Cohen-Sutherland Algorithm

- ▶ Idea: eliminate as many cases as possible without computing intersections
- Start with four lines that determine the sides of the clipping window

The Cases

- ► Case 1: both endpoints of line segment inside all four lines
 - ▶ Draw (accept) line segment as is

- ► Case 2: both endpoints outside all lines and on same side of a line
 - Discard (reject) the line segment

The Cases

- ► Case 3: One endpoint inside, one outside
 - Must do at least one intersection
- ► Case 4: Both outside
 - ► May have part inside
 - Must do at least one intersection

Defining Outcodes

For each endpoint, define an outcode $b_0b_1b_2b_3$

$$b_0 = 1$$
 if $y > y_{max}$, 0 otherwise
 $b_1 = 1$ if $y < y_{min}$, 0 otherwise
 $b_2 = 1$ if $x > x_{max}$, 0 otherwise
 $b_3 = 1$ if $x < x_{min}$, 0 otherwise

	1001	1000	1010	V = V
•	0001	0000	0010	$y = y_{\text{max}}$
	0101	0100	0110	$y = y_{\min}$
$x = x_{\min} x = x_{\max}$				

- Outcodes divide space into 9 regions
- Computation of outcode requires at most 4 subtractions

- Consider the 5 cases below
- ► AB: outcode(A) = outcode(B) = 0
 - ► Accept line segment

- ► CD: outcode (C) = 0, outcode(D) \neq 0
 - ► Compute intersection
 - ▶ Location of 1 in outcode(D) determines which edge to intersect with
 - ▶ Note if there were a segment from A to a point in a region with 2 ones in outcode, we might have to do two intersections

- ► EF: outcode(E) logically ANDed with outcode(F) (bitwise) ≠ 0
 - ▶ Both outcodes have a 1 bit in the same place
 - ► Line segment is outside of corresponding side of clipping window
 - reject

- ► GH and IJ: same outcodes, neither zero but logical AND yields zero
- ► Shorten line segment by intersecting with one of sides of window
- Compute outcode of intersection (new endpoint of shortened line segment)
- ► Reexecute algorithm

Efficiency

- ▶ In many applications, the clipping window is small relative to the size of the whole data base
 - Most line segments are outside one or more side of the window and can be eliminated based on their outcodes
- ► Inefficiency when code has to be reexecuted for line segments that must be shortened in more than one step

Cohen Sutherland in 3D

► Use 6-bit outcodes

► When needed, clip line segment against planes

Liang-Barsky Clipping

$$p(t) = (1-t)p_1 + tp_2 \quad 1 \ge t \ge 0$$

Consider the parametric form of a line segment

▶ We can distinguish between the cases by looking at the ordering of the values of *t* where the line determined by the line segment crosses the lines that determine the window

Liang-Barsky Clipping

- ► In (a): $\alpha_4 > \alpha_3 > \alpha_2 > \alpha_1$
 - ▶ Intersect right, top, left, bottom: shorten
- ► In (b): $\alpha_4 > \alpha_2 > \alpha_3 > \alpha_1$
 - ► Intersect right, left, top, bottom: reject

Advantages

- Can accept/reject as easily as with Cohen-Sutherland
- \blacktriangleright Using values of α , we do not have to use algorithm recursively as with C-S
- Extends to 3D