2장 머신러닝 프로젝트 처음부터 끝까지 (1부)

감사의 글

자료를 공개한 저자 오렐리앙 제롱과 강의자료를 지원한 한빛아카데미에게 진심어린 감사를 전합니다.

주요 내용

- 주택 가격을 예측하는 회귀 작업을 살펴보면서 선형 회귀, 결정 트리, 랜덤 포레스트 등 여러 알고 리즘의 기본 사용법 소개
- 머신러닝 시스템 전체 훈련 과정 살펴보기

2.1 실제 데이터로 작업하기

- 유명한 공개 데이터 저장소
 - <u>UC 얼바인(UC Irvine) 대학교 머신러닝 저장소 (http://archive.ics.uci.edu/ml)</u>
 - <u>캐글(Kaggle) 데이터셋 (http://www.kaggle.com/datasets)</u>
 - <u>아마존 AWS 데이터셋 (https://registry.opendata.aws)</u>
- 메타 포털(공개 데이터 저장소가 나열)
 - 데이터 포털(Data Portals) (http://dataportals.org)
 - 오픈 데이터 모니터(Open Data Monitor) (http://opendatamonitor.eu)
 - <u>퀀들(Quandl) (http://quandl.com)</u>
- 인기 있는 공개 데이터 저장소가 나열되어 있는 다른 페이지
 - <u>위키백과 머신러닝 데이터셋 목록 (https://goo.gl/SJHN2k)</u>
 - Quora.com (https://homl.info/10)
 - <u>데이터셋 서브레딧(subreddit) (http://www.reddit.com/r/datasets)</u>

2.2 큰 그림 보기

주어진 데이터

- 미국 캘리포니아 주의 20,640개 지역별 인구조사 데이터
- 특성 10개: 경도, 위도, 중간 주택 연도, 방의 총 개수, 침실 총 개수, 인구, 가구 수, 중간 소득, 중간 주택 가격, 해안 근접도
- 목표: 구역별 중간 주택 가격 예측 시스템(모델) 구현하기

• 미국지도

• 캘리포니아 지도

2.2.1 문제 정의

- 지도 학습(supervised learning)
 - 레이블: 구역별 중간 주택 가격
- 회귀(regression): 중간 주택 가격 예측
 - 다중 회귀(multiple regression): 여러 특성을 활용한 예측
 - 단변량 회귀(univariate regression): 구역마다 하나의 가격만 예측
- 배치 학습(batch learning): 빠르게 변하는 데이터에 적응할 필요가 없음

2.2.2 성능 측정 지표 선택

사용하는 모델에 따라 모델 성능 측정 기준(norm)을 다르게 선택한다. 선형 회귀 모델의 경우 일반적으로 아래 두 기준 중 하나를 사용한다.

- 평균 제곱근 오차(RMSE)
- 평균 절대 오차(MAE)

평균 제곱근 오차(root mean square error, RMSE)

- 유클리디안 노름(Euclidean norm) 또는 ℓ_2 노름(norm)으로도 불림
- 참고: 노름(norm)은 거리 측정 기준을 나타냄.

RMSE(X, h) =
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2}$$

- 기호설명
 - X: 훈련 데이터셋 전체 샘플들의 특성값들로 구성된 행렬, 레이블(타겟) 제외.
 - $\mathbf{x}^{(i)}$: i 번째 샘플의 전체 특성값 벡터. 레이블(타겟) 제외.
 - $y^{(i)}$: i 번째 샘플의 레이블
 - *h*: 예측 함수
 - $\hat{y}^{(i)} = h(\mathbf{x}^{(i)})$: i번째 샘플에 대한 예측 값

평균 절대 오차(mean absolute error, MAE)

• MAE는 맨해튼 노름 또는 ℓ_1 노름으로도 불림

MAE(X, h) =
$$\frac{1}{m} \sum_{i=1}^{m} |h(\mathbf{x}^{(i)}) - y^{(i)}|$$

- 이상치가 많은 경우 활용
- ℓ_1 노름과 ℓ_2 노름을 일반해서 ℓ_n 노름을 정의할 수도 있음
- RMSE가 MAE보다 이상치에 더 민감하지만, 이상치가 많지 않을 경우 일반적으로 RMSE 사용

