Planche nº 40. Produits scalaires

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice no 1: (***I)

Pour $A=(\mathfrak{a}_{i,j})_{1\leqslant i,j\leqslant n}\in \mathscr{M}_n(\mathbb{R}),\ N(A)=\sqrt{\mathrm{Tr}\,(A^TA)}.$ Montrer que N est une norme vérifiant de plus $N(AB)\leqslant N(A)N(B)$ pour toutes matrices carrées A et B. N est-elle associée à un produit scalaire?

Exercice n° 2: (***)

Soit E un \mathbb{R} espace vectoriel de dimension finie. Soit $\|$ $\|$ une norme sur E vérifiant l'identité du parallélogramme, c'est-à-dire : $\forall (x,y) \in E^2$, $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$. On se propose de démontrer que $\|$ $\|$ est associée à un produit scalaire.

On définit sur E^2 une application f par : $\forall (x,y) \in E^2$, $f(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$.

- 1) Montrer que pour tout (x, y, z) de E^3 , on a : f(x + z, y) + f(x z, y) = 2f(x, y).
- 2) Montrer que pour tout (x,y) de E^2 , on a : f(2x,y) = 2f(x,y).
- 3) Montrer que pour tout (x,y) de E^2 et tout rationnel r, on a: f(rx,y) = rf(x,y).

On admettra que pour tout réel λ et tout (x,y) de E^2 on a : $f(\lambda x,y) = \lambda f(x,y)$ (ce résultat provient de la continuité de f).

- 4) Montrer que pour tout (u, v, w) de E^3 , f(u, w) + f(v, w) = f(u + v, w).
- 5) Montrer que f est bilinéaire.
- 6) Montrer que || || est une norme euclidienne.

Exercice nº 3: (**IT)

Dans \mathbb{R}^4 muni du produit scalaire usuel, on pose : $V_1=(1,2,-1,1)$ et $V_2=(0,3,1,-1)$. On pose $F=\mathrm{Vect}(V_1,V_2)$. Déterminer une base orthonormale de F et un système d'équations de F^{\perp} .

Exercice no 4: (***)

- 1) Soit (E, (|)) un espace euclidien.
 - a) Soit $u \in E$. Montrer que $x \mapsto (u|x)$ est une forme linéaire sur E.
 - b) Soit φ une forme linéaire sur E. Montrer qu'il existe un vecteur u de E et un seul tel que $\forall x \in E$, $\varphi(x) = (u|x)$.
- 2) a) Existe-t-il A élément de $\mathbb{R}_n[X]$ tel que $\forall P \in \mathbb{R}_n[X], \int_0^1 P(t)A(t) dt = P(0)$?
 - b) Existe-t-il A élément de $\mathbb{R}[X]$ tel que $\forall P \in \mathbb{R}[X], \int_0^1 P(t)A(t) \ dt = P(0)$?

Exercice nº 5 : (***I) (Matrices et déterminants de Gram)

Soit (E, |) un espace vectoriel euclidien de dimension \mathfrak{p} sur \mathbb{R} $(\mathfrak{p} \ge 2)$.

Pour $(x_1,...,x_n)$ donné dans E^n , on pose $G(x_1,...,x_n)=(x_i|x_j)_{1\leqslant i,j\leqslant n}$ (matrice de Gram) et $\gamma(x_1,...,x_n)=\det(G(x_1,...,x_n))$ (déterminant de Gram).

- 1) a) Soient \mathcal{B} une base orthonormée de (E, |) puis $M = \operatorname{Mat}_{\mathcal{B}}(x_1, \ldots, x_n)$. Montrer que $G(x_1, \ldots, x_n) = M^T M$.
 - b) Montrer que $\operatorname{rg}(G(x_1,...,x_n)) = \operatorname{rg}(x_1,...,x_n)$ (on montrera d'abord que $\operatorname{Ker}(M^TM) = \operatorname{Ker}(M)$).
- 2) Montrer que $(x_1, ..., x_n)$ est liée si et seulement si $\gamma(x_1, ..., x_n) = 0$ et que $(x_1, ..., x_n)$ est libre si et seulement si $\gamma(x_1, ..., x_n) > 0$.
- 3) On suppose que $(x_1,...,x_n)$ est libre dans E (et donc $n \leq p$). On pose $F = \text{Vect}(x_1,...,x_n)$.

Pour $x \in E$, on note $p_F(x)$ la projection orthogonale de x sur F puis $d_F(x)$ la distance de x à F (c'est-à-dire

$$d_F(x) = \|x - p_F(x)\|). \text{ Montrer que } d_F(x) = \sqrt{\frac{\gamma(x, x_1, ..., x_n)}{\gamma(x_1, ..., x_n)}}.$$

Exercice nº 6: (**I)

Matrice de la projection orthogonale sur la droite D d'équations 3x = 6y = 2z dans la base canonique orthonormée de \mathbb{R}^3 ainsi que de la symétrie orthogonale par rapport à cette même droite.

De manière générale, matrice de la projection orthogonale sur le vecteur unitaire u = (a, b, c) et de la projection orthogonale sur le plan d'équation ax + by + cz = 0 dans la base canonique orthonormée de \mathbb{R}^3 .

Exercice nº 7: (***I)

Existence, unicité et calcul de a et b tels que $\int_0^1 (x^4 - ax - b)^2 dx$ soit minimum (trouver deux démonstrations, une utilisant des moyens élémentaires et une utilisant la notion de projection orthogonale).

Exercice nº 8: (***I)

Soit $(e_1, ..., e_n)$ une base quelconque d'un espace euclidien (E, \mid) (de dimension $n \in \mathbb{N}^*$). Soient $a_1, ..., a_n$ n réels donnés. Montrer qu'il existe un unique vecteur x tel que $\forall i \in [\![1, n]\!]$, $x \mid e_i = a_i$.

Exercice nº 9: (****I)

Soit E un espace vectoriel euclidien de dimension $n \ge 1$.

Une famille de $\mathfrak p$ vecteurs $(x_1,...,x_{\mathfrak p})$ est dite obtusangle si et seulement si pour tout $(\mathfrak i,\mathfrak j)$ tel que $\mathfrak i\neq \mathfrak j,\, x_{\mathfrak i}|x_{\mathfrak j}<0$. Montrer que l'on a nécessairement $\mathfrak p\leqslant \mathfrak n+1$.

Exercice no 10: (****)

Soit
$$P \in \mathbb{R}_3[X]$$
 tel que $\int_{-1}^1 P^2(t) \ dt = 1$. Montrer que $\sup\{|P(x)|, \ |x| \leqslant 1\} = 2$. Cas d'égalité?

Exercice no 11: (**)

Soit f continue strictement positive sur [0,1]. Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^1 f^n(t) \ dt$.

Montrer que la suite $u_n = \frac{I_{n+1}}{I_n}$ est définie et croissante.

Exercice no 12: (****I)

Sur
$$E = \mathbb{R}_n[X]$$
, on pose $P|Q = \int_{-1}^1 P(t)Q(t) \ dt$.

- 1) Montrer que (E, |) est un espace euclidien.
- 2) Pour p entier naturel compris entre 0 et n, on pose $L_p = ((X^2-1)^p)^{(p)}$. Montrer que $\left(\frac{L_p}{\|L_p\|}\right)_{0 \leqslant p \leqslant n}$ est l'orthonormalisée de Schmidt de la base canonique de E. Déterminer $\|L_p\|$.

Exercice no 13: (***I)

Soit (E, \mid) un espace euclidien et $\mathscr{B} = (e_i)_{1 \leq i \leq n}$ une base orthonormée de E.

- 1) Soit p une projection. Montrer que : p est une projection orthogonale $\Leftrightarrow \forall x \in E, \|p(x)\| \leq \|x\|$.
- 2) Soit p un endomorphisme de E. Soit $P = \operatorname{Mat}_{\mathscr{B}}(p)$. Montrer que : p est une projection orthogonale $\Leftrightarrow P^2 = P$ et ${}^tP = P$ (pour \Leftarrow , vérifier d'abord que $\forall (x,y) \in E^2$, (p(x)|y) = (x|p(y))).
- 3) Soit s une symétrie d'un espace euclidien (E, |). Montrer que s est une symétrie orthogonale $\Leftrightarrow \forall x \in E, ||s(x)|| = ||x||$.
- 4) Soit s un endomorphisme de E. Soit $S = \operatorname{Mat}_{\mathscr{B}}(s)$. Montrer que : s est une symétrie orthogonale $\Leftrightarrow S^2 = I_n$ et ${}^tS = S$.