

Plano de Ensino

- Apresentação, Expressões Regulares, Gramática Regular.
- Autômatos Finitos Determinísticos.
- Minimização de Autômatos.
- Autômatos Finitos Não-Determinísticos.
- Conversão de AFND para AFD.
- Autômatos Finitos com Movimentos Vazios.
- Conversão de Autômatos AFε para AFND.
- Autômatos com Pilha.
- Máquinas de Turing.

Livro-Texto

- Bibliografia Básica:
 - » MENEZES, Paulo Fernando Blauth. Linguagens Formais e Autômatos. 5º ed. Porto Alegre: Bookman, 2008.
- Bibliografia Complementar:
 - » LEWIS, Ricki. Elementos da Teoria da Computação.
 2ª ed. Porto Alegre: Bookman, 2004.
 - » HOPCROFT, John E; ULLMAN, Jeffrey D; MOTWANI, Rajeev, SOUZA. Introdução a Teoria dos Autômatos, Linguagens e Computação. 1ª ed. São Paulo: CAMPUS, 2003.

6. Autômatos Finitos - AFε

Anhanguera

 Definição: um Autômato Finito com Movimentos Vazios (AFε) é uma 5-upla:

 $M = (\Sigma, Q, \delta, q_0, F)$ onde:

- » $\Sigma \rightarrow$ alfabeto de símbolos de entrada.
- » Q → conjunto de estados possíveis do autômato o qual é finito.
- » δ \rightarrow função programa ou função transição: δ : Qx(Σ \cup ϵ) \rightarrow 2^Q
- » $q_0 \rightarrow$ estado inicial, tal que $q_0 \in Q$.
- » F \rightarrow conjunto de estados finais tal que F \subseteq Q.

_			
6.	Autômatos	Finitos -	٠AF٤

 $\begin{tabular}{ll} \blacksquare & Sabendo-se que δ \'e um grafo finito com movimentos \\ & vazios, supondo que: $\delta(q,a)=\{p_2,...,p_n\}$ e $\delta(q,\epsilon)=\{p_1\}$ \end{tabular}$

6. Autômatos Finitos - AFε

• Exemplo: considere a linguagem L = {w | qualquer símbolo a antecede qualquer símbolo b} e o AF ϵ M = ({a, b}, {q₀, q_i}, δ , q₀, {q_i}) onde δ é como abaixo representado, reconhece L.

δ	а	b	ε
→q ₀	$\{q_{0}\}$	_	$\{q_f\}$
*q,	_	$\{q_f\}$	_

- Função Fecho Vazio (Fε): a função fecho vazio (Fε) é indutivamente definida como segue:
 - » $F\varepsilon(q) = \{q\}$, se $\delta(q, \varepsilon)$ é indefinido;
 - » $F\epsilon(q) = \{q\} \cup \delta(q,\,\epsilon) \cup \delta(\delta(q,\,\epsilon),\,\epsilon) \cup ..., \, \text{caso contrário}.$
- Função Programa Estendida (δ): é a solução indutiva definida como segue:
 - » $\underline{\delta}(q, \epsilon) = F\epsilon(q)$
 - » $\underline{\delta}(q, wa) = F\epsilon(R)$ onde $R = \{r \mid r \in \delta(s, a) \ e \ s \in \underline{\delta}(q, \epsilon)\}$

6. Autômatos Finitos – Conversão AFε → AFND

- A classe dos Autômatos Finitos com Movimentos Vazios é equivalente à classe dos Autômatos Finitos Não-Determinísticos.
- Seja M=(Σ, Q, δ, q₀, F) um AFε qualquer, existe um M'=(Σ, Q, δ', q₀, F') um AFND construído a partir de M como segue:
 - » δ' tal que δ' :Qx $\Sigma \rightarrow 2^Q$ onde $\delta'(q,a) = \underline{\delta}(\{q\},a)$.
 - » F' é o conjunto de todos os estados q pertencentes a Q tal que algum elemento de $F\epsilon(q)\in F.$

6. Autômatos Finitos – Conversão AFε → AFND

• Exemplo 1: dado um AF ϵ M=({a, b}, {q₀, q_f}, δ , q₀, {q_f}). Onde δ é dado pelo grafo abaixo:

- Existe um M'=({a,b}, {q_0, q_f}, $\delta',$ {q_0}, F') equivalente.

