RÉPUBLIQUE FRANÇAISE

(1) N° de publication : (A n'utiliser que pour les commandes de reproduction). 2 291 248

INSTITUT NATIONAL

BE LA PROPRIÉTÉ INDUSTRIELLE

PARIS

A1

DEMANDE DE BREVET D'INVENTION

2 **54**) Plastisol d'un polymère organique et d'un plastifiant. **61** C 08 L 33/10, 25/14. Classification internationale (Int. Cl.2). 14 novembre 1975, à 16 h 23 mn. Date de dépôt 33 32 33 Priorité revendiquée : Demande de brevet déposée en République Fédérale d'Allemagne le 15 novembre 1974, n. P 24 54 235.6 et demande de brevet additionnel déposée le 3 juillet 1975, n. P 25 29 732.9 au nom de la demanderesse. **41** Date de la mise à la disposition du public de la demande B.O.P.I. - «Listes» n. 24 du 11-6-1976. 7 Déposant : Société dite : TEROSON G.M.B.H., résidant en République Fédérale d'Allemagne. 72) Invention de :

Mandataire : Cabinet Beau de Loménie, Ingénieurs-Conseils, 55, rue d'Amsterdam,

73)

74)

Titulaire: Idem (71)

75008 Paris.

La présent inv ntion concerne de nouv aux plastisols à base de polymères acryliques et de plastifiants organiques.

Par plastisols, on entend en général des dispersions qui sont formées par des polymères organiques dans des plastifiants et qui sont gélifiées par chauffage jusqu'à une température élevée. Les plastisols actuellement courants comprennent en général du poly(chlorure de vinyle) pulvérulent en dispersion dans un plastifiant liquide compatible formant une pâte. Les plastisols de poly(chlorure de vinyle) sont utilisés à des fins très diverses et en particulier comme compositions d'étanchéité, comme revêtements anticorrosifs pour les métaux, comme compositions d'imprégnation et d'enduction pour les matières textiles, comme isolants de câbles, etc.

Toutefois, la production et l'utilisation des plastisols de poly(chlorure de vinyle) suscitent différentes graves difficultés. En fait, la production même du poly(chlorure de vinyle) est une source d'inconvénients parca que le chlorure de vinyle peut être une menace pour la santé du personnel travaillant au voisinage. Récemment, de nombreuses usines de poly(chlorure de vinyle) ont été fermées pour cette raison. Le monomère résiduel du poly-(chlorure de vinyle) pourrait être dangereux pour le personnel pendant la fabrication et peut-être même pour le consommateur au cas où le plastigel viendrait au contact d'aliments.

Un inconvénient des plastisols de poly(chlorure de viny-25 le) est que ce polymère est sensible tant à la chaleur qu'à la lumière et tend à dégager du chlorure d'hydrogène. Le dégagement de chlorure d'hydrogène est un inconvénient particulièrement grave, parce que lors de son utilisation le plastisol doit être chauffé à une température élevée et que le chlorure d'hydrogène libéré 30 dans ces conditions est corrosif et attaque, par exemple, les substrats métalliques. Différentes tentatives ont déjà visé à empêcher cette décomposition thermique par addition de stabilisants à la chaleur, mais ces composés sont fréquemment toxiques et ne peuvent donc être utilisés dans les plastisols qui viennent au con-35 tact des aliments. Ces différents inconvénients sont encore accentués par le fait que dans certains cas particuliers les plastisols de poly(chlorure de vinyle) exigent, en vue d'un temps de gélification fort bref, une température de cuisson relativement élevée qui augmente davantage encore le risque de décomposition du poly 40 mèr .

La présente invention vis à la mise au point de nouveaux plastisols qui aient également les exc llent s propriétés
de mise en œuvre et de fabrication des plastisols de poly(chlorure de vinyle), mais qui soient gélifiés à des températures plus
basses et qui soient aussi exempts de chlore empêchant ainsi un
dégagement de chlore ou de chlorure d'hydrogène. La Demanderesse
a découvert avec surprise que la difficulté peut être résolue au
moyen de polymères acryliques particuliers utilisés et mis en œuvre avec des plastifiants pour la production de ces plastisols.

L'invention a pour objet un plastisol comprenant 100 parties en poids de particules solides d'un polymère organique (a) en dispersion dans 30 à 1.000 parties en poids d'un constituant organique liquide (b) qui sert de plastifiant compatible pour le polymère organique et en forme une dispersion visqueuse ayant 15 l'aspect d'un liquide ou d'une pâte, qui est caractérisé en ce que le polymère organique consiste en substance en unités dérivant.

- (i) d'un ou plusieurs composés choisis parmi l'acrylate de t-butyle, les méthacrylates d'alkyle à radicaux alkyle en C_1-C_4 et le méthacrylate de cyclohexyle, ou
- (ii) d'un ou plusieurs des monomères ci-dessus et d'un ou de plusieurs comonomères choisis parmi les méthacrylates d'alcools aliphatiques en C₂-C₁₀, les acrylates d'alcools aliphatiques en C₁-C₁₀, le styrène et l'α-méthylstyrène, et le polymère a une température de transition vitreuse de plus de 35°C et un degré de polymérisation moyen de plus de 400, les particules du polymère dans le plastisol ayant une granulométrie de 0,1 à 500 microns. La granulométrie moyenne du polymère est de préférence augmentée en proportion de l'abaissement de sa température de transition vitreuse T_v. Cette température de transition vitreuse est de préférence supérieure à 60°C.

Pour conduire à d'utiles résultats, le degré de polymérisation du polymère doit être d'au moins environ 400. Avantageusement, ce degré de polymérisation est de 400 à 20.000, le poids moléculaire moyen étant ainsi d'environ 40.000 à 2.000.000.

