Hardware for Machine Learning Lecture 3: DNNs 2 Sophia Shao

Apple buys edge-based Al startup Xnor.ai for a reported \$200M

January, 15, 2020

Xnor.ai, spun off in 2017 from the nonprofit Allen Institute for AI (AI2), has been acquired by Apple for about \$200 million. Xnor.ai began as a process for making machine learning algorithms highly efficient — so efficient that they could run on even the lowest tier of hardware out there, things like embedded electronics in security cameras that use only a modicum of power.

XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks

Mohammad Rastegari[†], Vicente Ordonez[†], Joseph Redmon*, Ali Farhadi[†]*

Allen Institute for AI[†], University of Washington* {mohammadr, vicenteor}@allenai.org {pjreddie, ali}@cs.washington.edu

Abstract. We propose two efficient approximations to standard convolutional neural networks: Binary-Weight-Networks and XNOR-Networks. In Binary-Weight-Networks, the filters are approximated with binary values resulting in $32 \times$ memory saving. In XNOR-Networks, both the filters and the input to convolutional layers are binary. XNOR-Networks approximate convolutions using primarily binary operations. This results in $58 \times$ faster convolutional operations (in terms of number of the high precision operations) and $32 \times$ memory savings. XNOR-Nets

79v4 [cs.CV] 2 Aug 20

Review

- Artificial intelligence, machine learning, and deep learning
- Building a machine learning algorithm:
 - Dataset
 - Cost function
 - Optimization function
 - Model
- Deep learning to automatically extract hierarchical data
 - Better at handle high-dimensional data
 - Key differences are in the Model
 - Multiple layers, i.e., deep

Example: Linear Regression

Dataset:

- (x, y) where x is size and y is price
- m training examples
- Cost function:
 - Mean Squared error

•
$$MSE = \frac{1}{m} \sum_{i=0}^{m} (h(x_i) - y_i)^2$$

- Model:
 - $h = w_0 + w_1 * x$
- Optimization method:
 - Solve for where its gradient is 0.
 - Gradient descent

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	

Cost function

- Measures the performance of a ML model for given data
- Quantifies the error between predicted and expected values in the *training* set.

•
$$CF = MSE_{train} = \frac{1}{m} \sum_{i=0}^{m} (\widehat{y}_i - y_i)^2$$

Cost function

- Regularization: modifications to reduce the generalization error but not the training errors
 - Weight decay (L2/1 regularization)
 - Expressing preferences of smaller weights
 - $CF = MSE_{train} + \lambda \sum_{i} w_i^2$ (L2)
 - $CF = MSE_{train} + \lambda \sum_{i} |w_{i}| (L1)$

Cost function

- Regularization: modifications to reduce the generalization error but not the training errors
 - Dropout
 - Temporally remove nodes from network
 - Train a large ensemble of models that share parameters

(a) Standard Neural Net

(b) After applying dropout.

Optimization

Follow the slope

Optimization

- Method to minimize the cost function by updating weights
- Gradient descent:
 - Iteratively moving in the direction of steepest descent as defined by the negative of the gradient
- Stochastic gradient descent (SGD)
 - To handle large training sets
 - Only run a subset of the training sets (i.e., batch/minibatch) for each update
 - Easier to converge

Optimization

- Momentum:
 - Prefers to go in a similar direction as before

SGD

$$x_{t+1} = x_t - \alpha \nabla f(x_t)$$

while True: dx = compute_gradient(x) x -= learning_rate * dx

SGD+Momentum

$$v_{t+1} = \rho v_t + \nabla f(x_t)$$
$$x_{t+1} = x_t - \alpha v_{t+1}$$

Challenges motivating DL

- The curse of dimensionality
 - Generalizing to new examples become exponentially more difficult when working with high-dimensional data
 - Challenging to learn complicated functions in highdimensional spaces

DNNs

- AI, ML, and DL
- ML Basics
- DL Overview
- AlexNet Example

Deep Neural Networks

- A subset of machine learning models
 - Deep -> multiple layers
 - Linear model + nonlinear transformation

Eyeriss tutorial

Deep Neural Networks

Eyeriss tutorial

Deep Neural Networks: LeNet

Deep Neural Networks

- Dataset
 - Problem dependent
 - https://github.com/pytorch/vision
 - Training set, validation set, test set
- Cost function
 - Similar to other parametric ML models
 - Backpropagation (using chain rule)
- Optimization
 - Stochastic Gradient Descent

DNN Non-Linearity

- Rectified Linear Units (ReLU)
 - $y(x) = \max\{0, x\}$
- Benefits:
 - Reduce the likelihood of the gradient vanishing problem.
 - Adding more sparsity/regularization
 - Easy to compute

Training vs Inference

- Training
 - Dataset
 - Cost function
 - Optimization function
 - Model
- Inference
 - Dataset
 - Model

DNNs

- AI, ML, and DL
- ML Basics
- DL Overview
- AlexNet Example

AlexNet Model

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet Cost (loss) function

- Minimize the cross-entropy loss function
- Measures the performance of a classification model whose output is a probability value between 0 and 1
- $CF = -\frac{1}{N} \left(\sum_{i=1}^{N} y_i \cdot \log(\hat{y}_i) \right)$

AlexNet Optimization Method

- Stochastic Gradient Descent
 - Batch size = 128
 - Update rule:

State-of-the-art Training Time

	Batch Size	Processor	DL Library	Time	Accuracy
He et al.	256	Tesla P100 x8	Caffe	29 hours	75.30%
Goyal et al.	8K	Tesla P100 x256	Caffe2	1 hour	76.30%
Smith et al.	8K→16K	full TPU Pod	TensorFlow	30 mins	76.10%
Akiba et al.	32K	Tesla P100 x1024	Chainer	15 mins	74.90%
Jia et al.	64K	Tesla P40 x2048	TensorFlow	6.6 mins	75.80%
This work	34K→68K	Tesla V100 x2176	NNL	224 secs	75.03%

https://news.developer.nvidia.com/sony-breaks-resnet-50-trainingrecord-with-nvidia-v100-tensor-core-gpus/

