NASKAH PUBLIKASI

KLASIFIKASI JENIS JAMUR MENGGUNAKAN METODE NEURAL NETWORK DENGAN FITUR INCEPTION-V3

Disusun Oleh:

OKKA HERMAWAN YULIANTO

19.01.53.0051

PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNOLOGI INFORMASI DAN INDUSTRI UNIVERSITAS STIKUBANK (UNISBANK) SEMARANG

2023

NASKAH PUBLIKASI KLASIFIKASI JENIS JAMUR MENGGUNAKAN METODE NEURAL NETWORK DENGAN FITUR INCEPTION-V3

Diajukan Oleh:

Okka Hermawan Yulianto

(19.01.53.0051)

Telah Disetujui Oleh Pembimbing

Tanggal: 24 Juli 2023

Pembimbing

Setyawan Wibisono, S.KOM, M.Cs

NIDN: 0007067301

PERNYATAAN

Dengan ini saya selaku mahasiswa Fakultas Teknologi Informasi dan Industri Universitas Stikubank Semarang:

Nama : Okka Hermawan Yulianto

Nim : 19.01.53.0051

Jenjang / Program Studi : S1 / Teknik Informatika

Setuju / **Tidak setuju** *) naskah publikasi penelitian yang disusun oleh yang bersangkutan setelah mendapat arahan dari pembimbing, dipublikasikan **dengan** / **tanpa** *) mencantumkan nama pembimbing sebagai co-author.

Mengetahui,

Dosen Pembimbing

Setyawan Wibisono, S.KOM, M.Cs

NIDN: 0007067301

Semarang, 24 Juli 2023

Yang Bersangkutan

Okka Hermawan Yulintao

NIM: 19.01.53.0051

Klasifikasi Jenis Jamur Menggunakan Metode Neural Network Dengan Fitur Inception-V3

Okka Hermawan Yulianto¹, Setyawan Wibisono²

¹Teknik Informatika – Unisbank Semarang, char.hermawan@gmail.com ²Teknik Informatika – Unisbank Semarang, setyawan@edu.unisbank.ac.id Jalan Tri Lomba Juang Semarang, Telp. (024) 8451976

ARTICLE INFO

Article history:

Received Agustus 2022 Received in revised form September 2022 Accepted November 2022 Available online Desember 2022

ABSTRACT

Mushrooms are very diverse with characteristics of each type, there are 1,433,800 types of mushrooms that have not been recognized. In this study, researchers used the Neural Network and Deep Learning Inception V3 methods as a feature extraction process in images to classify mushroom images based on genus with the Orange Data Mining application. There are 9 genera of mushrooms used in this study, namely Agaricus, Amanita, Boletus, Cortinarius. Entoloma, Hygrocybe, Lactarius, Russula, and Suillus. The total dataset used is 2,700, with 300 images for each genus. The test uses the cross-validation method which is applied to the confusion matrix to get precision, recall, F1-score, and accuracy values. In this study, the final classification results were obtained with an accuracy of 82.5% and the genus Boletus mushroom obtained the best results with an accuracy of 98.9%.

Keywords: Neural Network, Inception V3, Mushroom Genus, Image classification

1. Pendahuluan

Jamur adalah tanaman yang tidak berklorofil dan mempunyai sifat parasit. Jamur menyerap makan pada bagian luar tubuh tepatnya dinding sel, serta jamur berkembang biak secara *seksual* dan *aseksual*. Jamur sangat beragam dengan ciri pada masing-masing jenisnya [1].

Peneliti memperkirakan terdapat 1,5 juta jenis jamur diseluruh dunia, jenis yang sudah dikenali antara lain jamur *makroskopis* (mempunyai tubuh buah) sebanyak 28.700, jamur *mikroskopik* (tidak mempunyai tubuh buah) sebanyak 24.000, jenis lumut kerak (pengabungan *fungi* dan *alga*) sebanyak 13.500, dan terdapat 1.433.800 jenis jamur yang belum dikenali baik makro maupun mikro. Ada jenis jamur yang beracun (*poisonous*) dan yang dapat dikonsumsi (*edible*) [2].

