

University of Milano-Bicocca Department of Informatics, Systems and Communications

Boolean Functions, S-Boxes and Evolutionary Algorithms

Luca Mariot

luca.mariot@unimib.it

De Cifris Athesis Local Seminar

Trento – December 16, 2019

Summary

Part 1: Boolean Functions and S-Boxes

Stream Ciphers: The Combiner Model

▶ a Boolean function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ combines the outputs of n Linear Feedback Shift Registers (LFSR) [Carlet10]

Security of the combiner ⇔ cryptographic properties of f

Block Ciphers: Substitution-Permutation Network

Round function of a SPN cipher:

- ► $S_i : \mathbb{F}_2^n \to \mathbb{F}_2^n$ are S-boxes providing confusion
- ▶ Security of confusion layer \Leftrightarrow cryptographic properties of S_i

Boolean Functions - Basic Representations

▶ Truth table: vector Ω_f specifying f(x) for all $x \in \mathbb{F}_2$

$$(x_1, x_2, x_3)$$
 000 100 010 110 001 101 011 111 Ω_f 0 1 1 1 1 0 0 0

▶ Algebraic Normal Form (ANF): Sum (XOR) of products (AND) over the finite field \mathbb{F}_2

$$f(x_1, x_2, x_3) = x_1 \cdot x_2 \oplus x_1 \oplus x_2 \oplus x_3$$

▶ Walsh Transform: correlation with the *linear* functions defined as $\omega \cdot x = \omega_1 x_1 \oplus \cdots \oplus \omega_n x_n$

$$\hat{F}(\omega) = \sum_{x \in \mathbb{F}_2^n} (-1)^{f(x) \oplus \omega \cdot x}$$

S-boxes – Representation

▶ Substitution Box (S-box, or (n, m)-function): a mapping $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$ defined by m coordinate functions $f_i : \mathbb{F}_2^n \to \mathbb{F}_2$

► Component functions $v \cdot F$: non-trivial linear combinations of the coordinate functions f_i

Design Criteria

Several properties to consider for thwarting attacks, e.g.:

A **Boolean function** used in the combiner model should:

- be balanced
- have high algebraic degree d
- ▶ have high nonlinearity nI(F)
- be resilient of high order t

A (n, n)-function used in the SPN paradigm should

- be balanced (⇔ bijective)
- ▶ have high nonlinearity N_F
- ▶ have low differential uniformity δ_F

Bounds and Trade-offs

Most of these properties cannot be satisfied simultaneously!

Bounds for Boolean functions:

- Covering Radius: $nI(f) \le 2^{n-1} 2^{\frac{n}{2}-1}$ (met by bent functions)
- ▶ Siegenthaler: $d \le n t 1$
- ► Tarannikov: $nI(t) \le 2^{n-1} 2^{t+1}$

Bounds for S-Boxes:

- ► Covering Radius: $N_F \le 2^{n-1} 2^{\frac{n}{2}-1}$ (met by bent functions)
- ► Sidelnikov-Chabaud-Vaudenay: $N_F \le 2^{n-1} 2^{\frac{n-1}{2}}$ (met by AB functions)
- ▶ Differential Uniformity: $\delta_F \ge 2$ (met by APN functions)

Constructions of good Boolean Functions and S-Boxes

Number of Boolean functions of n variables: 2²ⁿ

▶ \Rightarrow too huge for exhaustive search when n > 5!

In practice, one usually resorts to:

- ► Algebraic constructions (Maiorana-McFarland, Rothaus,...) [Carlet10]
- Combinatorial optimization techniques
 - Simulated Annealing [Clark04]
 - Evolutionary Algorithms [Millan98]
 - Swarm Intelligence [Mariot15b], ...

