- 1. Para cada uno de las siguientes afirmaciones determine si es verdadera o falsa.
 - a) Si R es una relación de equivalencia sobre A entonces R no es una relación de orden sobre A.
 - b) Si R no es una relación de equivalencia sobre A entonces R es una relación de orden sobre A.
 - c) Sea (P, \leq) un poset reticulado y a, b y c en P tales que $a \leq b$. Entonces se da necesariamente alguna de las siguientes situaciones: $a \leq b \leq c$ o $a \leq c \leq b$ o $c \leq a \leq b$.
 - d) Para todo poset (P, \leq) y todo $S \subseteq P$, $(S, \leq |S|)$ es un subposet de (P, \leq) .
 - e) Para todo poset **P** y todo $S \subseteq P$, S es un subuniverso de **P**.
 - f) ({1, 3, 6, 4, 12}, |) es un subreticulo de $(D_{12}, |)$.
 - g) (N, |) es una cadena.
 - h) $(D_8, |)$ es una cadena.
 - i) Para todo $n \in \mathbb{N}$, $\mathbf{D_n}$ es un reticulado distributivo.
 - j) Para todo $n \in \mathbb{N}$, $\mathbf{D_n}$ es un álgebra de Boole.
 - k) Sea (P, \leq) un poset y sea $m \in P$. Si m es máximo entonces es maximal.
 - l) Sea (P, \leq) un poset y sea $m \in P$. Si m es el único minimal entonces es mínimo.
 - m) Sea (P, \leq) un poset finito y sea $m \in P$. Si m es el único maximal entonces es máximo.
 - n) Todo poset finito tiene al menos un maximal.
 - \tilde{n}) Si **P** es un poset finito entonces tiene máximo.
 - o) Si P es un poset reticulado finito entonces tiene mínimo.
 - p) ($\{1, 2, 3, 5, 30\}$, |) es un álgebra de Boole.
 - q) Si \mathbf{L} es un reticulado distributivo entonces todo elemento tiene a lo sumo un complemento.
 - r) Si **L** es un reticulado distributivo entonces todo elemento tiene exactamente un complemento.

- s) Si **L** es un reticulado tal que todo elemento tiene a lo sumo un complemento entonces es distributivo.
- 2. Considere el reticulado $L = (\{1, 2, 3, 4, 6, 9, 36\}, |).$
 - a) Dé el diagrama de Hasse de L.
 - b) Dé el diagrama de Hasse de Irr(L) = (Irr(L), |).
 - c) Sea $F:L\to \mathcal{D}(\mathbf{Irr}(\mathbf{L}))$ la función definida en el Teorema de Birkhoff. Dé explícitamente F(x) para cada $x\in L$.
 - d) Dé el diagrama de Hasse de $(\mathcal{D}(\mathbf{Irr}(\mathbf{L})), \subseteq)$.
 - e) ¿Es ${f L}$ un reticulado distributivo? Justifique su respuesta.
 - f) ¿Es ${\bf L}$ un álgebra de Boole? Justifique su respuesta.