List of Theorems for Mathematics for Informatics

Contents

1	The set of natural numbers is well-ordered.	2
2	Theorem of existence of the quotient and the remainder in the Euclidean division between integers (aka Division Algorithm).	2
3	Existence and Uniqueness of the Greatest Common Divisor.	3
4	Existence and Uniqueness of the Least Common Multiple.	4
5	Fundamental Theorem of Arithmetic.	6
6	The Chinese Theorem of the remainder.	7
7	Fermat's Little Theorem	8
8	Euler-Fermat's Theorem	9
9	Equivalence of the notions of Path-connectedness and Walk-connectedness in simple graphs	10
10	A graph $G=(V,E)$ is 2-connected if and only if, for every two vertices v,w in G,v different from w , there exists a cycle in G containing v and w .	10
11	Theorem of characterization of trees.	12
12	Theorem of characterization of finite trees (with Euler formula).	13
13	Every connected finite graph has a spanning tree.	14

1 The set of natural numbers is well-ordered.

Theorem 1. \mathbb{N} is well-ordered.

Proof. Let A be a subset of \mathbb{N} with no minimum (we need to prove that $A = \emptyset$).

 $0 \notin A$, because 0 is the minimum of \mathbb{N} .

Set $B = \mathbb{N} \setminus A$, then $B \neq \emptyset$ and $0 \in B$. Let $m \in B$ s.t. $m < x \ \forall x \in A$.

Then $m+1 \in B$. Indeed assume by contradiction that $m+1 \in A$, then $m+1 \le x \quad \forall x \in A$, then m+1 would be the minimum of A, but A has no minimum by assumption.

Then by the fourth Peano's axiom $B = \mathbb{N}$ and $A = \emptyset$, therefore \mathbb{N} satisfies the hypothesis of the definition of well ordered set.

Theorem of existence of the quotient and the remainder in the Euclidean division between integers (aka Division Algorithm).

Theorem 2. $\forall n, m \in \mathbb{Z}, m \neq 0, \exists! q \in \mathbb{Z}, \exists! r \in \mathbb{N}, 0 \leq r < |m|, s.t.$:

$$n = mq + r$$

q is called quotient and r = rem(n,m) is called remainder.

Proof. (existence)

• Assume $n \ge 0$, m > 0. By induction on n:

$$\mathbb{P}(n) = \{\exists ! \ q, \ \exists ! \ r \ 0 < r < |m| \ \text{s.t.} \ n = mq + r\}$$

 $\mathbb{P}(0)$ is true, just take q = r = 0. Assume that $\exists \tilde{n} \geq 0$ s.t. $\mathbb{P}(\tilde{n})$ is true for $0 \leq n < \tilde{n}$. If $\tilde{n} < m$ we set q = 0 and $r = \tilde{n}$, done.

Else if $\tilde{n} \ge m$ we consider the number $\tilde{n} - m$, which is non-negative and less than \tilde{n} , then by induction hypothesis:

$$\implies \exists ! \ \tilde{q}, \ \tilde{r} \ \text{s.t.} \ \tilde{n} - m = m\tilde{q} + \tilde{r} \implies \tilde{n} = m(\tilde{q} + 1) + \tilde{r}$$

Done.

• Assume n < 0, m > 0.

$$\exists ! \ \tilde{q}, \tilde{r} \ \text{s.t.} \ (-n) = m\tilde{q} + \tilde{r}$$

If $\tilde{r} = 0$ then $n = (-\tilde{q})m$, done. Else if $\tilde{r} > 0$:

$$\implies n = -m\tilde{q} - \tilde{r} + m - m = (-\tilde{q} - 1)m + (m - \tilde{r})$$

Pick $q = (-\tilde{q} - 1)$, since $-\tilde{q} - 1 \in \mathbb{Z}$; and $r = m - \tilde{r}$, since $0 \le m - \tilde{r} < m$, done.

• Assume m < 0

$$n = (-m)q + r = (-q)m + r$$

We already proved that $\exists !q,r$ s.t. n = q|m| + r. Pick -q, done.

(uniqueness)

Assume by contradiction that:

$$\exists q, q' \in \mathbb{Z} \text{ and } \exists r, r' \in [0, |m|) \text{ s.t. } n = mq + r = mq' + r'$$

- If $r = r' \implies m(q q') = 0 \implies q = q'$
- If r' > r then $r' r = m(q q') \implies 0 \le m(q q') < m \stackrel{q,q' \text{ integers}}{\Longrightarrow} q = q'$. Contradiction, r' r must be zero but we assumed r' > r. So r' > r is impossible.

• If r' < r same thing, also impossible.

Therefore q and r are indeed unique.

3 Existence and Uniqueness of the Greatest Common Divisor.

Theorem 3. Let $n, m \in \mathbb{Z}$, not both zero. Then gcd(n,m) exists finite and is unique. As a byproduct of the proof:

$$\exists x, y \in \mathbb{Z} \text{ s.t. } \gcd(n, m) = xn + ym$$

Proof. (uniqueness)

Assume that M and M' are both greatest common divisors of n and m. By the definition of gcd:

- $(M|n \text{ and } M|m) \implies M|M'$
- $(M'|n \text{ and } M'|m) \Longrightarrow M'|M$

Then, since gcd > 0, M = M'. Therefore, the gcd(n, m) is unique.

(existence)

Let $S = \{s \in \mathbb{Z}, s > 0 \text{ s.t. } s = xn + ym, x, y \in \mathbb{Z}\}$. There is at least the element $n^2 + m^2$, since they are not both zero. Therefore, $S \neq \emptyset$.

$$S \neq \emptyset$$
 $S \subseteq \mathbb{N} \implies \exists d = min(S)$

Since $d \in S$, $\exists \bar{x}, \bar{y} \in \mathbb{Z}$ s.t. $d = \bar{x}n + \bar{y}m$. It is our candidate for gcd.

We need to prove that d|n and d|m.

By Euclidean division, $\exists !q, r \quad s.t. \quad n = qd + r$. If r = 0, done. Else:

$$r = n - qd = n - q(\tilde{x}n + \tilde{y}m) = n(1 + q\tilde{x}) - \tilde{y}qm$$

In particular, $n(1+q\tilde{x}) - \tilde{y}qm \in S$. Then:

$$d = \min(S) \implies r > d$$

Contradiction, since we assumed that r < d. Then r = 0 and n = qd, therefore d|n is true. Same thing for d|m.

Now we need to prove that $\forall c$ s.t. c|n and c|m we have c|d. Take a common divisor c of n,m. Then:

$$\exists n, k \in \mathbb{Z} \text{ s.t. } m = ch \text{ and } n = ck$$

$$d = \tilde{x}n + \tilde{y}m = \tilde{x}ch + \tilde{y}kc = (\tilde{x}h + \tilde{y}k)c \implies c|d$$

Then $d = \tilde{x}n + \tilde{y}m$ fits the definition of gcd(n, m).

4 Existence and Uniqueness of the Least Common Multiple.

Theorem 4. Let $n, m \in \mathbb{N}$, not both zero. Then lcm(n, m) exists finite and is unique, and:

$$lcm(n,m) = \frac{n * m}{\gcd(n,m)}$$

Proof. (uniqueness)

Assume that M and M' are both lcm(n,m). By the definition of lcm:

- $(n|M \text{ and } m|M) \implies M'|M$
- $(n|M' \text{ and } m|M') \Longrightarrow M|M'$

Then, since $lcm(n, m) \ge 0$, M = M'.

(existence)

By definition, M = lcm(n, m) if:

- 1. n|M and m|M
- 2. $\forall c \ s.t. \ n|c \ and \ m|c \ then \ M|c$

(1.)

Notice that:

$$\exists m', n' \text{ s.t. } m = m' \gcd(n, m) \text{ and } n = n' \gcd(n, m)$$

Take our candidate for lcm(n,m) M as:

$$M = \frac{nm}{\gcd(n,m)} = \frac{n'm'\gcd(n,m)\gcd(n,m)}{\gcd(n,m)} = n'm'\gcd(n,m) = nm' = n'm$$

$$(M = nm' = n'm) \stackrel{\text{by def}}{\Longrightarrow} (n|M \text{ and } m|M)$$

We proved that M is a multiple of both n and m.

(2.)

