МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

ПРАВИЛА ОФОРМЛЕНИЯ КУРСОВЫХ И ДИПЛОМНЫХ РАБОТ

БАКАЛАВРСКАЯ РАБОТА

студента 1 курса 121 группы направления 02.03.02 — Фундамо	ентальная информатика и	информационные
технологии		
факультета КНиИТ		
Кислондарова Петра Ильича		
Научный руководитель		
доцент, к. фм. н.		А. С. Иванова
Заведующий кафедрой		
к. фм. н.		С.В.Миронов

СОДЕРЖАНИЕ

OE	5O3H	АЧЕНИ	Я И СОКРАЩЕНИЯ	3
BE	ВЕДЕ	НИЕ		4
1	При	мер офс	рмления текста	5
	1.1	Приме	р основных элементов математического текста	5
	1.2	Еще эл	иементы математического текста	5
	1.3	Снова	математический текст	6
2	Разд	ел с под	тразделами	9
	2.1	Текст о	с формулами и леммой	9
	2.2	Назван	ие другого подраздела1	0
		2.2.1	Более мелкий подраздел	0
		2.2.2	Текст с таблицей	0
		2.2.3	Текст с кодом программы	. 1
3A	КЛЮ	Ч ЕНИЕ	E	4
Пр	жопи	ение А	Нумеруемые объекты в приложении1	5
Пр	жопи	ение Б	Листинг программы1	6
Пр	илож	ение В	Многостраничная таблица	7

обозначения и сокращения

|A| — количество элементов в конечном множестве A;

 $\det B$ — определитель матрицы B;

ИНС — Искусственная нейронная сеть;

FANN – Feedforward Artifitial Neural Network

ВВЕДЕНИЕ

Целью настоящей работы является создание примера оформления студенческой работы средствами системы IATEX.

Поставлена задача оформить документ в соответствии:

- со стандартом СТО 1.04.01-2012 Порядком выполнения, структурой и правилами оформления курсовых работ (проектов) и выпускных квалификационных работ, принятых в Саратовском государственном университете в 2012 году;
- с правилами оформления титульного листа отчета о прохождении практики в соответствии со стандартом СТО 1.01-2005.

Изложенный ниже текст не имеет особого смысла и приведен только для демонстрации оформления своих элементов.

1 Пример оформления текста

1.1 Пример основных элементов математического текста

Внутритекстовая формула $\frac{1}{\varepsilon^*} = \frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_0}$. Пример одиночной ссылки на литературу [?]. Пример множественной ссылки на литературу [?,?,?,?,?,?]. Ещё множественная ссылка [?,?]. Пример ссылки на Приложение Б.

$$F(x) = \int_{a}^{b} f(x) dx. \tag{1}$$

Ссылка на рисунок ??.

Если разность энергий электронно-дырочных уровней E_2-E_1 близка к энергии предельного оптического фонона $\hbar\Omega_{LO}$, то в разложении волновых функций полного гамильтониана можно ограничиться нулевым приближением для всех состояний, за исключением близких по значению к E_2 . Волновые функции последних представляют собой следующие комбинации почти вырожденных состояний [?].

1.2 Еще элементы математического текста

Нейрон является составной частью нейронной сети. Он состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя. Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента — выхода сумматора. Эта функция называется функцией активации или передаточной функцией. На рисунке 1 приведено строение одного нейрона.

Нейрон в целом реализует скалярную функцию векторного аргумента. Математическая модель нейрона:

$$s = \sum_{i=1}^{n} w_i x_i + b,$$

$$y = f(s),$$

где w_i — вес синапса; $i=1,\ldots,n$; b — значение смещения; s — результат сумми-

рования; x_i-i -тый компонент входного вектора (входной сигнал), $i=1,\ldots,n;$ y-выходной сигнал нейрона; n-число входов нейрона; f(s)- нелинейное преобразование (функция активации).

Рисунок 1 – Нейрон

В качестве функции активации нейронов берут обычно одну из следующих:

- пороговая функция активации;
- экспоненциальная сигмоида;
- рациональная сигмоида;
- гиперболический тангенс.

Данные функции активации обладают таким важным свойством как нелинейность. Нелинейность функции активации принципиальна для построения нейронных сетей. Если бы нейроны были линейными элементами, то любая последовательность нейронов также производила бы линейное преобразование и вся нейронная сеть была бы эквивалентна одному нейрону (или одному слою нейронов в случае нескольких выходов). Нелинейность разрушает суперпозицию и приводит к тому, что возможности нейросети существенно выше возможностей отдельных нейронов.

