Data structures

CS594: Big Data Visualization & Analytics

Fabio Miranda

https://fmiranda.me

Overview

- Spatial data structures:
 - Uniform grid
 - Nested grids
 - Quadtree / octree
 - K-d tree
 - BVH
 - •
- Visualization data structures:
 - Immens
 - Nanocubes
 - TopKube
 - ...

How to efficiently organize objects?

- 2D/3D data contains spatial information.
- How to perform queries when there are thousands / millions of objects (points, polygons)?
 - Ray-scene intersection.
 - Proximity queries
 - Point in polygon.
 - Range query.

Ray-scene intersection

• Given a scene with n primitives and a ray r, find the closest point of intersection of r with the scene.

```
function intersectObjects(ray, scene) {
    for(var i=0; i < scene.objects.length; i++) {
       var object = scene.objects[i];
      var dist = intersection(ray, object);
      // ...
    }
}</pre>
```

- Complexity: O(n)
- How to do better?

Proximity query

- Query based on proximity.
- "What is the closest McDonald's?"

```
function findPlaces(query, scene) {
   for(var i=0; i < scene.places.length; i++) {
     var place = scene.places[i];
     var dist = satisfyQuery(query, place);
     // ...
   }
}</pre>
```

- Complexity: O(n)
- How to do better?

Point in polygon

What is the zip code for this complaint?

Am I inside a specific building?

Aggregation

- Aggregate spatiotemporal points.
- "Number of tweets in a region?"

```
function aggregate(points) {
    var map = AggregatedData(width, height, 0);
    for (var i=0; i < points.length; i++) {
        var coord = getCoord(points[i]);
        map.add(coord, 1);
    }
}</pre>
```

- Complexity: O(n)
- How to do better?

Time complexity

- Ray-scene intersection: O(n)
- Proximity query: O(n)
- Point in polygon: O(n)
- Aggregation: O(n)

How to reduce the time complexity?

Motivation

- Expensive operations (ray tracing, query).
 - Complex datasets (millions of objects).
 - Large number of operations (hundreds of millions per second).
- Reduce complexity through pre-processing data.
 - Spatial data structures: structures of objects in space.
 - Eliminate candidates as early as possible.
 - Reduce complexity to $O(\log n)$ on average.
 - Worst case complexity still O(n).

Spatial data structures

Data structures to accelerate queries of the kind:

"I'm here, which object is around me?"

- Partition space or set of objects.
- Tasks:
 - 1. Construction / update:
 - Pre-processing for static parts of the scene.
 - Update for moving parts of the scene.
 - 2 Access:
 - Optimize so it is done as fast as possible.

Spatial data structures

- Uniform grid: 2D/3D data, uniform distribution.
- Quadtree: 2D data, non-uniform distribution.
- Octree: 3D data, non-uniform distribution.
- KD-tree: 2D/3D data, avoid empty cells.

Uniform grid

- Partition space into equal-sized volumes (i.e., voxels).
- Each cell will contain objects that overlap the voxel.
- Good for uniform data (points are evenly distributed in space).
- Fast construction and queries.

Uniform grid

Uniform grid: construction and query

- Array of 3D voxels
 - Each voxel: list of pointers to colliding objects.
- Indexing function:
 - 3D point → cell index (constant time!)
- Construction:
 - Initialize cells for grid with size w * h
 - For each object p(x, y):
 - Compute grid cell using (x, y).
 - Store p in cell.
- Query:
 - For query rectangle $(x_1, y_1) \times (x_2, y_2)$:
 - Compute subgrid for (x_1, y_1) and (x_2, y_2) .
 - For all cells inside subgrid, report all objects.
 - For all cells on the border of the subgrid, test objects against rectangle.

Uniform grid: complexity

• Build time: O(n)

• Space: O(w * h) + O(n)

• Query: O(k)

Uniform grid: complexity

When uniform grids work well? Uniform distribution of objects.

