Digital Integrated Circuit Lecture 2 Introduction

Sung-Min Hong (smhong@gist.ac.kr)
Semiconductor Device Simulation Laboratory
School of Electrical Engineering and Computer Science
Gwangju Institute of Science and Technology

GIST Lecture

Review of Previous Lecture

Lecture 1

MOS transistors

- Its structure: Gate, source, drain and body(/substrate)
- Controlling the number of charge carriers by using the field effect.
- (NMOSFET) When $V_{GS} < V_{TH}$, no electron in the channel region
- (NMOSFET) When $V_{GS} > V_{TH}$, electron density increases linearly with $V_{GS} V_{TH}$.
- PMOSFET

1.4 CMOS Logic

1.4. CMOS logic (1)

- CMOS inverter
 - When the input A is 0, the NMOS transistor is OFF and the PMOS transistor is ON.
 - Thus, the output *Y* is pulled up to 1.

A	Y = NOTA		
0	1		
1	0		

Fig. 1.11(a)

1.4. CMOS logic (2)

CMOS NAND

 If either input A or B is 0, at least one of the NMOSFETs will be OFF, breaking the path from Y to GND.

A	В	Y = A NAND B
0	0	1
0	1	1
1	0	1
1	1	0

1.4. CMOS logic (3)

- Complementary CMOS gates
- Pull-down and pull-up networks
 - NMOS pull-down
 - PMOS pull-up

	Pull-up OFF	Pull-up ON	
Pull-down OFF	Z	1	
Pull-down ON	0	Crowbarred (X)	

Floating

1.4. CMOS logic (4)

- Series and parallel
 - -NMOS: 1 = ON
 - -PMOS: 0 = ON
 - Series: Both must be ON.
 - Parallel: Either can be ON.
- Conduction complements
 - Pull-up ←→ pull-down

Fig. 1.15

1.4. CMOS logic (5)

CMOS NOR

- Example 1.1
 - Sketch a 3-input CMOS NOR gate.

1.4. CMOS logic (6)

- Compound gates
 - A more complex logic function in a single stage of logic
 - Consider $Y = \overline{(A \cdot B) + (C \cdot D)}$, AND-OR-INVERT-22 (AOI22).

1.4. CMOS logic (7)

- Example 1.2
 - Sketch a static CMOS gate computing $Y = \overline{(A + B + C) \cdot D}$.

Fig. 1.19

1.4. CMOS logic (8)

- Pass transistors
 - Transistors can be used as switches.
 - Pass transistors may produce degraded (weak) outputs.

s⊸•⊸d

Fig. 1.20

1.4. CMOS logic (9)

- Transmission gate
 - By combining an NMOS and a PMOS transistor in parallel, we obtain a switch that passes both 0 and 1 well. (Transmission gate)

$$g = 0$$
, $gb = 1$
 $a \rightarrow b$
 $g = 1$, $gb = 0$
 $a \rightarrow b$

Input Output
$$g = 1, gb = 0$$

$$0 \longrightarrow \text{strong } 0$$

$$g = 1, gb = 0$$

$$1 \longrightarrow \text{strong } 1$$

1.4. CMOS logic (10)

- Tristates (0, 1, and Z)
 - Tristate buffer produces Z when not enabled
 - Transmission gate acts as a tristate buffer.
 - But, it is nonrestoring.

EN	А	Υ
0	0	Z
0	1	Z
1	0	0
1	1	1

Truth table of a tristate buffer

Fig. 1.25

1.4. CMOS logic (11)

- Tristate inverter
 - It produces a restored output.
 - It violates the conduction complements rule. (Why?)

Fig. 1.27

1.4. CMOS logic (12)

- Multiplexers (muxes)
 - It chooses the output from several inputs based on a select signal.

S	D1	D0	Υ
0	X	0	0
0	X	1	1
1	0	X	0
1	1	X	1

Truth table of a 2:1 multiplexer

Fig. 1.28(b)

1.4. CMOS logic (13)

- Implementation
 - Using transmission gates (nonrestoring)
 - Using tristate inverters (inverting)

Fig. 1.28(a)

Fig. 1.29(b)

1.4. CMOS logic (14)

- Larger multiplexers
 - Example) 4:1 multiplexer
 - Two levels of 2:1 muxes
 - Or four tristates

Fig. 1.30

Thank you!