Basic identities of matrix/vector ops	<u> </u>	Vector norms (beyond euclidean)	The (column) rank of AJ is number of linearly	notice all-but-one minor matrix determinants go to	$-\mathbf{q}_1, \dots, \mathbf{q}_n$ are still eigenvectors of $\underline{\mathbf{A}} = \mathbf{A} = \mathbf{Q} \mathbf{D} \mathbf{Q}^T$	always exists If $n \le m$ [then work with $A^T A \in \mathbb{R}^{n \times n}$]:	$A \approx \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T$
$\frac{(A+B)^T = A^T + B^T}{(AB)^{-1} = B^{-1}A^{-1}} \frac{(AB)^T = B^TA^T}{(A^{-1})^T = (A^T)^{-1}}$	*Notice: $Q_j c_j = \sum_{i=1}^{j} (q_i \cdot a_{j+1}) q_i = \sum_{i=1}^{j} \operatorname{proj}_{q_i} (a_{j+1})$, so	-vector norms are such that: x = 0 ⇔ x = 0 , \lambda x = \lambda x , x + y ≤ x + y	independent columns, i.e. rk(A) •I.e. its the number of pivots in row-echelon-form	Representing EROs/ECOs as transfor-	(spectral decomposition) -A=QDQ ^T can be interpreted as scaling in direction of	•Obtain eigenvalues $\sigma_1^2 \ge \cdots \ge \sigma_n^2 \ge 0$ of $A^T A$	Cholesky Decomposition
	rewrite as	$\ell_p \mid \text{norms: } \ \mathbf{x}\ _p = (\sum_{i=1}^n \mathbf{x}_i ^p)^{1/p}$	-I.e. its the dimension of the column-space	mation matrices	its eigenvectors:	•Obtain orthonormal eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n \in \mathbb{R}^n$ of	Consider positive (semi-)definite $\underline{A} \in \mathbb{R}^{n \times n}$ Cholesky Decomposition is $\underline{A} = LL^T$ where \underline{L} is
For $\underline{A \in \mathbb{R}^{m \times n}}$, $\underline{A_{ij}}$ is the \underline{i} th ROW then \underline{j} th COLUMN	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} (\mathbf{q}_{i} \cdot \mathbf{a}_{j+1}) \mathbf{q}_{i} = \mathbf{a}_{j+1} - \sum_{i=1}^{n} \operatorname{proj}_{\mathbf{q}_{i}} (\mathbf{a}_{j+1})$	$-p = 1 \mid \ \mathbf{x}\ _{1} = \sum_{i=1}^{n} \left \mathbf{x}_{i} \right $	rk(A) = dim(C(A)) -I.e. its the dimension of the image-space	For $A \in \mathbb{R}^{m \times n}$ suppose a sequence of: •EROs transform $A \rightsquigarrow_{EROS} A' \implies$ there is matrix R js.t.	Perform a succession of reflections/planar rotations to change coordinate-system	A ^T A (apply normalization e.g. Gram-Schmidt !!!! to	lower-triangular
$(A^T)_{ij} = A_{ji} (AB)_{ij} = A_{i\star} \cdot B_{\star j} = \sum_{k} A_{ik} B_{kj}$	i=1 $i=1•Let \mathbf{a}_1,, \mathbf{a}_n \in \mathbb{R}^m \mid (\underline{m \ge n}) be linearly independent,$	$-\underline{p=2} \ddagger \frac{1}{\ \mathbf{x}\ _2} = \sqrt{\sum_{i=1}^n \mathbf{x}_i^2} = \sqrt{\mathbf{x} \cdot \mathbf{x}}$	$rk(A) = dim(im(f_A)) of linear map f_A(x) = Ax $	RA = A'	2. Apply scaling by $\underline{\lambda_i}$ to each dimension $\underline{\mathbf{q}_i}$ 3. Undo those reflections/planar rotations	eigenspaces E_{σ_i} • $V = [v_1 v_n] \in \mathbb{R}^{n \times n}$ is orthogonal so $V^T = V^{-1}$	•For positive semi-definite => always exists, but non-unique
$(Ax)_i = A_{i\star} \cdot x = \sum A_{ij} x_j x^T y = y^T x = x \cdot y = \sum x_i y_i $	i.e. basis of n + dim subspace Un = span{a1,, an}	$-p = \infty_{\mathbf{f}} \ \mathbf{x}\ _{\infty} = \lim_{p \to \infty} \ \mathbf{x}\ _{p} = \max_{1 \le i \le n} \mathbf{x}_{i} $	•The (row) rank of A is number of linearly independent	•ECOs transform A → ECOs A' => there is matrix C s.t. AC = A'	Extension to C ⁿ	$r = rk(A) = no. of strictly + ve \sigma_i$	•For positive-definite => always uniquely exists s.t.
ji	-We apply Gram-Schmidt to build ONB $(\mathbf{q}_1,, \mathbf{q}_n) \in \mathbb{R}^m$ for $U_n \subset \mathbb{R}^m$	•Any two norms in \mathbb{R}^n are equivalent, meaning there	•The row/column ranks are always the same, hence	•Both transform A → EROs•ECOs A' => there are	•Standard inner product: $\langle x, y \rangle = x^{\dagger} y = \sum_{i} \overline{x_{i}} y_{i}$	•Let $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$ then $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ are orthonormal	diagonals of <u>L</u>]are positive
$x^{T} A x = \sum_{i} \sum_{j} A_{ij} x_{i} x_{j}$	$-j=1$ \Rightarrow $\mathbf{u}_1 = \mathbf{a}_1$ and $\mathbf{q}_1 = \hat{\mathbf{u}}_1$, i.e. start of iteration	exist $r>0$; $s>0$ such that: $\forall x \in \mathbb{R}^n$, $r x _a \le x _b \le s x _a$	$rk(A) = dim(C(A)) = dim(R(A)) = dim(C(A^T)) = rk(A^T)$ •A is full-rank iff $rk(A) = min(m, n)$, i.e. its as linearly	matrices R, C s.t. RAC = A'	-Conjugate-symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$	(therefore linearly independent)	Finding a Cholesky Decomposition:
Scalar-multiplication + addition distributes over:	$-j=2$ \Rightarrow $\overline{\mathbf{u}_2} = \overline{\mathbf{a}_2} - (\mathbf{q}_1 \cdot \overline{\mathbf{a}_2}) \overline{\mathbf{q}_1}$ and $\overline{\mathbf{q}_2} = \hat{\mathbf{u}}_2$ etc -Linear independence guarantees that $a_{j+1} \notin U_j$	$\ \mathbf{x}\ _{\infty} \leq \ \mathbf{x}\ _{2} \leq \ \mathbf{x}\ _{1}$	independent as possible	FORWARD: to compute these transformation	•Standard (induced) norm: $ x = \sqrt{\langle x, y \rangle} = \sqrt{x^{\dagger} y}$	-The orthogonal compliment of span $\{u_1,, u_r\}$ =>	Compute <u>LLT</u> and solve <u>A = LLT</u> by matching terms For square roots always pick positive
ocolumn-blocks =>	-For exams: compute $\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$	-Equivalence of ℓ_1 , ℓ_2 and $\ell_{\infty} = \ \mathbf{x}\ _2 \le \sqrt{n} \ \mathbf{x}\ _{\infty}$	Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{m \times n}$ are equivalent if there exist	•Start with [I _m A I _n]], i.e. A Jand identity matrices	We can diagonalise real matrices in CJwhich lets us diagonalise more matrices than before	$\frac{\operatorname{span}\{\mathbf{u}_1, \dots, \mathbf{u}_r\}^{\perp} = \operatorname{span}\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}}{*\operatorname{Solve for unit-vector }\mathbf{u}_{r+1} \mid \operatorname{s.t. it is orthogonal to}}$	•If there is exact solution then positive-definite
