1.2 Limite e Continuidade

Limite

Definição de limite Limites trajetoriais Resultados sobre o limite

Continuidade

Definição de continuidade Aritmética das funções contínuas Continuidade da função composta

Noção de limite

$$f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

1. $f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$, função de uma variável real

Escrevemos

$$\lim_{x \to a} f(x) = \ell, \qquad \ell \in \mathbb{R},$$

quando os valores de f se aproximam de ℓ à medida que x se aproxima do ponto a, por valores à esquerda ou à direita de a. É necessário que a seja um ponto de acumulação de D.

Exemplo

[Análise intuitiva da existência de limite na origem]

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \mapsto 3|x|$$

$$g: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \mapsto 3|x$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = \lim_{x \to 0} h(x) = 0.$$

Definição de limite (n = 1)

Dizemos que $\ell \in \mathbb{R}$ é o limite de f quando x tende para a e escrevemos

$$\lim_{x \to a} f(x) = \ell,$$

quando é possível tornar a distância de f(x) a ℓ arbitrariamente pequena, desde que se tome x em $D \setminus \{a\}$ suficientemente próximo de a.

Simbolicamente,

$$\lim_{x \to a} f(x) = \ell$$

se e só se para qualquer número $\varepsilon>0$ existe um número correspondente $\delta>0$ tal que

$$0 < |x - a| < \delta \Longrightarrow |f(x) - \ell| < \varepsilon.$$

Figura 1: $\lim_{x \to a} f(x) = \ell$

Se
$$0 < |x - a| < \delta$$
, então $|f(x) - \ell| < \varepsilon$.

Temos

$$\lim_{x \to a} f(x) = \ell$$

se e só se existem e são iguais a ℓ os correspondentes limites laterais, isto é,

$$\lim_{x \to a} f(x) = \ell \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \ell.$$

Consequentemente, se os limites laterais não existirem ou se existirem mas forem diferentes, concluímos que

$$\nexists \lim_{x \to a} f(x).$$

2. $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$, função de duas variáveis reais

Noção de distância

Bola (aberta) de centro em (a,b) e raio r>0

$$B_r(a,b) = \left\{ (x,y) \in \mathbb{R}^2 : \sqrt{(x-a)^2 + (y-b)^2} < r \right\}$$

Figura 2: Bola (aberta) de centro em $x_0 = (a, b)$ e raio r

Definição de limite (n = 2)

Seja z = f(x, y) uma função de duas variáveis definida numa bola com centro (a, b), exceto possivelmente em (a, b).

Dizemos que o limite de f quando (x,y) tende para (a,b) é L e escrevemos

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

quando é possível tornar f(x,y) arbitrariamente próximo de L desde que se tome (x,y) no domínio de f suficientemente próximo de (a,b).

Simbolicamente,

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

se e só se para qualquer número $\varepsilon > 0$ existe um número correspondente $\delta > 0$ tal que

$$0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta \Longrightarrow |f(x,y) - L| < \varepsilon.$$

Figura 3: $\lim_{(x,y)\to(a,b)} f(x,y) = L$

Exemplo

Figura 4:
$$f(x,y) = \sqrt{9 - (x^2 + y^2)}$$

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \sqrt{9 - (x^2 + y^2)} = 3$$

Limites trajetoriais

A definição de limite refere a distância entre (x,y) e (a,b) mas não a direção de aproximação.

Quando consideramos que (x,y) se aproxima de (a,b) ao longo de uma determinada curva C, isto é, quando $(x,y) \in C$, estamos a considerar um limite trajetorial e escrevemos

$$\lim_{(x,y)\to(a,b)} f(x,y)
(x,y) \in C$$

Se o $\lim_{(x,y)\to(a,b)} f(x,y)$ existir, será independente da trajetória descrita pelo ponto (x,y) quando se aproxima de (a,b), ou seja, os limites trajetoriais são iguais qualquer que seja a curva C.

Consequentemente, se

com $L_1 \neq L_2$, podemos conluir que

não existe
$$\lim_{(x,y)\to(a,b)} f(x,y)$$
.

Exemplo

Não existe
$$\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$$
 uma vez que

$$\lim_{\begin{subarray}{c} (x,y)\to (0,0)\\ y=0\end{subarray}} \frac{x^2-y^2}{x^2+y^2} = 1 \quad e \quad \lim_{\begin{subarray}{c} (x,y)\to (0,0)\\ x=0\end{subarray}} \frac{x^2-y^2}{x^2+y^2} = -1.$$

(b) Gráfico de f

(a) Limites trajetoriais

Figura 5: $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$

Exemplo

Estudemos a existência de $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.

Temos

$$\lim_{\begin{subarray}{c} (x,y) \to (0,0) \\ y=0 \end{subarray}} \frac{xy}{x^2+y^2} = 0 \quad e \quad \lim_{\begin{subarray}{c} (x,y) \to (0,0) \\ x=0 \end{subarray}} \frac{xy}{x^2+y^2} = 0,$$

mas nada podemos concluir quanto à existência do limite, a não ser que, se existir, será igual a zero.

No entanto,

$$\lim_{\substack{(x,y)\to(0,0)\\y=x}} \frac{xy}{x^2+y^2} = \frac{1}{2}.$$

Logo, não existe $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$.

(a) Limites trajetoriais

(b) Gráfico de f

Figura 6:
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

Exercício

Estude a existência de

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}.$$

Sugestão: considere os limites ao longo das retas $y=mx,\ m\neq 0$, e ao longo da parábola $y=x^2$.

Figura 7: Gráfico de $f(x,y) = \frac{x^2y}{x^4 + y^2}$

Exemplo

Determine, se existir,

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}.$$

Solução. Podemos mostrar que o limite ao longo de uma reta qualquer que passa pela origem é 0, mas isto não prova a existência do limite igual a 0. Contudo, também ao longo das parábolas $y=x^2$ e $x=y^2$ obtemos o limite 0, o que nos leva a suspeitar que o limite exista e seja igual a 0. Vamos, então, tentar provar que

$$\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0$$

usando a definição de limite apresentada na página 9.

Seja $\varepsilon > 0$. Pretendemos determinar $\delta > 0$ tal que

$$\left|\frac{3x^2y}{x^2+y^2}-0\right|<\varepsilon\quad\text{sempre que}\quad 0<\sqrt{x^2+y^2}<\delta,$$

ou seja,

$$\frac{3x^2|y|}{x^2+y^2}<\varepsilon\quad\text{sempre que}\quad 0<\sqrt{x^2+y^2}<\delta.$$

Mas $x^2 < x^2 + y^2$ uma vez que $y^2 \ge 0$, logo $x^2/(x^2 + y^2) \le 1$ e, portanto,

$$\frac{3x^2|y|}{x^2+y^2} \le 3|y| = 3\sqrt{y^2} \le 3\sqrt{x^2+y^2}.$$

Então, se escolhermos $\delta = \varepsilon/3$ e sendo $0 < \sqrt{x^2 + y^2} < \delta$, temos

$$\left| \frac{3x^2y}{x^2 + y^2} - 0 \right| \le 3\sqrt{x^2 + y^2} < 3\delta = 3\left(\frac{\varepsilon}{3}\right) = \varepsilon,$$

como pretendíamos verificar.

Definição de limite (caso geral)

Seja f uma função real de n variáveis reais,

$$f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n),$

e (a_1, a_2, \ldots, a_n) um ponto de acumulação do domínio D.

Dizemos que o limite de f quando (x_1, x_2, \ldots, x_n) tende para (a_1, a_2, \ldots, a_n) é L e escrevemos

$$\lim_{(x_1, x_2, \dots, x_n) \to (a_1, a_2, \dots, a_n)} f(x_1, x_2, \dots, x_n) = L$$

se e só se para qualquer número $\varepsilon>0$ existe um número correspondente $\delta>0$ tal que

$$0 < \sqrt{(x_1 - a_1)^2 + \ldots + (x_n - a_n)^2} < \delta \implies |f(x_1, x_2, \ldots, x_n) - L| < \varepsilon.$$

Resultados sobre o limite (n = 2)

Sejam $f, g: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ e (a, b) um ponto de acumulação de D.

1. [Unicidade]

Se existir $\lim_{(x,y)\to(a,b)} f(x,y) = l$, então l é único.