Take any $c \in \mathbb{Z}$ s.t. $n \mid c$ and $m \mid c$ (means that $\exists k \in \mathbb{Z}$ s.t. c = mk and $\exists h \in \mathbb{Z}$ s.t. c = nh). By transitivity:

$$gcd(n,m)|c$$
, which means $\exists c' \in \mathbb{Z} \ s.t. \ c = c' gcd(n,m)$

We want to prove that n'm'|c'.

$$c = nh = hn' \gcd(n, m) \implies c' = hn' \implies n'|c'$$

analoguely, $m'|c'$

By definition of gcd:

$$\exists x, y \in \mathbb{Z} \text{ s.t. } \gcd(n, m) = xn + ym = xn' \gcd(n, m) + ym' \gcd(n, m)$$
$$\implies xn' + ym' = 1 \implies \gcd(n', m') = 1 \implies n', m' \text{ are coprime}$$

Since n'|c', m'|c' and n', m' are coprime $\implies n'm'|c'$. Then:

$$n'm'|c' \implies n'm'\gcd(n,m)|c'\gcd(n,m) \implies n'm|c$$

$$\implies \frac{nm}{\gcd(n,m)}|c \implies M|c$$

Then M fits the definition of lcm(n, m).

5 Fundamental Theorem of Arithmetic.

Theorem 5. Any natural number $n \ge 2$ can be written as a product of prime natural numbers, and this combination is unique up to rearrangement.

This means that:

if
$$n = p_1 * p_2 * ... * p_s = q_1 * ... * q_k$$
 with p_i, q_i prime > 0 then:

$$s = k$$
 and there is a bijection $\phi : \{1,...,s\} \rightarrow \{1,...,k\}$ s.t. $\forall i, \exists j \text{ s.t. } p_i = q_{\phi(j)}$

Proof. (existence) By induction on *n*.

$$\mathbb{P}(n) = "\exists p_1,...,p_m \text{ primes} > 0 \text{ s.t. } n = \prod_{i=1}^m p_i "$$

 $\mathbb{P}(2)$: true since 2 is prime.

Assume that $\exists \bar{k}$ s.t. $\mathbb{P}(k)$ is true $\forall k, 2 \leq k < \bar{k}$, prove that $\mathbb{P}(\bar{k})$ is true:

If \bar{k} is prime, $\mathbb{P}(\bar{k})$ is true, done.

If \bar{k} is not prime, $\exists d, h \geq 2$ s.t. $\bar{k} = dh$.

Since $d, h < \bar{k}$, by induction hypothesis $\exists q_1, ..., q_k$ and $\exists p_1, ..., p_r$ s.t. $d = q_1 * ... * q_k$, $h = p_1 * ... * p_r$ and $\bar{k} = q_1 * ... * q_k * p_1 * ... * p_r$, which is a product of prime numbers. (uniqueness)

Assume that

$$n = \prod_{j=1}^{r} p_j = \prod_{i=1}^{s} q_i$$
 with $r, s \ge 1$ and p_j, q_i primes

We assume that $r \le s$. We prove uniqueness by induction on r:

$$r = 1 : n = p_1 \implies p_1 \text{ prime} \implies \begin{cases} s = 1 \text{ (otherwise } n \text{ would not be prime)} \\ q_1 = p_1 \end{cases}$$

Assume uniqueness holds true for any r, $1 \le r \le \bar{r}$. Prove that it holds for \bar{r} :

$$p_{\bar{r}} \left| \prod_{j=1}^{s} q_j \stackrel{q_j \ prime}{\Longrightarrow} \exists \ 1 \leq a \leq s \ \ s.t. \ \ p_r = q_a \right|$$

Then:

$$p_1 * ... * p_{\bar{r}} = q_1 * ... * q_a * ... * q_s$$

$$\prod_{i=1}^{\bar{r}-1} p_i = \prod_{j=1}^{a-1} q_j * \prod_{j=a+1}^{s} q_j$$

And this is true by induction hypothesis. Therefore, it is unique $\forall r \in \mathbb{N}$.

6 The Chinese Theorem of the remainder.

Theorem 6. Given 4 integers a,b,n,m; the system of congruences:

$$(*) \begin{cases} x \equiv a \mod n \\ x \equiv b \mod m \end{cases}$$

Admits solutions if and only if gcd(m,n)|(b-a).

If c is a solution, then every element of $[c]_{lcm(n,m)}$ is a solution, and there is no other solution.

Proof. (constructive proof)

(existence)

We need to prove:

existence
$$\iff$$
 gcd $(m,n)|(b-a)$

 (\Longrightarrow)

We assume that a solution exists and prove that gcd(m, n)|(b - a).

