

MM74HC00 Quad 2-Input NAND Gate

General Description

The MM74HC00 NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay: 8 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC00MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC00SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC00MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC00MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HC00N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP

Logic Diagram

© 2005 Fairchild Semiconductor Corporation

DS005292

(Note 2)

,	
Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to V_{CC} +1.5 V
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5 V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	T _A = -55 to 125°C	Units	
Symbol	Parameter	Conditions	VCC	Тур		Guaranteed L	imits	Units	
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V	
	Input Voltage		4.5V		3.15	3.15	3.15	V	
			6.0V		4.2	4.2	4.2	V	
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V	
	Input Voltage		4.5V		1.35	1.35	1.35	V	
			6.0V		1.8	1.8	1.8	V	
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}							
	Output Voltage	$ I_{OUT} \leq 20~\mu A$	2.0V	2.0	1.9	1.9	1.9	V	
			4.5V	4.5	4.4	4.4	4.4	V	
			6.0V	6.0	5.9	5.9	5.9	V	
		$V_{IN} = V_{IH}$ or V_{IL}							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V	
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$							
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V	
			4.5V	0	0.1	0.1	0.1	V	
			6.0V	0	0.1	0.1	0.1	V	
		$V_{IN} = V_{IH}$							
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V	
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V	
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ	
	Current								
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μΑ	
	Supply Current	$I_{OUT} = 0 \mu A$							

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation		8	15	ns
	Delay				

AC Electrical Characteristics

 $V_{CC} = 2.0 \text{V}$ to 6.0V, $C_L = 50 \text{ pF}$, $t_f = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	$T_A = -55$ to 125°C	Units	
Cymbol	r di dillotoi	Conditions		Тур	Typ Guaranteed Limits			Oille	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	45	90	113	134	ns	
	Delay		4.5V	9	18	23	27	ns	
			6.0V	8	15	19	23	ns	
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns	
	and Fall Time		4.5V	8	15	19	22	ns	
			6.0V	7	13	16	19	ns	
C _{PD}	Power Dissipation	(per gate)		20				pF	
	Capacitance (Note 5)								
C _{IN}	Maximum Input			5	10	10	10	pF	
	Capacitance								

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

MM74HCT00 Quad 2 Input NAND Gate

General Description

The MM74HCT00 is a NAND gates fabricated using advanced silicon-gate CMOS technology which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pin-out compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to $\rm V_{CC}$ and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL}=14 ns (typ)
- Low power: 10 µW at DC
- High fan out, 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HCT00M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCT00MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HCT00SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HCT00MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT00MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HCT00N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HCT00N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

(1 of 4 gates)

© 2005 Fairchild Semiconductor Corporation

DS005356

(Note 2)

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC}+1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5 V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT}) Operating Temperature Range (T_A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f)		500	ns
Note 4. About to Mandague Dethans on their	ممتناميت	ابدر لمصمديميا	ioh dom

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics

 V_{CC} = 5V \pm 10% (unless otherwise specified)

Symbol	Parameter Conditions		$T_A = 25^{\circ}C$		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Symbol	raiailletei	Conditions	Тур		Guaranteed Limits		
V _{IH}	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} = 20 \mu A$	V_{CC}	V _{CC} -0.1	V _{CC} -0.1	V _{CC} -0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$					
	Voltage	$ I_{OUT} = 20 \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8 \text{ mA}, V_{CC} = 5.5 \text{V}$	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND,		±0.05	±0.5	±1.0	μА
	Current	V _{IH} or V _{IL}					
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND,		1.0	10	40	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)	0.18	0.3	0.4	0.5	mA

Note 4: This is measured per input with all other inputs held at V_{CC} or ground.

AC Electrical Characteristics

 $V_{CC} = 5.0V$, $t_r = t_r = 6$ ns, $C_L = 15$ pF, $T_A = 25$ °C (unless otherwise noted)

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH} , t _{PHL}	Maximum Propagation		14	18	ns
	Delay				

AC Electrical Characteristics

 V_{CC} = 5.0V ±10%, $t_{\rm f}$ = $t_{\rm f}$ = 6 ns, $C_{\rm L}$ = 50 pF (unless otherwise noted)

Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units	
- Cymbol	T drameter	Conditions	Тур		Guaranteed L	imits	Oille	
t _{PLH} , t _{PHL}	Maximum Propagation Delay		18	23	29	35	ns	
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		8	15	19	22	ns	
C _{PD}	Power Dissipation Capacitance	(Note 5)	30				pF	
C _{IN}	Input Capacitance		5	10	10	10	pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

DM74LS00 Quad 2-Input NAND Gates

General Description

This device contains four independent gates each of which performs the logic NAND function.

Features

 Alternate Military/Aerospace device (54LS00) is available. Contact a Fairchild Semiconductor Sales Office/Distributor for specifications.

Connection Diagram

Order Number 54LS00DMQB, 54LS00FMQB, 54LS00LMQB, DM54LS00J, DM54LS00W, DM74LS00M or DM74LS00N See Package Number E20A, J14A, M14A, N14A or W14B

Function Table

$$Y = \overline{AB}$$

Inp	Output	
Α	В	Υ
L	L	Н
L	Н	Н
Н	L	Н
н	Н	L

H = High Logic Level L = Low Logic Level

© 1998 Fairchild Semiconductor Corporation DS006439

7V Supply Voltage Input Voltage 7V Operating Free Air Temperature Range

DM54LS and 54LS DM74LS Storage Temperature Range -55°C to +125°C 0°C to +70°C -65°C to +150°C

Recommended Operating Conditions

Symbol	Parameter	DM54LS00			Units			
		Min	Nom	Max	Min	Nom	Max	
V _{cc}	Supply Voltage	4.5	5	5.5	4.75	5	5.25	V
V _{IH}	High Level Input Voltage	2			2			V
V _{IL}	Low Level Input Voltage			0.7			0.8	V
I _{OH}	High Level Output Current			-0.4			-0.4	mA
I _{OL}	Low Level Output Current			4			8	mA
T _A	Free Air Operating Temperature	-55		125	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating" Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units
					(Note 2)		
V _I	Input Clamp Voltage	V_{CC} = Min, I_{I} = -18 mA				-1.5	V
V _{OH}	High Level Output	V _{CC} = Min, I _{OH} = Max,	DM54	2.5	3.4		V
	Voltage	V _{IL} = Max	DM74	2.7	3.4		
V _{OL}	Low Level Output	V _{CC} = Min, I _{OL} = Max,	DM54		0.25	0.4	
	Voltage	V _{IH} = Min	DM74		0.35	0.5	V
		I _{OL} = 4 mA, V _{CC} = Min	DM74		0.25	0.4	
I _I	Input Current @ Max	V _{CC} = Max, V _I = 7V				0.1	mA
	Input Voltage						
I _{IH}	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$				20	μA
I _{IL}	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$				-0.36	mA
I _{os}	Short Circuit	V _{CC} = Max	DM54	-20		-100	mA
	Output Current	(Note 3)	DM74	-20		-100	
I _{CCH}	Supply Current with	V _{CC} = Max	'		0.8	1.6	mA
	Outputs High						
I _{CCL}	Supply Current with	V _{CC} = Max			2.4	4.4	mA
	Outputs Low						

Switching Characteristics at V_{CC} = 5V and T_A = 25°C

Symbol	Parameter	C _L =	15 pF	C _L =	Units	
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	3	10	4	15	ns
	Low to High Level Output					
t _{PHL}	Propagation Delay Time	3	10	4	15	ns
	High to Low Level Output					

2

Note 2: All typicals are at V_{CC} = 5V, T_A = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

MM74HC02 Quad 2-Input NOR Gate

General Description

The MM74HC02 NOR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs, providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay: 8 ns
- Wide power supply range: 2-6V
- Low quiescent supply current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- High output current: 4 mA minimum

Ordering Code:

Order Number	Package Number	Package Description
MM74HC02M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC02SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC02MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC02MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC02N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A.) Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

© 2005 Fairchild Semiconductor Corporation

DS005294

(Note 2)

(14010 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin	
(I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+125	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

0	Parameter	0	.,	T _A = 25°C		T _A = -40 to 85°C	$T_A = -40$ to $125^{\circ}C$	11-26-
Symbol		Conditions	v _{cc}	Тур	Typ Guaranteed Limits		imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IL}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current $(I_{IN}, I_{CC}, \text{ and } I_{OZ})$ occur for CMOS at the higher voltage and so the 6.0V values should be used.

MM54HC03/MM74HC03 Quad 2-Input Open Drain NAND Gate

General Description

These NAND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs. All devices have high noise immunity and the ability to drive 10 LS-TTL loads. The 54HC/74HC logic family is functionally as well as pin-out compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

As with standard 54HC/74HC push-pull outputs there are diodes to both V_{CC} and ground. Therefore the output should not be pulled above V_{CC} as it would be clamped to one diode voltage above V_{CC} . This diode is added to enhance electrostatic protection.

Features

- Typical propagation delay: 12 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Connection and Logic Diagrams

TL/F/5295-1

Order Number MM54HC03 or MM74HC03

TL/F/5295-2

©1995 National Semiconductor Corporation TL/F/52

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2) If Military/Aerospace specified devices are required

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	-0.5 to $+7.0$ V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{\rm CC} + 0.5 V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	-65°C to $+150$ °C
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temp. (T _L) (Soldering 10 seconds)	260°C

Operating Conditions								
	Min	Max	Units					
Supply Voltage (V _{CC})	2	6	V					
DC Input or Output Voltage (V _{IN} , V _{OUT})	0	V_{CC}	V					
Operating Temp. Range (T _A)								
MM74HC	-40	+85	°C					
MM54HC	-55	+125	°C					
Input Rise or Fall Times								
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns					
$V_{CC} = 4.5V$		500	ns					
$V_{CC} = 6.0V$		400	ns					

DC Electrical Characteristics (Note 4)

Symbol	Parameter	neter Conditions		T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V _{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	٧
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	٧
	Input Voltage**		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OL}	Minimum Low Level	V _{IN} =V _{IH}						
	Output Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	V
		R _L =∞	4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		V _{IN} =V _{IH}						
		I _{OUT} ≤4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{LKG}	Maximum High Level Output Leakage Current	V _{IN} =V _{IH} or V _{IL} V _{OUT} =V _{CC}	6.0V		0.5	5	10	μΑ
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
Icc	Maximum Quiescent Supply Current	V _{IN} =V _{CC} or GND I _{OUT} =0 μA	6.0V		2.0	20	40	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

AC Electrical Characteristics $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_f = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PZL} , t _{PLZ}	Maximum Propagation Delay	$R_L=1 K\Omega$	10	20	ns

AC Electrical Characteristics

 V_{CC} =2.0V to 6.0V, C_L =50 pF, t_r = t_f =6 ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed		
t _{PLZ} , t _{PZL}	Maximum Propagation Delay	$R_L=1 K\Omega$	2.0V 4.5V	63 13	125 25	158 32	186 37	ns ns
			6.0V	11	21	27	32	ns
t _{THL}	Maximum Output Fall Time		2.0V 4.5V	30 8	75 15	95 19	110 22	ns ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per gate)		20				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$. The power dissipated by R_L is not included.

