Keeners Ranking Methode

Tabea Born

Überblick

- 1. Einführung
 - Motivation
 - Idee
- 2. Keeners Ranking Methode
 - Berechnung des Rankings
 - Beispiel
- 3. Was hat Google mit Keeners Ranking-Methode zu tun?

Teil 1:

EINFÜHRUNG

Motivation

- Streitigkeiten, welches College Football Team das Beste ist
- Umfragen und verschiedene mathematische Ranking-Methoden in Zeitungen sorgen für Verwirrung
- Viele Ranking-Methoden basieren auf Perron-Frobenius Theorem
- Ranking von (College Football) Teams als Möglichkeit, Studenten das Perron-Frobenius Theorem beizubringen

Idee

- Verwendung von nicht-negativen Statistiken zur Erstellung des Ratings
- Verknüpfen des Ratings eines Teams mit seiner absoluten Stärke
- Absolute Stärke eines Teams basiert auf seiner relativen Stärke
- Annahmen:
 - 1. Die Stärke s eines Teams wird durch Interaktionen mit Gegnern und deren Stärke ermittelt
 - Das Rating r jedes Teams ist proportional zu seiner Stärke,
 d.h. für ein Team i gilt: s_i = λr_i

Teil 2:

KEENERS RANKING METHODE

Schritt 1: Auswahl des Stärke-Attributs an

- a_{ij} = Wert der Statistik, die bei einem Wettkampf von Team *i* gegen Team *j* erzeugt wurde
 - Beispiele:
 - Anzahl der Spiele, bei dem Team i gegen Team j gewonnen hat
 - Anzahl der Körbe / Tore / Punkte die Team i gegen Team j gemacht hat
- Sei a_{ij} die Anzahl der Punkte S_{ij} die Team i gegen Team j gemacht hat:
 - Rohe Daten nicht sinnvoll → Offensive Teams haben besseres Ranking
 - Besser: Totale Anzahl der erreichten Punkte verwenden $a_{ij} = \frac{S_{ij}}{S_{ij} + S_{ji}}$
 - Noch besser: Laplace'sche Regel anwenden

$$a_{ij} = \frac{S_{ij} + 1}{S_{ij} + S_{ji} + 2}$$

Schritt 1: Beispiel

- Fußball-WM 2014: Gruppe G
 - Deutschland, Ghana, Portugal, USA
- Statistiken aus den WMen 2006, 2010 & 2014 herangezogen
- a_{ii} = Anzahl der Tore aller Spiele des Teams i gegen das Team j

a _{ij} = S _{ij}	Deutschland	Ghana	Portugal	USA
Deutschland	0	3	7	0
Ghana	2	0	0	5
Portugal	1	0	0	2
USA	0	4	2	0

Land	Gespielte Spiele (n _i)
DE	4
GH	5
PT	3
US	4

Schritt 1: Beispiel (Fortsetzung)

• Anwenden der Laplace'schen Regel:

$$a_{ij} = \frac{S_{ij} + 1}{S_{ij} + S_{ji} + 2}$$

a _{ij}	DE	GH	PT	US
DE	0	3	7	0
GH	2	0	0	5
PT	1	0	0	2
US	0	4	2	0

a _{ij}	DE	GH	PT	US
DE	0	4/7	4/5	1/2
GH	3/7	0	1/2	6/11
PT	1/5	1/2	0	1/2
US	1/2	5/11	1/2	0

Schritt 2: "Anpassen" der Werte

- Kompensieren der "Weil wir es können"-Situation
- Nichtlineare *skewing*-Funktion: $h(x) = \frac{1}{2} + \frac{\operatorname{sgn}(x \frac{1}{2})\sqrt{|2x 1|}}{2}$

$$h(x) = \frac{1}{2} + \frac{\operatorname{sgn}(x - \frac{1}{2})\sqrt{|2x - 1|}}{2}$$

- Mäßigender Effekt auf starke Differenzen im oberen und unteren Bereich
- Künstliche Separierung von Werten, die nahe an ½ liegen

Möglichkeit, das System für bestimmte Wettkämpfe anzupassen

Schritt 2: Beispiel

- Skewing in diesem Fall nicht notwendig!
- Alle Mannschaften etwa gleich stark
 - Teams waren alle bei jeder WM dabei
 - Teams haben meistens wenigstens das Achtelfinale erreicht
- WM-Siege aus vorherigen Jahrzehnten nicht aussagekräftig
 - Komplett andere Mannschaft / anderer Trainer
 - Evtl. Veränderung des Spielverhaltens?