1.3 Снова математический текст

Опишем самую популярную архитектуру — многослойный персептрон с последовательными связями и сигмоидальной функцией активации (Feedforward Artifitial Neural Network, FANN).

В многослойных нейронных сетях с последовательными связями нейроны делятся на группы с общим входным сигналом—слои. Стандартная сеть состоит из L слоев, пронумерованных слева направо. Каждый слой содержит совокупность нейронов с едиными входными сигналами. Внешние входные сигналы подаются на входы нейронов входного слоя (его часто нумеруют как

нулевой), а выходами сети являются выходные сигналы последнего слоя. Кроме входного и выходного слоев в многослойной нейронной сети есть один или несколько скрытых слоев, соединенных последовательно в прямом направлении и не содержащих связей между элементами внутри слоя и обратных связей между слоями. Число нейронов в слое может быть любым и не зависит от количества нейронов в других слоях. Архитектура нейронной сети прямого распространения сигнала приведена на рисунке ??.

На каждый нейрон первого слоя подаются все элементы внешнего входного сигнала. Все выходы нейронов i-го слоя подаются на каждый нейрон слоя i+1.

Нейроны выполняют взвешенное суммирование элементов входных сигналов. К сумме прибавляется смещение нейрона. Над результатом суммирования выполняется нелинейное преобразование — функция активации (передаточная функция). Значение функции активации есть выход нейрона. Приведем схему многослойного персептрона. Нейроны представлены кружками, связи между нейронами — линиями со стрелками.

Функционирование сети выполняется в соответствии с формулами:

$$s_j^{[k]} = \sum_{i=1}^{N_{k-1}} w_{ji}^{[k]} y_i^{[k-1]} + b_j^{[k]}, \quad j = 1, \dots, N_k, \quad k = 1, \dots, L;$$
$$y_j^{[k]} = f(s_j^{[k]}), \quad j = 1, \dots, N_k, \quad k = 1, \dots, L-1,$$
$$y_j^{[L]} = s_j^{[L]},$$

где

- $y_i^{[k-1]}$ выходной сигнал i-го нейрона (k-1)-го слоя;
- $w_{ji}^{[k]}$ вес связи между j-м нейроном слоя (k-1) и i-м нейроном k-го слоя;
- $-b_{i}^{[k]}$ —значение смещения j-го нейрона k-го слоя;
- -y = f(s) функция активации;
- $y_i^{[k]}$ выходной сигнал j-го нейрона k-го слоя;
- N_k —число узлов слоя k;
- L общее число основных слоев;
- $-n = N_0$ размерность входного вектора;
- $-m=N_L-$ размерность выходного вектора сети.

На рисунке ?? представлена сеть прямого распространения сигнала с 5 входами, 3 нейронами в скрытом слое и 2 нейронами в выходном слое.

2 Раздел с подразделами

2.1 Текст с формулами и леммой

Обозначим $[y_0, y_1, \dots, y_p; f]$ разделенную разность порядка p функции f по узлам $y_0 < y_1 < \dots < y_p$.

Обозначим $L_pf(x;y_0,y_1,\ldots,y_p)$ интерполяционный полином Ньютона функции f по узлам y_0,y_1,\ldots,y_p :

$$L_p f(x; y_0, y_1, \dots, y_p) = \sum_{j=0}^p [y_0, \dots, y_j; f] \cdot \prod_{i=0}^{j-1} (x - y_i), \quad x - y_{-1} \stackrel{\text{def}}{=} 1$$
 (2)

Лемма 1. Eсли $0 \leqslant x_0 < x_1 < \ldots < x_p \leqslant 1$ и $f \in C[0,1]$ удовлетворяет условиям

1.
$$f(x) \ge 0, x \in [0, 1];$$

2. $[y_0,\ldots,y_{p+1};f]\geqslant 0$ для всех $y_i\in[0,1],\ i=0,\ldots,p+1,$ тогда

$$L_p f(x; x_0, \dots, x_p) \geqslant 0 \tag{3}$$

для всех $x \in [x_{p-(2k+1)}, x_{p-2k}]$, $k = 0, \dots, [p/2]$, $x_{-1} \stackrel{\text{def}}{=} -\infty$.

