Soós Tamás Szakdolgozat

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Gépgyártástudomány és -technológia Tanszék

Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Gépgyártástudomány és -technológia Tanszék Szakdolgozat

Digitális admittancia szabályozó stabilitásának vizsgálata

Soós Tamás

Konzulens: Vizi Máté Benjámin Témavezető:

Tóth András

Budapest, 2023.12.13.

Nyilatkozatok

Köszönetnyilvánítás

Kivonat

Tartalomjegyzék

1.	Bevezetés	1
2.	Impedancia modell	3
3.	Fizikai modell	5
	3.1. Egyenáramú motor dinamikája	5
	3.2. Egyenáramú motor stabilitása	7
4.	Megfigyelhetőség	9
5.	Állapotmegfigyelő	11
6.	Irányíthatóság	13
7.	Szabályozó modellezése	15
	7.1. Nyomaték kompenzáció	15
	7.2. Szabályozó stabilitása	17
8.	Stabilitásvizsgálat időkéséssel	21
	8.1. Vizsgálati módszerek összehasonlítása	21
	8.2. Stabilitás folytonos időben	21
	8.3. Stabilitás diszkrét időben	21
9.	Kísérleti eredmények	23
10.	. Összegzés	25
11.	. Következtetések	27
FÜ	ÜGGELÉK	29
A.	Measurement dataset	31

B. Poster

Ábrák jegyzéke

3.1.	Az gyenáramú motor áramköri diagramja	5
3.2.	Az egyenáramú motor szabadtest ábrája	6
7.1.	Impedancia szabályozó közvetlen nyomaték méréssel	15
7.2.	Impedancia szabályozó szöggyorsulás méréssel	17
7.3.	Külső nyomatékra és feszültségre adott válasz összehasonlítása, <i>J</i> =	
	$0.01 \left[kg \cdot m^2 \right], K_m = 0.01 \left[kg \cdot \frac{m^2}{s^2} \right], B_m = 0.1 \left[kg \cdot \frac{m^2}{s} \right], L = 0.5 [H], R =$	
	$1[\Omega]$	18

Táblázatok jegyzéke

7.1.	Physical parameters of the laboratory rig	19
A.1.	Dataset for the equilibrium position measurement	31

1. Bevezetés

```
[1–4]
[5, 7]
[6]
```

2. Impedancia modell

Az eredményes ember-robot interakció érdekében a szabályozó előírása nem csupán az elérni kívánt pozíció vagy kifejtett nyomaték, hanem a mozgásállapot és a kifejtett nyomaték közötti összefüggés. Ezt az összefüggést (linearitása végett) egy tömegrugó-csillapitás modell adja meg a továbbiakban, mely a következő alakban írható fel:

$$M_{\rm e}\ddot{\theta} + B_{\rm e}\dot{\theta} + K_{\rm e}\theta = \tau_{\rm e}. \tag{2.1}$$

A modell három paraméterrel rendelkezik, ahol $M_{\rm e}$ a rendszer előírt tehetetlensége, $B_{\rm e}$ a viszkózus csillapítása, $K_{\rm e}$ a rugóállandója és $\tau_{\rm e}$ a rendszerre ható külső nyomaték.

3. Fizikai modell

Ebben a fejezetben a robot egyetlen motorjának fizikai modellje kerül bevezetésre. A kapott dinamikai leírás lehetővé teszi az időkéséssel kiegészített stabilitásvizsgálatot.

3.1. Egyenáramú motor dinamikája

3.1. ábra. Az gyenáramú motor áramköri diagramja

A robot motorjának modelljét a 3.1-es ábra mutatja. A felhasznált motor feltételezetten állandó gerjesztésű. A kifejtett nyomaték a Biot–Savart-törvény szerint arányos a forgórészen átfolyó árammal. A forgórészben indukált feszültség pedig arányos annak szögsebességével. A Lenz-törvény alapján

$$\tau_{\rm m} = K_{\tau} i,$$

$$V_{\rm b} = K_{\rm e} \dot{\theta},$$
(3.1)

ahol K_{τ} a nyomatékállandó, $K_{\rm e}$ a sebesség-feszültség állandó, $\tau_{\rm m}$ a kifejtett nyomaték, i a rotor árama, $V_{\rm b}$ az rotorban indukált feszültség és $\dot{\theta}$ a rotor szögsebessége. Az energia-megmaradás törvénye alapján a két konstans értéke megegyezik

$$K_{\rm m} := K_{\tau} = K_{\rm e},$$
 (3.2)

így a következőkben K_m paraméterként jelennek meg. A forgórész áramkörére Kirchhoff I. törvénye alapján felírható

$$V - Ri - L\frac{\mathrm{d}i}{\mathrm{d}t} - K_{\mathrm{m}}\dot{\theta} = 0, \tag{3.3}$$

ahol R a forgórész tekercsének ellenállása, L a tekercs induktivitása, K_m a motorállandó, V a motor feszültsége, i a motoráram és θ a szögelfordulás. A forgórészt merev testnek

3.2. ábra. Az egyenáramú motor szabadtest ábrája

tekintve, annak mozgásegyenlete a dinamika alaptétele és az SZTÁ (lásd 3.2. ábra) alapján a következő alakban vezethető le:

$$J\ddot{\theta} = -B_{\rm m}\dot{\theta} + \tau_{\rm m} + \tau_{\rm e},\tag{3.4}$$

ahol J a forgórész tehetetlensége, $B_{\rm m}$ a viszkózus csillapítási együttható, $K_{\rm m}$ a motorállandó, θ a szögelfordulás, i a motoráram, $\tau_{\rm m}$ a motor által kifejtett nyomaték és $\tau_{\rm e}$ a forgórészre ható külső nyomaték.

A (3.3) és (3.4) egyenletek egyértelműen leírják a rendszer időtartománybeli viselkedését. A további vizsgálathoz kedvezőbb a differenciálegyenleteket állapottér modellként felírni. Egy állapottér modell általánosan

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},$$

$$\mathbf{y} = \mathbf{C}\mathbf{x} + \mathbf{D}\mathbf{u}$$
(3.5)

alakban írható fel, ahol $\mathbf{x} = [\theta \ \dot{\theta} \ i]^\mathsf{T}$ az állapotvektor, $\mathbf{u} = [\tau_e \ V]^\mathsf{T}$ a bemeneti vektor és $y = \theta$ a kimenet. Az (3.3) és (3.4) egyenleteket átrendezve az állapot-átmeneti mátrix \mathbf{A} , a bemeneti mátrix \mathbf{C} és a segédmátrix \mathbf{D}

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -\frac{B_{m}}{J} & \frac{K_{m}}{J} \\ 0 & -\frac{K_{m}}{L} & -\frac{R}{L} \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix},$$

$$\mathbf{C} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix},$$

$$\mathbf{D} = \mathbf{0}$$
(3.6)

alakban származtatható.

A frekvenciatartománybeli vizsgálatokhoz felírható a rendszer szög-nyomaték és szög-feszültség átviteli függvénye. Az állapottér modellt felhasználva

$$\frac{Y(s)}{U(s)} = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B}$$
(3.7)

általános formában, ahol I az identitás mátrix. Behelyettesítve (3.6) paramétereit (3.7) alapján a karakterisztikus polinom felírható

$$p(s) := s \left(JLs^2 + (B_{\rm m}L + JR)s + K_{\rm m}^2 + B_{\rm m}R \right) = 0$$
 (3.8)

alakban. Az átviteli függvények pedig felírhatók

$$\frac{\theta(s)}{\tau_{e}(s)} = \frac{Ls + R}{p(s)},$$

$$\frac{\theta(s)}{V(s)} = \frac{K_{m}}{p(s)}$$
(3.9)

alakban.

3.2. Egyenáramú motor stabilitása

A motor stabilitása az (3.8)-as karakterisztikus egyenletből meghatározható. A karakterisztikus egyenletben megjelenik egy zérus, mely az origóban helyezkedik el. Ebből következik, hogy a rendszer egységugrás bemenetre korlátlanul nagy szögelfordulással válaszol. Ez a jelen alkalmazásban nem elfogadható. Ha a szabályozókör visszacsatoló

3. FIZIKAI MODELL

ága megszakad, a motor a megengedhető mozgástartományon kívülre fordulhat. A biztonságos működéshez szükséges például egy végálláskacsolót beépíteni, mely segítségével a motor mozgástartománya mechanikailag is az előírt tartományon belülre korlátozható.

