```
. טענה: תהיינה A,B בת מנייה אזיA\cup B בת מנייה מנייה
                                                                      . טענה: תהיינה A_1 \ldots A_n קבוצות בנות מנייה אזי\bigcup_{i=1}^n A_i בת מנייה
טענה: תהא \langle f_n \mid n \in \mathbb{N} 
angle חדרת פונקציות באשר או בת מנייה לכל A_i סדרת פונקציות באשר או סענה:
                                                                            על לכל n\in\mathbb{N} אזי סופית או בת מנייה. f_n:\mathbb{N}	o A_n
                                                     A 	imes B = \{\langle a,b \rangle \mid (a \in A) \wedge (b \in B)\} מכפלה קרטזית: תהיינה A,B קבוצות אזי
                                                                                       טענה: תהיינה A,B בת מנייה אזי A \times B טענה:
                                                                       . בת מנייה A_1 \times \ldots \times A_n בנות מנייה אזיA_1 \ldots A_n בת מנייה
                                                                                                           A^1=A הגדרה: תהא A קבוצה אזי
                                                                                 A^n=A	imes A^{n-1} אזי n\in\mathbb{N}_+ ויהי קבוצה A הגדרה: תהא
                                                                                                                       .טענה: \bigcup_{n=1}^{\infty} \mathbb{N}^n בת מנייה
                                                                                                           |\{A \subseteq \mathbb{N} \mid A\}| = \aleph_0 מסקנה: |\{A \subseteq \mathbb{N} \mid A\}|
                                                                                                                                   |\mathbb{Z}|=leph_0 :טענה
                                                                                                                                   |\mathbb{Q}|=\aleph_0 :טענה
                                                                      p\left(a
ight)=0 מספר אלגברי: מספר a\in\mathbb{C} עבורו קיים a\in\mathbb{C} מספר
                                                                 p\left(a
ight)
eq0 מתקיים p\in\mathbb{Z}\left[x
ight] עבורו לכל a\in\mathbb{C} מספר מספר מספר
                                                                                                     |\{a\in\mathbb{C}\mid A אלגברי a\}|=leph_0 משפט קנטור:
                                                                       יחס סדר חלקי/חלש: תהא A קבוצה ויהי A אזי A באשר יחס סדר חלקי/חלש:
                                                                                                     x \preccurlyeq x אזי x \in A יהי •
                                                                  x \preccurlyeq z אזי y \preccurlyeq z וכן x \preccurlyeq y עבורם x,y,z \in A אזי יהיו x \preccurlyeq y
                                                        x=y אזי y \preccurlyeq x וכן x \preccurlyeq y עבורם x,y \in A אזי יהיו חלשה: x = y אנטי סימטריות חלשה:
                                                                               יחס סדר חזק: תהא A קבוצה ויהי A^2 אזי A באשר יחס סדר חזק: תהא
                                                                                          \neg \left( x \prec x \right) אזי אזי יהי יהי פלקסיביות: •
                                                                 x\prec z אזי y\prec z וכן x\prec y עבורם x,y,z\in A אזי יהיו
                                                                 \neg (y \prec x) אזי x \prec y עבורם x,y \in A יהיו חזקה: \bullet
                                   (x\preccurlyeq y)\lor(y\preccurlyeq x) מתקיים x,y\in A אבורו לכל (A,\preccurlyeq) עבורו יחס סדר אלקי
                               (x \prec y) \lor (y \prec x) \lor (x = y) מתקיים x, y \in A עבורו לכל (x, x) \lor (x \prec y) \lor (x \prec y) יחס סדר חזק:
                                                                                                            טענה: \langle \mathbb{N}, <_{\mathbb{N}} \rangle יחס סדר קווי חלקי.
                                                                                       . יחס סדר חלקי \langle \mathcal{P}\left(A\right),\subseteq \rangle יחס סדר חלקי ענה: תהא
(aRb) \Longleftrightarrow (f(a)Sf(b)) מתקיים a,b \in A מתקיים (A,R), \langle B,S \rangle מדרים אזי (A,R), \langle B,S \rangle מתקיים
                                   . סדרים הפיכה \pi:A 	o B הפימת \langle A,R \rangle, עבורם סדרים הפיכה שומרת הפיכה \pi:A 	o B
                                                                    \langle A,R \rangle \simeq \langle B,S \rangle איזומורפיים איזו סדרים \langle A,R \rangle , \langle B,S \rangle סדרים איזומורפיים
```

