}_{a \in \mathcal{A}} \sum_{y} L(y, a) p(y|x)$$

- Bayes' estimator or decision rule
- In economics, instead of loss L, we have utility U(y,a), so $\delta(x) = \operatorname{argmax}_{a \in \mathcal{A}} E[U(y,a)]$

MAP Estimate Minimizes 0-1 Loss

•
$$0-1$$
 loss: $L(y,a) = \mathbb{I}(y \neq a) = \begin{cases} 0 & \text{if } a = y \\ 1 & \text{if } a \neq y \end{cases}$

- In classification, y is true label, $a = \hat{y}$ is estimated label
- For two classes, can visualize:

• Posterior expected loss:

$$\rho(a|x) = \sum_{y} L(y, a)p(y|x) = p(y \neq a|x)$$
$$= 1 - p(y = a|x)$$

• Minimizing 1 - p(y = a|x) equivalent to maximize p(y = a|x), i.e., MAP estimate

Posterior Mean Minimizes l_2 Loss

- Quadratic (or l_2) loss: $L(y, a) = (y a)^2$
- Posterior expected loss:

$$\rho(a|x) = \sum_{y} L(y, a)p(y|x) = E[(y - a)^{2}|x]$$
$$= E(y^{2}|x) - 2aE(y|x) + a^{2}$$

• Differentiating with respect to a:

$$\frac{\partial}{\partial a}\rho(a|x) = -2E(y|x) + 2a = 0$$

$$\implies a = E(y|x)$$

- Minimum Mean Squared Error (MMSE) estimate corresponds to posterior mean

Posterior Median Minimizes l_1 Loss

- Absolute (or l_1) loss: L(y, a) = |y a|
 - Posterior median minimizes l_1 loss
 - See ungraded homework assignment

False Positive – False Negative Tradeoff

• General loss matrix for binary classification:

- $-L_{FN}$ = false negative cost, L_{FP} = false positive cost
- Posterior expected loss are

$$L(\hat{y} = 0|x) = L_{FN}p(y = 1|x)$$

 $L(\hat{y} = 1|x) = L_{FP}p(y = 0|x)$

• Therefore, should pick $\hat{y} = 1$ iff

$$L(\hat{y} = 0|x) > L(\hat{y} = 1|x)$$

$$\frac{p(y = 1|x)}{p(y = 0|x)} > \frac{L_{FP}}{L_{FN}}$$

- From previous slide, threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at $\tau = \frac{L_{FP}}{L_{FN}}$ to make classification decision
- When comparing two algorithms, we often do not know (or do not want) to define L_{FP} and L_{FN} because for the same dataset (e.g., facebook photos), loss might be application specific
- Instead of thresholding f(x) at $\tau = \frac{L_{FP}}{L_{FN}}$, we threshold at different τ , and compute for each τ
- TP (true positives)
 - N_{TP} = # data points in test set whose true label = 1 & classified correctly as 1
 - N₁ = # data points in test set whose true label = 1
 - TPR (true positive rate or sensitivity or recall) = N_{TP} /N₁

	ŷ = 0	ŷ = 1	
y = 0	N_{TN}	N _{FP}	$N_0 = N_{TN} + N_{FP}$
y = 1	N _{FN}	N _{TP}	$N_1 = N_{FN} + N_{TP}$

 $\hat{\mathbf{v}} = \mathbf{0}$

 N_{TN}

 N_{FN}

y = 0

v = 1

 $\hat{v} = 1$

 N_{ED}

 N_{TP}

 $N_0 = N_{TN} + N_{FP}$

 $N_1 = N_{FN} + N_{TP}$

- From previous slide, threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at $\tau = \frac{L_{FP}}{L_{FN}}$ to make classification decision
- When comparing two algorithms, we often do not know (or do not want) to define L_{FP} and L_{FN} because for the same dataset (e.g., facebook photos), loss might be application specific
- Instead of thresholding f(x) at $\tau = \frac{L_{FP}}{L_{FN}}$, we threshold at different τ , and compute for each τ
- TP (true positives)
 - N_{TP} = # data points in test set whose true label = 1 & classified correctly as 1

•	$N_1 = \# data$	points in test	set whose	true label	= 1
---	-----------------	----------------	-----------	------------	-----

•	TPR (true	positive	rate	or	sensitivity	or /	recall) =	N_{T}	_P /	'N₁	1
---	-------	------	----------	------	----	-------------	------	--------	-----	---------	----------------	-----	---

- TN (true negatives)
 - N_{TN} = # data points in test set whose true label = 0 and classified correctly as 0
 - N₀ = # data points in test set whose true label = 0
 - TNR (true negative rate or specificity) = N_{TN} / N_0

