```
A(x) = x^6 + x^5 + x^4 + x \rightarrow 01110010 \rightarrow 0x72
                                                                        a = bq + r deg(b) > deg(r)
P(x) = x^8 + x^4 + x^3 + x + 1
A(x) A^{-1}(x) = 1 \mod P(x)
A^{-1}(x) = (x^6 + x^5 + x^4 + x)^{-1} \mod (x^8 + x^4 + x^3 + x + 1)
Use extended Euclidean algorithm to find inverse polynomial.
x^8 + x^4 + x^3 + x + 1 = (x^6 + x^5 + x^4 + x)q + r
Find a q such that deg(r) < deg(b):
q must be degree 2 in order for the equality to be preserved.
\alpha = x^2:
           (x^6 + x^5 + x^4 + x)(x^2) + r = b
           (x^{8} + x^{7} + x^{6} + x^{3}) + r = x^{8} + x^{4} + x^{3} + x + 1 
 r = (1+1)x^{8} + x^{7} + x^{6} + x^{4} + (1+1)x^{3} + x + 1 
           r = x^7 + x^6 + x^4 + x + 1
           deg(r) = 7 < deg(b) = 6
                                                              not viable
q = x^2 + 1:
           (x^6 + x^5 + x^4 + x)(x^2 + 1) + r = a
           (x^8 + x^7 + x^6 + x^3 + x^6 + x^5 + x^4 + x) + r = a

(x^8 + x^7 + (1+1)x^6 + x^5 + x^4 + x^3 + x) + r = a

(x^8 + x^7 + x^5 + x^4 + x^3 + x) + r = x^8 + x^4 + x^3 + x + 1
           r = (1+1)x^8 + x^7 + x^5 + (1+1)x^4 + (1+1)x^3 + (1+1)x + 1
           r = x^7 + x^5 + 1
           deg(r) = 7 < deg(b) = 6
                                                               not viable
q = x^2 + x:
           (x^{6} + x^{5} + x^{4} + x) (x^{2} + x) + r = a

(x^{8} + x^{7} + x^{6} + x^{3} + x^{7} + x^{6} + x^{5} + x^{2}) + r = a

(x^{8} + (1+1)x^{7} + (1+1)x^{6} + x^{5} + x^{3} + x^{2}) + r = a
           (x^8 + x^5 + x^3 + x^2) + r = x^8 + x^4 + x^3 + x + 1

r = (1+1)x^8 + x^5 + x^4 + (1+1)x^3 + x^2 + x + 1
           r = x^5 + x^4 + x^2 + x + 1
           deg(r) = 5 < deg(b) = 6
q = x^2 + x + 1: (Example to show that the solution q is unique)
           (x^6 + x^5 + x^4 + x)(x^2 + x + 1) + r = a
           (x^8 + x^7 + x^6 + x^3 + x^7 + x^6 + x^5 + x^2 + x^6 + x^5 + x^4 + x) + r = a

(x^8 + (1+1)x^7 + (1+1+1)x^6 + (1+1)x^5 + x^4 + x^3 + x^2 + x) + r = a

(x^8 + x^6 + x^4 + x^3 + x^2 + x) + r = x^8 + x^4 + x^3 + x + 1
           r = (1+1)x^{8} + x^{6} + (1+1)x^{4} + (1+1)x^{3} + x^{2} + (1+1)x + 1
          r = x^6 + x^2 + 1
          deg(r) = 6   deg(b) = 6
                                                                not viable
x^{8} + x^{4} + x^{3} + x + 1 = (x^{6} + x^{5} + x^{4} + x)(x^{2} + x) + (x^{5} + x^{4} + x^{2} + x + 1)
x^6 + x^5 + x^4 + x = (x^5 + x^4 + x^2 + x + 1)q + r
Find a g such that deg(r) < deg(b):
a = x:
           (x^5 + x^4 + x^2 + x + 1)(x) + r = a
           (x^6 + x^5 + x^3 + x^2 + x) + r = x^6 + x^5 + x^4 + x
           r = (1+1)x^6 + (1+1)x^5 + x^4 + x^3 + x^2 + (1+1)x
           r = x^4 + x^3 + x^2
           deg(r) = 4 < deg(b) = 5
                                                                viable
x^6 + x^5 + x^4 + x = (x^5 + x^4 + x^2 + x + 1)(x) + (x^4 + x^3 + x^2)
x^5 + x^4 + x^2 + x + 1 = (x^4 + x^3 + x^2)q + r
Find a q such that deg(r) < deg(b):
a = x:
          (x^4 + x^3 + x^2)(x) + r = x^5 + x^4 + x^2 + x + 1
(x^5 + x^4 + x^3) + r = x^5 + x^4 + x^2 + x + 1
           r = (1+1)x^5 + (1+1)x^4 + x^3 + x^2 + x + 1
          r = x^3 + x^2 + x + 1
           deg(r) = 3 < deg(b) = 4
                                                               viable
x^5 + x^4 + x^2 + x + 1 = (x^4 + x^3 + x^2)(x) + (x^3 + x^2 + x + 1)
