제13장 USB 디바이스 컨트롤러

개요

USB(universal serial bus) 디바이스 컨트롤러는 DMA 인터페이스를 갖는 고성능의 컨트롤러솔류션을 제공한다. USB 디바이스 컨트롤러는 DMA를 갖는 대량 전송, 인터럽트 전송, 컨트롤 전송을 허용한다.

USB 디바이스 컨트롤러 지원:

- USB 스펙 버전 1.1과 호환되는 full speed USB 디바이스 컨트롤러
- 대량 전송을 위한 DMA 인터페이스
- FIFO를 갖는 5개의 엔드포인트

EP0: 16바이트(레지스터)

EP1 : 64바이트 입출력 FIFO(듀얼 포트 비동기 RAM): 인터럽트 혹은 DMA EP2 : 64바이트 입출력 FIFO(듀얼 포트 비동기 RAM): 인터럽트 혹은 DMA EP3 : 64바이트 입출력 FIFO(듀얼 포트 비동기 RAM): 인터럽트 혹은 DMA EP4 : 64바이트 입출력 FIFO(듀얼 포트 비동기 RAM): 인터럽트 혹은 DMA

- 통합 USB 송수신기

형태

- USB 스펙 버전 1.1과 완벽하게 호환
- full speed(12Mbps) 디바이tm
- 통합된 USB 트랜시버
- 컨트롤, 인터럽트, 대량 전송으 fwldnjs
- FIFO를 갖는 5개의 엔드포인트:

16바이트의 FIFO(EP0)를 갖는 1개의 양방향 컨트롤 엔드포인트 64바이트의 FIFO(EP1, EP2, EP3, EP4)를 갖는 4개의 양방향 대량 엔드포인트

- 대량 엔트포인트를 수신 혹은 송신을 위한 DMA 인터페이스 지원
- 처리량을 최대로 하기 위한 독립적인 64바이트의 수신과 송신 FIFO
- suspend와 remote wakeup 기능을 지원

그림 13-1. USB 디바이스 컨트롤러 블록 다이어그램

USB 디바이스 컨트롤러 특별 레지스터

여기서는 USB 디바이스 컨트롤러에 대한 세부 기능을 설명한다. 모든 특별 기능 레지스터는 바이트-접근과 워드-접근이 가능하다. 바이트 모드로 접근하면, 옵셋-어드레스는 리틀엔디안과 빅 엔디안에서 차이가 있다. 모든 예약된 비트는 0이다. common indexed 레지스터는 INDEX 레지스터의 값에 달려있다. 예로, EPO CSR 레지스터에 기록하려면, IN_CSR1 레지스터에 기록하기 전에 INDEX_REG에 '0x00'을 기록해야 한다.

NOTE

모든 레지스터는 호스트 리셋 신호가 동작한 후에 안정되어야 한다.

Register Name	Description	Offset Address
NON INDEXED REGISTERS		
FUNC_ADDR_REG	Function address register	0x140(L) / 0x143(B)
PWR_REG	Power management register	0x144(L) / 0x147(B)
EP_INT_REG (EP0-EP4)	Endpoint interrupt register	0x148(L) / 0x14B(B)
USB_INT_REG	USB interrupt register	0x158(L) / 0x15B(B)
EP_INT_EN_REG (EP0-EP4)	Endpoint interrupt enable register	0x15C(L) / 0x15F(B)
USB_INT_EN_REG	USB Interrupt enable register	0x16C(L) / 0x16F(B)
FRAME_NUM1_REG	Frame number 1 register	0x170(L) / 0x173(B)
FRAME_NUM2_REG	Frame number 2 register	0x174(L) / 0x177(B)
INDEX_REG	Index register	0x178(L) / 0x17B(B)
EP0_FIF0_REG	Endpoint0 FIFO register	0x1C0(L) / 0x1C3(B)
EP1_FIFO_REG	Endpoint1 FIFO register	0x1C4(L) / 0x1C7(B)
EP2_FIFO_REG	Endpoint2 FIFO register	0x1C8(L) / 0x1CB(B)
EP3_FIFO_REG	Endpoint3 FIFO register	0x1CC(L) / 0x1CF(B)
EP4_FIFO_REG	Endpoint4 FIFO register	0x1D0(L) / 0x1D3(B)
EP1_DMA_CON	Endpoint1 DMA control register	0x200(L) / 0x203(B)
EP1_DMA_UNIT	Endpoint1 DMA unit counter register	0x204(L) / 0x207(B)
EP1_DMA_FIFO	Endpoint1 DMA FIFO counter register	0x208(L) / 0x20B(B)
EP1_DMA_TTC_L	Endpoint1 DMA transfer counter low-byte register	0x20C(L) / 0x20F(B)
EP1_DMA_TTC_M	Endpoint1 DMA transfer counter middle-byte register	0x210(L) / 0x213(B)
EP1_DMA_TTC_H	Endpoint1 DMA transfer counter high-byte register	0x214(L) / 0x217(B)
EP2_DMA_CON	Endpoint2 DMA control register	0x218(L) / 0x21B(B)
EP2_DMA_UNIT	Endpoint2 DMA unit counter register	0x21C(L) / 0x21F(B)
EP2_DMA_FIFO	Endpoint2 DMA FIFO counter register	0x220(L) / 0x223(B)
EP2_DMA_TTC_L	Endpoint2 DMA transfer counter low-byte register	0x224(L) / 0x227(B)

Register Name	Description	Offset Address
EP2_DMA_TTC_M	Endpoint2 DMA transfer counter middle-byte register	0x228(L) / 0x22B(B)
EP2_DMA_TTC_H	Endpoint2 DMA transfer counter high-byte register	0x22C(L) / 0x22F(B)
EP3_DMA_CON	Endpoint3 DMA control register	0x240(L) / 0x243(B)
EP3_DMA_UNIT	Endpoint3 DMA unit counter register	0x244(L) / 0x247(B)
EP3_DMA_FIFO	Endpoint3 DMA FIFO counter register	0x248(L) / 0x24B(B)
EP3_DMA_TTC_L	Endpoint3 DMA transfer counter low-byte register	0x24C(L) / 0x24F(B)
EP3_DMA_TTC_M	Endpoint3 DMA transfer counter middle-byte register	0x250(L) / 0x253(B)
EP3_DMA_TTC_H	Endpoint3 DMA transfer counter high-byte register	0x254(L) / 0x247(B)
EP4_DMA_CON	Endpoint4 DMA control register	0x258(L) / 0x25B(B)
EP4_DMA_UNIT	Endpoint4 DMA unit counter register	0x25C(L) / 0x25F(B)
EP4_DMA_FIFO	Endpoint4 DMA FIFO counter register	0x260(L) / 0x263(B)
EP4_DMA_TTC_L	Endpoint4 DMA transfer counter low-byte register	0x264(L) / 0x267(B)
EP4_DMA_TTC_M	Endpoint4 DMA transfer counter middle-byte register	0x268(L) / 0x26B(B)
EP4_DMA_TTC_H	Endpoint4 DMA transfer counter high-byte register	0x26C(L) / 0x26F(B)
COMMON INDEXED REGIST	TERS	
MAXP_REG	Endpoint MAX packet register	0x18C(L) / 0x18F(B)
IN INDEXED REGISTERS		
IN_CSR1_REG/EP0_CSR	EP In control status register 1/EP0 control status register	0x184(L) / 0x187(B)
IN_CSR2_REG	EP In control status register 2	0x188(L) / 0x18B(B)
OUT INDEXED REGISTERS		
OUT_CSR1_REG	EP out control status register 1	0x190(L) / 0x193(B)
OUT_CSR2_REG	EP out control status register 2	0x194(L) / 0x197(B)
OUT_FIFO_CNT1_REG	EP out write count register 1	0x198(L) / 0x19B(B)
OUT_FIFO_CNT2_REG	EP out write count register 2	0x19C(L) / 0x19F(B)

function 어드레스 레지스터(FUNC_ADDR_REG)

이 레지스터는 호스트에 의해서 할당된 USB 디바이스 컨트롤러를 관리한다. MCU(Micro controller unit)는 이 레지스터에 SET_ADDRESS descriptor를 통해서 수신된 값을 기록한다. 이 어드레스는 다음 발생시에 사용된다.

Register	Address	R/W	Description	Reset Value
FUNC_ADDR_REG	0x52000140(L) 0x52000143(B)	R/W (byte)	Function address register	0x00

FUNC_ADDR_REG	Bit	MCU	USB	Description	Initial State
ADDR_UPDATE	[7]	R /SET	R /CLEAR	Set by the MCU whenever it updates the FUNCTION_ADDR field in this register. This bit will be cleared by USB when DATA_END bit in EP0_CSR register.	0
FUNCTION_ADDR	[6:0]	R/W	R	The MCU write the unique address, assigned by host, to this field.	00

파워 관리 레지스터(PWR_REG)

이 레지스터는 USB 블록에서 파워 컨트롤 레지스터로 동작한다.

Register	Address	R/W	Description	Reset Value
PWR_REG	0x52000144(L) 0x52000147(B)	R/W (byte)	Power management register	0x00

PWR_ADDR	Bit	MCU	USB	Description	Initial State
ISO_UPDATE	[7]	R/W	R	Used for ISO mode only. If set, GFI waits for a SOF token to set IN_PKT_RDY even though a packet to send is already loaded by MCU. If an IN token is received before a SOF token, then a zero length data packet will be sent.	0
Reserved	[6:4]	=	-	_	-
USB_RESET	[3]	R	SET	Set by the USB if reset signaling is received from the host. This bit remains set as long as reset signaling persists on the bus	0
MCU_RESUME	[2]	R/W	R /CLEAR	Set by the MCU for MCU Resume. The USB generates the resume signaling during 10ms, if this bit is set in suspend mode.	
SUSPEND_MODE	[1]	R	SET /CLEAR	Set by USB automatically when the device enter into suspend mode. It is cleared under the following conditions: 1) The MCU clears the MCU_RESUME bit by writing '0', in order to end remote resume signaling. 2) The resume signal form host is received.	0
SUSPEND_EN	[0]	R/W	R	Suspend mode enable control bit 0 = Disable (default). The device will not enter suspend mode. 1 = Enable suspend mode.	0

인터럽트 레지스터(EP_INT_REG/USB_INT_REG)

USB 코어는 2개의 인터럽트 레지스터를 갖는다.

이러한 레지스터는 인터럽트가 걸릴 때 MCU에 대한 상태 레지스터로 동작한다. 설정된 각비트에 1을 기록해서 클리어한다.

일단 MCU에 인터럽트가 들어오면, MCU는 인터럽트-관련 레지스터의 내용을 읽고 필요하면 내용을 클리어 하기 위해서 back으로 쓰기를 한다.

Register	Address	R/W	Description	Reset Value	
EP_INT_REG	0x52000148(L) 0x5200014B(B)	R/W (byte)	EP interrupt pending/clear register	0x00	

EP_INT_REG	Bit	MCU	USB	Description	Initial State
EP1~EP4 Interrupt	[4:1]	R /CLEAR	SET	For BULK/INTERRUPT IN endpoints: Set by the USB under the following conditions: 1. IN_PKT_RDY bit is cleared. 2. FIFO is flushed 3. SENT_STALL set. For BULK/INTERRUPT OUT endpoints: Set by the USB under the following conditions: 1. Sets OUT_PKT_RDY bit 2. Sets SENT_STALL bit For ISO IN endpoints: Set by the USB under the following conditions: 1. UNDER_RUN bit is set 2. IN_PKT_RDY bit is cleared. 3. FIFO is flushed NOTE: Conditions 1 and 2 are mutually exclusive For ISO OUT endpoints: Set by the USB under the following conditions: 1. OUT_PKT_RDY bit is set 2. OVER RUN bit is set. NOTE: Conditions 1 and 2 are mutually exclusive.	0
EP0 Interrupt	[0]	R /CLEAR	SET	Correspond to endpoint 0 interrupt. Set by the USB under the following conditions: 1. OUT_PKT_RDY bit is set. 2. IN_PKT_RDY bit is cleared. 3. SENT_STALL bit is set 4. SETUP_END bit is set 5. DATA_END bit is cleared (it indicates the end of control transfer).	0

Register	Address	R/W	Description	Reset Value
USB_INT_REG	0x52000158(L) 0x5200015B(B)	R/W (byte)	USB interrupt pending/clear register	0x00

USB_INT_REG	Bit	MCU	USB	Description	Initial State
RESET Interrupt	[2]	R /CLEAR	SET	Set by the USB when it receives reset signaling.	0
RESUME Interrupt	[1]	R /CLEAR	SET	Set by the USB when it receives resume signaling, while in Suspend mode. If the resume occurs due to a USB reset, then the MCU is first interrupted with a RESUME interrupt. Once the clocks resume and the SE0 condition persists for 3ms, USB RESET interrupt will be asserted.	0
SUSPEND Interrupt	[0]	R /CLEAR	SET	Set by the USB when it receives suspend signalizing. This bit is set whenever there is no activity for 3ms on the bus. Thus, if the MCU does not stop the clock after the first suspend interrupt, it will continue to be interrupted every 3ms as long as there is no activity on the USB bus. By default, this interrupt is disabled.	0

NOTE: 리셋 인터럽트가 발생되면, 모든 USB 디바이스 레지스터는 재-설정되어야 한다.

인터럽트 인에이블 레지스터(EP_INT_EN_REG/USB_INT_REG)

각 인터럽트 레지스터에 대응해서, USB 디바이스 컨트롤러는 2개의 인터럽트 인에이블 레지스터(resume 인터럽트 인에이블을 제외)를 갖는다. 디폴트로, USB 리셋 인터럽트가 인에이블 된다.

비트=0이면, 인터럽트가 디스에이블 된다. 비트=1이면, 인터럽트가 인에이블 된다.

Register	Address	R/W	Description	Reset Value
EP_INT_EN_REG	0x5200015C(L) 0x5200015F(B)	R/W (byte)	Determine which interrupt is enabled	0xFF

EP_INT_EN_REG	Bit	MCU	USB	Description	Initial State
EP4_INT_EN	[4]	R/W	R	EP4 Interrupt Enable bit 0 = Interrupt disable 1 = Enable	1
EP3_INT_EN	[3]	R/W	R	EP3 Interrupt Enable bit 0 = Interrupt disable 1 = Enable	1
EP2_INT_EN	[2]	R/W	R	EP2 Interrupt Enable bit 0 = Interrupt disable 1 = Enable	1
EP1_INT_EN	[1]	R/W	R	EP1 Interrupt Enable bit 0 = Interrupt disable 1 = Enable	1
EP0_INT_EN	[0]	R/W	R	EP0 Interrupt Enable bit 0 = Interrupt disable 1 = Enable	1

Register	Address	R/W	Description	Reset Value	
USB_INT_EN_REG	0x5200016C(L) 0x5200016F(B)	R/W (byte)	Determine which interrupt is enabled	0x04	

INT_MASK_REG	Bit	MCU	USB	Description	Initial State
RESET_INT_EN	[2]	R/W	R	Reset interrupt enable bit 0 = Interrupt disable 1 = Enable	1
Reserved	[1]	::	1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	=	0
SUSPEND_INT_EN	[0]	R/W	R	Suspend interrupt enable bit 0 = Interrupt disable 1 = Enable	0

프레임 number 레지스터(FRAME_NUM1_REG/FRAME_NUM2_REG)

호스트가 USB 패킷을 전송하면, 각 프레임의 시작(SOF) 패킷은 프레임 number를 포함한다. USB 디바이스 컨트롤러는 이러한 프레임 number를 캐치하며 이 레지스터에 자동적으로호출한다.

Register	Address	R/W	Description	Reset Value	
FRAME_NUM1_REG	0x52000170(L) 0x52000173(B)	R (byte)	Frame number lower byte register	0x00	

FRAME_NUM_REG	Bit	MCU	USB	Description	Initial State
FRAME_NUM1	[7:0]	R	W	Frame number lower byte value	00

Register	Address	R/W	Description	Reset Value
FRAME_NUM2_REG	0x52000174(L)	R	Frame number higher byte register	0x00
	0x52000177(B)	(byte)		

FRAME_NUM_REG	Bit	MCU	USB	Description	Initial State
FRAME_NUM2	[7:0]	R	W	Frame number higher byte value	00

인덱스 레지스터(INDEX REG)

인덱스 레지스터는 어떤 엔드포인트 레지스터를 효율적으로 지시하는데 사용된다. MCU는 인덱스 레지스터를 이용해서 코어 안의 엔드포인드에 대해서 엔드포인트 레지스터에 접근할 수 있다.

Register	Address	R/W	Description	Reset Value
INDEX_REG	0x52000178(L) 0x5200017B(B)	R/W (byte)	Register index register	0x00

INDEX_REG	Bit	MCU	USB	Description	Initial State
INDEX	[7:0]	R/W	R	Indicate a certain endpoint	00

엔드 포인트0 컨트롤 상태 레지스터(EP0_CSR)

이 레지스터는 엔드포인트0에 대한 컨트롤과 상태 비트를 가지고 있다. 컨트롤 트랜잭션

이 IN 토큰과 OUT 토큰에 포함되기 때문에, IN CSR1 레지스터에 맵핑되는 1개의 CSR 레지스터가 있다.

Register	Address	R/W	Description	Reset Value	
EP0_CSR	0x52000184(L)	R/W	Endpoint 0 status register	0x00	
	0x52000187(B)	(byte)			

EP0_CSR	Bit	MCU	USB	Description	Initial State
SERVICED_SETUP_ END	[7]	W	CLEAR	The MCU should write a "1" to this bit to clear SETUP_END.	0
SERVICED_OUT_ PKT_RDY	[6]	W	CLEAR	The MCU should write a "1" to this bit to clear OUT_PKT_RDY.	0
SEND_STALL	[5]	R/W	CLEAR	MCU should write a "1" to this bit at the same time it clears OUT_PKT_RDY, if it decodes an invalid token. 0 = Finish the STALL condition 1 = The USB issues a STALL and shake to the current control transfer.	0
SETUP_END	[4]	R	SET	Set by the USB when a control transfer ends before DATA_END is set. When the USB sets this bit, an interrupt is generated to the MCU. When such a condition occurs, the USB flushes the FIFO and invalidates MCU access to the FIFO.	0
DATA_END	[3]	SET	CLEAR	Set by the MCU on the conditions below: 1. After loading the last packet of data into the FIFO, at the same time IN_PKT_RDY is set. 2. While it clears OUT_PKT_RDY after unloading the last packet of data. 3. For a zero length data phase.	0
SENT_STALL	[2]	CLEAR	SET	Set by the USB if a control transaction is stopped due to a protocol violation. An interrupt is generated when this bit is set. The MCU should write "0" to clear this bit.	0

EP0_CSR	Bit	MCU	USB	Description	Initial State
IN_PKT_RDY	[1]	SET	CLEAR	Set by the MCU after writing a packet of data into EP0 FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so as the MCU to load the next packet. For a zero length data phase, the MCU sets DATA_END at the same time.	0
OUT_PKT_RDY	[0]	R	SET	Set by the USB once a valid token is written to the FIFO. An interrupt is generated when the USB sets this bit. The MCU clears this bit by writing a "1" to the SERVICED_OUT_PKT_RDY bit.	0

엔드 포인트 IN 컨트롤 상태 레지스터(IN_CSR1_REG/IN_CSR2_REG)

Register	Register Address		Description	Reset Value	
IN_CSR1_REG	0x52000184(L) 0x52000187(B)	R/W (byte)	IN END POINT control status register1	0x00	

IN_CSR1_REG	Bit	MCU	USB	Description	Initial State
Reserved	[7]		13 -3	-	0
CLR_DATA_ TOGGLE	[6]	R/W	R/ CLEAR	Used in Set-up procedure. 0: There are alternation of DATA0 and DATA1 1: The data toggle bit is cleared and PID in packet will maintain DATA0	0
SENT_STALL	[5]	R/ CLEAR	SET	Set by the USB when an IN token issues a STALL handshake, after the MCU sets SEND_STALL bit to start STALL handshaking. When the USB issues a STALL handshake, IN_PKT_RDY is cleared	0
SEND_STALL	[4]	W/R	R	O: The MCU clears this bit to finish the STALL condition. 1: The MCU issues a STALL handshake to the USB.	0
FIFO_FLUSH	[3]	R/W	CLEAR	Set by the MCU if it intends to flush the packet in Input-related FIFO. This bit is cleared by the USB when the FIFO is flushed. The MCU is interrupted when this happens. If a token is in process, the USB waits until the transmission is complete before FIFO flushing. If two packets are loaded into the FIFO, only first packet (The packet is intended to be sent to the host) is flushed, and the corresponding IN_PKT_RDY bit is cleared	0
UNDER_RUN	[2]	R/ CLEAR	Set	Valid only For Iso mode. Set by the USB when in ISO mode, an IN token is received and the IN_PKT_RDY bit is not set. The USB sends a zero length data packet for such conditions, and the next packet that is loaded into the FIFO is flushed. This bit is cleared by writing 0.	0
Reserved	[1]	(S)	8 - 8	-	0

IN_CSR1_REG	Bit	MCU	USB	Description	Initial State
IN_PKT_RDY	[0]	R/SET	CLEAR	Set by the MCU after writing a packet of data into the FIFO. The USB clears this bit once the packet has been successfully sent to the host. An interrupt is generated when the USB clears this bit, so the MCU can load the next packet. While this bit is set, the MCU will not be able to write to the FIFO. If the MCU sets SEND STALL bit, this bit cannot be set.	0

Register	Address	R/W	Description	Reset Value 0x20
IN_CSR2_REG	0x52000188(L) 0x5200018B(B)	R/W (byte)	IN END POINT control status register2	

IN_CSR2_REG	Bit	MCU	USB	Description	Initial State
AUTO_SET	[7]	R/W	R	If set, whenever the MCU writes MAXP data, IN_PKT_RDY will automatically be set by the core without any intervention from MCU. If the MCU writes less than MAXP data, IN_PKT_RDY bit has to be set by the MCU.	0
ISO	[6]	R/W	R	Used only for endpoints whose transfer type is programmable. 1: Reserved 0: Configures endpoint to Bulk mode	0
MODE_IN	[5]	R/W	R	Used only for endpoints whose direction is programmable. 1: Configures Endpoint Direction as IN 0: Configures Endpoint Direction as OUT	1
IN_DMA_INT_EN	[4]	R/W	R	Determine whether the interrupt should be issued or not, when the EP1 IN_PKT_RDY condition happens. This is only useful for DMA mode. 0 = Interrupt enable, 1 = Interrupt Disable	0
Reserved	[3:0]	(5)	-	-	_

엔드 포인트 OUT 컨트롤 상태 레지스터(OUT_CSR1_REG/OUT_CSR2_REG)

Register Address		R/W	Description	Reset Value	
OUT_CSR1_REG	0x52000190(L) 0x52000193(B)	R/W (byte)	End Point out control status register1	0x00	

OUT_CSR1_REG	Bit	MCU	USB	Description	Initial State
CLR_DATA_ TOGGLE	[7]	R/W	CLEAR	When the MCU writes a 1 to this bit, the data toggle sequence bit is reset to DATA0.	0
SENT_STALL	[6]	R/ CLEAR	SET	Set by the USB when an OUT token is ended with a STALL handshake. The USB issues a stall handshake to the host if it sends more than MAXP data for the OUT TOKEN.	0
SEND_STALL	[5]	R/W	R	O: The MCU clears this bit to end the STALL condition handshake, IN PKT RDY is cleared. 1: The MCU issues a STALL handshake to the USB. The MCU clears this bit to end the STALL condition handshake, IN PKT RDY is cleared.	0
FIFO_FLUSH	[4]	R/W	CLEAR	The MCU writes a 1 to flush the FIFO. This bit can be set only when OUT_PKT_RDY (D0) is set. The packet due to be unloaded by the MCU will be flushed.	0
DATA_ERROR	[3]	R	R/W	Valid only in ISO mode. This bit should be sampled with OUT_PKT_RDY. When set, it indicates the data packet due to be unloaded by the MCU has an error (either bit stuffing or CRC). If two packets are loaded into the FIFO, and the second packet has an error, then this bit gets set only after the first packet is unloaded. This bit is automatically cleared when OUT_PKT_RDY gets cleared.	0
OVER_RUN	[2]	R/ CLEAR	R/W	Valid only in ISO mode. This bit is set if the core is not able to load an OUT ISO token into the FIFO. The MCU clears this bit by writing 0.	0
Reserved	[1]	-	-	_	0
OUT_PKT_RDY	[0]	R/ CLEAR	SET	Set by the USB after it has loaded a packet of data into the FIFO. Once the MCU reads the packet from FIFO, this bit should be cleared by MCU (write a "0").	0

Register	Register Address		Description	Reset Value
OUT_CSR2_REG	0x52000194(L) 0x52000197(B)	R/W (byte)	End Point out control status register2	0x00

OUT_CSR2_REG	Bit	MCU	USB	Description	Initial State
AUTO_CLR	[7]	R/W	R	If the MCU is set, whenever the MCU reads data from the OUT FIFO, OUT_PKT_RDY will automatically be cleared by the logic without any intervention from the MCU.	0
ISO	[6]	R/W	R	Determine endpoint transfer type. 0: Configures endpoint to Bulk mode. 1: Reserved	0
OUT_DMA_INT_ MASK	[5]	R/W	R	Determine whether the interrupt should be issued or not. OUT_PKT_RDY condition happens. This is only useful for DMA mode 0 = Interrupt Enable 1 = Interrupt Disable	0

엔드 포인트 FIFO 레지스터(EPN_FIFO_REG)

EPn_FIFO_REG는 EPn FIFO에 접근하기 위해서 MCU를 인에이블 한다.

Register	Address	R/W	Description	Reset Value	
EP0_FIFO	0x520001C0(L) 0x520001C3 (B)	R/W (byte)	End Point0 FIFO register	0xXX	
EP1_FIFO	1_FIFO 0x520001C4(L) 0x520001C7(B)		End Point1 FIFO register	0xXX	
EP2_FIFO	0x520001C8(L) 0x520001CB(B)	R/W (byte)	End Point2 FIFO register	0xXX	
EP3_FIFO	_FIFO		End Point3 FIFO register	0xXX	
EP4_FIFO	0x520001D0(L) 0x520001D3(B)	R/W (byte)	End Point4 FIFO register	0xXX	

EPn_FIFO	Bit	MCU	USB	Description	Initial State
FIFO_DATA	[7:0]	R/W	R/W	FIFO data value	0xXX

Max 패킷 레지스터(MAXP_REG)

Register	Address	R/W	Description	Reset Value	
MAXP_REG	0x5200018C(L) 0x5200018F(B)	R/W (byte)	End Point MAX packet register	0x01	

MAXP_REG	Bit	MCU	USB	Description	Initial State
MAXP	[3:0]	R/W	R	0000: Reserved 0001: MAXP = 8 Byte0010: MAXP = 16 Byte 0100: MAXP = 32 Byte1000: MAXP = 64 Byte For EP0, MAXP=8 is recommended. For EP1~4, MAXP=32 or MAXP=64 is recommended. And, if MAXP=32, the dual packet mode will be enabled automatically.	0001

엔드 포인트 OUT 쓰기 카운트 레지스터

(OUT_FIFO_CNT1_REG/OUT_FIFO_CNT2_REG)

이 레지스터는 number가 MCU에 의해서 호출되지 않을 때 패킷의 바이트 수를 관리한다.

Register	Address	R/W	Description	Reset Value
OUT_FIFO_CNT1_ REG	0x52000198(L) 0x5200019B(B)	R (byte)	End Point out write count register1	0x00

OUT_FIFO_CNT1_REG	Bit	MCU	USB	Description	Initial State
OUT_CNT_LOW	[7:0]	R	W	Lower byte of write count	0x00

Register	Address	R/W	Description	Reset Value
OUT_FIFO_CNT2_REG	0x5200019C(L) 0x5200019F(B)	R (byte)	End Point out write count register2	0x00

OUT_FIFO_CNT2_REG	Bit	MCU	USB	Description	Initial State
OUT_CNT_HIGH	[7:0]	R	W	Higher byte of write count. The OUT_CNT_HIGH may be always 0 normally.	0x00

DMA 인터페이스 컨트롤 레지스터(EPN_DMA_CON)

Register	Address	R/W	Description	Reset Value 0x00	
EP1_DMA_CON	0x52000200(L) 0x52000203(B)	R/W (byte)	EP1 DMA interface control register		
EP2_DMA_CON	0x52000218(L) 0x5200021B(B)	R/W (byte)	EP2 DMA interface control register	0x00	
EP3_DMA_CON	0x52000240(L) 0x52000243(B)	R/W (byte)	EP3 DMA interface control register	0x00	
EP4_DMA_CON			EP4 DMA interface control register	0x00	

EPn_DMA_CON	Bit	MCU	USB	Description	Initial State
IN_RUN_OB	[7]	R/W	W	Read) IN_DMA_Run Observation 0: DMA is stopped 1:DMA is running	0
			Write) Ignore EPn_DMA_TTC_n register 0: DMA requests will be stopped if EPn_DMA_TTC_n reaches 0. 1: DMA requests will be continued although EPn_DMA_TTC_n reaches 0.		
STATE	[6:4]	R	W	DMA State Monitoring	0
DEMAND_MODE	[3]	R/W	R	DMA Demand mode enable bit 0: Demand mode disable 1: Demand mode enable	0
OUT_RUN_OB/ OUT_DMA_RUN	[2]	R/W	R/W	Functionally separated into write and read operation. Write operation: '0' = Stop '1' = Run Read operation: OUT DMA Run Observation	0
IN_DMA_RUN	[1]	R/W	R	Start DMA operation. 0 = Stop 1 = Run	0
DMA_MODE_EN	[0]	R/W	R/ CLEAR	Set DMA mode.If the IN_RUN_OB has been wrtten as 0 and EPn_DMA_TTC_n reaches 0, DMA_MODE_EN bit will be cleared by USB. 0 = Interrupt mode 1 = DMA mode	0

DMA 유닛 카운터 레지스터(EPN_DMA_UNIT)

이 레지스터는 Demand 모드에서 유효한다. 다른 모드에서, 레지스터 값은 '0x01'로 설 정되어야 한다.

Register	Register Address		Description	Reset Value	
EP1_DMA_UNIT	0x52000204(L) 0x52000207(B)	R/W (byte)	EP1 DMA transfer unit counter base register	0x00	
EP2_DMA_UNIT	0x5200021C(L) 0x5200021F(B)	R/W (byte)	EP2 DMA transfer unit counter base register	0x00	
EP3_DMA_UNIT	0x52000244(L) 0x52000247(B)	R/W (byte)	EP3 DMA transfer unit counter base register	0x00	
EP4_DMA_UNIT	0x5200025C(L) 0x5200025F(B)	R/W (byte)	EP4 DMA transfer unit counter base register	0x00	

DMA_UNIT	Bit	MCU	USB	Description	Initial State
EPn_UNIT_CNT	[7:0]	R/W	R	EP DMA transfer unit counter value	0x00

DMA FIFO 카운터 레지스터(EPN_DMA_FIFO)

이 레지스터는 DMA에 의해서 전송되는 FIFO에 바이트 크기의 값을 갖는다. OUT_DMA_RUN이 인에이블 되는 경우에, OUT FIFO 쓰기 카운트 레지스터1의 값은 이 레지스터에 자동적으로 로딩된다. IN DMA 모드의 경우에, MCU는 소프트웨어에 의해서 적정한 값으로 설정되어야 한다.

Register	Address	R/W	Description	Reset Value	
EP1_DMA_FIFO	0x52000208(L) 0x5200020B(B)	R/W (byte)	EP1 DMA transfer FIFO counter base register	0x00	
EP2_DMA_FIFO	0x52000220(L) 0x52000223(B)	R/W (byte)	EP2 DMA transfer FIFO counter base register	0x00	
EP3_DMA_FIFO	0x52000248(L) 0x5200024B(B)	R/W (byte)	EP3 DMA transfer FIFO counter base register	0x00	
EP4_DMA_FIFO	PACCONDING AS AN INTERNAL AS A		EP4 DMA transfer FIFO counter base register	0x00	

DMA_FIFO	Bit	MCU	USB	Description	Initial State
EPn_FIFO_CNT	[7:0]	R/W	R	EP DMA transfer FIFO counter value	0x00

DMA 전체 전송 카운터 레지스터(EPN_DMA_TTC_L,M,H)

이 레지스터는 DMA를 이용해서 전송할 전체 number를 가져야 한다.(총 20비트 카운터)

Register	Address	R/W	Description	Reset Value	
EP1_DMA_TTC_L	0x5200020C(L) 0x5200020F(B)	R/W (byte)	EP1 DMA total transfer counter(lower byte)	0x00	
EP1_DMA_TTC_M	0x52000210(L) 0x52000213(B)	R/W (byte)	EP1 DMA total transfer counter(middle byte)	0x00	
EP1_DMA_TTC_H	0x52000214(L) 0x52000217(B)	R/W (byte)	EP1 DMA total transfer counter(higher byte)	0x00	
EP2_DMA_TTC_L	0x52000224(L) 0x52000227(B)	R/W (byte)	EP2 DMA total transfer counter(lower byte)	0x00	
EP2_DMA_TTC_M	0x52000228(L) 0x5200022B(B)	R/W (byte)	EP2 DMA total transfer counter(middle byte)	0x00	
EP2_DMA_TTC_H	0x5200022C(L) 0x5200022F(B)	R/W (byte)	EP2 DMA total transfer counter(higher byte)	0x00	
EP3_DMA_TTC_L	0x5200024C(L) 0x5200024F(B)	R/W (byte)	EP3 DMA total transfer counter(lower byte)	0x00	
EP3_DMA_TTC_M	0x52000250(L) 0x52000253(B)	R/W (byte)	EP3 DMA total transfer counter(middle byte)	0x00	
EP3_DMA_TTC_H	0x52000254(L) 0x52000257(B)	R/W (byte)	EP3 DMA total transfer counter(higher byte)	0x00	
EP4_DMA_TTC_L	0x52000264(L) 0x52000267(B)	R/W (byte)	EP4 DMA total transfer counter(lower byte)	0x00	
EP4_DMA_TTC_M	0x52000268(L) 0x5200026B(B)	R/W (byte)	EP4 DMA total transfer counter(middle byte)	0x00	
EP4_DMA_TTC_H	0x5200026C(L) 0x5200026F(B)	R/W (byte)	EP4 DMA total transfer counter(higher byte)	0x00	

DMA_TX	Bit	MCU	USB	Description	Initial State
EPn_TTC_L	[7:0]	R/W	R	DMA total transfer count value (lower byte)	0x00
EPn_TTC_M	[7:0]	R/W	R	DMA total transfer count value (middle byte)	0x00
EPn_TTC_H	[3:0]	R/W	R	DMA total transfer count value (higher byte)	0x00