

RayMVSNet++: Learning Ray-based 1D Implicit Fields for Accurate Multi-View Stereo (2023 TPAMI 2022 CVPR)

2024.05.30

Contribution

- 1. A novel formulation of deep MVS as learning ray-based 1D implicit fields.
- 2. An epipolar transformer designed to learn cross-view feature correlation with attention mechanism.
- 3. A multi-task learning approach to sequential modeling and prediction of 1D implicit fields based on LSTM.
- 4. A local-frustum-based context aggregation that extends the receptive field of the ray-based model, leading to more accurate and robust predictions.

每个子问题都没有得到完美解决,并且给下一步增加了噪音,增加了管道整体工作所需的复杂性和工程工作量。

在这方面,每个子问题之间缺乏沟通就很能说明问题:如果它们互相帮助似乎更合理,即密集重建自然应该受益于为恢复相机姿势而构建的稀疏场景,反之亦然。

最重要的是, 该流程中的关键步骤很脆弱

DIG **Method - Epipolar Transformer** $\mathbf{X} = \operatorname{Concat}(\mathbf{F}_{1,p}^I, ..., \mathbf{F}_{N,p}^I)$ $Q = XW^Q, K = XW^K, V = XW^V$ **Epipolar transformer** 2D feature $\mathbf{F}_p = \operatorname{Concat}(\mathbf{F}_{\mu,p}^A, \mathbf{F}_{\sigma,p}^A, \mathbf{F}_{1,p}^A, \mathbf{F}_p^V).$ (3) AddNorm AddNorm Image feature where ${\bf F}_{\mu,p}^A$ and ${\bf F}_{\sigma,p}^A$ are the mean and variation of the elements in ${\bf F}_p^A$ [24], [74]. ${\bf F}_{1,p}^A$ is the attention-aware feature at 3D point pin the reference image. outputs_stage = epipolar_feature(self, features_stage, proj_matrices_stage, patch_idx, depth_samps=depth_range_samples, Self-attention Self-attention Self-att depth_samps_2d=depth_range_samples_2d, cost reg=self.coarse.forward epipolar, Image feature is_training=self.training) feature_2d = outputs_stage['feature_2d'] feature_3d = outputs_stage['feature_3d'] feature_3d=feature_3d.unsqueeze(3).repeat(1,1,1,2,1,1).view(1,1,-1,cur_h//2,cur_w//2) 3D U-Net set=feature_2d.reshape(1,feature_2d.shape[1],8,-1).squeeze(0).permute(2,0,1) Image feature feature_new=self.tr1(set[:,:,:], set[:,:,:]) extraction 3D cost volume convolution depth map feature_new=self.tr2(feature_new[:,:,:], feature_new[:,:,:]) feature_new=self.tr3(feature_new[:,:,:], feature_new[:,:,:]) feature new=self.tr4(feature new[:.::], feature new[:.::])

Loss

$$\mathcal{L} = w_s \mathcal{L}_s + w_l \mathcal{L}_l + w_{sl} \mathcal{L}_{sl},$$
0.1, 0.8, 0.1,

$$\mathcal{L}_s = \sum_{k=1}^K L_1(s_k, \hat{s_k}),$$

$$\mathcal{L}_l = L_1(l, \hat{l}),$$

where $\hat{s_k}$ and \hat{l} are the ground-truth, $L_1(\cdot)$ denotes the L1 loss function. \mathcal{L}_{sl} is a relational loss that penalizes the inconsistency between the predicted SDFs and the predicted zero-crossing position:

$$\mathcal{L}_{sl} = \begin{cases} 1, & s_l^a \times s_l^b > 0\\ 0, & s_l^a \times s_l^b \le 0, \end{cases}$$
 (14)

where s_l^a and s_l^b are the predicted SDF of the closest two sampled points around the predicted zero-crossing position on the ray. w_s , w_l , w_{sl} are the pre-defined weights.

Evaluation - DTU

- Accuracy is measured as the distance from the MVS reconstruction to the structured light reference, encapsulating the quality of the reconstructed MVS points.
- Completeness is measured as the distance from the reference to the MVS reconstruction, encapsulating how much of the surface is captured by the MVS reconstruction.

