→ HW - Essential python for Data Analyst

• HW1 : Request public API

• HW2: Simple ML model with sklearn

▼ HW1 : Request public API

```
import requests
import time
import pandas as pd
# check url
url = "https://www.thecocktaildb.com/api/json/v1/1/search.php?f=a"
resp = requests.get(url)
result_api = resp.json()
print(result api['drinks'][1])
print(len(result_api['drinks']))
     {'idDrink': '13501', 'strDrink': 'ABC', 'strDrinkAlternate': None, 'strTags': None, 'strVideo': None, 'strCategory': 'Shot', 'strIBA':
#### Get List the first 10 cocktails of each first letter.
### choose cocktails name start with a, b and c
idDrink = []
strDrink = []
strCategory = []
strGlass = []
strInstructions = []
for i in ['a','b','c']:
 \verb|url = f| $$ $ \frac{https://www.thecocktaildb.com/api/json/v1/1/search.php?f={i}$ $$ $$ $$
 resp = requests.get(url)
  result_api = resp.json()
  for j in range(1,11):
    idDrink.append(result_api['drinks'][j]['idDrink'])
    strDrink.append(result_api['drinks'][j]['strDrink'])
    strCategory.append(result_api['drinks'][j]['strCategory'])
    strGlass.append(result_api['drinks'][j]['strGlass'])
    strInstructions.append(result_api['drinks'][j]['strInstructions'])
    time.sleep(1) # save server by taking 2 seconds before select the next one
df cocktails = pd.DataFrame({
    'id' : idDrink,
    'name' : strDrink,
    'category' : strCategory,
    'glass' : strGlass,
    'instructions' : strInstructions
})
df_cocktails
```

	id	name	category	glass	instructions			
0	13501	ABC	Shot	Shot glass	Layered in a shot glass.			
1	17225	Ace	Cocktail	Martini Glass	Shake all the ingredients in a cocktail shaker			
2	14610	ACID	Shot	Shot glass	Poor in the 151 first followed by the 101 serv			
3	17837	Adam	Ordinary Drink	Cocktail glass	In a shaker half-filled with ice cubes, combin			
4	13938	AT&T	Ordinary Drink	Highball Glass	Pour Vodka and Gin over ice, add Tonic and Stir			
5	17833	A. J.	Ordinary Drink	Cocktail glass	Shake ingredients with ice, strain into a cock			
6	17839	Affair	Ordinary Drink	Highball glass	Pour schnapps, orange juice, and cranberry jui			
7	15106	Apello	Other/Unknown	Collins Glass	Stirr. Grnish with maraschino cherry.			
8	15266	Avalon	Ordinary Drink	Highball glass	Fill a tall glass with ice. Layer the Finlandi			
9	17835	Abilene	Ordinary Drink	Highball glass	Pour all of the ingredients into a highball gl			
10	13332	B-53	Shot	Collins Glass	Layer the Kahlua, Sambucca and Grand Marnier i			
11	17254	Bijou	Cocktail	Cocktail glass	Stir in mixing glass with ice and strain\r\n			
12	11149	Boxcar	Ordinary Drink	Whiskey sour glass	In a shaker half-filled with ice cubes, combin			
13	13222	Big Red	Shot	Shot glass	Pour ingredients into 1 ounce shot glass			
14	17195	Bellini	Ordinary Drink	Champagne Flute	Pour peach purée into chilled flute, add spark			
15	17210	Bramble	Ordinary Drink	Old-Fashioned glass	Fill glass with crushed ice. Build gin, lemon			
16	11060	Balmoral	Ordinary Drink	Cocktail glass	In a mixing glass half-filled with ice cubes, \dots			
17	11120	Bluebird	Ordinary Drink	Cocktail glass	In a mixing glass half-filled with crushed ice			
18	178310	Brooklyn	Cocktail	Cocktail glass	Combine ingredients with ice and stir until we			
19	12572	Bora Bora	Cocktail	Highball glass	Prepare in a blender or shaker, serve in a hig			

