See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245070782

Magneto-optical investigations of radiation defects in cerium-doped fluorozirconate glasses

ARTICLE in NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH SECTION B BEAM INTERACTIONS WITH MATERIALS AND ATOMS \cdot MAY 2000

Impact Factor: 1.12 · DOI: 10.1016/S0168-583X(99)00705-3

CITATION READS
1 11

4 AUTHORS, INCLUDING:

Andy Edgar Victoria University of Wellington

122 PUBLICATIONS 1,152 CITATIONS

SEE PROFILE

Nuclear Instruments and Methods in Physics Research B 166-167 (2000) 505-507

www.elsevier.nl/locate/nimb

Magneto-optical investigations of radiation defects in cerium-doped fluorozirconate glasses

S. Schweizer *, S. Assmann, A. Edgar ¹, J.-M. Spaeth

Physics Department, University of Paderborn, Warburger Strasse 100, D-33098 Paderborn, Germany

Abstract

Measurements of the magnetic circular dichroism of the optical absorption (MCDA) on X-irradiated Ce-doped fluorozirconate glass showed an increased paramagnetic band in the range from 300 nm to 700 nm and a new paramagnetic band peaking at 570 nm. Electron paramagnetic resonance (EPR) detected in these MCDA bands yielded two different defect centres having resonances at g = 1.90 and g = 1.98, respectively. © 2000 Elsevier Science B.V. All rights reserved.

PACS: 76.30.Kg; 76.30.Mi; 76.70Hb; 78.66.Jg

Keywords: Fluorozirconate glass; Magneto-optical investigations

1. Introduction

Activator-doped fluorozirconate glasses are possible candidates for application as X-ray storage phosphors [1]. For the understanding of the energy storage in these glasses upon X-irradiation it is necessary to investigate the created defect centres (electron and hole centres). It is known from other X-ray storage phosphors that Ce³⁺ acts as a very efficient hole trap centre being converted to Ce⁴⁺. Assuming that the diamagnetic Ce⁴⁺ is the hole trap centre magnetic resonance methods al-

low the investigation of the complementary electron trap centres.

2. Experimental details

The investigations were carried out on Ce-doped fluorozirconate glasses (53% ZrF_4 , 20% BaF_2 , 20% NaF, 3% AlF_3 , 1.5% LaF_3 , 1.5% YF_3 and 1% CeF_3). The X-irradiation was done at room temperature (tungsten anode, 50 kV, 30 mA, several hours).

3. Results

The magnetic circular dichroism of the optical absorption (MCDA) of 1% Ce-doped fluorozirconate glass showed a strong paramagnetic band peaking at 285 nm and a second one between 300 and 550 nm with its maximum at 310 nm having

^{*}Corresponding author. Tel.: +49-5251-60-2744; fax: +49-5251-60-3247.

E-mail address: schweizer@physik.uni-paderborn.de (S. Schweizer).

¹ Permanent address: School of Chemical and Physical Sciences, Victoria University, Wellington, New Zealand.

Fig. 1. MCDA-detected EPR of 1% Ce-doped fluorozirconate glass, detected at 570 nm and 350 nm, respectively, recorded at 1.5 K after X-irradiation at room temperature applying 24 GHz microwave frequency.

opposite sign. MCDA-detected electron paramagnetic resonance (EPR) on the band peaking at 285 nm yielded a single line with an angular dependence which can be understood assuming an axial g tensor with $g_{\perp} = 18/7$ and $g_{\parallel} = 6/7$, g values typical for rare-earth ions.

After X-irradiation at room temperature the MCDA spectrum showed in addition to an increased paramagnetic signal in the range 300–700 nm a new band at approximately 570 nm which corresponds to the maximum of the stimulation of the photostimulated luminescence (PSL) [1]. EPR detected in the MCDA at 570 nm (Fig. 1, upper spectrum) yielded a double-structured line peaking at $g = 1.98 \pm 0.01$ and at $g = 1.91 \pm 0.01$ whereas MCDA-detected EPR at 350 nm (Fig. 1, lower spectrum) showed only a single line at $g = 1.90 \pm 0.01$. These lines did not appear before X-irradiation. 'Tagged' MCDA measurements (Fig. 2) showed that the low field peak at g = 1.98belongs to the new paramagnetic band at 570 nm whereas the high field resonances peaking at g = 1.90 and at g = 1.91, respectively, do not.

4. Discussion

The strong paramagnetic MCDA band at 285 nm can be assigned to the Ce³⁺ absorption [2]. The simulation of the measured MCDA-detected

Fig. 2. 'Tagged'-MCDA spectra of 1% Ce-doped fluorozirconate glass, detected at 880 mT and 920 mT, respectively, recorded after X-irradiation at 1.5 K applying 24 GHz microwave frequency. For the sake of clarity the spectra are vertically displaced.

EPR line is in agreement with the theoretical g tensor for the J = 5/2 ground state of the $4f^1$ electron of Ce³⁺ [3]. X-irradiation creates defect centres resulting in new paramagnetic MCDA bands in which two different EPR spectra can be detected. The g values of the measured EPR resonances being smaller than ge for the free electron indicate that electron centres have been formed [4]. 'Tagging' allows the assignment of each EPR line to its corresponding MCDA band. It was shown that the low field EPR line at g = 1.98 belongs to the 570 nm MCDA band and thus to a PSL-active electron centre. The high field lines having g = 1.90-1.91belong to the band between 300 nm and 700 nm. Probably we deal here with two defect centres having different MCDA bands. One centre has a g value of g = 1.98 whereas the second one has g = 1.90. The double-structured line measured in the MCDA band at 550 nm is thus a superposition of two EPR lines since both show MCDA there. The identification of the defect structure of these two centres is the subject of further investigations.

References

 S. Schweizer, S. Assmann, A. Edgar, J.-M. Spaeth, Nucl. Instr. and Meth. B 166–167 (2000) 508.

- [2] G.M. Williams, T.-E. Tsai, C.I. Merzbacher, E.J. Friebele, J. Lightwave Technol. 15 (1997) 1357.
- [3] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover, New York, 1986.
- [4] J.-M. Spaeth, J.R. Niklas, B.H. Bartram, Structural Analysis of Point Defects in Solids, Springer Series in Solid State Sciences, Vol. 43, Springer, Berlin, 1992.