Linear Algebra, Math 2101-002 Homework set #3

1. Given the matrices

$$A = \left| \begin{array}{cc} 1 & 2 \\ -1 & 0 \end{array} \right| \; , \quad B = \left| \begin{array}{cc} 3 & 2 & 1 \\ -1 & 0 & 1 \end{array} \right| \; ,$$

- (a) Compute C = A.B. (b) Compute A^T and B^T . (c) Check that $C^T = B^T.A^T$.
- **2.** Consider the vectors $v = \begin{vmatrix} 1 \\ 2 \\ -1 \end{vmatrix}$, $w = \begin{vmatrix} 0 \\ 1 \\ 2 \end{vmatrix}$ as 3×1 matrices and compute: (a) $w^T.v$, (b) $v^T.w$, (c) $v.w^T$ (d) $w.v^T$, (e) $v^T.v$, and (f) $v.v^T$.
- **3.** Use the results from 2. Call $\alpha = v^T.v$. Let $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ be the 3×3 identity matrix.
- (a) Compute the matrix $P = I \frac{1}{\alpha}v.v^T$.
- (b) Compute P.v and P.w.
- (c) Compute $P^2 = P.P$.
- **4.** Prove that for any $n \times 1$ vectors v and w. If $\alpha = v^T \cdot v$ and $P = I \frac{1}{\alpha}v \cdot v^T$, (a) $P^T = P$
- (b) $P^2 = P$
- (c) P.v = 0, and
- (d) If $v^T \cdot w = 0$, then $P \cdot w = w$.