

MKS SERVO42D/57D_CAN V1. 0. 2 USER MANUAL

	MKS SERVO42D/57D_CAN Manual Release							
manual	discription	firmware	date					
V1.0.0	First release	V1.0.0	Mar-2023					
	1.Added SR_OPEN, SR_CLOSE control mode.							
	2.lt can set any working current.	V1.0.1	Apr-2023					
V1.0.1	3.Redefined speed and acceleration for serial Mode.							
V1.0.1	4. Add the "92" command , It can set the current position	V1.U.1						
	to 0 point.							
	5. Add the "8D" command, It can set the group address.							
	1.Slave does not answer if broadcast address or group							
V1.0.2	address is used.	V1.0.2	May-2023					
	2.OUT_1 port output stall indication.							

Part1. Feature

1.1 Interface

1. SERVO42D_CAN Interface

Note: EVCC/EGND is powered by SERVO42D 5V(20mA)

2. SERVO57D_CAN Interface

1.2 Key Operation

Key	Function
Next	move down
Enter	Confirm
Menu	Enter/exit parameter setting menu

3. How to View parameter

Press the "Menu" key to Enter the Menu press the "Next" key to move to the sub-option press the "Enter" key, then it show the value.

4. How to setting Parameter:

Press the "Menu" key to Enter the Menu press the "Next" key to move to sub-option press the "Enter" key, it show the value. press the "Next" key to move to the value press the "Enter" key to set the value.

1.3 Parameter description

1. 0.0° - the angle of the motor shaft. (unit degree).

(Note: It calculated based on the read encoder value, dynamically displayed)

- 2. 0.00err the err of the motor shaft angle.
- 3. Oclk the pulses have been received.

1.4 Work mode

	Work Mo	de	MAX RPM	Work Current	
OPEN	pulse interface	CR_OPEN	400RPM	Fix, the work current is Ma	
OPEN	serial interface	SR_OPEN	400KP1VI	FIX, THE WOLK CULTETT IS IVIA	
CLOSE	pulse interface	iterface CR_CLOSE		Fix, the work current is Ma	
CLOSE	serial interface	SR_CLSOE	1500RPM	Fix, the work current is ivia	
vFOC	pulse interface	CR_vFOC	3000RPM	self-adaption, the Max current	
VFOC	serial interface	SR_vFOC	SUUURPIVI	is Ma	

Notel: The default work mode is CR_vFOC.

Note2: It can work without encoder in "OPEN" work mode.

Part2. Wire

2.1 Motor wire

Note: The motor internal resistance should be less than 10 ohms. 1. SERVO42D_CAN motor wire

2. SERVO57D_CAN motor wire

2.2 Pulse interface wire

Note: if the (STP/DIR/EN) signal high level is 3.3V, the COM must be 3.3V if the (STP/DIR/EN) signal high level is 5.0V, the COM must be 5.0V

and so on.

2.3 CAN wire

1. SERVO42D_CAN Single-slave

Note: Single slave communication does not need 120Ω Terminal.

2. SERVO57D_CAN Single-slave

Note: Single slave communication does not need 120Ω Terminal.

3. Multiple-slave

2.4 End stop wire

1. SERVO42D_CAN end stop wire

Note: EVCC/EGND is powered by SERVO42D 5V(20mA)

2. SERVO57D_CAN end stop wire

	SW1							
PIN	ON	OFF						
3	EVCC/EGND is powered	EVCC/EGND is powered by externally						
2	by SERVO57D 5V(20mA)	power.(3.3V-24V)						
1	CAN 120Ω Terminal	NULL						

Note: The mechanical switch only needs to be connected the "EGND, IN_1", and the SW1 pin2 must be in the ON state.

Part3. Menu description

1. CAL: Calibrate the motor.

2. Mode: Work mode selection.

 $\operatorname{CR_OPEN}$: pulse interface Open mode, the motor run without encoder

CR_CLOSE: pulse interface Close mode, the motor run with encoder.

CR_vFOC: pulse interface FOC mode, the motor run with encoder.

 SR_OPEN : serial interface Open mode, the motor run without encoder

SR CLOSE: serial interface Close mode, the motor run with encoder.

SR vFOC: serial interface FOC mode, the motor run with encoder.

(Default: CR vFOC)

	Mode		MAX RPM	Work Current
OPEN	pulse interface	CR_OPEN	400RPM	Fix, the work current is Ma
OPEN	serial interface	SR_OPEN	40087101	FIX, THE WOLK CUITELL IS IVIA
CLOSE	pulse interface	CR_CLOSE	1500RPM	Fix, the work current is Ma
CLOSE	serial interface	SR_CLSOE	ISOURPIVI	FIX, THE WOLK CUITELL IS IVIA
vFOC	pulse interface CR_vFOC		3000RPM	self-adaption, the Max current is
VFOC	serial interface	SR_vFOC	SUUUKPIVI	Ma

Note: CR CLOSE is better than CR vFOC for 3D printing.

