Power Calculation

Miles Erickson

(with Ryan Henning and Hutch Brock)

Power Calculation

Miles Erickson

(with Ryan Henning and Hutch Brock)

- 1. Review:
 - a. Central Limit Theorem
 - b. Hypothesis Testing
- 2. Type I vs Type II errors
- 3. What is "Power"?
- 4. Calculating Power / Sample Size
- 5. A/B Testing w/ Power

Standards

- Define Power and relate it to the Type II error
- Compute power given a dataset and a problem
- Explain how sample size, effect size, and significance contribute to power
- Identify what can be done to increase power

- Estimate sample size required of a test
- Define power Be able to draw the picture with two normal curves with different means and highlight the section that represents Power
- Explain trade off between significance and power

Distribution of website revenue per visitor

Underlying Distribution:

Random variable: X = revenue per visitor	P(X):
X = \$0.00 (no revenue)	90%
X = \$0.10 (ad-click)	7%
X = \$0.99 (app purchase)	3%

Distribution of sample means

Collect n samples from the website revenue distribution, calculate the sample mean \bar{x}

Repeat 10,000 times, we get:

$$\bar{x}_0, \bar{x}_1, \ldots, \bar{x}_{9999}$$

Plot all 10,000 sample means.

Central Limit Theorem

Central Limit Theorem: Std. Dev precise relationship to sample mean

Let the underlying distribution have mean and std. dev.

$$\mu$$
 and σ

The sampling distribution's mean and std. dev. will equal:

$$\mu' = \mu \\ \sigma' = \sigma / \sqrt{n}$$

Hypothesis Testing: Review

Two-sided test:

$$H_0: \mu = 0$$

$$H_A: \mu \neq 0$$

One-sided test:

$$H_0: \mu=0$$

$$H_A: \mu > 0$$
 $\alpha = 0.05$

Guessing the unknown

Hypothesis Testing: Possible Outcomes

	H₀ Is True	Ha Is True
Fail To Reject H₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

We call this the experiment's "Power". It is the probability that we **correctly reject H_0** when the null hypothesis is false.

Hypothesis Testing: Possible Outcomes

	H₀ Is True	Ha Is True
Fail To Reject H₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

Power = $P(Reject H_0 | H_a Is True)$

Hypothesis testing: the *power* region

	H₀ Is True	H _a Is True
Fail To Reject	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

The *power* measurement is in relationship to a <u>specific</u> alternative hypothesis. Think of it as the *power* to detect a particular "effect size".

Hypothesis testing: the *power* region

	H₀ Is True	H₀ Is False
Fail To Reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

What is power? How is it related to sample size, variance, effect size, and significance level?

Hypothesis testing: the *power* region

	H₀ Is True	H₀ Is False
Fail To Reject H ₀	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

Often, we know:

- 1. The "effect size" that we want to detect, and
- 2. The *power* that we want to achieve.

We then calculate the sample size needed to get what we want!

Hypothesis testing (revised with power calculation)

	H₀ Is True	H₀ Is False
Fail To Reject	Correct Decision (1 - α)	Type II Error (β)
Reject H₀	Type I Error (α)	Correct Decision (1 - β)

- 1. Decide to run an experiment, choose α and $(1-\beta)$
- 2. Calculate required sample size n
- 3. Take sample, obtain \bar{x} and \bar{s}
- 4. Accept or reject H₀

(new steps)

Calculating the required sample size

Hands-on Exploration

(power-exploration.ipynb)

A/B Testing

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 6%. (What is the standard deviation?)

We want to test a new homepage design to see if we can get a <u>7% signup rate</u>. We'll want an experiment where <u>alpha is 1%</u> and <u>power is 95%</u>.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

A/B Testing

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 1%. (What is the standard deviation?)

We want to test a new homepage design to see if we can get a <u>1.2% signup</u> rate. We'll want an experiment where <u>alpha is 5%</u> and <u>power is 80%</u>.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

A/B Testing

Setup: A/B Test our website's homepage.

Our current homepage has a signup conversion rate of 20%. (What is the standard deviation?)

We want to test a new homepage design to see if we can get a 30% signup rate. We'll want an experiment where alpha is 10% and power is 99%.

How many visitors must visit the new homepage in order to fulfill the requirements of this experiment?

Factors Influencing Power

- 1. Effect Size
- 2. Standard Deviation
- 3. Sample Size
- 4. Significance Level (α)

Review Questions

- What is the relationship between power and Type II error?
- What is the tradeoff between significance and power?
- What can be done to increase power?