- F' é retirado da função Fecho Vazio (Fε).
 - » F'={q₀, q_f}, pois:
 - $\mathsf{F}\epsilon(\mathsf{q}_0) = \{\mathsf{q}_0\} \cup \delta(\mathsf{q}_0,\epsilon) \cup \delta(\delta(\mathsf{q}_0,\epsilon),\epsilon)$
 - $= \{q_0\} \cup \{q_f\} \cup \varnothing$
 - $= \{q_0, q_f\}$
 - $F\epsilon(q_f) = \{q_f\}$
 - » Como todos tem $\{q_f\}$, todos os estados são finais no AFND.

6. Autômatos Finitos – Conversão AFε → AFND

- δ' é retirado da função Programa Estendida (δ).
 - » $\delta'(q_0,\epsilon) = \underline{\delta}(q_0,\epsilon) = F\epsilon(q_0) = \{q_0,\,q_f\}$

 - $\begin{array}{ll} \text{""} \delta \left(\mathsf{H}_0, \epsilon \right) = \mathfrak{Q}(\mathsf{H}_0, \epsilon) & = \iota \, \mathsf{C}(\mathsf{H}_0) \iota \, \mathsf{H}_0 \\ \text{""} \delta \left(\mathsf{H}_0, \mathsf{a} \right) = \underbrace{\delta}(\mathsf{q}_0, \epsilon) & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{f} \in \delta(\mathsf{s}, \mathsf{a}) \in \mathsf{s} \in \underbrace{\delta}(\mathsf{q}_0, \epsilon) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{f} \in \delta(\mathsf{s}, \mathsf{a}) \in \mathsf{s} \in \left(\mathsf{q}_0, \mathsf{q}_1 \right) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \in \delta(\mathsf{q}, \mathsf{a}) \cup \delta(\mathsf{q}_1, \mathsf{a}) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right) = \mathsf{F} \epsilon \left(\mathsf{f} \mid \mathsf{q} \cup \varnothing \right) \right)$
 - $\text{ } \text{ } \text{ } \delta'(q_0,b) = \underline{\delta}(q_0,b) \text{ } = \text{F}\epsilon(\{r \mid r \in \delta(s,\,b) \text{ } e \text{ } s \in \underline{\delta}(q_0,\epsilon)\})$ $= F\epsilon(\{r \mid r \in \delta(s, b) \text{ e } s \in \{q_0, q_f\}\})$
 - $= F\epsilon(\{q_f\}) = \{\boldsymbol{q}_f\}$
 - $\label{eq:delta_f} \text{``} \quad \delta'(q_f,\epsilon) = \underline{\delta}(q_f,\epsilon) \qquad = F\epsilon(q_f) = \{q_f\}$
 - $\begin{array}{ll} \text{ ``} & \delta'(q_f,a) = \underline{\delta}(q_f,a) & = F\epsilon(\{r \mid r \in \delta(s,\,a) \text{ e } s \in \underline{\delta}(q_f,\epsilon)\}) \\ & = F\epsilon(\{r \mid r \in \delta(s,\,a) \text{ e } s \in \{q_f\}\}) \end{array}$

 - = Fε(∅) = Ø
 - $\begin{array}{ll} \text{" } \delta'(q_f,b) = \underline{\delta}(q_f,b) &= F\epsilon(\{r \mid r \in \delta(s,b) \ e \ s \in \underline{\delta}(q_f,\epsilon)\}) \\ &= F\epsilon(\{r \mid r \in \delta(s,b) \ e \ s \in \{q_f\}\}) \\ &= F\epsilon(\{\delta(q_f,b)\}) = F\epsilon(\{q_f\}) = \{q_f\} \end{array}$

6. Autômatos Finitos - Conversão AFε → AFND

• O AF ϵ M = ({a, b}, {q₀, q_f}, δ , q₀, {q_f}), possui um AFND equivalente M'=({a,b}, Q, $\delta',$ {q_0}, {q_0,q_f}), com δ' mostrado abaixo.

δ'	а	b
\rightarrow *q ₀	$\{q_0,q_f\}$	$\{q_f\}$
*q _f	_	$\{q_f\}$

• Exemplo 2: dado um AF ϵ M=({a,b}, {q_0,q_1,q_2}, δ , {q_0}, $\{q_2\}$). Onde δ é dado pelo grafo abaixo:

- Existe um M'=({a,b}, {q_0,q_1,q_2}, $\delta',$ {q_0}, F') equivalente.

