Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm

RCA 352: Session 2020-21

DAA Lab

Experiment-No.10

Objective: Implement the **Improvised Bubble sort** algorithm to sort the given list of N numbers and plot graph

Scheduled Date:	Compiled Date:	Submitted Date:
25-09-20	25-09-20	25-09-20

Algorithm:

```
ImprovisedBubbleSort(Input: Array A, Size N)
```

N: Number of values to be sort

A: Array of Size N

Flag, Temp, Pass, J: extra variable

```
1. Pass=1
2. while(pass<=n) do:
       J :=1;
3.
4.
       flag=0;
       while(j<=n-pass) do:
5.
6.
          if(a[j]>a[j+1])
7.
                  temp :=a[i];
8.
                  a[j] := a[j+1];
9.
                  a[j+1] :=temp;
10.
                    flag=1;
11.
           j := j+1
          end while
12.
13.
           if(flag==0)
14.
          break;
15.
          pass := pass+1
16. end while
```

Program file Improvised bubble sort.c :

```
#include <stdio.h>
#include <stdlib.h>

int count = 0;
int main() {
    void get_data(int [],int);
    void bubble_sort(int[],int);
    void put_data(int[],int);
    int a[40];
    int n;
    printf("Enter the size of array should be less than 40:\n");
    scanf("%d",&n);
    get data(a,n);
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

```
printf("\nbefore sorting\n");
    put data(a,n);
    bubble sort(a,n);
    printf("\nafter sorting\n");
    put data(a,n);
    printf("\n\n n=%d no.of counts=%d",n,count);
    return 0;
}
void get data(int a[],int n)
    int i;
    printf("Enter the values of an array:\n");
    for(i=0;i<n;i++)</pre>
        scanf("%d",&a[i]);
}
void bubble sort(int a[],int n)
       int pass,j,temp,flag;
       count++;
       for (pass=1; pass<=n-1; pass++)</pre>
         count++;
         count++;
         flag=0;
         count++;
         for(j=0;j<n-pass;j++)</pre>
          count++;
          count++;
          if(a[j]>a[j+1])
           count++;
           temp=a[j];
           count++;
           a[j]=a[j+1];
           count++;
           a[j+1] = temp;
           flag=1;
           count++;
```


Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Output

Input Size	Best Case	Average Case	Worst Case
5	17	37	83
10	32	148	343
15	47	423	778
20	62	938	1338
25	77	1311	1928

Graph

Department of Computer Applications

(An ISO – 9001: 2015 Certified & 'A' Grade accredited Institution by NAAC)

Design and Analysis of Algorithm RCA 352: Session 2020-21 DAA Lab

Conclusion

Case	Running Time : Growth of	e : Growth of Running Time : Growth of	
	Function mathematically	Function after observing graph	
Best Case	O(n)	O(n)	
Average Case	$O(n^2)$	$O(n^2)$	
Worst Case	O(n ²)	$O(n^2)$	