UNITES DES GRANDEURS LES PLUS USUELLES

Grandeur	Nom	Symbole	Expression en unité de base		
	Espace et temps:				
Aire, superficie	mètre carré	m ²	m ²		
Volume	mètre cube	m ³	m ³		
Vitesse angulaire	radian par seconde	rad/s	s ⁻¹ .rad		
Vitesse	mètre par seconde	m/s	m.s ⁻¹		
Accélération	mètre par seconde carré	m/s ²	m.s ⁻²		
Fréquence	hertz	Hz	s ⁻¹		
Fréquence de rotation	seconde à la puissance moins un	s ⁻¹	s ⁻¹		
	Mécanique :				
Masse volumique	kilogramme par mètre cube	kg/m ³	m ⁻³ .kg		
Débit-masse	kilogramme par seconde	kg/s	kg.s ⁻¹		
Débit-volume	mètre cube par seconde	m ³ /s	m ³ .s ⁻¹		
Moment cinétique	kilogramme-mètre carré par seconde	kg.m ² /s	m ² .kg.s ⁻¹		
Moment d'inertie	kilogramme-mètre carré	kg.m ²	m ² .kg		
Force	newton	N	m.kg.s ⁻²		
Moment d'une force	newton - mètre	N.m	m ² .kg.s ⁻²		
Pression, contrainte	pascal	Pa	m ⁻¹ .kg.s ⁻²		
iscosité (dynamique)	pascal-seconde	Pa.s	m ⁻¹ .kg.s ⁻¹		
/iscosité (cinématique)	mètre carré par seconde	m^2/s	$m^2.s^{-1}$		
Energie, travail	joule	J	m ² .kg.s ⁻²		
Puissance	watt	W	m ² kg.s ⁻³		
	Thermodynamique:				
Coefficient de dilatation linéique	kelvin à la puissance moins un	\mathbf{K}^{1}	K^1		
Conductivité thermique	watt par mètre-kelvin	W/(m.K)	m.kg.s ⁻³ .K		
Capacité thermique massique	joule par kilogramme-kelvin	J/(kg.K)	$m^2.s^{-2}.K^{-1}$		
Entropie	joule par kelvin	J/K	m ² .kg.s ⁻² .K		
Energie interne, enthalpie	joule	J	m ² .kg.s ⁻²		
	Electricité – Magnétisme:				
Charge électrique	coulomb	C	s.A		
Champ électrique	volt par mètre	V/m	m.kg.s ⁻³ .A		
Sension, différence de potentiel	volt	V	m ² .kg.s ⁻³ .A		
Capacité	farad	F	m ⁻² .kg ⁻¹ .s ⁴ .A		
Champ magnétique	ampère par mètre	A/m	m ⁻¹ .A		
nduction magnétique	tesla	T	kg.s ⁻² .A ⁻¹		
lux d'induction magnétique	weber	Wb	m ² .kg.s ⁻² .A		
nductance	henry	H	m ² .kg.s ⁻² .A		
Résistance, impédance	ohm	Ω	m ² .kg.s ⁻³ .A		
Conductance, admittance	siemens	S	m ⁻² .kg ⁻¹ .s ³ .A		
Résistivité	ohm-mètre	Ω .m	m ³ .kg.s ⁻³ .A		
Conductivité	siemens par mètre	S/m	m ⁻³ .kg ⁻¹ .s ³ .A		
	Optique :		8		
Flux lumineux	lumen	lm	cd.sr		
Luminance (lumineuse)	candela par mètre carré	cd/m ²	m ⁻² .cd		
Eclairement	lux	lx	m ⁻² .cd.sr		
Exposition lumineuse	lux seconde	lx.s	m ⁻² .s.cd.sr		

Préfixes et Abréviations

Nom	tera	giga	mega	kilo	hect(o)	déca	déci	centi	milli	micro	nano	pico
Multiplicateur	10 ¹²	109	10 ⁶	10 ³	102	10	10 ⁻¹	10 ⁻²	10 ⁻³	10 ⁻⁶	10 ⁻⁹	10 ⁻¹²
Abréviation internationale	Т	G	M	k	h	da	d	c	m	μ	n	p

Conversion des longueurs

	mm	cm	m	inches	feet	yards	km	mile
mm	1	10 ⁻¹	10 ⁻³	3.93701. 10 ⁻²	3.28084 10 ⁻³	1.09361 10 ⁻³	10 ⁻⁶	6.21388 10 ⁻⁷
cm	10	1	10 ⁻² 3.93701 10		3.28084 10 ⁻² 1.09361 10 ⁻²		10 ⁻⁵	6.21388 10 ⁻⁶
m	1000	100	1	39.3701	3.28084	1.09361	10 ⁻³	6.21388 10 ⁻⁴
inches	25.4	2.54	2.54 10 ⁻²	1	8.3333 10 ⁻²	2.7778 10 ⁻²	2.54 10 ⁻⁵	1.57828 10 ⁻⁵
feet	304.8	30.48	3.048 10	12	1	3.3333 10	3.048 10 ⁻⁴	1.89394 10 ⁻⁴
yards	914.4	91.44	9.144 10	36	3	1	9.144 10 ⁻⁴	5.68182 10 ⁻⁴
km	10 ⁶	10 ⁵	1000	39370.1	3280.84	1093.61	1	6.21388 10 ⁻¹
mile	1.60934 10	160934	1609.34	63360	5280	1760 1.60934		1

Conversions des masses

	g	kg	0Z	Pound (lbm)	US ton		
g	1	10 ⁻³	3.5274 10-2	2.20462 10 ⁻³	1.10231 10 ⁻⁶		
kg	1000	1	35.274	2.20462	1.10231 10 ⁻³		
oz	28.3495	2.83495 10 ⁻²	1	6.25 10 ⁻²	3.125 10 ⁻⁵		
Pound (lbm)	453.592	4.53592 10	16	1	5 10 ⁻⁴		
US ton	907185	907.185	32000	2000	1		

Conversion d'énergie

	J	Wh	kp m	kcal	BTU		
J	1	2.77778 10 ⁻⁴	1.01972 10 ⁻¹	2.38846 10 ⁻⁴	9.47817 10 ⁻⁴		
Wh	3600	1	367.098	8.59845 10 ⁻¹	3.41214		
kp m	9.80665	2.72407 10 ⁻³	1	2.34228 10 ⁻³	9.29491 10 ⁻³		
kcal	4186.8	1.163	426.935	1	3.96832		
BTU	1055.06	2.93071 10 ⁻¹	107.586	2.51996 10	1		

Conversion des pressions

	Pa	N/mm ²	bar	[kp/cm ²]	[torr]	
Pa	1	10 ⁻⁶	10 ⁻⁵	1.02 10 ⁻⁵	7.5 10 ⁻³	
N/mm ²	106	1	10	10.2	7.5 10 ³	
bar	10 ⁵	0.1	1	1.02	7.5 10 ²	
[kp/cm ²]	98100	9.81 10 ⁻²	0.981	1	736	
[torr]	133	0.133 10 ⁻³	1.33 10 ⁻³	1.36 10 ⁻³	1	

2

3

4

5

6

7

8

9

10

11

3

4

5

6

8

9

10

11

FORMULAIRE DE TRIGONOMETRIE

Angles:

Relations fondamentales:

$$\sin^2(x) + \cos^2(x) = 1$$
 $\tan(x) = \frac{\sin(x)}{\cos(x)} = \frac{1}{\cot(x)} = \frac{1 - \cos(2x)}{2}$ $\cos^2(x) = \frac{1 + \cos(2x)}{2}$

Addition:

$$\sin (a + b) = \sin a \cdot \cos b + \sin b \cdot \cos a$$

 $\sin (a - b) = \sin a \cdot \cos b - \sin b \cdot \cos a$
 $\cos (a + b) = \cos a \cdot \cos b - \sin a \cdot \sin b$
 $\cos (a - b) = \cos a \cdot \cos b + \sin a \cdot \sin b$

$$\tan (a + b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b}$$

$$\tan (a - b) = \frac{\tan a - \tan b}{1 + \tan a \cdot \tan b}$$

$$sin a .cos b = \frac{1}{2} [sin (a+b) + sin (a-b)]$$

$$sin a .cos b = \frac{1}{2} [sin (a+b) + sin (a-b)]$$

$$sin a .sin b = \frac{1}{2} [cos (a-b) - cos (a+b)]$$

$$cos 2a = cos^2 a - sin^2 a = \frac{1 - tan^2 a}{1 + tan^2 a}$$

$$cos 2a = 2 cos^2 a - 1 = 1 - 2 sin^2 a$$

$$cos a.cos b = \frac{1}{2} [cos (a+b) + cos (a-b)]$$

$$tan 2a = \frac{2 tan a}{1 - tan^2 a}$$

$$1 + \cos a = 2 \cos^{2} \frac{a}{2} \quad \sin a = 2 \sin \frac{a}{2} \cdot \cos \frac{a}{2} \quad \frac{1 - \cos a}{1 + \cos a} = \tan^{2} \frac{a}{2} \quad \tan a = \frac{2 \tan a/2}{1 - \tan^{2} a/2}$$

$$1 - \cos a = 2 \sin^{2} \frac{a}{2} \quad \cos a = \cos^{2} \frac{a}{2} - \sin^{2} \frac{a}{2}$$

$$\sin(2\theta) = 2 \cdot \sin(\theta) \cdot \cos(\theta)$$

$$\frac{\text{Formules de l'angle double :}}{\cos(2\theta) = \cos^2(\theta) - \sin^2(\theta) = 2\cos^2(\theta) - 1} = 1 - 2\sin^2(\theta)$$

$$\tan(2\theta) = \frac{2\tan(\theta)}{1 - \tan^2(\theta)}$$

Cosinus, sinus et tangente d'un angle aigu :

$$\cos(\alpha) = \frac{\cot \acute{e} \ adjacent \ \grave{a} \ \alpha}{hypot\acute{e}nuse} \qquad \sin(\alpha) = \frac{\cot \acute{e} \ oppos\acute{e} \ \grave{a} \ \alpha}{hypot\acute{e}nuse} \qquad \tan(\alpha) = \frac{\sin{(\alpha)}}{\cos{(\alpha)}} \qquad \frac{hyp}{\alpha} \qquad oppo$$

Formules d' Euler : $cos(θ) = \frac{e^{iθ} + e^{-iθ}}{2} \quad et \quad sin (θ) = \frac{e^{iθ} - e^{-iθ}}{2i}$ Formule de Moivre: $(\cos \theta + \sin \theta)^n = \cos(n\theta) + \sin(n\theta)$

VOLUMES

Désignation	Volume	Figure
Cube (1)	a^3 $(d = a.\sqrt{3})$	
Parallélépipède rectangle (2)	$a.b.c$ $(d = \sqrt{a^2 + b^2 + c^2})$	a c b
Pyramide (3)	$\frac{\mathbf{B.h}}{3}$	(1) a (2) a
Tronc de pyramide (4)	$\frac{h}{3}(B_1 + B_2 + \sqrt{B_1.B_2})$	h B
Cône (5)	$\frac{\pi \cdot r^2 \cdot h}{3}$	3 • • • • • • • • • • • • • • • • • • •
Tronc de cône (6)	$\frac{\pi.h}{3}\left(R^2+R.r+r^2\right)$	
Sphère	$\frac{4}{3}\pi.r^3$	Th Control of the Con
Secteur sphérique (7)	$\frac{2}{3}\pi.r^2.h$	Dh a
Onglet sphérique (8)	$\frac{2.\alpha.r^3}{3}$ (\alpha en rad)	8
Calotte sphérique (9)	$\frac{\pi.h^3}{6} + \frac{\pi.a^2.h}{2}$	9 h
Segment sphérique (10)	$\frac{1}{6}\pi.h^3 + \frac{\pi.h}{2}.(R^2 + r^2)$	h
Anneau sphérique (11)	$\frac{1}{6}\pi.l^2.h$	ii)
Tore (12)	$2\pi^2$.R.r ²	b (R
Ellipsoïde (13)	$\frac{4}{3}\pi$.a.b.c	a (13)
Prisme quadrangulaire (14)	$\frac{h}{6}$ [b.(2a + c)+d.(2c + a)]	C C C
Cylindre (15)	π.r ² .h	h b h
		(4) a

MOMENTS D'INERTIE

	MOMENTS D'INERTIE	
Masse ponctuelle	$J = M \cdot R^2$	R
Cylindre plein	$J = \frac{1}{2} \cdot M \cdot R^2$	R
Cylindre annulaire	$J = \frac{1}{2} \cdot M \cdot (R1^2 - R2^2)$	R ₁ R ₂
Cylindre annulaire mince	$J = M \cdot R^2$	
Cylindre plein transverse	$J = \frac{1}{4} \cdot M \cdot (R^2 + \frac{L^2}{3})$	
Parallélépipède rectangle	$J = \frac{1}{12} \cdot M \cdot (A^2 + B^2)$	B A
Sphère pleine	$J = \frac{2}{5} \cdot M \cdot R^2$	R R

MOMENTS QUADRATIQUES

Rectangle

Par rapport à un axe passant par G

$$I_{GX} = \frac{b.h^3}{12}, I_{GY} = \frac{h.b^3}{12}$$

Par rapport à un côté

$$I_{AB} = \frac{B.h^3}{3}, I_{BC} = \frac{h.b^3}{3}$$

4

Par rapport à un axe passant par G

$$\mathbf{I}_{\mathrm{GX}} = \mathbf{I}_{\mathrm{GY}} = \frac{\mathrm{a}^4}{12}$$

