

EE-101: Basic Electronics, Quiz-2

Set Code: EE-101/2019/Q2-PRS

Max. Time: 45 min

Max. Marks: 10

Tutorial Group: T- 18

Roll no.: 190123046

Name: Pradnesh P. Kalkar

Invigilator's Signature:

Instructions

• Write answers neatly with appropriate SI units in the spaces provided

- All answers should be rounded up to the third decimal point.
- Exchange of Calculators or any other material is not allowed.
- Mobile phones are not allowed inside the examination hall.

(5)

1. In the balanced three-phase system of Fig. 1, the load impedance $Z_P = 8+j5 \Omega$. Assume positive (+) phase sequence and $W_1 > W_2$. If the source is operating with a power factor of **0.98** and $W_1 = 15$ kW, find the values of (a) R_W , (b) W_2 , (c) total real power absorbed by the load and (d) the reactive power supplied to the load. [2+1+1+1]

Solution: (a) $R_W = 16.623 \cdot \Omega$ (b) $W_2 = 7.045 \text{ kW}$ (c) Total real power = 22-046 kW

(d) Total reactive power = 13-779 KVAR

Let $f_1(A,B,C,D) = \sum m(1,3,5,6,8,10,11,12,13)$, $f_2(A,B,C,D) = \sum m(0,3,5,8,9,11,13,15)$ f(A,B,C,D) is obtained by performing logical AND operation between $f_1(A,B,C,D)$ and $f_2(A,B,C,D)$ as $f(A,B,C,D) = f_1(A,B,C,D) + \sum d(7,10,15)$. Where d represents don't-care conditions. Find a minimal sum-of-products expression. [2+3]

Solution: (a) $f(A|B,C|D) = \leq m(3,5,8,11,13) = \overline{A}BCD + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D + \overline{A}B\overline{C}D$