STP projekt 2, zadanie 13

Tomasz Indeka

1 Transmitancja ciągła i dyskretna

1.1 Transmitancja ciągła

Transmitancja ciągła obiektu regulacji ma postać:

$$G(s) = \frac{K_0 e^{-T_0 s}}{(T_1 s + 1)(T_2 s + 1)}$$

, a współczynniki mają wartość: $K_0=5.2,\,T_0=5,\,T_1=2.16,\,T_2=4.7.$ Po podstawieniu otrzymujemy:

$$G(s) = \frac{5.2 * e^{-5s}}{(2.16s+1)(4.7s+1)} = \frac{5.2 * e^{-5s}}{10.15s^2 + 6.86s + 1}$$

Odpowiedź skokowa transmitancji ciągłej prezentuje się następująco:

1.2 Transmitancja dyskretna

Transmitancja dyskretna obiektu z ekstrapolatorem zerowego rzędu i częstotliwości próbkowania $T_p=0.5{
m s}$ ma postać:

$$G(z) = z^{-10} \frac{0.05727z + 0.05117}{z^2 - 1.692z + 0.7133}$$

Odpowiedź skokowa transmitancji dyskretnej prezentuje się następująco:

1.3 Porównanie transmitancji ciągłej i dyskretnej

Jak można zauważyć transmitancje ciągła i dyskretna pokrywają się ze sobą z dokładnością do próbkowania wykonywanego przez transmitancję dyskretną. Na wykresach można zauważyć, że wzmocnienie statyczne obu transmitancji jest sobie równe i wynosi K=5.2.

2 Równania różnicowe modelu

Równanie różnicowe zostały wyznaczone z zależności:

$$G(z) = \frac{Y(z)}{U(z)}$$

Otrzymujemy wtedy:

$$\frac{Y(z)}{U(z)} = z^{-10} \frac{0.05727z + 0.05117}{z^2 - 1.692z + 0.7133}$$

$$Y(z) * (z^2 - 1.692z + 0.7133) = z^{(-10)} * U(z) * (0.05727z + 0.05117)$$

$$Y(z) * z^2 - Y(z) * 1.692z + Y(z) * 0.7133 = U(z) * 0.05727z^{-9} + U(z) * 0.05117z^{-10}$$

$$y(k+2) - 1.692 * y(k+1) + 0.7133 * y = 0.05727 * u(k-9) + 0.05117 * u(k-10)$$

$$y(k) - 1.692 * y(k-1) + 0.7133 * y(k-2) = 0.05727 * u(k-11) + 0.05117 * u(k-12)$$

$$y(k) = 1.692 * y(k-1) - 0.7133 * y(k-2)0.05727 * u(k-11) + 0.05117 * u(k-12)$$

3 Regulator PID

3.1 Wzmocnienie krytyczne

Do wyznaczenia parametrów regulatora PID metoda Zieglera-Nicholsa należy obiekt wprowadzić w niegasnące oscylacje krytyczne. W tym celu należy doświadczalnie wyznaczyć wzmocnienie krytyczne, przy którym obiekt wpada w oscylacje krytyczne.

Powyższe wykresy otrzymałem dla $K_k = 0.4144$. Okres oscylacji wynosi $T_k = 20.08$ Dzięki temu mogłem wyznaczyć nastawy regulatora PID, które wynoszą odpowiednio:

•
$$K_r = 0.6 * K_K = 0.2487$$

•
$$T_i = 0.5 * T_k = 10.0200$$

•
$$T_d = 0.12 * T_k = 2.4048$$

Co dla regulatora dyskretnego daje nam:

•
$$r_0 = K(\frac{T}{2T_i} + \frac{T_d}{T} + 1) = 1.4508$$

•
$$r_1 = K(\frac{T}{2T_i} - 2\frac{T_d}{T} - 1) = -2.6343$$

•
$$r_2 = \frac{KT_d}{T} = 1.1959$$

4 Symulacja algorytmu PID

Do symulacji zostały użyte współczynniki obliczone w poprzednich podpunktach. Do symulacji użyto skoku o wartości 1.

