This listing of claims will replace all prior versions, and listings, of claims in the application:

LISTING OF CLAIMS:

Claim 1 - 21 (Canceled)

Claim 22 (New) An alkyne compound of formula I:

$$R^{1}$$
N-X-Y- Z \longrightarrow W-A-B

wherein

- R^1 and R^2 together form an alkylene bridge in such a way that R^1R^2N denotes a pyrrolidine group, wherein one or more H atoms are optionally replaced by R^{14} , and the alkylene bridge is optionally substituted by one or two identical or different carbo- or heterocyclic groups Cy in such a way that the bond between the alkylene bridge and the group Cy is formed
 - via a single or double bond,
 - via a common C atom forming a spirocyclic ring system,
 - via two common, adjacent C and/or N atoms forming a fused bicyclic ring system or
 - via three or more C and/or N atoms forming a bridged ring system,
- X is a single bond or a C₁₋₆-alkylene bridge wherein
 - a -CH₂- group is optionally replaced by -CH=CH- or -C≡C- and/or
 - one or two -CH₂- groups are optionally replaced, independently of one another, by -O-, -S-, -(SO)-, -(SO₂)-, -CO- or -NR⁴- in such a way that in each case two O, S or N atoms or an O and an S atom are not directly connected to one another, and/or

- two C atoms or one C and one N atom of the alkylene bridge are optionally joined together by an additional C_{1.4}-alkylene bridge, and/or
- a C atom is optionally substituted by R¹⁰ and/or one or two C atoms in each case are optionally substituted with one or two identical or different substituents selected from C_{1.6}-alkyl, C_{2.6}-alkenyl, C_{2.6}-alkynyl, C_{3.7}-cycloalkyl, C_{3.7}-cycloalkyl-C_{1.3}-alkyl, C_{4.7}-cycloalkenyl and C_{4.7}-cycloalkenyl-C_{1.3}-alkyl, while two alkyl and/or alkenyl substituents are optionally joined together, forming a carbocyclic ring system.

and

- W, Z independently of one another, are a single bond or a C₁₋₄-alkylene bridge, wherein: a -CH₂- group not adjacent to the -C≡C- group is optionally replaced by -O- or -NR⁵-.
 - two adjacent C atoms or one C atom and an adjacent N atom are optionally joined together by an additional C₁₋₄-alkylene bridge, and/or
 - in the alkylene bridge and/or in the additional alkylene bridge a C atom is optionally substituted by R^{10} and/or one or two C atoms independently of one another are optionally substituted by one or two identical or different $C_{1.6}$ -alkyl groups, while two alkyl groups are optionally joined together, forming a carbocyclic ring, and
- Y is a phenyl ring which is optionally mono- or polysubstituted with R²⁰, and optionally additionally monosubstituted with nitro,
- A is a pyridine ring which is optionally mono- or polysubstituted with R²⁰, and
- B has one of the meanings given for Cy or is C₁₋₆-alkyl, C₁₋₆-alkenyl, C₁₋₆-alkynyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkenyl or C₃₋₇-cycloalkyl-C₁₋₃-alkynyl, wherein one or more C atoms are optionally monoor polysubstituted by halogen and/or optionally monosubstituted by hydroxy or

cyano and/or cyclic groups are optionally mono- or polysubstituted by R20,

wherein

- Cy denotes a carbo- or heterocyclic group selected from one of the following:
 - a saturated 3- to 7-membered carbocyclic group,
 - an unsaturated 4- to 7-membered carbocyclic group,
 - a phenyl group,
 - a saturated 4- to 7-membered or unsaturated 5- to 7-membered heterocyclic group with an N, O or S atom as heteroatom,
 - a saturated or unsaturated 5- to 7-membered heterocyclic group with two or more N atoms or with one or two N atoms and an O or S atom as heteroatoms,
 - an aromatic heterocyclic 5- or 6-membered group with one or more identical or different heteroatoms selected from N, O and/or S,

wherein the above-mentioned 4-, 5-, 6- or 7-membered groups are optionally attached via two common, adjacent C atoms fused to a phenyl or pyridine ring, and

wherein, in the above-mentioned 5-, 6- or 7-membered groups, one or two nonadjacent -CH₂- groups are optionally replaced, independently of one another, by a -CO-, -C(=CH₃)-, -(SO)- or -(SO₂)- group, and

