Colouring Digraphs with Bounded Maximum Degree

Lucas Picasarri-Arrieta

National Institute of Informatics

• k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- **Dichromatic number** $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- **Dichromatic number** $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizations of proper colouring and chromatic number.

- k-dicolouring of D: partition of V(D) into k acyclic subdigraphs (i.e. no monochromatic directed cycle).
- Dichromatic number $\vec{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizations of proper colouring and chromatic number.

$$\chi(G) = \vec{\chi}(\overrightarrow{G})$$

From graphs to digraphs: main questions

Given any result on graph colouring, two questions arise:

- Question 1: Does it generalize to all digraphs?
- Question 2: If it does, can we strengthen it on oriented graphs?

$$\mathsf{Max\text{-}max\text{-}degree:}\ \Delta_{\mathsf{max}}(D) = \mathsf{max}\,\Big\{\,\mathsf{max}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\mathsf{Max\text{-}min\text{-}degree: } \Delta_{\mathsf{min}}(D) = \mathsf{max} \left\{ \, \mathsf{min}(d^-(v), d^+(v)) \mid v \in V(D) \right\}$$

$$\mathsf{Max\text{-}geometric\text{-}degree:}\ \tilde{\Delta}(D) = \max\Big\{\sqrt{d^-(v)\cdot d^+(v)}\ |\ v\in V(D)\Big\}.$$

$$\Delta(G) = \Delta_{\min}\left(\overrightarrow{G}\right) = \widetilde{\Delta}\left(\overrightarrow{G}\right) = \Delta_{\max}\left(\overrightarrow{G}\right)$$

$$ec{\chi}(D) \leq \Delta_{\mathsf{min}}(D) + 1 \leq ilde{\Delta}(D) + 1 \leq \Delta_{\mathsf{max}}(D) + 1$$

$$\mathsf{Max\text{-}max\text{-}degree:}\ \Delta_{\mathsf{max}}(D) = \mathsf{max}\,\Big\{\,\mathsf{max}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\mathsf{Max\text{-}min\text{-}degree:}\ \Delta_{\mathsf{min}}(D) = \mathsf{max}\,\Big\{\,\mathsf{min}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\Delta(G) = \Delta_{\min}\left(\overrightarrow{G}\right) = \widetilde{\Delta}\left(\overrightarrow{G}\right) = \Delta_{\max}\left(\overrightarrow{G}\right)$$

$$ec{\chi}(D) \leq \Delta_{\mathsf{min}}(D) + 1 \leq ilde{\Delta}(D) + 1 \leq \Delta_{\mathsf{max}}(D) + 1$$

Max-max-degree:
$$\Delta_{\max}(D) = \max \Big\{ \max(d^-(v), d^+(v)) \mid v \in V(D) \Big\}.$$

$$\mathsf{Max\text{-}min\text{-}degree:}\ \Delta_{\mathsf{min}}(D) = \mathsf{max}\,\Big\{\,\mathsf{min}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\Delta(G) = \Delta_{\min}\left(\overrightarrow{G}\right) = \widetilde{\Delta}\left(\overrightarrow{G}\right) = \Delta_{\max}\left(\overrightarrow{G}\right)$$

$$ec{\chi}(D) \leq \Delta_{\mathsf{min}}(D) + 1 \leq ilde{\Delta}(D) + 1 \leq \Delta_{\mathsf{max}}(D) + 1$$

Max-max-degree:
$$\Delta_{\max}(D) = \max \Big\{ \max(d^-(v), d^+(v)) \mid v \in V(D) \Big\}.$$

$$\mathsf{Max\text{-}min\text{-}degree:}\ \Delta_{\mathsf{min}}(D) = \mathsf{max}\,\Big\{\,\mathsf{min}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\Delta(\textit{G}) = \Delta_{\mathsf{min}}\left(\overleftarrow{\textit{G}} \right) = \tilde{\Delta}\left(\overleftarrow{\textit{G}} \right) = \Delta_{\mathsf{max}}\left(\overleftarrow{\textit{G}} \right)$$

$$ec{\chi}(D) \leq \Delta_{\mathsf{min}}(D) + 1 \leq ilde{\Delta}(D) + 1 \leq \Delta_{\mathsf{max}}(D) + 1$$

