MATH 7410 Homework 4 (In-Progress)

James Harbour

December 11, 2022

Problem 1

Let X be a normed space and x_n a sequence in X such that $x_n \to x$ weakly. Show that there is a sequence y_n such that $y_n \in co\{x_1, \ldots, x_n\}$ and $||y_n - x|| \to 0$.

Proof. Let $C_n = co\{x_1, \ldots, x_n\}$ and $C = \bigcup_{n=1}^{\infty} C_n$. Note that $C = co\{x_i : i \in \mathbb{N}\}$ is convex. Thus $x \in \overline{C}^{wk} = \overline{C}^{\|\cdot\|}$, whence there is some sequence $(z_n)_{n=1}^{\infty}$ in C such that $\|z_n - x\| \to 0$. Let $k_n \in \mathbb{N}$ be such that $z_n \in C_{k_n}$.

Note that a sequence a_n in X converges to 0 in norm if and only if for every $\varepsilon > 0$, the set $\{n \in \mathbb{N} : ||a_n|| \ge \varepsilon\}$ is finite. This condition is invariant under rearrangements, so without loss of generality we may take the sequence $(k_n)_{n\in\mathbb{N}}$ to be nondecreasing. Construct a new sequence $(y_m)_{m\in\mathbb{N}}$ as follows. For $m < k_1$, set $y_m = 0$. For $n \in \mathbb{N}$ and $k_n \le m < k_{n+1}$, set $y_m = z_n$.

The sequence $y_m - x$ still has the condition that for all $\varepsilon > 0$ the set of indices whose corresponding elements have norm at least ε is finite, as we have only added a finite number of elements to this set. Thus $y_n \in C_n$ for all $n \in \mathbb{N}$ and $||y_n - x|| \to 0$.

Problem 2

If \mathcal{H} is a Hilbert space and h_n is a sequence in \mathcal{H} such that $h_n \to h$ weakly and $||h_n|| \to ||h||$, show that $||h_n - h|| \to 0$.

Proof. By weak convergence, we have that $\langle h_n, h \rangle \to \langle h, h \rangle = \|h\|^2$, whence

$$||h_n - h||^2 = ||h_n||^2 + ||h||^2 - 2\operatorname{Re}(\langle h_n, h \rangle) \xrightarrow{n \to \infty} ||h||^2 + ||h||^2 - 2||h||^2 = 0$$

Problem 3

If X, Y are Banach spaces and $B \in B(Y^*, X^*)$, then $B = A^*$ for some $A \in B(X, Y)$ if and only if B is wk^* -continuous.

Proof.

 (\Longrightarrow) : Suppose that $B = A^*$ for some $A \in B(X,Y)$ and let $(\psi_{\alpha})_{\alpha \in I}$ be a net in Y^* such that $\psi_{\alpha} \to \psi \in Y^*$ weak*. Fix $x \in X$. Then

$$B(\psi_{\alpha})(x) = A^*(\psi_{\alpha})(x) = \psi_{\alpha}(Ax) \xrightarrow{\alpha \in I} \psi(Ax) = B(\psi)(x),$$

so $B(\psi_{\alpha}) \to B(\psi)$ weak*, i.e. B is weak*-continuous.

 (\Leftarrow) : Suppose that B is wk^* -continuous. Let ι_X, ι_Y be the canonical injections into the corresponding double-duals. For shorthand, we may write $\hat{x} := \iota_X(x)$ and similarly for Y. Noting that $B^* \in B(X^{**}, Y^{**})$ we investigate what occurs when B^* is restricted to the image of X inside its double dual.

Fix $x \in X$. We claim that $B^*(\hat{x}) \in (Y^*, wk^*)^*$. To this end, let $(\phi_{\alpha})_{\alpha \in I}$ be net in Y^* such that $\phi_{\alpha} \to \phi \in Y^*$ weak*. Then,

$$B^*(\hat{x})(\phi_\alpha) = \hat{x}(B(\phi_\alpha)) = B(\phi_\alpha)(x) \to B(\phi)(x) = B^*(\hat{x})(\phi),$$

so $B^*(\hat{x})$ is weak*-continuous, whence there exists some $y \in Y$ such that $B^*(\hat{x}) = \hat{y}$. Define $A: X \to Y$ by Ax = y.

- (Uniqueness of y): Suppose that $y_0 \in Y$ also has that $\widehat{y_0} = B^*(\widehat{x}) = \widehat{y}$. Then by injectivity of ι_Y , it follows that $y_0 = y$.
- (A is a bounded operator): Suppose that $||x|| \leq 1$. Then

$$||Ax|| = ||y|| = ||\widehat{y}|| = ||B^*(\widehat{x})|| \le ||B^*|| = ||B|| < +\infty.$$

• $(B = A^*)$: Let $\phi \in Y^*$, $x \in X$. Then we compute

$$A^*(\phi)(x) = \phi(Ax) = \widehat{Ax}(\phi) = B^*(\widehat{x})(\phi) = \widehat{x}(B(\phi)) = B(\phi)(x).$$

Problem 4

Let X, Y be Banach spaces over $\mathbb{F} \in \{\mathbb{C}, \mathbb{R}\}$. For $C \subseteq B(X, Y)$ convex and $F \subseteq X$ finite, set $C_F = \{(Tx)_{x \in F} : T \in C\} \subseteq Y^{\oplus F}$. Equip $Y^{\oplus F}$ with the norm

$$||(y_x)_{x\in F}|| = \sum_{x\in F} ||y_x||.$$

(a): Let $C \subseteq B(X,Y)$ be convex. Show that $T \in \overline{C}^{SOT}$ if and only if for every $F \subseteq X$ finite, we have that $(Tx)_{x \in F} \in \overline{C_F}^{\|\cdot\|}$. Show that $T \in \overline{C}^{WOT}$ if and only if for every $F \subseteq X$ finite, we have that $(Tx)_{x \in F} \in \overline{C_F}^{weak}$.

Proof.

 \Longrightarrow : Suppose $T \in \overline{C}^{SOT}$, so there is some net $(T_{\alpha})_{\alpha \in I}$ in C such that $T_{\alpha} \to T$ SOT. Let $F \subseteq X$ finite. Then $\|T_{\alpha}x - Tx\| \to 0$ for every $x \in F$. Since F is finite,

$$||(T_{\alpha}x)_{x\in F} - (Tx)_{x\in F}|| = \sum_{x\in F} ||T_{\alpha}x - Tx|| \xrightarrow{\alpha\in I} 0$$

so $T \in \overline{C}^{\|\cdot\|}$.

 $\underline{\Leftarrow}$: By assumption, for all $\varepsilon > 0$ and finite $F \subseteq X$, there exists some $T^{F,\varepsilon} \in C$ such that $\sum_{x \in F} ||Tx - T^{F,\varepsilon}x|| < \varepsilon$. Define an ordering on $P(X)_{fin} \times (0, +\infty)$ by

$$(F,\varepsilon) \leq (F',\varepsilon') \iff F \subseteq F' \text{ and } \varepsilon' \leq \varepsilon.$$

Note that this defines a directed set. Fix $x \in X$ and consider the net $(T^{F,\varepsilon}x)_{(F,\varepsilon)}$ in Y. Fix $\varepsilon > 0$. Then for all $(F,\delta) \geq (\{x\},\varepsilon)$, it follows that

$$||Tx - T^{F,\delta}x|| < \delta \le \varepsilon.$$

Thus the net $T^{F,\varepsilon}x \to Tx$, so by definition $T \in \overline{C}^{SOT}$.

 \Longrightarrow : Suppose that $T \in \overline{C}^{WOT}$. Then there is some net $(T_{\alpha})_{\alpha \in I}$ in C such that $T_{\alpha} \to T$ WOT. Let $F \subseteq X$ finite. Then $|\phi(T_{\alpha}x) - \phi(Tx)| \to 0$ for every $x \in F$ and $\phi \in Y^*$. Suppose $\psi = \sum_{x \in F} \phi_x \in (Y^{\oplus F})^*$ where $\phi_x \in Y^*$. Then

$$|\psi((T_{\alpha}x)_{x\in F}) - \psi((Tx)_{x\in F})| \le \sum_{x\in F} |\phi_x(T_{\alpha}x) - \phi_x(Tx)| \xrightarrow{\alpha\in I} 0$$

so $T \in \overline{C_F}^{weak}$.

 $\underline{\longleftarrow}$: Define an ordering on $P(X)_{fin} \times \mathscr{T}_{weak}$ by

$$(F,U) \le (F',U') \iff F \subseteq F' \text{ and } U' \subseteq U \times B(X,Y)^{\oplus F' \setminus F}.$$

Then for all $F \subseteq X$ finite and U weak-neighborhood of $(Tx)_{x \in F}$, there is some $T^{F,U} \in C$ such that $(T^{F,U}x)_{x \in F} \in U$. This gives a net. Now, letting V be an SOT neighborhood of T, there is some finite set F and weakly open U such that $T^{F',U'} \in V$ for all $(F',U') \geq (F,U)$.

(b): Suppose that $C \subseteq B(X,Y)$ is convex. Show that $\overline{C}^{WOT} = \overline{C}^{SOT}$.

Proof. Fix $F \subseteq X$ finite. Since C is convex, it follows that C_F is convex, whence $C_F^{\|\cdot\|} = C_F^{weak}$. Thus by part (a), the result follows.

(c): If $\phi: B(X,Y) \to \mathbb{F}$ is linear, show that ϕ is WOT-continuous if and only if it is SOT-continuous.

Proof. Note that $ker(\phi)$ is convex by linearity. By part (b), we have the following equivalences

 ϕ WOT-continuous \iff $\ker(\phi)$ WOT-closed \iff $\ker(\phi)$ SOT-closed \iff ϕ SOT-continuous.

Problem 5

Let I be a set and \mathcal{M} be the set of all $m \in l^{\infty}(I)^*$ such that :

- $m(f) \ge 0$ for all $f \ge 0$,
- m(1) = 1.

Identify $\operatorname{Prob}(I)$ with $\{f \in l^1(I) : f \geq 0, ||f||_1 = 1\}$ and view $l^1(I) \subseteq l^{\infty}(I)^*$ by $f \mapsto \phi_f$ where $\phi_f(g) = \sum_{i \in I} f(i)g(i)$. Show that $\operatorname{Prob}(I)$ is weak*-dense in \mathcal{M} .

Proof. Suppose, for the sake of contradiction, that there is some $m \in \mathcal{M} \setminus \overline{\text{Prob}(I)}^{wk^*}$.

By separating Hahn-Banach, there is some wk^* -continuous linear functional $L: l^{\infty}(I)^* \to \mathbb{F}$ and $\alpha < \beta$ such that for all $\mu \in \text{Prob}(I)$

$$\operatorname{Re}(L(\mu)) \le \alpha < \beta \le \operatorname{Re}(L(m)).$$

As $(l^{\infty}(I)^*, wk^*)^* = l^{\infty}(I)$, there is some $g \in l^{\infty}(I)$ such that $L = ev_g$. Since $m \geq 0$ and linear, for any $f \in l^{\infty}(I)$, by writing Re(f) as a difference of positive functions we see that m(Re(f)) = Re(m(f)).

For $i \in I$, note that

$$L(\delta_i) = L(\phi_{\delta_i}) = \sum_{j \in I} g(j)\delta_i(j) = g(i),$$

so it follows that $\operatorname{Re}(g(i)) = \operatorname{Re}(L(\delta_i)) \leq \alpha$ pointwise. On the other hand, by positivity of m,

$$\beta \le \operatorname{Re}(L(m)) = \operatorname{Re}(m(g)) = m(\operatorname{Re}(g)) \le \alpha m(1) = \alpha,$$

which is absurd. \Box