

UNIT-II

DIFFERENTIAL CALCULUS

TUTORIAL SHEET - 1

- If (-1, -√3) are Cartesian coordinates of a point in plane, the corresponding polar coordinates are _______
 Ans: (2, 4π/3)
- 2. If $(\sqrt{2}, 5\pi/4)$ are the polar coordinates of a point in plane, the corresponding Cartesian Coordinates are ______ Ans: (-1, -1)
- 3. The circle $x^2 + y^2 2ax = 0$ in polar form is _____ Ans: $(r = 2a\cos(\theta))$
- 4. The polar equation $\theta k = 0$, geometrically represents _____ Ans: (straight lines)
- 5. If two polar curves C_1 and C_2 are orthogonal, then value of $\cot(\varphi_1)\cot(\varphi_2) =$ _____ Ans: -1
- 6. Find the angle of intersection between the polar curves $r = \frac{k\theta}{1+\theta} \text{ and } r = \frac{k}{1+\theta^2}$ Ans: $\tan^{-1}(3)$
- 7. Show that the angle made by the tangent and the normal at any point $P(r, \theta)$ on the curve Lemniscate $r^2 = a^2 \cos(2\theta)$ with the initial line is '30'.

- 8. Show that the tangents to the cardioid $r = a(1 + cos\theta)$ at $\theta = \pi/3$ and $\theta = 2\pi/3$ are respectively parallel and perpendicular to the initial line.
- 9. Show that the circle r=b intersects the curve $r^2 = a^2 \cos(2\theta) + b^2$, at an angle given by $tan^{-1} \left(\frac{a^2}{b^2}\right)$
- 10. Find the angle of intersection between the curves $r = a(1 + sin\theta)$ and $r = a(1 sin\theta)$:

 Ans: $\pi/2$

TUTORIAL SHEET - 2

- 1. The curvature of a circle $s = a\psi$ at any point is _____ Ans: $(\kappa = 1/a)$
- 2. The radius of curvature for straight line y = mx + c is ______ Ans: $(\rho = \infty, \text{ not defined})$
- 3. The curvature of the curve $y = e^x$ at the point where it crosses the y-axis is _____ Ans: $(\kappa = \frac{1}{2^{3/2}})$
- 4. The Taylor series expansion of log(x) about x = 1 up to second degree term is _____
 Ans: log(x) = (x 1) (x-1)²/₂ + ··· ∞
- 5. The Maclaurin series expansion of cos(x) is ______ Ans: $cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots \infty$
- 6. Show that the radius of curvature of the Folium $x^3 + y^3 = 3axy$ at the point (3a/2, 3a/2) is given by $-\frac{3a}{8\sqrt{2}}$.
- 7. Find the radius of curvature of the curve $y^2 = \frac{4a^2(2a-x)}{x}$ where the curve meets the x-axis.
- 8. For the curve $y = \frac{ax}{a+x}$, show that $\left(\frac{2\rho}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$
- 9. Find the radius of curvature of the $x = a \log(\sec t + \tan t)$, $y = a \sec t$. Ans: $\rho = a \sec^2 t$

- 10. Show that the curvature of the tractrix $x = a[\cos t + \log \tan(\frac{t}{2})]$, $y = a \sin t$ at any point is given by $\kappa = \frac{\tan t}{a}$
- 11. Find the coordinates of the centre of curvature at (at², 2at) on the parabola $y^2 = 4ax$.

Ans: $((\bar{x}, \bar{y}) = ((2a + 3at^2), -2at^3)$

12. Find the circle of curvature at the point (a/4, a/4) for the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$.

Ans: $\left(x - \frac{3a}{4}\right) + \left(y + \frac{3a}{4}\right) = \frac{a^2}{2}$

- 13. Find the radius of curvature of the curve $r^n = a^n \cos(n\theta)$ Ans: $\frac{a^n r^{1-n}}{n+1}$
- 14. Show that the radius of curvature at any point (r, θ) on the Cardiod $r = a(1 \cos \theta)$ varies as \sqrt{r}
- 15. Find the radius of curvature for the parabola $\frac{2a}{r} = 1 \cos \theta$ at any point (r, θ)

Ans: $2\sqrt{\frac{r^3}{a}}$

TUTORIAL SHEET -3

1. Match the following:

The angle between radius	a)	$\rho \propto y^2$
vector and tangent for the		
polar curve at any point		07
$P(r,\theta)$ is		
The angle between radius	b)	1
vector and tangent for the		$\rho \propto \frac{1}{v^2}$
Cartesian curve at any point		
P(x,y) is		
The radius of curvature at	c)	$\cot(\phi) = 1 dr$
any point $P(x, y)$ on the		$\cot(\varphi) = \frac{1}{r} \cdot \frac{d\theta}{d\theta}$
catenary	d)	$\tan(\phi) = r \cdot \frac{dr}{d\theta}$
$y = c \cosh\left(\frac{x}{x}\right)$ is		$\tan(\phi) = r.\frac{1}{d\theta}$
(c) is	e)	$\chi \nu - \nu$
		$\tan(\phi) = \frac{xy}{x + yy'}$
. 0	h)	$tan(\phi) = \frac{xy' + y}{x}$
		$\tan(\phi) = \frac{y}{x - vv'}$
	vector and tangent for the polar curve at any point $P(r,\theta)$ is The angle between radius vector and tangent for the Cartesian curve at any point $P(x,y)$ is The radius of curvature at any point $P(x,y)$ on the	vector and tangent for the polar curve at any point $P(r,\theta)$ is The angle between radius vector and tangent for the Cartesian curve at any point $P(x,y)$ is The radius of curvature at any point $P(x,y)$ on the catenary $y = c.cosh\left(\frac{x}{c}\right)$ is

Ans: (i) - (c) (ii) - (e) (iii) - (a)

2. Find the Taylor series expansion of the function $y = \log(\cos x)$ about the point $x = \pi/3$.

Ans:
$$\log(\cos x) = -\log 2 - \sqrt{3} \left(x - \frac{\pi}{3}\right) - 2\left(x - \frac{\pi}{3}\right)^2 - \frac{4}{\sqrt{3}}\left(x - \frac{\pi}{3}\right)^2 - \frac{10}{\sqrt{3}}\left(x - \frac{\pi}{3}\right)^3 - \cdots$$

3. Obtain the expansion of the function $e^{\sin(x)}$ in ascending powers of 'x' up to terms containing 'x⁴'

Ans:
$$e^{\sin(x)} = 1 + x + \frac{x^2}{2} - \frac{x^4}{8}$$
...

- 4. Obtain the Maclaurin series expansion for the function $f(x) = tan^{-1}(x)$ and hence deduce that $\pi = 4\left[1 \frac{1}{3} + \frac{1}{5} + \cdots\right]$ Ans: $tan^{-1}(x) = \left[x - \frac{x^3}{3} + \frac{x^5}{5} - \cdots\right]$
- 5. Using Maclaurin's series, prove that $\sqrt{1 + \sin(2x)} = 1 + x \frac{x^2}{2} \frac{x^3}{6} + \cdots$
- 6. Show that $\left(\frac{x}{\sin x}\right) = 1 + \frac{x^2}{6} + \frac{7x^4}{360} + \cdots$