Schritt 3: Normalisieren der Werte

$$a_{ij} \leftarrow \frac{a_{ij}}{n_i}$$

- Nicht jedes Team hat dieselbe Anzahl an Spielen gespielt
- Teams die mehrere Spiele gespielt haben, können mehr Punkte machen
 - Messung der Stärke wird beeinflusst

• ABER:

- Skewing hat einen normalisierenden Effekt.
- Wenn Skewing angewendet wird und es keine großen Unterschiede in der Anzahl von gespielten Spielen gibt, ist das Normalisieren nicht nötig
- ➤ Gefahr der Über-Normalisierung!

Schritt 3: Beispiel

 Da nicht alle Teams dieselbe Anzahl an Spielen gespielt haben, muss die Tabelle normalisiert werden:

a _{ij}	DE	GH	PT	US
DE	0	4/7	4/5	1/2
GH	3/7	0	1/2	6/11
PT	1/5	1/2	0	1/2
US	1/2	5/11	1/2	0

a _{ij}	DE	GH	PT	US
DE	0	1/7	1/5	1/8
GH	3/35	0	1/10	6/55
PT	1/15	1/6	0	1/6
US	1/8	5/44	1/8	0

Land	DE	GH	PT	US
Gespielte Spiele (n _i)	4	5	3	4

Schritt 4: Ranking berechnen – Basics

Organisation der bearbeiteten Daten in eine Matrix:

$$A = [a_{ij}]_{m \times m}$$
, wobei m = Anzahl der Teams

- Damit können Methoden der Matrixtheorie verwendet werden
- Möglichkeit, ein numerisches Ranking zu erstellen

Schritt 4: Ranking berechnen – Rating

- $r_i(t)$ = numerisches Rating des Teams j zum Zeitpunkt t
- Explizite Zeitangabe t kann vernachlässigt werden
- Daher:

$$r = \begin{pmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{pmatrix} = \text{der Rating-Vektor}$$

Schritt 4: Ranking berechnen – Stärke

- Keeners erste Annahme war:
 - Die Stärke s eines Teams wird durch Interaktionen mit Gegnern und deren Stärke ermittelt
- Relative Stärke:
 - Die relative Stärke eines Teams i gegen ein Team j ist definiert durch: $s_{ij} = a_{ij}r_j$
- Absolute Stärke:
 - Die absolute Stärke eines Teams i ist definiert durch: $s_i = \sum_{j=1}^{n} s_{ij} = \sum_{j=1}^{n} a_{ij} r_j$
 - Der Stärke-Vektor $s=(s_1 \ s_2 \ \cdots \ s_m)^T$ kann auch so ausgedrückt werden:

$$S = \begin{pmatrix} \sum_{j} a_{1j}r_{j} \\ \sum_{j} a_{2j}r_{j} \\ \vdots \\ \sum_{j} a_{mj}r_{j} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1m} \\ a_{21} & a_{22} & \cdots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mm} \end{pmatrix} \begin{pmatrix} r_{1} \\ r_{2} \\ \vdots \\ r_{m} \end{pmatrix} = Ar$$

Schritt 4: Ranking berechnen – "Knackpunkt"

- Keeners 2. Annahme war:
 - Das Rating r jedes Teams ist proportional zu seiner Stärke,
 d.h. für ein Team i gilt: s_i = λr_i
 - Also gilt $s = \lambda r$
- Auf der vorherigen Folie haben wir gesehen: s = Ar

• Daraus können wir folgende Gleichung schließen: $Ar = \lambda r$

Schritt 4: Ranking berechnen – "Knackpunkt"

 $Ar = \lambda r$

- Lineare Algebra:
 - Proportionalitätsvektor λ = Eigenwert
 - Rating r = *Eigenvektor*
- Berechnung des Rankings = Berechnung des Eigenvektors?
 - 1. Für eine $m \times m$ Matrix gibt es m verschiedene Eigenwerte λ
 - Wahl des Eigenwerts beeinflusst das Ranking
 - 2. Eigenwerte λ können komplexe Zahlen sein
 - Eigenvektoren enthalten komplexe Zahlen → unbrauchbar
 - Eigenwerte λ können negative Zahlen sein → nicht optimal
 - 4. Berechnung der Eigenwerte und Eigenvektoren oft schwer
 - Beschränkung der Berechnung auf Näherungswerte bei großen Matrizen

Schritt 4: Ranking berechnen - Bedingungen

Keener vermeidet genannte Probleme durch drei Bedingungen:

1. Nicht-Negativität

- Die verwendeten Statistiken dürfen keine negativen Zahlen enthalten
- $A = [a_{ij}] \ge 0$ ist eine nichtnegative Matrix

2. Nicht-Reduzierbarkeit

- Zwei Teams i und j müssen miteinander verglichen werden können (auch wenn sie nicht gegeneinander gespielt haben)
- $i \leftrightarrow k_1 \leftrightarrow k_2 \leftrightarrow ... \leftrightarrow k_p \leftrightarrow j$ mit $a_{ik_1} > 0$, $a_{k_1k_2} > 0$, ..., $a_{kpj} > 0$

3. Primitivität

- Strengere Version der Nicht-Reduzierbarkeit
- Alle Teams müssen durch <u>dieselbe</u> Anzahl an Spielen miteinander verbunden sein

Schritt 4: Ranking berechnen – Erzwingen von Nicht-Reduzierbarkeit und Primitivität

• Setze:

$$A \leftarrow A + E, \quad wobei \quad E = \varepsilon e e^{T} = \begin{pmatrix} \varepsilon & \varepsilon & \cdots & \varepsilon \\ \varepsilon & \varepsilon & \cdots & \varepsilon \\ \vdots & \vdots & \ddots & \vdots \\ \varepsilon & \varepsilon & \cdots & \varepsilon \end{pmatrix}$$

- Dabei ist e eine Spalte voller 1en und ε > 0 ist genügend klein gewählter
 Wert
- Effekt:
 - es wird ein künstliches Spiel zwischen allen Teams erzeugt
 - ε ist so klein gewählt, dass es die realen Spiele nicht beeinflusst
 - Jedes Team ist jetzt mit jedem anderen Team direkt verbunden

Schritt 4: Ranking berechnen – Perron-Frobenius Theorem

Sei $A = (a_{ij})$ eine reelle $n \times n$ -Matrix mit positiven Einträgen $a_{ij} > 0$ und bezeichne $\lambda_1, \ldots, \lambda_n$ die Eigenwerte von A, so dass $|\lambda_1| > |\lambda_2| \geq \ldots \geq |\lambda_n|$. Dann gilt:

1.
$$\lambda_1 > |\lambda_2| \geq \ldots \geq |\lambda_n|$$

- 2. Der Eigenraum zu λ_1 ist eindimensional.
- 3. Es gibt einen Eigenvektor zu λ_1 , dessen Einträge alle positiv sind.

Schritt 4: Ranking berechnen

- 1. Prüfen, dass A nicht-reduzierbar ist
- 2. Eigenwerte und den Eigenvektor zum größten Eigenwert berechnen
 - Mit Hilfe einer Software
 - In diesem Fall muss der Eigenvektor angepasst werden: $r = \frac{x}{\sum_{i=1}^{m} x_i}$
 - 2. Mit Hilfe der Potenzfunktion:

$$r = \lim_{k \to \infty} \frac{A^k x_0}{\sum_{i=1}^m A^k x_0}$$

Schritt 4: Beispiel

Matrix A aus den Spieldaten herleiten:

a _{ij}	DE	GH	PT	US
DE	0	1/7	1/5	1/8
GH	3/35	0	1/10	6/55
PT	1/15	1/6	0	1/6
US	1/8	5/44	1/8	0

$$A = \begin{bmatrix} 0 & \frac{1}{7} & \frac{1}{5} & \frac{1}{8} \\ \frac{3}{35} & 0 & \frac{1}{10} & \frac{6}{55} \\ \frac{1}{15} & \frac{1}{6} & 0 & \frac{1}{6} \\ \frac{1}{8} & \frac{5}{44} & \frac{1}{8} & 0 \end{bmatrix}$$

