Book of Proof

Third Edition

RICHARD HAMMACK

10 de agosto de 2021

Conteúdo

T	Conjuntos	T
	1.1 Introdução	1
	1.2 Produto Cartesiano	3
2	Lógica	5
3	Contagem	7
4	Prova Direta	9
5	Prova Contra-positiva	11
6	Prova por Contradição	13
7	Prova de Afirmações Não-Condicionais	15
8	Provas Envolvendo Conjuntos	17
9	Contraprova	19
10	Indução Matemática	2 1
11	Relações	23
12	Funções	25
13	Provas com Calculus	27
14	Cardinalidade de Conjuntos	29

iv *CONTEÚDO*

Conjuntos

"The theory of sets is a language that is perfectly suited to describing and explaning all types of mathematical structures."

– página 3

1.1 Introdução

Um **conjunto** (set) é uma lista de **elementos**. Normalmente denotados por uma letra maiúscula. Por exemplo:

$$A = \{1, 2, 3, 4, ...\}$$

Dois sets A e B são **iguais** se possuírem exatamente os mesmos elementos. Não importando a ordem desses elementos dentro de cada set.

Vamos definir um símbolo para sinalizar se um determinado elemento x pertence ou não a um determinado set qualquer A. Para tal relação usaremos o símbolo " \in " se x for um elemento de A ou, caso contrário, usaremos " \notin " se x não for um elemento de A.

É provável que, em algum momento, seja necessário contar a quantidade de elementos em um dado set qualquer A. Chamaremos essa relação de **cardinalidade** ou **tamanho** do set A. O símbolo usado será duas barras em volta do set do seguinte modo: "|A|".

A partir dessas duas relações já podemos definir um tipo especial de set. Vamos definir como **conjunto vazio** ou **empty set** um conjunto que possua o cardinal igual a zero. Usaremos o símbolo "Ø" para definir a relação abaixo:

$$|\emptyset| = 0$$

2 1. CONJUNTOS

Às vezes, não raramente, usamos sets que a escrita como uma lista de elementos não é tão intuitiva para uso. Para essas situações usamos a **notação** de formação de conjuntos (set builder notation). Como no exemplo abaixo:

$$E = \{ 2n : n \in \mathbb{Z} \}$$

Eu colori cada significado da expressão acima com a cor correspondente para facilitar o entendimento. A leitura da expressão acima é: "O conjunto 'E' é igual ao conjunto dos elementos da forma 2n tal que n é um elemento de \mathbb{Z} ".

Podemos resumir essa notação de formação de conjuntos como " $Conjunto = \{Expressão : Regra\}$ ". É bem comum vermos notações onde os dois pontos são trocados por uma barra: " $Conjunto = \{Expressão \mid Regra\}$ ".

Existem alguns conjuntos que são famosos e a essa altura você já deve ter visto algumas vezes.

$$\emptyset = \{\}$$

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\}$$
, perceba que $0 \notin \mathbb{N}$

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$$

$$\mathbb{Q} = \{x : x = m/n, \text{ onde } m, n \in \mathbb{Z} \text{ } e \text{ } n \neq 0\}$$

$$\mathbb{R} \xrightarrow[-3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3]{\sqrt{2}} \xrightarrow{e \ \pi}$$

Como o conjunto dos número reais pode ser descrito como pontos em uma reta infinita. Se tivermos dois pontos quaisquer a e b, de modo que, $a,b \in \mathbb{R}$ e a < b. Temos infinitos elementos entre esses dois pontos. Desse modo, teremos que usar um novo símbolo para se referir aos conjuntos que são melhor descritos em termos de **intervalos** entre pontos.

1.2 Produto Cartesiano

Definition 1.2.1 (Par Ordenado). Um **par ordenado** é um lista na forma (x, y) que contém dois elementos (x e y). Onde esses dois elementos estão entre parênteses e separados por uma vírgula.

Atente para o fato que $(x, y) \neq (y, x)$.

Agora que temos a definição de par ordenado. Podemos escrever conjuntos usando esse novo símbolo.

Definition 1.2.2 (Produto Cartesiano). O produto cartesiano de dois sets A e B é um outro set cujo símbolo é " $A \times B$ " e é definido como:

$$A \times B = \{(a, b) : a \in A, b \in B\}$$

Perceba que, se A e B são finitos, então $|A \times B| = |A|.|B|$

4 1. CONJUNTOS

Lógica

6 2. LÓGICA

Contagem

8 3. CONTAGEM

Prova Direta

Prova Contra-positiva

Prova por Contradição

Prova de Afirmações Não-Condicionais

Provas Envolvendo Conjuntos

Contraprova

Indução Matemática

Relações

24 11. RELAÇÕES

Funções

26 12. FUNÇÕES

Provas com Calculus

Cardinalidade de Conjuntos