Xingyu Lin

Email: xingyulin2016@gmail.com Homepage: https://xingyu-lin.github.io/

Current Position

University of California, Berkeley

Aug 2022 - Aug 2024 (expected)

Postdoctoral Scholar (Advisor: Pieter Abbeel)

EDUCATION

Carnegie Mellon University

Aug 2017 - Aug 2022

Sep 2013 - May 2017

Ph.D. in Robotics (Advisor: David Held)

Thesis: "Learning Structured World Model for Deformable Object Manipulation"

Peking University

B.S. in Computer Science (Summa Cum Laude)

RESEARCH INTERESTS

My research lies in robotics, machine learning, and computer vision, with the primary goal of learning generalizable robotic manipulation skills. Specifically, I am interested in (1) learning structured world models with abstractions for planning and control (2) Visual and motion pre-training to enable knowledge transfer from Internet-scale vision datasets and simulators. Ultimately, my goal is to enable robots to assist humans in unstructured environments.

PROFESSIONAL EXPERIENCE

University of California, Berkeley Postdoctoral Scholar with Pieter Abbeel	Aug 2022 - Feb 2024 (expected)
MIT-IBM Research Lab Research Intern with Chuang Gan	May 2021 - Aug 2021
NVIDIA Seattle Robotics Lab Research Intern with Dieter Fox, Arsalan Mousavian, and Clemens Ep	May 2020 - Aug 2020 pner
Carnegie Mellon University Undergraduate Research Intern with Tai Sing Lee	May 2016 - Aug 2016
Microsoft Research Asia (MSRA)	Feb 2016 - May 2016

SELECTED HONORS AND AWARDS

Research Intern

RSS Pioneer Awarded to 30 early-career researchers in robotics worldwide	2022
DAAD AInet Fellowship in AI and Robotics	2022
Founder Scholarship, Peking University	2016
Guanghua Scholarship, Peking University	2015
1 st Place Award, Mathematical Modelling Contest of Peking University Back-to-back winners for two years among 60 teams.	2014-2015

UNDER REVIEW AND PRE-PRINTS

- [P3] Xingyu Lin*, John So*, Sashwat Mahalingam, Fangchen Liu, and Pieter Abbeel. SpawnNet: Learning Generalizable Visuomotor Skills from Pre-trained Networks, *Under review*, 2023
- [P2] Philipp Wu, Yide Shentu, Zhongke Yi, Lin, Xingyu, and Pieter Abbeel. GELLO: A General, Low-Cost, and Intuitive Teleoperation Framework for Robot Manipulators, Under review, 2023
- [P1] Xingyu Lin, Harjatin Singh Baweja, and David Held. Reinforcement learning without ground-truth state, Workshop on Multi-Task and Lifelong Reinforcement Learning, ICML, 2019

Conference Papers

- [C14] Zixuan Huang, Lin, Xingyu, and David Held. Self-supervised Cloth Reconstruction via Actionconditioned Cloth Tracking, IEEE International Conference on Robotics and Automation (ICRA), 2023
- [C13] Zhenjia Xu, Zhou Xian, Lin, Xingyu, Cheng Chi, Zhiao Huang, Chuang Gan, and Shuran Song. RoboNinja: Learning an Adaptive Cutting Policy for Multi-Material Objects, Robotics: Science and Systems (RSS), 2023
- [C12] Lin, Xingyu, Carl Qi, Yunchu Zhang, Zhiao Huang, Katerina Fragkiadaki, Yunzhu Li, Chuang Gan, and David Held. Planning with Spatial-Temporal Abstraction from Point Clouds for Deformable Object Manipulation, Conference on Robot Learning (CoRL), 2022
- [C11] Zixuan Huang, Lin, Xingyu, and David Held. Mesh-based Dynamics Model with Occlusion Reasoning for Cloth Manipulation, Robotics: Science and Systems (RSS), 2022
- [C10] Xingyu Lin, Zhiao Huang, Yunzhu Li, Joshua B. Tenenbaum, David Held, and Chuang Gan. DiffSkill: Skill Abstraction from Differentiable Physics for Deformable Object Manipulations with Tools, International Conference on Learning Representations (ICLR), 2022
- [C9] Narasimhan Gautham, Zhang Kai, Eisner Ben, Xingyu, Lin, and Held David. Transparent Liquid Segmentation for Robotic Pouring, IEEE International Conference on Robotics and Automation (ICRA), 2022
- [C8] Xingyu Lin*, Yufei Wang*, Zixuan Hunag, and David Held. Learning Visible Connectivity Dynamics for Cloth Smoothing, Conference on Robot Learning (CoRL), 2021
- [C7] Xingyu Lin, Yufei Wang, Jake Olkin, and David Held. SoftGym: Benchmarking Deep Reinforcement Learning for Deformable Object Manipulation, Conference on Robot Learning (CoRL), 2020
- [C6] Yufei Wang*, Narayan Gautham*, Xingyu Lin, Brian Okorn, and David Held. Visual Self-Supervised Reinforcement Learning with Object Reasoning, Conference on Robot Learning (CoRL), 2020
- [C5] Xingyu Lin*, Harjatin Baweja*, George Kantor, and David Held. Adaptive Auxiliary Task Weighting for Reinforcement Learning, Neural Information Processing Systems (NeurIPS), 2019
- [C4] Xingyu Lin, Pengsheng Guo, Carlos Florensa, and David Held. Adaptive variance for changing sparse-reward environments, IEEE International Conference on Robotics and Automation (ICRA), 2019
- [C3] Xingyu Lin, Hao Wang, Zhihao Li, Yimeng Zhang, Alan Yuille, and Tai Sing Lee. Transfer of view-manifold learning to similarity perception of novel objects, International Conference on Learning Representations (ICLR), 2017

Xingyu Lin

- [C2] Xingyu Lin, Mingxuan Chai, Sheng Li, and Guoping Wang. Time-varying light motion in single convergence, Computer Animation and Virtual Worlds, 2018
- [C1] Hao Wang, Xingyu Lin, Yimeng Zhang, and Tai Sing Lee. Learning robust object recognition using composed scenes from generative models, Conference on Computer and Robot Vision (CRV), 2017

Journal Paper

[J1] Carl Qi, Xingyu Lin, and David Held. Learning Closed-loop Dough Manipulation Using a Differentiable Reset Module, Robotics and Automation Letters (RA-L) with presentation at the International Conference on Intelligent Robots and Systems (IROS), 2022

INVITED TALKS

Generalizable Manipulation with Large Internet Data and Small Robot Data

• Invited talk and panelist at RSS Workshop on Interdisciplinary Exploration of Generalizable Manipulation Policy Learning

2023

Learning Structured World Model for Deformable Object Manipulation

• Invited talk at Stanford Vision and Learning Lab

2022

• Invited talk at UC Berkeley Robot Learning Lab

2022

• Invited talk at MIT Computational Design and Fabrication Group

• RSS Workshop on Deformable Object Simulation in Robotics

2022 2021

Selected Press Coverage

- [P1] Can robots make pizza? Scientists are working on it, by Galadriel Watson, Washington Post, Sep 6, 2022.
- [P2] Solving the challenges of robotic pizza-making, by Adam Zewe, MIT News, March 31, 2022.
- [P3] This deep learning technique solves one of the tough challenges of robotics, by Ben Dickson, Tech Talks, May 9, 2022.
- [P4] Better learning through 'complex dough-manipulation', by Brian Heater, Tech Crunch, Mar 31, 2022.
- [P5] Robotic Manipulation of Deformable Objects, by Katyanna Quach, AZO Robotics, Apr 4, 2022.
- [P6] Here's to the rise of the robot bartender, by Institution of Mechanical Engineers, Jun 9, 2022.

STUDENT MENTORING

Ph.D. Students

• Philiip Wu (UC Berkeley)

GELLO [P2]

• Chuan Wen (Tsinghua, visiting)

Master's Students

• Carl Qi (CMU MSML \rightarrow Ph.D. student at UT Austin))

RA-L 2022 [J1], CoRL 2022 [C12]

• Zixuan Huang (CMU MSR \rightarrow Ph.D. student at Umich))

 ${\rm CoRL~2021~[\hbox{$C8$}],~RSS~2022~[\hbox{$C11$}],~ICRA~2023~[\hbox{$C14$}]}$

• Yufei Wang (CMU MSCS → Ph.D. student at CMU)

 $\operatorname{CoRL}\ 2020\ [{\color{red}\mathbf{C6}},\ {\color{red}\mathbf{C7}}],\ \operatorname{CoRL}\ 2021\ [{\color{red}\mathbf{C8}}]$

• Gautham Narasimhan (CMU MSME \rightarrow Path Robotics)

CoRL 2020 [C6]

• Pengsheng Guo (CMU MRSD \rightarrow Apple)

ICRA 2019 [C4]

Undergraduate Students

• John So (UC Berkeley \rightarrow MSCS at Stanford)

SpawnNet [P3]

• Sashwat Mahalingam (UC Berkeley)

High-dimension Control with RL

DIVERSITY, EQUITY, AND INCLUSION

• Mentor for undergraduate AI mentoring program, CMU	2018-2019
\bullet Mentor for undergraduate AI mentoring program, UC Berkeley	2022-present
• Podcast speaker for high-school students about AI and robotics	2023

Teaching

Teaching Assistant

• CMU 16831: Statistical Techniques in Robotics (Kris Kitani)	Spring 2021
• CMU 10703: Deep Reinforcement Learning and Control (Katerina Fragkiadaki)	Fall 2019
• Peking University: Algorithm Analysis and Design (Yizhou Wang)	Fall 2016
• Peking University: Introduction to Computer System (Yingfei Xiong)	Fall 2015

DIVERSITY, EQUITY, AND INCLUSION

• Mentor for undergraduate AI mentoring program, CMU	2018-2019
• Mentor for undergraduate AI mentoring program, UC Berkeley	2022-present
• Podcast speaker for high-school students about AI and robotics	2023

SERVICES

Workshop Organizer

• Co-Organizer, RSS Pioneers Workshop, RSS 2023

Reviewer

- Journal: IEEE Transactions on Robotics (T-RO), IEEE Robotics and Automation Letters (RA-L), Autonomous Robots
- Conferences: NeurIPS, ICML, ICLR, RSS, CoRL, ICRA, IROS

Department Service

- UC Berkeley EECS PhD Admissions Committee, 2022 2023
- CMU Master in Computer Vision (MSCV) Admissions Committee, 2019 2020