Cash Ratio Analysis Notebook

Import Necessary Libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
sns.set()
```

Read the Excel File into the Jupyter Notebook

The excel file has the following variables:

Variable Name	Variable Description
ID	Firm Identification Code
year	Financial Year of Data
TA	Total Assets
SALES_USD	Net Sales in U.S. Dollars
MKT_EQUITY	Market Value of Common Equity
ST_DEBT	Short Term Debt
LT_DEBT	Long Term Debt
NPPE	Net Property, Plant and Equipment
INTEREST	Interest Expense
EBIT	Earnings Before Interest and Tax
EBITDA	Earnings Before Interest, Tax, Depreciation and Amortisation
Cash	Cash in Balance Sheet
TA_USD	Total Assets in U.S. Dollars
NATION	Nation Code
COUNTRY	Country Name

We read the file using read_excel()

The location of the file is: C:/Users/User/Desktop/

And the name of the file is: international_leverage.xlsx

```
df = pd.read excel('international leverage 2023.xlsx', sheet name='Sheet1')
In [2]:
          # Check the number of rows and columns
In [3]:
          df.shape
          (113285, 17)
Out[3]:
          df.head()
In [4]:
                                                   MKT_EQUITY BOOK_EQUITY ST_DEBT
                                                                                                      NPPE
Out[4]:
                                      SALES_USD
               ws_num
                         year
          0 C036AAB00
                         2009
                               117.976
                                            35.002
                                                          33.991
                                                                         40.024
                                                                                    0.599
                                                                                             66.559
                                                                                                     78.924
            C036AAB00
                                                                                    0.624
                         2010
                                38.070
                                            12.213
                                                          72.877
                                                                         -25.373
                                                                                             59.028
                                                                                                      7.547
          2 C036AAB00
                        2011
                                            15.091
                                                          41.710
                                                                        -35.724
                                                                                   14.907
                                                                                             50.224
                                                                                                      6.660
                                36.598
            C036AAB00
                        2012
                                10.703
                                            38.911
                                                           1.182
                                                                         -24.373
                                                                                    0.083
                                                                                             31.215
                                                                                                      0.681
             C036ABF00 2007
                               934.705
                                           108.515
                                                         449.345
                                                                        403.748
                                                                                   21.303
                                                                                           226.760 697.729
          df
In [5]:
                                         TA SALES_USD MKT_EQUITY BOOK_EQUITY ST_DEBT LT_DEBT
Out[5]:
                     ws_num
                              year
                                                                                                           N
               0 C036AAB00
                              2009 117.976
                                                  35.002
                                                                33.991
                                                                               40.024
                                                                                          0.599
                                                                                                  66.559
                                                                                                           78
                              2010
                                     38.070
               1 C036AAB00
                                                  12.213
                                                                72.877
                                                                              -25.373
                                                                                          0.624
                                                                                                  59.028
                                                                                                            7
               2 C036AAB00
                              2011
                                                  15.091
                                                                                         14.907
                                     36.598
                                                                41.710
                                                                              -35.724
                                                                                                  50.224
                                                                                                            6
               3 C036AAB00
                              2012
                                                  38.911
                                                                                          0.083
                                                                                                            0
                                      10.703
                                                                 1.182
                                                                              -24.373
                                                                                                  31.215
                  C036ABF00
                              2007 934.705
                                                 108.515
                                                               449.345
                                                                              403.748
                                                                                         21.303
                                                                                                 226.760
                                                                                                          697
          113280
                   C82699850
                                                                              148.526
                                                                                                           19
                              2013 255.161
                                                 461.951
                                                               852.480
                                                                                          0.000
                                                                                                   0.000
                   C82699850
                              2014 254.385
                                                 428.367
                                                                              151.499
                                                                                          0.000
                                                                                                   0.000
                                                                                                           20
          113281
                                                               912.273
          113282
                   C82699850
                              2015 267.090
                                                 435.811
                                                               766.491
                                                                              153.450
                                                                                          0.000
                                                                                                   0.000
                                                                                                           23
          113283
                   C82699850
                              2016 294.319
                                                 409.292
                                                               883.209
                                                                              165.077
                                                                                          0.000
                                                                                                   0.000
                                                                                                           20
          113284 C82699850 2017 307.890
                                                               980.086
                                                                                          0.000
                                                                                                   0.000
                                                 478.271
                                                                              166.745
                                                                                                           27
         113285 rows × 17 columns
```

Data Pre-processing

For our analysis, we will need the following variables.

So we drop rows with NaN values for: EBIT, MKT_EQUITY, BOOK_EQUITY, TA, SALES_USD, INTEREST.

We use the dropna method to delete the rows with missing values.

