

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών

Κινητά Δίκτυα Επικοινωνιών

Μέρος Α:

Τηλεπικοινωνιακά Θέματα:

Εισαγωγή

Ασύρματες Επικοινωνίες: Ιστορική αναδρομή

Before the "Birth of Radio", 1867-1896

- 1820: Oersted demonstrated that an electric current produces a magnetic field
- 1831: Faraday showed that an induced current is produced by moving a magnet in the vicinity of a conductor (i.e. a changing magnetic field produces an electric field)
- 1867: Based on the above background Maxwell predicted existence of electromagnetic (EM) waves and formulated the basic theory
- 1887: Hertz proved existence of EM waves; a transmitter generated a signal in a receiver several meters away
- 1890: Branly developed coherer for detecting radio waves

Ασύρματες Επικοινωνίες: Ιστορική αναδρομή

The Birth of Radio

- 1896: Guglielmo Marconi demonstrated wireless telegraph to English telegraph office
- 1897: Marconi awarded patent for wireless telegraph
- 1897: First ``Marconi station" established on Needles island to communicate with English coast
- 1898: Marconi awarded English patent no. 7777 for tuned communication
- 1898: Wireless telegraphic connection between England and France established

Transoceanic Communication

 1901: Marconi successfully transmitted radio signal across Atlantic Ocean from Cornwall to Newfoundland

 1902: First bidirectional communication across Atlantic

1909: Marconi awarded Nobel prize for physics

Voice over Radio

- 1914: First voice over radio transmission
- 1920s: Mobile receivers installed in police cars in Detroit
- 1930s: Mobile transmitters developed; radio equipment occupied most of police car trunk
- 1935: Frequency modulation (FM) demonstrated by Armstrong
- 1940s: Majority of police systems converted to FM
- Developments in electronics (vacuum tube, transistor, IC)

Ασύρματες Επικοινωνίες: Ιστορική αναδρομή

Cellular Mobile Telephony

- 1979: NTT/Japan deployed first cellular communication system
- 1983: Advanced Mobile Phone System (AMPS) deployed in US in 900 MHz band: supports 666 duplex channels
- 1989: Groupe Spècial Mobile defined European digital cellular standard, GSM
- 1991: US Digital Cellular phone system introduced (IS-54)
- 1993: IS-95 code-division multiple-access (CDMA) spread- spectrum digital cellular system deployed in US
- 1994: GSM system deployed in US, relabeled ``Global System for Mobile Communications"

Ασύρματες Επικοινωνίες: Ιστορική αναδρομή

PCS and Beyond

- 1995: International and national level boards auctioned off new frequency bands for Personal Communications Systems (PCS) at 1.8 GHz
- 2000: Third generation cellular system standards started being established
- 2005: Number of cellular telephone users more than 2B worldwide (10M in 1990)
- Today and in coming years: intensive research and technological efforts towards next generations

Κινητές επικοινωνίες : Πληθώρα κινητών συσκευών

Pager

- receive only
- tiny displays
- simple text messages

Sensors, embedded controllers

PDA

- graphical displays
- character recognition
- simplified WWW

Mobile phones

- voice, data
- simple graphical displays

Palmtop

- tiny keyboard
- simple versions of standard applications

performance

Κινητές επικοινωνίες : Συστήματα για εφαρμογές υψηλής κινητικότητας

- κινητή ασύρματη τηλεφωνία: υπηρεσία μετάδοσης φωνής, σύστημα GSM, DCS-1800, 2.5 G, 3G...
 - πολυμεσικές υπηρεσίες (εικόνα, βίντεο ...)
 - απαίτηση για υψηλούς ρυθμούς μετάδοσης
 της τάξεως των μερικών Mb/s
 - ασύρματη μετάδοση: πολυδιόδευση του σήματος, διασυμβολική παρεμβολή, χειροτερεύει όσο αυξάνεται ο ρυθμός μετάδοσης
 - Πολύπλοκη ψηφιακή επεξεργασία

- Χρησιμοποιούνται πολλαπλοί αναμεταδότες με πομπούς χαμηλής ισχύος (P_t < 100W) έως πολυ χαμηλής ισχύος
- Η όλη περιοχή ενδιαφέροντος υποδιαιρείται σε υποπεριοχές (κυψέλες)
- Σε κάθε κυψέλη (cell) αντιστοιχεί ένας αναμεταδότης ή σταθμός βάσης (base station) που περιλαμβάνει πομπό, δέκτη και ελεγκτή (για μια ομάδα από BS).
- Στην περιοχή ευθύνης του κάθε σταθμού βάσης ανατίθενται συγκεκριμένες ζώνες συχνοτήτων.
 Επαναχρησιμοποίηση των συχνοτήτων (Frequency reuse) σε παραγειτονικές κυψέλες.

