

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sensory w Aplikacjach Wbudowanych

Technologia MEMS – wytwarzanie współczesnych czujników

dr hab. inż. Cezary Worek, prof. AGH

(na bazie materiałów dra inż. Wojciech Maziarz)

Wydział IET, Instytut Elektroniki

Kontakt: worek@agh.edu.pl

Czujniki mikromechaniczne

WSTEP

Narzędzia mikroelektroniki zastosowane do struktur mechanicznych pozwalają wytworzyć nie tylko proste czujniki o wymiarach mikronowych, ale całe struktury - mikrosystemy. *Terminologia:*

technologia mikromaszyn - Japonia technologia mikrosystemów MST - Europa systemy mikroelektromechaniczne MEMSy - USA

Historycznie pierwszym materiałem w technologii mikromechanicznej (i do dziś dominującym) jest Si. Poza tym stosuje się materiały typowe dla technologii CMOS (SiO₂, Si₃N₄, Al) oraz zaczyna się stosować inne półprzewodniki (SiC, GaAs, diament), metale i ich tlenki, polimery organiczne.

Ewolucja mikrosystemów, MEMS i układów zintegrowanych - USA

Kensall D. Wise, Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage,

Ewolucja mikrosystemów, MEMS i układów zintegrowanych - USA

Na Politechnice Wrocławskiej powstanie pierwszy na świecie miniaturowy mikroskop elektronowy MEMS, wytworzony przy użyciu technik mikroobróbki krzemu i szkła. Będzie to przenośne urządzenie o wymiarach kilku centymetrów, które da nam obraz o wysokiej rozdzielczości i kontraście – mówi dr hab. Anna Górecka-Drzazga, prof. PWr.

Mikroskop będzie można wykorzystać do badania próbek biologicznych, potrzebnych m.in. we wczesnej diagnostyce nowotworów.

W jej zespole badawczym w Zakładzie Mikroinżynierii i Fotowoltaiki opracowano pierwszą na świecie jonowo-sorpcyjną pompę próżniową MEMS. To naprawdę duże osiągnięcie. Nawet pompa opracowana w Instytucie Technologicznym w Massachusetts (MIT), której działanie bazuje na tym samym zjawisku, nie wytwarza wysokiej próżni – twierdzi profesor.

Naukowcy postanowili spróbować połączyć mikropompę z innymi miniaturowymi urządzeniami, czyli najpierw opracować mikroskop elektronowy MEMS, a w przyszłości lampę rentgenowską czy spektrometr mas.

Signal detection and imaging methods for MEMS electron microscope Ultramicroscopy Volume 244, February 2023, 113653 https://doi.org/10.1016/j.ultramic.2022.113653

https://kopalniawiedzy.pl/mikroskop-elektronowy-na-chipie-MEMS-Politechnika-Wrocławska-chip-Anna-Gorecka-Drzazga-Michal-Krysztof-Tomasz-Grzebyk-Piotr-Szyszka,26015,

Ewolucja mikrosystemów, MEMS i układów zintegrowanych - USA

Przedstawione systemy detekcji mogą być wykorzystane do wykrywania sygnałów w miniaturowym mikroskopie elektronowym MEMS, jednak najlepsze obrazy dla danego detektora uzyskano przy różnych parametrach (energia wiązki elektronów, napięcia bias detektora). Możliwa jest obserwacja próbki zarówno w wysokiej próżni, jak i w powietrzu atmosferycznym. W ostatecznej realizacji mikroskopu elektronowego MEMS można z powodzeniem włączyć wszystkie trzy systemy detekcji. Ponieważ każda z metod daje inny obraz, ich zastosowanie może zwiększyć użyteczność mikro zakresu i dać więcej informacji o próbce.

M. Białas, T. Grzebyk, M. Krysztof, A. Górecka-Drzazga Signal detection and imaging methods for MEMS electron microsc Ultramicroscopy Volume 244, February 2023, 113653 https://doi.org/10.1016/j.ultramic.2022.113653

https://www.sciencedirect.com/science/article/pii/S0304399122001723?via%3Dihub

Ewolucja mikrosystemów

- neurofizjologia (1)

(c) widok impulsu nerwowego z kory słuchowej kota w odpowiedzi na dźwięk dzwonka. Metalizacja sondy: 20um.

Ewolucja mikrosystemów

- pomiar ciśnienia (2)

Czujniki ciśnienia (1970)

Projekty fundowane przez NASA Anizotropowe trawienie (Bell Labs)

- a) membrany o grubości 50 um wytworzone poprzez anizotropowe trawienie.
- b) Średnice 0.8 and 1.6 mm. Po prawej widoczne przejście światła przez membranę o grubości 5 um.

