ЗАДАЧИ ПО ЧИСЛЕННЫМ МЕТОДАМ РЕШЕНИЯ ОДУ

Численно найти решение системы дифференциальных уравнений плоской задачи двух тел

$$x'_1 = x_3, \quad x'_2 = x_4, \qquad x_1(t_0) = 1, \quad x_2(t_0) = 0;$$

 $x'_3 = -x_1/r^3, \quad x'_4 = -x_2/r^3, \quad x_3(t_0) = 0, \quad x_4(t_0) = 1;$
 $r = \sqrt{x_1^2 + x_2^2}, \quad v = \sqrt{x_3^2 + x_4^2};$

методом

- 1) Грэгга 8-го порядка;
- 2) Хойна со стабилизацией Накози;
- **3)** вложенным Мерсона 4(5);
- 4) Йошиды 4-го порядка;
- 5) прыгающих лягушек;
- 6) явным Адамса 3-го порядка;
- 7) Рунге-Кутты 4-го порядка;
- 8) коллокационным Гаусса 4-го порядка;

для значения независимой переменной $t_0+1000T$, где $T=2\pi$ — орбитальный период. Построить график зависимости ошибки интегрирования $|\Delta {\bf x}|$ в конце интервала от шага $h=T/2^i$ (i=4-12). Графически представить отклонение интегрального соотношения

$$I(x_1,x_2) = v^2/2 - 1/r$$
.

от начального значения I_0 ($\Delta I = I - I_0$) на всем интервале интегрирования для различных величин постоянного шага $h = T/2^i$ (i = 4, 8, 10, 12).

Магистрант	Вариант
Михайлов	1
Смертина	7
Дулякова	8
Виджая	2