```
In [1]: library(boot)
         library(glmnet)
         Loading required package: Matrix
         Loading required package: foreach
         Loaded glmnet 2.0-16
In [2]: set.seed(2019)
In [3]: train <- read.csv("trainC.csv")</pre>
         test <- read.csv("testC.csv")</pre>
         train <- subset(train, select = -c(sessionDate, trialNum, timeSinceKetamine))</pre>
         test <- subset(test, select = -c(sessionDate, trialNum, timeSinceKetamine))</pre>
         #TRAIN 1: ALL COVARIATES PLUS INTERACTION TERMS
         train1 <- read.csv("trainC.csv")</pre>
         test1 <- read.csv("testC.csv")</pre>
         train1 <- subset(train1, select = -c(sessionDate, trialNum, timeSinceKetamine))</pre>
         test1 <- subset(test1, select = -c(sessionDate, trialNum, timeSinceKetamine))</pre>
         #TRAIN 2: ALL COVARIATES NO INTERACTION TERMS
         train2 <- subset(train1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore, lickAccuracy, lickNumber, avgFR,
                                              avgSingleCellVariance,varianceFR,avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
         test2 <- subset(test1, select = c(totalCellNum,gender,genotype,weight_g,ketamine_day,</pre>
                                              correlationScore,lickAccuracy,lickNumber,avgFR,
                                              avgSingleCellVariance,varianceFR,avgTrialSpeed,
                                              varianceSpeed,medianCellDepth,ketBool))
In [4]: | # First, let's do a 50% split on the training data to determine the best Lambda
         n = length(train[,1])
         n50 = round(n/2)
         train50A = train[1:n50,]
         train50B = train[(n50+1):n,]
```

Basic Logistic Regression Model with Interaction Terms

Estimate test error

```
In [5]: k = 10
        n = length(train1[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train1[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train1[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ . + animalName:correlationScore</pre>
                           + animalName:lickAccuracy
                           + animalName:lickNumber
                           + animalName:avgFR
                           + animalName:avgSingleCellVariance
                           + animalName:varianceFR
                           + animalName:avgTrialSpeed
                           + animalName:varianceSpeed, data=df_train, family='binomial')
            lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr_pred = rep(0,num_val)
            actual = rep(0,num val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                   lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        df_{train} \leftarrow train1[-(((k-1)*fsize+1):n),]
        df val <- train1[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ . + animalName:correlationScore</pre>
                           + animalName:lickAccuracy
                           + animalName:lickNumber
                           + animalName:avgFR
                           + animalName:avgSingleCellVariance
                           + animalName:varianceFR
                           + animalName:avgTrialSpeed
                           + animalName:varianceSpeed, data=df_train, family='binomial')
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num val)
        for (j in 1:num_val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test_error_est = mean(zoloss)
        cat("-----\n")
        cat("Logistic Regression Model with Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("=======\n")
```

Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == : "prediction from a rank-deficient fit may be misleading"Warning message: "glm.fit: fitted probabilities numerically 0 or 1 occurred"Warning message in predict.lm(object, newdata, se.fit, scale

"prediction from a rank-deficient fit may be misleading"

Logistic Regression Model with Interaction Terms

= 1, type = if (type == :

Zero-One Loss (10-fold Cross-Validation Average): 0.05053967 Accuracy (10-fold Cross-Validation Average): 0.9494603

In [6]: summary(model_cv)

glm(formula = ketBool ~ . + animalName:correlationScore + animalName:lickAccuracy +
 animalName:lickNumber + animalName:avgFR + animalName:avgSingleCellVariance +
 animalName:varianceFR + animalName:avgTrialSpeed + animalName:varianceSpeed,
 family = "binomial", data = df_train)

Deviance Residuals:

Min 1Q Median 3Q Max -3.5384 -0.1027 0.0000 0.0712 5.5159

Coefficients: (18 not defined because of singularities)