Mitsuba renderer

peterguthrie.net

Uniform grid: drawbacks

- When uniform grids do not perform well? Non-uniform distribution of objects.
- "Teapot in a stadium" problem: uniform grids cannot adapt to local density of objects.

Uniform grid: drawbacks

- Assumes objects uniformly distributed in space.
- What happens when assumption does not hold?
 - Many empty cells.
 - Few cells with too many points.
- Change cell size?
 - Too small: memory occupancy too large.
 - Too big: too many objects in one cell.

Nested grids

- Possible solution to "teapot in a stadium" problem.
- Hierarchy of uniform grids: each cell is itself a grid.
- Fast building & traversal.

Philipp Slusallek

Quadtree

- Hierarchical structure that stores regular grids at each level.
- Adaptive subdivision: adjust depth to local scene complexity.

Quadtree

- Rooted tree in which every internal node has four children.
- Every node corresponds to a square.
- Tree: branching factor 4 or 8.
- Each node: splits into all dimensions at once (in the middle).
- Construction: continue splitting until end nodes have few objects (or limit level reached).

Split the top level.

- Split the top level.
- Can we stop?

- Split the top level.
- Can we stop? No, split the next level.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left?

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right?

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right? No.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right? No.
- Split top-right.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right? No.
- Split top-right.
- Can we stop top-right?

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right? No.
- Split top-right.
- Can we stop top-right? Yes.

- Split the top level.
- Can we stop? No, split the next level.
- Split top-left.
- Can we stop top-left? Yes.
- Split top-right.
- Can we stop top-right? No.
- Split top-right.
- Can we stop top-right? Yes.

- Construction:
 - Input: set of objects P inside a square $S(x_1, y_1) \times (x_2, y_2)$, tree node v
 - If $|P| \le 1$:
 - Quadtree consists of a single leaf with P.
 - Else:
 - P_{00} : set of points that fall in the bottom-left corner of S.
 - P_{01} : set of points that fall in the bottom-right corner of S.
 - ...
 - v_{00} : node with points of P_{00} .
 - v_{01} : node with points of P_{01} .
 - ...
 - Append v_{00} , v_{01} , v_{10} , v_{11} to v.

Quadtree: query

- Query:
 - Input: range query $r(x_1, y_1) \times (x_2, y_2)$, tree node v.
 - If *v* is a leaf:
 - Search points of v inside range r.
 - If v_{00} inside range r:
 - Query(v_{00}, r)
 - If v_{01} inside range r:
 - Query(v_{01}, r)
 - If v_{10} inside range r:
 - Query(v_{10}, r)
 - If v_{11} inside range r:
 - Query(v_{11} , r)

Quadtree: complexity

- Build time: O(n)
- Space: *0*(*n*)
- Range query: $O(\sqrt{n} + k)$
- Leaf traversal: O(logn)

Octree

- Each inner node contains 8 equally sized voxels.
- A 3D quadtree.

Quadtree and octree: drawbacks

- Grater ability to adapt to location of scene geometry than uniform grid.
- But very long tree to store points that are concentrated in a small region.
- Many nodes will contain zero objects.

K-d tree

- Differently from quadtrees and octrees, k-d trees only split <u>one</u> dimension at each level.
- Where to split? Middle? Median? Proportional to surface area?
- At each level:
 - Quadtree creates 4 equal sized cells.
 - Octree creates 8 equal sized cells.
 - K-d tree creates 2 non-equal sized cells (2D case).

• First split: x dimension (median point).

- First split: x dimension (median point).
- · Second split: y dimension.

- First split: x dimension (median point).
- Second split: y dimension.
- Repeat, alternating split dimensions

- Construction:
 - Input: set of objects P inside a square $S(x_1, y_1) \times (x_2, y_2)$, tree node v
 - If $|P| \le 1$:
 - K-d tree consists of a single leaf with P.
 - Else:
 - If depth is even:
 - Split P into P_0 and P_1 , along a vertical line through the y axis.
 - Else:
 - Split P into P_0 and P_1 , along a vertical line through the x axis.
 - v_0 : $build(v, P_0, depth + 1)$.
 - v_1 : $build(v, P_1, depth + 1)$.
 - ...
 - Append v_0 , v_1 to v.

