DOIMHOIL		
	Marks	Remarks
$\int_{\frac{1}{2}(1+h)^{2}-1}^{\frac{1}{2}(1+h)^{2}-1}e^{1+h}$ $\int_{\frac{1}{2}(2h+h^{2})}^{\frac{1}{2}(1+h)^{2}-1}e^{1+h}$	1A	
$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ $= \lim_{h \to 0} \frac{(2h+h^2)e^{1+h} - 0}{h}$ $= \lim_{h \to 0} (2+h)e^{1+h}$ $= \lim_{h \to 0} (2+h)e^{1+h}$ $= 2e$	1M	
$= \lim_{h \to 0} (2+h) e^{1+h}$ $= 2e$	1M 1A (4)	withhold 1M if this step is skipped
$(x+3)^{5}$ $= x^{5} + 5(3)x^{4} + 10(3^{2})x^{3} + 10(3^{3})x^{2} + 5(3^{4})x + 3^{5}$ $= x^{5} + 15x^{4} + 90x^{3} + 270x^{2} + 405x + 243$	1M	
$\left(x - \frac{4}{x}\right)^2$ $= x^2 - 2x\left(\frac{4}{x}\right) + \left(\frac{4}{x}\right)^2$	1A	
$= x^2 - 8 + \frac{16}{x^2}$ The coefficient of x^3		
= (1)(16) + (90)(-8) + (405)(1) $= -299$	1M 1A (5	withhold 1M if this step is skipped
70		

Solution	Marks	Remarks
2 (2) and B		1.03
3. (a) $\cot A = 3 \cot B$ $\cos A = 3 \cos B$		
$\frac{\cos A}{\sin A} = \frac{3\cos B}{\sin B}$		
$3\sin A\cos B = \cos A\sin B$	1M	
		1
$\sin(A+B)-2\sin(B-A)$	1	
$= (\sin A \cos B + \cos A \sin B) - 2(\sin B \cos A - \cos B \sin A)$	1	
$= 3 \sin A \cos B - \cos A \sin B$		
= 0 Thus, we have $\sin (A + B) = 2\sin (B - A)$.	1	
(b) $\cot\left(x + \frac{4\pi}{9}\right) = 3\cot\left(x + \frac{5\pi}{18}\right)$		
By letting $A = x + \frac{4\pi}{9}$ and $B = x + \frac{5\pi}{18}$, we have $\cot A = 3 \cot B$.	1M	
By (a), we have $\sin (A+B) = 2\sin (B-A)$.		
With the help of $\sin\left(\frac{-\pi}{6}\right) = \frac{-1}{2}$, we have $\sin\left(2x + \frac{13\pi}{18}\right) = -1$.	1M	
Noting that $0 \le x \le \frac{\pi}{2}$, we have $x = \frac{7\pi}{18}$.	1A	
Since $\cot\left(\frac{7\pi}{18} + \frac{4\pi}{9}\right) = -\sqrt{3} = 3\cot\left(\frac{7\pi}{18} + \frac{5\pi}{18}\right)$, the required solution		
of the equation $\cot\left(x + \frac{4\pi}{9}\right) = 3\cot\left(x + \frac{5\pi}{18}\right)$ is $x = \frac{7\pi}{18}$.		
(9) (18) 18	(5)	
(a) $\int u(5^u) du$		
$=\frac{1}{\ln 5}\bigg(u(5^u)-\int 5^u\mathrm{d}u\bigg)$	1M	
$= \frac{1}{\ln 5} \left(u \left(5^{u} \right) - \frac{5^{u}}{\ln 5} \right) + \text{constant}$	1A	
$=\frac{5^{u}(u \ln 5 - 1)}{(\ln 5)^{2}} + constant$		
(b) The required area		
$=\int_0^1 x(5^{2x})\mathrm{d}x$		
	1M	
$= \frac{1}{4} \int_0^2 u(5^u) du \qquad \text{(by letting } u = 2x \text{)}$	1M	
$= \frac{1}{4(\ln 5)^2} \left[5^u (u \ln 5 - 1) \right]_0^2 $ (by (a))		
$-\frac{1}{4(\ln 5)^2} \left[5^{-(u \ln 5 - 1)} \right]_0 \qquad (by (a))$	1M	for using the mark of
$=\frac{50\ln 5 - 24}{4(\ln 5)^2}$		for using the result of
$= \frac{25 \ln 5 - 12}{2(\ln 5)^2}$		
$2(\ln 5)^2$	1A	p-
	'^	
	(6)	
	'1	
71		

Solution	14	arks	Remarks	
	M	arks	Remarks	
Let $u = 1 + x^2$. Then, we have $\frac{du}{dx} = 2x$.	1	M		
Let $u = 1 + x$. Then, we have $\frac{du}{dx} = 2x$.				
Then, we did				
$\int x^3 \sqrt{1+x^2} dx$				
$\int x^{3} \sqrt{1+x^{2}} dx$ $= \int \frac{1}{2} (u-1) u^{\frac{1}{2}} du$	11	1		
$=\sqrt{2}$		- 1		
$= \frac{1}{2} \left(\int_{u^{\frac{3}{2}} du}^{\frac{3}{2}} du - \int_{u^{\frac{1}{2}}}^{\frac{1}{2}} du \right)$				
$= \frac{1}{5} \left(\sqrt{1 + x^2} \right)^5 - \frac{1}{3} \left(\sqrt{1 + x^2} \right)^3 + \text{constant}$	1A			
Let $x = \tan \theta$.	1M			
Then, we have $\frac{dx}{d\theta} = \sec^2 \theta$.				
$\int x^3 \sqrt{1+x^2} \mathrm{d}x$				
$= \int \tan^3 \theta \sec \theta (\sec^2 \theta) d\theta$	1M			
$= \int \tan^3 \theta \sec^3 \theta d\theta$				
$= \int (\sec^2 \theta - 1) \sec^2 \theta d \sec \theta$				
$= \int \sec^4 \theta \mathrm{d} \sec \theta - \int \sec^2 \theta \mathrm{d} \sec \theta$				
$=\frac{\sec^5\theta}{5}-\frac{\sec^3\theta}{3}+\text{constant}$				1
$= \frac{1}{5} \left(\sqrt{1 + x^2} \right)^5 - \frac{1}{3} \left(\sqrt{1 + x^2} \right)^3 + \text{constant}$	1A	_		
$y = \int 15x^3 \sqrt{1+x^2} \mathrm{d}x$	1M			
·				
$=15\int x^3\sqrt{1+x^2}\mathrm{d}x$				
$=15\left(\frac{1}{5}\left(\sqrt{1+x^2}\right)^5 - \frac{1}{3}\left(\sqrt{1+x^2}\right)^3\right) + C $ (by (a))	1M	for u	sing the result of (a)	
$=3(\sqrt{1+x^2})^5-5(\sqrt{1+x^2})^3+C$, where C is a constant				
Since the y-intercept of Γ is 2, we have $3-5+C=2$.	1M			
Solving, we have $C=4$.				
Thus, the equation of Γ is $y = 3\left(\sqrt{1+x^2}\right)^3 - 5\left(\sqrt{1+x^2}\right)^3 + 4$.	1A			
	(,)			
#A				
72	ı f			

	Solution		I Kem.
			remarks
	Note that $(1)(1+4) = 5 = \frac{(1)(2)(15)}{6}$.		
6. (a)	Note that $(1/1, 1/2)$ 0	1	
	So, the statement is true for $n = 1$. Assume that $\sum_{k=1}^{m} k(k+4) = \frac{m(m+1)(2m+13)}{6}$ for some positive	1M	
	Assume that $\sum_{k} k(k+4) = \frac{m(m+4)}{6}$		
	integer m.		
	$\sum_{k=1}^{m-1} k(k+4)$		
	m		
	$= \sum_{k=1}^{m} k(k+4) + (m+1)(m+5)$	}	-
	R=1	1M	
	$= \frac{m(m+1)(2m+13)}{6} + (m+1)(m+5)$ (by induction assumption)	1	for using induction $assumption$
	$=\frac{(m+1)(2m^2+13m+6m+30)}{6}$		asumption
	$=\frac{(m+1)(2m^2+19m+30)}{6}$		
	$=\frac{(m+1)(m+2)(2m+15)}{6}$		
	So the statement is true for $n=m+1$ if it is true for $n=m$.		
