Notion de fonction

I. Approche historique

Le terme *fonction* est introduit par **Leibniz** (1673). **Bernoulli** propose une première notation, puis **Euler** popularise la notation f(x) (1734). La vision moderne — une association qui à tout x du domaine fait correspondre une unique image f(x) — est clarifiée au XIX^e siècle (travaux attribués classiquement à **Dirichlet**).

Complément historique : Cependant, l'idée de relation entre les quantités, prend naissance avec les mathématiques elles-mêmes et donc chez les mathématiciens babyloniens et grecs.

II. Définitions de base

Définition (fonction). Soit $D \subset \mathbb{R}$. Une fonction **f** définie sur D associe à chaque $x \in D$ un **unique** nombre f(x) appelé *image* de x. D'une manière générale, une fonction transforme un ensemble de nombres en un autre.

- Domaine (noté D_f pour une fonction appelée f): ensemble des x autorisés (on y reviendra plus tard).
- **Image** : f(x).
- **Antécédent** de y : tout x tel que f(x)=y.

Écriture :

 $\mathsf{D} \to \mathbb{R}$

 $x \mapsto f(x)$

III. Représenter une fonction

1) Graphiquement

Exemple : $g(x)=x^2-1$. Chaque point M(x;g(x)) appartient à la courbe représentative.

2) Algébriquement (par une formule)

Exemple: $g(x)=x^2-1$. Pour x=2, g(2)=3; pour x=-4, g(-4)=15.

3) Par un tableau de valeurs

x	-2	-1	0	1	2
$g(x)=x^2-1$	3	0	-1	0	3

+ IV. Parité

Fonction paire : f(-x)=f(x) et le domaine est centré en 0 (symétrie par rapport à l'axe des ordonnées). Exemple : $x \mapsto x^2$.

Fonction impaire : h(-x) = -h(x) et le domaine est centré en 0 (symétrie centrale par rapport à l'origine). Exemple : $x \mapsto x^3$.

En bleu, la courbe représentant la fonction f est **paire**; en rouge, celle représentant la fonction h est **impaire**.

V. Variations de fonctions

On dit que f est **croissante** sur l si pour tous x<y dans l, $f(x) \le f(y)$. Elle est **décroissante** si $f(x) \ge f(y)$.

Un extremum local est une valeur maximale ou minimale atteinte en un point du domaine.

Exemple: $f(x) = -x^2 + 2x + 1$. Croissante sur $]-\infty,1]$, décroissante sur $[1,+\infty[$, maximum au sommet x=1 (valeur 2).

Tableau de variations

Tableau de variations (sommet en x=1, valeur 2).

VI. Résolution graphique : équations et inéquations

1) Équation f(x)=k

Exemple: $g(x)=x^2-1$ et $y=3 \implies$ solutions x=-2 et x=2.

2) Équation f(x)=g(x) (solutions entières)

Résolution graphique de f(x)=g(x) avec solutions entières (x=1,3)

Ici, $f(x)=x^2$ et $g(x)=2x^2-4x+3$. Les intersections sont en x=1 et x=3 (solutions entières lisibles). Donc $S=\{1\ ;\ 3\}$.

3) Inéquations (exemple)

Résoudre $g(x)=x^2-1\geq 0$: on lit $g(x)\geq 0$ pour $x\leq -1$ ou $x\geq 1$ donc $S=]-\infty,-1]\cup [1\ ;\ +\infty[.$