Дифференциальные уравнения. Теория

Александр Сергеев

1 Уравнения первого порядка

1.1 Дифференциальное уравнение первого порядка и его решение

Определение

F(x, y, y') = 0 – обыкновенное д/у первого порядка $(F - \phi)$ ункция от трех параметров)

Определение

 ϕ — решение д/у на $\langle a,b \rangle$, если $\phi \in C^1 \langle a,b \rangle$ и $F(x,\phi(x),\phi'(x)) \equiv 0$ на $\langle a,b \rangle$ (п. 1 необязательный, но нам будет удобнее работать только с такими функциями)

Определение

Интегральная кривая уравнения – график его решения

Определение

Общее решение - множество всех его решений

Определение

Общий интеграл уравнения – уравнение вида $\Phi(x,y,C)=0$, определяющее некоторые решения при некоторых значениях C

Первый метод решения – подбор

Второй метод решения – интегрирование (для уравнений вида y' = Cx)

1.2 Уравнения в нормальной форме

Определение

y' = f(x, y) – уравнение, выраженное относительно производной/уравнение в нормальной форме/нормальное уравнение

Определение

Область определения нормального уравнения — область определния f (множество точек, через которые могут проходить интегральные кривые)

Определение

Ломаная Эйлера — ломаная с вершинами $\{(x_k, y_k)\}$, где $x_{k+1} = x_k + h, y_{k+1} = y_k + h \cdot f(x_k, y_k)$

Третий метод решения (метод Эйлера) – построение ломаной Эйлера. Метод приближенный

1.3 Уравнение в дифференциалах

Определение

P(x,y) dx + Q(x,y) dy = 0 – уравнение в дифференциалах

Определение

Решением $y = \phi(x)$ – решение уравнения в дифференциалах на $\langle a, b \rangle$, если $\phi \in C^1 \langle a, b \rangle$ и $P(x, \phi(x)) + Q(x, \phi(x)) \phi'(x) \equiv 0$ на $\langle a, b \rangle$

Также решениями будут функции $x = \psi(y)$ (аналогично)

Определение

Область определения уравнения в дифференциалах = $D_P \cap D_Q$

Определение

P(x) dx + Q(y) dy = 0 – уравнение с разделенными переменными

Замечание

Общий интеграл уравнения с разделенными переменными имеет вид $\int P(x) \, \mathrm{d}\, x + \int Q(y) \, \mathrm{d}\, y = 0$

Определение

Вектор-функция $(\phi, \psi): \langle \alpha, , \rangle \beta \to \mathbb{R}^2$ – параметрическое решение у.д., если $\phi, \psi \in C^1 \langle \alpha, \beta \rangle, (\phi', \psi') \neq (0, 0)$ (кривая гладкая) и $P(\phi(t), \psi(t)) \phi'(t) + Q(\phi(t), \psi(t)) \psi'(t) \equiv 0$ на $\langle \alpha, \beta \rangle$

Определение

Интегральная кривая уравнения в дифференциалах – годограф ее параметрического решения

Определение

$$\gamma = \{r(t)|t \in \langle \alpha, \beta \rangle\}$$
 – годограф функции $r(t) = (\phi(t), \psi(t))$

Утверждение

Если $y = \phi(x)$ – решение уравнения в дифференциалах, то $(t, \phi(t))$ – параметрическое решение

Если $(\phi(t), \psi(t))$ – параметрическое решение на (α, β) , то $\forall t_0 \in (\alpha, \beta) \exists U(t_0)$:

годограф функции (ϕ, ψ) – график некоторого решения y = q(x) или x = h(y)