 $|X| \leq |Y|$ חח"ע אזי f: X o Y הגדרה: תהיינה X, Y קבוצות ותהא $Y \mapsto f: X \to Y$ חח"ע ועל אזי |X| = |Y| הגדרה: תהיינה $X, Y \mapsto X$

|X|<|Y| אזי אזי $|X|\neq |Y|$ וכן $|X|\leq |Y|$ אזי קבוצות עבורן אזי |X|<|Y|

 $|A|=|\{0,\ldots,n-1\}|$ המקיים $n\in\mathbb{N}$ עבורה עבורה עבורה חופית:

 $.|A| = |\{0,\dots,n-1\}|$ המקיים $n \in \mathbb{N}$ קיים לא עבורה עבוצה קבוצה אינסופית:

טענה: תהא B סופית או בת מנייה תהא f:A o B ותהא קבוצה ותהא מנייה מנייה מנייה מנייה

|X|=|Y| אאי $|Y|\leq |X|$ וכן $|X|\leq |Y|$ אאי און |X|=|X| משפט קנטור־שרדר־ברנשטיין (קש"ב): תהיינה

 $|X| \neq |Y|$ אזי $\neg (|X| = |Y|)$ איזי קבוצות עבורן תהיינה X,Y איזי

טענה: תהא B בת מנייה ותהא $B\subseteq A$ אינסופית אזי B בת מנייה. מסקנה: תהא A בת מנייה ותהא $B\subseteq A$ אזי B סופית או בת מנייה.

