Chapitre

Vecteurs (2) Opérations et colinéarité

13

13.1 Produit d'un vecteur par un réel

Définition 13.1 — interprétation géométrique. $\vec{u} \neq \vec{0}$. Le produit d'un réel k par un vecteur \vec{u} est un vecteur noté $k\vec{u}$: P1 $0\vec{u} = \vec{0}$.

P2 Si $k \neq 0$, « $k\vec{u}$ » désigne le vecteur :

- ayant même direction que \vec{u}
- $||k\overrightarrow{u}|| = |k| \times ||\overrightarrow{u}||$
- Si k > 0 alors $k\vec{u}$ et \vec{u} ont même sens. Si k < 0 alors $k\vec{u}$ et \vec{u} sont de sens contraires

Définition 13.2 — vecteurs opposés. $\overrightarrow{v} = -\overrightarrow{u}$ signifie que les vecteurs \overrightarrow{u} et \overrightarrow{v} ont même direction, même norme mais sont de sens contraires. En particulier : $-\overrightarrow{AB} = \overrightarrow{BA}$

- Exemple 13.1 I est le milieu du segment [AB]. En utilisant uniquement des vecteurs d'extrémités A, B ou I:
- a) Énumérer 2 égalités de vecteurs.
- b) Énumérer 3 paires de vecteurs opposés $\overrightarrow{v} = -\overrightarrow{u}$
- c) Énumérer 3 paires de vecteurs qui peuvent s'écrire $\overrightarrow{v}=2\overrightarrow{u}$
- d) Énumérer 3 paires de vecteurs qui peuvent s'écrire $\vec{v} = \frac{1}{2}\vec{u}$

Soit un repère (O; I, J), et le vecteur $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$. Le vecteur $k \overrightarrow{u}$ a pour coordonnées $k \overrightarrow{u} \begin{pmatrix} kx \\ ky \end{pmatrix}$.

2

Exercices : produit d'un vecteur par un réel

■ Exemple 13.2

Les vecteurs ci-dessous ont tous la même direction.

$$\frac{CD}{AB} = \frac{5}{3}$$

$$CD = \frac{5}{3}AB$$

$$\overrightarrow{CD} = \frac{5}{3}\overrightarrow{AB}$$

Exercice 1

a) Sur la figure ci-dessous :

a figure ci-dessous :	$A \qquad \qquad B \qquad \qquad .$	C
		
$AC = \dots BC$	$BC = \dots AC$	$BC = \dots BA$
$\overrightarrow{AC} = \dots \overrightarrow{BC}$	$\overrightarrow{BC} = \dots \overrightarrow{AC}$	$\overrightarrow{BC} = \dots \overrightarrow{BA}$
$CA = \dots BA$	$AB = \dots BC$	$BA = \dots BC$
$\overrightarrow{CA} = \dots \overrightarrow{BA}$	$\overrightarrow{AB} = \ldots \overrightarrow{BC}$	$\overrightarrow{BA} = \dots \overrightarrow{BC}$

b) À partir de la figure ci-dessous, compléter les égalités vectorielles suivantes:

c) Le point B est le milieu de [AC]. Compléter les égalités vectorielles suivantes :

$$\overrightarrow{BA} = \dots \overrightarrow{AC}$$

$$\overrightarrow{CB} = \dots \overrightarrow{AC}$$

$$\overrightarrow{AC} = \dots \overrightarrow{AB}$$

Exercice 2 Placer les points M, N, P pour chacun des cas suivants :

a)
$$\overrightarrow{AM} = 2\overrightarrow{AB}$$
; $\overrightarrow{AN} = -3\overrightarrow{AB}$ et $\overrightarrow{OP} = 4\overrightarrow{AB}$

b)
$$\overrightarrow{AM} = \frac{2}{5}\overrightarrow{AB}$$
; $\overrightarrow{BN} = -\frac{7}{5}\overrightarrow{AB}$ et $\overrightarrow{OP} = -\frac{1}{5}\overrightarrow{AB}$

c) $\overrightarrow{AM} = \frac{5}{3}\overrightarrow{AB}$; $\overrightarrow{BN} = -\frac{1}{6}\overrightarrow{AB}$ et $\overrightarrow{OP} = -\frac{4}{3}\overrightarrow{AB}$

d) $2\overrightarrow{AM} = -\overrightarrow{AB}$; $4\overrightarrow{BN} = 3\overrightarrow{AB}$ et $2\overrightarrow{OP} = -3\overrightarrow{AB}$

O A B

e) $3\overrightarrow{AM} = 2\overrightarrow{AB}$; $6\overrightarrow{BN} = 11\overrightarrow{BA}$ et $6\overrightarrow{OP} = -\overrightarrow{BA}$

■ Exemple 13.3

Placer les points A_0 , A_1 , B_0 , B_1 tel que $\overrightarrow{AA_0} = \frac{3}{2}\overrightarrow{u}$; $\overrightarrow{AA_1} = -\overrightarrow{u}$; $\overrightarrow{BB_0} = \frac{3}{5}\overrightarrow{v}$ et $\overrightarrow{B_0B_1} = -\frac{7}{5}\overrightarrow{v}$.

