Algorithms-Design and Analysis(Stanford) Notes

zxm

目录

1 Divide and Conquer 分而治之	1
1.1 Master Method	1
1 Divide and Conquer 分而治之	
1. DIVIDE into smaller sub-problems	
2. CONQUER via recursive calls	
3. COMBINE solutions of sub-problems into one for the original problem	
1.1 Master Method	
• Cool feature: a "black-box" method for solving recurrences	
• Determine the upper bound of running time for most of the D&C algos	
• Assumption: all sub-problems have equal size	
• unbalanced sub-problems?	
• more than one recurrence?	
• Recurrence format:	
– base case: $T(n) \leq C$ (a constant), for all sufficiently small n	
- for all larger $n, T(n) \leq aT(\frac{n}{b}) + O(n^d)$	
* a : # of recurrence calls (e.g., # of sub-problems), $a \ge 1$	
* b: input size shrinkage factor, $b > 1$, $T(\frac{n}{b})$ is the time required to solve each sub-problem	
* d: exponent in running time of the combine step, $d \ge 0$	
* constants a, b, d independent of n	
• Three Cases:	
- Case 1: base of logarithm does not matter	

- Case 3: base of logarithm matters

$$T(n) = \begin{cases} O(n^d \log n), & a = b^d \text{ (case 1)} \\ O(n^d), & a < b^d \text{ (case 2)} \\ O(n^{\log_b a}), & \text{ otherwise (case 3)} \end{cases}$$

If $T(n) = aT(\frac{n}{b}) + \Theta(n^d)$, then (with similar proof)

$$T(n) = \begin{cases} \Theta(n^d \log n), & a = b^d \text{ (case 1)} \\ \Theta(n^d), & a < b^d \text{ (case 2)} \\ \Theta(n^{\log_b a}), & \text{ otherwise (case 3)} \end{cases}$$