SQL: Advanced Queries, Assertions, Triggers, and Views

NULLS IN SQL QUERIES

- SQL allows queries that check if a value is NULL (missing or undefined or not applicable)
- SQL uses IS or IS NOT to compare NULLs because it considers each NULL value distinct from other NULL values, so equality comparison is not appropriate.
- Query 14: Retrieve the names of all employees who do not have supervisors.

Q14: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE SUPERSSN IS NULL

 Note: If a join condition is specified, tuples with NULL values for the join attributes are not included in the result

NESTING OF QUERIES

- A complete SELECT query, called a nested query, can be specified within the WHERE-clause of another query, called the outer query
 - Many of the previous queries can be specified in an alternative form using nesting
- Query 1: Retrieve the name and address of all employees who work for the 'Research' department.

Q1:SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER FROM DEPARTMENT WHERE DNAME='Research')

NESTING OF QUERIES (contd.)

- The nested query selects the number of the 'Research' department
- The outer query select an EMPLOYEE tuple if its DNO value is in the result of either nested query
- The comparison operator IN compares a value v with a set (or multi-set) of values V, and evaluates to TRUE if v is one of the elements in V
- In general, we can have several levels of nested queries
- A reference to an unqualified attribute refers to the relation declared in the innermost nested query
- In this example, the nested query is not correlated with the outer query

CORRELATED NESTED QUERIES

- If a condition in the WHERE-clause of a nested query references an attribute of a relation declared in the outer query, the two queries are said to be correlated
 - The result of a correlated nested query is different for each tuple (or combination of tuples) of the relation(s) the outer query
- Query 12: Retrieve the name of each employee who has a dependent with the same first name as the employee.

```
Q12: SELECT
FROM
WHERE
```

```
E.FNAME, E.LNAME
EMPLOYEE AS E
E.SSN IN
```

(SELECT ESSN

FROM DEPENDENT

WHERE ESSN=E.SSN AND

E.FNAME=DEPENDENT_NAME)

- In Q12, the nested query has a different result in the outer query
- A query written with nested SELECT... FROM... WHERE... blocks and using the = or IN comparison operators can always be expressed as a single block query. For example, Q12 may be written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME

FROM EMPLOYEE E, DEPENDENT D

WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME

- The original SQL as specified for SYSTEM R also had a CONTAINS comparison operator, which is used in conjunction with nested correlated queries
 - This operator was dropped from the language, possibly because of the difficulty in implementing it efficiently
 - Most implementations of SQL do not have this operator
 - The CONTAINS operator compares two sets of values, and returns TRUE if one set contains all values in the other set
 - Reminiscent of the division operation of algebra

 Query 3: Retrieve the name of each employee who works on all the projects controlled by department number 5.

SELECT FNAME, LNAME Q3: **EMPLOYEE** FROM WHERE ((SELECT PNO FROM WORKS ON WHERE SSN=ESSN) CONTAINS (SELECT **PNUMBER** FROM **PROJECT** WHERE DNUM=5))

- In Q3, the second nested query, which is not correlated with the outer query, retrieves the project numbers of all projects controlled by department 5
- The first nested query, which is correlated, retrieves the project numbers on which the employee works, which is different for each employee tuple because of the correlation

THE EXISTS FUNCTION

- EXISTS is used to check whether the result of a correlated nested query is empty (contains no tuples) or not
 - We can formulate Query 12 in an alternative form that uses EXISTS as Q12B

THE EXISTS FUNCTION (contd.)

 Query 12: Retrieve the name of each employee who has a dependent with the same first name as the employee.

Q12B: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE EXISTS (SELECT '

FROM DEPENDENT WHERE SSN=ESSN

AND

FNAME=DEPENDENT_NAME)

THE EXISTS FUNCTION (contd.)

 Query 6: Retrieve the names of employees who have no dependents.

Q6: SELECT FNAME, LNAME

FROM EMPLOYEE

WHERE NOT EXISTS (SELECT '

FROM DEPENDENT

WHERE SSN=ESSN)

- In Q6, the correlated nested query retrieves all DEPENDENT tuples related to an EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected
 - EXISTS is necessary for the expressive power of SQL

EXPLICIT SETS

- It is also possible to use an explicit (enumerated) set of values in the WHERE-clause rather than a nested query
- Query 13: Retrieve the social security numbers of all employees who work on project number 1, 2, or 3.

