MSDA Bridge Week 3 – Data Science Assignment Author: Arun Kumar

2.34

Outcome	Win (X)(\$)	P(X)	$X*P(X=x_i)$	$(X-E(X))^2$	$P(X)^*(X-E(X))^2$
Red Card	0	26/52 =0.5	0	$(0 - 4.3269)^2$ = 18.72	9.36
Spade	5	13/52 = 0.25	1.25	$(5 - 4.3269)^2$ = 0.45	0.1125
Club	10	13/52 = 0.25	2.5	$(10 - 4.3269)^2$ = 32.18	8.045
Ace Club	30	1/52 = 0.0192	0.5769	$(30 - 4.3269)^2$ = 659.10	12.65
			E(X) = \$4.3269		

Variance = $V(X) = \Sigma P(X)^*(X - E(X))^2 = \30.17 Standard Deviation = SD(X) = Sqrt(V(X)) = \$5.49

I will not play this game as the average expected win is around \$4 but the wins have a standard deviation of \$5.49, which means I don't have a chance to make a profit. On the other hand I can loose lot of money as the losses per game can go up to \$5.49.

2.40: Baggage Fees

X = Revenue per passenger

(a)

	No Bag	One Bag	Two Bag	
Cost(X in \$)	0	25	60	
P(X)	0.54	0.34	0.12	
X*P(X)	0	8.5	7.2	E(X) = \$15.7
X - E(X)	-15.7	9.3	44.3	
$(X - E(X))^2$	246.49	86.49	1962.49	

Variance =
$$V(X) = \Sigma P(X)^*(X - E(X))^2 = \$2295.47$$

Standard Deviation = $SD(X) = Sqrt(V(X)) = \$47.91$

(b)

Expected revenue for 120 passengers =
$$120 * E(X) = $1884$$

Standard deviation for 120 passengers = $120 * SD(X) = Sqrt(120*V(X)) = 524.84

(c) Assumption for the above calculation is that a passenger check-in baggage is independent of other passenger's choice.

2.42: Textbooks and Mario Kart video game

X = Item1 = Text book

Y = Item 2 = Mario Kart video game for Nintendo wii

Given information:

$$E(X) = $110 , SD(X) = $4$$

$$E(Y) = $38, SD(Y) = $5$$

(a)

Profit =
$$1*Y + (-1)*X = Y - X$$

 $E(Y - X) = E(Y) - E(X) = 38 - 110 = -$72 (Loss)$

To calculate the standard deviation of the profit/loss:

$$Var(Y) = 5^2 = 25$$

$$Var(X) = 4^2 = 16$$

$$Var(Profit/Loss) = Var(Y-X) = Var(Y) - Var(X) = 25 - 16 = $9$$

$$SD(Y-X) = Sqrt(Var(Y-X)) = $3$$

So,

Expected loss = \$72

Expected standard deviation of loss = \$3

(b)

Expected money earned from the sale of text book= E(X) = \$110

As 10% is earned for the sale -

Expected money earned of the sale = 10% * E(X) = 10% * 110 = \$11.

Standard deviation of the expected money earned =

10% * Standard deviation of the money earned of sale = 10% * SD(X) = \$0.4

2.46: Salary distribution

Income	Total(%)
\$1 - \$9,999	2.2
\$10000 - \$14999	4.7
\$15000 - \$24000	15.8
\$25000 - \$34000	18.3
\$35000 - \$49999	21.2
\$50000 - \$64999	13.9
\$65000 - \$74999	5.8
\$75000 - \$99999	8.4
\$100, 000 or more	9.7

Below chart is created in excel:

(a)

Based on the distribution, it can be inferred that more people earn between \$35,000 - \$49,999.

The distribution seems to be a normal distribution with the pivot at \$35,000 - \$49,999 salary range.

(b) P(Person makes less than \$50,000/year) = 2.2 + 4.7 + 15.8 + 18.3 + 21.2 = 62.2 % = 0.62

(c)
P(Female and earns less than \$50,000) =
P(Female) * P(Earns less than \$50,000) = 0.41 * 0.62 = 0.2542 = 25.42 %

The above calculation is on an assumption that the salary earned by person is independent of the gender.

(d)

The above assumption is not true.

Note: Many reports/study shows that salary earned by female co-worker are less than the male co-worker.

One citing: http://time.com/3836977/un-women-wages-and-careers/