Carré

Par rapport à un côté

$$I_{AB} = I_{BC} = \frac{a^4}{3}$$

6

5

Rectangle creux

$$I_{GX} = \frac{B.H^3 - b.h^3}{12}$$

Un I

 $I_{GY} = \frac{H.B^3 - h.b^3}{12}$

7

8

Cercle

$$I_{GX} = I_{GY} = \frac{\pi . D^4}{64}$$

Couronne

$$I_{GX} = I_{GY} = \frac{\pi}{64} (D^4 - d^4)$$

MOMENTS POLAIRES

Rectangle

$$I_0 = \frac{b.h.(b^2 + h^2)}{12}$$

Carré

$$I_0 = \frac{a^4}{6}$$

Cercle

$$I_0 = \frac{\pi . D^4}{32}$$

Couronne circulaire

 $I_0 = \frac{\pi}{32} (D^4 - d^4)$

11

10

REDUCTEUR / CONVERSION

Туре	Mouvement	Rapport de réduction	Représentation
A engrenages	Rotation – Rotation	R = Nombre de dents du pignon coté charge Nombre de dents du pignon coté moteur	
A courroie lisse	Rotation – Rotation	R = Diamètre de la poulie coté charge Diamètre de la poulie coté moteur	
A courroie crantée	Rotation – Rotation	R = Nombre de dents de la poulie coté charge Nombre de dents de la poulie coté moteur	0
A chaîne et pignon	Rotation – Rotation	R = Nombre de dents du pignon coté charge Nombre de dents du pignon coté moteur	Contract of the same of the sa
A pignon et vis sans fin	Rotation – Rotation	$\mathbf{R} = \frac{\mathbf{Nombre\ de\ dents\ du\ pignon\ coté\ charge}}{\mathbf{Nombre\ de\ filets\ de\ la\ vis\ coté\ moteur}}$	
A train épicycloïdal	Rotation – Rotation	$R = \frac{\text{Produit des nombres de dents des roues menantes}}{\text{Produit des nombres de dents des roues menées}}$ (relation de Willis)	
Système vis – écrou	Rotation - Translation	$R = \frac{2 \pi}{\text{Pas de la vis}} \text{ (en rad/m)}$	
Système Pignon- crémaillère	Rotation - Translation	$R = \frac{1}{\text{Rayon moyen du pignon}} \text{ (en rad/m)}$	

TRANSMISSIONS 2/2

CARACTERISTIQUES D'UNE TRANSMISSION

Rapport de réduction	R = Vitesse du moteur Vitesse de la charge (sans unité)
Rendement (moteur entraînant)	$\eta t = \frac{Puissance \ fournie \ par \ la \ transmission}{Puissance \ recue \ par \ la \ transmission} \ (\ sans \ unité\)$
Rendement global (moteur entraînant)	ηg = Puissance utile recue par la charge Puissance fournie par le moteur
Raideur de la transmission	KR = Couple coté moteur Ecart sur position moteur (en Nm/rad)

3

4

5

6

7

8

9

10

11

TOLERANCES ARBRES ET ALESAGES

Tableau des tolérances de 4 à 12 (en micron)

Qual	ité Dia	mètre e	n mm							
	1 à 3	3 à 6	6 à 10	10 à 18	18 à 30	30 à 50	0 50 à 80 80 à 120 120 à 180		120 à 180	Usinage
4	3	4	4	5	6	7	8	10	12	très précis
5	5	5	6	8	9	11	13	15	18	très précis
6	7	8	9	11	13	16	19	22	25	très précis
7	9	12	15	18	21	25	30	35	40	de bonne facture
8	14	18	22	27	33	39	46	54	63	de bonne facture
9	25	30	36	43	52	62	74	87	100	traditionnel
10	40	48	58	70	84	100	120	140	160	traditionnel
11	60	75	90	110	130	160	190	220	250	traditionnel
12	100	120	150	180	210	250	300	350	400	traditionnel

Ajustements Arbres / Alésages

Tijusteme	A justements Ai bi es / Alesages																
								Group	pe H7								
Diamètre	Alésa	ge							Arb	res							
(mm)	H7]	E 8		f 7		g6		h6		j6		m6		р6	
6 à 10	+15	0	-25	-47	-13	-28	-5	-14	0	-9	+7	7	-2	+15	+6	+24	+15
10 à 18	+18	0	-32	-59	-16	-34	-6	-17	0	-11	+8	3	-3	+18	+7	+29	+18
18 à 30	+21	0	-40	-73	-20	-41	-7	-13	0	-13	+9)	-4	+21	+8	+35	+22
30 à 50	+25	0	-50	-89	-25	-50	-9	-25	0	-16	+1	11	-5	+25	+9	+42	+26
50 à 80	+30	0	-60	-106	-30	-60	-10	-29	0	-19	+1	12	-7	+30	+11	+51	+32
80 à 120	+35	0	-72	-126	-36	-71	-12	-34	0	-22	+1	13	-9	+35	+13	+59	+37
				Gro	upe H	6			Groupe H8								
Diamètre	Alésa	ge			A	rbres			Alé	sage				Aı	rbres		
(mm)	Н6		g	5	h5	5	j:	5	1	H8			e9		f8		h7
6 à 10	+9	0	-5	-11	0	-6	+4	-2	+22	0)	-25	-61	-13	-3:	5 0	-15
10 à 18	+11	0	-6	-14	0	-8	+5	-3	+27	0)	-32	-75	-16	-43	3 0	-18
18 à 30	+13	0	-7	-16	0	-9	+5	-4	+33	0)	-40	-92	-20	-53	3 0	-21
30 à 50	+16	0	-9	-20	0	-11	+6	-5	+39	0)	-50	-112	-25	-64	1 0	-25
50 à 80	+19	0	-10	-23	0	-13	+6	-7	+46	0)	-60	-134	-30	-70	6 0	-30

MEMENTO

Filetage à filet triangulaire (métrique-Norme NF E 03-001)

h₃: profondeur du filet de la vis

H₁ : profondeur du filet de l'écrou

D,d: diamètre nominal

d3: diamètre du noyau de la vis

D₁: diamètre du fond de filet de l'écrou
d₁: diamètre de l'alésage de l'écrou
r max :rayon à fond de filet de la vis

r₁ max : rayon à fond de filet de l'écrou

D₂: diamètre à flancs de filetD₂: diamètre à flancs de filet

P: pas

H: hauteur du triangle primitif

$$H = 0.866 P$$

$$D_2 = d_2 = d - \frac{3}{4} H$$

$$D_1 = d_1 = d_2 - 2 \cdot (\frac{H}{2} - \frac{H}{4}),$$

$$D_1 = d - 1.0825 P$$

$$d_3 = d_2 - 2 \cdot (\frac{H}{2} - \frac{H}{6}),$$

$$d_3 = d - 1.2268 P$$

$$H_1 = \frac{D - D_1}{2} = 0.542 P,$$

$$h_3 = \frac{d - d_3}{2} = 0.6134 P$$

Pas usuels selon diamètre nominal (mm)

$\mathbf{D} = \mathbf{d}$	Pas normal	$\mathbf{D} = \mathbf{d}$	Pas normal	Pas fin
1	0.25	6	1	1
1.2	0.25	8	1.25	1.25
1.6	0.35	10	1.50	1.25
2	0.40	12	1.75	1.50
2.5	0.45	14	2	1.50
3	0.50	16	2	1.50
4	0.70	18	2.5	1.50
5	0.80	20	2.5	1.50

Filetage Gaz (Norme NF E 03-004)

P: pas

n: nombre de filets par inch

h: hauteur portante du filet

D, d :diamètre extérieur

D₁, d₁ : diamètre du noyau

D2, d2 : diamètre effectif à flancs de filet

r : arrondi

$$P = \frac{1 \text{ pouce (25.4mm)}}{\text{nbre de filets au pouce}}$$

h = 0.64 Pr = 0.137 P

$$D1 = d1 = D - 1.28 P$$

	1		ECRO(2	-	
	н	11	550	-/		
1	h		July 1	vite		П
	1	C1142		VIS	1	1
D D2	I	H/6				١T

Diamètre d	p en mm	Nombre de filets	Diamètre d	p en mm	Nombre de filets
en inch	p ch min	au pouce	en inch	p ch min	au pouce
1/8	0.907	28	1 1/4	2.309	11
1/4	1.336	19	1 ½	2.309	11
3/8	1.336	19	1 3/4	2.309	11
1/2	1.814	14	2	2.309	11
5/8	1.814	14	2 1/4	2.309	11
3/4	1.814	14	2 ½	2.309	11
7/8	1.814	14	2 3/4	2.309	11
1	2.309	11	3	2.309	11

MEMENTO FILETAGES M16

2

3

4

5

6

7

8

9

10

11

3

4

5

6

8

9

10

11

Engrenages cylindriques (Norme NF E23-001)

p : pas
z : nombre de dents
D : diamètre primitif
D_a : diamètre de tête

Da: diamètre de tête
t: épaisseur de la dent
ha: saillie de la dent
hf: creux de la dent
H: hauteur totale

D = m.z

m: module

$$\mathbf{m} = \frac{\mathbf{D}}{\mathbf{z}} = \frac{\mathbf{D.a}}{\mathbf{z+2}}$$

$$P = m.\pi = \frac{D.\pi}{z}$$

Denture Normale :

$$h_a = 1 \times m$$

$$h_f = 1,25 \text{ x m}$$

$$H = 2,25 \text{ x m}$$

	0.5	0.6	0.8	1	1.25
MODULES	1.5	2	2.5	3	4
NORMALISES	5	6	8	10	12
	16	20	25		

Pression

Pression atmosphérique

Baromètre à mercure

Baromètre à eau

Pression en deux points différents

d'un liquide

Force résultante des forces de pression exercées sur un solide

entièrement immergé

Compressibilité des liquides

Effet venturi

Ecoulement d'un fluide par un

orifice sans une paroi mince

Capillarité

Viscosité dynamique η

Viscosité cinématique v

Ecoulement dans les conduites

(Nombre de Reynolds)

4

6

10

STATIQUE DES FLUIDES
$$P = \frac{F}{S} \qquad (1 \text{ Pascal} = \frac{1 \text{ newton}}{1 \text{ m}^2})$$

$$P = \rho \cdot g \cdot h$$

h = 0,759 m et
$$\rho$$
 = 13 610 kg.m⁻³
h = 10,33 m et ρ = 1 000 kg.m⁻³

$$P - Po = \Delta p = \rho \cdot g \cdot x$$

x distance en m entre les deux points

$$\mathbf{F} = \mathbf{P}$$

$$P = \rho \cdot g \cdot v$$

v volume du corps en m³ P poids du corps en kg

$$\frac{dV}{V} = -\chi dp$$

pour l'eau $\chi = 5,10^{-10} \text{ Pa}^{-1}$

DYNAMIQUE DES FLUIDES

$$VA^2 = \frac{2(P_A - P_B)}{\rho (k^2 - 1)}$$

$$v = \sqrt{2 gh}$$

 $h = \frac{P}{\rho g} = \frac{v^2}{2g}$

Eau:
$$h = \frac{2\sigma}{\rho \cdot g \cdot r}$$

Mercure: $h = \frac{2\sigma \cos a}{a}$

Force de frottement $F = \eta \frac{Sv}{e}$

(Dans le cas d'un déplacement d'un élément plan parallèle à lui-même)

Re < 2400 (vitesse critique) **Ecoulement laminaire**

Re > 2400

Ecoulements turbulents

P pression en Pa

F force en N

S surface en m²

ρ masse volumique du fluide

g accél de la pesanteur (9,81 m.s⁻²)

hauteur de la colonne du fluide

χ coefficient de compressibilité dV variation de volume V volume du fluide

dp variation de pression

VA,VB: vitesse du fluide en A et B

h en mètre

r rayon de la ½ sphère en m ρ masse volumique kg.m⁻³

g pesanteur

 $v \text{ en m}^2.\text{s}^{-1}$

 $v = 13.10^{-6} \,\text{m}^2.\text{s}^{-1}$ pour l' air f masse volumique du fluide

Re nombre de Reynolds (sans dimension)

v vitesse moyenne en m.s⁻¹ d diamètre de la conduite en m V viscosité cinématique en m².s⁻¹