	By mathematical induction, the statement is true for all positive integers n .	1	
(b	Putting $n = 555$ in (a), we have		
	$\sum_{k=0}^{555} k(k+4) = \frac{(555)(556)(1123)}{6} = 57.755.890.$	1M	
	$\sum_{k=1}^{\infty} n(k+1) = 6$		
	Putting $n = 332$ in (a), we have		either one
	$\sum_{k} k(k+4) = \frac{(332)(333)(677)}{6} = 12474402.$		
	$\sum_{k=1}^{\infty}$ 6		
	$\sum_{k=0}^{555} (k)(k+4)$		
	$\sum_{k=333}^{555} \left(\frac{k}{112} \right) \left(\frac{k+4}{223} \right)$,
	N-333		
	$= \left(\frac{1}{112}\right) \left(\frac{1}{223}\right) \sum_{k=333}^{555} k(k+4)$	1M	
			either one
	$= \frac{1}{(112)(223)} \left(\sum_{k=1}^{555} k(k+4) - \sum_{k=1}^{332} k(k+4) \right)$		
	$= \frac{1}{24976} (57755890 - 12474402)$		
	21370		
	=1813	1A (7)	
		(/)	
	73		

Solution	Marks	Rema	irke
$ \begin{array}{l} MX = XM \\ (7 \ 3) \begin{pmatrix} a \ 6a \\ b \ c \end{pmatrix} = \begin{pmatrix} a \ 6a \\ b \ c \end{pmatrix} \begin{pmatrix} 7 \ 3 \\ -1 \ 5 \end{pmatrix} \\ (7a + 3b \ 42a + 3c) \\ (7a + 5b \ -6a + 5c) = \begin{pmatrix} a \ 33a \\ 7b - c \ 3b + 5c \end{pmatrix} \\ 7a + 3b = a \\ -a + 5b = 7b - c \\ 42a + 3c = 33a \\ -6a + 5c = 3b + 5c \end{cases} $ $ \begin{cases} b = -2a \\ c = -3a \end{cases} $	1M 1M	for b	oth correct
(b) $\begin{vmatrix} X \\ = \begin{vmatrix} a & 6a \\ -2a & -3a \end{vmatrix}$ $= (a)(-3a) - (6a)(-2a)$ $= 9a^{2}$ Note that X is a non-zero real matrix. By (a), a is a non-zero real number. So, we have $ X > 0$. Therefore, we have $ X \neq 0$. Thus, X is a non-singular matrix. (c) $(X^{T})^{-1}$ $= (X^{-1})^{T}$ $= \left(\frac{1}{ X } \begin{pmatrix} -3a & -6a \\ 2a & a \end{pmatrix} \right)^{T}$ $= \left(\frac{1}{9a} \begin{pmatrix} -3 & -6 \\ 2 & 1 \end{pmatrix} \right)^{T}$ $= \frac{1}{9a} \begin{pmatrix} -3 & 2 \\ -6 & 1 \end{pmatrix}$			considering the determinant
$ (X^{T})^{-1} $ $ = \begin{pmatrix} a & -2a \\ 6a & -3a \end{pmatrix}^{-1} $ $ = \frac{1}{X^{T}} \begin{pmatrix} -3a & 2a \\ -6a & a \end{pmatrix} $ $ = \frac{1}{X} \begin{pmatrix} -3a & 2a \\ -6a & a \end{pmatrix} $ $ = \frac{1}{A} \begin{pmatrix} -3a & 2a \\ -6a & a \end{pmatrix} $ $ = \frac{1}{A} \begin{pmatrix} -3 & 2 \\ -6a & 1 \end{pmatrix} $		1M 1M 1A	8)

			Solution				TATOLKS	Remarks
(a)	Note that	<i>A</i> ≠0.						133
(-)	f'(x)						i	
	$=\frac{-A(2x)}{(x^2-4x)^2}$:-4)					1M	
	$-(x^2-4x)$	(+7) ²		•			1M	
	So, we hav	e f'(x) = 0	⇔ <i>x</i> =	Z.	ntion x	= 2 and the	11/1	
	Since the e	quation $f'(x)$)=0 nas	have f(2)	- 4			
	extreme va	lue of $f(x)$	is 4, We	nave 1(2)				
	Hence, we	have $\frac{A}{2^2-4}$	= =	4.				
		-	(-)					
	Therefore,	we have A =	24(2-:	x)			1 1 4	
	Thus, we ha	ave $f'(x) = \frac{1}{x}$	$(x^2 - 4x +$	$(7)^2$			1A	
(b)	Note that	$x^2 - 4x + 7 =$	$(x-2)^2 +$	-3>0 for al	l real val	ues of x .		