X העוצמה של |X| העוצמה של

 $|X|=leph_0$ קבוצה X עבורה מנייה: קבוצה בת מנייה

 $|\{0,\ldots,n-1\}|=n$ אזי $n\in\mathbb{N}$ סימון: יהי

סימון: $|\mathbb{N}|=0$ %.

```
(aRb) \lor (a=b) מתקיים b \in A מתקיים a \in A עבורו קיים a \in A עבורו קיים a \in A מתקיים סדר קווי
                                                                      \min(A) = a אזי a \in A איבר ראשון בעל איבר קווי בעל אדר קווי אזי \langle A, R \rangle יהי
        . טענה: יהי \langle B,S \rangle אזי \langle B,S \rangle אזי איבר ראשון ויהי \langle B,S \rangle סדר קווי באשר סענה: יהי \langle A,R \rangle \simeq \langle B,S \rangle סדר איבר ראשון ויהי
       (aRb) \lor (a=b) מתקיים a \in A מתקיים b \in A מתקיים סדר קווי \langle A,R \rangle עבורו קיים a \in A באשר לכל
                                                                      \max(A) = a אזי a \in A אזיבר אחרון בעל איבר סדר קווי בעל איבר (A, R) מימון: יהי
         . טענה: אזי \langle B,S \rangle אזי אזי איבר אחרון ויהי יבעל איבר אחרון איבר אחרון ויהי יהי אוי סענה: יהי יהי אוי בעל איבר אחרון ויהי
                         zRy וכן xRz עבורו z\in A קיים xRy המקיימים xRy המקיימים עבורו z\in A עבורו וכן אינור z\in A
                                      טענה: יהי \langle A,R
angle\simeq \langle B,S
angle סדר קווי באשר \langle B,S
angle אזי \langle B,S
angle צפוף.
                                                                     טענה: \langle \mathbb{Q}, \leq_{\mathbb{Q}} \rangle סדר קווי חלקי צפוף ללא איבר ראשון וללא איבר אחרון.
                                                                                                                         \mathbb{N}, \leq_{\mathbb{N}} \not\simeq \langle \mathbb{Q}, \leq_{\mathbb{Q}} \rangle מסקנה:
      \langle A, \preccurlyeq 
angle \simeq \langle \mathbb{Q}, \leq_{\mathbb{Q}} 
angle אזי |A| = leph_0 משפט קנטור: יהי \langle A, \preccurlyeq 
angle סדר קווי חלקי צפוף ללא איבר ראשון וללא איבר אחרון באשר
       \langle A, \prec 
angle \simeq \langle \mathbb{Q}, <_{\mathbb{Q}} 
angle אזי משפט קנטור: יהי \langle A, \prec 
angle סדר קווי חזק צפוף ללא איבר ראשון וללא איבר אחרון באשר משפט קנטור: משפט קנטור:
                            (xRa) \lor (x=a) מתקיים x \in X מתקיים X \subseteq A אזי X \subseteq A מדר קווי ותהא A \subseteq A
                                                   \overline{B}_X = \{a \in A \mid X סדר קווי ותהא X \subseteq A אזי X \subseteq A סדר קווי ותהא סימון: יהי
                                                                    \overline{B}_X 
eq \emptyset עבורה X \subseteq A אזי אזי X \subseteq A סדר קווי אזי יהי
                            (xRa) \lor (x=a) מתקיים x \in X מתקיים מלרע: יהי אזי X \subseteq A אזי אזי תהא X \subseteq A מחסם מלרע: יהי
                                                    \underline{B}_X = \{a \in A \mid X סדר קווי ותהא X \subseteq A אזי ותהא סדר קווי יהי לא סדר קווי ותהא סדר אזי אזי לימון: יהי
                                                                     \underline{B}_X 
eq \emptyset עבורה X \subseteq A אזי אזי X \subseteq A סדר קווי אזי יהי יהי מלרע: יהי
                                                            . סדר חסם מלרע חסם מלרע חסם מלרע אזי איזי X\subseteq A סדר קווי אזי \langle A,R \rangle יהי
                                                                      \operatorname{sup}(X) = \min\left(\overline{B}_X\right) אזי X \subseteq A אדר קווי ותהא A, R סדר קווי ותהא
                                                                       \inf\left(X
ight)=\max\left(\underline{B}_{X}
ight) אזי אזי X\subseteq A סדר קווי ותהא אוי לאזי \langle A,R
angle
                                                    \operatorname{sup}\left(X
ight) אינים סדר קווי אלם: סדר קווי \left\langle A,R
ight
angle עבורו לכל
                             (\sup(X),\inf(X),\inf(X)) סדר קווי אזי איי שלם)(A,R) סדר שלם) סטענה: יהי
            המקיים \langle L,\sqsubseteq \rangle סדר הוון אזי סדר ללא איבר האשון וללא איבר איבר חלקי: יהי הי\langle P,\preccurlyeq \rangle סדר הווי חלקי ללא איבר השוו וללא איבר איבר חלקי: יהי
                                                                                                                                            .P \subseteq L \bullet
                                                                                             (x \preccurlyeq y) \Longleftrightarrow (x \sqsubseteq y) מתקיים x, y \in P לכל
                                                                              . סדר קווי שלם ללא איבר ראשון וללא איבר אחרון. \langle L, \Box \rangle
                                                                                                                          \langle L, \sqsubseteq \rangle צפוף ב־ \langle P, \preccurlyeq \rangle \bullet
משפט יחידות השלמה: יהי \langle P, \preccurlyeq \rangle סדר קווי חלקי צפוף ללא איבר ראשון וללא איבר אחרון ותהיינה \langle P, \preccurlyeq \rangle סדר סדר קווי חלקי צפוף איבר ראשון ולא איבר אחרון ותהיינה משפט יחידות השלמה:
                                                                                    p \in P לכל \pi\left(p\right) = p עבורו \pi: L 	o L^* לכל
                      משפט קיום השלמה: יהי \langle P, \preccurlyeq 
angle סדר קווי חלקי צפוף ללא איבר ראשון וללא איבר אחרון אזי קיימת לו השלמה.
                                                    באשר \langle A,B \rangle אזי אזי A,B \subseteq P ויהיו חלקי ויהיו סדר קווי אזי אזי \langle P,\preccurlyeq \rangle באשר התך דדקינד: יהי
                                                                                                                                      A \cap B = \emptyset •
                                                                                                                                      A \cup B = P \bullet
                                                                                                     a \preccurlyeq b מתקיים b \in B ולכל •
                                                                                                                       ללא איבר אחרון. \langle A, \preccurlyeq \rangle
```

 $[p] = \langle (-\infty,p)\,,[p,\infty)
angle$ אזי $p\in P$ ויהי חלקי חלקי סדר קווי חלקי יהי אזי $\langle P,\preccurlyeq\rangle$

.Ded $(P)=\{\langle A,B\rangle \mid$ חתך דדקינד $\langle A,B\rangle \}$ סדר קווי חלקי אזי מימון: יהי $\langle P,\preccurlyeq \rangle$

 $\langle A,B \rangle \preccurlyeq \langle C,D
angle$ אזי $A \subseteq C$ חתכי דדקינג באשר $\langle A,B
angle, \langle C,D
angle$ וויהיו חלקי ויהיו אזי $\langle A,B
angle \preccurlyeq \langle C,D
angle$ אזי

טענה: יהי $\langle P, \preccurlyeq \rangle$ סדר קווי חלקי ויהי $p \in P$ אזי $\langle P, \preccurlyeq \rangle$ חתך דדקינד.

