

ABOUT ME

CWRU: CWRU Cutter autonomous lawnmower.

CMU: Robotic Neuromuscular Leg.

ZIN Technologies: Robotics and computational modeling for human spaceflight.

PROBABILISTIC CT SCAN SEGMENTATION TO DYNAMICALLY GENERATE FEA MODELS OF THE HUMAN FEMUR

LONG-DURATION SPACEFLIGHT IS DETRIMENTAL TO BONE HEALTH

- 0.4-2.7% monthly volumetric bone mineral density (vBMD) loss
- Resistive exercise counters effects of microgravity
- Required frequency and duration of exercise is unclear

Hybrid Ultimate Lifting Kit (HULK) exercise device.

FEA MODELS CAN BE USED TO CALCULATE BMD MAINTENANCE LOADS

Manual calibration results:

Produces noisy output that requires additional,
manual post-processing.

Voxel initialization based solely on pixel intensity: Produces heterogeneous mixture of elements that may be poorly initialized with zero stiffness.

Desired scan processing output (hand-labeled):Segmented bone cross-section that distinguishes between cortical, trabecular, and non-bone containing regions.

PROBABILISTIC CLASSIFICATION: BETTER, AUTOMATIC SEGMENTATION

"Probability that feature X equals x_i given that sample Y belongs to group y_i"

"Probability that sample Y belongs to group y_i"

$$P(Y = y_j | X = x_i) = \frac{P(X = x_i | Y = y_j)P(Y = y_j)}{P(X = x_i)}$$

"Probability that sample Y belongs to group y_j given that feature X equals x_i "

"Probability that feature X equals x_i"

EXAMPLE 1: CLASSIFYING FRUIT BASED ON COLOR

$$P(Y =)|X =) = \frac{P(X = |Y =))P(Y =)}{P(X = |Y =))P(Y =) + P(X = |Y =))P(Y =)}$$

$$= \frac{1 * 0.75}{1 * 0.75 + 0 * 0.25} = 1$$

$$\begin{split} P(Y = \bullet)X = \boxed{)} &= \frac{P(X = \boxed{|Y = \bullet)}P(Y = \bullet)}{P(X = \boxed{|Y = \bullet)}P(Y = \bullet) + P(X = \boxed{|Y = \bullet)}P(Y = \bullet)} \\ &= \frac{0*0.25}{0*0.25 + 1*0.75} = 0 \end{split}$$

The banana-apple universe, where 75% of all fruit are bananas.

FEATURE CLASSIFICATION ONLY RELIES ON RELATIVE LIKELIHOOD

$$P(Y|X) \propto P(X|Y)P(Y)$$

Bayes' theorem numerator:

The conditional probability is proportional to the joint probability model.

EXAMPLE 2: INSUFFICIENT NUMBER OF FEATURES

$$P(Y=)|X=|) \propto P(X=|Y=))P(Y=)$$

$$\propto 0.8*0.66=0.53$$

$$P(Y = \bullet | X = \square) \propto P(X = \square | Y = \bullet) P(Y = \bullet)$$

$$\propto 0.2 * 0.33 = 0.07$$

The banana-apple universe, where 66% of all fruit are bananas and yellow apples exist.

MORE FEATURES WITH NAÏVE ASSUMPTIONS IMPROVE ACCURACY

$$P(Y|X_1,...,X_n) \propto P(X_1,...,X_n|Y)P(Y)$$

Assuming statistically independent features: $P(X_1,...,X_n|Y) = \prod_{i=1} P(X_i|Y)$

$$P(Y|X_1,...,X_n) \propto P(Y) \prod_{i=1}^{n} P(X_i|Y)$$

NAÏVE BAYES = INDEPENDENT FEATURE MODEL + DECISION RULE

Given:
$$X^{new} = < X_1, ..., X_n >$$

$$\hat{y} = \underset{j \in \{1,...,J\}}{\operatorname{argmax}} \propto P(Y = y_j) \prod_{i=1}^{new} P(X_i^{new} | Y = y_j)$$

Naïve Bayes classifier using the maximum a posteriori decision rule:

Based on the features, it is most probable that the item being classified belongs to group.

