Apply algorithm design and analysis methods

Presenters: Huy Nguyen Dinh, Ngan Tran Kim Ngoc

Contents of the presentation

01

02

03

Review

Computional Thinking

Experiments

Review

Review

Quiz

Everyone will answer 10
 questions. Your group's score
 will be the total score of the
 two of you

Active

Every time our group asks a question, after thinking and discussing it.

Top 3 will get 5, 4, 3 points respectively. The remaining groups get 1 point.

Prize Pool

Plus 4 points

Plus 5 points

Plus 3 points

READY FOR

Code: 350 752 Nickname: **Gx_YourName**

Computional Thinking

Computational Thinking

Abstraction thinking

Abstraction is "identifying and extracting relevant information to define main idea(s)".

The key to abstraction is to be able to identify and filter out or ignore the details not necessary to solve the problem

Abstraction thinking

She eats Pie

```
Subject Action/ Object (person or + Occurence/ + (person or thing) State of Being thing)
```

Abstraction thinking

Listening English test

First you take your _	icicle	then add a layer of	dinosaur	
before you pour on a hearty dose of .		maple syrup		
Next, press some	tulips	down into the	noun	before
covering with a sprinkle of				
That's how we make anou		in I		

Decompositional thinking

"If you can't solve a problem, then there is an easier problem you can solve: find it."

George Pólya

Smaller + Smaller = Complex Subproblem + Subproblem = Complex Problem

Example

• Take the example of criminal investigation by the police, how can the police apprehend criminals?.

Smaller + Smaller = Complex Subproblem + Subproblem = Complex Problem

Decomposition

Algorithm Design

Algorithmic Thinking

Algorithmic thinking is about

- Planning,
- Detailing each step
- Creating a process
- Creating a flowchart,...

Red beads \$0.33 each

Blue beads \$0.22 each

Thread \$0.14 per inch

Experiments

In an escape puzzle game, you are trapped in a locked room with a keyhole. Inside the room, there is only a table, a piece of paper, a pen, and sequences of numbers and characters written all over the room. On the wall, you discover an important clue for your escape:

3

63125

The password is 4

To escape, you need to write the password on the piece of paper. As a super sharp detective, you immediately recognize the pattern of the characters. The first line contains only one number, N, and the second line contains 2N - 1 positive integers. The password is the smallest number that, when added to the sequence, allows for at least one way to pair the numbers so that the sum of each pair is equal.

In the given example, there exists [6, 3, 1, 2, 5]. You can separate it into [6, 1], [5, 2], [3, x]. You need to fill in the number 4 so that 6+1=5+2=3+4. If you cannot find such a number, write -1 on the piece of paper, and you will be set free.

Input format:

1 <= K <= 70.

1 <= N <= 3*10^5.

1 <= Ai <= 10^9 (Ai is any number).

Abstraction

To find the smallest number 'a' ($a \ge 1$) to add to an array of size 2N-1 such that the sum of the array (S/2N) is a positive integer

Decomposition & Pattern Recognition

We divide it into three cases: adding at the beginning of the array, in the middle of the array, and at the end of the array.

S1 = a[0] + a[n-2] if inserted at the beginning of the array,

S2 = a[0] + a[n-1] if inserted in the middle of the array,

S3 = a[1] + a[n-1] if inserted at the end of the array.

Algorithm Design

Sort the array
Sort the cases Si (S1, S2, S3) in ascending order
Perform the loop
Taking (Si - the corresponding array element) = Result.

Evaluation

To sort the array with a time complexity of O(n log n) and perform the O(n) loop, resulting in a total time complexity of O(n log n)

```
def find password(N, nums):
                                                         #Sort Answer
    if (N==1):
                                                          for K in sorted(K_candidates):
                                                             i = 0
        return 1
    nums.sort()
                                                             i = N - 1
                                                             skips = 0
    K_candidates = set()
    # Case 1: Remove the first element
                                                             mark = 0
    K1 = nums[0] + nums[-2]
                                                             while i < j:
                                                                  if nums[i] + nums[j] < K:</pre>
    K_candidates.add(K1)
                                                                     mark = i
    # Case 2: Remove the last element
                                                                     skips += 1
    K2 = nums[-1] + nums[1]
                                                                     i += 1
    K candidates.add(K2)
                                                                 elif nums[i] + nums[j] > K:
    # Case 3: Remove an element in the middle
                                                                     mark = j
    K3 = nums[0] + nums[-1]
                                                                     skips += 1
    K candidates.add(K3)
                                                                     i -= 1
                                                                 else:
                                                                     i += 1
                                                                     i -= 1
                                                             if (skips <= 1):
                                                                  if (skips == 0 and K-nums[i]>0):
                                                                     return(K-nums[i])
                                                                  if (K-nums[mark]>0):
                                                                     return(K-nums[mark])
                                                         return -1
```

Problem 2 - Cashier Problem

Problem 1: Coin Problems: Minimum.

Given a set of coin values coins {c1,c2,...,ck}

and a target sum of money m, what's the
minimum number of coins that form the
sum m?

Constraints:

1<=k<=10

1<=m<=10^5

1<=ci<=500

Example:

Coins={200,100,50,20,10,5,2,1}

Target: 734

 \square Greedy Solution: $3\{200\} + 1\{100\} + 1\{20\} + 1\{10\} + 2\{2\}$. Sum=8.

□ Recursion Solution:

We will try calling minimum_coins(coins, m) as the function that returns the desired result.

minimum_coins(coins, 0) = 0 is the base case.

minimum_coins(coins, m) = ? is the problem that needs to be solved.

Recursion Solution

We will solve the subproblem

Coins = $\{1, 4, 5\}$ and target = 13.

First, let's consider the brute force approach: With the brute force approach, we can choose any coin.

If we choose 5, we will need to solve the subproblem with

Coins = {1, 4, 5} and target = 8.

If we choose 4, we will need to solve the subproblem with

Coins = {1, 4, 5} and target = 9.

If we choose 1, we will need to solve the same problem with target = 12.

1. Abstraction

Minimum_coins(coins,m) = ?

2. Decomposition

Minimum_coins(coins,0) = 0
Minimum_coins(coins,x) = ? (0<=x<=m)

3. Pattern Regconition

Recursion solution

4. Algorithm Design

```
def min ignore none(a, b):
                                                          print(minimum_coins(13, [1, 4, 5]))
    if a is None:
                                                          Output: 3
        return b
    if b is None:
        return a
def minimum coins (m, coins):
   if m == 0:
       answer = 0
        answer = None
        for coin in coins:
            subproblem = m - coin
            if subproblem < 0:
                # Skip solutions where we try to reach [m]
                # from a negative subproblem.
            answer = min ignore none(
                         answer,
                         minimum coins(subproblem, coins) + 1)
    return answer
```

5. Evalution : O(k^m)

6. Update?

```
print(minimum coins(150, [1, 4, 5]))
         Output: 30
memo = \{\}
                                                   Output: 3
   if m in memo:
       return memo[m]
   if m == 0:
       answer = 0
                                                   Output: 30
       answer = None
       for coin in coins:
          subproblem = m - coin
          if subproblem < 0:
              # Skip solutions where we try to reach [m]
              # from a negative subproblem.
          answer = min ignore none(
                      answer,
                      minimum coins(subproblem, coins) + 1)
    memo[m] = answer
    return answer
```

ReSolution

1. Abstraction

Minimum_coins(coins,m) = ?

2. Decomposition

Minimum_coins(coins,0) = 0 Minimum_coins(coins,x) = ? (0 < x < m)

3. Pattern Regconition

Dynamic Programing

ReSolution

4. Algorithms Design

5. Evalution O(K*M)

```
def minimum coins(m, coins):
    memo = \{\}
    memo[0] = 0
    for i in range(1, m + 1):
        for coin in coins:
            subproblem = i - coin
            if subproblem < 0:
                continue
            memo[i] = min ignore none(memo.get(i), memo.get(subproblem) + 1)
    return memo[m]
```

Given a set of coin values coins {c1,c2,...,ck} and a target sum of money m. But how many ways can we form the sum

m using these coins?

Coins: {1,4,5}

Target sum: 5

There are 4 ways in total:

1+1+1+1+1 1+4 4+1 5

Constraints:

1<=k<=10 (number of coins)</pre>

1<=m<=10^5

1<=ci<=500

Given a set of coin values coins={c1, c2, ..., ck} and a target sum of money m, in how many ways can we form the sum m using these coins?

```
from collections import defaultdict
def how many ways (m, coins):
   memo = defaultdict(lambda : 0)
                                           solution(0) = 1
   memo[0] = 1
    for i in range(1, m + 1):
                                           solution(m) = \sum_{i=1}^{n} solution(m-c)
        memo[i] = 0
        for coin in coins:
            subproblem = i - coin
            if subproblem < 0:
            memo[i] = memo[i] + memo[subproblem]
    return memo[m]
print(how many ways(5, [1, 4, 5]))
print(how many ways(87, [1, 4, 5, 8]))
                                         Output: 3306149332861088
```

Mank

