

Laboratório de Manufatura peça finalizada

Júlia Pereira e Magner Gusse

Tópicos abordados

Introdução 02 Peça original

Peça finalizada 04 Fusion

Peça

 Cotovelo com zona para ligar motor e duas superfícies de ligação

Peça original

Braço robótico

Peça escolhida em mais detalhe

Zonas de ligação originais

Superfícies de ligação

Onde alterar

- Alterar: corpo do cotovelo
- Não alterar: zonas de ligação

Simulações realizadas

• Simulações iniciais

Primeiras alterações

Primeira alteração de geometria

Simulações realizadas

- Simulações realizadas
- Direita: tensão máxima (117 MPa) <<< Yield Strengt (827 MPa)

Estudos realizados

 Estudo paramétrico: descobrir medida otimizada para diâmetro do tubo e raio de curvatura, por exemplo

Alterações realizadas

Peça atualizada

Estudos topológicos

- Estudo topológico
- Possibilidade de retirar massa na zona interior do tubo: realização dessa zona em I

Análise topológica

Conclusão: há massa a retirar

Processo de otimização

Análise topológica final

Conclusão: não há mais massa a retirar

Nova peça

• Peça atualizada: final

Simulações realizadas

 Simulações feitas com a força colocada na zona do braço robótico que iria recolher o gelo da superfície de Titã

Código de cores

COR	CÓDIGO RGB	ONDE SE APLICA
	0, 255, 0	Peça
	255, 255, 0	Junta do molde
	0, 255, 255	Folga na junta do molde
	255, 0, 255	Caixas de precisão
	153, 0, 0	Furos mandrilados
	0, 153, 0	Furos roscados
	0, 0, 255	Furos de passagem / Caixas com folga
	255, 255, 255	Circuitos de água

Transformação

- Alteração na largura e geometria da zona de conexão entre as duas superfícies de ligação ao resto do braço
- Peça otimizada
- Menor massa = menos material = menos custo
- Otimizada para transporte até Titã; menos peso = menos combustível

Maquinagem

Software Utilizado

AUTODESK® FUSION 360™

Ferramentas utilizadas

▼ co	tovelo4 v34				
> 	2 - Ø25mm R2mm (D25R2)	2 mm	25 mm	8 mm	130 mm
▶ ∅	9 - ⊘16mm (Fresa Integral Topo)	0 mm	16 mm	65 mm	130 mm
▶ ∅	7 - Ø16mm R2mm (D16R2)	2 mm	16 mm	8 mm	173 mm
* • []	38 - \varnothing 14mm 90° (14mm Spot Drill)	0 mm	14 mm	32 mm	89 mm
▶ 🐉	11 - ∅10mm R0.5mm (D10R0.5)	0.5 mm	10 mm	3 mm	160 mm
▶ ¾	15 - Ø6mm R0.5mm (D6R0.5)	0.5 mm	6 mm	10 mm	90 mm
▶ 🦓	13 - ∅6mm R0.2mm (D6R0.2v2)	0.2 mm	6 mm	6 mm	70 mm
▶ 3	13 - ∅6mm R0.2mm (D6R0.2)	0.2 mm	6 mm	6 mm	70 mm
★ ► Ø	36 - ∅3.4mm 118° (Drill)	0 mm	3.4 mm	34 mm	39.08 mm
★ ► 8	35 - ∅3mm 118° (Drill)	0 mm	3 mm	30 mm	35.08 mm
▶ 🦓	25 - Ø3mm R0.2mm (D3R0.2)	0.2 mm	3 mm	3 mm	60 mm
* • 8	34 - ∅2.5mm 118° (Drill)	0 mm	2.5 mm	25 mm	30.08 mm
★ ► #	33 - ∅2.5mm (M2.5)	0 mm	2.5 mm	9.5 mm	44.5 mm
▶ 🖔	30 - ⊘2mm R1mm (D2R1)	1 mm	2 mm	3 mm	55 mm

Desbaste

Acabamento

Furações

Aperto A

Desbaste e acabamento do

Aperto A | Total machining time: 1:39:35

Aperto A

Desbaste inicial com resto de 0.2mm

Aperto A

Acabamento das superfícies

Stock Simulation

Positive Material

Negative Material

Aperto A

Furos de passagem e furos roscados

Aperto A

Simulação completa dos desbastes, acabamentos e furações

Aperto B

Desbaste e acabamentos

Aperto B

Desbaste lateral e traseiro com resto de 0.2mm

Aperto B

Simulação completa dos desbastes laterais e traseiros

Aperto B

Desbaste de baixo, acabamento e furação

Etapas

Aperto B

Simulação completa do desbaste, acabamento e furações de baixo

Aperto B

Acabamentos laterais

Etapas

Positive Material

Aperto B

Simulação completa dos acabamentos laterais

Aperto C

Furações

Aperto B e C

Simulação completa das furações radiais

Melhorias possíveis

Raio interno

Aumento do raio interno para facilitar a maquinação

Distância do furo a aresta

Aumento da distância para facilitar a maquinação e remoção de quina

 Com a peça finalizada e em funcionamento

Peça original

Obrigado!

