

Introduction

TIAGo sensors

- TIAGo is equipped with the following sensors:
 - Mobile base:
 - Laser range-finder
 - Sonars
 - IMU
 - O Head:
 - RGB-D camera
 - Stereo microphones
 - o Wrist:
 - Force/Torque sensor

Laser range-finder

IIAGO I.S

Laser range-finder (I)

Three lasers are supported

Laser model	Specifications
Hokuyo URG-04LX-UG1	 Range: 0.06 - 5.5 m Usable field of view: 180° Step angle: 0.36° Scan frequency: 10 Hz
SICK TIM561-2050101	 Range: 0.05 - 10 m Usable field of view: 180° Step angle: 0.33° Scan frequency: 15 Hz
SICK TIM571-2050101	 Range: 0.05 - 25 m Usable field of view: 180° Step angle: 0.33° Scan frequency: 15 Hz

Laser range-finder (II)

- The laser scans are published as sensor_msgs/LaserScan in the /scan topic
- Checking the frequency of the topic:

```
rostopic hz /scan
subscribed to [/scan]
average rate: 14.992
min: 0.064s max: 0.069s std dev: 0.00105s window: 15
```

Inspecting the topic message (excluding the laser scan readings):

rostopic echo -n 1 /scan --noarr

```
header:
seq: 296524 stamp:
secs: 1461769323
nsecs: 534952738
frame_id: /base_laser_link
angle_min: -1.58824944496
angle_max: 1.57079946995
angle_increment: 0.0174532923847
time_increment: 0.000185185184819
scan_time: 0.0666666701436
range_min: 0.0500000007451
range_max: 10.0
```


ILAGO I.S

Laser range-finder graphical visualization

Run rviz as follows:

rosrun rviz rviz -d `rospack find tiago_bringup`/config/tiago.rviz

Sonars

Sonars

TIAGo is equipped with 3 rear ultrasonic sensors Devantech SRF05

Frequency	40 kHz	
Measuring distance	0.03 - 4 m	

The readings are published in /sonar_base topic:

rostopic pub /sonar_base

```
header:
  seq: 83595
  stamp:
    secs: 1478271485
    nsecs: 51990331
  frame id: base sonar 01 link
radiation type: 0
field_of_view: 0.5
min_range: 0.019999999553
max range: 2.0
range: 1.38999998569
header:
  seq: 83596
  stamp:
    secs: 1478271485
    nsecs: 51993508
  frame id: base sonar 02 link
radiation type: 0
field of view: 0.5
min_range: 0.019999999553
max range: 2.0
range: 3.5
header:
  seq: 83597
  stamp:
    secs: 1478271485
    nsecs: 51994629
  frame id: base sonar 03 link
radiation type: 0
field of view: 0.5
min_range: 0.019999999553
max range: 2.0
range: 2.74000000954
```


Inertial Measurement Unit (IMU)

IIAGO I.S

Inertial Measurement Unit (I)

TIAGo is equipped with a InvenSense 6-axis MPU-6050 IMU

Gyroscope features	Axis	X, Y, Z	
	Angular rate	± 250° / sec	
Accelerometer features	Axis	X, Y, Z	
	Scale range	± 2 g	

Inertial Measurement Unit (II)

IMU measurements are published in /base_imu topic:

export ROS MASTER URI=http://tiago-0c:11311

rostopic echo /base_imu

```
header:
 seq: 15612
 stamp:
  secs: 1478270257
  nsecs: 444757000
 frame_id: base_imu_link
orientation:
 x: 0.659695805982
v: -0.751490084454
 z: 0.00797236524522
w: 0.000733870081604
angular velocity:
x: 0.0
y: 0.0
 z: 0.0
linear acceleration:
 x: 0.0
 y: 0.0
 z: 0.0
```


RGB-D camera

RGB-D camera

TIAGo is equipped with an Orbbec Astra RGB-D camera

Color stream	Resolution	320x240	640x480	1280x960
	Frame rate	30 fps	30 fps	10 fps
Donth stroom	Resolution	320x240	640x480	160x120
Depth stream	Frame rate	30 fps	30 fps	30 fps
Depth sensor range	0.6 - 8 m			
Field of view	60° H, 49.5° V, 73° D			
Data interface	USB 2.0			
Software	OpenNI 2 compatible			

RGB image visualization (I)

Visualization from command line (from a development computer):

export ROS_MASTER=http://tiago-0c:11311

rosrun image_view image_view image:=/xtion/rgb/image_raw _image_transport:=compressed

Visualization using rqt GUI:

rosrun rqt_image_view rqt_image_view

select the image topic to visualize
It is recommended to select **compressed**image transport to reduce bandwidth and
latency

TIAGO T.S

RGB image visualization (II)

The RGB image can be also visualized in rviz

export ROS MASTER=http://tiago-0c:11311

rosrun rviz rviz -d `rospack find tiago_bringup`/config/tiago.rviz

Image subscription

ROS provides tutorials on how to write image subscribers:

C++ simple image subscriber

Running simple image subscriber with a different transport

Image transports provide different ways to transmit images in ROS

Image transport	Description
raw	images are not compressed. Useful when the subscriber runs in the same computer than the publisher
compressed	images are compressed using jpeg or png. Useful when the subscriber is running in a different computer than the publisher
theora	useful to stream video

Point cloud processing

ROS and PCL provide tutorials on how to process point clouds:

ROS pcl tutorials

Example of point cloud downsampling to reduce computation cost

Stereo microphones

Stereo microphones (I)

• TIAGo is equipped with the following stereo microphones:

Microphones	Specifications
USB-SA Array Microphone	 Recommended Operating Distance: 30.5 - 122 cm Acoustic Signal Reduction at 1 KHz Outside of 30° Beamform: 15-30 dB

Stereo microphones (II)

Two sound cards are detected in TIAGo:

```
ssh pal@tiago-Oc

arecord -|

**** List of CAPTURE Hardware Devices ****

card 0: PAL_INTEL [HDA Intel PCH], device 0: ALC887-VD Analog [ALC887-VD Analog]

Subdevices: 1/1

Subdevice #0: subdevice #0

card 1: PAL_ANDREA [AndreaMA], device 0: USB Audio [USB Audio]

Subdevices: 1/1

Subdevice #0: subdevice #0
```

In order to test the Andrea stereo microphones:

```
ssh pal@tiago-0c
arecord -f cd -d 10 -D hw:1,0 micro.wav
```

10 seconds of audio will be recorded. In order to playback the way file:

aplay micro.wav

Force/Torque sensor

Force torque sensor

- The <u>ATI 6-axis Mini45</u> sensor is integrated
- Check sensor reading (msg type geometry_msgs/WrenchStamped):

rostopic echo /wrist_ft

header:
seq: 445
stamp:
secs: 0
nsecs: 0
frame_id: arm_tool_link
wrench:
force:
x: -0.05
y: 0.05
z: 0.0
torque:
x: 0.2
y: 0.1
z: 0.0

 To visualize the sensor reading in Rviz you must add a WrenchStamped visualizer

Force torque sensor

- The <u>ATI 6-axis Mini45</u> sensor is integrated
- Check sensor reading (msg type geometry_msgs/WrenchStamped):

rostopic echo /wrist_ft

header:
seq: 445
stamp:
secs: 0
nsecs: 0
frame_id: arm_tool_link
wrench:
force:
x: -0.05
y: 0.05
z: 0.0
torque:
x: 0.2
y: 0.1
z: 0.0

 To visualize the sensor reading in Rviz you must add a WrenchStamped visualizer

Questions?