2.3 데이터 가져오기

참고

• 여기서부터 코랩 노트북 함께 참조

2.3.2 데이터 다운로드

- 저자의 깃허브 저장소에 있는 압축파일 다운로드
- 압축파일을 풀어 csv 파일로 저장

2.3.3 데이터 구조 훑어보기

데이터셋 기본 정보 확인

- pandas의 데이터프레임 활용
 - head(), info(), describe(), hist() 등을 사용하여 데이터 구조 훑어보기

head() 메서드 활용 결과

In [5]:	housing.head()									
Out[5]:		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population			
	0	-122.23	37.88	41.0	880.0	129.0	322.0			
	1	-122.22	37.86	21.0	7099.0	1106.0	2401.0			
	2	-122.24	37.85	52.0	1467.0	190.0	496.0			
	3	-122.25	37.85	52.0	1274.0	235.0	558.0			
	4	-122.25	37.85	52.0	1627.0	280.0	565.0			

info() 메서드 활용 결과

1 housing.info() [6] <class 'pandas.core.frame.DataFrame'> RangeIndex: 20640 entries, 0 to 20639 Data columns (total 10 columns): Column Non-Null Count Dtype longitude 20640 non-null float64 latitude 20640 non-null float64 housing median age 20640 non-null float64 total rooms 20640 non-null float64 total bedrooms 20433 non-null float64 population 20640 non-null float64 households 20640 non-null float64 median income 20640 non-null float64 median house value 20640 non-null float64

20640 non-null

object

dtypes: float64(9), object(1)

ocean proximity

memory usage: 1.6+ MB

- 구역 수: 20,640개
- 구역별로 경도, 위도, 중간 주택 연도, 해안 근접도 등 총 10개의 조사 항목
 - '해안 근접도'는 범주형 특성이고 나머지는 수치형 특성.
- '방의 총 개수'의 경우 누락된 데이터인 207개의 null 값 존재

범주형 특성 탐색

• '해안 근접도'는 5개의 범주로 구분

특성값	설명
<1H OCEAN	해안에서 1시간 이내
INLAND	내륙
NEAR OCEAN	해안 근처
NEAR BAY	샌프란시스코의 Bay Area 지역
ISLAND	섬

수치형 특성 탐색

[11] 1 housing.describe()

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	households	median_income	median_house_value
count	20640.000000	20640.000000	20640.000000	20640.000000	20433.000000	20640.000000	20640.000000	20640.000000	20640.000000
mean	-119.569704	35.631861	28.639486	2635.763081	537.870553	1425.476744	499.539680	3.870671	206855.816909
std	2.003532	2.135952	12.585558	2181.615252	421.385070	1132.462122	382.329753	1.899822	115395.615874
min	-124.350000	32.540000	1.000000	2.000000	1.000000	3.000000	1.000000	0.499900	14999.000000
25%	-121.800000	33.930000	18.000000	1447.750000	296.000000	787.000000	280.000000	2.563400	119600.000000
50%	-118.490000	34.260000	29.000000	2127.000000	435.000000	1166.000000	409.000000	3.534800	179700.000000
75%	-118.010000	37.710000	37.000000	3148.000000	647.000000	1725.000000	605.000000	4.743250	264725.000000
max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.000000	15.000100	500001.000000

수치형 특성별 히스토그램

2.3.4 테스트 세트 만들기

- 모델 학습 시작 이전에 준비된 데이터셋을 훈련 세트과 테스트 세트로 구분
 - 테스트 세트 크기: 전체 데이터 셋의 20%
- 테스트 세트에 포함된 데이터는 미리 분석하지 말 것.
 - 미리 분석 시 **데이터 스누핑 편향**을 범할 가능성이 높아짐
 - 미리 보면서 알아낸 직관이 학습 모델 설정에 영향을 미칠 수 있음
- 훈련 세트와 데이터 세트를 구분하는 방식에 따라 결과가 조금씩 달라짐
 - 무작위 샘플링 vs. 계층적 샘플링
- 여기서는 계층적 샘플링 활용

계층적 샘플링

- 계층: 동질 그룹
 - 예제: 소득별 계층
- 테스트 세트: 전체 계층을 대표하도록 각 계층별로 적절한 샘플 추출
- 예제: 소득 범주
 - 계층별로 충분한 크기의 샘플이 포함되도록 지정해야 학습 과정에서 편향이 발생하지 않음
 - 특정 소득 구간에 포함된 샘플이 과하게 적거나 많으면 해당 계층의 중요도가 과대 혹은 과소 평가됨

• 전체 데이터셋의 중간 소득 히스토그램 활용

- 대부분 구역의 중간 소득이 **1.5~6.0**(15,000~60,000\$) 사이
- 소득 구간을 아래 숫자를 기준으로 5개로 구분

[0, 1.5, 3.0, 4.6, 6.0, np,inf]

