MODULE 3

Taxonomy	Ontologies				
A taxonomy is a representation of the formal structure of classes or types of objects within a domain.	An ontology provides more detail than a taxonomy				
Taxonomies are generally hierarchical and provide names for each class in the domain.	Although the boundary between Taxonomy and Ontologies is somewhat fuzzy.				
They may also capture the membership properties of each object in relation to the other objects.	An ontology should capture the common understanding—vocabulary, definitions, and rules—of a community as it applies to a specific domain.				

Ex:

Knowledge Representation:-

Knowledge representation in cognitive computing include facts or beliefs, general information, standard knowledge organizational structures such as ontologies and taxonomies, and relationships, rules, or properties that describe and categorize objects.

How to represent Knowledge?

- Domain knowledge within a cognitive computing application may be captured and stored in a variety of data structures, from simple lists, to conventional databases, to documents, to multidimensional purpose-built structures.
- Cognitive computing system designers can use procedural, list-processing, functional, or object-oriented programming languages to specify and implement these structures.
- They may use data modeling tools or even specify the knowledge model in a language, created just for representation purpose.
- The choice of tools and representations should reflect the types of operations the system will have
- to perform on the data.

	Α	В	С	D	E	F	G	н
1	WR	wĸ	WB	W King	wa	WB	wĸ	WR
2	WP	WP	WP	WP	WP	WP	WP	WP
3								
١								
5								

Possible first moves

A2 A3, A2 A4, B2 B3, B2 B4, C2 C3, C2 C4, D2 D3, D2 D4 B1 A3, B1 C3

	Piece	Place
1 [WR	A 1
2	WK	B 1
3	WB	C 1
4	W King	D 1
	:	:
30	вк	F8
31	BB	G 8
32	BR	H 8

Piece	Moves
Rook	Vertical, horizontal, 1-n
Knight	Row +/-2, col +/-1 Row +/-1, col +/-2
Bishop	Diagonal 1-n

Models used for Knowledge Representation: -

Taxonomy Ontologies Simple Trees Semantic Web

Semantic Web				
A semantic network is a graphical representation of knowledge in which concepts are represented as nodes and the relationships between them are represented as links.				
Semantic Webare used frequently in data integration.				
For example, a semantic network could represent the relationships between different animals, with nodes representing animals and links representing relationships like "predator of" or "prey of".				

Syntax	Semantics
Process of analyzing a string or symbols either in	Process to cheque whether the generated parse
Natural Language, Computer Language or Data	tree is according to the rules of programming
Structures conforming to the rules of grammar	language.
Parser perform syntax analysis	Semantic analyzer perform semantic analysis
Second phase is the compilation phase	Third phase is the compilation phase
Generates a parse tree	Generates a annotated tree

Role of NLP in a cognitive system:

- NLP is a set of techniques that extract meaning from text.
- These techniques determine the meaning of a word, phrase, sentence, or document by recognizing the grammatical rules—the predictable patterns within a language.
- They rely, as people do, on dictionaries, repeated patterns of co-occurring words, and other contextual clues to determine what the meaning might be.
- NLP applies the same known rules and patterns to make inferences about meaning in a text document.
- Translating unstructured content from a corpus of information into a meaningful knowledge base is the task of NLP.
- Linguistic analysis breaks down the text to provide meaning.

from the kno	s to be transformed owledge.			