Band pass (Modulated) Data Communication System

Unit- 5

Binary Digital Modulations

- Band pass signal is generated to transmit over transmission medium for digital communication.
- Characteristics or parameter(Amplitude, Phase, frequency) of carrier signal is changed w.r.t the digital baseband or message signal (binary signal 0 or 1).
- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
- Other Modulation scheme employs combination of above mentioned modulation.

Amplitude Shift Keying(ASK)

- Earliest and simplest form of modulation.
- Used in wireless telegraphy. No more used.
- Useful model to understand other modulation.
- In ASK, binary Symbol 1 is represented by $A_c \cos 2\pi f_c t$ for the duration T_b second.
- Symbol 0 is represented by switching OFF the carrier for duration T_b second.
- ASK is generated by simply turning the carrier of sinusoidal oscillator ON and OFF for the prescribed time period.
- Also known as ON- OFF Keying (OOK)

Amplitude Shift Keying (ASK)

- Let the sinusoidal carrier be $c(t) = A_c Cos 2\pi f_c t$.
- The binary ASK signal is $S(t) = A_c Cos2\pi f_c t$ symbol 1

Detection of ASK

- Two types of detection of ASK
- 1. Coherent or synchronous Detector:- It is also of two form
- a. Phase synchronization:- Ensures the carrier wave generated at the carrier is locked in phase with respect to the transmitter.
- b. Timing Synchronization:- Ensures proper timing of the decision making operation with respect to switching instant.

Detection of ASK

- •Product modulator that receives ASK modulated wave.
- •Sinusoidal carrier is generated by local oscillator is fed to product modulator.
- •Output is fed to integrator which performs low pass filtering.
- •It is than fed to decision device where comparison is done with the threshold.
- •Symbol 1 as the output if it is greater than the threshold.
- •Symbol 0 otherwise.

Detection of ASK

- •Binary ASK wave can be demodulated by Non Coherent Detector.
- It uses Envelope Detector.
- •Envelope Detector consist of Rectifier and low pass filter.
- •It is than fed to decision device where comparison is done with the threshold.
- •Symbol 1 as the output if it is greater than the threshold.
- •Symbol 0 otherwise.

Amplitude Shift Keying

- Carrier Signal, $C(t) = A_C \cos 2\pi f_c t$ ----(1)
- $\bullet \quad P_{c} = A_{C}^{2}/2$
- $A_c = \sqrt{(2P_c)}$
- $A_c = \sqrt{(2P_S)}$ $P_S = Power dissipated per bit..$
- m(t) is the binary data in uni polar form.
- Modulated ASK wave is
- S(t) = m(t) C(t)----(2)
- $S(t) = m(t) A_C \cos 2\pi f_c t$
- $S(t) = m(t) \sqrt{(2P_S)} \cos 2\pi f_c t$ ----(3)
- $S(t) = \sqrt{(2P_S)} \cos 2\pi f_c t$ For Symbol 1 (i.e m(t) = 1)
- S(t) = 0 For Symbol 0 (i.e m(t) = 0)
- $S(t) = m(t) \sqrt{(2P_S)} (e^{j2\pi fct} e^{-j2\pi fct}) / 2$
- $S(t) = \sqrt{(2P_S)} / 2 [m(t) e^{j2\pi fct} m(t) e^{-j2\pi fct}]$
- Taking Fourier Transform (F.T)
- $S(f) = \sqrt{(2P_S)/2} [M(f+f_c)+M(f-f_c)]$ ----- (4)

Amplitude Shift Keying

• Demodulation (Detection)

- S'(t) = S(t) C(t)----(1)
- S'(t) = $\sqrt{(2P_S)}$ m(t) Cos $2\pi f_c t$ * Cos $2\pi f_c t$
- S'(t) = $\sqrt{(2P_S)}$ m(t) $\cos^2 2\pi f_c t$
- S'(t) = $\sqrt{(2P_S)}$ m(t) $(1+\cos 4\pi f_c t / 2)$
- S'(t) = $\sqrt{(2P_S)} m(t)/2 + \sqrt{(2P_S)} m(t) \cos 4\pi f_c t / 2$
- Integrator does low pass filtering which will reject the high frequency term
- S'(t) = $\sqrt{(2P_S)}$ m(t)/2 ----(2) which is scaled original message signal.