	So, there ar	e no vertical	asymptot	es of the grap	$h ext{ of } y =$	f(x).		
		hat $f(x) = \frac{1}{x^2}$						
		y = 0 is the			graph of	$y=\mathbf{f}(x) \ .$	1M	
	Hence, ther	e is only one	asymptot	e of the grap	$h ext{ of } y =$	f(x).		
		laim is disagr					1A	f.t.
(c)	f"(x)							
	(x^2-4x)	$+7)^{2}(-24)-$	(-24x + 4)	$(48)(2)(x^2-4)$	(2x + 7)(2x + 7)	-4)	111	
	=	$+7)^{2}(-24)-$	$(x^2 - 4x +$	-7)4			1M	
	$=\frac{72(x-3)}{(x^2-4x)^2}$	(x-1)						
	(* 4%	17)						
	So, we have	f''(x) = 0	$\Leftrightarrow x=1$	or $x=3$.				
	х	(-∞,1)	1	(1,3)	3	(3,∞)		
	f"(x)	+	0	-	0	+	1M	for testing
	Thus, the po	oints of inflex	ion are	(1 3) and (3 3)		1A	
	, p			(1,5) mid (,, -, .		(8)	for both correct
							(0)	
							1 1	

Solution		
	Marks	Remarks
$\frac{dt}{dt} = \frac{1}{2x}$ The slope of the tangent at P is $\frac{1}{2r}$.	1M	
The slope of the normal at P is $-2r$. Let r be the x-coordinate of Q . $\frac{0-\ln \sqrt{r}}{e-r} = -2r$ $\frac{-1}{2}\ln r = 2r^2 - 2\alpha r$ $2m = 2r^2 + \frac{1}{2}\ln r$	1M	
$a = \frac{4r^2 + \ln r}{4r}$ Thus, the x-coordinate of Q is $\frac{4r^2 + \ln r}{4r}$.	1	
(b) Let A square units be the area of $\triangle PQR$. $= \frac{1}{2} \left(\frac{4r^2 + \ln r}{4r} - r \right) \ln \sqrt{r}$	1M	
$=\frac{(\ln r)^2}{16r}$ $=\frac{dA}{dr}$	1A	
$\frac{dr}{r} = \frac{r(2\ln r)^{\frac{1}{r}} - (\ln r)^{2}}{16r^{2}}$ $= \frac{2\ln r - (\ln r)^{2}}{16r^{2}}$	1M	
$= \frac{(2 - \ln r) \ln r}{16r^2}$ So, we have $\frac{dA}{dr} = 0 \iff \ln r = 2 \text{ or } \ln r = 0 \text{ (rejected)}.$		
Hence, we have $\frac{dA}{dr} = 0 \iff r = e^2$.		C., tasting
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1M	for testing
Therefore, A attains its greatest value when $r=e^2$. Thus, the greatest area of $\triangle PQR$ is $\frac{1}{4e^2}$ square units.	1A (5)	

Solution	IVIAIKS	Remarks
(c) OP = $\sqrt{r^2 + (\ln \sqrt{r})^2}$ = $\frac{1}{2}\sqrt{4r^2 + (\ln r)^2}$	1M	
$= \left(\frac{4r^2 + \ln r}{2r\sqrt{4r^2 + (\ln r)^2}}\right) \left(\frac{dr}{dt}\right)$	1M	
$ \frac{dA}{dt} $ $ = \left(\frac{dA}{dr}\right) \left(\frac{dr}{dt}\right) $ $ = \left(\frac{(2 - \ln r) \ln r}{16r^2}\right) \left(\frac{dr}{dt}\right) \qquad (by (b)) $ $ = \left(\frac{(2 - \ln r) \ln r}{16r^2}\right) \left(\frac{2r\sqrt{4r^2 + (\ln r)^2}}{4r^2 + \ln r}\right) \left(\frac{dOP}{dt}\right) $ $ = \frac{(2 - \ln r)(\ln r)\sqrt{4r^2 + (\ln r)^2}}{8r(4r^2 + \ln r)} \left(\frac{dOP}{dt}\right) $ $ dA$		
$ \frac{dA}{dt}\Big _{r=e} = \frac{(2 - \ln e)(\ln e)\sqrt{4e^2 + (\ln e)^2}}{8e(4e^2 + \ln e)} \left(\frac{dOP}{dt}\Big _{r=e}\right) = \frac{\sqrt{4e^2 + 1}}{8e(4e^2 + 1)} \left(\frac{dOP}{dt}\Big _{r=e}\right) $	1M	
Since $0 \le \frac{dOP}{dt}\Big _{r=e} \le 32e^2$, we have $0 \le \frac{dA}{dt}\Big _{r=e} \le \frac{32e^2\sqrt{4e^2+1}}{8e(4e^2+1)}$. So, we have $0 \le \frac{dA}{dt}\Big _{r=e} \le \frac{4e}{\sqrt{4e^2+1}}$. Therefore, we have $0 \le \frac{dA}{dt}\Big _{r=e} < \frac{4e}{\sqrt{4e^2}}$. Hence, we have $0 \le \frac{dA}{dt}\Big _{r=e} < 2$.		
