STA 522, Spring 2021 Introduction to Theoretical Statistics II

Lecture 10

Department of Biostatistics University at Buffalo

5 April, 2021

AGENDA

- Evaluating Tests
- ► UMP tests
- ► Neyman Pearson Lemma
- ▶ Review for Exam 2

Review: Evaluating Tests

- Let \mathcal{C} be a class of tests for testing $H_0: \theta \in \Theta_0$ vs. $H_1: \theta \in \Theta_0^c$. A test in class \mathcal{C} , with power function $\beta(\theta)$, is a **uniformly most powerful (UMP) class** \mathcal{C} **test** if $\beta(\theta) \geq \beta'(\theta)$ for every $\theta \in \Theta_0^c$ and every $\beta'(\theta)$ that is a power function of a test in class \mathcal{C} .
- if we take \mathcal{C} to be the class of all level α tests, the test described in the above definition is called a **UMP level** α **test**.

Neyman-Pearson Lemma

Theorem 8.3.12

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where

- (1) the pdf or pmf corresponding to θ_i is $f(\underline{x} | \theta_i)$ for i = 0, 1;
- (2) the test has a rejection region R that satisfies

 $\underline{x} \in R$ if $f(\underline{x} \mid \theta_1) > kf(\underline{x} \mid \theta_0)$ and $\underline{x} \in R^c$ if $f(\underline{x} \mid \theta_1) < kf(\underline{x} \mid \theta_0)$ for some $k \ge 0$; and

(3)
$$\alpha = P_{\theta_0}(\underline{X} \in R)$$
.

Then

- (a) (Sufficiency) any test that satisfies (2) and (3) above is a UMP level α test; and
- (b) **(Necessity)** if there exists a test satisfying (2) and (3) above with k > 0, then every UMP level α test is a size α test (satisfies (3) above), and every UMP level α test satisfies (2) above, except perhaps on a set A satisfying $P_{\theta_0}(\underline{X} \in A) = P_{\theta_1}(\underline{X} \in A) = 0$.

Proof: Assume that $f(\underline{x} | \theta_0)$ and $f(\underline{x} | \theta_1)$ are pdfs of continuous random variables.

Note that any test satisfying (3) is a size α and, hence, a level α test:

$$\sup_{\theta \in \Theta_0} P_{\theta}(\underline{X} \in R) = P_{\theta_0}(\underline{X} \in R) = 0$$

Consider the test function $\phi(\underline{x}) = I(\underline{x} \in R)$ of a test satisfying (1) and (2).

Part(a): Let $\phi'(\underline{x})$ be the test function of any other level α test, and let $\beta(\theta)$ and $\beta'(\theta)$ be the power functions for the tests ϕ and ϕ' , respectively.

Now consider quantity

$$\psi(\underline{x} \mid \theta_0, \theta_1) = (\phi(\underline{x}) - \phi'(\underline{x})) (f(\underline{x} \mid \theta_1) - kf(\underline{x} \mid \theta_0)).$$

Then $\psi(\underline{x} \mid \theta_0, \theta_1) \ge 0$ for all \underline{x} (since $0 \le \phi'(\underline{x}) \le 1$ for all x and $\phi(\underline{x}) = I(\underline{x} \in R)$)

$$\implies 0 \le \int \left[(\phi(\underline{x}) - \phi'(\underline{x})) \left(f(\underline{x} \mid \theta_1) - k f(\underline{x} \mid \theta_0) \right) \right] d\underline{x}$$
$$= \beta(\theta_1) - \beta'(\theta_1) - k(\beta(\theta_0) - \beta'(\theta_0)) \tag{*}$$

Since $\phi'(\underline{x})$ is a level α test and $\phi(\underline{x})$ is a size α test, therefore $\beta(\theta_0) - \beta'(\theta_0) \ge \alpha - \alpha = 0$. Therefore from (\star) ,

$$0 \leq \beta(\theta_1) - \beta'(\theta_1) - k(\beta(\theta_0) - \beta'(\theta_0)) \leq \beta(\theta_1) - \beta'(\theta_1)$$

implying $\beta(\theta_1) \geq \beta'(\theta_1)$. This proves part (a).

Part(b): let ϕ' now be the test function for any UMP level α test. By part (a), ϕ , a test satisfying (2) and (3) above, is also a UMP level α test, thus $\beta(\theta_1) = \beta'(\theta_1)$. Since $k \ge 0$, from (\star)

$$0 \le 0 - k(\beta(\theta_0) - \beta'(\theta_0)) \implies \underbrace{\beta(\theta_0)}_{=\alpha} - \beta'(\theta_0) \le 0 \implies \beta'(\theta_0) \ge \alpha$$

but by assumption $\phi'(\underline{x})$ is a level α test, i.e., $\beta'(\theta_0) \leq \alpha$, which together imply $\beta'(\theta_0) = \alpha$ meaning $\phi'(\underline{x})$ is a size α test, and (\star) is an equality.

However, the non-negative integrand $\psi(\underline{x} \mid \theta_0, \theta_1)$ will have a zero integral only if it satisfies (2), except perhaps on a set A satisfying $P_{\theta_0}(\underline{X} \in A) = P_{\theta_1}(\underline{X} \in A) = 0$. This proves (b).