Penelitian mengenai jenis jamur telah dilakukan terutama pada proses klasifikasi citra jenis jamur dengan berbagai metode. Dimana klasifikasi citra merupakan proses untuk mendeteksi objek dari suatu citra yang ada. Metode Neural Network merupakan teknik yang popular dan sering digunakan untuk mengklasifikasikan citra. Metode Neural Network dapat mengubah struktur yang dimiliki untuk memecahkan masalah menggunakan informasi internal maupun informasi eksternal, definisi lain metode ini adalah bisa belajar dari pengalaman yang telah dilakukan sebelumnya. Metode Neural Network mempunyai beberapa lapisan yang disebut dengan Multi Layer Perceptron, berguna untuk menghubungkan secara penuh antar neuronnya sehingga mempunyai kemampuan klasifikasi yang baikl [3].

p-ISSN: 1907-0012 e-ISSN: 2714-5417

Sebelumnya sudah dilakukan penelitian mengenai klasifikasi jenis jamur yang memiliki perbedaan pada dataset serta metode pengklasifikasian, salah satunya berikut.

Penelitian yang dilakukan oleh Hermawan A & Wibowo AP (2022), mengenai klasifikasi jamur beracun dengan metode Jaringan Syaraf Tiruan. Hasil pengujian membuktikan rata-rata akurasi 99.02% [4].

Berdasarkan hasil penelitian sebelumnya, maka peneliti akan mengusulkan menggunakan metode Jaringan Syaraf Tiruan (Neural Network). Metode ini bisa menyelesaikan masalah yang beragam dan sulit karena mempunyai kemampuan *fault tolerance* sampai batas tertentu, sehingga mampu menghasilkan nilai yang baik meskipun data kurang lengkap. Peneliti berharap dengan penelitian ini dapat menggetahui tingkat akurasi model Neural Network dengan menggunakan model Deep Learning Inception V3 sebagai proses ekstraksi fitur pada citra untuk pengklasifikasian citra jenis jamur dengan akurat.

2. Metode Penelitian

Terdapat 5 langkah atau tahapan yang dilakukan pada penelitian ini, digambarkan melalui Gambar 1 berikut ini :

Gambar 1. Flowchart Tahapan Penelitian

2.1. Studi Literatur

Tahap pertama yang dilakukan pada penelitian ini adalah studi literatur. Pada tahap ini peneliti melakukan penggalian pengetahuan dan mencari referensi penelitian terdahulu dari berbagai sumber, seperti jurnal, artikel maupun buku yang berhubungan terhadap penelitian yang dilakukan [5]. Ada beberapa topik penelitian terdahulu yang dicari pada penelitian ini diantaranya pengklasifikasian jenis genus jamur, data mining, algoritma Neural Network serta mempelajari bagaimana cara membaca confusion matrix.

2.2. Pengumpulan Data

Dataset yang digunakan dalam penelitian ini merupakan data sekunder yang berjudul *Mushrooms classification - Common genus's images*. Dataset berupa data citra jenis jamur yang terdiri dari 9 genus yaitu *Agaricus, Amanita, Boletus, Cortinarius, Entoloma, Hygrocybe, Lactarius, Russula, dan Suillus* [6]. Data diambil dari situs Kaggle (www.kaggle.com). Data bersumber dari *Mycologist's Society of Northen Europe* yang diupload pada tahun 2018. Keseluruhan dataset berjumlah 6.714 buah citra. Setelah itu masing-masing

JURNAL ELEKTRONIKA DAN KOMPUTER p-IS

p-ISSN: 1907-0012 e-ISSN: 2714-5417.

gambar genus jamur dilakukan proses sortir dan pengambilan sampel data sebanyak 300 citra, sehingga total data yang digunakan sebanyak 2.700 citra jamur.

Gambar 2. 9 Genus Jamur

2.3. Pre-processing Data

Pada tahap pre-processing data, peneliti menggunakan fitur Inception V3 sebagai proses ekstraksi fitur citra jamur. Inception V3 adalah arsitektur *deep learning* yang dibuat oleh Google pada tahun 2015 yang populer karena memanfaatkan module blok Inception. Blok Inception dibuat secara efisien untuk menangkap fitur local maupun global dalam setiap data input, digunakan dalam berbagai konfigurasi pada seluruh jaringan untuk menangkap fitur pada skala dan tingkat abstraksi yang berbeda [7].

