1	2	3	4	5	Σ	Оценка

Фамилия И.О.	№ группы

Государственный экзамен по физике (письменная часть 20 января 2017 года) Вариант А

1А. 14 сентября 2015 года установками LIGO была зарегистрирована гравитационная волна, рожденная в процессе слияния двух черных дыр, вращавшихся вокруг общего центра масс по круговым орбитам. Временная зависимость сигнала, пропорционального амплитуде волны, изображена на рисунке. В момент слияния (обозначен штриховой линией) излучение прекращается. Оцените массу возникшей черной дыры, рассматривая исход-

ные черные дыры как точечные массы m_1 и m_2 , взаимодействующие по закону Ньютона и обращающиеся по круговым орбитам вокруг общего центра масс. В момент слияния расстояние между ними равно $r_S = 2G(m_1 + m_2)/c^2$ (радиус Шварцшильда), где G — гравитационная постоянная, c — скорость света. Период гравитационной волны, равный половине периода обращения системы, оценивать в области максимальной амплитуды сигнала на графике.

Указание. Движение черных дыр рассматривать в нерелятивистском приближении.

2А. В некоторый день прогноз Гидрометцентра предсказывает температуру воздуха 20 °С и относительную влажность $\psi=60\%$. Оценить высоту нижней кромки облаков при этих условиях. В модели «Международная стандартная атмосфера» принято, что в тропосфере ($H \le 11$ км) температура воздуха уменьшается с высотой по линейному закону с коэффициентом $\alpha=6,49$ К/км. Давление насыщенных водяных паров при $T_0=293$ К составляет $P_{\rm H.II.}=2,34\cdot 10^3$ Па. Удельную теплоту испарения воды считать не зависящей от температуры и равной $\Lambda=2,54\cdot 10^6$ Дж/кг.

Указание. Использовать условие $\alpha H \ll T_0$.

- **3A**. В результате удара молнии на расстоянии $\ell=1$ м от центра золотого проволочного кольца диаметром D=20 см и толщиной $\delta<0,5$ мм кольцо нагрелось на $\Delta T_{\rm K}=20$ К. Найти минимальный перенесенный молнией заряд. Считать, что зависимость тока молнии от времени t имеет вид $I=I_0(e^{-t/T}-e^{-t/\tau})$ с параметрами $\tau=8\cdot 10^{-6}$ с и $T=10^{-4}$ с. Теплоемкость единицы объема золота $C_V=2600$ кДж/(К·м³), его удельное сопротивление $\rho=2\cdot 10^{-8}$ Ом·м.
- **4А.** Гамма-кванты с энергией E=10 МэВ рождают электрон-позитронные пары в мишенях из $^{10}_{5}$ В. Найти максимальную энергию, приобретаемую ядрами бора в таком процессе.
- **5А.** Один из способов оценки массы нейтрино состоит в измерении задержки прихода нейтрино по сравнению с фиксацией вспышки света при взрыве сверхновых. Как следует из изучения осцилляций нейтрино, его масса может быть порядка 0,01 эВ. Определить, каким временным разрешением Δt должен обладать нейтринный телескоп, чтобы зарегистрировать нейтрино с такой массой, если энергия нейтрино, испускаемого при взрыве сверхновой, расположенной на расстоянии $170\,000$ световых лет от Земли, в среднем составляет $10\,\text{МэВ}$.

1	2	3	4	5	Σ	Оценка

Фамилия И.О.	№ группы

Государственный экзамен по физике (письменная часть 20 января 2017 года) Вариант Б

1Б. 14 сентября 2015 года установками LIGO была зарегистрирована гравитационная волна, рожденная в процессе слияния двух черных дыр с массами примерно $29M_{\rm C}$ и $36M_{\rm C}$ ($M_{\rm C}=2.0\cdot 10^{30}$ кг — масса Солнца). Оцените энергию излученных гравитационных волн, рассматривая черные дыры как точечные массы, взаимодействующие по закону Ньютона и обращающиеся по круговым орбитам вокруг общего центра масс. Считайте, что слияние происходит, когда расстояние между ними становится равным $r_{\rm S}=2GM/c^2$ (радиус Шварцшильда), где G — гравитационная постоянная, c — скорость света, и M — сумма масс двух исходных черных дыр.

Указание. Движение черных дыр рассматривать в нерелятивистском приближении.

