Teoretická informatika – Domáca úloha 1.

Michal L'aš (xlasmi00)

3. novembra 2024

Príklad 1.

Minimálny DKA pre jazyk $L_1 = \{w \in \Sigma^* \mid |w| \mod 2 = 1\}$ vyzerá takto:

Tento automat je určite minimálny, pretože stav \mathbf{p} je nekoncový a stav \mathbf{n} je koncový, takže ich nie je možné zlúčiť do jedného stavu.

Jazyk prístupových refazcov pre stavy **p** a **n**:

- $L_1^{-1}(p) = \{ w \in \Sigma^* \mid |w| \mod 2 = 0 \}$
- $L_1^{-1}(n) = \{ w \in \Sigma^* \mid |w| \mod 2 = 1 \}$

Teda rozklad $\Sigma_{/\sim_{L_1}}^*=\{L_1^{-1}(p),L_1^{-1}(n)\}$ a platí, že:

$$\forall u, v \in \Sigma^* : u \sim_{L_1} v \Leftrightarrow$$

$$(u \in \{w \in \Sigma^* \mid |w| \mod 2 = 0\} \land v \in \{w \in \Sigma^* \mid |w| \mod 2 = 0\}) \lor$$

$$(u \in \{w \in \Sigma^* \mid |w| \mod 2 = 1\} \land v \in \{w \in \Sigma^* \mid |w| \mod 2 = 1\})$$

Index \sim_{L_1} je teda 2. Teraz je potrebné nájsť ekvivalentný DKA, ktorý nebude minimálny, počet jeho stavov bude súdeliteľný s 2 a práve jeden stav bude taký, že jeho jazyk prístupových reťazcov bude obsahovať práve dva prvky. Takýto automat by mohol vyzerať nasledovne:

Jazyky prístupových refazcov pre jednotlivé stavy automatu:

```
• L_1^{-1}(1) = \{a\}

• L_1^{-1}(2) = \{b\}

• L_1^{-1}(3) = \{aa, bb\}

• L_1^{-1}(4) = \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 0\}

• L_1^{-1}(5) = \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 1\}
```

```
\begin{aligned} & \text{Rozklad } \Sigma_{/\sim}^* = \{L_1^{-1}(0), L_1^{-1}(1), L_1^{-1}(2), L_1^{-1}(3), L_1^{-1}(4), L_1^{-1}(0)\} \text{ a plati, } \check{\textbf{z}} \textbf{e} : \\ & \forall u, v \in \Sigma^* : u \sim v \Leftrightarrow \\ & (v \in \{\epsilon\} \land u \in \{\epsilon\}) \lor \\ & (v \in \{a\} \land u \in \{a\}) \lor \\ & (v \in \{b\} \land u \in \{b\}) \lor \\ & (v \in \{b\} \land u \in \{b\}) \lor \\ & (v \in \{aa, bb\} \land u \in \{aa, bb\}) \lor \\ & (v \in \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 0\} \land u \in \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 0\}) \lor \\ & (v \in \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 1\} \land u \in \{w \in \Sigma^* \setminus \{\epsilon, a, b, aa, bb\} \mid |w| \mod 2 = 1\}) \end{aligned}
```

Splnenie podmienok

• $L_1^{-1}(0) = \{\epsilon\}$

- 1. L_1 je zjednotením tried, ktoré sú vyznačené modro. Respektíve $L_1 = L_1^{-1}(1) \cup L_1^{-1}(2) \cup L_1^{-1}(5)$.
- 2. Index \sim je **6**, čísla **2** a **6** sú súdeliteľné.
- 3. Trieda vyznačená červene $(L_1^{-1}(3))$ má práve 2 prvky.

Príklad 2. a)

Myšlienka: operácia $\Box L$ vytvára jazyk, ktorý obsahuje refazce jazyka L také, že všetky prefixy tohto refazca patria tiež do L. Pre každý regulárny jazyk existuje DKA, ktorý ho akceptuje. Skúsim teda vytvoriť algoritmus, ktorý prevedie ľubovoľný DKA akceptujúci jazyk L na KA, ktorý akceptuje jazyk $\Box L$. Ak takýto algoritmus existuje, potom operácia \Box je uzavretá na triede regulárnych jazykov.

