Medical Innovation, Education, and Labor Market Outcomes of Cancer Patients (Online Appendix)

Sung-Hee Jeon* R. Vincent Pohl[†]

July 2019

A Appendix Tables

This Appendix contains information on innovation measures, summary statistics, and additional regression results for Jeon and Pohl, 2019, "Medical Innovation, Education, and Labor Market Outcomes of Cancer Patients." Tables A.1 to A.3 list drugs and patents used in the innovation measures. Tables A.4 to A.6 show summary statistics for three samples: men aged 49 to 60, women aged 35 to 60, and women aged 35 to 44. Tables A.7 to A.10 and Tables A.11 to A.14 contain robustness checks using zero-year and ten-year lags, respectively, of the medical innovation measures. Tables A.15 and A.16 show robustness checks involving off-label use of drugs and separate measures for treatment and diagnostic patents. Tables A.17 to A.20 contain upper and lower bounds for the regression coefficients that account for selective mortality.

^{*}Statistics Canada, Social Analysis and Modelling Division. Email: sung-hee.jeon@canada.ca.

[†]University of Georgia, Department of Economics. Email: vincent.pohl@gmail.com.

Table A.1: Prostate and Breast Cancer Drugs

	Type of cancer				Type of drug			
Drug	Year	Breast	Prostate	Chemo.	Hormone	Other	Side eff.	
Cyproterone	1987		X		X			
Buserelin	1988		X		X			
Ifosfamide	1989	X	X	X				
Erythropoietin	1990	X	X			X		
Fluconazole	1990	X	X	X				
Vinblastine	1992	X	X	X				
Paclitaxel	1992	X		X				
Nilutamide	1992		X		X			
Pamidronic acid	1992	X				X		
Estramustine	1993		X		X			
Vinorelbine	1994	X	X	X				
Goserelin	1994	X			X			
Formestane	1994	X	X		X			
Docetaxel	1995	X		X				
Dexrazoxane	1995	X			X			
Gemcitabine	1996	X		X				
Bicalutamide	1996		X			X		
Anastrozole	1996	X				X		
Letrozole	1997	X			X			
Ibandronic acid	1997	X				X		
Capecitabine	1998	X		X				
Trastuzumab	1999	X		X				
Triptorelin	1999		X		X			
Exemestane	2000	X			X			
Zoledronic acid	2000	X	X			X		
Darbepoetin alfa	2002	X	X				X	
Fulvestrant	2003	X			X			
Bevacizumab	2005	X				X		

Source: Lichtenberg (2015, Appendix Table 1).

Note: This table lists the drugs that were approved for the treatment of breast and prostate cancer in Canada from 1987 to 2005.

Table A.2: Prostate Cancer Patents

Patent No.	Patent Title	Year	Index
5843144	Method for treating benign prostatic hyperplasia with thermal therapy	1995	3.815
6360116	Brachytherapy system for prostate cancer treatment with computer implemented systems and processes to facilitate pre-operative planning and post-operative evaluations	1999	2.804
5981209	Use of NAALADase activity to identify prostate cancer and benign prostatic hyperplasia	1997	2.674
5843902	Methods for treating prostate cancer with LHRH antagonists	1996	2.570
5599677	Immunoassays for prostate specific antigen	1993	2.296
5588965	Device for slowly dilating the prostatic urethra	1995	2.177
6200573	Method of medical management for lower urinary tract symptoms and benign prostatic hyperplasia	2000	1.797
5403847	Use of .alphasub.1C specific compounds to treat benign prostatic hyperlasia	1992	1.772
5474071	Therapeutic endo-rectal probe and apparatus constituting an application thereof for destroying cancer tissue, in particular of the prostate, and preferably in combination with an imaging endo-cavitary-probe	1994	1.677
5501983	Assay of free and complexed prostate-specific antigen	1993	1.499
5666954	Therapeutic endo-rectal probe, and apparatus constituting an application thereof for destroying cancer tissue, in particular of the prostate, and preferably in combination with an imaging endo-cavitary-probe	1995	1.498
6107090	Treatment and diagnosis of prostate cancer with antibodies to extracellur PSMA domains	1997	1.332
5938583	Precision implant needle and method of using same in seed implant treatment of prostate cancer	1997	1.331
6225308	Tissue selective compounds in the treatment of prostate cancer or benign prostate hypertrophy	1999	1.287
5464437	Benign prostatic hyperplasia treatment catheter with ure- thral cooling	1993	1.282
5489525	Monoclonal antibodies to prostate cells	1992	1.236
5162504	Monoclonal antibodies to a new antigenic marker in epithelial prostatic cells and serum of prostatic cancer patients	1988	1.203
7105159	Antibodies to prostate-specific membrane antigen	1995	1.201
5981206	Dry analytical element and method for the detection of prostatic acid phosphatase	1992	1.106
6010446	Spacer element for radioactive seed implant treatment of prostate cancer	1998	1.048

Table A.2 – continued from previous page

Patent No.	Patent Title	Year	Index
6019957	Non-steroidal radiolabeled agonist/antagonist compounds	1998	1.010
	and their use in prostate cancer imaging		
5698402	Methods for diagnosing benign prostatic hyperplasia	1995	0.954
6015819	Use of alpha-1C specific compounds to treat benign prostatic hyperplasia	1997	0.944
5871726	Tissue specific and tumor growth supperssion by adenovirus comprising prostate specific antigen	1996	0.938
6361487	Method and apparatus for brachytherapy treatment of prostate disease	2000	0.867
5133713	Apparatus of a spinning type of resectoscope for prostatectomy	1990	0.804
6300088	Method of detecting prostate specific antigen	1998	0.785
5178148	Method of automatically measuring the volume of a tumor or of a gland, in particular the prostate, a measuring device, and a method and apparatus constituting and application thereof	1991	0.784
5200765	Non-invasive methods to detect prostate cancer	1998	0.766
5025128	Prediction of prostate cancer progression by analysis of selected predictive parameters	1994	0.722
5610136	Method for treatment of benign prostatic hypertrophy	1996	0.721
5614372	Early detection of prostate cancer (CAP) by employing prostate specific antigen (PSA) and human glandular kallikrein (hGK-1)	1995	0.720
6150508	Monoclonal antibodies specific for the extracellular domain of prostate-specific membrane antigen	1998	0.693
5516639	Antibodies specific for human prostate glandular kallkrein	1993	0.677
5810007	Ultrasound localization and image fusion for the treatment of prostate cancer	1995	0.642
6004267	Method for diagnosing and staging prostate cancer	1998	0.585
7102134	Dedicated apparatus and method for Positron Emission Tomography of the prostate	2004	0.562
5389613	Method of treating prostate adenocarcinoma, prostate benign hypertrophia and endometriosis	1993	0.538
5780485	Use of .alphasub.1c specific compounds to treat benign prostatic hyperplasia	1995	0.537
5807978	Immunogenic peptides of prostate specific antigen	1995	0.534
5424192	Markers for invasive prostatic neoplasia	1993	0.527
5780435	Methods for treating prostate cancer with LHRH-R antagonists	1995	0.514
5990128	.alphasub.1C specific compounds to treat benign prostatic hyperplasia	1996	0.509

Table A.2 – continued from previous page

Patent No.	Patent Title	Year	Index
5595985	Combination therapy for prophylaxis and/or treatment	1993	0.496
	of benign prostatic hyperplasia		
5817649	Combination therapy for the prophylaxis and/or treat-	1995	0.482
	ment of benign prostatic hyperplasia		
5629007	Method of preventing prostatic cancer development	1995	0.446
5795882	Method of treating prostatic diseases using delayed and/or	1996	0.441
	sustained release vitamin D formulations		
5786148	Polynucleotides encoding a novel prostate-specific	1996	0.400
	kallikrein		
6218529	Biomarkers and targets for diagnosis, prognosis and man-	1998	0.392
	agement of prostate, breast and bladder cancer		
5635197	Treatment and prevention of prostatic cancer metastasis	1995	0.387

Source: USPTO: Cancer Moonshot Data, https://www.uspto.gov/learning-and-resources/electronic-data-products/cancer-moonshot-patent-data.