Proses ini diolah pada widget image embedding Orange. Hasil pemprosesan ini menghasilkan sebuah data-data kategori, nama gambar, ukuran gambar, serta ukuran file masing-masing gambar. Berikut tampilan pre-processing data pada Image embedding Orange Data Mining.

Gambar 3. Widget Image Embedding Orange

p-ISSN: 1907-0012 e-ISSN: 2714-5417

2.4. Pengklasifikasian

Proses pengklasifikasian menggunakan widget test and score pada aplikasi Orange Data Mining untuk melakukan proses training data, kemudian di hubungkan ke widget algoritma Neural Network. Pada Metode Neural Network terdapat parameter yang digunakan yaitu Rectified Linear Unit (ReLU), fungsi aktivasi yang digunakan bertujuan mengurangi error dan saturasi. Serta untuk fungsi optimizer menggunakan Adaptive Movement Estimation (Adam) salah satu algoritma *gradient descent* yang sering digunakan.

2.5. Hasil dan Analisis

Pada penelitian ini terdapat beberapa pengujian yang dilakukan untuk mendapatkan tingkat keakuratan metode yang diuji, diantaranya hasil perhitungan *Precision, Recall, F1-Score* dan *Accuracy* [8]. Berikut rumus persamaan *Precision, Recall, F1-Score* dan *Accuracy*.

1. Rumus persamaan Precision

$$Precision = \frac{TP}{TP + FP}$$

2. Rumus persamaan Recall

$$Recall = \frac{TP}{TP + FN}$$

3. Rumus persamaan F1-Score

$$F1$$
-Score = 2 $\times \frac{Recall \times Precision}{Recall + Precision}$

4. Rumus persamaan Accuracy

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

Hasil penelitian ini menggunakan widget test and score untuk mendapatkan hasil perbandingan metode uji coba yaitu pengujian 20-fold cross validation serta random sampling (menggunakan 75% data latih). Tahap Analisis menggunakan hasil confusion matrix untuk melakukan perhitungan nilai *precision*, *recall*, *F1-score* dan *accuracy* pada setiap jenis genus jamur yang sudah diklasifikasikan.

3. Hasil Dan Pembahasan

3.1. Hasil Penelitian

Dari hasil pembuatan *workflow* menggunakan aplikasi Orange Data Mining, menghasilkan sebuah model klasifikasi citra menggunakan metode Neural Network yang bisa diamati pada Gambar 4.

JURNAL ELEKTRONIKA DAN KOMPUTER p-ISSN: 1907-0012 e-ISSN: 2714-5417.

Gambar 4. Workflow Klasifikasi Jenis Jamur

3.2. Implementasi Pelatihan Data

1. Dataset

Awal mula keseluruhan dataset jenis jamur sebanyak 6.714 buah citra dan terdapat 9 genus jamur yaitu *Agaricus, Amanita, Boletus, Cortinarius, Entoloma, Hygrocybe, Lactarius, Russula*, dan *Suillus*. Setelah itu masing-masing citra genus jamur dilakukan proses sortir secara manual dan diperoleh sampel sebanyak 300 citra, sehingga total data yang akan digunakan dalam penelitian ini berjumlah 2.700 citra jamur. Kemudian untuk memulai, peneliti mengimport gambar menggunakan widget import images dari *add-on* Orange Image Analytics dan memilih direktori Dataset Jamur.

Gambar 5. Widget Import Images Orange

Keseluruhan gambar Jamur bisa divisualisasikan menggunakan widget image viewer, seperti Gambar 6.

