Characterizing large cardinals via abstract logics

Victoria Gitman

vgitman@nylogic.org http://victoriagitman.github.io

Boise Extravaganza in Set Theory
June 17, 2021

This is joint work with Will Boney, Stamatis Dimopoulos, and Menachem Magidor.

BEST

First-order logic

First-order logic lies at the foundation of modern mathematics.

What is a logic?

- Assigns a collection of formulas to every language.
- Assigns truth values to formulas for every model.

First-order logic $\mathbb{L}_{\omega,\omega}$

- Formulas: close atomic formulas under conjunctions, disjunctions, negations, quantifiers.
- Truth: Tarski's recursive definition.
- Notable properties:
 - \triangleright ω -Compactness: every finitely satisfiable theory has a model.
 - ► A language has set-many formulas.
 - ▶ A formula can mention finitely much of a language.

First-order logic does not exist outside of mathematics.

A (fragment of a) set-theoretic background is necessary to interpret first-order logic.

- natural numbers
- recursion

Stronger logics require access to more of the set-theoretic background.

Infinitary logics

Infinitary logics allow transfinite conjunctions, disjunctions, and quantifier blocks of formulas.

Suppose $\gamma \leq \delta$ are cardinals.

Infinitary logics $\mathbb{L}_{\delta,\gamma}$

Close formulas under conjunctions and disjunctions of length $<\delta$ and quantifier blocks of length $<\gamma$.

- A language has set-many formulas.
- A formula can mention $<\!\delta$ -much of a language.

Examples

- \bullet $\mathbb{L}_{\omega_1,\omega}$
 - ▶ There is a sentence expressing that the natural numbers are standard:

$$n = 0 \lor n = 1 \lor n = 2 \lor \cdots$$

- \blacktriangleright ω -Compactness fails.
- $\mathbb{L}_{\delta,\omega}$
 - ▶ For every ordinal $\xi < \delta$ and binary relation E, there is a formula $\varphi_{\xi}^{E}(x)$ expressing that $(\{y \mid y \to x\}, E) \cong (\xi, \in)$. Construct by transfinite recursion.

4 / 29

Infinitary logics (continued)

Examples (continued)

- \bullet $\mathbb{L}_{\omega_1,\omega_1}$
 - For every binary relation R there is a sentence φ_R^{WF} expressing that R is well-founded:

$$\neg \exists x_0, x_1, \dots, x_n, \dots \dots x_n R x_{n-1} R \dots R x_1 R x_0$$

For every unary relation I there is a sentence φ_I^{lnf} expressing that I is infinite:

$$\exists x_0, x_1, \ldots, x_n \ldots \bigwedge_{n,m < \omega} x_n \neq x_m$$

- $\mathbb{L}_{\omega_2,\omega_2}$
 - ▶ For every unary relation U there is a sentence φ_U expressing that U is uncountable:

$$\exists x_0, x_1, \dots, x_{\xi} \dots \bigwedge_{\xi, \eta < \omega_1} x_{\xi} \neq x_{\eta}$$

Not quite a logic

A quasi-logic $\mathbb{L}_{Ord,\omega}$

Close formulas under set-length conjunctions and disjunctions.

- A language has class-many formulas.
- A formula can mention arbitrarily much of a language.

Second-order logic \mathbb{L}^2

Second-order logic requires access to the full powerset of the model.

Second-order quantifiers range over all relations over the model.

Expressive power

- A relation is well-founded: every subset has a least element.
- A relation is infinite: there is a bijection with a proper subset.
- (Magidor) For a binary relation E, $(\{y \mid y \to x\}, \to) \cong (V_{\alpha}, \in)$ for some α .
- A group *F* is free:
 - ▶ Suppose F has cardinality δ .
 - ▶ F is free if and only if there is a transitive model $M \models ZFC^-$ of size δ with $F \in M$ which satisfies that F is free.
 - ▶ There is a relation E on F such that (F, E)
 - ★ satisfies ZFC⁻,
 - * is well-founded,
 - ★ has an element isomorphic to F,
 - * satisfies that F is free.

$\mathbb{L}^2_{\delta,\gamma}$

Formulas are closed under conjunctions, disjunctions of length $<\delta$ and quantifier blocks of length $<\gamma$.

