Komplexität

Das Problem k-COL ist wie folgt definiert:

Gegeben: Ein ungerichteter Graph G = (V, E).

Frage: Kann man jedem Knoten v in V eine Zahl $z(v) \in \{1, ..., k\}$ zuordnen, so dass für alle Kanten $(u_1, u_2) \in E$ gilt: $z(u_1) \neq z(u_2)$?

Zeigen Sie, dass man 3-COL in polynomieller Zeit auf 4-COL reduzieren kann. Beschreiben Sie dazu die Reduktion und zeigen Sie anschließend ihre Korrektheit

```
Zu Zeigen: 3-COL \leq_P 4-COL
```

also 4-COL ist mindestens so schwer wie 3-COL Eingabeinstanz von 3-COL durch eine Funktion in eine Eingabeinstanz von 4-COL umbauen so, dass jede JA- bzw. NEIN-Instanz von 3-COL eine JA- bzw. NEIN-Instanz von 4-COL ist.

Funktion ergänzt einen beliebigen gegebenen Graphen um einen weiteren Knoten, der mit allen Knoten des ursprünglichen Graphen durch eine Kante verbunden ist.

total ja

in Polynomialzeit berechenbar ja (Begründung: z. B. Adjazenzmatrix \rightarrow neue Spalte)

Korrektheit: ja

Färbe den "neuen" Knoten mit einer Farbe. Da er mit allen anderen Knoten verbunden ist, bleiben für die übrigen Knoten nur drei Farben.