Daniel Penazzi

14 de abril de 2021

Tabla de Contenidos

Caminos aumentantes

Idea y motivación. Definición y discusión

Algoritmo de Ford-Fulkerson

Algoritmo de FF y comparación con Greedy Primera propiedad que necesitamos probar

Max Flow Min Cut Theorem

Enunciado del teorema Prueba parte A Prueba Partes B y C

Consecuencias

Correctitud del algoritmo de Ford-Fulkerson Teorema de la Integralidad

- Al final de la clase anterior habiamos dicho que se podia modificar Greedy para que "se diera cuenta" que se equivocó en la elección de los caminos, y que podia autocorregirse.
- Tambien dijimos que una de las cosas que ibamos a necesitar era:
- una generalización del concepto de camino dirigido no saturado, que permita al algoritmo autocorregirse.
- Antes de introducir la generalización, analicemos un poco lo que tenemos.

Caminos dirigidos no saturados

Recordemos uno de los ejemplos que vimos.

 Capacidades todas 10 excepto los lados marcados de distinto color, de capacidad 20.

- \blacksquare Greedy aumentaba f=0 por medio de los siguientes caminos, en sucesión:
- sABt:10 sCDt:10 sEFt:10 y quedaba:

Y no podiamos seguir.

- Pero no era maximal pues con estos:
- sAFt:10 sCBt:10 sEFt:10 sEDt:10

■ teniamos un flujo de valor 40 en vez de 30.

- En este ejemplo chico podemos ver que el problema se origina cuando elegimos
- En vez de

Caminos aumentantes 0000000000000

Asi que la idea no es esa.

Caminos aumentantes 0000000000000

- Imaginemos que nuestro network representa una red de cañerias de agua por la cual estamos queriendo mandar agua desde s a t
- y que en cada vértice $x \neq s$, t hay un operador, que controla cuanto flujo de agua puede mandar desde x hacia $\Gamma^+(x)$.
- y que cuando estamos queriendo aumentar el flujo, lo que va a ocurrir es lo siguiente:
 - s le pregunta a alguno de sus vecinos de $\Gamma^+(s)$ si le puede mandar flujo.
 - Ese vértice le pregunta a alguno de sus vecinos de su Γ⁺ si le puede mandar flujo,
 - etc, hasta llegar a t

Caminos dirigidos no saturados

- Cada vértice debe "preguntarle" al siguiente si le puede mandar flujo, pues un vértice $\neq s, t$ no puede aceptar que le manden flujo sin saber si se lo puede "sacar" de encima.
- En el ejemplo podria pensar que *s* le pregunta a *A* si le puede mandar flujo, *A* se fija que le puede mandar flujo a *B*, asi que le pregunta, este se fija que le puede mandar flujo a *t*, asi que le responde que si, *A* le dice que si a *s*, y se crea el camino *sABt*.

Caminos aumentantes 0000000000000

Caminos dirigidos no saturados

- Idem con los otros hasta llegar a sABt:10, sCDt:10,sEFt:10
- Podriamos pensar que el proceso termina asi:
- s mira que le puede mandar flujo a E y le pregunta a E si le puede mandar flujo.
- E se fija que $f(\overrightarrow{ED}) = 0 < 10 = c(\overrightarrow{ED})$
- v responde tengo un candidato, esperá un cacho que le pregunto.
- Le pregunta a D que mira que sólo le podria mandar flujo a t, pero f(Dt) = 10 = c(Dt).
- D le dice "no" a E, y como E no tiene mas "candidatos", le dice "no" a s

- Ford y Fulkerson tuvieron la siguiente idea (bueno, no creo que la hayan tenido exactamente de la forma en que la estoy contando).
- D no puede mandar mas flujo a t porque tuvo que mandarle flujo a t porque C le mandó flujo a el (D)
- ¿porqué no puede D decirle a C "che, podes no mandarme tanto flujo, que tengo que hacerle lugar a E?"
- Es decir, *D* le pregunta a *C* si no puede "devolverle" flujo.
- (no es que realmente le "devuelva" flujo, simplemente le pide a C que no le mande, o al menos no le mande tanto).
- ¿Que hace C?

- C podria razonar "D no quiere que le mande flujo. Si no le mando a el, a quien le puedo mandar?"
- y entonces C se fija que tambien tiene a B en $\Gamma^+(C)$, con $f(\overrightarrow{CB}) < c(\overrightarrow{CB})$
- asi que le pregunta a el si le puede mandar flujo.
- B se fija que no le puede mandar a t, pues $f(\overrightarrow{Bt}) = 10 = c(\overrightarrow{Bt})$.
- Asi que está por responderle "no" a C....pero se da cuenta de algo parecido a D:
- B le tuvo que mandar flujo a t porque A le habia mandado a EL.
- Asi que B le pregunta a A lo mismo que D le preguntó a E.

- B: "che, A, podes mandarme menos flujo que C quiere mandarme flujo y no sé que hacer?"
- **A** se fija que tiene a F en $\Gamma^+(A)$ y que $f(\overrightarrow{AF}) = 0 < 10 = c(\overrightarrow{AF})$.
- asi que le pregunta a *F* si le puede mandar flujo.
- F observa que $t \in \Gamma^+(F)$ y que $f(\overrightarrow{Ft}) = 10 < 20 = c(\overrightarrow{Ft})$ y dice "si"
- Ese "si"se propaga por toda la cadena y entonces se puede aumentar el flujo.

