Is it time for an NBA expansion?*

My subtitle if needed

Yan Mezhiborsky

April 20, 2024

First sentence. Second sentence. Third sentence. Fourth sentence.

Table of contents

1	Introduction	2
2	Data	2
3	Model 3.1 Model set-up 3.1.1 Model justification	
4	Results	4
5	Discussion5.1 First discussion point5.2 Second discussion point5.3 Third discussion point5.4 Weaknesses and next steps	8
Αŗ	ppendix	g
Α	Additional data details	g
В	Model detailsB.1 Posterior predictive checkB.2 Diagnostics	9
R	eferences	11

^{*}Code and data are available at: https://github.com/Mezhi18/NBAExpansion .

1 Introduction

You can and should cross-reference sections and sub-sections. We use R Core Team (2023) and Wickham et al. (2019).

The remainder of this paper is structured as follows. Section 2....

Gebru et al. (2021)

2 Data

Talk more about it.

And also planes (?@fig-planes). (You can change the height and width, but don't worry about doing that until you have finished every other aspect of the paper - Quarto will try to make it look nice and the defaults usually work well once you have enough text.)

Talk way more about it.

3 Model

The goal of our modelling strategy is twofold. Firstly,...

Here we briefly describe the Bayesian analysis model used to investigate... Background details and diagnostics are included in Appendix B.

3.1 Model set-up

Define y_i as the average number of points per game scored by a team through out the NBA season. Then α is the average assists per game, ρ the average rebounds per game, β is blocks per game, ψ is steals per game and lastly, τ is turnovers per game, ι is the year, and η is the number of teams.

```
y_i|\mu_i, \sigma \sim \text{Normal}(\mu_i, \sigma)
                                                                                                             (1)
                                                                                                             (2)
        \mu_i = \alpha + \rho_i + \beta_i + \xi_i + \tau_i + \iota_i + \eta_i
         \alpha \sim \text{Normal}(0, 2.5)
                                                                                                             (3)
         \rho \sim \text{Normal}(0, 2.5)
                                                                                                             (4)
         \beta \sim \text{Normal}(0, 2.5)
                                                                                                             (5)
         \psi \sim \text{Normal}(0, 2.5)
                                                                                                             (6)
         \tau \sim \text{Normal}(0, 2.5)
                                                                                                             (7)
          \iota \sim \text{Normal}(0, 2.5)
                                                                                                             (8)
         \eta \sim \text{Normal}(0, 2.5)
                                                                                                             (9)
         \sigma \sim \text{Exponential}(1)
                                                                                                           (10)
                                                                                                           (11)
```

```
# Fit a multiple linear regression model
nba_model <- lm(PTS ~ Year + AST + TRB + STL + BLK + TOV + Num_Teams, data = nba_data)
create_future_data <- function(additional_teams) {</pre>
      latest data <- tail(nba data, 1)
      adjustment_factor <- 1 - 0.03 * additional_teams # Each new team reduces stats by 3%
      data.frame(
           Year = c(2024, 2025, 2026),
           Num_Teams = latest_data$Num_Teams + additional_teams,
            AST = rep(latest_data$AST * adjustment_factor, 3),
           TRB = rep(latest_data$TRB * adjustment_factor, 3),
            STL = rep(latest_data$STL * adjustment_factor, 3),
           BLK = rep(latest_data$BLK * adjustment_factor, 3),
            TOV = rep(latest_data$TOV * adjustment_factor, 3)
}
# Create data frames for each scenario
data_no_new_teams = create_future_data(0)
data one new team = create future data(1)
data_two_new_teams = create_future_data(2)
predict_points <- function(data, scenario_name) {</pre>
      predictions <- predict(nba_model, newdata = data)</pre>
     return(data.frame(Teams = scenario_name, Year = c(2025, 2026, 2027), Predicted_PTS = predicted
}
```

```
# Generate predictions for each scenario
predictions_no_new_teams <- predict_points(data_no_new_teams, "30 Teams")
predictions_one_new_team <- predict_points(data_one_new_team, "31 Teams")
predictions_two_new_teams <- predict_points(data_two_new_teams, "32 Teams")

# Combine predictions into a single data frame
all_predictions <- bind_rows(predictions_no_new_teams, predictions_one_new_team, predictions
# Reshape the data frame
wide_predictions <- all_predictions %>%
    pivot_wider(names_from = Year, values_from = Predicted_PTS, values_fill = list(Predicted_PTS)
# Print the reshaped data frame
wide_predictions
```

We run the model in R (R Core Team 2023) using the rstanarm package of Goodrich et al. (2022). We use the default priors from rstanarm.

3.1.1 Model justification

We expect a positive relationship between the size of the wings and time spent aloft. In particular...

We can use maths by including latex between dollar signs, for instance θ .

4 Results

Our results are summarized in ?@tbl-modelresults.

NBA Stats Over Years

NBA Stats Over Years (Post-2004)

Count of Records per Year for Scores of 70+ PTS from 1980 O

5 Discussion

5.1 First discussion point

If my paper were 10 pages, then should be be at least 2.5 pages. The discussion is a chance to show off what you know and what you learnt from all this.

5.2 Second discussion point

5.3 Third discussion point

5.4 Weaknesses and next steps

Weaknesses and next steps should also be included.

Appendix

A Additional data details

B Model details

```
Call:
lm(formula = PTS ~ Year + AST + TRB + STL + BLK + TOV + Num_Teams,
   data = nba_data)
Residuals:
    Min
            1Q Median
                            3Q
                                  Max
-2.20354 -1.04038 0.08029 1.00630 2.85776
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
          4.82377 136.99833 0.035 0.972101
(Intercept)
Year
           0.01899 0.07137 0.266 0.791682
AST
           TRB
           -3.16206 0.93494 -3.382 0.001711 **
STL
         -6.47018 1.53284 -4.221 0.000151 ***
BLK
           0.17886 0.55620 0.322 0.749587
TOV
Num_Teams -0.25656 0.34706 -0.739 0.464413
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.363 on 37 degrees of freedom
Multiple R-squared: 0.9607,
                          Adjusted R-squared: 0.9533
F-statistic: 129.3 on 7 and 37 DF, p-value: < 2.2e-16
```

B.1 Posterior predictive check

B.2 Diagnostics

	Points Model
(Intercept)	4.82
	(137.00)
Year	0.02
	(0.07)
AST	3.26
	(0.24)
TRB	1.09
	(0.38)
STL	-3.16
	(0.93)
BLK	-6.47
	(1.53)
TOV	0.18
	(0.56)
Num_Teams	-0.26
	(0.35)
Num.Obs.	45
R2	0.961
R2 Adj.	0.953
AIC	164.7
BIC	181.0
Log.Lik.	-73.374
RMSE	1.24

References

- Gebru, Timnit, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé III, and Kate Crawford. 2021. "Datasheets for Datasets." *Communications of the ACM* 64 (12): 86–92.
- Goodrich, Ben, Jonah Gabry, Imad Ali, and Sam Brilleman. 2022. "Rstanarm: Bayesian Applied Regression Modeling via Stan." https://mc-stan.org/rstanarm/.
- R Core Team. 2023. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
- Wickham, Hadley, Mara Averick, Jennifer Bryan, Winston Chang, Lucy D'Agostino McGowan, Romain François, Garrett Grolemund, et al. 2019. "Welcome to the tidyverse." *Journal of Open Source Software* 4 (43): 1686. https://doi.org/10.21105/joss.01686.