

Po-Wei Huang^{1,2}, Gregory Boyd¹, Gian-Luca R. Anselmetti³, Matthias Degroote³, Nikolaj Moll³, Raffle Santagati³, Michael Streif³, Benjamin Ries³, Daniel Marti-Dafcik^{1,2}, Hamza Jnane^{1,2}, Sophia Simon⁴, Nathan Wiebe^{4,5,6}, Thomas R. Bromley², Bálint Koczor^{1,2}

¹University of Oxford, ²Quantum Motion, ³Boehringer Ingelheim, ⁴University of Toronto, ⁵PNNL, ⁶CIFAR

Drug design

Motivation and applications

- Working in a complex and warm environment, so need to calculate thermodynamic properties like free energies.
- We care more about differences in free energies between different candidate ligands.
- Need to evaluate molecular dynamics to evolve each configuration in our ensemble to equilibrium.

Molecular dynamics

In practice for classical computations

- Propagate particles with Hamiltonian dynamics
- Time average of evolution trajectory to replace ensemble average
 - Lots and lots of compute time!
- Used to compute thermal averages such as free energy

Molecular dynamics

Under the Liouvillian picture

- Liouvillian dynamics with fixed volume and temperature
- Born Oppenheimer approximation classical nuclei and quantum electrons
- Generate discretized phase space on logarithmic number of qubits
- Electronic dynamics determined by ground state energy calculations

$$\int \rho_{t} = e^{-iLt} \int \rho_{0}$$

$$L = -i \left(\frac{\partial H}{\partial p} \frac{\partial}{\partial x} - \frac{\partial H}{\partial x} \frac{\partial}{\partial p} \right)$$

Molecular dynamics on a quantum computer

Or, Liouvillian block-encodings and Liouvillian simulation

- Block-encode Liouvillian operator
- Obtain quantum mechanical electronic forces via kicking back results from electronic register.
- Compute electronic forces via Hellmann-Feynman theorem and first-quantized Hamiltonian.

Calculating free-energy differences

Thermodynamic integration on a quantum computer

- Free energy differences can be expressed as an integral that interpolates the molecular dynamics between initial and final configurations.
- Sum over interpolated Liouvillian simulation prepared states over nuclear Hamiltonian

Controlled Liouvillian simulations

How the algorithm doesn't scale linear to the interpolation points

Algorithm breakdown

A glimpse into the size of the algorithm

Or, why there are no numerical simulations

Performance comparison

With other quantum algorithms and advantages over classical

- Exponential improvements in precision over iterating between MD time step and electronic structure calculations (with both classical and quantum computing methods)
- Superpolynomial improvements over previous Trotterized Liouvillian approach
- Bypass entropy estimation via relative free energy calculations (no sampling over exponential phase-space)

	MD simulation	Free energy calculation
QPE + Euler Int. [1]	$\tilde{\mathcal{O}}(\varepsilon^{-1})$	
Liouville $+$ Trott. [2]	$\tilde{\mathcal{O}}(\varepsilon^{-o(1)})$	$\tilde{\mathcal{O}}(\eta^{1+o(1)}\varepsilon^{-1.5}+\varepsilon^{-2})$
Our work	$\mathcal{O}(\log^3 \varepsilon^{-1})$	$\mathcal{\tilde{O}}(\varepsilon^{-1})$