wherein the above-mentioned saturated 6- or 7-membered groups are optionally present as bridged ring systems with an imino, (C₁₋₄-alkyl)-imino, methylene, (C₁₋₄-alkyl)-methylene or di-(C₁₋₄-alkyl)-methylene bridge, and wherein the above-mentioned cyclic groups are optionally mono- or polysubstituted at one or more C atoms with R²⁰, and, in the case of a phenyl group, they are optionally additionally monosubstituted with nitro, and/or one or more NH groups are optionally substituted with R²¹.

- R⁴, R⁵ independently of one another have one of the meanings given for R¹⁷,
- $$\begin{split} R^{10} & \qquad \text{denotes hydroxy, } \omega\text{-hydroxy-}C_{1.3}\text{-alkyl, } C_{1.4}\text{-alkoxy, } \omega\text{-}(C_{1.4}\text{-alkoxy)-}C_{1.3}\text{-alkyl,} \\ & \qquad \text{carboxy, } C_{1.4}\text{-alkoxycarbonyl, amino, } C_{1.4}\text{-alkyl-amino, } \text{di-}(C_{1.4}\text{-alkyl)-amino,} \end{split}$$

- cyclo- C_{36} -alkyleneimino, amino- $C_{1:3}$ -alkyl, $C_{1:4}$ -alkyl-amino- $C_{1:3}$ -alkyl, di- $(C_{1:4}$ -alkyl)-amino- $C_{1:3}$ -alkyl, cyclo- $C_{3:6}$ -alkyleneimino- $C_{1:3}$ -alkyl, amino- $C_{2:3}$ -alkoxy, $C_{1:4}$ -alkyl-amino- $C_{2:3}$ -alkoxy, di- $(C_{1:4}$ -alkyl-amino- $C_{2:3}$ -alkoxy, cyclo- $C_{3:6}$ -alkyleneimino- $C_{2:3}$ -alkoxy, aminocarbonyl, $C_{1:4}$ -alkyl-aminocarbonyl, di- $(C_{1:4}$ -alkyl)-aminocarbonyl, or cyclo- $C_{3:6}$ -alkyleneimino-carbonyl,
- R¹⁴ denotes halogen, C₁₋₆-alkyl, C₂₋₆-alkenyl, C₂₋₆-alkynyl, R¹⁵-O, R¹⁵-O-CO, R¹⁵-CO, R¹⁵-CO-O, R¹⁶R¹⁷N, R¹⁸R¹⁹N-CO, R¹⁵-O-C₁₋₃-alkyl, R¹⁵-O-CO-C₁₋₃-alkyl, R¹⁵-O-CO-NH, R¹⁵-SO₂-NH, R¹⁵-O-CO-NH-C₁₋₃-alkyl, R¹⁵-SO₂-NH-C₁₋₃-alkyl, R¹⁵-CO-C₁₋₃-alkyl, R¹⁵-CO-O-C₁₋₃-alkyl, R¹⁵-CO-CO-C₁₋₃-alkyl, R¹⁵
- R¹⁵ denotes H, C₁₋₄-alkyl, C₃₋₇-cycloalkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, phenyl, phenyl-C₁₋₃-alkyl, pyridinyl or pyridinyl-C₁₋₃-alkyl,
- R¹⁶ denotes H, C_{1.6}-alkyl, C_{3.7}-cycloalkyl, C_{3.7}-cycloalkyl-C_{1.3}-alkyl, C_{4.7}-cycloalkenyl, C_{4.7}-cycloalkenyl-C_{1.3}-alkyl, ω-hydroxy-C_{2.3}-alkyl, ω-(C_{1.4}-alkoxy)-C_{2.3}-alkyl, amino-C_{2.6}-alkyl, C_{4.7}-alkyl-amino-C_{2.6}-alkyl, di-(C_{1.4}-alkyl)-amino-C_{2.6}-alkyl or cyclo-C_{3.6}-alkyleneimino-C_{2.6}-alkyl.
- $$\begin{split} R^{17} &\quad \text{has one of the meanings given for R}^{16} \text{ or denotes phenyl, phenyl-$C_{1.3}$-alkyl, pyridinyl,} \\ &\quad \text{dioxolan-2-yl, -$CHO, $C_{1.4}$-alkylcarbonyl, $carboxy$, hydroxycarbonyl-$C_{1.3}$-alkyl, $C_{1.4}$-alkylcarbonylamino-$C_{2.3}$-alkyl, $N^-(C_{1.4}$-alkylcarbonyl)-$N^-(C_{1.4}$-alkylcarbonyl-$N^-(C_{1.4}$-alkyl)-amino-$C_{2.3}$-alkyl, $C_{1.4}$-alkylsulphonyl, $C_{1.4}$-alkylsulphonylamino-$C_{2.3}$-alkyl or $N^-(C_{1.4}$-alkylsulphonyl)-$N^-(C_{1.4}$-alkyl)-amino-$C_{2.3}$-alkyl, $C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkyl)-amino-$C_{2.3}$-alkyl, $C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C_{1.4}$-alkylsulphonyl-$N^-(C$$
- R¹⁸, R¹⁹ independently of one another are H or C₁₋₆-alkyl,
- R²⁰ is halogen, hydroxy, cyano, C_{1.6}-alkyl, C_{2.6}-alkenyl, C_{2.6}-alkynyl, C_{3.7}-cycloalkyl, C_{3.7}-cycloalkyl, C_{3.7}-cycloalkyl, C_{3.7}-alkyl, R²²-C_{1.3}-alkyl or has one of the

