

Résumé de cours Aménagements hydrauliques 1

Source: https://ormvah.com/

Auteur : Maxime Fourquaux
Date : Octobre 2022
Version : PROVISOIRE

Table des matières

1	1.1 Divers débits	5 6
2	Analyse de séries de données de débits 2.1 Explication	7 7 8 8 8 9
A	A.2 Loi de Gumbel – Séries annuelles	11 12 12 13
В	B.1 Contrôler la stationnarité . B.2 Contrôler l'homogénéité – Optionnel . B.3 Calcul des temps de retour T . B.4 Calcul des paramètres de la loi de Gumbel . B.5 Extrapolation d'un débit en fonction du temps de retour . B.6 Exemple . B.6.1 Stationnarité et homogénéité . B.6.2 Temps de retour calculé . B.6.3 Loi de Gumbel .	15 15 15 16 16 17 17 18
C	C.1 Contrôler la stationnarité	21 21 21 21 21 22 22 22

TABLE DES MATIÈRES

Chapitre 1

Introduction

1.1 Divers débits

FIGURE 1.1 – Différentes dénominations de débits

- **Débit d'étiage**: quand les rivières tombent à sec ou presque. Il est important de connaître ces valeurs minimales dans un cours pour gérer toutes les demandes en matière de prélèvement d'eau, d'écoulement permanent à restituer en aval d'un barrage. La législation suisse parle d'un débit Q_{347} (débit moyen sur une journée dépassé en moyenne 347 jours dans une année).
- **Débit morphogène**: les érosions des berges sont normalement influencées par ces mêmes débits. Cela dépend aussi des caractéristiques locales comme la granulométrie du fond du lit.
- ➤ <u>Crue</u>: important de connaître le débit pour pouvoir définir les zones de risques au sens de la législation suisse (cf. unité de cours Hydraulique 2).

1.2 Débits et temps de retour

 \blacktriangleright Une crue qui survient en moyenne 1 fois tous les 100 ans affiche donc un temps de retour centennal. On peut aussi parler de Q_{100} .

- ➤ La probabilité moyenne associée à ce temps de retour d'être atteinte ou dépassée est de 1/100.
- Les lois et recommandations fédérales obligent des protections en fonction des temps de retours (cf. Figure 1.2).

FIGURE 1.2 – Matrice de protection possible

Méthodes d'analyse et de calculs 1.3

- 1. Analyse statistique avec veille hydrologique
- 2. Modèle conceptuel avec des corrélations exprimant les débits de dimensionnement en fonction des paramètres physiques et morphologiques du bassin versant

Chapitre 2

Analyse de séries de données de débits

2.1 Explication

- ➤ Temps de retour moyens : 2 à 5 ans
- ➤ Temps de retour rares: 10, 30, 100, 300 ans, ...! Cela dépend surtout des objectifs de protection.

2.2 Séparation des crues

Séparation des crues.

Lorsque le Q dépasse un Q seuil = début de la crue Lorsque le Q redevient inférieur au Q seuil et que le Q reste inférieur à ce Q seuil pendant un certain temps alors on sépare les deux crues T seuil.

2.3 Questions intuitives sur les temps de retour

Si on prend l'exemple suivant :

FIGURE 2.1 – Graphique des débits maximums par jour

- ➤ Si on prend une période de 20 ans; le seuil Q_s est dépassé 4 fois. Donc $T_{Q_s} = 20/4 = 5$ ans
- Temps du plus gros débit : $T_{Q_s} = 20/1 = 20$
- ➤ Temps du 2^egros débit : $T_{Q_s} = 20/2 = 10$
- ➤ Probabilité moyenne de dépasser le plus gros débit : P = 1/20
- ➤ Probabilité moyenne de plus dépasser le plus gros débit : F = 1 (1/20)

Formule de Hazen: Questions possibles:

- ➤ Avez-vous une chance de 20 ans d'observer une crue avec un T>20 ans ? Réponse : oui
- ➤ Avec la formule de Hazen, quel est le temps de retour *T* du plus gros débit observé pendant ces 20 ans?

