NÚMEROS ÍNDICE

Sociologia das Organizações -DEIO

1. VARIAÇÕES

- 1.1 Variações absolutas
- 1.2 Variações relativas
- 1.3 Variações homólogas
- 1.4 Elasticidade
- 1.5 Declive

1. VARIAÇÕES

Objectivo:

Estudo e quantificação de um determinado fenómeno

1. VARIAÇÕES 1.1 VARIAÇÕES ABSOLUTAS

Alunos matriculados pela 1.ª vez no ensino superior em Tecnologias da Informação e Comunicação

Anos	Alunos matriculados pela 1ª vez no ensino superior			
	Total	TIC		
2011	86561	9574		
2012	76766	8147		
2013	71700	8172		
2014	68516	8027		
2015	69610	8224		
2016	71880	9164		

Variação absoluta de um período:

$$\Delta x_{t+1,t} = x_{t+1} - x_t$$

Variação absoluta de *k* períodos:

$$\Delta x_{t+k,t} = x_{t+k} - x_t$$

Variação absoluta média:

$$\Delta_m x_{t+k,t} = \frac{x_{t+k} - x_t}{k}$$

1. VARIAÇÕES

1.2 VARIAÇÕES RELATIVAS/TAXAS DE CRESCIMENTO/TAXAS DE VARIAÇÃO

Anos	Alunos matriculados pela 1ª vez no ensino superior			
	Total TIC			
2011	86561	9574		
2012	76766	8147		
2013	71700	8172		
2014	68516	8027		
2015	69610	8224		
2016	71880	9164		

Variação relativa de um período:

$$r_{t+1,t} = \frac{x_{t+1} - x_t}{x_t} \times 100$$

Variação relativa de *k* períodos/variação global:

$$\delta_{t+k,t} = \frac{x_{t+k} - x_t}{x_t} \times 100$$

Variação relativa média:

$$r_{t+k,t}^m = [(1 + \delta_{t+k,t})^{1/k} - 1] \times 100$$

1. VARIAÇÕES

1.2 VARIAÇÕES RELATIVAS/TAXAS DE CRESCIMENTO/TAXAS DE VARIAÇÃO

$$x_{0}$$

$$x_{1} = x_{0}(1 + r_{1})$$

$$x_{2} = x_{1}(1 + r_{2}) = x_{0}(1 + r_{1})(1 + r_{2})$$

$$x_{3} = x_{2}(1 + r_{3}) = x_{0}(1 + r_{1})(1 + r_{2})(1 + r_{3})$$

$$\vdots$$

$$x_{k} = x_{0}(1 + \delta_{k})$$

$$= x_{0}(1 + r_{k}^{m})^{k}$$

$$= x_{0}(1 + r_{1})(1 + r_{2})(1 + r_{3}) \cdots (1 + r_{k})$$

Exercício 1!

1. VARIAÇÕES 1.2 VARIAÇÕES RELATIVAS/TAXAS DE CRESCIMENTO/TAXAS DE VARIAÇÃO

Exercício 1:

Admita que o PIB (Produto Interno Bruto) de determinado país cresceu nos últimos anos do seguinte modo (tabela).

- (a) Calcule a taxa de crescimento médio do período 1989-2013.
- (b) Sabendo que as taxas de crescimento dos quatro últimos anos foram todas iguais a 1.2%,

calcule a taxa de crescimento do PIB de 2008 para 2009.

Período	Taxa de crescimento média anual
1989-1997	0,8%
1997-2005	-0,5%
2005-2008	2,1%
2008-2013	0,9%

1. VARIAÇÕES 1.3 VARIAÇÕES HOMÓLOGAS

Taxa de desemprego por região de Portugal (%)

	2°T 2014	1°T 2015	2°T 2015
Portugal	13,9	13,7	11,9
Norte	15,0	14,2	13,4
Centro	10,4	11,1	8,5
Lisboa	15,1	14,2	12,7
Alentejo	14,0	15,5	12,6
Algarve	13,5	16,4	10,8
Açores	16,0	14,9	11,3
Madeira	1 <i>5,7</i>	15,8	13,6

Variação relativa homóloga:

$$h_{t+1,s} = \frac{x_{t+1.s} - x_{t.s}}{x_{t.s}} \times 100$$

Como é expressa a variação absoluta entre duas taxas de crescimento?

