Cheap Orthogonal Constraints in Neural Networks: A Simple Parametrization of the Orthogonal and Unitary Group

Mario Lezcano-Casado

Mathematical Institute

David Martínez-Rubio
Department of Computer Science

June 12, 2019

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

Motivation:

▶ Orthogonal matrices have eigenvalues with norm 1.

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

- ▶ Orthogonal matrices have eigenvalues with norm 1.
 - Convenient for exploding and vanishing gradient problems within RNNs.
 - They constitute a implicit regularization method.

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

- Orthogonal matrices have eigenvalues with norm 1.
 - Convenient for exploding and vanishing gradient problems within RNNS.
 - They constitute a implicit regularization method.
- They are the basic building block for matrix factorizations like SVD or QR.

We study the optimization of neural networks with orthogonal constraints

$$B \in \mathbb{R}^{n \times n}, \quad B^{\mathsf{T}}B = \mathbf{I}$$

- ▶ Orthogonal matrices have eigenvalues with norm 1.
 - Convenient for exploding and vanishing gradient problems within RNNs.
 - They constitute a implicit regularization method.
- They are the basic building block for matrix factorizations like SVD or QR.
 - ▶ They allow for the implementation of factorized linear layers.

```
\min_{B \in \mathrm{SO}(n)} f(B) \quad \text{ is equivalent to solving } \min_{A \in \mathrm{Skew}(n)} f(\exp{(A)})
```


► The matrix exponential maps skew-symmetric matrices to orthogonal matrices.

- The matrix exponential maps skew-symmetric matrices to orthogonal matrices.
- Compute the exponential to optimize over the unconstrained space of skew symmetric matrices.

```
is equivalent to solving \min_{A \in \operatorname{Skew}(n)}
                                                                            f(\exp(A))
constrained problem.
                                                               unconstrained problem.
```

- The matrix exponential maps skew-symmetric matrices to orthogonal matrices.
- Compute the exponential to optimize over the unconstrained space of skew symmetric matrices.
 - No orthogonality needs to be enforced.

```
\min_{B\in \mathrm{SO}(n)} f(B) is equivalent to solving \min_{A\in \mathrm{Skew}(n)} f(\exp{(A)}) unconstrained problem.
```

- The matrix exponential maps skew-symmetric matrices to orthogonal matrices.
- Compute the exponential to optimize over the unconstrained space of skew symmetric matrices.
 - No orthogonality needs to be enforced.
 - It has negligible overhead in your neural network.

```
\min_{B\in \mathrm{SO}(n)} f(B) is equivalent to solving \min_{A\in \mathrm{Skew}(n)} f(\exp{(A)}) unconstrained problem.
```

- ► The matrix exponential maps skew-symmetric matrices to orthogonal matrices.
- Compute the exponential to optimize over the unconstrained space of skew symmetric matrices.
 - No orthogonality needs to be enforced.
 - It has negligible overhead in your neural network.
 - ► General purpose optimizers can be used (SGD, ADAM, ADAGRAD, ...).

```
\min_{B\in \mathrm{SO}(n)} f(B) is equivalent to solving \min_{A\in \mathrm{Skew}(n)} f(\exp{(A)}) unconstrained problem.
```

- ► The matrix exponential maps skew-symmetric matrices to orthogonal matrices.
- Compute the exponential to optimize over the unconstrained space of skew symmetric matrices.
 - No orthogonality needs to be enforced.
 - It has negligible overhead in your neural network.
 - ► General purpose optimizers can be used (SGD, ADAM, ADAGRAD, ...).
 - ▶ No new extremal points are created in the main parametrization region.

Cheap Orthogonal Constraints in Neural Networks

Cross entropy in the copying problem for L=2000.

The copying problem uses synthetic data of the form:

	Random numbers	Wait for L steps	Recall
Input:	14221		:
Output:			14221

Cheap Orthogonal Constraints in Neural Networks

Model	N	# PARAM	VALID.	TEST
EXPRNN	224	$\approx 83K$ $\approx 135K$ $\approx 200K$	5.34	5.30
EXPRNN	322		4.42	4.38
EXPRNN	425		5.52	5.48
SCORNN	224	$\approx 83K$ $\approx 135K$ $\approx 200K$	9.26	8.50
SCORNN	322		8.48	7.82
SCORNN	425		7.97	7.36
LSTM	84	$\approx 83K$ $\approx 135K$ $\approx 200K$	15.42	14.30
LSTM	120		13.93	12.95
LSTM	158		13.66	12.62
EURNN	158	$\approx 83K$ $\approx 135K$ $\approx 200K$	15.57	18.51
EURNN	256		15.90	15.31
EURNN	378		16.00	15.15
RGD	128	$\approx 83K$ $\approx 135K$ $\approx 200K$	15.07	14.58
RGD	192		15.10	14.50
RGD	256		14.96	14.69

RNNs trained on a speech prediction task on the TIMIT dataset.

It shows the best validation MSE accuracy.