6. Autômatos Finitos - Conversão AFε → AFND

- F' é retirado da função Fecho Vazio (Fε).
- » $F'=\{q_0, q_1, q_2\}$, pois:
 - $\mathbf{F} \boldsymbol{\epsilon} (\mathbf{q}_0) = \{\mathbf{q}_0\} \cup \delta(\mathbf{q}_0, \boldsymbol{\epsilon}) \cup \delta(\delta(\mathbf{q}_0, \boldsymbol{\epsilon}), \boldsymbol{\epsilon}) = \{\mathbf{q}_0\} \cup \{\mathbf{q}_1\} \cup \{\mathbf{q}_2\} = \{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}$

 - $F\epsilon(q_1) = \{q_1\} \cup \delta(q_1, \epsilon) =$ = $\{q_1\} \cup \{q_2\}$
 - $= \{\mathbf{q}_1, \, \mathbf{q}_2\}$
 - $F\epsilon(q_2) = \{q_2\}$
 - » Como todos tem $\{q_2\},$ todos os estados são finais no AFND.

6. Autômatos Finitos - Conversão AFε → AFND

- δ' é retirado da função Programa Estendida (δ).
 - $\text{ » } \delta'(q_0,\epsilon) = \underline{\delta}(q_0,\epsilon) \quad = F\epsilon(q_0) = \{q_0,\,q_1,\,q_2\}$
 - ** $\delta(q_0, \epsilon) = \underline{\delta}(q_0, \epsilon) = r_{\epsilon}(q_0) = \{q_0, q_1, q_2\}$ ** $\delta'(q_0, a) = \underline{\delta}(q_0, a) = F_{\epsilon}(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}(q_0, \epsilon)\})$ $= F_{\epsilon}(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}(q_0, q_1, q_2\})\}$ $= F_{\epsilon}(\{\delta_0, q_0, o \in \delta(q_0, a) \in \delta(q_2, a)\})$ $= F_{\epsilon}(\{q_0, q_2\})$ $= F_{\epsilon}(\{q_0, q_2\}) = \{q_0, q_1, q_2\}$ ** $\delta'(q_0, q_1) = \delta(q_0, q_1, q_2)$
 - $\text{ } \text{ } \text{ } \delta'(q_0,b) = \underline{\delta}(q_0,b) \text{ } = \text{F}\epsilon(\{r \mid r \in \delta(s,\,b) \text{ } e \text{ } s \in \underline{\delta}(q_0,\epsilon)\})$

» $\delta'(q_1, \epsilon) = \underline{\delta}(q_1, \epsilon) = F\epsilon(q_1) = \{q_1, q_2\}$

 $\begin{array}{ll} \text{ ``}\delta(q_1,s) = \underbrace{\delta(q_1,a)} & \text{ ``}F\epsilon(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}(q_1,\epsilon)\}) \\ &= F\epsilon(\{r \mid r \in \delta(s, a) \in s \in \underline{\delta}(q_1,\epsilon)\}) \\ &= F\epsilon(\{\delta(q_1, a) \cup \delta(q_2, a)\}) \\ &= F\epsilon(\{\emptyset \cup q_2\}) \\ &= F\epsilon(\{q_2\}) = \{q_2\} \end{array}$

 $\begin{array}{ll} \text{$"$} \delta'(q_1,b) = \underline{\delta}(q_1,b) & = F\epsilon\{\{f \mid f \mid f \in \delta(s,b) \ e \ s \in \underline{\delta}(q_1,\epsilon)\}\} \\ & = F\epsilon\{\{f \mid f \in \delta(s,b) \ e \ s \in \underline{\delta}(q_1,\epsilon)\}\} \\ & = F\epsilon\{\{\delta(q_1,b) \cup \delta(q_2,b)\}\} \\ & = F\epsilon\{\{q_1 \cup \varnothing\}\} \\ & = F\epsilon\{\{q_1, Q_2\}\} \end{array}$

6. Autômatos Finitos – Conversão AFε → AFND

» $\delta'(q_2,\epsilon) = \underline{\delta}(q_2,\epsilon) = F\epsilon(q_2) = \{q_2\}$