- In PSK amplitude and frequency of carrier is unchanged (fixed).
- The phase is varied or changed by 180^0 with the change in symbol.
- $C(t) = A_C \cos 2\pi f_C t$
- $P_{c} = A_c^2/2$
- $A_{c}^{-} = \sqrt{(2P_{c})}$
- $A_c = \sqrt{(2P_s)}$ $P_s = Power dissipated per bit.$
- Modulated PSK wave is
- S(t) = m(t) C(t)----(2)
- $S(t) = m(t) A_C Cos2\pi f_C t$
- $S(t) = m(t) \sqrt{(2P_s)} \cos 2\pi f_c t$ -----(3) $S(t) = \sqrt{(2P_s)} \cos 2\pi f_c t$ For Symbol 1 (i.e m(t) = 1)
- $S(t) = \sqrt{(2P_s)} \cos(2\pi f_c t + \pi)$ For Symbol 0 (i.e m(t) = 0)
- $S(t) = -\sqrt{(2P_s)} \cos 2\pi f_s t$ For Symbol 0 (i.e m(t) = 0)

- Demodulation:-
- 1. Coherent or Synchronous Detector:-
- Synchronous Demodulation of binary PSK wave is same as that of ASK wave demodulation.
- 2. Carrier Recovery Circuit in PSK System:-

• Demodulation:-

Let the received BPSK signal is

- •S(t) = b(t) $A_C \cos(2\pi f_c t + \Theta)$ Θ --- Phase change
- •The received incoming signal is squared by square law device and the amplitude terms are neglected.
- • $\cos^2(2\pi f_c t + \Theta)$
- •1+Cos2($2\pi f_c t+\Theta$)/2
- •1/2 + 1/2 $\cos(2\pi f_c t + \Theta)$ which is further passed through Band Pass filter removing
 - scale 1/2 and is centered around $2f_c$.
- •Cos2($2\pi f_c t + \Theta$) is fed to frequency divider by 2
- •Reference signal $Cos(2\pi f_c t + \Theta)$ is passed to Synchronous demodulator

• Demodulation:-

Output of multiplier is

$$S'(t)=S(t) \cos(2\pi f_c t + \Theta)$$

$$S'(t)=S(t) \cos(2\pi f_c t + \Theta)$$

$$S'(t)=b(t) A_C \cos(2\pi f_c t + \Theta)*\cos(2\pi f_c t + \Theta)$$

$$S'(t)=b(t) \sqrt{(2P_S)} \cos^2(2\pi f_c t + \Theta)$$

$$S'(t)=b(t) \sqrt{(2P_S)} [1+\cos(2\pi f_c t + \Theta)] / 2$$

$$S'(t)=b(t) \sqrt{(P_S/2)} [1+\cos(2\pi f_c t + \Theta)]$$

- •Output is supplied to the Integrator and Bit synchronizer.
- •Integrator performs low pass filtering.
- Bit synchronizer is used to identify start and end of bit.
- •Output of integrator is feed to the decision device which identifies Symbol 0 or Symbol 1.

- Advantage:-
- Most efficient digital modulation technique.
- PSK is used for the system that needs high bit rate.
- Limitation:-
- Complication in Synchronization.
- Phase Ambiguity problem.
- Phase Shift Keying (PSK) cannot be detected non coherently.
- •Envelope of PSK modulated wave is same for the Symbol 1 or Symbol 0.
- •To overcome this **Differential Phase Shift Keying(DPSK)** is introduced.

Differential Phase Shift Keying(DPSK)

- Non Coherent conversion of PSK. DPSK combines different encoding with Phase Shift Keying.
- It is modified scheme encoded in terms of signal transition.
- Symbol 0 represents transition whereas Symbol 1 no transition.
- •Data Stream b(k) is fed to the encoder.
- •Output of encoder d(k) is passed to Product Modulator to get DPSK.
- •Output is fed back to the encoder.
- •One extra bit 0 or 1 is added initial bit to predict transition.

Differential Phase Shift Keying(DPSK)

- Modulated DPSK is passed to product modulator directly and with the delay $T_{\rm h}$
- Phase difference between the phase of DPSK and shifted DPSK determines the phase comparator Output.
- Difference $\Phi = 0$, the integrator output is Positive(+).
- Difference $\Phi = \pi$, the integrator output is Negative(-).
- •Integrator output is compared with Threshold (0v)
- •Symbol 0 represents negative whereas Symbol 1 positive output.

