The Group Theory

Ryan J. Kung ryankung@ieee.org Member, IEEE Blockchain Community

February 1, 2019

1 Group

1.1 Definition

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multiplication connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral element)}$
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

2 Group

2.1 Definition

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multiplication connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral element)}$
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

1.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

2.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

3 Group

3.1 Definition

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multiplication connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral element)}$
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

3.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

4 Group

4.1 Definition

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multiplication connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral)}$

element)

(4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

4.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

5 Group

5.1 Definition

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multipliaction connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral element)}$
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

5.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

6 Group

6.1 **Definition**

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multipliaction connecting the elements in \mathbb{G} in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral)}$ element)
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

6.2 Pubic-key cryptography

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

Group

Definition 7.1

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists

in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral)}$ element)
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

Pubic-key cryptography 7.2

"The mathematics of public-key cryptography uses a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices."' [1]

Group

Definition 8.1

Definition: Group [1]:

A set $\mathbb{G} = a, b, c, ...$ is called a group, if tehere exists a group multipliaction connecting the elements in G in the following way:

- (1) $a, b \in \mathbb{G}$: $c = ab \in \mathbb{G}$ (closure)
- (2) $a, b, c \in \mathbb{G} : (ab)c = a(bc)$ (associativity)
- (3) $\exists e \in \mathbb{G} : ae = e, \forall a \in \mathbb{G} \text{ (identity / neutral)}$ element)
 - (4) $\forall a \in \mathbb{G}, \exists b \in \mathbb{G} : ab = e, i.e., b \equiv a^{-1}$

Pubic-key cryptography 8.2

"The mathematics of public-key cryptography uses a group multipliaction connecting the elements in \mathbb{G} a lot of group theory. Different cryptosystems use different groups, such as the group of units in modular arithmetic and the group of rational points on elliptic curves over a finite field. This use of group theory derives not from the "symmetry" perspective, but from the efficiency or difficulty of carrying out certain computations in the groups. Other public-key cryptosystems use other algebraic structures, such as lattices." [1]

References

[1] Luca Cardelli. Type systems. ACM Comput. Surv., 28(1):263–264, March 1996.