EXAMPLE 3: CLASSIFYING FRUIT BASED ON COLOR AND SHAPE

$$P(Y =)|X = , round)$$

$$\propto P(Y =)) * P(X = |Y =))P(X = round|Y =))$$

$$\propto 0.66 * 0.8 * 0 = 0$$

$$P(Y = \blacksquare | X = \blacksquare, round)$$

$$\propto P(Y = \bullet) * P(X = | Y = \bullet) P(X = round | Y = \bullet)$$

$$\propto 0.33 * 0.2 * 1 = 0.07$$

GAUSSIAN DISTRIBUTION: ESTIMATING SAMPLE FEATURE LIKELIHOOD

The probability density function of a Gaussian distribution.

AUTOMATIC CT IMAGE SEGMENTATION TO BUILD FEA BONE MODELS

Manual vs. Probabilistic + GUI segmentation.

- Can generate identical segmentations to manual segmentation by expert
 - 10 minutes vs. 8 hours
- Combined with computational bone model
- Toolchain accurately predicts post-flight vBMD
 - -1.16 ± 2.78% mean percent error

MODEL-BASED HARDWARE DESIGN APPROACH

Simulation subsystem interaction diagram.

ATLAS breadboard Simulink Simscape model.

HIGH-FIDELITY DYNAMIC SIMULATION

Electrodynamics

A VIRTUAL TESTBED FOR PLAYBACK AND DEVELOPMENT

Development

Actuated virtual testbed

Virtual hardware-in-the-loop optimization.

Playback

Log playback for state-observation, development, and debugging.

DATA-DRIVEN OPTIMIZATION OF HUMAN-IN-THE-LOOP CONTROL GAINS

- Human-in-the-loop optimization is difficult
 - Trials are expensive
 - Potentially dangerous
- Preference prediction is complicated
 - Combination of many inter-related factors
 - Human cost-function unknown
- o *A priori human* modeling is difficult
 - Models/sub-models that are very complex
 - Incorporates modeler biases
 - May miss important parameter and/or relationships
- Data driven models overcome these limitations
 - Non-parametric, nonlinear function estimators
 - Can augment *a priori* models if necessary
 - Gaussian Process Regression (GPR)
 - Artificial Neural Networks (ANN)

Gaussian Process Regression.

Artificial Neural Network (Feed-Forward Architecture).

ANNS: TOO MUCH REQUIRED DATA FOR HUMAN-IN-THE-LOOP TUNING

Function y=sin(5x) and noisy ANN training data.

ANN estimate of y=sin(5x) from noisy data.

Feed-forward ANN.

Mean SSE of ANN function estimate.

GAUSSIAN PROCESS REGRESSION (GPR)

Posterior update for a univariate Gaussian distribution based on new samples.

GPR (CONT'D)

Posterior update for a bivariate Gaussian distribution based on new samples.

GPR (CONT'D)

$$(x') \longrightarrow P(y'|\mathbf{y}, \mathbf{x}, x') \ \alpha \ \mathcal{N}(\overrightarrow{\mu}, \overrightarrow{\sigma}) \longrightarrow (y')$$

Multivariate Gaussian Process Regression.

GPR: SAMPLE-BASED ESTIMATION OF Y=SIN(5x)

Estimating y=sin(5x) from random samples with noise using GPR.

ADVANTAGES AND DISADVANTAGES OF GPR

+ Advantages:

- + Native confidence interval
- + *N*-dimensional datasets
- + Discrete and continuous data
- + Comparatively little data vs. NN
- + Optimal/efficient new data sampling

- Disadvantages:

- Potentially poor at extrapolation
- Scalability
- Kernel selection
- Hyperparameter selection
 - Estimation techniques exist

GPR estimate of y=sin(5x) from noisy data.

