- Our ordinary heaps are called *binary* heaps. They are inefficient for UNION.
- These binomial heaps are *mergeable*.
- In order to get compact slides, we will occasionally refer to a binomial heap as *binheap*.

• These are *not* almost complete binary trees; so we cannot use arrays.

- Operations supported:
 - MAKEHEAP() creates an empty binheap;
 - INSERT(H, x) inserts node x into binheap H (x is pre-filled with key and other fields);
 - MINIMUM(H) returns pointer to node with minimum key value;
 - EXTRACTMIN(H) deletes the min-key-node and returns pointer to it (to free it);
 - UNION(H_1 , H_2) returns new binheap containing all nodes of H_1 , H_2 . The old binheaps H_1 , H_2 are destroyed.

- Binomial Tree B_k is an *ordered* tree:
 - B_0 is the tree with a single node;
 - B_k consists of two B_{k-1} binomial trees linked together with the root of one being the leftmost child of the root of the other.

- 1. It has 2^k nodes
- 2. Its height is *k*
- 3. It has exactly $C(k, i) = \binom{k}{i}$ nodes at depth i for i = 0, 1, ..., k.
- 4. Its root has degree k, the largest among all nodes; if the children are numbered 0, 1, ..., k 1 from the right, then child i is the root of a subtree B_i .

• *Proof*: By induction on *k*.

Base Case: Consider *B*₀ ...

Ind Step: Assume true for B_{k-1}

- 1. Num nodes in $B_k = 2^{k-1} + 2^{k-1}$ (why?) = ...
- 2. Height of $B_k = 1 + ... \text{ (why?)} =$
- 3. Let D(k, i) = # nodes in B_k at depth i.

$$D(k,i) = D(k-1,i) + D(k-1,i-1) \text{ (why?)}$$

$$= {\binom{k-1}{i}} + {\binom{k-1}{i-1}} = {\binom{k}{i}}$$

4. By Ind. Hyp., the two highest degree nodes in the component B_{k-1} trees were ... the degree of one of them has increased ...

Focus on the B_{k-1} component whose root is the root of B_k .

By Ind. Hyp., its children 0, 1, ..., k - 2 are roots of subtrees $B_0, ..., B_{k-2}$.

These are also children of the root of B_k with identical numbers.

The only new child of that root is the leftmost one, numbered k-1, and by definition, it is ...

- *Corollary*: For an *n*-node binomial tree, the maximum degree of any node is lg *n*.
- The name *binomial* heap comes from property 3 above (binomial coefficients).

- A (min) *Binomial Heap H* is a set of binomial trees such that:
 - 1. Each binomial tree in H is (min) heap-ordered, i.e., the key of any node is \geq the key of its parent.
 - 2. There is at most one binomial tree in *H* whose root has a given degree.
- Hence the root of each binomial tree in *H* contains the minimum key in that tree.

• An n-node binomial heap consists of at most $\lfloor \lg n \rfloor + 1$ binomial trees. Why?...

... because each component binomial tree contains 2^j nodes for some j and there is only one binary representation of the number n; that representation uses $|\lg n| + 1$ bits.

- Let there be 11 nodes, i.e., n = 11.
- In binary 11 = 1011, i.e., $11 = 2^3 + 2^1 + 2^0$
- Then the structure must be...

• And with some keys...

• The heap *H* is a *set* of binomial trees. In the implementation,

we link the roots of the binomial trees in order of increasing degree.

This linked list is called the *root list*.

head[H] points to the head of the list.

Note: the roots are *NOT* ordered by key.

- To represent a tree with variable number of children, use the *child+sibling* strategy.
- Each node has the fields:
 - parent pointer
 - key value
 - degree of node
 - child pointer
 - sibling pointer

• MAKEBINOMIALHEAP (create an empty binomial heap) is easy. It returns an object H of the appropriate type such that head[H] = NIL. $\Theta(1)$

• BINOMIALHEAPMINIMUM(H) searches the roots of the binomial trees in H.