Геометрический смысл

Пусть (ϕ, ψ) – параметрическое решение на $\langle \alpha, \beta \rangle$

Тогда
$$P(\phi(t_0), \psi(t_0))\phi'(t_0) + Q(\phi(t_0), \psi(t_0))\psi'(t_0) = 0$$
 при $t_0 \in \langle \alpha, \beta \rangle$

$$\exists F = \begin{vmatrix} P(x,y) \\ Q(x,y) \end{vmatrix}, r(t) = \begin{vmatrix} \phi(t) \\ \psi(t) \end{vmatrix}$$

$$\exists F = \begin{vmatrix} P(x,y) \\ Q(x,y) \end{vmatrix}, r(t) = \begin{vmatrix} \phi(t) \\ \psi(t) \end{vmatrix}$$

$$F(\phi(t_0), \psi(t_0)) \cdot r'(t_0) = 0$$

$$F(\phi(t_0), \psi(t_0)) \perp r'(t_0)$$

 $r'(t_0)$ – вектор касательной к интегральным кривым

Тогда F – поле перпендикуляров

Определение

Поле на плоскости – это отображение $F:D\subset\mathbb{R}^2\to\mathbb{R}^2$

Определение

Дифференциальные уравнения называют эквивалентными/равносильными на множестве D, если на этом множестве они имеют одинаковое множество интегральных кривых

Утверждение

$$y' = f(x, y)$$
 равносильно $dy = f(x, y) dx$

Замечание

Уравнение в дифференциалах равносильно $y'_x = -\frac{P(x,y)}{Q(x,y)}$ в областях,

где
$$Q(x,y) \neq 0$$
 и $x_y' = -\frac{Q(x,y)}{P(x,y)}$ в областях, где $P(x,y) \neq 0$

Определение

Если $P(x_0,y_0)=Q(x_0,y_0)=0$, то (x_0,y_0) – особая точка уравнения в дифференциалах

1.4 Уравнения с разделяющимися переменными

Определение

P(x) dx + Q(y) dy = 0 – Уравнение с разделенными переменными

Определение

Функция $y = \phi(x)$ задана неявно уравнением F(x, y) = 0 при $x \in E$, если $F(x,\phi(x))\equiv 0$ при $x\in E$

Теорема (общие решение уравнения с разделенными перемен-

ными)

Пусть $P \in C\langle a, b \rangle, Q \in C\langle c, d \rangle$ $P^{(-1)}, Q^{(-1)}$ – некоторые первообразные P, QТогда $y = \phi(x)$ – решение уравнения на $\langle \alpha, \beta \rangle \Leftrightarrow$

- $\phi \in C^1(\alpha, \beta)$
- $\exists \, C \in \mathbb{R} : y = \phi(x)$ неявно задана уравнением $P^{(-1)}(x) + Q^{(-1)}(y) = C$

Доказательство ⇒

Пусть $y = \phi(x)$ – решение на $\langle \alpha, \beta \rangle$

1 – по определению

Выберем $x_0 \in \langle \alpha, \beta \rangle, y_0 = \phi(x_0)$

Заметим, что $\exists A: P^{(-1)}(x) = \int_{x_0}^x P(t) dt + A$

$$\exists A_2: \ Q^{(-1)}(y) = \int_{y_0}^y Q(t) \, \mathrm{d}t + A_2$$

$$\int_{x_0}^{x} P(t) dt + A + \int_{y_0}^{y_0} Q(t) dt + A_2 \equiv C$$

Сделаем замену $t \stackrel{\text{3.5}}{\rightarrow} \phi(t)$ справа

$$\int_{x_0}^{x} P(t) dt + A + \int_{x_0}^{x} Q(\phi(t))\phi'(t) dt + A_2 \equiv C$$

$$\int_{x_0}^{x} P(t) dt + \int_{x_0}^{x} Q(\phi(t))\phi'(t) dt \equiv C - A - A_2$$

$$\int_{x_0}^{x} (P(t) + Q(\phi(t))\phi'(t)) dt \equiv C - A - A_2$$

 $\int_{x_0}^x \underbrace{(P(t) + Q(\phi(t))\phi'(t))}_{0 \text{ по определению решения}} dt \equiv C - A - A_2$

