Computing the homology of the C-motivic lambda algebra

Keita Allen¹, mentored by Mark Behrens² & Peter May³

¹Leadership Alliance @ The University of Chicago ²University of Notre Dame ³University of Chicago

July 2022

What is my project about?

My project lies in the field of *algebraic topology*.

What is my project about?

My project lies in the field of *algebraic topology*.

Algebraic topology

...is the study of shapes, known as *topological spaces*, by assigning algebraic invariants.

What is my project about?

My project lies in the field of *algebraic topology*.

Algebraic topology

...is the study of shapes, known as *topological spaces*, by assigning algebraic invariants.

Example

The *hairy ball theorem* states that if you have a sphere with hair on it, then there is no way to comb the hair flat.

Figure: A (failed) attempt to comb the sphere.

PC: Wikimedia Commons

The homotopy groups of spheres, $\pi_n(S^m)$.

The homotopy groups of spheres, $\pi_n(S^m)$.

 \Rightarrow very important, but very hard to compute.

The homotopy groups of spheres, $\pi_n(S^m)$.

 \Rightarrow very important, but very hard to compute.

A "simplification"

...are *stable homotopy groups*, $\pi_n(\mathbb{S})$. To compute these groups, we have a powerful computational tool known as the *(classical) Adams spectral sequence*.

The homotopy groups of spheres, $\pi_n(S^m)$.

 \Rightarrow very important, but very hard to compute.

A "simplification"

...are stable homotopy groups, $\pi_n(\mathbb{S})$. To compute these groups, we have a powerful computational tool known as the *(classical) Adams spectral sequence.*

The input to this device is already complicated; one thing used to calculate it is the *(classical) lambda algebra*, Λ .

The homotopy groups of spheres, $\pi_n(S^m)$.

 \Rightarrow very important, but very hard to compute.

A "simplification"

...are stable homotopy groups, $\pi_n(\mathbb{S})$. To compute these groups, we have a powerful computational tool known as the *(classical) Adams spectral sequence.*

The input to this device is already complicated; one thing used to calculate it is the *(classical) lambda algebra*, Λ .

Theorem

The homology of the lambda algebra is the input to the Adams spectral sequence.

The homotopy groups of spheres, $\pi_n(S^m)$.

 \Rightarrow very important, but very hard to compute.

A "simplification"

...are stable homotopy groups, $\pi_n(\mathbb{S})$. To compute these groups, we have a powerful computational tool known as the *(classical) Adams spectral sequence.*

The input to this device is already complicated; one thing used to calculate it is the *(classical) lambda algebra*, Λ .

Theorem

The homology of the lambda algebra is the input to the Adams spectral sequence.

Further, there is a procedure for computing this homology, called the *Curtis algorithm*.

The input to the Adams spectral sequence

Figure: The E_2 page of the Adams spectral sequence. PC: Isaksen-Wang-Xu

The motivic story

Algebraic geometry

...is the study of polynomial equations and their solutions.

The motivic story

Algebraic geometry

...is the study of polynomial equations and their solutions.

Example

Consider the equation $x^2 + y^2 = 1$. The solutions to this equation form the unit circle in the plane \mathbb{R}^2 .

Figure: The unit circle.

July 2022

The motivic story

Algebraic geometry

...is the study of polynomial equations and their solutions.

Example

Consider the equation $x^2 + y^2 = 1$. The solutions to this equation form the unit circle in the plane \mathbb{R}^2 .

Figure: The unit circle.

July 2022

The motivic innovations

Exciting new work!

Fields medalist Vladimir Voevodsky provided a deep unification between algebraic topology and algebraic geometry in the form of *motivic* homotopy theory.

The motivic innovations

Exciting new work!

Fields medalist Vladimir Voevodsky provided a deep unification between algebraic topology and algebraic geometry in the form of *motivic* homotopy theory.

⇒ Here, we have motivic analogues of much of the things discussed before; there are *motivic* (stable) homotopy groups, motivic Adams spectral sequences, and motivic lambda algebras, which vary in form depending on our choice of base field ("coefficients") k.

The input to the \mathbb{C} -motivic Adams spectral sequence

Figure: The E_2 page of the \mathbb{C} -motivic Adams spectral sequence.

PC: Isaksen-Wang-Xu

The input to the Adams spectral sequence

Figure: The E_2 page of the Adams spectral sequence. PC: Isaksen-Wang-Xu

The conjecture

Guiding question

Are there motivic analogues of the Curtis algorithm, which we can use to determine the input to the motivic Adams spectral sequences?

The conjecture

Guiding question

Are there motivic analogues of the Curtis algorithm, which we can use to determine the input to the motivic Adams spectral sequences?

Let our base field k be the complex numbers \mathbb{C} .

The conjecture

Guiding question

Are there motivic analogues of the Curtis algorithm, which we can use to determine the input to the motivic Adams spectral sequences?

Let our base field k be the complex numbers \mathbb{C} .

Conjecture

In this case, we do have a Curtis algorithm. In fact, one can effectively use the classical Curtis algorithm to read off the input to the \mathbb{C} -motivic Adams spectral sequence.

Acknowledgements

Much thanks to...

- ⇒ Mark Behrens
- \Rightarrow Peter May
- ⇒ Victoria Flores and the Leadership Alliance
- ⇒ the great people in the Leadership Alliance cohort at UChicago and the math REU