Evaluation - Tanks and Temples

Measures. Let $\mathcal G$ be the ground truth and $\mathcal R$ a reconstructed point set being evaluated. For a reconstructed point $\mathbf r \in \mathcal R$, its distance to the ground truth is defined as

$$e_{\mathbf{r}\to\mathcal{G}} = \min_{\mathbf{g}\in\mathcal{G}} \|\mathbf{r} - \mathbf{g}\|.$$
 (3)

These distances can be aggregated to define the precision of the reconstruction $\mathcal R$ for any distance threshold d

$$P(d) = \frac{100}{|\mathcal{R}|} \sum_{\mathbf{r} \in \mathcal{R}} \left[e_{\mathbf{r} \to \mathcal{G}} < d \right], \tag{4}$$

where $[\cdot]$ is the Iverson bracket. P(d) is defined to lie in the range [0,100] for convenience and can be interpreted as a percentage.

Similarly, for a ground-truth point $g \in \mathcal{G}$, its distance to the reconstruction is defined as

$$e_{\mathbf{g} \to \mathcal{R}} = \min_{\mathbf{r} \in \mathcal{R}} \|\mathbf{g} - \mathbf{r}\|.$$
 (5)

The recall of the reconstruction $\mathcal R$ for a distance threshold d is defined as

$$R(d) = \frac{100}{|\mathcal{G}|} \sum_{\mathbf{g} \in \mathcal{G}} \left[e_{\mathbf{g} \to \mathcal{R}} < d \right]. \tag{6}$$

Precision and recall can be combined in a summary measure, the F-score:

$$F(d) = \frac{2P(d)R(d)}{P(d) + R(d)}. (7)$$

at regular intervals. We sampled 150 frames for Family and Horse, 500 for Palace, and 300 for all other scenes.

		(m^2)	(m)	(mm)		(M)			(sec.)
Intermediate									
Family	S	5	2.1	3	4,395	5.5	640	f/3.2	1/160
Francis	S	81	15.2	5	7,830	19.3	Auto	f/7.1	1600
Horse	S	10	3.2	3	6,015	6.2	640	f/3.2	1/160
Lighthouse	D	108	11.1	10	8,322	8.2	200	f/4.0	Auto
M60	D	35	3.2	5	5,616	9.7	400	f/2.0	1/100
Panther	D	34	2.9	5	6,570	12.3	400	f/2.0	1/100
Playground	D	54	2.8	10	7,463	1.7	200	f/2.8	Auto
Train	S	35	5.6	5	12,630	21.7	Auto	f/5.6	1/1000
Advanced									
Auditorium	S	541	6.2	10	14,640	53.4	Auto	f/2.8	1/125
Ballroom	S	254	3.9	10	10,800	43.9	6000	f/3.2	1/160
Courtroom	S	206	7.8	10	7,049	43.4	1600	Auto	1/100
Museum	S	110	21.2	10	17,115	36.5	Auto	f/3.2	1/200
Palace	D	4,295	47.2	30	21,871	41.9	Auto	f/3.2	Auto
Temple	S	713	20.7	15	17,475	33.4	Auto	f/5.6	1/640

Experiments - DTU

Method	Accuracy	Completeness	Overall									
Gipuma [17]	0.283	0.873	0.578	1	MVSFormer++	0.2805	0.3090	0.2521	MVSFormer++: Revealing the Devil in Transformer's Details for Multi-View Stereo	0	Ð	2024
MVSNet [74]	0.396	0.527	0.462	2	MVSFormer	0.289	0.327	0.251	MVSFormer: Multi-View Stereo by Learning Robust	0	-9	2022
R-MVSNet [75]	0.383	0.452	0.417						image reatures and Temperature-based Depth			
CIDER [69]	0.417	0.437	0.427	3	ET-MVSNet	0.291	0.329	0.253	When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo	0	-	2023
P-MVSNet [37]	0.406	0.434	0.420									
Point-MVSNet [7]	0.342	0.411	0.376	4	GC-MVSNet	0.295	0.330	0.260	GC-MVSNet: Multi-View, Multi-Scale, Geometrically- Consistent Multi-View Stereo	0	Ð	2023
Fast-MVSNet [79]	0.336	0.403	0.370						GeoMVSNet: Learning Multi-View Stereo With			
Att-MVSNet [38]	0.383	0.329	0.356	5	GeoMVSNet	0.295	0.331	0.259	Geometry Perception	0	-10	2022
CasMVSNet [19]	0.325	0.385	0.355	6	RA-MVSNet	0.297	0.007	0.268	Multi-View Stereo Representation Revisit: Region-		Ð	2023
CVP-MVSNet [72]	0.296	0.406	0.351	0	KA-MVSNet	0.297	0.320	0.200	Aware MVSNet		핀	2023
PatchmatchNet [62]	0.427	0.277	0.352	7	GBi-Net	0.303	0.312	0.293	Generalized Binary Search Network for Highly-	0	-91	2021
UCS-Net [10]	0.338	0.349	0.344						Efficient Multi-View Stereo			
AACVP-MVSNet [78]	0.357	0.326	0.341	8	TransMVSNet	0.305	0.321	0.289	TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers	0	-9	2021
U-MVS [68]	0.354	0.353	0.354									
RayMVSNet	0.341	0.319	0.330	9	CDS-MVSNet	0.315	0.351	0.278	Curvature-guided dynamic scale networks for Multi- view Stereo	0	-9	2021
RayMVSNet++	0.344	0.312	0.328						Rethinking Depth Estimation for Multi-View Stereo: A			
				10	UniMVSNet	0.315	0.352	0.278	Unified Representation	0	Ð	2022