Thus, the claim is correct.	1A (4)	f.t.

Solution		
	Marks	Remarks
$\int \sin^4 x dx$ $= -\cos x \sin^3 x + \int \cos x (3\sin^2 x \cos x) dx$ $= -\cos x \sin^3 x + 3 \int (1 - \sin^2 x)(\sin^2 x) dx$	1 M	
So, we have $\int \sin^4 x dx = -\cos x \sin^3 x + 3 \int \sin^2 x dx - 3 \int \sin^4 x dx$ Hence, we have $4 \int \sin^4 x dx = -\cos x \sin^3 x + 3 \int \sin^2 x dx$. Thus, we have $\int \sin^4 x dx = \frac{-\cos x \sin^3 x}{4} + \frac{3}{4} \int \sin^2 x dx$.	1	
(ii) $\int \sin^4 x dx$ $= \frac{-\cos x \sin^3 x}{4} + \frac{3}{4} \int \sin^2 x dx \qquad (by (a)(i))$ $= \frac{-\cos x \sin^3 x}{4} + \frac{3}{4} \int \frac{1 - \cos 2x}{2} dx$ $= \frac{-\cos x \sin^3 x}{4} + \frac{3}{4} \left(\frac{x}{2} - \frac{\sin 2x}{4}\right) + \text{constant}$	1M	
$= \frac{3x}{8} - \frac{\cos x \sin^3 x}{4} - \frac{3\sin 2x}{16} + \text{constant}$ $= \int_0^{\pi} \sin^4 x dx$ $= \left[\frac{3x}{8} - \frac{\cos x \sin^3 x}{4} - \frac{3\sin 2x}{16} \right]_0^{\pi}$	1M	
$=\frac{3\pi}{8}$	1A	
$\int_0^{\pi} \sin^4 x dx$ $= \int_0^{\pi} \left(\frac{1 - \cos 2x}{2} \right)^2 dx$ $= \frac{1}{4} \int_0^{\pi} (1 - 2\cos 2x + \cos^2 2x) dx$	1M	•
$= \frac{1}{4} \int_0^{\pi} \left(1 - 2\cos 2x + \frac{1 + \cos 4x}{2} \right) dx$ $= \frac{1}{8} \int_0^{\pi} (3 - 4\cos 2x + \cos 4x) dx$		
$= \frac{1}{8} \left[3x - 2\sin 2x + \frac{\sin 4x}{4} \right]_0^{\pi}$ $= \frac{3\pi}{8}$	1M	

	Marks	
Solution	IVIAINS	Remarks
(b) (i) Let $x = \beta - u$. Then, we have $\frac{dx}{du} = -1$. $\int_0^{\beta} x f(x) dx$ $= \int_0^0 -(\beta - u) f(\beta - u) du$ $= \int_0^{\beta} (\beta f(\beta - u) - u f(\beta - u)) du$ $= \int_0^{\beta} \beta f(x) dx - \int_0^{\beta} x f(x) dx$	1M	
So, we have $2\int_0^\beta x f(x) dx = \beta \int_0^\beta f(x) dx$. Thus, we have $\int_0^\beta x f(x) dx = \frac{\beta}{2} \int_0^\beta f(x) dx$.	1	
(ii) Note that $\sin^4(\pi - x) = \sin^4 x$ for all real numbers x .	1M	withhold 1M if checking is skipped
$\int_0^{\pi} x \sin^4 x dx$ $= \frac{\pi}{2} \int_0^{\pi} \sin^4 x dx \qquad (by (b)(i))$	1M	for using the result of $(b)(i)$