1. VARIAÇÕES 1.4 ELASTICIDADE

Relação entre variações relativas: como varia de forma relativa uma grandeza Y, quando uma grandeza X varia em 1%?

$$E_{t+k,t}^{Y,X} = \frac{\frac{y_{t+k} - y_t}{y_t}}{\frac{x_{t+k} - x_t}{x_t}}$$

Muito utilizada em Economia — Modelo da Oferta e Procura

Elasticidade de alguns bens e serviços nos EUA:

Bem/Serviço	Elasticidade
Tabaco	-0,3 a -0,6
Álcool	-0,3/-1/-1,5
Gasolina	-0,09/-0,31
Cinema	-0,87
Coca-cola	-3,8

1. VARIAÇÕES 1.5 DECLIVE

Relação entre variações absolutas: como varia de forma absoluta uma grandeza Y, quando uma grandeza X varia em uma unidade?

$$D = \frac{y_{t+k} - y_t}{x_{t+k} - x_t}$$

2. INDICES 2.1 Índices Simples 2.2 Índices de Preços 2.3 Defletor

- 2.3 Deflator

- Forma de avaliar a relação/evolução de uma variável
- Rácio que estabelece o confronto entre duas variáveis, ou a evolução de uma variável no tempo
- Agrega informação referente a múltiplas variáveis, períodos ou regiões, muitas vezes não na mesma unidade de medida – um índice é uma variável sem dimensão!
- Comparação face a um período/variável BASE, à qual se atribui o valor de 100
- Indice muito comum: índice de preços do consumidor (IPC), usado no cálculo da taxa de inflação
- Devido à grandeza da variável em estudo, por vezes é mais fácil analisar apenas a sua flutuação sob a forma de um número sem dimensão como o é um índice

2.1 ÍNDICES SIMPLES

Estudo de uma única grandeza/variável

$$I_{t,b} = \frac{X_t}{X_b} \times 100$$

Quantos estudantes frequentam o ensino superior, em ciências sociais, direito, matemática, informática, saúde, humanidades ou engenharias, entre outras?

	Total	Educação	Artes	Ciências sociais	Ciências	Engenharia	Agricultura	Saúde	Serviços
2012	390.273	22.374	37.271	122.015	28.293	85.647	7.232	61.963	25.102
2013	371.000	19.275	35.846	115.884	28.366	82.377	7.043	57.723	24.237
2014	362.200	17.208	35.492	114.619	28.103	78.527	6.967	57.194	23.747
2015	349.658	15.049	35.375	112.085	26.926	74.223	6.810	55.530	23.321
2016	356.399	13.969	36.285	113.800	28.476	75.899	7.778	55.406	24.370

2.1 ÍNDICES SIMPLES

Relação entre um número índice e uma taxa de variação global

Taxa de variação global:

$$\delta_{t,b} = \frac{X_t - X_b}{X_b} \times 100 \qquad \rightarrow \delta_{t,b} = \left(\frac{X_t}{X_b} - 1\right) \times 100 \leftrightarrow \frac{X_t}{X_b} = \frac{\delta_{t,b}}{100} + 1$$

Índice simples:

$$I_{t,b} = \frac{X_t}{X_b} \times 100$$
 $\rightarrow I_{t,b} = \left(\frac{\delta_{t,b}}{100} + 1\right) \times 100 \leftrightarrow I_{t,b} = \delta_{t,b} + 100$

2. ÍNDICES 2.1 ÍNDICES SIMPLES

Exercício 1:

Admita que o PIB (Produto Interno Bruto) de determinado país cresceu nos últimos anos do seguinte modo (tabela).

(c) Tomando como ano base 2005, calcule o índice do PIB em 2013.