meanings given for R22,

- R²¹ is C₁₋₁-alkyl, ω-hydroxy-C₂₋₆-alkyl, ω-C₁₋₁-alkoxy-C₂₋₆-alkyl, ω-C₁₋₁-alkyl-amino-C₂₋₆-alkyl, ω-di-(C₁₋₁-alkyl)-amino-C₂₋₆-alkyl, ω-cyclo-C₃₋₆-alkyleneimino-C₂₋₆-alkyl, phenyl, phenyl-C₁₋₃-alkyl, C₁₋₄-alkyl-carbonyl, C₁₋₄-alkyl-carbonyl, C₁₋₄-alkyl-carbonyl, and
- R²² is pyridinyl, phenyl, phenyl-C₁₋₃-alkoxy, OHC, HO-N=HC,

C₁₋₄-alkoxy-N=HC, C₁₋₄-alkoxy, C₁₋₄-alkylthio, carboxy, C₁₋₄-alkylcarbonyl, C₁

4-alkoxycarbonyl, aminocarbonyl, C₁₋₄-alkylaminocarbonyl, di-(C₁

4-alkyl)-aminocarbonyl, cyclo-C₃₋₆-alkyl-amino-carbonyl, cyclo-C₃₋₆
alkyleneimino-carbonyl, cyclo-C₃₋₆-alkyl-amino-C₂₋₄-alkyl-aminocarbonyl, C₁₋₄
alkyl-sulphonyl, C₁₋₄-alkyl-sulphinyl, C₁₋₄-alkyl-sulphonylamino, amino,

C₁₋₄-alkylamino, di-(C₁₋₄-alkyl)-amino, C₁₋₄-alkyl-carbonyl-amino, cyclo-C₃₋₆
alkyleneimino, phenyl-C₁₋₃-alkylamino, N-(C₁₋₄-alkyl)-phenyl-C₁₋₃-alkylamino,

acetylamino, propionylamino, phenylcarbonyl, phenylcarbonylamino,

phenylcarbonylmethylamino, hydroxy-C₂₋₃-alkylaminocarbonyl, (4
morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl,

(hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl,

methylenedioxy, or aminocarbonylamino.

while in the above-mentioned groups W, X, Z, R^1 to R^5 and R^{10} and R^{14} to R^{22} one or more C atoms are optionally additionally mono- or polysubstituted by F and/or one or two C atoms, independently of one another, are optionally additionally monosubstituted by Cl or Br and/or one or more phenyl rings, independently of one another, optionally additionally have one, two or three substituents selected from among $F, Cl, Br, I, cyano, C_{1.4}$ -alkyl, $C_{1.4}$ -alkoxy, difluoromethyl, trifluoromethyl, hydroxy, amino, $C_{1.3}$ -alkylamino, di- $(C_{1.3}$ -alkyl)-amino, acetylamino, aminocarbonyl, difluoromethoxy, trifluoromethoxy, amino- $C_{1.3}$ -alkyl, $C_{1.3}$ -alkyl- and di- $(C_{1.3}$ -alkyl)-amino- $C_{1.3}$ -alkyl- and/or are optionally monosubstituted by nitro,

or a tautomer, a diastereomer, an enantiomer, a mixture thereof or a salt thereof.

