FECHA:	12/5	
recha:	!	

ANÁLISIS MATEMÁTICO I

EXAMEN: 1º PARCIAL

NOMBRE Y APELLIDO:

E-MAIL: ...

1	2	3	4	5	NOTA
M	X	B	\mathcal{G}	X	2/201)

Condición mínima de aprobación (4 puntos): 50% del examen resuelto correctamente.

1) Dada la función $f: \Re \to \Re / f(x) = \begin{cases} e^x - ax + b & , si \, x \leq 0 \\ 2x - 1 & , si \, x > 0 \end{cases}$, Hallar los valores de $a \, y \, b$ $\mathcal{E}\Re$ para que la función sea derivable en x = 0. Puede utilizar la regla del L'Hopital. Justifique su respuesta.

2) Hallar los valores de $a y b \in \mathbb{R}$ para que $\lim_{x \to 1} \frac{ax^2 + bx}{x - 1} = 2$. Justifique su respuesta.

3)Sea la función $f(x) = \frac{x^2 - x}{x + 2}$. Determinar las ecuaciones de las asíntotas lineales al gráfico de f(x). Justifique su respuesta.

4) Encontrar los intervalos de concavidad y puntos de inflexión, si los hubiere, de la función $f(x) = \frac{-x^2}{x+3}$. Justifique su respuesta.

5) Hallar el o los puntos de la gráfica de la función $f(x) = x^2 - 4$, más cercanos al punto P = (0; -2). Justifique su respuesta.

1)
$$40_1 = c^0 - 20 = 5 = \frac{1}{14}$$
 $f'(a) = \frac{1}{16} = \frac{1}{160} = \frac{1}{160$

$$\frac{1}{16} = \frac{1}{16} \frac{1}{16} - \frac{1}{16} = \frac{1}{16} \frac{1}{16} \frac{1}{16} = \frac{1}{16} = \frac{1}{16} \frac{1}{16} = \frac{1}{16} \frac{1}{16} = \frac{1}{16} = \frac{1}{16} \frac{1}{16} = \frac{1}{16} = \frac{1}{16} \frac{1}{16} = \frac$$