Analysis of Algorithms

LECTURE 23

Shortest Paths II

- Bellman-Ford algorithm
- Linear programming and difference constraints
- VLSI layout compaction

ALGORITHMS N

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Example:

ALGORITHMS

Negative-weight cycles

Recall: If a graph G = (V, E) contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Bellman-Ford algorithm: Finds all shortest-path lengths from a **source** $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

ALGORITHMS

Bellman-Ford algorithm

$$d[s] \leftarrow 0$$
for each $v \in V - \{s\}$

$$do \ d[v] \leftarrow \infty$$
initialization

for
$$i \leftarrow 1$$
 to $|V| - 1$
do for each edge $(u, v) \in E$
do if $d[v] > d[u] + w(u, v)$
then $d[v] \leftarrow d[u] + w(u, v)$

step

for each edge $(u, v) \in E$ do if d[v] > d[u] + w(u, v)

then report that a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles. Time = O(VE).

Example of Bellman-Ford

ALGORITHMS

Example of Bellman-Ford

Initialization.

ALGORITHMS

Example of Bellman-Ford

Order of edge relaxation.

Example of Bellman-Ford

ALGORITHMS

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

l

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

Example of Bellman-Ford

End of pass 2 (and 3 and 4).

Correctness

Theorem. If G = (V, E) contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$.

ALGORITHMS

Correctness

Theorem. If G = (V, E) contains no negative-weight cycles, then after the Bellman-Ford algorithm executes, $d[v] = \delta(s, v)$ for all $v \in V$. *Proof.* Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) .$$

26

2

Initially, $d[v_0] = 0 = \delta(s, v_0)$, and $d[v_0]$ is unchanged by subsequent relaxations (because of the lemma from Shortest Paths I that $d[v] \ge \delta(s, v)$.

- After 1 pass through E, we have $d[v_1] = \delta(s, v_1)$.
- After 2 passes through E, we have $d[v_2] = \delta(s, v_2)$.
- After k passes through E, we have $d[v_k] = \delta(s, v_k)$. Since G contains no negative-weight cycles, p is simple. Longest simple path has $\leq |V| - 1$ edges.

Detection of negative-weight cycles

Corollary. If a value d[v] fails to converge after |V| - 1 passes, there exists a negative-weight cycle in G reachable from s.

Linear programming

Let A be an $m \times n$ matrix, b be an m-vector, and c be an *n*-vector. Find an *n*-vector x that maximizes $c^{\mathrm{T}}x$ subject to $Ax \leq b$, or determine that no such solution exists.

Linear-programming algorithms

Algorithms for the general problem

- Simplex methods practical, but worst-case exponential time.
- Interior-point methods polynomial time and competes with simplex.

Linear-programming algorithms

Algorithms for the general problem

- Simplex methods practical, but worst-case exponential time.
- Interior-point methods polynomial time and competes with simplex.

Feasibility problem: No optimization criterion. Just find x such that $Ax \leq b$.

• In general, just as hard as ordinary LP.

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1, one -1, and the rest 0's.

Example:

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1, one -1, and the rest 0's.

Example:

$$\begin{array}{c} x_1 - x_2 \le 3 \\ x_2 - x_3 \le -2 \\ x_1 - x_3 \le 2 \end{array}$$

$$\begin{array}{c} x_1 = 3 \\ x_j - x_i \le w_{ij} \\ x_2 = 0 \\ x_3 = 2 \end{array}$$

Solving a system of difference constraints

Linear programming where each row of A contains exactly one 1, one -1, and the rest 0's.

Example:

Constraint graph:

$$x_j - x_i \le w_{ij} \qquad v_i \qquad v_j$$

(The "A" matrix has dimensions $|E| \times |V|$.)

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

34

31

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Then, we have

$$\begin{array}{rcl} x_2 - x_1 & \leq w_{12} \\ x_3 - x_2 & \leq w_{23} \\ & \vdots \\ x_k - x_{k-1} \leq w_{k-1, k} \\ x_1 - x_k & \leq w_{k1} \end{array}$$

Unsatisfiable constraints

Theorem. If the constraint graph contains a negative-weight cycle, then the system of differences is unsatisfiable.

Proof. Suppose that the negative-weight cycle is $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_k \rightarrow v_1$. Then, we have

$$\begin{array}{rcl} x_2 - x_1 & \leq w_{12} \\ x_3 - x_2 & \leq w_{23} \\ \vdots \\ x_k - x_{k-1} & \leq w_{k-1, k} \\ x_1 - x_k & \leq w_{k1} \\ \hline 0 & \leq \text{weight of cycle} \end{array}$$

< 0

Therefore, no values for the x_i can satisfy the constraints.

39

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.

Proof. Add a new vertex s to V with a 0-weight edge to each vertex $v_i \in V$.

40

43

37

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.

Proof. Add a new vertex s to V with a 0-weight edge to each vertex $v_i \in V$.

Note

No negative-weight cycles introduced ⇒ shortest paths exist.

41

Theo

Satisfying the constraints

Theorem. Suppose no negative-weight cycle exists in the constraint graph. Then, the constraints are satisfiable.

39

Proof (continued)

Claim: The assignment $x_i = \delta(s, v_i)$ solves the constraints. Consider any constraint $x_j - x_i \le w_{ij}$, and consider the shortest paths from s to v_i and v_i :

The triangle inequality gives us $\delta(s, v_j) \le \delta(s, v_i) + w_{ij}$. Since $x_i = \delta(s, v_i)$ and $x_j = \delta(s, v_j)$, the constraint $x_j - x_i \le w_{ii}$ is satisfied.

42

Bellman-Ford and linear programming

Corollary. The Bellman-Ford algorithm can solve a system of m difference constraints on n variables in O(mn) time.

Single-source shortest paths is a simple LP problem.

In fact, Bellman-Ford maximizes $x_1 + x_2 + \cdots + x_n$ subject to the constraints $x_j - x_i \le w_{ij}$ and $x_i \le 0$ (exercise).

Bellman-Ford also minimizes $\max_{i} \{x_i\} - \min_{i} \{x_i\}$ (exercise).

Application to VLSI layout compaction

Integrated
-circuit
features:

minimum separation λ

Problem: Compact (in one dimension) the space between the features of a VLSI layout without bringing any features too close together.

VLSI layout compaction

Constraint: $x_2 - x_1 \ge d_1 + \lambda$

Bellman-Ford minimizes $\max_i \{x_i\} - \min_i \{x_i\}$, which compacts the layout in the *x*-dimension.

4.