Ewolucja mikrosystemów - pomiar gazów (3)

System chromatografii gazowej (1970)

Misja na Marsa Viking (1975)

Kolumna - trawienie izotropowe Do zalet chromatografii gazowej jest należy możliwość użycia bardzo niewielkiej objętości analizowanej substancji – od 0,01 µl do maksymalnie 100 µl.

Kensall D. Wise, Integrated sensors, MEMS, and microsystems: Reflections on a fantastic voyage,

Ewolucja mikrosystemów

- mikrosystemy bezprzewodowe zint. (4)

Mikrosystem dla niesłyszących (2006)

Hermetycznie zamknięte opakowanie zawierające mikrokontroler, elektronikę, bezprzewodowy interfejs, 8-żyłowy przewód i matrycę 32-elektrodową.

Końcówka jednej z matryc zawierająca czujniki piezorezystancyjne do pomiaru kontaktu oraz sondy położenia

Ewolucja mikrosystemów - mikrosystemy bezprzewodowe zint. (5)

Implant – mikrosystem bezprzewodowy (2005)

Implant pod skórą

Elektroda implantu

Bezprzewodowy system zapisu sygnału z kory mózgowej.

Zawiera:
64 grupy elektrod,
(wzmocnienie 1000× na kanał),
64-kanałowy układ
przetwarzania sygnału,
interfejs bezprzewodowy

do zasilania i transmisji

dwukierunkowej.

Ewolucja mikrosystemów

- mikrosystemy bezprzewodowe zint. (6)

Pomoc pacjentom z jaskrą – czujnik ciśnienia wewnątrzgałkowego (intraocular pressure (IOP))

Oko zdrowe: 10-22 mmHg

Chore: > 22mHg oraz fluktuacje ciśnienia

Zniszczenie nerwu wzrokowego przez nadmierne ciśnienie – jaskra.

- •Soczewka jednorazowa
- •Czujnik ciśnienia MEMS
- •Układ dedykowany ASIC
- •Antena petlowa (odbiór i nadawanie)

11

MEMS

Zastosowania MEMS w różnych dziedzinach

BioMEMS – przewidywany rozwój

- NILOTE

BioMEMS and microsystems for life science market (in \$M)

Including: pressure sensors, silicon microphones, accelerometers, gyroscopes, optical MEMS and image sensors, microfluidic chips, microdispensers for drug delivery, flow meters, infrared temperature sensors, emerging MEMS (RFID, strain sensors, energy harvesting)

BioMEMS 2013: Microsystem Device Market for Healthcare Applications, Yole Development, France, Feb. 2013 (*Source: http://www.yole.fr/*)

Czujniki mikromechaniczne – materiały

Szczególne właściwości mechaniczne Si:

- moduł Younga bliski stali
- granica plastyczności trzy razy większa niż dla stali
- twardość wyższa niż stali
- współcz. rozszerz. term. siedem razy mniejszy niż dla stali
- wysokie przewodnictwo cieplne
- nie wykazuje histerezy mechanicznej, niskie wew. tłumienie
- silny efekt piezorezystancyjny
- wada kruchość

Jako półprzewodnik krzem jest najpowszechniej stosowany, stąd łatwość integracji elementów mechanicznych z elektroniką.

Mechaniczne i elektryczne własności podłoży krzemowych są powtarzalne i łatwo można je zmieniać, komercyjnie wytwarzany c-Si jest wysokiej czystości i jakości.

Własności wybranych materiałów

Własności krzemu w porównaniu do innych materiałów

	Si	SiC	diament	Stal nierdz.	Al
Punkt topnienia (st. C)	1350	2830	3550	1400	do 660
Temp. pracy (st. C)	300	873	1100	-	-
Wsp. rozsz. term.	2.5	3.3	1	17.3	25
(10 ⁻⁶ /st.C)					
Wsp. przew. ciepl. (W/cm K)	1.57	1.2	20	0.329	2.36
Gęstość (g/cm3)	2.3	3.2	3.5	7.9	2.7
Moduł Younga	1.9	7	10.35	2	0.7
(10 ¹¹ N/m2)					
Granica plastyczności	6.9	21	53	2.1	0.17
(10 ⁹ N/m ²)					
Twardość w skali Knoopa	850	2480	7000	660	130
(kg/m²)					
Wytrzymałość dielektr.	0.5	4.0	10	-	-
(MV/m)					
Przerwa energetyczna	1.12	3.0	5.5	-	-
(eV)					

Co jest bazą do wytwarzania układów MEMS?

