CTR PREDICTION SYSTEM BASED ON WIDE & DEEP LEARNING (COMBINED WITH GBDT)

Group 10
A10715003 Xuanjun Chen
M10415014 Zheng Wei

OUTLINE

- ➤ Introduction
- ➤ Architecture
- > Experiment
- ➤ Future Work
- ➤ Conclusion

INTRODUCTION

Problem

- ➤ Click-through Rate prediction
- ➤ Based on Wide & Deep learning model
- ➤ Wide component can't deal with very high dimensions.

Our solution

➤ LDG model combines Wide & Deep model with Gradient Boosting Decision Tree (GBDT)

ARCHITECTURE

- ➤ Dataset: Avazu Dataset
- ightharpoonup Max depth of decision tree = [1,2,3,4,5,6,7,8,9]
- ➤ Data scales = [10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k]
- ➤ Training time
- ➤ Other:
 - ➤ Train / Validation = 0.95
 - Early stopping
 - ➤ Epoch = 100
 - \triangleright Batch size = 20

Layer (type)	Output	-	Param #	Connected to
input_2 (InputLayer)	(None,		0	
dense_2 (Dense)	(None,	20)	18600	input_2[0][0]
batch_normalization_1 (BatchNor	(None,	20)	80	dense_2[0][0]
activation_1 (Activation)	(None,	20)	0	batch_normalization_1[0][0]
dense_3 (Dense)	(None,	20)	420	activation_1[0][0]
batch_normalization_2 (BatchNor	(None,	20)	80	dense_3[0][0]
activation_2 (Activation)	(None,	20)	0	batch_normalization_2[0][0]
dense_4 (Dense)	(None,	20)	420	activation_2[0][0]
batch_normalization_3 (BatchNor	(None,	20)	80	dense_4[0][0]
input_1 (InputLayer)	(None,	519)	0	
activation_3 (Activation)	(None,	20)	0	batch_normalization_3[0][0]
dense_1 (Dense)	(None,	1)	520	input_1[0][0]
dense_5 (Dense)	(None,	1)	21	activation_3[0][0]
add_1 (Add)	(None,	1)	0	dense_1[0][0] dense_5[0][0]
activation_4 (Activation)	(None,	1)	0	add_1[0][0]
======================================				

Fig. 2. Hybrid model detail

Comparison of decision trees with different maximum depths

Comparison of training time

Comparison of different data sizes

FUTURE WORK

- > Time series features are important for CTR prediction system
- ➤ Algorithm limit (GBDT)
- ➤ Hardwares limit

CONCLUSION

- ➤ We find that Gradient Boosting decision tree definitely improves the capabilities of Wide & Deep model by reduce the input dimensions of wide linear model.
- ➤ LDG model spend less time than Wide Deep learning model.
- ➤ LDG model only performs better than Wide & Deep learning model in small-scale dataset.
- ➤ The maximum depth of the decision tree will only affect the accuracy slightly.