x^4 + x^3 + x^2 = (x^3 + x^2 + x + 1)q + r
```

```
Find a q such that deg(r) < deg(b):
q = x:
           (x^3 + x^2 + x + 1)(x) + r = x^4 + x^3 + x^2

(x^4 + x^3 + x^2 + x) + r = x^4 + x^3 + x^2

r = (1+1)x^4 + (1+1)x^3 + (1+1)x^2 + x
           r = x
            deg(r) = 1 < deg(b) = 3
                                                                    viable
x^4 + x^3 + x^2 = (x^3 + x^2 + x + 1)(x) + (x)
x^3 + x^2 + x + 1 = (x)q + r
Find a q such that deg(r) < deg(b):
q = x^2:
           (x) (x^2) + r = x^3 + x^2 + x + 1

(x^3) + r = x^3 + x^2 + x + 1

r = (1+1)x^3 + x^2 + x + 1
           r = x^2 + x + 1
                                                                    not viable
           deg(r) = 2  deg(b) = 1
q = x^2 + 1:
           \begin{array}{l} (x) (x^2 + 1) + r = x^3 + x^2 + x + 1 \\ (x^3 + x) + r = x^3 + x^2 + x + 1 \\ r = (1+1)x^3 + x^2 + (1+1)x + 1 \end{array}
            r = x^2 + 1
           deg(r) = 2  deg(b) = 1
                                                                    not viable
q = x^2 + x:
           (x) (x^2 + x) + r = x^3 + x^2 + x + 1

(x^3 + x^2) + r = x^3 + x^2 + x + 1

r = (1+1)x^3 + (1+1)x^2 + x + 1
           r = x + 1
            deg(r) = 1 \lessdot deg(b) = 1
                                                                    not viable
q = x^2 + x + 1:
            (x) (x^2 + x + 1) + r = x^3 + x^2 + x + 1

(x^3 + x^2 + x) + r = x^3 + x^2 + x + 1
           r = (1+1)x^3 + (1+1)x^2 + (1+1)x + 1
           r = 1
            deg(r) = 0 < deg(b) = 1
                                                                    viable
x^3 + x^2 + x + 1 = (x)(x^2 + x + 1) + (1)
```

```
x^{8} + x^{4} + x^{3} + x + 1 = (x^{6} + x^{5} + x^{4} + x)(x^{2} + x) + (x^{5} + x^{4} + x^{2} + x + 1)
 x^6 + x^5 + x^4 + x = (x^5 + x^4 + x^2 + x + 1)(x) + (x^4 + x^3 + x^2)
x^{5} + x^{4} + x^{2} + x + 1 = (x^{4} + x^{3} + x^{2})(x) + (x^{3} + x^{2} + x + 1)

x^{4} + x^{3} + x^{2} = (x^{3} + x^{2} + x + 1)(x) + (x)
  x^3 + x^2 + x + 1 = (x)(x^2 + x + 1) + (1)
1 = (x^3 + x^2 + x + 1) + (x)(x^2 + x + 1)
Solve:
1 = (x^3 + x^2 + x + 1) + (x)(x^2 + x + 1)
Substitute (x^4 + x^3 + x^2) + (x^3 + x^2 + x + 1)(x) for x:
 \begin{array}{l} 1 = (x^3 + x^2 + x + 1) + ((x^4 + x^3 + x^2) + (x^3 + x^2 + x + 1)(x))(x^2 + x + 1) \\ 1 = (x^3 + x^2 + x + 1) + ((x^4 + x^3 + x^2)(x^2 + x + 1) + (x^3 + x^2 + x + 1)(x^3 + x^2 + x)) \\ 1 = (x^3 + x^2 + x + 1)(x^3 + x^2 + x + 1) + (x^4 + x^3 + x^2)(x^2 + x + 1) \end{array} 
Substitute (x^5 + x^4 + x^2 + x + 1) + (x^4 + x^3 + x^2)(x) for x^3 + x^2 + x + 1:
 1 = ((x^5 + x^4 + x^2 + x + 1) + (x^4 + x^3 + x^2)(x))(x^3 + x^2 + x + 1) + (x^4 + x^3 + x^2)(x^2 + x + 1)
 1 = ((x^5 + x^4 + x^2 + x + 1)(x^3 + x^2 + x + 1) + (x^4 + x^3 + x^2)(x^4 + x^3 + x^2 + x)) + (x^4 + x^3 + x^2)(x^2 + x + 1)
1 = (x^{5} + x^{4} + x^{2} + x + 1)(x^{3} + x^{2} + x + 1) + (x^{4} + x^{3} + x^{2})(x^{4} + x^{3} + (1+1)x^{2} + (1+1)x + 1)
1 = (x^{5} + x^{4} + x^{2} + x + 1)(x^{3} + x^{2} + x + 1) + (x^{4} + x^{3} + x^{2})(x^{4} + x^{3} + (1+1)x^{2} + (1+1)x + 1)
1 = (x^{5} + x^{4} + x^{2} + x + 1)(x^{3} + x^{2} + x + 1) + (x^{4} + x^{3} + x^{2})(x^{4} + x^{3} + 1)
Substitute (x^6 + x^5 + x^4 + x) + (x^5 + x^4 + x^2 + x + 1)(x) for x^4 + x^3 + x^2:
 1 = (x^5 + x^4 + x^2 + x + 1)(x^3 + x^2 + x + 1) + ((x^6 + x^5 + x^4 + x) + (x^5 + x^4 + x^2 + x + 1)(x))(x^4 + x^3 + 1) \\  1 = (x^5 + x^4 + x^2 + x + 1)(x^3 + x^2 + x + 1) + ((x^6 + x^5 + x^4 + x)(x^4 + x^3 + 1) + (x^5 + x^4 + x^2 + x + 1)(x^5 + x^4 +
 x^4 + x)
1 = (x^5 + x^4 + x^2 + x + 1)(x^5 + x^4 + x^3 + x^2 + (1+1)x + 1) + (x^6 + x^5 + x^4 + x)(x^4 + x^3 + 1)
 1 = (x^5 + x^4 + x^2 + x + 1)(x^5 + x^4 + x^3 + x^2 + 1) + (x^6 + x^5 + x^4 + x)(x^4 + x^3 + 1)
Substitute (x^8 + x^4 + x^3 + x + 1) + (x^6 + x^5 + x^4 + x) (x^2 + x) for x^5 + x^4 + x^2 + x + 1:
1 = ((x^{8} + x^{4} + x^{3} + x + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{2} + x))(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{4} + x^{3} + x^{4} + x^{5} + x^{4} + x)(x^{4} + x^{5} + x^{4} + x^{5} + x^{4} + x^{5} + x^{4} + x)(x^{4} + x^{5} + x^{4} + x^{5} + x^{5} + x^{4} + x^{5} 
  + 1)
1 = ((x^{8} + x^{4} + x^{3} + x + 1)(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{7} + x^{6} + x^{5} + x^{4} + x^{2} + x^{6} + x^{5} + x^{4})
  + x^{3} + x)) + (x^{6} + x^{5} + x^{4} + x) (x^{4} + x^{3} + 1)
 1 = ((x^{8} + x^{4} + x^{3} + x + 1)(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{7} + (1+1)x^{6} + (1+1)x^{5} + (1+1)x^{4} + x^{3})
  + x^{2} + x) + (x^{6} + x^{5} + x^{4} + x) (x^{4} + x^{3} + 1)
 1 = ((x^{8} + x^{4} + x^{3} + x + 1)(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{7} + x^{3} + x^{2} + x)) + (x^{6} + x^{5} + x^{4} + x^{4} + x^{5} + x^{5} + x^{4} + x^{5} +
x) (x^4 + x^3 + 1)
1 = (x^{8} + x^{4} + x^{3} + x + 1)(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{7} + x^{4} + (1+1)x^{3} + x^{2} + x + 1)
 1 = (x^{8} + x^{4} + x^{3} + x + 1)(x^{5} + x^{4} + x^{3} + x^{2} + 1) + (x^{6} + x^{5} + x^{4} + x)(x^{7} + x^{4} + x^{2} + x + 1)
```

```
A(x) = x^6 + x^5 + x^4 + x \rightarrow 01110010 \rightarrow 0x72

A^{-1}(x) = x^7 + x^4 + x^2 + x + 1 \rightarrow 10010111 \rightarrow 0x97
| 1 0 0 0 1 1 1 1 | | x<sub>0</sub> |
                                        | 1 |
110001111
                                         1 1 |
                            | x<sub>1</sub> |
                                                    | b<sub>1</sub> |
| 1 1 1 0 0 0 1 1 |
                            | X<sub>2</sub> |
                                         | 0 |
                                                     | b<sub>2</sub>
| 1 1 1 1 0 0 0 1 | x | x<sub>3</sub> | +
                                        | 0 | = | b_3 |
| 1 1 1 1 1 0 0 0 |
                         | X4 |
                                        | 0 |
                                                    | b<sub>4</sub>
| 0 1 1 1 1 1 0 0 |
                            | X5 |
                                         | 1 |
                                                    | b<sub>5</sub>
                                        i 1 |
                           | x<sub>6</sub> |
| 0 0 1 1 1 1 1 0 |
                                                    1 b<sub>6</sub> 1
| 0 0 0 1 1 1 1 1 |
                          | x<sub>7</sub> |
                                       | 0 |
| 1 0 0 0 1 1 1 1 |
                            | 1 |
                                        | 1 |
                                                    | b<sub>0</sub> |
| 1 |
                                                    | b<sub>1</sub> |
                                       | 0 |