Gambar 6. Widget Image Viewer Orange

origir	category	image name	image Dataset/Dataset Jar image	size	width	height
1	Agaricus	000_ePQknW8c	Agaricus\000_e	73476	778	600
2	Agaricus	001_2jP9N_ipAo8	Agaricus\001_2j	166114	700	525
3	Agaricus	002_hNh3aQSH	Agaricus\002_h	141494	700	524
4	Agaricus	003_4AurAO4Jil8	Agaricus\003_4	184048	800	600
5	Agaricus	004_Syi3NxxviC0	Agaricus\004_S	107175	750	563
6	Agaricus	005_sUqyy4Yb9	Agaricus\005_s	54305	800	539
7	Agaricus	006_1_E6AXBJq	Agaricus\006_1	130264	800	600
8	Agaricus	009_mrv34Sn4	Agaricus\009	89997	771	600
9	Agaricus	010_Rk1D3EG8	Agaricus\010_R	136870	800	600
10	Agaricus	011_WtefvQHA	Agaricus\011	76652	800	600
11	Agaricus	012_i_TOGa08rRE	Agaricus\012_i	132916	800	600
12	Agaricus	013_bhSPsvLNp	Agaricus\013_b	93572	800	600
13	Agaricus	014_DU4RE5bi	Agaricus\014_D	104837	800	600
14	Agaricus	016_qNYODERZ	Agaricus\016_q	114939	800	530
15	Agaricus	017_QHGfbEiW	Agaricus\017_Q	43483	800	531

Gambar 7. Data Table Orange

p-ISSN: 1907-0012 e-ISSN: 2714-5417

Jika diperhatikan isi data table hanya beberapa deskripsi gambar seperti kategori, nama file, lokasi file, ukuran file, lebar dan tinggi gambar. Informasi ini tidak bisa membantu untuk melakukan *machine learning*, karena *machine learning* membutuhkan angka. Untuk memperoleh representasi numerik dari gambar-gambar, peneliti mengirim gambar ke widget image embedding untuk proses ekstraksi fitur.

2. Implementasi Pre-processing

Tahap Pre-processing data menggunakan widget image embedding dan menggunakan embedder Inception V3 sebagai proses ekstraksi fitur. Widget image embedding membaca gambar dan menguploadnya ke remote server atau mengevaluasi gambar secara lokal. Embedder Inception V3 adalah Google deep neural network untuk image recognition (pengenalan gambar). Deep learning model digunakan untuk mengkalkulasi feature vector untuk setiap gambar. Setelah komputasi widget image embedding selesai dilakukan, akan menghasilkan sebuah enhanced data table dengan sebuah tambahan kolom (image descriptor) seperti Gambar 8.

Gambar 8. Hasil ekstraksi fitur pada Data Table

3.3. Implementasi Algoritma

Implementasi menggunakan widget algoritma Neural Network pada Orange Data Mining dengan parameter yang di gunakan yaitu :

- 1. Hidden layer yang digunakan sebanyak 100 layer,
- 2. Fungsi aktivasi yang digunakan yaitu Rectified Linear Unit (ReLU),
- 3. Optimization menggunakan Adaptive Movement Estimation (Adam),
- 4. Regularization dengan $\alpha = 0$,
- 5. Jumlah maximal iterations yang digunakan sebanyak 200.

Gambar 9. Widget Algoritma Neural Network Orange

JURNAL ELEKTRONIKA DAN KOMPUTER p-ISSN: 1907-0012 e-ISSN: 2714-5417.

3.4. Pengujian

Pada tahap pengujian hasil klasifikasi, peneliti menggunakan widget test and score untuk melakukan proses training dan testing data. Terdapat 2 metode pengujian pada penelitian ini, yang pertama adalah pengujian 20-fold cross validation. Kedua adalah random sampling dengan *repeat train/test* sebanyak 20 dan *training set size* sebesar 75%.

1. Pengujian 20-fold cross validation

Berikut hasil perhitungan dari metode pengujian 20-fold cross validation terhadap klasifikasi genus jamur dapat dilihat dibawah ini.

Tabel 1. Hasil pengujian 20-fold cross validation

AUC	CA	F1	Precision	Recall
97.8%	82.5%	82.4%	82.4%	82.5%

2. Pengujian menggunakan random sampling

Berikut hasil perhitungan random sampling dengan *repeat train/test* sebanyak 20 dan *training set size* sebesar 75% terhadap jenis jamur menggunakan algoritma Neural Network dapat dilihat dibawah ini.

