The two equations of a capitol

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the two equations of a capitol.

Introduction

The capitol is the most politically, economically and financially important building in a financial economy. In this paper, I describe the two equations of a capitol.

Preliminaries

The capitol prices three types of assets using three types of valuation functions:

- 1. N government assets G_i are priced through bond-pricing valuation functions F_i
- 2. N public-sector assets P_j are priced through public-finance valuation functions F_j
- 3. n public-private-partnership assets p_k are priced through joint-stock valuation functions f_k

The additive equation of a capitol

When there is **political cohesion** in the financial economy, the capitol follows the additive equation of a capitol

$$\mathsf{C}(\mathsf{t}) = \frac{\sum_{i=1}^{\mathbf{N}} \mathbf{F_i}(\mathbf{G_i(t)}) + \sum_{j=1}^{N} F_j(P_j(t)) + \sum_{k=1}^{n} f_k(p_k(t))}{1 + r_f(t) + \mathbf{p_G(t)} + p_P(t) + p_p(t)}$$

where

 $\mathsf{C}(\mathsf{t})$ is the value of the capital $r_f(t)$ is the risk-free rate $p_{\mathbf{G}}(t)$ is the government assets premium $p_P(t)$ is the public-sector assets premium $p_p(t)$ is the public-private-partnership assets premium

The separative equation of a capitol

When there is **no political cohesion** in the financial economy, the capitol follows the separative equation of a capitol

$$C(t) = \frac{\sum_{i=1}^{N} \mathbf{F_i(G_i(t))}}{1 + r_f(t) + \mathbf{p_G(t)}} + \frac{\sum_{j=1}^{N} F_j(P_j(t))}{1 + r_f(t) + p_P(t)} + \frac{\sum_{k=1}^{n} f_k(p_k(t))}{1 + r_f(t) + p_p(t)}$$

The End