23. 8. 2004

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月12日

出 願 番 号 Application Number:

特願2003-321214

[ST. 10/C]:

[JP2003-321214]

REC'D 15 OCT 2004

WIPO PCT

出 願 人
Applicant(s):

本田技研工業株式会社

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年10月 1日

【書類名】 特許願 H103-2666 【整理番号】 【提出日】 平成15年 9月12日 特許庁長官 殿 【あて先】 【国際特許分類】 B01J 23/58 B01J 23/63 B01D 53/36 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 【氏名】 松尾 雄一 【発明者】 株式会社本田技術研究所内 埼玉県和光市中央1丁目4番1号 【住所又は居所】 木口 一徳 【氏名】 【発明者】 埼玉県和光市中央1丁目4番1号 株式会社本田技術研究所内 【住所又は居所】 【氏名】 鈴木 紀彦 【特許出願人】 【識別番号】 000005326 【氏名又は名称】 本田技研工業株式会社 福井 威夫 【代表者】 【代理人】

【代理人】 【識別

【識別番号】 100096884

【弁理士】

【氏名又は名称】 末成 幹生

【手数料の表示】

【予納台帳番号】 053545 【納付金額】 21,000円

【提出物件の目録】

【物件名】 特許請求の範囲 1

 【物件名】
 明細書 1

 【物件名】
 図面 1

 【物件名】
 要約書 1

 【包括委任状番号】
 0101517

1/E

【書類名】特許請求の範囲

【請求項1】

Pd酸化物がAl酸化物に担持されている排ガス浄化触媒において、

Al酸化物がLnAlO₃ (Ln:希土類元素)であることを特徴とする排ガス浄化触媒。

【請求項2】

前記A1酸化物の結晶系が三方晶または菱面体晶であることを特徴とする請求項1に記載の排ガス浄化触媒。

【請求項3】

前記Pd酸化物が少なくともLn2PdO4(Ln:希土類元素)を含むことを特徴とする請求項1または2に記載の排ガス浄化触媒。

【請求項4】

化合物群(〇 H 基または S H 基を有する炭素数 2 ~ 2 0 のカルボン酸、炭素数 2 または 3 のジカルボン酸、および炭素数 1 ~ 2 0 のモノカルボン酸)から選ばれた少なくとも 1 種を構成元素の硝酸塩水溶液に添加する工程を経て製造されたことを特徴とする請求項 1 ~ 3 のいずれかに記載の排ガス浄化触媒。

【請求項5】

前記硝酸塩水溶液を蒸発乾固させてカルボン酸錯体重合物を作製する工程と、前記カルボン酸錯体重合物を焼成する焼成工程とを経て製造されたことを特徴とする請求項4に記載の排ガス浄化触媒。

【請求項6】

Pd酸化物がAl酸化物に担持されている排ガス浄化触媒を製造するにあたり、

化合物群(OH基またはSH基を有する炭素数 $2\sim 20$ のカルボン酸、炭素数 2 または 3 のジカルボン酸、および炭素数 $1\sim 20$ のモノカルボン酸)から選ばれる少なくとも 1 種を構成元素の硝酸塩水溶液に添加する工程を含むことを特徴とする排ガス浄化触媒の製造方法。

【請求項7】

前記硝酸塩水溶液を蒸発乾固させてカルボン酸錯体重合物を作製する工程と、前記カルボン酸錯体重合物を焼成する焼成工程とを含むことを特徴とする請求項6に記載の排ガス 浄化触媒の製造方法。

【請求項8】

前記焼成工程における焼成温度が1000℃以下であることを特徴とする請求項7に記載の排ガス浄化触媒の製造方法。

【請求項9】

Pd酸化物がAl酸化物に担持されており、車から排出される排ガスを浄化する車用排ガス浄化触媒装置において、前記Al酸化物が $LnAlO_3$ (Ln:希土類元素)であることを特徴とする車用排ガス浄化触媒装置。

【発明の名称】排ガス浄化触媒およびその製造方法、ならびに車用排ガス浄化触媒装置 【技術分野】

[0001]

本発明は、排ガス浄化触媒およびその製造方法、ならびに車用排ガス浄化触媒装置に係り、とくに、自動車等の内燃機関の低温運転時に排出される排ガス中の窒素酸化物(NOx)、炭化水素(HC)および一酸化炭素(CO)を同時に効率よく浄化、低減させることのできる排ガス浄化触媒の製造技術に関する。

【背景技術】

[0002]

排ガス(例えばCO、HC、NO、NO2 等)の浄化には、貴金属元素(Pt、Rh、Pd、Ir)が高性能を示すことが知られている。このため、排ガス浄化触媒には、上記貴金属元素を用いることが好適である。通常、これらの貴金属は、La、Ce、Nd などの添加剤とともに、高比表面積担体のAl2 O3 に混合または担持されて用いられる。一方、様々な元素を組み合わせることができるペロブスカイトなどの複合酸化物は、極めて多様な性質を有する。このため、排ガス浄化触媒には、上記複合酸化物を用いることが好適である。さらに、複合酸化物に貴金属を担持すると、貴金属の性質が大きく変化することも知られている。このような見地から、複合酸化物に貴金属を担持した排ガス浄化触媒では、さらに好適な排ガス浄化性能が得られる。

[0003]

このような排ガス浄化触媒は種々開発されており、例えば、貴金属の凝集による活性点の低下等によって貴金属が劣化することに鑑み、ペロブスカイトを担持担体とすることで、貴金属の凝集速度を低下させる技術が開示されている(特許文献 1 参照)。また、貴金属がPdの場合にはNO還元反応の活性種であるPdOが還元されて低活性のPdに変化することに鑑み、Aサイト欠陥型ペロブスカイトを用いることで、PdOの還元を抑制する技術が開示されている(特許文献 2 参照)。さらに、貴金属は、通常はAl2O3などの担体上に、単独または貴金属の組み合わせで用いられるが、自動車などの過酷な使用条件下では、凝集による活性点の減少により大きく活性が低下する。この問題を解決する方法として、貴金属を貴金属以外の元素との複合酸化物として用いる方法が提案されている。とくにPdに関しては、希土類元素とPdとの複合酸化物の技術が開示されている(特許文献 3 ~ 8 参照)。

[0004]

【特許文献1】特開平5-86259号公報(特許請求の範囲)

【特許文献2】特開2003-175337号公報(特許請求の範囲)

【特許文献3】特開昭61-209045号公報(特許請求の範囲)

【特許文献4】特開平1-43347号公報(特許請求の範囲)

【特許文献 5 】特開平 4-2 7 4 3 3 号公報(特許請求の範囲)

【特許文献6】特開平4-341343号公報(特許請求の範囲)

【特許文献 7】特開平 7-8 8 3 7 2 号公報(特許請求の範囲)

【特許文献8】特開平10-277393号公報(特許請求の範囲)

【発明の開示】

【発明が解決しようとする課題】

[0005]

しかしながら、従来の排ガス浄化触媒は、自動車の走行時等のとくに高温(400℃以上)運転中においては、排ガス中のCO、HC、NOx(NO、NO2等)を浄化する十分な性能を発揮するものの、自動車始動時またはアイドリング時等の低温(400℃以下)運転中においては、十分な性能を発揮するとはいえないのが現状である。

[0006]

このように、低温運転時に十分な排ガス性能を発揮できない理由は、以下のとおりである。すなわち、従来の排ガス浄化触媒においては、Pt、Rh、Pdなどの貴金属が、高

[0007]

また、自動車運転時においては、Pdが活性の大きなPdOの状態で存在することが望ましい。しかしながら、Al2O3上に担持されたPdは、初期はPdOの状態で存在していても、高温時(900 以上)に金属状態のPdに還元され、Pdが凝集することにより活性点が減少し、活性が大きく低下するという問題もある。

[0008]

本発明は、上記事情に鑑みてなされたものであり、貴金属そのものの活性を向上させるとともに、高温時における活性の低下を防止することにより、自動車始動時またはアイドリング時の低温(400℃以下)運転中においても十分な性能を発揮する排ガス浄化触媒およびその製造方法、ならびに車用排ガス浄化触媒装置を提供することを目的としている

【課題を解決するための手段】

[0009]

本発明者らは、自動車始動時またはアイドリング時の低温(400℃以下)運転中においても十分な性能を発揮する排ガス浄化触媒について、鋭意、研究を重ねた。その結果、前駆体塩のカルボン酸錯体重合物を焼成することにより得た、LnAlO3(Lnは、希土類元素であり、例えば、La、Ce、Pr、Nd、Pm、Sm等が挙げられる。)という示性式のペロブスカイト型複合酸化物の担体上にPd酸化物を担持した排ガス浄化触媒には高温にさらされた後でも低温運転時に高活性を維持することができるとの知見を得た

[0010]

本発明(第1発明)は、上記知見に基づいてなされたものである。すなわち、本発明(第1発明)の排ガス浄化触媒は、Pd酸化物がAl酸化物に担持されており、上記Al酸 化物がLnAlO3(Ln:希土類元素)であることを特徴としている。

$[0\ 0\ 1\ 1]$

また、本発明者らは、 $LnAlO_3$ の中でも、例えば $LaAlO_3$ は、結晶系が三方晶または菱面体晶であり、ペロブスカイトのBサイトがAlであるため、電気的不安定さが大きく、 $LaAlO_3$ に隣接しているPd 酸化物は、単独で存在するPd 酸化物に比して電気的な揺らぎが大きくなっているとの知見を得た。このため、担持されたPd 酸化物の表面においてPd の酸化状態は、大部分で Pd^2 となっている。この状態は、排ガス浄化に好ましい状態であるため、高い低温活性が得られる。なお、本発明者らは、この触媒が1000 程度の使用条件にさらされた後でも、高い低温活性が得られることも確認した。

[0012]

本発明(第2発明)は、上記知見に基づいてなされたものである。すなわち、上記排ガス浄化触媒(第1発明)においては、上記A1酸化物の結晶系が三方晶または菱面体晶であること(第2発明)が望ましい。

[0013]

さらに、本発明者らは、上記 P d 酸化物に、P d と少なくとも 1 種の希土類元素を含む複合酸化物(例えば、L n 2 P d O 4)を含ませ、この複合酸化物を上記 L n A l O 3 (L n:希土類元素)に担持した場合には、より一層高い低温活性が得られるとの知見を得た。すなわち、P d 複合酸化物は、高温において不安定な P d 酸化物と、安定な希土類元素の酸化物とが複合化した化合物である。このため、P d 複合酸化物においては、P d の酸化状態が安定化され、化合物表面の酸化状態はP d P が大部分となり、排ガス浄化に好ましい状態になる。このため、高い排ガス浄化活性が得られる。また、P d 複合酸化物

[0014]

本発明(第3発明)は、上記知見に基づいてなされたものである。すなわち、上記排ガス浄化触媒(第1,2発明)においては、上記Pd酸化物が少なくともLn2PdO4 (Ln:希土類元素)を含むことが望ましい。なお、Pd複合酸化物としては、上記Ln2PdO4O0他に、Ln2Pd2O5PdO7等を含ませることもできる。

[0015]

加えて、本発明者らは、LnAlO3を作製する際、カルボン酸を含む構成元素の硝酸塩水溶液を蒸発乾固させて得たカルボン酸錯体重合物を経ることにより、LnAlO3が単相で生成し、さらにPd酸化物を担持した際にLnAlO3の表面が、Pd酸化物と相互作用し易い形態になるとの知見を得た。これにより、LnAlO3にPd酸化物を担持した排ガス浄化触媒では、高い低温活性が得られる。

[0016]

本発明(第4,5発明)は、上記知見に基づいてなされたものである。すなわち、上記排ガス浄化触媒(第 $1 \sim 3$ 発明)においては、化合物群(OH基またはSH基を有する炭素数 $2 \sim 20$ のカルボン酸、炭素数2または3のジカルボン酸、および炭素数 $1 \sim 20$ のモノカルボン酸)から選ばれた少なくとも1種を構成元素の硝酸塩水溶液へ添加する工程を経て製造されたこと(第4発明)が望ましい。また、このような排ガス浄化触媒(第4発明)においては、上記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、上記カルボン酸錯体重合物を焼成する焼成工程とを経て製造されたこと(第5発明)がさらに望ましい。

[0017]

ここで、OH基またはSH基を有する炭素数 $2\sim20$ のカルボン酸としては、オキシカルボン酸、および該酸のOH基の酸素原子を硫黄原子に置換した化合物が挙げられる。これらのカルボン酸の炭素数は、水への溶解性の観点から $2\sim20$ であり、好ましくは $2\sim12$ 、より好ましくは $2\sim8$ 、さらに好ましくは $2\sim6$ である。また、モノカルボン酸の炭素数は、水への溶解性の観点から $1\sim20$ であり、好ましくは $1\sim12$ 、より好ましくは $1\sim8$ 、さらに好ましくは $1\sim6$ である。

[0018]

さらに、OH基またはSH基を有する炭素数 $2\sim20$ のカルボン酸の具体例としては、グリコール酸、メルカプトコハク酸、チオグリコール酸、乳酸、 β ーヒドロキシプロピオン酸、リンゴ酸、酒石酸、クエン酸、イソクエン酸、アロクエン酸、グルコン酸、グリオキシル酸、グリセリン酸、マンデル酸、トロパ酸、ベンジル酸、およびサリチル酸等が挙げられる。モノカルボン酸の具体例としては、ギ酸、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ヘキサン酸、ヘプタン酸、2-メチルヘキサン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸、およびラウリン酸等が挙げられる。これらの中でも、酢酸、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸およびグルコン酸が好ましく、シュウ酸、マロン酸、グリコール酸、乳酸、リンゴ酸、酒石酸、グリオキシル酸、リンゴ酸、酒石酸、グリオキシル酸、クエン酸およびグルコン酸がさらに好ましい。

[0019]

次に、本発明の排ガス浄化触媒の製造方法(第6発明)は、上記排ガス浄化触媒(第1~5発明)を好適に製造するための方法であって、Pd酸化物がAl酸化物に担持されて

[0020]

このような排ガス浄化触媒の製造方法(第6発明)においては、上記硝酸塩水溶液を蒸発乾固させて、カルボン酸錯体重合物を作製する工程と、上記カルボン酸錯体重合物を焼成する焼成工程とを含むこと(第7発明)が望ましく、焼成工程における焼成温度が、1000℃以下であること(第8発明)がさらに望ましい。

[0021]

以上のような排ガス浄化触媒およびその製造方法は、本発明の概要であるが、本発明者 らは、上記発明(第1~第8発明)の具体的な用途について鋭意検討し、本発明の排ガス 浄化触媒は、内燃機関の中でもとくに車用に使用することが好適であるとの知見を得、下 記の第9発明を完成した。

[0022]

すなわち、本発明(第9発明)は、Pd酸化物がAl酸化物に担持されており、車から排出される排ガスを浄化する排ガス浄化触媒において、上記Al酸化物が $LnAlO_3$ (Ln:希土類元素)であることを特徴としている。

【発明の効果】

[0023]

LnAlO3上にPd酸化物を担持した本発明の排ガス浄化触媒においては、高温運転時にPd酸化物のPd金属への還元を抑制する効果がある。Ln(希土類元素)は、酸化物の状態でその形状を様々に変化させることが知られている。例えば、La2O3にPdを担持した触媒を高温にさらすと、PdとLa2O3との接触部からLa2O3がPd粒子上に移動し、Pd粒子がLa2O3に埋まった形状となり、さらにPd表面に微小なLa2O3が移動することが知られている(Zhang et al., J.Phys.Chem.,vol.100, No.2, P.744-754, 1996)。本系(LnAlO3)においても、上記挙動によりLnとPdとが複合化し、Pd酸化物のPd金属への還元を抑制する。この効果により、本発明の排ガス浄化触媒においては、高温運転後の低温(4O0℃以下)運転時に高活性を維持することができる。

[0024]

また、 $LnA1O_3$ のうち、例えば $LaA1O_3$ 等の特徴は、結晶系が三方晶または菱面体晶であること、およびペロブスカイトのBサイトがA1であることである。三方晶とは、図1に示すように、理想的な立方晶の単位格子からc軸方向に格子が変化し、理想的な立方晶の単位格子からc軸方向に格子が変化し、理想的立方晶ペロブスカイトから大きく歪みを生じた結晶系であり、この結晶系においては、成する原子間の電子の存在状態が極めて不安定となる。次に、菱面体晶とは、図2にによっに、三方晶を異なる基本軸で表した場合の結晶系であり、三方晶と構造自体は裏付よる。図3は、PdまたはPd酸化物を担持した $LaA1O_3$ 等の結晶系の違いを裏付ける資料としてのXRDスペクトルである。すなわち、 $LaA1O_3$ およびNdA $1O_3$ の結晶系は三方晶または菱面体晶であり、一方、GdA $1O_3$ の結晶系は三方晶または菱面体晶であく、斜方晶であることが判る。

[0025]

なお、LaA1O3 およびNdA1O3 は、ペロプスカイトのBサイトがA1であるため、A1-Oの結合は共有結合性が強い。このため、通常イオン結合性の強いペロプスカイト結晶中に、なんらかの電気的偏りを生じさせている。以上のように、結晶系が三方晶または菱面体晶であること、およびペロプスカイトのBサイトがA1であることから、LaA1O3 およびNdA1O3 なるペロプスカイトは、排ガス浄化用触媒として既知のL

[0026]

このような電気的不安定さから、LaAlO3 またはNdAlO3 に隣接しているPd酸化物は、単独で存在するPd酸化物に比して電気的な揺らぎが大きくなっている。この結果、担持されているPd酸化物の表面におけるPdの酸化状態はその大部分がPd²+となる。表面Pdの酸化状態は、Pd²+およびPd°(金属状態)の二種類の存在が知られており、Pd²+の方が排ガス浄化には高活性である。すなわち、Pd酸化物をLaAlO3 またはNdAlO3 に担持した本発明の排ガス浄化触媒は、Pd表面がPd²+の状態であり、高活性である。また、1000℃程度の使用条件にさらされた後でも、低温(400℃以下)運転時に高活性を維持することができる。

[0027]

さらに、 $LaA1O_3$ または $NdA1O_3$ を製造する際、カルボン酸を含む構成元素の硝酸塩水溶液を蒸発乾固させて作製したカルボン酸錯体重合物を比較的低温の800 ℃で焼成することにより、 $LaA1O_3$ または $NdA1O_3$ が単相で生成する。これに対し、 $LaA1O_3$ 等を固相反応法などの他の方法で製造した場合には、1700 ℃の高温で焼成しても単相の $LaA1O_3$ 等は生成しない(希土類の科学、化学同人、足立吟也編著、P.564)。すなわち、カルボン酸を用いることにより、上記低温で単相の $LaA1O_3$ 等を合成することができる。このため、十分な比表面積が得られるとともに、結晶格子表面を活性な状態で用いることができる。本発明の方法により作製した $LaA1O_3$ 等にPd 酸化物を担持した排ガス浄化触媒においては、十分な比表面積と、 $LaA1O_3$ 等とPd 酸化物との強い相互作用とが得られるため、低温における高活性が実現される。

[0028]

次に、本発明の排ガス浄化触媒の構成要素であるPd酸化物をPdと少なくとも1種の希土類元素を含むPd複合酸化物(例えば、Ln2PdO4)とした場合に、その複合酸化物によって奏される効果について、説明する。

P d 複合酸化物は、不安定な P d 酸化物と、非常に安定な希土類元素の酸化物とが、複合化した化合物である。例えば、 P d O の場合、 P d O 表面は P d 0 と P d 2 + との 2 つの化学状態をとり得る。しかしながら、 P d 複合酸化物では、希土類元素により酸化状態が安定化された結果、化合物最表面の化学状態は P d 2 + の割合が多くなる。 P d 0 と P d 2 + とでは P d 2 + のほうが高活性であるため、 P d 複合酸化物では、高い排ガス浄化活性が得られる。

[0029]

また、PdOの分解温度が800℃程度であるのに対し、Pd複合酸化物は1100℃においても酸化物の状態で安定的に存在する。したがって、Pd複合酸化物は高い耐熱性を有する。これは、高温において酸化物の形態が安定でないPdが、酸化物の形態が安定な希土類元素またはアルカリ土類元素と複合化することによって、バルク内のPdOの結合が強固になったためである。そして、Pd複合酸化物は、結晶化度の高くない希土類元素をPdとが複合化した化合物である。このため、生成したPd有合酸化物は結晶化度の低い粒子となり、Pdの分散性が高くなる。これにより、活性点が多くなり、高い排ガス浄化活性が得られる。さらに、希土類元素とPdとの複合酸化物に担持したものにおいては、双方の複合酸化物に発力。このため、Pd有合酸化物のモビリティが低下し、Pd有合酸化物粒子同士の凝集が抑制されるため、高い耐久性が得られる。

【実施例1】

[0030]

以下、本発明を実施例により、さらに具体的に説明する。

<製造例1>

[担持担体複合酸化物の作製]

所定量の硝酸ランタン六水和物、および硝酸アルミニウム九水和物をイオン交換水に溶

解し、混合水溶液を作製した。次に、所定量のリンゴ酸をイオン交換水に溶解し、リンゴ酸水溶液を作製した。この二つの水溶液を混合して、ホットプレートスターラにのせ、250℃で撹拌子を用いて撹拌しながら加熱し、水分蒸発の後、分解乾固させ、乾固物を乳鉢で粉砕した。これをアルミナ坩堝に移し、マッフル炉にて2.5℃/minで350℃まで昇温し、350℃で3時間熱処理を施した。これにより、リンゴ酸塩、硝酸根を除去した仮焼成体を作製した。仮焼成体を乳鉢で15分間粉砕混合した後、再びアルミナ坩堝に入れ、マッフル炉にて5℃/minで800℃まで昇温し、800℃で10時間熱処理を施した。これにより、LaA1O3なる組成のペロブスカイト複合酸化物を作製した。

[0031]

[Pd複合酸化物の担持]

次に、所定量の硝酸パラジウム二水和物と硝酸ランタン六水和物とをイオン交換水に溶解させ、金属塩混合水溶液を作製した。次いで、所定量のリンゴ酸をイオン交換水に溶解させ、リンゴ酸水溶液を作製した。これら2つの水溶液を混合したものと、所定量のLaAlO3粉末とをナス型フラスコに入れ、ナス型フラスコをロータリーエバポレータで減圧しながら、60℃の湯浴中で蒸発乾固させた。その後、マッフル炉にて2.5℃/minで250℃まで昇温し、さらに5℃/minで750℃まで昇温して、750℃で3時間保持した。これにより、La2PdO4をLaAlO3に含浸担持したLa2PdO4/LaAlO3なる製造例1の触媒粉末を得た。製造例1の触媒粉末についての比表面積およびPd分散度を表1に示す。

[0032]

【表1】

			BET比表面積(m²/g)		Pd分散度(%)	
			初期	耐久後	初期	耐久後
製造例	1	La2PdO4/LaAlO3	9	5	17.0	2.4
製造例	2	Nd2PdO4/LaAlO3	9	5	18.3	2.2
製造例	3	Gd2PdO4/LaAlO3	8	5	19.2	2.1
製造例	4	La2PdO4/NdAlO3	8	5	17.1	2.8
製造例	5	Pd/Al ₂ O ₃	80	40	6.3	0.51
製造例	6	Tb2PdO4/LaAlO3	1	1	10.1	0.72
製造例	7	La2PdO4/GdAlO3	12	4	17.0	2.2

[0033]

[活性評価]

[0034]

【表2】

			50%浄化温度(℃)		
			CO	HC	NO
製造例	1	La2PdO4/LaAlO3	227	249	199
製造例	2	Nd2PdO4/LaAlO3	221	243	198
製造例	3	Gd2PdO4/LaAlO3	236	258	204
製造例	4	La2PdO4/NdAIO3	221	241	197
製造例	5	Pd/Al ₂ O ₃	276	287	252
製造例	6	Tb2PdO4/LaAlO3	249	268	239
製造例	7	La2PdO4/GdAlO3	236	257	209

[0035]

【表3】

		50%浄化温度(℃)		
		CO	HC	NO
製造例 1	La2PdO4/LaAlO3	306	312	240
製造例 2	Nd2PdO4/LaAlO3	298	302	241
製造例 3	Gd2PdO4/LaAlO3	300	303	245
製造例 4	La2PdO4/NdAIO3	307	320	259
製造例 5	Pd/Al2O3	326	335	>400
製造例 6	Tb2PdO4/LaAlO3	328	331	280
製造例 7	La2PdO4/GdAlO3	336	344	>400

[0036]

<製造例2>

製造例1と同様の方法で、Nd2 PdO4 /LaAl03 を製造し、各種活性評価を行 った。その結果を表1~3に併記する。

[0037]

<製造例3>

製造例1と同様の方法で、Gd2PdO4/LaAl03を製造し、各種活性評価を行 った。その結果を表1~3に併記する。

[0038]

<製造例4>

製造例1と同様の方法で、LazPdO4/NdAl03を製造し、各種活性評価を行 った。その結果を表1~3に併記する。

[0039]

<製造例5>

製造例 1 と同様の方法で、P d / A 1 2 0 3 を製造し、各種活性評価を行った。その結 果を表1~3に併記する。

[0040]

<製造例6>

所定量の酸化ランタン、酸化アルミニウムをめのう乳鉢で混合し、アルミナ坩堝に入れ 、マッフル炉にて1100℃で10時間焼成し、固相反応法によりLaAlO3 を作製し た。これを用い、製造例1のと同様の方法でTb2PdO4を担持し、Tb2PdO4/ LaAlO3を製造した。この触媒について、各種活性評価を行った。その結果を表1~ 3に併記する。

[0041]

<製造例7>

製造例 1 と同様の方法で、L a 2 P d O 4 / G d A 1 O 3 を製造し、各種活性評価を行った。その結果を表 1 ~ 3 に併記する。

[0042]

表 2 , 3 によれば、製造例 $1 \sim 4$ の排ガス浄化触媒は、耐久処理前後にかかわらず、優れた 5 0 % 浄化温度を示す。この理由は、以下のとおりである。すなわち、製造例 $1 \sim 4$ の排ガス浄化触媒は、全て L n A 1 O 3 (L n : 希土類元素)上に P d 酸化物を担持したものであり、これらの触媒には、高温時の P d 酸化物の P d への還元を抑制する効果があり、高温にさらされた後でも高活性を維持することができる。また、製造例 $1 \sim 4$ の排ガス浄化触媒は、A 1 酸化物の結晶系が三方晶または菱面体晶であり、ペロブスカイトの P H か A P 1 であるため、電気的不安定さが大きい。このため、P 2 a A P 1 の P 3 または P 4 の 4 の 4 の 4 を P 4 の 5 が大きくなっている。さらに、製造例 P 1 ~ 4 の 4 の 4 が 4 を P 2 なる。さらに、製造例 P 2 の 4 の 5 が大きくなっている。さらに、製造例 P 2 の 4 の 5 が 5 となっている。さらに、製造例 P 2 の 4 の 6 では P 3 または P 4 の 7 を P 4 の 7 を P 3 を P 4 で P 4 の 8 を P 4 で P 6 で P 6 で P 6 で P 6 で P 8 を P 7 の P 8 で P 8 を P 9 の P 8 で P 9 の P 9 で P 9 の P 9 で P 9 の P 9 0 の P 9

[0043]

【産業上の利用可能性】

[0044]

本発明の排ガス浄化触媒は、近年、排ガス中の窒素酸化物(NOx)、炭化水素(HC)および一酸化炭素(CO)を同時に効率よく浄化、低減させることが要求される、自動車等の内燃機関に適用することができる。

【図面の簡単な説明】

[0045]

【図1】本発明の排ガス浄化触媒を構成するA1酸化物の結晶系の一例(三方晶)を 示す斜視図である。

【図2】本発明の排ガス浄化触媒を構成するA1酸化物の結晶系の一例 (菱面体晶)を示す斜視図である。

【図3】 Pd酸化物等が担持される各種Al酸化物の結晶系の違いを裏付ける XRDスペクトルである。

【書類名】図面 【図1】

【図2】

【図3】

【書類名】要約書

【要約】

【課題】貴金属そのものの活性を向上させるとともに、高温時における活性の低下を防止することにより、自動車始動時またはアイドリング時の低温(400℃以下)運転中においても十分な性能を発揮する排ガス浄化触媒を提供する。

【解決手段】 P d 酸化物がA l 酸化物に担持され、上記A l 酸化物がL n A l O 3 (L n : 希土類元素)である。

【選択図】 図1

特願2003-321214

出願人履歴情報

識別番号

[000005326]

1. 変更年月日

1990年 9月 6日

[変更理由]

新規登録

住 所 名

東京都港区南青山二丁目1番1号

本田技研工業株式会社