#19: Dimensionality reduction using graphs

David Dobas, Jakub Rada, Theo Michel 20236035, 20236065, 20236005

Problem statement

Dimensionality reduction

- Reduce dimension of data while preserving the structure of data, such as clustering or closeness of points
- Can be used for
 - Visualisation (reduction to 2D or 3D)
 - Preprocessing for ML algorithms
- State of the art algorithms
 - PCA powerful and fast, cannot capture complex manifolds
 - UMAP, t-SNE powerful and fast, complex to understand

Our goal

Our research question

- Can we capture the structure of data in graph?
 - Use graph as a compact representation of the data
 - Can be used to compress data
- Can we use the obtained graph to reduce dimensionality?
 - We can use graph embedding methods

Advantages of our approach

- Easy to understand algorithm
- Able to capture complex manifolds

2

Graph building

Cheapest builder

- Every datapoint is represented by node
- We compute pairwise distances between all datapoints
- Points with the shortest distances are connected by edges, edges added one by one until the graph is connected
- Edge weights are added using the distances as

$$w = \frac{1}{d^k}$$

k is a hyperparameter

Spanning tree

We can use spanning tree, weights same as cheapest builder

Iris — 150 datapoints, dimensionality 4, 3 classes Spring on iris dataset Output Digits - 1797 datapoints, dimensionality 64, 10 classes Form on digits dataset Output Formula Kawai on digits dataset Output Output

Quantitative results – digits dataset

Algorithm	Dimension	Trustworthiness	Continuity	Computation time
Cheapest + Spring	2	0.9182	0.9784	1m 49.7s
Cheapest + Kamada Kawai	2	0.8728	0.9661	8m 39.0s
Spanning + Kamada Kawai	2	0.9875	0.9859	2m 5.0s
Cheapest + GraphSAGE	2	0.8462	0.9530	34m 22.6s
PCA	2	0.8591	0.9646	0.2s
UMAP	2	0.9913	0.9927	7.2s
Cheapest + Kamada Kawai	10	0.9949	0.9937	11m 8.1s
Spanning + Kamada Kawai	10	0.9951	0.9867	57m 38.1s
Cheapest + GraphSAGE	10	0.9611	0.9774	24m 40.5s
PCA	10	0.9979	0.9990	0.3s
UMAP	10	0.9961	0.9944	7.8s

Summary

- We used simple algorithms for graph building and still obtained great results
- Our algorithm is able to compete with state-of-the-art algorithms in terms of trustworthiness and continuity
- However, we can not compete in computational time
- Also, we use all pairwise distances, which is not feasible for big datasets
- None of our methods is universally best on every dataset
- That creates a room for improvements