Math 5110 Applied Linear Algebra -Fall 2021.

He Wang

he.wang@northeastern.edu

Homework 3.

Questions: (You can use Matlab if needed.)

The following questions are about matrix of linear transformation and coordinate.

Question 1. Suppose $L: \mathbb{R}^3 \to \mathbb{R}^3$ is linear, $\vec{b} \in \mathbb{R}^3$ is given, and $\vec{u} = (1, 0, 1), \vec{v} = (1, 1, -1)$ are two solutions to $L(\vec{x}) = \vec{b}$.

Question 2. Find matrix of each linear operator: (Hint: using theorem on matrix of linear transformation. The matrix is $[T(\vec{e}_1) \ T(\vec{e}_2) \ ... \ T(\vec{e}_n)])$

(1.) Let $R : \mathbb{R}^2 \to \mathbb{R}^2$ be the **rotation** of angle θ about the origin (a positive θ indicates a counterclockwise rotation). Find the matrix A such that R(x) = Ax for all $x \in \mathbb{R}^2$.

(2.) Consider the linear operator mapping \mathbb{R}^2 into itself that sends each vector $\begin{bmatrix} x \\ y \end{bmatrix}$ to its **projection** onto the *x*-axis, namely, $\begin{bmatrix} x \\ 0 \end{bmatrix}$. Find the matrix representing this linear operator.

(3.) A (horizontal) **shear** acting on the plane maps a **point** $\begin{bmatrix} x \\ y \end{bmatrix}$ to the point $\begin{bmatrix} x + ry \\ y \end{bmatrix}$, where r is a real number. Find the matrix representing this operator.

(4.) A linear operator $L: \mathbb{R}^n \to \mathbb{R}^n$ defined by $L(x) = r\vec{x}$ is called a **dilation** if r > 1 and a **contraction** if 0 < r < 1. What is the matrix of L?

Question 3. Consider the following geometrically defined linear maps of \mathbb{R}^3 to itself. Describe each of them by a matrix with respect to the canonical basis of \mathbb{R}^3 . (Hint: using theorem on matrix of linear transformation.)

- (a) Orthogonal projection onto the xz-plane.
- (b) Counterclockwise rotation by 45° about the x-axis.
- (c) The map (rotation) of part (b) then followed by the map(projection) of part (a).
- (d) Rotation by 120° about the main diagonal in space (spanned by the vector $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, taken counterclockwise as you look towards the origin.

Question 4. Let $x \in \mathbb{R}^N$ be denoted as $x = (x_1, x_2, ..., x_N)$. Given $\vec{x}, \vec{y} \in \mathbb{R}^N$, the **convolution** of \vec{x} and \vec{y} is the vector $\vec{x} * \vec{y} \in \mathbb{R}^N$ defined by

$$(\vec{x} * \vec{y})_n = \sum_{m=1}^{N} x_m y_{n-m}, \text{ for } n = 1, 2, ..., N.$$

In this formula, \vec{y} is regarded as defining a periodic vector of period N; therefore, if $n - m \le 0$, we take $y_{n-m} = y_{N+n-m}$. For instance, $y_0 = y_N$, $y_{-1} = y_{N-1}$, $y_{-2} = y_{N-2}$, and so forth.

(1) Prove that if $y \in \mathbb{R}^N$ is fixed, then the mapping

$$L: \vec{x} \to \vec{x} * \vec{y}$$

is linear. (2) Find the matrix representing this operator L.

Question 5. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by the following conditions:

(a)
$$L$$
 is linear; (b) $L(\vec{e}_1) = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$; (c) $L(\vec{e}_2) = \begin{bmatrix} 5 \\ 2 \\ 1 \end{bmatrix}$; (d) $L(\vec{e}_3) = \begin{bmatrix} 7 \\ -3 \\ 9 \end{bmatrix}$;

Here $\{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$ is the standard basis for \mathbb{R}^3 . Prove that there is a 3×3 matrix A such that $L(x) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^3$. What is the matrix A?