Differential Phase Shift Keying(DPSK)

Biraly Data b(K)	0	0	1	0	0	1	0	0	1	1	panel	k; 14	_
Diffrentially encoded dutad(1) 1	0	1.	-		-	-	0		1.			bic D'	dk-r
Phase of DPSK 0	$\boldsymbol{\pi}$	0	0	7	0	0	7	0	0 0) T	ransa	nitty	4
Shifted diffrentially enloded data (dr.	1) 1	0	1	1	0	1	1	0	11	- 4	-8-	etroet	<u></u>
phose of shifted DPSK	0	$\boldsymbol{\tau}$	0	0	7	0	0	7	00	-			
phase Comparision output		-	+	-	-	+	-	-	+ +				
Detected binary sequence	0	0	1	0 (0	1	61	0 1	11				
Take extrabi-	+ 0								-	1	Page 161		
Binaly Data b(K)	0	0	1	c		0	1	C	0	1	1 1	,	
Diffrentially encoded 0	1	0	0	1)	0	1	0	0	0	4	
data dik)					٧.								+
Phose of DPSK X	0	7	7	0	7	7	7	D	~	×	下	J	
shifted diffrentially	0	1	0	0		1	0	0	1	0	0	2	
encoded data dx-1												8	
phose of shifted Dosk	**	0	7	$\boldsymbol{\kappa}$	C		*	*	0	A	K		E
phase comparision output	-	-	†	-	-		+	-	-	+	+		
Detected bin ay b(+)	0	0	1	0	0		1	0	0	1	1_)	

Frequency Shift Keying(FSK)

- It has two level shifter whose one of the input is inverted.
- It has two product modulator with two carrier $\Phi_1(t)$, $\Phi_2(t)$.
- Output of product modulator is mixed or added up by summer.
- Generating BFSK signal.

Frequency Shift Keying(FSK)

Fig:- Detection of BFSK.

- FSK is fed to the two Correlators.
- Correlator are supplied with carrier signal which is further passed to the integrators.
- Integrator provides necessary filtering action and are introduced to the comparator.
- $l_1 > l_2$ Symbol 1.
- Otherwise Symbol 0.

Frequency Shift Keying(FSK)

Fig:- Non Coherent Detection of BFSK.

- Demodulation or Detection is done by Envelope Detector.
- BPF tuned to f_L and f_H
- Output of filter is fed to the Envelope Detector.
- Sampler performs sampling and introduced to comparator.
- If $f_H > f_L$ Symbol 1
- Symbol 0 Otherwise.

- For efficient utilization of bandwidth QPSK and MSK is introduced.
- Quadrature Phase Shift Keying:-
- It is an extension of binary PSK.
- M possible signal (M=2ⁿ) can be transmitted during each interval of time.
- M-ary encoding technique with four possible outcomes.
- Represented by four di bits (00, 01, 10,11) with instantaneous phase $+45^{\circ}$, -45° , $+135^{\circ}$, -135°
- QPSK Signal
- $S(t) = A_C Cos[2\pi f_C t + \Phi(t)]$
- Φ(t)= Instantaneous Phase

- It consist of serial to parallel converter.
- •Pair of product modulator where the serial to parallel converter splits the bit.
- •One bit passes to I- Channel Product modulator with carrier signal $A_C \cos 2\pi f_c t$.
- •Other bit passes to Q-channel product modulator with carrier signal $A_C \sin 2\pi f_c t$.
- •Modulated signal are than added in Linear Summer to generate QPSK Signal.

- QPSK Signal is detected by using pair of Correlators.
- •Upper part computes the modulated In phase bit whereas lower part computes the modulated Quadrature bit.
- •Balanced modulator with carrier signal $\cos 2\pi f$ t is fed to Integrator and Decision device.
- •Balanced modulator with carrier signal $\sin 2\pi f_c t$ is fed to Integrator and Decision device.
- •Comparison with Threshold decides four phases which is further transferred to binary bits by Parallel to Serial Converter.

- Abrupt phase shift in QPSK introduces attenuation.
- •OQPSK overcomes abrupt phase shift.

