MSJ Math Club

Number Theory 1: Modular Arithmetic and Totient

11 September 2014

1 Introduction

Definitions

We say that

$$a \equiv b \pmod{n}$$

if the remainder of a when divided by n is the same as the remainder of b when divided by n. This may be rewritten as

$$a = nk + b$$

where $k \in \mathbb{Z}$. As a result, we have that if $a \equiv b \pmod{n}$, then $aq \equiv bq \pmod{n}$ and $a + q \equiv b + q \pmod{n}$.

We wish to also define (a, b) = gcd(a, b) and [a, b] = lcm(a, b), which may be used in future handouts.

Lemma

If a and n are relatively prime, and $b \not\equiv c \pmod{n}$, then we have that $ab \not\equiv ac \pmod{n}$.

Proof

(a,n) = 1 and (b,n) = 1, so (ab,n) = 1 (since ab shares no prime factors with n).

Assume for sake of contradiction that $ab \equiv ac \pmod{n}$. Because $ab \equiv ac \pmod{n}$, $a(b-c) \equiv 0 \pmod{n}$, so a(b-c) is divisible by n. Since (a,n)=1, then (b-c) must be divisible by n. That means that $b-c \equiv 0 \pmod{n}$, or equivalently, $b \equiv c \pmod{n}$.

Totient Theorem

If $\phi(n)$ is the number of positive integers q less than n such that (q, n) = 1, and if (a, n) = 1 then we have:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

Proof

Consider the set of numbers less than n that are relatively prime to n. Let us call them $q_1, q_2, \ldots, q_{\phi(n)}$. We see that for if $i \neq j$, then $aq_i \not\equiv aq_j \pmod{n}$, by the lemma. We also know that since (a,n)=1 and $(q_i,n)=1$, then $(aq_i,n)=1$. Therefore, the set of all aq_i is the set of numbers relatively prime to n, since we have $\phi(n)$ different aq_i and $\phi(n)$ of numbers relatively prime to n. That means the set of all aq_i is also equivalent to the set of q_i . If we take the product of both sets, then we have:

$$q_1q_2\dots q_{\phi(n)}\equiv aq_1\dots aq_{\phi(n)}\equiv x\ (mod\ n)$$

so

$$x \equiv x a^{\phi(n)} \pmod{n}$$

Since x is the product of a bunch of numbers relatively prime to n, x is relatively prime to n, and by the lemma:

$$a^{\phi(n)} \equiv 1 \pmod{n}$$

2 Tips and Tricks

- You should read the tips and tricks section on every handout.
- If you don't know what the Chinese Remainder Theorem is, you should look it up.
- Fermat's little theorem is a special case of the totient theorem. Set n = p where p is a prime and you get Fermat's little theorem.
- If $n = p_1^{a_1} p_2^{a_2}$... then $\phi(n) = ((p_1 1)p_1^{a_1 1})((p_2 1)p_2^{a_2 1})((p_3 1)p_3^{a_3 1})((p_4 1)p_4^{a_4 1})$...
- For example we have $360 = 2^3 3^2 5$, so we have $\phi(360) = ((1)2^2)((2)3^1)((4)5^0) = 96$

3 Examples

- 1. Find $1^5 + 2^5 + 3^5 + 4^5 + 5^5 + \dots + 10^5 \pmod{11}$.
- 2. (classic) If $n \equiv 3 \pmod{5}$, $n \equiv 2 \pmod{3}$ and $n \equiv 54 \pmod{7}$, find $n \equiv 64 \pmod{7}$
- 3. Evaluate the following: $5^{600} \pmod{36}$, $70^{588} \pmod{343}$, $6^{200} \pmod{20}$.
- 4. (classic) Evaluate $7^{7^{7^{7^{\cdots}}}}$ (mod 120)
- 5. Simplify $x^7 + 81x^6 + 62x^5 45x^4 + 33x^3 + 23x^2 + 41 \pmod{5}$ into a polynomial (mod 5) of degree 4 and coefficients less that 5, given that (x,5) = 1

4 Practice Problems

- 1. Let n be a constant. Let f(a) be the smallest k such that $a^k \equiv 1 \pmod{n}$. Show that f(a) is always a factor of $\phi(n)$
- 2. (classic) Let $\phi^0(n) = n$ and $\phi^k(n) = \phi(\phi^{k-1}(n))$. Find the smallest k such that $\phi^k(3^{1000}) = 1$
- 3. Evaluate $45^{44^{43^{42\cdots}}} \pmod{1234}$
- 4. Find all primes p such that $p^2 + 2$ is also prime.
- 5. (Another overused SMT problem) Find the largest number k that divides $p^3 1$ for all p > 5.
- 6. (2011 AMC 10B) What is the hundreds digit of 2011^{2011} ?
- 7. (1989 AIME) One of Euler's conjectures was disproved in the 1960s by three American mathematicians when they showed there was a positive integer such that $133^5 + 110^5 + 84^5 + 27^5 = n^5$. Find the value of n.
- 8. (2008 PuMAC) If $f(x) = x^{x^{x^{x}}}$, find the last two digits of f(17) + f(18) + f(19) + f(20).
- 9. (2007 PuMAC) Find the last three digits of

 $2008^{2007}^{\cdot \cdot \cdot \cdot ^{2^{1}}}.$

10. (2007 HMMT) Find the number of 7-tuples (n_1, \dots, n_7) of integers such that

$$\sum_{i=1}^{7} n_i^6 = 96957.$$

11. (Balkan Mathematical Olympiad) Let n be a positive integer with $n \ge 3$. Show that $n^{n^n} - n^n$ is divisible by 1989.