Le polymère préféré consiste en substance uniquement en unités d'une seule espèce dérivant de l'acrylate de t-butyle ou du méthacrylate de méthyle, d'éthyle, de n-propyle, d'isopropyle, de n-butyle, de s-butyle, ou de t-butyle, ou bien du méthacrylate de cyclohexyle, c'est-à-dire est essentiellement un houpolymère. Le méthacrylate de méthyle est préféré. L'acrylate

u méthacrylate d'alcool choisi comm comonomèr dériv d préférence d'un alkanol, c' st-à-dir d'un alcool saturé non substitué, et les monomères de type (i) sont généralement prépondérants par rapport à ceux de type (ii). Les copolymères préférés sont ceux dans lesquels l'un des monomères est le méthacrylate de méthyle et forme au moins 40% et de préférence au moins 50% du poids de l'ensemble des unités monomères, tandis que l'autre monomère est un méthacrylate d'alkyle à radical alkyle en C2-C4 et spécialement le méthacrylate de n-butyle ou un acrylate d'alkyle à radical al-

Toutefois, dans le cadre de l'invention, seuls peuvent être utilisés les copolymères qui ont des températures de transition vitreuse ou de solidification de plus d'environ 35°C. La température de transition vitreuse T_v d'un copolymère particulier peut être calculée à priori au moyen de la formule de Fox (T.G. Fox, Bull. Am. Phys. Soc., volume 1, 123 (1956)),

$$\frac{1}{T_{Co}} = \frac{W_1}{T_1} + \frac{W_2}{T_2} + \dots + \frac{W_n}{T_n}$$

20 où les symboles ont les significations suivantes :

W₁ = fraction pondérale de monomère 1

W₂ = fraction pondérale de monomère 2

T₁ = température de transition vitreuse du monomère l polymérisé, en °K

25 T₂ = température de transition vitreuse du monomère 2 polymérisé, en °K

To = température de transition vitreuse du copolymère, en °K.

La granulométrie moyenne du polymère doit être d'environ 0,1 à 500 microns et est de préférence de 0,3 à 200 microns. Lors30 que la granulométrie est trop grossière, le plastisol n'a pas une cohésion interne convenable et la gélification du polymère n'est pas complète. Si la granulométrie est trop fine, la stabilité à l'entreposage n'est pas satisfaisante, c'est-à-dire que la gélification a lieu même lorsque le polymère est entreposé.

Comme expliqué plus en détail ci-après, il existe dans un plastisol une relation entre la granulométrie moyenne du polymère utilisé et la température de transition vitreuse T_v. Le diagramme porte en ordonnées le logarithme de la granulométrie moyenne, en microns, (log) et en abscisses la température de transition vitreu-40 se, (T_v), en °C. Ce diagramme indique les limites pour la produc-

tion d plastisols à partir de polymères méthacryliques, en fonction de la granulométrie et de la température de transition vitreuse du polymère. Les polymères convenant le mieux pour les
plastisols conformes à l'invention tombent sensiblement dans un
5 triangle délimité par les deux axes de coordonnées et par la ligne
réunissant la granulométrie minimale et la température de transition vitreuse minimale. On peut observer aussi qu'à mesure que la
température de transition vitreuse du polymère s'élève, sa granulométrie peut devenir plus fine. Toutefois, les polymères à
10 grains extrêmement fins et basse température de transition vitreuse ne conviennent pas.

Il est possible aussi d'utiliser suivant l'invention deux polymères qui diffèrent par la granulométrie moyenne. Au moyen d'un mélange d'un polymère à grains fins et d'un polymère à grains 15 grossiers, il est possible d'imposer entre certaines limites les propriétés d'écoulement et les critères auxquels doit satisfaire le plastifiant (voir, par exemple, le brevet allemand n° 934.498).

Les polymères acryliques obtenus par polymérisation tant en suspension qu'en émulsion conviennent pour les plastisols de 20 l'invention. La granulométrie désirée peut être imposée par la vitesse d'agitation dans le cas de la polymérisation en suspension, et par la quantité et la nature de l'émulsionnant, dans le cas de la polymérisation en émulsion. La granulométrie du polymère est appréciée de la manière habituelle, par exemple au moyen d'un 25 compteur de Coulter.

De préférence, la quantité de plastifiant est de 65 à 800 parties en poids pour 100 parties en poids de polymère.

Le plastifiant doit évidemment être parfaitement compatible avec le polymère acrylique choisi. Un critère simple et utile de compatibilité est qu'au moins 8 jours après la gélification du plastisol, le plastifiant n'est pas exsudé et la surface du plastisol est parfaitement sèche et non poisseuse. Il est évident que la compatibilité dépend de la nature du polymère acrylique et de celle du plastifiant. Par exemple, le phtalate de dibutyle ne convient pas comme plastifiant du poly(méthacrylate de méthyle) par manque de compatibilité. Toutefois, le même plastifiant convient pour des copolymères de méthacrylate de méthyle contenant environ 5 à 25% de méthacrylate de butyle.

Un autre critère important pour le choix d'un plasti-40 fiant convenable est la stabilité à l'entreposage du plastisol. Cett grandeur peut être définie quantitativement par l'indic viscosimétriqu, sur la base, par exemple, d'un mélange l:l de polymère et de plastifiant, au moyen de la relation suivante :

$$v_{8/0} = \frac{v_{8j}}{v_{8}}$$

où $v_{8/0}$ représente l'indice viscosimétrique, γ_0 est la viscosité initiale du plastisol et γ_{8j} est la viscosité du plastisol après 8 jours d'entreposage.

La viscosité est déterminée de la manière classique, par exemple avec un viscosimètre rotatif (Drage). D'après la définition ci-dessus, l'indice viscosimétrique doit être inférieur à 3,0 pour les plastifiants utiles aux fins de l'invention, c'est-à-dire que la viscosité ne peut pas augmenter de plus de trois fois dans un délai de 8 jours. Un tel plastisol n'a pas encore nécessairement une stabilité adéquate, mais il est facile d'y porter remède, par exemple par augmentation de la teneur en plastifiant ou incorporation de charges ou autres additifs.

Le choix du plastifiant le plus convenable peut être ex20 pliqué aussi à l'aide du dessin annexé. Dans le triangle XYZ,
comprenant les polymères acryliques appropriés, il existe pour
chaque plastifiant utile un triangle plus petit dans lequel on
trouve les polymères acryliques qui peuvent être combinés à un
plastifiant particulier pour donner un plastisol convenable. Les
25 zones pour les divers plastifiants sont délimitées à gauche par la
compatibilité avec le polymère et vers le haut (hypoténuse) par
l'indice de viscosité (stabilité à l'entreposage). Quelques expériences simples permettent de préciser ces limites pour chaque
plastifiant. Par exemple, le dessin indique les zones GYH, DEF
30 et ABC pour le phtalate de diméthoxyéthyle (FDME), pour le phtalate de dibutyle (FDB) et pour le phtalate de dioctyle (FDO).