MM74HC08 Quad 2-Input AND Gate

General Description

The MM74HC08 AND gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. The HC08 has buffered outputs, providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 7 ns (t_{PHL}), 12 ns (t_{PLH})
- Fanout of 10 LS-TTL loads
- Quiescent power consumption: 2 µA maximum at room temperature
- Low input current: 1 µA maximum

Ordering Code:

Order Number	Package Number	Package Description
MM74HC08M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC08MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC08SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC08MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC08MTCX-NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC08N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A) Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

(Note 2)

(Note 2)	
Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin	
(I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

(Soldering 10 seconds)

Symbol	Parameter	Conditions	V	T _A =	25°C	T _A = -40 to 85°C	T _A = -40 to 125°C	Units
	Faiailletei	Conditions	v _{cc}	Тур		Guaranteed Limits		Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	40	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

260°C

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

MM74HC14

Hex Inverting Schmitt Trigger

General Description

The MM74HC14 utilizes advanced silicon-gate CMOS technology to achieve the low power dissipation and high noise immunity of standard CMOS, as well as the capability to drive 10 LS-TTL loads.

The 74HC logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 13 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads
- Typical hysteresis voltage: 0.9V at V_{CC} = 4.5V

Ordering Code:

Order Number	Package Number	Package Description
MM74HC14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC14MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC14SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC14MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC14MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HC14N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

(Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} +1.5V
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} $+0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin	

 (I_{CC})

Storage Temperature Range (T_{STG})

Power Dissipation (P_D) (Note 3)

600 mW S.O. Package only 500 mW

Lead Temperature (T_L)

260°C (Soldering 10 seconds)

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-55	+125	°C

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground. Note 3: Power Dissipation temperature derating - plastic "N" package: -

12 mW/°C from 65°C to 85°C.

±50 mA

-65°C to +150°C

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Symbol	raiailielei			Тур		Guaranteed L	imits	Units
V_{T+}	Positive Going	Minimum	2.0V	1.2	1.0	1.0	1.0	V
	Threshold Voltage		4.5V	2.7	2.0	2.0	2.0	V
			6.0V	3.2	3.0	3.0	3.0	V
		Maximum	2.0V	1.2	1.5	1.5	1.5	V
			4.5V	2.7	3.15	3.15	3.15	V
			6.0V	3.2	4.2	4.2	4.2	V
V _{T-}	Negative Going	Minimum	2.0V	0.7	0.3	0.3	0.3	V
	Threshold Voltage		4.5V	1.8	0.9	0.9	0.9	V
			6.0V	2.2	1.2	1.2	1.2	V
		Maximum	2.0V	0.7	1.0	1.0	1.0	V
			4.5V	1.8	2.2	2.2	2.2	V
			6.0V	2.2	3.0	3.0	3.0	V
V _H	Hysteresis Voltage	Minimum	2.0V	0.5	0.2	0.2	0.2	V
			4.5V	0.9	0.4	0.4	0.4	V
			6.0V	1.0	0.5	0.5	0.5	V
		Maximum	2.0V	0.5	1.0	1.0	1.0	V
			4.5V	0.9	1.4	1.4	1.4	V
			6.0V	1.0	1.5	1.5	1.5	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IL}$	2.0V	2.0	1.9	1.9	1.9	V
	Output Voltage	I _{OUT} = 20 μA	4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IL}$						
		I _{OUT} = 4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} = 5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$	2.0V	0	0.1	0.1	0.1	V
	Output Voltage	I _{OUT} = 20 μA	4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$						
		I _{OUT} = 4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} = 5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μА
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		2.0	20	40	μА
	Supply Current	I _{OUT} = 0 μA						

Note 4: For a power supply of 5V ±10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage curvature of the variable of the v rent (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay		12	22	ns

AC Electrical Characteristics

 $V_{CC} = 2.0 \text{V}$ to 6.0V, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V _{CC}	T _A =	25°C	T _A = -40 to 85°C	T _A = -55 to 125°C	Units
Cymbol	i arameter	Conditions	- 00	Тур	yp Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	60	125	156	188	ns
	Delay		4.5V	13	25	31	38	ns
			6.0V	11	21	26	32	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per gate)		27				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC} 2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

Typical Performance Characteristics

Typical Applications

Low Power Oscillator

$$t_1 \approx RC \ln \frac{V_{T+}}{V_{T-}}$$

$$t_2 \approx RC \ln \frac{V_{CC} - V_{T-}}{V_{CC} - V_{T+}}$$

V_{CC} -----

$$f \approx \frac{1}{RC \ln \frac{V_{T+}(V_{CC} - V_{T-})}{V_{T-}(V_{CC} - V_{T+})}}$$

Note: The equations assume $t_{1}+\ t_{2}>>\ t_{pd0}+\ t_{pd1}$

DM74LS14

Hex Inverter with Schmitt Trigger Inputs

General Description

This device contains six independent gates each of which performs the logic INVERT function. Each input has hysteresis which increases the noise immunity and transforms a slowly changing input signal to a fast changing, jitter free output.

Ordering Code:

Order Number	Package Number	Package Description
DM74LS14M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-120, 0.150 Narrow
DM74LS14SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
DM74LS14N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0,300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Function Table

Input	Output
Α	Υ
L	Н
Н	L

 $Y = \overline{A}$

H = HIGH Logic Level L = LOW Logic Level

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 0°C to $+70^{\circ}\text{C}$ Storage Temperature Range -65°C to $+150^{\circ}\text{C}$

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V_{T+}	Positive-Going Input Threshold Voltage (Note 2)		1.6	1.9	V
V_{T-}	Negative-Going Input Threshold Voltage (Note 2)	0.5	0.8	1	V
HYS	Input Hysteresis (Note 2)	0.4	0.8		V
I _{OH}	HIGH Level Output Current			-0.4	mA
I _{OL}	LOW Level Output Current			8	mA
T _A	Free Air Operating Temperature	0		70	°C

Note 2: V_{CC} = 5V.

Electrical Characteristics

over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 3)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level	V _{CC} = Min, I _{OH} = Max	2.7	3.4		V
	Output Voltage	$V_{IL} = Max$	2.7	3.4		V
V _{OL}	LOW Level	V _{CC} = Min, I _{OL} = Max		0.35	0.5	
	Output Voltage	$V_{IH} = Min$		0.33	0.5	V
		V _{CC} = Min, I _{OL} = 4 mA		0.25	0.4	
I _{T+}	Input Current at	$V_{CC} = 5V$, $V_I = V_{T+}$		-0.14		mA
	Positive-Going Threshold					
I _{T-}	Input Current at	$V_{CC} = 5V$, $V_I = V_{T-}$		-0.18		mA
	Negative-Going Threshold					
I _I	Input Current @ Max Input Voltage	$V_{CC} = Max, V_I = 7V$			0.1	mA
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
los	Short Circuit Output Current	V _{CC} = Max (Note 4)	-20		-100	mA
Іссн	Supply Current with Outputs HIGH	V _{CC} = Max		8.6	16	mA
I _{CCL}	Supply Current with Outputs LOW	V _{CC} = Max		12	21	mA

Note 3: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 4: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Symbol	Parameter	C _L = '	15 pF	C _L = 5	50 pF	Units
		Min	Max	Min	Max	
t _{PLH}	Propagation Delay Time	5	22	8	25	ns
	LOW-to-HIGH Level Output	J	22	O	23	113
t _{PHL}	Propagation Delay Time	5	22	10	33	ns
	HIGH-to-LOW Level Output	3	22	10	33	115

MM74HC32 Quad 2-Input OR Gate

General Description

The MM74HC32 OR gates utilize advanced silicon-gate CMOS technology to achieve operating speeds similar to LS-TTL gates with the low power consumption of standard CMOS integrated circuits. All gates have buffered outputs providing high noise immunity and the ability to drive 10 LS-TTL loads. The 74HC logic family is functionally as well as pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 10 ns
- Wide power supply range: 2-6V
- Low quiescent current: 20 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC32M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC32MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC32SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC32MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC32MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC32N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HC32N_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Logic Diagram

(Note 2)

(14010 2)	
Supply Voltage (V _{CC})	-0.5 to + 7.0 V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I_{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		T _A = -40 to 85°C	Units
Syllibol		Conditions	V CC	Тур	Guaranteed Limits		
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	V
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}					
		I _{OUT} ≤ 4.0 mA	4.5V	4.7	3.98	3.84	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.2	5.48	5.34	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IL}$					
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	V
		$V_{IN} = V_{IL}$					
		I _{OUT} ≤ 4.0 mA	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μΑ
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		2.0	20	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$					

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation		10	18	ns
	Delay				

AC Electrical Characteristics

 $V_{CC} = 2.0 \text{V}$ to 6.0V, $C_L = 50 \text{ pF}$, $t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	V _{CC}	$T_A = 25^{\circ}C$		T _A = -40 to 85°C	Units
		Conditions	•cc	Тур	Guar	anteed Limits	Ullits
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	30	100	125	ns
	Delay		4.5V	12	20	25	ns
			6.0V	9	17	21	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	ns
	and Fall Time		4.5V	8	15	19	ns
			6.0V	7	13	16	ns
C _{PD}	Power Dissipation	(per gate)		50			pF
	Capacitance (Note 5)						
C _{IN}	Maximum Input			5	10	10	pF
	Capacitance						

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

October 1988 Revised March 2000

DM74LS47

BCD to 7-Segment Decoder/Driver with Open-Collector Outputs

General Description

The DM74LS47 accepts four lines of BCD (8421) input data, generates their complements internally and decodes the data with seven AND/OR gates having open-collector outputs to drive indicator segments directly. Each segment output is guaranteed to sink 24 mA in the ON (LOW) state and withstand 15V in the OFF (HIGH) state with a maximum leakage current of 250 μA . Auxiliary inputs provided blanking, lamp test and cascadable zero-suppression functions

Features

- Open-collector outputs
- Drive indicator segments directly
- Cascadable zero-suppression capability
- Lamp test input

Ordering Code:

Order Number	Package Number	Package Description
DM74LS47M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
DM74LS47N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

V_{CC} = Pin 16 GND = Pin 8

Connection Diagram

Pin Descriptions

Pin Names	Description
A0-A3	BCD Inputs
RBI	Ripple Blanking Input (Active LOW)
LT	Lamp Test Input (Active LOW)
BI/RBO	Blanking Input (Active LOW) or
	Ripple Blanking Output (Active LOW)
a –g	Segment Outputs (Active LOW) (Note 1)

Note 1: OC—Open Collector

Truth Table

Decimal or				Input	5					(Output	s			Note
Function	LT	RBI	А3	A2	A 1	Α0	BI/RBO	a	b	c	d	ē	f	g	
0	Н	Н	L	L	L	L	Н	L	L	L	L	L	L	Н	(Note 2)
1	Н	Х	L	L	L	Н	Н	Н	L	L	Н	Н	Н	Н	(Note 2)
2	Н	Х	L	L	Н	L	Н	L	L	Н	L	L	Н	L	
3	Н	Х	L	L	Н	Н	Н	L	L	L	L	Н	Н	L	
4	Н	Х	L	Н	L	L	Н	Н	L	L	Н	Н	L	L	
5	Н	Х	L	Н	L	Н	Н	L	Н	L	L	Н	L	L	
6	Н	Х	L	Н	Н	L	Н	Н	Н	L	L	L	L	L	
7	Н	Х	L	Н	Н	Н	Н	L	L	L	Н	Н	Н	Н	
8	Н	Х	Н	L	L	L	Н	L	L	L	L	L	L	L	
9	Н	Х	Н	L	L	Н	Н	L	L	L	Н	Н	L	L	
10	Н	Х	Н	L	Н	L	Н	Н	Н	Н	L	L	Н	L	
11	Н	Х	Н	L	Н	Н	Н	Н	Н	L	L	Н	Н	L	
12	Н	Х	Н	Н	L	L	Н	Н	L	Н	Н	Н	L	L	
13	Н	Х	Н	Н	L	Н	Н	L	Н	Н	L	Н	L	L	
14	Н	Х	Н	Н	Н	L	Н	Н	Н	Н	L	L	L	L	
15	Н	Х	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	
BI	Х	Х	Х	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	Н	Н	(Note 3)
RBI	Н	L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	(Note 4)
LT	L	Х	Х	Χ	Χ	Χ	Н	L	L	L	L	L	L	L	(Note 5)

Note 2: $\overline{Bl/RBO}$ is wire-AND logic serving as blanking input (\overline{Bl}) and/or ripple-blanking output (\overline{RBO}). The blanking out (\overline{Bl}) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (\overline{RBl}) must be open or at a HIGH level if blanking or a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 3: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a HIGH level regardless of the state of any other input condition.

