Balanced Allocations, Cuckoo Hash Tables, and Such

Michael Mitzenmacher Harvard University

Hashing Model

Hashing Model: d-Random

Azar, Broder, Karlin, Upfal (STOC 94)

Throw n balls into n bins randomly. Maximum load is $\log n / \log \log n$.

Place *n* balls into *n* bins sequentially, each ball going into the least loaded of *d* random locations.

Maximum load is $\log \log n / \log d$. Two choices: $\log \log n / \log 2$.

Multiple-Choice Hashing

$$S = \{x_1, x_2, ..., x_n\}$$
 of items

Multiple-Choice Hashing

- Can significantly reduce load.
 - Choice allows much more even spread of items over buckets.

- But need to check d locations.
 - Parallelizable, but still a cost -- e.g. pin count in router design.

Multiple-Choice Hashing

- Can significantly reduce load.
 - Choice allows much more even spread of items over buckets.

- But need to check d locations.
 - Parallelizable, but still a cost -- e.g. pin count in router design.
 - Can sometimes use Bloom filters (or variants) to track which location(s) to check for an item.

Example: Cached Hash Tables

- May want hash table to live in cache: each bucket corresponds to a hash line.
 - Example: hash tables in routers.
 - Consider 4-6 items per hash line.
- With one choice, large and highly variable maximum load.
 - Lots of empty, lightly loaded bins.
- Using two choices, most bins mostly full: more efficient memory usage.
- Application: IP routing.

Analysis Methods

- Layered induction
- Witness trees
- Fluid limits

How Many Empty Bins?

• [Hajek 88]

Let x(t) be fraction of non-empty bins; throw all n balls in 1 second.

$$E[\Delta x(t)] = (1 - x(t)^{d})/n; \Delta t = 1/n$$
$$dx/dt = 1 - x^{d}$$

Solve at t = 1, given x(0) = 0. Obtain x(1) = 0.7616.. for d = 2, matches simulations.

Generalize to Loads

Let $s_k(t)$ be fraction of bins with load at least k.

$$E[\Delta s_k(t)] = (s_{k-1}(t)^d - s_k(t)^d)/n; \Delta t = 1/n$$

All choices must have load at least k-1, but not all can have load at least k.

$$ds_k/dt = s_{k-1}^d - s_k^d$$

Successively solve equations at t = 1.

Double Exponential Decrease

$$ds_{k}/dt = s_{k-1}^{d} - s_{k}^{d}$$

$$ds_{k}/dt \le s_{k-1}^{d}(t) \le s_{k-1}^{d}(1)$$

$$s_{k}(1) \le s_{k-1}^{d}(1) \le s_{k-2}^{d^{2}}(1) \dots \le s_{1}^{d^{k-1}}(1)$$

This is crux of the ABKU proof; implies maximum load of $\log \log n / \log d$.

Kurtz's Theorem

 Over fixed time intervals and for fixed finite dimensional processes, the deviation of the random process from the solution to the differential equations obeys Chernoff-like bounds.

$$\Pr[\sup_{0 \le t \le T, 1 \le i \le k} |s_i(t) - \hat{s}_i(t)| > \varepsilon] \le c_1 k \exp(-c_2 n \varepsilon^2)$$

Power of Two Generalizations

- Many more results...
 - Asymmetric load balancing
 - More balls than bins
 - Weighted balls
 - Unbalanced initial conditions
 - Insertions and deletion
 - Non-uniform chocies

Supermarket Model

Mathematical Description

- Let s_k be fraction of queues with at least k
 customers.
- System state: $(s_0(t), s_1(t), s_2(t),...)$
- Fraction of queues with k customers is

$$s_k - s_{k+1}$$

Smallest of *d* random choices has *k*-1 customers with probability

$$S_{k-1}^d - S_k^d$$

Setting Differential Equations

rate S_k decreases

$$\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{(dt)/n}$$

System behavior

Expected behavior of process as differential equations.

$$ds_k/dt = \lambda(s_{k-1}^2 - s_k^2) - (s_k - s_{k+1})$$

Converges to fixed point

$$\pi = (\pi_0(t), \pi_1(t), \pi_2(t),...)$$
 where $ds_k/dt = 0$

At fixed point tails decrease doubly exponentially:

$$\pi_{k} = \lambda^{2^{k}-1}$$

Relation to the Real World

One choice yields exponential tails

$$\pi_k = \lambda^k$$
 vs. $\pi_k = \lambda^{2^k - 1}$

- Two choices yields exponential gains in
 - Maximum queue size.
 - Average time in the system.
- Gains observable even for "small" systems.
 - 128 servers, average time in system within 2% of limiting model for λ < 0.9.