2Б. В баллистике для учета зависимости плотности воздуха от высоты используется эмпирическая формула В.П. Ветчинкина: $\rho(H) = \rho_0 \frac{1-H/H_0}{1+H/H_0}$, где $H_0 = 2 \cdot 10^4$ м. Пользуясь этой формулой, определите вертикальный градиент температуры воздуха вблизи поверхности Земли. Оцените относительную влажность воздуха у Земли при температуре воздуха $T_0 = 7$ °C, если нижняя кромка сплошной облачности находится на высоте H = 300 м. Давление насыщенных водяных паров при 7 °C равно $P_{\rm H.II.} = 10^3$ Па, удельная теплота испарения воды $\Lambda = 2,48 \cdot 10^6$ Дж/кг.

Указание. Использовать условие $H/H_0 \ll 1$.

- **3Б.** Для плавки чистых металлов в вакууме используются индукционные печи. Какой должна быть амплитуда B_0 индукции переменного магнитного поля частотой f=400 Гц для того, чтобы за время t=100 с нагреть до температуры плавления тонкое золотое кольцо диаметром D=20 мм, высотой h=3 мм и толщиной d=1 мм. Считать, что кольцо лежит в хорошо теплоизолирующей диэлектрической форме с малой теплоёмкостью. Самоиндукцией пренебречь. Начальная температура $T_0=300$ К, температура плавления $T_{\rm пл}=1300$ К. При температурах выше комнатной теплоёмкость единицы объёма золота можно считать постоянной: $C_V=2600$ кДж/(К · м³), а его удельное сопротивление пропорциональным температуре: $\rho=\rho_0T/T_0$, где $\rho_0=2\cdot 10^{-8}$ Ом · м.
- **4Б.** Межзвездная среда состоит в основном из нейтрального водорода с концентрацией $n=10^3~{\rm cm}^{-3}$. Фотоны с энергией $E_0=40~{\rm к}$ эВ из источников рентгеновского излучения, попадая в межзвездную среду, теряют свою энергию за счет комптоновского рассеяния, сечение которого можно независящим от частоты и равным $\sigma=0,665~{\rm fh}$ (томсоновское сечение). Оценить, за какое время такие фотоны охладились бы до энергии $E=E_0/10$. Рассеяние на все углы считать равновероятным.
- **5Б.** Для регистрации мюонных антинейтрино используется реакция $\tilde{v}_{\mu} + p \rightarrow \mu^{+} + n$. Определить минимальную энергию антинейтрино, необходимую для того, чтобы мюон вызвал черенковское излучение в воде. Коэффициент преломления воды n=1,33. Энергией отдачи нейтрона пренебречь. Масса покоя протона равна 938,7 МэВ, нейтрона 939,5 МэВ, мюона 105,7 МэВ.

Указание. Черенковское излучение возникает, если скорость заряженной частицы больше фазовой скорости света в среде.

1	2	3	4	5	Σ	Оценка

Фамилия И.О.	№ группы

Государственный экзамен по физике (письменная часть 20 января 2017 года) Вариант В

1В. На рисунке показана временная зависимость амплитуды гравитационной волны, зарегистрированная 14 сентября 2015 года установками LIGO. Эта волна возникла при слиянии двух черных дыр с массами m_1 и m_2 , вращающихся вокруг общего центра масс по круговым орбитам (момент слияния отмечен штриховой линией). В этот момент расстояние между черными дырами равно $r_S = 2G(m_1 + m_2)/c^2$ (радиус Шварцшильда), где

G — гравитационная постоянная, c — скорость света. Амплитуда гравитационной волны безразмерна и убывает с расстоянием r до источника как $A=0,1r_S/r$ (при $r\gg r_S$). Считая черные дыры материальными точками, взаимодействующими по закону Ньютона, оценить r и r_S . Период гравитационной волны, равный половине периода обращения системы, оценивать в области максимальной амплитуды сигнала на графике.

Указание. Движение черных дыр рассматривать в нерелятивистском приближении.

