# CÁLCULO DIFERENCIAL GEOMÉTRICO NO $\mathbb{R}^n$

Élvia Mureb Sallum Lucia Satie Ikemoto Murakami Juaci Picanço da Silva

INSTITUTO DE MATEMÁTICA E ESTATÍSTICA UNIVERSIDADE DE SÃO PAULO

## UNIVERSIDADE DE SÃO PAULO

REITORA: Profa. Dra. Suely Vilela

## INSTITUTO DE MATEMÁTICA E ESTATÍSTICA

DIRETOR: Prof. Dr. Paulo Domingos Cordaro

VICE-DIRETOR: Prof. Dr. Flavio Ulhoa Coelho

# COMISSÃO DE PÓS-GRADUAÇÃO

PRESIDENTE: Prof. Dr. Eduardo do Nascimento Marcos

# ENDEREÇO PARA CORRESPONDÊNCIA:

Instituto de Matemática e Estatística Universidade de São Paulo Rua do Matão, 1010 Cidade Universitária, São Paulo, SP 05508-090

# Cálculo Diferencial Geométrico no $\mathbb{R}^n$

Élvia Mureb Sallum Lucia Satie Ikemoto Murakami Juaci Picanço da Silva

> IME-USP 2009

# Introdução

O conteúdo desta apostila corresponde às notas de aula de parte do curso de "Cálculo Avançado", pertencente ao programa de pós-graduação do IME-USP, ministrado pela primeira autora em 1993. Este material foi usado pela primeira vez no "XVII Cursos de Verão", em 1998, na disciplina "Cálculo Diferencial Geométrico no  $\mathbb{R}^n$ ". A primeira versão desta apostila também foi utilizada no verão seguinte pelo professor Luiz Augusto Fernandes de Oliveira, a quem agradecemos pelas sugestões que resultaram na versão atual. O objetivo destas notas é servir como um roteiro para o estudo do Cálculo Diferencial e apresentar diversas aplicações, sobretudo nos exercícios propostos ao final do texto.

Este trabalho foi parcialmente financiado pela FAPESP e CAPES.

São Paulo, dezembro de 1999.

As observações de alunos e monitores da disciplina correspondente, em vários Cursos de Verão do IME-USP, e do professor Fabiano Gustavo Braga Brito permitiram que editássemos esta segunda versão com algumas melhorias e várias correções. A eles, o nosso agradecimento.

São Paulo, fevereiro de 2009.

# Sumário

| Introduç | ção                              | 5  |
|----------|----------------------------------|----|
| Capítulo | o 1. Topologia do $\mathbb{R}^n$ | 1  |
| Capítulo | 2. Funções contínuas             | 7  |
| Capítulo | 3. Funções diferenciáveis        | 17 |
| 3.1.     | O Teorema da Função Inversa      | 35 |
| 3.2.     | O Teorema da Função Implícita    | 42 |
| 3.3.     | Multiplicadores de Lagrange      | 51 |
| 3.4.     | Teorema da Imersão               | 53 |
| 3.5.     | Teorema da Submersão             | 57 |
| 3.6.     | Teorema do Posto                 | 59 |
| Exercíci | ios                              | 63 |
| Referên  | cias Bibliográficas              | 79 |
| Índic    | e Remissivo                      | 80 |
| Índice F | Remissivo                        | 81 |

#### CAPíTULO 1

# Topologia do $\mathbb{R}^n$

Consideraremos o espaço  $\mathbb{R}^n$  com a métrica induzida pelo produto interno  $x.y = \sum_{i=1}^n x_i y_i$ , onde  $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n) \in \mathbb{R}^n$ . Assim,

$$||x|| = \sqrt{x \cdot x} = \sqrt{\sum_{i=1}^{n} x_i^2} \text{ e } d(x, y) = ||x - y||.$$

A bola aberta de centro p e raio r > 0 é o conjunto

$$B_r(p) = \{ x \in \mathbb{R}^n \colon d(x, p) < r \}$$

e a bola fechada de centro p e raio r > 0 é

$$\overline{B}_r(p) = \{x \in \mathbb{R}^n : d(x,p) \le r\}.$$

Temos as seguintes definições:

DEFINIÇÃO. Um subconjunto  $A \subset \mathbb{R}^n$  é *aberto* se, para todo  $p \in A$ , existir r > 0 tal que  $B_r(p) \subset A$ . Um subconjunto  $F \subset \mathbb{R}^n$  é *fechado* se seu complementar,  $F^c$ , for aberto.

DEFINIÇÃO. Dado  $D \subset \mathbb{R}^n$ , dizemos que um ponto  $p \in \mathbb{R}^n$  é

- 1. um *ponto interior* a D se  $p \in D$  e existir r > 0 de modo que  $B_r(p) \subset D$ ;
- 2. um ponto de fronteira de D se, para todo r>0,  $B_r(p)\cap D\neq\emptyset$  e  $B_r(p)\cap D^c\neq\emptyset$ ;
- 3. um *ponto de acumulação* de D se, para todo r > 0, existir  $x \in D \cap B_r(p)$ , com  $x \neq p$ ;
- 4. um *ponto de aderência* de D se, para todo r > 0, existir  $x \in D \cap B_r(p)$ .

Denotamos os conjuntos dos pontos interiores, de fronteira, de acumulação e de aderência de D, respectivamente por  $\stackrel{\circ}{D}$ ,  $\partial D$ , D' e  $\overline{D}$ .

EXEMPLO 1.1. Somente usando as definições de aberto e fechado, podemos garantir que

- 1. o conjunto vazio e  $\mathbb{R}^n$  são abertos e fechados;
- 2. o intervalo  $[0,1[\subset\mathbb{R}$  não é aberto nem fechado;
- 3. o intervalo  $[0, \infty] \subset \mathbb{R}$  é fechado;

- 4. o conjunto  $\{p_1, p_2, \dots, p_k\} \subset \mathbb{R}^n$  é fechado;
- 5. para todo r > 0,  $B_r(p)$  é aberto e  $\overline{B}_r(p)$  é fechado;
- 6. para todo subconjunto  $D \subset \mathbb{R}^n$ ,  $\overset{\circ}{D}$  é aberto e  $\partial D$ , D' e  $\overline{D}$  são fechados;
- 7. o conjunto  $\{\frac{1}{n}: n \in \mathbb{N}^*\} \subset \mathbb{R}$  não é aberto nem fechado;
- 8. o conjunto  $\{0,1,\frac{1}{2},\ldots,\frac{1}{n},\ldots\}\subset\mathbb{R}$  é fechado;
- 9. se  $\mathbb{Q}$  denota o conjunto dos números racionais então  $\mathbb{Q}^n \subset \mathbb{R}^n$  não é aberto nem fechado;
- 10. se  $A \subset \mathbb{R}^n \times \mathbb{R}^m$  é aberto então  $\pi_m(A) \subset \mathbb{R}^m$  é aberto, onde  $\pi_m$  é a projeção  $\pi_m(x,y) = y$ , de  $\mathbb{R}^n \times \mathbb{R}^m$  em  $\mathbb{R}^m$ ;
- 11. se  $A \subset \mathbb{R}^m$  e  $B \subset \mathbb{R}^n$  são abertos então  $A \times B \subset \mathbb{R}^{n+m}$  é aberto.

## Proposição 1.2. *Temos:*

- (a) Se  $(A_i)_{i\in I}$  são abertos de  $\mathbb{R}^n$  então os conjuntos  $\bigcup_{i\in I} A_i$  e  $\bigcap_{i\in I} A_i$  são abertos de  $\mathbb{R}^n$ .
- (b) Se  $(F_i)_{i\in I}$  são fechados de  $\mathbb{R}^n$  então os conjuntos  $\bigcap_{i\in I} F_i$  e  $\bigcup_{i\in I} F_i$  são fechados de  $\mathbb{R}^n$ .

DEMONSTRAÇÃO. (a) A demonstração é feita usando somente a definição de aberto.

(b) Usa o fato que 
$$(\bigcap F_i)^c = \bigcup F_i^c$$
 e  $(\bigcup F_i)^c = \bigcap F_i^c$ .

EXEMPLO 1.3. Observe que interseção infinita de abertos não é necessariamente um aberto, nem união inifinita de fechados é necessariamente um fechado, já que  $\bigcap_{n=1}^{\infty} \left[ -\frac{1}{n}, \frac{1}{n} \right] = \left[ -1, 1 \right[$  não é fechado.

Algumas caracterizações de ponto de acumulação são dadas pela

PROPOSIÇÃO 1.4. Sejam  $D \subset \mathbb{R}^n$  e  $p \in \mathbb{R}^n$ . São equivalentes:

- (a) p é ponto de acumulação de D;
- (b) para todo r > 0,  $B_r(p)$  contém uma infinidade de pontos de D;
- (c) Existe uma sequência  $x_n$  de elementos de D, todos distintos de p, que converge para p.

DEMONSTRAÇÃO. Exercício.

O seguinte resultado caracteriza os conjuntos fechados de  $\mathbb{R}^n$ .

PROPOSIÇÃO 1.5. Seja  $F \subset \mathbb{R}^n$ . São equivalentes:

(a) F é fechado;

- (b) F contém todos os seus pontos de acumulação;
- (c) F contém todos os seus pontos de fronteira;
- (d) se  $x_n$  é uma seqüência em F que converge para p então  $p \in F$ .

DEMONSTRAÇÃO. Exercício.

DEFINIÇÃO. Um subconjunto  $K \subset \mathbb{R}^n$  é *compacto* se qualquer cobertura de K por abertos admitir uma subcobertura finita, isto é, para toda família  $(\mathcal{A}_{\alpha})_{\alpha \in I}$  de abertos de  $\mathbb{R}^n$  com  $K \subset \bigcup_{\alpha \in I} \mathcal{A}_{\alpha}$ , existirem  $\alpha_1, \ldots, \alpha_s$  tais que K está contido em  $\mathcal{A}_{\alpha_1} \cup \ldots \cup \mathcal{A}_{\alpha_s}$ .

EXEMPLO 1.6. Usando apenas a definição, podemos concluir que

- 1. o intervalo  $[0,1] \subset \mathbb{R}$  não é compacto;
- 2. o intervalo [0,∞[ não é compacto;
- 3. o conjunto  $\{1,\frac{1}{2},\ldots,\frac{1}{n},\ldots\}$  não é compacto;
- 4. o conjunto  $\{0, \overline{1}, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$  é compacto;
- 5. qualquer conjunto finito  $\{p_1, p_2, \dots, p_m\} \subset \mathbb{R}^n$  é compacto;
- 6. se  $K \subset \mathbb{R}^n$  é compacto e  $p \in \mathbb{R}^m$ , então  $\{p\} \times K \subset \mathbb{R}^{n+m}$  é compacto.

TEOREMA 1.7 (Heine Borel). Dados a e b números reais, com a < b, o intervalo  $[a,b] \subset \mathbb{R}$  é compacto.

DEMONSTRAÇÃO. Dada uma cobertura  $(\mathcal{A}_{\alpha})_{\alpha \in I}$  por abertos de [a,b], seja  $S = \{x \in [a,b] : [a,x] \text{ \'e coberto por um número finito de abertos } \mathcal{A}_{\alpha}\}.$ 

Temos que S é não vazio, já que  $a \in S$ , e S é limitado superiormente por b. Assim, existe o supremo de S, sup S, e  $a \le \sup S \le b$ . Mostremos que sup S = b. Seja  $\alpha$  tal que sup  $S \in \mathcal{A}_{\alpha}$ . Consideremos  $x \in \mathcal{A}_{\alpha} \cap S$  e  $y \in \mathcal{A}_{\alpha}$  tal que sup S < y. Sejam  $\alpha_1 \dots, \alpha_n$  tais que  $[a,x] \subset \bigcup_{i=1}^n \mathcal{A}_{\alpha_i}$ . Como  $[a,y] \subset \mathcal{A}_{\alpha_1} \cup \dots \cup \mathcal{A}_{\alpha_n} \cup \mathcal{A}_{\alpha}$  e  $y > \sup S$ , devemos ter sup S = b e, mais ainda,  $b \in S$ . Portanto, [a,b] é compacto.  $\square$ 

LEMA 1.8. Sejam  $K \subset \mathbb{R}^n$  compacto,  $p \in \mathbb{R}^m$  e  $(\mathcal{A}_{\alpha})_{\alpha \in I}$  uma cobertura de  $\{p\} \times K$  por abertos de  $\mathbb{R}^m \times \mathbb{R}^n$ . Então existe um aberto  $A(p) \subset \mathbb{R}^m$ , com  $p \in A(p)$ , tal que  $A(p) \times K$  é coberto por um número finito dos  $\mathcal{A}_{\alpha}$ .

DEMONSTRAÇÃO. Podemos supor  $(\mathcal{A}_{\alpha})$  cobertura finita de  $\{p\} \times K$ . Para todo ponto (p,x) em  $\{p\} \times K$ , existe  $\alpha$  tal que  $(p,x) \in \mathcal{A}_{\alpha}$ . Consideramos, agora, abertos  $C_x \times D_x$  tais que  $p \in C_x \subset \mathbb{R}^m$ ,  $x \in D_x \subset \mathbb{R}^n$  e  $C_x \times D_x \subset \mathcal{A}_{\alpha}$ . Como  $(C_x \times D_x)_{x \in K}$  é cobertura por abertos de  $\{p\} \times K$ , existem  $x_1, \ldots, x_s \in K$  tais que  $\{p\} \times K \subset C_{x_1} \times D_{x_1} \cup \ldots \cup C_{x_s} \times D_{x_s}$ . Basta tomar  $A(p) = \bigcap_{i=1}^s C_{x_i}$ .

PROPOSIÇÃO 1.9. Temos as seguintes propriedades:

- 1. Se  $K_1 \subset \mathbb{R}^n$  e  $K_2 \subset \mathbb{R}^m$  são compactos então o conjunto  $K_1 \times K_2 \subset \mathbb{R}^{n+m}$  é compacto.
- 2. Se  $K_i \subset \mathbb{R}^{n_i}$  são compactos, para i = 1, ..., l, então  $\prod_{i=1}^{l} K_i \subset \mathbb{R}^{n_1 + \cdots + n_l}$  é compacto.
- compacto.

  3. O conjunto  $\prod_{i=1}^n [a_i,b_i] \subset \mathbb{R}^n$  é compacto.

DEMONSTRAÇÃO. Basta demonstrar a parte 1. Dada uma cobertura  $(\mathcal{A}_{\alpha})$ , por abertos, de  $K_1 \times K_2$ , para cada  $p \in K_1$ , existe um aberto  $A(p) \subset \mathbb{R}^n$ ,  $p \in A(p)$  tal que  $A(p) \times K_2$  é coberto por um número finito de  $\mathcal{A}_{\alpha}$ . Temos  $K_1 \subset \bigcup_{p \in K_1} A(p)$ ; como  $K_1$  é compacto, existem  $A(p_1), \ldots, A(p_s)$  tais que  $K_1$  está contido em  $A(p_1) \cup \ldots \cup A(p_s)$ . Dessa maneira, obtemos

$$K_1 \times K_2 \subset \bigcup_{i=1}^s (A(p_i) \times K_2) \subset \bigcup_{\text{finita}} \mathcal{A}_{\alpha}.$$

Portanto,  $K_1 \times K_2$  é compacto.

LEMA 1.10. Todo fechado contido em um compacto é compacto.

DEMONSTRAÇÃO. Sejam F fechado e K compacto, com  $F \subset K$ . Seja  $(\mathcal{A}_{\alpha})$  uma cobertura por abertos de F. Então  $K \subset (\bigcup_{\alpha} \mathcal{A}_{\alpha}) \cup F^c$  e, portanto, existem  $\alpha_1, \ldots, \alpha_s$  tais que  $K \subset \mathcal{A}_{\alpha_1} \cup \ldots \cup \mathcal{A}_{\alpha_s} \cup F^c$ . Assim,  $F \subset \mathcal{A}_{\alpha_1} \cup \ldots \cup \mathcal{A}_{\alpha_s}$ .

PROPOSIÇÃO 1.11. Se  $D \subset \mathbb{R}^n$  é um conjunto fechado e limitado então D é compacto.

DEMONSTRAÇÃO. Temos  $D \subset \prod_{i=1}^{n} [a_i, b_i]$ , pois D é limitado. O resultado segue do lema anterior e da parte (3) da Proposição 1.9.

OBSERVAÇÃO 1.12. Nem sempre fechado e limitado é compacto. Por exemplo,  $\mathbb{R}^n$  com a métrica

$$d(x,y) = \begin{cases} 1, & \text{se } x \neq y; \\ 0, & \text{se } x = y. \end{cases}$$

De fato,  $\mathbb{R}^n = B_2(0)$  é limitado e é fechado. Além disso, observemos que  $\mathbb{R}^n = \bigcup_{p \in \mathbb{R}^n} \{p\} = \bigcup_{p \in \mathbb{R}^n} B_1(p)$  não admite subcobertura finita.

PROPOSIÇÃO 1.13. Se  $K \subset \mathbb{R}^n$  é compacto então K é fechado e limitado.

DEMONSTRAÇÃO. Temos que  $K \subset \bigcup_{n=1}^{\infty} B_n(0) = \mathbb{R}^n$ . Como K é compacto, existem  $n_1, \ldots, n_s$  tais que  $K \subset B_{n_1}(0) \cup \ldots \cup B_{n_s}(0) \subset B_{\max\{n_1, \ldots, n_s\}}(0)$ . Assim, K é limitado. Mostremos que K é fechado. Dado  $p \in K^c$ , para cada  $x \in K$ , seja  $r_x > 0$  tal que  $B_{r_x}(x) \cap B_{r_x}(p) = \emptyset$ . Portanto,  $K \subset \bigcup_{x \in K} B_{r_x}(x)$ . Logo, existem  $x_1, \ldots, x_s \in K$  tais que  $K \subset B_{r_{x_1}} \cup \ldots \cup B_{r_{x_s}}$ , de onde segue que  $B_{\min\{r_{x_1}, \ldots, r_{x_s}\}}(p) \subset K^c$ .

COROLÁRIO 1.14. Se  $K \subset \mathbb{R}$  é um conjunto compacto e não vazio então  $\sup K$  e  $\inf K$  pertencem a K.

OBSERVAÇÃO 1.15. Em  $\mathbb{R}^n$  (com a métrica usual) são equivalentes:

- (i) *K* é fechado e limitado;
- (ii) *K* é compacto;
- (iii) Todo subconjunto infinito em *K* tem ponto de acumulação em *K*;
- (iv) Toda sequência em K admite subsequência convergente em K. Para completar a demonstração, veja [3].

DEFINIÇÃO. Dado  $E \subset \mathbb{R}^n$ , dizemos que  $A \subset E$  é *aberto de* E se  $A = \mathcal{A} \cap E$ , onde  $\mathcal{A}$  é aberto de  $\mathbb{R}^n$  e  $F \subset E$  é *fechado de* E se  $F = \mathcal{F} \cap E$ , onde  $\mathcal{F}$  é fechado de  $\mathbb{R}^n$ .

DEFINIÇÃO.  $E \subset \mathbb{R}^n$  é *conexo* se não existirem abertos  $\mathcal{A}$  e  $\mathcal{B}$  de  $\mathbb{R}^n$  tais que  $\mathcal{A} \cap E$  e  $\mathcal{B} \cap E$  sejam disjuntos, não vazios e  $E \subset \mathcal{A} \cup \mathcal{B}$  ou, equivalentemente, se não existirem abertos A e B de E tais que  $A \cap B = \emptyset$ ,  $A \neq \emptyset \neq B$  e  $E = A \cup B$ .

TEOREMA 1.16. Os conexos da reta são os intervalos.

DEMONSTRAÇÃO. Seja E um subconjunto de  $\mathbb{R}$ . Se E não é um intervalo então existem pontos  $x,y\in E$  e  $c\not\in E$  tais que x< c< y. Os conjuntos abertos  $\mathcal{A}=]-\infty,c$  [ e  $\mathcal{B}=]c,+\infty$  [ mostram que E não é conexo. Portanto, todo conexo é um intervalo. Mostremos agora que todo intervalo é conexo. Seja I um intervalo. Se  $I=\{p\}$  então segue da definição que I é conexo. Suponha que I não seja conexo. Então existem abertos  $\mathcal{A},\mathcal{B}\subset\mathbb{R}$  tais que  $\mathcal{A}\cap I$  e  $\mathcal{B}\cap I$  são disjuntos, não vazios e  $I\subset\mathcal{A}\cup\mathcal{B}$ . Sejam  $x\in\mathcal{A}\cap I$  e  $y\in\mathcal{B}\cap I$ . Podemos considerar que x< y. Então  $S=[x,y]\cap\mathcal{A}$  é não vazio e limitado superiormente por y. Seja  $c=\sup S\in[x,y]\subset I$ . Se  $c\in\mathcal{A}$  então c< y e existiria  $\varepsilon>0$  tal que  $(c,c+\varepsilon)\subset\mathcal{A}\cap[x,y]=S$ , logo, c não seria limitante superior de S. Logo,  $c\not\in A$ . De modo análogo, prova-se que  $c\not\in \mathcal{B}$ . Assim,  $c\in I$  e  $c\not\in \mathcal{A}\cup\mathcal{B}$ , o que é uma contradição. Portanto, I é conexo.

#### CAPíTULO 2

# Funções contínuas

Consideraremos funções f definidas em  $D \subset \mathbb{R}^n$  com valores em  $\mathbb{R}^k$ .

DEFINIÇÃO. Dado  $p \in \mathbb{R}^n$ , ponto de acumulação de D, escrevemos

$$\lim_{x \to p} f(x) = c \in \mathbb{R}^k$$

se, para todo  $\varepsilon > 0$ , existir  $\delta > 0$  tal que, para todo  $x \in D \cap (B_{\delta}(p) - \{p\})$ , tivermos  $f(x) \in B_{\varepsilon}(c)$ ; ou ainda se, para todo  $\varepsilon > 0$ , existir  $\delta > 0$  tal que, para todo  $x \in D$ ,  $0 < ||x - p|| < \delta$  implicar  $||f(x) - c|| < \varepsilon$ .

DEFINIÇÃO. Dizemos que f é contínua em  $p \in D$  se, para todo  $\varepsilon > 0$ , existir  $\delta > 0$  tal que, para todo  $x \in B_{\delta}(p) \cap D$ , tivermos  $f(x) \in B_{\varepsilon}(f(p))$ .

- OBSERVAÇÃO 2.1. 1. Se p é ponto isolado de D (isto é,  $p \in D$  mas não é ponto de acumulação de D), então f é contínua em p;
- 2. Quando  $p \in D$  é ponto de acumulação de D, então

f é contínua em p se, e somente se,  $\lim_{x\to p} f(x) = f(p)$ .

EXEMPLO 2.2. 1. A projeção  $\pi$ :  $\mathbb{R}^n \to \mathbb{R}$  dada por  $\pi(x) = x_i$ , onde  $x = (x_1, \dots, x_n)$ , é contínua, pois

$$\|\pi(x) - \pi(p)\| = |x_i - p_i| \le \sqrt{\sum_{i=1}^n (x_i - p_i)^2} = \|x - p\|.$$

Dado  $\varepsilon > 0$ , seja  $\delta = \varepsilon$ . Assim, se  $||x - p|| < \delta$  então  $||\pi(x) - \pi(p)|| < \varepsilon$ .

- 2. Toda função  $f: \mathbb{R}^n \to \mathbb{R}^k$  lipschitziana (isto é, existe uma constante M tal que, para todo  $x, y \in \mathbb{R}^n, ||f(x) f(y)|| \le M||x y||$ ) é contínua.
- 3. A função  $f \colon \mathbb{R}^n \to \mathbb{R}$  dada por  $f(x) = \|x\|$  é contínua, pois vale a designal dade  $\|x\| \|y\| \le \|x y\|$  (Exercício 1 da lista).
- 4. Toda função linear  $L: \mathbb{R}^n \to \mathbb{R}^k$  é contínua: de fato, seja  $A = (a_{ij})$  a matriz de L em relação a base canônica e sejam  $\vec{a}_i = (a_{i1}, \dots, a_{in})$ , para

 $i=1,\ldots,k$ .

$$L(x) = \begin{pmatrix} \vec{a}_1 \\ \vdots \\ \vec{a}_k \end{pmatrix} x = \begin{pmatrix} \vec{a}_1 . x \\ \vdots \\ \vec{a}_k . x \end{pmatrix}.$$

Portanto, segue da desigualdade de Cauchy-Schwarz (Exercício 1 da lista) que

$$||L(x)|| = \sqrt{\sum_{i_1}^k (\vec{a}_i.x)^2} \le \sqrt{\sum_{i=1}^k ||\vec{a}_i||^2 ||x||^2} = \sqrt{\sum_{i,j} a_{ij}^2} ||x||.$$

Escrevendo  $\|L\| = \sqrt{\sum_{i,j} a_{ij}^2}$ , temos

$$||L(x)|| \le ||L|| ||x||. \tag{1}$$

Assim,  $||L(x) - L(p)|| = ||L(x-p)|| \le ||L|| ||x-p||$ e, portanto, L é lipschitziana. Observe que também temos o seguinte fato:

$$||L(x)|| \le ||L||_1 ||x||, \tag{2}$$

onde  $\|L\|_1 = \sup\{\|L(x)\| : \|x\| \le 1\} < \infty$ . De fato, segue de (1) que o conjunto  $\{\|L(x)\| : \|x\| \le 1\}$  é limitado superiormente e, para x = 0, (2) é verdadeira. Se  $x \ne 0$  então  $\left\|L\left(\frac{x}{\|x\|}\right)\right\| \le \|L\|_1$ . Logo resulta que  $\|L(x)\| \le \|L\|_1 \|x\|$ , para todo  $x \in \mathbb{R}^n$ .

PROPOSIÇÃO 2.3. Dadas  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  e  $p \in D$ , temos

- 1. A função  $f = (f_1, ..., f_k)$  é contínua em p se e somente se, para todo i,  $f_i$  é contínua em p.
- 2. Se f é contínua em p então, para todo  $i \in \{1,2,\ldots,n\}$ , a função de uma variável  $f(p_1,\ldots,p_{i-1},t,p_{i+1},\ldots,p_n)$  é contínua em  $t=p_i$  (porém a recíproca não é verdadeira).
- 3. Se  $p \in D$  é ponto de acumulação de D então f é contínua em p se, e somente se, para toda seqüência  $x_n$  de elementos de D que converge para p, tivermos que  $f(x_n)$  converge para f(p).
- 4. Se f é contínua em p, então f é localmente limitada nesse ponto.
- 5. Se f é contínua em p e  $f(p) \neq 0$ , então, localmente em p, f tem o mesmo sinal de f(p), se k = 1.
- 6. Se  $f,g:D\subset\mathbb{R}^n\to\mathbb{R}^k$  são contínuas em  $p\in D$  então f+g e  $\lambda f$  são contínuas em p; se k=1 então fg é contínua em p e se k=1 e  $g(p)\neq 0$  então  $\frac{f}{g}$  é contínua em p.

7. Se  $D \subset \mathbb{R}^n \xrightarrow{f} B \subset \mathbb{R}^k \xrightarrow{g} \mathbb{R}^m$ , com f contínua em  $p \in D$  e g contínua em  $f(p) \in B$  então  $g \circ f$  é contínua em p.

DEMONSTRAÇÃO. Faça como exercício.

EXERCÍCIO. Enuncie e demonstre propriedades análogas para limites, observando que para a correspondente a 7. é necessário colocar como hopótese, além da existência dos limites  $\lim_{x\to p} f(x) = c$  e  $\lim_{y\to c} g(y)$ , que g não seja constante em  $B_r(c)\cap B$ , para algum r>0.

EXEMPLO 2.4. 1. Contra-exemplo para a recíproca da propriedade 2:

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário.} \end{cases}$$

Temos que  $f(x,0) \equiv 0$  é contínua em x=0 e  $f(0,y) \equiv 0$  é contínua em y=0. Porém f não é contínua em (0,0), pois  $f(y^2,y) \stackrel{(y\neq 0)}{=} 1$ . Observemos que f é contínua em (0,0), quando restrita a qualquer reta passando por esse ponto, pois se  $\gamma(t)=tv$ , onde  $v=(v_1,v_2)\neq (0,0)$ , então

$$f(\gamma(t)) = \frac{2tv_1v_2^2}{v_1^2 + t^2v_2^4};$$

logo,

$$\lim_{t \to 0} f(\gamma(t)) = 0 = f(0,0).$$

- 2. A função  $f(x,y) = \begin{cases} 1, & \text{se } y = x^2 \neq 0; \\ 0, & \text{caso contrário} \end{cases}$  não é contínua em (0,0) (e em nenhum ponto da curva  $\gamma(t) = (t,t^2)$ ), mas, restrita a qualquer reta que passa por (0,0), é contínua nesse ponto.
- 3. Toda função linear  $L \colon \mathbb{R}^n \to \mathbb{R}^k$  é contínua (outra demonstração): Temos que  $L(x) = (L_1(x), \dots, L_k(x))$ , onde cada  $L_i \colon \mathbb{R}^n \to \mathbb{R}$  é linear.

$$L_i(x) = a_{i1}x_1 + \ldots + a_{in}x_n = \begin{pmatrix} a_{i1} & \ldots & a_{in} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

é contínua, pois projeção é contínua, soma e produto de funções contínuas é contínua.

4. A função  $f(x,y) = \begin{cases} e^{\frac{1}{-1+x^2+y^2}}, & x^2+y^2<1; \\ 0, & \text{caso contrário} \end{cases}$  é contínua. Em particular, nos pontos (x,y) com  $x^2+y^2=1$ .

De fato, sejam  $\varphi \colon \mathbb{R} \to \mathbb{R}$  e  $r \colon \mathbb{R}^2 \to \mathbb{R}$  definidas por

$$\varphi(r) = \begin{cases} e^{\frac{1}{r^2 - 1}}, & \text{se } 0 \le r < 1; \\ 0, & \text{se } r \ge 1, \end{cases}$$
$$r(x, y) = \sqrt{x^2 + y^2}.$$

Temos que  $\varphi$  é contínua em r = 1, r é contínua e  $f = \varphi \circ r$ .

- 5. A curva  $\gamma\colon [0,2\pi[\to\mathbb{R}^2,\,\gamma(t)=(\cos t, \sin t)\,\,\text{\'e}\,\, \text{contínua, injetora, mas sua}$  inversa  $\gamma^{-1}$  não  $\text{\'e}\,\, \text{contínua em}\,\, (1,0),\,\, \text{pois, para a sequência}\,\, t_{2n}=\frac{1}{2n},$   $t_{2n+1}=2\pi-\frac{1}{2n+1},\,\, \text{temos que}\,\, (\cos t_n, \sin t_n)\,\, \text{converge para}\,\, (1,0),\,\, \text{mas}$   $\gamma^{-1}(\cos t_n, \sin t_n)=t_n\,\, \text{não converge para}\,\, 0\,.$
- 6. A função dada por  $f(x,y)=(x^2-y^2,2xy)$  é injetora e contínua no conjunto  $\{(x,y)\colon y\geq 0\}\setminus \{(x,0)\colon x\leq 0\}$ , mas  $f^{-1}$  não é contínua em (p,0), com p>0.

DEFINIÇÃO. A *imagem inversa* do conjunto A pela função f, denotada por  $f^{-1}(A)$ , é o conjunto  $\{x \in D : f(x) \in A\}$ .

PROPOSIÇÃO 2.5. Uma função  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  é contínua em D se, e somente se, para todo  $A \subset \mathbb{R}^k$  aberto, o conjunto  $f^{-1}(A)$  for aberto de D, isto é, se existir  $A \subset \mathbb{R}^n$  aberto tal que  $f^{-1}(A) = A \cap D$ .

DEMONSTRAÇÃO. Suponhamos que f seja contínua. Se  $A \cap f(D) = \emptyset$ , então  $f^{-1}(A) = \emptyset$  é aberto. Caso contrário, dado  $p \in f^{-1}(A)$  seja  $B_{\varepsilon}(f(p)) \subset A$  e, pela continuidade de f em p, existe  $\delta > 0$  tal que

$$f(D \cap B_{\delta}(p)) \subset B_{\varepsilon}(f(p)) \subset A.$$

Basta considerar  $\mathcal{A}=\bigcup_{p\in f^{-1}(A)}B_{\delta}(p)$  (verifique). Reciprocamente, seja  $p\in D$ . Dado

 $\varepsilon > 0$ , seja  $\mathscr A$  aberto do  $\mathbb R^n$  tal que  $f^{-1}(B_{\varepsilon}(f(p)) = \mathscr A \cap D$ . Dessa maneira, existe  $\delta > 0$  de modo que  $B_{\delta}(p) \subset \mathscr A$  e  $f(B_{\delta}(p) \cap D) \subset B_{\varepsilon}(f(p))$ . Assim, f é contínua.

COROLÁRIO 2.6. Uma função  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  é contínua em D se, e somente se, para todo  $F \subset \mathbb{R}^k$  fechado,  $f^{-1}(F) = \mathcal{F} \cap D$ , onde  $\mathcal{F}$  é fechado de  $\mathbb{R}^n$ .

DEMONSTRAÇÃO. Se f é contínua, pela proposição anterior, imagem inversa de qualquer aberto de  $\mathbb{R}^k$  é aberto de D. Dado  $F \subset \mathbb{R}^k$  fechado, temos que  $F = A^c$  com  $A \subset \mathbb{R}^k$  aberto. Assim, existe  $\mathcal A$  aberto de  $\mathbb{R}^n$  tal que

$$f^{-1}(F) = f^{-1}(A^c) = D \setminus f^{-1}(A) = D \setminus (\mathcal{A} \cap D) = D \cap \mathcal{A}^c = D \cap \mathcal{F}.$$

П

Reciprocamente, se imagem inversa de fechado de  $\mathbb{R}^k$  é fechado de D, dado  $A \subset \mathbb{R}^k$  aberto,  $A = F^c$  com  $F \subset \mathbb{R}^k$  fechado, existe  $\mathcal{F}$  fechado de  $\mathbb{R}^n$  tal que

$$f^{-1}(A) = f^{-1}(F^c) = D \setminus f^{-1}(F) = D \setminus (\mathcal{F} \cap D) = D \setminus \mathcal{F}^c = D \cap \mathcal{A}.$$

Pela proposição anterior, f é contínua.

PROPOSIÇÃO 2.7 (Teorema do Valor Intermediário). Se  $E \subseteq \mathbb{R}^n$  é um conjunto conexo e  $f: E \to \mathbb{R}^k$  é contínua então f(E) é conexo.

DEMONSTRAÇÃO. Suponhamos que f(E) não seja conexo. Logo, existem abertos A e B de  $\mathbb{R}^k$  tais que  $A \cap f(E)$ ,  $B \cap f(E)$  são não vazios, disjuntos e  $f(E) \subset A \cup B$ . Sejam  $\mathcal{A}$  e  $\mathcal{B}$  abertos de  $\mathbb{R}^n$  tais que  $f^{-1}(A) = \mathcal{A} \cap E$  e  $f^{-1}(B) = \mathcal{B} \cap E$ . Temos que  $\mathcal{A} \cap E$  e  $\mathcal{B} \cap E$  são não vazios, disjuntos e  $E \subset \mathcal{A} \cup \mathcal{B}$ , o que contradiz a hipótese de que E é conexo. Portanto, f(E) é conexo.

COROLÁRIO 2.8. Se  $f: E \subset \mathbb{R}^n \to \mathbb{R}$  é contínua em E conexo e  $f(x_1) < y < f(x_2)$  então existe  $\bar{x} \in E$  tal que  $f(\bar{x}) = y$ .

- EXEMPLO 2.9. 1. Dados  $p, q \in \mathbb{R}^n$ , o segmento de reta  $\overline{pq} \subset \mathbb{R}^n$  é conexo. De fato, temos que a função  $\gamma(t) = p + t(q p)$  é contínua, o intervalo [0,1] é conexo e  $\overline{pq} = \gamma([0,1])$ .
- 2.  $\mathbb{R}^n$  é conexo. De fato, suponha que  $\mathbb{R}^n$  não seja conexo. Então existem abertos  $\mathcal{A},\mathcal{B}$  não vazios, disjuntos tais que  $\mathbb{R}^n=\mathcal{A}\cup\mathcal{B}$ . Sejam  $p\in\mathcal{A}$ ,  $q\in\mathcal{B}$  e  $\gamma(t)=p+t(q-p),\,t\in\mathbb{R}$ . Temos que  $A=\{t\in\mathbb{R}\colon\gamma(t)\in\mathcal{A}\}$  e  $B=\{t\in\mathbb{R}\colon\gamma(t)\in\mathcal{B}\}$  são abertos disjuntos não vazios e  $\mathbb{R}=A\cup B$ , o que é uma contradição, pois  $\mathbb{R}$  é conexo.
- 3. Se  $E \subset \mathbb{R}^n$  é aberto e fechado então  $E = \emptyset$  ou  $E = \mathbb{R}^n$ . De fato, seja  $\emptyset \neq E \subset \mathbb{R}^n$  aberto e fechado. Vamos mostrar que  $E = \mathbb{R}^n$ . Temos  $\mathbb{R}^n = E \cup (\mathbb{R}^n \setminus E)$  união de abertos disjuntos. Como  $\mathbb{R}^n$  é conexo e  $E \neq \emptyset$ , resulta que  $\mathbb{R}^n \setminus E = \emptyset$ , ou seja,  $E = \mathbb{R}^n$ .
- 4. Se  $I \subset \mathbb{R}$  é um intervalo e  $\gamma$ :  $I \to \mathbb{R}^n$  é contínua então Im $\gamma$  é conexo.
- 5. Consideremos  $\gamma$ :  $]0,\infty[\to\mathbb{R}^2$  definida por  $\gamma(x)=\left(x,\sin\frac{1}{x}\right)$ . Sejam  $E_1=\{(0,y)\colon -1 < y < 1\}$  e  $E_2=\operatorname{Im}\gamma$ . O conjunto  $E=E_1\cup E_2$  é conexo. De fato, suponhamos que existam  $\mathcal{A}$  e  $\mathcal{B}$  abertos disjuntos de E tais que  $E=\mathcal{A}\cup\mathcal{B}$ . Como  $E_1$  é conexo,  $E_1$  está contido em um dos abertos, por exemplo  $E_1\subset\mathcal{A}$ . Como  $E_2\cap\mathcal{A}\neq\emptyset$  e  $E_2$  é conexo, temos  $E_2\subset\mathcal{A}$ . Logo,  $E_1\subset\mathcal{A}$ .
- 6. Sejam  $f: \mathbb{R}^n \to \mathbb{R}$  e  $\gamma: [a,b] \to \mathbb{R}^n$  contínuas e y entre  $f(\gamma(a))$  e  $f(\gamma(b))$ . Então existe  $\bar{t}$  entre a e b tal que  $y = f(\gamma(\bar{t}))$ .

- 7. Se  $f: I \subset \mathbb{R} \to \mathbb{R}$  é contínua e injetora num intervalo I então f é estritamente monótona e  $f^{-1}$  é contínua no intervalo J = f(I).
- 8. Dada  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  contínua, temos:
  - (i)  $\{x \in D : f(x) = c\} = f^{-1}(\{c\})$  é fechado em *D*;
  - (ii)  $\{x \in D : f(x) \le c\} = f^{-1}(] \infty, c]$ ) é fechado em D;
  - (iii)  $\{x \in D : f(x) \neq c\} = f^{-1}(]-\infty, c[\cup]c, \infty[)$  é aberto em *D*.
- 9. O conjunto  $S^{n-1} = \{x \in \mathbb{R}^n : ||x|| = 1\}$  é fechado de  $\mathbb{R}^n$ .
- 10. O conjunto  $\{A \in M_n(\mathbb{R}) : \det A \neq 0\}$  é aberto de  $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$  e o conjunto  $\{A \in M_n(\mathbb{R}) : \det A = 0\}$  é fechado de  $M_n(\mathbb{R})$ .
- 11. Se  $F_i \subset \mathbb{R}$  são fechados então  $\prod_{i=1}^n F_i$  é fechado de  $\mathbb{R}^n$ . De fato, consideremos as projeções  $\pi_i(x_1,\ldots,x_n)=x_i$ , para  $i=1,\ldots,n$ . Temos que  $\prod_{i=1}^n F_i=\bigcap_{i=1}^n \pi_i^{-1}(F_i)$ .
- 12. Se  $f: [a,b] \subset \mathbb{R} \to \mathbb{R}$  é contínua então o gráfico de f é fechado de  $\mathbb{R}^2$ . De fato, a função  $H: [a,b] \times \mathbb{R} \to \mathbb{R}$  definida por H(x,y) = y f(x) é contínua e, além disso, graf  $f = \{(x,f(x)): x \in [a,b]\} = H^{-1}(0)$  é fechado de  $[a,b] \times \mathbb{R}$ . Como  $[a,b] \times \mathbb{R}$  é fechado de  $\mathbb{R}^2$ , segue que o gráfico de f é fechado de  $\mathbb{R}^2$ .

DEFINIÇÃO. Um conjunto  $E \subset \mathbb{R}^n$  é *conexo por caminhos* se, para quaisquer  $p, q \in E$ , existir  $\gamma$ :  $[a,b] \to E$  contínua tal que  $\gamma(a) = p$  e  $\gamma(b) = q$ .

TEOREMA 2.10. Seja  $\emptyset \neq E \subset \mathbb{R}^n$ .

- 1. Se E é conexo por caminhos então E é conexo;
- 2. Se E é aberto conexo então E é conexo por caminhos.
- DEMONSTRAÇÃO. 1. Suponhamos que existam abertos  $\mathcal{A}$  e  $\mathcal{B}$  tais que  $\mathcal{A} \cap E$  e  $\mathcal{B} \cap E$  são não vazios, disjuntos e  $E \subset \mathcal{A} \cup \mathcal{B}$ . Sejam  $p \in \mathcal{A} \cap E$  e  $q \in \mathcal{A} \cap E$ . Existe uma função contínua  $\gamma \colon [a,b] \to E$  tal que  $\gamma(a) = p$  e  $\gamma(b) = q$ . Portanto,  $\mathcal{A} \cap \gamma([a,b])$  e  $\mathcal{B} \cap \gamma([a,b])$  são não vazios, disjuntos e  $\gamma([a,b]) \subset \mathcal{A} \cup \mathcal{B}$ , o que é uma contradição, pois  $\gamma([a,b])$  é conexo.
- 2. Fixemos  $x_0 \in E$  e seja S o conjunto de todos os pontos  $x \in E$  tal que existe um caminho contínuo  $\gamma$ :  $[a,b] \to E$  com  $\gamma(a) = x_0$  e  $\gamma(b) = x$ . Temos que  $S \neq \emptyset$ , pois  $x_0 \in S$ . Mostremos que  $S \in E \setminus S$  são abertos. Como E é conexo e  $S \neq \emptyset$ , isto implicará que  $E \setminus S = \emptyset$  e, portanto, S = E. Dado  $x \in S$ , existe  $\delta > 0$  tal que  $B_{\delta}(x) \subset E$ . Para todo  $y \in B_{\delta}(x)$ ,  $\overline{yx} \cup \gamma([a,b]) \subset E$ . Assim S é aberto. Dado  $x \in E \setminus S$ , existe  $\delta > 0$  tal que  $B_{\delta}(x) \subset E$ . Nenhum ponto de  $B_{\delta}(x)$  pode ser ligado a  $x_0$  por um caminho contínuo contido em E,

caso contrário, x também poderia. Logo  $B_{\delta}(x) \subset E \setminus S$ . Portanto,  $E \setminus S$  é aberto.

- OBSERVAÇÃO 2.11. 1. Contra-exemplo para a recíproca de (1): O conjunto *E* do Exemplo 5 acima é conexo, mas não é conexo por caminhos.
- 2. Quando *E* é aberto vale também: *E* é conexo se, e somente se, *E* for conexo por poligonais.

PROPOSIÇÃO 2.12. Se  $f: K \subset \mathbb{R}^n \to \mathbb{R}^k$  é contínua em K compacto então f(K) compacto.

DEMONSTRAÇÃO. Dada uma cobertura  $(\mathcal{A}_{\alpha})$  de f(K) por abertos, existem abertos  $A_{\alpha}$  de  $\mathbb{R}^n$  tais que  $f^{-1}(\mathcal{A}_{\alpha}) = A_{\alpha} \cap K$ . Portanto,  $(A_{\alpha})$  é uma cobertura de K por abertos. Logo,  $K \subset A_{\alpha_1} \cup \ldots \cup A_{\alpha_s}$  e  $f(K) \subset \mathcal{A}_{\alpha_1} \cup \ldots \cup \mathcal{A}_{\alpha_s}$ .

PROPOSIÇÃO 2.13 (Teorema de Weierstrass). Se  $f: K \subset \mathbb{R}^n \to \mathbb{R}$  é contínua e K é um compacto não vazio então f assume máximo e mínimo.

DEMONSTRAÇÃO. Temos que f(K) é fechado e limitado, logo, é limitado inferiormente e superiormente. Portanto, existem  $\sup f(K)$  e  $\inf f(K)$  e, como f(K) é fechado,  $\sup f(K)$  e  $\inf f(K)$  pertencem a f(K).

EXEMPLO 2.14. 1. A função  $f: [0,1] \to \mathbb{R}$  definida por  $f(x) = \frac{1}{x}$  não assume máximo.

- 2. A função  $f: [1, \infty[ \to \mathbb{R} \text{ dada por } f(x) = \frac{1}{x} \text{ não assume mínimo.}]$
- 3. Se  $L \colon \mathbb{R}^n \to \mathbb{R}^k$  é linear e injetora, então existe c > 0 tal que  $\|L(x)\| \ge c\|x\|$ . Você pode justificar usando que na esfera  $S^{n-1} = \{x \in \mathbb{R}^k : \|x\| = 1\} \ \|L(x)\|$  assume valor mínimo  $\|L(x_0)\| = c$  e que c > 0 pois L é injetora.

PROPOSIÇÃO 2.15. Se  $f: K \subset \mathbb{R}^n \to \mathbb{R}^k$  é contínua e injetora em K compacto então a inversa  $f^{-1}: f(K) \to \mathbb{R}^n$  é contínua.

DEMONSTRAÇÃO. Basta mostrar que, para todo conjunto fechado F de  $\mathbb{R}^n$ ,  $(f^{-1})^{-1}(F)$  é fechado de f(K). Temos que  $(f^{-1})^{-1}(F) = f(K \cap F)$  é compacto, pois  $K \cap F$  é compacto. Logo,  $(f^{-1})^{-1}(F)$  é fechado.

DEFINIÇÃO.  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  é uniformemente contínua se, para todo  $\varepsilon > 0$ , existir  $\delta > 0$  tal que, para todo  $x, y \in D$ ,  $||x - y|| < \delta \Rightarrow ||f(x) - f(y)|| < \varepsilon$ .

DEFINIÇÃO. Dados um ponto  $p \in \mathbb{R}^n$  e um conjunto  $D \subset \mathbb{R}^n$ , a *distância* de p a D, denotada por d(p,D), é o ínfimo do conjunto  $\{d(p,x): x \in D\}$ .

OBSERVAÇÃO 2.16. 1. Se  $D \subset \mathbb{R}^n$  e  $p \in D$  então d(p,D) = 0.

- 2. Se  $F \subset \mathbb{R}^n$  é fechado e d(p,F) = 0 então  $p \in F$ .
- 3. Se  $D \subset \mathbb{R}^n$  então  $f \colon \mathbb{R}^n \to \mathbb{R}$  dada por  $f(x) = \operatorname{d}(x,D)$  é uniformemente contínua. De fato, quaisquer que sejam  $x,y \in \mathbb{R}^n$ , temos  $\operatorname{d}(x,z) \le \operatorname{d}(x,y) + \operatorname{d}(y,z)$ , para todo  $z \in D$ , de onde segue que  $\operatorname{d}(x,D) \le \operatorname{d}(x,z) \le \operatorname{d}(x,y) + \operatorname{d}(y,z)$ . Logo,  $\operatorname{d}(x,D) \operatorname{d}(x,y) \le \operatorname{d}(y,z)$ . Portanto,  $\operatorname{d}(x,D) \operatorname{d}(x,y) \le \operatorname{d}(y,D)$  e, assim,  $-\operatorname{d}(x,y) \le \operatorname{d}(y,D) \operatorname{d}(x,D)$ . Trocando x por y temos  $\operatorname{d}(y,D) \operatorname{d}(x,D) \le d(x,y)$ .

LEMA 2.17. Dados K compacto e A aberto com  $K \subset A \subset \mathbb{R}^n$ , existe  $\varepsilon > 0$  de modo que  $K \subset \bigcup_{x \in K} B_{\varepsilon}(x) \subset A$ .

DEMONSTRAÇÃO. Seja  $f\colon K\to\mathbb{R}$  definida por  $f(x)=d(x,A^c)$ . Temos que f é contínua em K. Portanto, f assume mínimo em um ponto p de K e, além disso, f(p)>0, pois  $A^c$  é fechado e  $p\not\in A^c$ . Tomando  $\mathfrak{E}=\frac{f(p)}{2}$ , obtemos  $K\subset\bigcup_{x\in K}B_{\mathfrak{E}}(x)\subset A$ .

OBSERVAÇÃO 2.18. No lema anterior, se K não for compacto, o resultado não vale. Por exemplo:  $\{(x,0): -1 < x < 1\} \subset B_1((0,0)) \subset \mathbb{R}^2$  e  $\{(x,\frac{1}{x}): x > 0\} \subset A = \{(x,y): x,y > 0\}$ .

PROPOSIÇÃO 2.19. Se  $f: K \subset \mathbb{R}^n \to \mathbb{R}^k$  é contínua e K é compacto então f é uniformemente contínua em K.

DEMONSTRAÇÃO. Seja  $H: K \times K \to \mathbb{R}$  a função definida por

$$H(x,y) = ||f(x) - f(y)||$$

e seja  $S = \{(x,y) \in K \times K : H(x,y) < \varepsilon\}$ . Temos que H é contínua e S é aberto de  $K \times K$ , pois  $S = H^{-1}(] - \infty, \varepsilon[)$ . Assim, existe um aberto  $\mathcal{A}$  de  $\mathbb{R}^n \times \mathbb{R}^n$  tal que  $S = \mathcal{A} \cap (K \times K)$ . O conjunto  $\Delta = \{(x,x) : x \in K\} \subset \mathcal{A} \cap (K \times K)$  é compacto. Pelo Lema 2.17, existe  $\delta > 0$  tal que  $\Delta \subset \bigcup_{x \in K} B_{\delta}((x,x)) \subset \mathcal{A}$ . Dados  $x,y \in K$  com  $\|x-y\| < \delta$ , temos  $\|(x,x)-(y,x)\| < \delta$ . Dessa maneira, obtemos  $(y,x) \in B_{\delta}(x,x) \subset \mathcal{A}$  e, portanto,  $H(y,x) = \|f(y)-f(x)\| < \varepsilon$ .

EXEMPLO 2.20. 1. Se  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  é lipschitziana então f é uniformemente contínua.

2. A função  $f(x) = \sqrt{x}$  é uniformemente contínua em  $\mathbb{R}_+$ . De fato, (a) temos que f é lipschitziana em  $[1, \infty[$ , pois

$$|\sqrt{x} - \sqrt{y}| = \left| \frac{x - y}{\sqrt{x} + \sqrt{y}} \right| \le \frac{1}{2} |x - y|;$$

(b) não é lipschitziana em [0,1], pois não existe M > 0 tal que

$$|\sqrt{x} - \sqrt{0}| = \sqrt{x} \le M|x - 0|,$$

uma vez que  $\lim_{x\to 0_+} \frac{\sqrt{x}}{|x|} = \infty$ . Mas f é contínua no compacto [0,1]; logo, é uniformemente contínua em [0,1];

(c) como f é uniformemente contínua em  $[1, \infty[$  e em [0, 1], temos que f é uniformemente contínua em  $[0, \infty[$ . De fato, para 0 < x < 1 < y temos

$$|f(x) - f(y)| \le |f(x) - f(1)| + |f(1) - f(y)|.$$

- 3. A função  $f(x) = x^2$  é uniformemente contínua em [0, a].
- 4. A função  $f(x)=x^2$  não é uniformemente contínua em  $[0,\infty[$ . De fato, mostraremos que existem  $\varepsilon_0>0$  e seqüências  $x_n,y_n\in[0,\infty]$  tais que  $|x_n-y_n|<\frac{1}{n}$ , mas  $|f(x_n)-f(y_n)|\geq\varepsilon_0$ . De fato, tomando  $x_n=n$  e  $y_n=n+\frac{1}{2n}$ , temos  $|x_n-y_n|=\frac{1}{2n}\to 0$  e

$$|f(x_n) - f(y_n)| = \left| n^2 - \left( n^2 + 1 + \frac{1}{4n^2} \right) \right| = \left| -1 - \frac{1}{4n^2} \right| > 1.$$

- 5. A função  $f(x) = \frac{1}{x}$  não é uniformemente contínua em ]0,1]: basta tomar  $x_n = \frac{1}{n}$  e  $y_n = \frac{1}{2n}$ . Temos,  $|x_n y_n| = \frac{1}{2n}$  e  $|f(x_n) f(y_n)| = |n 2n| = n \ge 1$ .
- 6. A função  $f(x) = \frac{1}{x}$  é uniformemente contínua em  $[1, \infty[$ , pois é lipschitziana. De fato,

$$\left| \frac{1}{x} - \frac{1}{y} \right| = \frac{|x - y|}{|x||y|} \le |x - y|.$$

DEFINIÇÃO. Dados  $f\colon D\subset\mathbb{R}^n\to\mathbb{R}$  localmente limitada em  $p\in D$  e  $\delta>0$  suficientemente pequeno, sejam

$$M(f,p,\delta) = \sup\{f(x) : x \in D \cap B_{\delta}(p)\}\$$

$$m(f, p, \delta) = \inf\{f(x) : x \in D \cap B_{\delta}(p)\}$$

Como  $0 \le M(f, p, \delta) - m(f, p, \delta)$  decresce quando  $\delta$  diminui, definimos

$$o(f,p) = \lim_{\delta \rightarrow 0} \{M(f,p,\delta) - m(f,p,\delta)\} = \inf_{\delta > 0} \{M(f,p,\delta) - m(f,p,\delta)\},$$

a oscilação de f em p.

PROPOSIÇÃO 2.21. Seja  $f: D \subset \mathbb{R}^n \to \mathbb{R}$  localmente limitada em  $p \in D$ . Então f é contínua em p se, e somente se, o(f, p) = 0.

Demonstração. Suponha que f seja contínua em p. Então, dado  $\varepsilon>0$ , existe  $\delta>0$  tal que, para todo  $x\in D\cap B_\delta(p)$ , tem-se  $f(p)-\frac{\varepsilon}{2}< f(x)< f(p)+\frac{\varepsilon}{2}$ . Logo,  $f(p)-\frac{\varepsilon}{2}< M(f,p,\delta)\leq f(p)+\frac{\varepsilon}{2}$  e  $f(p)-\frac{\varepsilon}{2}\leq m(f,p,\delta)< f(p)+\frac{\varepsilon}{2}$ . Isto implica que  $-\varepsilon< M(f,p,\delta)-m(f,p,\delta)<\varepsilon$  e, conseqüentemente, temos  $0< M(f,p,\delta)-m(f,p,\delta)<\varepsilon$ . Como  $M(f,p,\delta)-m(f,p,\delta)$  decresce quando  $\delta$  diminui, então  $0\leq o(f,p)<\varepsilon$ . Reciprocamente, se o(f,p)=0 então, dado  $\varepsilon>0$ , existe  $\delta>0$  de modo que  $x\in B_\delta(p)\cap D$  implica

$$-\varepsilon < m(f,p,\delta) - M(f,p,\delta) \le f(x) - f(p) \le M(f,p,\delta) - m(f,p,\delta) < \varepsilon.$$

PROPOSIÇÃO 2.22. Sejam  $F \subset \mathbb{R}^n$  um fechado e  $f: F \to \mathbb{R}$  limitada. Então, para cada  $\varepsilon > 0$ , o conjunto  $S = \{x \in F : o(f,x) \ge \varepsilon\}$  é fechado.

DEMONSTRAÇÃO. Seja a seqüência  $x_n \to p$  com  $x_n \in S$ . Queremos mostrar que  $p \in S$ . Temos que  $p \in F$ , pois F é fechado e  $x_n \in F$ . Dado  $\delta > 0$ , existem  $x_{n_0}$  em  $B_{\delta}(p)$  e  $B_{\delta'}(x_{n_0}) \subset B_{\delta}(p)$ . Temos  $M(f, p, \delta) \geq M(f, x_{n_0}, \delta')$ ,  $m(f, p, \delta) \leq m(f, x_{n_0}, \delta')$  e

$$M(f,p,\delta)-m(f,p,\delta)\geq M(f,x_{n_0},\delta')-m(f,x_{n_0},\delta')\geq o(f,x_{n_0})\geq \varepsilon.$$
 Logo,  $o(f,p)\geq \varepsilon.$ 

#### CAPíTULO 3

# Funções diferenciáveis

Como se estuda no primeiro curso de cálculo diferencial, uma função  $f: \mathbb{R} \to \mathbb{R}$  é derivável ou diferenciável em  $p \in \mathbb{R}$  se existir  $a \in \mathbb{R}$  tal que

$$\lim_{x \to p} \frac{f(x) - f(p)}{x - p} = a,$$

ou, equivalentemente, se existir  $a \in \mathbb{R}$  tal que

$$\lim_{x\to p}\frac{f(x)-f(p)-a(x-p)}{|x-p|}=0,$$

ou, ainda, se existir  $L \colon \mathbb{R} \to \mathbb{R}$  linear tal que

$$\lim_{x \to p} \frac{f(x) - f(p) - L(x - p)}{|x - p|} = 0.$$

Além disso, f é contínua em p se f for derivável nesse ponto.

Ao tentar uma definição de diferenciabilidade para  $f: \mathbb{R}^n \to \mathbb{R}^n$  em um ponto  $p \in \mathbb{R}^n$ , espera-se que, quando restrita às retas passando por p, a função seja derivável. Verifica-se, porém, que essa condição não garante a continuidade da função. (Veja a definição de derivada direcional e os exemplos dados nas páginas 21 e 22.)

A boa definição de diferenciabilidade será obtida generalizando a terceira caracterização de derivabilidade dada acima. Com ela, teremos garantidas a continuidade e a existência das derivadas direcionais.

DEFINIÇÃO. Sejam  $A \subset \mathbb{R}^n$  um aberto e  $f: A \to \mathbb{R}^k$ . Dizemos que f é diferenciável em  $p \in A$  se existir  $L \in L(\mathbb{R}^n, \mathbb{R}^k)$  tal que

$$\lim_{x \to p} \frac{f(x) - f(p) - L(x - p)}{\|x - p\|} = 0, \text{ ou } \lim_{h \to 0} \frac{f(p + h) - f(p) - L(h)}{\|h\|} = 0,$$

ou f(x) = f(p) + L(x-p) + r(x), para x suficientemente próximo de p, com

$$\lim_{x \to p} \frac{r(x)}{\|x - p\|} = 0.$$

Quando  $f\colon A\subset\mathbb{R}^2\to\mathbb{R}$  é derivável em  $p\in A$ , existe um plano dado por z=f(p)+L(x-p), tal que

$$\lim_{x \to p} \frac{f(x) - z(x)}{|x - p|} = 0,$$

isto é, z = z(x) é uma aproximação de ordem 1 de f, localmente em p.

PROPOSIÇÃO 3.1. Se f é diferenciável em p então existe uma única aplicação linear  $L: \mathbb{R}^n \to \mathbb{R}^k$  que verifica a definição de diferenciabilidade em p.

DEMONSTRAÇÃO. Suponha que existam  $L_1, L_2 \in L(\mathbb{R}^n, \mathbb{R}^k)$  tais que

$$\frac{f(p+h)-f(p)-L_i(h)}{\|h\|}\to 0, \text{ quando } h\to 0.$$

Assim,  $\frac{L_1(h)-L_2(h)}{\|h\|} \to 0$ , quando  $h \to 0$ , ou seja,  $(L_1-L_2)\left(\frac{h}{\|h\|}\right) \to 0$ , quando  $h \to 0$ .

Seja  $h = te_i$ , onde t > 0 e  $e_i$  é um vetor da base canônica de  $\mathbb{R}^n$   $(1 \le i \le n)$ . Dessa maneira.

$$(L_1-L_2)igg(rac{te_i}{\|te_i\|}igg)=(L_1-L_2)igg(rac{e_i}{\|e_i\|}igg)=(L_1-L_2)(e_i) o 0,$$

quando  $t \to 0_+$ . Como  $(L_1 - L_2)(e_i)$  é uma constante,  $(L_1 - L_2)(e_i) = 0$ , para todo i. Mas  $L_1 - L_2$  é linear. Portanto,  $L_1 = L_2$ .