Exercice 3 Pour chacun des cas suivants, dites s'il existe un réel k tel que $\overrightarrow{PQ} = k\overrightarrow{AB}$ puis préciser si les droites (PQ) et (AB) sont parallèles.

- a) $\overrightarrow{PQ} \begin{pmatrix} 4 \\ 6 \end{pmatrix}$ et $\overrightarrow{AB} \begin{pmatrix} -16 \\ -24 \end{pmatrix}$ c) $\overrightarrow{PQ} \begin{pmatrix} -3 \\ 5 \end{pmatrix}$ et $\overrightarrow{AB} \begin{pmatrix} -9 \\ 14 \end{pmatrix}$ b) $P(1 \; ; \; -1), \; Q(4 \; ; \; 3), \; A(-1 \; ; \; 5)$ et $B(7 \; ; \; 1)$ d) $P(1 \; ; \; 4), \; Q(-3 \; ; \; 5), \; A(5 \; ; \; 7)$ et $B(9 \; ; \; 6)$
- Exemple 13.4 Je fais. Dans un repère (O; I, J) on définit A(-15; 12) et B(8; -4). Sachant que $\overrightarrow{CO} = 10\overrightarrow{AB}$, déterminer les coordonnées de C.

Exercice 4 Mêmes consignes

- a) A(15; -10) et B(-1; -4) et $\overrightarrow{OC} = -11\overrightarrow{AB}$.
- b) A(1; -16) et B(-9; 9) et $\overrightarrow{CB} = -14\overrightarrow{AB}$.
- c) A(5; 9) et B(-13; -14) et $\overrightarrow{CB} = -5\overrightarrow{AB}$.

13.2 Colinéarité de deux vecteurs

Définition 13.3 $\vec{u} \neq \vec{0}$. Les vecteurs colinéaires à \vec{u} sont tous les multiples $k\vec{u}$ ou $k \in \mathbb{R}$.

Il s'agit du vecteur nul $\overrightarrow{0}$ et de tous les vecteurs de même direction que \overrightarrow{u} .

Deux vecteurs \vec{u} et \vec{v} sont colinéaires » (en abrégé $\vec{u} \propto \vec{v}$) si l'un est un multiple de l'autre.

Postulat 13.1 trois points A, B et C sont alignés si et seulement si deux parmi les vecteurs \overrightarrow{AB} , \overrightarrow{AC} ou \overrightarrow{BC} sont colinéaires.

Postulat 13.2 les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CDC} sont colinéaires.

Définition 13.4 — Colinéarité à l'aide des coordonnées. Dans un repère quelconque $(O; \vec{\imath}, \vec{\jmath})$. Soit deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. On appelle « déterminant de \overrightarrow{u} et \overrightarrow{v} » le nombre noté :

$$\det(\overrightarrow{u}; \overrightarrow{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$$

Théorème 13.3 Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}; \vec{v}) = 0$.

Démonstration.

Année 2022/2023

Exercices : Colinéarité de vecteurs

■ Exemple 13.5 Calculer les déteriminant des vecteurs suivants :

a)
$$\vec{u} \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 4 \\ 5 \end{pmatrix}$. $\det(\vec{u}; \vec{v}) = \begin{vmatrix} 3 & 4 \\ 2 & 5 \end{vmatrix} =$

$$\det(\vec{v}; \vec{u}) =$$

b)
$$\vec{u} \begin{pmatrix} -3 \\ 2 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ 4 \end{pmatrix}$. $\det(\vec{u}; \vec{v}) =$

c)
$$\vec{u} \begin{pmatrix} -4 \\ 5 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 8 \\ -10 \end{pmatrix}$.

■ Exemple 13.6 — Interprétation géométrique du déterminant dans un repère orthonormé.

Soit un repère **orthonormé** (O; I, J), et les points M(a, b) et N(c, d) et P tel que OPMN est un parallélogramme. Pour simplifier on suppose que a, b, c et d sont des réels strictement positifs.

Exemple 13.7 Déterminer si les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires.

a)
$$\vec{u} \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 6 \\ 9 \end{pmatrix}$.

b)
$$\vec{u} \begin{pmatrix} \sqrt{3} + \sqrt{2} \\ 1 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ \sqrt{3} - \sqrt{2} \end{pmatrix}$.

- **Exemple 13.8** Soient un repère orthonormé et les points A(0; -2), B(1; 1) et C(2; -1). Calculer l'aire du triangle ABC.
- **Exemple 13.9** Montrer que les points A(2; 5), B(3; 8) et C(-5; -16) sont alignés.

■ Exemple 13.10 Soient A(1; 3), B(5; -2), C(-1; 6) et D(7; -4). Montrer que les droites (AB) et (CD) sont parallèles.

