PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-037992

(43) Date of publication of application: 19.02.1991

(51)Int.CI.

H05B 33/10

CO9K 11/06

H05B 33/14

(21)Application number: 01-171037

(71)Applicant: IDEMITSU KOSAN CO LTD

(22)Date of filing:

04.07.1989

(72)Inventor: YOKOYAMA SEIICHIRO

(54) MANUFACTURE OF ORGANIC ELECTROLUMINESCENCE ELEMENT

(57) Abstract:

PURPOSE: To enable the efficient manufacture of an organic electroluminnescent element of a large luminous amount and area, and long lifetime with relatively simple operation by forming a luminous layer on the electrode of anode or cathode via a process with power supply in the condition where the film of a luminous layer material is formed.

CONSTITUTION: A luminous layer material is dispersed or solubilized in a water soluble media with an interfacial active agent of 10 to 20 HLB. In addition, a luminous layer is formed on the electrode of anode or cathode via the processing of the dispersed or solubilized solution with power supply in the condition where the layer of the luminous layer is generated. According to the aforesaid construction, operation such as alignment is not required in laminating functional thin films on the electrode, and a desired thin film can be efficiently manufactured with relatively simple operation. Also, the obtained organic EL element has a wide contact area and high brightness and efficiency.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

母 公 開 特 許 公 報(A) 平3−37992

Dint. Cl. 5

勿出

願

人

識別記号

庁内整理番号

43公開 平成3年(1991)2月19日

H 05 B 33/10 C 09 K 11/06 H 05 B 33/14 Z 6649-3K 7043-4H 6649-3K

審査請求 未請求 請求項の数 5 (全13頁)

ᡚ発明の名称 有機エレクトロルミネツセンス素子の製造方法

出光興產株式会社

②特 願 平1-171037

@出 願 平1(1989)7月4日

@発明者 横山 清一郎

千葉県君津郡袖ケ浦町上泉1280番地 出光興産株式会社内

東京都千代田区丸の内3丁目1番1号

個代 理 人 弁理士 大 谷 保

明細管

1. 発明の名称

有機エレクトロルミネッセンス素子の製造方法 2. 特許請求の範囲

- (1) 陽極/発光暦/陰極からなる有機エレクトロルミネッセンス素子を製造するにあたり、発光 層材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは降極の電極といは可溶化溶液を、陽極あるいは降極の電極上に前記発光層を形成することを特徴とする有機エレクトロルミネッセンス素子の製造方法。
- (2)陽極/正孔注入翰送曆/発光曆/陰極からなる有機エレクトロルミネッセンス素子を製造するにあたり、正孔注入翰送曆材料及び/又は発光曆材料を水性媒体中でHLB値10~20の界面活性剤にて分散あるいは可溶化して得た分散液あるいは可溶化溶液を、陽極あるいは陰極の電極上に前記材料の膜が生成する条件下で通電処理して正孔注入翰送曆及び/又は発光曆を形成すること

を特徴とする有機エレクトロルミネッセンス案子 の製造方法。

- (3)隔極/発光層/電子注入輸送層/降極/ なる有機エレクトロルミネッセンス案子を製造するにあたり、発光層材料及び/又は電子注入輸送 層材料を水性媒体中でHLB値10~20の界面 活性剤にて分散あるいは可溶化して得た分散液 るいは可溶化を、陽極あるいは陰極の電 に前記材料の膜が生成する条件下で通電処理して 発光層及び/又は電子注入輸送層を形成する を特徴とする有機エレクトロルミネッセンス案子 の製造方法。
- (4)陽極/正孔注入輸送層/発光層/電子注入 輸送層/陰極からなる有機エレクトロルミネッセ ンス素子を製造するにあたり、正孔注入輸送層材 料、発光層材料及び電子注入輸送層材料の少なく とも一層の材料を水性媒体中でHLB値10~ 20の界面活性剤にて分散あるいは可溶化して得 た分散液あるいは可溶化溶液を、陽極あるいは陰 極の電極上に前記材料の膜が生成する条件下で通

電処理して正孔注入輸送層, 発光層及び電子注入 輸送層の少なくとも一層を形成することを特徴と する有機エレクトロルミネッセンス素子の製造方 法。

(5) 界面活性剤がフェロセン誘導体である請求 項1~4のいずれかに記載の製造方法。

3. 発明の詳細な説明

(産業上の利用分野)

本発明は有機エレクトロルミネッセンス素子の 製造方法に関し、詳しくは発光量が多く、応答速 度が速く、種々の表示材料等として有用な有機エ レクトロルミネッセンス素子の効率のよい製造方 法に関する。

(従来の技術及び発明が解決しようとする課題) エレクトロルミネッセンス素子(以下BL素子 という)は、自己発光のため視認性が高く、また 完全固体素子であるため耐衝撃性に優れるという 特徴を有しており、現在、無機、有機化合物を発 光層に用いた機々なBL素子が提案され、実用化 が試みられている。このうち、有機薄膜BL素子

な操作で効率よく製造する方法を開発すべく鋭意 研究を重ねた。

その結果、発光層の材料あるいはその他の機能 層の材料を水性媒体中でHLB値10~20の界 面活性剤を用いて得られる分散液あるいは可溶化 液を電極上で特定の条件下で通電処理する方法、 所謂ミセル電解法を用いて発光層等を形成するこ とにより、上記の課題を達成できることを見出し た。

本発明はかかる知見に基づいて完成したものである。すなわち、本発明は陽極/発光層/陰極からなる有機EL素子を製造するにあたり、発光面は特別にて分散あるいは可溶化して得た分散液を、関極あるいは陰極ので通知を上でが出る。また、関係を光層を形成する。また、本発明は陽極/正孔注入輸送層/発光層/電子注入輸送

は、印加度圧を大幅に低下させることができるた め、各種材料が開発されつつある。

この有機薄膜已し素子としては、陽極/発光層 / 陰極からなる有機已し素子、陽極/正孔注入輸 送層/発光層/陰極からなる有機已し素子、陽極 / 発光層/電子注入輸送層/陰極からなる有機已 し素子あるいは陽極/正孔注入輸送層/発光層/ 電子注入輸送層/陰極からなる有機已し素子など、 電極に発光層及び各種機能を有する薄層を積層し たものが種々開発されている。

従来、このような有機BL素子の製造方法としては種々の積層方法、例えば蒸着法、イオンピーム法、プラズマ重合法、LB法等を利用した方法が知られている。しかし、これらの方法では、その工程が複雑であり生産性が悪いという欠点があった。また、これらの方法で得られる有機EL系子は発光量や発光面積が小さいなどの問題がある。(課題を達成するための手段)

そこで本発明者らは、発光量及び発光面積が大きく、また寿命が長い有機EL素子を比較的簡易

層/陰極からなる有機已し素子あるいは陽極/正 孔注入輸送層/発光層/電子注入輸送層/陰極か らなる有機已し素子を製造するにあたって、正孔 注入輸送層材料、発光層材料及び電子注入輸送層 材料の少なくとも一層の材料を上記方法と同様に して分散液あるいは可溶化溶液として、これを通 電処理して所望する機能層を形成して有機已し業 子を製造する方法をも提供するものである。

パッタリング法,エッチング法,キャスト法,ディップ法。LB法などを組み合わせて行うことができる。

本発明において用いられる有機已し素子の発光 層材料としては、発光機能の有機化合物であれば 良く、特に制限はなく、従来公知の化合物の中か ら任意に選択して用いることができる。例えば多 環縮合芳香族化合物、ベンプチアゾール系。ベン ブイミダゾール系。ベンソオキサゾール系などの 蛍光増白剤、金属キレート化オキシノイド化合物、 ジスチリルベンゼン系化合物などを用いることが できる。

前記多項縮合芳香族化合物としては、例えばアントラセン、アントラキノン、ナフタレン、フェナンスレン、ピレン、クリセン、ペリレン骨格を含む縮合環発光物質や、約8個の縮合環を含む他の縮合環発光物質などを挙げることができる。また前記各系の蛍光増白剤としては、例えば特開的59—194393号公報に記載のものを用いることができ、その代表例としては、2、5-ビス

ベンゾチアゾールなどのベンゾチアゾール系、2 - (2-(4-(2-ベンゾイミダゾリル)フェ ニル)ビニル)ベンゾイミダゾール;2-(2-(4-カルボキシフェニル)ピニル)ベンゾイミ グゾールなどのベンゾイミダゾール系などの蛍光 増白剤が挙げられる。

また前記金属キレート化オキサノイド化合物としては、例えば特開昭 6 3 - 2 9 5 6 9 5 号公報記載のものを用いることができる。その代表例としては、トリス (8 - キノリノール) マグネシウム、ピス (8 - キノリノール) マグネシウム、ピス (1) - 8 - キノリノール) 亜鉛、ピス (2 - メチルー8 - キノリノラート) アルシートリス (5 - メチルー8 - キノリノール) オリカム、トリス (5 - メチルー8 - キノリノール) カルシウス (5 - クロロー8 - キノリノール) カルシウス (5 - クロロー8 - キノリノール) カルシウム・ポリ (亜鉛 (II) - ピス (8 - ヒドロキンー 5 - キノリノニル) メタン などの8 - ヒドロキ