Réponse :
$$T = \frac{20}{1 - 0.5} = 40$$
 ans

2.4 Séries annuelles, avec débits maximaux

2.4.1 Procédure pour déterminer et extrapoler les temps de retour

- 1. Vérification de la stationnarité des données statistiques :
 - ➤ Tracer le graphique des débits maximum par années comme la Fig XX
 - ➤ Vérification que cela ne varie par en fonction des années (courbe de tendance)
 - ➤ Visualiser l'évolution des crues de pointe en fonction des années donne un bon aperçu d'une dérive quelconque
 - ➤ ⚠ Si les données ne sont pas stationnaires; cela ne sert à rien de continuer la procédure pour déterminer les débits extrapolés

2. Vérification de l'homogénéité des données statistiques :

- Tracer le graphique des débits maximum par années comme la Fig XX
- ➤ Vérification optionnelle (car implique d'avoir les débits maximaux mensuels)
- ➤ Vérification que cela ne varie par en fonction des années (courbe de tendance)
- Visualiser l'évolution des crues de pointe en fonction des années donne un bon aperçu d'une dérive quelconque

2.5 Séries gonflées

Une série gonflée est une série de données statistiques où nous avons 2 ou plus débits maximaux par année.

2.6 Séries tronquées

Une série tronquée est une série de données statistiques où les débits sont supérieurs à Q_{seuil} .

△ Si le seuil est trop bas, on prend des débits très fréquents et des débits extrêmes; qui ne sont peutêtre pas homogène.

On prend les séries tronquées pour obtenir les débits fréquents de temps de retour faible; voire inférieur au temps de retour années.

Privilégiez les séries tronquées aux séries gonflées.

Annexe A

Formules

A.1 Temps de retour

Nom	Formule	Notes
Weibull	$\frac{n+1}{r}$	Utilisée aux USA
Médiane	n + 0.365	
	r - 0.3175	
Hosking	$\frac{n}{r-0.35}$	
Blom	<i>n</i> + 0.25	
	<i>r</i> − 0.375	
Cunnane	$\frac{n+0.20}{r-0.40}$	
Gringorten	$\frac{n+0.12}{r-0.44}$	
Hazen	$\frac{n}{r-0.5}$	Utilisée en France

Table A.1 – Différentes formules de calculs des temps de retour. n est le nombre d'années total de l'étude; r est le rang

A.2 Loi de Gumbel – Séries annuelles

#	Paramètres	Formules	Commentaires
1	\overline{Q}_{mes}	$\overline{Q}_{mes} = \frac{1}{n} \cdot \sum_{i=0}^{n} Q_i$	Moyenne des débits mesurés
2	$\sigma_{\overline{Q}_{mes}}$	$\sigma_{\overline{Q}_{mes}} = \sqrt{\frac{1}{n} \cdot \sum_{i=0}^{n} \left(Q_i - \overline{Q}_{mes} \right)^2}$	Ecart-type de la moyenne des débits mesurés
3	a	$a = \overline{Q}_{mes} - 0.5772 \cdot b$	
4	b	$b = \frac{\sqrt{6}}{\pi} \cdot \sigma_{\overline{Q}_{mes}}$	
5	F(Q)	$F(Q) = 1 - \frac{1}{T}$ $F(Q) = e^{-e^{\frac{-(Q-a)}{b}}}$	
6	F(Q)		
7	Q	$Q = a + b \cdot U$	Débit selon la loi de Gumbel
8	U	$U = -\ln\left[-\ln\left(F(Q)\right)\right]$	Variable réduite de Gumbel

TABLE A.2 – Ajustement statistique par la loi de Gumbel

A.3 Loi de Gumbel – Séries tronquées

#	Paramètres	Formules	Commentaires
1	\overline{Q}_{mes}	$\overline{Q}_{mes} = \frac{1}{n} \cdot \sum_{i=0}^{n} Q_i$	Moyenne des débits mesurés
2	$\sigma_{\overline{Q}_{mes}}$	$\sigma_{\overline{Q}_{mes}} = \sqrt{\frac{1}{n} \cdot \sum_{i=0}^{n} \left(Q_i - \overline{Q}_{mes} \right)^2}$	Ecart-type de la moyenne des débits mesurés
3	a_{exp}	$a_{\sf exp} = \overline{Q}_{\sf mes} - b_{\sf exp}$	
4	b_{exp}	$b_{exp} = \sigma_{\overline{Q}_{mes}}$	
5	λ	nombre de débits	
	π	nombre de valeurs	
6	а	$a = a_{exp} + b_{exp} \cdot \ln\left(\lambda\right)$	
7	F(Q)	$F(Q) = 1 - \frac{1}{T}$ $F(Q) = e^{-e^{\frac{-(Q-a)}{b}}}$ $Q = a + b \cdot U$	
8	F(Q)	$F(Q) = e^{-e^{\frac{-(Q-a)}{b}}}$	
9	Q	$Q = a + b \cdot U$	Débit selon la loi de Gumbel
10	U	$U = -\ln\left[-\ln\left(F(Q)\right)\right]$	Variable réduite de Gumbel

TABLE A.3 – Ajustement statistique par la loi exponentielle et la loi de Gumbel

m	i^3		dm^3		cm^3			r	nm	i^3
		hL	daL	L	dL	cL	mL			
	1	0	0	0						
	Ο.	0	0	1						

A.4 Conversion volumes et débits

$$1 \text{ m}^3/\text{s} = 1000 \, \text{Ls}^{-1}$$

= $3.6 \times 10^3 \, \text{m}^3/\text{h}$
= $3.6 \times 10^6 \, \text{Lh}^{-1}$

Annexe B

Calculer un Q pour un T_{retour} donné – Séries annuelles

L'étude et la marche à suivre conviennent pour des séries statistiques avec un débit maximal annuel!

Cela veut dire que pour chaque année (et chaque mois) nous avons le débit maximal, le tout sur une période donnée (plusieurs années) (ex. Tab. ??)

B.1 Contrôler la stationnarité

Le contrôle de la stationnarité se fait en créant le graphique des débits maximums par années.

Exemple: Figure B.1(a)

B.2 Contrôler l'homogénéité – Optionnel

Afin de contrôler l'homogénéité des débits, il faut tracer un graphique avec les débits maximums mensuels et pour toutes les années.

Exemple : Figure B.1(b)

B.3 Calcul des temps de retour T

- 1. Garder les débits maximums annuels
- 2. Classer les débits par ordre décroissants
- 3. Inscrire le rang pour chaque débit
- Calculer le temps de retour selon la formule choisie (cf. A.1)
 Conseil : utiliser la formule de Hazen et utiliser une autre formule pour comparer

Exemple: Figure B.2 & Tableau B.2

B.4 Calcul des paramètres de la loi de Gumbel

- 1. Calcul de la fonction $F(Q_{obs})$ pour chaque débit (Formule 5, Tab. A.2);
- 2. Calcul des divers paramètres de la série statistique :

Moyenne des débits observés; Fonction Excel: =MOYENNE()

➤ Ecart-type de la moyenne des débits observés; Fonction Excel: =ECARTYPE.STANDARD()

➤ Paramètre *a* (Formule 3, Tab. A.2)

➤ Paramètre b (Formule 4, Tab. A.2)

Exemple: Tableau B.3

3. Calcul du débit Gumbel pour chaque temps de retour

(a) Paramètre *U* (Formule 8, Tab. A.2)

(b) Débit Q_{Gumbel} (Formule 7, Tab. A.2)

Exemple: Tableau B.4

4. Créer les graphiques suivants

	Variable réduite $\it U$	Débit selon la loi de Gumbel
Abscisse	Variable réduite U [-]	Temps [années] Échelle logarithmique
Ordonnée	Débit [m ³ /s]	Débit [m³/s]
Courbes	Débits observés maximaux en fonction de $\it U$ Débits calculés Gumbel en fonction de $\it U$	Débits observés maximaux en fonction de T Débits calculés Gumbel en fonction de T
Références	Exemple: Figure B.3(a)	Exemple: Figure B.3(b)

Extrapolation d'un débit en fonction du temps de retour **B.5**

- 1. Poser les temps de retour rares que vous souhaitez
- 2. Procédez à l'étape 3 du paragraphe B.4
- 3. Ajoutez la courbe sur les graphiques B.3(a) et B.3(b)

Exemple: Tableau B.5 & Figures B.4

Exemple B.6

Nous avons les données suivantes :

Année	Jan	Fev	Mar	Avr	Mai	Juin	Jui	Aoû	Sep	Oct	Nov	Dec
1965	11	10	14	15	160	205	205	350	145	84	21	18
1966	17	19	17	47	105	175	155	150	97	125	25	20
1992	14	13	17	62	110	290	225	215	175	75	46	38
1993	28	42	38	49	125	200	180	150	460	170	37	27

TABLE B.1 – Tableau avec les débits maximums pour chaque mois entre les années 1965 et 1993

B.6.1 Stationnarité et homogénéité

FIGURE B.1 – Contrôle des données statistiques

B.6.2 Temps de retour calculé

Rang	Débit	Temps de retour
1	495.0	19.33
2	460.0	11.60
28	160.0	1.02
29	155.0	0.98

TABLE B.2 – Calcul du temps de retour en fonction du rang et du débit

FIGURE B.2 – Calcul du temps de retour

B.6.3 Loi de Gumbel

Paramètre	Valeur
Moyenne	263.52
Ecart-type	81.05
a	227.04
b	63.19

TABLE B.3 – Paramètre de la loi de Gumbel

FIGURE B.3 – Débits calculés selon la loi de Gumbel

Rang	Débit observé	Tretour (Hazen)	F(Q)	U	Q (Gumbel)
1	495.00	58.00	0.98	4.05	483.08
2	460.00	19.33	0.95	2.94	412.53
28	160.00	1.05	0.05	-1.09	158.43
29	155.00	1.02	0.02	-1.40	138.49

TABLE B.4 – Calculs des débits de Gumbel en fonction du temps de retour associé

B.6.4 Extrapolation

Tretour fixé	F(Q)	U	Q (Gumbel)
5	0.80	1.50	321.83
10	0.90	2.25	369.25
30	0.97	3.38	440.90
50	0.98	3.90	473.61
100	0.99	4.60	517.73
400	1.00	5.99	605.57

TABLE B.5 – Extrapolation sur des temps de retour choisis

FIGURE B.4 – Débits extrapolés selon la loi de Gumbel

Annexe C

Calculer un Q pour un T_{retour} donné – Séries tronquées

•••

C.1 Contrôler la stationnarité

Idem que pour le paragraphe B.1

C.2 Calcul des temps de retour

Idem que pour le paragraphe B.3

- C.3 Calcul de la fonction des paramètres de la loi de Gumbel
- C.4 Extrapolation d'un débit en fonction du temps de retour

C.5 Exemple

Nous avons les données suivantes :

C.5.1 Stationnarité

FIGURE C.1 – Stationnarité d'une série tronquée

C.5.2 Temps de retour calculé

Nombre de valeurs = 110 Nombre d'années = 12

Rang	Débit	Temps de retour
1	167.833	42.00
2	97.748	14.00
 109 110	10.290 10.224	O.19 O.19

TABLE C.1 – Calcul du temps de retour en fonction du rang et du débit

FIGURE C.2 – Temps de retour d'une série tronquée

C.5.3 Loi de Gumbel

C.5.4 Extrapolation