Отсюда $C := A + A_2$

Т.о. 2 доказано

Доказательство ←

Проверим $P(x) + Q(\phi(x))\phi'(x) = 0$ на $\langle \alpha, \beta \rangle$

$$P^{(-1)}(x) + Q^{(-1)}(\phi(x)) \equiv C$$

Продифференцируем

$$P(x) = Q(\phi(x))\phi'(x) = 0$$

Определение

 $p_1(x)q_1(y)\,\mathrm{d}\,x+p_2(x)q_2(y)\,\mathrm{d}\,y=0$ – уравнение с разделяющимися переменными

1.5 Задача Коши

Рассмотрим y' = f(x, y)

Определение

Задачей Коши (ЗК) для нормального уравнения называют задачу нахождения его решения, удовлетворяющего начальному условию $y(x_0) = y_0$

Теорема Пиано (частный случай) – существование решения задачи Коши для нормального уравнения 1 порядка

Пусть $f \in C(G), G$ – область (открытое связное множество)

Возьмем $(x_0, y_0) \in G$

Тогда $\exists E = \langle a, b \rangle, x_0 \in E, \exists \phi : E \to \mathbb{R}$ – решение для задачи Коши $y' = f(x, y), y(x_0) = y_0$

Теорема Пикара о единственности решения задачи Коши для нормального уравнения 1 порядка

 $f,f_y'\in C(G),G$ – область, $(x_0,y_0)\in G$

Пусть ψ , ϕ – решения задачи Коши

Тогда $\phi = \psi$ на $D_{\phi} \cap D_{\psi}$

1.6 Линейное уравнение 1-ого порядка

Определение

y' = p(x)y + q(x) – линейное уравнение

y' = p(x)y – однородное линейное уравнение

Теорема (общее решение линейного уравнения первого порядка)

$$E = \langle a, b \rangle, p, q \in C(E), \mu = e^{-\int p}$$

Тогда
$$y = \frac{C + \int (q\mu)}{\mu}, C \in \mathbb{R}, D_y = E$$
 – общее решение ЛУ

Доказательство

Пусть S – множество всех решений ЛУ

$$F:=\{\phi:\underbrace{\widetilde{E}}_{\text{promexytok}}\subset E\to\mathbb{R}\}, \phi=\frac{C+\int(q\mu)}{\mu}, C\in\mathbb{R}$$

Докажем, что F = S

Возьмем $\phi \in S$

Тогда $\phi' \equiv p\phi + q$ на \widetilde{E}

 $\phi'\mu=p\phi\kappa+q\mu$

 $\phi'\mu - p\phi\mu = q\mu$

$$\begin{aligned} \phi'e^{-\int p} - p\phi e^{-\int p} &= (\phi e^{-\int p})' = (\phi \mu)' \\ (\phi \mu)' &= q\mu \\ \phi \mu &= \int q\mu + C \\ \phi &= \frac{\int (\phi \mu) + C}{\mu} \\ \text{Отсюда } \phi \in F \\ \text{Возьмем } \phi \in F \\ \phi &= \frac{C + \int (\mu q)}{\mu} \text{ на } \widetilde{E} \\ \phi \in C^1 \\ \Pi\text{Одставим в уравнение} \\ \phi' &= p\phi + q \\ \frac{\mu q + \mu'(C + \int (\mu q))}{\mu^2} = \frac{p(C + \int (\mu q))}{\mu} + q \\ \Pi.ч. &: \frac{\mu q + \mu'(C + \int (\mu q))}{\mu^2} = \frac{\mu^2 q - (-\pi)\mu(C + \int (pq))}{\mu^2} = q + \frac{p}{\mu}(C + \int pq) \\ \Pi.ч. &= \Pi.ч. \\ Ч.Т.Д. \end{aligned}$$

Следствие (общее решение ЛОУ)

$$p\in C^1(E), E=\langle a,b \rangle$$

Тогда $y=Ce^{\int p}, C\in \mathbb{R}, D_y=E$

Доказательство

q = 0

Метод Лагранжа (метод вариации постоянной)

- 1. Для ЛУ y' = p(x)y + q(x) запишем соответствующее ЛОУ $y_2' = p(x)y_2$ $y_2 = Ce^{\int p}$
- 2. Заменим C на C(x) и подставим в исходное уравнение $y=C(x)e^{\int p}$ $p(x)(C(x)e^{\int p})+q(x)=(C(x)e^{\int p})'$
- 3. Находим C(x) из полученного уравнения
- 4. Запишем общее решение $y = C(x)e^{\int p}$

Доказательство

В общем виде мы получим ту же формулу, что и в предыдущем методе

Определение

 $P \, \mathrm{d} \, x + Q \, \mathrm{d} \, y = 0$ – однородное уравнение, если P, Q – однородные функции одинаковой степени

Определение

 $P(tx,ty)=t^{\alpha}P(x,y)\Rightarrow P$ – однородная функция степени α

1.7 Уравнение в полных дифференциалах

Определение (УПД)

 $P(x,y) \, \mathrm{d}\, x + Q(x,y) \, \mathrm{d}\, y = 0$ – уравнение в полных дифференциалах, если

$$\exists u : u_x' = P, u_y' = Q$$

 $u' = (P,Q) = (u'_x, u'_y)$ – матрица Якоби – градиент

Его решение имеет вид du = 0

$$d u = u_x' d x + u_y' d y$$

Определение

и – потенциал уравнения

Tогда u = const

Теорема (общее решение УПД)

Пусть $G \subset \mathbb{R}^2$ – область, $P, Q \in C(G)$

$$u' = (P, Q)$$

Тогда функция $y=\phi(x), x\in E, E=\langle a,b\rangle$ – решение уравнения \Leftrightarrow

 $\Leftrightarrow \phi \in C^1(E), \exists \, C \in \mathbb{R} : \phi$ – неявно задана уравнением u(x,y) = C на E

Напоминание

$$(f\circ g)'=f'(g(x))g'(x),g:A\subset\mathbb{R}^n\to b\subset\mathbb{R}^m,f:B\to\mathbb{R}^k$$

Доказательство ⇒

По определению $\phi \in C^1(E)$

По определению решения: $P(x,\phi(x)) + Q(x,\phi(x))\phi'(x) \equiv E$

$$u'_x(x,\phi(x)) + u'_y(x,\phi(x))\phi'(x) \equiv 0$$

$$(u(x,\phi(x)))' \equiv 0$$

Значит $\exists C : u(x, \phi(x)) \equiv C$

Доказательство ←

Имеем $\phi \in C'(E)$

$$u(x,\phi(x)) \equiv C$$

$$u'_x(x,\phi(x)) + u'_y(x,\phi(x))\phi'(x) \equiv 0$$

$$P(x,\phi(x)) + Q(x,\phi(x))\phi'(x) \stackrel{\mathbb{Z}}{=} E$$

По определению ϕ – решение

Пример

$$P(x) dx + Q(y) dy = 0$$

$$P \in C(a,b), Q \in C(c,d)$$

$$u(x,y) = \int P + \int Q$$
 — потенциал

Тогда
$$\int P(x) \, \mathrm{d}\, x + \int Q(y) \, \mathrm{d}\, y = C$$
 – неявно задает все решения

Теорема (признак УПД (достаточное условие))

$$P,Q \in C^1(G), G$$
 – область в \mathbb{R}^2

$$P'_{u} = Q'_{x}$$

$$P_y' = Q_x'$$
 Тогда $\exists u : (P,Q) = u'$ в области G

$$u(x,y) = \int_{(x_0,y_0)}^{(x,y)} (P(\widetilde{x},\widetilde{y}) d\widetilde{x} + Q(\widetilde{x},\widetilde{y}) d\widetilde{y}) + C,$$

где
$$(x_0,y_0) \in G, C \in \mathbb{R}$$

 $(x_0, y_0), (x, y)$ – концы кусочно-гладкой привой, лежащей в G

Пояснение

$$P_y' = (u_x')_y'$$

$$Q_x' = (u_y')_x'$$

 $P_y' = (u_x')_y'$ $Q_x' = (u_y')_x'$ Тогда $P_y' = Q_x'$ – это необходимое решение для существования u

