ML: Algo and Theory

SS 18 Tutor:

1	2	3	4	\sum

Florence Lopez (3878792) Jennifer Them (3837649)

Assignment 5

(Due 29. April 2018)

Exercise 1

- see code.
- see code.
- see code.
- see code. C = 100 seems to work the best, since it produces the highest cv and test accuracy.

Exercise 2

- see code.
- see code. With increasing C the hyperplane gets less data dependant.
- see code. C = 0.01 seems to work best, since the test accuracy is the highest for this one.
- see code. Observation: The accuracy for X_1 and Y_1 is higher, since the data seems to be better separable as one can see in the plot. This is not the case for X_2 and Y_2 , since the datapoints for the different classes are somehow overlapping and not easy to separate.

Exercise 3

(a)

We say a hyperplane, which is defined by w and b, is in canonical representation when $\min_{i=1,...,n} |\langle w, x_i \rangle + b| = 1$ with respect to the data points is given. $Y_i(\omega^T X_i + b) \ge 1$ makes sure that every data point has at least the distance 1 from the hyperplane. When you find the optimal solution by minimizing ω , this imposes that there is at least one point (trainingsdata) with the distance 1. Which means that the minimal distance is 1.

(b)

The objective function $\frac{1}{2}||\omega||^2$ is strictly convex (see ANALYSIS OF SUPPORT VECTOR MACHINES by Shigeo Abe and Uniqueness of the SVM solution by Burges and Crisp). Because the training data is linearly separable there is a solution. Due to the strict convexity of the objective function there is only one point that represents the minimum so that the solution is therefore unique.

.