

Study for In-Vehicle-Network and New V2X Architecture by New IP

Lin Han

Distinguished Engineer Network Technology Lab Futurewei Technologies Inc.

Reference

Paper: International Journal on Advances in Internet Technology
 https://www.iariajournals.org/internet_technology/inttech_v14_n12_2021_p
 aged.pdf

New IP:

- "New IP, Shaping Future Network: Propose to initiate the discussion of strategy transformation for ITU-T", TSAG C-83
- "A New Framework and Protocol for Future Networking Applications," ACM Sigcomm NEAT workshop, 2018, pp 21–26.
- "A New Framework and Protocol for Future Networking Applications," ACM Sigcomm NEAT workshop, 2018, pp 21–26.
- "6G Needs New Networking Technologies," 6G's Coming Is a New Network Architecture? 6GSymposium Spring 2022, https://youtu.be/PwB0eWvETiw.

New IP Introduction a new protocol for LEO satellite routing solution

Qualitative Payload Semantic Payload

5G vs Future Internet

	5G	Future Internet	
Purpose and	• eMBB	Ultra-high through put	
Requirements	• mMTC	 All things connected 	
	• uRLLC	High Precision Communication	
Solutions	New Radio (5G NR)	New IP	
	Service Based Architecture (SBA)		
Technologies	New spectrum	Flexible addressing	
	• MIMO	 Network Layer Multiple path 	
	 New protocol stack at UE 	 New protocol stack at host and UE 	
	• 5G NR QoS	 In-band signaling 	
	Grant Free Dynamic Scheduling	New queuing and scheduling	

New IP enabled IVN, V2X and Internet

New IP stack and integration with 5G-NR

New IVN architecture and backward compatibility

Modeling by INET and Oment++

- Modeling test architecture
- In-band Signaling process
- Traffic classification
- Queuing and Scheduling

Modelling network topology, traffic and service

H04 H05	H14	H15 H24	H25	H34 H35
ether Bus 0	etbérBùs1	ether H13 H21 H.	Bus2 H23 H31	etherBus3
ECU Computer	Scheduled traffic Between ECUs	Real-time traffic Between ECUs		ffort traffic en Computers

	Service	C = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =			
	Type				
	LGS for Scheduled	8			
	Traffic	Latency: Most precise. Network guarantees E2E bounded latency	communication: Critical sensor		
		Jitter: Approximately zero Packet Loss: Almost Zero			
		Congestion-free			
		Lossless queuing			
		Multi-path to prevent drop from physical failure			
	LGS for Real Time Traffic	- · · · · · · · · · · · · · · · · · · ·			
		Latency: Minimized. Network guarantees E2E bounded latency	Critical sensor and control data		
		Jitter: ½ of E2E bounded latency			
		Packet Loss: Minimized			
		Congestion-free			
		Lossless queuing			
		Only drop when physical failure			
ľ	BGS for	Bandwidth: Network guarantees the	Un-critical data		
	bandwidth	bandwidth is within (CIR, PIR)			
	sensitive traffic	Latency: Less important			
	tranne	Jitter: Less important			
		Packet Loss: Don't care			
	BES for other type of traffic	Don't care	Other data		

In-band Signaling and Traffic Classification

In-band Signaling Process

- At host
 - Add time-stamp, CIR/PIR, Reservation-status, etc to packet's parameter
 - TCP/UDP app modify the packet sent out
 - At the receiver,
 - Does the delay measuring and comparing with the Delay estimation (see paper)
 - Does the reservation-status process and send back
- At routers
 - · At each router, check packet's parameter and process it
 - Reserve the resource based on CIR/PIR and update Reservation-status
 - Add new entry (5 tuples) to the routing table if reservation is success
 - Prefix as key -> Prefix as key, and, 5 tuples as key for the reserved flow
- Classification
 - At host, packet is classified after sending out the interface

Queueing and Scheduling

- Algo1:
- Asynchronous
- PQ+DWDR

- Algo2:
- Synchronous
- Cyclic+PQ+DWDR

Thank You.

Copyright © 2019 Futurewei Technologies, Inc. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Futurewei may change the information at any time without notice.

