Vorkurs Mathematik Blatt 12

Besprechung der Lösungen am 05.10.2023 in den Übungen

Aufgabe 1

Betrachten Sie die Mengen $A = \{1, 2\}$ und $B = \{3, 4, 5\}$.

- (a) Finden Sie alle Abbildungen
 - (i) von A nach A,
 - (ii) von A nach B,
 - (iii) von B nach A.
- (b) Entscheiden Sie jeweils für jede der Abbildungen aus Teilaufgabe (a), ob sie injektiv bzw. surjektiv ist.

Aufgabe 2

Für gegebene $a, b \in \mathbb{R}$ sei die Abbildung $f : \mathbb{R} \to \mathbb{R}$ definiert durch f(x) := ax + b.

- (a) Für welche $a, b \in \mathbb{R}$ ist f injektiv? Stellen Sie eine Vermutung auf und beweisen Sie diese.
- (b) Für welche $a, b \in \mathbb{R}$ ist f surjektiv? Stellen Sie eine Vermutung auf und beweisen Sie diese.

Aufgabe 3

Zu den affin-linearen Funktionen auf \mathbb{R} gehören zum Beispiel $(3 \cdot x + \sqrt{7})_{x \in \mathbb{R}}$, $(-\pi \cdot x + 1)_{x \in \mathbb{R}}$ oder $(0 \cdot x + 42)_{x \in \mathbb{R}}$ usw.

- (a) Definiere die Menge AL aller affin-linearen Funktionen auf \mathbb{R} .
- (b) Definiere die Menge aller konstanten Funktionen und formuliere die Aussage, dass jede konstante Funktion affin-linear ist.

- (c) Formuliere die Aussage, dass die konstante 0-Funktion zur Menge AL gehört.
- (d) Definiere eine Funktion Steigung, die jedem Element von AL seine Steigung zuordnet.
- (e) Definiere eine Funktion Abschnitt, die jedem Element von AL seinen y-Achsenabschnitt zuordnet.
- (f) Definiere eine Funktion Nullstellen, die jedem Element von AL ihre Menge von Nullstellen zuordnet.

Bestimme jeweils die Funktionswerte zu den drei oben angegebenen Elementen von AL.

Aufgabe 4

Es sei $f: X \to Y$ eine Abbildung.

- (a) Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (i) Die Abbildung f ist injektiv, d.h. $\forall u, v \in X : f(u) = f(v) \Rightarrow u = v$.
 - (ii) $\neg \exists u, v \in X : (u \neq v) \land (f(u) = f(v)).$
- (b) Bonusaufgabe: Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (i) Die Abbildung f ist surjektiv.
 - (ii) Für jede Teilmenge $B \subset Y$ gilt $f(f^{-1}(B)) = B$.