4. Megfigyelhetőség

A felhasznált szenzorok minimalizálása érdekében egy kimenet mérése a cél, így a kimenetek közül egyedül a szögelfordulás áll elő közvetlen mérésből. A szabályozó teljes állapotvisszacsatolásra fog épülni, így a kimenet mérésével minden állapot megfigyelhető kell legyen. Az (3.5) és (3.6) egyenletek alapján a kimeneti megfigyelhetőség feltétele, hogy

$$\begin{bmatrix}
C \\
\hline
CA \\
\hline
CA^2
\end{bmatrix}$$
(4.1)

legyen maximális rangú. A feltételben szereplő mátrixot a motorparaméterekkel kifejezve:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{B_{\rm m}}{I} & \frac{K_{\rm m}}{I} \end{bmatrix}, \tag{4.2}$$

mely redukált lépcsős alakban

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \tag{4.3}$$

alakú. Tehát a rendszer minden állapota megfigyelhető a szögelfordulás méréséből.

5. Állapotmegfigyelő

Az állapotvisszacsatoláshoz szükséges belső állapotokra (a szögelforduláson kívül) egy megfigyelő ad becslést. Elkülönítve a mért és becsült állapotokat (3.5) felírható

$$\begin{bmatrix}
\frac{\dot{x}_{a}}{\dot{\mathbf{x}}_{b}}
\end{bmatrix} = \begin{bmatrix}
A_{aa} & \mathbf{A}_{ab} \\
\mathbf{A}_{ba} & \mathbf{A}_{bb}
\end{bmatrix} \begin{bmatrix}
x_{a} \\
\mathbf{x}_{b}
\end{bmatrix} + \begin{bmatrix}
B_{a} \\
\mathbf{B}_{b}
\end{bmatrix} \begin{bmatrix}
\tau_{e} \\
V
\end{bmatrix},$$

$$y = \begin{bmatrix}
1 & \mathbf{0}
\end{bmatrix} \begin{bmatrix}
\frac{x_{a}}{\mathbf{x}_{b}}
\end{bmatrix}$$
(5.1)

alakban, ahol $x_a = \theta$ a mért szögelfordulás és $\mathbf{x}_b = [\dot{\theta} \ i]^\mathsf{T}$ jelöli a becsült állapotokat. A továbbiakban jelölje $\tilde{*}$ a becsült paramétereket. Legyen

$$\hat{\mathbf{A}} = \mathbf{A}_{bb} - \mathbf{K}_{e} \mathbf{A}_{ab} ,$$

$$\hat{\mathbf{B}} = \hat{\mathbf{A}} \mathbf{K}_{e} + \mathbf{A}_{ba} - \mathbf{K}_{e} A_{aa} ,$$

$$\hat{\mathbf{F}} = \mathbf{B}_{b} - \mathbf{K}_{e} B_{a} ,$$
(5.2)

ahol $\hat{\bf A}$ a megfigyelő belső állapotának (továbbiakban $\tilde{\eta}$) dinamikáját adja meg, $\hat{\bf B}$ és $\hat{\bf F}$ a mért illetve a becsült állapotok bemeneti mátrixai. A becsült állapotok és az állapotváltozók közötti összefüggés ekkor

$$\eta = \mathbf{x}_{b} - \mathbf{K}_{e} y ,
\tilde{\eta} = \tilde{\mathbf{x}}_{b} - \mathbf{K}_{e} y$$
(5.3)

alakban adható meg. A belső állapot dinamikája

$$\dot{\tilde{\eta}} = \hat{\mathbf{A}}\tilde{\eta} + \hat{\mathbf{B}}y + \hat{\mathbf{F}}u . \tag{5.4}$$

Végül (5.1) kimeneti egyenletének átalakításával a rendszer becsült állapotvektora

$$\tilde{\mathbf{x}} = \hat{\mathbf{C}}\tilde{\eta} + \hat{\mathbf{D}}y \,, \tag{5.5}$$

ahol

$$\hat{\mathbf{C}} = \begin{bmatrix} \mathbf{0} \\ \mathbf{I}_{n-1} \end{bmatrix}, \quad \hat{\mathbf{D}} = \begin{bmatrix} \mathbf{1} \\ \mathbf{K}_{e} \end{bmatrix}, \tag{5.6}$$

mely tartalmazza a mért állapotot is.

6. Irányíthatóság

A szabályozó akkor tudja követni a számára előírt impedancia modellt, ha megfelelő bemeneti feszültség alkalmazásával eljutttatható az előírt állapotba. Az (3.5)-os állapottér modell alapján a kimeneti irányíthatóság feltétele, hogy

$$\left[CB \mid CAB \mid CA^2B \mid D \right]$$
(6.1)

legyen maximális rangú. Ez csak egy szükséges, de nem elégséges feltétele az impedancia modell alkalmazhatóságának. Felhasználva (3.6) paramétereit a (6.1)-es feltételben szereplő mátrix

$$\begin{bmatrix} 0 & 0 & \frac{K_m}{JL} & 0 \end{bmatrix}, \tag{6.2}$$

alakba írható át. Továbbá ez a mátrix redukált lépcsős alakban

$$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}, \tag{6.3}$$

mely mátrix rangja megegyezik sorainak számával, így az irányíthatóság feltétele teljesül.

7. Szabályozó modellezése

7.1. Nyomaték kompenzáció

A modell két bemenete közül csak a feszültségre van hatással a szabályozó. A külső nyomaték környezeti hatásokból ered. Az impedancia modell mindkét bemenetre adott válasz alakját előírja, így a környezet hatását a feszültség megváltoztatásával kell kompenzálni. A kompenzáció a külső nyomaték direkt vagy indirekt visszacsatolásával érhető el. Direkt mérés esetén a külső nyomaték értékét egy szenzor adja meg, mely dinamikája jelen vizsgálat során elhanyagolható. Az állapotmegfigyelővel és kompenzációval ellátott rendszer teljes blokkdiagramját az 7.1-es ábra mutatja. A

7.1. ábra. Impedancia szabályozó közvetlen nyomaték méréssel

teljes rendszer dinamikája az (3.6)-es állapottér modell és az (??)-es állapotmegfigyelő

összekapcsolásával írható le, a következő visszacsatolási összefüggéssel

$$V = -K\tilde{x} - K_c\tau + k_1\theta_r,\tag{7.1}$$

ahol K az állapot visszacsatolási mátrix, K_c a nyomaték kompenzációs együttható, k_1 a az állapot visszacsatolási mátrix első eleme és θ_r az előírt szögelfordulás. Behelyettesítve (3.6)-ba

$$\dot{x} = Ax + B_V \left[-K\tilde{x} - K_c \tau + k_1 \theta_r \right] + B_\tau \tau, \tag{7.2}$$

ahol a bemeneti mátrix B oszlopai elkülönítve B_V és B_{τ} paraméterként jelennek meg. Bevezetve a valós és becsült állapot közötti hibát, mint

$$e = x - \tilde{x},\tag{7.3}$$

(7.2) a következő alakra hozható

$$\dot{x} = (A - B_V K) x + B_V K e + (B_\tau - B_V K_c) \tau + B_V k_1 \theta_r, \tag{7.4}$$

a becsült állapot kiküszöbölésével. A valós és becsült állapot közötti eltérés dinamikája pedig (??) felhasználásával

$$\dot{x}_b = A_{b\theta} x_{\theta} + A_{bb} x_b + B_{bB} V + B_{b\tau} \tau, \tag{7.5}$$

$$\dot{\tilde{x}}_b = (A_{bb} - K_e A_{\theta b}) \tilde{x}_b + A_{b\theta} x_\theta + K_e A_{\theta b} x_b + B_{bB} V + B_{b\tau} \tau, \tag{7.6}$$

melyeket kivonva egymásból

$$\dot{\mathbf{e}} = (\mathbf{A}_{bb} - \mathbf{K}_e \mathbf{A}_{\theta b}) \, \mathbf{e}. \tag{7.7}$$

A rendszer dinamikája blokk mátrix alakban

$$\begin{bmatrix} \dot{x} \\ \dot{e} \end{bmatrix} = \begin{bmatrix} A - B_V K & B_V K \\ 0 & A_{bb} - K_e A_{\theta b} \end{bmatrix} \begin{bmatrix} x \\ e \end{bmatrix} + \begin{bmatrix} B_{\tau} - B_V K_c & B_V k_1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \tau \\ \theta_r \end{bmatrix}.$$
 (7.8)

Indirekt nyomaték visszacsatolás kontextusában, a rendszer szöggyorsulásának mérése alapján, az 7.2-es ábra mutatja a teljes blokkdiagramot. Ekkor egy becsült nyomaték érték kerül visszacsatolásra, melyeket

$$\tilde{\tau} = J\ddot{\theta}_s - C_{\ddot{\theta}}A\tilde{x} \tag{7.9}$$

7.2. ábra. Impedancia szabályozó szöggyorsulás méréssel

$$C_{\ddot{\theta}} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \tag{7.10}$$

alakban, a becsült állapot és a mért szöggyorsulás kombinációjával adható meg. A feszültségjel a becsült nyomatékértékkel

$$V = -K\tilde{x} - K_c\tilde{\tau} + k_1\theta_r. \tag{7.11}$$

Az előző levezetéshez hasonlóan a teljes rendszer dinamikája blokk mátrix alakban

Ez a kompenzáció csak akkor lehet eredményes, ha a rendszer feszültségre és külső nyomatékra egyaránt közel azonos sebességgel reagál. Az eltérő válaszokat szemlélteti 7.3-es ábra, mely az (3.9)-es egyenletben szereplő átviteli függvények alapján a szögsebesség egységugrásra adott válaszát mutatja. A két válasz végértékét egységnyire normalizálva jeleníti meg az ábra a fefutási idő összehasonlításának megkönnyítése érdekében.

7.2. Szabályozó stabilitása

7.3. ábra. Külső nyomatékra és feszültségre adott válasz összehasonlítása, $J=0.01\left[kg\cdot m^2\right]$, $K_m=0.01\left[kg\cdot \frac{m^2}{s^2}\right]$, $B_m=0.1\left[kg\cdot \frac{m^2}{s}\right]$, $L=0.5\left[H\right]$, $R=1\left[\Omega\right]$

7.1. táblázat. Physical parameters of the laboratory rig

Symbol and parameter nar	ne Value
m pendulum mass (metal)	0.191 kg
J _p pendulum mass moment (m	netal) $5.73 \cdot 10^{-3} \text{ kgm}^2$
J_a mass moment wrt. rotor axis	s (metal) $3.027 \cdot 10^{-3} \text{ kgm}^2$
<i>m</i> pendulum mass (plastic)	$0.134 \mathrm{kg}$
J_p pendulum mass moment (p	lastic) $4.02 \cdot 10^{-3} \text{ kgm}^2$
<i>l</i> pendulum half-length	0.15 m
r arm radius	0.094 m
\tilde{b}_1 arm combined damping coe	eff. 1.148 Nms
b_2 pendulum damping coeff.	0.039 Nms
C pendulum dry friction parai	m. 0.011 Nm
N motor constant	1.045 Nm/V
g gravitational acceleration,	9.81m/s^2
$n_{\rm gb}$ gearbox ratio	8523/265
λ_1 1 st eigenvalue of system ma	atrix A 4.39s^{-1}
λ_2 2 nd eigenvalue of system ma	
λ_3 3 rd eigenvalue of system ma	

8. Stabilitásvizsgálat időkéséssel

8.1. Vizsgálati módszerek összehasonlítása

A rúd differenciálegyenlete

$$\ddot{\phi}(t) - \frac{6g}{l}\phi(t) + \frac{6D}{ml}\dot{\phi}(t-\tau) + \frac{6P}{ml}\phi(t-\tau) = 0$$
 (8.1)

A differenciálegyenlet Laplace transzformáltja

$$s^{2}\phi(s) - s\phi_{0} - \dot{\phi}_{0} - \frac{6g}{l}\phi(s) + \frac{6D}{ml}\left(se^{-s\tau}\phi(s) - \phi_{-\tau}\right) + \frac{6P}{ml}e^{-s\tau}\phi(s) = 0 \tag{8.2}$$

Kifejezve $\phi(s)$ -t

$$\phi(s) = \frac{s\phi_0 + \dot{\phi}_0 + \frac{6D}{ml}\phi_{-\tau}}{s^2 + \frac{6D}{ml}se^{-s\tau} + \frac{6P}{ml}e^{-s\tau} - \frac{6g}{l}}$$
(8.3)

A végérték frekvenciatartománybeli reprezentációban

$$\lim_{t \to \infty} \phi(t) = \lim_{s \to 0} \phi(s) = \frac{\dot{\phi}_0 + \frac{6D}{ml} \phi_{-\tau}}{\frac{6P}{ml} - \frac{6g}{l}}$$
(8.4)

Az időkésést Taylor-sorral közelítve

$$\phi(t - \tau) = \phi(t - 1) - \frac{1}{1!}\dot{\phi}(t)\tau + \frac{1}{2!}\ddot{\phi}(t)\tau^2 - \frac{1}{3!}\ddot{\phi}(t)\tau^3 + \dots$$
 (8.5)

különböző rendű közelítéssekkel

8.2. Stabilitás folytonos időben

8.3. Stabilitás diszkrét időben

9. Kísérleti eredmények

10. Összegzés

11. Következtetések

FÜGGELÉK

A. Measurement dataset

A.1. táblázat. Dataset for the equilibrium position measurement.

$U_{\rm in}$	\dot{arphi}	θ	U_{in}	\dot{arphi}	θ
1.3	0	3.1415926536	1.3	0	3.1415926536
1.4	4.3	3.1415926536	1.4	-4.3	3.1415926536
1.5	4.7	3.1415926536	1.5	-4.7	3.1415926536
1.6	5.2	3.1415926536	1.6	-5.2	3.1415926536
1.7	5.67	3.1415926536	1.7	-5.67	3.1415926536
1.8	6.34	3.1415926536	1.8	-6.34	3.1415926536
1.9	6.61	3.1415926536	1.9	-6.61	3.1415926536
2	7.22	3.1415926536	2	-7.22	3.1415926536
2.1	7.72	3.1415926536	2.1	-7.72	3.1415926536
2.2	8.02	3.1415926536	2.2	-8.02	3.1415926536
2.3	8.5	3.8746309394	2.3	-8.3366666667	3.1415926536
2.4	9.0033333333	3.9677151662	2.4	-8.78	2.3561944902
2.5	9.5366666667	4.0666171571	2.5	-9.26	2.2514747351
2.6	9.9666666667	4.1306125631	2.6	-9.7	2.1758438008
2.7	10.4366666667	4.2120612615	2.7	-10.2	2.1060306307
2.8	10.7833333333	4.264421139	2.8	-10.63	2.0594885174
2.9	11.3933333333	4.3284165449	2.9	-11.1333333333	1.9605865264
3	11.84	4.3516876016	3	-11.55	1.9198621772
2.9	11.41	4.3225987808	2.9	-11.1033333333	1.9722220548
2.8	11.0133333333	4.2818744316	2.8	-10.6433333333	2.0653062815
2.7	10.5233333333	4.2353323182	2.7	-10.2633333333	2.1060306307
2.6	10.0566666667	4.1655191481	2.6	-9.7733333333	2.1700260366
2.5	9.5933333333	4.1015237422	2.5	-9.31	2.21656815
2.4	9.1266666667	4.0666171571	2.4	-8.8633333333	2.2514747351
2.3	8.55	3.9735329304	2.3	-8.4566666667	2.3329234335
2.2	8.2	3.8571776469	2.2	-7.9366666667	2.4609142453
2.1	7.71	3.7466401276	2.1	-7.5366666667	2.5539984721

B. Poster

Abstract

Irodalom

- [1] Hogan, N. "Impedance control of industrial robots". *Robotics and Computer-Integrated Manufacturing* 1.1 (1984), 97–113. old. ISSN: 0736-5845.

 DOI: 10.1016/0736-5845(84)90084-X.
- [2] Hogan, N. "Impedance Control: An Approach to Manipulation: Part I—Theory". *Journal of Dynamic Systems, Measurement, and Control* 107.1 (1985. márc.), 1–7. old. ISSN: 0022-0434. DOI: 10.1115/1.3140702.
- [3] Hogan, N. "Impedance Control: An Approach to Manipulation: Part II—Implementation". *Journal of Dynamic Systems, Measurement, and Control* 107.1 (1985. márc.), 8–16. old. ISSN: 0022-0434. DOI: 10.1115/1.3140713.
- [4] Hogan, N. "Impedance Control: An Approach to Manipulation: Part III—Applications". *Journal of Dynamic Systems, Measurement, and Control* 107.1 (1985. márc.), 17–24. old. ISSN: 0022-0434. DOI: 10.1115/1.3140701.
- [5] Kovács, L. L. és Stépán, G. "Dynamics of Digital Force Control Applied in Rehabilitation Robotics". *Meccanica* 38.2 (2003), 213–226. old. ISSN: 1572-9648.

 DOI: 10.1023/A:1022846419289.
- [6] Stépán, G. Retarded dynamical systems: stability and characteristic functions. Longman Scientific & Technical, 1989. ISBN: 9780582039322.
- [7] Stépán, G. "Vibrations of machines subjected to digital force control". *International Journal of Solids and Structures* 38.10 (2001), 2149–2159. old. DOI: 10.1016/S0020-7683 (00) 00158-X.