 $.\langle\{[p]\mid p\in P\}\,,\preccurlyeq\rangle\simeq\langle P,\preccurlyeq\rangle$ טענה: יהי יהי יהי סדר קווי חלקי אזי יהי ענה: יהי יהי ערה פחתכי בהתאמה מעל בתור שיכון של $P,\preccurlyeq\rangle$ בחתכי הדדקינד שלה.

טענה: יהי $\langle \mathrm{Ded}\,(P)\,,\preccurlyeq \rangle$ סדר קווי חלקי אזי סענה: יהי $\langle P, \preccurlyeq \rangle$ סדר קווי חלקי אזי סענה: יהי $\langle P, \preccurlyeq \rangle$ סדר קווי חלקי אזי $\langle \mathrm{Ded}\,(P)\,, \preccurlyeq \rangle$

```
\mathcal{C}=igcap_{i=0}^\infty C_i אזי n\in\mathbb{N} לכל C_{n+1}=\left(rac{1}{3}C_n
ight)\cup\left(rac{2}{3}+rac{1}{3}C_n
ight) ונגדיר ונגדיר C_0=[0,1] לכל
                                                                                                                           .(\mathcal{C},<_{\mathbb{R}})\simeq\left(^{\mathbb{N}}\left\{ 0,1
ight\} ,<_{\mathsf{lex}}
ight) טענה:
|A\cup B|=|C\cup D| אזי און |B|=|D| וכן |A|=|C| סענה: תהיינה |A\cup B|=|C\cup D| אזי אזי ותהיינה לבוצות ארות ותהיינה
                                                                                    |A|+|B|=|A\cup B| הגדרה: תהיינה A,B קבוצות זרות אזי
                                                                                                              |A \times \{0\}| = |A| טענה: תהא A קבוצה אזי
                                                            |A| + |B| = |A \times \{0\}| + |B \times \{1\}| הגדרה חיבור: תהיינה A, B קבוצות אזי
                                      |A \times B| = |C \times D| אזי |B| = |D| וכן |A| = |C| אזי |A, B, C, D| טענה: תהיינה
                                                                                       |A|\cdot |B| = |A	imes B| הגדרה כפל: תהיינה A,B קבוצות אזי
                                                                            |A|=\kappa עבורה עבורה קבוצה אם קיימת עוצמה א היא עוצמה הערה: נאמר כי היא אוצמה אם היא
                                                                                                                   \kappa + \kappa = 2 \cdot \kappa טענה: תהא א עוצמה אזי \kappa
                                                                                   \kappa \cdot (\lambda + \mu) = \kappa \cdot \lambda + \kappa \cdot \mu טענה: תהיינה \kappa, \lambda, \mu עוצמות אזי
                                                                                       A = \{f \mid f: B \to A\} הגדרה: תהיינה A, B קבוצות אזי
                                               |BA| = |DC| אזי אזי |B| = |D| וכן וכן |A| = |C| אזי אזי |A,B,C,D|
                                                                                                     |A|^{|B|}=|^BA| הגדרה: תהיינה A,B קבוצות אזי
                                                                                                                                                 |\mathbb{R}|=2^{\aleph_0} מסקנה:
                                                                                                                       \kappa \cdot \kappa = \kappa^2 טענה: תהא א עוצמה אזי
                          (\kappa \cdot \lambda)^{\mu} = (\kappa^{\mu}) \cdot (\lambda^{\mu}) וכן (\kappa^{\lambda})^{\mu} = \kappa^{(\lambda \cdot \mu)} וכן \kappa^{(\lambda + \mu)} = \kappa^{\lambda} \cdot \kappa^{\mu} עוצמות אזי \kappa, \lambda, \mu וכן \kappa, \lambda, \mu
                                                                                             .\aleph_0+\aleph_0=\aleph_0 וכן אזי n\in\mathbb{N} וכן n\in\mathbb{N} יהי אזי יהי
                                                                                              \aleph_0\cdot\aleph_0=\aleph_0 טענה: יהי n\in\mathbb{N}_+ אזי n\in\mathbb{N}_+ וכן וכן
                                                                                                                             \aleph_0^n=leph_0 אזי n\in\mathbb{N}_+ טענה: יהי
                                                       2^{\aleph_0}+2^{\aleph_0}=2^{\aleph_0} וכן 2^{\aleph_0}+\aleph_0=2^{\aleph_0} וכן 2^{\aleph_0}+n=2^{\aleph_0} אזי n\in\mathbb{N} טענה: יהי
                                                          2^{\aleph_0}\cdot 2^{\aleph_0}=2^{\aleph_0} וכן 2^{\aleph_0}\cdot \aleph_0=2^{\aleph_0} וכן 2^{\aleph_0}\cdot n=2^{\aleph_0} אזי n\in\mathbb{N}_+ יהי יהי n\in\mathbb{N}_+
                                                                                        (2^{\aleph_0})^{\aleph_0}=2^{\aleph_0} וכן (2^{\aleph_0})^n=2^{\aleph_0} אזי n\in\mathbb{N}_+ יהי יהי יהי
                                                                                                 \mathfrak{K}_0^{leph_0}=2^{leph_0} וכן n^{leph_0}=2^{leph_0} אזי n\in\mathbb{N}_{\geq 2} יהי יהי
                                                                                                                                        (2^{\aleph_0})^{\left(2^{\aleph_0}\right)} > 2^{\aleph_0} :טענה
                                          |\mathbb{N}\mathbb{N}|=2^{\aleph_0} וכן |\mathbb{N}	o\mathbb{R}|=2^{\aleph_0} וכן וכן |\mathbb{C}|=2^{\aleph_0} וכן |\mathbb{R}^n|=2^{\aleph_0} אזי n\in\mathbb{N}_+ יהי וכן
                                          |B \backslash A| = 2^{\aleph_0} אזי |A| \leq \aleph_0 באשר A \subseteq B ותהא ותהא |B| = 2^{\aleph_0} אזי באשר B
                                                                                                      |\{a\in\mathbb{C}\mid מסקנה: a\}|=2^{leph_0} מספר טרנסצנדנטי
                                                                                                                 |\{a\in\mathbb{R}\midמסקנה: |\{a\in\mathbb{R}\mid aאי־רציונלי |a|=2^{leph_0}
                                                                                                    |\{f\mid (f:\mathbb{R}	o\mathbb{R})\wedge (f)\}|=2^{\aleph_0} מסקנה:
                                                                                               |\{f\mid (f:\mathbb{R}	o\mathbb{R})\wedge (f)\}|=2^{leph_0} מסקנה: |\{f\mid (f:\mathbb{R}	o\mathbb{R}) + (f)\}|=2^{leph_0}
                                                                                                           |\{A\mid (A\subseteq\mathbb{R})\land (פתוחה|A|\}|=2^{leph_0} טענה:
                                           יחס סדר טוב: סדר קווי \langle W, \prec 
angle עבורו לכל A 
eq \varnothing באשר איבר קטן ביותר. עבורו לכל
```