By hypothesis, $\exists c \in \mathbb{Z}$ solution of (*), i.e.:

$$\exists h, k \text{ s.t. } c = a + hn = b + km$$

Then $b - a = hn - km = (hx - kw) \gcd(n, m), x, w \in \mathbb{Z}$.

$$\implies \gcd(n,m)|(b-a)|$$

 (\Leftarrow)

We assume that gcd(m,n)|(b-a) and prove that solution exists.

By hypothesis, $\exists k \ s.t. \ b-a=k\gcd(m,n)=k(m\beta+n\alpha)$. Then:

$$b - a = \alpha kn + \beta km$$

$$c = b - \beta km = a + \alpha kn$$

c is a solution, since $(b - \beta km) \mod m = b$ and $(a + \alpha kn) \mod n = a$ (uniqueness)

Let M = lcm(n, m). We want to prove that if c is a solution, then $\forall q \in \mathbb{Z}$, c + qM is also a solution.

Assume that c and c' are two solutions.

$$c = a + hn = b + km$$

 $c' = a + h'n = b + k'm$ for some $k, k', h, h' \in \mathbb{Z}$

$$c - c' = \begin{cases} (h - h')n \implies n | (c - c') \\ (k - k')m \implies m | (c - c') \end{cases}$$

By the definition of lcm, this implies:

$$\implies M|(c-c') \iff c-c' = \gamma M \iff c = c' + \gamma M$$

Then c and c' are in the same equivalence class, and no other solution exists.

7 Fermat's Little Theorem

Theorem 7. Let n be a prime (positive) number, let $a \in \mathbb{Z}$ s.t. gcd(a, n) = 1. Then:

$$a^{n-1} \equiv 1 \mod n$$

Proof. Firstly, we need to prove that if p is prime, $\forall a \in \mathbb{N}$ $a^n \equiv a \mod n$. By induction: a = 0: true, since $0 \equiv 0 \mod n$ is true. Assume that it's true for $\bar{n} \in \mathbb{N}$, prove for $\bar{n} + 1$:

$$(a+1)^n = \sum_{k=0}^n \binom{n}{k} a^k = \sum_{k=1}^{n-1} \binom{n}{k} a^k + a^n + 1$$

Since $n \mid \binom{n}{k}$ if *n* prime and $1 \le k < n$:

$$\operatorname{rem}\left(\sum_{k=1}^{n} \binom{n}{k} a^{k}, n\right) = 0$$

By induction hypothesis:

$$rem(a^n, n) = a$$

Then:

$$\sum_{k=1}^{n-1} \binom{n}{k} a^k + a^n + 1 \equiv a + 1 \mod n \implies (a+1)^n \equiv a + 1 \mod n$$

Therefore $a^n \equiv a \mod n$ with n prime is true $\forall a \in N$.

Then we prove $a^{n-1} \equiv 1 \mod n$:

a = 0: not concerned.

a = 1: true.

a > 1:

$$\gcd(a,n) = 1 \implies a \text{ cancellable mod } n \implies a^n \equiv a \mod n \implies a^{n-1} \equiv 1 \mod n$$

a < 0:

Set b = -a, then:

$$gcd(b,n) = gcd(a,n) = 1 \implies b$$
 cancellable mod n

Then:

$$b^n \equiv b \bmod n \implies b^{n-1} \equiv 1 \bmod n$$

8 Euler-Fermat's Theorem

Theorem 8. Let $n \in \mathbb{N}, n \geq 2$, $a \in \mathbb{Z}$ s.t. gcd(n, a) = 1. Then:

$$a^{\varphi(n)} \equiv 1 \mod n$$

Proof. Let us define the function $L_a: (\mathbb{Z}/n\mathbb{Z})^* \to (\mathbb{Z}/n\mathbb{Z})^*$ as:

$$L_a(x) = ax \bmod n$$

 L_a is indeed well defined. Note that if a and x are invertible mod n (they are), also their product is.

I claim that L_a is a bijection. Indeed, take $[x]_n, [y]_n \in (\mathbb{Z}/n\mathbb{Z})^*$ s.t. $L_a(x) = L_a(y)$. Then:

$$a^{-1}ax \equiv a^{-1}ay \mod n \implies x \equiv y \mod n \implies [x]_n = [y]_n \implies L_a$$
 injective

Take some $[z]_n \in (\mathbb{Z}/n\mathbb{Z})^*$. We want to prove that:

$$\exists x \in (\mathbb{Z}/n\mathbb{Z})^* \ s.t. \ ax \equiv z \bmod n$$

Take $x \equiv a^{-1}z$, done.

