ПРАВИТЕЛЬСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Национальный исследовательский университет
«Высшая школа экономики»
Факультет информатики, математики и компьютерных наук

Программа подготовки магистров по направлению 01.04.02 Прикладная математика и информатика

ПРОЕКТ ПО НАУЧНО-ИССЛЕДОВАТЕЛЬСКОМУ СЕМИНАРУ

На тему «Поиск и автоматический анализ научных публикаций.»

Руководитель проекта: Крылов Владимир Владимирович

Список участников проекта:

Ларюшина Юлия
Шашкин Павел
Желонкин Дмитрий
Соколов Артем
Кузнецов Владимир
Куренков Евгений
Мозохин Дмитрий
Груздев Алексей
Вороная Ксения

Оглавление:

1 Сбор данных для исходной задачи, создание модели поиска тематически
близких документов
2 Исследование различных методов построения summary и выявление
наиболее качественного саммаризатора
3 Построение summary с использованием модуля Gensim и извлечение
keywords из статьи10
4 Исследование возможностей по созданию тематической модели на основе
научных работ14

1 Сбор данных для исходной задачи, создание модели поиска тематически близких документов

Задача группы	Сбор данных для задачи, создание модели для поиска тематически близких документов, создание интерфейса для поиска тематических близких документов к заданному, визуализация и оценка полученных результатов.
Исполнители	Ларюшина Юлия Шашкин Павел Желонкин Дмитрий
Используемые библиотеки и программные средства, данные	 Язык R, python2 Пакеты R: magrittr, dplyr, quanteda, tidyr, stm, lubridate, stmCorrViz, LDAvis, aRxiv, pdftools, parallel, rplos Библиотеки python: nltk, gensim, numpy, pandas, scipy Библиотека для мультимодального тематического моделирования bigARTM Источники данных: https://www.plos.org/ https://arxiv.org/
Решенные подзадачи	1. Сбор документов для обучения моделей из открытых источников. Для тренировки модели были собраны данные по медицинской тематике из открытых источников. • Для сбора данных из источника arxiv создан скрипт: https://github.com/artezio-kseniav/text_summarization/blob/master/data_collection/corpora_get_ter.R Данные (статьи + метаданные) могут быть собраны в формате pdf и преобразованы в текст. • Для сбора данных из источника plos создан скрипт:

https://github.com/artezio-

<u>kseniav/text_summarization/blob/master/data_collection/search_plos_example.R</u>

Данные изначально представлены в формате xml и разбиты на необходимые структурные единицы (article, body, abstract + metadata).

- 2. Обработка корпуса для построения модели.
- 3. Построение мультимодальной тематической модели с использованием bigARTM.
- 4. Создание интерфейса для взаимодействия с мультимодальной тематической моделью (поиска близких документов).

Подробная инструкция по использованию и работе доступна по ссылке: https://github.com/artezio-kseniav/text summarization/tree/master/python-topic-modeling

5. Построение структурированной тематической модели для поиска близких документов.

Для обработки корпуса и построения модели был создан функционал: https://github.com/artezio-kseniav/text summarization/blob/master/topics/plos stm.R

- 1. Для начала средствами библиотек dplyr, tidyr и lubridate данные, собранные с plos, приводятся к виду id + дата_публикации + секция_документа + текст.
- 2. Средствами quanteda осуществляется построение матрицы частот для тренировки модели.
- 3. Производится обучение модели stm, в которой распределение тем зависит не только от секции документа, но и от даты публикации.
- 4. Полученные темы (topics) визуализируются средствами LDAvis (производится многомерное шкалирование векторов статей) и stmCorrViz (производится иерархическая кластеризация матрицы корреляции тем).
- 6. Визуализация полученных результатов для формирования представления о собранном корпусе,

	экспертной оценки выделенных тем и формирования представления о предметной области: https://github.com/artezio-kseniav/text_summarization/blob/master/topics/simil.html https://github.com/artezio-kseniav/text_summarization/blob/master/topics/simil.html
Нерешенные подзадачи	1. Создание функционала для взаимодействия с документом в формате pdf 2. Создание функционала для обновления внутренней базы статей 3. Объединение модуля с модулями других подгрупп
Связь с задачами других групп	Созданная модель осуществляет сбор поискового корпуса, его обработку и поиск близких документов с точки зрения распределения тем в нём и в документах корпуса. После идентификации близких документов предполагается передача данных на вход модулю, осуществляющему формирование аннотаций (summary) для конечного пользователя.

