Boyi Guo

Department of Biostatistics University of Alabama at Birmingham

July 12th, 2022

Outline

Outline

- Background
 - Spline Model Development
 - Bayesian Regularization
 - Bayesian Variable Selection
- Dissertation
 - Two-part Spike-and-slab LASSO Prior for Spline Functions
 - EM-Coordinate Descent Algorithms
 - ► Empirical Performance of Prediction & Selection
- Future Research
 - Structured Additive Regression with Spike-and-Slab LASSO prior
 - Spatially Variable Genes Screening
 - ► Other Questions of Interest

Spline Model Development

Spline Model Development

Spline Model Development

"It is extremely unlikely that the true (effect) function f(X) (on the outcome) is actually linear in X."

- Hastie, Tibshirani, and Friedman (2009) PP. 139
- Traditional modeling approaches
 - ► Categorization of continuous variable, polynomial regression
 - Simple but may be statistically flawed
- Machine learning methods
 - Black-box algorithms: Random forests, neural network
 - Predict accurate but too complicated for interpretation

Spline Functions

A *spline* function is a piece-wise polynomial function

$$B(x) = \sum_{k=1}^{K} \beta_k b_k(x) \equiv \boldsymbol{X}^T \boldsymbol{\beta}$$

 $b_k(x)$ are the *basis functions*, possibly truncated power basis and b-spline basis.

Figure 1: A cubic spline function with 2 knots (courtesy of Hastie, Tibshirani, and Friedman (2009))

Generalized Additive Models with Splines

Generalized additive model (Hastie and Tibshirani 1987) is expressed

$$y_i \stackrel{\text{iid}}{\sim} EF(\mu_i, \phi), \quad i = 1, ..., n$$

$$g(\mu_i) = \beta_0 + B(x_i) = \beta_0 + \boldsymbol{X}_i^T \boldsymbol{\beta}, \quad \mathbb{E}[B(X)] = 0$$

where $B(x_i)$ is the spline function, $g(\cdot)$ is a link function, ϕ is the dispersion parameter

Model fitting follows the generalized linear models, e.g. ordinary least square for Gaussian outcome

$$\hat{oldsymbol{eta}} = \mathop{\mathsf{arg\,min}} \sum_{i=1}^n \left[y_i - eta_0 - oldsymbol{X}_i^T oldsymbol{eta}
ight]^2$$

Spline Model Development

Problem: Function Smoothness

The estimation of B(X) can be wiggly when the underlying function is smooth, particularly as the number of bases ,K, increases.

[TODO: add two plots, overfitting and not overfitting]

Bayesian Regularization

Bayesian Regularization

Smoothing Spline Model

- Smoothing penalty $\lambda \int B''(X)^2 dx = \lambda \beta^T S \beta$
 - ightharpoonup The smoothing penalty matrix $m{S}$ is known given $m{X}$
 - **S** is symmetric and positive semi-definite
- Penalized Least Square for Gaussian Outcome

$$\hat{oldsymbol{eta}} = rg \min \sum_{i=1}^n \sum_{i=1}^n \left[y_i - eta_0 - oldsymbol{X}_i^T oldsymbol{eta}
ight]^2 + \lambda oldsymbol{eta}^T oldsymbol{S} oldsymbol{eta}$$

lacktriangle The smoothing parameter λ is a tuning parameter, selected via cross-validation

Bayesian Regularization

Problem: Multiple Predictor Model

When a model contains multiple spline functions for variables X_1, \ldots, X_p , the penalized least square estimator is

$$\hat{\boldsymbol{\beta}} = \arg\min \sum_{i=1}^{n} \sum_{i=1}^{n} \left[y_i - \beta_0 - \sum \boldsymbol{X}_{ij}^T \boldsymbol{\beta}_j \right]^2 + \lambda_j \boldsymbol{\beta}_j^T \boldsymbol{S}_j \boldsymbol{\beta}_j$$

How to decide λ_i ?

