Assignment 1

1. For the following distribution, is $A \perp B$ (i.e., A and B are independent)? (33 points)

а	b	P(A=a,B=b)
0	0	0.5
0	1	0.0
1	0	0.0
1	1	0.5

If A & B are independent then any of the following equations hold:

$$P(A|B) = P(A) \equiv$$

 $P(B|A) = P(B) \equiv$
 $P(A,B) = P(A)P(B)$

First, find P(A) and P(B)

$$P(A) = P(A = 1, B = 0) + P(A = 1, B = 1)$$

 $P(A) = 0.0 + 0.5$
 $P(A) = 0.5$
 $P(B) = P(A = 0, B = 1) + P(A = 1, B = 1)$
 $P(B) = 0.0 + 0.5$
 $P(B) = 0.5$

So, to test independence we can take

$$P(A = 1, B = 1) = P(A = 1)P(B = 1)$$

 $0.5 = 0.5 * 0.5$
 $0.5 \neq .25$

Because the test for A=1 and B=1 failed, it is not necessary to test for other values of A and B and we can conclude that A & B are **not** independent.

2. For the following distribution, is A \perp B|C (i.e., A and B are conditionally independent given C)? (33 points)

а	b	С	P(A=a,B=b,C=c)
0	0	0	0.056
0	0	1	0.120
0	1	0	0.224
0	1	1	0.120
1	0	0	0.024
1	0	1	0.180
1	1	0	0.180
1	1	1	0.096

 ${\cal A}$ and ${\cal B}$ are conditionally independent given ${\cal C}$ if any holds:

$$P(A|B,C) = P(A|C) \equiv$$

 $P(B|A,C) = P(B|C) \equiv$
 $P(A,B|C) = P(A|C)P(B|C)$

Using
$$P(A = 1|B = 1, C = 1) = P(A = 1|C = 1)$$
:

$$P(A = 1|B = 1, C = 1) = .096) P(A|C$$

First, find the probabilities of A, B, and C:

$$P(A) = P(A = 1, B = 0, C = 0) + P(A = 1, B = 0, C = 1) + P(A = 1, B = 1, C = 0) + P(A = 1, B = 1, C = 1)$$

 $P(A) = .024 + .180 + .180 + .096 = .48$

$$P(B) = P(A = 0, B = 1, C = 0) + P(A = 0, B = 1, C = 1) + P(A = 1, B = 1, C = 0) + P(A = 1, B = 1, C = 1)$$

 $P(B) = .224 + .120 + .180 + .096 = .62$

$$P(C) = P(A = 0, B = 0, C = 1) + P(A = 0, B = 1, C = 1) + P(A = 1, B = 0, C = 1) + P(A = 1, B = 1, C = 1) \\ P(C) = .12 + .120 + .180 + .096 = .516$$

Now, to test for independence we can test P(A,B|C) = P(A|C)P(B|C)

$$P(A, B|C) = P(A, B, C)/P(C)$$

= .096/.516
= .186

$$P(A|C) = P(A)P(C)/P(C)$$

$$= (.48 * .516)/.516$$

$$= .48$$

$$P(B|C) = P(B) * P(C)/P(C)$$

$$= (.62 * .516)/.516$$

$$= .62$$

$$P(A|C) * P(B|C) = .48 * .62 = .2976$$

.186
eq .2976 so the statement A $_{\perp}$ B|C is **not** true. \$

3. Consider two binary random variables A and B. If A \perp B (i.e., A and B are independent), and P(A = 0, B = 0) = 0.18 and P(A = 1, B = 0) = 0.28, what is the probability of P(A = 0, B = 1)? (34 points)

а	b	P(A=a,B=b)
0	0	0.18
0	1	n.a. (x)
1	0	0.28
1	1	n.a. (<i>y</i>)

From the given probabilities we know:

$$P(B=0) = P(A=0, B=0) + P(A=1, B=0)$$

 $P(B=0) = .18 + .28$
 $P(B=0) = .46$

Hence,

$$P(B = 1) = 1 - P(B = 0)$$

 $P(B = 1) = 1 - .46$
 $P(B = 1) = .54$

Also,

$$P(A) = .28 + y$$

 $P(A, B) = P(A)P(B)$
 $y = P(A).54$
 $y = (.28 + y).54$
 $y = .15 * .54y$
 $.46y = .15$
 $y = .33$

So,

$$P(A = 1) = P(A = 1, B = 0) + P(A = 1, B = 1)$$

$$= .28 + .33$$

$$= .61$$

$$P(A = 0) = 1 - P(A = 1)$$

$$= 1 - .61$$

$$= .39$$

Now, find P(A=0,B=1)

$$P(A = 0, B = 1) = P(A = 0) * P(B = 1)$$

= .39 * .54
= .21