Eigenwerte λ der Matrix A berechnen:

$$\lambda_1 = -0.13217129761287308 - 0.053341075090507166i$$

$$\lambda_2 = -0.13217129761287308 + 0.053341075090507166i$$

$$\lambda_3 = -0.11074163323656283$$

$$\lambda_4 = 0.375084228462309$$

Schritt 4: Beispiel (Fortsetzung)

- Berechnen des Eigenvektors v für den Eigenwert $\lambda_4 \ge |\lambda_i|$:
 - $\lambda_4 = 0.37508422...$

$$v = \begin{pmatrix} 0,5859 \\ 0,4094 \\ 0,5023 \\ 0,4867 \end{pmatrix}$$

Rating-Vektor ermitteln:

$$r = \begin{pmatrix} 0,5859 \\ 0,4094 \\ 0,5023 \\ 0,4867 \end{pmatrix} \div \sum_{i=1}^{4} v_i = \begin{pmatrix} 0,2953 \\ 0,2063 \\ 0,2531 \\ 0,2453 \end{pmatrix}$$

Beispiel - Ergebnis

Keine Spiele DE ⇔ US (seit 2002) oder GH ⇔ PT in einer WM

Ranking der Mannschaften nach Keener:

Für WM 2006 + 2010 + 2014:

Team	Ranking
Deutschland	0,2953
Portugal	0,2531
USA	0,2453
Ghana	0,2063

Nur für WM 2014:

Team	Ranking
Deutschland	0,2886
USA	0,2661
Ghana	0,2403
Portugal	0,2050

Was bedeutet das für die Spiele DE ⇔ US und GH ⇔ PT?

- Rankings kein objektives Abbild der Realität:
 - Keine lineare Relation zwischen Ranking und realen Spielen
 - Viele Faktoren werden nicht berücksichtigt (z.B. Heimvorteil, Verletzungen, ...)
 - Aufstellung und Taktik der Mannschaft verändert sich
 - Spiele mit Gleichstand werden in dem Beispiel nicht berücksichtigt
 - ...

Es ist nicht möglich, eine klare Aussage über den Spielausgang zu treffen

Teil 3:

WAS HAT GOOGLE MIT KEENERS RANKING-METHODE ZU TUN?

Was hat Google mit Keeners Rating-Methode zu tun?

- PageRank-Algorithmus
- Erstellt ein Ranking über Wichtigkeit von Webseiten
 - Genauer: Die Wichtigkeit einer Seite hängt von der Wichtigkeit der Seiten ab, die Links zu dieser Seite haben
- Logik ähnlich der von Keeners Rating-Methode
 - Es wird eine Hyperlink-Matrix definiert
 - Danach wird der Eigenwert bzw. der Eigenvektor zu Berechnung des Rankings ermittelt
- Perron-Frobenius Theorem hilft dabei, ein positives Ranking zu erhalten

VIELEN DANK FÜR EURE AUFMERKSAMKEIT

Quellen

Literatur:

- Who's #1? The Science of Rating and Ranking, Kapitel 4
- The Perron-Frobenius theorem and the ranking of football teams, James Keener
- PageRank-Methode: Mathematik f
 ür Informatiker, Springer Verlag

Bilder:

- Keener: http://www.math.utah.edu/~keener/pictures_of_me/DSCN1349.JPG
- Google: http://www.seo-united.de/blog/wp-content/uploads/2013/09/google_logo_2013.png
- Football Team: http://dailyemerald.com/wp-content/uploads/2013/11/131116.RJK_.OEM_.FBC_.Utah_.1689.jpg
- WM-Pokal: http://ssfkappishaeusern.de/assets/images/FifaPokal_WEB.JPG