5 Dobieranie parametrów algorytmu DMC

5.1 D - horyzont dynamiki

Horyzont dynamiki może zostać określony na podstawie wzmocnienia statycznego i okresu próbkowania, ze wzoru:

$$D = \frac{K}{T_p}$$

Możemy zauważyć, że w chwili t=37sodpowiedź skokowa praktycznie przestaje się zmieniać. Dlatego po wyznaczeniu wyszło miD=74.

5.2 N - horyzont predykcji

Do wyznaczenia optymalnego horyzontu predykcji zmniejszałem jego wartość od wartości D aż do wartości powodującej oscylacje. Jako wartość horyzontu wybrałem najmniejszy horyzont niepowodujący znaczących oznak oscylacji.

Ostatecznie postanowiłem wybrać N=16, jest możliwie niski i nie wprowadza oscylacji do działania regulatora. Dla coraz niższych horyzontów oscylacje narastają, aż przy N=12 stają się one niegasnące.

5.3 N_u - horyzont sterowania

Do wyznaczenia optymalnego horyzontu sterowania zmniejszałem jego wartość do momentu, kiedy zaczął nie zaczął pogarszać działania regulatora.

Jak można zauważyć zmniejszanie horyzontu sterowania nie tylko nie pogarsza, a nawet poprawia właściwości regulatora. Sprawia, że szybciej stabilizuje się na wartości zadanej. Najlepszymi właściwościami charakteryzuje się $N_u=1$.

$5.4~\lambda$ - współczynnik kary za szybkość zmian sterowania

Jak jasno wynika z powyższych wykresów λ wpływa na szybkość zmian sterowania. Bezpośrednio oddziałuje to również na czas stabilizacji regulatora, a także początkowe oscylacje wyjścia regulatora, szczególnie przy niewysokich wartościach ($\lambda < 100$). Za pomocą λ możemy ograniczyć zmiany sygnału sterującego co może być przydatne, ponieważ zbyt gwałtowne zmiany sterowania mogą uszkodzić fizyczne części układu elektronicznego sterującego regulatorem.

Jak możemy zauważyć dla $\lambda=0$ sterowanie w ciągu jednej chwili od wartości 0 osiąga wartość ponad 1, tylko po to, aby w kolejnych chwilach gwałtownie opadać. Natomiast dla wartości $\lambda=1000$ zmiany sygnału sterującego są małe i w ogóle nie oscylują, znacznie zwiększa się też czas stabilizacji regulatora. Do dalszych badań wybrałem $\lambda=50$, ponieważ uważam że jest to idealny kompromis pomiędzy gwałtownością zmian sterowania, a czasem stabilizacji regulatora. Zdaję sobie sprawę, że nie jest to najszybszy regulator, ale za to zapewnia niskie i łagodne skoki sygnału sterującego.

6 Stabilność regulatorów PID i DMC

Aby zbadać to kryterium należy dla kolejnych opóźnień modelu, doprowadzić regulator do oscylacji krytycznych modyfikując wzmocnienie tego modelu.

6.1 Regulator PID

6.2 Regulator DMC

6.3 Porównanie stabilności regulatorów

Na powyższym wykresie możemy zauważyć, że dla dobranych parametrów stabilność algorytmu PID i DMC jest bardzo podobna. Niewiele stabilniejszy jest mimo wszystko regulator DMC, co może świadczyć o rozsądnym dobraniu wszystkich jego parametrów.

Na wykresie można też zaobserwować zielone punkty, które pomyłkowo wygenerowałem podstawiając w algorytmie DMC $\lambda=0$. Postanowiłem umieścić te wyniki na ostatecznym porównaniu, ponieważ prezentują one zupełnie inną krzywą niż regulatory właściwe. Pozwala to określić jak duży wpływ ma współczynnik λ na jakość regulacji cyfrowego algorytmu DMC.