```
In [1]:
        import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         from half normal plotting import HalfNormPlot
         from effects_table import yates_step, generate_standard_table, Experiment2N
         from statsmodels.formula.api import ols
         import statsmodels.api as sm
         from scipy.stats import t
       1)
In [2]:
         #read in data
        data = pd.read excel("Assignment 3 Data.xlsx", sheet name="question 1")
        data['Block'] = data['Block'].apply(lambda x: "Block 1" if x == 1 else "Block 2")
        data
Out[2]:
            Block A B C
         0 Block 1 0 0 0
         1 Block 1 1 0 0
         2 Block 1 0 1 0
         3 Block 1 1 1 0 10
           Block 1 0 0 1 4
          Block 1 1 0 1 6
         6 Block 1 0 1 1 11
         7 Block 1 1 1 1
                           9
           Block 2 0 0 0
           Block 2 1 0 0
        10 Block 2 0 1 0
                          7
        11 Block 2 1 1 0
        12 Block 2 0 0 1 4
        13 Block 2 1 0 1 3
        14 Block 2 0 1 1 10
        15 Block 2 1 1 1 8
In [3]:
        q1_{m} = ols('y \sim Block + A*B*C', data=data).fit()
        anova = sm.stats.anova lm(q1 lm)
        anova['sd effect'] = anova['mean sq']**.5
         anova
Out[3]:
                df sum_sq
                          mean_sq
                                              PR(>F) sd_effect
          Block 1.0
                           6.250000
                                   6.481481 0.038334
                                                     2.500000
                      6.25
             A 1.0
                      0.25
                           0.250000
                                    0.259259 0.626283
                                                    0.500000
```

9.000000

2.333333 0.170471 1.500000

B 1.0

2.25

A:B 1.0

81.00 81.000000 84.000000 0.000038

2.250000

	df	sum_sq	mean_sq	F	PR(>F)	sd_effect
С	1.0	2.25	2.250000	2.333333	0.170471	1.500000
A:C	1.0	4.00	4.000000	4.148148	0.081107	2.000000
B:C	1.0	2.25	2.250000	2.333333	0.170471	1.500000
A:B:C	1.0	1.00	1.000000	1.037037	0.342410	1.000000
Residual	7.0	6.75	0.964286	NaN	NaN	0.981981

Out[5]:

В

0

1

у

8

8

mean count

4.25

8.75

Based on the results of the Anova analysis we can see that only the B main effect is significant at the 5% level. Looking at the data and keeping the goal of minimizing y in mind we can see that whenever B is at the high level the response variable tends to be higher. Lets formalize this insight by looking at this as a 2^1 experiment with only factor B as the main effect and the other test runs considered replications of the experiment.

```
In [4]:
         data B = data[['B','y']]
         data B
Out[4]:
            В
            0
                3
            0
            1
                8
            1 10
            0
            0
                6
            1 11
            0
            0
         10
         11
         12 0
         13
            0
                3
         14
            1 10
        15 1
In [5]:
         data B.groupby(['B']).agg(['mean','count'])
```

```
In [6]:
    #calculate the LSD using t distribution and variance of difference in two means
    LSD = t.ppf(1-.025, 7) * (anova.loc['Residual','mean_sq'] * (1/8 + 1/8))
    print(f"LSD for this experiment is {t.ppf(1-.025, 7):.04f}*({anova.loc['Residual','mean_sq']})
```

LSD for this experiment is 2.3646*(0.9643*(1/8+1/8))=0.5700

We can see that for both blocks the difference in means is greater than the LSD so we can conclude that B does have a large and positive impact on y. Knowing this and our goal of minimizing y the recommendation from this experiment is to leave all treatment factors at the low level.

2)

a.

```
In [7]: #read in data, and sort into standard order
    q2_data = pd.read_excel("Assignment 3 Data.xlsx", sheet_name="question_2")

#make standard table of effects to sort data correctly
    standard_table = generate_standard_table(n=5, columns=['A','B','C','D','E']).set_index(['Z', 'B', 'B', 'C', 'B', 'C', 'D', 'E'])

#index both datasets on A,B,C,D,E
    q2_data = q2_data.set_index(['A','B','C','D','E'])

#merge data on standard table format and reset index
    q2_fixed = standard_table.merge(q2_data, left_index=True, right_index=True)
    q2_fixed = q2_fixed.reset_index()
    q2_fixed
```

```
Out[7]:
         ABCDE y
       0 0 0 0 0 0 23
       1 1 0 0 0 0 15
        0 1 0 0 0 27
        1 1 0 0 0 27
         0 0 1 0 0 24
       5 1 0 1 0 0 20
        0 1 1 0 0 30
       7 1 1 1 0 0 31
         0 0 0 1 0 23
        1 0 0 1 0 24
      10 0 1 0 1 0 28
      11 1 1 0 1 0 33
      12 0 0 1 1 0 29
      13 1 0 1 1 0 26
      14 0 1 1 1 0 31
      15 1 1 1 1 0 33
        0 0 0 0 1 20
```

17 1 0 0 0 1 18

```
        A
        B
        C
        D
        E
        y

        18
        0
        1
        0
        0
        1
        25

        19
        1
        1
        0
        0
        1
        32

        20
        0
        0
        1
        21
        21
        21
        21
        21
        22
        22
        22
        20
        1
        0
        1
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
        24
```

```
In [8]:
    q2_lm = ols('y ~ A + B + C + D + E + A:B + A:C + A:D + A:E + B:C + B:D + B:E + C:D + C:E +
    q2_anova = sm.stats.anova_lm(q2_lm)
    q2_anova['significant'] = q2_anova['PR(>F)'].apply(lambda x: True if x < .05 else False)
    q2_anova['std_effects'] = q2_anova['mean_sq']**.5
    q2_anova</pre>
```

Out[8]:		df	sum_sq	mean_sq	F	PR(>F)	significant	std_effects
	Α	1.0	87.78125	87.781250	26.130233	1.045294e-04	True	9.369165
	В	1.0	442.53125	442.531250	131.730233	3.911175e-09	True	21.036427
	С	1.0	81.28125	81.281250	24.195349	1.541882e-04	True	9.015611
	D	1.0	52.53125	52.531250	15.637209	1.135937e-03	True	7.247845
	E	1.0	7.03125	7.031250	2.093023	1.672800e-01	False	2.651650
	A:B	1.0	57.78125	57.781250	17.200000	7.576240e-04	True	7.601398
	A:C	1.0	1.53125	1.531250	0.455814	5.092267e-01	False	1.237437
	A:D	1.0	42.78125	42.781250	12.734884	2.563782e-03	True	6.540738
	A:E	1.0	132.03125	132.031250	39.302326	1.119183e-05	True	11.490485
	В:С	1.0	22.78125	22.781250	6.781395	1.917995e-02	True	4.772971
	B:D	1.0	2.53125	2.531250	0.753488	3.982071e-01	False	1.590990
	В:Е	1.0	1.53125	1.531250	0.455814	5.092267e-01	False	1.237437
	C:D	1.0	1.53125	1.531250	0.455814	5.092267e-01	False	1.237437
	C:E	1.0	0.28125	0.281250	0.083721	7.760325e-01	False	0.530330
	D:E	1.0	11.28125	11.281250	3.358140	8.555052e-02	False	3.358757
	Residual	16.0	53.75000	3.359375	NaN	NaN	False	1.832860

```
In [9]: q2_anova[q2_anova['significant']==True]
Out[9]: df sum_sq mean_sq F PR(>F) significant std_effects
```

	df	sum_sq	mean_sq	F	PR(>F)	significant	std_effects
Α	1.0	87.78125	87.78125	26.130233	1.045294e-04	True	9.369165
В	1.0	442.53125	442.53125	131.730233	3.911175e-09	True	21.036427
С	1.0	81.28125	81.28125	24.195349	1.541882e-04	True	9.015611
D	1.0	52.53125	52.53125	15.637209	1.135937e-03	True	7.247845
A:B	1.0	57.78125	57.78125	17.200000	7.576240e-04	True	7.601398
A:D	1.0	42.78125	42.78125	12.734884	2.563782e-03	True	6.540738
A:E	1.0	132.03125	132.03125	39.302326	1.119183e-05	True	11.490485
B:C	1.0	22.78125	22.78125	6.781395	1.917995e-02	True	4.772971

An estimate of the experimental error is 1.832 with 16 degrees of freedom, and the main effects A, B, C, D are significant with interaction effects A * B, A * D, A * E, B * C significant at the 5% alpha level.

```
In [10]:
         def encode effect(X):
             A, B, C, D, E = X
              effect = []
              if A == 1:
                  effect.append('a')
              if B == 1:
                  effect.append('b')
              if C == 1:
                  effect.append('c')
              if D == 1:
                  effect.append('d')
              if E == 1:
                 effect.append('e')
              if len(effect) > 0:
                  return ''.join(effect)
              else:
                  return '(1)'
In [11]:
         q2 yates = q2 fixed.copy()
         q2 yates['step 1'] = yates step(q2 yates['y'].tolist())
```

