

CORRELATION AND SPECTRAL DENSITY

CORRELATION AND SPECTRAL DENSITY

EE 308 L 8 / Slide 2

- . Focus on time averages and signal power
- · Frequency energy domain representation in terms of

Spectral Density Functions
ESD - energy signal

- · Signals need not be Fourier transformable
- · Spectral Density Broader range of signal models

· Convolution Theorem:

$$\int_{-co}^{co} g_1(\tau)g_2(t-\tau)d\tau \longleftrightarrow G_1(f)G_2(f)$$

Roles of t & T interchanged ->

$$\int_{-CP}^{CD} g_1(t) g_2(\tau - t) dt \longleftrightarrow G_1(f) G_2(f)$$

$$\Rightarrow \int_{-\infty}^{\infty} g_1(t) g_2\{-(t-\tau)\}dt \leftrightarrow G_1(f) G_2(f)$$

$$\Rightarrow \int_{-\infty}^{\infty} g_{1}(t) g_{2}^{*}(t-\tau) dt \longleftrightarrow G_{1}(f) G_{2}(f)$$
(reflection + conjugation rule

ORRELATION THEOREM

AUTOCORRELATION FUNCTION

• Consider an energy signal x(t)(w.1.0.g. $x(t) \rightarrow complex valued)$

EE 308 L 8 / Slide 4

$$R_{\chi}(\tau) = \int_{-\infty}^{\infty} \chi(t) \dot{\chi}(t-\tau) dt$$

between x(t) and x(t-t)

delayed version

- · Rx(T) -> complex valued if x(t) complex
- $R_{\alpha}(0) = \int_{-\infty}^{\infty} |\alpha(t)|^2 dt$

CORRELATION THEOREM $\int_{-\infty}^{\infty} \chi_{1}(t) \chi_{2}^{*}(t-t)dt \longleftrightarrow \chi_{1}(f) \chi_{2}^{*}(f)$ $\chi_{1}(t) \chi_{2}^{*}(t-t)$ CDFFP **IIT Bombay** EE 308 L_8_ / Slide 5 $\Rightarrow R_{\chi}(\tau) = \int_{-\infty}^{\infty} \chi(t) \chi^{*}(t-\tau) dt \longleftrightarrow \chi(f) \chi^{*}(f)$ $\frac{\text{RAYLEIGH'S Energy}}{\text{IHEOREM}} = |\chi(f)|^2$ $\triangleq |\chi(f)|^2$ $\triangleq |\chi(f)|^2$ • $V_{\chi}(t) = \int_{-\infty}^{\infty} R_{\chi}(\tau) \exp(-j2\pi f\tau) d\tau$ Pensity)

• $R_{\chi}(\tau) = \int_{-\infty}^{\infty} V_{\chi}(t) \exp(j2\pi f\tau) dt$ KHITCHINE Relation for energysignal

PROPERTIES:

(1)
$$\int_{-\infty}^{\infty} R_{\chi}(\tau) d\tau = Y_{\chi}(0)$$

(2)
$$\int_{-\infty}^{\infty} \frac{y_{x}(f)df}{ESD} = \frac{R_{x}(0)}{(Energy of the signal)}$$

EE 308 L 8 / Slide 5

$$\frac{\mathcal{E}_{x:}}{\mathcal{X}(t)} = A \operatorname{sinc}(2Wt) \longleftrightarrow \chi(f) = \frac{A}{2W} \operatorname{rect}\left(\frac{f}{2W}\right)$$

$$R_{x}(t) = \frac{A^{2}}{2W} \operatorname{sinc}(2Wt) \longleftrightarrow Y_{x}(f) = \left(\frac{A}{2W}\right)^{2} \operatorname{rect}\left(\frac{f}{2W}\right)$$

Evaluation easier than using the autocorrelation formula directly

Effect on Filtering on ESD

 $\chi(t) \longleftrightarrow \chi(f)$ $h(t) \longleftrightarrow H(f) (LTI system)$ $o/p: Y(t) \longleftrightarrow \gamma(f) = H(f)\chi(f)$