Note 4: When ripple-blanking input (RBI) and inputs A0, A1, A2 and A3 are LOW level, with the lamp test input at HIGH level, all segment outputs go to a HIGH level and the ripple-blanking output (RBO) goes to a LOW level (response condition).

Note 5: When the blanking input/ripple-blanking output (BI/RBO) is OPEN or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a LOW level.

Functional Description

The DM74LS47 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration. If the input data is decimal zero, a LOW signal applied to the \overline{RBI} blanks the display and causes a multidigit display. For example, by grounding the \overline{RBI} of the highest order decoder and connecting its $\overline{BI/RBO}$ to \overline{RBI} of the next lowest order decoder, etc., leading zeros will be suppressed. Similarly, by grounding \overline{RBI} of the lowest order decoder and connecting its $\overline{BI/RBO}$ to \overline{RBI} of the next highest order decoder, etc., trailing zeros will be suppressed. Leading and trailing zeros can be suppressed simultaneously by using external gates, i.e.: by driving \overline{RBI} of a

intermediate decoder from an OR gate whose inputs are BI/RBO of the next highest and lowest order decoders. BI/RBO also serves as an unconditional blanking input. The internal NAND gate that generates the RBO signal has a resistive pull-up, as opposed to a totem pole, and thus BI/RBO can be forced LOW by external means, using wired-collector logic. A LOW signal thus applied to BI/RBO turns off all segment outputs. This blanking feature can be used to control display intensity by varying the duty cycle of the blanking signal. A LOW signal applied to LT turns on all segment outputs, provided that BI/RBO is not forced LOW.

Numerical Designations—Resultant Displays

Supply Voltage 7V Input Voltage 7V Operating Free Air Temperature Range 0° C to +70°C Storage Temperature Range -65° C to +150°C

Note 6: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{CC}	Supply Voltage	4.75	5	5.25	V
V _{IH}	HIGH Level Input Voltage	2			V
V _{IL}	LOW Level Input Voltage			0.8	V
I _{OH}	HIGH Level Output Current $\overline{a} - \overline{g}$ @ 15V = V _{OH} (Note 7)			-250	μА
I _{OH}	HIGH Level Output Current BI /RBO			-50	μΑ
I _{OL}	LOW Level Output Current			24	mA
T _A	Free Air Operating Temperature	0		70	°C

Note 7: OFF-State at a-q.

Electrical Characteristics

Over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 8)	Max	Units
VI	Input Clamp Voltage	$V_{CC} = Min, I_I = -18 \text{ mA}$			-1.5	V
V _{OH}	HIGH Level	$V_{CC} = Min, I_{OH} = Max,$	2.7	3.4		V
	Output Voltage	V _{IL} = Max, BI /RBO	2.7	3.4		v
l _{OFF}	Output HIGH Current Segment Outputs	$V_{CC} = 5.5V, V_{O} = 15V \overline{a} - \overline{g}$			250	μА
V _{OL}	LOW Level	$V_{CC} = Min, I_{OL} = Max,$		0.35	0.5	
	Output Voltage	$V_{IH} = Min, \overline{a} - \overline{g}$		0.33	0.5	
		I _{OL} = 3.2 mA, BI /RBO			0.5	V
		$I_{OL} = 12 \text{ mA}, \overline{a} - \overline{g}$		0.25	0.4	
		I _{OL} = 1.6 mA, BI /RBO			0.4	
I	Input Current @ Max	$V_{CC} = Max, V_I = 7V$			100	μА
	Input Voltage	V _{CC} = Max, V _I = 10V			100	μА
I _{IH}	HIGH Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μА
I _{IL}	LOW Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA
los	Short Circuit	V _{CC} = Max (Note 9),				mA
	Output Current	I _{OS} at BI/RBO	-0.3		-2.0	IIIA
I _{CC}	Supply Current	V _{CC} = Max			13	mA

Note 8: All typicals are at $V_{CC} = 5V$, $T_A = 25^{\circ}C$.

Note 9: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics

at $V_{CC} = +5.0V$, $T_A = +25$ °C

			$R_L = 0$			
Symbol	Parameter	Conditions	C _L = '	Units		
			Min	Max		
t _{PLH}	Propagation Delay			100	ns	
t _{PHL}	An to a –g			100	115	
t _{PLH}	Propagation Delay			100	ne	
t _{PHL}	RBI to a -g (Note 10)			100	ns	

Note 10: \overline{LT} = HIGH, A0-A3 = LOW

App. C: Datasheets

MM74HC74A Dual D-Type Flip-Flop with Preset and Clear

General Description

The MM74HC74A utilizes advanced silicon-gate CMOS technology to achieve operating speeds similar to the equivalent LS-TTL part. It possesses the high noise immunity and low power consumption of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads

This flip-flop has independent data, preset, clear, and clock inputs and Q and \overline{Q} outputs. The logic level present at the data input is transferred to the output during the positive-going transition of the clock pulse. Preset and clear are independent of the clock and accomplished by a low level at the appropriate input.

The 74HC logic family is functionally and pinout compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 20 ns
- Wide power supply range: 2-6V
- Low quiescent current: 40 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC74AM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC74AMX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC74ASJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC74AMTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC74AMTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC74AN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Truth Table

	Inpu	uts	Outputs			
PR	CLR	CLK	D	Q	Q	
L	Н	Х	Х	Н	L	
Н	L	Χ	Χ	L	Н	
L	L	Χ	Χ	H (Note 1)	H (Note 1)	
Н	Н	\uparrow	Н	Н	L	
Н	Н	\uparrow	L	L	Н	
Н	Н	L	Х	Q0	Q ₀	

Note: Q0 = the level of Q before the indicated input conditions were established.

Note 1: This configuration is nonstable; that is, it will not persist when preset and clear inputs return to their inactive (HIGH) level.

Absolute Maximum Ratings(Note 2) (Note 3) Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (VIN) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) +25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±50 mA -65°C to +150°C Storage Temperature Range (T_{STG}) Power Dissipation (PD) (Note 4) 600 mW S.O. Package only 500 mW

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , _{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground.

Note 4: Power Dissipation temperature derating — plastic "N" package: –

12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 5)

Lead Temperature (T_L)

(Soldering 10 seconds)

Symbol	Parameter	Conditions	V _{CC}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Syllibol		Conditions	*CC	Тур		Guaranteed L	imits	UIIIIS
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \leq 20~\mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.3	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.2	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	V _{I N} =V _{CC} or GND	6.0V		4.0	40	80	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

260°C

Note 5: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

3

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		72	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay Clock to Q or Q		10	30	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay Preset or Clear to Q or Q		17	40	ns
t _{REM}	Minimum Removal Time, Preset or Clear to Clock		6	5	ns
t _s	Minimum Setup Time Data to Clock		10	20	ns
t _H	Minimum Hold Time Clock to Data		0	0	ns
t _W	Minimum Pulse Width Clock, Preset or Clear		8	16	ns

AC Electrical Characteristics

 $C_L = 50 \text{ pF}, t_f = t_f = 6 \text{ ns} \text{ (unless otherwise specified)}$

Symbol	Parameter	Conditions	V _{CC}	T _A =	25°C	$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
Symbol	rarameter	Conditions	•cc	Тур		Guaranteed L	imits	Ullits
f _{MAX}	Maximum Operating		2.0V	22	6	5	4	MHz
	Frequency		4.5V	72	30	24	20	MHz
			6.0V	94	35	28	24	MHz
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	34	110	140	165	ns
	Delay Clock to Q or Q		4.5V	12	22	28	33	ns
			6.0V	10	19	24	28	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	66	150	190	225	ns
	Delay Preset or Clear		4.5V	20	30	38	45	ns
	To Q or Q		6.0V	16	26	33	38	ns
t _{REM}	Minimum Removal Time		2.0V	20	50	65	75	ns
	Preset or Clear		4.5V	6	10	13	15	ns
	To Clock		6.0V	5	9	11	13	ns
ts	Minimum Setup Time		2.0V	35	80	100	120	ns
'S	Data to Clock		4.5V	10	16	20	24	ns
			6.0V	8	14	17	20	ns
t _H	Minimum Hold Time		2.0V		0	0	0	ns
	Clock to Data		4.5V		0	0	0	ns
			6.0V		0	0	0	ns
t _W	Minimum, Pulse Width		2.0V	30	80	101	119	ns
	Clock, Preset or Clear		4.5V	9	16	20	24	ns
			6.0V	8	14	17	20	ns
t _{TLH} , t _{THL}	Maximum Output		2.0V	25	75	95	110	ns
	Rise and Fall Time		4.5V	7	15	19	22	ns
			6.0V	6	13	16	19	ns
t _r , t _f	Maximum Input Rise		2.0V		1000	1000	1000	ns
	and Fall Time		4.5V		500	500	500	ns
			6.0V		400	400	400	ns
C _{PD}	Power Dissipation	(per flip-flop)		80				pF
	Capacitance (Note 6)							
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance							

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

MM74HC86 Quad 2-Input Exclusive OR Gate

General Description

The MM74HC86 EXCLUSIVE OR gate utilizes advanced silicon-gate CMOS technology to achieve operating speeds similar to equivalent LS-TTL gates while maintaining the low power consumption and high noise immunity characteristic of standard CMOS integrated circuits. These gates are fully buffered and have a fanout of 10 LS-TTL loads. The 74HC logic family is functionally as well as pin out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 9 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 µA maximum
- Low quiescent current: 20 µA maximum (74 Series)
- Output drive capability: 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC86M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC86MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC86SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC86MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC86N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HC86NX_NL	N14A	Pb-Free 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. Pb-Free package per JEDEC J-STD-020B.

Connection Diagram

Pin Assignments for DIP, SOIC, SOP and TSSOP VCC B4 A4 Y4 B3 A3 Y3 A3 Y3 A4 I4 I3 I2 I1 I0 9 8 A1 A1 B1 Y1 A2 B2 Y2 GND Top View

Truth Table

Inp	uts	Outputs
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L,

 $Y = A \oplus \overline{B} = \overline{A} B + A\overline{B}$

Absolute Maximum Ratings(Note 1)

(Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to V_{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t_r, t_f) $V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

0	Devementes	Conditions	V	T _A = 25°C		T _A = -40 to 85°C	$T_A = -55$ to $125^{\circ}C$	Units
Symbol	Parameter	Conditions	V _{CC}	Тур		Guaranteed L	imits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \mu A$	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		$ I_{OUT} \le 5.2 \text{ mA}$	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}						
	Output Voltage	$ I_{OUT} \le 20 \ \mu A$	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
	Current							
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		2.0	20	40	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at $V_{CC} = 5.5V$ and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25^{\circ}C$, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PHL} , t _{PLH}	Maximum Propagation		12	20	ns
	Delay				

AC Electrical Characteristics

 $V_{CC} = 2.0V$ to 6.0V, $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$	T _A = -55 to 125°C	Units
- Cymbol	T didiliotoi	Conditions		Тур	Typ Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	60	120	151	179	ns
	Delay		4.5V	12	24	30	36	ns
			6.0V	10	20	26	30	ns
t _{TLH} , t _{THL}	Maximum Output Rise		2.0V	30	75	95	110	ns
	and Fall Time		4.5V	8	15	19	22	ns
			6.0V	7	13	16	19	ns
C _{PD}	Power Dissipation	(per gate)		25				pF
	Capacitance (Note 5)							
C _{IN}	Maximum Input			5	10	10	10	pF
	Capacitance							

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

MM54HC112/MM74HC112 Dual J-K Flip-Flops with Preset and Clear

General Description

These high speed (30 MHz minimum) J-K Flip-Flops utilize advanced silicon-gate CMOS technology to achieve the low power consumption and high noise immunity of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads.