Exercice 5 Dans chaque cas, dire si les vecteurs sont colinéaires.

a)
$$\vec{u} \begin{pmatrix} 2 \\ -3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} -1 \\ \frac{3}{2} \end{pmatrix}$

b)
$$\vec{u} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{3} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} \frac{4}{5} \\ -\frac{1}{3} \end{pmatrix}$

c)
$$\vec{u} \begin{pmatrix} \sqrt{2} \\ \sqrt{3} \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 2 \\ -\sqrt{6} \end{pmatrix}$

Exercice 6 Dans chaque cas les vecteurs \vec{u} et \vec{v} sont colinéaires. Écrire une équation vérifiée par m et la résoudre.

a)
$$\vec{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} m \\ 3 \end{pmatrix}$

b)
$$\vec{u} \begin{pmatrix} -m \\ 4m-3 \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 1 \\ -3 \end{pmatrix}$

c)
$$\vec{u} \begin{pmatrix} 27 \\ 2m \end{pmatrix}$$
 et $\vec{v} \begin{pmatrix} 2m \\ 3 \end{pmatrix}$

Exercice 7 Dans un repère orthonormé $(O; \vec{\imath}, \vec{\jmath})$.

a) Montrer que $A\left(-2;1\right),\;B\left(3;3\right)$, $C\left(1;\frac{11}{5}\right)$ sont alignés.

b) Trouver a pour que A(1;2), B(-3;0) et C(-14;a) soient alignés.

Exercice 8 Dans un repère, soit les points: A(-2; 1), B(3; 3), $C(1; \frac{11}{5})$ et $D(\frac{45}{2}; \frac{54}{5})$

- a) Démontrer que les points A, B et C sont alignés.
- b) Les points A, B et D sont-ils alignés?

Exercice 9 Pour chaque cas, justifier si les points donnés sont alignés.

- a) A(5;10), B(-5;5) et C(-1;7)
- b) D(-3;-4), E(-6;-6) et F(1;-1)
- c) K(-9;4), L(0;3) et M(9,2)
- d) P(-3;2), Q(-6;-2) et R(-10,-6)

Exercice 10 Dans un repère, on donne les points : M(0; -3), N(2; 3), P(-9; 0) et Q(-1; -1)

- 1) Calculer les coordonnées des points A et B tels que:
 - a) $\overrightarrow{NA} = \frac{1}{2} \overrightarrow{MN}$
 - b) $\overrightarrow{MB} = \overrightarrow{3} \overrightarrow{MQ}$
- 2) Calculer les coordonnées des vecteurs \overrightarrow{PA} et \overrightarrow{PB} .
- 3) Démontrer que les points P, A et B sont alignés. **Exercice 11** Soit les points A(1;2), B(-3;0) et

C(-7; a) dans un repère orthonormé. Trouver 2 valeurs de a pour lesquelles le triangle ABC est d'aire 12.

13.3 Somme de vecteurs 7

13.3 Somme de vecteurs

Théorème 13.4 L'enchainement d'une translation de vecteur \vec{u} puis d'une translation de vecteur \vec{v} est aussi une translation.

Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ est le vecteur associé à la translation obtenue.

Figure 13.1 – C est l'image de A par l'enchaînement des translation de vecteur \overrightarrow{u} puis \overrightarrow{v} . $\overrightarrow{u}+\overrightarrow{v}=\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}$. En prenant un autre point de départ A' on obtient un autre représentant de $\overrightarrow{u}+\overrightarrow{v}$:

 $\overrightarrow{XZ} = \overrightarrow{AC} = \overrightarrow{u} + \overrightarrow{v}$

Relation de Chasles

Pour tout points A, B et C: $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

LG Jeanne d'Arc, 2nd Année 2022/2023

■ Exemple 13.11 Placer les points B et Q tel que $\overrightarrow{AB} = \overrightarrow{u} + \overrightarrow{v}$ et $\overrightarrow{PQ} = \overrightarrow{v} + \overrightarrow{w}$

Pour tout points A et B. D'après la relation de Chasles :

$$\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0}$$

On dira que $\overrightarrow{BA} = -\overrightarrow{AB}$ est l'opposé du vecteur \overrightarrow{AB} .

Opposé du vecteur

L'opposé du vecteur \overrightarrow{u} est le vecteur noté $-\overrightarrow{u}$.

$$\vec{u} + (-\vec{u}) = \vec{0}$$

Deux vecteurs opposés ont même direction, même longueur, mais sont de sens contraires.

Soit un repère
$$(O; I, J)$$
 et les vecteurs $\overrightarrow{v} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} x' \\ y' \end{pmatrix}$.
Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $(\overrightarrow{u} + \overrightarrow{v}) \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$
Le vecteur $-\overrightarrow{u} \begin{pmatrix} -x \\ -y \end{pmatrix}$

13.4 Exercices : sommes de vecteurs

■ Exemple 13.12 Placer les points B, D et F tel que $\overrightarrow{AB} = \overrightarrow{u} + \overrightarrow{v}, \overrightarrow{CD} = \overrightarrow{u} - \overrightarrow{v}$ et $\overrightarrow{EF} = \overrightarrow{v} - \overrightarrow{u}$

Pour les exercices 1 à 4, ABCDEF est un hexagone régulier de centre O et rayon 1. Écrire le plus simplement possible les sommes ci-dessous en utilisant des points de la figure ou le vecteur nul, ou un nombre.