Доказательство. Возьмем $x \in [x_{p-(2k+1)}, x_{p-2k}], k = 0, \dots, [p/2].$

Из условия 1 леммы следует, что

$$[x_0,\ldots,x_{p-(2k+1)},x,x_{p-2k},\ldots,x_p;f]\geqslant 0,$$

т. е.

$$\Delta_{p} f(x; x_{0}, \dots, x_{p}) \stackrel{\text{def}}{=} \\
\begin{vmatrix}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{p} & f(x_{0}) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{p-(2k+1)} & x_{p-(2k+1)}^{2} & \cdots & x_{p-(2k+1)}^{p} & f(x_{p-(2k+1)}) \\
1 & x & x^{2} & \cdots & x^{p} & f(x) \\
1 & x_{p-2k} & x_{p-2k}^{2} & \cdots & x_{p-2k}^{p} & f(x_{p-2k}) \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & x_{p} & x_{p}^{2} & \cdots & x_{p}^{p} & f(x_{p})
\end{vmatrix} \geqslant 0 \quad (4)$$

Из равенства

$$\Delta_p f(x; x_0, \dots, x_p) = (L_p f(x; x_0, \dots, x_p) - f(x)) \prod_{0 \le i < j \le p} (x_j - x_i).$$

и (4) следует, что

$$L_p f(x; x_0, \dots, x_p) \geqslant f(x).$$

С учетом условия 1 леммы мы получаем утверждение (3).

2.2 Название другого подраздела

2.2.1 Более мелкий подраздел

Если разность энергий электронно-дырочных уровней E_2-E_1 близка к энергии предельного оптического фонона $\hbar\Omega_{LO}$, то в разложении волновых функций полного гамильтониана можно ограничиться нулевым приближением для всех состояний, за исключением близких по значению к E_2 .

2.2.2 Текст с таблицей

В таблице 1 представлены результаты сокращения словарей неисправностей для схем из каталога ISCAS'89.

Таблица 1 – Результат сокращения словарей неисправностей при помощи масок

1	2	3	4	5	6	7	8
S298	177	1932	341964	61	10797	3,16%	0,61
S344	240	1397	335280	59	14160	4,22%	0,53
S349	243	1474	358182	62	15066	4,21%	0,60
S382	190	12444	2364360	55	10450	0,44%	3,78
S386	274	2002	548548	91	24934	4,55%	1,40
S400	194	13284	2577096	58	11252	0,44%	4,28
S444	191	13440	2567040	60	11460	0,45%	4,26
S510	446	700	312200	70	31220	10,00%	0,63
S526	138	13548	1869624	38	5244	0,28%	2,41
S641	345	5016	1730520	132	45540	2,63%	7,06
S713	343	3979	1364797	131	44933	3,29%	5,61
S820	712	21185	15083720	244	173728	1,15%	126,99
S832	719	21603	15532557	253	181907	1,17%	135,18
S953	326	322	104972	91	29666	28,26%	0,27
S1423	293	750	219750	93	27249	12,40%	0,57
S1488	1359	22230	30210570	384	521856	1,73%	541,69

2.2.3 Текст с кодом программы

Термин «разреженная матрица» впервые был предложен Гарри Марковицем. В 1989 он был награжден премией имени Джона фон Неймана в том числе и за вклад в теорию методов для разреженных матриц.

В большинстве источников, разреженной матрицей называется матрица, в которой мало ненулевых элементов. Это нельзя назвать определением из-за слова «мало». В [?] понятие разреженной матрицы определяется так: «Мы можем называть матрицу разреженной, если применение к ней методов, описываемых в книге, экономит память и/или время». Таким образом, следует дать определение алгоритму для разреженных матриц. Алгоритмом для разреженных матриц будем называть алгоритм, у которого время работы и необходимый объем памяти зависят от количества ненулевых элементов в матрице.

Размерность квадратной матрицы A будем обозначать n, а количество ненулевых элементов в ней |A|.

Плотные матрицы обычно хранятся в качестве двумерного массива $n \times n$. Будем обозначать такой массив а. Разреженные матрицы не стоит хранить таким способом из-за слишком большого потребления памяти, которая будет занята в основном нулевыми элементами.

Один из вариантов представления разреженных матриц в памяти компьютера—в виде трех массивов: column, value и rowIndex. Размеры массивов column и value равны |A|. Размер rowIndex равен n+1. Ненулевые элементы матрицы A хранятся последовательно по строкам в этих массивах. Элемент column[i] содержит номер столбца, в котором содержится і-й ненулевой элемент, а value[i]—его величину. Массив rowIndex[i] содержит в себе индекс первого ненулевого элемента і-й строки. Все ненулевые элементы і-й строки содержатся в массивах column и value в элементах с индексами от rowIndex[i] по rowIndex[i + 1]-1. Для удобства полагают rowIndex[n] = |A|.

