What are we weighting for?

A mechanistic model for probability weighting

Ole Peters Alexander Adamou Yonatan Berman Mark Kirstein

D-TEA 2020, 16 June 2020

Trialli I (CSaice

Catura

Eunctional Ford

Evandicity

.

Estimatio

Conclusio

Wildrik Terroccii

Probability

Setup

Functional Form

Ergodicity

Estimation

(Tversky and Kahneman 1992, p. 310, Fig. 1. relabelled axes)

Definition of Probability Weighting (PW)

- empirical pattern: inverse-S shapeCumulative Prospect Theory (CPT)
- Cumulative Prospect Theory (CPT)

Classical interpretation of PW:

maladaptive irrational cognitive bias

In search of a mechanism

- \hookrightarrow How does this pattern emerge?

Task: model payout, x, of a gamble as a random variable.

Disinterested Observer (DO)

DO assigns PDF p(x) \hookrightarrow CDF $F_p(x)$

Decision Maker (DM)

DM assigns different PDF w(x) \hookrightarrow CDF $F_w(x)$

Mark Kirstein

Main Resul

Setup

Functional Forr

Estimatio

Conclusio

Scales, Locations, Shapes

Different Shapes: Gaussian and t-distribution

Catura

Functional Forn

Ergodicity

Estimation

Conclusio

Thought Experiment: DM assumes greater scale

Functional form of the weighting function

Gaussian case with different scale:

$$w(p) = p^{\frac{1}{\alpha^2}} \underbrace{\frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha}}_{\text{normalisation factor}} , \qquad (1$$

where

- DO's scale is σ
- DM's scale is $\alpha\sigma$

Functional Forr

.

. . .

Wark Kirstei

Probability

Setup

Functional For

Question

Estimation

Conclus

Interim conclusion

- DM's greater scale gives inverse-S shape (unimodal distributions)
- difference in locations gives asymmetry
- reproduces observations of probability weighting

Job done. Thank you for your attention ;)

The Ergodicity Question

Donale a ledition o

Setup

Functional For

Estimatio

Conclusio

Typical DO concern

What happens on average to the ensemble of subjects?

Typical DM concern

What happens to me on average over time?

Why DM's greater scale?

Main Results

c .

.

Ergodicity

Estimatio

Conclusio

- DM has no control over experiment
- experiment may be unclear to DM
- DM may not trust DO
- . .

Experiencing probabilities

- iviaiii Resuit
- Setup

_ . .

Estimation

- probabilities are not observable
- probabilities encountered as
 - known frequencies in ensemble of experiments (DO)
 - frequencies estimated over time (DM)
- \hookrightarrow estimates have uncertainties cautious DM accounts for these

Estimating probabilities

lain Results Rare Event

- p(x) = 0.001
- 100 observations
- ullet \sim 99.5% get 0 or 1 events
- $\hat{p}(x) = 0$ or $\hat{p}(x) = 0.01$
- $\hookrightarrow \hat{p}(x)$ off by 1000%

Common Event

- p(x) = 0.5
- 100 observations
- ullet \sim 99.5% get between 35 and 65 events,
- $0.35 < \hat{p}(x) < 0.65$
- $\rightarrow \hat{p}(x)$ off by 30%

 \hookrightarrow small p(x), small count \rightarrow big uncertainty

....

Main Result

Setur

Functional For

Ligoticity

Estimatio

Conclusio

DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon[p(x)]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{p(x) + \varepsilon \left[p(x) \right]}{\int \left(p(s) + \varepsilon \left[p(s) \right] \right) ds}$$
 (2)

Setup

Functional Forn

Estimation

DMs don't like surprises

To avoid surprises, DMs add estimation uncertainty $\varepsilon[p(x)]$ to every estimated probability, then normalize, s.t.

$$w(x) = \frac{p(x) + \varepsilon \left[p(x) \right]}{\int \left(p(s) + \varepsilon \left[p(s) \right] \right) ds}$$
 (2)