- **2В.** В артиллерии используется модель так называемой «нормальной артиллерийской атмосферы», разработанная в 1927 г. советским баллистиком Д.А. Ветцлером. В этой модели температура на уровне мирового океана считается равной $t_0 = +15\,^{\circ}\mathrm{C}$ и понижается на $\Delta t = 0.63\,^{\circ}\mathrm{C}$ на каждые 100 м высоты вплоть до границы тропосферы (9300 м над уровнем моря). До какой максимальной высоты поднимется в такой атмосфере аэростат, состоящий из заполненной неоном теплоизолирующей оболочки, масса которой составляет $\delta = 15\%$ от массы содержащегося в ней газа? Оболочка непроницаема для газа и не препятствует его расширению. В момент старта с уровня моря температура газа в аэростате равна t_0 .
- **3В.** Тонкое золотое кольцо диаметром D=20 мм, толщиной d=1 мм и высотой h=3 мм подвешено в вакууме и помещено в нормальное к плоскости кольца переменное магнитное поле с амплитудой индукции $B_0=1$ мТл и частотой f=400 Гц. Стенки вакуумной полости находятся при комнатной температуре $T_0=300$ К. Определить установившуюся температуру кольца. Теплопроводность подвеса и самоиндукцию кольца не учитывать. Удельное сопротивление при комнатной температуре $\rho_0=2\cdot 10^{-8}$ Ом · м. Считать, что золото отражает 98% излучения во всём диапазоне.
- **4В.** Фотон с энергией $\varepsilon = 0.511$ МэВ рассеивается на покоящемся электроне. При каком угле рассеяния составляющая импульса электрона, перпендикулярная первоначальному импульсу фотона, будет максимальной?
- **5В.** В ряде расширений Стандартной Модели вводят новые массивные нейтрино (т.н. стерильные нейтрино). Их массу можно измерять по реакции K-захвата в атоме бериллия: ${}^{7}_{4}$ Ве + е ${}^{-}$ $\rightarrow {}^{7}_{3}$ Li + ν где ν может быть как электронным, так и стерильным нейтрино. В случае существования последнего, в спектре отдачи атомов лития будут наблюдаться два пика: один соответствует электронным нейтрино с массой примерно равной нулю, а второй стерильным нейтрино. Каким разрешением по энергии ΔE должен обладать спектрометр, чтобы различить эти два пика, если бы масса стерильного нейтрино была равна $m_{\nu}c^{2}=10$ кэВ?

Государственный экзамен по физике — январь 2017 года

Решения письменной части

Вариант А

1А. (*Савров*) Запишем уравнение относительного движения двух тяготеющих точечных масс, обращающихся вокруг общего центра масс по круговой орбите:

$$\frac{m_1 m_2}{m_1 + m_2} \frac{u^2}{r} = G \frac{m_1 m_2}{r^2}.$$

Здесь u — относительная скорость и r — расстояние между массами.

Выразим относительную скорость через частоту вращения, $u = 2\pi v r$, и перепишем это уравнение в виде: $(2\pi v)^2 r^3 = G(m_1 + m_2)$. Согласно условию, слияние дыр в одну происходит, когда $r = r_S$. Подставляя явное выражение для r_S , приводим последнее уравнение к виду:

$$(2\pi v)^2 r_S^3 = G(m_1 + m_2) \rightarrow (2\pi v)^2 (8/c^6) G^2 (m_1 + m_2)^2 = 1.$$

Отсюда для суммарной массы дыр получаем:

$$m_1 + m_2 = \frac{1}{2^{5/2}\pi} \frac{c^3}{G} \frac{1}{V} = \frac{1}{2^{5/2}\pi} \frac{c^3}{G} T,$$

где T — период вращения непосредственно в момент слияния. На графике расстояние между двумя последними пиками равно примерно 0.005 с, следовательно, период вращения $T \approx 0.01$ с. Отсюда получаем

$$m_1 + m_2 = \frac{1}{2^{5/2}\pi} \frac{c^3}{G} T = \frac{1}{2^{5/2}\pi} \cdot \frac{(3 \cdot 10^8)^3}{6.67 \cdot 10^{-11}} \cdot 10^{-2} \approx 2 \cdot 10^{32} \text{kg} \approx 10^2 M_{\odot}.$$

Численное решение уравнений Эйнштейна хорошо воспроизводит форму сигнала при суммарной массе черных дыр, равной $(62\pm4)M_{\rm C}$.

2А. (*Козлов*) Предполагая для земной атмосферы справедливость закона Дальтона, используем уравнение гидростатики $\frac{dP_{\rm H_2O}}{dh} = -\rho_{\rm H_2O}g$ и уравнение состояния идеального газа $P_{\rm H_2O} = \left(\rho_{\rm H_2O}/\mu_{\rm H_2O}\right)RT$ для определения парциального давления водяных паров на высоте $H: P_{\rm H_2O}(H) = \Psi P_{\rm H.n.} \left(1-\alpha H/T_0\right)^{\mu_{\rm H_2O}g/\alpha R}$. С другой стороны, из уравнения Клапейрона-Клаузиуса для давления насыщенных водяных паров на высоте H следует: $P_{\rm H_2O}(H) \approx P_{\rm H.n.} \exp\left\{-\mu_{\rm H_2O}\Lambda\alpha H/RT_0^2\right\}$. Приравнивая логарифмы найденных выражений, и учитывая малость параметра $\alpha H/T_0$, получим:

$$-\mu_{\rm H_2O}\Lambda\alpha H/RT_0^2\approx \ln\Psi + \left(\mu_{\rm H_2O}g/\alpha R\right)\ln\left(1-\alpha H/T_0\right)\approx \ln\Psi - \left(\mu_{\rm H_2O}gH/RT_0\right).$$