Question 6. Let
$$\mathcal{B} = {\vec{b}_1, \vec{b}_2} = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
 be a basis for $V = \text{Span}{\{\vec{b}_1, \vec{b}_2\}}$.

- (1). Find the coordinate of $\vec{x} = \begin{bmatrix} 3 \\ 5 \\ 7 \end{bmatrix}$ relative to \mathcal{B} .
- (2). Suppose the coordinate of $\vec{y} \in V$ is $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Find the vector \vec{y} .

Question 7. Let $V = \{a_1t + a_2t^2 + a_3t^3 \mid a_1, a_2, a_3 \in \mathbb{R}\}$ with basis $\mathscr{B} = \{t, t^2, t^3\}$. Let $P_2 = \{a_0 + a_1t + a_2t^2 \mid a_0, a_1, a_2 \in \mathbb{R}\}$ with basis $\mathscr{C} = \{1, t, t^2\}$. Let $T : V \to P_2$ be a transformation defined by derivatives T(p) = 2f' - f''.

- (1) Prove that T is a linear transformation. (using properties of derivative.)
- (2) Find the matrix $[T]_{\mathscr{B}\mathscr{C}}$ of the transformation T respective to the bases \mathscr{B} and \mathscr{C} .
- (3) Is T an isomorphism?

Question 8. Let V be a subspace of \mathbb{R}^n . Suppose $\mathscr{B} = \{\vec{b}_1, \dots, \vec{b}_s\}$ and $\mathscr{C} = \{\vec{v}_1, \dots, \vec{v}_s\}$ are two bases of V.

- (1) Find the $\mathscr{B} \mathscr{C}$ -matrix $S = [\mathrm{id}]_{\mathscr{B}\mathscr{C}}$ of the identity map from V to V. This matrix is also called **change of coordinate matrix** from \mathscr{B} to \mathscr{C} .
- (2) Show that $[\vec{b}_1 \dots \vec{b}_s] = [\vec{v}_1 \dots \vec{v}_s]S$.

Question 9. Let
$$V$$
 be a subspace of \mathbb{R}^3 . Suppose $\mathscr{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{\begin{bmatrix} 1\\2\\-3 \end{bmatrix}, \begin{bmatrix} 4\\-1\\-3 \end{bmatrix}\right\}$ and $\mathscr{C} = \{\vec{v}_1, \vec{v}_2\} = \{\vec{v}_1, \vec{v}_2\}$

$$\left\{ \begin{bmatrix} 0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$$
 are two bases of *V*. (Example for the above question.)

- (1) Find change of coordinate matrix S from \mathcal{B} to \mathcal{C} .
- (2) Verify that $[\vec{b}_1 \ \vec{b}_2] = [\vec{v}_1 \ \vec{v}_2]S$.

Question 10. A function $T: P_4(\mathbb{R}) \to P_4(\mathbb{R})$ is defined by the rule T(f) = xf'' - 2xf' - f. Show that T is a linear operator, and find the matrix that represents T with respect to the standard basis of $P_4(\mathbb{R})$.

The following questions are about determinant

Question 11. Consider the real $n \times n$ matrix $A_n = (a_{ij})_{i,j=1,\dots,n}$ which has 2s on the main diagonal, -1s on the two diagonals next to the main diagonal, and 0s elsewhere. For example $A_2 = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$, $A_3 = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$,

$$A_4 = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}.$$

Compute $det(A_n)$ in terms of n.

Question 12. Compute the area of the hexagon with vertices (3, 1), (12, 8), (10, 7), (-1,-1), (-10,-8) and (-8,-7). Compute by hand (using determinant) and verify by Matlab use polyshape.

Question 13. True or False: (Briefly explain the reason.)

