REU 2021 - Problem Set 4

Kevin Y. Wu

July 24, 2021

Contents

1	Problem 1.	1
2	Problem 2.	2
3	Problem 3.	3
4	Problem 4.	6
5	Problem 5.	7
6	Problem 6.	7
7	Problem 7.	8

1 Problem 1.

Consider two lines in the plane with the angle γ between them and suppose a grasshopper is jumping from one line to the other. Every jump is exactly 30 inches long, and the grasshopper jumps backwards whenever it has no other options. Prove that the sequence of its jumps is periodic if and only if $\frac{\gamma}{\pi}$ is a rational number.

Proof. We can consider each jump as a vector of length 30 inches. Call the two lines ℓ_1 and ℓ_2 , and the angle between them γ . Consider all jumps as vectors. Suppose the grasshopper starts at point a_1 on ℓ_1 and jumps along vector \overrightarrow{v}_1 to point a_2 on ℓ_2 . Then let \overrightarrow{v}_2 be the reflection of \overrightarrow{v}_1 over ℓ_1 .

Let ℓ'_2 be the reflection of ℓ_2 over ℓ_1 and draw two vectors \overrightarrow{v}'_1 and \overrightarrow{v}'_2 of length 30 that meet at point a_3 on ℓ_1 . We see that the shape formed is a rhombus, so $\overrightarrow{v}'_2 = \overrightarrow{v}_2$. Hence, by the reflecting a vector about the line on which its head lies, we obtain the vector of the next jump.

Figure 1: First three jumps of a grasshopper.

Equivalently, this is a rotation R_1 about angle 2θ . Without loss of generality, let this rotation be clockwise, as in the diagram below. By drawing a line parallel to ℓ_2 from a_2 , we can see that the angle formed between \overrightarrow{v}_2 and ℓ_2 is $\theta+\gamma$. Thus, \overrightarrow{v}_3 is a counterclockwise rotation R_2 of \overrightarrow{v}_2 about angle $2\theta+2\gamma$. Similarly, \overrightarrow{v}_4 is a clockwise rotation R_3 of \overrightarrow{v}_3 about angle $2\theta+4\gamma$, \overrightarrow{v}_5 is a counterclockwise

rotation R_4 of \overrightarrow{v}_4 about angle $2\theta + 6\gamma$, and so forth. Then

$$(R_2 \circ R_1)(\overrightarrow{v}_1) = R_{2\gamma}(\overrightarrow{v}_1) = \overrightarrow{v_3}.$$

$$(R_4 \circ R_3)(\overrightarrow{v}_3) = R_{2\gamma}(\overrightarrow{v}_3) = \overrightarrow{v_5} = R_{4\gamma}(\overrightarrow{v}_1).$$

For the sequence of jumps to be periodic, the grasshopper must eventually return to point a_1 , so there are an even number of jumps in the sequence, say 2n. If we group every two consequent rotations starting from $R_2 \circ R_1$ as above, to return to the beginning of the sequence, we must have

$$\overrightarrow{v}_1 = R_{2n\gamma}(\overrightarrow{v}_1).$$

Hence, $2n\gamma = 0 \mod 2\pi$, so $\frac{\gamma}{\pi}$ is a rational number.

2 Problem 2.

Let ABCD be a convex 4—gon and consider four squares constructed on the outside of each of its edges. Prove that the segments connecting the centers of the opposite squares are mutually perpendicular and equal in length.

Figure 2: Polygon ABCD and four constructed squares

Proof. Draw ABCD on the complex plane, and denote its vertices as complex numbers 2a, 2b, 2c, 2d. Denote the centers of the squares constructed on the

outside of its edges w, x, y, z. The midpoint of \overline{AB} is $m = \frac{2a+2b}{2} = a+b$. Then the vector from 2a to m is a+b-2a=b-a, and the vector $\overline{mw} = -i(b-a) = (a-b)i$, since rotation by 90° in the complex plane is equivalent to multiplication by -i. Then by vector addition, we have w = a+b+(a-b)i. Doing this for each square's center, we have

$$w = a + b + (a - b)i.$$

 $x = b + c + (b - c)i.$
 $y = c + d + (c - d)i.$
 $z = d + a + (d - a)i.$

Then the segments connecting the centers of opposite squares are represented by the vectors

$$y - w = c + d - a - b + (c - d - a + b)i.$$

 $z - x = d + a - b - c + (d - a - b + c)i.$

Hence, z - x = -i(y - w), so the vector \overline{zx} is the vector \overline{yw} rotated 90° clockwise. Thus, the segments connecting the centers of opposite squares are mutually perpendicular and equal in length.

3 Problem 3.

Prove that a composition of three symmetries is a sliding symmetry.

Lemma 3.1. The composition $R_{\ell_2} \circ R_{\ell_1}$ of two reflections in parallel lines is a parallel transport.

Proof. $T_{\overrightarrow{v}}$, we know that $T_{\overrightarrow{v}}(x) = y$ such that $\overrightarrow{xy} = \overrightarrow{v}$. Consider two parallel lines ℓ_1, ℓ_2 such that both are perpendicular to \overrightarrow{v} . Let the distance between ℓ_1 and ℓ_2 be $\frac{|\overrightarrow{v}|}{2}$ and the distance between ℓ_1 and x be d. By definition, $R_\ell : \mathbb{R}^2 \to \mathbb{R}^2$, $R_\ell(x) = y$ for y such that ℓ is a middle perpendicular to \overline{xy} . We will show that $(R_{\ell_2} \circ R_{\ell_1})(x) = y$ in three cases.

- (1) Point x is between ℓ_1 and ℓ_2 . Then the distance between ℓ_2 and x is $\frac{|\overrightarrow{v}|}{2} d$. $R_{\ell_1}(x)$ reflects x to x', which is distance d to the left of ℓ_1 . $R_{\ell_2}(x')$ reflects x' to x'', which is distance $d + \frac{|\overrightarrow{v}|}{2}$ to the right of ℓ_2 , or $d + \frac{|\overrightarrow{v}|}{2} + (\frac{|\overrightarrow{v}|}{2} d) = |\overrightarrow{v}|$ to the right of x. Hence, x'' = y.
- (2) Point x is to the left of ℓ_1 . Then the distance between ℓ_2 and x is $\frac{|\vec{v}|}{2} + d$. $R_{\ell_1}(x)$ reflects x to x', which is distance d to the right of ℓ_1 . $R_{\ell_2}(x')$ reflects

x' to x'', which is distance $\frac{|\overrightarrow{v}|}{2} - d$ to the right of ℓ_2 , or $\frac{|\overrightarrow{v}|}{2} - d + (\frac{|\overrightarrow{v}|}{2} + d) = |\overrightarrow{v}|$ to the right of x. Hence, x'' = y.

(3) Point x is to the right of ℓ_2 . Then the distance between ℓ_2 and x is $d-\frac{|\overrightarrow{v}|}{2}$. $R_{\ell_1}(x)$ reflects x to x', which is distance d to the left of ℓ_1 . $R_{\ell_2}(x')$ reflects x' to x'', which is distance $d+\frac{|\overrightarrow{v}|}{2}$ to the right of ℓ_2 , or $d+\frac{|\overrightarrow{v}|}{2}-(d-\frac{|\overrightarrow{v}|}{2})=|\overrightarrow{v}|$ to the right of x. Hence, x''=y.

Figure 3: Cases (1), (2), and (3)

Proof. We will consider two cases: 1) all three lines are parallel, 2) not all lines are parallel (although two of the three may be parallel to one another).

(1) All three lines are parallel. Notice that $R_{\ell_3} \circ R_{\ell_2} \circ R_{\ell_1} = R_{\ell_3} \circ (R_{\ell_2} \circ R_{\ell_1})$, and the composition $R_{\ell_2} \circ R_{\ell_1}$ of two reflections in parallel lines is a parallel transport. By 3.1 this parallel transport depends only on the direction of the lines and the distance between them, i.e. $R_{\ell_2} \circ R_{\ell_1} = R_{\ell'_2} \circ R_{\ell'_1}$. Thus, we can translate the lines ℓ_2 and ℓ_1 to make the second line coincide with the third, i.e. $\ell'_2 = \ell_3$. Then

$$R_{\ell_3}\circ R_{\ell_2}\circ R_{\ell_1}=R_{\ell_3}\circ R_{\ell_2'}\circ R_{\ell_1'}=R_{\ell_3}\circ R_{\ell_3}\circ R_{\ell_1'}=R_{\ell_1'}.$$

Therefore, the result is a sliding symmetry $R_{\ell_1'} \circ T_{\overrightarrow{v}}$ where $\overrightarrow{v} = \overrightarrow{0}$.

Figure 4: All three lines are parallel

(2) Not all lines are parallel. Then the second line ℓ_2 is not parallel to ℓ_1 or ℓ_3 . Suppose that ℓ_1 and ℓ_2 are not parallel (the other case is very similar). Then the composition $R_{\ell_2} \circ R_{\ell_1}$ of reflections about intersecting lines is a rotation that depends only on the point where the lines intersect and the angle at which they intersect. So the lines ℓ_1, ℓ_2 can be rotated simultaneously about their intersection point by the same angle without changing the composition.

By an appropriate rotation, make the second line ℓ_2 perpendicular to the third line ℓ_3 , i.e. replace ℓ_1, ℓ_2 by ℓ'_1, ℓ'_2 so that $R_{\ell_2} \circ R_{\ell_1} = R_{\ell'_2} \circ R_{\ell'_1}$ and $\ell'_2 \perp \ell_3$.

Figure 5: Not all three lines are parallel

Then by rotating these two perpendicular lines ℓ_2' and ℓ_3 about their intersection point, make the middle line ℓ_2'' parallel to the line ℓ_1' , i.e. replace ℓ_2', ℓ_3 by ℓ_2'', ℓ_3' so that

$$R_{\ell_3} \circ R_{\ell_2} \circ R_{\ell_1} = R_{\ell_3} \circ R_{\ell_2'} \circ R_{\ell_1'} = R_{\ell_3'} \circ R_{\ell_2''} \circ R_{\ell_1'}.$$

Now, the configuration has ℓ_1', ℓ_2'' parallel, ℓ_3' is perpendicular to them both. By lemma 3.1, $R_{\ell_2''} \circ R_{\ell_1'}$ is a translation by a vector perpendicular to them both and parallel to ℓ_3' , so $R_{\ell_3'} \circ R_{\ell_2''} \circ R_{\ell_1'} = R_{\ell_3} \circ R_{\ell_2} \circ R_{\ell_1}$ is a sliding symmetry.

4 Problem 4.

The points A_1, A_2, \ldots, A_n form a regular polygon inscribed in a circle with the center O. A point X lies on the same circle. Prove that the images of the point X under the symmetries with axes OA_1, OA_2, \ldots, OA_n form a regular polygon.

Proof. Without loss of generality (since A_1, A_2, \ldots, A_n form a regular polygon), let A_1 be the closest point to X. Then the angle $\theta = \angle XOA_1$ is the smallest angle between X and any other point.

Figure 6: Example of a hexagon and pentagon.

For the rest of the proof, we will consider all angles with respect to segment OA_1 . Reflecting X across axis OA_1 to X_1 yields $\angle X_1OA_1 = \theta$. The interior angle of a regular polygon of n sides is $\frac{2\pi}{n}$, so reflecting X across axis OA_2 to X_2 yields $\angle X_2OA_1 = \theta + 2\frac{2\pi}{n}$. Performing reflections along each axis OA_1, OA_2, \ldots, OA_n yields the following angles:

$$\theta$$
, θ + 2 $\frac{2\pi}{n}$, θ + 4 $\frac{2\pi}{n}$, ..., θ + 2 $(n-1)\frac{2\pi}{n}$.

For even n, subtracting θ and taking modulo 2π for all angles gives

$$0, \frac{4\pi}{n}, \frac{8\pi}{n}, \dots, 2\pi - \frac{4\pi}{n}.$$

For odd n, subtracting θ and taking modulo 2π for all angles gives

$$0, \frac{2\pi}{n}, \frac{4\pi}{n}, \dots, 2\pi - \frac{2\pi}{n}.$$

Thus for even n, the angles have difference $\frac{4\pi}{n}$, so the images X_i form a regular polygon with $\frac{n}{2}$ sides. For odd n, the angles have difference $\frac{2\pi}{n}$, so the images X_i form a regular polygon with n sides.

5 Problem 5.

Remove a corner from a 101×101 chessboard. Prove that the rest of the board cannot be covered by triominoes. A triomino is like a domino except it consists of three squares in a row; each cell can cover one cell on the chessboard. Each triomino can either "stand" or "lie."

Proof. We can recolor the $101 \times 101 = 10201$ tiles of the chessboard with three colors, red, yellow, and blue. We can recolor by alternating the colors of the diagonals, blue, red, yellow, starting with red on the longest diagonal of 101 squares. Then there are $101 + 2(98 + 95 + \cdots + 2) = 101 + 2\left(\frac{100 \times 33}{2}\right) = 3401$ red tiles. By symmetry, there are $\frac{10201 - 3401}{2} = 3400$ of each blue and yellow tiles. Without loss of generality, let us remove a blue corner. Then there are 3401 red, 3400 yellow, and 3399 blue tiles.

Figure 7: Bottom left corner section of the tri-colored chessboard

We notice that in this coloring, whether a triomino is in the "stand" or "lie" position, it must cover one red, one yellow, and one blue tile. After using up 3399 triominoes, we will have covered 3399 of each color, leaving two red and one yellow tile, which is impossible to cover with the last needed triomino.

6 Problem 6.

Consider a finite collection of segments on a line so that every two of them intersect. Prove that all segments have a common point.

Proof. Let for $1 \leq i, j \leq k$, let S_i and S_j be segments and $a_{ij} = a_{ji}$ be any point on $S_i \cap S_j$. Then let

$$b_1 = \max_{1 \le i \le k} \min_{1 \le j \le k} a_{ij}.$$

$$b_2 = \min_{1 \le i \le k} \max_{1 \le j \le k} a_{ij}.$$

That is, between each intersections $S_i \cap S_j$, take the smallest and largest a_{ij} . Then b_1 is the largest of the set of smallest intersection points, and b_2 is the smallest of the set of largest intersection points.

We can show that $b_1 \leq b_2$. Take any indices i_1 and i_2 . Then $b_1 = \min_{1 \leq j \leq k} a_{i_1 j}$ and $b_2 = \max_{1 \leq j \leq k} a_{i_2 j}$. Hence, $b_1 \leq a_{i_1 i_2} = a_{i_2 i_1} \leq b_2$.

Finally, we can show any point $p \in [b_1, b_2]$ is a common point of every segment. For any segment S_i , we have $p \leq b_2 = \max_{1 \leq j \leq k} a_{ij} \in S_i$, so p is less than or equal to at least one point in every S_i . Furthermore, we have $p \geq b_1 = \min_{1 \leq j \leq k} a_{ij} \in S_i$, so p is greater than or equal to at least one point in every S_i . Thus, p is in every segment, so all segments have at least one common point p.

7 Problem 7.

Let S be a set of n+1 integers from 1 to 2n. Prove that at least two elements in S are coprime.

Proof. We can divide the integers into pairs: $\{1,2\},\{3,4\},\ldots,\{2n-1,2n\}$. By the pigeonhole principle, when we select n+1 integers, at least two must be in the same pair. Thus, we must have at least one pair of consecutive integers.

We can show that two consecutive integers n and n+1 are necessarily coprime. Suppose gcd(n, n+1) = p. Then p|n and p|n+1, so p|n+1-n or p|1. Then p=1, and gcd(n, n+1) = 1, so n and n+1 are coprime.

Hence, at least two elements in S are coprime.