Package 'MHadaptive'

February 19, 2015

1 Columny 19, 2013
Type Package
Title General Markov Chain Monte Carlo for Bayesian Inference using adaptive Metropolis-Hastings sampling
Version 1.1-8
Date 2012-24-05
Author Corey Chivers
Maintainer Corey Chivers <corey.chivers@mail.mcgill.ca></corey.chivers@mail.mcgill.ca>
Depends MASS, R (>= 2.14.0)
Description Performs general Metropolis-Hastings Markov Chain Monte Carlo sampling of a user defined function which returns the un-normalized value (likelihood times prior) of a Bayesian model. The proposal variance-covariance structure is updated adaptively for efficient mixing when the structure of the target distribution is unknown. The package also provides some functions for Bayesian inference including Bayesian Credible Intervals (BCI) and Deviance Information Criterion (DIC) calculation.
License GPL (>= 3)
LazyLoad yes
Repository CRAN
Date/Publication 2012-03-24 17:49:17
NeedsCompilation no
R topics documented:
MHadaptive-package BCI mcmc_r mcmc_thin Metro_Hastings plotMH positiveDefinite

2 BCI

Index 9

MHadaptive-package General Markov Chain Monte Carlo for Bayesian Inference using adaptive Metropolis-Hastings sampling

Description

Performs general Metropolis-Hastings Markov Chain Monte Carlo sampling of a user defined function which returns the un-normalized value (likelihood times prior) of a Bayesian model. The proposal variance-covariance structure is updated adaptively for efficient mixing when the structure of the target distribution is unknown. The package also provides some functions for Bayesian inference including Bayesian Credible Intervals (BCI) and Deviance Information Criterion (DIC) calculation.

Details

Package: MHadaptive
Type: Package
Version: 1.1-6
Date: 2011-12-20
License: GPL (>= 3)

LazyLoad: yes

This package provides a simple Metropolis-Hastings algorithm with an adaptive proposal distribution for estimating posterior distributions of Bayesian models. The user need only define the model as a function which returns the un-normalized posterior distribution (ie. $log[L(\theta|x)P(\theta)]$).

Author(s)

Corey Chivers corey.chivers@mail.mcgill.ca

References

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002), Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64: 583-639. doi: 10.1111/1467-9868.00353

BCI Bayesian Credible Interval

Description

Calculate the Bayesian Credible Intervals for an mcmcMH object.

mcmc_r 3

Usage

```
BCI(mcmc_object, interval = c(0.025, 0.975))
```

Arguments

mcmc_object object returned by a call to Metro_Hastings()

interval vector containing the percentiles over which to calculate the credible interval.

The default of c(0.025, 0.975) corresponds to a 95% BCI.

Value

matrix of BCI values. Each row contains the marginal BCI for each parameter, as well as the marginal posterior means. Columns correspond to the percentiles given by interval.

Author(s)

Corey Chivers <corey.chivers@mail.mcgill.ca>

References

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. and Van Der Linde, A. (2002), Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64: 583-639. doi: 10.1111/1467-9868.00353

See Also

```
Metro_Hastings,mcmc_thin, plotMH
```

Examples

```
data(mcmc_r)
BCI(mcmc_r) ## 95% BCIs of a simple Bayesian linear regression
```

mcmc_r

A sample object created by running Metro_Hastings().

Description

Result of a Markov Chain Monte Carlo run on a simple Bayesian linear regression model. For demonstrating BCI, plotMH, and mcmc_thin

Usage

```
data(mcmc_r)
```

4 mcmc_thin

Examples

```
data(mcmc_r)
BCI(mcmc_r)
plotMH(mcmc_r)
mcmc_thin(mcmc_r)
```

mcmc_thin

Thin an MCMC object to reduce autocorrelation.

Description

This function reduces the autocorrelation of an MCMC run from Metro_Hastings() by retaining only every <thin> iterations of the chain.

Usage

```
mcmc_thin(mcmc_object, thin = 5)
```

Arguments

mcmc_object object returned by a call to Metro_Hastings()

thin integer: retain only every <thin> iterations of the MCMC.

Value

object (list) of the same type as that returned by a call to Metro_Hastings()

Author(s)

Corey Chivers corey.chivers@mail.mcgill.ca

See Also

```
Metro_Hastings,BCI, plotMH
```

Examples

```
data(mcmc_r)
## Thin the results of a simple Bayesian linear regression
mcmc_rTHINNED<-mcmc_thin(mcmc_r)
plotMH(mcmc_rTHINNED)</pre>
```

Metro_Hastings 5

Metro_Hastings	Markov Chain Monte Carlo for Bayesian Inference using adaptive Metropolis-Hastings
netro_nastings	<i>y y y y</i>

Description

The function Metro_Hastings performs a general Metropolis-Hastings sampling of a user defined function which returns the un-normalized value (likelihood times prior) of a Bayesian model. The proposal variance-covariance structure is updated adaptively for efficient mixing when the structure of the target distribution is unknown.

