Congratulations! You passed!

Grade received 80% **To pass** 80% or higher

Go to next item

1.

Set	Values			
1	1	5	7	9
2	-20	-10	0	10
3	100	101	102	103
4	-10	-5	0	-5

0 / 1 point

Consider the four sets of samples above. Which one has the smallest variance?

- 1
- O 2
- O 3
- O 4

Have a look again at the samples. Which one has the least spread among them? You can also use the formula $Var(X)=E[X^2]-E[X]^2$ to get the result.

2. Consider two games, Game A and Game B, each with different probability distributions of winnings and losses. Game A has a probability of $\frac{1}{3}$ to win \$2 and a probability of $\frac{9}{3}$ to lose \$1. Game B has a probability of $\frac{1}{2}$ to win \$0.50, a probability of $\frac{1}{4}$ to lose \$0.50, a probability of $\frac{1}{8}$ to win \$5, and a probability of $\frac{1}{8}$ to lose \$2.

1 / 1 point

Which of the following statements is true?

- O Both Game A and Game B have the same kurtosis.
- Game B's kurtosis is smaller than Game A's kurtosis.
- Game A's kurtosis is smaller than Game B's kurtosis.

Kurtosis measures the shape and thickness of the rails of a probability distribution. A larger kurtosis indicates thicker tails and more extreme values. In this case, Game Y has a larger kurtosis because it has thicker tails due to the presence of extreme values (winning \$5 or losing \$2 with small probabilities).

3. Consider the following independent random variables:

1/1 point

$$X \sim \text{Normal}(3, 1)$$

 $Y \sim \text{Normal}(2,2)$

Then $Z = X + Y \sim \operatorname{Normal}(\mu, \sigma)$, where μ, σ are equal to:

$$\circ$$

$$\mu=\sqrt{5}, \sigma=\sqrt{3}$$

$$\mu=5, \sigma=\sqrt{5}$$

$$\bigcirc$$

$$\mu=5, \sigma=\sqrt{3}$$

$$\circ$$

$$\mu = 5, \sigma = 5$$

✓ Correct

Using the formula $\mu_Z=\mu_X+\mu_Y$ and $\sigma_Z=\sqrt{\sigma_X^2+\sigma_Y^2}$ you get the result!

Which of the following statements is true?

- Class B's interquartile range (IQR) is larger than Class A's interquartile range.
- Class A's median score is higher than Class B's median score.
- ✓ Class A's interquartile range (IQR) is larger than Class B's interquartile range.
- ✓ Correct

The rectangle in A is bigger than B.

- Class B's median score is higher than Class A's median score.
- ✓ Correct

Looking at the box plot, we can see that the median of Class A is around 75, while the median of Class B is around 85.

Which of the following statements is true?

- O The data is not normally distributed.
- The data looks normally distributed.
- The data has a lower variance than a normal distribution.
- O The data has a higher variance than a normal distribution.

✓ Correct

The QQ plot compares the observed data with the theoretical quantiles of a normal distribution. If the points lie close to the diagonal line, then the data is likely normally distributed.