MEMENTO

Travail – Energie (W) en joule	En translation : W = F.d	F: force (Newton) d: déplacement (mètre)
	En rotation: W = M.θ	M: moment de la force θ: rotation (radians)
	M = F.r	Moment d'une force par rapport à son axe de rotation. F : force r : rayon (mètre)
Puissance mécanique (P) en watt	$\mathbf{P} = \frac{\mathbf{W}}{\mathbf{t}}$	Travail fourni par seconde (t en seconde)
Champ électrique uniforme (E) en volt/mètre	$\varepsilon = \frac{1}{\varepsilon_0} \cdot \frac{Q}{S}$	Q: quantité d'électrons (Coulomb) S: surface traversée (mètre carré) Eo: permittivité du vide = 8,85 10 ⁻¹²
Travail de la force électrique (W) en joule	$W = V_{AB} \cdot Q$	Q : quantité d'électrons (Coulomb) VAB : tension appliquée a une charge Q (volt)
Champ et potentiel (E) en volt/mètre	$\varepsilon = \frac{\mathbf{V}_{\mathbf{A}} - \mathbf{V}_{\mathbf{B}}}{\mathbf{A}\mathbf{B}}$	VA – VB : différence de potentiel (volt) AB : distance (mètre)
Intensité du courant (I) en ampère	$I = \frac{Q}{t}$	L' ampère est l'intensité d'un courant constant qui transporte 1 coulomb par seconde.
Energie absorbée par un récepteur (W) en joule	$W = U \cdot Q$	U: tension (volt) Q: charge (coulomb)
Puissance absorbée par un récepteur (P) en watt	P = U . I	I : intensité (ampère)
Loi d' ohm	$U = R \cdot I$	(Uniquement pour les conducteurs passifs) R : résistance du conducteur (ohm)
Effet Joule	$W = R \cdot I^2 \cdot t$ $P = R \cdot I^2$	W : énergie calorifique (joule)
	$P = U.I = \frac{U^2}{R}$	P: puissance calorifique (watt)
Force de Laplace (F) en newton	$F = q \cdot V \cdot B$	q : charge (coulomb) V : vitesse (mètre/seconde) B : induction (tesla)
Flux magnétique (Φ) en wéber	$\Phi = B \cdot S \cdot \cos \alpha$	α (degré) : angle que fait le vecteur induction B avec la normale à la surface S
Force magnétomotrice (Fm) en ampère-tour	$F = N \cdot I$	N: nombre de spires
Excitation magnétique (H) en ampère-tour/mètre	$H = \frac{F}{L}$	F : force magnétomotrice L : longueur du conducteur (mètre)
Induction magnétique du vide (Bo) en tesla	Βο = μο . Η	μο: perméabilité dans le vide = $4\pi . 10^{-7}$
Induction magnétique (B) en tesla	$B = \mu \cdot Bo = \mu \cdot \mu o \cdot H$	μ: perméabilité relative du matériau
Loi de Laplace	$F = B \cdot I \cdot L \sin \alpha$	L'intensité est maximale lorsque le courant et l'induction font un angle de 90°
Travail des forces électromagnétiques (W) en joule	$W = \Phi$. I	

MEMENTO ÉLECTRICITÉ M26

Z

7

8

9

10

F.E.M induite (E) en volt	$E = B \cdot L \cdot v$	B: induction (tesla) L: longueur (mètre) v: vitesse (mètre/seconde)
	$\mathbf{E} = -\frac{\Delta \phi}{\Delta t}$	$\Delta \phi$: variation du flux Δt : variation du temps
Fréquence (f) en hertz	$f = \frac{1}{T}$	T : période du signal (seconde)
Pulsation d' un courant (ω) en radian/seconde	$\omega = 2\pi \cdot f$	
Impédance (Z) en ohm	$Z = \frac{U}{I}$	valable en notation complexe (module et argument)
PUISSANCE MONOPHASEE: Puissance active: (P) en watt	$P = U \cdot I \cdot \cos \phi$	Cos φ = facteur de puissance
Puissance réactive : (Q) en voltampère réactif	$Q = U \cdot I \cdot \sin \varphi$	$\tan \varphi = \frac{Q}{P}, \cos \varphi = \frac{P}{S}, \sin \varphi = \frac{Q}{S}$
Puissance apparente (S) en voltampère	$S = U \cdot I$	
PUISSANCE TRIPHASEE: Puissance active: (P) en watt	$P = \sqrt{3} \cdot U \cdot I \cdot \cos \varphi$	
Puissance réactive : (Q) en voltampère réactif	$Q = \sqrt{3} \cdot U \cdot I \cdot \sin \varphi$	Ces trois formules sont valables quelque soit le couplage du récepteur
Puissance apparente (S) en voltampère	$S = \sqrt{3} \cdot U \cdot I$	
MACHINE A COURANT CONTINU:	M I/ A I	$K = \frac{p}{a} \frac{N}{2\pi}$
Couple (M) en Newton-mètre	М = К . Ф . І	N: nombre de conducteurs actifs
F.E.M. (E) en volt	$E = K \cdot \Phi \cdot \Omega$ $E = N \cdot n \cdot \Phi$	 Ω : vitesse angulaire (radian/seconde) p : nombre de paires de pôles a : nombre de paires de voies d'enroulement
F.E.M. d' un transformateur (E) en volt	E = 4,44 N.f.B.S	S en mètre carré
Rapport de transformation	$m = \frac{U2}{U1} = \frac{N2}{N1}$	N1: nombre de spires au primaire N2: nombre de spires au secondaire U1: tension primaire U2: tension secondaire
F.E.M d'une machine à courant alternatif (E) en volt	$\mathbf{E} = \mathbf{K} \cdot \mathbf{f} \cdot \mathbf{N} \cdot \mathbf{\Phi}$	K : coefficient de Kapp ∪2,22
MOTEUR ASYNCHRONE : Vitesse de rotation (Ω) en radian/seconde	$\Omega = (1 - g) \cdot \Omega s$	g : glissement (sans unité) Ωs : vitesse de synchronisme
Glissement (g)	$g = \frac{\Omega s - \Omega}{\Omega s} = 1 - \frac{\Omega}{\Omega s}$	
Fréquence des courants rotoriques (fr) en hertz	$fr = g \cdot f$	f: fréquence d'alimentation
Puissance perdue dans le rotor	$Pr = g \cdot M \cdot \Omega s$	M : couple moteur électromagnétique
Rendement du moteur	$\eta = \frac{Pu}{Pa}$	

3

4

5

6

8

10

11

M

DIPOLES FONDAMENTAUX

Résistance :

	11001010100	
Résistance (R) en ohm	$R = \rho \cdot \frac{L}{S}$ $R = Ro \cdot (1 + at + bt^{2})$	 ρ : résistivité du matériau (Ω.m) Ro : résistance du matériau à O°C a : coefficient de température
Couplage en série	$Re = R_1 + R_2 + R_3$	Re : résistance équivalente
Couplage en parallèle	$\frac{1}{Re} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$ $Ge = G_1 + G_2 + G_3$	G: conductance = $\frac{1}{R}$
Impédance (Z) en ohm	Z = R	Déphasage φ = 0°
Code des couleurs	Code des couleurs 1	Tolérance (4ème anneau) : or : ± 5% argent : ± 10%

Condensateur •

	Condensateur:	
Charge (Q) en coulomb	Q = C. U	U : tension (volt) C : Capacité (farad)
Capacité (C) en farad	$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{S}{d}$	Eo: permittivité du vide = 8,85 10 ⁻¹² Er: permittivité relative ou constante diélectrique du milieu isolant
Couplage parallèle	$C = C_1 + C_2 + C_3$	
Couplage série	$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	
Constante de temps (charge) (t) en seconde	$\tau = R \cdot C$	R: résistance en ohm
Energie (Wc) en joule	$Wc = \frac{1}{2} \cdot C \cdot U^2$	Energie mise en réserve dans le condensateur

Code des couleurs

2 2 100 = 2200 Ω = 2,2 kΩ ± 5%

Bobine:

Flux (Φ) en wéber	Ф= L . I	L: unité d'inductance (henry)
F.E.M. d'auto-induction (e) en volt	$e = -L \cdot \frac{di}{dt}$	
Constante de temps (τ) en seconde	$\tau = \frac{L}{R}$	L : unité d'inductance (henry) R : résistance en ohm

MEMENTO ÉLECTRICITÉ M28

3

4

5

6

7

8

9

10

11

CIRCUITS ELECTRIQUES

Circuit ouvert

$$\mathbf{V_A} - \mathbf{V_B} = \mathbf{U} = \mathbf{E} - \mathbf{rI}$$

$$P = EI - rI^2$$

$$\mathbf{W} = \mathbf{EI.t} - \mathbf{rI}^2 \mathbf{t}$$

r résistance interne

E f.e.m en Volts

U différence de potentiel en Volts

P en Watts

W en Joules et t en secondes

Circuit récepteur

Circuit générateur

Tension

Puissance

Energie

Tension

Puissance

$$U=E+rI$$

$$P = U I = EI + rI^2$$

$$\mathbf{W} = \mathbf{E}.\mathbf{I}.\mathbf{t} + r\mathbf{I}^2.\mathbf{t}$$

Energie

Chute de tension en ligne

Puissance et

Energie perdue

$$U-U'=2 \eta I$$

$$P=2\ \eta\ I^2$$

$$W = 2 \eta I^2 t$$

Lois de Kirchhoff

1. Loi des noeuds

2. Loi des mailles

i₁ + i₂ + i₃ = i₄ + i₅ Au nœud (N) : la somme des courants égale à O

$$\mathbf{V_A} - \mathbf{V_D} = \mathbf{V_{AD}}$$

$$\begin{split} \mathbf{V}_{AD} &= E1 - r1.i1 \\ \mathbf{V}_{BC} &= E2 - r2.i2 \end{split}$$

$$V_{AD} \cdot V_{AB} \cdot V_{BC} = 0$$

$$U = R . I$$

R: résistance du conducteur (ohm)

Loi d' ohm (Conducteurs passifs)

MEMENTO

5

6

8

TRANSFORMATIONS DE CIRCUITS

Principe de superposition

(1) est la superposition de (2) et (3)

Théorème de Thévenin

Eth: tension mesurée entre A et B à vide.

R_{th}: résistance vu des bornes A et B lorsqu' on annule toutes les Sources (courant = circuit ouvert, tension = 1 fil).

Théorème de Norton

Io: courant circulant entre les bornes A et B en court circuit. rN: résistance vu des bornes A et B lorsqu' on annule toutes les Sources (courant = circuit ouvert, tension = 1 fil).

Pont de Wheaston

(mesure de résistance)

A l'équilibre : $V_A - V_B = 0$

$$r1.i1 = r2.i2$$

$$r3.i1 = x.i2$$

d'où
$$x = \frac{r^2}{r^1} \cdot r^3$$

10

3

4

5

6

8

9

10

SOLLICITATIONS ET CONTRAINTES DES MATERIAUX :

Résultante des forces R

RÉSISTANCE DES MATÉRIAUX 2/4

ESSAI DE TRACTION

Allongement ∆L (loi de Hooke)	$\Delta L = L - L_0 = kF$ ΔL en m F en newtons	Eprouvette S
Allongement relatif &	$\varepsilon = \frac{\Delta L}{Lo}$	
Limite d'élasticité et fatigue δ	$\delta = \frac{F}{So}$	F force en N
Module d'élasticité longitudinale E (module de Young)	$\mathbf{E} = \frac{\mathbf{\delta}}{\mathbf{\epsilon}}$	δ contrainte normale en Pa ε allongement relatif
Allongement	$\Delta L = \frac{F.Lo}{E.So}$	So surface de section m ² E module de Young en Pa
	$\mathbf{R} = \frac{\mathbf{Fm}}{\mathbf{So}}$	ΔL, L, Lo en m. R résistance à la traction (Pa). Fm charge maximale (N)
Coefficient de sécurité α (en fonction de la limite d'élasticité δ max)	$\Delta \max = \frac{\mathbf{R}}{\mathbf{\alpha}}$	1,5 < 0 . < 10

ESSAI DE COMPRESSION

Glissement unitaire ou tassement	$\gamma = \frac{\Delta x}{d}$	d
Module d'élasticité de glissement G (module de coulomb)	$G = \frac{\tau}{\gamma}$	
ou module transversal	$G = \frac{E}{2(1+v)}$	d distance entre face parallèles $\Delta \mathbf{x}$ tassement
Coefficient de Poisson	$v = \frac{\epsilon l_0}{\epsilon l_t}$	T accroissement de contrainte en Pa G en Pa ou daN/mm² G = 0,4 E It dilatation linéique transversale lo dilatation linéique longitudinale k en Pa
Module de compressibilité volumique k	$k = -\frac{p}{\theta}$	 p accroissement de pression d accroissement de volume / volume de référence

3

4

5

6

8

10

CISAILLEMENT – TORSION

Effort tranchant

résultant du moment fléchissant MF dans une section S

Condition de résistance au

cisaillement

$$T = \frac{d M_F}{dx}$$

 τ moyen = Rp

Rp résistance pratique à la rupture ou au glissement ou cisaillement

Cisaillement

(domaine élastique)

Contrainte moyenne de

Cisaillement ou cission T

$$tg \gamma = \frac{BC}{AB}$$

$$\tau$$
 moyen = $\frac{T}{S}$

Contrainte nor male d en fonction de M^t_F

dans une fibre d'ordonnée y

dans une fibre de la surface $(V = y \max)$

Contrainte maximale acceptable

$$\delta_y = y \frac{M_F}{I_{GZ}}$$

$$\delta_{max} = \frac{M^{t_F}}{\underline{I_{GZ}}}$$

$$\delta_{\max} = \frac{M^{t_{F \max}}}{\underline{I_{GZ}}} = Rp$$

δy contrainte dans la fibre d'ordonnée y aa' – bb' = déformation infinitésimale de 2 sections droites parallèles I_{GZ} moment quadratique de la section par rapport à l'axe G

Torsion (domaine élastique)

Déformation a d'un arbre cylindrique

Contrainte de cisaillement T

$$\theta = \frac{\alpha}{l}$$

$$\tau = G. \theta.\rho$$

\theta angle de déformation par unité de longueur

T cission daN/mm²

ρ distance de l'axe à la fibre

3

4

5

6

8

FLEXION

Déformation d'une poutre

Selon 1 courbure $\frac{1}{2}$ de la ligne élastique

$$\frac{1}{\rho} = -\frac{M_{\rm F}}{E.I_{\rm GZ}}$$

$$\rho = \frac{(1 + y'^2)^{\frac{3}{2}}}{y''}$$

Expression analytique de P

Equation différentielle de la déformée

Pour de petites déformations (y' -> 0)

$$y" = -\frac{M^t_F}{E.I_{GZ}}$$

$$\left. \begin{array}{c|c} M^t_{\ F} & F(x) \\ I_{G^z} & \end{array} \right|$$

Mt moment fléchissant de la section I_{G^Z} moment quadratique par rapport à G

Flèche d'une poutre soumise à une charge F

$$f = \frac{F l^3}{48 E I_{GZ}}$$

FLAMBEMENT AXIAL

Formule d'Euler

Charge critique à la compression

$$Fc = \frac{p^2 E I_{GZ}}{l^2}$$

Charge admissible pour poutre longue

$$F_R = S \cdot Rpc \cdot \frac{1}{1 + A\gamma^2}$$

E module d'élasticité longitudinale du matériau

longueur théorique de la poutre I_{GZ} moment quadratique

charge admissible à la compression

section de la poutre

Rpc résistance pratique à la compression

$$A = \frac{Re}{p^2 E} \quad \gamma = \frac{1}{r} \quad r = \sqrt{\frac{I}{S}}$$

M

11

SCIENCES DES MATÉRIAUX 1/7

SCIENCES DES MATÉRIAUX 2/7

STRUCTURES	CRISTALLOGRAPHIC	QUES ET PROPRIETES	PHYSIQUES

Grandeur	Masse volumique ρ (g.cm ⁻³)	Température de fusion (°C)	Coeficient de Dilatation (10 ⁻⁶ .°C ⁻¹)	Capacité Calorifique (J.Kg ⁻¹ .°C ⁻¹)	Capacité Calorifique (J.Kg ⁻¹ .°C ⁻¹)
METAUX					
Aluminium Al	2.698	660.2	24	900	247
Argent Ag	10.50	960.8	19	235	428
Béryllium Be	1.846	1278	12	2422	160
Cadmium Cd	8.647	321	29	230	
Chrome Cr	7.194	1890	8.2	455	
Colbalt Co	8.8	1495	12.1	418	95
Cuivre Cu	8.932	1083	16.4	386	398
Etain Sn	5.765	231.9	23		
Fer Fe	7.873	1535	11.8	448	80
Lithium Li	0.533	179	56	2980	
Magnésium Mg	1.737	651	26	1012	160
Manganèse Mn	7.473	1244	23		
Molybdène Mo	4.508	2610	4.9	247	
Nickel Ni	8.907	1453	13	443	90
Niobium Nb	8.578	2468	7.2		
Or Au	19.281	1063	14	130	315
Platine Pt	21.47	1769	11.7	132	
Plomb Pb	11.341	327.5	29	1.42	33
Tantale Ta	16.47	2996	6.5		
Titane Ti	4.508	1675	8.8	524	16.7
Tungstène W	19.253	3410	4.4	142	178
Uranium U	19.05	1137			
Vanadium V	6.09	1890			
Zinc Zn	7.0134	419.4	31.2	388	
Zirconium Zr	6.507	1852	6.3	316	
COVALENTS					
COVALENTS Carbone C diam	3.516	> 3500	1.2	510	70
Silicium Si	2.329	1410	7.63	879	70
Carbure Si SiC	3.22	2300	4.7	077	90
	3.22	2300	1. /		
OXYDES	2.0	2050	0.0	775	20
Alumine Al ₂ O ₃	3.9	2050	8.8	775	30
Silice SiO ₂	2.6		0.5	740	2
Oxyde de calcium CaO		2580			
Magnésie MgO	3.5	2850	13.5	940	38
Nutile TiO ₂		1630-1850			

SCIENCES DES MATÉRIAUX 3/7

Grandeur	Masse volumique ρ (g.cm ⁻³)	Température de fusion (°C)	Coeficient de Dilatation (10 ⁻⁶ .°C ⁻¹)	Capacité Calorifique (J.Kg ⁻¹ .°C ⁻¹)	Capacité Calorifique (J.Kg ⁻¹ .°C ⁻¹)
POLYMERES					
Polyéthylène					
Basse densité	0.92	98-115	100-220	2200	0.33
Haute densité	0.95	130-137	60-110	2100	0.48
Polypropylène	0.9	170	80-100	1880	0.12
Polychlorure de Vynil (PVC)	1.4	160	50-100		0.12-0.20
Polystyrène	1.04	Tg: 74-105	50-83	1360	0.10-0.14
PMMA	1.18	Tg: 85-105	50-90	1500	0.17-0.25
Epoxy	1.3	Tg: 370-390	55-90	1800	0.2-0.5

PROPRIETES MECANIQUES (à 20°C)

Matériaux	Module d'élasticité (GPa)	Coefficient de Poisson	Limite d'élasticité R _{0,2} (MPA)	Résistance à la traction Rm (MPA)
METAUX				
Aluminium	70	0.34	40	80
Cobalt	210	0.30	300	800
Cuivre	120	0.34	60	200
Fer	210	0.29	50	200
Magnésium	45	0.29	40	160
Molybdène	215	0.29	565	655
Nickel	210	0.31	60	300
Plomb	17	0.44	11	14
Titane	110	0.34	170	240
Tungstène	410	0.28	1000	1510
Zinc	105		30-40	120
ALLIAGES ME	TALLIQUES			
Aciers doux au carbone	210	0.29	220	430
Aciers au carbone (trempé)	210	0.29	250-1300	500-1800
Aciers inoxydables	190-210	0.29	240-400	450-800
Fonte GS	150	0.29	280-630	380-840
Alliage d'Al	70-80	0.33	50-600	120-700
Alliage de cobalt	200-250	0.30	300-2000	800-2500
Alliage de cuivre	120-150	0.34	100-900	220-1000
Bronze	110	0.35	120-600	250-700
Alliage de Mg	45	0.29	110-280	160-350
Alliage de nickel	130-230	0.31	200-1600	400-2000
Alliage de titane	80-130	0.33	250-1200	300-1300
Alliage de zinc	105		250-400	280-425

