Automatic classification of lexical stress errors for German CAPT

Anjana Vakil and Jürgen Trouvain

Department of Computational Linguistics and Phonetics Saarland University, Saarbrücken, Germany

SLaTE 2015, Leipzig 4 September 2015

Lexical stress [TODO (LS)] in German

Accentuation/prominence of syllable(s) in a word

In German:

Variable placement, contrastive function

um·FAHR·en vs. UM·fahr·en to drive around to run over

- Reflected by duration, fundamental frequency (F0), intensity¹
- ► Impacts intelligibility of non-native (L2) speech²

¹Dogil and Williams 1999.

²Hirschfeld 1994.

CAPT for lexical stress errors [TODO (LSEs)]

- Contrastive LS notoriously difficult for French speakers¹
- CAPT offers huge potential for individualized instruction

- Classification of LS errors in L2 German unexplored
- Promising recent work using machine learning for classification of English stress patterns²

Our goal: explore classification-based detection of lexical stress errors by French learners of German

¹Dupoux et al. 1997.

²Kim and Beutnagel 2011; Shahin et al. 2012.

Subset of IFCASL corpus of French-German speech¹

- 12 bisyllabic, initial-stress words (word types) extracted automatically
- ▶ 668 tokens from ~55 French speakers

¹Fauth et al. 2014.

Data annotation

► Each token assigned a class label:

3 stress classes: 2 error classes: [correct], [incorrect], [none] [bad_nsylls], [bad_audio]

▶ 15 annotators (12 native), each token labeled by \ge 2

Overall pairwise inter-annotator agreement

	Mean	Maximum	Median	Minimum
% Agreement Cohen's κ	54.92%	83.93%	55.36%	23.21%
	0.23	0.61	0.26	-0.01

- Variability not explained by L1 or expertise
- Single gold-standard label selected for each token

Data annotation results

Experiments:

- Trained CART classifiers using WEKA toolkit¹
- Used error-annotated dataset for training/test data (gold-standard labels)
- Used L1 utterances of the same words as training data (all automatically labeled [correct])

Evaluated in terms of:

- % accuracy (% agreement with gold-standard labels)
- \blacktriangleright κ with respect to gold standard

¹ www.cs.waikato.ac.nz/ml/weka

Feature sets

Which features are most useful for classification?

Feature set	Description
DUR F0 INT	Duration features Fundamental frequency features Intensity features
WD LV AG	Uttered word (e.g. <i>Tatort</i>) Speaker's skill level (A2 B1 B2 C1) Speaker's age/gender (Girl Boy Woman Man)

Feature sets

Which features are most useful for classification?

- Prosodic features
 - DUR -Duration
 - F0 Fundamental frequency
 - INT Intensity
- ▶ WD Word type (e.g. Flagge)
- Speaker features
 - LV German proficiency level (A2|B1|B2|C1)
 - AG Age/gender (Girl|Boy|Woman|Man)

Training/testing datasets

How well can lexical stress errors be classified?

Results

How well can lexical stress errors be classified?

Best performance using only prosodic features: DUR+F0

- ▶ % Accuracy: 69.77%
- ► *κ*: 0.29

How well can lexical stress errors be classified?

How well can lexical stress errors be classified?

Results

How well can lexical stress errors be classified?

Best performance overall: WD+LV+DUR+F0+INT

- ► % Accuracy: 71.87%
- **κ**: 0.34

Results

How does classification accuracy compare with human agreement?

	% agreement	κ
Best classifier vs. gold standard	71.87%	0.34
Mean human vs. human	54.92%	0.23

- Results are encouraging in this context
- ► Still want better performance for real-world use

Selected references

- G. Dogil and B. Williams. "The phonetic manifestation of word stress". In: Word Prosodic Systems in the Languages of Europe. Ed. by H. van der Hulst. Walter de Gruyter, 1999. Chap. 5, pp. 273–334.
- E. Dupoux, C. Pallier, N. Sebastian, and J. Mehler. "A Destressing 'Deafness' in French?" In: Journal of Memory and Language 36.3 (Apr. 1997), pp. 406–421.
- C. Fauth, A. Bonneau, F. Zimmerer, J. Trouvain, B. Andreeva, V. Colotte, D. Fohr, D. Jouvet, J. Jügler, Y. Laprie, O. Mella, and B. Möbius. "Designing a Bilingual Speech Corpus for French and German Language Learners: A Two-Step Process". In: 9th Language Resources and Evaluation Conference (LREC). Reykjavik, Iceland, 2014, pp. 1477–1482.
- U. Hirschfeld. Untersuchungen zur phonetischen Verständlichkeit Deutschlernender. Vol. 57. Forum Phoneticum. 1994.
- Y.-J. Kim and M. C. Beutnagel. "Automatic assessment of American English lexical stress using machine learning algorithms". In: SLaTE. 2011, pp. 93–96.
- M. A. Shahin, B. Ahmed, and K. J. Ballard. "Automatic classification of unequal lexical stress patterns using machine learning algorithms". In: 2012 IEEE Spoken Language Technology Workshop (SLT). IEEE, Dec. 2012, pp. 388–391.