Задача 9 (*)

Пусть матрица $\mathbf{P} = \mathbf{E} - (\mathbf{e}_i - \mathbf{e}_j)^{\mathrm{T}} (\mathbf{e}_i - \mathbf{e}_j)$, где \mathbf{E} – единичная матрица, \mathbf{e}_i и \mathbf{e}_j – её i и j-я строки. Вычислить матрицы $\mathbf{P}\mathbf{A}$ и $\mathbf{A}\mathbf{P}$.

Решение

Пусть для определённости i < j.

По условию \mathbf{e}_i и \mathbf{e}_j – это i и j-я строки единичной матрицы \mathbf{E} , поэтому вектор-строка $\mathbf{e}_i - \mathbf{e}_j$ будет содержать только два ненулевых элемента, расположенных в столбцах с номерами i и j, т.е.

$$\mathbf{e}_i - \mathbf{e}_i = [\dots 1 \dots -1 \dots].$$

Произведение $(\mathbf{e}_i - \mathbf{e}_j)^{\mathrm{T}} (\mathbf{e}_i - \mathbf{e}_j)$ представляет собой квадратную матрицу размера $n \times n$, все элементы которой равны нулю, кроме четырёх, расположенных на пересечении строк и столбцов с номерами i и j, т.е.

$$(\mathbf{e}_{i} - \mathbf{e}_{j})^{\mathrm{T}} (\mathbf{e}_{i} - \mathbf{e}_{j}) = \begin{bmatrix} \dots \\ 1 \\ \dots \\ -1 \\ \dots \end{bmatrix} [\dots \ 1 \ \dots \ -1 \ \dots] = \begin{bmatrix} \dots & \dots & \dots & \dots & \dots \\ \dots & 1 & \dots & -1 & \dots \\ \dots & \dots & \dots & \dots & \dots \\ \dots & -1 & \dots & 1 & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}.$$

С учётом полученного результата, можем записать матрицу Р:

т.е. матрица ${\bf P}$ – это матрица, полученная из единичной матрицы ${\bf E}$ путём перестановки строк (столбцов) с номерами i и j, поэтому, умножение матрицы ${\bf P}$ на матрицу ${\bf A}$ слева (справа) приводит к перестановке в матрице ${\bf A}$ строк (столбцов) с номерами i и j.

Задача 10 (*)

Пусть
$$\mathbf{i} = [1 \ 1 \ ... \ 1]$$
 и $\mathbf{X}^{\mathsf{T}} = [x_1 \ x_2 \ ... \ x_n].$

Вычислить сумму элементов матрицы $\mathbf{Z} = \mathbf{X} - \frac{1}{n} \mathbf{\iota}^{\mathrm{T}} \mathbf{\iota} \mathbf{X}$.

Решение

Произведение $\mathbf{\iota}^{\mathsf{T}}\mathbf{\iota}$ – это матрица размера $n \times n$, все элементы которой равны 1, поэтому

$$\frac{1}{n} \mathbf{t}^{\mathsf{T}} \mathbf{t} \mathbf{X} = \frac{1}{n} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & \dots & 1 \\ \dots & \dots & \dots & \dots \\ 1 & 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} = \frac{1}{n} \begin{bmatrix} \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i \\ \dots \\ \sum_{i=1}^n x_i \end{bmatrix} = \begin{bmatrix} \overline{X} \\ \overline{X} \\ \dots \\ \overline{X} \end{bmatrix}, \text{ где } \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i .$$

16.11.2017 15:05:04 crp. 1 u3 5

Подставляя полученное выражение в выражение для матрицы ${\bf Z}$, получаем

$$\mathbf{Z} = \mathbf{X} - \frac{1}{n} \mathbf{\iota}^{\mathrm{T}} \mathbf{\iota} \mathbf{X} = \begin{bmatrix} x_{i} - \overline{X} \\ x_{i} - \overline{X} \\ \dots \\ x_{i} - \overline{X} \end{bmatrix}.$$

Суммируя элементы матрицы **Z**, получаем

$$\sum_{i=1}^{n} z_i = \sum_{i=1}^{n} (x_i - \overline{X}) = \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} \overline{X} = \sum_{i=1}^{n} x_i - n \overline{X} = \sum_{i=1}^{n} x_i -$$

Задача 11 (*)

Доказать, что, если \mathbf{a} и \mathbf{b} – вектор-столбцы размера $n \times 1$ и $\mathbf{C} = \mathbf{a}\mathbf{b}^{\mathrm{T}}$, то существует такое число λ , что $\mathbf{C}^2 = \lambda \mathbf{C}$.