- A redirige los 10 que le mandaba a B a F.
- F le manda 10 unidades mas de flujo a t.
- C le manda a B los 10 que le mandaba a D, pues ahora B no tiene problemas en aceptarlos.
- B sigue mandandole 10 a t.
- s le manda 10 a E.
- E se los manda a D.
- y D sigue mandandole 10 a t.
- lo que queda es equivalente a haber hecho los caminos sAFt, sCBt, sEFt, sEDt de entrada.

- Esa es la base para la idea de Ford y Fulkerson:
- Al pararnos en un vértice x, en vez de limitar la busqueda a vértices a los cuales x les pueda "mandar" flujo.
 - Permitir que *x* tambien busque vértices a los cuales les pueda pedir que no le manden mas flujo, o al menos no tanto flujo como le estan mandando.
- Claro que para pedirle a alguien que no te mande mas flujo, ese "alguien" te tiene que haber mandado flujo.
- Entonces, técnicamente, lo que Ford y Fulkerson hacen es que:
- en vez de limitar la busqueda a $y \in \Gamma^+(x)$ con $f(\overrightarrow{xy}) < c(\overrightarrow{xy})$
- **permiten ademas buscar** $y \in \Gamma^{-}(x)$ con $f(\overrightarrow{yx}) > 0$

Camino aumentante

Definición:

Un camino aumentante (o f-camino aumentante si necesitamos especificar f) o camino de Ford-Fulkerson, es una sucesión de vértices $x_0, x_1, ..., x_r$ tales que:

- $X_0 = s, X_r = t.$
- Para cada i = 0, ..., r 1 ocurre una de las dos cosas siguientes:

1
$$x_i \overrightarrow{x_{i+1}} \in E$$
 y $f(x_i \overrightarrow{x_{i+1}}) < c(x_i \overrightarrow{x_{i+1}})$ o:
2 $x_{i+1} x_i \in E$ y $f(x_{i+1} x_i) > 0$.

$$\overrightarrow{z} \quad \overrightarrow{x_{i+1}} x_i \in E \text{ y } f(\overrightarrow{x_{i+1}} x_i) > 0.$$

Si en vez de comenzar en s y terminar t el camino es como arriba pero con $x_0 = x, x_r = z$ diremos que es un camino aumentante desde x a z

Lados forward y backward

- A los lados en 1) los llamaremos
 - "lados de tipo l" o "lados forward"
- A los lados en 2) los llamaremos
 - "lados de tipo II" o "lados backward"
- Observemos que el orden en que se listan los vértices en el camino aumentante es ... x_i , x_{i+1} ... pero como JUSTAMENTE estamos generalizando la noción de camino dirigido, no siempre (x_i, x_{i+1}) será un lado, sino que el lado será x_{i+1} x_i en el caso de los lados backward.

Ejemplo v notación

- En el ejemplo que habiamos dado, s, E, D, C, B, A, F, t es un camino aumentante.
- Denotaremos la acción de mandar 10 unidades de flujo (u otra cantidad) por ese camino asi:
- sFDCBAFt · 10
- Las flechas de derecha a izquierda indicando cuales son los lados "backward"
- pues *DC* y *BA* no existen en el network.
- Los que existen son CD y AB
- pero el orden en que listamos los vértices es *D* primero, luego C
- v B primero, luego A.

Notación (cont.)

- ademas con esa notación sabemos que esos lados deben "devolver" flujo.
- Es decir, el flujo f cambia de la siguiente forma, usando la notación de C:
- f+= 10 en los lados \overrightarrow{sE} , \overrightarrow{ED} , \overrightarrow{CB} , \overrightarrow{AF} , \overrightarrow{Ft} .
- f f f = 10 en los lados CD, AB.

Notación (cont.)

- En general, "mandar" ε unidades de flujo por un camino aumentante $x_0, x_1,, x_r$ significará:
- Cambiar f por medio de:
 - $f(x_i\overrightarrow{x_{i+1}}) + = \varepsilon$ en los lados forward.
 - $f(x_{i+1} \xrightarrow{x_i}) = \varepsilon$ en los lados backwards.
- Podemos dar el nuevo algoritmo:

Ford-Fulkerson

Algoritmo de Ford-Fulkerson para hallar flujo maximal

- 1 Comenzar con f = 0 (es decir, $f(\overrightarrow{xy}) = 0 \forall \overrightarrow{xy} \in E$).
- Buscar un f-camino aumentante $s = x_0, x_1, ..., x_r = t$.
- 3 Definamos ε_i de la siguiente manera:
 - \bullet $\varepsilon_i = c(x_i \overrightarrow{x_{i+1}}) f(\overrightarrow{x_i} \overrightarrow{x_{i+1}})$ en los lados forward.
 - \bullet $\varepsilon_i = f(x_{i+1} \overrightarrow{x_i})$ en los lados backward
- 4 Calcular $\varepsilon = \min\{\varepsilon_i\}$.
- 5 Aumentar f a lo largo del camino de 2. en ε , como se explicó antes.
- 6 Repetir 2 hasta que no se puedan hallar mas caminos aumentantes.