Exercice 12

- a) $\overrightarrow{OA} + \overrightarrow{AB} =$
- b) $\overrightarrow{OA} + \overrightarrow{OC} =$
- c) $\overrightarrow{OA} + \overrightarrow{OB} =$
- d) OA + OV =
- e) $\overrightarrow{EF} + \overrightarrow{FA} + \overrightarrow{AB} =$
- f) $\overrightarrow{CD} + \overrightarrow{FA} =$

Exercice 13

- a) $\overrightarrow{EB} + \overrightarrow{AF} =$
- b) $\overrightarrow{BC} + \overrightarrow{AF} + \overrightarrow{DE} =$
- c) $\overrightarrow{OB} + \overrightarrow{OE} =$
- d) $\overrightarrow{OA} + \overrightarrow{OE} + \overrightarrow{OC} =$
- e) OA + OE + OC =
- f) $\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{DE} =$

Exercice 14

a)
$$\overrightarrow{OB} - \overrightarrow{OA} =$$

b)
$$OB - OA =$$

c)
$$\overrightarrow{CB} - \overrightarrow{FA} =$$

d)
$$\overrightarrow{DO} - \overrightarrow{AB} =$$

Exercice 15

a)
$$\overrightarrow{DF} - \overrightarrow{CB} + \overrightarrow{DB} =$$

b)
$$\overrightarrow{OC} - \overrightarrow{EC} + \overrightarrow{DE} =$$

c)
$$\overrightarrow{OC} - (\overrightarrow{EO} + \overrightarrow{DE}) =$$

■ Exemple 13.13 En utilisant la relation de Chasles, compléter les égalités suivantes où « ... » représente le nom d'un point :

a)
$$\overrightarrow{AC} = \overrightarrow{AB} + \dots \overrightarrow{C}$$

b)
$$\overrightarrow{FE} = \overrightarrow{F} \dots + \overrightarrow{U} \dots$$

c)
$$\overrightarrow{OU} + \overrightarrow{RS} + \overrightarrow{UR} = \overline{\dots}$$

d)
$$\overrightarrow{RT} = \overrightarrow{\ldots} \overrightarrow{I} + \overrightarrow{I} \cdot \overrightarrow{\ldots}$$

e)
$$\overrightarrow{XY} = \overrightarrow{\dots} \overrightarrow{M} + \overrightarrow{\dots} \overrightarrow{N} + \overrightarrow{\dots}$$

Exercice 16 Simplifier les expressions suivantes à l'aide de la relation de Chasles :

a)
$$\overrightarrow{BD} + \overrightarrow{DA} = \dots$$

$$\overrightarrow{BD} + \overrightarrow{DA} = \dots$$
 e) $\overrightarrow{MB} - \overrightarrow{MD} = \dots$

b)
$$\overrightarrow{BD} + \overrightarrow{DB} = \dots$$

$$\overrightarrow{BD} + \overrightarrow{DB} = \dots$$
 f) $\overrightarrow{BD} + \overrightarrow{AD} + \overrightarrow{BA} = \dots$

c)
$$\overrightarrow{BD} + \overrightarrow{AA} = \dots$$

$$\overrightarrow{BD} + \overrightarrow{AA} = \dots$$
 g) $\overrightarrow{KT} + \overrightarrow{TD} + \overrightarrow{KT} = \dots$

d)
$$\overrightarrow{BD} - \overrightarrow{BA} = \dots$$

$$\overrightarrow{BD} - \overrightarrow{BA} = \dots$$
 h) $\overrightarrow{BQ} - \overrightarrow{BA} + \overrightarrow{QA} - \overrightarrow{QB} = \dots$

Exercice 17

En utilisant la relation de Chasles, compléter les égalités suivantes où « . . . » représente le nom d'un point :

a)
$$\overrightarrow{IB} = \overrightarrow{\ldots A} + \overrightarrow{A \ldots}$$

b)
$$\overrightarrow{HG} + \dots = \overrightarrow{HF}$$

c)
$$\overrightarrow{D} \cdot \cdot \cdot + \overrightarrow{C} \cdot \cdot \cdot = \overrightarrow{B}$$

d)
$$\overrightarrow{A} \dots = \overrightarrow{A} \dots + \overrightarrow{B} \dots + \overrightarrow{CM}$$

e)
$$\overrightarrow{FE} + \dots = \overrightarrow{0}$$

f)
$$\overrightarrow{DC} - \dots = \overrightarrow{AC}$$

g)
$$\overrightarrow{DC} - \dots = \overrightarrow{DE}$$

Exercice 18

Simplifier les expressions suivantes à l'aide de la relation de Chasles :

a)
$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{DA} - \overrightarrow{DB} =$$

b)
$$\overrightarrow{CB} - \overrightarrow{CD} - \overrightarrow{BD} =$$

c)
$$\overrightarrow{BD} - \overrightarrow{BA} + \overrightarrow{MA} - \overrightarrow{MD} =$$

d)
$$\overrightarrow{BD} - \overrightarrow{MC} - \overrightarrow{BM} + \overrightarrow{DB} =$$

e)
$$\overrightarrow{MA} + \overrightarrow{EM} - \overrightarrow{CA} - \overrightarrow{EC} =$$

f)
$$-\overrightarrow{AU} + \overrightarrow{SM} - \overrightarrow{ST} + \overrightarrow{MU} =$$

Exercice 19

Écrire les sommes demandées à l'aide de vecteurs dont les extrémités sont des points de la figure.

a)
$$\overrightarrow{GF} + \overrightarrow{CB} = \dots$$

b)
$$\overrightarrow{BG} - \overrightarrow{HG} = \dots$$

c)
$$\overrightarrow{HF} + \overrightarrow{FH} + \overrightarrow{HF} = \dots$$

d)
$$\overrightarrow{IJ} + \overrightarrow{CF} + \overrightarrow{JC} + \overrightarrow{FE} = \dots$$

e)
$$\overrightarrow{HF} - \overrightarrow{BC} + \overrightarrow{CD} = \dots$$

f)
$$\overrightarrow{BD} + \overrightarrow{IH} - \overrightarrow{BH} - \overrightarrow{FD} = \dots$$

solution de l'exercice 16.

- a) \overrightarrow{BA}
- b) $\overrightarrow{0}$
- c) \overrightarrow{BD}
- d) \overrightarrow{AD}
- e) \overrightarrow{DB}
- f) $2\overrightarrow{BD}$

solution de 17.

- a) $\overrightarrow{IB} = \overrightarrow{IA} + \overrightarrow{AB}$
- b) $\overrightarrow{HG} + \overrightarrow{GF} = \overrightarrow{HF}$
- c) $\overrightarrow{DC} + \overrightarrow{CB} = \overrightarrow{DB}$
- d) $\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CM}$
- e) $\overrightarrow{FE} + \overrightarrow{EF} = \overrightarrow{0}$
- f) $\overrightarrow{DC} \overrightarrow{DA} = \overrightarrow{AC}$
- g) $\overrightarrow{DC} \overrightarrow{EC} = \overrightarrow{DE}$

solution de 18.

- a) \overrightarrow{BD}
- b) $2\overrightarrow{DB}$
- c) $\overrightarrow{0}$
- d) \overrightarrow{CB}
- e) $\overrightarrow{0}$
- f) \overrightarrow{TA}

Exercice 20

Pour chaque cas, représentez $\vec{u} + \vec{v}$ (en bleu) et $\vec{u} - \vec{v}$ (en rouge). Aucune restriction sur l'orgine du représentant choisi.

Année 2022/2023 LG Jeanne d'Arc, $2^{\rm nd}$

Exercice 21

Pour chacun des cas suivants placer le point M tel que $\overrightarrow{OM} = \overrightarrow{OA} + \overrightarrow{OB}$ et représenter le parallélogramme \overrightarrow{OAMB} puis écrire le vecteur \overrightarrow{AB} sous la forme $a\overrightarrow{\imath} + b\overrightarrow{\jmath}$.

- a) A(1;4) et B(3;2).
- c) A(-1;1) et B(-1;2).
- e) A(-2;1) et B(1;2).

- b) A(-1;2) et B(3;1).
- d) A(1;5) et B(1;1).
- f) A(-3; -2) et B(-1; -1).

-3

Exercice 22 — décomposer un vecteur en fonction de deux autres.

La figure ci-dessous (répétée 3 fois) est formée de triangles équilatéraux. On pose $\overrightarrow{OC} = \overrightarrow{i}$ et $\overrightarrow{OD} = \overrightarrow{j}$. Écrire chacun des vecteurs suivants sous la forme $a\vec{i} + b\vec{j}$.

a)
$$\overrightarrow{BI} =$$

e)
$$\overrightarrow{OG} =$$

i)
$$\overrightarrow{AE} =$$

b)
$$\overrightarrow{IA} =$$

f)
$$\overrightarrow{DG} =$$

j)
$$\overrightarrow{AF} =$$

c)
$$\overrightarrow{IH} =$$

g)
$$\overrightarrow{GC} =$$

k)
$$\overrightarrow{BD} =$$

d)
$$\overrightarrow{EB} =$$

h)
$$\overrightarrow{HE} =$$

1)
$$\overrightarrow{FB} =$$

Exercice 23 — décomposer un vecteur en fonction de deux autres. La figure ci-dessous est formée de deux hexagones réguliers de centre O. I, J, K, L, M et N sont les milieux respectifs des segements [OA], [OB],[OC], [OD], [OE] et [OF].