                                                    | b<sub>2</sub> |
| 1 1 1 1 0 0 0 1 | x | 0 | + | 0 |
                                                   | b<sub>3</sub> |
                            | 1 |
| 1 1 1 1 1 0 0 0 |
                                        I 0 I
                                                    | b<sub>4</sub> |
| 0 1 1 1 1 1 0 0 | | 0 |
                                        | 1 |
                                                    | b<sub>5</sub> |
0011110| 00
                                      | 1 |
                                                    | b<sub>6</sub> |
                                                    | b<sub>7</sub> |
| 0 0 0 1 1 1 1 1 |
                            | 1 |
                                        | 0 |
b_0 = (1) (1) + (0) (1) + (0) (1) + (0) (0) + (1) (1) + (1) (0) + (1) (0) + (1) (0) + (1) (1) + 1 = (1+1+1)+1 = 0
b_1 = (1) (1) + (1) (1) + (0) (1) + (0) (0) + (0) (1) + (1) (0) + (1) (0) + (1) (1) + 1 = (1+1+1) + 1 = 0
b_2 = (1)(1) + (1)(1) + (1)(1) + (0)(0) + (0)(1) + (0)(0) + (1)(0) + (1)(1) + 0 = (1+1+1+1) = 0
b_3 = (1)(1) + (1)(1) + (1)(1) + (1)(0) + (0)(1) + (0)(0) + (0)(0) + (1)(1) + 0 = (1+1+1+1) = 0
b_4 = (1) (1) + (1) (1) + (1) (1) + (1) (0) + (1) (1) + (0) (0) + (0) (0) + (0) (1) + 0 = (1+1+1+1) = 0
b_5 = (0)(1) + (1)(1) + (1)(1) + (1)(0) + (1)(1) + (1)(0) + (0)(0) + (0)(1) + 1 = (1+1+1)+1 = 0
b_6 = (0)(1) + (0)(1) + (1)(1) + (1)(0) + (1)(1) + (1)(0) + (1)(0) + (0)(1) + 1 = (1+1)+1 = 1
b_7 = (0) (1) + (0) (1) + (0) (1) + (1) (0) + (1) (1) + (1) (0) + (1) (0) + (1) (1) + 0 = (1+1) = 0
```

 $B(x) = 01000000 \rightarrow 0x40$

Therefore, 0x72 maps to 0x40.

	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
20	<i>b</i> 7	fd	93	26	36	3f	f7	cc	34	a5	e5	f1	71	d8	31	15
30	04	<i>c</i> 7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	<i>b</i> 3	29	e3	2f	84
50	53	d1	00	ed	20	fc	<i>b</i> 1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	<i>a</i> 8
70	51	a3	40	8 <i>f</i>	92	9d	38	f5	bc	<i>b</i> 6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	c4	<i>a</i> 7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	<i>b</i> 8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	c8	37	6d	8 <i>d</i>	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	<i>b</i> 4	c6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	<i>b</i> 9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
f0	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	<i>b</i> 0	54	bb	16

Check:

```
 \begin{array}{l} (x^6+x^5+x^4+x)\,(x^7+x^4+x^2+x+1) = 1 \\ (x^{13}+x^{12}+x^{11}+x^8) + (x^{10}+x^9+x^8+x^5) + (x^8+x^7+x^6+x^3) + (x^7+x^6+x^5+x^2) + (x^6+x^5+x^4+x) \\ x^{13}+x^{12}+x^{11}+x^{10}+x^9+(1+1+1)x^8+(1+1)x^7+(1+1+1)x^6+(1+1+1)x^5+x^4+x^3+x^2+x=1 \ \text{mod} \ P(x) \\ (x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^6+x^5+x^4+x^3+x^2+x) \ \text{mod} \ P(x) = 1 \\ x^{13}+x^{12}+x^{11}+x^{10}+x^9+x^8+x^6+x^5+x^4+x^3+x^2+x\to 11111101111110 \ P(x)\to 100011011 \end{array} 
11111101111110
100011011
01110000011110
 100011011
   _____
 0110110101110
   100011011
     -----
    010101110110
     100011011
      00100011010
         100011011
           -----
           000000001
                                 Value equals 1, so the polynomials are inverses of each other.
```