- (1) det(A + B) = det(A) + det(B) for all 5×5 matrices A and B.
- (2) The equation det(-A) = det(A) holds for all 6×6 matrices.
- (3) If all the entries of a 7×7 matrix A are 7, then det(A) must be 7^7
- (4) An 8×8 matrix fails to be invertible if (and only if) its determinant is nonzero.
- (5) If B is obtained be multiplying a column of A by 9, then the equation det(B) = 9 det(A) must hold.
- (6) If A is any $n \times n$ matrix, then $det(AA^T) = det(A^TA)$
- (7) There is an invertible matrix of the form $\begin{bmatrix} a & e & f & j \\ b & 0 & g & 0 \\ c & 0 & h & 0 \\ d & 0 & i & 0 \end{bmatrix}$
- (8) If A is an invertible $n \times n$ matrix, then $\det(A^T) \det(A^{-1}) = 1$.
- (9) det(4A) = 4 det(A) for all 4×4 matrices A.
- (10) There is a nonzero 4×4 matrix A such that det(4A) = 4 det(A).
- (11) det(AB) = det(BA) for all $n \times n$ matrices A and B.

Question 14. Is there a 3×3 matrix such that $A^2 + I = \mathbf{0}$? Answer the question in real numbers and complex numbers. Show your reason.

Question 15. Let *A* be the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 8 & 9 \\ 2 & 4 & 6 & 10 \\ 1 & 5 & 10 & 9 \end{bmatrix}$. Compute by hand the **determinant** of *A*. Write down

all steps you are using. (Hint: using row operations together with cofactor expansion)

Question 16. Let
$$A = \begin{bmatrix} 0 & 0 & \dots & 0 & a_1 \\ 0 & 0 & \dots & a_2 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & a_{n-1} & \dots & 0 & 0 \\ a_n & 0 & \dots & 0 & 0 \end{bmatrix}$$
. Find the determinant of A and prove your result..

Question 17. Find a 5×5 permutation matrix P such that $P[x_1 \ x_2 \ x_3 \ x_4 \ x_5]^T = [x_3 \ x_1 \ x_4 \ x_5 \ x_2]^T$

Question 18. (Vandermonde determinants.) Consider distinct real numbers $a_0, a_1, ..., a_n$. We define the $(n + 1) \times (n + 1)$ matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_0 & a_1 & a_2 & \cdots & a_n \\ a_0^2 & a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_0^{n-1} & a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \\ a_0^n & a_1^n & a_2^n & \cdots & a_n^n \end{pmatrix}$$

Vandermonde showed that

$$\det(A) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a_0 & a_1 & a_2 & \cdots & a_n \\ a_0^2 & a_1^2 & a_2^2 & \cdots & a_n^2 \\ \vdots & \vdots & \cdots & \vdots \\ a_0^{n-1} & a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \\ a_0^n & a_1^n & a_2^n & \cdots & a_n^n \end{vmatrix} = \prod_{0 \le j < i \le n} (a_i - a_j)$$

- (a) Verify Vandermonde's formula for the case n = 1.
- (b) Suppose the Vandermonde formula holds for n1. You are asked to demonstrate it for n. Consider the function

$$f(t) = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ a_0 & a_1 & a_2 & \cdots & a_{n-1} & t \\ a_0^2 & a_1^2 & a_2^2 & \cdots & a_{n-1}^2 & t^2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_0^{n-1} & a_1^{n-1} & a_2^{n-1} & \cdots & a_{n-1}^{n-1} & t^{n-1} \\ a_0^n & a_1^n & a_2^n & \cdots & a_{n-1}^n & t^n \end{vmatrix}$$

Explain why f(t) is a polynomial of n-th degree. Find the coefficient k of t^n using Vandermondes formula for a_0, \ldots, a_{n-1} . Explain why $f(a_0) = f(a_1) = f(a_{n-1}) = 0$. Conclude that $f(t) = k(t - a_0)(t - a_1)(t - a_{n-1})$ for the scalar k you found above. Substitute $t = a_n$ to demonstrate Vandermondes formula.