CS4051

Information Retrieval

Week 08

Muhammad Rafi March 11, 2024

Agenda

- Evaluation in IR
- Ad Hoc Information Retrieval
- Standard IR Collections
- Evaluation for Unranked Retrieval
 - □ Precision
 - □ Recall
 - □ F-Score or F- measure
 - □ Fall-out
- Evaluation for Ranked Retrieval

| Agenda

- Evaluation for Ranked Retrieval
 - □ Precision –Recall Curve
 - Average Precision
 - □ Mean Average Precision (MAP)
 - Cumulative Gain
 - Discount Cumulative Gain
 - Normalized Discount Cumulative Gain
- Conclusion

Different IR Models

- There are many retrieval models/ algorithms/ systems, which one is the best?
- What is the best component for:
 - □ Ranking function (dot-product, cosine, ...)
 - □ Term selection (stopword removal, stemming...)
 - □ Term weighting (TF, TF-IDF,...)
- How far down the ranked list will a user need to look to find some/all relevant documents?

Difficulty in IR Evaluation

- Effectiveness is related to the *relevancy* of retrieved items.
- Relevancy is not typically binary but continuous.
- Even if relevancy is binary, it can be a difficult judgment to make.
- Relevancy, from a human standpoint, is:
 - □ Subjective: Depends upon a specific user's judgment.
 - Situational: Relates to user's current needs.
 - Cognitive: Depends on human perception and behavior.
 - Dynamic: Changes over time.

Information Needs

- Information Need
 - Drinking red wine is more effective at reducing your risk of heart attacks than white wine.
- Query
 - wine and red and white and heart and attack and effective

Ad hoc Information Retrieval

- To measure ad hoc information retrieval effectiveness in the standard way,
- we need a test collection consisting of three things:
 - A document collection
 - A test suite of information needs, expressible as queries
 - A set of relevance judgments, standardly a binary assessment of either relevant or non-relevant for each query-document pair.

Evaluation In IR

- Evaluation measures for an information retrieval system are used to assess how well the search results satisfied the user's query intent.
- It is used to compare two IR Systems.
- Evaluation Process is also an active area of research in IR
- Evaluation process started with a small dataset with only 100's doc and 30 queries now it has grown to 1/15 of web scale.

Standard IR Collections

- The Cranfield collection.
 - Collected in the United Kingdom starting in the late 1950s, it contains 1398 abstracts of aerodynamics journal articles, a set of 225 queries, and exhaustive relevance judgments of all (query, document) pairs.
- 20 Newsgroups
 - □ It consists of 1000 articles from each of 20 Usenet newsgroups (the newsgroup name being regarded as the category).

Standard IR Collections

- Cross Language Evaluation Forum (CLEF)
 - This evaluation series has concentrated on EU languages and cross-language information retrieval.
- Reuters-21578 and Reuters-RCV1
 - For text classification, the most used test collection has been the Reuters-21578 collection of 21578 newswire articles
- WebKB
 - This data set contains WWW-pages collected from computer science departments of various universities in January 1997

Standard IR Collections

- Modern IR Collections
 - □ TREC
 - □ SemEval
 - □ LSHTC
 - CLEF
 - MediaEval

TREC Conference Tracks

| Image Captioning

TextCaps dataset

v0.1

Training set 🐽

- 109,765 captions (173MB)
- 21,953 images (6.6GB)
- Rosetta OCR tokens [v0.2]

Validation set 🐽

- 15,830 captions (25MB)
- 3,166 images
- Rosetta OCR tokens [v0.2]

Test set 🐽

- Metadata (6.5MB)
- 3,289 images (926MB)
- Rosetta OCR tokens [v0.2]

Evaluation of unranked retrieval sets

- The result-set of a query is unranked (flat results only retrieved one, which systems proposed relevant)
- The result set is a "set" assuming there is no redundant document.
- From the collection, for a given query. We can have set of relevant documents. The system may returned a set of documents called retrieved. A possible subset of relevant document may be retrieved by the system.