Polychlorure de Vynil (PVC) Polystyrène PMMA Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)		0.3	6-20 20-30 20-35 45-50 35-70 60-110 30-100	20 35 35 35 40-70 110 30-120 2300 1500-3500 2000-3500 2700-3600
Basse densité Haute densité Polypropylène Polychlorure de Vynil (PVC) Polystyrène PMMA Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	1 1.1 2.4 3-3.4 3.2 2-5 480 150-500 76 60-130 tées)		20-30 20-35 45-50 35-70 60-110	35 35 35 40-70 110 30-120 2300 1500-3500 2000-3500
Vynil (PVC) Polystyrène PMMA Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	2.4 3-3.4 3.2 2-5 480 150-500 76 60-130 tées)		45-50 35-70 60-110	40-70 110 30-120 2300 1500-3500 2000-3500
Vynil (PVC) Polystyrène PMMA Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	3-3.4 3.2 2-5 480 150-500 76 60-130 tées)		35-70 60-110	110 30-120 2300 1500-3500 2000-3500
PMMA Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	3.2 2-5 480 150-500 76 60-130 tées)	0.4	60-110	110 30-120 2300 1500-3500 2000-3500
Epoxy FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	2-5 480 150-500 76 60-130 tées)	0.4		2300 2300 1500-3500 2000-3500
FIBRES Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	480 150-500 76 60-130 tées)		30-100	2300 1500-3500 2000-3500
Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	150-500 76 60-130 tées)			1500-3500 2000-3500
Carbure de silicium SiC Carbone Verre Kevlar CERAMIQUES (fritte Alumine (Al2O3)	150-500 76 60-130 tées)			1500-3500 2000-3500
Verre Kevlar CERAMIQUES (fritted) Alumine (Al2O3)	76 60-130 tées)			2000-3500
Kevlar CERAMIQUES (fritted) Alumine (Al2O3)	60-130 tées)			
CERAMIQUES (fritt Alumine (Al2O3)	tées)			2700-3600
Alumine (Al2O3)				
Alumine (Al2O3)				
D //	390	0.27	275-550	3000
Béton	40-50		20-30	50
Diamant	1000	0.1		7000
Magnésie	210	0.36	105	3000
Silice (SiO2) (quartz)	54	0.16	110	1200
(verre)	70	0.23	70	700
Carbure de Si	450	0.19	450-520	1000
Zircone (ZrO2)	200	0.32	138-240	2000
COMPOSITES				
Béton armé	40-50		410	
Bois (fibres //) (fibres ⊥)	5-15 0.5-1.5		30-180 1-10	10-60 2-10
Polymères et fibres de carbone	50-200		1000-2000	2-10

MEMENTO

SCIENCES DES MATÉRIAUX 5/7

Aciers o	d'usage	e général	Désignation	A37	A42	A47	A50	A60	A70	A85
Fer 0.0)5 à	1.5% de	Rm résistance max à la	36 à	41 à	46 à	49 à	59 à	69 à	85 à
carbone			traction da/mm ²	41	49	56	59	71	83	95
A	50	2								
Classe	Rm	Qualité								

Aciers traitem thermic	ents	lliés pour	Désignation				XC18	XC38	XC48	XC68	XC100
X	C	18	Rm résistance traction da/mm²	max	à	la	36 à 41	41 à 49	46 à 56	49 à 59	59 à 71
Classe	0.13	8% de C									

Désignation selon aptitude E 20 48 M

E : classe de l'acier 20 : charge limite d'élasticité 48 : charge maxi à l'extension

M: utilisation en moulage

Ou alors S: soudable TS: trempe superficielle DF: déformable à froid

Aciers alliés

Eléments d'addition:

- chrome (C)* cobalt (K) magnésium (G) molybdène (D) nickel (N)
- plomb (P) tungstène (T) vanadium (V) silicium (S)

* symboles métallurgiques

<u>Faiblement alliés</u> : la teneur de chaque élément d'addition < 5% en masse

Exemple:

0.35% de carbone + 1% de N + C (chrome) < 1% + D<C

Fortement alliés: la teneur de chaque élément d'addition > 5% en masse

Exemple:

Classe de l'acir fortement allié **Z 6 CN 18-09**

0.06% d carbone + 18% de C + 9% de N

B. 6

11

10

2

4

6

FONTES

2

3

4

5

6

8

Définition:

Produits ferreux + (2.5 à 5% d carbone)

Désignation:

Ft 25

(Ft : fonte grise non alliée / 25 : résistance minimale à la traction)

Exemple: H

FGS 400 12

FGS: fonte à graphite sphéroïdale 400: Rm traction 400 N/mm²

12 : allongement A en % (12%)

			12	. anongem	ent it en /o	(12/0)		
Fontes grises non	Nuances	Ft 10	Ft 15	Ft 20	Ft 25	Ft 30	Ft 35	Ft 40
alliées	Rm daN/mm²	10	15	20	25	30	35	40
	Nuances	MB35-7	MB40-10	MN35-10	MN38-18	MP50-5	MP60-3	MP70-2
Fontes malléables	Rm daN/mm²	34	39	34	37	49	59	69
-	A%	7	10	10	18	5	3	2
Fontes à	Nuances FGS	370-17	400-12	500-7	600-3	700-2	800-2	
graphite sphéroïdal	Rm daN/mm²	370	400	500	600	700	800	
	A%	17	12	7	3	2	2	

CUIVRE ET ALLIAGES DE CUIVRE

BRONZE								
	Cu + Sn + autres éléments Zn, P, Pb							
Exemple	Rm N/mm ²	Applications	Désignation					
Cu Sn5 Zn4	450	Tous usages	Cu Sn5 Zn					
Cu Sn12 Zn1	230	Coussinets	Cuivre +					
Cu Sn7 Pb6 Zn4	220	Moulages	Etain 5% +					
Cu Sn9 P	550	Frottement	Zinc < 1%					

LAITON							
Cu + Zn + autres éléments Al, P, Pb							
Exemple	Rm N/mm ²	Applications	Désignation				
Cu Zn35	180	Robinetterie	Cu Zn39 Pb2				
Cu Zn40	340	Pompes	Cuivre +				
Cu Zn33	300	Emboutissage	Zinc 39% +				
Cu Zn39 Pb2	400	décolletage	Plomb 2%				

ZINC ET ALLIAGES

ZAMAC							
Zn + Al + autres éléments G, U							
Exemple	Rm N/mm ²	Applications	Désignation				
Z A4 G (zamac 3)	240	Moulage sous pression	Z A4 G				
Z A4U1G (zamac 5)	290	Frottement	Zinc				
Z A13U1G (ILZRO 12)	230	Petite mécanique	Aluminium 4% Magnésium				
Z A4U3 (KAYEM 1)	250	Outils pour thermoplastiques					

10

11

MEMENTO

SCIENCES DES MATÉRIAUX 7/7

ALUMINIUM ET ALLIAGES DE TRANSFORMATION

Aluminium

Désignation : A 7 A : aluminium pur à 99.7%

7 : pureté chimique

Alliages d'aluminium

Désignation : A-S10 G A : aluminium

S10 : silicium 10% G : magnésium

Aluminium et alliages de transformation

Métal pur (= 4 chiffres)

Exemple : **1080**

1	0	8 0
Aluminium De teneur ≥ 99 %	Nombres d'impuretés à soumettre au contrôle.	Pourcentage d'aluminium au dessus de 99% dans ce cas A=99,80%

Alliages

Exemple : **2017**

2	0	1 7		
Groupe d'alliage	Transformations subies	Identification de l'alliage		

Groupes d'alliage

1	2	3	4	5	6	7	8	
Aluminium								
Teneur ≥	+	+	+	+	+ magnésium	+	Autres	
99,9%	cuivre	manganèse	silicium	magnésium	+ silicium	zinc	alliages	

2

3

4

5

6

7

8

9

10