

Tópicos Emergentes

Daniel Augusto Nunes da Silva

Apresentação

Ementa

Processo de descoberta de conhecimento em base de dados (KDD),
 mineração de dados e aprendizado de máquina. Construção e implantação de modelos de aprendizado de máquina. Integração de dados e o processo de ETL. Visualização de dados. Processamento Analítico (OLAP).

3

Objetivos

Geral: Apresentar conceitos e práticas relacionados à utilização de técnicas de mineração de dados em sistemas de software, fornecendo um visão geral do processo, desde a compreensão do problema até a implantação de modelos de aprendizagem de máquina em produção.

Específicos:

- Relacionar os principais conceitos de mineração de dados;
- Demonstrar o uso de ETL para auxiliar soluções voltadas ao processamento analítico e mineração de dados;
- Apresentar técnicas para criação e avaliação de modelos de aprendizagem de máquina;
- Implantar um modelo de aprendizagem de máquina em um projeto de software.

Conteúdo programático

Introdução

- Dado, informação e conhecimento.
- Introdução a mineração de dados.
- O processo de KDD.
- Tarefas de Mineração de dados.
- Tipos de aprendizado de máquina.
- Foco na solução do problema.

Tratamento e visualização dados

- Integração de dados e processo de ETL.
- OLTP x OLAP.
- Talend Open Studio.
- Visualização de dados.
- Métricas e indicadores de desempenho.
- Google Data Studio.

Construção de modelos preditivos

- O processo de mineração de um modelo de classificação.
- Representação do modelo de classificação.
- Avaliação de classificadores.
- Seleção de atributos.
- · Classes desbalanceadas.
- WEKA.

Modelos preditivos em produção

- Definição de uma
 estratégia para
 implantação de modelos
 preditivos.
- Utilização da WEKA API.
- · Configuração do projeto.
- Classificação de novas instâncias.

Bibliografia

Data Science Para Negócios

Foster Provost e Tom Fawcett 1ª Edição – 2016 Editora Alta Books ISBN 978-8576089728

Storytelling com Dados

Cole Nussbaumer Knaflic 2ª Edição – 2019 Editora Alta Books ISBN 978-8550804682

Business Intelligence e Análise de Dados para Gestão do Negócio

Ramesh Sharda, Dursun Delen e Efraim Turban 4ª Edição – 2019 Editora Bookman ISBN 978-8582605196

Sites de referência

- Machine Learning Mastery.
 - https://machinelearningmastery.com/
- Weka Wiki.
 - https://waikato.github.io/weka-wiki/

Ferramentas

MySQL

- https://dev.mysql.com/downloads/windows/installer/8.0.html
- Configurar a variável de ambiente PATH. Exemplo: "C:\Program Files\MySQL\MySQL Server 8.0\bin".
- Importar dados: mysql -u root -p sgcm < sgcm.sql
- Criar conta no https://www.freemysqlhosting.net/

Talend Open Studio for Data Integration

https://www.talend.com/lp/open-studio-for-data-integration/

Google Data Studio

https://datastudio.google.com/

Weka

https://prdownloads.sourceforge.net/weka/weka-3-8-6-azul-zulu-windows.exe

Ferramentas

- Git
 - https://git-scm.com/downloads
- Visual Studio Code
 - https://code.visualstudio.com/Download
- Extension Pack for Java
 - https://marketplace.visualstudio.com/items?itemName=vscjava.vscode-java-pack
- Spring Boot Extension Pack
 - https://marketplace.visualstudio.com/items?itemName=pivotal.vscode-boot-dev-pack
- Angular Language Service
 - https://marketplace.visualstudio.com/items?itemName=Angular.ng template

Ferramentas

JDK 11

- https://www.oracle.com/br/java/technologies/javase/jdk11-archive-downloads.html
- Criar a variável de ambiente JAVA_HOME configurada para o diretório de instalação do JDK. Exemplo: "C:\Program Files\Java\jdk-11.0.13".
- Adicionar "%JAVA_HOME%\bin" na variável de ambiente PATH.
- Tutorial de configuração: https://mkyong.com/java/how-to-set-java_home-on-windows-10/

Maven

- https://maven.apache.org/download.cgi
- Adicionar o diretório de instalação do Maven na variável de ambiente PATH. Exemplo: "C:\apache-maven\bin".
- Tutorial de instalação: https://mkyong.com/maven/how-to-install-maven-in-windows/

Contato

https://linkme.bio/danielnsilva/

Introdução

Dado, informação e conhecimento

Introdução a mineração de dados

- Um processo manual de análise e interpretação de dados pode ser considerado uma forma de transformar estes dados em conhecimento;
- No entanto, para muitos domínios esta forma manual torna-se impraticável, na medida em que o volume de dados armazenados cresce exponencialmente;
- Os padrões descobertos por meio deste processo devem ser relevantes na medida em que possam representar alguma vantagem, geralmente de natureza econômica;
- Termos relacionados: mineração de dados, aprendizado de máquina, ciência de dados, etc.

