Systèmes dynamiques Corrigé 5

Exercice 1.

1. (a) Si x est un point périodique pour φ_t , i.e. $\varphi_{t_0}(x) = x$ pour un $t_0 \in \mathbf{R}$, alors

$$\phi_{t_0}(h(x)) = h(\varphi_{t_0}(x)) = h(x),$$

i.e. h(x) est un point périodique de période t_0 pour (ϕ_t) .

- (b) Supposons que $\mathcal{O}_{\varphi}(x)$ soit fermée. Soit (y_n) une suite à valeurs dans $\mathcal{O}_{\phi}(h(x))$ qui converge vers $y \in \mathbf{R}^n$. Alors par la question précédente, $h^{-1}(y_n) \in \mathcal{O}_{\varphi}(x)$ pour tout n. Puisque la suite $(h^{-1}(y_n))$ converge vers $h^{-1}(y)$ (par continuité de h^{-1}) on a $h^{-1}(y) \in \mathcal{O}_{\varphi}(x)$, car $\mathcal{O}_{\varphi}(x)$ est fermée. Ainsi $y = h(h^{-1}(y)) \in \mathcal{O}_{\phi}(h(x))$ par la question précédente, ce qui conclut (on peut renverser les rôles de φ et φ pour avoir la réciproque).
- (c) Soit $x \in \mathbf{R}^n$ et $y \in \omega(x)$. Alors il existe une suite $(t_k)_{k \in \mathbf{N}}$ à valeurs dans \mathbf{R}_+ telle que $t_k \to +\infty$ et $\varphi_{t_k}(x) \to y$ quand $k \to +\infty$. Par continuité de h, on obtient que $h \circ \varphi_{t_k}(y) \to h(y)$ quand $k \to +\infty$, c'est-à-dire que $\varphi_{t_k}(h(x)) \to h(y)$. En particulier $h(y) \in \omega(h(x))$, ce qui conclut.
- 2. (a) On a $\exp(tA) = \operatorname{diag}(e^t, e^t)$ pour tout t. On a aussi

$$\exp(tB) = e^t \begin{pmatrix} \cos(t) & \sin(t) \\ -\sin(t) & \cos(t) \end{pmatrix}, \quad t \in \mathbf{R}.$$

- (b) Pour tout $x \in \mathbf{R}^n$ on a $\|e^{tA}x\| = e^t\|x\|$. La conclusion est immédiate.
- (c) Pour tout $x \neq 0$ on note $\tau(x)$ le temps obtenu à la question précédente. On pose $\Phi(0) = 0$

$$\Phi(x) = e^{-\tau(x)B}e^{\tau(x)A}x, \quad x \in \mathbf{R}^n.$$

Alors on vérifie que Φ conjugue e^{tA} à e^{tB} (cf. le corrigé du TD n°4).

3. Il est clair que pour tout $x \in \mathbf{R}^2 \setminus 0$ on a $\|\mathbf{e}^{tB}x\| \to +\infty$ quand $t \to +\infty$. Soit $\Phi : \mathbf{R}^2 \to \mathbf{R}^2$ un homéomorphisme tel que $\mathbf{e}^{tB} \circ \Phi = \Phi \circ \mathbf{e}^{tC}$ pour tout $t \in \mathbf{R}$. Puisque $\exp(tC) = \begin{pmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{pmatrix}$, on a $\|\mathbf{e}^{tC}x\| = \|x\|$ pour tout x et tout $t \in \mathbf{R}$, et en particulier pour tout t > 0 il existe t > 0 tel que

$$\|\Phi(e^{tC}x)\| \le C, \quad x \in B(0,r).$$

Soit $x \in B(0,r)$ tel que $\Phi(x) \neq 0$. On a $\|\Phi(e^{tC}x)\| = \|e^{tB}\Phi(x)\| \to +\infty$ quand $t \to +\infty$. C'est absurde.

La même démonstration montre que \mathbf{e}^B et \mathbf{e}^C ne sont pas conjuguées.

Exercice 2.

On a que $\mathcal{H}(\mathbf{R}^n)$ est ouvert : cf. question 1.5 du TD n°4. Soit $A \in GL(\mathbf{R}^n)$, et

$$\delta = \inf\{|\Re(\lambda)|, \ \lambda \in \operatorname{sp}(A) \setminus 0\} > 0.$$

Alors pour tout $|t| < \delta$, les valeurs propres de $A + t \operatorname{Id}$ ont toutes une partie réelle non nulle. Ceci montre que $\mathcal{H}(\mathbf{R}^n)$ est dense dans $\operatorname{GL}(\mathbf{R}^n)$.