Período	Taxa de crescimento média anual
1989-1997	0,8%
1997-2005	-0,5%
2005-2008	2,1%
2008-2013	0,9%

2.2 ÍNDICES DE PREÇOS

Laspeyres

- Mede a evolução dos preços de um determinado conjunto de bens entre um certo período e o período base.
- Ponderação: quantidade consumida/adquirida no período base!

$$L_{t,b}^{P} = \frac{P_{t}^{1} Q_{b}^{1} + P_{t}^{2} Q_{b}^{2} + \dots + P_{t}^{m} Q_{b}^{m}}{P_{b}^{1} Q_{b}^{1} + P_{b}^{2} Q_{b}^{2} + \dots + P_{b}^{m} Q_{b}^{m}}$$

$$= \frac{\sum_{i=1}^{m} P_t^i Q_b^i}{\sum_{i=1}^{m} P_b^i Q_b^i}$$

Paasche

- Mede a evolução dos preços de um determinado conjunto de bens entre um certo período e o período base.
- Ponderação: quantidade consumida/adquirida no período em estudo

$$P_{t,b}^{P} = \frac{P_{t}^{1}Q_{t}^{1} + P_{t}^{2}Q_{t}^{2} + \dots + P_{t}^{m}Q_{t}^{m}}{P_{b}^{1}Q_{t}^{1} + P_{b}^{2}Q_{t}^{2} + \dots + P_{b}^{m}Q_{t}^{m}}$$

$$= \frac{\sum_{i=1}^{m} P_{t}^{i} Q_{t}^{i}}{\sum_{i=1}^{m} P_{b}^{i} Q_{t}^{i}}$$

2. ÍNDICES 2.2 ÍNDICES DE PREÇOS

Exercício 3:

- (a) A elasticidade da quantidade em relação aos preços para cada um dos produtos.
- (b) O índice de preços para o período 1 com base em 0 (fórmula de LASPEYRES).
- (c) O índice simples de valor.
- (d) Com base nos 5 bens que consome em maior frequência ou aos quais atribui maior importância, calcule a sua taxa de inflação.

Bens	Perío	odo O	Período 1	
	Preço	Quant.	Preço	Quant.
Α	10	30	14	25
В	20	25	26	25
С	50	15	60	30

2. ÍNDICES 2.3 DEFLATOR

"Neste trimestre, o PIB do país aumentou 2,9%, o maior dos últimos 17 anos. O semestre está fechado com 2,8% e tudo prevê que Portugal termine o ano com o maior crescimento do século", continuou o ministro. "Desde 2010 que a economia portuguesa não apresentava três trimestres consecutivos com crescimento acima da média da zona do euro".

- O que significa este crescimento da economia portuguesa?
- Como se quantifica?
- Como distinguir crescimento nominal de crescimento real?
- O Qual o impacto da variação dos preços?

2. ÍNDICES 2.3 DEFLATOR

- O que significa este crescimento da economia portuguesa?
- ✓ Crescimento do Produto Interno Bruto (PIB) português
- Como se quantifica ou como é calculado o PIB?
- ✓ O PIB mede todos os bens e serviços produzidos em Portugal num determinado período de tempo:

$$PIB_t = \sum_{i=1}^m Q_t^i P_t^i$$

2.3 DEFLATOR

Como distinguir crescimento real de crescimento nominal?

$$PIB_t = \sum_{i=1}^m Q_t^i P_t^i$$

$$PIB_{t+1} = \sum_{i=1}^{m} Q_{t+1}^{i} P_{t+1}^{i}$$

Não consigo distinguir variação da produção de variação dos preços!

PIB real (PIB medido a preços de um ano base)

2. ÍNDICES 2.3 DEFLATOR

Como distinguir crescimento real de crescimento nominal?

$$X_t = X_b(1 + \delta_{t,b}^N)$$
Valor nominal em t

$$= X_b (1 + \delta^R_{t,b}) (1 + \delta^P_{t,b})$$
 Valor real em t Evolução dos preços -

$$X_{t}^{R} = \frac{X_{b}(1 + \delta_{t,b}^{N})}{(1 + \delta_{t,b}^{P})}$$

Exercício 2!

2. ÍNDICES 2.3 DEFLATOR

Exercício 2:

- (a) Calcule a taxa de crescimento média anual do rendimento desta família para o período de 70 a 73.
- (b) Calcule o índice (1970 = 100) do rendimento anual da família.
- (c) O índice de preços no consumidor na cidade de Lisboa (base 1949), relativamente a Dezembro de cada ano, apresentou a evolução descrita na tabela. Tomando este índice como indicador do custo de vida em Lisboa, comente a evolução do rendimento desta família.

	1970	1971	1972	1973
Rendimento	68 000\$	70 500\$	71 200\$	72 600\$
IPC	178,4	205,5	224,0	266,5