Tabel 2. Hasil pengujian random sampling

AUC	CA	F1	Precision	Recall
97.5%	81%	81%	80.9%	81%

3.5. Perbandingan

Berdasarkan 2 metode pengujian diatas, diperoleh hasil perhitungan AUC, *accuracy*, *F1-score*, *precision* dan *recall*. Metode pengujian menggunakan 20-fold cross validation mendapatkan hasil AUC 97.8%, *accuracy* 82.5%, *F1-score* 82.4%, *precision* 82.4%, dan *recall* 82.5% sedangkan pada metode random sampling mendapatkan hasil AUC 97.5%, *accuracy* 81%, *F1-score* 81%, *precision* 80.9%, dan *recall* 81%. Maka hasil pengujian menggunakan metode 20-fold cross validation dinyatakan lebih baik dibandingkan menggunakan metode random sampling pada klasifikasi citra menggunakan algoritma Neural Network.

3.6. Confusion Matrix

Confusion matrix akan menampilkan informasi data aktual (*actual*) dan prediksi (*predicted*) berdasar hasil klasifikasi. Dengan confusion matrix peneliti dapat mengamati hasil berdasarkan jumlah data yang diprediksi benar atau salah . Berikut tampilkan confusion matrix dari hasil pengujian menggunakan metode 20-fold cross validation.

Predicted

Boletus Cortinarius Entoloma Hygrocybe Lactarius Agaricus Amanita Boletus

Cortinarius **Entoloma** Hygrocybe Lactarius Russula Suillus Σ

Gambar 10. Hasil Confusion Matrix

Suillus

Σ

p-ISSN: 1907-0012 e-ISSN: 2714-5417

Berikut hasil perhitungan nilai precision, recall, F1-score dan accuracy pada setiap genus jamur.

Tabel 3. Hasil pengujian 20-fold cross validation pada setiap genus jamur

Genus	Accuracy	F1-Score	Precision	Recall
Agaricus	95.2%	78.7%	78%	79.3%
Amanita	97.7%	89.6%	90.5%	88.7%
Boletus	98.9%	95.1%	93%	97.3%
Cortinarius	95%	76.8%	79.2%	74.7%
Entoloma	95.1%	77.9%	77.7%	78%
Hygrocybe	97.4%	88.4%	87.8%	89%
Lactarius	93.3%	68.4%	71.8%	65.3%
Russula	96%	82.4%	80.6%	84.3%
Suillus	96.4%	84.3%	82.7%	86%

3.7. Analisis Pengujian

Dari hasil perhitungan *precision, recall, F1-secore* dan *accuracy* yang diperoleh pada penelitini ini, menunjukan hasil yang cukup memuaskan menggunakan metode Neural Network dengan fitur Inception V3. Hasil terbaik dalam pengklasifikasian adalah genus jamur *Boletus* dari 314 terdapat 292 citra dengan prediksi yang sesuai dengan aktual dan *accuracy* sebesar 98.9%. Sedangkan citra genus jamur yang paling sedikit terprediksi benar adalah pada genus jamur *Lactarius* dengan *accuracy* sebesar 93.3%.

4. Kesimpulan

Setelah semua tahapan penelitian yang telah dilakukan, dapat simpulkan bahwa metode Neural Network dengan fitur Inception V3 berhasil diaplikasikan untuk pengklasifikasian jenis jamur menggunakan tools Orange Data Mining. Beberapa poin yang berhasil diperoleh adalah sebagai berikut:

- 1. Hasil *accuracy* yang didapat dalam mengklasifikasikan jenis jamur menggunakan metode Neural Network dengan fitur Inception V3 yakni sebesar 82.5%, dengan parameter yang digunakan yaitu hidden layer sebanyak 100 layer, fungsi aktivasi ReLU, optimizer Adam, Regularization $\alpha = 0$, dan jumlah *Maximal iterations* sebanyak 200.
- 2. Dari hasil perbandingan dua metode uji coba yang digunakan, diperoleh *accuracy* sebesar 81% untuk metode pengujian random sampling dan 82.5% untuk metode pengujian 20-fold cross validation sebagai bahan analisis pengujian pada confusion matrix.
- 3. Hasil terbaik pengklasifikasian jenis jamur adalah jenis jamur *Boletus* dari 314 citra terdapat 292 citra dengan prediksi yang sesuai dengan aktual dan *accuracy* sebesar 98.9%.

