📋 Day 2 완료 보고서: 프로젝트 구조 및 Git 구조 문서화

◎ Day 2 달성 목표 및 결과

목표	상태	완료도	비고
표준 프로젝트 구조 생성	☑ 완료	100%	업계 표준 폴더 구조 적용
Git 저장소 초기화	☑ 완료	100%	로컬 및 원격 저장소 연결
기본 문서 파일 생성	☑ 완료	100%	README, requirements, .gitignore 등
GitHub 원격 연결	☑ 완료	100%	원격 저장소 연동 및 푸시
README.md 전문화	☑ 완료	100%	포트폴리오급 문서 작성
4	>		

🗀 최종 프로젝트 구조

Till Tree)

-	bow_tfidf.ipynb	# Bag of Words, TF-IDF (생성 예정)
· ·		_
	— feature_selection.ip	
	• •	# 모델링 (Phase 4)
		rnb # 기본 ML 모델들 (생성 예정)
) # LSTM, CNN 모델 (생성 예정)
	. 3.,	s.ipynb # KoBERT, KoELECTRA (생성 예정)
	_	ipynb # 모델 성능 비교 (생성 예정)
	•	# 모델 평가 (Phase 5)
		.ipynb # 성능 지표 분석 (생성 예정)
		# 오류 분석 및 개선 (생성 예정)
		ipynb # 모델 해석 및 시각화 (생성 예정)
	model_interpretation	1Pyllb " 12 M 7 X M 7 A (80 M 8)
— 3 :	src/	# 재사용 가능한 소스 코드
<u> </u>	initpy	# 🗹 Python 패키지 설정
-	data/	# 데이터 처리 모듈
-	initpy	# 🗸 서브패키지 설정
-	— loader.py	# 데이터 로딩 함수 (생성 예정)
-	— preprocessor.py	# 전처리 함수 (생성 예정)
	— validator.py	# 데이터 검증 함수 (생성 예정)
	features/	# 특성 추출 모듈
-	initpy	# 🗹 서브패키지 설정
-	text_features.py	# 텍스트 특성 추출 (생성 예정)
-	— embeddings.py	
	feature_selector.py	# 특성 선택 (생성 예정)
	models/	# 모델 관련 모듈
-	initpy	# 🗹 서브패키지 설정
-	— baseline.py	# 기본 ML 모델 (생성 예정)
	—— deep_learning.py	# 딥러닝 모델 (생성 예정)
-	— transformers.py	# Transformer 모델 (생성 예정)
	evaluator.py	# 모델 평가 (생성 예정)
-	utils/	# 유틸리티 함수들
-	initpy	# 🗹 서브패키지 설정
	— helpers.py	# 공통 도우미 함수 (생성 예정)
-	config_loader.py	# 설정 로더 (생성 예정)
	— logger.py	# 로깅 유틸리티 (생성 예정)
	visualization/	# 시각화 모듈
	—initpy	# 🗹 서브패키지 설정
	— plots.py	# 기본 플롯 함수 (생성 예정)
-	— model_viz.py	# 모델 시각화 (생성 예정)
L	— report_generator.py	# 보고서 생성 (생성 예정)
	models/	# 학습된 모델 저장소
	trained/	# 최종 학습된 모델들
	ELGILICA/	" -IO 70C -EE
		/1 nkl # 로지스틴 회귀 모덱 (색선 예절)
	—— logistic_regression_	/1.pkl # 로지스틱 회귀 모델 (생성 예정) # SVM 모델 (생성 예정)

```
kobert_model_v1/
                         # KoBERT 모델 (생성 예정)
   experiments/
                      # 실험용 모델들
    —— exp_001_baseline/ # 실험 001: 베이스라인 (생성 예정)
      exp_002_feature_eng/
                          # 실험 002: 특성 공학 (생성 예정)
  exp_003_hyperparams/ # 실험 003: 하이퍼파라미터 (생성 예정)
   ─ production/ # 운영용 모델들
 └── final_model_v1/ # 최종 운영 모델 (생성 예정)
             # 보고서 및 시각화
 reports/
   — figures/
                    # 그래프, 차트 이미지들
  ├── data_distribution.png # 데이터 분포 시각화 (생성 예정)
      — model_performance.png # 모델 성능 비교 (생성 예정)
     — confusion_matrix.png # 혼동 행렬 (생성 예정)
  └── feature_importance.png # 특성 중요도 (생성 예정)
               # 분석 보고서, 발표자료
   — documents/
    ─ project_summary.md # 프로젝트 요약 보고서
─ technical_report.pdf # 기술 보고서 (생성 예정)
                        # 프로젝트 요약 보고서 (생성 예정)
 └── presentation.pptx # 발표 자료 (생성 예정)
 results/
                    # 분석 결과
    - predictions/
                 # 예측 결과들
     ─ test_predictions.csv # 테스트 예측 결과 (생성 예정)
     — validation_predictions.csv # 검증 예측 결과 (생성 예정)
  Umage error_cases.csv # 오류 사례 분석 (생성 예정)
                    # 성능 지표들
   — metrics/
  ---- model_metrics.json # 모델별 성능 지표 (생성 예정)
    experiment_results.csv
                        # 실험 결과 비교 (생성 예정)
 └── performance_history.json # 성능 변화 추적 (생성 예정)
 config/
                    # 설정 파일들
config.yaml
                     # 🗸 프로젝트 메인 설정
  ─ model_configs/ # 모델별 설정 (생성 예정)
  ├── baseline_config.yaml # 기본 모델 설정 (생성 예정)
     — deep_learning_config.yaml # 딥러닝 설정 (생성 예정)
  └── transformer_config.yaml # Transformer 설정 (생성 예정)
   — environment/
                # 환경별 설정 (생성 예정)
    — development.yaml
                        # 개발 환경 설정 (생성 예정)
    — production.yaml
                       # 운영 환경 설정 (생성 예정)
             # 추가 문서들
– ᇋ docs/
   — api_documentation.md # API 문서 (생성 예정)
   model_documentation.md
                           # 모델 문서 (생성 예정)
└── troubleshooting.md # 문제 해결 가이드 (생성 예정)
                    # 테스트 코드들
 tests/
                # 테스트 패키지 설정 (생성 예정)
    __init__.py
   - test_data_processing.py # 데이터 처리 테스트 (생성 예정)
```

