A comparative analysis of various machine learning techniques for trend prediction on social media Application oriented project CSI5155

Diana Lucaci - group 8

University of Ottawa

23rd April 2019

Motivation

What?

- Online content rich source of information
- Detect changes in behaviours, trends, predict popularity

Why?

- Inform people, business, and authorities
- Help individuals prepare and act accordingly (high sales growth, major events, strikes)

Objectives

- Draw insights from data
- Find the most promising features
- Research ML techniques and best practices
- Binary classification of Twitter instances

How?

- Analyze the dataset
- Preprocessing techniques
- Perform experiments using ML algorithms from 4 categories:
 - Linear models
 - Tree-based
 - Distance-based
 - Rule-based
 - Ensemble

Dataset

- 11 attributes measured over a 7 days period (total of 77 attributes)
- Binary relative labeled data (increment by 500 of popularity level before and after the observed time frame)
- Class ratio:
 - 97.5% negative instances
 - 2.5 % positive instances (BUZZ)

Figure 1: Dataset imbalance

Attributes

- Number of Created Discussions (NCD)
- Author increase (AI)
- Number of atomic containers (NAC)
- Number of Authors (NA)
- Attention Level
 - AS(NA) based on the number of authors (users)
 - AS(NAC) measure with number of contributions
- Burstiness Level (BL)
- Contribution Sparseness (CS)
- Author Interaction (AT)
- Average Discussions Length (ADL)
- Number of Active Discussions (NAD)

1 Linear scaling to unit variance - Standardization

- Linear scaling to unit variance Standardization
 - Transformation to a new distribution with mean 0 and standard deviation 1
 - Obtained the best results for distance-based and linear models

- Linear scaling to unit variance Standardization
 - Transformation to a new distribution with mean 0 and standard deviation 1
 - Obtained the best results for distance-based and linear models
- Min-Max scaling
 - preserves the initial distribution
 - the larger the range, the better the performance

- Linear scaling to unit variance Standardization
 - Transformation to a new distribution with mean 0 and standard deviation 1
 - Obtained the best results for distance-based and linear models
- Min-Max scaling
 - preserves the initial distribution
 - the larger the range, the better the performance
- Robust scaling
 - It uses interquartile range and it is robust to outliers.
 - Non-buzz instances contain outliers => higher precision

- Linear scaling to unit variance Standardization
 - Transformation to a new distribution with mean 0 and standard deviation 1
 - Obtained the best results for distance-based and linear models
- Min-Max scaling
 - preserves the initial distribution
 - the larger the range, the better the performance
- Robust scaling
 - It uses interquartile range and it is robust to outliers.
 - Non-buzz instances contain outliers => higher precision

Linear scaling to unit variance - Standardization

- Transformation to a new distribution with mean 0 and standard deviation 1
- Obtained the best results for distance-based and linear models

Min-Max scaling

- preserves the initial distribution
- the larger the range, the better the performance

Robust scaling

- It uses interquartile range and it is robust to outliers.
- Non-buzz instances contain outliers => higher precision

Rowwise normalization to unit norm

- preserves the distribution rowwise
- helps normalizing the values of features with very different ranges (eg. [0,1] and [0,12000])
- L2 normalization improves the F1 score

Feature selection

Principal Component Analysis

- 95% of the data is explained by 17 features
- 35 of the features have the most prominent influence on the generated principal components
- assumptions: data is zero centered => standardization needed

Evaluation metrics

- F1 score
- AUC weighted by support (the number of true instances for each label)
- TPR (recall)
- Precision
- TNR

Results

	F1	AUC	TPR	Precision	TNR
			(recall)		
DT₋IG	0.456540	0.7210	0.456233		0.9857
KNN_st_sc	0.553923	0.7317	0.469306	0.676864	0.9941
_norm_L2					
NC_mahalanobis	0.488551	0.7755	0.572034	0.432421	0.9791
LinSVC_minmax	0.473080	0.6761	0.356028	0.731774	0.9962
(0,37505)					
LinSVC_minmax	0.338376	0.9015	0.892426	0.208842	0.9106
(-300,300)					
LogReg_unitvar	0.493299	0.6848	0.373457	0.735563	0.9963
SVM_SGD	0.516521	0.7605	0.535105	0.514327	0.9859
_L2_norm_unitvar					
RF_st	0.570278	0.7239	0.451403	0.776747	0.9965
BAG+RF	0.548917	0.7087	0.420316	0.794784	0.9971

Comparisons

Table 1: T-Test - F1

Algotrithm pair	p-value	Statistical	
		difference	
		(95% conf)	
BAG_DT - BAG_KNN	0.05712	yes	
BAG_DT - BAG+KNN_stsc_norm_L2	1.17e-05	yes	
BAG_KNN - BAG+KNN_stsc_norm_L2	5.12e-06	yes	
KNN_stsc_L2 - BAG_DT	1.55e-05	yes	
KNN_stsc_L2 - BAG+KNN_stsc_norm_L2	1.93e-05	yes	
KNN_stsc_L2 - BAG+KNN_stsc_norm_L2	0.2565	no	

Key learnings

- Evaluation metrics importance
- Testing the generalization power
- Comparing multiple algorithms
- The class-imbalance problem needs to be addressed using techniques suitable for the data set on discussion
- Important features
- Dependent features (NAC vs Attention Level)

Future work

- Neural networks and deep learning
- Addressing the class imbalance problem with different techniques
 - Learn the minority class itself instead of by comparing it with the non-BU77 class
 - Oversampling and undersampling
 - Improve the models learning on each mini-dataset
- Other methods of feature selection (e.g. univariate selection)
- Inhance the dataset with the text of the posts
- Regression task and comparisons with other datasets
- Use only the most important features extracted from the PCA into the weak classifiers ensemble

References

• Dataset: http://archive.ics.uci.edu/ml/datasets/Buzz+in+ social+media+#

