

SDS 384 11: Theoretical Statistics

Lecture 19: Overview

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

Stochastic Convergence

Assume that $X_n, n \ge 1$ and X are elements of a separable metric space (S, d).

Definition (Weak Convergence)

A sequence of random variable s converge in "law" or in "distribution" to a random variable X, i.e. $X_n \stackrel{d}{\to} X$ if $P(X_n \le x) \to P(X \le x) \ \forall x$ at which $P(X \le x)$ is continuous.

Definition (Convergence in Probability)

A sequence of random variables converge in "probability" to a random variable X, i.e. $X_n \stackrel{P}{\to} X$ if $\forall \epsilon > 0$, $P(d(X_n, X) \ge \epsilon) \to 0$.

Stochastic Convergence

Assume that X_n , $n \ge 1$ and X are elements of a separable metric space (S, d).

Definition (Almost Sure Convergence)

A sequence of random variables converge almost surely to a random variable X, i.e. $X_n \stackrel{a.s.}{\to} X$ if $P\left(\lim_{n\to\infty} d(X_n,X)=0\right)=1$.

 If you think about a (scalar) random variable as a function that maps events to a real number, almost sure convergence means

$$P(\omega \in \Omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)) = 1$$

Definition (Convergence in quadratic mean)

A sequence of random variables converge in quadratic mean to a random variable X, i.e. $X_n \stackrel{q.m}{\to} X$ if $E\left[d(X_n,X)^2\right] \to 0$.

Continuous Mapping Theorem

Theorem

Let g be continuous on a set C where $P(X \in C) = 1$. Then,

$$X_{n} \stackrel{d}{\to} X \Rightarrow g(X_{n}) \stackrel{d}{\to} g(X)$$
$$X_{n} \stackrel{P}{\to} X \Rightarrow g(X_{n}) \stackrel{P}{\to} g(X)$$
$$X_{n} \stackrel{a.s.}{\to} X \Rightarrow g(X_{n}) \stackrel{a.s.}{\to} g(X)$$

• What about continuous mapping with quadratic mean?

Putting everything together

Theorem

$$X_n \stackrel{d}{\to} X \text{ and } d(X_n, Y_n) \stackrel{P}{\to} 0 \Rightarrow Y_n \stackrel{d}{\to} X$$
 (1)

$$X_n \stackrel{d}{\to} X \text{ and } Y_n \stackrel{d}{\to} c \Rightarrow (X_n, Y_n) \stackrel{d}{\to} (X, c)$$
 (2)

$$X_n \stackrel{P}{\to} X \text{ and } Y_n \stackrel{P}{\to} Y \Rightarrow (X_n, Y_n) \stackrel{P}{\to} (X, Y)$$
 (3)

- Eq 3 does not hold if we replace convergence in probability by convergence in distribution.
- Example: $X_n \sim N(0,1), Y_n = -X_n$. $X \perp Y$ and X, Y are independent standard normal random variables.
- Then $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$. But $(X_n, Y_n) \stackrel{d}{\to} (X, -X)$, not $(X_n, Y_n) \stackrel{d}{\to} (X, Y)$.

Putting everything together

Theorem (Slutsky's theorem)

 $X_n \stackrel{d}{\rightarrow} X$ and $Y_n \stackrel{d}{\rightarrow} c$ imply that

$$X_n + Y_n \stackrel{d}{\to} X + c$$

$$X_n Y_n \stackrel{d}{\to} cX$$

$$X_n / Y_n \stackrel{d}{\to} X / c$$

- Does $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ imply $X_n + Y_n \stackrel{d}{\to} X + Y$?
- Take $Y_n = -X_n$, and X, Y as independent standard normal random variables. $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ but $X_n + Y_n \stackrel{d}{\to} 0$.

Lindeberg-feller CLT for triangular arrays

Theorem (Ordinary Central limit theorem)

$$X_1, \ldots, X_n \stackrel{iid}{\sim} f \text{ with } E|X_i| \leq \infty, \ E[X_1] = 0. \ \text{If } E[X_i^2] = \sigma^2, \sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\sim} N(0, \sigma^2).$$

$$X_{11}$$
 X_{21}, X_{22}
 X_{21}, X_{22}, X_{23}

Theorem (Lindeberg-feller)

For each n let $(X_{ni})_{i=1}^n$ be independent random variables with mean zero and variance σ_{ni}^2 . Let $Z_n = \sum_{i=1}^n X_{ni}$ and $B_n^2 = var(Z_n)$. Then $Z_n/B_n \stackrel{d}{\to} N(0,1)$, as long as the **Lindeberg condition** holds.

