Math 104 HW5

Neo Lee

10/06/2023

Exercise 11.3

Consider the sequences

$$s_n = \cos\left(\frac{n\pi}{3}\right), \qquad t_n = \frac{3}{4n+1}, \qquad u_n = \left(-\frac{1}{2}\right)^n, \qquad v_n = (-1)^n + \frac{1}{n}.$$

(a) For each sequence, give an example of a monotone subsequence.

Solution.

 (s_n) : Consider $n_k = 6k$ for $k \in \mathbb{N}$, then $s_{n_k} = \cos\left(\frac{6k\pi}{3}\right) = \cos\left(2k\pi\right) = 1$ for all n_k , which is indeed monotone [a constant sequence is monotone].

 (t_n) : Consider $n_k = 2k$ for $k \in \mathbb{N}$, then $t_{n_k} = \frac{3}{8k+1}$ for all n_k , which is apparently monotonically decreasing.

 (u_n) : Consider $n_k = 2k$ for $k \in \mathbb{N}$, then $u_{n_k} = \left(-\frac{1}{2}\right)^{2k} = \frac{1}{4^k}$ for all n_k , which is apparently monotonically decreasing.

 (v_n) : Consider $n_k = 2k$ for $k \in \mathbb{N}$, then $v_{n_k} = (-1)^{2k} + \frac{1}{2k} = 1 + \frac{1}{2k}$ for all n_k , which is apparently monotonically decreasing.

(b) For each sequence, give its set of subsequential limits.

Solution.

 (s_n) : $\{1,0.5,-0.5,-1\}$. The values of s_n oscillates among constant values $\{1,0.5,-0.5,-1\}$. We can construct the constant subsequences, which have the limits 1,0.5,-0.5,-1 respectively. Then consider any $x \notin \{1,0.5,-0.5,-1\}$, any subsequence will have a minimum non-zero distance from x, hence unable to converge to x. Therefore, the set of subsequential limits is $\{1,0.5,-0.5,-1\}$.

 (t_n) : $\{0\}$. $\lim t_n = 0$ by Theorem 9.3 - 9.6, hence the set of subsequential limits only contains $\lim t_n = 0$

 (u_n) : {0}. $\lim v_n = 0$ by Theorem 9.7, hence the set of subsequential limits only contains $\lim v_n = 0$

 (v_n) : $\{1,-1\}$. Take only even n, then the subsequence converges to 1. Take only odd n, then the subsequence converges to -1. Then consider any subsequence with finite odd n, it will converge to 1, just like the only even n subsequence because we can take N larger than the finite odd n. Similarly, any subsequence with finite even n will converge to -1. Finally, any subsequence with infinite odd and even n do not converge because it will always have elements within the neighborhood of 1 and -1.

(c) For each sequence, give its lim sup and lim inf.

Solution. Notice $\limsup x_n = \sup S$ and $\liminf x_n = \inf S$, where x_n is any arbitrary sequence.

- (s_n) : $\limsup s_n = 1$, $\liminf s_n = -1$.
- (t_n) : $\limsup t_n = \liminf t_n = 0$.
- (u_n) : $\limsup u_n = \liminf u_n = 0$.
- (v_n) : $\limsup v_n = 1$, $\liminf v_n = -1$.

(d) Which of the sequences converges? diverges to $+\infty$? diverges to $-\infty$?

Solution.

 (s_n) : Diverges. $\limsup s_n = 1, \liminf s_n = -1, \text{ hence } s_n \text{ diverges.}$

 (t_n) : Converges. $\lim t_n = 0$, hence t_n converges.

 (u_n) : Converges. $\lim u_n = 0$, hence u_n converges.

 (v_n) : Diverges. $\limsup v_n = 1, \liminf v_n = -1, \text{ hence } v_n \text{ diverges.}$

(e) Which of the sequences is bounded?

Solution.

 (s_n) : Bounded. $|s_n| \leq 1$ for all n, hence s_n is bounded.

