Facultad de Ciencias UNAM Lógica Computacional

Práctica 4: Sistema L de Lukasiewicz

Profesor: Francisco Hernández Quiroz Ayudante: Valeria Garcia Landa Ayudante de laboratorio: Sara Doris Montes Incin

Entrega: 20 de marzo de 2020 antes de las 11:59 p. m.

1 Sistema L de Lukasiewicz

1.1 Introducción

Ahora presentamos una teoría axiomática formal L para el cálculo proposicional.

- 1. Los símbolos de L son: \neg , \rightarrow , (,) y las letras A_i con $i \in \{1, 2, 3, 4, 5...n\}$. Los símbolos \neg y \rightarrow se les denomina conectivos primitivos y las letras A_i se les denomina letras de declaración
- 2. (a) Todas las A_i (letras de declaración) están wfs.
 - (b) Si α y β están wf entonces $(\neg \alpha)$ y $(\alpha \to \beta)$ también lo están.
- 3. Si α , β y γ están wfs, entonces los siguientes son los axiomas de L:

(A1)
$$(\alpha \to (\beta \to \alpha))$$

(A2)
$$((\alpha \to (\beta \to \gamma)) \to (\alpha \to \beta) \to (\alpha \to \gamma))$$

(A3)
$$(((\neg \alpha) \to (\neg \beta)) \to (\beta \to \alpha))$$

4. La única regla de inferencia de L es $Modus\ Ponens$: β es una consecuencia de de α y $\alpha \to \beta$. Abreviaremos la aplicación de está regla usando MP.

1.2 Definición

Como se mencionó en la sección anterior, en el sistema L solo tenemos como operadores a \neg y \rightarrow . Por lo que definimos un nuevo tipo de dato:

$$PLI ::= F \mid v < Indice > \mid (PLI \rightarrow PLI)$$

 $< Indice > ::= [i \mid i \in N]$

Sea $\phi \in \text{PLI}$. La negación de ϕ se define mediante $\neg \phi = (\phi \to F)$

2 Deducción Sistema L

Def. Sean $\phi \in PLI y \Gamma \subset PLI$.

Decimos que ϕ se deduce de Γ en el sistema L, $\Gamma \vdash \phi$ si existe una lista finita de formulas $f_1, f_2, ..., f_n \in \text{PLI}$, tal que:

- $f_n = \phi$
- Para toda $k \in 1,...,n$ se cumplen:
 - $-f_k \in \Gamma$ (premisa)
 - $-\ f_k$ es una instancia de un axioma de L.
 - Existe i, j < k tales que f_k es resultado de aplicar MP a f_i y f_j . (MP i,j)

3 Ejercicios

1. Función que nos dice si una fórmula de PLI cumple el axioma 1

- 2. Función que nos dice si una fórmula de PLI cumple el axioma 2

- Main > esAxL2 (F) 'Imp' ((Var 1) 'Imp' (Var 2))
 False
- $3.\,$ Función que nos dice si una fórmula de PLI cumple el exioma 3

- 4. Función que indica si una fórmula de PLI es una instancia de los axiomas.

```
esAxiomaDeL :: PLI ->Bool
```

 • Main > es Axioma
De L (Var 2) 'Imp' ((Var 3) 'Imp' (Var 2)) True

Función que recibe una tripleta de fórmulas, nos dice si la última fórmula es resultado de hacer MP con las anteriores.

- 5. esModusPonens :: (PLI,PLI,PLI) ->Bool
 - $\bullet\,$ Main > es Modus Ponens (Var 1, ((Var 1) 'Imp' (Var 2)), Var 2) True
- $6.\ {
 m checkPaso}$

Hay que implementar los casos faltantes.

- (a) Prem Debe revisar que la fórmula sea parte de las premisas.
- (b) Ax Debe revisar que la fórmula sea una instancia de un axioma