PATENT

Appl. No. 10/749,910 Amdt. dated August 22, 2006 Amendment under 37 CFR 1.116 Expedited Procedure Examining Group 2181

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings of claims in the application:

Listing of Claims:

1. (Currently Amended) A memory controller, comprising:

at least one bus interface, each bus interface being for connection to at least one respective device for receiving memory access requests;

a memory interface, for connection to a memory device over a memory bus; a plurality of buffers in the memory interface; and

control logic, for placing received memory access requests into a queue of memory access requests,

wherein, in response to a received memory access request requiring multiple data bursts over the memory bus, data from each of said multiple data bursts is assigned by the control logic to a respective buffer of the plurality buffers in the memory interface, and data from each of said multiple data bursts is stored by the memory interface in [[a]] the respective buffer, and of said plurality of buffers, and

wherein, for a wrapping memory access request requiring multiple buffers, data required for a beginning and an end of the wrapping memory access request are stored in assigned to a single respective buffer of the plurality of buffers by the control logic and stored in the single respective buffer by the memory interface.

2. (Previously Presented) A memory controller as claimed in claim 1, wherein, when returning data to the respective device from which a memory access request requiring multiple data bursts over the memory bus was received, data is read out from a first part of the single buffer, then data is read out from at least one other of said buffers, then data is read out from a second part of the single buffer.

Claims 3-4. (Canceled)

Appl. No. 10/749,910
Amdt. dated August 22, 2006
Amendment under 37 CFR 1.116 Expedited Procedure
Examining Group 2181

PATENT

- 5. (Original) A memory controller as claimed in claim 1, wherein the control logic determines whether a received read access request is a wrapping request which requires multiple memory bursts, and, if so, the control logic allocates each of said memory bursts to a respective one of said buffers.
- 6. (Original) A memory controller as claimed in claim 1, wherein the memory controller is a SDRAM controller, and said memory interface is suitable for connection to a SDRAM memory device over said memory bus.
- 7. (Currently Amended) In a memory controller , comprising: including at least one bus interface, each bus interface being for connection to at least one respective device for receiving memory access requests, [[;]] a memory interface [[,]] for connection to a memory device over a memory bus, [[;]] a plurality of buffers in the memory interface, [[;]] and control logic [[,]] for placing received memory access requests into a queue of memory access requests, a method of retrieving data comprising:

in response to a received memory access request requiring multiple data bursts over the memory bus, assigning each data burst to a respective buffer in a plurality of buffers in the memory interface; and

storing data from each of said multiple data bursts in [[a]] the respective buffer in the memory interface, of said plurality of buffers,

wherein, for a wrapping memory access request, data required for a beginning and an end of the wrapping memory access request are assigned to a single respective buffer by the control logic and stored in [[a]] the single respective buffer of the plurality of buffers in the memory interface.

8. (Previously Presented) A method as claimed in claim 7, further comprising, when returning data to the respective device from which a memory access request requiring multiple data bursts over the memory bus was received, reading data out from a first

Appl. No. 10/749,910

Amdt. dated August 22, 2006

Amendment under 37 CFR 1.116 Expedited Procedure

Examining Group 2181

PATENT

part of single buffer, then reading data out from at least one other of said buffers, then reading data out from a second part of the single buffer.

Claims 9 - 10. (Canceled)

- 11. (Currently Amended) A method as claimed in claim 7, <u>further</u> comprising determining whether a received read access request is a wrapping request which requires multiple memory bursts, and, if so, <u>allocating performing the step of assigning</u> each of said <u>memory data</u> bursts to a respective one of said buffers.
- 12. (Original) A method as claimed in claim 7, wherein the memory controller is a SDRAM controller, and said memory interface receives data from a SDRAM memory device over said memory bus in SDRAM bursts.
- 13. (Currently Amended) A programmable logic device, wherein the programmable logic device includes a memory controller, comprising:

at least one bus interface, each bus interface being for connection to at least one respective device formed within the programmable logic device for receiving memory access requests;

a memory interface, for connection to an external memory device over a memory bus:

a plurality of buffers in the memory interface; and control logic, for placing received memory access requests into a queue of memory access requests,

wherein, in response to a received memory access request requiring multiple data bursts over the memory bus, data from each of said multiple data bursts is assigned by the control logic to a respective buffer of the plurality buffers in the memory interface, and data from each of said multiple data bursts is stored by the memory interface in [[a]] the respective buffer, and of said plurality of buffers, and

PATENT

Appl. No. 10/749,910 Amdt. dated August 22, 2006 Amendment under 37 CFR 1.116 Expedited Procedure Examining Group 2181

wherein, for a wrapping memory access request requiring multiple buffers, data required for a beginning and an end of the wrapping memory access request are stored in assigned to a single respective buffer of the plurality of buffers by the control logic and stored in the single respective buffer by the memory interface.

- 14. (Currently Amended) A memory controller as recited in claim 1, wherein each of the plurality of buffers is a sub-buffer of a larger memory buffer in the memory interface. includes a plurality of sub-buffers, data required for the beginning and the end of the wrapping memory access request being stored in separate sub-buffers of the single buffer.
- 15. (Currently Amended) A memory controller as recited in claim [[14]] 1, wherein the control logic is operable to record the value of a pointer indicating the sub-buffer single respective buffer from which data required for the end of the wrapping memory is to be retrieved from the single buffer.
- 16. (Currently Amended) A method as recited in claim 7, wherein each of the plurality of buffers is a sub-buffer of a larger memory buffer in the memory interface. includes a plurality of sub-buffers, data required for the beginning and the end of the wrapping memory access request being stored in separate sub-buffers of the single buffer.
- 17. (Currently Amended) A method as recited in claim [[16]] 7, wherein the control logic is operable to record the value of a pointer indicating the sub-buffer single respective buffer from which data required for the end of the wrapping memory is to be retrieved. from the single buffer.