Factory Lecture

TF-IDF and Cosine Similarity

Incheon Paik

Contents

- Term Weighting
- Term Frequency (TF)
- IDF (Inverse Document Frequency)
- **◆TF-IDF Term Weight**

Term Frequency

- Consider the number of occurrences of a term in a document
 - Bag of words model
 - Document is a vector in N a column below
- Let's consider the following document set.
- D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow
- D2 The soccer game is interesting. I like basketball game.
- D3 Yesterday weather was cloudy and sunny. I like sunny day.
- D4 The baseball game is not interesting. I win the tennis game.

Calculating Term Frequency (TF)

D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow

D2 The soccer game is interesting. I like basketball game.

D3 Yesterday weather was cloudy and sunny. I like sunny day.

The baseball game is not interesting. I win the tennis game.

Term Frequency

D4

Words Doc #	To da y	w ea th er	is	su nn y	an d	CI ou dy	rai ny	to m or ro w	T he	s o c c er	g a m e	int er es tin g	I	lik e	bas ket ball	Y es te rd ay	d a y	ba se ba II	n o t	w i n	t e n n i s
D1	1	1	1	1	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
D2	0	0	1	0	0	0	0	0	1	1	2	1	1	1	1	0	0	0	0	0	0
D3	0	1	1	2	1	1	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0
D4	0	0	1	0	0	0	0	0	1	0	2	1	1	0	0	0	0	1	1	1	1

Problem of Term Frequency

- Which of these tells you more about a medical document?
 - 10 occurrences of hernia(脱腸)?
 - 10 occurrences of the ?
- Why is it?
 - Is the term a common word that exists in every document or a meaningful word that give feature to the document?
- How can we get the information?
 - If a term is found in more documents, it will have less meaning for feature of the document.
 - Document Frequency

Document Frequency (DF)

D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow

D2 The soccer game is interesting. I like basketball game.

D3 Yesterday weather was cloudy and sunny. I like sunny day.

D4 The baseball game is not interesting. I win the tennis game.

Document Frequency

Words Doc #	To da y	w ea th er	is	su nn y	an d	CI ou dy	rai ny	to m or ro w	T he	s o c c er	g a m e	int er es tin g	I	lik e	bas ket ball	Y es te rd ay	d a y	ba se ba II	n o t	w i n	t e n n i
																					S
DF	1	2	4	2	2	2	1	1	2	1	2	2	3	2	1	1	1	1	1	1	1

- Usually, we use Inverse Document Frequency (IDF), and it can be calculated in the form of 1/DF.
- But by far the most commonly used version is: IDF = log (n/DF)

TF-IDF

6

Summary: TF × IDF (or tf.idf)

 Assign a tf.idf weight to each term i in each document d

$$w_{i,d} = tf_{i,d} \times \log(n/df_i)$$
 of a term that occurs in all of the docs?

 $tf_{i,d} = \text{frequency of term } i \text{ in document } j$
 $n = \text{total number of documents}$
 $df_i = \text{the number of documents that contain term } i$

- Increases with the number of occurrences within a doc
- Increases with the rarity of the term across the whole corpus

TF-IDF

What is the wt

Calculating TF-IDF

- D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow

 D2 The soccer game is interesting. I like basketball game.

 D3 Yesterday weather was cloudy and sunny. I like sunny day.

 D4 The baseball game is not interesting. I win the tennis game.
- $w_{i,d} = tf_{i,d} \times \log(n/df_i)$ What is the wt of a term that occurs in all of the docs?

 $tf_{i,d}$ = frequency of term i in document j n = total number of documents df_i = the number of documents that contain term i

Words Doc #	To da y	w ea th er	is	su nn y	an d	CI ou dy	rai ny	to m or ro w	T he	s o c c er	g a m e	Int er es tin g	I	Li k e	bas ket ball	Y es te rd ay	d a y	ba se ba II	n o t	W i n	T e n n i s
D1	1* log(4/1)	1* log(4/2)	-					-						-				-			
D2	0										-				-		-	-	-		
D3	0																-				
D4	0	•	•	•	•	•	•	•	•			•			-	•	•		•		

$$w_{i,j} = tf_{i,j} \times \log\left(\frac{N}{df_i}\right)$$

```
tf_{i,j} = number of occurrences of i in j

df_i = number of documents containing i

N = total number of documents
```

- (1) キーワード抽出対象テキスト中の代表キーワード候補 出現数 (TF)
- (2) 全てのドキュメント数 (N)
- (3) 代表キーワード候補が含まれるドキュメントの数 (DF)

Example text : "a.txt"