Décomposer chacun des vecteurs suivants selon les vecteurs donnés.

c)
$$\overrightarrow{CO} = ...\overrightarrow{OI} + ...\overrightarrow{OI}$$

b)
$$\overrightarrow{JD} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$

b)
$$\overrightarrow{JD} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$$
 d) $\overrightarrow{EA} = \dots \overrightarrow{OI} + \dots \overrightarrow{OK}$

Écrire chacun des vecteurs suivants sous la forme $a\overrightarrow{OA} + b\overrightarrow{OB}$.

a)
$$\overrightarrow{JF} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$
 c) $\overrightarrow{CI} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$

c)
$$\overrightarrow{CI} = \dots \overrightarrow{OA} + \dots \overrightarrow{OB}$$

b)
$$\overrightarrow{EK} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$
 d) $\overrightarrow{JD} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$

d)
$$\overrightarrow{JD} = \dots \overrightarrow{OA} + \dots \overrightarrow{OC}$$

solution de 22.

a)
$$\overrightarrow{BI} = -2\overrightarrow{\imath} + 3\overrightarrow{\jmath}$$

e)
$$\overrightarrow{OG} = -\overrightarrow{\imath} - \overrightarrow{\jmath}$$

i)
$$\overrightarrow{AE} = -\overrightarrow{\imath} + 2\overrightarrow{\jmath}$$

b)
$$\overrightarrow{IA} = \overrightarrow{\imath} - 3\overrightarrow{\jmath}$$

f)
$$\overrightarrow{DG} = -\overrightarrow{i} - 2\overrightarrow{j}$$

$$j) \overrightarrow{AF} = -\overrightarrow{i} + \overrightarrow{j}$$

c)
$$\overrightarrow{IH} = 3\overrightarrow{\imath} - 3\overrightarrow{\jmath}$$

g)
$$\overrightarrow{GC} = 2\overrightarrow{i} + \overrightarrow{j}$$

$$k) \overrightarrow{BD} = -\overrightarrow{i} + 2\overrightarrow{j}$$

d)
$$\overrightarrow{EB} = 2\overrightarrow{\imath} - 2\overrightarrow{\jmath}$$

h)
$$\overrightarrow{HE} = -3\overrightarrow{\imath} + 2\overrightarrow{\jmath}$$

1)
$$\overrightarrow{FB} = 2\overrightarrow{\imath} - \overrightarrow{\jmath}$$

solution de 23.

Décomposer chacun des vecteurs suivants selon les vecteurs donnés.

c)
$$\overrightarrow{CO} = 2\overrightarrow{OI} - 2\overrightarrow{OJ}$$

d) $\overrightarrow{EA} = 4\overrightarrow{OI} + 2\overrightarrow{OK}$

b)
$$\overrightarrow{JD} = -3\overrightarrow{OI} - \overrightarrow{OK}$$

$$d) \overrightarrow{EA} = 4\overrightarrow{OI} + 2\overrightarrow{OK}$$

Écrire chacun des vecteurs suivants sous la forme $a\overrightarrow{OA} + b\overrightarrow{OB}$.

a)
$$\overrightarrow{JF} = \overrightarrow{OA} - \frac{3}{2}\overrightarrow{OB}$$

c)
$$\overrightarrow{CI} = \frac{3}{2}\overrightarrow{OA} - \overrightarrow{OB}$$

b)
$$\overrightarrow{EK} = \overrightarrow{OA} + \frac{3}{2}\overrightarrow{OC}$$

d)
$$\overrightarrow{JD} = -\frac{3}{2}\overrightarrow{OA} - \frac{1}{2}\overrightarrow{OC}$$

13.5 Propriétés des opérations

Élément nul Pour tout vecteur \vec{u} , $\vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}$.

La somme de 2 vecteurs est indépendante de l'ordre

Pour tout vecteur \vec{u} et \vec{v} $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

 $\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$

La somme de plusieurs vecteurs quel conques $\overrightarrow{u},\ \overrightarrow{v}$ et \overrightarrow{w} est aussi indépendante de l'ordre :

$$\vec{u} + \vec{v} + \vec{w} = (\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$$

Pour tout vecteurs \vec{u} , et réel a et b, $a(b\vec{u}) = (ab)\vec{u}$.

Pour tout a et $b \in \mathbb{R}$ et vecteur \overrightarrow{u} on $a: a\overrightarrow{u} + b\overrightarrow{u} = (a+b)\overrightarrow{u}$

Pour tout vecteurs \vec{u} , \vec{v} et réel k, $k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$.

Démonstration. La figure correspond au cas k > 0. Le cas k < 0 est similaire.

Exercices bilan opérations sur vecteurs

■ Exemple 13.14

Dans le repère $(O; \vec{\imath}, \vec{\jmath})$ on donne $\vec{u} \begin{pmatrix} -2 \\ 5 \end{pmatrix}; A(1; -3) \text{ et } B(4; -5).$

Calculer les coordonnées de chacun des vecteurs suivants :

$$-3 \overrightarrow{AB}$$

$$\overrightarrow{u} + \overrightarrow{AB}$$

$$2\vec{u} + 5\overrightarrow{BA}$$

Exercice 24

Soient $\vec{u} \begin{pmatrix} 2 \\ 6 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} -5 \\ 3 \end{pmatrix}$ deux vecteurs définis par leurs coordonnées dans le repère $(O; \vec{\imath}, \vec{\jmath})$.

