

THSS 44100593 2019 / XS-301

Chapter 4 Syntax Analysis (LL)

王朝坤 IISE@Tsinghua

Outline

THSS 44100593 2019 / XS-301

- ◇ 语法分析的基本思想*
- ◇ 带回溯的自顶向下分析
- ◇ 预测分析
- ♦ LL(1)文法**
 ♦ First集; Follow集
- ◆ 递归下降LL(1)分析*
- ◆ 表驱动LL(1)分析*
- ◇ 文法变换*
- ♦ 错误处理

基本思想

THSS 44100593 2019 / XS-301

◆ 语法分析程序(Parser)的作用

- 分析源程序的单词流是否符合语言的语法规则
- 报告语法错误
- 产生源程序的语法分析结果,以语法分析树或与之等价的形式体现出来

◆ 语法规则描述工具

- 通常是一种上下文无关文法
- 语法分析的核心即为针对上下文无关文法的 句型分析

基本思想

THSS 44100593 2019 / XS-301

◇ 语法分析

- 句型分析

对任意上下文无关文法G = (V, T, P, S)和任意 $w \in T^*$,是否有 $w \in L(G)$?若成立,则给出分析树或(最左)推导步骤,否则,进行报错处理。

- 三种实现途径

通用分析(Cocke-Younger-Kasami算法) 自顶向下(top-down)分析 自底向上(bottom-up)分析

基本思想

THSS 44100593 2019 / XS-301

◆ 自顶向下分析思想

- 从文法开始符号出发进行推导,每一步推导都获得文法的一个句型,直到产生出一个句子,恰好是所期望的终结符串
- 每一步推导是对当前句型中剩余的某个非终结符进行扩展,即用该非终结符的一个产生式的右部替换该非终结符
- 如果不存在任何一个可以产生出所期望的终 结符串的推导,则表明存在语法错误

基本思想 (例)

THSS 44100593 2019 / XS-301

◇ 自顶向下分析举例

- 单词序列 aaab 的一个自顶向下分析过程

 $A \rightarrow aA \mid \epsilon$

 $B \rightarrow b \mid bB$

 $\Rightarrow AB$

 \Rightarrow aAB

 \Rightarrow aAb

 \Rightarrow aaAb

 \Rightarrow aaab

$$(S \rightarrow AB)$$

$$(A \rightarrow aA)$$

$$(B \rightarrow b)$$

$$(A \rightarrow aA)$$

$$(A \rightarrow aA)$$

$$\Rightarrow$$
 aaaAb $(A \rightarrow \epsilon)$

THSS 44100593 2019 / XS-301

◇ 一般方法

- 两类非确定性

在每一步推导中,选择哪一个非终结符、哪一个产生式都可能是非确定的

分析成功的结果: 得到一个推导

THSS 44100593 2019 / XS-301

◇ 举例

- 单词序列 aaab 的一个自顶向下分析过程

文法 G(S):

- $(1) S \rightarrow AB$
- $(2) A \rightarrow aA$
- $(3) A \rightarrow \varepsilon$
- $(4) B \rightarrow b$
- $(5) B \rightarrow bB$

S (1)

 $\Rightarrow AB$ (2)

 \Rightarrow aAB (5)

 \Rightarrow aAbB (2)

 \Rightarrow aaAbB (2)

 \Rightarrow aaaAbB (3)

 \Rightarrow aaabB (回溯)

.

复杂度很高 失败条件较复杂

THSS 44100593 2019 / XS-301

◇ 改进的方法

- 仅有产生式选择是非确定的

在每一步推导中,总是对最左边的非终结符进行展开,但选择哪一个产生式是非确定的

分析成功的结果: 得到一个最左推导

原理:每个合法的句子都存在至少一个起始于开始符号的最左推导;一个终结符串,只要存在一个起始于开始符号的最左推导,它就是一个合法的句子

从左向右扫描输入单词,失败条件较简单

THSS 44100593 2019 / XS-301

◇ 改进的方法举例

- 单词序列 aaab 的一个自顶向下分析过程

文法 G(S):

 $(1) S \rightarrow AB$

 $(2) A \rightarrow aA$

 $(3) A \rightarrow \varepsilon$

 $(4) B \rightarrow b$

 $(5) B \rightarrow bB$

复杂度降低 失败条件简化 S (1)

 $\Rightarrow AB$ (2)

 \Rightarrow aAB (3)

 \Rightarrow aB (回溯)

 \Rightarrow aAB (2)

 \Rightarrow aaAB (2)

 \Rightarrow aaaAB (3)

 \Rightarrow aaaB (5)

⇒ aaabB (回溯)

 \Rightarrow aaaB (4)

⇒ aaab (成功)

THSS 44100593 2019 / XS-301

◇ 确定的自顶向下分析

- 非终结符选择和产生式选择都是确定的 在每一步推导中,总是对最左边的非终结符 进行展开,且选择哪一个产生式是确定的, 因此是一种无回溯的方法

从左向右扫描,可能向前查看(lookahead) 确定数目的单词

分析成功的结果:得到唯一的最左推导分析条件:对文法需要有一定的限制

THSS 44100593 2019 / XS-301

◆ 举例(向前查看 2 个单词)

- 单词序列 aⁿb^m (n≥0, m>0) 的预测分析过程

文法 G(S):

- $(1) S \rightarrow AB$
- $(2) A \rightarrow aA$
- $(3) A \rightarrow \varepsilon$
- $(4) B \rightarrow b$
- $(5) B \rightarrow bB$

只要向前查看 2 个 单词,就可预测分 析L(G)中所有句子 S (1)

 $\Rightarrow AB$ (2)

 \Rightarrow aAB (2)

.....

 \Rightarrow anAB (3)

 $\Rightarrow a^n B$ (5)

 \Rightarrow and B (5)

.....

 $\Rightarrow a^n b^{m-1} B$ (4)

⇒ aⁿb^m (成功)

THSS 44100593 2019 / XS-301

◇ 左递归带来的问题

- 考虑下列文法识别 ban 的分析过程

文法 G (S):	S ⇒ Sa	(1)(1)
$(1) S \rightarrow Sa$ $(2) S \rightarrow b$	⇒ Saa ⇒ Saaa	(1)(1)
需要向前查看n+1个单词, 才能确定这样的推导序列	\Rightarrow Sa ⁿ \Rightarrow ba ⁿ	(2)

但是:无论向前查看的单词数确定为多少,都无法满足预测分析L(G)中所有句子的需求

THSS 44100593 2019 / XS-301

◇ 要求文法不含左递归

- 例: 直接左递归 P → Pa

.

 $P \rightarrow b$

– 例: 间接左递归A → Pb

.

可以通过文法变换消除左递归 专门讨论

THSS 44100593 2019 / XS-301

◆ 左公因子带来的问题

- 如下文法需要向前查看<u>3</u>个单词来预测分析 L(G)中的句子

文法 G (S): S
$$\rightarrow$$
 abA abB A \rightarrow aB \rightarrow b

文法 G'(S): S \rightarrow aAb aAc A \rightarrow a AA

- 对于文法G' 无法确定需要向前查看多少个单词来预测分析 L(G) 中的句子

THSS 44100593 2019 / XS-301

- ◇ 通常要求文法不含左公因子
 - 可以通过文法变换消除左公因子 专门讨论

THSS 44100593 2019 / XS-301

- ◆ 应用较普遍的预测分析是 LL(1)分析
 - 要求文法一定是LL(1)文法 专门讨论
 - LL(1)分析程序既可以手工构造, 也可以自动构造

THSS 44100593 2019 / XS-301

♦ LL(1)的含义

- 第一个 "L", 代表从左(Left)向右扫描单词
- 第二个 "L",代表产生的是最左(Leftmost) 推导
- "1"代表向前查看(lookahead)一个单词

THSS 44100593 2019 / XS-301

- ◇ 对文法的限制
 - 要求文法是LL(1)的
 - 什么是LL(1) 文法?
- ♦ 两个重要概念
 - First 集合
 - Follow 集合

An Example: S *=> abcAde; a ∈ first(S); d ∈ follow(A).

