Métodos Estatísticos

Deolinda M. L. D. Rasteiro

Instituto Superior de Engenharia de Coimbra - ISEC Departamento de Física e Matemática

Conteúdos

- Probabilidades
 - Experiência aleatória, espaço de resultados, acontecimentos
 - Definição de probabilidade
 - Probabilidade condicionada
 - Acontecimentos independentes
 - Probabilidade total. Teorema de Bayes
- Exercícios Complementares

Experiência aleatória, espaço de resultados, acontecimentos Definição de probabilidade Probabilidade condicionada Acontecimentos independentes

Probabilidade total. Teorema de Bayes

Probabilidades

Definição:

Experiência aleatória é um qualquer processo ou conjunto de circunstâncias capaz de produzir pelo menos dois resultados, com incerteza quanto ao que ocorrerá.

Características principais:

- Possibilidade de repetição;
- Carácter imprevisível;
- Apresentam regularidade estatística.

Definição:

Espaço de resultados ou espaço fundamental é o conjunto de todos os resultados possíveis da experiência aleatória. Denota-se por Ω .

Experiência aleatória, espaço de resultados, acontecimentos Definição de probabilidade Probabilidade condicionada Acontecimentos independentes

Probabilidade total. Teorema de Bayes

Probabilidades

Definições:

Um acontecimento (ou evento) é um subconjunto de Ω . Acontecimento elementar é um subconjunto singular de Ω .

- Ω é denominado acontecimento certo (realiza-se sempre);
- Ø é denominado acontecimento impossível;
- \overline{A} é denominado acontecimento complementar de A.

Probabilidades:

Operações e relações entre acontecimentos:

- 1. $A \subset B$: a realização de A implica a realização de B;
- 2. A = B: $A \subset B$ e $B \subset A$; (A e B dizem-se idênticos)
- 3. $A \cap B$ (Acontecimento Interseção): $A \in B$ realizam-se conjuntamente;
 - Se $A \cap B = \emptyset$ então A e B dizem-se mutuamente exclusivos, disjuntos ou incompatíveis. Em comum
- A ∪ B (Acontecimento Reunião): A ou B realizam-se (o resultado da experiência aleatória pertence a pelo menos um dos conjuntos); Soma dos dois
- 5. $A \setminus B$ (Acontecimento Diferença): A realiza-se e B não se realiza; Não tem em comum

Probabilidades Propriedades:

- 1. $A \cap \overline{A} = \emptyset$
- 2. $A \cup \overline{A} = \Omega$
- 3. Comutativa

$$A \cap B = B \cap A$$

$$A \cup B = B \cup A$$

4. Associativa

$$A \cap (B \cap C) = (A \cap B) \cap C$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

Probabilidades Propriedades:

5. Distributiva

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

6.
$$A \cap \Omega = A$$
; $A \cup \emptyset = A$

7.
$$A \cup \Omega = \Omega$$
; $A \cap \emptyset = \emptyset$

8.
$$A \subset B \Rightarrow A \cup B = B$$
 e $A \cap B = A$

9. Leis de De Morgan

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Definição [Clássica]:

Admita-se que Ω é um espaço finito e que todos os acontecimentos elementares são equipossíveis. A probabilidade de um acontecimento (qualquer subconjunto de Ω) A se realizar é dada por

$$P(A) = \frac{\sharp A}{\sharp \Omega}.$$

- $P(\Omega) = 1$
- $P(\emptyset) = 0$
- $\forall A \in \Omega, \ 0 \leq P(A) \leq 1.$

Definição [Axiomática]:

Seja Ω um espaço de resultados e A e A_i , i=1,2,..., acontecimentos quaisquer de Ω .

Uma probabilidade é uma aplicação P que satisfaz os seguintes axiomas:

- (1) $0 \le P(A) \le 1$
- (2) $P(\Omega) = 1$
- (3) Para o acontecimento reunião $\bigcup_{i=1}^{n-1} A_i$ de Ω ,

$$P(igcup_{i=1}^{+\infty}A_i)=\sum_{i=1}^{+\infty}P(A_i), \;\; ext{se } A_i\cap A_j=\emptyset \;\; ext{para } i
eq j.$$

Nota:

A partir de Ω é possível formar várias famílias de subconjuntos deste espaço (**pensemos no caso de** Ω **não ser finito**). A definição axiomática de probabilidade, definida anteriormente no domínio Ω , extende-se à família (chamemos-lhe F) de todos os subconjuntos de Ω , que verifica:

- (1) $\Omega \in \mathcal{F}$;
- (2) Se $A \in \mathcal{F}$ então $\overline{A} \in \mathcal{F}$;
- (3) Se $A_i \in \mathcal{F}, i \in \mathbb{N}$, então $\bigcup_{i=1}^{+\infty} A_i \in \mathcal{F}$.

