

une école de la

MINI PROJET

ST 3004 CATIA

OBJECTIFS

- Etudier un système mécanique :
 - Donner sa fonction (son rôle, son but)
 - Donner sa description <u>cinématique</u> (Liaisons, loi entrée / sortie) <u>par une</u> <u>recherche bibliographique</u>.
 - Réaliser la simulation cinématique du système sous CATIA
- Accroitre sa culture technologique :
 - Rechercher d'autres produits utilisant la cinématique du système étudié

ORGANISATION

- Déroulement :
 - Une séance « Introduction mini projet » de 2h par groupe de TP
 - Pour cette séance : nécessité de constituer le groupe et de choisir son sujet
 - Deux séances « Validation de la maquette CATIA» de 4h
 - Aider à la réalisation de la maquette
 - (Répondre aux questions sur la maquette compresseur)
 - Un rapport à rendre

LE RAPPORT (1/2)

Rapport de 10 pages (<u>Annexes non comprises</u>), comprenant:

- Présentation de l'étude 1 page
 - Présentation du projet / Objectifs / Plan du rapport
- Description du système étudié 1 à 2 pages
 - Fonction mécanique du système (ex: transformation d'une rotation en translation)
 - Description des composants du système et de leurs rôles dans le fonctionnement mécanique du système.
 - Classes d'équivalence cinématiques
 - Loi d'entrée / Sortie du système et son analyse (Pas de calculs → Recherche bibliographique uniquement)
- Description de l'étude cinématique 1 à 2 pages
 - Objectif de la simulation cinématique (trajectoire / Vitesse / Accélération des différentes classes d'équivalence)
 - Description de la méthode de simulation (Mise en place de la loi d'entrée, mise en place et justification des points de contrôle des trajectoires / Vitesses / accélération, graphe de résultats de la simulation)

LE RAPPORT (2/2)

- Présentation de la maquette assemblée et des résultats 1 à 2 pages
 - Maquette numérique complète avec description de l'arbre de construction (pièce, structure de la maquette, liaisons mécanique de l'assemblage)
- Présentation du paramétrage 1 à 2 pages
 - Identifier les principaux paramètres et voir leur influence sur la loi entrée/sortie
- Analyse des résultats et réflexion sur le système 1 à 2 pages
 - Analyse critique des résultats obtenus par rapport à la description globale du système (Est-ce cohérent avec les lois d'entrée/sortie trouvé dans la recherche bibliographique?)
 - Recherche d'autres produits utilisant le système étudié.
- Description de l'équipe projet : Rôles / affectation des tâches / Planning des activités 1 page
- Références Bibliographiques
- Annexes

MODÉLISATION SOUS CATIA V5 (1/2)

- L'évaluation de la maquette numérique tiendra compte:
 - De la modélisation des pièces et des liaisons
 - De la structuration de l'arbre de construction
 - De la simulation: cela fonctionne ou pas!
- Quelques conseils...
 - Privilégiez une <u>modélisation simple</u> afin d'éviter des modélisations géométriques trop complexes... Exemple :

Trop détaillé!

Bien!

Mécanisme de caméra

http://francois1er.lehavre.free.fr/si/Tr avaux/Mecaplan/griffe/index.htm

Objectifs:

Le mouvement de translation du film doit avoir les caractéristiques suivantes :

- Le défilement ne peut être continu (flou de l'image) et un arrêt du film correspondant à l'impression de la pellicule doit être prévu
- Dans ce mouvement discontinu, le temps d'immobilisation doit au moins être égal au temps d'ouverture de l'obturateur soit 0.025s pour des prises de vues correspondant à une plage d'exposition usuelle.
- > Le film avance de 24 images par secondes.
- Le déplacement par image doit être de 12 mm.

Joint de cardan double

Objectifs:

- > Définir les conditions d'homocinétisme d'un cardan double
- La position de l'arbre d'entrée et de l'arbre de sortie peut être quelconque dans l'espace. Proposer un assemblage paramétré permettant de positionner automatiquement les cardans.