Krzem – wytwarzanie

Metoda Czochralskiego – wyciąganie z fazy ciekłej

najpowszechniej stosowana do produkcji monokryształów półmetali, metali i ich stopów – w szczególności monokryształów krzemu i półprzewodników

Krzem – wytwarzanie (2)

Kolejne fazy:

- oczyszczanie, np. przez grzanie strefowe,
- cięcie (piła diamentowa),
- polerowanie

Technologia mikromechaniczna

- Technologie top-down i bottom-up
- Podział technologii mikromechanicznych:
 - objętościowa:
 - struktury wytwarzane w głębi podłoża (głębokie trawienie c-Si)
 - mikrostruktury 3D (belki, membrany, rowki itp.)
 - -powierzchniowa: struktury wytwarzane na powierzchni (trawienie warstw naniesionych na podłoże, najczęściej warstw poli-Si na podłoże Si)
 - **-LIGA** (niem. *Lithographie*, *Galvanoformung*, *Abformung* litografia, galwanotechnika, formowanie); wytwarza się w niej miniaturowe metalowe kołka zębate, walce, mikroigły itd.
 - inne, np. **EFAB**

Technologia mikromechaniczna – podstawowe procesy

Stosowane metody:

- nanoszenie warstw,
- naświetlanie przez maskę
 wzoru na fotorezyście,
- trawienie obszarów niepożądanych

Etapy te są powtarzane aż do uzyskania żądanej struktury.

Technologia mikromechaniczna

Trzycalowa płytka Si z czujnikami gazów (WM-2006)

Akcelerometry krzemowe

Elementy mikromechaniki objętościowej

Mikromechanika powierzchniowa - fotolitografia

Proces trawienia Si poprzedzony jest fotolitograficznym naniesieniem wzoru (pattern transfer)

Mikromechanika powierzchniowa powstawanie belki polikrzemowej

Mikromechanika w krzemie – płaszczyzny krystalograficzne

{110} – zbiór płaszczyzn (110) – płaszczyzna [110] - kierunki

- a) Trzy płaszczyzny krystalograficzne i odpowiadające im wskaźniki w krysztale sześciennym. Identyfikowane dwie płaszczyzny w zbiorze płaszczyzn {110}
- b) Cztery płaszczyzny w zbiorze płaszczyzn (111). (111) i (111) to te same płaszczyzny.

Mikromechanika w krzemie – płaszczyzny krystalograficzne

Jak rozpoznać kierunki mając płytkę Si typu n lub p?

→ Ścięcia

Mikromechanika powierzchniowa - trawienie

Trawienie głębokie to głównie tzw. *trawienie mokre anizotropowe* (o szybkości zależnej od orientacji krystalograficznej). Możliwości z tego wynikające odkryto na początku lat 1980.

Stosując określone środki trawiące uzyskuje się w krzemie duże szybkości trawienia dla płaszczyzn (100) i (110), a znikomo małe dla (111).

Domieszkowanie Si borem powoduje gwałtowny spadek szybkości trawienia (dla koncentracji B $> 2.5 \cdot 10^{19} \, \mathrm{cm}^{-3}$ szybkość trawienia spada 3 rzędy wielkości). Jest to tzw. stopowanie trawienia.

Selektywność trawienia można również uzyskać w procesie elektrochemicznym.

Mikromechanika powierzchniowa – trawienie anizotropowe

Środki trawiące anizotropowo:

• KOH + woda środek b.selektywny, stosunek szybkości trawienia płaszczyzn {100} do {111} wynosi 200 : 1

- EDP (etylenodiamina + pirokatechol + woda) środek mniej selektywny, b. wolno trawiący SiO₂ - zaleta
- Hydrazyna + woda duża szybkość trawienia {100}, selektywność mała ok. 10:1.
- CsOH, NH₄OH, TMAH

Stopowanie trawienia: V-rowek lub dyfuzja p+

Mikromechanika powierzchniowa – trawienie anizotropowe

Etapy wytwarzania belki krzemowej jednostronnie podpartej w trawieniu anizotropowym

Mikromechanika powierzchniowa – trawienie elektrochemiczne

Szybkość trawienia zależy od różnicy potencjałów między próbką i środkiem trawiącym.

V_{RE} dobrane tak, aby zachodziło trawienie podłoża.

Potencjał epiwarstwy V_{RE} + V_E dobrany tak, aby był powyżej "progu pasywacji" n-Si.

Trawienie zatrzymuje się na warstwie epitaksjalnej, tworząc warstwę pasywacyjną.

29

Mikromechanika powierzchniowa – trawienie suche

Trawienie suche (w plaźmie gazowej)

Trawienie plazmowe (Plasma etching) jest procesem czystym, bardzo użytecznym w przypadku, gdy nie można stosować trawienia mokrego.

Mikromechanika powierzchniowa – trawienie izotropowe

Izotropowe trawienie cienkich warstw

Przykłady środków trawiących dla wybranych cienkich warstw:

Si:
$$HF + HNO_3 + H_2O$$

$$SiO_2$$
: HF + H₂O

$$Si_3N_4$$
: $H_3PO_4 + H_2O$

Al: trawienie plazmowe lub reaktywne jonowe

Warstwy Au, Pt nie są trawione, ale kształtowane w tzw. procesie *lift-off*.

