Theorems

Theorem 2.1.1. If a binary operation * on a set S has an identity, then it is unique.

Theorem 2.1.4. If (G, *) is a group and $g \in G$, then the inverse of G is unique.

Theorem 2.2.1. If (M,*) is a monoid, then the set of all unit M^{\times} is a group using the operation *, called the unit group.

Theorem 2.2.2. If G_1, G_2, \ldots, G_n are groups with respective operations $*_1, *_2, \ldots, *_n$, then

$$G_1 \times G_2 \times \cdots \times G_n$$

is a group under component-wise operation

$$(g_1, g_2, \dots, g_n) * (h_1, h_2, \dots, h_n) = (g_1 *_1 h_1, g_2 *_2 h_2, \dots, g_n *_n h_n).$$

Theorem 2.2.3. Let $g, h, g_1, g_2, \ldots, g_{n-1}, g_n$ be elements of a group G $(n \in \mathbb{Z}_{\geq 1})$.

- 1. $e^{-1} = e$.
- **2.** $(q^{-1})^{-1} = q$.
- 3. $(gh)^{-1} = h^{-1}g^{-1}$.
- **4.** $(g_1g_2\cdots g_n)^{-1}=g_n^{-1}g_{n-1}^{-1}\cdots g_2^{-1}g_1^{-1}$.
- **5.** $(g^m)^{-1} = (g^{-1})^m$ for all $m \ge 0$.

Theorem 2.2.4 (Exponent Laws). Let G be a group and $g, h \in G$.

- 1. $g^n g^m = g^{n+m}$ for all $m, n \in \mathbb{Z}$
- 2. $(g^n)^m = g^{n \cdot m}$ for all $m, n \in \mathbb{Z}$
- 3. If gh = hg, then $(gh)^n = g^nh^n$ for all $n \in \mathbb{Z}$

Theorem 2.2.5 (Cancellation Laws). Let G be a group and $g, h, f \in G$.

- 1. If gh = gf then h = f (left cancellation)
- 2. If hg = fg then h = f (right cancellation)

Theorem 2.2.6. Let G be a group and $g, h \in G$.

- 1. The equation gx = h has a unique solution $x = g^{-1}h$ in G.
- **2.** The equation xg = h has a unique solution $x = hg^{-1}$ in G.

Theorem 2.3.1 (Subgoup Test). A subset H of a group G is a subgroup of G if and only if the following conditions are satisfied.

- **1.** $1_G \in H$, where 1_G is the identity element of G.
- **2.** If $h \in H$ and $h_1 \in H$, then $hh_1 \in H$.
- **3.** If $h \in H$, then $h^{-1} \in H$, where $h^{-1} \in G$ denotes the inverse of h in G.

Note that implicit in these statements, if $H \leq G$ then H and G have the same unity and inverses persist.

Theorem 2.3.3. If G is any group, then Z(G) is a subgroup of G. Moreover, Z(G) is always abelian.

Theorem 2.4.1. Let g be an element of a group G, and write

$$\langle g \rangle = \{ g^k : k \in \mathbb{Z} \}.$$

Then $\langle g \rangle$ is a subgroup of G, and $\langle g \rangle \subseteq H$ for every subgroup H of G with $g \in H$.

Theorem 2.4.2. Let $g \in G$ with o(g) = n. Then

- 1. $g^k = 1$ if and only if n|k.
- 2. $g^k = g^m$ if and only if $k \equiv m \pmod{n}$
- **3.** $\langle g \rangle = \{1, g, g^2, \dots, g^{n-1}\}$ where $1, g, g^2, \dots, g^{n-1}$ are all distinct.

Theorem 2.4.3. Let G be a group and let $g \in G$ satisfy $o(g) = \infty$. Then

- **1.** $g^k = 1$ if and only if k = 0.
- 2. $g^k = g^m$ if and only if k = m.
- **3.** $\langle g \rangle = \{ \dots, g^{-2}, g^{-1}, 1, g, g^2, \dots \}$ where the g^i are distinct.

Corollary. For all g in a group G, $|g| = |\langle g \rangle|$.

Theorem (Order in \mathbb{Z}_n). Given $\overline{a} \in (\mathbb{Z}_n, +)$, with $1 \le a \le n - 1$,

$$|\overline{a}| = \frac{n}{\gcd(a, n)}.$$

Theorem . If $\gamma = (k_1 \ k_2 \ \dots \ k_r)$ is an r-cycle in S_n , then $|\gamma| = r$.