 $\begin{array}{ll} \text{""} \delta \left(\mathsf{H}_{2}, \epsilon \right) = \underline{\mathcal{G}}(\mathsf{H}_{2}, \epsilon) & - : \epsilon \left(\mathsf{H}_{2} \right) = \mathsf{H}_{2} \\ \text{""} \delta \left(\mathsf{H}_{2}, \mathsf{a} \right) = \underline{\mathcal{G}}(\mathsf{Q}_{2}, \mathsf{a}) & = \mathsf{F} \epsilon \left(\mathsf{F} \mid \mathsf{F} \in \delta(\mathsf{s}, \mathsf{a}) \in \mathsf{s} \in \underline{\delta}(\mathsf{Q}_{2}, \epsilon) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{F} \mid \mathsf{F} \in \delta(\mathsf{s}, \mathsf{a}) \in \mathsf{s} \in \mathsf{H}_{2} \right) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{F} \left(\mathsf{G}(\mathsf{Q}_{2}, \mathsf{a}) \right) \right) \\ & = \mathsf{F} \epsilon \left(\mathsf{F} \left(\mathsf{Q}_{2} \right) \right) = \mathsf{H}_{2} \\ & = \mathsf{H}_{2} \left(\mathsf{H}_{2} \right) \left(\mathsf{H}_{2} \right) \left(\mathsf{H}_{2} \right) \left(\mathsf{H}_{2} \right) \\ & = \mathsf{H}_{2} \left(\mathsf{H}_{2} \right) \left(\mathsf{H}$

 $\begin{array}{ll} \text{$\scriptscriptstyle \text{N}$} \ \delta'(q_2,b) = \underline{\delta}(q_2,b) = \underline{\delta}(q_2,\epsilon) \\ & = F\epsilon(\{r \mid r \in \delta(s,b) \ e \ s \in \underline{\delta}(q_2,\epsilon)\}) = \\ & = F\epsilon(\{f \mid r \in \delta(s,b) \ e \ s \in \{q_2\}\}) = \\ & = F\epsilon(\{\delta(q_2,b)\}) \\ & = F\epsilon(\{\mathcal{O}\}\} = \mathcal{O} \end{array}$

6. Autômatos Finitos – Conversão AFε → AFND

• O AF ϵ M=({a,b}, {q₀,q₁,q₂}, δ , {q₀}, {q₂}), possui um autômato equivalente M'=({a,b}, {q_0,q_1,q_2}, \delta', {q_0}, $\{q_0,q_1,q_2\}$), com δ' mostrado abaixo.

• Exemplo 3: dado um AF ϵ M=({0,1}, {A,B,C,D}, δ , {A}, $\{C,D\}$). Onde δ é dado pelo grafo abaixo:

• Existe um M'=({0,1}, {A,B,C,D}, $\delta',$ {A}, F') equivalente.

6. Autômatos Finitos - Conversão AFε → AFND

- F' é retirado da função Fecho Vazio (Fε).
 - » $F'=\{A,B,C,D\}$, pois:
 - $F\varepsilon(A) = \{A\} \cup \delta(A,\varepsilon) \cup \delta(\delta(A,\varepsilon),\varepsilon) =$ = $\{A\} \cup \{B\} \cup \{C\}$ = $\{A,B,C\}$
 - $F\varepsilon(B) = \{B\} \cup \delta(B,\varepsilon) = \{B\} \cup \{C\}$
 - = {B,C}
 - $F\epsilon(C) = \{C\}$ • $F\epsilon(D) = \{D\}$

 - » Como todos tem {C} ou {D} na composição dos resultados, todos os estados são finais no AFND.

6. Autômatos Finitos - Conversão AFε → AFND

- δ' é retirado da função Programa Estendida (δ).
 - » $\delta'(A,\epsilon) = \underline{\delta}(A,\epsilon) = F\epsilon(A) = \{A, B, C\}$
 - $\begin{array}{ll} \text{ " } \delta(A,E) = \underline{\delta}(A,E) & = \Gamma \delta(A) & = \Gamma \delta(A,E) \\ \text{ " } \delta'(A,O) = \underline{\delta}(A,O) & = \Gamma \delta(\{f \mid f \in \delta(S,O) \in S \in \underline{\delta}(A,E)\}) \\ & = \Gamma \delta(\{f \mid f \in \delta(S,O) \in S \in \{A,B,C\}\}) \\ & = \Gamma \delta(\{\delta(A,O) \cup \delta(B,O) \cup \delta(C,O)\}) \\ & = \Gamma \delta(\{\delta(A,O) \cup C\}) \\ & = \Gamma \delta(\{\delta(A,O) \cup C\}) \end{array}$
 - - $= F\epsilon(A, C, D)$
 - $= F\epsilon(\{A\}) \cup F\epsilon(\{C\}) \cup F\epsilon(\{D\}) = \{\textbf{A}, \textbf{B}, \textbf{C}, \textbf{D}\}$
 - $$\begin{split} & = F\epsilon((A)) \cup F\epsilon((C)) \cup F\epsilon((D)) = \{A, E\} \\ & = F\epsilon((f \mid f \in \delta(S, 1) \in S \in \underline{\delta}(A, E))) \\ & = F\epsilon((f \mid f \in \delta(S, 1) \in S \in \underline{\delta}(A, E), C))) \\ & = F\epsilon(\delta(A, 1) \cup \delta(B, 1) \cup \delta(C, 1))) \\ & = F\epsilon((\emptyset \cup \{B, D\} \cup \emptyset)) \\ & = F\epsilon(\{B\}) \cup F\epsilon(\{B\}) = \{B, C, D\} \end{split}$$