The Lindeberg condition

Definition (Lindeberg condition)

For every $\epsilon > 0$,

$$\frac{1}{B_n^2} \sum_{j=1}^n E[X_{nj}^2 1(|X_{nj}| \ge \epsilon B_n)] \to 0 \text{ as } n \to \infty$$
 (4)

Converse: If $\frac{\sigma_{nj}^2}{B_n^2} \to 0$ as $n \to \infty$, i.e. no one variance plays a significant role in the limit, and if $Z_n/B_n \stackrel{d}{\to} N(0,1)$, then the Lindeberg condition holds.

Necessary and Sufficient: If $\frac{\sigma_{nj}^2}{B_n^2} \to 0$, the the Lindeberg condition is necessary and sufficient to show the CLT.

Example

Let X_1,\ldots,X_n be independent random variables with mean zero and variance one. Do you think $\sqrt{n}\bar{X}_n\stackrel{d}{\to} N(0,1)$?

$$X_{nj} = \begin{cases} 2j & \text{w.p. } \frac{1}{8j^2} \\ 0 & \text{w.p. } 1 - \frac{1}{4j^2} \\ -2j & \text{w.p. } \frac{1}{8j^2} \end{cases}$$

- $E[X_{nj}] = 0$ and $var(X_{nj}) = 1$. $B_n^2 = n$.
- Lets check the Lindeberg condition with $\epsilon = 1$.

$$\frac{1}{n}\sum_{j}E[X_{nj}^{2}1(|X_{nj}|\geq\sqrt{n})] = \frac{1}{n}\sum_{j}2\times4j^{2}1(2j\geq\sqrt{n})\frac{1}{8j^{2}} = \frac{1}{n}\sum_{j\geq\sqrt{n}/2}1\to1$$

• Since $\sigma_{nj}^2/B_n^2=1/n\to 0$, this implies that the CLT does not hold for the sum.

Chernoff bound

- We have done CLT, but it does not give us explicit tail bounds.
- Lets look at concentration inequalities.

Theorem (Chernoff bound for Bernoullis)

Let $X_i \in \{0,1\}$ be independent random variables with $E[X_i] = p_i$. Let $X := \sum_i X_i, \mu := \sum_i p_i$. For $0 < \delta < 1$,

$$P(X \ge \mu(1+\delta)) \le e^{-\delta^2 \mu/3}$$
 $P(X \le \mu(1-\delta)) \le e^{-\delta^2 \mu/2}$

• How about subgaussian r.v.s?

Sub-Gaussian random variables

Theorem

For $X_1, ..., X_n$ independent sub-gaussian random variables with sub-gaussian parameters σ_i^2 and $E[X_i] = \mu_i$, for $\forall t > 0$,

$$P\left(\sum_{i}(X_{i}-\mu_{i})\geq t\right)\leq e^{-\frac{t^{2}}{2\sum_{i}\sigma_{i}^{2}}}$$

• If $X_i \in [a, b]$, $E[X_i] = 0$, using Hoeffding's lemma we get:

$$P\left(\sum_{i} X_{i} \ge t\right) \le e^{-\frac{2t^{2}}{n(b-a)^{2}}}$$

• If $X_i \sim N(0, \sigma^2)$, we immediately get back the chernoff bound for Gaussians.

Sub-exponential random variables

Definition

X is sub-exponential with parameters (ν,b) if, $orall |\lambda|<1/b$,

$$\log M_{X-\mu}(\lambda) \le \frac{\lambda^2 \nu^2}{2}$$

Concentration

Theorem

Let X be a sub-exponential random variable with parameters (ν, b) . Then,

$$P(X \ge \mu + t) \le \begin{cases} e^{-\frac{t^2}{2\nu^2}} & \text{if } 0 \le t \le \frac{\nu^2}{b} \\ e^{-\frac{t}{2b}} & \text{if } t \ge \frac{\nu^2}{b} \end{cases}$$

 For small t this is sub-gaussian in nature, whereas for large t the exponent decays linearly with t.

Bernstein's condition and the sub-exponential property

Definition

A random variable with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b>0, if $|E[(X-\mu)^k]|\leq \frac{1}{2}k!\sigma^2b^{k-2}$ for $k\geq 2$.

Theorem

If X ($E[X] = \mu$, $var(X) = \sigma^2$) satisfies the Bernstein condition with parameter b > 0, then X is sub-exponential with ($\sqrt{2}\sigma$, 2b).

Theorem

If X with mean μ and variance σ^2 satisfies the Bernstein condition with parameter b > 0, then

$$P(|X - \mu| \ge t) \le 2e^{-\frac{t^2}{2(\sigma^2 + bt)}}$$
 (5)

How about martingale inequalities?

