1 Kernel Machines

Consider a linear model

$$Y_i = x_i^T \beta^0 + \varepsilon_i, i = 1, \dots, n, x_i \in \mathbb{R}^p$$
 fixed

where $\mathbb{E}\varepsilon = 0$, $Var(\varepsilon) = \sigma^2 I_n$. We have

$$\hat{\beta}^{\text{ols}} = \operatorname{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (Y_i - x_i^T \beta)^2$$

$$= \operatorname{argmin}_{\beta \in \mathbb{R}^p} ||Y - X\beta||^2$$

$$= (X^T X)^{-1} X^T Y.$$

Classical theory:

• $\hat{\beta}^{\text{ols}}$ unbiased,

$$Var(\hat{\beta}^{ols}) = \sigma^2(X^T X)^{-1} = i^{-1}(\beta^0)$$

Where i is the Fisher information.

• Cramér-Rao lower bound: if an estimator $\tilde{\beta}$ is unbiased then

$$\operatorname{Var}(\tilde{\beta}) - i^{-1}(\beta^0) \underset{\text{positive semi-definite}}{\geq} 0.$$

• If $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$, then $\hat{\beta}^{\text{ols}}$ is the MLE of β^0 . Furthermore $\sqrt{n}(\hat{\beta}^{\text{ols}} - \beta^0) \sim \mathcal{N}(0, n\sigma^2(X^TX)^{-1})$. From this we can derive confidence intervals, hypothesis test, etc.

In a general model with parameter $\theta \in \mathbb{R}^p$, n independent observations, under regularity, we have asymptotic normality, i.e $\sqrt{n}(\hat{\theta}^{\text{MLE}} - \theta^0) \xrightarrow{d} \mathcal{N}(0, I^{-1}(\theta^0))$ (with p fixed).

Question: what happens when p is large relative to n?

- If p > n, $\hat{\beta}^{\text{ols}}$ is not even defined.
- If $p \approx n$, $Var(\hat{\beta}^{ols})$ explodes since X^TX is near singular.
- More generally, if $p, n \to \infty$ then asymptotic normality can break down.

Recall the bias-variance decomposition:

$$\operatorname{mse}(\tilde{\beta}) = \mathbb{E}_{\beta^{0},\sigma^{2}} \left[(\tilde{\beta} - \beta^{0})(\tilde{\beta} - \beta^{0}) \right]$$
$$= \mathbb{E}_{\beta^{0},\sigma^{2}} \left\| \tilde{\beta} - \mathbb{E}\tilde{\beta} + \mathbb{E}\tilde{\beta} - \beta^{0} \right\|$$
$$= \operatorname{Var}(\tilde{\beta}) + \left\| \mathbb{E}(\tilde{\beta}) - \beta^{0} \right\|^{2}.$$

We introduce bias to reduce the variance.

1.1 Ridge regression

Define

$$(\hat{\mu}_{\lambda}^{R}, \hat{\beta}_{\lambda}^{R}) = \operatorname{argmin}_{(\mu,\beta) \in \mathbb{R} \times \mathbb{R}^{p}} \left[||Y - \mu \mathbf{1} - X\beta||^{2} + \underbrace{\lambda ||\beta||^{2}}_{\text{penalty for large } \beta} \right].$$

 λ is called a *regularisation* or *tuning* parameter. We shall assume the columns of X have been standardised (mean 0, variance 1).

After standardisation, we can show that

$$\hat{\mu}_{\lambda}^{R} = \frac{1}{n} \sum_{i=1}^{n} Y_{i} = \bar{Y}.$$

Hence, if we replace Y with $Y - \mathbf{1}\bar{Y}$ we can write

$$\hat{\beta}_{\lambda}^{R} = \operatorname{argmin}_{\beta \in \mathbb{R}^{p}} \left[\|Y - X\beta\|^{2} + \lambda \|\beta\|^{2} \right]$$

$$= \underbrace{(X^{T}X + \lambda I_{p})^{-1}}_{\text{always invertible}} X^{T}Y.$$

Theorem 1.1. For $\lambda > 0$ sufficiently small,

$$\mathbb{E}\|\hat{\beta}^{ols} - \beta^{0}\|^{2} - \mathbb{E}\|\hat{\beta}_{\lambda}^{R} - \beta^{0}\|^{2} > 0. \tag{*}$$

Proof. We have

$$Y = X\beta^0 + \varepsilon.$$

The bias of $\hat{\beta}_{\lambda}^{R}$ is

$$\mathbb{E}(\hat{\beta}_{\lambda}^{R} - \beta^{0}) = (X^{T}X + \lambda I)^{-1}X^{T}X\beta^{0} - \beta^{0}$$
$$= (X^{T}X + \lambda I)^{-1}(X^{T}X + \lambda I - \lambda I)\beta^{0} - \beta^{0}$$
$$= -\lambda(X^{T}X + \lambda I)^{-1}\beta^{0}.$$

While we have variance

$$\begin{aligned} \operatorname{Var}(\hat{\beta}_{\lambda}^{R}) &= \mathbb{E} \left\| (X^{T}X + \lambda I)^{-1} X^{T} \varepsilon \right\|^{2} \\ &= \sigma^{2} \left[(X^{T}X + \lambda I)^{-1} X^{T} X (X^{T}X + \lambda I)^{-1} \right]. \end{aligned}$$

Then (*) becomes

$$\begin{split} \mathbb{E} \| \hat{\beta}^{\text{ols}} - \beta^{0} \|^{2} - \mathbb{E} \| \hat{\beta}_{\lambda}^{R} - \beta^{0} \|^{2} \\ &= \sigma^{2} (X^{T}X)^{-1} - \sigma^{2} (X^{T}X + \lambda I) X^{T}X (X^{T}X + \lambda I)^{-1} \\ &- \lambda^{2} (X^{T}X + \lambda I)^{-1} \beta^{0} (\beta^{0})^{T} (X^{T}X + \lambda I)^{-1} \\ &= \vdots \\ &= \lambda (X^{T}X + \lambda I)^{-1} \left[\sigma^{2} \left\{ 2I_{p} + \lambda (X^{T}X)^{-1} \right\} - \lambda \beta^{0} (\beta^{0})^{T} \right] (X^{T}X + \lambda I)^{-1}. \end{split}$$

We want to show this is positive definite. This is equivalent to

$$\sigma^{2} \left[2I + \lambda (X^{T}X)^{-1} \right] - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2}I - \lambda \beta^{0} (\beta^{0})^{T} > 0$$

$$\iff 2\sigma^{2} ||z||^{2} - \lambda (z^{T}\beta^{0})^{2} > 0 \quad \forall z \in \mathbb{R}^{p}.$$

$$(\dagger)$$

We also have $(z^T\beta^0)^2 \le ||z||^2||\beta^0||^2$ by Cauchy-Schwartz. Hence (†) holds for all $\lambda < \frac{2\sigma^2}{||\beta^0||^2}$.