NOTAÇÃO: L=df(p)=Df(p)=f'(p). Em geral, indicaremos por f'(p) a matriz de L na base canônica.

Quando f é derivável em p, fica bem definido o  $plano\ tangente$  ao gráfico de f em p, dado por z(x)=f(p)+df(p)(x-p).

EXEMPLO 3.2. 1. A função  $f: \mathbb{R}^n \to \mathbb{R}^k$  dada por f(x) = L(x) + c, onde  $L \in L(\mathbb{R}^n, \mathbb{R}^k)$  e  $c \in \mathbb{R}^k$  é uma constante, é diferenciável.

A candidata natural à df(p) é a própria L.

Verificação:

$$\frac{f(x) - f(p) - L(x - p)}{\|x - p\|} = \frac{L(x) + c - L(p) - c - L(x) + L(p)}{\|x - p\|} = 0$$

tende a zero, quando  $x \to p$ . Portanto, df(p) = L, para todo  $p \in \mathbb{R}^n$ .

2. A projeção  $\pi\colon \mathbb{R}^{m+n}\to\mathbb{R}^n$  definida por  $\pi(x,y)=x$  é linear. Portanto, é diferenciável e

$$d\pi(x_0, y_0) = \pi$$
, para todo  $(x_0, y_0)$ .

3. A função  $f: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$  dada por f(x,y) = x + y é linear. Portanto, é diferenciável e  $df(x_0,y_0) = f$ . Observe que  $df(x_0,y_0): \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^m$  é dada por

$$df(x_0, y_0)(h, k) = f(h, k) = h + k.$$

4. Se  $f: \mathbb{R}^n \to \mathbb{R}^k$  satisfaz  $||f(x)|| \le ||x||^2$  então f é diferenciável em 0: A candidata à  $df(0): \mathbb{R}^n \to \mathbb{R}^k$  é L(x) = 0. Verificação:

$$0 \le \left\| \frac{f(x) - f(0) - L(x - 0)}{\|x - 0\|} \right\| = \left\| \frac{f(x)}{\|x\|} \right\| = \frac{\|f(x)\|}{\|x\|} \le \frac{\|x\|^2}{\|x\|} = \|x\| \to 0.$$

Logo, f é diferenciável em 0 e df(0) = 0.

5. A função  $f(x,y) = \sqrt{|xy|}$  é diferenciável em (0,0)? Solução: Temos que  $f: \mathbb{R}^2 \to \mathbb{R}$ . Vamos procurar  $L: \mathbb{R}^2 \to \mathbb{R}$ , da forma  $L: \mathbb{R}^2 \to \mathbb{R}$ , tal que

$$\frac{f(h,k) - f(0,0) - ah - bk}{\|(h,k)\|} \to 0, \text{ quando } (h,k) \to (0,0).$$

$$\frac{\sqrt{|hk|} - ah - bk}{\sqrt{h^2 + k^2}} = \begin{cases} -\frac{bk}{|k|} & \text{se } h = 0 \implies b = 0\\ -\frac{ah}{|h|} & \text{se } k = 0 \implies a = 0 \end{cases}$$

Assim, a candidata à df(0,0)(h,k) = 0h + 0k = 0. Verificação:

$$\frac{f(h,k) - f(0,0) - 0h - 0k}{\sqrt{h^2 + k^2}} = \frac{\sqrt{|hk|}}{\sqrt{h^2 + k^2}} \stackrel{h=k}{=} \frac{|h|}{|h|\sqrt{2}} = \frac{1}{\sqrt{2}} \not \to 0.$$

Portanto, f não é diferenciável em (0,0).

6. A função  $f(x,y) = \sqrt{x^2 + y^2}$  é diferenciável em (0,0)? Vejamos se existem a,b constantes reais tais que

$$\lim_{(h,k)\to(0,0)} \frac{\sqrt{h^2+k^2}-ah-bk}{\sqrt{h^2+k^2}} = 0.$$

Fazendo k = 0 e  $h \rightarrow 0^+$ .

$$\lim_{h \to 0^+} \frac{|h| - ah}{|h|} = \lim_{h \to 0^+} 1 - \frac{ah}{|h|} = 1 - a.$$

Assim, deveríamos ter a=1. Por outro lado, fazendo k=0 e  $h\to 0^-$ ,

$$\lim_{h \to 0^{-}} \frac{|h| - ah}{|h|} = \lim_{h \to 0^{-}} 1 - \frac{ah}{|h|} = 1 + a,$$

o que implica que a = -1. Logo, f não é diferenciável no ponto (0,0).

7. Se f(x,y) = g(x), com  $g: \mathbb{R} \to \mathbb{R}$  derivável em  $x_0$  então f é diferenciável em  $(x_0,y)$ .

Solução: Devemos procurar  $L = df(x_0, y) : \mathbb{R}^2 \to \mathbb{R}, L(h, k) = ah + bk$ , tal que

$$\frac{f(x_0+h,y+k)-f(x_0,y)-ah-bk}{\sqrt{h^2+k^2}} = \frac{g(x_0+h)-g(x_0)-ah-bk}{\sqrt{h^2+k^2}} \to 0,$$

quando  $(h,k) \rightarrow (0,0)$ 

Existe  $\lim_{h\to 0} \frac{g(x_0+h)-g(x_0)}{h} = g'(x_0)$ . Assim, temos

$$\frac{g(x_0+h) - g(x_0) - ah - bk}{\sqrt{h^2 + k^2}} = \begin{cases} \frac{g(x_0+h) - g(x_0) - ah}{|h|} & (k=0) \\ \frac{-bk}{|k|} & (h=0) \end{cases}$$

Portanto, concluímos que  $a = g'(x_0)$  e b = 0.

Logo, a candidata à  $df(x_0,y)(h,k)$  é  $g'(x_0)h+0k=g'(x_0)h$ . Verificação: exercício.

PROPOSIÇÃO 3.3. Se f é diferenciável em p então f é contínua em p.

DEMONSTRAÇÃO. Existe  $L: \mathbb{R}^n \to \mathbb{R}^k$  linear tal que

$$f(x) = f(p) + L(x - p) + r(x)$$
, onde  $\lim_{x \to p} \frac{r(x)}{\|x - p\|} = 0$ .

Assim, 
$$f(x) - f(p) = L(x - p) + \frac{r(x)}{\|x - p\|} \|x - p\| \to 0$$
, quando  $x \to p$ .

CONTRA-EXEMPLO PARA A RECÍPROCA.  $f(x,y) = \sqrt{x^2 + y^2}$  é contínua em  $(0,0) \in \mathbb{R}^2$  e não é diferenciável nesse ponto.

APLICAÇÃO.

A função  $f(x)=\left\{ egin{array}{ll} \frac{x}{|x|}, & \sec x \neq 0; \\ 0, & \sec x = 0 \end{array} \right.$  não é diferenciável em  $x=0\in\mathbb{R}$ , pois não é contínua em  $x=0\in\mathbb{R}$ .

PROPOSIÇÃO 3.4. Uma função  $f = (f_1, ..., f_k)$  é diferenciável em p se, e somente se, para todo i,  $f_i$  for diferenciável em p. Neste caso,

$$df(p) = (df_1(p), df_2(p), \dots, df_k(p)).$$

DEMONSTRAÇÃO. Temos que f é diferenciável em p se, e somente se, existir  $L\colon \mathbb{R}^n \to \mathbb{R}^k$  linear,  $L=(L_1,\ldots,L_k)$ , tal que  $\lim_{x\to p} \frac{f(x)-f(p)-L(x-p)}{\|x-p\|}=0$ . Isto, por sua vez, é equivalente a  $\lim_{x\to p} \frac{f_i(x)-f_i(p)-L_i(x-p)}{\|x-p\|}=0$ , para todo  $i=1,\ldots k$ .

Assim, f é diferenciável em p se, e somente se,  $f_i$  for diferenciável em p, com  $df_i(p) = L_i$ , para todo i = 1, ...k.

APLICAÇÃO. Sejam  $F(x) = (f(x), g(x)), f: \mathbb{R}^n \to \mathbb{R}^k$  e  $g: \mathbb{R}^n \to \mathbb{R}^m$  diferenciáveis em p. Então F é diferenciável em p.

De fato, temos que  $F(x) = (f_1(x), \dots, f_k(x), g_1(x), \dots, g_m(x))$  é diferenciável em p, pois suas componentes são diferenciáveis em p. Além disso,

$$dF(p) = (df_1(p), \dots, df_k(p), dg_1(p), \dots, dg_m(p)),$$

isto é, dF(p) = (df(p), dg(p)). Matricialmente,

$$F'(p) = \begin{pmatrix} f'_1(p) \\ f'_2(p) \\ \vdots \\ g'_1(p) \\ \vdots \end{pmatrix} = \begin{pmatrix} f'(p) \\ \cdots \\ g'(p) \\ \vdots \end{pmatrix}.$$

DEFINIÇÃO. Dado  $v \in \mathbb{R}^n$ , a derivada direcional de f na direção de v é

$$\frac{\partial f}{\partial v} = \lim_{t \to 0} \frac{f(p+tv) - f(p)}{t}$$
, se este existir.

A derivada parcial de f na direção de  $e_i$  é

$$D_{x_i}f(p) = D_if(p) = \frac{\partial f}{\partial x_i}(p) = \frac{\partial f}{\partial e_i}(p).$$

1. Pode existir  $\frac{\partial f}{\partial v}(p)$ , para todo v, e f não ser dife-Observação 3.5. renciável em p (e nem mesmo contínua em p). Por exemplo,

- (a) A função  $f(x,y) = \begin{cases} 1, & \text{se } y = x^2 \neq 0; \\ 0, & \text{caso contrário} \end{cases}$  não é contínua em (0,0)mas existe  $\frac{\partial f}{\partial v}(0,0) = 0$ , para todo v.
- (b) Se v=0 então existe  $\frac{\partial f}{\partial v}(p)=\lim_{t\to 0}\frac{f(p)-f(p)}{t}=\lim_{t\to 0}0=0.$ (c) A função  $f(x,y)=\left\{\begin{array}{ll} \frac{2xy^2}{x^2+y^4}, & \text{se } (x,y)\neq (0,0);\\ 0, & \text{caso contrário} \end{array}\right.$  não é contínua

em (0,0), mas, para qualquer v=(h,k), tem-s

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(tv) - f(0)}{t} = \lim_{t \to 0} \frac{2t^3hk^2}{t^3(h^2 + t^2k^4)} =$$

$$= \lim_{t \to 0} \frac{2hk^2}{h^2 + t^2k^4} = \begin{cases} \frac{2k^2}{h}, & \text{se } h \neq 0; \\ 0, & \text{caso contrário.} \end{cases}$$

2. Existe  $\frac{\partial f}{\partial \nu}(p)$  se, e somente se, existe  $\frac{\partial f}{\partial (-\nu)}(p)$ . Neste caso, temos

$$\frac{\partial f}{\partial v}(p) = -\frac{\partial f}{\partial (-v)}(p).$$

De fato,

$$\begin{split} \frac{\partial f}{\partial (-v)}(p) &= \lim_{t \to 0} \frac{f(p-tv) - f(p)}{t} = -\lim_{t \to 0} \frac{f(p+(-tv)) - f(p)}{-t} \stackrel{(s=-t)}{=} \\ &= -\lim_{s \to 0} \frac{f(p+sv) - f(p)}{s} = -\frac{\partial f}{\partial v}(p). \end{split}$$

3. Em geral, para  $\lambda \neq 0$ , existe  $\frac{\partial f}{\partial \nu}(p)$  se, e somente se, existir  $\frac{\partial f}{\partial \lambda \nu}(p)$  e, nesse caso,  $\frac{\partial f}{\partial \lambda \nu}(p) = \lambda \frac{\partial f}{\partial \nu}(p)$ .

PROPOSIÇÃO 3.6. Se f é diferenciável em  $p \in A$  então, para todo  $v \in \mathbb{R}^n$ , existe

$$\frac{\partial f}{\partial v}(p) = df(p)(v).$$

DEMONSTRAÇÃO. Se f é diferenciável em p, temos

$$\frac{f(p+tv)-f(p)}{t} = \frac{df(p)(tv)+r(tv)}{t}$$
, onde  $\lim_{h\to 0} \frac{r(h)}{\|h\|} = 0$ .

Assim, se  $v \neq 0$ ,

$$\frac{f(p+tv) - f(p)}{t} = df(p)(v) + \frac{r(tv)}{t} = df(p)(v) + \frac{r(tv)}{\|tv\|} \frac{\|tv\|}{t}.$$

Como  $\frac{r(tv)}{\|tv\|} \to 0$ , quando  $t \to 0$  e  $\frac{\|tv\|}{t}$  é limitado, resulta que

$$\lim_{t \to 0} \frac{f(p+tv) - f(p)}{t} = df(p)(v).$$

E se 
$$v = 0$$
?

OBSERVAÇÃO 3.7. 1. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}$  é diferenciável em  $p \in A$  então

$$f'(p) = \left(\frac{\partial f}{\partial x_1}(p) \cdots \frac{\partial f}{\partial x_n}(p)\right) e^{\frac{\partial f}{\partial v}}(p) = \nabla f(p).v,$$
 onde  $\nabla f(p) = \left(\frac{\partial f}{\partial x_1}(p), \dots, \frac{\partial f}{\partial x_n}(p)\right).$ 

2. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}^k$  é diferenciável em  $p \in A$  então

$$f'(p) = \begin{pmatrix} \nabla f_1(p) \\ \vdots \\ \nabla f_k(p) \end{pmatrix} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(p) & \cdots & \frac{\partial f_1}{\partial x_n}(p) \\ \vdots & & \vdots \\ \frac{\partial f_k}{\partial x_1}(p) & \cdots & \frac{\partial f_k}{\partial x_n}(p) \end{pmatrix}$$

e 
$$\frac{\partial f}{\partial v}(p) = (\nabla f_1(p).v, \dots, \nabla f_k(p).v).$$
  
3. Se  $\gamma$ :  $]a,b[ \to \mathbb{R}^n$  é diferenciável em  $t_0 \in ]a,b[$  então

$$\gamma'(t_0) = egin{pmatrix} \gamma'_1(t_0) \\ \vdots \\ \gamma'_n(t_0) \end{pmatrix}.$$

APLICAÇÕES.

- 1. A função  $f(x,y) = \begin{cases} \frac{x}{\sqrt{x^2 + y^2}}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário} \end{cases}$  não é diferenciável em (0,0), pois não é contínua em (0,0).
- 2. A função  $f(x,y) = \begin{cases} \frac{x^2}{\sqrt{x^2 + y^2}}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário} \end{cases}$  não é diferenciável em (0,0), pois não existe  $\frac{\partial f}{\partial x}(0,0)$ .
- 3. A função f(x,y) = |x| + |y| não é diferenciável em (0,0), pois não existe

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}.$$

4. A função  $f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário} \end{cases}$  é diferenciável em

Solução: Temos que f é contínua em (0,0), pois  $\lim_{(x,y)\to(0,0)}\frac{xy}{\sqrt{x^2+y^2}}=0$  coincide com f(0,0), já que  $\frac{x}{\sqrt{x^2+y^2}}$  é limitada e  $y\to 0$ . Através da continuidade, não podemos decidir sobre a diferenciabilidade. Vejamos as derivadas parciais:

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{0}{x} = \lim_{x \to 0} 0 = 0 = \frac{\partial f}{\partial y}(0,0).$$

Assim, a candidata à f'(0,0) é:  $f'(0,0) = \begin{pmatrix} 0 & 0 \end{pmatrix}$ , ou seja, devemos ter df(0,0)(h,k) = 0.

Verificação:

$$\frac{f(h,k) - f(0,0) - 0h - 0k}{\sqrt{h^2 + k^2}} = \frac{hk}{h^2 + k^2} \stackrel{(h=k)}{=} \frac{1}{2} \neq 0.$$

Portanto, f não é diferenciável.

5. A função  $f(x,y) = \begin{cases} \frac{xy^2}{\sqrt{x^4 + y^4}}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário} \end{cases}$  não é diferenciável

em (0,0) pois, para  $v = (h,k) \neq (0,0)$ , temos

$$\frac{\partial f}{\partial v}(0,0) = \lim_{t \to 0} \frac{f(th, tk)}{t} = \lim_{t \to 0} \frac{t^3 h k^2}{t^3 \sqrt{h^4 + k^4}} = \frac{h k^2}{\sqrt{h^4 + k^4}},$$

que não é linear em v = (h, k). Logo, f não é diferenciável em (0, 0)

6. A função  $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  dada por f(x,y) = x.y é diferenciável?

Solução: Procuremos a candidata à  $df(x_0, y_0)$ , determinando as derivadas direcionais de f.

$$\frac{f((x_0, y_0) + t(h, k)) - f(x_0, y_0)}{t} = \frac{f(x_0 + th, y_0 + tk) - f(x_0, y_0)}{t} = \frac{th \cdot y_0 + tx_0 \cdot k + t^2 h \cdot k}{t} = h \cdot y_0 + x_0 \cdot k + th \cdot k \to h \cdot y_0 + x_0 \cdot k,$$

quando  $t \to 0$ . Assim, existe  $\frac{\partial f}{\partial (h,k)}(x_0,y_0) = x_0.k + h.y_0$ . Portanto, a candidata à  $df(x_0,y_0) \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$  é

$$df(x_0, y_0)(h, k) = x_0.k + h.y_0.$$

Verificação: Pela desigualdade de Cauchy-Schwarz,

$$0 \le \left| \frac{f(x_0 + h, y_0 + k) - f(x_0, y_0) - x_0 \cdot k - h \cdot y_0}{\|(h, k)\|} \right| =$$

$$= \frac{|h \cdot k|}{\sqrt{|h|^2 + |k|^2}} \le \frac{\|h\| \|k\|}{\sqrt{|h|^2 + |k|^2}} \to 0, \text{ quando } (h, k) \to 0,$$
pois 
$$\frac{\|h\|}{\sqrt{|h|^2 + |k|^2}} \le 1 \text{ e } |k| \to 0. \text{ Portanto, } f \text{ \'e diferenci\'avel.}$$

7. A função 
$$f(x,y) = \begin{cases} \frac{x^2y}{\sqrt{x^2 + y^2}}; & \text{se } (x,y) \neq (0,0); \\ 0 & \text{caso contrário} \end{cases}$$
 é diferenciável em

$$(0,0)$$
, pois  $\frac{\partial f}{\partial x}(0,0) = 0 = \frac{\partial f}{\partial y}(0,0)$  e  $\frac{f(h,k)}{\sqrt{h^2 + k^2}} = \frac{h^2k}{h^2 + k^2} \to 0$ , quando  $(h,k) \to (0,0)$ . Neste caso,

$$df(0,0)(h,k) = 0h + 0k e f'(0,0) = \begin{pmatrix} 0 & 0 \end{pmatrix}.$$

- 8. Dado  $A \subset \mathbb{R}^n$  aberto, se  $f: A \to \mathbb{R}$  tem derivadas parciais em  $p \in A$  extremo local de f então  $\nabla f(p) = 0$ . De fato, para t real suficientemente pequeno, considere  $\varphi(t) = f(p + te_i)$ . Temos que  $\varphi'(0) = \frac{\partial f}{\partial e_i}(p) = \frac{\partial f}{\partial x_i}(p)$ . Como  $\varphi$  assume extremo local em t = 0, resulta que  $0 = \varphi'(0) = \frac{\partial f}{\partial x_i}(p)$ , para todo i, ou seja,  $\nabla f(p) = 0$ .
- 9. Sejam  $f,g:A\subset\mathbb{R}^n\to\mathbb{R}^k$  diferenciáveis no aberto A. Então a função F(x,y)=(f(x),g(y)) é diferenciável em  $A\times A\subset\mathbb{R}^{2n}$ .

candidata à 
$$F'(x_0, y_0) = \begin{pmatrix} f'(x_0) & \vdots & 0 \\ \dots & \vdots & \dots \\ 0 & \vdots & g'(y_0) \end{pmatrix}$$
.

Verificação:

$$\frac{(f(x_0+h),g(y_0+k))-(f(x_0),g(y_0))-(f'(x_0)h,g'(y_0)k)}{\|(h,k)\|}=\\ =\left(\frac{f(x_0+h)-f(x_0)-f'(x_0)h}{\|(h,k)\|},\frac{g(y_0+k)-g(y_0)-g'(y_0)k}{\|(h,k)\|}\right).$$
 Temos 
$$f(x_0+h)-f(x_0)-f'(x_0)h$$

$$\frac{f(x_0+h)-f(x_0)-f'(x_0)h}{\|(h,k)\|} = \begin{cases} \frac{f(x_0+h)-f(x_0)-f'(x_0)h}{\|h\|} \frac{\|h\|}{\|(h,k)\|}, & \text{se } h \neq 0; \\ 0, & \text{se } h = 0 \end{cases}$$

que tende a  $0 \in \mathbb{R}^k$  quando  $(h,k) \to 0$ . Analogamente,

$$\frac{g(y_0+k)-g(y_0)-g'(y_0)k}{\|(h,k)\|} \to 0, \text{ quando } (h,k) \to (0,0).$$

PROPOSIÇÃO 3.8 (Regra da Cadeia). Sejam  $A \subset \mathbb{R}^n$ ,  $B \subset \mathbb{R}^k$  abertos,  $f: A \to B$  diferenciável em  $p \in A$  e  $g: B \to \mathbb{R}^m$  diferenciável em  $f(p) \in B$ . Então  $g \circ f$  é diferenciável em  $p \in A$  e  $d(g \circ f)(p) = dg(f(p)) \circ df(p)$ .

DEMONSTRAÇÃO. Seja  $\Delta f = f(p+h) - f(p)$ . como g é diferenciável em f(p) e f é diferenciável em p, temos

$$(g \circ f)(p+h) - (g \circ f)(p) = dg(f(p))(\Delta f) + r(\Delta f) \left( \text{com } \lim_{k \to 0} \frac{r(k)}{\|k\|} = 0 \right) =$$

$$= dg(f(p))(df(p)(h) + s(h)) + r(\Delta f) \left( \text{onde } \lim_{h \to 0} \frac{s(h)}{\|h\|} = 0 \right) =$$

$$= dg(f(p))df(p)(h) + dg(f(p))(s(h)) + r(\Delta f).$$

Assim, basta mostrar que

$$0 = \lim_{h \to 0} \frac{dg(f(p))(s(h)) + r(\Delta f)}{\|h\|} = \lim_{h \to 0} \left(dg(f(p)) \left(\frac{s(h)}{\|h\|}\right) + \frac{r(\Delta f)}{\|h\|}\right).$$

Como  $\frac{s(h)}{\|h\|} \to 0$ , basta provar que  $\lim_{h \to 0} \frac{r(\Delta f)}{\|h\|} = 0$ , isto é, para todo  $\varepsilon > 0$ ,  $|r(\Delta f)| < \varepsilon \|h\|$ , para  $h \neq 0$  suficientemente pequeno. Sejam  $M, \delta_1 > 0$  tais que

$$\left| df(p) \left( \frac{h}{\|h\|} \right) \right| \le M e \left| \frac{s(h)}{\|h\|} \right| \le 1, \text{ para } 0 < \|h\| < \delta_1.$$

Dado  $\varepsilon > 0$ , existe  $\delta_2 > 0$  tal que  $||r(k)|| < \frac{\varepsilon}{M+1} ||k||$ , para  $||k|| < \delta_2$ . Assim, existe  $0 < \delta_3 < \delta_1$  tal que

$$||r(f(p+h)-f(p))|| < \frac{\varepsilon}{M+1}||f(p+h)-f(p)||, \text{ para } ||h|| < \delta_3,$$

pois f é contínua em p. Dessa maneira, temos

$$||r(\Delta f)|| < \frac{\varepsilon}{M+1} ||df(p)(h) + s(h)|| = \frac{\varepsilon}{M+1} ||h|| \left( df(p) \left( \frac{h}{||h||} \right) + \frac{s(h)}{||h||} \right) || \le \frac{\varepsilon}{M+1} ||h|| \left( \left| \left| df(p) \left( \frac{h}{||h||} \right) \right| + \left| \left| \frac{s(h)}{||h||} \right| \right) \right) \le \varepsilon ||h||.$$

APLICAÇÕES.

1. Temos que  $\frac{d}{dt}f(x(t),y(t)) = \frac{\partial f}{\partial x}x' + \frac{\partial f}{\partial y}y' = \nabla f(\gamma(t)).\gamma'(t)$ , desde que as funções  $f \colon \mathbb{R}^2 \to \mathbb{R}$  e  $\gamma \colon \mathbb{R} \to \mathbb{R}^2$  sejam diferenciáveis.

De fato, temos

$$\begin{array}{cccc} t & \stackrel{\gamma}{\longmapsto} & (x(t), y(t)) \\ & & (x, y) & \stackrel{f}{\longmapsto} & f(x, y) \end{array}$$

Pela Regra da Cadeia,  $d(f \circ \gamma)(t) = df(\gamma(t))d\gamma(t)$ , ou seja,

$$(f \circ \gamma)'(t) = f'(\gamma(t))\gamma'(t) = \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right)_{\gamma(t)} \begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = \nabla f(\gamma(t)) \cdot \gamma'(t).$$

2. Temos que

$$\frac{d}{dt}f(x_1(t),x_2(t),\ldots,x_n(t)) = \sum_{i=1}^n \frac{\partial f}{\partial x_i}(\gamma(t))x_i'(t) = \nabla f(\gamma(t)).\gamma'(t)$$

se as funções  $f: \mathbb{R}^n \to \mathbb{R}$  e  $\gamma: \mathbb{R} \to \mathbb{R}^n$ ,  $\gamma(t) = (x_1(t), \dots, x_n(t))$ , forem diferenciáveis.

3. Se  $f: \mathbb{R}^2 \to \mathbb{R}$  e  $\sigma(u,v) = (x(u,v),y(u,v))$  são diferenciáveis então

$$\frac{\partial}{\partial u}f(x(u,v),y(u,v)) = \frac{\partial f}{\partial x}\frac{\partial x}{\partial u} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial u} e$$

$$\frac{\partial}{\partial v} f(x(u,v), y(u,v)) = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}.$$

De fato.

$$\begin{array}{ccc} (u,v) & \stackrel{\sigma}{\longmapsto} & (x(u,v),y(u,v)) \\ & & (x,y) & \stackrel{f}{\longmapsto} & f(x,y) \end{array}$$

Pela Regra da Cadeia,

$$(f \circ \sigma)'(u,v) = f'(\sigma(u,v))\sigma'(u,v) = \left(\frac{\partial f}{\partial x} \quad \frac{\partial f}{\partial y}\right)_{\sigma(u,v)} \left(\frac{\partial x}{\partial u} \quad \frac{\partial x}{\partial v}\right) = \\ = \left(\frac{\partial f}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \quad \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v}\right)_{(u,v)} = \\ = \left(\frac{\partial f(x(u,v),y(u,v))}{\partial u} \quad \frac{\partial f(x(u,v),y(u,v))}{\partial v}\right).$$

4. Se  $f \colon \mathbb{R}^m \to \mathbb{R}$ ,  $g \colon \mathbb{R}^n \to \mathbb{R}^m$  são diferenciáveis então

$$D_i(f \circ g)(p) = \sum_j D_j f(g(p)) D_i g_j(p).$$

5. Dado  $A \subset \mathbb{R}^n$  aberto, se  $f: A \to \mathbb{R}^m$  é diferenciável em  $p \in \gamma$ :  $] - \delta, \delta[\to \mathbb{R}^n]$ é derivável em 0, com  $\gamma'(0) = v$  e  $\gamma(0) = p$ , então

$$\frac{\partial f}{\partial v}(p) = \frac{d}{dt}(f \circ \gamma)(t) \bigg|_{t=0}.$$

Prova:  $\frac{d}{dt}(f\circ\gamma)(t)\Big|_{t=0} \stackrel{\mathrm{RC}}{=} df(\gamma(0))(\gamma'(0)) = df(p)(v) \stackrel{\mathrm{(Prop\ 3.6)}}{=} \frac{\partial f}{\partial v}(p).$  Observe que, quando f não é diferenciável em p,

(a) podem existir  $\frac{\partial f}{\partial v}(p)$ ,  $\frac{d}{dt}(f \circ \gamma)(t)\Big|_{t=0}$  e serem differentes; por exem-

$$f(x,y) = \begin{cases} (x,y), & \text{se } y = x^2; \\ (0,0) & \text{caso contrário.} \end{cases}$$

temos 
$$\frac{\partial f}{\partial e_1}(0,0)=(0,0)$$
; tomando a curva  $\gamma(t)=(t,t^2)$ , temos  $\frac{d}{dt}(f\circ\gamma)\Big|_{t=0}=(1,0)$ ;

(b) pode existir  $\frac{\partial f}{\partial v}(p)$  e não existir  $\frac{d}{dt}(f\circ\gamma)(t)\Big|_{t=0}$ . Por exemplo, para

$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário.} \end{cases}$$

se 
$$p = 0$$
,  $v = e_2$  e  $\gamma(t) = (t, \sqrt{t})$ .

6. Seja u = u(x,t) tal que u = f(x,y,z), y = h(x,t), z = g(x,y,t) são diferenciáveis. Temos que u(x,t) é diferenciável. De fato, como

$$u(x,t) = f(x,h(x,t),g(x,h(x,t),t)),$$

temos que  $u(x,t) = f \circ G \circ F(x,t)$ , onde

$$(x,t) \stackrel{F}{\longmapsto} (x,h(x,t),t)$$

$$(x,y,t) \stackrel{G}{\longmapsto} (x,y,g(x,y,t))$$

$$(x,y,z) \stackrel{f}{\longmapsto} f(x,y,z)$$

Pela Regra da Cadeia, temos que u é diferenciável, pois F,G e f são diferenciáveis. Temos  $u'(x,t) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial t} \end{pmatrix}$ , onde

$$\frac{\partial u}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} \frac{\partial h}{\partial x} + \frac{\partial f}{\partial z} \left( \frac{\partial g}{\partial x} + \frac{\partial g}{\partial y} \frac{\partial h}{\partial x} \right) e$$

$$\frac{\partial u}{\partial t} = \frac{\partial f}{\partial y} \frac{\partial h}{\partial t} + \frac{\partial f}{\partial z} \left( \frac{\partial g}{\partial y} \frac{\partial h}{\partial t} + \frac{\partial g}{\partial t} \right).$$

7. Temos que a função  $f: \mathbb{R}^n \to \mathbb{R}$  dada por  $f(x) = x.x = ||x||^2$  é diferenciável e  $df(x_0)(h) = 2x_0.h$  De fato,

$$x \in \mathbb{R}^n \quad \stackrel{G}{\longmapsto} \quad (x, x) \in \mathbb{R}^n \times \mathbb{R}^n$$

$$(x, y) \qquad \stackrel{F}{\longmapsto} \quad x.y$$

G é linear, portanto, diferenciável e F é diferenciável. Então, pela Regra da Cadeia,  $f = F \circ G$  é diferenciável e  $df(x_0) = dF(G(x_0))dG(x_0)$ . Assim,

$$df(x_0)(h) = dF(x_0, x_0)(h, k) = x_0.h + x_0.h = 2x_0.h.$$

PROPOSIÇÃO 3.9. Sejam  $A \subset \mathbb{R}^n$  aberto,  $\lambda \in \mathbb{R}$  e  $f,g:A \to \mathbb{R}^k$  diferenciáveis. Então:

- 1. A função f + g é diferenciável e d(f + g)(x) = df(x) + dg(x);
- 2. A função  $\lambda f$  é diferenciável e  $d(\lambda f)(x) = \lambda df(x)$ ;
- 3. A função f.g é diferenciável e d(f.g)(x) = f(x).dg(x) + g(x).df(x);

4. Se k = 1 e  $f(x) \neq 0$  então  $\frac{1}{f}$  é diferenciável em x e

$$d\left(\frac{1}{f}\right)(x) = -\frac{1}{f(x)^2}df(x).$$

DEMONSTRAÇÃO.