Out[11]:		Α	В	С	D	E	У	step_1	step_2	step_3	step_4	step_5	std_effect	effect
	0	0	0	0	0	0	23	38	92	197	424	833	147.254987	(1)
	1	1	0	0	0	0	15	54	105	227	409	53	9.369165	a
	2	0	1	0	0	0	27	44	108	199	-6	119	21.036427	b
	3	1	1	0	0	0	27	61	119	210	59	43	7.601398	ab
	4	0	0	1	0	0	24	47	95	-11	56	51	9.015611	С
	5	1	0	1	0	0	20	61	104	5	63	7	1.237437	ac

						•	• -	• -	• -		• -	_	
6	0	1	1	0	0	30	55	96	19	22	-27	-4.772971	bc
7	1	1	1	0	0	31	64	114	40	21	-7	-1.237437	abc
8	0	0	0	1	0	23	38	-8	33	24	41	7.247845	d
9	1	0	0	1	0	24	57	-3	23	27	37	6.540738	ad
10	0	1	0	1	0	28	46	6	31	-2	-9	-1.590990	bd
11	1	1	0	1	0	33	58	-1	32	9	-13	-2.298097	abd
12	0	0	1	1	0	29	36	5	13	-4	7	1.237437	cd
13	1	0	1	1	0	26	60	14	9	-23	-21	-3.712311	acd
14	0	1	1	1	0	31	53	20	15	-2	-15	-2.651650	bcd
15	1	1	1	1	0	33	61	20	6	-5	5	0.883883	abcd
16	0	0	0	0	1	20	-8	16	13	30	-15	-2.651650	е
17	1	0	0	0	1	18	0	17	11	11	65	11.490485	ae
18	0	1	0	0	1	25	-4	14	9	16	7	1.237437	be
19	1	1	0	0	1	32	1	9	18	21	-1	-0.176777	abe
20	0	0	1	0	1	21	1	19	5	-10	3	0.530330	ce
21	1	0	1	0	1	25	5	12	-7	1	11	1.944544	ace
22	0	1	1	0	1	24	-3	24	9	-4	-19	-3.358757	bce
23	1	1	1	0	1	34	2	8	0	-9	-3	-0.530330	abce
24	0	0	0	1	1	14	-2	8	1	-2	-19	-3.358757	de
25	1	0	0	1	1	22	7	5	-5	9	5	0.883883	ade
26	0	1	0	1	1	24	4	4	-7	-12	11	1.944544	bde
27	1	1	0	1	1	36	10	5	-16	-9	-5	-0.883883	abde
28	0	0	1	1	1	22	8	9	-3	-6	11	1.944544	cde
29	1	0	1	1	1	31	12	6	1	-9	3	0.530330	acde
30	0	1	1	1	1	25	9	4	-3	4	-3	-0.530330	bcde
31	1	1	1	1	1	36	11	2	-2	1	-3	-0.530330	abcde

A B C D E y step_1 step_2 step_3 step_4 step_5 std_effect effect

Lets validate the above analysis by using contrast analysis to determine the effects.

```
In [12]: #make the experiment and validate the standard order
    exp2 = Experiment2N(factors=['A','B','C','D','E'])
    exp2_table = exp2.generate_table()
    exp2_table
```

```
Out[12]:
                                                                                                                                       A B C D E A_contrast B_contrast C_contrast B_contrast B_contrast BDE_contrast BDE_c
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1 ...
                                                                                                                                      0 0 0 0 0
                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                               -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -1
                                                                                                                                                                     0 0 0 0
                                                                                                                                                                                                                                                                                                                                                                1
                                                                                                                                                                                                                                                                                                                                                                                                                                                               -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  -1
                                                                                                                                                                  1 0 0 0
                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -1 ...
                                                                                                                                      1 1 0 0 0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          -1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1
```

	Α	В	С	D	Ε	A_contrast	B_contrast	C_contrast	D_contrast	E_contrast	•••	BCD_contrast	BCE_contrast	BDE _.
4	0	0	1	0	0	-1	-1	1	-1	-1		1	1	
5	1	0	1	0	0	1	-1	1	-1	-1		1	1	
6	0	1	1	0	0	-1	1	1	-1	-1		-1	-1	
7	1	1	1	0	0	1	1	1	-1	-1		-1	-1	
8	0	0	0	1	0	-1	-1	-1	1	-1		1	-1	
9	1	0	0	1	0	1	-1	-1	1	-1		1	-1	
10	0	1	0	1	0	-1	1	-1	1	-1		-1	1	
11	1	1	0	1	0	1	1	-1	1	-1		-1	1	
12	0	0	1	1	0	-1	-1	1	1	-1		-1	1	
13	1	0	1	1	0	1	-1	1	1	-1		-1	1	
14	0	1	1	1	0	-1	1	1	1	-1		1	-1	
15	1	1	1	1	0	1	1	1	1	-1		1	-1	
16	0	0	0	0	1	-1	-1	-1	-1	1		-1	1	
17	1	0	0	0	1	1	-1	-1	-1	1		-1	1	
18	0	1	0	0	1	-1	1	-1	-1	1		1	-1	
19	1	1	0	0	1	1	1	-1	-1	1		1	-1	
20	0	0	1	0	1	-1	-1	1	-1	1		1	-1	
21	1	0	1	0	1	1	-1	1	-1	1		1	-1	
22	0	1	1	0	1	-1	1	1	-1	1		-1	1	
23	1	1	1	0	1	1	1	1	-1	1		-1	1	
24	0	0	0	1	1	-1	-1	-1	1	1		1	1	
25	1	0	0	1	1	1	-1	-1	1	1		1	1	
26	0	1	0	1	1	-1	1	-1	1	1		-1	-1	
27	1	1	0	1	1	1	1	-1	1	1		-1	-1	
28	0	0	1	1	1	-1	-1	1	1	1		-1	-1	
29	1	0	1	1	1	1	-1	1	1	1		-1	-1	
30	0	1	1	1	1	-1	1	1	1	1		1	1	
31	1	1	1	1	1	1	1	1	1	1		1	1	