(5, 7 - ジーtーペンチルー2 ーベンゾオキサ ゾリル) -1, 3, 4-チアジアゾール; 4, 4' ーピス(5.7-t-ペンチル-2-ペンゾオキ サゾリル) スチルベン; 4, 4' ーピス (5, 7 ージー(2ーメチルー2ーブチル)-2ーベンゾ オキサゾリル〕スチルベン;2、5ーピス(5、 7 - ジーt - ペンチルー2 - ペンゾオキサゾリル) チオフェン; 2 、 5 ーピス(5 ー (α 、 α ージメ チルベンジル) -2-ベンゾオキサゾリル) チオ フェン; 2, 5ーピス (5, 1ージー (2ーメチ ルー2ープチル)ー2ーペンゾオキサゾリル]ー 3, 4-ジフェニルチオフェン: 2, 5-ビュ (5-メチルー2-ベンゾオキサゾリル)チオフ ェン:4、4'ーピスー(2ーベンゾオキサゾリ ル) ピフェニル; 5ーメチルー2ー (2ー (4ー (5-メチルー2-ベンゾオキサゾリル) フェニ ル〕ビニル〕ベンゾオキサゾール;2-〔2-(4-クロロフェニル) ピニル) ナフト (1, 2 - d) オキサゾールなどのベンゾオキサゾール系、 2, 2'-(p-フェニレンジピニレン)ービス

シキノリン系金属錯体やジリチウムエピンドリジ オンなどが挙げられる。

また、前記ジスチリルベンゼン系化合物としては、例えば特願平1-29681号明細書に記載のものを用いることができる。明細書記載の1、4-ビス(アルキルスチリル)ベンゼン誘導体としては各種のものがあるが、例えば次のものをあげることができる。

本発明の有機BL素子における発光層は、上記の材料から適宜選定して用いればよいが、二種類以上を併用することもできる。

また、発光層は、電極の間に一層だけ存在させてもよく、あるいは別の材料の発光層を積層してもよい。さらに、目的とする業子に応じて、電極と発光層の間に正孔注入輸送層及び/又は電子注入輸送層とを介在させることも有効である。また、各機能層は、一層からなるものでも、また複数の層からなるものでもよい。

このように、各機能層の積層構造とすることにより、発光層だけの単層型のものより発光強度を 大幅に向上させることができる。

本発明の有機BL業子としては、(1)隔極/発光層/陰極, (2)隔極/正孔注入輸送層/発光層/陰極, (3)隔極/正孔注入輸送層/発光層/電子注入

輸送層/陰極あるいは(4)陽極/発光層/電子注入 輸送層/陰極をこの順序で積層した各應様のもの をあげることができる。

このような電荷輸送材として以下のような例があげられる。

①米国特許第3112197号明細書等に記載されているトリアゾール誘導体、

②米国特許第3189447号明細書等に記載さ

れているオキサジアゾール誘導体、

③特公昭37-16096号公報等に記載されているイミダゾール誘導体、

④米国特許第3615402号, 同3820989号, 同3542544号明細書や特公昭45一555号, 同51-10983号公報さらには特開昭51-93224号, 同55-17105号, 同56-4148号, 同55-108667号, 同55-156953号, 同56-36656号公報等に記載されているポリアリールアルカン誘導体、

⑤米国特許第3180729号,同4278746 号明細書や特開昭55-88064号。同55-88065号,同49-105537号。同55 -51086号。同56-80051号。同56 -88141号。同57-45545号。同54 -112637号。同55-74546号公報等 に記載されているビラゾリン誘導体およびピラゾ ロン誘導体、

⑥米国特许第3615404号明細書や特公昭

⊕特開昭54-110837号公報等に記載されているフルオレノン誘導件、

②米国特許第3717462号明細書や特開昭 54-59143号、同55-52063号、同 55-52064号、同55-46760号、同 55-85495号、同57-11350号、同 57-148749号公報等に記載されているヒ ドラゾン誘導体、

(3) 特開昭 6 1 - 2 1 0 3 6 3 号、同 6 1 - 2 2 8 4 6 1 号、同 6 1 - 1 4 6 4 2 号、同 6 1 - 7 2 2 5 5 号、同 6 2 - 4 7 6 4 6 号、同 6 2 - 3 6 6 7 4 号、同 6 2 - 1 0 6 5 2 号、同 6 2 - 3 0 2 5 5 号、同 6 0 - 9 3 4 4 5 号、同 6 0 - 9 3 4 4 5 号、同 6 0 - 1 7 4 7 4 9 号、同 6 0 - 1 7 5 0 5 2 号公報等に記載されているスチルベン誘導体などを列挙することができる。