Ford-Fulkerson vs Greedy

- El algoritmo de Ford-Fulkerson es muy parecido al Greedy, sólo que en vez de usar caminos dirigidos no saturados, usa caminos aumentantes.
- Ahora bien, si bien vimos que el Greedy no siempre daba con un flujo maximal, al menos era obvio que:
 - cuando el algoritmo cambiaba el flujo, lo que quedaba también era flujo, y:
 - Greedy siempre terminaba, con complejidad polinomial.
- ¿Porqué Greedy siempre termina, y la complejidad es polinomial?
- Lo habia dicho la clase pasada pero no lo deje escrito, asi que repitamoslo:

Complejidad de Greedy vs Ford-Fulkerson

- 1 En cada camino dirigido no saturado que Greeedy usa, al menos un lado se satura.
- Como en Greedy los lados nunca se des-saturan, entonces Greedy puede hacer a lo sumo O(m)incrementos de flujo antes de que forzosamente deba terminar si o si.
- 3 Encontrar un camino dirigido no saturado es O(m)
- Asi que la complejidad total de Greedy es $O(m^2)$.
- En Ford-Fulkerson vale el [3] arriba, pues encontrar un camino aumentante tambien es O(m).
- Y tambien vale algo similar al [1] pues en todo camino que use Ford-Fulkerson va a haber al menos un lado que se sature, o un lado que se vacie.
- El problema es que no vale [2].

Complejidad Ford-Fulkerson

- Justamente como podes "devolver" flujo a través de los lados backward, ahora los lados pueden des-saturarse, como vimos en el ejemplo. (o vaciarse y volverse a llenar)
- Asi que no queda claro que la complejidad sea O(m²) o siguiera si es polinomial.
- De hecho no lo es: veremos un ejemplo con n = 4, m = 5en donde Ford-Fulkerson puede hacer dos millones de iteraciones.
- O cuatro mil millones.
- Mas aún veremos que hay ejemplos en donde Ford-Fulkerson no termina nunca.

Complejidad Ford-Fulkerson

- Pero ¿para que estudiamos un algoritmo que no sólo no es polinomial sino que puede NO TERMINAR?!!!!
- Porque vamos a demostrar que si Ford-Fulkerson termina, entonces termina con un flujo maximal.
- y que Ford-Fulkerson es la base de una serie de algoritmos que terminan, y en tiempo polinomial.
- La correctitud de todos ellos se apoya en la correctitud de Ford-Fulkerson, dando todos flujos maximales por la propiedad base de Ford-Fulkerson.

Otro problema con Ford-Fulkerson

- Otro problema que tiene Ford-Fulkerson que no tiene Greedy es el siguiente:
- Con un camino aumentante no saturado, era obvio que al mandar ε unidades de flujo por el camino, si el ε no "reventaba" ningún caño, lo que quedaba era flujo.
- Con Ford-Fulkerson no es completamente obvio que lo que quede luego de aumentar el flujo siga siendo un flujo.
- Hemos dado en el ejemplo introductorio una racionalidad por la cual esto también debería pasar en un camino de Ford-Fulkerson, pero debemos probarlo.

FordFulkerson mantiene "flujicidad"

Teorema:

Si f es un flujo de valor v y aumentamos f con un f-camino aumentante con ε calculado como se explica en el algoritmo de Ford-Fulkerson, entonces lo que queda sigue siendo flujo y el valor del nuevo flujo es $v + \varepsilon$

- Prueba: Sea $s = x_0, x_1, ..., x_r = t$ el camino aumentante.
- Para diferenciar entre ambos, llamaremos f al flujo antes de aumentar y f^* a lo que queda luego de aumentar.
- Veamos primero que f* satisface la primera condición de flujo.
- Es decir, tenemos que ver que $0 \le f^* \le c$.

Continuación prueba: f < c

- En los lados backward le restamos algo a f, por lo tanto $f^* < f < c$ en ellos.
- Mientras que en los lados forward, tenemos:

$$f^{*}(\overrightarrow{x_{i}x_{i+1}}) = f(\overrightarrow{x_{i}x_{i+1}}) + \varepsilon$$

$$\leq f(\overrightarrow{x_{i}x_{i+1}}) + \varepsilon_{i} \quad \text{pues } \varepsilon \text{ es el min de los } \varepsilon_{i}$$

$$= f(\overrightarrow{x_{i}x_{i+1}}) + c(\overrightarrow{x_{i}x_{i+1}}) - f(\overrightarrow{x_{i}x_{i+1}})$$

$$= c(\overrightarrow{x_{i}x_{i+1}})$$

Por lo tanto $f^* \leq c$ tambien vale en los lados forward.

- En los lados forward le sumamos algo a f, por lo tanto $0 < f < f^*$ en ellos.
- Mientras que en los lados backward, tenemos:

$$f^*(x_{i+1}\overrightarrow{x_i}) = f(x_{i+1}\overrightarrow{x_i}) - \varepsilon$$

 $\geq f(x_{i+1}\overrightarrow{x_i}) - \varepsilon_i \quad \text{pues } \varepsilon \leq \varepsilon_i \Rightarrow -\varepsilon \geq -\varepsilon_i$
 $= 0 \quad \text{pues } \varepsilon_i = f(x_{i+1}\overrightarrow{x_i}) \text{ en los lados backward}$

Por lo tanto $f^* \geq 0$ tambien vale en los lados backward. Ahora tenemos que ver la ley de conservación para f^* .