ANALOG DATA ASSESSMENT: THE ABALONE DATASET

- o Blacklip abalone is a large sea snail
 - Endemic to Australia and Tasmania
 - Used as food source and in jewelry (mother-of-pearl)
- Age can be determined by counting shell rings
 - Time consuming and invasive process
- Physical measurements correlate to age
 - Estimate age with machine learning (ML) techniques?
- "Abalone" dataset is a classic ML testbed
 - Contains discrete and continuous variables
 - "Analogous" to human-like data
- Useful to evaluate GPR and ANN feasibility

Top: Blacklip abalone (Haliotis rubra). **Bottom:** Blacklip abalone shell.

THE ABALONE DATASET (CONT'D)

		n=4177
Variable	Unit	Type
No. of rings	[integer]	Discrete
Length	[mm]	Continuous
Diameter	[mm]	Continuous
Height	[mm]	Continuous
Whole weight	[grams]	Continuous
Shucked weight	[grams]	Continuous
Viscera weight	[grams]	Continuous
Shell weight	[grams]	Continuous

Contents of the abalone dataset used to construct GPR and ANN data driven models.

- Looking to predict continuous variable with model
 - Test case: Use GPR and ANN to predict length from mixed discrete and continuous data

THE ABALONE DATASET (CONT'D)

- Subdivide data into training/testing set
 - *n=4177*
 - Uniformly sample data across length values
 - 75/25 training/testing split
- o Train models with increasingly more samples
- Quantify prediction error across entire testing set

THE ABALONE DATASET (CONT'D)

Abalone training and testing datasets.

PREDICTING ABALONE LENGTH VIA DATA-DRIVEN MODELS

Test set Abalone 1						
		GPR		ANN		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)	
2	76.0	48.4	36.3	40.6	46.7	
10		72.3	4.5	54.8	28.0	
100		116.0	-51.6	86.6	-14.1	
1000		89.8	-18.2	78.4	-3.3	
3132 (All)		49.8	34.4	82.2	-8.2	

Test set Abalone 2						
		GPR		ANN		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)	
2	87.0	81.2	6.7	51.8	40.4	
10		94.0	-8.1	64.4	26.0	
100		88.8	-2.2	78.4	9.9	
1000		96.8	-11.3	101.6	-16.8	
3132 (All)		95.6	-9.9	98.0	-12.6	

Test set Abalone 3						
		GPR		ANN		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)	
2	100.0	76.4	23.6	56.8	43.1	
10		107.0	-7.0	68.2	31.7	
100		75.0	24.9	98.0	2.0	
1000		90.4	9.6	127.4	-27.4	
3132 (All)		90.8	9.2	132.0	-31.9	

Test set Abalone 4							
		GPR		AN	N		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)		
2	67.0	76.6	-14.4	39.2	41.36		
10		67.4	-0.6	50.8	24.3		
100		69.0	-3.1	62.6	6.6		
1000		67.4	-0.5	63.2	5.7		
3132 (All)		64.6	3.5	59.8	10.7		

Test set Abalone 5						
		GPR		ANN		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)	
2	104.0	96.2	7.4	64.2	38.3	
10		108.0	-3.8	76.6	26.3	
100		106.2	-2.0	98.0	5.7	
1000		102.2	1.7	121.8	-17.1	
3132 (All)		95.0	8.6	128.6	-23.7	

Test set Abalone 6						
		GPR		ANN		
No. training samples	Measured (mm)	Predicted (mm)	Rel. error (%)	Predicted (mm)	Rel. error (%)	
2	105.0	103.6	1.3	64.6	38.5	
10		100.8	4.0	76.4	27.2	
100		115.8	-10.4	97.6	7.0	
1000		106.8	-1.6	121.8	-15.9	
3132 (All)		106.0	-1.0	132.0	-25.6	

PREDICTING ABALONE LENGTH (CONT'D)

SUMMARY

- o ATLAS device is currently undergoing human testing at JSC
- o Computational modeling is an integral part of robotics effort
- o Evaluation planned on Lunar Orbital Platform-Gateway

Lunar Orbital Platform-Gateway concept.

SUPPLEMENTAL SLIDES

ARTIFICIAL NEURAL NETWORKS

Input training data