Отсюда находим $H \approx -\left(RT_0^2/\mu_{\rm H,O}\Lambda\alpha\right)\ln\Psi/\left(1-gT_0/\alpha\Lambda\right)\approx 1,5$ км.

3А. (*Гуденко С.*) Магнитное поле, создаваемое током молнии в месте расположения кольца, равно $B \simeq \frac{\mu_0 I}{2\pi l}$. Здесь $\mu_0 = 4\pi \cdot 10^{-7} \ \Gamma/M$ — магнитная постоянная. Индуцируемая в кольце ЭДС при условии, что плоскость кольца совпадает с плоскостью, образованной линией тока молнии и центром кольца (это наиболее благоприятное расположение для нагрева кольца — в этом случае магнитный поток через кольцо максимален), будет равна

$$U = -S \frac{dB}{dt} = -\frac{\pi D^2}{4} \cdot \frac{\mu_0}{2\pi l} \frac{dI}{dt} = \frac{\pi D^2}{4} \cdot \frac{\mu_0 I_0}{2\pi l} \cdot \left(\frac{e^{-\frac{t}{T}}}{T} - \frac{e^{-\frac{t}{\tau}}}{\tau} \right)$$

В кольце с сопротивлением

$$R_0 = \rho \cdot \frac{4\pi D}{\pi \delta^2} \tag{1}$$

при этом выделится тепло

$$Q \cong \int_{0}^{\infty} \frac{U^{2}}{R_{0}} dt = \frac{1}{R_{0}} \left(\frac{\pi D^{2}}{4}\right)^{2} \left(\frac{\mu_{0} I_{0}}{2\pi l}\right)^{2} \cdot \int_{0}^{\infty} \left(\frac{e^{-\frac{2t}{\tau}}}{\tau^{2}} + \frac{e^{-\frac{2t}{T}}}{T^{2}} - \frac{2e^{-\frac{t}{T} - \frac{t}{\tau}}}{\tau T}\right) dt = \frac{\delta^{2} D}{8\rho} \left(\frac{D\mu_{0} I_{0}}{8l}\right)^{2} \frac{\left(T - \tau\right)^{2}}{T\tau (T + \tau)}.$$
(2)

Сравнивая (2) с количеством тепла, необходимым для нагрева кольца

$$Q = C_V \cdot \pi D \cdot \frac{\pi \delta^2}{4} \Delta T_{\kappa},$$

получим величину параметра I_0

$$I_{0} = \frac{8\pi l \sqrt{2C_{V}\rho\tau T(T+\tau)\Delta T_{\kappa}}}{D\mu_{0}(T-\tau)} = \frac{8\pi \cdot 1 \cdot \sqrt{2 \cdot 2600 \cdot 10^{3} \cdot 2 \cdot 10^{-8} \cdot 8 \cdot 10^{-6} \cdot 10^{-4} \cdot 1.08 \cdot 10^{-4}}}{0.2 \cdot 4\pi \cdot 10^{-7} \cdot 0.92 \cdot 10^{-4}} \cdot \sqrt{\Delta T_{\kappa}} = \frac{8\pi \cdot 1 \cdot \sqrt{2 \cdot 2600 \cdot 10^{3} \cdot 2 \cdot 10^{-8} \cdot 8 \cdot 10^{-6} \cdot 10^{-4} \cdot 1.08 \cdot 10^{-4}}}{0.2 \cdot 4\pi \cdot 10^{-7} \cdot 0.92 \cdot 10^{-4}}$$

$$1,03\cdot10^5\sqrt{\Delta T_{\kappa}}=4,61\cdot10^5 \text{ A}$$

и перенесенный молнией заряд

$$q_0 = I_0 \int_0^\infty \left[\exp(-t/T) - \exp(-t/\tau) \right] dt = I_0 \left(T - \tau \right) \approx 4.61 \cdot 10^5 \cdot 0.92 \cdot 10^{-4} = 42,4 \text{ Кл.}$$

Это оценка «снизу». При неоптимальном расположении кольца потребуется больший заряд.

