INSTITUTO ATLÂNTICO ATLÂNTICO ACADEMY FUTURE – COMPUTAÇÃO COGNITIVA PROJETO VISÃO COMPUTACIONAL 2021

PROF.: ALYSON BEZERRA NOGUEIRA

FRANCISCO MARCELINO ALMEIDA DE ARAÚJO RAYLAN CORDEIRO DE SOUZA VAGNER SANCHES VASCONCELOS VICTOR DE SOUSA ROCHA

O projeto em questão tem como objetivo desenvolver um sistema que permita o auxílio ao diagnóstico de patologias da corneá por meio de imagens de microscopia especular. Para isto, foi utilizado o conjunto de dados (*data set*): data_especular_crop.

Em todos os casos, o treinamento ocorreu utilizando o Google Colab com GPUs, as métricas de avaliação foram *precision* (precisão) e *recall* (sensibilidade) *e as imagens foram n*ormalização em 256x256.

Foram implementadas 4 estratégias, sendo elas:

- 1. Sem nenhum pré-processamento (sem estratégia);
- 2. Os dados das classes confluente e esparsa foram unidos, gerando a classe confluente_esparsa (1ª estratégia);
 - 3. Limitando os dados da classe integra em 574 imagens (2ª estratégia);
- 4. Limitando as imagens da classe integra, da mesma forma que na 2^a estratégia, e ainda aplicando filtro bilateral em todas as imagens (3^a estratégia) .

Segue abaixo um quadro resumo dos resultados das métricas calculadas com os dados de testes. Nele se observa que a 1ª estratégia para a rede VGG19 foi a de melhor resultado.

Quadro 1: Quadro resumo das métricas com os dados de teste

		CNN	VGG19
Sem Estratégia	Precision	0.7327	0.8864
	Recall	0.7227	0.8864
1ª Estratégia	Precision	0.8119	0.8904
	Recall	0.8082	0.8904
2ª Estratégia	Precision	0.7410	0.8429
	Recall	0.7357	0.8429
3ª Estratégia	Precision	0.7279	0.8143
	Recall	0.7071	0.8143

1) SEM ESTRATÉGIA

Neste primeiro modelo não utilizaremos nenhuma estratégia de pré-processamento.

1.1) ANÁLISE DOS DADOS:

- (a) Quantidade total de Imagens: 2181
- (b) Classes/rótulos: ['rara' 'confluente' 'integra' 'esparsa']
- (c) Tamanho de cada classe: [574, 118, 1368, 121]
- (d) Tamanho percentual de cada classe: [26.3, 5.4, 62.7, 5.5]
- (e) Grande parte das imagens possui dimensões de 245x460.
- (f) Total de imagens para treinamento: 1527
- (g) Total para cada classe: [402, 82, 959, 84]
- (h) Dados de treinamento: (1527, 256, 256, 3)
- (i) Rótulos de treinamento: (1527, 4)
- (j) Total de imagens para validação: 433
- (k) Total para cada classe: [114, 24, 271, 24]
- (l) Dados de validação: (433, 256, 256, 3)
- (m) Rótulos de validação: (433, 4)
- (n) Total de imagens para testes: 220
- (o) Total para cada classe: [58, 12, 137, 13]
- (p) Dados de testes: (220, 256, 256, 3)
- (q) Rótulos de testes: (220, 4)
- (r) Código: Colab.

1.2) PARÂMETROS DE TREINAMENTO

- (a) batch_size = 16
- (b) epochs = 32

1.3) REDE: CNN

- (a) Arquitetura, ver código.
- (b) Duração 8.4 minutos para treinamento de 32 épocas
- (c) Epoch 1/32: 28s 168ms/step loss: 18.0346 precision: 0.5921 recall: 0.4316 val_loss:

0.9517 – val_precision: 0.6353 – val_recall: 0.6236

- (d) Epoch 32/32: 14s 148ms/step loss: 0.2757 precision: 0.9083 recall: 0.9011 val_loss: 1.0645 val_precision: 0.7640 val_recall: 0.7552
- (e) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(f) Avaliação do modelo com o conjunto de testes.

Comando: model_cnn.evaluate(test_data, test_labels, verbose=2)

Saída: 7/7 – 1s – loss: 1.1713 – precision: 0.7327 – recall: 0.7227 – 571ms/epoch – 82ms/step

1.4) REDE: VGG19

- (a) Arquitetura: ver código.
- (b) Duração 12.9 minutos para treinamento de 32 épocas
- (c) Epoch 1/32: 36s 297ms/step loss: 2.0332 precision: 0.6971 recall: 0.6658 val_loss: 0.5922 val_precision: 0.8036 val_recall: 0.7275
- (d) Epoch 32/32: 24s 248ms/step loss: 0.0648 precision: 0.9757 recall: 0.9745 val_loss: 0.7241 val_precision: 0.8661 val_recall: 0.8661
- (e) Gráficos da precisão e sensibilidade (*recall*) durante o treinamento.

