JEE Advanced Syllabus 2025

Chemistry

General Topics

- · Concept of atoms and molecules
 - Dalton's atomic theory
 - Mole concept
- Chemical formulae
- · Balanced chemical equations
- Calculations (based on mole concept and stoichiometry)
 - Common redox reactions
 - Neutralization reactions
 - Displacement reactions
- Concentration
 - Mole fraction
 - Molarity
 - Molality
 - Normality

States of Matter: Gases and Liquids

- Gases
 - Gas laws and ideal gas equation
 - Absolute scale of temperature
 - Deviation from ideality, van der Waals equation
 - Kinetic theory of gases
 - Average velocities
 - Root mean square velocities
 - Most probable velocities
 - Relation with temperature
 - Law of partial pressures
 - Diffusion of gases
- Liquids
 - Intermolecular interactions
 - Types
 - Distance dependence
 - Effect on properties
 - Vapour pressure
 - Surface tension
 - Viscosity

Atomic Structure

- Bohr model
 - Spectrum of hydrogen atom
- · Wave-particle duality
 - De Broglie hypothesis
- Uncertainty principle
- · Quantum mechanical picture of hydrogen atom
 - Energies
 - Quantum numbers
 - Wave function and probability density (plots only)
 - Shapes of s, p and d orbitals
- Aufbau principle
- · Pauli's exclusion principle
- · Hund's rule

Chemical Bonding and Molecular Structure

- · Orbital overlap and covalent bond
- Hybridization (s, p, and d orbitals)
- Molecular orbital energy diagrams (homonuclear diatomic species up to Ne₂)
- Hydrogen bond
- · Polarity in molecules
 - Dipole moment
- VSEPR model and shapes of molecules
 - Linear
 - Angular
 - Triangular
 - Square planar
 - Pyramidal
 - Square pyramidal
 - Trigonal bipyramidal
 - Tetrahedral
 - Octahedral

Chemical Thermodynamics

- Properties
 - Intensive
 - Extensive
- State functions
- First law of thermodynamics
- Internal energy, work (pressure-volume only), and heat
- Enthalpy
 - Heat capacity
 - Standard state

- Hess's law
- Enthalpy of reaction
- o Enthalpy of fusion
- Enthalpy of vaporization
- Lattice enthalpy
- · Second law of thermodynamics
 - Entropy
 - Gibbs energy
 - Criteria of equilibrium and spontaneity

Chemical and Ionic Equilibrium

- · Law of mass action
- Significance of $\Delta\Box$ and $\Delta\Box$ \Box in chemical equilibrium
- Equilibrium constant (Kp and Kc) and reaction quotient
- Le Chatelier's principle (effect of concentration, temperature, and pressure)
- Solubility product and its applications
- Common ion effect
- pH and buffer solutions
- Acids and bases (Brønsted and Lewis concepts)
- Hydrolysis of salts

Electrochemistry

- Electrochemical cells and cell reactions
- · Standard electrode potentials
- Electrochemical work
- · Nernst equation
- Electrochemical series
- · EMF of galvanic cells
- Faraday's laws of electrolysis
- Electrolytic conductance
 - Specific conductivity
 - Equivalent conductivity
 - Molar conductivity
- Kohlrausch's law
- Batteries
 - Primary
 - Secondary
 - Fuel cells
- Corrosion

Chemical Kinetics

- Rates of chemical reactions
- · Order and molecularity of reactions
- Rate law, rate constant, half-life

- Differential and integrated rate expressions (zero and first order)
- Temperature dependence of rate constant (Arrhenius equation and activation energy)
- Catalysis
 - Homogeneous
 - Heterogeneous
 - Activity and selectivity of solid catalysts
 - Enzyme catalysis and its mechanism

Solid State

- · Classification of solids
- Crystalline state
 - Seven crystal systems (cell parameters a, b, c, α , β , γ)
- Close packed structures
 - Cubic
 - Hexagonal
- · Packing in lattices
 - FCC
 - o BCC
 - HCP
- · Nearest neighbors
- · Ionic radii and radius ratio
- · Point defects

Solutions

- · Henry's law
- · Raoult's law
- Ideal solutions
- Colligative properties
 - Lowering of vapor pressure
 - Elevation of boiling point
 - Depression of freezing point
 - Osmotic pressure
- · Van't Hoff factor

Surface Chemistry

- Adsorption
 - Physisorption
 - Chemisorption
 - Freundlich adsorption isotherm
- Colloids
 - Types
 - Methods of preparation
 - General properties
- Emulsions, surfactants, and micelles (definitions and examples)

Classification of Elements and Periodicity in Properties

- · Modern periodic law and the present form of periodic table
- · Electronic configuration of elements
- · Periodic trends
 - Atomic radius
 - o Ionic radius
 - Ionization enthalpy
 - Electron gain enthalpy
 - Valence
 - Oxidation states
 - Electronegativity
 - Chemical reactivity

Hydrogen

- · Position in periodic table
- Occurrence
- Isotopes
- Preparation
- Properties
- Uses
- Hydrides
 - Ionic
 - Covalent
 - Interstitial
- Water
 - Physical properties
 - Chemical properties
 - Heavy water
- Hydrogen peroxide
 - Preparation
 - Reactions
 - Uses
 - Structure
- Hydrogen as a fuel

s-Block Elements

- · Alkali and alkaline earth metals
 - o Reactivity towards air, water, dihydrogen, halogens, acids
 - Reducing nature (solutions in liquid ammonia)
 - Uses
 - General characteristics of oxides, hydroxides, halides, salts of oxoacids
 - o Anomalous behavior of lithium and beryllium
- · Compounds of sodium

- Sodium carbonate
- Sodium chloride
- Sodium hydroxide
- Sodium hydrogen carbonate
- · Compounds of calcium
 - Calcium oxide
 - Calcium hydroxide
 - Calcium carbonate
 - Calcium sulphate

p-Block Elements

- Oxidation states and trends in chemical reactivity (groups 13-17)
- Anomalous properties (B, C, N, O, F)
- Group 13
 - Reactivity towards acids, alkalis, halogens
 - Borax
 - o Orthoboric acid
 - Diborane
 - Boron trifluoride
 - Aluminum chloride
 - Alums
 - Uses of boron and aluminum
- Group 14
 - Reactivity towards water and halogen
 - Allotropes of carbon and uses
 - Carbon monoxide
 - Carbon dioxide
 - Silicon dioxide
 - Silicones
 - Silicates
 - Zeolites
- Group 15
 - Reactivity towards hydrogen, oxygen, halogen
 - Allotropes of phosphorus
 - Dinitrogen
 - o Ammonia
 - Nitric acid
 - o Phosphine
 - Phosphorus trichloride
 - Phosphorus pentachloride
 - Oxides of nitrogen
 - Oxoacids of phosphorus
- Group 16

- Reactivity towards hydrogen, oxygen, halogen
- Simple oxides
- Allotropes of sulfur
- Dioxygen
- Ozone
- Sulfur dioxide
- Sulfuric acid
- Oxoacids of sulfur
- Group 17
 - Reactivity towards hydrogen, oxygen, metals
 - Chlorine
 - Hydrogen chloride
 - Interhalogen compounds
 - Oxoacids of halogens
 - Bleaching powder
- Group 18
 - Chemical properties
 - Uses
 - Compounds of xenon with fluorine and oxygen

d-Block Elements

- · Oxidation states and stability
- · Standard electrode potentials
- · Interstitial compounds
- Alloys
- · Catalytic properties
- · Applications
- · Oxoanions of chromium and manganese

f-Block Elements

- · Lanthanoid and actinoid contractions
- Oxidation states
- General characteristics

Coordination Compounds

- · Werner's theory
- Nomenclature
- Isomerism
 - cis-trans
 - Ionization
- Hybridization and geometries (linear, tetrahedral, square planar and octahedral) of mononuclear coordination compounds
- Bonding
 - VBT (Valence Bond Theory)

- o CFT (Crystal Field Theory) (octahedral and tetrahedral fields)
- Magnetic properties (spin-only) and colour of 3d-series coordination compounds
- Ligands and spectrochemical series
- Stability
- Importance and applications
- · Metal carbonyls

Isolation of Metals

- · Metal ores and their concentration
- Extraction of crude metal from concentrated ores
 - Thermodynamic principles (iron, copper, zinc)
 - Electrochemical principles (aluminium)
- · Cyanide process (silver and gold)
- Refining

Principles of Qualitative Analysis

- Groups I to V (only Ag+, Hg2+, Cu2+, Pb2+, Fe3+, Cr3+, Al3+, Ca2+, Ba2+, Zn2+, Mn2+ and Mg2+)
- Anions
 - Nitrate
 - Halides (excluding fluoride)
 - Carbonate and bicarbonate
 - Sulphate and sulphide

Environmental Chemistry

- · Atmospheric pollution
- · Water pollution
- Soil pollution
- Industrial waste
- Strategies to control environmental pollution
- Green chemistry

Basic Principles of Organic Chemistry

- Hybridisation of carbon
- σ and π -bonds
- Shapes of simple organic molecules
- Aromaticity
- Isomerism
 - Structural
 - Geometrical
- Stereoisomers and stereochemical relationship (enantiomers, diastereomers, meso) of compounds containing only up to two asymmetric centres (R,S and E,Z configurations excluded)
- Determination of empirical and molecular formulae of simple compounds by combustion method only

- IUPAC nomenclature of organic molecules (hydrocarbons, including simple cyclic hydrocarbons and their mono-functional and bi-functional derivatives only)
- · Hydrogen bonding effects
- Inductive, Resonance and Hyperconjugative effects
- Acidity and basicity of organic compounds
- · Reactive intermediates produced during homolytic and heterolytic bond cleavage
- Formation, structure and stability of carbocations, carbanions and free radicals

Alkanes

- · Homologous series
- Physical properties (melting points, boiling points and density) and effect of branching on them
- Conformations of ethane and butane (Newman projections only)
- · Preparation from alkyl halides and aliphatic carboxylic acids
- Reactions
 - Combustion
 - Halogenation (including allylic and benzylic halogenation)
 - Oxidation

Alkenes and Alkynes

- Physical properties (boiling points, density and dipole moments)
- Preparation by elimination reactions
- Acid catalysed hydration (excluding the stereochemistry of addition and elimination)
- Metal acetylides
- · Reactions of alkenes
 - With KMnO4
 - With ozone
- Reduction of alkenes and alkynes
- Electrophilic addition reactions of alkenes with X2, HX, HOX, (X=halogen)
- Effect of peroxide on addition reactions
- · Cyclic polymerization reaction of alkynes

Benzene

- Structure
- Electrophilic substitution reactions
 - Halogenation
 - Nitration
 - Sulphonation
 - Friedel-Crafts alkylation
 - Friedel-Crafts acylation
- Effect of directing groups (monosubstituted benzene) in these reactions

Phenois

- · Physical properties
- Preparation

- Electrophilic substitution reactions of phenol
 - Halogenation
 - Nitration
 - Sulphonation
- Reimer-Tiemann reaction
- Kolbe reaction
- Esterification
- Etherification
- · Aspirin synthesis
- Oxidation and reduction reactions of phenol

Alkyl Halides

- · Rearrangement reactions of alkyl carbocation
- Grignard reactions
- · Nucleophilic substitution reactions and their stereochemical aspects

Alcohols

- Physical properties
- Reactions
 - Esterification
 - Dehydration (formation of alkenes and ethers)
- Reactions with
 - Sodium
 - Phosphorus halides
 - ZnCl2/concentrated HCl
 - Thionyl chloride
- Conversion of alcohols into aldehydes, ketones and carboxylic acids

Ethers

- · Preparation by Williamson's synthesis
- · C-O bond cleavage reactions

Aldehydes and Ketones

- Preparation of aldehydes and ketones
 - From acid chlorides and nitriles
 - Aldehydes from esters
 - Benzaldehyde from toluene and benzene
- Reactions
 - Oxidation
 - Reduction
 - Oxime and hydrazone formation
 - Aldol condensation
 - Cannizzaro reaction
 - Haloform reaction

- · Nucleophilic addition reaction with
 - RMgX
 - NaHSO3
 - HCN
 - Alcohol
 - Amine

Carboxylic Acids

- · Physical properties
- Preparation
 - From nitriles
 - From Grignard reagents
 - Hydrolysis of esters and amides
 - Benzoic acid from alkylbenzenes
- Reactions
 - Reduction
 - Halogenation
 - Formation of esters
 - Formation of acid chlorides
 - Formation of amides

Amines

- · Preparation from nitro compounds, nitriles and amides
- Reactions
 - Hoffmann bromamide degradation
 - Gabriel phthalimide synthesis
 - Reaction with nitrous acid
 - Azo coupling reaction of diazonium salts of aromatic amines
 - o Sandmeyer and related reactions of diazonium salts
 - Carbylamine reaction
 - Hinsberg test
 - Alkylation reactions
 - Acylation reactions

Haloarenes

- Reactions
 - Fittig reaction
 - Wurtz-Fittig reaction
- Nucleophilic aromatic substitution in haloarenes and substituted haloarenes (excluding benzyne mechanism and cine substitution)

Biomolecules

- Carbohydrates
 - Classification

- Mono- and di-saccharides (glucose and sucrose)
- Oxidation
- Reduction
- Glycoside formation and hydrolysis of disaccharides (sucrose, maltose, lactose)
- Anomers
- Proteins
 - Amino acids
 - Peptide linkage
 - Structure of peptides (primary and secondary)
 - Types of proteins (fibrous and globular)
- · Nucleic acids
 - Chemical composition
 - Structure of DNA and RNA

Polymers

- · Types of polymerization
 - Addition
 - Condensation
- · Homo and copolymers
- Examples
 - Natural rubber
 - Cellulose
 - Nylon
 - Teflon
 - Bakelite
 - PVC
 - Bio-degradable polymers
- · Applications of polymers

Chemistry in Everyday Life

- · Drug-target interaction
- · Therapeutic action and examples (excluding structures) of
 - Antacids
 - Antihistamines
 - Tranquilizers
 - Analgesics
 - Antimicrobials
 - Antifertility drugs
- Artificial sweeteners (names only)
- · Soaps, detergents, and cleansing action

Practical Organic Chemistry

- Detection of elements (N, S, halogens)
- · Detection and identification of the following functional groups

- Hydroxyl (alcoholic and phenolic)
- Carbonyl (aldehyde and ketone)
- Carboxyl
- o Amino
- Nitro