Une entreprise artisanale fabrique des chaises de salon. Elle peut en fabriquer maximum 25 par jour.

Le coût total de fabrication de n chaises est définit par la fonction $C(n) = -n^2 + 58n + 120$ (en euros).

Ces chaises sont ensuite toutes vendues : vendre n chaises rapporte à l'entreprise $R(n) = -2n^2 + 85n$ de recettes (en euros).

- 1. Calculer la formule donnant le bénéfice B(n) réalisé par l'entreprise en vendant n chaises. $B(n) = -n^2 + 29n 120$
- 2. Calculer B(1). L'entreprise gagne-t-elle de l'argent en vendant une seule chaise? B(1) = -1 + 29 120 = -84€
- 3. Montrer que B(n) peut s'écrire -(n-5)(n-24). Double distributivité
- 4. Remplir les trois premières lignes du tableau de signes ci-dessous.

n	()	5		22		25
-(n-5)		+	0		_		
(n - 24)			_		0	+	
B(n)		_	0	+	0	_	

- 5. On sait que B(n) = -(n-5)(n-24). Ainsi.
 - Si -(n-5) est positif et (n-24) est négatif, B(n) est négatif.
 - Si -(n-5) est négatif et (n-24) est négatif, B(n) est positif.
 - Si -(n-5) est négatif et (n-24) est positif, B(n) est négatif . Remplir alors la dernière ligne du tableau de signes.
- 6. Avec la calculatrice, donner un encadrement du bénéfice maximal de l'entreprise.

Dans la numworks, on peut :

• Aller dans l'application « fonctions », et entrer l'expression de la fonction B.

- Aller sur « Afficher les valeurs ».
- Aller sur « Régler l'intervalle » pour avoir toutes les valeurs entre 0 et 25.

n	0	1	2	3	4	5	6	7	8	9	
B(n)	-120.0	-92.0	-66.0	-42.0	-20.0	0.0	18.0	34.0	48.0	60.0	-
	13	14	15	16	17	18	19	20	21	22	
	88.0	90.0	90.0	88.0	84.0	78.0	70.0	60.0	48.0	34.0	