Les plastifiants comprenant au moins deux cycles aromatiques et/ou deux radicaux éther dans la molécule se sont révélés particulièrement utiles pour les homopolymères du méthacrylate de 35 méthyle. Le premier groupe comprend, par exemple, le phtalate de butyle et de benzyle, le dibenzyltoluène, le phtalate de dibenzyle, le phosphate de diphényle et d'octyle, le phosphate de triphényle, le phosphate de tricrésyle, le benzoate de dibenzyle et l'éther diphénylique. Le second groupe comprend, entre autres, le phtalate de diméthoxyéthyle, le phtalate de diéthoxyéthyle, le

phtalate de dibutoxyéthyle et le glycolate de méthylphtalyléthyle. Les deux critères sont satisfaits par le dibenzoat du diéthylèneglycol et le dibenzoate de dipropylèneglycol. Un autre plastifiant préféré est le citrate de tributylacétyle.

1'égard des plastifiants augmente généralement, mais souvent l'indice viscosimétrique est supérieur à 3,0, c'est-à-dire que la stabilité est inadéquate. Par exemple, avec un copolymère de 15% de méthacrylate de n-butyle et de 85% de méthacrylate de méthyle en une granulométrie moyenne de 100 microns, le phtalate de dibutyle, le phtalate de diisobutyle et le phtalate de diamyle conviennent aussi, en plus des plastifiants déjà indiqués. Toutefois, pour les polymères dont la granulométrie tombe à 2 microns, l'indice de viscosité pour la plupart des plastifiants indiqués excède 3,0.

15 Néanmoins, le phosphate de tricrésyle et le dibenzyltoluène restent des plastifiants convenables.

Les plastifiants habituels, comme le phtalate de dioctyle, le phtalate de dinonyle et différents autres exigent une teneur encore plus élevée en comonomère dans le copolymère pour que 20 la compatibilité soit adéquate.

Dans le cas d'un copolymère ayant une granulométrie moyenne de 50 microns et consistant en 50 parties en poids de méthacrylate de butyle et en 50 parties en poids de méthacrylate de méthyle, même si la compatibilité nécessaire existe, il est impos-25 sible d'arriver à une stabilité à l'entreposage adéquate avec la plupart des plastifiants ci-dessus. Toutefois, le phtalate de dioctyle, le phtalate de dinonyle, le phtalate de didécyle, le phtalate de butyle et de cyclohexyle et divers autres restent des plastifiants convenables dans de telles circonstances. Ainsi, à 30 mesure que la teneur en comonomère du polymère augmente, la longueur des radicaux aliphatiques du phtalate peut s'accroître. Les plastifiants purement aliphatiques, comme les adipates et sébaçates, ne conviennent pas, mais il est alors possible de prendre les hydrocarbures aromatiques à radicaux aliphatiques qui ont un point 35 d'ébullition supérieur. Par exemple, le produit vendu sous le nom de Ingralur 839 (mélange d'hydrocarbures contenant plus de 40% d'hydrocarbures aromatiques de la Société Fuchs Company à Mannheim) s'est révélé convenable pour ces derniers copolymères. Dans le cas d'une teneur en comonomère de 70% avec le méthacrylate de bu-40 tyle, les particules doivent être fort grossières, mais les phtalat s n convienn nt pas en raison d'un médiocr stabilité d cons rvation. Les plastifiants t ls que ceux v ndus sous l nom de Ingralur 839 ou de polymérols (hydrocarbures naphténiques de la Société Shell), outre le mellitate de tris(éthylhexyle) et les 5 huiles aromatiques à haut point d'ébullition restent convenables.

De nombreux plastifiants qui ont une bonne stabilité d'entreposage, mais une médiocre compatibilité avec les polymères choisis se trouvent donc impropres à la préparation des plastisols, mais peuvent dans certaines circonstances être utilisés comme diluants qui remplacent jusqu'à environ 25% du poids du plastifiant principal. Ces diluants sont en particulier les plastifiants qui, pris isolément, ne sont compatibles que lorsque la teneur en comonomère est élevée.

Enfin, il est possible aussi d'utiliser les plastifiants dits polymères lorsqu'ils sont compatibles avec le polymère acrylique choisi en particulier. Dans ce domaine, la viscosité du plastisol dépend sensiblement de la viscosité du plastifiant polymère, qui est toujours sensiblement plus élevée que celle d'un plastifiant monomère. Des plastifiants polymères appropriés sont, par exemple, les polyesters ortho-phtaliques et para-phtaliques.

Lorsque différents plastifiants peuvent être utilisés pour la mise en composition d'un plastisol au départ d'un polymère ou copolymère acrylique déterminé, le choix du plastifiant dépend finalement de l'application envisagée pour le plastisol. Ainsi, le poly(méthacrylate de méthyle) peut être utilisé avec avantage avec le citrate de tributyle acétylé pour les applications dans les industries alimentaires (joints de récipients), alors que d'autres plastifiants admissibles du point de vue industriel ne conviendraient pas à cette fin.

20 En plus des polymères acryliques et plastifiants, les plastisols conformes à l'invention peuvent contenir jusqu'à 700 et de préférence jusqu'à 400 parties en poids de charges inertes pour 100 parties en poids de polymère. Les charges servent principalement à augmenter la viscosité et à améliorer la résistance à l'abrasion. Elles permettent aussi des économies sur les coûts de fabrication. Les charges appropriées sont notamment les craies qui peuvent être, par exemple, broyées, précipitées ou enrobées, la barytine, le kaolin, les silices hautement dispersées, le talc, la bentonite, la poudre de verre, le sable, l'oxyde ou l'hydroxyde d'aluminium, le trioxyde d'antimoine, le dioxyde de titane, le

noir d carbone, des savons métalliques tels que le stéarate de zinc ou de calcium, colorants, pigments et inhibiteurs de corrosion pouvant être ajoutés aussi aux plastisols.