Claim 23 (New) An alkyne compound according to claim 22, wherein:

- X is a single bond or a C_{1.6}-alkylene bridge, wherein
 - a -CH₂- group is optionally replaced by -CH=CH- or -C≡C- and/or
 - one or two -CH₂- groups independently of one another are optionally replaced by -O-, -S-, -(SO)-, -(SO₂)-, -CO- or -NR⁴- in such a way that two O, S or N atoms or an O and an S atom are not directly joined together,
 - two C atoms or one C and one N atom of the alkylene bridge are optionally joined together by an additional C₁₋₄-alkylene bridge, and/or
 - a C atom is optionally substituted by R¹⁰ and/or one or two C atoms in each
 case are optionally substituted with one or two identical or different C₁₋₆-alkyl
 groups,
- W, Z independently of one another are a single bond or a C_{1-t}-alkylene bridge, wherein a -CH₂- group not adjacent to the -C≡C- group is optionally replaced by -O- or -NR⁵-,

two adjacent C atoms or a C atom and an adjacent N atom are optionally joined together by an additional C_{1-4} -alkylene bridge, and/or in the alkylene bridge and/or in the additional alkylene bridge a C atom is optionally substituted by R^{10} and/or one or two C atoms independently of one another are optionally substituted by one or two identical or different C_{1-6} -alkyl groups, and

B has one of the meanings given for Cy or denotes C₁₋₆-alkyl, C₁₋₆-alkenyl, C₁₋₆-alkynyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkynyl, wherein one or more C atoms are optionally mono- or polysubstituted by fluorine and cyclic groups are optionally mono- or polysubstituted by R²⁰,