Theorem

Let $f: \mathcal{X}^n \to \mathcal{R}$ satisfy the following bounded difference condition $\forall x_1, \dots, x_n, x_i' \in \mathcal{X}$:

$$|f(x_1,\ldots,x_{i-1},x_i,x_{i+1},\ldots,x_n)-f(x_1,\ldots,x_{i-1},x_i',x_{i+1},\ldots,x_n)| \leq B_i,$$

then,
$$P(|f(X) - E[f(X)]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_i B_i^2}\right)$$

 Note that this boils down to Hoeffding's when f is the sum of bounded random variables.

Recall-Lipschitz functions of Gaussian random variables

Theorem (LG:Lipschtiz functions of Gaussians)

Let (X_1,\ldots,X_n) be a vector of iid N(0,1) random variables. Let $f:\mathcal{R}^n\to\mathcal{R}$ be L-Lipschitz w.r.t the Euclidean norm. Then f(X)-E[f(X)] is sub-gaussian with parameter at most L, i.e. $\forall t\geq 0$,

$$P(|f(X) - E[f(X)]| \ge t) \le e^{-\frac{t^2}{2L^2}}$$

• So a L-Lipschitz function of n gaussian random variables behave like a subgaussian with variance proxy L^2 .

Convex Lipschitz functions of bounded random variables

Theorem

Consider a convex function $f: \mathbb{R}^n \to \mathbb{R}$ with Lipschitz constant L. Also consider n iid random variables $X_1, \ldots, X_n \in \{-1, 1\}$. We have for t > 0

$$P(|f(X) - M_f| \ge t) \le 4 \exp\left(-\frac{t^2}{16L^2}\right),$$

where M_f is the median of f.

 Often the median can be replaced by the mean with a little give in the t.

Complexity

Example

Consider a mean zero iid sequence $X = \{X_i\}_{i=1}^n$. We will bound $f(X) := \sup_{a \in \mathcal{A}} a^T X$ where \mathcal{A} is a compact subset of \mathcal{R}^n such that $\mathcal{W} = \sup_{a \in \mathcal{A}} \|a\|_2 < \infty$.

- If $X_i \sim N(0,1)$ using Gaussian+Lipschtz $P(|f(X) E[f(X)]| \ge t) \le 2e^{-\frac{t^2}{2W^2}}$
- If X_i are bounded, then Talagrand gives us the same thing (modulo constants).
- How about McDiarmid? Gives a weaker result.
- This is all very good, but how about E[f(X)]. If X ∼ N(0,1), this is the Gaussian complexity.

Recall the finite class lemma?

If A is finite, we can use the following.

Theorem

Consider z with independent sub-gaussian components.

$$E \max_{a \in A} \langle z, a \rangle \leq \max_{a \in A} \|a\| \sqrt{2 \log |A|}$$

- What happens when A is compact, and not finite?
- Use the discretization lemma, or the metric entropy integral!

Upper bound by 1 step discretization

Theorem

(1-step discretization bound). Let $\{X_{\theta}, \theta \in \mathcal{T}\}$ be a zero-mean sub-Gaussian process with respect to the metric d_X . Then for any $\delta>0$, we have

$$E\left[\sup_{\theta,\theta'\in\mathcal{T}}(X_{\theta}-X_{\theta'})\right] \leq 2E\left[\sup_{\substack{\theta,\theta'\in\mathcal{T}\\d_X(\theta,\theta')\leq\delta}}(X_{\theta}-X_{\theta'})\right] + 2D\sqrt{\log N(\delta;\mathcal{T},d_X)},$$
 where $D:=\max_{\substack{\theta,\theta'\in\Theta\\\theta,\theta'\in\Theta}}d_X(\theta,\theta').$

- The mean zero condition gives us: $E[\sup_{a \in \mathcal{A}} a^T X] \le E[\sup_{a,a' \in \mathcal{A}} (a^T X a'^T X)]$
- $a^T X$ is sub Gaussian w.r.t the $\|.\|_2$ norm.
- D=2W.
- Then optimize. You will also need more information about A to make sure that you can calculate the covering number.

Putting everything in place

- First we do convergence, since it shows up everywhere.
- Next we look at concentration, for sums of bounded, and unbounded random variables, as long as the tails are well controlled.
- Now you want uniform laws, or uniform error bounds. Why? Say
 you are looking at convergence of a nonconvex algorithm. You want
 to understand the behavior of the convergence within some radius of
 some local/global optima. Here is where uniform error bounds come
 in very handy.
- In order to do uniform laws, one also needs a handle over the expectations of the supremum. This is why we looked at:
 - Finite class lemma, VC dimension, Sauer's lemma
 - Covering and packing numbers, Chaining, metric entropy.
 - We also saw that covering numbers can be helpful in bounding tails of suprema, not just expectations.
 - As for distributional convergence, we only looked at the Hajek projections, which helped us with U statistics.