Tests Based on Sufficient Statistics

Corollary 8.3.13

Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$. Suppose $T(\underline{X})$ is a sufficient statistic for θ , and let $g(t \mid \theta_i)$ be the pdf or pmf of T corresponding to θ_i for i = 0, 1. Then any test based on T with rejection region S (a subset of the sample space of T) is a UMP level α test if it satisfies

(1) for some $k \geq 0$,

$$t \in S$$
 if $g(t | \theta_1) > kg(t | \theta_0)$

and

$$t \in S^c$$
 if $g(t \mid \theta_1) < kg(t \mid \theta_0)$

and

(2)
$$\alpha = P_{\theta_0}(T \in S)$$
.

Proof: Use factorization theorem. Reading exercise. See p. 390 in the textbook.

Example: Suppose $X \sim \text{binomial}(2, \theta)$, and we are testing $H_0: \theta = \frac{1}{2}$ vs. $H_1: \theta = \frac{3}{4}$. Determine the UMP level α tests for $\alpha = 0, \frac{1}{4}, \frac{3}{4}, 1$.

At the outset note that a "larger" value of X favors H_1 , and a smaller value of X favors H_0 .

We have $f(x \mid \theta) = {2 \choose x} \theta^x (1-\theta)^{2-x}$; x = 0, 1, 2. Consider the ratio

$$\frac{f\left(x\mid\theta=\frac{3}{4}\right)}{f\left(x\mid\theta=\frac{1}{2}\right)} = \frac{\binom{2}{x}}{\binom{2}{x}} \frac{\binom{3}{4}^{x}}{\binom{1}{2}^{2-x}} = \left(\frac{3}{2}\right)^{x} \left(\frac{1}{2}\right)^{2-x}; \quad x=0,1,2$$

Therefore,

$$\frac{f\left(0\mid\theta=\frac{3}{4}\right)}{f\left(0\mid\theta=\frac{1}{\Xi}\right)}=\frac{1}{4};\quad \frac{f\left(1\mid\theta=\frac{3}{4}\right)}{f\left(1\mid\theta=\frac{1}{\Xi}\right)}=\frac{3}{4};\quad \frac{f\left(2\mid\theta=\frac{3}{4}\right)}{f\left(2\mid\theta=\frac{1}{\Xi}\right)}=\frac{9}{4}.$$

- (a) If we choose $\frac{3}{4} < k < \frac{9}{4}$ then NP Lemma says that the test that rejects H_0 if X=2 is the UMP level $\alpha=P\left(X=2\mid\theta=\frac{1}{2}\right)=\frac{1}{4}$ test.
- (b) If we choose $\frac{1}{4} < k < \frac{3}{4}$ then NP Lemma says that the test that rejects H_0 if X=1 or X=2 is the UMP level $\alpha=P$ (X=1 or $2\mid\theta=\frac{1}{2}$) $=\frac{3}{4}$ test
- (c) Choosing $k < \frac{1}{4}$ or $k > \frac{3}{4}$ produces UMP level 1 or level 0 tests tests respectively.

- If k = ³/₄, NP lemma says that we must reject H₀ when X = 2 and accept H₀ but leaves the action for X = 1 undetermined.
 If we accept H₀ for X = 1, we get the UMP level α = ¹/₄ test as above (case (a)).
 - If we reject H_0 for X=1, we get the UMP level $\alpha=\frac{3}{4}$ test as above (case (b)).

Example (UMP Normal test): Let $X_1, X_2, \ldots, X_n \sim \operatorname{iid} N(\theta, \sigma^2)$ population, σ^2 known. Consider testing $H_0: \theta = \theta_0$ vs. $H_1: \theta = \theta_1$, where $\theta_0 > \theta_1$. Find the UMP test.

The sample mean \overline{X} is a sufficient statistic for θ . So we'll use the corollary of NP lemma with sufficient statistic.

Here

$$g(\overline{x} \mid \theta_1) > k \ g(\overline{x} \mid \theta_0)$$

is equivalent to (HW, use $\theta_1 - \theta_0 < 0$)

$$\overline{x} < \frac{\frac{2\sigma^2 \log k}{n} - (\theta_0^2 - \theta_1^2)}{2(\theta_1 - \theta_0)}$$

i.e., of the form $\overline{x} < c$. Therefore, by the (corollary to) the NP lemma, a test that rejects H_0 when $\overline{x} < c$ is a UMP size α test, where c is obtained from

$$\alpha = P_{\theta_0}(\overline{X} < c) = P_{\theta_0}\left(\frac{X - \theta_0}{\sigma/\sqrt{n}} < \frac{c - \theta_0}{\sigma/\sqrt{n}}\right) \implies \frac{c - \theta_0}{\sigma/\sqrt{n}} = z_{1-\alpha} = -z_{\alpha}$$
i.e., $c = \theta_0 - z_{\alpha} \frac{\sigma}{\sqrt{n}}$

Homework

- ► Read p. 387 392.
- Exercises: TBA.