Summary

Part 2: Combinatorial Optimization and Evolutionary Algorithms

Combinatorial Optimization

- ▶ Combinatorial Optimization Problem: map $\mathcal{P}: I \to \mathcal{S}$ from a set I of problem instances to a family \mathcal{S} of solution spaces
- ► $S = \mathcal{P}(I)$ is a finite set equipped with a fitness function fit : $S \to \mathbb{R}$, giving a score to candidate solutions $x \in S$
- ▶ Optimization goal: find $x^* \in S$ such that:

Minimization:

Maximization:

$$x^* = argmin_{x \in S} \{ fit(x) \}$$
 $x^* = argmax_{x \in S} \{ fit(x) \}$

Heuristic optimization algorithm: iteratively tweaks a (set of) candidate solution(s) using fit to drive the search

Hill Climbing and Simulated Annealing

- ▶ Let $d_S: S \times S \to \mathbb{R}$ be a distance over the solution space S, and assume there is a minimum distance $d_m \in \mathbb{R}$ such that $d_S(x,x') \ge d_m$ for all $x,x' \in S$.
- ▶ Neighborhood of a solution $x \in S$:

$$N(x) = \{ y \in S : \forall z \in S \ d_S(z, x) \ge d_S(y, x) \}$$

- ightharpoonup Hill Climbing: always choose y in N(x) with better fitness
- Simulated Annealing: acceptance probability defined as:

$$P_{a} = \begin{cases} 1 & , & \text{if } f(x) < f(y) \ [f(x) > f(y)] \\ e^{-\left(\frac{|f(y) - f(x)|}{T}\right)} & , & \text{if } f(x) \ge f(y) \ [f(x) \le f(y)] \end{cases}$$

Temperature *T* updated as $T \leftarrow \alpha T$, where $\alpha \in (0,1)$.

Genetic Algorithms (GA) – Genetic Programming (GP)

Optimization algorithms loosely based on evolutionary principles, introduced respectively by **J. Holland** (1975) and **J. Koza** (1989)

- Work on a coding of the candidate solutions
- Evolve in parallel a population of solutions.
- Black-box optimization: use only the fitness function to optimize the solutions.
- Use Probabilistic operators to evolve the solutions

GA Encoding: Typically, an individual is represented with a fixed-length bitstring

Genetic Algorithms (GA) – Genetic Programming (GP)

- GP Encoding: an individual is represented by a tree
 - Terminal nodes: input variables of a program
 - ► Internal nodes: operators (e.g. AND, OR, NOT, XOR, ...)

The EA Loop

Selection

Roulette-Wheel Selection (RWS): the probability of selecting an individual is proportional to its fitness

Tournament Selection (TS): Randomly sample *t* individuals from the population and select the fittest one.

Generational Breeding: Draw as many pairs as population size **Steady-State Breeding**: Select only a single pair

Crossover

Idea: Recombine the genes of two parents individuals to create the offspring (Exploitation)

GA Example: One-Point Crossover

GP Example: Subtree Crossover

Mutation

Idea: Introduce new genetic material in the offspring (Exploration)

GA Example: Bit-flip mutation

GP Example: Subtree mutation

Replacement and Termination

- ► Elitism: keep the best individual from the previous generation
- ► **Termination**: several criteria such as budget of fitness evaluations, solutions diversity, ...

WE'VE DECIDED TO DROP THE CS DEPARTMENT FROM OUR WEEKLY DINNER PARTY HOSTING ROTATION.

Image credit: https://xkcd.com/720/

Summary of Contributions

Part 3: Evolving Boolean Functions and S-Boxes

Direct Search of Boolean Functions [Millan98]

- ► GA encoding: represent the truth tables as 2ⁿ-bit strings
- Fitness function measuring nonlinearity, algebraic degree, and deviation from correlation-immunity
- Specialized crossover and mutation operators for preserving balancedness

Crossover Idea: Use *counters* to keep track of the multiplicities of zeros and ones

► GP has better performance than GA with direct search [Picek16]

Spectral Inversion [Clark04]

