Aufgabe 1: Induktivitäten

Drei Spulen sind über ein Eisenjoch miteinander gekoppelt.

Die Anordnung wird als streuungsfrei betrachtet.

Daten: $N_1 = 100$ $N_2 = 200$ $N_3 = 100$ l = 10 cm A = 4 cm² überall die gleiche Querschnittsfläche $\mu_r = 8000$ (konstant)

- a) Berechnen Sie die Selbstinduktivitäten L_1 , L_2 und L_3 .
- b) Berechnen Sie die Gegeninduktivitäten L_{12} , L_{23} und L_{13} (gleichsinnige Kopplung).
- c) Bestimmen Sie die Kopplungsfaktoren k_{12} , k_{23} und k_{13} .

Aufgabe 2: Mittelwerte eines periodischen Stromes

- a) Berechnen Sie den Gleichwert des Stromes.
- b) Berechnen Sie den Gleichrichtwert des Stromes.
- c) Berechnen Sie den Effektivwert des Stromes.

Aufgabe 3: Zeigerdiagramm und Phasenbedingung

Daten:
$$f=1 \text{ kHz}$$

 $R_{\text{L}}=X_{\text{L}}=2 \text{ k}\Omega$ $R_{\text{C}}=1 \text{ k}\Omega$ $R=500 \Omega$

- a) Zeichnen Sie das Zeigerdiagramm mit allen Spannungen und Ströme für $|X_C|=2~\mathrm{k}\Omega$.
- b) Bestimmen Sie C , so dass $\underline{I}_{\mathbb{C}}$ um 60° gegenüber $\underline{U}_{\mathbb{Q}}$ voreilt.

Aufgabe 4: Leistungsberechnung und Anpassung

Daten:
$$I_{\rm q}=100~{\rm mA}$$
 $f=1~{\rm kHz}$ $R_{\rm L}=10~\Omega$ $L=10~{\rm mH}$ $R_{\rm C}=100~\Omega$ $C=2,2~\mu{\rm F}$

- a) Berechnen Sie die Leistung, die in \underline{Z} umgesetzt wird, falls $\underline{Z} = 100 \Omega$ reell.
- b) Bestimmen Sie \underline{Z} , so dass die in ihm umgesetzte Wirkleistung maximal wird.
- c) Berechnen Sie die in <u>Z</u> umgesetzte Wirk- und Blindleistung im Anpassungsfall.