f:A o B עבורו קיימת $\langle B,\sqsubset
angle$ עבור איבר אחרון וללא איבר קווי חזק אזי קיים סדר קווי חזק צפוף ללא איבר ראשון וללא איבר אחרון

 $\langle P, \preccurlyeq
angle \simeq \langle \mathbb{R}, \leq_{\mathbb{R}}
angle$ משפט: יהי $\langle P, \preccurlyeq
angle$ סדר קווי חלקי ללא איבר ראשון ואחרון בעל קבוצה בת־מנייה צפופה בו אזי

 $\langle {
m Ded}\,(P)\,,\preccurlyeq \rangle$ טענה: יהי $\langle P,\preccurlyeq \rangle$ סדר קווי חלקי אזי פופה אזי $\langle P,\preccurlyeq \rangle$ טענה: יהי $\langle P, \preccurlyeq \rangle$ סדר קווי חלקי אזי $\langle {
m Ded}\,(P)\,, \preccurlyeq \rangle$ סדר קווי חלקי אזי

 $(\mathbb{Q},\leq_{\mathbb{Q}})$ מספרים ממשיים: $(\mathbb{R},\leq_{\mathbb{R}})$ הינה ההשלמה של

 $|\mathcal{P}\left(X
ight)|=\left|^X2
ight|$ אזי קבוצה א קבוצה איזי אינה: תהא $|X|<|\mathcal{P}\left(X
ight)|$ משפט קנטור: תהא $|X|<|\mathcal{P}\left(X
ight)|$

 $\mathcal{P}\left(X\right)=\left\{Y\mid Y\subseteq X\right\}$ אזי קבוצה החזקה: תהא קבוצה אזי תהא Xקבוצה החזקה: סימון: תהא אזי Xקבוצה אזי X

שומרת סדר.

