ND A122963

AFWAL-TR-82-4136

EFFECTS OF MANUFACTURING PROCESSES ON STRUCTURAL ALLOWABLES

BATTELLE Columbus Laboratories 505 King Avenue Columbus, Ohio 43201

November 1982

Final Report for Period Sept. 1980 to July 1982

Approved for public release; distribution unlimited.

MATERIALS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

82 03 03

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

N. R. ONTKO

Project Engineer

Materials Integrity Branch

Clayton & Harmworth

CLAYTON L. HARMSWORTH Technical Manager for Engineering & Design Data Materials Integrity Branch

FOR THE COMMANDER

T. D. Cooper, Chief

Materials Integrity Branch Systems Support Division

Materials Laboratory/MLSA

If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization, please notify <u>AFWAL/MLSA</u> W-PAFB, OH 45433 to help us maintain a current mailing list.

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATI	READ INSTRUCTIONS BEFORE COMPLETING FORM			
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER		
_ AFWAL-TR-82-4136	AD-A122963			
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED Final		
EFFECTS OF MANUFACTURING PROCE	SSES ON	Sept. 1980 - July 1982		
CTDUCTUDAL ALLOWADI DO		6. PERFORMING ORG. REPORT NUMBER		
7. AUTHOR(a)		B. CONTRACT OR GRANT NUMBER(4)		
Dana J. Jones, and Stephen C.	Ford	F33615-80-C-5168		
9. PERFORMING ORGANIZATION NAME AND ADDR	RESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS		
Battelle's Columbus Laboratori	es	Program Element		
505 King Avenue		78011F		
Columbus, OHio 43201				
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE		
Materials Laboratory (AFWAL/MI	SA)	November 1982		
AF Wright Aeronautical Laborat		13. NUMBER OF PAGES		
Wright-Patterson Air Force Bas 14. MONITORING AGENCY NAME & ADDRESS(II dit	e. Ohio 45433	161 15. SECURITY CLASS. (of this report)		
14. MONITORING AGENCY NAME & ADDRESS(11 att	terent from Controlling Office)	15. SECURITY CEASS. (or and report)		
		Unclassified		
		15a. DECLASSIFICATION/DOWNGRADING		
		SCHEDOLE		
16. DISTRIBUTION STATEMENT (of this Report)				
Approved for public release; distribution unlimited.				
,				
·				
17. DISTRIBUTION STATEMENT (of the abstract ent	ered in Block 20, il dillerent fro	m Report)		
18. SUPPLEMENTARY NOTES				
18. SUPPLEMENTARY NOTES				
19. KEY WORDS (Continue on reverse side il necessa	ry and identify by block number)			
Mechanical Properties Powder	Metallurgy	T1-6A1-4V (CHIP)		
·	-			
	um Alloys	T1-10V-2Fe-3A1 CT-91-T7E69		
Crack Propagation Steel	Alloys	AF 1410 Forging/Plate		
20 ABSTRACT (Continue on reverse side if necessar	y and identify by block number)			
The major objective of this program was to evaluate the effect that newly				
established manufacturing tech				
structural materials which have				
sheet-type presentations of en				
managal	.e-meerine broberrie	hrehered top each		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

Unclassified

FOREWORD

This report was prepared by Battelle's Columbus Laboratories under Contract F33615-80-C-5178. The program was administered under the direction of the Materials Laboratory (AFWAL), Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, by Mr. Neal R. Ontko, Engineering and Design Data, Materials Integrity Branch.

This final report covers work conducted from September 1980 to Jul 1982. The report was submitted by the authors on July 8, 1982.

The authors wish to express their appreciation to B. Leis, P. Ruff, R. Rungta, O. Deel, N. Frey, E. Swetnam, and J. VanEcho for their assistance and support on the program.

Accession For NTIS GRAMI DITC TAB Unaparounced Justification	7 7
Distribution/ Availability Codes Avail and/or Dist Special	

TABLE OF CONTENTS

			Page
Test Ti-6Al- CT-91-T Ti-10V- Appendi Appendi	ing 4V A 7E69 2Fe- x A	Procedures lloy (CHIP) Aluminum 3Al Isothermally Forged Pancake - Data Sheets - Specimen Drawings - AF 1410 Supplemental Data	1 4 28 55 76 101 111
		LIST OF ILLUSTRATIONS	Page
Figure	1.	Typical tensile stress-strain curves for annealed Ti-6A1-4V (CHIP) alloy	18
	2.	Effect of temperature on the tensile properties of annealed Ti-6Al-4V (CHIP) alloy	19
	3. 4.	Typical compressive stress-strain curves for annealed Ti-6Al-4V (CHIP) alloy	20
	5.	Ti-6Al-4V (CHIP) alloy	21
	6.	annealed Ti-6Al-4V (CHIP) alloy	22
	7.	annealed Ti-6Al-4V (CHIP) alloy	22
	8.	annealed Ti-6Al-4V (CHIP) alloy	23 24
	9.	Typical bearing test specimen for annealed Ti-6Al-4V (CHIP) alloy after testing (e/D = 2.0)	24
	10.	Axial load fatigue behavior of unnotched, annealed Ti-6Al-4V (CHIP) alloy	25
	11.	Axial load fatigue behavior of notched (K _t = 3.0), annealed Ti-6Al-4V (CHIP) alloy	25
	12. 13.	Stress-rupture and plastic deformation curves for annealed Ti-6Al-4V (CHIP) alloy	26
	14.	(CHIP) alloy	27 43
	15.	Typical tensile stress-strain curves for longitudinal CT-91-T7E69 aluminum extrusion	44
	16.	Typical tensile stress-strain curves for long trans- verse CT-91-T7E69 aluminum extrusion	45
	17.	Effect of temperature on tensile properties of CT-91-T7E69 aluminum extrusions	46
	18.	Typical compressive stress-strain curves for longitudinal CT-91-T7E69 aluminum extrusion	47
	19.	transverse CT-91-T7R69 sluminum extrusion	48

v

		LIST OF ILLUSTRATIONS (Concluded)	
			Page
Figure	20.		
		tudinal CT-91-T7E69 aluminum extrusion	49
	21.	-//	
		transverse CT-91-T7E69 aluminum extrusion	50
	22.		
		CT-91-T7E69 aluminum extrusion	51
	23.		
	24.	CT-91-T7E69 aluminum extrusion	51
	47.	CT-91-T7E69 aluminum extrusion	52
	25.		32
		verse CT-91-T7E69 aluminum extrusion	53
	26.		
		transverse CT-91-E7E69 aluminum extrusion	53
	27.	Plot of da/dN versus delta K for CT-91-T7E69 aluminum	
		extrusion	54
	28.	Specimen location for STA Ti-10V-2Fe-3Al isothermally	
		forged pancake	70
	29.		
		$(K_t = 3.0)$, STA Ti-10V-2Fe-3Al pancake at room	
	30.	temperature, long transverse	73
		Plot of da/dN versus delta K for STA Ti-10V-2Fe-3Al pancake .	74 75
	JI.	1200 01 (m) with the desired in 191 out 12 210 Jun Patiente.	75
		LIST OF TABLES	
			Page
Table	. 1	Tensile Test Results for Annealed Ti-6Al-4V (CHIP) Alloy .	-
TODIC	2.	. The state of th	7
		Alloy	8
	3.	Results of Shear Pin Tests on Annealed Ti-6A1-4V	·
		(CHIP) Alloy	9
	4.	Bearing Test Results at e/D = 1.5 and e/D = 2.0 for	
		Annealed Ti-6Al-4V (CHIP) Alloy	10
	5.		
		(CHIP) Alloy at Room Temperature	11
	6.	Axial Load Fatigue Test Results for Unnotched Annealed	
	-	Ti-6Al-4V (CHIP) Alloy at a Stress Ratio of R = 0.1	12
	7.		
		Annealed Ti-6Al-4V (CHIP) Alloy at a Stress Ratio of	12
	8.	R = 0.1	13
	٠.	Annealed Ti-6Al-4V (CHIP) Alloy at 800 F (700 K)	14
	9.	Results of Stress-Corrosion-Cracking Tests at Room	47
		Temperature for Annealed Ti-6Al-4V (CHIP) Alloy	15
	10.	Fatigue-Crack-Propagation Data for Annealed Ti-6A1-4V	
		(CNTP) Allow	• •

LIST OF TABLES (Concluded)

			Page
Table	11. 12.	Tensile Test Results for CT-91-T7E69 Aluminum Extrusion Compressive Test Results for CT-91-T7E69 Aluminum	30
		Extrusion	31
	13.	Results of Pin Shear Tests on CT-91-T7E69 Aluminum Extrusion	32
	14.	Bearing Test Results at $e/D = 1.5$ and $e/D = 2.0$ for	
	15.	CT-91-T7E69 Aluminum Extrusion	33
	16.	Extrusion at Room Temperature	34
		Aluminum Extrusion - Long Transverse	35
	17.	Axial Load, Notched (K _t = 3.0) Fatigue Test Results for CT-91-T7E69 Aluminum Extrusion - Long Transverse	36
	18.	Results of the Stress-Corrosion-Cracking Tests at Room Temperature for CT-91-T7E69 Aluminum Extrusion L-T	
		Specimens	37
	19.	Fatigue-Crack-Propagation Data for CT-91-T7E69 Aluminum	
		Extrusion, L-T Specimens	38
	20.	Tensile Test Results for STA Ti-10V-2Fe-3Al Pancake	57
	21.	Room Temperature Compression Test Results for STA	
		Ti-10V-2Fe-3Al Pancake	58
	22. 23.	Pin Shear Test Results for STA Ti-10V-2Fe-3Al Pancake Bearing Test Results at e/D = 1.5 and e/D = 2.0 for	59
		STA Ti-10V-2Fe-3Al Pancake	60
	24.	Axial Load Unnotched Fatigue Test Results at Room Temper-	
		ature for STA Ti-10V-2Fe-3Al Pancake - Long Transverse	61
	25.	Axial Load Notched (K _t = 3.0) Fatigue Test Results at Room Temperature for STA Ti-10V-2Fe-3Al Pancake -	
		Long Transverse	62
	26.	Fatigue-Crack-Propagation Data for STA Ti-10V-2Fe-3A1	
		Pancake at Room Temperature - L-T Specimen	63
	27.	Fatigue-Crack-Propagation Data for STA Ti-10V-2Fe-3A1	
		Pancake at 600 F (589 K) - L-T Specimen	67

INTRODUCTION

Materials for United States Air Force advanced weapons systems must meet new combinations of design load and damage tolerance requirements as well as tightened economic and environmental constraints. New alloys and modifications in manufacturing processing or product forms of existing alloys are continually being developed to meet these increased demands. However, many potentially attractive materials or processes are either in the final development stage or have just become commercially available and, as such, engineering data adequate for comparison purposes are not available.

The Air Force, in recognition of this fact, has sponsored several programs at Battelle's Columbus Laboratories to provide comparative engineering data for these materials and processes. The results of these programs have been published in numerous technical reports, AFML-TR-67-418, AFML-TR-68-211, AFML-TR-70-252, AFML-TR-71-249, AFML-TR-72-196 (Volumes I and II), AFML-TR-73-114, AFML-TR-75-97, AFML-TR-77-198, AFML-TR-78-179, and AFWAL-TR-80-4103.

This report presents the results of evaluations of three materials produced by powder metallurgy processes. These materials are as follows:

- (1) Ti-6Al-4V alloy, cold isostatically pressed, vacuum sintered, and hot isostatically pressed
- (2) CT-91-T7E69 aluminum alloy, extruded bar
- (3) Ti-10V-2Fe-3Al alloy, isothermally forged pancake

The engineering property data sheets issued on the above materials are reproduced in Appendix A of this report.

A data sheet was developed on AF 1410 material and issued in early 1978. However, because of concern for the sensitivity of the material to heat treatment and those effects upon fatigue, the full data package was withheld from publication in AFML-TR-78-179. Since it appears that additional fatigue data will not be developed in the near future, the full data package is included in Appendix C.

Testing Procedures

Certain standard testing procedures for evaluating some of the basic properties of metals have been well established for many years. Other testing procedures, such as those used for measuring fracture toughness and crack propagation, have not been standardized completely and sometimes require considerable judgment in selecting appropriate specimens, conducting the tests, and interpreting the data. To obtain the most useful information from these evaluations and a thorough understanding of the significance of the data, close liaison was maintained between the Project Monitor and Battelle's Columbus Laboratories.

In discussing the testing procedures in the following paragraphs, emphasis is given to procedures not covered in detail in standard specifications. All testing was performed in a laboratory air environment except for the stress corrosion evaluations.

Testing of the Ti-6Al-4V (CHIP) and CT-91-T7E69 alloys was accomplished by Battelle and followed the procedures described below. Testing of the Ti-10V-2Fe-3Al alloy was performed by the Materials Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base.

Specimen drawings are shown in Appendix B of this report.

Tension Tests. Tension-test specifications are covered by ASTM Methods E8 and E21. These specifications were followed in measuring tensile yield strength at 0.2 percent offset, ultimate strength, elongation, and reduction in area.

For elevated-temperature tensile tests, specimens were held at the test temperature from 15 to 30 minutes before loading. The strain rate was 0.005 inch per inch per minute (0.005 mm/mm/min), as indicated by a strain pacer, until the yield strength was exceeded and then the speed was 0.1 inch per inch per minute (0.1 mm/mm/min) until fracture. Averaging-type extensometers with extensions to position the linear differential transformer unit out of the furnace were used with appropriate autographic recorders to plot load-strain curves to past the yield load. The extensometer-recorder combination was calibrated regularly as a unit. Yield strengths were measured from the load-strain curves at 0.2 percent offset. Young's modulus values also were measured from the load-strain curves.

Compression Tests. ASTM Method E9 and temperature-control provisions of E21 were used in measuring compressive modulus and compressive yield strength at 0.2 percent offset.

For cylindrical specimens the ends were machined paralled to within 0.0002 inch (0.0051 mm) and fixturing was used to maintain alignment during testing. The strain rate was 0.005 inch per inch per minute (0.005 mm/mm/min) to past the yield load. The specimens were instrumented to assure adequate temperature control. Data reported were compressive yield strength and compressive modulus at room temperature and at two elevated temperatures.

Shear Tests. A 0.250 inch (6.35 mm) double-shear specimen was used with conventional equipment.

Bearing Tests. Bearing tests were conducted in accordance with ASTM E238. All tests were "clean pin" tests as defined in the above specification. The data reported are ultimate bearing strength and bearing yield strength at e/D ratios of 1.5 and 2.0.

<u>Fracture-Toughness Testing</u>. Compact-tension specimens of appropriate dimensions were utilized in accordance with ASTM E399 for fracture toughness tests.

Fatigue Tests. Fatigue testing was conducted according to ASTM E466. Tests were performed on unnotched and notched ($K_t = 3.0$) specimens in axial-tension loading to define an S-N curve between 10^3 and 10^7 cycles. The stress ratio for all tests was R = 0.1.

Elevated temperatures were attained by using induction heating. Thermocouples attached to the specimens were used to adjust and control temperatures in conjunction with appropriate temperature controllers. The critical gage section of the specimens was held at temperature for approximately 10 minutes prior to stress application. When specimen failure occurred, the fatigue machine and heater automatically stopped.

Creep Tests. Standard creep-testing frames, using deadweight loading of the specimen, were employed. These machines are calibrated within the requirements of ASTM E139. Chromel A and platinum heater wire furnaces with taps along the side that allow for correcting small temperature differences (+ 2 F, + 1.1 K) along the gage length of the specimen were utilized. Windows in the front or back of the furnaces allowed creep measurements to be made optically using platinum strip extensometers attached either directly to the gage section or on the shoulder of the specimen. The microscopes for these optical measurements were fitted with filar eyepieces whose smallest division corresponds to a 1 inch (2.54 cm) gage length to a strain of 0.005 percent. Zero reading was taken after the specimen reached the test temperature with no stress applied. The initial deformation was obtained by applying the entire stress as rapidly as possible. Foxboro temperature controllers operating on high-low power input, controlled the test temperature to within about 1.5 F (0.8 K) of the intended temperature. A minimum of three thermocouples were attached to the gage section of each specimen. The thermocouples were made from calibrated wire and new couples were employed for each test.

Stress-Corrosion Cracking. Increasing K tests at room temperature were conducted using a chamber on the specimen to hold a flow of 3½% NaCl. Precracked compact tension type specimens were used.

Crack-Growth Testing (da/dN). Constant-amplitude tests at a stress ratio of R = 0.1 were conducted in accordance with ASTM E647. A compact tension specimen was used. Emphasis was placed on data within a da/dN range of 10^{-4} to 10^{-7} inch/cycle.

Ti-6Al-4V Alloy (CHIP)

Material Description

This Ti-6Al-4V alloy, a powder metallurgy product from Dynamet Technology, was received in the form of sixty 5/8" (1.59 cm) diameter x 5" (13 cm) bars, seven 0.125" (0.318 cm) x 2" (5 cm) x 12" (30 cm) strips, and nine 3/4" (1.9 cm) x 3" (8 cm) x 3" (8 cm) blanks.

The chemical composition of this lot was as follows:

Chemical	Percent
Composition	Weight
Aluminum	5.70
Vanadium	4.22
Carbon	0.024
Hydrogen	0.0013
Nickel	0.0112
0xy gen	0.10
Others	0.43
Titanium	Balance.

The nine 3/4" (1.9 cm) x 3" (8 cm) x 3" (8 cm) blanks were used to make the compact tension specimens. The sixty 5/8" (1.59 cm) diameter x 5" (13 cm) bars were used for tensile, compressive, shear, and fatigue specimens, and the 0.125" (0.318 cm) x 2" (5 cm) x 12" (30 cm) strips were used for bearing specimens.

Processing and Heat Treating

The Ti-6Al-4V alloy was received in the "CHIP"ed condition. "CHIP" (Cold Hot Isostatically Pressed) processing means the material was cold isostatically pressed at 60,000 psi (413.7 MPa), vacuum sintered at 2250 F (1505 K) for 3 hours and furnace cooled, and hot isostatically pressed at 15,000 psi (103.4 MPa) at 1650 F (1172 K) to achieve the desired density and mechanical properties. The above conditioning left the material in an annealed state.

Test Results

The results of this evaluation show strength values comparable to wrought annealed material. The tensile and compression strengths were slightly lower while the bearing and shear strengths were slightly higher.

Tension. Tests were conducted at 78 F (299 K), 400 F (478 K), and 800 F (700 K), with the test results shown in Table 1. Typical stress-

strain curves at temperature are presented in Figure 1. The effect-of-temperature curves are displayed in Figure 2.

Compression. Tests were conducted at 78 F (299 K), 400 F (478 K), and 800 F (700 K), with the results shown in Table 2. Typical stress-strain and tangent-modulus curves are presented in Figures 3 and 4. Effect-of-temperature curves are shown in Figure 5.

Shear. Tests were conducted at 70 F (294 K), 400 F (478 K), and 800 F (700 K), with the results shown in Table 3. Figure 6 shows the effect-of-temperature curve.

Bearing. Results of the bearing tests (e/D = 1.5, e/D = 2.0) at 70 F (294 K), 400 F (478 K), and 800 F (700 K) are presented in Table 4. Effect-of-temperature curves are shown in Figure 7. Photographs of some typical failures are shown in Figures 8 and 9.

Fracture Toughness. Results of compact-tension-type specimen tests at 68 F (293 K) are shown in Table 5. The calculated K_Q values shown are valid K_{IC} values per ASTM E399.

Fatigue. The axial-load fatigue test results on unnotched and notched ($K_t=3.0$) specimens at 74 F (296 K) and 800 F (700 K) are presented in Tables 6 and 7. S-N curves are shown in Figures 10 and 11.

Creep and Stress Rupture. Tests were conducted at 800 F (700 K). Due to the small amount of creep before rupture, only 0.2 percent deformation data could be obtained on most specimens. The results are presented in Table 8, while log-stress versus log-time curves are shown in Figure 12.

Stress-Corrosion-Cracking. Increasing K tests were conducted at 75 F (297 K). A value of 15 ksi $\sqrt{\text{in}}$ (16.5 MPa·m 2) for K_{Iscc} at 10⁻⁸ in/sec (25.4 x 10⁻⁸ mm/sec) was determined as a best approximation. Results of the tests are given in Table 9.

Crack Growth. Results of the fatigue-crack-propagation tests are presented in Table 10, and are shown in Figure 13. Compact-tension-type specimens were used with a stress ratio of R = 0.1.

Thermal Expansion. The value supplied by Dynamet Technology for the coefficient of thermal expansion is 6.0×10^{-6} in/in/F (70-800 F) [10.8 $\times 10^{-6}$ m/(m·k) (295-700 K)].

Density. The value of density supplied by Dynamet Technology is 0.159 $1b/in^3$ (4.41 g/cm^3).