```
df1=df.dropna()
 In [6]:
          df1.shape
 In [7]:
          (95755, 17)
 Out[7]:
          # We should use dropna() on a subset of columns which includes the variables we will t
 In [8]:
 In [9]:
         df1=df.dropna(subset=['EBIT','EBITDA','MKT_EQUITY', 'BOOK_EQUITY','TA','TA_USD','NPPE'
In [10]:
          df1.shape
         (96947, 17)
Out[10]:
In [11]:
         df2=df1.drop_duplicates()
         # Check the number of rows and columns
In [12]:
          # 6 rows were deleted.
          df2.shape
         (96947, 17)
Out[12]:
         # Change the name of the year variable from 'year' to 'Year'
In [13]:
          df2=df2.rename(columns = {'year':'Year'})
          df2
```

Out[13]:		ws_num	Year	TA	SALES_USD	MKT_EQUITY	BOOK_EQUITY	ST_DEBT	LT_DEBT	N
	0	C036AAB00	2009	117.976	35.002	33.991	40.024	0.599	66.559	78
	1	C036AAB00	2010	38.070	12.213	72.877	-25.373	0.624	59.028	7
	2	C036AAB00	2011	36.598	15.091	41.710	-35.724	14.907	50.224	6
	3	C036AAB00	2012	10.703	38.911	1.182	-24.373	0.083	31.215	0
	4	C036ABF00	2007	934.705	108.515	449.345	403.748	21.303	226.760	697
	•••									
	113280	C82699850	2013	255.161	461.951	852.480	148.526	0.000	0.000	19
	113281	C82699850	2014	254.385	428.367	912.273	151.499	0.000	0.000	20
	113282	C82699850	2015	267.090	435.811	766.491	153.450	0.000	0.000	23
	113283	C82699850	2016	294.319	409.292	883.209	165.077	0.000	0.000	20
	113284	C82699850	2017	307.890	478.271	980.086	166.745	0.000	0.000	27

96947 rows × 17 columns

In [14]: # Set display format option to show three digits after the decimal point
 pd.set_option('display.float_format', '{:.2f}'.format)

Produce descriptive statistics (Transpose (the .T at the end) so the results are mor
 df2.describe().T

Out[14]:		count	mean	std	min	25%	50%	75%	max
	Year	96947.00	2014.49	4.60	2007.00	2010.00	2015.00	2019.00	2022.00
	TA	96947.00	163055.33	1250864.65	5.07	939.77	9049.64	44343.07	71461131.00
	SALES_USD	96947.00	1731.15	9164.64	10.00	66.84	207.95	765.79	476914.94
	MKT_EQUITY	96947.00	75136.90	455703.10	0.04	612.27	4208.74	20772.99	30622275.18
	BOOK_EQUITY	96947.00	56079.54	344353.25	-552947.00	394.70	3911.00	20684.21	26245969.00
	ST_DEBT	96054.00	19739.55	278141.34	0.00	7.55	370.82	3213.26	19748395.00
	LT_DEBT	96482.00	31931.87	281304.45	-20398.00	4.92	312.00	3191.92	15308519.00
	NPPE	96947.00	47294.90	322441.91	0.00	78.71	1625.31	11156.28	12775052.00
	INTEREST	96947.00	721.39	9203.35	0.00	1.83	18.06	115.08	958000.00
	EBIT	96947.00	7204.61	58343.36	-784440.00	8.67	327.11	2139.10	5977706.00
	EBITDA	96947.00	12681.42	97086.12	-446328.00	27.75	573.92	3395.77	6803901.00
	CASH	96947.00	25956.75	519448.46	0.00	109.90	1528.00	6954.85	71259671.00
	TA_USD	96947.00	2834.52	17253.70	10.02	89.15	275.68	1010.47	1161546.63
	NET_INCOME	96944.00	4020.26	41589.33	-1740738.00	2.68	175.42	1250.15	4957716.00
	NATION	96947.00	410.98	204.42	36.00	344.00	392.00	392.00	826.00
4									•

In [15]: df2.describe().T

Out[15]:		count	mean	std	min	25%	50%	75%	max
	Year	96947.00	2014.49	4.60	2007.00	2010.00	2015.00	2019.00	2022.00
	TA	96947.00	163055.33	1250864.65	5.07	939.77	9049.64	44343.07	71461131.00
	SALES_USD	96947.00	1731.15	9164.64	10.00	66.84	207.95	765.79	476914.94
	MKT_EQUITY	96947.00	75136.90	455703.10	0.04	612.27	4208.74	20772.99	30622275.18
	BOOK_EQUITY	96947.00	56079.54	344353.25	-552947.00	394.70	3911.00	20684.21	26245969.00
	ST_DEBT	96054.00	19739.55	278141.34	0.00	7.55	370.82	3213.26	19748395.00
	LT_DEBT	96482.00	31931.87	281304.45	-20398.00	4.92	312.00	3191.92	15308519.00
	NPPE	96947.00	47294.90	322441.91	0.00	78.71	1625.31	11156.28	12775052.00
	INTEREST	96947.00	721.39	9203.35	0.00	1.83	18.06	115.08	958000.00
	EBIT	96947.00	7204.61	58343.36	-784440.00	8.67	327.11	2139.10	5977706.00
	EBITDA	96947.00	12681.42	97086.12	-446328.00	27.75	573.92	3395.77	6803901.00
	CASH	96947.00	25956.75	519448.46	0.00	109.90	1528.00	6954.85	71259671.00
	TA_USD	96947.00	2834.52	17253.70	10.02	89.15	275.68	1010.47	1161546.63
	NET_INCOME	96944.00	4020.26	41589.33	-1740738.00	2.68	175.42	1250.15	4957716.00
	NATION	96947.00	410.98	204.42	36.00	344.00	392.00	392.00	826.00

In [16]: # The table above shows the desriptive statistics for the "Raw" data.
But we want the results for variables such as leverage ratio, Cash to asset ratio, F
So we have to create these variables from the "Raw" data.

Create Key Variables

We now need to create the variables we are interest in such as cash to asset ratio, profitability ratio (EBITDA to total assets) etc.

In [17]: df2

Out[17]:		ws_num	Year	TA	SALES_USD	MKT_EQUITY	BOOK_EQUITY	ST_DEBT	LT_DEBT	NPF
	0	C036AAB00	2009	117.98	35.00	33.99	40.02	0.60	66.56	78.9
	1	C036AAB00	2010	38.07	12.21	72.88	-25.37	0.62	59.03	7.5
	2	C036AAB00	2011	36.60	15.09	41.71	-35.72	14.91	50.22	6.6
	3	C036AAB00	2012	10.70	38.91	1.18	-24.37	0.08	31.21	0.6
	4	C036ABF00	2007	934.71	108.52	449.35	403.75	21.30	226.76	697.7
	•••									
	113280	C82699850	2013	255.16	461.95	852.48	148.53	0.00	0.00	19.1
	113281	C82699850	2014	254.38	428.37	912.27	151.50	0.00	0.00	20.4
	113282	C82699850	2015	267.09	435.81	766.49	153.45	0.00	0.00	23.2
	113283	C82699850	2016	294.32	409.29	883.21	165.08	0.00	0.00	20.5
	113284	C82699850	2017	307.89	478.27	980.09	166.75	0.00	0.00	27.1

96947 rows × 17 columns

```
In [18]:
          df2['CASH']
                    17.49
Out[18]:
                    17.18
          2
                    15.94
          3
                     2.04
                   142.52
                    . . .
         113280
                    73.02
          113281
                    76.76
          113282
                    78.31
                    95.15
          113283
          113284
                    92.37
          Name: CASH, Length: 96947, dtype: float64
In [19]:
          df2['TA']
                   117.98
Out[19]:
          1
                    38.07
          2
                    36.60
          3
                    10.70
                   934.71
                    . . .
          113280
                   255.16
          113281
                   254.38
          113282
                   267.09
                   294.32
          113283
          113284
                   307.89
          Name: TA, Length: 96947, dtype: float64
In [20]:
          CR = df2['CASH']/df2['TA']
In [21]:
          CR
```

```
0.15
Out[21]:
         1
                   0.45
         2
                   0.44
                   0.19
                   0.15
         113280
                   0.29
         113281
                   0.30
         113282
                   0.29
         113283
                   0.32
         113284
                  0.30
         Length: 96947, dtype: float64
```

In [34]: df2

0 1		
UUT	</td <td></td>	
Out		

:		ws_num	Year	TA	SALES_USD	MKT_EQUITY	BOOK_EQUITY	ST_DEBT	LT_DEBT	NPF
	0	C036AAB00	2009	117.98	35.00	33.99	40.02	0.60	66.56	78.9
	1	C036AAB00	2010	38.07	12.21	72.88	-25.37	0.62	59.03	7.5
	2	C036AAB00	2011	36.60	15.09	41.71	-35.72	14.91	50.22	6.6
	3	C036AAB00	2012	10.70	38.91	1.18	-24.37	0.08	31.21	0.6
	4	C036ABF00	2007	934.71	108.52	449.35	403.75	21.30	226.76	697.7
	•••									
	113280	C82699850	2013	255.16	461.95	852.48	148.53	0.00	0.00	19.1
	113281	C82699850	2014	254.38	428.37	912.27	151.50	0.00	0.00	20.4
	113282	C82699850	2015	267.09	435.81	766.49	153.45	0.00	0.00	23.2
	113283	C82699850	2016	294.32	409.29	883.21	165.08	0.00	0.00	20.5
	113284	C82699850	2017	307.89	478.27	980.09	166.75	0.00	0.00	27.1

96947 rows × 17 columns

```
In [36]:
         # Create the key variables of interest
          # We do not create leverage and Coverage variables here, but you can create it using \dot{	t}
          \#Leverage = df2((ST DEBT + LT DEBT) / TA)
          #Coverage = EBIT / INTEREST
          # The coverage variable will generate infinity (inf) values when interest is zero.
          # You should replace these 'inf' values with 'nan' as follows:
          # df2['Coverage'] = df1['Coverage'].replace(np.inf, np.nan)
          # Note: this assumes you have already created and added a variable called 'Coverage' t
          # These are out X varibles or explnatory variables
          df2['Tangibility']=df2['NPPE']/df2['TA']
          df2['Market to book']= (df2['TA'] + df2['MKT EQUITY'] - df2['BOOK EQUITY']) /df2['TA']
          \#df2['Logsale'] = np.log(df2['TA'])
          df2['Log_TA'] = np.log(df2['TA_USD'])
          df2['Profitability']=df2['EBITDA']/df2['TA']
          # We want to analyse cash to asset ratio (cash holding ratio)
```

df2['Cash_ratio'] = df2['CASH']/df2['TA']

df2 In [37]: ws_num Year Out[37]: TA SALES_USD MKT_EQUITY BOOK_EQUITY ST_DEBT LT_DEBT NPF **0** C036AAB00 2009 117.98 35.00 33.99 40.02 0.60 66.56 78.9 59.03 **1** C036AAB00 2010 38.07 12.21 72.88 -25.37 0.62 7.5 **2** C036AAB00 2011 15.09 50.22 36.60 41.71 -35.72 14.91 6.6 **3** C036AAB00 2012 10.70 38.91 1.18 -24.37 0.08 31.21 0.6 C036ABF00 2007 934.71 108.52 449.35 403.75 21.30 226.76 697.7 113280 C82699850 2013 255.16 461.95 852.48 148.53 0.00 0.00 19.1 113281 C82699850 2014 254.38 428.37 912.27 151.50 0.00 0.00 20.4 113282 C82699850 2015 267.09 435.81 766.49 153.45 0.00 0.00 23.2 0.00 0.00 113283 C82699850 2016 294.32 409.29 883.21 165.08 20.5 **113284** C82699850 2017 307.89 478.27 980.09 0.00 0.00 27.1 166.75 96947 rows × 22 columns In [38]: df2.shape (96947, 22) Out[38]:

localhost:8888/nbconvert/html/My project/cash_ratio_analysis_2023_Revison.ipynb?download=false

df2.describe().T

In [39]:

Out[39]:		count	mean	std	min	25%	50%	75%	max
	Year	96947.00	2014.49	4.60	2007.00	2010.00	2015.00	2019.00	2022.00
	TA	96947.00	163055.33	1250864.65	5.07	939.77	9049.64	44343.07	71461131.00
	SALES_USD	96947.00	1731.15	9164.64	10.00	66.84	207.95	765.79	476914.94
	MKT_EQUITY	96947.00	75136.90	455703.10	0.04	612.27	4208.74	20772.99	30622275.18
	BOOK_EQUITY	96947.00	56079.54	344353.25	-552947.00	394.70	3911.00	20684.21	26245969.00
	ST_DEBT	96054.00	19739.55	278141.34	0.00	7.55	370.82	3213.26	19748395.00
	LT_DEBT	96482.00	31931.87	281304.45	-20398.00	4.92	312.00	3191.92	15308519.00
	NPPE	96947.00	47294.90	322441.91	0.00	78.71	1625.31	11156.28	12775052.00
	INTEREST	96947.00	721.39	9203.35	0.00	1.83	18.06	115.08	958000.00
	EBIT	96947.00	7204.61	58343.36	-784440.00	8.67	327.11	2139.10	5977706.00
	EBITDA	96947.00	12681.42	97086.12	-446328.00	27.75	573.92	3395.77	6803901.00
	CASH	96947.00	25956.75	519448.46	0.00	109.90	1528.00	6954.85	71259671.00
	TA_USD	96947.00	2834.52	17253.70	10.02	89.15	275.68	1010.47	1161546.63
	NET_INCOME	96944.00	4020.26	41589.33	-1740738.00	2.68	175.42	1250.15	4957716.00
	NATION	96947.00	410.98	204.42	36.00	344.00	392.00	392.00	826.00
	Tangibility	96947.00	0.27	0.23	0.00	0.07	0.22	0.40	1.70
	Market_to_book	96947.00	1.45	2.41	-0.05	0.83	1.03	1.46	426.72
	Log_TA	96947.00	5.82	1.82	2.30	4.49	5.62	6.92	13.97
	Profitability	96947.00	0.07	0.24	-17.58	0.04	0.08	0.13	22.74
	Cash_ratio	96947.00	0.20	0.17	0.00	0.08	0.15	0.28	1.00

```
In [40]: # We have too many variables
# We should keep only variables of interest
df3 = df2[["Tangibility", "Market_to_book", "Log_TA", "Profitability", "Cash_ratio",
```

In [41]: # The 'COUNTRY' Variable is not shown in the descrptive statistics because it is not of # But it is in the dataframe, and we can use it to select subsamples of particular couldf3

Out[41]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year	COUNTRY
	0	0.67	0.95	4.56	-0.11	0.15	2009	Australia
	1	0.20	3.58	3.47	-2.27	0.45	2010	Australia
	2	0.18	3.12	3.67	-0.43	0.44	2011	Australia
	3	0.06	3.39	2.39	-0.23	0.19	2012	Australia
	4	0.75	1.05	6.71	-0.06	0.15	2007	Australia
	•••							
	113280	0.07	3.76	6.05	0.32	0.29	2013	UK
	113281	0.08	3.99	5.98	0.30	0.30	2014	UK
	113282	0.09	3.30	5.98	0.29	0.29	2015	UK
	113283	0.07	3.44	5.89	0.30	0.32	2016	UK
	113284	0.09	3.64	6.03	0.29	0.30	2017	UK

96947 rows × 7 columns

Select only the Australian observations

```
In [86]: # bool = df3['COUNTRY'] == 'Australia'
          # bool
         \# df_au = df3[bool]
         df_au = df3[df3['COUNTRY'] == 'Australia']
          df_au
```

Out[86]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year	COUNTRY
	0	0.669	0.949	4.556	-0.107	0.148	2009	Australia
	1	0.198	3.581	3.465	-2.275	0.451	2010	Australia
	2	0.182	3.116	3.669	-0.432	0.436	2011	Australia
	_	0.064	2.200	0.004	0.000	0.400	2012	

1	0.198	3.581	3.465	-2.275	0.451	2010	Australia
2	0.182	3.116	3.669	-0.432	0.436	2011	Australia
3	0.064	3.388	2.394	-0.228	0.190	2012	Australia
4	0.746	1.049	6.709	-0.059	0.152	2007	Australia
12088	0.516	1.377	10.364	0.264	0.016	2018	Australia
12089	0.525	1.735	10.304	0.189	0.018	2019	Australia
12090	0.553	1.513	10.329	0.200	0.015	2020	Australia
12091	0.558	1.710	10.369	0.180	0.041	2021	Australia
12092	0.563	1.701	10.264	0.176	0.032	2022	Australia

10278 rows × 7 columns

```
In [87]: df_uk = df3[df3['COUNTRY'] == 'UK']
    df_uk
```

Out[87]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year	COUNTRY
	94020	0.437	1.111	6.555	0.157	0.007	2007	UK
	94021	0.332	0.664	6.192	0.083	0.008	2008	UK
	94022	0.056	0.809	6.149	-0.017	0.015	2009	UK
	94023	0.053	0.771	6.113	0.088	0.014	2010	UK
	94024	0.055	0.915	6.093	0.075	0.015	2011	UK
	•••							
	113280	0.075	3.759	6.046	0.319	0.286	2013	UK
	113281	0.080	3.991	5.982	0.303	0.302	2014	UK
	113282	0.087	3.295	5.976	0.295	0.293	2015	UK
	113283	0.070	3.440	5.894	0.304	0.323	2016	UK
	113284	0.088	3.642	6.031	0.290	0.300	2017	UK

14568 rows × 7 columns

```
df_au = df_au.dropna()
In [88]:
          df_uk = df_uk.dropna()
         df_au.shape
In [89]:
         (10278, 7)
Out[89]:
In [90]:
         df_uk.shape
         (14568, 7)
Out[90]:
In [91]:
         # Let's get the descriptive statistics for Australia
          #df_au.describe().T
          pd.set_option('display.float_format', '{:.3f}'.format)
          df_au[["Tangibility", "Market_to_book", "Log_TA", "Profitability", "Cash_ratio"]].desc
Out[91]:
```

	count	mean	std	min	25%	50%	75%	max
Tangibility	10278.000	0.287	0.276	0.000	0.042	0.192	0.493	0.998
Market_to_book	10278.000	1.728	2.064	0.048	0.917	1.191	1.808	49.065
Log_TA	10278.000	5.452	1.819	2.306	4.017	5.210	6.638	11.885
Profitability	10278.000	0.075	0.384	-11.654	0.029	0.097	0.165	22.738
Cash_ratio	10278.000	0.146	0.164	0.000	0.037	0.087	0.191	0.999

```
# Let's get the descriptive statistics for UK
In [92]:
          #df uk.describe().T
           pd.set_option('display.float_format', '{:.3f}'.format)
          df_uk[["Tangibility", "Market_to_book", "Log_TA", "Profitability", "Cash_ratio"]].desc
Out[92]:
                                                          25%
                                                                50%
                              count mean
                                              std
                                                    min
                                                                      75%
                                                                              max
               Tangibility 14568.000
                                     0.249 0.268
                                                   0.000 0.035 0.140 0.387
                                                                             1.701
          Market_to_book 14568.000
                                     1.743 2.208
                                                  -0.055 0.970 1.284 1.910 91.201
                  Log_TA 14568.000
                                     5.801 2.012
                                                   2.304 4.264 5.535 7.140 13.965
              Profitability 14568.000
                                     0.084 0.207
                                                  -4.643
                                                        0.039
                                                                0.094 0.154
                                                                             8.758
                Cash_ratio 14568.000
                                     0.143 0.155
                                                   0.000 0.040
                                                               0.091 0.189
                                                                             1.000
          df au.head()
In [93]:
Out[93]:
             Tangibility Market_to_book Log_TA Profitability Cash_ratio Year
                                                                              COUNTRY
          0
                  0.669
                                   0.949
                                           4.556
                                                      -0.107
                                                                  0.148 2009
                                                                                Australia
          1
                  0.198
                                   3.581
                                           3.465
                                                      -2.275
                                                                  0.451 2010
                                                                                Australia
          2
                  0.182
                                   3.116
                                           3.669
                                                      -0.432
                                                                  0.436 2011
                                                                                Australia
          3
                  0.064
                                   3.388
                                           2.394
                                                       -0.228
                                                                  0.190 2012
                                                                                Australia
          4
                  0.746
                                   1.049
                                           6.709
                                                      -0.059
                                                                  0.152 2007
                                                                                Australia
          df uk.head()
In [94]:
Out[94]:
                  Tangibility Market_to_book Log_TA Profitability Cash_ratio
                                                                             Year COUNTRY
          94020
                       0.437
                                       1.111
                                               6.555
                                                           0.157
                                                                      0.007
                                                                             2007
                                                                                         UK
          94021
                       0.332
                                       0.664
                                               6.192
                                                           0.083
                                                                      800.0
                                                                             2008
                                                                                         UK
          94022
                      0.056
                                       0.809
                                               6.149
                                                           -0.017
                                                                      0.015 2009
                                                                                         UK
          94023
                                                                      0.014 2010
                       0.053
                                       0.771
                                               6.113
                                                           0.088
                                                                                         UK
          94024
                       0.055
                                       0.915
                                               6.093
                                                           0.075
                                                                      0.015 2011
                                                                                         UK
          # To remove outliers, we cap the variables at top and bottom 1%
In [47]:
          # That means at 0.01 and 0.99 quantiles
          df au1=df au.loc[:, df au.columns != 'COUNTRY']
           df au1=df au1.dropna()
          df_au1 = df_au1.clip(lower=df_au1.quantile(0.01), upper=df_au1.quantile(0.99), axis=1)
          df au1.describe().T
```

43 AM				cash	_ratio_analys	sis_2023_Re	vison		
t[47]:		count	mean	std	min	25%	50%	75%	max
	Tangibility	10278.000	0.287	0.276	0.000	0.042	0.192	0.493	0.936
	Market_to_book	10278.000	1.659	1.396	0.459	0.917	1.191	1.808	9.148
	Log_TA	10278.000	5.446	1.799	2.475	4.017	5.210	6.638	9.974
	Profitability	10278.000	0.079	0.187	-0.730	0.029	0.097	0.165	0.541
	Cash_ratio	10278.000	0.145	0.160	0.001	0.037	0.087	0.191	0.767
	Year	10278.000	2014.340	4.651	2007.000	2010.000	2014.000	2018.000	2022.000
[95]:	# To remove ou # That means of df_uk1=df_uk1.df_uk1-df_uk1-df_uk1	at 0.01 an loc[:, df_ .dropna()	d 0.99 q au.colum	uantil ns !=	es 'COUNTRY	'1			- (0, 00)
[95]:	<pre># That means d df_uk1=df_uk.]</pre>	at 0.01 an loc[:, df_ .dropna() <1.clip(lo	d 0.99 q au.colum	uantil ns !=	es 'COUNTRY	'1			e(0.99),
[95]:	# That means of df_uk1=df_uk.] df_uk1=df_uk1 df_uk1 = df_uk	at 0.01 an loc[:, df_ .dropna() <1.clip(lo	d 0.99 q au.colum	uantil ns !=	es 'COUNTRY	'1			e(0.99), max
	# That means of df_uk1=df_uk.] df_uk1=df_uk1 df_uk1 = df_uk	at 0.01 an loc[:, df_ .dropna() <1.clip(lo	nd 0.99 q au.colum ower=df_a	uantil ns != u1.qua	es 'COUNTRY ntile(0.0	'] 01), uppe	er=df_au1	.quantil	
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ	at 0.01 an loc[:, df_ .dropna() <1.clip(lo pe().T count	ad 0.99 q au.colum ower=df_a mean	uantil ns != u1.qua	es 'COUNTRY ntile(0.0	'] 01), uppe 25%	er=df_au1 50 %	.quantile	max
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ Tangibility Market_to_book	at 0.01 an loc[:, df_ .dropna() <1.clip(lo pe().T count	mean 0.249 1.684	uantil ns != u1.qua std 0.267	es 'COUNTRY ntile(0.0	25%	er=df_au1 50 % 0.140	.quantile 75% 0.387	max 0.936
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ Tangibility Market_to_book	at 0.01 and loc[:, df_ dropna() <1.clip(location) count 14568.000 14568.000	mean 0.249 1.684 5.769	uantil ns != u1.qua std 0.267 1.260	es 'COUNTRY ntile(0.0 min 0.000 0.459	25% 0.035 0.970	50% 0.140 1.284	.quantile 75% 0.387 1.910	max 0.936 9.144
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ Tangibility Market_to_book Log_TA Profitability	at 0.01 and loc[:, df_ dropna() <1.clip(location) count 14568.000 14568.000	mean 0.249 1.684 5.769 0.084	uantil ns != u1.qua std 0.267 1.260 1.927	es 'COUNTRY ntile(0.0 min 0.000 0.459 2.475	25% 0.035 0.970 4.264	50% 0.140 1.284 5.535	.quantile 75% 0.387 1.910 7.140	0.936 9.144 9.973
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ Tangibility Market_to_book Log_TA Profitability Cash_ratio	at 0.01 and loc[:, df_ dropna() <1.clip(location) count 14568.000 14568.000 14568.000	mean 0.249 1.684 5.769 0.084 0.142	uantil ns != u1.qua std 0.267 1.260 1.927 0.149 0.151	es 'COUNTRY ntile(0.0 min 0.000 0.459 2.475 -0.729 0.001	25% 0.035 0.970 4.264 0.039	50% 0.140 1.284 5.535 0.094	.quantile 75% 0.387 1.910 7.140 0.154	max 0.936 9.144 9.973 0.541
	# That means of df_uk1=df_uk.] df_uk1=df_uk1. df_uk1 = df_uk df_uk1.describ Tangibility Market_to_book Log_TA Profitability Cash_ratio	at 0.01 and loc[:, df_ dropna() <1.clip(location) count 14568.000 14568.000 14568.000 14568.000 14568.000 14568.000	mean 0.249 1.684 5.769 0.084 0.142 2013.775	uantil ns != u1.qua std 0.267 1.260 1.927 0.149 0.151 4.536	es 'COUNTRY ntile(0.0 min 0.000 0.459 2.475 -0.729 0.001	25% 0.035 0.970 4.264 0.039 0.040	50% 0.140 1.284 5.535 0.094 0.091	75% 0.387 1.910 7.140 0.154 0.189	max 0.936 9.144 9.973 0.541 0.766

Out[48]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	0.000	0.000	0.048	2.306	-11.654	0.000	2007.000
	0.010	0.000	0.459	2.475	-0.730	0.001	2007.000
	0.250	0.042	0.917	4.017	0.029	0.037	2010.000
	0.500	0.192	1.191	5.210	0.097	0.087	2014.000
	0.750	0.493	1.808	6.638	0.165	0.191	2018.000
	0.990	0.936	9.148	9.974	0.541	0.767	2022.000
	1.000	0.998	49.065	11.885	22.738	0.999	2022.000

```
In [96]: # This is the unclipped distribution
         df_uk.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
```

Out[96]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	0.000	0.000	-0.055	2.304	-4.643	0.000	2007.000
	0.010	0.000	0.504	2.473	-0.520	0.000	2007.000
	0.250	0.035	0.970	4.264	0.039	0.040	2010.000
	0.500	0.140	1.284	5.535	0.094	0.091	2014.000
	0.750	0.387	1.910	7.140	0.154	0.189	2018.000
	0.990	0.951	7.803	11.145	0.439	0.746	2022.000
	1.000	1.701	91.201	13.965	8.758	1.000	2022.000

In [49]: # This is the clipped distribution which has replaced the outliers
 df_au1.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])

Out[49]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	0.000	0.000	0.459	2.475	-0.730	0.001	2007.000
	0.010	0.000	0.459	2.475	-0.729	0.001	2007.000
	0.250	0.042	0.917	4.017	0.029	0.037	2010.000
	0.500	0.192	1.191	5.210	0.097	0.087	2014.000
	0.750	0.493	1.808	6.638	0.165	0.191	2018.000
	0.990	0.936	9.144	9.973	0.541	0.766	2022.000
	1.000	0.936	9.148	9.974	0.541	0.767	2022.000

In [97]: # This is the clipped distribution which has replaced the outliers
df_uk1.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])

Out[97]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	0.000	0.000	0.459	2.475	-0.729	0.001	2007.000
	0.010	0.000	0.504	2.475	-0.520	0.001	2007.000
	0.250	0.035	0.970	4.264	0.039	0.040	2010.000
	0.500	0.140	1.284	5.535	0.094	0.091	2014.000
	0.750	0.387	1.910	7.140	0.154	0.189	2018.000
	0.990	0.936	7.803	9.973	0.439	0.746	2022.000
	1.000	0.936	9.144	9.973	0.541	0.766	2022.000

In [50]: df_au1.describe().T

Out[50]

In [98]

Out[98]

]:		count	mean	std	min	25%	50%	75%	max
	Tangibility	10278.000	0.287	0.276	0.000	0.042	0.192	0.493	0.936
	Market_to_book	10278.000	1.659	1.396	0.459	0.917	1.191	1.808	9.148
	Log_TA	10278.000	5.446	1.799	2.475	4.017	5.210	6.638	9.974
	Profitability	10278.000	0.079	0.187	-0.730	0.029	0.097	0.165	0.541
	Cash_ratio	10278.000	0.145	0.160	0.001	0.037	0.087	0.191	0.767
	Year	10278.000	2014.340	4.651	2007.000	2010.000	2014.000	2018.000	2022.000
]:	df_uk1.describ	pe().T							
]:		count	mean	std	min	25%	50%	75%	max
	Tangibility	14568.000	0.249	0.267	0.000	0.035	0.140	0.387	0.936
	Market_to_book	14568.000	1.684	1.260	0.459	0.970	1.284	1.910	9.144
	Log_TA	14568.000	5.769	1.927	2.475	4.264	5.535	7.140	9.973

-0.729

0.001

14568.000 2013.775 4.536 2007.000 2010.000 2014.000 2018.000 2022.000

0.039

0.040

0.094

0.091

0.154

0.189

0.541

0.766

Boxplot

Profitability 14568.000

14568.000

Cash_ratio

The Boxplot shows the distribution of a variable.

You can learn more about Boxplot from the following websute:

0.084 0.149

0.142 0.151

https://www.geeksforgeeks.org/box-plot-visualization-with-pandas-and-seaborn/

```
In [51]:
         with sns.axes_style(style=None):
             fig, ax = plt.subplots()
             fig.set_size_inches(11.7, 8.27)
             sns.boxplot("Year", "Cash_ratio", data=df_au1, ax=ax)
             ax.set_xlabel('Year', fontsize=14)
             ax.set_ylabel('Cash ratio', fontsize=14)
             ax.set_title('Cash Ratio - Australia', fontsize=20)
         C:\Users\HP\anaconda3\lib\site-packages\seaborn\ decorators.py:36: FutureWarning: Pas
         s the following variables as keyword args: x, y. From version 0.12, the only valid po
         sitional argument will be `data`, and passing other arguments without an explicit key
         word will result in an error or misinterpretation.
           warnings.warn(
```


Interpretations:

- The line in the middle of the boxes is the median of the 50th percentile value of the variable (Cash_ratio).
- The box plot shows that the median cash holding ratio is less than 0.1 or 10% for all the years.
- The ratio has increased since 2012 and is close to 10% by 2017.
- The 75the percentile (75%) values (upper edge of the box) is less that 0.2 or 20% for all the years.
- 2011 had the highest 75 percentile value for the cash ratio and it was then about 20%.
- The many dots on the top part of the graphs show that there are many large values or outliers in the Cash ratio.

```
In [99]: with sns.axes_style(style=None):
    fig, ax = plt.subplots()
    fig.set_size_inches(11.7, 8.27)
    sns.boxplot("Year", "Cash_ratio", data=df_uk1,ax=ax)

ax.set_xlabel('Year', fontsize=14)
    ax.set_ylabel('Cash ratio', fontsize=14)
    ax.set_title('Cash Ratio - UK', fontsize=20)
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid po sitional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

In []:

Violinplot

```
In [52]: with sns.axes_style(style=None):
    fig, ax = plt.subplots()
    fig.set_size_inches(11.7, 8.27)
    sns.violinplot("Year", "Cash_ratio", data=df_au1, split='True', inner="quartile", ax=a

    ax.set_xlabel('Year', fontsize=14)
    ax.set_ylabel('Cash ratio', fontsize=14)
    ax.set_title('Cash Ratio - Australia', fontsize=20)
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Cash Ratio - Australia

Calculate the Distribution of Cash Ratios over time

We use the quantile() method and mean() method to calculate the distribution of the cash ratio.

Here we use these methods on grouped data.

So we use the groupby operation first to group the data.

```
with sns.axes_style(style=None):
    fig, ax = plt.subplots()
    fig.set_size_inches(11.7, 8.27)
    sns.violinplot("Year", "Cash_ratio", data=df_uk1, split='True', inner="quartile", ax=a

    ax.set_xlabel('Year', fontsize=14)
    ax.set_ylabel('Cash ratio', fontsize=14)
    ax.set_title('Cash Ratio - UK', fontsize=20)
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid po sitional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

Cash Ratio - UK


```
In [105...
    g_df1 = df_au1[['Year', 'Cash_ratio']]
    g_df1 = g_df1.groupby('Year')
    quantiles = g_df1['Cash_ratio'].quantile([0.10, 0.25, 0.5, 0.75, 0.90]).unstack()
    mean = g_df1['Cash_ratio'].agg(['mean'])
    data_combined=pd.concat([quantiles, mean], 1)
    data_stacked_au=data_combined.stack().reset_index(name='Cash_ratio').rename(columns={'# Let's Look at how data_stacked_au}

C:\Users\HP\AppData\Local\Temp\ipykernel_18436\2603797947.py:8: FutureWarning: In a f uture version of pandas all arguments of concat except for the argument 'objs' will b e keyword-only.
    data_combined=pd.concat([quantiles, mean], 1)
```

Ο.	- 4-	г.	4	-	_	٦.
()	IT.		- 1	И	`	
0	<i>^</i>		-	$\overline{}$	_	

	Year	Quantiles and Mean	Cash_ratio
0	2007	0.100	0.011
1	2007	0.250	0.027
2	2007	0.500	0.074
3	2007	0.750	0.183
4	2007	0.900	0.402
•••			
91	2022	0.250	0.051
92	2022	0.500	0.115
93	2022	0.750	0.228
94	2022	0.900	0.411
95	2022	mean	0.169

96 rows × 3 columns

Out[106]:		Year	Quantiles and Mean	Cash_ratio
	0	2007	0.100	0.009
	1	2007	0.250	0.031
	2	2007	0.500	0.089
	3	2007	0.750	0.199
	4	2007	0.900	0.360
	•••			
	91	2022	0.250	0.057
	92	2022	0.500	0.115
	93	2022	0.750	0.216
	94	2022	0.900	0.405
	95	2022	mean	0.168

96 rows × 3 columns

Plot the Distribution of Cash Ratios over time using Catplot


```
In [109... # Catplot
    ax = sns.catplot(x="Year", y="Cash_ratio", hue="Quantiles and Mean", kind="point", dat
          height=5, # make the plot 5 units high
```

```
aspect=2); # height should be three times width
ax.fig.suptitle('Cash Ratio Distribution - UK',fontsize=18,y=1.03);
plt.xlabel('Year', fontsize=15);
plt.ylabel('Cash ratio', fontsize=15);
```


Using jointplot() to explore the relationship between firm characterstics and Cash ratio

Explore the relation between Tangibility and Cash ratio

We do this analysis using only the 2020 data

```
In [112... # Select the observations for 2020
df_au_2020 = df_au1[df_au1['Year'] == 2020]

# Plot using jointplot()
with sns.axes_style('white'):
    p = sns.jointplot("Tangibility","Cash_ratio", data=df_au_2020, kind='reg',color='n
    p.fig.suptitle("Tangibility and Cash ratio _ Australia",fontsize=16,y=1.03)

    plt.xlabel('Tangibility', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
# plt.savefig('C:/Users/User/Desktop/jointplot_1.png')
    plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Tangibility and Cash ratio _ Australia


```
In [113... # Select the observations for 2020
df_uk_2020 = df_uk1[df_uk1['Year'] == 2020]

# Plot using jointplot()
with sns.axes_style('white'):
    p = sns.jointplot("Tangibility","Cash_ratio", data=df_uk_2020, kind='reg',color='n
    p.fig.suptitle("Tangibility and Cash ratio- UK",fontsize=16,y=1.03)

    plt.xlabel('Tangibility', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
# plt.savefig('C:/Users/User/Desktop/jointplot_1.png')
    plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Tangibility and Cash ratio- UK

The scatter plot and the regression line above shows a negative relation between Asset Tangibilty and Cash Ratio

We can do similar plots for the other firm characteristics

Explore the relation between Market to book ratio and Cash ratio

```
In [114... # Select the observations for 2020
df_au_2020 = df_au1[df_au1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Market_to_book","Cash_ratio", data=df_au_2020, kind='reg',color
    p.fig.suptitle("Market to book ratio and Cash ratio- Australia",fontsize=16,y=1.03
```

```
plt.xlabel('Market to book ratio', fontsize=13)
plt.ylabel('Cash ratio', fontsize=13)
plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Market to book ratio and Cash ratio- Australia


```
In [115... # Select the observations for 2020
df_uk_2020 = df_uk1[df_uk1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Market_to_book","Cash_ratio", data=df_uk_2020, kind='reg',color
    p.fig.suptitle("Market to book ratio and Cash ratio- UK",fontsize=16,y=1.03)

    plt.xlabel('Market to book ratio', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
    plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Market to book ratio and Cash ratio- UK