Calculer les coordonnées de chacun des vecteurs suivants :

a)
$$-\vec{u}$$

b)
$$\vec{u} + \vec{v}$$

c)
$$3\vec{u} + 2\vec{v}$$

$$d) -5\overrightarrow{u} - \overrightarrow{v}$$

| b)
$$\vec{u} + \vec{v}$$
 | c) $3\vec{u} + 2\vec{v}$ | d) $-5\vec{u} - \vec{v}$ | e) $\frac{1}{2}(\vec{u} - \vec{v})$

Exercice 25

Le plan est muni du repère orthonormé $(O; \vec{i}, \vec{j})$ et des points A(-3; 2), B(1; -2), C(-5; 3). Déterminer les coordonnées des vecteurs :

a)
$$\overrightarrow{AB}$$

$$\mid b \mid \overrightarrow{AC}$$

c)
$$\overrightarrow{AB} + 2\overrightarrow{AC}$$

d)
$$2\overrightarrow{AB} - 3\overrightarrow{BC}$$

| b)
$$\overrightarrow{AC}$$
 | c) $\overrightarrow{AB} + 2\overrightarrow{AC}$ | d) $2\overrightarrow{AB} - 3\overrightarrow{BC}$ | e) $\frac{1}{3}\overrightarrow{AC} + \frac{1}{5}\overrightarrow{BC}$

Exercice 26 — révision.

Le plan est muni du repère $(O; \vec{i}, \vec{j})$. Soient les points T(1; -2), R(0; -1), U(5; 3). Déterminer les coordonnées du point E(x;y) tel que TRUE est un parallélogramme, ainsi que celles du centre F du parallélogramme.

Exercice 27 Le plan est muni du repère $(O; \vec{i}, \vec{j})$. Soient les points A(2; -3), B(1; -1), C(4; 5)

a) Le point M(x;y) est tel que $\overrightarrow{AM} = -2\overrightarrow{BC}$.

Écrire les équations vérifiées par x et y et retrouver les coordonnées de M.

- b) Déterminer les coordonnées du point N(x;y) tel que $\overrightarrow{CN} = 2 \overrightarrow{AB} 3 \overrightarrow{AC}$
- c) Déterminer les coordonnées du point G(x;y) tel que $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

Exercice 28

Le plan est muni du repère orthonormé $(O; \vec{i}, \vec{j})$. Soient les points A(3; -3), B(2; -4), C(-5; 1)

- a) Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} .
- b) Déterminer les coordonnées des vecteurs $\vec{u} = \overrightarrow{AC} + 2 \overrightarrow{AB}$, $\vec{v} = -3\overrightarrow{AB} + 4\overrightarrow{AC}$.
- c) Déterminer les coordonnées du point D tel que $\overrightarrow{BD} = 2 \overrightarrow{u} \overrightarrow{v}$.
- d) Déterminer les coordonnées du point E tel que $\overrightarrow{AE} = 2 \overrightarrow{BE} + 2 \overrightarrow{u}$

Exercice 29 — révision.

Soit les points A(-1; 3); B(-1; 2); $C(\frac{5}{2}; 2)$ et D(-8; 4) dans le repère $(O; \vec{\imath}, \vec{\jmath})$. Montrer que les droites (AC) et (BD) sont parallèles.

Exercice 30 — révision.

Soit les points M(1; -2); N(0; -1) et P(3; -4) dans le repère $(O; \vec{\imath}, \vec{\jmath})$. Montrer que les points M, N et P sont alignés.

Exercice 31 — révision.

Soit les points A(1; 1); B(2; -3); C(4; x) dans le repère $(O; \vec{\imath}, \vec{\jmath})$. Trouvez x tel que les points A, B et C sont alignés.

Exercice 32

Dans un repère, on donne les points: A(1; -1), B(-1; -2) et C(-2; 2)

- 1) Déterminer les coordonnées du point G vérifiant $\overrightarrow{GA} + 2\overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$.
- 2) Déterminer les coordonnées du point D vérifiant $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{BC}$.
- 3) Les points B, G et D sont-ils alignés?

Exercice 33

Dans un repère, on donne les points: A(-2; 2), B(0; -3) et C(4; 5).

- 1) Déterminer les coordonnées du point M vérifiant $\overrightarrow{AM} = 2\overrightarrow{AB} 3\overrightarrow{AC}$.
- 2) I est le milieu de [AB]. Calculer les coordonnées de I
- 3) Montrer que les points C, I et M sont alignés.

Exercice 34

Dans un repère, on donne les points: A(2; 4), B(-2; 2) et C(6; -1). I est le milieu de [AC]. G et H sont tels que $\overrightarrow{AG} = 2\overrightarrow{AB} - \frac{1}{2}\overrightarrow{AC}$ et $\overrightarrow{BH} = -\frac{1}{3}\overrightarrow{BC}$.

- 1) Déterminer les coordonnées de I, G et H.
- 2) Prouver que B est le milieu de [GI]
- 3) Montrer que les points A, G et H sont alignés.

Exercice 35 — un classique : approche vectorielle.

Sur la figure ci-contre, ABCD est un carré et les triangles BCE et ABF sont équilatéraux. On considère le repère orthonormé (A ; B , D).

- 1) Représenter les axes du repère.
- 2) Donner les coordonnées des points A, B, C et D.
- 3) Déterminer les coordonnées de F et E. indice: trigonométrie
- 4) Démontrer que les points D, F et E sont alignés.

13.5 Propriétés des opérations

19

■ Exemple 13.15 — Équation vectorielle sur une droite.

