# Adders and Digital Logic Circuits

Dr. J. K. Denny

August 28, 2017

### 1 Adding Binary Digits

#### 2 The Half-Adder

Consider adding two binary numbers. For example, add 1101 and 1001. This gives:

 $1101 \\ +1001 \\ 10110$ 

More abstractly, consider adding just two binary digits, P and Q. This will result in a sum digit S and a carry digit C. That is,

 $\frac{P}{+Q}$ 

To write a circuit for this operation, we first build an I/O table.

| Р | Q | C | S |
|---|---|---|---|
| 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 0 | 0 | 0 |

Thus, we see that  $S \equiv (P \vee Q) \wedge \neg (P \wedge Q) \equiv P \oplus Q$  and  $C \equiv P \wedge Q$ . This combination of equivalences for adding binary digits is called a *half-adder*. The half-adder circuit is given by:



#### 3 The Full-Adder

Next, we wish to add three binary digits, P, Q, and R, and produce the sum, S, and carry, C. This often happens in a situation as seen in the second digit of the following addition in which the computation includes 1 + 1 + 0 = 10.

$$\begin{array}{r}
 1 \\
 11 \\
 +01 \\
 \hline
 100
 \end{array}$$

Abstractly, we want to add:

$$P$$

$$Q$$

$$+R$$

$$CS$$

We do this by breaking it down into further additions.

First, we use a half-adder to do the following:

$$P$$

$$+Q$$

$$C_1S_1$$

Then, another half-adder to find:

$$S_1 \\ +R \\ C_2 S$$

Finally, we need to compute  $C = C_1 + C_2$ . However,  $C_1$  and  $C_2$  cannot both be 1. (Look at all possible cases to verify.) Thus,  $C = C_1 \vee C_2$ .

The full-adder circuit is given by:



## 4 The Parallel Adder

Finally, we want to add two 3-digit binary numbers. The digits will be P, Q, R, T, U, V with the result  $C, S_1, S_2, S_3$ .

PQR  $\pm TUV$   $CS_3S_2S_1$ 

This is performed by one half-adder and two full-adders in series.

First, R and V feed into a half-adder and produce  $S_1, C_1$ . Then, Q and U and  $C_1$  feed into a half-adder and produce  $S_2, C_2$ . Next, P and T and  $C_2$  feed into a half-adder and produce  $S_3, C$ .