32 rows × 36 columns

Now that we have our contrast table lets calculate the effects and compare to before

```
In [13]:
#subset to main effects columns to avoid index errors
exp2_table = exp2_table[['A','B','C','D','E']]
exp2_table['y'] = q2_fixed['y'].values
exp2_effects = exp2.calculate_effects(exp2_table, response_col='y')
exp2_effects
```

C:\Users\aburtnerabt\AppData\Local\Temp\ipykernel_15848\2448447328.py:3: SettingWithCopyWa
rning:

```
A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
exp2 table['y'] = q2 fixed['y'].values

 Out[13]:
 A_effect
 B_effect
 C_effect
 D_effect
 E_effect
 AB_effect
 AC_effect
 AD_effect
 AE_effect
 BC_effect

 effect
 53.000000
 119.000000
 51.000000
 41.000000
 -15.00000
 43.000000
 7.000000
 37.000000
 65.000000
 -27.00

 std effect
 9.369165
 21.036427
 9.015611
 7.247845
 -2.65165
 7.601398
 1.237437
 6.540738
 11.490485
 -4.77

2 rows × 31 columns

In [14]:

```
#lets iterate over both and verify that they are the same
contrast_comparison = exp2_effects.T.drop('effect', axis=1)
yates_comparison = q2_yates[['std_effect', 'effect']]
yates_comparison.loc[:, 'effect'] = yates_comparison['effect'].apply(lambda x: f"{x.upper()
yates_comparison.set_index('effect', inplace=True)
compare_table = contrast_comparison.merge(yates_comparison, how='inner', left_index=True,
compare_table = compare_table.rename(columns={"std_effect_x":"std_effect_contrast", "std_effect_table")
```

C:\Users\aburtnerabt\AppData\Local\Temp\ipykernel_15848\2893471803.py:4: SettingWithCopyWa
rning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

std_effect_contrast std_effect_yates

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy

yates_comparison.loc[:,'effect'] = yates_comparison['effect'].apply(lambda x: f"{x.upper
()}_effect")

Out[14]:

9.369165 A_effect 9.369165 21.036427 B effect 21.036427 C effect 9.015611 9.015611 D effect 7.247845 7.247845 E effect -2.651650 -2.651650 AB effect 7.601398 7.601398 AC effect 1.237437 1.237437 AD effect 6.540738 6.540738 AE effect 11.490485 11.490485 **BC** effect -4.772971 -4.772971 BD effect -1.590990 -1.590990 BE effect 1.237437 1.237437 CD effect 1.237437 1.237437 CE effect 0.530330 0.530330 DE effect -3.358757 -3.358757 ABC_effect -1.237437 -1.237437

-2.298097

-2.298097

ABD effect

	std_effect_contrast	std_effect_yates
ABE_effect	-0.176777	-0.176777
ACD_effect	-3.712311	-3.712311
ACE_effect	1.944544	1.944544
ADE_effect	0.883883	0.883883
BCD_effect	-2.651650	-2.651650
BCE_effect	-3.358757	-3.358757
BDE_effect	1.944544	1.944544
CDE_effect	1.944544	1.944544
ABCD_effect	0.883883	0.883883
ABCE_effect	-0.530330	-0.530330
ABDE_effect	-0.883883	-0.883883
ACDE_effect	0.530330	0.530330
BCDE_effect	-0.530330	-0.530330
ABCDE_effect	-0.530330	-0.530330

And look at that! The Yates analysis and the Contrast analysis match up exactly!

In [15]:

```
q2_hn = HalfNormPlot(data=q2_yates.iloc[1:,:], data_col='std_effect', label_col='effect')
q2 hn.half norm data
```

C:\Users\aburtnerabt\Documents\K-State\Experimental Design\half normal plotting.py:45: Set tingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user gu ide/indexing.html#returning-a-view-versus-a-copy

self.half norm data[self.abs col] = self.half norm data[self.data col].apply(lambda x: a bs(x))

/ NI	1 -1-	1 1	-	

t[15]:		Α	В	c	D	E	у	step_1	step_2	step_3	step_4	step_5	std_effect	effect	abs_std_effect	r_i	r_i*	
	0	1	1	0	0	1	32	1	9	18	21	-1	-0.176777	abe	0.176777	1.0	0.016129	0.5
	1	1	1	1	1	1	36	11	2	-2	1	-3	-0.530330	abcde	0.530330	2.0	0.048387	0.5
	2	0	1	1	1	1	25	9	4	-3	4	-3	-0.530330	bcde	0.530330	3.0	0.080645	0.5
	3	0	0	1	0	1	21	1	19	5	-10	3	0.530330	ce	0.530330	4.0	0.112903	0.5
	4	1	1	1	0	1	34	2	8	0	-9	-3	-0.530330	abce	0.530330	5.0	0.145161	0.5
	5	1	0	1	1	1	31	12	6	1	-9	3	0.530330	acde	0.530330	6.0	0.177419	0.5
	6	1	0	0	1	1	22	7	5	-5	9	5	0.883883	ade	0.883883	7.0	0.209677	0.6
	7	1	1	0	1	1	36	10	5	-16	-9	-5	-0.883883	abde	0.883883	8.0	0.241935	0.6
	8	1	1	1	1	0	33	61	20	6	-5	5	0.883883	abcd	0.883883	9.0	0.274194	0.6
	9	1	1	1	0	0	31	64	114	40	21	-7	-1.237437	abc	1.237437	10.0	0.306452	0.6
	10	0	0	1	1	0	29	36	5	13	-4	7	1.237437	cd	1.237437	11.0	0.338710	0.6
	11	1	0	1	0	0	20	61	104	5	63	7	1.237437	ac	1.237437	12.0	0.370968	0.6

	A	В	C	D	E	у	step_1	step_2	step_3	step_4	step_5	std_effect	effect	abs_std_effect	r_i	r_i*	
12	0	1	0	0	1	25	-4	14	9	16	7	1.237437	be	1.237437	13.0	0.403226	0.7
13	0	1	0	1	0	28	46	6	31	-2	-9	-1.590990	bd	1.590990	14.0	0.435484	0.7
14	0	1	0	1	1	24	4	4	-7	-12	11	1.944544	bde	1.944544	15.0	0.467742	0.7
15	1	0	1	0	1	25	5	12	-7	1	11	1.944544	ace	1.944544	16.0	0.500000	0.7
16	0	0	1	1	1	22	8	9	-3	-6	11	1.944544	cde	1.944544	17.0	0.532258	0.7
17	1	1	0	1	0	33	58	-1	32	9	-13	-2.298097	abd	2.298097	18.0	0.564516	0.7
18	0	0	0	0	1	20	-8	16	13	30	-15	-2.651650	е	2.651650	19.0	0.596774	0.7
19	0	1	1	1	0	31	53	20	15	-2	-15	-2.651650	bcd	2.651650	20.0	0.629032	3.0
20	0	1	1	0	1	24	-3	24	9	-4	-19	-3.358757	bce	3.358757	21.0	0.661290	3.0
21	0	0	0	1	1	14	-2	8	1	-2	-19	-3.358757	de	3.358757	22.0	0.693548	3.0
22	1	0	1	1	0	26	60	14	9	-23	-21	-3.712311	acd	3.712311	23.0	0.725806	3.0
23	0	1	1	0	0	30	55	96	19	22	-27	-4.772971	bc	4.772971	24.0	0.758065	3.0
24	1	0	0	1	0	24	57	-3	23	27	37	6.540738	ad	6.540738	25.0	0.790323	3.0
25	0	0	0	1	0	23	38	-8	33	24	41	7.247845	d	7.247845	26.0	0.822581	0.9
26	1	1	0	0	0	27	61	119	210	59	43	7.601398	ab	7.601398	27.0	0.854839	0.9
27	0	0	1	0	0	24	47	95	-11	56	51	9.015611	С	9.015611	28.0	0.887097	0.9
28	1	0	0	0	0	15	54	105	227	409	53	9.369165	а	9.369165	29.0	0.919355	0.9
29	1	0	0	0	1	18	0	17	11	11	65	11.490485	ae	11.490485	30.0	0.951613	0.9
30	0	1	0	0	0	27	44	108	199	-6	119	21.036427	b	21.036427	31.0	0.983871	0.9

In [16]:

q2_hn.plot_half_norm(title="Assignment 3 Question 2 Half Normal Plot", data_percent=.75,

Assignment 3 Question 2 Half Normal Plot


```
figure = q2_hn.plot_half_norm(title="Half Normal Plot Removing Significant Effects", num_a
figure.set_ylim(0,3)
figure.set_xlim(0,5)
```

Out[17]: (0.0, 5.0)

Looking at the half-normal plot for all 31 factors it looks like A, B, C, D and A * B, A * D, A * E, B * C are significant. These results align with the ANOVA analysis.