Sort logics \mathbb{L}^{s,Σ_n}

Sort logics were introduced by Väänänen and require access to Σ_n -truth in the set-theoretic universe.

\mathbb{L}^{s,Σ_n}

- \bullet \mathbb{L}^2
- ullet Sort quantifiers $\tilde{\forall}$ and $\tilde{\exists}$
 - search the set-theoretic universe for a new structure such that there is a relation on the combination of the new and old structure satisfying a given formula.
 - at most n-alternations of sort quantifiers are allowed

Expressive power

• For every binary relation E there is a sentence $\varphi_{\rm E}^n(x)$ expressing that $(\{y\mid y\,{\rm E}\,x\},{\rm E})\cong (V_\alpha,\in)$ and $V_\alpha\prec_{\Sigma_n}V$ for some α .

Made to order logics

We can extend first-order logic to meet a particular need.

$\mathcal{L}^{\mathrm{WF}}$

Add a new quantifier $Q^{\mathrm{WF}}xy$ so that $Q^{\mathrm{WF}}xy$ $\varphi(x,y)$ whenever $\varphi(x,y)$ is a well-founded relation.

$\mathcal{L}^{\mathrm{Unc}}$

Add a new quantifier $Q^{\mathrm{Unc}}x$ so that $Q^{\mathrm{Unc}}x\,\varphi(x)$ whenever $\{x\mid \varphi(x)\}$ is uncountable.

$\mathcal{L}^{\mathrm{vN}}$

Add a new formula φ_{vN}^E for every binary relation E so that $\varphi_{vN}^E(x)$ holds whenever $(\{y \mid y \mid x\}), E) \cong (V_{\alpha}, \in)$ for some α .

Classes in set theory

First-order set theory ZFC

A class is a first-order definable (with parameters) collection of sets.

Second-order set theory

Separate variables and quantifiers for sets and classes.

Set axioms: ZFC

Class axioms:

- Global choice: there is a class well-order of sets.
- Replacement: every class function restricted to a set is a set.
- GBC Godel Bernays set theory
 - first-order comprehension: every first-order formula defines a class.
 - ▶ Every model of ZFC with a definable global well-order is a model of GBC.
- KM Kelley-Morse set theory
 - second-order comprehension: every second-order formula defines a class.
 - ▶ If κ is inaccessible, then V_{κ} together with all subsets of V_{κ} is a model of KM.

Languages

A language τ is a quadruple $(\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ where:

- \mathfrak{F} are the functions,
- R are the relations,
- C are the constants,
- $a: \mathfrak{F} \cup \mathfrak{R} \to \omega$ is the arity function.

A au-structure is a set with interpretations for the functions, relations, and constants in au.

A renaming $f: \tau \to \sigma$ between languages $\tau = (\mathfrak{F}, \mathfrak{R}, \mathfrak{C}, a)$ and $\sigma = (\mathfrak{F}', \mathfrak{R}', \mathfrak{C}', a')$ is an arity-preserving bijection between the functions, relations, and constants.

Given a renaming f, let f^* be the associated bijection between τ -structures and σ -structures.

What is a logic?

A logic is a pair $(\mathcal{L}, \vDash_{\mathcal{L}})$ of classes satisfying the following conditions.

- \mathcal{L} is a class function which takes a language τ to $\mathcal{L}(\tau)$: the set of all sentences in τ .
- $\models_{\mathcal{L}}$ is a sub-class of the class of all pairs (M, φ) where M is a τ -structure and $\varphi \in \mathcal{L}(\tau)$ which determines when M satisfies φ .
- If $\tau \subseteq \sigma$ are languages, then $\mathcal{L}(\tau) \subseteq \mathcal{L}(\sigma)$.
- If $\varphi \in \mathcal{L}(\tau)$, $\sigma \supseteq \tau$ are languages, and M is a σ -structure, then $M \vDash_{\mathcal{L}} \varphi$ if and only if the reduct $M \upharpoonright \tau \vDash_{\mathcal{L}} \varphi$.
- If $M \cong N$ are τ -structures, then for all $\varphi \in \mathcal{L}(\tau)$ $M \vDash_{\mathcal{L}} \varphi$ if and only if $N \vDash_{\mathcal{L}} \varphi$.
- Every renaming $f: \tau \to \sigma$ induces a unique bijection $f_*: \mathcal{L}(\tau) \to \mathcal{L}(\sigma)$ such that for any τ -structure M and $\varphi \in \mathcal{L}(\tau)$

$$M \vDash_{\mathcal{L}} \varphi$$
 if and only if $f^*(M) \vDash_{\mathcal{L}} f_*(\varphi)$.