$=\frac{\pi}{2}\left(\frac{3\pi}{8}\right)$ (by (a)(ii)) $=\frac{3\pi^2}{16}$	1M (5)	for $\frac{\pi}{2}$ (a)(ii)
(c) The required volume $= \int_{0}^{2\pi} \pi (\sqrt{x} \sin^{2} x)^{2} dx$	1M	
$= \pi \int_{\pi}^{2\pi} x \sin^4 x dx$ $= \pi \int_{0}^{\pi} (\pi + y) \sin^4 (\pi + y) dy \qquad (by letting x = \pi + y) = \pi \int_{0}^{\pi} (\pi \sin^4 y + y \sin^4 y) dy$	1M	accept $x=2\pi-y$
$= \pi \int_0^{\pi} (\pi \sin^4 x + x \sin^4 x) dx$ $= \pi \left(\pi \int_0^{\pi} \sin^4 x dx + \int_0^{\pi} x \sin^4 x dx \right)$ $= \pi \left(\pi \left(\frac{3\pi}{8} \right) + \frac{3\pi^2}{16} \right) $ (by (a)(ii) and (b)(ii))		,
$=\frac{9\pi^3}{16}$	1A (3	
79		

COLUNION		
(a) (i) (1) Note that	Ti	
(a) (i) $\begin{vmatrix} 1 & a & 4(a+1) \\ 2 & a-1 & 2(a-1) \\ 1 & -1 & -12 \end{vmatrix}$	Marks	Remarks
$\begin{vmatrix} 2 & a-1 & 2(a-1) \end{vmatrix}$		
$\begin{bmatrix} 1 & -1 & -12 \end{bmatrix}$	1	
=(a-1)(-12)+a(2)(a-1)+a(2)		
=-2(a-3)(a+1)		
= (a-1)(-12) + a(2)(a-1) + 4(a+1)(2)(-1) - 4(a-1)(a+1) + 2(a-1) - 2a(-12) $= -2(a-3)(a+1)$	1A	ĺ
Since (E) has a unique	''`	
samque solution, we have $\begin{bmatrix} 1 & a & 4(a+1) \\ 2 & a & 4(a+1) \end{bmatrix}$		
So, we have $-2(a-2)(a-2)$	1M	i
$= -2(a-3)(a+1)$ Since (E) has a unique solution, we have $\begin{vmatrix} 1 & a & 4(a+1) \\ 2 & a-1 & 2(a-1) \\ 1 & -1 & -12 \end{vmatrix} \neq 0$ Therefore, we have $a+2$		i ·
Therefore, we have $a \ne 3$ and $a \ne -1$.		
\sim 1 < a < 3 or a > 2	1A	
$\begin{vmatrix} 1 & a & 4(a+1) & 18 \end{vmatrix}$		2000
The augmented matrix of (E) is $ \begin{pmatrix} 1 & a & 4(a+1) & 18 \\ 2 & a-1 & 2(a-1) & 20 \\ 1 & -1 & -12 & b \end{pmatrix} \sim \begin{pmatrix} 1 & a & 4(a+1) & 18 \\ 0 & -a-1 & -6a-10 & -16 \\ 0 & -a-1 & -4a-16 & b-18 \end{pmatrix} $		
$\begin{vmatrix} 1 & -1 & -12 \end{vmatrix}$		
(1 0) (0 - a - 1 -4a - 16) (1 0)	1M	
$\begin{vmatrix} 1 & a & 4(a+1) & 18 \end{vmatrix}$		
$\begin{bmatrix} 1 & a & 4(a+1) & 18 \\ 0 & -a-1 & -6a-10 & -16 \\ 0 & 0 & 2a-6 & b-2 \end{bmatrix}$ Since (F) has a significant significant of the content of the conte		er .