TABLE 1. TENSILE TEST RESULTS FOR ANNEALED T1-6A1-4V (CHIP) ALLOY

Specimen Identi- fication	Ultimate Tensile Strength, ksi (MPa)	0.2 Percent Offset Yield Strength, ksi (MPa)	Elongation in 1 Inch (25.4 mm), percent	Reduction in Area, percent	Tensile Modulus, 10 ³ ksi (GPa)
	•	78 F (2	299 K)		
10	133.1 (917.7)	119.0 (820.5)	7.0	12.6	17.0 (117.2)
11	124.3 (857.0)	114.0 (786.0)	6.0	9.9	16.7 (115.1)
12	124.9 (861.2)	114.4 (788.8)	7.0	13.7	17.0 (117.2)
Average	127.4 (878.6)	115.8 (798.4)	6.7	12.1	16.9 (116.5)
		400 F (4	78 K)		
13	96.6 (666.1)	84.1 (579.9)	7.0	15.6	16.1 (111.0)
14	91.9 (628.1)	78.9 (544.0)	8.0	23.0	15.7 (108.2)
15	100.4 (692.3)	86.7 (597.8)	6.0	9.6	15.2 (104.8)
Average	96.0 (662.1)	83.2 (573.8)	7.0	16.1	15.7 (108.0)
		800 F (7	700 K)		
16	73.8 (500.8)	58.2 (401.3)	7.5	28.0	13.6 (93.8)
17	78.9 (544.0)	62.3 (429.6)	15.0	30.9	13.6 (93.8)
18	77.2 (532.3)	60.8 (419.2)	10.0	21.1	13.6 (93.8)
Average	76.6 (528.4)	60.4 (416.7)	10.8	26.7	13.6 (93.8)

TABLE 2. COMPRESSION TEST RESULTS FOR ANNEALED T1-6A1-4V (CHIP) ALLOY

Specimen Identification	0.2 Percent Offset Yield Strength, ksi (MPa)	Compressive Modulus, 10 ³ ksi (GPa)	
•	78 F (299K)		
74	123.2 (849.5)	15.2 (104.8)	
75	122.8 (846.7)	16.1 (111.0)	
76	125.3 (863.9)	16.3 (112.4)	
Average	123.8 (853.4)	15.9 (109.4)	
	400 F (478 K)		
77	81.5 (561.9)	15.0 (103.4)	
78	84.7 (584.0)	14.9 (102.7)	
79	83.7 (577.1)	15.2 (104.8)	
Average	83.3 (574.4)	15.0 (103.6)	
	800 F (700 K)		
80	62.1 (428.2)	13.5 (93.1)	
81	58.2 (401.3)	13.2 (91.0)	
82	62.8 (433.0)	12.8 (88.3)	
Average	61.0 (420.8)	13.2 (90.8)	

TABLE 3. RESULTS OF SHEAR PIN TESTS ON ANNEALED T1-6A1-4V (CHIP) ALLOY

Specimen		te Shea ength,
Identification		(MPa)
. 70 F	(294 K)	
25	89.8	(619.0)
26	88.3	(609.0)
27	88.3	(608.9)
Average	88.8	(612.3)
400 F	(478 K)	
28	70.2	(484.0)
29	72.3	(498.4)
30	71.4	(492.1)
Average	71.3	(491.5)
800 F	(700 K)	
31	56.3	(387.9)
32		(370.1
33		(386.2)
Average	55.3	(381.4)

TABLE 4. BEARING TEST RESULTS AT e/D = 1.5 AND c/D = 2.0 FOR ANNEALED T1-6A1-4V (CHIP) ALLOY

Specimen Identification	Bearing Yield Strength, ksi (MPa)	Bearing Ultimate Strength, ksi (MPa)				
	70 F (294 K), e/D = 1.5					
83	201.9 (1391.8)	214.1 (1476.3)				
84	211.7 (1459.7)	214.4 (1478.0)				
85	206.6 (1424.6)	209.3 (1442.9)				
Average	206.7 (1425.4)	212.6 (1465.7)				
	400 F (478 K), e/D = 1.5					
86	146.4 (1009.6)	158.3 (1091.6)				
87	145.6 (1004.2)	157.5 (1086.1)				
88	139.2 (959.8)	147.9 (1019.7)				
Average	143.8 (991.2)	154.6 (1065.8)				
	800 F (700 K), $e/D = 1.5$					
89	123.8 (853.7)	154.0 (1061.9)				
90	118.4 (816.5)	150.0 (1034.2)				
91	119.5 (824.1)	149.3 (1029.2)				
Average	120.6 (831.4)	151.1 (1041.8)				
	70 F (294 K), e/D = 2.0					
92	245.5 (1692.4)	261.2 (1801.1)				
93	242.4 (1671.5)	261.9 (1805.9)				
94	251.0 (1730.4)	269.2 (1856.1)				
Average	246.28 (1698.1)	264.1 (1821.1)				
	400 F (478 K), e/D = 2.0					
95	177.0 (1220.4)	195.5 (1348.2)				
96	177.3 (1222.3)	201.6 (1389.7)				
97	168.6 (1162.8)	191.1 (1317.7)				
98	167.7 (1156.4)	195.2 (1346.2)				
99	176.0 (1213.2)	199.0 (1372.1)				
100	174.3 (1201.8)	190.0 (1310.3)				
Average	173.5 (1196.2)	195.4 (1347.4)				
	800 F (700 K), $e/D = 2.0$					
A	142.1 (980.1)	194.8 (1343.1)				
В	142.0 (979.3)	195.6 (1349.0)				
C	138.0 (951.6)	187.5 (1292.7)				
Average	140.7 (970.3)	192.6 (1328.3)				

TABLE 5. FRACTURE TOUGHNESS TEST RESULTS FOR ANNEALED T1-6A1-4V (CHIP) ALLOY AT ROOM TEMPERATURE

Valid ^a	Yes	Yes	Yes	
ksi/In (MRs.mm ^F)	37.09 (40.80)	37.19 (40.91)	35.85 (39.44)	36.71 (40.38)
Pmax* 1b (kg)	4050 (1837)	3670 (1665)	3620 (1642)	
PO, 1b (kg)	3940 (1787)	3630 (1647)	3570 (16.19)	
Initial Precrack, inch (mm)	0.6948 (17.65)	0.7350 (18.67)	0.7254 (18.43)	
Width, W inch (mm)	1.501 (38.13)	1.498 (38.05)	1.497 (38.02)	
Thickness, B, inch (mm)	0.7506 (19.06)	0.7494 (19.03)	0.7511 (19.08)	
Specimen Identi- fication	1	~ 11	٣	

*Valid K_{Ic} per ASTM E399.

TABLE 6. AXIAL LOAD FATIGUE TEST RESULTS FOR UNNOTCHED ANNEALED Ti-6Al-4V (CHIP) ALLOY AT A STRESS RATIO OF R = 0.1

Specimen Identification	Maximum Stress, ksi (MPa)	Lifetime, cycles
	74 F (296 K)	
49	120 (827.4)	1,817
52	120 (827.4)	1,270
36	100 (689.5)	22,248
46	100 (689.5)	8,570
37	80 (551.6)	37,560
42	80 (551.6)	35,912
40	60 (413.7)	242,640
53	60 (413.7)	80,675
48	40 (275.8)	15,880,824 ⁶
	800 F (700 K)	
47	80 (551.6)	128
38	70 (482.6)	13,307
44	70 (482.6)	364
34	60 (413.7)	12,251
39	60 (413.7)	5,484
35	50 (344.7)	72,124
41	50 (344.7)	50,941
43	40 (275.8)	2,045,878
50	40 (275.8)	849,907
45	20 (137.9)	10,001,880

^aDid not fail; test discontinued.

TABLE 7. AXIAL LOAD FATIGUE TEST RESULTS FOR NOTCHED $(K_t=3.0)$ ANNEALED Ti-6Al-4V (CHIP) ALLOY AT A STRESS RATIO OF R = 0.1

Specimen Identification	Maximum Stress, ksi (MPa)	Lifetime, cycles
	74 F (296 K)	
60	60 (413.7)	9,611
73 ୍	60 (413.7)	15,602
57	50 (344.7)	7,320
62	50 (344.7)	12,450
54	40 (295.8)	34,940
59	40 (275.8)	59,050
56	30 (206.8)	180,170
58	30 (206.8)	320,760
65	20 (137.9)	5,139,120
66	20 (137.9)	10,189,840
	800 F (700 K)	
71	55 (379.2)	3,895
68	50 (344.7)	5,280
61	40 (275.8)	11,761
72	40 (275.8)	1,089
55	30 (206.8)	39,816
64	30 (206.8)	32,961
63	20 (137.9)	1,235,757
67	20 (137.9)	316,621
69	15 (103.4)	10,056,714
70	15 (103.4)	8,889,764

Did not fail; test discontinued.

TABLE 8. SUMMARY DATA ON CREEP AND STRESS-RUPTURE PROPERTIES OF ANNEALED T1-6A1-4V (CHIP) ALLOY AT 800 F (700 K)

Specimen Identifi-	St	Stress,		Hours to Indicated Creep Deformation, percent	Indica Formati Sent	ited on,		Initial Strain,	. 1	Elongation in 2 Inches, (50.8 mm),	Reduction of Area,	Minimum Creep Rate,
cation	ks1	ksi (MPa)	0.1	0.2 0.5 1.0 2.0	0.5	1.0	2.0	percent	hours	percent	percent	percent
19	20	70 (483)	.13	.26	\$	2.3	.26 .84 2.3 6.2	2.703	9.9	4.7	8.5	0.26
22	9	60 (414)	1.5	5.7	ł	1	}	0.555	21.9	8.0	3.6	0.012
20	20	50 (345)	10.5	07	.	ł	ŀ	0.488	68.7	1.6	6.3	0.0025
21	40	40 (276)	02	450	1	1	ł	0.320	2515.0	0.692	ł	0.000078
23	35	35 (241)	65	006	1	1	1	0.295	1962.0	0.551	ł	0.000052

RESULTS OF STRESS-CORROSION-CRACKING TESTS AT ROOM TEMPERATURE FOR ANNEALED T1-6A1-4V (CHIP) ALLOY TABLE 9.

Specimen Identi- fication		Load, 1bs (kg)	tn t	a, in (mm)	Δ fn	Δa , in (ma)	Δt, sec	da/ 1n/sec x 10 ⁻⁶	da/dt. in/sec (mm/sec x 10 ⁻⁶ x 10 ⁶)	Ks1/In	Kasec, ksivin (MPavm)
6	40	4000 (1814)	0.440	0.440 (11.18)	0.002	0.002 (0.051)	1800	1.11	(28.2)	24.1	24.1 (26.5)
	42	4250 (1978)	0.443	0.443 (11.25)	0.003	0.003 (0.076)	1800	1.67	(42.4)	25.7	25.7 (28.3)
	45	4500 (2041)	0.445	0.445 (11.30)	0.003	0.003 (0.051)	1800	1.11	(28.2)	27.3	27.3 (30.0)
	47	4750 (2154)	0.470	0.470 (11.94)	0.025	0.025 (0.635)	4140	6.04	(153.4)	30.1	(33.1)
15	12	(250 (567)	0.608	0.608 (15.44)	0.003	0.003 (0.076)	83 (hours)	0.01	(0.24)	10.0	10.0 (11.0)
•	27	2750 (1247)	0.613	0.613 (15.57)	0.005	0.005 (0.127)	3600	1.39	(35.3)	22.3	22.3 (24.5)
	Ŕ	3000 (1361)	0.617	0.617 (15.67)	0.004	0.004 (0.102)	3600	1.11	(28.2)	24.5	24.5 (26.9)
	32	3250 (1474)		0.625 (15.88)	0.008	0.008 (0.203)	1800	4.44	(112.8)	26.9	26.9 (29.6)
	35	3500 (1587)		0.632 (16.05)	0.007	0.007 (0.178)	17 (hours)	0.11	(3.9)	29.4	29.4 (32.3)
60	20	2000 (907)	0.534	0.534 (13.56)	0.001	0.001 (0.025)	1800	0.56	(14.12)	14.1	14.1 (15.5)
	21	2125 (964)		0.536 (13.61)	0.002	0.002 (0.051)	1800	1.11	(28.2)	15.1	15.1 (16.6)
	22	2250 (1020)		0.539 (13.69)	0.003	0.003 (0.076)	1800	1.67	(42.4)	16.0	16.0 (17.6)
	25	2500 (1134)	0.540	0.540 (13.72)	0.001	0.001 (0.025)	1800	0.56	(14.12)	17.9	17.9 (14.7)
	35	3500 (1587)		0.562 (14.27)	0.022	0.022 (0.559)	15 (hours)	0.41	(10.34)	26.0	26.0 (28.6)
	38	3850 (1746)		0.600 (15.24)	0.038	0.038 (0.965)	72 (hours)	0.15	(37.3)	30.5	30.5 (33.6)

TABLE 10. FATIGUE-CRACK-PROPAGATION DATA FOR ANNEALED T1-6A1-4V (CHIP) ALLOY

4,	N, cycles	3-nt	da/dN,	ΔΚ,
inch (mm)	x 10 ³		(mm/cycle)	ksi√in (MPa√m)
		<u>DS-4</u>		
.5620 (14.27)	1.0		(2.564E-05)	8.35 (9.18)
.5740 (14.58)	10.0		(2.564E-05)	8.53 (9.37)
.5810 (14.76)	25.5		(1.314E-05)	8.63 (9.48)
.5860 (14.88)	34.5		(1.430E-05)	8.71 (9.57)
.5989 (15.10)	55.2		(1.043E-05)	8.89 (9.77)
.6030 (15.32)	76.0		(6.151E-06)	8.97 (9.86)
.6080 (15.44)	96.5		(7.337E-06)	9.05 (9.95)
.6160 (15.65)	120.0	3.367E-07	(8.552E-06)	9.18 (10.09)
.6230 (15 .8 2)	141.0	4.020E-07	(1.821E-05)	9.30 (10.22)
.6380 (1 6.2 0)	171.0		(3.777E-06)	9.55 (10.50)
.6380 (16.20)	183.7	1.754E-07	(4.454E-06)	9.55 (10.50)
.6480 (16.46)	205.0	4.529E-07	(1.150E-05)	9.73 (10.69)
.6570 (16.69)	225.6	6.030E-07	(1.532E-05)	9.89 (10.87)
.6850 (17.40)	258.0	7.402E-07	(1.880E-05)	10.42 (11.45)
.7000 (17.78)	281.0	7.850E-07	(1.994E-05)	10.72 (11.78)
.7170 (18.21)	300.0	1.029E-06	(2.614E-05)	11.09 (12.18)
.7280 (18.49)	310.0	1.129E-06	(2.867E-05)	11.33 (12.45)
.7410 (18.82)	321.2			11.63 (12.78)
		<u>DS-5</u>		
.5576 (14.16)	0.0			8.28 (9.10)
.5687 (14.44)	30.2		(1.110E~05)	8.44 (9.27)
.5840 (14.83)	60.4	5.994E-07	(1.522E-05)	8.67 (9.52)
.6049 (15.36)	90.6		(2.379E-05)	8.99 (9.88)
.6364 (16.16)	117.8	1.411E-06	(3.584E-05)	9.51 (10.45)
6765 (17.18)	142.3	2.166E-06	(5.502E-05)	10.24 (11.26)
7348 (18.66)	164.3	3.534E-06	(8.976E-05)	11.47 (12.60)
.8209 (20.85)	184.2	5.664E-06	(1.439E-04)	13.79 (15.15)
.9435 (23.96)	202.1			18.82 (20.68)
		<u>DS-6</u>		
.5050 (12.83)	0.0			7.57 (8.31)
.5067 (12.87)	20.1	1.433E-07	(3.639E-06)	7.59 (8.34)
.5108 (12.97)	40.3	2.041E-07	(5.185E-06)	7.64 (8.40)
.5149 (13.08)	60.4	2.968E-07	(7.538E-06)	7.69 (8.45)

TABLE 10. (Concluded)

a, inch (mm)	N, cycles x 10 ³	3-pt da/dN, in/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		DS-6 (Continued)	
.5227 (13.28)	80.6	4.041E-07 (1.027E-05)	7.80 (8.57)
.5312 (13.49)	100.8	5.145E-07 (1.307E-05)	
.5435 (13.80)	120.9	6.306E-07 (1.602E-05)	
.5566 (14.14)	141.1	9.381E-07 (2.383E-05)	
.5813 (14.76)	161.3	1.288E-06 (3.271E-05)	
.6057 (15.38)	179.4	1.404E-06 (3.566E-05)	9.00 (9.89)
.6295 (15.99)	195.7	1.745E-06 (4.432E-05)	
.6590 (16.74)	210.4	2.256E-06 (5.731E-05)	- ·
.6918 (17.57)	223.7	2.950E-06 (7.493E-05)	
.7320 (18.59)	235.6	3.466E-06 (8.803E-05)	•
.7703 (19.57)	246.4	4.022E-06 (1.022E-04)	· · · · · · · · · · · · · · · · · · ·
.8134 (20.65)	256.1	4.892E-06 (1.243E-04)	
.8596 (21.83)	264.8	6.409E-06 (1.628E-04)	•
.9182 (23.32)	272.7	9.957E-06 (2.529E-04)	
1.0057 (25.54)	279.8	7.7.1.1 TO (2.7.2.1 G-7.	22.72 (24.97)

Specimen Identification	Thickness, B, inch (mm)	Width, W, inch (mm)
DS-4	0.7507 (19.06)	1.500 (38.10)
DS-5	0.7520 (19.10)	1.499 (38.07)
DS-6	0.7510 (19.08)	1.497 (38.02)

Figure 1. Typical tensile stress-strain curves for annealed Ti-6Al-4V (CHIP) alloy.

Figure 2. Effect of temperature on the tensile properties of annealed Ti-6Al-4V (CHIP) alloy.

Figure 3. Typical compressive stress-strain curves for annealed Ti-6Al-4V (CHIP) alloy.

Figure 4. Typical compressive tangent-modulus curves for annealed Ti-6Al-4V (CHIP) alloy.

Figure 5. Effect of temperature on the compressive properties of annealed Ti-6Al-4V (CHIP) alloy.

Figure 6. Effect of temperature on the pin shear properties of annealed Ti-6Al-4V (CHIP) alloy.

Figure 7. Effect of temperature on the bearing properties of annealed Ti-6Al-4V (CHIP) alloy.

Figure 8. Typical bearing test specimen for annealed Ti-6Al-4V (CHIP) alloy after testing (e/D = 1.5).

Figure 9. Typical bearing test specimen for annealed Ti-6Al-4V (CHIP) alloy after testing (e/D = 2.0).

Figure 10. Axial load fatigue behavior of unnotched, annealed Ti-6Al-4V (CHIP) alloy.

Figure 11. Axial load fatigue behavior of notched (K_t = 3.0), annealed Ti-6Al-4V (CHIP) alloy.

Figure 12. Stress-rupture and plastic deformation curves for annealed Ti-6Al-4V (CHIP) alloy.

Figure 13. Plot of da/dN versus delta K for annealed Ti-6Al-4V (CHIP) alloy.

Lab Air R = 0.1 Frequency = 20 Hz

CT-91-T7E69 Aluminum

Material Description

CT-91-T7E69 aluminum alloy is a powder metallurgy product of Alcoa. The material was received as two $1\frac{1}{2}$ -inch (38.1 mm) thick x $4\frac{1}{2}$ -inch (114 mm) wide x 4-foot (1.22 m) extrusions.

The chemical composition of this lot is as follows:

Chemical	Percent
Composition	Weight
Silicon	0.15
Iron	0.20
Copper	1.20 - 2.00
Magnesium	2.20 - 3.00
Zinc	6.00 - 7.00
Cobalt	0.20 - 0.60
Other	0.15
Aluminum	Balance.

Processing and Heat Treating

The CT-91 aluminum was received in the T7E69 condition. This temper was designed to have good static strength and fatigue resistance.

Test Results

Results of these tests show higher tensile, shear, and fatigue data as compared to the T7E70 temper while giving lower fracture toughness values.

A specimen layout is shown in Figure 14.

Tension. Tests were conducted at room temperature, 250 F (394 K), and 350 F (450 K). The test results are shown in Table 11. Typical stress-strain curves at temperature for longitudinal and long transverse specimens are shown in Figures 15 and 16. Effect-of-temperature curves are presented in Figure 17.

Compression. Tests were conducted at room temperature, 250 F (394 K), and 350 F (450 K). The results are presented in Table 12. Typical stress-strain and tangent-modulus curves for longitudinal and long transverse

specimens are shown in Figures 18, 19, 20, and 21. Effect-of-temperature curves are shown in Figure 22.

Shear. Tests were conducted at 77 F (298 K), 250 F (394 K), and 350 F (450 K) in both the longitudinal and long transverse directions. Results are shown in Table 13. Effect-of-temperature curves are shown in Figure 23.

Bearing. Tests were conducted at 72 F (295 K), 250 F (394 K), and 350 F (450 K) in both the longitudinal and long transverse directions for e/D = 1.5 and e/D = 2.0. Test results are given in Table 14. Figure 24 shows the effect-of-temperature curves.

Fracture Toughness. Table 15 shows the test results at 70 F (294 K) for L-T and T-L specimens. The calculated K_Q values shown are valid K_{LC} values per ASTM E399.

Fatigue. Axial-load-fatigue test results on unnotched and notched $(K_t = 3.0)$ specimens at room temperature and 350 F (450 K) are presented in Tables 16 and 17. The S-N curves are shown in Figures 25 and 26.

Stress-Corrosion Cracking. Increasing K tests at 74 F (296 K) were conducted. A value of 3 ksi/in (3.3 MPa/m) for $K_{\rm Isc}$ at 10^{-8} in/sec (25.4 x 10^{-8} mm/sec) was determined as a best approximation. Results are given in Table 18.

<u>Crack Growth</u>. Test results for the compact-tension, fatigue-crack-propagation specimens are given in Table 19. Figure 27 shows da/dN versus delta K.

Thermal Expansion. The coefficient of thermal expansion is 13.1 x 10^{-6} in/in-F (68-212 F) [23.6 x 10^{-6} m/m-K (293-373 K)], which is a calculated value supplied by Alcoa.

Density. The density is 0.102 lb/in3 (2.823 g/cc) as supplied by Alcoa.

TABLE 11. TENSILE TEST RESULTS FOR CT-91-T7E69 ALUMINUM EXTRUSION

Specimen Identi- fication	Ultimate Tensile Strength, ksi (MPa)	0.2 Percent Offset Yield Strength, ksi (MPa)	Elongation in 2 Inches (50.8 mm), percent	Reduction in Area, percent	Tensile Modulus, 10 ³ ksi (GPa)
		78 F (299 K),	Longitudinal		
L-1	90.1 (621.2)	83.3 (574.4)	11.0	28.0	11.2 (77.2)
L-2	88.9 (613.0)	82.5 (568.8)	11.0	30.0	10.7 (73.8)
L-3	89.9 (619.9)	83.2 (573.7)	11.0	28.8	10.5 (72.4)
Average	89.6 (618.0)	83.0 (572.3)	11.0	28.9	10.0 (74.5)
		78 F (299 K),	Long Transvers	<u>e</u>	
T-10	83.5 (575.7)	75.2 (518.5)	11.0	26.6	10.6 (73.1)
T-11	83.7 (577.1)	75.0 (517.1)	12.0	27.4	11.4 (78.6)
T-12	83.5 (575.7)	74.6 (514.4)	12.0	33.0	10.5 (72.4)
Average	83.6 (576.2)	74.9 (516.7)	11.7	29.0	10.8 (74.7)
		250 F (394 K)	, Longitudinal	<u>.</u>	
L-4	73.8 (508.8)	72.2 (497.8)	19.0	50.5	10.0 (68.6)
L-5	75.4 (519.9)	74.0 (510.8)	18.5	51.1	9.5 (65.6)
L-6	74.3 (512.5)	72.5 (499.9)	18.5	49.2	9.8 (67.9)
Average	74.5 (513.8)	72.9 (502.8)	18.7	50.3	9.8 (67.4)
		250 F (394 K),	Long Transvers	<u>se</u>	
T-13	69.3 (477.7)	65.5 (451.6)	17.0	42.5	9.2 (63.4)
T-14	70.7 (487.3)	67.4 (464.7)	17.5	38.7	9.5 (65.7)
T-15	69.5 (479.2)	65.4 (450.9)	17.0	42.7	9.7 (67.2)
Average	69.8 (481.4)	66.1 (455.8)	17.2	41.3	9.5 (65.4)
		350 F (450 K)	, Longitudinal	<u>L</u>	
L-7	59.2 (408.6)	57.8 (398.4)	22.5	61.5	9.5 (65.3)
L-8	58.3 (401.8)	56.7 (391.2)	23.0	63.1	9.2 (63.6)
L-9	60.0 (413.5)	57.9 (399.1)	22.5	64.2	$\frac{9.1}{-}$ $\frac{(62.5)}{-}$
Average	59.2 (408.0)	57.5 (396.2)	22.7	62.9	9.2 (63.8)
		350 F (450 K),	Long Transver	<u>se</u>	
T-16	54.8 (378.1)	52.7 (363.3)	21.0	51.1	8.5 (58.5)
T-17	54.2 (373.6)	51.2 (352.9)	20.0	48.5	9.5 (65.5)
T-18	55.6 (383.6)	52.7 (363.4)	23.5	56.6	9.0 (62.2)
Average	54.9 (378.4)	52.2 (359.9)	21.5	52.1	9.0 (62.1)

TABLE 12. COMPRESSIVE TEST RESULTS FOR CT-91-T7E69 ALUMINUM EXTRUSION

Specimen Identi- fication	0.2 Percent Offset Yield Strength, ksi (MPa)	Compressive Modulus, 10 ³ ksi (GPa)
	78 F (299 K), Long	gitudinal
L-19	83.8 (577.8)	11.0 (75.9)
L-20	80.8 (557.1)	10.4 (71.7)
L-21	84.7 (584.0)	10.3 (71.0)
Average	83.1 (573.0)	10.6 (72.9)
<u>7</u>	8 F (299 K), Long	Transverse
T-28	80.9 (557.8)	10.5 (72.4)
T-29	80.7 (556.4)	9.8 (67.6)
T-30	80.7 (556.4)	9.8 (67.6)
Average	80.77 (556.9)	10.0 (69.2)
	250 F (394 K), Lo	ngitudinal
L-22	75.1 (517.8)	9.2 (63.43)
L-23	75.4 (519.9)	8.9 (61.4)
L-24	75.5 (520.6)	9.7 (66.9)
Average	75.3 (519.4)	9.3 (63.9)
<u>25</u>	0 F (394 K), Long	Transverse
T-31	71.8 (495.1)	10.0 (69.0
T-32	72.3 (498.5)	9.6 (66.2)
T-33	71.8 (495.1)	9.7 (66.9)
Average	72.0 (496.2)	9.8 (67.3)
	350 F (450 K), Lo	ngitudinal
L-25	56.7 (391.0)	8.6 (59.3)
L-26	58.7 (404.7)	9.0 (62.1)
L-27	55.7 (384.1)	8.5 (58.6)
Average	57.0 (393.2)	8.7 (60.0)
	0 F (450 K), Long	
T-34	56.0 (386.1)	7.8 (53.8)
T-35	56.7 (391.0)	8.9 (61.4)
T-36	58.2 (401.3)	8.8 (60.7)
Average	57.0 (392.8)	8.5 (58.6)