Propriedades de uma probabilidade:

- 1. $P(\emptyset) = 0$
- 2. Se $A_i \in \Omega$, i = 1, ..., n, e $A_i \cap A_j = \emptyset$ para $i \neq j$, então

$$P(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n P(A_i).$$

Caso particular:

Se
$$A \in B \in \Omega$$
 e $A \cap B = \emptyset \Rightarrow P(A \cup B) = P(A) + P(B)$.

- 3. Se $A \in B \in \Omega$, $P(A \setminus B) = P(A) P(A \cap B)$
- 4. Se $A \in B \in \Omega \in B \subset A \Rightarrow P(B) \leq P(A)$
- 5. $A \in \Omega$, $P(\overline{A}) = 1 P(A)$

Propriedades de uma probabilidade:

6.
$$A, B \in \Omega, P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

7. Se $A_i \in \Omega$, i = 1, ..., n,

$$P(\bigcup_{i=1}^n A_i) \leq \sum_{i=1}^n P(A_i);$$

8. Se $A_i \in \Omega$, $i \in \mathbb{N}$, e A_i é uma sucessão monótona,

$$P(\lim_{i\to+\infty}A_i)=\lim_{i\to+\infty}P(A_i).$$

Probabilidade condicionada:

Definição:

Sejam A e B acontecimentos de Ω com P(B) > 0. A probabilidade de A condicionada por B, P(A/B), é dada por

$$P(A/B) = \frac{P(A \cap B)}{P(B)}.$$

Probabilidade condicionada:

Teorema [probabilidade composta]:

Se A e B são acontecimentos de Ω tais que P(A)P(B)>0, então

$$P(A \cap B) = P(A/B)P(B) = P(B/A)P(A).$$

Generalização:

Sejam $A_1, A_2, ..., A_n$ acontecimentos de um mesmo espaço Ω , tais que $P(A_1 \cap A_2 \cap ... \cap A_n) > 0$. Então

$$P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2/A_1)P(A_3/A_1 \cap A_2)...$$

 $P(A_n/A_1 \cap A_2 \cap ... \cap A_{n-1})$

Acontecimentos independentes:

Definição [Independência]:

Os acontecimentos A e B dizem-se independentes se e só se

$$P(A \cap B) = P(A)P(B).$$

Consequência:

Sejam A e B acontecimentos de Ω tais que P(A)P(B) > 0. A e B são independentes se e só se

$$P(A/B) = P(A)$$
.

Nota:

Não confundir acontecimentos **disjuntos** com acontecimentos **independentes**.

Probabilidade total. Teorema de Bayes:

Teorema [probabilidade total]:

Sejam $A_1, A_2, ..., A_n$ acontecimentos de Ω tais que

$$A_i \cap A_j = \emptyset, i \neq j$$
 (disjuntos)
$$\bigcup_{i=1}^n A_i = \Omega$$
 (exaustivos)

Seja B um acontecimento qualquer. Tem-se

$$P(B) = \sum_{i=1}^{n} P(B/A_i) P(A_i).$$

Probabilidade total. Teorema de Bayes

Teorema [Bayes]:

Sejam $A_1, A_2, ..., A_n$ acontecimentos de Ω tais que

$$A_i \cap A_j = \emptyset, i \neq j$$

$$\bigcup_{i=1}^n A_i = \Omega.$$

Seja B um acontecimento qualquer, com $B \neq \emptyset$. Tem-se

$$P(A_i/B) = \frac{P(B/A_i)P(A_i)}{\sum_{i=1}^{n} P(B/A_i)P(A_i)}, i = 2, ..., n.$$

Probabilidades Exercícios Complementares

Exercícios:

Uma companhia de seguros classifica os seus segurados em três categorias: baixo risco, risco médio e risco elevado. Os seus registos indicam que a probabilidade de um segurado se envolver em pelo menos um acidente, por ano, é 0.01, 0.10, e 0.25 se o segurado pertence à categoria de baixo, médio ou risco elevado, respectivamente. Admita que a probabilidade de um segurado ser classificado na categoria de baixo risco é de 0.1 enquanto que na de risco médio é 0.6.

- Qual a probabilidade de, num ano, um dos segurados tenha pelo menos um acidente?
- Sabendo que um dos segurados teve pelo menos um acidente no último ano, qual a probabilidade de pertencer à categoria de risco elevado?
- Sabendo que um dos segurados não teve acidentes no último ano, qual a probabilidade dele pertencer à categoria de risco médio?

Exercícios:

Numa fábrica as máquinas I, II e III produzem peças do mesmo comprimento na proporção de 35:25:40. Sabe-se que 2% das peças produzidas pela máquina I são defeituosas e 1% das peças produzidas pela máquina II são defeituosas. Sabe-se ainda que 1.2% das peças são produzidas pela máquina III e são defeituosas.

- 1 Se for escolhida aleatoriamente uma peça da produção da fábrica, qual a probabilidade de ser defeituosa?
- 2 Se for selecionada uma peca defeituosa, qual a probabilidade de ter sido produzida pela máquina II?