$\begin{vmatrix} 0 & 0 & 2a-6 & b-2 \end{vmatrix}$	1A	
Since (E) has a unique solution, we have $2a-6 \neq 0$ and		
$-a-1\neq 0$.	1	
I lieretore, we have		
Thus, we have $a \neq 3$ and $a \neq -1$. Thus, we have $a < -1$, $-1 < a < 3$ or $a > 3$.	1 A	
(2) Since (E) has a unique solution, we have		
x		
$\begin{vmatrix} 18 & a & 4(a+1) \end{vmatrix}$		
$\begin{vmatrix} 20 & a-1 & 2(a-1) \end{vmatrix}$	ļ	
$\begin{vmatrix} b & -1 & 12 \end{vmatrix}$		
$=\frac{\begin{vmatrix} b & -1 & -12 \end{vmatrix}}{-2(a-3)(a+1)}$		
$\frac{1}{2}(a-3)(a+1)$	1M	for Cramer's Rule
$=\frac{a^2b+ab+10a-2b-50}{(a-3)(a+1)}$		
(a-3)(a+1)		
y		
$\begin{vmatrix} 1 & 18 & 4(a+1) \end{vmatrix}$		
$\begin{vmatrix} 2 & 20 & 2(a-1) \end{vmatrix}$		
$=$ $\begin{vmatrix} 1 & b & -12 \end{vmatrix}$		
$=\frac{1}{-2(a-3)(a+1)}$		
-3ab+22a 54 20		
$=\frac{-3ab+22a-5b-38}{(a-3)(a+1)}$		
(u-3)(u+1)	ĺ	
1.		
1 a 18		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$=$ $\begin{vmatrix} 1 & -1 & b \end{vmatrix}$		
$-\frac{1}{-2(a-3)(a+1)}$		
$=\frac{b-2}{2(a-3)}$	1A+1A	1A for any one + 1A for all
- · · · <u>·</u>		THE TALL OF ALL

Solution Since (E) has a unique solution, the augmented matrix of (E) Since (E) Remarks Remarks	
Since (E) has a unique solution, and dagger	
$\begin{bmatrix} 1 & a & 4(a+1) \\ 0 & -a-1 & -6a-10 \\ 1 & & & & & & & & & \end{bmatrix}$	\
$\begin{cases} 0 & 0 & 2a-6 & b-2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{bmatrix} \frac{a^2b+ab+10a-2b-50}{(a-3)(a+1)} \\ \frac{b-2}{2(a-3)} \\ \text{Thus, we have } \begin{cases} x = \frac{a^2b+ab+10a-2b-50}{(a-3)(a+1)} \\ y = \frac{-3ab+22a-5b-38}{(a-3)(a+1)} \\ z = \frac{b-2}{2(a-3)} \end{cases}$	for all
(ii) (1) When $a=3$, the augmented matrix of (E) is $ \begin{pmatrix} 1 & 3 & 16 & 18 \\ 2 & 2 & 4 & 20 \\ 1 & -1 & -12 & b \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 16 & 18 \\ 0 & 1 & 7 & 4 \\ 0 & 0 & 0 & b-2 \end{pmatrix} $ Since (E) is consistent, we have $b=2$.	
(2) When $a=3$ and $b=2$, the augmented matrix of (E) $ \begin{pmatrix} 1 & 3 & 16 & 18 \\ 0 & 1 & 7 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} $ Thus, the solution set of (E) is $\{(5u+6, -7u+4, u): u \in \mathbb{R}\}$. (b) When $a=3$ and $b=s$, (E) becomes $ \begin{pmatrix} x + 3y + 16z = 18 \\ x + y + 2z = 10 \\ x - y - 12z = s \end{pmatrix} $ Since (F) is consistent, (G) is consistent. By (a)(ii), we have $s=2$. When $s=2$, the solution set of (G) is $\{(5u+6, -7u+4, u): u \in \mathbb{R}\}$. Thus, we have $t=-8$. Thus, we have $t=-8$. Thus, we have $t=-8$.	THE SECTION OF THE SE
81	200

= -	Marks	Remarks	
(i) Note that $\overrightarrow{AB} = -5\mathbf{i} + 6\mathbf{j} - 4\mathbf{k}$ and $\overrightarrow{AC} = 3\mathbf{i} + 2\mathbf{j} + 4\mathbf{k}$.			
$\overrightarrow{AB} \times \overrightarrow{AC}$			
ijk			
$ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -5 & 6 & -4 \\ 3 & 2 & 4 \end{vmatrix} $			
3 2 4	1 1		
=32i+8j-28k	1 1		
	1A		
(ii) Note that $\overrightarrow{AD} = -\mathbf{i} + \mathbf{j} - 6\mathbf{k}$.			