 L_a is a bijection between elements of $(\mathbb{Z}/n\mathbb{Z})^*$, therefore it is just a reshuffling of elements of the set. $\iff \exists$ bijection I from $\{1,...,\varphi(n)\}$ to itself s.t. if b_i is the i^{th} element of $(\mathbb{Z}/n\mathbb{Z})^*$ then $L_a(b_i) = b_{I(i)}$.

$$\begin{split} \prod_{j=1}^{\varphi(n)} L_a(b_j) &= L_a(b1) * L_a(b_2) * \dots * L_a(b_{\varphi(n)}) = \\ &= ab_1 * ab_2 * \dots * ab_{\varphi(n)} \\ &= b_{I(1)} * b_{I(2)} * \dots * b_{I(\varphi(n))} \end{split}$$

Then we have:

$$a^{\varphi(n)}(b_1*...*b_{\varphi(n)}) \equiv b_1*...*b_{\varphi(n)} \bmod n$$

 $b \in (\mathbb{Z}/n\mathbb{Z})^* \implies b \ \ cancellable \ \bmod n$

Then:

$$a^{\varphi(n)} \equiv 1 \mod n$$

9 Equivalence of the notions of Path-connectedness and Walk-connectedness in simple graphs

Theorem 9. Let G = (V, E) be a graph, let $v, w \in V$.

v and w are path-connected if and only if they are walk-connected.

Proof. (\Longrightarrow)

True since a path is also a walk.

 (\Leftarrow)

Take $P = \{p : \text{walks containing } v \text{ and } w\}$. We know by hypothesis that $P \neq \emptyset$.

Take $A = \{k \in \mathbb{N} : k = \text{len}(p), p \in P\}.$

$$A \subseteq \mathbb{N}, A \neq \emptyset \implies A$$
 is well-ordered

$$\implies \exists m = min(A) \implies \exists p_0 \in P \text{ s.t. } len(p) = m$$

We need to prove that p_0 is a path.

By contradiction, assume that $p_o = \{v_0 = v, ..., v_m = w\}$ is not a path. This means that there exist $i, j \ i < j$ s.t. $v_i = v_j$. Now define $\bar{p} = \{v_0, ..., v_i = v_j, v_{j+1}, ..., v_m\}, \ \bar{p} \in P$.

$$\operatorname{len}(\bar{p}) < (\operatorname{len}(p) = m)$$

Contradiction, p_0 is not the minimum walk. This means that such i and j do not exist, thus p_0 is a path.

10 A graph G=(V,E) is 2-connected if and only if, for every two vertices v,w in G,v different from w, there exists a cycle in G containing v and w.

Theorem 10. Let G=(V,E) be a graph, $\#V \geq 3$. Then:

G is 2-connected if and only if $\forall v, w \in V, v \neq w \exists a \text{ cycle in } G \text{ containing both } v \text{ and } w.$

Proof. $(\Leftarrow=)$

Assume that $\forall v, w \in V, v \neq w \exists C$ cycle containing v and w.

$$C = (v, u_1, ..., u_k, w, u_r, ..., u_s, v)$$

If any node is removed $(\neq v, w)$, v and w are still connected, therefore G is 2-connected.

$$(\Longrightarrow)$$

Assume that *G* is 2-connected.

We define $dist(v, w) = min\{len(p) : p \text{ path connecting } v, w\}$, if such set is empty, we set $dist(v, w) = +\infty$. By induction on k = dist(v, w):

Let k = 1. Take v, w s.t. dist(v, w) = 1.

$$\operatorname{dist}(v, w) = 1 \iff \operatorname{node} \eta = \{v, w\} \in E$$

Consider $G - \eta$. I claim that $G - \eta$ is connected. Indeed, assume by contradiction that $G - \eta$ is disconnected, then it has at least 2 connected components A_1 and A_2 . One of them contains v, the other one contains w. Assume that the component containing v has at least one other node u (we can do this assumption because we know that $\#V \ge 3$).