Mikromechanika powierzchniowa – proces lift-off

Uzyskano wzór ścieżki metalicznej bez trawienia metalu (f).

Mikromechanika objętościowa - powstawanie belki zawieszonej i komory

Technologia mikromechaniczna

typy membran

Typy membran spotykane w czujnikach mikromechanicznych: zamknięta (a) oraz podwieszona typu pająk (*hotplate*, *spider*) (b)

Technologia LIGA – etapy technologiczne

LIGA (niem. *Lithographie*, *Galvanoformung*, *Abformung* — litografia, galwanoplastyka, formowanie)

Technologia LIGA – zastosowania

J. Micro/Nanolith. MEMS MOEMS. 8(3), 033010 (July 01, 2009). doi:10.1117/1.3158617

Wytwarza się w niej miniaturowe metalowe (Ni) kółka zębate, walce, mikroigły itd.

http://www.memsnet.org/mems/fabrication.html

Możliwość wytwarzania wysokich elementów

Technologia EFAB – dlaczego?

"State-of-the-art"

Mikromechanika powierzchniowa

LIGA

Wady: ograniczone geometrie, mnóstwo masek i procesów, długi czas wprowadzenia produktu na rynek, wymagana znajomość wytw. MEMS, brak standardów (każde nowe urządzenie – nowe procesy), kłopotliwe łączenie z elektroniką

- •Szybkie przejście od modeli 3D CAD (WYSIWYG) reprezentujących urządzenie ("wiem, jak coś ma działać; nie znam technologii") do prototypu urządzenia.
- •Możliwe szybkie wytworzenie mikrourządzeń, których wcześniej nie dało się wytworzyć.

23-warstwowy transformator zbudowany w EFAB na podłożu izolowanym (MEMGen Corporation)

mikrosprężyna – 36 warstw

Mikrolinia koaksjalna opóźniająca RF (30 GHz) - 1cm długości

Mikropalce aktywowane "ścięgnami" - 1 mm szerokości

Technologia EFAB - procesy

(e) Struktura finalna
Po wytrawieniu warstwy poświęcanej

"Relative to conventional micromachining, no customer's design is too complex and no part is too small"

from Microfabrica website

W porównaniu z konwencjonalną mikroobróbką żaden projekt klienta nie jest zbyt skomplikowany i żadna część nie jest zbyt mała

Mrówka leżąca na 12-warstwowym mikrołańcuchu z niezależnie poruszanymi ogniwami. Wysokość ~100um (grubość kartki papieru)

Materiał: nikiel.

Pojedynczy proces

Technologia MEMS

- Zawiera dwie płytki Si, które muszą być zbondowane (połączone spoiwem)
- Wymaga obudowy

Technologia EFAB

- Większa powierzchnia aktywna, większa pojemność
- Konstrukcja 3D
- "Obudowa samopakująca"

3-D cad model

SEM Photo

EFAB: model i wykonanie urządzenia RF na 30 GHz

Fale EM o dużych częst. są bardzo wrażliwe na geometrię przewodnika – wpływ na propagację.

Za pomocą EFAB można tworzyć linie transmisyjne, sprzęgacze, linie opóźniające, anteny, filtry.

EFAB: model i wykonanie urządzenia RF na 30 GHz

MICROFABRICA - http://www.microfabrica.com/technology.html

Materiały dodatkowe, źródła

- W. Maziarz, Współczesne czujniki ciśnienia, Elektronik 1 (2002) 45–49.
- N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House, Inc., Boston, 2000.
- M. Gad-el-Hak, (red.), *The MEMS handbook, The Mechanical Engineering Handbook* Series. CRC Press, Boca Raton, 2002.
- S. Beeby, G. Ensell, M. Kraft i N. White, *MEMS Mechanical Sensors, Microelectrome*chanical Systems (MEMS) Series. Artech House, Inc., Boston, 2004.
- J. Dziuban, Technologia i zastosowanie mikromechanicznych struktur krzemowych i krzemowoszklanych w technice mikrosystemow, Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, 2002.
- J. M. Łysko, Anizotropia trawienia i piezorezystancji w kryształach połprzewodnikow. Przykłady wykorzystania w przyrządach MEMS, Instytut Technologii Elektronowej, Warszawa, 2004.
- Michael A. Cullinan i inni, *Scaling electromechanical sensors down to the nanoscale*, Sensors and Actuators A 187 (2012) 162–173
- •http://mems.sandia.gov/about/actuators.html
- •http://www.bacteria-world.com/what-are-mems.htm
- •http://e-fab.com/
- •http://www.dei.uminho.pt/pessoas/biomedica/ultra/01258171.pdf
- •FILM: metoda LIGA http://www.youtube.com/watch?v=oI0Hgo_dmsg
- http://www.memsnet.org/mems/fabrication.html