- \blacksquare Sea $x \neq s$, t.
- \blacksquare Si x no es ningún x_i , entonces como no se cambia ningún lado que entre o salga de x, tenemos:
 - $in_{f^*}(x) = in_f(x)$ y $out_{f^*}(x) = out_f(x)$
 - Por lo tanto $in_{f*}(x) = out_{f*}(x)$.
- Ahora tomemos un $x = x_i$.
- Como $x \neq s$, t, entonces 0 < i < r.
- Y entonces los vértices x_{i-1} y x_{i+1} existen.
- Los lados que cambian son los lados entre x_{i-1} y x_i y entre $X_i \setminus X_{i+1}$.
- Pero no sabemos si son forward o backward.

- Por lo tanto, tendremos que analizar cuatro casos, dependiendo de las combinaciones posibles de forward y backward entre ellos.
- Caso 1: Los dos son forward.
 - Los lados que existen son entonces $x_{i-1}^{\rightarrow} x_i$ v $x_i x_{i+1}^{\rightarrow}$
 - Y $f^* = f + \varepsilon$ en ambos lados.
 - Como $x_{i-1}x_i$ "entra" a x_i , entonces:
 - \bullet $in_{f^*}(x) = in_f(x) + \varepsilon$. (*)
 - Y como $\overrightarrow{x_i}\overrightarrow{x_{i+1}}$ "sale" de x_i , entonces:
 - $out_{f^*}(x) = out_f(x) + \varepsilon$ (**)
 - \bullet (*) y (**) implican $in_{f^*}(x) = out_{f^*}(x)$

- Caso 2: Los dos son backward.
- En este caso la prueba es muy similar a la anterior, reemplazando + por -:
 - Los lados que existen son $x_i \overrightarrow{x_{i-1}}$ y $x_{i+1} \overrightarrow{x_i}$
 - $f^* = f \varepsilon$ en ambos lados.
 - Como $\overrightarrow{x_i x_{i-1}}$ "sale" de x_i , entonces:
 - \bullet out_{f*} $(x) = out_f(x) \varepsilon$ (*)
 - Como $\overrightarrow{x_{i+1}}\overrightarrow{x_i}$ "entra" a x_i , entonces:
 - $In_{f^*}(x) = in_f(x) \varepsilon.$ (**)
 - (*) y (**) implican $in_{f^*}(x) = out_{f^*}(x)$

- Caso 3: El primero es forward, el segundo backward.
 - Los lados que existen son $\overrightarrow{x_{i-1}}\overrightarrow{x_i}$ y $\overrightarrow{x_{i+1}}\overrightarrow{x_i}$
 - $f^* = f + \varepsilon$ en el primero y $f^* = f \varepsilon$ en el segundo.
 - Como $x_{i-1}^{\longrightarrow} x_i$ "entra" a x_i , entonces:
 - este lado contribuye con un " $+\varepsilon$ " a $in_{f^*}(x)$.
 - Pero como $\overrightarrow{x_{i+1}}x_i$ también entra a x_i , este último lado contribuye con " $-\varepsilon$ " a $in_{f^*}(x)$.
 - Por lo tanto $in_{f^*}(x) = in_f(x) + \varepsilon \varepsilon = in_f(x)$. (*)
 - Como ningún lado que sale de x_i es cambiado, entonces $out_{f^*}(x) = out_f(x)$
 - Esto último y (*) implican $in_{f^*}(x) = out_{f^*}(x)$

- Caso 4: El primero es backward, el segundo forward.
- Similar al anterior
 - Los lados que existen son $\overrightarrow{x_i x_{i-1}}$ y $\overrightarrow{x_i x_{i+1}}$
 - $f^* = f \varepsilon$ en el primero y $f^* = f + \varepsilon$ en el segundo.
 - En este caso,como ningún lado que entra a xi es cambiado, entonces $in_{f^*}(x) = in_f(x)$ (*)
 - Como $\overrightarrow{x_i x_{i-1}}$ sale de x_i y contribuye con $-\varepsilon$
 - \mathbf{v} y $x_i \overrightarrow{x_{i+1}}$ también sale de x_i y contribuye con $+\varepsilon$
 - entonces $out_{f^*}(x) = out_f(x) + \varepsilon \varepsilon = out_f(x)$.
 - Esto último y (*) implican $in_{f^*}(x) = out_{f^*}(x)$
- Con lo que f* satisface la propiedad de conservación