1. 
$$x \stackrel{F}{\longmapsto} (f(x), g(x))$$
  $(u, v) \stackrel{G}{\longmapsto} u + v$ 

Como F e G são diferenciáveis, então  $G \circ F(x) = f(x) + g(x)$  é diferenciável e

$$d(G \circ F)(x) = dG(F(x)) \circ dF(x)) = G \circ (df(x), dg(x)) = df(x) + dg(x).$$

2. 
$$x \stackrel{f}{\longmapsto} f(x)$$
 $u \stackrel{G}{\longmapsto} \lambda u$ 

Como G e f são diferenciáveis, então  $G \circ f(x) = \lambda f(x)$  é diferenciável em x e  $d(G \circ f)(x) = G \circ df(x) = \lambda df(x)$ .

3. 
$$x \stackrel{F}{\longmapsto} (f(x), g(x))$$
  $(u, v) \stackrel{G}{\longmapsto} u.v$ 

Como G e F são diferenciáveis, então  $(G \circ F)(x) = f(x).g(x)$  é diferenciável em x e

$$d(G \circ F)(x) = dG(F(x)) \circ dF(x) = DG(F(x)) \circ (df(x), dg(x)).$$

Logo,

$$d(G \circ F)(x)(h) = dG(f(x))(df(x)(h), dg(x)(h)) =$$

$$= f(x).dg(x)(h) + g(x).df(x)(h).$$

4. 
$$x \mapsto^{f} f(x) \in \mathbb{R}^{*}$$

$$t \in \mathbb{R}^{*} \mapsto^{h} \frac{1}{t}$$

Como h e f são diferenciáveis, então  $(h \circ f)(x) = \frac{1}{f(x)}$  é diferenciável e

$$d(h \circ f)(x) = dh(f(x)) \circ df(x) = -\frac{1}{f(x)^2} df(x).$$

DEFINIÇÃO. Uma função  $f\colon D\subset\mathbb{R}^n\to\mathbb{R}^m$  é de *classe*  $C^1$  em  $p\in D$  se, numa vizinhança aberta V(p) de p contida em D, existirem todas as  $\frac{\partial f_i}{\partial x_j}$  e forem contínuas em p.

OBSERVAÇÃO 3.10. Considerando o espaço  $M_{m\times n}(\mathbb{R})$  com qualquer uma das normas  $\|A\| = \left(\sum_{i,j} a_{ij}^2\right)^{\frac{1}{2}}$  ou  $\|A\|_1 = \sup\{\|A(x)\|\colon \|x\| \le 1\}$ , temos que  $f \in C^1$  em p se, e somente se,  $x \in V(p) \mapsto \left(\frac{\partial f_i}{\partial x_j}(x)\right) \in M_{m\times n}(\mathbb{R})$  for contínua em p.

TVM da reta. Se  $f\colon [a,b]\to \mathbb{R}$  é contínua e derivável em ]a,b[ então existe  $\overline{x}\in ]a,b[$  tal que  $f'(\overline{x})=\frac{f(b)-f(a)}{b-a}.$ 

PROPOSIÇÃO 3.11. Dado  $A \subset \mathbb{R}^n$  aberto, se  $f: A \to \mathbb{R}^m$  é de classe  $C^1$  em p então f é diferenciável em p.

DEMONSTRAÇÃO. Basta provar para m=1. Indicaremos a demonstração para n=2. Temos

$$\begin{split} \frac{f(x_0+h,y_0+k)-f(x_0,y_0)-\frac{\partial f}{\partial x}(x_0,y_0)h-\frac{\partial f}{\partial y}(x_0,y_0)k}{\sqrt{h^2+k^2}} = \\ &= \frac{f(x_0+h,y_0+k)-f(x_0,y_0+k)+f(x_0,y_0+k)-f(x_0,y_0)-f_x(x_0,y_0)h-f_y(x_0,y_0)k}{\sqrt{h^2+k^2}} = \\ &= \frac{f(x_0+h,y_0+k)-f(x_0,y_0+k)+f(x_0,y_0+k)-f(x_0,y_0)-f_x(x_0,y_0)h-f_y(x_0,y_0)k}{\sqrt{h^2+k^2}} = \\ &= \frac{f(x_0+h,y_0+k)-f(x_0,y_0)+f(x_0,y_0)h-f(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-f_y(x_0,y_0)h-$$

EXEMPLO 3.12. 1. Contra-exemplo para a recíproca da Proposição 3.11:

$$f(x) = \begin{cases} x^2 \operatorname{sen} \frac{1}{x}, & \operatorname{se} x \neq 0; \\ 0, & \operatorname{se} x = 0. \end{cases}$$

Temos  $f'(0) = \lim_{s \to 0} \frac{x^2 \operatorname{sen} \frac{1}{x}}{x} = 0 = f(0) \operatorname{e} f'(x) = 2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x}, \operatorname{se} x \neq 0.$  Observemos que f' não é contínua no ponto x = 0, já que não existe  $\lim_{x \to 0} \left(2x \operatorname{sen} \frac{1}{x} - \cos \frac{1}{x}\right)$ . Observe que  $\lim_{x \to 0} 2x \operatorname{sen} \frac{1}{x} = 0$ , mas não existe  $\lim_{x \to 0} \cos \frac{1}{x}$  (basta tomar as seqüências  $x_k = \frac{1}{2k\pi} \operatorname{e} y_k = \frac{1}{(2k+1)\frac{\pi}{2}}$ .) Assim, f é diferenciável em f0, mas não é de classe f0 em f0.

sim, 
$$f$$
 é diferenciável em 0, mas não é de classe  $C^1$  em 0.  
2. Consideremos  $f(x,y) = \begin{cases} (x^2 + y^2) \operatorname{sen} \frac{1}{\sqrt{x^2 + y^2}}, & \operatorname{se}(x,y) \neq (0,0); \\ 0, & \operatorname{se} x = y = 0. \end{cases}$ 

Vejamos que f é diferenciável em (0,0):

$$\frac{\partial f}{\partial x}(0,0) = \lim_{x \to 0} \frac{x^2 \operatorname{sen} \frac{1}{|x|}}{x} = 0 = \frac{\partial f}{\partial y}(0,0).$$

Candidata à  $df(0,0)(h,k) = \begin{pmatrix} 0 & 0 \end{pmatrix} \begin{pmatrix} h \\ k \end{pmatrix} = 0h + 0k$ .

Verificação:

$$\frac{f(h,k)}{\sqrt{h^2+k^2}} = \frac{(h^2+k^2)}{\sqrt{h^2+k^2}} \operatorname{sen} \frac{1}{\sqrt{h^2+k^2}} = \sqrt{h^2+k^2} \operatorname{sen} \frac{1}{\sqrt{h^2+k^2}} \to 0,$$

quando  $(h,k) \to (0,0)$ . Porém, f não é de classe  $C^1$  em p=0; de fato, temos que  $\frac{\partial f}{\partial x}(x,y) = 2x \operatorname{sen} \frac{1}{\sqrt{x^2+y^2}} - \frac{x}{\sqrt{x^2+y^2}} \cos \frac{1}{\sqrt{x^2+y^2}}$ , se  $(x,y) \neq 0$ 

$$(0,0)$$
 e  $\frac{\partial f}{\partial x}(0,0) = 0$ . Assim,  $\frac{\partial f}{\partial x}$  não é contínua em  $(0,0)$  pois

$$\frac{\partial f}{\partial x}(x,0) = 2x \operatorname{sen} \frac{1}{|x|} - \frac{x}{|x|} \cos \frac{1}{|x|} \operatorname{e} \frac{\partial f}{\partial x} \left( \frac{1}{2k\pi}, 0 \right)_{k \in \mathbb{N}} = -1 \neq 0,$$

quando  $k \to \infty$ .

3. A função 
$$f(x,y) = \begin{cases} \frac{2xy^2}{x^2 + y^4}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } x = y = 0 \end{cases}$$
 não é diferenciável em  $(0,0)$ . E nos outros pontos? Nos outros pontos,  $f \in C^1$ , pois temos

$$\frac{\partial f}{\partial x}(x,y) = \frac{(x^2 + y^4)2y^2 - 4x^2y^2}{(x^2 + y^4)^2} e^{\frac{\partial f}{\partial y}}(x,y) = \frac{(x^2 + y^4)4xy - 8xy^5}{(x^2 + y^4)^2}$$

são contínuas em  $(x,y) \neq (0,0)$ .

DEFINIÇÃO.  $f\colon D\subset\mathbb{R}^m\to\mathbb{R}^n$  é *de classe*  $C^2$  em  $p\in D$  se, numa vizinhança aberta de p,V(p), contida em D, existem  $\frac{\partial^2 f_i}{\partial x_j \partial x_k}$  e são contínuas em p, para todo i,j,k.

EXEMPLO 3.13. 1.  $f(x,y) = \sqrt{x^4 + y^4}$  é de classe  $C^1$  em  $\mathbb{R}^2$  e o maior aberto onde f é de classe  $C^2$  é  $\mathbb{R}^2 \setminus \{0\}$ . Verifique.

2. 
$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{se } x = 0 = y. \end{cases}$$

Verifique que  $\frac{\partial^2 f}{\partial x \partial y}(0,0) = 1 \neq \frac{\partial^2 f}{\partial y \partial x}(0,0) = -1$  e conclua, pelo teorema abaixo, que f não é de classe  $C^2$  em (0,0).

TEOREMA 3.14 (Teorema de Schwarz). Seja  $f: A \subset \mathbb{R}^n \to \mathbb{R}$  em A aberto. Se, para algum (i,j) existem  $\frac{\partial^2 f}{\partial x_i \partial x_j}$ ,  $\frac{\partial^2 f}{\partial x_j \partial x_i}$  e são contínuas em A então  $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_i \partial x_j}$  em A.

DEMONSTRAÇÃO. Indicaremos para n = 2.

$$\frac{\partial^2 f}{\partial y \partial x}(x_0, y_0) = \lim_{k \to 0} \frac{\frac{\partial f}{\partial x}(x_0, y_0 + k) - \frac{\partial f}{\partial x}(x_0, y_0)}{k}$$

$$= \lim_{k \to 0} \frac{\lim_{h \to 0} \frac{f(x_0 + h, y_0 + k) - f(x_0, y_0 + k)}{h} - \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}}{k} = \lim_{k \to 0} \left( \lim_{h \to 0} \frac{f(x_0 + h, y_0 + k) - f(x_0, y_0 + k) - f(x_0 + h, y_0) + f(x_0, y_0)}{hk} \right) = \lim_{k \to 0} \lim_{h \to 0} \frac{\varphi(y_0 + k) - \varphi(y_0)}{hk} \quad \text{(onde } \varphi(t) = f(x_0 + h, t) - f(x_0, t)) = \lim_{k \to 0} \lim_{h \to 0} \lim_{k \to 0} \frac{\varphi'(\bar{t})}{h} \quad (\bar{t} \text{ entre } y_0 \in y_0 + k) = \lim_{k \to 0} \lim_{h \to 0} \frac{\partial^2 f}{\partial x \partial y}(x_0 + h, \bar{t}) - \frac{\partial f}{\partial y}(x_0, \bar{t})}{h} = \lim_{k \to 0} \lim_{h \to 0} \frac{\partial^2 f}{\partial x \partial y}(\bar{x}, \bar{t}) \quad (\bar{x} \text{ entre } x_0 \in x_0 + h) = \lim_{k \to 0} \frac{\partial^2 f}{\partial x \partial y}(x_0, \bar{t}) = \frac{\partial^2 f}{\partial x \partial y}(x_0, y_0).$$

PROPOSIÇÃO 3.15 (Teorema do Valor Médio). Sejam  $A \subset \mathbb{R}^n$  aberto,  $f: A \to \mathbb{R}^m$  diferenciável e  $\overline{pq} \subset A$ . Então existem  $c_i \in \overline{pq}$  tais que

$$f(q) - f(p) = \begin{pmatrix} \nabla f_1(c_1) \\ \vdots \\ \nabla f_m(c_m) \end{pmatrix} (q - p).$$

DEMONSTRAÇÃO. Seja  $\gamma: [0,1] \to \mathbb{R}^n$  dada por

$$\gamma(t) = p + t(q - p) = tq + (1 - t)p$$
.

Temos  $f(\gamma(t)) = (f_1(\gamma(t)), \dots, f_m(\gamma(t)))$ . Consideremos  $\varphi_i = f_i \circ \gamma$ :  $[0,1] \to \mathbb{R}$ . Pelo Teorema do Valor Médio da reta, existe um ponto  $t_i \in ]0,1[$  de modo que  $\varphi_i(1) - \varphi_i(0) = \varphi_i'(t_i)(1-0)$ , isto é,

$$f_i(q) - f_i(p) = \nabla f_i(\gamma(t_i)) \gamma'(t_i) = \nabla f_i(\gamma(t_i)) (q - p).$$

Seja  $c_i = \gamma(t_i)$ ; assim,

$$f(q) - f(p) = \left(\nabla f_1(c_1)(q-p), \dots, \nabla f_m(c_m)(q-p)\right) = \begin{pmatrix} \nabla f_1(c_1) \\ \vdots \\ \nabla f_m(c_m) \end{pmatrix} (q-p).$$

OBSERVAÇÃO 3.16. Não se pode garantir que  $c_1 = c_2 = \cdots = c_m$ , como mostra o exemplo  $\gamma(t) = (\cos t, \sin t), t \in \mathbb{R}$ , para q = 0 e  $p = 2\pi$ .

COROLÁRIO 3.17. Dado  $A \subset \mathbb{R}^n$  aberto convexo, se  $f: A \to \mathbb{R}^m$  é diferenciável e, para todo i, j e  $x \in A$  vale  $\left| \frac{\partial f_i}{\partial x_j}(x) \right| \leq M$ , então  $\|f(x) - f(y)\| \leq M\sqrt{mn} \|x - y\|$ , para todo  $x, y \in A$ .

DEMONSTRAÇÃO. Como A é convexo, dados  $x, y \in A$ , temos que  $\overline{xy} \subset A$ . Assim,

$$||f(x) - f(y)|| \stackrel{\text{(TVM)}}{=} \left\| \begin{pmatrix} \nabla f_1(c_1) \\ \vdots \\ \nabla f_m(c_m) \end{pmatrix} (x - y) \right\| \le \sqrt{\sum_{i,j} \left( \frac{\partial f_i}{\partial x_j}(c_i) \right)^2} ||x - y|| \le \sqrt{M^2 m n} ||x - y||.$$

COROLÁRIO 3.18. Dado  $A \subset \mathbb{R}^n$  aberto, se  $f: A \to \mathbb{R}^m$  é de classe  $C^1$  então f é localmente lipschitziana.

DEMONSTRAÇÃO. Dado  $p \in A$ , existe  $\overline{B}_r(p) \subset A$ . Como  $\frac{\partial f_i}{\partial x_j}$  são contínuas em  $\overline{B}_r(p)$ , existe M>0 tal que  $\left|\frac{\partial f_i}{\partial x_j}(x)\right| \leq M$ , para todo  $x \in \overline{B}_r(p)$  e para todo i,j. Logo, pelo corolário anterior, como  $\overline{B}_r(p)$  é convexo (verifique), temos

$$||f(x) - f(y)|| \le M\sqrt{mn}||x - y||$$
, para todo  $x, y \in \overline{B}_r(p)$ .

COROLÁRIO 3.19. Dados  $A \subset \mathbb{R}^n$  aberto  $e f : A \to \mathbb{R}^m$  de classe  $C^1$ , se  $K \subset A$  é compacto convexo então f é lipschitziana em K.

COROLÁRIO 3.20. Se  $A \subset \mathbb{R}^n$  é aberto conexo e  $f: A \to \mathbb{R}^m$  é uma função diferenciável com df(x) = L constante então f(x) = L(x) + c, onde  $c \in \mathbb{R}^m$  é uma constante.

DEMONSTRAÇÃO. Se A é aberto conexo então A é conexo por poligonais. Fixamos  $x_0 \in A$ . Para todo  $x \in A$ , considere uma poligonal  $x_0, \widehat{x_1, \dots}, x_k = x$  contida em A. Como df(x) = L, temos, pelo TVM,

$$f(x_1) - f(x_0) = \begin{pmatrix} \nabla f_1(c_1) \\ \vdots \\ \nabla f_m(c_m) \end{pmatrix} (x_1 - x_0) = L(x_1 - x_0)$$

$$f(x_2) - f(x_1) = \cdots = L(x_2 - x_1)$$

$$\vdots$$

$$f(x_k) - f(x_{k-1}) = \cdots = L(x_k - x_{k-1})$$

Somando essas expressões, obtemos  $f(x) - f(x_0) = L(x) - L(x_0)$ , ou seja, f(x) = L(x) + c, onde  $c = f(x_0) - L(x_0)$ .

OBSERVAÇÃO 3.21. 1. Se  $A \subset \mathbb{R}^n$  é aberto conexo,  $f: A \to \mathbb{R}^m$  diferenciável e df(x) = 0, para todo x, então f é constante.

2. Dado  $A \subset \mathbb{R}^n$  um aberto conexo, se  $f,g:A \to \mathbb{R}^m$  são funções diferenciáveis e df(x) = dg(x), para todo x, então f - g é constante.

COROLÁRIO 3.22. Dados  $A \subset \mathbb{R}^n$  aberto e  $K \subset A$  compacto, se  $f: A \to \mathbb{R}^m$  é de classe  $C^1$  então f é lipschitziana em K.

DEMONSTRAÇÃO. Para cada  $x \in K$ , considere  $\overline{B}_{\delta}(x) \subset A$ , onde  $f \Big|_{\overline{B}_{\delta}(x)}$  é lipschitziana. Temos  $K \subset \bigcup_{x \in K} B_{\delta}(x)$ , portanto, existem  $\delta_1, \ldots, \delta_s$ , tais que K está contido em  $B_{\delta_1} \cup \ldots \cup B_{\delta_s}$ . Seja  $M = \max\{M_1, \ldots, M_s\} > 0$ , onde  $M_i > 0$  é uma constante de Lipschitz de  $f \Big|_{\overline{B}_{\delta_i}}$ . Assim, para todo  $(x,y) \in K \times K$ , temos

(i) se 
$$x, y \in \overline{B}_{\delta_i}$$
 então  $||f(x) - f(y)|| \le M_i ||x - y|| \le M ||x - y||$ .

(ii) se 
$$(x,y) \in F = (K \times K) \setminus \left(\bigcup_{i=1}^{s} B_{\delta_i} \times B_{\delta_i}\right)$$
:

a função  $(x,y) \in F \mapsto \frac{\|f(x)-f(y)\|}{\|x-y\|}$  é contínua, portanto, assume máximo no compacto F. Logo, existe N>0 tal que, para todo elemento  $(x,y) \in F$ ,  $\|f(x)-f(y)\| \le N\|x-y\|$ . Escolhendo  $\lambda = \max\{M,N\}$ , resulta que

$$||f(x) - f(y)|| \le \lambda ||x - y||$$
, para todo  $x, y \in K$ .

OBSERVAÇÃO 3.23. Se  $\alpha: [a,b] \to \mathbb{R}^n$  é contínua então

$$\left\| \int_a^b \alpha(t)dt \right\| \leq \int_a^b \|\alpha(t)\|dt.$$

De fato, temos:  $\int_a^b \alpha(t)dt = \lim_{|P| \to 0} \sum_P \alpha(c_i) \Delta t_i \text{ e } \int_a^b \|\alpha(t)\|dt = \lim_{|P| \to 0} \sum_P \|\alpha(c_i)\| \Delta t_i,$  onde  $P: a = t_0 < t_1 \dots < t_n = b$  é uma partição do intervalo [a,b], |P| é o máximo do conjunto  $\{\Delta t_i: 1 \le i \le n\}$  e  $c_i \in [t_{i-1},t_i]$ . Como  $\left\|\sum_P \alpha(c_i) \Delta t_i\right\| \le \sum_P \|\alpha(c_i)\| \Delta t_i,$  passando ao limite, temos

$$\left\| \int_a^b \alpha(t)dt \right\| \leq \int_a^b \|\alpha(t)\|dt.$$

PROPOSIÇÃO 3.24. Sejam  $A \subset \mathbb{R}^n$  aberto convexo,  $f: A \to \mathbb{R}^m$  de classe  $C^1$  que verifica  $||f'(x)||_1 \leq M$ , para todo  $x \in A$ . Então  $||f(x) - f(y)|| \leq M||x - y||$ , para todo  $x, y \in A$ .

$$(||L||_1 = \sup\{||L(x)||: ||x|| \le 1\})$$

DEMONSTRAÇÃO. Seja  $\gamma(t) = x + t(y - x)$ . Assim,

$$f(y) - f(x) = \int_0^1 \frac{d}{dt} f(\gamma(t)) dt = \int_0^1 df(\gamma(t)) \gamma'(t) dt.$$

Portanto,

$$||f(x) - f(y)|| = \left\| \int_0^1 df(\gamma(t)) \gamma'(t) dt \right\| \le \int_0^1 ||df(\gamma(t)) \gamma'(t)|| dt \le$$

$$\le \int_0^1 ||df(\gamma(t))||_1 ||\gamma'(t)|| dt \le \int_0^1 M||\gamma'(t)|| dt = M||y - x||.$$

# 3.1. O Teorema da Função Inversa

Na reta, temos:

TEOREMA 3.25. Dado  $I \subset \mathbb{R}$  intervalo aberto, se a função  $f: I \to \mathbb{R}$  é derivável com  $f'(x) \neq 0$ , para todo  $x \in I$ , então f é bijetora de I sobre o intervalo aberto f(I) = J,  $f^{-1}: J \to I$  é derivável e f é aberta em I.

DEMONSTRAÇÃO. Pelo Teorema do Valor Intermediário, f(I) = J é intervalo. E, pelo Teorema do Valor Intermediário para derivadas, f'(x) não muda de sinal. Assumindo que f'(x) > 0, para todo  $x \in I$ , f é estritamente crescente em I (e, portanto, injetora), pois dado x < x' em I, existe  $\bar{x}$  entre x e x' tal que f(x) - f(x') = I

 $f'(\overline{x})(x-x') < 0$ . Logo,  $f: I \to J = f(I)$  é inversível sobre o intervalo J. Para ver que f é aberta em I (isto é, para todo  $A \subset I$  aberto, f(A) é aberto), basta mostrar que se  $I_1 \subset I$  é intervalo aberto então o intervalo  $f(I_1)$  é aberto. De fato, para todo  $c \in f(I_1)$ ,  $c = f(x_1)$  com  $x_1 \in I_1$ , sejam  $x_2$  e  $x_3$  em I tais que  $x_2 < x_1 < x_3$ .

Temos  $f(x_2) < f(x_1) < f(x_3)$ , de onde segue que  $c \in \widehat{f(I_1)}$ . Assim,  $f: I \to f(I)$  é bijetora e aberta; logo,  $f^{-1}: f(I) \to I$  é contínua, pois, para todo A aberto de  $\mathbb{R}$ ,  $(f^{-1})^{-1}(A) = f(A \cap I)$  é aberto, já que  $A \cap I$  é aberto. Ver também Exemplo 7 após a Proposição 2.7. Vejamos que  $f^{-1}$  é derivável em  $y_0 \in J$ :

$$\lim_{y \to y_0} \frac{f^{-1}(y) - f^{-1}(y_0)}{y - y_0} = \lim_{x \to x_0} \frac{f^{-1}(f(x)) - f^{-1}(f(x_0))}{f(x) - f(x_0)} =$$

$$= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}.$$

Para aplicações lineares, temos:

TEOREMA 3.26. Uma aplicação linear  $L: \mathbb{R}^n \to \mathbb{R}^n$  é bijetora se, e somente se, det L for diferente de zero. Neste caso, L é aberta.

Seja 
$$f(x,y) = (u(x,y), v(x,y))$$
 dada por 
$$\begin{cases} u(x,y) = e^x \cos y; \\ v(x,y) = e^x \sin y. \end{cases}$$

Seja f(x,y) = (u(x,y), v(x,y)) dada por  $\begin{cases} u(x,y) = e^x \cos y; \\ v(x,y) = e^x \sin y. \end{cases}$  Temos  $JF = \begin{vmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{vmatrix} = e^{2x} \neq 0$ , para todo (x,y), porém f não é

TEOREMA 3.27 (Teorema da Função Inversa). Dado  $A \subset \mathbb{R}^n$  aberto, se a função  $f: A \to \mathbb{R}^n$  é de classe  $C^1$ , com  $Jf(x_0) = \det f'(x_0) \neq 0$ , então f é um difeomorfismo  $C^1$  local em  $x_0$ , isto é, existem abertos  $U,V \subset \mathbb{R}^n$  com  $x_0 \in U$  e  $f(x_0) \in V$  tais que  $f: U \to V$  é bijetora com inversa  $f^{-1}: V \to U$  de classe  $C^1$ .

Neste caso,

- 1.  $f: U \to \mathbb{R}^n$  é *aberta* (isto é, para todo aberto  $\mathcal{A} \subset U$ ,  $f(\mathcal{A})$  é aberto). De fato, se  $B \subset U$  é aberto então  $f(B) = (f^{-1})^{-1}(B)$  é aberto de V, logo, de  $\mathbb{R}^n$
- 2.  $(f \circ f^{-1})(y) = y$  implies  $Df(f^{-1}(y))Df^{-1}(y) = I$ , ou seja,

$$Df^{-1}(y) = [Df(f^{-1}(y))]^{-1},$$

para todo  $y \in V$ . Além disso,  $f^{-1} \in C^k$ ,  $(k \ge 1)$ , desde que  $f \in C^k$ .

Antes da demonstração do Teorema, vejamos algumas aplicações:

EXEMPLO 3.28. 1. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}^n$  é de classe  $C^1$  no aberto A e  $Jf(x) \neq 0$ , para todo  $x \in A$ , então f é aberta (isto é, para todo aberto  $B \subset A$ , f(B) é aberto).

De fato, dado  $\mathcal{A} \subset A$  aberto e  $p \in \mathcal{A}$ , existem abertos  $U_p \subset \mathcal{A}$  e  $V_p$  tais que  $f(U_p) = V_p$  (por quê?), logo,

$$f(\mathcal{A}) = f\left(\bigcup_{p \in \mathcal{A}} U_p\right) = \bigcup_{p \in \mathcal{A}} f(U_p) = \bigcup_{p \in \mathcal{A}} V_p$$
 é aberto.

2. Diremos que  $\varphi: A \subset \mathbb{R}^n \to \mathbb{R}^n$  é um difeomorfismo (de classe  $C^k$ ,  $k \ge 1$ ) no aberto A se  $\varphi$  é diferenciável (de classe  $C^k$ ,  $k \ge 1$ ), é injetora sobre um aberto  $\varphi(A)$  com inversa  $\varphi^{-1}: \varphi(A) \to A$  diferenciável (de classe  $C^k$ ,  $k \ge 1$ ).

Seja  $\varphi \colon A \subset \mathbb{R}^n \to \mathbb{R}^n$  de classe  $C^{k \geq 1}$  no aberto A. Tem-se que  $\varphi$  é um difeomorfismo se, e somente se,  $\varphi$  for injetora com  $\det \varphi'(x) \neq 0$ , para todo  $x \in A$ .

- 3. A função  $f(x) = \begin{cases} x + x^2 \sin \frac{1}{x}, & \text{se } x \neq 0; \\ 0, & \text{se } x = 0 \end{cases}$  é derivável em  $\mathbb{R}$ , f'(0) = 1, mas f não é localmente injetora em x = 0. Como você explica?
- 4. A função derivável  $f(x) = x^3$  tem inversa  $g(x) = \sqrt[3]{x}$  que não é derivável em 0. Como você explica?
- 5. Se  $f: \mathbb{R}^n \to \mathbb{R}^n$  é uma função de classe  $C^1$  com inversa  $f^{-1}: \mathbb{R}^n \to \mathbb{R}^n$  e det  $f'(p_0) = 0$ , mostre que  $f^{-1}$  não é diferenciável em  $f(p_0)$ .
- 6. A função  $f(x,y) = (x^3, y^3)$  é injetora mas  $\det f'(0,0) = 0$ .
- 7. Estude a injetividade local de  $f(x,y) = (x^2 + 2xy + y^2, x + y)$  em cada ponto de  $\mathbb{R}^2$ .
- 8. Seja  $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ ,  $f(X) = X^2$ . Mostre que, para todo  $Y \in M_n(\mathbb{R})$  suficiente próximo de I, existe um único  $X = \sqrt{Y}$  próximo de I tal que  $X^2 = Y$  e X = X(Y) é de classe  $C^{\infty}$ .
- 9. Seja  $p_0(x) = a_0x^3 b_0x^2 + c_0x d_0$  um polinômio com coeficientes reais e três raízes reais distintas. Então qualquer polinômio da forma  $p(x) = ax^3 bx^2 + cx d$  que tem coeficientes reais (a,b,c,d) suficientemente próximo de  $(a_0,b_0,c_0,d_0)$  também tem 3 raízes reais distintas e que variam em classe  $C^{\infty}$  com os coeficientes do polinômio.

Solução: Sejam  $x_0, y_0, z_0$  as raízes de  $p_0(x)$  e

$$F(x, y, z) = (x + y + z, xy + xz + yz, xyz) \in C^{\infty}.$$

Temos 
$$F(x_0, y_0, z_0) = \left(\frac{b_0}{a_0}, \frac{c_0}{a_0}, \frac{d_0}{a_0}\right) e$$

$$JF(x_0, y_0, z_0) = \begin{vmatrix} 1 & 1 & 1 \\ y_0 + z_0 & x_0 + z_0 & x_0 + y_0 \\ y_0 z_0 & x_0 z_0 & x_0 y_0 \end{vmatrix}.$$

Para mostrar que  $JF(x_0, y_0, z_0) \neq 0$ , façamos x + y = u, xy = v.

$$(x,y,z) \stackrel{H}{\longmapsto} (x+y,xy,z)$$
  
 $(u,v,z) \stackrel{G}{\longmapsto} (u+z,v+uz,vz)$ 

Assim,  $F = G \circ H$  e  $dF(x_0, y_0, z_0) = dG(x_0 + y_0, x_0y_0, z_0)dH(x_0, y_0, z_0)$ .

$$F'(p_0) = \begin{pmatrix} 1 & 0 & 1 \\ z_0 & 1 & u_0 \\ 0 & z_0 & v_0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ y_0 & x_0 & 0 \\ 0 & 0 & 1 \end{pmatrix},$$

onde  $u_0 = x_0 + y_0$  e  $v_0 = x_0 y_0$  e

$$JF(p_0) = \det F'(p_0) = (v_0 + z_0^2 - z_0 u_0)(x_0 - y_0) =$$
$$= (z_0 - x_0)(z_0 - y_0)(x_0 - y_0) \neq 0.$$

Pelo Teorema da Função Inversa, existem abertos U e V de  $\mathbb{R}^3$ , com  $(x_0,y_0,z_0)\in U$  e  $\left(\frac{b_0}{a_0},\frac{c_0}{a_0},\frac{d_0}{a_0}\right)\in V$  tais que  $F\colon U\to V$  é difeomorfismo de classe  $C^\infty$ . Logo, para todo ponto  $(b',c',d')\in V$ , o polinômio  $p'(x)=x^3-b'x^2+c'x-d'$  admite 3 raízes reais dadas por  $F^{-1}(b',c',d')$ . Diminuindo U, obtemos as raízes distintas entre si. Como a aplicação

$$(a,b,c,d) \stackrel{\varphi}{\longmapsto} \left(\frac{b}{a},\frac{c}{a},\frac{d}{a}\right), \ (a \neq 0)$$

é de classe  $C^{\infty}$  em  $(a_0,b_0,c_0,d_0)$ , existe W vizinhança de  $(a_0,b_0,c_0,d_0)$  tal que, para todo  $(a,b,c,d) \in W$ , o polinômio  $ax^3 - bx^2 + cx - d = 0$  tem 3 raízes distintas em U, que variam em classe  $C^{\infty}$  com os coeficientes (a,b,c,d).

10. Enunciar e demonstrar o análogo do Exemplo 9. para polinômios da forma  $p(x) = x^4 - a_0x^3 + b_0x^2 - c_0x + d_0$ .

TEOREMA 3.29 (do Ponto Fixo de Banach). Se  $F \subset \mathbb{R}^n$  é um conjunto fechado e  $f \colon F \to F$  é uma contração então existe um único  $p \in F$  tal que f(p) = p.

( f é contração se existe  $0 \le \lambda < 1$  de modo que  $\|f(x) - f(y)\| \le \lambda \|x - y\|$ , para todo x,y.)

DEMONSTRAÇÃO. Fixemos  $x_0 \in F$  e consideremos a sequência

$$x_{n+1} = f(x_n) = \underbrace{f \circ \dots \circ f}_{n+1}(x_0) = f^{n+1}(x_0).$$

Provaremos que a sequência  $(x_n)$  é de Cauchy em  $F \subset \mathbb{R}^n$ . Assim, existirá  $p \in \mathbb{R}^n$  tal que  $x_n \to p$  (justifique) e, como F é fechado,  $p \in F$ . De  $f(x_n) = x_{n+1}$ , resultará f(p) = p (pela continuidade de f, aplicando limite em ambos os lados).

Unicidade: Supondo  $f(p_1) = p_1$ ,  $f(p_2) = p_2$  e  $p_1 \neq p_2$ , temos

$$||f(p_1) - f(p_2)|| = ||p_1 - p_2|| \le \lambda ||p_1 - p_2|| < ||p_1 - p_2||,$$

o que é absurdo. Portanto,  $p_1 = p_2$ .

Vejamos que  $(x_n)$  é de Cauchy:

$$||x_{n+1} - x_n|| = ||f(x_n) - f(x_{n-1})|| \le \lambda ||x_n - x_{n-1}|| \le \lambda^2 ||x_{n-1} - x_{n-2}|| \le \dots \le \lambda^n ||x_1 - x_0||.$$

Assim,

$$||x_{n+p} - x_n|| = ||x_{n+p} - x_{n+p-1} + x_{n+p-1} - x_{n+p-2} + \dots + x_{n+1} - x_n|| \le$$

$$\le ||x_{n+p} - x_{n+p-1}|| + ||x_{n+p-1} - x_{n+p-2}|| + \dots + ||x_{n+1} - x_n|| \le$$

$$\le (\lambda^{n+p-1} + \lambda^{n+p-2} + \dots + \lambda^n)||x_1 - x_0|| = \lambda^n (1 + \lambda + \dots + \lambda^{p-1})||x_1 - x_0||.$$

Como  $0 \le \lambda < 1$ , temos que a seqüência  $1 + \lambda + \lambda^2 + \dots + \lambda^n$  é crescente e convergente, portanto,  $1 + \lambda + \dots + \lambda^n \le \frac{1}{1 - \lambda}$ . Dessa maneira,

$$||x_{n+p}-x_n|| \le \frac{\lambda^n}{1-\lambda} ||x_1-x_0||.$$

Como  $\lim_{n\to\infty} \frac{\lambda^n\|x_1-x_0\|}{1-\lambda} = 0$ , dado  $\varepsilon > 0$ , existe  $n_0 \in N$  tal que, para todo  $n \ge n_0$  temos  $0 \le \frac{\lambda^n\|x_1-x_0\|}{1-\lambda} < \varepsilon$ . Logo, para todo  $n \ge n_0$  e  $m \in \mathbb{N}$ ,  $\|x_{n+m}-x_n\| < \varepsilon$ .  $\square$ 

EXERCÍCIO. Verifique que o Teorema do Ponto Fixo não vale se temos apenas a condição  $\|f(x) - f(y)\| < \|x - y\|$ , para quaisquer  $x, y \text{ com } x \neq y$ , usando  $f(x) = \frac{x + \sqrt{1 + x^2}}{2}$ .

TEOREMA 3.30 (Teorema da Perturbação da Identidade).  $Dado A \subset \mathbb{R}^n$  aberto, se  $f: A \to \mathbb{R}^n$  é contração então g = I + f é um homeomorfismo do aberto A sobre o aberto g(A) (isto é, g é contínua e injetora em A com inversa  $g^{-1}$  contínua em g(A)).

DEMONSTRAÇÃO. Observe que

$$||g(x) - g(y)|| = ||x - y + f(x) - f(y)|| \ge ||x - y|| - ||f(x) - f(y)||.$$

Além disso, existe  $0 \le \lambda < 1$  tal que  $||f(x) - f(y)|| \le \lambda ||x - y||$ , para todo  $x, y \in A$ , pois f é contração. Assim,

$$||g(x) - g(y)|| \ge ||x - y|| - ||f(x) - f(y)|| \ge ||x - y|| - \lambda ||x - y|| = (1 - \lambda)||x - y||.$$

Dessa maneira, temos

- 1. g é injetora: g(x) = g(y) implica  $||g(x) g(y)|| = 0 \ge (1 \lambda)||x y||$ . Como  $1 \lambda > 0$ , temos que x = y.
- 2.  $g^{-1}$  é contínua:

$$\|g^{-1}(u) - g^{-1}(v)\| = \|x - y\| \le \frac{1}{1 - \lambda} \|u - v\|.$$

3. g(A) é aberto: dado  $y_0 \in g(A)$ , queremos encontrar r>0 de maneira que  $B_r(y_0) \subset g(A)$ , ou seja, tal que, dado  $y \in B_r(y_0)$ , existe  $x \in A$  que satisfaz y=g(x)=x+f(x), isto é,  $\phi_y(x)=y-f(x)$  tem ponto fixo. Seja  $x_0 \in A$  tal que  $g(x_0)=y_0$ . Escolhendo  $\overline{B}_{\delta}(x_0) \subset A$ , consideremos  $\phi_y \colon \overline{B}_{\delta}(x_0) \to \mathbb{R}^n$ . Temos que  $\phi_y$  é contração, pois

$$\|\mathbf{\phi}_{y}(x) - \mathbf{\phi}_{y}(x')\| = \|y - f(x) - y + f(x')\| \le \lambda \|x - x'\|.$$

Vejamos quando  $\varphi_{V}(\overline{B}_{\delta}(x_{0})) \subset \overline{B}_{\delta}(x_{0})$ . Para  $x \in \overline{B}_{\delta}(x_{0})$ ,

$$\|\varphi_{y}(x) - x_{0}\| = \|y - f(x) - x_{0}\| = \|y - f(x_{0}) - x_{0} + f(x_{0}) - f(x)\| \le$$
  
$$\le \|y - g(x_{0})\| + \|f(x) - f(x_{0})\| \le r + \lambda \|x - x_{0}\| \le r + \lambda \delta.$$

Logo, tomando  $r \operatorname{com} 0 < r < (1 - \lambda)\delta$ , teremos  $\varphi_v(\overline{B}_{\delta}(x_0)) \subset \overline{B}_{\delta}(x_0)$ .  $\square$ 

DEMONSTRAÇÃO DO TEOREMA DA FUNÇÃO INVERSA: Como

$$\begin{array}{ccc} x & \stackrel{C^0}{\longmapsto} & f'(x) \in L(\mathbb{R}^n) \\ & & L & \stackrel{C^0}{\longmapsto} & \det L \end{array}$$

existe vizinhança de  $x_0$  onde  $Jf(x) \neq 0$ . Vamos supor que essa vizinhança de  $x_0$  seja A e que, para todo x em A,  $f(x) = f(x_0) + \underbrace{df(x_0)}_{I}(x-x_0) + r(x)$ , com

$$\lim_{x \to x_0} \frac{r(x)}{\|x - x_0\|} = 0. \text{ Assim,}$$

$$f(x) = f(x_0) - L(x_0) + L(x + L^{-1}r(x)).$$
(3)

Mostraremos inicialmente que  $L^{-1} \circ r$  é uma contração numa vizinhança aberta U de  $x_0$  e concluiremos, por meio do Teorema da Perturbação da Identidade, que f é um homeomorfismo dessa vizinhança aberta U sobre o aberto f(U) = V.

Como a aplicação  $x \in A \mapsto (L^{-1}r)'(x) \in (L(\mathbb{R}^n), || \cdot ||_1)$  é contínua e  $(L^{-1}r)'(x_0) = L^{-1}r'(x_0) = 0$ , dado  $\varepsilon = \frac{1}{2}$ , existe  $B_{\delta}(x_0) \subset A$ , onde os pontos verificam

$$||(L^{-1}r)'(x)||_1 < \frac{1}{2}.$$

Pela Proposição 3.24,

$$||L^{-1}r(x) - L^{-1}r(x')|| \le \frac{1}{2}||x - x'||, \ \forall x, x' \in B_{\delta}(x_0).$$

Logo, pelo Teorema da Perturbação da Identidade,  $x+L^{-1}r(x)$  é um homeomorfismo do aberto  $B_{\delta}(x_0)$  sobre o aberto  $(I+L^{-1}r)(B_{\delta}(x_0))$  e, portanto, f é homeomorfismo do aberto  $U=B_{\delta}(x_0)$  sobre o aberto  $f(B_{\delta}(x_0))=V$ .

Temos que  $f^{-1}$  é diferenciável em  $y = f(x) \in f(B_{\delta})$  pois

$$\frac{f^{-1}(y+\Delta y) - f^{-1}(y) - [df(f^{-1}(y))]^{-1}(\Delta y)}{\|\Delta y\|} =$$

$$= \frac{f^{-1}(f(x+\Delta x)) - f^{-1}(f(x)) - [df(x)]^{-1}(f(x+\Delta x) - f(x))}{\|f(x+\Delta x) - f(x)\|} =$$

$$= \frac{\Delta x - [df(x)]^{-1}(df(x)(\Delta x) + R(x))}{\|f(x+\Delta x) - f(x)\|} = -(df(x))^{-1} \left(\frac{R(x)}{\|df(x)(\Delta x) + R(x)\|}\right),$$

$$\lim_{\Delta x \to 0} \frac{R(x)}{\|\Delta x\|} = 0. \tag{4}$$

Quando  $\Delta y \to 0$ , como  $f^{-1}$  é contínua em y, temos  $\Delta x \to 0$ . Da injetividade de df(x), segue que existe c>0 tal que  $\left\|df(x)\left(\frac{\Delta x}{\|\Delta x\|}\right)\right\| \ge c>0$ . De (4), existe  $0<\delta'$ , tal que  $\|\Delta x\|<\delta'\Rightarrow \left\|\frac{R(x)}{\|\Delta x\|}\right\|<\frac{c}{2}$ . Logo, para  $\|\Delta x\|<\delta'$ , temos

$$\begin{split} \left\| \frac{R(x)}{\|df(x)(\Delta x) + R(x)\|} \right\| &= \frac{\|R(x)\|}{\|\Delta x\|} \frac{1}{\left\|df(x)\left(\frac{\Delta x}{\|\Delta x\|}\right) + \frac{R(x)}{\|\Delta x\|}\right\|} \leq \\ &\leq \frac{\|R(x)\|}{\|\Delta(x)\|} \frac{1}{\left\|df(x)\left(\frac{\Delta x}{\|\Delta x\|}\right)\right\| - \frac{\|R(x)\|}{\|\Delta x\|}} \leq \frac{\|R(x)\|}{\|\Delta x\|} \frac{1}{c - \frac{c}{2}}. \end{split}$$

Logo, -df(x))<sup>-1</sup> $\left(\frac{R(x)}{\|df(x)(\Delta x) + R(x)\|}\right) \to 0$ , quando  $\Delta x \to 0$ . Assim, mostramos que

$$\frac{f^{-1}(y+\Delta y)-f^{-1}(\Delta y)-[df(f^{-1}(y))]^{-1}(\Delta y)}{\|\Delta y\|}\to 0, \text{ quando } \Delta y\to 0,$$

isto é,  $f^{-1}$  é diferenciável em todo  $y \in f(B_{\delta}(x_0))$ . Para mostrar que  $f^{-1} \in C^1$  em V, basta olhar para

$$y \overset{C^0}{\longmapsto} f^{-1}(y)$$

$$x \overset{C^0}{\longmapsto} f'(x) \in \{L \in L(\mathbb{R}^n) : L \text{ \'e invers\'ivel}\} \text{ (aberto)}$$

$$L \in \{L \in L(\mathbb{R}^n) : L \text{ \'e invers\'ivel}\} \overset{C^0}{\longmapsto} L^{-1}$$

Se  $f \in C^k$ ,  $k \ge 1$ , tem-se  $f^{-1} \in C^k$ . Por exemplo, se  $f \in C^2$ ,  $v \in V \xrightarrow{C^1} f^{-1}(v) \in U$ 

$$x \in U \stackrel{C^1}{\longmapsto} f'(x) \in \{L \in L(\mathbb{R}^n) : L \text{ \'e invers\'ivel}\}$$

$$L \in \{L \in L(\mathbb{R}^n) : L \text{ \'e invers\'ivel}\} \stackrel{C^{\infty}}{\longmapsto} L^{-1}$$

tem-se  $y \in V \xrightarrow{C^1} [df(f^{-1}(y))]^{-1} = df^{-1}(y)$  e, consequentemente,  $f^{-1} \in C^2$  em V

## 3.2. O Teorema da Função Implícita

MOTIVAÇÃO. Se ax + by = c, com  $b \neq 0$ , então  $y = \frac{c - ax}{b}$ .

TEOREMA 3.31. Sejam  $A \subset \mathbb{R}^2$  aberto  $e \ f : A \to \mathbb{R}$  de classe  $C^k$ , com  $k \ge 1$ . Se  $f(x_0, y_0) = c \ e \ \frac{\partial f}{\partial y}(x_0, y_0) \ne 0$  então existem abertos  $U \ e \ V$ ,  $x_0 \in U$ ,  $y_0 \in V$  tais que  $U \times V \subset A$  e, para todo  $x \in U$ , existe um único  $y = y(x) \in V$  tal que f(x, y(x)) = c, sendo y = y(x) de classe  $C^k$ .

Neste caso,

$$f(x,y(x)) = c \stackrel{\text{R.C.}}{\Rightarrow} \frac{\partial f}{\partial x}(x,y(x)) + \frac{\partial f}{\partial y}(x,y(x))y'(x) = 0 \Rightarrow y'(x_0) = -\frac{\frac{\partial f}{\partial x}(x_0,y_0)}{\frac{\partial f}{\partial y}(x_0,y_0)}.$$

Observe que a segunda frase das implicações acima diz que

$$\nabla f(x_0, y(x_0)).(1, y'(x_0)) = 0,$$

ou seja, o gradiente é perpendicular ao vetor tangente ao gráfico de y.

Reta tangente à curva f(x,y) = c em  $(x_0,y_0)$ :

$$\nabla f(p_0).[(x,y)-(x_0,y_0)]=0,$$
ou  $(x,y)=(x_0,y_0)+\lambda\left(1,\frac{-\frac{\partial f}{\partial x}(p_0)}{\frac{\partial f}{\partial y}(p_0)}\right), \text{ para } \lambda \in \mathbb{R},$ 
ou  $y=y_0+\frac{-\frac{\partial f}{\partial x}(p_0)}{\frac{\partial f}{\partial y}(p_0)}.(x-x_0).$ 

 $\Box$ 

OBSERVAÇÃO 3.32. 1. Quando  $\frac{\partial f}{\partial y}(x_0,y_0)=0$  e  $\frac{\partial f}{\partial x}(x_0,y_0)\neq 0$  então f(x,y)=c é resolvida localmente em  $(x_0,y_0)$  por x=x(y).

- 2. Quando  $\frac{\partial f}{\partial y}(x_0, y_0) = 0 = \frac{\partial f}{\partial x}(x_0, y_0)$ , o teorema nada afirma. Por exemplo,
  - (a)  $f(x,y) = x^2 y^2 = 0$  localmente em (0,0) não é gráfico de y = y(x) nem de x = x(y).
  - (b)  $f(x,y) = x^3 y^6 = 0$  localmente em (0,0) é o gráfico de  $x = y^2$ .

APLICAÇÃO 1. Pode  $x^2 + y + \sin xy = 0$  ser dado localmente em (0,0) como gráfico de y = y(x)? E de x = x(y)? Qual a reta tangente nesse ponto?

Solução:  $f(x,y) = x^2 + y + \operatorname{sen} xy \in C^{\infty}$ . Temos f(0,0) = 0 e

$$\frac{\partial f}{\partial y}(0,0) = 1 + x \cos xy \Big|_{(0,0)} = 1 \neq 0.$$

Assim, a equação pode ser dada por  $y \stackrel{C^{\infty}}{=} y(x)$  localmente em (0,0). A reta tangente à curva em (0,0) é dada por:  $\nabla f(0,0)((x,y)-(0,0))=0$ , isto é, (0,1).(x,y)=0, ou ainda, y=0.

Como  $\frac{\partial f}{\partial x}(0,0) = 2xy + \cos xy\Big|_{(0,0)} = 0$ , o Teorema nada afirma. Para decidir se x = x(y):

$$x^{2} + y + \sin xy = 0 \Rightarrow 2x + y' + (xy' + y)\cos xy = 0 \Rightarrow 2 + y'' + (xy'' + y')\cos xy - (xy' + y)^{2}\sin xy = 0.$$

Fazendo x = 0, obtemos y'(0) = 0 e y''(0) = -2, o que mostra que y = y(x) tem ponto de máximo em x = 0. Assim, a equação não pode ser dada localmente em (0,0) por x = x(y).

APLICAÇÃO 2. Dada  $g: \mathbb{R} \to \mathbb{R}$ , g de classe  $C^{\infty}$ , mostre que, para cada  $x \in \mathbb{R}$ , existe um único  $y = f(x) \in \mathbb{R}$  tal que  $g(x) = \int_0^{f(x)} (1+t^2) dt$  e mostre que f é de classe  $C^{\infty}$ .

Solução: Considere, para cada  $x \in \mathbb{R}$ , o polinômio  $p(y) = y + \frac{y^3}{3} - g(x)$ , que é estritamente crescente,  $\lim_{y \to \infty} p(y) = \infty$ ,  $\lim_{y \to -\infty} p(y) = -\infty$  e, portanto, tem uma única raiz y = f(x). Seja  $F(x,y) = g(x) - \int_0^y (1+t^2)dt$  que é de classe  $C^\infty$ ,  $F(x_0,f(x_0)) = 0$  e

$$\frac{\partial F}{\partial y}(x_0, f(x_0)) = -1 - f(x_0)^2 \neq 0,$$

para cada  $x_0 \in \mathbb{R}$ . Assim, pelo Teorema da Função Implícita, para cada  $x_0, F(x, y) = 0$  é dada localmente em  $(x_0, f(x_0))$  por  $y = y(x) \in C^{\infty}$ . Como y = f(x) obedece F(x, f(x)) = 0, então, pela unicidade,  $f(x) = y(x) \in C^{\infty}$ .

DEMONSTRAÇÃO DO TEOREMA 3.31:



Seja 
$$F(x,y) = (x, f(x,y)) \in C^1$$
. Temos

$$JF(x_0, y_0) = \det \begin{pmatrix} 1 & 0 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}_{p_0} = \frac{\partial f}{\partial y}(x_0, y_0) \neq 0.$$

Logo, pelo Teorema da Função Inversa, existem abertos U e V de  $\mathbb{R}$  com  $(x_0,y_0)$  em  $U\times V\subset A$  e aberto W de  $\mathbb{R}^2$  com  $(x_0,c)\in W$  tais que  $F:U\times V\to W$  bijetora com  $F^{-1}\in C^k$ , onde  $F^{-1}$ :  $\left\{\begin{array}{c} x=u\\ y=y(u,v) \end{array}\right.$  . Temos então

$$\{(x,y) \in U \times V : f(x,y) = c\} =$$

$$= F^{-1}(\{(x,c) \in W\}) = \{(x,y) \in U \times V, y = y(x,c)\}.$$

Se necessário, diminuímos U para obter a tese.

MOTIVAÇÃO. Se ax + by + cz = 0, com  $c \neq 0$ , então  $z = \frac{-ax - by}{c}$ .

TEOREMA 3.33. Sejam  $A \subset \mathbb{R}^3$  aberto  $e \ f : A \to \mathbb{R}$  de classe  $C^k$ , com  $k \ge 1$ . Dado  $p_0 = (x_0, y_0, z_0)$ , se  $f(p_0) = c$  e  $\frac{\partial f}{\partial z}(p_0) \ne 0$  então existem abertos  $U \ e \ V$ ,  $(x_0, y_0) \in U$ ,  $z_0 \in V$ , tais que  $U \times V \subset A$  e, para todo  $(x, y) \in U$ , existe um único  $z = z(x, y) \in V$  tal que f(x, y, z(x, y)) = c, sendo  $z = z(x, y) \in C^k$ .

Neste caso, aplicando a Regra da Cadeia a f(x, y, z(x, y)) = c temos

$$\begin{cases} \frac{\partial f}{\partial x}(p_0) + \frac{\partial f}{\partial z}(p_0) \frac{\partial z}{\partial x}(x_0, y_0) = 0\\ \frac{\partial f}{\partial y}(p_0) + \frac{\partial f}{\partial z}(p_0) \frac{\partial z}{\partial y}(x_0, y_0) = 0 \end{cases}$$

ou seja,

$$\begin{cases} \nabla f(p_0). \left(1, 0, \frac{\partial z}{\partial x}(x_0, y_0)\right) = 0 \\ \nabla f(p_0). \left(0, 1, \frac{\partial z}{\partial y}(x_0, y_0)\right) = 0 \end{cases}$$

Assim, 
$$\frac{\partial z}{\partial x}(x_0, y_0) = \frac{-\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial z}}(x_0, y_0), \ \frac{\partial z}{\partial y}(x_0, y_0) = \frac{-\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial z}}(x_0, y_0).$$

Neste caso, o *plano tangente* à superfície f(x,y,z) = c em  $p_0 = (x_0,y_0,z_0)$  é dado por

$$\begin{split} z &= z_0 + \frac{\partial z}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial z}{\partial y}(x_0, y_0)(y - y_0) \\ \text{ou } (x, y, z) &= p_0 + \lambda \left(1, 0, \frac{\partial z}{\partial x}(p_0)\right) + \mu \left(0, 1, \frac{\partial z}{\partial y}(p_0)\right), \text{ para todo } \lambda, \mu \in \mathbb{R}, \\ \text{ou } \nabla f(p_0).(x - x_0, y - y_0, z - z_0) &= 0, \text{ para todo } (x, y, z) \in \mathbb{R}^3. \end{split}$$

OBSERVAÇÃO 3.34. Nas hipóteses do teorema acima,

1. 
$$\nabla f(p_0) / / \left(1, 0, \frac{\partial z}{\partial x}(p_0)\right) \wedge \left(0, 1, \frac{\partial z}{\partial y}(p_0)\right)$$
.

2. Dada uma curva  $\gamma(t) \in A$ ,  $t \in ]-\delta, \delta[$ , derivável em t=0, com  $\gamma(0)=p_0$  e  $f(\gamma(t))=c$ , podemos garantir que  $\gamma'(0)$  é combinação linear dos vetores  $\left(1,0,\frac{\partial z}{\partial x}(p_0)\right)$  e  $\left(0,1,\frac{\partial z}{\partial y}(p_0)\right)$ . De fato, se  $f(\gamma(t))=c$  então, pela Regra da Cadeia,  $\nabla f(p_0).\gamma'(0)=0$ .

De outro modo, de  $\gamma(t) = (x(t), y(t), z(x(t), y(t)))$  tem-se

$$\gamma'(0) = \left(x'(0), y'(0), \frac{\partial z}{\partial x}(p_0)x'(0) + \frac{\partial z}{\partial y}(p_0)y'(0)\right) =$$

$$= x'(0)\left(1, 0, \frac{\partial z}{\partial x}(p_0)\right) + y'(0)\left(0, 1, \frac{\partial z}{\partial y}(p_0)\right).$$

3. Dado um vetor w que é combinação linear dos vetores  $\left(1,0,\frac{\partial z}{\partial x}(p_0)\right)$  e  $\left(0,1,\frac{\partial z}{\partial y}(p_0)\right)$ , afirmamos que existe uma curva  $\gamma(t),\ t\in ]-r,r[$ , onde  $\gamma(0)=p_0,\ f(\gamma(t))=c$  e tal que  $\gamma'(0)=w$ . De fato, sendo

$$w = \alpha \left(1, 0, \frac{\partial z}{\partial x}(p_0)\right) + \beta \left(0, 1, \frac{\partial z}{\partial y}(p_0)\right) = \left(\alpha, \beta, \alpha \frac{\partial z}{\partial x}(p_0) + \beta \frac{\partial z}{\partial y}(p_0)\right),$$

consideramos a reta  $r:(x,y)=(x_0,y_0)+t(\alpha,\beta)$ ,  $\forall t$ . A curva que procuramos é  $\gamma(t)=(x_0+t\alpha,y_0+t\beta,z(x_0+t\alpha,y_0+t\beta))$ , pois Im $\gamma$  está contida na superfície f(x,y,z)=0 e  $\gamma'(0)=w$ .

4. Em vista das duas observações anteriores, o plano tangente à superfície f(x,y,z) = c em  $p_0 = (x_0,y_0,z_0)$  coincide com o plano que passa por  $p_0$ , gerado por todos os vetores velocidade das curvas deriváveis contidas em f = c, no ponto  $p_0$ .

APLICAÇÃO. A superfície  $S: xy-z\ln y+e^{xz}=1$  pode ser dada localmente em (0,1,0) como gráfico de x=x(y,z), pois  $\frac{\partial f}{\partial x}(0,1,0)=1\neq 0$ , onde f é a função dada por  $f(x,y,z)=xy-z\ln y+e^{xz}$ . Como  $\nabla f(0,1,0)=(1,0,0)$ , o plano tangente à S em (0,1,0) é dado por x=0. Pode S ser dada localmente em (0,1,0) como gráfico de z=z(x,y) e y=y(x,z)? Observe que f(0,1,z)=1.

INDICAÇÃO DA PROVA DO TEOREMA 3.33: Seja F(x,y,z)=(x,y,f(x,y,z)). Temos  $JF(p_0)=\frac{\partial f}{\partial z}(p_0)\neq 0$ . Pelo Teorema da Função Inversa, existem abertos  $U\subset\mathbb{R}^2$  contendo  $(x_0,y_0), V\subset\mathbb{R}$  contendo  $z_0$  e  $W\subset\mathbb{R}^3$  contendo  $F(x_0,y_0,z_0)$  tais que  $F:U\times V\to W$  é difeomorfismo de classe  $C^k$ 



e  $\{(x,y,z) \in U \times V : f(x,y,z) = c\} = F^{-1}\{(u,v,c) \in W\} = \{(x,y,z) \in U \times V : z = g(x,y,c)\}.$ 

MOTIVAÇÃO. Se 
$$\left\{ \begin{array}{ll} ax+by+cz=d\\ a'x+b'y+c'z=d' \end{array} \right., \;\; \text{com} \; \left| \begin{array}{ll} b & c\\ b' & c' \end{array} \right| \neq 0 \; \text{então temos} \\ \text{que } y=y(x) \; \text{e} \; z=z(x). \end{array} \right.$$

TEOREMA 3.35. Sejam  $f,g:A\subset\mathbb{R}^3\to\mathbb{R}$  funções de classe  $C^{k\geq 1}$  no aberto  $A,\ p_0=(x_0,y_0,z_0)\in A,\ f(p_0)=c_1,\ g(p_0)=c_2.$  Se  $\frac{\partial(f,g)}{\partial(y,z)}(p_0)\neq 0$  então existem abertos U e V tais que  $(x_0,y_0,z_0)\in U\times V\subset A\subset\mathbb{R}\times\mathbb{R}^2$  e tais que, para todo  $x\in U$ , existe um único  $(y,z)=(y(x),z(x))\in V$  tal que  $\begin{cases} f(x,y(x),z(x))=c_1\\ g(x,y(x),z(x))=c_2 \end{cases}$  e  $y=y(x),\ z=z(x)$  são de classe  $C^k$ .

Neste caso, temos, pela Regra da Cadeia,

$$\begin{cases} \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}y' + \frac{\partial f}{\partial z}z' = 0 & \Leftrightarrow & \nabla f.(1, y', z') = 0 \\ \frac{\partial g}{\partial x} + \frac{\partial g}{\partial y}y' + \frac{\partial g}{\partial z}z' = 0 & \Leftrightarrow & \nabla g.(1, y', z') = 0 \end{cases}$$

portanto, 
$$y'(x_0) = \frac{-\frac{\partial(f,g)}{\partial(x,z)}(p_0)}{\frac{\partial(f,g)}{\partial(y,z)}(p_0)}, \ z'(x_0) = \frac{-\frac{\partial(f,g)}{\partial(y,x)}(p_0)}{\frac{\partial(f,g)}{\partial(y,z)}(p_0)}$$

e a reta tangente à curva  $\begin{cases} f(x,y,z) = c_1 \\ f(x,y,z) = c_2 \end{cases}$  em  $p_0$  pode ser dada por

a. 
$$(x, y, z) = p_0 + \lambda(1, y'(x_0), z'(x_0))$$
, para todo  $\lambda$ , ou

a. 
$$(x,y,z) = p_0 + \lambda(1,y'(x_0),z'(x_0))$$
, para todo  $\lambda$ , ou b. 
$$\begin{cases} \nabla f(p_0).(x-x_0,y-y_0,z-z_0) = 0\\ \nabla g(p_0).(x-x_0,y-y_0,z-z_0) = 0 \end{cases}$$
, ou c.  $(x,y,z) = (x_0,y_0,z_0) + \lambda \nabla f(p_0) \wedge \nabla g(p_0)$ .

c. 
$$(x, y, z) = (x_0, y_0, z_0) + \lambda \nabla f(p_0) \wedge \nabla g(p_0)$$
.

Notação. No Teorema 3.35,  $\frac{\partial(f,g)}{\partial(v,z)}$  indica o jacobiano de

$$F(y,z) = (f(x_0, y, z), g(x_0, y, z))$$

no ponto  $(y_0, z_0)$ , ou seja, o determinante de  $F'(y_0, z_0)$ .

PROVA DO TEOREMA 3.35: Faça como exercício.

APLICAÇÃO.

- 1. Verificar se a curva  $\begin{cases} x^2 + z^2 = 1 \\ y^2 + x^2 = 1 \end{cases}$  pode ser resolvida localmente em (0,1,1) por y = y(x) e z = 1
- 2. Idem em (1,0,0).

Mais geralmente, consideremos o sistema

$$\begin{cases} f_1(x_1,\ldots,x_n,y_1,\ldots,y_k) = c_1 \\ \vdots \\ f_k(x_1,\ldots,x_n,y_1,\ldots,y_k) = c_k \end{cases}$$

podemos escrever f(x, y) = c, onde

$$x = (x_1, ..., x_n), y = (y_1, ..., y_k), c = (c_1, ..., c_k) \in f = (f_1, ..., f_k).$$

TEOREMA 3.36 (Teorema da Função Implícita). Sejam  $A \subset \mathbb{R}^n \times \mathbb{R}^k$  um aberto,  $p \ge 1$ ,  $f: A \to \mathbb{R}^k$  de classe  $C^p$ ,  $f(x_0, y_0) = c$  e  $\frac{\partial (f_1, \dots, f_k)}{\partial (y_1, \dots, y_k)}(x_0, y_0) \ne 0$ . Então existem abertos  $U \subset \mathbb{R}^n$ ,  $V \subset \mathbb{R}^k$  com  $(x_0, y_0) \in U \times V \subset A \subset \mathbb{R}^n \times \mathbb{R}^k$ , tais que, para todo  $x \in U$ , existe um único  $y = y(x) \in V$  tal que f(x, y(x)) = c e  $y = y(x) \in C^p$ .

Neste caso, aplicando a Regra da Cadeia a f(x, y(x)) = c, temos

$$f'(x,y(x))\begin{pmatrix} I\\ y'(x) \end{pmatrix} = 0 \Rightarrow \begin{pmatrix} f'_x(x,y) & f'_y(x,y) \end{pmatrix} \begin{pmatrix} I\\ y'(x) \end{pmatrix} = 0 \Rightarrow$$

$$\Rightarrow f_x'(x,y) + f_y'(x,y)y'(x) = 0 \Rightarrow D_x f(x,y) + D_y f(x,y)Dy(x) = 0.$$

Portanto,

$$Dy(x_0) = -[D_y f(x_0, y_0)]^{-1} D_x f(x_0, y_0).$$

Com outra notação, de

$$\begin{cases} f_1(x_1, \dots, x_n, y_1(x_1, \dots, x_n), \dots, y_k(x_1, \dots, x_n)) = c_1 \\ \vdots \\ f_k(x_1, \dots, x_n, y_1(x_1, \dots, x_n), \dots, y_k(x_1, \dots, x_n)) = c_k \end{cases}$$

temos, para todo i = 1, ..., k:

$$\begin{cases} \nabla f_i(x, y(x)).v_1 = 0 \\ \vdots \\ \nabla f_i(x, y(x)).v_n = 0 \end{cases}$$

onde

$$\begin{cases} v_1 = \left(1, 0, \dots, 0, \frac{\partial y_1}{\partial x_1}(x_0), \dots, \frac{\partial y_k}{\partial x_1}(x_0)\right) \\ v_2 = \left(0, 1, \dots, 0, \frac{\partial y_1}{\partial x_2}(x_0), \dots, \frac{\partial y_k}{\partial x_2}(x_0)\right) \\ \vdots \\ v_n = \left(0, 0, \dots, 1, \frac{\partial y_1}{\partial x_n}(x_0), \dots, \frac{\partial y_k}{\partial x_n}(x_0)\right), \end{cases}$$

O plano tangente a  $S = \{(x,y) \colon f(x,y) = c\}$  no ponto  $p_0 = (x_0,y_0)$  é o plano dado por

1. 
$$(x,y) = (x_0, y_0) + \sum_{i=1}^n \lambda_i v_i$$
, para todo  $\lambda_i \in \mathbb{R}$ , or 
$$\begin{cases} [(x,y) - (x_0, y_0)] \cdot \nabla f_1(x_0, y_0) = 0 \\ \vdots &, \text{ ou } \\ [(x,y) - (x_0, y_0)] \cdot \nabla f_k(x_0, y_0) = 0 \end{cases}$$

3.  $\{p_0 + \gamma'(0), \text{ para toda curva } \gamma \text{ definida numa vizinhança de } t = 0, \text{ com } \gamma(0) = p_0 \text{ e derivável em } 0 \text{ com } f(\gamma(t)) = c\}.$ 

Idéia da demonstração do Teorema 3.36:

Seja 
$$F(x,y) = (x, f(x,y))$$
. Temos  $F(x_0, y_0) = (x_0, c)$  e

$$JF(x_0, y_0) = \det \begin{pmatrix} I & 0 \\ D_x f & D_y f \end{pmatrix}_{(x_0, y_0)} = \det D_y f(x_0, y_0) \neq 0.$$

Pelo Teorema da Função Inversa, existem abertos  $U \times V \subset A \subset \mathbb{R}^n \times \mathbb{R}^k$ ,  $(x_0, y_0) \in U \times V$  e  $W \subset \mathbb{R}^{n+k}$  com  $(x_0, c) \in W$  tais que  $F: U \times V \to W$  é difeomorfismo de

classe  $C^p$ ,  $p \ge 1$ .

$$F: \left\{ \begin{array}{l} u = x \\ v = f(x, y) \end{array} \right. \quad F^{-1}: \left\{ \begin{array}{l} x = u \\ y = y(u, v) \end{array} \right.$$

Além disso,

$$\{(x,y) \in U \times V : f(x,y) = c\} = F^{-1}\{(u,c) \in W\} = \{(x,y) \in U \times V : y = y(x,c)\}.$$

Diminuindo U, se necessário, obtemos a tese.

APLICAÇÕES.

1. Seja  $p(x) = a_0 + a_1x + \cdots + a_nx^n$  um polinômio de grau n e coeficientes reais com uma raiz real simples  $x_0$ . Então todo polinômio de grau n com coeficientes reais suficientemente próximo de p(x) tem uma raiz real simples próxima de  $x_0$  que varia em classe  $C^{\infty}$  com os coeficientes do polinômio.

Solução: Seja  $F: \mathbb{R} \times \mathbb{R}^{n+1} \stackrel{C^{\infty}}{\longmapsto} \mathbb{R}$  dada por

$$F(x,b_0,b_1,\ldots,b_n) = b_0 + b_1 x + \cdots + b_n x^n$$
.

Considerando  $a=(a_0,a_1,\ldots,a_n)$  temos  $F(x_0,a)=0$ . Além disso, temos que  $\frac{\partial F}{\partial x}(x_0,a)=p'(x_0)\neq 0$ , pois  $x_0$  é raiz simples de p. Pelo Teorema da Função Implícita, existem abertos  $V\subset\mathbb{R},\,U\subset\mathbb{R}^{n+1}$  com  $x_0\in V,\,a\in U$ , tais que, para todo  $b\in U$ , existe um único  $x=x(b)\in V$  verificando  $F(x(b),b)=b_0+b_1x(b)+\cdots+b_n(x(b))^n=0$  e  $x=x(b)\in C^\infty$ . Temos  $\frac{\partial F}{\partial x}(x_0,a)\neq 0$ ; assim, podemos diminuir eventualmente  $U\times V$  para ter  $\frac{\partial F}{\partial x}(x_0,b)\neq 0$  e concluir que x=x(b) é simples.

2. Seja  $f(\lambda, x)$  uma família de funções  $f_{\lambda} \colon \mathbb{R} \to \mathbb{R}$  a um parâmetro  $\lambda \in \mathbb{R}$ , isto é,  $f_{\lambda}(x) = f(\lambda, x)$ ,  $f \in C^1$ . Supondo que  $f_{\lambda_0}$  tenha um ponto fixo  $x_0$ , enuncie e prove um resultado que garanta a existência e unicidade de ponto fixo, próximo de  $x_0$ , para toda  $f_{\lambda}$  com  $\lambda$  próximo de  $\lambda_0$ .

Indicação: Considerar  $F(\lambda, x) = f(\lambda, x) - x$ . Assim,

$$F(\lambda_0, x_0) = 0 \text{ e } \frac{\partial F}{\partial x}(\lambda_0, x_0) = \frac{\partial f}{\partial x}(\lambda_0, x_0) - 1.$$

Supor  $\frac{\partial f}{\partial x}(\lambda_0, x_0) \neq 1$  e aplicar o Teorema da Função Implícita.

DEFINIÇÃO. Um número real c é valor regular de  $f: A \subset \mathbb{R}^n \to \mathbb{R}$  de classe  $C^k$ ,  $k \ge 1$ , no aberto A se  $f^{-1}(c) \ne \emptyset$  e, para todo  $x \in f^{-1}(c)$ , df(x) é sobrejetora (isto é,  $\nabla f(x) \ne 0$ ).

Neste caso, segue do Teorema da Função Implícita que, localmente em cada ponto,  $f^{-1}(c)$  é o gráfico de uma função real de classe  $C^k$  de n-1 variáveis. Diremos que  $f^{-1}(c)$  é uma superfície de classe  $C^k$  e dimensão n-1 ou codimensão 1. O plano tangente em  $p \in f^{-1}(c)$  é dado por

$$\nabla f(p).(x-p) = 0.$$

EXEMPLO 3.37.

- 1.  $x^2 + y^2 = 1$  em  $\mathbb{R}^2$ .
- 2.  $x^2 + y^2 = 1$  em  $\mathbb{R}^3$ .
- 3.  $x^2 + y^2 + z^2 = 1$  em  $\mathbb{R}^3$ .
- 4. A curva "V" não é imagem inversa de valor regular.
- 5. O gráfico de  $g: A \subset \mathbb{R}^k \to \mathbb{R}$  de classe  $C^1$  no aberto A é imagem inversa de valor regular. Indicação: F(x,y) = y g(x) = 0.
- 6. A superfície de  $\mathbb{R}^3$  obtida pela rotação do gráfico de  $z = z(x) \in C^1$ , onde  $x \in ]a,b[$ , 0 < a, em torno do eixo z é imagem inversa de valor regular.
- 7. Dar a equação do toro obtido pela rotação da circunferência dada por  $(x-2)^2+z^2=1$  em torno do eixo z e verificar que é uma superfície de codimensão 1, dando sua classe.
- 8. Verificar se o cone  $z^2 = x^2 + y^2$  é imagem inversa de valor regular.

DEFINIÇÃO. Diremos que  $c \in \mathbb{R}^k$  é *valor regular* de  $f: A \subset \mathbb{R}^{n+k} \to \mathbb{R}^k$  de classe  $C^p$ ,  $p \ge 1$ , no aberto A se  $f^{-1}(c) \ne \emptyset$  e, para todo  $x \in f^{-1}(c)$ , df(x) é sobrejetora (isto é, se os vetores  $\nabla f_1(x), \dots, \nabla f_k(x)$  são linearmente independentes).

Neste caso, segue do Teorema da Função Implícita que, localmente em cada ponto,  $f^{-1}(c)$  é o gráfico de uma função de classe  $C^p$  de n variáveis com k coordenadas. Diremos que  $f^{-1}(c)$  é uma superfície de classe  $C^p$  e dimensão n em  $\mathbb{R}^{n+k}$  ou de codimensão k. O plano tangente em  $p \in f^{-1}(c)$  é dado por

$$\begin{cases} \nabla f_1(p).(x-p) = 0 \\ \nabla f_2(p).(x-p) = 0 \\ \vdots \\ \nabla f_k(p).(x-p) = 0 \end{cases}$$

EXEMPLO 3.38.

- 1. A curva  $\begin{cases} x^2 + y^2 = 1 \\ x^2 + z^2 = 1 \end{cases}$  não é imagem inversa de valor regular.
- 2. O gráfico de  $g: A \subset \mathbb{R}^n \to \mathbb{R}^k$  de classe  $C^1$  no aberto A é imagem inversa de valor regular: é uma superfície de dimensão n em  $\mathbb{R}^{n+k}$  e seu plano tangente em  $(x_0, g(x_0))$  é dado por  $y = g(x_0) + dg(x_0)(x x_0)$ .

## 3.3. Multiplicadores de Lagrange

Nesta seção mostraremos que os extremos locais de funções reais  $g: \mathbb{R}^m \to \mathbb{R}$ quando restritas a superfícies  $f^{-1}(c) \subset \mathbb{R}^m$ , de codimensão k, podem ser encontrados entre as soluções do sistema de m + k equações com m + k incógnitas

$$\begin{cases}
\nabla g = \sum_{i=1}^{k} \lambda_i f_i \\
f(x) = c
\end{cases}$$

em que  $\lambda_1, \ldots, \lambda_k$  são incógnitas adicionais, chamadas de *multiplicadores de La*grange.

TEOREMA 3.39. Sejam  $g: \mathbb{R}^n \to \mathbb{R}$  diferenciável e  $S = f^{-1}(c)$ , onde c é valor regular de  $f: A \subset \mathbb{R}^n \xrightarrow{C^1} \mathbb{R}$  de classe  $C^1$  no aberto A. Se  $p \in S$  é extremo local de g condicionada a S então  $\nabla g(p) = \lambda \nabla f(p)$ .

Nesse caso, os extremos locais de g restrita a S estão entre as soluções de

$$\begin{cases} f(x_1, \dots, x_n) = c \\ \nabla g(x) = \lambda \nabla f(x) \end{cases}$$

INDICAÇÃO DA DEMONSTRAÇÃO:

- (i) Supondo  $\frac{\partial f}{\partial x_n}(p) \neq 0$ ,  $x = (x_1, \dots, x_{n-1})$ ,  $x_{n-1} = y$ , S é dada localmente em  $p \text{ por } y \stackrel{C^1}{=} y(x), p = (x_0, y(x_0));$

(ii) 
$$x_0$$
 é extremo local de  $\varphi(x) = g(x, y(x))$ ;  
(iii)  $\frac{\partial \varphi}{\partial x_i}(x_0) = \nabla g(p) \cdot \left(0, \dots, \underbrace{1}_i, 0, \dots, 0, \frac{\partial y}{\partial x_i}(x_0)\right) = 0, \forall i = 1, \dots, n-1$ ;

(iv)  $\nabla g(p)$  é perpendicular ao plano tangente a S em  $p_0$ .

APLICAÇÃO. Determine os extremos absolutos de g(x,y,z) = x + y + z condicionada à esfera  $S: x^2 + y^2 + z^2 = 1$ .

Solução: Como g é contínua e S é compacta, g assume o máximo e mínimo absolutos em S, que são locais. Podemos procurá-los por intermédio do sistema

$$\begin{cases} x^2 + y^2 + z^2 = 1\\ \frac{\partial g}{\partial x} = 1 = \lambda x\\ \frac{\partial g}{\partial y} = 1 = \lambda y\\ \frac{\partial g}{\partial z} = 1 = \lambda z \end{cases}$$

Logo,

$$\frac{3}{\lambda^2} = 1$$
,  $\lambda = \pm \sqrt{3}$ ,  $(x, y, z) = \pm \frac{\sqrt{3}}{3}(1, 1, 1)$ .

Como  $g(-\frac{\sqrt{3}}{3}(1,1,1))=-\sqrt{3}$  então  $\frac{\sqrt{3}}{3}(1,1,1)$  é ponto de máximo absoluto e  $-\frac{\sqrt{3}}{3}(1,1,1)$  é ponto de mínimo absoluto.

TEOREMA 3.40 (Multiplicadores de Lagrange). Sejam  $A \subset \mathbb{R}^{n+k}$  um conjunto aberto,  $f: A \to \mathbb{R}^k$  uma função de classe  $C^1$  e  $c \in \mathbb{R}^k$  valor regular de f. Supondo que  $g: \mathbb{R}^{n+k} \to \mathbb{R}$  é uma função diferenciável e assume extremo local num ponto  $p_0 \in f^{-1}(c)$  quando condicionada à superfície  $f^{-1}(c)$  então existem números reais  $\lambda_1, \ldots, \lambda_k$  tais que  $\nabla g(p_0) = \lambda_1 \nabla f_1(p_0) + \cdots + \lambda_k \nabla f_k(p_0)$ .

DEMONSTRAÇÃO. Suponhamos que, localmente em  $p_0 = (x_0, y_0) \in \mathbb{R}^n \times \mathbb{R}^k$ , a superfície f(x,y) = c seja dada por  $y = y(x) \in C^1$ . A função definida por  $\varphi(x) = g(x,y(x))$ , ou seja,  $\varphi(x_1,\ldots,x_n) = g(x_1,\ldots,x_n,y_1(x),\ldots,y_k(x))$  assume extremo local em  $x_0$ . Logo, para todo  $i \in \{1,\ldots,n\}$ ,

$$\frac{\partial \varphi}{\partial x_i}(x_0) = \nabla g(p_0) \cdot \left(0, \dots, 1, 0, \dots, \frac{\partial y_1}{\partial x_i}(x_0), \dots, \frac{\partial y_k}{\partial x_i}(x_0)\right) = 0,$$

isto é,  $\nabla g(p_0)$  é ortogonal à superfície  $f^{-1}(c)$  em  $p_0$ . Assim,

$$abla g(p_0) = \sum_{i=1}^k \lambda_i \nabla f_i(p_0).$$

APLICAÇÃO. Determine os extremos absolutos de  $g(x,y,z)=x^3+y^3+z^3$  restrita à curva

$$\begin{cases} x^2 + y^2 + z^2 = 1\\ x + y + z = 1 \end{cases}$$

Indicação:

- (i)  $g\Big|_{\gamma}$  assume extremos absolutos, que são locais, pois g é contínua e  $\gamma$  é compacto;
- (ii) γ é imagem inversa de valor regular;
- (iii) Entre as soluções do sistema

$$\begin{cases} x^2 + y^2 + z^2 = 1\\ x + y + z = 1\\ 3x^2 = \lambda x + \mu\\ 3y^2 = \lambda y + \mu\\ 3z^2 = \lambda z + \mu \end{cases}$$

estão os extremos procurados. Temos

$$\begin{cases} 3(x^2 - y^2) = \lambda(x - y) \\ 3(x^2 - z^2) = \lambda(x - z) \\ 3(y^2 - z^2) = \lambda(y - z) \end{cases}$$
 (5)

Com x = y ou y = z ou x = z, obtemos os pontos (0,0,1),  $(\frac{2}{3}, \frac{2}{3}, -\frac{1}{3})$ , (0,1,0),  $(\frac{2}{3}, -\frac{1}{3}, \frac{2}{3})$ , (1,0,0) e  $(-\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ . O sistema não admite outras soluções, pois se x, y, z forem distintos entre si, de (5), teríamos:

$$3(x+y) = 3(x+z) = 3(y+z) = \lambda.$$

Calculando g nos seis pontos encontrados, obtemos que (1,0,0), (0,1,0) e (0,0,1) são os pontos de máximo absoluto e os outros, pontos de mínimo absoluto.

#### 3.4. Teorema da Imersão

Neste parágrafo, mostraremos que se  $f: \mathbb{R}^n \to \mathbb{R}^{n+k}$  de classe  $C^1$  tem  $f'(x_0)$  de posto máximo, então, numa vizinhança U de  $x_0$ , f é injetora com inversa contínua. Além disso, veremos que, a menos de mudança de coordenadas, localmente em  $x_0$ , f é uma inclusão.

DEFINIÇÃO. Dado  $A \subset \mathbb{R}^n$  aberto, uma função  $f: A \to \mathbb{R}^{n+k}$  de classe  $C^1$  é denominada *imersão* em  $x_0$  se  $f'(x_0)$  é injetora.

OBSERVAÇÃO 3.41. Se f é imersão em  $x_0$  então existe vizinhança de  $x_0$  onde f é imersão.

De fato, basta supor  $f(x) = (u(x), v(x)) \in \mathbb{R}^{n+k}$  com  $Ju(x_0) \neq 0$  e considerar que

$$x \xrightarrow{C^0} u'(x) \in L(\mathbb{R}^n)$$

$$L \xrightarrow{C^0} \det L$$

calculada em  $x_0$  é diferente de 0.

PROPOSIÇÃO 3.42. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}^{n+k}$  de classe  $C^1$  no aberto A é uma imersão em  $x_0$  então f é localmente injetora em  $x_0$ , isto é, existe vizinhança aberta U de  $x_0$  tal que  $f: U \to f(U)$  é injetora. Além disso,  $f^{-1}: f(U) \to U$  é contínua.

DEMONSTRAÇÃO. Para x, y numa vizinhança V de  $x_0$ , temos:

$$f(x) - f(y) = f(x) - f(x_0) + f(x_0) - f(y) =$$

$$= f'(x_0)(x - x_0) + r(x) - f'(x_0)(y - x_0) - r(y),$$

onde 
$$\lim_{x \to x_0} \frac{r(x)}{\|x - x_0\|} = 0$$
. Assim,

$$||f(x) - f(y)|| = ||f'(x_0)(x - y) + r(x) - r(y)|| \ge ||f'(x_0)(x - y)|| - ||r(x) - r(y)||.$$

Como  $f'(x_0)$  é linear e injetora, existe c > 0 tal que  $||L(x)|| \ge c||x||$ . Dessa forma,

$$||f(x) - f(y)|| \ge c||x - y|| - ||r(x) - r(y)||.$$

Observando que r' é contínua em  $x_0$  e  $r'(x_0)=0$ , existe  $\delta>0$  tal que, para todo x em  $B_{\delta}(p_0)\subset V$ , temos  $\|r'(x)\|_1<\frac{c}{2}$ . Logo,

$$||f(x) - f(y)|| \ge c||x - y|| - \frac{c}{2}||x - y||$$
, para  $x, y \in B_{\delta}(p_0)$ .

Portanto,  $||f(x) - f(y)|| \ge \frac{c}{2} ||x - y||$ , o que implica que f é injetora no aberto  $U = B_{\delta}(p_0)$  e a inversa é contínua.

#### EXEMPLO 3.43.

- 1. Se  $L: \mathbb{R}^n \to \mathbb{R}^{n+k}$  é linear injetora então é imersão. Observe que, neste caso,  $L(\mathbb{R}^n)$  tem dimensão n.
- 2. Seja  $\gamma \colon \mathbb{R} \to \mathbb{R}^2$  de classe  $C^1$ ,  $\gamma(t) = (x(t), y(t))$  imersão em  $t_0$ . Supondo  $x'(t_0) \neq 0$ , segue do Teorema da Função Inversa que x(t) é um difeomorfismo local de classe  $C^1$  em  $t_0$ , isto é, existem abertos U contendo  $t_0$  e V contendo  $x(t_0)$  tais que  $x \colon U \to V$  é inversível com inversa  $t = t(x) \in C^1$ . Neste caso,

$$\gamma(U) = \{(x(t), y(t)) : t \in U\} = \{(x, y(t(x))) : x \in V\},\$$

isto é,  $\gamma(U)$  é o gráfico de uma função de classe  $C^1$ .

3. Seja  $\gamma$ :  $]a,b[\to \mathbb{R}^2$ , de classe  $C^1$ , imersão em ]a,b[. Se  $x'(t) \neq 0$ , para todo t, então x é um difeomorfismo de classe  $C^1$  entre ]a,b[ e um intervalo aberto J com inversa t=t(x). Neste caso,

$$\gamma(]a,b[) = \{(x(t),y(t)) : t \in ]a,b[\} = \{(x,y(t(x))) : x \in J\},\$$

isto é,  $\gamma(|a,b|)$  é o gráfico de uma função de classe  $C^1$ .

- 4. A curva  $\gamma(t) = (\cos t, \sin t)$  é imersão em  $\mathbb{R}$ , não injetora.
- 5. A curva  $\gamma(t) = (t^3 t, t^2)$  é imersão em  $\mathbb{R}$ , não injetora.

Observando na figura a imagem de  $\gamma$ , você vê contradição com o exemplo 2 aplicado em  $t_0=0$ ?



6. A figura abaixo não pode ser imagem de imersão de  $\mathbb{R}$  em  $\mathbb{R}^2.$  Justifique.



7. Considere  $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^3$ ,  $\sigma(u,v) = (x(u,v),y(u,v),z(u,v))$  uma imersão de

classe  $C^1$ . Supondo que  $\frac{\partial(x,y)}{\partial(u,v)}(u_0,v_0) \neq 0$ , segue do Teorema da Função Inversa que  $\begin{cases} x = x(u,v) \\ y = y(u,v) \end{cases}$  é um difeomorfismo de classe  $C^1$  entre abertos U contendo  $(u_0,v_0)$  e V contendo  $(x(u_0,v_0),y(u_0,v_0))$  com inversa  $\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$ . Logo,

$$\sigma(U) = \{(x(u,v), y(u,v), z(u,v)) : (u,v) \in U\} =$$

$$= \{(x,y, z(u(x,y), v(x,y)) : (x,y) \in V\}$$

isto é,  $\sigma(U)$  é o gráfico de uma função de classe  $C^1$  de U em  $\mathbb{R}$ .

- 8. O cilindro  $x^2 + y^2 = 1$  de  $\mathbb{R}^3$  é imagem da imersão  $C^{\infty}$   $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^3$ , dada por  $\sigma(\theta, z) = (\cos \theta, \sin \theta, z)$ .
- 9. Verifique se  $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$ ,  $\sigma(\theta, \phi) = (\cos \theta \sin \phi, \sin \theta \sin \phi, \cos \phi)$  é uma imersão e determine  $Im \sigma$ .
- 10. Idem para  $\sigma$ :  $\begin{cases} x = (b + a\cos\varphi)\cos\theta \\ y = (b + a\cos\varphi)\sin\theta \\ z = a\sin\varphi \end{cases}$ 11. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}^k$  é de classe  $C^1$  no aberto A então o gráfico de f é
- imagem de imersão de classe  $C^1$ . Basta considerar F(x) = (x, f(x)).
- 12. A inclusão  $f: \mathbb{R}^n \to \mathbb{R}^{n+k}$ , f(x) = (x,0) é imersão.

TEOREMA 3.44 (Teorema da Imersão). Dados  $A \subset \mathbb{R}^n$  aberto  $e f: A \to \mathbb{R}^{n+p}$ de classe  $C^1$ , se  $f'(x_0)$  é injetora então existe aberto U com  $x_0 \in U$  tal que f(U) é o gráfico de uma função de classe  $C^1$  definida num aberto de  $\mathbb{R}^n$  com p componentes.

DEMONSTRAÇÃO. Podemos supor, eventualmente reordenando as coordenadas de f, que  $f(x)=(u(x),v(x))\in\mathbb{R}^n\times\mathbb{R}^p$  com  $u'(x_0)$  injetora. Assim, pelo Teorema da Função Inversa, existem abertos U e V,  $x_0\in U$ ,  $u(x_0)\in V$  tais que  $u\colon U\to V$  é bijetora com inversa  $x=x(u)\in C^1$ . Logo,

$$f(U)=\{(u(x),v(x))\colon x\in U\}=\{(u,v(x(u)))\colon u\in V\},$$
 onde  $\pi(u,v)=u$ .   

Para mostrar que uma imersão em  $x_0$  é, a menos de mudança de coordenadas, uma inclusão, considere  $f: A \subset \mathbb{R}^n \to \mathbb{R}^{n+p}$  de classe  $C^1$  no aberto A, imersão em  $x_0$ , tal que f(x) = (u(x), v(x)) com  $u'(x_0)$  injetora. Consideramos  $F: A \times \mathbb{R}^p \to \mathbb{R}^{n+p}$  dada por F(x,y) = (u(x), v(x) + y).



Como  $dF(x_0,0)=\begin{pmatrix} du(x_0) & 0 \\ dv(x_0) & I \end{pmatrix}$  é isomorfismo, então, pelo Teorema da Função Inversa, existem abertos U,V e W, com  $(x_0,0)\in U\times V$  e  $F(x_0,0)=f(x_0)\in W$  tais que a função  $F:U\times V\to W$  é difeomorfismo de classe  $C^1$  com inversa  $F^{-1}=h$ .

Temos  $h \circ f(x) = (x,0)$  em U. Logo, f, a menos de um difeomorfismo h, é inclusão. Assim, obtivemos a seguinte versão do Teorema da Imersão:

TEOREMA 3.45. Se  $f: A \subset \mathbb{R}^n \to \mathbb{R}^{n+p}$ , de classe  $C^1$  no aberto A, é imersão em  $x_0$ , então existe um difeomorfismo de classe  $C^1$ :  $h: W \to U \times V$  entre abertos W contendo  $f(x_0)$  e  $U \times V \subset \mathbb{R}^n \times \mathbb{R}^p$  contendo  $(x_0,0)$  tal que  $h \circ f(x) = (x,0)$  em U.

#### 3.5. Teorema da Submersão

Veremos, nesta seção, que se  $f: \mathbb{R}^{n+k} \to \mathbb{R}^k$  de classe  $C^1$  tem  $f'(p_0)$  com posto máximo, então f, localmente em  $p_0$ , é aberta, não é injetora e, a menos de mudança de coordenadas, é uma projeção.

DEFINIÇÃO. Dado  $A \subset \mathbb{R}^n$  aberto, uma função  $f: A \to \mathbb{R}^m$  de classe  $C^1$  é dita uma *submersão* em  $p_0$  se  $f'(p_0)$  é sobrejetora (portanto,  $n \ge m$ ).

OBSERVAÇÃO 3.46. Se f é submersão em  $x_0$ , então f é submersão numa vizinhança de  $x_0$ .

## EXEMPLO 3.47.

- 1.  $\pi: \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ ,  $\pi(x, y) = x$  é submersão.
- 2.  $L \colon \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$  linear sobrejetora é uma submersão e ImL é aberto de  $\mathbb{R}^n$ .
- 3.  $f: \mathbb{R}^n \to \mathbb{R}$  de classe  $C^1$  com  $\nabla f(x) \neq 0$  é submersão.
- 4.  $f(x,y) = x^2 + y^2$  é submersão em  $\mathbb{R}^2 \setminus \{(0,0)\}.$

TEOREMA 3.48 (Teorema da submersão). Seja  $f: A \subset \mathbb{R}^{n+p} \to \mathbb{R}^p$  de classe  $C^1$  no aberto A com  $f'(p_0)$  sobrejetora. Então existe um aberto W contendo  $p_0$  tal que f(W) é aberto de  $\mathbb{R}^p$ .



Podemos supor que  $f'(p_0) = (f'_x(p_0) \ f'_y(p_0))$  com  $f'_y(p_0)$  injetora (eventualmente reordenando as coordenadas). Se F(x,y) = (x,f(x,y)) então

$$JF(p_0) = \left| \begin{array}{cc} I & 0 \\ f'_x(p_0) & f'_y(p_0) \end{array} \right| = \det f'_y(p_0) \neq 0.$$

Logo, pelo Teorema da Função Inversa, existem abertos W contendo o ponto  $p_0 = (x_0, y_0)$  e  $U \times V$  contendo  $(x_0, f(p_0))$  tais que  $F: W \to U \times V$  é difeomorfismo de classe  $C^1$ .

Como  $f = \pi_2 \circ F$ , então  $f(W) = \pi_2(F(W)) = \pi_2(U \times V) = V$  é aberto. Observe também que, em  $U \times V$ ,  $f \circ F^{-1}(u, v) = \pi_2(u, v) = v$ , isto é, a menos de um difeomorfismo, f é uma projeção.

COROLÁRIO 3.49. Seja  $f: A \subset \mathbb{R}^{n+p} \to \mathbb{R}^p$  submersão de classe  $C^1$  no aberto A e n > 0. Então f é aberta e não é injetora.

- DEMONSTRAÇÃO. a. Verifiquemos que f é aberta: dado  $B \subset A$  aberto, como  $F|_B$  é submersão, para cada  $x \in B$ , existe  $U_x \subset B$  aberto,  $x \in U_x$ , tal que  $f(U_x)$  é aberto. Como  $B = \bigcup_{x \in B} U_x$ , então  $f(B) = \bigcup_{x \in B} f(U_x)$  é aberto.
- b. A função f não é injetora, pois pelo Teorema da Função Implícita, o conjunto  $f(x) = f(p_0)$ , localmente em  $p_0$  é um gráfico de uma função de n variáveis com p coordenadas.

#### 3.6. Teorema do Posto

Consideraremos, nesta parte, o caso em que o posto da derivada não é máximo, mas constante num aberto. Os exemplos seguintes sugerem um enunciado para o Teorema do Posto.

OBSERVAÇÕES E MOTIVAÇÃO.

- 1. Se  $L: \mathbb{R}^n \to \mathbb{R}^m$  é linear, com postoL = k (portanto,  $k \le \min(m, n)$ ), então  $L(\mathbb{R}^n)$  é subespaço de dimensão k.
- 2. Se  $f: \mathbb{R}^2 \to \mathbb{R}^2$  é dada por  $f: \begin{cases} u = \cos(x+y) \\ v = \sin(x+y) \end{cases}$ , temos que o posto de f' é 1 em  $\mathbb{R}^2$  e que Im  $f = \{(u,v): u^2 + v^2 = 1\}$  é uma curva em  $\mathbb{R}^2$ , tem dimensão 1.
- 3. Se  $f \colon \mathbb{R}^2 \to \mathbb{R}^2$  de classe  $C^1$  tem posto f' = 0 em  $\mathbb{R}^2$ , então f é constante e Im f tem dimensão zero.
- 4. Se  $f: \mathbb{R}^3 \to \mathbb{R}^3$  é dada por  $f: \begin{cases} u = x y + z \\ v = (x y + z)^3 \end{cases}$ , temos que o posto de w = 2(x y + z)f' é 1 em  $\mathbb{R}^3$ . Observamos que Im  $f = \{(u, u^3, 2u)\} : u \in \mathbb{R}$  é uma curva
- em  $\mathbb{R}^3$ , tem dimensão 1. 5. Se  $f: \mathbb{R}^3 \to \mathbb{R}^3$  é dada por  $f: \begin{cases} u = x + y \\ v = z^3 \end{cases}$ , temos que posto  $f' = w = x + y + z^3$

2, para  $z \neq 0$ , e Im  $f = \{(u, v, u + v) : u, v \in \mathbb{R}\}$  é um plano em  $\mathbb{R}^3$ , tem dimensão 2.

- 6. Se  $f: \mathbb{R}^2 \to \mathbb{R}^3$  é dada por  $f: \begin{cases} u = x + y \\ v = 2(x + y) \end{cases}$ , temos que o posto de f' w = 5
  - é 1 e  $f(\mathbb{R}^2) = \{(u, 2u, 5) : u \in \mathbb{R}\}$  é uma reta de  $\mathbb{R}^3$ , tem dimensão 1.
- 7. Se  $f: \mathbb{R}^n \to \mathbb{R}^m$  é de classe  $C^1$  e posto  $f'(x_0) = k$  então existe uma vizinhança de  $x_0$ , onde posto  $f' \ge k$ .

Consideremos  $f: \mathbb{R}^n \to \mathbb{R}^m$  de classe  $C^1$ . Quando o posto de  $f'(p_0)$  for máximo, os Teoremas da Função Inversa (n = m), da Imersão (n < m) e da Submersão (m > n) garantem que existe uma vizinhança  $V(p_0)$  de  $p_0$  tal que  $f(V(p_0))$  tem dimensão igual ao posto de  $f'(p_0)$ . Quando o posto de f' é zero numa vizinhança de  $p_0$ , então existe uma vizinhança  $V(p_0)$  onde f é constante. Quando posto  $f'(p_0) \neq 0$  não é máximo mas é constante e igual a p numa vizinhança de  $p_0$  então o Teorema do Posto garantirá que existe uma vizinhaça  $V(p_0)$  tal que  $f(V(p_0))$ 

tem dimensão p, que f não é injetora e que, a menos de mudanças de coordenadas, ela é, localmente em  $p_0$ , uma projeção.

TEOREMA 3.50 (Teorema do Posto). Seja  $f: A \subset \mathbb{R}^m \to \mathbb{R}^n$  de classe  $C^1$  no aberto A com posto f' = constante = p,  $0 , numa vizinhança de <math>p_0 \in A$ . Então existe um aberto  $W \subset A$  contendo  $p_0$  tal que f(W) é o gráfico de uma função de classe  $C^1$  definida num aberto de  $\mathbb{R}^p$  com n-p coordenadas.

DEMONSTRAÇÃO. Podemos supor que, para  $(x,y) \in A \subset \mathbb{R}^{m-p} \times \mathbb{R}^p$ ,

$$f(x,y) = (u(x,y), v(x,y)) \in \mathbb{R}^{n-p} \times \mathbb{R}^p$$

e  $D_y v(x,y)$  injetora, para cada ponto (x,y) dessa vizinhança de  $p_0=(x_0,y_0)$ . Neste caso,  $\pi_2 \circ f = v$  é uma submersão na vizinhança de  $p_0$ . Considere o difeomorfismo de classe  $C^1$   $F: W \to U \times V$ , F(x,y) = (x,v(x,y)) entre abertos W contendo  $p_0$  e  $U \times V \subset R^{m-p} \times R^p$  contendo  $(x_0,v(x_0,y_0))$  com inversa h tal que  $v \circ h(u,v) = v$ . Temos, então, que  $v \circ h(U \times V) = v(W)$  é aberto.



Além disso,

$$f(W) = f(h(U \times V)) = \{ f \circ h(u, v) : (u, v) \in U \times V \} =$$
$$= \{ (\lambda(u, v), v) : (u, v) \in U \times V \}.$$

Observe que  $\lambda$  é de classe  $C^1$ .

Agora mostraremos que  $\lambda(u, v) = \lambda(v)$  em  $U \times V$ . Como

$$D(f \circ h)(u, v) = \begin{pmatrix} D_u \lambda & D_v \lambda \\ 0 & I_p \end{pmatrix}$$

tem posto p, pois Df(h(u,v)) tem posto p e dh(u,v) é isomorfismo, então  $D_u\lambda = 0$  em  $U \times V$ , onde U pode ser tomado convexo. Dados  $(u_1,v), (u_2,v) \in U \times V$ , consideramos  $\varphi(t) = \lambda((u_1,v)+t(u_2-u_1,v))$ , para  $t \in [0,1]$ . Temos  $\varphi'(t) = D\lambda(\varphi(t))(u_2-u_1,0) = 0$ . Logo,  $\varphi(t) = \text{constante}$ , isto é,  $\lambda$  é constante, para cada v fixado:  $\lambda = \lambda(v)$ . Portanto, concluímos que  $f(W) = \{(\lambda(v),v): v \in V\}$ .

OBSERVAÇÃO 3.51. Para obter outra versão do Teorema do Posto, consideremos a função dada por  $G(u',v)=(\lambda(v)+u',v)$  definida numa vizinhança de  $(0,v_0)$  em  $\mathbb{R}^{n-p}\times\mathbb{R}^p$  com valores em  $\mathbb{R}^{n-p}\times\mathbb{R}^p$ . Temos  $G(0,v_0)=(u_0,v_0)=f(p_0)$  e  $JG(0,v_0)=\det\begin{pmatrix} I&D\lambda(v_0)\\0&I\end{pmatrix}\neq 0$ . Logo, G é um difeomorfismo de classe  $C^1$  entre abertos  $U'\times V'$  contendo  $(0,v_0)$  e W' contendo  $f(p_0)$  com inversa  $G^{-1}=k$ . Assim, concluímos que, diminuindo eventualmente U e V, temos

$$(k \circ f \circ h)(u, v) = k(\lambda(v), v) = (0, v),$$

para  $(u, v) \in U \times V$ .



COROLÁRIO 3.52. Se  $f: A \subset \mathbb{R}^{n+p} \to \mathbb{R}^p$  é de classe  $C^1$  no aberto A e n > 0 então f não é injetora.

DEMONSTRAÇÃO. Seja  $r = \max\{\text{posto } f'(x) \colon x \in A\} = \text{posto } f'(p_0)$ . Existe uma vizinhança de  $p_0$  onde posto f'(x) = r. Se r = 0 então f é constante. Se r = p, segue do Teorema da Submersão. Se 0 < r < p, segue do Teorema do Posto.  $\square$ 

# **Exercícios**

- 1. Mostre que, em  $\mathbb{R}^n$ , vale:
  - (a)  $|x.y| \le ||x|| ||y||$  (designaldade de Cauchy Schwarz)
  - (b)  $|x.y| = ||x|| ||y|| \Leftrightarrow x \text{ e } y \text{ são linearmente dependentes.}$
  - (c)  $||x+y|| \le ||x|| + ||y||$ .
  - (d)  $||x+y|| = ||x|| + ||y|| \Leftrightarrow x = \lambda y$  ou  $y = \lambda x$  com  $\lambda \ge 0$ .
  - (e)  $||x-y|| \le ||x|| + ||y||$ .
  - (f)  $||x|| ||y|| \le ||x y||$ .
- 2. Mostre que  $\det \begin{pmatrix} A_{k \times k} & 0 \\ C_{n \times k} & D_{n \times n} \end{pmatrix} = \det A \det D.$   $\left( \text{Sugestão: mostre} \begin{pmatrix} A_k & 0 \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_k & 0 \\ C_{n \times k} & D_n \end{pmatrix} = \begin{pmatrix} A & 0 \\ C & D \end{pmatrix} \right)$
- 3. Mostre que se  $A \subset \mathbb{R}^n$  é aberto então  $\widehat{\partial A} = \emptyset$ . Dê exemplo de  $D \subset \mathbb{R}^n$  tal que  $\partial D$  é aberto não vazio.
- 4. (a) Mostre que  $\widehat{A \cap B} = \stackrel{\circ}{A} \cap \stackrel{\circ}{B} = \stackrel{\circ}{A} \cup \stackrel{\circ}{B} \subset \widehat{A \cup B}$ .
  - (b) Dê exemplo onde  $\stackrel{\circ}{A} \cup \stackrel{\circ}{B} \neq \widehat{A \cup B}$ .
- 5. Mostre que são falsas:
  - (a)  $A \subset B \Rightarrow \partial A \subset \partial B$ ;
  - (b)  $\partial S = \partial \overline{S}$ ;
  - (c)  $\partial S = \partial \overset{\circ}{S};$ (d)  $\overset{\circ}{S} = \overset{\circ}{\overline{S}};$

  - (e)  $(\partial S)^{\circ} = \emptyset$ ;
  - (f)  $\partial A \cap \partial B \subset \partial (A \cap B)$ .
- 6. Sejam D e  $A_i$ ,  $i \ge 1$ , subconjuntos de  $\mathbb{R}^n$ . Mostre que
  - (a)  $\overline{D}$  e  $\partial D$  são fechados;
  - (b) se  $D \subset F$  e F é fechado de  $\mathbb{R}^n$  então  $\overline{D} \subset F$ ;

64 EXERCÍCIOS

(c) 
$$\bigcup_{i=1}^{n} A_{i} = \bigcup_{i=1}^{n} \overline{A_{i}} e \bigcup_{i=1}^{\infty} A_{i} \supset \bigcup_{i=1}^{\infty} \overline{A_{i}};$$

- (d) dê exemplo em que  $\bigcup_{i=1}^{\infty} A_i \neq \bigcup_{i=1}^{\infty} \overline{A_i}$ .
- 7. Mostre que se  $K \subset A \subset \mathbb{R}^n$ , com K compacto e A aberto então existe  $K_1$  compacto tal que  $K \subset \overset{\circ}{K_1} \subset K_1 \subset A$ .
- 8. Seja
- $D = \{x \in [0,1]: \text{ a representação decimal de } x \text{ só tem os dígitos 4 e 7}\}.$

Este conjunto é aberto? É fechado? Determine  $\stackrel{\circ}{D}$  e  $\overline{D}$ . O conjunto D é enumerável?

- 9. Mostre que toda cobertura de  $D \subset \mathbb{R}^n$  por abertos admite subcobertura finita ou enumerável.
- 10. Dados  $E \subset A \subset \mathbb{R}^n$ , A aberto, mostre que  $E = \bigcup_{n=1}^{\infty} E_n \text{ com } \overline{E}_n \text{ compactos}$ ,  $\overline{E}_n \subset A$ .
- 11. Mostre:
  - (a)  $K \subset \mathbb{R}^n$  compacto,  $S \subset K$  infinito  $\Rightarrow S$  tem ponto de acumulação em K.
  - (b)  $x_n \in K$ , K compacto  $\Rightarrow x_n$  admite subsequência convergente em K.
  - (c)  $S \subset \mathbb{R}^n$  infinito não enumerável  $\Rightarrow S$  tem ponto de acumulação.
- 12. Sejam  $f \colon \mathbb{R}^n \to \mathbb{R}^k$ , f nula em  $A \subset \mathbb{R}^n$  e  $p \in \mathbb{R}^n$  ponto de acumulação de A, tais que  $\lim_{\substack{x \to p \\ x \not\in A}} f(x) = 0$ . Mostre que  $\lim_{\substack{x \to p \\ x \in \mathbb{R}^n}} f(x) = 0$ .
- 13. Construa  $D \subset [0,1]^2$  tal que  $\partial D = [0,1]^2$  e que contém no máximo um ponto em cada vertical e em cada horizontal.
- 14. Dê exemplos de abertos A e B de  $\mathbb{R}^2$ , disjuntos, não vazios, conexos e limitados com  $\partial A = \partial B$ .
- 15. Dada  $L \in L(\mathbb{R}^n, \mathbb{R}^k)$ , defina  $||L||_1 = \sup\{|Lx| : |x| \le 1\}$  e  $||L|| = \sqrt{\sum_{i,j} a_{ij}^2}$  onde  $(a_{ij})$  é a matriz de L na base canônica. Mostre que
  - (a)  $\| \| e \| \|_1$  são normas em  $L(\mathbb{R}^n, \mathbb{R}^k)$ .
  - (b)  $||L||_1 \le ||L|| \le \sqrt{n} ||L||_1$ .
  - (c)  $||L \circ T|| \le ||L|| ||T||$  e  $||L \circ T||_1 \le ||L||_1 ||T||_1$ , onde  $T : \mathbb{R}^m \to \mathbb{R}^n$  é linear.
- 16. Estude a continuidade, justificando:

**EXERCÍCIOS** 65

(a) 
$$f(x) = \begin{cases} \operatorname{sen} x, & \operatorname{se} x \in \mathbb{Q}; \\ 0, & \operatorname{caso contrário.} \end{cases}$$
  
(b)  $f(x) = \begin{cases} ||x||^2, & \operatorname{se} x \in \mathbb{Q}^n \subset \mathbb{R}^n; \\ 0, & \operatorname{caso contrário.} \end{cases}$ 

- (c)  $f(x,y) = \theta$ , sendo  $(x,y) = \rho e^{i\theta}$ ,  $\rho > 0$ ,  $0 \le \theta < 2\pi$ . (d)  $f(x,y) = \frac{\rho}{\theta}$ , sendo  $(x,y) = \rho e^{i\theta}$ ,  $\rho > 0$ ,  $0 \le \theta < 2\pi$ . (e) f(x,y) = x|y|(f)  $f(x,y) = \begin{cases} \frac{2x^2(y-1)}{5x^4 + (y-1)^2}, & \text{se } (x,y) \ne (0,1); \\ 0, & \text{caso contrário.} \end{cases}$
- (g)  $\sup\{f,g\}$ , com  $f,g:\mathbb{R}\to\mathbb{R}$  contínua
- 17. É possível definir cada função em (0,0) de modo que fique contínua nesse ponto?

(a) 
$$f(x,y) = \frac{x^2y}{x^2 - y^2}$$
;  
(b)  $f(x,y) = \frac{xy^2 + x^2 \sin(xy)}{x^2 + y^2} + \ln(x^2y^4 + 5)$ ;  
(c)  $f(x,y) = \frac{x^5y^{10}}{x^{15} - y^{15}}$ ;  
(d)  $f(x,y) = \frac{e^{x^2 + y^2} - 1}{x^2 + y^2}$ ;

(c) 
$$f(x,y) = \frac{x^5 y^{10}}{x^{15} - y^{15}};$$

(d) 
$$f(x,y) = \frac{e^{x^2+y^2}-1}{x^2+y^2}$$
;

(e) 
$$f(x,y) = \frac{x^3 y}{x^4 + y^2}$$
;  
(f)  $f(x,y) = \frac{x^4 y^4}{(x^2 + y^4)^3}$ .

(f) 
$$f(x,y) = \frac{x^4y^4}{(x^2+y^4)^3}$$
.

- 18. Seja  $f: ]a,b[ \to \mathbb{R}$  crescente. Mostre que existem  $\lim_{x \to p+} f(x)$  e  $\lim_{x \to p-} f(x)$ para  $p \in ]a,b[$  e conclua que o conjunto das descontinuidades de f é, no máximo, enumerável.
- 19. Mostre:
  - (a)  $f: [a,b] \to [a,b]$  continua  $\Rightarrow f$  tem ponto fixo.
  - (b)  $f: [a,b] \rightarrow [a,b]$  contínua e sobrejetora  $\Rightarrow f$  tem ponto fixo.
- 20. Mostre:
  - (a) A função det:  $M_n(\mathbb{R}) \to \mathbb{R}$  é contínua.
  - (b)  $S = \{A \in M_n(\mathbb{R}) : \det A \neq 0\}$  é aberto.
  - (c) A função que, a cada  $A \in M_n(\mathbb{R})$  inversível, associa a sua inversa  $A^{-1}$ é contínua.

- (d)  $L: \mathbb{R}^n \to \mathbb{R}^k$  linear injetora  $\Rightarrow$  existe c > 0 tal que  $||Lx|| \ge c||x||$ , para todo x.
- 21. Mostre que  $S = \{A \in M_n(\mathbb{R}) : \det A \neq 0\}$  é denso em  $M_n(\mathbb{R})$  e desconexo.
- 22. Dados  $p \in D \subset \mathbb{R}^n$  e  $q \in \mathbb{R}^n \setminus D$ , mostre que  $\overline{pq} \cap \partial D \neq \emptyset$ .
- 23. Mostre que
  - (a)  $E \subset \mathbb{R}^n$  conexo (compacto) e  $p \in \mathbb{R}^n \Rightarrow p + E$  conexo (compacto).
  - (b)  $E \subset \mathbb{R}^n$  aberto (fechado) e  $p \in \mathbb{R}^n \Rightarrow p + E$  aberto (fechado).
  - (c) Não existe  $f: \mathbb{R}^2 \to \mathbb{R}$  contínua injetora.

## 24. Mostre que:

- (a)  $f: \mathbb{R}^n \to \mathbb{R}^k$  contínua,  $E \subset \mathbb{R}^n$  conexo por caminhos  $\Rightarrow f(E)$  é conexo por caminhos.
- (b)  $E_1 \subset \mathbb{R}^n$ ,  $E_2 \subset \mathbb{R}^k$  conexos por caminhos  $\Rightarrow E_1 \times E_2$  é conexo por caminhos
- (c)  $E \subset \mathbb{R}^n$  conexo por caminhos  $\not\Rightarrow \overline{E}$  conexo por caminhos.
- 25. Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  contínua com f(x,0) = 0, para todo x. Mostre que existe r > 0 tal que  $|f(x,y)| < \frac{1}{4}$ , para todo  $(x,y) \in [0,1] \times [-r,r]$ .
- 26. Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  uma função contínua que se anula em  $S^1$ . Mostre que existe  $0 < r < \frac{1}{4}$  tal que  $1 r < ||(x, y)|| < 1 + r \Rightarrow |f(x, y)|| < \frac{1}{6}$ .
- 27. Seja  $f: K \subset \mathbb{R} \to \mathbb{R}$ , onde K é compacto. Mostre que f é contínua em K se, e somente se, graf f for compacto.
- 28. Sejam  $f: D \subset \mathbb{R}^n \to \mathbb{R}^k$  uniformemente contínua e  $p \in \mathbb{R}^n$  ponto de acumulação de D. Mostre que existe  $\lim_{x \to p} f(x)$  e conclua que f pode ser estendida continuamente para a fronteira de D.
- 29. Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  tal que, para toda curva  $\gamma: ]-\delta, \delta[\to \mathbb{R}^2$  contínua com  $\gamma(0)=(0,0)$ , tem-se  $(f\circ\gamma)(t)$  contínua em t=0. Pergunta-se: f é contínua em (0,0)?
- 30. Sejam  $f: [a,b] \to \mathbb{R}$  crescente (estritamente) e  $x_1, \dots, x_n \in [a,b]$ . Mostre que  $\sum_{i=1}^n o(f,x_i) \le f(b) f(a) \left(\sum_{i=1}^n o(f,x_i) < f(b) f(a)\right)$ .
- 31. Mostre que  $f(x) = e^{-\frac{1}{x^2}}$ , se  $x \neq 0$  e f(0) = 0 é de classe  $c^{\infty}$ .

32. Dada  $f: \mathbb{R}^2 \to \mathbb{R}$  pergunta-se (i) Para que  $u \in \mathbb{R}^2$ , existe  $\frac{\partial f}{\partial u}(0,0)$ ? Calcule. (ii) Existe  $\frac{\partial f}{\partial x}(0,0)$ ,  $\frac{\partial f}{\partial y}(0,0)$ ? (iii) f é diferenciável em (0,0)? (iv) f é contínua em (0,0)?

f é contínua em 
$$(0,0)$$
?  
(a)  $f(x,y) = \frac{xy}{x^2 + y^2}$  se  $(x,y) \neq (0,0)$  e  $f(0,0) = 0$ .

(b) 
$$f(x,y) = \frac{x^2y^2}{x^2v^2 + (v-x)^2}$$
 se  $(x,y) \neq (0,0)$  e  $f(0,0) = 0$ .

- 33. Seja  $f: \mathbb{R}^n \to \mathbb{R}^k$  diferenciável em p. Existe  $\lim_{h \to 0} \frac{f(p+h) f(p)}{\|h\|}$ ?
- 34. Seja  $f: \mathbb{R} \to \mathbb{R}$  de classe  $C^1$ . Prove que a função

$$F(x,y) = \begin{cases} \frac{f(y) - f(x)}{y - x}, & \text{se } x \neq y; \\ f'(x), & \text{se } x = y \end{cases}$$

é diferenciável se  $x \neq y$  e, se existir f''(x), então F é diferenciável em  $\mathbb{R}^2$ .

- 35. Calcule  $\frac{\partial f}{\partial v}(0,0)$  usando a definição de derivada direcional e interprete geometricamente:
  - (a)  $f(x,y) = (x^2 + y^2, -x^2 y^2);$
  - (b) f(x,y) = (x+y,xy);
  - (c)  $f(x,y) = (x^2y^2, xy)$ .
- 36. (a) Suponha que  $v \neq 0$  e que exista  $\frac{\partial f}{\partial v}(p)$ . Mostre que também existe  $\frac{\partial f}{\partial t v}(p)$  e  $\frac{\partial f}{\partial t v}(p) = t \frac{\partial f}{\partial v}(p)$ ;
  - (b) Encontre exemplos em que existam  $\frac{\partial f}{\partial (u+v)}(p)$ ,  $\frac{\partial f}{\partial u}(p)$  e  $\frac{\partial f}{\partial v}(p)$  com  $\frac{\partial f}{\partial (u+v)}(p) \neq \frac{\partial f}{\partial u}(p) + \frac{\partial f}{\partial v}(p)$ .
- 37. Sejam  $f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2}, & \text{se } (x,y) \neq (0,0); \\ 0, & \text{caso contrário} \end{cases}$  e  $u = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ .

Mostre que  $\frac{\partial f}{\partial u}(0,0) \neq \nabla f(0,0).u$ . Explique.

- 38. Seja  $f: \mathbb{R}^n \to \mathbb{R}^k$  diferenciável e F(x,y) = f(3x y).
  - (a) Calcule  $\frac{\partial F}{\partial (h,k)}(x_0,y_0)$  usando a definição de derivada direcional.
  - (b) Mostre que F é diferenciável em  $(x_0, y_0)$  usando a parte anterior. Explicite  $dF(x_0, y_0)$ .

- (c) Calcule  $dF(x_0, y_0) \left( (1, 1, 1, 1), (1, 0, 1, 0) \right)$  para  $f(x_1, x_2, x_3, x_4) = x_1 2x_2 + x_3 2x_4.$
- (d) Calcule  $dF(x_0,x_0)(x_0,5x_0)$ , no caso em que  $f(x_1,x_2,x_3) = x_1 + 2x_3$  e  $x_0 = (1,2,3)$ .
- 39. Estude a diferenciabilidade explicitando dF(p) e sua matriz:
  - (a) F(x) = (x, f(x)), sendo  $f: \mathbb{R}^n \to \mathbb{R}^k$  é diferenciável.
  - (b) F(x,y) = (x, f(y)), sendo  $f: \mathbb{R}^n \to \mathbb{R}^k$  é diferenciável e  $x \in \mathbb{R}^m$ .
  - (c)  $F(x) = x.x_0, \text{ com } x_0, x \in \mathbb{R}^n$ .
  - (d) F(x) = x.Lx,  $\operatorname{com} x \in \mathbb{R}^n$  e  $L \in L(\mathbb{R}^n)$ .
  - (e) F(x,y) = f(x) + g(y),  $f: \mathbb{R}^n \to \mathbb{R}^k$ ,  $g: \mathbb{R}^m \to \mathbb{R}^k$  são diferenciáveis.
- 40. Mostre que  $f(X) = X^2 + X^3$ , onde  $X \in M_n(\mathbb{R})$ , é diferenciável e explicite  $df(X_0)(H)$ .
- 41. Considere  $A \in M_3(\mathbb{R})$  como elemento de  $\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^3$ , onde cada linha  $a_i \in \mathbb{R}^3$ . Mostre que det:  $M_3(\mathbb{R}) \to \mathbb{R}$  é diferenciável e explicite  $(\det)'(A)(I)$ .
- 42. Estude a diferenciabilidade de  $f: \mathbb{R}^2 \to \mathbb{R}$ :
  - (a) f(x,y) = |x| + |y|
  - (b)  $f(x,y) = \sqrt{|xy|}$
  - (c) f(x,y) = |xy|
  - (d)  $f(x,y) = \sup\{|x|,|y|\}.$
- 43. Dada  $f(t) = \begin{cases} \left(t^2 \cos \frac{1}{t}, t^2 \sin \frac{1}{t}\right), & \text{se } t \neq 0; \\ (0,0), & \text{caso contrário} \end{cases}$ 
  - (a) Verifique que f é diferenciável.
  - (b) Verifique que  $f'(\mathbb{R})$  não é conexo.
  - (c) Conclua que não vale um Teorema do Valor Intermediário para derivadas de funções  $f\colon \mathbb{R} \to \mathbb{R}^2$ .
- 44. Dê o maior subconjunto de  $\mathbb{R}^2$  onde f é de classe  $C^1$  mas não é de classe  $C^2$ .
  - (a)  $f(x,y) = \sqrt{|xy|}$ ;
  - (b)  $f(x,y) = x\sqrt{x^2 + y^4}$ .
- 45. Seja  $f: A \subset \mathbb{R}^n \to \mathbb{R}^{n+p}$  de classe  $C^1$  no aberto A. Mostre que o conjunto  $\{x \in A: f'(x) \text{ \'e injetora}\}$   $\{x \in A: f'(x) \text{ \'e injetora}\}$
- 46. Se  $f: \mathbb{R}^n \to \mathbb{R}^k$  é diferenciável e f(tx) = tf(x), para todo  $t \in \mathbb{R}$  e todo  $x \in \mathbb{R}^n$ , mostre que f é linear.