```
In [18]: #experimental error estimate
   q2_hn.sigma_from_adjusted_regression()
```

Out[18]: 1.897000833090486

An estimate of the experimental error using slope of the regression line through non-significant points is 1.897, which is close the ANOVA estimate of 1.832.

C.

We will now include the effects of the blocks. Assuming the blocks are sized 2^{n-1} we will have two blocks. We will use the method of assigning even/odd treatment combinations for the treatment selected to be confounded with blocks, which in this case is A*B*C*D*E.

```
#get sum of treatment combination
q2 fixed['treatment sum'] = q2 fixed[['A','B','C','D','E']].sum(axis=1)
q2_fixed['block'] = q2_fixed.treatment_sum.apply(lambda x: 'block_1' if x % 2 == 0 else 'k
print(q2 fixed['block'].value counts())
q2_fixed = q2_fixed.sort_values(by="block")
q2_fixed
```

block 1 16 block 2 16

Name: block, dtype: int64

Out[19]:	Α	В	C	D	E	У	treatment_sum	block
----------	---	---	---	---	---	---	---------------	-------

					,	_	_		
		Α	В	C	D	E	у	treatment_sum	block
	0	0	0	0	0	0	23	0	block_1
2	9	1	0	1	1	1	31	4	block_1
2	7	1	1	0	1	1	36	4	block_1
2	4	0	0	0	1	1	14	2	block_1
2	3	1	1	1	0	1	34	4	block_1
2	0	0	0	1	0	1	21	2	block_1
18	8	0	1	0	0	1	25	2	block_1
1	7	1	0	0	0	1	18	2	block_1
3	0	0	1	1	1	1	25	4	block_1
13	2	0	0	1	1	0	29	2	block_1
1	5	1	1	1	1	0	33	4	block_1
9	9	1	0	0	1	0	24	2	block_1
(6	0	1	1	0	0	30	2	block_1
:	3	1	1	0	0	0	27	2	block_1
!	5	1	0	1	0	0	20	2	block_1
10	0	0	1	0	1	0	28	2	block_1
1	1	1	1	0	1	0	33	3	block_2
	1	1	0	0	0	0	15	1	block_2
2	8	0	0	1	1	1	22	3	block_2
:	2	0	1	0	0	0	27	1	block_2
2	6	0	1	0	1	1	24	3	block_2
2	5	1	0	0	1	1	22	3	block_2
	4	0	0	1	0	0	24	1	block_2
2	1	1	0	1	0	1	25	3	block_2
19	9	1	1	0	0	1	32	3	block_2
	7	1	1	1	0	0	31	3	block_2
10	6	0	0	0	0	1	20	1	block_2
;	8	0	0	0	1	0	23	1	block_2
1	4	0	1	1	1	0	31	3	block_2
13	3	1	0	1	1	0	26	3	block_2

```
        A
        B
        C
        D
        E
        y
        treatment_sum
        block

        22
        0
        1
        1
        0
        1
        24
        3
        block_2

        31
        1
        1
        1
        1
        36
        5
        block_2
```

The above table provides the test runs and their treatment structures allocated to each block.