Each flip-flop has independent J, K, PRESET, CLEAR, and CLOCK inputs and Q and \overline{Q} outputs. These devices are edge sensitive to the clock input and change state on the negative going transition of the clock pulse. Clear and preset are independent of the clock and accomplished by a low logic level on the corresponding input.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to $V_{\rm CC}$ and ground.

Features

- Typical propagation delay: 16 ns
- Wide operating voltage range
- Low input current: 1 µA maximum
- Low quiescent current: 40 µA (74HC Series)
- High output drive: 10 LS-TTL loads

Connection and Logic Diagrams

Dual-In-Line Package

V_{CC} CLR 1 CLR 2 CLK 2 K2 J2 PR 2 Q2 16 15 14 13 12 11 10 9 CLR 0 CLK 0 PR CLK 1 K1 J1 PR 1 Q1 Q1 Q2 GND TL/F/5307-1 Top View

Order Number MM54HC112 or MM74HC112

Truth Table

	Inputs					puts
PR	CLR	CLK	J	K	Q	Q
L	Н	Χ	Х	Х	Н	L
Н	L	Χ	X	X	L	Н
L	L	Χ	X	X	L*	L*
Н	Н	\downarrow	L	L	Q0	$\overline{Q}0$
Н	Н	\downarrow	Н	L	Н	L
Н	Н	\downarrow	L	Н	L	Н
Н	Н	\downarrow	Н	Н	TOG	GLE
Н	Н	Н	Χ	Χ	Q0	$\overline{Q}0$

^{*}This is an unstable condition, and is not guaranteed

TL/F/5307-3

©1995 National Semiconductor Corporation TL/F/53

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Notes 1 & 2)
If Military/Aerospace specified devices are required,
please contact the National Semiconductor Sales
Office/Distributors for availability and specifications.

Cupply Voltage (V)	-0.5 to $+7.0$ V
Supply Voltage (V _{CC})	$-0.5 10 \pm 7.0 $
DC Input Voltage (V _{IN})	-1.5 to $V_{CC} + 1.5V$
DC Output Voltage (V _{OUT})	-0.5 to $V_{CC} + 0.5V$
Clamp Diode Current (I _{IK} , I _{OK})	\pm 20 mA
DC Output Current, per pin (IOUT)	\pm 25 mA
DC V _{CC} or GND Current, per pin (I _{CC})	\pm 50 mA
Storage Temperature Range (T _{STG})	$-65^{\circ}\text{C to} + 150^{\circ}\text{C}$
Danier Diaglactica (D.)	

Power Dissipation (PD)

 (Note 3)
 600 mW

 S.O. Package only
 500 mW

 Lead Temp. (T_L) (Soldering 10 seconds)
 260°C

Operating Conditions

Supply Voltage (V _{CC})	Min 2	Max 6	Units V
DC Input or Output Voltage (V_{IN}, V_{OUT})	0	V_{CC}	V
Operating Temp. Range (T _A) MM74HC MM54HC	-40 -55	+85 +125	°C
Input Rise or Fall Times		1000 500 400	ns ns ns

DC Electrical Characteristics (Note 4)

Symbol Parameter		Conditions	v _{cc}	T _A =25°C		74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
V_{IH}	Minimum High Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V_{IL}	Maximum Low Level		2.0V		0.5	0.5	0.5	V
	Input Voltage**		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum High Level	V _{IN} = V _{IH} or V _{IL}						
	Output Voltage	I _{OUT} ≤20 μA	2.0V	2.0	1.9	1.9	1.9	V
			4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		V _{IN} = V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤5.2 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum Low Level	V _{IN} = V _{IH} or V _{IL}						
	Output Voltage	I _{OUT} ≤20 μA	2.0V	0	0.1	0.1	0.1	V
			4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		V _{IN} =V _{IH} or V _{IL}						
		I _{OUT} ≤4.0 mA	4.5V	0.2	0.26	0.33	0.4	V
		I _{OUT} ≤5.2 mA	6.0V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input Current	V _{IN} =V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent Supply Current	$V_{IN} = V_{CC}$ or GND $I_{OUT} = 0 \mu A$	6.0V		4.0	40	80	μΑ

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: -12 mW/°C from 65°C to 85°C; ceramic "J" package: -12 mW/°C from 100°C to 125°C.

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} =5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

^{**}V_{IL} limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than Q1, CY'89.

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
f _{MAX}	Maximum Operating Frequency		50	30	MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q or Q		16	21	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clear to Q or Q		21	26	ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Preset to Q or Q		23	28	ns
t _{REM}	Minimum Removal Time, Preset or Clear to Clock		10	20	ns
t _s	Minimum Setup Time J or K to Clock		14	20	ns
t _H	Minimum Hold Time J or K from Clock		-3	0	ns
t _W	Minimum Pulse Width		10	16	ns

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Clock Preset or Clear

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guaranteed	Limits	
f _{MAX}	Maximum Operating Frequency		2.0V 4.5V 6.0V	9 45 53	5 27 31	4 21 24	3 18 20	MHz MHz MHz
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clock to Q or Q		2.0V 4.5V 6.0V	100 20 17	126 25 21	160 32 27	183 37 32	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Clear to Q or Q		2.0V 4.5V 6.0V	126 25 21	155 31 26	191 39 33	250 47 40	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Preset to Q or Q		2.0V 4.5V 6.0V	137 27 23	165 33 28	210 41 35	240 50 40	ns ns ns
t _{REM}	Minimum Removal Time Preset or Clear to Clock		2.0V 4.5V 6.0V	55 11 9.4	100 20 17	125 25 21	150 30 25	ns ns ns
t _s	Minimum Setup Time J or K to Clock		2.0V 4.5V 6.0V	77 15 13	100 20 17	125 25 21	150 30 25	ns ns ns
t _H	Minimum Hold Time J or K from Clock		2.0V 4.5V 6.0V	-3 -3 -3	0 0 0	0 0 0	0 0 0	ns ns ns
t _W	Minimum Pulse Width Preset, Clear or Clock		2.0V 4.5V 6.0V	55 11 9	80 16 14	100 20 18	120 24 20	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
t _r , t _f	Maximum Input Rise and Fall Time		2.0V 4.5V 6.0V		1000 500 400	1000 500 400	1000 500 400	ns ns ns
C _{PD}	Power Dissipation Capacitance (Note 5)	(per flip-flop)		80				pF
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

MM74HC125/MM74HC126 3-STATE Quad Buffers

General Description

The MM74HC125 and MM74HC126 are general purpose 3-STATE high speed non-inverting buffers utilizing advanced silicon-gate CMOS technology. They have high drive current outputs which enable high speed operation even when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuitry, yet have speeds comparable to low power Schottky TTL circuits. Both circuits are capable of driving up to 15 low power Schottky inputs.

The MM74HC125 require the 3-STATE control input C to be taken high to put the output into the high impedance condition, whereas the MM74HC126 require the control input to be low to put the output into high impedance.

All inputs are protected from damage due to static discharge by diodes to $\rm V_{CC}$ and ground.

Features

- Typical propagation delay: 13 ns
- Wide operating voltage range: 2-6V
- Low input current: 1 µA maximum
- Low guiescent current: 80 µA maximum (74HC)
- Fanout of 15 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC125M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC125SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC125MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC125MTCX-NL		Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC125N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
MM74HC126M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC126MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC126SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC126MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC126MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC126N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code. (Tape and Reel not available in N14A.) Pb-Free package per JEDEC J-STD-020B.

Connection Diagrams

Pin Assignments for DIP, SOIC, SOP and TSSOP

Truth Tables

Inp	Output	
Α	С	Y
Н	L	Н
L	L	L
X	Н	Z

Inp	Output			
Α	A C			
Н	Н	Н		
L	Н	L		
X	L	Z		

Absolute Maximum Ratings(Note 1) (Note 2) Supply Voltage (V_{CC}) -0.5 to +7.0V DC Input Voltage (VIN) -1.5 to $V_{CC} + 1.5V$ DC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ±20 mA DC Output Current, per pin (I_{OUT}) +35 mA DC V_{CC} or GND Current, per pin (I_{CC}) ±70 mA Storage Temperature Range (T_{STG}) -65°C to +150°C Power Dissipation (PD) (Note 3) 600 mW

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V_{IN}, V_{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times (t _r , t _f)			
$V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 4)

S.O. Package only

Lead Temperature (T_L)

(Soldering 10 seconds)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	$T_A = -40 \text{ to } 85^\circ$	C T _A = -40 to 125°C	Units
Symbol		Conditions	VCC	Тур	Guaranteed Limits			Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	3.15	V
			6.0V		4.2	4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	1.35	V
			6.0V		1.8	1.8	1.8	V
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}	2.0V	2.0	1.9	1.9	1.9	V
	Output Voltage	$ I_{OUT} \le 20 \mu A$	4.5V	4.5	4.4	4.4	4.4	V
			6.0V	6.0	5.9	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	4.2	3.98	3.84	3.7	V
		I _{OUT} ≤ 7.8 mA	6.0V	5.7	5.48	5.34	5.2	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}	2.0V	0	0.1	0.1	0.1	V
	Output Voltage	$ I_{OUT} \le 20 \mu A$	4.5V	0	0.1	0.1	0.1	V
			6.0V	0	0.1	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}						
		$ I_{OUT} \le 6.0 \text{ mA}$	4.5V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} \le 7.8 \text{ mA}$	6.0V	0.2	0.26	0.33	0.4	V
I _{OZ}	Maximum 3-STATE Output	$V_{IN} = V_{IH}$ or V_{IL}	6.0V		±0.5	±5	±10	μΑ
	Leakage Current	$V_{OUT} = V_{CC}$ or GND						
		C _n = Disabled						
I _{IN}	Maximum Input Current	V _{IN} = V _{CC} or GND	6.0V		±0.1	±1.0	±1.0	μΑ
I _{CC}	Maximum Quiescent	V _{IN} = V _{CC} or GND	6.0V		8.0	80	160	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$						

500 mW

260°C

Note 4: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC}=5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_{\Delta} = 25^{\circ}C$, $C_{L} = 45$ pF, $t_{r} = t_{f} = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units	
t _{PHL} , t _{PLH}	Maximum		13	18	ns	
	Propagation Delay Time					
t _{PZH}	Maximum	$R_L = 1 \text{ k}\Omega$	13	25	ns	
	Output Enable Time to HIGH Level					
t _{PHZ}	Maximum	$R_L = 1 k\Omega$	17	25	ns	
	Output Disable Time from HIGH Level	$C_L = 5 pF$				
t _{PZL}	Maximum	$R_L = 1 \text{ k}\Omega$	18	25	ns	
	Output Enable Time to LOW Level					
t _{PLZ}	Maximum	$R_L = 1 \text{ k}\Omega$	13	25	ns	
	Output Disable Time from LOW Level	$C_L = 5 pF$				