Machine à scier alternative

Matière	Vitesse de coupe m/mn			
Aciers inoxy Aciers réfra		25 / 35 15 / 25		
Alliages exc	otiques	10 / 15		
Aciers traité à 35/45 HCI		15 / 25		
Fontes		40 / 50		
Titane Cuivre		15 / 25 100 / 200		
Laitons		100 / 300		

Objectifs:

Identifier les paramètres machine qui permettent d'obtenir les vitesses de coupe ci contre (vitesse de la lame par rapport à l'objet scié)

Les systèmes mécaniques - 4

Pompe à pétrole

AB = 570 BC = 2 620 CD = 2 300 DE = 3 400 $N_{1/0} = 15 \text{ tr.min}^{-1}$

Objectifs:

- Pour un diamètre de piston de 400mm, déterminer le débit de la pompe
- Quels sont les paramètres que l'on peut modifier afin d'améliorer ce débit

Les systèmes mécaniques - 5

Machine à coudre

Objectifs:

Identifier les paramètres machine qui permettent d'obtenir un point droit dont la longueur serait de 2,3, 4 ou 5 mm

Les systèmes mécaniques - 6

Presse à genouillère

Objectifs:

Identifier les paramètres machine qui permettent d'obtenir les caractéristiques suivantes de la presse :

- \rightarrow 32 40 50 coups/minutes
- ➤ Course de coulisseau 5 = 170 260 300 mm

Cric automobile électrique

Objectifs:

En fonction du type de véhicules, une société veut proposer différents crics électriques dont les caractéristiques sont les suivantes :

vitesses de levage : 5, 10, 15 et 20 mm/s

course de levage : 150, 200, 250 et 300 mm

Suspension de moto BMW

Configuration en Paralever

Objectifs:

Analyser le comportement de la roue en fonction de la position du point F de l'amortisseur

Distribution culbutée d'un moteur

Objectifs:

La soupape doit se lever de 10mm en 3 secondes

Comparer les 2 solutions

Distribution Moteur Arbre à Cames en Tête

La soupape doit se lever de 10mm en 3 secondes

Comparer les 2 solutions avec ou sans culbuteur

Locomotive à vapeur

Objectifs:

Quels sont les paramètres qui permettent d'améliorer les performances de la locomotive (vitesse, puissance)

Objectifs:

Pour les différents robots, la société de robotique envisage de créer plusieurs pinces dont les caractéristiques sont les suivantes :

- ➤ diamètre de la pièce à serrer : 50,100 et 150mm
- le temps de serrage ne doit pas dépasser 5 s

7	COURS 2	1	mar. 12/02/2019	13h00	15h00	2h00	1105
	COURS 2	2	mer. 13/02/2019	10h00	12h00	2h00	1055V
	TDRm1	1	ven. 15/02/2019	08h00	12h00	4h00	2309
	TDRm1	2	ven. 15/02/2019	08h00	12h00	4h00	2305V
8	TDRm2	1	lun. 18/02/2019	15h00	19h00	4h00	1055V
	TDRm2	2	mer. 20/02/2019	13h00	17h00	4h00	4007∨

Formation CATIA TD Compresseur

Application CATIA: mini projet

COURS 3	1	jeu. 21/02/2019	08h00	10h00	2h00	4003V
COURS 3	2	jeu. 21/02/2019	10h00	12h00	2h00	4003V

Lundi 11 mars: 15h -19h G1

Mercredi 13 mars : 13h - 17h G2

Jeudi 14 mars : 13h -17h G1

Vendredi 15 mars : 13h -17h G2

Examen

Fin mars 15h -17h et 17h - 19h G1 et G2

TRAVAUX:

- Maquette TD compresseur : Assemblage + cinématique
- Rapport mini projet + maquette Catia
- Examen 2h seul