Доказательство

Пусть $\mathbf{a} = \| a_i \|$, $\mathbf{b} = \| b_i \|$, тогда $\mathbf{C} = \mathbf{a} \mathbf{b}^{\mathrm{T}} = \| c_{ii} \|$ — матрица размера $n \times n$, где $c_{ij} = a_i b_j$.

Пусть
$$\mathbf{D} = \mathbf{C}^2 = \parallel d_{ij} \parallel$$
, тогда $d_{ij} = \sum_{k=1}^n c_{ik} c_{kj} = \sum_{k=1}^n a_i b_k a_k b_j = a_i b_j \sum_{k=1}^n b_k a_k = c_{ij} \lambda$, где $\lambda = \sum_{k=1}^n b_k a_k$, т.е. $\mathbf{C}^2 = \lambda \mathbf{C}$.

Задача 12 (*)

Пусть $\mathbf{A} = diag(\alpha_1, \alpha_2, ..., \alpha_n)$ и $\mathbf{B} = diag(\beta_1, \beta_2, ..., \beta_n)$, $\mathbf{C}_{n \times n}$ — некоторая матрица и λ — некоторое число.

Доказать, что:

- 1) матрицы λA , A^2 , A + B диагональные;
- 2) AB = BA.
- 3) строки матрицы **AC** это строки матрицы **C**, умноженные на α_1 , α_2 ,..., α_n .
- 4) столбцы матрицы $\mathbf{C}\mathbf{A}$ это столбцы матрицы \mathbf{C} , умноженные на α_1 , α_2 ,..., α_n .

Доказательство

Докажем первое утверждение.

Пусть $\mathbf{A} = \| \ a_{ii} \|$, где $a_{ii} = \alpha_i$ и $a_{ij} = 0$ для всех $i \neq j$.

По определению операции умножения $\lambda \mathbf{A} = \| \lambda a_{ij} \| = \| a'_{ij} \|$, где $a'_{ii} = \lambda \alpha_i$ и $a'_{ij} = 0$ для всех $i \neq j$, т.е. матрица $\lambda \mathbf{A}$ — диагональная.

По определению операции умножения матриц $\mathbf{A}' = \mathbf{A}^2 = \| a'_{ij} \|$, где $a'_{ij} = \sum_{k=1}^n a_{ik} a_{kj}$. В этой сумме a_{ik} и a_{kj} не равны нулю, только если i = k и k = j, а произведение $a_{ik} a_{kj}$ не равно нулю, только если i = k = j, поэтому ненулевыми будут только элементы a'_{ii} , т.е. матрица \mathbf{A}^2 также является диагональной.

Аналогично показывается, что матрица A + B является диагональной.

Докажем второе утверждение.

Пусть
$$\mathbf{A} = \| a_{ij} \|$$
, $\mathbf{B} = \| b_{ij} \|$ и $\mathbf{G} = \mathbf{A}\mathbf{B} = \| g_{ij} \|$, где $g_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.

16.11.2017 15:05:04 crp. 2 u3 5

Так как матрицы **A** и **B** – диагональные, то $a_{ik} = b_{kj} = 0$ при $i \neq k$ и $k \neq j$, поэтому $g_{ij} = 0$ при $i \neq j$ и $g_{ij} = \alpha_i \beta_j$ при i = j.

Пусть $\mathbf{H} = \mathbf{B}\mathbf{A} = \| h_{ij} \|$, где $h_{ij} = \sum_{k=1}^n b_{ik} a_{kj}$, тогда, рассуждая аналогично, получаем, что

 $h_{ii}=0$ при $i\neq j$ и $h_{ii}=eta_ilpha_i$ при i=j .

Таким образом, $g_{ij}=h_{ij}$ для всех значений i и j , т.е. $\mathbf{G}=\mathbf{H}$ или $\mathbf{AB}=\mathbf{BA}$.

Третье и четвёртое утверждения очевидны, если рассматривать матрицы ${\bf A}$ и ${\bf B}$, как матрицы последовательностей элементарных преобразований.

Задача 13 (*)

Пусть \mathbf{A} и \mathbf{B} – *симметричные матрицы*, т.е. $\mathbf{A}^{\mathrm{T}} = \mathbf{A}$ и $\mathbf{B}^{\mathrm{T}} = \mathbf{B}$. Доказать, что:

- 1. $\mathbf{A} + \mathbf{A}^{\mathrm{T}}$, $\mathbf{A}^{\mathrm{T}} \mathbf{A}$, $\mathbf{A} \mathbf{A}^{\mathrm{T}}$, \mathbf{A}^{n} , $\mathbf{A} + \mathbf{B}$ симметричные матрицы.
- 2. AB симметричная матрица, если и только если A и B *перестановочные матрицы*, т.е. AB = BA.

Доказательство

Докажем первое утверждение.

Для каждой из матриц $\mathbf{A} + \mathbf{A}^{\mathrm{T}}$, $\mathbf{A}^{\mathrm{T}} \mathbf{A}$, $\mathbf{A} \mathbf{A}^{\mathrm{T}}$, \mathbf{A}^{n} , $\mathbf{A} + \mathbf{B}$ имеем следующие цепочки равенств:

$$(\mathbf{A} + \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{A} = \mathbf{A} + \mathbf{A}^{\mathrm{T}},$$

$$(\mathbf{A}^{\mathrm{T}} \mathbf{A})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} \mathbf{A},$$

$$(\mathbf{A} \mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = (\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} = \mathbf{A} \mathbf{A}^{\mathrm{T}},$$

$$(\mathbf{A}^{n})^{\mathrm{T}} = (\mathbf{A} \mathbf{A}^{n-1})^{\mathrm{T}} = (\mathbf{A}^{n-1})^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} = (\mathbf{A}^{n-1})^{\mathrm{T}} \mathbf{A} =$$

$$= (\mathbf{A} \mathbf{A}^{n-2})^{\mathrm{T}} \mathbf{A} = (\mathbf{A}^{n-2})^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \mathbf{A} = (\mathbf{A}^{n-2})^{\mathrm{T}} \mathbf{A} \mathbf{A} = (\mathbf{A}^{n-2})^{\mathrm{T}} \mathbf{A}^{2} =$$

$$= \dots =$$

$$= (\mathbf{A})^{\mathrm{T}} \mathbf{A}^{n-1} = \mathbf{A} \mathbf{A}^{n-1} = \mathbf{A}^{n},$$

$$(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}} = \mathbf{A} + \mathbf{B}.$$

Заметим, что первый результат справедлив для любых квадратных матриц, а второй и третий результаты для любых, в том числе, прямоугольных матриц.

Докажем второе утверждение.

Необходимость.

Пусть $\mathbf{A}\mathbf{B}$ – симметричная матрица, тогда $\mathbf{A}\mathbf{B} = (\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{B}\mathbf{A}$, т.е. матрицы \mathbf{A} и \mathbf{B} – перестановочные.

Достаточность.

Пусть \mathbf{A} и \mathbf{B} – перестановочные матрицы, тогда $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = (\mathbf{B}\mathbf{A})^{\mathrm{T}}$ и, т.к. $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}$ и $(\mathbf{B}\mathbf{A})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}$, то $\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}}$, т.е. матрицы \mathbf{A}^{T} и \mathbf{B}^{T} также перестановочные.

Теперь можем записать $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}}\mathbf{B}^{\mathrm{T}} = \mathbf{A}\mathbf{B}$, т.е. матрица $\mathbf{A}\mathbf{B}$ – симметричная.

Задача 14 (*)

Доказать, что, если \mathbf{A} и \mathbf{B} – *ортогональные матрицы*, т.е. $\mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{E}$ и $\mathbf{B}\mathbf{B}^{\mathrm{T}} = \mathbf{E}$, то матрица $\mathbf{A}\mathbf{B}$ также является ортогональной.

Доказательство

$$\mathbf{A}\mathbf{B}(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{A}\mathbf{B}\mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{E}\mathbf{A}^{\mathrm{T}} = \mathbf{A}\mathbf{A}^{\mathrm{T}} = \mathbf{E},$$
$$(\mathbf{A}\mathbf{B})^{\mathrm{T}}\mathbf{A}\mathbf{B} = \mathbf{B}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{B} = \mathbf{B}^{\mathrm{T}}\mathbf{E}\mathbf{B} = \mathbf{B}^{\mathrm{T}}\mathbf{B} = \mathbf{E}.$$

16.11.2017 15:05:04 стр. 3 из 5

Задача 15 (*)

Доказать, что, если ${\bf A}$ и ${\bf B}$ — верхние треугольные матрицы, то матрицы ${\bf C}={\bf A}+{\bf B}$ и ${\bf D}={\bf A}{\bf B}$ также являются верхними треугольными матрицами.

Выразить диагональные элементы матриц C и D через элементы матриц A и B.

Доказательство

Заметим, что если матрицы $\mathbf{A} = \| a_{ij} \|$ и $\mathbf{B} = \| b_{ij} \|$ – верхние треугольные, то $a_{ij} = b_{ij} = 0$ всегда при i > j (если первый индекс строго больше второго).

В матрице $\mathbf{C} = \mathbf{A} + \mathbf{B} = \|c_{ij}\|$ элементы $c_{ij} = a_{ij} + b_{ij}$. Поэтому при i > j элемент $c_{ij} = 0 + 0 = 0$, т.е. матрица \mathbf{C} – верхняя треугольная.

В матрице $\mathbf{D} = \mathbf{A}\mathbf{B} = \| d_{ij} \|$ элементы $d_{ij} = \sum_{k=1}^n a_{ik} b_{kj}$.

Пусть i>j , тогда при k< i $a_{ik}=0$ и при $k\ge i$ $b_{kj}=0$, т.е. при любом значении индекса k произведение $a_{ik}b_{ki}=0$.

Поэтому, если i>j , то элемент $d_{ij}=\sum_{k=1}^n a_{ik}b_{kj}=0$, т.е. матрица ${\bf D}$ — верхняя треугольная.

Найдём диагональные элементы матриц С и D.

Диагональные элементы матрицы \mathbf{C} , очевидно, равны $c_{ii} = a_{ii} + b_{ii}$.

Диагональные элементы матрицы \mathbf{D} равны $d_{ii} = \sum_{k=1}^n a_{ik} b_{ki}$, где $a_{ik} = 0$ при k < i и $b_{ki} = 0$ при k > i, поэтому $d_{ii} = a_{ii} b_{ii}$.

Задача 16 (*)

Доказать, что, если \mathbf{A} и \mathbf{B} — *стохастические матрицы*, т.е. элементы этих матриц неотрицательные и сумма элементов любой строки (и/или столбца) равна единице, то матрица $\mathbf{A}\mathbf{B}$ также является стохастической.

Доказательство

Матрицы $\mathbf{A} = \| \ a_{ij} \| \| \mathbf{B} = \| \ b_{pq} \|$, где $i = \overline{1,r}$, $j = \overline{1,s}$, $p = \overline{1,s}$ и $q = \overline{1,t}$ – стохастические,

это значит, что для любых значений индексов i и p справедливо $\sum_{j=1}^{s} a_{ij} = 1$ и $\sum_{q=1}^{t} b_{pq} = 1$.

Пусть $\mathbf{C} = \mathbf{A}\mathbf{B} = \parallel c_{ij} \parallel$, где $c_{ij} = \sum_{k=1}^s a_{ik} b_{kj}$, тогда сумма элементов i -й строки матрицы \mathbf{C}

равна
$$\sum_{j=1}^{t} c_{ij} = \sum_{j=1}^{t} \sum_{k=1}^{s} a_{ik} b_{kj} = \sum_{k=1}^{s} \sum_{j=1}^{t} a_{ik} b_{kj} = \sum_{k=1}^{s} a_{ik} \sum_{j=1}^{t} b_{kj} = 1$$
, т.е. матрица **AB** – стохастическая.

Задача 17 (*)

Вычислить $tr(\mathbf{A}^{\mathrm{T}}\mathbf{A})$, где \mathbf{A} – произвольная матрица.

Решение

Пусть матрица \mathbf{A} имеет размер $m \times n$, тогда матрица $\mathbf{B} = \mathbf{A}^{\mathrm{T}} \mathbf{A} = \parallel b_{ii} \parallel$ имеет размер $n \times n$,

и её элементы $b_{ij} = \sum_{k=1}^{m} a_{ki} a_{kj}$ (обратите внимание на индексы). Тогда можем записать

$$tr(\mathbf{A}^{\mathrm{T}}\mathbf{A}) = tr(\mathbf{B}) = \sum_{i=1}^{n} b_{ij} = \sum_{i=1}^{n} \sum_{i=1}^{m} a_{ij} a_{ij} = \sum_{i=1}^{m} \sum_{i=1}^{n} a_{ij}^{2},$$

т.е. след матрицы $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ равен сумме квадратов элементов исходной матрицы \mathbf{A} .

16.11.2017 15:05:04

Задача 18 (*)

Вычислить $tr(\mathbf{A}^m)$, где \mathbf{A} – треугольная матрица.

Решение

Повторяя ход рассуждений решения предыдущей задачи, получаем, что i-й диагональный элемент матрицы \mathbf{A}^2 равен a_{ii}^2 . Продолжая рассуждения, получаем, что в матрице \mathbf{A}^m i-й диагональный элемент равен a_{ii}^m , поэтому

$$tr(\mathbf{A}^m) = \sum_{i=1}^n a_{ii}^m.$$

Задача 19 (*)

Доказать или опровергнуть утверждение: если $\mathbf{A}^2 = \mathbf{O}$, то $\mathbf{A} = \mathbf{O}$.

Решение

Утверждение задачи неверно, чтобы его опровергнуть, достаточно привести контрпример:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \ \mathbf{A}^2 = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = \mathbf{O}.$$

16.11.2017 15:05:04