Continuación prueba: $v(f^*) = v + \varepsilon$

- Para ver la tercera propiedad de flujos y calcular el valor de f^* simultaneamente tenemos que analizar dos casos:
- Caso 1: s, x₁ es forward.
 - En este caso el lado que existe es $\overrightarrow{sx_1}$ y $f^* = f + \varepsilon$ en ese lado.
 - Por lo tanto $in_{f^*}(s) = in_f(s)$ y $out_{f^*}(s) = out_f(s) + \varepsilon$. Asi que:
 - $\mathbf{v}(f^*) = out_{f^*}(s) in_{f^*}(s) = out_f(s) + \varepsilon in_f(s) = v(f) + \varepsilon.$
- Caso 1: s, x₁ es backward.
 - En realidad en ninguno de los ejemplos que daremos o los algoritmos que usaremos se puede producir este caso.
 - Pero probemoslo igual, por completitud.
 - El lado que existe es x_1 s y $f^* = f \varepsilon$
 - \bullet $in_{f^*}(s) = in_f(s) \varepsilon$ y $out_{f^*}(s) = out_f(s)$.
 - $\mathbf{v}(f^*) = out_{f^*}(s) in_{f^*}(s) = out_f(s) (in_f(s) \varepsilon) = v(f) + \varepsilon.$

Correctitud de Ford-Fulkerson

- Bien, hemos visto la primera parte de la correctitud de Ford-Fulkerson: en todo momento, las funciones intermedias que produce son flujos.
- Por lo tanto, si termina, lo que devuelve es un flujo.
- Lo que queremos ver a continuación es que, si termina, ese flujo que devuelve es maximal.
- Pero para eso necesitaremos un concepto nuevo y otro teorema.

MFMC

- Ya estamos en condiciones de probar que el algoritmo de Ford-Fulkerson, si termina, termina con un flujo maximal.
- La prueba tambien involucra probar el famoso "Max Flow Min Cut Theorem": el teorema del flujo maximal y corte minimal.
- Este teorema relaciona, como el nombre lo indica, flujos maximales y cortes minimales.
- Pero ademas, permite modificar el algoritmo de Ford-Fulkerson para que si termina, no sólo termine con un flujo maximal sino con un CERTIFICADO de que el flujo es maximal.
- Es decir, con algo que permite verificar que el flujo es maximal, independientemente del algoritmo.

Max Flow Min Cut

Max Flow Min Cut Theorem

Teorema de Ford-Fulkerson(Max Flow Min Cut):

- A Si f es un flujo y S es un corte, entonces $v(f) = f(S, \overline{S}) - f(\overline{S}, S).$
- B El valor de todo flujo es menor o igual que la capacidad de todo corte.
- C Si f es un flujo, las siguientes afirmaciones son equivalentes:
 - 1 Existe un corte S tal que v(f) = cap(S).
 - f es maximal.
 - No existen f-caminos aumentantes.
- Y si se cumplen, el S de [1] es minimal.
- En realidad suele llamarse Max Flow Min Cut a la parte [C] especificamente.
- 🔳 o incluso mas restrictivo, a la implicación 2 ⇛ 1. 🖫 👢 🥫 🔊

- Sea f un flujo cualquiera y S un corte cualquiera.
- Por la propiedad de la conservación, tenemos que
- $out_f(x) in_f(x) = 0$ para todo $x \neq s, t$.
- \blacksquare Y para x = s, tenemos $out_f(s) in_f(s) = v(f)$.
- $\mathbf{x} = t$ no nos interesa pues miraremos sólo $x \in S$, y S es un corte.

•0000

Calculando v(f) por medio de un corte

Max Flow Min Cut Theorem

00000

Entonces:

$$\sum_{x} (out_f(x) - in_f(x))[x \in S] =$$

$$= out_f(s) - in_f(s) + \sum_{x} (out_f(x) - in_f(x))[x \in S][x \neq s]$$

$$= v(f) + \sum_{x} 0[x \in S][x \neq s]$$

$$= v(f)$$

Usemos esto que hemos probado, y calculemos $\sum_{x} (out_f(x) - in_f(x))[x \in S]$ de otra forma.

Observación trivial

- Pero antes, veamos una observación trivial: sea f definida en lados y A, B, $C \subseteq V$ tales que $A \cap C = \emptyset$.
- Entonces es trivial ver que $f(A \cup C, B) = f(A, B) + f(C, B)$.
- y similarmente $f(B, A \cup C) = f(B, A) + f(B, C)$. pej la primera:

$$f(A \cup C, B) = \sum_{x,y} [x \in A \cup C][y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy})$$

Max Flow Min Cut Theorem

Observación trivial

- Pero antes, veamos una observación trivial: sea f definida en lados y $A, B, C \subseteq V$ tales que $A \cap C = \emptyset$.
- Entonces es trivial ver que $f(A \cup C, B) = f(A, B) + f(C, B)$.
- v similarmente $f(B, A \cup C) = f(B, A) + f(B, C)$, pej la primera:

$$f(A \cup C, B) = \sum_{x,y} [x \in A \cup C][y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy})$$

$$pero [x \in A \cup C] = [x \in A] + [x \in C]pues A \cap C = \emptyset$$

Max Flow Min Cut Theorem

Observación trivial

- Pero antes, veamos una observación trivial: sea f definida en lados y $A, B, C \subseteq V$ tales que $A \cap C = \emptyset$.
- Entonces es trivial ver que $f(A \cup C, B) = f(A, B) + f(C, B)$.
- v similarmente $f(B, A \cup C) = f(B, A) + f(B, C)$, pej la primera:

$$f(A \cup C, B) = \sum_{x,y} [x \in A \cup C][y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy})$$

$$= \sum_{x,y} ([x \in A] + [x \in C])[y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy})$$

