Interrogation écrite n°11

NOM: Prénom: Note:

1. Soit $H = \{P \in \mathbb{K}[X], P(1) = 0\}$. Justifier que H est un hyperplan et donner un supplémentaire de H dans $\mathbb{K}[X]$.

 $L'application \left\{ \begin{array}{ccc} \mathbb{K}[X] & \longrightarrow & \mathbb{K} \\ P & \longmapsto & P(1) \end{array} \right. \text{ est clairement une forme linéaire non nulle dont H est le noyau. On en déduit que H est un hyperplan de $\mathbb{K}[X]$. Toute droite non incluse dans H est un supplémentaire de H dans $\mathbb{K}[X]$. Puisque $1 \notin P$, on peut affirmer que $\mathbb{K}_0[X] = \text{vect}(1)$ est un supplémentaire de H dans $\mathbb{K}[X]$.}$

2. Factoriser $X^4 + 1$ en produit de polynômes irréductibles de $\mathbb{C}[X]$ puis de $\mathbb{R}[X]$.

 $e^{\frac{i\pi}{4}}$ est clairement racine de X^4+1 . Comme X^4+1 est pair, $-e^{\frac{i\pi}{4}}$ est également racine de X^4+1 . Enfin, comme X^4+1 est à coefficients réels, $e^{-\frac{i\pi}{4}}$ et $-e^{-\frac{i\pi}{4}}$ sont également racines de X^4+1 .

Puisque $\deg(X^4 + 1) = 4$, ces quatre complexes sont exactement les racines de $X^4 + 1$ et celles-ci sont toutes simples. On en déduit que la décomposition en facteurs irréductibles de $X^4 + 1$ dans $\mathbb{C}[X]$ est

$$X^4 + 1 = \left(X - e^{\frac{i\pi}{4}}\right) \left(X - e^{-\frac{i\pi}{4}}\right) \left(X + e^{\frac{i\pi}{4}}\right) \left(X + e^{-\frac{i\pi}{4}}\right)$$

En regroupant les racines conjuguées, on obtient la décomposition en facteurs irréductibles de $X^4 + 1$ dans $\mathbb{R}[X]$

$$X^4 + 1 = \left(X^2 - 2X\cos\frac{\pi}{4} + 1\right)\left(X^2 - 2X\cos\frac{\pi}{4} + 1\right) = (X^2 - X\sqrt{2} + 1)(X^2 + X\sqrt{2} + 1)$$

3. Déterminer le reste de la division euclidienne de $P_n = X^{2n} + X^n + 1$ par $X^2 - 1$.

Notons R_n le reste recherché. Puisque $\deg(R_n) < 2$, il existe $(a_n, b_n) \in \mathbb{R}^2$ tel que $R_n = a_n X + b_n$. Par ailleurs, $X^2 - 1$ divise $P_n - R_n$ donc 1 et -1 sont racines de $P_n - R_n$. Par conséquent,

$$R_n(1) = P_n(1)$$
 $R_n(-1) = P_n(-1)$

ou encore

$$a_n + b_n = 3$$
 $-a_n + b_n = 2 + (-1)^n$

On en déduit

$$a_n = \frac{1 - (-1)^n}{2} \qquad b_n = \frac{5 + (-1)^n}{2}$$

et ainsi

$$R_n = \frac{1 - (-1)^n}{2} X + \frac{5 + (-1)^n}{2}$$

4. Soit $P \in \mathbb{K}[X]$ tel que P(X) = P(X + 1). Montrer que P est constant.

Considérons le polynôme Q = P - P(0). Alors Q(n+1) = P(n+1) - P(0) = P(n) - P(0) = Q(n). On en déduit que Q(n) = Q(0) = 0 pour tout $n \in \mathbb{N}$. Le polynôme Q admet une infinité de racines : il est donc nul. Ainsi P = P(0) donc P est constant.

5. Montrer que l'application $s: \begin{cases} \mathbb{K}[X] & \longrightarrow & \mathbb{K}[X] \\ P & \longmapsto & P(-X) \end{cases}$ est une symétrie par rapport à un sous-espace vectoriel F et parallélement à un sous-espace vectoriel G que l'on précisera.

s est clairement un endomorphisme de $\mathbb{K}[X]$. De plus, pour tout $P \in \mathbb{K}[X]$,

$$s^{2}(P) = s(s(P)) = s(P(-X)) = P(-(-X)) = P$$

Ainsi $s^2 = \mathrm{Id}_{\mathbb{K}[X]}$ et s est bien une symétrie. On sait alors que

$$F = Ker(s - Id_{\mathbb{K}[X]}) = \{ P \in \mathbb{K}[X], \ P(-X) = P(X) \}$$

$$G = Ker(s + Id_{\mathbb{K}[X]}) = \{ P \in \mathbb{K}[X], \ P(-X) = -P(X) \}$$

Ainsi F est le sous-espace vectoriel des polynômes pairs de $\mathbb{K}[X]$ et G est le sous-espace vectoriel des polynômes impairs de $\mathbb{K}[X]$.

- 6. Déterminer l'ensemble F des polynômes $P \in \mathbb{R}[X]$ tels que $P(X^2) = XP(X)$ puis montrer que F est un sous-espace vectoriel de $\mathbb{R}[X]$ dont on déterminera une base.
 - Remarquons que $0 \in F$. Soit alors $P \in F$ non nul. Puisque $P(X^2) = XP(X)$, $2 \deg P = \deg P + 1$ et donc $\deg P = 1$. Par ailleurs, en évaluant l'égalité précédente en 0, on obtient P(0) = 0. Il existe donc $\lambda \in \mathbb{R}$ tel que $P = \lambda X$. Ainsi $F \subset \text{vect}(X)$. Réciproquement, on vérifie aisément que $\text{vect}(X) \subset F$. Ainsi F = vect(X). F est bien un sous-espace vectoriel de $\mathbb{R}[X]$ de base (X).