THSS 44100593 2019 / XS-301

♦ First 集合

- 定义

设 $G = (V_T, V_N, P, S)$ 是上下文无关文法 对 $\alpha \in (V_T \cup V_N)^*$,

First $(\alpha) = \{ a \mid \alpha \stackrel{*}{\Rightarrow} a\beta, a \in V_T, \beta \in (V_T \cup V_N)^* \}$ 若 $\alpha \stackrel{*}{\Rightarrow} \epsilon$ 则规定 $\epsilon \in \text{First } (\alpha)$

THSS 44100593 2019 / XS-301

♦ 计算 First 集合

设 α = X ∈ V_N ∪ V_T , 则First(X) 可按如下步骤计算:

- 若X∈ V_T ,则First(X)={X}
- 若 $X \rightarrow \epsilon$ 也是一个产生式,则把 ε 也加到First(X)中;
- 若 $X ∈ V_N$,且有产生式 $X \to a...$, $a ∈ V_T$,则把a加入到First(X)中;

若 $X \rightarrow Y_1Y_2...Y_K$ 是一个产生式, $Y_1,Y_2,...,Y_k \in V_N \cup V_T$,

- 1) 对于任何 j:1≤j≤i-1, 1≤i ≤k, First(Y_i)都含有ε, 但 First(Y_i)不含ε, 则 把 First(Y_j)中的所有非ε元素和First(Y_i)中的所有元素都加到First(X)中;
- **2)** 特别是,对于任何 j:1≤j≤k, First(Y_j)都含ε,则除First(Y_j)中的非ε元素外,把ε也加到First(X)中.

THSS 44100593 2019 / XS-301

♦ 计算 First 集合

设 $\alpha = X_1X_2...X_n$,则First(α) 可按如下步骤计算:

- 若对于任何j:1≤j≤i-1<n,有

$$\varepsilon \in First(X_i) \land \varepsilon \notin First(X_i)$$

川 First(α) =
$$\bigcup_{j=1}^{i-1}$$
 First(X_j) \cup First(X_i) $-$ {ε}= $\bigcup_{j=1}^{i}$ First(X_j) $-$ {ε}

- 若所有的j,1≤j ≤n, 都有ε ∈First(X_i),

则
$$First(\alpha) = \bigcup_{j=1}^{n} First(X_i)$$

$$S \rightarrow ES'$$
 FIRST(S) = {number, (}
 $S' \rightarrow \varepsilon \mid +S$ FIRST(S') = { ε , +}
 $E \rightarrow \text{number} \mid (S)$ FIRST(E) = { number, (}

22

THSS 44100593 2019 / XS-301

♦ Follow 集合

- 定义

设 $G = (V_T, V_N, P, S)$ 是上下文无关文法

对 $A \in V_N$

Follow(A)={a $S \stackrel{*}{\Rightarrow} \alpha A \beta \square a \in First(\beta),$ $\alpha \in (V_T \cup V_N)^*, \beta \in (V_T \cup V_N)^+$ }

若S \Rightarrow αAβ, 且 β \Rightarrow ε, 则规定 #∈Follow(A)

(#代表输入单词序列右边的结束符)

THSS 44100593 2019 / XS-301

♦ 计算 Follow 集合

- 对于文法的开始符号S,置#于Follow(S)中;
- 若 $A \rightarrow \alpha B\beta$ 是一个产生式,则把 First(β)-{ε} 加至 Follow(B) 中;
- 若 $A \rightarrow \alpha B$ 是一个产生式, 或 $A \rightarrow \alpha B \beta$ 是一个产生式而β $\stackrel{*}{\Rightarrow}$ ε (即ε ∈ First(β)),则把 Follow(A)加至Follow(B)中.

```
S \rightarrow ES' FOLLOW(S) = { #, ) }

S' \rightarrow \varepsilon \mid +S FOLLOW(S') = FOLLOW(S)={ #, ) }

E \rightarrow number \mid (S) FOLLOW(E) = (FIRST(S') -{\varepsilon}\varepsilon\) \(\cup \text{FOLLOW}(S)\)
= \{ +, \#, ) \}
```

THSS 44100593 2019 / XS-301

◆ 例: 计算 First 和 Follow 集合

文法 G(S):

