

Advanced Functional Programming 2011-2012, period 2

Andres Löh and Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Jan 10, 2012

12. Functional Dependencies, Generalized Algebraic Datatypes (GADTs), The Lambda Cube

Faculty of Science

This lecture

12.1 Multiple parameters and functional dependencies

Faculty of Science

Multi-parameter type classes

This extension allows type classes to have multiple parameters:

class Collection c a where

union :: c a \rightarrow c a \rightarrow c a elem :: a \rightarrow c a \rightarrow Bool

empty :: c a

Faculty of Science

Multi-parameter type classes

This extension allows type classes to have multiple parameters:

class Collection c a where union :: c a \rightarrow c a \rightarrow c a elem :: a \rightarrow c a \rightarrow Bool empty :: c a

Why is

```
class Collection c where union :: c a \rightarrow c a \rightarrow c a elem :: a \rightarrow c a \rightarrow Bool
        empty::ca
```

not an option?

Multi-parameter type classes (contd.)

This form is still suboptimal:

```
class Collection c a where union :: c a \rightarrow c a \rightarrow c a elem :: a \rightarrow c a \rightarrow Bool empty :: c a
```

What about Data.IntSet.IntSet? It is not of the form c a, so it cannot be made an instance of Collection, even though it supports all the methods.

Faculty of Science

Multi-parameter type classes (contd.)

This form is still suboptimal:

```
class Collection c a where union :: c a \rightarrow c a \rightarrow c a elem :: a \rightarrow c a \rightarrow Bool empty :: c a
```

What about Data.IntSet.IntSet? It is not of the form c a, so it cannot be made an instance of Collection, even though it supports all the methods.

Another idea:

```
class Collection ca a where union :: ca \rightarrow ca \rightarrow ca elem :: a \rightarrow ca \rightarrow Bool empty :: ca
```

4日 > 4 個 > 4 豆 > 4 豆 > 豆 めの()

Multi-parameter type classes (contd.)

class Collection ca a where union $:: ca \rightarrow ca \rightarrow ca$ elem $:: a \rightarrow ca \rightarrow Bool$ empty::ca

Problem 1

empty :: (Collection ca a) \Rightarrow ca

has an ambiguous type.

Problem 2

 $\mathsf{test} :: (\mathsf{Collection} \ \mathsf{ca} \ \mathsf{Bool}, \mathsf{Collection} \ \mathsf{ca} \ \mathsf{String}) \Rightarrow \mathsf{ca} \to \mathsf{Bool} \\ \mathsf{test} \ \mathsf{coll} = \mathsf{elem} \ \mathsf{True} \ \mathsf{coll} \land \mathsf{elem} \ \mathsf{"foo"} \ \mathsf{coll}$

is type-correct, but intuitively should not be.

Faculty of Science Information and Computing Sciences

Universiteit Utrecht

Functional dependencies

class Collection ca a \mid ca \rightarrow a where \dots

► This indicates that ca determines a. It restricts the admissible instances.

instance Collection IntSet Int

is possible, a subsequent

instance Collection IntSet Bool

is now disallowed.

▶ Solves both the problems just mentioned . . .

With functional dependencies, the type

empty :: (Collection ca a) \Rightarrow ca

is no longer ambiguous.

Faculty of Science

With functional dependencies, the type

empty :: (Collection ca a) \Rightarrow ca

is no longer ambiguous.

instance Collection IntSet Int
empty :: IntSet

Now correct. The inferred class constraint Collection IntSet a can be improved to Collection IntSet Int and then be reduced.

[Faculty of Science

test :: (Collection ca Bool, Collection ca String) \Rightarrow ca \rightarrow Bool test coll = elem True coll \land elem "foo" coll

No longer ok, because the two constraints cannot be satisfied at the same time while respecting the functional dependency.

