Exercícios – 2

Análise Nodal

(adaptados de Engineering Circuit Analysis, Hayt, Kemmerly, Durbin, 8ª Edição, 2012)

1- No circuito da fig. 1, calcule a potência dissipada na resistência de 1Ω . Repare bem nas fontes de corrente; a solução do problema obtém-se mentalmente.

2- Usando a análise nodal, determine as tensões v_1 , v_2 e v_3 no circuito da fig.2.

3- Relativamente ao circuito da fig.3, calcule k de modo a que a tensão v_x seja ∂V .

4- No circuito da fig. 4, calcule a potência fornecida pela fonte dependente.

5- Calcule v_1 no circuito da fig. 5.

6- Relativamente ao circuito da fig. 6 determine cada uma das tensões nodais usando a expressão do divisor de tensão.

- 7- Relativamente ao circuito da fig. 7 calcule, usando a técnica de análise que lhe parecer mais adequada,
- a) i_x .
- **b)** A potência dissipada pela resistência de 1Ω .

8- No circuito da fig.8, para que valor de tensão deverá ser ajustada a fonte de tensão variável V_{dc} de forma a que i_0 seja 0A?

9- No circuito da fig.9, calcule v_x .

10- Assumindo $V_2 = 60V$ no circuito da fig.10, calcule a tensão v_I . Note que a análise deste circuito fica extremamente simples se escolher bem o nó de referência.

Respostas

1-
$$P_{1\Omega} = 1W$$
;

2-
$$v_1 = -8.6V$$
, $v_2 = -3.6V$, $v_3 = -7.6V$;

3-
$$k = 17/8$$
;

4-
$$P_{f6i\Delta} = -2.25W$$
;

5-
$$v_1 = 0.48V$$
;

7- a)
$$i_x = 0A$$
; **b)** $1W$;

8-
$$V_{dc} = -45V$$
;

9-
$$v_x = 0V$$
;

10-
$$v_1 = 50.3V$$
.