• There is a least cardinal κ , called the occurrence number of \mathcal{L} , such that for every sentence $\varphi \in \mathcal{L}(\tau)$, there is a sub-language τ^* of size less than κ such that $\varphi \in \mathcal{L}(\tau^*)$.

Note: Formulas are accommodated by introducing and interpreting constants.

Compactness

Suppose \mathcal{L} is a logic and κ is a cardinal.

 κ is a weak compactness cardinal for $\mathcal L$ if every $<\kappa$ -satisfiable $\mathcal L$ -theory of size κ has a model.

 κ is a strong compactness cardinal for $\mathcal L$ if every $<\kappa$ -satisfiable $\mathcal L$ -theory has a model.

 κ is a chain compactness cardinal for $\mathcal L$ if every $\mathcal L$ -theory $\mathcal T$, which is an increasing union $\mathcal T = \bigcup_{\eta < \kappa} \mathcal T_\eta$ of satisfiable theories, has a model.

Proposition: The quasi-logic $\mathbb{L}_{\mathrm{Ord},\omega}$ cannot have a weak compactness cardinal.

Proof: Suppose κ is a weak compactness cardinal for $\mathbb{L}_{\mathrm{Ord},\omega}$.

Let T be the theory in a language with a binary relation E and constant c.

- $\exists y (\varphi_{\kappa}^{E}(y) \land cEy)$: c is an ordinal below κ .
- $\exists y \{ \varphi_{\varepsilon}^{E}(y) \land y E c \mid \xi < \kappa \} : c > \xi \text{ for every ordinal } \xi < \kappa.$

T is $<\kappa$ -satisfiable of size κ , but *T* cannot have a model. \square

Weakly compact and strongly compact cardinals

Theorem: (Tarski) A cardinal κ is weakly compact if and only if κ is a weak compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Theorem: (Tarski) A cardinal κ is strongly compact if and only if κ is a strong compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Compactness and measurable cardinals

Theorem: (Folklore) A cardinal κ is measurable if and only if it is a chain compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Proof:

 (\Longrightarrow) Suppose κ is measurable and $T=\bigcup_{n<\kappa}T_n$ is an increasing union of satisfiable $\mathbb{L}_{\kappa,\kappa}(\tau)$ -theories.

- Let $j: V \to \mathcal{M}$ be an elementary embedding with $\operatorname{crit}(j) = \kappa$.
- Let $\vec{T} = \langle T_n \mid \eta < \kappa \rangle$.
- j " $T \subseteq j(\vec{T})(\kappa)$ is a satisfiable $\mathbb{L}_{j(\kappa),j(\kappa)}(j(\tau))$ -theory in \mathcal{M} by elementarity.
- Let $M \models j(\vec{T})(\kappa)$ be a $j(\tau)$ -structure in \mathcal{M} .
- $M \models j$ " T in V by absoluteness of satisfaction for $\mathbb{L}_{\kappa,\kappa}$.
- $M \models T$ is a τ -structure via the renaming $j : \tau \to j " \tau$.

 (\Leftarrow) Suppose the compactness property and fix $\alpha > \kappa$.

