

David J. Miller Zhen Xiang George <u>Kesidis</u>

Adversarial Learning and Secure Al

© David J. Miller, Zhen Xiang, and George Kesidis 2023

Chapter 11

Backdoors for 3D Point Cloud (PC) Classifiers

Outline

- Backdoor attacks in 3D Point Cloud (PC) datasets
- ▶ PC-PT-RED
- A single-point "intrinsic" (or "natural") backdoor phenomenon
- A combined statistic to address the intrinsic backdoor phenomenon

4日 > 4周 > 4 差 > 4 差 > 差 の 9 ○

Backdoor Attack against Point Cloud Classifiers

▶ Point cloud (PC) data: A set of permutation invariant points:

$$\mathbf{X} = \{\underline{x}_i \in \mathbb{R}^3 | i = 1, \cdots, n\} \in \mathcal{X}$$

- Backdoor pattern for PCs
 - ► A set of inserted points

$$\mathbf{V}^* = \{\underline{u}_j^* + \underline{C}^* | \underline{u}_j^* \in \mathbb{R}^3, \underline{C}^* \in \mathbb{R}^3, j = 1, \cdots, n' \}.$$

- ► <u>C</u>*: an optimized, common spatial location close to points in all source class PCs.
- ▶ $\mathbf{U}^* = \{\underline{u}_j^* \in \mathbb{R}^3 | j = 1, \dots, n' \}$: an optimized local geometry to bypass point sampling and possible anomaly detection.
- Examples (backdoor points are in red)

PC-PT-RED: Key Ideas

- Intuition 1: closeness to source class for backdoor attack
 - For most non-backdoor class pairs, a common set of inserted points that induces high group misclassification from source class to target class will be spatially far from the points of source class PCs.
 - ▶ But for a backdoor class pair, there exists a common spatial location close to the source class PCs (likely near <u>C</u>*), where a set of inserted points can induce most source class PCs to be misclassified to the target class.
- ▶ Intuition 2: closeness to target class for intrinsic backdoor
 - ► A few non-backdoor class pairs may be associated with an intrinsic backdoor.
 - ► For these class pairs, the common spatial location close to the source class PCs will also be close to the points of most target class PCs.

4 D > 4 B > 4 E > 4 E > 9 Q P

PC-PT-RED: Key Ideas (cont)

- Intuition 3: dissimilarity of spatial locations for intrinsic backdoor
 - Intrinsic backdoor is likely due to the source and target classes being "semantically" similar.
 - There may exist several intrinsic backdoor points for a given non-backdoor class pair.
 - ► The closest sample-wise spatial location for a set of inserted points to induce a sample-wise misclassification to the target class can be different for different PCs from the same source class.
 - Illustration

4 D F 4 D F 4 D F 4 D F

PC-PT-RED: Step 1: Backdoor Pattern Estimation

▶ Based on Intuition 1, for each class pair (s, t), solve:

$$\begin{split} & \min_{\underline{C} \in \mathbb{R}^3} & \sum_{\mathbf{X} \in \mathcal{D}_s} d(\underline{C}, \mathbf{X}) \\ & \text{s.t.} & \frac{1}{|\mathcal{D}_s|} \sum_{\mathbf{X} \in \mathcal{D}_s} \mathbb{1} \big\{ \hat{c}(\mathbf{X} \cup \{\underline{C}\}) = t \big\} \geq \pi, \end{split}$$

- $ightharpoonup \mathcal{D}_s$: subset of clean samples from class $s \in \mathcal{Y}$.
- ▶ 1{·}: indicator function.
- π : target group misclassification fraction (set large, e.g. $\pi = 0.9$).
- ▶ The above problem is difficult to solve
 - The indicator function is not differentiable.
 - Solution may yield an overly large objective distance for some class pairs due to the strong robustness of PC classifiers.

