Analysis:
3.) Step input 0.2 rad (open 100p)
· underdamped (oscillates over + under ss value) · oscillations seem large compared to 85 value
Oss=0.168 rad Tr=0.999 see Opeah=0.585 rad Ts=405 see
4.) Tr=0.716 sec Ts=56.9 sec Oss=0.0914 rad (final value) Opean=0.181
· faster rise time · much faster settling time · lower final value
5.) the graph for part 5 is the exact same as the graph for part 4 this shows that both methods of solving are correct
6.) · 5 roots shown on root locus 5 X's (poles) and 5 O's (zero), which i's to be expected As It (add) is usaid from O => re there is
· As K (gain) is varied from 0 -> 00, there is no gain value where all 5 roots are in unshaded region in fact, there is only 1 root that ever enters the unchaded region
· therefore, proportional controller doesn't work

7.) $C(s) = K \cdot \frac{(s+0.9)}{(s+3)}$ 'also doesn't look like all roots enter unshaded region

this lead compensator cannot be used to meet

specified performance requirements (seems like wrong conclusion) ·not sure how to tell if performance criteria is met by N values (if what I said above is true, then none do)