Limit Theorem of Hadamard Product Random Matrices

Ming Hsiao ¹ Joint work with Hao-Wei Huang²

¹National Taiwan University

²National Tsing Hua University

2023/06/09

Table of Contents

- Motivation
 - A standard result of GUE
 - Hadamard product and GUE
- Introduction to Free Probability
- Main Results
 - Main Theorem I
 - Main Theorem II
- Applications
 - Application I
 - Application II
- 5 Future works

A standard result of GUE

First, we review some basics of random matrix theory.

- $\{X_{i,j}: 1 \leq i \leq j\}$ is a family of i.i.d. standard normal random variables, i.e. $X_{i,j} \sim \mathcal{N}(0,1)$.
- W_N is called a **Gaussian Unitary Ensemble** (or shortly, **GUE**) if it is a random matrix with the form

$$W_N(i,j) := N^{-\frac{1}{2}} X_{i \wedge j, i \vee j}$$
 for all $1 \leq i, j \leq N$.

A standard result of GUE

• ESD[W_N] is the **empirical spectral distribution** of W_N , which is defined by

$$ESD[W_N] := \frac{1}{N} (\delta_{\lambda_1} + \dots + \delta_{\lambda_N}),$$

where λ_i are the eigenvalues of W_N .

• Theorem [Wigner, 1955]

$$ESD[W_N] \rightharpoonup w \text{ as } N \to \infty,$$

where w with density $\frac{1}{2\pi}\sqrt{4-x^2}$ is called the standard semi-circular distribution.

Hadamard product and GUE

Question: How to generalize this result?

More precisely, what kind of sequence $(a_{i,j})$ would make

 $\mathsf{ESD}[(a_{i,j} \cdot W_N(i,j))]$ weakly converge to some probability measure?

Chakrabarty gives an idea as follows:

Hadamard product and GUE

Let $f:[0,1]^2\to\mathbb{R}$ be a symmetric Riemann integrable function, i.e. f(x,y)=f(y,x). Then define a random matrix

$$Z_{f,N}(i,j) := f\left(\frac{i}{N+1}, \frac{j}{N+1}\right) W_N(i,j),$$

for $1 \le i, j \le N$. In other words, $Z_{f,N} = A_{f,N} \circ W_N$ is a Hadamard product of matrices $A_{f,N}(i,j) = f(i/(N+1),j/(N+1))$ and W_N .

Hadamard product and GUE

• Theorem [Chakrabarty, 2017] There exists a symmetric probability measure $\mu_f \in \mathbf{P}_{sym}(\mathbb{R})$ such that

$$ESD[Z_{f,N}] \rightharpoonup \mu_f \text{ as } N \to \infty.$$

• For f(x,y) = r(x)r(y), Chakrabarty shows that $\mu_f^2 = \mu^{\boxtimes 2} \boxtimes \sigma$, where μ is the law of $r^2(U)$, U is the standard uniform random variable, \boxtimes is the free multiplicative convolution, and σ is the Free Poisson distribution with rate 1.

Remark: The density of σ is $\frac{\sqrt{4x-x^2}}{2\pi x}\mathbb{1}_{[0,4]}(x)$.

Chakrabarty A. *Stat Probab Lett* 2017; **127**: 150-157.

- (A, ϕ) : a *-algebra A over $\mathbb C$ and a tracial linear functional ϕ . We call such a pair a **Non-Commutative Probability Space** (or shortly, NCPS). An element $a \in A$ is called a **random variable**.
- For a random variable $a \in \mathcal{A}$, we called $\mu \in \mathbf{P}(\mathbb{R})$ is **the** distribution of a if

$$\phi(a^n) = \int_{\mathbb{R}} t^n d\mu(t) \quad \forall n \ge 0.$$

• \mathcal{B} and \mathcal{C} are two subalgebras of \mathcal{A} . We say they are **freely independent** if for any $n \geq 1$, $b_i \in \mathcal{B}$, and $c_i \in \mathcal{C}$ satisfy $\phi(b_i) = \phi(c_i) = 0$ for all $1 \leq i \leq n$, we have

$$\phi(b_1c_1b_2c_2\cdots b_nc_n)=0.$$

- For $a, b \in \mathcal{A}$, we say a and b are **free** if $span\{1_{\mathcal{A}}, a\}$ and $span\{1_{\mathcal{A}}, b\}$ are free.
- For $a, b \in \mathcal{A}$ and a, b have the distributions μ, ν , respectively.
 - If the distribution of a + b exists, then we denote it by $\mu \boxplus \nu$, the **free additive convolution of** a **and** b.
 - If the distribution of ab exists, then we denote it by $\mu \boxtimes \nu$, the **free** multiplicative convolution of a and b.
- If \mathcal{A} is a C^* -algebra and ϕ is **positive state**, then for any self-adjoint element a, by **Gelfand transform**, the distribution exists. Moreover, if a is positive, then the distribution is defined on \mathbb{R}^+ .