Explore the relation between Firm size (Log_TA) and Cash ratio

```
In [117... # Select the observations for 2020
df_au_2020 = df_au1[df_au1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Log_TA","Cash_ratio", data=df_au_2020, kind='reg',color='medium
    p.fig.suptitle("Firm size and Cash ratio- Australia",fontsize=16,y=1.03)

    plt.xlabel('Firm size (log of Total Assets)', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
```

plt.show()

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid po sitional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

Firm size and Cash ratio- Australia


```
In [118... # Select the observations for 2020
df_uk_2020 = df_uk1[df_uk1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Log_TA","Cash_ratio", data=df_uk_2020, kind='reg',color='medium
    p.fig.suptitle("Firm size and Cash ratio_ UK",fontsize=16,y=1.03)

    plt.xlabel('Firm size (log of Total Assets)', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
```

```
plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas s the following variables as keyword args: x, y. From version 0.12, the only valid po sitional argument will be `data`, and passing other arguments without an explicit key word will result in an error or misinterpretation.

warnings.warn(

Firm size and Cash ratio_ UK

Explore the relation between Profitability and Cash ratio

```
In [122... # Select the observations for 2020
df_au_2020 = df_au1[df_au1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Profitability", "Cash_ratio", data=df_au_2020, kind='reg',color=
    p.fig.suptitle("Profitability and Cash ratio- Australia",fontsize=16,y=1.03)

    plt.xlabel('Profitability', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
```

```
plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Profitability and Cash ratio- Australia


```
In [119... # Select the observations for 2020
df_uk_2020 = df_uk1[df_uk1['Year'] == 2020]

with sns.axes_style('white'):
    p = sns.jointplot("Profitability","Cash_ratio", data=df_uk_2020, kind='reg',color=
    p.fig.suptitle("Profitability and Cash ratio- Uk",fontsize=16,y=1.03)

    plt.xlabel('Profitability', fontsize=13)
    plt.ylabel('Cash ratio', fontsize=13)
```

```
plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarning: Pas
s the following variables as keyword args: x, y. From version 0.12, the only valid po
sitional argument will be `data`, and passing other arguments without an explicit key
word will result in an error or misinterpretation.
 warnings.warn(

Profitability and Cash ratio- Uk

Regression and Scatter Plot using LinearRegression

We can also get a scatter plot and regression line from LinearRegression from ScikitLearn library, which we covered in the machine learning lecture

```
In [123...
from sklearn.linear_model import LinearRegression

X = df_au_2020["Tangibility"].values.reshape(-1, 1) # values converts it into a numpy
y = df_au_2020["Cash_ratio"].values.reshape(-1, 1) # -1 means that calculate the dime
```

```
linear_regressor = LinearRegression() # create object for the class
linear_regressor.fit(X, y) # perform linear regression
Y_pred = linear_regressor.predict(X) # make predictions

plt.figure(figsize=(10,5))
plt.scatter(X, y,color='mediumseagreen')
plt.plot(X, Y_pred, color='cornflowerblue')

plt.title('Tangibility and Cash ratio- Australia', fontsize=18);
plt.xlabel('Tangibility', fontsize=13)
plt.ylabel('Cash ratio', fontsize=13)
plt.show()
```


Correlation analysis and heatmap of the correlation matrix

 We use the corr() method to calculate the correlation between the variables in our Australian sample.

• We then use heatmap() from Seaborn to plot the correlation matrix.

```
In [125... CorrMatrix_uk = df_uk1.corr()
    CorrMatrix_uk
```

Out[125]:

		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	Tangibility	1.000	-0.175	0.243	0.002	-0.292	0.030
Ma	/larket_to_book	-0.175	1.000	-0.082	0.317	0.342	0.152
	Log_TA	0.243	-0.082	1.000	0.123	-0.216	0.089
	Profitability	0.002	0.317	0.123	1.000	0.040	0.013
	Cash_ratio	-0.292	0.342	-0.216	0.040	1.000	0.053
	Year	0.030	0.152	0.089	0.013	0.053	1.000

In [64]: plt.subplots(figsize=(10,7.5))
 sns.heatmap(CorrMatrix,annot=True,cmap="YlGnBu")
 plt.show()


```
In [126... plt.subplots(figsize=(10,7.5))
    sns.heatmap(CorrMatrix_uk,annot=True,cmap="YlGnBu")
    plt.show()
```


Kernet Density and Histogram Analysis

Compare the distribution of cash ratio in 2007 and 2020 using distplot()

```
In [128... # Select the observations for 2007 and 2020
    df_au_2007 = df_au1[df_au1['Year'] == 2007]
    df_au_2020 = df_au1[df_au1['Year'] == 2020]

plt.figure(figsize=(12,6))
    plt.xlabel('Cash Ratio', fontsize=15)
    plt.ylabel('Density', fontsize=15)
    plt.title("Cash Ratios in 2007 and 2020",fontsize=18)

sns.distplot(df_au_2007["Cash_ratio"].values, label="Cash Ratio 2007");
    sns.distplot(df_au_2020["Cash_ratio"].values, label="Cash Ratio 2020");
    plt.legend()
    plt.show()
```

C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please a
 dapt your code to use either `displot` (a figure-level function with similar flexibil
 ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)
C:\Users\HP\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarning:
 `distplot` is a deprecated function and will be removed in a future version. Please a
 dapt your code to use either `displot` (a figure-level function with similar flexibil
 ity) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Interpretations:

- The figure above shows that the incidence of the lowest cash holding group has decreased substantially in 2020, comapred with 2007.
- On the other hand, for the other groups, cash holding are higher in 2020 than 2007.
- So companies are now less likely to hold very low level of debt and more likely to hold higher levels of cash.

```
In [127... # Select the observations for 2007 and 2020
    df_uk_2007 = df_uk1[df_uk1['Year'] == 2007]
    df_uk_2020 = df_uk1[df_uk1['Year'] == 2020]

plt.figure(figsize=(12,6))
    plt.xlabel('Cash Ratio', fontsize=15)
    plt.ylabel('Density', fontsize=15)
    plt.title("Cash Ratios in 2007 and 2020",fontsize=18)

sns.distplot(df_au_2007["Cash_ratio"].values, label="Cash Ratio 2007");
    sns.distplot(df_au_2020["Cash_ratio"].values, label="Cash Ratio 2020");
    plt.legend()
    plt.show()
```


Regression Analysis

We use the ordinary least squares or ols method from the statsmodels to look at the relation between firm characteristics

such as asset tangibility (Tangibility), market to book ratio (Market_to_book) and Cash to asset ratio.

 $Cash_ratio = a + b \ Tangibility + c \ Market_to_book + d \ Log_TA + e \ Profitability$

where: Cash_ratio is the dependent variable that we are trying to explain Tangibility, Market_to_book, Log_TA and Profitability are the explanatory variables or independent variables and 'a' is the Intercept of the model and 'b','c','d' and 'e' are the coefficients.

The coefficients tell us about the relation between the independent variables and the dependent variable (Cash_ratio) For example, coefficient 'b' on Tangibility says that one unit increase in Tangibility ratio increases Cash_ratio by 'b'.

Now Let's estimate this regression on our data for Australia

