

F228 – Aula exploratória 10 – 2º Semestre de 2016 Assunto: Cinética dos Gases

Exercício 1 – O recipiente A da figura abaixo contém um gás ideal à pressão de 5,0x10⁵ Pa e à temperatura de 300K. Ele está ligado por um tubo fino (e uma válvula fechada) a um recipiente B, cujo volume é quatro vezes maior que o de A. O recipiente B contém o mesmo gás ideal à pressão de 1, 0x10⁵ Pa e à temperatura de 400 K. A válvula é aberta para que as pressões se igualem, mas a temperatura de cada recipiente é mantida. Qual é a nova pressão nos dois recipientes?

Instituto de Física Gleb Wataghin - UNICAMP

Exercício 2 – A figura abaixo mostra a distribuição de probabilidade da velocidade das moléculas de uma amostra de nitrogênio. A escala do eixo horizontal é definida por v_s = 1200 m/s. (DADOS: unidade de massa atómica para o átomo de N igual a 14u.a.; R=8,31m³Pa/Kmol). Determine

- a) A temperatura do gás
- b) A velocidade média quadrática das moléculas

Instituto de Física Gleb Wataghin - UNICAMP

Exercício 3 – Suponha que 4,0 mols de um gás ideal diatômico, com rotação molecular, mas sem oscilação, sofrem um aumento de temperatura de 60,0 K em condições de pressão constante. Quais são

- a) A energia transferida como calor Q
- b) A variação ΔE_{int} da energia interna do gás
- c) O trabalho W realizado pelo gás
- d) A variação ΔK da energia cinética de translação do gás?

Instituto de Física Gleb Wataghin - UNICAMP

Exercício 4 – A figura abaixo mostra um ciclo composto de cinco trajetórias: *AB* é isotérmica a 300K, *BC* é adiabática com um trabalho de 5,0 J, *CD* é uma pressão constante de 5 *atm*, *DE* é isotérmica e *EA* é adiabática com uma variação da energia interna de 8,0 J. Qual é a variação da energia interna do gás ao longo da trajetória *CD*?