 $|\mathbb{R}|
eq \aleph_0$ טענה:

 $|\mathbb{R}|=|\mathbb{N}2|$:טענה

```
W[a] = \{b \in W \mid b \prec a\} אזי a \in W יחס סדר טוב ויהי \langle W, \prec \rangle יחי יחס סדר טוב ויהי
                                                                        Wבישה ב־W רישה ב־W יחס סדר טוב ויהי ויהי A\in W יחס סדר טוב ויהי
                                               S=W\left[x
ight] אזי קיים x\in W טענה: יהי X\in W יחס סדר טוב ותהא ותהא S רישה ב־
                     x \in W טענה: יהי (X \prec f(x)) \lor (x = f(x)) אומרת סדר אזי f: W \to W לכל לכל על יהי (W, \prec) יחס סדר טוב ותהא
                                                                               W \not\simeq W \left[ a 
ight] אזי a \in W יחס סדר טוב ויהי \langle W, \prec 
angle אזי מסקנה: יהי
                                                              f=\mathrm{Id} איזומורפיזם אזי f:W	o W יחס סדר טוב ויהי יהי איזימורפיזם אזי
                                          f=g איזומורפיזמים אזי f,g:W	o A ויהיו סדר טובים אזי \langle W, \prec 
angle, \langle A, 
angle מסקנה: יהיו
                                                 משפט ההשוואה: יהיו מהבאים מתקיים סדר טובים אזי משפט ההשוואה: יהיו \langle W, \prec 
angle \, , \langle A, \sqsubset 
angle יחסי סדר טובים אזי
                                                                                                                               .\langle W, \prec \rangle \simeq \langle A, \Box \rangle \bullet
                                                                                                \langle W[w], \prec \rangle \simeq \langle A, \Box \rangle עבורו w \in W •
                                                                                                   \langle W, \prec \rangle \simeq \langle A[a], \sqsubseteq \rangle עבורו a \in A סיים •
                                                              y \in X מתקיים y \in A ולכל A \in X עבורה עבורה לכל קבוצה ארנזיטיבית:
                                                                                      סדר טוב. \langle X, \in 
angle יחס סדר טוב. \langle X, \in 
angle
                                                                                                               טענה: יהי \alpha \cup \{\alpha\} סודר אזי \alpha \cup \{\alpha\}
                                                                                                                         \alpha \notin \alpha טענה: יהי \alpha סודר אזי טענה:
                                                                                                         . סודר x אזי אזי x \in \alpha סודר ויהי \alpha סודר מענה: יהי
                                                                                                 \alpha \notin \beta אזי \beta \in \alpha טענה: יהיו \alpha, \beta סודרים באשר
                                                                                                \alpha \in \beta אזי \alpha \subseteq \beta טענה: יהיו \alpha, \beta סודרים באשר
                                                                   טענה משפט ההשוואה: יהיו lpha,eta סודרים אזי בדיוק אחד מהבאים מתקיים
                                                                                                                                             \alpha = \beta \bullet
                                                                                                                                             .\alpha \in \beta \bullet
                                                                                                                                             .\beta \in \alpha \bullet
                                                                                  . סענה: \min{(S)} אזי סודרים אל ריקה לא ריקה לא קבוצה S קבוצה לא יים.
                                                                                                                         \mathcal{O}_n = \{ \alpha \mid סודר \alpha \} הגדרה:
                                                                                                                                       \mathcal{O}_n = \mathrm{Ord} : סימון
                                                                                                      טענה פרדוקס גוראלי־פורטי: מינה קבוצה. טענה
                                                               (\alpha \cup \{\alpha\} \in \beta) \lor (\alpha \cup \{\alpha\} = \beta) אזי \alpha \in \beta סודרים באשר \alpha, \beta אזי יהיו
                                                                                                          \alpha + 1 = \alpha \cup \{\alpha\} סודר אזי \alpha סודר מימון: יהי
                                                         eta \in \alpha טענה: תהא eta \in S מתקיים אזי קיים סודר אזי קיים מודרים אזי קבוצת סודרים אזי קיים סודר
                                            \langle lpha, \in 
angle \simeq \langle W, \prec 
angle עבורו מיפוס סדר טוב: יהי יהי יהי טיפוס סדר טוב: יהי יהי יהי טיפוס סדר טוב: יהי
                                                                     \langle W, \prec 
angleיחס משפט: יהי \langle W, \prec 
angleיחס סדר טוב אזי קיים ויחיד סודר טיפוס ל־
                                                  .opt (\langle W, \prec \rangle) = \alpha אזי אזי של סודר טיפוס מודר טוב ויהי \alpha סודר טוב ויהי \langle W, \prec \rangle אזי
אזי לכל קבוצה P אזי לכל קבוצה Y אזי לכל קבוצה X קיימת קבוצה לכל קבוצה אקסיומת ההחלפה: תהא P אזי לכל קבוצה אקסיומת החלפה:
                                                                           באשר לכל P\left(a,b
ight) קיים b\in B קיים a\in A זוהי אינה טענה B
                           קבוצה. אקסיומת ההפרדה: תהא P נוסחה אזי לכל קבוצה A מתקיים כי \{a\in A\mid P\left(a
ight)\} קבוצה. אוהי אינה טענה
משפט עיקרון האינדוקציה: תהא P נוסחה באשר לכל סודר \alpha מתקיים משפט עיקרון האינדוקציה: תהא P מוסחה באשר לכל סודר מתקיים
                                                                                                                                                      .P(\gamma)
                                                                             lpha=eta+1 סודר עוקב: סודר eta עבורו קיים סודר עוקב סודר lpha
```