Note: This table lists the 50 patents related to breast cancer with the highest quality index.

Table A.3: Breast Cancer Patents

Patent No.	Patent Title	Year	Index
5362720	Methods of treating or preventing breast or endometrial cancer with low dose non-masculinizing androgenic compounds	1993	2.790
5795308	Apparatus for coaxial breast biopsy	1996	2.764
4945239	Early detection of breast cancer using transillumination	1989	2.546
6517513	Intraductal breast fluid aspiration device	2000	1.783
5555885	Examination of breast tissue using time-resolved spectroscopy	1993	1.772
5260871	Method and apparatus for diagnosis of breast tumors	1991	1.541
7094775	Method of treating breast cancer using a combination of vitamin D analogues and other agents	2004	1.433
5304489	DNA sequences to target proteins to the mammary gland for efficient secretion	1990	1.375
6480565	Apparatus and method for cone beam volume computed tomography breast imaging	2000	1.347
5540737	Minimally invasive monopole phased array hyperthermia applicators and method for treating breast carcinomas	1993	1.253
5196435	Melatonin derivatives and combinations with antiestrogen compounds for treating mammalian breast carcinoma	1991	1.236
4882270	Monoclonal antibodies to placental isoferritin for use in detecting oncofetal ferritin associated with breast cancer and Hodgkins disease	1988	1.232
6080114	Method for coaxial breast biopsy	1998	1.203
5899865	Localization of abnormal breast tissue using time-resolved spectroscopy	1995	1.150
5079698	Transillumination method apparatus for the diagnosis of breast tumors and other breast lesions by normalization of an electronic image of the breast	1989	1.116
6235486	Method for detection of breast cancer	1998	1.032
5798266	Methods and kits for obtaining and assaying mammary fluid samples for breast diseases, including cancer	1996	0.989
5099848	Method and apparatus for breast imaging and tumor detection using modal vibration analysis	1990	0.971
6086247	Differential temperature sensor device for use in the detection of breast cancer and breast disease	1998	0.878
6562380	Methods for treating or reducing prediposition to breast cancer, pre-menstrual syndrome or symptoms associated with menopause by administration of phyto-estrogen	1997	0.856
5188964	Method and kit for the prognostication of breast cancer patient via heat shock/stress protein determination	1990	0.841

Table A.3 – continued from previous page

Patent No.	Patent Title	Year	Index
6057105	Detection of melanoma or breast metastasis with a multi-	1997	0.826
	ple marker assay		
5799656	Optical imaging of breast tissues to enable the detection	1996	0.751
	therein of calcification regions suggestive of cancer		
6117080	Ultrasonic imaging apparatus and method for breast can-	1997	0.713
	cer diagnosis with the use of volume rendering		
5301681	Device for detecting cancerous and precancerous condi-	1991	0.701
	tions in a breast		
5860934	Method and device for mechanical imaging of breast	1996	0.696
6962928	Tetrahydroquinoline derivatives for the inhibition of osteo-	2003	0.657
	porosis, estrogen dependent breast cancer, endometriosis		
	and uterine fibrosis		
5668267	Polynucleotides encoding mammaglobin, a mammary-	1995	0.651
	specific breast cancer protein		
5648223	Methods for enriching breast tumor cells	1994	0.650
5704355	Non-invasive system for breast cancer detection	1995	0.590
5895640	Nuclear medicine techniques for detecting carcinoma in	1996	0.557
	the dense breast		
6282305	Method and system for the computerized assessment of	1998	0.542
	breast cancer risk		
5652114	Diagnostic immunoassay methods using monoclonal anti-	1989	0.513
	body F36/22 which is specific for human breast carcinoma		
	cells		
5833633	Device for breast haptic examination	1997	0.483
5003979	System and method for the noninvasive identification and	1989	0.470
	display of breast lesions and the like		
5914238	Materials and methods for detection of breast cancer	1996	0.469
4839155	Iodotamoxifen derivatives and use for estrogen receptor-	1987	0.447
	positive breast cancer detection and therapy		
6179766	Methods of breast cancer treatment	1999	0.446
5415996	Prognostic markers in human breast cancer	1993	0.435
6470217	Method for heating ductal and glandular carcinomas and	2000	0.409
0110211	other breast lesions to perform thermal downsizing and a	2000	0.100
	thermal lumpectomy		
6218529	Biomarkers and targets for diagnosis, prognosis and man-	1998	0.392
0210020	agement of prostate, breast and bladder cancer	1000	0.002
6669483	Instrumented breast model	2001	0.390
5384260	Detection of onset of antiestrogen resistance in breast	1993	0.334
00044UU	cancer	1990	0.004
6566063	Methods for determining metastatic potential of breast	2000	0.330
000000	cancer cells by detecting GSEF gene product expression	2000	0.550

Table A.3 – continued from previous page

Patent No.	Patent Title	Year	Index
5961952	.sup.99m Tc-tertiary-butyl isonitrile as breast tumor imag-	1997	0.329
	ing agents		
6004756	Method for detecting the presence of breast cancer by	1998	0.298
0.4 0 0.0	detecting an increase in mammaglobin mRNA expression	1000	
6179786	System for thermometry-based breast cancer risk-	1999	0.289
	assessment		
6400837	Location head for an apparatus for detecting very small	2001	0.278
	breast anomalies		
6351549	Detection head for an apparatus for detecting very small	1999	0.262
	breast anomalies		
5437280	Magnetic resonance breast localizer	1993	0.253

Source: USPTO: Cancer Moonshot Data, https://www.uspto.gov/learning-and-resources/electronic-data-products/cancer-moonshot-patent-data.

Note: This table lists the 50 patents related to breast cancer with the highest quality index.

Table A.4: Summary Statistics: Prostate Cancer Sample, Age $49\ \mathrm{to}\ 60$

		Unweighted		Weighted by CEM Weights		
	Treat.	Control	Normal. Diff.	Treat.	Control	Normal Diff.
Coarsened age at s						
49–52	0.143	0.389	-0.579	0.144	0.144	0
53–55	0.219	0.256	-0.087	0.22	0.22	0
56–58	0.344	0.223	0.27	0.344	0.344	0
59–60	0.294	0.132	0.404	0.293	0.293	0
Highest level of schooling at s						
No high school	0.241	0.273	-0.073	0.242	0.242	0
HS (w/wo trades cert)	0.391	0.403	-0.025	0.392	0.392	0
Postsec non-university	0.147	0.142	0.014	0.145	0.145	0
University degree	0.222	0.183	0.097	0.221	0.221	0
Visible minority						
Not a visible minority	0.928	0.919	0.034	0.932	0.932	0
Asian	0.03	0.053	-0.118	0.028	0.028	0
Other	0.042	0.027	0.08	0.039	0.039	0
Province/territory at s	0.0 ==	0.0_,	0.00	0.000	0.000	
Newfoundland	0.021	0.021	0	0.021	0.021	0
Prince of Edward Island	0.007	0.005	0.031	0.007	0.007	0
Nova Scotia	0.036	0.003	0.021	0.035	0.035	0
New Brunswick	0.033	0.036	0.038	0.033	0.033	0
Quebec	0.187	0.020 0.272	-0.203	0.033	0.033	0
Ontario	0.409	0.212	0.131	0.100	0.100	0
Manitoba	0.409 0.034	0.345 0.04		0.411 0.033	0.411 0.033	0
Saskatchewan	0.034 0.035	0.04 0.033	-0.031 0.008	0.033	0.033 0.034	0
Alberta				0.034 0.109		0
	0.11	0.094	0.051		0.109	
British Columbia	0.124	0.122	0.007	0.124	0.124	0
YK&NWT&NNV	0.004	0.008	-0.055	0.003	0.003	0
Missing	0.001	0.001	-0.003	0.001	0.001	0
Not Working at $s-1$	0.101	0.098	0.009	0.1	0.1	0
Working at $s-1$	0.899	0.902	-0.009	0.9	0.9	0
Not working at $s-2$	0.091	0.088	0.012	0.09	0.09	0
Working at $s-2$	0.909	0.912	-0.012	0.91	0.91	0
Quintiles of earnings at $s-1$						
Not working at $s-1$	0.101	0.098	0.009	0.1	0.1	0
Quintile 1 (lowest)	0.201	0.19	0.027	0.201	0.201	0
Quintile 2	0.148	0.174	-0.069	0.149	0.149	0
Quintile 3	0.158	0.171	-0.033	0.158	0.158	0
Quintile 4	0.178	0.176	0.006	0.178	0.178	0
Quintile 5 (highest)	0.214	0.192	0.055	0.215	0.215	0
Quintiles of earnings at $s-2$						
Not working at $s-2$	0.091	0.088	0.012	0.09	0.09	0
Quintile 1 (lowest)	0.181	0.187	-0.016	0.181	0.181	0
Quintile 2	0.154	0.173	-0.053	0.154	0.154	0
Quintile 3	0.161	0.172	-0.032	0.16	0.16	0
Quintile 4	0.183	0.18	0.007	0.183	0.183	0
Quintile 5 (highest)	0.231	0.199	0.076	0.231	0.231	0
Year at s (year of diagnosis)						
1992	0.018	0.034	-0.103	0.018	0.018	0
1993	0.025	0.036	-0.062	0.025	0.025	0
1994	0.032	0.037	-0.031	0.032	0.032	0
1995	0.027	0.039	-0.07	0.027	0.027	0
1996	0.029	0.042	-0.067	0.029	0.029	0
1997	0.03	0.044	-0.074	0.03	0.03	0
1998	0.039	0.044	-0.074 -0.035	0.039	0.039	0
1999	0.039 0.042	0.049	-0.033 -0.032	0.039	0.039 0.042	0
2000	0.042 0.05	0.049 0.051	-0.032 -0.004	0.042 0.05	0.042 0.05	
2000 2001	$0.05 \\ 0.061$	0.051 0.053		0.05 0.061	$0.05 \\ 0.061$	0
			0.033	0.061 0.061		0
2002	0.061	0.056	0.022		0.061	0
2003	0.06	0.058	0.01	0.06	0.06	0
2004	$0.071 \\ 0.07$	$0.06 \\ 0.062$	0.044 0.03	$0.071 \\ 0.07$	$0.071 \\ 0.07$	$0 \\ 0$

Table A.4 – continued from previous page

	Unweighted			Weighte	ed by CEM V	Veights
	Treat.	Control	Normal. Diff.	Treat.	Control	Normal. Diff.
2006	0.083	0.064	0.072	0.083	0.083	0
2007	0.083	0.066	0.066	0.083	0.083	0
2008	0.077	0.067	0.042	0.078	0.078	0
2009	0.07	0.068	0.01	0.07	0.07	0
2010	0.071	0.069	0.011	0.071	0.071	0
Number of children at $s-1$						
No children	0.532	0.453	0.16	0.533	0.512	0.042
1–2 children	0.393	0.448	-0.112	0.392	0.409	-0.035
3+ children	0.061	0.079	-0.071	0.061	0.059	0.008
Missing	0.014	0.02	-0.05	0.013	0.019	-0.046
Age of youngest child at $s-1$						
No children	0.532	0.453	0.16	0.533	0.512	0.042
Age 0-6	0.014	0.022	-0.06	0.014	0.015	-0.012
Age 7–17	0.14	0.214	-0.193	0.141	0.152	-0.033
Age 18+	0.3	0.292	0.018	0.299	0.301	-0.005
Missing	0.014	0.02	-0.05	0.013	0.019	-0.046
Number of children aged 0-17 at $s-1$						
No child aged 0-17	0.832	0.744	0.216	0.832	0.813	0.049
1 child	0.104	0.146	-0.127	0.104	0.11	-0.018
2+ children	0.05	0.09	-0.155	0.05	0.058	-0.033
Missing	0.014	0.02	-0.05	0.013	0.019	-0.046
Union status: no	0.544	0.527	0.034	0.543	0.544	-0.002
Union status: yes	0.456	0.473	-0.034	0.457	0.456	0.002
Marital status: single	0.144	0.177	-0.091	0.144	0.163	-0.054
Marital status: couple	0.843	0.803	0.105	0.843	0.817	0.068
Marital status: missing	0.014	0.02	-0.05	0.013	0.019	-0.046
Self-employed: no	0.787	0.794	-0.018	0.787	0.789	-0.006
Self-employed: yes	0.198	0.183	0.038	0.198	0.19	0.022
Self-employed: missing	0.015	0.023	-0.056	0.015	0.021	-0.049
Age	56.258	54	0.699	56.25	56.109	0.046
Earnings at $s-1$	56,866.84	53,577.44	0.053	57,019.53	56,820.94	0.003
Earnings at $s-2$	59,032.98	54,665.93	0.069	59,123.13	58,957.41	0.002
Earnings at $s-1$ conditional on working	63,222.69	59,391.41	0.061	63,323.61	63,103.06	0.003
earnings at $s-2$ conditional on working	64,946.14	59,908.14	0.079	64,959.99	64,777.91	0.003
Number of dependents at $s-1$	0.759	0.929	-0.164	0.759	0.786	-0.027
Age of youngest dependents at $s-1$	20.133	18.751	0.177	20.121	20.102	0.002
Number of dependents aged 0-17 at $s-1$	0.219	0.361	-0.213	0.22	0.248	-0.046
Observations	7,908	5,362,573		7,835	1,814,546	
Number of unique persons	7,908	726,280		7,835	527,888	

Notes: Dollar amounts are in 2010 Canadian dollars.

Table A.5: Summary Statistics: Breast Cancer Sample, Age 35 to $60\,$

		Unweighted		Weighted by CEM Weights		
	Treat.	Control	Normal. Diff.	Treat.	Control	Norma Diff.
Coarsened age at s						
35–39	0.048	0.162	-0.379	0.048	0.048	0
40–44	0.132	0.222	-0.237	0.132	0.132	0
45-48	0.183	0.192	-0.025	0.184	0.184	0
49-52	0.218	0.169	0.125	0.219	0.219	0
53-55	0.159	0.108	0.15	0.159	0.159	0
56–58	0.153	0.093	0.184	0.152	0.152	0
59-60	0.108	0.054	0.197	0.107	0.107	0
Highest level of schooling at s						
No high school	0.227	0.242	-0.035	0.228	0.228	0
HS (w/wo trades cert)	0.383	0.395	-0.025	0.385	0.385	0
Postsec non-university	0.218	0.215	0.006	0.217	0.217	0
University degree	0.172	0.147	0.066	0.17	0.17	0
Visible minority	0.172	0.147	0.000	0.17	0.17	U
Not a visible minority	0.919	0.914	0.019	0.926	0.926	0
Asian	0.919 0.054	0.914 0.056	-0.019	0.920 0.051	0.920 0.051	0
Other	0.034 0.027	0.036			0.031 0.024	0
	0.027	0.03	-0.017	0.024	0.024	U
Province/territory at s Newfoundland	0.00	0.000	0.00	0.010	0.010	0
	0.02	0.023	-0.02	0.019	0.019	0
Prince of Edward Island	0.006	0.005	0.008	0.005	0.005	0
Nova Scotia	0.033	0.032	0.006	0.033	0.033	0
New Brunswick	0.025	0.026	-0.009	0.024	0.024	0
Quebec	0.244	0.264	-0.046	0.247	0.247	0
Ontario	0.372	0.349	0.048	0.377	0.377	0
Manitoba	0.04	0.04	-0.002	0.039	0.039	0
Saskatchewan	0.034	0.036	-0.011	0.033	0.033	0
Alberta	0.095	0.096	-0.004	0.094	0.094	0
British Columbia	0.124	0.119	0.014	0.124	0.124	0
YK&NWT&NNV	0.007	0.008	-0.013	0.006	0.006	0
Missing	0	0	-0.007	0	0	
Not Working at $s-1$	0.141	0.14	0.003	0.141	0.141	0
Working at $s-1$	0.859	0.86	-0.003	0.859	0.859	0
Not working at $s-2$	0.134	0.137	-0.009	0.135	0.135	0
Working at $s-2$	0.866	0.863	0.009	0.865	0.865	0
Quintiles of earnings at $s-1$						-
Not working at $s-1$	0.141	0.14	0.003	0.141	0.141	0
Quintile 1 (lowest)	0.16	0.168	-0.023	0.16	0.16	0
Quintile 2	0.159	0.171	-0.032	0.159	0.159	0
Quintile 3	0.166	0.173	-0.017	0.166	0.166	0
Quintile 4	0.176	0.173	0.006	0.176	0.100 0.176	0
Quintile 4 Quintile 5 (highest)	0.176	0.175 0.175	0.059	0.170	0.170	0
Quintiles of earnings at $s-2$	0.136	0.175	0.059	0.196	0.190	U
	0.134	0.137	-0.009	0.135	0.135	0
Not working at $s-2$	0.154 0.158			$0.155 \\ 0.157$	$0.155 \\ 0.157$	0
Quintile 1 (lowest)		0.169	-0.031 -0.025		$0.157 \\ 0.162$	0
Quintile 2	0.162	0.172		0.162		0
Quintile 3	0.168	0.173	-0.014	0.167	0.167	0
Quintile 4	0.178	0.174	0.011	0.178	0.178	0
Quintile 5 (highest)	0.2	0.175	0.064	0.2	0.2	0
Year at s (year of diagnosis)						
1992	0.038	0.047	-0.043	0.038	0.038	0
1993	0.038	0.049	-0.052	0.038	0.038	0
1994	0.046	0.051	-0.021	0.046	0.046	0
1995	0.047	0.052	-0.023	0.047	0.047	0
1996	0.047	0.054	-0.034	0.047	0.047	0
1997	0.052	0.056	-0.017	0.051	0.051	0
1998	0.054	0.057	-0.011	0.055	0.055	0
1999	0.058	0.058	-0.002	0.058	0.058	0
2000	0.056	0.06	-0.016	0.056	0.056	0
2001	0.058	0.059	-0.005	0.058	0.058	0
2002	0.058	0.058	0	0.058	0.058	0

Table A.5 – continued from previous page

	Unweighted			Weighted by CEM Weights		
	Treat.	Control	Normal. Diff.	Treat.	Control	Normal. Diff.
2003	0.054	0.056	-0.01	0.054	0.054	0
2004	0.057	0.055	0.012	0.057	0.057	0
2005	0.058	0.053	0.023	0.059	0.059	0
2006	0.062	0.051	0.046	0.062	0.062	0
2007	0.058	0.049	0.037	0.058	0.058	0
2008	0.056	0.047	0.041	0.056	0.056	0
2009	0.051	0.045	0.027	0.051	0.051	0
2010	0.051	0.043	0.038	0.051	0.051	0
Number of children at $s-1$						
No children	0.428	0.346	0.167	0.429	0.429	0
1–2 children	0.487	0.521	-0.068	0.488	0.488	Ō
3+ children	0.086	0.133	-0.152	0.083	0.083	0
Missing	0.000	0.200	0.202	0.000	0.000	
Age of youngest child at $s-1$						
No children	0.428	0.346	0.167	0.429	0.429	0
Age 0–6	0.056	0.108	-0.193	0.055	0.051	0.019
Age 7–17	0.276	0.356	-0.173	0.275	0.275	0.002
Age 18+	0.241	0.189	0.126	0.24	0.245	-0.012
Missing	0.211	0.100	0.120	0.21	0.210	0.012
Number of children aged 0–17 at $s-1$						
No child aged 0–17	0.668	0.535	0.274	0.669	0.674	-0.011
1 child	0.175	0.198	-0.058	0.175	0.169	0.011
2+ children	0.157	0.267	-0.272	0.156	0.157	-0.003
Missing	0.137	0.201	-0.272	0.150	0.157	-0.003
Union status: no	0.562	0.544	0.036	0.562	0.547	0.03
Union status: yes	0.302	0.456	-0.036	0.438	0.347 0.453	-0.03
Marital status: single	0.438 0.247	0.450 0.252	-0.030 -0.011	0.248	0.453 0.258	-0.03 -0.024
9	0.247 0.753	0.232 0.748	-0.011 0.011	0.248 0.752	0.258 0.742	
Marital status: couple Marital status: missing	0.755	0.748	0.011	0.732	0.742	0.024
Self-employed: no	0.881	0.882	-0.005	0.881	0.88	0.003
Self-employed: no Self-employed: ves	0.001	0.882	-0.005	0.001	0.00	
1 0 0						-0.003
Self-employed: missing	0.001	0.001	0.002	0.001	0.001	0
Age	50.599	47.16	0.527	50.579	50.503	0.012
Earnings at $s-1$ Earnings at $s-2$	31,789.77	29,861.21	0.065	31,909.57	31,745.95	$0.005 \\ 0.008$
0	31,888.17	29,547.40	0.08	31,942.91	31,706.48	
Earnings at $s-1$ conditional on working	37,025.92	34,730.70	0.078	37,135.86	36,945.44	0.006
Earnings at $s-2$ conditional on working	36,831.59	34,254.84	0.089	36,907.98	36,634.80	0.009
Number of dependents at $s-1$	0.999	1.246	-0.219	0.992	0.997	-0.005
Age of youngest dependents at $s-1$	16.696	14.168	0.305	16.709	16.813	-0.012
Number of dependents aged 0-17 at $s-1$	0.539	0.841	-0.303	0.537	0.534	0.003
Observations	19,163	12,076,907		18,844	3,455,120	
Number of unique persons	19,163	896,717		18,844	702,533	

Notes: Dollar amounts are in 2010 Canadian dollars.

Table A.6: Summary Statistics: Breast Cancer Sample, Age 35 to $44\,$

		Unweighted		Weighted by CEM Weights		
	Treat.	Control	Normal. Diff.	Treat.	Control	Norma Diff.
Coarsened age at s						
35–39	0.265	0.422	-0.334	0.266	0.266	0
40–44	0.735	0.578	0.334	0.734	0.734	0
Highest level of schooling at s						
No high school	0.192	0.219	-0.067	0.193	0.193	0
HS (w/wo trades cert)	0.411	0.41	0.003	0.415	0.415	0
Postsec non-university	0.221	0.221	0	0.219	0.219	0
University degree	0.175	0.15	0.07	0.172	0.172	0
Visible minority						
Not a visible minority	0.905	0.915	-0.036	0.913	0.913	0
Asian	0.064	0.056	0.036	0.059	0.059	0
Other	0.031	0.03	0.01	0.028	0.028	0
Province/territory at s						
Newfoundland	0.025	0.027	-0.012	0.025	0.025	0
Prince of Edward Island	0.005	0.005	0.001	0.004	0.004	0
Nova Scotia	0.038	0.033	0.026	0.038	0.038	0
New Brunswick	0.022	0.027	-0.028	0.022	0.022	0
Quebec	0.249	0.262	-0.029	0.251	0.251	0
Ontario	0.365	0.344	0.045	0.37	0.37	0
Manitoba	0.039	0.042	-0.015	0.036	0.036	0
Saskatchewan	0.032	0.038	-0.032	0.031	0.031	0
Alberta	0.089	0.1	-0.035	0.088	0.088	0
British Columbia	0.127	0.115	0.037	0.127	0.127	0
YK&NWT&NNV	0.008	0.009	-0.01	0.007	0.007	0
Missing	0.001	0	0.006	0	0	
Not Working at $s-1$	0.114	0.129	-0.044	0.113	0.113	0
Working at $s-1$	0.886	0.871	0.044	0.887	0.887	0
Not working at $s-2$	0.123	0.134	-0.035	0.122	0.122	0
Working at $s-2$	0.877	0.866	0.035	0.878	0.122	0
Quintiles of earnings at $s-1$	0.011	0.000	0.000	0.010	0.010	O
Not working at $s-1$	0.114	0.129	-0.044	0.113	0.113	0
Quintile 1 (lowest)	0.169	0.123	-0.028	0.113	0.113	0
Quintile 2	0.163 0.162	0.173	-0.028	0.17	0.17	0
Quintile 2 Quintile 3	0.162	0.173 0.176	-0.031 -0.017	0.169	0.169	0
Quintile 3 Quintile 4	0.109 0.187	0.176 0.175	0.029	0.109 0.187	0.109 0.187	0
				0.187		0
Quintile 5 (highest)	0.199	0.168	0.082	0.2	0.2	U
Quintiles of earnings at $s-2$	0.102	0.194	0.025	0.100	0.100	0
Not working at $s-2$	0.123	0.134	-0.035	0.122	0.122	0
Quintile 1 (lowest)	0.167	0.184	-0.043	0.167	0.167	0
Quintile 2	0.159	0.173	-0.037	0.16	0.16	0
Quintile 3	0.177	0.174	0.007	0.175	0.175	0
Quintile 4	0.182	0.173	0.026	0.183	0.183	0
Quintile 5 (highest)	0.192	0.163	0.077	0.192	0.192	0
Year at s (year of diagnosis)	0.050					
1992	0.058	0.067	-0.037	0.059	0.059	0
1993	0.055	0.069	-0.061	0.055	0.055	0
1994	0.073	0.071	0.005	0.073	0.073	0
1995	0.066	0.073	-0.028	0.066	0.066	0
1996	0.066	0.074	-0.031	0.067	0.067	0
1997	0.066	0.075	-0.034	0.066	0.066	0
1998	0.075	0.075	0.001	0.076	0.076	0
1999	0.075	0.075	0.003	0.076	0.076	0
2000	0.066	0.074	-0.029	0.066	0.066	0
2001	0.062	0.069	-0.028	0.062	0.062	0
2002	0.062	0.061	0.003	0.063	0.063	0
2003	0.06	0.053	0.028	0.06	0.06	0
2004	0.059	0.046	0.06	0.059	0.059	0
2005	0.045	0.038	0.037	0.046	0.046	0
2006	0.041	0.03	0.057	0.041	0.041	0
2007	0.028	0.023	0.033	0.027	0.027	0

Table A.6 – continued from previous page

		Unweighted		Weighte	ed by CEM V	Veights
	Treat.	Control	Normal. Diff.	Treat.	Control	Normal. Diff.
2008	0.024	0.016	0.059	0.023	0.023	0
2009	0.012	0.009	0.034	0.012	0.012	0
2010	0.006	0.002	0.057	0.006	0.006	0
Number of children at $s-1$						
No children	0.202	0.183	0.048	0.2	0.2	0
1–2 children	0.621	0.604	0.035	0.625	0.625	0
3+ children	0.177	0.213	-0.091	0.176	0.176	0
Missing						
Age of youngest child at $s-1$						
No children	0.202	0.183	0.048	0.2	0.2	0
Age 0–6	0.24	0.251	-0.027	0.24	0.212	0.065
Age 7–17	0.496	0.51	-0.028	0.497	0.525	-0.056
Age 18+	0.063	0.056	0.029	0.064	0.063	0.003
Missing						
Number of children aged 0–17 at $s-1$						
No child aged 0–17	0.265	0.239	0.059	0.263	0.262	0.002
1 child	0.256	0.239	0.041	0.258	0.252	0.014
2+ children	0.479	0.522	-0.087	0.479	0.486	-0.013
Missing						
Union status: no	0.538	0.523	0.031	0.539	0.508	0.062
Union status: yes	0.462	0.477	-0.031	0.461	0.492	-0.062
Marital status: single	0.225	0.242	-0.039	0.224	0.247	-0.054
Marital status: couple	0.775	0.758	0.039	0.776	0.753	0.054
Marital status: missing						
Self-employed: no	0.877	0.884	-0.023	0.878	0.882	-0.014
Self-employed: yes	0.122	0.115	0.021	0.121	0.117	0.013
Self-employed: missing	0.002	0.001	0.014	0.001	0.001	0.01
Age	41.029	40.016	0.375	41.02	40.813	0.08
Earnings at $s-1$	$31,\!450.16$	$28,\!525.68$	0.104	$31,\!539.28$	$31,\!275.48$	0.009
Earnings at $s-2$	$30,\!470.82$	27,597.94	0.105	30,513.04	30,309.84	0.007
Earnings at $s-1$ conditional on working	$35,\!500.24$	32,733.09	0.101	$35,\!567.13$	$35,\!269.65$	0.011
Earnings at $s-2$ conditional on working	34,725.61	$31,\!878.10$	0.107	34,769.24	$34,\!537.69$	0.008
Number of dependents at $s-1$	1.606	1.715	-0.094	1.607	1.613	-0.006
Age of youngest dependents at $s-1$	10.146	9.871	0.042	10.18	10.46	-0.043
Number of dependents aged 0-17 at $s-1$	1.4	1.518	-0.102	1.4	1.405	-0.004
Obervations	3,436	4,628,999		3,382	975,214	
Number of unique persons		623,375			378,489	

Notes: Dollar amounts are in 2010 Canadian dollars.

Table A.7: Prostate Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 49 to 60. Robustness Check: Innovation Measure Not Lagged

	Diff-in-Diff	Triple-D	Difference
	(1)	(2)	(3)
	(A) Employment		
Post×Cancer	-0.0179^{***} (0.00302)	-0.115** (0.0462)	-0.0416^{***} (0.0148)
$Post \times Cancer \times Drugs$		$0.00370^{**} (0.00175)$	
$Post \times Cancer \times Patents$			0.000400^* (0.000241)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.0665	0.0671	0.0670
Number of unique persons	535,723	535,723	535,723
Person-year observations	19,743,677	19,743,677	19,743,677
	(B) Earnings		
Post×Cancer	-0.273***	-1.348**	-0.514***
	(0.0365)	(0.555)	(0.176)
$Post \times Cancer \times Drugs$		0.0410^* (0.0211)	
$Post \times Cancer \times Patents$			0.00407 (0.00287)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.113	0.114	0.114
Number of unique persons	535,723	$535{,}723$	535,723
Person-year observations	19,743,677	19,743,677	19,743,677

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 0 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.8: Breast Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 35 to 44. Robustness Check: Innovation Measure Not Lagged

	Diff-in-Diff	Triple-D	Difference
	(1)	(2)	(3)
	(A) Employment		
Post×Cancer	-0.0329^{***} (0.00407)	-0.101^{***} (0.0266)	-0.0802^{***} (0.0183)
$Post \times Cancer \times Drugs$		0.00204^{***} (0.000780)	
$Post \times Cancer \times Patents$			0.00100^{***} (0.000373)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.00862	0.00863	0.00865
Number of unique persons	381,871	381,871	381,871
Person-year observations	$10,\!512,\!459$	$10,\!512,\!459$	$10,\!512,\!459$
	(B) Earnings		
Post×Cancer	-0.644^{***} (0.0463)	-1.030^{***} (0.293)	-0.923^{***} (0.200)
$Post \times Cancer \times Drugs$		0.0116 (0.00875)	
$Post \times Cancer \times Patents$			0.00591 (0.00416)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.0115	0.0115	0.0116
Number of unique persons	381,871	381,871	381,871
Person-year observations	10,512,459	10,512,459	10,512,459

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 0 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.9: Prostate Cancer Employment Regressions with Time-Invariant Effects by Education, Age 49 to 60. Robustness Check: Innovation Measures Not Lagged

		Diff-in-Diff		Tri	Triple-Diff: Drugs	ıgs	Trij	Priple-Diff: Patents	nts
	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9) < HS	(7) < HS	(8) = HS	(6) <
Post×Cancer	-0.0270^{***} (0.00654)	-0.0180*** (0.00477)	-0.0119^{**} (0.00483)	0.0184 (0.0812)	-0.133* (0.0769)	-0.218** (0.0854)	-0.0201 (0.0238)	-0.0327 (0.0248)	-0.0818^{***} (0.0293)
$Post \times Cancer \times Drugs$				-0.00177 (0.00315)	0.00439 (0.00290)	0.00783** (0.00322)			
$Post \times Cancer \times Patents$							-0.000125 (0.000407)	0.000244 (0.000401)	0.00115^{**} (0.000470)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within- R^2	0.0722	0.0648	0.0653	0.0727	0.0655	0.0656	0.0727	0.0655	0.0655
Number of unique persons	145,385	231,645	158,693	145,385	231,645	158,693	145,385	231,645	158,693
Person-year observations	4,542,765	9,090,921	6,109,991	4,542,765	9,090,921	6,109,991	4,542,765	9,090,921	6,109,991

effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 0 years (see regression (3) in the text). Regressions are by educational attainment: ABB refers to no high school degree, ABBB and ABBBB indicates more than high school education. ABBBB ABBBB ABBBB indicates more than high school education. Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant

Table A.10: Breast Cancer Employment Regressions with Time-Invariant Effects by Education, Age 35 to 44. Robustness Check: Innovation Measures Not Lagged.

		Diff-in-Diff		ŢŢ	Triple-Diff: Drugs	1gs	Tr	Priple-Diff: Patents	nts
	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9)	(7) < HS	(8) = HS	(9) < HS
Post×Cancer	-0.0455*** (0.0117)	-0.0420^{***} (0.00641)	-0.0170^{***} (0.00530)	-0.181^{**} (0.0721)	-0.0386 (0.0418)	-0.118^{***} (0.0348)	-0.146^{***} (0.0502)	-0.0390 (0.0287)	-0.0844^{***} (0.0236)
$Post \times Cancer \times Drugs$				0.00410^{*} (0.00214)	-0.000103 (0.00123)	0.00302^{***} (0.00102)			
$Post \times Cancer \times Patents$							0.00216** (0.00104)	-0.0000645 (0.000588)	0.00141^{***} (0.000480)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Within- R^2	0.0224	0.0105	0.00268	0.0225	0.0105	0.00270	0.0225	0.0105	0.00279
Number of unique persons	75,224	177,250	129,397	75,224	177,250	129,397	75,224	177,250	129,397
Person-year observations	1,643,251	5,370,960	3,498,248	1,643,251	5,370,960	3,498,248	1,643,251	5,370,960	3,498,248

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 0 years (see regression (3) in the text). Regressions are by educational attainment: ABB refers to no high school degree, ABBB and ABBBB indicates more than high school education. ABBBB ABBBB ABBBB indicates more than high school education.

Table A.11: Prostate Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 49 to 60. Robustness Check: Innovation Measure Lagged by Ten Years

	Diff-in-Diff	Triple-D	ifference
	(1)	(2)	(3)
	(A) Employment		
Post×Cancer	-0.0179^{***} (0.00302)	-0.0496^{***} (0.0143)	-0.0261^{***} (0.00488)
$Post \times Cancer \times Drugs$		0.00155** (0.000670)	
$Post \times Cancer \times Patents$			0.000306** (0.000133)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.0665	0.0670	0.0669
Number of unique persons	535,723	535,723	535,723
Person-year observations	19,743,677	19,743,677	19,743,677
	(B) Earnings		
Post×Cancer	-0.273^{***} (0.0365)	-0.670^{***} (0.172)	-0.385^{***} (0.0591)
$Post \times Cancer \times Drugs$	(0.0303)	0.0194** (0.00808)	(0.0591)
$Post \times Cancer \times Patents$			0.00416** (0.00162)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.113	0.114	0.114
Number of unique persons	535,723	535,723	535,723
Person-year observations	19,743,677	19,743,677	19,743,677

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 10 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.12: Breast Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 35 to 44. Robustness Check: Innovation Measure Lagged by Ten Years

	Diff-in-Diff	Triple-D	ifference
	(1)	(2)	(3)
	(A) Employment		
Post×Cancer	-0.0329^{***} (0.00407)	-0.0622^{***} (0.0149)	-0.0451^{***} (0.00756)
$Post \times Cancer \times Drugs$		$0.00143^{**} (0.000684)$	
$Post \times Cancer \times Patents$			0.000622^{**} (0.000305)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.00862	0.00863	0.00863
Number of unique persons	381,871	381,871	381,871
Person-year observations	$10,\!512,\!459$	$10,\!512,\!459$	$10,\!512,\!459$
	(B) Earnings		
Post×Cancer	-0.644***	-0.773***	-0.696***
	(0.0463)	(0.173)	(0.0845)
$Post \times Cancer \times Drugs$		0.00633 (0.00818)	
$Post \times Cancer \times Patents$			0.00267 (0.00364)
Individual fixed effects	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes
Within- R^2	0.0115	0.0115	0.0115
Number of unique persons	381,871	381,871	381,871
Person-year observations	10,512,459	10,512,459	10,512,459

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 10 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.13: Prostate Cancer Employment Regressions with Time-Invariant Effects by Education, Age 49 to 60. Robustness Check: Innovation Measures Lagged by Ten Years

		Diff-in-Diff		T	Triple-Diff: Drugs	sgı	Tri	riple-Diff: Patents	nts
	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9) (H <	(7) < HS	(8) = HS	(6) SH <
Post×Cancer	-0.0270^{***} (0.00654)	-0.0180^{***} (0.00477)	-0.0119^{**} (0.00483)	-0.0152 (0.0256)	-0.0570** (0.0236)	-0.0696^{***} (0.0254)	-0.0230^{**} (0.00940)	-0.0299*** (0.00807)	-0.0244^{***} (0.00806)
$Post \times Cancer \times Drugs$				-0.000619 (0.00128)	0.00188^* (0.00109)	0.00277** (0.00118)			
$Post \times Cancer \times Patents$							-0.000180 (0.000293)	0.000412* (0.000211)	0.000446^{**} (0.000216)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$Within-R^2$	0.0722	0.0648	0.0653	0.0727	0.0655	0.0655	0.0725	0.0654	0.0655
Number of unique persons	145,385	231,645	158,693	145,385	231,645	158,693	145,385	231,645	158,693
Person-year observations	4,542,765	9,090,921	6,109,991	4,542,765	9,090,921	6,109,991	4,542,765	9,090,921	6,109,991

effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 10 years (see regression (3)in the text). Regressions are by educational attainment: ABS refers to no high school degree, ABS indicates more than high school education. ABS ABS ABS indicates more than high school education. Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant

Table A.14: Breast Cancer Employment Regressions with Time-Invariant Effects by Education, Age 35 to 44. Robustness Check: Innovation Measures Lagged by Ten Years

		Diff-in-Diff		T	Priple-Diff: Drugs	1gs	Tri	Priple-Diff: Patents	ıts
	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9) <	(7) < HS	(8) = HS	(6) < HS
$\mathrm{Post}{\times}\mathrm{Cancer}$	-0.0455^{***} (0.0117)	-0.0420^{***} (0.00641)	-0.0170^{***} (0.00530)	-0.0971^{**} (0.0416)	-0.0436^{*} (0.0236)	-0.0640^{***} (0.0194)	-0.0712^{***} (0.0210)	-0.0406^{***} (0.0118)	-0.0365^{***} (0.00988)
$Post \times Cancer \times Drugs$				0.00255 (0.00193)	0.0000765 (0.00108)	0.00228^{***} (0.000883)			
$Post \times Cancer \times Patents$							$0.00135 \\ (0.000873)$	-0.0000740 (0.000475)	0.000975** (0.000397)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
$\operatorname{Within-}R^2$	0.0224	0.0105	0.00268	0.0225	0.0105	0.00269	0.0225	0.0105	0.00271
Number of unique persons	75,224	177,250	129,397	75,224	177,250	129,397	75,224	177,250	129,397
Person-year observations	1,643,251	5,370,960	3,498,248	1,643,251	5,370,960	3,498,248	1,643,251	5,370,960	3,498,248

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 10 years (see regression (3) in the text). Regressions are by educational attainment: AB refers to no high school degree, AB indicates more than high school education. AB of 0.1, AB of 0.01.

Table A.15: Prostate Cancer Employment Regressions with Time-Invariant Effects, Age 49 to 60

	Triple-D	ifference
	(1)	(2)
Post×Cancer	-0.0544^{***} (0.0185)	-0.0297^{***} (0.00861)
$Post \times Cancer \times All \ Cancer \ Drugs$	0.000494** (0.000207)	
$Post \times Cancer \times Treatment\ Patents$		0.00204 (0.00301)
${\bf Post}{\bf \times}{\bf Cancer}{\bf \times}{\bf Diagnostic~Patents}$		-0.000382 (0.00208)
Individual fixed effects	Yes	Yes
Year dummies	Yes	Yes
Within- R^2	0.0669	0.0668
Number of unique persons	535,723	535,723
Person-year observations	19,743,677	19,743,677

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator. All Cancer Drugs is the number of drugs approved for the treatment of any type of cancer and Treatment Patents and Diagnostic Patents are the cumulative patent index for cancer treatment and diagnostic procedures in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.16: Breast Cancer Employment Regressions with Time-Invariant Effects, Age 35 to 44

	Triple-D	ifference
	(1)	(2)
Post×Cancer	-0.0759^{***} (0.0173)	-0.0526^{***} (0.0102)
$Post \times Cancer \times All \ Cancer \ Drugs$	0.000643^{**} (0.000258)	
$Post \times Cancer \times Treatment\ Patents$		-0.00305 (0.0123)
$Post \times Cancer \times Diagnostic\ Patents$		0.00132 (0.00110)
Individual fixed effects	Yes	Yes
Year dummies	Yes	Yes
Within- R^2	0.00863	0.00865
Number of unique persons	381,871	381,871
Person-year observations	$10,\!512,\!459$	$10,\!512,\!459$

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator. All Cancer Drugs is the number of drugs approved for the treatment of any type of cancer and Treatment Patents and Diagnostic Patents are the cumulative patent index for cancer treatment and diagnostic procedures in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). * p < 0.1, ** p < 0.05, *** p < 0.01.

Table A.17: Prostate Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 49 to 60. Robustness Check: Bounds Accounting for Mortality

	Diff-i	n-Diff		Triple-D	oifference	
	Upper Bound (1)	Lower Bound (2)	Upper Bound (3)	Lower Bound (4)	Upper Bound (5)	Lower Bound (6)
		(A) E	mployment			
Post×Cancer	-0.0213*** (0.00308)	-0.0123*** (0.00297)	-0.0721^{***} (0.0231)	-0.0326 (0.0222)	-0.0368*** (0.00756)	-0.0199^{***} (0.00728)
$Post \times Cancer \times Drugs$			0.00212** (0.000942)	0.000845 (0.000905)		
$\mathbf{Post}{\times}\mathbf{Cancer}{\times}\mathbf{Patents}$					0.000332** (0.000142)	0.000163 (0.000137)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes
Within- R^2	0.0682	0.0635	0.0687	0.0640	0.0685	0.0638
Number of unique persons	535,723	535,723	535,723	535,723	535,723	535,723
Person-year observations	19,826,184	19,826,184	19,826,184	19,826,184	19,826,184	19,826,184
		(B)	Earnings			
Post×Cancer	-0.317***	-0.189***	-0.957***	-0.368	-0.525***	-0.273***
	(0.0369)	(0.0359)	(0.273)	(0.267)	(0.0903)	(0.0884)
$Post{\times}Cancer{\times}Drugs$			$0.0267^{**} $ (0.0111)	0.00745 (0.0109)		
$Post \times Cancer \times Patents$					0.00447*** (0.00169)	0.00180 (0.00166)
Individual fixed effects	Yes	Yes	Yes	Yes	Yes	Yes
Year dummies	Yes	Yes	Yes	Yes	Yes	Yes
Within- R^2	0.116	0.109	0.116	0.109	0.116	0.109
Number of unique persons	535,723	535,723	535,723	535,723	535,723	535,723
Person-year observations	19,826,184	19,826,184	19,826,184	19,826,184	19,826,184	19,826,184

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). "Upper Bound" refers to regressions where unobserved (due to mortality) outcome variables are replaced by their respective within-individual minimum and "Lower Bound" refers to regression where they are replaced with within-individual maximums. * p < 0.1, *** p < 0.05, *** p < 0.01.

Table A.18: Breast Cancer Labor Market Outcome Regressions with Time-Invariant Effects, Age 35 to 44. Robustness Check: Bounds Accounting for Mortality

	Diff-i	n-Diff		Triple-D	oifference	
	Upper Bound (1)	Lower Bound (2)	Upper Bound (3)	Lower Bound (4)	Upper Bound (5)	Lower Bound (6)
		(A) E	mployment			
Post×Cancer	-0.0492^{***} (0.00432)	-0.0247^{***} (0.00394)	-0.112*** (0.0176)	-0.0474^{***} (0.0158)	-0.0845*** (0.0110)	-0.0372*** (0.00986)
$\operatorname{Post} \times \operatorname{Cancer} \times \operatorname{Drugs}$			0.00234*** (0.000622)	0.000850 (0.000562)		
$Post \times Cancer \times Patents$					0.00104^{***} (0.000287)	$0.000371 \\ (0.000259)$
Individual fixed effects Year dummies Within-R ² Number of unique persons Person-year observations	Yes Yes 0.00852 381,871 10,519,244	Yes Yes 0.00866 381,871 10,519,244	Yes Yes 0.00854 381,871 10,519,244	Yes Yes 0.00867 381,871 10,519,244	Yes Yes 0.00855 381,871 10,519,244	Yes Yes 0.00868 381,871 10,519,244
		(B)	Earnings			
Post×Cancer	-0.848^{***} (0.0488)	-0.526^{***} (0.0443)	-1.308*** (0.196)	-0.563^{***} (0.176)	-1.096*** (0.121)	-0.539^{***} (0.108)
$Post{\times}Cancer{\times}Drugs$			$0.0172^{**} (0.00707)$	0.00141 (0.00646)		
$Post \times Cancer \times Patents$					0.00735** (0.00326)	0.000389 (0.00298)
Individual fixed effects Year dummies Within-R ² Number of unique persons Person-year observations	Yes Yes 0.0114 381,871 10,519,244	Yes Yes 0.0116 381,871 10,519,244	Yes Yes 0.0114 381,871 10,519,244	Yes Yes 0.0116 381,871 10,519,244	Yes Yes 0.0114 381,871 10,519,244	Yes Yes 0.0116 381,871 10,519,244

Notes: Estimated coefficients and standard errors (clustered on the unique person level) from regressions with time-invariant effects. The dependent variable in panel (A) is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year and in panel (B) it is the inverse hyperbolic sine of annual earnings. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). "Upper Bound" refers to regressions where unobserved (due to mortality) outcome variables are replaced by their respective within-individual minimum and "Lower Bound" refers to regression where they are replaced with within-individual maximums. * p < 0.1, *** p < 0.05, **** p < 0.01.

Table A.19: Prostate Cancer Employment Regressions with Time-Invariant Effects by Education, Age 49 to 60. Robustness Check: Bounds Accounting for Mortality

	Bounds	Bounds Based on Minimum	inimum	Bounds	Bounds Based on Maximum	aximum
•	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9)
$\mathrm{Post}{\times}\mathrm{Cancer}$	-0.0216 (0.0408)	-0.0656^{*} (0.0383)	-0.123^{***} (0.0422)	0.0339 (0.0392)	-0.0292 (0.0366)	-0.104^{**} (0.0406)
${\rm Post} {\times} {\rm Cancer} {\times} {\rm Drugs}$	-0.000408 (0.00173)	0.00179 (0.00155)	0.00449^{***} (0.00170)	-0.00225 (0.00166)	$0.000719 \\ (0.00148)$	0.00387** (0.00164)
Individual fixed effects Year dummies Within-R ² Number of unique persons Person-year observations	Yes Yes 0.0754 145,385 4,575,005	Yes Yes 0.0671 231,645 9,127,553	Yes Yes 0.0665 158,693 6,123,626	Yes Yes 0.0675 145,385 4,575,005	Yes Yes 0.0628 231,645 9,127,553	Yes Yes 0.0637 158,693 6,123,626

that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). Regressions are by educational attainment: ABB = ABB refers to no high school degree, and ABB = ABB indicates more than high school education. * BBB = ABB to a high school degree, and ABB = ABB indicates more than high school education. effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant

Table A.20: Breast Cancer Employment Regressions with Time-Invariant Effects by Education, Age 35 to 44. Robustness Check: Bounds Accounting for Mortality

	Bounds	Bounds Based on Minimum	inimum	Bounds	Bounds Based on Maximum	aximum
	(1) < HS	(2) = HS	(3) > HS	(4) < HS	(5) = HS	(9)
$\mathrm{Post}{\times}\mathrm{Cancer}$	-0.167^{***} (0.0478)	-0.0872^{***} (0.0269)	-0.105^{***} (0.0241)	-0.0675 (0.0431)	-0.0198 (0.0248)	-0.0647^{***} (0.0209)
$Post \times Cancer \times Drugs$	0.00380^{**} (0.00173)	0.00107 (0.000953)	0.00276^{***} (0.000845)	0.00144 (0.00156)	-0.000572 (0.000880)	0.00198*** (0.000742)
Individual fixed effects Year dummies Within- R^2 Number of unique persons	Yes Yes 0.0223 75,224	Yes Yes 0.0104 177,250	Yes Yes 0.00268 129,397	Yes Yes 0.0226 75,224	Yes Yes 0.0105 177,250	Yes Yes 0.00271 129,397
Person-year observations	1,645,114	5,374,405	3,499,725	1,645,114	5,374,405	3,499,725

effects. The dependent variable is an indicator for annual employment status that equals one if the person had non-zero earnings in a given year. Post is a dummy variable that equals one after the (placebo) cancer diagnosis, Cancer is a cancer diagnosis indicator, and Drugs and Patents are the amount of approved drugs and the cumulative patent index in the year of the diagnosis, lagged by 5 years (see regression (3) in the text). Regressions are by educational attainment: ABB refers to no high school degree, and ABB indicates more than high school education. * PBB of 0.1, ** PBB of 0.01. Notes: Estimated coefficients and standard errors (clustered on the unique person level) from difference-in-differences and triple-difference regressions with time-invariant