(f) Avaliação do modelo com o conjunto de testes.

Comando: model vgg19.evaluate(test data, test labels, verbose=2)

Saída: 7/7 – 2s – loss: 1.0322 – precision: 0.8864 – recall: 0.8864 – 2s/epoch – 346ms/step

2) PRIMEIRA ESTRATÉGIA.

Identificamos um grande desbalanceamento nas classes, e com o entendendo melhor o problema de negócio, tanto as imagens classificadas como confluente, bem como esparsa são problemas na córnea, desta forma decidimos agrupá-las em uma única classe batizada como confluente esparsa, indo assim ao encontro de balancear o conjunto de dados.

Desta forma nosso classificador passou de 4 para 3 classes.

2.1) ANÁLISE DOS DADOS

- (a) Classes/rótulos: ['confluente_esparsa' 'rara' 'integra']
- (b) Quantidade total de Imagens: 2181
- (c) Contudo agora as classes ficaram assim:
- (d) Tamanho de cada classe: [239, 574, 1368]
- (e) Sendo os percentuais: Tamanho percentual de cada classe: [10.96, 26.32, 62.72]
- (f) As imagens continuaram padronizadas em 255x255
- (g) Total de imagens para treinamento: 1528
- (h) Total para cada classe: [167, 402, 959]
- (i) Dados de treinamento: (1528, 256, 256, 3)
- (j) Rótulos de treinamento: (1528, 3)
- (k) Total de imagens para validação: 433
- (l) Dados de validação: (433, 256, 256, 3)
- (m) Rótulos de validação: (433, 3)
- (n) Total de imagens para testes: 219
- (o) Total para cada classe: [48, 114, 271]
- (p) Total para cada classe: [24, 58, 137]
- (q) Dados de testes: (219, 256, 256, 3)
- (r) Rótulos de testes: (219, 3)
- (s) Código: Colab

2.2) PARÂMETROS DE TREINAMENTO:

- (a) batch_size = 16
- (b) epochs = 32

2.3) REDE CNN

- (a) Duração 8.4 minutos para treinamento de 32 épocas
- (b) Epoch 1/32: 28s 173ms/step loss: 14.1373 precision: 0.6132 recall: 0.3704 val_loss: 0.9537 val_precision: 1.0000 val_recall: 0.0046
- (c) Epoch 32/32: 14s 151ms/step loss: 0.1821 precision: 0.9442 recall: 0.9404 val_loss: 1.0404 val_precision: 0.7760 val_recall: 0.7760
- (d) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(e) Avaliação do modelo com o conjunto de testes.

Comando: model_cnn.evaluate(test_data, test_labels, verbose=2)

Saída: 7/7 – 1s – loss: 0.9151 – precision: 0.8119 – recall: 0.8082 – 603ms/epoch – 86ms/step

2.4) REDE: VGG19

- (a) Duração 14.4 minutos para treinamento de 32 épocas
- (b) Epoch 1/32: 40s 333ms/step loss: 1.9935 precision: 0.6874 recall: 0.6660 val_loss: 0.6832 val_precision: 0.7953 val_recall: 0.7806
- (c) Epoch 32/32: 25s 265ms/step loss: 0.0640 precision: 0.9810 recall: 0.9797 val_loss: 0.7843 val_precision: 0.8915 val_recall: 0.8915
- (d) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(e) Avaliação do modelo com o conjunto de testes.

Comando: model vgg19.evaluate(test data, test labels, verbose=2)

Saída: 7/7 – 3s – loss: 0.6087 – precision: 0.8904 – recall: 0.8904 – 3s/epoch – 379ms/step

3) SEGUNDA ESTRATÉGIA

Buscando um melhor balançamento das classes, utilizamos somente 574 imagens (aleatórias) da classe integra.

3.1 – ANÁLISE DOS DADOS:

- (a) Quantidade total de Imagens: 1386
- (b) Classes/rótulos: ['integra' 'rara' 'confluente_esparsa']
- (c) Tamanho de cada classe: [574, 573, 239]

- (d) Tamanho percentual de cada classe: [41.4, 41.3, 17.2]
- (e) Total de imagens para treinamento: 970
- (f) Total para cada classe: [402, 401, 167]
- (g) Dados de treinamento: (970, 256, 256, 3)
- (h) Rótulos de treinamento: (970, 3)
- (i) Total de imagens para validação: 276
- (j) Total para cada classe: [114. 114, 48]
- (k) Dados de validação: (276, 256, 256, 3)
- (l) Rótulos de validação: (276, 3)
- (m) Total de imagens para testes: 140
- (n) Total para cada classe: [58, 58, 24]
- (o) Dados de testes: (140, 256, 256, 3)
- (p) Rótulos de testes: (140, 3)
- (q) Código: Colab