▶ Applying the Inverse Walsh Transform to a generic spectrum yields a pseudoboolean function $f : \mathbb{F}_2^n \to \mathbb{R}$

$$S_f = (0, -4, -2, 2, 2, 4, 4, -2)$$

$$\Downarrow \hat{F}^{-1}$$

$$\Omega_{\hat{i}} = (0, 0, 0, -1, 0, -1, 2)$$

- New objective: minimize the deviation of Walsh spectra which satisfy the desired cryptographic constraints
- Heuristic techniques proposed for this optimization problem:
 - Clark et al. [Clark04]: Simulated Annealing (SA)
 - Mariot and Leporati [Mariot15a]: Genetic Algorithms (GA)

Plateaued Functions

- Our GA evolves spectra of plateaued functions
- ▶ A (pseudo)boolean function f is plateaued if its Walsh spectrum takes only three values: $-W_M(f)$, 0 and $+W_M(f)$, with $W_M(f) = 2^r$

$$S_f = (0,0,0,0,-4,4,4,4) \Rightarrow \text{plateaued}$$

- Motivations:
 - Simple combinatorial representation of candidate solutions, determined by a single parameter $r \ge n/2$
 - Plateaued functions reach both Siegenthaler's and Tarannikov's bounds

Chromosome Encoding

Resiliency Constraint: ignore positions with at most t ones

► The chromosome *c* is the permutation of the spectrum in the positions with more than *t* ones:

► The multiplicities of 0, $-W_M(f)$ and $+W_M(f)$ in the permutation depend on plateau index r

Fitness Function

▶ Given $\hat{f}: \mathbb{F}_2^n \to \mathbb{R}$, the nearest boolean function $\hat{b}: \mathbb{F}_2^n \to \mathbb{F}_2$ is defined for all $x \in \mathbb{F}_2^n$ as:

$$\hat{b}(x) = \begin{cases} +1 & \text{, if } \hat{f}(x) > 0 \\ -1 & \text{, if } \hat{f}(x) < 0 \\ +1 \text{ or } -1 \text{ (chosen randomly)} & \text{, if } \hat{f}(x) = 0 \end{cases}$$

Objective function proposed in [Clark04]:

$$obj(f) = \sum_{x \in \mathbb{F}_2^n} (\hat{f}(x) - \hat{b}(x))^2$$

Fitness maximised by GA [Mariot15a]: fit(f) = -obj(f)

Genetic Operators

- ► Crossover between two Walsh spectra p_1, p_2 must preserve the multiplicities of $-W_M(f)$, 0 and $+W_M(f)$
- Idea: Adapt Millan et al.'s counter-based crossover [Millan98]

- Mutation: swap two random positions in the chromosome with different values
- Selection operators adopted:
 - ► Roulette-Wheel (RWS)
 - ► Deterministic Tournament (DTS)

Experimental Settings

Common parameters:

Number of variables n = 6,7 and plateau index r = 4

(n, m, d, nl)	0 _{res}	0 _{add}	$ -W_M(f) $	$ +W_M(f) $
(6,2,3,24)	22	26	6	10
(7,2,4,56)	29	35	28	36

GA-related parameters:

- Population size N = 30
- ightharpoonup max generations G = 500000
- GA runs R = 500
- Mutation probability $p_{\mu} = 0.05$
- ► Tournament size tsize = 3

SA-related parameters:

- ► Inner loops *MaxIL* = 3000
- ► Moves in loop *MIL* = 5000
- ► SA runs R = 500
- ▶ Initial temperatures T = 100,1000
- ▶ Cooling parameter: $\alpha = 0.95, 0.99$

Results

Statistics of the best solutions found by our GA and SA over R = 500 runs.

n	Stat	GA(RWS)	GA(DTS)	$SA(T_1, \alpha_1)$	$SA(T_2,\alpha_2)$
	avg _o	14.08	13.02	19.01	19.03
	min_o	0	0	0	0
6	max_o	16	16	28	28
О	std_o	5.21	6.23	4.89	4.81
	#opt	60	93	11	10
	avg_t	83.3	79.2	79.1	79.4
	avg _o	53.44	52.6	45.09	44.85
	mino	47	44	32	27
7	max_o	58	59	63	57
1	std_o	2.40	2.77	4.39	4.18
	#opt	0	0	0	0
	avg _t	204.2	204.5	180.3	180.2

Cellular Automata S-boxes

- One-dimensional Cellular Automaton (CA): a discrete parallel computation model composed of a finite array of n cells
- ► Each cell updates its state $s \in \{0, 1\}$ by applying a local rule $f: \{0, 1\}^d \rightarrow \{0, 1\}$ to itself and the d-1 cells to its right

Example:
$$n = 6$$
, $d = 3$, $f(s_i, s_{i+1}, s_{i+2}) = s_i \oplus s_{i+1} \oplus s_{i+2}$,
Truth table: $\Omega(f) = 01101001 \rightarrow \text{Rule } 150$

No Boundary CA – NBCA

Periodic Boundary CA – PBCA

CA-Based Crypto History: Keccak χ S-box

- ► Local rule: $\chi(x_1, x_2, x_3) = x_1 \oplus (1 \oplus (x_2 \cdot x_3))$ (rule 210)
- ► Invertible for every odd size *n* of the CA

Used in the Keccak specification of SHA-3 standard

Problem Statement

- ▶ Goal: Find PBCA of length n and diameter d = n:
 - with cryptographic properties on par with those of other real-world ciphers [Mariot19]
 - with low implementation cost [Picek17]
- ▶ Considered S-boxes sizes: from n = 4 to n = 8
- Using tree encoding, exhaustive search is already unfeasible for n = 4
- We adopted Genetic Programming to address this problem

Fitness Functions – Cryptographic properties

- Considered cryptographic properties:
 - ▶ balancedness/invertibility (BAL = 0 if F is balanced, -1 otherwise)
 - nonlinearity N_F
 - differential uniformity δ_F
- First Fitness function maximized:

$$\textit{fitness}_1 = \textit{BAL} + \Delta_{\textit{BAL},0} \bigg(\textit{N}_{\textit{F}} + \bigg(1 - \frac{\textit{nMinN}_{\textit{F}}}{2^{\textit{n}}} \bigg) + \big(2^{\textit{n}} - \delta_{\textit{F}} \big) \bigg)$$

where $\Delta_{BAL,0} = 1$ if F is balanced and 0 otherwise, $nMinN_F$: number of occurrences of the current value of nonlinearity

Fitness Functions – Implementation properties

- Implementation properties: weight w_i defined by GE measure (# of equivalent NAND gates)
 - NAND and NOR gates: $w_l = 1$
 - ► XOR gate: $w_l = 2$
 - ► *IF* gate: $w_l = 2.33$
 - NOT gate: w₁ = 0.667
 - area_penalty: weighted sum of all operators in a solution
- Second Fitness function maximized:

$$fitness(F) = BAL + \Delta_{BAL,0}(N_F + (2^n - \delta_F)) + 1/area_penalty$$

Experimental Setup

- ▶ Problem instance / CA size: n = 4 up to n = 8
- Maximum tree depth: equal to n
- Genetic operators: simple tree crossover, subtree mutation
- Population size: 2000
- Stopping criterion: 2000000 fitness evaluations
- ▶ Parameters determined by initial tuning phase on n = 6 case

Results

Table: Statistical results and comparison.