Evaluation of unranked retrieval sets

$$\mathcal{P} = \frac{|RET \cap REL|}{|RET|}$$

$$\mathcal{R} = \frac{|\mathit{RET} \cap \mathit{REL}|}{|\mathit{REL}|}$$

Evaluation

- Precision (P): the proportion of retrieved documents that are relevant
- □ Recall (R): the proportion of relevant documents that are retrieved

Evaluation of unranked retrieval sets

■ Precision

- Measure of how much of the information the system returned is correct (accuracy).
- Precision measures the system's ability to reject any non-relevant documents from the retrieved set

Recall

- Measure of how much relevant information the system has extracted (coverage of system).
- Recall measures the system's ability to find all the relevant documents.

IR Evaluation

relevant

 $Ret = Ret_{Rel} + Ret_{NotRel}$

 $NotRet = NotRet_{Rel} + NotRet_{NotRel}$

 $Relevant = Ret_{Rel} + NotRet_{Rel}$

Not Relevant = $Ret_{NotRel} + NotRet_{NotRel}$

 $Total \ \# \ of \ documents \ available \ N = Ret_{Rel} + NotRet_{Rel} + Ret_{NotRel} + NotRet_{NotRel}$

Precision: P= Ret_{Rel} / Retrieved

P = [0,1]

• Recall: R = Ret_{Rel} / Relevant

R = [0,1]

Example

Retrieved Not retrieved

Relevant = w+x=5

Not Relevant = y+z= 5

Retrieved = w+y = 6 Not Retrieved = x+z = 4

Total documents N = w+x+y+z = 10

- Precision: P = w / w + y = 3/6 = .5
- Recall: R = w / w + x = 3/5 = .6

Precision Vs. Recall

- A system can make two types of errors:
 - a false positive error: the system retrieves a document that is non-relevant (should not have been retrieved)
 - a false negative error: the system fails to retrieve a document that is relevant (should have been retrieved)
- How do these types of errors affect precision and recall?
 - □ Precision <-> false positive errors
 - □ Recall <-> false negative errors

Returns relevant documents but misses many useful ones too The ideal Returns most relevant documents but includes lots of junk Precision and Recall are inverse proportional

Precision Vs. Recall

Precision Critical Tasks	Recall Critical Tasks
Time matters a lot	Time matter less
Tolerance to missed documents	Non tolerance to missed documents
Redundant – many equal information resources	Less redundant information – only one (few resources)
Example: Web search	Example: legal/patent search
Demand: Very high	Demand: moderate
General optimizations	Specific optimizations

F- Measure

- Precision and Recall stand in opposition to one another. As precision goes up, recall usually goes down (and vice versa).
- The F-measure combines the two values.
- F-Measure { ((\(\beta^2+1\)^*P^*R\) / (\(\beta^2 *P+R\))}
 - □ When & = 1, precision and recall are weighted equally. Commonly Called F $_{(\&$ = 1)}.
 - □ When ß is < 1, precision is favored.
 - □ When ß is > 1, recall is favored.

| Fallout Rate

- Problems with both precision and recall:
 - Number of irrelevant documents in the collection is not taken into account.
 - Recall is undefined when there is no relevant document in the collection.
 - Precision is undefined when no document is retrieved.

 $Fallout = \frac{no. of \ nonrelevant \ items \ retrieved}{total \ no. of \ nonrelevant \ items \ in \ the \ collection}$

Evaluation of ranked retrieval results

- Precision, recall, and the F measure are setbased measures. They are computed using unordered sets of documents.
- In a ranked retrieval context, appropriate sets of retrieved documents are naturally given by the top k retrieved documents.
- The system can return any number of results.
- How to compute this ranked result?
 - □ A precision-recall curve

