Homework 8

Will Boland

March 5, 2019

Question 1

 $H \rightarrow (T \land \neg R)$

Question 2

- A) $\exists (P(\mathbf{x}) \land \neg E(\mathbf{x}))$
- B) All positive numbers are even.
- C) (1,3,5,9)

Question 3

- A) $fml2 = A \land B$, $fml1 = A \lor B$
- B) $\{2/3, 4/3, -2/3\} \subseteq A \setminus \mathbb{Z}$
- C) $\{-2\} \in P(B)$

Question 4

Claim: $(R \land S) \rightarrow \neg Q, R \rightarrow S \vdash (R \land P) \rightarrow \neg (P \land Q)$

Proof

Assume $(R \land S) \rightarrow \neg Q$ and $R \rightarrow S$

- Assume $R \wedge P$, and Q (to show a contradiction)
- From $R \wedge P$, R and P. (\wedge -elimination)
- From P and Q, $P \wedge Q$ (\wedge -introduction)
- Due to $R\rightarrow S$ and R, S (\rightarrow -elimination)
- From R and S, $R \land S$ (\land -introduction)
- Due to $(R \land S) \rightarrow \neg Q$ and $R \land S$, $\neg Q$ (\rightarrow -elimination)

Assuming $R \wedge P$ and Q, we got both Q and $\neg Q$, as well as $P \wedge Q$, which contradict, so $\neg (P \wedge Q)$; therefore $(R \wedge P) \rightarrow \neg (P \wedge Q)$ (proof by contradiction/direct proof) \square

Question 5

A) False. (A=T, C=F, B=F, D=T)

B) Claim: $(A \land B) \rightarrow (C \lor D) \equiv (A \rightarrow C) \lor (B \rightarrow D)$

Proof

 $(A \land B) \rightarrow (C \lor D) \equiv \neg (A \land B) \lor (C \lor D)$ (Material implication)

- $\equiv \neg A \lor \neg B \lor (C \lor D) \text{ (Demorgans)}$
- $\equiv \neg A \lor C \lor \neg B \lor D (\lor associative)$
- $\equiv (A \rightarrow C) \lor (\neg B \lor D)$ (Implication)
- \equiv (A \rightarrow C) \vee (B \rightarrow D) (Implication) \square

Question 6

Claim: For all sets A, B, C, and D, if $A \cup C \subseteq D$, then $A \setminus B \subseteq D \setminus B$ **Proof:**

Choose sets A, B, C, and D, and assume $A \cup C \subseteq D$ — Choose $x \in A \setminus B$ and $A \cup C$.

- So $x \in A$ and $x \notin B$.
- From A \cup C, $x\in$ A or $x\in$ D
- —— Case 1: Suppose $x \in A$
- —— From this, we can directly prove $x \in D \cap A$
- —— Case 2: Suppose $x \in \mathbb{C}$
- From this, we can directly prove $x \in D \cap A$
- Either case, we proved $x{\in}\mathbf{D}{\cap}\mathbf{A}$

Therefore $A \setminus B \subseteq D \setminus B \square$