CH1202: Lab Report II

Determination of Degree of Hydrolysis and Hydrolysis Constant by Potentiometry

ABHISRUTA MAITY

21MS006

am21ms006@iiserkol.ac.in

Indian Institute of Science Education and Research, Kolkata Mohanpur, West Bengal, 741246, India

Contents

1	Aim	1
2	Apparatus Required	1
3	Chemicals Required	1
4	Experimental Data	2
5	Conclusion	2

§1 Aim

To determine the degree of hydrolysis and hydrolysis constant of $Anilinium\ Hydrochloride$ using Potentiometer.

§2 Apparatus Required

- Potentiometer
- Platinum Electrode
- Calomel Electrode

§3 Chemicals Required

- Anilinium Hydrochloride
- Quinhydrone

Lab Report II 5 Conclusion

§4 Experimental Data

Calculation of Hydrolysis Constant

1. pH is given by

$$pH = \frac{-E_{\text{obs}} + E_{\text{QH}} + E_{\text{cal}}}{0.0591}$$

where $E_{QH} = 0.6996 V$ and $E_{cal} = -0.242 V.^{1}$

- 2. Since $pH = -\log(H^+) = -\log(c\alpha)$, $pH = -\log(c) \log(\alpha)$, the degree of hydrolysis α can be calculated at any given concentration.
- 3. From α , using $K_h = \frac{c\alpha^2}{1-\alpha}$, we can deduce hydrolysis constant of Anilinium Hydrochloride.
- 4. The dissociation constant can also be calculated using the relation $K_b = \frac{K_w}{K_h}$.

$\left[\mathrm{C_6H_5NH^{3+}Cl^{-}}\right]$	$E_{\rm obs}$	pH	$\alpha \ [\times 10^{-2}]$	$K_h \ [\times 10^{-5}]$	$K_b \ [\times 10^{-10}]$
0.10	0.277	3.06	0.88	0.78	12.8
0.05	0.274	3.11	1.56	1.24	8.04
0.02	0.264	3.28	2.65	1.44	6.93
0.01	0.260	3.34	4.53	2.15	4.64

§5 Conclusion

The experimented value of $K_h = 1.40 \times 10^{-5}$ and that of $K_b = 8.11 \times 10^{-10}$.

 $^{^1{\}rm These}$ are oxidation potentials. We took the sign conventions accordingly.

²The value of K_w at 25° C is assumed as 10⁻¹⁴.