### COS-D407. Scientific Modeling and Model Validation

Week 3 Model Validation Example: Validation framework for demographic mortality forecast models

Guest Lecturer: Ricarda Duerst<sup>1</sup>

UNIVERSITY OF HELSINKI, FINLAND

01.11.2021 - 15.12.2021

<sup>1</sup>PHD STUDENT AT UNIVERSITY OF HELSINKI ANDMAX PLANCK INSTITUTE FOR DEMOGRAPHIC RESEARCH, ROSTOCK, GERMANY

## Agenda

### **TODAY**

- Human Mortality
- Mortality Forecasting
- Forecast Validation
- Our Validation Framework
- !! Preparations for Wednesday !!

#### **WEDNESDAY**

Hands-on exercises on mortality forecast validation





## Human Mortality

•Many demographic measures to talk about human mortality, e.g.:

•Crude death rate: 
$$CDR = \frac{Number\ of\ deaths}{Number\ of\ person-years\ lived} = \frac{D}{N}$$

- •Age-specific mortality rate:  $n m_x = \frac{Number\ of\ deaths\ in\ age\ range\ x\ to\ x+n}{Number\ of\ person-years\ lived\ in\ age\ range\ x\ to\ x+n} = \frac{n\ D_x}{n\ N_x}$
- •Distribution of the age at death  $D_x$
- •Life expectancy at birth:  $e_0$  calculated using the Life Table, a summary measure of the current mortality experience of a population
- •Life span disparity at birth:  $e_0^{\dagger}$  additional step of the Life Table, a summary measure for the variability of the age at death

## Human Mortality: Finland

- Data source: Statistics Finland
   <a href="https://www.stat.fi/til/kuol/2020/kuol-2">https://www.stat.fi/til/kuol/2020/kuol-2</a>
   020 2021-04-23 tie 001 en.html
- Year 2020:

CDR = 9.87 deaths per 1000 inhabitants

Mean age at death: 75.3 years for men, 82.1 years for women

Life expectancy at birth: 79 years for boys, 84.6 years for girls

Age distribution at the time of death by sex in 2020



Source: Statistics Finland https://www.stat.fi/til/kuol/2020/kuol 2020 2021-04-23 tie 001 en.html

### Question for you!

At which ages
happened the strongest
mortality improvements
in Finland
a) in the past
b) and recently?



# Human Mortality: Finland

Life expectancy at birth  $e_0$ 



Life span disparity  $e_0^{\dagger}$ 



## Mortality Data

#### **Human Mortality Database (HMD)**

- www.mortality.org
- by Max Planck Insitute for Demographic Research, Rostock and University of California, Berkeley
- detailed population and mortality data for 41 countries
- data access with free account → see preparations for Wednesday!

### **UN World Population Prospects (UN WPP)**

- https://population.un.org/wpp/
- by Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat
- global population estimates and projections for key demographic indicators including mortality
- free data access

## Mortality Forecasting

- Different approaches:
  - Extrapolation (continuing observed trends), e.g. Lee-Carter model (1992)
  - Explanation (including causes of deaths with known determinants), e.g. lung cancer mortality
  - Expectation (based on expert opinions)
  - Deterministic vs. Probabilistic (point forecasts vs. intrduction of uncertainty with prediction intervals)
  - Forecasts of age-specific mortality rates or life expectancy at birth directly
- See e.g.: Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. *Annals of actuarial science*, *3*(1-2), 3-43.

https://www.actuaries.org/CTTEES TFM/Documents/Booth Tickle.pdf

# Mortality Forecasting: Probabilistic Projection of $e_0$ for Finnish Females



### Mortality Forecasting: Lee Carter Model (1992)

- Golden standard in mortality forecasting → widely used and approved
- Methodologically simple extrapolation model → basic assumption:
   age-specific trends in the past will continue in the future
- Age parameter  $b_x$  and time-varying parameter  $k_t$   $\rightarrow$  estimated using singular value decomposition, then fixed
- Extrapolation of  $k_t$  using time series model (random walk with drift)

$$\ln(m_{x,t}) = a_x + b_x * k_t + \varepsilon_{x,t}$$

| t                   | Year                                            |  |
|---------------------|-------------------------------------------------|--|
| x                   | Age                                             |  |
| $\ln(m_{x,t})$      | Log death rates                                 |  |
| $a_{x}$             | Average of $\ln(m_{x,t})$ in base period by age |  |
| $b_x$               | Change in age-specific mortality                |  |
| $k_t$               | Overall level of mortality                      |  |
| $\varepsilon_{x,t}$ | Error term                                      |  |

### Forecast Validation

**Ex-post validation** (or out-of sample validation):

- Checking performance in hind-sight
- Principal: withholding observed data and "simulating" a forecast for the respective period to compare the forecast results with the observed values
- Base period (BP): years with input data for forecast
- Jump-off year (JOY): last year of BP
- Forecast Horizon (FH): forecast years



