Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 1 of 10

1/10

FIG. 1

Pb $_{\alpha}[(Mn_{1/3}Nb_{2/3})_{x}Ti_{y}Zr_{z}]O_{3} \cdots formula (1)$

In formula (1),

 $0.95 \le \alpha \le 1.02$,

 $0.02 \le x \le 0.15$,

 $0.48 \le y \le 0.62$,

 $0.30 \le z \le 0.50$; and

α, x, y and z are respectively given in molar ratio.

$$k_{15} = \sqrt{\frac{\pi}{2} \cdot \frac{Fr}{Fa} \cot\left(\frac{\pi}{2} \cdot \frac{Fr}{Fa}\right)} \quad \cdots \text{ formula (2)}$$

In formula (2), Fr represents a resonant frequency and Fa represents an anti-resonant frequency.

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 2 of 10

2/10

FIG. 2 Hysteresis loop for polarization P and electric field E

Pr: Remanent polarization

Ps: Saturation polarization

Ec: Coercive electric field

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 3 of 10

FIG. 3A

FIG. 3B

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 4 of 10

4/10

FIG. 4

$$F0 = Fr \sqrt{1 + \frac{C_1}{C_0 + C_L}} \qquad \cdots \text{ formula (3)}$$

In formula (3), F0 represents an oscillation frequency, Fr represents a resonant frequency, C_l represents a motional capacitance and C_0 represents a shunt capacitance; and C_L is defined by formula (6).

$$C_1 = \frac{Fa^2 - Fr^2}{Fa^2}Cd \quad \dots \text{ formula (4)}$$

In formula (4), C_l represents a motional capacitance, Fa represents an anti-resonant frequency, Fr represents a resonant frequency, and Cd represents a free capacitance. Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 5 of 10

5/10

FIG. 5

$$C_0 = Cd - C_1 \quad \cdots \text{ formula (5)}$$

In formula (5), C_0 represents a shunt capacitance, Cd represents a free capacitance, and C_1 represents a motional capacitance.

$$C_{L} = \frac{C_{L1} \cdot C_{L2}}{C_{L1} + C_{L2}} \quad \text{or formula (6)}$$

$$\Rightarrow \frac{C_{L1}}{2} \quad (C_{L1} = C_{L2})$$

In formula (6), C_{L1} represents a load capacitance and C_{L2} represents another load capacitance.

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 6 of 10

FIG. 6

Hogan & Hartson 81864.0078
Masakazu HIROSE et al.
Piezoelectric Ceramic Composition...
EV 667 736 080 US
10 Drawing Sheets; Sheet 7 of 10

7/10

FIG. 7

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 8 of 10

FIG. 8

Sample No.	Additive(s)	Load (wt%)	Δk15 (%)	Q _{max}	Polarization conditions		
					Tempe- rature (°C)	Time (min)	Electric field (kV/mm)
* 1	None	_	-4.4	120		1	3
2	Gr ₂ O ₃	0.05	-1.9	97	150		
3		0.10	-1.2	130			
4		0.20	-2.0	129			
* 5		0.30	-3.7	108			
* 6		0.50	-4.8	81			
* 7	MnCO ₃	0.05	-4.5	81			
* 8		0.20	-4.5	129			
* 9		0.30	-4.7	120			
* 10		0.50	-4.2	85			
11	Cr ₂ O ₃ MnCO ₃	0.05	-2.1	118			
		0.05					

Hogan & Hartson 81864.0078
Masakazu HIROSE et al.
Piezoelectric Ceramic Composition...
EV 667 736 080 US
10 Drawing Sheets; Sheet 9 of 10

FIG. 9

Sample No.	Additive(s)	Load (wt%)	Δk15 (%)	ΔF0 (%)	ΔFr (%)
12		0.05	-0.58	-0.02	0.03
13	Cr ₂ O ₃	0.10	-0.49	-0.03	0.04
14		0.20	-0.60	-0.03	0.01

Hogan & Hartson 81864.0078 Masakazu HIROSE et al. Piezoelectric Ceramic Composition... EV 667 736 080 US 10 Drawing Sheets; Sheet 10 of 10

10/10

FIG. 10

Sample No.	$Pb_{\alpha}[(Mn_{1/3}Nb_{2/3})xTi_{y}Zr_{z}]O_{3}$				Cr ₂ O ₃	Δk15	
	α	x	У	z	[wt%]	(%)	Q _{max}
15	0.98	0.05	0.55	0.40	0.05	-1.9	92
16		0.13	0.49	0.38		-2.9	177
17		0.09	0.60	0.31		-1.8	98
18		0.03	0.48	0.49		-2.8	110
19	0.995	0.05	0.55	0.40	0.10	-1.9	85
20		0.03	0.48	0.49		-1.1	76