- Language τ : binary relation \in and constants $\{c_x \mid x \in V_\alpha\} \cup \{c\}$.
- Theory $T: \mathrm{ED}_{\mathbb{L}_{\kappa}} (V_{\alpha}, \in, c_{x})_{x \in V_{\alpha}} \cup \{c_{\xi} < c < c_{\kappa} \mid \xi < \kappa\}$ ED: elementary diagram
- $T_n = \text{ED}_{\mathbb{L}_{\infty,n}} (V_{\alpha}, \in, c_x)_{x \in V_{\alpha}} \cup \{c_{\xi} < c < c_{\kappa} \mid \xi < \eta\}$
- Let $M \models T$.
 - Assume that M is transitive since M is well-founded.
 - ▶ $j: V_{\alpha} \to M$ with $\operatorname{crit}(j) = \kappa$ since every ordinal below κ is $\mathbb{L}_{\kappa,\kappa}$ -definable. \square

Compactness and supercompact cardinals

Supercompact cardinals κ are characterized in terms of a type of chain compactness together with omitting types in $\mathbb{L}_{\kappa,\kappa}$.

Suppose \mathcal{L} is a logic and $\kappa < \delta$ are cardinals. An $\mathcal{L}(\tau)$ -theory T is increasingly filtered by $\mathcal{P}_{\kappa}(\delta)$ if $T = \bigcup_{s \in \mathcal{P}_{\kappa}(\delta)} T_s$ such that whenever $s \subseteq s'$, then $T_s \subseteq T_{s'}$. $\mathcal{P}_{\kappa}(\delta) = \{A \subseteq \delta \mid |A| < \kappa\}$

Theorem: (Benda, Boney) A cardinal κ is supercompact if and only if for every $\delta > \kappa$, if

- T is an $\mathbb{L}_{\kappa,\kappa}(\tau)$ theory that is increasingly filtered by $\mathcal{P}_{\kappa}(\delta)$, and
- $p^a(x)$ for $a \in A$ are types that are increasingly filtered by $\mathcal{P}_{\kappa}(\delta)$

such that every T_s has a model omitting all $p_s^a(x)$ for $a \in A$, then T has a model omitting all $p^a(x)$ for all $a \in A$.

$C^{(n)}$ -extendible cardinals

A cardinal κ is extendible if for every $\alpha > \kappa$ there is an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \alpha$.

 $C^{(n)}$ is the class of all cardinals α such that $V_{\alpha} \prec_{\Sigma_n} V$.

(Bagaria) A cardinal κ is $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$ there an elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $crit(j) = \kappa$, $j(\kappa) > \alpha$, and $\beta \in C^{(n)}$.

Theorem: (folklore) We can drop the assumption $j(\kappa) > \alpha$.

Compactness and extendible cardinals

Theorem: (Magidor) A cardinal κ is extendible if and only if it is a strong compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.

Proof:

 (\Longrightarrow) : Suppose κ is extendible and T is a $<\kappa$ -satisfiable $\mathbb{L}^2_{\kappa,\kappa}(\tau)$ -theory.

- Let $\alpha > \kappa$ with $T \in V_{\alpha}$.
- Let $j: V_{\alpha} \to V_{\beta}$ be an elementary embedding with $\operatorname{crit}(j) = \kappa, j(\kappa) > \alpha$.
- j(T) is a $< j(\kappa)$ -satisfiable $\mathbb{L}^2_{j(\kappa),j(\kappa)}(j(\tau))$ -theory by elementarity.
- j " T is a $\mathbb{L}^2_{\kappa,\kappa}(j(\tau))$ -theory of size $< j(\kappa)$ in V_{β} , and hence has a model.
- T has a model via the renaming $j : \tau \to j$ " τ .

(\Leftarrow): Suppose the compactness property holds and fix $\alpha > \kappa$.

- Language τ : binary relation \in , constants $\{c_x \mid x \in V_\alpha\} \cup \{d_\xi \mid \xi \leq \alpha\} \cup \{c\}$.
- Theory *T*
 - ightharpoonup $\mathrm{ED}_{\mathbb{L}_{\kappa,\kappa}}(V_{\alpha},\in,c_{x})_{x\in V_{\alpha}}$

 - $\bullet \ \Phi := \text{``I am } V_{\beta}\text{''}. \ \Box$

Theorem: (Magidor) The least strong compactness cardinal for \mathbb{L}^2 is extendible.

Compactness and $C^{(n)}$ -extendible cardinals

Theorem: (Boney) A cardinal κ is $C^{(n)}$ -extendible if and only if it is a strong compactness cardinal for the sort logic $\mathbb{L}_{\kappa,\kappa}^{s,\Sigma_n}$.