### Question for you! Why is forecast validation important?



- Researchers can compare the ex-post performance of their newly developed forecast methods to others
- → Forecast validation helps to improve methodology

- Policy-makers rely on forecasts for policy decisions,
   e.g.:
  - COVID-19 deaths and infections → lockdowns, distancing rules
  - Life expectancy → Age of retirement
  - Population age structure → social security systems
  - Births → child care and education
- → Forecast validation helps to choose forecasts that are likely to be accurate and unbiased

# Forecast Validation: Error Measures

- Forecast error:  $FE_t = F_t Y_t$
- Percentage error:  $PE_t = 100 * \frac{F_t Y_t}{Y_t}$
- Forecast feature and example measure:
  - Accuracy (closeness to observed values), e.g. PE
  - Bias (under- or overestimation of observed values), e.g. ME
  - Uncertainty (assessment of the probability distribution), e.g. Prediction Interval Coverage
- Characteristics, e.g.:
  - Absolute vs. signed measures (APE vs. PE)
  - Crude vs. relative measures (FE vs. PE)
  - Mean vs. median mesaures (MAE vs. MdE)
  - Yearly (or other time unit) vs. summary measures (FE vs. ME)

| t | Year                     |
|---|--------------------------|
| F | Forecast value in year t |
| Y | Observed value in year t |
| n | Number of forecast years |

| Error Measure <b>Examples</b>     | Formula                                               |
|-----------------------------------|-------------------------------------------------------|
| Mean Error                        | $ME = \underset{t=1,n}{\text{mean}}(FE_t)$            |
| Median Error                      | $MdE = \underset{t=1,n}{\text{median}}(FE_t)$         |
| Mean Absolute Error               | $MAE = \underset{t=1,n}{\text{mean}}( FE_t )$         |
| Absolute Percentage Error         | $APE_t =  PE_t $                                      |
| Mean Absolute Percentage<br>Error | $MAPE = \underset{t=1,n}{\operatorname{mean}}(APE_t)$ |

### Question for you!

Can you think of advantages / disadvantages of the different kinds of error measures?
Regarding:

- Absolute vs. signed measures
- Crude vs. relative measures
- Mean vs. median measures

- **Crude** measures: easy interpretation of measure (same scale as forecast value, e.g. years)
- **Relative** measures: comparability of forecasts between countries
- Absolute measures: for assessment of forecast accuracy
- Signed measures: for assessment of forecast bias
- Median measures are less sensitive to outliers compared to mean measures

See e.g.: Shcherbakov, M, Brebels, A, Shcherbakova, N, Tyukov, A, Janovsky, T & Kamaev, V (2013). A survey of forecast error measures. World Applied Sciences Journal, 24(24). <a href="https://www.researchgate.net/profile/Adriaan-Brebels/publication/281718517">https://www.researchgate.net/profile/Adriaan-Brebels/publication/281718517</a> A survey of forecast error measures/links /56f43b2408ae81582bf0a1a9/A-survey-of-forecast-error-measures.pdf

### Our Validation Framework

### Project title:

## Validation and Mortality Forecasting: Establishing Method Validation Prior to Forecasting

#### • Authors:

Ricarda Duerst, Christina Bohk-Ewald

### Research question:

How can forecast validation serve as a test to decide whether a method is suitable to forecast mortality in a country of interest?

### Research Design:

Development of a validation framework & exemplary application to Lee-Carter forecasts

# Our Validation Framework: Study Design



Different mortality measures



In different mortality settings











Mean level & distinct age patterns

Level of mortality development

Patterns in mortality development

→ Large data basis & detailed validation framework

# Our Validation Framework: Making Most of the Data

- Out-of-sample validation
- Forecast horizon: 1 to 30 years
- Base period: always 30 years
- As much jump-off years as data for each country allows
- Forecast of  $m_\chi \rightarrow e_0$  and  $e_0^\dagger$
- Accuracy & bias with forecast percentage error (PE)



## Our Validation Framework: Data Source HMD

### Human Mortality Database:

- 41 countries available
- $m_{\chi}$  from life tables
- Ages 0 to 100+
- separately by sex
- Restricted to 24 highly developed countries
   from Europe, North America & Japan



## Mortality Development HMD Data



### Question for you!

When is it especially difficult or easy for the Lee-Carter model to produce accurate and unbiased forecasts?





