Prediction using Decision Tree Algorithm

A decision tree is a supervised learning algorithm that can be used for both classification and regression problems. It is a tree-structured classifier, where internal nodes represent the features of a dataset, branches represent the decision rules and each leaf node represents the outcome.

The decision tree algorithm works by recursively splitting the data into subsets based on the most significant feature at each node of the tree. The splitting continues until all of the subsets are pure, or until a certain stopping criterion is met.

Import Libraries

```
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
```

Reading Data

```
data = pd.read_csv("/content/Iris.csv")
data
```

	Id SepalLen	gthCm SepalWid	thCm PetalLe	ngthCm Peta	lWidthCm	Species 🥻
0	1	5.1	3.5	1.4	0.2	Iris-setosa
data.info(-					••
Range: Data	•	e.frame.DataFrameries, 0 to 149 . 6 columns): . Non-Null Count				
0 : 1 : 2 : 3 : 4 : 5 : dtype:	SepalWidthCm PetalLengthCm PetalWidthCm Species	150 non-null 150 non-null 150 non-null int64(1), obje	int64 float64 float64 float64 float64 object			
149	150	5.9	3.0	5.1	1.8	Iris-virginica
	[4.9, 3. , 1 [4.7, 3.2, 1 [4.6, 3.1, 1 [5. , 3.6, 1	3, 0.2], 5, 0.2],				
Y = data[': Y[0:5]	Species']					
0 1 1 2 3 4	Iris-setosa Iris-setosa Iris-setosa Iris-setosa Iris-setosa Species, dtyp	oe: object				
from sklea	rn.model_selec	tion import tra	ain_test_split	:		
<pre><_trainset</pre>	, X_testset, Y	_trainset, Y_te	estset = trair	_test_split	train_X, t	est_X, train_y, te
SpeciesTre	e = DecisionTr	eaclassifier(cr	nitonion - lor			
		eectassiitei (ci	.itel.ion = el	itropy', max	_depth = 4)

```
pecisionTreeClassifier
peciesTree.fit(X_trainset, Y_trainset)

pecisionTreeClassifier
DecisionTreeClassifier(criterion='entropy', max_depth=4)
```

Prediction

Evaluation

Visualization

```
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
fn = data.columns[1:5]
cn = data["Species"].unique().tolist()
SpeciesTree.fit(X, Y)
fig, axes = plt.subplots(nrows = 1,ncols = 1, figsize = (10,10), dpi = 300)
tree.plot_tree(SpeciesTree,feature_names = fn, class_names = cn, filled = True);
```


Prediction species for set of values

```
X_new = [[6.3,3.0,1.3,0.2]]
predTree = SpeciesTree.predict(X_new)
predTree
    array(['Iris-setosa'], dtype=object)
```

✓ 0s completed at 7:46 PM

• X