On a que $GL(\mathbf{R}^n) = \{M \in \mathcal{L}(\mathbf{R}^n), \ \det(M) \neq 0\}$, qui est donc ouvert. La même démonstration que précédemment montre que $GL(\mathbf{R}^n)$ est dense dans $\mathcal{L}(\mathbf{R}^n)$.

Exercice 3.

Cela est immédiat par un lemme du cours qui dit qu'il existe $\delta > 0$ tel que pour toute fonction $\varphi : \mathbf{R}^n \to \mathbf{R}^n$ continue, bornée, et δ -lipschitzienne, alors les sytèmes dynamiques A et $A + \varphi$ sont topologiquement conjugués.

Exercice 4.

Soit $\varepsilon > 0$. En regardant la décomposition de Jordan de A, on obtient que

$$||A^n|| \le \rho(A)^n |P(n)|, \quad n \in \mathbf{N},$$

pour un certain polynôme $P \in \mathbf{R}[X]$. Cette estimée implique que l'expression

$$||x||' = \sum_{n=0}^{+\infty} b^{-n} ||A^n x||, \quad x \in \mathbf{R}^n,$$

où b > 0 vérifie $\rho(A) < b < \rho(A) + \varepsilon$, définit bien une norme. On a

$$||Ax||' = \sum_{n=0}^{+\infty} b^{-n} ||A^{n+1}x|| = b \sum_{n=1}^{+\infty} b^{-n} ||A^nx|| \le b ||x||',$$

ce qui donne (au sens de la norme d'opérateur) $||A||' \le b < \rho(A) + \varepsilon$.

Exercice 5.

Puisque x est de période n, on a que tout y assez proche de x ne peut pas être k périodique avec k < n (puisque $f^k(x) \neq x$ pour tout $k \in \{1, \ldots, n\}$).

Soit $A=\mathrm{d} f^n(x)$. Par le théorème de Grobman-Hartman, il existe un voisinage V de x, un voisinage U de 0 et un homéomorphisme $h:U\to V$ tel que $h\circ f^n=A\circ h$ pour tout $x\in f^{-n}(U)$. Si $y\in f^{-n}(U)$ vérifie $f^n(y)=y$, alors h(y) vérifie Ah(y)=h(y). Puisque x est hyperbolique on a $1\notin\mathrm{sp}(A)$ et donc h(y)=0 ce qui implique que y=x. Ceci conclut.

Exercice 6.

1. Pour tout $x \in E$, on a

$$A^n \pi_s(x) \to 0$$
, $A^{-n} \pi_u(x) \to 0$, $n \to +\infty$.

Soit $x \in E^s$. Alors $\pi_u(A^n x) = 0$ pour tout $n \ge 0$, et en particulier pour tout $\gamma > 0$ on a $x \in A^{-n}(C^s_{\gamma})$.

Réciproquement, supposons que $x \in A^{-n}(C^s_{\gamma})$ pour tout $n \ge 0$ pour un certain $\gamma > 0$. En particulier

$$||A^n \pi_u(x)|| \le \gamma ||A^n \pi_s(x)|| \to 0, \quad n \to +\infty.$$

Par l'exercice 4., il existe une norme $\|\cdot\|_u$ sur E_u et a>1 tels que $\|(A|_{E_u})^{-1}\|_u \leq a^{-1} < 1$, puisque $\rho((A|_{E_u})^{-1}) < 1$. En particulier $\|\pi_u(x)\|_u \leq a^{-n} \|A^n\pi_u(x)\|_u \to 0$ quand $n \to +\infty$. Il suit que $\pi_u(x) = 0$.

On montre de même que $E^u = \bigcup_{\gamma>0} \bigcap A^n(C^u_{\gamma})$.

2. Soit x tel que $||A^n x|| \leq C$ pour tout $n \geq 0$. Puisque $A^n x = A^n \pi_s(x) + A^n \pi_u(x)$ et que $A^n \pi_s(x) \to 0$ quand $n \to +\infty$, on a $A^n \pi_u(x) \leq C$ pour tout $n \geq 0$. De même qu'à la question précédente, on obtient

$$C \ge ||A^n \pi_u(x)||_u \ge a^n ||\pi_u(x)||_u, \quad n \ge 0,$$

ce qui implique que $\pi_u(x) = 0$. L'autre inclusion et claire et on procède identiquement pour l'autre égalité.

Exercice 7.

1. La fonction f est lisse sur $\mathbf{R}_{>0}$ avec

$$f^{(k)}(x) = Q_k(x) \exp\left(-\frac{1}{x^2}\right), \quad x > 0, \quad k \in \mathbf{N},$$

où les Q_k sont des fractions rationnelles n'ayant des pôles qu'en x = 0. En particulier on $f^{(k)}(x) \to 0$ quand $x \to 0^+$ pour tout $k \in \mathbb{N}$. Ceci implique que f est lisse par le théorème de la limite de la dérivée.