Max-max-degree:
$$\Delta_{\mathsf{max}}(D) = \mathsf{max}\left\{ \, \mathsf{max}(d^-(v), d^+(v)) \mid v \in V(D) \right\}.$$

$$\mathsf{Max\text{-}min\text{-}degree:}\ \Delta_{\mathsf{min}}(D) = \mathsf{max}\,\Big\{\,\mathsf{min}(d^-(v),d^+(v))\mid v\in V(D)\Big\}.$$

$$\Delta(\textit{G}) = \Delta_{\mathsf{min}}\left(\overleftarrow{\textit{G}} \right) = \tilde{\Delta}\left(\overleftarrow{\textit{G}} \right) = \Delta_{\mathsf{max}}\left(\overleftarrow{\textit{G}} \right)$$

$$ec{\chi}(D) \leq \Delta_{\mathsf{min}}(D) + 1 \leq ilde{\Delta}(D) + 1 \leq \Delta_{\mathsf{max}}(D) + 1$$

Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a complete graph.

 $\Delta = n - 1, \ \chi = n$

Directed Brooks' Theorem

Theorem (Brooks 1941)

Let G be a connected graph, then $\chi(G) \leq \Delta(G)$ unless G is an odd cycle or a complete graph.

Theorem (Mohar 2010)

Let D be a connected digraph, then $\vec{\chi}(D) \leq \Delta_{max}(D)$ unless D is a bidirected odd cycle, a bidirected complete graph, or a directed cycle.

Analogues for Δ_{min}

Theorem (Aboulker and Aubian 2022)

Deciding $\vec{\chi}(D) \leq \Delta_{\min}(D)$ is an NP-complete problem.

 \implies No easy characterisation (unless P=NP) in general.

Theorem (P. 2023)

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$

Analogues for Δ_{min}

Theorem (Aboulker and Aubian 2022)

Deciding $\vec{\chi}(D) \leq \Delta_{\min}(D)$ is an NP-complete problem.

 \implies No easy characterisation (unless P=NP) in general.

Theorem (P. 2023)

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$

Analogues for Δ_{min}

Theorem (Aboulker and Aubian 2022)

Deciding $\vec{\chi}(D) \leq \Delta_{\min}(D)$ is an NP-complete problem.

 \implies No easy characterisation (unless P=NP) in general.

Theorem (P. 2023)

Let \vec{G} be an oriented graph with $\Delta_{\min}(\vec{G}) \geq 2$, then $\vec{\chi}(\vec{G}) \leq \Delta_{\min}(\vec{G})$.

Corollary

Let \vec{G} be an orientation of G with $\Delta(G) \leq 5$, then $\vec{\chi}(\vec{G}) \leq 2$.

Conjecture (Erdős and Neumann-Lara 1979)

Let
$$\vec{G}$$
 be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

Remark: Best possible for random tournaments.

Theorem (Harutyunyan and Mohar 2011)

Every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies $\vec{\chi}(\vec{G}) \leq (1 - e^{-13})\tilde{\Delta}(\vec{G})$

•
$$\vec{\chi}(\vec{G}) \leq 0.816\tilde{\Delta}(\vec{G}) + O(1)$$
. [Golowich 2016
• $\vec{\chi}(\vec{G}) \leq 0.707\tilde{\Delta}(\vec{G}) + O(1)$. (consequence of) [P. 2023

Conjecture (Erdős and Neumann-Lara 1979)

Let
$$\vec{G}$$
 be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

Remark: Best possible for random tournaments.

Theorem (Harutyunyan and Mohar 2011)

Every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies $\vec{\chi}(\vec{G}) \leq (1 - e^{-13})\tilde{\Delta}(\vec{G})$.

$$\vec{\chi}(\vec{G}) \leq 0.816 \tilde{\Delta}(\vec{G}) + O(1).$$
 [Golowich 2016
$$\vec{\chi}(\vec{G}) \leq 0.707 \tilde{\Delta}(\vec{G}) + O(1).$$
 (consequence of) [P. 2023

Conjecture (Erdős and Neumann-Lara 1979)

Let
$$\vec{G}$$
 be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

Remark: Best possible for random tournaments.

Theorem (Harutyunyan and Mohar 2011)

Every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies $\vec{\chi}(\vec{G}) \leq (1 - e^{-13})\tilde{\Delta}(\vec{G})$.