2. [Aritmética dos limites]

Se
$$\lim_{(x,y)\to(a,b)} f(x,y) = l$$
 e $\lim_{(x,y)\to(a,b)} g(x,y) = m$, então

•
$$\lim_{(x,y)\to(a,b)} [f(x,y)\pm g(x,y)] = l\pm m$$

$$\bullet \lim_{(x,y)\to(a,b)} [f(x,y)\cdot g(x,y)] = l\cdot m$$

•
$$\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{l}{m}, \qquad m \neq 0$$

3. •
$$\lim_{(x,y)\to(a,b)} \lambda = \lambda$$
 (λ constante)

$$\lim_{(x,y)\to(a,b)} x=a \qquad \qquad \lim_{(x,y)\to(a,b)} y=b$$

4. [Produto de uma função limitada por um infinitésimo]

Se
$$\lim_{(x,y)\to(a,b)}f(x,y)=0$$
 e g é limitada em $D\setminus\{(a,b)\}$, então

$$\lim_{(x,y)\to(a,b)} f(x,y) \cdot g(x,y) = 0.$$

5. [Lei do enquadramento]

Se
$$\lim_{(x,y)\to(a,b)}f(x,y)=l$$
, $\lim_{(x,y)\to(a,b)}g(x,y)=l$ e $f(x,y)\leq h(x,y)\leq g(x,y)$, numa vizinhança $B_r(a,b)$,

então

$$\lim_{(x,y)\to(a,b)} h(x,y) = l.$$

Estes resultados generalizam-se de forma natural para funções com n variáveis e permitem o cálculo de limites sem recorrer à definição.

Continuidade

$$f: D \subset \mathbb{R} \longrightarrow \mathbb{R}$$

Figura 8: (a) f descontínua em x_0

(b) f contínua em x_0

$f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$

Figura 9: (a) f descontínua

(b) f contínua no seu domínio

Consideremos uma função $f: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ e (a,b) um ponto pertencente a D e também ponto de acumulação de D.

Dizemos que f é contínua em (a,b) quando

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

Designa-se por domínio de continuidade de f o subconjunto de D formado pelos pontos onde f é contínua. Dizemos que f é contínua se é contínua em D.

1. [Aritmérica de funções contínuas]

Sejam $f,g:D\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ funções contínuas em (a,b). Então,

- f+g, λf , $f\cdot g$ são contínuas em (a,b) $(\lambda\in\mathbb{R})$;
- $\frac{f}{g}$ é contínua em (a,b) desde que $g(a,b) \neq 0$.
- **2.** Se $g: A \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em a e $h: B \subset \mathbb{R} \longrightarrow \mathbb{R}$ é contínua em b, então $f: A \times B \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = g(x) \cdot h(y)$$

é contínua em (a,b).

Exemplos relevantes

- Toda a função constante é contínua.
- Qualquer função polinomial de duas variáveis é contínua.

Uma função $p:\mathbb{R}^2\longrightarrow\mathbb{R}$ diz-se polinomial quando é a soma finita de parcelas do tipo

$$cx^my^n$$
,

onde c é uma constante real e m e n são inteiros não negativos.

Toda a função racional é contínua no seu domínio.

Uma função $p: D \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$ diz-se racional quando é definida pelo quociente entre duas funções polinomiais.

- A função norma $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por $f(x,y) = \sqrt{x^2 + y^2}$ é contínua.
- Toda a aplicação linear $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ é contínua.

Continuidade da função composta

Sejam $g:A\subset\mathbb{R}^2\longrightarrow\mathbb{R}$ e $f:B\subset\mathbb{R}\longrightarrow\mathbb{R}$ tais que $g(A)\subset B$. Se g é contínua em (a,b) e f é contínua em c=g(a,b), então a função composta

$$f \circ g: A \subset \mathbb{R}^2 \longrightarrow \mathbb{R}$$

 $(x,y) \longmapsto f(g(x,y))$

é contínua em (a,b).

Figura 10: Composição $f \circ g$

Sendo f uma função real de n variáveis reais,

$$f: D \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

 $(x_1, \dots, x_n) \longmapsto f(x_1, \dots, x_n),$

e (a_1, a_2, \ldots, a_n) um ponto pertencente a D e ponto de acumulação de D, dizemos que f é contínua em (a_1, a_2, \ldots, a_n) quando

$$\lim_{(x_1,x_2,\ldots,x_n)\to(a_1,a_2,\ldots,a_n)} f(x_1,x_2,\ldots,x_n) = f(a_1,a_2,\ldots,a_n)$$

e os resultados apresentados para n=2 também se aplicam (devidamente adaptados).