```
In [20]: q2_lm2 = ols('y ~ block + A + B + C + D + E + A:B + A:C + A:D + A:E + B:C + B:D + B:E + C:
    q2_anova2 = sm.stats.anova_lm(q2_lm2)
    q2_anova2['significant'] = q2_anova2['PR(>F)'].apply(lambda x: True if x < .05 else False)
    q2_anova2['std_effects'] = q2_anova2['mean_sq']**.5
    q2_anova2</pre>
```

out[20]: _		df	sum_sq	mean_sq	F	PR(>F)	significant	std_effects
	block	1.0	0.28125	0.281250	0.078901	7.826294e-01	False	0.530330
	Α	1.0	87.78125	87.781250	24.625950	1.703352e-04	True	9.369165
	В	1.0	442.53125	442.531250	124.146698	1.183118e-08	True	21.036427
	С	1.0	81.28125	81.281250	22.802455	2.455562e-04	True	9.015611
	D	1.0	52.53125	52.531250	14.736996	1.610081e-03	True	7.247845
	E	1.0	7.03125	7.031250	1.972531	1.805473e-01	False	2.651650
	A:B	1.0	57.78125	57.781250	16.209819	1.099308e-03	True	7.601398
	A:C	1.0	1.53125	1.531250	0.429573	5.221242e-01	False	1.237437
	A:D	1.0	42.78125	42.781250	12.001753	3.468159e-03	True	6.540738
	A:E	1.0	132.03125	132.031250	37.039743	2.083599e-05	True	11.490485
	B:C	1.0	22.78125	22.781250	6.390999	2.318464e-02	True	4.772971
	B:D	1.0	2.53125	2.531250	0.710111	4.126425e-01	False	1.590990
	B:E	1.0	1.53125	1.531250	0.429573	5.221242e-01	False	1.237437
	C:D	1.0	1.53125	1.531250	0.429573	5.221242e-01	False	1.237437
	C:E	1.0	0.28125	0.281250	0.078901	7.826294e-01	False	0.530330
	D:E	1.0	11.28125	11.281250	3.164816	9.550809e-02	False	3.358757
	Residual	15.0	53.46875	3.564583	NaN	NaN	False	1.888010

The same main and interaction effects as before are significant though the experimental error has a decreased degrees of freedom.

 $\label{locuments} $$C:\Users\aburtnerabt\Documents\K-State\Experimental\ Design\half_normal_plotting.py:45: Set tingWithCopyWarning:$

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_gu ide/indexing.html#returning-a-view-versus-a-copy

self.half_norm_data[self.abs_col] = self.half_norm_data[self.data_col].apply(lambda x: a
bs(x))

	Α	В	С	D	E	у	step_1	step_2	step_3	step_4	step_5	std_effect	effect	abs_std_effect	r_i	r_i*	
0	1	1	0	0	1	32	1	9	18	21	-1	-0.176777	abe	0.176777	1.0	0.016129	0.5
1	1	1	1	1	1	36	11	2	-2	1	-3	-0.530330	abcde	0.530330	2.0	0.048387	0.5
2	0	1	1	1	1	25	9	4	-3	4	-3	-0.530330	bcde	0.530330	3.0	0.080645	0.5
3	0	0	1	0	1	21	1	19	5	-10	3	0.530330	ce	0.530330	4.0	0.112903	0.5
4	1	1	1	0	1	34	2	8	0	-9	-3	-0.530330	abce	0.530330	5.0	0.145161	0.5
5	1	0	1	1	1	31	12	6	1	-9	3	0.530330	acde	0.530330	6.0	0.177419	0.5
6	1	0	0	1	1	22	7	5	-5	9	5	0.883883	ade	0.883883	7.0	0.209677	0.6
7	1	1	0	1	1	36	10	5	-16	-9	-5	-0.883883	abde	0.883883	8.0	0.241935	0.6
8	1	1	1	1	0	33	61	20	6	-5	5	0.883883	abcd	0.883883	9.0	0.274194	0.6
9	1	1	1	0	0	31	64	114	40	21	-7	-1.237437	abc	1.237437	10.0	0.306452	0.€
10	0	0	1	1	0	29	36	5	13	-4	7	1.237437	cd	1.237437	11.0	0.338710	0.€
11	1	0	1	0	0	20	61	104	5	63	7	1.237437	ac	1.237437	12.0	0.370968	0.6
12	0	1	0	0	1	25	-4	14	9	16	7	1.237437	be	1.237437	13.0	0.403226	0.7
13	0	1	0	1	0	28	46	6	31	-2	-9	-1.590990	bd	1.590990	14.0	0.435484	0.7
14	0	1	0	1	1	24	4	4	-7	-12	11	1.944544	bde	1.944544	15.0	0.467742	0.7
15	1	0	1	0	1	25	5	12	-7	1	11	1.944544	ace	1.944544	16.0	0.500000	0.7
16	0	0	1	1	1	22	8	9	-3	-6	11	1.944544	cde	1.944544	17.0	0.532258	0.7
17	1	1	0	1	0	33	58	-1	32	9	-13	-2.298097	abd	2.298097	18.0	0.564516	0.7
18	0	0	0	0	1	20	-8	16	13	30	-15	-2.651650	е	2.651650	19.0	0.596774	0.7
19	0	1	1	1	0	31	53	20	15	-2	-15	-2.651650	bcd	2.651650	20.0	0.629032	3.0
20	0	1	1	0	1	24	-3	24	9	-4	-19	-3.358757	bce	3.358757	21.0	0.661290	3.0
21	0	0	0	1	1	14	-2	8	1	-2	-19	-3.358757	de	3.358757	22.0	0.693548	3.0
22	1	0	1	1	0	26	60	14	9	-23	-21	-3.712311	acd	3.712311		0.725806	
23	0					30	55	96	19	22	-27	-4.772971	bc	4.772971		0.758065	
24	1					24	57	-3	23	27	37	6.540738	ad	6.540738		0.790323	
25	0					23	38	-8	33	24	41	7.247845	d	7.247845		0.822581	
26	1					27	61	119	210	59	43	7.601398	ab	7.601398		0.854839	
27	0					24	47	95	-11	56	51	9.015611	С	9.015611		0.887097	
28	1					15	54	105	227	409	53	9.369165	a	9.369165		0.919355	
29	1	0	0			18	0	17	11	11	65	11.490485	ae	11.490485		0.951613	
30	0	1	0	0	0	27	44	108	199	-6	119	21.036427	b	21.036427	31.0	0.983871	2.0

Out[21]:

In [22]: q2_hn2.plot_half_norm(title="Half Normal Plot Assignment 3 Q2 Part C", data_percent=.75)

Half Normal Plot Assignment 3 Q2 Part C


