CS 112 - Hierarchical Model Representation

Animations

- Need efficient representation of
 - Model geometry
 - Motion
 - Interactive rendering

Inherent relationship of parts

- Arm Simple model
- Shoulder moves all the three parts
- Elbow moves everything below it
- Inherent hierarchical relationship

Inherent relationship of parts

Dependency

- Any transformation applied to the parent will be undergone by the children
 - Children must be placed appropriately with respect to the parent
- Children may have their own independent movement
 - Not transmitted to the parent

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent

- Transformation with respect to the parent
- Transformation to place it appropriately with respect to the parent

 Assume each part is defined with origin at center

- Assume each part is defined with origin at center
- $\blacksquare R_{w}$

- Assume each part is defined with origin at center
- $\blacksquare R_{w}$
- lacksquare T_{we}

- Assume each part is defined with origin at center
- \blacksquare R_w Wrist
- T_{we} Wrist
- R_F Elbow and Wrist

- Assume each part is defined with origin at center
- \blacksquare R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist

- Assume each part is defined with origin at center
- \blacksquare R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist
- R_s Shoulder, elbow and wrist

- Assume each part is defined with origin at center
- \blacksquare R_w Wrist
- T_{we} Wrist
- R_e Elbow and Wrist
- T_{es} Elbow and Wrist
- R_s Shoulder, elbow and wrist

Wrist: R_sT_{es}R_eT_{we}R_w

Elbow: R_sT_{es}R_e

Shoulder: R_s

- Depth first traversal of the tree
- Push matrix when entering a node
- Pop matrix when leaving a node
- Render the node as you encounter it
- Example

$R_s T_{es} R_e T_{we} R_w$
$R_sT_{es}R_e$
R_s

$R_sT_{es}R_e$	
R_s	

4

$R_sT_{ts}R_t$
R_s

4

Data Structure

 R_s

4

Representing Motion

- Keyframes
 - Generate the transformations for key postures
 - Done manually
 - Interpolate everything in between
 - Done automatically