22DC 670/00

Service Service Service

U.K. PARTS DISTRIBUTOR
Willow Vale Electronics Ltd

11, Arkwright Road, Reading, Berks. Telephones: 0734-876444 MANCHESTER

Reliance Street, Newton Heath Telephones: 061-682-1415 NOTTINGHAM

11, Marhill Road, Carlton. Telephones: 0602-870789

For repair information of the cassette mechanism see Service Manual of auto reverse cassette P1-8 (22DC570), P6-16 (22DC670).

Service Manual

12 V —

43 029 A12

Documentation Technique Service Dokumentation Documentazione di Servizio Huolte-Ohje Manual de Servicio Manual de Serviçio Subject to modification

TECHNICAL DATA

General

Power supply : 14.4V DC Dimensions(wxhxd) : 180x51x150 mm

Remote control unit : 22EN9875

Radio

LW : 144-288 kHz
MW : 522-1611 kHz
FM : 87.5-108 MHz
IF-AM : 10.7 MHz
IF-FM : 10.7 MHz

Sensitivity 26 dB S/R $$: 160 μ V (LW) $$: 110 μ V (MW)

Cassette player

 $\begin{array}{lll} \mbox{Number of tracks} & : 2x2 \\ \mbox{Tape speed} & : 4.76 \mbox{ cm/sec} \\ \mbox{Wow \& Flutter} & : \geqslant 0.35 \mbox{ \%} \\ \mbox{Crosstalk} & : \leqslant 30 \mbox{ dB} \\ \end{array}$

Amplifier

SERVICING HINTS

SERVICE TEST PROGRAMME

The μC test programme can be called without first entering the security code.

μC test

This test is called by turning the set on while keeping the P1 and P2 keys depressed.

Besides the RAM, a great number of μC instructions are tested. If no faults occur, a special pattern will be displayed. (See fig. 1f)

The test can be stopped by turning the set off.

Display test

The display test is called by turning the set on while keeping the P1 and P3 keys depressed.

A number of easily recognizable patterns are then displayed in succession. (See figs. 1a to 1h) If you want to make one of the patterns visible for a longer time, you only have to keep the P1 key pressed for the required time.

SECURITY CODE

General

To reduce the risk of theft, this car radio has a built-in electronic lock. The security code has been entered in the factory and cannot be changed by the customer. The security code consists of four figures varying between "0000" and "9999". The figures are selected by pressing the UP and DOWN keys and are entered by pressing the P1 key. If you enter a wrong code, you will hear an error bleep and after 1 minute you will be given a new opportunity to enter the right code. Each time a wrong code is entered, the waiting time is doubled, so 1, 2, 4, 8 etc. with a maximum of 32 minutes.

Note: If the set is presented for repair with the security code switched on, and the customer has not stated the right code, the set will not be able to function.

Replacing the eeprom by a "non-coded" eeprom and/or replacing the microprocessor will not help in that case.

Working

ACTIVATING THE SECURITY CODE

Proceed as follows:

Switch the set on while pressing the UP key.

Now you hear a two-tone beep and the protection is activated.

The car radio will signal that the code has been activated by briefly showing in the display the character '-C-' at the moment of switching on the radio.

ENTRY OF THE CODE

Example: Suppose the code is 4567.

- Switch on -C-	
- Press P1 -	
- Select UP/DOWN "4" 4 first figure	
- Press P1 4-	
 Select UP/DOWN "5" 45 second figure 	
- Press P1 45-	
- Select UP/DOWN "6" 456 third figure	
- Press P1 456-	
- Select UP/DOWN "7" 4567 fourth figure	
- Press P1 confirmation tone	е

The radio is now on and you can operate the cassette player.

Now that the security code is active, the code should be entered again each time the supply voltage has been interrupted.

To indicate that the security code is activated, the display briefly shows the character "C" each time the set is turned on.

SWITCHING THE CODE OFF

Switch the set on **while** pressing the **UP** key. The display shows the indication "-C-". Enter the right code in the way described above. Two two-tone squeaks confirm that the security code is switched off.