wherein

- R¹⁰ is hydroxy, ω-hydroxy-C₁₋₃-alkyl, C₁₋₄-alkoxy, ω-(C₁₋₄-alkoxy)-C₁₋₃-alkyl, amino, C₁₋₄-alkyl-amino, di-(C₁₋₄-alkyl)-amino, cyclo-C₃₋₆-alkyleneimino, amino-C₁₋₃-alkyl, C₁₋₄-alkyl-amino-C₁₋₃-alkyl, di-(C₁₋₄-alkyl)-amino-C₁₋₃-alkyl, cyclo-C₃₋₆-alkyleneimino-C₁₋₃-alkyl, amino-C₂₋₃-alkoxy, C₁₋₄-alkyl-amino-C₂₋₃-alkoxy, di-(C₁₋₄-alkyl)-amino-C₂₋₃-alkoxy or cyclo-C₃₋₆-alkyleneimino-C₂₋₃-alkoxy,
- $$\begin{split} R^{14} & \quad \text{is halogen, C}_{1.6}\text{-alkyl, R}^{15}\text{-O, R}^{15}\text{-O-CO, R}^{15}\text{-CO, R}^{15}\text{-CO-O, R}^{16}\text{R}^{17}\text{N, R}^{18}\text{R}^{19}\text{N-CO,} \\ & \quad \quad R^{15}\text{-O-C}_{1.3}\text{-alkyl, R}^{15}\text{-O-CO-C}_{1.3}\text{-alkyl, R}^{15}\text{-CO-O-C}_{1.3}\text{-alkyl, R}^{15}\text{-CO-O-C}_{1.3}\text{-alkyl, R}^{15}\text{-CO-O-C}_{1.3}\text{-alkyl, R}^{16}\text{-CO-O-C}_{1.3}\text{-alkyl, R}^{16}\text{$$
- R^{15} is H, $C_{1.4}$ -alkyl, $C_{3.7}$ -cycloalkyl, $C_{3.7}$ -cycloalkyl- $C_{1.3}$ -alkyl, phenyl or phenyl- $C_{1.3}$ -alkyl,
- $R^{17} \quad \text{has one of the meanings given for } R^{16} \text{ or is phenyl, phenyl-} C_{1.3}\text{-alkyl, } C_{1.} \\ \quad _{4}\text{-alkylcarbonyl, hydroxycarbonyl-} C_{1.3}\text{-alkyl, } C_{1.4}\text{-alkylcarbonylamino-} \\ C_{2.3}\text{-alkyl, } N\text{-}(C_{1.4}\text{-alkylcarbonyl)-} N\text{-}(C_{1.4}\text{-alkyl})\text{-amino-} C_{2.3}\text{-alkyl,} \\ C_{1.4}\text{-alkylsulphonyl, } C_{1.4}\text{-alkylsulphonylamino-} C_{2.3}\text{-alkyl,} \\ N\text{-}(C_{1.4}\text{-alkylsulphonyl)-} N\text{-}(C_{1.4}\text{-alkyl})\text{-amino-} C_{2.3}\text{-alkyl,} \\ \end{cases}$
- $R^{20} \quad \text{ is halogen, hydroxy, cyano, $C_{1.6}$-alkyl, $C_{3.7}$-cycloalkyl, $C_{3.7}$-cycloalkyl, $C_{1.3}$-alkyl, $hydroxy-$C_{1.3}$-alkyl, R^{22}-$C_{1.3}$-alkyl or has one of the meanings given for R^{22}, and$
- $R^{22} \hspace{0.5cm} is \hspace{0.5cm} phenyl, \hspace{0.5cm} phenyl-C_{1.3}\text{-}alkoxy, \hspace{0.5cm} C_{1.4}\text{-}alkylcarbonyl, \hspace{0.5cm} C_{1.4}\text{-}alkylcarbonyl, \hspace{0.5cm} alkylcarbonyl, \hspace{0.5cm} alkylcarbonyl, \hspace{0.5cm} cl_{1.4}\text{-}alkyl-aminocarbonyl, \hspace{0.5cm} C_{1.4}\text{-}alkyl-aminocarbonyl, \hspace{0.5cm} C_{1.4}\text{-}alkyl-sulphonyl, \hspace{0.5cm} C_{1.4}\text{-}alkyl-sulphonylamino, \hspace{0.5cm} amino, \hspace{0.5cm} C_{1.4}\text{-}alkyl-sulphonylamino, \hspace{0.5cm} amino, \hspace{0.5cm} C_{1.4}\text{-}alkyl-sulphonylamino, \hspace{0.5cm} cyclo-C_{3.6}\text{-}alkyleneimino, \hspace{0.5cm} phenyl-C_{1.3}\text{-}alkylamino, \hspace{0.5cm} N^{-}C_{1.4}\text{-}alkyl-phenyl-C_{1.3}\text{-}alkylamino, \hspace{0.5cm} acetylamino, \hspace{0.5cm} phenyl-C_{1.3}\text{-}alkylamino, \hspace{0.5cm} phenyl-C$

propionylamino, phenylcarbonyl, phenylcarbonylamino, phenylcarbonylmethylamino, hydroxyalkylaminocarbonyl, (4morpholinyl)carbonyl, (1-pyrrolidinyl)carbonyl, (1-piperidinyl)carbonyl, (hexahydro-1-azepinyl)carbonyl, (4-methyl-1-piperazinyl)carbonyl, methylenedioxy, aminocarbonylamino or alkylaminocarbonylamino.

Claim 24 (New) An alkyne compound according to claim 22, wherein X is -CH₂-, -CH₂-CH₂- or -CH₂-CH₂- and

when Y is bonded to X via a C atom, X may also be $-CH_2-C \equiv C_7$, $-CH_2-CH_2-O_7$, $-CH_2-CH_2-NR^4$ - or 1,3-pyrrolidinylene, where the pyrrolidinylene group is linked to Y via the imino group, and

wherein, in X, a C atom is optionally substituted by R^{10} , and/or one or two C atoms in each case are optionally substituted by one or two identical or different substituents selected from $C_{1.6}$ -alkyl, $C_{2.6}$ -alkenyl, $C_{2.6}$ -alkynyl, $C_{3.7}$ -cycloalkyl, $C_{3.7}$ -cycloalkyl, $C_{3.7}$ -cycloalkyl, $C_{1.3}$ -alkyl, $C_{4.7}$ -cycloalkenyl and $C_{4.7}$ -cycloalkenyl- $C_{1.3}$ -alkyl, wherein two alkyl and/or alkenyl substituents are optionally joined together forming a carbocyclic ring system, and, additionally

wherein one or more C atoms are optionally mono- or polysubstituted by F and/or in each case one or two C atoms independently of one another are optionally monosubstituted by Cl or Br.