Κινητές Επικοινωνίες: Η ιδέα της κυψέλης

Κινητές Επικοινωνίες : Πρότυπα κυψελών σε κέντρα πόλεων

Κινητές Επικοινωνίες: Cell clusters

Κινητές Επικοινωνίες: Handoff (Handover)

- Τι γίνεται όταν ένας χρήστης μετακινείται από μια κυψέλη σε μια άλλη κατά τη διάρκεια μιας κλήσης;
- Ο γειτονικός σταθμός βάσης αναλαμβάνει την εξυπηρέτησή του.
- Η διαδικασία ονομάζεται handoff
- Προβλήματα που εμφανίζονται:
 - Ποιος αποφασίζει για το αν πρέπει να γίνει ή όχι (κινητό, BS, ή και οι δύο μαζί);
 - Πότε γίνεται ένα handoff; Αποφυγή συχνών και ανούσιων handoffs.
 - Πώς θα ειδοποιούνται το κινητό, το προηγούμενο BS και το επόμενο BS;

LOS, Reflection, Diffraction, Scattering

Κινητές Επικοινωνίες: Γενική περιγραφή του συστήματος

Κινητές Επικοινωνίες: Λειτουργικό διάγραμμα

Ψηφιακό Τηλεπικοινωνιακό Σύστημα: Η Βασική Δομή

Ψηφιακό Τηλεπικοινωνιακό Σύστημα (2)

Πηγή:

- Αναλογικό σήμα (π.χ. ήχος, video)
- Ψηφιακή (διακριτού χρόνου διακριτών τιμών)
- Ένα αναλογικό σήμα μπορεί να μεταδοθεί άμεσα με FM, AM, PM
- Για ψηφιακή μετάδοση πρέπει να δειγματοληπτηθεί και να κβαντιστεί
- Πλεονεκτήματα Ψηφιακής νε Αναλογικής Μετάδοσης:
 - Αναγέννηση σήματος σε μακρινές μεταδόσεις, μείωση του θορύβου
 - Απόρριψη της πλεονάζουσας πληροφορίας
 - Τα ψηφιακά συστήματα είναι γενικά φθηνότερα στην υλοποίησή τους

Ψηφιακό Τηλεπικοινωνιακό Σύστημα (3)

- Κωδικοποίηση Αποκωδικοποίηση Πηγής (Source Coding - Decoding)
 - Η ακολουθία εξόδου της πηγής είναι ψηφιακή
 - Θέλουμε να την αναπαραστήσουμε με όσο λιγότερα bits γίνεται
 - Απορρίπτουμε την περιττή πληροφορία
- Μεγάλο μέρος της πληροφορίας που μεταδίδεται σε ασύρματα δίκτυα είναι φωνή, οπότε θα δώσουμε ιδιαίτερο βάρος σε αυτήν
 - Αναζητούμε κωδικοποιητές με μεγάλη συμπίεση (χαμηλά Bit rate) και καλή ποιότητα φωνής

Ψηφιακό Τηλεπικοινωνιακό Σύστημα (4)

- Κωδικοποίηση Αποκωδικοποίηση Καναλιού (Channel Coding Decoding)
 - Εισάγεται πλεονάζουσα πληροφορία με ελεγχόμενο και συστηματικό τρόπο
 - Τα bits αυτά δε μεταφέρουν πληροφορία , αλλά δίνουν τη δυνατότητα στον αποκωδικοποιητή να ανιχνεύει ή και να διορθώνει λάθη
- Κώδικες Διόρθωσης Τυχαίων Σφαλμάτων Κώδικες Διόρθωσης Σφαλμάτων Καταιγισμού
 - Block Κώδικες Συνελικτικοί Κώδικες (Convolutional Codes)
- Block κώδικες:
 - Block k bits πληροφορίας αντιστοιχούνται σε n bits (n>k)
 - Το μέγεθος πλεονάζουσας πληροφορίας μετράται από το λόγο n/k.
 - Π.χ. Hamming, Hadamard, Golay, Cyclic Codes, BCH, Reed-Solomon
- Συνελικτικοί Κώδικες:
 - Η συνεχής ακολουθία πληροφορίας αντιστοιχίζεται σε συνεχή ακολουθία κωδικοποιημένων bits.
 - Κωδικοποίηση: δομή από καταχωρητές ολίσθησης (shift registers)
 - Αποκωδικοποίηση: χρησιμοποιείται ο αλγόριθμος Viterbi

Ψηφιακό Τηλεπικοινωνιακό Σύστημα (5)

- Ψηφιακή Διαμόρφωση Αποδιαμόρφωση (Digital Modulation Demodulation)
 - Το φυσικό κανάλι δε μπορεί να στείλει bits, αλλά κυματομορφές
 - Η διαμόρφωση αντιστοιχεί κάθε bit σε μια κυματομορφή:

$$0$$
 \rightarrow $s_0(t)$, $0 < t < T_s$
 1 \rightarrow $s_1(t)$, $0 < t < T_s$