Q13: SELECT DISTINCT ESSN FROM WORKS_ON WHERE PNO IN (1, 2, 3)

Joined Relations Feature in SQL2

- Can specify a "joined relation" in the FROMclause
 - Looks like any other relation but is the result of a join
 - Allows the user to specify different types of joins (regular "theta" JOIN, NATURAL JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, CROSS JOIN, etc)

Joined Relations Feature in SQL2 (contd.)

Examples:

E.FNAME, E.LNAME, S.FNAME, S.LNAME Q8:SELECT

FROM EMPLOYEE E S

WHERE E.SUPERSSN=S.SSN

can be written as:

E.FNAME, E.LNAME, S.FNAME, S.LNAME Q8:SELECT **FROM**

(EMPLOYEE E LEFT OUTER JOIN

EMPLOYEE S ON E.SUPERSSN=S.SSN)

Joined Relations Feature in SQL2 (contd.)

Examples:

Q1:SELECT FNAME, LNAME, ADDRESS FROM EMPLOYEE, DEPARTMENT WHERE DNAME='Research' AND DNUMBER=DNO

could be written as:

Q1:SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE JOIN DEPARTMENT

ON DNUMBER=DNO)

WHERE DNAME='Research'

or as:

Q1:SELECT FNAME, LNAME, ADDRESS

FROM (EMPLOYEE NATURAL JOIN

DEPARTMENT

AS DEPT(DNAME, DNO, MSSN, MSDATE)

WHERE DNAME='Research'

Joined Relations Feature in SQL2 (contd.)

 Another Example: Q2 could be written as follows; this illustrates multiple joins in the joined tables

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE, ADDRESS

FROM (PROJECT JOIN

DEPARTMENT ON

DNUM=DNUMBER) JOIN

EMPLOYEE ON

MGRSSN=SSN))

WHERE PLOCATION='Stafford'

AGGREGATE FUNCTIONS

- Include COUNT, SUM, MAX, MIN, and AVG
- Query 15: Find the maximum salary, the minimum salary, and the average salary among all employees.

Q15: SELECT MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

 Some SQL implementations may not allow more than one function in the SELECT-clause

AGGREGATE FUNCTIONS (contd.)

 Query 16: Find the maximum salary, the minimum salary, and the average salary among employees who work for the 'Research' department.

Q16: SELECT MAX(SALARY),

MIN(SALARY), AVG(SALARY)

FROM

EMPLOYEE, DEPARTMENT

WHERE

DNO=DNUMBER AND

DNAME='Research'

AGGREGATE FUNCTIONS (contd.)

 Queries 17 and 18: Retrieve the total number of employees in the company (Q17), and the number of employees in the 'Research' department (Q18).

Q17: SELECT COUNT (*)

FROM EMPLOYEE

Q18: SELECT COUNT (*)

FROM EMPLOYEE, DEPARTMENT

WHERE DNO=DNUMBER AND

DNAME='Research'

GROUPING

- In many cases, we want to apply the aggregate functions to subgroups of tuples in a relation
- Each subgroup of tuples consists of the set of tuples that have the same value for the grouping attribute(s)
- The function is applied to each subgroup independently
- SQL has a GROUP BY-clause for specifying the grouping attributes, which must also appear in the SELECT-clause

GROUPING (contd.)

 Query 20: For each department, retrieve the department number, the number of employees in the department, and their average salary.

Q20:

SELECT FROM

DNO, COUNT (*), AVG (SALARY)

EMPLOYEE

GROUP BY DNO

- In Q20, the EMPLOYEE tuples are divided into groups-
 - Each group having the same value for the grouping attribute DNO
- The COUNT and AVG functions are applied to each such group of tuples separately
- The SELECT-clause includes only the grouping attribute and the functions to be applied on each group of tuples
- A join condition can be used in conjunction with grouping

GROUPING (contd.)

Query 21: For each project, retrieve the project number, project name, and the number of employees who work on that project.

Q21: SELECT PNUMBER, PNAME, COUNT (*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

 In this case, the grouping and functions are applied after the joining of the two relations

THE HAVING-CLAUSE

- Sometimes we want to retrieve the values of these functions for only those groups that satisfy certain conditions
- The HAVING-clause is used for specifying a selection condition on groups (rather than on individual tuples)

THE HAVING-CLAUSE (contd.)

Query 22: For each project on which more than two employees work, retrieve the project number, project name, and the number of employees who work on that project.

Q22: SELECT PNUMBER, PNAME,

COUNT(*)

FROM PROJECT, WORKS_ON

WHERE PNUMBER=PNO

GROUP BY PNUMBER, PNAME

HAVING COUNT (*) > 2

Summary of SQL Queries

A query in SQL can consist of up to six clauses, but only the first two, SELECT and FROM, are mandatory. The clauses are specified in the following order:

Summary of SQL Queries (contd.)

- The SELECT-clause lists the attributes or functions to be retrieved
- The FROM-clause specifies all relations (or aliases) needed in the query but not those needed in nested queries
- The WHERE-clause specifies the conditions for selection and join of tuples from the relations specified in the FROM-clause
- GROUP BY specifies grouping attributes
- HAVING specifies a condition for selection of groups
- ORDER BY specifies an order for displaying the result of a query
 - A query is evaluated by first applying the WHERE-clause, then GROUP BY and HAVING, and finally the SELECT-clause

Constraints as Assertions

- General constraints: constraints that do not fit in the basic SQL categories (presented in chapter 8)
- Mechanism: CREAT ASSERTION
 - Components include:
 - a constraint name,
 - followed by CHECK,
 - followed by a condition

Assertions: An Example

 "The salary of an employee must not be greater than the salary of the manager of the department that the employee works for"

CREAT ASSERTION SALARY CONSTRAINT

CHECK (NOT EXISTS (SELECT *

FROM EMPLOYEE E, EMPLOYEE M,

DEPARTMENT D

WHERE E.SALARY > M.SALARY AND

E.DNO=D.NUMBER AND

D.MGRSSN=M.SSN))

name

CHECK,

condition

Using General Assertions

- Specify a query that violates the condition;
 include inside a NOT EXISTS clause
- Query result must be empty
 - if the query result is not empty, the assertion has been violated

SQL Triggers

- Objective: to monitor a database and take initiate action when a condition occurs
- Triggers are expressed in a syntax similar to assertions and include the following:
 - Event
 - Such as an insert, deleted, or update operation
 - Condition
 - Action
 - To be taken when the condition is satisfied

SQL Triggers: An Example

A trigger to compare an employee's salary to his/her supervisor during insert or update operations:

```
CREATE TRIGGER SALARY_VIOLATION

BEFORE INSERT OR UPDATE OF

SALARY, SUPERVISOR_SSN ON EMPLOYEE

FOR EACH ROW

WHEN

(NEW.SALARY> (SELECT SALARY FROM EMPLOYEE

WHERE SSN=NEW.SUPERVISOR_SSN))

INFORM_SUPERVISOR (NEW.SUPERVISOR_SSN, NEW.SSN);
```

Views in SQL

- A view is a "virtual" table that is derived from other tables
- Allows for limited update operations
 - Since the table may not physically be stored
- Allows full query operations
- A convenience for expressing certain operations

Specification of Views

- SQL command: CREATE VIEW
 - a table (view) name
 - a possible list of attribute names (for example, when arithmetic operations are specified or when we want the names to be different from the attributes in the base relations)
 - a query to specify the table contents

SQL Views: An Example

Specify a different WORKS_ON table

```
CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE SSN=ESSN AND PNO=PNUMBER

GROUP BY PNAME;
```

Using a Virtual Table

We can specify SQL queries on a newly create table (view):

```
SELECT FNAME, LNAME

FROM WORKS_ON_NEW

WHERE PNAME='Seena';
```

When no longer needed, a view can be dropped: DROP WORKS_ON_NEW;

Efficient View Implementation

- Query modification:
 - Present the view query in terms of a query on the underlying base tables
- Disadvantage:
 - Inefficient for views defined via complex queries
 - Especially if additional queries are to be applied to the view within a short time period

Efficient View Implementation

- View materialization:
 - Involves physically creating and keeping a temporary table
- Assumption:
 - Other queries on the view will follow
- Concerns:
 - Maintaining correspondence between the base table and the view when the base table is updated
- Strategy:
 - Incremental update

Update Views

- Update on a single view without aggregate operations:
 - Update may map to an update on the underlying base table
- Views involving joins:
 - An update may map to an update on the underlying base relations
 - Not always possible

Un-updatable Views

- Views defined using groups and aggregate functions are not updateable
- Views defined on multiple tables using joins are generally not updateable
- WITH CHECK OPTION: must be added to the definition of a view if the view is to be updated
 - To allow check for updatability and to plan for an execution strategy