TABLE 13. RESULTS OF PIN SHEAR TESTS ON CT-91-T7E69 ALUMINUM EXTRUSION

Specimen Identification	Ult Shear	gitudinal cimate Strength, (MPa)	Specimen Identification	U. Shea	Transverse ltimate r Strength, si (MPa)
		77 F ((298 K)		
L-37	52.3	(360.3)	T-46	50.7	(349.7)
L-38	53.5	(368.6)	T-47	49.0	(337.7)
L-39	52.6	(362.8)	T-49		(342.1)
Average	52.8	(363.9)	Average	49.8	(343.1)
		250 F ((394 K)		
L-40	44.0	(303.2)	T-49	43.9	(302.6)
L-41	44.8	(309.2)	T-50	44.0	(303.3)
L-42	44.9	(309.5)	T-61	43.2	(298.1)
Average	44.6	(307.3)	Average	43.7	(301.4)
		350 F ((450 K)		
L-43	34.3	(236.2)	T-52	31.9	(220.1)
L-44	35.3	(243.7)	T-53	33.8	(233.0)
L-45	36.3	(250.4)	T-54		(231.0)
Average	35.3	(243.4)	Average	33.1	(228.0)

TABLE 14. BEARING TEST RESULTS AT e/D = 1.5 AND e/D = 2.0 FOR CT-91-T7E69 ALUMINUM EXTRUSION

		e/D =	1.5		e/D = 2.0				
Specimen Identi- fication	Y: Str	aring ield ength, (MPa)	Ult Str	aring imate ength, (MPa)	Specimen Identi- fication	Y: Stre	aring ield ength, (MPa)	Ult Stre	aring imate ength, (MPa)
			72	F (295 K)	, Longitudi	nal_			
L-55	106.0	(730.6)	133.0	(917.3)	L-64	126.2	(870.3)	172.9	(1192.4)
L-56		(749.4)		(941.4)	L-65		(865.3)		(1193.9)
L-57	108.2	(746.0)	135.8	(936.0)	L-66	126.2	(870.3)	169.5	(1168.7)
Average	107.6	(742.0)	135.1	(931.6)	Average	126.0	(688.6)	171.9	(1185.0)
			72	F (295 K),	Long Trans	verse			
T-73		(744.0)		(927.9)	T-82		(865.0)		(1158.4)
T-74		(763.8)	0.0	(0.0)	T-83		(863.6)		(1186.9)
T-75	105.3	$\frac{(726.1)}{}$	126.9	(874.6)	T-84	132.4	(913.2)	171.7	(1183.7)
Average	108.0	(744.6)	130.7	(901.3)	Average	127.7	(880.6)	170.6	(1176.3)
			25	D F (394 K), Longitud	inal			
L-58	94.7	(653.0)	111.3	(767.1)	L-67	105.0	(724.3)	141.1	(973.0)
L-59	97.8	(674.3)	112.1	(772.7)	L-68		(793.3)	148.1	(1021.3)
L-60	95.3	(657.3)	109.8	(757.1)	L-69	115.3	(795.3)	147.6	(1018.0)
Average	96.0	(661.6)	111.0	(765.6)	Average	111.0	(770.9)	145.6	(1004.1)
			250	F (394 K),	Long Trans	verse			
T-76	96.9	(668.0)	110.5	(761.8)	T-85	113.7	(784.0)	146.0	(1006.9)
T-77	96.4	(664.7)	111.1	(766.2)	T-86	111.3	(767.3)	147.7	(1018.5)
T-78	99.0	(682.8)	113.3	(781.3)	T-87	111.2	(766.7)	146.6	(1011.0)
Average	97.4	(671.8)	111.6	(769.8)	Average	112.1	(772.7)	146.8	(1012.1)
			<u>35</u> (O F (450 K), Longitud	inal			
L-61	77.8	(536.4)	84.7	(583.9)	L-70	90.8	(626.2)	108.7	(749.8)
L-62		(535.1)	86.1	(593.6)	L-71		(595.4)	108.2	(745.8)
L-63	78.9	(543.d)	87.2	(601.5)	L-72	90.2	(621.6)	107.9	(744.3)
Average	78.1	(538.4)	86.0	(593.0)	Average	89.1	(614.4)	108.3	(746.6)
			<u>350</u>	F (450 K),	Long Trans	verse			
T-79	78.5	(540.9)	85.3	(588.1)	T-88	91.2	(628.6)	107.8	(743.4)
T-80		(506.6)	80.3	(553.7)	T-89		(620.7)	111.5	
T-81	78.5	(540.9)	85.5	(589.3)	T-90		(609.5)	107.4	(740.6)
Average	76.8	(529.5)	83.7	(577.0)	Average	89.9	(619.6)	108.9	(750.8)

TABLE 15. FRACTURE TOUGHNESS TEST RESULTS FOR CT-91-T7E69 ALUMINUM EXTRUSION AT ROOM TEMPERATURE

Specimen Identification	Thickness, B, inch (mm)	.ss, B, (w)	Width, W, inch (mm)	Initial Precrack, inch (mm)	PQ, 1bs (kg)	Ka, ksi√in (MPa√m)	Valid ^a
				Longitudinal			
191	1.485 (37.72)	(37.72)	3.022 (76.76)	1.4985 (38.06)	6600 (2994)	24.38 (26.82)	Yes
L-92	1.484 (37.69)	(37.69)	3.019 (76.68)	1.511 (38.38)	6440 (2921)	24.16 (26.58)	Yes
L-93	1.486 (37.74)	(37.74)	3.014 (76.56)	1.504 (38.20)	6450 (2926)	24.07 (26.48)	Yes
						24.20 (26.62)	
			П	Long Transverse			
T-94	1.485 (37.72)	(37.72)	3.013 (76.53)	1.496 (38.00)	9587 (4348)	35.54 (39.09)	Yes
T-95	1.490 (37.85)	(37.85)	3.014 (76.56)	1.505 (38.23)	9875 (4479)	36.80 (40.48)	Yes
T-96	1.485 (37.72)	(37.72)	3.020 (76.71)	1.518 (38.56)	8912 (4042)	33.07 (36.38)	Yes
						35.14 (38.65)	

*Valid K_{lc} as per ASTM E399.

TABLE 16. AXIAL LOAD UNNOTCHED FATIGUE TEST RESULTS FOR CT-91-T7E69 ALUMINUM EXTRUSION - LONG TRANSVERSE

Specimen Identification		um Stress, i (MPa)	Cycles to Failure
	74 F	(296 K)	
105U	76.7	5 (529.2)	13,960 ^a
110U	71.2	7 (491.4)	23,170
1010 ^b	70	(482.6)	60.020 ^c
109U	65.7	9 (453.6)	29,360
115U	65.7	9 (453.6)	22,550 ^d
104u ^b	65	(448.2)	67,740
113U	60.3	1 (415.8)	2,185,570
1170 ^b	60	(413.7)	78,470 ^e
106U	60	(413.7)	5,239,970
1120 ^b	55	(479.2)	17,830
105U	54.8	2 (378.0)	13,511,680 ^f
1030 ^b	50	(344.8)	372,850 ⁸
1020 ^b	50	(344.8)	985,150 ⁸
115U	49.3	4 (340.2)	17,979,840 ^f
117U	35	(241.3)	14,342,020 ^f
	350 F	(450 K)	
107U	55	(479.2)	1,200
114U	50	(344.8)	64,000
116U	45	(310.3)	88,820
108U	40	(275.8)	229,870
119U	35	(241.3)	461,970
118U	30	(206.8)	4,373,020

^aRerun of 54.82 ksi (378.).

b_{0.250}" (6.35 mm) diameter specimen.

CFailed in shoulder.

^dRerun of 49.34 ks1 (340.2).

eRerun of 35 ksi (241.3).

fDid not fail.

^gFailed in grips.

TABLE 17. AXIAL LOAD, NOTCHED (K_t = 3.0) FATIGUE TEST RESULTS FOR CT-91-T7E69 ALUMINUM EXTRUSION - LONG TRANSVERSE

Specimen Identification	Maximum Stress, ksi (MPa)	Cycles to Failure
	74 F (296 K)	
122	50 (344.8)	3,010
127	40 (275.8)	9,120
121	30 (206.8)	22,680
120	30 (206.8)	30,050
123	25 (172.4)	69,190
124	25 (172.4)	74,950
128	22.5 (155.1)	232,720
133	22.5 (155.1)	966,100
134	20 (137.9)	12,982,000 ^a
125	20 (137.9)	13,100,000 ^a
	350 F (450 K)	
131	45 (310.3)	940 ^b
132	40 (275.8)	3,410
134	35 (241.3)	5,360 ^c
135	25 (172.4)	21,270
126	20 (137.9)	67,670
139	20 (137.9)	74,370
136	17.5 (120.7)	134,990
130	15 (103.4)	196,610
137	15 (103.4)	227,530
138	12.5 (86.2)	217,350 ^d
129 ^e	12.5 (86.2)	2,966,350
138	10 (68.9)	10,399,470 ^a
131	10 (68.9)	12,835,800 ^a

aDid not fail.

^bRerum of 10 ksi (68.9) 350 F (450 K).

^CRerum of 20 ksi (137.9) 74 F (296 K).

^dRerum of 10 ksi (68.9) 350 F (450 K).

eStopped and restarted.

RESULTS OF THE STRESS-CORROSION-CRACKING TESTS AT ROOM TEMPERATURE FOR CT-91-T7E69 ALUMINUM EXTRUSION L-T SPECIMENS TABLE 18.

Specimen								da/	da/dt,	1	
Identi- fication	Load, 1bs (k)	1d, (kg)	a, fn (mm)	(III)	Δa, in (mm)	(mm)	Δţ	in/sec x 10 ⁻⁶	(mm/sec x 10 ⁻⁶)	Kış ksivin	Kısı'ın (MPa'm)
T-95R	185 (8	(83.9)	1.8087	(45.94)	0.0047	(0.119)	3600	1.3	(33.0)	0.98	(1.08)
	_	4.3)	1.8133	(46.06)	0.0046	(0.117)	3600	1.3	(33.0)	1.22	(1.34)
	_	(127.0)	1.8155	(46.11)	0.0022	(0.056)	3600	9.0	(15.2)	1.49	(1.64)
	_	7.4)	1.8176	(46.17)	0.0031	(0.053)	3600	9.0	(15.2)	1.74	(1.91)
	_	7.8)	1.8198	(46.22)	0.0022	(0.056)	7200	0.3	(4.6)	1.98	(2.18)
	_	(9.8	1.822	(46.28)	0.0022	(0.056)	3600	9.0	(15.2)	2.47	(2.72)
	_	1.7)	1.8252	(46.36)	0.0032	(0.081)	10800	0.3	(7.6)	3.00	(3.30)
	_	(9.5)	1.832	(46.53)	0.0068	(0.173)	3600	1.9	(48.3)	4.03	(4.43)
	830 (37	(376.5)	1.8328	(46.55)	0.0008	(0.020)	2700	0.3	(7.6)	4.53	(4.98)
2.											
T-97R		(6.6)	1.8342	(46.59)	0.0014	(0.036)	1800	0.78	(19.8)	1.01	(1.11)
		7.8)	1.8362	(46.64)	0.002	(0.051)	3600	0.56	(14.2)	2.03	(2.23)
		(9.8	1.8382	(46.69)	0.002	(0.051)	3600	0.56	(14.2)	2.53	(2.78)
		1.7)	1.8402	(46.74)	0.002	(0.051)	7200	0.28	(7.1)	3.06	(3.37)
	620 (29	(8.4)	1.84218		0.00198		0006	0.22	(2.6)	3.59	(3.95)
		(9.5)	1.84318		0.001		3600	0.28	(7.1)	4.09	(4.50)
		(371.9)	1.84398	(46.84)	0.0008	(0.020)	15 hours	0.016	(0.4)	4.54	(4.99)
T-99R *	_	(1603)	1.8664	(47.41)	0.0004	(0.010)	3600	0.1	(2.5)	20.17	(22.19)
))	3700 (16	(1678)	1.8668	(47.42)	0.0002	(0.002)	1800	0.1	(2.5)	21.13	(23.24)
	_	(2096)	1.867	(47.42)	0.0002	(0.002)	1800	0.1	(2.5)	26.39	(29.03)
	_	(2306)	1.8672	(47.43)	0.0002	(0.005)	1800	0.1	(2.5)	29.05	(31.96)
	_	(2515)	1.8674	(47.43)	0.0002	(0.005)	1800	0.1	(2.5)	31.69	(34.86)
	_	(2726)	1.8677	(47.44)	0.0003	(0.008)	2700	0.1	(2.5)	34.36	(37.80)
	_	(2935)	1.8697	(47.49)	0.002	(0.021)	3600	0.56	(14.2)	37.09	(40.80)
	6930 (31	(3143)	1.8703	(47.51)	0.0006	(0.015)	1800	0.35	(8.9)	39.76	(43.74)

*Crack front was atypical for this type specimen.

TABLE 19. FATIGUE-CRACK-PROPAGATION DATA FOR CT-91-T7E69 ALUMINUM EXTRUSION, L-T SPECIMENS

a, inches (mm)	N, cycles x 10 ³	da/dN, in/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		<u>T-97</u>	
	0.0		2.67 (2.94)
1.6434 (41.74)	0.0 25.1	1.127E-07 (2.863E-06)	2.68 (2.95)
1.6463 (41.82)		1.096E-07 (2.784E-05)	2.69 (2.96)
1.6491 (41.89)	50.3	1.166E-07 (2.963E-06)	2.70 (2.97)
1.6518 (41.96)	75.4	1.291E-07 (3.278E-06)	2.71 (2.98)
1.6550 (42.03)	100.6	1.291E-07 (3.280E-06)	2.72 (2.99)
1.6583 (42.12)	125.7	1.307E-07 (3.319E-06)	2.73 (3.00)
1.6614 (42.20)	150.9	1.478E-07 (3.754E-06)	2.74 (3.01)
1.6649 (42.29	176.1	1.525E-07 (3.873E-06)	2.75 (3.03)
1.6689 (42.39)	201.2	1.525E-07 (3.874E-06)	2.77 (3.04)
1.6726 (42.48)	226.4	1.5236-07 (3.6746-00)	2.78 (3.05)
1.6766 (42.58)	251.6	1.613E-07 (4.096E-06)	2.79 (3.07)
1.6807 (42.69)	276.7	1.558E-07 (3.957E-06)	2.80 (3.08)
1.6844 (42.78)	301.9	1.433E-07 (3.639E-06)	2.82 (3.09)
1.6879 (42.87)	327.0	1.393E-07 (3.539E-06)	2.83 (3.11)
1.6914 (42.96)	352.2	1.431E-07 (3.635E-06)	2.84 (3.12)
1.6951 (43.05	377.3	1.556E-07 (3.953E-06)	2.85 (3.14)
1.6992 (43.16)	402.5	1.604E-07 (4.075E-06)	2.87 (3.15)
1.7032 (43.26)	427.6	1.637E-07 (4.158E-06)	2.88 (3.17)
1.7075 (43.37)	452.8	1.801E-07 (4.575E-06)	2.90 (3.18)
1.7122 (43.49)	477.9	1.841E-07 (4.675E-06)	2.91 (3.20)
1.7167 (43.60)	503.0	1.61eE-07 (4.098E-06)	2.93 (3.22)
1.7203 (43.70)	528.2	1.402E-07 (3.561E-06)	
1.7238 (43.78)	553.3	1.417E-07 (3.600E-06)	2.94 (3.23)
1.7275 (43.88)	578.5	1.496E-07 (3.799E-06)	2.95 (3.24)
1.7313 (43.97)	603.6	1.558E-07 (3.959E-06)	2.96 (3.26)
1.7353 (44.08)	628.7	1.637E-07 (4.158E-06)	2.98 (3.27)
1.7395 (44.18)	653.8	1.660E-07 (4.217E-06)	2.99 (3.29)
1.7437 (44.29)	679.0	1.543E-07 (3.918E-06)	3.01 (3.31)
1.7473 (44.38)	704.1	1.543E-07 (3.919E-06)	3.02 (3.32)
1.7514 (44.48)	729.3	1.660E-07 (4.217E-06)	3.04 (3.34)
1.7556 (44.59)	754.4	1.629E-07 (4.138E-06)	3.05 (3.36)
1.7596 (44.69)	779.5	1.582E-07 (4.018E-06)	3.07 (3.37)
1.7636 (44.79)	804.7	1.559E-07 (3.959E-06)	3.09 (3.39)
1.7674 (44.89)	829.8	1.543E-07 (3.919E-06)	3.10 (3.41)
1.7713 (44.99)	854.9	1.566E-07 (3.978E-06)	3.12 (3.42)
1.7753 (45.09)	880.1	1.590E-07 (4.038E-06)	3.13 (3.44)
1.7793 (45.19)	905.2	1.621E-07 (4.118E-06)	3.15 (3.46)
1.7835 (45.29)	930.3	1.692E-07 (4.297E-06)	3.16 (3.48)
1.7878 (45.41)	955.5	1.793E-07 (4.555E-06)	3.18 (3.50)
1.7925 (45.53)	980.6	1.786E-07 (4.536E-06)	3.20 (3.52)

TABLE 19. (Continued)

a, inches (mm)	N, cycles x 10 ³	da/dN, in/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		T-97 (Continued)	
1.7968 (45.64)	1005.7	1.762E-07 (4.476E-06)	3.22 (3.54)
1.8013 (45.75)	1030.9	1.833E-07 (4.655E-06)	3.24 (3.56)
1.8060 (4587)	1056.0	1.864E-07 (4.735E-06)	3.26 (3.58)
1.8107 (45.99)	1081.1	1.911E-07 (4.854E-06)	3.28 (3.60)
1.8156 (46.12)	1106.3	1.966E-07 (4.993E-06)	3.30 (3 <i>.</i> 62)
1.8206 (46.24)	1131.4	2.076E-07 (5.272E-06)	3.32 (3 <i>.</i> 65)
1.8261 (46.38)	1156.5	2.224E-07 (5.650E-06)	3.34 (3 <i>.</i> 67)
1.8318 (46.57)	1181.7	2.295E-07 (5.829E-06)	3.37 (3 <i>.</i> 70)
1.8376 (46.67)	1206.8	2.350E-07 (5.968E-06)	3.40 (3 <i>.</i> 73)
1.8436 (46.83)	1231.9	2.326E-07 (5.909E-06)	3.42 (3 <i>.</i> 76)
1.8493 (46.97)	1257.1	2.240E-07 (5.690E-06)	3.45 (3 <i>.</i> 79)
1.8548 (47.11)	1282.2	2.115E-07 (5.372E-06)	3.48 (3 <i>.</i> 82)
1.8599 (47.24)	1307.3	2.021E-07 (5.133E-06)	3.50 (3 <i>.</i> 85)
1.8650 (47.37)	1332.5	2.076E-07 (5.272E-06)	3.52 (3.87)
1.8703 (47.51)	1357.6	2.084E-07 (5.292E-06)	3.55 (3.90)
1.8755 (47.64)	1382.7	2.107E-07 (5.352E-06)	3.57 (3.93)
1.8809 (47.78)	1407.9	2.170E-05 (5.511E-06)	3.60 (3.96)
1.8864 (47.91)	1433.0	2.137E-07 (5.429E-06)	3.63 (3.99)
1.8917 (48.05)	1458.1	2.036E-07 (5.170E-06)	3.66 (4.02)
1.8966 (48.17)	1483.3	1.974E-07 (5.013E-06)	3.68 (4.05)
1.9016 (48.30)	1508.4	1.903E-07 (4.834E-06)	3.71 (4.08)
1.9062 (48.42)	1533.5	1.856E-07 (4.715E-06)	3.73 (4.10)
1.9109 (48.54)	1558.7	1.856E-07 (4.715E-06)	3.76 (4.13)
1.9155 (48.65)	1583.8	2.005E-07 (5.093E-06)	3.78 (4.16)
1.9210 (48.79)	1608.9	2.083E-07 (5.290E-06)	3.81 (4.19)
1.9260 (48.92)	1634.1	2.002E-07 (5.085E-06)	3.84 (4.22)
1.9311 (49.05)	1659.3	2.121E-07 (5.388E-06)	3.87 (4.25)
1.9366 (49.19)	1684.4	2.138E-07 (5.431E-06)	3.90 (4.29)
1.9418 (49.32)	1709.5	2.044E-07 (5.192E-06)	3.93 (4.32)
1.9469 (49.45)	1734.7	2.107E-07 (5.351E-06)	3.96 (4.35)
1.9524 (49.59)	1759.8	2.177E-07 (5.530E-06)	3.99 (4.39)
1.9579 (49.73)	1784.9	2.169E-07 (5.510E-06)	4.03 (4.42)
1.9633 (49.87)	1810.1	2.237E-07 (5.683E-06)	4.06 (4.46)
1.9701 (50.04)	1839.3	2.289E-07 (5.815E-06)	4.10 (4.51)
1.9766 (50.20)	1868.0	2.269E-07 (5.764E-06)	4.14 (4.55)
1.9827 (50.36)	1894.8	2.316E-07 (5.884E-06)	4.18 (4.59)
1.9886 (50.51)	1919.9	2.270E-07 (5.766E-06)	4.22 (4.54)
1.9941 (50.65)	1945.1	2.138E-07 (5.431E-06)	4.26 (4.68)
	1970.2	2.136E-07 (5.431E-00) 2.217E-07 (5.630E-06)	4.29 (4.72)
1.9994 (50.78) 2.0052 (50.93)	1995.3	2.365E-07 (6.008E-06)	4.33 (4.76)
2.0113 (51.08)	2020.5	2.436E-07 (6.187E-06)	4.37 (4.81)
~. OTTO (74.00)	2020.3	_,,302 0, (0,20,2 00)	