Consider G - v. Since it is connected by hypothesis, i can connect u and w, but since u does not belong to the connected component containing w, then i cannot connect u and w. So there is a contradiction, therefore $G - \eta$ must be connected.

$$G - \eta$$
 connected $\implies \exists p = (v, y_1, ..., y_s, w)$ path in $G - \eta$ connecting v and w

Then $C = (v, y_1, ..., y_s, w, v)$ is a cycle in G containing v and w. Therefore it is true for k = 1. Assume that $\exists k \ge 1$ s.t. $\forall v, w \in V : \operatorname{dist}(v, w) = k$ i can find a cycle containing them. Now prove that $\forall v, w \in V : \operatorname{dist}(v, w) = k + 1$ i can find a cycle containing them.

$$\operatorname{dist}(v, w) = k + 1 \implies \exists p = (v, \alpha_1, ..., \alpha_k, w)$$

By induction hypothesis $\exists C$ cycle containing v and α_k :

$$C = (v, u_1, \ldots, u_r, \alpha_k, u_{r+2}, \ldots, u_s, v)$$

Call:

$$p_1 = (v, u_1, \dots, u_r, \alpha_k)$$
 $p_2 = (\alpha_k, u_{r+2}, \dots, u_s, v)$

 $G - \alpha_k$ is connected by hypothesis $\implies \exists \bar{p} \text{ connecting } v \text{ and } w$.

Call this path $\bar{p} = (v = \beta_0, ..., \beta_t, w)$.

Let q be the largest index s.t. $0 \le q \le t$ and $\beta_q \in C$. (there is at least $v = \beta_0$ in C) Assume $\beta_q \in p_1$, then i construct the following walk:

(elements of
$$p_1$$
 until $\beta_q, \beta_q + 1, ..., \beta_t, w$, the whole p_2)

This is a cycle containing v and w.

Assume $\beta_q \notin p_1$, then $\beta_q \in p_2$, repeat the same construction.

Therefore we have the thesis.

11 Theorem of characterization of trees.

Theorem 11. Let T=(E,V) be a graph. The following are equivalent:

- 1. T is a tree
- 2. $\forall v, v' \in V$, $\exists !$ path connecting v and v'
- 3. T is connected and $\forall e \in E, T e$ is disconnected
- 4. Thus no cycles and $\forall e \in \binom{V}{2}$, $e \notin E$, T + e has a cycle

Proof. (1. \Longrightarrow 2.) Assume *T* is a tree.

Choose $v \neq v' \in V$. Let $p = (v_0 = v, v_1, \dots, v_r = v')$. p is a path connecting v and v'. This path exists since T is a tree, therefore is connected.

By contradiction, assume that there exists \bar{p} path in T s.t.:

$$\bar{p} = (u_0 = v, u_1, \dots, u_s = v'), \ p \neq \bar{p}$$

Let $\bar{j} \in \{1,...,s-1\}$ the smallest index s.t. $u_{\bar{j}} \neq v_{\bar{j}}$.

Let $\bar{k} \in \{\bar{j}+1,...,s\}$ the smallest index greater than \bar{j} s.t. $u_{\bar{k}} = v_{\bar{k}}$

Then there is a cycle:

$$C = (u_{\bar{j}-1}, u_{\bar{j}}, ..., u_{\bar{k}} = v_{\bar{k}}, v_{\bar{k}-1}, ..., v_{\bar{j}}, u_{\bar{j}-1})$$

Contradiction with the assumption that T is a tree. Therefore, such path \bar{p} does not exists and we have the thesis.

$$(2. \implies 3.)$$

T is connected by hypothesis. Choose any $e = \{v_1, v_2\} \in E$. Remove e, then by hypothesis there is no way to connect v_1 and v_2 , this implies that T - e is disconnected.

$$(3. \implies 4.)$$

Assume by contradiction that $C = (v_0, v_1, \dots, v_r, v_0)$ is a cycle in T.

Remove the edge $e = \{v_0, v_1\}.$

Choose $w, w' \in V(T)$. By connectedness, there is path $p = (w_0 = w, ..., w_q = w')$ connecting w and w' in T.

- If e is not an edge of the path, nothing to prove: T still contains a path with w and w' and we have a contradiction.
- If *e* is an edge on the path, $\exists j \in \{1, ..., q-1\}: v_0 = w_j, v_1 = w_{j+1}$.

Take the path $(w = w_0, ..., w_j = v_0, v_r, v_{r-1}, ..., v_1 = w_{j+1}, w_{j+2}, ..., w_q = w')$. Then T - e is connected. Contradiction with the hypothesis that T - e is disconnected. Then T has no cycles.