Experiments - Tanks and Temples

TABLE 3: Quantitative is better).

Method	Mean
MVSNet [74]	43.48
R-MVSNet [75]	48.40
PVA-MVSNet [77]	54.46
CVP-MVSNet [72]	54.03
CasMVSNet [19]	56.84
UCS-Net [10]	54.83
D2HC-RMVSNet [71]	59.20
U-MVS [68]	57.15
RayMVSNet	59.48
RayMVSNet++	58.47

lank	Model	Mean F1 (Advanced)	Mean F1 (Intermediate)	Paper	Code	Result	Year	Ta
1	MVSFormer++	41.70	67.03	MVSFormer++: Revealing the Devil in Transformer's Details for Multi-View Stereo	0	Ð	2024	ı
2	MVSFormer	40.87	66.37	MVSFormer: Multi-View Stereo by Learning Robust Image Features and Temperature-based Depth	O	Ð	2022	!
3	GeoMVSNet	41.52	65.89	GeoMVSNet: Learning Multi-View Stereo With Geometry Perception	0	Ð	2023	ı
4	RA-MVSNet	39.93	65.72	Multi-View Stereo Representation Revisit: Region- Aware MVSNet		Ð	2023	ı
5	ET-MVSNet	40.41	65.49	When Epipolar Constraint Meets Non-local Operators in Multi-View Stereo	O	Ð	2023	
6	APD-MVS	39.91	63.64	Adaptive Patch Deformation for Textureless- Resilient Multi-View Stereo	O	Ð	2023	
7	GC-MVSNet	38.74	62.74	GC-MVSNet: Multi-View, Multi-Scale, Geometrically- Consistent Multi-View Stereo	O	Ð	2023	
8	EPP-MVSNet	35.72	61.68	EPP-MVSNet: Epipolar-Assembling Based Depth Prediction for Multi-View Stereo	C	Ð	2021	
9	CDS-MVSNet		61.58	Curvature-guided dynamic scale networks for Multiview Stereo	0	Ð	2021	
10	AA-RMVSNet		61.51	AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network	O	Ð	2021	
11	GBi-Net		61.42	Generalized Binary Search Network for Highly- Efficient Multi-View Stereo	0	Ð	2021	
12	Vis-MVSNet		60.03	Visibility-aware Multi-view Stereo Network	0	-	2020	ì

Ablation

TABLE 7: Ablation studies of RayMVSNet. The performance under distance metric is reported (lower is better).

Method	Accuracy	Completeness	Overall
w/o epipolar transformer	0.347	0.339	0.343
w/o 2D image feature	0.345	0.352	0.348
w/o 3D volume feature	0.434	0.322	0.378
vis-max feature aggregation	0.345	0.331	0.338
w/o ray-based inference	0.573	0.642	0.608
Ray with Transformer	0.339	0.343	0.341
Ray with average pooling	0.356	0.406	0.381
Ray with max pooling	0.466	0.383	0.424
w/o SDF prediction	0.354	0.330	0.342
Visibility-aware view aggregation	0.345	0.331	0.338
RayMVSNet	0.341	0.319	0.330

TABLE 8: Ablation studies of RayMVSNet++. p@x represents Percentage@x.

Method	$RMSE(m)\!\!\downarrow$	p@0.2↑	p@0.4↑	p@0.6↑
w/o frustum	0.211	0.794	0.918	0.963
w/o gating unit	0.193	0.807	0.925	0.966
w/o Gumbel-Softmax	0.176	0.838	0.950	0.980
RayMVSNet++	0.158	0.861	0.957	0.982