The required volume			
$=\frac{1}{6}\left (\overrightarrow{AB}\times\overrightarrow{AC})\cdot\overrightarrow{AD}\right $			
61	1M		
$= \frac{1}{6} (32i + 8j - 28k) \cdot (-i + j - 6k) $			
$= \frac{1}{6} (32)(-1) + (8)(1) + (-28)(-6) $			
= 24	1A		
			
(iii) DE			
$= \left(\overrightarrow{DA} \cdot \frac{32\mathbf{i} + 8\mathbf{j} - 28\mathbf{k}}{\sqrt{32^2 + 8^2 + (-28)^2}}\right) \left(\frac{32\mathbf{i} + 8\mathbf{j} - 28\mathbf{k}}{\sqrt{32^2 + 8^2 + (-28)^2}}\right)$	1M		
$\sqrt{32^2 + 8^2 + (-28)^2} \sqrt{32^2 + 8^2 + (-28)^2}$	1101		
22: 18: 281			
$= \left((\mathbf{i} - \mathbf{j} + 6\mathbf{k}) \cdot \frac{32\mathbf{i} + 8\mathbf{j} - 28\mathbf{k}}{\sqrt{32^2 + 8^2 + (-28)^2}} \right) \left(\frac{32\mathbf{i} + 8\mathbf{j} - 28\mathbf{k}}{\sqrt{32^2 + 8^2 + (-28)^2}} \right)$			
(
$=\frac{-32}{12}i-\frac{8}{12}j+\frac{28}{13}k$	1A		
13 13 13	(5)		
(i) Let $\overrightarrow{BF} = t\overrightarrow{BC}$, where $0 < t < 1$.			
\overrightarrow{DF}			
$= (1-t)\overrightarrow{DB} + t\overrightarrow{DC}$	1M		
= (1-t)(-4i+5j+2k)+t(4i+j+10k)			
= $(8t-4)\mathbf{i} + (5-4t)\mathbf{j} + (8t+2)\mathbf{k}$			
Since $DF \perp BC$, we have $\overrightarrow{DF} \cdot \overrightarrow{BC} = 0$.	1M		
Note that $\overrightarrow{BC} = 8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}$.			
Hence, we have $(8t-4)(8) + (5-4t)(-4) + (8t+2)(8) = 0$.			
So, we have $144t - 36 = 0$.			
Solving, we have $t = \frac{1}{4}$.			
Thus, we have $\overrightarrow{DF} = -2i + 4j + 4k$.	1A		

Solution		***********	Kemarks
(ii) \overrightarrow{EF}		1 M	
$= \overline{DF} - \overline{DE}$ $= -2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k} - \left(\frac{-32}{13}\mathbf{i} - \frac{8}{13}\mathbf{j} + \frac{28}{13}\mathbf{k}\right)$ $= \frac{6}{13}\mathbf{i} + \frac{60}{13}\mathbf{j} + \frac{24}{13}\mathbf{k}$			
$\overrightarrow{BC} \cdot \overrightarrow{EF}$ $= (8\mathbf{i} - 4\mathbf{j} + 8\mathbf{k}) \cdot \left(\frac{6}{13}\mathbf{i} + \frac{60}{13}\mathbf{j} + \frac{24}{13}\mathbf{k}\right)$			
$= 8\left(\frac{6}{13}\right) - 4\left(\frac{60}{13}\right) + 8\left(\frac{24}{13}\right)$ $= 0$ Thus, \overrightarrow{BC} is perpendicular to \overrightarrow{EF} .		1A (5)	f.t.
(c) Note that the required angle is $\angle DFE$. $\cos \angle DFE$		1M	for identifying the required angle
$= \frac{\overrightarrow{DF} \cdot \overrightarrow{EF}}{\left \overrightarrow{DF} \right \left \overrightarrow{EF} \right }$		lM	
$= \frac{(-2\mathbf{i} + 4\mathbf{j} + 4\mathbf{k}) \cdot \left(\frac{6}{13}\mathbf{i} + \frac{60}{13}\mathbf{j} + \frac{24}{13}\mathbf{k}\right)}{\sqrt{(-2)^2 + 4^2 + 4^2} \sqrt{\left(\frac{6}{13}\right)^2 + \left(\frac{60}{13}\right)^2 + \left(\frac{24}{13}\right)^2}}$			
$= \frac{324}{(6)(18\sqrt{13})}$ $= \frac{3}{\sqrt{13}}$			
$=\frac{3\sqrt{13}}{13}$			
Thus, the required angle is $\cos^{-1}\left(\frac{3\sqrt{13}}{13}\right)$.		1A (3)	
	83		