4日 > 4 個 > 4 豆 > 4 豆 > 豆 めの()

Functional dependencies are extremely powerful and (in conjunction with other extensions) can encode many computations:

```
class Add x y z | x y \rightarrow z where
  \mathsf{add} :: \mathsf{x} \to \mathsf{y} \to \mathsf{z}
instance Add Zero x x
  where add Zero x = x
instance Add n \times r \Rightarrow Add (Succ n) \times (Succ r)
   where add (Succ n) x = Succ (add n x)
```

```
\begin{array}{l} \mathsf{Main} \rangle \ : \mathsf{t} \ \mathsf{add} \ (\mathsf{Succ} \ \mathsf{Zero}) \ (\mathsf{Succ} \ \mathsf{Zero}) \\ \mathsf{add} \ (\mathsf{Succ} \ \mathsf{Zero}) \ (\mathsf{Succ} \ \mathsf{Zero}) :: \mathsf{Succ} \ (\mathsf{Succ} \ \mathsf{Zero}) \end{array}
```


12.2 Type families

Associated types

An alternative to functional dependencies. Type synonyms and datatypes are allowed in classes:

```
class Collection c where type Elem c union :: c \rightarrow c \rightarrow c elem :: Elem c \rightarrow c \rightarrow Bool empty :: c instance Collection IntSet where type Elem IntSet = Int ...
```

Associated type synonyms trigger equality constraints, a different form of qualified types:

elem False :: (Bool \sim Elem c, Collection c) \Rightarrow c \rightarrow Bool [Faculty of Science Universiteit Utrecht Information and Computing Sciences]

Type families

Like associated types, but the class declaration remains implicit:

```
type family Elem c :: *
type instance Elem IntSet = Int
```

Associated datatypes and datatype families are also supported.

Type families (contd.)

Using type families, type-level functions look a bit more like ordinary functions:

```
type family Add n x :: *
type instance Add Zero x = x
type instance Add (Succ n) x = Succ (Add n x)
```

Fundeps vs. type families

Functional dependencies are controversial, because

- they lead to logic programming on the type level (as opposed to functional programming),
- their interaction with other type system features (such as GADTs) is somewhat broken,
- because their use has some strange restrictions.

The latter features are problems with the implementation rather than the concepts.

[Faculty of Science

Fundeps vs. type families (contd.)

Type families have been proposed as a replacement for functional dependencies.

- Type families allow a more functional style of programming.
- However, they expose a new language concept to the user (equality constraints).
- Just those equality constraints make the connection to GADTs somewhat easier.
- They are much more recent, therefore most libraries (monad transformers, HList, ...) still use functional dependencies.

[Faculty of Science

Case study: Heterogeneous lists

The HList library makes use of functional dependencies in order to support **heterogenous lists**.

```
class HMap f I I' | f I \rightarrow I' where hMap :: f \rightarrow I \rightarrow I'
instance HMap f HNil HNil where
   hMap f HNil = HNil
instance (Apply f x y, HMap f xs ys) \Rightarrow
           HMap f (HCons x xs) (HCons y ys) where
   hmap f (HCons \times xs) = HCons (apply f \times) (hmap f \times s)
class Apply f a r | f a \rightarrow r where apply :: f \rightarrow a \rightarrow r
instance Apply (x \rightarrow y) \times y
```


Heterogeneous lists (contd.)

The HList library can be used to encode

- typed heterogenous lists or stacks
- extensible records
- objects

Faculty of Science

More class system extensions . . .

- Local or named instances.
- ► Implicit parameters.
- Explicit implicit parameters.
- Quantified instances.
- Recursive dictionaries.
- Alternative translation methods.
- Cyclic class hierarchy.
- Backtracking.
- **.** . . .

Faculty of Science

12.3 GADTs

A datatype

```
\begin{tabular}{ll} \textbf{data} \ \mathsf{Tree} \ \mathsf{a} = \mathsf{Leaf} \\ \mid \ \mathsf{Node} \ (\mathsf{Tree} \ \mathsf{a}) \ \mathsf{a} \ (\mathsf{Tree} \ \mathsf{a}) \end{tabular}
```

Introduces:

A datatype

Introduces:

- ▶ a new datatype Tree of kind $* \rightarrow *$.
- constructor functions

```
Leaf :: Tree a \rightarrow A \rightarrow Tree a \rightarrow Tree a
```

▶ the possibility to use the constructors Leaf and Node in patterns.