Now we need to prove that $\forall e \in \binom{V}{2}, e \notin E, T + e$ has a cycle. Let $v_a, v_b \in V$ s.t. $e = \{v_a, v_b\} \notin E$. By definition, T is connected, i.e. $\exists p = (v_a, v_1, \dots, v_i = v_b)$ path. Then $(v_a, v_1, \dots, v_i = v_b, v_a)$ is a cycle in T + e and we have the thesis.

$$(4. \Longrightarrow 1.)$$

T has no cycles by hypothesis. We need to prove that T is connected.

Take $v, v' \in V$ such that $e = \{v, v'\} \notin E$ (since if we take two vertices connected by an edge, then the edge is the path and we have nothing to prove) and consider T + e. T + e contains a cycle by hypothesis and I claim that e is contained in the cycle, this means that there is a cycle $C = (v, v', w_1, \dots, w_k, v)$ in T + e. But this means that there is a path between v and v' in T, therefore T is a tree.

12 Theorem of characterization of finite trees (with Euler formula).

Theorem 12. Let T=(V,E) be a finite graph. Then the following are equivalent:

1. T is a tree

5. |V|-1=|E| (Euler's formula) and T is connected.

$$(|V|-1=|E|\iff |V|-1=\frac{1}{2}\sum_{i=1}^{n}\deg(v_i))$$

Proof. $(1. \Longrightarrow 5.)$

Assume *T* is a tree.

By induction on n = |V|.

n = 1,2 Euler's formula is trivial, holds true.

Assume that $\exists k \geq 2$ s.t. \forall trees with |V| = k Euler's formula is true. Let T be a tree with |V| = k + 1. Prove that Euler's formula is true for T.

Since a tree with |V| > 1 has at least 2 leaves, $\exists v_a \in V(T)$ which is a leaf. $T - v_a$ is a tree with k verteces. By induction hypothesis $|V(T - v_a)| = |E(T - v_a)| + 1$. Then:

$$|V(T - v_a)| = |E(T - v_a)| + 1 \implies |V(T)| - 1 = |E(T)|$$

By induction hypothesis we have the thesis.

$$(5. \Longrightarrow 1.)$$

Assume that *T* is a connected graph with |V| - 1 = |E|.

By induction on |V| = k. For k = 1, 2, T satisfying 5. is a tree.

Assume that $\exists k \geq 2$ s.t. every connected finite graph satisfying Euler's formula is also a tree and consider a connected graph T with |V(T)| = k + 1 satisfying Euler's formula. First, I prove that T has at least 1 leaf. Indeed:

T has no leaves
$$\implies \forall i \deg(v_i) \ge 2 \implies \sum_{i=0}^{k+1} \deg(v_i) \ge 2(k+1)$$

Contradiction, because by hypothesis T must satisfy Euler's formula. Therefore, $\exists v_a \in V(T)$ leaf. Consider now $T - v_a$. It has k vertices and is connected.

$$|V(T-v_a)| = k$$
 $|E(T-v_a)| = |E(T)| - 1 = k-1$
 $\implies T-v_a$ satisfies Euler's formula

By induction hypothesis, it is a tree.

Since v_a is a leaf, also T is a tree. By induction hypothesis, $5. \implies .1.$

13 Every connected finite graph has a spanning tree.

Theorem 13. Let G=(V,E) be a connected finite graph, then it has a spanning tree.

Proof.

$$C=\{G' \text{ subgraph of } G: G' \text{ connected, } V(G)=V(G')\}$$

$$G\in C \implies C \neq \emptyset$$

Take A as:

$$A = \{n \in \mathbb{N} : n = |E(G')|, G' \in C\}, A \neq \emptyset \text{ since } C \neq \emptyset$$

$$A \subseteq \mathbb{N}, \ A \neq \emptyset \Longrightarrow A \text{ well ordered} \Longrightarrow$$

$$\Longrightarrow \exists \ m = \min(A) \implies \exists \ T \in C \ s.t. \ |E(T)| = m$$

We use the characterization of trees 1. \iff 3., which is:

T is a tree \iff T is connected and $\forall e \in E(T)$ T - e is disconnected

Assume by contradiction that *T* is not a tree. Then:

$$\exists \bar{e} \text{ s.t. } T - \bar{e} \text{ is connected}$$

But then:

$$(T-\bar{e})\in C$$
 and $|E(T-\bar{e})|<|E(T)|=m$

is a contradiction. Then T is a tree.