.טענה: $\langle \mathbb{N}, <_{\mathbb{N}} \rangle$ סדר טוב

 $.S \neq W \bullet$

טענה: יהי $n \in \mathbb{N}$ אזי $n \in \mathbb{N}$ סדר טוב. $n \in \mathbb{N}$

 $b \in S$ אזי $b \prec a$ אם $b \in W$ ולכל $a \in S$

משפט אינדוקציה טרנספיניטית: תהא P נוסחה המקיימת

רישה של יחס סדר טוב: יהי $\langle W, \prec
angle$ יחס סדר טוב אזי $S \subseteq W$ רישה של יחס סדר טוב:

```
.P(\varnothing) \bullet
```

- $P(\alpha) \Longrightarrow P(\alpha+1)$ מתקיים •
- $(\forall \beta \in \alpha.P(\beta)) \Longrightarrow (P(\alpha))$ מתקיים α מתקיים •

 $.P\left(\gamma
ight)$ מתקיים אזי לכל סודר

. טענה: תהא $\delta \notin S$ אזי א הסודר הראשון באשר $\delta \in S$ מתקיים אזי מתקיים אזי $x+1 \in S$ מתקיים מענה: תהא

 ω סימון: הסודר הגבולי הראשון שאינו מarphi הינו

 $0 = \emptyset$. סימון:

 $\mathbb{N} = \omega$:הגדרה

 $n \in \mathbb{N}$ לכל $n+1=n \cup \{n\}$ הערה: בהגדרה מלעיל נשתמש בהתאמה

lpha < eta אזי $lpha \in eta$ אזי מון: יהיו lpha, eta סודרים באשר

הגדרה חיבור: יהי lpha סודר אזי

- $.\alpha + 0 = \alpha \bullet$
- $\alpha + (\beta + 1) = (\alpha + \beta) + 1$ יהי β סודר אזי •
- $.\alpha+\beta=\bigcup_{\gamma<\beta}\left(\alpha+\gamma\right)$ אזי גבולי אזי סודר β יהי •

 $\omega + 1 > \omega$ וכן $1 + \omega = \omega$ וכן $0 + \omega = \omega$

הגדרה כפל: יהי α סודר אזי

- $\cdot \alpha \cdot 0 = 0 \bullet$
- $\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$ יהי β סודר אזי •
- $\alpha \cdot \beta = \bigcup_{\gamma < \beta} (\alpha \cdot \gamma)$ יהי β סודר גבולי אזי •

 $\omega\cdot 2=\omega+\omega$ וכן $2\cdot\omega=\omega$ וכן $1\cdot\omega=\omega$ וכן $0\cdot\omega=0$

 $\omega+\omega>\omega+n$ אזי $n<\omega$

טענה: יהי α סודר אזי $\alpha+\omega$ סודר גבולי.

הגדרה חזקה: יהי lpha סודר אזי

- $.lpha^0=1$ •
- $.lpha^{eta+1}=lpha^eta\cdotlpha$ יהי eta סודר אזי יהי eta
- $.\alpha^{\beta} = \bigcup_{\gamma < \beta} \left(\alpha^{\gamma} \right)$ יהי β סודר גבולי אזי סודר β יהי •

 $\omega^2>2^\omega$ וכן $\omega^2=\omega$ וכן $\omega^1=\omega$ וכן $\omega^2=\omega$ וכן $\omega^2=\omega$ וכן $\omega^2=\omega$

|eta|<|lpha| מתקיים eta<lpha עבורו לכל lpha

 $\aleph_0 = \omega$: סימון:

. הערה: ההגדרה מלעיל מתלכדת עם היות $\omega = |\omega|$, לשם נוחות נשתמש פה בסימון זה ובהמשך נצדיקו.

טענה: יהיו lpha,eta סודרים בני מנייה אזי $lpha+eta,lpha\cdoteta,lpha^eta$ סודרים בני מנייה.

