Soutenance stage Licence 3 : Ouvertures et Finales d'Eternity ||

Fati CHEN Supervisé par Éric BOURREAU

2 septembre 2016

Sommaire

- 1 Introduction du sujet
 - Eternity II
 - Problématique

Sommaire

- 1 Introduction du sujet
 - Eternity II
 - Problématique
- 2 Objectifs et approche du problème
 - Bruteforce et Smartforce
 - Corolles
 - GPU

Sommaire

- 1 Introduction du sujet
 - Eternity II
 - Problématique
- 2 Objectifs et approche du problème
 - Bruteforce et Smartforce
 - Corolles
 - GPU
- 3 Le stage dans ses grandes lignes
 - Bruteforce
 - Smartforce

Histoire

Eternity I

■ Succède à Eternity

Histoire

Eternity II

- Succède à Eternity
- Sorti en 2008, avec à la clé \$2000000

Histoire

Eternity II

- Succède à Eternity
- Sorti en 2008, avec à la clé \$2000000
- Créés par Christopher Monckton

C'est un puzzle composé d'un plateau de 16x16 et de 256 pièces carrées.

3 types de pièces PC : pièces de coin

C'est un puzzle composé d'un plateau de 16x16 et de 256 pièces carrées.

C'est un puzzle composé d'un plateau de 16x16 et de 256 pièces carrées.

Matching

■ Non résolu depuis 8 ans

- Non résolu depuis 8 ans
- Problème NP-complet (très complexe).

- Non résolu depuis 8 ans
- Problème NP-complet (très complexe).
- Trop de possibilités (estimés à 10⁵⁴⁵).

- Non résolu depuis 8 ans
- Problème NP-complet (très complexe).
- Trop de possibilités (estimés à 10⁵⁴⁵).
- plateau de plus petite taille (10×10 non résolu).

- Non résolu depuis 8 ans
- Problème NP-complet (très complexe).
- Trop de possibilités (estimés à 10⁵⁴⁵).
- plateau de plus petite taille (10×10 non résolu).

Hypothèse

En s'axant sur une approche combinatoire.

Réduire l'espace à énumérer en pré-calculant des surfaces du plateau.

Ouvertures

Pré-calculer tous les débuts possibles

Finales

Pré-calculer tous les fins possibles

Approche Incrémentale **Exemple**: Polybridge

Introduction du sujet **Objectifs et approches** Le stage dans ses grandes lignes Conclusion

Bruteforce et Smartforc Corolles GPU

Approche Incrémentale **Exemple**: Polybridge

Principe

Bruteforce

- Établir des valeurs étalons
- Valider des stratégies de parcours

Smartforce

- Augmenter la quantité d'information
- Réduire la taille de l'espace à énumérer

Pré-calculer des patterns ou formes admissibles

- Pré-calculer des patterns ou formes admissibles
- Utile pour les ouvertures et les finales

			l							
		2								
	2	1	2							
2	1	0	1	2				2		
	2	1	2				2	1	2	
		2				2	1	0	1	2
				2			2	1	2	
			2	1	2			2		
		2	1	0	1	2				
			2	1	2					
	•			1					-	

- Pré-calculer des patterns ou formes admissibles
- Utile pour les ouvertures et les finales
- Mises à jour dynamiquement

Différence entre GPU et CPU

Le nombre total de corolles différentes de hamming 2

pour un plateau 6×6 : **317**

■ 7 × 7 : 804

CPU Central Processing Unit	GPU Graphics Processing Unit
■ peu de cœurs logiques	■ beaucoup de cœurs

Différence entre GPU et CPU

Le nombre total de corolles différentes de hamming 2

- **pour un plateau** 6×6 : **317**
- 7 × 7 : **804**

CPU Central Processing Unit

- peu de cœurs logiques
- spécialisé dans les calculs complexes : 4353764 × 123523464

GPU Graphics Processing Unit

- beaucoup de cœurs
- spécialisé dans les calculs simples : 1 + 2

- 1 Introduction du sujet
 - Eternity II
 - Problématique
- 2 Objectifs et approche du problème
 - Bruteforce et Smartforce
 - Corolles
 - GPU
- 3 Le stage dans ses grandes lignes
 - Bruteforce
 - Smartforce

Fonctionnement **Exemple**: Polybridge

Différents parcours

Résultats

Principe et fonctionnement

- Inspiré de la programmation par contrainte et de la programmation réactive
- Offre une structure de communication entre différents modèles de données
- Implémente des évènements de mise à jour
- Stratégies de parcours et solveurs adaptables

Structurer les différentes visions du jeu

■ Cases/Pièces (CaPi) : vision par défaut.

Structurer les différentes visions du jeu

- Cases/Pièces (CaPi) : vision par défaut.
- Bordures/Couleurs (BoCo).

Structurer les différentes visions du jeu

- Cases/Pièces (CaPi) : vision par défaut.
- Bordures/Couleurs (BoCo).

En quelques chiffres

- 5 dépôts différents
- 9 versions stables
- 40 classes en C
- 128 commits
- 582 lignes de commentaires
- 3964 lignes de code (200 en python, le reste en C)

Pour conclure

Merci de votre attention.