TABLE 19. (Continued)

a, inches (mm)	N, cycles x 10 ³	da/dN, in/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		T-97 (Continued)	
2.0175 (51.24)	2045.6	2.450E-07 (6.222E-06)	4.42 (4.85)
2.0236 (51.40)	2070.8	2.535E-07 (6.438E-06)	4.46 (4.90)
2.0302 (51.57)	2095.9	2.653E-07 (6.739E-06)	4.51 (4.95)
2.0369 (51.74)	2121.1	3.768E-07 (9.571E-06)	4.56 (5.01)
2.0492 (52.05)	2146.2	5.351E-07 (1.359E-05)	4.65 (5.11)
2.0638 (52.42)	2171.3	5.607E-07 (1.424E-05)	4.77 (5.24)
2.0774 (52.76)	2196.5	5.333E-07 (1.355E-05)	4.88 (5.36)
2.0906 (53.10)	2221.6	5.316E-07 (1.350E-05)	4.99 (5.48)
2.1041 (53.44)	2246.8	5.519E-07 (1.402E-05)	5.11 (5.61)
2.1184 (53.81)	2271.9	5.865E-07 (1.490E-05)	5.24 (5.76)
2.1336 (54.19)	2297.0	6.171E-07 (1.567E-05)	5.38 (5.92)
2.1494 (54.59)	2322.2	6.468E-07 (1.643E-05)	5.54 (6.09)
2.1661 (55.02)	2347.3	6.812E-07 (1.730E-05)	5.72 (6.28)
2.1837 (55.46)	2372.5	7.156E-07 (1.818E-05)	5.91 (6.50) 6.13 (6.74)
2.2021 (55.93)	2397.6	7.672E-07 (1.949E-05)	6.38 (7.01)
2.2222 (56.44)	2422.7	8.423E-07 (2.139E-05) 9.651E-07 (2.451E-05)	6.65 (7.31)
2.2421 (56.95) 2.2659 (57.55)	2445.4 2468.0	9.631E-07 (2.431E-03)	6.99 (7.68)
2.2039 (37.33)	2400.0		0.99 (7.00)
		<u>T-98</u>	
1.5610 (39.65)	0.0		2.84 (3.12)
1.5690 (39.85)	170.0	1.114E-07 (2.829E-06)	2.87 (3.15)
1.6080 (40.84)	376.0	1.976E-07 (5.020E-06)	2.99 (3.29)
1.6500 (41.91)	580.0	2.411E-07 (6.124E-06)	3.13 (3.44)
1.7070 (43.36)	786.0	2.264E-07 (5.750E-06)	3.35 (3.68)
1.7540 (44.55)	1100.0	2.409E-07 (6.120E-06)	3.54 (3.89)
1.7810 (45.24)	1200.0	2.850E-07 (7.239E-06)	3.67 (4.03)
1.8440 (46.84)	1400.0	3.650E-07 (9.271E-06)	3.98 (4.37)
1.9270 (48.94)	1600.0	5.125E-07 (1.302E-05)	4.47 (4.91)
2.0490 (52.04)	1800.0	8.375E-07 (2.127E-05)	5.40 (5.94)
2.2620 (57.45)	2000.0		8.05 (8.85)
		<u>T-99</u>	
1.6598 (42.16)	0.0		3.71 (4.07)
1.6618 (42.21)	32.2	7.698E-08 (1.930E-06)	3.71 (4.08)
1.6647 (42.28)	64.3	9.250E-08 (2.349E-06)	3.73 (4.10)
1.6678 (42.36)	96.4	8.330E-08 (2.116E-06)	3.74 (4.11)
1.6701 (42.42)	128.5	6.554E-08 (1.665E-06)	3.75 (4.12)
1.6720 (42.47)	160.7	6.492E-08 (1.649E-06)	3.76 (4.13)

TABLE 19. (Continued)

a, inches (mm)	N, cycles x 10 ³	da/dN, in/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		T-99 (Continued)	
1.6742 (42.42)	192.8	7.784E-08 (1.977E-06)	3.77 (4.14)
1.6770 (42.60)	224.9	7.106E-08 (1.805E-06)	3.78 (4.15)
1.6788 (42.64)	257.1	7.168E-08 (1.821E-06)	3.79 (4.16)
1.6816 (42.71)	289.2	1.016E-07 (2.582E-06)	3.80 (4.18)
1.6853 (42.81)	321.4	8.384E-08 (2.130E-06)	3.82 (4.19)
1.6870 (42.85)	353.5	6.919E-08 (1.758E-06)	3.82 (4.20)
1.6898 (42.92)	385.7	1.078E-07 (2.739E-06)	3.84 (4.22)
1.6939 (43.02)	417.8	1.164E-07 (2.956E-06)	3.86 (4.24)
1.6973 (43.11)	450.0	1.121E-07 (2.847E-06)	3.87 (4.25)
1.7011 (43.21)	482.1	1.318E-07 (3.347E-06)	3.89 (4.27)
1.7057 (43.32)	514.2	1.146E-07 (2.910E-06)	3.91 (4.30)
1.7085 (43.40)	546.4	1.287E-07 (3.269E-06)	3.92 (4.31)
1.7140 (43.54)	578.5	1.427E-07 (3.626E-06)	3.95 (4.34)
1.7177 (43.63)	610.7	1.397E-07 (3.548E-06)	3.97 (4.36)
1.7230 (43.76)	642.8	1.372E-07 (3.486E-06)	3.99 (4.39)
1.7265 (43.85)	674.9	1.434E-07 (3.642E-06)	4.01 (4.40)
1.7322 (44.00)	707.1	1.568E-07 (3.983E-06)	4.04 (4.43)
1.7366 (44.11)	739.2	1.764E-07 (4.481E-06)	4.06 (4.46)
1.7435 (44.28)	771.4	1.698E-07 (4.312E-06)	4.09 (4.50)
1.7475 (44.38)	803.5	1.428E-07 (3.627E-06)	4.11 (4.52)
1.7527 (44.52)	835.6	1.788E-07 (4.541E-06)	4.14 (4.55)
1.7590 (44.68)	867.8	2.027E-07 (5.149E-06)	4.17 (4.58)
1.7657 (44.85)	899.9	1.826E-07 (4.638E-06)	4.21 (4.62)
1.7707 (44.98)	932.0	1.538E-07 (3.906E-06)	4.23 (4.65)
1.7756 (45.10)	964.1	1.833E-07 (4.655E-06)	4.26 (4.68)
1.7825 (45.27)	996.3	2.021E-07 (5.133E-06)	4.30 (4.72)
1.7886 (45.43)	1028.4	2.432E-07 (6.178E-06)	4.33 (4.76)
1.7981 (45.67) 1.8012 (45.75)	1060.5 1092.7	2.432E-07 (6.178E-06) 1.962E-07 (4.982E-06) 2.189E-07 (5.559E-06)	4.38 (4.81) 4.40 (4.83)
1.8122 (46.03)	1124.8	2.728E-07 (6.928E-06)	4.46 (4.90)
1.8187 (46.20)	1156.9	2.241E-07 (5.692E-06)	4.50 (4.95)
1.8266 (46.39)	1189.1	2.736E-07 (6.949E-06)	4.55 (5.00)
1.8363 (46.64)	1221.3	3.038E-07 (7.717E-06)	4.61 (5.06)
1.8461 (46.89)	1253.4	2.918E-07 (7.411E-06)	4.67 (5.13)
1.8551 (47.12)	1285.5	2.872E-07 (7.295E-06)	4.72 (5.19)
1.8646 (47.36)	1317.7	3.375E-07 (8.573E-06)	4.79 (5.26)
1.7868 (47.67)	1349.8	2.849E-07 (7.238E-06)	4.87 (5.35)
1.8829 (47.82)	1382.0	1.205E-07 (3.061E-06)	4.91 (5.39)
1.8845 (47.87)	1414.1	4.720E-07 (1.199E-05)	4.92 (5.41)
1.9132 (48.59)	1446.2	5.998E-07 (1.523E-05)	5.12 (5.63)
1.9229 (48.84)	1475.1	3.374E-07 (8.570E-06)	5.19 (5.71)
1.9525 (49.59)	1561.9	3.598E-07 (9.139E-06)	5.42 (6.96)

TABLE 19. (Continued)

	N,		
a ,	cycles	da/dN,	ΔK,
inches (mm)	× 10 ³	in/cycle (mm/cycle)	ksi√in (MPa√m)
		T-99 (Continued)	
1.9620 (49.83)	1588.0	3.634E-07 (9.230E-06)	5.50 (6.05)
1.9714 (50.07)	1614.0	3.241E-07 (8.232E-06)	5.58 (6.13)
1.9789 (50.26)	1640.1	3.498E-07 (8.885E-06)	5.65 (6.20)
1.9896 (50.54)	1666.1	3.928E-07 (9.978E-06)	5.74 (6.31)
1.9994 (50.78)	1692.2	3.755E-07 (9.537E-06)	5.83 (6.40)
2.0092 (51.03)	1718.3	3.173E-07 (8.060E-06)	5.92 (6.50)
2.0159 (51.20)	1744.3	3.476E-07 (8.828E-06)	5.98 (6.57)
2.0273 (51.49)	1770.4	4.314E-07 (1.096E-06)	6.09 (6.69)
2.0384 (51.77)	1796.4	4.761E-07 (1.209E-05)	6.20 (6.81)
2.0521 (52.12)	1822.5	5.609E-07 (1.425E-05)	6.34 (6.97)
2.0676 (52.52)	1848.5	5.661E-07 (1.438E-05)	6.51 (7.15)
2.0816 (52.87)	1874.6	6.104E-07 (1.550E-05)	6.67 (7.32)
2.0994 (53.32)	1900.6	6.429E-07 (1.633E-05)	6.87 (7.55)
2.1151 (53.72)	1926.7	6.889E-07 (1.750E-05)	7.07 (7.76)
2.1353 (54.24)	1952.7	7.320E-07 (8.859E-05)	7.33 (8.05)
2.1516 (54.65)	1976.2	7.259E-07 (1.844E-05)	7.55 (8.29)
2.1694 (55.10)	1999.7	8.645E-07 (2.196E-05)	7.80 (8.57)
2.1921 (55.68)	2023.1	9.030E-07 (2.294E-05)	8.15 (8.96)
2.2099 (56.13)	2044.2	8.403E-07 (2.134E-05)	8.44 (9.27)
2.2276 (56.58)	2065.4	9.212E007 (2.340E-05)	8.75 (9.61)
2.2489 (57.12)	2086.5	1.135E-06 (2.882E-05)	9.14(10.04)
2.2727 (57.73)	2105.5	1.262E-06 (3.205E-05)	9.61(10.56)
2.2945 (58.28)	2122.7	1.497E-06 (3.803E-05)	10.08(11.07)
2.3208 (58.95)	2138.1	•	10.69(11.75)

Specimen Identification	Thickness, B, inch (mm)	Width, W, inch (mm)	
T-97	1.491 (37.87)	3.013 (76.53)	
T-98	1.491 (37.87)	3.014 (76.63)	
T-99	1.491 (37.87)	3.017 (76.53)	

Figure 14. Location of specimens for CT-91-T7E69.

Figure 15. Typical tensile stress-strain curves for longitudinal CT-91-T7E69 aluminum extrusion.

Figure 16. Typical tensile stress-strain curves for long transverse CT-91-T7E69 aluminum extrusion.

Figure 17. Effect of temperature on tensile properties of CT-91-T7E69 aluminum extrusions.

Figure 18. Typical compressive stress-strain curves for longitudinal CT-91-T7E69 aluminum extrusion.

THIS **PAGE** IS MISSING IN ORIGINAL DOCUMENT

Figure 20. Typical compressive tangent-modulus curves for longitudinal CT-91-T7E69 aluminum extrusion.

Figure 21. Typical compressive tangent-modulus curves for long transverse CT-91-T7E69 aluminum extrusion.

Figure 22. Effect of temperature on the compressive properties of CT-91-T7E69 aluminum extrusion.

Figure 23. Effect of temperature on pin shear properties of CT-91-T7E69 aluminum extrusion.

Figure 24. Effect of temperature on the bearing properties of CT-91-T7E69 aluminum extrusion.

Figure 25. Axial load fatigue behavior of unnotched long transverse CT-91-T7E69 aluminum extrusion.

Figure 26. Axial load fatigue behavior of notched (K = 3.0) long transverse CT-91-E7E69 aluminum extrusion.

Figure 27. Plot of da/dN versus delta K for CT-91-T7E69 aluminum extrusion.

Lab Air R = 0.1 Frequency = 20Hz Grain Orientation = LT

Ti-10V-2Fe-3Al Isothermally Forged Pancake

Material Description

Ti-10V-2Fe-3Al is a recently developed, metallurgically near-beta alloy. The alloy is capable of attaining a variety of strength levels, depending on the selection of heat treatment. A major advantage over other alloys is the excellent forgeability. It forms readily at temperatures below those required for Ti-6Al-4V.

The Ti-10V-2Fe-3Al material used in this evaluation was received as six pancakes, 7 inches (178 mm) in diameter x 1/2-inch (12.7 mm) thick, The material was produced by RMI and isothermally forged by TRW.

The chemical composition of this lot is as follows:

Chemical	Percent
Composition	Weight
Vanadium	9.5
Aluminum	3.2
Iron	1.9
Titanium	Balance

Processing and Heat Treating

A 30-inch (762 mm) diameter cast ingot was first heated to 2200 F (1478 K) and forged to a 24-inch (610 mm) round cornered square (RCS). The billet was then heated to 1400 F (1033 K) and forged to a 20-inch (508 mm) RCS, reheated to 1700 F (1200 K) and forged to a 15-inch (381 mm) RCS, reheated to 1700 F (1200 K) and once more forged to an 11-inch (279 mm) RCS bar. Conditioning of the piece was conducted as needed during the processing. A section of the material was cut, heated to 1375 F (1019 K) and forged into an 8-inch (203 mm) RCS, reheated to 1700 F (1200 K) and forged to a 5-inch (127 mm) RCS, reheated to 1500 F (1089 K) and forged to a 4-inch (102 mm) octagon. A final pass at RMI was performed in a rotary forging machine at 1500 F (1089 K) transforming the octagon into a 3-1/4-inch (82.6 mm) diameter round bar.

At TRW the round bar was conventionally upset 25% at 1525 F (1103 K), conventionally drawn 40% at 1525 F (1103 K), isothermally drawn 50% at 1525 F (1103 K), and isothermally forged 50% to the final shape. The material was subsequently heat treated as follows: 1435 F (1052 K)/2 hours/air cool, 1425 F (1047 K)/2 hours/water quench, and 945 F (780 K)/8 hours/air cool (STA).

Test Results

Location of test specimens is shown in Figures 28 a, b, and c.

Tests were conducted at the Materials Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base. No stress-strain or tangent-modulus curves were available.

Tension. Tests were conducted using longitudinal and long transverse specimens at room temperature and 600 F (589 K) with the results shown in Table 20.

Compression. Tests were conducted using longitudinal and long transverse specimens at room temperature with the results presented in Table 21.

Shear. Room temperature test results for longitudinal and long transverse specimens are shown in Table 22.

Bearing. Results of room temperature tests are shown in Table 23 for longitudinal and transverse specimens at e/D of 1.5 and 2.0.

Fatigue. Axial load, long transverse fatigue test results at room temperature are shown in Table 24 for unnotched and, in Table 25, for notched $(K_{\underline{t}} = 3.0)$ specimens. The S-N curves are presented in Figure 29.

Crack-Growth. Test results for compact tension, fatigue-crack-propagation L-T orientation specimens at room temperature are given in Table 26, and the 600 K (589 K) test results are presented in Table 27. Figure 30 shows da/dN versus ΔK at room temperature, while Figure 31 shows the 600 F (589 K) data.

TABLE 20. TENSILE TEST RESULTS FOR STA T1-10V-2Fe-3A1 PANCAKE

Specimen Identi- fication	Te: Str	imate nsile ength, (MPa)	Offse Str	Percent it Yield ength, (MPa)	Elongation in 1 Inch (25.4 mm), percent	Reduction in Area, percent	Mod	ensile dulus , csi (GPa)
		<u>F</u>	Room Tem	perature,	Longitudinal			
L-1		(1211.2)	169.0	(1164.9)	3.0	2.5	15.1	(103.9)
L-2		(1199.1)		(1155.6)	2.0	4.0	15.3	(105.5)
L-3	188.0	(1296.1)	185.3	(1277.8)	2.0	4.0	16.0	(110.4)
Average	179.2	(1235.5	174.0	(1199.4)	2.3	3.5	15.5	(106.6)
		. <u>I</u>	Room Tem	perature,	Long Transver	<u>se</u>		
T-1	180.7	(1246.1)	175.3	(1208.3)	2.0	3.5	15.2	(105.0)
T-5	177.1	(1221.1)	170.6	(1176.1)	2.0	3.3	14.9	(102.5)
T-6	178.6	(1231.6)	175.3	(1208.4)	2.0	3.3		(105.3)
Average	178.8	(1232.9	173.7	(1197.6)	2.0	3.3	15.1	(104.2)
			600 F	(589 K), L	ongitudinal			
L-4	161.7	(1115.1)	146.5	(1010,3)	2.8	7.0	14.8	(102.0)
L-5	148.9	(1026.4)	132.3		11.5	53.8	13.0	•
L-6	149.1	(1027.9)	131.0	(903.3)	10.7	48.9	14.1	(97.4)
Average	153.2	(1056.5)	136.6	(942.0)	8.33	36.6	14.0	(96.4)
600 F (589 K), Long Transverse								
T-4	152.2	(1049.1)	142.9	(985.4)	3.2	9.5	15.4	(106.2)
T-2	154.6	(1065.6)	137.0	(944.5)	9.8	43.2	14.0	(96.2)
T-3	157.9	(1088.8)	143.7	(991.1)	6.5	32.9	12.6	(86.7)
Average	154.9	(1067.8)	141.2	(973.7)	6.5	28.5	14.0	(96.4)

^aThe values presented are indicative of modulus values typical for titanium alloy materials; however, the instrumentation did not meet ASTM E83 Class A extensometer requirements.

TABLE 21. ROOM TEMPERATURE COMPRESSION TEST RESULTS FOR STA Ti-10V-2Fe-3Al PANCAKE

Specimen Identification	Stre	mate ^a ength, (MPa)		ressive ^b lulus, i (GPa)
	Longit	udinal		
L-8 L-9		(1489.0) (1458.4)		(116.6) (112.3)
Average	213.7	(1473.7)	16.6	(114.5)
Specimen Identification	0.2 Percent Offset Yield Strength, ksi (MPa)		Compressive ^l Modulus, 10 ³ ksi (GPa)	
	Long Tran	nsverse		
T-10 T-11 T-12	192.4	(1335.2) (1326.7) (1305.6)	16.1 16.1 15.9	
Average	191.8	(1322.5)	16.1	(110.9)

^aDue to testing problems, the data for longitudinal specimens are ultimate strength values.

b The values presented are indicative of modulus values typical for titanium alloy materials; however, the instrumentation did not meet ASTM E-83 Class A extensometer requirements.

TABLE 22. PIN SHEAR TEST RESULTS FOR STA T1-10V-2Fe-3A1 PANCAKE

Specimen Identification	Longitudinal Ultimate Shear Strength, ksi (MPa)	Specimen Identification	Long Transverse Ultimate Shear Strength, ksi (MPa)
L-13	97.4 (671.4)	T-16	103.7 (715.0)
L-14	101.4 (698.8)	T-17	102.3 (705.1)
L-15	97.2 (670.0)	T-18	98.7 (700.2)
Average	98.6 (680.1)	Average	101.6 (700.2)

TABLE 23. BEARING TEST RESULTS AT e/D = 1.5 AND e/D = 2.0 FOR STA T1-10V-2Fe-3Al PANCAKE

Specimen Identification	Str	ng Yield ength, (MPa)	Str	Ultimate ength, (MPa)
<u>e</u>	/D = 1.5	Longitudi	nal	
L-19	248.8	(1715.1)	255.3	(1760.3)
L-20	237.7	(1638.8)	243.4	(1678.4)
L-21	242.6	(1672.5)	242.6	(1672.5)
Average	243.0	(1675.5)	247.1	(1703.8
e/D	= 1.5, 1	ong Transv	erse	
T-22	254.1	(1751.9)	265.6	(1831.0)
T-23	262.7	(1811.2)	263.9	(1819.7)
T-24		(1792.8)		(1827.0)
Average	258.9	(1785.3)	264.8	(1825.9)
<u>e</u>	/D = 2.0	Longitudi	nal	
L-25	291.4	(2009.0)	329.5	(2271.8)
L-26	297.8	(2053.0)	315.2	(2173.3)
L-27	280.7	(1935.5)	318.8	(2198.3)
Average	290.0	(1999.2)	321.2	(2214.5)
<u>e/</u>	D = 2.0	Long Trans	verse	
T-28	271.7	(1873.3)	329.3	(2270.6)
T-29		(1985.9)		(2153.7)
T-30		(1949.7)		(1977.9)
Average	280.8	(1936.3)	309.5	(2134.1)

TABLE 24. AXIAL LOAD UNNOTCHED FATIGUE TEST RESULTS AT ROOM TEMPERATURE FOR STA Ti-10V-2Fe-3A1 PANCAKE - LONG TRANSVERSE

Specimen Identification		m Stress, (MPa)	Cycles to Failure	
T-38	150	(1034.2)	3,700	
T-34	135	(930.8)	9,700 ^a	
T-37	130	(896.4)	44,400	
T-33	125	(861.9)	55,500 ^b	
T-32	120	(827.4)	101,600	
T-40	117.5	(810.2)	47,200	
T-39	115	(792.9)	5,227,300	
T-35	112.5	(775.7)	450,500	
T-36	110	(758.4)	5,393,300	
T-34	107.5	(741.2)	10 ⁷	
T-33	105	(724.0)	10 ^{7¢}	

^aRerun of 107.5 ksi (741.2 MPa).

^bRerun of 105 ksi (724 MPa).

^CDid not fail.

TABLE 25. AXIAL LOAD NOTCHED (K_t = 3.0) FATIGUE TEST RESULTS AT ROOM TEMPERATURE FOR STA T1-10V-2Fe-3A1 PANCAKE - LONG TRANSVERSE

Specimen Identification		n Stress, (MPa)	Cycles to Failure	
T-48	85	(586.0)	4,350 ^a	
T-50	75	(517.1)	7,010	
T-44	70	(482.6)	11,200 ^b	
T-41	60	(413.7)	18,100	
T-43	55	(379.2)	28.900 ^c	
T-47	50	(344.8)	51,600 ^d	
T-42	45	(310.3)	64,000	
T-49	42.5	(293.0)	48,100	
T-45	40	(275.8)	54,200	
T-48	38.5	(265.4)	11,551,300 ^e	
T-46	37.5	(258.6)	89,600	
T-47	37.5	(258.6)	10 ⁷ e	
T-43	35	(241.3)	10 ⁷	
T-44	35	(241.3)	17,385,000 ^e	

^aRerun of 38.5 ksi (265.4 MPa).

 $^{^{\}rm b}$ Rerun of 35 ksi (241.3 MPa).

^CRerun of 35 ksi (241.3 MPa).

^dRerun of 37.5 ksi (258.6 MPa).

eTest discontinued; did not fail.

TABLE 26. FATIGUE-CRACK-PROPAGATION DATA FOR STA T1-10V-2Fe-3A1 PANCAKE AT ROOM TEMPERATURE - L-T SPECIMEN

a, inches (mm)	N, cycles x 10 ³	da/dN, inch/cycle (mm/cycle)	ΔK, ksi√in (MPa√m)
		<u>Ti-10-3</u>	
.0920 (2.34)	10.0		3.59 (3.95)
.1120 (2.84)	50.0	5.000E-07 (1.270E-05)	3.78 (4.16)
.1320 (3.35)	90.0	5.000E-07 (1.270E-05)	3.97 (4.37)
.1520 (3.86)	130.0	5.952E-07 (1.512E-05)	4.16 (4.57)
.1720 (4.37)	160.0	6.500E-07 (1.651E-05)	4.35 (4.78)
.1910 (4.85)	190.0	6.500E-07 (1.651E-05)	4.53 (4.98)
.2110 (5.36)	220.0	7.500E-07 (1.905E-05)	4.72 (5.10)
.2360 (5.99)	250.0	9.333E-07 (2.371E-05)	4.96 (5.45)
.2560 (6.50)	270.0	1.038E-06 (2.636E-05)	5.15 (5.65)
.2820 (7.16)	294.0	1.083E-06 (2.752E-05)	5.39 (5.92)
.3080 (7.82)	318.0	1.166E-06 (2.962E-05)	5.64 (6.19)
.3250 (8.25) .3520 (8.94)	332.0 353.0	1.243E-06 (3.157E-05)	5.80 (6.37) 6.06 (6.65)
.3780 (9.60)	370.0	1.420E-06 (3.608E-05) 1.638E-06 (4.160E-05)	6.31 (6.93)
.4040 (10.26)	385.0	1.867E-06 (4.741E-05)	6.56 (7.20)
.4340 (11.02)	400.0	2.185E-06 (5.550E-05)	6.85 (7.53)
.4620 (11.73)	412.0	2.375E-06 (6.033E-05)	7.13 (7.83)
.4910 (12.47)	424.0	2.734E-06 (6.943E-05)	7.42 (8.15)
.5310 (13.49)	437.0	3.726E-06 (9.463E-05)	7.83 (8.61)
.5640 (14.32)	445.0	3.981E-06 (1.011E-04)	8.18 (8.99)
.6020 (15.29)	455.0	3.911E-06 (9.934E-05)	8.60 (9.45)
.6340 (16.10)	463.0	4.381E-06 (1.113E-04)	8.96 (9.84)
.6620 (16.81)	469.0	4.790E-06 (1.217E-04)	9.29 (10.20)
.6940 (17.63)	475.5	5.223E-06 (1.327E-04)	9.68 (10.63)
.7270 (18.46)	481.5	5.913E-06 (1.502E-04)	10.09 (11.09)
.7550 (19.15)	486.0	6.237E-06 (1.584E-04)	10.47 (11.50)
.7800 (19.81)	490.0	6.750E-06 (1.715E-04)	10.81 (11.88)
.8090 (20.57)	494.0	7.869E-06 (1.999E-04)	11.24 (12.35)
.8340 (21.18)	497.0	8.667E-06 (2.201E-04)	11.62 (12.77)
.8610 (21.87)	500.0	9.667E-06 (2.455E-04)	12.05 (13.24)
.8920 (22.66)	503.0	1.050E-05 (2.667E-04)	12.58 (13.82)
.9249 (23.47)	506.0	1.205E-05 (3.060E-04)	13.16 (14.47)
.9570 (24.31)	508.5	1.309E-05 (3.325E-04)	13.81 (15.18)
.9830 (24.97)	510.5	1.425E-05 (3.620E-04)	14.36 (15.78)
1.0140 (25.76)	512.5	1.960E-05 (4.977E-04)	15.06 (16.55)
1.0480 (26.62) 1.0720 (27.23)	514.0	2.517E-05 (6.392E-04)	15.90 (17.47)
1.0720 (27.23) 1.1020 (27.99)	514.9 515.8	3.000E-05 (7.620E-04) 3.554E-05 (9.027E-04)	16.54 (18.17) 17.40 (19.12)
1.1320 (28.75)	516.6	6.583E-05 (1.672E-03)	18.35 (20.16)
1.1640 (29.56)	517.0	8.667E-05 (2.201E-03)	19.45 (21.38)
212070 (67130)	227.0	0.00/B-03 (\$.\$0IB-03)	13.47 (41.30)

TABLE 26. (Continued)

	N,			_
a, inches (mm)	cycles x 10 ³	da/dN, inch/cycle (mm/cy	Δl cle) ksi√in	(, (MPa√m)
				
		Ti-10-3 (Continued	<u> </u>	
1.1820 (30.02)	517.2)	9.667E-05 (2.455E-		(22.12)
1.1920 (30.28)	517.3	1.450E-04 (3.683E-		(22.55)
1.2110 (30.76)	517.4	2.250E-04 (5.715E		(23.41)
1.2370 (31.42)	517.5		22.46	(24.68)
		<u>Ti-10-4</u>		
.1601 (4.07)	15.0		4.24	(4.66)
.1003 (4.58)	60.0	4.932E-07 (1.253E-		(4.87)
.2016 (5.12)	100.0	7.675E-07 (1.949E-		(5.89)
.2417 (6.14)	140.0	8.272E-07 (2.101E		(5.51)
.2721 (6.91)	190.0	7.068E-07 (1.795E	•	(5.82)
.2902 (7.37)	214.0	7.995E-07 (2.831E-		(6.01)
.3168 (8.05)	245.0	1.050E-06 (2.666E-		(6.29)
.3377 (8.58)	263.0	1.448E-06 (3.677E	•	(6.51)
.3503 (8.90)	271.0	1.474E-06 (3.744E-	•	(6.64)
.3757 (9.54)	292.0	1.442E-06 (3.663E-	•	(6.91)
.4071 (10.34)	311.0	1.493E-06 (3.791E-	-	(7.24)
.4238 (10.76)	323.0	1.649E-06 (4.189E-	•	(7.42)
.4578 (11.63)	339.9	2.128E-06 (5.406E	•	(7.79)
.4800 (12.19)	350.0	2.199E-06 (5.585E		(8.03)
.5064 (12.86)	362.0	2.095E-06 (5.321E	•	
.5226 (13.27)	370.0	2.256E-06 (5.731E		(8.51)
.5425 (13.78)	378.0	2.752E-06 (6.990E		(8.74)
.5602 (14.23)	384.0	2.766E-06 (7.026E		(8.95)
.5848 (14.85)	394.0	2.878E-06 (7.311E		(9.24)
.6070 (15.42)	401.0	3.697E-06 (9.390E		(9.51)
.6342 (16.11)	407.5	3.811E-06 (9.681E		(9.85)
.6550 (16.64)	413.5	3.248E-06 (8.708E	-05) 9.21	(10.12)
.6740 (17.12)	419.1	3.664E-06 (9.307E		(10.37)
.6952 (17.66)	424.5	4.209E-06 (1.069E	-04) 9.70	(18.65)
.7185 (18.25)	429.7	5.391E-06 (1.369E	-04) 9.99	(10.98)
.7337 (18.64)	432.3	5.886E-06 (1.495E	-04) 10.19	(11.20)
.7605 (19.32)	436.8	6.143E-06 (1.560E	-04) 10.55	(11.59)
.7838 (19.91)	440.5	6.256E-06 (1.589E	-04) 10.88	(11.95)
.8148 (20.70)	445.5	6.968E-06 (1.770E		(12.45)
.8363 (21.24)	448.4	6.810E-06 (1.730E		(12.82)
.8526 (21.66)	451.0	7.865E-06 (1.998E		(13.10)
.8761 (22.25)	453.5	9.364E-06 (2.378E		(13.53)
.8957 (22.75)	455.6	9.683E-06 (2.460E		(13.91)
.9147 (23.23)	457.5	1.071E-05 (2.721E		(14.29)
.9340 (23.72)	459.2	1.165E-05 (2.960E		(14.69)
•		-	*	

TABLE 26. (Continued)

	N,		
a,	cycles	da/dN,	_ΔK,
inches (mm)	$\times 10^3$	<pre>inch/cycle (mm/cycle)</pre>	ksi√in (MPa√m)
			
		Ti-10-4 (Continued)	
.9531 (24.21)	460.8	1.100E-05 (2.794E-04)	13.75 (15.11)
.9692 (24.62)	462.4	1.159E-05 (2.943E-04)	14108 (15.47)
.9804 (24.90)	463.3	1.302E-05 (3.308E-04)	14.32 (15.74)
1.0044 (25.51)	465.0	1.448E-05 (3.678E-04)	14.86 (16.32)
1.0266 (26.08)	466.5	1.295E-05 (3.288E-04)	15.38 (16.90)
1.0423 (26.47)	467.9	2.545E-05 (6.465E-04)	15.77 (17.33)
1.0651 (27.05)	468.6	2.858E-05 (7.260E-04)	16.37 (17.99)
1.0802 (27.44)	469.2	2.301E-05 (5.845E-04)	16.79 (18.45)
1.0980 (27.89)	470.1	3.509E-05 (8.913E-04)	17.31 (19.02)
1.1309 (28.72)	470.8	3.578E-05 (9.089E-04)	18.34 (20.15)
1.1466 (29.12)	471.4	8.267E-05 (2.100E-03)	18.87 (20.73)
1.1669 (29.64)	471.6	8.550E-05 (2.172E-03)	19.59 (21.53)
1.1808 (30.00)	471.8	6.175E-05 (1.568E-03)	20.12 (22.10)
1.1916 (30.27)	472.0	6.875E-05 (1.746E-03)	20.54 (22.57)
1.2083 (30.69)	472.2	3.250E-05 (8.255E-04)	21.22 (23.32)
1.2090 (30.71)	472.3	9.750E-05 (2.477E-03)	21.25 (23.36)
1.2278 (31.19)	472.4	1.035E-04 (2.629E-03)	22.08 (24.26)
1.2297 (31.23)	472.5	9.550E-05 (2.426E-03)	221.6 (24.35)
1.2469 (31.67)	472.6		22.97 (25.24)
		T1-10-5	
.1312 (3.33)	20.0	- 100- 0- 1- 00- 0-1	3.97 (4.36)
.1523 (3.87)	60.0	5.438E-07 (1.381E-05)	4.17 (4.58)
.1747 (4.44)	100.0	4.833E-07 (1.228E-05)	4.38 (4.82)
.1968 (5.00)	160.0	4.248E-07 (1.079E-05)	4.59 (5.85)
.2153 (5.47)	200.0	5.163E-07 (1.311E-05)	4.77 (5.24)
.2381 (6.05)	240.0	9.433E-07 (2.396E-05)	4.98 (5.47)
.2607 (6.62)	260.0	1.014E-06 (2.577E-05)	5.20 (5.71)
.2909 (7.37)	298.0	7.659E-07 (1.945E-05)	5.48 (6.02)
.3103 (7.88)	324.0	9.132E-07 (2.320E-05)	5.67 (6.23)
.3335 (8.47)	346.0	1.146E-06 (2.911E-05)	5.89 (6.47)
.3661 (9.30)	372.0	1.054E-06 (2.678E-05)	6.20 (6.81)
.3810 (9.68)	388.0	9.549E-07 (2.426E-05)	6.34 (6.97)
.4013 (10.19)	408.6	1.263E-06 (3.200E-05)	6.54 (7.19)
.4200 (10.67)	421.6	1.390E-06 (3.530E-05)	6.72 (7.39)
.4468 (11.35) .4771 (12.12)	442.0 456.0	1.818E-06 (4.618E-05)	6.99 (7.68)
.5036 (12.79)		2.188E006 (5.558E-05) 2.381E-06 (6.049E-05)	7.29 (8.01)
	468.0	•	7.56 (8.31)
.5262 (13.36)	477.0 485.0	2.379E-06 (6.044E-05) 2.717E-06 (6.901E-05)	7.79 (8.56)
.5443 (13.82) .5661 (14.38)	492.0	2.717E-06 (6.901E-05) 2.990E-06 (7.594E-05)	7.98 (8.77)
.5834 (14.82)	492.0	3.006E-06 (7.634E-05)	8.22 (9.03)
.3034 (14.04)	770.0	J.000E-00 (7.034E-03)	8.40 (9.23)

TABLE 26. (Concluded)

	N,		
a ,	cycles	da/dN,	ΔK ,
inches (mm)	* 10 ³	inch/cycle (mm/cycle)	ksi√in (MPa√m)
		Ti-10-5 (Continued)	
.5926 (15.05)	501.0	3.089E-06 (7.846E-05)	8.50 (9.35)
.6114 (15.53)	507.0	3.080E-06 (7.823E-05)	8.71 (9.58)
.6384 (16.22)	516.0	3.500E-06 (8.890E-05)	9.02 (9.92)
.6614 (16.80)	522.0	3.846E-06 (9.768E-05)	9.29 (10.21)
.6830 (17.35)	527.6	4.260E-06 (1.082E-04)	9.56 (10.50)
.7081 (17.98)	533.0	4.940E-06 (1.255E-04)	9.87 (10.85)
.7347 (18.66)	538.1	5.198E-06 (1.320E-04)	10.21 (11.22)
.7575 (19.24)	542.5	5.157E-06 (1.310E-04)	10.52 (11.56)
.7862 (19.97)	548.1	6.178E-06 (1.569E-04)	10.93 (12.01)
.8194 (20.81)	552.8	7.141E-06 (1.814E-04)	11.42 (12.55)
.8388 (21.30)	555.5	8.397E-06 (2.133E-04)	11.72 (12.88)
.8626 (21.91	558.0	1.022E-05 (2.596E-04)	12.11 (13.30)
.8853 (22.49)	560.1	9.984E-06 (2.536E-04)	12.49 (13.73)
.9086 (23.08)	562.7	1.112E-05 (2.824E-04)	12.91 (14.19)
.9313 (23.66)	564.5	1.104E-05 (2.804E-04)	13.34 (14.66)
.9577 (24.32)	567.7	1.196E-05 (3.037E-04)	13.86 (15.23)
.9798 (24.89)	569.3	1.525E-05 (3.874E-04)	14.33 (15.75)
1.0065 (25.56)	570.9	1.775E-05 (4.509E-04)	14.93 (16.41)
1.0307 (26.18)	572.2	1.856E-05 (4.715E-04)	15.51 (17.04)
1.0603 (26.93)	573.8	2.065E-05 (5.246E-04)	16.27 (17.88)
1.0823 (27.49)	574.8	1.961E-05 (4.982E-04)	16.88 (18.55)
1.1024 (28.00)	576.0	2.455E-05 (6.236E-04)	17.48 (19.20)
1.1262 (28.60)	576.8	4.508E-05 (1.145E-03)	18.22 (20.03)
1.1473 (29.14)	577.2	4.412E-05 (1.121E-03)	18.93 (20.81)
1.1660 (29.62)	577.8	7.817E-05 (1.985E-03)	19.60 (21.54)
1.1965 (30.39)	578.1	6.437E-05 (1.635E-03)	20.79 (22.84)
1.2044 (30.59)	578.3	6.101E-05 (1.550E-03)	21.11 (23.20)
1.2618 (32.05)	578.8	1.791E-04 (4.550E-03)	23.77 (26.12)
1.2810 (32.54)	578.9	200,22 04 (40300 00,	24.79 (27.24)
Spec	imen	Thickness, B,	Width, W,
Identif	ication	inch (mm)	inch (mm)
	0-3	0.5010 (12.72)	1.999 (50.77)
T1-1			L.9975 (50.74)
Ti-1			1.9956 (60.69)

TABLE 27. FATIGUE-CRACK-PROPAGATION DATA FOR STA Ti-10V-2Fe-3Al PANCAKE AT 600 F (589 K) - L-T SPECIMEN

	N,		
a,	cycles	da/dN,	_ΔK,
inches (mm)	$\times 10^3$	<pre>inch/cycle (mm/cycle)</pre>	ksivin (MPavm)
			
		<u>T1-10-2</u>	
1400 (2.56)	20.0		2 20 /2 71\
.1400 (3.56)	20.0	4.377E-07 (1.112E-05)	3.38 (3.71)
.1679 (4.26) .1863 (4.73)	90.0 130.0	4.377E-07 (1.112E-05) 4.829E-07 (1.227E-05)	3.60 (3.96) 3.74 (4.11)
.2286 (5.81)	210.0	5.446E-07 (1.383E-05)	4.08 (4.48)
.2507 (6.37)	250.0	5.600E-07 (1.422E-05)	4.25 (4.67)
.2734 (6.94)	290.0	6.458E-07 (1.640E-05)	4.43 (4.87)
.2984 (7.58)	325.0	6.940E-07 (1.763E-05)	4.63 (5.09)
.3187 (8.10)	355.0	5.950E-07 (1.511E-05)	4.79 (5.26)
.3341 (8.49)	385.0	6.467E-07 (1.643E-05)	4.91 (5.40)
.3575 (9.08)	415.0	8.000E-07 (2.032E-05)	5.10 (5.68)
.3821 (9.70)	445.0	7.700E-07 (1.956E-05)	5.30 (5.82)
.4037 (10.25)	475.0	8.924E-07 (2.267E-05)	5.47 (6.81)
.4296 (10.91)	500.0	9.327E-07 (2.369E-05)	5.68 (6.24)
.4466 (11.34)	520.0	1.118E-06 (2.838E-05)	5.82 (6.40)
.4743 (12.05)	540.0	1.420E-06 (3.607E-05)	6.05 (6.65)
.5034 (12.79)	560.0	1.322E-06 (3.357E-05)	6.30 (6.92)
.5206 (13.22)	574.0	1.241E-06 (3.151E-05)	6.45 (7.09)
.5394 (13.70)	589.0	1.333E-06 (3.385E-05)	6.61 (7.27)
.5504 (13.98)	597.0	1.560E-06 (3.962E-05)	6.71 (7.37)
.5790 (14.71)	612.0	1.556E-06 (3.952E-05)	6.97 (7.66)
.5943 (15.10)	624.0	1.501E-06 (3.813E-05)	7.11 (7.81)
.6112 (15.52)	634.0	1.765E-06 (4.482E-05)	7.26 (7.98)
.6354 (16.14)	647.0	2.136E-06 (5.426E-05)	7.50 (8.24)
.6700 (17.02)	661.2	3.245E-06 (8.241E-05)	7.84 (8.61)
.6955 (17.66)	668.2	3.685E-06 (9.360E-05)	8.10 (8.90)
.7167 (18.20)	673.9	3.131E-06 (7.953E-05)	8.32 (9.14)
.7306 (18.56)	679.3	3.370E-06 (8.561E-05)	8.47 (9.31)
.7531 (19.13)	684.7	4.498E-06 (1.142E-04)	8.72 (9.59)
.7761 (19.71)	689.5	4.687E-06 (1.191E-04)	8.99 (9.88)
.7945 (20.18)	693.5	4.667E-06 (1.186E-04)	9.21 (10.12)
.8120 (20.62)	697.2	4.870E-06 (1.237E-04)	9.43 (10.36)
.8394 (21.32)	702.6	8.488E-06 (2.156E-04)	9.78 (10.75)
.8546 (21.71)	704.2	8.217E-06 (2.087E-04)	9.99 (10.97)
.8697 (22.09)	706.6	9.957E-06 (2.529E-04)	10.20 (11.20)
.8825 (22.42)	707.7	1.061E-05 (2.694E-04)	10.38 (11.40)
.9059 (23.01)	710.7	4.710E-06 (1.196E-04)	10.73 (11.79)
.9108 (23.13)	712.3	5.217E-06 (1.325E-04)	10.80 (11.87)
.9347 (23.74)	715.0	9.841E-06 (2.500E-04)	11.18 (12.28)
.9536 (24.22)	716.8	9.353E-06 (2.376E-04)	11.49 (12.63)
.9770 (24.82)	720.0	9.375E-06 (2.381E-04)	11.90 (13.08)
.9948 (25.27)	721.7	1.290E-05 (3.277E-04)	12.23 (13.44)
1.0340 (26.26)	724.1	1.441E-05 (3.660E-04)	13.01 (14.29)
1.0526 (26.74)	725.5	1.308E-05 (3.321E-04)	13.41 (14.73)

TABLE 27. (Continued)

	N,		
a,	cycles	da/dN,	Δ K ,
inches (mm)	× 10 ³	inch/cycle (mm/cycle)	ksi√in (MPa√m)
		Ti-10-2 (Continued)	
1.0794 (27.42)	727.6	1.508E-05 (3.831E-04)	14.02 (15.40)
1.0905 (27.70)	728.3	1.511E-05 (3.837E-04)	14.28 (15.70)
1.1175 (28.38)	730.4	1.821E-05 (4.626E-04)	14.97 (16.45)
1.1315 (28.74)	731.1	3.164E-05 (8.037E-04)	15.35 (16.87)
1.1618 (29.51)	731.8	3.811E-05 (9.679E-04)	16.23 (17.83)
1.1820 (30.02)	732.4	4.647E-05 (1.180E-03)	16.86 (18.53)
1.2040 (30.58)	732.8	4.473E-05 (1.136E-03)	17.60 (19.34)
1.2216 (31.03)	733.4	4.133E-05 (1.050E-03)	18.24 (20.04)
1.2536 (31.84)	734.0	6.133E-05 (1.558E-03)	19.50 (21.42)
1.2664 (32.17)	734.2		20.04 (22.02)
		<u>Ti-10-6</u>	
.1550 (3.94)	40.0		3.50 (3.84)
.1765 (4.48)	75.0	6.533E-07 (1.659E-05)	3.67 (4.83)
.1971 (5.01)	105.0	6.400E-07 (1.626E-05)	3.83 (4.21)
.2149 (5.46)	135.0	6.583E-07 (1.672E-05)	3.97 (4.36)
.2366 (6.01)	165.0	7.867E-07 (1.998E-05)	4.14 (4.55)
.2621 (6.66)	195.0	8.005E-07 (2.033E-05)	4.34 (4.77)
.2818 (7.16)	221.0	8.124E-07 (2.064E-05)	4.50 (4.94)
.3016 (7.66)	244.0	9.401E-07 (2.388E-05)	4.65 (5.11)
.3329 (8.46)	274.0	1.038E-06 (2.637E-05)	4.90 (5.39)
.3536 (8.98)	294.0	1.088E-06 (2.762E-05)	5.07 (5.57)
.3764 (9.56)	314.0	1.154E-06 (2.931E-05)	5.25 (5.77)
.3974 (10.09)	332.0	1.232E-06 (3.130E-05)	5.42 (5.95)
.4167 (10.58)	347.0	1.541E-06 (3.914E-05)	5.58 (6.13)
.4416 (11.22)	361.0	1.732E-06 (4.399E-05)	5.78 (6.35)
.4619 (11.73)	373.0	1.704E-06 (4.329E-05)	5.95 (6.54)
.4825 (12.26)	385.0	1.877E-06 (4.767E-05)	6.12 (6.73)
.5026 (12.77)	395.0	2.190E-06 (5.563E-05)	6.29 (6.91)
.5263 (13.37)	405.0	2.200E-06 (5.588E-05)	6.50 (7.14)
.5466 (13.88)	415.0	2.517E-06 (6.392E-05)	6.67 (7.33)
.5604 (14.23)	420.0	2.723E-06 (6.918E-05)	6.80 (7.47)
.5638 (14.83)	428.8	2.651E-06 (6.733E-05)	7.01 (7.70)
.6060 (15.39)	437.2	2.888E-06 (7.335E-05)	7.21 (7.93)
.6303 (16.01)	445.0	3.394E-06 (8.621E-05)	7.44 (8.18)
.6562 (16.67)	452.1	3.834E-06 (9.740E-05)	7.69 (8.46)
.6814 (17.31)	458.4	4.146E-06 (1.053E-04)	7.95 (8.73)
.7049 (17. 9 0)	463.9	4.578E-06 (1.163E-04)	8.19 (9.00)
.7402 (18.80)	471.0	4.541E-06 (1.153E-04)	8.57 (9.42)
.7578 (19.25)	475.1	5.029E-06 (1.277E-04)	8.77 (9.64)
.7795 (19,80)	478.9	6.069E-06 (1.542E-04)	9.03 (9.92)
.8019 (20.37)	482.4	5.102E-06 (1.296E-04)	9.30 (10.22)
.8147 (20.69)	485.7	9.811E-06 (2.492E-04)	9.46 (10.39)
.8350 (21.21)	487.3	1.097E-05 (2.786E-04)	9.72 (10.68)
		40	

TABLE 27. (Concluded)

a, inches (mm)	N, cycles x 10 ³	da/dN, inch/cycle (mm/cycle)	ΔK, ksi√īn (MPa√m)
		Ti-10-6 (Continued)	
.8557 (21.73)	489.8	8.397E-06 (2.133E-04)	9.99 (10.98)
.8744 (22.21)	492.0	1.018E-05 (2.586E-04)	10.26 (11.27)
.8965 (22.77)	493.9	1.065E-05 (2.705E-04)	10.58 (11.62)
.9140 (23,22)	495.7	1.094E-05 (2.780E-04)	10.84 (11.91)
.9244 (23.48)	496.6	1.074E-05 (2.728E-04)	11.00 (12.09)
.9408 (23.40)	498.4	1.042E-05 (2.646E-04)	11.27 (12.38)
.9619 (24.43)	500.2	1.233E-05 (3.133E-04)	11.63 (12.78)
.9852 (25.02)	502.0	1.500E-05 (3.810E-04)	12.04 (13.23)
1.0140 (25.76)	503.7	1.623E-05 (4.123E-04)	12.59 (13.83)
1.0344 (26.27)	505.0	1.743E-05 (4.428E-04)	13.00 (14.29)
1.0552 (26.80)	506.1	2.006E-05 (5.094E-04)	13.45 (14.78)
1.0763 (27.34)	507.1	2.056E-05 (5.222E-04)	13.93 (15.30)
1.0924 (27.75)	507.9	2.319E-05 (5.890E-04)	14.31 (15.73)
1.1134 (28.28)	508.7	2.594E-05 (6.588E-04)	14.84 (16.31)
1.1339 (28.80)	509.5	3.175E-05 (8.064E-04)	15.40 (16.92)
1.1733 (29.80)	510.5	4.071E-05 (1.034E-03)	16.56 (18.20)
1.1982 (30.43)	511.1	4.135E-05 (1.050E-03)	17.38 (19.10)
1.2147 (30.85)	511.5	4.688E-05 (1.191E-03)	17.96 (19.73)
1.2357 (31.34)	511.9	6.517E-05 (1.655E-03)	18.74 (20.60)
1.2500 (31.74)	512.1	7.050E-05 (1.791E-03)	19.31 (21.22)
1.2707 (32.28)	512.4	8.340E-05 (2.118E-03)	20.19 (22.19)
1.2893 (32.75)	512.6	1.077E-04 (2.735E-03)	21.04 (23.12)
1.3008 (33.04)	512.7	1.320E-04 (3.353E-03)	21.60 (23.73)
1.3157 (33.42)	512.8	,	22.35 (24.56)
•	ecimen fication	Thickness, B, inch (mm)	Width, W, inch (mm)

Pigure 28a. Specimen location for Ti-10V-2Fe-3Al isothermally forged pancake.