AC Electrical Characteristics

 $V_{CC} = 2.0 V$ to 6.0 V, $C_L = 50$ pF, $t_r = t_f = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	T _A = -40 to 85°C	T _A = -40 to 125°C	Units
Oymboi	i didilictei	Conditions	• ()	Тур		imits	Oiiita	
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	40	100	125	150	ns
	Delay Time		4.5V	14	20	25	30	ns
			6.0V	12	17	21	25	ns
t _{PLH} , t _{PHL}	Maximum Propagation	C _L = 150 pF	2.0V	35	130	163	195	ns
	Delay Time		4.5V	14	26	33	39	ns
			6.0V	12	22	28	39	ns
t _{PZH} , t _{PZL}	Maximum Output	$R_L = 1 k\Omega$	2.0V	25	125	156	188	ns
	Enable Time		4.5V	14	25	31	38	ns
			6.0V	12	21	26	31	ns
t _{PHZ} , t _{PLZ}	Maximum Output	$R_L = 1 k\Omega$	2.0V	25	125	156	188	ns
	Disable Time		4.5V	14	25	31	38	ns
			6.0V	12	21	26	31	ns
t _{PZL} , t _{PZH}	Maximum Output	C _L = 150 pF	2.0V	35	140	175	210	ns
	Enable Time	$R_L=1~k\Omega$	4.5V	15	28	35	42	ns
			6.0V	13	24	30	36	ns
t _{TLH} , t _{THL}	Maximum Output	C _L = 50 pF	2.0V	30	60	75	90	ns
	Rise and Fall Time		4.5V	7	12	15	18	ns
			6.0V	6	10	13	15	ns
C _{IN}	Input Capacitance			5	10	10	10	pF
C _{OUT}	Output Capacitance Outputs			15	20	20	20	pF
C _{PD}	Power Dissipation	(per gate)						
	Capacitance (Note 5)	Enabled		45				pF
		Disabled		6				pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} f + I_{CC}$.

MM74HC138 3-to-8 Line Decoder

General Description

The MM74HC138 decoder utilizes advanced silicon-gate CMOS technology and is well suited to memory address decoding or data routing applications. The circuit features high noise immunity and low power consumption usually associated with CMOS circuitry, yet has speeds comparable to low power Schottky TTL logic.

The MM74HC138 has 3 binary select inputs (A, B, and C). If the device is enabled, these inputs determine which one of the eight normally HIGH outputs will go LOW. Two active LOW and one active HIGH enables (G1, $\overline{\text{G2A}}$ and $\overline{\text{G2B}}$) are provided to ease the cascading of decoders.

The decoder's outputs can drive 10 low power Schottky TTL equivalent loads, and are functionally and pin equivalent to the 74LS138. All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

September 1983

Revised February 1999

Features

- Typical propagation delay: 20 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 80 µA maximum (74HC Series)
- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Ordering Code:

Order Number	Package Number	Package Description
MM74HC138M	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
MM74HC138SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
MM74HC138MTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
MM74HC138N	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

Pin Assignment for DIP, SOIC, SOP and TSSOP

74HC138

Truth Table

Inputs								Out	puts			
	Enable		Select									
G1	G2 (Note 1)	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
Х	Н	Х	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	Χ	Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
Н	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	Н
Н	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
Н	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н
Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

H = HIGH Level, L = LOW Level, X = don't care

Note 1: $\overline{G2}$ = G2A+G2B

Logic Diagram

App. C: Datasheets

Absolute Maximum Ratings(Note 2) (Note 3) Supply Voltage (V_{CC}) -0.5 to + 7.0 VDC Input Voltage (V_{IN}) - 1.5 to V_{CC} + 1.5VDC Output Voltage (V_{OUT}) -0.5 to $V_{CC} + 0.5V$ Clamp Diode Current (I_{IK}, I_{OK}) ± 20 mA DC Output Current, per pin (I_{OUT}) + 25 mA DC V_{CC} or GND Current, per pin (I_{CC}) ± 50 mA Storage Temperature Range (T_{STG}) - 65°C to + 150°C Power Dissipation (P_D) (Note 4) 600 mW S.O. Package only 500 mW Lead Temperature (T_I) (Soldering 10 seconds) 260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	2	6	V
DC Input or Output Voltage	0	V_{CC}	V
(V _{IN} , V _{OUT})			
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
$(t_r, t_f) V_{CC} = 2.0V$		1000	ns
$V_{CC} = 4.5V$		500	ns
$V_{CC} = 6.0V$		400	ns

Note 2: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 3: Unless otherwise specified all voltages are referenced to ground.

Note 4: Power Dissipation temperature derating — plastic "N" package: –
12 mW/°C from 65°C to 85°C.

DC Electrical Characteristics (Note 5)

Symbol	Parameter	Conditions	V _{CC}	T _A =	25°C	$T_A = -40 \text{ to } 85^{\circ}\text{C}$	Units
V _{IL} Maxim Input V V _{OH} Minimu Output V _{OL} Maxim Output	Farameter	Conditions	v _{CC}	Тур	Guar	anteed Limits	Units
V _{IH}	Minimum HIGH Level		2.0V		1.5	1.5	V
	Input Voltage		4.5V		3.15	3.15	V
			6.0V		4.2	4.2	V
V _{IL}	Maximum LOW Level		2.0V		0.5	0.5	V
	Input Voltage		4.5V		1.35	1.35	V
			6.0V		1.8	1.8	V
V _{ОН}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	I _{OUT} ≤ 20 μA	2.0V	2.0	1.9	1.9	V
			4.5V	4.5	4.4	4.4	V
			6.0V	6.0	5.9	5.9	V
		$V_{IN} = V_{IH}$ or V_{IL}					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	4.2	3.98	3.84	V
		I _{OUT} ≤ 5.2 mA	6.0V	5.7	5.48	5.34	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	\mid I _{OUT} \mid \leq 20 μ A	2.0V	0	0.1	0.1	V
			4.5V	0	0.1	0.1	V
			6.0V	0	0.1	0.1	V
		$V_{IN} = V_{IH}$ or V_{IL}					
		$ I_{OUT} \le 4.0 \text{ mA}$	4.5V	0.2	0.26	0.33	V
		I _{OUT} ≤ 5.2 mA	6.0V	0.2	0.26	0.33	V
IN	Maximum Input	$V_{IN} = V_{CC}$ or GND	6.0V		±0.1	±1.0	μΑ
	Current						
Icc	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND	6.0V		8.0	80	μΑ
	Supply Current	$I_{OUT} = 0 \mu A$					

Note 5: For a power supply of 5V \pm 10% the worst case output voltages (V_{OH} , and V_{OL}) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V_{IH} and V_{IL} occur at V_{CC} = 5.5V and 4.5V respectively. (The V_{IH} value at 5.5V is 3.85V.) The worst case leakage current (I_{IN} , I_{CC} , and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0V values should be used.

AC Electrical Characteristics

 $V_{CC} = 5V$, $T_A = 25$ °C, $C_L = 15$ pF, $t_r = t_f = 6$ ns

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
t _{PLH}	Maximum Propagation		18	25	ns
	Delay, Binary Select to any Output				
t _{PHL}	Maximum Propagation		28	35	ns
	Delay, Binary Select to any Output				
t _{PHL} , t _{PLH}	Maximum Propagation		18	25	ns
	Delay, G1 to any Output				
t _{PHL}	Maximum Propagation		23	30	ns
	Delay G2A or G2B to				
	Output				
t _{PLH}	Maximum Propagation		18	25	ns
	Delay G2A or G2B to Output				

AC Electrical Characteristics

 $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns (unless otherwise specified)}$

Symbol	Parameter	Conditions	V	T _A =	25°C	T _A = -40 to 85°C	Units
Syllibol	Farameter	Conditions	Vcc Typ Guaranteed Limits 2.0V 75 150 189 4.5V 15 30 38 6.0V 13 26 32 2.0V 100 200 252 4.5V 20 40 50 6.0V 17 34 43 2.0V 75 150 189 4.5V 15 30 38 6.0V 13 26 32 2.0V 82 175 221 4.5V 28 35 44 6.0V 22 30 37 2.0V 75 150 189 4.5V 15 30 38 6.0V 22 30 37 2.0V 75 150 189 4.5V 15 30 38 6.0V 13 26 32 2.0V 30 75 95	Units			
t _{PLH}	Maximum Propagation		2.0V	75	150	189	ns
	Delay Binary Select to		4.5V	15	30	38	ns
	any Output LOW-to-HIGH		6.0V	13	26	32	ns
t _{PHL}	Maximum Propagation		2.0V	100	200	252	ns
	Delay Binary Select to any		4.5V	20	40	50	ns
	Output HIGH-to-LOW		6.0V	17	34	43	ns
t _{PHL} , t _{PLH}	Maximum Propagation		2.0V	75	150	189	ns
	Delay G1 to any		4.5V	15	30	38	ns
	Output		6.0V	13	26	32	ns
t _{PHL}	Maximum Propagation		2.0V	82	175	221	ns
	Delay G2A or G2B to		4.5V	28	35	44	ns
	Output		6.0V	22	30	37	ns
t _{PLH}	Maximum Propagation		2.0V	75	150	189	ns
	Delay G2A or G2B to		4.5V	15	30	38	ns
	Output		6.0V	13	26	32	ns
t _{TLH} , t _{THL}	Output Rise and		2.0V	30	75	95	ns
	Fall Time		4.5V	8	15	19	ns
			6.0V	7	13	16	ns
C _{IN}	Maximum Input			3	10	10	pF
	Capacitance						
C _{PD}	Power Dissipation	(Note 6)		75			pF
	Capacitance						

Note 6: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC}$.

MM54HC147/MM74HC147 10-to-4 Line Priority Encoder

General Description

This high speed 10-to-4 Line Priority Encoder utilizes advanced silicon-gate CMOS technology. It possesses the high noise immunity and low power consumption of standard CMOS integrated circuits. This device is fully buffered, giving it a fanout of 10 LS-TTL loads.

The MM54HC147/MM74HC147 features priority encoding of the inputs to ensure that only the highest order data line is encoded. Nine input lines are encoded to a four line BCD output. The implied decimal zero condition requires no input condition as zero is encoded when all nine data lines are at a high logic level. All data inputs and outputs are active at the low logic level.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Low guiescent power consumption: 40 µW maximum at 25°C
- High speed: 31 ns propagation delay (typical)
- Low input current: 1 µA maximum
- Wide supply range: 2V to 6V

Connection and Logic Diagrams

Dual-In-Line Package

Top View

Order Number MM54HC147 or MM74HC147

Truth Table

			lı	nput	s					Out	puts	;
1	2	3	4	5	6	7	8	9	D	С	В	Α
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	L	Н	Н	L
X	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	Н	Н
X	Χ	Χ	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
X	Χ	Χ	Χ	Χ	L	Н	Н	Н	Н	L	L	Н
X	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	Н	L
X	Χ	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	Н
X	Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
X	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

RRD-B30M115/Printed in U. S. A

TI /F/5007-2

AC Electrical Characteristics $v_{CC}\!=\!5\text{V}, T_{A}\!=\!25^{\circ}\text{C}, C_{L}\!=\!15\,\text{pF}, t_{r}\!=\!t_{f}\!=\!6\,\text{ns}$

Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units	
t _{PHL} , t _{PLH}	Maximum Propagation Delay		31	38	ns	

$\textbf{AC Electrical Characteristics} \ \ V_{CC} = 2.0V \ \text{to } 6.0V, \ C_L = \underline{50} \ \text{pF}, \ t_r = t_f = 6 \ \text{ns} \ \text{(unless otherwise specified)}$

Symbol	Parameter	Conditions	v _{cc}	T _A =	25°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units	
				Тур		Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation Delay		2.0V 4.5V 6.0V	181 36 31	220 44 37	275 55 47	319 64 54	ns ns ns	
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns	
C _{PD}	Power Dissipation Capacitance (Note 5)	(per package)		180				pF	
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF	

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$.