EE 308 L 8 / Slide 7

* provides $-y(y(f)=|y(f)|^2=|H(f)|^2Y_n(f)$ a basis for the physical interpretation of ESD concept

$$|H(f)| = \begin{cases} 1, & f_c - \Delta f < |f| < f_c + \Delta f \\ 0, & \text{otherwise} \end{cases}$$

$$= \begin{cases} |X(f_c)|, & f_c - \Delta f < |f| < f_c + \Delta f \\ 0 & \text{otherwise} \end{cases}$$

$$Y_{y}(f) = \begin{cases} Y_{x}(f_{c}), & f_{c} - \Delta f \leq |f| \leq f_{c} + \Delta f \\ 0, & \text{otherwise} \end{cases}$$

$$Ey = \int_{-\infty}^{\infty} Y_{y}(f) df = 2 \int_{-\infty}^{\infty} Y_{y}(f) df = 2 Y_{x}(f_{c}) \Delta f$$

$$Ey = \int_{-\infty}^{\infty} Y_{y}(f) df = 2 \int_{0}^{\infty} Y_{y}(f) df = 2 Y_{x}(f_{e}) \Delta f$$

$$\Rightarrow Y_{x}(f_{e}) = \underbrace{Ey}_{2\Delta f}$$

EE 308 L 🔧 / Slide ᢃ

*ESD of the filter ilp at fc Equals the energy of the filter olp divided by 2 Df, where Df is the filter BW centered on fc

EE 308 L 3 / Slide 9

⇒ ESD of an energy signal for any frequency f'as the energy per unit BW, which is contributed by frequency components of the signal around the frequency'f'

ENERGY AND POWER SPECTRAL DENSITY

$$g(t) \stackrel{=30}{\longleftrightarrow} |G(f)|^{2}$$

$$Rg(\tau) \stackrel{=30}{\longleftrightarrow} |G(f)|^{2}$$

$$G(f) \stackrel{=30}{\longleftrightarrow} |G(f)|^{2}$$

$$\frac{\mathcal{E}_{X:}}{\mathcal{E}_{X:}} = g(t) = rect(\frac{t}{T}) \longleftrightarrow T sinc(fT)$$

$$E_{g} = \int_{0}^{\infty} |g(t)|^{2} dt = T \qquad ESD \to |T|^{2} sinc^{2}(fT)$$

$$\int_{-B}^{+B} T^2 \operatorname{Sinc}^2(fT) df = 0.95T$$

$$S(t) = 9(t) \cos 2\pi f_c t$$
Energy of modulated signal?
$$S(t) \longleftrightarrow S(f) = \frac{1}{2} \left[G(f - f_c) + G(f + f_c) \right]$$

$$\left[|S(f)|^2 = \frac{1}{4} \left[G(f - f_c) + G(f + f_c) \right]^2$$

$$= \frac{1}{4} \left[|G(f - f_c)|^2 + |G(f - f_c)|^2 \right]$$

$$|S(f)|^2 = \frac{1}{4} \left[E_{\text{ESD}}(f+f_c) + E_{\text{ESD}}(f-f_c) \right]$$

$$\left(\frac{2}{2} \operatorname{nergy}\right) = \frac{1}{2} \left(\frac{2}{2} \operatorname{nergy}\right) = \frac{1}{2$$

Power Spectral Density

Average power of a signal g(t) is $P \triangleq \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt$

$$g_{T}(t) = g(t) \operatorname{rect}\left(\frac{t}{T}\right)$$

$$= \int g(t), \quad -\frac{T}{2} \leqslant t \leqslant \frac{T}{2}$$

$$= \int 0, \quad \text{otherwise}$$

$$g_{T}(t) \longleftrightarrow G_{T}(f)$$

$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} |q(t)|^{2} dt$$

$$= \lim_{T \to \infty} \frac{1}{T} \int_{-\infty}^{\infty} |G_{T}(f)|^{2} df \longrightarrow (I)$$

$$P = \int_{-\infty}^{\infty} \left(\lim_{T \to \infty} \frac{1}{T} |G_{T}(f)|^{2} \right) df$$

$$S_{q}(f) \triangleq \lim_{T \to \infty} \frac{1}{T} |G_{T}(f)|^{2} \longrightarrow \text{Power Spectral}$$

$$P = \int_{-\infty}^{\infty} S_{q}(f) df \qquad (Periodog vam)$$

•
$$Rg(\tau) = \int_{-\infty}^{\infty} g(t)g(t-\tau)dt$$

.
$$R_g(\tau) \longleftrightarrow |G(t)|^2 ESD$$

. Eg =
$$\int_{-\infty}^{\infty} |G(s)|^2 ds$$

Power Signal

$$P_{g} = \lim_{t \to \infty} \frac{1}{|g(t)|^{2}} \frac{1}{|$$