계층 샘플링과 무작위 샘플링 비교

		전체	계층 샘플링	무작위샘플링	무작위 샘플링 오류율	계층 샘플링 오류율
	1	0.039826	0.039729	0.040213	0.973236	-0.243309
	2	0.318847	0.318798	0.324370	1.732260	-0.015195
	3	0.350581	0.350533	0.358527	2.266446	-0.013820
	4	0.176308	0.176357	0.167393	-5.056334	0.027480
	5	0.114438	0.114583	0.109496	-4.318374	0.127011

2.4 데이터 이해를 위한 탐색과 시각화

주의 사항

- 테스트 세트를 제외한 훈련 세트에 대해서만 시각화를 이용하여 탐색
- 데이터 스누핑 편향 방지 용도

2.4.1 지리적 데이터 시각화

- 구역이 집결된 지역과 그렇지 않은 지역 구분 가능
- 샌프란시스코의 베이 에어리어, LA, 샌디에고 등 밀집된 지역 확인 가능

- 주택 가격이 해안 근접도 또는 인구 밀도와 관련이 큼
- 해안 근접도: 위치에 따라 다르게 작용
 - 대도시 근처: 해안 근처 주택 가격이 상대적 높음
 - 북부 캘리포니아 지역: 높지 않음

2.4.2 상관관계 조사

• 중간 주택 가격 특성과 다른 특성 사이의 상관관계: 상관계수 활용

```
In [39]: corr_matrix["median_house_value"].sort_values(ascending=False)
Out[39]: median_house_value
                              1.000000
         median income
                              0.687160
         total rooms
                              0.135097
         housing median age
                              0.114110
         households
                              0.064506
         total bedrooms
                              0.047689
         population
                             -0.026920
         longitude
                             -0.047432
         latitude
                             -0.142724
         Name: median house value, dtype: float64
```

상관계수의 특징

<그림 출처: <u>위키백과 (https://en.wikipedia.org/wiki/Pearson correlation coefficient)</u>>

- 상관계수: [-1, 1] 구간의 값
- 1에 가까울 수록: 강한 양의 선형 상관관계
- -1에 가까울 수록: 강한 음의 선형 상관관계
- 0에 가까울 수록: 매우 약한 선형 상관관계

주의사항

- 상관계수가 0에 가까울 때: 선형 관계가 거의 없다는 의미이지, 아무런 관계가 없다는 의미는 아님
- 상관계수는 기울기와 아무 연관 없음

상관계수를 통해 확인할 수 있는 정보

- 중간 주택 가격과 중간 소득의 상관계수가 0.68로 가장 높음
 - 중간 소득이 올라가면 중간 주택 가격도 상승하는 경향이 있음
 - 점들이 너무 넓게 퍼져 있음. 완벽한 선형관계와 거리 멂.

- 50만 달러 수평선: 가격 제한 결과로 보임
 - 45만, 35만, 28만, 그 아래 정도에서도 수평선 존재. 이유는 알려지지 않음.
 - 이상한 형태를 학습하지 않도록 해당 구역을 제거하는 것이 좋음.

이상치 처리

이유가 정확하지 않지만 앞서 언급한 수평선을 이루는 데이터를 어떻게 처리할 것인지 결정해야 한다. 보통 아래 세 가지 방식중에 하나를 선택한다.

• 그대로 둔다. 책에서 사용하는 방식이다. 하지만 ...

2.4.3 특성 조합으로 실험

- 구역별 방의 총 개수와 침실의 총 개수 대신 아래 특성이 보다 유용함
 - 가구당 방 개수(rooms for household)
 - 방하나당 침실 개수(bedrooms for room)
 - 가구당 인원(population per household)

```
[47] 1 corr matrix = housing.corr()
      2 corr matrix["median house value"].sort values(ascending=False)
     median house value
                                 1.000000
     median income
                                 0.687160
    rooms per household
                                 0.146285
     total rooms
                                 0.135097
     housing median age
                                 0.114110
     households
                                 0.064506
     total bedrooms
                                0.047689
     population per household -0.021985
     population
                                -0.026920
     longitude
                                -0.047432
     latitude
                                -0.142724
                                -0.259984
    bedrooms per room
     Name: median house value, dtype: float64
```

- 중간 주택 가격과 방 하나당 침실 개수의 연관성 다소 있음
- 가구당 방 개수의 역할은 여전히 미미함