MM54HC153/MM74HC153 Dual 4-Input Multiplexer

General Description

This 4-to-1 line multiplexer utilizes advanced silicon-gate CMOS technology. It has the low power consumption and high noise immunity of standard CMOS integrated circuits. This device is fully buffered, allowing it to drive 10 LS-TTL loads. Information on the data inputs of each multiplexer is selected by the address on the A and B inputs, and is presented on the Y outputs. Each multiplexer possesses a strobe input which enables it when taken to a low logic level. When a high logic level is applied to a strobe input, the output of its associated multiplexer is taken low.

The 54HC/74HC logic family is functionally and pinout compatible with the standard 54LS/74LS logic family. All inputs

are protected from damage due to static discharge by internal diode clamps to V_{CC} and ground.

Features

- Typical propagation delay: 24 ns
- Wide power supply range: 2V-6V
- Low quiescent current: 80 µA maximum (74HC Series)

TL/F/5107-1

- Low input current: 1 µA maximum
- Fanout of 10 LS-TTL loads

Connection Diagram

Dual-In-Line Package

Top View

Order Number MM54HC153 or MM74HC153

Truth Table

	ect		Data I	Inputs		Strobe	Output
В	Α	C0	C1	C2	C3	G	Υ
Х	Х	Χ	Χ	Х	Χ	Н	L
L	L	L	Х	Х	Х	L	L
L	L	Н	Х	X	Х	L	Н
L	Н	Х	L	Х	Х	L	L
L	Н	Х	Н	X	Х	L	Н
Н	L	Х	Х	L	Х	L	L
Н	L	X	Х	Н	Х	L	Н
Н	Н	Х	Х	X	L	L	L
Н	Н	Х	Х	X	Н	L	Н

Select inputs A and B are common to both sections.

H = high level, L = low level, X = don't care.

©1995 National Semiconductor Corporation TL/F

RRD-B30M105/Printed in U. S. A.

AC Elec	AC Electrical Characteristics V _{CC} =5V, T _A =25°C, C _L =15 pF, t _r =t _f =6 ns										
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units						
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Select A or B to Y		26	30	ns						
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any Data to Y		20	23	ns						
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Strobe to Y		8	15	ns						

AC Electrical Characteristics $C_L = 50 \text{ pF}, t_r = t_f = 6 \text{ ns}$ (unless otherwise specified)

Symbol	Parameter	Conditions	vcc	T _A =25	°C	74HC T _A = -40 to 85°C	54HC T _A = -55 to 125°C	Units
				Тур		Guarantee	d Limits	
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Select A or B to Y		2.0V 4.5V 6.0V	131 29 25	158 35 30	198 44 38	237 52 45	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, any Data to Y		2.0V 4.5V 6.0V	99 22 19	126 28 23	158 35 29	189 42 35	ns ns ns
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Strobe to Y		2.0V 4.5V 6.0V	50 12 10	86 19 16	108 24 20	129 29 24	ns ns ns
t _{TLH} , t _{THL}	Maximum Output Rise and Fall Time		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{IN}	Maximum Input Capacitance			5	10	10	10	pF
C _{PD}	Power Dissipation Capacitance	(Note 5)(per package) Outputs Enabled Outputs Disabled		90 25				pF pF

Note 5: C_{PD} determines the no load dynamic power consumption, $P_D = C_{PD} \ V_{CC}^2 \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and the no load dynamic current consumption, $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC}$, and $I_S = C_{PD} \ V_{CC} \ f + I_{CC} \ V_{CC} \ f + I_{CC}$

Logic Diagram

3

TL/F/5107-2

MM54HC155/MM74HC155 Dual 2-To-4 **Line Decoder/Demultiplexers General Description**

The MM54HC155/MM74HC155 is a high speed silicon-gate CMOS decoder/demultiplexer. It utilizes advanced silicongate CMOS technology and features dual 1-line-to-4-line demultiplexers with independent strobes and common binary-address inputs. When both sections are enabled by the strobes, the common address inputs sequentially select and route associated input data to the appropriate output of each section. The individual strobes permit activating or inhibiting each of the 4-bit sections as desired. Data applied to input C1 is inverted at its outputs and data applied to C2 is non-inverted at its outputs. The inverter following the C1 data input permits use as a 3-to-8-line decoder, or 1-to-8line demultiplexer, without gating.

All inputs to the decoder are protected from damage due to electrostatic discharge by diodes to V_{CC} and Ground. The device is capable of driving 10 low power Schottky TTL equivalent loads.

The MM54HC155/MM74HC155 is functionally and pin equivalent to the 54LS155/74LS155 with the advantage of reduced power consumption.

Features

■ Applications

Dual 2-to-4-line decoder

Dual 1-to-4-line demultiplexer

3-to-8-line decoder

1-to-8-line demultiplexer

- Typical propagation delay: 22 ns
- Low quiescent current: 80 µA maximum
 - (74HC series)
- Wide operating range: 2V-6V

Connect and Logic Diagram

MM74HC155

TI /F/8364-1 Order Number MM54HC155 or

Truth Tables
2-to-4-Line Decoder or 1-Line to 4-line Demultiplexer

		Inputs			Out	puts	
Sel	ect	Strobe	Data				
В	Α	G1	C1	1Y0	1Y1	1Y2	1Y3
Х	Х	Н	Х	Н	Н	Н	Н
L	L	L	Н	L	Н	Н	Н
L	Н	L	Н	Н	L	Н	Н
Н	L	L	Н	Н	Н	L	Н
Н	Н	L	Н	Н	Н	Н	L
Х	Χ	Х	L	Н	Н	Н	Н

		Inputs			Out	puts	
Sel	ect	Strobe	Data				
В	Α	G2	C2	2Y0	2Y1	2Y2	2Y3
Χ	Χ	Н	Х	Н	Н	Н	I
L	L	L	L	L	Н	Н	Н
L	Н	L	L	Н	L	Н	Н
Н	L	L	L	Н	Н	L	Н
Н	Н	L	L	Н	Н	Н	L
Χ	Χ	X	Н	Н	Н	Н	Н

3-Line-to-8-Line Decoder or 1-Line-to-8-Line Demultiplexer

		lnp	uts				Out	puts			
Se	ele	ct	Strobe Or Data	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)
IC	В	Α	IG	2Y0	2Y1	2Y2	2Y3	1Y0	1Y1	1Y2	1Y3
Х	Χ	Χ	Н	Н	Н	Н	Н	Н	Н	Н	I
L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	Н	Н	Н	Н
L	Η	L	L	Н	Н	L	Н	Н	Н	Н	Н
L	Η	Н	L	Н	Н	Н	L	Н	Н	Н	Н
Н	L	L	L	Н	Н	Н	Н	L	Н	Н	Н
H	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н
H	Η	L	L	Н	Н	Н	Н	Н	Н	L	Н
Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L

IC = inputs C1 and C2 connected together

IG = inputs G1 and G2 connected together

H = high level L = low level X = don't care

AC Electrical Characteristics $V_{CC}=5V, T_{A}=25^{\circ}C, C_{L}=15 \ pF, t_{r}=t_{f}=6 \ ns$

Symbol	Parameter	Conditions	Тур	Units
t _{PHL} , t _{PLH}	Maximum Propagation Delay, Binary Select to any Output 4 Levels of Delay		18	ns

AC Electrical Characteristics (Note 6) $C_L = 50$ pF, $t_{\text{f}} = 6$ ns (unless otherwise specified)

Symbol	Parameter	Conditions	v _{cc}	TA	= 25°C		$T_A = -55 \text{ to } + 125^{\circ}\text{C}$	Units
				Тур	Typ Guaranteed Limits			
t _{PHL} , t _{PLH}	Maximum Propagation Delay Binary Select to any Output 4 Levels of Delay		2.0V 4.5V 6.0	110 22 18	175 35 30	219 44 38	254 51 44	ns ns ns
t _{TLH} , t _{TLH}	Maximum Output Rise and FallTime		2.0V 4.5V 6.0V	30 8 7	75 15 13	95 19 16	110 22 19	ns ns ns
C _{IN}	Maximum Input Capacitance			3	10	10	10	pF
C _{PD}	Power Dissipation Capacitance (Note 5)	(Note 5)		47				pF

Note 5: CPC determines the no load dynamic power consumption, $P_d = C_{PD} \, V_{CC}^2 f + I_{CC}$, and the no load dynamic current consumption, $I_S \, Q \, C_{PD} \, V_{CC} f + I_{CC}$.

Logic Diagram

October 1987 Revised March 2002

CD4001BC/CD4011BC

Quad 2-Input NOR Buffered B Series Gate • Quad 2-Input NAND Buffered B Series Gate

General Description

The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to V_{DD} and V_{SS} .

Features

- Low power TTL:
 - Fan out of 2 driving 74L compatibility: or 1 driving 74LS
- 5V-10V-15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range

Ordering Code:

Order Number	Package Number	Package Description	
CD4001BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow	
CD4001BCSJ M14D 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide			
CD4001BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide	
CD4011BCM M14A 14-Lead Si		14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow	
CD4011BCN N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" V			

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Pin Assignments for DIP, SOIC and SOP CD4001BC

Pin Assignments for DIP and SOIC CD4011BC

© 2002 Fairchild Semiconductor Corporation

DS005939

www.fairchildsemi.com

Schematic Diagrams

 $^{1}/_{4}$ of device shown $J = \overline{A + B}$

Logical "1" = HIGH Logical "0" = LOW

All inputs protected by standard CMOS protection circuit.

 $^{1}/_{4}$ of device shown $J = \overline{A \cdot B}$

Logical "1" = HIGH

Logical "0" = LOW

All inputs protected by standard

CMOS protection circuit.

Absolute Maximum Ratings(Note 1)

(Note 2)

Voltage at any Pin -0.5V to V_{DD} +0.5V

Power Dissipation (PD)

 Dual-In-Line
 700 mW

 Small Outline
 500 mW

Small Outline 500 mW V_{DD} Range −0.5 V_{DC} to +18 V_{DC}

Storage Temperature (T_S) -65°C to +150°C

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions

Operating Range (V_{DD}) 3 V_{DC} to 15 V_{DC}

Operating Temperature Range

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

Note 2: All voltages measured with respect to $V_{\mbox{\footnotesize{SS}}}$ unless otherwise specified

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	-5	5°C		+25°C		+12	:5°C	Units
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.004	0.25		7.5	
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		0.5		0.005	0.50		15	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0		0.006	1.0		30	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \; \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 4.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V$	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.10		-10 ⁻⁵	-0.10		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.10		1.0	μА

Note 3: I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 4)

CD4001BC: $T_A = 25^{\circ}C$, Input t_r ; $t_f = 20$ ns. $C_L = 50$ pF, $R_L = 200$ k. Typical temperature coefficient is 0.3%/°C.

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	110	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

www.fairchildsemi.com

3

AC Electrical Characteristics (Note 5)

CD4011BC: T_A = 25°C, Input t_{r} ; t_{f} = 20 ns. C_L = 50 pF, R_L = 200k. Typical Temperature Coefficient is 0.3%/°C.

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay,	$V_{DD} = 5V$	85	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t_{THL} , t_{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

Typical Performance Characteristics

Typical

Typical Transfer Characteristics

App. C: Datasheets

Typical Performance Characteristics (Continued)

Typical Transfer Characteristics

Typical Performance Characteristics (Continued)

App. C: Datasheets

November 1983 Revised March 2002

CD4016BC Quad Bilateral Switch

General Description

The CD4016BC is a quad bilateral switch intended for the transmission or multiplexing of analog or digital signals. It is pin-for-pin compatible with CD4066BC.

- Extremely high control input impedance: $10^{12}\Omega$ (typ)
- Low crosstalk between switches:

-50 dB (typ.)

@ $f_{IS} = 0.9 \text{ MHz}, R_L = 1 \text{ k}\Omega$

■ Frequency response, switch "ON": 40 MHz (typ)

Features

- Wide supply voltage range: 3V to 15V
- Wide range of digital and analog switching: ±7.5 V_{PEAK}
- "ON" Resistance for 15V operation: 400Ω (typ)
- Matched "ON" Resistance over 15V signal input:

 $\Delta R_{ON} = 10\Omega$ (typ)

■ High degree of linearity:

0.4% distortion (typ)

@
$$f_{IS} = 1 \text{ kHz}, V_{IS} = 5 V_{p-p}$$

V_{DD}-V_{SS} = 10V, R_L = 10 kΩ
■ Extremely low "OFF" switch leakage:

0.1 nA (typ.)

@ $V_{DD} - V_{SS} = 10V$

 $T_A = 25^{\circ}C$

Applications

- · Analog signal switching/multiplexing
 - Signal gating

Squelch control

Chopper

Modulator/Demodulator

Commutating switch

- · Digital signal switching/multiplexing
- · CMOS logic implementation
- · Analog-to-digital/digital-to-analog conversion
- Digital control of frequency, impedance, phase, and analog-signal gain

Ordering Code:

Order Number	Package Number	Package Description
CD4016BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4016BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the letter suffix "X" to the ordering code.

Connection Diagram

Schematic Diagram

© 2002 Fairchild Semiconductor Corporation

DS005661

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

(Note 2)

 $\begin{array}{lll} V_{DD} \ Supply \ Voltage & -0.5V \ to \ +18V \\ V_{IN} \ Input \ Voltage & -0.5V \ to \ V_{DD} + 0.5V \\ T_S \ Storage \ Temperature \ Range & -65^{\circ}C \ to \ +150^{\circ}C \end{array}$

Power Dissipation (P_D)

 Dual-In-Line
 700 mW

 Small Outline
 500 mW

Lead Temperature

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

 $\begin{array}{lll} \mbox{V}_{\mbox{DD}} \mbox{ Supply Voltage} & 3\mbox{V to 15V} \\ \mbox{V}_{\mbox{IN}} \mbox{ Input Voltage} & 0\mbox{V to V}_{\mbox{DD}} \\ \mbox{T}_{\mbox{A}} \mbox{ Operating Temperature Range} & -55\mbox{°C to +125\mbox{°C}} \end{array}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 2)

Cumbal	Devementes	Conditions	-5	5°C		25°C		+12	:5°C	Haita
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.01	0.25		7.5	μΑ
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		0.5		0.01	0.5		15	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0		0.01	1.0		30	μΑ
Signal In	puts and Outputs	-								
R _{ON}	"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
		$V_C = V_{DD}$, $V_{IS} = V_{SS}$ or V_{DD}								
		V _{DD} = 10V		600		250	660		960	Ω
		V _{DD} = 15V		360		200	400		600	Ω
		$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
		$V_C = V_{DD}$								
		$V_{DD} = 10V$, $V_{IS} = 4.75$ to 5.25V		1870		850	2000		2600	Ω
		$V_{DD} = 15V$, $V_{IS} = 7.25$ to 7.75V		775		400	850		1230	Ω
ΔR_{ON}	Δ"ON" Resistance	$R_L = 10k\Omega$ to $(V_{DD} - V_{SS})/2$								
	Between any 2 of	$V_C = V_{DD}$, $V_{IS} = V_{SS}$ to V_{DD}								
	4 Switches	V _{DD} = 10V				15				Ω
	(In Same Package)	V _{DD} = 15V				10				Ω
I _{IS}	Input or Output	$V_C = 0, V_{DD} = 15V$		±50		±0.1	±50		±500	nA
	Leakage	$V_{IS} = 0V \text{ or } 15V,$								
	Switch "OFF"	V _{OS} = 15V or 0V								
Control I	nputs	.		•						•
V_{ILC}	LOW Level Input	$V_{IS} = V_{SS}$ and V_{DD}								
	Voltage	$V_{OS} = V_{DD}$ and V_{SS}								
		$I_{IS}=\pm 10~\mu A$								
		$V_{DD} = 5V$		0.9			0.7		0.5	V
		V _{DD} = 10V		0.9			0.7		0.5	V
		V _{DD} = 15V		0.9			0.7		0.5	V
V _{IHC}	HIGH Level Input	V _{DD} = 5V	3.5		3.5			3.5		V
	Voltage	V _{DD} = 10V	7.0		7.0			7.0		V
		V _{DD} = 15V	11.0		11.0			11.0		V
		(Note 3) and Table 1								
I _{IN}	Input Current	$V_{CC} - V_{SS} = 15V$		±0.1		±10 ⁻⁵	±0.1		±1.0	μΑ
		$V_{DD} \ge V_{IS} \ge V_{SS}$								
		$V_{DD} \ge V_C \ge V_{SS}$								l

Note 3: If the switch input is held at V_{DD} , V_{IHC} is the control input level that will cause the switch output to meet the standard "B" series V_{OH} and I_{OH} output levels. If the analog switch input is connected to V_{SS} , V_{IHC} is the control input level — which allows the switch to sink standard "B" series $|I_{OH}|$, HIGH level current, and still maintain a $V_{OL} \le$ "B" series. These currents are shown in Table 1.

AC Electrical Characteristics (Note 4)

 $T_A = 25$ °C, $t_r = t_f = 20$ ns and $V_{SS} = 0$ V unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_C = V_{DD}$, $C_L = 50$ pF, (Figure 1)				
	Signal Input to Signal Output	$R_L = 200k$				
		$V_{DD} = 5V$		58	100	ns
		V _{DD} = 10V		27	50	ns
		V _{DD} = 15V		20	40	ns
t _{PZH} , t _{PZL}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)				
	Control Input to Signal	$V_{DD} = 5V$		20	50	ns
	Output HIGH Impedance to	$V_{DD} = 10V$		18	40	ns
	Logical Level	V _{DD} = 15V		17	35	ns
t _{PHZ} , t _{PLZ}	Propagation Delay Time	$R_L = 1.0 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 2, Figure 3)				
	Control Input to Signal	$V_{DD} = 5V$		15	40	ns
	Output Logical Level to	V _{DD} = 10V		11	25	ns
	HIGH Impedance	V _{DD} = 15V		10	22	ns
	Sine Wave Distortion	$V_C = V_{DD} = 5V, V_{SS} = -5$		0.4		%
		$R_L = 10 \text{ k}\Omega, V_{IS} = 5 V_{P-P}, f = 1 \text{ kHz},$				
		(Figure 4)				
	Frequency Response — Switch	$V_C = V_{DD} = 5V, V_{SS} = -5V,$		40		MHz
	"ON" (Frequency at -3 dB)	$R_L = 1 \text{ k}\Omega, V_{IS} = 5 V_{P-P},$				
		20 Log ₁₀ V _{OS} /V _{OS} (1 kHz) –dB,				
		(Figure 4)				
	Feedthrough — Switch "OFF"	$V_{DD} = 5V, V_C = V_{SS} = -5V,$		1.25		MHz
	(Frequency at -50 dB)	$R_L = 1 k\Omega$, $V_{IS} = 5 V_{P-P}$,				
		$20 \text{ Log}_{10} (V_{OS}/V_{IS}) = -50 \text{ dB},$				
		(Figure 4)				
	Crosstalk Between Any Two	$V_{DD} = V_{C(A)} = 5V$; $V_{SS} = V_{C(B)} = -5V$,		0.9		MHz
	Switches (Frequency at –50 dB)	$R_L = 1 k\Omega V_{IS(A)} = 5 V_{P-P}$				
		20 Log ₁₀ ($V_{OS(B)}/V_{OS(A)}$) = -50 dB,				
		(Figure 5)				
	Crosstalk; Control Input to	$V_{DD} = 10V$, $R_L = 10 \text{ k}\Omega$		150		mV _{P-P}
	Signal Output	$R_{IN} = 1 \text{ k}\Omega$, $V_{CC} = 10V$ Square Wave,				
		C ₁ = 50 pF (Figure 6)				
	Maximum Control Input	$R_L = 1 \text{ k}\Omega$, $C_L = 50 \text{ pF}$, (Figure 7)				
	·	$V_{OS(f)} = \frac{1}{2} V_{OS}(1 \text{ kHz})$				
		V _{DD} = 5V		6.5		MHz
		V _{DD} = 10V		8.0		MHz
		V _{DD} = 15V		9.0		MHz
C _{IS}	Signal Input Capacitance			4		pF
Cos	Signal Output Capacitance	V _{DD} = 10V		4		pF
C _{IOS}	Feedthrough Capacitance	V _C = 0V		0.2		pF
C _{IN}	Control Input Capacitance			5	7.5	pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

 $\textbf{Note 5:} \ \text{These devices should not be connected to circuits with the power "ON"}.$

Note 6: In all cases, there is approximately 5 pF of probe and jig capacitance on the output; however, this capacitance is included in C_L wherever it is specified.

 $\textbf{Note 7: } V_{IS} \text{ is the voltage at the in/out pin and } V_{OS} \text{ is the voltage at the out/in pin. } V_{C} \text{ is the voltage at the control input.}$

AC Test Circuits and Switching Time Waveforms

FIGURE 1. t_{PLH} , t_{PLH} Propagation Delay Time Control to Signal Output

FIGURE 2. $t_{\rm PZH}$, $t_{\rm PHZ}$ Propagation Delay Time Control to Signal Output

FIGURE 3. $t_{\rm PZH}$, $t_{\rm PHZ}$ Propagation Delay Time Control to Signal Output

 $V_C = V_{DD}$ for distortion and frequency response tests

V_C = V_{SS} for feedthrough test

FIGURE 4. Sine Wave Distortion, Frequency Response and Feedthrough

App. C: Datasheets

AC Test Circuits and Switching Time Waveforms (Continued) VC(A) = VDD -IN/OUT 10F4 OUT/IN V:S(A) -Vos(A) VSS 2.5V $V_{IS(1)}$ Vc(B) = VSS CONTROL IN/OUT 1 OF 4 OUT/IN VIS(B) = DV FIGURE 5. Crosstalk Between Any Two Switches 10V IN/OUT 1 OF 4 OUT/IN Vos FIGURE 6. Crosstalk — Control to Input Signal Output VDD VDD IN/OUT 1 OF 4 OUT/IN $v_{IS} = v_{DD}$ FIGURE 7. Maximum Control Input Frequency 5

TABLE 1. CD4016B Switch Test Conditions for VIHC

Temperature			Switch	n Input		Switch	Output	
Range	V_{DD}	V _{IS}	I _{IS} (mA)			V _{os} (V)		
			–40°C	25°C	+85°C	Min	Max	
	5	0	0.2	0.16	0.12		0.4	
	5	5	-0.2	-0.16	-0.12	4.6		
COMMERCIAL	10	0	0.5	0.4	0.3		0.5	
COMMERCIAL	10	10	-0.5	-0.4	-0.3	9.5		
	15	0	1.4	1.2	1.0		1.5	
	15	15	-1.4	-1.2	-1.0	13.5		

Typical Performance Characteristics

'ON' Resistance vs. Signal Voltage T_A = 25°C

'ON' Resistance Temperature Variation for $V_{DD} - V_{SS} = 10V$

'ON' Resistance Temperature Variation for $V_{DD} - V_{SS} = 15V$

App. C: Datasheets

Vishay Semiconductors

High Intensity Red Low Current Seven Segment Display

Description

This series defines a new standard for Low Current Displays. It is a single digit 7-Segment LED display utilizing AllnGaP technology in color red.