Daftar Pustaka

- [1] Yohannes, Nur Rachmat, and Calvin Oliver Saputra, "Penggunaan Fitur HOG Berbasis Superpixel Untuk Klasifikasi Jenis Jamur Dengan Metode SVM," *Jusikom :Jurnal Sistem Komputer usirawas*, vol. 6, no. 1, Jun. 2021.
- [2] M. G. Wahdini, N. F. A. H, and A. Lawi, "Klasifikasi Jamur dapat Dikonsumsi dan Beracun Menggunakan Model Bayesian Network," in *Prosiding Seminar Nasional Teknik Elektro dan Informatika (SNTEI)*, S. Said, Ed., Pad: Jurusan Teknik Elektro, Politeknik Negeri Ujung Pandang, 2022.

JURNAL ELEKTRONIKA DAN KOMPUTER p-ISSN: 1907-0012 e-ISSN: 2714-5417.

- [3] M. Z. Altim, Faisal, Salmiah, Kasman, A. Yudhistira, And R. A. Syamsu, "Pengklasifikasi Beras Menggunakan Metode CNN (Convolutional Neural Network)," *Jurnal INSTEK (Informatika Sains dan Teknologi)*, vol. 7, no. 1, pp. 151–155, Mar. 2022, doi: 10.24252/instek.v7i1.28922.
- [4] A. Hermawan and A. P. Wibowo, "Implementasi Korelasi untuk Seleksi Fitur pada Klasifikasi Jamur Beracun Menggunakan Jaringan Syaraf Tiruan," *Jurnal INTEK*, vol. 5, no. 1, pp. 63–67, May 2022
- [5] J. Kusuma, A. Jinan, M. Z. Lubis, R. Rubianto, and R. Rosnelly, "KomparasiAlgoritma Support Vector Machine Dan Naive Bayes Pada Klasifikasi Ras Kucing," *GENERIC : Jurnal Ilmu Komputer dan Teknologi Informasi*, vol. 14, no. 1, pp. 8–12, Jan. 2022.
- Yohannes, D. Udjulawa, and T. Ivan Sariyo, "Klasifikasi Jenis Jamur Menggunakan SVM dengan Fitur HSV dan HOG," *PETIR : Jurnal Pengkajian dan Penerapan Teknik Informatika*, vol. 15, no. 1, pp. 113–120, Dec. 2022, doi: 10.33322/petir.v15i1.1101.
- [7] D. Darmatasia And A. M. Syafar, "Implementasi Convolutional Neural Network Untuk Klasifikasi Tanaman Rimpang Secara Virtual," *Jurnal INSTEK (Informatika Sains dan Teknologi)*, vol. 8, no. 1, pp. 122–131, Mar. 2023.
- [8] K. S. K. H. L. A. R. G. P. R. K. A. S. W. M. P. Fitri Handayani, "Komparasi Support Vector Machine, Logistic Regression Dan Artificial Neural Network Dalam Prediksi Penyakit Jantung," *Jurnal Edukasi dan Penelitian Informatika (JEPIN)*, vol. 7, no. 3, p. 329, Dec. 2021, doi: 10.26418/jp.v7i3.48053.

LATTER OF ACCEPTANCE

UNIVERSITAS SAINS DAN TEKNOLOGI KOMPUTER LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT JURNAL ILMIAH ELEKTRONIKA & KOMPUTER

Jl. Majapahit No. 605 - Pedurungan Kidul – Semarang – Jawa Tengah 50192 Telp. (024) 6723456; 6710144 WA. 081-777-5758

Website: stekom.ac.id Email: universitas@stekom.ac.id

SURAT KETERANGAN TERIMA PAPER

No. 1281/ELKOM/NDS/ACC/G.2023

Kepada Yth, Bapak / Ibu:

Okka Hermawan Yulianto, dkk

Universitas Stikubank Semarang

Dengan hormat,

Kami dari Redaksi Komputer dan Elekronika (ELKOM) menyampaikan bahwa artikel bapak/ibu dengan judul "Klasifikasi Jenis Jamur Menggunakan Metode Neural Network Dengan Fitur Inception-V3" telah diterima dan sudah direview dan dinyatakan diterima (ACCEPTED) dan akan diterbitkan di Volume 16 Nomor 2 Edisi Desember 2023.

