Solution de viscosité

$17~{\rm janvier}~2015$

Table des matières

Ι	Solution classique et généralisation	3
_	Premières définitions 1.1 Quelques exemples d'opérateurs propres	3
2	Solutions classiques	4
3	Vers une solution généralisée	5

Introduction

Le but est de voir comment résoudre les équations du type :

$$\begin{cases}
F(x, u, Du, D^2u) = 0 & \text{sur } \Omega \\
u = g & \text{sur } \partial\Omega
\end{cases}$$
(EDP)

 $x\in\Omega\subset\mathbb{R}^n,\,u:\mathbb{R}^n\to\mathbb{R}$ est l'inconnue. On notera $u_{x_i}=\frac{\partial u}{\partial x_i}$

$$Du = \nabla u = \begin{pmatrix} u_{x_1} \\ \vdots \\ u_{x_n} \end{pmatrix}$$

 D^2u est la matrice hessienne. $g:\partial\Omega\to\mathbb{R}$

On note S^n l'ensemble des matrices carrées sumétriques de taille n. Si $u \in \mathscr{C}^2, \, D^2u \in S^2$.

 S^n est muni d'un ordre naturel :

$$X > Y \Leftrightarrow X - Y > 0$$

où $X \geq 0$ équivaut $\forall \xi \in \mathbb{R}^n$, $(X\xi, \xi) \geq 0$

 $F: \Omega \times \mathbb{R} \times \mathbb{R}^n \times S^n \to \mathbb{R}$ est appelé l'hamiltonien.

On note (x, r, p, X) les variables de F. Le but est de donner un sens à l'EDP.

- En général, il n'y a pas de solution classique (ie appartenant à \mathscr{C}^2)
- Comme l'équation est complètement non linéaire, on ne peut pas définir une solution au sens des distributions. On doit donc trouver une autre notion de solution.

But : Introduire la notion de viscosité.

Cette notion sera bien posée dans le sens suivant :

- existence et unicité des solutions
- stabilité par rapport à F et g.

Si $F_n \to F$ et $g_n \to g$ localement uniformément, alors $u_n \to u$ localement uniformément.

Outils essentiels:

- Principe de comparaison : si u est sous-solution, v sur-solution, alors $u \leq v$. Cela nous donnera l'unicité de la solution.
- On utilisera souvent lim sup, lim inf et la semi-continuité.
- On aura également besoin d'un ordre : F doit être à valeur dans \mathbb{R} (limitation de la théorie)

Application: Géophysique, problèmes de mouvement et de front, trafic routier, imagerie, analyse numérique (convergence de schéma, extimation d'erreur...), homogénéisation (changement d'échelle),...

Première partie

Solution classique et généralisation

1 Premières définitions

♣ Définition: Ellipticité

— On dit que F est elliptique si F est décroissante en X, ie

$$Y \ge X \Rightarrow F(\bullet, \bullet, \bullet, Y) \le F(\bullet, \bullet, \bullet, X)$$

— On dit que F est strictement elliptique si :

$$Y < X \Rightarrow F(\bullet, \bullet, \bullet, Y) < F(\bullet, \bullet, \bullet, X)$$

— On dit que F est uniformément elliptique si :

$$\exists \lambda, \Lambda > 0; \forall X, Y \in S^n, Y \geq 0, -\Lambda tr(Y) \leq F(\bullet, \bullet, \bullet, X + Y) - F(\bullet, \bullet, \bullet, X) \leq -\lambda tr(Y)$$

— F est propre si F est croissante en r et elliptique.

Dans (presque) tout le reste du cours, on travaillera avec des opérateurs propres.

🔩 Définition: Linéarité

- F est linéaire si F est linéaire en $r,\,p$ et X
- F est semi-linéaire si F est linéaire en p et X
- F est quasi-linéaire si F est linéaire en X
- F est complètement non linéaire sinon

1.1 Quelques exemples d'opérateurs propres

Equation de Poisson : $-\Delta u = f \operatorname{dans} \Omega$

$$F(x, r, p, X) = -tr(X) - f(x)$$

- F uniformément elliptique
- F propre

Equation linéaire non sous forme divergentielle : $\mathcal{L}u = f$, avec $\mathcal{L}u = -tr(a(x)D^2u) + b(x)Du + c(x)u$ a(x) symétrique positive, $c(x) \ge 0$.

Exercice : Montrez que \mathscr{L} est propre. Montrer au préalable :

$$A, B \ge 0 \Rightarrow tr(AB) \ge 0$$

Equation linéaire sous forme divergentielle : $\mathscr{L}'u = f$ avec $\mathscr{L}'u = - \div (a(x)Du) + b(x)Du + c(x)u$ \mathscr{L}' est elleiptique si $a \in \mathscr{C}^1(\Omega, S^n)$ avec $a \geq 0$ et propre si $c \geq 0$

Equation d'Hamilton-Jacobi d'ordre 1 : $H(x, u, \nabla u) = 0$

Propre si H croissante en u

Equation d'Hamilton-Jacobi-Bellmann : \mathscr{L}^{α} linéaire, $\mathscr{L}^{\alpha}u = -tr(a^{\alpha}(x)D^{2}u) + b^{\alpha}(x)Du + c^{\alpha}u$ Si $\sup_{\alpha} \{\mathscr{L}^{\alpha}u - f\alpha\} = 0$, alors \mathscr{L}^{α} propre.

2 Solutions classiques

🛂 Définition: Solution classique

 $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$ est une solution classique de $F(x,u,Du,D^2u)=0$ si u vérifie l'équation en tout point. (on se limite à \mathscr{C}^1 pour les équations du premier ordre)

1 Proposition:

Soient $u, v \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$ tel que u - v atteint un maximum positif en $\bar{x} \in \Omega$. Alors $F(\bar{x}, u(\bar{x}), Du(\bar{x}), D^2u(\bar{x})) \geq F(\bar{x}, v(\bar{x}), Dv(\bar{x}), D^2v(\bar{x}))$

Démonstration:

$$u(\bar{x}) \geq v(\bar{x})$$

$$D(u-v)(\bar{x}) = 0 \Rightarrow Du(\bar{x}) = Dv(\bar{x}) \text{ car on atteint un maximum}$$

$$D^2(u-v)(\bar{x}) \leq 0 \Rightarrow D^2u(\bar{x}) \leq Dv(\bar{x})$$

Comme F est propre :

$$F(\bar{x}, u(\bar{x}), Du(\bar{x}), D^2u(\bar{x})) \ge F(\bar{x}, v(\bar{x}), Dv(\bar{x}), D^2v(\bar{x}))$$

Définition:

 $u \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$ est sous solution de (EDP) si $F(x,u(x),Du(x),D^2u(x)) \leq 0 \ \forall x \in \Omega$ De même, u est sur solution de (EDP) si $F(x,u(x),Du(x),D^2u(x)) \geq 0 \ \forall x \in \Omega$

1 Proposition:

Supposons Ω borné. On suppose u sous-solution, v sur-solution, F strictement croissante en r et $u \leq v$ sur $\partial \Omega$.

Alors $u \leq v \text{ sur } \overline{\Omega}$.

Démonstration:

On raisonne par l'absurde : on suppose $\max_{\Omega}(u-v)>0$. Soit \bar{x} un point de maximum.

$$u(\bar{x}) - v(\bar{x}) > 0$$

$$Du(\bar{x}) = Dv(\bar{x})$$

$$D^2u(\bar{x}) \le Dv(\bar{x})$$

$$\Rightarrow 0 \ge F(\bar{x}, u(\bar{x}), Du(\bar{x}), D^2u(\bar{x}))$$

$$\ge F(\bar{x}, u(\bar{x}), Dv(\bar{x}), D^2v(\bar{x}))$$

$$> F(\bar{x}, v(\bar{x}), Dv(\bar{x}), D^2v(\bar{x}))$$

$$\ge 0$$

On a donc 0 > 0, ce qui est absurde.

⇔ Corollaire:

Sous les mêmes hypothèses, (EDP) admet au plus une solution vérifiant u = g sur $\partial\Omega$.

Démonstration:

Soient u et v deux solutions.

u est sous-solution, v est sur-solution, donc $u \leq v$

De même, u est sur-solution, et v est sous-solution, donc $v \leq u$.

Donc u = v.

3 Vers une solution généralisée

On considère le problème :

$$\left\{ \begin{array}{l} |u'|=1 \text{ sur } \Omega=]-1,1[\\ u(-1)=u(1)=0 \end{array} \right.$$

D'après Rolle, il n'y a pas de solution classique. IL y a par contre une infinité de solution \mathscr{C}^1 par morceaux. Par exemple :

$$u^{+} = \begin{cases} 1+x & \text{si } x \le 0\\ 1-x & \text{si } x \ge 0 \end{cases}$$

et également $u^+ = u^-$.

On considère le problème pour $\varepsilon > 0$:

$$\left\{ \begin{array}{l} -\varepsilon u^{\prime\prime} + |u^\prime| = 1 \text{ sur } \Omega =]-1, 1[\\ u(-1) = u(1) = 0 \end{array} \right.$$

Le théorème de Safranov nous montre qu'il existe une unique solution $u^{\varepsilon} \in \mathscr{C}^2(\Omega) \cap \mathscr{C}^0(\overline{\Omega})$ tel que :

$$u_{\varepsilon}(x) = \left\{ \begin{array}{ll} 1 + x - \varepsilon \left(\exp \left(\frac{x}{\epsilon} \right) - \exp \left(\frac{1}{\varepsilon} \right) \right) & \text{si } x \leq 0 \\ u_{\varepsilon}(-x) & \text{si } x \geq 0 \end{array} \right.$$

Si $\varepsilon \to 0$, $u_{\varepsilon} \to u^+$ uniformément. u^+ est séléctionnée par la méthode de viscosité évanescente.

⇔ Théorème: Principe du maximum

 $u \in \mathscr{C}^2(\Omega)$ est une solution de (EDP) si et seulement si :

1. $\forall \phi \in \mathscr{C}^2(\Omega)$ tel que $u - \phi$ atteint un maximum en \bar{x} on a :

$$F(\bar{x}, u(\bar{x}), D\phi(\bar{x}), D^2\phi(\bar{x})) \leq 0$$

2. $\forall \phi \in \mathscr{C}^2(\Omega)$ tel que $u - \phi$ atteint un minimum en \bar{x} on a :

$$F(\bar{x}, u(\bar{x}), D\phi(\bar{x}), D^2\phi(\bar{x})) \ge 0$$

Démonstration:

On suppose que a est une solution classique. Soit ϕ tel que $u-\phi$ atteint un maximum en \bar{x} .

$$Du(\bar{x}) = D\phi(\bar{x})$$

$$D^2 u(\bar{x}) \le D^2 \phi(\bar{x})$$

$$0 = F(\bar{x}, u(\bar{x}), Du(\bar{x}), D^2u(\bar{x})) \ge F(\bar{x}, u(\bar{x}), D\phi(\bar{x}), D^2\phi(\bar{x}))$$

Le deuxième point se fait de la même manière. Réciproquement : comme $u \in \mathscr{C}^2$, on peut prendre $\phi = u$ dans 1) et 2), donc $u - \phi$ atteint un max et un min en tout point.

$$F(x, u, Du, D^{2}u) \leq 0$$

$$\geq 0$$

$$\Rightarrow F(x, u, Du, D^{2}u) = 0$$