Для примера рассмотрим следующую матрицу:

$$\begin{pmatrix}
1 & 0 & 5 & 0 & 0 \\
0 & 2 & 7 & 4 & 0 \\
0 & 0 & 1 & 0 & 0 \\
9 & 6 & 0 & 3 & 0 \\
0 & 0 & 3 & 0 & 5
\end{pmatrix}$$

Maccuвы column, value и rowIndex для этой матрицы представлены в таблице 2.

Таблица 2 — Maccивы column, value и rowIndex

	0	1	2	3	4	5	6	7	8	9	10	11
column	0	2	1	2	3	2	0	1	3	2	4	
value	1	5	2	7	4	1	9	6	3	3	5	
rowIndex	0	2	5	6	9	11						

Неизвестный вектор и вектор правой части хранятся в виде массивов размера n. Массив неизвестного вектора обозначают x, а массив правой части — rhs.

Рассмотрим пример алгоритма для разреженных матриц. Алгоритм решения СЛАУ, представленной нижнетреугольной матрицей а, можно реализовать двумя вложенными циклами по n:

```
for(int i = 0; i $<$ n; ++i){
    x[i] = rhs[i];
    for(int j = 0; j $<$ i; ++j)
        x[i] -= a[i][j] * x[j];
    x[i] /= a[i][i];
}</pre>
```

Но, если матрица а хранится в разреженном виде, то в данном алгоритме можно проходить только по ненулевым элементам а:

```
for(int i = 0; i $<$ n; ++i){
    x[i] = rhs[i];
    for(int j = rowIndex[i]; j $<$ rowIndex[i + 1] - 1; ++j)
    x[i] -= value[j] * x[column[j]];
    x[i] /= value[rowIndex[i + 1] - 1];
}</pre>
```

В первом случае оценка времени работы будет $O(n^2)$, а во втором O(|A|).

Методы для разреженных матриц основаны на следующих главных принципах [?]:

- 1. Хранятся только ненулевые элементы матрицы.
- 2. Выполняются только те преобразования, которые действительно чтото изменяют. В примере не имеет смысла вычитать из x[i] значение x[j]*a[i][j], если a[i][j] равно нулю.
- 3. Число «новых элементов», возникающих, например, во время исключения Гаусса, стараются уменьшить путем перестановок строк и столбцов матрицы.

ЗАКЛЮЧЕНИЕ

В настоящей работы приведен пример оформления студенческой работы средствами системы ЫТЕХ.

Показано, как можно оформить документ в соответствии:

- с правилами оформления курсовых и выпускных квалификационных работ, принятых в Саратовском государственном университете в 2012 году;
- с правилами оформления титульного листа отчета о прохождении практики в соответствии со стандартом.

приложение а

Нумеруемые объекты в приложении

Таблица 3 – Results of pass-fail dictionary reduction with the help of masks

Circuit	Number	Number	The	The	The	% of	CPU
	of	of test	volume of	volume	volume of	pass-fail	running
	modelled	vectors in	pass-fail	of	masked	dictionary	time,
	faults	the test set	dictionary,	found	dictionary,		min
			bit	mask	bit		
S298	177	322	56994	30	5310	9,32%	0,07
S344	240	127	30480	29	6960	22,83%	0,04
S349	243	134	32562	35	8505	26,12%	0,05
S382	190	2074	394060	28	5320	1,35%	0,43
S386	274	286	78364	65	17810	22,73%	0,26
S400	194	2214	429516	32	6208	1,45%	0,99
S444	191	2240	427840	30	5730	1,34%	0,98
S526	138	2258	311604	28	3864	1,24%	0,61
S641	345	209	72105	58	20010	27,75%	0,24
S713	343	173	59339	58	19894	33,53%	0,19
S820	712	1115	793880	147	104664	13,18%	9,09
S832	719	1137	817503	151	108569	13,28%	9,20
S953	326	14	4564	13	4238	92,86%	0,01
S1423	293	150	43950	58	16994	38,67%	0,15
S1488	1359	1170	1590030	158	214722	13,50%	26,69

$$F(x) = \int_{a}^{b} f(x) dx.$$
 (5)

Таблица 4

0	1
1	0

ПРИЛОЖЕНИЕ Б Листинг программы

Код приложения task.pl.