En outre, les plastisols peuvent contenir des additifs 5 classiques, par exemple des agents régulateurs de la viscosité, comme des émulsionnants et silicones, outre des stabilisants à l'oxydation, à la lumière et à la chaleur, de même que des époxydes émollients. Il est possible aussi d'ajouter des porophores, par exemple des composés azolques qui se décomposent à la gé-10 lification et donnent un plastigel expansé.

Il est enfin particulièrement important d'assurer l'adhérence des plastisols conformes à l'invention au substrat traité, par exemple à l'acier (graissé, dégraissé, phosphaté, enduit d'une couche de fond), à l'aluminium, aux matières textiles, aux papiers, 15 etc. A cette fin, il est possible d'utiliser des promoteurs d'adhérence convenables, comme le diméthacrylate du diéthylèneglycol, le triméthacrylate du triméthylolpropane, en combinaison avec des peroxydes qui se décomposent à la température de gélification et amorcent la polymérisation radicalaire de l'adhésif.

Les résines solides ou liquides de phénols ou de résorcinols à faible teneur en formaldéhyde conviennent aussi. possible de même d'utiliser des résines époxydes avec des durcisseurs thermoréactifs, comme l'acétoguanamine ou le dicyanodiamide, outre les aminosilanes. La teneur en promoteur d'adhérence peut 25 être de 0,1 à 50 parties et de préférence de 1 à 5 parties pour 100 parties de polymère, sur base pondérale.

20

40

L'adhérence peut aussi être améliorée par copolymérisation d'une quantité faible (sur la base du polymère et du copolymère) d'un monomère acrylique ou méthacrylique comprenant des ra-30 dicaux fonctionnels libres ou d'un ou plusieurs monomères copolymérisables comprenant un radical hétérocyclique dont le cycle comprend au moins l atome d'azote avec le polymère acrylique ou méthacrylique. La proportion de ces comonomères s'élève en général jusqu'à environ 3% en poids. Les monomères acryliques et/ou mé-35 thacryliques portant des radicaux carboxyle, hydroxyle, époxyde ou amino libres conviennent spécialement. En particulier, il est ainsi possible d'utiliser de l'acide acrylique ou méthacrylique libre, de même que l'un de leurs esters formés avec un hydroxyalcool, époxyalcool ou aminoalcool aliphatique inférieur.

D'excellentes propriétés d'adhérence sont conférées lors-

qu l s monomèr s du polymère sont copolymérisés av c d faibl s quantit's d certains compos's hétérocycliques. Il est préférabl d'utiliser comme comonomère pour la copolymérisation un composé vinylique hétérocyclique de formule générale :

$$R^{1}$$
 $CH_{2} = C - (CH_{2})_{n} - \hat{R}^{2}$

5

où n représente 0 ou 1, R¹ représente un atome d'hydrogène ou un 10 radical alkyle linéaire ou ramifié de 1 à 4 atomes de carbone ou bien un radical phényle, et R² représente un radical -COOR³, -COR³ ou -R³, R³ représentant un radical hétérocyclique comprenant un ou plusieurs cycles et au moins un atome d'azote dans le cycle.

De préférence, la quantité de composé hétérocyclique est d'environ 0,1 à 3% et plus avantageusement de 0,2 à 3% en poids, sur la base du polymère et/ou du copolymère ou du ou des monomères à polymériser, parce qu'une quantité de cet intervalle conduit à d'excellents résultats. Toutefois, la quantité peut être éventuellement augmentée, par exemple jusqu'à environ 5% et dans certains cas spéciaux, même jusqu'à 10%, sur base pondérale.

Des monomères convenables sont, par exemple, les composés N-vinyliques ou C-vinyliques ou bien N-allyliques ou C-allyliques de l'imidazole, de l'imidazoline, de l'imidazolidine, du benzimidazole, du triazole, du pyrrole, du pyrazole, de l'oxazole, de la pyridine, de la chinoléine, de la diazine et de divers autres composés hétérocycliques dont le système cyclique comprend au moins un atome d'azote. Le N-vinylimidazole est particulièrement préféré. En outre, les éthers vinyliques et allyliques et les esters acryliques ou méthacryliques des composés hétérocycliques sont utiles aussi.

Les propriétés d'adhérence des plastisols peuvent être davantage améliorées par addition d'agents de réticulation supplémentaires qui réagissent avec le radical hétérocyclique du monomère copolymérisé. Les résines époxydes se sont révélées appropriées et en dehors des résines époxydes de type industriel, il est possible également d'utiliser un polymère qui, conformément à l'invention, a été copolymérisé avec une faible quantité d'un monomère acrylique ou méthacrylique à radicaux époxyde. En outre, les acides carboxyliques polybasiques, comme l'acide benzère tricarboxylique, l'acide adipique, l'acide maléique et l'acide itaconique, se sont ré-

vélés conv nabl s et améliorent davantage les propriétés d'adhérence.

La préparation des plastisols conformes à l'invention peut être exécutée aussi par mélange de deux polymères acryliques ou mé5 thacryliques ou davantage qui satisfont aux critères de l'invention. Par exemple, un homopolymère de méthacrylate de méthyle
peut être mélangé avec un copolymère de méthacrylate de méthyle
ou avec un copolymère qui a été en outre modifié par copolymérisation avec un composé hétérocyclique. Ce mode opératoire permet
10 d'obtenir des propriétés rhéologiques particulièrement favorables.

Il est possible également de mélanger les copolymères contenant des radicaux qui réagissent les uns avec les autres. La combinaison décrite ci-dessus de copolymères à radicaux époxyde et de copolymères à radicaux hétérocycliques est un exemple de ce 15 mode opératoire.

Les plastisols conformes à l'invention peuvent être travaillés de la manière classique suivant leur viscosité, par exemple au flotteur, au pinceau, au pistolet, à l'atomiseur pneumatique, ou bien par pulvérisation sous haute pression sans air, par 20 raclage, par calandrage, par coulée ou par immersion.