	test_models.py test_utils.py	# 모델 테스트 (생성 예정) # 유틸리티 테스트 (생성 예정)
	README.md	# 🔽 프로젝트 소개 및 사용법
	requirements.txt	# ✓ Python 패키지 의존성
	requirements_conda.txt	# <mark>✓</mark> Conda 환경 정보
	ogitignore	# ☑ Git 무시 파일 목록
	LICENSE	# 라이선스 파일 (생성 예정)
	🥜 setup.py	# 패키지 설치 스크립트 (생성 예정)
] .git/	# Git 저장소 정보 (숨김 폴더)
ı		

📊 현재 Git 상태

bash

저장소 기본 정보

Repository: nsmc-korean-sentiment-analysis

Local Path: D:\dataAnalystBook\my_workspace\movie_review

Remote URL: https://github.com/Jaehyeok-Lee-pastel/nsmc-korean-sentiment-analysis.git

Default Branch: main

🥬 브랜치 구조

main (현재 브랜치) ├── [커밋 1] feat: NSMC 프로젝트 초기 구조 및 환경 설정 완료 └── [커밋 2] docs: README.md 전면 개선

향후 브랜치 전략:

[커밋 히스토리

커밋 번호	메시지	날짜	변경 파일 수
[latest]	docs: README.md 전면 개선	2025-01-XX	1
[initial]	feat: NSMC 프로젝트 초기 구조 및 환경 설정 완료	2025-01-XX	30+

❷ 원격 저장소 연결 상태

bash

origin https://github.com/Jaehyeok-Lee-pastel/nsmc-korean-sentiment-analysis.git (fetch) origin https://github.com/Jaehyeok-Lee-pastel/nsmc-korean-sentiment-analysis.git (push)

Tracking: main -> origin/main ✓

🚫 .gitignore 구성 bash

```
# Python 관련
_pycache_/
*.py[cod]
*.so
*.egg-info/
# Jupyter Notebook
.ipynb_checkpoints
# 대용량 데이터 파일들
data/raw/*.txt
data/processed/*.csv
data/interim/*.pkl
# 학습된 모델들
models/trained/*.pkl
models/trained/*.h5
models/experiments/*
# 환경 파일들
.env
.venv
env/
venv/
# IDE 파일들
.vscode/
.idea/
*.swp
*.swo
# OS 파일들
.DS_Store
Thumbs.db
```

⊚ config.yaml 구성

yaml

```
# 데이터 설정
data:
 raw_data_path: 'data/raw/'
 processed_data_path: 'data/processed/'
 train_file: 'ratings_train.txt'
 test_file: 'ratings_test.txt'
# 모델 설정
model:
 random_state: 42
 test_size: 0.2
 target_accuracy: 0.85
# 실험 설정
experiment:
 model_save_path: 'models/trained/'
 results_save_path: 'results/'
 figures_save_path: 'reports/figures/'
```

🧻 requirements.txt 패키지 목록

```
pandas==2.x.x
numpy==1.x.x
matplotlib==3.x.x
seaborn==0.x.x
jupyter==1.x.x
requests==2.x.x

# 추가 예정 패키지들:
# konlpy (한국어 NLP)
# scikit-learn (ML)
# tensorflow (딥러닝)
# transformers (Transformer 모델)
# streamlit (웹 데모)
```

🥑 프로젝트 구조의 설계 원칙

🔋 폴더별 역할 및 설계 철학

1. 데이터 관리 (data/)

• raw/: 원본 데이터 보존 (읽기 전용)

• processed/: 재사용 가능한 정제된 데이터

• interim/: 실험용 중간 결과물

• external/: 외부에서 가져온 보조 데이터

설계 원칙: 데이터 파이프라인의 각 단계를 명확히 분리

2. 코드 관리 (src/)