PC-PT-RED: Step 1: Backdoor Pattern Estimation (cont)

Perform backdoor pattern estimation for each source class by minimizing the following differentiable surrogate objective:

$$L(\underline{C}; \mathcal{D}_{s}, \lambda) = \sum_{\mathbf{X} \in \mathcal{D}_{s}} \left[h(s|\mathbf{X} \cup \{\underline{C}\}) - \max_{k \neq s} h(k|\mathbf{X} \cup \{\underline{C}\}) \right] + \lambda \sum_{\mathbf{X} \in \mathcal{D}_{s}} d(\underline{C}, \mathbf{X})$$

- $h(k|\mathbf{X})$: output logit for class k and sample \mathbf{X} .
- \triangleright λ : Lagrange multiplier (adjusted automatically).
- Let $\hat{C}(s)$ be spatial location estimated for class s.
- ► The source class PCs "vote" for a target class:

$$\hat{t}(s) = \operatorname*{argmax}_{k \neq s} \sum_{\mathbf{X} \in \mathcal{D}_s} \mathbb{1} \left\{ \hat{c}(\mathbf{X} \cup \{ \underline{\hat{C}}(s) \}) = k \right\}$$

4 D > 4 B > 4 B > 4 B >

PC-PT-RED: Step 1: Backdoor Pattern Estimation (cont)

▶ Based on Intuition 3, we estimate a sample-wise spatial location for each $\mathbf{X} \in \mathcal{D}_s$ by minimizing:

$$\tilde{L}(\underline{C}; \mathbf{X}, \lambda) = h(s|\mathbf{X} \cup \{\underline{C}\}) - h(\hat{t}(s)|\mathbf{X} \cup \{\underline{C}\}) + \lambda d(\underline{C}, \mathbf{X})$$

- $\hat{t}(s)$: estimated target class.
- Denote the estimated sample-wise (SW) spatial location for $\mathbf{X} \in \mathcal{D}_s$ as $\underline{\hat{C}}_{\mathrm{sw}}(s,\mathbf{X})$

4 D > 4 A > 4 B > 4 B > B 9 9 9

PC-PT-RED: Step 2: Detection Inference

A detection statistic with three component statistics:

► Statistic 1: average distance to source class

$$r_{\mathrm{s}}(s) = \frac{1}{|\mathcal{D}_{s}|} \sum_{\mathbf{X} \in \mathcal{D}_{s}} d(\hat{\underline{C}}(s), \mathbf{X})$$

Statistic 2: average distance to estimated target class

$$r_{\mathrm{t}}(s) = rac{1}{|\mathcal{D}_{\hat{t}(s)}|} \sum_{\mathbf{X} \in \mathcal{D}_{\hat{t}(s)}} d(\hat{\underline{C}}(s), \mathbf{X})$$

PC-PT-RED: Step 2: Detection Inference (cont)

Statistic 3: a normalized similarity score

$$w(s) = \frac{z(s) - \min_{k \in \mathcal{Y}} z(k)}{\max_{k \in \mathcal{Y}} z(k) - \min_{k \in \mathcal{Y}} z(k)}, \text{ where}$$

$$z(k) = \frac{1}{|\mathcal{D}_k|} \sum_{\mathbf{X} \in \mathcal{D}_k} \frac{\hat{\underline{C}}(k) \cdot \hat{\underline{C}}_{\mathrm{sw}}(k, \mathbf{X})}{|\hat{\underline{C}}(k)| |\hat{\underline{C}}_{\mathrm{sw}}(k, \mathbf{X})|}$$
 is average cosine similarity for \mathcal{D}_k .

PC-PT-RED: Step 2: Detection Inference (cont)

Combination of statistics 1,2,3:

$$r(s) = w(s) \frac{r_{\rm t}(s)}{r_{\rm s}(s)}$$

- Based on Intuition 1, $r_s(s)$ will likely be large if $(s, \hat{t}(s))$ is a non-backdoor class pair; otherwise, $r_s(s)$ will likely be small.
- ▶ Based on Intuition 2 and 3, if $(s, \hat{t}(s))$ is associated with an intrinsic backdoor mapping, $r_t(s)$ or w(s) (or both) will likely be small.
- Combining the above, r(s) will be abnormally large only if $(s, \hat{t}(s))$ is a backdoor class pair.

4 D > 4 B > 4 E > 4 E > 9 Q P

PC-PT-RED: Step 2: Detection Inference (cont)

- How do we assess atypicality? We implement an unsupervised anomaly detector.
 - ▶ Denote $s_{\max} = \arg \max_{k \in \mathcal{V}} r(k)$.
 - ▶ to estimate a null distribution $G(\cdot)$, exclude statistics for all s such that $\hat{t}(s) = \hat{t}(s_{\max})$.
 - Given all positive statistics, choose a single-tailed null density form, e.g., a Gamma distribution, so that outliers will appear at the tail.
 - Estimate the maximum order statistic p-value:

$$pv = 1 - G(r(s_{max}))^{K-J}$$

where K is number of classes, J is number of statistics being excluded.