Доказательство жди на матане

Определение

$$\forall x, y \ \mu(x, y) \neq 0$$

$$\mu P dx + \mu Q dy = 0 - УПД$$

Тогда μ – интегрирующий множитель для $P\operatorname{d} x + Q\operatorname{d} y$

Замечание

Если
$$(\mu P)'_{u} = (\mu Q)'_{x}$$

Если
$$(\mu P)'_y = (\mu Q)'_x$$

 $\underline{\mu'_y}P + \mu P'_y = \mu'_xQ + \mu Q'_y$

Пример

$$y' = p(x)y + q(x)$$

$$(p(x)y + q(x)) dx - dy = 0$$
 – не уравнение в полных дифференциалах

Найдем μ

$$\mu_y'(p(x)y + q(x)) + \mu p(x) = \mu_x'(-1) + 0$$

Попробуем найти $\mu: \mu'_v = 0$

$$\mu = \mu(x)$$

$$\mu' = -\mu p(x)$$

$$\mu = Ce^{-\int p}$$

Выберем
$$C=1$$

$$\mu = e^{-\int p}$$

1.8 Замена переменных

Пример

$$y' = \frac{y^3 - x^3}{xy^2} = \frac{y}{x} - \frac{x^2}{y^2}, x > 0$$
Пусть $v(x) = \frac{y}{x}x$

$$y'_x = v - 1\frac{1}{v^2}$$

$$y(x) = v(x)x \Rightarrow y' = v'x + v$$

$$v'x + v = v - \frac{1}{v^2}$$

$$v'x = -\frac{1}{x^2}$$

$$v^2 dv = -\frac{dx}{x}$$

$$\frac{v^3}{3} = -\ln x + C$$

$$\frac{1}{3}(\frac{y}{x})^3 = -\ln x + C$$

Определение

Векторным полем уравнения P(x,y) dx + Q(x,y) dy = 0 назовем $F: D \to \mathbb{R}$ $\mathrm{Mat}_{1\times 2}(\mathbb{R})$

$$D = D_P \cap D_Q$$

$$F(x, y) = (P(x, y), Q(x, y))$$

Интегральная кривая векторного поля – интегральная кривая уравнения

Теорема (замена переменной в уравнении)

$$D \subset \mathbb{R}^2_{x,y}, \, \Omega \in \mathbb{R}^2_{u,v}$$
 – область

(внизу указаны координатные оси)

 $\Phi: D \to \Omega$ – диффеоморфизм (биекция, что $\Phi \in C^1(D), \Phi^{-1} \in C^1(\Omega)$)

F(x,y) – векторное поле исходного уравнения

$$G: \Omega \to \mathrm{Mat}_{1 \times 2}(\mathbb{R})$$

$$G(u,v) := F(\Phi^{-1}(u,v))(\Phi^{-1})'(u,v)$$

Значит Φ биективно отображает интегральные кривые поля F на интегральные кривые поля G

Критерий диффеоморфизма

Ф – инъектция

$$\Phi \in C^1(D)$$

$$\det \Phi'(r) \neq 0 \ \forall \, r \in D$$

Пример (Уравнение Бернулли)

$$y' = p(x)y + q(x)y^{\alpha}, \alpha \neq 0, 1$$
Пусть $y > 0$

$$\frac{y'}{y^{\alpha}} = p(x)y^{\alpha-1} + q(x)$$
 $v = y^{1-\alpha}$

$$v'_x = (1-\alpha)y^{-\alpha}y'_x$$

$$\frac{y'}{y^{\alpha}} = \frac{v'_x}{1-\alpha}$$

$$v'_x = (1-\alpha)p(x)v + (1-\alpha)q(x)$$
Пример (Уравнение Риккати)
$$y' = p(x)y^2 + q(x)y + r(x)$$
Утверждение: если ϕ – решение, то подстановка $y(x) = v(x) + \phi(x)$ сводит уравнение к уравнению Бернулли

$$y' = \underbrace{p(x)y^2 + q(x)y + r(x)}_{}$$

уравнение к уравнению Бернулли