さらに特に好ましい例としては、特開昭 6 3 - 2 9 5 6 9 5 号公報に開示されているホール輸送 層としての化合物(芳香族三級アミン)や正孔注 入帯としての化合物(ポルフィリン化合物)をあ 5 1 - 1 0 1 0 5 号、同 4 6 - 3 7 1 2 号、同 4 7 - 2 5 3 3 6 号公報さらには特開昭 5 4 - 5 3 4 3 5 号、同 5 4 - 1 1 0 5 3 6 号、同 5 4 - 1 1 9 9 2 5 号公報等に記載されているフェニレンジアミン誘導体、

⑦米国特許第3567450号、同3180703 号、同3240597号、同3658520号、 同4232103号、同4175961号、同 4012376号明細書や特公昭49-35702 号、同39-27577号公報さらには特開昭 55-144250号、同56-119132号、 同56-22437号公報、西独特許第1110518 号明細書等に記載されているアリールアミン誘導体、

⑧米国特許第3526501号明細書等に記載されているアミノ置換カルコン誘導体、

③米国特許第3257203号明細書等に記載されているオキサゾール誘導体、

⑩特開昭56−46234号公報等に記載されているスチリルアントラセン誘導体、

げることができる。

さらに特に正孔伝達化合物として好ましい例は、 特開昭53-27033号公報。同54-58445号公報。同54-149634号公報。 同54-64299号公報。同55-79450 号公報。同55-144250号公報。同56-119132号公報。同61-295558号公 報、同61-98353号公報及び米国特許第 4127412号明細書等に開示されているもの である。それらの例を示せば次の如くである。

あって、陰極より注入された電子を発光層にする 機能を有するものである。このような材料として は上記の如き機能を有する薄膜を形成しうるもの であれば、特に制限なく使用することができる。 具体的には次のようなものがあげられる。

などのニトロ置換フルオレノン誘導体、

②特開昭57-149259号, 同58-55450 号, 同63-104061号公報等に記載されて いるアントラキノジメタン誘導体、

③Polymer Preprints, Japan Vol. 37, Ma.3 (1988),p.681等に記載されている

などのジフェニルキノン誘導体、

本発明の正孔注入輸送層はこれらの化合物を 1 種または 2 種以上から成る一層で構成されてもよいし、あるいは別種の化合物からなる他の正孔注 入輸送層を積層したものであってもよい。

一方、本発明では、電子注入輸送層を陰極と発 光層との間に挟むことにより、より低い電界で多 くの電子が発光層に注入される。電子注入輸送層 の材料としては、電子伝達化合物から成るもので

などのチオピランジオ

キシド誘導体、

⑤J. J. APP1. Phys., 27, L 269(1988)等に記載されている

で表わされる化合物、

⑥特開昭60-69657号,同61-143764号。同61-148159号公報等に記載されているフレオレニリデンメタン誘導体、

⑦特開昭 6 1 - 2 2 5 1 5 1 号。同 6 1 - 2 3 3 7 5 0 号公報等に記載されているアントラキノジメタン誘導体及びアントロン誘導体などをあげることができる。

(18)日本学術振興会、光電相互変換第125委員会 第129回研究会にて九州大学 安達らの講演に より開示された

で表わされる化合物、

本発明の方法では、上記の如き材料を用いて、 所謂ミセル電解法、即ちこれらの材料を水性媒体 中でHLB値10~20の界面活性にて分散ある いは可溶化して得た分散液あるいは可溶化溶液を、 電極(陽極又は陰極)上に前記材料の膜(薄膜) が生成する条件下で通電処理する方法を行うこと により、効率よく薄膜の層を形成することができ る。

このような有機BL素子は通常基板上に形成される。本発明の有機BL素子において使用される 基板は、透明性を有するものが好ましく、一般に ガラス、透明プラスチック、石英等が充当される。 また、電極(陽極、陰極)としては次の如きも、 のが好ましい。陽極としては仕事関数の大きい即

