EN222: FLUID MECHANICS AND HEAT TRANSFER

Wind Angle and Velocity Effects on a 2D Airfoil

Guide: Professor Manaswita Bose

Energy Science and Engineering, IIT Bombay

Objective

To analyze how different angles of attack and wind velocities affect:

- drag coefficient
- lift coefficient
- moment coefficient

of a windmill blade using a 2D model of NACA 4430 airfoil

Mesh

Results

Results

Analysis

- Lift Coefficient increases rapidly till a particular angle of attack (around 15 degrees) after which it starts to saturate
- Drag Coefficient increases slowly initially and rapidly afterwards, as the angle of attack increases
- Moment coefficient first increases rapidly with angle of attack, then somewhat saturates (near 15 degrees) and then again starts increasing rapidly (beyond 20 degrees)
- Hence, after plotting lift coefficient vs drag coefficient, we can see that lift saturates beyond a certain value of drag
- The values of lift, drag and moment coefficients increase with increase in wind velocity

Some Thoughts

• The force that rotates the turbine depends on tangential coefficient which is given by

$$C_t = C_l sin\phi - C_d cos\phi$$

- Phi depends on twist angle of blade as well as angle of attack
- The force on the axis depends on axial coefficient given by

$$C_a = C_l cos\phi + C_l sin\phi$$

- It is desirable to maximise Ct and minimise Ca
- Hence, we can use Ct as an objective function to be maximised with a constraint on Ca (depending on axial force which the axis can bear), and apply optimisation

Name	Yash Mehta	Tarun Kurapaty
Roll Number	22B1504	22B1537

THANK YOU!