Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 945 443 B9

(12)

CORRECTED EUROPEAN PATENT SPECIFICATION

Note: Bibliography reflects the latest situation

(15) Correction information:

Corrected version no 1 (W1 B1)

Corrections, see page(s) 34

Corrections, see page(s) 34

(48) Corrigendum issued on:

13.08.2003 Bulletin 2003/33

(45) Date of publication and mention of the grant of the patent:
12.02.2003 Bulletin 2003/07

(21) Application number: 99200918.3

(22) Date of filing: 24.03.1999

(51) Int Cl.7: **C07D 239/50**, C07D 239/48, C07D 239/46, C07D 239/42, C07D 401/12, A61K 31/505

(54) HIV inhibiting pyrimidine derivatives

HIV hemmende Pyrimidin Derivate Dérivés de pyrimidine inhibiteurs de VIH

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 27.03.1998 US 79632 14.05.1998 EP 98201587 25.11.1998 EP 98203948

- (43) Date of publication of application: 29.09.1999 Bulletin 1999/39
- (60) Divisional application: 02014566.0 / 1 245 567
- (73) Proprietor: JANSSEN PHARMACEUTICA N.V. 2340 Beerse (BE)
- (72) Inventors:
 - Andries, Koenraad Jozef Lodewijk Marcel 2340 Beerse (BE)
 - de Corte, Bart Southampton, PA 18966 (US)
 - de Jonge, Marc René
 5045 CA Tilburg (NL)
 - Heeres, Jan
 2350 Vosselaar (BE)
 - Ho, Chih Yung Lansdale, PA 19446 (US)

- Janssen, Marcel August Constant 2350 Vosselaar (BE)
- Janssen, Paul Adriaan Jan 2350 Vosselaar (BE)
- Koymans, Lucien Maria Henricus 2300 Turnhout (BE)
- Kukla, Michael Joseph Maple Glen, PA 19002 (US)
- Ludovici, Donald William Quakertown, PA 18951 (US)
- van Aken, Koen Jeanne Alfons 2300 Turnhout (BE)
- (74) Representative: Allard, Susan Joyce et al BOULT WADE TENNANT, Verulam Gardens
 70 Gray's Inn Road London WC1X 8BT (GB)

(56) References cited:

EP-A- 0 270 111 WO-A-91/18887 US-A- 4 450 162 EP-A- 0 588 762 WO-A-95/10506 US-A- 4 659 363

P 0 945 443 B9

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

EP 0 945 443 B9

- DOLLY GOSH:
- "2,4-BIS(ARYLAMINO)-5-METHYLPYRIMIDINES AS ANTIMICROBIAL AGENTS." JOURNAL OF MEDICINAL CHEMISTRY., vol. 10, September 1969 (1969-09), pages 974-975, XP002109182 AMERICAN CHEMICAL SOCIETY. WASHINGTON., US ISSN: 0022-2623
- CHEN CHEN ET AL.: "DESIGN AND SYNTHESIS OF A SERIE OF NON-PEPTIDE HIGH AFFINITY HUMAN CORTICOTROPIN-RELEASING FACTOR" JOURNAL OF MEDICINAL CHEMISTRY., vol. 39, 1996, pages 4358-4360, XP002109183 AMERICAN CHEMICAL SOCIETY. WASHINGTON., US ISSN: 0022-2623
- CHEMICAL ABSTRACTS, vol. 95, no. 11, 1981
 Columbus, Ohio, US; abstract no. 97712f,
 D.GOSH:
- "2,4-BIS(ARYLAMINO)-6-METHYLPYRIMIDINES AS ANTIMICROBIAL AGENTS." page 648; XP002109184 & J.INDIAN CHEM. SOC., vol. 58, no. 5, 1981, pages 512-513, INDIA
- CA 108:204585 CA 108:56043 CA 92:34951 CA57:5916d

Description

[0001] The present invention is concerned with pyrimidine derivatives having HIV replication inhibiting properties. The invention further relates to methods for their preparation and pharmaceutical compositions comprising them. The invention also relates to the use of said compounds in the manufacture of a medicament useful for the treatment of HIV (Human Immunodeficiency Virus) infection.

[0002] Compounds structurally related to the present compounds are disclosed in the prior art.

[0003] JP-2,052,360, JP-2,308,248, JP-9,080,676 and JP-9,068,784 disclose a number of trisubstituted pyrimidines useful in photographic material. JP-8,199,163 discloses trisubstituted pyrimidines useful in an organic electroluminescent device. JP-2,300,264 and GB-1,477,349 disclose pyrimidinetriamines for their use in the dye industry.

[0004] J. Indian Chem. Soc. (1975), 52(8), 774-775 discloses the synthesis of some bis(arylamino)pyrimidines. J. Heterocycl. Chem. (1973), 10(2), 167-171 discloses the condensation of various aminopyrimidines with picryl halides. J. Org. Chem. (1961), 26, 4433-4440 discloses several triaminopyrimidines as intermediates in the synthesis of triazolo [4,5-d]pyrimidines.

[0005] WO 91/18887 discloses diaminopyrimidines as gastric acid secretion inhibitors.

[0006] Unexpectedly, it has now been found that the compounds of formula (I) effectively inhibit the replication of the Human Immunodeficiency Virus (HIV) and consequently may be useful for the treatment of HIV.

[0007] The present invention concerns the use of the compounds of formula

20

10

40

55

25

30 the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof, wherein A is CH, CR4 or N;

n is 0, 1, 2, 3 or 4;

Q is hydrogen or -NR1R2:

 R^1 and R^2 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxy, amino, mono- or di(C_{1-12} alkyl)amino, mono- or di(C_{1-12} alkyl)aminocarbonyl wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, cyano, amino, aminocarbonyl, aminocarbonylamino, mono- or di(C_{1-6} alkyl)amino, aryl and Het; or

 R^1 and R^2 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or $di(C_{1-12}alkyl)$ amino $C_{1-4}alkyl$ idene;

 $R^3 \ is \ hydrogen, \ aryl, \ C_{1-6} alkyl carbonyl, \ C_{1-6} alkyl carbonyl, \ C_{1-6} alkyl carbonyl, \ C_{1-6} alkyl carbonyl, \ and$

each R^4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

45 R5 is hydrogen or C₁₋₄alkyl;

L is C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkenyl, C_{3-7} cycloalkyl, or C_{1-10} alkyl substituted with one or two substituents independently selected from C_{3-7} cycloalkyl, indanyl, indolyl and phenyl, wherein said phenyl, indanyl and indolyl may be substituted with one, two, three, four or where possible five substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, C_{1-6} alkyloxycarbonyl, formyl, nitro, amino, trihalomethyl, trihalomethyloxy and C_{1-6} alkylcarbonyl; or

L is -X1-R6 or -X2-Alk-R7 wherein

 R^6 and R^7 each independently are phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, formyl, cyano, aminocarbonyl, nitro, amino, trihalomethyloxy and trihalomethyl; and

 X^1 and X^2 are each independently -NR³-, -NH-NH-, -N=N-, -O-, -S-, -S(=O)- or -S(=O)₂-;

Alk is C₁₋₄alkanediyl;

aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, nitro and trifluoromethyl;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, uranyl, thienyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatice heterocyclic radical may optionally be substituted with hydroxy;

for the manufacture of a medicine for the treatment of HIV (Human Immunodeficiency Virus) infection.

[0008] According to the present invention, the above compounds are suitable for carrying out a method of treating warm-blooded animals suffering from HIV (Human Immunodeficiency Virus) infection. Said method comprises the administration of a therapeutically effective amount of a compound of formula (I) or any subgroup thereof, a *N*-oxide form, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof in admixture with a pharmaceutical carrier.

[0009] This invention also concerns compounds of formula

15

20

45

25 the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isoforms thereof, wherein A is CH, CR⁴ or N;

Q is hydrogen or -NR1R2;

 R^1 and R^2 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxycarbonyl, aryl, amino, mono- or di(C_{1-12} alkyl)amino, mono- or di(C_{1-12} alkyl)aminocarbonyl wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, amino, aminocarbonyl, aminocarbonyl, on mono- or di(C_{1-6} alkyl)amino, aryl and Het; or

 R^1 and R^2 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C_{1-12} alkyl)amino C_{1-4} alkylidene;

 35 R³ is hydrogen, aryl, C₁₋₆alkylcarbonyl, C₁₋₆ alkyl, C₁₋₆alkyloxycarbonyl, C₁₋₆alkyl substituted with C₁₋₆alkyloxycarbonyl; and

each R^4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

R⁵ is hydrogen or C₁₋₄alkyl;

L is 2,6-dichlorobenzyl, or L is -X1-R6 wherein >

or L is -X¹-R⁶ wherein X¹ is -NR³-, -S- or -O- and R⁶ is 2,4,6-trichlorophenyl, 2,4,6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluoro-phenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-trifluoro-methyl-phenyl, 2,6-dichloro-4-cyano-phenyl, 2,6-dichloro-4-trifluoro-methyl-phenyl, 2,6-dichloro-phenyl, 2,6-dimethyl-phenyl, 2,6-dimethyl-phenyl, 2,6-dimethyl-phenyl, 2-bromo-4-fluoro-6-methyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl,4-bromo-2,6-dimethyl-phenyl, 4-chloro-2,6-dimethyl-phenyl, 4-cyano-2,6-dimethyl-phenyl, or L is -X²-Alk-R⁷ wherein -X²-Alk- is -NH-CH₂-

and R^7 phenyl; aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C_{1-6} alkyloxy, cyano, nitro and trifluoromethyl;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy;

R4' is halo, C₁₋₆alkyl, cyano, aminocarbonyl, nitro, trihalomethyl, trihalomethyloxy or C₁₋₆alkyl substituted with cyano or aminocarbonyl;

n' is 0,1,2 or 3;

with the provisio that Q is other than anilino, 2,4,6-trinitro-anilino, 3 methoxy-anilino, 4-methoxy-anilino, 3,4-dimethoxy-

anilino, 3-chloro-4-fluoro-anilino, 4-cyano-anilino, 2-(C₁₋₆alkyl)-anilino, 4-(C₁₋₆alkyl)-anilino, 3-chloro-anilino, 4-bromo-anilino, 4-nitro-anilino and 4-chloro-anilino.

[0010] As used in the foregoing definitions and hereinafter halo defines fluoro, chloro, bromo and iodo; C_{1-4} alkyl as a group or part of a group encompasses the straight and branched chained saturated hydrocarbon radicals having from 1 to 4 carbon atoms such as, for example, methyl, ethyl, propyl, butyl and the like; C_{1-6} alkyl as a group or part of a group encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C_{1-4} alkyl as well as the higher homologues thereof containing 5 or 6 carbon atoms such as, for example pentyl or hexyl; C_{1-10} alkyl as a group or part of a group group encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C_{1-6} alkyl as well as the higher homologues thereof containing 7 to 10 carbon atoms such as, for example, heptyl, octyl, nonyl or decyl; C_{1-12} alkyl as a group or part of a group encompasses the straight and branched chained saturated hydrocarbon radicals as defined in C_{1-10} alkyl as well as the higher homologues thereof containing 11 or 12 carbon atoms such as, for example, undecyl, dodecyl and the like;

 C_{1-4} alkylidene as a group or part of a group defines bivalent straight and branched chained hydrocarbons having from 1 to 4 carbon atoms such as, for example, methylene, ethylidene, propylidene, butylidene and the like; C_{1-4} alkanediyl as a group or part of a group encompasses those radicals defined under C_{1-4} alkylidene as well as other bivalent straight and branched chained hydrocarbons having from 1 to 4 carbon atoms such as, for example, 1,2-ethanediyl, 1,3-propanediyl, 1,4-butanediyl and the like; C_{3-7} cycloalkyl as a group or part of a group is generic to cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl; C_{3-10} alkenyl as a group or part of a group defines straight and branch chained hydrocarbon radicals containing one double bond and having from 3 to 10 carbon atoms such as, for example, 2-propenyl, 2-butenyl, 2-pentenyl, 3-pentenyl, 3-hexenyl, 3-hexenyl, 3-heptenyl, 2-octenyl, 2-nonenyl, 2-decenyl and the like, whereby the carbon atom attached to the pyrimidine ring is preferably an aliphatic carbon atom; C_{3-10} alkynyl as a group or part of a group defines straight and branch chained hydrocarbon radicals containing one triple bond and having from 3 to 10 carbon atoms such as, for example, 2-propynyl, 2-butynyl, 2-pentynyl, 3-pentynyl, 3-methyl-2-butynyl, 3-hexynyl, 3-hexynyl, 3-hexynyl, 2-octynyl, 2-nonynyl, 2-decynyl and the like, whereby the carbon atom attached to the pyrimidine ring is preferably an aliphatic carbon atom.

[0011] It is to be understood that the three substituents [L, Q and NR³(optionally substituted phenyl or pyridyl)] on the pyrimidine ring can be on any free position of the pyrimidine ring. Thus, given the following numbering of the pyrimidine ring

$$6 \bigvee_{R^5}^{2} 4$$

the three substituents may be connected to the pyrimidine ring in three different ways:

2-L, 4-Q, 6-NR3(optionally substituted phenyl or pyridyl); or

4-L, 2-Q, 6-NR3(optionally substituted phenyl or pyridyl); or

6-L, 4-Q, 2-NR³(optionally substituted phenyl or pyridyl).

5

20

25

30

35

40

45

50

55

[0012] The positions 4 and 6 are equivalent to one another. For instance, substitution pattern 6-L, 4-Q, 2-NR³(optionally substituted phenyl or pyridyl), which is a preferred substitution pattern, is equivalent to substitution pattern 4-L, 6-Q, 2-NR³(optionally substituted phenyl or pyridyl). Said subgroup of compounds is represented by formula

[0013] An interesting group of compounds are the compounds of formula

5

10

15

20

25

35

[0014] Of particular interest are those compounds of formula (I'-1) wherein Q is other than anilino, 2,4,6-trinitro-anilino, 4-(C₁₋₆alkyl)-anilino, 4-bromo-anilino, 4-nitro-anilino and 4-chloro-anilino; and of more particular interest are those compounds of formula (I'-1) wherein R^{4'} is cyano, aminocarbonyl or C₁₋₆alkyl substituted with cyano or aminocarbonyl.

[0015] The addition salts as mentioned herein are meant to comprise the therapeutically active addition salt forms which the compounds of the present invention are able to form with appropriate acids, such as, for example, inorganic acids such as hydrohalic acids, e.g. hydrochloric or hydrobromic acid; sulfuric; nitric; phosphoric and the like acids; or organic acids such as, for example, acetic, propanoic, hydroxyacetic, lactic, pyruvic, oxalic, malonic, succinic, maleic, fumaric, malic, tartaric, citric, methanesulfonic, ethanesulfonic, benzenesulfonic, p-toluenesulfonic, cyclamic, salicylic, p-amino-salicylic, pamoic and the like acids.

[0016] The pharmaceutically acceptable addition salts as mentioned hereinabove are also meant to comprise the therapeutically active non-toxic base, in particular, a metal or amine addition salt forms which the compounds of the present invention are able to form. Said salts can conveniently be obtained by treating the compounds of the present invention containing acidic hydrogen atoms with appropriate organic and inorganic bases such as, for example, the ammonium salts, the alkali and earth alkaline metal salts, e.g. the lithium, sodium, potassium, magnesium, calcium salts and the like, salts with organic bases, e.g. the benzathine, *N*-methyl-D-glucamine, hydrabamine salts, and salts with amino acids such as, for example, arginine, lysine and the like.

Conversely said salt forms can be converted by treatment with an appropriate base or acid into the free acid or base form.

[0017] The term addition salts also comprises the hydrates and the solvent addition forms which the compounds of the present invention are able to form. Examples of such forms are e.g. hydrates, alcoholates and the like.

[0018] The term stereochemically isomeric forms of compounds of the present invention, as used hereinbefore, defines all possible compounds made up of the same atoms bonded by the same sequence of bonds but having different three-dimensional structures which are not interchangeable, which the compounds of the present invention may possess. Unless otherwise mentioned or indicated, the chemical designation of a compound encompasses the mixture of all possible stereochemically isomeric forms which said compound may possess. Said mixture may contain all diastereomers and/or enantiomers of the basic molecular structure of said compound. All stereochemically isomeric forms of the compounds of the present invention both in pure form or in admixture with each other are intended to be embraced within the scope of the present invention.

[0019] Some of the compounds of the present invention may also exist in their tautomeric forms. Such forms although not explicitly indicated in the above formula are intended to be included within the scope of the present invention.

[0020] Whenever used hereinafter, the term "compounds of the present invention" is meant to include the compounds of formula (I), (I-1), (I'), (I'-1) or any subgroup thereof, also the *N*-oxides, the pharmaceutically acceptable addition salts and all stereoisomeric forms.

[0021] The group containing those compounds of the present invention wherein Q is NR 1 R 2 , each R 4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl or trihalomethyloxy; L is C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, C_{3-7} cycloalkyl, or C_{1-10} alkyl substituted with one or two substituents independently selected from C_{3-7} cycloalkyl, indolyl or indolyl substituted with one, two, three or four substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy and C_{1-6} alkylcarbonyl, phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy and C_{1-6} alkylcarbonyl; or L is -X 1 -R 6 wherein R 6 is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkylcarbonyl, cyano, nitro and trifluoromethyl; is of interest.

[0022] Also of interest is the group containing those compounds of the present invention wherein Q is NR 1 R 2 ; each R 4 independently is hydroxy, halo, C $_{1.6}$ alkyl, C $_{1.6}$ alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl or trihalomethyloxy; in general formula (I) or (I-1), L is C $_{1.10}$ alkyl substituted with one or two substituents independently selected from phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, C $_{1.6}$ alkyl, C $_{1.6}$ alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy and C $_{1.6}$ alkylcarbonyl; or in general formula (I) or (I-1), L is -X 1 -R 6 wherein R 6 is phenyl or phenyl substituted with one,

two, three, four or five substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkylcarbonyl, cyano, nitro and trifluoromethyl; with the proviso that compounds

- (a) N2-hydroxy-N2-methyl-N4, N6-diphenyl-2, 4, 6-pyrimidinetriamine;
- (b) N,N,N',N',N",N"-hexakis(3-methylphenyl)-2,4,6-pyrimidinetriamine;
 - (c) N4-methyl-N2-(2-methylphenyl)-N4-phenyl-2,4,6-pyrimidinetriamine;
 - (d) N4-methyl-N2-(2-methylphenyl)-N4-phenyl-6-(phenylmethyl)-2,4-pyrimidine diamine;
 - (e) N4-(2-methylphenyl)-6-(phenylmethyl)-2,4-pyrimidinediamine;
 - (f) N,N',N''-tris(4-methoxyphenyl)-2,4,6-pyrimidinetriamine;
 - (g) N,N-bis(4-hexylphenyl)-6-(4-methoxyphenoxy)-2,4-pyrimidinediamien;
 - (h) N2, N4-bis(4-hexylphenyl)-N6, N6-dimethyl-2,4,6-pyrimidinetdamine;
 - (i) N,N',N"-tris(4-hexylphenyl)-2,4,6-pyrimidinetriamine;
 - (j) N2, N2-dimethyl-N4, N6-bis(4-methylphenyl)-2,4,6-pyrimidinetriamine;
 - (k) N,N',N'-tris(4-methylphenyl)-2,4,6-pyrimidinetriamine;
- (I) N,N',N"-triphenyl-2,4,6-pyrimidinetriamine;

5

10

15

20

25

30

35

40

- (m) N,N,N',N'',N",N"-hexakis(4-ethoxyphenyl)-2,4,6-pyrimidinetriamine;
- (n) N4,N6-bis(2-chlorophenyl)-2,4,6-pyrimidinetriamine;
- (o) N4,N6-bis(3-chlorophenyl)-2,4,6-pyrimidinetriamine;
- (p) N4, N6-bis(2-ethoxyphenyl)-2,4,6-pyrimidinetriamine;
- (q) N4, N6-bis(4-ethoxyphenyl)-2,4,6-pyrimidinetriamine;
- (r) N4,N6-bis(2-methylphenyl)-2,4,6-pyrimidinetriamine;
- (s) N4,N6-bis(4-bromophenyl)-2,4,6-pyrimidinetriamine;
- (4) Ald Alo bis (4 methodology) 2,4,0-pyttitidinetriamine,
- (t) N4,N6-bis(4-methylphenyl)-2,4,6-pyrimidinetriamine;
- (u) N2,N4-bis(4-methoxyphenyl)-2,4,6-pyrimidinetriamine;
- (v) N2,N4-bis(4-methylphenyl)-2,4,6-pyrimidinetriamine;
- (w) N,N,N'-tris(2,4,6-trinitrophenyl)-2,4,6-pyrimidinetriamine;
- (x) N4,N6-bis(4-chlorophenyl)-2,4,6-pyrimidinetriamine;
- (y) N4,N6-bis(4-methoxyphenyl)-2,4,6-pyrimidinetriamine;
- (z) N2,N4,N6-trimethyl-N2,N4,N6-triphenyl pyrimidine-2,4,6-triyltriamine;
- (aa) N4,N4-dimethyl-N2,N6-di-p-tolyl-pyrimidine-2,4,6-triyltriamine; and
- (bb) N2,N4-diphenyl-pyrimidine-2,4,6-triyltriamine are not included.
- [0023] Suitably, Q may also be hydrogen in the above two groups of interest.
- [0024] A special group of compounds are those compounds of formula (I) or (I') wherein n is at least 1 and at least one R⁴ is cyano; preferably, n is 1 and R⁴ is cyano substituted in the para position relative to the NR³ moiety.
- [0025] Another special group of compounds contains those compounds of formula (I) or (I') which are other than
 - (c) N4-methyl-N2-(2-methylphenyl)-N4-phenyl-2,4,6-pyrimidinetriamine;
 - (d) N4-methyl-N2-(2-methylphenyl)-N4-phenyl-6-(phenylmethyl)-2,4-pyrimidinediamine;
- (e) N4-(2-methylphenyl)-6-(phenylmethyl)-2,4-pyrimidinediamine; the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof.

