Lab 5 Alarm System

GROUP 1 SEG4145 REAL TIME SYSTEMS

Introduction

Alexander Choukeir

Alexis Verana

Gavin Gao

Hened Saade

Jayden Lachhman

Overview

The main goal of this project is to create an alarm system.

The alarm system should be able to let user set a password to arm or disarm the alarm system. As well as detect any motion. The alarm system consists of:

- LED display screen
- Keypad
- Motion detector
- Buzzer
- LED Lights

Security Challenges

The security challenges that are addressed are:

- Password restrictions
- Password detection
- Motion detection

System Overview

The entire system is built based on three tasks: setPassword, Enter Password and motion Detect.

The system status can switch between unarmed and armed after set password task and Enter password complete

Armed

Unarmed

System Overview

Hardware Components

Interfaces

- Nucleo-F446RE Development Board
- Circuit Board
- Wires
- Resistors

Input

- 4x4 Keypad
- PIR Motion Sensor

Output

- LEDs
- OLED Display Module
- Buzzer

Interfaces

Nucleo-F446RE Development Board

Circuit Board

Resistors

Wires

Input

4x4 Keypad

PIR Motion Detector

Output

OLED Display Module

Buzzer

LEDs

Software Components

Utilizes FreeRTOS

- Software libraries:
 - CMSIS_V2
 - HAL
 - SSD1306
 - Keypad4x4
- Pins:
 - LEDs
 - LCD
 - Keypad
 - PIR Motion Detector
 - Buzzer

Software Components

Using # key for enter and * key for rearm

Three tasks:

- SetPasswordTask
 - o Priority: High
- EnterPasswordTask
 - Priority: Normal
- DetectMotionTask
 - Priority: Normal

SetPasswordTask


```
void SetPasswordTask(void *argument) // SET PASSWORD TASK
 /* USER CODE BEGIN 5 */
 /* Infinite loop */
 for(;;)
         // Get kev
         key = Get Key();
         // If the key pressed is not #
         if (kev != '#') {
                  strncat(password, &key, 1); // Append
                  SSD1306 GotoXY (0, 40);
                  SSD1306 UpdateScreen();
                  SSD1306_Puts (password, &Font_11x18, 1); // Display on LCD
                  SSD1306 UpdateScreen();
         // If the key pressed is #
         if (key == '#') {
                 // If the password is between 4-6 digits
                  if (strlen(password) >= 4 && strlen(password) <= 6) {
                          SSD1306 Clear();
                         SSD1306 UpdateScreen();
                          SSD1306 GotoXY (0, 0);
                          SSD1306 UpdateScreen();
                          SSD1306 Puts ("ARMED", &Font 11x18, 1); // Display ARMED on LCD
                          SSD1306 UpdateScreen();
                          SSD1306 GotoXY (0, 20);
                         SSD1306 UpdateScreen();
                          SSD1306 Puts ("Enter code:", &Font 11x18, 1);
                          SSD1306 UpdateScreen();
                         isArmed = 1; // Set isArmed to true
                         isCountdown = 1; // Set isCountdown to true
                          HAL_GPIO_WritePin(GPIOA,GPIO_PIN_6, GPIO_PIN_SET); // Turn on red LED
                         osThreadTerminate(setPasswordTaskHandle); // Terminate the task
                  } else { // If the password is not between 4-6 digits
```

