

Subject:

Decision tree learning:

Entropy as measure of impurity $p_1 = fraction of cats$ $p_1 = fraction of cats$ $p_2 = fraction of cats$ $p_3 = fraction of cats$ $p_4 = fraction of cats

<math>p_4 = fraction of cats

p_4 = fraction of cats

<math>p_4 = fraction of cats

p_4 = fr$ Subject: Decision tree learning: P1 = fraction of cats p0 = fraction of NOT cats $p1 = \frac{6}{6}$ p1 = 0H(p1) = 1 H(p1) = 0.65 H(p1) = 0 H(p1) = 0= $-p1 log(p1) - (1-p1) log_2(1-p1)$ Whiskers #(p1)=0.72 H(p1)=0.72 H(p1)=0.99 H(p1)=0.92 H(p1)=0.81 H(p1)=0.92

Subject:	//
Reduction = H(0.5) - (5 H(0.8) + 5 H(0.2))	
in entropy $= 0.28$	
La Information gain	
heneral form:	
pleft fraction of cots to loft sub brook	
pleft = fraction of cats in left sub branch	
wleft = fraction of Lexamples that went to left sub branch)
ent C - C - C-11	
ptoth - fraction of cats in Right sub branch	
wight fraction of Lexamples that went to light sub branch	
Information gain = H (P100+) - (Wleft H (P1eft) + W879ht H (P179ht)	
Hutting it all together:	
Start with all examples at the root node Calculate information gain for all possible features, and pick the one with	
 the highest information gain Split dataset according to selected feature, and create left and right 	
branches of the tree Keep repeating splitting process until stopping criteria is met:	
 When a node is 100% one class When splitting a node will result in the tree exceeding a maximum 	
depth Information gain from additional splits is less than threshold	
When number of examples in a node is below a threshold	
One hot encoding of categorical features:	
Ear shape	
Porning	
oval	

$$H(0.5) - \left(\frac{4}{10} + \left(\frac{4}{1}\right) + \frac{6}{10} + \left(\frac{1}{6}\right)\right) = 0.61$$

$$H(0.5) - \left(\frac{7}{10} + \left(\frac{5}{7}\right) + \frac{3}{10} + \left(\frac{5}{3}\right)\right) = 0.40$$

Regression Trees:

· Weight is target

10	Subject: Train the decision tree on the new dataset //
1	subject. The section for the few defects
1	
10	· Setting B to larger doesn't hust but more than 100 doesn't
*	improve performance any further
1	· Above is called "Bagged decision tree"
10	· Sometimes, you get same splits in the some/all trees
*	· So, Randomize feature choice
1	. We choose a subset of features of then choose from the
10	subset "k".
1	· Fox large n, k = Jn
1	The shore is all I " Park of front doubther"
1	. The above is called "Random forest algorithm"
1	$\overline{\eta}_{ab}$
1	Where does an ML engineer go camping?
10	"Where does an ML engineer go camping? a landom forest"
1	- Andrew Ng
1	
10	XhBoost-extreme hadrent Boosting:
1	7.1.2000
	· hair a trans set of size m
12	· hiven a training set of size m
1	For b=1 to B:
1	· Use sampling with replacement to create a new training set
10	of size m.
1.	
1	·Train the decision tree on the new dataset
999	·Train the decision tree on the new dataset . New dataset should be of the misclassified points
	·Train the decision tree on the new dataset
99999	· Train the decision tree on the new dataset . New dataset should be of the misclassified points from previous tree.
	·Train the decision tree on the new dataset . New dataset should be of the misclassified points
	·Train the decision tree on the new dataset . New dataset should be of the misclassified points from previous tree. When to use decision tree?
	· Train the decision tree on the new dataset . New dataset should be of the misclassified points from previous tree.
	·Train the decision tree on the new dataset . New dataset should be of the misclassified points from previous tree. When to use decision tree?