The supreme light intensity allows applications under direct sunlight or "black front" designs by using tinted filter glass in front of the display.

Typical 1500 μ cd at 1.0 mA is Best in Class Performance for applications with very limited power supply. The maximum forward current of 10 mA is allowed for an ambient temperature range of - 40° to +85° C without current derating.

Crosstalk between segments is possible at drive currents above 5 mA per segment. Therefore it is recommend to apply more than 5 mA only under direct sunlight or with tinted filter glass.

Features

- 1500 μcd typical at 1.0 mA
- · Very low power consumption
- · Wide viewing angle
- · Grey package surface
- Light intensity categorized at I_F= 1.0mA
- Lead-free device

Applications

Battery driven instruments
Telecom devices
Home appliances
Instrumentation
POS Terminals

Parts Table

Part	Color, Luminous Intensity	Circuitry
TDSR0750	High intensity low current red	Common anode
TDSR0760	High intensity low current red	Common cathode
TDSR1050	High intensity low current red	Common anode
TDSR1060	High intensity low current red	Common cathode
TDSR1350	High intensity low current red	Common anode
TDSR1360	High intensity low current red	Common cathode

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

TDSR0750/0760, TDSR1050/1060, TDSR1350/1360

Parameter	Test condition	Symbol	Value	Unit
Reverse voltage per segment		V_{R}	5	V
DC Forward current per segment		I _F	10	mA
Peak forward current per segment	$t_p \le 10 \ \mu s$, duty cycle 1/10	I _{FM}	50	mA

Document Number 83228 www.vishay.com

Rev. 1.3, 31-Aug-04

TDSR07../ 10../ 13...

Vishay Semiconductors

Parameter	Test condition	Symbol	Value	Unit
Power dissipation	T _{amb} ≤ 85°C	P _V	185	mW
Junction temperature		Tj	105	°C
Operating temperature range		T _{amb}	- 40 to + 85	°C
Storage temperature range		T _{stg}	- 40 to + 85	°C
Soldering temperature	$t \le 3$ sec, 2mm below seating plane	T _{sd}	260	°C
Thermal resistance LED junction/ambient		R _{thJA}	100	K/W

Optical and Electrical Characteristics

 T_{amb} = 25 °C, unless otherwise specified

Red

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
TDSR0750, TDSR0760						
Luminous intensity per segment (digit average)	I _F = 1 mA	I _V	180		2200	μcd
Dominant wavelength	I _F = 1 mA	λ_{d}		640		nm
Peak wavelength	I _F = 1 mA	λ_{p}		650		nm
Forward voltage per segment or DP	I _F = 1 mA	V _F		1.8	2.4	V
Reverse voltage per segment or DP	V _R = 6 V	I _R		10		μΑ
TDSR1050, TDSR1060						
Luminous intensity per segment (digit average)	I _F = 1 mA	I _V	280		3600	μcd
Dominant wavelength	I _F = 1 mA	λ_{d}		640		nm
Peak wavelength	I _F = 1 mA	λ_{p}		650		nm
Forward voltage per segment or DP	I _F = 1 mA	V _F		1.8	2.4	V
Reverse voltage per segment or DP	V _R = 6 V	I _R		10		μΑ
TDSR1350, TDSR1360						
Luminous intensity per segment (digit average)	I _F = 1 mA	I _V	280		3600	μcd
Dominant wavelength	I _F = 1 mA	λ_{d}		640		nm
Peak wavelength	I _F = 1 mA	λ_{p}		650		nm
Forward voltage per segment or DP	I _F = 1 mA	V _F		1.8	2.4	V
Reverse voltage per segment or DP	V _R = 6 V	I _R		10		μΑ

Vishay Semiconductors

Typical Characteristics ($T_{amb} = 25$ °C unless otherwise specified)

Figure 1. Power Dissipation vs. Ambient Temperature

Figure 4. Forward Current vs. Forward Voltage

Figure 2. Forward Current vs. Ambient Temperature

Figure 5. Relative Luminous Intensity vs. Forward Current

Figure 3. Rel. Luminous Intensity vs. Angular Displacement

Figure 6. Rel. Luminous Intensity vs. Ambient Temperature

Document Number 83228 www.vishay.com
Rev. 1.3, 31-Aug-04 3

TDSR07../ 10../ 13..

Vishay Semiconductors

Figure 7. Rel. Luminous Intensity vs. Ambient Temperature

Vishay Semiconductors

TDSR07../ 10../ 13...

Vishay Semiconductors

Package Dimensions in mm

95 11342

Package Dimensions in mm

technical drawings according to DIN specifications

95 11343

Vishay Semiconductors

Package Dimensions in mm

95 11344

TDSR1350

Features

- RoHS compliant*)
- Low profile is compatible with DIPs
- Wide assortment of pin packages enhances design flexibility
- Ammo-pak packaging available
- Recommended for rosin flux and solvent clean or no clean flux processes

 Marking on contrasting background for permanent identification

4600X Series - Thick Film Conformal SIPs

Product Characteristics

Resistance Range
10 ohms to 10 megohms
Maximum Operating Voltage100 V
Temperature Coefficient of Resistance
50 Ω to 2.2 MΩ±100 ppm/°C
below 50 Ω±250 ppm/°C
above 2.2 MΩ±250 ppm/°C
TCR Tracking50 ppm/°C
maximum; equal values
Resistor ToleranceSee circuits
Insulation Resistance
10,000 megohms minimum
Dielectric Withstanding Voltage
200 VRMS
Operating Temperature
55 °C to +125 °C

Environmental Characteristics

TESTS PER MIL-STD-202	∆R MAX.
Short Time Overload	±0.25 %
Load Life	±1.00 %
Moisture Resistance	±0.50 %
Resistance to Soldering Heat	±0.25 %
Terminal Strength	±0.25 %
Thermal Shock	±0.25 %

Physical Characteristics

Flammability	Conforms to UL94V-0
Body Material	Epoxy resin
Standard Packag	jing

Standard Packaging
Bulk, Ammo-pak available
How To Order

46 06 X - 101 - 222 LF Model (46 = Conformal SIP) Number of Pins Physical Configuration (X = Thick Film Low Profile) **Electrical Configuration** • 101 = Bussed • 102 = Isolated 104 = Dual Terminator AP1 = Bussed Ammo* AP2 = Isolated Ammo** AP4 = Dual Ammo* Resistance Code First 2 digits are significantThird digit represents the number of zeros to follow Resistance Tolerance • Blank = ±2 % (see "Resistance Tolerance"

Terminations

• All electrical configurations EXCEPT 104 & AP4:

LF = Sn/Ag/Cu-plated (RoHS compliant)

ONLY electrical configurations 104 & AP4:
 L = Sn/Ag/Cu-plated (RoHS compliant)

Consult factory for other available options.

on next page for resistance range) • $F = \pm 1 \%$ (100 ohms - 5 megohms)

**Available for packages with 10 pins or less.

Package Power Temp. Derating Curve

Package Power Ratings (Watts)

Pkg.	Ambient Temperature 70 °C	Pkg.	Ambient Temperature 70 °C
4604X	0.50	4610X	1.25
4605X	0.63	4611X	1.38
4606X	0.03	4612X	1.50
4607X	0.75	4613X	1.63
4608X	1.00	4614X	1.75
4609X	1.13		

Typical Part Marking

Represents total content. Layout may vary.

Part Number	Part Number		
4606X-101-RC	6X-1-RC		
4608X-102-RC	8X-2-RC		
4610X-104-RC/RC	10X-4-RC/RC		

RC = ohmic value, 3-digit resistance code.

Product Dimensions

Maximum package length is equal to 2.54mm (.100") times the number of pins, less .005mm (.002").

Governing dimensions are in metric. Dimensions in parentheses are inches and are approximate.

For Standard Values Used in Capacitors, Inductors, and Resistors, click here.

C. 79

WEERSTANDSNETWERK 10K

^{*}Terminal centerline to centerline measurements made at point of emergence of the lead from the body.

For information on specific applications, download Bourns' application notes:

DRAM Applications

Dual Terminator Resistor Networks

R/2R Ladder Networks

SCSI Applications

4600X Series - Thick Film Conformal SIPs

BOURNS®

Isolated Resistors (102 Circuit)

Model 4600X-102-RC 4, 6, 8, 10, 12, 14 Pin

Bussed Resistors (101 Circuit)

Model 4600X-101-RC 4 through 14 Pin

Dual Terminator (104 Circuit)

Model 4600X-104-R1/R2 4 through 14 Pin

The 4608X-104 (shown above) is an 8-

resistors are paired in series between

the common lines (pins 1 and 8).

pin configuration and terminates 6 lines.

Pins 1 and 8 are common for ground and power, respectively. Twelve thick-film

These models incorporate 2 to 7 isolated thick-film resistors of equal value, each connected between two pins.

Resistance Tolerance

10 ohms to 49 ohms	±1 ohm
50 ohms to 5 megohms	±2 %*
Above 5 megohms	±5 %

Power Rating per Resistor

These models incorporate 3 to 13 thick-film resistors of equal value, each connected between a common bus (pin 1) and a separate pin.

Resistance Tolerance

10 ohms to 49 ohms±1 ohm
50 ohms to 5 megohms±2 %*
Above 5 megohms±5 %

Power Rating per Resistor

Resistance Tolerance

Below 100 ohms.....±2 ohms 100 ohms to 5 megohms.....±2 %* Above 5 megohms.....±5 %

Power Rating per Resistor

At 70 °C0.20 watt

Power Temperature Derating Curve

Power Temperature Derating Curve

Power Temperature Derating Curve

Popular Resistance Values (101, 102 Circuits)**

Ohms	Code	Ohms	Code	Ohms	Code	Ohms	Code	Ohms	Code
10	100	180	181	1,800	182	15,000	153	120,000	124
22	220	220	221	2,000	202	18,000	183	150,000	154
27	270	270	271	2,200	222	20,000	203	180,000	184
33	330	330	331	2,700	272	22,000	223	220,000	224
39	390	390	391	3,300	332	27,000	273	270,000	274
47	470	470	471	3,900	392	33,000	333	330,000	334
56	560	560	561	4,700	472	39,000	393	390,000	394
68	680	680	681	5,600	562	47,000	473	470,000	474
82	820	820	821	6,800	682	56,000	563	560,000	564
100	101	1,000	102	8,200	822	68,000	683	680,000	684
120	121	1,200	122	10,000	103	82,000	823	820,000	824
150	151	1,500	152	12,000	123	100,000	104	1,000,000	105

* ±1 % TOLERANCE IS AVAILABLE BY ADDING SUFFIX CODE "F" AFTER THE RESISTANCE CODE.

App. C: Datasheets

C. 80

R_1 R_2 160 240 161 241 391 271 180 390 181 220 270 221 221 331 331 391 220 330 330 390 330 470 331 471

Popular Resistance Values (104 Circuit)** Resistance

Code

WEERSTANDSNETWERK 10K

(Ohms)

^{**}NON-STANDARD_VALUES AVAILABLE, WITHIN RESISTANCE RANGE.