# 8ZRFVYCXJNW 2TRTYTRD

0^RXYFRYDRTW 1aPFW

#### 2TRTYTRDF 8ZRFVYCXJ^R

2DF XZRAVYLJXDIR<u>FIRLXDPMSTZ</u>XF XJ BRFINAXYLQFR

HNFOAMJn QJ<sub>E</sub> 'õ 6 'E 'õ

#### 2TRTYTRDF 8ZRFVYCXJ^R

2DF XZRAVYLJXDIR<u>FIRLXDP</u>MSTZXF XJ BRFINAXYLQFR

HNFOAMUn QJ<sub>E</sub> 'õ 6 'E 'õ

2DF XZRAVYLJXDLR<u>FIRLXD[^NWDRT</u>ZXF XJ BRF INAXYLQFR

HNFOAMJun QJ<sub>E</sub> 'õ 6 'E 'õ

# Συγκρατήσαμε τίποτα?

$$f(x) = x^2$$

$$f(x) = 1/x$$

Η συνάρτηση f του σχήματος είναι ορισμένη στους πραγματικούς αριθμούς.

Να γράψετε τα διαστήματα μονοτονίας της Να συγκρίνετε τις τιμές

```
f(2) \, \operatorname{kal} \, f(e)
```

f(3) kal  $f(\pi)$ 



Δίνεται η συνάρτηση  $f(x)=x^3+3x-5$ Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Δίνεται η συνάρτηση  $f(x) = x^3 + 3x - 5$ 

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Να συγκρίνετε τις τιμές f(2022) και f(2023)

Δίνεται η συνάρτηση  $f(x) = e^x + \ln x - 1$  Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Δίνεται η συνάρτηση  $f(x)=e^x+\ln x-1$ Να μελετήσετε την συνάρτηση ως προς την μονοτονία Να αποδείξετε ότι: Αν x>1. τότε  $e^x+\ln x>e$ 

Δίνεται η συνάρτηση  $f(x) = e^x + \ln x - 1$ 

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Να αποδείξετε ότι:

An x>1, tóte  $e^x+\ln x>e$  An  $\alpha$ ,  $\beta>0$  kai  $\alpha<\beta$ , tóte  $\ln\frac{\alpha}{\beta}< e^\beta-e^\alpha$ 

Δίνεται η συνάρτηση  $f(x) = e^x + \ln x - 1$ 

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Να αποδείξετε ότι:

An x>1, tóte  $e^x+\ln x>e$  An  $\alpha$ ,  $\beta>0$  kai  $\alpha<\beta$ , tóte  $\ln\frac{\alpha}{\beta}< e^\beta-e^\alpha$  Fia káhe x>0, f(x+1)-f(x)>0

Δίνεται η συνάρτηση  $f(x) = e^x + \ln x - 1$ 

Να μελετήσετε την συνάρτηση ως προς την μονοτονία

Να αποδείξετε ότι:

An x>1, tóte  $e^x+\ln x>e$  An  $\alpha$ ,  $\beta>0$  kai  $\alpha<\beta$ , tóte  $\ln\frac{\alpha}{\beta}< e^\beta-e^\alpha$  Fia káve x>0, f(x+1)-f(x)>0 Fia káve x>0, f(x)< f(2x)

Δίνεται η συνάρτηση  $f(x)=e^x+\ln x-1$  Να μελετήσετε την συνάρτηση ως προς την μονοτονία Να αποδείξετε ότι: Αν x>1, τότε  $e^x+\ln x>e$  Αν  $\alpha$ ,  $\beta>0$  και  $\alpha<\beta$ , τότε  $\ln\frac{\alpha}{\beta}< e^\beta-e^\alpha$  Για κάθε x>0, f(x+1)-f(x)>0

> Για κάθε x > 0, f(x) < f(2x)Για κάθε x > 1,  $f(x^2) > f(x)$

Να βρείτε τις ρίζες και το πρόσημο της συνάρτησης  $f(x) = e^x + 2x - 1$ 

HM'