[0026] An interesting group of compounds are those compounds of the present invention wherein the NR³(substituted phenyl or pyridyl) moiety is in the 4- or 6-position of the pyrimidine ring.

- [0027] Another interesting group are those compounds of the present invention wherein each R^4 independently is hydroxy, halo, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl or trihalomethyloxy; R^6 is phenyl or phenyl substituted with one, two or three, four or five substituents each independently selected from halo, C_{1-6} alkyloxy, C_{1-6} alkyloxy, cyano, nitro and trifluoromethyl; and aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C_{1-6} alkyloxy, cyano, nitro and trifluoromethyl.
- [0028] Suitably, Q is NR¹R² wherein R¹ is hydrogen, hydroxy, C₁₋₁₂alkyl, C₁₋₁₂alkyloxy, C₁₋₁₂alkylcarbonyl, C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or di(C₁₋₁₂alkyl)amino, mono- or di(C₁₋₁₂alkyl)aminocarbonyl; and R² is hydroxy, C₁₋₁₂alkyl, C₁₋₁₂alkyloxy, C₁₋₁₂alkylcarbonyl, C₁₋₁₂alkyloxycarbonyl, aryl, amino, mono- or di(C₁₋₁₂alkyl)aminocarbonyl; wherein each of the aforementioned C₁₋₁₂alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C₁₋₆alkyloxy, hydroxyC₁₋₆alkyloxy, carboxyl, C₁₋₆alkyloxycarbonyl, cyano, amino, imino, aminocarbonyl, aminocarbonylamino, mono- or di(C₁₋₆alkyl)amino, aryl and Het; or R¹ and R² taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C₁₋₁₂alkyl)amino-C₁₋₄alkylidene.
 - [0029] Suitably, in general formula (I) or (I-1), L is C₁₋₁₀alkyl substituted with one or two substituents independently

selected from C_{3-7} cycloalkyl, indanyl, indolyl and phenyl, wherein said phenyl, indanyl an indolyl may be substituted with one, two, three, four or where possible five substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, C_{1-6} alkyloxycarbonyl, formyl, nitro, amino, trihalomethyl, trihalomethyloxy and C_{1-6} alkylcarbonyl; or in general formula (I) or (I-1), L is -X¹-R⁶ or -X²-Alk-R⁷ and when X¹ is NR³, then R⁶ is phenyl substituted with one, two, three, four or five substituents each independently selected from C_{1-6} alkyloxycarbonyl, formyl, nitro and thrihalomethyloxy.

[0030] Suitably, R4 or R4' is nitro, trihalomethyloxy or C_{1.6}alkyl substituted with cyano or aminocarbonyl.

[0031] Suitably, R^6 is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, formyl, cyano, aminocarbonyl, nitro, amino, trihalomethyloxy and trihalomethyl.

[0032] Suitably, both Q and R⁵ are hydrogen.

[0033] Suitably, in general formula (I) or (I-1), L is C_{1-10} alkyl substituted with one or two substituents independently selected from C_{3-7} cycloalkyl, indanyl, indolyl and phenyl, wherein said phenyl, indanyl and indolyl may be substituted with one, two, three, four, or where possible five substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, cyano, aminocarbonyl, C_{1-6} alkyloxycarbonyl, formyl, nitro, amino, trihalomethyl, trihalomethyloxy and C_{1-6} alkylcarbonyl; or in general formula (I), (I-1), (I') or (I'-1), L is -X¹-R6 or -X²-Alk-R7; and R5 is hydrogen.

[0034] Particular groups of compounds are those groups wherein one or more of the following conditions are met:

(i) n is 0, 1, 2 or 3;

(ii) Q is hydrogen;

(iii) Q is NR¹R² wherein R¹ and R² are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxycarbonyl, cyano wherein the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, cyano, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, aryl and Het; or R¹ and R² taken together may form mono- or di(C_{1-12} alkyl)amino C_{1-4} alkylidene;

(iv) R3 is hydrogen or C1-6alkyl;

(v) R4 is cyano, aminocarbonyl, amino, nitro, hydroxy, halo, C₁₋₆alkyl or cyanoC₁₋₆alkyl;

(vi) R⁴ is cyano, aminocarbonyl, halo, C₁₋₆alkyl or cyanoC₁₋₆alkyl;

(vii) R5 is hyrogen or methyl;

(viii) In general formula (I) or (I-1), L is C_{1-10} alkyl substituted with phenyl substituted with one or two halogens; or in general formula (I) or (I-1), L is $-X^1-R^6$ wherein R^6 is phenyl substituted with one, two or three substituents selected from C_{1-6} alkyl, trifluoromethyl, trifluoromethoxy, cyano, and halogen, and X^1 is $-S_7$, $-O_7$ or $-NR^3$ -; or L is $-X^2-Alk-R^7$ wherein R^7 is phenyl substituted with one, two or three substituents selected from C_{1-6} alkyl, cyano, and halogen and X^2 is NH.

35

15

20

25

30

[0035] Other particular compounds are those compounds of the present invention wherein in the definition of L, said substituted phenyl, R⁶ and R⁷ groups are chosen from phenyl, 2,6-disubstituted-phenyl, 2,4,6-trisubstituted-phenyl or 2,3,4,5-tetra-substituted-phenyl;

especially, the above groups are chosen from phenyl, 2,4,6-trihalo-phenyl,2,4,6-tri C_{1-4} alkyl-phenyl, 2,3,4, 5-tetrahalo-phenyl, 2,4-dihalo-6- C_{1-4} alkyl-phenyl, 2,4-dihalo-4- C_{1-4} alkyl-phenyl, 2,6-dihalo-4-cyano-phenyl, 2,6-dihalo-4-trifluoromethoxy-phenyl, 2,6-dihalo-4-trifluoromethyl-phenyl, 2,6-di C_{1-4} alkyl-4-halo-phenyl, 2,6-di C_{1-4} alkyl-4-cyano-phenyl, 2,6-dihalo-phenyl or 2,6-di C_{1-4} alkyl-phenyl;

more particular, the above groups are chosen from phenyl, 2,4,6-trichloro-phenyl, 2,4,6-trimethyl-phenyl,2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluoro-phenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-methyl-phenyl, 2,6-dichloro-4-trifluoro-methoxy-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dichloro-phenyl, 2,6-dimethyl-4-(1,1-dimethylethyl)-phenyl, 2,6-dimethyl-phenyl, 2-bromo-4-fluoro-6-methyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-chloro-2,6-dimethyl-phenyl, or 4-cyano-2,6-dimethyl-phenyl.

[0036] More particular compounds are the compounds of the present invention wherein in general formula (I), (I-1), (I') or (I'-1) L is 2, 6-dichlorobenzyl, or L is -X¹-R6 wherein X¹ is -NR³-, -S- or -O- and R6 is 2,4,6-trichlorophenyl, 2,4-6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluoro-phenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-prop-1-yl-phenyl, 2,6-dichloro-4-cyano-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dichloro-phenyl, 2,6-dimethyl-phenyl, 2,6-dimethyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-chloro-2,6-dimethyl-phenyl, 4-cyano-2,6-dimethyl-phenyl, or L is -X²-Alk-R7 wherein -X²-Alk- is -NH-CH₂- and R7 phenyl.

[0037] Still other particular compounds are those compounds of formula (I) where R³ is hydrogen, A is CH, n is 1, and R⁴ is halo, methyl or cyano and is positioned in the 4 position of the phenyl ring.

[0038] Preferred compounds are those compounds of the present invention wherein L is 2,6-dichlorobenzyl and the NR³(optionally substituted phenyl or pyridyl) moiety represents *p*-cyano-anilino and is in the 2 position of the pyrimidine ring

[0039] Other preferred compounds are those compounds of the present invention wherein Q is hydrogen, L is -X¹-R⁶ wherein X¹ is -NH- and R⁶ is 2,4,6-trimethyl-phenyl or 4-cyano-2,6-dimethylphenyl, the NR³(optionally substituted phenyl or pyridyl)moiety represents p-cyano-anilino and is in the 2 position of the pyrimidine ring.

[0040] Still other preferred compounds are those compounds of the present invention wherein L is $-X^2$ -Alk-R⁷ wherein X^2 is -NH-, Alk is methylene and R⁷ is phenyl, 2,6-dichloro-phenyl, 2,4,6-trimethyl-phenyl or 4-cyano-2,6-dimethylphenyl.

[0041] More preferred are those compounds of formula (I'-1) wherein R4' is halo, cyano, aminocarbonyl or cyanoC₁₋₆alkyl; n is zero, A is CH, R3 is hydrogen; R5 is hydrogen or methyl; Q is hydrogen or NHR1; and L is -X1-R6 or -X2-Alk-R7 and R6 and R7 are chosen from phenyl, 2,4,6-trichloro-phenyl 2,4,6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluoro-phenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-methyl-phenyl, 2,6-dichloro-4-trifluoro-methoxy-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dichloro-phenyl, 2,6-dimethyl-4-(1,1-dimethylethyl)-phenyl, 2,6-dimethyl-phenyl, 2-bromo-4-fluoro-6-methyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-chloro-2,6-dimethyl-phenyl, or 4-cyano-2,6-dimethyl-phenyl.

[0042] In general formula (I), (I-1), (I') or (I'-1) most preferred compounds are

4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinyl]amino]benzonitrile;

6-[(2,6-dichlorophenyl)methyl]-N2-(4-fluorophenyl)-2,4-pyrimidinediamine;

4-[[4-[(2,4-dichlorophenyl)methyl]-6-[(4-hydroxybutyl)amino]-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl]-6-[(3-hydroxypropyl)amino]-2-pyrimidinyl]amino]-benzonitrile;

N-[2-[(4-cyanophenyl)amino]-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinyl]-acetamide;

N-[2-[(4-cyanophenyl)amino]-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinyl]-butanamide;

4-[[2-amino-6-(2,6-dichlorophenoxy)-4-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl]-6-[(2-hydroxy-2-phenylethyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl]-6-[[3-(2-oxo-1-pyrrolidinyl)propyl]amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl]-6-[[2-(2-hydroxyethoxy)ethyl]amino]-2-pyrimidinyl]amino]benzontrile monohydrochloride;

30 4-[[4-[(2,6-dichlorophenyl)methyl]-6-[(2,3-dihydroxypropyl)amino]-2-pyrimidinyl]-amino]benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl]-6-(hydroxyamino)-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2-cyanoethyl)amino]-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2,6-dichlorophenyl)methyl)-6-[[2-(1-pyrrolidinyl)ethyl]amino]-2-pyrimidinyl]-amino]benzonitrile;

4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;

N2-(4-bromophenyl)-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2,4-pyrimidinediamine;

4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[2-[(2,4,6-trimethylphenyl)amino]-4-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-(2,4,6-trimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile;

0 4-[[4-[(2,6-dichlorophenyl)thio]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[[2,6-dibromo-4-(1-methylethyl)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[[2,6-dichloro-4-(trifluoromethyl)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2.4-dichloro-6-methylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[2-[(cyanophenyl)amino]-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile;

4-[[4-[(2,4-dibromo-6-fluorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2-pyrimidinyl]amino]-benzeneacetonitrile;

4-[[4-[methyl(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,4,6-trichlorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,4,6-trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,4,6-trimethylphenyl)amino-2-pyrimidinyl]amino]benzonitrile;

4-[[4-amino-6-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[2-amino-6-[(2,4,6-trimethylphenyl)amino]-4-pyrimidinyl]amino]benzonitrile;

4-[[4-(2-bromo-4-chloro-6-methylphenoxy)-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(4-chloro-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

3,5-dichloro-4-[[2-[(4-cyanophenyl)amino]-4-pyrimidinyl]amino]benzonitrile;

4-[[4-[[2,6-dichloro-4-(trifluoromethoxy)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2,4-dibromo-3,6-dichlorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dibromo-4-propylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide;

4-[[4-[(4-(1,1-dimethylethyl)-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]-benzonitrile;

4-[[2-[(4-cyanophenyl)amino]-4-pyrimidinyl]oxy]-3,5-dimethylbenzonitrile;

4-[[4-[(4-chloro-2,6-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;

4-[[2-[(4-cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino-3,5-dimethylbenzonitrile;

4-[[4-[4-(1,1-dimethylethyl)-2,6-dimethylphenyl]amino]-5-methyl-2-pyrimidinyl]-amino]benzonitrile;

 $\hbox{$4$-[[4$-[(4$-bromo-2,6$-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl] amino]-benzonitrile;}$

4-[[5-methyl-4-[(2,4,6-trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitrile;

4-[[4-[(2,6-dibromo-4-propylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;

4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide, N3-oxide;

N2-(4-chlorophenyl)-N4-(2,4,6-trimethylphenyl)-2,4-pyrimidinediamine;

4-[[4-[[2,6-dibromo-4-(1-methylethyl)phenyl]amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;

4-[[2-[(4-cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino]-3,5-dimethyl benzonitrile;

4-[[4-[(phenylmethyl)amino]-2-pyrimidinyl]amino]benzonitrile;

10

15

20

35

40

45

50

the N-oxides, the pharmaceutically acceptable addition salts and the stereochemically isomeric forms thereof.

[0043] The compounds of formula (I) can be prepared according to art-known procedures.

[0044] In particular, compounds of formula (I') can generally be prepared by reacting an intermediate of formula (II-A) wherein W¹ is a suitable leaving group such as, for example, a halogen, with an amino derivative of formula (III) optionally in a solvent such as, for example, water, 2-propanol, diethylether, 1-methyl-2-pyrrolidinone and the like, and optionally in the presence of an acid such as, for example, 1 N hydrochloric acid in diethylether. It may be convenient to perform the reaction under a reaction-inert atmosphere such as, for example, oxygen free argon or nitrogen.

25
$$L = \begin{pmatrix} R^4 \end{pmatrix}_{n} & R^4 \end{pmatrix}$$

$$R^5 = \begin{pmatrix} R^4 \end{pmatrix}_{n} & R^4 \end{pmatrix}$$

[0045] In this and the following preparations, the reaction products may be isolated from the reaction medium and, if necessary, further purified according to methodologies generally known in the art such as, for example, extraction, crystallization, distillation, trituration and chromatography.

[0046] Analogously to the reaction procedure described above, H-NR¹R² (VI) can also be reacted with an intermediate of formula (II-B).

$$L \xrightarrow{(R^4)_{R^1}} R^{4'} + H \xrightarrow{R^2} L \xrightarrow{(R^4)_{R^1}} R^{3}$$

$$(II-B) \qquad (VI) \qquad (I')$$

[0047] Suitable solvents for the above reaction include, for instance, 2-propanol or 1,4-dioxane.

[0048] In case Q is NR¹R² and R² contains a hydroxy moiety, it may be convenient to perform the above reaction with a protected form of intermediate (VI) whereby the hydroxy moiety bears a suitable protecting group P being, for instance, a benzyl, and subsequently removing the protective group according to art-known methodologies, such as, for example, reacting with BBr₃ in dichloromethane under nitrogen atmosphere.

[0049] It is also possible to react H-X¹-R⁶ with an intermediate of formula (II-C) in a suitable solvent such as, for example, 1,4-dioxane, thus obtaining compounds of formula (I') wherein L is -X¹-R⁶, said compounds being represented by formula (I'-c).

10

15

20

25

40

45

50

[0050] Depending on the nature of X1 a suitable base or acid may be used to improve the reaction rate. For instance, in case X^1 is -O-, sodium hydride may be used as suitable base; or in case X^1 is NR3, HCI may be used as a suitable acid. [0051] The compounds of formula (I') may further be prepared by converting compounds of formula (I') into each other according to art-known group transformation reactions.

[0052] For instance, compounds of formula (I') whereby Q is NR¹R² and R¹ and R² are taken together to form mono $or\ di(C_{1-12}alkyl) a mino C_{1-4}alkylidene,\ said\ compounds\ being\ represented\ by\ formula\ (l'-a),\ may\ be\ prepared\ by\ reacting$ a compound of formula (I') wherein R1 and R2 are hydrogen, with an intermediate of formula (IV) or a functional derivative thereof.

25
$$L = \frac{1}{N} = \frac{1}{N}$$

[0053] Also, compounds of formula (I') wherein Q is NR¹R² and R¹ and R² are hydrogen may further be reacted with an acyl halide or an alkyl chloroformate in a reaction-inert solvent such as, for example dichloromethane, in the presence of a suitable base, such as, for example, pyridine, to form the corresponding amide, respectively, carbamate derivative. [0054] Some of the compounds of formula (I') and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, liquid chromatography and the like methods. Enantiomers can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur stereospecifically.

[0055] An alternative manner of separating the enantiomeric forms of the compounds of formula (I') and intermediates involves liquid chromatography, in particular liquid chromatography using a chiral stationary phase.

[0056] The above specified reaction procedures for the preparation of compounds of formula (I') or subgroups thereof, can also be applied for the preparation of compounds of formula (I).

[0057] Some of the intermediates and starting materials are known compounds and may be commercially available or may be prepared according to art-known procedures.

[0058] Intermediates of formula (II-A) wherein Q is NR1R2, said intermediates being represented by formula (II-A-1), can be prepared by reacting a pyrimidine derivative of formula (V) wherein W2 is a suitable leaving group such as, for example, a halogen, with HNR1R2 (VI) in a reaction inert solvent such as, for example, 1,4-dioxane, 2-propanol or the like. Different regio-specific isomers may be formed and can be separated from one another using suitable separation techniques such as, for example, chromatography.

$$W^{2} \longrightarrow W^{2} \longrightarrow W^{2$$

20

25

35

40

45

50

55

[0059] Intermediates of formula (II-B) can be prepared analogously to the preparation of compounds of formula (I') starting from intermediates (II-A) and (III).

$$L = \begin{pmatrix} W^1 \\ W^1 \\ W^1 \\ W^1 \end{pmatrix} + H \begin{pmatrix} (R^4)_{n} \\ R^3 \end{pmatrix} \begin{pmatrix} R^{2^n} \\ R^3 \end{pmatrix} \begin{pmatrix} R^{4^n} \\ R^3 \end{pmatrix} \begin{pmatrix} R^{4^n}$$

[0060] A particular subgroup of the intermediates of formula (II-B) is represented by formula

$$\mathbb{R}^{5}$$
 \mathbb{N}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{4}
 \mathbb{R}^{4}

[0061] Particular intermediates of formula (II'-B) are those wherein W1 is a halogen, more in particular, a chloro atom. [0062] Intermediates of formula (V) whereby Q is NR1R2 and the L is L'-CH2 and is attached in the 2 position of the pyrimidine ring and W2 is chloro, said intermediates being represented by formula (V-a), can be prepared by reacting an imidamide of formula (VII) with a propanedioic acid ester of formula (VIII) in a solvent such as, for example, ethanol, and in the presence of, for instance, sodium, and subsequently reacting the thus formed intermediate of formula (IX) with a suitable reagent such as, for example, phosphoryl chloride.

5
$$CH_2$$
 CH_2 CH_2

[0063] Intermediates of formula (V) whereby Q is NR^1R^2 and L is L'- CH_2 and is attached in the 4 or 6 position of the pyrimidine ring and W^2 is chloro, said intermediates being represented by formula (V-b), can be prepared by reacting an intermediate of formula (X) with urea or a functional derivative thereof, in a solvent such as, for example, ethanol, and in the presence of, for instance, sodium, and subsequently reacting the thus formed intermediate of formula (XI) with a suitable reagent such as, for example, phosphoryl chloride.

[0064] Intermediates of formula (V) wherein Q is NR¹R² and L is L'-CH₂ and is attached anywhere on the pyrimidine ring, said intermediates being represented by formula (V-c), can be prepared by reacting an intermediate of formula (XII-1), for Q is NR¹R² and formula (XII-2) for Q is hydrogen, wherein W² is a suitbale leaving group such as, for example, a halogen, with an intermediate of formula (XIII) wherein W³ is a suitable leaving group such as, for example, a halogen, according to the procedure of a Grignard reaction.

$$W^{2} \xrightarrow{N} W^{2} + L - CH_{2} - W^{3} \xrightarrow{W^{2} \times W^{2} \times W^{2}} W^{2}$$

$$(XIII) \qquad (V-c)$$

[0065] Intermediates of formula (V) whereby Q is NR¹R² and L is -O-R6 or -NH-R6 and is attached in the 4 or 6 position of the pyrimidine ring, said intermediates being represented by formula (V-d), can be prepared by reacting an intermediate of formula (XIV) with an intermediate of formula (XII) wherein W² is a suitable leaving group such as, for example, a halogen, in a reaction-inert solvent such as, for example, tetrahydrofuran or 1,4-dioxane, and in the presence of a suitable base such as, for example, potassium hydroxide or diisopropyl ethaneamine, or sodium hydride.

$$W^{2}$$

$$W^{3}$$

$$W^{2}$$

$$W^{2}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{2}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{2}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{4}$$

$$W^{4}$$

$$W^{4}$$

$$W^{5}$$

$$W^{5}$$

$$W^{6}$$

$$W^{6}$$

$$W^{7}$$

$$W^{8}$$

$$W^{8}$$

$$W^{1}$$

$$W^{2}$$

$$W^{2}$$

$$W^{3}$$

$$W^{4}$$

$$W^{5}$$

$$W^{6}$$

$$W^{6}$$

$$W^{6}$$

$$W^{7}$$

$$W^{8}$$

$$W^{8}$$

$$W^{8}$$

$$W^{8}$$

$$W^{8}$$

$$W^{8}$$

$$W^{1}$$

$$W^{8}$$

$$W^{8$$

5

15

20

25

30

35

40

45

[0066] The intermediates of formula (V-a) to (V-d) can analogously be prepared for the compounds of formula (I') wherein Q is hydrogen. To this effect, there is one leaving group W2 less on the pyrimidine ring of the respective starting material

[0067] Compounds of formula (I') and some of the intermediates may have one or more stereogenic centers in their structure, present in a R or a S configuration.

