Algorithm Design and Analysis

Union-Find (More Amortized Analysis!)

Roadmap for today

- Design the *Union-Find* data structure for the *disjoint sets problem*
- Practice potential functions by analyzing Union-Find

Motivation: Kruskal's Algorithm

Review (Minimum Spanning Tree): A spanning tree of an undirected graph with the least total (edge) cost of all possible spanning trees

Review (Kruskal's Algorithm): For each edge (u, v) in sorted order by cost, add the edge to the spanning tree if u and v are not connected.

How do we do that part??

The disjoint-sets problem

Problem (Disjoint Sets): We want to support the following API:

- MakeSet(x): Create a set consisting of the single element {x}
- Find(x): Return the representative element of the set containing x
- Union(x, y): Merge the two sets $S_x \ni x$ and $S_y \ni y$ into a single set.

How to use it for Kruskal's?

The disjoint-set forest data structure

- *Key idea*: Represent the sets as **trees**. Use the roots of the trees as the representative element.
- Representation: Store a parent pointer for each node. Roots have no parent (by convention, p(x) = x for roots).

Implementation (basic version)

• MakeSet(x): • Link(x, y)

• Find(*x*):

• Union(*x*, *y*):

Performance

Theorem: Let n be the current number of elements in the sets (i.e., the number of MakeSet operations performed so far). There exists inputs for which every find costs $\Theta(n)$.

Making Union better?

- The bad performance was caused by long chains of nodes...
- Can we just... not do that?

Idea (Union-by-size): When performing a Union, make the smaller tree a child of the larger tree. If they're the same size, then pick arbitrarily.

- We should store an extra field s(x) that knows the size of the trees
- s(x) is the size of the tree rooted at x (we don't care about non-roots)

Union-by-size implementation

• Link(x, y):

Performance of union-by-size

Theorem: Let n be the current number of elements in the sets. Using union-by-size, every Link operation costs O(1) and every Find operation costs $O(\log n)$ worst-case.

Another improvement

We just made Union better. Can we instead/also make Find better?

Idea (Path compression): When performing a Find, point every node along the path at its current root/representative element.

Path compression implementation

• Find(*x*):

Cost model for amortization

- To avoid arbitrary constants in the analysis, we will once again work in a simplified cost model. All our analyses will be asymptotically valid in the word RAM up to constant factors.
 - MakeSet costs 1
 - Link costs 1
 - Find costs number of nodes touched
- Goal: Amortized costs of $O(\log n)$ for each operation

Performance of path compression

Theorem: Let n be the current number of elements in the sets. Using path compression (but not union-by-size), the amortized cost of MakeSet is 1, Link is $(1 + \log n)$, and Find is $(2 + \log n)$.

- Observation: Balance is what matters
- Balanced trees are always fast, imbalanced trees are slow
- How do we measure how balanced a tree is at a *per-node basis*?

Balanced or imbalanced?

Definition (heavy/light): Given a node u and its parent p, call a node:

- **1.** Heavy if $size(u) > \frac{1}{2} size(p)$, i.e., u contains a majority of p's descendants
- 2. Light if $size(u) \le \frac{1}{2} size(p)$, i.e., u contains at most half of p's descendants
- Root is neither heavy nor light (it has no parent)
- In a perfectly balanced tree, every node is light (except root)
- In a chain (the worst-balanced tree), every node is heavy (except root)

Balanced or imbalanced?

Lemma (heavy/light): On any root-to-leaf path in any tree of n nodes, there are at most $\log n$ light nodes.

Reaching your potential

- Find costs (1 + #heavy + #light).
- We know that # light $\leq \log n$
- So, we don't need to amortize the light nodes. We are happy to just pay directly for the light nodes.
- We want to define a potential function that will save up and pay for the cost of touching the heavy nodes

Reaching your potential

- Observation: A node can have at most one heavy child
- What happens when you remove (compress) a node's heavy child?
- A different child might become the heavy child!
- But how many times can this happen?

Reaching your potential

Define our potential function to be:

$$\Phi(F) =$$

- Nice properties:
 - Initially zero (all trees start at size 1)
 - Always non-negative
 - Increases when we perform a Link
 - Decreases when we perform a Find

- no debt

Links save up \$\$\$ to pay for Finds

Analysis of MakeSet

Lemma (cost of MakeSet): MakeSet does not change $\Phi(F)$

Corollary: The MakeSet operation has an amortized cost of 1

Analysis of Link

Lemma (cost of Link): A link operation at most increases $\Phi(F)$ by $\log n$

Corollary: A link operation has amortized cost at most $1 + \log n$

Analysis of Find

Lemma: A Find operation decreases $\Phi(F)$ by at least #heavy nodes -1

• Consider *heavy nodes* u with parent p (other than r) on the **Find** path

Analysis of Find

Corollary (cost of Find): Find has amortized cost at most $(2 + \log n)$

Summary of Union-Find complexity

- Union-Find with union by size:
 - Link: O(1)
 - *Find*: $O(\log n)$ worst-case
- Union-Find with path compression:
 - Link: $O(\log n)$ amortized
 - Find: $O(\log n)$ amortized
- Union-Find with both! (Not proven in this class):
 - Link: $O(\alpha(n))$ amortized
 - Find: $O(\alpha(n))$ amortized
 - $\Omega(\alpha(n))$ is also a lower bound so this is optimal!