

Квалификация - Бэкенд-разработка

О 13 июн 2019, 00:11:34

старт: 21 май 2019, 13:07:21

финиш: 21 май 2019, 17:07:21

длительность: 04:00:00

начало: 20 май 2019, 12:00:00

конец: 22 май 2019, 01:59:00

F. Поиск ломающего коммита

Ограничение времени	1 секунда
Ограничение памяти	256Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

В Поиске Яндекса реализована так называемая политика «зелёного транка»: любой код, попадающий в репозиторий, с некоторыми оговорками гарантированно не ломает сборку и тесты.

Тесты, впрочем, бывают крайне сложными, и запускать их все на каждый коммит оказывается нецелесообразно. Так что для особенно сложных случаев реализована следующая процедура: тесты запускаются с некоторой регулярностью, а проверяется сразу набор коммитов. Такми образом, в течение некоторого времени в транк может попасть *п* непроверенных коммитов, среди которых как минимум один содержит ошибку.

В такой ситуации тестирующая система должна обнаружить номер m первого коммита, сломавшего тесты. Этот номер обладает следующим свойством: все коммиты с номерами, меньшими m, успешно проходят тесты, а коммиты с номерами, большими либо равными m, тесты не проходят. В данной задаче гарантируется, что коммит с указанными свойствами обязательно существует и является единственным.

В целях экономии ресурсов тестирующая система может проверять только один коммит за раз. Вам требуется написать программу, которая будет определять номер m.

Эта задача немного необычна — в ней вам предстоит реализовать интерактивное взаимодействие с тестирующей системой. Это означает, что вы можете делать запросы и получать ответы в онлайн-режиме. Обратите внимание, что ввод/вывод в этой задаче — стандартный (то есть с экрана на экран). После вывода очередного запроса обязательно используйте функции очистки потока, чтобы часть вашего вывода не осталась в каком-нибудь буфере. Например, на C++ надо использовать функцию fflush(stdout), на Java вызов System.out.flush(), на Pascal flush(output) и stdout.flush() для языка Python.

Вы можете делать запросы к тестирующей системе. Каждый запрос — это вывод целого числа, принадлежащего диапазону от I до n. В ответ тестирующая система вернёт один из двух результатов:

- строка «1» (без кавычек), если коммит с соответствующим номером успешно проходит все тесты;
- строка «0» (без кавычек), если коммит с соответствующим номером не проходит тесты.

Если ваша программа в точности знает номер m, она должна вывести строку вида «! m», после чего завершить свою работу.

Вашей программе разрешается сделать не более 25 запросов.

Формат ввода

Для чтения ответов на запросы программа должна использовать стандартный ввод.

В первой строке входных данных будет содержаться целое положительное число n ($1 \le n \le 10^6$) — количество совершённых коммитов.

В следующих строках на вход вашей программе будут подаваться строки, содержащие пары символов «1» или «0». i-я из этих строк является ответом системы на ваш i-й запрос. После того, как ваша программа угадала номер коммита, выведите «! m» (без кавычек), где m — это ответ, и завершите работу своей программы.

Тестирующая система даст вашей программе прочитать ответ на запрос из входных данных только после того, как ваша программа вывела соответствующий запрос системе и выполнила операцию flush.

Формат вывода

Для осуществления запросов программа должна использовать стандартный вывод.

Ваша программа должна выводить запросы — целые числа a_i ($1 \le a_i \le n$), по одному на строку (не забывайте выводить «*перевод строки*» после каждого выведенного числа). После вывода каждой строки программа должна выполнить операцию flush.

Каждое из чисел a_i обозначает очередной запрос к системе. Ответ на запрос программа сможет прочесть из стандартного ввода. В случае, если ваша программа угадала число m, выведите строку вида «! m» (без кавычек), где m — ответ, после чего завершите работу программы.

Ввод	Вывод
20	
	1
1	2
1	2
	3
1	
1	4
-	5
0	
	! 5