S-box size	T_max		GP		N _F	$\delta_{ extsf{F}}$
		Max	Avg	Std dev		
4×4	16	16	16	0	4	4
5×5	42	42	41.73	1.01	12	2
6×6	86	84	80.47	4.72	24	4
7×7	182	182	155.07	8.86	56	2
8×8	364	318	281.87	13.86	82	20

- From n = 4 to n = 7, we obtained CA rules inducing S-boxes with optimal crypto properties
- ➤ Only for n = 8 the performances of GP are consistently worse wrt to the theoretical optimum

A Posteriori Analysis – Implementation Properties, n = 4

Table: Power is in nW, area in GE, and latency in ns. DPow: dynamic power, LPow: cell leakage power

Size	4×4	Rule	PRESENT				
DPow.	470.284 LPow:		430.608 Area: 22.67		Latency:0.27		
Size	4×4	Rule	Piccolo				
DPow.	222.482	LPow:	215.718	3 Area:	12	Latency:0.25	
Size	4×4	Rule	IF(((v3 NOR v1) XOR v0), v2, v1)				
DPow.	242.52	LPow:	337.47	Area:	16.67	Latency:0.14	

A Posteriori Analysis – Implementation Properties, n = 5

Table: Power is in *nW*, area in *GE*, and latency in *ns*. *DPow*: dynamic power, *LPow*: cell leakage power

Size	5×5	Rule		Kec	cak
DPow.	321.68	34 LPow:	299.725 Ar	ea: 17	Latency:0.14
Size	5×5	5 Rule ((v2 NOR NOT(v4)) XOR v1)			
DPow.	324.84	9 LPow:	308.418 Ar	ea: 17	Latency:0.14
Size	5×5	Rule	((v4 NA	ND (v2 X0	OR v0)) XOR v1)
DPow.	446.78	2 LPow:	479.33 Ar	ea: 24.0	6 Latency:0.2
Size	5×5	Rule	(IF(v1, v2,	v4) XOR (v0 NAND NOT(v3)))
DPow.	534.01	5 LPow:	493.528 Ar	ea: 26.6	7 Latency:0.17

Example of Optimal CA S-box found by GP

Conclusions and Perspectives

Summing up:

- The design of Boolean functions and S-boxes with good properties is a hard optimization problem
- Evolutionary Algorithms (EA) represent an interesting method to search for optimal Boolean functions and S-boxes both crypto-wise and implementation-wise

Open questions:

- take into account other properties (e.g. algebraic immunity, ...)
- Have a better understanding of which algorithm works best to evolve a Boolean function/S-box with certain properties (using e.g. fitness landscape analysis)
- Apply EA to other optimization problems in symmetric crypto (e.g. round constants selection)

References

[Carlet10] Carlet, C., Boolean functions for cryptography and error correcting codes. Boolean models and methods in mathematics, computer science, and engineering, vol. 2, pp. 257–397 (2010)

[Clark04] Clark, J., Jacob, J., Maitra, S., Stanica, P.: Almost Boolean Functions: The Design of Boolean Functions by Spectral Inversion. Computational Intelligence 20(3): 450-462 (2004)

[Millan98] Millan, W., Clark, J., Dawson, E.: Heuristic Design of Cryptographically Strong Balanced Boolean Functions. EUROCRYPT 1998: 489-499

[Mariot15a] Mariot, L., Leporati, A.: A Genetic Algorithm for Evolving Plateaued Cryptographic Boolean Functions. In: Proceedings of *TPNC 2015*: 33-45 (2015)

[Mariot15b] Mariot, L., Leporati, A.: Heuristic Search by Particle Swarm Optimization of Boolean Functions for Cryptographic Applications. In: GECCO 2015 (Companion): 1425-1426. ACM (2015)

[Mariot19] Mariot, L. Picek, S., Leporati, A., Jakobovic, D.: Cellular Automata Based S-Boxes. *Cryptography and Communications* 11(1): 41-62 (2019)

[Picek16] Picek, S., Jakobovic, D., Miller, J.F., Batina, L., Cupic, M.: Cryptographic Boolean functions: One output, many design criteria Appl. Soft Comput. 40: 635-653 (2016)

[Picek17] Picek, S., Mariot, L., Yang, B., Jakobovic, D., Mentens, N.: Design of S-boxes defined with cellular automata rules. Conf. Computing Frontiers 2017: 409-414 (2017)