Universal compactness and Vopěnka's Principle

Vopěnka's Principle: Every proper class of structures in the same language has two structures which elementarily embed.

Theorem: (Bagaria) The following are equivalent.

- Vopěnka's Principle
- For every $n < \omega$, there is a proper class of $C^{(n)}$ -extendible cardinals.
- For every $n < \omega$, there is a $C^{(n)}$ -extendible cardinal.

Theorem: (Makowsky) The following are equivalent.

- Vopěnka's Principle
- Every logic has a strong compactness cardinal.

Universal weak compactness

Assume GBC.

Ord is subtle if for every class club C and sequence $\langle A_{\xi} \mid \xi \in \operatorname{Ord} \rangle$ with $A_{\xi} \subseteq \xi$ there are $\alpha < \beta \in C$ such that $A_{\beta} \cap \alpha = A_{\alpha}$.

Theorem: Ord is subtle if and only if every logic has a stationary class of weak compactness cardinals.

Theorem: The following is consistent:

- Ord is subtle.
 - Global choice fails.
 - \bullet \mathbb{L}^2 doesn't have a weak compactness cardinal.

Proof sketch: Let L[G] be the class forcing extension adding a Cohen subset to every regular cardinal. \square

Theorem: (Brooke-Taylor, discussion with G. and Karagila) Vopěnka's Principle is consistent with the failure of Global Choice

Virtual embeddings

Suppose M and N are structures in the same language. We call an elementary embedding $j: M \to N$ from a (set)-forcing extension V[G] a virtual embedding.

Proposition: There is a virtual elementary embedding between structures M and N if and only if every $\operatorname{Coll}(\omega, |\mathcal{M}|)$ -extension has such a virtual embedding.

Virtual large cardinals

A cardinal κ is:

- virtually measurable if for every $\alpha > \kappa$ there is a virtual elementary embedding $j: V_{\alpha} \to M$ with $\mathrm{crit}(j) = \kappa$.
- virtually supercompact (remarkable) if for every $\alpha > \kappa$ there is a virtual elementary embedding $j: V_{\alpha} \to M$ with $\mathrm{crit}(j) = \kappa, j(\kappa) > \alpha, M^{\alpha} \subseteq M$.
- weakly virtually extendible if for every $\alpha > \kappa$, there is a virtual elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$.
- virtually extendible if for every $\alpha > \kappa$, there is a virtual elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\mathrm{crit}(j) = \kappa$ and $j(\kappa) > \alpha$.
- weakly virtually $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$, there is a virtual elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa$ and $\beta \in C^{(n)}$.
- virtually $C^{(n)}$ -extendible if for every $\kappa < \alpha \in C^{(n)}$ above κ , there is a virtual elementary embedding $j: V_{\alpha} \to V_{\beta}$ with $\operatorname{crit}(j) = \kappa, j(\kappa) > \alpha$, and $\beta \in C^{(n)}$.
- virtually rank-into-rank if there is a virtual elementary embedding $j:V_{\alpha}\to V_{\alpha}$ with $\mathrm{crit}(j)=\kappa$. There is no virtual Kunen Inconsistency: α can be much greater than the supremum of the critical sequence of j.

Virtual Vopěnka's Principle: Every proper class of structures in the same language has two structures which virtually elementarily embed.

The virtual large cardinals hierarchy

Theorem: (Nielsen) Virtually measurable cardinals are equiconsistent with virtually supercompact cardinals.

Theorem: (G.) If a weakly virtually extendible cardinal is not virtually extendible, then it is virtually rank-into-rank.

Theorem: (G., Hamkins) Virtual Vopěnka's Principle holds if and only if for every $n < \omega$, there is a proper class of weakly virtually $C^{(n)}$ -extendible cardinals

Theorem: (G., Hamkins) It is consistent that Virtual Vopěnka's Principle holds, but there are no virtually supercompact cardinals.

ω-Frdös virtually rank-into-rank Virtual Vopěnka's Principle virtually $C^{(n)}$ -extendible virtually supercompact

Pseudo-models and pseudo-compactness cardinals

Suppose $\mathcal L$ is a logic, au and au^* are languages and δ is a cardinal.

