Package 'umfpackr'

August 19, 2019

Type Package						
Title Sparse linear algebra with UMFPACK						
Version 0.4 Author Rob van Harrevelt [aut, cre] Maintainer Rob van Harrevelt < rvanharrevelt@gmail.com> Description This package contains methods for solving linear and non-linear systems of equations using the sparse linear algebra package UMFPACK.						
			Encoding UTF-8 LazyData true LinkingTo Rcpp Imports Rcpp Depends methods, Matrix RoxygenNote 6.1.1 Suggests testthat, nleqsly			
					R topics documented:	
					umf_solve	2
Index	4					
umf_solve Solves the system of linear equations $Ax = b$ using UMFPACK						
	_					

Description

Solves the system of linear equations Ax = b using UMFPACK

2 umf_solve_nl

Usage

```
umf_solve(a, b)
```

Arguments

a an object of class dgCMatrix (see dgCMatrix-class)

b the vector b

Value

the solution x

umf_solve_nl

Solves a system of non-linear equations F(x) = 0 using UMFPACK

Description

Solves a system of non-linear equations F(x) = 0 using UMFPACK

Usage

```
umf_solve_nl(start, fn, jac, ..., control = list(), global = c("no",
    "cline"), scaling = c("row", "col", "none"))
```

Arguments

start	initial guess of the solution x
fn	the function F
jac	a function returning the Jacobian of the function as a dgCMatrix object
	arguments passed to fn and jac
control	a list with control parameters. See Details.
global	The global strategy. Possible values are "no" (no global strategy, the default) and "cline" (cubic line search) (cubic line search)
scaling	Scaling method. Possible values are "row". "col" and "none". The default is row. See Details.

Details

Control options: Argument control is a named list containing one or more of the following components:

ftol The function value tolerance. Convergence is reached if the largest function value is smaller than ftol. The default value is 1e-8.

xtol The relative step size tolerance. When the relative step size is smaller than xtol, then the iteration is stopped. The default value is 1e-8.

umf_solve_nl 3

maxiter The maximum number of iterations. The default is 20.

trace A logical. If TRUE then the progress of the iteraton is printed. The default is FALSE.

silent A logical. If TRUE then all output is suppressed. The default is FALSE.

allow_simgular A logical value (default FALSE) indicating if a small correction to the Jacobian is applied when it is singular or too ill-conditioned. The method used is similar to a Levenberg-Marquardt correction and is explained in Dennis and Schnabel (1996) on page 151.

allow_singular A logical value (default FALSE) indicating if a small correction to the Jacobian is applied when it is singular or too ill-conditioned. The method used is similar to a Levenberg-Marquardt correction and is explained in Dennis and Schnabel (1996) on page 151.

Scaling: TODO

Value

a list with the following components:

solved A logical equal to TRUE if convergence of the function values has been achieved.

 $\begin{array}{ll} \text{iter} & \text{the number of iterations} \\ \text{x} & \text{the final values of } x \\ \text{fval} & \text{the function value} \end{array}$

message A string equal to "ok" if a solution has been found. Otherwise it describes the

reason why the iteration was stopped without success

Examples

```
library(umfpackr)
dslnex <- function(x, c) {</pre>
   y <- numeric(2)</pre>
   y[1] <- x[1]^2 + x[2]^2 - c
   y[2] \leftarrow exp(x[1]-1) + x[2]^3 - c
}
jacdsln <- function(x, c) {</pre>
   n \leftarrow length(x)
   Df <- matrix(numeric(n*n),n,n)</pre>
   Df[1,1] \leftarrow 2*x[1]
   Df[1,2] \leftarrow 2*x[2]
   Df[2,1] \leftarrow exp(x[1]-1)
   Df[2,2] <- 3*x[2]^2
   return(as(Df, "dgCMatrix"))
}
xstart <- c(2,3)
print(umf_solve_nl(xstart, dslnex, jacdsln, c = 2,
                     control = list(trace = TRUE)))
```

Index

umf_solve, 1
umf_solve_nl, 2