## Our Validation Framework: Results for 1<sup>st</sup> Analytical Setting





### Question for you! How would you interpret this plot?





Data source: Human Mortality Database, www.mortality.org

## Our Validation Framework: Results for 2<sup>nd</sup> Analytical Setting





## Our Validation Framework: Results for 3<sup>rd</sup> Analytical Setting





Data source: Human Mortality Database, www.mortality.org

Data source: Human Mortality Database, www.mortality.org

## Our Validation Design: Conclusions

### Regarding Lee-Carter forecasts:



mean level of e0 appears has smaller effect on the PE of Lee-Carter forecasts than the mean level of e0+



• strong effect of the annual rate of change of e0 and e0<sup>+</sup> on accuracy and bias of the Lee-Carter forecasts



• trend changes have a strong impact on the PE of e0 and e0<sup>†</sup>



• similar patterns for women and men

→ LC suitable to forecast mortality of highly developed countries in the most recent years

### Regarding our research question:



Validation serves as meaningful first test to decide whether a mortality forecast method is appropriate in a country of interest

## What You Have Learned Today

- Measures of human mortality: age-specific mortality, life expectancy at birth, and life span disparity
- Development of Finnish mortality
- Data sources for human mortality
- The Lee-Carter model as an example of mortality forecasting
- The principle of ex-post forecast validation
- Example for the application of mortality forecast validation



## Wednesday's Lab Session

Hands-on exercises on mortality forecast validation



### !! PREPARATIONS FOR WEDNESDAY!!

- Please set up a free account for the Human Mortality Data Base in advance!
  - Go to www.mortality.org
  - Click on "New User" on the left side
  - Create a login id with your e-mail address
  - Wait for the e-mail with your password
- 2. Please install the necessary R packages in advance!
  - Open an empty R script in R Studio
  - Copy paste the code on the following slide
  - Run the code
  - Watch the console! If R asks you to enter a number to update some packages, enter "3" and hit "Enter" in the console.
  - If you have any problems installing the packages, please contact me via e-mail: <a href="mailto:duerst@demogr.mpg.de">duerst@demogr.mpg.de</a>

## Wednesday's Lab Session

Hands-on exercises on mortality forecast validation



### !! PREPARATIONS FOR WEDNESDAY!

```
# install packages
install.packages(c("fda", "HMDHFDplus", "ggplot2", "viridis", "dplyr", "devtools",
"tidyr", "tibble", "MortalityLaws"), repos = "http://cran.us.r-project.org")
# load libraries
library(ggplot2)
library(HMDHFDplus)
                                        You can't get it to work?
library(fda)
                                        Let's figure it out together!
library(dplyr)
                                        Tuesday 3:00pm Helsinki time:
library(viridis)
                                        https://zoom.us/j/98537126723?pwd=VjRXeEIRVVg
                                        vNHlxUGtiZDBRUGYwUT09
library(devtools)
library(tidyr)
```

devtools::install\_github("mpascariu/MortalityForecast")

library(tibble)

library(MortalityLaws)

library(MortalityForecast)

### Useful Resources

#### Data

Human Mortality Data Base: https://www.mortality.org/

UN World Population Prospects: <a href="https://population.un.org/wpp/">https://population.un.org/wpp/</a>

#### **Learning material**

Demography and human mortality:

Preston, S, Heuveline, P & Guillot, M (2000). Demography: Measuring and Modeling Population Processes. MA: Blackwell Publishers.

• Human mortality & forecasting:

Oeppen, J & Vaupel, JW (2002). Broken limits to life expectancy. Science, 296:5570. DOI: 10.1126/science.1069675

Booth, H., & Tickle, L. (2008). Mortality modelling and forecasting: A review of methods. Annals of actuarial science, 3(1-2), 3-43. https://www.actuaries.org/CTTEES\_TFM/Documents/Booth\_Tickle.pdf

Lee-Carter model:

Lee, R & Carter, L (1992). Modeling and Forecasting U.S. Mortality. Journal of the American Statistical Association, 87:419. https://doi.org/10.1080/01621459.1992.10475265

• Our validation design:

Duerst, R & Bohk-Ewald, C. Validation and Mortality Forecasting: Establishing Method Validation Prior to Forecasting. *Annual Meeting of the Population Association of America*, May 5-8 2021, online. <a href="https://submissions2.mirasmart.com/PAA2021/ViewSubmissionFile.aspx?sbmID=2720&mode=html&validate=false">https://submissions2.mirasmart.com/PAA2021/ViewSubmissionFile.aspx?sbmID=2720&mode=html&validate=false</a>

• Error measures:

Shcherbakov, M, Brebels, A, Shcherbakova, N, Tyukov, A, Janovsky, T & Kamaev, V (2013). A survey of forecast error measures. *World Applied Sciences Journal*, 24(24). <a href="https://www.researchgate.net/profile/Adriaan-Brebels/publication/281718517">https://www.researchgate.net/profile/Adriaan-Brebels/publication/281718517</a> A survey of forecast error measures/links/56f43b2408ae81582bf0a1a9/A-survey-of-forecast-error-measures.pdf