Coefficients: (18 not defined because	of singula	arities)			
	Estimate	Std. Error			
(Intercept)	-27.2669			6.03e-06	***
animalNameG2	0.4197	3.3163		0.899281	
animalNameG3	-0.9364			0.792468	
animalNameG4 animalNameG5	1.4332	3.8333 4.1376		0.708496	*
animalNameHCN1	-8.9931 -14.0175	10.5442		0.029743 0.183715	
animalNameHCNb2	8.4330	4.4879		0.060239	
animalNameHCNb4	-4.7334	23.8994		0.843002	•
animalNameHCNd1	104.4537	16.9813		7.69e-10	***
animalNameHCNd2	68.3925	13.2492		2.44e-07	
animalNameHCNe1	57.9201	13.7486	4.213	2.52e-05	***
animalNameHCNe2	102.2463	16.6521	6.140	8.25e-10	***
animalNameHCNe3	66.1861	12.7951	5.173	2.31e-07	***
animalNamenpI1	-7.5109	6.2653		0.230603	
totalCellNum	1.4313	1.2711		0.260152	
gender	NA	NA	NA		
genotype	NA	NA 7 1212	NA F OF 4	NA	***
weight_g ketamine day	-42.4023 0.8366	7.1213 0.7416		2.61e-09 0.259265	
correlationScore	0.4354	7.9683		0.259265	
lickAccuracy	-9.0325	5.2510		0.085409	
lickNumber	16.5052	8.4302		0.050246	
avgFR	-116.8217	22.1238		1.29e-07	
avgSingleCellVariance	118.9793	28.1016	4.234	2.30e-05	***
varianceFR	-11.7773	9.6821	-1.216	0.223831	
avgTrialSpeed	-9.3312	5.5556	-1.680	0.093036	
varianceSpeed	17.2301	6.8436		0.011813	
medianCellDepth	4.3650	0.8865		8.49e-07	
totalCellNumxCorrelationScore	-3.1603	1.0375		0.002319	**
totalCellNumxLickAccuracy	0.8750	0.5696		0.124463	J.
totalCellNumxLickNumber	1.6250	0.7325		0.026530	*
totalCellNumxAvgFR totalCellNumxAvgSingleCellVariance	0.8384 2.1842	1.7622		0.634260 0.148980	
totalCellNumxVarianceFR	-0.6762	1.5135 0.5323		0.203957	
totalCellNumxAvgTrialSpeed	-0.7475	0.9554		0.433959	
totalCellNumxVarianceSpeed	1.2069	0.6701		0.071709	
genderxCorrelationScore	4.7113	4.3436		0.278070	•
genderxLickAccuracy	-3.1125	2.0324		0.125657	
genderxLickNumber	4.7001	2.6640	1.764	0.077679	
genderxAvgFR	-87.0050	14.6140		2.62e-09	
genderxAvgSingleCellVariance	40.7485	11.0054		0.000213	***
genderxVarianceFR	-4.6695	5.1769		0.367069	
genderxAvgTrialSpeed	-9.4424	3.8540		0.014284	*
genderxVarianceSpeed	4.5012	3.7641		0.231762	
genotypexCorrelationScore genotypexLickAccuracy	3.0093 -0.2219	2.0973		0.151338 0.845758	
genotypexLickNumber	4.0348	1.1406		0.038822	*
genotypexAvgFR	-42.7736	8.1363		1.46e-07	
genotypexAvgSingleCellVariance	37.2330	8.5842		1.44e-05	
genotypexVarianceFR	-2.6952	2.6845		0.315386	
genotypexAvgTrialSpeed	-1.6597	2.0224	-0.821	0.411833	
genotypexVarianceSpeed	-0.2610	1.7360	-0.150	0.880487	
weight_gxCorrelationScore	-8.5846	10.1501	-0.846	0.397685	
weight_gxLickAccuracy	10.7017	7.2068		0.137560	
weight_gxLickNumber	-26.7826	11.5589		0.020501	
weight_gxAvgFR	193.5887	31.4637		7.61e-10	
weight_gxAvgSingleCellVariance	-154.5028	30.8680		5.58e-07	***
weight_gxVarianceFR	18.4687	14.8475		0.213540 0.052555	
<pre>weight_gxAvgTrialSpeed weight_gxVarianceSpeed</pre>	13.0744	6.7444 8.0375		0.032333	
ketamine_dayxCorrelationScore	-17.5478 2.0090	0.6098		0.000985	
ketamine dayxLickAccuracy	-0.2291	0.4973		0.645009	
ketamine_dayxLickNumber	0.6505	0.5670		0.251278	
ketamine_dayxAvgFR	-7.5420	2.7782		0.006633	**
ketamine_dayxAvgSingleCellVariance	0.7418	2.6459		0.779199	
ketamine_dayxVarianceFR	-0.9275	1.0399	-0.892	0.372456	
ketamine_dayxAvgTrialSpeed	1.3230	0.7267		0.068686	•
ketamine_dayxVarianceSpeed	0.1314	0.8028		0.869944	.1.
medianCellDepthxCorrelationScore	-1.4019	0.5466	-2.565	0.010321	*

