Recurrent Neural Networks: Long short-term memory (LSTM)

Multi-layer perceptrons and (basic) convolutional neural networks are **feed-forward** (no cycles):

 One-directional information flow, one-to-one inputoutput mapping, fixed number of computational steps

Recurrent neural networks have cycles:

- Information flowing back → state / memory of past inputs
- Variable-length inputs and outputs, number of processing steps tied to sequence length
- one-to-many, many-to-one, and many-to-many input-output mappings

Natural language data is inherently sequential, and RNNs can be applied to many NLP tasks:

- Many-to-one: text classification, text generation
- One-to-many: image captioning
- Many-to-many (paired inputs and outputs): part-of-speech tagging, named entity recognition
- Many-to-many (variable-length inputs and outputs): machine translation, dialogue systems, chatbots

Vanilla RNN cell

h0: hidden state for step 0

x1: input for step 1

Whh, Wxh, Why: weights

A: activation function (e.g. tanh)

y1: output

Vanilla RNNs have poor short-term memory and difficulty with long-term dependencies

State h repeatedly "squished" together with inputs by activation function

RNN cell design aiming to alleviate short-term memory issues

Key point: cell state ("memory") passed through unmodified "by default", changes controlled by series of gates

Forget: cell state vector multiplied element-wise by f_t (values in [0,1])

Forget gate activation vector $f_t = \sigma \left(W_f x_t + U_f h_{t-1} \right)$

Input: candidate values \tilde{C}_t scaled by i_t to add to cell state

Input gate activation vector

$$i_t = \sigma \left(W_i x_t + U_i h_{t-1} \right)$$

$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1})$$

Candidate input to cell state

 $-\sigma$ - tanh

Input: candidate values \tilde{C}_t scaled by i_t to add to cell state

$$i_t = \sigma \left(W_i x_t + U_i h_{t-1} \right)$$

$$\tilde{C}_t = \tanh(W_c x_t + U_c h_{t-1})$$

Update: previous state, forget, candidate and input form new state C_t

Output: new state C_t "filtered" element-wise by o_t (values in [0,1])

Output gate activation vector
$$o_t = \sigma \left(W_o x_t + U_o h_{t-1} \right)$$

$$h_t = o_t * \tanh(C_t)$$

Gated recurrent units (GRUs)

Simpler variant of LSTM: fewer parameters, less computation
Drop-in replacement for vanilla RNN / LSTM cells
(Will not be covered in detail here)

Cho et al. (2014) Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation LSTM illustrations from Olah (2015) Understanding LSTM Networks

Resources

Recurrent Neural Networks | Stanford CS 231N https://www.youtube.com/watch?v=6niqTuYFZLQ

Recurrent Neural Networks | MIT 6.S191 https://www.youtube.com/watch?v=SEnXr6v2ifU

Chris Olah: Understanding LSTM Networks https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Michael Nguyen: Illustrated Guide to LSTM's and GRU's: A step by step explanation

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21

Andrej Karpathy: The Unreasonable Effectiveness of Recurrent Neural Networks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/