Figure 28b. Specimen location for Ti-10V-2Fe-3Al isothermally forged pancake.

Figure 28c. Specimen location for Ti-10V-2Fe-3Al isothermally forged pancake.

Axial load fatigue behavior of unnotched and notched (K_L = 3.0), STA, T1-10V-2Re-3Al pancake at room temperature, long transverse. Pigure 29.

Figure 30. Plot of da/dN versus delta K for Ti-10V-2Fe-3Al pancake.

Lab Air Room Temperature R = 0.1 Frequency = 30 Hz Specimen Orientation = L-T

Figure 31. Plot of da/dN versus delta K for Ti-10V-2Fe-3Al pancake.

Lab Air (Heated) 600 F (589 K) R = 0.1 Frequency = 30 Hz Specimen Orientation = L-T APPENDIX A

DATA SHEETS

MECHANICAL-PROPERTY DATA Ti-6Al-4V ALLOY

POWDER METALLURGY PRODUCT CHIP

Issued by

Air Force Wright Aeronautical Laboratory
Materials Laboratory
Wright-Patterson Air Force Base, Ohio

May 1981

Prepared by

BATTELLE Columbus Laboratories

Columbus, Ohio 43201

F33615-80-C-5168

77

Ti-6A1-4V Alloy (CHIP)

Material Description

This Ti-6Al-4V alloy, a powder metallurgy product from Dynamet Technology, was received as sixty 5/8" diameter x 5" bars, seven 0.125" x 2" x 12" strips, and nine 3/4" x 3" x 3" blanks.

The chemical composition of this lot is as follows:

Chemical Composition	Percent Weight
Aluminum	5.70
Vanadium	4.22
Carbon	0.024
Hydrogen	0.0013
Nickel	0.0112
Oxygen	0.19
Others	0.043
Titanium	Ralance.

Processing and Heat Treating

The Ti-6Al-4V alloy was received in the "CHIP"ed condition. "CHIP" (Cold Hot Isostatically Pressed) processing means the material was cold isostatically pressed at 60,000 psi (413.7 MPa), vacuum sintered at 2250 F (1505 K) for 3 hours and furnace cooled, and hot isostatically pressed at 15,000 psi (103.4 MPa) at 1650 F (1172 K) to achieve the desired density and mechanical properties.

Results of this evaluation show slightly lower strength values than for the wrought annealed material. The tensile and compression results were slightly lower while the bearing and shear results were slightly higher.

Ti-6Al-4V
Condition: CHIP (a)

		Temp	eratur	e, F (K)		
Properties	RT	(RT)	400	(477)	800	(700)
Tension						
TUS, ksi (MPa)	127.4	(878.4)	96.0	(661.9)	76.6	(528,2
TYS, ksi (MPa)	115.8	(798.4)				(416.5
RA, percent	12.2	(12.2)	16.1			(26.7
e, percent in 1 in. (25.4 mm)	6.7		7.0			(10.8
E, 10 ³ ksi (GPa)	16.9	(116.5)	15.7	(108.3)	13.6	(93.8
Compression						
CYS, ksi (MPa)	123.8	(853.6)	83.3	(574.4)	61.0	(420.6
E_c , 10^3 ksi (GPa)	15.9	(109.6)	15.0			(91.0
Shear						•
SUS, ksi (MPa)	88.8	(612.3)	71.3	(491.5)	55.3	(381.4
Bearing						
e/D = 1.5						
BUS, ksi (MPa)	212.6	(1465.7)	154.6	(1065.8)	151.1	(1041.8
BYS, ksi (MPa)		(1446.1)		(984.3)		(831.4
e/D = 2.0				•		•
BUS, ksi (MPa)	262.0	(1806.0)	195.4	(1347.6)	192.6	(1328.3
BYS, ksi (MPa)		(1669.0)		(1196.1)		(970.3
Fracture Toughness						
K _{IC} , ksi/ In. (MPa·m ^{1/2})	36.7 ⁽	b) (40.4)	NA (c)		NA	
Axial Fatigue						
Unnotched, R = 0.1						
10 ³ cycles, ksi (MPa)	124	(854)	NA		73	(503)
10 ⁵ cycles, ksi (MPa)		(441)				
10 ⁷ cycles, ksi (MPa)	64 45(d)	(310)			48 35 (d)	(241)
Notched, K _t = 3.0, R = 0.1					-	,= · - /
10 ³ cycles, ksi (MPa)	(e)		NA		62 ^(d)	(427)
105 cycles, ksi (MPa)	34	(234)	142		25	(172)
107 cycles, ksi (MPa)	19	(131)			15	(103)

Ti-6Al-4V (Continued)

_	Temperature, F (K)						
Properties	RT	(RT)	400	(477)	800	(700)	
Creep							
0.2% plastic deformation, 100 hr, ksi (MPa)	NA		NA		47.5	(327.5)	
0.2% plastic deformation, 1000 1000 hr, ksi (MPa)	NA		NA		34.0	(234.4)	
Stress Rupture							
Rupture, 100 hr, ksi (MPa)	NA		NA		50.0	(344.7)	
Rupture, 1000 hr, ksi (MPa)	NA		NA		42.1	(290.3)	
Stress Corrosion (f)							
K _{ISCC} - 15 ksi√in. (16.5 MPa·m	R)						
Confedent of Thermal Europeden							

Coefficient of Thermal Expansion

 6.0×10^{-6} in./in./F (70 - 800 F) [10.8 × 10^{-6} m/(m·k) (295 - 700 K)]

Density

0.159 lb./in. 3 (4.41 g/cm 3)

- (a) Cold isostatically pressed, vacuum sintered and hot isostatically pressed. Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests.
- (b) K_{TC} is valid as per ASTM E399.
- (c) NA, not applicable.
- (d) Estimated.
- (e) Insufficient tests to estimate.
- (f) This value is an approximate determination of K_{ISCC} at 10⁻⁸ in./sec. (25.4 x 10⁻⁸ mm/sec.). The increasing K tests lasted an average of 3 days and were conducted at 75 F (297 K) in 3-1/2% NaCl. Compacttension-type specimens were used.

Figure 1. Effect of temperature on the tensile properties of Ti-6Al-4V (CHIP) Alloy.

Figure 2. Effect of temperature on the compressive properties of Ti-6A1-4V (CHIP) Alloy.

Figure 3. Effect of temperature on the pin shear properties of Ti-6Al-4V (CHIP) Alloy.

Figure 4. Effect of temperature on the bearing properties of Ti-6Al-4V (CHIP) alloy.

Figure 5. da/dN versus delta K for Ti-6Al-4V (CHIP) Alloy.

Lab Air R = 0.1 Frequency = 20 Hz

Figure 6. Axial load fatigue behavior of unnotched Ti-6A1-4V (CHIP) Alloy.

Figure 7. Axial load fatigue behavior of notched $(k_t = 3.0)$ Ti-6Al-4V (CHIP) Alloy.

Stress, ksi

Stress-rupture and plastic deformation curves for annealed Ti-6Al-4V (CHIP) alloy.

MECHANICAL-PROPERTY DATA CT 91-T7E69 ALUMINUM

POWDER METALLURGY PRODUCT

Issued by

Air Force Wright Aeronautical Laboratory
Materials Laboratory
Wright-Patterson Air Force Base, Ohio

September, 1981

Prepared by

BATTELLE Columbus Laboratories Columbus, Ohio 43201

F33615-80-C-5168

CT 91-T7E69 Aluminum

Material Description

CT 91-T7E69 aluminum alloy is a powder metallurgy product of Alcoa. The material was received as two $1\frac{1}{2}$ -inch thick x $4\frac{1}{2}$ -inch wide x 4-foot lengths.

The chemical composition of this lot is as follows:

Chemical Composition	Percent Weight				
Silicon	0.15				
Iron	0.20				
Copper	1.20 - 2.00				
Magnesium	2.20 - 3.00				
Zinc	6.00 - 7.00				
Cobalt	0.20 - 0.60				
Other	0.15				
Aluminum	Balance				

Processing and Heat Treating

The CT 91 aluminum was received in the T7E69 condition. This temper was designed to have good static strength and fatigue resistance.

Results of these tests show higher tensile, shear, and fatigue data as compared to the T7E70 temper while giving lower fracture toughness values.

CT 91 Aluminum(a)

Condition: T7E69
Thickness: 1½ inch

	Temperature, F (K)						
Properties	RT	(RT)	250	(394)	350	(450)	
Tension							
TUS, L, ksi (MPa)	89.6	(617.8)	74.5	(513.7)	59.2	(408.2)	
TUS, T, ksi (MPa)	83.6	(576.4)	69.8	(481.3)	54.9	(379.5)	
TYS, L, ksi (MPa)	83.0	(572.3)	72.9	(502.6)		(396.5)	
TYS, T, ksi (MPa)	74.9	(516.4)	66.1	(455.8)	52.2	(359.9)	
e, L, % in 2 in. (50.8 mm)	11.0		18.7	•	22.6	• • • • • •	
e, T, % in 2 in. (50.8 mm)	11.7		17.2		21.5		
E , L , 10^3 ksi (GPa)	10.8	(74.5)	9.77	(67.4)	9.25	(63.8)	
E , T, 10^3 ksi (GPa)	10.8	(74.5)	9.49		9.00	(62.1)	
RA, L, Reduction in area, %	28.8		50.3	••	62.9	\ ,	
RA, T, Reduction in area, %	29.0		41.3		52.1		
Compression							
CYS, L, ksi (MPa)	83.1	(573.0)	75.3	(519.2)	57.0	(393.0)	
CYS, T, ksi (MPa)	80.8	(557.1)	72.0	(496.4)	57.0	(393.0)	
E_c , L, 10^3 ksi (GPa)	10.6	(73.1)	9.3	(64.1)	8.7	(60.0)	
$E_{\rm C}$, T, 10^3 ksi (GPa)	10.0	(69.0)	9.8	(67.6)	8.5	(58.6)	
Shear		-					
SUS, L, ksi (MPa)	52.8	(363.9)	44.6	(307.5)	35.3	(243.4)	
SUS, T, ksi (MPa)	49.8	(343.2)	43.7	(301.3)	33.1	(228.2)	
Bearing							
e/D = 1.5							
BUS, L, ksi (MPa)	135.1	(931.5)	111.0	(765.3)	86.00	(593.0)	
BUS, T, ksi (MPa)	130.7	(901.2)	111.6	(769.5)	83.68	(577.0)	
BYS, L, ksi (MPa)	107.6	(741.9)	95.9	(661.2)	78.09	(538.4)	
BYS, T, ksi (MPa)	108.0	(744.7)	97.4	(671.6)	76.79	(529.5)	
e/D = 2.0							
		(1183.9)	145.6	(1003.9)	108.3	(746.7)	
BUS, T, ksi (MPa)	170.6	(1176.3)	146.6	(1010.8)	108.9	(750.9)	
	126.0	(868.8)	111.8	(770.9)	89.1	(614.3)	
BYS, T, ksi (MPa)	127.7	(880.5)	112.1	(772.9)	89.9	(619.9)	

(Continued)

	Temperature, F (K)							
Properties	RT	(RT)	250	(394)	350	(450)		
Fracture Toughness								
K _{IC} , L-T, ksivin. (MPa·my)	24.2	(26.6) (b)	NA ^(c)		NA			
KIC, T-L, ksivin. (MPa·mk)	35.1	(38.6)	NA		NA			
Axial Fatigue (Transverse)	(e)							
Unnotched, R = 0.1								
10 ³ cycles, ksi (MPa)	79.0	(544.7)	NA		54.0	(372.3)		
10 ⁵ cycles, ksi (MPa)	64.9	(447.5)	NA		49.7	(342.7)		
10 ⁷ cycles, ksi (MPa)	59.0	(406.8)	NA		28.9	(199.3)		
Notched, K. = 3.0, R = 0.1								
Notched, $K_t = 3.0$, $R = 0.1$ 10^3 cycles, ksi (MPa)	61.0	(420.6)	NA		50.0	(344.8)		
10 ⁵ cycles, ksi (MPa)	23.5	(162.0)	NA		16.0	(110.3)		
10 ⁷ cycles, ksi (MPa)	20.0	(137.9)	NA		10.0	(69.0)		
Stress Corrosion (d)								
$K_{ISCC} = 3 \text{ ksi}\sqrt{\text{in.}} (3.3 \text{ MB})$	a·m'y)							

Density

 $\omega = 0.102 \text{ lb/in.}^3 (2.823 \text{ g/cc})$

- (a) Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue values are from curves generated using the results of a greater number of tests.
- (b) K_{IC} is valid as per ASTM F399.
- (c) NA, not applicable.
- (d) This value is an approximate determination of $K_{\rm ISCC}$ at 10^{-8} in./sec. (25.4 x 10^{-8} mm/sec.). This value appears low due to scatter. The increasing K tests lasted an average of 3 days and were conducted at 75 F (297 K) in 347 NaCl. Compact-tension-type specimens were used.
- (e) The unnotched fatigue tests were conducted using a test section diameter of 0.18 inch (4.57 mm). ASTM E466 suggests a test section diameter between 0.200 inch (5.08 mm) and 1.000 inch (25.4 mm), however it is felt these are valid test results.

Figure 1. Effect of temperature on the tensile strength of CT 91-T7E69 aluminum.

Figure 2. Effect of temperature on tensile properties of CT 91-T7E69 aluminum.

Figure 3. Effect of temperature on the compressive properties of CT 91-T7E69 aluminum.

Figure 4. Effect of temperature on pin shear properties of CT 91-T7E69 aluminum.

Figure 5. Effect of temperature on the bearing properties of CT 91-T7E69 aluminum.

Figure 6. da/dN versus delta K for CT 91-T7E69 aluminum.

Lab Air
R = 0.1
Frequency = 20 Hz

Figure 7. Axial load fatigue behavior of unnotched CT 91-T7E69 aluminum.

Figure 8. Axial load fatigue behavior of notched $(K_{\rm t}=3.0)$ CT 91-T7E69 aluminum.

MECHANICAL-PROPERTY DATA Ti-10V-2Fe-3Al ALLOY

ISOTHERMALLY FORGED

Issued by

Air Force Wright Aeronautical Laboratory
Materials Laboratory
Wright-Patterson Air Force Base, Ohio

June 1982

Prepared by

BATTELLE

Columbus Laboratories Columbus, Ohio 43201

F33615-80-C-5168

Ti-10V-2Fe-3Al Isothermally Forged

Material Description

Ti-10V-2Fe-3Al is a recently developed, metallurgically nearbeta alloy. The alloy is capable of attaining a variety of strength levels, depending on the selection of heat treatment. A major advantage over other alloys is the excellent forgeability. It forms readily at temperatures below those required for Ti-6Al-4V.

The Ti-10V-2Fe-3Al material used in this evaluation was received as 6 discs 7 inches (178 mm) in diameter \times 1/2-inch (12.7 mm) thick. The material was produced by RMI and isothermally forged by TRW.

The chemical composition of this lot is as follows:

Chemical Composition	Percent Weight
Vana di um	9.5
Aluminum	3.2
Iron	1.9
Titanium	Balance

Processing and Heat Treating

A 30-inch (762 mm) diameter cast ingot was first heated to 2200 F (1478 K) and forged to a 24-inch (610 mm) round cornered square (RCS). The billet was then heated to 1400 F (1033 K) and forged to a 20-inch (508 mm) RCS, reheated to 1700 F (1200 K) and forged to a 15-inch (381 mm) RCS, reheated to 1700 F (1200 K) and once more forged to an 11-inch (279 mm) RCS bar. Conditioning of the piece was conducted as needed during the processing. A section of the material was then cut, heated to 1375 F (1019 K) and forged into an 8-inch (203 mm) RCS, reheated to 1700 F (1200 K) and forged to a 5-inch (127 mm) RCS, reheated to 1500 F (1089 K) and forged to a 4-inch (102 mm) octagon. A final pass at RMI was performed in a rotary forging machine at 1500 F (1089 K) transforming the octagon into a 3-1/4-inch (82.6 mm) diameter round bar.

At TRW the round bar was conventionally upset 25% at 1525 F (1103 K), conventionally drawn 40% at 1525 F (1103 K), isothermally drawn 50% at 1525 F (1103 K), and isothermally forged 50% to the final shape. The material was subsequently heat treated as follows: 1435 F (1052 K)/2 hours/air cool, 1425 F (1047 K)/2 hours/water quench, and 945 F (780 K)/8 hours/air cool (STA).

Condition: STA

Thickness: 1/2-inch (12.7 mm)

<u> </u>				
Properties	RT	(RT)	600	(587)
Tension				
TUS, L, ksi (MPa)	179.2	(1235.6)	153.2	(1056.3)
TUS, T, ksi (MPa)	178.8	(1232.8)	154.9	(1068.0)
TYS, L, ksi (MPa)	173.9	(1199.0)	136.6	(941.9)
TYS, T, ksi (MPa)	173.7	(1197.7)	141.2	(973.6)
e , L, percent in 2 in. (50.8 mm)	2.3	•		
e , T, percent in 2 jn, (50.8 mm)	2.0		8.3 6.5 ⁽ b)	
E , L , 10^3 ksi (GPa) $\binom{d}{d}$	15.46	(106.6)	13.98	(96.4)
E , T, 10 ³ ksi (GPa) (d)	15.12	(104.2)	13.98	(96.4)
Compression				
CUS, L, ksi (MPa) (b,c)	213.7	(1473.5)		
CUS, T, ksi (MPa)	211.4	(1457.6)		
CYS. T ket (MPa)	191.8	(1322.5)		
E. L, 10 ³ ksi (GPa) (b, d)	16.60	(114.4)		
E. L, 10 ³ ksi (GPa) (b,d) E. T, 10 ³ ksi (GPa) (d)	16.09	(110.9)		
Shear				
SUS, L, ksi (MPa)	98.6	(679.8)		
SUS, T, ksi (MPa)	101.5	(699.8)		
Bearing				
e/D = 1.5				
BUS, L, ksi (MPa)	247.1	(1703.8)		
BUS, T, ksi (MPa)	264.8	(1825.8)		
BYS, L, ksi (MPa)	243.0	(1675.5)		
BYS, T, ksi (MPa)	258.9	(1785.1)		
e/D = 2.0				
BUS, L, ksi (MPa)	321.2	(2214.7)		
BUS, T, ksi (MPa)	309.5	(2134.0)		
BYS, L, ksi (MPa)	289.9	(1998.9)		
BYS, T, ksi (MPa)	280.8	(1936.1)		
Axial Fatigue (Transverse)				
Unnotched, R = 0.1		40		
10 ³ cycles, ksi (MPa)	170	(1172)		
10 ⁵ cycles, ksi (MPa)	120	(827)		
10 ⁷ cycles, ksi (MPa)	110	(758)		
Notched, K = 3.0, R = 0.1	-00	45643		
103 cycles, ksi (MPa)	105	(724)		
10 ⁵ cycles, ksi (Ma)	45	(310)		
10 ⁷ cycles, ksi (MPa)	40	(276)		

⁽a) Values are average of triplicate tests conducted at Wright Aeronautical Laboratories, Materials Laboratory, unless otherwise indicated. Fatigue values are from curves generated using the results of a greater number of tests.

⁽b) Data from only two tests.

⁽c) Ultimate strength value only due to meet problems.
(d) The values presented are indicative of modulus values typical for titanium alloy materials; however, the instrumentation did not meet ASTH E83 class A extensometer requirements.

FIGURE 1. da/dN VERSUS DELTA K FOR T1-10V-2Fe-3Al ALLOY.

Lab Air
Room Temperature
R = 0.1
Frequency = 30 Hz
Specimen Orientation = L-T

FIGURE 2. de/dn versus delta k for ti-10v-2Fe-3A1 ALLOY.

Lab Air (Heated) 600 F (589 K) R = 0.1 Frequency = 30 Hz Specimen Orientation = L-T

AXIAL LOAD FATICUE BEHAVIOR OF UNNOTCHED AND NOTCHED ($\rm K_c=3.0$) T1-10V-2Fe-3A1 ALLOY AT ROOM TEMPERATURE FIGURE 3.

APPENDIX B

SPECIMEN DRAWINGS

- 1. Ti-6A1-4V (CHIP) alloy
 2. CT-91-T7E69 aluminum
- 3. T1-10V-2Fe-3Al pancake

Tensile

Note: Grind or machine ends of specimen so that ends of specimen shall be plane and perpendicular to the axis of the specimen within 0.25 degree. The ends shall be parellel within 0.0005".

Compression

Shear pin

Bearing

Creep

ANNEALED T1-6A1-4V (CHIP) ALLOY SPECIMENS

3.0 radius

Unnotched fatigue

Notched fatigue

ANNEALED T1-6A1-4V (CHIP) ALLOY SPECIMENS (Continued)

Crack Propagation

- A 0.575 B 0.750 C 1.875

- D 0.4125
- E 0.900
- F 0.378
- W 1.500
- H parallel within 0.002 W

ANNEALED Ti-6A1-4V (CHIP) ALLOY SPECIMENS (Concluded)

Note Grand or machine ends of specimen so that ends of specimen shall be plane and perpendicular to the axis of the specimen within 0.25 degree. The ends shall be parallel within 0.0005".

Tensile

Compression

Shear pin

Bearing

CT-91-T7E69 ALUMINUM EXTRUSION SPECIMENS

Unnotched fatigue

Notched Fatigue

CT-91-T7E69 ALUMINUM EXTRUSION SPECIMENS (Continued)

Fracture toughness Crack Propagation Stress Corrosion

- A 1.400
- 1.500 3.750 В
- C
- D 0.825
- E 1.800
- F 0.750
- W 3.000
- H parallel within 0.002 W

CT-91-T7E69 ALUMINUM EXTRUSION SPECIMENS (Concluded)

- 1. Threads to be concentric with central axis to 0.001
- 2. Gage length must not be underout at ends.
- 3. Gage length must be free of circumfrential scratches.

Tensile

Note: Ends to be flat and parallel to within 0.0002" of q.

Compression

Ti-10V-2Fe-3A1 ALLOY SPECIMENS

Bearing

Shear pin

Ti-10V-2Fe-3A1 ALLOY SPECIMENS (Continued)

Smooth Fatigue Specimen Configuration

DIMENSIONS IN INCHES (mm)

- Notched Fatigue Specimen Configuration
 Taper gage length (G.L.) .001 from ends to center.
 Gage length must not be undercut at ends.
 Polish longitudinally--G.L. must be free from circumfrential eratches
- Center drilling is permitted.

Ti-10V-2Fe-3A1 ALLOY SPECIMENS (Concluded)

APPENDIX C

AF 1410 SUPPLEMENTAL DATA

- AF 1410 Steel Plate
 AF 1410 Steel Die Forgings

TABLE OF CONTENTS (APPENDIX C)

			Page
		Plate	114 135
		LIST OF ILLUSTRATIONS	
			Page
Figure	C-1. C-2.	Specimen layout for AF 1410 Plate	115
	C-3.	Temperature for Double Austenitized and Aged AF 1410	125
	C-4.	Steel Plate	126
	C-5.	AF 1410 Steel Plate	127
	C-6.	Aged AF 1410 Steel Plate	128
	C-7.	AF 1410 Steel Plate	129
	C-8.		130
	C-9.	Double Austenitized and Aged AF 1410 Steel Plate Effect of Temperature on the Compressive Properties of Double Austenitized and Aged AF 1410 Steel Plate	131 131
	C-10.	Effect of Temperature on the Shear Properties of Double Austenitized and Aged AF 1410 Steel Plate	132
	C-11.	Effect of Temperature on the Compressive Properties of Double Austenitized and Aged AF 1410 Steel Plate	132
	C-12.	Austenitized and Aged AF 1410 Steel Plate	133
	C-13.	Double Austenitized and Aged AF 1410 Steel Plate	133
	C-14.	Creep Rupture and Plastic Deformation Curves for Transverse AF 1410 Steel Plate	134
	C-15. C-16.	AF 1410 Steel Die Forgings	136
	C-17.	for Double Austenitized and Aged AF 1410 Die Forgings. Typical Compressive Stress-Strain Curves at Temperature for Double Austenitized and Aged AF 1410 Die Forgings	142

LIST OF ILLUSTRATIONS (Continued)

		Page
C-18.	Double Austenitized and Aged AF 1410 Die Forgings	144
C-19.	Effect of Temperature on the Tensile Properties of AF 1410 Die Forgings	145
C-20.	Effect of Temperature on the Compressive Properties	145
C-21.	of AF 1410 Die Forgings	145
021.	AF 1410 Die Forgings	146
C-22.	Axial Load Fatigue Behavior of Unnotched and Notched AF 1410 Die Forgings at Room Temperature	146
	LIST OF TABLES	
	DIOI OI INDUD	
		Page
Table C-1.		
C-2.	and Aged AF 1410 Steel Plate	117
0-2.	and Aged AF 1410 Steel Plate	118
C-3.		119
C-4.	Results of Bearing Tests at e/D = 1.5 and e/D = 2.0 for AF 1410 Steel Plate at Room Temperature	120
C-5.	Results of Charpy Impact Tests for AF 1410 Steel	-
C-6.	Plate	121
•	for AF 1410 Steel Plate	121
C-7.	Results of Axial Load Fatigue Tests for Unnotched AF 1410 Steel at a Stress Ratio of R = 0.1	122
C-8.	Results of Axial Load Fatigue Tests for Notched	122
C-9.	$(K_t = 3.0)$ AF 1410 Steel at a Stress Ratio of R = 0.1. Summary Data on Creep and Rupture Properties for	123
	Double Austenitized and Aged AF 1410 Steel Plate	
C-10.	(Transverse)	124
C-10.	Steel Die Forgings	138
C-11.	Results of Longitudinal Compression Tests for	
C-12.	AF 1410 Steel Die Forgings	139
	Steel Die Forgings	140
C-13.	Results of Longitudinal Charpy Impact Tests at Room Temperature on AF 1410 Steel Die Forgings	140
C-14.	Results of Axial Load Fatigue Tests at Room Temperature	740
	for Unnotched and Notched (Kt = 3.0) AF 1410 Steel Die	
	Forgings at a Stress Ratio of R = 0.1	141

AF 1410 Steel Plate

Material Description

This material is the result of a cooperative development program by General Dynamics and U.S. Steel under the sponsorship of the Air Force Materials Laboratory. The development requirement was for a weldable high-strength steel alloy, possessing a combined high fracture toughness and stress-corrosion resistance.

Considerable information and additional data for AF 1410 is contained in the final report on Contract F33615-73C-5093, AFML-TR-75-148, "Development of a Weldable High-Strength Steel", September, 1975.

The material used in this evaluation was plate from ${\tt Heat}$ 9 which is described in the above report.

Processing and Heat Treating

The plate was received in a double-austenitized condition. Specimens were aged at $950^{\circ}F$ (783 K) for 5 hours and air cooled. The specimen layout is shown in Figure C-1.

Test Results

Tension. Results of tests on longitudinal and transverse specimens at room temperature, $400^{\circ}F$ (477 K), and $800^{\circ}F$ (700 K) are given in Table C-1. Typical tensile stress-strain curves at temperature are shown in Figures C-2 and C-3. Effect-of-temperature curves are presented in Figure C-8.

Compression. Results of longitudinal and transverse tests at room temperature, 400°F (477 K), and 800°F (700 K) are shown in Table C-2. Typical stress-strain and tangent-modulus curves are presented in Figures C-4 through C-7. Effect-of-temperature curves are shown in Figure C-9.

Shear. Results of double-shear pin type tests on longitudinal and transverse specimens at room temperature, 400°F (477 K), and 800°F (700 K) are given in Table C-3. Effect-of-temperature curves are presented in Figure C-10.

Bearing. Tests were conducted at both e/D = 1.5 and e/D = 2.0 for longitudinal and transverse specimens at room temperature, $400^{\circ}F$ (477 K), and $800^{\circ}F$ (700 K). Results are given in Table C-4. Effect-of-temperature curves are presented in Figure C-11.

era	ε.	19	1-	19		-					-			913								
														۵	•							J
	nghness						8830	Ngbac)1 s 18		13			6								
	Fracture Toughness	9											į	5								
	F																					
				_					•								[II]	671	الا	ורפ	ורפ	ורו
					-																	
-		(H)Z	<u>672</u>	[]	ברבו	[כרים	ברו	1		·	7								121			
				ssion		STS			È _	ţ	1						1		Tensile			.
	Ę			ото 121				4	₽ 8 8	Ē	۱								12			
-	2T3 2TII	-	L	<u> </u>	UCISS	Sign TSi	2 £	┢╌		240	†					Ę	一	<u> </u>	<u> </u>			닠
	2Tı			15			3.6		or)	C:	<u></u>		TSI		liznaT	173						2
				5												E				_		目
			····	55						8	Ş					5						8
				ž						100 AO	į					543 545						227
				8						Ş	3					3						8
				57.						Ş			109	•	upito7	539						547 549 551 553 555 557 559 177 179 171
				S						Ş					•	533 535 537 539						ş
				53						ş	_				<u> </u>	8	↓_					8
				5						3	5					33						Ŕ
								-	•						-							
								•		•	18 /4	ansuo.	4		•							
				8						Ş	_					533						7
				3						5	3					Š						548 547

FIGURE C-1. SPECIMEN LAYOUT FOR AF 1410 PLATE

Impact. Results of Charpy tests for longitudinal and transverse specimens at room temperature are given in Table C-5.

Fracture Toughness. Results of compact tension type tests for longitudinal and transverse specimens at room temperature are given in Table C-6. The $\rm K_Q$ values shown are considered valid $\rm K_{Ic}$ values per ASTM E399.

Fatigue. Results of axial load tests at room temperature, 400° F (477 K), and 800° F (700 K) unnotched and notched transverse specimens are shown in Tables C-7 and C-8. S-N curves are presented in Figures C-12 and C-13.

Creep and Stress Rupture. Tests were conducted at 600° F (588 K), and 800° F (700 K) for transverse specimens. Test results are given in Table C-9. Log-stress versus log-time curves are presented in Figure C-14.

Stress Corrosion. $K_{\rm ISCC}$ test attempts did not yield any usable data. The value of $K_{\rm ISCC}$ reported in AFML-TR-75-148 is 95 ksi $\sqrt{\rm in}$ (104 MPa $\sqrt{\rm m}$).

Thermal Expansion. The coefficient of thermal expansion for this material is 6.1×10^{-6} in/in/F (70 - 800° F) (1.10 x 10^{-5} m/m/k (294 - 700 K)).

Density. The density of this alloy is 0.285 lb/in³ (7.89 Mg/m³).

TABLE C-1. RESULTS OF TENSILE TESTS ON DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE.

Specimen Number	Ul Str	Tensile Ultimate Strength, ksi (MPa)		Ultimate Strength,		0.2 Percent Offset Yield Strength, ksi (MPa)		Elongation in 1 Inch, Reduction (25.4 mm) in area, percent percent		Tensile Modulus, 10 ³ ksi (GPa)	
		Long	itudinal	at Room Te	emperature (F	<u>tt)</u>					
1L-1	236.2	(1628.6)	232.6	(1603.8)	15.0	69.9	26.5	(182.7)			
1L-2	238.6	(1645.2)	233.0	(1606.5)	14.7	61.7	27.8	(191.7)			
1L-3	<u>235.0</u>	(1620.3)	<u>231.9</u>	(1598.9)	16.0	<u>67.5</u>	27.0	(186.2)			
Average	236.6	(1631.4)	232.5	(1603.1)	15.2	63.4	27.1	(186.8)			
		Tra	nsverse a	t Room Tem	perature (RI	<u>:)</u>					
1T-1	240.8	(1660.3)	235.0	(1620.3)	16.7	65.1	28.0	(193.1)			
1T-2	242.0	(1668.6)	230.6	(1590.0)	14.0	69.0	27.7	(191.0)			
1T-3	<u>237.6</u>	<u>(1638.3)</u>	<u>232.6</u>	(1603.8)	<u>15.0</u>	61.1	26.9	(185.5)			
Average	240.1	(1655.5)	232.7	(1604.5)	15.2	65.1	27.5	(189.6)			
		-	Longitudi	nal at 400	OF (477 K)						
1L-4	214.1	(1476.2)	210.7	(1452.8)	14.0	67.4	30.5	(210.3)			
1L-5	213.6	(1472.8)	213.6	(1472.8)	15.0	68.2	28.5	(196.5)			
1L-6	213.6	(1472.8)	209.2	(1442.4)	15.0	70.0	28.1	(193.8)			
Average	213.8	(1474.2)	211.2	(1456.2)	14.7	68.5	29.0	(200.0)			
			Transver	se at 400°	F (477 K)						
1T-4	216.8	(1494.8)	213.1	(1469.3)	15.0	68.3	29.4	(202.7)			
1T-5	216.6	(1493.5)	209.6	(1445.2)	15.0	66.1	29.2	(201.3)			
1T-6	216.4	(1492.1)	208.1	(1434.9)	<u>15.0</u>	<u>67 6</u>	28.6	(197.2)			
Average	216.6	(1493.5)	210.3	(1450.0)	15.0	67.3	29.1	(200.6)			
			Longitudi	nal at 800	OF (700 K)						
1L-7	186.1	(1283.2)	176.8	(1219.0)	16.0	67.4	22.6	(155.8)			
1L-8	186.5	(1285.9)	172.9	(1192.2)	15.0	68.3	22.6	(155.8)			
1L-9	186.9	(1288.7)	174.7	(1204.6)	16.0	70.1	24.2	(166.9)			
Average	186.5	(1285.9)	174.8	(1205.3)	15.7	68.6	23.1	(159.3)			
			Transver	se at 800°	F (700 K)						
1T-7	188.2	(1297.7)	175.0	(1206.6)	16.0	68.2	24.2	(166.9)			
1T-8	186.5	•	169.8	(1170.8)	16.0	66.1	26.0	(179.3)			
1T-9	188.1	(1296.9)	173.2	(1194.2)	16.0	67.6	24.2	(166.9)			
Average	187.6	(1293.5)	172.7	(1190.8)	16.0	67.3	24.8	(171.0			

TABLE C-2. RESULTS OF COMPRESSION TESTS ON DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

Specimen Number		Offset	ercent Yield h, ksi (MPa)	Compressive Modulus, 10 ³ ksi (GPa)			
	Longitu	dinal a	t Room Temperatur	e (RT)			
2L-1		236.3	(1629.3)	28.9	(199.3)		
2L-2		239.5	(1651.4)	29.7	(204.8)		
2L-3		239.5		<u>29.1</u>	(200.6)		
	Average	238.4	(1643.8)	$\overline{29.2}$	(201.3)		
	Transv	erse at	Room Temperature	e (RT)			
2T-1		237.4	(1636.8)	29.4	(202.7)		
2T-2	•	232.8	(1605.2)	28.9	(199.3)		
2T-3		229.2	<u>(1580.3)</u>	<u> 29.5</u>	(203.4)		
	Average	233.1	(1607.2)	29.3	(202.0)		
	Lon	gitudin	al at 400°F (477	<u>K)</u>			
2L-4		211.9	(1461.1)	23.8	(164.1)		
2L-5			(1449.3)	27.6	(190.3)		
2L-6		211.7	<u>(1459.7)</u>	<u>27.2</u>	(187.5)		
	Average	211.3	(1456.9)	26.2	(180.7)		
	<u>Tr</u>	ansvers	e at 400°F (477K)	<u>)</u>			
2T-4		209.2		25.4			
2T-5		209.1	•	25.8	(177.9)		
2T-6		208.1		26.9	(185.5)		
	Average	208.8	(1439.7)	26.0	(179.3)		
	Lon	gitudin	al at 800°F (700)	<u>()</u>			
2L-7		176.2			(145.5)		
2L-8		177.7	•	20.7	(142.7)		
2L-9	Ā	<u>176.3</u>	(1215.6)	25.0	(172.4)		
	Average	176.7	(1218.4)	22.3	(153.8)		
	Tr	ansvers	e at 800°F (700 1	<u>K)</u>			
2T-7		168.4	(1161.2)	23.0	(158.6)		
2T-8		170.9	(1178.4)	21.3	(146.9)		
2T-9		168.9	(1164.6)	21.2	$\frac{(146.2)}{(150.3)}$		
	Average	169.4	(1168.0)	21.8	(150.3)		

TABLE C-3. RESULTS OF PIN SHEAR TESTS FOR AF 1410 STEEL PLATE

Specin Number			Ultimate h, ksi (MPa)
	Room Temperature (L	ongitudinal)	
4L-1 4L-2		145.3	(1001.8)
4L-2 4L-3		148.5 <u>148.3</u>	(1023.9) (1022.5)
	Average	147.4	(1016.3)
	Room Temperature (T	<u>ransverse</u>)	
4T-1 4T-2		144.9 144.7	(999.1)
4T-3		145.0	(997.7) (999.8)
	Average	144.9	(999.1)
	400°F 477K (Longi	tudinal)	
4L-4		128.7	(887.4)
4L-5 4L-6		127.8 125.5	(881.2) (865.3)
	Average	127.3	(865.3) (877.7)
	400°F 477K (Tra	nsverse)	
4T-4		129.0	(889.5)
4T-5 4T-6		128.3 130.0	(884.6) (896.4)
	Average	129.1	(890.1)
	800°F 700K (Long	itudinal)	
4L-7		105.8	(729.5)
4L-8 4L-9		106.4 106.7	(733.6) <u>(735.</u> 7)
	Average	106.2	(732.2)
	800°F 700K (Tran	sverse)	
4T -7		107.9	(743.9)
4T-8 4T-9		107.9 106.1	(743.9) (731.6)
41-3	Average	107.3	(739.8)

TABLE C-4. RESULTS OF BEARING TESTS AT e/D = 1.5 and e/D = 2.0 FOR AF 1410 STEEL PLATE AT ROOM TEMPERATURE

		Bearing					g Yield	
Specimen	_	Strength,				Strength,		
Number	e	D = 1.5	e/D =	2.0	e	/D = 1.5	e/D =	2.0
		Long	itudina	1 at Room To	emperatur	e (RT)		
L-7	444.0	(3061.4)	513.5	(3540.6)	356.0	(2454.6)	392.6	(2707.0)
L-8	376.0	(2592.5)	528.6	(3644.7)	352.0	(2427.0)	400.8	(2763.5)
L-9	365.0	(2516.7)	523.6	(3610.2)	322.0	(2220.2)	388.9	(2681.5)
Average	395.0	(2723.5)	521.9	(3598.5)	343.3	(2367.1)	394.1	(2717.3)
		Tra	nsverse	at Room Te	mperature	(RT)		
T-20	357.1	(2462.2)	510.5	(3520.0)	311.5	(2147.8)	396.5	(2733.9)
T-21	414.0	(2854.5)	537.3	(3704.7)	356.0	(2454.6)	406.4	(2802.1)
T-22	400.0	(2758.0)	496.6	(3424.1)	341.5	(2354.6)	382.4	(2636.7)
Average	390.0	(2689.1)	514.8	(3549.6)	336.3	(2318.8)	395.1	(2724.2)
			Longitu	dinal at 40	0°F (477	<u>K)</u>		
L-1	376.6	(2596.7)	469.9	(3240.0)	329.3	(2268.5)	356.9	(2460.8)
L-2	377.0	(2599.4)	479.6	(3306.8)	325.4	(2243.6)	364.6	(2513.9)
L-3	367.1	(2531.2)	496.6	(3424.1)	313.5	(2161.6)	369.6	(2548.4)
Average	373.6	(2575.9)	482.0	(3323.4)	322.7	(2225.0)	363.7	(2507.7)
			Transv	erse at 400	°F (477 K	<u>)</u>		
T-23	361.9	(2495.3)	488.6	(3368.9)	313.5	(2161.6)	372.8	(2570.5)
T-24	377.0	(2599.4)	436.5	(3009.7)	325.4	(2243.6)	329.4	(2271.2)
T-25	372.5	(2568.4)	460.3	(3173.8)	325.5	(2244.3)	351.2	(2421.5)
Average	370.5	(2554.6)	461.8	(3184.1)	321.5	(2216.7)	351.1	(2420.8)
			Longitu	dinal at 80	0°F (700	<u>K)</u>		
L-4	323.4	(2229.8)	408.4	(2815.9)	294.6	(1962.3)	337.0	(2323.6)
L-5	320.0	(2206.4)	418.6	(2886.3)	292.0	(2013.3)	341.3	(2353.3)
L-6	324.0	(2234.0)	412.7	(2845.6)	296.0	(2040.9)	329.4	(2271.2)
Average	322.5	(2223.6)	413.2	(2849.0	294.2	(2028.5)	335.9	(2316.0)
			Transv	erse at 800	ŶF (700 K)		
T-27	321.9	(2219.5)	408.4	(2815.9)	297.6	(2051.9)	337.0	(2323.6)
T-26	321.9	(2219.5)	400.8	(2763.5)	294.5	(2030.6)	325.4	(2243.6)
T-28	321.4	(2216.1)	408.4	<u>(2815.9)</u>	291.7	(2011.3)	337.0	(2323.6)
Average	321.7	(2218.1)	405.9	(2798.7)	294.6	(2031.3)	333.1	(2296.7)

TABLE C-5. RESULTS OF CHARPY IMPACT TESTS FOR AF 1410 STEEL PLATE

Specimen Number			Energy, ft/lbs (Joules)			
	Longitudinal	<u>.</u>				
6L-1		41	(55.6)			
6L-2		43	(58.3)			
6L-3		42	(56.9)			
	Average	41	$\frac{(56.9)}{(55.6)}$			
	Transverse					
6T-1		39	(52.9)			
6T-2		45	(61.0)			
6T-3		42	$\frac{(56.9)}{(56.9)}$			
	Average	42	(56.9)			

TABLE C-6. RESULTS OF COMPACT TENSION FRACTURE TOUGHNESS TESTS FOR AF 1410 STEEL PLATE

Specimen Number	W, inches (mm) (20.8)	B, inches (mm) (25.4)	inches	P _Q , pounds (Newton)	P _{max} , pounds (Newton)	f(a/w)	K _Q ksi√in (MPa√in)
				Longitudinal (L-T	<u>()</u>		
6L-1	2.0	1.0	1.007 (25.42)	18,900 (84,071)	18,900 (84,071	9.70	129.6 (142.4
6L-2	2.0	1.0	1.05 (26.7)	17,600 (78,288)	17,600 (78,288) 10.37	129.1 (141.9)
6L-3	2.0	1.0	1.05 (26.7)	18,000 (80,068)	18,000 (80,068) 10.57	132.7 (145.8
•						Average	130.5 (143.4)
•				Transverse (T-L)	<u>.</u>		
6T-1	2.0	1.0	1.037 (26.3)	18,000 (80,068)	18,000 (80,068) 10.12	128.8 (141.5)
6T-2	2.0	1.0	1.010 (25.6)	18,200 (80,957)	18,200 (80,957		125.5 (137.9)
6T-3	2.0	1.0	1.007 (25.42)	18,500 (82,292)	18,500 (82,292		126.9 (139.4)
					•	Average	127.1 (139.7

TABLE C-7. RESULTS OF AXIAL LOAD FATIGUE TESTS FOR UNNOTCHED AF1410 STEEL AT A STRESS RATIO OF R = 0.1

Specimen Number		aximum , ksi (MPa)	Cycles to Failure
	Room Tem	perature (RT)	
5-8	245	(1689.3)	27,000
5-1	240	(1654.8)	36,000
5-6	235	(1620.3)	57,500
5-3	230	(1585.9)	184,100
5-5	225	(1551.4)	251,100
5-7	222.5	(1534.1)	3,325,500
5-2	220	(1516.9)	3,467,800
5-4	· 215	(1482.4)	5,987,200(a)
5-10	210	(1447.9)	10.000.000/~/
5-1	200	(1379.0)	10,030,000 ^(a)
	400°	F (477 K)	
5-12	230	(1585.9)	10,000
5-11	225	(1551.4)	81,600
5-13	220	(1516.9)	303,400
5-14	215	(1482.4)	969,600
5-15	210	(1447.9)	1,476,200
5-16	205	(1413.5)	1,826,300
5-17	200	(1379.0)	9,770,400
	800°	F (700 K)	
5-26	240	(1654.8)	100
5-18	220	(1516.9)	71,300
5-19	210	(1447.9)	124,600
5-20	200	(1379.0)	257,200
5-21	190	(1310.1)	476,100
5-22	180	(1241.1)	1,888,900
5-23	170	(1172.2)	5,212,700
5-24	160	(1103.2)	4,055,000
5-25	150	(1034.3)	8,824,100

⁽a) Did not fail.

TABLE C-8. RESULTS OF AXIAL LOAD FATIGUE TESTS FOR NOTCHED ($K_t=3.0$) AF1410 STEEL AT A STRESS RATIO OF R = 0.1

Specimen Number		aximum s, ksi (MPa)	Cycles to Failure
	Room Tem	perature (RT)	
5N-1	200	(1379.0)	1,700
5N-2	170	(1172.2)	2,700
5N-3	140	(965.3)	3,200
5N-4	100	(689.5)	8,100
5N-25	80	(551.6)	23,300
5N-26	60	(413.7)	55,500
5N-5	50	(344.8)	93,000
5N-6	. 40	(275.8)	160,900
5N-7	30	(206.9)	329,300(a) 10,000,000
5N-8	20	(137.9)	10,000,000
	400°	F (477 K)	
5N-24	90	(620.6)	9,600
5N-10	80	(551.6)	15,400
5N-11	70	(482.7)	24,800
5N-27	70	(482.7)	21,100
5N-13	65	(448.2)	22,800
5N-12	60	(413.7)	18,600(a)
5N-18	60	(413.7)	10.000.004;
5N-9	50	(344.8)	10,000,000 ^(a)
	800°	F (700 K)	
5N-17	100	(689.5)	6,900
5N-16	90	(620.6)	10,300
5N-15	80	(551.6)	50,800
5N-14	70	(482.7)	514,800
5N-19	60	(413,7)	2,708,800
5N-20	55	(379.2)	1,856,700
5N-21	50	(344.8)	2,730,100
5N-22	45	(310.3)	4,874,000
5N-23	40	(275.8)	11,869,900 ^(a)

⁽a) Did not fail.