Claim 25 (New) An alkyne compound according to claim 22, wherein W and/or Z, independently of one another are a single bond, -CH₂-, -CH₂-CH₂-, -CH₂-CH₂- or cyclopropylene,

W is additionally selected from -CH2-O-, -CH2-CH2-O-, -CH2-NR 4 - or -CH2-CH2-NR 4 - and

Z is additionally selected from -O-CH $_2$ -, -O-CH $_2$ -CH $_2$ -, -NR 4 -CH $_2$ - or -NR 4 -CH $_2$ -, CH $_2$ -,

wherein a C atom is optionally substituted by R^{10} , and/or one or two C atoms independently of one another are each optionally substituted by one or two identical or different C_{14} -alkyl groups, and

one or more C atoms are optionally mono- or polysubstituted by F and/or one or two C atoms are optionally monosubstituted independently of one another by Cl or Br.

Claim 26 (New) An alkyne compound according to claim 22, wherein W and/or Z independently of one another are a single bond or are selected from - CH_{2-} , - CH_{2-} CH₂₋-, - CH_{2-} CH₂₋

W is additionally selected from -CH2-O- or -CH2-NR4- and

Z is additionally selected from -O-CH₂- or -NR⁴-CH₂-,

wherein one or more C atoms are optionally mono- or polysubstituted by F and/or one or two C atoms are optionally monosubstituted independently of one another by Cl or Br.

Claim 27 (New) An alkyne compound according to claim 22, wherein B is phenyl, thienyl, furanyl, C₁₋₆-alkyl, C₁₋₆-alkenyl, C₁₋₆-alkynyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkyl, C₃₋₇-cycloalkyl-C₁₋₃-alkynyl, wherein one or more C atoms are optionally mono- or polysubstituted by fluorine, and the abovementioned cyclic groups are optionally mono- or polysubstituted by R²⁰ at one or more C atoms, and in the case of a phenyl group is additionally optionally monosubstituted by nitro.

Claim 28 (New) An alkyne compound according to claim 22, wherein

R²⁰ are independently F, Cl, Br, I, OH, cyano, methyl, difluoromethyl, trifluoromethyl, ethyl, n-propyl, iso-propyl, methoxy, difluoromethoxy,

trifluoromethoxy, ethoxy, n-propoxy or iso-propoxy.

Claim 29 (New) An alkyne compound according to claim 22 selected from the following:

- [(R)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenoxy}-ethyl)pyrrolidin-2-yl]-methanol
- (2) N-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenyl}-2-pyrrolidin-1-ylpropionamide
- (3) 5-(4-bromo-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (4) 5-(4-chloro-phenyl)-2-{4-[4-((S)-2-methoxymethyl-pyrrolidin-1-ylmethyl)phenyl]-but-1-vnyl}-pyridine
- (5) 5-(4-chloro-phenyl)-2-{4-[4-(2-methyl-pyrrolidin-1-ylmethyl)-phenyl]-but-1ynyl}-pyridine
- (6) 5-(4-chloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (7) 5-(4-chloro-phenyl)-2-{4-[2-(2,6-dimethyl-piperidin-1-yl)-ethoxy]-3-methyl-phenylethynyl}-pyridine
- (8) methyl 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-ylethoxy)-benzoate
- (9) 5-(4-chloro-phenyl)-2-[3-methyl-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]pyridine
- (10) 5-(4-chloro-phenyl)-2-[3-(4-pyrrolidin-1-ylmethyl-phenoxy)-prop-1-ynyl]pyridine
- (11) [(S)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}ethyl)-pyrrolidin-2-yll-methanol