$$= \sum_{x,y} [x \in A][y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy}) +$$

$$+ \sum_{x,y} [x \in C][y \in B][\overrightarrow{xy} \in E]f(\overrightarrow{xy})$$

$$= f(A, B) + f(C, B)$$

00000

Volviendo a la prueba, habiamos visto que

$$\sum_{x}(out_{f}(x)-in_{f}(x))[x \in S] = v(f)$$
, asi que:

$$v(f) = \sum_{x} (out_{f}(x) - in_{f}(x))[x \in S]$$

$$= \sum_{x} (f(\{x\}, V) - f(V, \{x\}))[x \in S]$$

$$= \sum_{x} f(\{x\}, V)[x \in S] - \sum_{x} f(V, \{x\})[x \in S]$$

$$= f(S, V) - f(V, S)$$

$$= f(S, S \cup \overline{S}) - f(S \cup \overline{S}, S)$$

Volviendo a la prueba, habiamos visto que

$$\sum_{x}(out_{f}(x)-in_{f}(x))[x \in S]=v(f)$$
, asi que:

$$v(f) = \sum_{x} (out_{f}(x) - in_{f}(x))[x \in S]$$

$$= \sum_{x} (f(\{x\}, V) - f(V, \{x\}))[x \in S]$$

$$= \sum_{x} f(\{x\}, V)[x \in S] - \sum_{x} f(V, \{x\})[x \in S]$$

$$= f(S, V) - f(V, S)$$

$$= f(S, S \cup \overline{S}) - f(S \cup \overline{S}, S)$$

podemos usar la observacion trivial:

Max Flow Min Cut Theorem

00000

Volviendo a la prueba, habiamos visto que

 $\sum_{v} (out_f(x) - in_f(x))[x \in S] = v(f)$, asi que:

$$v(f) = \sum_{x} (out_{f}(x) - in_{f}(x))[x \in S]$$

$$= \sum_{x} (f(\{x\}, V) - f(V, \{x\}))[x \in S]$$

$$= \sum_{x} f(\{x\}, V)[x \in S] - \sum_{x} f(V, \{x\})[x \in S]$$

$$= f(S, V) - f(V, S)$$

$$= f(S, S \cup \overline{S}) - f(S \cup \overline{S}, S)$$

$$= f(S, S) + f(S, \overline{S}) - f(S, S) - f(\overline{S}, S)$$

$$= f(S, \overline{S}) - f(\overline{S}, S)$$

Observación secundaria

- Esta observación no es parte de la prueba pero es un buen lugar para hacerla.
- Recordemos que v(f) esta definido como $out_f(s) in_f(s) = f(\{s\}, V) f(V, \{s\}).$
- Eso tambien es igual a $v(f) = f(\{s\}, V \{s\}) f(V \{s\}, \{s\}).$
- Puesto que $S = \{s\}$ es un corte, vemos que la definición de v(f) es un caso particular de lo que acabamos de probar que $v(f) = f(S, \overline{S}) f(\overline{S}, S)$.
- Tambien habiamos probado que $v(f) = in_f(t) out_f(t) = f(V \{t\}, \{t\}) f(\{t\}, V \{t\}).$
- Como $V \{t\}$ es corte y $V (V \{t\}) = \{t\}$, esto tambien es un caso particular.

Parte [B]

Prueba de [B]:

$$v(f) = f(S, \overline{S}) - f(\overline{S}, S)$$

 $\leq f(S, \overline{S})$
 $\leq c(S, \overline{S}) = cap(S)$

Fin B. Ahora probemos C.

000000000

- Para probar la equivalencia de 1,2,3 probaremos que $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.
- Las 2 primeras son faciles.

- Para probar la equivalencia de 1,2,3 probaremos que $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$.
- Las 2 primeras son faciles.
- \blacksquare 1 \Rightarrow 2 (es decir, probar que si existe un corte S tal que v(f) = cap(S) entonces f es maximal (y S es minimal)

Max Flow Min Cut Theorem

000000000

- Para probar la equivalencia de 1,2,3 probaremos que $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$
- Las 2 primeras son faciles.
- 1 ⇒ 2
 - Sean S, f como en [1] y sea g un flujo cualquiera.
 - Por la parte [B], v(g) < cap(S).
 - Pero por hipotesis tenemos que cap(S) = v(f).
 - Concluimos que $v(g) \le v(f)$ y por lo tanto f es maximal
 - Ademas, si T es un corte, $cap(T) \ge v(f) = cap(S)$, es decir. S es minimal.

■ 2 \Rightarrow 3: (es decir ver que si f es maximal entonces no existen f-caminos aumentantes)

■ 2 ⇒ 3:

- Si existiese un *f*-camino aumentante, podriamos mandar un $\varepsilon > 0$ a través de el.
- Obtendriamos un flujo f^* tal que $v(f^*) = v(f) + \varepsilon$.
- Esto diria que $v(f^*) > v(f)$
- lo cual contradice que f sea maximal.