Set a confidence threshold, e.g., $\phi = 0.05$, and claim a detection (with confidence $1 - \phi$) if $pv < \phi$.

4 D > 4 B > 4 B > 4 B > 9 Q P

Experiments

- Settings
 - ► Dataset: Modelnet40
 - ▶ PC classifier architecture: PointNet, PointNet++, DGCNN
 - Attacks P1–P7
 - Example backdoored training samples with these 7 different backdoor patterns:

4 D F 4 D F 4 D F 4 D F

Experiments (cont)

Results – detection effectiveness

	P ₁ -PN	P ₂ -PN	P ₃ -PN	P ₄ -PN	P ₅ -PN
$1/r_{\rm s}$	(6.2e ⁻³ , 0.36)	(3.8 ⁻³ , 0.16)	(4.3e ⁻¹⁵ , 0.33)	(2.2e ⁻⁷ , 2.6e ⁻²)	(0.24, 0.11)
$r_{\rm t}/r_{\rm s}$	(4.5e ⁻² , 9.2e ⁻⁶)	(u.f., 0.32)	(6.1e -6, 9.8e-2)	(2.8e ⁻³ , 0.58)	(0.12, 0.19)
$w/r_{\rm s}$	(1,7e ⁻⁷ , 0.19)	(3.5e ⁻³ , 0.26)	(u.f., 0.27)	(5.6e⁻⁹ , 9.2e ⁻³)	(1.4e ⁻² , 6.1e ⁻²)
$r = w \cdot r_{\rm t}/r_{\rm s}$	(3.3e ⁻³ , 0.38)	(u.f., 0.19)	(u.f., 0.20)	(u.f., 0.22)	(5.4e ⁻² , 0.27)

	P ₆ -PN	P ₇ -PN	P_1 -PN++	P ₁ -DGCNN
$1/r_{\rm s}$	(0.24, 1.6e ⁻²)	(4.3e ⁻³ , 9.7e ⁻²)	(u.f. , 8.2e ⁻⁶)	(4.4e -5, 4.3e-2)
$r_{ m t}/r_{ m s}$	(0.21, 0.60)	(6.7e -5, 9.0e-3)	(u.f., 0.99)	(0.10, 0.59)
$w/r_{\rm s}$	(1.4e ⁻² , 2.6e ⁻²)	(5.5e -9, 7.0e-3)	(u.f., 0.94)	(0.22, 2.9e ⁻²)
$r = w \cdot r_{\rm t}/r_{\rm s}$	(7.6e ⁻⁴ , 0.33)	(u.f., 9.3e ⁻²)	(5.5e ⁻¹³ , 0.99)	(1.9e ⁻³ , 0.18)

- ► Ablation study: compare PC-PT-RED's combined statistic with other combinations of statistics.
- Demonstrated using order statistic p-values: (pv attack, pv clean).
- **>** Bold for successful detection (with $\phi = 0.05$): for attack, pv less than ϕ ; for clean, pv greater than ϕ .

4 D > 4 B > 4 E > 4 E > 9 Q P

Experiments (cont)

Illustration of the histogram of combined r statistics

Discussion: Intrinsic (Natural) Backdoors

- Natural backdoors may exist in other domains.
- ► For example, for classification of animal images, the training dataset may involve cow images mainly taken in pastures, with grass much less common in images of other animals.
- Thus, the DNN may learn to classify to the cow class whenever grass is present in the image [Hendrycks et al. ICCV'21].

With Permission, Figures Reproduced From

- Z. Xiang, D.J. Miller, S. Chen, X. Li, and G. Kesidis. A Backdoor Attack against 3D Point Cloud Classifiers. In *Proc. International Conference on Computer Vision (ICCV)*, Oct. 2021.
- Z. Xiang, D.J. Miller, S. Chen, X. Li, and G. Kesidis,
 Detecting Backdoor Attacks Against Point Cloud Classifiers.
 In Proc. IEEE ICASSP, Mar. 2022.

4 D > 4 B > 4 B > 4 B >