3.2) PARÂMETROS DE TREINAMENTO

- (a) $batch_size = 16$
- (b) epochs = 25

3.3) REDE: CNN

- (a) Arquitetura, ver código.
- (b) Duração 4.0 minutos para treinamento de 25 épocas
- (c) Epoch 1/25: 23s 186ms/step loss: 46.0286 precision: 0.3773 recall: 0.0856 val_loss: 1.0616 val_precision: 0.0000e+00 val_recall: 0.0000e+00
- (d) Epoch 25/25: 9s 148ms/step loss: 0.4370 precision: 0.8435 recall: 0.8392 val_loss: 0.9856 val_precision: 0.7445 val_recall: 0.7391
- (e) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(f) Avaliação do modelo com o conjunto de testes.

Comando: model_cnn.evaluate(test_data, test_labels, verbose=2)

Saída: 5/5 - 1s - loss: 0.9815 - precision: 0.7410 - recall: 0.7357 - 506ms/epoch - 101ms/step

3.4) REDE: VGG19

- (a) Duração 443.91 7.4 minutos para treinamento de 25 épocas
- (b) Epoch 1/25: 31s 378ms/step loss: 2.5848 precision: 0.6361 recall: 0.6172 –

val_loss: 0.8642 - val_precision: 0.6667 - val_recall: 0.5217

- (c) Epoch 25/25: 16s 257ms/step loss: 0.0856 precision: 0.9773 recall: 0.9763 val_loss: 1.3034 val_precision: 0.8261 val_recall: 0.8261
- (d) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(g) Avaliação do modelo com o conjunto de testes

Comando: model_vgg19.evaluate(test_data, test_labels, verbose=2)

Saída: 5/5 – 2s – loss: 1.3359 – precision: 0.8429 – recall: 0.8429 – 2s/epoch – 342ms/step

4) TERCEIRA ESTRATÉGIA

Aplicado filtro bilateral em todas as imagens.

4.1) ANÁLISE DOS DADOS:

- (a) Quantidade total de Imagens: 1387
- (b) Classes/rótulos: ['integra' 'rara' 'confluente_esparsa']
- (c) Tamanho de cada classe: [574, 574, 239]
- (d) Tamanho percentual de cada classe: [41.4, 41.4, 17.2]
- (e) Total para cada classe: [402, 402, 167]
- (f) Total de imagens para treinamento: 971
- (g) Total para cada classe: [114, 114, 48]
- (h) Dados de treinamento: (971, 256, 256, 3)
- (i) Rótulos de treinamento: (971, 3)
- (j) Total de imagens para validação: 276
- (k) Total para cada classe: [58, 58, 24]
- (l) Dados de validação: (276, 256, 256, 3)
- (m) Rótulos de validação: (276, 3)
- (n) Total de imagens para testes: 140
- (o) Dados de testes: (140, 256, 256, 3)
- (p) Rótulos de testes: (140, 3)
- (q) Código: Colab

4.2) PARÂMETROS DE TREINAMENTO

- (a) $batch_size = 16$
- (b) epochs = 25

4.3) REDE CNN

- (a) Duração 263.46 segundos (4.4 minutos) para treinamento de 25 épocas
- (b) Epoch 1/25 22s 184ms/step loss: 59.0195 precision: 0.4104 recall: 0.1133 val_loss: 1.0665 val_precision: 0.4286 val_recall: 0.0109
- (c) Epoch 25/25 9s 148ms/step loss: 0.2111 precision: 0.9142 recall: 0.9104 val_loss: 1.6075 val_precision: 0.7117 val_recall: 0.7065
- (d) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(e) Avaliação do modelo com o conjunto de testes

Comando: model_cnn.evaluate(test_data, test_labels, verbose=2)

Saída: 5/5 – 3s – loss: 1.3735 – precision: 0.7279 – recall: 0.7071 – 3s/epoch – 527ms/step

4.4) REDE: VGG19

- (a) Duração 443.82 seconds (7.4 minutos) para treinamento de 25 épocas
- (b) Epoch 1/25 30s 373ms/step loss: 2.4197 precision: 0.6227 recall: 0.6022 val_loss: 0.6105 val_precision: 0.7442 val_recall: 0.6957
- (c) Epoch 25/25 15s 253ms/step loss: 0.1559 precision: 0.9660 recall: 0.9660 val_loss: 1.4630 val_precision: 0.8370 val_recall: 0.8370
- (d) Gráficos da precisão e sensibilidade (recall) durante o treinamento.

(e) Avaliação do modelo com o conjunto de testes

Comando: model_vgg19.evaluate(test_data, test_labels, verbose=2)

Saída: 5/5 – 19s – loss: 4.5351 – precision: 0.8143 – recall: 0.8143 – 19s/epoch – 4s/step