Formal Languages and Automata: DFA Practice Problems

- **A.** Give state diagrams of DFAs recognizing the following languages. In all cases, the alphabet is $\{0,1\}$.
- a. $\{w \mid w \text{ begins with a } 1 \text{ and ends with a } 0\}$
- b. $\{w \mid w \text{ contains at least five } 1's\}$
- c. $\{w \mid \text{ the length of } w \text{ is atmost 5 } \}$
- d. $\{w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive } 1's\}$
- **B.** DFA to accept the decimal strings divisible by 3. Example strings: 393, 915, 7254 are accepted Example strings: 593, 785, 9346 are rejected
- **C.** All the strings on $\Sigma = \{a, b\}$ with exactly one a.
- **D.** All the strings on $\Sigma = \{a, b\}$ with atleast one a.

Practice Problems..

- **E.** $\Sigma = \{a, b\}$ and let $L = \{baa\}$. Design a DFA for L.
- **F.** Design a DFA that accepts all strings over the alphabet $\{a, b\}$ that are of length 3 or more and end with ab.
- **G.** Design a DFA that accepts all strings over the alphabet $\{a, b\}$ that contain the substring abb.
- **H.** Design a DFA that accepts all strings over the alphabet $\{a, b\}$ where the number of a's is divisible by 3 and the number of b's is divisible by 2.

Practice Problems..

I. Find the strings and language accepted by the given DFA.

J. Let $\Sigma = \{a, b\}$ and let $L = \{w \in \Sigma^* | w \neq \epsilon \text{ and the first and last character of } w \text{ are same } \}$. Design a DFA for L.