

ARIMA - Integrated ARMA

Identifying ARIMA

 A time series exhibits ARIMA behavior if the differenced data has ARMA behavior

```
> # Simulation ARIMA(p = 1, d = 1, q = 0)
> x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
> plot(x, main = "ARIMA(p = 1, d = 1, q = 0)")
> plot(diff(x), main = "ARMA(p = 1, d = 0, q = 0)")
```


Identifying ARIMA

 A time series exhibits ARIMA behavior if the differenced data has ARMA behavior

```
> # Simulation ARIMA(p = 1, d = 1, q = 0)
> x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
> plot(x, main = "ARIMA(p = 1, d = 1, q = 0)")
> plot(diff(x), main = "ARMA(p = 1, d = 0, q = 0)")
```


Identifying ARIMA

A time series exhibits ARIMA behavior if the differenced data has ARMA behavior

```
> # Simulation ARIMA(p = 1, d = 1, q = 0)
> x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
> plot(x, main = "ARIMA(p = 1, d = 1, q = 0)")
> plot(diff(x), main = "ARMA(p = 1, d = 0, q = 0)")
```


ARIMA(p = 1, d = 1, q = 0)

150 200 100 50 Time

ACF and PCF of an Integrated ARMA

```
> x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
> acf2(x)
```


ACF and PCF of a Differenced ARIMA

```
> x <- arima.sim(list(order = c(1, 1, 0), ar = .9), n = 200)
> acf2(diff(x))
```


Weekly Oil Prices

Looks like ARIMA(1, 1, 1)

Let's practice!

ARIMA Diagnostics

Weekly Oil Prices ARIMA(1, 1, 1)?

Weekly Oil Prices ARIMA(1, 1, 1)?

Weekly Oil Prices ARIMA(1, 1, 1)!

Overfit: ARIMA(2, 1, 1) and ARIMA(1, 1, 2)

```
> oil_fit1 <- sarima(oil, p = 2, d = 1, q = 1)</pre>
> oil_fit1$ttable
         Estimate SE t.value p.value
        -0.4704 \ 0.1117 \ -4.2121 \ 0.0000
ar1
         -0.0738 0.0652 -1.1319 0.2586
ar2
          0.6771 0.0986 6.8696 0.0000
ma1
          0.1088 0.0878 1.2391 0.2163
constant
> oil_fit2 <- sarima(oil, p = 1, d = 1, q = 2)
> oil_fit2$ttable
         Estimate SE t.value p.value
       -0.3664 \ 0.1816 \ -2.0178 \ 0.0445
ar1
          0.5777 0.1818 3.1777 0.0016
ma1
        -0.0836 0.0837 -0.9989 0.3186
          0.1088 0.0884 1.2306 0.2194
constant
```


Let's practice!

Forecasting ARIMA

Forecasting ARIMA Processes

- The model describes how the dynamics of the time series behave over time
- Forecasting simply continues the model dynamics into the future
- Use sarima.for() to forecast in the astsa-package

Forecasting ARIMA Processes

```
> oil <- window(astsa::oil, end = 2006)
> oilf <- window(astsa::oil, end = 2007)
> sarima.for(oil, n.ahead = 52, 1, 1, 1)
> lines(oilf)
```


Let's practice!