## Word Translation Without Parallel Data (2018)

A. Conneau, G. Lample, M. Ranzato, L. Denoyer, H. Jégou Poster by: A. Puigdemont Monllor, J. Čieško

PA164: Machine Learning and NLP, Faculty of Informatics, Masaryk University, November 11, 2024

## Objectives

- Propose an **unsupervised model** achieving state-of-the-art performance in cross-lingual tasks using monolingual corpora.
- Achieve word translation without parallel data by aligning monolingual embeddings with an adversarial training method.
- Improve performance through a **cross-domain similarity adjustment** to reduce hubness.
- Extend alignment to **diverse language pairs**, including those with different alphabets, without character-level reliance.
- Enable low-resource language translation with limited or no parallel data, e.g., English-Esperanto.
- Ensure mapping quality with an **unsupervised** model-selection criterion.

## Original Idea

Papers: Mikolov et al. (2013), Xing et al. (2015), Zhang et al. (2017).

- Consider two sets of independently trained word embeddings,  $X = \{x_1, \dots, x_n\}$  (source) and  $Y = \{y_1, \dots, y_m\}$  (target).
- Objective: Learn a **linear mapping** W to align translations by minimizing:

$$W^* = \underset{W}{\operatorname{argmin}} ||WX - Y||_F$$

• Translation for a source word s is done by maximizing cosine similarity:

$$t = \operatorname{argmax} \cos(Wx_s, y_t)$$

#### Adversarial Training

- Adversarial  $\mathbf{training}$  aligns WX and Y without cross-lingual supervision.
- Discriminator objective: classify embeddings as source (transformed WX) or target (Y):

$$L_D(\theta_D|W) = -\frac{1}{n} \sum_{i=1}^{n} \log P_{\theta_D}(source = 1|Wx_i)$$
$$-\frac{1}{m} \sum_{i=1}^{m} \log P_{\theta_D}(source = 0|y_i)$$

• Mapping W objective: confuse the discriminator:

$$L_W(W|\theta_D) = -\frac{1}{n} \sum_{i=1}^n \log P_{\theta_D}(source = 0|Wx_i)$$
$$-\frac{1}{m} \sum_{i=1}^m \log P_{\theta_D}(source = 1|y_i)$$

#### Method Illustration



- (A) Two distributions of word embeddings are shown: **English words** in red, X, and **Italian words** in blue, Y, which we aim to **align**. Each dot represents a word, sized proportionally to its **frequency** in the training corpus.
- (B) Through adversarial learning, we learn a rotation matrix W that aligns the distributions. Green stars represent randomly selected words fed to the discriminator, which determines if the embeddings come from the same distribution.

  (C) The mapping W is refined via Procrustes, using frequent words from the previous alignment as anchor points to minimize an energy function, akin to a spring system.
- (D) Translation uses W and a CSLS distance metric that expands dense areas (e.g., around "cat") to reduce "hubness", making hubs like "cat" less close to other words compared to panel (A) (Figure 1, p. 3).

## Refinement Procedure with Procrustes

- Initial mapping W aligns well but struggles with rare words.
- Procrustes refinement improves accuracy by enforcing orthogonality:

$$W^* = \underset{W \in O_{\epsilon}(\mathbb{P})}{\operatorname{argmin}} \|WX - Y\|_F = UV^T,$$

where U and  $V^T$  are from  $SVD(YX^T)$ .

- Frequent words as anchors build a high-quality dictionary.
- Procrustes is applied iteratively to refine W.

# Cross-Domain Similarity Local Scaling (CSLS)

- CSLS reduces the effect of "hubs" in dense areas, where some vectors are nearest neighbors for many others.
- CSLS similarity measure:

$$CSLS(Wx_s, y_t) = 2\cos(Wx_s, y_t) - r_T(Wx_s) - r_S(y_t)$$
  
Where:

$$r_T(Wx_s) = \frac{1}{K} \sum_{y_t \in N_T(Wx_s)} \cos(Wx_s, y_t),$$

$$r_S(y_t) = \frac{1}{K} \sum_{x_s \in N_S(y_t)} \cos(x_s, y_t)$$

• CSLS adjusts similarity based on word density, improving translation accuracy.

## Training and Architectural Choices

- Word Embeddings: FastText embeddings with 300 dimensions, trained on Wikipedia; only the top 200k lowercased words.
- Mapping W: A 300x300 matrix aligning source and target embeddings.
- **Discriminator:** MLP with two 2048-unit layers, Leaky-ReLU activation, 10% dropout, and smoothing s = 0.2.
- Training Procedure: Discriminator is fed top 50,000 words only; orthogonal updates for stability.
- Orthogonality Constraint: Update rule  $W \leftarrow (1+\beta)W \beta(WW^T)W$  with  $\beta = 0.01$ .
- **Dictionary Generation:** CSLS-selected mutual nearest neighbors boost translation accuracy.
- Validation: CSLS-based criterion, correlates with translation accuracy.