 (t_n) : Bounded. $|t_n| \leq \frac{3}{4}$ for all n, hence t_n is bounded.

 (u_n) : Bounded. $|u_n| \leq \frac{1}{2}$ for all n, hence u_n is bounded.

 (v_n) : Unbounded. $|v_n| \leq 2$ for all n, hence v_n is bounded.

Exercise 11.6

Proposition 1. Every subsequence of a subsequence of a given sequence is itself a subsequence of the given sequence.

Proof. Let (s_n) be the original sequence, (t_k) be a subsequence of (s_n) , and (u_m) be a subsequence of (t_k) . We define $\sigma(m)$ as a function that maps m to some k, the index of t_k in order, and $\tau(k)$ as a function that maps k to some k, the index of s_n in order. Then we have

$$u_m = t \circ \sigma(m) = s \circ \tau \circ \sigma(m) = s \circ \rho(m),$$

where ρ is the composite of σ and τ that maps from m to n, which preserves the order of s_n . Hence (u_m) is a subsequence of (s_n) .

Exercise 11.10

Let (s_n) be the sequence of numbers in Fig. 11.2 listed in the indicated order.

(a) Find the set S of the subsequential limits of s_n .

Solution. Take each column of the matrix as a subsequence, they are all constant subsequences with values $\frac{1}{n}$ for some $n \in \mathbb{N}$. Also, take the first row as a subsequence, which converges to 0. Therefore, $\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\}\subseteq S$. On the other hand, consider any x not in $\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\}$, notice any subsequence will have a minimum non-zero distance from x, hence unable to converge to x. Therefore, $S\subseteq\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\}$, and $S=\{\frac{1}{n}:n\in\mathbb{N}\}\cup\{0\}$.

(b) Determine $\limsup s_n$ and $\liminf s_n$.

Solution. $\limsup s_n = \max S = 1$ and $\liminf s_n = \min S = 0$.

Exercise 12.4

Proposition 2. $\limsup (s_n + t_n) \leq \limsup s_n + \limsup t_n$ for bounded sequences (s_n) and (t_n) .

Proof. We first show that

$$\sup\{s_n + t_n : n > N\} \le \sup\{s_n : n > N\} + \sup\{t_n : n > N\}. \tag{1}$$

Let N be an arbitrary natural number, then for any n > N, we have

$$s_n \le \sup\{s_n : n > N\}$$
 and $t_n \le \sup\{t_n : n > N\}$,

hence

$$s_n + t_n \le \sup\{s_n : n > N\} + \sup\{t_n : n > N\},\$$

so $\sup\{s_n:n>N\}+\sup\{t_n:n>N\}$ is an upper bound for $\{s_n+t_n:n>N\}$. Hence, the least upper bound of $\{s_n+t_n:n>N\}$, aka $\sup\{s_n+t_n:n>N\}$, is less than or equal to $\sup\{s_n:n>N\}+\sup\{t_n:n>N\}$.

Next we show that if $a_n \leq b_n$, then $\lim a_n \leq \lim b_n$. Assume for the sake of contradiction that $\lim a_n > \lim b_n$. Let $\lim a_n = a$ and $\lim b_n = b$, then we can write $a = b + 2\epsilon$ for some $\epsilon > 0$. By the definition of limit, we know there exists N_1 such that for all $n > N_1$, $|a_n - a| < \epsilon$ and also exists N_2 such that for $n > N_2$, $|b_n - b| < \epsilon$. Then for all $n > \max\{N_1, N_2\}$, a_n is within ϵ of a and b_n is within ϵ of b, hence $a_n > a - \epsilon = b + \epsilon > b_n$, which contradicts the assumption that $a_n \leq b_n$.

Combining the two results, (1) implies

$$\limsup (s_n + t_n) \le \lim (\sup s_n + \sup t_n) = \lim \sup s_n + \lim \sup t_n$$

since $\limsup s_n$ and $\limsup t_n$ are finite [bounded and monotone].