Planilha1

Método Jacobi-Richardson

 $4x_0 + 2x_1 + x_2 = 7$ Sistema $x_0 + 3x_1 + x_2 = -8$ Linear $2x_0 + 3x_1 + 6x_2 = 6$

Matriz A

4	2	1	7
1	3	1	-8
2	3	6	6

Matriz A*

			VCLD
0	0,5	0,25	1,75
0,33333	0	0,3333	-2,667
0,33333	0,5	0	,

A* e B* tem seus valores divididos pelo respectivo

elemento da diagonal principal de A. Diagonal de A* é nula

Converge? 0,75 =>Soma dos absolutos da linha A*[0] Se max < 1 0,66667 =>Soma dos absolutos da linha A*[1]

0,83333 =>Soma dos absolutos da linha A*[3]

Vetor $x[i]^{k+1} = B^*[i] - (A^*[i j].x[j]^k)$, para i <> j e 0 >= j < n

			Vet B*
0	0,5	0,25	1,75
0,33333	0	0,3333	-2,667

i=0 $A_{00}.X_0 + A_{01}.X_1 + A_{02}.X_2 = B_0$ $-A_{00}.X_0 = A_{01}.X_1 + A_{02}.X_2 - B_0$ $-X_0 = 1/A_{00} \cdot (-B_0 + A_{01} \cdot X_1 + A_{02} \cdot X_2)$ Substitui $x_1^{(k)}$ e $x_2^{(k)}$ para encontrar $x_0^{(k+1)}$. $X_0 = 1/A_{00}$. ($B_0 - A_{01}.X_1 - A_{02}.X_2$) $X_0^{k+1} = 0.X_0 - (A_{01}/A_{00}).X_1 - (A_{02}/A_{00}).X_2 + B_0/A_{00}$

i=1 $A_{10}.X_0 + A_{11}.X_1 + A_{12}.X_2 = B_1$ $-A_{11}.X_1 = A_{10}.X_0 + A_{12}.X_2 - B_1$ $-X_1 = 1/A_{11}$. $(-B_1 + A_{10}.X_0 + A_{12}.X_2)$ $X_1 = 1/A_{11}$. ($B_1 - A_{10}X_0 - A_{12}X_2$) Substitui $x_0^{(k)}$ e $x_2^{(k)}$ para encontrar $x_1^{(k+1)}$. $X_1^{k+1} = -(A_{10}/A_{11}).X_0 - 0.X_1 - (A_{12}/A_{11}).X_2 + B_1/A_{11}$

j=2 $A_{20}.X_0 + A_{21}.X_1 + A_{22}.X_2 = B_2$ $-A_{22}.X_2 = A_{20}.X_0 + A_{21}.X_1 - B_2$ $-X_2 = 1/A_{22}$. $(-B_2 + A_{20}.X_0 + A_{21}.X_1)$ Substitui $x_0^{(k)}$ e $x_1^{(k)}$ para encontrar $x_2^{(k+1)}$. $X_2 = 1/A_{22}$. ($B_2 - A_{20} \cdot X_0 - A_{21} \cdot X_1$)

 $X_2^{k+1} = -(A_{20}/A_{22}).X_0 - (A_{21}/A_{22}).X_1 - 0.X_2 + B_2/A_{22}$

Enguanto $mr^{k+1} > 0.001$ Qual é o critério de parada? $Dif[i]^{k+1} = Abs(x[i]^{k+1} - x[i]^{k}), para 0 >= i < n$

 $Mr^{k+1} = Max(Dif[0]^{k+1}; ...; Dif[n-1]^{k+1}) / Max(Abs(x[0]^{k+1}; ...; x[n-1]^{k+1}))$

Iterações k	x[0]	x[1]	x[2]	Somat d	e (A*[i j].x	([j]k)
x^0	1,750	-2,667	1,000			
\mathbf{x}^{1}	2,833	-3,583	1,750	1,083	-0,917	0,750
x ²	3,104	-4,194	1,847	1,354	-1,528	0,847
x^3	3,385	-4,317	2,063	1,635	-1,650	1,063
x^4	3,393	-4,483	2,030	1,643	-1,816	1,030
x ⁵	3,484	-4,474	2,110	1,734	-1,808	1,110
x ⁶	3,460	-4,531	2,076	1,710	-1,865	1,076
x^7	3,497	-4,512	2,112	1,747	-1,845	1,112
x ⁸	3,478	-4,536	2,090	1,728	-1,870	1,090
x ⁹	3,496	-4,523	2,109	1,746	-1,856	1,109
x ¹⁰	3,484	-4,535	2,096	1,734	-1,868	1,096
x ¹¹	3,493	-4,527	2,106	1,743	-1,860	1,106
x ¹²	3,487	-4,533	2,099	1,737	-1,866	1,099
x ¹³	3 492	-4.529	2 104	1 742	-1 862	1 104

Dif.[0n-	Mr ^{k+1}		
Dif[0]	Dif[1]	Dif[2]	
1,083	0,917	0,750	0,302
0,271	0,611	0,097	0,146
0,281	0,123	0,215	0,065
0,008	0,166	0,032	0,037
0,091	0,008	0,080	0,020
0,024	0,057	0,034	0,013
0,037	0,020	0,037	0,008
0,019	0,025	0,022	0,005
0,018	0,014	0,019	0,004
0,011	0,012	0,013	0,003
0,009	0,008	0,010	0,002
0,007	0,006	0,007	0,002
0.005	0.005	0.005	0.001

0,005 0,005 0,005 0,001 <== critério de parada Mr <= 0,001

O resultado final encontra-se na última iteração de x (x ¹³={3,492; -4,529; 2,104}) (comparando 7,01 Substituindo-se x^{13} [0], x^{13} [1] e x^{13} [2] no sistema tem-se, aproximadamente, 7, -8 e 6 -7.99 o resultado com B) 6,02