 $\hat{\mathbf{v}} = \mathbf{0}$

 N_{TN}

 N_{FN}

v = 0

y = 1

 $\hat{v} = 1$

 N_{ED}

 N_{TP}

 $N_0 = N_{TN} + N_{FP}$

 $N_1 = N_{EN} + N_{TD}$

- From previous slide, threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at $\tau = \frac{L_{FP}}{L_{FN}}$ to make classification decision
- When comparing two algorithms, we often do not know (or do not want) to define L_{FP} and L_{FN} because for the same dataset (e.g., facebook photos), loss might be application specific
- Instead of thresholding f(x) at $\tau = \frac{L_{FP}}{L_{FN}}$, we threshold at different τ , and compute for each τ
- TP (true positives)
 - N_{TP} = # data points in test set whose true label = 1 & classified correctly as 1
 - N₁ = # data points in test set whose true label = 1

•	TPR (true	positive	rate or	sensitivity	or recall	$) = N_{TD}$	/N ₁
•	IPK (true	positive	rate or	sensitivity	or recall	$) = IN_{TP}$	

- TN (true negatives)
 - N_{TN} = # data points in test set whose true label = 0 and classified correctly as 0
 - N₀ = # data points in test set whose true label = 0
 - TNR (true negative rate or specificity) = N_{TN} / N_0
- FP (false positives)
 - N_{FP} = # data points in test set whose true label = 0 and classified wrongly as 1
 - FPR (false positive rate or type 1 error) = N_{FP} / N₀

 $\hat{\mathbf{v}} = \mathbf{0}$

 N_{TN}

 N_{FN}

v = 0

y = 1

 $\hat{v} = 1$

 N_{ED}

 N_{TP}

 $N_0 = N_{TN} + N_{FP}$

 $N_1 = N_{FN} + N_{TP}$

- From previous slide, threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at $\tau = \frac{L_{FP}}{L_{FN}}$ to make classification decision
- When comparing two algorithms, we often do not know (or do not want) to define L_{FP} and L_{FN} because for the same dataset (e.g., facebook photos), loss might be application specific
- Instead of thresholding f(x) at $\tau = \frac{L_{FP}}{L_{FN}}$, we threshold at different τ , and compute for each τ
- TP (true positives)
 - N_{TP} = # data points in test set whose true label = 1 & classified correctly as 1
 - N₁ = # data points in test set whose true label = 1
 - TPR (true positive rate or sensitivity or recall) = N_{TP}/N_1
- TN (true negatives)
 - N_{TN} = # data points in test set whose true label = 0 and classified correctly as 0
 - N₀ = # data points in test set whose true label = 0
 - TNR (true negative rate or specificity) = N_{TN} / N_0
- FP (false positives)
 - N_{FP} = # data points in test set whose true label = 0 and classified wrongly as 1
 - FPR (false positive rate or type 1 error) = N_{FP} / N₀
- FN (false negatives)
 - N_{FN} = # data points in test set whose true label = 1 and classified wrongly as 0
 - FNR (false negative rate or type 2 error) = N_{FN} / N₁

 $\hat{\mathbf{v}} = \mathbf{0}$

 N_{TN}

 N_{FN}

v = 0

y = 1

 $\hat{v} = 1$

 N_{ED}

 N_{TP}

 $N_0 = N_{TN} + N_{FP}$

 $N_1 = N_{FN} + N_{TP}$

- From previous slide, threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at $\tau = \frac{L_{FP}}{L_{FN}}$ to make classification decision
- When comparing two algorithms, we often do not know (or do not want) to define L_{FP} and L_{FN} because for the same dataset (e.g., facebook photos), loss might be application specific
- Instead of thresholding f(x) at $\tau = \frac{L_{FP}}{L_{FN}}$, we threshold at different τ , and compute for each τ
- TP (true positives)
 - N_{TP} = # data points in test set whose true label = 1 & classified correctly as 1
 - N₁ = # data points in test set whose true label = 1
 - TPR (true positive rate or sensitivity or recall) = N_{TP} /N₁
- TN (true negatives)
 - N_{TN} = # data points in test set whose true label = 0 and classified correctly as 0
 - N₀ = # data points in test set whose true label = 0
 - TNR (true negative rate or specificity) = N_{TN} / N₀
- FP (false positives)
 - N_{FP} = # data points in test set whose true label = 0 and classified wrongly as 1
 - FPR (false positive rate or type 1 error) = N_{FP} / N₀
- FN (false negatives)
 - N_{FN} = # data points in test set whose true label = 1 and classified wrongly as 0
 - FNR (false negative rate or type 2 error) = N_{FN} / N₁
- Many other possibilities: https://en.wikipedia.org/wiki/Sensitivity and specificity