medianCellDepthxLickAccuracy	-0.3065	0.4351	-0.704 0.4		
medianCellDepthxLickNumber	0.4651	0.7274	0.639 0.		
medianCellDepthxAvgFR	-14.1645	2.7873		74e-07 ***	
${\tt medianCellDepthxAvgSingleCellVariance}$	8.6487	4.3498	1.988 0.	046779 *	
medianCellDepthxVarianceFR	0.6166	0.7940	0.777 0.4	437441	
medianCellDepthxAvgTrialSpeed	1.5695	0.7607	2.063 0.	039087 *	
medianCellDepthxVarianceSpeed	-2.1309	0.9237	-2.307 0.	021060 *	
animalNameG2:correlationScore	1.5773	1.9963	0.790 0.4	429456	
animalNameG3:correlationScore	1.3056	2.4116	0.541 0.	588254	
animalNameG4:correlationScore	0.8286	2.3078	0.359 0.	719573	
animalNameG5:correlationScore	1.3590	2.7886	0.487 0.		
animalNameHCN1:correlationScore	7.7178	4.1183	1.874 0.	060928 .	
animalNameHCNb2:correlationScore	5.6795	3.0742	1.847 0.		
animalNameHCNb4:correlationScore	14.4818	6.8450	2.116 0.		
animalNameHCNd1:correlationScore	0.9176	2.0826	0.441 0.		
animalNameHCNd2:correlationScore	4.9989	1.7497		004276 **	
animalNameHCNe1:correlationScore	1.6307	3.1039	0.525 0.		
animalNameHCNe2:correlationScore	NA	NA NA	NA NA	NA NA	
animalNameHCNe3:correlationScore	NA	NA	NA	NA	
animalNamenpI1:correlationScore	7.3425	2.8767	2.552 0.0		
animalNameG2:lickAccuracy	-1.7099	1.1916	-1.435 0.		
animalNameG3:lickAccuracy	0.4135	0.9017	0.459 0.		
animalNameG4:lickAccuracy	-0.1212	1.1478	-0.106 0.5		
animalNameG5:lickAccuracy	2.3511	1.7690	1.329 0.		
animalNameHCN1:lickAccuracy	-2.1156	2.6306	-0.804 0.4		
animalNameHCNb2:lickAccuracy	-3.7346	1.6714	-2.234 0.		
animalNameHCNb4:lickAccuracy	-5.7505	3.6852	-1.560 0.		
animalNameHCNd1:lickAccuracy	0.5928	1.1011	0.538 0.		
animalNameHCNd2:lickAccuracy	-3.2750	1.8848	-1.738 0.		
animalNameHCNe1:lickAccuracy	2.7730	2.1648	1.281 0.		
animalNameHCNe2:lickAccuracy	NA	NA	NA	NA	
animalNameHCNe3:lickAccuracy	NA	NA	NA	NA	
animalNamenpI1:lickAccuracy	-2.8775	1.1676	-2.464 0.		
animalNameG2:lickNumber	-0.1500	1.0227	-0.147 0.		
animalNameG3:lickNumber	-1.8930	1.2920	-1.465 0.		
animalNameG4:lickNumber	-3.7432	1.6083	-2.327 0.		
animalNameG5:lickNumber	-9.2212	2.5582	-3.605 0.	000313 ***	
animalNameHCN1:lickNumber	9.9468	4.2924	2.317 0.	020488 *	
animalNameHCNb2:lickNumber	2.1215	3.2220	0.658 0.	510251	
animalNameHCNb4:lickNumber	4.2728	8.6890	0.492 0.	622893	
animalNameHCNd1:lickNumber	1.6771	1.2682	1.322 0.	186031	
animalNameHCNd2:lickNumber	0.9823	1.4131	0.695 0.	486990	
animalNameHCNe1:lickNumber	-8.0085	3.3984	-2.357 0.	018446 *	
animalNameHCNe2:lickNumber	NA	NA	NA	NA	
animalNameHCNe3:lickNumber	NA	NA	NA	NA	
animalNamenpI1:lickNumber	-4.2673	3.6055	-1.184 0.	236592	
animalNameG2:avgFR	7.4748	3.6790	2.032 0.	042177 *	
animalNameG3:avgFR	23.6143	5.1125	4.619 3.	86e-06 ***	
animalNameG4:avgFR	31.2290	4.7689	6.548 5.	81e-11 ***	
animalNameG5:avgFR	39.7199	6.5348	6.078 1.	22e-09 ***	
animalNameHCN1:avgFR	-45.6980	12.3054		000204 ***	
animalNameHCNb2:avgFR	-35.6108	7.8888	-4.514 6.	36e-06 ***	
animalNameHCNb4:avgFR	-9.3360	62.1295	-0.150 0.		
animalNameHCNd1:avgFR	9.1863	3.9552	2.323 0.		
animalNameHCNd2:avgFR	-13.7740	6.7154	-2.051 0.0		
animalNameHCNe1:avgFR	56.3254	8.8355		83e-10 ***	
animalNameHCNe2:avgFR	NA	NA	NA	NA	
animalNameHCNe3:avgFR	NA	NA	NA	NA	
animalNamenpI1:avgFR	-6.9399	8.7446	-0.794 0.4		
animalNameG2:avgSingleCellVariance	-5.8451	7.1199	-0.821 0.4		
animalNameG3:avgSingleCellVariance	-21.4194	8.6198	-2.485 0.		