Enfin, pour la formation des plastigels, les plastisols doivent être gélifiés. A cette fin, des températures d'environ 70 à 240°C sont à choisir d'après la composition du plastisol et les conditions de travail particulières. Le temps de gélification nécessaire est de 2 minutes à 2 heures. Le chauffage requis peut être effectué, par exemple, au moyen d'air chaud ou de tuyaux métalliques, par exposition au rayonnement infrarouge ou à une émission de haute fréquence, etc.

Les plastisols conformes à l'invention sont spécialement utiles comme inhibiteurs d'abrasion et de corrosion pour les tôles métalliques, par exemple pour la protection de la partie inférieure du châssis des automobiles, camions et autobus. Ces plastisols conviennent aussi comme agents d'étanchéité pour l'uniformité des systèmes liants, comme adhésifs pour les métaux, comme agents de revêtement, comme compositions pour le soudage par points, comme pâtes à expanser, comme agents d'étanchéité pour tôles soudées par points et pour tôles assemblées avec doubles brides. Ils conviennent aussi pour l'imprégnation et l'enduction des matières textiles et substrats analogues, par exemple les bâches, le cuir artificiel, les tapis, les revers de tapis, les matières d'emballage.

l s courroi s d transmission et l s courroi s de transport. L'application par immersion p rm t d'obtenir des corps creux, gants, chaussures, doigtiers, etc. Ces plastisols conviennent aussi pour confectionner les joints des bouchages de bouteilles et des sertissures pliées, corme joints en matière plastique pour les filtres à huile et à eau, pour la fabrication par extrusion ou moulage par injection de pièces très élastiques, comme des galons d'étanchéité et cordes d'emballage, des plateaux et pièces diverses, de même que pour le laminage des feuillards et clinquants.

10 Après incorporation de plastifiants et d'additifs convenables, le plastisol conforme à l'invention se prête aussi à l'emballage des denrées alimentaires du fait que le méthacrylate de méthyle ne suscite aucune objection.

L'invention est davantage illustrée par les exemples sui-15 vants dans lesquels les parties sont données sur base pondérale, sauf indication contraire.

EXEMPLES 1 A 15.-

Le tableau I donne les résultats de 15 exemples. Dans les exemples 1, 2, 7, 11 et 12, le plastifiant ne convient pas 20 pour ce polymère en raison d'un manque de compatibilité. Dans les exemples 5, 9, 13 et 14, l'indice viscosimétrique excède 3,0 pour les plastifiants indiqués, de sorte que ces compositions ne conviennent pas davantage. Toutefois, on obtient d'excellents résultats avec des compositions de polymère et de plastifiant des exemples 3, 4, 6, 8, 10 et 15 dont le plastifiant satisfait aux deux critères, c'est-à-dire est complètement compatible avec le polymère et conduit à un indice viscosimétrique V_{8/0} de moins de 3,0.

Dans le tableau qui suit:

MAB = méthacrylate de n-butyle

30 PDO = phtalate de dioctyle

PMAM = poly(méthacrylate de méthyle)

PDIB = phtalate de diisobutyle

PTC = phtalate de tricrésyle

BDPG = dibenzoate de dipropylèneglycol

35 DBT = dibenzyltoluène

ADO = adipate de dioctyle

MTEH = mellitate de tris(éthylhexyle)

MAM = méthacrylate de méthyle.

} -	1
F	>
č	Ś
ATT	į
•	7

	Elasticité	•	bonne	bonne	très bonne	très bonne	bonne	très bonne	bonne	très bonne	très bonne	très bonne	bonne	dure, élastique	légère, poisseuse	très bonne	poune
	0/8/0		1,09	1,64	1,17	1,01	8	2,32	1,51	2,39		2,20	2,09	96.0	2	8	0,77
	Viscosité, en centi- poises	a 8 fours	066	1.180	3.070	3.770	solide	21.000	7.300	6.850	solide	35.000	2,400	13.400	solide	solide	14.000
		Immédiate	016	720	2.630	3.450	2.900	9.050	4.850	2.870	8,200	15.900	1.150	13.600	5.250	32.750	18.100
	Compatibl-		mauvaise	modérée	bonne	poune	bonne	poune	modérée	ponne	bonne	bonne	modérée	modérée	ponne	bonne	bonne
	Plasti-	(a)	50 PDO	50 PDIB	50 PTC	50 BDPG	50 PDIB	50 PTC	50 200	50 DBT	50 PDIB	50 PD0	50 AD0	50 MTEH	50 PDIB	50 PD0	50 мтен
	Granu- lomé-	tr10,	30	=	=	=	CΙ	=	=	=	50	=	=	=	240	=	=
	T A	၁့	105	=	=	=	89	=	=	=	56	=	=	=	3	=	=
	-	en poids	50 PMAM	=	=	=	50 MAM/ MAB 85/15	=	=	=	50 MAM/ MAB 50/50	=	=	=	50 MAM/ MAB 30/70	=	1
	Exem- ple		1	8	m	<i></i>	N	9	2	80	6	ខា	7	12	13	#	15

EXEMPLE 16.-

5

15

35

Au moyen d'un agitateur, on homogénéise l mélang suivant, puis on l'applique à la racle sur une tôle d'acier dégraissée:

- 30 parties de poly(méthacrylate de méthyle) de 30 microns
- 30 parties de phtalate de butyle et de benzyle
- 36 parties de craie
- 3 parties de diméthacrylate de triéthylèneglycol
- 0,3 partie de perbenzoate de t-butyle.
- Par gélification de ce mélange pendant 20 minutes à 170°C, on obtient une pellicule tenace et bien adhérente ayant de bonnes propriétés de protection contre la corrosion.

 EXEMPLE 17.-

On utilise le mélange suivant :

- 30 parties de copolymère de méthacrylate de méthyle et de méthacrylate de butyle 50/50 (50 microns)
 - 30 parties de phtalate de dinonyle
 - 40 parties de craie
 - 5 parties de résine de résorcinol (Rousselot RH 74-01).
- On essaie le mélange comme adhésif pour les métaux en le gélifiant à 170°C entre deux tôles (a) d'acier et (b) d'aluminium. A l'essai d'arrachement ultérieur, on constate une résistance à la traction de 52 kg/cm² pour l'acier et de 42 kg/cm² pour l'aluminium (région collée de 5 cm² avec épaisseur d'adhésif de 0,3 mm).