Примечание. Для подтверждения корректности использования формулы (1) при вычислении сопротивления кольца R_0 оценим глубину проникновения тока в проволоку (см., например, формулу (144.5) для толщины скин-слоя в учебнике Д.В.Сивухина, т. 3):

$$\lambda \cong c \sqrt{\frac{\tau \cdot \rho}{4\pi}} = 3 \cdot 10^{10} \cdot \sqrt{\frac{8 \cdot 10^{-6} \cdot 2 \cdot 10^{-8}}{4\pi \cdot 9 \cdot 10^{9}}} = 0,035 \text{ cm} = 0,35 \text{ mm} .$$

Получилась величина, превосходящая радиус проволоки, и, следовательно, ток в ней распределен практически однородно по сечению.

4А. (*Ципенюк*). Максимальная энергия отдачи ядра соответствует максимальному импульсу отдачи, что возможно, если пара как целое вылетает в направлении противоположном направлению импульса фотона. Запишем законы сохранения энергии и импульса (P – импульс ядра, p – импульс пары как целого)

$$E/c = P - p$$
,
 $E + Mc^2 = \sqrt{(pc)^2 + (2mc^2)^2} + Mc^2 + \frac{P^2}{2M}$.

Из этих двух уравнений получаем

$$-2E\frac{P^2}{2M} + \left(\frac{P^2}{2M}\right)^2 = (Pc)^2 - 2EPc + (2mc^2)^2.$$

Даже если ядро уносит весь импульс фотона ($Pc\cong E$) , то $\frac{E}{2Mc^2}=\frac{10}{2\cdot 10\cdot 931}$ << 1 и поэтому

$$\left(\frac{P^2}{2M}\right)^2 = \left(\frac{E^2}{2Mc^2}\right)^2 << E\frac{P^2}{2M} = E\frac{E^2}{2Mc^2} << E^2.$$

Следовательно, можно отбросить все члены в левой части по сравнению с членами в правой. Тогда получаем

$$(Pc)^2 - 2EPc + (2mc^2)^2 = 0$$
.

Откуда (знак «—» отбрасываем) $Pc = E + \sqrt{E^2 - (2mc^2)^2} \approx 2E$, и

$$(E_{\text{отд}})_{\text{макс}} = \frac{P^2c^2}{2Mc^2} = 2E\frac{E}{Mc^2} = 2\cdot 10\frac{10}{10\cdot 931} = 0,0215\,\text{M}$$
эВ = 21, 5 кэВ.

5А. (*Нозик*) Определим скорость массивного нейтрино из соотношения $E/mc^2 = (1-v^2/c^2)^{-1/2}$. Получаем $v/c = [1-(mc^2/E)^2]^{1/2}$. Задержка по времени между вспышкой света и вспышкой нейтрино равна $\Delta t = l/v - l/c = (l/c) (c/v - 1)$. Используя разложение в ряд Тейлора по малой величине mc^2/E , получаем: $\Delta t = (l/2c) (mc^2/E)^2 = 0,85 \cdot 10^{-13}$ года $\approx 2,7$ мкс.

Вариант Б

1Б. (*Савров*) Для оценки будем считать, что в начальный момент черные дыры находятся на большом расстоянии друг от друга, когда гравитационным взаимодействием можно пренебречь по сравнению с массами покоя и излучение гравитационных волн отсутствует. Затем черные дыры начинают излучать гравитационные волны, расстояние между ними уменьшается и в момент наибольшего сближения излучение прекращается. Запишем закон сохранения энергии для начального и конечного моментов времени:

$$(m_1+m_2)c^2 = (m_1+m_2)c^2 - Gm_1m_2/2r_S + E_{GW}$$
.

Здесь учтено, что в гравитационном поле средняя кинетическая энергия равна (-1/2) от средней потенциальной – теорема вириала для кулоновского поля в нерелятивистском случае.

Таким образом, энергия излученных гравитационных волн $E_{\rm GW}$ равна энергии связи системы. Подставляя выражение для радиуса Шварцшильда, получаем

$$E_{\rm GW} = Gm_1m_2/2r_{\rm S} = c^2m_1m_2/4(m_1+m_2) \approx 4M_{\rm C}c^2$$
.

Полученная оценка неплохо согласуется с результатом численного решения уравнений Эйнштейна, которое дает $E_{\rm GW} \approx 3 M_{\rm C} c^2$.