animalNameG4:avgSingleCellVariance	-21.1395	8.1704	-2.587 0.0		
animalNameG5:avgSingleCellVariance	-43.8020	9.4607	-4.630 3.		
animalNameHCN1:avgSingleCellVariance	57.2169	15.6053	3.667 0.0		
animalNameHCNb2:avgSingleCellVariance	26.6612	11.7217	2.275 0.0	0002.0	
animalNameHCNb4:avgSingleCellVariance	53.1048	30.8837	1.720 0.		
animalNameHCNd1:avgSingleCellVariance			-0.125 0.1		
	-0.8131	6.4811			
<pre>animalNameHCNd2:avgSingleCellVariance animalNameHCNe1:avgSingleCellVariance</pre>	30.6919 -38.3291	12.4083 10.3293	2.473 0.0 -3.711 0.0		
animalNameHCNe2:avgSingleCellVariance	NA NA	NA NA	NA NA	NA NA	
animalNameHCNe3:avgSingleCellVariance	NA 12 0571	NA 16 2104	NA 0. 700. 0	NA 420526	
animalNamenpI1:avgSingleCellVariance	-12.8571	16.3104	-0.788 0.4		
animalNameG2:varianceFR	0.7852	1.8165	0.432 0.		
animalNameG3:varianceFR	1.3876	2.6141	0.531 0.		
animalNameG4:varianceFR	2.3089	2.5615	0.901 0.		
animalNameG5:varianceFR	4.1829	3.0171	1.386 0.		
animalNameHCN1:varianceFR	-3.2583	4.8433	-0.673 0.		
animalNameHCNb2:varianceFR	-3.6846	3.1546	-1.168 0.		
animalNameHCNb4:varianceFR	-25.8202	31.0535	-0.831 0.4		
animalNameHCNd1:varianceFR	0.1037	1.9293	0.054 0.		
animalNameHCNd2:varianceFR	-2.8652	2.7017	-1.061 0.		
animalNameHCNe1:varianceFR	4.8279	4.0581	1.190 0.	234157	

```
animalNameHCNe2:varianceFR
                                            NA
                                                       NΔ
                                                               NΔ
                                                                        NA
animalNameHCNe3:varianceFR
                                            NA
                                                       NA
                                                               NΔ
                                        4.5827
                                                   6.4964
animalNamenpI1:varianceFR
                                                            0.705 0.480550
animalNameG2:avgTrialSpeed
                                       -2.4850
                                                   1.7024 -1.460 0.144372
animalNameG3:avgTrialSpeed
                                       -1.8267
                                                   1.9955 -0.915 0.359969
animalNameG4:avgTrialSpeed
                                       -1.1678
                                                   1.9046 -0.613 0.539752
animalNameG5:avgTrialSpeed
                                       -0.8649
                                                   2.2433 -0.386 0.699814
animalNameHCN1:avgTrialSpeed
                                       -7.7469
                                                   3.0655 -2.527 0.011499 *
                                                   2.3588 -2.685 0.007251 **
animalNameHCNb2:avgTrialSpeed
                                       -6.3337
animalNameHCNb4:avgTrialSpeed
                                       -6.3992
                                                   4.3391 -1.475 0.140272
animalNameHCNd1:avgTrialSpeed
                                       -0.6755
                                                   1.3358 -0.506 0.613098
animalNameHCNd2:avgTrialSpeed
                                        0.7792
                                                   1.2862
                                                            0.606 0.544644
                                        2.9309