Na・NaーK合金、Mg、Li、Mg/Cu混合物、Al/AlOi、Inなどが挙げられる。 该路極は、これらの電極物質を蒸着あるいはこれらの電極物質を蒸着あるいはこれらの電極物質を蒸着あるいはこれの方法により、薄におび成よりできる。前記の一次とにより作製することができる。前記の一方はは数するではいい。このに関するのでははないが表現の素子には強いではいい。ないではいいで選ばれる。なおでいまれか一方が透明または半透明であることが発光を透過し、取り出す効率がよいので好ましい。

本発明の方法では、まず上述の如き基板上に上記の方法にて電極(陽極または陰極)をパターニングして形成し、このものの上に所望の薄層、即ち発光層、正孔注入輸送層あるいは電子注入輸送層の少なくとも一層を、所謂ミセル電解法にて積層し、さらに電極、基板上の電極が陽極の場合は陽極を形成す

ち、4 e V 以上の金属、合金、電気伝導性化合物 及びこれらの混合物を電極物質とするものが好ま しく用いられる。このような電極物質の具体例と しては、A u などの金属、C u I . I T O .

SnOz. ZnOなどの導電性透明材料、導電性ボリマー、酸化物導電体が挙げられる。該隔極は、これらの電極物質を蒸着あるいはスパッタリンより、などの方法により、電極を形成させることに例えたの方法により電極を形成という方法のできる。この際、公知の方法ののでは、公司の登出す場合には、また電極というのがより大きくすることが望ましく、また電極とのシート抵抗は数百Ω/間以下が好ましい。 10%より大きくすることが望ましく、また電極とのがより大きくすることが望ましく、また電極にいるをもしてのが明度は材料にもよるが、通常10~200nmの範囲で選択される。

一方、陰極としては仕事関数の小さい即ち、4 e V 以下の金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、

る.

この積層にあたり、該積層材料、具体的には上記発光層。正孔注入輸送層あるいは電子注入輸送層の材料を1種あるいは必要により2種以上を水性媒体中でHしB値10~20の界面活性剤にて分散あるいは可溶化して分散液あるいは可溶化溶液を得る。ここで水性媒体としては水をはじめ、水とアルコールの混合物、水とアセトンの混合液など様々な媒体を挙げることができる。

ノェチルアミドなどを使用することも可能である。 さらに、界面活性剤の好ましい例として次の如き フェロセン誘導体が挙げられる。すなわち一般式 (R1)。

(式中、R*及びR*はそれぞれ炭素数6以下のアルキル基、炭素数6以下のアルコキシ基、アセチルアミノ基、水酸基、アセチルアミノ基、水酸基、アセチルアミノ基、カルボキシル基、メトキシカルボニル基、アセトキシ基、アルデヒド基あるいは、アセトキシ基、アルデヒド基あるいは、の質力を示し、R*及びR*はそれぞれ、アルスを示し、R*及びR*はそれぞれ、アルスを示し、R*及びR*はそれぞれ、アルスを示し、R*及びR*はそれが、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスを示し、アルスの変数を示す。)

アルケニル基を示している。

はメチル茲 (CHa)を示す。従って、

 $-0(CH_2CH_2O)_nH$,

等である.

またmは1~18の整数を示す。従って、環員 炭素原子と上記酸素又はオキシカルボニル基との 間に、エチレン基、プロピレン基等の炭素数1~ 18のアルキレン基が介在したものとなる。 さら にnは上記オキシエチレン基などのオキシアルキ で衷わされるフェロセン誘導体を代表的なものと してあげることができる。ここで、一般式〔1〕 中の各記号は前述した通りである。つまり、国際 公開WO88/07538, WO89/01939, 特願昭63-233797号、その他に記載され る如く、R'及びR"はそれぞれ炭素数6以下の アルキル基 (メチル基(CHa), エチル基 (CzHs) 等),アルコキシ基(メトキシ基(OCHa),エ トキシ基 (O C z H s)等), アミノ基 (N H z), ジメチルアミノ基 (N(CH₃)₂)),水酸基 (OH), アセチルアミノ基 (NHCOCHョ), カルボキシ ル基 (COOH),アセトキシ基 (OCOCH₃), メトキシカルポニル基 (COOCHョ), アルデヒ ド基 (CHO) あるいはハロゲン(塩素、臭素。 フッ素、沃素等)を示す。RI及びRIは同一で あっても異なってもよく、さらに R! 及び R* が それぞれ複数個フェロセンの五員環に存在した場 合にも、複数の置換基がそれぞれ同一であっても 異なっていてもよい。また、R。は水素又は炭素 数4~18の直額あるいは分岐アルキル基または