O processo de KDD

- KDD Knowledge-Discovery in Databases (descoberta de conhecimento em bases de dados);
- Perspectiva do conhecimento extraído:
 - "Processo de identificação de padrões válidos, novos, potencialmente úteis e compreensíveis embutidos nos dados" (FAYYAD; PIATETSKY-SHAPIRO; SMYTH, 1996);
- Perspectiva da realização do processo:
 - "O processo de KDD consiste de uma **sequência de interações** complexas, que se estende sobre um determinado período de tempo, entre um **usuário** e uma **coleção de dados**, possivelmente auxiliado por um conjunto heterogêneo de ferramentas computacionais" (BRACHMAN e ANAND, 1996).

- Processo interativo e iterativo:
 - É interativo por envolver muitas decisões feitas pelo usuário em cada etapa;
 - É também **iterativo**, pois durante o processo podem ser realizadas várias iterações até que os objetivos sejam alcançados.

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Pré-processamento

Nesta etapa é quando ocorre a limpeza dos dados;

Executando técnicas como o tratamento de valores

ausentes.

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Avaliação

Avaliação **Transformação** Mineração de dados Consiste na manipulação dos dados, através de tarefas como: agrupamento de dados, transformação de tipos, etc. Transformação Conhecimento Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados selecionados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

selecionados

Dados

Mineração de dados

Mineração de dados A partir do conjunto de dados selecionado é aplicado um algoritmo que tem por finalidade descobrir padrões. Transformação Conhecimento Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

Avaliação

Avaliação Avaliação Mineração de dados Etapa final do processo, na qual o especialista de domínio verifica se os resultados realmente contribuem para Transformação Conhecimento a solução do problema estabelecido. Pré-processamento Padrões Seleção Dados transformados Dados pré-processados Dados selecionados Dados

Fonte: Adaptado de Fayyad, Piatetsky-Shapiro e Smyth (1996).

WEB ACADEMY Tópicos Emergentes 24

Abordagem com foco no negócio/problema

Abordagem com foco no negócio/problema

Compreensão do problema

É vital compreender o problema a ser resolvido. Pode parecer óbvio, mas projetos de negócios raramente vêm modelados como problemas claros de mineração de dados.

Abordagem com foco no negócio/problema

Compreensão dos dados

É importante entender os pontos fortes e as limitações dos dados porque raramente há uma correspondência exata com o problema.

Abordagem com foco no negócio/problema

Preparação dos dados

As ferramentas normalmente exigem que os dados estejam em uma forma diferente de como são coletados, sendo necessário algum tipo de transformação.

Abordagem com foco no negócio/problema

Modelagem

Etapa do processo onde as técnicas de mineração de dados são aplicadas com o objetivo de construir um modelo que representa os padrões identificados nos dados.

Abordagem com foco no negócio/problema

Avaliação

Fase onde é verificado se a solução é válida e confiável, bem como se está de acordo com as necessidades do negócio (avaliação quantitativa e qualitativa).

Abordagem com foco no negócio/problema

Implantação

Os resultados do processo de mineração de dados são colocados em uso, normalmente por meio de um sistema de software.

Tarefas de mineração de dados

Preditiva:

- Tem por objetivo predizer o valor de um atributo baseado nos valores de outros atributos;
- É aplicada quando se deseja conhecer o comportamento futuro de novas instâncias de dados;
- Exemplo: Classificação, Regressão;

Descritiva:

- O objetivo é derivar padrões, encontrando relações nos dados analisados;
- São utilizadas quando se deseja apenas apresentar os dados de uma forma compreensível;
- Exemplo: Agrupamento, Regras de Associação.

Tipos de aprendizado de máquina

- Dados com rótulos (saída é conhecida).
- "Podemos identificar grupos de clientes que tenham probabilidades elevadas de não renovar seus contratos?"

- Dados sem rótulos (saída não é conhecida).
- "Nossos clientes naturalmente se encaixam em grupos diferentes?"

• Combina supervisionado e não-supervisionado.

Por reforço

- Aprende com os erros.
- Baseado em recompensa e punição: associa o que gera maior recompensa.