animalNameHCNe1:avgTrialSpeed
                                                   2.3740
                                                            1.235 0.216977
animalNameHCNe2:avgTrialSpeed
                                            NΔ
                                                       NΔ
                                                               NΔ
                                                                        NΔ
animalNameHCNe3:avgTrialSpeed
                                            NA
                                                       NA
                                                               NA
                                                                        NA
                                       -4.7091
                                                   2.0490 -2.298 0.021549 *
animalNamenpI1:avgTrialSpeed
animalNameG2:varianceSpeed
                                        0.9403
                                                   2.2028 0.427 0.669485
animalNameG3:varianceSpeed
                                       -0.8958
                                                   2.6235 -0.341 0.732764
animalNameG4:varianceSpeed
                                       -3.0501
                                                   2.4720 -1.234 0.217244
animalNameG5:varianceSpeed
                                       -3.5242
                                                   2.8684 -1.229 0.219219
animalNameHCN1:varianceSpeed
                                        2.9468
                                                   4.3016 0.685 0.493319
animalNameHCNb2:varianceSpeed
                                        3.0695
                                                   3.3371
                                                           0.920 0.357673
animalNameHCNb4:varianceSpeed
                                      -20.5634
                                                  18.9175 -1.087 0.277034
animalNameHCNd1:varianceSpeed
                                       -1.3491
                                                  1.9970 -0.676 0.499317
animalNameHCNd2:varianceSpeed
                                       -4.5265
                                                   2.2934 -1.974 0.048410 *
animalNameHCNe1:varianceSpeed
                                       -5.4418
                                                   2.5092 -2.169 0.030103 *
animalNameHCNe2:varianceSpeed
                                            NΔ
                                                       NΔ
                                                               NΔ
                                                                        NΔ
animalNameHCNe3:varianceSpeed
                                            NA
                                                       NA
                                                               NA
                                                                        NA
animalNamenpI1:varianceSpeed
                                       -3.9996
                                                   2.8047 -1.426 0.153858
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.', 0.1 ', 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 4989.22 on 3599 degrees of freedom
Residual deviance: 876.32 on 3438 degrees of freedom
AIC: 1200.3
```

