$$\sin(-\theta) = -\sin(\theta) \\
\cos(-\theta) = \cos(\theta)$$

$$\sin(A + B) = \sin(A)\cos(B) + \cos(A)\sin(B) \\
\cos(A + B) = \cos(A)\cos(B) - \sin(A)\sin(B)$$

$$\sin^{2}(\theta) = \frac{1 - \cos(2\theta)}{2} \\
\cos^{2}(\theta) = \frac{1 + \cos(2\theta)}{2} \\
\sin(A)\sin(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A + B) + \cos(A - B)}{2} \\
\sin(A)\cos(B) = \frac{\sin(A + B) + \sin(A - B)}{2} \\
\cos(A)\sin(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\sin(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(A)\sin(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(A)\cos(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\sin(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\sin(A + B) - \sin(A - B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)\cos(B) = \frac{\cos(A - B) - \cos(A + B)}{2} \\
\cos(A)$$

$$j \stackrel{\Delta}{=} \sqrt{-1}$$

$$z \stackrel{\Delta}{=} x + jy \stackrel{\Delta}{=} re^{j\theta}$$

$$x = r\cos(\theta)$$

$$y = r\sin(\theta)$$

$$r = |z| = \sqrt{x^2 + y^2}$$

$$\theta = \angle z = \tan^{-1}(y/x)$$

$$|z_1 z_2| = |z_1| |z_2|$$

$$|z_1/z_2| = |z_1| / |z_2|$$

$$|e^{j\theta}| = 1$$

$$\angle r = 0$$

$$z_1 z_2 = (x_1 x_2 - y_1 y_2) + j(x_1 y_2 + x_2 y_1)$$

$$z_1 z_2 = r_1 r_2 e^{j(\theta_1 + \theta_2)}$$

$$\overline{z} \stackrel{\Delta}{=} x - jy = re^{-j\theta}$$

$$z\overline{z} = |z|^2 = x^2 + y^2 = r^2$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2}$$

DTFT Cheat Sheet (Courtesy of Signals and Systems by Alkin, page 461-462)

Name	Signal	Transform
Discrete-time pulse	$x[n] = \left\{ \begin{array}{ll} 1 \;, & n \leq L \\ 0 & \text{otherwise} \end{array} \right.$	$X\left(\Omega\right) = \frac{\sin\left(\frac{\left(2L+1\right)\Omega}{2}\right)}{\sin\left(\frac{\Omega}{2}\right)}$
Unit-impulse signal	$x[n] = \delta[n]$	$X(\Omega) = 1$
Constant-amplitude signal	x[n] = 1, all n	$X(\Omega) = 2\pi \sum_{\alpha} \delta(\Omega - 2\pi m)$
Sinc function	\ /	$X (\Omega) = \begin{cases} 1, & \Omega < \Omega_c \\ 0, & \text{otherwise} \end{cases}$
Right-sided exponential	$x[n] = \alpha^n u[n] \;, \;\; \alpha < 1$	$X (\Omega) = \frac{1}{1 - \alpha e^{-j\Omega}}$
Complex exponential	$x[n]=e^{j\Omega_0n}$	$X(\Omega) = 2\pi \sum_{m=-\infty}^{\infty} \delta(\Omega - \Omega_0 - 2\pi m)$

 $\begin{tabular}{ll} \textbf{Table 5.4} - Some \ DTFT \ transform \ pairs. \end{tabular}$

Theorem	Signal	Transform
Linearity	$\alpha x_1[n] + \beta x_2[n]$	$\alpha X_1(\Omega) + \beta X_2(\Omega)$
Periodicity	x[n]	$X(\Omega) = X(\Omega + 2\pi r)$ for all integers r
Conjugate symmetry	x[n] real	$X^*(\Omega) = X(-\Omega)$
		Magnitude: $ X(-\Omega) = X(\Omega) $
		Phase: $\Theta(-\Omega) = -\Theta(\Omega)$
		Real part: $X_r(-\Omega) = X_r(\Omega)$
		Imaginary part: $X_i(-\Omega) = -X_i(\Omega)$
Conjugate antisymmetry	x[n] imaginary	$X^*(\Omega) = -X(-\Omega)$
		Magnitude: $ X(-\Omega) = X(\Omega) $
		Phase: $\Theta(-\Omega) = -\Theta(\Omega) \mp \pi$
		Real part: $X_r(-\Omega) = -X_r(\Omega)$
		Imaginary part: $X_i(-\Omega) = X_i(\Omega)$
Even signal		$\text{Im} \{X(\Omega)\} = 0$
Odd signal		$\operatorname{Re}\left\{ X\left(\Omega\right)\right\} =0$
Time shifting	x[n-m]	$X(\Omega) e^{-j\Omega m}$
Time reversal	x[-n]	$X(-\Omega)$
Conjugation	$x^*[n]$	$X^*(-\Omega)$
Frequency shifting	$x[n] e^{j\Omega_0 n}$	$X (\Omega - \Omega_0)$
Modulation		$\frac{1}{2} [X (\Omega - \Omega_0) + X (\Omega + \Omega_0)]$
	$x[n] \sin(\Omega_0 n)$	$\frac{1}{2} \left[X \left(\Omega - \Omega_0 \right) e^{-j\pi/2} + X \left(\Omega + \Omega_0 \right) e^{j\pi/2} \right]$
Differentiation in frequency	$n^m x[n]$	$j^{m} \frac{d^{m}}{d\Omega^{m}} [X (\Omega)]$
Convolution	$x_1[n] * x_2[n]$	$X_1(\Omega) X_2(\Omega)$
Multiplication	$x_1[n]x_2[n]$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X_1(\lambda) X_2(\Omega - \lambda) d\lambda$
Parseval's theorem	$\sum_{n=-\infty}^{\infty} x[n] ^2 = \frac{1}{2}$	$\frac{1}{2\pi} \int_{-\pi}^{\pi} X(\Omega) ^2 d\Omega$

Table 5.3 - DTFT properties.

Table 8-2 Basic discrete Fourier transform properties.

Table of DFT Properties			
Property Name	Time-Domain: x[n]	Frequency-Domain: X[k]	
Periodic	x[n] = x[n+N]	X[k] = X[k+N]	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$	
Conjugate Symmetry	x[n] is real	$X[N-k] = X^*[k]$	
Conjugation	x*[n]	$X^*[N-k]$	
Time-Reversal	$x[((N-n))_N]$	X[N-k]	
Delay	$x[((n-n_d))_N]$	$e^{-j(2\pi k/N)n_d}X[k]$	
Frequency Shift	$x[n]e^{j(2\pi k_0/N)n}$	$X[k-k_0]$	
Modulation	$x[n]\cos((2\pi k_0/N)n)$	$\frac{1}{2}X[k-k_0] + \frac{1}{2}X[k+k_0]$	
Convolution	$\sum_{m=0}^{N-1} h[m]x[((n-m))_N]$	H[k]X[k]	
Parseval's Theorem	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{k=0}^{N-1} X[k] ^2$		

Table of DFT Pairs		
Time-Domain: x[n]	Frequency-Domain: X[k]	
$\delta[n]$	1	
$\delta[n-n_d]$	$e^{-j(2\pi k/N)n_d}$	
$r_L[n] = u[n] - u[n - L]$	$\underbrace{\frac{\sin(\frac{1}{2}L(2\pi k/N))}{\sin(\frac{1}{2}(2\pi k/N))}}_{=D_L(2\pi k/N)} e^{-j(2\pi k/N)(L-1)/2}$	
$r_L[n] e^{j(2\pi k_0/N)n}$	$D_L(2\pi(k-k_0)/N) e^{-j(2\pi(k-k_0)/N)(L-1)/2}$	

 TABLE 10.2
 SOME COMMON z-TRANSFORM PAIRS

Signal	Transform	ROC
1. δ[n]	1	All z
2. $u[n]$	$\frac{1}{1-z^{-1}}$	z > 1
3. $-u[-n-1]$	$\frac{1}{1-z^{-1}}$	z < 1
4. $\delta[n-m]$	z^{-m}	All z, except 0 (if m > 0) or $\infty \text{ (if } m < 0)$
5. $\alpha^n u[n]$	$\frac{1}{1-\alpha z^{-1}}$	$ z > \alpha $
6. $-\alpha^n u[-n-1]$	$\frac{1}{1-\alpha z^{-1}}$	$ z < \alpha $
7. $n\alpha^n u[n]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z > \alpha $
$8n\alpha^n u[-n-1]$	$\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$	$ z < \alpha $
9. $[\cos \omega_0 n]u[n]$	$\frac{1 - [\cos \omega_0] z^{-1}}{1 - [2\cos \omega_0] z^{-1} + z^{-2}}$	z > 1
10. $[\sin \omega_0 n] u[n]$	$\frac{[\sin \omega_0]z^{-1}}{1 - [2\cos \omega_0]z^{-1} + z^{-2}}$	z > 1
11. $[r^n \cos \omega_0 n] u[n]$	$\frac{1 - [r\cos\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r
12. $[r^n \sin \omega_0 n] u[n]$	$\frac{[r\sin\omega_0]z^{-1}}{1 - [2r\cos\omega_0]z^{-1} + r^2z^{-2}}$	z > r

Property	Time Domain	z- Domain	Region of Convergence
Notation	h[n]	H[z]	R_{h}
	g[n]	G[z]	$R_{_{g}}$
Linearity	$\alpha h[n] + bg[n]$	$\alpha H[z] + bG[z]$	At least $R_h \cap R_g$
Time shifting	$h[n-n_0]$	$z^{-n_0}H(z)$	R_h , except z=0 if $n_0 > 0$ and z=0 if $n_0 < 0$
Time reversal	h[-n]	$H(z^{-1})$	$1/R_h$
Convolution	h[n] * g[n]	H[z]G[z]	At least $R_h \cap R_\sigma$