 Toutefois, en remplaçant le copolymère d'une granulométrie de 50 microns par un copolymère d'une granulométrie moyenne de 500 microns, on n'atteint plus qu'une résistance à l'arrachement de

3 kg/cm².

EXEMPLE 18.-

30 On utilise le mélange suivant :

- 24 parties de copolymère de méthacrylate de méthyle et de méthacrylate de butyle 85/15 (2 microns)
- 33 parties de dibenzyltoluène
- 40 parties de craie
- 3 parties d'azodicarbonamide.

En gélifiant ce mélange pendant 15 minutes à 170°C, on obtient une matière expansée solide, très élastique dont le degré d'expansion est de 100%.

EXEMPLE 19 .-

40 On utilise le mélange suivant :

- 20 parti s d poly(méthacrylate d méthyle)(à 100%) (30 microns)
- 30 parties de phtalate de butyle et de benzyle
- 45 parties de craie
- 5 parties de résine de résorcinol (Rousselot RH 74-01).

Ce mélange très visqueux convient comme composition d'étanchéité pour les joints soudés entre métaux dans la construction des automobiles et des armoires frigorifiques. Après 15 minutes de cuisson à 180°C, le mélange adhère bien à la surface de l'acier poli et peut être peint convenablement.

EXEMPLE 20.-

5

Au moyen d'un plastifiant polymère, qui est une résine urée-formaldéhyde vendue sous le nom de Plastigen, on obtient pour un rapport du polymère au plastifiant de l:l, les mélanges de com-15 paraison ayant les propriétés suivantes.

TABLEAU II

	Polymère	Granulomé- trie, µ	-	en centi- ses	Compatibi- lité	Elasti- cité
			Immédiate	A 8 jours		
20	PMAM 100%	30	22.000	16.000	bonne	dure
	Polymère 85/15 MAM/MAB	2	163.000	218.000	bonne	dure, tenace
25	Polymère 50/50 MAM/MAB	60	23.250	22.250	bonne	élastique

EXEMPLE 21.- (Exemple de comparaison)

Le tableau III ci-après permet de comparer la stabilité thermique d'un plastisol acrylique à celle d'un plastisol de poly30 (chlorure de vinyle) au cours d'un cycle de cuisson de 30 minutes à à 150°C.

TABLEAU III

		1	2
	Poly(chlorure de vinyle) produit en émulsion coefficient K de 74 (2 microns)	20	·
5 .	Poly(méthacrylate de méthyle) (30 microns)		20
	Craie	45	45
	Phtalate de butyle et de benzyle	35	35
	Viscosité, en centipoises, immédiate	36.000	52.500
10	à 10 jours	21.000	18.000
10	V 10∕0	0,58	0,34
	Elasticité à froid, -40°C	. ++	++
	Altération de coloration à 14 jours (à 120°C	faible	faible
	là 150°C	noir	faible
15	Abrasion mm(minute) après 15 jours de conservation (à la température ambiante	0,016	0,045
	à 120°C	0,010	
	à 150°C	1,280	,

Le tableau montre donc qu'après 14 jours à 150°C, le plastigel de poly(chlorure de vinyle) a subi une altération de co20 loration complète (décomposition complète) et que l'indice d'abrasion mesuré dans l'appareil de sablage alimenté en corundum plutôt
qu'en sable est multiplié par 80 dans le cas du polymère vinylique,
alors que l'indice d'abrasion du plastigel acrylique, bien que
n'étant initialement pas spécialement bon, n'est multiplié que par
25 un maximum de 5.

EXEMPLE 22. - (Exemple de comparaison)

On compare les mélanges ci-après :

- A 25 parties de poly(chlorure de vinyle), de type pâte, polymérisé en émulsion, coefficient K 74, 2 microns
- 30 40 parties de craie
 - 5 parties d'oxyde de fer magnétique
 - 27 parties de phtalate de dioctyle
 - 3 parties de diméthacrylate du triéthylèneglycol
 - 0,3 partie de perbonzoate de t-butyle
- 35 B 25 parties de copolymère de méthacrylate de méthyle et de méthacrylate de butyle 50/50 (50 microns) remplaçant le poly(chlorure de vinyle)

autres constituants comme ci-dessus

en les appliquant entre deux tôles d'acier qu'on fait chevaucher, 40 puis en assemblant les tôles par soudage par points, ce qui permet d constater dans le cas du poly(chlorure de vinyle) une décomposition avec dégagement de chlorure d'hydrogène et une important corrosion après exposition à l'air à l'endroit où le poly(chlorure de vinyle) a été décomposé. Le plastisol méthacrylique ne donne 5 lieu à aucune observation de ce genre.

EXEMPLE 23.- (Comparaison)

On gélifie les quatre plastisols ci-après :

- a) 60 parties de poly(chlorure de vinyle) (comme dans l'exemple 22)
- 10 40 parties de phtalate de dioctyle
 - b) 60 parties de poly(chlorure de vinyle) (comme dans l'exemple 22)
 - 40 parties de phtalate de dibutyle
- c) 60 parties de copolymère 50/50 de méthacrylate de méthyle 15 et de méthacrylate de butyle (50 microns)
 - 40 parties de phtalate de dioctyle
 - d) 60 parties de poly(méthacrylate de méthyle)(30 microns) 40 parties de phtalate de dibutyle
- pendant 10 minutes à 200°C pour obtenir par gélification une pel-20 licule transparente, mais dont la coloration vire toujours du jaune au brun dans le cas du poly(chlorure de vinyle), alors que le polymère acrylique reste incolore.

EXEMPLE 24. - (Comparaison)

En gélifiant les mélanges ci-après :

- 25 a) 30 parties de poly(chlorure de vinyle) (comme dans l'exemple 22)
 - 30 parties de phtalate de dioctyle
 - 20 parties de craie
 - 20 parties de barytine
- 30 b) 30 parties de copolymère de méthacrylate de méthyle et de méthacrylate de butyle 85/15 (2 microns) remplaçant le poly(chlorure de vinyle)

les mêmes constituants qu'en a)

pendant 30 minutes à 70°C, on obtient dans le cas a) une substance 35 grumeleuse et dans le cas b) une pellicule tenace et solide. EXEMPLES 25 A 28.-

Pour la préparation des plastisols ci-après, on utilise dans chaque cas un copolymère qui comprend 1% d'un monomère méthacrylique à radicaux fonctionnels incorporé par polymérisation.