Average Precision

Ranking #1

Recall 0.17 0.17 0.33 0.5 0.67 0.83 0.83 0.83 0.83 1.0

Precision 1.0 0.5 0.67 0.75 0.8 0.83 0.71 0.63 0.56 0.6

Ranking #2

 Recall
 0.0
 0.17
 0.17
 0.17
 0.33
 0.5
 0.67
 0.67
 0.83
 1.0

 Precision
 0.0
 0.5
 0.33
 0.25
 0.4
 0.5
 0.57
 0.5
 0.56
 0.6

Ranking #1: (1.0 + 0.67 + 0.75 + 0.8 + 0.83 + 0.6)/6 = 0.78

Ranking #2: (0.5 + 0.4 + 0.5 + 0.57 + 0.56 + 0.6)/6 = 0.52

MAP

Ranking #1

 Recall
 0.2
 0.2
 0.4
 0.4
 0.4
 0.6
 0.6
 0.6
 0.8
 1.0

 Precision
 1.0
 0.5
 0.67
 0.5
 0.4
 0.5
 0.43
 0.38
 0.44
 0.5

= relevant documents for query 2

Ranking #2

 Recall
 0.0
 0.33
 0.33
 0.67
 0.67
 1.0
 1.0
 1.0
 1.0

 Precision
 0.0
 0.5
 0.33
 0.25
 0.4
 0.33
 0.43
 0.38
 0.33
 0.3

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62 average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Mean Average Precision (MAP)

- If a relevant document never gets retrieved, we assume the precision corresponding to that relevant doc to be zero
- MAP is macro-averaging: each query counts equally
- Now perhaps most commonly used measure in research papers
- Good for web search?
- MAP assumes user is interested in finding many relevant documents for each query
- MAP requires many relevance judgments in text collection

| Kappa Statistics

Observed proportion of the times the judges agreed P(A) = (300 + 70)/400 = 370/400 = 0.925

Pooled marginals

P(nonrelevant) = (80 + 90)/(400 + 400) = 170/800 = 0.2125

P(relevant) = (320 + 310)/(400 + 400) = 630/800 = 0.7878

Probability that the two judges agreed by chance

 $P(E) = P(nonrelevant)^2 + P(relevant)^2 = 0.2125^2 + 0.7878^2 = 0.665$

Kappa statistic

 $\kappa = (P(A) - P(E))/(1 - P(E)) = (0.925 - 0.665)/(1 - 0.665) = 0.776$

► Table 8.2 Calculating the kappa statistic.

| Cumulative Gain (CG)

- An old technique called Cumulative Gain(CG)
- It is the sum of the graded relevance values of all results in a search result list.
- Let for a query "q" there are following six documents D1,D2,D3,D4,D5 and D6. The relative relevance of these documents are 3,2,3,0,1,2
- The value of CG = sum of all relevance for all six documents.
- Changing the order of any two documents does not affect the CG measure.

Discount Cumulative Gain (DCG)

DCG is the total gain accumulated at a particular rank p:

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

Alternative formulation:

$$DCG_p = \sum_{i=1}^p \frac{2^{rel_i} - 1}{log(1+i)}$$

- used by some web search companies
- emphasis on retrieving highly relevant documents

| Solved Example

$$D_1, D_2, D_3, D_4, D_5, D_6$$

the user provides the following relevance scores:

3, 2, 3, 0, 1, 2

That is: document 1 has a relevance of 3, document 2 has a relevance of 2, etc. The Cumulative Gain of this search result listing is:

$$ext{CG}_6 = \sum_{i=1}^6 rel_i = 3+2+3+0+1+2 = 11$$

Solved Example

i	rel_i	$\log_2(i+1)$	$\frac{rel_i}{\log_2(i+1)}$		
1	3	1	3		
2	2	1.585	1.262		
3	3	2	1.5		
4	0	2.322	0		
5	1	2.585	0.387		
6	2	2.807	0.712		

$$\mathrm{DCG}_6 = \sum_{i=1}^6 \frac{rel_i}{\log_2(i+1)} = 3 + 1.262 + 1.5 + 0 + 0.387 + 0.712 = 6.861$$

