

Convert following into decimal

• Binary: **1101110**₂ **110**₁₀

• Octal: 4675 8 2493₁₀

• Hexadecimal: **FF4**₁₆ **4084**₁₀

Decimal -> Binary

567 100011011₂

2	567	Remainder	
2	283.5 283	0.5 x 2 = 1	A
2	141.5 141	0.5 x 2 = 1	
2	70.5 70	0.5 x 2 = 1	
2	35 35	0 x 2 = 0	
2	17.5 17	0.5 x 2 = 1	
2	8.5 8	0.5 x 2 = 1	
2	4 4	0 x 2 = 0	
2	2 2	0 x 2 = 0	
	1	0 x 2 = 0	

Decimal -> Octal

567

1067₈

8	567	Remainder
8	70.875 70	0.875 x 8 = 7
8	8.75 8	0.75 x 8 = 6
	1	0 x 8 = 0

Decimal -> Hexadecimal

567

237₁₆

16	567	Remainder
16	35.4375 35	0.4375 x 16 = 7
	2.1875 2	0.1875 x 16 = 3

Convert following decimal number into:

• Binary: **56** ₁₀ **111000** ₂

• Octal: **56** ₁₀ **70** ₈

• Hexadecimal: **56**₁₀ **38**₁₆

• The length of a representation grows, from right to left, like:

3rd 2nd 1st 0th

217 5217

Digit & Position

• In general, a number x may be represented with a representation of length n in the following manner (here d_p means the digit at position p).

d_{n-1}	d_3	d_2	d_1	d_0
-----------	-------	-------	-------	-------

- So for the number 199834, in decimal, d_0 =4, d_1 =3, d_2 =8, d_3 =9, d_4 =9 and d_5 =1.
- In general, We call the rightmost digit, d_0 , the least significant digit (LSD) and the leftmost digit d_{n-1} , the most significant digit (MSD).

BITS, BYTES and WORDS

• A digit in the binary number system is more commonly called a bit

• When a binary number is represented using 8 bits, the resulting representation, composed of d_0 , d_1 , d_2 ... d_7 , is called a **byte**

• Similarly:

- binary representation composed of 16 bits is called a word (2 bytes)
- binary representation composed of 32 bits is called a double word (4 bytes)
- binary representation composed of 64 bits is called a quadruple word (8 bytes)

BITS, BYTES and WORDS

- A less common, 4-bit representation of numbers is called **nibble**.
- The concept of a byte is fundamental in computer science because a byte is the **smallest addressable** unit of memory in a modern computer; furthermore, data is quantified in terms of byte!
- A byte is therefore a unit for measuring data in computers.

BITS, BYTES and WORDS

- The following quantifiers are important:
 - KILO

•
$$1K = 2^{10} = 1024$$

So how many bytes in 37KB?

MEGA

•
$$1M = 2^{20} = 1,048,576$$

So how many Kilo bytes in 137MB?

• GIGA

•
$$1G = 2^{30} = 1,073,741,824$$

So how many Mega bytes in 562GB?

• TERA

•
$$1T = 2^{40} = 1,099,511,627,776$$

So how Giga bytes in 307TB?

Thanks a lot

If you are taking a Nap, wake up.....Lecture Over