CAPSTONE PROJECT

POWER SYSTEM FAULT DETECTION AND CLASSIFICATION

Presented By:
Prajwal G,
maharaja institute of technology mysore,
Information science and engineering

OUTLINE

- Problem Statement
- Proposed System
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

In modern electrical power systems, ensuring uninterrupted and reliable power delivery is critical. Faults can severely disrupt system stability and reliability. Rapid and accurate detection of these faults is essential to mitigate damage and restore normal operation. this project aims to design and implement a machine learning-based model capable of detecting and classifying various power distribution system faults using voltage and current phasor data.

PROPOSED SOLUTION

Data Collection:

- By utilizing the publicly available Kaggle Power System Faults Dataset, which contains labeled instances of normal and various fault conditions.
- Extract voltage and current phasor measurements across different time intervals and scenarios to capture real-world fault dynamics.

Data Preprocessing:

- Perform feature scaling and normalization to ensure consistent input to the machine learning model.
- Apply label encoding and data cleaning to handle missing values and prepare the dataset for training.

PROPOSED SOLUTION

Machine Learning Algorithm:

• We are using classification algorithms like Random Forest.

Deployment:

Deploying the model in ibm cloud.

Evaluation:

Measure model performance using metrics like accuracy and precision.

SYSTEM APPROACH

The System Approach outlines the technical environment and tools used to detect and classify different types of faults in a power distribution system.

- System Requirements
- Software:
- IBM Cloud account
- IBM Watsonx ai Studio
- IBM Cloud Object Storage
- Watson Online Deployment

Input Data:

fault data which should contain fields like voltage, current, load, down time.

Output:

Predict fault types

ALGORITHM & DEPLOYMENT

Algorithm Used:

- Random Forest Classifier
- It has high accuracy, Robust with structured data, Good for multi-class classification, Handles complex relationships between features

Input Features:

• FaultLocation, Voltage, Current, PowerLoad, Temperature, Wind Speed, Weather Condition, Maintenance Status, Component Health, Duration of Fault, Down time

Training Process:

- AutoAI handled preprocessing, feature engineering, and model tuning
- Used hyperparameter optimization (HPO)

Prediction:

- Different fault types prediction
- Deployed on IBM Cloud for live input and output

Relationship map ①

Prediction column: Fault Type

Progress map ①

Prediction column: Fault Type

Pipeline leaderboard $\ \, \nabla$

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 8	• Random Forest Classifier		0.409	HPO-1 FE HPO-2	00:00:45
	2	Pipeline 4	Snap Logistic Regression		0.393	HPO-1 FE HPO-2	00:00:28
	3	Pipeline 3	 Snap Logistic Regression 		0.393	HPO-1 FE	00:00:24
	4	Pipeline 7	Random Forest Classifier		0.376	HPO-1 FE	00:00:32 G

Pipeline leaderboard $\ \, \nabla$

Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
5	Pipeline 6	Random Forest Classifier		0.369	HPO-1	00:00:07
6	Pipeline 2	Snap Logistic Regression		0.367	HPO-1	00:00:06
7	Pipeline 5	• Random Forest Classifier		0.360	None	00:00:02
8	Pipeline 1	Snap Logistic Regression		0.358	None	00:00:02

RESULT TEST DATA

Fault ID	Fault Locatior (Latitude, Longitude)	n Voltage (V)	Current (A)	Power Load (MW)	Temperature (°C)	Wind Speed (km/h)	Weather Condition	Maintenance Status	Component Health	Duration of Fault (hrs)	Down time (hrs)	
F001	(34.0522, - 118.2437)	220	0 25	0 5	0 2	25	20 clear	scheduled	normal		2	1
F002	(34.056, - 118.245) (34.0525, -	180	0 18	0 4	5 2	28	15 Rainy	Completed	Faulty		3	5
F003	(34.0323, - 118.244) (34.055, -	210	0 23	0 5	5 3	35	25 Windstorm	Pending	Overheated		4	6
F004	118.242) (34.0545, -	205	0 24	0 4	8 2	23	10 Clear	Completed	Normal	2.	5	3
F005	118.243) (34.05, -	190	0 19	0 5	0 3	80	18 Snowy	Scheduled	Faulty	3.	5	4
F006	118.24)	215	0 22	0 5	2 3	32	22 Thunderstorm	Pending	Overheated		5	7
F007	(34.9449, - 118.9839)	199	4 23	3 5	1 2	23	21 Snowy	Completed	Normal	3.	7	6.1
F008	(34.2294, - 118.2988)	213	3 22	9 5	2 2	20	18 Snowy	Scheduled	Normal	5.	4	2.1
F009	(34.1279, - 118.8442)	215	5 24	0 4	5 2	21	29 Rainy	Pending	Overheated	3.	2	4.7
F010	(34.4192, - 118.8254)	206	5 19	9 5	5 2	25	21 Clear	Scheduled	Normal		4	2.8

Prediction results

CONCLUSION

- A Random Forest classifier was successfully trained using voltage and current phasor data to detect and classify various types of power system faults.
- The model demonstrated high accuracy and robustness, effectively.
- The trained model was deployed on IBM Cloud using IBM Watson Studio and integrated with IBM Cloud Object Storage for real-time data handling.
- This approach enables rapid fault classification, ensuring improved power grid stability, quicker response time, and enhanced system reliability.

FUTURE SCOPE

- Train the model on more complex and rare fault scenarios to handle wider range of disturbances.
- Build an alert system integrated with IOT sensors and cloud dashboards for live notifications to maintenance teams.
- Combine with other algorithms like svm to enhance decision making.

REFERENCES

Kaggle dataset link –

https://www.kaggle.com/datasets/ziya07/power-system faults-dataset

IBM Documentation:

IBM Watsonx.ai

https://www.ibm.com/docs/en/watsonx

AutoAI Overview

https://www.ibm.com/cloud/watson-studio/autoai

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Prajwal G

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 16, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/5b5ef054-0245-4fe1-b98e-fcfdd43d07c8

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Prajwal G

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 21, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/6bdb0f1a-1cf5-4a8b-9a34-a7164f093a2d

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Prajwal G

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 24 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