Number of Fisher Scoring iterations: 12

Reduced dataset to match Lasso and Ridge

```
In [7]: k = 10
        n = length(train50B[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train50B[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train50B[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
            num_val = length(df_val$ketBool)
            lr pred = rep(0,num val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                    lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr loss)
        df train <- train50B[-(((k-1)*fsize+1):n),]</pre>
        df_val <- train50B[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test error est = mean(zoloss)
        cat("Logistic Regression Model with Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test error est,"\n")
        cat("-----\n")
        Warning message in predict.lm(object, newdata, se.fit, scale = 1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"Warning message in predict.lm(object, newdata, se.fit, scale =
        1, type = if (type == :
        "prediction from a rank-deficient fit may be misleading"
        Logistic Regression Model with Interaction Terms
        Zero-One Loss (10-fold Cross-Validation Average): 0.07703518
        Accuracy (10-fold Cross-Validation Average): 0.9229648
```

Basic Logistic Regression without Interaction Terms

```
In [8]: k = 10
        n = length(train2[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            df_train <- train2[-(((i-1)*fsize+1):(i*fsize)),]</pre>
            df_val <- train2[((i-1)*fsize+1):(i*fsize),]</pre>
            # Fit model on training and make predictions on validation
            model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
            lr_pred_lo <- predict(model_cv,df_val) # Lo : Log odds</pre>
            num val = length(df_val$ketBool)
            lr_pred = rep(0,num_val)
            actual = rep(0, num val)
            for (j in 1:num_val){
                if (lr_pred_lo[j]>0){
                   lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
            # Compute 0-1 loss for each observation
            lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred-actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        \label{eq:df_train} $$ df_train <- train2[-(((k-1)*fsize+1):n),] $$
        df_val <- train2[((k-1)*fsize+1):n,]</pre>
        # Fit model on training and make predictions on validation
        model_cv <- glm(ketBool ~ ., data=df_train, family='binomial')</pre>
        lr_pred_lo <- predict(model_cv,df_val) # lo : Log odds</pre>
        num_val = length(df_val$ketBool)
        lr_pred = rep(0,num_val)
        actual = rep(0,num_val)
        for (j in 1:num_val){
            if (lr_pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = df_val$ketBool[j]
        lr_loss = abs(lr_pred-actual)
        zoloss[k] = mean(lr_loss)
        test_error_est = mean(zoloss)
        cat("-----\n")
        cat("Logistic Regression Model without Interaction Terms\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("-----\n")
```

Logistic Regression Model without Interaction Terms

Zero-One Loss (10-fold Cross-Validation Average): 0.1413709
Accuracy (10-fold Cross-Validation Average): 0.8586291

GLMNET

```
In [9]: | # First, let's do a 50% split on the training data to determine the best Lambda
        n = length(train[,1])
        n50 = round(n/2)
        train50A = train[1:n50,]
        train50B = train[(n50+1):n,]
        xA = model.matrix(ketBool ~ . + animalName:correlationScore
                            + animalName:lickAccuracy
                            + animalName:lickNumber
                            + animalName:avgFR
                            + animalName:avgSingleCellVariance
                            + animalName:varianceFR
                            + animalName:avgTrialSpeed
                            + animalName:varianceSpeed, data = train50A)
        yA = train50A$ketBool
        xB = model.matrix(ketBool ~ . + animalName:correlationScore
                            + animalName:lickAccuracy
                            + animalName:lickNumber
                            + animalName:avgFR
                            + animalName:avgSingleCellVariance
                            + animalName:varianceFR
                            + animalName:avgTrialSpeed
                            + animalName:varianceSpeed, data = train50B)
        yB = train50B$ketBool
```

Lasso

```
In [10]: # Select regularization parameter over trainA (50% of training data)
    model_lasso <- cv.glmnet(xA, yA, family='binomial',alpha=1)
    lambda_min = model_lasso$lambda.min
    lambda_1se = model_lasso$lambda.1se</pre>
```