ROC (1)

- Previously, we threshold $f(x) = \frac{p(y=1|x)}{p(y=0|x)}$ at different τ and compute different metrics, e.g., $\text{TPR}(\tau)$ and $\text{FPR}(\tau)$
- But f(x) does not need to be $\frac{p(y=1|x)}{p(y=0|x)}$
- All classifiers (even non-probabilistic classifiers, e.g., support vector machines) will output a number (e.g., between 0 and 1), which can then be thresholded to give a final classification output.
- Thus, for any classifier f(x), we can threshold at different τ and compute $TPR(\tau)$ and $FPR(\tau)$
- Plot of $TPR(\tau)$ against $FPR(\tau)$ is called receiver operating characteristic (ROC) curve: strange name because it was invented during World War II for analyzing radar signals

Red and blue curves are ROC curves for classifiers A and B

- Red and blue curves are ROC curves for classifiers A and B
- Sometimes two curves intersect, so useful to summarize ROC curve with one number
 - Blue area = area under the curve (AUC) for classifier B

- Red and blue curves are ROC curves for classifiers A and B
- Sometimes two curves intersect, so useful to summarize ROC curve with one number
 - Blue area = area under the curve (AUC) for classifier B
 - Intersection between black diagonal line and ROC: equal error rate (EER)

- Red and blue curves are ROC curves for classifiers A and B
- Sometimes two curves intersect, so useful to summarize ROC curve with one number
 - Blue area = area under the curve (AUC) for classifier B
 - Intersection between black diagonal line and ROC: equal error rate (ERR)

Summary

- Problems With MAP estimation
 - Mode (MAP) of a distribution might be atypical
 - MAP sensitive to parameterization
- Bayesian model selection
 - Automatically select for sufficiently complex (but not too complex) model that can explain data well
 - Approximations often needed, e.g., BIC
- Bayesian decision theory
 - Minimize posterior expected loss when making decisions
 - ROC curves

Optional Reading

- Notes based on
 - KM Chapter 5 (beware of typos)

Additional Material

Laplace Approximation

- Let $p(\theta|D) = \frac{e^{-E(\theta)}}{p(D)}$, where $E(\theta) = -\log p(\theta, D)$ and $\theta \in \mathbb{R}^M$.
- Let θ^* be mode of $\log p(\theta, D)$, then by Taylor expansion:

$$E(\theta) \approx E(\theta^*) + (\theta - \theta^*)^T g + 0.5(\theta - \theta^*)^T H(\theta - \theta^*),$$

where
$$g = \nabla E(\theta)|_{\theta^*}, H = \frac{\partial^2 E(\theta)}{\partial \theta \partial \theta^T}|_{\theta^*}$$

• g = 0 since θ^* is mode, so

$$p(\theta|D) \approx \frac{1}{p(D)} e^{-E(\theta^*)} \exp\left[-\frac{1}{2}(\theta - \theta^*)^T H(\theta - \theta^*)\right]$$
$$= \mathcal{N}(\theta|\theta^*, H^{-1})$$

• Since the normalization constant of MVN is $\frac{1}{(2\pi)^{M/2}|H|^{1/2}}$, we have

$$\frac{1}{(2\pi)^{M/2}|H|^{1/2}} = \frac{1}{p(D)}e^{-E(\theta^*)} \implies p(D) = e^{-E(\theta^*)}(2\pi)^{M/2}|H|^{-1/2}$$

Proof of BIC

- From previous slide: $p(D) \approx e^{-E(\theta^*)} (2\pi)^{M/2} |H|^{-1/2}$
- Taking log, we have

$$\log p(D) \approx \log p(D|\theta^*) + \log p(\theta^*) + \frac{M}{2} \log 2\pi - \frac{1}{2} \log |H|$$

• Now $H = \sum_{n=1}^{N} H_i$, where $H_i = \nabla \nabla \log p(D_i | \theta)$. Approximating each H_i by \hat{H} , we have

$$\log |H| = \log |N\hat{H}| = \log(N^M |\hat{H}|) = M \log N + \log |\hat{H}|$$

• Therefore

$$\log p(D) \approx \log p(D|\theta^*) + \log p(\theta^*) + \frac{M}{2} \log 2\pi - \frac{M}{2} \log N - \frac{1}{2} \log |\hat{H}|$$
$$\approx \log p(D|\theta_{ML}) - \frac{M}{2} \log N,$$

where we assumed

- $-p(\theta) \propto 1$, so drop off $p(\theta^*)$ and substitute θ^* with θ_{ML}
- $-\log N$ dominates $\log 2\pi$ and $\log |\hat{H}|$, so the two terms can be dropped