Примечание. Для получения полного балла за задачу достаточно оценки $E_{\rm GW} \sim G m_1 m_2/2 r_{\rm S}$.

2Б. (*Козлов, Холин*) Для давления воздуха P(H) справедливы формула гидростатики $dP/dH = -\rho g$ и закон Менделеева-Клапейрона $P = \left(R/\mu_{\mbox{\tiny BOSJ}}\right) \rho T$. Дифференцируя последний, получаем:

$$-\rho g = \frac{RT}{\mu_{\text{mody}}} \frac{d\rho}{dH} + \frac{R}{\mu_{\text{mody}}} \rho \frac{dT}{dH}.$$

Используя формулу Ветчинкина, выражаем отсюда градиент температуры:

$$\frac{dT}{dH}\Big|_{H=0} = 2\frac{T_0}{H_0} - \frac{g\,\mu_{\text{возд}}}{R} = -6,2\,\text{K/км}$$
. Таким образом, температура на высоте $H=300\,\text{м}$ отличается от

температуры на уровне земли на $\Delta T = H \left. \frac{dT}{dH} \right|_{H=0} = 1,86 \; \mathrm{K}$. Давление насыщенного пара на высоте

Н найдем по формуле Клапейрона-Клаузиуса:

$$P_{\rm H,O}(300~{\rm M}) - P_{\rm H,II.} = \left(dP_{\rm H,II.}/dT\right)\Delta T = \left(\Lambda\rho_{\rm H,O}/T\right)\Delta T = -127~{\rm \Pia,~гдe}~\rho_{\rm H,O} = P_{\rm H,II.}\mu_{\rm H,O}/RT_0 \approx 7.7\cdot 10^{-3}~{\rm Kg/m}^3.$$

Парциальное давление водяного пара на уровне земли, с учетом закона Дальтона, отличается от давления на высоте H на гидростатическую добавку: $P_{\rm H_2O} - P_{\rm H_2O}(300~{\rm M}) = \rho_{\rm H_2O}gH = 21~{\rm \Pia.~B}$ результате давление пара у поверхности равно $P_{\rm H_2O} = 1000 - 127 + 21 = 894~{\rm \Pia}$, а относительная влажность составляет $\Psi = P_{\rm H_2O}/P_{\rm H,II.} = 89,4~{\rm M}$.

3Б. (Глазков) Выделяемая в кольце средняя мощность

$$W = \frac{\left\langle \varepsilon_i^2 \right\rangle}{R} = \frac{\frac{\pi^2 D^4}{16} \frac{1}{2} B_0^2 \omega^2}{\rho_0 (T/T_0) \pi D/(dh)} = \frac{1}{32} \frac{\pi D^3 dh}{\rho_0 T} T_0 B_0^2 \omega^2.$$

Множитель $\frac{1}{2}$ связан с усреднением переменного нагрева по периоду. Мощность, требуемая для нагрева, пренебрегая всеми потерями в силу идеальной теплоизоляции

$$W' = C_V \pi D dh \frac{dT}{dt}$$

Приравнивая выражения дл мощностей, получаем уравнение

$$d(T)^{2} = \frac{1}{16} \frac{D^{2}}{C_{V} \rho_{0}} T_{0} B_{0}^{2} \omega^{2} dt,$$

интегрируя которое находим

$$B_0 = \sqrt{\frac{16(T_{\text{nn}}^2 - T_0^2)C_V\rho_0}{D^2T_0\omega^2t}} \ .$$

Подставляя числа, получаем $B_0 \approx 135$ мТл или 1,35 кГс.

Если не учитывать зависимость сопротивления от температуры, то получится

$$B_0 = \sqrt{\frac{32(T_{\scriptscriptstyle \Pi,\Pi} - T_0)C_V \rho_0}{D^2 \omega^2 t}} \approx 82\,$$
 мТл или 0,82 кГс.