lambda.min

```
In [11]: k = 10
        n = length(train50B[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            xB\_train = xB[-(((i-1)*fsize+1):(i*fsize)),]
            yB\_train = yB[-(((i-1)*fsize+1):(i*fsize))]
            xB_val = xB[((i-1)*fsize+1):(i*fsize),]
            yB_val = yB[((i-1)*fsize+1):(i*fsize)]
            # Fit model on training and make predictions on validation
            model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_min)</pre>
            pred lo = predict(model cv, newx = xB val)
            num_val = length(yB_val)
            lr_pred = rep(0,num_val)
            actual = rep(0, num val)
            for (j in 1:num_val){
                if (pred_lo[j]>0){
                   lr_pred[j]=1
                actual[j] = yB_val[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr loss)
        xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
        yB_{train} = yB[-(((k-1)*fsize+1):(length(yB)))]
        xB_val = xB[((k-1)*fsize+1):(length(yB)),]
        yB_val = yB[((k-1)*fsize+1):(length(yB))]
        # Fit model on training and make predictions on validation
        model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_min)</pre>
        pred lo = predict(model cv, newx = xB val)
        num_val = length(yB_val)
        lr_pred = rep(0,num_val)
        actual = rep(0,num val)
        for (j in 1:num_val){
            if (pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = yB_val[j]
        # Compute 0-1 loss for each observation
        lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
        # Compute mean 0-1 loss on the val set
        zoloss[k] = mean(lr loss)
        test_error_est = mean(zoloss)
        cat("-----\n")
        cat("GLMNET Lasso Logistic Regression Model with lambda.min\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("======\n")
        ______
```

```
GLMNET Lasso Logistic Regression Model with lambda.min

Zero-One Loss (10-fold Cross-Validation Average): 0.07002764

Accuracy (10-fold Cross-Validation Average): 0.9299724
```

lambda.1se

```
In [12]: k = 10
        n = length(train50B[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            xB\_train = xB[-(((i-1)*fsize+1):(i*fsize)),]
            yB_{train} = yB[-(((i-1)*fsize+1):(i*fsize))]
            xB_val = xB[((i-1)*fsize+1):(i*fsize),]
            yB_val = yB[((i-1)*fsize+1):(i*fsize)]
            # Fit model on training and make predictions on validation
            model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_1se)</pre>
            pred_lo = predict(model_cv, newx = xB_val)
            num_val = length(yB_val)
            lr_pred = rep(0,num_val)
            actual = rep(0,num_val)
            for (j in 1:num_val){
                if (pred_lo[j]>0){
                   lr_pred[j]=1
                actual[j] = yB_val[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr_loss)
        xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
        yB_{train} = yB[-(((k-1)*fsize+1):(length(yB)))]
        xB_val = xB[((k-1)*fsize+1):(length(yB)),]
        yB_val = yB[((k-1)*fsize+1):(length(yB))]
        # Fit model on training and make predictions on validation
        model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=1,lambda=lambda_1se)</pre>
        pred_lo = predict(model_cv, newx = xB_val)
        num_val = length(yB_val)
        lr_pred = rep(0,num_val)
        actual = rep(0,num val)
        for (j in 1:num_val){
            if (pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = yB_val[j]
        # Compute 0-1 loss for each observation
        lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
        # Compute mean 0-1 loss on the val set
        zoloss[k] = mean(lr loss)
        test_error_est = mean(zoloss)
        cat("=======\n")
        cat("GLMNET Lasso Logistic Regression Model with lambda.1se\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("======\n")
        ______
```

```
GLMNET Lasso Logistic Regression Model with lambda.1se

Zero-One Loss (10-fold Cross-Validation Average): 0.07403518

Accuracy (10-fold Cross-Validation Average): 0.9259648
```

Ridge

```
In [13]: # Select regularization parameter over trainA (50% of training data)
model_lasso <- cv.glmnet(xA, yA, family='binomial',alpha=0)
lambda_min = model_lasso$lambda.min
lambda_1se = model_lasso$lambda.1se</pre>
```