•
$$\vec{\chi}(\vec{G}) \leq 0.816\tilde{\Delta}(\vec{G}) + O(1)$$
.

[Golowich 2016]

•
$$\vec{\chi}(\vec{G}) \leq 0.707 \tilde{\Delta}(\vec{G}) + O(1)$$

consequence of) [P. 2023]

Conjecture (Erdős and Neumann-Lara 1979)

Let \vec{G} be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

Remark: Best possible for random tournaments.

Theorem (Harutyunyan and Mohar 2011)

Every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies $\vec{\chi}(\vec{G}) \leq (1 - e^{-13})\tilde{\Delta}(\vec{G})$.

• $\vec{\chi}(\vec{G}) \leq 0.816\tilde{\Delta}(\vec{G}) + O(1)$.

[Golowich 2016]

• $\vec{\chi}(\vec{G}) \leq 0.707 \tilde{\Delta}(\vec{G}) + O(1)$.

(consequence of) [P. 2023]

Conjecture (Erdős and Neumann-Lara 1979)

Let
$$\vec{G}$$
 be an oriented graph, then $\vec{\chi}(\vec{G}) = O\left(\frac{\Delta_{\max}(\vec{G})}{\log \Delta_{\max}(\vec{G})}\right)$.

Remark: Best possible for random tournaments.

Theorem (Harutyunyan and Mohar 2011)

Every oriented graph \vec{G} with $\tilde{\Delta}(\vec{G})$ large enough satisfies $\vec{\chi}(\vec{G}) \leq (1 - e^{-13})\tilde{\Delta}(\vec{G})$.

• $\vec{\chi}(\vec{G}) \leq 0.816\tilde{\Delta}(\vec{G}) + O(1)$.

[Golowich 2016]

• $\vec{\chi}(\vec{G}) \leq 0.707 \tilde{\Delta}(\vec{G}) + O(1)$.

(consequence of) [P. 2023]

Reed's conjecture

Conjecture (Reed 1998)

Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G)+1+\omega(G)}{2} \right\rceil$.

Conjecture (Reed 1998)

Every graph G satisfies
$$\chi(G) \leq \left\lceil \frac{\Delta(G)+1+\omega(G)}{2} \right\rceil$$
.

Remark: If true, it is best possible (Gallai's construction).

Conjecture (Reed 1998)

Every graph G satisfies
$$\chi(G) \leq \left\lceil \frac{\Delta(G)+1+\omega(G)}{2} \right\rceil$$
.

Remark: If true, it is best possible (Gallai's construction).

Theorem (Reed 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies

$$\chi(G) \leq \lceil (1-\varepsilon)(\Delta(G)+1) + \varepsilon\omega(G) \rceil.$$

Conjecture (Reed 1998)

Every graph G satisfies $\chi(G) \leq \left\lceil \frac{\Delta(G)+1+\omega(G)}{2} \right\rceil$.

Remark: If true, it is best possible (Gallai's construction).

Theorem (Reed 1998)

There exists $\varepsilon > 0$ s.t. every graph G satisfies

$$\chi(G) \leq \lceil (1-\varepsilon)(\Delta(G)+1) + \varepsilon\omega(G) \rceil.$$

- $\varepsilon = 0.038$
- $\varepsilon = 0.077$
- $\varepsilon = 0.119$

[Bonamy et al. 2015]

[Delcourt and Postle 2017]

[Hurley et al. 2022]

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P. 2024)

Every digraph D satisfies $\vec{\chi}(D) \leq \left\lceil \frac{\tilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2} \right\rceil$.

An analogue of Reed's conjecture for digraphs

Conjecture (Kawarabayashi and P. 2024)

Every digraph
$$D$$
 satisfies $\vec{\chi}(D) \leq \left\lceil \frac{\tilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2} \right\rceil$.

Remark: New tight constructions.

$$\overset{\leftrightarrow}{\omega}=k$$
, $\tilde{\Delta}=3k-2$, $\vec{\chi}=2k$

Conjecture (Kawarabayashi and P. 2024)

Every digraph
$$D$$
 satisfies $\vec{\chi}(D) \leq \left\lceil \frac{\tilde{\Delta}(D) + 1 + \overleftrightarrow{\omega}(D)}{2} \right\rceil$.

Remark: New tight constructions.

Theorem (Kawarabayashi and P. 2024)

There exists $\varepsilon > 0$ s.t. every digraph D satisfies

$$ec{\chi}(D) \leq \left\lceil (1-arepsilon)(ilde{\Delta}(D)+1) + arepsilon dots (D)
ight
ceil.$$

Lemma

Let D be a digraph with $\overleftrightarrow{\omega}(D) > \frac{2}{3}(\Delta_{\max}(D) + 1)$. Then D has an acyclic set of vertices I such that $\overleftrightarrow{\omega}(D - I) = \overleftrightarrow{\omega}(D) - 1$.

Lemma

Let D be a digraph with $\overset{\leftrightarrow}{\omega}(D) > \frac{2}{3}(\Delta_{\max}(D) + 1)$. Then D has an acyclic set of vertices I such that $\overset{\leftrightarrow}{\omega}(D - I) = \overset{\leftrightarrow}{\omega}(D) - 1$.

Sketch of the proof

• The intersection graph of the maximum bicliques is a disjoint union of cliques.

Lemma

Let D be a digraph with $\overset{\leftrightarrow}{\omega}(D) > \frac{2}{3}(\Delta_{\max}(D) + 1)$. Then D has an acyclic set of vertices I such that $\overset{\leftrightarrow}{\omega}(D - I) = \overset{\leftrightarrow}{\omega}(D) - 1$.

- The intersection graph of the maximum bicliques is a disjoint union of cliques.
- Take the digraph induced by the intersections of bicliques.

Lemma

Let D be a digraph with $\overset{\leftrightarrow}{\omega}(D) > \frac{2}{3}(\Delta_{\max}(D) + 1)$. Then D has an acyclic set of vertices I such that $\overset{\leftrightarrow}{\omega}(D - I) = \overset{\leftrightarrow}{\omega}(D) - 1$.

- The intersection graph of the maximum bicliques is a disjoint union of cliques.
- Take the digraph induced by the intersections of bicliques.
- Use the low density to find an acyclic transversal.

Lemma

Let D be a digraph with $\overset{\leftrightarrow}{\omega}(D) > \frac{2}{3}(\Delta_{\max}(D) + 1)$. Then D has an acyclic set of vertices I such that $\overset{\leftrightarrow}{\omega}(D - I) = \overset{\leftrightarrow}{\omega}(D) - 1$.

Sketch of the proof

- The intersection graph of the maximum bicliques is a disjoint union of cliques.
- Take the digraph induced by the intersections of bicliques.
- Use the low density to find an acyclic transversal

Corollary

If D is a minimal counter example to $\vec{\chi}(D) \leq \left\lceil (1 - \varepsilon)(\tilde{\Delta}(D) + 1) + \varepsilon \overset{\leftrightarrow}{\omega}(D) \right\rceil$, then $\overset{\leftrightarrow}{\omega}(D) \leq \frac{2}{3}(\Delta_{\max}(D) + 1)$.

Lemma

If D is a minimal counterexample to $\vec{\chi}(D) \leq \left| (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \tilde{\omega}(D) \right|$, for every $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta_{\max}^2(D)$.

Lemma

If D is a minimal counterexample to $\vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \vec{\omega}(D) \right\rceil$, for every $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta_{\max}^2(D)$.

Sketch of the proof

• Remove a few vertices from $N^+(v)$ so the remaining vertices have almost no out-neighbours out-side.

Lemma

If D is a minimal counterexample to $\vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \vec{\omega}(D) \right\rceil$, for every $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta_{\max}^2(D)$.

- Remove a few vertices from $N^+(v)$ so the remaining vertices have almost no out-neighbours out-side.
- ② As $\overset{\leftrightarrow}{\omega} \leq \frac{2}{3}\Delta_{\max}$, find a large matching in $\bar{D}[N]$.

Lemma

If D is a minimal counterexample to $\vec{\chi}(D) \leq \left\lceil (1-\varepsilon)(\tilde{\Delta}(D)+1) + \varepsilon \vec{\omega}(D) \right\rceil$, for every $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta_{\max}^2(D)$.

- Remove a few vertices from $N^+(v)$ so the remaining vertices have almost no out-neighbours out-side.
- ② As $\overset{\leftrightarrow}{\omega} \leq \frac{2}{3} \Delta_{\text{max}}$, find a large matching in $\bar{D}[N]$.
- Use this matching to extend a dicolouring of D N to D, and contradict the minimality of D.

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

Sketch of the proof

• Colour every vertex uniformly at random with $[1, \Delta/2]$.

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

- Colour every vertex uniformly at random with $[1, \Delta/2]$.
- Uncolour every vertex with both an in-neighbour and an out-neighbour of the same colour.

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

- Colour every vertex uniformly at random with $[1, \Delta/2]$.
- Uncolour every vertex with both an in-neighbour and an out-neighbour of the same colour.
- **3** For fixed $v \in V(D)$, with high probability, many colours are repeated in $N^+(v)$.

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

- Colour every vertex uniformly at random with $[1, \Delta/2]$.
- Uncolour every vertex with both an in-neighbour and an out-neighbour of the same colour.
- **②** For fixed $v \in V(D)$, with high probability, many colours are repeated in $N^+(v)$.
- This holds for all vertices with positive probability (Lovasz Local Lemma).

Lemma

Let D be a digraph with $\Delta_{\max}(D) = \Delta$ large enough. If for every vertex $v \in V(D)$, $|A(D[N^+(v)])| \leq (1-a)\Delta^2$, then $\vec{\chi}(D) \leq (1-\varepsilon)\tilde{\Delta}(D)$.

- Colour every vertex uniformly at random with $[1, \Delta/2]$.
- Uncolour every vertex with both an in-neighbour and an out-neighbour of the same colour.
- **②** For fixed $v \in V(D)$, with high probability, many colours are repeated in $N^+(v)$.
- This holds for all vertices with positive probability (Lovasz Local Lemma).
- Greedily colour the uncoloured vertices.

- Problem: Prove the existence of $\varepsilon > 0$ such that every oriented graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq \lceil (1-\varepsilon)\Delta^+(\vec{G}) \rceil$.
- **Problem:** Find the values of $k \in [1, \Delta + 1]$ for which k-DICOLOURABILITY is solvable in polynomial time on digraphs D with $\Delta_{\max}(D) = \Delta$.

 Undirected case (Molloy and Reed 2014): $k \in [\Delta \sqrt{\Delta}, \Delta + 1]$.
- Conjecture (Neumann-Lara 1982): Every oriented planar graph is 2-colourable

- Problem: Prove the existence of $\varepsilon > 0$ such that every oriented graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq \lceil (1-\varepsilon)\Delta^+(\vec{G}) \rceil$.
- Problem: Find the values of $k \in [1, \Delta + 1]$ for which k-DICOLOURABILITY is solvable in polynomial time on digraphs D with $\Delta_{\max}(D) = \Delta$.

 Undirected case (Molloy and Reed 2014): $k \in [\Delta \sqrt{\Delta}, \Delta + 1]$.
- Conjecture (Neumann-Lara 1982): Every oriented planar graph is 2-colourable

- Problem: Prove the existence of $\varepsilon > 0$ such that every oriented graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq \lceil (1-\varepsilon)\Delta^+(\vec{G}) \rceil$.
- Problem: Find the values of $k \in [1, \Delta+1]$ for which k-DICOLOURABILITY is solvable in polynomial time on digraphs D with $\Delta_{\max}(D) = \Delta$.

 Undirected case (Molloy and Reed 2014): $k \in [\Delta \sqrt{\Delta}, \Delta+1]$.
- Conjecture (Neumann-Lara 1982): Every oriented planar graph is 2-colourable.

- Problem: Prove the existence of $\varepsilon > 0$ such that every oriented graph \vec{G} satisfies $\vec{\chi}(\vec{G}) \leq \lceil (1-\varepsilon)\Delta^+(\vec{G}) \rceil$.
- Problem: Find the values of $k \in [1, \Delta + 1]$ for which k-DICOLOURABILITY is solvable in polynomial time on digraphs D with $\Delta_{\max}(D) = \Delta$.

 Undirected case (Molloy and Reed 2014): $k \in [\Delta \sqrt{\Delta}, \Delta + 1]$.
- Conjecture (Neumann-Lara 1982): Every oriented planar graph is 2-colourable.