4Б. (*Ципенюк*) Увеличение длины волны фотона при комптоновском рассеянии на угол θ : $\Delta\lambda = 2\Lambda_{\rm K} \sin^2\theta/2$, где $\Lambda_{\rm K}$ — комптоновская длина волны электрона, равная $2,4\cdot 10^{-10}$ см. Для оценки можно считать, что за один акт рассеяния фотон теряет половину максимально возможной энергии, т.е. длина волны увеличивается при любом акте рассеяния на $\Lambda_{\rm K}$. Длина свободного пробега фотона $L = 1/n\sigma = 1,5\cdot 10^{21}$ см, а время между двумя последовательными столкновениями $\tau = L/c = 0,5\cdot 10^{11}$ с. Начальная длина волны фотона $\lambda_{\rm Haq} = 0,3\cdot 10^{-8}$ см, конечная $\lambda_{\rm KOH} = 10$ $\lambda_{\rm Haq} = 3\cdot 10^{-8}$ см. В результате получаем, что необходимое число актов рассеяния $N = (\lambda_{\rm KOH} - \lambda_{\rm Haq})/\Lambda_{\rm K} = 100$, а полное время $t = N\tau = 5\cdot 10^{12}$ с $= 1,7\cdot 10^5$ лет.

5Б. (*Нозик*) Пороговое значения скорости мюона найдем из условия v=c/n . Тогда пороговая энергия мюона равна

$$E_{\mu} = \frac{m_{\mu}c^2}{\sqrt{1 - v^2/c^2}} = \frac{n}{\sqrt{n^2 - 1}} m_{\mu}c^2 \cong 160 \,\text{M}_2\text{B}.$$

Пренебрегая отдачей нейтрона, запишем закон сохранения энергии $E_{\rm v} + m_{\rm p} c^2 = E_{\rm \mu} + m_{\rm n} c^2$. Отсюда

$$E_{\rm v} = E_{\rm \mu} + (m_{\rm n} - m_{\rm p})c^2 = 161,3 \text{ M}{\circ}{\rm B}.$$

Вариант В

1В. (Савров) Как показано в решении задачи 1А, в момент слияния выполняется соотношение

$$\left(\frac{2\pi}{T}\right)^2 r_{\rm S}^3 = G(m_1 + m_2) ,$$

где T — период вращения непосредственно в момент слияния. На графике расстояние между двумя последними пиками равно примерно 0.005 с, следовательно, период вращения $T \approx 0.01$ с.

Выражая правую часть написанного выше соотношения через радиус Шварцшильда, получаем для него выражение через период обращения

$$r_{\rm S} = \frac{cT}{2\sqrt{2}\pi} = \frac{3\cdot10^{10}\cdot0.01}{2\cdot1.41\cdot3.14} = 3.4\cdot10^7 \text{ cm} = 340 \text{ KM}.$$

Как видно из рисунка, непосредственно перед слиянием амплитуда гравитационной волны $A \approx 10^{-21}$. Поэтому расстояние от черных дыр до детектора на Земле равно:

$$r = 0.1 \frac{r_{\rm S}}{A} = 340 \cdot 10^{20} \,\mathrm{km} = 3.4 \cdot 10^{25} \,\mathrm{m}$$
.

Это примерно в три раза больше значения $r \approx 1,2 \cdot 10^{25} \,\mathrm{M}$, полученного в результате численного решения уравнений Эйнштейна.

2В. (*Холин*) Температура воздуха зависит от высоты по закону $T = T_0 \left(1 - \alpha \, H/T_0\right)$, где $\alpha = 6.3 \cdot 10^{-3}$ К/м. Пользуясь формулами $dP_{\text{возд}}/dH = -\rho_{\text{возд}}g$ и $P = \left(\rho_{\text{возд}}/\mu_{\text{возд}}\right)RT$, находим зависимость плотности воздуха от высоты:

$$\rho_{\text{возд}} = \frac{\mu_{\text{возд}} P_0}{R T_0} \left(1 - \alpha \frac{H}{T_0} \right)^{\frac{\mu_{\text{возд}} g}{\alpha R} - 1},$$

где P_0 и T_0 — давление и температура на поверхности.

Газ в шаре расширяется адиабатически, следовательно $V_{\rm m} = V_0 \left(P_0/P\right)^{1/\gamma} = V_0 \left(1-\alpha\,H/T_0\right)^{-\mu_{\rm boug}\,g/\gamma\alpha R}$, где V_0 — объём шара на поверхности. Подъём шара прекратится, когда его масса станет равной массе вытесненного им воздуха:

$$(1+\delta)m_{\mathrm{Ne}} = \rho_{\mathrm{BO3J}}V_{\mathrm{III}} \Longrightarrow (1+\delta)\frac{\mu_{\mathrm{Ne}}P_{0}V_{0}}{RT_{0}} = \frac{\mu_{\mathrm{BO3J}}P_{0}}{RT_{0}} \left(1-\alpha\frac{H}{T_{0}}\right)^{\frac{\mu_{\mathrm{BO3J}}g}{\alpha R}-1} \cdot V_{0} \left(1-\alpha\frac{H}{T_{0}}\right)^{\frac{\mu_{\mathrm{BO3J}}g}{\gamma \alpha R}}.$$