lambda.min

```
In [16]: k = 10
        n = length(train50B[,1])
        fsize = round(n/k)
        rmse = rep(0,k)
        zoloss = rep(0,k)
        for (i in 1:(k-1)){
            # Get train and validation sets
            xB\_train = xB[-(((i-1)*fsize+1):(i*fsize)),]
            yB\_train = yB[-(((i-1)*fsize+1):(i*fsize))]
            xB_val = xB[((i-1)*fsize+1):(i*fsize),]
            yB_val = yB[((i-1)*fsize+1):(i*fsize)]
            # Fit model on training and make predictions on validation
            model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_min)</pre>
            pred lo = predict(model cv, newx = xB val)
            num_val = length(yB_val)
            lr_pred = rep(0,num_val)
            actual = rep(0, num val)
            for (j in 1:num_val){
                if (pred_lo[j]>0){
                   lr_pred[j]=1
                actual[j] = yB_val[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
            # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr loss)
        xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
        yB_{train} = yB[-(((k-1)*fsize+1):(length(yB)))]
        xB_val = xB[((k-1)*fsize+1):(length(yB)),]
        yB_val = yB[((k-1)*fsize+1):(length(yB))]
        # Fit model on training and make predictions on validation
        model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_min)</pre>
        pred lo = predict(model cv, newx = xB val)
        num_val = length(yB_val)
        lr_pred = rep(0,num_val)
        actual = rep(0,num val)
        for (j in 1:num_val){
            if (pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = yB_val[j]
        # Compute 0-1 loss for each observation
        lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
        # Compute mean 0-1 loss on the val set
        zoloss[k] = mean(lr loss)
        test_error_est = mean(zoloss)
        cat("-----\n")
        cat("GLMNET Ridge Logistic Regression Model with lambda.min\n\n")
        cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
        cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
        cat("-----\n")
        _____
```

```
GLMNET Ridge Logistic Regression Model with lambda.min
```

Zero-One Loss (10-fold Cross-Validation Average): 0.07603518
Accuracy (10-fold Cross-Validation Average): 0.9239648

lambda.1se

```
In [17]: k = 10
         n = length(train50B[,1])
         fsize = round(n/k)
         rmse = rep(0,k)
         zoloss = rep(0,k)
         for (i in 1:(k-1)){
            # Get train and validation sets
            xB\_train = xB[-(((i-1)*fsize+1):(i*fsize)),]
            yB\_train = yB[-(((i-1)*fsize+1):(i*fsize))]
            xB_val = xB[((i-1)*fsize+1):(i*fsize),]
            yB_val = yB[((i-1)*fsize+1):(i*fsize)]
             # Fit model on training and make predictions on validation
            model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_1se)</pre>
            pred lo = predict(model cv, newx = xB val)
            num_val = length(yB_val)
             lr_pred = rep(0,num_val)
            actual = rep(0,num_val)
             for (j in 1:num_val){
                if (pred_lo[j]>0){
                    lr_pred[j]=1
                actual[j] = yB_val[j]
            # Compute 0-1 loss for each observation
            lr loss = abs(lr pred-actual) # loss is 0 if NB pred=actual, 1 otherwise
             # Compute mean 0-1 loss on the val set
            zoloss[i] = mean(lr loss)
         xB_{train} = xB[-(((k-1)*fsize+1):(length(yB))),]
         yB_{train} = yB[-(((k-1)*fsize+1):(length(yB)))]
         xB_val = xB[((k-1)*fsize+1):(length(yB)),]
         yB_val = yB[((k-1)*fsize+1):(length(yB))]
         # Fit model on training and make predictions on validation
         model_cv <- glmnet(xB_train, yB_train, family='binomial',alpha=0,lambda=lambda_1se)</pre>
         pred lo = predict(model cv, newx = xB val)
         num_val = length(yB_val)
         lr_pred = rep(0,num_val)
         actual = rep(0,num val)
         for (j in 1:num_val){
            if (pred_lo[j]>0){
                lr_pred[j]=1
            actual[j] = yB_val[j]
         # Compute 0-1 loss for each observation
         lr_loss = abs(lr_pred-actual) # loss is 0 if NB_pred=actual, 1 otherwise
         # Compute mean 0-1 loss on the val set
         zoloss[k] = mean(lr loss)
         test_error_est = mean(zoloss)
         cat("-----\n")
         cat("GLMNET Ridge Logistic Regression Model with lambda.1se\n\n")
         cat("Zero-One Loss (10-fold Cross-Validation Average):",test_error_est,"\n")
         cat("Accuracy (10-fold Cross-Validation Average):",1-test_error_est,"\n")
         cat("======\n")
```

GLMNET Ridge Logistic Regression Model with lambda.1se

Zero-One Loss (10-fold Cross-Validation Average): 0.07703518
Accuracy (10-fold Cross-Validation Average): 0.9229648

In []: