

The Quest for the Perfect Degree Plan

Group 10 - Nir Balouka, Roee Meir, Ron Benjamin

The problem

Complex Requirements

Finding the optimal degree plan that maximizes your GPA while fulfilling all requirements can feel like an impossible quest.

Why So HARD!?

AI to the Rescue

We harness the power of AI to tackle this complex problem.

Local Search:

- Hill climbing
- Simulated Annealing
- Beam Search

Graph Search:

- A* Search
- DFS
- UCS

10-

Modeling the Local Search Problem

State

Nearly legal degree plan

Neighbors

Add | Remove | Replace

Fitness Function

$$\forall s \in S$$
 $Fitness\left(s\right) := \begin{cases} avg^{*}\left(s\right) + 100 & \text{legal degree plan} \\ avg^{*}\left(s\right) & else \end{cases}$

$$\forall s \in S$$
 $avg^{*}\left(s\right) := avg\left(s\right) \cdot \frac{points\left(s\right)}{\text{Degree Target Points}}$

Comparing the Results - Local Search

We compare the performance of the algorithms based on key metrics.

Modeling the Graph Search Problem

2

State

Current course selection.

Action

Adding a course to the plan.

Cost

$$C(a) := (100 - a. avg) * \frac{a.points}{degree-target-points}$$

A* Heuristic

Translating our intution into results.

Greedy

Comparing the Results - Graph Search

Conclusions

Al algorithms provide effective solutions for degree planning.

(Graph vs Local) Search

A* is what you want!

Future Use

Optmize Everything you can dream of!