Data Mining

Data Characteristics

What is Data?

- Collection of data objects and their attributes
- An attribute is a property or characteristic of an object
 - Examples: eye color of a person, temperature, etc.
 - Attribute is also known as variable, field, characteristic, or feature

Objects

- A collection of attributes describe an object
 - Object is also known as record, point, case, sample, entity, or instance

Attributes

				<u> </u>	
Tid	Refund	Marital Status	Taxable Income	Cheat	
1	Yes	Single 125K		No	
2	No	Married	Married 100K		
3	No	Single 70K		No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Attribute Values

- Attribute values are numbers or symbols assigned to an attribute
- Distinction between attributes and attribute values
 - Same attribute can be mapped to different attribute values
 - Example: height can be measured in feet or meters
 - Different attributes can be mapped to the same set of values
 - Example: Attribute values for ID and age are integers
 - But properties of attribute values can be different
 - ID has no limit but age has a maximum and minimum value

Types of Attributes

Nominal

Examples: ID numbers, eye color, zip codes

Ordinal

- Examples: rankings (e.g., taste of potato chips on a scale from 1-10), grades, height in {tall, medium, short}
- Sense of something higher or lower than something else

Interval

- Examples: calendar dates, temperatures in Celsius or Fahrenheit.
- Does not have a true zero zero degrees or 0 years is considered more of a label rather than the absence of a temperature or time
- Ratios, such as 20 degrees F/2 degrees F, August 2, 2017/August 2, 2018, or 3 minutes/2 minutes, do not make sense
 - Can divide 20 degrees by 2 to get 10 degrees
- Multiplications, such as August 2, 2017 * August 2, 2018 or 0 degrees F * 10 degrees F, do not make sense
 - Can multiply 20 degrees by 2 to get 40 degrees

Types of Attributes

Ratio

- Examples: temperature in Kelvin, length, time, counts
 - ◆0 degrees Kelvin is the point at which atoms stop moving (-459.7 degrees F or -273.15 degrees C)
- Has a true zero meaning indicating absence of something

Properties of Attribute Values

The type of an attribute depends on which of the following properties it possesses:

```
– Distinctness: = ≠
```

- Multiplication: * /
- Nominal attribute: distinctness
- Ordinal attribute: distinctness & order
- Interval attribute: distinctness, order & addition
- Ratio attribute: all 4 properties

Attribute Type	Description	Examples	Operations
Nominal	The values of a nominal attribute are just different names, i.e., nominal attributes provide only enough information to distinguish one object from another. $(=, \neq)$	zip codes, employee ID numbers, eye color, sex: {male, female}	mode, entropy, contingency correlation, χ ² test
Ordinal	The values of an ordinal attribute provide enough information to order objects. (<, >)	hardness of minerals, {good, better, best}, grades, street numbers	median, percentiles, rank correlation, run tests, sign tests
Interval	For interval attributes, the differences between values are meaningful, i.e., a unit of measurement exists. (+, -)	calendar dates, temperature in Celsius or Fahrenheit	mean, standard deviation, Pearson's correlation, <i>t</i> and <i>F</i> tests
Ratio	For ratio variables, both differences and ratios are meaningful. (*, /)	temperature in Kelvin, monetary quantities, counts, age, mass, length, electrical current	geometric mean, harmonic mean, percent variation

Attribute Level	Transformation	Comments
Nominal	Any permutation of values	If all employee ID numbers were reassigned, would it make any difference?
Ordinal	An order preserving change of values, i.e., $new_value = f(old_value)$ where f is a monotonic function (entirely nonincreasing or nondecreasing function).	An attribute encompassing the notion of good, better best can be represented equally well by the values {1, 2, 3} or by { 0.5, 1, 10}.
Interval	$new_value = a * old_value + b$ where a and b are constants	Thus, the Fahrenheit and Celsius temperature scales differ in terms of where their zero value is and the size of a unit (degree).
Ratio	new_value = a * old_value	Length can be measured in meters or feet.

Discrete and Continuous Attributes

Discrete Attribute

- Has only a finite or countably infinite set of values
- Examples: zip codes, counts, or the set of words in a collection of documents
- Often represented as integer variables.
- Note: binary attributes are a special case of discrete attributes

Continuous Attribute

- Has real numbers as attribute values
- Examples: temperature, height, or weight.
- Practically, real values can only be measured and represented using a finite number of digits.
- Continuous attributes are typically represented as floating-point variables.

Exercise - A Small Dataset

Customer ID	Zip	Gender	Income	Age	Marital Status	Transaction Amount
1001	10048	M	78,000	С	M	5000
1002	J2S7K7	F	-40,000	40	\mathbf{W}	4000
1003	90210		10,000,000	45	S	7000
1004	6269	M	50,000	0	S	1000
1005	55101	F	99,999	30	D	3000

Let's ask some questions about this dataset.

- What are the nominal, ordinal, interval, and ratio values?
- What are the discrete and continuous values?
- Do you see any issues with the Customer ID values?
- Do you see any issues with the zip code values?
- Do you see any issues with the Gender values?
- Do you see any issues with the Income values?
- Do you see any issues with the age values?
- Do you see any issues with the marital status values?
- Do you see any issues with the transaction amount values?
- Are the units of measure clear?

References

- Chantal D. Larose, Daniel T. Larose, Data Science Using Python and R, Wiley, 2019.
- Daniel T. Larose, Chantal D. Larose, Discovering Knowledge in Data, an Introduction to Data Mining, Wiley, 2014.