Time: 2 Hours

B.Tech 2nd Semester End-Term Examination 2021 Subject Name: Engineering Mathematics – II Subject Code: UMA12B10, DTMA12B12 Answer Script to be submitted through email: nita.ma.btech.j1@gmail.com

Full Marks: 50

Symbols Used Here Have Their Usual Meanings

Choo	se the correct option from the following:	$[10 \times 2 = 20 \text{ Marks}]$	Choo	ose the correct option from the follow	wing:	$[10 \times 3 = 30 \text{ Marks}]$
	The value of $\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dx dy dz$			The value of the integral $\int_0^4 \int_0^{2\sqrt{z}} \int_0^{\sqrt{z}}$		
	a) 0	b) $\frac{1}{2}$		a) 2π	•	5π
	c) $\frac{3}{2}$	d) None of these		c) 8π		None of these
2.	If $A = \begin{bmatrix} -4 & -3 & -2 \\ -1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$, then $adj A$ is		12.	The value of the integral $\iiint xyz(x^2+y^2+z^2)dxdydz$ over the positive octant of the sphere $x^2+y^2+z^2=a^2$ is equal to		
	a) Hermitian matrix	b) Skew-symmetric matrix		a) $\frac{a^8}{64}$	b)	<u>a⁵</u> 64
	Symmetric matrix c)	None of these d)		c) <u>a</u> 9	d)	None of these
3.	If $\log \frac{a+ib}{a-ib} = 2itan^{-1} \frac{b}{a}$ then $\cos(ilog \frac{a+ib}{a-ib})$ is equal	to	13.	The Eigen vectors corresponding to one of the Eigen values of the matrix $A = \begin{bmatrix} -2 & 1 & -2 \\ 0 & -2 & 0 \end{bmatrix}$		
	a^2-b^2	a^2+b^2		is (-2)		₁₋ (-2)
	a) $\frac{a^2-b^2}{a^2+b^2}$	b) $\frac{a^2+b^2}{a^2-b^2}$		a) $k \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$	b)	$k \begin{pmatrix} -2 \\ -3 \end{pmatrix}$ $k \begin{pmatrix} -2 \\ -1 \\ -2 \end{pmatrix}$
	$c) \qquad \frac{a^2}{a^2 - b^2}$	d) none of these		c) $k \begin{pmatrix} -3 \\ -1 \\ 2 \end{pmatrix}$		
4.	The value of the integral $\int_C \frac{z^2-z+1}{z-1} dz$ where $C: z = 0$	0.5 is	14. If $A = \frac{1}{9} \begin{bmatrix} -8 & 4 & a \\ 1 & 4 & b \\ 4 & 7 & c \end{bmatrix}$ is orthogonal, then the values of a, b, c are respectively			
	a) 0 c) 2	b) 1 d) 3		a) -1, -8, 4 c) 1, -8, -4	b)	1, -8, 4 1, 8, 4
5.	The sum of the residues of $\frac{\tan z}{z}$ at its pole inside the contraction.		15.			
	a) 0	b) 1		a) 5	b)	6
	c) 2	d) none of these	16.	c) 7		None of these
6.	the directional derivative of $f(x, y, z) = xy^2 + yz^3$ at the point $(2, -1, 1)$ in the direction of vector $\hat{\imath} + 2\hat{\jmath} + 2\hat{k}$			Which among the following is the v	value of $\int_1^3 \int_{1/x}^1 \int_0^{\sqrt{x}y} x$	yz dx dy dz?
	a) $-3\frac{2}{3}$	b) -3		a) $\frac{1}{8}(25 + \log 27)$	b)	$\frac{1}{6}(26 + log 27)$
	c) $\frac{2}{3}$	d) None of these		c) $\frac{1}{8}(26 + \log 26)$		$\frac{1}{2}(26 + \log 27)$
7.	The function $f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}$, $z \neq 0$ and $f(0) =$			If $A = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$, then the value of A^7	$-9A^2 + I$ is	0
	a) Satisfies C-R equations at $z = 0$	b) is analytic at $z = 0$		a) $609A + 640I$	b)	619A + 640I
	c) is differentiable but not analytic at $z = 0$	d) None of these.		c) $609A + 650I$	d)	609A + 649I
8.	If the vector $\vec{F} = (xyz)^b(x^a\hat{\imath} + y^a\hat{\jmath} + z^a\hat{k})$ is an irrotational vector, then the values of a and b are respectively			If $w = u + iv$ is an analytic function	on and $u = \frac{\sin 2x}{\cos x}$	-, then the value of w will be
	a) 0 and -1	b) -1 and 0		a) $tanz + c$		$iz^3 + c$
	c) 2 and 3	d) None of these			d)	$tan^{-1}\left(\frac{y}{r}\right) + c$
9.	$Curl(gradr^n)$ is		19.	The value of the integration $\oint \frac{3z^2+2z}{z^3-4}$	$\frac{z-4}{z}$ dz, where C is $ z $	-i =3 is
	a) 1	b) 0		a) $4\pi i$		$-\frac{16\pi i}{9}$
	c) i	d) j		c) $-4\pi i$	d)	$6\pi i$
10.	The value of the integral $\int_0^\infty 3^{-4x^2} dx$ is	F	20.	The work done in moving a particle straight line from (0,0,0) to (2,1,3)		$=3x^2\hat{\imath}+(2xz-y)\hat{\jmath}+z\hat{k}$, along the
	a) $\frac{\sqrt{\pi}}{2}$	$\mathbf{b)} \frac{\sqrt{\pi}}{4\sqrt{log3}}$		a) ¹	b)	16
	c) $\frac{1}{23}$	d) None of these		c) 8	d)	None of these
** Answer Script to be submitted through email: nita.ma.btech.j1@gmail.com						