

## STEP Support Programme

## Assignment 22

## Warm-up

- 1 This question is about the product rule for differentiating a product of two functions.
  - (i) Use a rough sketch to show that (for any function f that can be differentiated)

$$f(x+h) \approx f(x) + hf'(x)$$
 (†)

when h is "small".

(ii) The function g is defined by  $g(x) = f_1(x)f_2(x)$ , where  $f_1$  and  $f_2$  are two given (differentiable) functions. Use the definition  $g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$ , then (†), to show that

$$g'(x) = f'_1(x)f_2(x) + f_1(x)f'_2(x)$$
.

2 The exponential function  $e^x$  is defined by the infinite series:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots$$
 (\*)

(which converges for all x).

There are various definitions of the function  $e^x$ , and you may well know a different definition from the one above. For example, you can define it as the inverse function to the natural logarithm  $\ln x$ , which is  $\log_e x$  (e being a certain number). Or you could define it as simply  $e^x$ , where e is the certain number again.<sup>1</sup>

For this question, forget any definitions you know except for (\*). You are not required to know this definition for STEP I from 2019 onwards, but it was assumed in older STEP I papers - so you may need it when working through past papers.

- (i) Use definition (\*) to find  $\frac{d}{dx}$  (e<sup>x</sup>).
- (ii) Use definition (\*) to find  $\frac{\mathrm{d}}{\mathrm{d}x} \left( e^{kx} \right)$  where k is a constant.
- (iii) Let  $f(x) = xe^x$ . Show, using the product rule, that  $f'(x) = (x+1)e^x$ . Can you get this result from the definition (\*) without using the product rule?

<sup>&</sup>lt;sup>1</sup> In the usual notation (for A-levels, etc), the exponential function is written  $e^x$ , using roman type face e to show that it is a function rather than a number, and we follow that convention.



(iv) Use the product rule to show that

$$\frac{\mathrm{d}}{\mathrm{d}x} \left( \mathrm{e}^{ax} \mathrm{e}^{bx} \right) = (a+b) \mathrm{e}^{ax} \mathrm{e}^{bx}.$$

Since you are told that  $e^x$  is defined by (\*), you cannot use any rules of indices here!

Starting with this result, show that  $e^x e^{-x} = 1$  (which means that you have now shown that  $e^{-x} = \frac{1}{e^x}$ ).

Use this result and definition (\*) to show that  $xe^x \to 0$  as  $x \to -\infty$ .

# Preparation

- 3 (i) Find the range of values of x for which  $3x^2 + x 2 < 0$ .
  - (ii) Sketch the curve  $y = e^x$ .
  - (iii) This part concerns the curve  $y = (x 3)e^x$ .
    - (a) Differentiate  $(x-3)e^x$  and hence find the coordinates of the stationary point of the curve  $y = (x-3)e^x$ . Use the sign of  $\frac{d^2y}{dx^2}$  to determine the nature of the stationary point.
    - (b) Find the coordinates of the intersections of the curve with the axes. Determine the values of x for which  $(x-3)e^x$  is negative.
    - (c) Sketch the curve  $y = (x-3)e^x$ . You may assume that  $xe^x \to 0$  as  $x \to -\infty$ .
    - (d) Find the values of k for which the equation  $(x-3)e^x = k$  has two roots. Find the values of k for which the equation has one root.





- (iv) This part concerns the curve  $y = \sin(x^2)$ .
  - (a) Sketch the curve  $y = \sin x$  for  $-4\pi \leqslant x \leqslant 4\pi$ .
  - (b) Find the first four non-negative values of x for which  $\sin(x^2) = 0$ .
  - (c) If  $f(x) = \sin(x^2)$ , express f(-a) in terms of f(a).
  - (d) Sketch the curve  $y = \sin(x^2)$  for  $-4 \le x \le 4$ .

# The STEP question

**4** (i) Sketch the curve  $y = e^x(2x^2 - 5x + 2)$ .

Hence determine how many real values of x satisfy the equation  $e^x(2x^2 - 5x + 2) = k$  in the different cases that arise according to the value of k.

You may assume that  $x^n e^x \to 0$  as  $x \to -\infty$  for any integer n.

(ii) Sketch the curve  $y = e^{x^2}(2x^4 - 5x^2 + 2)$ .

### Discussion

When sketching a curve, make sure you consider turning points, intersections with the axes, and the behaviour as  $x \to \pm \infty$ . You may be sure of the nature of the turning points without having to calculate the second derivative (though you might calculate a second derivative just to be confirm that your sketch is right).

The key to the second part is to work out how the two curves are related.





#### Warm down

- Notation: for any polyhedron (i.e. three-dimensional solid whose surface consists of a collection of polygonal faces, joined at their edges), the number of faces is F, the number of edges is E and the number of vertices is V.
  - (i) Write down F, E and V for a tetrahedron (a pyramid with a triangular base). Calculate F E + V.
  - (ii) Repeat part (i) for cube.
  - (iii) A regular icosahedron has 20 faces, each of which is an equilateral triangle. What is E? What is V? Don't just write down the answers; provide brief justification. Calculate F E + V for an icosahedron.
  - (iv) The diagram below shows a cube with a small cubical hole dug into one face. Calculate F E + V.



### Discussion

Euler's formula V - E + F = 2 holds for *convex* polyhedra (ones where any two points on the surface are connected by a straight line that lies entirely within or on the surface of the polyhedron).

Other three dimensional shapes satisfy  $V - E + F = \chi$ , where  $\chi$  is the *Euler characteristic*. For example, a *torus* (ring doughnut shape) had  $\chi = 1$ . There is lots of information out there on proofs of Euler's formula and different characteristics, so have a search!