3F GVJDYJ YNW VDKJW OFN YT UVaXLQT XZRAVYLXĽW '' '7 3F GVJDYJ YT UJIDT TVNXQTb Y^R XZRFY

```
3F GVJDYJ YNW VDKJW OFN YT UVaXLQT
XZRAVYLXĽW "'7
3F GVJDYJ YT UJIDT TVNXQTb Y^R XZRFV
'HM'
```

```
XY^ C¶B QDF XZRAVYLXL L TUTDF JDRFN[MDRTZXF 3F PbXJYJ YNW FRNXcXJNW
```

```
' FR
'<sup>o</sup>7'/7'
```

\*DRJYFN L XZRAVYLXL'7
3F QJPJYCXJYJ YLR XZRAVYLXL ^W UVT\
QTRTYTRDF

\*DRJYFN L XZRAVYLXL'7
3F QJPJYCXJYJ YLR XZRAVYLXL ^W UVT\
QTRTYTRDF
3F PbXJYJ YNW FRNXcXJNW

\*DRJYFN L XZRAVYLXL'7
3F QJPJYCXJYJ YLR XZRAVYLXL ^W UVTVQTRTYTRDF
3F PbXJYJ YNW FRNXcXJNW

```
*DRJYFN L XZRAVYLXL'7
3F QJPJYCXJYJ YLR XZRAVYLXL ^W UVTVQTRTYTRDF
3F PbXJYJ YNW FRNXcXJNW
```

```
*DRJYFN L XZRAVYLŽL'7
3F QJPJYCXJYJ YLR XZRAVYLXL ^W UVTV
QTRTYTRDF
3F PbXJYJ YNW FRNXcXJNW
```

Έστω  $f,g:\mathbb{R} \to \mathbb{R}$  δύο συναρτήσεις με  $g\uparrow$  και

$$g(x) = f(x+1) - f(x)$$
, για κάθε  $x \in \mathbb{R}$ 

Να λύσετε τις ανισώσεις

$$f(\ln x+1)>f(\ln x)$$
 , an  $f(1)=f(2)$   $f(\sqrt{x}+1)f(x+1)< f(\sqrt{x})-f(x)$ 

Έστω  $f,g:\mathbb{R} \to \mathbb{R}$  δύο συναρτήσεις με  $g\uparrow$  και

$$g(x)=f(x+1)-f(x)$$
, για κάθε  $x\in\mathbb{R}$ 

Να λύσετε τις ανισώσεις

$$f(\ln x+1)>f(\ln x)$$
 , and  $f(1)=f(2)$   $f(\sqrt{x}+1)f(x+1)< f(\sqrt{x})-f(x)$ 

Να αποδείξετε ότι

$$f(e^x+1)-f(\eta\mu x+1)>f(e^x)-f(\eta\mu x)$$
, για κάθε  $x>0$ 

Έστω  $f:\mathbb{R}\to\mathbb{R}$  μία συνάρτηση η οποία είναι γνησίως φθίνουσα

Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0

Έστω  $f:\mathbb{R} \to \mathbb{R}$  μία συνάρτηση η οποία είναι γνησίως φθίνουσα

Να δείξετε ότι f(x)+f(7x)>f(3x)+f(10x), για κάθε x>0

Na lúsete thn exíswsh  $f(x)+f(x^3)=f(x^2)+f(x^8)$  , sto  $(0,+\infty)$ 

Έστω  $f,g:\mathbb{R}\to\mathbb{R}$  δύο συναρτήσεις όπου  $g\circ f\downarrow$  και  $g\uparrow$ . Να δείξετε ότι  $f\downarrow$ 

Έστω  $f,g:\mathbb{R}\to\mathbb{R}$  δύο συναρτήσεις όπου  $g\circ f\downarrow$  και  $g\uparrow$ . Να δείξετε ότι  $f\downarrow$ 

Έστω  $f:\mathbb{R} \to \mathbb{R}$  μία συνάρτηση για την οποία ισχύει:

$$f^3(x)+e^{f(x)}-e^{-x}-1=0$$
, για κάθε  $x\in\mathbb{R}$ 

Να εξετάσετε τη συνάρτηση f ως προς τη μονοτνία

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση