Functional Link Artificial Neural Network (FLANN)

By

Prof. G. Panda, FNAE, FNASc.

IIT Bhubaneswar

FLANN

- The functional link ANN or Pao-network originally proposed by Pao.
- Single layer ANN structure
- Need of hidden layer is removed
- Capable of forming arbitrarily complex decision regions by generating nonlinear decision boundaries.
- Offers less computational complexity
- Higher convergence speed than MLP

Structure of FLANN

Types of Functional expansions

- Trigonometric
- Polynomial
- Exponential
- Chebyshev

Trigonometric Expansion

Polynomial Expansion

Chebyschev expansion:

$$T_{n+1}(x) = 2x T_n(x) - T_{n-1}(x)$$

The First Few Chebyschev Polynomials

$$T_{0}(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

Learning rule

$$Wt(k+1)=Wt(k) + mu * e(k)*X(k)$$

Where

mu=convergence coefficient

e(k) = error at kth instant

X(k) = expanded input vector at kth instant

FLANN Structure with sigmoid

Delta Learning

The error is given by

$$e(k) = d(k) - y(k)$$

Then the delta is calculated as

$$\delta(k) = (1 - y(k)^2) * e(k)$$

Now the weight update equation becomes

$$W(k+1) = W(k) + \mu \Delta(k) + \gamma \Delta(k-1)$$

where

$$\Delta(k) = \delta(k) \left[(X_k) \right]^T$$

Epoch based learning

Application of all N patterns constitutes one experiment.

At the end of each experiment N sets of $\Delta w(i)$ are obtained

Then the average change of weight is computed as

$$\Delta w(i) = \frac{1}{N} \sum_{k=1}^{N} \Delta w (k)$$

The weights of the FLANN model is then updated according to the relation

$$w(i+1) = w(i) + \Delta w(i)$$

Similarly the bias weight is updated using

$$w_b(i+1) = w_b(i) + \Delta w_b$$

Function Approximation

The two examples are

$$f_1(x) = x^3 + 0.3x^2 - 0.4x$$

$$f_2(x) = 0.6\sin(\pi x) + 0.3\sin(3\pi x) + 0.1\sin(5\pi x)$$

In both cases the input pattern is expanded using trigonometric expansion

Fifteen input nodes including a bias input are used

The nonlinearity associated is tanh() function.

The convergence coefficient is set to 0.1

Training of the weights of FLANN model are carried out by using an uniformly distributed random signal over the interval [-1,1] as input.

Function approximation

During testing the input to the identified model used is given by

$$x(k) = \begin{cases} \sin \frac{2\pi k}{250} & \text{for } k \le 250\\ 0.8 \sin \frac{2\pi k}{250} + 0.2 \sin \frac{2\pi k}{25} & \text{for } k > 250 \end{cases}$$

Example-2

Block Diagram for System Identification model

Simulation study:

- ➤ Input signal: uniformly distributed random signal [-.5,.5].
- ➤SNR: 30dB
- $>H(z): 0.260 + 0.930z^{-1} + 0.260z^{-2}$
- > The learning parameter μ : 0.02
- >Iteration: 2000
 - Averaging: 50 times
- ➤ For channel equalization delay: 3
- ➤ Non linearity
- >NL = 0 : b(k)= a(k)
- >NL = 1 : y= tanh(x)
- >NL = 2: $y = x + 0.2 * (x^2) 0.1*(x^3)$
- >NL = 3: $y = x 0.9 * (x.^3)$
- >NL = 4 : y= x + 0.2 * (x^2) 0.1 * (x^3) + 0.5*cos(pi*x)
- >A linear channel is modeled by NL = 0

y=x

Fig. 6(a)

Fig. 6(b)

y = tanh(x)

0.6 0.4 0.2 response matching 0 -0.2 -0.4 desired **CFLANN** -0.6 FLANN MLP -0.8 5 10 15 20 No of iteration

Fig. 6(c)

Fig. 6(d)

$$y = x + 0.2 * (x^2) - 0.1*(x^3)$$

Fig. 6(e)

Fig. 6(f)

$$y = x - 0.9 * (x.^3)$$

Fig. 6(g)

Fig. 6(h)

$$y = x + 0.2 * (x^2) - 0.1 * (x^3) + 0.5 * cos(pi*x)$$

Fig. 6(i)

Fig. 6(j)

Block diagram for channel equalization

Channel Equalization

Fig. 7(a):y=x Fig. 7(b): y= tanh(x)

Channel Equalization

Fig. 7(c):
$$y = x + 0.2 * (x^2) - 0.1*(x^3)$$

Fig. 7(d): $y = x - 0.9 * (x^3)$

Fig. 7(c)

Fig. 7(d)

Channel Equalization

Fig. 7(e): $y=x + 0.2 * (x^2) - 0.1 * (x^3) + 0.5 * cos(pi*x)$

Fig. 7(e)

Conclusion:

The Chebyshev FLANN (CFLANN) structure is a better candidate in comparison to other nonlinear structures like MLP and FLANN in terms of

- >better and faster convergence
- >less mathematical complexity
- >less no input sample.

Unlike other algorithms it is observed that the CFLANN structure exhibits **learning-while functioning** instead of **learning then functioning** hence it is suitable for **On-line identification.**

THANK YOU