Normalized DCG

- Normalized Discounted Cumulative Gain (NDCG) at rank n
 - Normalize DCG at rank n by the DCG value at rank n of the ideal ranking
 - The ideal ranking would first return the documents with the highest relevance level, then the next highest relevance level, etc
- Normalization useful for contrasting queries with varying numbers of relevant results
- NDCG is now quite popular in evaluating Web search

| Solved Example

i	rel_i	$\log_2(i+1) rac{rel_i}{\log_2(i+1)}$	
1	3	1	3
2	2	1.585	1.262
3	3	2	1.5
4	0	2.322	0
5	1	2.585	0.387
6	2	2.807	0.712

$$DCG_6 = \sum_{i=1}^{6} \frac{rel_i}{\log_2(i+1)} = 3 + 1.262 + 1.5 + 0 + 0.387 + 0.712 = 6.861$$

Ideal Order of the result: 3, 3, 2, 2, 1, 0

$$IDCG_6 = 7.141$$

And so the nDCG for this query is given as:

$$\mathrm{nDCG_6} = \frac{DCG_6}{IDCG_6} = \frac{6.861}{7.141} = 0.961$$

| Normalized DCG (Example)

4 documents: d₁, d₂, d₃, d₄

	Ground Truth		Ranking Function ₁		Ranking Function ₂	
i	Document Order	r _i	Document Order	r _i	Document Order	r _i
1	d4	2	d3	2	d3	2
2	d3	2	d4	2	d2	1
3	d2	1	d2	1	d4	2
4	d1	0	d1	0	d1	0
	NDCG _{GT} =1.00		NDCG _{RF1} =1.00		NDCG _{RF2} =0.9203	

$$DCG_{GT} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF1} = 2 + \left(\frac{2}{\log_2 2} + \frac{1}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.6309$$

$$DCG_{RF2} = 2 + \left(\frac{1}{\log_2 2} + \frac{2}{\log_2 3} + \frac{0}{\log_2 4}\right) = 4.2619$$

 $MaxDCG = DCG_{GT} = 4.6309$

System Quality

- There are many practical benchmarks on which to rate an information retrieval system beyond its retrieval quality.
- System Quality is also a concern.
 - How fast does it index, that is, how many documents per hour does it index for a certain distribution over document lengths?
 - How fast does it search, that is, what is its latency as a function of index size?
 - How expressive is its query language? How fast is it on complex queries?
 - How large is its document collection, in terms of the number of documents or the collection having information distributed across a broad range of topics?

User utility

- What we would really like is a way of quantifying aggregate user happiness, based on the relevance, speed, and user interface of a system.
- One indirect measure of such users is that they tend to return to the same engine.

Evaluation of System Changes

A/B testing

- For such a test, precisely one thing is changed between the current system and a proposed system, and a small proportion of traffic (say, 1–10% of users) is randomly directed to the variant system, while most users use the current system.
- Click through log analysis or clickstream mining.
 To see whether User like it or not.
- The basis of A/B testing is running a bunch of single variable tests (either in sequence or in parallel): for each test only one parameter is varied from the control (the current live system).

| Search Snippets

- Search Snippets is useful for reviewing the search results.
- The two basic kinds of summaries:
 - Static: which are always the same regardless of the query,
 - Dynamic: (or query-dependent), which are customized according to the user's information need as deduced from a query. Dynamic summaries attempt to explain why a particular document was retrieved for the query at hand.
 - keyword-in-context (KWIC) snippets

Conclusion

- Get as much of what we want while at the same time getting as little junk as possible.
- Recall is the percentage of relevant documents returned compared to everything that is available!
- Precision is the percentage of relevant documents compared to what is returned!
- The desired trade-off between precision and recall is specific to the scenario we are in?
- What do we want?
 - □ Find everything relevant high recall
 - Only retrieve what is relevant high precision