. טענה: קיים סודר lpha המקיים $\omega < lpha$ באשר lpha אינו בן מנייה

 $\delta < \kappa$ טענה: יהי δ סודר אזי קיים מונה κ באשר

 $lpha < lpha^+$ סימון: יהי lpha סודר אזי $lpha^+$ הינו המונה הראשון עבורו

 $\aleph_{\alpha+1}=\aleph_{\alpha}^+$ אזי α סודר אזי א: יהי מודר מיהי א:

 $\aleph_{\alpha} = \bigcup_{\beta < \alpha} \aleph_{\beta}$ אזי גבולי סודר מודר α יהי : יהי מ

טענה: יהי α סודר אזי α מונה.

 $\kappa=leph_lpha$ עבורו מונה אזי קיים ויחיד סודר מונה א מונה מינה טענה: יהי

 $\omega_{\alpha} = \aleph_{\alpha}$ סודר אזי α סימון: יהי

 $|\delta|=leph_lpha$ אזי אינסופיים באשר אינסופיים אזי $\delta,lpha$ אזי אינסופיים הייו

 $\aleph_{lpha}\cdot\aleph_{lpha}=\aleph_{lpha}$ משפט: יהי lpha סודר אזי משפט:

משפט: יהיו κ,λ מונים אינסופיים אזי

- $.\kappa + \lambda = \max\{\kappa, \lambda\} \bullet$
- $.\kappa \cdot \lambda = \max\{\kappa, \lambda\} \bullet$

```
מסקנה: יהיו lpha,eta סודרים אזי
```

- $\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\max\{\alpha,\beta\}} \bullet$
- $\aleph_{\alpha} \cdot \aleph_{\beta} = \aleph_{\max\{\alpha,\beta\}} \bullet$

... באשר $\langle \aleph_{lpha} imes \aleph_{lpha}, <
angle$ באשר אזי יחס סדר מודר lpha בהדרה: יהי

טענה: יהי $\langle \aleph_{\alpha} \times \aleph_{\alpha}, < \rangle$ יחס סדר טוב.

.opt $(\langle \aleph_lpha imes \aleph_lpha, <
angle) = \aleph_lpha$ משפט: יהי lpha סודר אזי משפט:

 $A: (X) \in X$ מתקיים $X \in S$ מתקיים A: S o A מונקציית בחירה: תהא A: S
otin A מתקיים באשר

אינה טענה בחירה (AC): תהא S קבוצה באשר איז קיימת פונקציה בחירה לבחירה (AC): אקסיומת הבחירה אינה טענה

.(על). $g:\mathbb{N} \to A$ אזי (קיימת $f:A \to \mathbb{N}$ אזי (קיימת $A \neq \varnothing$ אזי על).

A משפט הסדר הטוב/משפט צרמלו: תהא A קבוצה עבורה קיימת פונקציית בחירה על

הגדרה משפט הסדר הטוב: תהא A קבוצה אזי קיים סדר טוב על A. זוהי אינה טענה

משפט: (AC)⇒(משפט הסדר הטוב).

AC טענה: תהא A קבוצה אינסופית אזי קיים ויחיד סודר α עבורו . $|A|=\aleph_{lpha}$

אינה טענה ,AC אורי $.2^{\aleph_0}=\aleph_1$:(CH) הפרטית הרצף הפרטית

אינה טענה ,AC אורי אינה אינה אינה מודר אזי סודר אזי סודר איז (GCH). השערת הרצף הכללית (GCH): יהי

.ZFC בלתי תלויה ב־CH

.ZFC־בלתי תלויה ב־GCH הערה:

.ZFבלתי תלויה ב־AC

AC טענה: תהא A קבוצה אינסופית אזי קיימת $B\subseteq A$ בת מנייה. דורש

AC סענה. דורש בת מנייה. או בת סופית או בת סופית או בת מנייה לכל האי הוא סופית או בת קבוצות באשר A_i סופית או בת מנייה. דורש A_i

 $(b \leq a) \Longrightarrow (b=a)$ מתקיים $b \in A$ מתקיים מיום סדר חלקי קיים אבר מינימלי: סדר חלקי סדר חלקי בעל איבר מינימלי: סדר חלקי עבורו קיים א

 $(b \leq a) \Longrightarrow (b = a)$ מתקיים $a \in A$ מתקיים $a \in A$

הגדרה הלמה של צורן: יהי $\langle P, \leq
angle$ יחס סדר טוב עבורו לכל שרשרת $A \subseteq P$ קיים חסם מלעיל אזי קיים ב $\langle P, \leq
angle$ יחס סדר טוב עבורו לכל שרשרת

משפט: (AC) \Longrightarrow (הלמה של צורן).