```
In [28]: figure = q2_hn2.plot_half_norm(title="Adjusted Half Normal Plot Assignment 3 Q2", num_adju
figure.set_ylim(0,5);
figure.set_xlim(0,5)
```

Out[28]: (0.0, 5.0)

Once again the same factors are significant.

In [27]: q2_hn2.half_norm_data_adj

Out[27]:		Α	В	C	D	E	У	step_1	step_2	step_3	step_4	step_5	std_effect	effect	abs_std_effect	r_i	r_i*	
	0	1	1	0	0	1	32	1	9	18	21	-1	-0.176777	abe	0.176777	1.0	0.021739	0.5
	1	1	1	1	1	1	36	11	2	-2	1	-3	-0.530330	abcde	0.530330	2.0	0.065217	0.5
	2	0	1	1	1	1	25	9	4	-3	4	-3	-0.530330	bcde	0.530330	3.0	0.108696	0.5
	3	0	0	1	0	1	21	1	19	5	-10	3	0.530330	ce	0.530330	4.0	0.152174	0.5
	4	1	1	1	0	1	34	2	8	0	-9	-3	-0.530330	abce	0.530330	5.0	0.195652	0.5
	5	1	0	1	1	1	31	12	6	1	-9	3	0.530330	acde	0.530330	6.0	0.239130	0.6
	6	1	0	0	1	1	22	7	5	-5	9	5	0.883883	ade	0.883883	7.0	0.282609	0.6
	7	1	1	0	1	1	36	10	5	-16	-9	-5	-0.883883	abde	0.883883	8.0	0.326087	0.6

	A	В	C	D	E	у	step_1	step_2	step_3	step_4	step_5	std_effect	effect	abs_std_effect	r_i	r_i*	
8	1	1	1	1	0	33	61	20	6	-5	5	0.883883	abcd	0.883883	9.0	0.369565	0.6
9	0	1	0	0	1	25	-4	14	9	16	7	1.237437	be	1.237437	10.0	0.413043	0.7
10	1	0	1	0	0	20	61	104	5	63	7	1.237437	ac	1.237437	11.0	0.456522	0.7
11	1	1	1	0	0	31	64	114	40	21	-7	-1.237437	abc	1.237437	12.0	0.500000	0.7
12	0	0	1	1	0	29	36	5	13	-4	7	1.237437	cd	1.237437	13.0	0.543478	0.7
13	0	1	0	1	0	28	46	6	31	-2	-9	-1.590990	bd	1.590990	14.0	0.586957	0.7
14	0	1	0	1	1	24	4	4	-7	-12	11	1.944544	bde	1.944544	15.0	0.630435	3.0
15	1	0	1	0	1	25	5	12	-7	1	11	1.944544	ace	1.944544	16.0	0.673913	3.0
16	0	0	1	1	1	22	8	9	-3	-6	11	1.944544	cde	1.944544	17.0	0.717391	3.0
17	1	1	0	1	0	33	58	-1	32	9	-13	-2.298097	abd	2.298097	18.0	0.760870	3.0
18	0	0	0	0	1	20	-8	16	13	30	-15	-2.651650	е	2.651650	19.0	0.804348	0.9
19	0	1	1	1	0	31	53	20	15	-2	-15	-2.651650	bcd	2.651650	20.0	0.847826	0.9
20	0	0	0	1	1	14	-2	8	1	-2	-19	-3.358757	de	3.358757	21.0	0.891304	0.9
21	0	1	1	0	1	24	-3	24	9	-4	-19	-3.358757	bce	3.358757	22.0	0.934783	0.9
22	1	0	1	1	0	26	60	14	9	-23	-21	-3.712311	acd	3.712311	23.0	0.978261	0.9

In [26]:

#estimate error q2_hn2.sigma_from_adjusted_regression()

Out[26]: 1.897000833090486

The experimental error estimate is the same as before.

In []: