CS 228 : Logic in Computer Science

S. Krishna

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q,a) = q_1,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q,a) = q_1, \, \delta(\delta(q,a),a) = \delta(q_1,a) = q_2,$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) =$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2, \\ \delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(\delta(\delta(q_1, a), a), b) = \delta(\delta(q_1, a), a), b) = \delta(\delta(\delta(q_1, a), a), b) = \delta(\delta(\delta(q_1, a), a), b) = \delta(\delta(q_1, a), a), b)$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - w = aab
 - $\delta(q, a) = q_1, \, \delta(\delta(q, a), a) = \delta(q_1, a) = q_2,$ $\delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$

- Every state on every symbol goes to a unique state
 - $\delta: Q \times \Sigma \to Q$ is a transition function
- ▶ Given a string $w \in \Sigma^*$ and a state $q \in Q$, iteratively apply δ
 - $\mathbf{w} = aab$
 - $\delta(q, a) = q_1, \ \delta(\delta(q, a), a) = \delta(q_1, a) = q_2, \ \delta(\delta(\delta(q, a), a), b) = \delta(\delta(q_1, a), b) = \delta(q_2, b) = q_3$
 - $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ to strings
 - $\hat{\delta}(q,\epsilon) = q$
 - $\hat{\delta}(q, wa) = \delta(\hat{\delta}(q, w), a)$

DFA: Transition Function on Words

DFA: Transition Function on Words

- $\hat{\delta}(q, wa) = s = \delta(\hat{\delta}(q, w), a) = \delta(r, a)$
- $\hat{\delta}(q, wb) = t = \delta(\hat{\delta}(q, w), b) = \delta(r, b)$

IIT Bombay CS 228 : Logic for CS S. Krishna

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A

DFA Acceptance

- $w \in \Sigma^*$ is accepted iff $\hat{\delta}(q_0, w) \in F$
- $w \in \Sigma^*$ is rejected iff $\hat{\delta}(q_0, w) \notin F$
- ▶ Any string $w \in \Sigma^*$ is either accepted or rejected by a DFA A
- $L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in F \}$
- $ightharpoonup \Sigma^* = L(A) \cup \overline{L(A)}$

Closer Look: DFA

- ▶ Blue state : ϵ , ab, ba, bb, aa, . . .
- ▶ Green state : a, b, aaa, aba, baa, bbb, bba, bab, . . .
- ightharpoonup All words in Σ^* reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

IIT Bombay CS 228 : Logic for CS S. Krishna

Closer Look: DFA

- ▶ state 1 : b*
- ► state 2: b*a, b*aa*, b*aa*(ba)*
- state 3 : b* ab, b* aa* b, b* aa* (ba)* b
- ▶ state 4 : $b^*abb\Sigma^*$, $b^*aa^*bb\Sigma^*$, $b^*aa^*(ba)^*bb\Sigma^*$
- ▶ All words in Σ^* reach a unique state from the initial state
- Words reaching a final state are accepted; all others are rejected

Closer Look: DFA

- Each state is a bucket holding infinitely many words
- ▶ Thus we have good and bad buckets
- ▶ The buckets partition Σ^*
- Good buckets determine the language accepted by the DFA
- Words that land in bad buckets are not accepted by the DFA

▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$

- ▶ $L = \{w \in \{a, b\}^* \mid |w|_a \text{ is odd and } |w|_b \text{ is even}\}$
- ▶ Show that for any $w \in \Sigma^*$,
 - $\hat{\delta}(q_{00}, w) = q_{ij}$ with $i, j \in \{0, 1\}$, parity of i same as $|w|_a$ and parity of j same as $|w|_b$

► Prove by induction on |w|

- ► Prove by induction on |w|
- lacksquare Base case : For $|w|=\epsilon,\, \hat{\delta}(q_{00},\epsilon)=q_{00}$

- ► Prove by induction on |w|
- ▶ Base case : For $|w| = \epsilon$, $\hat{\delta}(q_{00}, \epsilon) = q_{00}$
- ▶ Assume the claim for $x \in \Sigma^*$, and show it for $xc, c \in \{a, b\}$.

 $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$

- $\hat{\delta}(q_{00},xc) = \delta(\hat{\delta}(q_{00},x),c)$
- lacksquare By induction hypothesis, $\hat{\delta}(q_{00},x)=q_{ij}$ iff
 - parity of i and $|x|_a$ are the same
 - parity of j and $|x|_b$ are the same

- ► Case Analysis : If $|x|_a$ odd and $|x|_b$ even, then i = 1, j = 0
 - $\delta(q_{10}, a) = q_{00}, \delta(q_{10}, b) = q_{11}$
 - |xa|_a is even and |xa|_b is even
 - ▶ $|xb|_a$ is odd and $|xb|_b$ is odd
- Other Cases : Similar
- $\hat{\delta}(q_{00}, x) = q_{10}$ iff $|x|_a$ odd and $|x|_b$ even

Closure Properties : DFA

Closure under Complementation

- ▶ If *L* is regular, so is \overline{L}
 - ▶ Let $A = (Q, q_0, \Sigma, \delta, F)$ be the DFA such that L = L(A)
 - For every $w \in L$, $\hat{\delta}(q_0, w) = f$ for some $f \in F$
 - ► For every $w \notin L$, $\hat{\delta}(q_0, w) = q$ for some $q \notin F$
 - ▶ Construct $\overline{A} = (Q, q_0, \Sigma, \delta, Q F)$
 - $w \in L(\overline{A})$ iff $\hat{\delta}(q_0, w) \in Q F$ iff $w \notin L(A)$
 - $L(\overline{A}) = \overline{L(A)}$

aaab

aaab

► aaab

► aaab

▶ aaab

aabba

aabba

aabba

▶ aabba

▶ aabba

aabba

- $A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ▶ $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A) \text{ iff } \hat{\delta}((q_0, s_0), x) \in F$$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$

▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$

- $ightharpoonup A_1 = (Q_1, Σ, δ_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$ iff $\hat{\delta_1}(q_0, x) \in F_1$ and $\hat{\delta_2}(s_0, x) \in F_2$

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$
 - $F = F_1 \times F_2$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x), \hat{\delta}_2(q,x))$

$$x \in L(A)$$
 iff $\hat{\delta}((q_0, s_0), x) \in F$ iff $(\hat{\delta_1}(q_0, x), \hat{\delta_2}(s_0, x)) \in F_1 \times F_2$ iff $\hat{\delta_1}(q_0, x) \in F_1$ and $\hat{\delta_2}(s_0, x) \in F_2$ iff $x \in L(A_1)$ and $x \in L(A_2)$

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- ▶ $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a) = (\delta_1(q,a),\delta_2(s,a))$

Closure under Union

- $All A_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$
- ▶ $A_2 = (Q_2, \Sigma, \delta_2, s_0, F_2)$
- $A = (Q_1 \times Q_2, \Sigma, \delta, (q_0, s_0), F),$
 - $\delta((q,s),a)=(\delta_1(q,a),\delta_2(s,a))$
 - $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$
- ▶ Show that for all $x \in \Sigma^*$, $\hat{\delta}((p,q),x) = (\hat{\delta_1}(p,x), \hat{\delta_2}(q,x))$

$$x \in L(A)$$
 iff $x \in L(A_1)$ or $x \in L(A_2)$

Moving on to Non-determinism

- We looked at DFA
- Showed closure under union, intersection and complementation
- Before we examine closure under concatenation, we look at a more relaxed model, which is as good as a DFA

- Assume we relax the condition on transitions, and allow
 - ▶ $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$

- Assume we relax the condition on transitions, and allow
 - ▶ $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
 - Is aabb accepted?

- Assume we relax the condition on transitions, and allow
 - $\delta: Q \times \Sigma \rightarrow 2^Q$
 - $\delta(q_0, a) = \{q_0, q_1\}, \delta(q_2, a) = \emptyset$
 - Is aabb accepted?

One run of aabb

One run of aabb

One run of aabb

Is aabb accepted?

► A non-accepting run for *aabb*

Is aabb accepted?

► A non-accepting run for aabb

Is aaab accepted?

► A non-accepting run for aaab

Is aaab accepted?

► An accepting run for aaab

Nondeterministic Finite Automata(NFA)

- \triangleright $N = (Q, \Sigma, \delta, Q_0, F)$
 - Q is a finite set of states
 - ▶ $Q_0 \subseteq Q$ is the set of initial states
 - $\delta: Q \times \Sigma \to 2^Q$ is the transition function
 - ▶ $F \subset Q$ is the set of final states
- ► Acceptance condition : A word w is accepted iff it has atleast one accepting path

The Single Run