#### Results

- Procrustes CSLS (supervised): Achieves top P@1 scores, e.g., 81.4 (en-es), 82.9 (es-en), 72.4 (de-en), outperforming other supervised methods (Mikolov et al. (2013), Smith et al. (2017)).
- Adv Refine CSLS (unsupervised): Nearly matches Procrustes CSLS with 81.7 (en-es), 83.3 (es-en), 74.0 (en-de), often surpassing supervised methods.
- English-Esperanto BLEU Scores: NN: 6.1 (en-eo), 11.9 (eo-en). CSLS: 11.1 (en-eo), 14.3 (eo-en), showing clear CSLS improvements.
- Summary: Both Procrustes CSLS and Adv Refine CSLS outperform older methods, with Adv Refine CSLS highly competitive even without supervision.

|                                                                                                    | P@1                                         | P@5                                     | P@10                                        |
|----------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------|---------------------------------------------|
| Methods with cross-lingual supervision                                                             |                                             |                                         |                                             |
| Mikolov et al. (2013b)†                                                                            | 10.5                                        | 18.7                                    | 22.8                                        |
| Dinu et al. (2015)†                                                                                | 45.3                                        | 72.4                                    | 80.7                                        |
| Smith et al. (2017)†                                                                               | 54.6                                        | 72.7                                    | 78.2                                        |
| Procrustes - NN                                                                                    | 42.6                                        | 54.7                                    | 59.0                                        |
| Procrustes - CSLS                                                                                  | 66.1                                        | 77.1                                    | 80.7                                        |
| Methods without ca                                                                                 | ross-l                                      | ingual                                  | supervision                                 |
| Adv - CSLS                                                                                         | 42.5                                        | 57.6                                    | 63.6                                        |
| Adv - Refine - CSLS                                                                                | 65.9                                        | 79.7                                    | 83.1                                        |
|                                                                                                    |                                             |                                         |                                             |
|                                                                                                    | P@1                                         | P@5                                     | P@10                                        |
| Methods with cro                                                                                   |                                             |                                         |                                             |
|                                                                                                    | ss-lin                                      |                                         |                                             |
| Methods with cro<br>Mikolov et al. (2013b)†<br>Dinu et al. (2015)†                                 | ss-lin                                      | gual s                                  | supervision                                 |
| Mikolov et al. (2013b)†                                                                            | 12.0<br>48.9                                | <b>gual</b> s                           | supervision<br>26.7                         |
| Mikolov et al. (2013b)† Dinu et al. (2015)†                                                        | 12.0<br>48.9<br>42.9                        | <b>gual</b> s<br>22.1<br>71.3           | 26.7<br>78.3                                |
| Mikolov et al. (2013b)† Dinu et al. (2015)† Smith et al. (2017)†                                   | 12.0<br>48.9<br>42.9<br>53.5                | <b>gual</b> s<br>22.1<br>71.3<br>62.2   | 26.7<br>78.3<br>69.2                        |
| Mikolov et al. (2013b)† Dinu et al. (2015)† Smith et al. (2017)† Procrustes - NN                   | 12.0<br>48.9<br>42.9<br>53.5<br><b>69.5</b> | gual s  22.1 71.3 62.2 65.5 <b>79.6</b> | 26.7<br>78.3<br>69.2<br>69.5<br><b>83.5</b> |
| Mikolov et al. (2013b)† Dinu et al. (2015)† Smith et al. (2017)† Procrustes - NN Procrustes - CSLS | 12.0<br>48.9<br>42.9<br>53.5<br><b>69.5</b> | gual s  22.1 71.3 62.2 65.5 <b>79.6</b> | 26.7<br>78.3<br>69.2<br>69.5<br><b>83.5</b> |

**Table:** English to Italian (1), Italian to English (2) word translation retrieval performance (P@1, P@5, P@10) for various methods with and without cross-lingual supervision, evaluated using P@k from 2,000 source queries and 200,000 target sentences. Embeddings from Smith et al. (2017). Results marked by † are theirs. Table 3, p. 8.

#### References

- Conneau, A., Lample, G., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018). Word translation without parallel data. arXiv. https://doi.org/10.48550/arXiv.1710.04087. Code implementation:
- https://github.com/facebookresearch/MUSE
  Dinu, G., Lazaridou, A., & Baroni, M. (2015). Improving zero-shot learning by mitigating the hubness problem. In Proceedings of the International Conference on Learning Representations, Workshop
- Mikolov, T., Le, Q. V., & Sutskever, I. (2013). Exploiting similarities among languages for machine
- translation. arXiv. https://doi.org/10.48550/arXiv.1309.4168.

   Smith, S. L., Turban, D. H. P., Hamblin, S., & Hammerla, N. Y. (2017). Offline bilingual word vectors, orthogonal transformations and the inverted softmax. In *Proceedings of the International Conference*
- on Learning Representations.
  Zhang, M., Liu, Y., Luan, H., & Sun, M. (2017). Adversarial training for unsupervised bilingual lexicon induction. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics.
- Xing, C., Wang, D., Liu, C., & Lin, Y. (2015). Normalized word embedding and orthogonal transform for bilingual word translation. In *Proceedings of NAACL*.