Name: Luong Thi Uy Thieu

Class: DMA-B05

HOMEWORK DISCRETE MATHEMATICS PROBLEM SET 02

Problem 1

x irrational -> 1/x irrational

if 1/x is rational

$$=> 1/x = a/b (a,b Z)$$

$$=> x = b/a$$

=> x is rational

$$-Q = > -P = P = > Q$$

Problem 2

Prove that given a nonnegative integer n, there is a unique nonnegative integer m such that $m^2 \le n < (m+1)^2$.

$$m \le \sqrt{n} < m+1$$

n is a nonnegative integer. We can then take the square root of n, which is \sqrt{n} . \sqrt{n} is a real number and any real number lies between two consecutive integers (or is equal to an integer). Thus there exists an integer m such that:

$$m \leq \sqrt{n} < m+1$$

Since \sqrt{n} is nonnegative, the integer m also has to be nonnegative.

Square each side of the inequality:

$$m^2 \leq n < (m+1)^2$$

We have then proven that there exists a nonnegative integer m such that the inequality holds.

Problem 3

Show that p_1, p_2, p_3, p_4, p_5 can be shown to be equivalent by proving that the conditional statements $p_1 \to p_4, p_4 \to p_2, p_2 \to p_5, p_5 \to p_3, p_3 \to p_1$ are true.

```
Assume p1 is true:

p1->p4=>p4 true

p4->p2=>p2 true

.....

=>p5 true

Assume p1 is false:

p3->p1=>p3 is false

.....

p4 false
```

Problem 4

Prove that there is no positive integer n such that $n^2 + n^3 = 100$.

Assume there exits n

=>
$$n^3$$
 < 100 => = {1,2,3,4}
if n =1 f(n)=2
....
n=4 f(n)=16+64=80
=> there is no positive integer n

Problem 5

Prove that if x^3 is irrational and $x \geq 0$ then the square root of x is irrational.

if
$$\sqrt{x}$$
 is rational => \sqrt{x} = ab
 $x = (a/b)^2 = a^2/b^2$
 $x^3 = a^6/b^6 => x^3$ rational

Problem 6

Prove that if m is a power of 3 and n is a power of 3 then m + n is never a power of 3.

m=3 x (x,y are integers) n=3 y m+n=3 x +3 y => m+n=3x(1+3y-x) 1+3 y => m+n is not a power of 3

Problem 7

Assume that a and b are both integers and that $a \neq 0$ and $b \neq 0$. Explain why $\frac{(b-a)}{(ab^2)}$ must be a rational number.

$$\frac{b-a}{ab^2} = \frac{1}{ab} - \frac{1}{b^2}$$

a,b C Z => 1/ab is rational and $1/b^2$ is rational

Problem 8

Prove by contraposition: For all positive integers n, r and s, if $rs \leq n$, then $r \leq \sqrt{n}$ or $s \leq \sqrt{n}$.

if
$$r2>n$$
 and $s2>n=>(rs)2>n^2=>rs>n$

Problem 9

Prove that $\sqrt{2} + \sqrt{3}$ is irrational.

$$\sqrt{2}+\sqrt{3}=\frac{a}{b}$$
 (a,b Z)

$$5+2\sqrt{6}=a^2/b^2$$

$$2\sqrt{6} = a^2/b^2 - 5$$

$$\sqrt{6} = \frac{a^2 - 5b^2}{2b^2}$$
 (contradiction)

Therefore, $\sqrt{2}+\sqrt{3}$ is irrational

Problem 10

Prove that $\forall n \in \mathbb{Z}$, if n > 2 then there is a prime number p such that n . (*Hint*: Use the theorem: "Any integer <math>n > 1 is divisible by a prime number". Prove that: p|(n!-1), if $p \le n$, then $p = 1 \to \text{contradiction}$. Therefore, n).

P: n>2

Q: n

if n>2 => n

assume –Q: n!≤p≤n

=> n!≤n

=> n = 1 or n = 2

 $=> 0 < n \le 2$ (contraposition)

=> -P

-Q = > -P

Therefore, P => Q