

Course: EGDF20

Module: EGE202 Application Programming

Practical 3: Programming WinForm Application using C#.NET

Objectives: At the end of this lab, the student should be familiarized with C# syntax in

terms of datatypes & arrays, arithmetic operations, control structures and string operations. Student will also learn about different type of errors like

syntax, logic and runtime errors.

Exercise 1 – Understanding Data Types and Arithmetic Operations

Part 1: Create a WinForm Application to Calculate Square of a number

- 1. Under the *File* menu, click *New Project* or use the *New Project* button to create a new project. Alternatively, use the *Create New Project* link in the *Get Started popup* dialog.
- 2. From the pop-up dialog, select "C#" for the *Language filter*, "Windows" for *the Platform filter* and "Desktop" for the *Project type filter*.
- 3. Then choose Windows Forms App (.Net Framework) and click the Next button.
- 4. Type the name of your new project as *Converter* and keep the Solution name the same as Project name.
- 5. Set the Location to put the project in your own created folder.
- 6. Do not tick on the check-box of [| Place solution and project in the same directory].
- 7. Click the **Create** button to start your project.
- 8. In the *Properties* window of the *Form* control, change the *TopMost* property of the *Form1* to 'True'.
- 9. Double click on "Form1.cs" **Solution Explorer** window to launch the **Form Designer** tab.
- 10. Change the **TopMost** property of the **Form1** to 'True'.
- 11. From the *Toolbar*, drag in 2 *Textbox*, 2 *Label* and 1 *Button* controls into the *Form1* window.
 - Change the *(Name)* property and *Text* property of these controls based on the table shown below.
 - Arrange these controls as shown in the figure below.
 - Resize Form1 (if necessary)

{Name}	{Name}	{Text}
From	То	
label1	IblSquare	Square
		of
label2	lblEql	=
textBox1	txtNum	
textBox2	txtResults	
button1	btnConvert	Convert

12. Build and run your application by hitting <F5> or <Ctrl + F5> key. You should see an application with the following UI (user interfacing). Visual Studio through the *Form Designer* allows programmer to quickly come up with application user interface while in the subsequent part of the lab, through the *Code Editor*, programmer can use C# & .NET Framework to develop the logic of the application.

- 13. Stop the application and proceed to double click on the "Convert" **Button** in the **Form Designer**. That will automatically create btnConvert_Click (...) function.
- 14. Modify btnConvert_Click (...) to include the following codes:

```
private void btnConvert_Click(object sender, EventArgs e)
{
   int num, results;

   num = txtNum.Text;
   results = num * num;
   txtResults.Text = results;
}
```

15. Using the *Build* menu, select *Build->Build Solution*. You should expect error to be flagged out at the *Error List* window. Double click on the error in the *Error List* window and it will bring you to the actual location in the *Code Editor*.

16. Analyze and explain the codes added in step 14. Further explain and correct the errors.

No	Actions	Explanation
1	int num, results;	
	– .	
	<pre>num = txtNum.Text;</pre>	
	results = num * num;	

	txtResults.Text = results;	
2	Explain the nature of the errors found in these codes. num = txtNum.Text; txtResults.Text = results;	
3	Coding Task: Modify the codes which gave	
	errors. Explain the use of int.Parse () and	
	int.ToString()	
	num = int.Parse(txtNum.Text);	
	txtResults.Text = results.ToString();	
4	Run the application program	
	and try to enter 1.5 as the number to be squared. Is the	
	results expected? Why?	
5	Coding Task:	
	Modify the codes to provide a fix to the observation on item	
	4 above.	

- 17. Navigate to the *Form Designer* tab. Move the mouse over the *Form1* title bar and double click. That will automatically open the "Form1.cs" file. The event handling function *Form1_Load (...)* is automatically appended to the file. The default naming convention for the function is *{control name} {event type} (...)*
- 18. Modify Form1_Load (...) to include the following codes:

```
private void Form1_Load(object sender, EventArgs e)
{
    txtNum.Text = "0";
    txtResults.Text = "0";
}
```

- 19. Build and run your application. Observe that now the Textboxes are preloaded with value 0.
- 20. Under File menu, click Close Solution to close your project.

<u>Exercise 2 – Understanding If-Else Control Structure and Complex Arithmetic Operation</u>

Part 1: Create a WinForm Application to Perform Temperature Conversion

- 1. Download the pre-created **Visual Studio** solution **TempConverter(Student).zip** and unzipped it to your own folder.
- 2. Under the *File* menu, click *Open -> Project/Solution* to open the project.
- 3. Your Form design should look like the figure below.

Note: The *ReadOnly* property for the Celsius *Textbox* is set to *false*. This will prevent user from entering values into that *Textbox* control.

- 4. Implement the following codes for the button click event for Convert and Swap button.
 - Convert Button: Conversion from Fahrenheit to Celsius or Fahrenheit to Celsius
 Note: You will observe syntax error. Solve it at step 7
 - Swap Button: Switch between Fahrenheit to Celsius or Fahrenheit to Celsius conversion

```
private void btnConvert_Click(object sender, EventArgs e)
    double fahr, cels;
    fahr = txt1.Text;
    cels = (fahr - 32) * (5 / 9);
    txt2.Text = cels;
}
private void btnSwap_Click(object sender, EventArgs e)
    if (flagF2C == true)
    {
        lbl1.Text = "Celsius";
        lbl2.Text = "Fahrenheit";
        flagF2C = false;
    }
    else
    {
        lbl1.Text = "Fahrenheit";
        lbl2.Text = "Celsius";
        flagF2C = true;
    }
}
```

5. Add the following **bool** type declaration at the beginning of the *Form1* class.

```
public partial class Form1 : Form
{
    bool flagF2C = true;
    public Form1()
    {
```

6. Using the *Build* menu, select *Build->Build Solution*. You should expect error to be flagged out at the *Error List* window. Double click on the error in the *Error List* window and it will bring you to the actual location in the *Code Editor*.

7. Analyze and explain the errors observed in step 6. Further explain and correct the errors.

No	Actions	Explanation / Action
1	Syntax Error Explain the nature of the errors found in these codes and fixed it! fahr = txt1.Text; txt2.Text = cels;	
2	Logic Error Run the application program and try to enter 100 Fahrenheit. Is the results expected? Why? Fix the error by modifying the codes.	
3	Runtime Error Run the application program and click convert straight away without entering any value for Fahrenheit. Is the results expected? Why? Fix the error by adding codes.	

4	Explain what happens when Swap button is clicked.	
	Hint: Use breakpoint to step through the codes	
5	Coding Task: Modify btnConvert_Click() to include calculation of Celsius to Fahrenheit	

(Exercise) Create a WinForm Application to Calculate Square and Square Root of a number

- 1. Based on the previous **Converter** solution, modify the application to include square root calculation. The UI design should follow the figure below.
- 2. Replace the student name and admin no with your own name and admin no.

Hint: Primitive arithmetic operators like '+', '-', '*', '/', '%' are all supported in .NET. On top of that .NET has a class library called *Math* for complex mathematical operations