2 Исследование различных методов построения summary и выявление наиболее качественного саммаризатора

Задача группы	 Исследовать различные методы построения summary Собрать тестовый набор данных Выявить наиболее качественный саммаризатор
Исполнители	• Груздев Алексей • Мозохин Дмитрий
Используемые библиотеки и программные средства, данные	 python3 Библиотеки python: nltk, sumy, seaborn Источники данных: https://www.plos.org/
Решенные подзадачи	1. Сбор документов для обучения моделей из открытых источников. 2. Наиболее яркий представитель методов построения summary основанных на Deep Learning - Sequence-to-Sequence with Attention Model for Text Summarization by Google. Более подробно она описана в Google Research Blog'e. Данная модель была натренирована на GigaWord dataset'e, который является закрытым для доступа из вне - даже для ведения исследований в университете, без предварительной договоренности между университетом и владельцами датасета. Процесс тренировки модели с использованием Deep Learning библиотеки Tensorflow выложен в общий доступ, но в данной модели отсутствуют веса, посколько они были получены на закрытом датасете, поэтому без получения данного датасета, невозможно использовать Sequence-to-Sequence модель для построения саммаризатора. Поэтому далее были рассмотрены более классические методы построения summary:

- а) ТехtRank метод, основанный на представлении исходного текста в качестве графа, где вершине соответствует некоторый токен(например, предложение). Весам ребер приписывается значение семантической близости смежных вершин и после чего применяется Google Page Rank алгоритм, с помощью которого определяется набор "наиболее значимых" токенов, выступающих в качестве summary.
- b) LSA то метод обработки информации на естественном языке, анализирующий взаимосвязь между коллекцией документов и терминами в них встречающимися, сопоставляющий некоторые факторы (тематики) всем документам и терминам. В основе метода латентно-семантического анализа лежат принципы факторного анализа, в частности выявление латентных связей изучаемых явлений или объектов. При классификации/кластеризации документов этот метод используется для извлечения контекстно-зависимых значений лексических единиц при помощи статистической обработки больших корпусов текстов.
- с) Kullback—Leibler summarizator метод основанный на эвристическом добавлении предложений к имеющемуся саммари; в качестве критерия добавления/оценки текущего качества summary используется мера расстояние Кульбака Лейблера которая считается для summary и исходного текста. Таким образом, суть метода состоит в нахождении набора предложений, которые наилучшим образом аппроксимирует исходный тест по КЛ-расстоянию.
- d) LexRank метод, схожий с TextRank, но конструктивной особенностью которого является его применимость к целому набору исходных текстов с одной темой.
- 3. Проведен сравнительный анализ указанных методов на основе собранных текстов.

В качестве метрики использовались значения ROUGE-1, ROUGE-2, ROUGE-3, усредненные для всей коллекции документов.

Заметим, что большее значение метрики соответствует лучшему качеству построенного summary.

Из графиков видно, что для данного набора текстов и методов, при ограничении длины summary в 15 предложений, метод LSA в среднем формирует более качественные краткие изложения исходных текстов.

Нерешенные подзадачи

- 1. Улучшение TextRank метода путем изменения метрики для подсчета семантической близости токенов (см. https://arxiv.org/pdf/1602.03606v1.pdf)
- 2. Использование Sequence-to-Sequence модели и других DL-based моделей
- 3. Объединение модуля с модулями других подгрупп

Source code	https://github.com/artezio- kseniav/text_summarization/tree/master/summary_v1
Вывод	Для построения качественного саммаризатора необходимо использование DL-based моделей, обучение которых требует больших вычислительных мощностей и временных ресурсов. Однако, применение наивных методов позволяет построить модели, которые обладают необходимым качеством, чтобы выступать в качестве baseline-решения.

3 Построение summary с использованием модуля Gensim и извлечение keywords из статьи

Задача группы	 Построить качественное summary с использованием модуля Gensim Извлечь keywords из статьи
Исполнители	Кузнецов ВладимирВороная КсенияКуренков Евгений
Используемые библиотеки и программные средства, данные	 python3 Anaconda - the leading open data science platform powered by Python. Jupyter Notebook - a web application that allows you to create and share documents that contain live code, equations, visualizations and explanatory text. Библиотеки python: genism, nltk, lxml Источники данных: Extract articles from on of the trusted websites http://www.psychiatrictimes.com/
Решенные подзадачи	1. Произвели парсинг одного из предложенных вебсайтов с целью извлечения топ-10 самых последних статей по шизофрении: http://www.psychiatrictimes.com/ Добавили эти статьи в небольшой корпус. 2. Произвели предобработку текста для извлечения кеуwords, а именно удалили стоп-слова и сделали лемматизацию. 3. Извлечение кеуwords Приводим пример для статьи: Adjunctive Topiramate in People With Schizophrenia The authors are: Brian Miller, MD, PhD, MPH

The date of publication is: September 29, 2016

```
In [41]: print (' ******* Extracted Keywords ******* ')
    keywords = keywords(modified_article)
    print(keywords)

    ****** Extracted Keywords ******
    topiramate
    trials
    patients
    antipsychotics
    effect
    effects
    antipsychotic weight
    patient schizophrenia
    randomized trial
```

4. Построение summary (пример для той же статьи см. под таблицей)

Gensim использует алгоритм TextRank с метрикой BM25. TextRank каждому предложению присваивает метрику называемую прочностью соединения, которая ставится в соответствие количеству слов в предложении. Прочность соединения вычисляется по BM25 алгоритму и находится по следующей формуле

$$ext{score}(D,Q) = \sum_{i=1}^n ext{IDF}(q_i) \cdot rac{f(q_i,D) \cdot (k_1+1)}{f(q_i,D) + k_1 \cdot (1-b+b \cdot rac{|D|}{ ext{avgdl}})},$$

Где Q — предложение, состоящее из слов $q_1..q_n$. D — документ (в нашем случае текст статьи).

f(q_i, D) — частота слова q_i в документе

|D| - длина документа (количество слов в нем).

Avgdl — средняя длина документа.

k_1 и b — свободные коэффициенты (приблизительно равны 2.0 и 0.75 соотвественно).

 $IDF(q_i)$ — обратная документная частота для слова q_i .

Таким образом, имеем граф, узлы которого соответствуют прочности соединения для каждого предложения и чем выше данная оценка, тем более ценным считается предложение.

Нерешенные подзадачи	В функции gensim.summarize() присутствует параметр гаtio, который устанавливает степень сжатия статьи. Чем выше данные параметр, тем более подробное изложение получается и тем больше времени необходимо для выполнения. Также в программе присутствует функция кеуwords для подсчета и вывода наиболее популярных слов в файле. На вход программе передается документ, каждая строчка которого содержит тело статьи, для которой необходимо сделать саммари. На выходе получается два файла: summary — каждая строчка которого содержит краткое изложение статьи и keywords - каждая строчка которого содержит наиболее значимые слова в документе. Для оценки качества саммаризации используется метрика ROUGE-n (Recall-Oriented Understudy for Gisting Evaluation, http://anthology.aclweb.org/W/W04/W04-1013.pdf), где n- это количество последовательных слов, используемых для оценки. Данная возможность не была имплементирована в данной программе и планируется к реализации в дальнейшей разработке. 1. Улучшение процесса извлечения кеу-words 2. Объединение модуля с модулями других подгрупп
Source code	https://github.com/artezio- kseniav/text_summarization/tree/master/summary_version2 https://github.com/artezio- kseniav/text_summarization/tree/master/text_summarization

```
# ratio (default = 0.2) - to specify what fraction of sentences in the original text should be returned as
  output
# word_count - to specify the maximum amount of words in the summary
# "split" option if need in a list of strings instead of a single string

print(' ******* Summary ******* ')
summary = summarize(articles[0], word_count=100)
print(summary)
```

***** Summary ******

In a systematic search of PubMed/MEDLINE, the researchers looked for all published studies of antipsychotic augmentation with topiramate in patients with schizophrenia-spectrum disorders (both randomized, placebo-controlled trials or open-label trials with an untreated control group). The primary outcome was change in total score on either the Positive and Negative Syndrome Scale (PANSS) or the Brief Psychiatric Rating Scale (BPRS).

There was a trend for more paresthesias with topiramate use (relative risk = 2.0), but otherwise no differ ence in adverse effects reported in at least 3 trials. The authors found evidence that adjunctive topiramat e was associated with significantly greater reductions in psychopathology (particularly in clozapine-treat ed patients) and body weight. Other than an increase in paresthesias, there were no differences in adverse effects or all-cause discontinuation between topiramate and placebo.

4. Исследование возможностей по созданию тематической модели на основе научных работ

Данное исследование провел Артем Соколов.

Изначально было запланировано что поиск и анализ публикаций будет основываться на тематическом моделировании. Это сравнительно новое направление в машинном обучении подразумевает что поиск будет выполняться на основе анализа документа вцелом, т.е. с учетом текста, ссылок, авторов. В нашей группе мы разделились так что 4 человека отвечали непосредственно за исследование возможностей по созданию тематической модели на основе научных работ. 2 человека искали и исследовали возможности языка R и два человека делали то же самое для языка руthоп с целью дальнейшего сравнения.

Я принимал участие в работе второй группы. Мы нашли очень перспективную библиотеку для создания и работе с тематическими моделями BigARTM, написанной на языке c++, но имеющей, также, API для языка python (http://bigartm.org/). Коллегами была найдена и выложена большая выборка научных статей на медицинские темы. Мы обработали перевели эти документы в формат vowpal wabbit, поддерживаемый BigARTM и далее, разделили наши усилия.

Коллега занимался исследованием возможностей модели в направлении мультимодальности (т.е. учитывания не только текста, но и ссылок и авторов для нахождения релевантных), а я занимался построением иерархической тематической модели. Такая модель помимо матриц документы-темы и темыслова содержит матрицу темы-подтемы для каждых соседних уровней иерархии. (www.machinelearning.ru/). Как я выяснил, BigARTM иммет интерфейс для построения таких моделей, но не в основном, стабильном бранче. Я написал код на питоне для того что бы построить трёхуровневую модель на основе текстов документов. Подбирались параметры и

регуляризаторы для того что бы сделать матрицы разреженными (см. http://bigartm.org/ для дополнительной информации о принципах работы BigARTM). Количество тем и подтем подбиралось экспериментально. Какойто абсолютной числовой характеристики, по которой можно было бы судить о чистоте тем найдено не было. Я приведу здесь примеры для двух уровней, при этом я уверен что, полученные результаты еще возможно значительно улучшить.

topic 0:	cell	activation	receptor	Induced	culture	Incubated	signaling	hhibitor	treated	play	staining	medlum	hour	vtro	Inhibit
			dna	strain				bacterial			bacteria			primer	
		sequence				genome	resistance		sequencing				plasmid		fragme
	specie	plant	tree	water	environmental		leaf	abundance	soll	root	fish		community	tempera ture	mosq
topic_3:		simiar		experiment	line	previously	specific	type	role	presence	analy zed		Indicated	reduced	detect
topic_4:	protein	site	binding	domain	st ructure	Interaction	peptide	residue	am ino	complex	molecular	chain	bind	molecule	llgand
topic_5:	woman	child	hospital	mortality	death	malaria	blith	pregnancy	respiratory	delivery	matemal	admission	parent	infant	m othe
	population	case	year	Individual		per	hlv	estimate	country	among	prevalence	proportion	cost	area	testing
topic_7:	expression	gene	pathw ay	ma	m ma	target	transcription	hvolved	promoter	regulation	probe	transcript	functional	development	revers
topic_8:	group	control	effect	significant	difference	test	condition	response	subject	four	presented	greater	whether	ability	mah
topic_9:	activity	well	concentration	mi	determined	min	acid	growth	high	mm	assay	material	decreased	reaction	amour
topic_10:	treatment	day	drug	week	following	month	therapy	baseline	period	dose	duration	received	treated	mg	hour
topic_11:	cancer	tumor	sunhal	breast	metastasis	blopsy	egfr	carcinoma	er	Invasion	chemotherapy	prostate	colon	gastric	cervic
topic_12:	Infection	virus	Infected	ant lbody	vial	cd4	Immune	response	vacche	antigen	lfn	parasite	hfluenza	cytok ine	vaccin
topic_13:	within	lmage	area	surface	volume	left	right	bone	lesion	cm	lmaging	side	white	ct	sectibi
topic_14:	male	female	body	weight	diabetes	muscle	glucose	hsulin	000	bml	adult	metabolic	mass	dlet	exerci
topic_15:	study	Journal	found	reported	risk	low	Included	al	et	outcome	potent al	trial	evidence	ident fied	report
topic_16:	mouse	tissue	animai	rat	lung	liver	Injury	hjection	Inflam matory	Inflammation	kidney	heart	cardiac	vascular	sectib
topic_17:	model	time	two	value	rate	mean	shown	figure	change	first	system	Increase	show	due	function
topic_18:	region	mutation	genetic	snp	association	genoty pe	allele	varlant	ocus	chromosome	poly morphism	exon	deletion	hapbtype	pheno
topic_19:	patient	pone	however	disease	compared	table	factor	associated	higher	Increased	significantly	clinical	holiding	present	althou
topic_20:	brain	neuron	m	st im ulus	channel	functional	ad	signal	cortex	motor	movement	pd	neural	noise	amplit
	age	participant	SCORE	status	association	symptom	sex	physical	varlable	gender	disorder	social	men	pah	medic
topic_22:	also	may	could	use	health	Important	would	research	care	likely	medical	part	intervention	general	suppo
topic_23:	using	analysis	data	result	used	number	one	dfferent	method	based	Information	obtained	size	standard	set
topic 24:	level	sample	total	performed	human	positive	blood	serum	negative	normal	collected	marker	protocol	plasma	detect

Таблица тем Уровень 1

topic 0:	cancer	tumor	sunhal	breast	metas tasis	carcinoma	chemotherapy	prostate	hvasion	eafr	gastric	blopsy	er	colon
topic_1:	patient	disease	cih cal	dlagnosis	acute	chionic	cohort	characteristic	severe	sev enty	dlagnosed	falluré	pulmonary	median
topic_2:	time	value	mean	change	first	respectively	point	function	parameter	pattem	phase	range	therefore	second
topic_3:	two	type	one	however	first	present	well	table	small	al	et	even	since	found
topic_4:	task	subject	performance	participant	condition	visual	training	trial	experiment	memory	leaming	target	st mulus	session
topic_5:	region	mutation	snp	genetic	genoty pe	allele	association	variant	bcus	chromosome	poly mo iphlism	frequency	haploty pe	phenoty pe
topic_6:	Intervention	Inform ation	quality	participant	practice	review	trial	decision	clinical	Item	system	survey	knowledge	guideline
topic 7:	receptor	algnaling	differentiation	proliferation	migration	endothellal	epthelal	tgf	adhesibn	fbroblast	actin	vegf	extracellular	primary
topic_8:	brain	neuron	m	channel	stimulus	signal	functional	ad	cortex	region	od	neural	nerve	amplitude
topic 9:	param eter	model	simulation	state	dynamic	probability	fig	hput	г	con stant	equation	space	scenario	property
topic_10:	child	woman	hospital	mortality	death	malaria	birth	pregnancy	maternal	delivery	respiratory	Infant	adm ission	parent
topic 11:	within	Image	area	volume	Imaging	eft	lesion	surface	cm	right	ct	whte	measurement	fleld
topic_12:	change	Increased	significantly	total	Increase	condition	day	growth	bss	decreased	reduced	relative	significant	early
topic 13:	cd4	cytok ine	Immune	lfn	cd8	ly mphocyte	dc	110	donor	spieen	antigen	subset	recipient	nk
topic_14:	ex pre salon	gene	ma	pathway	mma	transcription	target	promoter	hvolved	ex piressed	regulation	development	transcript	probe
topic 15:	Infection	virus	Infected	antibody	viral	response	vaccine	parasite	hfuenza	vacchation	antigen	host	lgg	hlv1
topic_16:	research	question	paper	Issue	medicine	member	researcher	community	work	respondent	science	user	knowledge	people
topic_17:	activation	Induced	Incubated	treated	culture	macropha ge	hour	hhibitor	play	vivo	medium	vitro	Inhibition	staining
topic_18:	health	care	program	medical	service	facility	public	physician	family	mediche	800868	worker	healthcare	home
topic_19:	mouse	tissue	lung	lver	animai	Inflammatory	inflam mation	section	organ	per	brosis	kidney	collagen	neutrophil
topic_20:	bone	eye	layer	surface	segment	side	head	section	thickness	positerior	retinal	lateral	anterior	Joht
topic_21:	test	case	cih bai	positive	disease	a boratory	dlagnostic	symptom	nomal	reported	performed	negative	based	n
topic_22:	analysis	using	number	result	obtained	size	one	calculate d	based	distribution	method	le	single	new
topic_23:	gene	Identified	fam lly	genome	sequence	read	candidate	set	database	predicted	member	position	cluster	novel
topic_24:	region	population	site	within -	individual	size	pattern	distribution	variation	number	location	area	density	distance
topic_25:	study	risk	association	subject	woman	sex	age	men	cohort	factor	smoking	population	associated	adjusted
topic_26:	specie	plant	water	tree	environmental		ste	soll	abundance	community .	lish .	temperature	root	mosquito
topic_27:	male	fem ale	weight	body		glucose	dabetes	hsulin	food	dlet	bml	mass	metabolic	adult
topic_28:	animai	rat	inje ction	Injury	Intestinal	group	salne	pig	hjected	vehible	sem	sham	experimental.	fed
topic_29:	group	control	effect	difference	signficant	test	response	condition	subject	four	presented	greater	whether	ability
topic_30:	binding	structure	Interaction	residue	complex	ligand	ste	molecule	structural	ene rgy	chain	loop	molecular	substrate
topic_31:	data	used	diferent	one	metho d	possible	based	information	standard	ava llable	large	comparison	many	developed
topic_32:	sequence	dna	three	por	genome	primer	sequencing	bp	plasm til	fragment	clone	nucleotide	amplification	сору
topic_33:	model	two	rate	figure	shown	system	show	horease	flg	thus	due	average	small	process
topic_34:	network	set	method	cluster	feature	algorithm	distance	class	map	info mation	correlation	pair	matrix	prediction
topic_35:	concentration	mm	tem perature	nm	ca	ph	water	solution	spectrum	rele ase	calclum	00	lon	potent bil
topic_36:	model	SCORE	value	variable	correlation	estimate	hdex	table	measure	regression	linear	Interval	est imated	coefficient
topic_37:	time	week	hour	fig	minute	protocol	exposure	pone	min	surgery	procedure	flow	use	assessed
topic_38:	protein	domain	site	peptide	amino	bindhg	subunit	motif	puffled	protease	recombinant	yeast	bind	core
topic_39:	strah	resistance	bacterial	Isolates	bacteria	culture	coll	antibibt ic	pathogen	colony	host	resistant	aureus	antimicrot