レン基の繰り返し数を示すもので、2.0~70.0 の整数のみならず、これらを含む実数を意味し、 オキシアルキレン基などの繰り返し数の平均値を 示すものである。

このなかで特に次に挙げるフェロセン誘導体が 好適に使用される。 式 Fe Fe

で表わされる化合物(FPEG)

Fe (CH₂),CO(CH₂CH₂O);3.1H

で表わされる化合物 (FEST9) 上記の如きフェロセン誘導体は極めて効率良く

水性媒体に、所望の機能層の材料を分散あるいは 可溶化することができるものである。

本発明の方法では、まず水性媒体中に上記の界面活性剤および所望の機能層の材料を入れて、超音波、ホモジナイザーあるいは撹拌機等により、1時間~7日間程度充分に攪拌させる。この操作で機能層材料は、HLB値10~20を有する界面活性剤の作用で、水性媒体中に均一に分散あるいは可溶化して、分散液あるいはミセル溶液となる。本発明の方法では、このようにして得た均一

る。この支持塩を加えずに通電を行うこともできるが、この場合支持塩を含まない純度の高い薄膜が得られる。また、支持塩を用いる場合、その支持塩の種類は、可溶化の進行や電極への前記疎水性物質の折出を妨げることなく、水性媒体の電気 伝導度を調節しうるものであれば特に制限はない。

具体的には、一般的に広く支持塩として用いられている硫酸塩(リチウム、カリウム、ナトリウム、ルビジウム、アルミニウムなどの塩)、酢酸塩(リチウム、カリウム、ナトリウム、ルビジウム、マグネシウム、アルミニウムなどの塩)、水溶性酸化物塩(リチウム、カルシウム、アルミニウムなどの塩)、水溶性酸化物塩(リチウム、カリウム、ナトリウム、ルビジウム、カルシウム、アルミニウムなどの塩)が好適である。

本発明の方法における通電条件は、使用している電極、即ち陽極あるいは陰極上、正孔注入輸送

分散液あるいはミセル溶液に、所望に応じて支持 塩を加えて、また状況に応じて過剰の機能層材料 を遠心分離、デカンテーション、静止沈降等にて 除去し、得られた電解液を静置したままあるいは 電処理中に機能層材料を電解液に補充添加して よく、あるいは電解液の一部を系外へ抜き出し、 抜き出した電解液に機能層材料を加えて充分に混 合撹拌し、しかる後にこの液を系内へ戻す循環回 路を併設してもよい。

この際の機能層材料の湿度は飽和濃度以上であればよい。また界面活性剤の濃度は、特に制限はないが、通常は10μM~0.1M、好ましくは0.5mM~5mMの範囲で選定する。また、支持塩(支持電解質)は、水性媒体の電気伝導度を調節するために必要に応じて加えるものである。この支持塩の添加量は、可溶化あるいは分散している機能層材料の析出を妨げない範囲であればよく、通常は上記界面活性剤の0~300倍程度の濃度を目安とすましくは10~200倍程度の濃度を目安とす

本発明の方法で得られた薄膜には、さらに必要に応じて、通電洗浄、溶媒洗浄、150~350 ででのベーキング処理等の後処理を行うことも有効である。

このようにして得られた正孔注入輸送層、発光

層あるいは電子注入輸送層の上にさらにもう一方の電極を従来公知の方法で形成して、有機BL素子を得ることができる。

本発明の方法によれば、種々の有機EL素子を 製造することができる。例えば、(1)基板上に電極 (陽極あるいは陰極)を種々の方法にて形成し、 この上に上記ミセル電解法にて発光層を積層し、 さらに対電極を形成した有機BL素子、(2)基板上 に電極を種々の方法にて形成し、この上に上記ミ セル電解法あるいは他の方法にて正孔注入輸送層 を種層し、さらにミセル電解法あるいは他の方法 にて発光層を積層し(但し、正孔注入輸送層、発 光層の少なくとも一層はミセル電解法で形成)、 その上に陰極を形成した有機BL素子、(3)基板上 に電極を種々の方法にて形成し、この上に上記ミ セル電解法あるいは他の方法にて発光層を積層し、 さらにミセル電解法あるいは他の方法にて電子注 入翰送層を積層し(但し、発光層、電子注入翰送 層の少なくとも一層はミセル電解法で形成)、そ の上に対電極を形成した有機BL素子、(4)基板上

フェニル) - 4 . 4'ージアミノビフェニル(TPD) 200 mを2 m M の F P E G 水溶液に加え、 超音波で10分間分散した後、スターラーで3日間提拌した。その後、LiBrを加え、100 m M の濃度とし、上記基板を浸漬して陽極とし、対極に白金板を設け、0.5 V で30分間電解した。 通電量は、0.03クーロン(C)であった。