[0068] The compounds of formula (I') as prepared in the hereinabove described processes may be synthesized as a mixture of stereoisomeric forms. in particular in the form of racemic mixtures of enantiomers which can be separated from one another following art-known resolution procedures. The racemic compounds of formula (I) may be converted into the corresponding diastereomeric salt forms by reaction with a suitable chiral acid. Said diastereomeric salt forms are subsequently separated, for example, by selective or fractional crystallization and the enantiomers are liberated therefrom by alkali. An alternative manner of separating the enantiomeric forms of the compounds of formula (I) involves liquid chromatography using a chiral stationary phase. Said pure stereochemically isomeric forms may also be derived from the corresponding pure stereochemically isomeric forms of the appropriate starting materials, provided that the reaction occurs stereospecifically. Preferably if a specific stereoisomer is desired, said compound will be synthesized by stereospecific methods of preparation. These methods will advantageously employ enantiomerically pure starting materials.

[0069] The compounds of the present invention and the intermediates of formula (II'-B) show antiretroviral properties, in particular against Human Immunodeficiency Virus (HIV), which is the aetiological agent of Acquired Immune Deficiency Syndrome (AIDS) in humans. The HIV virus preferentially infects human T-4 cells and destroys them or changes their normal function, particularly the coordination of the immune system. As a result, an infected patient has an everdecreasing number of T-4 cells, which moreover behave abnormally. Hence, the immunological defense system is unable to combat infections and neoplasms and the HIV infected subject usually dies by opportunistic infections such as pneumonia, or by cancers. Other conditions associated with HIV infection include thrombocytopaenia, Kaposi's sarcoma and infection of the central nervous system characterized by progressive demyelination, resulting in dementia and symptoms such as, progressive dysarthria, ataxia and disorientation. HIV infection further has also been associated with peripheral neuropathy, progressive generalized lymphadenopathy (PGL) and AIDS-related complex (ARC).

[0070] The present compounds also show activity against HIV-1 strains that have acquired resistance to art-known non-nucleoside reverse transcriptase inhibitors. They also have little or no binding affinity to human α-1 acid glycoprotein.

[0071] Due to their antiretroviral properties, particularly their anti-HIV properties, especially their anti-HIV-1-activity, the compounds of the present invention are useful in the treatment and prophylaxis of HIV.

In general, the compounds of the present invention may be useful in the treatment of warm-blooded animals infected with viruses whose existence is mediated by, or depends upon, the enzyme reverse transcriptase. Conditions which may be prevented or treated with the compounds of the present invention, especially conditions associated with HIV and other pathogenic retroviruses, include AIDS, AIDS-related complex (ARC), progressive generalized lymphadenopathy (PGL), as well as chronic CNS diseases caused by retroviruses, such as, for example HIV mediated dementia and multiple sclerosis.

[0072] The compounds of the present invention or any subgroup thereof may therefore be used as medicines against above-mentioned conditions. Said use as a medicine or method of treatment comprises the systemic administration to HIV-infected subjects of an amount effective to combat the conditions associated with HIV and other pathogenic retroviruses, especially HIV-1.

[0073] The compounds of the present invention or any subgroup thereof may be formulated into various pharmaceutical forms for administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs. To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in addition salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier, which carrier may take a wide variety of forms depending

on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, particularly, for administration orally, rectally, percutaneously, or by parenteral injection. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as suspensions, syrups, elixirs and solutions; or solid carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules, and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit forms, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included. Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations which are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin.

[0074] It is especially advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions and the like, and segregated multiples thereof.

[0075] Those of skill in the treatment of HIV-infection could determine the effective daily amount from the test results presented here. In general it is contemplated that an effective daily amount would be from 0.01 mg/kg to 50 mg/kg body weight, more preferably from 0.1 mg/kg to 10 mg/kg body weight. It may be appropriate to administer the required dose as two, three, four or more sub-doses at appropriate intervals throughout the day. Said sub-doses may be formulated as unit dosage forms, for example, containing 1 to 1000 mg, and in particular 5 to 200 mg of active ingredient per unit dosage form.

[0076] The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention. The effective daily amount ranges mentioned hereinabove are therefore only guidelines and are not intended to limit the scope or use of the invention to any extent.

[0077] Also, the combination of an antiretroviral compound and a compound of the present invention can be used as a medicine. Thus, the present invention also relates to a product containing (a) a compound of the present invention, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment. The different drugs may be combined in a single preparation together with pharmaceutically acceptable carriers. Said other antiretroviral compounds may be known antiretroviral compounds such as nucleoside reverse transcriptase inhibitors, e.g. zidovudine (3'-azido-3'-deoxythymidine, AZT), didanosine (dideoxy inosine; ddl), zalcitabine (dideoxycytidine, ddC) or lamivudine (3'-thia-2'-3'-dideoxycytidine, 3TC) and the like; non-nucleoside reverse transciptase inhibitors such as suramine, foscarnet-sodium (trisodium phosphono formate), nevirapine (11-cyclopropyl-5,11-dihydro-4-methyl-6H-dipyrido[3,2-b: 2',3'-e] [1,4]diazepin-6-one), sustiva (efavirenz), tacrine (tetrahydroaminoacridine) and the like; compounds of the TIBO (tetrahydro-imidazo[4,5,1-jk][1,4]-benzodiazepine-2(1H)-one and thione)-type e.g. (S)-8-chloro-4,5,6,7-tetrahydro-5-methyl-6-(3-methyl-2-butenyl)imidazo-[4,5,1-jk][1,4]benzodiazepine-2(1H)-thione; compounds of the α -APA (α -anilino phenyl acetamide) type e.g. α -[(2-nitro-phenyl)amino]-2,6-dichlorobenzene-acetamide and the like; TAT-inhibitors, e.g. RO-5-3335 and the like; protease inhibitors e.g. indinavir, ritanovir, saquinovir and the like; NMDA receptor inhibitors e.g. pentamidine; α-glycosidase inhibitor e.g. castanospermine and the like; Rnase H inhibitor e.g. dextran (dextran sulfate) and the like; or immunomodulating agents, e. g. levamisole, thymopentin and the like.

[0078] The following examples are intended to illustrate the present invention.

10

15

20

25

30

35

40

Experimental part

A. Intermediate compounds

5 Example A1

[0079]

10

15

20

25

30

35

40

45

50

a) A solution of 2,6-dichlorobenzylchloride (0.102 mol) in 1,1-diethylether (10 ml) was added dropwise to magnesium (0.102 mol) in 1,1-diethylether (60 ml). The reaction was initiated by adding 2 drops of 1,2-dibromoethane. After most of magnesium disappeared, 2,4,6-trichloropyrimidine (0.051 mol) in 1,1-diethylether (30 ml) was added. The mixture was stirred overnight at room temperature. The solvent was evaporated and the residue was purified by flash column chromatography over silica gel (eluent: CH_2CI_2 /hexane 1/2). The desired fractions were collected and the solvent was evaporated, yielding 3.3 g of (21%) 2,4-dichloro-6-[(2,6-dichlorophenyl)methyl]pyrimidine (interm. 1; m.p.: 106-107 °C).

b) Intermediate (1) (0.0081 mol) in 2-propanol (100 ml) was heated until complete dissolution. The solution was then transferred into a pressure tube and NH₃ gas was bubbled into it for 20 minutes. Then the mixture was heated to 80 °C for 16 hours. The solvent was evaporated, yielding a residue of two compounds: 2-chloro-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinamine (interm. 2) and 4-chloro-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinamine (interm. 3).

Example A2

[0080]

Į.O.

a) Urea (0.03 mol) was added to a mixture of (\pm)-ethyl 2,6-dichloro-phenyl- α -methyl- β -oxobutanoate (0.02 mol) in NaOC₂H₅ in ethanol, (1M; 0.040 mol; 40 ml). The reaction mixture was stirred and refluxed overnight. The solvent was evaporated, water was added and the mixture was neutralized with 0.3 N HOAc. The precipitate was filtered off and was further triturated with ether and then H₂O, then filtered off and dried, yielding 2.2 g (39%) of 6-[(2,6-dichloro-phenyl)methyl]-5-methyl-2,4(1*H*,3*H*)-pyrimidinedione (interm. 4).

b) A mixture of intermediate (4) (0.0095 mol) in phosphoryl chloride (50 ml) was stirred and refluxed overnight. Excess of phosphoryl chloride was then evaporated. Ice-water was added to the residue. A white precipitate was formed, filtered off and dried. The residue was purified by flash column chromatography over silica gel (eluent: CH_2Cl_2). The desired fractions were collected and the solvent was evaporated, yielding 2.06 g (67%) of 2,4-dichloro-6-[(2,6-dichloro-phenyl)methyl]-5-methyl-pyrimidine (interm. 5).

c) 4-chloro-6-[(2,6-dichloro-phenyl)methyl]-5-methyl-2-pyrimidinamine (interm. 6) and

2-chloro-6-[(2,6-dichloro-phenyl)methyl]-5-methyl-4-pyrimidinamine (interm. 7) were prepared from intermediate 5 following the procedures as described in example A1b.

Example A3

[0081]

a) To the stirred solution of 2,6-dichlorobenzeneethanimidamide HCI (1:1), (0.0042 mol) in ethanol (20 ml), a solution of sodium (0.013 mol) in ethanol (10 ml) was added dropwise first and then propanedioic acid, diethyl ester (0.0109 mol) was added. The reaction mixture was stirred and refluxed for 4 hours and then stirred at room temperature overnight After adding another equivalent of propanedioic acid, diethyl ester (stirring and refluxing it overnight), the solvent was evaporated and the residue was dissolved in water and acidified with 1 N HCI. The solid was filtered off, washed with water and dried, yielding 0.87 g (76.4%) of 2-[(2,6-dichloro-phenyl)methyl]-4,6-pyrimidinediol (interm. 8).

b) 6-chloro-2-{(2,6-dichloro-phenyl)methyl]-4-pyrimidinamine (interm. 9) was prepared starting from intermediate 8 according to the procedures described in example A.1.b, A2.b & A2.c.

55 Example A4

[0082] 4-Amino-1-butanol (1.57 ml) was added to a solution of intermediate (1) (0.008 mol) in 1,4-dioxane (20 ml) under Argon. The reaction mixture was stirred for 2 hours at room temperature. The solvent was evaporated. The

residue was purified by flash column chromatography over silica gel (eluent gradient: CH₂Cl₂/CH₃OH: from 100/0 to 98/2). The pure fractions were collected and the solvent was evaporated, yielding 2.05 g of a mixture of 4-[[2-chloro-6-[(2,6-dichloro-phenyl)methyl]-4-pyrimidinyl]-amino]-1-butanol (interm. 10) and 4-[[4-chloro-6-[(2,6-dichloro-phenyl)methyl]-2-pyrimidinyl]amino]-1-butanol (interm. 11).

Example A5

[0083]

5

10

15

20

25

35

40

45

a) Potassium hydroxide/ethanol (10%; 0.035 mol) was added to a solution of 2,6-dichlorophenol (0.035 mol) in tetrahydrofuran (100 ml). The mixture was stirred and 2,4,6-trichloropyrimidine (0.044 mol) was added. The mixture was stirred overnight at 60 °C. The reaction was quenched with NaOH 1N solution. The aqueous layers were extracted with EtOAc several times and then the organic layers were combined and washed with NaOH 3N and saturated NaCl, dried and concentrated. The residue was recrystallized from CH₂Cl₂/hexane. The precipitate was filtered off and dried, yielding 5.98 g 2,4-dichloro-6-(2,6-dichlorophenoxy)pyrimidine (55%) (interm. 12). b) Reaction under Argon atmosphere. 2,4,6-trimethylaniline (0.0678 mol) was added to 2,4-dichloropyrimidine (0.0664 mol) in 1,4-dioxane (100 ml). N,N-di(1-methylethyl)-ethaneamine (0.0830mol) was added. The reaction mixture was stirred and refluxed for 4days and the solvent was evaporated. The residue was dissolved inCH₂Cl₂, washed with a saturated NaHCO₃ solution, then dried (Na₂SO₄), filtered and the solvent was evaporated to give 17.1g solid residue. This solid was dissolved in CH₂Cl₂:hexane (1:1; 150 ml), and the resulting solution was concentrated to 100 ml. then filtered. The residue was purified by column chromatography on KP-Sil (eluent: CH₂Cl₂). The desired fractions were collected and the solvent was evaporated. The less polar fraction was stirred in CH₂Cl₂ for 3 hours and filtered, yielding 0.44 g 4-chloro-N-(2,4,6-trimethylphenyl)-2-pyrimidinamine (intermediate 48). A second fraction was recrystallized from acetonitrile, filtered off and dried, yielding 2-chloro-N-(2,4,6-trimethyl-phe-

Example A6

nyl)-4-pyrimidinamine (intermediate 49).

[0084] Pyridine (1 ml) was added to a mixture of 4-[[4-amino-6-[(2,6-dichloro-phenyl)-methyl]-2-pyrimidinyl]amino] benzonitrile (0.00135 mol) in $\mathrm{CH_2Cl_2}$ (19 ml). A solution of chloroethanoyl chloride (0.001375 mol) in $\mathrm{CH_2Cl_2}$ (0.5 ml) was added dropwise on an ice bath. The mixture was stirred at room temperature for 2 hours. More chloroethanoyl chloride (0.00625 mol) in $\mathrm{CH_2Cl_2}$ (0.5 ml) was added. The mixture stood in the refrigerator overnight. The solvent was evaporated. The residue was treated with a saturated $\mathrm{Na_2CO_3}$ solution and the mixture was extracted with $\mathrm{CH_2Cl_2}$. The separated organic layer was dried, filtered and concentrated. The residue was purified by flash column chromatography over silica gel (eluent: $\mathrm{CH_2Cl_2/CH_3OH/NH_4OH\,99/1/0.1}$). The desired fractions were collected and the solvent was evaporated, yielding 0.22 g (36.5%) of 2-chloro-*N*-[6-[(2,6-dichloro-phenyl)methyl]-2-[(4-cyano-phenyl)amino]-4-pyrimidinyl]acetamide (interm. 13).

Example A7

[0085] A mixture of 4-[(4-chloro-2-pyrimidinyl)amino]benzonitrile (0.005 mol) and nitryl tetrafluoroborate (0.0025 mol) in acetonitrile (5 ml) was stirred at room temperature for 4 h. The material was quenched with saturated bicarbonate (50 ml) on cracked ice. The mixture was allowed to reach room temperature, and the yellow solid was filtered off. The solid was adsorbed onto silica and purified by column chromatography (eluent: 30%, 50%, 60%, 70% $\rm CH_2Cl_2$ in hexanes). The solvent of the desired fraction was evaporated and the residue was dried, yielding 0.89 g (64%) of 3-nitro-4-[(4-chloro-2-pyrimidinyl)amino]benzonitrile.(interm. 51)

Example A8

[0086] A mixture of 2,6-dichloro-*N*-(2,4,6-trimethylphenyl)-4-pyrimidinamine (0.00376 mol) in a 2.0 M solution of NH₃ in 2-propanol (25 ml) and a 0.5 M solution of NH₃ in dioxane (25 ml) was heated in a pressure sample at 110-115 °C for 24 hours. The solvent was evaporated, and the residue was chromatographed on Biotage (eluent: 1:1 CH₂Cl₂: hexane). The desired fractions were collected and the solvent was evaporated, yielding a mixture of 0.523 g of 2-chloro-*N*4-(2,4,6-trimethylphenyl)-4,6-pyrimidinediamine (interm. 53) and 0.101 g of 6-chloro-*N*4-(2,4,6-trimethylphenyl)-2,4-pyrimidinediamine. (interm. 50)

[0087] Tables 1 and 2 list intermediates which were prepared analogous to one of the above examples.

Table 1a

5

Ra	X R ⁵
R ^b	R ^c N N
	ļ

10

15

20

25

30

35

40

	Int. No.	Ex. No.	Rª	R ^b	R ^c	X	R ⁵	R	physical data melting point
İ	6	A2c	Cl	Н	CI	CH₂	CH₃	-NH ₂	-
	15	Alb	Cl	Н	Cl	CH ₂	Н	-NH-CH ₃	-
	16	Alb	Cl	H	Cl	0	Н	-NH-CH ₃	152-155°C
	17	Alb	CI	Н	Cl	0	Н	-NH ₂	-
	19	A4	CI	Н	Cl	CH ₂	Н	-NH-(CH ₂) ₃ -OH	-
	20	A4	Cl	Н	Cl	CH ₂	Н	-NH-(CH ₂) ₂ -OH	111-113°C
	21	A4	Cl	Н	Cl	CH ₂	Н	-NH-CH ₂ -CH(OH)-C ₆ H ₅	133-134°C
	22	A4	Cl	Н	Cl	CH ₂	Н	NH-(CH ₂) ₃ N	-
	23	A4	Cl	Н	Cl	CH_2	Н	-NH-(CH ₂) ₂ -O-(CH ₂) ₂ OH	99-107°C
	24	A4	Cl	H	Cl	CH ₂	Н	-NH-(CH ₂) ₂ -(4-OCH ₃ -C ₆ H ₄)	138-140°C
	25	A4	Cl	Н	Cl	CH ₂	Н	$-NH-(CH_2)_2-(3-OCH_3-C_6H_4)$	132-135°C
	26	A4	Cl	Н	Cl	CH ₂	Н	-NH-CH ₂ -CH(OH)-CH ₂ OH	116-118°C
	27	A4	CI	Н	Cl	CH ₂	Н	-NH-CH ₂ -C ₆ H ₅	137-139°C
	28	A4	Cl	Н	Cl	CH₂	H	-NH-(CH ₂) ₂ -(2-thienyl)	113-114°C
	29	A4	CI	Н	Cl	CH ₂	Н	-NH-(CH ₂) ₂ -(2-pyridyl)	113.5-114°C

-NH-(CH₂)₂CN

-H

 $-NH_2$

151-153°C

142-143°C

Table 1b

31

48

50

Cì

A5b CH₃ CH₃

CH₃

A4

Α8

Н

 CH_3

Cl

CH₃

50

45

R CI

CH₂ .H

Η

CH₃ NH H

NH

Int. No.	Ex. No.	R³	R ^b	R°	X	R ⁵	R	physical data melting point
14	A2b	Н	CN	Н	NH	Н	Н	211-212°C
18	A5b	CH ₃	CH ₃	CH ₃	NH	CH ₃	н	
30	А2Ь	Н	CN	Н	NH	CH₃	н	
51	A7	NO ₂	CN	Н	NH	Н	Н	142-144°C

Table 2

5

				!	R ^b	Ra	R^{3}	₹
I	T	Da	Db	DC	W	ní	n	

								Čl	
10	Int. No.	Ex. No.	R ^a	R ^b	R ^c	X	R ⁵	R	physical data
	7	A2c	Cl	Н	CI	CH ₂	СН₃	-NH ₂	
15	32	Alb	CI	н	CI	CH ₂	Н	-NH-CH ₃	-
	33	A4	Cl	Н	CI	CH_2	Н	-NH-(CH ₂) ₂ -(1-pyrrolidinyl)	134-135°C
	34	A4	Cl	Н	Cl	CH_2	Н	-NH-(CH ₂) ₂ -(2-pyridyl)	130-133°C
20	35	A4	CI	Н	CI	CH ₂	Н	-NH-(CH_2) ₂ -(2-thienyl)	98-99°C
	36	A4	CI	Н	CI	CH ₂	Н	$-NH-(CH_2)_2-(3-OCH_3-C_6H_4)$	104-109℃
	37	A4	Cl	Н	Cl	CH ₂	Н	-NH-(CH ₂) ₂ -(4-OCH ₃ -C ₆ H ₄)	149-150°C
	38	A4	C1	Н	Cl	CH ₂	Н	-NH-(CH ₂) ₂ CN	137-139℃
25	39	A4	Cl	Н	Cl	CH ₂	H	-NH-(CH ₂) ₂ -O-(CH ₂) ₂ OH	-
	40	A4	Cl	Н	CI	CH ₂	Н	-NH-(CH ₂) ₂ OH	170-173°C
	41	A4	Cl	Н	CI	CH ₂	Н	-NH-(CH ₂) ₃ -O-CH(CH ₃) ₂	-
30	42	A4	Cl	Н	CI	CH_2	Н	-NH-(CH ₂) ₃ -OH	-
	43	A4	Cl	Н	Cl	CH_2	Н	-NH-CH ₂ -C ₆ H ₅	171-172°C
	45	A4	Cl	Н	Cl	CH ₂	Н	-NH-CH ₂ -CH(OH)-CH ₂ OH	>60°C
35	46	A4	CI	Н	CI	CH ₂	Н	-NH-O-CH ₂ -C ₆ H ₅	137-141°C
	47	A4	Cl	Н	Cl	CH ₂	Н	NH-(CH ₂) ₃ N	55-60°C
40	49	A5b	CH ₃	CH ₃	CH ₃	NH	Н	Н	182-183°C
	52	A4	Cl	Н	Cl	CH ₂	Н	-NH-CH ₂ -CH(OH)-C ₆ H ₅	75-83°C
	53	Alb	CH ₃	CH ₃	CH₃	NH	Н	-NH ₂	{
45	54	A5b	CH ₃	CH ₃	CH3	NH	CH ₃	Н	
	55	A5a	Cl	Cl	Cl	-0-	H	H	159-161°C

B. Compounds of formula (I')

Example B1

50

[0088] A mixture of intermediate (42) and intermediate (19) (0.004 mol) and 4-aminobenzonitrile (0.0084 mol) were combined in a sealed tube and heated for 16 hours at 160°C under Argon. The reaction mixture was allowed to cool to room temperature and dissolved in CH₂Cl₂/CH₃OH 90/10 (20 ml) and 5 g of silica gel was added. After evaporating the solvent, the residue was purified by flash column chromatography over silica gel (eluent gradient: CH₂Cl₂/CH₃OH: from 100/0 to 97/3). The desired fraction was collected and the solvent was evaporated, yielding 0.31 g (18.1%) of

4-[[4-[(2,6-dichloro-phenyl)methyl]-6-[(3-hydroxypropyl)amino]-2-pyrimidinyl]amino]benzonitrile (compound 3).