Max Flow Min Cut Theorem

000000000

■ 3 \Rightarrow 1: Es decir, probar que si no existen *f*-caminos aumentantes entonces existe un corte S tal que v(f) = cap(S)

- **■** 3 ⇒ 1:
- (esta es la parte principal del teorema, las otras dos implicaciones eran muy fáciles, como vimos.
- Necesitamos construir un S que sea corte con cap(S) = v(f). Primero lo definimos y luego probamos sus propiedades:

 $S = \{s\} \cup \{x \in V : \text{ exista un } f\text{-camino aumentante desde } s \text{ a } x\}$

Max Flow Min Cut Theorem

0000000000

- Como estamos suponiendo que vale (3), entonces $t \notin S$.
- Como $s \in S$ por definición, v $t \notin S$, entonces S es un corte.
- Por lo tanto, por la cuenta que hicimos en la parte [A], tenemos que $v(f) = f(S, \overline{S}) - f(\overline{S}, S)$
- Calculemos $f(S, \overline{S})$ y $f(\overline{S}, S)$.

Max Flow Min Cut, continuación prueba $3 \Rightarrow 1$

Max Flow Min Cut Theorem

0000000000

- $f(S, \overline{S}) = \sum_{x, y} f(\overrightarrow{xy})[x \in S][y \notin S][\overrightarrow{xy} \in E]$
- Consideremos un par x, y de los que aparecen en esa suma.
- Como $x \in S$, entonces existe un f-camino aumentante entre s y x, digamos $s = x_0, x_1, ..., x_r = x$.
- Pero como $y \notin S$, entonces no existe ningún f-camino aumentante entre s e y.
- En particular

$$s = x_0, x_1, ..., x_r = x, y$$

NO ES un f-camino aumentante.

■ Pero $\overrightarrow{xy} \in E$, asi que PODRIA serlo.

0000000000

- ¿Porqué $s = x_0, x_1, ..., x_r = x, y$ no es un f-camino aumentante a pesar de que $s = x_0, x_1, ..., x_r = x$ si lo es y \overrightarrow{xv} existe?
- La única razón por la cual no es un f-camino aumentante es porque no podemos usar el lado \overrightarrow{xy} por estar saturado, es decir: $f(\overrightarrow{xy}) = c(\overrightarrow{xy})$.
- Esto es cierto para cualesquiera x, y que aparezcan en esa suma.

Max Flow Min Cut, continuación prueba $3 \Rightarrow 1$

Max Flow Min Cut Theorem

0000000000

- Porqué $s = x_0, x_1, ..., x_r = x, y$ no es un f-camino aumentante a pesar de que $s = x_0, x_1, ..., x_r = x$ si lo es y \overrightarrow{xv} existe?
- La única razón por la cual no es un f-camino aumentante es porque no podemos usar el lado \overrightarrow{xy} por estar saturado, es decir: $f(\overrightarrow{xy}) = c(\overrightarrow{xy})$.
- Esto es cierto para cualesquiera x, y que aparezcan en esa suma.
- Entonces:

$$f(S, \overline{S}) = \sum_{x,y} f(\overrightarrow{xy})[x \in S][y \notin S][\overrightarrow{xy} \in E]$$

$$= \sum_{x,y} c(\overrightarrow{xy})[x \in S][y \notin S][\overrightarrow{xy} \in E]$$

$$= c(S, \overline{S}) = cap(S)$$

Max Flow Min Cut, continuación prueba $3 \Rightarrow 1$

Max Flow Min Cut Theorem

0000000000

- Veamos ahora $f(\overline{S}, S)$:
- $f(\overline{S}, S) = \sum_{x, y} f(\overrightarrow{xy})[x \notin S][y \in S][\overrightarrow{xy} \in E]$
- Consideremos un par x, y de los que aparecen en esa suma.
- \blacksquare Como $y \in S$, entonces existe un f-camino aumentante entre s e y, digamos $s = x_0, x_1, ..., x_r = y$.
- Pero como $x \notin S$, entonces no existe un f-camino aumentante entre s y x.
- En particular

$$s = x_0, x_1, ..., x_r = y, x$$

NO ES un f-camino aumentante.

Pero $\overrightarrow{xy} \in E$, asi que PODRIA serlo, usando y, x como lado backward.

0000000000

- Porqué $s = x_0, x_1, ..., x_r = y, x$ no es un f-camino aumentante a pesar de que $s = x_0, x_1, ..., x_r = y$ si lo es y xv existe?
- La única razón es que no podemos usarlo como lado backward, es decir, que $f(\overrightarrow{xy}) = 0$.
- Esto es cierto para cualesquiera x, y que aparezcan en esa suma.

Max Flow Min Cut, continuación prueba $3 \Rightarrow 1$

- ¿Porqué $s = x_0, x_1, ..., x_r = y, x$ no es un f-camino aumentante a pesar de que $s = x_0, x_1, ..., x_r = y$ si lo es y \overrightarrow{xy} existe?
- La única razón es que no podemos usarlo como lado backward, es decir, que $f(\overrightarrow{xy}) = 0$.
- Esto es cierto para cualesquiera x, y que aparezcan en esa suma.
- Entonces:

$$f(\overline{S}, S) = \sum_{x,y} f(\overrightarrow{xy})[x \notin S][y \in S][\overrightarrow{xy} \in E]$$
$$= \sum_{x,y} 0[x \notin S][y \in S][\overrightarrow{xy} \in E]$$
$$= 0$$