Majme DKA $M_1 = (Q, \Sigma, \delta, q_0, F)$, nech regulárny jazyk L je akceptovaný týmto automatom. Teraz vytvorím nový automat $M_2 = (Q', \Sigma', \delta', q'_0, F')$, ktorý bude akceptovať jazyk $\square L$.

Algoritmus pre prevod M_1 na M_2 by mohol vyzerať nasledovne:

- Q' = Q
- $\Sigma' = \Sigma$
- $\delta' = \pi \in \delta \mid \forall p, q \in F, \forall a \in \Sigma : q \in \delta(p, a)$
- $q_0' = q_0$
- F' = F

Inak povedané: KA M_2 vznikne tak, že z DKA M_1 budú odstránené všetky prechody, ktoré vedú z nekoncových stavov alebo do nekoncových stavov. Zostanú len prechody, ktoré idú z koncového stavu do koncového stavu. Tým je zaručené, že ak M_2 akceptuje nejaké slovo w, tak akceptuje aj všetky jeho prefixy.

V KA M_2 môžu vzniknúť nedostupné stavy. Nedostupné stavy sa však dajú odstrániť a automat previesť na DKA, pretože každý KA sa dá previesť na ekvivalentný DKA. Za poznámku stojí, že ak $q_0 \notin F$, tak potom $L(M_2) = \emptyset$. Keďže existuje algoritmus na prevod z DKA akceptujúceho regulárny jazyk L na DKA akceptujúci jazyk $\square L$, tak operácia \square je uzavretá na množine regulárnych jazykov.

Príklad 2. b)

Majme ľubovoľný rekurzívne vyčísliteľný jazyk L, potom musí existovať TS M taký, že L(M) = L, aby bola operácia \square uzavretá na triede rekurzívne vyčísliteľných jazykov, tak je nutné popísať konštrukciu TS T takého, že $L(T) = \square L$.

- 1. TS T má na svojom vstupe refazec $w \in \Sigma^*$, kde Σ je abeceda TS M.
- 2. TS T si bude na svoju pomocnú pásku postupne generovať všetky prefixy reťazca w, ktorých je konečne veľa. Začína sa prázdnym reťazcom (ϵ) a postupne sa budú kopírovaním symbolov z hlavnej pásky na vedľajšiu generovať na vedľajšej páske všetky prefixy.
- 3. Po vygenerovaní každého prefixu TS T pustí simuláciu TS M. Následne sa generuje ďalší prefix a proces sa opakuje.
- 4. Ak TS M akceptuje každý prefix refazca w, potom TS T akceptuje refazec w.
- 5. Ak niektorý prefix nebol akceptovaný alebo TS T cyklí, tak TS T neakceptuje refazec w.
- 6. Keďže existuje popis TS, ktorý akceptuje $\Box L$ pre ľubovoľný rekurzívne vyčísliteľný jazyk, tak operácia \Box je uzavretá na triede rekurzívne vyčísliteľných jazykov.

Príklad 3.