- Αυτό είναι δυαδική διαμόρφωση (Binary Modulation)
- Μπορούμε να έχουμε ομάδες από b bits, και να αντιστοιχηθούν σε
 M=2^b κυματομορφές:

```
0' \rightarrow s_0(t), 0 < t < T_s

1' \rightarrow s_1(t), 0 < t < T_s

...

1' \rightarrow s_1(t), 0 < t < T_s

...

1' \rightarrow s_{M-1}(t), 0 < t < T_s
```

- Αυτό είναι Μ-αδική διαμόρφωση (M-ary Modulation)
- Η εξέλιξη σε VLSI και DSP βοήθησε ώστε η ψηφιακή διαμόρφωση να είναι αποδοτικότερη από την αναλογική

Ψηφιακό Τηλεπικοινωνιακό Σύστημα (6)

• Γενικά πλεονεκτήματα:

- Μεγαλύτερη ευρωστία σε παραμορφώσεις καναλιού (θόρυβο)
- Εύκολη πολυπλεξία διαφορετικής πληροφορίας
- Μεγαλύτερη ασφάλεια
- Ψηφιακές επεξεργασίες σήματος (κώδικες ανίχνευσης, συμπίεση, κρυπτογραφία, ισοστάθμιση) βελτιώνουν την απόδοση του καναλιού
- S/W υλοποιήσεις

Κανάλι ή Δίαυλος (1)

• Κανάλι:

- Το φυσικό μέσο μεταξύ πομπού και δέκτη
- Ατμόσφαιρα, νερό (υποβρύχιες επικοινωνίες), καλώδιο, οπτική ίνα

Υποβαθμίσεις:

- Προσθετικός θόρυβος, λευκός, Gaussian.
 - Εμφανίζεται στην είσοδο του δέκτη, λόγω του ενισχυτή.
 - Διάφορες πηγές θορύβου: θερμικός στο φυσικό μέσο και στα συστήματα εκπομπής-λήψης, ραδιο-ακτινοβολίες, κ.ά.
- Κρουστικός Θόρυβος
 - Μεγάλα ήρεμα διαστήματα και καταιγισμοί θορύβου μεγάλου πλάτους (π.χ. καταιγίδες)
- Διασυμβολική Παρεμβολή (InterSymbol Interference ISI)

Κανάλι ή Δίαυλος (2)

Ενσύρματο κανάλι:

Σχετικά στάσιμο και προβλέψιμο

Ασύρματο κανάλι:

- τυχαίο, δύσκολη ανάλυση
- ένα μονοπάτι μετάδοσης μπορεί να διαφέρει σημαντικά από LOS έως την περίπτωση που εμποδίζεται από βουνά, κτίρια, κ.λ.π.
- γίνεται με στατιστικό τρόπο και βασίζεται σε μετρήσεις
- Το κινητό κανάλι: Ιδιαίτερα δύσκολο με σημαντικές και ποικίλες υποβαθμίσεις
- Τρόποι διάδοσης: LOS, Reflection, Diffraction, Scattering

Multiple Access Schemes

- Πρόσβαση Πολλαπλών Χρηστών
- Το μοίρασμα του φάσματος είναι απαραίτητο για να αυξηθεί η χωρητικότητα ενός συστήματος
- Κάποιες από τις βασικές τεχνικές :
 - FDMA (Frequency Division Multiple Access)
 - TDMA (Time Division Multiple Access)
 - CDMA (Code Division Multiple Access)
 - SDMA (Space Division Multiple Access)
- Οι Multiple Access Τεχνικές δεν πρέπει να συγχέονται με τις Duplexing τεχνικές (δυνατότητα ταυτόχρονης ή μη εκπομπής και λήψης) που είναι οι:
 - Simplex
 - Half-Duplex
 - Full-Duplex
 - FDD (Frequency Division Duplexing)
 - TDD (Time Division Duplexing)
 - Μπορεί να έχω συνδυασμούς, π.χ. TDMA/FDD (GSM)

Συγχρονισμός (Synchronization)

- Carrier Phase Tracking
 - Χρειαζόμαστε ένα συμφασικό αντίγραφο της φέρουσας στο δέκτη
 - Υλοποιείται με PLL
- Symbol Synchronization
 - Η έξοδος του φίλτρου δέκτη δειγματοληπτείται ανά t_m =m T_s + t_0
 - Πρέπει να γνωρίζουμε την περίοδο συμβόλου Τ_s
 - Και την ακριβή χρονική στιγμή τ₀
- Τεχνικές Symbol Synchronization:
 - Master Clock
 - Το σήμα χρονισμού μεταδίδεται μαζί με τα δεδομένα
 - Το σήμα χρονισμού εξάγεται από τα δεδομένα