Kami mengucapkan terimakasih banyak atas kepercayaan bapak/ibu untuk menerbitkan artikel terbaik, kami akan kembali menginformasikan tahap proses berikutnya sampai publish (terbit). dan untuk seterusnya kami masih menunggu artikel terbaik Anda selanjutnya.

Demikianlah surat keterangan ini kami perbuat untuk dapat dipergunakan sebagaimana perlunya.

PUBLINATIS DIWI Setiawan, S

arang, 25-Juli 2023

.Kom., M.T.

UNIVERSITAS SAINS DAN TEKNOLOGI KOMPUTER LEMBAGA PENELITIAN DAN PENGABDIAN KEPADA MASYARAKAT

JURNAL ILMIAH ELEKTRONIKA & KOMPUTER

Jl. Majapahit No. 605 - Pedurungan Kidul — Semarang — Jawa Tengah 50192 Telp. (024) 6723456 ; 6710144 WA. 081-777-5758 Website : stekom.ac.id Email : universitas@stekom.ac.id

LEMBAR EVALUASI PAPER

Penulis : Okka Hermawan Yulianto, Setyawan Wibisono

Kode Artikel : ELKOM_1281

Judul : Klasifikasi Jenis Jamur Menggunakan Metode Neural Network

Dengan Fitur Inception-V3

A. OBJEK EVALUASI

No.	Deskripsi	Komentar
1.	Keterwakilan isi artikel dalam Judul	lsi sudah relevan dengan judul.
2.	Cerminan isi artikel dalam Abstrak	Baik, Masalah, metode dan hasil terwakili,
3.	Ruang Lingkup Penelitian dalam Kata kunci	Baik
4.	Kejelasan Metodologi Penelitian	Baik
5.	Penyajian dan interprestasi Data	Baik
6.	Penggunaan Tabel dan Gambar	Baik
7.	Relevansi Diskusi/Analisis dengan Hasil Penelitian	Baik
8.	Relevansi Acuan/Referensi	Baik
9.	Kontribusi terhadap Ilmu pengetahuan	Baik
10.	Sistematika Penulisan	Baik
11.	Penggunaan Bahasa	Baik

B. KEPUTUSAN REVIEWER

Artikel dapat diterbitkan secara langsung
 Artikel dapat diterbitkan dengan sedikit revisi
 Artikel dapat diterbitkan dengan banyak revisi
 Artikel silakan kembali ke kami untuk re-evaluasi setelah revisi
 Artikel tidak layak untuk diterbitkan berdasarkan alasan di atas
]

Reviewer,

(Anggara Trisna Nugraha S.T., M.T)

SURAT KETERANGAN BEBAS PLAGIARISME TURNITIN

Digital Youth Entrepreneurial University

SURAT KETERANGAN BEBAS PLAGIARISME TURNITIN

Yang bertanda tangan di bawah ini Kepala UPT Perpustakaan Universitas Stikubank (UNISBANK) Semarang, menerangkan

bahwa: Nama / NIM

: Okka Hermawan Yulianto / 19.01.53.0051

Fakultas / Prodi : Teknologi Informasi Dan Industri / S1_Teknik Informatika

Judul Skripsi/ Thesis : Klasifikasi Jenis Jamur Menggunakan Metode Neural Network Dengan Fitur Inception-V3

Dosen Pembimbing : Setyawan Wibisono, S.Kom, M.Cs,

Menerangkan bahwa mahasiswa yang bersangkutan telah Lolos Cek Plagiarisme Turnitin.

Surat keterangan ini digunakan sebagai salah satu syarat mendaftar sidang ujian Skripsi dan dilampiri dengan hasil cetak cek

plagiarisme.

Semarang, 27 Juli 2023 Telah dicek oleh :

Su

Any Mariawati, A.Md.

Catatan:

1.Surat keterangan ini sah bila ada stempel perpustakaan

2.Kehilangan surat keterangan ini dikenakan denda Rp.5000

UPT PERPUSTAKAAN

UNIVERSITAS STIKUBANK (UNISBANK)SEMARANG

Kepala UPT,

Lisa Noviani Maghfiroh, S.Hum, M.A

Digital Youth Entrepreneurial University

Hasil cek turniti NASKAH PUBLIKASI sebagai berikut;

