ПРОГРАММНО-АППАРАТНЫЙ КОМПЛЕКС ДЛЯ БИОМЕТРИЧЕСКОЙ ИДЕНТИФИКАЦИИ ПО ОТПЕЧАТКУ ВЕН ЛАДОНИ

Выполнил студент 594М группы Милантьев С.В. Научный руководитель к. ф.—м.н., доцент кафедры ИБ Лепендин А.А.

• **Целью** работы является разработка программноаппаратного комплекса для биометрической идентификации личности по венозной структуре ладони.

- В соответствии с целью были определены следующие задачи:
- Разработка и реализация устройства для считывания венозной структуры руки;
- Разработка алгоритма получения области интереса в изображении венозной структуры руки для получения векторов признаков;
- Разработка алгоритма сравнения полученных векторов признаков с существующими шаблонами пользователей;
- Обучение и сравнение нейросетевых моделей для решения задачи верификации пользователей

Введение

Рис. 1. График зависимости коэффицента поглощения от длины волны

Преимущества:

- Отсутствие необходимости прямого контакта со сканирующим устройством;
- Высокий уровень точности сканирующей системы;
- Недоступность используемого параметра для массового использования

Недостатки:

- Чувствительность к засветам
- Затруднение работы считывателя при наличии некоторых болезней у пользователя

Аппаратная часть комплекса

- Аппаратная часть комплекса включает в себя:
 - Плату Arduino Nano;
 - Модуль инфракрасной подсветки с длиной волны 850нм;
 - Понижающий преобразователь напряжения DC-DC 12-5V;
 - Ультразвуковой датчик расстояния;
 - Резисторы малоомные;
 - Герконовое реле;
 - Блок питания 12V;
 - IP-камера.

Схема работы модуля получения, обработки и вывода изображения

Сравнение работы алгоритмов для получения векторов признаков

База данных: CASIA Multi-Spectral Palmprint Database

Параметры базы данных

Параметр	Значение
Кол-во изображений	7200
Кол-во объектов	100
Кол-во изображений на один объект	72
Кол-во изображений на один спектр	12
Кол-во изображений на одну руку в одном спектре	6

Результаты обработки данных алгоритмами на предварительно обработанных изображениях

Сравнение скорости обработки изображений алгоритмами

Среднее количество контрольных точек

Опираясь на полученные данные были сделаны следующие выводы:

- Наибольшее число дескрипторов выбирается алгоритмом BRISK, но в то же время время работы на единицу изображения непозволительно долгое.
- Алгоритмы SIFT и SURF по скорости обработки работают практически одинаково, это обусловлено тем, что SUFT является расширенной версией SIFT
- Алгоритм AKAZE работает немного быстрее алгоритма BRISK.
- Алгоритм ORB работает быстрее остальных алгоритмов и при этом среднее количество контрольных точек немного меньше, чем у алгоритма BRISK.

Сравнение нейронных сетей, применяемых для обучения модели

База данных: Tongji Contactless Palmvein

Dataset

Параметры базы данных

Параметр	Значение
Кол-во изображений	12000
Кол-во объектов	300
Кол-во изображений на один объект	40
Кол-во изображений на одну руку	20

Equal Error Rate

- FRR (False Rejection Rate) вероятность ошибки первого рода, то есть вероятность отказа "своему"
- FAR (False Acceptance Rate) вероятность ошибки второго рода, то есть вероятность пропуска "чужого".
- EER (Equal Error Rate) уровень ошибок биометрической системы доступа, при котором FAR и FRR равны

DET и ROC кривые

DET-кривая для ResNet18

ROC-кривая для ResNet18

DET-кривая для ResNet34

ROC-кривая для ResNet34

Графики FMR и FNMR

График для ResNet18

График для ResNet34

Заключение

- Реализован аппаратный комплекс для экстракции венозной структуры руки при ее присутствии над устройством. Для этого была использована аппаратная платформа Arduino с использованием ультразвукового датчика расстояния.
- Разработано программное обеспечение для извлечения области интереса с целью дальнейшего ее использования в качестве входного вектора признаков как в нейросетевой модели, так и в задаче алгоритмического сравнения профилей. Реализована методология предварительной обработки входного изображения для выделения венозной структуры ладони.
- Разработан алгоритм сравнения полученных векторов признаков с существующими шаблонами пользователей путем использования алгоритмов сравнения дескрипторов изображений, а так же использования функции хеширования изображений. Данный алгоритм рекомендуется применять в системах с небольшим числом пользователей ввиду того, что вычислительные операции применяются в параллельном режиме и весьма ресурсоемки.
- Обучены и сравнены нейросетевые модели ResNet18 и ResNet34 на базе данных, содержащих 300 пользователей и 6000 изображений для симуляции системы верификации с большим числом пользователей. EER составило 20% и 19% соответственно.

Исходный код и ресурсы

