CS2101 Midterm I

1:20-3:00pm, Thursday, April 16, 2015

- 1. 10% Binary representations
 - i. Convert binary number 0101012 to decimal number
 - ii. Represent decimal number 1357₁₀ in 12-bit binary number
 - iii. Represent decimal number 1357₁₀ in 12-bit 2's complement binary number
- 2. 10% Prove that $\sim (A \& B) = \sim A \mid \sim B$

/* De Morgan's Theorem */

- 3. 20% In the K-Map below
 - i. Identify all prime implicants
 - ii. Identify all essential prime implicants
 - iii. Give a minimized Boolean expression of the function
 - iv. Implement the function using AND, OR and NOT gates

4. 10% Analyze the circuit schematic below. Express its function in Truth Table.

- 5. 10% We can implement a 1-bit full adder(FA) by composition of a majority function circuit and an odd function circuit.
 - i. Why?
 - ii. And How?

- 6. 15% Below is a 7-input 3-output function called X7-3. Its input are vector of 7 bits and output 3-bit binary number.
 - i. What is the function of X7-3?
 - ii. Construct an X15-4 using X7-3s (and some additional FAs) as building blocks.

- 7. 15% In addition to data selection, multiplexers can implement arbitrary function. Given a 4-to-1 multiplexer (binary select) below
 - i. What is function Y = f(A, B, C)?
 - ii. Rewire the multiplexer to implement a 3-input NOR function.

8. 10% In an n-bit adder/subtractor circuit operating on 2's complement binary numbers, how is overflow detected?

$$1 < i > 0 | 0 | 0 |_2 = 2^4 + 2^2 + 2^0 = 16 + 4 + 1 = 21_{10}$$

Existion
$$2^{10} + 2^{8} + 2^{6} + 2^{3} + 2^{2} + 2^{0}$$

$$= 1024 + 216 + 64 + 8 + 4 + 1$$

$$= 1357$$

2. Prove by Truth Table

1001	M P					,	
A	B	ARB	~(A(B)	~A	~ B	~A NB	
0	0	0	1	1	1	1	
0	(0	1	1	D)	
1	0	0	1	0	0	1	
1	Ţ	1	0	0	0	0	
			an Alb) = mAlms				

3.

«iv Prime Implicants

ab, ad, cd, bd, be

(ii) Essential PI ad, cd Id

ciis f= ad + cd + bd

	A	B	R=AB	$X = A^{1}R$	Y=XAR
(3	0	0		0
Ċ	7	1	. [1	0
	-	0	.)	0	1
l)	D	(J

X=B Y=A This circuit SNAP two bits

5. Full Adder

A	B	Cin	Cont.	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1		O
)	0	0	0	1
1	Ó	1	1	0
)	1	D	1	0
1	1	1	1	1

Who:

· Cout is I when two or inore is in the input > Majority Function

· S is I when one or three is in the input.

> ODD Function

6. Is it counts number of 15 is the Input

ABCYY 0000000		O-11 NOR
	ABC NOR(ABO)	0-3
010111111111111111111111111111111111111	000 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AB

Y is a prime number detector

8,

$$AB$$
+ - No OVF
+ + $a_{n-1}=0$, $a_{n-1}=0$, OVF when $c_{n-1}=1$, $c_n=0$
- $a_{n-1}=1$, $b_{n-1}=1$, OVF when $c_{n-1}=0$, $c_n=1$
- + No OVF