Max Flow Min Cut, conclusion prueba $3 \Rightarrow 1$

Max Flow Min Cut Theorem

000000000

- Entonces hemos probado que para este S:
 - 1 $f(S, \overline{S}) = cap(S)$
 - f(S,S) = 0
- Por lo tanto:

$$v(f) = f(S, \overline{S}) - f(\overline{S}, S)$$

= $cap(S) - 0$
= $cap(S)$

Con lo cual hemos probado (1). Fin

Correctitud de Ford-Fulkerson

Corolario:

Si el algoritmo de Ford-Fulkerson termina, termina con un flujo maximal

- Prueba: si Ford-Fulkerson termina, entonces termina con un flujo *f* para el cual no hay mas *f*-caminos aumentantes.
- Por lo tanto f es maximal, por el Max Flow Min Cut Theorem. Fin

S como certificado

- Observación: mientras se corre Ford-Fulkerson, durante la busqueda de un camino aumentante, se puede ir construyendo S.
- Si $t \in S$, existe un f-camino aumentante y podemos seguir.
- \blacksquare Si $t \notin S$, el algoritmo se detendrá, el flujo será maximal, y el último S construido servira como "certificado" de que f es maximal.
- Pues dado el f y el S, se pueden calcular v(f) y cap(S) en forma independiente, y verificar si son iguales.
- Por la parte $1 \Rightarrow 2$ del teorema, si son iguales sabemos que f es maximal.
- En los ejercicios prácticos esto sirve para chequear que uno no haya cometido algún error tal que el flujo calculado no sea en realidad un flujo maximal.

Flujos enteros maximales

- Aún con las limitaciones que tiene Ford-Fulkerson, es suficiente para probar un teorema importante.
- Ya habiamos hablado antes sobre lo de abajo, pero lo vuelvo a recordar para plantear el teorema.
- En la definición de flujo, no se requiere que $f(\overrightarrow{xy})$ sea un entero para todo lado. Llamabamos "entero" a tales flujos.
- Algunos libros, como el Biggs, si requieren eso.
- Si uno limita los flujos a flujos enteros, entonces como hay una cantidad finita de ellos es obvio que hay flujos enteros maximales, es decir, flujos que son maximales entre los flujos enteros.

Teorema de la Integralidad

- Pero no necesariamente serán maximales entre todos los flujos.
- Pej si tenemos un sólo lado st de capacidad 10,4 entonces el flujo entero maximal tiene valor 10, pero el flujo maximal tiene valor 10.4.
- Esto es consecuencia directa de que hay lados con capacidades no enteras.
- Pero ¿qué pasa si todas las capacidades son enteras?
- Ese es el Teorema de la Integralidad:

Teorema de la integralidad.

En un network con capacidades enteras, todo flujo entero maximal es un flujo maximal.

El Teorema de la Integralidad sale directo del siguiente Teorema:

Teorema

En un network donde todas las capacidades sean enteros, Ford-Fulkerson siempre termina y el flujo maximal resultante es un flujo entero.

- Este teorema demuestra el Teorema de la Integralidad porque ya vimos que si Ford-Fulkerson termina, entonces termina con un flujo maximal.
- Para demostrarlo demostraremos primero que todos los flujos intermedios que se producen en el algoritmo de Ford-Fulkerson son enteros.
- Asi que obviamente el flujo final será entero.

- \blacksquare Como empezamos con el flujo f=0, que es entero, basta probar que si f es entero y lo aumentamos con un camino aumentante de Ford-Fulkerson, entonces el flujo resultante sique siendo entero.
- Asumiendo f entero, tomemos entonces un f-camino aumentante $s = x_0, x_1, ..., x_r = t$.
- Los ε_i que calculamos son:
 - \bullet $\varepsilon_i = c(x_i \overrightarrow{x_{i+1}}) f(x_i \overrightarrow{x_{i+1}})$ en los lados forward.
 - Como tanto c como f son enteros, entonces ese ε_i es entero.
 - o bien $\varepsilon_i = f(x_{i+1} x_i)$ en los lados backward.
 - Como f es entero por hipotesis, entonces ε_i también es entero en este caso.
- Concluimos que todos los ε_i son enteros.

Prueba del Teorema de la Integralidad

- Como ε es el mínimo de los ε_i y estos son todos enteros, entonces ε es entero.
- \blacksquare Como f es cambiado sumando o restando ε en los lados, entonces el nuevo f tambien es entero.
- Esto concluye con la primera parte de la prueba. Para poder terminar la prueba debemos ver que efectivamente Ford-Fulkerson siempre termina si las capacidades son enteras.
- Vimos que el ε es entero, y sabemos que es positivo, porque se calcula en un camino aumentante.
- Por lo tanto, en cada aumento de flujo, el valor del flujo aumenta en AL MENOS UNO.

Prueba del Teorema de la Integralidad

- Como el valor de todo flujo es menor o igual que la capacidad de cualquier corte, todo flujo debe tener un valor acotado por pej, $cap(\{s\})$.
- Como en cada calculo de un nuevo flujo el valor aumenta en al menos uno.
- concluimos que Ford-Fulkerson puede calcular a lo sumo $cap(\{s\})$ flujos intermedios, y luego si o si debe terminar en el caso de capacidades enteras.
- Fin.