2. Le champ X est lisse puisque ρ et r sont lisses. On a

$$dX(x,y) = \begin{pmatrix} \rho(r^2) + 2x^2 \rho'(r^2) & 1\\ -1 & \rho(r^2) + 2y^2 \rho'(r^2) \end{pmatrix},$$

et en particulier

$$\mathrm{d}X(0) = \begin{pmatrix} 0 & 1\\ -1 & 0 \end{pmatrix}.$$

3. On choisit $\tilde{f}: \mathbf{R} \to [0,1]$ lisse telle que $\tilde{f}(x) = 0$ si $x \notin]0,1[$, et $\tilde{f}(x) > 0$ si $x \in]0,1[$. On peut écrire

$$\mathbf{R} \setminus K = \left(\bigcup_{j \in J} a_j, b_j[\right) \cup]b, +\infty[$$

où l'union est dénombrable, $a_j < b_j$ pour tout j et où $]a_j, b_j[\cap]a_{j'}, b_{j'}[=\emptyset \text{ si } j \neq j']$. On définit $\rho_K : \mathbf{R} \to [0,1]$ par $\rho_K(t) = 0$ si $t \in K$,

$$\rho_K(t) = \tilde{f}\left(\frac{t - a_j}{b_j - a_j}\right) \exp\left(-\frac{1}{(b_j - a_j)^2}\right), \quad t \in [a_j, b_j], \quad j \in J,$$

et $\rho_K(t) = f(\operatorname{dist}(t, K))$ si t > b. Alors ρ_K vérifie les conditions demandées.

4. En remplaçant ρ_K par $\varepsilon \rho_K/2r$, on a les conditions demandées, puisque $\rho_K \leq 1$.

- 5. Si $r^2 = x^2 + y^2 \in K$ alors $\rho_K(x, y) = (-y, x)$ Par suite l'orbite de (x, y) est le cercle de rayon r.
- 6. Les trajectoires des points (x, y) dans la couronne $C_{a,b}\{a^2 < x^2 + y^2 < b^2\}$ restent à l'intérieur de la couronne ; en effet les cercles de rayon a et b sont des trajectoires périodiques de X_K , et les trajectoires ne peuvent pas s'intersecter. De plus, on calcule

$$X_K r^2(x,y) = (y + \rho_K(r^2)x)\partial_x r^2(x,y) + (-x + \rho_K(r^2)y)\partial_y r^2(x,y)$$
$$= 2yx + 2x^2\rho_K(r^2) - 2xy + 2y^2\rho_K(r^2) = 2r^2\rho_K(r^2).$$

Cette équation montre que $t \mapsto r^2(\varphi_K^t(x,y))$ est strictement croissante pour tous $(x,y) \in C_{a,b}$, où (φ_K^t) est le flot associé à X_K , et que

$$\partial_t r^2(\varphi_K^t(x,y)) \ge c\tilde{f}\left(\frac{r^2(\varphi_K^t(x,y)) - a^2}{b^2 - a^2}\right), \quad t \in \mathbf{R}$$

par construction de ρ_K . En particulier on a $r^2(\varphi_K^t(x,y)) \to b^2$ quand $t \to +\infty$.

7. Supposons que X_K et $X_{K'}$ soient conjugués : il existe un homéomorphisme $h: \mathbf{R}^2 \to \mathbf{R}^2$ tel que $h \circ \varphi_K^t = \varphi_{K'}^t \circ h$ pour tout $t \in \mathbf{R}$. Soit $(x,y) \in \mathbf{R}^2$ tel que $x^2 + y^2 \in K$. Alors la trajectoire de $t \mapsto \varphi_K^t(x,y)$ est périodique, et par conjugaison la trajectoire $t \mapsto \varphi_{K'}^t(h(x,y))$ aussi. Par la question précédente, cette trajectoire est un cercle, mettons de rayon r', et on a $r'^2 \in K'$. On pose $\psi(r^2) = r'^2$. Alors $\psi: K \to K'$ est continue, puisqu'elle coïncide avec l'application

$$K \ni \alpha \mapsto \|h(0, \sqrt{\alpha})\|^2 \in K'$$

En renversant les rôles de K et de K', on obtient $\phi: K' \to K$ continue telle que $\psi \circ \phi = \mathrm{Id}_{K'}$ et $\phi \circ \psi = \mathrm{Id}_{K}$. Cela conclut.