КОМП'ЮТЕРНА ОБРОБКА ЗОБРАЖЕНЬ

Digital Image Processing - DIP

2020 / 2021 навчальний рік

Лек. 05 2022 ІПЗ-18

МОДУЛЬ 2

ПРЕПАРУВАННЯ ЗОБРАЖЕНЬ. ТОЧКОВІ МЕТОДИ. АМПЛІТУДНІ ПЕРЕТВОРЕННЯ.

МОДУЛЬ 2

ТЕМА 2.3 АМПЛІТУДНІ ПЕРЕТВОРЕННЯ

Амплітудні перетворення Гістограмна обробка зображень

Гістограма цифрового зображення з рівнями яскравості $\boldsymbol{l_k} = 0,1,\dots$, L-1 є дискретна функція

$$n_k = h(l_k)$$

де $\boldsymbol{l_k}$ - k-й рівень яскравості,

 $oldsymbol{n}_{oldsymbol{k}}$ - число пікселів на зображенні, що мають яскравість $oldsymbol{l}_{oldsymbol{k}}$.

Гістограмна обробка зображень Нормалізована гістограма:

$$p(l_k) = \frac{n_k}{n} = \frac{h(l_k)}{n}$$

$$\sum_{k=0}^{L-1} p(l_k) = 1$$

п -число пікселів на зображенні,

L – число рівнів яскравості (сірого).

Типова гістограма

Зображення $800 \times 1200 = 96000$ пікселів $0 \le l_k \le 255$

Мінімальний рівень яскравості ЧОРНЕ

Максімальний рівень яскравості БІЛЕ

Гістограмна обробка зображень

- отримання статистики зображення;
- поліпшення зображення;
- стиснення зображення;
- сегментація зображення.

Гістограмна обробка зображень Опис зображення по гістограмі:

Яскравість - концентрація значущих рівнів в певній частині діапазону - свідоцтво переважання певного рівня яскравості;

Зміна яскравості

Збільшення яскравості

Зменшення яскравості

Контрастність зображення

Контрастність - безрозмірна величина, що характеризує різницю яскравостей точок зображення.

Контрастність Вебера:

де: L_s — яскравість предмету, L_b - яскравість

фону

 $C = \frac{L_s - L_b}{L_s} .$

Контрастність Майкельсона:

 $C=rac{L_{max}-L_{min}}{L_{max}+L_{min}}$, де: L_{max} , L_{min} - максимальна та мінімальні яскравості зображення.

застосовується для характеристики зображень з періодичною структурою

10

Контрастність зображення

Середньоквадратична контрастність -

стандартне відхилення яскравості пікселя I(i,j) від середньої яскравості растрового зображення розмірами $M \times N$:

$$C_{sqrt} = \frac{1}{NM} \sqrt{\sum_{i=0}^{N} \sum_{j=0}^{M} (L_{i,j} - \bar{L})^2}$$

Гістограмна обробка зображень Оцінка контрасту по гістограмі:

Контраст - співвідношення яскравості найсвітлішої та найтемнішої частин зображення.

- вузька гістограма поблизу центру діапазону яскравостей зображення з низьким контрастом;
- ненульові рівні гістограми покривають широку частину діапазону яскравостей, розподіл близький до рівномірного висококонтрастне зображення.

Зміна контрасту

Збільшення контрасту

Зменшення контрасту

Підвищення контрасту

- 1. Лінійна розтяжка (лінійне контрастування)
- 2. Нормалізація гістограми
- 3. Еквалізація (вирівнювання, лінеаризація, equalization)

Підвищення контрасту Лінійна розтяжка

Гістограма «звужена»

$$0 \le l_{min} \le l_k \le l_{max} \le L$$
=255

Розтягування = перерахунок

$$l_k^{new} = \frac{l_k - l_{min}}{l_{max} - l_{min}} * L$$

Підвищення контрасту Нормалізація

Розтягується не все зображення, а найбільш інформативна його частина.

Під інформативною частиною розуміється набір піків гістограми, тобто інтенсивності, які частіше за інших зустрічаються на зображенні.

«Рідкі» інтенсивності, відкидаються, далі виконується звичайна лінійна розтяжка вийшла гістограми.

Підвищення контрасту Еквалізація гістограми

Зображення $\rightarrow M$ х N (висота х ширина) Тобто MN пікселів.