こうして、膜厚100mmの正孔注入輸送層が 形成された。さらに、クマリン30の入ったモリ ブデン製抵抗ポートを真空蒸着装置に入れ、通電 し、235℃まで加熱し、蒸着速度 0.5~ 0.7 mm/sec で、前記正孔注入輸送層の上に蒸着し て、膜厚100mmの発光層を設けた。なお、蒸 着時の該基板の温度は室温であった。

蒸着後、真空槽をあけ、発光層の上にステンレス鋼製のマスクを設置し、モリブテン製の抵抗加熱ボートにマグネシウムを3g入れ、電子ビーム蒸着装置のるつぼに鋼を入れた。この後、再び真空槽を3×10 「Paまで減圧し、マグネシウム入りのボートに通電し蒸着速度4~5mm/sec

に電極を種々の方法にて形成し、この上に上記ミセル電解法あるいは他の方法にて、正孔注入輸送層、発光層をこの順に積層し、さらにミセル電解法の方法にて電子注入輸送層を積層し(但し、正孔注入輸送層、発光層および電子注入輸送層の少なくとも一層はミセル電解法で形成)、その上に対電極を形成した有機BL素子などがられる。また、ここで積層の順序は常に基板の側から積層して、対向電極の側から積層して、所望する有機BL素子を形成することもできる。(実施例)

次に実施例及び比較例により本発明をさらに詳 細に説明する。

実施例1

膜厚 1 2 0 n m の I T O 透明電極が設けられているガラス基板(2 5 × 7 5 × 1.1 m サイズ。 H O Y A 社製)を透明支持基板とし、これをイソプロピルアルコールで 3 0 分間超音波洗浄し、さらにイソプロピルアルコールに浸漬して洗浄した。N. N'ージフェニル-N. N'ージ (3 - メチル

でマグネシウムを蒸着した。このとき同時に電子ピームにより調を加熱し、蒸着速度 0.1~ 0.3 nm/secで調を蒸着し前記マグネシウムに調を混合し、Mg: Cu対向電極とした。以上により目的とするBL素子の作製を終えた。

この索子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流15Vを印加し たところ、電流密度32mA/cdの電流が流れ、 緑色の発光を得た。この際の発光極大波長は508 nm、発光輝度は500cd/㎡、発光効率は 0.33ℓm/Wであった。

なお、クマリン30は3-(2'-N-メチルベンズイミダゾリル)-7-N. N-ジエチルアミノクマリンで、次の構造を有している。

実施例2

実施例1で用いたITO透明電極と同様のIT

O透明電極に、実施例1と同様の操作でTPDを 製膜し、TPD/ITO電極を得た。膜厚は95 nmであった。

クマリン30を200gと2mMのFPEC水溶液に加え、超音波で10分間分散した後、スターラーで3時間攪拌した。その後、LiBrを加えて、100mMの濃度とし、上記TPD/ITO電極を浸漬して陽極とし、対極に白金を設け、0.5Vで30分間電解した。通電量は0.03Cであった。この結果クマリン30/JPD/ITOを得た。

落着後、真空槽をあけ、発光層の上にステンレス調製のマスクを設置し、モリブテン製の抵抗加熱ポートにマグネシウムを3g入れ、電子に対し、高着装置のるつぼに調を入れた。この後、再クロボートに通電し、落着速度4~5mm/secで調を蒸着し前記マグネシウムに調を加速し、蒸着速度の1.1~0.3mm/secで調を蒸着し前記マグネシウムに調を

 10^{-4} Pa まで波圧したのち、電子ピームにより A ℓ を加熱して、 $1\sim1.5$ n m ℓ sec の 蒸着速度 で A ℓ を 蒸着して、 膜厚 150 n m の A ℓ から成る対向電極とすることにより、目的とする B ℓ まそ作製した。

この素子の「TO電極を正極、ALから成る対向電極を負極として、直流40Vを印加したところ、電流密度37mA/cdの電流が流れ、青色の発光を得た。この際の発光極大波長は420mm、発光輝度は7cd/㎡であった。

実施例 4

実施例1で用いたITO透明電極と同様の透明電極を、1Mのピロールと 0.1 MのLiBrを溶解した溶液に浸漬して陽極とし、対極に白金を設け、1.5 Vの電位で3分間電解重合して、ピロール/ITO電極を得た。このとき流れた電流は35 μA/cdであった。

次に、ペリレン100gと2mMのFPEGの 溶液を超音波で10分間分散させた後、スターラ ーで3日間攪拌した。その後、LiBrを加え 混合し、Mg: Cu対向電極とした。以上により目的とするBL素子の作製を終えた。

