# Modelo predictivo para la gestión de inventarios en tiendas de abarrotes en Puno usando ARx y programación lineal entera

Caceres Tacora Lizbeth Estefany Butron Maquera Tania Karin Paredes Cuaguila Fiorella Yaneth Mamani Mena Ronaldo Carlos

Métodos de Optimización

May 14, 2025



## Introducción

## Punto clave 1

Las tiendas de abarrotes en Puno, especialmente cerca de la UNA, operan sin herramientas técnicas, lo que genera pérdidas o desabastecimiento.

### Punto clave 2

Se aplicó un modelo ARx ARIMA con datos de 72 semanas. Se analizaron 52 semanas para identificar patrones y predecir demanda de productos básicos.

## Introducción

## Objetivo de la presentación

Mostrar cómo la estadística y programación pueden mejorar las decisiones de compra en pequeños negocios, optimizando el inventario y reduciendo pérdidas.

## Base de Datos

En este estudio, se utilizó un conjunto de datos sintéticos de ventas semanales de 6 productos de consumo diario en tiendas de vecindario.

Table: Productos seleccionados

| Producto 1 | Pan        |
|------------|------------|
| Producto 2 | Pollo      |
| Producto 3 | Arroz      |
| Producto 4 | Huevo      |
| Producto 5 | Detergente |
| Producto 6 | Shampoo    |

# Segmentación del Dataset

La demanda de cada producto por semana se muestrea durante un periodo de 78 semanas.

Table: Segmentación en subconjuntos

| Conjunto      | Semanas Incluidas | N° de Semanas |  |
|---------------|-------------------|---------------|--|
| Entrenamiento | 1 – 56            | 56            |  |
| Validación    | 57 – 78           | 22            |  |

# Variables Exógenas

Para cada producto, las ventas de los otros cinco productos actúan como variables exógenas que pueden influir en la demanda. Esto

permite captar efectos de complementariedad o sustitución en la demanda semanal.

# Modelado de la Demanda (ARIMAX)

El modelo ARIMAX (AutoRegressive Integrated Moving Average with eXogenous variables) constituye una extensión de los modelos ARIMA. Combina componentes autorregresivos, integrados y de medias móviles con variables exógenas.

# Métricas de Desempeño

Para evaluar la precisión de los modelos hemos utilizado:

| Métrica | Descripción                    |  |  |  |  |
|---------|--------------------------------|--|--|--|--|
| MAE     | Mean Absolute Error            |  |  |  |  |
| RMSE    | Root Mean Squared Error        |  |  |  |  |
| MAPE    | Mean Absolute Percentage Error |  |  |  |  |

## Resultados del Análisis

## Objetivo

Predecir la demanda semanal de 6 productos esenciales y optimizar las decisiones de compra bajo una restricción presupuestaria.

- Modelo: ARX (AutoRegresivo con variables exógenas)
- Horizonte de predicción: 22 semanas
- Datos de entrenamiento: 56 semanas

## Predicción de la demanda

## Modelo ARX

Se usó para estimar la demanda de pan, pollo, arroz, huevo, detergente y shampoo.

• Métricas evaluadas: MAE, RMSE y MAPE

| Producto   | MAE      | RMSE     | MAPE     |  |
|------------|----------|----------|----------|--|
| PAN        | 7.594555 | 9.838747 | 4.040956 |  |
| POLLO      | 5.744137 | 7.222549 | 8.537560 |  |
| ARROZ      | 4.867961 | 6.192679 | 7.369629 |  |
| HUEVO      | 8.254751 | 9.919885 | 5.625268 |  |
| DETERGENTE | 2.695943 | 3.234235 | 7.705518 |  |
| SHAMPOO    | 1.896679 | 2.226834 | 6,554674 |  |

#### Predicción de Ventas de SHAMPOO



#### Predicción de Ventas de DETERGENTE



#### Predicción de Ventas de HUEVO



#### Predicción de Ventas de ARROZ



#### Predicción de Ventas de POLLO



#### Predicción de Ventas de PAN



# Optimización de decisiones de compra

## Modelo de Programación Lineal Entera

Maximizó la ganancia semanal bajo:

- Presupuesto máximo: S/. 500 por semana
- Límite: no superar la demanda predicha

| Semana | Pan | Pollo | Arroz | Huevo | Detergente | Shampoo | Total<br>Invertido | Ganancia<br>Estimada |
|--------|-----|-------|-------|-------|------------|---------|--------------------|----------------------|
| 57     | 184 | 7     | 66    | 145   | 37         | 29      | 498.87             | 152.33               |
| 58     | 183 | 34    | 1     | 133   | 35         | 27      | 499.88             | 149.65               |
| 59     |     |       |       |       |            |         |                    |                      |

## Análisis visual de los resultados

## Inversión y ganancia semanal (semanas 57-78)

- Inversión cercana al límite presupuestario
- Ganancia estable: ¿ S/. 150, con picos hasta S/. 190



# Evolución de unidades adquiridas

Prioriza lo rentable, reduce lo innecesario, y ajusta cada semana la compra según lo que más conviene



# Hallazgos principales

- Se combinó un modelo predictivo (ARX) con técnicas de optimización matemática (ILP).
- El modelo ARX predijo con buena precisión productos de demanda estable (arroz, pollo).
- Hubo mayor dificultad con productos de consumo errático (shampoo).

## Evaluación del modelo ARX

- Se usaron métricas MAE, RMSE y MAPE.
- Los errores se mantuvieron en rangos aceptables.
- Las variables exógenas mejoraron la robustez al capturar relaciones entre productos.

# Optimización con ILP

- El modelo ILP permitió decisiones de compra óptimas bajo restricciones reales.
- Se respetó el presupuesto semanal (S/. 500).
- Se logró una utilidad semanal estable mayor a S/. 150.
- Se priorizaron productos con mayor rentabilidad.

# Aplicaciones prácticas

- La integración ARX + ILP es útil para gestionar inventarios en escenarios variables y con recursos limitados.
- Mejora la eficiencia operativa y económica.

# Proyecciones futuras

- Incluir modelos estocásticos que consideren incertidumbre en la demanda.
- Incorporar variaciones en precios, costos logísticos y penalizaciones por desabastecimiento.
- Esto haría el modelo más realista y robusto para la toma de decisiones.

## **MUCHAS GRACIAS**