Math40003 Linear Algebra and Groups Term 2 Unseen 4B Groups (Week 7)

Recall the following lemma and fact that you may want to use for some of the questions.

Lemma 1 (Corollary 3.2.1 (?) from Introduction to University Mathematics). Let $a, b \in \mathbb{Z}$. If n|ab and gcd(n, a) = 1, then n|b.

Fact 1 (The Pigeonhole Principle). Let A be a finite set, and let $f: A \to A$ be a function on A. Then f is injective if and only if it is surjective.

- 1. Let us define a new algebraic structure, $group^*$, to be a set A, with an associative binary operation, denoted by \cdot , and an element $e \in A$ satisfying:
 - $\forall a \in A : a \cdot e = a$.
 - $\forall a \in A : \exists a' \in A$, such that $a \cdot a' = e$.

Prove that this new algebraic structure, $group^*$, gives the classical group structure. In other words, prove that if (A, \cdot) is a group*, then it is a group.

2. A monoid is a set A with an associative binary operation \circ and an element $e \in A$ such that

$$\forall a \in A : a \circ e = e \circ a = a.$$

Let (A, \circ) be a monoid, and let $A^{\times} := \{ a \in A | \exists b \in A : a \circ b = b \circ a = e \}$. Prove that (A^{\times}, \circ) is a group.

3. We recall the definition of $\mathbb{Z}/n\mathbb{Z}$ (Sometimes denoted \mathbb{Z}_n). For $a, b \in \mathbb{Z}$, denote $a \equiv b \mod n$ if n|a-b. This is an equivalence relation with n equivalence classes. The set of equivalence classes is denoted

$$\mathbb{Z}/n\mathbb{Z} = \{ [0], [1], \dots, [n-1] \}.$$

The operations +, \cdot on $\mathbb{Z}/n\mathbb{Z}$ are defined as follows: [a]+[b]=[a+b]; $[a]\cdot[b]=[a\cdot b]$.

- (a) Prove $(\mathbb{Z}/n\mathbb{Z}, +)$ is an Abelian group.
- (b) \cdot is associative and commutative on $\mathbb{Z}/n\mathbb{Z}$, but $(\mathbb{Z}/n\mathbb{Z},\cdot)$ is not a group.
- 4. Let $(\mathbb{Z}/n\mathbb{Z})^{\times} := \{ [a] \in \mathbb{Z}/n\mathbb{Z} | \exists [b] \in \mathbb{Z}/n\mathbb{Z} : [a] \cdot [b] = [1] \}.$
 - (a) Prove $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot)$ is an Abelian group.
 - (b) Show that for $[a] \in (\mathbb{Z}/n\mathbb{Z})$ the following are equivalent:
 - (i) $[a] \in (\mathbb{Z}/n\mathbb{Z})^{\times}$.
 - (ii) $\forall [c] \in (\mathbb{Z}/n\mathbb{Z})$: if $[a] \cdot [c] = [0]$ then [c] = [0].
 - (iii) gcd(a, n) = 1.
 - (c) Let $a, b, x, y \in \mathbb{Z}$ such that ax + by = 1, then gcd(a, b) = 1.
 - (d) Find the size of the sets $(\mathbb{Z}/8\mathbb{Z})^{\times}$ and $(\mathbb{Z}/9\mathbb{Z})^{\times}$. Try generalizing your findings.