MA571: Qual Problems

Carlos Salinas

December 28, 2015

1 Covering Space Problems

Compiled from Prof. McClure's old quals. **Problem 1.1.**

Proof.

Problem 1.2.

Proof.

Problem 1.3.

Proof.

Problem 1.4.

Proof.

Problem 1.5.

Proof.

Problem 1.6.

Proof.

1.1 Kyle's Stuff

Problem 1.8 (No. 5). Let X be a topological space and let $x_0 \in X$. Let U and V be open sets containing x_0 , and suppose that the hypotheses of the seifert–van Kampen theorem are satisfied. Let $i_1: U \cap V \to U$, $i_2: U \cap V \to V$, $j_1: U \to X$, and $j_2: V \to X$ be the inclusion maps. Suppose that $(i_1)_*: \pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$ is onto. Prove, using the Seifert–van Kampen theorem, that $(j_2)_*: \pi_1(V, x_0) \to \pi_1(X, x_0)$ is onto.

Proof. We use the classical Seifert–van Kampen theorem (Theorem 70.2). Suppose $(i_1)_*$: $\pi_1(U \cap V, x_0) \to \pi_1(U, x_0)$ is onto. Then for every element $\gamma \in \pi_1(U, x_0)$, $\gamma = (i_1)_*(\gamma')$ for some element $\gamma' \in \pi_1(U \cap V, x_0)$. Now, let $\gamma'' \in \pi_1(X, x_0)$. By the classical Seifert–van Kapmen theorem, the map

$$j: \pi_1(U, x_0) * \pi_1(V, x_0) \longrightarrow \pi_1(X, x_0)$$

is surjective and its kernel is the leans normal subgroup N of the free product that contains all elements represented by words of the form $(i_1(g)^{-1}, i_2(g))$.

Problem 1.9 (No. 6). As in 5., but instead suppose that $(i_1)_*$: $\pi_1(U \cap V, x_0) \to \pi_1(X, x_0)$ is an isomorphism. Prove, using the Seifert–van Kampen theorem, that there is a homomorphism $\Phi \colon \pi_1(X, x_0) \to \pi_1(V, x_0)$ for which $\Phi \circ (j_2)_*$ is the identity map of $\pi_1(V, x_0)$.

2 August 2014

Problem 2.1. Let X be a topological space, let A be a subset of X, and let U be an open subset of X. Prove that $U \cap \overline{A} \subset \overline{U \cap A}$.

Proof. Let $x \in U \cap \overline{A}$. Then $x \in U$ and $x \in \overline{A}$. This means that, since U is open, by Lemma C there exist an open neighborhood V of x such that $V \subset U$. Moreover, since $x \in \overline{A}$, $V' \cap A \neq \emptyset$ for every open neighborhood V' of x. In particular, $V \cap A \neq \emptyset$. Thus, we have $V \cap U \neq \emptyset$ and $V \cap A \neq \emptyset$ so $V \cap (U \cap A) \neq \emptyset$.

Problem 2.2. Let X be the following subspace of \mathbb{R}^2 :

$$((0,1] \times [0,1]) \cup ([2,3) \times [0,1]).$$

Let \sim be the equivalence relation on X with $(1,t) \sim (2,t)$ (that is $(s,t) \sim (s',t') \iff (s,t) = (s',t')$ or t=t' and $\{s,s'\}=\{1,2\}$; you do *not* have to prove that this is an equivalence relation). Prove that X/\sim is homeomorphic to $(0,2)\times[0,1]$. (*Hint*: construct maps in both directions).

Problem 2.3. Prove that there is an equivalence relation \sim on the interval [0,1] such that $[0,1]/\sim$ is homeomorphic to $[0,1] \times [0,1]$. As part of your proof *explain* how you are using one or more properties of the quotient topology.

Problem 2.4. Let D be the closed unit disk in \mathbb{R}^2 , that is, the set

$$\{(x,y) \mid x^2 + y^2 \le 1\}.$$

Let E be the open unit disk

$$\{(x,y) \mid x^2 + y^2 < 1\}.$$

Let X be the one-point compactification of E, and let $f: D \to X$ be the map defined by

$$f(x,y) = \begin{cases} (x,y) & \text{if } x^2 + y^2 < 1\\ \infty & \text{if } x^2 + y^2 = 1. \end{cases}$$

Prove that f is continuous.

Problem 2.5. Let X and Y be homotopy-equivalent topological spaces. Suppose that X is path-connected. Prove that Y is path-connected.

Problem 2.6. Let a and b denote the points (-1,0) and (1,0) in \mathbf{R}^2 . Let x_0 denote the origin (0,0). Use the Seifert–van Kampen theorem to calculate $\pi_1(\mathbf{R}^2 - \{a,b\}, x_0)$. You may not use any other method.

Proof.

Problem 2.7. Let $p: E \to B$ be a covering map with B locally connected, and let $x \in B$. Prove that x has a neighborhood W with the following property: for every connected component C of $p^{-1}(W)$, the map $p: C \to W$ is a homeomorphism.

Proof.