- lacktriangle Global smoothing, i.e. $\lambda_1=\cdots=\lambda_p$ assumes all functions shares the same shape
- ightharpoonup Adaptive smoothing, i.e. examining λ_i combination, are computationally intensive

Bayesian Regularization

- Bayesian Regularization is the Bayesian analogy of penalized models by using regularizing priors
 - Bayesian ridge via normal prior

$$\beta \sim N(0, \tau^2) \rightarrow \lambda = \sigma^2/\tau^2$$

Adaptive shrinkage with hierarchical priors

$$au_j^2 \stackrel{\mathsf{iid}}{\sim} \mathit{IG}(a,b)$$

- Adaptive Smoothing
 - ▶ Random walk prior on b-spline bases with IG hyperprior
 - Normal prior on truncated power bases with a log-normal spline model for variance

Bayesian Variable Selection

Bayesian Variable Selection

Bavesian Variable Selection

Problem: Functional Selection

In the context of variable selection and high-dimensional statistics, we always assume some variables are not effective or predictive to the outcome.

How to statistically detect

- ▶ if a variable is predictive to the outcome, $B_j(X_j) = 0$
- lacktriangledown if a variable has a nonlinear relationship with the outcome, $B_j(X_j)=eta_jX_j$

Bi-level selection is the procedure that simultaneously addresses the two questions above

Bavesian Variable Selection

Spike-and-Slab Priors

Spike-and-slab priors are a family of mixture distributions that deploys a characterizing structure

$$eta | \gamma \sim (1 - \gamma) f_{\sf spike}(eta) + \gamma f_{\sf slab}(eta)$$

- lacktriangle Latent indicator γ follows a Bernoulli distribution with probability heta
- ▶ Spike density $f_{spike}(x)$ concentrates around 0 for small effects
- ▶ Slab density $f_{slab}(x)$ is a flat density for large effects
- lacktriangle Natural procedure to select variables via posterior distribution of γ
- Markov chain Monte Carlo is not compelling for high-dimensional data analysis

Spike-and-Slab LASSO Priors

Double exponential distributions as the spike and slab distributions

$$\beta | \gamma \sim (1 - \gamma)DE(0, s_0) + \gamma DE(0, s_1), 0 < s_0 < s_1$$

- Seamless variable selection as coefficients shrinkage to 0
- Computation advantages via Expectation-Maximization (EM) algorithms
- Group spike-and-slab LASSO
 - Structure underlying predictors, e.g. gene pathways, bases of a spline function
 - ightharpoonup Structured prior on γ

$$\gamma_k | \theta_j$$
 Binomial $(1, \theta_j), k \in j$

Problem: High-dimensional Spline Model

0000

How to jointly model signal sparsity and function smoothness, while capable of bi-level selection?

- Excess shrinkage due to ignoring smooth penalty completely
 - ▶ Group lasso penalty (Ravikumar et al. 2009; Huang, Horowitz, and Wei 2010), group SCAD penalty (Wang, Chen, and Li 2007; Xue 2009)
 - Global penalty VS adaptive penalty
- ► All-in-all-out selection
 - Can not detect if a function is linear, e.g. spike-and-slab grouped LASSO prior (Bai et al. 2020; Bai 2021)
 - ► Failed to select function as whole, e.g. group spike-and-slab LASSO prior
- Computational prohibitive algorithms
 - ▶ MCMC algorithms doesn't scale well for high-dimensional models (Scheipl, Fahrmeir, and Kneib 2012)

Objectives

- ➤ To develop statistical models that improve curve interpolation and outcome prediction
 - Local adaption of sparse penalty and smooth penalty
 - ▶ Bi-level selection for linear and nonlinear effect
- To develop a fast and scalable algorithm
- ► To implement a user-friendly statistical software