После преобразований получаем

$$H = \frac{T_0}{\alpha} \left\{ 1 - \left[\frac{\left(1 + \delta\right) \mu_{\text{Ne}}}{\mu_{\text{возд}}} \right]^{\frac{\mu_{\text{возд}} g}{\alpha c_p} - 1} \right\} = 45.7 \text{ km} \cdot \left\{ 1 - 0.79^{0.85} \right\} = 8.3 \text{ km}.$$

3В. (*Глазков*). Подводится мощность в виде джоулева тепла от индукционных токов, теряется в виде теплового излучения. Поверхность полированного металла почти зеркальная, «коэффициент черноты» $\alpha = 0.02$. При сильном нагреве нужно учитывать зависимость сопротивления от температуры, заранее не ясно, нужно ли это делать. Предположим, что нагрев небольшой и можно считать ρ =const. Баланс мощностей:

$$\alpha\sigma(T^{4}-T_{0}^{4})2\pi D(h+d) = \frac{\langle \varepsilon_{i} \rangle}{R} = \frac{\frac{\pi^{2}D^{4}}{16} \frac{1}{2} B_{0}^{2} \omega^{2}}{\rho_{0}\pi D/(dh)} = \frac{1}{32} \frac{\pi D^{3} dh B_{0}^{2} \omega^{2}}{\rho_{0}},$$

$$T^{4} = T_{0}^{4} + \frac{1}{64} \frac{D^{2}}{d+h} \frac{B_{0}^{2} \omega^{2}}{\rho_{0} \alpha \sigma}.$$

Множитель 2 в левой части учитывает полную поверхность кольца (включая внутреннюю), тем, что для внутренней поверхности часть телесного угла занята кольцом, пренебрегаем. Отсюда T=311K, что полностью оправдывает предположение о малом нагреве. В рамках того же предположения можно было разложить разность четвёртых степеней, что даёт сразу

$$\Delta T = \frac{1}{256} \frac{D^2}{d+h} \frac{B_0^2 \omega^2}{\rho_0 \alpha \sigma T_0^3} \approx 12 \text{ K}.$$

4В. (*Морозов*) Энергия фотона после рассеяния

$$\varepsilon' = \varepsilon \frac{mc^2}{mc^2 + \varepsilon(1 - \cos \theta)} .$$

Модуль искомой составляющей импульса электрона

$$p_e^{\perp} = \frac{\varepsilon' \sin \theta}{c} = \frac{\varepsilon}{c} \frac{\sin \theta}{1 + \alpha(1 - \cos \theta)}$$
, где $\alpha = \frac{\varepsilon}{mc^2}$.

Дифференцируя, находим условие экстремума: $\cos \theta = \alpha/(1+\alpha)$, откуда

$$\theta = \arccos \frac{\varepsilon}{mc^2 + \varepsilon} = \arccos \frac{1}{2} = \frac{\pi}{3}$$
.

5В. (*Нозик*) Поскольку импульс отдачи ядра лития и импульс нейтрино равны, то закон сохранения энергии примет вид (T – кинетическая энергия ядра лития)

$$M_{\rm Be}c^2 = M_{\rm Li}c^2 + T + \sqrt{(m_{\nu}c^2)^2 + 2M_{\rm Li}c^2T}$$

Здесь учтено, что в силу очень большой массы по сравнению с нейтрино движение ядра лития можно описывать нерелятивистскими формулами: $T = P_{\rm Li}^2 / 2 M_{\rm Li}$. Кроме того, кинетическая энергия ядра лития ничтожно мала по сравнению с массами покоя ядер. Уединяя корень и возводя в квадрат, получим после отбрасывания члена T^2

$$T = \frac{(M_{\rm Be} - M_{\rm Li})^2 - m_{\rm v}^2}{2M_{\rm Be}} c^2.$$

Считая, что масса электронного нейтрино равна нулю (по крайней мере, она пренебрежимо мала по сравнению с массой стерильного нейтрино), получаем

$$\Delta T = \frac{m_{\nu}}{2M_{\rm Be}} m_{\nu} c^2 = 7 \,\text{M} \cdot \text{B}.$$

Максимум за каждую задачу — 2 балла. Итоговая оценка по 10-балльной шкале — сумма всех баллов, округленная в большую сторону.

Сбор преподавателей 24 января в 8-45 в Главной Физической аудитории.