

Теория вероятности и математическая статистика

Дисперсионный анализ. Факторный анализ. Логистическая регрессия

На этом уроке мы изучим:

- 1. Однофакторный дисперсионный анализ
- 2. Двухфакторный анализ
- 3. Логистическая регрессия

Дисперсный анализ используется для исследования влияния одного или нескольких качественных показателей на количественный показатель.

В **однофакторном дисперсионном анализе** на одну количественную переменную **У** влияет один фактор (один качественный показатель), наблюдаемый на **к** уровнях, то есть имеем **к** выборок для переменной **У**.

Например, с помощью однофакторного дисперсионного анализа можно определить, является ли статистически значимым различие среднего размера заработной платы (количественный признак переменная У) в трех разных группах людей, отличающихся по признаку профессии, которая в данном случае будет являться качественным фактором, наблюдаемым на *k* уровнях (этими уровнями могут быть, к примеру, профессии бухгалтера, юриста и программиста).

FH ____ Ft

$$F_H = rac{\sigma_F^2}{\sigma_{ ext{oct}}^2}$$

$$\kappa - 1$$
 $S_{\text{oct}}^2 = \frac{S_{\text{oct}}^2}{1}$

n= n1+n2+n3

1)
$$\overline{y}_i = \frac{1}{n_i} \sum_{j=1}^{n_i} y_{ij}$$

 $\overline{y}_1 = (70+50+65+60+75)/5 = 64$
 $\overline{y}_2 = (80+75+90+70+75+65+85+100)/8 = 80$
 $\overline{y}_3 = (130+100+140+150+160+170+200)/7=150$

 \overline{Y} — среднее значение переменной **Y** по всем значениям:

$$\overline{Y} = rac{1}{n} \sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij} = rac{1}{n} \sum_{i=1}^k \overline{y}_i n_i$$

 \overline{Y} =(70+50+65+60+75+80+75+90+70+75+65+85+100+130 +100+140+150+160+170+200)/20=100,5

 S^2 — сумма квадратов отклонений наблюдений от общего среднего:

$$S^2:\sum_{i=1}^k\sum_{i=1}^{n_i}(y_{ij}-\overline{Y})^2 \ S^2=$$
 34445

 S_F^2 — сумма квадратов отклонений средних групповых значений от общего среднего

значения
$$\overline{Y}$$
 : $S_F^2=\sum_{i=1}^k(\overline{y}_i-\overline{Y})^2n_i$ $S_F^2=(64\text{-}100,5)^2*5\text{+}(80\text{-}100,5)^2*8\text{+}(150\text{-}100,5)^2*7\text{=}27175$

$$S^2_{\mbox{\tiny oct}}$$
 — остаточная сумма квадратов отклонений:

$$S_{ ext{oct}}^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$$

$$S_{\text{oct}}^2 = (70-64)^2 + (50-64)^2 + (65-64)^2 + (65-64)^2 + (200-150)^2 = 7270$$

$$S^2 = S_F^2 + S_{
m oct}^2$$

$$S^2 =$$
 27175+ 7270=34445

Вычисляем факторную дисперсию:
$$\,\sigma_F^2=rac{S_F^2}{k-1}=rac{1}{k-1}\sum_{i=1}^k(\overline{y}_i-\overline{Y})^2n_i\,$$

$$\sigma_F^2 = 27175/(3-1) = 13587,5$$

Вычислим остаточную дисперсию:
$$\sigma_{ ext{oct}}^2=rac{S_{ ext{oct}}^2}{n-k}=rac{1}{n-k}\sum_{i=1}^k\sum_{j=1}^{n_i}(y_{ij}-\overline{y}_i)^2$$

$$\sigma_{\text{ост}}^2 = 7270/(20-3) = 427,65$$

$$F_H = rac{\sigma_F^2}{\sigma_{ ext{oct}}^2}$$
 = 13587,5/427,65=31,772

Найдем значение $F_{ ext{крит}}$ в таблице критических точек распределения Фишера-Снедекора для заданного уровня значимости lpha=0.05 и двух степеней свободы:

$$df_{ ext{\tiny{Meжd}}} = k-1 = 3-1 = 2$$
 и $df_{ ext{\tiny{BHYTP}}} = n-k = 20-3 = 17$.

 $F_{\text{крит}} = 3,59$

31,772 > 3,59

Следовательно, различие между группами статистически значимое

Условия для дисперсионного анализа:

- 1. Значения групп следуют нормальному распределению
- 2. Однородность дисперсий
- 3. Независимость

L	Уровень значимости α = 0,05										
v ₁ v ₂	1	2	3	4	5	б	7	8	9	10	12
1	161	200	216	225	230	234	237	239	241	242	244
2	18,51	19,00	19,16	19,25	19,30	19,33	19,36	19,37	19,38	19,39	19,41
3	10,13	9,55	9,28	9,12	9,01	8,94	8,88	8,84	8,81	8,78	8,74
4	7,71	6,94	6,59	6,39	6,26	6,16	6,09	6,04	6,00	5,96	5,90
5	6,61	5,79	5,41	5,19	5,05	4,95	4,88	4,82	4,78	4,74	4,68
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06	4,00
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,63	3,57
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,34	3,28
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,13	3,07
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,97	2,91
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,86	2,79
12	4,75	3,88	3,49	3,26	3,11	3,00	2,92	2,85	2,80	2,76	2,69
13	4,67	3,80	3,41	3,18	3,02	2,92	2,84	2,77	2,72	2,67	2,60
14	4,60	3,74	3,34	3,11	2,96	2,85	2,77	2,70	2,65	2,60	2,53
15	4,54	3,68	3,29	3,06	2,90	2,79	2,70	2,64	2,59	2,55	2,48
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49	2,42
17	4,45	3,59	3,20	2,96	2,81	2,70	2,62	2,55	2,50	2,50	2,38

Вывод:

профессия влияет на уровень заработной платы

```
In [4]:
             import numpy as np
 In [5]:
             from scipy import stats
 In [6]:
             stats.f oneway?
 In [7]:
           1 | y1=np.array([70,50,65,60,75])
           2 y1
Out[7]: array([70, 50, 65, 60, 75])
 In [8]:
           1 | y2= ([80,75,90,70,75,65,85,100])
           2 y2
Out[8]: [80, 75, 90, 70, 75, 65, 85, 100]
 In [9]:
           1 | y3= ([130,100,140,150,160,170,200])
           2 y3
Out[9]: [130, 100, 140, 150, 160, 170, 200]
           1 stats.f_oneway(y1,y2,y3)
In [10]:
Out[10]: F_onewayResult(statistic=31.77269601100413, pvalue=1.8091304567650962e-06)
```

В **двухфакторном дисперсионном анализе** на одну количественную переменную **У** влияют два фактора (два качественных показателя), наблюдаемый соответственно на **к** и **m** уровнях.

$$y = M + A_{i} + B_{j} + AB + E_{ijk}$$

$$y - M = A_{i} + B_{j} + AB + E_{ijk}$$

$$(y - M) = A_{i}^{2} + B_{j}^{2} + AB^{2} + E_{ijk}^{2}$$

$$(y_{ijk} - M) = A_{i}^{2} + B_{j}^{2} + AB^{2} + E_{ijk}^{2}$$

$$SS_{T} = SS_{A} + SS_{B} + SS_{AB} + SS_{E}$$

SSA	F pA ? FTA
SSB	F рВ FтВ
SS _{AB}	F pAB FTAB
SS _E	

	4	актор В Ј	
	1 уровень	2 уровень	Уіјк k=2-количество репликаций
1 уровень	57; 59 58	56;58 57	57.5
2 уровень	32; 34 33	71;71 . 71 	52
9	45.5	64	54.75

2-WAY anova # у іјп ,где і- уовень фАКТОРА А, ј- уровень фактора Б, п- число репликаций y111=57 y112=59 y11=(y111+y112)/2=58 y11=58 y121=56 y122==58 y12=(y121+y122)/2 y12=57 y211=32 y212=34 y21=(y211+y212)/2 y21=33 y221=71 y222=71 y22=(y221+yy222)/2 y22=71

GeekBrains

Фактор В Ј Уijk 2 уровень 1 уровень k=2-количество репликаций 56,58 57;59 1 уровень 57.5 58 57 71;71 32; 34 52 2 уровень 71 33 45.5 54.75 64

Фактор А

GeekBrains

Фактор В ј

	1 уровень	2 уровень	Уіјк k=2-количество репликаций
1 уровень	57; 59 58	56;58 57	57.5
2 уровень	32; 34 33	71;71 . 71	52
	45.5	64	54.75

Фактор А

SSA = a + n + sum((YcpA) + 2) - a + b + n(Ycp) + 2 = 2	2*2*((57.5)**2+(52.5)**2)-8*(54.75)	** 2=61					1
SSB=b*n*sum((YcpB)**2)-a*b*n*(Ycp)**2= 2	*2*((45.5)**2+(64)**	2)-8 * (54 .7 5) ** 2	=685					1 уров
SSAB=n*(sum((yij_cp)**2)-a*b*n*Ycp-SSA-S	SB=2*((58)**2+(57)**	2 +(33) ** 2 +(71) *	* 2)-8 * ((54.74) ** 2)-61-685=7	759.5	0.000		57;59
SSE=SSt-SSA-SSB-SSAB=1512-61-685-759.5=6.	.5					op A i	1 уровень	58
dfA=2-1=1 ## (2 уровня a-1)						Фактор		-
dfB= 2-1=1 ##2 $ypo\theta H B b-1$ dfAB = $(a-1)*(b-1)=(2-1)*(2-1)=1$							2 уровень	32; 34 33
dfE= a*b*(n-1)=2*2(2-1)=4		ss	df	MS	F			45.5
MSA=SSA/dfA = 61/1=61		~~	155.55		3.60.4	-		
MSB=SSB/dfB=685/1=685	A	61	1	61	MSA/ 61/1.6			
MSAB=SSAB/dfAB=759.5/1=759.5	В	685	1	685	421.5	54		
MSE=SSE/dfE=6.5/4=1.625		759.5	1	759.5	467			
FA=MSA/MSE=61/1.625=37.54	AB	. 133.3						
FB=MSB/MSE=685/1.625=421.54	Er	6.5	4	1.625			•	
FAB=MSAB/MSE=759.5/1.625=467				,ā.,	· ·			
F=7.71								

Фактор В Ј

2 уровень

57

56,58

71;71

. **71**

64

1 уровень

yijk

k=2-количество репликаций

57.5

52

54.75

```
In [36]: 1 import numpy as np
In [37]: 1 import statsmodels.api as sm
In [38]: 1 from statsmodels.formula.api import ols
```


	4	актор В Ј	
	1 уровень	2 уровень	Уіјк k=2-количество репликаций
1 уровень	57; 59 58	56;58 57	57.5
2 уровень	32; 34 33	71;71 . 71	52
	45.5	64	54.75

In [63]:	1 lm_ 2	<pre>lm_model = ols('treatments ~ C(fA)*C(fB)',</pre>						
In [64]:	<pre>1 table = sm.stats.anova_lm(lm_model, typ=2) 2 table</pre>							
Out[64]:		sum_sq	df	F	PR(>F)			
	C(fA	60.5	1.0	40.333333	0.003150			
	C(fE	684.5	1.0	456.333333	0.000028			

NaN

NaN

6.0 4.0

Residual

GeekBrains

	ss	df	MS	F
A	61	1	61	MSA/MSEr= 61/1.625=37.54
В	685	1	685	421.54
AB	759.5	1	759.5	467
Er ·	6.5	4	1.625	•

Логистическая регрессия

Статистический метод, с помощью которого можно решать задачу бинарной классификации.

Логистическая регрессия

С помощью этого метода можно не только отнести объект к одному из двух классов, но и оценить вероятности того, что объект относится к данному классу для каждого из классов.

```
x1 x2
              x3 y
   zp prod poezdky vozvrat
1 100
         30
2 40
         20
        20
   50
        40
   70
   50
        30
        70
   80
7 75
       25
> _ Z =-0.18839+ 0.01115 *x1 -0.00279*x2+ 0.16286*x3 # модель
 1 клиент
                                        2 клиент
                                                                              3 клиент
x1=68
                                         x1=72
                                                                              x1=120
x2 = 27
                                                                              x2 = 40
                                         x2 = 40
\times 3 = 2
                                         x3=0
                                                                              x3 = 1
[1] 0.8202
                                         [1] 0.50281
                                                                              [1] 1.20087
> sigmoid= 1/(1+e^{\Lambda(-Z)}) > sigmoid
                                        > sigmoid= 1/(1+ e^{\wedge(-Z)}) > sigmoid
                                                                              > sigmoid=1/(1+ e^{\Lambda(-Z)}) > sigmoid
 [1] 0.6937473
                                        [1] 0.6227591
                                                                              [1] 0.7680273
```

Логистическая регрессия

Используется в банковском бизнесе для определения кредитоспособности заемщика. На основе показателя вероятности события "клиент отдаст долг", полученного с помощью логистической регрессии, вычисляется скоринговый балл клиента и принимается решение о выдаче кредита.

Итоги

- 1. Однофакторный дисперсионный анализ
- 2. Двухфакторный дисперсионный анализ
- 3. Логистическая регрессия