Benign Overfitting

Linus Böhm, Jurek Rostalsky

1 Basic definitions

Let $x \in \mathbb{H}, y \in \mathbb{R}$ with zero mean. Where \mathbb{H} is a Hilbert space.

Definition 1.1 (covariance matrix).

$$\Sigma = \mathbb{E}\left(\left(x - \mathbb{E}(x)\right)\left(x - \mathbb{E}(x)\right)^{T}\right) = \mathbb{E}(xx^{T})$$
(1)

Definition 1.2 (linear regression). The problem of finding a parameter vector $\theta^* \in \mathbb{H}$ with

$$\theta^* = \arg\min_{\theta} \mathbb{E}\left((y - x^T \theta)^2 \right) \tag{2}$$

is called **linear regression**.

Let $((x_1, y_1), ..., (x_n, y_n)) \in (\mathbb{H} \times \mathbb{R})^n$ a list of n sampled data points. Now we define the matrix $X = (x_1 x_2 ... x_n)$ and the vector $y = (y_1 y_2 ... y_n)^T$. If there is a $\theta \in \mathbb{H}$ with $y - X^T \theta = 0$ that θ is a minimum of the linear regression problem sind the expectation of a square is non negative. Usually such a θ isn't unique, so we are interested in the minimum norm θ with that property.

Definition 1.3 (minimum norm estimator). For given samples $X \in \mathbb{H}^n$, $y \in \mathbb{R}^n$. The minimum norm estimator θ is the solution of the QQP:

$$\hat{\theta} = arg \min_{\theta} \|\theta\|^2$$
 subject to: $\|X^T \theta - y\|^2 = \min_{\beta} \|X^T \beta - y\|^2$ (QQP)

The minimum norm estimator can be obtained by solving the normal equation:

$$XX^T\theta = Xy, (3)$$

which can be done by numerical stable with QR-decomposition.