Since they are not ordered by key, all may have to be scanned.

There at most $\lfloor \lg n \rfloor + 1$ roots. Thus, $O(\lg n)$

BINOMIALHEAPMINIMUM(H)

```
y \leftarrow \text{NIL}
x \leftarrow \text{head}[H]
 min \leftarrow \infty /* assume: no key with value \infty */
 while x \neq NIL do
       if key[x] < min then
             min \leftarrow key[x]
             y \leftarrow x
       x \leftarrow sib[x]
 return y
```

• BINOMIALLINK(y, z) makes y (actually the node y points to) the leftmost child of z (actually the node z points to).

i.e., y (...) is the new head of the linked list of the children of z (...).

If y, z were both ptrs to roots of B_k trees, this can result in z becoming a ptr to the root of a B_{k+1} tree.

• BINOMIALHEAPMERGE(H_1 , H_2) merges the root lists of binomial heaps H_1 and H_2 into one linked list sorted by degree in monotonically increasing order.

This is basically the MERGE operation we saw in MERGESORT.

The result may not be a binomial heap. (Why?)

• BINOMIALHEAPUNION uses
BINOMIALLINK, BINOMIALHEAPMERGE ...

BINOMIALHEAPUNION (H_1, H_2)

- 1 $H \leftarrow MAKEBINOMIALHEAP()$
- 2 $head[H] \leftarrow BINOMIALHEAPMERGE(H_1, H_2)$
- \triangleright free H_1, H_2
- 3 **if** head[H] = NIL **then return** H
- 4 $prev-x \leftarrow NIL$
- 5 $x \leftarrow head[H]$
- 6 $next-x \leftarrow sibling[x]$


```
7
    while next-x \neq NIL do
8
         if (d[x] \neq d[next - x]) or
              (sibling[next-x] \neq NIL and
                   degree[sibling[next-x]] = degree[x]) \triangleright *** Cases 1,2
10
11
         then
12
              prev-x \leftarrow x
13
              x \leftarrow next-x
14
         else if key[x] \le key[next-x] > *** Case 3 else Case 4
15
              then
16
                   sibling[x] \leftarrow sibling[next-x]
17
                   BINOMIALLINK(next-x,x)
18
              else if prev-x = NIL
19
                        then head[H] \leftarrow next-x
                        else sibling[prev-x] \leftarrow next-x
20
21
                   BINOMIALLINK(x,next-x)
22
                   x \leftarrow next-x
23
         next-x \leftarrow sibling[x]
24 return H
```


Note: *x* does not change.

• Let H_1 , H_2 have n_1 , n_2 nodes respectively. Let $n = n_1 + n_2$.

Number of roots in $H_1 \leq \lfloor \lg n_1 \rfloor + 1$. Number of roots in $H_2 \leq \lfloor \lg n_2 \rfloor + 1$.

Right after the call of BINOMIALHEAPMERGE: Number of roots in $H \leq \lfloor \lg n_1 \rfloor + \lfloor \lg n_2 \rfloor + 2$ $\leq 2 \lfloor \lg n \rfloor + 2$

So, BINOMIALHEAPMERGE costs time $O(\lg n)$

Each while-loop iteration takes O(1) time (why?)

Number of while-loop iterations
$$\leq |\lg n_1| + |\lg n_2| + 2$$
 (why?)

...

Thus, the running time of BINOMIALHEAPUNION(H_1 , H_2) is $O(\lg n)$

• BINOMIALHEAPINSERT(H, x) creates a one-node binomial heap H' containing x and then calls BINOMIALHEAPUNION(H, H'). $O(\lg n)$

- BINOMIALHEAPEXTRACTMIN(H):
 - finds the root x with the minimum key in the root-list of H and removes that subtree from H.
 - It next creates a new binomial heap whose root list is the *reverse of the children of x* (smaller trees need to come first in the root list).
 - These two binomial heaps are then unioned.

Each step takes $O(\lg n)$ time. So $O(\lg n)$.