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow Da \mid \varepsilon$$

$$(3) B \rightarrow cC$$

(4)
$$C \rightarrow aADC \mid \varepsilon$$

(5)
$$D \rightarrow b | \epsilon$$

First(D) =
$$\{b, \epsilon\}$$

First(C) =
$$\{a, \epsilon\}$$

$$First(B) = \{c\}$$

First(A) =
$$\{b, a, \epsilon\}$$

$$First(S) = \{b,a,c\}$$

$$Follow(S) = \{\#\}$$

$$Follow(A) = \{c,b,a,\#\}$$

$$Follow(B) = \{\#\}$$

$$Follow(D) = \{a,\#\}$$

THSS 44100593 2019 / XS-301

文法 G是LL(1)的,当且仅当对于 G的每个非终结符 A的任何两个不同产生式 $A \rightarrow \alpha$ β ,下面的条件成立:

- First(α) \cap First(β)= ϕ ,即 α 和 β 推导不出以同一个单词为首的符号串,也不会同时推导出 ε
- 假若β^{*}⇒ ε,那么First(α)∩Follow(A)=φ,即α所能推出的串的首符号不应在Follow(A)中.

THSS 44100593 2019 / XS-301

◆ 举例: 判断如下文法G(S)是否是LL(1)文法

文法 G(S):

$$(1) S \rightarrow AB$$

(2)
$$A \rightarrow Da \mid \varepsilon$$

$$(3) B \rightarrow cC$$

(4)
$$C \rightarrow aADC \mid \varepsilon$$

(5)
$$D \rightarrow b | \varepsilon$$

First(D) =
$$\{b, \epsilon\}$$

First(C) =
$$\{a, \epsilon\}$$

$$First(B) = \{c\}$$

First(A) =
$$\{b,a, \epsilon\}$$

$$First(S) = \{b,a,c\}$$

$$Follow(A) = \{c,b,a,\#\}$$

$$Follow(B) = \{\#\}$$

$$Follow(D) = \{a,\#\}$$

For A: $first(Da) \cap follow(A) = \{b,a\} \cap \{c,b,a,\#\} = \{b,a\}$

THSS 44100593 2019 / XS-301

- ◆ LL(1)文法的性质
 - LL(1)文法是无二义的
 - LL(1)文法是无左递归的
 - LL(1)文法是无左公因子的

除了利用定义外,有时可以利用这些性质 判定某些文法不是LL(1)的

THSS 44100593 2019 / XS-301

- ◆ LL(1)分析的实现
 - 递归下降 LL(1)分析 (递归下降分析: 非终结符 ⇔子程序)
 - 表驱动 LL(1)分析 借助于预测分析表和一个下推栈

THSS 44100593 2019 / XS-301

◆ 递归下降LL(1)分析程序

- 工作原理

每个非终结符都对应一个子程序。该子程序的行为根据语法描述来明确:

- 每遇到一个终结符,则判断当前读入的单词是否 与该终结符相匹配,若匹配,再读取下一个单词 继续分析;不匹配,则进行出错处理
- 每遇到一个非终结符,则调用相应的子程序

THSS 44100593 2019 / XS-301

◇ 非终结符对应的递归下降子程序

```
- 例 对于下列文法 (其中 function, identifier,
     parameter_list 和 statement 是非终结符)
  function → FUNC identifier (parameter_list) statement
     void ParseFunction( )
       MatchToken(T_FUNC); //匹配FUNC
       Parseldentifier();
       MatchToken(T_LPAREN); // 匹配 (
       ParseParameterList();
       MatchToken(T_RPAREN); // 匹配 )
       ParseStatement();
```


THSS 44100593 2019 / XS-301

- ◇ 非终结符对应的递归下降子程序
 - 例 续上页

```
void MatchToken(int expected)
 if (lookahead != expected) //判别当前单词是否与
                        //期望的终结符匹配
   printf("syntax error \n");
   exit(0);
         // 若匹配,消费掉当前单词并读入下一个
 else
   lookahead = nexttoken(); //调用词法分析程序
```


THSS 44100593 2019 / XS-301

- ◇ 非终结符对应的 递归下降子程序
 - 一般结构

设 A 的产生式:

 $A \rightarrow u_1 \mid u_2 \mid ...,$

相对于非终结符A 的递归下降子程序 ParseA的一般结 构如右图所示

```
void ParseA()
    switch (lookahead) {
         case First(u<sub>1</sub>):
              /* code to recognize u<sub>1</sub> */
              break;
        case First(u<sub>2</sub>):
              /* code to recognize u<sub>2</sub> */
              break;
        case Follow(\boldsymbol{A}): /* when A \stackrel{*}{\Rightarrow} \varepsilon */
              /* usually do nothing here */
             break;
        default:
              printf("syntax error \n");
              exit(0);
```


THSS 44100593 2019 / XS-301

◆ 递归下降LL(1)分析程序举例

- 例 对于下列文法 G(S): $S \rightarrow AaS \mid BbS \mid d$ $A \rightarrow a$ $B \rightarrow \varepsilon \mid c$

First (S) = {a, b, c, d} First (A) = {a} First (B) = { ε , c} Follow (S) = {#} Follow (A) = {a} Follow (B) = {b}

因为 $First(AaS)=\{a\}$, $First(BbS)=\{b, c\}$,以及 $First(d)=\{d\}$ 之间两两互不相交,同时 $Follow(B)=\{b\}$ 与 $First(c)=\{c\}$ 不相交,所以,G(S)是LL(1)文法

THSS 44100593 2019 / XS-301

- 接上例 针对文法G(S)构造的递归下降分析程序

```
G(S): S \rightarrow AaS \mid BbS \mid d
         A \rightarrow a
         B \rightarrow \varepsilon \mid c
First (S) = \{a, b, c, d\}
Follow (S) = \{\#\}
void ParseS()
    switch (lookahead) {
         case a:
            ParseA();
            MatchToken(a);
            ParseS();
            break;
```

```
case b,c:
  ParseB();
  MatchToken(b);
  ParseS();
  break;
case d:
  MatchToken(d);
  break;
default:
  printf("syntax error \n")
  exit(0);
```


THSS 44100593 2019 / XS-301

- 接上例 针对文法G(S) 构造的递归下降分析程序

```
G(S): S \rightarrow AaS \mid BbS \mid d
         A \rightarrow a
          B \rightarrow \varepsilon \mid c
void ParseB()
    if (lookahead==c) {
        MatchToken(c);
    else if (lookahead==b) {
          else {
             printf("syntax error \n");
             exit(0);
```

```
First (A) = \{a\}
 First (B) = \{\varepsilon, c\}
 Follow (S) = \{\#\}
 Follow (A) = \{a\}
 Follow (B) = \{b\}
void ParseA( )
   if (lookahead==a) {
       MatchToken(a);
   else {
     printf("syntax error \n");
     exit(0);
```


THSS 44100593 2019 / XS-301

◆ 表驱动LL(1)分析程序

- 工作原理 利用预测分析表和一个下推栈实现
 - (0) 初始化,将符号#入栈;
 - (1) 文法开始符号入栈;
 - (2) 若栈顶为 终结符,则判断当前读入的单词是否与该终结符相匹配,
 - (a) 若匹配,再读取下一单词继续分析;
 - (b) 不匹配,则进行出错处理;
 - (3) 若栈顶为非终结符,则根据该非终结符和当前输入单词查预测分析表,
 - (a) 若相应表项中是产生式(唯一的),则将此非 终结符出栈,并把产生式右部符号从右至左入栈;
 - (b) 若表项为空,则进行出错处理;
 - (4) 重复(2)和(3),直到栈顶为#同时输入也 遇到结束符#时,分析结束

THSS 44100593 2019 / XS-301

◇ 预测分析表

- 表驱动分析程序需要的二维表M
- 表的每一行A对应一个非终结符
- 表的每一列a 对应某个终结符或输入结束符#
- 表中的项*M*(*A*,a) 表示栈顶为*A*,下一个输入符号为a时,可选的产生式集合
- 对于LL(1) 文法,可以构造出一个M(A,a) 最多只包含一个产生式的预测分析表,可称之为LL(1) 分析表
- M(A,a) 不含产生式时,对应一个出错位置

THSS 44100593 2019 / XS-301

◇ 预测分析表的构造算法

- 对文法**G**的每个产生式 A→α 执行如下步骤:
 - (1) 对每个 $\mathbf{a} \in \mathsf{First}(\alpha)$,把 $A \rightarrow \alpha$ 加入M[A,a]
 - (2) 若 ε ∈ First(α),则对任何 b ∈ Follow(A), 把 $A \rightarrow \alpha$ 加至M[A,b]中
- 把所有无定义的M[A,a]标上"出错标志"
- 可以证明:一个文法G的预测分析表不含多重入口,当且 仅当该文法是LL(1)的

THSS 44100593 2019 / XS-301

◇ 预测分析表的构造举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$

 $A \rightarrow a$

$$B \rightarrow \varepsilon \mid c$$

可构造如下预测分析表:

First $(S) = \{a, b, c, d\}$
First $(A) = \{a\}$
First (B) = $\{\varepsilon, c\}$
Follow $(S) = \{\#\}$
Follow $(A) = \{a\}$
Follow (B) = $\{b\}$

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		В→ε	В→с		

THSS 44100593 2019 / XS-301

◇ 表驱动预测分析程序分析算法

```
初始时'#'入栈,然后文法开始符号入栈;首个输入符号读进 a:
flag =TRUE:
while (flag) do {
  栈顶符号出栈并放在X中:
  if (X \in V_{\tau}) {
     if (X==a)
        把下一个输入符号读进a;
     else ERROR:
   else if (X=='#') {
     if (a=='#') flag = FALSE;
     else ERROR;
   else if (M[X,a] == \{X \rightarrow X_1 X_2 ... X_k\}) X_k, X_{k-1}, ..., X_1依次进栈;
   else ERROR;
/*分析成功,过程完毕* /
```


THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ aabd# $B \rightarrow \varepsilon \mid c$

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B\!\!\!\to\!\!\! arepsilon$	$B \rightarrow c$		

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法G(S):

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ aabd# $B \rightarrow \varepsilon \mid c$

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B \rightarrow \varepsilon$	$B \rightarrow c$		

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ aabd# $B \rightarrow \varepsilon \mid c$

a a S #

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B \rightarrow \varepsilon$	В→с		

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法G(S):

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ abd# $B \rightarrow \varepsilon \mid c$

分析输入串 aabd 的过程:

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B\!\!\!\to\!\!\! arepsilon$	$B \rightarrow c$		

a S #

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ $bd\#$ $B \rightarrow \varepsilon \mid c$

分析输入串 aabd 的过程:

	а	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B \rightarrow \varepsilon$	В→с		

S #

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法G(S):

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ $bd\#$ $B \rightarrow \varepsilon \mid c$

分析输入串 aabd 的过程:

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B \rightarrow \varepsilon$	В→с		

B b S #

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ $bd\#$ $B \rightarrow \varepsilon \mid c$

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B\!\!\!\to\!\!\! \varepsilon$	$B \rightarrow c$		

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法*G(S)*:

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ $d\#$ $B \rightarrow \varepsilon \mid c$

分析输入串 aabd 的过程:

	а	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B\!\!\!\to\!\!\! \varepsilon$	В→с		

S #

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法G(S):

$$S \rightarrow AaS \mid BbS \mid d$$
 剩余的输入串 $A \rightarrow a$ $d\#$ $B \rightarrow \varepsilon \mid c$

分析输入串 aabd 的过程:

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B\!\!\!\to\!\!\! arepsilon$	$B \rightarrow c$		

d #

THSS 44100593 2019 / XS-301

◆ 表驱动预测分析过程举例

- 对于下列文法G(S):

	a	b	С	d	#
S	S→AaS	S→BbS	S→BbS	S→d	
A	A→a				
В		$B \rightarrow \varepsilon$	В→с		

Conclusions

THSS 44100593 2019 / XS-301

- ◇ 语法分析的基本思想
- ◇ 带回溯的自顶向下分析
- ◇ 预测分析
- **♦ First/Follow集**
- **♦ LL(1)**文法
- ◆ 递归下降LL(1)分析
- ◆ 表驱动LL(1)分析

推荐教学资料

THSS 44100593 2019 / XS-301

- **♦ § 4.1.1 The Role of the Parser**
- ♦ § 4.3 Writing a Grammar
- **♦ § 4.4 Top-Down Parsing**
- **♦ ANTLR**

THSS 44100593 2019 / XS-301

Thank you!