

Задача 15. Модель раннего обнаружения неисправностей промышленного оборудования

Пётр Ларин

- Капитан команды
- Data Scientist
- Номер

Светлана Хорольская

- Data Scientist
- o +79507504004

Игорь Шахматов

- Data Scientist
- Номер

Марина Запорожец

- Data Scientist
- +79512692249

Любовь Ильина

- Data Scientist
- +79265408705

Наша команда

Мы – команда начинающих дата-сайентистов. Нас объединяет то, что мы только что закончили курс по Data Science в МГТУ им. Н. Э. Баумана и решили попробовать силы не на учебных, а на реальных задачах.

Мы выбрали задачу 15 потому, что ее фокус не на разработке, а на анализе данных.

Познакомившись с задачей ближе и осознав ее масштаб, мы решили сконцентрироваться на построении модели для подзадачи №1 (предсказание наличия аварий типа М1 в выброшенных интервалах).

Подход к решению подзадачи №1

Наша гипотеза состоит в том, что, незадолго до наступления аварии М1, на графиках показателей соответствующей машины будут появляться характерные паттерны (сигнатуры), которые сможет распознать одномерная сверточная нейронная сеть.

Для обучения CNN мы подготовили датасет, элементами которого являются фрагменты X_train. Каждый такой фрагмент имеет 16 столбцов, соответствующих показателям одной из машин, на интервале в 10 минут (61 строка).

Один элемент датасета

	0.902000	ЭКСГАУСТЕР 9. ТОК	ЭКСГАУСТЕР 9. ТОК	ЭКСГАУСТЕР 9. ДАВЛЕНИЕ	ЭКСГАУСТЕР 9. ТЕМПЕРАТУРА	ЭКСГАУСТЕР 9. ТЕМПЕРАТУРА	ЭКСГАУСТЕР 9. ТЕМПЕРАТУРА	ЭКСГАУСТЕР 9. ТЕМПЕРАТУРА	ЭКСГАУСТЕР 9. ТЕМПЕРАТУРА	ЭКСГАУС ТЕМПЕРАТ МАСЈ МАСЛОБЛ	
	POTOPA 1	POTOPA 2	CTATOPA	МАСЛА В СИСТЕМЕ	ПОДШИПНИКА НА ОПОРЕ 1			ПОДШИПНИКА НА ОПОРЕ 4	МАСЛА В		
2019-03- 19 14:00:10	0.902000	0.902000	0.475000	337.130000	46.240000	51.920000	40.560000	54.111499	21.174060	39.34	
2019-03- 19 14:00:20	0.738000	0.738000	0.475000	332.360000	45.430000	50.659107	39.932358	54.350000	19.470000	39.75	
2019-03- 19 14:00:30	0.902000	0.902000	0.520000	328.288000	46.240000	50.785304	39.752081	53.624738	22.720000	40.56	
2019-03- 19 14:00:40	0.683333	0.683333	0.460000	324.654000	45.998824	50.704178	40.076582	54.273755	21.900000	38.94	
2019-03- 19 14:00:50	0.820000	0.820000	0.520000	320.996000	45.430000	50.785304	39.995457	53.624739	21.336311	39.75	
2019-03- 19 14:09:30	0.820000	0.820000	0.390000	180.237500	45.430940	44.051788	37.805041	49.811786	19.470000	37.32	
2019-03- 19 14:09:40	1.025000	1.025000	0.350000	158.704000	45.430940	43.537986	38.039412	48.680000	21.090000	38.94	
2019-03- 19 14:09:50	0.820000	0.820000	0.346667	155.323333	45.512066	43.646154	38.130000	49.490000	20.768424	38.13	
2019-03- 19 14:10:00	19.515000	19.515000	0.376667	155.380000	45.268687	43.646154	37.967298	49.649531	21.092932	38.53	
2019-03- 19 14:10:10	331.414000	331.414000	0.416000	155.596667	45.349814	43.810000	37.805041	49.325025	20.687299	38.94	
61 rows	× 16 columns										
4										>	

Подход к решению подзадачи №1

	Машина №4	Машина №5	Машина №6												
10 мин.		pre-M1	_		от	anorayo ten 2 to / Potora 1	SKGRAVCTEP S. TOK POTOPA 2	SNORANGTER 9. TOU	OKATANCTOP S. AARITEHNE MADIA D CHO - HE				акопиястеля в температура подшип ика не опон- 4		
10 мин. 10 мин.		pre-M1		1	2019-03- 14.00.10 2019-03-	9,909,000			377 30000	46,210000	51000000	<0.566000	5 10/00	21 17/000	35.39
					14:00:01 21:00:01 21:00:00 14:00:00	0.00000	0.755000	0.775000	325.200000	46.249999	90 708004	20 750054	51,53,0000 51,62(T30	72 T20000	40.50
					2019-03- 19 16/18/01	0 680333	0.55555	0.45000	\$21,821000	47.736621	90,704178	(1,078,61	912/37-6	21900000	34.94
	все ОК	pre-M1			2000-00- 14,00,00	0.020000	0.020000	0.520000	320,000000	45420000	50 775004	20,000/07	53674730	21.235011	3075
					2010-03-	0.8254.00	0.520,000	0.500030	180.257.00	F2/15/2010	44.001758	5/30/011	42.811788	19/4/0000	37.35
					2015-03- 14 14:28:40	110120	103000	0 N 10 B	116 (1220)	21247(2)	44 5 2 4 4 6	SA HARRAY	4864999	21 (264)	251.94
10 мин.	все ОК				2010-03- 19 14:10091	0.8254.00	0.520,000	0.545557	150,323555	Cap 12066	12545114	\$8,190000	/9/130000	20 798424	36.15
					2019-33- 14 14: 18:00	74181400	19 - 5 - 6 - 6	0.000-7	117.2008641	As 9-Max r	er next la	SOURCES	DINTERN	21 1967 %	204.9-4
	все ОК	M1		-	2019-03- 19 14-1979	231414000	331.414000	d./ 15000	150,998887	42.343614	12.510000	57,895011	(9.328/2)	20,687250	36.54
10 мин.					G1 rows #	6 columns									-
10 мин.															

В датасет попадают все фрагменты, содержащие аварии М1 с меткой класса "1", все фрагменты, предшествующие авариям М1 на протяжении 3 часов – с меткой класса "2", и некоторые фрагменты, изолированные от аварий, с меткой "0" в количестве, необходимом для сбалансированного датасета.

На вход обученной CNN подаются фрагменты из X_test, предшествующие пропускам на интервале в 3 часа (18 интервалов). Таким образом, на каждый пропуск мы получаем 18 меток класса, из которых методом голосования определяется наличие аварии в пропуске.

Данный подход не предусматривает определения конкретного технического места.

СПАСИБО ЗА ВНИМАНИЕ!