приложение в

Многостраничная таблица

Таблица 5 – ГОСТ DIN ISO — Таблица соответствия стандартов

Стандарт	Наименование	Стандарт	Стандарт
ГОСТ		DIN	ISO
1	2	3	4
ГОСТ	Шплинты	DIN 94	ISO 1234
397-79			
ГОСТ	Шурупы с полукруглой головкой	DIN	ISO 7049
1144-80		96DIN	
		7981	
ГОСТ	Шурупы с потайной головкой	DIN	ISO 7050
1145-80		97DIN	
		7982	
ГОСТ	Шурупы с полупотайной	DIN	ISO 7051
1146-80	головкой	95DIN	
		7983	
ГОСТ	Винты установочные с	DIN 553	ISO 7434
1476-93	коническим концом и прямым		
	шлицем классов точности А и В		
ГОСТ	Винты установочные с плоским	DIN	ISO
1477-93	концом и прямым шлицем	438DIN	4766ISO
	классов точности А и В	551	7436
ГОСТ	Винты установочные с	DIN 417	ISO 7435
1478-93	цилиндрическим концом и		
	прямым шлицем классов		
	точности А и В		
ГОСТ	Винты установочные с	DIN 561	
1481-84	шестигранной головкой и		
	цилиндрическим концом		
	классов точности А и В		
ГОСТ	Винты установочные с	DIN 479	
1482-84	квадратной головкой и		
	цилиндрическим концом		
	классов точности А и В		
ГОСТ	Винты установочные с	DIN 479	
1485-84	квадратной головкой и		
	засверленным концом классов		
	точности А и В		

Продолжение таблицы 5

1	2	3	4
ГОСТ	Винты установочные с	DIN 480	
1486-84	квадратной головкой и		
	ступенчатым концом со сферой		
	классов точности А и В		
ГОСТ	Винты установочные с	DIN 478	
1488-84	квадратной головкой и буртиком		
	классов точности А и В		
ГОСТ	Винты с цилиндрической	DIN 84	ISO 1207
1491-80	головкой классов точности А и В		
ГОСТ	Гайки-барашки	DIN 315	
3032-76			
ГОСТ	Болты откидные	DIN 444	
3033-79			
ГОСТ	Пружины тарельчатые	DIN 2093	
3057-90			
ГОСТ	Канат стальной двойной свивки	DIN 3060	
3070-88	типа ТК конструкции 6х19		
	(1+6+12)+1 o.c.		
ГОСТ	Штифты цилиндрические	DIN 7DIN	ISO
3128-70	незакаленные	6325	2338ISO
			8734
ГОСТ	Штифты конические	DIN 1	ISO 2339
3129-70	незакаленные		
ГОСТ	Рым-болты	DIN 580	ISO 3266
4751-73			
ГОСТ	Гайки шестигранные стальные	DIN	ISO
5915-70	класса точности В	555DIN	4032ISO
		934	4033ISO
			8673ISO
			8674
ГОСТ	Гайки шестигранные низкие	DIN	ISO
5916-70	класса точности В	439DIN	4035ISO
		936	4036ISO
			8675

Продолжение таблицы 5

1	2	3	4
ГОСТ	Гайки шестигранные прорезные	DIN 935	EN ISO
5918-73	и корончатые класса точности В		7035EN
			ISO
			7036EN
			ISO 7037
ГОСТ	Гайки шестигранные прорезные	DIN 937	EN ISO
5919-73	и корончатые низкие класса		7038
	точности В		
ГОСТ	Гайки шестигранные класса	DIN	ISO
5927-70	точности А	555DIN	4032ISO
		934	4034ISO
			8673
ГОСТ	Гайки шестигранные прорезные	DIN	EN ISO
5932-73	и корончатые класса точности А	935DIN	7035EN
		937	ISO
			7036EN
			ISO 7037
ГОСТ	Гайки круглые с отверстиями на	DIN 1816	
6393-73	торце "под ключ"класса		
	точности А		
ГОСТ	Шайбы пружинные	DIN 127	
6402-70			
ГОСТ	Шайбы увеличенные. Классы	DIN	ISO
6958-78	точности А и С	440DIN	7094ISO
		9021	7093-1ISO
			7093-2
ГОСТ	Болты с потайной головкой и	DIN 608	
7786-81	квадратным подголовком класса		
	точности С		
ГОСТ	Болты с шестигранной		
7795-70	уменьшенной головкой и		
	направляющим подголовком,		
	класс точности В		