

Deep Learning

for Engineers

OUTTHINK

10. Juli 2015

DQN

THE FIRST COMPUTER PROGRAM TO EVER BEAT A PROFESSIONAL PLAYER AT THE GAME OF GO.

The Challenge

Introduction to the demo example

Which letter do you see?

notMNIST Data Set

- Harder than MNIST
- Not only handwritten
- Challenge: Recognize those letters

Challenge Accepted!

Fitting a linear model

Using a state of the art library

Fitting a linear model

Logistic classifier

Simple model, easy to train:

$$Y = Wx+b$$

Tries to linearly separate the training data.

Logistic Regression - Softmax

Logistic Regression - Cross Entropy

Learning Logistic Regression

Loss Function

In order to find our weights we want to minimize:

Loss = Average Cross - Entropy =
$$\frac{1}{N} \sum_{i} D(S(Wx_i + b), L_i)$$

Gradient Descent

Optimization algorithm: Take derivative and "walk" towards optimum

Logistic Regression

Common classifiers are implemented in several libraries.

We use the python implementation of scikit-learn.

Introducing TensorFlow

3

Library for Machine Intelligence

TensorFlow

TensorFlow is an open source software library for numerical computation using data flow graphs.

https://www.tensorflow.org/

Levels of abstraction

Caffe

NumPy

Gradient Descent is Too Slow

Introducing: Stochastic Gradient Descent

In every iteration, we choose N random samples to perform Gradient Descent with.

Handling Non Linear Problems

4

Handling Non Linear Problems

Handling Non Linear Problems

Activation Functions

Rectified Linear Unit

Super simple activation function used extensively in Neural Networks.

Regularization

Set Some Boundaries!

5

Regularization - Limit Weights

L2 norm

Try to prevent the optimizer from learning extremely high or small weights.

We update the objective function by adding the norm of the weight matrix.

$$Loss' = Loss + \beta * \frac{1}{2}||W||_2^2$$

Regularization - Prevent Overfitting

(a) Standard Neural Net

(b) After applying dropout.

Dropout

Hide connections randomly during training.

This way the neural network cannot rely on certain values to be present and needs to learn a redundant representation of important features.

Convolutional Networks

6

Utilize domain knowledge

Spacial information

We withhold some of the information from the neural network, by converting the image to a vector.

But we know it is an image and it is important how the pixels are arranged.

Convolutional Layer

Convolutional layer

Scans the image and trains the same set of weights for every part of an image

1,	1,0	1,	0	0
0,0	1,	1,0	1	0
0,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

4			
8	6 68 6 6	50 St.	
S	600	70 03	

Image

Convolved Feature

Layer 1: 5x5 Patch, Stride 2, Depth 16, Same Padding 14 16 Layer 2: 5x5 Patch, Stride 2, Depth 16, Same Padding 16 2 x fully connected, ReLU activated layer

Multilayer Convolutional Network

Convolutional layers

Preserve spatial information to detect more complex patterns.

Real World Architectures

"Real" World

Large-Scale Visual Recognition Challenge

Two distinct classes from the 1000 classes of the ILSVRC 2014 classification challenge.

Neural Networks are a modular toolkit

AlexNet

8-Layer convolutional network that won the 2012 Large-Scale Visual Recognition Challenge.

Neural Networks are a modular toolkit

GoogLeNet: Inception Module

Why decide for a convolution, if you can have all of them?

Let the network decide for itself what is best.

Neural Networks are a modular toolkit

GoogLeNet

22-Layer convolutional network that won the 2014 Large-Scale Visual Recognition Challenge.

Try it!

http://playground.tensorflow.org