Ισοστάθμιση (Equalization)

- Καθώς το σήμα διέρχεται από το κανάλι υφίσταται διασυμβολική παρεμβολή (intersymbol interference ISI)
- Τα σύμβολα διαπλέκονται μεταξύ τους
- Κάθε σύμβολο επηρεάζει τα επόμενα και τα προηγούμενά του
- Ο ισοσταθμιστής (equalizer) είναι μια διάταξη που προσπαθεί να ακυρώσει το μπέρδεμα αυτό
- Στις ασύρματες επικοινωνίες, συχνά ο ισοσταθμιστής πρέπει να είναι προσαρμοστικός, εφόσον το κανάλι είναι άγνωστο και χρονικά μεταβαλλόμενο

GSM ως παράδειγμα

- Ζώνες:
 - 890-915 MHz (uplink channel)
 - 935-960 MHz (downlink channel)
- Σε κάθε ζώνη είναι 125 κανάλια με εύρος ζώνης 200 KHz το καθένα
- Χρησιμοποιούνται clusters και επαναχρησιμοποίηση συχνοτήτων ανά κυψέλη
- Μέγιστη ακτίνα κυψέλης 35 Km
- Κάθε κανάλι εξυπηρετεί 8 χρήστες με TDMA και συνολικό ρυθμό 270
 Kbps

GSM ως παράδειγμα (2)

Table 15.1 Comparison of European digital cordless and cellular telephony systems.

Service alies trefuted lives	CT2	DECT	GSM 900	DCS 1800
Operating band (MHz)	864 – 868	1880 - 1900	890 – 960	1710 - 1880
Bandwidth (MHz)	4	20	2 × 25	2×75
Access method	FDMA	MF-TDMA	TDMA	TDMA
Peak data rate (kbit/s)	72	1,152	270	270
Carrier separation (kHz)	100	1,728	200	200
Channels per carrier	11 Transmoon o	12	8	8
Speech coding	32 kbit/s	32 kbit/s	22.8 kbit/s	22.8 kbit/s
Coding/equalisation	no	no	yes	yes
Modulation	FSK	Gaussian FSK	GMSK	GMSK
Traffic channels/MHz	10	7	19	19
Mobile power output (W)	0.01	0.25	0.8 - 2.0	0.25 - 1
Typical cell size	50 – 200 m	50 - 200 m	0.3 - 35 km	0.02 - 8 km
Operation in motion	walking pace	walking pace	> 250 km/h	> 130 km/h
Capacity (erlangs/km²)	N/A	10,000+	1,000	2,000

Χρονοθυρίδα 0.577 ms για κάθε χρήστη, μια ομάδα 8
 χρονοθυρίδων καλείται TDMA frame και μεταδίδεται κάθε 4.615 ms

- Συνολικά μεταδίδονται 156.25 bit στα 0.577 ms, gross bit rate 270.833 kbps
- Η ακολουθία εκμάθησης των 26 bit χρησιμοποιείται για την ισοστάθμιση
- Η ισοστάθμιση λειτουργεί διερευνώντας το πώς η γνωστή εκπαιδευτική ακολουθία επηρεάζεται από την πολυδιόδευση
- Η υλοποίηση του ισοσταθμιστή δεν προσδιορίζεται στις προδιαγραφές του GSM

Σύστημα GSM

UMTS

GPRS, EDGE

"General packet radio services"
"Enhanced data rate for GSM evolution"

GSM, DCS

- Συστήματα MIMO (Multiple-Input Multiple-Output)
- Ενιαία αντιμετώπιση των διαδικασιών: Διαμόρφωση – Ισοστάθμιση – Κωδικοποίηση Διαύλου
- Προσαρμοστικές διαμορφώσεις. Αντιμετώπιση των μη γραμμικοτήτων.
- Θέματα υλοποιήσεων (απαιτήσεις πραγματικού χρόνου, περιορισμένη κατανάλωση)

- Βελτιστοποιήσεις με συνεργασία επιπέδων (αύξηση ολικής χωρητικότητας, εύρεση θέσης κλπ)
- 'Καιροσκοπικές' και συνεργατικές επικοινωνίες
- Software radio (reconfigurable transceiver)
- Software Defined Radio
- Cognitive Radio / Green Radio

- Δίαυλος Κινητής Επικοινωνίας:
 - Ιδιαίτερα Χαρακτηριστικά
 - Μοντελοποίηση
- Τεχνικής Κωδικοποίησης Πηγής: Έμφαση στην περίπτωση της Φωνής
- Αποδοτικές Τεχνικές Ψηφιακής Διαμόρφωσης
- Ισοστάθμιση (Εξίσωση) Διαύλου
- Διαφορετικότητα λήψης και εκπομπής (diversity)