- (12) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)phenylamine
- (13) 1-(4-{4-[5-(4-chloro-phenyl)-pyridin-2-yl]-but-3-ynyl}-benzyl)-pyrrolidin-3vlamine
- (14) 2-[3-bromo-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-5-(4-chloro-phenyl)pyridine
- (15) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-N-methyl-2-(2-pyrrolidin-1-ylethoxy)-benzamide
- (16) {4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenyl}-(2-pyrrolidin-1-ylethyl)-amine
- (17) {5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}-methyl-(2-pyrrolidin-1-yl-ethyl)-amine
- (18) tert-butyl [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-phenoxy}-ethyl)pyrrolidin-3-yl]-carbaminate
- (19) 5-(4-chloro-phenyl)-2-[3-methoxy-4-(2-pyrrolidin-1-yl-ethoxy)phenylethynyl]-pyridine
- (20) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)benzaldehyde O-methyl-oxime
- (21) 1'-{5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}[1,3']bipyrrolidinyl
- (22) 5-(4-chloro-phenyl)-2-[3-chloro-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]pyridine
- (23) (S)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}ethyl)-pyrrolidin-3-ol
- (24) [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)-piperidin-4-yl]-pyridin-2-yl-amine
- (25) 5-(4-bromo-phenyl)-2-[4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine

- (26) 5-(2,4-dichloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (27) 5-(4-chloro-phenyl)-2-[4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-pyridine
- (28) 5-(4-chloro-phenyl)-2-{4-[2-(2-methyl-pyrrolidin-1-yl)-ethoxy]phenylethynyl}-pyridine
- (29) 5-(4-chloro-phenyl)-2-{4-[4-(4-pyrrolidin-1-yl-piperidin-1-ylmethyl)-phenyl]but-1-ynyl}-pyridine
- (30) 5-(4-methoxy-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (31) 5-(3,4-difluoro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (32) 5-(4-chloro-phenyl)-2-(4-[4-((R)-2-methoxymethyl-pyrrolidin-1-ylmethyl)phenyl]-but-1-ynyl}-pyridine
- (33) {5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-pyridin-2-yl}-(2-pyrrolidin-1-ylethyl)-amine
- (34) (R)-1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}ethyl)-pyrrolidin-3-ol
- (35) 5-(4-chloro-phenyl)-2-[3-ethynyl-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]pyridine
- (36) 5-(3,4-dichloro-phenyl)-2-[4-(4-pyrrolidin-1-ylmethyl-phenyl)-but-1-ynyl]pyridine
- (37) 5-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-(2-pyrrolidin-1-yl-ethoxy)benzaldehyde-oxime
- (38) [1-(2-{4-[5-(4-chloro-phenyl)-pyridin-2-ylethynyl]-2-methyl-phenoxy}-ethyl)pyrrolidin-3-yll-dimethyl-amine
- (39) 5-(4-chloro-phenyl)-2-[3-fluoro-4-(2-pyrrolidin-1-yl-ethoxy)-phenylethynyl]-

pyridine

(40) 5-(4-chloro-phenyl)-2-[4-(3-piperidin-1-yl-pyrrolidin-1-yl)-phenylethynyl]pyridine

(41) 5-(4-chloro-phenyl)-2-[4-(3-pyrrolidin-1-yl-propyl)-phenylethynyl]-pyridine

including a tautomer, a diastereomer, an enantiomer, a mixture thereof or a salt thereof.

Claim 30 (New) An alkyne compound according to claim 22, which is in a physiologically acceptable salt form.

Claim 31 (New) A composition comprising at least one alkyne compound according to claim 22, together with one or more inert carriers and/or diluents.

Claim 32 (New) A method for influencing the eating behavior of a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 33 (New) A method for reducing the body weight and/or for preventing an increase in the body weight of a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 34 (New) A method for modulating MCH activity in a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 35 (New) A method for treating a urinary problem selected from urinary incontinence, overactive bladder, urgency, nycturia and enuresis, in a mammal comprising administering thereto one or more alkyne compounds according to claim 22.

Claim 36 (New) An alkyne compound of claim 26, wherein R^4 is -H, methyl, ethyl or propyl, and R^{10} is -OH, N-pyrrolidinyl, amino-ethoxy, C_{L4} -alkyl-amino-ethoxy, or di- $(C_{L4}$ -alkyl)-amino-ethoxy.