Theorem 2.4.4. If $\gamma = \sigma_1 \sigma_2 \dots \sigma_r$ where σ_i are disjoint cycles, then

$$|\gamma| = \operatorname{lcm}(|\sigma_1|, |\sigma_2|, \dots, |\sigma_r|).$$

Theorem 2.4.6. Every cyclic group is abelian, but the converse does not hold.

Theorem 2.4.7. Every subgroup of a cyclic group is cyclic.

Theorem 2.4.8. Let $G = \langle g \rangle$ be a cyclic group, where o(g) = n. Then $G = \langle g^k \rangle$ if and only if gcd(k, n) = 1.

Theorem 2.4.9 (The Fundamental Theorem of Finite Cyclic Groups). Let $G = \langle g \rangle$ be a cyclic group of order n.

- **1.** If H is a subgroup of G, then $H = \langle g^d \rangle$ for some d|n. Hence |H| divides n.
- **2.** Conversely if k|n, then $\langle g^{n/k} \rangle$ is the unique subgroup of G of order k.

Definitions

Definition. A binary operation, * on a set S is a function that associates to each ordered pair $(a,b) \in S \times S$ an element of S which we call a*b.

Since we know that $a*b \in S$ for all $a,b \in S$, we say that the binary operation is *closed* under *.

Definition. A binary operation * on S is associative if

$$a * (b * c) = (a * b) * c,$$

for all $a, b, c \in S$.

Definition. A binary operation * on S is *commutative* if

$$a * b = b * a$$
,

for all $a, b \in S$.

Definition. An element $e \in S$ is called an *identity* (or *unity*) for the binary operation * if

$$a * e = e * a = a$$
,

for all $a \in S$.

Definition. A set S along with a binary operation * is called an *monoid* if * is associate and has an identity.

If (S, *) is also commutative, then we say S is a commutative monoid.

Definition. Let (M,*) be a monoid.

If $x \in M$, we call $y \in M$ an inverse of x if

$$xy = e = yx$$
.

An element that has an inverse is called a *unit*.

Definition. Suppose that

- **1.** G is a set and * is a binary operation on G,
- 2. * is associative,
- **3.** there is some $e \in G$ such that

$$g * e = e * g = g,$$

for all $q \in G$, and

4. for all $g \in G$, the is an $h \in G$ such that g * h = e = h * g.

Then (G, *) is a GROUP.

Definition. The *nth roots of unity* are the complex numbers that are the roots of

$$x^{n} - 1$$
.

Denote the set of roots as \mathcal{U}_n

Definition. If the operation of a group G is commutative, we call G an abelian group.

Definition. A Cayley table is essentially a multiplication table for a given binary operation.

Definition. We call $C_n = \{1, a, a^2, \dots, a^{n-1}\}$ the cyclic group of order n. Multiplication is defined by $a^x a^y = a^{x+y}$ and $a^n = a^0 = 1$.

Definition. A subsets H of a group G is call a *subgroup* of G if H is also a group using the same operation as G. We denote subgroups using the notation $H \leq G$.

If $H \leq G$ and $H \neq G$, we call H a proper subgroup of G.

Definition. The subset of G generated by $g \in G$ in multiplicative notation is

$$\langle g \rangle = \{ g^k | k \in Z \} = \{ \dots, g^{-3}, g^{-2}, g^{-1}, 1, g, g^2, \dots \}.$$

The subset of G generated by $g \in G$ in additive notation is

$$\langle g \rangle = \{kg | k \in Z\}$$

= $\{\dots, -g - g - g, -g, -g, 0, g, g + g, g + g + g, \dots\}.$

Definition. The *subgroup lattice* of a group G is a schematic picture of the subgroups of G. A line going up from one group to another indicates that the bottom group is a subgroup of the top one.

Definition. The *center* of the group G is the set

$$Z(G) = \{z \in G | zg = gz \; \forall g \in G\}.$$

Definition. A group G is cyclic if there is some $g \in G$ for which $G = \langle g \rangle$.

Definition. If G is a finite group, the *order of a group* G is denoted |G| and is the cardinality of the set G.

The order of an element $g \in G$ is denoted |g| or o(g) and equals the smallest positive integer n such that $g^n = e$.

Definition. In general, if X is a nonempty subset of a group G, then the subgroup of G generated by X is defined as

$$\begin{array}{lll} \langle X \rangle & = & \{ \text{products of powers (not nec. distinct) of elements of X} \} \\ & = & \{ x_1^{k_1} x_2^{k_2} \cdots x_m^{k_m} \mid x_i \in X, \ k_i \in \mathbb{Z}, \ m \geq 1 \} \end{array}$$

We will always have $\langle X \rangle < G$.