3. Ma : Set the current.

SERVO42D: 0, 200, 400..., 3000 (mA) (default 1600mA)

SERVO57D: 0, 400, 800..., 5200 (mA) (default 3200mA)

Other Current such as 123mA need to be set by serial command .It will be added to the last options.

4. MStep: Set subdivisions.

Supports subdivision from 1 to 256.

(Default: 16)

subdivisions 1, 2, 4, 8, 16, 32, 64, 128, and 256 can be set by Menu.

Other subdivisions such as 67 subdivisions need to be set by serial command.

5. En : Set the effective level of EN pin.

H: High level is valid.

L: Low level is effective.

Hold: the driver board is always enabled.

(Default: L)

6. Dir: Set the positive direction of motor rotation.

CW: Clockwise rotation is positive

CCW: Counterclockwise rotation is positive

(Default: CW)

7. AutoSDD: Set auto turn off the OLED screen.

 $\label{eq:disable auto turn off the OLED } \textbf{Disable : disable auto turn off the OLED }$

Enable: enable auto turn off the OLED

(Default: Disable)

If set to Enable, the screen will automatically turn off after about 15 seconds, and any button can wake up the screen again.

8. Protect: Set the motor shaft locked-rotor protection function.

Disable: disable protection Enable: enable protection

(Default: Disable)

After this option is enabled, the protection will be triggered when it is detected to be locked-rotor, and the motor will be release.

Note: you can release the protection status by pressing the Enter button or the serial command.

9. MPlyer: Set internal 256 subdivision.

(Default: Enable)

Note: After this option is Enabled, it automatically enable internal 256 subdivision, it can reduce the vibration and noise when the motor at low speed.

10. CanRate: Set the bit rate of CAN interface.

125K, 250K, 500K。 (Default: 500K)

11. CanID: Set the the slave address of CAN interface.

01

•••

09

10

(Default: 01)

Note: The addresses greater than 10 need to be set by serial command. After it is set, it will be added to this option.

12. CanRSP: Choose whether the slave respond in speed/position mode.

Disable: disable respond Enable: enable respond

(Default: Enable)

Note: If disable respond, It can query the running status of the motor by serial command "F1".

13. **O_Mode**: The motor will go back to zero when power on.

Disable: do not go back to zero.

DirMode: go back to zero with direction of CW or CCW (the

direction is set in O_Dir menu).

NearMode: go back to zero with minimum angle.

(Default: Disable)

14. Set 0: Set the zero point for go back when power on.

(O Mode must not be Disable)

15. **O_Speed**: Set the speed of go back to zero point.

0: slowest.

. . .

4: fastest.

16. **O Dir**: Set the direction of go back to zero point.

CW : Clockwise.

CCW: Counterclockwise.

(Default: CW)

17. HmTrig: Set the effective level of the end stop.

Low: Low level is effective

High: High level is valid

(Default: Low)

18. HmDir: Set the direction of go home.

CW: Clockwise rotation is positive

CCW: Counterclockwise rotation is positive

(Default: CW)

19. HmSpeed: Set the speed (RPM) of go home.

30

60

90

120

150

180

Other speed such as $600\,(\text{RPM})$ need to be set by serial command. It will be added to the last options.

20. GoHome: Go home

Notel: It need an "end stop". The motor will keep running until it hits the limit switch.

Note2: If the limit switch is already closed, the motor will rotate in the opposite direction to homeDir until the limit switch is opened, and then go home.

21. Restore: Reload the default parameters.

After restored the default parameters, it needs to Calibrate the motor.

Note: Press the "Next" key first, then power on, it can quickly restore the default parameters.

- 22. About : Show version parameters.
- 23. Exit : Exit the parameter setting menu.

Part4. CAN data format

The CAN uses standard frames.

Downlink package(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2···byte(n-1)	Byte(n)(n≤8)		
ID	'''	DLC(n)	code	data	Check(CRC)		

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2···byte(n-1)	Byte(n) (n≤8)	
ID		DLC(n)	(code)	data	Check (CRC)	

1. The CAN ID range is $00^{\circ}2047$. (default is 01).

00 is the broadcast address;

01~10 can be set in the CanID option of the display menu; greater than 10 need to be set by serial commands.

2. The function code (code) executes the corresponding command. for example, 0x80 executes the calibration command.

3. The Check code is CHECKSUM 8bit

CRC = (ID + byte1 +
$$\cdots$$
 + byte(n)) & 0xFF
For example: command "01 30 CRC"
CRC = (0x01 + 0x30) & 0xFF = 0x31 & 0xFF = 0x31

Note: Slave does not answer if broadcast address is used.

Part5. CAN command description

Note: Please set the CAN ID first. (default:01)

The default CAN ID for the following chapters is 01.

5.1 Read parameter command

1. command1: 01 30 CRC

read the encoder value (carry).