• data/: 데이터 입출력 및 변환 로직

• features/: 특성 추출 및 엔지니어링

models/: 모델 정의 및 학습 로직

• utils/: 공통 유틸리티 함수

• visualization/: 시각화 전용 함수

설계 원칙: 단일 책임 원칙 (Single Responsibility Principle)

3. 실험 관리 (notebooks/)

• **단계별 구성**: 01~05로 분석 과정 체계화

• 목적별 분리: 탐색, 전처리, 모델링, 평가 분리

• 재현성: 각 노트북이 독립적으로 실행 가능

설계 원칙: 실험의 재현성과 추적성 확보

4. 결과물 관리 (models/, reports/, results/)

• models/: 버전별 모델 관리

• reports/: 시각화 및 문서 결과물

• results/: 수치적 결과 및 예측값

설계 원칙: 결과물의 체계적 보관 및 비교

Git 워크플로우

일상적인 개발 사이클

bash

1. 작업 시작 전 최신 상태로 업데이트 git pull origin main # 2. 새로운 기능 브랜치 생성 (필요시) git checkout -b feature/data-exploration # 3. 작업 진행 후 변경사항 확인 git status git diff # 4. 변경사항 스테이징 git add. # 5. 의미 있는 커밋 메시지로 커밋 git commit -m "feat: NSMC 데이터 기본 탐색 완료 - data/raw/ 폴더에 NSMC 데이터 다운로드 - 01_data_exploration/data_overview.ipynb 생성 - 기본 통계 분석 및 데이터 분포 확인 - 한국어 텍스트 특성 파악 완료" # 6. GitHub에 푸시 git push origin feature/data-exploration # 7. 기능 완료 후 main 브랜치로 병합 git checkout main git merge feature/data-exploration git push origin main

🦪 커밋 메시지 컨벤션

bash

feat: 새로운 기능 추가

fix: 버그 수정 docs: 문서 수정

style: 코드 스타일 변경 (포맷팅, 세미콜론 등)

refactor: 코드 리팩토링 test: 테스트 코드 추가

chore: 빌드 관련, 패키지 매니저 설정 등

예시:

- (feat: 한국어 텍스트 전처리 파이프라인 구현)
- fix: 토큰화 과정에서 발생하는 인코딩 오류 수정

☑ Day 2 완료 체크리스트

◎ 구조 설계 완료 항목

- ☑ ☐ 프로젝트 폴더 구조: 업계 표준 기반 체계적 구성
- ☑ 🔁 **Python 패키지 구조**: src/ 폴더를 모듈로 사용 가능
- ☑ 노트북 구조: 01~05 단계별 분석 과정 체계화
- ☑ 📝 문서화: README, requirements, .gitignore, config 완성
- ☑ ⑥ 설정 파일: 프로젝트 설정의 체계적 관리

🚀 환경 구축 완료 항목

- ☑ 가상환경: nsmc_sentiment (Python 3.9)
- ☑ 🥟 패키지 관리: requirements.txt 기반 의존성 관리
- ☑ Ø GitHub 연동: 원격 저장소 연결 및 첫 푸시 완료
- ☑ 🗐 README 전문화: 포트폴리오급 프로젝트 소개

🏂 달성한 핵심 가치

- 1. **전문성**: 업계 표준에 맞는 프로젝트 구조
- 2. 확장성: 새로운 기능 추가가 용이한 구조
- 3. **재현성**: 다른 환경에서도 동일하게 구현 가능
- 4. **협업성**: 팀 프로젝트로 확장 가능한 기반
- 5. 포트폴리오: 채용 담당자에게 어필 가능한 완성도

💋 Day 3 준비 상태

📊 준비된 개발 환경

- 1. 🔽 안정적인 작업 환경: 독립적 가상환경 + 체계적 프로젝트 구조
- 2. **서전 관리 시스템**: Git을 통한 안전한 실험 및 백업
- 3. **Ζ 문서화 기반**: 진행 상황을 체계적으로 기록할 수 있는 구조
- 4. **온라인 포트폴리오**: GitHub을 통한 실시간 프로젝트 공유

◎ Day 3 예고: NSMC 데이터 탐색

목표: 한국어 영화 리뷰 데이터의 특성을 파악하고 분석 방향 설정

주요 작업:

- 1. NSMC 데이터셋 다운로드
- 2. 첫 번째 노트북 작성: (01_data_exploration/data_overview.ipynb)
- 3. 데이터 기본 통계 및 분포 분석
- 4. 한국어 텍스트 특성 탐색
- 5. 시각화를 통한 인사이트 도출

기대 효과:

- 데이터 이해를 바탕으로 한 효과적인 전처리 전략 수립
- 한국어 NLP 특성을 고려한 모델 선택 방향 설정
- 첫 번째 단계 완료를 통한 프로젝트 추진력 확보

♦ Day 2가 성공적으로 완료되었습니다!

체계적이고 전문적인 프로젝트 기반이 완성되어, 이제 안전하고 효율적인 환경에서 본격적인 데이터 분석을 시작할 수 있습니다.