Estes são erros comuns de iniciantes (e até avançados) em Data Science.

Adianto que já cometi alguns, principalmente o terceiro.

- 1. Entender de forma superficial o requisito de negócio.
- Menosprezar a etapa de análise exploratória de dados e ir direto para experimentação com algoritmos.
- 3. Subestimar técnicas simples até quebrar a cara e voltar com o rabo entre as pernas. Esse é classico, que atire a primera pedra quem nunca.
- 4. Se apegar a ferramentas e tecnologias ao invés de focar na solução do problema.

Foco na solução do problema

https://www.linkedin.com/posts/fe lipesf_datascience-trabalhocarreira-activity-6949350306933579776-Xp-M/

- 5. Tomar decisão puramente técnica sem levar em consideração a experiência do usuário.
- 6. Não investigar de forma minuciosa os resultados do modelo e alinhar com as métricas de negócio.
- 7. Não saber se comunicar e apresentar de forma clara e sucinta o seu trabalho.

Foco na solução do problema

- E quanto ao nosso SGCM?
 - Qual é o percentual de pacientes ausentes (no-show)?
 - Como podemos obter essa informação?
 - Como monitorar o problema?
 - Podemos saber com antecedência se um paciente tem mais ou menos chances de não comparecer a consulta?
 - Como esse problema pode ser modelado?

Continua...

Tratamento e visualização dados

Integração de dados e processo de ETL

- O grande objetivo de um data warehouse é integrar dados de múltiplos sistemas;
- Várias tecnologias de integração permitem atualmente a integração de dados e metadados:
 - Integração de aplicações corporativas (EAI);
 - Arquitetura orientada a serviços (SOA);
 - Integração de informações corporativas (EII);
 - Extração, transformação e carga (ETL).

Integração de dados e processo de ETL

Integração de dados e processo de ETL

- É um processo de armazenamento de dados no *data warehouse* que consiste da:
 - Extração: leitura dos dados a partir de um banco de dados;
 - Transformação: conversão dos dados extraídos a partir de sua forma anterior para um formato novo, para ser armazenado no data warehouse;
 - Carga: colocar os dados no data warehouse.

O processo de ETL

Processamento analítico online - OLAP

- Permite realizar consultas no DW, analisando e obtendo os resultados;
- Envolve muitas atividades:
 - Geração e respostas de consultas;
 - Solicitação de relatórios e gráficos ad hoc;
 - Realização de análises estatísticas (tradicionais ou modernas);
 - Construção de apresentações visuais.

OLAP versus OLTP

- Anteriormente o foco era o processamento de transações;
- OLTP e bancos de dados relacionais resolviam os problemas;
- OLAP foca em relacionamentos complexos e busca de padrões e tendências (diretamente relacionado com o suporte à decisão);
- OLAP foi desenvolvido para lidar com um grande volume de dados.

OLAP versus **OLTP**

Característica	OLAP	OLTP
Foco	Nível estratégico da organização	Nível operacional da organização
Performance	Otimização para leitura e geração de análises e relatórios gerenciais	Alta velocidade na manipulação de dados operacionais
Estrutura dos dados	Modelagem dimensional	Modelo relacional
Armazenamento	Data warehouse	Bancos de dados convencionais
Abrangência	Envolve gestores e analistas para tomada de decisão	Utilizado por vários tipos diferentes de usuários
Tipos de operação	Leitura e inserção	Leitura, inserção, modificação e exclusão

OLAP versus **OLTP**

Características de ferramentas OLAP

Análise categórica:

- Um tipo de análise estática baseada em dados históricos;
- Se vale da premissa que o desempenho passado é um indicador do futuro;

Análise exegética:

 Também toma como base os dados históricos e acrescenta a capacidade de análise drill down;

Análise contemplativa:

 Permite que um usuário altere um único valor a fim de determinar seu impacto;

Análise formalista:

Permite alterações a múltiplas variáveis.

Relatórios

- Tipos de relatório típicos de OLAP:
 - Rotina:
 - Gerados automaticamente e distribuídos;
 - Ad hoc:
 - Criados para um usuário específico sempre que necessário;

Visualização de dados

- Representação gráfica, animação, vídeo ou apresentação de dados e os resultados da análise de dados;
- Capacidade de identificar rapidamente as tendências importantes nos dados corporativos e de mercado;
- Análise de tendências por meio de modelos preditivos;
- Método tradicional: visualização por planilhas;
- Método mais modernos: dashboards e indicadores, análise visual.

Visualização de dados

Métricas e indicadores de desempenho

 https://www.datalytyx.com/scheduling-talend-open-studio-jobs-inwindows-without-talend-administration-center-tac/

Construção de modelos preditivos

Introdução

- Classificação: identificação da classe a qual um elemento pertence a partir de suas características;
- O conjunto de possíveis classes é categórico (discreto e não ordenado);
- Em outras palavras, a classificação mapeia, dentro de um conjunto de classes pré-definido, um conjunto de dados de entrada em uma classe de saída, estabelecendo uma função que tem por objetivo determinar a qual classe pertence um dado elemento do conjunto de dados;

Visão geral

- A classificação busca por uma função que permita associar corretamente cada registro X_i de um conjunto de dados a um único rótulo categórico, Y_i, denominado classe;
- Uma vez identificada, esta função pode ser aplicada a novos registros de forma a prever as classes em que tais registros se enquadram.

Visão geral

- Os atributos do conjunto de dados são divididos em dois grupos:
 - Um dos grupos contém somente um atributo (categórico), que corresponde ao atributo dependente (atributo classe / atributoalvo), ou seja, o atributo para o qual se deve fazer a predição de um valor;
 - O outro grupo contém os atributos a serem utilizados na predição do valor, denominados atributos independentes (atributos de predição / atributos previsores).

Atributos independentes			Atributo dependente
Salário	Idade	Emprego	Classe
3.000,00	30	Autônomo	В
4.000,00	35	Indústria	В
7.000,00	50	Pesquisa	С
6.000,00	45	Autônomo	С
7.000,00	30	Pesquisa	В
6.000,00	35	Indústria	В
6.000,00	35	Autônomo	А
7.000,00	30	Autônomo	А
4.000,00	45	Indústria	В

O processo de mineração de um modelo de classificação

- O processo é dividido em duas etapas;
 - Treino: um modelo de classificação é construído utilizando um subconjunto de dados;
 - Teste: o modelo é utilizado para predizer as classes de um subconjunto de dados distinto daquele utilizado na etapa anterior;
- Desta forma, parte do conjunto de dados é utilizado para treino, e outra parte para teste;
 - O subconjunto de dados de teste também pode estar separado do subconjunto de dados utilizado para treino.

O processo de mineração de um modelo de classificação

Conjunto de dados de treino

	•			
ID	Atributo1	Atributo2	Atributo3	Classe
1	Sim	Grande	125.000,00	Não
2	Não	Médio	100.000,00	Não
3	Não	Pequeno	70.000,00	Não
4	Sim	Médio	120.000,00	Não
5	Não	Grande	95.000,00	Sim
6	Não	Médio	60.000,00	Não
7	Sim	Grande	220.000,00	Não
8	Não	Pequeno	85.000,00	Sim
9	Não	Médio	75.000,00	Não
10	Não	Pequeno	90.000,00	Sim

ID	Atributo1	Atributo2	Atributo3	Classe
11	Não	Pequeno	55.000,00	?
12	Sim	Médio	80.000,00	?
13	Sim	Grande	110.000,00	?
14	Não	Pequeno	95.000,00	?
15	Não	Grande	67.000,00	?

O processo de mineração de um modelo de classificação

Representação do modelo de classificação

- O modelo de classificação, em geral, é representado de duas formas:
 - Árvore de decisão:
 - Representação gráfica na forma de uma árvore (nós, folhas, etc.);
 - Cada nó interno representa uma decisão sobre um atributo que determina como os dados estão particionados pelos seus nós filhos;
 - Algoritmos: ID3, C4.5 (sucessor do ID3) e outros.
 - Conjunto de regras (regras de classificação):
 - Regras no formato SE-ENTÃO (assemelha-se às RAs, mas não se trata do mesmo conceito);
 - Podem ser extraídas a partir das árvores de decisão ou diretamente dos dados de treino;
 - Algoritmos: ZeroR, JRip, PART e outros.

Árvore de decisão

Conjunto de dados

Salário	Idade	Emprego	Classe
3.000,00	30	Autônomo	В
4.000,00	35	Indústria	В
7.000,00	50	Pesquisa	С
6.000,00	45	Autônomo	С
7.000,00	30	Pesquisa	В
6.000,00	35	Indústria	В
6.000,00	35	Autônomo	А
7.000,00	30	Autônomo	А
4.000,00	45	Indústria	В

