Package 'mig'

July 14, 2024

```
Type Package
```

Title Multivariate Inverse Gaussian Distribution

Version 1.0

Description Provides utilities for estimation for the multivariate inverse Gaussian distribution of Minami (2003) <doi:10.1081/STA-120025379>, including random vector generation and explicit estimators of the location vector and scale matrix. The package implements kernel density estimators discussed in Belzile, Desgagnes, Genest and Ouimet (2024) <doi:10.48550/arXiv.2209.04757> for smoothing multivariate data on half-spaces.

```
BugReports https://github.com/lbelzile/mig/issues
```

Imports statmod, TruncatedNormal (>= 2.3), Rcpp (>= 1.0.12)

Depends R (>= 2.10)

Suggests numDeriv, tinytest, knitr, rmarkdown, minqa

LinkingTo Rcpp, RcppArmadillo

Encoding UTF-8

LazyData true

License MIT + file LICENSE

VignetteBuilder knitr

RoxygenNote 7.3.2

NeedsCompilation yes

Author Frederic Ouimet [aut] (https://orcid.org/0000-0001-7933-5265), Leo Belzile [aut, cre] (https://orcid.org/0000-0002-9135-014X)

Maintainer Leo Belzile <belzilel@gmail.com>

Repository CRAN

Date/Publication 2024-07-14 12:30:02 UTC

2 dmig

Contents

dmig	. 2
fit_mig	. 3
geomagnetic	. 4
mig_kdens	. 5
mig_kdens_bandwidth	. 5
mig_lev	. 7
mig_rlcv	. 7

Index 8

dmig

Multivariate inverse Gaussian distribution

Description

The density of the MIG model is

$$f(\boldsymbol{x} + \boldsymbol{a}) = (2\pi)^{-d/2} \boldsymbol{\beta}^{\top} \boldsymbol{\xi} |\boldsymbol{\Omega}|^{-1/2} (\boldsymbol{\beta}^{\top} \boldsymbol{x})^{-(1+d/2)} \exp \left\{ -\frac{(\boldsymbol{x} - \boldsymbol{\xi})^{\top} \boldsymbol{\Omega}^{-1} (\boldsymbol{x} - \boldsymbol{\xi})}{2\boldsymbol{\beta}^{\top} \boldsymbol{x}} \right\}$$

for points in the d-dimensional half-space $\{ {m x} \in \mathbb{R}^d : {m \beta}^{ op}({m x} - {m a}) \geq 0 \}$

n by d matrix of quantiles

Usage

```
dmig(x, xi, Omega, beta, shift, log = FALSE)
rmig(n, xi, Omega, beta, shift, method = c("invsim", "bm"), timeinc = 0.001)
pmig(q, xi, Omega, beta, log = FALSE, method = c("sov", "mc"), B = 10000L)
```

Arguments ×

	y 1
xi	d vector of location parameters $\boldsymbol{\xi}$, giving the expected value
Omega	d by d positive definite scale matrix Ω
beta	d vector $\boldsymbol{\beta}$ defining the half-space through $\boldsymbol{\beta}^{\top}\boldsymbol{\xi}>0$
shift	d translation for the half-space $oldsymbol{a}$
log	logical; if TRUE, returns log probabilities
n	number of observations
method	string; one of inverse system (invsim, default), Brownian motion (bm)
timeinc	time increment for multivariate simulation algorithm based on the hitting time of Brownian motion, default to $1e-3$.
q	n by d matrix of quantiles
В	number of Monte Carlo replications for the SOV estimator

fit_mig 3

Details

Observations are generated using the representation as the first hitting time of a hyperplane of a correlated Brownian motion.

Value

```
for dmig, the (log)-density
for rmig, an n vector if d=1 (univariate) or an n by d matrix if d > 1
an n vector of (log) probabilities
```

Author(s)

```
Frederic Ouimet (bm), Leo Belzile (invsim)
Leo Belzile
```

Examples

```
# Density evaluation
x \leftarrow rbind(c(1, 2), c(2,3), c(0,-1))
beta <- c(1, 0)
xi <- c(1, 1)
Omega <- matrix(c(2, -1, -1, 2), nrow = 2, ncol = 2)
dmig(x, xi = xi, Omega = Omega, beta = beta)
# Random number generation
d <- 5L
beta <- runif(d)
xi <- rexp(d)
Omega <- matrix(0.5, d, d) + diag(d)
samp <- rmig(n = 1000, beta = beta, xi = xi, Omega = Omega)</pre>
mle <- fit_mig(samp, beta = beta, method = "mle")</pre>
set.seed(1234)
d <- 2L
beta <- runif(d)</pre>
Omega <- rWishart(n = 1, df = 2*d, Sigma = matrix(0.5, d, d) + diag(d))[,,1]
xi <- rexp(d)</pre>
q <- mig::rmig(n = 10, beta = beta, Omega = Omega, xi = xi)
pmig(q, xi = xi, beta = beta, Omega = Omega)
```

fit_mig

Fit multivariate inverse Gaussian distribution

Description

Fit multivariate inverse Gaussian distribution

Usage

```
fit_mig(x, beta, method = c("mle", "mom"), shift)
```

4 geomagnetic

Arguments

x n by d matrix of quantiles

beta d vector $\boldsymbol{\beta}$ defining the half-space through $\boldsymbol{\beta}^{\top} \boldsymbol{\xi} > 0$

method string, one of mle for maximum likelihood estimation, or mom for method of

moments.

shift d translation for the half-space a

Value

a list with components:

• xi: estimate of the expectation or location vector

• Omega: estimate of the scale matrix

geomagnetic Magnetic storms

Description

Absolute magnitude of 373 geomagnetic storms lasting more than 48h with absolute magnitude (dst) larger than 100 in 1957-2014.