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2			
01		2	30	CRC(31)			

Uplink frame (PC ← SERVO42D/57D)								
CAN ID DLC byte1 byte2byte5 byte6 byte7 byte8						byte8		
01	Q	8	code	carry	value		Check	
01		0	30	carry(int32_t)	value(u	int16_t)	CRC	

carry: the carry vaule of the encoder.

value: the current vaule of the encoder. (range 0°0x3FFF)

When value is greater than 0x3FFF, carry +=1.

When Value is less than 0, carry -=1.

For example:

If the current carry value is 0x3FF0, After one turn CCW, the carry value (+0x4000) is 0x13FF0.

If the current carry|value is 0x3FF0, After one turn CW, the carry|value (-0x4000) is 0xFFFFFFFFFFF.

The Cangaroo example is as follows:

2. command2 : 01 31 CRC

read the encoder value (addition).

Downlink frame(PC → SERVO42D/57D)						
CAN ID		DLC	byte1	byte2		
01		2	31	CRC(32)		

Uplink frame (PC ← SERVO42D/57D)							
CAN ID DLC byte1 byte2···byte7				byte8			
01			code	value	Check		
01		0	31	value(int48_t)	CRC		

After one turn clockwise, the value += 0x4000;

After one turn CCW, the value -= 0x4000;

For example:

If the current value is 0x3FF0, After one turn CCW, the value (+0x4000) is 0x7FF0.

If the current value is 0x3FF0, After one turn CW, the value (-0x4000) is 0xFFFFFFFFF0.

3. Command3: 01 32 CRC

Read the real-time speed of the motor. (RPM)

Downlink frame (PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	32	CRC(33)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2···byte3	byte4	
01	4	code	data	Check		
		32	speed(int16_t)	CRC		

Note: if it run CCW, the speed > 0 (RPM)

if it run CW, the speed < 0 (RPM)

4. Command4: 01 33 CRC

Read the number of pulses received.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	33	CRC(34)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2···byte5	byte6	
01		_	code	data	Check	
01		б	33	pulses(int32_t)	CRC	

5. Command5 : 01 39 CRC

read the error of the motor shaft angle.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	39	CRC(3A)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2···byte3	byte4	
01		1	code	data	Check	
01		4	39	error(int16_t)	CRC	

The error is the difference between the angle you want to control minus the real-time angle of the motor, OFFFFF corresponds to $0^{\sim}360^{\circ}$.

for example, when the angle error is 1° , the return error is 65536/360= 182.444, and so on.

6. Command6: 01 3A CRC

read the En pins status.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	3A	CRC(3B)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2	byte3	
01	01 3	2	code	data	Check	
01		3	3A	enable(uint8_t)	CRC	

enable =1 Enabled enable =0 Disabled

7. Command7 : 01 3B CRC

Read the go back to zero status when power on.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	3B	CRC(3C)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2	byte3	
		code	data	Check		
01		3	3B	status(uint8_t)	CRC	

status =0 going to zero.

status =1 go back to zero success.

status =2 go back to zero fail.

8. Command8: 01 3D CRC

Release the motor shaft locked-rotor protection state.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	3D	CRC(3E)	

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2	byte3	
01		2	code	data	Check	
01		S	3D	status(uint8_t)	CRC	

status =1 release success.

status =0 release fail.

9. Command9: FA 01 3E CRC

Read the motor shaft protection state.

Downlink frame(PC → SERVO42D/57D)					
CAN ID		DLC	byte1	byte2	
01		2	3E	CRC(3F)	

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01		2	code	data	Check			
O1		3	3E	status(uint8_t)	CRC			

status =1 protected.

status =0 no protected.

5.2 Set parameters command

1. Calibrate the encoder

(Same as the "Cal" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID	AN ID DLC byte1 byte2 byte3						
01		3	80	00	CRC(81)		

Uplink frame(PC ← SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
		code	data	Check				
01		3	80	status(uint8_t)	CRC			

status = 0 Calibrating....

status =1 Calibrated success.

status =2 Calibrating fail.

Note: The motor must be unloaded.

2. Set the work mode

(Same as the "Mode" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
			code	data	Check		
01		3	82	mode (0~5)	CRC		

 $mode = 0 \quad CR_OPEN$

 $mode = 1 CR_CLOSE$

 $mode = 2 CR_vFOC$

mode = 3SR OPEN

mode = 4SR_CLOSE

mode = 5SR_vFOC

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
		2	code	data	Check			
O1		3	82	status(uint8_t)	CRC			

status =1 Set success.

	Mode		MAX RPM	Work Current	
OPEN	pulse interface	CR_OPEN	400RPM	Fix, the work current is the Ma	
OPEN	serial interface	SR_OPEN	4008101	Fix, the work current is the ivia	
CLOSE	pulse interface	CR_CLOSE	1500RPM	Fix the work current is the Ma	
CLOSE	serial interface	SR_CLSOE	TOURPIN	Fix, the work current is the Ma	
vFOC	pulse interface		3000RPM	self-adaption, the Max current is	
VFOC	serial interface	SR_vFOC	SUUURPIVI	the Ma	

3. Set the current

(Same as the "Ma" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2-3	Byte4		
		2	code	data	Check		
UI	01	3	83	ma (uint16_t)	CRC		

Note: the new current will show in the screen of Ma option.

SERVO42D: Maximum Current =3000mA SERVO57D: Maximum Current =5200mA

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
		3	code	data	Check		
01		3	83	status(uint8_t)	CRC		

status =1 Set success. status =0 Set fail.

4. Set subdivision

(Same as the "MStep" option on screen)

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
		2	code	data	Check			
01		3	84	micstep(00~FF)	CRC			

Note: the new micstep will show in the screen of MStep option.

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
		code	data	Check			
U1		S	84	status(uint8_t)	CRC		

status =1 Set success.

5. Set the active of the En pin

(Same as the "En" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		3	code	data	Check		
01	01	3	85	enable(00~02)	CRC		

enable = 00 active low (L)

enable = 01 active high (H)

enable = 02 active always (Hold)

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01		3	code	data	Check			
01		3	85	status(uint8_t)	CRC			

status =1 Set success.

status =0 Set fail.

6. Set the direction of motor rotation

(Same as the "Dir" option on screen)

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01		3	code	data	Check			
01		3	86	dir(00~01)	CRC			

dir = 00 CW

dir = 01 CCW

Uplink frame (PC ← SERVO42D/57D)								
CAN ID	ID DLC byte1 byte2 byte3							
01		2	code	data	Check			
01	3		86	status(uint8_t)	CRC			

status =1 Set success.

7. Set auto turn off the screen function

(Same as the "AutoSDD" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01			code	data	Check		
01		3	87	enable(00~01)	CRC		

enable = 01enabled

enable = 00 disabled

If set to Enable, the screen will automatically turn off after about 15 seconds, and any button can wake up the screen again.

Uplink frame (PC ← SERVO42D/57D)								
CAN ID	DLC byte1 byte2 byte3							
01]	2	code	data	Check			
01		3	87	status(uint8_t)	CRC			

status =1 Set success.

status =0 Set fail.

8. Set the motor shaft locked-rotor protection function

(Same as the "Protect" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		2	code	data	Check		
01		٠	88	enable(00~01)	CRC		

enable = 01 enabled protection

enable = 00 disabled protection

Uplink frame (PC ← SERVO42D/57D)								
CAN ID	DLC byte1 byte2 byte3							
01		2	code	data	Check			
01		3	88	status(uint8_t)	CRC			

status =1 Set success.

status =0 Set fail.

Note: you can release the protection status by pressing the Enter button or the serial command.

9. Set the subdivision interpolation function

(Same as the "Mplyer" option on screen)

Downlink frame(PC → SERVO42D/57D)							
CAN ID	DLC byte1 byte2 byte						
01		2	code	data	Check		
01		٠	89	enable(00~01)	CRC		

enable = 01 enabled interpolation function.

enable = 00 disabled interpolation function.

	Uplink frame (PC ← SERVO42D/57D)								
CAN ID	CAN ID DLC byte1 byte2 byte3								
01]	3	code	data	Check				
01		3	89	status(uint8_t)	CRC				

status =1 Set success.

status =0 Set fail.

10. Set the CAN bitRate

(Same as the "CanRate" option on screen)

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01	l	2	code	data	Check			
01		3	8A	bitRate (00~03)	CRC			

bitRate = 00 125K

bitRate = 01 250K

bitRate = 02 500K

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC byte1 byte2 byte3						
01		3	code	data	Check			
OI.		3	8A	status(uint8_t)	CRC			

status =1 Set success.

11. Set the CAN ID

(Same as the "CanID" option on screen)

Downlink frame(PC → SERVO42D/57D)									
CAN ID		DLC byte1 byte2 byte3 byte4							
01			code	da	ıta	Check			
UI		4	8B	ID(00	~7FF)	CRC			

Notel: the new address will show in the screen of CanID option.

Note2: 0 is the broadcast address

Uplink frame (PC ← SERVO42D/57D)								
CAN ID	D DLC byte1 byte2 byte3							
01		2	code	data	Check			
01		3	8B	status(uint8_t)	CRC			

status =1 Set success.

status =0 Set fail.

12. Set the slave respond

(Same as the "CanRSP" option on screen)

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01] [code	data	Check			
		3	8C	enable(00~01)	CRC			

enable = 01 enabled respond

enable = 00 disabled respond

Note: If disable respond, It can query the running status of the motor by command "F1".

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01			code	data	Check		
OI		3	8C	status(uint8_t)	CRC		

status =1 Set success.

13. Set the group ID

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3	byte4		
01		4	code	data		Check		
01			8D	ID(01~0x7FF)		CRC		

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		. 3	code	data	Check		
01		3	8D	status(uint8_t)	CRC		

status =1 Set success.

status =0 Set fail.

For example, there are 6 motors with the settings ID:

	Broadcast ID	Slave ID	Group ID
motor 1	0	1	0x50
motor 2	0	2	0x50
motor 3	0	3	0x50
motor 4	0	4	0x51
motor 5	0	5	0x51
motor 6	0	6	0x51

send 01 FD 01 2C 64 00 00 0C 80 1B, motor 1 will rotate a turn send 00 FD 01 2C 64 00 00 0C 80 1A, motor1-6 will rotate a turn send 50 FD 01 2C 64 00 00 0C 80 6A, motor1-3 will rotate a turn send 51 FD 01 2C 64 00 00 0C 80 6B, motor4-6 will rotate a turn

Note: Slave does not answer if group address is used.

5.3 Set Home command

1. Set the parameter of home

(Same as the "HmTrig, HmDir, HmSpeed" option on screen)

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3	byte4-5	Byte6	
01		6	code	level	dir	speed	Check	
01		O	90	homeTrig	homeDir	homeSpeed	CRC	

homeTrig the effective level of the end stop

0: Low 1: High

homeDir the direction of go home

0: CW 1: CCW

homeSpeed the speed of go home

 $0^{\sim}3000 \text{ (RPM)}$

Note: The speed description can be found in Chapter 6.1.

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01			code	data	Check		
01	01		90	status(uint8_t)	CRC		

status =1 set success.

status =0 set fail.

2. Go home

(Same as the "GoHome" option on screen)

Downlink frame(PC → SERVO42D/57D)						
CAN ID		DLC	byte1	byte2		
01		2	91	CRC(92)		

Notel: If the limit switch is already closed, the motor will rotate in the opposite direction to homeDir until the limit switch is opened, and then go home.

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01			code	data	Check		
01		o	91	status(uint8_t)	CRC		

status =0 go home fail.

status =1 go home start.

status =2 go home sucess.

3. Set Currnet Axis to zero

It can set the current Axis to Zero. Just as "GoHome" without run the motor.

Downlink frame(PC → SERVO42D/57D)						
CAN ID		DLC	byte1	byte2		
01		2	92	CRC(93)		

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		2	code	data	Check		
01		3	92	status(uint8_t)	CRC		

status =0 set fail.

status =1 set success.

5.4 Restore the default parameter

(Same as the "Restore" option on screen)

Downlink frame(PC → SERVO42D/57D)						
CAN ID		DLC	byte1	byte2		
01		2	3F	CRC(40)		

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC byte1 byte2 byte3					
01		2	code	data	Check		
01		3	3F	status(uint8_t)	CRC		

status =1 restore success.

status =0 restore fail.

Notel: After restored the parameters, It will reboot again, and need to calibrate the motor.

Note2: Press the "Next" key, then power on the motor, the default parameter will be restored.

Part6. Run the motor by CAN command

Note: This chapter needs to set the working mode to serial mode. (SR_OPEN/SR_CLOSE/SR_VFOC)

6.1 Description the parameters of speed and acceleration

1. speed

The speed parameter ranges from 0 to 3000. The larger the value, the faster the motor rotates.

When speed = 0, the motor stops rotating.

The maximum speed of the control mode is as follows:

	Control n	Max speed		
Open mode	Pulse interface	CR_OPEN	400(RPM)	
Open mode	Serial interface	SR_OPEN	400(KPIVI)	
Close mode	Pulse interface	CR_CLOSE	1500(RPM)	
Close mode	Serial interface	SR_CLSOE		
FOC mode	Pulse interface	CR_vFOC	3000(RPM)	
FOC Mode	Serial interface	SR_vFOC	3000(KPIVI)	

If the set speed is greater than the maximum speed of the control mode, the motor runs at the maximum speed of the control mode.

Note: The speed value is calibrated based on 16/32/64 subdivisions, and the speeds of other subdivisions need to be calculated based on 16 subdivisions.

For example, setting speed=1200

At 8 subdivisions, the speed is 2400 (RPM)

At 16/32/64 subdivisions, the speed is 1200 (RPM)

At 128 subdivisions, the speed is 150 (RPM)

2. acceleration

The value of the acceleration (acc) ranges from 0 to 255. The larger the value, the faster the motor accelerates/decelerates.

If acc=0, the motor runs without acceleration or deceleration, and runs directly at the set speed.

1 accelerates

Suppose at time t1, the current speed is
$$V_{t1}$$
 (V_{t1} < speed) at time t2, the current speed is V_{t2} t2 - t1 = (256-acc) * 50 (uS)

The relationship between the current speed $V_{\rm ti}\text{,}$ acc, and speed is as follows:

$$V_{t2} = V_{t1} + 1 (V_{t2} \le speed)$$

For example: acc = 236, speed = 3000

T(ms)	speed (RPM)
0	0
1	1
2	2
3	3

T(ms)	speed (RPM)		
2998	2998		
2999	2999		
3000	3000		

2 decelerates

Suppose at time t1, the current speed is
$$V_{t1}$$
 (V_{t1} > speed) at time t2, the current speed is V_{t2} t2 - t1 = (256-acc) * 50 (uS)

The relationship between the current speed $V_{\rm ti}$, acc, and speed is as follows:

$$V_{t2} = V_{t1} - 1$$
 $(V_{t2} >= speed)$

6.2 Query/Enable the motor command

1. Query the motor status

Downlink frame(PC → SERVO42D/57D)						
CAN ID		DLC	byte1	byte2		
01		2	F1	CRC(F2)		

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		2	code	data	Check		
01	01		F1	status(uint8_t)	CRC		

status = 0query fail.

status = 1motor stop

status = 2motor speed up

status = 3motor speed down

status = 4motor full speed

motor is homing status = 5

2. Enable the motor

Downlink frame(PC → SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01		2	code	data	Check			
O1		3	F3	en(00~01)	CRC			

en = 00disable.

en = 01enable.

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC byte1 byte2						
01		. 3	code	data	Check			
01		3	F3	status(uint8_t)	CRC			

status =1 Set success.

6.3 Speed mode command

In speed mode, the motor can be run with a fixed acceleration and speed.

1. Run the motor in speed mode

Downlink frame(PC → SERVO42D/57D)											
CAN ID		DLC	byte1	te1 byte 2 byte 3 byte				byte 4	byte 5		
	1		code	dir	Rev	speed		acc	Check		
01		5	_	_	5 F6	b7	b6-b4	b3-b0	b7-b0	200	CRC
			го	dir		spe	eed	acc	CRC		

byte2: The highest bit indicates the direction, the lower 4 bits and byte3 together indicate the speed

byte3: The lower 4 bits of byte2 and byte3 together indicate speed $\,$

The parameter description is as follows:

dir: the value range is 0/1 (CCW/CW)

speed: the speed, the value range is 0-3000

acc: the acceleration, the value range is 0-255

for example:

Send "01 F6 01 40 02 3A",

the motor rotates forward at acc=2, speed=320RPM

Send "01 F6 81 40 02 BA",

the motor reverses at acc=2, speed=320RPM

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC	byte1	byte2	byte3		
01		. 3	code	data	Check		
OI		3	F6	status(uint8_t)	CRC		

status = 1 run success.

status = 0 run fail.

2. Stop the motor in speed mode

Downlink frame(PC → SERVO42D/57D)									
CAN ID		DLC	byte1	byte 2 byte 3				byte 4	byte 5
			code	dir	Rev	speed		acc	Check
01		5	F6	b7	b6-b4	b3-b0	b7-b0	200	CDC
			FO	0	0	0		acc	CRC

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

ror example.

Send 01 F6 00 00 02 F9

Stop the motor with deceleration acc=2

2 Immediate stop command (acc = 0)

for example:

Send 01 F6 00 00 00 F7

Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

Uplink frame (PC ← SERVO42D/57D)							
CAN ID		DLC byte1 byte2 by					
01		2	code	data	Check		
01		3	F6	status(uint8_t)	CRC		

status = 0 stop the motor fail.

status = 1 start to stop the motor.

status = 2 stop the motor success.

3. Save/Clean the parameter in speed mode

Downlink frame(PC → SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
01		3	FF	state	CRC				

state = C8 Save.
state = CA Clean.

Uplink frame (PC ← SERVO42D/57D)								
CAN ID		DLC	byte1	byte2	byte3			
01		3	code	data	Check			
O1		3	FF	status(uint8_t)	CRC			

status = 1 success.
status = 0 fail.

Note: The motor can rotates clockwise or counterclockwise at a constant speed when powered on.

6.4 Position model: relative motion by pulses

In the position control model, the motor can be run to the specified position with the set acceleration and speed.

1. Run the motor in position model

	Downlink frame(PC → SERVO42D/57D)																			
CAN ID		DLC	byte1		byte 2 byte			byte 4	byte 5-7	byte 8										
			8	code	dir	Rev	spe	eed	acc	pulses	Check									
01	•••			8	8	8	8	8	8	8	8	8	8	FD	b7	b6-b4	b3-b0	b7-b0	000	nulana
			FD	dir		spe	eed	acc	pulses	CRC										

byte2: The highest bit indicates the direction, the lower 4 bits and byte3 together indicate the speed

byte3: The lower 4 bits of byte2 and byte3 together indicate speed $\,$

The parameter description is as follows:

dir: the value range is 0/1 (CCW/CW)

speed: the speed, the value range is 0-3000

acc: the acceleration, the value range is 0-255

pulses: the motor run steps, the value range is 0 - 0xFFFFFF

for example:

Send 01 FD 01 40 02 00 FA 00 3B,

the motor rotates 20 times in the forward direction with acc=2, speed=320RPM (16 subdivisions);

Send 01 FD 81 40 02 00 FA 00 BB,

the motor rotates 20 times in the reverse direction with acc=2, speed=320RPM (16 subdivisions);

Uplink frame(PC ← SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
01		3	FD	status(uint8_t)	CRC				

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

2. Stop the motor in position model

	Downlink frame(PC → SERVO42D/57D)																					
CAN ID		DLC	byte1	byte 2 byte 3			byte 4	byte 5-7	byte 8													
	T		code	dir	Rev	spe	speed		pulses	Check												
01					8		8	8	8	8	8	8	8		FD	b7	b6-b4	b3-b0	b7-b0	200	0	CRC
			FD	0	0 0		acc	U	CRC													

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send 01 FD 00 00 04 00 00 00 02

Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0)

for example:

Send 01 FD 00 00 00 00 00 00 FE

Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

Uplink frame (PC ← SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
01		3	FD	status(uint8_t)	CRC				

status = 0 stop the motor fail.

status = 1 stop the motor starting....

status = 2 stop the motor complete.

6.5 Position mode2: relative motion by axis

In the position control mode2, the motor can be run to the specified axis with the set acceleration and speed.

Notel: the axis is the encoder value (addition). It can be read by command "31".

Note2: In this mode, the axis err about ± 15 . Suggest running with 64 subdivisions.

1. Run the motor in position mode2

	Downlink frame(PC → SERVO42D/57D)										
CAN ID		DLC	byte1	byte1 byte2 byte3 byte4 byte5-byte7 字寸							
01		0	code	spe	speed		Relative axis	Check			
01		0	F4	spe	eed	acc	relAxis	CRC			

The parameter description is as follows:

speed: the speed, the value range is 0-3000(RPM) acc: the acceleration, the value range is 0-255

relAxis: the relative axis, int24 t (-8388607, +8388607)

For example:

If the current axis is 0x8000. (read by code "31")

Send 01 F4 02 58 02 00 40 00 91

The motor will relative move 0x4000 (speed = 600 (RPM), acc =2) After move the axis is 0xC000. (0x8000+0x4000=0xC000)

If the current axis is 0x8000. (read by code "31")

Send 01 F4 02 58 02 FF C0 00 09

The motor will relative move -0x4000 (speed = 600 (RPM), acc =2) After move the axis is 0x4000. (0x8000-0x4000=0x4000)

Uplink frame (PC ← SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
OI.		3	F4	status(uint8_t)	CRC				

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

2. Stop the motor in position mode2

	Downlink frame(PC → SERVO42D/57D)										
CAN ID		DLC	byte1	byte2	byte3	byte4	byte5-byte7	字节 8			
01		0	code	spe	eed	acc	Relative axis	Check			
OI		0	F4	()	acc	0	CRC			

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send 01 F4 00 00 04 00 00 00 F9

Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0)

for example:

Send 01 F4 00 00 00 00 00 00 F5

Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a good idea to stop the motor immediately!

Uplink frame (PC ← SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
01			F4	status(uint8_t)	CRC				

status = 0 stop the motor fail.

status = 1 stop the motor starting....

status = 2 stop the motor complete.

6.6 Position mode3: absolute motion by axis

In the position control mode3, the motor can be run to the specified axis with the set acceleration and speed.

Notel: the axis is the encoder value (addition). It can be read by command "31".

Note2: In this mode, the axis err about ± 15 . Suggest running with 64 subdivisions.

1. Run the motor in position mode3

	Downlink frame(PC → SERVO42D/57D)										
CAN ID		DLC	byte1	byte2	byte3	byte4	byte5-byte7	字节 8			
01		0	0	code	spe	eed	acc	absolute axis	Check		
01		0	F5	spe	eed	acc	absAxis	CRC			

The parameter description is as follows:

speed: the speed, the value range is 0-3000(RPM) acc: the acceleration, the value range is 0-255

absAxis: the relative axis, $int24_t$ (-8388607, +8388607)

For example:

If the current axis is any value Send 01 F5 02 58 02 00 40 00 92

The motor will move to 0x4000 (speed = 600(RPM), acc =2)

After move the axis is 0x4000.

If the current axis is any value Send 01 F5 02 58 02 FF C0 00 10

The motor will move to -0x4000 (speed = 600(RPM), acc =2)

After move the axis is -0x4000.

Uplink frame (PC ← SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3				
01		2	code	data	Check				
01		3	F5	status(uint8_t)	CRC				

status = 0 run fail.

status = 1 run starting....

status = 2 run complete.

2. Stop the motor in position mode3

Downlink frame(PC → SERVO42D/57D)									
CAN ID		DLC	byte1	byte2	byte3	byte4	byte5-byte7	字节 8	
01		8	code	speed		acc	absolute axis	Check	
			F5	0		acc	0	CRC	

The stop command can stop the motor slowly, or stop the motor immediately.

When setting acc \neq 0, the motor decelerates and stops slowly When setting acc = 0, the motor stops immediately

① Deceleration and stop the motor slowly (acc \neq 0) for example:

Send 01 F5 00 00 04 00 00 00 FA Stop the motor with deceleration acc=4

② Immediate stop command (acc = 0) for example: Send 01 F5 00 00 00 00 00 00 F6 Stop the motor immediately

Note: If the motor rotating more than 1000RPM, it is not a goog idea to stop the motor immediately!

Uplink frame (PC ← SERVO42D/57D)						
CAN ID		DLC	byte1	byte2	byte3	
01		3	code	data	Check	
01			F5	status(uint8_t)	CRC	

status = 0 stop the motor fail.

status = 1 stop the motor starting....

status = 2 stop the motor complete.

Part7. CAN command example

The following example uses "cangaroo.exe" PC software and "MKS CANable" USB to CAN module.

7.1 Config the SERVO42D/57D

- 1. Menu \rightarrow Mode \rightarrow SR vFOC.
- 2. Menu → CanRate → 500K.
- 3. Menu \rightarrow CanID \rightarrow 01.

7.2 Config the cangaroo

- 1. run the "cangaroo.exe".
- 2. Select t "Measurement" -> "Start Measurement", as show below.

3. In the pop-up "Measurement Setup" window, click "candle0", as shown below.

4. Use the default parameters without any modification, click "ok", as shown below.

5. The configuration is complete, as shown below.

6. Select "File" \rightarrow "Save Workspace", select the save path and name, and save the configuration.

7. After the save is completed, as shown below.

7.3 Read the encoder value

"01 30 31" send return "01 30 00 00 00 01 29 EF 4A"

7.4 Run the motor in speed mode

Note : Please configure the working mode to "SR_vFOC". Menu-> Mode -> SR vFOC

1. Send 01 F6 01 40 02 3A, the motor will rotate at "speed = 600RPM, acc=2";

Return 01 F6 01 F8, the motor run in speed mode successful;

2. Send 01 FF C8 C8 to save the speed mode parameters; Return 01 FF 01 01, save successful;

3. Send 01 F6 00 00 02 F9 to stop the motor; Return 01 F6 01 F8, the motor stops successfully;

After power-on again, the motor will run according to the save speed mode parameters.

7.5 Run the motor in position model

Note : Please configure the working mode to "SR_vFOC". Menu-> Mode -> SR vFOC

1. Send 01 FD 01 40 05 09 C4 00 11, the motor will rotate forward 200 circles (16 subdivisions) with "speed = 320RPM, acc = 5"; Return 01 FD 01 FF, the motor starts to run;

Return 01 FD 02 00, the motor is run completed;

2. Send 01 FD 81 40 08 30 D4 00 CB, the motor to reverse 1000 circles with "speed = 320RPM, acc = 8" (16 subdivisions); Return 01 FD 01 FF, the motor starts to run. Now, stop the motor by step 3.

3. While the motor is running...
Send 01 FD 00 00 01 00 00 00 FF, the motor to stop with acc=1;
Return 01 FD 01 FF, the motor starting to stop;

Part8. FAQ

8. 1 NOTE

- 1. Power input voltage is 12V-24V.
- 2. Don't hot plug motor cable and data cable.
- 3. When the motor is calibrating, do not carry a load.
- 4. After installed the motor, or changed the motor wiring sequence, you need to re-calibrate the motor again.
- 5. The default work mode is CR vFOC(EN/STP/DIR interface).
- 6. Press the "Next" key first, then power on, it can quickly restore the default parameters.
- 7. If "Phase Line Error!" is displayed before calibration:
 - b) Check the motor connection line sequence;
 - c) Check the power supply voltage and output power (24V/1A, 12V/2A);;
 - d) If the power supply is connected to the motherboard through the MKS APT module, try to connect the MKS APT module to ports such as X, Y, Z, E, etc., and then restart again.
 - e) Do not use the MKS APT module for power supply before calibration, and the power supply is directly connected to V+ and Gnd.

8.2 FAQ

No	Question	Solution		
1	Not Cal	Calibrate the motor.		
2	Reverse Lookup	Calibrate Fail, Check magnet and		
	Error!	motor shaft		
3	Magnet Loss!	Not install the magent.		
4	Magnet Strong!	the magnet too near.		
5	Magnet Weak!	the magnet too far.		
6	Encoder Error!	Check magnet and motor shaft		
7	Offset Current	Reference voltage error		
	Error!			
8	Phase Line Error!	The motor line sequence is wrong or		
		the power supply is not enough		
9	Wrong Protect!	Locked-rotor protection		
10	Coming Back to	Going back to zero.		
	Origin			
11	Reboot Again	The motor need to be restart.		

Part9. Schematic

Please download $\langle MKS \rangle SERVO57D \rangle V1.0 Schematic.pdf in$

https://github.com/makerbase-motor/MKS-SERVO42D https://github.com/makerbase-motor/MKS-SERVO57D

Part10. contact us

https://makerbase.aliexpress.com/

https://www.youtube.com/channel/UC2i5I1tcOXRJ2ZJiRxwpCUQ

https://github.com/makerbase-motor