Problema 1. Hallar el dominio de las siguientes funciones

a)
$$z = Ln (1 - x^2 - y^2)$$
, b) $z = \sqrt{1 - x^2 - y^2}$, c) $z = \frac{1}{1 - x^2 - y^2}$, d) $z = \frac{1}{\sqrt{x^2 + y^2}}$.

Problema 2. Dada la función $z = x^2y - 2xy^2$, hallar el incremento de z, razonar si la función es o no diferenciable. Hallar la diferencial.

Problema 3. Dada la función $z = x^2y + xy^2y$ el vector unitario $\vec{u} = (a, b)$, calcular la derivada direccional en la dirección de \vec{u} .

Problema 4. Si $x = \rho \cos(\theta)$ e $y = \rho \sin(\theta)$, mostrar que $\left(\frac{\partial V}{\partial x}\right)^2 + \left(\frac{\partial V}{\partial y}\right)^2 = \left(\frac{\partial V}{\partial \rho}\right)^2 + \frac{1}{\rho^2} \left(\frac{\partial V}{\partial \theta}\right)^2$.

Problema 5. Verificar que $f_{xy} = f_{yx}$ para las siguientes funciones, indicando los posibles puntos excepcionales y estudiando tales puntos:

a)
$$\frac{2x-y}{x+y}$$
, b) x. $Tag(xy)$, c) $Cosh(y + Cos(x))$.

Problema 6. Demostrar que Y = f(x+at) + g(x-at) satisface la ecuación $\frac{\partial^2 Y}{\partial t^2} = a^2 \left(\frac{\partial^2 Y}{\partial x^2} \right)$

Problema 7. Calcular aproximadamente mediante diferenciales $\sqrt[5]{3'8^2 + 2(2'1)^3}$

Problema 8. El diámetro de un cilindro circular recto es de 6'0±0'03cm. y su altura es de 4'0±0'02cm, según las medidas efectuadas. Calcular el volumen mediante diferenciales.

Problema 9. Demostrar que si f(x) es una función diferenciable, la función $z = f(x^2y)$ satisface la ecuación $x\left(\frac{\partial z}{\partial x}\right) = 2y\left(\frac{\partial z}{\partial y}\right)$

Problema 10. Sea F(x, y) diferenciable. Si para todo parámetro λ y cierta constante p se cumple $F(\lambda x, \lambda y) = \lambda^p F(x, y)$ idénticamente, demostrar que $x\left(\frac{\partial F}{\partial x}\right) + y\left(\frac{\partial F}{\partial y}\right) = pF$.

Problema 11. Si
$$F(x, y) = 0$$
, demostrar que $\frac{d^2y}{dx^2} = -\frac{F_{xx}.F_y^2 - 2 F_{xy}F_x F_y + F_{yy}.F_x^2}{F_y^3}$

Problema 12. Calcular la derivada $\frac{dy}{dx}$ de la función y(x) dada implícitamente por la ecuación $Ln(x^2 + y^2) - Atan(\frac{y}{x}) = 0$ en el punto A(1,0).

Problema 13. Supongamos que la ecuación $y^2 + xz + z^2 - e^z - c = 0$ define c tal que f(0,e) = 2. Calcula las derivadas parciales $\frac{\partial f}{\partial x} y \frac{\partial f}{\partial y}$ en el punto (x,y) = (0,e).

Problema 14. Hallar el vector gradiente en los siguientes casos:
a)
$$f(x, y) = x^2 + y^2 Sen(xy)$$
, b) $f(x, y, z) = x^2 y^3 z^4$, c) $f(x, y, z) = Ln(x^2 + 2y^2 - 3z^2)$
Problema 15. Calcular las derivadas direccionales de las funciones, en los puntos y direcciones dadas:

a)
$$f(x, y, z) = x^2 + 2y^2 - 3z^2$$
 en el punto $A(1, 1, 0)$ en la dirección $\vec{i} - \vec{j} + 2\vec{k}$.

b)
$$f(x, y, z) = \left(\frac{x}{y}\right)^z$$
 en el punto $A(1, 1, 1)$ en la dirección $2\vec{i} + \vec{j} - \vec{k}$.

Problema 16. Encontrar las derivadas direccionales de las siguientes funciones en los puntos indicados y en las direcciones que sean máximas:

a)
$$z = 4 x^2 + 9 y^2$$
 en $A(2, 1)$, b) $z = x^2 + xy + y^2$ en $A(1, -1)$.

Problema 17. Hallar las ecuaciones del plano tangente a cada una de las superficies siguientes en los puntos que se indican.

a)
$$z = x^2 + y^2$$
 en $A(3, 4, 25)$, b) $xy + y + xz - \frac{1}{2} = 0$ en $A(2, 1, -1)$

c)
$$z = Sen(xy)$$
 en $A(1, \pi, 0)$, d) $x^2y^2 + xz - 2y^3 = 10$ en $A(2, 1, 4)$

a) $z = x^2 + y^2$ en A(3, 4, 25), b) xy + y + xz - 1 = 0 en A(2, 1, -1) c) z = Sen(xy) en $A(1, \pi, 0)$, d) $x^2y^2 + xz - 2y^3 = 10$ en A(2, 1, 4) **Problema 18.** Calcular los planos tangentes a la superficie $x^2 + 2y^2 + 3z^2 = 21$ que son paralelos al plano x + 4y + 6z = 0.