

La classification

Introduction:

• Classification : méthode d'analyse de données

 Objectif: Obtenir une représentation schématique simple d'un tableau de données complexe à partir d'une typologie (segmentation), c'est à dire d'une partition des n individus dans des classes, définies par l'observations de p variables.

Introduction:

- Méthode : Classifier, c'est regrouper entre eux des objets similaires selon certains critères. Les diverses techniques de classification visent toutes à répartir *n individus, caractérisés par p variables X1, X2, ..., Xp en un* certain nombre m de sous-groupes aussi homogènes que possible, chaque groupe étant bien différencié des autres.
- Deux grandes techniques de classification :
 - Le partitionnement
 - La classification hiérarchique

Introduction:

- Présentation à partir d'un jeu de données
 - 22 régions de France métropolitaine
 - 5 variables (voir si on garde les 10)
 - Densité
 - Criminalité
 - Espérance de vie
 - Pauvreté
 - Enseignement

Plan

- CAH
 - Présentation de la méthode
 - Importance du choix de la distance
 - Exemple sur données réelles
 - Limites de la méthode
- Méthode de partitionnement
 - Centres Mobiles
 - Variantes (Présentation et exemple)
 - Limites des méthodes
- Classification mixte
 - Principe de la méthode
 - Exemple
- Validation et sélection de la classification optimale

A) présentation de l'algorithme

- Objectif: obtenir une hiérarchie, c'est-à-dire une collection de groupes d'observations.
- Ne pas confondre hiérarchie et typologie. Une typologie est la partition de l'ensemble des données.
- Plusieurs typologies peuvent donc être définies à partir d'une seule hiérarchie.

Hiérarchie

- 1ère phase: Initialisation de l'algorithme.
 - Les classes initiales = n singletons individus.
 - Calcul de la matrice des distances des individus 2 à 2
- 2^{ème} phase : Itération des étapes suivantes.
 - Regrouper les 2 éléments (individus ou groupes) les plus proches au sens d'un critère chosi.
 - Mise à jour du tableau des distances en remplaçant les deux éléments regroupés par le nouveau et en recalculant sa distance avec les autres classes.
- Fin de l'itération : agrégation de tous les individus en une seule classe.

- Réflexions pré-algorithme
 - Nécessité de définir une distance entre les individus
 - Définir un critère de regroupement des individus à minimiser aussi appelé stratégie d'agrégation.
 - Stratégie pour définir la meilleure typologie finale.

- 4 grandes étapes
 - Préparation des données
 - Choix de l'indice de dissimilarité entre les individus
 - Choix de l'indice d'agrégation
 - Choix de la partition finale

- Choix de l'indice de dissimilarité entre les individus
 - Le choix de la mesure de distance entre individus dépend des données étudiées et des objectifs.
 - Exemples :
 - ❖ <u>Distance Euclidienne</u>: le type de distance le plus couramment utilisé. Il s'agit d'une distance géométrique dans un espace multidimensionnel. <u>distance(x,y) = { $\sum_i (x_i y_i)^2$ }</u>
 - ❖ <u>Distance Euclidienne au carré</u>: Permet de "sur-pondérer" les objets atypiques (éloignés), en élevant la distance euclidienne au carré. <u>distance(x,y) = $\sum_i (x_i y_i)^2$ </u>
 - ❖ <u>Distance du City-block (Manhattan)</u>: cette distance est simplement la somme des différences entre les dimension. <u>distance(x,y) = $\sum_i |x_i y_i|$ </u>

A) présentation de l'algorithme

- Choix de l'indice d'agrégation
 - On regroupe les éléments en minimisant l'indice d'agrégation
 - Plusieurs méthodes encore, mais la méthode la plus connu : Méthode de ward
 - autres stratégies :
 - stratégie du saut minimum ou single linkage :

On regroupe les 2 éléments présentant la plus <u>petite</u> distance entre éléments des deux classes.

stratégie du saut maximum ou du diamètre ou complete linkage :

On regroupe les 2 éléments présentant la plus grande distance entre éléments des deux classes.

- Méthode de Ward
 - Objectif : gain minimum d'inertie intra-classe à chaque agrégation
 - perte d'inertie interclasse due à cette agrégation
- Calcul : utilise une analyse de la variance approchée afin d'évaluer les distances entre classes.
 - Minimisation de la Somme des Carrés (SC) de tous les couples hypothétiques de classes : agrégation
 - Les indices d'agrégation sont recalculés l'aide de la règle suivante :
 si une classe M est obtenue en regroupant les classes K et L, sa distance à la classe J est donnée par la distance entre les barycentres de la classe M et de J.

- Choix de la partition finale
 - On défini un ensemble de parties, ou classes de l'ensemble des individus tel que :

- Choix de la partition finale
 - Graphique de l'indice de niveau
 - l'utilisateur doit repérer des sauts extrêmement importants dans les valeurs, en analysant l'histogramme des indices de niveau
 - Si ces sauts concernent les k derniers nœuds de l'arbre, alors un découpage en (k+1) classes sera pertinent.
 - ⇔ La hauteur d'une branche est proportionnelle à la distance entre 2 classes
 - On coupe au niveau d'une longue branche
 - ❖ ⇔ coupé avant une forte perte d'inertie dans le cas de la méthode de Ward

B) Importance du choix des distances

Calcul de la 1^{ère} matrice de distance

Distance Fuclidienne

Région	Densité	criminalité
Alsace	0,41	-0,45
Aquitaine	-0,34	-0,07

Distance de Manhattan

Distance Alsace - Aquitaine

$$\sqrt{(0.41 - (-0.34))^2 + (-0.45 - (-0.07))^2} = 0.84$$

Distance Alsace - Aquitaine

$$|0,41 - (-0,34)| + |-0,45 - (-0,07)| = 1,13$$

B) Importance du choix des distances

- Calcul de la 1^{ère} matrice de distance
 - 2 matrices des distance totalement différentes

	Alsace	Aquitaine	Auvergne	Basse-Normandie	Bourgogne
Alsace	0	=	*		250
Aquitaine	1,12	0	2	_	- 14
Auvergne	1,48	1,11	0	æ	
Basse-Normandie	1,03	0,72	0,44	0	-
Bourgogne	1,25	0,88	0,23	0,21	0

Distance Euclidienne

Distance Manhattan

	Alsace	Aquitaine	Auvergne	Basse-Normandie	Bourgogne
Alsace	0	-	-	-	•
Aquitaine	0,84	0	-	-	-
Auvergne	1,07	0,99	0	-	-
Basse-Normandie	0,79	0,7	0,32	0	-
Bourgogne	0,96	0,76	0,22	0,17	0

B) Importance du choix des distances

Obtention des hiérarchies

Hiérarchie - distance euclidienne

Fait avec densite espérance de vie enseigment criminalite pauvrete

B) Importance du choix des distances

Choix du nombres d'axes

C) application sur données réelles

C) application sur données réelles

- 1 Alsace
- 2 Aquitaine
- 3 Auvergne
- 4 Basse Normandie
- 5 Bourgogne
- 6 Bretagne
- 7 Centre
- 8 Champagne-Ardenne
- 9 Corse
- 10 Franche Comte
- 11 Haute Normandie
- 12 Ile de France
- 13 Languedoc Roussillon
- 14 Limousin
- 15 Lorraine
- 16 Midi Pyrenees
- 17 Nord Pas de Calais
- 18 Pays de la Loire
- 19 Picardie
- 20 Poitou Charentes
- 21 Provence Alpes Cote d'Azur
- 22 Rhone Alpes

D) Limites

- Résultats différents en fonction de la paramétrisation
 - Distances différentes
 - Choix d'agrégation différents
 - Lourdeur des calculs dès qu'on a un nombre de données important

 les regroupements sont définitifs, ce qui ne permet pas d'optimisation postérieure au clustering

- La structure classificatoire recherchée est la partition.
- Objectif:

Trouver, parmi l'ensemble fini de toutes les partitions possibles, une partition qui optimise un critère défini a priori.

• Problème :

En pratique approche irréalisable, car pour N objets et K classes on a: $k^N/K!$ partition possibles.

- Logique des methodes de partitionnement
 - Une approche typique des methodes de partionnement est l'utilisation de methodes iteratives.
 - Produir une classification par partionnement revient à produir plusieurs classes non vide (leur nombre étant souvent défine à l'avance).

- Critère d'optimisation
 - l'algorithme a pour objectif de minimiser ce critère U defini a priori.

A) Centres Mobiles

- Critère d'optimisation
 - Différentes approches :
 - * Approche géométrique : une distance.
 - * Approche probabiliste : une vraissemblance.
 - * Approche prototype : une fonction D quelconque qui depend du type de données dont on dispose.
- Approche retenu ici : approche géométrique

$$U = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} d^2(\mathbf{x}, \mathbf{m}_i) = \sum_{i=1}^{K} \sum_{\mathbf{x} \in C_i} \|\mathbf{x} - \mathbf{m}_i\|^2$$

Mesure l'homogénéité de chaque classe.

A) Centres Mobiles

Algorithme

■ <u>Etape 1:</u>

On choisit aléatoirement k individus comme centres initiaux des classes.

Etape 2 :

On attribue chaque objet à la classe la plus proche, ce qui définit k classes

Etape 3 :

Connaissant les membres de chaque classe on recalcule les centres d'inertie de chaque classe.

Etape 4 :

On redistribue les objets dans la classe qui leur est la plus proche en tenant des nouveaux centre de classe calculés à l'étape précédente.

Etape 5 :

On retourne à l'étape 3 jusqu'à ce qu'il y ai convergence, c'est-à-dire jusqu'à ce qu'il n'y ai plus aucun individu à changer de classe.

B) Variantes

K-Means

Principe

le barycentre de chaque groupe est recalculé à chaque nouvel individu introduit dans le groupe, au lieu d'attendre l'affectation de tous les individus.

Avantage

la convergence est parfois possible en une seule itération => plus grande rapidité.

B) Variantes

K-Means

Exemple

4 types de medicaments avec chacun deux modalités La concentration et l'efficacité, on veut créer deux classes => K=2.

Médicament	Concentration	Efficacité
A	1	1
В	2	1
С	4	3
D	5	4

B) Variantes

K-Means

Exemple

<u>Etape 1 : On désigne aléatoirement A et B comme</u> centre de classes.

$$C1 = A$$
 $C2 = B$

<u>Etape 2</u>: On assigne chaque point à une des classes.

On commence par D:

$$d(D,c_1) = \sqrt{(5-1)^2 + (4-1)^2} = 5$$
$$d(D,c_2) = \sqrt{(5-2)^2 + (4-1)^2} = 4.24$$

B) Variantes

K-Means

Exemple

<u>Etape 3 : Calcul les nouveaux centres de classe</u> compte tenu de la nouvelle classification.

$$c_1 = (1, 1)$$

$$c_2 = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right)$$

$$= (11/3, 8/3)$$

$$= (3.67, 2.67)$$

$$\Rightarrow$$
 C1 = (1, 1) et C2 = (3.67, 2.67)

B) Variantes

K-Means

Exemple

Nous voilà à nouveau à l'étape 1. On commence la deuxième itération de l'algorithme.

On réasigne chaque médicament à une classe en calculant la distance les séparant des nouveaux centres de classe.

On repart à l'étape 2.

B) Variantes

K-Means

Exemple

On répète les étapes jusqu'à convergence.

Connaissant les membres de chaque classe, on recalcule leur centres de classe pour chacun de leur nouveau membre.

$$c_1 = \left(\frac{1+2}{2}, \frac{1+1}{2}\right) = (1\frac{1}{2}, 1)$$

$$c_2 = \left(\frac{4+5}{2}, \frac{3+4}{2}\right) = (4\frac{1}{2}, 3\frac{1}{2})$$

B) Variantes

K-Means

Exemple

Le résultat final est donc:

- ightharpoonup Classe1 = {A , B} avec comme centre de classe c1 = (1.5 , 1).
- ightharpoonup Classe2 = {C, D} avec comme centre de classe c2 = (4.5, 3.5).

B) Variantes

K-Means

Application à nos données

A partir des observations de la classification Ascendante Hiérarchique, on fixe le nombre de classe K = 4.

Les centres d'inertie initiaux tirés aux hazard sont :

Cluster	Densite	esperance_vie	enseigment	criminalite	pauvrete
1	0.064956164	0.704186851	-1.838586521	2.454107345	1.864566842
2	4.320667747	0.160604019	0.014522800	-1.274488888	-0.043362020
3	-0.229485969	-2.557310142	-0.304978807	0.870286825	0.338223753
4	-0.311674100	0.024708311	1.931532443	-0.765757453	-0.806533564

B) Variantes

K-Means

Résultat après 5 itérations

0002

- 1 Alsace
- 2 Aquitaine
- 3 Auvergne
- 4 Basse Normandie
- 5 Bourgogne
- 6 Bretagne
- 7 Centre
- 8 Champagne-Ardenne
- 9 Corse
- 10 Franche Comte
- 11 Haute_Normandie
- 12 Ile de France
- 13 Languedoc Roussillon
- 14 Limousin
- 15 Lorraine
- 16 Midi Pyrenees
- 17 Nord Pas de Calais
- 18 Pays de la Loire
- 19 Picardie
- 20 Poitou Charentes
- 21 Provence Alpes Cote d'Azur
- 22 Rhone Alpes

B) Variantes

Nuée dynamique

Principe

chaque classe n'est plus représentée par son barycentre (éventuellement extérieur a la population), mais par un sous-ensemble de la classe, appelé noyau.

Le noyau est formés des formes fortes. C'est un petit groupe d'observation qu'on retrouve systématiquement dans chaque classe quelque soit le centres d'inertie initiaux.

Avantage

s'il est bien compose (des individus les plus centraux, par exemple), sera plus représentatif de la classe que son barycentre.

C) Limites des méthodes

Obliger de fixer a priori le nombre de classe.

Dépendance au choix des centres ou noyaux initiaux.

- Manque de flexibilité
 - Bien adaptée à des données numériques, mais moins flexible que la classification Ascendante Hiérarchique pour des données plus "originales".

Classification mixte

A) présentation

Objectifs:

 Combiner les avantages des 2 types de méthodes vues et permettre d'en annuler les inconvénients

Principe :

- Réaliseation d'une CAH
 - définie le nombres de classes optimales
 - Donne les barycentres des classes
- On lance les centres mobiles à partir des barycentres des K classes
 - Obtention d'un optimum local

Avantage :

- On ne part de centres de classes définis au hasard
- On autorise quelques réaffectations individuelles

Classification mixte

B) application

A) Validation

- Mesure de la qualité
 - R² :proportion de la variance expliquée par les classes

$$R^2 = \frac{I_r}{I} \qquad 0 < R^2 < 1$$

Pseudo F = mesure la séparation entre toutes les classes

$$F = \frac{R^2/k - 1}{1 - R^2/n - k}$$
 n=observations k=classes

A) Validation

- Mesure de la qualité
 - Cubic clustering criterion (CCC)
 - H0 = Les données sont issues d'une distribution uniforme (pas de classes)

$$CCC = ln \left[\frac{1 - E(R^2)}{1 - R^2} \right] * K$$
 K est une constante (voir Sarle (1983))

CCC > 2: bonne classification

0< CCC<2 : classification peut être OK mais à vérifier

CCC< 0 : présence d'outliers gênant (surtout si CCC < -30)

- On trace CCC versus le nombre de classes. Un creux pour k classes suivi
- d'un pic pour k+1 classes indique une bonne classification en k+1 classes
- (surtout si on a une croissance ou décroissance douce à partir de k+2 classes

A) Validation

- Mesure de la qualité
 - Cubic clustering criterion (CCC)
- On trace le CCC en fonction du nombre de classes.

Un creux pour k classes suivi d'un pic pour k+1 classes indique une bonne classification en k+1 classes (surtout si on a une croissance ou décroissance douce à partir de k+2 classes)

B) Sélection sur les exemples

B) Sélection sur les exemples

- On compare nos modèle avec 4 classes.
- Comparaison des statistiques

	Pseudo-F	CCC
K-Means	13,6	5,3
Mixte	14,71	5,97

Mixte est meilleure => pseudo-F le plus grand=> CCC plus grand

Conclusion

- Multitude de technique de classification
 - Attention au distance
 - Bien réfléchir à la démarche
 - Ne pas oublier de valider sa classification

- Ouverture
 - Technique de mélange
 - Ouverture de la classification au données multimédias (classification de texts par exemple)