Таблица части тем Уровень 2

Всего документы первого уровня были разбиты на 25 тем, второго на 60, третьего на 120.

АРІ библиотеки также позволяет получить все три матрицы (документы-темы, темы-слова, темы-подтемы), но ввиду их громоздкости здесь я их приводить не стану.

Натренированная модель была сохранена, для написания приложения по работе с ней.

Тут необходимо сказать что так как это была тестовая ветка библиотеки, существовало (и существует) множество не решенных проблем. Часть из них чинилась сообществом непосредственно во время моей работы с библиотекой и я просто ее пересобирал. Сохранение же иерархической модели не работало и чинил эту функциональность я самостоятельно, после чего пересобирал библиотеку и заново перестраивал модель.

Я написал небольшое консольное приложение (с незаконченной функциональностью) на языке python и с BigARTM API идля возможности работы с моделью. Планировалось объединить наши исследования с коллегой. К сожалению, это не было реализовано до конца. Сейчас программа предоставляет небольшое меню, большая часть пунктов которого не реализованы.

Верхний уровень меню

Base model — уровни меню для работы с обычной, не иерархической моделью(не реализована).

Hierarhical Model — работа с иерархической моделью.

Второй уровень меню

Use prebuild model — загрузка построенной модели с возможностью дальнейшего получения информации.

Build New Model — задание параметров для построения и сохранения новой модели.

```
To a stackol@vs:-/Documents/HSE/Krylov/Second_year

Wait for dictionary loading OK

Wait for model loading OK

Gurrent hierarhical model properties:

Number of levels: 3

Level 0 info:

Doc/Topics matrix size: (8865, 25)

Level 1 info:

Doc/Topics matrix size: (8865, 60)

Topics/Subtopics matrix size: (60, 25)

Level 2 info:

Doc/Topics matrix size: (8865, 120)

Topics/Subtopics matrix size: (120, 60)

Choose commands for additional information retrieving.
```

Краткие данные о загруженной модели

Следующим этапом планировалось предоставить терминал пользователю для запросов информации, матриц, коэффициентов модели в целом и отдельных уровней.