Setup

Functional Form

F

Conclusi

Classical interpretation of PW

- overestimation of low probability events
- underestimation of high probability events
- \hookrightarrow maladaptive irrational cognitive bias

Ergodicity Economics and PW

- inverse-S shape: neutral indicator of different models of the world
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- Probability weighting is rational cautious behaviour under uncertainty over time
- testable prediction → Let's run an experiment!
- Manuscript at https://www.researchers.one/article/2020-04-14
- Interactive code at https://bit.ly/lml-pw-count-b

Setup

Functional Form

Estimation

Conclusi

Classical interpretation of PW

- overestimation of low probability events
- underestimation of high probability events
- \hookrightarrow maladaptive irrational cognitive bias

Ergodicity Economics and PW

- inverse-S shape: neutral indicator of different models of the world
- reported observations consistent with DM's extra uncertainty
- may arise from DM estimating probabilities over time
- Probability weighting is rational cautious behaviour under uncertainty over time
- testable prediction → Let's run an experiment!
- Manuscript at https://www.researchers.one/article/2020-04-14
- Interactive code at https://bit.ly/lml-pw-count-b

Thank you for your attention!

Back Up
References

BACK UP

Back Up

Probability Weighting as an Estimation Issue

"It is important to distinguish overweighting, which refers to a property of decision weights, from the overestimation that is commonly found in the assessment of the probability of rare events. [...] In many real-life situations, overestimation and overweighting may both operate to increase the impact of rare events." (Kahneman and Tversky 1979, p. 281)

- - uncertainty estimation and
 - "weighting"

we analyse the former and find very good agreement with the empirical inverse-S pattern

→ How big is the residual "probability weighting" after accounting for uncertainty estimation?

Estimation Error Explains 99% of Probability Weighting

0.2

• similar fits of Gaussian & t-distributed model

 $CDF F_p$

0.6

0.4

0.8

Tversky & Kahneman (1992)

→ How big is the residual "probability weighting" after accounting for estimation errors?

1.0

0.0

0.0

Back Up

Functional Forms Gaussian

4/5

Tversky and Kahn

Tversky and Kahneman (1992, $\gamma=0.68$)

$$\tilde{F}_{w}^{TK}\left(F_{\rho};\gamma\right) = \left(F_{\rho}\right)^{\gamma} \frac{1}{\left[\left(F_{\rho}\right)^{\gamma} + \left(1 - F_{\rho}\right)^{\gamma}\right]^{1/\gamma}} \tag{3}$$

Lattimore, Baker, and Witte (1992)

$$\tilde{F}_{w}^{L}\left(F_{\rho};\delta,\gamma\right) = \frac{\delta F_{\rho}^{\gamma}}{\delta F_{\rho}^{\gamma} + (1 - F_{\rho})^{\gamma}} \tag{4}$$

Gaussian case with greater DM scale $lpha\sigma$

$$w(p) = p^{\frac{1}{\alpha^2}} \frac{\left(2\pi\sigma^2\right)^{\frac{1-\alpha^2}{2\alpha^2}}}{\alpha} , \qquad (5)$$

which is a power law in p with a pre-factor to ensure normalisation

Back Up References

Kahneman, Daniel and Amos Tversky (1979). "Prospect Theory: An Analysis of Decision under Risk". *Econometrica* 47 (2), pp. 263–291. DOI:10.2307/1914185 (cit. on p. 19).

Lattimore, Pamela K., Joanna R. Baker, and A. Dryden Witte (1992). "Influence of Probability on Risky Choice: A Parametric Examination". *Journal of Economic Behavior and Organization* 17 (3), pp. 377–400. DOI:10.1016/S0167-2681(95)90015-2 (cit. on p. 21).

Tversky, Amos and Daniel Kahneman (1992). "Advances in Prospect Theory: Cumulative Representation of Uncertainty". *Journal of Risk and Uncertainty* 5 (4), pp. 297–323. DOI:10.1007/BF00122574 (cit. on pp. 4, 21).