LECTURE 15: Monday, October 05, 2020

Recall the Buchberger criterion, which says that G is Gröbner iff $S(g, g') \mod G = 0, \forall g, g' \in G$.

How does $S(x^{alpha}f, f')$ relate to S(f, f')? Clearly $LT(x^{\alpha}f) = x^{\alpha}LT(f)$. The new M will be $x^{\beta}M$ for some $x^{\beta} \mid x^{\alpha}$, so $S(x^{\alpha}f, f') = x^{\beta}(f, f')$.

Given $f \in (G)$, we want to show that LT(f)in(LT(G)). The S polynomials are the only ways to get cancellations between elements of the basis.

If we write $f = \sum h_i g_i$ where $h_i \in F[X]$, suppose $x^{\alpha} = \max(\text{LM}(h_i g_i))$. Then

$$f = \sum_{\mathrm{LM}(h_i g_i)} = x^{\alpha} h_i g_i + \sum_{\mathrm{LM}(h_i g_i) < x^{\alpha}} h_i g_i$$

$$= \underbrace{\sum_{\mathrm{LM}(h_i g_i) = x^{\alpha}} \mathrm{LT}(h_i) g_i}_{\sum_{1}} + \underbrace{\sum_{\mathrm{LM}(h_i g_i) = x^{\alpha}} (h_i - \mathrm{LT}(h_i)) g_i}_{\sum_{2}} + \underbrace{\sum_{\mathrm{LM}(h_i g_i) < x^{\alpha}} h_i g_i}_{\sum_{3}}$$

Suppose $LM(f) < x^{\alpha}$. All polynomials in that first term have the same degree. Let's write $LT(h_i) = LC(h_i)LM(h_i)$ and define $h'_i = LM(h_i)$. By our lemma, the first sum can be written as

$$\sum_{1} = \sum_{i} b_{i} S(h'_{i}g_{i}, h'_{i+1}g_{i+1})$$

since $S(h_i'g_i, h_{i+1}'g_{i+1})$ is a monomial multiple of $S(g_i, g_{i+1})$. We know that $S(g_i, g_{i+1}) \mod G = 0$, so it must be a linear combination of the form $\sum_{g_j \in G} q_j g_j$ and $\mathrm{LM}(q_j g_j) \leq \mathrm{LM}(g_i, g_{i+1})$.

This means that $s = S(h'_i g_i, h'_{i+1} g_{i+1})$ are sums of the form $\sum q'_i g_j$ where $LM(s) \leq LM(q_j g_j)$.

So suppose next that $LM(f) \ge x^{\alpha}$. Since $f = \sum h_i g_i$, $LT(f) = \sum_{LM(h_i g_i) = x^{\alpha}} LT(h_i g_i) = \sum LT(h_i)LT(g_i)$. This concludes the proof.

Now we have a practical way of determining if something is a Gröbner basis. Next, we want to find a way to generate one.

Input: some set G_0 . Output: a set G such that $(G) = (G_0)$ and G is Gröbner.

If G_i is Gröbner, we are done. Else, $S(g, g') \mod G_i \neq 0$ for some $g, g' \in G_i$. Note that $g, g' \in (G_i) \implies S(g, g') \in (G_i)$ so $r \in (G_i)$. By the division algorithm, $LT(r) \notin (LT(G_i))$.

Define $G_{i+1} = G_i \cup \{r\}$. $(LT(G_{i+1})) \supseteq (LT(G_i))$.

Claim. If R is Noetherian, then every sequence of ideals $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$ stabilizes (i.e. $I_j = I_{j+1} = \cdots$ from some point on).

Lecture 15: