National University of Computer and Emerging Sciences, Lahore Campus

Course: Information Retrieval
Program: BS (Data/Computer Science)

Duration: 60 mins Paper Date: 8-April-23

Section: BDS-6A, BDS-6B, BCS-8A, BCS-8B

Exam: Midterm 2 Exam

Course Code: CS 4051 Semester: Spring 2023 Total Marks: 15

Weight % Page(s): 2

Instruction/Notes: Attempt the examination on the answer sheet in the same order as given in the here. Submit question paper with the answer sheet

Q1) (a) Given a query q_1 , the set of documents relevant to the users is $D^* = \{d_1, d_{10}, d_{35}, d_{40}, d_{45}, d_{55}, d_{56}\}$. The IR system retrieves the following documents $D = \{d_{10}, d_{11}, d_{35}, d_{49}, d_{45}\}$. Leftmost document is top ranked. Compute Average Precision. [2 Marks]

k	Retrieved	R/N	Precision@Relevance		
1	d10	R	1	1	
2	d11	N	-	-	
3	d35	R	2/3	0.667	
4	d49	N	-	-	
5	d45	R	3/5	0.6	

Average Precision=0.755

Q1) (b) [2 Marks] Presented with a list of documents in response to a search query, an experiment participant is asked to judge the relevance of each document to the query. Each document is to be judged on a scale of 0-3 with:

0 not relevant

3 highly relevant, and

1 and 2 "somewhere in between".

Compute Normalized Discounted Cumulative Gain (NDCG) for the following IR systems

IR System: [2, 3, 0, 1, 2]

		[-, 0, 0, 1, -]	
i	reli	$log_2(i+1)$	rel_r
			$log_2(r+1)$
1	2	1	2
2	3	1.585	1.893
3	0	2	0
4	1	2.322	0.431
5	2	2.585	0.774

$$DCG_k = \sum_{r=1}^{k} \frac{rel_r}{log(r+1)} = 2 + 1.893 + 0 + 0.432 + 0.774 = 5.097$$

$$NDCG_k = \frac{5.097}{5.097} = 1$$

Q1) (c) In Normalized Discounted Cumulative Gain (NDCG), we normalize the Discounted Cumulative Gain (DCG) for each topic with a normalizer. What is this normalizer? Why do we need to do this normalization step? Justify with an example. [2 Marks]

Example:

System 1: 3,2,3,0,1,2 System 2: 3,3,3,2,2,2,1,0

- Ideal DCG at 6 is (the best value) DCG for 3,3,3,2,2,2
- Normalize DCG with Ideal DCG value.
- NDCG for System 1 = DCG/IDCG =1.
- NDCG for System 2 = 0.785

Q2) Given the three-document corpus and a stop word list below, answer the following questions AFTER removing stopwords. [1 + 2 = 3 Marks]

d_1	information retrieval is process of index search retrieval		
d_2	retrieval is used for evaluation of search results retrieval retrieval		
d_3	evaluation in information in evaluation process search		
Q	information retrieval		
Stopwords	is, of, in, for, to		

Calculate similarity of document d_2 with the query using maximum likelihood (language modeling) (use three document corpus given above).

- a) No smoothing
- **b)** Dirichlet Smoothing (mu = 4)

$$a) \; MLE_{d2,q} = \frac{freq(information,d_2)}{|d_2|} \times \frac{freq(retrieval,d_2)}{|d_2|} = \frac{0}{7} \times \frac{3}{7} = 0$$

$$b) \ \mathit{MLE}_{d2,q} = \frac{freq(information, d_2) + \frac{\mu.freq(information, C)}{|C|}}{\mu + |d_2|} \times \frac{freq(retrieval, d_2) + \frac{\mu.freq(retrieval, C)}{|C|}}{\mu + |d_2|}$$

b)
$$MLE_{d2,q} = \frac{0 + \frac{4 \times 2}{18}}{4 + 7} \times \frac{3 + \frac{4 \times 5}{18}}{4 + 7} = \frac{0.444}{11} \times \frac{4.111}{11} = 0.0404 \times 0.3737 = 0.0151$$

Q3 Only for Section BDS-6A and BDS-6B

Q 3)(a) Compute page rank of all nodes of following graph. Damping factor d = 0.9. Perform only two iterations of page rank algorithm. [4 Marks]

Q3)(b) Suppose that P, Q, and R are different web pages. Explain how it can happen that adding a link from P to Q can raise the PageRank of R. Explain how it can happen that adding a link from P to Q can lower the PageRank of R. In both cases, you should show a specific graph where this happens, though you need not work out the actual numerical values. [2 Marks]

Q3 Only for Section BCS-8A and BCS-8B

Q3) (a) [6 Marks]

		Second Word (w ₂)				
		baa	black	sheep	wolf	
First Word (w ₁)	baa	20	30	15	0	
	black	5	0	40	0	
	sheep	0	0	0	20	
	wolf	0	0	0	0	

- i. Using Witten-Bell, find the bigram w₁w₂ probability of all unseen starting with "baa"
- ii. Using Witten-Bell, find the bigram w₁w₂ probability of each unseen starting with "sheep"
- iii. Calculate P(baa|baa) with add-k smoothing where k=0.75.

		Second Word (w ₂)			Total	Seen	Unseen	
		baa	black	sheep	wolf	N(w1)	T(w1)	Z(w1)
Word (v	baa	20	30	15	0	65	3	1
	black	5	0	40	0	45	2	2
	sheep	0	0	0	20	20	1	3
First	wolf	0	0	0	0	0	0	4

$$i.\frac{T(baa)}{N(baa) + T(baa)} = \frac{3}{65 + 3} = 0.0441$$

$$ii.\frac{T(sheep)}{N(sheep) + T(sheep)} \times \frac{1}{z(sheep)} = \frac{1}{20 + 1} \times \frac{1}{3} = 0.01587$$

$$iii.p(baa|baa) = \frac{C(baa|baa) + K}{C(baa) + K|V|} = \frac{20 + 0.75}{65 + (0.75 \times 4)} = 0.3051$$