- 47. Mostre que  $f(x,y) = \frac{x^3}{x^2 + y^2}$ , se  $(x,y) \neq (0,0)$  e f(0,0) = 0 não é diferenciável em (0,0), mas  $f \circ \gamma$  é diferenciável em t=0, qualquer que seja a curva  $\gamma$ :  $]-\delta,\delta[\to\mathbb{R}^2,\gamma(0)=0$ , derivável em t=0.
- 48. Seja  $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^p$  bilinear. Mostre que

  - (a)  $\lim_{(h,k)\to 0} \frac{f(h,k)}{\|(h,k)\|} = 0.$ (b) f é diferenciável em  $(x_0,y_0)$ ; explicite  $df(x_0,y_0)(h,k)$ .
- 49. Se  $f: \mathbb{R}^m \to \mathbb{R}^n$  é diferenciável e  $||f(x) f(y)|| \le M||x y||$ , para todo x, ye M constante, mostre que  $\left\| \frac{\partial f}{\partial v}(p) \right\| \leq M \|v\|$ , para todo  $p, v \in \mathbb{R}^m$ .
- 50. Seja  $F=(f,g)\colon \mathbb{R}^2 \to \mathbb{R}^2$  de classe  $C^2$ . Mostre que a aplicação definida por  $(x, y) \in \mathbb{R}^2 \mapsto dF(x, y) \in L(\mathbb{R}^2)$  (onde  $L(\mathbb{R}^2)$  é identificado com  $M_2$  ou  $\mathbb{R}^4$ ) é diferenciável e explicite  $d(dF)(x_0, y_0) = d^2F(x_0, y_0)$ .
- 51. Usando a Regra da Cadeia,
  - (a) Mostre que  $\omega(t)$  é diferenciável, explicitando  $d\omega(t)$ , no caso em que  $\omega = F(x, y, t)$ , com x = x(t), y = y(t) e F(x, y, z) reais e diferenciáveis.
  - (b) Idem para a função  $\omega = \omega(x, y, z)$ , com  $\omega = f(x, u, v)$ , u = u(x, y) e v = v(y, z) reais e diferenciáveis.
  - (c) Idem para a função F(x,y,z) = f(g(x+y),h(y+z)), onde  $g,h: \mathbb{R} \to \mathbb{R}$  $\mathbb{R}$  e  $f: \mathbb{R}^2 \to \mathbb{R}$  são diferenciáveis.
- 52. Seja  $f: \mathbb{R}^n \to \mathbb{R}^n$  diferenciável. Mostre que
  - (a)  $F(x) = f(x) \cdot f(x)$  é diferenciável, explicitando  $dF(x_0)(h)$ ;
  - (b) ||f(x)|| = 1, para todo  $x \in \mathbb{R}^n \Rightarrow \det f'(x) = 0$ . Interprete geometricamente.
- 53. Verifique se as funções dadas são lipschitzianas no domínio dado e, em caso afirmativo, dar uma constante de Lipschitz.
  - (a)  $f(x,y) = (3x^2y, x^2 y^4)$  em  $[2,5] \times [1,2]$  e em  $\mathbb{R}^2$ ;
  - (b)  $f(x) = x^{\frac{3}{2}} \text{ em } [0,1] \text{ e em } \mathbb{R}^+;$
  - (c)  $f(x) = x^{\frac{2}{3}}$  em [0, 1].
- 54. Verifique se  $M = \sqrt{100}$  pode ser constante de Lipschitz para f(x,y) = $(3x^2y^2, x^3 - y^3)$  em  $[0, 1]^2$ .
- 55. Mostre que se  $f: \mathbb{R}^m \to \mathbb{R}^n$  é uma função tal que, para todo  $x, y \in \mathbb{R}^m$ , vale  $||f(x) - f(y)|| \le ||x - y||^2$ , então f é constante.

70

- 56. (a) Seja  $f: A \subset \mathbb{R}^2 \to \mathbb{R}$  com A aberto convexo e  $\frac{\partial f}{\partial y}(x, y) = 0$ , para todo  $(x, y) \in A$ . Mostre que f(x, y) = g(x) em A.
  - (b) Se  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$  em  $\mathbb{R}^2$ , mostre que f é constante.
- 57. Seja  $A = \mathbb{R}^2 \setminus \{(x,0) : x \ge 0\}.$ 
  - (a) Mostre que se  $f: A \to \mathbb{R}$  tem  $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = 0$  em A então f é constante.
  - (b) Encontre  $f: A \to \mathbb{R}$  com  $\frac{\partial f}{\partial y} = 0$  em A, mas f não é independente de y.
- 58. Seja  $f: \mathbb{R}^n \to \mathbb{R}$  de classe  $C^1$  com f(0) = 0. Mostre que existem funções contínuas  $g_i: \mathbb{R}^n \to \mathbb{R}$  tais que  $f(x) = \sum_{i=1}^n x_i g_i(x), \forall x$ .

Sugestão: 
$$f(x) = \int_0^1 \frac{\partial f}{\partial t}(tx)dt$$

- 59. Estude a diferenciabilidade de F(x,y) = A(x)y onde  $A: \mathbb{R}^m \to L(\mathbb{R}^n, \mathbb{R}^k)$  é diferenciável.
- 60. Seja  $f \colon \mathbb{R}^n \to \mathbb{R}$  uma função com derivadas parciais limitadas. Mostre que f é contínua.
- 61. Seja  $f: \mathbb{R}^n \to \mathbb{R}$  diferenciável com  $\nabla f(u).u > 0$ , para todo ||u|| = 1. Mostre que existe p, ||p|| < 1 tal que Df(p) = 0.
- 62. Seja  $f: \mathbb{R}^m \to \mathbb{R}$  diferenciável em  $0 \in \mathbb{R}^m$  com  $f(\frac{x}{2}) = \frac{f(x)}{2}$ , para todo x. Mostre que f é linear.
- 63. Seja  $f: \mathbb{R}^m \to \mathbb{R}$  diferenciável com  $\lim_{|x| \to \infty} f'(x).x = 0$ . Prove que a função g(x) = f(2x) f(x) é limitada.
- 64. Se  $f: \mathbb{R}^m \to \mathbb{R}^n$  é diferenciável e a é ponto de acumulação de  $f^{-1}(b)$ , mostre que f'(a) não é injetora.
- 65. Se  $f: \mathbb{R}^m \to \mathbb{R}^n$  é de classe  $C^2$  e  $f(tx) = t^2 f(x)$ , para todo  $t \in \mathbb{R}$  e todo  $x \in \mathbb{R}^m$ , mostre que existe uma aplicação bilinear  $B: \mathbb{R}^m \times \mathbb{R}^m \to \mathbb{R}^n$  tal que f(x) = B(x,x).
- 66.  $\begin{cases} u = xy \\ v = x^2 + y^2 \end{cases}$  é localmente injetora em (1,1)? e em (0,0)? Por quê?
- 67.  $\begin{cases} u = \operatorname{sen} x \cos y \operatorname{sen} y \cos x \\ v = \cos x \cos y + \operatorname{sen} x \operatorname{sen} y \end{cases}$  é localmente injetora? Por quê?

- 68. Sejam  $f,g,h: \mathbb{R}^n \to \mathbb{R}^n$  funções diferenciáveis com h difeomorfismo tais que  $f = h^{-1}gh$  e  $f(p_0) = p_0$ . Mostre que  $h(p_0)$  é ponto fixo de g e que  $f'(p_0)$  e  $g'(h(p_0))$  têm os mesmos autovalores.
- 69. (a) Mostre que p é raiz isolada de  $f: \mathbb{R}^n \to \mathbb{R}^n$ ,  $f \in C^1$ , se df(p) não tem autovalor nulo.
  - (b) Mostre que um ponto fixo p de  $f: \mathbb{R}^n \to \mathbb{R}^n$ ,  $f \in C^1$ , é isolado se df(p) não tem autovalor  $\lambda = 1$ .
- 70. Mostre que
  - (a) se  $A \subset \mathbb{R}^n$  é aberto e  $f: A \to \mathbb{R}^n$  é difeomorfismo local em cada ponto de A então f é aberta
  - (b) se  $f: \mathbb{R}^n \to \mathbb{R}^n$  é um difeomorfismo local em cada ponto então  $f^{-1}(0)$  é finito ou é enumerável ilimitado.
- 71. Sejam  $g: [0, \infty] \to \mathbb{R}_+^*$  contínua,  $A = \{(x, y): 0 < x < y\}$  e

$$f(x,y) = \left(\int_0^{x+y} g(t)dt, \int_0^{x^2+y^2} g(t)dt\right)$$

definida em A. Mostre que f é um difeomorfismo de A sobre um aberto de  $\mathbb{R}^2$ .

- 72. Dada uma função  $f: \mathbb{R}^m \to \mathbb{R}^n$  contínua, suponha que existam n funções de classe  $C^1, g_1, \ldots, g_n \colon \mathbb{R}^n \to \mathbb{R}$ , tais que  $g_1 \circ f, \ldots, g_n \circ f$  sejam de classe  $C^1$ . Mostre que se  $\nabla g_1(f(x)), \ldots, \nabla g_n(f(x))$  são linearmente independentes, para todo  $x \in \mathbb{R}^m$ , então, f é de classe  $C^1$ .
- 73. Se  $f: \mathbb{R}^n \to \mathbb{R}^n$  é de classe  $C^1$ ,  $||f'(x)||_1 \le c < 1$ , para todo x, mostre que g(x) = x + f(x) é sobrejetora.
- 74. Mostre que  $\varphi(x,y) = (x+f(y),y+f(x))$  é um difeomorfismo sobre  $\mathbb{R}^2$  se  $f \colon \mathbb{R} \to \mathbb{R}$  é  $C^1$  com  $|f'(t)| \le \lambda < 1$ , para todo  $t \in \mathbb{R}$ .
- 75. Seja  $f: \mathbb{R}^n \to \mathbb{R}^n$  uma função de classe  $C^1$  tal que  $f'(f(x)) \circ f'(x) = I$ , para todo x e  $f \circ f(x_0) = x_0$ , para algum  $x_0$ . Mostre que f tem inversa e que  $f^{-1} = f$ .
- 76. Para cada constante  $c \in \mathbb{R}$ , a reta  $\begin{cases} z = y x \\ y = (1 c)x + c \end{cases}$  e a superfície  $z = x^2 y^2$  interceptam-se em p = (1, 1, 0). Mostre que p é ponto isolado da intersecção da reta com a superfície, se  $c \neq 0$ , usando o Teorema da Função Inversa.

- 77. Sejam  $A \subset \mathbb{R}^n$  um aberto e  $f: A \to \mathbb{R}^n$  uma contração. Mostre que I + f é uma aplicação aberta (i.e., para todo  $B \subset A$  aberto, (f + I)(B) é aberto).
- 78. A inversa local de  $f(x,y) = (\text{sen } x^3 \cosh y, \cos x^3 \text{ senh } y) \text{ em } (0,0)$  é diferenciável nesse ponto?
- 79. Mostre que  $g(x,y) = \left( \int_0^{x-y} f(t)dt, \int_0^{x^2-y^2} f(t)dt \right)$  é um difeomorfismo do aberto  $A = \{(x,y) \in \mathbb{R}^2 \colon 0 < y < x\}$  sobre um aberto de  $\mathbb{R}^2$ , sabendo-se que a função  $f \colon [0,\infty[ \to \mathbb{R}^{++} \text{ é contínua.}]$
- 80. Seja  $F: \mathbb{R}^2 \xrightarrow{C^1} \mathbb{R}$  e G(x,y) = (F(F(x,y),y),F(x,y)). Dê condições sobre F para que G seja um difeomorfismo local e calcule  $JG^{-1}$  nesse caso.
- 81. Seja  $f: \overline{B}_r(0) \to \overline{B}_r(0) \subset \mathbb{R}^n$  tal que  $||f(x) f(y)|| \le \lambda ||x y||$ , com  $\lambda$  constante,  $0 \le \lambda \le 1$ . Mostre:
  - (a)  $f_n = \frac{n-1}{n} f$  é contração, para todo  $n \ge 1$ .
  - (b) f tem ponto fixo? Único?
- 82. Verificar se  $x^3 + xy^2 + y^3 = 1$  pode ser dada localmente no ponto (1,0) por x = x(y). E por y = y(x)? Determine a reta tangente em (1,0).
- 83. Pode  $xye^{xz} z\ln y = 0$  ser resolvida localmente no ponto (0,1,0) como z = z(x,y)? e x = x(y,z)? e y = y(x,z)? Determine o plano tangente em (0,1,0).
- 84. Estude a existência e a unicidade de solução de classe  $C^1$ , y = y(x), para a equação f(x,y) = 0, localmente em (0,0), onde  $f(x,y) = \frac{\sin xy^2}{xy}$ , se  $xy \neq 0$ , f(x,0) = 0, f(0,y) = 0.
- 85. Encontre os 4 pontos onde  $\nabla f = 0$  sendo  $f(x,y) = 2x^3 3x^2 + 2y^3 + 3y^2$ . Encontre os pontos da curva f(x,y) = 0 onde ela não pode ser resolvida unicamente por y = y(x) nem por x = x(y).
- 86. Dê condições sobre  $f: \mathbb{R}^2 \to \mathbb{R}$ , de classe  $C^1$  e f(2,-1)=-1 para que a curva  $\gamma: \begin{cases} f(x,y)+z^2=0 \\ xz+3y^3+z^3=0 \end{cases}$  possa ser resolvida por x = x(y), z = z(y) localmente em (2,-1,1). Dê a reta tangente à  $\gamma$  em (2,-1,1) supondo f'(2,-1)=(1-3). Calcule z'(-1) e x'(-1).
- 87. Para cada  $(x,y) \in \mathbb{R}^2$ , considere  $f(z) = ze^{xy} + z^3(x^2 + y^2) 1$ . Mostre (a) f é estritamente crescente e existe um único z = z(x,y) tal que f(z) = 0;
  - (b) z(x,y) é de classe  $C^{\infty}$ .

- 88. Seja  $F: \mathbb{R}^2 \to \mathbb{R}$  de classe  $C^2$ , F(0,0) = 0,  $F'(0,0) = (2\,3)$ . Mostre que a superfície  $F(x+2y+3z-1,x^3+y^2-z^2) = 0$  pode ser dada localmente em (-2,3,-1) como gráfico de  $z \stackrel{c^2}{=} z(x,y)$ . Calcule  $\frac{\partial z}{\partial y}(-2,3)$  e, sabendo-se que  $\frac{\partial^2 F}{\partial x^2}(0,0) = 3$ ,  $\frac{\partial^2 F}{\partial x \partial y}(0,0) = -1$ ,  $\frac{\partial^2 F}{\partial y^2}(0,0) = 5$ , calcule  $\frac{\partial^2 z}{\partial y \partial x}(-2,3)$ .
- 89. Seja  $f: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ , de classe  $C^1$ ,  $f_{\lambda}(x) = f(\lambda, x)$  tal que  $f_{\lambda_0}(x_0) = x_0$ . Enuncie e prove um resultado que garanta a existência e unicidade de ponto fixo próximo de  $x_0$  para  $f_{\lambda}$  com  $\lambda \sim \lambda_0$ .
- 90. Seja  $f(x,y,z) = (x^2 + y^2 z^2, x y a)$ . Para que valores de a, (0,0) é valor regular de f?
- 91. Seja c um valor regular de  $f: \mathbb{R}^{n>1} \to \mathbb{R}$ , de classe  $C^1$ . Mostre que se q é o ponto de  $f^{-1}(c)$  mais próximo de um ponto fixado  $p \notin f^{-1}(c)$ , então, p-q é ortogonal ao plano tangente a  $f^{-1}(c)$  em q.
- 92. Se  $M = \{(x, a_0, \dots, a_{n-1}) \in \mathbb{R}^{n+1} : x^n + a_{n-1}x^{n-1} + \dots + a_1x + a_0 = 0\},$  prove:
  - (a) M é superfície de dimensão n de classe  $C^{\infty}$  de  $\mathbb{R}^{n+1}$ ;
  - (b) a restrição a M da projeção  $\pi \colon \mathbb{R}^{n+1} \to \mathbb{R}^n$  definida por

$$\pi(x, a_0, \dots, a_{n-1}) = (x, a_1, \dots, a_{n-1})$$

é um homeomorfismo sobre  $\mathbb{R}^n$  cuja inversa é imersão de classe  $C^{\infty}$ .

- 93. Seja  $f: [0,2] \to \mathbb{R}_+^*$ , contínua, tal que  $\int_0^1 f = \int_1^2 f = 1$ . Para cada  $x \in [0,1]$ , considere g(x) definida implicitamente por  $\int_x^{g(x)} f(t) dt = 1$ . Prove que g está bem definida e é de classe  $C^1$ .
- 94. (a) Seja  $S = \{A \in M_2(\mathbb{R}) : \text{ posto } A = 1\}$ . Mostre que, localmente em cada ponto, S é o gráfico de uma funcão real de classe  $C^1$ . Determine o plano tangente em  $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = A_0$ .
  - (b) Como é o análogo para  $S = \{A \in M_3(\mathbb{R}) : \text{ posto } A = 2\}$ ? e para  $A_0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ ?

74

- 95. Seja  $f: \mathbb{R}^2 \to \mathbb{R}$  de classe  $C^1$ ,  $f^2 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 \neq 0$ , para todo  $(x,y) \in \mathbb{R}^2$ . Mostre que cada subconjunto limitado de  $\mathbb{R}^2$  encontra apenas um número finito de componentes conexas de  $f^{-1}(0)$ .
- 96. Seja  $f: \mathbb{R}^{n+k} \to \mathbb{R}^k$  de classe  $C^1$ ,  $k, n \ge 1$ , com  $f'(p_0)$  de posto máximo e  $f(p_0) = c_0$ . Prove que existem abertos  $U \subset \mathbb{R}^{n+k}$  contendo  $p_0 \in V \subset \mathbb{R}^k$  contendo  $c_0$  tais que, para todo  $c \in V$ ,  $f^{-1}(c) \cap V$  é gráfico de função de classe  $C^1$  de k variáveis e n componentes com o mesmo domínio.
- 97. Determine o paralelepípedo de faces paralelas aos planos coordenados inscrito no elipsóide  $x^2 + \frac{y^2}{4} + \frac{z^2}{9} = 1$  de maior volume possível.
- 98. Determine os extremos absolutos de g(x,y,z)=xyz condicionada à curva  $\begin{cases} x^2+2y^2+z^2=1\\ x+y+z=1. \end{cases}$
- 99. Seja  $f: \mathbb{R}^n \to \mathbb{R}$  diferenciável não constante. Dado  $\varepsilon > 0$ , mostre que existe  $p \in \mathbb{R}^n$  tal que  $|p| = \varepsilon$  e  $p // \nabla f(p)$ .
- 100. (a) Seja  $L \in L(\mathbb{R}^n)$  simétrica. Mostre que os extremos da função dada por f(x) = L(x).x se condicionada à esfera  $S^{n-1}$  são autovetores de L e os valores extremos são os autovalores correspondentes.
  - (b) Conclua que o valor máximo e o valor mínimo da função dada por  $f(x,y) = ax^2 + 2bxy + cy^2$  sobre a circunferência  $x^2 + y^2 = 1$  são os autovalores da matriz  $\begin{pmatrix} a & b \\ b & c \end{pmatrix}$ .
- 101. Seja  $F: \mathbb{R}^m \times \mathbb{R} \to \mathbb{R}^n$ , de classe  $C^1$ ,  $m \le n$ , tal que, para cada  $t \in \mathbb{R}$ , a função  $F_t(x) = F(x,t)$  tem posto máximo (isto é, derivada de posto máximo), para todo  $x \in \mathbb{R}^m$ . Mostre que a função G(x,t) = (F(x,t),t) tem posto máximo, para todo ponto  $(x,t) \in \mathbb{R}^m \times \mathbb{R}$ .
- 102. Mostre que o gráfico de  $f: \mathbb{R}^n \to \mathbb{R}^k$ , de classe  $C^1$  é imagem inversa de valor regular e é imagem de imersão de classe  $C^1$ .
- 103. Dada  $f(x,y,z)=(x^2+y^2-4)^2+z^2-1$ , determine os valores de  $c\in\mathbb{R}$  tais que  $f^{-1}(c)$  é superfície de  $\mathbb{R}^3$  e, nesses casos, descreva  $f^{-1}(c)$  e determine sua dimensão.
- 104. Seja  $SL(3) = \{A \in M_3(\mathbb{R}) : \det A = 1\}.$ 
  - (a) Mostre que SL(3) é superfície de  $M_3(\mathbb{R})$ , dando a dimensão.
  - (b) Determine o plano tangente a SL(3) na identidade I.

- 105. Dada  $f(x, y, z, t) = (x^2 + y^2 z^2 + t^2, t^2)$ ,
  - (a) determine os valores regulares (a,b) de f e descreva os conjuntos  $f^{-1}(a,b)$ ;
  - (b) para que (a,b),  $f^{-1}(a,b)$  é superfície em  $\mathbb{R}^4$ ?
- 106. (a) Determine os extremos de f(x,y)=x.y, para todos  $x,y\in\mathbb{R}^n$ , em  $||x||^2+||y||^2=1$ .
  - (b) Use (a) para provar a designaldade de Cauchy Schwarz em  $\mathbb{R}^n$ .
- 107. Mostre que a imagem inversa de um valor regular de  $f \in C^1$ , localmente em cada ponto, é a imagem de uma imersão de classe  $C^1$ . Reciprocamente, a imagem de uma imersão de classe  $C^1$ , localmente em cada ponto, é a imagem inversa de valor regular?
- 108. Seja  $0 \in \mathbb{R}$  valor regular de  $f \colon \mathbb{R}^3 \stackrel{C^1}{\longmapsto} \mathbb{R}$ , f(a) = 0,  $\gamma \colon ]-1,1[ \to \mathbb{R}^3$  derivável com  $\gamma(0) = a$  e  $\gamma'(0)$  não pertencente ao plano tangente à curva f = 0 em a. Mostre que existe  $\delta > 0$  tal que  $f(\gamma(t))$  não se anula e tem sinais distintos em  $]-\delta,0[$  e em  $]0,\delta[$ , respectivamente. Interprete geometricamente.
- 109. Mostre que a superfície obtida pela rotação do gráfico de  $z = \varphi(x)$  em torno do eixo z, onde  $\varphi \colon [a,b] \to \mathbb{R}$ , é de classe  $C^1$ , isto é, de classe  $C^1$  em um aberto contendo [a,b], e 0 < a < b, é imagem de uma imersão de classe  $C^1$  e imagem inversa de valor regular. Idem para a superfície de  $\mathbb{R}^3$  dada por  $z = \varphi(x)$ ,  $\varphi \colon \mathbb{R} \to \mathbb{R}$ , de classe  $C^1$ .
- 110. Sejam  $\sigma \colon \mathbb{R}^n \to \mathbb{R}^{n+p}$  imersão de classe  $C^1$  e  $F \colon \mathbb{R}^n \to \mathbb{R}^n$  difeomorfismo de classe  $C^1$ . Mostre que  $\sigma \circ F$  é imersão de classe  $C^1$ .

## 111. Podem



ser imagem de imersão injetora de classe  $C^1$  de  $\mathbb R$  em  $\mathbb R^2$ ? E imagem inversa de valor regular?

- 112. Seja  $f: \mathbb{R}^{n+p} \to \mathbb{R}^n$  de classe  $C^1$ ,  $f(x_0) = 0$  e suponha que  $f'(x_0)$  tenha posto máximo. Mostre que a equação f(x) = c tem solução, para todo c suficientemente próximo de 0.
- 113. Sejam  $\varphi, \psi \colon \mathbb{R}^n \to \mathbb{R}^{n+p}$  imersões  $C^1$ . Mostre que

$$\varphi \times \psi(x, y) = (\varphi(x), \psi(y))$$

é imersão  $C^1$ . Conclua que o toro  $S^1 \times S^1 \subset \mathbb{R}^4$  é imagem de imersão  $C^1$  de  $\mathbb{R}^2$  em  $\mathbb{R}^4$ .

- 114. Mostre que se  $f \colon \mathbb{R}^n \to \mathbb{R}^m$  é de classe  $C^1$  com m < n, então f não é injetora.
- 115. Mostre que se  $f: \mathbb{R}^{n+p} \to \mathbb{R}^n$  é submersão de classe  $C^1$ , então f é aberta.
- 116. Seja  $f: \mathbb{R}^n \to \mathbb{R}^2$ ,  $f(x_1, \dots, x_n) = (x_1^2 + \dots + x_n^2, x_1^2 (x_2^2 + \dots + x_n^2))$ . Determine os subconjuntos de  $\mathbb{R}^n$  em que o posto de f é constante.
- 117. Sejam  $A \subset \mathbb{R}^n$  aberto,  $f: A \to \mathbb{R}^m$  de classe  $C^1$  e

$$A_r = \text{int } \{x \in A : \text{ posto } f'(x) = r\},$$

onde  $r = 0, 1, ..., p = \min\{m, n\}$ . Mostre que  $A_0 \cup A_1 \cup ... \cup A_p$  é denso em A. Verifique no caso  $f(x_1, ..., x_n) = (x_1^2 + \cdots + x_n^2, x_1^2 - (x_2^2 + \cdots + x_n^2))$ .

- 118. Seja  $f: \mathbb{R}^4 \xrightarrow{C^1} \mathbb{R}^3$  submersão com  $f(x) \neq 0$ , para todo x. Mostre que ||f(x)|| não tem extremos.
- 119. Sejam  $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^3$  imersão  $C^1$  injetora com inversa contínua e  $\gamma \colon \mathbb{R} \xrightarrow{C^1} \mathbb{R}^3$  com  $\gamma(\mathbb{R}) \subset \sigma(\mathbb{R}^2)$ . Mostre que existe  $\delta > 0$  e  $\alpha \colon ]-\delta, \delta[\xrightarrow{C^1} \mathbb{R}^2$  tal que  $\gamma = \sigma \circ \alpha$  em  $]-\delta, \delta[$ .
- 120. Considere  $f(X) = XX^t$ ,  $X \in M_n(\mathbb{R})$  como aplicação de  $\mathbb{R}^{n^2}$  em  $\mathbb{R}^{\frac{n(n+1)}{2}}$ , levando em conta que  $XX^t$  é simétrica.
  - (a) Calcule  $\frac{\partial f}{\partial H}$  e mostre que f é diferenciável em X.
  - (b) Suponha que A seja ortogonal, isto é,  $AA^t = I$ . Mostre que a aplicação  $f'(A) \in L(\mathbb{R}^{n^2}, \mathbb{R}^{\frac{n(n+1)}{2}})$  é sobrejetora.
  - (c) Mostre que  $f \in C^1$ .
  - (d) Conclua que  $O(n)=\{A\in M_n(\mathbb{R}): A \text{ ortogonal }\}$  é uma superfície de dimensão  $\frac{n(n-1)}{2}$ .
  - (e) Mostre que o plano tangente a O(n) em I é o conjunto  $I+\{A\in M_n(\mathbb{R}): A^t=-A\}.$
  - (f) Mostre que O(n) é compacto.

## Referências Bibliográficas

- [1] Buck, R.C.: Advanced Calculus, Mc Graw-Hill Kogakusha, Ltd. 3rd edition (1978).
- [2] Guidorizzi, H.: Um curso de Cálculo, vol. 2, LTC, RJ (2001).
- [3] Lima, E.L.: Espaços Métricos, 10<sup>o</sup> Colóquio Brasileiro de Matemática (1975).
- [4] Lima, E.L.: Curso de Análise, vol. 2, Projeto Euclides, Impa, RJ (1981).
- [5] Spivak, M.: Calculus on Manifolds, W.A. Benjamin Inc. (1965).
- [6] Munkres, J.R.: Analysis on Manifolds, Addison-Wesley Publishing Company (1991).
- [7] Rudin, W.: *Principles of Mathematical Analysis* Mc Graw-Hill Book Company, 3rd edition (1976).

## Índice Remissivo

| bola                               | plano tangente, 18, 45           |  |  |
|------------------------------------|----------------------------------|--|--|
| aberta, 1                          | ponto                            |  |  |
| fechada, 1                         | de acumulação, 1                 |  |  |
|                                    | de aderência, 1                  |  |  |
| conjunto                           | de fronteira, 1                  |  |  |
| conexo, 5                          | interior, 1                      |  |  |
| por caminhos, 12                   | isolado, 7                       |  |  |
| contração, 38                      |                                  |  |  |
|                                    | Regra da Cadeia, 25              |  |  |
| derivada                           | reta tangente, 47                |  |  |
| direcional, 21                     | subconjunto                      |  |  |
| parcial, 21                        | aberto, 1, 5                     |  |  |
| desigualdade de Cauchy Schwarz, 63 | compacto, 3                      |  |  |
| distância                          | fechado, 1, 5                    |  |  |
| de ponto a conjunto, 13            | submersão, 57                    |  |  |
|                                    | submersao, 37                    |  |  |
| função                             | Teorema                          |  |  |
| aberta, 36                         | da Função Implícita, 47          |  |  |
| contínua, 7                        | da Função Inversa, 36            |  |  |
| de classe $C^1$ , 29               | da Imersão, 55                   |  |  |
| de classe $C^2$ , 31               | da Perturbação da Identidade, 39 |  |  |
| diferenciável em um ponto, 17      | da Submersão, 57                 |  |  |
| lipschitziana, 7                   | de Heine Borel, 3                |  |  |
| uniformemente contínua, 13         | de Weierstrass, 13               |  |  |
|                                    | do Ponto Fixo de Banach, 38      |  |  |
| imagem inversa de um conjunto, 10  | do Posto, 60                     |  |  |
| imersão, 53                        | do Valor Intermediário, 11       |  |  |
|                                    | do Valor Médio, 32               |  |  |
| limite                             |                                  |  |  |
| de uma função em um ponto, 7       | valor regular, 49, 50            |  |  |
| Multiplicadores de Lagrange, 52    |                                  |  |  |
| oscilação, 15                      |                                  |  |  |