KEM with Subset cover

Assume we are given a KEM scheme defined by the 3 algorithms, KEM.KeyGen, KEM.Encaps and KEM.Decaps, the broadcast encryption scheme based on subset cover techniques will be defined as follows:

- Setup: λ → (msk, mpk)
 takes the security parameter (number of security bits we would like to reach). It first defines the partition of subsets S_i that covers the set S with respect to the target users' rights.
 And for each S_i, it invokes (KEM.KeyGen which outputs (pk_i, sk_i) and defines mpk = (pk_i)_i and msk = (sk_i)_i the master public key and master secret key.
- Join: $(\mathsf{msk}, U) \to \mathsf{sk}_U$ For a user U, define sk_U as the set of secret keys sk_i for each i such that $U \in S_i$ (meaning U has rights associated to set S_i).
- Encaps: $(\mathsf{mpk},T) \to C = (K,C_i = (K_i \oplus K,E_i)_{i \in A})$ takes as input mpk and target set T. It first samples a random key K and express T as set of covering subsets, i.e $T = \cup_{i \in A} S_i$. Then for each $i \in A$, it invokes KEM.Encaps which $C_i = (K_i,E_i)_{i \in A}$. It finally returns $(K,C = (K_i \oplus K,E_i)_{i \in A})$.
- Decaps: (sk_U, C) → K
 Let T = ∪_{i∈B}S_i for some integers set B and A the indices of sets associated to C.
 if user U is in T, and there exists an index i ∈ A such that U is in S_i ⊆ T, it invokes KEM.Decaps(sk_i, E_i) which gives K_i. Then using the corresponding C_i parsed as K'_i, E_i, it obtains K = K'_i ⊕ K_i.