Supplementary data and figures

Contents

Ρ.	D-vulnerable neurons are less resilient to cell stress induced by hydrogen peroxide	1
	Figure 1-1	1
	Dunn test	9

PD-vulnerable neurons are less resilient to cell stress induced by hydrogen peroxide

Figure 1-1

Nuclei (DAPI) count

Kurskal-Wallis

Kruskal-Wallis rank sum test

data: dapi_normalized by hydrogen_peroxide
Kruskal-Wallis chi-squared = 91.227, df = 3, p-value < 2.2e-16</pre>

\$method

[1] "Kruskal-Wallis rank sum test"

\$var_equal
[1] TRUE

\$name

[1] "dapi_normalized by hydrogen_peroxide"

\$statistics
\$statistics\$statistic
\$statistics\$statistic\$name
[1] "Kruskal-Wallis chi-squared"

\$statistics\$statistic\$value
[1] 91.22654

\$statistics\$df
[1] 3

\$statistics\$p
[1] 1.194249e-19

\$package
\$package\$name
[1] "stats"

\$package\$version
[1] "4.0.3"

Dunn test

Comparison	Z	P.unadj	P.adj
0 - 100	3.4001879	0.0006734	0.0040404
0 - 150	7.8043915	0.0000000	0.0000000
100 - 150	3.9718484	0.0000713	0.0004279
0 - 200	8.1835348	0.0000000	0.0000000
100 - 200	4.5069337	0.0000066	0.0000395
150 - 200	0.7245953	0.4687004	1.0000000

Comparison	Z	P.unadj	P.adj
0 - 100	3.4001879	0.0006734	0.0040404
0 - 150	7.8043915	0.0000000	0.0000000
100 - 150	3.9718484	0.0000713	0.0004279
0 - 200	8.1835348	0.0000000	0.0000000
100 - 200	4.5069337	0.0000066	0.0000395
150 - 200	0.7245953	0.4687004	1.0000000

Estimation statistics

0 micromollar

dabestr (Data Analysis with Bootstrap Estimation in R) v0.3.0

Good morning!

The current time is 11:59 am on Wednesday June 15, 2022.

Dataset : .

X Variable : neuron

Y Variable : neuron_normalized

Unpaired mean difference of VTA (n = 20) minus SN (n = 30) 0 [95CI -0.179; 0.212]

Unpaired mean difference of LC (n = 24) minus SN (n = 30) 0 [95CI -0.168; 0.16]

Unpaired mean difference of R (n = 12) minus SN (n = 30) -1.11e-16 [95CI -0.175; 0.16]

Unpaired mean difference of DMV (n = 19) minus SN (n = 30) 0.00684 [95CI -0.155; 0.16]

Unpaired mean difference of XII (n = 27) minus SN (n = 30) 0 [95CI -0.237; 0.238]

Unpaired mean difference of STR (n = 23) minus SN (n = 30) 0.0303 [95CI -0.174; 0.259]

5000 bootstrap resamples.

All confidence intervals are bias-corrected and accelerated.

output <- shared.control.mean_diff
output</pre>

```
## Good morning!
## The current time is 11:59 am on Wednesday June 15, 2022.
## Dataset
## X Variable : neuron
## Y Variable : neuron normalized
## Unpaired mean difference of VTA (n = 20) minus SN (n = 30)
## 0 [95CI -0.179; 0.212]
##
## Unpaired mean difference of LC (n = 24) minus SN (n = 30)
## 0 [95CI -0.168; 0.16]
## Unpaired mean difference of R (n = 12) minus SN (n = 30)
## -1.11e-16 [95CI -0.175; 0.16]
##
## Unpaired mean difference of DMV (n = 19) minus SN (n = 30)
## 0.00684 [95CI -0.155; 0.16]
## Unpaired mean difference of XII (n = 27) minus SN (n = 30)
## 0 [95CI -0.237; 0.238]
## Unpaired mean difference of STR (n = 23) minus SN (n = 30)
## 0.0303 [95CI -0.174; 0.259]
##
## 5000 bootstrap resamples.
## All confidence intervals are bias-corrected and accelerated.
output$result
## # A tibble: 6 x 15
     control_group test_group control_size test_size effect_size paired variable
##
                                              <int> <chr>
                                                                <lgl> <chr>
     <chr>>
                  <chr>
                                    <int>
## 1 SN
                                                 20 mean_diff FALSE neuron_nor~
                  VTA
                                       30
## 2 SN
                                       30
                  LC
                                                 24 mean diff FALSE neuron nor~
## 3 SN
                  R
                                       30
                                                 12 mean diff
                                                               FALSE neuron nor~
## 4 SN
                                       30
                                                                FALSE neuron_nor~
                  DMV
                                                 19 mean_diff
## 5 SN
                  XII
                                       30
                                                 27 mean_diff
                                                               FALSE neuron_nor~
## 6 SN
                                       30
                  STR
                                                 23 mean_diff
                                                               FALSE neuron_nor~
## # ... with 8 more variables: difference <dbl>, ci <dbl>, bca_ci_low <dbl>,
## # bca_ci_high <dbl>, pct_ci_low <dbl>, pct_ci_high <dbl>, bootstraps <list>,
## # nboots <int>
table out <- output$result %>%
  select(control_group, test_group, difference, bca_ci_low, bca_ci_high)
```

table_out %>%

knitr::kable(digits = 3, align = "c")

control_group	$test_group$	difference	bca_ci_low	bca_ci_high
SN	VTA	0.000	-0.179	0.212
SN	LC	0.000	-0.168	0.160
SN	${ m R}$	0.000	-0.175	0.160
SN	DMV	0.007	-0.155	0.160
SN	XII	0.000	-0.237	0.238
SN	STR	0.030	-0.174	0.259