Minimum Shift Keying (MSK)

- Limitation of Quadrature Phase Shift Keying
- Abrupt Phase Shift Keying.
- Abrupt amplitude Variation.
- Inter channel interference is very high.
- Minimum Shift Keying(MSK) is a special form of Continuous Phase Frequency Shift Keying (CPFSK) which overcomes the limitation of QPSK.

• Modification of MSK: Highly used in cellular mobile Communication.

- •NRZ binary input is fed to Gaussian Low Pass Filter.
- •Output of LPF is fed to F.M transmitter.
- •Output of F.M transmitter is fed to R.F Amplifier to produce GMSK Output.

- Consist of In-Phase and Quadrature Balanced Modulator.
- Input Data is fed to the LPF which separates Inphase and Quadrature Component.
- Local oscillator generates In-phase carrier signal and 90 phase shifted Carrier Signal fed to the Balanced Modulator.
- Output of Balanced Modulator is mixed in Summer.
- •The output of Summer is further Amplified and radiated through GSM Antnenna.

- Clock Recovery Circuit
- Input modulated signal is given to two mixer.
- •Carrier signal directly given to Mixer 1 and 90 phase shift to Mixer 2.
- •Output of LPF is fed to Orthogonal Coherent detector to extract original Signal.

• Advantages:-

- Good Power Efficiency.
- Good Spectral Efficiency.
- Less ISI.
- Best for Wireless Communication.
- GMSK Transmission System:-
- In MSK, spectrum is not compact enough to occupy R.F channel Bandwidth.
- It is done by using Gaussian filter which will efficiently use the bandwidth. (*GMSK*)

- Bit duration (B.T) is channel spacing.
- Less Bit duration(B.T) will have better ISI tolerance and compact Spectrum.
- Cellular Digital Packet Data (CDPD) uses GMSK with bit duration B.T= 0.5 of 30 KHz channel spacing data rate of 19.2 Kbps.
- Mobitex uses GMSK with bit duration B.T= 0.3 tighter channel spacing 12.5 KHz channel spacing data rate of 8 Kbps.

M-ary Data Communication System

- M-ary Signaling has M-level of output.
- Output may be one of the M possible level.
- Signaling Rate:-
- If M symbols emitted are equi probable and statistically independent then source entropy

- •Information Rate (R) = r H
- $\cdot r = Symbol Rate$
- •Information Rate for M-ary Data communication system is

$$R = r Log_{2} M$$

•For M = 4, $Log_{2} 4 = 2$, R = 2r

Comparison between Binary & M-ary Signaling

Binary Signaling System	M-ary Signaling System						
Signal is of two possible amplitude level.	Signal is of M possible amplitude level.						
Signaling rate $1/T_b$ for T_b is bit duration.	Signaling rate 1/T for T is bit duration.						
Transmits data slower than M-ary	Transmits data log 2 M faster than binary.						
Less Power is required	More power is required						

Quadrature Amplitude Modulation

- Quadrature Amplitude Modulation (QAM) overcomes the limitation of ASK and PSK.
- Amplitude and Phase of the carrier signal is changed w.r.t message signal.
- It is the combination of both Amplitude Shift Keying and Phase Shift Keying.

Quadrature Amplitude Modulation

Quardrature Amplitude Modulation

MODEM & its Application

Known as Data Transceiver.

- Modulator- Demodulator used to transmit/receive digital data over voice grade public telephone lines.
- MODEM used to connect terminals located in remote places to a central computer.

• Modulation Types according to the Use:-

MODEM & its Application

- Binary FSK with Non Coherent Detection:-
- Simple and economic.
- FSK MODEMS operates at frequency 1300 to 2100 Hz.
- Has speed1200 bps.
- Four Phase DPSK:-
- Operates at 1300 Hz. Speed 2400 bps.
- Eight Phase DPSK:-
- Operates at 1800 Hz. Speed 4800 bps.
- M-ary PSK & DPSK:-
- Susceptible to phase jitter in telephone channel.
- M-ary QAM(16-QAM):-
- Speed 9600 bps. Implements adaptive equalization to compensate distortions.

Modes of Operation of MODEM

• Simplex:-

- One direction only and no signaling path is available.
- One way Communication. No error Correction and retransmission of data.

• Half Duplex:-

- Transmission in both direction but one at time.
- Full Duplex:-
- Data Transfer in both direction at a same time.

Band pass (Modulated) Data Communication System

Thank you