$\begin{array}{ll} \textbf{6. Autômatos Finitos - Conversão AF} \Rightarrow \textbf{AFND} \\ & \Rightarrow \delta'(\textbf{B}, \epsilon) = \underline{\delta}(\textbf{B}, \epsilon) \\ & \Rightarrow \delta'(\textbf{B}, 0) = \underline{\delta}(\textbf{B}, 0) \\ & \Rightarrow \delta'(\textbf{B}, 0) = \underline{\delta}(\textbf{B}, 0) \\ & = F\epsilon(\{f \mid f \in \delta(\textbf{s}, 0) \in \textbf{s} \in \underline{\delta}(\textbf{B}, \epsilon)\}) \\ & = F\epsilon(\{\delta(\textbf{B}, 0) \cup \delta(\textbf{C}, 0)\}) \\ & = F\epsilon(\{\delta(\textbf{B}, 0) \cup \delta(\textbf{C}, 0)\}) \\ & = F\epsilon(\{(\textbf{C}, \textbf{D})\}) \\ & = F\epsilon(\{\textbf{C}, \textbf{D}\}) \\ & = F\epsilon(\{(\textbf{C}, \textbf{D})\}) \\ & = F\epsilon(\{(\textbf{C}, \textbf{D})\}) \\ & = F\epsilon(\{(\textbf{C}, \textbf{D})\}) \\ & = F\epsilon(\{f \mid f \in \delta(\textbf{s}, 1) \in \textbf{s} \in \underline{\delta}(\textbf{B}, \epsilon)\}) \\ & = F\epsilon(\{(\textbf{B}, \textbf{B}, 1) \cup \delta(\textbf{C}, 1)\}) \\ & = F\epsilon(\{(\textbf{B}, \textbf{D}) \cup \delta(\textbf{C}, 1)\}) \\ & = F\epsilon(\{(\textbf{B}, \textbf{D}) \cup \textbf{C}\}) \\ & = F\epsilon(\{(\textbf{B}, \textbf{D}) \cup \textbf{C}\})$

6. Autômatos Finitos — Conversão AF ϵ \rightarrow AFND ** $\delta'(C,\epsilon) = \underline{\delta}(C,\epsilon) = F\epsilon(C) = \{C\}$ ** $\delta'(C,0) = \underline{\delta}(C,0) = F\epsilon(\{r \mid r \in \delta(s,0) \in s \in \underline{\delta}(C,\epsilon)\}) = F\epsilon(\{r \mid r \in \delta(s,0) \in s \in C\}\}) = F\epsilon(\{\delta(C,0)\}) = F\epsilon(\{C\}) = \{C\}$ ** $\delta'(C,1) = \underline{\delta}(C,1) = F\epsilon(\{r \mid r \in \delta(s,1) \in s \in \underline{\delta}(C,\epsilon)\}) = F\epsilon(\{\delta(C,1)\}) = \mathcal{O}$

6. Autômatos Finitos – Conversão AFε → AFND • O AF ϵ M=({0,1}, {A,B,C,D}, δ , {A}, {C,D}), possui um autômato equivalente M'=({0,1}, {A,B,C,D}, δ' , {A}, $\{A,B,C,D\}$), com δ' mostrado abaixo. δ' 0 С 0,1 **→***A $\{A,B,C,D\}$ $\{B,C,D\}$ 0,1 В *B {C,D} $\{B,C,D\}$ *C {C} *D {D}