▼ HW1 analysis:

in df_cocktails dataframe,

- Q1: How many cocktails in each category?
- Q2: Which one of glasses is the most?
- Q3 : Are there 'shot' cocktail's categories ?

```
## Q1 : How many cocktails in each category ?
df_result1 = df_cocktails.groupby('category')['name'].agg('count').sort_values(ascending=False).reset_index()
df_result1.rename(columns = {'name':'count'}, inplace = True)
```

df_result1

	category	count
0	Ordinary Drink	17
1	Cocktail	6
2	Shot	4
3	Coffee / Tea	1
4	Other/Unknown	1
5	Soft Drink	1

```
## Q2 : Which one of glasses is the most ?
df_result2 = df_cocktails.groupby('glass')['name'].agg('count').sort_values(ascending=False).reset_index()
df_result2.rename(columns = {'name':'count'}, inplace = True)
```

df_result2.head(1)

	glass	count		
0	Cocktail glass	9		

Q3 : Are there 'Shot' cocktail's categories ?
df_result3 = df_cocktails.loc[df_cocktails['category'] == 'Shot']

df_result3

ctions	instruct	glass	category	name	id	
t glass.	Layered in a shot	Shot glass	Shot	ABC	13501	0
1 serv	Poor in the 151 first followed by the 101 s	Shot glass	Shot	ACID	14610	2
rnier i	Layer the Kahlua, Sambucca and Grand Marn	Collins Glass	Shot	B-53	13332	10
ot glass	Pour ingredients into 1 ounce shot	Shot glass	Shot	Big Red	13222	13

▼ HW2: Simple ML Model with sklearn

from "mtcars" dataset

read and preview data

	model	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
0	Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
1	Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
2	Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
3	Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
4	Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2

find correlation
corr = mtcars.corr()
corr

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	g
mpg	1.000000	-0.852162	-0.847551	-0.776168	0.681172	-0.867659	0.418684	0.664039	0.599832	0.480
cyl	-0.852162	1.000000	0.902033	0.832447	-0.699938	0.782496	-0.591242	-0.810812	-0.522607	-0.492
disp	-0.847551	0.902033	1.000000	0.790949	-0.710214	0.887980	-0.433698	-0.710416	-0.591227	-0.555
hp	-0.776168	0.832447	0.790949	1.000000	-0.448759	0.658748	-0.708223	-0.723097	-0.243204	-0.125
drat	0.681172	-0.699938	-0.710214	-0.448759	1.000000	-0.712441	0.091205	0.440278	0.712711	0.699
wt	-0.867659	0.782496	0.887980	0.658748	-0.712441	1.000000	-0.174716	-0.554916	-0.692495	-0.583
qsec	0.418684	-0.591242	-0.433698	-0.708223	0.091205	-0.174716	1.000000	0.744535	-0.229861	-0.212
vs	0.664039	-0.810812	-0.710416	-0.723097	0.440278	-0.554916	0.744535	1.000000	0.168345	0.206
am	0.599832	-0.522607	-0.591227	-0.243204	0.712711	-0.692495	-0.229861	0.168345	1.000000	0.794
gear	0.480285	-0.492687	-0.555569	-0.125704	0.699610	-0.583287	-0.212682	0.206023	0.794059	1.000
carb	-0.550925	0.526988	0.394977	0.749812	-0.090790	0.427606	-0.656249	-0.569607	0.057534	0.274

▼ 1. Linear Regression

from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
import pandas as pd
import numpy as np

From correlation between each variables , to predict $\mbox{\bf hp}$ based on ...

- disp
- wt

```
## hp = f(disp,wt)
## prepare data
x = mtcars[["disp","wt"]]
y = mtcars["hp"]
# split data
x_train, x_test, y_train, y_test = train_test_split(
    x, y, test_size = 0.20, random_state = 33 #set.seed()
print(x_train.shape)
print(x_test.shape)
     (25, 2)
     (7, 2)
## predict new data (scoring)
# train model
model = LinearRegression()
model.fit(x_train, y_train)
# test model
p = model.predict(x_test)
print(p)
     [196.82398288 80.7769203 102.57887161 143.65503636 222.74346743
      100.07148175 235.46602913]
## evaluate model
model.score(x_test,y_test)
     0.6582630949816614
```

▼ 2. Logistic Regression

from sklearn.linear_model import LogisticRegression

From correlation between each variables , to predict am based on their other variables

```
## prepare data
x = mtcars[["mpg","drat","gear"]]
y = mtcars["am"]
# split data
x_train, x_test, y_train, y_test = train_test_split(
   x, y, test_size = 0.3, random_state = 55 #set.seed()
print(x_train.shape)
print(x_test.shape)
     (22, 3)
     (10, 3)
## predict new data (scoring)
# train model
glm_model = LogisticRegression()
glm_model.fit(x_train, y_train)
# test model
glm_p = glm_model.predict(x_test)
print(p)
     [0 0 0 1 1 0 0]
## evaluate model
model.score(x_test,y_test)
```