EnterPasswordTask


```
/* USER CODE BEGIN EnterPasswordTask */
/* Infinite loop */
for (;;)
       // Get key
       key = Get Key();
       // Char for *
       char hiddenKey = '*';
       // If the key pressed is not # and isArmed is true
       if (key != '#' && isArmed) {
               strncat(hold, &key, 1); // Append
                strncat(hidden, &hiddenKey, 1); // Append
               SSD1306 GotoXY (0, 40);
               SSD1306 UpdateScreen();
               SSD1306 Puts (hidden, &Font 11x18, 1); // Display * on LCD
               SSD1306 UpdateScreen();
       // If the key pressed is # and isArmed is true
       if (key == '#' && isArmed) {
               // If the input is between 4-6 digits
               if (strlen(hold) >= 4 && strlen(hold) <= 6) {
                       // If the input matches the password set
                       if (stromp(hold, password) == 0) {
                               SSD1306 GotoXY (0, 0);
                               SSD1306 UpdateScreen();
                               SSD1306 Puts ("CORRECT", &Font 11x18, 1); // Display correct on LCD
                               SSD1306_UpdateScreen();
                               osDelay(2000); // Display correct for 2 seconds
                               HAL_GPIO_WritePin(GPIOA,GPIO_PIN_6, GPIO_PIN_RESET); // Turn off red LED
                               HAL GPIO WritePin(GPIOA, GPIO PIN 7, GPIO PIN SET); // Turn on green LED
                               HAL GPIO WritePin(GPIOB, GPIO PIN 9, GPIO PIN RESET); // Turn off buzzer
                               SSD1306 Clear();
                               SSD1306 UpdateScreen();
                               SSD1306 GotoXY (0, 0);
                               SSD1306 UpdateScreen():
                               SSD1306 Puts ("NOT ARMED", &Font 11x18, 1); // Display NOT ARMED on LCD
                               SSD1306 UpdateScreen();
                               SSD1306 GotoXY (0, 20);
                               SSD1306 UpdateScreen();
                               SSD1306 Puts ("Press * to", &Font 11x18, 1); // Display press * to arm on LCD
                               SSD1306 UpdateScreen();
                               SSD1306 GotoXY (0, 40);
                               SSD1306_UpdateScreen();
                               SSD1306_Puts ("arm", &Font_11x18, 1);
                               SSD1306 UpdateScreen();
                               isArmed = 0; // Set isArmed to false
                               stropy(hold, ""); // Reset input string
                               stropy(hidden, ""); // Reset hidden string
```

DetectMotionTask


```
// If isArmed is true and isCountdown2 is true
} else if (isArmed && isCountdown2) {
        // If motion is detected
        if (HAL_GPIO ReadPin(GPIOA, GPIO_PIN_0)) {
                int counter2 = 59: // Initialize counter
               // Loop until counter is 0
               while (counter2 >= 0) {
                        char countdown2[3]; // Create countdown string
                        sprintf(countdown2, "%d", counter2); // Format
                        SSD1306 GotoXY (60, 0);
                        SSD1306 UpdateScreen();
                        SSD1306 Puts (" ", &Font 11x18, 1); // Clear area where the countdown is located
                        SSD1306_UpdateScreen();
                        SSD1306 GotoXY (60, 0);
                        SSD1306 UpdateScreen();
                        SSD1306_Puts (countdown2, &Font_11x18, 1); // Display current counter value
                        SSD1306_UpdateScreen();
                        osDelay(1000); // Delay for 1 second
                        // If counter is 0. clear area where the countdown is located
                        if (counter2 == 0) {
                               SSD1306 GotoXY (60, 0);
                                SSD1306 UpdateScreen();
                               SSD1306_Puts (" ", &Font_11x18, 1);
                                SSD1306 UpdateScreen();
                        counter2--; // Decrement counter
               // If isArmed is true and motion is detected
               if (isArmed && HAL_GPIO_ReadPin(GPIOA, GPIO_PIN_0)) {
                        HAL GPIO WritePin(GPIOB, GPIO PIN 9, GPIO PIN SET); // Turn on buzzer
                        isCountdown2 = 0: // Set isCountdown2 to false
```

User interface design

- System status at the top
- Under this is a message to enter code
- Code entered is displayed under this
- Beside system status at the top is the countdown

If the system is not armed, LCD will display message telling the

user to press * to arm

Performance Evaluation

In evaluating the performance of our alarm system, two key performance metrics were considered:

- Response time:
 - Rapid response time to motion detection
 - Consistently responds within milliseconds
- Accuracy:
 - Minimal instances of false positives/negatives
 - Accurately distinguishes between genuine threats and environmental noise

Future Enhancements

- Integration with IoT devices:
 - Remote monitoring and control via smartphones or smart devices
- Enhanced user interface:
 - Intuitive interface with touchscreen controls or mobile app
- Advanced motion detection algorithms:
 - Employ machine learning for improved accuracy
- Integration with home automation systems:
 - Coordination with other smart home devices for comprehensive automation

Conclusion

Conclusion

Thank you.