Theorem 2.1 (Existence of Free Product)

Given $\{(\mathcal{A}_i, \phi_i)\}_{i \in I}$ a family of NCPS. Then there exists a NCPS (\mathcal{A}, ϕ) and monomorphisms $\psi_i : \mathcal{A}_i \to \mathcal{A}$ such that $\phi_i = \phi \circ \psi_i$ for all $i \in I$, which satisfy $\{\psi_i(\mathcal{A}_i)\}_{i \in I}$ are free in (\mathcal{A}, ϕ) . We denote (\mathcal{A}, ϕ) by $(*_{i \in I}\mathcal{A}_i, \phi)$ and call it the **free product of** $\{(\mathcal{A}_i, \phi_i)\}_{i \in I}$.

• A partition π of the set [n] is called **crossing** if there exist $p_1 < q_1 < p_2 < q_2$ in S such that $p_1 \sim_{\pi} p_2 \nsim_{\pi} q_2 \sim_{\pi} q_1$:

If π is not crossing, then it is called **non-crossing**.

• The set of all non-crossing partitions of [n] is denoted by NC(n).

Now we focus on some specific f.

Let $f:[0,1]^2 \to \mathbb{R}$ be a symmetric Riemann integrable function such that

$$f(x,y) = \sqrt{\sum_{k=1}^{N} r_k(x)\tilde{r}_k(y)},$$
(1)

with $r_k, \tilde{r}_k : [0,1] \to \mathbb{R}$ integrable for all $k = 1, \dots, N$.

It is important and sufficient to study f of this type because by the **Stone-Weierstrass theorem**, these functions are dense in the set of symmetric continuous functions on $[0, 1]^2$, and we can approach any symmetric integrable function f through the continuous one.

Let $(\mathcal{A}, \phi_{\mathcal{A}}) = (\mathcal{B}, \phi_{\mathcal{B}}) = (\mathcal{R}([0,1]), dx)$ be two commutative probability spaces. For $f(x,y) = \sqrt{\sum r_k(x)\tilde{r}_k(y)}$, we define random variables $a_k = r_k \in \mathcal{A}$, $b_k = \tilde{r}_k \in \mathcal{B}$, and

$$\eta_f = \sum_{k=1}^N a_k b_k \in \mathcal{A} * \mathcal{B}.$$

Given a non-crossing partition $\pi \in NC(n)$, we denote

$$m_{\pi}(\eta_f) := \phi(\eta_f^{|V_1|})\phi(\eta_f^{|V_2|})\cdots\phi(\eta_f^{|V_r|}),$$

where $\pi = \{V_1, V_2, \cdots, V_r\}$, is a multiplicative function on NC(n).

For example, for $\pi = \{(1, 4, 8), (2, 3), (5), (6, 7)\} \in NC(8)$, the moment m_{π} is defined by

$$m_{\pi}(\eta_f) = \phi(\eta_f^3)\phi(\eta_f^2)^2\phi(\eta_f).$$

Theorem 3.1 (Hsiao, 2023)

Let $f:[0,1]^2\to\mathbb{R}$ and η_f be defined as above. Then

$$m_{2n}(\mu_f) = \sum_{\pi \in NC(n)} m_{\pi}(\eta_f),$$

for all $n \geq 0$. In particular, if η_f has the distribution on \mathbb{R} , then we have $\mu_f^2 = \eta_f \boxtimes \sigma$, where σ is the Free Poisson distribution with rate 1.

Remark:

- \bullet This generalizes Chakrabarty's results. (N=1)
- In general, η_f may not have the distribution. (η_f is not a self-adjoint element, not even a normal element.)

Now, we define a family of probability measure

$$\mathfrak{H}:=\left\{\mu_f\in\mathbf{P}_{sym}(\mathbb{R}): \begin{array}{l} f:[0,1]^2\to\mathbb{R} \text{ is symmetric}\\ \text{and Riemann integrable.} \end{array}\right\}.$$

Theorem 3.2 (Hsiao, 2023)

- 5 is a convex set.

Remark: This also generalize Chakrabarty's result. Since

$$\left\{\sqrt{\nu^{\boxtimes 2}\boxtimes\sigma}:\ \nu\in\mathbf{P}(\mathbb{R}^+)\right\}\subsetneq\left\{\sqrt{\nu\boxtimes\sigma}:\ \nu\in\mathbf{P}(\mathbb{R}^+)\right\}.$$

Benaych-Georges shows that for any two probability measures $\mu, \nu \in \mathbf{P}(\mathbb{R}^+)$, we have

$$\sqrt{\mu\boxtimes\sigma}\boxplus\sqrt{\nu\boxtimes\sigma}=\sqrt{(\mu\boxplus\nu)\boxtimes\sigma}.$$

Benaych-Georges F. *Ann Inst H Poincaré Probab Statist* 2010; **46**: 644—652.

Here, we give a Hadamard product random matrix model of this equality.

Let $g_1, g_2 : [0, 1] \to \mathbb{R}_{\geq 0}$ be two Riemann integrable functions.

Define $f_1, f_2 : [0,1] \to \mathbb{R}$ as follow:

$$f_1(x,y) := \sqrt{2g_1(2x-1)\mathbb{1}_{\left[\frac{1}{2},1\right]\times\left[0,\frac{1}{2}\right]}(x,y) + 2g_1(2y-1)\mathbb{1}_{\left[0,\frac{1}{2}\right]\times\left[\frac{1}{2},1\right]}(x,y)},$$

and

$$f_2(x,y) := \sqrt{2g_2(2y)\mathbb{1}_{\left[\frac{1}{2},1\right]\times\left[0,\frac{1}{2}\right]}(x,y) + 2g_2(2x)\mathbb{1}_{\left[0,\frac{1}{2}\right]\times\left[\frac{1}{2},1\right]}(x,y)}.$$

Theorem 4.1 (Hisao, 2023)

Let g_1, g_2, f_1, f_2 defined as above. Then we have

$$\mu_{f_1} \boxplus \mu_{f_2} = \mu_{\sqrt{f_1^2 + f_2^2}}.$$

Furthermore, the above identity can be written as

$$\sqrt{\mu\boxtimes\sigma}\boxplus\sqrt{\nu\boxtimes\sigma}=\sqrt{(\mu\boxplus\nu)\boxtimes\sigma},$$

where $\mu, \nu \in \mathbf{P}(\mathbb{R}^+)$ are two probability measures such that

$$\mu = g_1(U) \text{ and } \nu = g_2(U),$$

with U the standard uniform random variable.

Remark: By a well-known property of normal distribution, we have

$$Z_{f_1,N} + \tilde{Z}_{f_2,N} \stackrel{d}{=} Z_{\sqrt{f_1^2 + f_2^2},N}.$$

But in general, we don't have $\mu_{f_1} \boxplus \mu_{f_2} = \mu_{\sqrt{f_1^2 + f_2^2}}$. In other words, $\{Z_{f_1,N}\}$ and $\{\tilde{Z}_{f_2,N}\}$ are not **asymptotically free** for general symmetric Riemann integrable functions f_1, f_2 .

Definition: For a symmetric Riemann integrable function $f: [0,1]^2 \to \mathbb{R}_{\geq 0}$, f is *periodic of type I* if there exists a constant $M_f > 0$ such that for all $(x,y) \in [0,\frac{1}{2}]^2$, we have

$$f(x,y) = f\left(x + \frac{1}{2}, y + \frac{1}{2}\right),$$

and

$$f(x,y)^2 + f\left(x + \frac{1}{2}, y\right)^2 = f(x,y)^2 + f\left(x, y + \frac{1}{2}\right)^2 = 2M_f^2.$$

Definition: For a symmetric Riemann integrable function $f: [0,1]^2 \to \mathbb{R}_{\geq 0}$, f is *periodic of type II* if there exists a constant $M_f > 0$ such that for all $(x,y) \in [0,\frac{1}{2}]^2$, we have

$$f(x,y) = f(1-x, 1-y),$$

and

$$f(x,y)^2 + f(1-x,y)^2 = f(x,y)^2 + f(x,1-y)^2 = 2M_f^2.$$

Theorem 4.2 (Hsiao, 2023)

Let f be a periodic of type I or type II function. Then we have $\mu_f = w_{M_f}$, where w_{M_f} is the semi-circular distribution with variance M_f .

Future works

- Property of \mathfrak{H} : e.g. Is \mathfrak{H} weakly closed?
- Relation between $\mu_{\sqrt{f_1^2+f_2^2}}$ and μ_{f_1}, μ_{f_2} .
- \boxplus -infinitely divisible and Hadamard random matrix.
- When do we have asymptotically freeness?
- More applications in Random matrix theory.

Reference

- [1] Chakrabarty A. The Hadamard product and the free convolutions. *Stat Probab Lett* 2017; **127**: 150-157.
- [2] Arizmendi O, Pérez-Abreu V. The S-transform of symmetric probability measures with unbounded supports. *Proc Am Math Soc* 2009; 137: 3057—3066.
- [3] Nica A, Speicher R. *Lectures on the combinatorics of free probability*, London Mathematical Society Lecture Note Series, 335. Cambridge University Press, Cambridge, 2006.
- [4] Mingo J, Speicher R. *Free Probability and Random Matrices*, Fields Institute Monographs, Springer, 2017.
- [5] Benaych-Georges F. On a surprising relation between the Marchenko-Pastur law, rectangular and square free convolution, *Ann Inst H Poincaré Probab Statist* 2010; 46: 644—652.

Appreciation

Thanks for your listening!