Example B2

[0089] Intermediates (47) and (22) (0.00399 mol) and 4-aminobenzonitrile (0.0012 mol) in 1-methyl-2-pyrrolidinone (3 ml) was stirred for 16 hours at 130 °C under Argon. Then, the reaction mixture was cooled to room temperature and quenched with H₂O (200 ml). A precipitate formed, which was stirred for 16 hours, and separated by filtration over Celite. The residue was dissolved in CH₃OH/CH₂Cl₂ (10%, 200 ml), dried over K₂CO₃, filtered, and evaporated. This resulting material was further purified by flash column chromatography over silica gel (gradient eluent: CH₂Cl₂/CH₃OH from 100/0 to 95/5). The desired fraction was collected and the solvent was evaporated, yielding 0.43 g (21.7%) of 4-[[6-{(2,6-dichloro-phenyl)methyl]-2-[[3-(2-oxo-1-pyrrolidinyl)propyl]-amino}-4-pyrimidinyl]amino]benzonitrile (comp. 39; 104-114°C).

Example B3

5

[0090] HCl/diethyl ether (1N; 2.77 ml) was stirred into a solution of intermediate (33) (0.00277 mol) in 1-methyl-2-pyrrolidinone (4 ml) under N_2 atmosphere. The reaction mixture was heated for 5 minutes. Next, 4-aminobenzonitrile (0.0061 mol) was added and the reaction was heated at 100 °C for 16 hours. Then, the reaction mixture was cooled to room temperature and diluted with ethylacetate (10 ml). The organic layer was washed with NaOH (1 N; 2 x 100 ml), H₂O (2 x 100 ml), brine (50 ml), respectively, dried, filtered and the filtrate was evaporated. The crude material was purified by flash chromatography (eluent: 2.5-7.5% of CH_3OH containing 10% NH_4OH in CH_2Cl_2). The desired fractions were collected and the solvent was evaporated. The residue was dried , yielding 0.160 g (12.0%) of 4-[[4-[(2,6-dichloro-phenyl)methyl]-6-[[2-(1-pyrrolidinyl)ethyl]amino]-2-pyrimidinyl]amino]benzonitrile (comp. 13; mp. 80-85°C).

Example B4

[0091] A slurry of intermediate (14) (0.005 mol) in CH_2Cl_2 (150 ml) was stirred rapidly and cooled to 0 °C under nitrogen. BBr_3 (0.015 mol) was introduced by syringe. The reaction mixture was stirred rapidly for two hours. The reaction mixture was recooled to 0 °C and quenched with NaOH (aq. 1 N, 25 ml). The biphasic partial quench mixture gives a precipitate which was filtered off and dried, yielding 2.5 g (91%) of 4-[[4-[(2,6-dichloro-phenyl)methyl]-6-(hydroxyamino)-2-pyrimidinyl]amino]-benzonitrile dihydrobromide.pentahydrate (comp. 15; mp. 240-244°C).

Example B5

35

25

[0092] 1,1-Dimethoxy-N,N-dimethylmethanamine (0.152 mol) was added to 4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinyl]amino]benzonitrile (0.0008 mol). The mixture was stirred at room temperature for 2 days and then concentrated. The crude product was purified by flash chromatography over silica gel (eluent: CH_2Cl_2/CH_3OH 99/1). The desired fraction was collected and the solvent was evaporated. The resulting residue was triturated with hexane, yielding 0.15 g (42%) of N-[2-[(4-cyanophenyl)amino]-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinyl]-N,N-dimethylmethanimidamide (comp. 26; mp. 175-180°C).

Example B6

[0093] Piperidine (0.12 ml) was added to a mixure of intermediate (13) (0.00047 mol) in terahydrofuran (20 ml). The mixture was stirred at room temperature for 4 hours. More piperidine (0.14 ml) was added. The mixture was stirred for another 2 hours. The solvent was evaporated. The residue was purified by flash column chromatography over silica gel (CH₂Cl₂/CH₃OH/NH₄OH 99/1/0.1). The desired fractions were collected and the solvent was evaporated, yielding 0.05 g (21.5%) of N-[6-[(2,6-dichloro-phenyl)methyl]-2-[(4-cyano-phenyl)amino]-4-pyrimidinyl]-1-piperidineacetamide (comp. 25; mp. 175-180°C).

Example B7

[0094] Pyridine (0.014 mol) was added to a mixture of 4-[[4-amino-6-[(2,6-dichlorophenyl)-methyl]-2-pyrimidinyl]amino]benzonitrile (0.0013 mol) in CH₂Cl₂. A solution of octanoyl chloride (1.5 equiv) in CH₂Cl₂ (0.5 ml) was added dropwise. The mixture was stirred at room temperature for 2 hours. More octanoyl chloride (3.5 equiv) in CH₂Cl₂ was added dropwise. The mixture was stirred. The solvent was then evaporated. The residue was treated with a saturated aqueous NaHCO₃ solution and the mixture was extracted with CH₂Cl₂. The separated organic layer was dried, filtered and the

solvent was evaporated to give the crude product. The residue was recrystallized from CHCl3 and hexane, yielding 0.443 g (68.6%) of N-[6-[(2,6-dichloro-phenyl)methyl]-2-[(4-cyano-phenyl)amino]-4-pyrimidinyl]octanamide (comp. 17; mp. 135-137°C).

5 Example B8

[0095]

10

15

20

25

30

35

40

45

a) A mixture of intermediate 49 (0.082 mol) and 5.4 N HCI in 2-propanol (0.086 mol) in water (300 ml) was stirred and warmed to 40-45 °C over 30 minutes. 4-Aminobenzonitrile (0.242 mol) was added at 40-45 °C. The reaction mixture was stirred and refluxed for 4.5 hours, then cooled to room temperature. The mixture was alkalized by portionwise addition of NaHCO3. This mixture was extracted with ethylacetate. The organic layer was separated, washed with brine, dried, filtered and the solvent was evaporated. This fraction was stirred in ethanol p.a. (100 ml), filtered off, washed with ethanol (50 ml), then dried, yielding 23.1 g (86%) 4-[[4-[(2,4,6-trimethylphenyl)-amino]-2-pyrimidinyl]amino]benzonitrile (compound 52).

b) A mixture of 4-[(4-chloro-2-pyrimidinyl)amino]benzonitrile (0.021 mol) and HCl in 2-propanol (0.0095 mol) in water (30 ml) was stirred for one hour at 45 °C. 4-amino-3,5-dimethyl-benzonitrile (0.025 mol) was added and the reaction mixture was stirred and refluxed overnight. The mixture was cooled to room temperature, then neutralized with NaHCO3. This mixture was extracted with ethylacetate. The separated organic layer was washed with brine, dried, filtered and the solvent evaporated. The residue was crystallized from CH₃CN, filtered off and dried. The residue was stirred in boiling CH₂Cl₂ (20 ml), then filtered off and dried. The residue was crystallized from methyl isobutyl keton, filtered off and dried, yielding 0.3 g of 4-[[2-[(cyanophenyl)amino]-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile (compound 69).

Example B9

[0096]

- a) 4-[(4-chloro-2-pyrimidinyl)amino]benzonitrile (0.003 mol), 2,6-dibromo-4-methylbenzenamine (0.006 mol) and 1 M HCI in diethyl ether (4.5 ml) in 1,4-dioxane (10 ml) were combined in a tube and heated under Ar until all diethyl ether had evaporated. The tube was sealed and heated at 170 °C for 2.5 days. Silica gel was added, and the solvent was evaporated. The residue was purified by flash column chromatography over silica gel (eluent gradient: CH₂Cl₂:CH₃OH:NH₄OH 100:0:0 to 99:0.9:0.1). The desired fractions were collected and the solvent was evaporated. The residue was recrystallized from acetonitrile, filtered off and dried, yielding 0.22 g (15.9%) of 4-[[4-{(2,6-dibromo-4-methylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile (compound 61).
- b) 4-[[4-((4-chloro-5-methyl-2-pyrimidinyl]amino]benzonitrile (0.01541 mol), 4-amino-3,5-dimethyl-benzonitrile (0.00219 mol), 1-methyl-methyl-2-pyrrolidinone (4 ml), 1,4-dioxane (15 ml) and diisopropylethylamine (0.0154 mol) were combined in a flask under a stream of argon and heated at 160-230 °C for 16 hours. CH₂Cl₂ and 1N NaOH were added, and the mixture was stirred 1 hour and filtered to give a brown solid (*). The CH2Cl2 filtrate was separated and was evaporated and purified by flash column chromatography (eluent: 2% CH₃OH/CH₂Cl₂). The desired fractions were combined, evaporated and the residue was stirred in CH2Cl2. The solid precipitate was filtered off, combined with the brown solid (*) and recrystallized from CH₃CN. The precipitate was filtered off and dried, yielding 1.57 g (29%) of 4-[[2-[(4-cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile (compound 89).
- c) 2-[(4-cyanophenyl)amino]-4-pyrimidinyl trifluoromethanesulfonate (0.0022 mol) and 2,6-dichloro-4-(trifluoromethyl)-benzenamine (0.0044 mol) were combined in 1,4-dioxane (2.5 ml) and heated in a sealed tube under Ar at 170 °C for 40 hours. The reaction mixture was allowed to cool to room temperature. Silica gel was added, and the solvent was evaporated. The residue was purified by flash column chromatography over silica gel (eluent gradient: CH₂Cl₂:CH₃OH:NH₄OH 100:0:0 to 97:2.7:0.3). The desired fractions were collected and the solvent was evapo-50 rated. The residue was recrystallized from CH₂CN, filtered off and dried, yielding 0.086 g (9.2%) of 4-[[4-[[2,6-dichloro-4-(trifluoromethyl)-phenyl]amino]-2-pyrimidinyl]amino]benzonitrile (compound 66).

Example B10

[0097] To a suspension of NaH (0.006 mol) in 1,4-dioxane (30 ml), 2,4,6-trimethyl-phenol (0.006 mol) was added. The mixture was stirred for 15 minutes at room temperature, and a clear solution formed. 4-[(4-chloro-2-pyrimidinyl) amino]benzonitrile (0.004 mol) was added, and the reaction mixture was heated to reflux under Argon for 15 hours. The reaction mixture was allowed to cool to room temperature, 0.5 ml of water was added, followed by 4 g of silica

gel, and the solvent was evaporated. The residue was purified by flash column chromatography over silica gel (eluent gradient: $CH_2CI_2:CH_3OH$ 100:0:0 to 97:3). The pure fractions were collected and the solvent was evaporated, yielding 1.18 g (89.4%) of 4-[[4-(2,4,6-trimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile (compound 58).

5 Example B11

[0098] Compound (52) (0.0015 mol) was stirred in boiling ethanol (8 ml). 6 M HCl in 2-propanol (0.0015 mol) was added and the salt was allowed to crystallize out overnight at room temperature. The precipitate was filtered off, washed with 2-propanol and dried, yielding 0.47 g (86%) of 4-[[4-[(2,4,6-trimethyl-phenyl)amino]-2-pyrimidinyl]amino]benzonitrile hydrochloride (1:1) (compound 53).

Example B12

25

30

35

40

45

50

55

[0099] A mixture of compound (52) (0.00303 mol) and NaBO $_3$.4H $_2$ O (0.00911 mol) in CH $_3$ OH (30 ml) and H $_2$ O (10 ml) was stirred and refluxed for 4 days. The reaction mixture was cooled. The precipitate was filtered off and the precipitate (*) was purified by flash column chromatography over silica gel (eluent: CH $_2$ Cl $_2$ /CH $_3$ OH gradient from 100/0 to 95/5). The desired fractions were collected and the solvent was evaporated, yielding 0.586 g (56%) of 4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide (compound 100). The filtrate (*) was purified by reversed-phase HPLC (eluent gradient: ((0.5% ammoniumacetate in H $_2$ O)/CH $_3$ CN 90/10)/CH $_3$ OH/CH $_3$ CN (0 minutes) 75/25/0, (44 minutes) 0/50/50, (57 minutes) 0/0/100, (61.1-70 minutes) 75/25/0). Three desired fraction groups were collected and their solvent was evaporated, yielding 0.18 g of 4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide, N3-oxide (compound 106) and 0.030 g of 4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide, N1-oxide (compound 107).

[0100] Tables 3, 4, 5 and 6 list the compounds of formula (I) that were prepared according to one of the above examples.

Table 3

	,		
Co. No.	Ex. No.	NR ¹ R ²	physical data (melting point in °C)
1	B2	-NH-(CH ₂) ₄ -OH	161-163°C
2	B2	-NH-(CH ₂) ₂ -OH	207-210°C
3	B2	-NH-(CH ₂) ₃ -OH	152-154°C
4	B2	-NH-CH ₂ -CHOH-C ₆ H ₅	158-165°C
5	B2	-NH-(CH ₂) ₃ -N	48-56°C
6	B2	-NH-(CH ₂) ₂ -O-(CH ₂) ₂ -OH	162-175°C; HCl (1:1)
7	B2	-NH-(CH ₂) ₃ -O-CH(CH ₃) ₂	181-182°C; HCl (1:1)
8	B2	-NH-(CH ₂) ₂ -(3-OCH ₃ -C ₆ H ₄)	72-80°C
9	B2	-NH-CH2-CHOH-CH2OH	189-192°C
10	B2	-NH-(CH ₂) ₂ -(4-OCH ₃ -C ₆ H ₄)	72-80°C

	Co. No.	Ex. No.	NR ¹ R ²	physical data (melting point in °C)
5	11	B2	-NH-O-CH₂-C6H3	•
	12	B2	-NH-CH ₂ -C ₆ H ₅	-
	13	B3	-NH-(CH ₂) ₂ -(1-pyrrolidinyl)	80-85°C
10	14	B2	-NH-(CH_2) ₂ -(2-thienyl)	-
	15	B4	-NH-OH	240-244°C
	16	B2	-NH-(CH ₂) ₂ -(2-pyridyl)	75-80°C
15	17	B7	-NH-CO-C7H ₁₅	135-137°C
'	18	B7	-NH-CO-C ₁₁ H ₂₃	130-135°C
	19	B2	-NH-(CH ₂) ₂ -CN	255°C; HCl (1:1)
20	20	B7	-NH-CO-O-C ₂ H ₅	>200°C
	21	В7	-NH-CO-CH ₃	128-130°C
	22	B7	-NH-CO-C ₃ H ₇	>200°C
	23	Ві	-NH ₂	94-97°C
25	24	BI	-NH-CH ₃	178-180°C
	25	B6	-NH-CO-CH ₂ -(1-piperidinyl)	175-180°C
	26	B5	-N=CH-N(CH ₃) ₂	175-180°C

Table 4

Co.

No.

27

28

29

30

31

32

33

34

35

36

R.

Η

Η

Н

Н

Н

4-Br-C₆H₄

4-C1-C₆H₄

4-F-C₆H₄

4-CH₃-C₆H₄

(3-Br-6-pyridyl)

Ex.

No.

BI

Bl

Bl

Вl

B1

В1

B1

ΒI

Bl

ВI

CI R5 H N R"

R"

H

Н

Н

Η

Н

4-Br-C₆H₄

4-Cl-C₆H₄

4-F-C₆H₄

4-CH₃-C₆H₄

(3-Br-6-pyridyl)

R5

Н

H

Н

H

Н

Н

Н

Н

Н

Н

physical data (melting point)

77-80°C

>200°C

76-79°C

183-186°C

10

5

15

20

25

30

35

40

45

50

55

Co. No.	Ex. No.	R'	R"	R ⁵	physical data (melting point)
37	Bl	C ₆ H ₅	Н	н	85-90°C
38	B1	Н	C ₆ H ₅	н	182-187°C
39	B2	-(CH ₂) ₃ N	4-CN-C ₆ H ₄	Н	104-114°C
	,				
40	B2	(CH ₂) ₂ -OH	4-CN-C ₆ H ₄	Н	247-250°C; HCl (1:1)
41	Bl	CH ₃	4-CN-C ₆ H ₄	Н	>200°C
42	ВІ	(CH ₂) ₃ -OH	4-CN-C ₆ H ₄	Н	91-105°C
43	B2	(CH ₂) ₄ -OH	4-CN-C ₆ H ₄	Н	161-163°C
45	Bl	Н	4-CN-C ₆ H ₄	Н	>200°C
46	BI	Н	4-CN-C ₆ H ₄	CH ₃	`>200°C
47	ВІ	4-CN-C ₆ H ₄	H	CH ₃	>200°C
48	BI	Н	4-Br-C ₆ H ₄	CH ₃	>200°C
49	Bl	4-Br-C ₆ H ₄	Н	CH ₃	168-170°C

Table 5

R. N. R.

Co. No.	Ex. No.	R'	R"	R'''	R ⁵	physical data
50	Bl	NH2	4-CN-C6H4	O-(2,6-diCI-C6H3)	Н	>200°C
51	Bi	CH ₂ -(2,6-diCl-C ₆ H ₃)	Н	-NH-(4-CN-C6H4)	Н	>200
90	B9a	NH-(2-NO ₂ -4-CN-C ₆ H ₃)	2,4.6-triCH ₃ -C ₆ H ₂	Н	н	165-168°C
91		NH-(3-OH-4-CN-C ₆ H ₃)	2.4,6-triCH ₃ -C ₆ H ₂	Н	Н	
92	B12	NH-(2,6-diCl-C ₆ H ₃)	2,6-diCl-C ₆ H ₃	Н	Н	164-166°C
93	B9a	NH-(2,4,6-triCH ₃ -C ₆ H ₂)	4-CN-C6H4	Н	Н	267-268°C
94	BI	NH-(4-CN-C ₆ H ₄)	2.4,6-triCH ₃ -C ₆ H ₂	NH ₂	Н	263-264°C
95	Bi	NH ₂	2.4,6-triCH ₃ -C ₆ H ₂	-NH-(4-CN-C6H4)	н	233-234°C
96	B8a	NH-(4-Cl-C ₆ H ₄)	2,4,6-triCH ₃ -C ₆ H ₂	Н	Н	
97	B8a	NH-(2,4-diF-C ₆ H ₃)	2.4,6-triCH ₃ -C ₆ H ₂	н	н	
98	B8a	, H	2.4.6-triCH ₃ -C ₆ H ₂	Н	н	
		Br				
99	B9a	NH-(2,4.6-triCH ₃ -C ₆ H ₂)	4-CN-C6H4	Н	CH ₃	200-201°C

5

Co. No.	Ex. No.	R'	R"	R'"	R ⁵	physical data
100	BII	H NH;	2,4,6-triCH ₃ -C ₆ H ₂	Н	н	
101	B8a	NH2 NH2	2,4,6-triCH ₃ -C ₆ H ₂	н	Н	
102	B8a	, NH ₂	2.4.6-triCH ₃ -C ₆ H ₂	Н	н	
103	Bl	CN CH ₂ —CN	Н	-CH ₂ -(2,6-diCl-C ₆ H ₃)	CH₃	>200°C
104		NH-(4-CN-C ₆ H ₄)	C ₆ H ₅ -CH ₂ -	н	Н	
105		NH- $(2,4,6-\text{triCH}_3-\text{C}_6\text{H}_2)$	2.4.6-triCH ₃ -C ₆ H ₂	Н	H	

Table 6

Co. No.	Ex. No.	X	R ⁵	R ^{6a}	R ^{6b}	R6c	R [™]	physical data (salt form; melting point)
52	B8a	NH	Н	CH ₃	Н	CH ₃	CH ₃	217-218°C
53	BII	NH	Н	CH ₃	Н	CH ₃	CH ₃	HCI (1:1)
54	B11	NH	Н	CH ₃	Н	CH ₃	CH ₃	HBr (1:1)
55	B11	NH	Н	CH ₃	Н	CH ₃	CH ₃	L-tartrate
56	B9a	NH	Н	CH ₃	Н	Br	CH ₃	HCl (1:1); 214-217°C
57	B9a	NH	Н	CH ₃	Н	Н	CH ₃	HCl (1:1): > 270°C
58	B10	0	Н	CH ₃	Н	CH ₃	CH ₃	220-222°C
59	B10	S	Н	Cl	Н	Н	Cl	225-226°C
60	В3	0	Н	Cl	Н	Cl	Cl	279-280°C
61	B9a	NH	Н	Br	Н	CH ₃	Br	230-233°C
62	B9a	NH	H	Br	H		Br	198-200°C