K-d tree: query

- Query:
 - Input: range query $r(x_1, y_1) \times (x_2, y_2)$, tree node v.
 - If *v* is a leaf:
 - Search points of v inside range r.
 - If v_0 inside range r:
 - Query (v_0, r)
 - If v_1 inside range r:
 - Query (v_1, r)

K-d tree: complexity

- Build time: O(nlogn)
- Space: *0*(*n*)
- Range query: $O(\sqrt{n} + k)$
- Leaf traversal: O(logn)

K-d tree and Scikit-learn

• K-nearest neighbors and neighbors within a radius:

```
from sklearn.neighbors import KDTree
import numpy as np

rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2))
tree = KDTree(X, leaf_size=2)
dist, ind = tree.query(X[:1], k=3)
```

```
from sklearn.neighbors import KDTree
import numpy as np

rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2))
tree = KDTree(X, leaf_size=2)
points = tree.query_radius(X[:1], r=0.3)
```

Kernel density estimation:

```
from sklearn.neighbors import KDTree
import numpy as np

rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2))
tree = KDTree(X, leaf_size=2)
estimate = tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
```


K-d tree and Scikit-learn

tSNE

```
import numpy as np
from sklearn.neighbors import KNeighborsTransformer
from sklearn.pipeline import make_pipeline

rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2)
transformer = make_pipeline(
    KNeighborsTransformer(n_neighbors=n_neighbors, mode='distance',metric=metric),
    TSNE(metric='precomputed', **tsne_params)
)
transformer.fit_transform(X)
```

Annoy and Scikit-learn

Annoy: approximate nearest neighbords C++ library with Python bindings.

• Locality sensitive hashing:

64 bytes per embedding

$$\alpha_{1,2} = \cos^{-1}(\frac{\overrightarrow{v_1}.\overrightarrow{v_2}}{|\overrightarrow{v_1}||\overrightarrow{v_2}|})$$

Annoy and Scikit-learn

tSNE

```
class AnnoyTransformer(TransformerMixin, BaseEstimator):
    def fit(self, X):
        self.n samples fit = X.shape[0]
        self.annoy = annoy.AnnoyIndex(X.shape[1], metric=self.metric)
        for i, x in enumerate(X):
            self.annoy_.add_item(i, x.tolist())
        self.annoy .build(self.n trees)
        return self
rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2)
transformer = make_pipeline(
    AnnoyTransformer(n neighbors=n neighbors, metric=metric),
    TSNE(metric='precomputed', **tsne params)
embedded = transformer.fit_transform(X)
```

Annoy and Scikit-learn

tSNE

```
class AnnoyTransformer(TransformerMixin, BaseEstimator):
   def fit(self, X):
        self.n samples fit = X.shape[0]
        self.annoy = annoy.AnnoyIndex(X.shape[1], metric=self.metric)
       for i, x in enumerate(X):
            self.annoy_.add_item(i, x.tolist())
        self.annoy .build(self.n trees)
       return self
rng = np.random.RandomState(0)
X = rng.random_sample((1000, 2)
transformer = make_pipeline(
    AnnoyTransformer(n neighbors=n neighbors, metric=metric),
    TSNE(metric='precomputed', **tsne params)
                                                       TSNE with AnnoyTransformer:
                                                                                             30.225 sec
                                                       TSNE with KNeighborsTransformer: 64.845 sec
embedded = transformer.fit transform(X)
```

Summary

- Choose the right structure considering the operations and data.
- Uniform grid:
 - The most parallelizable (to update, construct, use).
 - Constant time access (best!).
 - Quadratic / cubic space (2D, 3D).
 - Good performance under uniform distribution of objects.
- Quadtree, octree, k-d tree:
 - Compact.
 - Simple.
 - Non-constant accessing time.
 - Good performance under non-uniform distribution of objects.

Data structures for visualization

- Immens
- Nanocube
- TopKube
- Learned cubes