Consider the RSA cryptosystem with the following setting:

- ullet Use a 27-letter alphabet for plaintext and ciphertext: $_$ (notation for blank) with numerical equivalent 0 and letters A-Z (the English alphabet) with numerical equivalents 1-26.
- ullet Plaintext message units are blocks of k=2 letters, whereas ciphertext message units are blocks of l=3 letters.
- ullet The modulus n=pq, where p=31 and q=43.
- ullet You must choose the encryption exponent e as the smallest valid odd prime (pay attention to the required condition!).

Encrypt the plaintext CRYPTO.

Solution.

Values:

$$\varphi(n)$$
= 1260

Plaintext:

Blocks of k letters: CR

Numerical equivalents: $b_1 = 99$

b₂ = 691

b₃ = 555

Encryption:

$$c_1 = b_1^e \mod n = 367$$

$$c_2 = b_2^e \mod n$$
= 417

$$c_3 = b_3^e \mod n$$
= 948

Blocks of \boldsymbol{l} letters:

_OL

AHC

Ciphertext: _MP_OLAHC