	Co. No.	Ex. No.	Х	R ⁵	R ^{6a}	R ^{6b}	R ^{6c}	R ⁶⁴	physical data (salt form; melting point)
5	63		NITT	CII	CII	11	CH ₃	CU	
,		B3	NH	CH ₃	CH ₃	Н		CH ₃	236-237°C
	64	B10	0	H	Cl	H	Cl	CH ₃	266-267°C
	65	B9a	NH	Н	Cl	H	H	Cl	253-255°C
10	66	В9с	NH	H	Cl	Н	CF ₃	Cl	239-240°C
	67	B9c	NH	Н	Br	Н	F	Cl	244-245°C
	68	B9a	NH	Н	Cl	Н	Cl	CH ₃	217°C
15	69	B8b or	NH	Н	CH ₃	Н	CN	CH ₃	225-230°C
		B9a							
	70	B9c	NH	Н	Br	Н	Br	F	210-214°C
	71	B9c	N(CH ₃)	Н	CH ₃	Н	CH₃	CH ₃	218-219°C
20	72	B9c	NH	Н	CI	Н	CI	Cl	trifluoroacetate (1:1);
									225-230°C
	73	B10	S	Н	CH ₂	Н	CH ₃	CH ₃	204.5-208°C
25	74	B10	0	Н	Br	Н	Cl	CH_3	246-249°C
	75	B9c	NH	Н	CH ₃	Н	Cl	CH_3	206-207°C
	76	B9a	NH	Н	Cl	Н	CN	Cl	>180°C
30	77	В9с	NH	Н	CI	Н	OCF3	CI	185-190°C
	78	В9с	NH	Н	Br	CI	Br	Cl	>265°C
	79	В9с	NH	Н	Вг	Н	C ₃ H ₇	Br	215-218°C
	80	B9a	NH	Н	CH₃	Н	C(CH ₃) ₃	CH ₃	203-205°C
35	81	B10	0	Н	CH ₃	Н	CN	CH ₃	279-280°C
	82	B9c	NH	CH ₃	CH ₃	Н	Cl	CH ₃	235-237°C
	83	B9b	NH	CH ₃	CH ₃	Н	CN	CH ₃	H ₂ O (1:1) trifluoroacetate
40					}				(1:1); 274-275°C
	84	В9с	NH	CH ₃	CH ₃	Н	C(CH ₃) ₃	CH ₃	231-232°C
45	85	B9c	NH	CH ₃	CH₃	Н	Br	CH ₃	218-219°C
	86	B9c	s	CH ₃	CH ₃	Н	CH ₃	CH₃	229-230°C
	87	B9a	NH	CH ₃	Br	Н	C ₃ H ₇	Br	197-198°C
	88	B9a	NH	CH ₃	Br	Н	CH(CH ₃) ₂	Br	157-158°C
50	89	В9ь	NH	CH ₃	CH ₃	Н	CN	CH3	>300°C
50	-								

C. Pharmacological example

Example C.1

[0101] A rapid, sensitive and automated assay procedure was used for the *in vitro* evaluation of anti-HIV agents. An HIV-1 transformed T4-cell line, MT-4, which was previously shown (Koyanagi et al., *Int. J. Cancer*, <u>36</u>, 445-451, 1985) to be highly susceptible to and permissive for HIV infection, served as the target cell line. Inhibition of the HIV-induced

cytopathic effect was used as the end point. The viability of both HIV- and mock-infected cells was assessed spectro-photometrically via the *in situ* reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The 50% cytotoxic concentration (CC_{50} in μ M) was defined as the concentration of compound that reduced the absorbance of the mock-infected control sample by 50%. The percent protection achieved by the compound in HIV-infected cells was calculated by the following formula :

$$\frac{(\mathsf{OD_T})_{\mathsf{HIV}} \cdot (\mathsf{OD_C})_{\mathsf{HIV}}}{(\mathsf{OD_C})_{\mathsf{MOCK}} \cdot (\mathsf{OD_C})_{\mathsf{HIV}}} \mathsf{expressed in \%,}$$

whereby $(OD_T)_{HIV}$ is the optical density measured with a given concentration of the test compound in HIV-infected cells; $(OD_C)_{HIV}$ is the optical density measured for the control untreated HIV-infected cells; $(OD_C)_{MOCK}$ is the optical density measured for the control untreated mock-infected cells; all optical density values were determined at 540 nm. The dose achieving 50% protection according to the above formula was defined as the 50% inhibitory concentration (IC₅₀ in μ M). The ratio of CC₅₀ to IC₅₀ was defined as the selectivity index (SI). The compounds of formula (I) were shown to inhibit HIV-1 effectively. Particular IC₅₀, CC₅₀ and SI values are listed in Table 7 hereinbelow.

Table 7

20	

	Co.	IC50	CC50	SI		
į	No.	(μM)	(μM)			
	1	0.027	49.7	1860		
	2	0.035	>100	>2890		
	3	0.016	37.4	2558		
	4	0.315	>100	>317		
	5	0.094	56.2	598		
	6	0.020	24.4	1192		
	7	0.975	>100	>102		
	8	8.147	>100	>12		
	9	0.037	58.6	1587		
	10	2.529	>100	>39		
	12	1.683	55.1	32		
	13	0.005	7.8	1557		
	14	2.183	89.0	40		
	15	0.003	9.0	2857		
	16	0.389	41.2	105		
	17	0.167	91	54		

Co.	IC ₅₀	CC ₅₀	SI		
No.	(μM)	(μM)			
56	0.0023	1.9	839		
57	0.0007	0.8	1153		
58	0.0029	> 100	> 34482		
59	0.0012	> 100	> 83333		
60	0.29	> 100	> 350		
61	0.0007	0.1	155		
62	0.0032	8.7	2716		
63	0.0017	0.3	198		
64	0.12	> 100	> 840		
65	0.18	0.2	1		
66	0.0085	19.9	2347		
67	0.0024	0.4	152		
68	0.001	1.4	1367		
69	0.0004	4.7	11632		
70	0.0006	5.8	9641		
71	0.0063	45.8	7275		

	Co.	IC50	CC ₅₀	SI		Co.	IC ₅₀	CC50	SI
	No.	(μM)	(μM)	İ		No.	(μM)	(Mu)	
5	18	2.1	59.9	29		72	0.0007	0.5	705
	19	0.006	53.6	8642		73	0.0036	> 100	> 27777
	20	0.026	36.5	1413	}	74	0.010	> 100	> 9523
10	21	0.017	50.6	2910		75	0.0021	1.9	911
	22	0.035	12.2	346		76	0.0033	5.2	1580
	23	0.001	47.9	59935	l	77	0.0030	9.6	3188
	24	0.020	54.0	2667	1	78	0.0028	0.4	144
15	25	0.079	>100	>1272	ļ	79	0.0031	4.8	1547
	26	0.011	33.5	2990		80	0.011	8.7	771
	27	0.017	>20	>1169		81	0.0011	> 100	> 90909
	28	0.079	>20	>253		82	0.0026	0.4	151
20	29	0.015	>20	>1324		83	0.0008	0.4	541
	30	0.088	>20	>228		84	0.012	9.3	753
	31	0.024	86.8	3630		85	0.002	0.4	208
25	32	0.403	>100	>248		86	0.010	> 100	> 9803
	33	0.042	43.4	1038		87	0.0031	2.2	711
	34	0.319	57.8	181		88	0.0027	2.1	767
	35	0.103	42.3	409		89	0.0007	0.4	619
30	36	0.323	>100	>309		90	3.4	30.8	9
	37	0.443	33.4	75		91	0.0025	4.9	1976
	38	2.449	32.4	13		92	45.0	> 90.0	> 2
	39	1.531	>100	>65		93	0.0035	48.1	13743
35	40	0.253	40.2	158		94	0.0022	13.1	5064
	41	1.986	34.2	17		95	0.0006	7.7	12783
	42	0.352	35.5	88		96	0.0031	5.8	1885
40	43	0.603	>100	>165		97	0.032	13.2	415
	45	0.010	56.3	5688		98	2.0	13.8	7
	46	45.2	>100	>2		99	0.16	59.7	367
	47	0.004	>100	>27027		100	0.075	0.8	10
45	48	44.2	>100	>1	}	101	0.053	29.5	558
	49	0.058	45.2	786		102	0.0082	0.5	63
	50	0.518	52.0	100	ł	103	0.022	> 100	4555
	51	0.452	>100	>221	1	104	0.0034	18.6	5476
50	52	0.001	2.08	2314		105	52.1	< 52.1	< 1
	53	0.0006	1.3	2111]				

55 D. Composition examples

[0102] The following formulations exemplify typical pharmaceutical compositions suitable for systemic administration to animal and human subjects in accordance with the present invention.

[0103] "Active ingredient" (A.I.) as used throughout these examples relates to a compound of formula (I) or a pharmaceutically acceptable addition salt thereof.

Example D.1: film-coated tablets

Preparation of tablet core

[0104] A mixture of 100 g of the A.i., 570 g lactose and 200 g starch was mixed well and thereafter humidified with a solution of 5 g sodium dodecyl sulfate and 10 g polyvinylpyrrolidone in about 200 ml of water. The wet powder mixture was sieved, dried and sieved again. Then there was added 100 g microcrystalline cellulose and 15 g hydrogenated vegetable oil. The whole was mixed well and compressed into tablets, giving 10.000 tablets, each comprising 10 mg of the active ingredient.

Coating

5

15

25

30

35

40

45

50

55

[0105] To a solution of 10 g methyl cellulose in 75 ml of denaturated ethanol there was added a solution of 5 g of ethyl cellulose in 150 ml of dichloromethane. Then there were added 75 ml of dichloromethane and 2.5 ml 1,2,3-propanetriol. 10 g of polyethylene glycol was molten and dissolved in 75 ml of dichloromethane. The latter solution was added to the former and then there were added 2.5 g of magnesium octadecanoate, 5 g of polyvinylpyrrolidone and 30 ml of concentrated color suspension and the whole was homogenated. The tablet cores were coated with the thus obtained mixture in a coating apparatus.

Claims

1. The use of a compound of formula

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein A is CH, CR4 or N;

n is 0, 1, 2, 3 or 4;

Q is hydrogen or -NR¹R²;

 R^1 and R^2 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxycarbonyl, aryl, amino, mono- or di(C_{1-12} alkyl)amino, mono- or di(C_{1-12} alkyl)aminocarbonyl wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, cyano, amino, imino, aminocarbonyl, aminocarbonylamino, mono- or di(C_{1-6} alkyl)amino, aryl and Het; or

 R^1 and R^2 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C_{1-12} alkyl) amino C_{1-4} alkylidene;

 R^3 is hydrogen, aryl, C_{1-6} alkylcarbonyl, C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyl; and

each R^4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

R⁵ is hydrogen or C₁₋₄alkyl;

L is C_{1-10} alkyl, C_{3-10} alkenyl, C_{3-10} alkynyl, C_{3-7} cycloalkyl, or C_{1-10} alkyl substituted with one or two substituents independently selected from C_{3-7} cycloalkyl, indanyl, indolyl and phenyl, wherein said phenyl, indanyl and indolyl may be substituted with one, two, three, four or where possible five substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, C_{1-6} alkyloxycarbonyl, nitro, amino, trihalom-

ethyl, trihalomethyloxy and C1-6alkylcarbonyl; or

L is -X1-R6 or -X2-Alk-R7 wherein

 R^6 and R^7 each independently are phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, hydroxy, C_{1-6} alkyl, C_{1-6} alkyloxy, C_{1-6} alkyloxy, C_{1-6} alkyloxycarbonyl, formyl, cyano, aminocarbonyl, nitro, amino, trihalomethyloxy and trihalomethyl; and

 X^1 and X^2 are each independently -NR3-, -NH-NH-, -N=N-, -O-, -S-, -S(=O)- or -S(=O)₂-;

Alk is C₁₋₄alkanediyl;

5

10

15

20

25

35

40

45

50

55

aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, nitro and trifluoromethyl:

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy;

for the manufacture of a medicine for the treatment of HIV (Human Immunodeficiency Virus) infection.

- 2. The use of a compound as claimed in claim 1 wherein n is at least 1 and at least one R4 is cyano.
- 3. The use of a compound as claimed in claim 1 or 2 wherein the compound has the formula

30 4. The use of a compound as claimed in any one of claims 1 to 3 wherein the compound has the formula

$$\begin{array}{c|c}
L & R^3 \\
N & N
\end{array}$$

$$\begin{array}{c}
(R^4)_0 \\
R^2
\end{array}$$

$$(\Gamma \cdot 1)$$

and wherein

 $R^{4'}$ is halo, C_{1-6} alkyl, cyano, aminocarbonyl, nitro, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

n' is 0, 1, 2 or 3.

5. A compound of formula

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein

A is CH, CR4 or N;

5

10

15

20

25

30

35

40

45

50

55

Q is hydrogen or -NR1R2;

 R^1 and R^2 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxycarbonyl, aryl, amino, mono- or di(C_{1-12} alkyl)amino, mono or di(C_{1-12} alkyl)aminocarbonyl wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, cyano, amino, imino, aminocarbonyl, aminocarbonylamino, mono- or di(C_{1-6} alkyl)amino, aryl and Het; or

 R^1 and R^2 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or $di(C_{1-12}alkyl)$ amino $C_{1-4}alkylidene$;

 R^3 is hydrogen, aryl, C_{1-6} alkylcarbonyl, C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyl; and

each R^4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

R⁵ is hydrogen or C₁₋₄alkyl;

L is 2,6-dichlorobenzyl,

or L is -X¹-R⁶ wherein X¹ is -NR³-, -S- or -O- and R⁶ is 2,4,6-trichlorophenyl, 2,4,6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluorophenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-methylphenyl, 2,6-dibromo-4-prop-1-yl-phenyl, 2,6-dichloro-4-cyano-phenyl, 2,6-dichloro-4-trif-luoromethoxy-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dimethyl-4-(1,1-dimethyle-thyl)-phenyl, 2,6-dimethyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-cyano-2,6-dimethyl-phenyl, or L is -X²-Alk-R⁷ wherein -X²-Alk- is -NH-CH₂- and R⁷ phenyl;

aryl is phenyl or phenyl substituted with one, two, three, four or five subsutuents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, cyano, nitro and trifluoromethyl;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy;

R4' is halo, C₁₋₆alkyl, cyano, aminocarbonyl, nitro, trihalomethyl, trihalomethyloxy or C₁₋₆alkyl substituted with cyano or aminocarbonyl;

n' is 0, 1, 2 or 3;

with the proviso that Q is other than anilino, 2,4,6-trinitro-anilino, 3-methoxyanilino, 4-methoxy-anilino, 3,4-dimethoxy-anilino, 3-chloro-anilino, 4-cyanoanilino, 2- $(C_{1-6}$ alkyl)-anilino, 4- $(C_{1-6}$ alkyl)-anilino, 3-chloro-anilino, 4-bromo-anilino, 4-nitro-anilino and 4-chloro-anilino.

6. A compound wherein the compound has the formula

$$R_{2} \longrightarrow N \longrightarrow R_{2} \longrightarrow R_{4} \qquad (L-1)$$

a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof, wherein A is CH, CR4 or N;

Q is hydrogen or -NR¹R²;

 R^1 and R^2 are each independently selected from hydrogen, hydroxy, C_{1-12} alkyl, C_{1-12} alkyloxy, C_{1-12} alkyloxycarbonyl, aryl, amino, mono- or di(C_{1-12} alkyl)amino, mono- or di(C_{1-12} alkyl)aminocarbonyl wherein each of the aforementioned C_{1-12} alkyl groups may optionally and each individually be substituted with one or two substituents each independently selected from hydroxy, C_{1-6} alkyloxy, hydroxy C_{1-6} alkyloxy, carboxyl, C_{1-6} alkyloxycarbonyl, cyano, amino, imino, aminocarbonyl, aminocarbonylamino, mono- or di(C_{1-6} alkyl)amino, aryl and Het; or

R1 and R2 taken together may form pyrrolidinyl, piperidinyl, morpholinyl, azido or mono- or di(C1-12alkyl)

aminoC₁₋₄alkylidene;

5

10

15

20

25

30

 R^3 is hydrogen, aryl, C_{1-6} alkylcarbonyl, C_{1-6} alkyl, C_{1-6} alkyloxycarbonyl, C_{1-6} alkyloxycarbonyl; and

each R 4 independently is hydroxy, halo, C_{1-6} alkyl, C_{1-6} alkyloxy, cyano, aminocarbonyl, nitro, amino, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

R⁵ is hydrogen or C₁₋₄alkyl;

L is 2,6-dichlorobenzyl,

or L is $-X^1-R^6$ wherein X^1 is $-NR^3-$, -S- or -O- and R^6 is 2,4,6-trichlorophenyl, 2,4,6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluorophenyl, 2,4-dichloro-6-methyl-phenyl, 2,6-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-methyl-phenyl, 2,6-dibromo-4-prop-1-yl-phenyl, 2,6-dichloro-4-cyano-phenyl, 2,6-dichloro-4-trifluoromethoxy-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dimethyl-phenyl, 2,6-dimethyl-phenyl, 2-bromo-4-fluoro-6-methyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-chloro-2,6-dimethyl-phenyl, 4-cyano-2,6-dimethyl-phenyl, or L is $-X^2-Alk-R^7$ wherein $-X^2-Alk-R^7$ phenyl,

aryl is phenyl or phenyl substituted with one, two, three, four or five substituents each independently selected from halo, C₁₋₆alkyl, C₁₋₆alkyloxy, cyano, nitro and trifluoromethyl;

Het is an aliphatic or aromatic heterocyclic radical; said aliphatic heterocyclic radical is selected from pyrrolidinyl, piperidinyl, homopiperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl and tetrahydrothienyl wherein each of said aliphatic heterocyclic radical may optionally be substituted with an oxo group; and said aromatic heterocyclic radical is selected from pyrrolyl, furanyl, thienyl, pyridyl, pyrimidinyl, pyrazinyl and pyridazinyl wherein each of said aromatic heterocyclic radical may optionally be substituted with hydroxy;

 R^4 is halo, C_{1-6} alkyl, cyano, aminocarbonyl, nitro, trihalomethyl, trihalomethyloxy or C_{1-6} alkyl substituted with cyano or aminocarbonyl;

n' is 0, 1, 2 or 3;

provided that Q is other than aniline, 2,4,6-trinitro-anilino, 4-(C₁₋₆alkyl)-anilino, 4-bromoanilino, 4-nitro-anilino and 4-chloro-anilino

- A compound as claimed in claim 6 wherein R⁴ is cyano, aminocarbonyl or C₁₋₆alkyl substituted with cyano or aminocarbonyl.
- 8. A compound as claimed in any one of claims 5 to 7 wherein Q is hydrogen, L is -X¹-R⁶ wherein X¹ is -NH- and R⁶ is 2,4,6-trimethyl-phenyl or 4-cyano-2,6-dimethylphenyl, the NR³(optionally substituted phenyl or pyridyl) moiety represents *p*-cyano-anilino and is in the 2 position of the pyrimidine ring.
- A compound as claimed in any one of claim 5 or 6 wherein R^{4'} is halo, cyano, aminocarbonyl or cyanoC₁₋₆alkyl; n'is zero, A is CH, R³ is hydrogen; R⁵ is hydrogen or methyl; Q is hydrogen or NHR¹; and L is -X¹-R⁶ wherein X¹ is -NR³-, -S- or -O- and R⁶ is 2,4,6-trichlorophenyl, 2,4,6-trimethyl-phenyl, 2,4-dibromo-3,5-dichloro-phenyl, 2,4-dibromo-6-fluorophenyl, 2,4-dibromo-4-isopropyl-phenyl, 2,6-dibromo-4-methylphenyl, 2,6-dibromo-4-prop-1-yl-phenyl, 2,6-dichloro-4-cyano-phenyl, 2,6-dichloro-4-trifluoromethoxy-phenyl, 2,6-dichloro-4-trifluoromethyl-phenyl, 2,6-dimethyl-4-(1,1-dimethylethyl)-phenyl, 2,6-dimethyl-phenyl, 2-bromo-4-fluoro-6-methyl-phenyl, 2-bromo-6-chloro-4-fluoro-phenyl, 4-bromo-2,6-dimethyl-phenyl, 4-cyano-2,6-dimethyl-phenyl; or L is -X²-Alk-R² wherein -X²-Alk- is -NH-CH₂-and R² phenyl.
- 45 10. A compound as claimed in claim 5 wherein the compound is
 - 4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinyl]amino]benzonitrile;
 - 6-[(2,6-dichloropheny!)methyl]-N2-(4-fluorophenyl)-2,4-pyrimidinediamine;
 - 4-[[4-[(2,6-dichlorophenyl)methyl]-6-[(3-hydroxypropyl)amino]-2-pyrimidinyl]amino]benzonitrile;
 - N-[2-[(4-cyanophenyl)amino]-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinyl]-acetamide;
- 50 N-[2-[(4-cyanophenyl)amino]-6-[(2,6-dichlorophenyl)methyl]-4-pyrimidinyl]-butanamide;
 - 4-[[2-amino-6-(2,6-dichlorophenoxy)-4-pyrimidinyl]amino]benzonitrile;
 - 4-[[4-[(2,6-dichlorophenyl)methyl]-6-[(2-hydroxy-2-phenylethyl)amino]-2-pyrimidinyl]amino]benzonitrile;
 - 4-[[4-[(2,6-dichlorophenyl)methyl)-6-[[3-(2-oxo-1-pyrrolidinyl)propyl]amino]-2-pyrimidinyl]amino]benzonitrile;
 - 4-[[4-[(2,6-dichlorophenyl)methyl]-6-[[2-(2-hydroxyethoxy)ethyl]amino]-2-pyrimidinyl]amino]benzontrile;
- 55 4-[[4-[(2.6-dichlorophenyl)methyl]-6-[(2,3-dihydroxypropyl)amino]-2-pyrimidinyl]-amino]benzonitrile;
 - 4-[[4-[(2,6-dichlorophenyl)methyl]-6-(hydroxyamino)-2-pyrimidinyl]amino]-benzonitrile;
 - 4-[[4-[(2-cyanoethyl)amino]-6-[(2,6-dichlorophenyl)methyl]-2-pyrimidinyl]amino]-benzonitrile;
 - 4-[[4-((2,6-dichlorophenyl)methyl]-6-[[2-(1-pyrrolidinyl)ethyl]amino]-2-pyrimidinyl]-amino]benzonitrile;

```
4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;
          N2-(4-bromophenyl)-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2,4-pyrimidinediamine; 4-[[4-[(2,4,6-trimethylphe-
          nyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          \hbox{$4$-[[2-[(2,4,6-trimethylphenyl)amino]-4-pyrimidinyl]amino]$ benzon itrile;}\\
5
          4-[[4-[(2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-(2,4,6-trimethylphenoxy)-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(2,6-dichlorophenyl)thio]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[[2,6-dibromo-4-(1-methylethyl)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;
          4-[[4-[[2,6-dichloro-4-(trifluoromethyl)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;
10
          4-[[4-[(2,4-dichloro-6-methylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[2-[(cyanophenyl)amino]-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile;
          4-[[4-[(2,4-dibromo-6-fluorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-amino-6-[(2,6-dichlorophenyl)methyl]-5-methyl-2-pyrimidinyl]amino]-benzeneacetonitrile;
          4-[[4-[methyl(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(2,4,6-trichlorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile:
15
          4-[[4-[(2,4,6-trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(2,4,6-trimethylphenyl)amino-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-amino-6-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[2-amino-6-[(2,4,6-trimethylphenyl)amino]-4-pyrimidinyl]amino]benzonitrile;
20
          4-[[4-(2-bromo-4-chloro-6-methylphenoxy)-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(4-chloro-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          3,5-dichloro-4-[[2-[(4-cyanophenyl)amino]-4-pyrimidinyl]amino]benzonitrile;
          4-[[4-[[2,6-dichloro-4-(trifluoromethoxy)phenyl]amino]-2-pyrimidinyl]amino]-benzonitrile;
          4-[[4-[(2,4-dibromo-3,6-dichlorophenyl)amino]-2-pyrimidinyl]amino]benzonitrile;
25
          4-[[4-[(2,6-dibromo-4-propylphenyl]amino]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(2.4.6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide;
          4-[(4-((4-(1,1-dimethylethyl)-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]-benzonitrile;
          4-[[2-[(4-cyanophenyl)amino]-4-pyrimidinyl]oxy]-3,5-dimethylbenzonitrile;
          4-[[4-[(4-chloro-2,6-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;
          4-[[2-[(4-cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino-3,5-dimethylbenzonitrile;
30
          4-[[4-(1,1-dimethylethyl)-2,6-dimethylphenyl]amino]-5-methyl-2-pyrimidinyl]-amino]benzonitrile;
          4-[[4-[(4-bromo-2,6-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;
          4-[[5-methyl-4-[(2,4,6-trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitrile;
          4-[[4-[(2,6-dibromo-4-propylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;
          4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamide, N3-oxide;
35
          N2-(4-chlorophenyl)-N4-(2,4,6-trimethylphenyl)-2,4-pyrimidinediamine;
          4-[[4-[[2,6-dibromo-4-(1-methylethyl)phenyl]amino]-5-methyl-2-pyrimidinyl]amino]-benzonitrile;
          4-[[2-[(4-cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile;
          4-[[4-[(phenylmethyl)amino]-2-pyrimidinyl]amino]benzonitrile;
          a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof.
40
```