Soit les points A, B. Soit P et Q tel que $\overrightarrow{PA} + 3\overrightarrow{PB} = \overrightarrow{0}$ et $\overrightarrow{QA} - 3\overrightarrow{QB} = \overrightarrow{0}$. Placer P et Q.

Exercice 36

Pour chaque cas, exprimer \overrightarrow{AP} en fonction de \overrightarrow{AB} , et placer le point P sur la figure.

- a) P est tel que $2\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$.
- d) S est tel que $-3\overrightarrow{SA} + \overrightarrow{SB} = \overrightarrow{0}$.
- b) Q est tel que $\overrightarrow{QA} + 2\overrightarrow{QB} = \overrightarrow{0}$.

e) T est tel que $-\overrightarrow{TA} + 3\overrightarrow{TB} = \overrightarrow{0}$. f) M est tel que $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$.

c) R est tel que $\overrightarrow{RA} + 5\overrightarrow{RB} = \overrightarrow{0}$.

■ Exemple 13.16 — Équation vectorielle dans le plan.

Soit les points A(1;2), B(3;1) et C(4;5) dans le repère (O, \vec{i}, \vec{j}) .

On cherche les coordonnées des points M(x;y) et N(x;y) tel que

$$3\overrightarrow{BM} + 2\overrightarrow{AM} = \overrightarrow{BC}$$

$$\overrightarrow{BN} + 3\overrightarrow{NA} = \overrightarrow{BC}$$

Exercice 37

On donne les points A(-5,2). B(3,0) et C(-1,4). Calculer les coordonnées du point M(x,y) qui vérifie l'équation donné.

a)
$$\overrightarrow{CM} = \overrightarrow{AB} - 3\overrightarrow{AC}$$

c)
$$\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{CB}$$

d) $\overrightarrow{MA} = 3\overrightarrow{BM} + \overrightarrow{AC}$

e)
$$2\overrightarrow{AM} + \overrightarrow{BM} = 2\overrightarrow{CM}$$

b)
$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{BC}$$

d)
$$\overrightarrow{MA} = 3\overrightarrow{BM} + \overrightarrow{AC}$$

e)
$$2\overrightarrow{AM} + \overrightarrow{BM} = 2\overrightarrow{CM}$$

f) $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = \overrightarrow{0}$

13.6 Club maths : Cas particuliers du théorème de Menelaus

Exercice 38

ABC est un triangle. P est le milieu de [AB], Q est un point de (AC) et R est sur le segment [BC]. Les graduations sur les droites sont régulières.

L'objectif de cet exercice est de démontrer que les points P, Q et R sont alignés.

1. Donner les valeurs des réels a, b et c tel que :

$$\overrightarrow{AP} = a\overrightarrow{AB}$$
 $\overrightarrow{AQ} = b\overrightarrow{AC}$ $\overrightarrow{BR} = c\overrightarrow{BC}$

- 2. Montrer que $\overrightarrow{PQ} = -\frac{1}{2}\overrightarrow{AB} + \frac{5}{4}\overrightarrow{AC}$.
- 3. Exprimer \overrightarrow{PR} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 4. Montrer que \overrightarrow{PQ} et \overrightarrow{PR} sont multiples l'un de l'autre. Conclure.

Exercice 39

ABC est un triangle. P est le milieu de [AB], Q est un point de (AC). Les graduations sur les droites sont régulières. R est le point d'intersection des droites (PQ) et (BC).

On sait que pour un certain nombre $k: \overrightarrow{BR} = k\overrightarrow{BC}$. L'objectif de cet exercice est de trouver k.

1. Donner les valeurs des réels a et b tel que :

$$\overrightarrow{AP} = a\overrightarrow{AB}$$
 $\overrightarrow{AQ} = b\overrightarrow{AC}$

- 2. Montrer que $\overrightarrow{PQ} = -\frac{2}{3}\overrightarrow{AB} + \frac{5}{4}\overrightarrow{AC}$.
- 3. Montrer que $\overrightarrow{PR} = \left(\frac{1}{3} k\right) \overrightarrow{AB} + k\overrightarrow{AC}$.
- 4. Trouver k pour que les vecteurs \overrightarrow{PQ} et \overrightarrow{PR} soient multiples l'un de l'autre.

Exercice 40

ABC est un triangle; P est un point de (AB), Q un point de (BC) et R un point de (AC) disposés comme sur le dessin (les graduations sur les droites sont régulières).

1. Donner les valeurs des réels a, b, et c tels que :

$$\overrightarrow{AP} = a\overrightarrow{AB}$$
 $\overrightarrow{AR} = b\overrightarrow{AC}$ $\overrightarrow{BQ} = c\overrightarrow{BC}$

- 2. Exprimer \overrightarrow{PR} en fonction de \overrightarrow{AB} et \overrightarrow{AC} .
- 3. Démontrer que $\overrightarrow{PQ} = \frac{9}{28}\overrightarrow{AB} + \frac{3}{7}\overrightarrow{AC}$ 4. Justifier que $\overrightarrow{PQ} = -\frac{9}{7}\overrightarrow{PR}$. Que conclure?