Всього рівнів яскравості *L*. Тобто на кожен рівень яскравості повинно припадати

$$n_{awer} = \frac{N*N}{L}$$
 пікселів.

Необхідно перетворити «випадковий» розподіл яскравостей пікселів похідного зображення в розподіл за рівномірним законом.

Підвищення контрасту Еквалізація гістограми

З точки зору теорії ймовірності

$$S_k = \sum_{j=0}^k p(l_k), k = 0,1, \dots L - 1$$

Тоді всі можливі значення яскравості в приблизно однаковій кількості

Гістограмна обробка зображень Яскравості пікселів в результаті еквалізациі:

$$l_k^{new} = round\left(\frac{s_k - s_{min}}{MN - s_{min}}(L - 2)\right) + 1$$

де M, N - висота і ширина зображення, L — число рівнів сірого.

Гістограмна обробка зображень

Для еквалізації гістограм кольорових зображень зручно переходити до простору Lab, який дозволяє коригувати яскравість, не змінюючи колір.

Гістограмна обробка зображень Умови:

А) функція перетворення ϵ однозначною і монотонно зростаючою - це гарантує існування зворотного перетворення і збереження порядку зміни яскравості; Б) допустимий діапазон яскравості після перетворення збігається з діапазоном яскравостей після перетворення.

Гістограмна обробка зображень Приведення гістограми

Приведення гістограми - перетворення, що дозволяє отримати оброблене зображення з гістограмою потрібного виду (ітераційний процес).

Рекомендована ЛІТЕРАТУРА

- Вовк С.М., Гнатушенко В.В., Бондаренко М.В. Методи обробки зображень та комп'ютерний зір: навчальний посібник. Д.: Ліра, 2016 148 с.
- **Красильников Н.Н.** Цифровая обработка 2D- и 3D-изображений: учеб.пособие.- СПб.: БХВ-Петербург, 2011.- 608 с.: ил.
- Гонсалес Р.С., Вудс Р.Э. Цифровая обработка изображений. М.: Техносфера, 2005. -1070 с.
- Визильтер Ю.В., Желтов С.Ю. и др. Обработка и анализ зображений в задачах машинного зрения.-М.: Физматкнига, 2010.-672 с.

Рекомендована ЛІТЕРАТУРА

- Ватолин Д., Ратушняк А., Смирнов М., Юкин В. Методы сжатия данных. Устройство архиваторов, сжатие изображений и видео. М.: ДИАЛОГ-МИФИ, 2002. 384 с.
- **Творошенко І.С.** Конспект лекцій з дисципліни «Цифрова обробка зображень» / І.С.Творошенко : І.С. Творошенко ; Харків. нац. ун-т міськ. госп-ва ім. О. М. Бекетова. Харків : ХНУМГ ім. О. М. Бекетова, 2017. 75 с.
- Методи компьютерной обработки изображений: Учебное пособие для ВУЗов/ Под ред.: Сойфер В.А.. 2-е изд., испр. М.: Физматлит, 2003. 780 с.
- Фисенко В.Т., Фисенко Т.Ю. Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.

Додаткова ЛІТЕРАТУРА

- **Грузман И.С.**, Киричук В.С. Цифровая обработка зображений в информационных системах. Новосибирск: Изд-во НГУ, 2002. 352 с.: ил.
- Solomon C., Breckon T. Fundamentals of Digital Image Processing. Willey-Blackwell, 2011 344 p.
- Павлидис Т. Алгоритмы машинной графики и обработки изображений: Пер. с англ. М.: Радио и связь, 1986. 400 с.
- **Яншин В. В.**, Калинин Г. А. Обработка изображений на языке Си для IBM РС: Алгоритмы и программы. М.: Мир, 1994. 240 с.

Інформаційні ресурси

- Компьютерная обработка изображений. Конспект лекций. http://aco.ifmo.ru/el_books/image_processing/
- Цифрова обробка зображень [Електронний ресурс]: методичні рекомендації до виконання лабораторних робіт / НТУУ «КПІ»; уклад.: В. С. Лазебний, П. В. Попович. Електронні текстові дані (1 файл: 1,41 Мбайт). Київ: НТУУ «КПІ», 2016. 73 с. https://ela.kpi.ua/handle/123456789/21035
- https://www.youtube.com/watch?v=CZ99Q0DQq3Y
- https://www.youtube.com/watch?v=FKTLW8GAdu4

The END Modulo 2. Topic 3