1ª Lista de Exercícios de Cálculo Diferencial e Integral I - Profa. Mirela

1. Analise os gráficos abaixo. Quais são gráficos de funções? Justifique.

2. Calcule se possível:

(a)
$$g(0), g(2), g(\sqrt{2})$$
 e $g(-1)$, sendo $g(x) = \frac{x}{x^2-1}$;

(b)
$$\frac{f(a+b)-f(a-b)}{ab}$$
, sendo $f(x) = x^2 e \ ab \neq 0$;

(c)
$$h(-1), h(\frac{1}{2})$$
 e $h(\frac{2}{3})$, sendo $h(x) = |x| - 2x$.

3. Determine $A = \frac{f(x) - f(p)}{x - p}$ $(x \neq p)$, nos casos:

(a)
$$f(x) = 5 e p = 2;$$

(b)
$$f(x) = x^3$$
 e p:qualquer;

(c)
$$f(x) = \frac{1}{x^2} e p = -3$$
.

4. Simplifique $\frac{f(x+h)-f(x)}{h}$ $(h \neq 0)$, sendo f(x) igual a:

(a)
$$2x^3 - 3x^2 + 4x$$
;

(b)
$$\frac{1}{x+5}$$
;

5. Encontre o domínio das seguintes funções:

(a)
$$f(x) = \frac{1}{x^2 - 1}$$
;

(c)
$$f(x) = \frac{1}{4-x^2}$$
;

(e)
$$f(x) = \sqrt{x - x^3}$$
;

(b)
$$f(x) = \frac{x}{x+2}$$
;

(d)
$$f(x) = \sqrt{-x}$$
;

1

(f)
$$f(x) = \sqrt{x+1}$$
;

(g)
$$f(x) = \sqrt[3]{x+1}$$
:

(1)
$$f(x) = \sqrt[4]{\frac{x}{x+3}};$$

(q)
$$f(x) = \log \frac{x^2 - 3x + 2}{x + 1}$$
;

(h)
$$f(x) = \sqrt{x^2 - 2}$$
;

(m)
$$f(x) = \frac{1}{\sqrt{x^2 - 1}}$$
;

(r)
$$f(x) = tg(x + \frac{\pi}{2});$$

(i)
$$f(x) = \sqrt{2 + x - x^2}$$
;

(n)
$$f(x) = \frac{\sqrt{-3x+4}}{x^3-x}$$
;

(s)
$$f(x) = \sqrt{sen(2x)}$$
;

(j)
$$f(x) = \sqrt{\frac{x-1}{x+1}};$$

(o)
$$f(x) = \log(1 - x^2)$$
;

(t)
$$f(x) = \cot gx$$
;

(k)
$$f(x) = \sqrt{\frac{2x-1}{1-3x}}$$
;

(p)
$$f(x) = \log \frac{2+x}{2-x}$$
;

(u)
$$f(x) = \csc x$$
;

6. Esboce o gráfico e dê o domínio e a imagem das funções:

(a)
$$f(x) = \frac{2}{x}$$
;

$$(h) f(x) = \log(2x);$$

(n)
$$f(x) = \begin{cases} x, & x \le 2 \\ 30, & x > 2 \end{cases}$$
;

(b)
$$f(x) = \sqrt{x+2}$$
;

(i)
$$f(x) = -x^2 + 2x - 3$$
;

(j)
$$f(x) = \text{sen}(\frac{\pi}{2} + x);$$
 (o) $f(x) = |x|;$

(c)
$$f(x) = \frac{2}{x+1}$$
;

(k)
$$f(x) = \frac{x^2 - 9}{x + 3}$$
;

(p)
$$f(x) = |x| - 2x$$
;

(e)
$$f(x) = 1 + \frac{1}{x}$$
;

(d) $f(x) = 2x^3 - 3x$:

(l)
$$f(x) = 2\cos(\frac{x}{2});$$

(q)
$$f(x) = 3x - 1$$
;

(f)
$$f(x) = e^{x-1}$$
;

(g)
$$f(x) = x^2 - 1$$
;

(m)
$$f(x) = \begin{cases} 2, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

(m)
$$f(x) = \begin{cases} 2, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
; (r) $f(x) = \begin{cases} x^2 - 1, & x < 0 \\ \frac{x}{2}, & x \ge 0 \end{cases}$.

7. Considere a função $f(x) = \max\{n \in \mathbb{Z} \mid n \leq x\}$. (Função maior inteiro)

Calcule $f(\frac{1}{2})$, $f(\frac{5}{4})$ e $f(-\frac{1}{5})$. Esboce o gráfico dessa função e determine o domínio e a imagem de f.

8. Em cada caso, determine o domínio das funções $f \in g$ dadas e da função resultante das operações f + g, $f \cdot g$, $f/g \in g/f$.

(a)
$$f(x) = x - 5$$
; $g(x) = x^2 - 1$;

(c)
$$f(x) = \sqrt{x}$$
; $g(x) = x^2 - 1$;

(b)
$$f(x) = \frac{x+1}{x-1}$$
; $g(x) = 1/x$;

(d)
$$f(x) = x^2$$
; $g(x) = \frac{1}{\sqrt{x}}$.

- 9. Verifique se as funções compostas $f\circ g$ e $g\circ f$ das funções a seguir estão bem definidas. Caso não estejam, defina $f \circ g$ e $g \circ f$ restrita aos conjuntos $A = \{x \in D_g | g(x) \in D_f\}$ e $B = \{x \in D_f | f(x) \in D_g\}$, respectivamente. Em seguida, encontre $f \circ g$ e $g \circ f$.
 - a) As funções do exercício anterior.

b)
$$f(x) = x^2 - 1$$
 e $g(x) = \frac{1}{x}$.

c)
$$f(x) = \sqrt{x} e g(x) = -\frac{1}{x}$$
.

10. As funções $f \in g$ dadas por $f(x) = \sqrt{x}\sqrt{x-1}$ e $g(x) = \sqrt{x^2-x}$ são iguais? Justifique.