Árvore de decisão

Regras de classificação

- Cada caminho da raiz até a folha representa uma regra, definida como a conjunção das condições percorridas, implicando no valor da classe encontrada na folha em questão;
- A árvore deve ser definida na forma que, para um mesmo registro, haja um e apenas um caminho da raiz até a folha;
- Regras de classificação obtidas:
- 1. $(Sal \le 5k) \rightarrow Classe = B$
- 2. (Sal > 5k) \land (Idade > 40) \rightarrow Classe = C
- 3. (Sal > 5k) \land (Idade \leq 40) \land (Emp = Autônomo) \rightarrow Classe = A
- 4. (Sal > 5k) ^ (Idade > 40) ^ ((Emp = Indústria) ∨ (Emp = Pesquisa)) → Classe = B

Árvore de decisão

Algoritmo de classificação

Utilizado para construir o modelo de classificação;

Entrada:

- Conjunto de dados de treinamento;
- Atributos independentes;
- Definição do atributo dependente (classe);

Saída:

 Um modelo representado por uma árvore de decisão ou regras de classificação que permite classificar (definir o valor atributo dependente) um novo registro a partir de seus atributos independentes.

- Dividir a base de dados em Treino e
 Teste;
- Acurácia (ou taxa de acerto) do classificador (classificações corretas):

$$Taxa\ de\ acerto = \frac{n^o\ acertos}{[base\ de\ teste]}$$

 Taxa de erro do classificador (classificações erradas):

$$Taxa\ de\ erro = \frac{n^o\ erros}{[base\ de\ teste]}$$

Hold out

- Divisão aleatória da base em:
 - Base de treinamento (2/3);
 - Base de teste (1/3).

Random subsampling

- Hold out executado k vezes;
- Acurácia do classificador é obtida a partir da média das acurácias obtidas nas k execuções.

k-Fold Cross Validation:

- Base de dados particionada (aleatoriamente) em k partes (do mesmo tamanho aproximadamente);
- Treinamento e teste s\u00e3o executados k vezes;
- Em cada execução:
 - 1 partição de teste;
 - k-1 partições de treinamento;
- Todas as partições são utilizadas, em algum momento, para teste;

•
$$Acur\'{a}cia = \frac{n^o \ acertos}{[base \ de \ dados]}$$

$$Precision = \frac{TP}{TP + FP}$$

- TP: true positive;
- FP: false positive.

- Fração dos elementos classificados como positivos que são realmente positivos;
- Ou o número de acertos entre os elementos classificados como positivos;
- Exemplo: de todos classificados como SPAM, quantos eram realmente SPAM.

$$Recall = \frac{TP}{TP + FN}$$

- TP: true positive;
- FP: false negative.

- Fração dos elementos positivos que foram classificados como positivos;
- Ou o número de acertos entre os elementos positivos;
- Exemplo: de todos os SPAMs, quantos foram classificados como SPAM.

$$F\ Measure = \frac{2 \times Pr \times Rc}{Pr + Rc}$$

- Pr: precision;
- Rc: recall.

- F é a média harmônica entre Pr e Rc;
- Tende a ser mais próximo ao menor elemento;
- Logo, um F₁ alto garante a "qualidade" em termos de *Precision* e *Recall*.

71

Atividade N2.3

- 1. Construa uma árvore de decisão a partir dos dados da tabela.
 - a) Utilize o atributo **País** no primeiro nó;
 - b) E o atributo **Comprar** como atributo classe;
- 2. Liste 4 regras de classificação a partir dos dados da tabela (ou da árvore de decisão) e o mesmo atributo classe.

País	Idade	Comprar
França	25	Sim
Inglaterra	21	Sim
França	23	Sim
Inglaterra	34	Sim
França	30	Não
Alemanha	21	Não
Alemanha	20	Não
Alemanha	18	Não
França	34	Não
França	55	Não

Solução

Árvore de decisão

Regras de classificação

- 1. **Se** (País = Alemanha) **Então** Comprar = Não
- 2. **Se** (País = Inglaterra) **Então** Comprar = Sim
- 3. **Se** (País = França e Idade ≤ 25) **Então** Comprar = Sim
- 4. **Se** (País = França e Idade > 25) **Então** Comprar = Não

Seleção de atributos

Classes desbalanceadas

Modelos preditivos em produção

O que falta?

Monitorar o modelo.

Treinamento na propria aplicação.

Fim!

Referências

- BRACHMAN, R. J.; ANAND, T. The Process of Knowledge Discovery in Databases. The KDD Process for Extracting Useful Knowledge from Volumes of Data, 1996, p. 37-57.
- FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From data mining to knowledge discovery in databases. Al magazine, v. 17, n. 3, p. 37–54, 1996.
- FAWCETT, Tom; PROVOST, Foster. **Data Science para Negócios**. 1. ed. Rio de Janeiro: Alta Books, 2016. 408 p.

Continua...