TABLE C-9. SUMMARY DATA ON CREEP AND RUPTURE PROPERTIES FOR DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE (TRANSVERSE)

Specimen Number	Stress, Ksi (MPa)					0.5	1.0	2.0
3-9	200	(1379.0)	600 (588)					
3-7	190	(1310.1)	600 (588)		0.2	10	175	870
3-5	175	(1206.6)	600 (588)	1.1	15	430	1940 (a)	
3-8	150	(1034.3)	600 (588)	63	550	5000 (a)		
3-1	175	(1206.6)	800 (700)				0.1	0.2
3-2	150	(1034.3)	800 (700)	0.1	0.2	0.75	2.1	4.9
3-3	100	(689.5)	800 (700)	1.7	7.5	42	115	195
3-4	60	(413.7)	800 (700)	15	80	350 / 、	790	1620 (a
3-6	25	(172.4)	800 (700)	155	475	4600 (a)		
3-10	15	(103.4)	800 (700)	665	3350 (a)			

TABLE C-9. Continued.

Specimen Number	Initial Strain, percent	Rupture Time, hours	Elonga- tion in 2 Inches (50.8mm) percent	Reduction of Area, percent	Minimum Creep Rate, percent
3-9	-	On loading	10.0	66.0	
3-7	1.013		13.8	70.5	0.0014
3~5	0.835	2465.3 1515.9(b)	1.696		0.00030
3-8	0.858	2993.8 ^(b)	1.246		0.000054
3-1	1.408	0.3	13.8	66.6	8.0
3-2	0.807	11.1	15.4	49.0	0.35
3-3	0.461	328.1	10.8	13.4	0.0064
3-4	0.254	328.1 961.3(b)	1.422		0.0011
3-6	0.161	2328.8(b)	0.534		0.00005
3-10	0.085	2015.4 ^(b)	0.246		0.000032

⁽a) Estimated.

⁽b) Test discontinued.

FIGURE C-2. TYPICAL TENSILE LONGITUDINAL STRESS-STRAIN CURVES AT TEMPERATURA FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-3. TYPICAL TENSILE TRANSVERSE STRESS-STRAIN CURVES AT TEMPERATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-4. TYPICAL COMPRESSIVE LONGITUDINAL STRESS-STRAIN CURVES AT TEMPER-ATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-5. TYPICAL COMPRESSIVE LONGITUDINAL TANGENT-MODULUS CURVES AT TEMPER-ATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-6. TYPICAL COMPRESSIVE TRANSVERSE STRESS-STRAIN CURVES AT TEMPERATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-7. TYPICAL COMPRESSIVE TRANSVERSE TANGENT-MODULUS CURVES AT TEMPER-ATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-8. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-9. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-10. EFFECT OF TEMPERATURE ON THE SHEAR PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-11. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-12. AXIAL LOAD FATIGUE BEHAVIOR OF UNNOTCHED DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-13. AXIAL LOAD FATIGUE BEHAVIOR OF NOTCHED (K = 3.0) DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE C-14. CREEP RUPTURE AND PLASTIC DEFORMATION CURVES FOR TRANSVERSE AF 1410 STEEL PLATE

AF 1410 Die Forging

Material Description

This material is from the same development program described in the preceding section on AF 1410 steel plate. It is from the same heat of material and processing and development history may be obtained from the AFML Technical Report mentioned in the section on steel plate.

Processing and Heat Treating

Prior heat treating information for the particular piece of material used on this program was somewhat vague, so the forging was given the full double-austenitize and age recommended for the steel plate. This was 1650° F (1172 K), water quench, plus 1550° F (116K), water quench, and age at 950° F (783 K) for 5 hours with a rapid air cool.

A photograph of the forging is shown in Figure C-15. All specimens were sectioned in the longitudinal (length) direction.

Test Results

Tension. Results of longitudinal tests at room temperature, 400° F (477 K), and 800° F (700 K) are given in Table C-10. Typical stress-strain curves at temperature are presented in Figure C-16. Effect-of-temperature curves are shown in Figure C-19.

Compression. Results of longitudinal compression tests at room temperature, $400^{\circ}F$ (477 K), and $800^{\circ}F$ (700 K) are given in Table C-11. Typical stress-strain and tangent-modulus curves at temperature are shown in Figures C-17 and C-18. Effect-of-temperature curves are presented in Figure C-20.

Shear. Results of double-shear pin type tests at room temperature, 400°F (477 K), and 800°F (700 K) are given in Table C-12. Effect-of-temperature curves are presented in Figure C-21.

Bearing. The material was not of sufficient size to obtain bearing specimens.

 $\begin{tabular}{ll} \underline{Impact}. & Results of impact tests at room temperature are given in Table C-13. \end{tabular}$

FIGURE C-15. AF 1410 STEEL DIE FORGING

Fracture Toughness. The material was not of sufficient size to obtain fracture specimens.

<u>Fatigue</u>. Because of the shape and quantity of available material, only room-temperature unnotched and notched specimens were obtained. Results of these tests are given in Table C-14. S-N curves are presented in Figure C-22.

Stress Corrosion. Since $K_{\rm ISCC}$ tests were somewhat unsuccessful on the AF 1410 plate, stress-corrosion tests as described in the experimental procedures section of this report were conducted on this forging. No cracks or failures occurred in the test duration.

Thermal Expansion and Density. It is assumed these properties are similar to those reported for the AF 1410 plate.

TABLE C-10. RESULTS OF LONGITUDINAL TENSILE TESTS FOR AF 1410 STEEL DIE FORGINGS

Specimen Number	Ultimate Tensile Strength, ksi (MPa)	0.2 Percent Offset Yield Strength, ksi (MPa)	Elongation in 1 Inch, (25.4mm) percent	Reduction in Area, percent	Tensile Modulus, 10 ³ ksi (GPa)	
		Room Tempe	rature			
1L-1	236.2 (1628.6)	232.0 (1599.6)	15.0	69.9	27.6 (190.3)	
1L-2	230.0 (1585.9)	227.7 (1570.0)	16.0	63.7	29.9 (206.2)	
1L-3	231.8 (1598.3)	228.0 (1572.1)	14.0	60.1	30.0 (206.9)	
Average	232.6 (1603.8)	229.9 (1585.2)		64.6	29.2 (201.3)	
		400°	<u>F</u>			
1L-4	209.9 (1447.3)	203.6 (1403.8)	14.0	63.6	28.1 (193.8)	
1L-5	208.0 (1434.2)	202.0 (1392.8)	13.0	59.7	26.5 (182.7)	
1L-6	210.1 (1448.6)	200.0 (1379.0)		63.0	29.0 (200.0)	
Average	209.3 (1443.1)	201.9 (1392.1)	14.0	62.1	27.9 (192.4)	
		800°	<u>F</u>			
1L-7	180.1 (1241.8)	170.1 (1172.8)	16.0	70.2	24.0 (165.5)	
1L-8	179.8 (1239.7)	172.0 (1185.9)		69.2	26.0 (179.3)	
1L-9	183.7 (1266.6)	171.1 (1179.7)	16.0	67.3	25.8 (177.9)	
Average	$\overline{181.2} \ \overline{(1249.4)}$	171.1 (1179.7)	16.0	68.9	25.3 (174.4)	

TABLE C-11. RESULTS OF LONGITUDINAL COMPRESSION TESTS FOR AF 1410 STEEL DIE FORGINGS

Specimen Number	• • • • • •	ccent Offset ngth, ksi (MPa)	Compressive Modulus 10 ³ ksi (GPa)		
	Room Ten				
2L-1	230.7	(1590.7)	29.0	(200.0)	
2L-2	228.8	(1577.6)	30.4	(209.6)	
2L-3	230.1	(1586.5)	29.7	(204.8)	
Avera	ge 229.9	(1585.2)	$\overline{29.7}$	(204.8)	
	400	F (477 K)			
2L-4	200.8	(1384.5)	24.4	(168.2)	
2L-5	202.3.	(1394.9)	28.8	(198.6)	
2L-6	200.1	(1379.7)	28.3	(195.1)	
Avera	ge 201.1	(1386.6)	27.2	(187.5)	
	8000	F (700 K)			
2L-7	165.0	(1137.7)	25.0	(172.4)	
2L-8	169.5	(1168.7)	26.1	(179.9)	
2L-9	168.7	(1163.2)	23.7	(163.4)	
Avera		(1156.3)	24.9	(171.7)	

TABLE C-12. RESULTS OF LONGITUDINAL PIN SHEAR TESTS ON AF 1410 STEEL DIE FORGINGS

Specimen Number			Shear Ultimate Strength, ksi (MP				
	Room Temperature (RT)						
4L-1			135.5	(934.3)			
4L-2			133.9	(923.2)			
4L-3	Average		$\frac{135.3}{134.9}$	$\frac{(932.9)}{(930.1)}$			
		400°F (477 K)					
4L-4			118.2	(814.9)			
4L-5			118.6	(817.8)			
4L-6	Average		$\frac{119.1}{118.6}$	(821.2) (817.8)			
		800°F (700 K)					
4L-7 4L-8			101.5 101.5	(699.8) (699.8)			
4L-9	Average		98.7 100.6	(680.5) (693.6)			

TABLE C-13. RESULTS OF LONGITUDINAL CHARPY IMPACT TESTS AT ROOM TEMPERATURE ON AF 1410 STEEL DIE FORGINGS

Specimen Number	ft	rgy, 1bs oules)
10L-1	8	(10.8)
10L-2	12	(16.3)
10L-3	10	(13.6)
101-4	9	(12.2)
10L-5	12	(16.3)
10L-6	<u>10</u>	(13.6)
Average	10.2	(13.8)

TABLE C-14. RESULTS OF AXIAL LOAD FATIGUE TESTS AT ROOM TEMPERATURE FOR UNNOTCHED AND NOTCHED ($K_t=3.0$) AF 1410 STEEL DIE FORGING AT A STRESS RATIO OF R = 0.1

Specimen Number	Maximum Stress, ksi (MPa)	Cycles to Failure
	Unnotched	
5-1	225 (1551.4)	12,600
5-2	210 (1448.0)	14,300
5-9	200 (1379.0)	♥ '
5-3	195 (1344.5)	77,230 ^(a)
5-4	195 (1344.5)	285,000 ^(a)
5-5	195 (1344.5)	1,774,200 ^(a)
5-6	185 (1275.6)	148,700
5-8	180 (1241.1)	39,900 ^(a)
5-10	180 (1241.1)	(4)
5-7	175 (1206.6)	/1.\
	Notched $(K_t = 3.0)$	
5-11	100 (689.5)	1,600
5-12	60 (413.7)	16,600
5-13	50 (344.8)	20,500
5-17	45 (310.3)	13,600 ^(a)
5-16	40 (275.8)	87,800
5-18	35 (241.3)	50,400 ^(a)
5-14	30 (206.9)	
5-21	25 (172.4)	303,200
5-15	20 (137.9)	10,000,000 ^(b)

⁽a) Failed in grip.

⁽b) Did not fail.

FIGURE C-16. TYPICAL TENSILE STRESS-STRAIN CURVES AT TEMPERATURE FOR DOUBLE AUSTENITIZED AND AGED AF 1410 DIE FORGINGS

FIGURE C-17. IYPICAL COMPRESSIVE STRESS-STRAIN CURVES AT TEMPERATURE FOR DOUBLE-AUSTENITIZED AND AGED AF 1410 DIE FORGINGS

FIGURE C-18. TYPICAL COMPRESSIVE TANGENT-MODULUS CURVES AT TEMPERATURE FOR DOUBLE-AUST DITTIZED AND AGED AF 1410 DIE FORGING

FIGURE C-19. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE C-20. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE C-21. EFFECT OF TEMPERATURE ON THE SHEAR PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE C-22. AXIAL LOAD FATIGUE BEHAVIOR OF UNNOTCHED AND NOTCHED AF 1410 DIE FORGINGS AT ROOM TEMPERATURE

MECHANICAL-PROPERTY DATA AF 1410 (10Ni Modified) STEEL

DOUBLE AUSTENITIZED AND AGED PLATE

Issued by

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Prepared by

BATTELLE Columbus Laboratories Columbus, Ohio 43201

F33615-75-C-5065

This data sheet was prepared by Battelle's Columbus Laboratories under Contract F33615-75-C-5065. The contract was initiated under Project No. 7381, "Materials Applications", Task No. 738106, "Engineering and Design Data". The major objectives of this program are to evaluate newly developed structural materials of potential interest to the Air Force weapons system and, then, to provide data-sheet-type presentations of these data. The program was assigned to the Structural Materials and Tribology Section at Battelle-Columbus under the supervision of Dr. David Snediker. Project Engineer was Mr. Omar Deel. The program was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, by Mr. Clayton Harmsworth, Technical Manager, Engineering and Design Data.

Notices

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any potential invention that may be in any way related thereto.

Approved for public release; distribution unlimited.

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

AF 1410 Steel

Material Description

This material is the result of a cooperative development program by General Dynamics and U.S. Steel under the sponsorship of the Air Force Materials Laboratory. The development requirement was for a weldable high strength steel alloy, possessing a combined high fracture toughness and stress corrosion resistance.

Considerable information and additional data for AF 1410 is contained in the final report on Contract F33615-73C-5093, AFML-TR-75-148, "Development of a Weldable High Strength Steel", September, 1975.

The material used in this evaluation was plate from Heat 9 which is described in the above report.

Processing and Heat Treating

The plate was received in a double-austenitized condition. Specimens were aged at 950°F (783.2K) for 5 hours and air cooled.

AF 1410 Steel Alloy Data (a)

Condition: Double Austenitized and Aged Thickness: 1.25-inch (31.75mm) plate

	Temperature, F (K)						
Properties	RT	(RT)	400	(477)	800	(700)	
Cension							
TUS (longitudinal), ksi (MPa)	236.6	(1631.4)	213.8	(1474.2)	186.5	(1285.9	
TUS (transverse), ksi (MPa)	240.1	(1655.5)	216.6	(1493.5)	187.6	(1293.5	
TYS (longitudinal), ksi (MPa)	232.5	(1603.1)	211.2	(1456.2)	174.8	(1205.3	
TYS (transverse), ksi (MPa)	232.7	(1604.5)	210.3	(1450.0)	172.7	(1190.8	
e (longitudinal), percent in l in. (25.4 mm)	15.2			14.7		15.7	
e (transverse), percent in	:	15.2	ī	15.0	1	6.0	
1 in. (25.4 mm) RA (longitudinal), percent		63.4		68.5	6	8.6	
RA (transverse), percent		65.1		67.3		7.3	
E (longitudinal), 10 ksi (GPa)	27.1	(186.6)	29.0	(199.9)	23.1	(159.3	
E (longitudinal), 10 ksi (GPa) E (transverse), 10 ksi (GPa)	27.5	(189.6)	29.1	(200.6)	24.8	(171.0	
Compression							
CYS (longitudinal), ksi (MPa)	238.4	(1643.8)	211.3	(1456.9)	176.6	(1218.3	
CYS (transverse), ksi (MPa)	233.1	(1607-?)	208.8	(1439.7)	169.4	(1168.0	
E (longitudinal). 10 ksi (GPa)	29.2	(201.3)	26.2	(180.6)	22.3	(153.)	
E ^C (transverse), 10 ³ ksi (GPa)	29.3	(202.0)	26.0	(179.3)	21.8	(150.3	
Bearing							
e/D = 1.5							
BUS (longitudinal), ksi (MPa)	395.0	(2723.5)	373.6	(2575.9)	322.5	(2223.6	
BUS (transverse), ksi (MPa)	390.0	(2689.1)	370.5	(2554.6)	321.7	(2218.	
BYS (longitudinal), ksi (MPa)	343.0	(2364.9)	322.7	(2225.0)	294.2	(2028.	
BYS (transverse), ksi (MPa)	336.3	(2318.8)	321.5	(2216.7)	294.6	(2031.3	
e/D = 2.0							
BUS (longitudinal), ksi (MPa)	521.9	(3598.5)	482.0	(3323.4)	413.2	(2849.0	
BUS (transverse), ksi (MPa)	514.8	(3549.5)	461.8	(3184.1)	405.9	(2798.	
BYS (longitudinal), ksi (MPa)	394.1	(2717.3)	363.7	(2507.7)	335.9	(2316.0	
BYS (transverse), ksi (MPa)	395.1	(2724.2)	351.1	(2420.8)	333.1	(2296.7	
Shear (b)							
SUS (longitudinal), kai (MPa)	154.7	(1066.6)	138.9	(957.7)	124.6	(859.	
SUS (transverse), ksi (MPa)	156.0	(1075.6)	138.0	(951.5)	122.6	(845.3	
Impact							
V-notch Charpy, ft.1bs. (Joules)				4.			
(longitudinal)	41.0	(55.6)	1	U ^(c)		บ	
(transverse)	42.0	(56.9)	1	ט		Ū	

130.5 127.1	(RT) (143.4) (139.7)	400	U U	800	(700)
127 . 1 240					_
127 . 1 240					•
					•
	(1654.8)	216	(1489.3)	186	(1282.5)
228	(1572.1)	215	(1482.4)	186	(1282.5)
210	(1447.9)	200	(1379.0)	145	(999.8)
200	(1379.8)	140	(965.3)	140	(965.3)
50	(344.8)	55	(379.2)	55	(379.2
20	(137.9)	40	(275.8)	40	(275.8)
RT	(RT)	600	(589)	800	(700)
N/	A	162	(1117.0)	54	(372.3)
N/	1	143	(985.8)	19	(131.0)
	-	194 192	(1337.6) (1323.8)	120 77	(827.4) (530.9)
95	(104.4)		U		Ü
	200 50 20 	200 (1379.8) 50 (344.8) 20 (137.9)	200 (1379.8) 140 50 (344.8) 55 20 (137.9) 40 RT (RT) 600 NA 162 NA 143 NA 194 NA 192	200 (1379.8) 140 (965.3) 50 (344.8) 55 (379.2) 20 (137.9) 40 (275.8) RT (RT) 600 (589) NA 162 (1117.0) NA 143 (985.8) NA 194 (1337.6) NA 192 (1323.8)	200 (1379.8) 140 (965.3) 140 50 (344.8) 55 (379.2) 55 20 (137.9) 40 (275.8) 40 RT (RT) 600 (589) 800 NA 162 (1117.0) 54 NA 143 (985.8) 19 NA 194 (1337.6) 120 NA 192 (1323.8) 77

Coefficient of Thermal Expansion

 6.1×10^{-6} in./in./F (RT to 800° F) [1.10 x 10^{-5} m/m/K (700K)]

Density

(b) Double-shear pin-type specimen; average of three tests in each direction.

⁽a) Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests.

⁽c) U, unavailable; NA, not applicable.(d) Average of three tests in each direction.

FIGURE 1. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 2. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 3. EFFECT OF TEMPERATURE ON THE SHEAR PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 4. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 5. AXIAL LOAD FATIGUE BEHAVIOR OF UNNOTCHED DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 6. AXIAL LOAD FATIGUE BEHAVIOR OF NOTCHED (K = 3.0) DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

FIGURE 7. STRESS-RUPTURE AND PLASTIC DEFORMATION CURVES FOR DOUBLE AUSTENITIZED AND AGED AF 1410 STEEL PLATE

MECHANICAL-PROPERTY DATA AF 1410 (10Ni Modified) STEEL

DOUBLE AUSTENITIZED AND AGED DIE FORGING

leaved by

Air Force Materials Laboratory
Air Force Systems Command
Wright-Patterson Air Force Base, Ohio

Prepared by

BATTELLE Columbus Laboratories Columbus, Ohio 43201

F33615-75-C-5065

This data sheet was prepared by Battelle's Columbus Laboratories under Contract F33615-75-C-5065. The contract was initiated under Project No. 7381, "Materials Applications", Task No. 738106, "Engineering and Design Data". The major objectives of this program are to evaluate newly developed structural materials of potential interest to the Air Force weapons system and, then, to provide data-sheet-type presentations of these data. The program was assigned to the Structural Materials and Tribology Section at Battelle-Columbus under the supervision of Dr. David Snediker. Project Engineer was Mr. Omar Deel. The program was administered under the direction of the Air Force Materials Laboratory, Air Force Systems Command, Wright-Patterson Air Force Base, Ohio, by Mr. Clayton Harmsworth, Technical Manager, Engineering and Design Data.

Notices

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any potential invention that may be in any way related thereto.

Approved for public release; distribution unlimited.

Copies of this report should not be returned unless return is required by security consideration, contractual obligations, or notice on a specific document.

AF 1410 Die Forging

Material Description

This material is the result of a cooperative development program by General Dynamics and U.S. Steel under the sponsorship of the Air Force Materials Laboratory. The development requirement was for a weldable high strength steel alloy, possessing a combined high fracture toughness and stress corrosion resistance.

Considerable information and data for AF 1410 is contained in the final report on Contract F33615-73-C-5093, AFML-TR-75-148, "Development of a Weldable High Strength Steel", September, 1975.

The Material used for this evaluation was from the above program.

Processing and Heat Treating

The die forging was double austenitized and aged as recommended in AFML-TR-75-148. This is 1650 F (1172 K), WQ + 1550 F (1116.5), WQ, and aged at 950 F (783.15 K), 5 hours, RAC.

AF 1410 Alloy Data (a)

Condition: Double Austenitized and Aged

Thickness: Various

	Temperature, F (K)					
Properties	RT	(RT)	400	(477)	800	(700)
Tension						
TUS (longitudinal), ksi (MPa)	232.6	,	209.3		181.2	(1249.
TYS (longitudinal), ksi (MPa)	229.9		201.9		171.1	(1179.
e (longitudinal), percent in l in. (25.4 mm)	1	5.0	:	14.0	1	6.0
RA (longitudinal), percent	-	4.6		62.1		8.9
E (longitudinal), 10 ³ ksi (GPa)	29.2	(201.3)	27.9	(192.4)	25.3	(174.
Compression						
CYS (longitudinal), ksi (MPa)	229.9	(1585.2)	201.1	(1386.6)	167.7	(1156.
E _c (longitudinal), 10 ³ ksi (GPa)	29.7	(204.8)	27.2	(187.5)	24.9	(171.
Shear (b)						
SUS (longitudinal), ksi (MPa)	134.9	(930.1)	118.6	(817.7)	100.6	(693.
Impact						
V-notch Charpy, ft.lbs. (Joules) (longitudinal)	10.2 ^(d)	(13.8)	1	ⁿ (c)		U
Axial Fatigue (longitudinal)						
Unnotched, R = 0.1						
105 cycles, ksi (MPa)	230	(1585.9)		U		U
10 ₇ cycles, ksi (MPa)	190	(1310.1)		U		U
10' cycles, ksi (MPa)	175	(1206.6)		U		U
Notched, $K_{\rm r} = 3.0$, $R = 0.1$		/ma>				
103 cycles, ksi (MPa)	105	(724.0)		U		U
107 cycles, ksi (MPa)	45	(310.3)		U		U
10' cycles, ksi (MPa)	20	(137.9)		U		U
Stress Corrosion						
80% TYS, 1000 hrs. maximum	No Crack	.s (e)				
Coefficient of Thermal Expansion						
6.1×10^{-6} in./in./F (RT to 800 F)	[1.10 x	10 ⁻⁵ m/m/	K (700 K)]		
Density						
0.285 lb./in. ³ (7.89 Mg/m ³)						

⁽a) Values are average of triplicate tests conducted at Battelle under the subject contract unless otherwise indicated. Fatigue, creep, and stress-rupture values are from curves generated using the results of a greater number of tests.

⁽b) Double-shear pin-type specimen.

⁽c) U, unavailable; NA, not applicable.

⁽d) Average of six tests.

⁽e) Alternate immersion, 3.5% NaCl.

FIGURE 1. EFFECT OF TEMPERATURE ON THE TENSILE PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE 2. EFFECT OF TEMPERATURE ON THE COMPRESSIVE PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE 3. EFFECT OF TEMPERATURE ON THE SHEAR PROPERTIES OF AF 1410 DIE FORGINGS

FIGURE 4. AXIAL LOAD FATIGUE BEHAVIOR OF UNNOTCHED AND NOTCHED AF 1410 DIE FORGINGS AT ROOM TEMPERATURE