All ICs and many other semi-conductors are susceptible to electrostatic discharges (ESD).

Careless handling during repair can reduce service life drastically. When repairing, make sure that you are connected to the same potential as the mass of the set via a wrist wrap with resistance.

Keep components and tools also at this potential.

1053 CONNECTING BLOCK P.B. ASSY

42 829 B12

V an	y position position FM	6052 TEA6200	
V AM	position AM	1 = 6.8V AM 2 = 4.0V AM	11= 6.8V AM 12= 1.3V MP-5
V > V <	position play forward position play reverse	3 = 8.5V	13= 4.8V AM
V eject	position eject	4 = 8.5V 5 = 8.5V	14= 8.5V AM 15= 4.8V AM
1050 FM TUNER		6 = 8.5V	16= 4.8V AM
	C107= VC-FM MP-7		17= GND. 18= 1.0V AM
C102= -	C108= 1.4V	9 = 4.0V AM	19= 1.3V AM
	C109= GND. C110= 1.7V	10= 4.0V AM	20= 3.3V AM
C105= 1.7V	C111= 2.9V	6053 M8571B6	
C106= 8.5V	C112= 0.2V C113= 1.8V	1 = GND.	5 = 4.8V(SDA)
AGES IAO TIUEI		2 = GND. 3 = GND.	6 = 4.8V(SCL) 7 = GND.
	5 - 4 2 1/	4 = GND.	8 = 5.0V
1 = N.C 2 = 2.5V MP-9	6 = 8.1V	6055 TA7705P	
3 = N.C	7 = 8.4V 8 = GND	1 = 8.5V	9 = 2.9V
0.0V no signal	b = GND.	2 = 3.3V; 0.0V eject	10= N.C 11= 2.9V
		5.0V <	11= 2.90
1057 ST.DEC.THIFI		4 = N.C 5 = 2.9V	12= 2.9V 13= 2.9V
1 = 5.0V mono	11= 5.0V mono	6 = 2.9V	14= N.C
			15= N.C 16= 3.3V
3 = 3.5V	13= 5.0V muted		10- 0.0V
4 = 2.5V	14= 0.0V muted		8 = 14.4V
5 = 3 5V		2 = 2.2V	9 = 6.6V
6 = GND.	16= 3.5V		10= 14.4V 11= 14.4V
		5 = 6.6V	12= 6.6V
9 = N.C	19= 3.5V		13= 2.2V
	20= 3.5V		
	11= 4 2V MP-4	2 = 2.6V	
2 = 0.8V	12= 4.6V		
•	13= 4.6V	5 = 8.5V	
4 = N.C	14= 2.5V 15= 4.4V	6064 L4904	
6 = 40 kHz	16= 2.9V	1 = 12.7V	5 = N.C
7 = GND. 8 = 8.4V	17= 2.9V 18= 2.9V		6 = 4.2V 7 = 5.0V
9 = 4.8V(SDA)	19= 2.9V	4 = GND.	8 = 5.0V
	ZO= GND.	6068/6069	
	0 - 40 111 0 011-	e = 0.1V loudn. on	
		b = 0.7V loudn. on $c = 0.1V$ loudn. on	
3 = 4.7V	11= 4.8V(SCL)		6074
1050 FM TUNER C101= GND. C107= VC-FM MP-7		e = GND.	
6 = 1.8V		b = 0.6V loudn. off	b = 0.0V
7 = 1.8V	15= N.C	0.0V loudn. on $c = 0.0V$ loudn. off	c = 5.0V
	16= 8.3V	0.1V loudn. on	6075
		6073	e = GND. b = 0.7V
			c = 0.0V
		b = 0.6V loudn. off 0.0V loudn. on	
		c = 0.0V loudn. off	
		S.SV IOUGII. OII	

For adjusting and checking see general procedures

Adjustment	SK	⊛ —	\Diamond	Z'	0.0
Qudrature detector	FM	93 MHz, 10 μV	⊗	5050	via 100 kΩ: 11-15 IC6050 ≤ 100 mV DC
Qudrature	FM	93 MHz, 1 mV \triangle f = 22.5 kHz f mod = 1 kHz	够		(1) 0dB (775 mV)
		93 MHz, 15 μ V \triangle f = 22.5 kHz f mod = 1 kHz	(B)	3055	 -3dB
	MW	990 kHz, 70 μV	(A)	3053	③ 1.75 V DC

AST STEREO INFO SK DK

a.

AST STEREO INFO SK DK

d.

C.

PRE LOUD
MW
FM2

FM2

e.

PRE LOUI

g.

f.

h.

Fig. 1

42 947 B12

For checking and adjusting see general procedures

Check	SK	% —	\Diamond		Setting of controls	0 0	
	E1.4	93 MHz, 1 mV	A			1 √0dB (775 mV)	
FM-Mute	FM	no signal	B			-30dB≪ (1)≪-40dB	ж.
26dB-SNR	FM	93 MHz, 4 μV <u></u> f = 22.5 kHz f mod = 1 kHz	⟨B⟩		_	♠ 0dB (775 mV)	s
	7	93MHz, 4μV without mod.	~			(1) ≥ 26dB	
	MW	990 kHz, 110 μV 1 kHz, 30% AM	Â			(1) 0dB (775 mV)	
		990kHz, 110 μV without mod.					
Demodulated FM-levels	FM	93MHz. 1mV △f = 22.5 kHz f mod = 1 kHz	⟨B⟩			4 200 mV ±1dB	
	К	93 MHz, 1 mV \triangle f = 6.75 kHz f mod. = 1 kHz	9			∮ 50 mV ± 1dB	
Demodulated FM level	FM	93 MHz, 1 mV \triangle f = 3.75 kHz f mod. = 57 kHz	⟨B⟩		-	♠ 20 mV ± 1 dB	
Demodulated AM-level	MW	990 kHz, 1 mV 1kHz, 30% AM	A			\bigcirc 350 mV \pm 1dB	
Cross talk	FM	93 MHz, 1 mV stereo signal	B		+	L 1 0dB (775 mV)	
	9	93 MHz, 1 mV stereo-R				R ② - L ① ≥ 21dB	
SDS/10dB Cross talk	FM	93 MHz, 1 mV stereo signal	al 🔝		+ _	L 1 0dB (775 mV)	
*		93 MHz, 150 μV stereo-R	100	·		R 🕏 - L 🕩= 10dB	
Search level FM	FM	93 MHz, 25μV	⟨B⟩			€ 2 V-DC	
Search level AM	MW	990 kHz, 70μV	A			③ 1.75 V-DC	
VC-FM	FM			87.5 MHz 108 MHz		$\langle \hat{7} \rangle \ge 1.0 \text{ V-DC}$ $\langle \hat{7} \rangle \le 6.0 \text{ V-DC}$	
VC-AM	LW			144 kHz			
	MW			1611 kHz		8 ≤ 6.0 V-DC	
I.A.C.	FM	τ = 10 μsec T = 300 μsec Vp = 60 mV	©				9 25-50 μs

- MISCELLA	ANEOUS -		-11-		
1055 1056 1057 1059 1060 1061 1062 1064 1065 1068 1166 1250/1251 1254 1270÷1274	IAC-Thifi SDK-Thifi STEREO DEC. Thifi Cer.Filter 10.7 MHz Cer.Filter 10.7 MHz Crystal 4 MHz Crystal 4 MHz Cer.Filter 10.7 MHz Cer.Filter 10.7 MHz Potm.Volume 2X50kΩ Fuse 2.5A(T) Potm.Tone 2X100kΩ Potm.Balance 100kΩ Lamp 14V-40mA	4822 214 51676 4822 214 51674 4822 214 51677 4822 242 71889 4822 242 71889 4822 242 71881 4822 242 71882 4822 242 71883 4822 242 71883 4822 242 71883 4822 242 71883 4822 102 40082 4822 253 30026 4822 102 30462 4822 100 20663 4822 134 40855	2166 2168 2172 2178 2180 2186 2187 2192 2193 2196 2201 2204 2206 2208	100nF 20% 50V 100nF 20% 50V 100nF 20% 50V 2200μF 10V 2200μF 10V 100nF 20% 50V 100nF 20% 50V 33 pF 50V 33 pF 50V 2200μF 16V 100pF 20% 50V 2.2μF 40V 4.7nF 50V	4822 122 33104 4822 122 33104 4822 122 33104 4822 124 41452 4822 124 41452 4822 122 33104 4822 122 33104 4822 122 33215 4822 122 33215 4822 124 22412 4822 122 33104 4822 124 33104 4822 124 33217 4822 122 33217
-11-					
2050 2051 2055 2056 2057 2061 2062 2063 2064 2068 2070 2074 2076 2083 2088 2089 2090 2091 2092 2097 2099 2106 2110 2114 2115 2118 2120 2121 2122 2123 2125 2133 2134 2135 2140 2141 2142 2150 2151 2156 2157 2158 2162	100nF 20% 50V 47 nF 100nF 20% 50V 10 nF 47 nF 2.2μF 40V 150pF 270pF 220nF 20% 50V 220nF 20% 50V 220nF 20% 50V 220nF 20% 50V 27 pF 10 pF 33 pF 20% 50V 270pF 20% 50V 270pF 20% 50V 270pF 20% 50V 270pF 20% 50V 10 nF 20% 50V 220nF 20% 50V 150pF 50V 150pF 50V 100nF 20% 50V 4.7nF 3.3nF 50V 220μF 6.3V 10 pF 50V 10 pF 50V 820pF 50V 820pF 50V 820pF 50V 820pF 50V 220nF 20% 50V 220nF 20% 50V 220nF 20% 50V 220nF 50V 820pF 50V	4822 122 33104 4822 122 33104 4822 122 33104 4822 122 33104 4822 122 33211 4822 122 33211 4822 122 33216 4822 122 33216 4822 122 32916 4822 122 32916 4822 122 32916 4822 122 33212 4822 122 33212 4822 122 33215 4822 122 33215 4822 122 33216 4822 122 33216 4822 122 33216 4822 122 33216 4822 122 33217 4822 122 33216 4822 122 33217 4822 122 33218 4822 122 33104 4822 122 33217 4822 122 33218	3050 3051 3052 3053 3054 3055 3056 3057 3060 3061 3064 3065 3067 3068 3069 3070 3072 3073 3074 3075 3076 3077 3079 3080 3082 3083 3084 3086 3087 3090 3091 3095 3099 3100 3104 3105 3106 3110 3111 3112 3113 3116	1k 330Ω 10E 10k Trimpotmeter 2k7 10k Trimpotmeter 4k7 750E 10E 3k3 39k 2k2 620k 10E 3k9 8k2 22k 15k 1k 10k 2k7 330E 39k 39k 91E 2k2 39k 560E 470E 4k7 220k 1k	4822 111 91516 4822 111 91501 4822 111 91519 4822 100 20166 4822 111 91525 4822 100 20166 4822 111 91505 4822 111 91505 4822 111 91526 4822 111 91526 4822 111 91528 4822 111 91527 4822 111 91527 4822 111 91527 4822 111 91527 4822 111 91527 4822 111 91527 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91528 4822 111 91531 4822 111 91532 4822 111 91531 4822 111 91524 4822 111 91524 4822 111 91524 4822 111 91524 4822 111 91526 4822 111 91521 4822 111 91521 4822 111 91521 4822 111 91521 4822 111 91521 4822 111 91521 4822 111 91529 4822 111 91529 4822 111 91529 4822 111 91529

3117 3118 3119 3120 3121	1M 56k 56k 56k 56k	4822 111 91509 4822 111 91535 4822 111 91535 4822 111 91535 4822 111 91535	5050 5052 5054 5055 5056		4822 152 20684 4822 157 50975 4822 152 20677 4822 152 20677 4822 152 20677
3124 3125 3126 3130 3140	2M2 2M2 39k 390k 2K7	4822 111 91511 4822 111 91511 4822 111 91528 4822 111 91502 4822 111 91525	5057 5059 5060 5061 5062		4822 152 20679 4822 157 50975 4822 152 20682 4822 152 20683 4822 152 20678
3141 3142 3143 3146	2k7 10k 10k 15k	4822 111 91525 4822 111 91517 4822 111 91517 4822 111 91498	5064 5066		4822 157 50975 4822 152 20681
3147 3148	15k 100k	4822 111 91498 4822 111 91518 4822 111 91518	BAX14		4822 130 34193
3149 3150 3151 3152	100k 3k3 3k3 100k	4822 111 91526 4822 111 91526 4822 111 91518	BAX18 BBY40 BZX79/B5V1 BZX79/B5V6		4822 130 34121 5322 130 80119 4822 130 34233 4822 130 34173
3153 3158 3159 3160	100k 5k6 5k6 5k6	4822 111 91518 4822 111 91534 4822 111 91534 4822 111 91534	BZX79/C4V7 1N4002 1N4148	,	4822 130 34174 5322 130 30684 4822 130 30621
3161 3165 3166	5k6 100k 100k	4822 111 91534 4822 111 91518 4822 111 91518	Ø	*	
3167 3168	100k 100k	4822 111 91518 4822 111 91518	BC847B Chip Trans	istor	4822 130 60511
3169 3170	100k 75E	4822 111 91518 4822 111 91506	6000000		
3171 3172 3173 3174	270E 270E 100k 100k	4822 111 91499 4822 111 91499 4822 111 91518 4822 111 91518	6050 6051 6052 6053	TEA6100 TSA6057 TEA6200 M8571B6	4822 209 72251 4822 209 72248 4822 209 72247 4822 209 11506
3175 3176 3177 3178 3180	10k 10k 680E 4E7 4E7	4822 111 91517 4822 111 91517 4822 111 91504 4822 116 80464 4822 116 80464	6055 6057 6060 6063	TA7705P TMP47C421AF TDA1518Q L4918	4822 209 82116 4822 209 72254 4822 209 72249 4822 209 72253
3204 4050 4051	22k 0E 0E	4822 111 91523 4822 111 91536 4822 111 91536	6064	L4904	4822 209 72252

SOLDERING IRON

EXAMPLES

27 037A/C

27 012C12

☐ Chip	os 50 V	NP0 S1206	©-—-	Chips 0,1	25 W S1206	©	Chips 0,1	25 W S1206	1
1 pF	5%	4822 122 32479	4,7 E	5%	5322 111 90376	6,8 k	2%	4822 111 90544	
1,2 pF	5%	4822 122 33013	5,1 E	5%	4822 111 90393	7,5 k	2%	4822 111 90276	
1,5 pF	5%	4822 122 31792	5,6 E	5%	4822 111 90394	8,2 k	2%	5322 111 90118	
,8 pF	5%	4822 122 32087	6,2 E	5%	4822 111 90395	9,1 k	2%	4822 111 90373	
,2 pF	5%	4822 122 32425	6,8 E	5%	4822 111 90254	10 k	2%	4822 111 90249	
,3 pF	5%	4822 122 32079	7,5 E	5%	4822 111 90396	11 k	2% 2%	4822 111 90337 4822 111 90253	
9 pF	5%	4822 122 32081	8,2 E	5%	4822 111 90397	12 k 13 k	2%	4822 111 90509	
,7 pF	5%	4822 122 32082	9,1 E	5%	4822 111 90398	15 k	2%	4822 111 90196	
,6 pF	5%	4822 122 32506	10 E 11 E	2% 2%	5322 111 90095 4822 111 90338	16 k	2%	4822 111 90346	
5,8 pF	5% 5%	4822 122 32507 4822 122 32083	12 E	2%	4822 111 90341	18 k	2%	4822 111 90238	
,2 pF 10 pF	5%	4822 122 31971	13 E	2%	4822 111 90343	20 k	2%	4822 111 90349	
12 pF	5%	4822 122 32139	15 E	2%	4822 111 90344	22 k	2%	4822 111 90251	
15 pF	5%	4822 122 32504	16 E	2%	4822 111 90347	24 k	2%	4822 111 90512	
18 pF	5%	4822 122 31769	18 E	2%	5322 111 90139	27 k	2%	4822 111 90542	
	10%	4822 122 31837	20 E	2%	4822 111 90352	30 k	2%	4822 111 90216	
27 pF	5%	4822 122 31966	22 E	2%	4822 111 90186	33 k	2%	5322 111 90267	
33 pF	5%	4822 122 31756	24 E	2%	4822 111 90355	36 k	2%	4822 111 90514	
39 pF	5%	4822 122 31972	27 E	2%	5322 111 90105	39 k	2%	5322 111 90108	
47 pF	5%	4822 122 31772	30 E	2%	4822 111 90356	43 k	2%	4822 111 90363	
56 pF	5%	4822 122 31774	33 E	2%	4822 111 90357	47 k	2%	4822 111 90543	
68 pF	5%	4822 122 31961	36 E	2%	4822 111 90359	51 k	2%	5322 111 90274	
82 pF 1	10%	4822 122 31839	39 E	2%	4822 111 90361	56 k	2%	4822 111 90573	
00 pF	5%	4822 122 31765	43 E	2%	5322 116 90125	62 k	2%	5322 111 90275	
20 pF	5%	4822 122 31766	47 E	2%	4822 111 90217	68 k	2%	4822 111 90202	
50 pF	5%	4822 122 31767	51 E	2%	4822 111 90365	75 k	2%	4822 111 90574	
30 pF	2%	4822 122 31794	56 E	2%	4822 111 90239	82 k	2%	4822 111 90575	
20 pF	5%	4822 122 31965	62 E	2%	4822 111 90367	91 k	2%	5322 111 90277	
70 pF	5%	4822 122 32142	68 E	2%	4822 111 90203	. 100 k	2%	4822 111 90214	
0 pF 1	10%	4822 122 31642	75 E	2%	4822 111 90371	110 k	2%	5322 111 90269	
00 pF	5%	4822 122 31771	82 E	2%	4822 111 90124	120 k	2%	4822 111 90568	
0 pF	5%	4822 122 31727	91 E	2%	4822 111 90375	130 k	2%	4822 111 90511	
0 pF	5%	4822 122 31773	100 E	2%	5322 111 90091	150 k	2%	5322 111 90099	
80 pF	5%	4822 122 31775	110 E	2%	4822 111 90335	160 k	2%	5322 111 90264	
0 pF	5%	4822 122 31974	120 E	2%	4822 111 90339	180 k	2%	4822 111 90565	
1 nF 1	10%	5322 122 31647	130 E	2%	4822 111 90164	200 k	2%	4822 111 90351	
	5%	4822 122 31807	150 E	2%	5322 111 90098	220 k	2%	4822 111 90197	
	10%	4822 122 31781	160 E	2%	4822 111 90345	240 k	2%	4822 111 90215	
	10%	4822 122 32153	180 E	2%	5322 111 90242	270 k	2%	4822 111 90302	
	10%	4822 122 31644	200 E	2%	4822 111 90348	300 k	2%	5322 111 90266	
	10%	4822 122 31783	220 E	2%	4822 111 90178	330 k	2%	4822 111 90513	
	10%	4822 122 31969	240 E	2%	4822 111 90353	360 k	2%	4822 111 90515	
	10%	4822 122 32566	270 E	2%	4822 111 90154	390 k	2%	4822 111 90182	
	10%	4822 122 31784	300 E	2%	4822 111 90156	430 k	2%	4822 111 90168	
	10%	4822 122 31916	330 E	2%	5322 111 90106	470 k	2%	4822 111 90161	
	10%	4822 122 31976	360 E	1%	4822 111 90288	510 k	2%	4822 111 90364	
	10%	4822 122 31728	360 E	2%	4822 111 90358	560 k	2%	4822 111 90169	
	10%	5322 122 31648	390 E	2%	5322 111 90138	620 k	2% 2%	4822 111 90213 4822 111 90368	
	10%	4822 122 31782	430 E	2%	4822 111 90362	680 k	2%	4822 111 90369	
	10%	4822 122 31759	470 E	2%	5322 111 90109				
	10%	4822 122 31797	510 E	2%	4822 111 90245	820 k	2% 2%	4822 111 90205 4822 111 90374	
	10%	4822 122 32541	560 E	2%	5322 111 90113 4822 111 90366	910 k 1 M	2%	4822 111 90374	
	10%	4822 122 31981	620 E	2%	4822 111 90366 4822 111 90162	1,1 M	5%	4822 111 90408	
	10%	4822 122 32542	680 E 750 E	2% 2%	5322 111 90306	1,1 M	5%	4822 111 90409	
	10% 10%	4822 122 32183 4822 122 31947	820 E	2%	4822 111 90306	1,2 M	5%	4822 111 90409	
	10%	4822 122 31947	910 E	2%	4822 111 90171	1,5 M	5%	4822 111 90411	
			910 E	2%	5322 111 90092	1,5 M	5%	4822 111 90412	
	20%	4822 122 32715			4822 111 90336	1,8 M	5%	4822 111 90414	
T- Chir	ns 0 12	5 W S1206 NP0	1,1 k	2%	5322 111 90096	1,8 M	5% 5%	4822 111 90415	
	ps 0,12	.0 W 01200 NFU	1,2 k	2% 2%	4822 111 90096	2,2 M	5% 5%	4822 111 90185	
0 E j	umper	4822 111 90163	1,3 k	2%	4822 111 90244	2,2 M	5%	4822 111 90416	
1 E	5%	4822 111 90184	1,5 k 1,6 k	2%	5322 111 90151	2,4 M	5%	4822 111 90417	
1 E	5%	4822 111 90377	1,8 k	2%	5322 111 90205	3 M	5%	4822 111 90417	
,1 E	5%	4822 111 90378	2 k	2%	4822 111 90165	3,3 M	5%	4822 111 90418	
3 E	5%	4822 111 90379	2,2 k	2%	4822 111 90165	3,6 M	5%	4822 111 90419	
5 E	5%	4822 111 903/3	2,2 K	2%	4822 111 90248	3,9 M	5%	4822 111 90419	
6 E	5%	4822 111 90382		2%	4822 111 90269	4,3 M	5%	4822 111 90421	
8 E	5%	4822 111 90383	2,7 k		4822 111 90569	4,3 M	5%	4822 111 90422	
2 E	5%	4822 111 90384	3 k	2%		5,1 M	5%	4822 111 90424	
,2 E	5%	5322 111 90104	3,3 k	2%	4822 111 90157	5,1 M	5%	4822 111 90425	
,4 E	5%	4822 111 90385	3,6 k	2%	5322 111 90107 4822 111 90571	6,2 M	5%	4822 111 90426	
,4 E ,7 E	5%	4822 111 90386	3,9 k	2%		6,8 M	5% 5%	4822 111 90235	
,7 E 3 E	5% 5%	4822 111 90387	4,3 k	2%	4822 111 901,67			and the second second second second second	
,3 E	5% 5%	4822 111 90387	4,7 k	2%	5322 111 90111	7,5 M	5% 5%	4822 111 90427 4822 111 90237	
,3 E	5% 5%	4822 111 90388	5,1 k	2%	5322 111 90268	8,2 M	5% 5%	4822 111 90237	
,U L	5%	4822 111 90391	5,6 k 6,2 k	2% 2%	4822 111 90572 4822 111 90545	9,1 M 10M	5% 5%	5322 111 91141	k
,9 E			D / K	170		I IUW	570	JULE 111 21141	