Format

a vector of size 373

Note

For a detailed article presenting the derivation of the Dst index, see http://wdc.kugi.kyoto-u.ac.jp/dstdir/dst2/onDs

Source

Aki Vehtari

References

World Data Center for Geomagnetism, Kyoto, M. Nose, T. Iyemori, M. Sugiura, T. Kamei (2015), *Geomagnetic Dst index*, doi:10.17593/14515-74000.

mig_kdens 5

mig_kdens	Multivariate inverse Gaussian kernel density estimator

Description

Given a matrix of new observations, compute the density of the multivariate inverse Gaussian mixture defined by assigning equal weight to each component where ξ is the location parameter.

Usage

```
mig_kdens(x, newdata, Omega, beta, log = FALSE)
```

Arguments

x n by d matrix of quantiles newdata matrix of new observations at which to evaluated the kernel density Omega d by d positive definite scale matrix Ω beta d vector $\boldsymbol{\beta}$ defining the half-space through $\boldsymbol{\beta}^{\top}\boldsymbol{\xi}>0$

log logical; if TRUE, returns log probabilities

Value

value of the (log)-density at newdata

mig_kdens_bandwidth Optimal scale matrix for MIG kernel density estimation

Description

Given an n sample from a multivariate inverse Gaussian distribution on the half-space defined by $\{x \in \mathbb{R}^d : \boldsymbol{\beta}^\top x > 0\}$, the function computes the bandwidth (type="isotropic") or scale matrix that minimizes the asymptotic mean integrated squared error away from the boundary. The latter depend on the true unknown density, which is replaced using as plug-in a MIG distribution evaluated at the maximum likelihood estimator. The integral or the integrated squared error are obtained by Monte Carlo integration with N simulations

Usage

```
mig_kdens_bandwidth(
    x,
    beta,
    shift,
    method = c("amise", "lcv", "lscv", "rlcv"),
    type = c("isotropic", "full"),
```

```
approx = c("mig", "tnorm"),
  transformation = c("none", "scaling", "spherical"),
  N = 10000L,
  buffer = 0.25,
  pointwise = NULL,
  maxiter = 2000L,
  ...
)
```

Arguments

x an n by d matrix of observationsbeta d vector defining the half-space

shift location vector for translating the half-space. If missing, defaults to zero

method estimation criterion, either amise for the expression that minimizes the asymp-

totic integrated squared error, lcv for likelihood (leave-one-out) cross-validation, lscv for least-square cross-validation or rlcv for robust cross validation of Wu

(2019)

type string indicating whether to compute an isotropic model or estimate the optimal

scale matrix via optimization

approx string; distribution to approximate the true density function f(x); either mig for

multivariate inverse Gaussian, or tnorm for truncated Gaussian.

transformation string for optional scaling of the data before computing the bandwidth. Either

standardization to unit variance scaling, spherical transformation to unit vari-

ance and zero correlation (spherical), or none (default).

N integer number of simulations to evaluate the integrals of the MISE by Monte

Carlo

buffer double indicating the buffer from the halfspace

pointwise if NULL, evaluates the mean integrated squared error, otherwise a d vector to

evaluate the bandwidth or scale pointwise

maxiter integer; max number of iterations in the call to optim.

... additional parameters, currently ignored

Value

a d by d scale matrix

References

Wu, X. (2019). Robust likelihood cross-validation for kernel density estimation. *Journal of Business & Economic Statistics*, 37(4), 761–770. doi:10.1080/07350015.2018.1424633 Bowman, A.W. (1984). An alternative method of cross-validation for the smoothing of density estimates, *Biometrika*, 71(2), 353–360. doi:10.1093/biomet/71.2.353 Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. *Scandinavian Journal of Statistics*, 9(2), 65–78. http://www.jstor.org/stable/4615859

mig_lcv 7

mig_lcv	Likelihood cross-validation for kernel density estimation with MIG	

Description

Given a data matrix over a half-space defined by beta, compute the log density using leave-one-out cross validation, taking in turn an observation as location vector and computing the density of the resulting mixture.

Usage

```
mig_lcv(x, beta, Omega)
```

Arguments

x n by d matrix of quantiles

beta d vector $\boldsymbol{\beta}$ defining the half-space through $\boldsymbol{\beta}^{\top} \boldsymbol{\xi} > 0$

Omega d by d positive definite scale matrix Ω

Value

the value of the likelihood cross-validation criterion

mig_rlcv	Robust likelihood cross-validation for kernel density estimation

Description

Given a data matrix over a half-space defined by beta, compute the log density using leave-one-out cross validation, taking in turn an observation as location vector and computing the density of the resulting mixture.

Usage

```
mig_rlcv(x, beta, Omega, xsamp, dxsamp)
```

Arguments

X	n by c	matrix	of quantiles
---	--------	--------	--------------

beta d vector $\boldsymbol{\beta}$ defining the half-space through $\boldsymbol{\beta}^{\top} \boldsymbol{\xi} > 0$

Omega d by d positive definite scale matrix Ω

xsamp matrix of points at which to evaluate the integral

dxsamp density of points

Value

the value of the likelihood cross-validation criterion

Index

```
dmig, 2
fit_mig, 3
geomagnetic, 4
mig_kdens, 5
mig_kdens_bandwidth, 5
mig_lcv, 7
mig_rlcv, 7
pmig (dmig), 2
rmig (dmig), 2
```