Usage

```
Metro_Hastings(li_func, pars, prop_sigma = NULL,
    par_names = NULL, iterations = 50000, burn_in = 1000,
    adapt_par = c(100, 20, 0.5, 0.75), quiet = FALSE,...)
```

Arguments

li_func	user defined function (target distribution) which describes a Bayesian model to be estimated. The function should return the un-normalized log-density function (ie. $log[L(\theta x)P(\theta)]$). The first argument to this function should be a vector of parameter values at which to evaluate the function.
pars	vector of initial parameter values defining the starting position of the Markov Chain.
prop_sigma	covariance matrix giving the covariance of the proposal distribution. This matrix need not be positive definite. If the covariance structure of the target distribution is known (approximately), it can be given here. If not given, the diagonal will be estimated via the Fisher information matrix.
par_names	character vector providing the names of each parameter in the model.
iterations	integer: number of iterations to run the chain for. Default 50000.
burn_in	integer: discard the first burn_in values. Default 100.
adapt_par	vector of tuning parameters for the proposal covariance adaptation. Default is $c(100, 20, 0.5, 0.75)$. The first element determines after which iteration to begin adaptation. The second gives the frequency with which updating occurs. The third gives the proportion of the previous states to include when updating (by default 1/2). Finally, the fourth element indicates when to stop adapting (default after 75% of the iterations).
quiet	logical: set to TRUE to suppress printing of chain status.
	additional arguments to be passed to li_func.

6 Metro_Hastings

Value

trace matrix containing the Markov Chain

prop_sigma adapted covariance matrix of the proposal distribution

par_names character vector of the parameter names

DIC Deviance Information Criteria

acceptance_rate proportion of times proposed jumps were accepted

Note

While Metro_Hastings has an adaptive proposal structure built in, if prop_sigma differs greatly from the covariance structure of the target distribution, stationarity may not be achieved.

Author(s)

Corey Chivers corey.chivers@mail.mcgill.ca

See Also

```
mcmc_thin, plotMH,BCI
```

Examples

```
### A LINEAR REGRESSION EXAMPLE ####
## Define a Bayesian linear regression model
li_reg<-function(pars,data)</pre>
                      #intercept
    a<-pars[1]
    b<-pars[2]
                     #slope
    sd_e<-pars[3] #error (residuals)</pre>
    if(sd_e<=0){return(NaN)}</pre>
    pred <- a + b * data[,1]</pre>
    log_likelihood<-sum( dnorm(data[,2],pred,sd_e, log=TRUE) )</pre>
    prior<- prior_reg(pars)</pre>
    return(log_likelihood + prior)
}
## Define the Prior distributions
prior_reg<-function(pars)</pre>
    a<-pars[1]
                          #intercept
    b<-pars[2]
                          #slope
    epsilon<-pars[3]
                          #error
    prior_a<-dnorm(a,0,100,log=TRUE)</pre>
                                             ## non-informative (flat) priors on all
    prior_b<-dnorm(b,0,100,log=TRUE)</pre>
                                             ## parameters.
    prior_epsilon<-dgamma(epsilon,1,1/100,log=TRUE)</pre>
    return(prior_a + prior_b + prior_epsilon)
```

plotMH 7

```
# simulate data
x<-runif(30,5,15)
y<-x+rnorm(30,0,5)
d<-cbind(x,y)

mcmc_r<-Metro_Hastings(li_func=li_reg,pars=c(0,1,1),
    par_names=c('a','b','epsilon'),data=d)

## For best results, run again with the previously
## adapted variance-covariance matrix.

mcmc_r<-Metro_Hastings(li_func=li_reg,pars=c(0,1,1),
    prop_sigma=mcmc_r$prop_sigma,par_names=c('a','b','epsilon'),data=d)

mcmc_r<-mcmc_thin(mcmc_r)
plotMH(mcmc_r)</pre>
```

plotMH

Plot MCMC results of a call to Metro_Hastings().

Description

This function plots histograms and traces of each parameter of the Bayesian model.

Usage

```
plotMH(mcmc_object, correlogram = TRUE)
```

Arguments

mcmc_object an object returned by a call to Metro_Hastings()

correlogram logical: if TRUE, plots a pairwise correlogram of each parameter in the model.

Value

NULL

Author(s)

Corey Chivers corey.chivers@mail.mcgill.ca

See Also

```
Metro_Hastings,BCI, mcmc_thin
```

8 positiveDefinite

Examples

positiveDefinite

Positive Definite Matrixes

Description

Checks if a matrix is positive definite and/or forces a matrix to be positive definite.

Usage

```
isPositiveDefinite(x)
makePositiveDefinite(x)
```

Arguments

Х

a square numeric matrix.

Details

The function isPositiveDefinite checks if a square matrix is positive definite.

The function makePositiveDefinite forces a matrix to be positive definite.

These functions were originally implimented in fUtilities Copyright: (c) 1999-2008 Diethelm Wuertz and Rmetrics Foundation URL: http://www.rmetrics.org

Author(s)

Korbinian Strimmer.

Examples

```
## isPositiveDefinite -
    # is the 3x3 identity matrix positive definate?
    isPositiveDefinite(diag(c(1,1,1)))
```

Index

```
*Topic datasets
    mcmc_r, 3
*Topic math
    positiveDefinite, 8
BCI, 2, 4, 6, 7
gettingstarted.MHadaptive
        (Metro_Hastings), 5
isPositiveDefinite(positiveDefinite), 8
makePositiveDefinite
        (positiveDefinite), 8
mcmc_r, 3
mcmc\_thin, 3, 4, 6, 7
Metro_Hastings, 3, 4, 5, 7
MHadaptive (MHadaptive-package), 2
MHadaptive-package, 2
plotMH, 3, 4, 6, 7
positiveDefinite, 8
```