- 11. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and a therapeutically active amount of a compound as defined in any one of claims 5 to 10, 26 or 27.
- 12. A process for preparing a pharmaceutical composition as defined in claim 11. characterized in that a therapeutically effective amount of a compound as defined in any one of claims 5 to 10 is intimately mixed with a pharmaceutically acceptable carrier.
 - 13. A process for preparing a compound as defined in claim 5, characterized by

a) reacting an intermediate of formula (II-A) wherein W¹ is a suitable leaving group with an amino derivative of formula (III) optionally in a solvent under a reaction-inert atmosphere, and optionally in the presence of an acid

55

$$L \xrightarrow{N} W + H \xrightarrow{R^3} L \xrightarrow{N} R^3$$
(III-A) (III)

wherein Q, R3, R4, R4', R5, A, n' and L are as defined in claim 5;

10

15

20

25

30

35

40

45

50

55

b) reacting an intermediate of formula (II-B) wherein W¹ is a suitable leaving group with an amino derivative of formula (VI) optionally in a solvent under a reaction-inert atmosphere, and optionally in the presence of an acid

$$L \xrightarrow{N} \stackrel{(R^{1})_{n'}}{\underset{R^{5}}{\bigvee}} R^{4'} + H \xrightarrow{R^{2}} V \xrightarrow{R^{5}} \stackrel{(II-B)}{\underset{R^{5}}{\bigvee}} (VI)$$

wherein R1, R2, R3, R4, R4', R5 A, n' and L are as defined in claim 5;

c) reacting an intermediate H-X¹-R⁶ with an intermediate of formula (II-C) in a suitable solvent optionally in the presence of a suitable acid or base; thus obtaining compounds of formula (I') wherein L is -X¹-R⁶, said compounds being represented by formula (I'-c).

wherein R³ R⁴, R⁴, R⁵, R⁶, X¹, Q, n' and A are as defined in claim 5, or if desired, converting compounds of formula (I') into each other following art-known transformations, and further, if desired, converting the compounds of formula (I'), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms or *N*-oxides thereof.

- 14. A compound as claimed in claim 5 for use as a medicine.
- 15. The combination of a compound of formula (I) as defined in claim 1 and another antiretroviral compound.
- 16. The combination of a compound of formula (I') as defined in claim 5 and another antiretroviral compound.

- 17. A combination as claimed in claim 15 or 16 for use as a medicine.
- 18. A product containing (a) a compound of formula (I) as defined in claim 1, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment.
- 19. A product containing (a) a compound of formula (I') as defined in claim 5, and (b) another antiretroviral compound, as a combined preparation for simultaneous, separate or sequential use in anti-HIV treatment.
- 20. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound of formula (I) as defined in claim 1, and (b) another antiretroviral compound.
 - 21. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound of formula (I') as defined in claim 5, and (b) another antiretroviral compound.
- 15 22. A compound of formula (II'-B)

5

10

20

25

30

35

40

55

- wherein R³, R⁴, R⁵, n', A and L are as defined in claim 5 and W¹ is a halogen.
- 23. The use of a compound as claimed in any one of claims 1 to 4 for the manufacture of a medicine for the treatment of an infection of HIV 1 resistant to non-nucleoside reverse transcriptase inhibitors other than the ones defined in claims 1 to 4.
- 24. A compound as claimed in claim 10 wherein the compound is 4-[[2-[(cyanophenyl)amino]-4-pyrimidinyl]amino]-3,5-dimethylbenzonitrile, a *N*-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof.
- 25. A compound as claimed in claim 10 wherein the compound is 4-[[4-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl] amino]benzonitrile, a N-oxide, a pharmaceutically acceptable addition salt or a stereochemically isomeric form thereof.

Patentansprüche

1. Verwendung einer Verbindung der Formel

$$L = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$L = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$R^5 = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$R^3 = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$R^4 = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$R^5 = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

$$R^3 = \begin{pmatrix} R^4 \end{pmatrix}_{B}$$

eines N-Oxids, eines pharmazeutisch unbedenklichen Additionssalzes oder einer stereochemisch isomeren Form

	davon, wobei	
	Α	für CH, CR ⁴ oder N steht,
5	n	für 0, 1, 2, 3 oder 4 steht;
	Q	für Wasserstoff oder -NR¹R² steht;
10	R ¹ und R ²	jeweils unabhängig voneinander aus Wasserstoff, Hydroxyl, C_{1-12} -Alkyl, C_{1-12} -Alkyloxy, C_{1-12} -Alkylcarbonyl, C_{1-12} -Alkyloxycarbonyl, Aryl, Amino, Mono- oder Di (C_{1-12} -alkyl)amino, Mono- oder Di (C_{1-12} -alkyl) aminocarbonyl ausgewählt sind, wobei die obenerwähnten C_{1-12} -Alkylgruppen jeweils gegebenenfalls und jeweils einzeln durch einen oder zwei Substituenten substituiert sein können, die jeweils unabhängig voneinander aus Hydroxyl, C_{1-6} -Alkyloxy, Hydroxy- C_{1-6} -alkyloxy, Carboxyl, C_{1-6} -Alkyloxycarbonyl, Cyano, Amino, Imino, Aminocarbonyl, Aminocarbonylamino, Mono- oder Di(C_{1-6} -alkyl)amino, Aryl und Het ausgewählt sind; oder
	R ¹ und R ²	zusammen Pyrrolidinyl, Piperidinyl, Morpholinyl, Azido oder Mono- oder Di $(C_{1-12}$ -alkyl)ami-no- C_{1-4} -alkyliden bilden können;
20	R ³	für Wasserstoff, Aryl, C_{1-6} -Alkylcarbonyl, C_{1-6} -Alkyl, C_{1-6} -Alkyloxycarbonyl oder durch C_{1-6} -Alkyloxycarbonyl substituiertes C_{1-6} -Alkyl steht; und
25	die Reste R ⁴	jeweils unabhängig voneinander für Hydroxyl, Halogen, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Aminocarbonyl, Nitro, Amino, Trihalogenmethyl, Trihalogenmethyloxy oder durch Cyano oder Aminocarbonyl substituiertes C_{1-6} -Alkyl stehen;
	R ⁵	für Wasserstoff oder C ₁₋₄ -Alkyl steht;
30	L	für C_{1-10} -Alkyl, C_{3-10} -Alkenyl, C_{3-10} -Alkinyl, C_{3-7} -Cycloalkyl oder durch ein oder zwei Substituenten, unabhängig voneinander ausgewählt aus C_{3-7} -Cycloalkyl, Indanyl, Indolyl und Phenyl, substituiertes C_{1-10} -Alkyl steht, wobei Phenyl, Indanyl und Indolyl durch einen, zwei, drei, vier oder, wo möglich, fünf Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, Hydroxyl, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Aminocarbonyl, C_{1-6} -Alkyloxycarbonyl, Formyl, Nitro, Amino, Trihalogenmethyl, Trihalogenmethyloxy und C_{1-6} -Alkylcarbonyl, substituiert sein können; oder
	L	für -X ¹ -R ⁶ oder -X ² -Alk-R ⁷ steht, wobei
40	R ⁶ und R ⁷	jeweils unabhängig voneinander für Phenyl oder durch einen, zwei, drei, vier oder fünf Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, Hydroxyl, C ₁₋₆ -Alkyl, C ₁₋₆ -Alkyloxy, C ₁₋₆ -Alkyloxycarbonyl, Formyl, Cyano, Aminocarbonyl, Nitro, Amino, Trihalogenmethyloxy und Trihalogenmethyl, substituiertes Phenyl stehen; und
45	X ¹ und X ²	jeweils unabhängig voneinander für -NR 3 -, -NH-NH-, -N=N-, -O-, -S-, -S(=O)- oder -S(=O) $_2$ - stehen;
	Alk	für C ₁₋₄ -Alkandiyl steht;
50	Aryl	für Phenyl oder durch einen, zwei, drei, vier oder fünf Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Nitro und Trifluormethyl, substituiertes Phenyl steht;
55	Het	für einen aliphatischen oder aromatischen heterocyclischen Rest steht; wobei der aliphatische heterocyclische Rest aus Pyrrolidinyl, Piperidinyl, Homopiperidinyl, Piperazinyl, Morpholinyl, Tetrahydrofuranyl und Tetrahydrothienyl ausgewählt ist, wobei die aliphatischen heterocyclischen Reste jeweils gegebenenfalls durch eine Oxogruppe substituiert sein können; und wobei der aromatische heterocyclische Rest aus Pyrrolyl, Furanyl, Thienyl, Pyridyl, Pyrimidinyl, Pyrazinyl und Pyridazinyl ausgewählt ist, wobei die aromatischen heterocyclischen Reste jeweils gegebenen-

falls durch Hydroxyl substituiert sein können;

zur Herstellung einer Medizin zur Behandlung von HIV- (Human Immunodeficiency Virus-)Infektion.

- 2. Verwendung einer Verbindung nach Anspruch 1, wobei n wenigstens 1 ist und wenigstens einer der Reste R4 für Cyano steht.
 - 3. Verwendung einer Verbindung nach Anspruch 1 oder 2, wobei die Verbindung die Formel

10 (I-1)15

aufweist. 20

35

45

50

55

Verwendung einer Verbindung nach einem der Ansprüche 1 bis 3, wobei die Verbindung die Formel

25 30

aufweist und wobei

R^{4'} für Halogen, C₁₋₆-Alkyl, Cyano, Aminocarbonyl, Nitro, Trihalogenmethyl, Trihalogenmethyloxy oder durch Cyano oder Aminocarbonyl substituiertes C₁₋₆-Alkyl steht; n' für 0, 1, 2 oder 3 steht.

5. Verbindungen der Formel

40 (T)

deren N-Oxide, pharmazeutisch unbedenkliche Additionssalze und stereochemisch isomere Formen, wobei

- für CH, CR4 oder N steht, Α
- Q für Wasserstoff oder -NR1R2 steht;
- R1 und R2 jeweils unabhängig voneinander aus Wasserstoff, Hydroxyl, C_{1-12} -Alkyl, C_{1-12} -Alkyloxy, C_{1-12} -Al

kylcarbonyl, C_{1-12} -Alkyloxycarbonyl, Aryl, Amino, Mono- oder Di (C_{1-12} -alkyl)amino, Mono- oder Di (C_{1-12} -alkyl)aminocarbonyl ausgewählt sind, wobei die obenerwähnten C_{1-12} -Alkylgruppen jeweils gegebenenfalls und jeweils einzeln durch einen oder zwei Substituenten substituiert sein können, die jeweils unabhängig voneinander aus Hydroxyl, C_{1-6} -Alkyloxy, Hydroxy- C_{1-6} -alkyloxy, Carboxyl, C_{1-6} -Alkyloxycarbonyl, Cyano, Amino, Imino, Aminocarbonyl, Aminocarbonylamino, Mono- oder Di(C_{1-6} -alkyl)amino, Aryl und Het ausgewählt sind; oder

R1 und R2

zusammen Pyrrolidinyl, Piperidinyl, Morpholinyl, Azido oder Mono- oder Di (C_{1-12} -alkyl) ami-no- C_{1-4} -alkyliden bilden können;

10

15

25

35

5

für Wasserstoff, Aryl, C₁₋₆-Alkylcarbonyl, C₁₋₆-Alkyl, C₁₋₆-Alkyloxycarbonyl oder durch C₁₋₆-Alkyloxycarbonyl substituiertes C₁₋₆-Alkyl steht; und

die Reste R4

 \mathbb{R}^3

jeweils unabhängig voneinander für Hydroxyl, Halogen, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Aminocarbonyl, Nitro, Amino, Trihalogenmethyl, Trihalogenmethyloxy oder durch Cyano oder Aminocarbonyl substituiertes C_{1-6} -Alkyl stehen;

R⁵

für Wasserstoff oder C₁₋₄-Alkyl steht;

20 L

für 2,6-Dichlorbenzyl steht,

oder L für -X¹-R⁶ steht, wobei X¹ für -NR³-, -S- oder -O- steht und R⁶ für 2,4,6-Trichlorphenyl, 2,4,6-Trimethylphenyl, 2,4-Dibrom-3,5-dichlorphenyl, 2,4-Dibrom-6-fluorphenyl, 2,4-Dichlor-6-methylphenyl, 2,6-Dibrom-4-isopropylphenyl, 2,6-Dibrom-4-methylphenyl, 2,6-Dibrom-4-prop-1-ylphenyl, 2,6-Dichlor-4-cyanophenyl, 2,6-Dichlor-4-trifluormethylphenyl, 2,6-Dichlorphenyl, 2,6-Dimethyl-4-(1,1-dimethylethyl) phenyl, 2,6-Dimethylphenyl, 2-Brom-4-fluor-6-methylphenyl, 2-Brom-6-chlor-4-fluorphenyl, 4-Brom-2,6-dimethylphenyl, 4-Cyano-2,6-dimethylphenyl steht; oder L für -X²-Alk-R⁷ steht, wobei -X²-Alk-für -NH-CH₂- und R⁷ für Phenyl steht;

- 30 Aryl für Phenyl oder durch einen, zwei, drei, vier oder fünf Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, C₁₋₆-Alkyl, C₁₋₆-Alkyloxy, Cyano, Nitro und Trifluormethyl, substituiertes Phenyl steht;
 - für einen aliphatischen oder aromatischen heterocyclischen Rest steht; wobei der aliphatische heterocyclische Rest aus Pyrrolidinyl, Piperidinyl, Homopiperidinyl, Piperazinyl, Morpholinyl, Tetrahydrofuranyl und Tetrahydrothienyl ausgewählt ist, wobei die aliphatischen heterocyclischen Reste jeweils gegebenenfalls durch eine Oxogruppe substituiert sein können; und wobei der aromatische heterocyclische Rest aus Pyrrolyl, Furanyl, Thienyl, Pyridyl, Pyrimidinyl, Pyrazinyl und Pyridazinyl ausgewählt ist, wobei die aromatischen heterocyclischen Reste jeweils gegebenenfalls durch Hydroxyl substituiert sein können;
- 40 R^{4'} für Halogen, C₁₋₆-Alkyl, Cyano, Aminocarbonyl, Nitro, Trihalogenmethyl, Trihalogenmethyloxy oder durch Cyano oder Aminocarbonyl substituiertes C₁₋₆-Alkyl steht;
 - n' für 0, 1, 2 oder 3 steht;
- mit der Maßgabe, daß Q nicht für Anilino, 2,4,6-Trinitroanilino, 3-Methoxyanilino, 4-Methoxyanilino, 3,4-Dimethoxyanilino, 3-Chlor-4-fluoranilino, 4-Cyanoanilino, 2-(C₁₋₆-Alkyl)anilino, 4-(C₁₋₆-Alkyl)anilino, 3-Chloranilino, 4-Bromanilino, 4-Nitroanilino oder 4-Chloranilino steht.
 - 6. Verbindungen der Formel

55

$$\mathbb{R}^{3} \longrightarrow \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{6}$$

$$\mathbb{R}^{4} \longrightarrow \mathbb{R}^{6}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{6}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{6}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{6}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{6}$$

10

15

20

25

30

35

40

45

50

55

5

deren N-Oxide, pharmazeutisch unbedenkliche Additionssalze und stereochemisch isomere Formen, wobei

für CH, CR4 oder N steht,

Q für Wasserstoff oder -NR1R2 steht;

R1 und R2 jeweils unabhängig voneinander aus Wasserstoff, Hydroxyl, C₁₋₁₂-Alkyl, C₁₋₁₂-Alkyloxy, C₁₋₁₂-Alkylcarbonyl, C₁₋₁₂-Alkyloxycarbonyl, Aryl, Amino, Mono- oder Di (C₁₋₁₂-alkyl)amino, Mono- oder Di(C₁₋₁₂-alkyl)aminocarbonyl ausgewählt sind, wobei die obenerwähnten C₁₋₁₂-Alkylgruppen jeweils gegebenenfalls und jeweils einzeln durch einen oder zwei Substituenten substituiert sein können, die jeweils unabhängig voneinander aus Hydroxyl, C_{1-6} -Alkyloxy, Hydroxy- C_{1-6} -alkyloxy, Carboxyl, C₁₋₆-Alkyloxycarbonyl, Cyano, Amino, Imino, Aminocarbonyl, Aminocarbonylamino,

Mono- oder Di(C₁₋₆-alkyl)amino, Aryl und Het ausgewählt sind; oder

R1 und R² zusammen Pyrrolidinyl, Piperidinyl, Morpholinyl, Azido oder Mono- oder Di (C₁₋₁₂-alkyl) amino-C₁₋₄-alkyliden bilden können;

 R^3 $\hbox{für Wasserstoff, Aryl, C_{1-6}-Alkyl carbonyl, C_{1-6}-Alkyl, C_{1-6}-Alkyl oxycarbonyl oder durch C_{1-6}-Alkyl-$

loxycarbonyl substituiertes C1-6-Alkyl steht; und

die Reste R4

jeweils unabhängig voneinander für Hydroxyl, Halogen, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Aminocarbonyl, Nitro, Amino, Trihalogenmethyl, Trihalogenmethyloxy oder durch Cyano oder Aminocarbonyl substituiertes C₁₋₆-Alkyl stehen;

R⁵ für Wasserstoff oder C1-4-Alkyl steht;

L für 2,6-Dichlorbenzyl steht,

oder L für -X1-R6 steht, wobei X1 für -NR3-, -S- oder -O- steht und R6 für 2,4,6-Trichlorphenyl, 2,4,6-Trimethylphenyl, 2,4-Dibrom-3,5-dichlorphenyl, 2,4-Dibrom-6-fluorphenyl, 2,4-Dichlor-6-methylphenyl, 2,6-Dibrom-4-isopropylphenyl, 2, 6-Dibrom-4-methylphenyl, 2, 6-Dibrom-4-prop-1-ylphenyl, 2,6-Dichlor-4-cyanophenyl, 2,6-Dichlor-4-trifluormethoxyphenyl, 2,6-Dichlor-4-trifluormethylphenyl, 2,6-Dichlorphenyl, 2,6-Dimethyl-4-(1,1-dimethylethyl)phenyl, 2,6-Dimethylphenyl, 2-Brom-4-fluor-6-methylphenyl, 2-Brom-6-chlor-4-fluorphenyl, 4-Brom-2,6-dimethylphenyl, 4-Chlor-2,6-dimethylphenyl, 4-Cyano-2,6-dimethylphenyl steht; oder L für -X2-Alk-R7 steht, wobei -X2-Alk- für -NH-CH₂- und R⁷ für Phenyl steht;

für Phenyl oder durch einen, zwei, drei, vier oder fünf Substituenten, jeweils unabhängig voneinander ausgewählt aus Halogen, C_{1-6} -Alkyl, C_{1-6} -Alkyloxy, Cyano, Nitro und Trifluormethyl, substituiertes Phenyl steht;

für einen aliphatischen oder aromatischen heterocyclischen Rest steht; wobei der aliphatische heterocyclische Rest aus Pyrrolidinyl, Piperidinyl, Homopiperidinyl, Piperazinyl, Morpholinyl, Tetrahydrofuranyl und Tetrahydrothienyl ausgewählt ist, wobei die aliphatischen heterocyclischen Reste jeweils gegebenenfalls durch eine Oxogruppe substituiert sein können; und wobei der aromatische heterocyclische Rest aus Pyrrolyl, Furanyl, Thienyl, Pyridyl, Pyrimidinyl, Pyrazinyl und Pyridazinyl ausgewählt ist, wobei die aromatischen heterocyclischen Reste jeweils gegebenenfalls durch Hydroxyl substituiert sein können;

 $\label{eq:continuous} \mbox{f\"{u}r Halogen, C_{1-6}-Alkyl, Cyano, Aminocarbonyl, Nitro, Trihalogenmethyl, Trihalogenmethyloxy oder durch C_{1-6}-Alkyl, $$ R4' Cyano oder Aminocarbonyl substituiertes C₁₋₆-Alkyl steht;

n' für 0, 1, 2 oder 3 steht;

5

10

15

20

25

55

mit der Maßgabe, daß Q nicht für Anilino, 2, 4, 6-Trinitroanilino, 4- (C₁₋₆-Alkyl)anilino, 4-Bromanilino, 4-Nitroanilino oder 4-Chloranilino steht.

- Verbindungen nach Anspruch 6, wobei R⁴ f
 ür Cyano, Aminocarbonyl oder durch Cyano oder Aminocarbonyl substituiertes C_{1.6}-Alkyl steht.
- 8. Verbindungen nach einem der Ansprüche 5 bis 7, wobei Q für Wasserstoff steht, L für -X¹-R6 steht, wobei X¹ für -NH- und R6 für 2,4,6-Trimethylphenyl oder 4-Cyano-2,6-Dimethylphenyl steht, und die NR³-(gegebenenfalls substituiertes Phenyl oder Pyridyl)-Einheit für p-Cyanoanilino steht und sich in der 2-Stellung des Pyrimidinrings befindet.
- 9. Verbindungen nach Anspruch 5 oder 6, wobei die Reste R⁴ für Halogen, Cyano, Aminocarbonyl oder Cyano-C₁₋₆-alkyl stehen; n für Null steht, A für CH steht, R³ für Wasserstoff steht; R⁵ für Wasserstoff oder Methyl steht; Q für Wasserstoff oder NHR¹ steht; und L für -X¹-R⁶ steht, wobei X² für -NR³-, -S- oder -O- steht und R⁶ für 2,4,6-Tri-chlorphenyl, 2,4-Dirhom-3,5-dichlorphenyl, 2,4-Dibrom-6-fluorphenyl, 2,4-Dichlor-6-methylphenyl, 2,6-Dibrom-4-isopropylphenyl, 2,6-Dibrom-4-methylphenyl, 2,6-Dibrom-4-prop-1-yl-phenyl, 2,6-Dichlor-4-cyanophenyl, 2,6-Dichlor-4-trifluormethoxyphenyl, 2, 6-Dichlor-4-trifluormethylphenyl, 2, 6-Dichlor-4-fluorphenyl, 2,6-Dimethyl-4-(1,1-dimethylethyl)phenyl, 2,6-Dimethylphenyl, 2-Brom-4-fluor-6-methylphenyl, 2-Brom-6-chlor-4-fluorphenyl, 4-Brom-2,6-dimethylphenyl, 4-Chlor-2, 6-dimethylphenyl, 4-Cyano-2,6-dimethylphenyl steht; oder L für -X²-Alk-R³ steht, wobei -X²-Alkfür -NH-CH₂- und R³ für Phenyl steht.
 - 10. Verbindungen nach Anspruch 5, bei denen es sich um
 - 4-[[4-Amino-6-[(2,6-dichlorphenyl)methyl]-2-pyrimidinyl]amino]benzonitril;
 - 6-[(2.6-Dichlorphenyl)methyl]-N2-(4-fluorphenyl)-2,4-pyrimidindiamin;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[(3-hydroxypropyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - N-[2-[(4-Cyanophenyl)amino]-6-[(2,6-dichlorphenyl)methhyl]-4-pyrimidinyl]acetamid;
 - N-[2-[(4-Cyanophenyl)amino]-6-[(2,6-dichlorphenyl)methhyl]-4-pyrimidinyl]butanamid;
- 30 4-[[2-Amino-6-(2,6-dichlorphenoxy)-4-pyrimidinyl]-amino]benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[(2-hydroxy-2-phenylethyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[[3-(2-oxo-1-pyrrolidinyl)propyl]amino]-2-pyrimidinyl]amino]-benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[[2-(2-hydroxyethoxy)ethyl]amino]-2-pyrimidinyl]amino]-benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[(2,3-dihydroxypropyl)amino]-2-pyrimidinyl]amino]benzonitril;
- 35 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-(hydroxyamino)-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2-Cyanoethyl)amino]-6-[(2,6-dichlorphenyl)methyl]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)methyl]-6-[[2-(1-pyrrolidinyl)ethyl]amino]-2-pyrimidinyl]amino]-benzonitril;
 - $\hbox{$4$-[[4-Amino-6-[(2,6-dichlorphenyl)methyl]-5-methyl-2-pyrimidinyl]amino] benzonitril;}\\$
 - N2-(4-Bromphenyl)-6-[(2,6-dichlorphenyl)methyl]-5-methyl-2,4-pyrimidindiamin;
- 40 4-[[4-[(2,4,6-Trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[2-[(2,4,6-Trimethylphenyl)amino]-4-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,6-Dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-(2,4,6-Trimethylphenoxy)-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,6-Dichlorphenyl)thio]-2-pyrimidinyl]-amino]benzonitril;
- 45 4-[[4-[[2,6-Dibrom-4-(1-methylethyl)phenyl]amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[[2,6-Dichlor-4-(trifluormethyl)phenyl]-amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,4-Dichlor-6-methylphenyl)amino]-2-pyrimidinyl]amino] benzonitril;
 - 4-[[2-[(Cyanophenyl)amino]-4-pyrimidinyl]amino]-3,5-dimethylbenzonitril;
 - 4-[[4-[(2,4-Dibrom-6-fluorphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
- 4-[[4-Amino-6-[(2,6-dichlorphenyl)methyl]-5-methyl-2-pyrimidinyl] amino]benzolacetonitril;
 - 4-[[4-[Methyl-(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,4,6-Trichlorphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-{(2,4,6-Trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(2,4,6-Trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-Amino-6-[(2,4,6-trimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;
 - 4-[[2-Amino-6-[(2,4,6-trimethylphenyl)amino]-4-pyrimidinyl]amino]benzonitril;
 - 4-[[4-(2-Brom-4-chlor-6-methylphenoxy)-2-pyrimidinyl]amino]benzonitril;
 - 4-[[4-[(4-Chlor-2,6-dimethylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;

3,5-Dichlor-4-[[2-[(4-cyanophenyl)amino]-4-pyrimidinyl]amino]benzonitril;

4-[[4-[[2.6-Dichlor-4-(trifluormethoxy)phenyl]-amino]-2-pyrimidinyl]amino]benzonitril;

4-[[4-[(2,4-Dibrom-3,6-dichlorphenyl)amino]-2-pyrimidinyl]amino]benzonitril;

4-[[4-[(2,6-Dibrom-4-propylphenyl)amino]-2-pyrimidinyl]amino]benzonitril;

4-[[4-[(2,4,6-Trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamid;

5

10

15

20

25

30

35

40

45

50

55

 $4\hbox{-}[[4\hbox{-}(4\hbox{-}(1,1\hbox{-}Dimethylethyl)\hbox{-}2,6\hbox{-}dimethylphenyl})\hbox{-}amino]\hbox{-}2\hbox{-}pyrimidinyl] amino] benzonitril;$

4-[[2-[(4-Cyanophenyl)amino]-4-pyrimidinyl]oxy]-3,5-dimethylbenzonitril;

4-[[4-[(4-Chlor-2,6-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]benzonitril;

4-[[2-[(4-Cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino-3,5-dimethylbenzonitril;

4-[[4-[[4-(1,1-Dimethylethyl)-2,6-dimethylphenyl]-amino]-5-methyl-2-pyrimidinyl]amino]benzonitril;

4-[[4-[(4-Brom-2,6-dimethylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]benzonitril;

4-[[5-Methyl-4-[(2,4,6-trimethylphenyl)thio]-2-pyrimidinyl]amino]benzonitril;

4-[4-[(2,6-Dibrom-4-propylphenyl)amino]-5-methyl-2-pyrimidinyl]amino]benzonitril;

4-[[4-[(2,4,6-Trimethylphenyl)amino]-2-pyrimidinyl]amino]benzamid-N3-oxid;

N2-(4-Chlorphenyl)-N4-(2,4,6-trimethylphenyl)-2,4-pyrimidindiamin;

4-[[4-[[2,6-Dibrom-4-(1-methylethyl)phenyl]amino]-5-methyl-2-pyrimidinyl]amino]benzonitril;

4-[[2-[(4-Cyanophenyl)amino]-5-methyl-4-pyrimidinyl]amino]-3,5-dimethylbenzonitril;

4-[[4-[(Phenylmethyl)amino]-2-pyrimidinyl]-amino]benzonitril;

deren N-Oxide, pharmazeutisch unbedenkliche Additionssalze und stereochemisch isomere Formen handelt.

- 11. Pharmazeutische Zusammensetzung, enthaltend einen pharmazeutisch unbedenklichen Träger und eine therapeutisch wirksame Menge einer wie in einem der Ansprüche 5 bis 10, 26 oder 27 definierten Verbindung.
- 12. Verfahren zur Herstellung einer wie in Anspruch 11 definierten pharmazeutischen Zusammensetzung, dadurch gekennzeichnet, daß man eine therapeutisch wirksame Menge einer wie in einem der Ansprüche 5 bis 10 definierten Verbindung innig mit einem pharmazeutisch unbedenklichen Träger mischt.
- 13. Verfahren zur Herstellung einer wie in Anspruch 5 definierten Verbindung, dadurch gekennzeichnet, daß man

a) ein Zwischenprodukt der Formel (II-A), in welcher W¹ für eine geeignete Abgangsgruppe steht, mit einem Aminoderivat der Formel (III) umsetzt, gegebenenfalls in einem Lösungsmittel unter einer reaktionsinerten Atmosphäre und gegebenenfalls in Gegenwart einer Säure

$$L \xrightarrow{N^{2}} N + H \xrightarrow{R^{2}} L \xrightarrow{N^{2}} N \xrightarrow{R^{3}} R^{4}$$

$$(III.A) \qquad (III)$$

wobei Q, R3, R4, R4', R5, A, n' und L wie in Anspruch 5 definiert sind;

b) ein Zwischenprodukt der Formel (II-B), in welcher W¹ für eine geeignete Abgangsgruppe steht, mit einem Aminoderivat der Formel (VI) umsetzt, gegebenenfalls in einem Lösungsmittel unter einer reaktionsinerten Atmosphäre und gegebenenfalls in Gegenwart einer Säure

wobei R1, R2, R3, R4, R4', R5, A, n' und L wie in Anspruch 5 definiert sind;

c) ein Zwischenprodukt H-X¹-R⁶ mit einem Zwischenprodukt der Formel (II-C) in einem geeigneten Lösungsmittel, gegebenenfalls in Gegenwart einer geeigneten Säure oder Base, zu Verbindungen der Formel (I') umsetzt, in welcher L für -X¹-R⁶ steht, wobei diese Verbindungen durch die Formel (I'-c) wiedergegeben werden

- wobei R³, R⁴, R⁴', R⁵, R6, X¹, Q, n¹ und A wie in Anspruch 5 definiert sind, oder gewünschtenfalls Verbindungen der Formel (I¹) nach im Stand der Technik bekannten Umwandlungsreaktionen ineinander umwandelt und weiterhin gewünschtenfalls die Verbindungen der Formel (I¹) durch Behandlung mit einer Säure in ein therapeutisch wirksames, nicht toxisches Säureadditionssalz umwandelt, oder durch Behandlung mit einer Base in ein therapeutisch wirksames, nicht toxisches Basenadditionssalz umwandelt, oder umgekehrt die Säureadditionssalzform durch Behandlung mit Alkali in die freie Base umwandelt oder das Basenadditionssalz durch Behandlung mit Säure in die freie Säure umwandelt; und gewünschtenfalls stereochemisch isomere Formen oder *N*-Oxide davon herstellt.
- 14. Verbindungen nach Anspruch 5 zur Verwendung als Medizin.

5

10

15

20

25

30

35

40

50

- 15. Kombinationen einer wie in Anspruch 1 definierten Verbindung der Formel (I) und einer weiteren antiretroviralen Verbindung.
- 16. Kombinationen einer wie in Anspruch 5 definierten Verbindung der Formel (I') und einer weiteren antiretroviralen Verbindung.
 - 17. Kombination nach Anspruch 15 oder 16 zur Verwendung als Medizin.
 - 18. Produkt, enthaltend (a) eine wie in Anspruch 1 definierte Verbindung der Formel (I) und (b) eine weitere antiretrovirale Verbindung, als Kombinationspräparat zur gleichzeitigen, getrennten oder aufeinanderfolgenden Verwendung bei einer Anti-HIV-Behandlung.
 - 19. Produkt, enthaltend (a) eine wie in Anspruch 5 definierte Verbindung der Formel (I') und (b) eine weitere antiretrovirale Verbindung, als Kombinationspräparat zur gleichzeitigen, getrennten oder aufeinanderfolgenden Verwendung bei einer Anti-HIV-Behandlung.
 - 20. Pharmazeutische Zusammensetzung, enthaltend einen pharmazeutisch unbedenklichen Träger und, als Wirkstoffe, (a) eine wie in Anspruch 1 definierte Verbindung der Formel (I) und (b) eine weitere antiretrovirale Verbindung.

- 21. Pharmazeutische Zusammensetzung, enthaltend einen pharmazeutisch unbedenklichen Träger und, als Wirkstoffe, (a) eine wie in Anspruch 5 definierte Verbindung der Formel (I') und (b) eine weitere antiretrovirale Verbindung.
- 22. Verbindungen der Formel (II'-B)

5

10

15

20

25

30

35

40

45

50

55

 \mathbb{R}^{5} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{4}

wobei R3, R4, R4', R5, n', A und L wie in Anspruch 5 definiert sind und W1 für Halogen steht.

- 23. Verwendung einer Verbindung nach einem der Ansprüche 1 bis 4 zur Herstellung einer Medizin zur Behandlung einer HIV-1-Infektion, die gegenüber anderen als den in Ansprüchen 1 bis 4 definierten nicht nukleosidischen Reverse-Transkriptase-Inhibitoren resistent ist.
- 24. Verbindungen nach Anspruch 10, bei denen es sich um 4-[[2-[(Cyanophenyl)amino]-4-pyrimidinyl]-amino]-3,5-dimethylbenzonitril und deren *N*-Oxide, pharmazeutisch unbedenkliche Additionssalze und stereochemisch isomere Formen handelt.
- 25. Verbindungen nach Anspruch 10, bei denen es sich um 4-[[4-[(2,4,6-Trimethylphenyl)amino]-2-pyrimidinyl]amino] benzonitril und deren N-Oxide, pharmazeutisch unbedenkliche Additionssalze und stereochemisch isomere Formen handelt.

Revendications

1. Utilisation d'un composé de formule

d'un N-oxyde, d'un sel d'addition pharmaceutiquement acceptable ou d'une forme stéréoisomère de ce composé, formule dans laquelle

A représente CH, CR4 ou N;

n vaut 0, 1, 2, 3 ou 4;

Q représente un atome d'hydrogène ou un groupe -NR¹R²;

 R^1 et R^2 sont chacun choisis indépendamment parmi un atome d'hydrogène et un groupe hydroxy, alkyle en C_{1-12} , alkyloxy en C_{1-12} , alkyl(en C_{1-12})carbonyle, alkyl(en C_{1-12})oxycarbonyle, aryle, amino, mono- ou di(alkyl en C_{1-12})amino, mono- ou di(alkyl en C_{1-12})aminocarbonyle où chacun des groupes alkyle en C_{1-12} susmentionnés peut éventuellement, et chacun individuellement, être substitué par un ou deux substituants, chacun étant choisi indépendamment parmi les groupes hydroxy, alkyloxy en C_{1-6} , hydroxyalkyloxy en C_{1-6} , carboxyle, alkyl(en C_{1-6})oxycarbonyle, cyano, amino, imino, aminocarbonyle, aminocarbonylamino, mono- ou di(alkyl en C_{1-6})amino, aryle et

Het: ou

5

10

15

20

25

30

35

40

45

50

 R^1 et R^2 peuvent former conjointement un groupe pyrrolidinyle, pipéridinyle, morpholinyle, azido ou mono- ou di (alkyl en C_{1-12})amino(alkylidène en C_{1-4});

 R^3 représente un atome d'hydrogène ou un groupe aryle, alkyl(en C_{1-6})carbonyle, alkyle en C_{1-6} , alkyl(en C_{1-6}) oxycarbonyle, alkyle en C_{1-6} substitué par un groupe alkyl(en C_{1-6})oxycarbonyle; et

chaque R⁴ représente indépendamment un groupe hydroxy, halogéno, alkyle en C₁₋₆, alkyloxy en C₁₋₆, cyano, aminocarbonyle, nitro, amino, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle;

R⁵ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₄;

L représente un groupe alkyle en C_{1-10} , alcényle en C_{3-10} , alcynyle en C_{3-10} , cycloalkyle en C_{3-7} , ou alkyle en C_{1-10} substitué par un ou deux substituants choisis indépendamment parmi les groupes cycloalkyle en C_{3-7} , indanyle, indolyle et phényle, où lesdits groupes phényle, indanyle et indolyle peuvent être substitués par un, deux, trois, quatre ou si possible cinq substituants, chacun étant choisi indépendamment parmi les groupes halogéno, hydroxy, alkyle en C_{1-6} , alkyloxy en C_{1-6} , cyano, aminocarbonyle, alkyl (en C_{1-6})oxycarbonyle, formyle, nitro, amino, trihalogénométhyle, trihalogénométhyloxy et alkyl (en C_{1-6}) carbonyle ; ou L représente -X¹-R⁶ ou -X²-Alk-R⁷ où

 R^6 et R^7 sont chacun indépendamment un groupe phényle ou phényle substitué par un, deux, trois, quatre ou cinq substituants, chacun étant choisi indépendamment parmi les groupes halogéno, hydroxy, alkyle en C_{1-6} , alkyloxy en C_{1-6} ; alkyl(en C_{1-6}) carbonyle, alkyl (en C_{1-6})oxycarbonyle, formyle, cyano, aminocarbonyle, nitro, amino, trihalogénométhyloxy et trihalogénométhyle; et

 X^1 et X^2 représentent chacun indépendamment -NR3-, -NH-NH-, -N=N-, -O-, -S-, -S(=O)- ou S(=O)₂ ;

Alk représente un groupe alcanediyle en C₁₋₄;

aryle représente un groupe phényle ou phényle substitué par un, deux, trois, quatre ou cinq substituants, chacun étant choisi indépendamment parmi les groupes halogéno, alkyle en C_{1-6} , alkyloxy en C_{1-6} , cyano, nitro et trifluorométhyle;

Het représente un radical hétérocyclique aliphatique ou aromatique; ledit radical hétérocyclique aliphatique est choisi parmi les radicaux pyrrolidinyle, pipéridinyle, homopipéridinyle, pipérazinyle, morpholinyle, tétrahydrofuranyle et tétrahydrothiényle, chacun desdits radicaux hétérocycliques aliphatiques pouvant être éventuellement substitué par un groupe oxo; et ledit radical hétérocyclique aromatique est choisi parmi les radicaux pyrrolyle, furanyle, thiényle, pyridyle, pyrimidinyle, pyrazinyle et pyridazinyle, chacun desdits radicaux hétérocycliques aromatiques pouvant être éventuellement substitué par un groupe hydroxy; pour la fabrication d'un médicament destiné au traitement d'une infection par le HIV (virus du SIDA).

- Utilisation d'un composé selon la revendication 1 dans laquelle n vaut au moins 1 et au moins un radical R⁴ représente un groupe cyano.
 - Utilisation d'un composé selon la revendication 1 ou 2 dans laquelle le composé répond à la formule

$$\begin{array}{c|c} L & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

 Utilisation d'un composé selon l'une quelconque des revendications 1 à 3 dans laquelle le composé répond à la formule

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{7} \longrightarrow \mathbb{R}^{4} \mathbb{R}^{4} \mathbb{R}^{5}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{5} \longrightarrow \mathbb{R}^{5}$$

$$\mathbb{R}^{5} \longrightarrow \mathbb{R}^{5} \longrightarrow$$

et dans laquelle

5

10

15

20

25

30

35

40

45

50

55

R^{4'} représente un groupe halogéno, alkyle en C₁₋₆, cyano, aminocarbonyle, nitro, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle ; n' vaut 0, 1, 2 ou 3.

5. Composé de formule

N-oxyde, sel d'addition pharmaceutiquement acceptable ou forme stéréoisomère de ce composé, formule dans laquelle

A représente CH, CR4 ou N;

Q représente un atome d'hydrogène ou -NR1R2;

R¹ et R² sont chacun choisis indépendamment parmi un atome d'hydrogène et un groupe hydroxy, alkyle en C_{1-12} , alkyloxy en C_{1-12} , alkyloxy en C_{1-12} , alkyloxy en C_{1-12}) carbonyle, alkyloxy(en C_{1-12}) carbonyle, aryle, amino, mono- ou di(alkyl en C_{1-12}) amino, mono- ou di(alkyl en C_{1-12}) aminocarbonyle où chacun des groupes alkyle en C_{1-12} susmentionnés peut éventuellement, et chacun individuellement, être substitué par un ou deux substituants, chacun étant choisi indépendamment parmi les groupes hydroxy, alkyloxy en C_{1-6} , hydroxyalkyloxy en C_{1-6} , carboxyle, alkyl(en C_{1-6})oxycarbonyle, cyano, amino, imino, aminocarbonyle, aminocarbonylamino, mono- ou di(alkyl en C_{1-6}) amino, aryle et Het; ou

 $\rm R^1$ et $\rm R^2$ peuvent former conjointement un groupe pyrrolidinyle, pipéridinyle, morpholinyle, azido ou mono- ou di (alkyl en $\rm C_{1-12}$)amino(alkylidène en $\rm C_{1-4}$);

 R^3 représente un atome d'hydrogène ou un groupe aryle, alkyl(en C_{1-6}) carbonyle, alkyle en C_{1-6} , alkyl(en C_{1-6}) oxycarbonyle, alkyle en C_{1-6} substitué par un groupe alkyl(en C_{1-6})oxycarbonyle; et

chaque R⁴ représente indépendamment un groupe hydroxy, halogéno, alkyle en C₁₋₆, alkyloxy en C₁₋₆, cyano, aminocarbonyle, nitro, amino, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle;

R⁵ représente un atome d'hydrogène ou un groupe alkyle en C₁₋₄;

L représente un groupe 2,6-dichlorobenzyle,

ou L représente -X¹-R6 où X¹ représente -NR³-, -S- ou -O- et R6 représente un groupe 2,4,6-trichlorophényle, 2,4,6-triméthylphényle, 2,4-dibromo-3,5-dichlorophényle, 2,4-dibromo-6-fluorophényle, 2,4-dichloro-6-méthylphényle, 2,6-dibromo-4-isopropylphényle, 2,6-dibromo-4-méthylphényle, 2,6-dibromo-4-prop-1-ylphényle, 2,6-dichloro-4-cyanophényle, 2,6-dichloro-4-trifluorométhoxyphényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-diméthylphényle, 2-bromo-4-fluoro-6-méthylphényle, 2-bromo-6-chloro-4-fluorophényle, 4-bromo-2,6-diméthylphényle, 4-chloro-2,6-diméthylphényle, 4-cyano-2,6-diméthylphényle; ou L représente -X²-Alk-R7 où -X²-Alk- représente -NH-CH₂- et R7 représente un groupe phényle yaryle représente un groupe phényle ou phényle substitué par un, deux, trois, quatre ou cinq substituants, chacun étant choisi indépendamment parmi les groupes halogéno, alkyle en C₁-6, alkyloxy en C₁-6, cyano, nitro et trifluorométhyle :

Het représente un radical hétérocyclique aliphatique ou aromatique; ledit radical hétérocyclique aliphatique est choisi parmi les radicaux pyrrolidinyle, pipéridinyle, homopipéridinyle, pipérazinyle, morpholinyle, tétrahydrofuranyle et tétrahydrothiényle, chacun desdits radicaux hétérocycliques aliphatiques pouvant être éventuellement substitué par un groupe oxo; et ledit radical hétérocyclique aromatique est choisi parmi les radicaux pyrrolyle, furanyle, thiényle, pyridyle, pyrimidinyle, pyrazinyle et pyridazinyle, chacun desdits radicaux hétérocycliques aromatiques pouvant être éventuellement substitué par un groupe hydroxy;

R^{4'} représente un groupe halogéno, alkyle en C₁₋₆, cyano, aminocarbonyle, nitro, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle; n' vaut 0, 1, 2 ou 3;

à condition que Q soit autre que des groupes anilino, 2,4,6-trinitroanilino, 3-méthoxyanilino, 4-méthoxyanilino, 3,4-diméthoxyanilino, 3-chloro-4-fluoroanilino, 4-cyanoanilino, 2-alkyl(en C₁₋₆)anilino, 4-alkyl(en C₁₋₆)-anilino, 3-chloroanilino, 4-bromoanilino, 4-nitroanilino et 4-chloroanilino.

6. Composé dans lequel le composé répond à la formule

 $R^{3} \longrightarrow Q \qquad (R^{4})$ $R^{3} \longrightarrow Q \qquad (T-1)$

N-oxyde, sel d'addition pharmaceutiquement acceptable ou forme stéréoisomère de ce composé, formule dans laquelle

A représente CH, CR4 ou N;

5

10

15

20

25

30

35

40

45

50

55

Q représente un atome d'hydrogène ou -NR1R2;

 R^1 et R^2 sont chacun choisis indépendamment parmi un atome d'hydrogène et un groupe hydroxy, alkyle en C_{1-12} , alkyloxy en C_{1-12} , alkyloxy en C_{1-12} , alkyloxy en C_{1-12}) carbonyle, alkyl(en C_{1-12}) oxycarbonyle, aryle, amino, mono- ou di(alkyl en C_{1-12}) amino, mono- ou di(alkyl en C_{1-12}) aminocarbonyle où chacun des groupes alkyle en C_{1-12} susmentionnés peut éventuellement, et chacun individuellement, être substitué par un ou deux substituants, chacun étant choisi indépendamment parmi les groupes hydroxy, alkyloxy en C_{1-6} , hydroxyalkyloxy en C_{1-6} , carboxyle, alkyl(en C_{1-6}) oxycarbonyle, cyano, amine, imino, aminocarbonyle, aminocarbonylamino, mono- ou di(alkyl en C_{1-6}) amino, aryle et Het: ou

 R^1 et R^2 peuvent former conjointement un groupe pyrrolidinyle, pipéridinyle, morpholinyle, azido ou mono- ou di (alkyl en C_{1-12})amino(alkylidène en C_{1-4});

 R^3 représente un atome d'hydrogène ou un groupe aryle, alkyl(en C_{1-6})carbonyle, alkyle en C_{1-6} , alkyl(en C_{1-6}) oxycarbonyle, alkyle en C_{1-6} substitué par un groupe alkyl(en C_{1-6})oxycarbonyle; et

chaque R⁴ représente indépendamment un groupe hydroxy, halogéno, alkyle en C₁₋₆, alkyloxy en C₁₋₆, cyano, aminocarbonyle, nitro, amine, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle ;

R5 représente un atome d'hydrogène ou un groupe alkyle en C₁₋₄;

L représente un groupe 2,6-dichlorobenzyle,

ou L représente -X¹-R6 où X¹ représente -NR³-, -S- ou -O- et R6 représente un groupe 2,4,6-trichlorophényle, 2,4,6-triméthylphényle, 2,4-dibromo-3,5-dichlorophényle, 2,4-dibromo-6-fluorophényle, 2,4-dichloro-6-méthylphényle, 2,6-dibromo-4-isopropylphényle, 2,6-dibromo-4-méthylphényle, 2,6-dibromo-4-prop-1-ylphényle, 2,6-dichloro-4-cyanophényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-diméthylphényle, 2-bromo-4-fluoro-6-méthylphényle, 2-bromo-6-chloro-4-fluorophényle, 4-bromo-2,6-diméthylphényle, 4-chloro-2,6-diméthylphényle, 4-cyano-2,6-diméthylphényle; ou L représente -X²-Alk-R7 où -X²-Alk- représente -NH-CH₂- et R7 représente un groupe phényle;

aryle représente un groupe phényle ou phényle substitué par un, deux, trois, quatre ou cinq substituants, chacun étant choisi indépendamment parmi les groupes halogéno, alkyle en C_{1-6} , alkyloxy en C_{1-6} , cyano, nitro et trifluorométhyle.

Het représente un radical hétérocyclique aliphatique ou aromatique ; ledit radical hétérocyclique aliphatique est choisi parmi les radicaux pyrrolidinyle, pipéridinyle, homopipéridinyle, pipérazinyle, morpholinyle, tétrahydrofura-

nyle et tétrahydrothiényle, chacun desdits radicaux hétérocycliques aliphatiques pouvant être éventuellement substitué par un groupe oxo; et ledit radical hétérocyclique aromatique est choisi parmi les radicaux pyrrolyle, furanyle, thiényle, pyridyle, pyrimidinyle, pyrazinyle et pyridazinyle, chacun desdits radicaux hétérocycliques aromatiques pouvant être éventuellement substitué par un groupe hydroxy;

R4' représente un groupe halogéno, alkyle en C₁₋₆, cyano, aminocarbonyle, nitro, trihalogénométhyle, trihalogénométhyloxy ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle; n' vaut 0, 1, 2 ou 3;

à condition que Q soit autre que des groupes anilino, 2,4,6-trinitroanilino, 4-alkyl(en C₁₋₆)anilino, 4-bromoanilino, 4-nitroanilino et 4-chloroanilino.

- Composé selon la revendication 6 dans lequel R⁴ représente un groupe cyano, aminocarbonyle ou alkyle en C₁₋₆ substitué par un groupe cyano ou aminocarbonyle.
- 8. Composé selon l'une quelconque des revendications 5 à 7 dans lequel Q représente un atome d'hydrogène, L représente -X¹-R⁶ où X¹ représente -NH- et R⁶ représente 2,4,6-triméthylphényle ou 4-cyano-2,6-diméthylphényle, le groupement NR³ (phényle ou pyridyle éventuellement substitué) représente un groupe p-cyanoanilino et se trouve en position 2 du noyau pyrimidine.
- Composé selon l'une quelconque des revendications 5 ou 6 dans lequel R⁴ représente un groupe halogéno, cyano, aminocarbonyle ou cyano-alkyle en C₁₋₆; n vaut zéro, A représente CH, R³ représente un atome d'hydrogène; R⁵ représente un atome d'hydrogène ou un groupe méthyle; Q représente un atome d'hydrogène ou un groupe NHR¹; et L représente -X¹-R⁶ où X¹ représente -NR³-, -S- ou -O- et R⁶ représente un groupe 2,4,6-trichlorophényle, 2,4-dibromo-3,5-dichlorophényle, 2,4-dibromo-6-fluorophényle, 2,4-dichloro-6-méthylphényle, 2,6-dibromo-4-isopropylphényle, 2,6-dibromo-4-méthylphényle, 2,6-dibromo-4-prop-1-yl-phényle, 2,6-dichloro-4-cyanophényle, 2,6-dichloro-4-trifluorométhoxy-phényle, 2,6-dichloro-4-trifluorométhylphényle, 2,6-dichloro-4-fluoro-6-méthylphényle; 2-bromo-6-chloro-4-fluorophényle, 4-bromo-2,6-diméthylphényle, 4-chloro-2,6-diméthylphényle, 4-cyano-2,6-diméthylphényle; ou L représente -X²-Alk-R⁷ où -X²-Alk- représente un groupe -NH-CH₂- et R⁷ un groupe phényle.
 - 10. Composé selon la revendication 5 dans lequel le composé est

·5

10

15

30

40

- le 4-[[4-amino-6-[(2,6-dichlorophényl)méthyl]-2-pyrimidinyl]amino]benzonitrile;
- la 6-[(2,6-dichlorophényl)méthyl]-N2-(4-fluorophényl)-2,4-pyrimidinediamine;
- le 4-[[4-[(2,6-dichlorophényl)méthyl]-6-[(3-hydroxypropyl)amino]-2-pyrimidinyl]amino]benzonitrile;
- 35 le N-[2-[(4-cyanophényl)amino]-6-[(2,6-dichlorophényl)méthyl)-4-pyrimidinyl]acétamide;
 - le N-[2-[(4-cyanophényl)amino]-6-[(2,6-dichlorophényl)méthyl]-4-pyrimidinyl]butanamide;
 - le 4-[[2-amino-6-(2,6-dichlorophénoxy)-4-pyrimidinyl]-amino]benzonitrile;
 - le 4-[(4-[(2,6-dichlorophényl)méthyl]-6-[(2-hydroxy-2-phényléthyl)amino]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[(2,6-dichlorophényl)méthyl]-6-[3-(2-oxo-1-pyrrolidinyl)propyl]amino]-2-pyrimidinyl)amino]benzonitrile;
 - le 4-[(4-[(2,6-dichlorophényl)méthyl]-6-[[2-(2-hydroxyéthoxy)éthyl]amino]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-{(2,6-dichlorophényl)méthyl]-6-[(2,3-dihydroxypropyl)amino]-2-pyrimidinyl]amino)benzonitrile;
 - le 4-[[4-[(2,6-dichlorophényl)méthyl)-6-(hydroxyamino)-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[(2-cyanoéthyl)amino]-6-[(2,6-dichlorophényl)méthyl]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[(2,6-dichlorophényl)méthyl]-6-[[2-(1-pyrrolidinyl)éthyl]amino]-2-pyrimidinyl]amino]benzonitrile;
- 45 le 4-[(4-amino-6-[(2,6-dichlorophényl)méthyl]-5-méthyl-2-pyrimidinyl]amino]benzonitrile;
 - la N2-(4-bromophényl)-6-[(2,6-dichlorophényl)méthyl]-5-méthyl-2,4-pyrimidinediamine;
 - le 4-[[4-[(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]-amino]benzonitrile;
 - le 4-[[2-[(2,4,6-triméthylphényl)amino]-4-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[(2,6-diméthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-(2,4,6-triméthylphénoxy)-2-pyrimidinyl]-amino]benzonitrile;
 - le 4-[[4-{(2,6-dichlorophényl)thio}-2-pyrimidinyl}-amino]benzonitrile;
 - le 4-[[4-[[2,6-dibromo-4-(1-méthyléthyl)phényl]amino]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[[2,6-dichloro-4-(trifluorométhyl)phényl]-amino]-2-pyrimidinyl]amino]benzonitrile;
 - le 4-[[4-[(2,4-dichloro-6-méthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile;
- le 4-[[2-[(cyanophényl)amino]-4-pyrimidinyl]amino]-3,5-diméthylbenzonitrile;
 - le 4-[[4-[(2,4-dibromo-6-fluorophényl)amino]-2-pyrimidinyl]amino]benzonitrile :
 - le 4-[[4-amino-6-[(2,6-dichlorophényl)méthyl]-5-méthyl-2-pyrimidinyl]amino]benzèneacétonitrile;
 - le 4-[[4-[méthyl(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(2,4,6-trichlorophényl)amino]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(2,4,6-triméthylphényl)thio]-2-pyrimidinyl]amino]benzonitrile;

5

10

15

20

25

30

40

55

le 4-[[4-[(2,4,6-triméthylphényl)amino-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-amino-6-[(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[2-amino-6-[(2,4,6-triméthylphényl)amino]-4-pyrimidinyl]amino]benzonitrile;

le 4-{[4-(2-bromo-4-chloro-6-méthylphénoxy)-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(4-chloro-2,6-diméthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile;

le 3,5-dichloro-4-[[2-[(4-cyanophényl)amino]-4-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[[2,6-dichloro-4-(trifluorométhoxy)phényl]-amino]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(2,4-dibromo-3,6-dichlorophényl)amino]-2-pyrimidiny]lamino]benzonitrile ;

le 4-[[4-[(2,6-dibromo-4-propylphényl]amino]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]amino]benzamide;

le 4-[[4-[(4-(1,1-diméthyléthyl)-2,6-diméthylphényl)-amine]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[2-[(4-cyanophényl)amino]-4-pyrimidinyl]oxy]-3,5-diméthylbenzonitrile;

le 4-[[4-[(4-chloro-2,6-diméthylphényl)amino]-5-méthyl-2-pyrimidinyl]amino]benzonitrile;

le 4-[[2-{(4-cyanophényl)amino}-5-méthyl-4-pyrimidinyl]amino-3,5-diméthylbenzonitrile;

le 4-[[4-[[4-(1,1-diméthyléthyl)-2,6-diméthylphényl]-amino]-5-méthyl-2-pyrimidinyl] amino]benzonitrile,

le 4-[[4-[(4-bromo-2,6-diméthylphényl)amino]-5-méthyl-2-pyrimidinyl]amino]benzonitrile;

le 4-[[5-méthyl-4-[(2,4,6-triméthylphényl)thio]-2-pyrimidinyl]amino]benzonitrile;

le 4-[[4-[(2,6-dibromo-4-propylphényl)amino]-5-méthyl-2-pyrimidinyl]amino]benzonitrile;

le N3-oxyde de 4-[[4-[(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]amino]benzamide;

la N2-(4-chlorophényl)-N4-(2,4,6-triméthylphényl)-2,4-pyrimidinediamine;

le 4-[[4-[[2,6-dibromo-4-(1-méthyléthyl)phényl]amino]-5-méthyl-2-pyrimidinyl]amino]benzonitrile;

le 4-[[2-[(4-cyanophényl)amino)-5-méthyl-4-pyrimidinyl]amino]-3,5-diméthylbenzonitrile;

le 4-[[4-[(phénylméthyl)amino]-2-pyrimidinyl]amino]-benzonitrile;

N-oxyde, sel d'addition pharmaceutiquement acceptable ou forme stéréoisomère de ces composés.

- 11. Composition pharmaceutique comprenant un véhicule pharmaceutiquement acceptable et une quantité active sur le plan thérapeutique d'un composé tel que défini dans l'une quelconque des revendications 5 à 10, 26 ou 27.
- 12. Procédé de préparation d'une composition pharmaceutique telle que définie dans la revendication 11 caractérisé en ce que l'on mélange intimement une quantité efficace sur le plan thérapeutique d'un composé tel que défini dans l'une quelconque des revendications 5 à 10 avec un véhicule pharmaceutiquement acceptable.
- 35 13. Procédé de préparation d'un composé tel que défini dans la revendication 5, caractérisé en ce que

a) on fait réagir un intermédiaire de formule (II-A), dans laquelle W¹ est un groupe partant approprié, avec un dérivé amino de formule (III), éventuellement dans un solvant, sous une atmosphère inerte vis-à-vis de la réaction, et éventuellement en présence d'un acide

où Q, R3, R4, R4, R5, A, n' et L sont tels que définis dans la revendication 5;

b) on fait réagir un intermédiaire de formule (II-B), dans laquelle W¹ est un groupe partant approprié, avec un dérivé amino de formule (VI), éventuellement dans un solvant, sous une atmosphère inerte vis-à-vis de la réaction, et éventuellement en présence d'un acide

où R¹, R², R³, R⁴, R⁴, R⁵, A, n' et L sont tels que définis dans la revendication 5; c) on fait réagir un intermédiaire H-X¹-R⁶ avec un intermédiaire de formule (II-C) dans un solvant approprié, éventuellement en présence d'un acide ou d'une base approprié; ce qui permet d'obtenir des composés de formule (I'), dans laquelle L est -X¹-R⁶, lesdits composés étant représentés par la formule (I'-c),

où R3, R4, R4', R5, R6, X1, Q, n' et A sont tels que définis dans la revendication 5;

ou, le cas échéant, on transforme les composés de formule (l') les uns en les autres par des transformations connues dans la technique et ensuite, le cas échéant, on transforme les composés de formule (l') en un sel d'addition d'acide non toxique et actif sur le plan thérapeutique, par traitement avec un acide, ou en un sel d'addition de base non toxique et actif sur le plan thérapeutique, par traitement avec une base, ou à l'inverse on transforme le sel d'addition d'acide en base libre par traitement avec un produit alcalin, ou on transforme le sel d'addition de base en acide libre par traitement avec un acide ; et, le cas échéant, on prépare les formes stéréoisomères ou les N-oxydes dudit composé.

14. Composé selon la revendication 5 à utiliser comme médicament.

5

10

15

20

25

30

35

45

- 40 15. Association d'un composé de formule (I) tel que défini dans la revendication 1 et d'un autre composé antirétroviral.
 - 16. Association d'un composé de formule (l') tel que défini dans la revendication 5 et d'un autre composé antirétroviral.
 - 17. Association selon la revendication 15 ou 16 à utiliser comme médicament.
 - 18. Produit contenant (a) un composé de formule (I) tel que défini dans la revendication 1 et (b) un autre composé antirétroviral, sous forme d'une préparation associée pour une utilisation simultanée, séparée ou séquentielle dans un traitement anti-HIV.
- 50 19. Produit contenant (a) un composé de formule (I') tel que défini dans la revendication 5 et (b) un autre composé antirétroviral, sous forme d'une préparation associée pour une utilisation simultanée, séparée ou séquentielle dans un traitement anti-HIV.
 - 20. Composition pharmaceutique comprenant un véhicule pharmaceutiquement acceptable et, comme principes actifs (a) un composé de formule (I) tel que défini dans la revendication 1 et (b) un autre composé antirétroviral.
 - 21. Composition pharmaceutique comprenant un véhicule pharmaceutiquement acceptable et, comme principes actifs, (a) un composé de formule (l') tel que défini dans la revendication 5 et (b) un autre composé antirétroviral.

22. Composé de formule (II'-B)

5

20

30

35

40

45

50

55

(U'-B) 10 į,

- 15 dans laquelle R3, R4, R4', R5, n', A et L sont tels que définis dans la revendication 5 et W1 est un atome d'halogène.
 - 23. Utilisation d'un composé selon l'une quelconque des revendications 1 à 4 pour la fabrication d'un médicament destiné au traitement d'une infection au HIV 1 résistante aux inhibiteurs de transcriptase inverse non nucléoside autres que ceux définis dans les revendications 1 à 4.
 - 24. Composé selon la revendication 10 dans lequel le composé est le 4-[[2-[(cyanophényl)amino]-4-pyrimidinyl]amino]-3,5-diméthylbenzonitrile, un N-oxyde, un sel d'addition pharmaceutiquement acceptable ou une forme stéréoisomère de ce composé.
- 25 25. Composé selon la revendication 10 dans lequel le composé est le 4-[(4-[(2,4,6-triméthylphényl)amino]-2-pyrimidinyl]amino]benzonitrile, un N-oxyde, un sel d'addition pharmaceutiquement acceptable ou une forme stéréoisomère de ce composé.