

CSCI 2824: Discrete Structures

Lecture 14: Set Operations

Reminders

Submissions:

- Homework 4: Fri 9/27 at noon Gradescope
- Homework 5: Mon 10/7 at noon 1 try on Moodle
- Quizlet 4: Due Mon 9/30 at 8pm

Readings:

- This week Ch. 2 SETS (2.1-2.2)
- Next week: cont. 2.3 ...

Midterm – Tue October 1st at 6:30pm

Midterm I

Midterm 1: 6:30-8 PM, Tuesday 1 October

BESC 185 – Last Names Abbasi – Finley EDUC 220 – Last Names Fitze – Mackillip HALE 270 – Last Names Mahre – Zuyus

Conflict? If you emailed, Wed 2 October from 6:00-7:30PM, ECOT 831

- Review: TAs: Monday 9/30 @ 6:30pm room TBD
 - Concept guide
 - Written homework
 - "All Moodle problems" set
 - Workgroup worksheets
 - Lecture slides and examples

What did we do last time?

- how to cook up larger sets (unions, power sets) from smaller ones,
- and how to cook up smaller sets (intersections, subsets) from larger ones

Today:

doing stuff with sets (proofs and manipulations)

Example: Prove that $A - B = A \cap \bar{B}$

Strategy: To prove that two sets C and D are equal, we must

- 1. (\Rightarrow) Prove that $C \subseteq D$
- 2. (\Leftarrow) Prove that $D \subseteq C$

Proof: (\Rightarrow)

Example: Prove that $A-B=A\cap \bar{B}$

- 1. (\Rightarrow) Prove that $C \subseteq D$
- 2. (\Leftarrow) Prove that $D \subseteq C$

Proof: (\Rightarrow)

- 1. S'pose x is an arbitrary element in A B
- $2. \Rightarrow x \in A \land x \notin B$
- 3. $x \notin B \Rightarrow x \in \bar{B}$
- 4. \Rightarrow $(x \in A) \land (x \in \bar{B})$
- 5. $\Rightarrow x \in A \cap \bar{B}$
- ₇ 6. Since x was any arbitrary element in A B, we have shown $A B \subseteq A \cap \vec{B}$

Example: Prove that $A-B=A\cap ar{B}$

Strategy: To prove that two sets *C* and *D* are equal, we must

- 1. (\Rightarrow) Prove that $C \subseteq D$
- 2. (\Leftarrow) Prove that $D \subseteq C$

Proof: (*⇐*)

Example: Prove that $A-B=A\cap \bar{B}$

Strategy: To prove that two sets C and D are equal, we must

- 1. (\Rightarrow) Prove that $C \subseteq D$
- 2. (\Leftarrow) Prove that $D \subseteq C$

Proof: (*⇐*)

- 1. S'pose x is an arbitrary element in $A \cap \bar{B}$
- $2. \Rightarrow (x \in A) \land (x \in B)$
- 3. $x \in \bar{B} \Rightarrow x \notin B$
- 4. $(x \in A) \land (x \notin B) \Rightarrow (x \in A B)$
- 5. Since x was any arbitrary element in $A\cap \bar{B}$, we have shown $A\cap \bar{B}\subseteq A=B$

Since
$$(A\cap \bar{B}\subseteq A-B)$$
 and $(A-B\subseteq A\cap \bar{B})$ it must be the case that $A-B=A\cap \bar{B}$

Example: Prove that $A-B=A\cap \bar{B}$

Strategy: To prove that two sets C and D are equal, we must

- 1. (\Rightarrow) Prove that $C \subseteq D$
- 2. (\Leftarrow) Prove that $D \subseteq C$

Since $(A \cap \bar{B} \subseteq A - B)$ and $(A - B \subseteq A \cap \bar{B})$ it must be the case that

$$A - B = A \cap \bar{B} \square$$

When sets are combined using only U, \(\cap \), and complements, there is a set of **Set Identities** that completely mirrors the logical equivalences from last chapter.

TABLE 1 Set Identities.		1
Identity	Name	0
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws	1
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	Z Z
$A \cup A = A$ $A \cap A = A$	Idempotent laws	
$\overline{(\overline{A})} = A$	Complementation law	00
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	: 17
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws	
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws	

Example: Prove DeMorgan's Law for Sets: $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Example: Prove (one of) De Morgan's laws for sets, using **builder notation** $\overline{A} \cap \overline{B} = \overline{A} \cup \overline{B}$ (remember, builder notation looked a lot like quantifiers, so this will look at lot like our old proofs from Ch 1)

<u>Example</u>: Prove (one of) De Morgan's laws for sets, using **builder** notation $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Example: Use set identities to prove

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Proof:

TABLE	TABLE 1 Set Identities.			
Identity		Name		
$A \cap U = A \cup \emptyset = A \cup \emptyset = A \cup \emptyset$		Identity laws		
$A \cup U = A \cap \emptyset = A \cap \emptyset$		Domination laws		
$A \cup A = A \cap $		Idempotent laws		
$\overline{(\overline{A})} = A$	4	Complementation law	v 0	
	$= B \cup A$ $= B \cap A$	Commutative laws	TO COM	
1	$(C) = (A \cup B) \cup C$ $(A \cap C) = (A \cap B) \cap C$	Associative laws	E = mc	
		Distributive laws		
	$= \overline{A} \cup \overline{B}$ $= \overline{A} \cap \overline{B}$	De Morgan's laws		
,		Absorption laws		
$A \cup \overline{A} = A \cap \overline{A} $		Complement laws		

Example: Use set identities to prove

$$\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$$

Proof:

$\overline{A \cup (B \cap C)} = \overline{A} \cap \overline{(B \cap C)}$	De Morgan's
$= \overline{A} \cap (\overline{B} \cup \overline{C})$	De Morgan's
$= (\overline{B} \cup \overline{C}) \cap \overline{A}$	commutative
$= (\overline{C} \cup \overline{B}) \cap \overline{A}$	commutative

FYOG: Use set identities to prove

$$(A \cup \overline{B}) \cap (\overline{B \cap A}) = \overline{B}$$

TABLE 1 Set Identities.	A.
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws E = mo
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Example: Use set identities to prove

 $A \cap (B \cup C) = (A \cap B) \cup C$

Proof:

TABLE 1 Set Identities.			
Identity	Name		
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws		
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws		
$A \cup A = A$ $A \cap A = A$	Idempotent laws		
$\overline{(\overline{A})} = A$	Complementation law		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws E = m		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws		
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws		

Example: Use set identities to prove

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof: 1. (\Rightarrow) Prove that Lhs \subseteq *Rhs*

Suppose that $x \in A \cap (B \cup C)$.

Then $x \in A$ and $x \in B \cup C$

 \Rightarrow (x \in A) \land ((x \in B) \lor (x \in C))

 \Rightarrow ((x \in A) \land (x \in B)) \lor ((x \in A) \land (x \in C))

 \Rightarrow x \in A \cap B or x \in A \cap C

 \Rightarrow x \in (A \cap B) \cup (A \cap C)

TABLE 1 Set Identities.				
Identity	Name	@ ?		
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws			
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws	X		
$A \cup A = A$ $A \cap A = A$	Idempotent laws			
$\overline{(\overline{A})} = A$	Complementation law	0.0		
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws	בון י		
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws	m		
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws	2		
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws			
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws	T T		
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws			

Example: Use set identities to prove

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof: 2. (\Rightarrow) Prove that Rhs \subseteq *Lhs*

Suppose that $x \in (A \cap B) \cup (A \cap C)$

Then $x \in A \cap B$ or $x \in A \cap C$

 \Rightarrow ((x \in A) \land (x \in B)) \lor ((x \in A) \land (x \in C))

 \Rightarrow (x \in A) \land ((x \in B) \lor (x \in C))

 \Rightarrow x \in A and x \in B \cup C

 \Rightarrow x \in A \cap (B \cup C).

TABLE 1 Set Identities.	A.
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Example: Use set identities to prove

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Proof: using **Membership Tables** (1 – element is in, 0– element is not in)

TABI	TABLE 2 A Membership Table for the Distributive Property.						
A	В	C	$B \cup C$	$A\cap (B\cup C)$	$A\cap B$	$A\cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Because the columns for $A \cap (B \cup C)$ and $(A \cap B) \cup (A \cap C)$ are the same, the identity is valid.

FYOG: Use set identities to prove

$$(A \cup \overline{B}) \cap (\overline{B \cap A}) = \overline{B}$$

TABLE 1 Set Identities.	A.
Identity	Name
$A \cap U = A$ $A \cup \emptyset = A$	Identity laws
$A \cup U = U$ $A \cap \emptyset = \emptyset$	Domination laws
$A \cup A = A$ $A \cap A = A$	Idempotent laws
$\overline{(\overline{A})} = A$	Complementation law
$A \cup B = B \cup A$ $A \cap B = B \cap A$	Commutative laws
$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws E = mc ²
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distributive laws
$\overline{A \cap B} = \overline{A} \cup \overline{B}$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$	De Morgan's laws
$A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$	Absorption laws
$A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$	Complement laws

Sets and set operations - Recap

- We learned what <u>sets</u> are,
- empty set, singleton set, power set,
- how to cook up larger sets (unions, power sets)
 from smaller ones,
- and how to cook up smaller sets (intersections, subsets) from larger ones

Next time:

- More on *infinite* sets and ...
- doing stuff with sets of things to get other sets of things (we call the stuff we do *functions!*)

THE AXIOM OF CHOICE ALLOWS YOU TO SELECT ONE ELEMENT FROM EACH SET IN A COLLECTION

AND HAVE IT EXECUTED AS AN EXAMPLE TO THE OTHERS.

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Example 2: Prove DeMorgan's Law for Sets: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Set Operations

Example: Use set identities to prove $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$

Set Operations

Example: If P is the set of prime numbers, then what is \overline{P} ?

Set Operations

(a)
$$(A \times B) \cap (B \times B)$$

(d)
$$(A \cap B) \times A$$

(g)
$$\mathscr{P}(A) - \mathscr{P}(B)$$

(b)
$$(A \times B) \cup (B \times B)$$

(e)
$$(A \times B) \cap B$$

(h)
$$\mathscr{P}(A \cap B)$$

(c)
$$(A \times B) - (B \times B)$$

(f)
$$\mathscr{P}(A) \cap \mathscr{P}(B)$$

(i)
$$\mathscr{P}(A) \times \mathscr{P}(B)$$

Example 2:Prove this identity using set builder notation

$$\overline{A \cup B} = \{x \mid x \notin A \cup B\}$$
 (def. complement)
$$= \{x \mid \neg(x \in A \cup B)\}$$
 (def. not in)
$$= \{x \mid \neg(x \in A \lor x \in B)\}$$
 (def. intersection)
$$= \{x \mid \neg(x \in A) \land \neg(x \in B)\}$$
 (DeMorgan's)
$$= \{x \mid x \notin A \land x \notin B\}$$
 (def. not in)
$$= \{x \mid x \in \overline{A} \land x \in \overline{B}\}$$
 (def. complement)
$$= \{x \mid x \in \overline{A} \land x \in \overline{B}\}$$
 (def. union)
$$= \overline{A} \cap \overline{B}$$