本棚が届きました。さっそく組み立て。しかし、一部の部品に不良品があり一段だけ固定できません。本棚への道は険しいです。今週中に部品交換に行ってきます。

Morphological Analysis using "chasen"

```
% chasen a.txt|grep '名詞'|sort|uniq -c|sort -nr2 本棚 ホンダナ 本棚 名詞-一般2 部品 ブヒン 部品 名詞-一般1 不良 フリョウ 不良 名詞-形容動詞語幹1 品 ヒン 品 名詞-接尾-一般1 道 ミチ 道 名詞-一般1 中 チュウ 中 名詞-接尾-副詞可能1 組み立て クミタテ 組み立て 名詞-一般1 今週 コンシュウ 今週 名詞-副詞可能1 交換 コウカン 交換 名詞-サ変接続1 固定 コテイ 固定 名詞-サ変接続1 一部 イチブ 一部 名詞-副詞可能1 一段 イチダン 一段 名詞-一般
```

TF-IDF

10

- ◆ (2)の「全ドキュメント数 N」。対象となるドキュメント群は、ここでは、Yahoo! で検索できるすべての Web ページとする。Yahoo! でインデックスされているページは 192 億ページと言われているので、N = 19200000000 。
- ◆ (3) の DF (代表キーワード候補が含まれるドキュメントの数。対象ドキュメント 群は Yahoo! で検索できる全 Web ページなので、Yahoo! 検索でのヒットした 数が DF。ヒット数は Yahoo! APIで得ることができる。

```
use LWP::Simple;
sub get_num { # 検索ヒット数獲得 by Yahoo! API
my ($key) = @_; # UTF-8
$key =~ s/([^0-9A-Za-z_])/'%'.unpack('H2',$1)/ge;
my $url = "http://api.search.yahoo.com/WebSearchService/V1/".
    "webSearch?appid=YahooDemo&query=$key&results=1";
my $c;
($c = get($url)) or die "Can't get $url\(\frac{1}{2}\)m';
my ($num) = ($c =~ /totalResultsAvailable="(\frac{1}{2}\)d+)"/);
return $num;
}
```

TF-IDF の計算。
 試しに「本棚」で計算。
 TF = 2, DF = 2771, N = 19200000000 なので、
 TFIDF ≒ 31.5。

% perl -e 'print 2*log(19200000000/2771),"\u00e4n" 31.5024251422343

Feature Vector of A Document

D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow

D2 The soccer game is interesting. I like basketball game.

D3 Yesterday weather was cloudy and sunny. I like sunny day.

D4 The baseball game is not interesting. I win the tennis game.

Words Doc #	W1: Tod ay	W2: wea ther	W3: is	W4: Sun ny	W5: and	W6: Clo udy	W7 : rai ny	W8: tomo rrow	W9 : Th e	W10 : socc er	W11: gam e	W12 : Inte resti ng	W 13 : I	W14 : Like	W15: basket ball	W16 : Ye ster day	W17: day	W18 : base ball	W19 : not	W 20 : Wi n	W 21 : Te nni s
D1	1* log(4/1)	1* log(4/2)																			
D2	0																				
D3	0							·							·						
D4	0																				

Cosine Similarity

- D1 Today weather is sunny and cloudy. Rainy and cloudy tomorrow
- D2 The soccer game is interesting. I like basketball game.
- D3 Yesterday weather was cloudy and sunny. I like sunny day.
- D4 The baseball game is not interesting. I win the tennis game.

$$\overrightarrow{D_1} = (e_{11}, e_{12}, e_{13}, e_{14}, e_{15})$$

$$\overrightarrow{D_2} = (e_{21}, e_{22}, e_{23}, e_{24}, e_{25})$$

$$\overrightarrow{D_1} \cdot \overrightarrow{D_2} = |\overrightarrow{D_1}| |\overrightarrow{D_2}| |\cos\theta$$

$$\overrightarrow{D_1} \cdot \overrightarrow{D_2}| = |\overrightarrow{D_1}| |\overrightarrow{D_2}| |\cos\theta$$

$$\overrightarrow{D_1} \cdot \overrightarrow{D_2}| |\overrightarrow{D_2}|$$

$$= \frac{e_{11}e_{21}+e_{12}e_{22}+e_{13}e_{23}+e_{14}e_{24}+e_{15}e_{25}}{SQRT(e_{11}^2+e_{12}^2+e_{13}^2+e_{14}^2+e_{15}^2) \times SQRT(e_{21}^2+e_{22}^2+e_{23}^2+e_{24}^2+e_{25}^2)}$$