この素子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流 15 Vを印加し たところ、電流密度 2 1 m A / cm の電流が流れ、 緑色の発光を得た。この際の発光極大波長は 5 1 0 n m、発光輝度は 8 3 0 cd / ㎡、発光効率は 1.4 6 2 m / Wであった。

実施例3

テトラフェニルプタジエン(TPB)200gを2mMのFPEG水溶液に加え、超音波で10分間分散させた後、スターラーで3日間攪拌した。その後、LiBrを加え100mMの濃度とし、実施例1で用いたITO基板を浸漬して陽極とし、対極に白金を設け、0.5 Vで300分間電解した。通電量は、0.3 Cであった。この結果、TPB/ITOを得た。

次に、真空槽をあけ、該発光層の上にステンレス ス類製のマスクを設置し、一方、電子ピーム加熱 の蒸着用るつぼにALを入れ、再び真空槽を3×

100mMの濃度とし、これに上記ピロール/ITO電極を浸漬して陽極とし、対極に白金を設け、0.5 Vで30分間電解した。通電量は0.03Cであった。この結果、ペリレン/ポリピロール/ITOを得た。

蒸着後、真空槽をあけ、発光層の上にステンレス鋼製のマスクを設置し、モリブテン製の抵抗加熱ボートにマグネシウムを3g入れ、電子ピーム 蒸着装置のるつぼに銅を入れた。この後、再ウム人りのボートに通電も入れた。このとき同時に電子ピームにより銅を加熱し、蒸着速度 0.1~ 0.3 nm/secで銅を蒸着し前記マグネシウムに銅を加かった。以上により目的とするEL素子の作製を終えた。

この素子のITO電極を正極、Mg: Cuから 成る対向電極を負極として、直流13Vを印加し たところ、電流密度46mA/cdの電流が流れ、 緑味黄色の発光を得た。この際の発光極大波長は 5 6 0 n m、発光輝度は 2 4 0 cd/㎡、発光効率は 0.1 3 ℓ m/Wであった。

比較例1

ITOが付いているガラス基板(25㎜×75㎜×1.1㎜サイズ、HOYA社製)を透明支持基板とし、これをイソプロピルアルコールで30分超音波洗浄し、さらにイソプロピルアルコールに设済して洗浄したこの透明基板を乾燥窒素ガスで乾燥し、真空蒸着装置の基板ホルダーに固定し、モリプデン製の抵抗加熱ボートにN、N'ージフェニルーN、N'ーピフェニルー4、4'ージアミン(TPD)を200g入れ、さらに別のモリブデン製の抵抗加熱ボートにクマリン30を200g入れ真空蒸着装置に取付けた。

その後、真空槽を2×10⁻⁴Pa まで減圧し、 TPDの入った前記ボートに通電し220℃まで 加熱し、蒸着速度 0.1~ 0.3 nm/秒で透明支 持基板上に蒸着し、膜厚100 nmの正孔注入層 (正孔注入翰送層) とした。さらにクマリン30

半値幅は60 n m、発光輝度は440 cd/mであった。

(発明の効果)

以上の如く、本発明の方法によれば、電極上に機能を有する薄膜を積層するにあたり、位置あわせなどの操作を必要とせず比較的簡易な操作で所望の薄膜を効率良く製造することができる。また得られた有機BL素子は、接触面積が広く、高輝度、高効率である。

したがって、本発明の方法は、表示材料、プリンタ、液晶パックライトなどに用いられる有機 B L素子の製造に有効に利用される。

> 特許出願人 出光興産株式会社 代理人 弁理士 大 谷 保

蒸着後、真空槽を開け、発光層の上にステンレス鋼製のマスクを設置し、モリブデン製の抵抗加熱ボートにマグネシウムを3g入れ、電子ビーム 蒸着装置のるつぼに網を入れた。その後、再度真空槽を3×10~4Paまで減圧しマグネシウム人 のボードに通電し、蒸着速度4~5 nm/秒でマグネシウムを蒸着した。このとき、同時に電子ピームにより網を加熱し、0.2~ 0.3 nm/秒で調を蒸着して前記マグネシウムに網を混合し、対向電極とした。以上によりEL素子の作製を終えた。

この素子のITO電極を陽極、マグネシウムと 調の混合物よりなる対向電極を負極として、直流 20Vを印加したところ電流密度が87mA/cil の電流が流れ、緑色の発光を得た。

このときの発光極大波長は510 nm、発光体