Complex Analysis: Lecture-02

MA201 Mathematics III

MGPP, AC, ST, SP

IIT Guwahati

Exponential form of Non-Zero Complex Numbers

- Let $z = x + iy \neq 0$ be written in the trigonometric form as $z = r(\cos \theta + i \sin \theta)$ where r is the modulus and θ is the argument of z.
- The Euler's formula says that

$$e^{i\theta} = \cos\theta + i \sin\theta$$

where θ is measured in radians.

If $z \neq 0$ then using Euler's formula, we can write z as

$$z = re^{i\theta}$$

where r = |z| and $\theta = \arg(z)$ which is known as the exponential form of a complex number z.

Examples:
$$1 + i = \sqrt{2}e^{i\pi/4}$$
, $-i = e^{-i\pi/2}$, $-8 = 8e^{i\pi} = 8e^{i3\pi}$.

Geometrical Interpretation of Multiplication

Let $z_1 \neq 0$ and $z_2 \neq 0$. Then,

$$z_i = r_i(\cos \theta_i + i \sin \theta_i), \quad i = 1, 2.$$

$$z_1 z_2 = r_1 r_2 \left[(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2) + i (\sin \theta_1 \cos \theta_2 + \cos \theta_1 \sin \theta_2) \right]$$

= $r_1 r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

MGPP, AC, ST, SP

Complex Analysis: Lecture-02

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

The above identity is to be interpreted as saying that if values of two of these three (multiple valued) arguments are specified, then there is a value of the third such that the above equation holds.

Example: If $3 = 3e^{2\pi i}$ and $-2 = 2e^{3\pi i}$ then $-6 = 6e^{i\theta_3}$ with $\theta_3 = 5\pi$ (one of the values of arg(-6) plus a suitable multiple of 2π is to be taken) so that the identity holds.

In the above identity, if we replace arg(z) by Arg(z), then identity is in general NOT true. If z_1 and z_2 lies in the first quadrant then it will be true.

$$Arg(z_1z_2) \neq Arg(z_1) + Arg(z_2)$$
 (in general).

If $0 \neq z = re^{i\theta}$ then $(1/z) = (1/r)e^{-i\theta}$ and hence arg(1/z) = -arg(z).

$$arg\left(\frac{z_1}{z_2}\right) = arg(z_1) - arg(z_2)$$
.

Powers of Complex Numbers

Let z be a complex number and let n be an integer.

- If z = 0, we have $z^n = 0$ if $n \in \mathbb{N}$.
- If $z \neq 0$, then setting $z = re^{i\theta}$ and using $e^{t_1}e^{t_2} = e^{t_1+t_2}$ by mathematical induction one can prove that

$$z^n = r^n e^{in\theta}$$
 for $n = 0, 1, 2, 3, \cdots$.

- If n is negative integer, then set m = -n and apply the above equation to $(1/z)^m$ to get $z^n = r^n e^{in\theta}$.
- If r = 1 then we get $(e^{i\theta})^n = e^{in\theta}$.
- Rewriting it, we get following de Moivre's formula.

$$(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$$
 for $n \in \mathbb{Z}$.

• Example: $(\sqrt{3} + i)^7 = (2e^{i\pi/6})^7 = 2^7 e^{i7\pi/6} = (2^6 e^{i\pi})(2e^{i\pi/6}) = -64(\sqrt{3} + i).$

n-th Roots of Unity $(1^{1/n})$

Find the solutions of the equation $z^n = 1$ where n is a positive integer.

Let $z = re^{i\theta}$ be a solution to $z^n = 1$.

Then, $z^n = r^n (e^{i\theta})^n = r^n e^{i n\theta} = 1 \cdot e^{i0}$ which implies

$$r^n = 1$$
, $n\theta = 0 + 2k\pi$ where k is an integer.

We get *n* distinct solutions to $z^n = 1$ by setting $k = 0, 1, \dots, n-1$ as

$$z_k = e^{i\frac{2k\pi}{n}} = \cos\left(\frac{2k\pi}{n}\right) + i \sin\left(\frac{2k\pi}{n}\right)$$

where $k = 0, 1, \dots, n-1$ and are called the *n*-th roots of unity.

Set $\omega_n = e^{i2\pi/n}$ (primitive *n*-th root of unity). By De Moivre's formula, the *n*-th roots of unity can be expressed as 1, ω_n , ω_n^2 , ω_n^3 , \cdots , ω_n^{n-1} .

Properties of *n*-th Roots of Unity

Geometrically, the n-th roots of unity are equally spaced points that lie on the unit circle $\{z: |z|=1\}$ and form the vertices of a regular polygon with n sides.

n-th Roots of Nonzero Complex Number $W^{1/n}$

Find the solutions of the equation $z^n = W$ where n is a positive integer.

Let $z = re^{i\theta}$ be a solution to $z^n = W = \rho e^{i\phi}$. $z^n = r^n e^{in\theta} = W = \rho e^{i\phi}$ gives that

$$r^n = \rho$$
 and $n\theta = \phi + 2k\pi$ where $k \in \mathbb{Z}$.

By setting $k = 0, 1, \dots, n - 1$, we get n distinct solutions to $z^n = W$ as

$$z_k = \rho^{\frac{1}{n}} e^{i\frac{\phi + 2k\pi}{n}} = \rho^{\frac{1}{n}} \left[\cos\left(\frac{\phi + 2k\pi}{n}\right) + i \sin\left(\frac{\phi + 2k\pi}{n}\right) \right]$$

for $k = 0, 1, \dots, n - 1$.

If c is any n-th root of W then all the n-th roots of W are given by c, $c\omega_n$, $c\omega_n^2$, \cdots , $c\omega_n^{n-1}$ where ω_n is a primitive n-th root of unity.

Example: Cube roots of 64i are $z_0 = 4e^{i\pi/6} = 2\sqrt{3} + i2$, $z_1 = 4e^{i5\pi/6} = -2\sqrt{3} + i2$ and $z_3 = 4e^{i3\pi/2} = -4i$.

Computing W^{α} where $W \neq 0$ and $\alpha \in \mathbb{Q}$

Let *W* be a nonzero complex number.

Let $\alpha = m/n$ where m and n are integers with gcd(m, n) = 1.

Then,

$$W^{\alpha} = W^{m/n} = (W^m)^{1/n}$$
.

Since m is an integer, W^m will be a single complex number.

Then, taking *n*-th root of W^m , we get *n* distinct complex numbers z_k satisfying $z_k^n = W^m$.

Exercise: Find all values of $(-8i)^{2/3}$.

Exercise: From real function to complex function what is happening? Compare domain of definition and range of real function $x_0^{1/n}$ and complex function $z_0^{1/n}$.

Sets in ℂ (Planar Sets)

Identify the following sets / Find the Locus of the Points satisfying the equations / Interpret geometrically the following relations:

- 2 $\{z \in \mathbb{C} : |\Re(z)| + |\Im(z)| = 1\}.$
- |z-a|-|z+a|=2c where a and c are real constants with c>0.
- $\underline{\mathbf{0}}$ z = a + tb for $t \in \mathbb{R}$ where a and $b \neq 0$ are complex constants.
- **5** $\{z \in \mathbb{C} : \operatorname{Im}\left(\frac{z-a}{b}\right) > 0\}$ where a and $b \neq 0$ are complex constants.

Open Ball/Neighorhood, Puncture Neighborhood

- Open Disk/Open Ball centered at the point z_0 with radius r is denoted by $B_r(z_0)$ (or $B(z_0)$ or $B(z_0, r)$) and is defined by $B_r(z_0) = \{z \in \mathbb{C} : |z z_0| < r\}$.
- Let z_0 be a point in \mathbb{C} . Any open ball with center at z_0 and radius r > 0 is called an open neighborhood of z_0 or simply a neighborhood of z_0 and is usually denoted by $N_r(z_0)$ or $N(z_0)$ or $N(z_0, r)$.
- A punctured or deleted neighborhood of a point z_0 is given by $B_r(z_0) \setminus \{z_0\} = \{z \in \mathbb{C} : 0 < |z z_0| < r\}.$

Interior Points, Interior of a Set

In the above picture z_0 is an interior point. z_1 is not an interior point.

Definition

Let $S \subseteq \mathbb{C}$ be a set. A point $z_0 \in \mathbb{C}$ is said to be an interior point of the set S if there exists an open neighborhood $N(z_0)$ of z_0 such that $N(z_0) \subset S$.

The set of all interior points of S is called called the interior set of S and is denoted by S° or Int(S).

Examples:

Let S: |z| < 2. Then 1 + i is an interior point of S, but 2 is not an interior point of S.

Open Set, Closed Set

Definition

A set $S \subseteq \mathbb{C}$ is said to be an open set in \mathbb{C} if every point of S is an interior point of S.

Examples of Open Sets:

 $\{z \in \mathbb{C} : |z - z_0| < r\}$ with r > 0 is an open set.

 $\{z \in \mathbb{C} : \Re(z) > 0\}$ is an open set.

Definition

A set $S \subseteq \mathbb{C}$ is said to be a closed set in \mathbb{C} if the complement set $\mathbb{C} \setminus S$ is an open set.

Examples of Closed Sets:

 $\{z \in \mathbb{C} : |z - z_0| = r\}$ with r > 0 is a closed set.

 $\{z \in \mathbb{C} : \Re(z) \ge 0\}$ is a closed set.

- The empty set \emptyset and the whole set \mathbb{C} are both open and closed.
- There are sets which are neither open nor closed in \mathbb{C} . For example, $S = \{z = x + iy \in \mathbb{C} : x \in (-1, 1) \text{ and } y = 0\}$ is neither open nor closed in \mathbb{C} (Why?).
- Examples of Open Sets:

```
\{z : |z - (1+i)| < 5\},\

\{z : |m(z) \neq 0\},\

\{z : |m(z) > 0\},\

\{z : 2 < |z - (1+i)| < 5\}.\
```

• Examples of Closed Sets: $\{z : |z - (1 + i)| \le 5\},\$

```
\{z : |z - (1+i)| = 5\},\
\{z : |m(z) \ge 0\},\
\{z : 2 \le |z - (1+i)| \le 5\}.
```

Draw the pictures of the above sets and explore whether it is open or closed or not?

Limit Point, Closure

Definition

Let $S \subseteq \mathbb{C}$ be a set. A point $z_0 \in \mathbb{C}$ is said to be a limit point or accumulation point of the set S if every deleted neighborhood $N(z_0)$ of z_0 contains at least one point of S.

Example: Let $S = \{z \in \mathbb{C} : |z| < 1\}$. Then each point z with $|z| \le 1$ is a limit point of S.

A set *S* is closed iff *S* contains all its limit points.

If S is a finite set then S has no limit points.

The set of all limit points of S is called the derived set of S and is denoted by S' or Der(S).

Definition

A set S together with all its limit points is called the closure of S and is denoted by \overline{S} or Cl(S).

Properties

- The closure of a set is always a closed set.
- The closure of a set S is the smallest closed set containing the set S.
- S is closed if and only if $S = \overline{S}$.
- The interior of a set is always an open set.
- The interior of a set S is the largest open set contained in the set S.
- S is open if and only if $S = S^{\circ}$.
- Empty set \emptyset and the whole set $\mathbb C$ are both open and closed sets.

Properties

- Let $\{A_{\alpha}: \alpha \in \Lambda\}$ be an arbitrary collection of open sets in \mathbb{C} . Then, their union $\bigcup_{\alpha \in \Lambda} A_{\alpha}$ is an open set. That is, Arbitrary union of open sets is open.
- Let $\{A_{\alpha}: \alpha \in \Lambda\}$ be an arbitrary collection of closed sets in \mathbb{C} . Then, their intersection $\bigcap_{\alpha \in \Lambda} A_{\alpha}$ is a closed set. That is, Arbitrary intersection of closed sets is closed.
- Let $\{A_i : 1 \le i \le m\}$ be a finite collection of open sets in \mathbb{C} . Then, their intersection $\bigcap_{i=1}^m A_i$ is an open set. That is, Finite intersection of open sets is open.
- Let $\{A_i: 1 \le i \le m\}$ be a finite collection of closed sets in \mathbb{C} . Then, their union $\bigcup_{i=1}^m A_i$ is a closed set. That is, Finite union of closed sets is closed.

Boundary Point, Exterior Point

Let S be a subset of \mathbb{C} . The complement of the set S in \mathbb{C} is defined as $S^c = \{z \in \mathbb{C} : z \notin S\} = \mathbb{C} \setminus S$.

Definition

A point z_0 is said to be a boundary point of S if every neighborhood $N(z_0)$ of z_0 contains at least one point in S and at least one point not in S. That is, every neighborhood of z_0 intersects S and S^c .

Example: Each point on |z| = 1 is a boundary point of the set |z| < 1.

The set of all boundary points of S is called the boundary set of S and is denoted by ∂S or Bd(S).

Definition

A point z_0 is said to be an exterior point of S if there is an open neighborhood $N(z_0)$ of z_0 such that $N(z_0) \cap S = \emptyset$.

That is, $N(z_0) \subseteq S^c$ and z_0 is an interior point of S^c .

The set of all exterior points of S is called the exterior set of S and is denoted by

MGPP, AC, ST, SP Complex Analysis: Lecture-02

Example: Each point in |z| > 1 is an exterior point of the set |z| < 1.

Bounded Set, Compact Set

Definition

A set $S \subseteq \mathbb{C}$ is said to be bounded if there exists an open ball $B(z_0, r_0)$ for some $z_0 \in \mathbb{C}$ with $r_0 > 0$ such that $S \subset B(z_0, r_0)$.

That is, the set S can be put inside an open ball with some center and a finite radius.

An empty set \emptyset is bounded.

A set S which is not bounded is called unbounded.

Definition

A set $S \subseteq \mathbb{C}$ is said to be compact if it is closed and bounded.

Connected Set, Domain, Region

Let w_1, w_2, \dots, w_{n+1} be n+1 points in the plane. For each $k=1, 2, \dots, n$, let l_k denote the line segment joining w_k to w_{k+1} . Then, the successive line segments l_1, l_2, \dots, l_n form a continuous chain known as a polygonal path that joins w_1 to w_{n+1} .

Definition

An open set $S \subseteq \mathbb{C}$ is said to be connected if every pair of points z_1 , z_2 in S can be joined by a polygonal path that lies entirely in S.

Note: The concept of connecting any two points by a path is actually known as Path Connected and Path Connected \Longrightarrow Connected.

If a set S is connected then its closure \overline{S} is also connected.

Connected Sets and Domain

Definition

An open, connected set $S \subseteq \mathbb{C}$ is called a domain.

A domain, together with some, none, or all of its boundary points, is called a region.

Connected Set

A set that is not connected is called a disconnected set.

Connected Set

Disconnected Set

Convex Set

Definition

A set S is said to be convex if every straight line segment L joining any two points of S lies entirely inside the set S.