Projects

- **Guo, B.**, Jaeger, B. C., Rahman, A. F., Long, D. L., Yi, N. (2022). Spike-and-Slab least absolute shrinkage and selection operator generalized additive models and scalable algorithms for high-dimensional data analysis. *Statistics in Medicine*. doi: https://doi.org/10.1002/sim.9483
- ▶ **Guo, B.**, Jaeger, B. C., Rahman, A. F., Long, D. L., Yi, N. (2022). A scalable and flexible Cox proportional hazard model for high-dimensional survival prediction and functional selection *arXiv*. doi: https://doi.org/10.48550/arXiv.2205.11600
- ▶ **Guo, B.**, Yi, N. (2022). BHAM: An R Package to Fit Bayesian Hierarchical Additive Models for High-dimensional Data Analysis *Work in Progress*

Two-part Spike-and-slab LASSO (SSL) Prior for Smooth Functions

Two-part Spike-and-slab LASSO (SSL) Prior for Smooth Functions

Two-part Spike-and-slab LASSO (SSL) Prior for Smooth Functions

Generalized Additive Model

Given the data $\{y_i, x_{i1}, \dots, x_{ip}\}_{i=1}^n$ where p >> n

$$y_i \stackrel{\text{i.i.d.}}{\sim} EF(\mu_i, \phi),$$
 $g(\mu_i) = \beta_0 + \sum_{j=1}^p B_j(x_{ij}), \quad i = 1, \dots, n.$

Cox proportional hazard model with event time t_i

$$h(t_i) = h_0(t_i) \exp(\sum_{i=1}^p B_j(x_{ij})), \quad i = 1, \ldots, n.$$

Two-part Spike-and-slab LASSO (SSL) Prior for Smooth Functions

Smoothing Function Reparameterization

▶ Smoothing penalty from Smoothing spline regression (Simon N. Wood 2017)

$$\lambda_j \int B_j''(x) dx = \lambda_j \beta_j^T \mathbf{S}_j \beta_j,$$

where S_j is a known smoothing penalty matrix.

lacktriangle Isolate the linear and nonlinear components via eigendecomposing S_j

$$\boldsymbol{X}\boldsymbol{\beta} = X^0\boldsymbol{\beta} + \boldsymbol{X}^*\boldsymbol{\beta}^*$$

- Benefits
 - Motivate bi-level selection
 - Implicit modeling of function smoothness
 - ▶ Reduce computation load with conditionally independent prior of basis coefficients

Two-part Spike-and-slab LASSO (SSL) Prior

SSL prior for the linear coefficient and group SSL priors for nonlinear coefficients

$$egin{aligned} eta_j | \gamma_j, s_0, s_1 &\sim extit{DE}(0, (1-\gamma_j)s_0 + \gamma_j s_1) \ eta_{jk}^* | \gamma_j^*, s_0, s_1 &\stackrel{\mathsf{iid}}{\sim} extit{DE}(0, (1-\gamma_j^*)s_0 + \gamma_j^* s_1), k = 1, \dots, K_j \end{aligned}$$

Effect hierarchy enforced latent inclusion indicators γ_i and γ_i^* for bi-level selection

$$\gamma_j | \theta_j \sim \textit{Bin}(\gamma_j | 1, \theta_j), \quad \gamma_j^* | \gamma_j, \theta_j \sim \textit{Bin}(1, \gamma_j \theta_j),$$

Local adaptivity of signal sparsity and function smoothness

$$\theta_j \sim \text{Beta}(a, b)$$

Visual Representation

EM-Cooridante Descent Algrithm for Scalable Model Fitting

We are interested in estimating $\Theta = \{\beta, \theta, \phi\}$ using optimization based algorithm for scalability purpose

- Basic Ideas
 - lacktriangle Treat γ s as the "missing data" in the EM procedure
 - P Quantify the expectation of log posterior density function of Θ with respect to γ conditioning on $\Theta^{(t-1)}$
 - Maximize two parts of the objective function independently
- Previous applications in high-dimensional data analysis
 - ▶ EMVS (Ročková and George 2014), Spike-and-slab lasso (Ročková and George 2018)
 - BhGLM (Yi et al. 2019)

Decomposition of Objective Function

We aim to maximize the log posterior density of Θ by averaging over all possible values of γ

$$\log f(\Theta, \gamma | \mathbf{y}, \mathbf{X}) = Q_1(\beta, \phi) + Q_2(\gamma, \theta),$$

▶ L₁-penalized likelihood function of β , ϕ

$$Q_1 \equiv Q_1(eta,\phi) = \log f(\mathbf{y}|eta,\phi) + \sum_{j=1}^p \left[\log f(eta_j|\gamma_j) + \sum_{k=1}^{\mathcal{K}_j} \log f(eta_{jk}^*|\gamma_{jk}^*)
ight]$$

Posterior density of θ given data points γ s

$$Q_2 \equiv Q_2(oldsymbol{\gamma},oldsymbol{ heta}) = \sum_{j=1}^p \left[(\gamma_j + \gamma_j^*) \log heta_j + (2 - \gamma_j - \gamma_j^*) \log (1 - heta_j)
ight] + \sum_{j=1}^p \log f(heta_j).$$

 \triangleright Q_1 and Q_2 are independent conditioning on γ_S

Summary of EM-Coordinate Descent Algorithm

- E-step
 - Formulate $E_{\gamma|\Theta^{(t)}}[Q(\Theta,\gamma)] = E(Q_1) + E(Q_2)$
 - $ightharpoonup E(Q_1)$ is a penalized likelihood function of β, ϕ
 - $ightharpoonup E(Q_2)$ is a posterior density of θ given $E(\gamma)$
 - $ightharpoonup E(Q_1)$ and $E(Q_2)$ are conditionally independent
 - ightharpoonup Calculate $E(\gamma_i)$, $E(\gamma_i^*)$ and the penalties parameters by Bayes' theorem
- M-step:
 - Use Coordinate Descent to fit the penalized model in $E(Q_1)$ to update β, ϕ
 - ▶ Closed form calculation via $E(Q_2)$ to update θ

Tuning Parameter Selection

- $ightharpoonup s_0$ and s_1 are tuning parameters
- lacktriangle Empirically, s_1 has extremely small effect on changing the estimates
- Focus on tuning *s*₀
- $lackbox{\ }$ Consider a sequence of L ordered values $\{s_0^I\}: 0 < s_0^1 < s_0^2 < \cdots < s_0^L < s_1$
- ightharpoonup Cross-validation to choose optimal value for s_0

Simulation Study

Simulation Study

- ▶ Follow the data generating process introduced in Bai et al. (2020).
- $ightharpoonup n_{train} = 500, \ n_{test} = 1000$
- p = 4, 10, 50, 200

$$\mu = 5\sin(2\pi x_1) - 4\cos(2\pi x_2 - 0.5) + 6(x_3 - 0.5) - 5(x_4^2 - 0.3),$$

- ► $f_j(x_j) = 0$ for j = 5, ..., p.
- lacksquare 2 types of outcome: Gaussian ($\phi=1$), Binomial
- ► Splines are constructed using 10 knots
- ▶ 50 Iterations

Comparison & Metircs

- ► Methods of comparison
 - Proposed model BHAM
 - Linear LASSO model as the benchmark
 - mgcv (S. N. Wood 2004)
 - COSSO (Zhang and Lin 2006) and adaptive COSSO(Storlie et al. 2011)
 - ► Sparse Bayesian GAM (Bai 2021)
 - spikeSlabGAM (Scheipl, Fahrmeir, and Kneib 2012)
- Metrics
 - ightharpoonup Prediction: R^2 for continuous outcomes, out-of-sample AUC for binary outcomes
 - ▶ Variable Selection: positive predictive value (precision), true positive rate (recall), and Matthews correlation coefficient (MCC)

Prediction Performance

- Linear LASSO Model performs bad and mgcv performs well
- BHAM performs better than COSSO, adaptive COSSO and spikeSlabGAM
- ▶ BHAM performs better than SB-GAM in low-dimensional case but slightly worse in the high-dimensional setting
- ▶ BHAM is much faster than SB-GAM in fitting models

Variable Selection Performance

- SB-GAM has the best variable selection performance
- BHAM has conservative selection
- ► BHAM and spikeSlabGAM have trade-offs for bi-level selection
 - spikeSlabGAM tends to select either linear or nonlinear components of the function
 - ▶ BHAM is more likely to select both parts

Additive Cox Proportional Hazards Model

Additive Cox Proportional Hazards Model

Model & Objective Functions

Additive Cox Proportional Hazards Model

Emipirical Performance

Additive Cox Proportional Hazards Model

R Package BHAM

Future Research

Varying Coefficient Model

Smooth Surface Fitting

Structural Additive Model

References

References I

- Bai, Ray. 2021. "Spike-and-Slab Group Lasso for Consistent Estimation and Variable Selection in Non-Gaussian Generalized Additive Models." arXiv:2007.07021v5.
- Bai, Ray, Gemma E Moran, Joseph L Antonelli, Yong Chen, and Mary R Boland. 2020. "Spike-and-Slab Group Lassos for Grouped Regression and Sparse Generalized Additive Models." *Journal of the American Statistical Association*, 1–14.
- Hastie, Trevor, and Robert Tibshirani. 1987. "Generalized additive models: Some applications." *Journal of the American Statistical Association* 82 (398): 371–86. https://doi.org/10.1080/01621459.1987.10478440.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2009. *The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media.

References II

- Huang, Jian, Joel L Horowitz, and Fengrong Wei. 2010. "Variable Selection in Nonparametric Additive Models." *Annals of Statistics* 38 (4): 2282.
- Ravikumar, Pradeep, John Lafferty, Han Liu, and Larry Wasserman. 2009. "Sparse additive models." *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 71 (5): 1009–30. https://doi.org/10.1111/j.1467-9868.2009.00718.x.
- Ročková, Veronika, and Edward I. George. 2014. "EMVS: The EM approach to Bayesian variable selection." *Journal of the American Statistical Association* 109 (506): 828–46. https://doi.org/10.1080/01621459.2013.869223.
- ——. 2018. "The Spike-and-Slab LASSO." *Journal of the American Statistical Association* 113 (521): 431–44. https://doi.org/10.1080/01621459.2016.1260469.

References III

- Scheipl, Fabian, Ludwig Fahrmeir, and Thomas Kneib. 2012. "Spike-and-slab priors for function selection in structured additive regression models." *Journal of the American Statistical Association* 107 (500): 1518–32. https://doi.org/10.1080/01621459.2012.737742.
- Storlie, Curtis B, Howard D Bondell, Brian J Reich, and Hao Helen Zhang. 2011. "Surface Estimation, Variable Selection, and the Nonparametric Oracle Property." Statistica Sinica 21 (2): 679.
- Wang, Lifeng, Guang Chen, and Hongzhe Li. 2007. "Group SCAD Regression Analysis for Microarray Time Course Gene Expression Data." *Bioinformatics* 23 (12): 1486–94.

References IV

- Wood, S. N. 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models." *Journal of the American Statistical Association* 99 (467): 673–86.
- Wood, Simon N. 2017. *Generalized additive models: An introduction with R, second edition.* https://doi.org/10.1201/9781315370279.
- Xue, Lan. 2009. "Consistent Variable Selection in Additive Models." *Statistica Sinica*, 1281–96.
- Yi, Nengjun, Zaixiang Tang, Xinyan Zhang, and Boyi Guo. 2019. "BhGLM: Bayesian Hierarchical GLMs and Survival Models, with Applications to Genomics and Epidemiology." *Bioinformatics* 35 (8): 1419–21.
- Zhang, Hao Helen, and Yi Lin. 2006. "Component Selection and Smoothing for Nonparametric Regression in Exponential Families." *Statistica Sinica*, 1021–41.