Feynman Diagramme:

- anschauliche Darstellung
- Rechenregeln (Berechnung von Übergangsmatrixelementen)

Bsp. (QED): $e^-e^- \rightarrow e^-e^-$

aber auch kompliziertere Diagramme möglich, z.B.:

klassisch: Coulomb-Abstossung

hier: Impulsänderung durch Emission/Absorption der Austauschteilchen $ec{F}=rac{dec{p}}{dt}$

Wichtig:

Nur externe Linien: beobachtbare Teilchen! Interne Linien: virtuelle Teilchen → nicht beobachtbar!

(verschiedene Feynman-Diagramme: Unterschiedliche Beiträge zur Wechselwirkung \leftrightarrow alle möglichen Feynman-Diagramme bestimmen den Prozess \leftrightarrow Störungstheorie (jeder Vertex kommt mit $\sqrt{\alpha}$ im Matrixelement/Amplitude und mit α =1/137 im WQ))

52

Weitere Grundlagen

.... Tafel

3) Natürliche Einheiten

4) Vierervektoren

- Teilchenzerfälle
- ein einfaches Bild einer Resonanz

.... Tafel

3) Natürliche Einheiten

4) Vierervektoren

- Teilchenzerfälle
- ein einfaches Bild einer Resonanz

Vierervektoren - Beispiel Teilchenzerfall π^0

$$\gamma p o p\,\pi^0\pi^0 o p\,(\gamma\gamma)(\gamma\gamma)$$
 $m_{\gamma\gamma}^2=(E_1+E_2)^2-(ec{p_1}+ec{p_2})^2$: (invariante $\gamma\gamma$ -Masse) 2

$$\pi^0 o \gamma \gamma, \eta o \gamma \gamma$$
:

elektromagnetische Wechselwirkung

Breite der Peakverteilungen: Gegeben durch die experimentelle Auflösung (Gaußverteilung: $\sigma_{\pi^0}=7~MeV$)

Mittlere Lebensdauer π^0 : $(8,4\pm0,6)\cdot10^{-17}s$

54

•
$$(\bar{p}p)_{at rest} \rightarrow \pi^+\pi^-\pi^0$$

=
ho(770)(M = 770 MeV, $\Gamma pprox$ 150 MeV) später in der VL: $qar{q}$ -Zustand (Meson)

Invariante Masse des $\pi^-\pi^0$ -Systems:

$$M_{\pi^-\pi^0}^2 = (E_{\pi^-}\!+\!E_{\pi^0})^2\!-\!(\vec{p}_{\pi^-}\!+\!\vec{p}_{\pi^0})^2$$

$$m(\pi^-\pi^0)$$
 = $\sqrt{M_{\pi^-\pi^0}^2} pprox$ 770 MeV

kein schmaler Peak sondern $\Gamma \approx$ 150 MeV

⇒ ???

Vierervektoren - Beispiel Teilchenzerfall

• $(\bar{p}p)_{at rest} \rightarrow \pi^+\pi^-\pi^0$

=
ho(770)(M = 770 MeV, $\Gamma \approx$ 150 MeV) später in der VL: $q\bar{q}$ -Zustand (Meson) Invariante Masse des $\pi^-\pi^0$ -Systems:

$$M_{\pi^-\pi^0}^2 = (E_{\pi^-}\!+\!E_{\pi^0})^2\!-\!(\vec{p}_{\pi^-}\!+\!\vec{p}_{\pi^0})^2$$

$$m(\pi^-\pi^0)$$
 = $\sqrt{M_{\pi^-\pi^0}^2} pprox$ 770 MeV

kein schmaler Peak sondern $\Gamma \approx$ 150 MeV

 \Rightarrow kurzlebiges Teilchen

Lebensdauer:

$$aupprox rac{\hbar}{\Gamma}pprox rac{6,6\cdot 10^{-22} \mathrm{MeV\,s}}{150\,\mathrm{MeV}}$$

$$=4.4\cdot 10^{-24} \mathrm{s}$$

Form der Verteilung = ? \rightarrow Tafel ...

57

56