```
import statsmodels.formula.api as sm
In [130...
           result aus = sm.ols(formula="Cash ratio ~ Tangibility + Market to book + Log TA + Prof
          print(result_aus.params)
          Intercept
                            0.202
          Tangibility
                           -0.099
          Market_to_book
                            0.036
          Log TA
                           -0.016
          Profitability
                            0.019
          dtype: float64
          result_uk = sm.ols(formula="Cash_ratio ~ Tangibility + Market_to_book + Log_TA + Profi
In [131...
          print(result_uk.params)
          Intercept
                            0.174
          Tangibility
                           -0.116
          Market_to_book
                            0.037
          Log TA
                           -0.011
          Profitability
                            -0.040
          dtype: float64
```

The output above shows the estimated coefficients of the model given above. So we have:

```
a = 0.197 b = -0.094 c = 0.035 d = -0.016 e = 0.026
```

Thus if Tangibility ratio increases by 50% or 0.5, then Cash ratio is predicted to decrease by 0.5*(-0.094) = -0.047 or 4.7%

We can get the full results as follows:

```
In [132... print(result_aus.summary())
```

OLS Regression Results

=======================================	=======================================		
Dep. Variable:	Cash_ratio	R-squared:	0.207
Model:	OLS	Adj. R-squared:	0.207
Method:	Least Squares	F-statistic:	670.4
Date:	Thu, 23 Feb 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	21:36:30	Log-Likelihood:	5466.7
No. Observations:	10278	AIC:	-1.092e+04
Df Residuals:	10273	BIC:	-1.089e+04
Df Model:	4		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept Tangibility Market_to_book Log_TA Profitability	0.2019 -0.0988 0.0357 -0.0164 0.0189	0.005 0.005 0.001 0.001 0.008	39.900 -18.793 33.955 -20.188 2.429	0.000 0.000 0.000 0.000 0.015	0.192 -0.109 0.034 -0.018 0.004	0.212 -0.089 0.038 -0.015 0.034
Omnibus: Prob(Omnibus): Skew: Kurtosis:		3194.048 0.000 1.617 6.485	Durbin-Wat Jarque-Ber Prob(JB): Cond. No.			0.793 0.540 0.00 33.7

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

Here we get the coefficients under the coef column, which are the same as before. But we also get the statistical significance, or the P-values, of the coefficients under th P>|t| column.

In this case the P-values are all less than 0.01, so all the variables have a significat relation with Cash_ratio at the 1% level, which means the relations are highly significant.

```
In [133... print(result_uk.summary())
```

OLS Regression Results

============	=======	=========	========	========	========	====
Dep. Variable:		Cash_ratio	R-squared:			0.193
Model:		OLS	Adj. R-squ	ared:		0.192
Method:	Lea	st Squares	F-statisti	c:		868.5
Date:	Thu, 2	3 Feb 2023	Prob (F-st	atistic):		0.00
Time:	21:36:47		Log-Likelihood:		8411.7	
No. Observations:	14568		AIC:		-1.681e+04	
Df Residuals:		14563	BIC:			8e+04
Df Model:		4				
Covariance Type:		nonrobust				
=======================================	=======	=========		========	========	=======
	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.1741	0.004	43.177	0.000	0.166	0.182
Tangibility	-0.1163	0.004	-26.376	0.000	-0.125	-0.108
Market_to_book	0.0369	0.001	38.312	0.000	0.035	0.039
	-0.0107	0.001	-17.482	0.000	-0.012	-0.009
Profitability	-0.0404	0.008	-5.006	0.000	-0.056	-0.025
===========	=======	========		========	========	====
Omnibus:	4879.425		Durbin-Watson:		0.692	
<pre>Prob(Omnibus):</pre>		0.000	Jarque-Ber	a (JB):	1670	0.141
Skew:		1.697	Prob(JB):			0.00
Kurtosis:		6.999	Cond. No.			45.8

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.

Correlation Analysis

Now Let's estimate the correlation coefficients and the p-values for the Australia sample

We use the stats.pearsonr() function to calculate the correlation matrix for our variables of interest.

Out[135]:		Tangibility	Market_to_book	Log_TA	Profitability	Cash_ratio	Year
	Tangibility	1.000	-0.152	0.221	0.002	-0.259	0.020
	Market_to_book	-0.152	1.000	-0.115	0.230	0.365	0.085
	Log_TA	0.221	-0.115	1.000	0.116	-0.256	0.017
	Profitability	0.002	0.230	0.116	1.000	0.072	-0.059
	Cash_ratio	-0.259	0.365	-0.256	0.072	1.000	0.057
	Year	0.020	0.085	0.017	-0.059	0.057	1.000
In [136	# Display the df_corr_p	correlatio	on p-values				
In [136 Out[136]:		correlation Tangibility	on p-values Market_to_book	Log_TA	Profitability	Cash_ratio	Year
				Log_TA 0.000	Profitability 0.824	Cash_ratio 0.000	Year 0.041
	df_corr_p	Tangibility	Market_to_book				
	df_corr_p Tangibility	Tangibility 0.000	Market_to_book	0.000	0.824	0.000	0.041

Compare cash ratio across countries over the years

0.000

0.000

0.000

0.081

0.000

0.000

0.000 0.000

0.000 0.000

```
df41=df3.groupby(['COUNTRY', 'Year']).mean()
In [137...
           df flat1 = df41.reset index()
           df_flat1.head()
Out[137]:
              COUNTRY Year Tangibility Market_to_book Log_TA Profitability Cash_ratio
                Australia 2007
                                    0.283
                                                    2.208
                                                            5.333
                                                                        0.133
                                                                                   0.147
           1
                Australia 2008
                                    0.276
                                                    1.558
                                                            5.392
                                                                        0.073
                                                                                   0.135
           2
                Australia 2009
                                    0.295
                                                    1.314
                                                            5.351
                                                                        0.057
                                                                                   0.129
           3
                Australia 2010
                                    0.273
                                                    1.414
                                                            5.394
                                                                        0.091
                                                                                   0.143
                Australia 2011
                                   0.266
                                                    1.458
                                                            5.531
                                                                        0.079
                                                                                   0.155
           ax = sns.catplot(x="Year", y="Cash_ratio", hue="COUNTRY", kind="point", data=df_flat1]
In [138...
                aspect=2); # height should be three times width
            ax.fig.suptitle('Average (mean) Cash Ratio in Four Countries',fontsize=18,y=1.03);
            plt.xlabel('Year', fontsize=15);
           plt.ylabel('Cash ratio', fontsize=15);
```

0.000

0.041

Cash_ratio

Year

Average (mean) Cash Ratio in Four Countries


```
In [139... plt.figure(figsize=(20,10))
    df42=df3.groupby(['COUNTRY', 'Year']).median()

df_flat2 = df42.reset_index()
    df_flat2.head()
```

Out[139]: COUNTRY Year Tangibility Market_to_book Log_TA Profitability Cash_ratio 2007 0.074 0 Australia 0.194 1.496 5.075 0.125 Australia 2008 1 0.178 1.120 5.150 0.105 0.067 2 Australia 2009 0.206 0.999 5.090 0.094 0.067 3 Australia 2010 1.097 0.098 0.075 0.169 5.160

0.156

<Figure size 2000x1000 with 0 Axes>

Australia 2011

4

1.053

5.299

0.092

0.088

Median Cash Ratio in Four Countries