Simulations vs. Predictions

Balanced Allocations with Double Hashing

- Double hashing yields "same performance" for balanced allocations as fully random hashing.
 - Method 1: Double hashing starts with 2 random choices. Need to show adding choices can only help load distribution. So double hashing better than 2 random choices.
 - Method 2: Witness trees. Gets double hashing has same $\log \log n / \log d$ high order term.
 - Method 3: Differential equations. Same differential equations govern behavior of double hashing. Hence same empirical performance.

Variation: Double Hashing

- Let h_1 and h_2 be hash functions.
- For i = 0, 1, 2, ..., k 1 and some f, let $g_i(x) = h_1(x) + ih_2(x) \mod m$
 - So 2 hash functions can mimic k hash functions.

Hashing Model: d-Left

Item placed in the shortest of *d* bins, one chosen independently and uniformly from each of *d* disjoint groups (of equal size). Ties broken by placing toward the left. Lookups can be parallelized!

d-Left Scheme

- d-Left is better than d-Random [V 99]
 - d-Random: max. load with n balls and n bins is $\log \log n / \log d$ with d choices.
 - d-Left: $\log \log n / d$ with d choices.
- Extensions [MV 99]:
 - Gives simple differential equations analysis for d-Left schemes.
 - Provides analysis, numerical results.
 - Suggests further improvements.

Comparison

- Considering n balls, n bins.
- For d-Random, fraction of bins with load at least k falls like 2^{-d^k}
 - Max. load log log n / log d
- For *d*-Left, fraction of bins with load at least *k* falls like $2^{-\phi(d)^{dk}}$
 - $-\phi(d)$ is rate of growth of generalized Fib. numbers
 - Max. load log log $n / d \log \phi(d)$

$$\phi_2 = 1.618..., \phi_3 = 1.839...; 2^{(d-1)/d} < \phi_d < 2.$$

Example of d-left hashing

• Consider 4-left performance with average load of 6, using differential equations.

Insertions only

Load ≥ 1	1.0000
Load ≥ 2	1.0000
Load ≥ 3	1.0000
Load ≥ 4	0.9999
Load ≥ 5	0.9971
Load \geq 6	0.8747
Load ≥ 7	0.1283
$Load \ge 8$	1.273e-10
Load ≥ 9	2.460e-138

Alternating insertions/deletions Steady state

Load ≥ 1	1.0000
$Load \ge 2$	0.9999
Load ≥ 3	0.9990
Load ≥ 4	0.9920
$Load \ge 5$	0.9505
Load ≥ 6	0.7669
$Load \ge 7$	0.2894
Load ≥ 8	0.0023
Load ≥ 9	1.681e-27

Cuckoo Hashing

- Basic scheme: each element gets two possible locations (uniformly at random).
- To insert x, check both locations for x. If one is empty, insert.
- If both are full, x kicks out an old element y.
 Then y moves to its other location.
- If that location is full, y kicks out z, and so on, until an empty slot is found.

Multiple Choice vs. Cuckoo Hashing?

- Multiple-choice hashing yields tables with
 - High memory utilization.
 - Constant time look-ups.
 - Simplicity easily coded, parallelized.
- Cuckoo hashing expands on this, combining multiple choices with ability to move elements.
 - Is moving elements worth the cost?
- Practical potential, and theoretically interesting!

Good Properties of Cuckoo Hashing

- Worst case constant lookup time.
- High memory utilizations possible.
- Simple to build, design.

Cuckoo Hashing Failures

- Bad case 1: inserted element runs into cycles.
- Bad case 2: inserted element has very long path before insertion completes.
 - Could be on a long cycle.
- Bad cases occur with very small probability when load is sufficiently low.
- Theoretical solution: re-hash everything if a failure occurs.

Various Representations

Basic Performance

- For 2 choices, load less than 50%, n elements gives failure rate of $\Theta(1/n)$; maximum insert time $O(\log n)$.
- Related to random graph representation.
 - Each element is an edge, buckets are vertices.
 - Edge corresponds to two random choices of an element.
 - Small load implies small acyclic or unicyclic components, of size at most $O(\log n)$.

Natural Extensions

- More than 2 choices per element.
 - Very different : hypergraphs instead of graphs.
 - D. Fotakis, R. Pagh, P. Sanders, and P. Spirakis.
 - Space efficient hash tables with worst case constant access time.
- More than 1 element per bucket.
 - M. Dietzfelbinger and C. Weidling.
 - Balanced allocation and dictionaries with tightly packed constant size bins.

Thresholds

Bucket Size 1

Choices	1	2	3	4	5	6
Load	0.5	0.918	0.976	0.992	0.997	0.999

2 Choices

Bucket size	1	2	3	4	5	8	10
Load	0.5	0.897	0.959	0.980	0.989	0.997	0.999

Proofs for Thresholds

- Most insight comes from viewing the process a branching tree from a node.
 - Cuckoo process as a hypergraph.
 - Each "edge" corresponds to a key, vertices are buckets.
 - Random neighborhood.
 - Distribution known/understood.
 - Locally a tree (with high probability).
- Then one fixes up the tree argument.
 - Challenging details.

Related to *I*-core

- The I-core is the maximal subgraph where each vertex has degree at least I.
- Can be found by peeling.
 - Take any vertex of degree at most *l*-1, remove it and corresponding edges.
- For cuckoo hashing with buckets of size I-1
 - If a bucket has at most I-1 keys that could be assigned to it, assign the keys to that bucket.
 - Remove bucket and keys from consideration.
- Cuckoo hashing succeeds when I-core is empty.
- Harder: cuckoo hashing succeeds when *I*-core has x remaining vertices, but less than (*I*-1)x edges.
 - The remaining core can be "matched".

Recursion Argument

- Let b be a node.
- Let q_h = probability node b is peeled after h rounds.
- Let p_j = probability node at distance h-j from b is peeled after j rounds. (Note p_0 = 0.) p = lim p_j .

$$\begin{split} p_1 &= \Pr\left[\text{Bin}\left(\binom{m-1}{k-1},\ k! \cdot \frac{c}{m^{k-1}}\right) \leq \ell - 2\right] \\ &= \Pr[\text{Po}(kc) \leq \ell - 2] \pm o(1), \\ p_{j+1} &= \Pr\left[\text{Bin}\left(\binom{m-1}{k-1},\ k! \cdot \frac{c}{m^{k-1}} \cdot (1-p_j)^{k-1}\right) \leq \ell - 2\right] \\ &= \Pr[\text{Po}(kc(1-p_j)^{k-1}) \leq \ell - 2] \pm o(1), \text{ for } j = 1, \dots, h - 2. \\ p &= \Pr[\text{Po}(kc(1-p)^{k-1}) \leq \ell - 2]. \\ q_h &= \Pr[\text{Po}(kc(1-p_{h-1})^{k-1}) \leq \ell - 1] \pm o(1). \end{split}$$

Stashes

- A failure in cuckoo hashing occurs whenever one element can't be placed.
- Is that really necessary?
- What if we could keep one element unplaced? Or eight? Or $O(\log n)$? Or εn ?
- Goal: Reduce the failure probability.

Motivation: CAMs

- CAM = content addressable memory
 - Fully associative lookup.
 - Usually expensive, so must be kept small.
 - Hardware solution, or a dedicated cache line in software.
- Not usually considered in theoretical work, but very useful in practice.
- Can we bridge this gap?
 - What can CAMs do for us?

A CAM-Stash

- Use a CAM to stash away elements that would cause failure.
- Intuition: if failures were independent, probability that s elements cause failures goes to $\Theta(1/n^s)$.
 - Failures not independent, but nearly so.
 - A stash holding a constant number of elements greatly reduces failure probability.
 - Implemented as hardware CAM or cache line.
- Lookup requires also looking at stash.
 - But generally empty.

Analysis Method

- Treat cells as vertices, elements as edges in bipartite graph.
- Count components that have excess edges to be placed in stash.
- Random graph analysis to bound excess edges.

6 vertices, 7 edges: 1 edge must go into stash.

A Simple Experiment

 10,000 elements, table of size 24,000, 2 choices per element, 10⁷ trials.

Stash Size	Needed Trials		
O	9989861		
1	10040		
2	97		
3	2		
4	0		

Random Walk Cuckoo Hashing

- When it is time to kick something out, choose one randomly.
- Small state, effective.
- Intuition: if fraction p of the buckets are empty, random walk "should" have fraction p of finding empty bucket at each step.
 - Clearly wrong, but nice intuition.
 - Suggests logarithmic time to find an empty slot.

Some Progress

- Polylogarithmic bounds on insertion time.
- Open question: better bounds on performance of random walk cuckoo hashing?

Bloom Filters via Hash Tables

- Recall one could obtain an optimal static
 Bloom filter using perfect hashing
- Can we use multiple-choice hashing/cuckoo hashing to get a "near-perfect" hash table for a Bloom filter type object?

Perfect Hashing Approach

Near-Perfect Hash Functions via *d*-left Hashing

- Maximum load equals 1
 - Requires significant space to avoid all collisions, or some small fraction of spillovers.
- Maximum load greater than 1
 - Multiple buckets must be checked, and multiple cells in a bucket must be checked.
 - Not perfect in space usage.
 - In practice, 75% space usage is very easy.
 - In theory, can do even better.
- False positives increase with bucket size.

Modern Update: Cuckoo Filters

- Use a cuckoo hash table to obtain a nearperfect hash table
- Store a fingerprint in the hash table
- Can support insertion and deletion of keys
- Very space efficient
 - From cuckoo hash table construction, with buckets that hold multiple keys.

Cuckoo Filters: Issues

- Consider cuckoo hash table, 2 choice per key,
 4 fingerprints of keys per bucket.
- Buckets fill, an item has to be moved.
- How do we know where to move it?
 - We don't have the key any more.
 - Just the fingerprint.

Partial-key Cuckoo Hashing

- Can't use the key when moving a key.
- So we have to use the fingerprint instead.

```
h_1(x) = \text{hash}(x)

h_2(x) = h_1(x) \oplus \text{hash}(x'\text{s fingerprint})
```

- Note fingerprint is the same in both locations.
- Can compute h_1 from h_2 and vice versa with the stored fingerprint.

Partial-key Cuckoo Hashing

- Can't use the key when moving a key.
- So we have to use the fingerprint instead.

$$h_1(x) = \operatorname{hash}(x)$$

 $h_2(x) = h_1(x) \oplus \operatorname{hash}(x' \text{s fingerprint})$

- Note fingerprint is the same in both locations.
- Can compute h_1 from h_2 and vice versa with the stored fingerprint.
- But now the two choices are limited, not completely random. Will this still work?

Partial-key Cuckoo Hashing

- Does it work?
- In practice, yes.
 - Essentially no discernible change in the threshold under reasonable settings.
- In theory, no.
 - You "need" logarithmic sized fingerprints...
 - But with a small constant factor.
 - So in practice it ends up OK.
- Open problem better provable bounds on performance of partial-key cuckoo hashing.

Bit-Saving Tricks

- Every bit counts for space purposes.
- Bucket size of 4.
- Sort the fingerprints.
- Take the first 4 most significant bits.
- After sorting there are 3876 possible outcomes.
 - Less that 2^{12} .
 - So use only 12 bits to represent these 16.
 - Saves 1 bit per item.

Cuckoo Filter Performance

Figure 4: False positive rate vs. space cost per element. For low false positive rates (< 3%), cuckoo filters require fewer bits per element than the space-optimized Bloom filters. The load factors to calculate space cost of cuckoo filters are obtained empirically.

Conclusion

- Power of two (or more) choices
 - A little choice usually goes a long way
- More and more uses for multiple-choice and cuckoo hashing
- Still lots of theoretical questions on cuckoo hashing to solve.

Exercise (Hard)

- Derive a family of differential equations that describe the *d*-left scheme of Vöcking.
- Assuming the differential equations are accurate, show that they yield a "Fibonacci exponential" decrease in the fraction of bins with load j as j increases for the case of n balls being placed into n bins.

Exercise

- Partial-key cuckoo hashing, with 2 choices per key, bucket size b, fingerprint size f bits, n items, table size m = cn buckets for constant c.
- A failure happens if 2*b*+1 keys map to the same pair of buckets.
- What is the expected number of sets of 2b+1 keys that map to the same pair of buckets?
- What value of f is needed so this is o(1)?

Open Problems

- Better analysis of random walk cuckoo hashing.
- Better analysis of partial-key cuckoo hashing.
- Analyzing double hashing+cuckoo hashing.
 Can one prove the same thresholds apply?
- Analyzing double hashing and peeling on random hypergraphs. Can one prove the same thresholds apply?