- 1. Predpokladajme, že jazyk L_3 je bezkontextový, potom musí platiť pumping lemma pre bezkontextové jazyky: L je bezkontextový \Rightarrow $(\exists k \in \mathbb{N}^+ : \forall z \in \Sigma^* : z \in L \land |z| \ge k \Rightarrow$ $(\exists u, v, w, x, y \in \Sigma^* : uvwxy = z \land |vx| > 0 \land |vwx| \le k \land \forall i \in \mathbb{N} \quad uv^iwx^iy \in L))$
- 2. Uvažujem o ľubovoľnom $k \in \mathbb{N}^+$.
- 3. Pre každé takéto k zvoľme slovo $z=a^kb^{k^2}$. Určite platí, že $z\in L_3$ a $|z|\geq k$.
- 4. Pre každé takéto slovo uvažujme o všetkých možných rozdeleniach na 5 častí u, v, w, x, y, kde uvwxy = z, |vx| > 0, $|vwx| \le k$.
- 5. Tieto rozdelenia môžeme zaradiť do troch skupín:
 - a) časť vx obsahuje iba symboly a alebo iba symboly b.
 - **b)** časť vx obsahuje symboly a aj symboly b, a zároveň časť v alebo x obsahuje symboly a aj b.
 - c) časť vx obsahuje symboly a aj symboly b, a zároveň časť v obsahuje len symboly a a časť x obsahuje len symboly b.
- 6. prípad a): voľbou i=0 budú narušené počty symbolov a alebo symbolov b, takže ak toto nové slovo z' rozdelíme na dve časti $z'=pq\mid p\in a^*\wedge q\in b^*$, tak $|p|^2\neq |q|$ a teda takýto refazec už nebude patriť do L_3 .
- 7. prípad **b**): voľbou i=2 sa naruší forma slova tak, že už nebude platiť, že novo vzniknuté slovo z' sa bude dať rozdeliť na dve časti $z'=pq\mid p\in a^*\wedge q\in b^*$.
- 8. Prípad c): voľbou i=2 sa narušia počty symbolov a a b tak, že pri rozdelení novo vzniknutého slova z' na dve časti $z'=pq\mid p\in a^*\wedge q\in b^*$, bude $|p|^2\neq |q|$ a teda takýto refazec už nebude patriť do L_3 . Rozdelenie pre tento prípad vyzerá nasledovne:
 - $u = a^{k-\alpha-\gamma}$
 - $v = a^{\alpha}$
 - $w = a^{\gamma}b^{\delta}$
 - $x = b^{\beta}$
 - $y = b^{k^2 \beta \delta}$

Musí platif, že $\alpha + \gamma + \beta + \delta \leq k \wedge 0 < \alpha \wedge 0 < \beta \wedge 0 \leq \gamma \wedge 0 \leq \delta$. Pre i=2 by nové slovo z' vyzeralo nasledovne: $z'=a^{k-\alpha-\gamma}a^{2\alpha}a^{\gamma}b^{\delta}b^{2\beta}b^{k^2-\beta-\delta}$. Po úprave: $z'=a^{k+\alpha}b^{k^2+\beta}$. Aby toto slovo patrilo do jazyka musí platif, že $|a^{k+\alpha}|^2=|b^{k^2+\beta}|$ teda, že $(k+\alpha)^2=k^2+\beta$. Po úprave tejto rovnice dostaneme $2k\alpha+\alpha^2=\beta$. Táto rovnica však nemá riešenie, pretože $\alpha>0 \wedge k>0$ a $\beta< k$, čo vyplýva z uvedených podmienok. Záver je, že pre i=2 nemožno nájsť také rozdelenie aby z' patrilo do jazyka.

- 9. Takto je ukázané, že pre každé uvažované rozdelenie je možné nájsť $i\in\mathbb{N}$ také, že $uv^iwx^iy\notin L_3$.
- 10. Pre jazyk L_3 tak neplatí pravá strana pumping lemmatu pre bezkontextové jazyky a preto L_3 nie je bezkontextový jazyk.

Príklad 4.

Myšlienka: hľadáme pravidlá typu $A \to \alpha\beta\gamma$, kde α, γ sa dajú prepísať na akékoľvek terminálne symboly a β garantuje, že vygenerujeme vetu s refazcom abc. Budeme potrebovať nasledovné **pomocné množiny neterminálov**:

- $N_a = A \in N \mid \exists u \in \Sigma^* : A \Rightarrow_G^* ua$
- $N_b = A \in N \mid A \Rightarrow_G^* b$
- $N_c = A \in N \mid \exists u \in \Sigma^* : A \Rightarrow_G^* cu$
- $N_{ab} = A \in N \mid \exists u \in \Sigma^* : A \Rightarrow_G^* uab$
- $N_{bc} = A \in N \mid \exists u \in \Sigma^* : A \Rightarrow_G^* bcu$
- $N_{abc} = A \in N \mid \exists u, v \in \Sigma^* : A \Rightarrow_G^* uabcv$

Obecná štruktúra algoritmu:

- 1. $N_x^0 = \emptyset, \quad i = 0$
- 2. ...
- 3. Pokiaľ $N_x^{i+1} \neq N_x^i$, tak:
 - i = i + 1
 - go to step 2
- 4. $N_x = N_x^i$

Algoritmus pre N_a , x = a:

2.
$$N_a^{i+1} = \{A \in N \mid \exists (A \rightarrow \alpha) \in P : \alpha \in (N_t \cup \Sigma)^* (N_a^i \cup \{a\}) N_\epsilon^* \}$$

Algoritmus pre N_b , x = b:

2.
$$N_b^{i+1} = \{A \in N \mid \exists (A \rightarrow \alpha) \in P : \alpha \in N_\epsilon^*(N_b^i \cup \{b\}) N_\epsilon^* \}$$

Algoritmus pre N_c , x = c:

2.
$$N_c^{i+1} = \{A \in N \mid \exists (A \rightarrow \alpha) \in P : \alpha \in N_\epsilon^*(N_c^i \cup \{c\})(N_t \cup \Sigma)^*\}$$

Algoritmus pre N_{ab} , x = ab:

$$2. \ N_{ab}^{i+1} = \{A \in N \mid \exists (A \to \alpha) \in P : \alpha \in (N_t \cup \Sigma)^* (N_{ab}^i \cup \{ab\} \cup \{a\}N_b \cup N_a\{b\} \cup N_aN_b)N_{\epsilon}^* \}$$

Algoritmus pre N_{bc} , x = bc:

2.
$$N_{bc}^{i+1} = \{ A \in N \mid \exists (A \to \alpha) \in P : \alpha \in N_{\epsilon}^*(N_{bc}^i \cup \{bc\} \cup \{b\}N_c \cup N_b\{c\} \cup N_bN_c)(N_t \cup \Sigma)^* \}$$

Algoritmus pre N_{abc} , x = abc:

2.
$$N_{abc}^{i+1} = \{A \in N \mid \exists (A \to \alpha) \in P : \alpha \in (N_t \cup \Sigma)^* (N_{abc}^i \cup \{abc\} \cup \{a\}N_{bc} \cup \{a\}N_{bc} \cup \{ab\}N_c \cup \{ab\}N_c \cup N_a\{bc\} \cup N_{ab}\{c\} \cup N_aN_b\{c\} \cup N_a\{b\}N_c \cup N_aN_bC \cup N_bC \cup$$

Ilustrácia algoritmu na gramatike zo zadania:

Najskôr je potrebné spočítať množiny N_t, N_e, N_a, N_b, N_c , pomocou nich ďalej spočítať množiny N_{ab} a N_{bc} a na koniec finálnu množinu N_{abc} .

$$\begin{array}{lll} N_t^0 = \emptyset & N_c^0 = \emptyset & N_a^0 = \emptyset & N_b^0 = \emptyset & N_c^0 = \emptyset \\ N_t^1 = \{U\} & N_\epsilon^1 = \{U\} & N_a^1 = \{S, T, R\} & N_b^1 = \{U, W\} & N_c^1 = \{S\} \\ N_t^2 = \{U, R, T, S, W\} & N_\epsilon^2 = \{U\} & N_a^2 = \{S, T, R\} & N_b^2 = \{U, W, T\} & N_c^2 = \{S\} \\ N_t^3 = \{U, R, T, S, W\} & N_b^3 = \{U, W, T\} & N_b^3 = \{U, W, T\} \end{array}$$

$$\begin{array}{c} N_{ab}^{0} = \emptyset & N_{bc}^{0} = \emptyset & N_{abc}^{0} = \emptyset \\ N_{ab}^{1} = \{T\} & N_{bc}^{1} = \{R\} & N_{abc}^{1} = \{S\} \\ N_{ab}^{2} = \{T\} & N_{bc}^{2} = \{R, S\} & N_{abc}^{2} = \{S\} \\ N_{bc}^{3} = \{R, S\} & N_{abc}^{2} = \{S\} \end{array}$$

Príklad 5.