Alternative syntax

Observation

The types of the constructor functions contain sufficient information to describe the datatype.

```
data Tree :: * \to * where 
 Leaf :: Tree a 
 Node :: Tree a \to a \to Tree a \to Tree a
```

Are there any restrictions regarding the types of the constructors?

Algebraic datatypes

Constructors of an algebraic datatype T must:

- ► target type T,
- ▶ result in a simple type, i.e., T a₁...a_n where a₁,...,a_n are distinct type variables.

Question

Does it make sense to lift these restrictions?

Excursion: Writing an interpreter

```
\begin{array}{lll} \textbf{data} \; \mathsf{Expr} = & & \textbf{data} \; \mathsf{Expr} :: * \; \textbf{where} \\ & \mathsf{Int} & \mathsf{Int} & :: \mathsf{Int} \to \mathsf{Expr} \\ & | \; \mathsf{Bool} \; \; \mathsf{Bool} & :: \; \mathsf{Bool} \to \mathsf{Expr} \\ & | \; \mathsf{IsZero} \; \mathsf{Expr} & | \; \mathsf{IsZero} :: \; \mathsf{Expr} \to \mathsf{Expr} \\ & | \; \mathsf{Plus} \; \; \mathsf{Expr} \; \mathsf{Expr} & | \; \mathsf{Plus} \; :: \; \mathsf{Expr} \to \mathsf{Expr} \to \mathsf{Expr} \\ & | \; \mathsf{If} \; \; \; \mathsf{Expr} \; \mathsf{Expr} \to \mathsf{Expr} \to \mathsf{Expr} \to \mathsf{Expr} \\ \end{array}
```

Imagined concrete syntax:

if isZero
$$(0+1)$$
 then False else True

Abstract syntax:

If (IsZero (Plus (Int 0) (Int 1))) (Bool False) (Bool True)

[Faculty of Science Information and Computing Sciences]

Evaluation

```
data Val :: * where
VInt :: Int \rightarrow Val
VBool :: Bool \rightarrow Val
\begin{array}{c} \textbf{data} \; \mathsf{Val} = \\ \mathsf{VInt} \; \; \mathsf{Int} \end{array}
       VBool Bool
 eval :: Expr \rightarrow Val
eval (Int n) = VInt n
eval (Bool b) = VBool b
eval (IsZero e) = case eval e of
                                  VInt n \rightarrow VBool (n == 0)
                                             \rightarrow error "type error"
 eval (Plus e_1 e_2) = case (eval e_1, eval e_2) of
                                   (VInt n1, VInt n2) \rightarrow VInt (n1 + n2)
                                                               \rightarrow error "type error"
 eval (If e_1 e_2 e_3) = case eval e_1 of
                                  VBool b \rightarrow if b then eval e<sub>2</sub> else eval e<sub>3</sub>
                                                \rightarrow error "type error"
```

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Evaluation (contd.)

- Evaluation code is mixed with code for handling type errors.
- ► The evaluator uses tags (i.e., constructors) to dinstinguish values - these tags are maintained and checked at run time.

Evaluation (contd.)

- Evaluation code is mixed with code for handling type errors.
- ► The evaluator uses tags (i.e., constructors) to dinstinguish values these tags are maintained and checked at run time.
- ► Run-time type errors can, of course, be prevented by writing a type checker.
- ▶ But even if we know that we only have type-correct terms, the Haskell compiler does not enforce this.

An idea

What if we encode the type of the term in the Haskell type?

```
data Expr :: * where
   \mathsf{Int} \quad :: \mathsf{Int} \to \mathsf{Expr}
   Bool :: Bool \rightarrow Expr
  IsZero :: Expr \rightarrow Expr
  Plus :: Expr \rightarrow Expr \rightarrow Expr
   If :: Expr \rightarrow Expr \rightarrow Expr \rightarrow Expr
data Expr :: * \rightarrow * where
   Int :: Int \rightarrow Expr Int
    Bool :: Bool → Expr Bool
   IsZero :: Expr Int \rightarrow Expr Bool
   Plus :: Expr Int \rightarrow Expr Int \rightarrow Expr Int
        :: \mathsf{Expr} \; \mathsf{Bool} \to \mathsf{Expr} \; \mathsf{a} \to \mathsf{Expr} \; \mathsf{a} \to \mathsf{Expr} \; \mathsf{a}
```

GADTs

GADTs lift the restriction that constructors must target a simple type.

- Constructors can target a subset of the type.
- Interesting consequences for pattern matching:
 - when case-analyzing an Expr Int, it cannot be constructed by Bool or IsZero;
 - when case-analyzing an Expr Bool, it cannot be constructed by Int or Plus;
 - when case-analyzing an Expr a, once we encounter the constructor IsZero in a pattern, we know that we have in fact a Expr Bool;
 - **.**..

Evaluation revisited

```
\begin{array}{lll} \text{eval} :: \mathsf{Expr} \ \mathsf{a} \to \mathsf{a} \\ & \text{eval} \ (\mathsf{Int} \ \mathsf{n}) & = \mathsf{n} \\ & \text{eval} \ (\mathsf{Bool} \ \mathsf{b}) & = \mathsf{b} \\ & \text{eval} \ (\mathsf{IsZero} \ \mathsf{e}) & = (\mathsf{eval} \ \mathsf{e}) = = 0 \\ & \text{eval} \ (\mathsf{Plus} \ \mathsf{e}_1 \ \mathsf{e}_2) = \mathsf{eval} \ \mathsf{e}_1 + \mathsf{eval} \ \mathsf{e}_2 \\ & \text{eval} \ (\mathsf{If} \ \mathsf{e}_1 \ \mathsf{e}_2 \ \mathsf{e}_3) = \mathbf{if} \ \mathsf{eval} \ \mathsf{e}_1 \ \mathbf{then} \ \mathsf{eval} \ \mathsf{e}_2 \ \mathbf{else} \ \mathsf{eval} \ \mathsf{e}_3 \end{array}
```

- ▶ No possibility for run-time failure (modulo \bot).
- No tags required.
- ► Pattern matching on a GADT requires a type signature. Why?

Type signatures are required ...

```
\begin{array}{c} \textbf{data} \ X :: * \rightarrow * \textbf{where} \\ C :: \ Int \rightarrow X \ Int \\ D :: \ X \ a \\ f \ (C \ n) = [n] \\ f \ D = [\,] \end{array}
```

Question

What is the type of f?

Type signatures are required ...

$$\begin{tabular}{lll} \textbf{data} & X :: * \rightarrow * \textbf{where} \\ & C :: Int \rightarrow X Int \\ & D :: X a \\ & f & (C n) = [n] \\ & f & D & = [\,] \\ \end{tabular}$$

Question

What is the type of f?

Answer

$$\begin{array}{c} f :: X \ a \rightarrow [Int] \\ f :: X \ a \rightarrow [a] \end{array}$$

None of the two is an instance of the other.

Faculty of Science Information and Computing Sciences

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

GADTs subsume existentials

Let us extend the expression types with pair construction and projection:

```
data Expr :: * → * where

Int :: Int → Expr Int

Bool :: Bool → Expr Bool

IsZero :: Expr Int → Expr Bool

Plus :: Expr Int → Expr Int → Expr Int

If :: Expr Bool → Expr a → Expr a → Expr a

Pair :: Expr a → Expr b → Expr (a, b)

Fst :: Expr (a, b) → Expr a

Snd :: Expr (a, b) → Expr b
```

For Fst and Snd, the type of the non-projected component is hidden.

Evaluation again

```
\begin{array}{l} \text{eval} :: \mathsf{Expr} \ \mathsf{a} \to \mathsf{a} \\ \text{eval} \dots \\ \\ \text{eval} \ (\mathsf{Pair} \ \mathsf{x} \ \mathsf{y}) = (\mathsf{eval} \ \mathsf{x}, \mathsf{eval} \ \mathsf{y}) \\ \text{eval} \ (\mathsf{Fst} \ \mathsf{p}) &= \mathsf{fst} \ (\mathsf{eval} \ \mathsf{p}) \\ \text{eval} \ (\mathsf{Snd} \ \mathsf{p}) &= \mathsf{snd} \ (\mathsf{eval} \ \mathsf{p}) \end{array}
```

12.4 Example: Vectors

Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are required.

data Zero data Succ a

Faculty of Science

Natural numbers and vectors

Natural numbers can be encoded as types – no constructors are required.

```
data Zero
data Succ a
```

Vectors are lists with a fixed number of elements:

Unlike HLists, vectors are homogeneous.

Faculty of Science

Type-safe head and tail

```
\begin{array}{l} \text{head} :: \mathsf{Vec} \ \mathsf{a} \ (\mathsf{Succ} \ \mathsf{n}) \to \mathsf{a} \\ \text{head} \ (\mathsf{Cons} \times \mathsf{xs}) = \mathsf{x} \\ \text{tail} :: \mathsf{Vec} \ \mathsf{a} \ (\mathsf{Succ} \ \mathsf{n}) \to \mathsf{Vec} \ \mathsf{a} \ \mathsf{n} \\ \text{tail} \ (\mathsf{Cons} \times \mathsf{xs}) = \mathsf{xs} \end{array}
```

- No case for Nil is required.
- Actually, a case for Nil results in a type error.

More functions on vectors

```
\begin{array}{ll} \mathsf{map} :: (\mathsf{a} \to \mathsf{b}) \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{n} \to \mathsf{Vec} \; \mathsf{b} \; \mathsf{n} \\ \mathsf{map} \; \mathsf{f} \; \mathsf{Nil} &= \mathsf{Nil} \\ \mathsf{map} \; \mathsf{f} \; (\mathsf{Cons} \, \mathsf{x} \, \mathsf{xs}) &= \mathsf{Cons} \; (\mathsf{f} \, \mathsf{x}) \; (\mathsf{map} \; \mathsf{f} \; \mathsf{xs}) \\ \mathsf{zipWith} :: (\mathsf{a} \to \mathsf{b} \to \mathsf{c}) \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{n} \to \mathsf{Vec} \; \mathsf{b} \; \mathsf{n} \to \mathsf{Vec} \; \mathsf{c} \; \mathsf{n} \\ \mathsf{zipWith} \; \mathsf{op} \; \mathsf{Nil} &= \mathsf{Nil} \\ \mathsf{zipWith} \; \mathsf{op} \; (\mathsf{Cons} \, \mathsf{x} \, \mathsf{xs}) \; (\mathsf{Cons} \, \mathsf{y} \; \mathsf{ys}) &= \mathsf{Cons} \; (\mathsf{op} \, \mathsf{x} \, \mathsf{y}) \\ &\qquad \qquad (\mathsf{zipWith} \; \mathsf{op} \; \mathsf{xs} \; \mathsf{ys}) \end{array}
```

We require that the two vectors have the same length!

Yet more functions on vectors

```
\begin{array}{ll} snoc :: Vec \ a \ n \rightarrow a \rightarrow Vec \ a \ (Succ \ n) \\ snoc \ Nil & y = Cons \ y \ Nil \\ snoc \ (Cons \ x \ xs) \ y = Cons \ x \ (snoc \ xs \ y) \end{array}
  reverse :: Vec a n \rightarrow Vec a n
reverse Nil = Nil
reverse (Cons x xs) = snoc xs x
What about (++)?
```

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶</p

12.5 Problematic functions

Problematic functions

Append (++):

$$(++) :: \mathsf{Vec} \ \mathsf{a} \ \mathsf{m} \to \mathsf{Vec} \ \mathsf{a} \ \mathsf{n} \to \mathsf{Vec} \ \mathsf{a} \ (\mathsf{Sum} \ \mathsf{m} \ \mathsf{n})$$

Do we need functions on the type level?

Converting from lists to vectors:

fromList $:: [a] \rightarrow \mathsf{Vec} \ \mathsf{a} \ \mathsf{n}$

Where does n come from?

◆□▶◆御▶◆団▶◆団▶ 団 めの◎

Writing vector append

There are multiple options to solve that problem:

- construct explicit evidence,
- use a type family.

Faculty of Science

Explicit evidence

We encode the addition as another GADT:

```
\begin{array}{lll} \textbf{data} \; \mathsf{Sum} \; :: \; * \to * \to * \to * \; \textbf{where} \\ \; \; \mathsf{SumZero} \; :: & \; \mathsf{Sum} \; \mathsf{Zero} & \mathsf{n} \; \mathsf{n} \\ \; \; \mathsf{SumSucc} \; :: \; \mathsf{Sum} \; \mathsf{m} \; \mathsf{n} \; \mathsf{s} \to \mathsf{Sum} \; (\mathsf{Succ} \; \mathsf{m}) \; \mathsf{n} \; (\mathsf{Succ} \; \mathsf{s}) \\ \; \mathsf{append} \; :: \; \mathsf{Sum} \; \mathsf{m} \; \mathsf{n} \; \mathsf{s} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{m} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{n} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{s} \\ \; \mathsf{append} \; \mathsf{SumZero} \qquad \mathsf{Nil} \qquad \mathsf{ys} = \mathsf{ys} \\ \; \mathsf{append} \; (\mathsf{SumSucc} \; \mathsf{p}) \; (\mathsf{Cons} \; \mathsf{x} \; \mathsf{xs}) \; \mathsf{ys} = \mathsf{Cons} \; \mathsf{x} \; (\mathsf{append} \; \mathsf{p} \; \mathsf{xs} \; \mathsf{ys}) \end{array}
```

Disadvantage: we must construct the evidence by hand!

Explicit evidence

We encode the addition as another GADT:

```
\begin{array}{lll} \textbf{data} \; \mathsf{Sum} :: * \to * \to * \to * \; \textbf{where} \\ \mathsf{SumZero} :: & \mathsf{Sum} \; \mathsf{Zero} & \mathsf{n} \; \mathsf{n} \\ \mathsf{SumSucc} :: \mathsf{Sum} \; \mathsf{m} \; \mathsf{n} \; \mathsf{s} \to \mathsf{Sum} \; (\mathsf{Succ} \; \mathsf{m}) \; \mathsf{n} \; (\mathsf{Succ} \; \mathsf{s}) \\ \mathsf{append} :: \mathsf{Sum} \; \mathsf{m} \; \mathsf{n} \; \mathsf{s} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{m} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{n} \to \mathsf{Vec} \; \mathsf{a} \; \mathsf{s} \\ \mathsf{append} \; \mathsf{SumZero} & \mathsf{Nil} & \mathsf{ys} = \mathsf{ys} \\ \mathsf{append} \; (\mathsf{SumSucc} \; \mathsf{p}) \; (\mathsf{Cons} \; \mathsf{x} \; \mathsf{xs}) \; \mathsf{ys} = \mathsf{Cons} \; \mathsf{x} \; (\mathsf{append} \; \mathsf{p} \; \mathsf{xs} \; \mathsf{ys}) \end{array}
```

Disadvantage: we must construct the evidence by hand!

We could use a multi-parameter type class with functional dependencies, but even better is a . . .

Type family

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶</p

Converting between lists and vectors

Unproblematic:

```
toList :: Vec a n \rightarrow [a]
toList Nil = []
toList (Cons x xs) = x : toList xs
```

Does not work:

Why? The type says that the result must be polymorphic in n, and it is not!

From lists to vectors

We can

- specify the length,
- hide the length using an existential type.

For the former, we have to reflect type-level natural numbers on the value level:

From lists to vectors (contd.)

```
data Nat :: * \rightarrow * where

Zero :: Nat Zero

Succ :: Nat n \rightarrow Nat (Succ n)

fromList :: Nat \rightarrow [a] \rightarrow Vec a n

fromList Zero [] = Nil

fromList (Succ n) (x : xs) = Cons x (fromList n xs)

fromList _ = error "wrong length!"
```

We have to know the length in advance.

From lists to vectors (contd.)

Using an existential type (in GADT notation):

We can combine the ideas and include a Nat in the packed type:

```
data VecAny :: * \rightarrow * where
VecAny :: Nat n \rightarrow Vec a n \rightarrow VecAny a
```