A δ -forth system $\mathcal F$ from τ to τ^* is a collection of renamings $f:\sigma\to\sigma^*$ with $\sigma\subseteq\tau$, $\sigma^*\subseteq\tau^*$ of size less than δ such that:

- $\bullet \emptyset \in \mathcal{F}$.
- If $f \in \mathcal{F}$ and $\tau_0 \subseteq \tau$ has size less than δ , then there is $g \in \mathcal{F}$ with $f \subseteq g$ and $\tau_0 \subseteq \mathsf{dom} g$.

A τ^* -structure M is a δ -pseudo-model for an $\mathcal{L}(\tau)$ -theory T if there is a δ -forth system \mathcal{F} from τ to τ^* such that for every $f:\sigma\to\sigma^*$ in \mathcal{F} $M\vDash f_*$ " $T\cap\mathcal{L}(\sigma)$.

"A δ -pseudo-model can be renamed to interpret small pieces of T and every renaming can be extended to enterpret a further small piece of T."

 κ is a δ -pseudo-compactness cardinal for $\mathcal L$ if every $<\kappa$ -satisfiable $\mathcal L$ -theory has a δ -pseudo-model.

 κ is a δ -pseudo-chain-compactness cardinal for $\mathcal L$ if every $\mathcal L$ -theory $\mathcal T$, which is an increasing union $\mathcal T=\bigcup_{n<\kappa}\mathcal T_\eta$ of satisfiable theories, has a δ -pseudo-model.

Proposition: A κ^+ -pseudo-compactness cardinal κ for a logic $\mathcal L$ is a weak compactness cardinal for $\mathcal L$.

Pseudo-compactness and virtually measurable cardinals

Theorem: The following are equivalent for a cardinal κ .

- \bullet κ is virtually measurable.
- κ is a κ^+ -pseudo-chain compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.
- κ is an ω -pseudo-chain compactness cardinal for $\mathbb{L}_{\kappa,\kappa}$.

Pseudo-compactness and virtually supercompact cardinals

Theorem: The following are equivalent for a cardinal κ .

- \bullet κ is virtually supercompact.
- For every $\delta > \kappa$, if T is an $\mathbb{L}_{\kappa,\kappa}(\tau)$ -theory that is increasingly filtered by $\mathcal{P}_{\kappa}(\delta)$ and $p^{a}(x)$ for $a \in A$ are types increasingly filtered by $\mathcal{P}_{\kappa}(\delta)$ such that every T_{s} has a model omitting all $p_{s}^{a}(x)$, then there is a κ^{+} -pseudo-model of T omitting all $p^{a}(x)$.
- Replace κ^+ -pseudo-model by ω -pseudo-model.

Characterizing virtual large cardinals via pseudo-compactness: virtually extendible

Theorem: The following are equivalent for a cardinal κ .

- \bullet κ is virtually extendible.
- κ is a κ^+ -pseudo-compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.
- ullet κ is an ω -pseudo-compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.

Theorem: If there are no measurable cardinals, then the least κ^+ -pseudo-compactness cardinal κ for \mathbb{L}^2 is virtually extendible.

Theorem: The following are equivalent for a cardinal κ .

- \bullet κ is weakly virtually extendible.
- κ is a κ^+ -pseudo-chain compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.
- ullet κ is an ω -pseudo-chain compactness cardinal for $\mathbb{L}^2_{\kappa,\kappa}$.

Theorem: The least ω -pseudo-chain compactness cardinal κ for \mathbb{L}^2 is weakly virtually extendible

Universal pseudo-compactness

Theorem: The following are equivalent.

- For every $n < \omega$, there is a virtually $C^{(n)}$ -extendible cardinal.
- Every logic has a κ^+ -pseudo-compactness cardinal κ .
- ullet Every logic has an ω -pseudo-compactness cardinal κ .

Theorem: The following are equivalent.

- Virtual Vopěnka's Principle
- Every logic \mathcal{L} has a κ^+ -pseudo-chain compactness cardinal κ .
- Every logic $\mathcal L$ has an ω -pseudo-chain compactness cardinal κ .