40 On essaie les plastisols résultants pour apprécier

l s propriétés d'adhérenc en opérant comme dans l'exempl 17. Les résultats rassemblés au tableau IV montrent que les adhérences sont excellentes.

5						
10		Substrat	tôle dégraissée	t61e portant une couche de fond	tôle non traitée	tôle adoucie
15		Adhérence, kg/cm ²	25	4,2	7,2	pellicule impossi- ble à arracher
20	U IV	Charge, parties en poids	1	35 cra1e		8
25	TABLEAU IV	Plastifiant, parties en poids	50 copolymère 84:15:1 50 dibenzyltoluène méthacrylate de méthacrylate thyle/méthacrylate de butyle/acide méthacrylique	20 copolymère 84:15:1 45 dibenzyltoluène 35 craie méthacrylate de méthacrylate de butyle/acide butyle/acide méthacrylique	50 copolymère 84:15:1 50 dibenzyltoluène méthacrylate de méthyle/méthacrylate de butyle/méthacry-late de glycidyle	50 copolymère 84:15:1 50 dibenzyltoluène méthacrylate de mé- thyle/méthacrylate de butyle/méthacry- late de diméthyl- aminoéthyle
30			84:15:1 de mé- ylate de mé-	84:15:1 de mé- ylate de	84:15:1 de mé- ylate hacry- dyle	84:15:1 de mé- ylate hacry- hyl-
35		Exem- Polymère, parties en ple	50 copolymère 84:15; méthacrylate de mé-thyle/méthacrylate de butyle/acide mé-thacrylique	20 copolymère 84:15 méthacrylate de méthyle/méthacrylate de butyle/acide méthacrylque	50 copolymère 84:15 méthacrylate de mé- thyle/méthacrylate de butyle/méthacry- late de glycidyle	50 copolymère 84:15; méthacrylate de méthyle/méthacrylate de butyle/méthacry-late de diméthylaminoéthyle
l.o	•	Exem- ple	25	58	23	28

40

EXEMPLE 29.-

(a) On prépare un plastisol au moyen de 50 parties en poids d'un copolymère de méthacrylat de méthyle et de méthacrylate de n-butyle 85:15 d'une granulométrie d'environ 2 microns et de 50 parties de dibenzyltoluène.

On essaie le plastisol comme adhésif pour assemblage métal sur métal en l'appliquant sur deux tôles dégraissées (surface collée de 5 cm² et d'une épaisseur de la couche de 0,3 mm) et en effectuant la gélification pendant 30 minutes à 180°C. A l'essai d'arrachement ultérieur (vitesse d'arrachement 100 mm par minute), on ne peut déterminer l'adhérence.

(b) On répète l'opération en prenant 50 parties en poids d'un terpolymère comprenant l partie en poids de N-vinylimidazole copolymérisé (méthacrylate de méthyle/méthacrylate de butyle/vinylimidazole 84:15:1). Dans des conditions par ailleurs identiques, on atteint à présent une adhérence de 13 kg/cm².

En utilisant le plastisol ci-dessus contenant le N-vinylimidazole conforme à l'invention pour coller deux tôles ayant reçu par électrodéposition au trempé une couche de fond du genre utilisé dans l'industrie automobile, on atteint une adhérence de 28 kg/cm².

EXEMPLE 30.-

On prépare un autre plastisol au moyen de 20 parties d'un copolymère 84:15:1 de méthacrylate de méthyle, de méthacrylate de butyle et de N-vinylimidazole, de 35 parties en poids de craie et de 45 parties en poids de dibenzyltoluène. Après 30 minutes de gélification à 180°C, sur une tôle ayant reçu une couche de fond par électrodéposition, on atteint une adhérence de 11 kg/cm².

Le même plastisol a la propriété surprenante de conduire à une résistance à l'arrachement de 14 kg et de 12 kg/cm², respectivement lorsqu'il est appliqué sur de la tôle dégraissée ou légèrement graissée.

Lorsqu'à titre de comparaison on prend un homopolymère de méthacrylate de méthyle ou un copolymère de méthacrylate de méthyle exempt de promoteur d'adhérence copolymérisé, il n'est pas possible de mesurer l'adhérence rence.

EXEMPLE 31 .-

40

On prépare un plastisol au moyen de 50 parties en poids

d'un copolymère 99:1 d méthacrylat de méthyl et d N-vinylimidazole, d 30 parti s en poids de craie et de 45 parties en poids de phtalate de butyle et de benzyle. Après 30 minutes de gélification à 90°C, une couche du plastisol appliquée sur du métal por-5 tant une couche de fond ne peut plus en être arrachée.

Toutefois, l'adhérence du polymère est nulle en l'absence du radical imidazole.

EXEMPLE 32.-

En opérant comme dans l'exemple 29(b), on prépare un plas
10 tisol auquel on ajoute 1% en poids de l'un des acides carboxyliques polybasiques ci-après. Il en résulte une importante amélioration de l'adhérence.

	TABLEA	<u>U V</u>				
15	Acide	Adhérence, en kg/cm ² après 30 minutes de gélification				
		à 120°C	à 160°C			
20	Néant	11,5	20,0			
	Acide benzènetricarboxylique	20,2	28,0			
	Acide adipique	22,3	19,6			
	Acide maléique	34,2	30,7			
	Acide itaconique	27,8	25,3			

EXEMPLE 33.-

On prépare un plastisol à l'aide des constituants sui-25 vants :

- 100 parties de poly(méthacrylate de méthyle) à 100%
- 85 parties de citrate de tributylacétyl
 - 5 parties de dioxyde de titane
- 5 parties de stéarate de zinc

On applique le plastisol dans le canal annulaire périphérique de bouchons à l'aide d'une machine classique à garnir les bouchons, puis on fait fondre le dépôt pendant 1 minute à 177°C.

On essaie la qualité d'étanchéité des bouchons munis de joints ainsi obtenus en déterminant leur aptitude à tenir le vide dans l'essai décrit ci-après. On remplit un bocal d'eau bouillante jusqu'à 13 mm du bord. On applique un bouchon avec un couple de 0,40 kg x m. On laisse refroidir le bocal ainsi bouché jusqu'à la température ambiante et on le conserve ainsi pendant l semaine. A l'aide d'un manomètre, on mesure la dépression. Après avoir détaché le bouchon, on mesure l'épaisseur du joint comprimé.

Tous les bocaux munis d'un bouchon dont le joint est formé de la composition ci-dessus tiennent le vide de façon satisfaisante. Les épaisseurs de joints qui s'échelonnent de 0,5 à 0,9 mm sont acceptables.

5 EXEMPLE 34.-

10

On prépare un plastisol à l'aide des constituants suivants :

- 100 parties de poly(méthacrylate de méthyle) à 100%
- 120 parties de citrate de tributylacétyl
 - 5 parties de dioxyde de titane
 - 5 parties de stéarate de zinc
 - 4 parties d'azobisformamide
- 1,5 partie de silice légère (en vente sous le nom de Cab-O-Sil)
 On applique la composition dans un couvercle de bocal à
- 15 grand col (diamètre de 83 mm) de la manière habituelle. On gélifie le joint pendant 90 secondes à 177°C.

On applique les bouchons sur des bocaux avec un couple de 0,36 kg x m et on les conserve à la température ambiante pendant 24 heures. On introduit les bocaux alors pour une durée de

- 20 l semaine dans un appareil à empilement pour exercer sur chaque ensemble formé par un bouchon et un bocal un effort de 57 kg. On retire ensuite les bocaux qu'on conserve à la température ambiante pendant 24 heures, puis en chambre fraîche pendant 2 jours. Au moyen d'un manomètre, on détermine la dépression à 4°C. Sur les
- 25 dix bocaux, neuf tiennent une dépression de 40 mm de mercure, ce qui est acceptable.

REVENDICATIONS.

1.- Plastisol comprenant 100 parties en poids de particules solides d'un polymère organique (a) en dispersion dans 30 à 1.000 parties en poids d'un constituant organique liquide (b) qui sert de plastifiant compatible pour le polymère organique et en forme une dispersion visqueuse ayant l'aspect d'un liquide ou d'une pâte, caractérisé en ce que le polymère organique consiste en substance en unités dérivant,

5

10

15

20

25

30

35

- (i) d'un ou plusieurs composés choisis parmi l'acrylate de t-butyle, le méthacrylate d'alkyle à radicaux alkyle en C₁-C₄ et le méthacrylate de cyclohexyle, ou
- (ii) d'un ou plusieurs des monomères ci-dessus et d'un ou de plusieurs comonomères choisis parmi les méthacrylates d'alcools aliphatiques en C₂-C₁₀, les acrylates d'alcools aliphatiques en C₁-C₁₀, le styrène et l'α-méthylstyrène, et le copolymère a une température de transition vitreuse de plus de 35°C et un degré de polymérisation moyen de plus de 400, les particules du polymère dans le plastisol ayant une gramulométrie de 0,1 à 500 microns.
- 2.- Plastisol suivant la revendication 1, caractérisé en ce que la granulométrie moyenne du polymère présente avec sa température de transition vitreuse une relation telle qu'elle tombe dans le triangle XYZ du diagramme annexé.
 - 3.- Plastisol suivant la revendication 2, caractérisé en ce que le plastifiant est le phtalate de dioctyle, le phtalate de dibutyle ou le phtalate de di(2-méthoxyéthyle) et la granulométrie moyenne du polymère présente avec sa température de transition vitreuse une relation telle qu'elle tombe dans le triangle ABC, DEF ou GYH, respectivement, du diagramme annexé.
- 4.- Plastisol suivant la revendication 1, 2 ou 3, caractérisé en ce que le polymère organique consiste en substance entièrement en unités de méthacrylate de méthyle ou pour au moins 40% en poids en unités de méthacrylate de méthyle et en substance pour le reste en unités d'un méthacrylate d'alkyle à radical alkyle en C₂-C₄ ou d'un acrylate d'alkyle à radical alkyle en C₂-C₄.
- 5.- Plastisol suivant l'une quelconque des revendications l à 4, caractérisé en ce qu'il contient 0,1 à 50 parties en poids d'un promoteur d'adhérence.
- 6.- Plastisol suivant l'une quelconque des revendica-40 tions l à 4, caractérisé en ce que le polymère contient aussi

jusqu'à 3% en poids, sur la base du polymère, d'unités d'un monomère acrylique et/ou méthacrylique portant un radical hydroxyle, époxyde, amino ou carboxyle libre.

7.- Plastisol suivant l'une quelconque des revendications l à 4, caractérisé en ce que le polymère contient aussi jusqu'à 10% en poids d'unités d'un ou plusieurs comonomères contenant un radical hétérocyclique comprenant au moins un ... atome d'azote dans un hétérocycle.

8.- Plastisol suivant la revendication 7, caracté-10 risé en ce que le comonomère contenant un radical hétérocyclique est un composé vinylique hétérocyclique de formule générale:

$$CH_2 = C - (CH_2)_n - R^2$$

5

où n représente 0 ou 1, R¹ représente un atome d'hydrogène, un radical alkyle linéaire ou ramifié de l à 4 atomes de carbone ou un radical phényle et R² représente un radical de formule -COOR³, -COR³ ou -R³, R³ représentant un radical hétérocyclique comprenant un ou plusieurs cycles, au moins un atome d'azote faisant partie d'au moins un des cycles.

9.- Plastisol suivant la revendication 7 ou 8, caractérisé en ce qu'il contient aussi un agent de réticulation en quantité de 0,1 à 3,0% en poids, qui réagit avec les radicaux hétérocycliques du comonomère.

10.- Produits manufacturés façonnés en matière plastique, caractérisés en ce qu'ils ont été fabriqués par façonnage et gélification d'un plastisol suivant l'une quelconque des revendications précédentes.