$\lambda A + B = \lambda [A_1 A_C] + [B_1 B_C] = [\lambda A_1 + B_1 \lambda A_C + B_C]$ • row-blocks =>	1. Gather $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$	INDICATE IN INTIME INTIME IN INTIME INTIME IN INTIME IN INTIME IN INTIME I	two invertible matrices $P \in \mathbb{R}^{m \times m}$ and $Q \in \mathbb{R}^{n \times n}$	•For every ERO on Al do the same to LHS (i.e. I _m)	Least Square Method	u ₁ ,,u _r	•If there are free variables at the end, then positive semi-definite
$\lambda A + B = \lambda [A_1;; A_r] + [B_1;; B_r] = [\lambda A_1 + B_1;; \lambda A_r + B_r]$	2. Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$	properties:	such that $\mathbf{A} = \mathbf{P} \tilde{\mathbf{A}} \mathbf{Q}^{-1}$ Two matrices $\mathbf{A}, \tilde{\mathbf{A}} \in \mathbb{R}^{n \times n}$ are similar if there exists an	•For every ECO on \underline{A} do the same to RHS (i.e. $\overline{I_n}$) •Once done, you should get $[I_m \mid A \mid I_n] \rightsquigarrow [R \mid \overline{A} \mid C]$	If we are solving <u>Ax = b</u> and <u>b</u> ∉ C(A), i.e. no solution,	*Then solve for unit-vector $\underline{\mathbf{u}_{r+2}}$ js.t. it is orthogonal to $\underline{\mathbf{u}_1,,\mathbf{u}_{r+1}}$	–i.e. the decomposition is a solution-set
Matrix-multiplication distributes over: \circ column-blocks \Rightarrow $AB = A[B_1 B_D] = [AB_1 AB_D]$	3. Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}	-Translation invariance: $d(x+w,y+w)=d(x,y)$ -Scaling: $d(\lambda x, \lambda y)= \lambda d(x,y) $	invertible matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$	with $RAC = A'$	then Least Square Method is: •Finding xjwhich minimizes Ax-b 2	*And so on	parameterized on free variables
$\text{orow-blocks} \Rightarrow AB = [A_1;; A_p]B = [A_1B;; A_pB]$	Properties: dot-product & norm	Matrix norms	•Similar matrices are equivalent, with Q = P A is diagonalisable iff A is similar to some diagonal	If the sequences of EROs and ECOs were $R_1,, R_{\lambda}$ and	•Recall for $A \in \mathbb{R}^{m \times n}$ we have unique decomposition	$-U = [\mathbf{u}_1 \mid \dots \mid \mathbf{u}_m] \in \mathbb{R}^{m \times m} \text{ is orthogonal so } \underline{U}^T = \underline{U}^{-1}$ $\bullet S = \operatorname{diag}_{m \times n} (\sigma_1, \dots, \sigma_n) \mid \text{AND DONE}!!$	-e.g. 1 1 1 = LL^T where $L = \begin{bmatrix} 1 & 0 & 0 \\ & & & \end{bmatrix}$, $c \in [0, 1]$
outer-product sum =>	$x^{T}y = y^{T}x = x \cdot y = \sum_{i} x_{i}y_{i} x \cdot y = a b \cos x\hat{y} $	-Matrix norms are such that: A = 0 ⇔ A = 0 , \lambda = \lambda A + B	matrix D	C ₁ ,,C _µ respectively	for any $\mathbf{b} \in \mathbb{R}^m$ $\mathbf{b} = \mathbf{b}_i + \mathbf{b}_k$	If $m < n$ then let $B = A^T$	1 1 2 1 c √1-c ²
$\frac{AB = [A_1 A_p][B_1;; B_p] = \sum_{i=1}^{P} A_i B_i}{\circ \text{ e.g. for } A = [a_1 a_n][B = [b_1;; b_n]] \Longrightarrow AB = \sum_i a_i b_i}$	$x \cdot y = y \cdot x \mid x \cdot (y + z) = x \cdot y + x \cdot z \mid \alpha x \cdot y = \alpha(x \cdot y)$	-Matrices F ^{m×n} are a vector space so matrix norms	Properties of determinants	$\bullet R = R_{\lambda} \cdots R_{1}$ and $C = C_{1} \cdots C_{\mu}$ so	-where $\mathbf{b}_i \in C(A)$ and $\mathbf{b}_k \in \ker(A^T)$ $\cdot \ A\mathbf{x} - \mathbf{b}\ _2$ is minimize $\mathbf{d} \iff \ A\mathbf{x} - \mathbf{b}_i\ _2 = 0 \iff A\mathbf{x} = \mathbf{b}_i$	•apply above method to \underline{B}] \Rightarrow $\underline{B} = A^T = USV^T$ • $A = B^T = VS^TU^T$	If <u>A = LLT</u> you can use <u>forward/backward substitution</u> to solve equations
Projection: definition & properties	$\underline{x \cdot x} = x ^2 = 0 \iff x = 0$ for $\underline{x} \neq 0$, we have $\underline{x \cdot y} = x \cdot z \implies x \cdot (y - z) = 0$	are vector norms, all results apply •Sub-multiplicative matrix norm (assumed by default)	*Consider $\underline{A} \in \mathbb{R}^{n \times n}$, then $A_{ij}' \in \mathbb{R}^{(n-1) \times (n-1)}$ the	$\frac{(R_{\lambda} \cdots R_{1})A(C_{1} \cdots C_{\mu}) = A'}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$		Tricks: Computing orthonormal	•For $Ax = b$] \Longrightarrow let $y = L^T x$
•A projection $\pi: V \to V$ is a endomorphism such that	$ x \cdot y \le x y Cauchy-Schwartz inequality $	is also such that AB ≤ A B	(i,j) minor matrix of A obtained by deleting i th row and j th column from A	$R^{-1} = R_1^{-1} \cdots R_{\lambda}^{-1}$ and $C^{-1} = C_{\mu}^{-1} \cdots C_1^{-1}$ where	$\frac{A^T A \mathbf{x} = A^T \mathbf{b}}{\text{solution to least square problem:}}$	vector-set extensions	•Solve Ly = b] by forward substitution to find y
поп=п, i.e. it leaves its image unchanged (its idempotent)		•Common matrix norms, for some $\underline{\mathbf{A}} \in \mathbb{R}^{m \times n}$ } $-\ \mathbf{A}\ _1 = \max_j \ \mathbf{A}_{\star j}\ _1$	Then we define determinant of \underline{A} i.e. $\underline{det(A)} = A $ as	R_i^{-1}, C_j^{-1} are inverse EROs/ECOs respectively	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ _2$ is minimized $\iff \mathbf{A}\mathbf{x} = \mathbf{b}_i \iff \mathbf{A}^T \mathbf{A}\mathbf{x} = \mathbf{A}^T \mathbf{b}$	You have orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_r \in \mathbb{R}^m$ \Rightarrow need to extend to orthonormal vectors $\mathbf{u}_1,, \mathbf{u}_m \in \mathbb{R}^m$	•Solve $L^T x = y$ by backward substitution to find \underline{x}
•A square matrix \underline{P}] such that $\underline{P^2} = \underline{P}$ is called a	$\frac{\ u+v\ \le \ u\ + \ v\ }{u \perp v \iff \ u+v\ ^2} = \ u\ ^2 + \ v\ ^2 (pythagorean)$	$-\ \mathbf{A}\ _2 = \sigma_1(\mathbf{A}) \text{ [i.e. largest singular value of } \mathbf{A}$	$-\det(A) = \sum_{i=1}^{n} (-1)^{i+k} A_{ik} \det(A_{ik}')$, i.e. expansion along	BACKWARD: once $R_1,, R_{\lambda}$ and $C_1,, C_{\mu}$ for which	Linear Regression	Special case => two 3D vectors => use cross-product =>	For <u>n = 3</u>]=> L = l ₂₁ l ₂₂ 0
projection matrix —It is called an orthogonal projection matrix if	theorem)	(sauare-root of largest eigenvalue of A ^T A or AA ^T	k=1 i th row *(for any i)	RAC = A' are known, starting with $[I_m \mid A \mid I_n]$	•Let $y = f(t) = \sum_{j=1}^{n} s_j f_j(t)$ be a mathematical model, where f : lare hasis functions and s : lare parameters	<u>a×b⊥a,b</u>	[[131 132 133]]
$P^2 = P = P^{\dagger}$ (conjugate-transpose)	$\frac{\ c\ ^2 = \ a\ ^2 + \ b\ ^2 - 2\ a\ \ b\ \cos ba\ }{\text{Transformation matrix \& linear maps}}$	$-\ \mathbf{A}\ _{\infty} = \max_{i} \ \mathbf{A}_{i\star}\ _{1}$ note that $\ \mathbf{A}\ _{1} = \ \mathbf{A}^{T}\ _{\infty}$	$-\det(A) = \sum_{i=1}^{n} (-1)^{k+j} A_{kj} \det(A_{kj}')$ i.e. expansion along	•For $\underline{i} = 1 \rightarrow \lambda$ perform $R_{\underline{i}}$ on \underline{A} , perform $R_{\lambda-\underline{i}+1}^{-1}$ on LHS	where f_j are basis functions and s_j are parameters •Let (t_j, y_j) , $1 \le i \le m, m \gg n$ be a set of observations,	Extension via standard basis $I_m = [e_1 e_m]$ using	$LL^T = \begin{bmatrix} l_1^2 & l_{11}l_{21} & l_{11}l_{31} \\ l_{11}l_{21} & l_{21}^2 * l_{22}^2 & l_{21}l_{31} * l_{22}l_{32} \end{bmatrix}$
-Eigenvalues of a projection matrix must be 0 or 1 •Because π: V → V is a linear map , its image space	For linear map $f: \mathbb{R}^n \to \mathbb{R}^m$, ordered bases	-Frobenius norm: $\ \mathbf{A}\ _F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} \mathbf{A}_{ij} ^2}$	R=1	(i.e. I _m) •For i = 1 → µ perform C: on Al perform C ⁻¹ on	and t, y ∈ R ^m are vectors representing those	(tweaked) GS: -Choose candidate vector: just work through	$\begin{bmatrix} l_{11}l_{31} & l_{21}l_{31} + l_{22}l_{32} & l_{31}^2 + l_{32}^2 + l_{33}^2 \end{bmatrix}$
$U = im(\pi)$ and null space $W = ker(\pi)$ are subspaces of V	$(\mathbf{b}_1, \dots, \mathbf{b}_n) \in \mathbb{R}^n$ and $(\mathbf{c}_1, \dots, \mathbf{c}_m) \in \mathbb{R}^m$	V i=1 j=1	j th column (for any j) •When det(A) = 0 we call A a singular matrix	•For $\underline{j=1 \rightarrow \mu}$ perform $\underline{C_j}$ on $\underline{A_j}$ perform $\underline{C_{\mu-j+1}^{-1}}$ on RHS (i.e. I_n)	observations $-f_j(t) = [f_j(t_1),, f_j(t_m)]^T$ is transformed vector	e1 em isequentially starting from e1 i=> denote	Forward/backward substitution
$-\pi_J$ is the identity operator on U -The linear map $\pi^* = I_V - \pi$ is also a projection with	•A = $\mathbf{F}_{CB} \in \mathbb{R}^{m \times n}$ is the transformation-matrix of f w.r.t to bases B and C	•A matrix norm $\ \cdot\ $ on $\mathbb{R}^{m\times n}$ is consistent with the vector norms $\ \cdot\ _a$ on \mathbb{R}^n and $\ \cdot\ _b$ on \mathbb{R}^m if	Common determinants	•You should get $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C^{-1}]$ with	$-A = [f_1(t)] \dots [f_n(t)] \in \mathbb{R}^{m \times n}$ is a matrix of columns	the current candidate e_k •Orthogonalize: Starting from $j = r$ going to $j = m$ with	•Forward substitution: for lower-triangular [\{ \frac{1}{1.1} 0 \]
$W = \operatorname{im}(\pi^*) = \ker(\pi)$ and $U = \ker(\pi^*) = \operatorname{im}(\pi)$ i.e. they	• $f(\mathbf{b}_j) = \sum_{i=1}^m A_{ij} \mathbf{c}_i$ -> each \mathbf{b}_j basis gets mapped to a	-for all $\underline{A} \in \mathbb{R}^{m \times n}$ and $\underline{x} \in \mathbb{R}^n$ => $\ Ax\ _b \le \ A\ \ x\ _a$	-For <u>n = 1</u> , det(A) = A ₁₁ -For <u>n = 2</u> , det(A) = A ₁₁ A ₂₂ -A ₁₂ A ₂₁	<u>A=R⁻¹A'C⁻¹</u>	$-\mathbf{z} = [s_1, \dots, s_n]^T$ is vector of parameters	each iteration ⇒ with current orthonormal vectors	L= 1 %.
swapped *πJis a projection along W onto U	linear combination of $\sum_i a_i c_i$ bases	-If $a = b$, $\ \cdot\ $ is compatible with $\ \cdot\ _a$ -Frobenius norm is consistent with ℓ_2 norm \Rightarrow	-det(I _n)=1	You can mix-and-match the forward/backward modes	•Then we get equation $Az = y = minimizing Az - y _2$ is the solution to Linear Regression	u ₁ ,,u _j -Compute	[\(\ell_{n,1} \ \ell_{n,n} \)]
π is a projection along U onto W	•If f^{-1} exists (i.e. its bijective and $\underline{m} = n$) then	Av ₂ ≤ A _F v ₂	•Multi-linearity in columns/rows: if $A = [a_1 a_i a_n] = [a_1 \lambda x_i + \mu y_i a_n]$ [then	•i.e. inverse operations in inverse order for one, and	-So applying LSM to Az = y is precisely what Linear	$\mathbf{w}_{i+1} = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{e}_k \cdot \mathbf{u}_i) \mathbf{u}_i = \mathbf{e}_k - \sum_{i=1}^{j} (\mathbf{u}_i)_k \mathbf{u}_i$	-For $\underline{Lx = b}$, just solve the first row $\ell_{1,1} x_1 = b_1 \implies x_1 = \frac{b_1}{\ell_{1,1}}$ and substitute down
π is the identity operator on <u>W</u>] -V can be decomposed as <u>V = U ⊕ W</u> meaning every	$(\underline{\mathbf{F}_{CB}})^{-1} = \underline{\mathbf{F}}^{-1}_{BC}$ (where $\underline{\mathbf{F}}^{-1}_{BC}$ is the transformation-matrix of f^{-1})	•For a vector norm $\ \cdot\ $ on \mathbb{R}^n , the subordinate	$\det(A) = \lambda \det\left(\left[a_1 \mid \dots \mid x_i \mid \dots \mid a_n \mid\right)\right)$	operations in normal order for the other •e.g. you can do $[I_m \mid A \mid I_n] \rightsquigarrow [R^{-1} \mid A' \mid C]$ to get	Regression is -We can use normal equations for this =>	= e _k - U _j c _j	Then solve the second row
vector $x \in V$ can be uniquely written as $x = u + w$		matrix norm $\ \cdot \ $ on $\mathbb{R}^{m \times n}$ is $\ \mathbf{A} \ = \max \{ \ \mathbf{A} \mathbf{x} \ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \ = 1 \} $	+ $\mu \det ([a_1 \dots y_j \dots a_n])$	AC = R ⁻¹ A' => useful for LU factorization	$\ Az - y\ _2$ is minimized $\iff A^T Az = A^T y$	-Where $U_j = [\mathbf{u}_1 \dots \mathbf{u}_j] \text{and } \mathbf{c}_j = [(\mathbf{u}_1)_k, \dots, (\mathbf{u}_j)_k]^T$	$\ell_{2,1} x_1 + \ell_{2,2} x_2 = b_2 \implies x_2 = \frac{b_2 - \ell_{2,1} x_1}{\ell_{2,2}}$ and
$\star \underline{u} \in \underline{U} \text{ [and } \underline{u} = \pi(x) \text{]}$ $\star \underline{w} \in \underline{W} \text{ [and } \underline{w} = x - \pi(x) = (I_V - \pi)(x) = \pi^*(x) \text{]}$	The transformation matrix of the identity map is called change-in-basis matrix	$= \max \left\{ \frac{\ \mathbf{A}\mathbf{x}\ }{\ \mathbf{x}\ } : \mathbf{x} \in \mathbb{R}^n, \mathbf{x} \neq 0 \right\}$	-And the exact same linearity property for rows -Immediately leads to: $ A = A^T \lambda A = \lambda^n A A $	Eigen-values/vectors	•Solution to normal equations unique iff AJis full-rank, i.e. it has linearly-independent columns	-NOTE: $\mathbf{e}_k \cdot \mathbf{u}_i = (\mathbf{u}_i)_k$ i.e. k th component of \mathbf{u}_i	substitute down
•An orthogonal projection further satisfies <u>U\U</u>	•The identity matrix \mathbf{I}_m represents id \mathbf{R}^m w.r.t. the	$= \max\{\ \mathbf{A}\mathbf{x}\ : \mathbf{x} \in \mathbb{R}^n, \ \mathbf{x}\ \le 1\}$	AB = BA = A B (for any $B \in \mathbb{R}^{n \times n}$)	•Consider $A \in \mathbb{R}^{n \times n}$ non-zero $\mathbf{x} \in \mathbb{C}^n$ is an eigenvector with eigenvalue $\lambda \in \mathbb{C}$ for A if $A\mathbf{x} = \lambda \mathbf{x}$	Positive (semi-)definite matrices	$ - f w_{j+1} = 0 then e_k \in span\{u_1,, u_j\} \Rightarrow discard $ $ w_{j+1} choose next candidate e_{k+1} try this step $	and so on until all x _i pare solved
i.e. the image and kernel of <u>m</u> are orthogonal subspaces	standard basis $E_m = (e_1,, e_m) \Rightarrow \overline{1.e. 1_m} = \overline{1_{EE}}$ •If $B = (b_1,, b_m)$ is a basis of R^m then	•Vector norms are compatible with their subordinate	*Alternating: if any two columns of AJ are equal (or any two rows of AJ are equal), then A = 0 (its singular)	$-\text{If } \underline{Ax = \lambda x} \text{ [then } \underline{A(kx) = \lambda(kx)] for } \underline{k \neq 0} \text{ [i.e. } \underline{kx} \text{] is also an}$	Consider symmetric $\underline{A} \in \mathbb{R}^{n \times n}$, i.e. $\underline{A} = \underline{A}^T$	again	•Backward substitution: for upper-triangular [u _{1,1} u _{1,n}]
-infact they are eachother's orthogonal compliments,		matrix norms •For $p = 1, 2, \infty$ matrix norm $\ \cdot\ _p$ is subordinate to	-Immediately from this (and multi-linearity) => if	eigenvector -A has at most n distinct eigenvalues	AJis positive-definite iff x ^T Ax > 0 for all x ≠ 0 -AJis positive-definite iff all its eigenvalues are strictly	•Normalize: w _{j+1} ≠0 so compute unit vector	U =
i.e. $U^{\perp} = W, W^{\perp} = U$ (because finite-dimensional vectorspaces)	to \underline{E} • $I_{BE} = (I_{EB})^{-1}$ so \Rightarrow $F_{CB} = I_{CE} F_{EE} I_{EB}$	the vector norm $\ \cdot\ _p$ (and thus compatible with)	columns (or rows) are linearly-dependent (some are linear combinations of others) then A = 0	•The set of all eigenvectors associated with eigenvalue	positive	$\mathbf{u}_{j+1} = \hat{\mathbf{w}}_{j+1}$ •Repeat: keep repeating the above steps, now with	$ \begin{array}{c c} 0 & u_{n,n} \\ \hline -For \underline{Ux = b} & \text{ just } \mathbf{solve} \text{ the last row} \end{array} $
-so we have $\pi(x) \cdot y = \pi(x) \cdot \pi(y) = x \cdot \pi(y)$ -or equivalently, $\pi(x) \cdot (y - \pi(y)) = (x - \pi(x)) \cdot \pi(y) = 0$		Properties of matrices	-Stated in other terms \Rightarrow rk(A) < n \iff A = 0 <=>	$\underline{\lambda}$ is called eigenspace $\underline{E_{\lambda}}$ of \underline{A} $\underline{E_{\lambda}} = \ker(A - \lambda I)$	•AJis positive-definite => all its diagonals are strictly positive	new orthonormal vectors u ₁ ,,u _{j+1}	$u_{n,n} x_n = b_n \implies x_n = \frac{b_n}{u_{n,n}}$ and substitute up
	Dot-product uniquely determines a vector w.r.t. to	Consider $\underline{A \in \mathbb{R}^{m \times n}}$ If $Ax = x$ for all x then $A = I$	$RREF(A) \neq I_n \iff A = 0 (reduced row-echelon-form)$	−The geometric multiplicity of λ is	•AJis positive-definite => $\max(A_{ii}, A_{jj}) > A_{ij} $	SVD Application: Principal Compo-	-n,n··n -n u _{n,n} -Then solve the second-to-last row
•By Cauchy–Schwarz inequality we have $\ \pi(x)\ \le \ x\ $ •The orthogonal projection onto the line containing	•If $a_i = x \cdot b_i$; $x = \sum_i a_i b_i$ we call a_i the	For square AI, the trace of AI is the sum if its diagonals,	\iff $ A = 0$ (column-space) -For more equivalence to the above, see invertible	$\frac{\dim(E_{\lambda}) = \dim(\ker(A - \lambda I))}{\text{The spectrum } Sp(A) = \{\lambda_1, \dots, \lambda_n\} \text{ of } \underline{A} \text{ is the set of all }$	i.e. strictly larger coefficient on the diagonals •A is positive-definite => all upper-left submatrices are	nent Analysis (PCA)	$u_{n-1,n-1} \times_{n-1} + u_{n-1,n} \times_n = b_{n-1}$
vector \underline{u} is $\underline{\operatorname{proj}}_{\underline{u}} = \hat{u}\hat{u}^T$, i.e. $\operatorname{proj}_{\underline{u}}(v) = \frac{\underline{u} \cdot v}{\underline{u} \cdot u} u; \hat{u} = \frac{\underline{u}}{\ \underline{u}\ }$	coordinate-vector of x w.r.t. to B Rank-nullity theorem:	i.e. tr(A)	matrix theorem •Interaction with EROs/ECOs:	eigenvalues of A	also positive-definite	Assume $\underline{A}_{uncentered} \in \mathbb{R}^{m \times n}$ represent \underline{m} jsamples of \underline{n} j dimensional data (with $\underline{m} \ge n$)	$\Rightarrow x_{n-1} = \frac{b_{n-1} - u_{n-1,n-1} x_{n-1}}{u_{n-1,n}}$ and substitute up
-A special case of $\pi(x) \cdot (y - \pi(y)) = 0$ is $u \cdot (v - \text{proj}_{u} v) = 0$	dim(im(f)) + dim(ker(f)) = rk(A) + dim(ker(A)) = n	AJis symmetric iff $\underline{A} = A^T$ AJis Hermitian, iff $\underline{A} = A^{\dagger}$, i.e.	-Swapping rows/columns flips the sign	•The characteristic polynomial of \underline{A}] is $P(\lambda) = A - \lambda I = \sum_{i=0}^{n} a_i \lambda^i$	Sylvester's criterion: A J is positive-definite iff all upper-left submatrices have strictly positive	•Data centering: subtract mean of each column from	$-\dots$ and so on until all x_i are solved
since $\operatorname{proj}_{U}(u) = u$ •If $U \subseteq \mathbb{R}^{n}$ is a k -dimensional subspace with	f is injective/monomorphism iff $ker(f) = \{0\}$ iff A is full-rank	its equal to its conjugate-transpose •AA ^T and A ^T A are symmetric (and positive	-Scaling a row/column by ½ ≠ 0] will scale the determinant by ½ (by multi-linearity)	$-a_0 = A \int_{-a_0}^{a_{n-1}} a_{n-1} = (-1)^{n-1} \operatorname{tr}(A) \int_{-a_n}^{a_n} a_n = (-1)^n \int_{-a_n}^{a_n} a_n = (-1$	determinant	that column's elements •Let the resulting matrix be $A \in \mathbb{R}^{m \times n}$, who's columns	Thin QR Decomposition w/ Gram-
orthonormal basis (ONB) $\langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle \in \mathbb{R}^m$	Orthogonality concepts	semi-definite)	*Remember to scale by λ^{-1} to maintain equality, i.e.	$-\underline{\lambda \in \mathbb{C}}$ is eigenvalue of \underline{A} iff $\underline{\lambda}$ is a root of $\underline{P}(\underline{\lambda})$ -The algebraic multiplicity of $\underline{\lambda}$ is the number of	A]is positive semi-definite iff $x^T Ax \ge 0$ for all x	have mean zero	Schmidt (GS) Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (m \ge n)$, i.e.
-Let $\mathbf{U} = [\mathbf{u}_1 \dots \mathbf{u}_k] \in \mathbb{R}^{m \times k}$ matrix	$\underline{u} \perp v \iff \underline{u} \cdot v = 0$ i.e. \underline{u} and \underline{v} are orthogonal \underline{u} and \underline{v} are orthonormal iff $\underline{u} \perp v$, $\ \underline{u}\ = 1 = \ v\ $	•For real matrices, Hermitian/symmetric are equivalent conditions	$\det(A) = \lambda^{-1} \det \left([a_1 \lambda a_i a_n] \right)$ -invariant under addition of rows/columns	times it is repeated as root of $P(\lambda)$	•AJis positive semi-definite iff all its eigenvalues are	PCA is done on centered data-matrices like A! •SVD exists i.e. A=USV ^T and r=rk(A)	$\mathbf{a}_1, \dots, \mathbf{a}_n \in \mathbb{R}^m$ are linearly independent
-Orthogonal projection onto \underline{U} is $\underline{\pi}_U = \underline{U}\underline{U}^T$	$\bullet \underline{A} \in \mathbb{R}^{n \times n}$ is orthogonal iff $\underline{A}^{-1} = \underline{A}^T$	•Every eigenvalue λ _i of Hermitian matrices is real	•Link to invertable matrices => A ⁻¹ = A ⁻¹ which	-1]≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ	non-negative •AJ is positive semi-definite => all its diagonals are	•Let $A = [r_1;; r_m]$ be rows $r_1,, r_m \in \mathbb{R}^n$ \Rightarrow each row corresponds to a sample	•Apply $GS q_1,, q_n \leftarrow GS(a_1,, a_n)$ to build ONB
-Can be rewritten as $\pi_U(v) = \sum_i (\mathbf{u}_i \cdot v) \mathbf{u}_i$	-Columns of $A = [a_1 a_n]$ are orthonormal basis	-geometric multiplicity of λ_i = geometric multiplicity of λ_i	means A is invertible $\iff A \neq 0$, i.e. singular matrices are not invertible	•Let $\lambda_1,, \lambda_n \in \mathbb{C}$ be (potentially non-distinct)	non-negative •Alis positive semi-definite \Rightarrow max $(A_{ii}, A_{ii}) \ge A_{ii} $,	•Let $A = [c_1 c_n]$ be columns $c_1,, c_n \in \mathbb{R}^m$ \Rightarrow each	$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m$ for $C(A)$ •For exams: more efficient to compute as
-If $(\mathbf{u}_1, \dots, \mathbf{u}_k)$ is not orthonormal , then "normalizing	(ONB) $C = \langle \mathbf{a}_1,, \mathbf{a}_n \rangle \in \mathbb{R}^n$ so $A = \mathbf{I}_{EC}$ is change-in-basis matrix	-eigenvectors x ₁ ,x ₂ associated to distinct	•For block-matrices:	eigenvalues of \underline{A} with $\underline{x_1,, x_n \in \mathbb{C}^n}$ their eigenvectors	i.e. no coefficient larger than on the diagonals	column corresponds to one dimension of the data Let X ₁ ,,X _n be random variables where each X _i	$\mathbf{u}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$
factor" $(\underline{\mathbf{U}^T \mathbf{U}})^{-1}$ is added $\Rightarrow \pi_U = \mathbf{U}(\underline{\mathbf{U}^T \mathbf{U}})^{-1} \underline{\mathbf{U}^T}$ *For line subspaces $U = \text{span}\{u\}$, we have	-Orthogonal transformations preserve lengths/angles/distances $\Rightarrow \ Ax\ _2 = \ x\ _2, A\hat{xAy} = \hat{xy}\ $	eigenvalues λ_1, λ_2 are orthogonal , i.e. $\mathbf{x}_1 \perp \mathbf{x}_2$	$-\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B) = \det \begin{pmatrix} A & 0 \\ C & D \end{pmatrix}$	$-\text{tr}(A) = \sum_{i} \lambda_{i} \text{ and } \text{det}(A) = \prod_{i} \lambda_{ij}$	•A is positive semi-definite => all upper-left	corresponds to column c: 1	1. Gather $Q_j = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ all-at-once
*For tine subspaces $\underline{U} = \text{span}\{\underline{u}\}_{\perp}$ we have $(\underline{U}^T \underline{U})^{-1} = (\underline{u}^T \underline{u})^{-1} = 1/(\underline{u} \cdot \underline{u}) = 1/\ \underline{u}\ $	*Therefore can be seen as a succession of reflections	AJis triangular iff all entries above (lower-triangular) or below (upper-triangular) the main diagonal are zero	$\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A) \det(D - CA^{-1}B) \text{ if } \underline{A} \text{ or } \underline{D} \text{ jare}$	–A]is diagonalisable iff there exist a basis of ℝ ⁿ	submatrices are also positive semi-definite -Alis positive semi-definite => it has a Cholesky	•i.e. each X_{ij} corresponds to i }th component of data •i.e. random vector $X = [X_1,, X_n]^T$ models the data	2.Compute $\mathbf{c}_j = [\mathbf{q}_1 \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_j \cdot \mathbf{a}_{j+1}]^T \in \mathbb{R}^j$
Gram-Schmidt (GS) to gen. ONB from	and planar rotations -det(A) = 1 or det(A) = -1 , and all eigenvalues of A are	•Determinant $\Rightarrow A = \prod_i a_{ii}$, i.e. the product of	$= \det(D) \det(A - BD^{-1}C)$ if Alor D are	consisting of $x_1,, x_n$ -Alis diagonalisable iff $r_i = g_i$, where	Decomposition	*i.e. random vector $\mathbf{x} = [x_1,, x_n]^T$ models the data $\mathbf{r}_1,, \mathbf{r}_m$	all-at-once 3. Compute $Q_j c_j \in \mathbb{R}^m$ and subtract from a_{j+1}
lin. ind. vectors Gram-Schmidt is iterative projection => we use	s.t. \(\lambda\right) = 1	diagonal elements	invertible, respectively	r_i = geometric multiplicity of λ_i and g_i = geometric multiplicity of λ_i	For any $M \in \mathbb{R}^{m \times n}$, MM^T and M^TM are symmetric and	•Co-variance matrix of \underline{X} is $Cov(A) = \frac{1}{m-1} A^T A = $	all-at-once
current j dim subspace, to get next (j+1) dim	•A $\in \mathbb{R}^{m \times n}$ is semi-orthogonal iff $A^T A = I$ or $AA^T = I$ -If $\underline{n} > m$ then all \underline{m} prows are orthonormal vectors	Ajis diagonal iff A _{ij} = 0, i ≠ j i.e. if all off-diagonal	•Sylvester's determinant theorem: det (I _m +AB) = det (I _n +BA)		positive semi-definite	$(A^TA)_{ij} = (A^TA)_{ji} = Cov(X_i, X_j)$	•Can now rewrite $\underline{\mathbf{a}_j} = \sum_{i=1}^{J} (\mathbf{q}_i \cdot \mathbf{a}_j) \mathbf{q}_i = Q_j c_j$
subspace -Assume orthonormal basis (ONB) $\langle \mathbf{q}_1,, \mathbf{q}_i \rangle \in \mathbb{R}^m$	-If m > n then all n columns are orthonormal vectors	entries are zero •Written as	•Matrix determinant lemma:	•Let P = [x ₁ x _n], then	Singular Value Decomposition (SVD) & Singular Values	v ₁ ,,v _r (columns of <u>V</u>)) are principal axes of <u>A</u>]	Choose $Q = Q_n = [q_1 q_n] \in \mathbb{R}^{m \times n}$ notice its
for j -dim subspace $U_j \subset \mathbb{R}^m$	• $U \perp V \subset \mathbb{R}^n \iff u \cdot v = 0$ for all $u \in U, v \in V$ i.e. they are orthogonal subspaces	-written as diag _{$m \times n$} (a) = diag _{$m \times n$} ($a_1,, a_p$), $p = min(m, n)$, where	$-\det\left(\mathbf{A} + \mathbf{u}\mathbf{v}^{T}\right) = \left(1 + \mathbf{v}^{T}\mathbf{A}^{-1}\mathbf{u}\right)\det(\mathbf{A})$	$AP = [\lambda_1 \mathbf{x}_1 \dots \lambda_n \mathbf{x}_n] = [\mathbf{x}_1 \dots \mathbf{x}_n] \operatorname{diag}(\lambda_1, \dots, \lambda_n) = PD$ $\Rightarrow if P^{-1} \text{ oviete then}$	Singular Value Decomposition of $A \in \mathbb{R}^{m \times n}$ is any	Let $\underline{\mathbf{w} \in \mathbb{R}^n}$ be some unit-vector \Rightarrow let $\alpha_j = \mathbf{r}_j \cdot \mathbf{w}$ be the	semi-orthogonal since $Q^T Q = I_n$
*Let $Q_j = [\mathbf{q}_1 \mid \mid \mathbf{q}_j] \in \mathbb{R}^{m \times j}$ be the matrix	•Orthogonal compliment of $\underline{U \subset \mathbb{R}^n}$ is the subspace	$\mathbf{a} = [a_1,, a_p]^T \in \mathbb{R}^p$ diagonal entries of $\underline{\mathbf{A}}$	$-\det(\mathbf{A} + \mathbf{U}\mathbf{V}^T) = \det(\mathbf{I}_m + \mathbf{V}^T\mathbf{A}^{-1}\mathbf{U})\det(\mathbf{A})$	=> if <u>P⁻¹</u> exists then -A=PDP ⁻¹ i.e. <u>A</u> is diagonalisable	decomposition of the form $\underline{A = USV^T}$, where •Orthogonal $U = [\mathbf{u}_1 \mathbf{u}_m] \in \mathbb{R}^{m \times m}$ and	projection/coordinate of sample r _j onto w	•Notice => $\mathbf{a}_j = Q_j \mathbf{c}_j = \mathbf{Q}[\mathbf{q}_1 \cdot \mathbf{a}_j,, \mathbf{q}_j \cdot \mathbf{a}_j, 0,, 0]^T = \mathbf{Q}\mathbf{r}_j$
* $P_j = Q_j Q_j^T$ is orthogonal projection onto U_j	$U^{\perp} = \left\{ x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \perp y \right\}$ $= \left\{ x \in \mathbb{R}^{n} \mid \forall y \in \mathbb{R}^{n} : x \le x + y \right\}$	•For $x \in \mathbb{R}^n$ $Ax = \operatorname{diag}_{m \times n}(a_1,, a_p)[x_1 x_n]^T$ (if	$\det (\mathbf{A} + \mathbf{U}\mathbf{W}\mathbf{V}^T) = \det (\mathbf{W}^{-1} + \mathbf{V}^T \mathbf{A}^{-1} \mathbf{U}) \det(\mathbf{W}) \det(\mathbf{A})$	$-P = I_{EB}$ is change-in-basis matrix for basis $B = (\mathbf{x}_1,, \mathbf{x}_n)$ of eigenvectors	$V = [\mathbf{v}_1 \mid \mid \mathbf{v}_n] \in \mathbb{R}^{n \times n}$	•Variance (Bessel's correction) of $\alpha_1,, \alpha_m$ is	•Let $R = [r_1 r_n] \in \mathbb{R}^{n \times n}$ =>
$*P_{\perp j} = I_m - Q_j Q_j^T$ is orthogonal projection onto	$-\mathbb{R}^n = U \oplus U^{\perp}$ and $(U^{\perp})^{\perp} = U$	$=[a_1x_1a_px_p\ 00]^I\in\mathbb{R}^m$	Tricks for computing determinant	-If A = F _{EE} is transformation-matrix of linear map f	•S = diag _{$m \times n$} ($\sigma_1,, \sigma_p$) where $p = \min(m, n)$ and	$Var_{\mathbf{W}} = \frac{1}{m-1} \sum_{j} \alpha_{j}^{2} = \frac{1}{m-1} \mathbf{w}^{T} \left(\sum_{j} \mathbf{r}_{j}^{T} \mathbf{r}_{j} \right) \mathbf{w}$	$A = QR = Q \begin{bmatrix} q_1^l a_1 & \dots & q_1^l a_n \\ & \ddots & \vdots \end{bmatrix} $ notice its
$\left(U_{j}\right)^{\perp}$ (orthogonal compliment)	-U ⊥ V ⇔ U [⊥] = V and vice-versa	$p = m those tail \cdot zeros don't exist)$ $* diag_{m \times n}(\mathbf{a}) * diag_{m \times n}(\mathbf{b}) = diag_{m \times n}(\mathbf{a} * \mathbf{b})$	•If block-triangular matrix then apply (A B)	then F _{EE} = I _{EB} F _{BB} I _{BE}	$\sigma_1 \ge \cdots \ge \sigma_p \ge 0$ $\sigma_1, \dots, \sigma_p$ are singular values of \underline{A} .	$= \frac{1}{m-1} \mathbf{w}^T \mathbf{A}^T \mathbf{A} \mathbf{w}$	$\begin{bmatrix} 0 & \mathbf{q}_n^T \mathbf{a}_n \end{bmatrix}$
-Uniquely decompose next $U_j \gg a_{j+1} = v_{j+1} + u_{j+1}$	$-Y \subseteq X \implies X^{\perp} \subseteq Y^{\perp}$ and $X \cap X^{\perp} = \{0\}$ $-\text{Any } \mathbf{x} \in \mathbb{R}^{n}$ can be uniquely decomposed into	•Consider diag $_{n \times k}(c_1, \dots, c_q)$, $q = \min(n, k)$, then	$\det \begin{pmatrix} A & B \\ 0 & D \end{pmatrix} = \det(A) \det(B)$	Spectral theorem: if A is Hermitian then P ⁻¹ exists: If x _i , x _i associated to different eigenvalues then	-(Positive) singular values are (positive) square-roots of eigenvalues of AA ^T or A ^T A	• First (principal) axis defined => $\mathbf{w}_{(1)} = \arg\max_{\ \mathbf{w}\ = 1} \mathbf{w}^T A^T A \mathbf{w}$	upper-triangular
$*v_{j+1} = P_j(a_{j+1}) \in U_j$ \Rightarrow discard it!!	$\mathbf{x} = \mathbf{x}_i + \mathbf{x}_k$, where $\mathbf{x}_i \in U$ and $\mathbf{x}_k \in U^{\perp}$	$\operatorname{diag}_{m \times n}(a_1, \dots, a_p)\operatorname{diag}_{n \times k}(c_1, \dots, c_q)$	•If close to triangular matrix apply EROs/ECOs to get it	$\mathbf{x}_i \perp \mathbf{x}_j$		= $\arg \max_{\ \mathbf{w}\ =1} (m-1) \text{Var}_{\mathbf{w}} = \mathbf{v}_1$	Full QR Decomposition •Consider full-rank $A = [a_1 a_n] \in \mathbb{R}^{m \times n} (\underline{m \ge n}),$
* $\mathbf{u}_{j+1} = P_{\perp j} \left(\mathbf{a}_{j+1} \right) \in \left(U_j \right)^{\perp}$ => we're after this!!	•For matrix $A \in \mathbb{R}^{m \times n}$ and for row-space $R(A)$, column-space $C(A)$ and null space $R(A)$	= diag _{$m \times k$} ($a_1 c_1,, a_r c_r, 0,, 0$) = diag(s) -Where $r = \min(p, q) = \min(m, n, k)$, and	there, then its just product of diagonals •If Cholesky/LU/QR is possible and cheap then do it,	-If associated to same eigenvalue Δ]then eigenspace	-i.e. $\sigma_1^2,, \sigma_p^2$ are eigenvalues of AA^T or A^TA - $\ A\ _2 = \sigma_1$ (<i>(link to matrix norms</i>)	•i.e. w(1) Ithe direction that maximizes variance Var	i.e. $a_1,, a_n \in \mathbb{R}^m$ are linearly independent
-Let $\mathbf{q}_{j+1} = \hat{\mathbf{u}}_{j+1} \Rightarrow$ we have next ONB $\langle \mathbf{q}_1, \dots, \mathbf{q}_{j+1} \rangle$	$-R(A)^{\perp} = ker(A) and C(A)^{\perp} = ker(A^{T}) $	$s \in \mathbb{R}^S$, $s = \min(m, k)$	then apply AB = A B •If all else fails, try to find row/column with MOST zeros	$\underbrace{E_{\lambda}}_{\text{has spanning-set}} \{x_{\lambda_{i}},\}$ $*x_{1},, x_{n}$ are linearly independent => apply	Let r = rk(A) then number of strictly positive singular	i.e. maximizes variance of projections on line Rw(1)	Apply QR decomposition to obtain:
for $U_{j+1} \Rightarrow$ start next iteration	–Any b∈ R ^m can be uniquely decomposed into	•Inverse of square-diagonals => $\operatorname{diag}(a_1,, a_n)^{-1} = \operatorname{diag}(a_1^{-1},, a_n^{-1})$, i.e. diagonals	-Perform minimal EROs/ECOs to get that row/column	Gram-Schmidt \mathbf{q}_{λ_i} , $\cdots \leftarrow \mathbf{x}_{\lambda_i}$, \cdots	values is \underline{r}] •i.e. $\sigma_1 \ge \cdots \ge \sigma_r > 0$ and $\sigma_{r+1} = \cdots = \sigma_p = 0$	σ ₁ u ₁ ,, σ _r u _r (columns of <u>US</u>) are principal components/scores of <u>A</u>	-ONB (q1,,qn)∈R ^m for C(A)
$*\mathbf{u}_{j+1} = (\mathbf{I}_m - Q_j Q_j^T) \mathbf{a}_{j+1} = \mathbf{a}_{j+1} - Q_j \mathbf{c}_j$ where	$*b = b_i *b_k$ where $b_i \in C(A)$ and $b_k \in \ker(A^T)$ $*b = b_i *b_k$ where $b_i \in R(A)$ and $b_k \in \ker(A)$	cannot be zero (division by zero undefined)	to be all-but-one zeros *Don't forget to keep track of sign-flipping &	*Then $\{q_{\lambda_i},\}$ is orthonormal basis (ONB) of E_{λ_i}	$A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$	•Recall: $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ with $\sigma_1 \ge \cdots \ge \sigma_r > 0$, so that	-Semi-orthogonal $Q_1 = [\mathbf{q}_1 \dots \mathbf{q}_n] \in \mathbb{R}^{m \times n}$ and upper-triangular $R_1 \in \mathbb{R}^{n \times n}$, where $A = Q_1 R_1$
		•Determinant of square-diagonals =>	scaling-factors	$-\underline{Q} = \langle \mathbf{q}_1, \dots, \mathbf{q}_n \rangle$ is an ONB of $\underline{\mathbb{R}^n} \Longrightarrow \underline{\mathbb{Q}} = [\mathbf{q}_1 \mid \dots \mid \mathbf{q}_n]$ is	-1=1 -1-1-1	relates principal axes and principal components	Compute basis extension to obtain remaining
$\mathbf{c}_{j} = [\mathbf{q}_{1} \cdot \mathbf{a}_{j+1}, \dots, \mathbf{q}_{j} \cdot \mathbf{a}_{j+1}]^{T}$		$ \operatorname{diag}(a_1,,a_n) = \prod_i a_i$ (since they are technically	-Do Laplace expansion along that row/column =>	orthogonal matrix i.e. Q ⁻¹ = Q ^T	SVD is similar to spectral decomposition, except it	•Data compression: If σ ₁ ≫ σ ₂ then compress <u>A</u>] by	$q_{n+1}, \dots, q_m \in \mathbb{R}^m$ where (q_1, \dots, q_m) is ONB for \mathbb{R}^m

-Notice $(\mathbf{q}_{n+1}, \dots, \mathbf{q}_m)$ is ONB for $C(A)^{\perp} = \ker(A^{\top})$	•Let $\mathbf{u}_{k}^{(j)} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}}\right) \mathbf{a}_{k}$ i.e. $\underline{\mathbf{a}_{k}}$ without its	$\underline{\mathbf{H}}(f) = \nabla^2 f = \mathbf{J}(\nabla f)^{T}$ is $\mathbf{Hessian} \Rightarrow \underline{\mathbf{H}}(f)_{ij} = \frac{\partial^2 f}{\partial \mathbf{x}_i \partial \mathbf{x}_i}$	$\frac{\left\{ \Phi(f_1,, f_n) : f_1 \in O(g_1),, f_n \in O(g_n) \right\}}{-\text{e.g. } \epsilon^{O(1)} = \left\{ \epsilon^{f(\epsilon)} : f \in O(1) \right\}}$	$-L_{ij}(\lambda)^{-1} = L_{ij}(-\lambda)$ both triangular matrices	$\mathbf{x}_{i}^{(k+1)} = \frac{\omega}{A_{ii}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right) * (1 - \omega) \mathbf{x}$	will yield largest $(\lambda_{1,\sigma} - \sigma)^{-1}$	
-Let $Q_2 = [\mathbf{q}_{n+1} \dots \mathbf{q}_m] \in \mathbb{R}^{m \times (m-n)}$ let $Q = [Q_1 Q_2] \in \mathbb{R}^{m \times m}$ let $R = [R_1; 0_{m-n}] \in \mathbb{R}^{m \times n}$	components along $\mathbf{q}_1, \dots, \mathbf{q}_j$ Notice $\mathbf{q}_1, \dots, \mathbf{q}_j$ thus $\mathbf{q}_1 = \hat{\mathbf{q}}_1 = \hat{\mathbf{q}}_2 = \hat{\mathbf{q}}_3 = \hat{\mathbf{q}}_3$	Interpret $\underline{F}: \mathbb{R}^n \to \mathbb{R}^m$ as \underline{m} functions $F_i: \mathbb{R}^n \to \mathbb{R}$ (one per output-component)	•General case: $\Phi_1(O(f_1),,O(f_m)) = \Phi_2(O(g_1),,O(g_n))$ means	LU factorization w/ Gaussian elimina- tion	for relaxation factor ω > 1	diosest to g	
•Then full QR decomposition is $A = QR = [Q_1 Q_2] \begin{bmatrix} R_1 \\ 0_{m-n} \end{bmatrix} = Q_1 R_1$	-Notice: $\mathbf{u}_j = \mathbf{u}_j^{(j-1)}$ thus $\mathbf{q}_j = \hat{\mathbf{u}}_j = \mathbf{u}_j^{(j-1)}/r_{jj}$ where $r_{jj} = \ \mathbf{u}_j^{(j-1)}\ $	• $\mathbf{J}(F) = \left[\nabla^T F_1;; \nabla^T F_m\right]$ is $\mathbf{Jacobian} \Rightarrow \mathbf{J}(F)_{ij} = \frac{\partial F_i}{\partial x_j}$	$\frac{\Phi_1(O(f_1), \dots, O(f_m)) \subseteq \Phi_2(O(g_1), \dots, O(g_n))}{\Phi_1(O(f_1), \dots, O(f_m)) \subseteq \Phi_2(O(g_1), \dots, O(g_n))}$ $-e.g. \epsilon^{O(1)} = O(k^{\epsilon}) means \{ \epsilon^{f(\epsilon)} : f \in O(1) \} \subseteq O(k^{\epsilon}) $	•[[tutorial 1#Representing EROs/ECOs as transformation matrices Recall that]] you can represent EROs and ECOs as transformation matrices	•If AJ is strictly row diagonally dominant then Jacobi/Gauss-Seidel methods converge	$-\ \mathbf{b}^{(R)} - \alpha_{R} \mathbf{x}_{1,\sigma}\ = O\left(\left \frac{\lambda_{1,\sigma} - \sigma}{\lambda_{2,\sigma} - \sigma}\right ^{R}\right) \text{ where } \underline{\mathbf{x}_{1,\sigma}}$	
$-\underline{Q}$ is orthogonal , i.e. $\underline{Q}^{-1} = \underline{Q}^T$, so its a basis	-Iterative step:	Conditioning A problem is some $f: X \to Y$ where X, Y are normed	not necessarily true • Special case: $f = \Phi(O(g_1),, O(g_n))$ means	R, C respectively •LU factorization => finds A = LU where L, U are	$-\underline{A}$ is strictly row diagonally dominant if $ A_{ij} > \sum_{i} A_{ij} $	corresponds to $\lambda_{1,\sigma}$ and $\lambda_{2,\sigma}$ jis 2nd-closest to $\underline{\sigma}$ – Efficiently compute eigenvectors for known	
transformation $-\text{proj}_{C(A)} = Q_1 Q_1^T \mid \text{proj}_{C(A)\perp} = Q_2 Q_2^T \mid \text{are}$	$ \begin{aligned} \mathbf{u}_{k}^{(j)} &= \left(\mathbf{P}_{\perp \mathbf{q}_{j}} \right) \mathbf{u}_{k}^{(j-1)} = \mathbf{u}_{k}^{(j-1)} - \left(\mathbf{q}_{j} \cdot \mathbf{u}_{k}^{(j-1)} \right) \mathbf{q}_{j} \\ -\text{i.e. each iteration } j \text{ of MGS computes } \mathbf{P}_{\perp \mathbf{q}_{j}} \end{aligned} \textit{and} $	vector-spaces •A problem <i>instance</i> is f with fixed input $\underline{x \in X}$].	$f \in \Phi(O(g_1), \dots, O(g_n))$	lower/upper triangular respectively •Naive Gaussian Elimination performs	•If \underline{A} is positive-definite then G - S and SOR ($\omega \in (0, 2)$)	eigenvalues o j - Eigenvalue guess ⇒ estimated eigenvector	
orthogonal projections onto $C(A)$ $C(A)^{\perp} = \ker(A^{\top})$ respectively	projections under it) in one go	shortened to just "problem" (with $\underline{x \in X}$ implied) • $\underline{\delta x}$ is small perturbation of \underline{x} => $\underline{\delta f}$ = $f(x + \delta x) - f(x)$	-e.g. $(\varepsilon+1)^2 = \varepsilon^2 + O(\varepsilon)$ means $\varepsilon \mapsto (\varepsilon+1)^2 = \{\varepsilon^2 + f(\varepsilon) : f \in O(\varepsilon)\}$ not necessarily true	$[I_m \mid A \mid I_n] \Rightarrow [R^{-1} \mid U \mid I_n] \text{ to get } AI_n = R^{-1} U \text{ using}$ only row addition	converge Break up matrices into (uneven	-![[Pasted image 20250420131643.png 300]] -Can reduce matrix inversion $O(m^3)$ to $O(m^2)$ by	
-Notice: $QQ^T = \mathbf{I}_m = Q_1 Q_1^T * Q_2 Q_2^T$ •Generalizable to $A \in \mathbb{C}^{m \times n}$ by changing transpose to	-At start of iteration $\underline{j \in 1n}$ we have ONB $\underline{\mathbf{q}_1,,\mathbf{q}_{j-1}} \in \mathbb{R}^m$ and residual $\underline{\mathbf{u}_i^{(j-1)},,\mathbf{u}_n^{(j-1)}} \in \mathbb{R}^m$	A problem (instance) is: •Well-conditioned if all small δx lead to small δf i.e.	Let $f_1 = O(g_1)$, $f_2 = O(g_2)$ and let $k \neq 0$ be a constant	$-R^{-1}$ i.e. inverse EROs in reversed order, is lower-triangular so $L = R^{-1}$	blocks) •e.g. symmetric $A \in \mathbb{R}^{n \times n}$ can become	pre-factorization Nonlinear Systems of Equations: Itera-	
conjugate-transpose	-Compute $r_{jj} = \ \mathbf{u}_{j}^{(j-1)}\ = \mathbf{q}_{j} = \mathbf{u}_{j}^{(j-1)}/r_{jj}$	if KJ is small (e.g. 1) 10) 10 ²	$f_1 = O(g_1 g_2) \cdot f \cdot O(g) = O(fg) \cdot O(k \cdot g) = O(g)$ $f_1 + f_2 = O(\max(g_1 , g_2))$	-![[Pasted image 20250419051217.png 400]]	$A = \begin{bmatrix} a_{1,1} & b \\ b^{\dagger} & C \end{bmatrix}, \text{ then perform proofs on that}$	tive Techniques •[[tutorial 6#Multivariate Calculus Recall]] that \(\nabla f(x) \) is	
Lines and hyperplanes in $\mathbb{E}^{n}(=\mathbb{R}^{n})$ Consider standard Euclidean space $\mathbb{E}^{n}(=\mathbb{R}^{n})$	-For each $k \in (j+1)n$ compute $r_{jk} = \mathbf{q}_j \cdot \mathbf{u}_k^{(j-1)} = >$	•Ill-conditioned if some small δx] lead to large δf] i.e. if κ is large (e.g. 10^6) 10^{16})	\Rightarrow if $g_1 = g = g_2$ then $f_1 + f_2 = O(g)$	-The pivot element is simply diagonal entry $u_{Rk}^{(k-1)}$ fails if $u_{Rk}^{(k-1)} \approx 0$	Catchup: metric spaces and limits	direction of max. rate-of-change $ \nabla f(\mathbf{x}) $ •Search for stationary point by gradient descent :	
•with standard basis $(e_1,, e_n) \in \mathbb{R}^n$ •with standard origin $0 \in \mathbb{R}^n$	$\mathbf{u}_{b}^{(j)} = \mathbf{u}_{b}^{(j-1)} - r_{ik}\mathbf{q}_{i}$	Absolute condition number $cond(x) = \hat{k}(x) = \hat{k}$ of f at x :	Floating-point numbers Consider base/radix β≥2 (typically 2) and precision	$-\underline{\tilde{L}}\underbrace{\tilde{U} = A + \delta A}_{\text{mach}} \underbrace{\frac{\ \delta A\ }{\ L\ \cdot \ U\ }}_{\text{mach}} = O(\epsilon_{\text{mach}}); \text{ only backwards}$	•Metrics obey these axioms $-d(x,x)=0$	$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \nabla f(\mathbf{x}^{(k)})$ for step length $\underline{\alpha}$	
A line $L = \mathbb{R} \mathbf{n} + \mathbf{c}$ is characterized by direction $\mathbf{n} \in \mathbb{R}^n$	-Next ONB $(\mathbf{q}_1,, \mathbf{q}_j)$ and next residual $\mathbf{u}_{j+1}^{(j)},, \mathbf{u}_n^{(j)}$	$\hat{\kappa} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \frac{\ \delta f\ }{\ \delta x\ }$	t ≥ 1] (24] or 53] for IEEE single/double precisions) Floating-point numbers are discrete subset	stable if L • U ≈ A	$-\overline{x * y} \Longrightarrow d(x, y) > 0$ $-d(x, y) = d(y, x)$	*AJis positive-definite solving $\underline{Ax = b}$ and $\min_{\mathbf{X}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T A \mathbf{x} - \mathbf{x}^T \mathbf{b}$ are equivalent	
(<u>n ≠0</u>) and offset from origin <u>c∈L</u>] •It is customary that:	-NOTE: for $j = 1$ => $\mathbf{q}_1, \dots, \mathbf{q}_{j-1} = \emptyset$, i.e. none yet •By end of iteration $j = n$, we have ONB	=> for $\underline{\text{most problems}}$ simplified to $\hat{\kappa} = \sup_{\delta X} \frac{\ \delta f\ }{\ \delta X\ }$ •If $\underline{\text{Jacobian}} J_f(x)$ exists then $\hat{\kappa} = \ J_f(x)\ _{k}$ where	$\frac{\mathbf{F} = \left\{ (-1)^{S} \left(m/\beta^{t} \right) \beta^{e} \mid 1 \le m \le \beta^{t}, \ s \in \mathbb{B}, m, e \in \mathbb{Z} \right\} \right]}{\cdot \mathbf{S} \text{ is sign-bit}, m/\beta^{t} \text{ is mantissa, e j is exponent } (8)-bit}$	-Work required: $\sim \frac{2}{3} m^3 \left \text{flops } \sim O\left(m^3\right) \right $ -Solving $\underbrace{Ax = LUx}_{\text{sis}} = \sim \frac{2}{3} m^3 \left \text{flops (back substitution is} \right $	$-\overline{d(x,z)} \le d(x,y) + d(y,z)$ •For metric spaces, mix-and-match these infinite/finite	-Get iterative methods $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha^{(k)} \mathbf{p}^{(k)}$ for step	
- $\underline{\mathbf{n}}$ is a unit vector, i.e. $\ \mathbf{n}\ = \ \hat{\mathbf{n}}\ = 1$ - $\underline{\mathbf{c}} \in L$ is closest point to origin, i.e. $\underline{\mathbf{c}} \perp \underline{\mathbf{n}}$	$(\mathbf{q}_1, \dots, \mathbf{q}_n) \in \mathbb{R}^m$	matrix norm - induced by norms on X and Y	for single, 11 bit for double) • Equivalently, can restrict to $\beta^{t-1} \le m \le \beta^t - 1$ for unique	$O(m^2)$		length $\alpha^{(k)}$ and directions $p^{(k)}$ -Conjugate gradient (CG) method: if $\underline{A} \in \mathbb{R}^{n \times n}$ also	
-If c≠λn => L not vector-subspace of R ⁿ -i.e. 0 ∉ L , i.e. L doesn't go through the origin	$-A = \begin{bmatrix} \mathbf{a}_1 \mid \dots \mid \mathbf{a}_n \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 \mid \dots \mid \mathbf{q}_n \end{bmatrix} \qquad \begin{array}{c} r_{11} \dots r_{1n} \\ \vdots \vdots \vdots \vdots \vdots \\ \end{array}$	Relative condition number $\underline{\kappa}(x) = \underline{\kappa} \Big \text{ of } \underline{f} \Big \text{ at } \underline{x} \text{ j is}$ $\bullet_{\underline{\kappa}} = \lim_{\delta \to 0} \sup_{\ \delta x\ \le \delta} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right) \Big $	m j and ej •F ⊂ R is idealized (ignores over/underflow), so is	-NOTE: Householder triangularisation requires $\sim \frac{4}{3} m^3$ -Partial pivoting computes PA = LUJ where PJ is a	$\lim_{x\to p} f(x) = L \iff \forall \varepsilon > 0, \exists \delta > 0, \forall x \in A: \ 0 < d_{\chi}(x,p) < \delta =$	symmetric then (u, v) _A = u ^T Av is an inner-product	
-Ljis affine-subspace of R ⁿ] •If c=λn j i.e. L=Rn j⇒ Ljis vector-subspace of R ⁿ	corresponds to thin QR decomposition	=> for most problems simplified to	countably infinite and self-similar (i.e. $F = \beta F$) • For all $x \in \mathbb{R}$ there exists $f(x) \in F$ s.t.	permutation matrix => \(\frac{PP^T}{ell} \) i.e. its orthogonal -For each column \(j \) finds largest entry and row-swaps	- Cauchy sequences,	i.e. $(\mathbf{p}^{(i)}, \mathbf{p}^{(j)})_A = 0$ for $i \neq j$	
–i.e. 0∈L, i.e. LJgoes through the origin	-Where $\underline{A} \in \mathbb{R}^{m \times n}$ is full-rank, $\underline{Q} \in \mathbb{R}^{m \times n}$ is semi-orthogonal, and $\underline{R} \in \mathbb{R}^{n \times n}$ is upper-triangular	$\kappa = \sup_{\delta x} \left(\frac{\ \delta f\ }{\ f(x)\ } / \frac{\ \delta x\ }{\ x\ } \right)$	$ x-fl(x) \le \epsilon_{mach} x $ -Equivalently $fl(x) = x(1+\delta), \delta \le \epsilon_{mach}$	to make it new pivot => Pj	i.e. $\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \ge N : d(a_m, a_n) < \epsilon$ in complete spaces	-And chooses $\underline{\alpha}^{(k)}$ s.t. residuals $\mathbf{r}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) = \mathbf{b} - A\mathbf{x}^{(k)}$ are orthogonal	
- <u>L</u>]has $\underline{\dim(L)} = 1$]and orthonormal basis (ONB) $\{\hat{\mathbf{n}}\}$ A hyperplane $P = (\mathbb{R}\mathbf{n})^{\perp} + \mathbf{c} = \{x + \mathbf{c} \mid x \in \mathbb{R}^n, x \perp \mathbf{n}\}$] is	Classical vs. Modified Gram-Schmidt These algorithms both compute thin	•If <u>Jacobian</u> $J_f(x)$ exists then $\kappa = \frac{\ J_f(x)\ }{\ f(x)\ /\ x\ }$	Machine epsilon $\epsilon_{\text{machine}} = \epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$	-Then performs normal elimination on that column => Lj	•You can manipulate matrix limits much like in real analysis, e.g. $\lim_{n\to\infty} (A^n B + C) = \left(\lim_{n\to\infty} A^n\right) B + C$	$*k=0$ => $\mathbf{p}^{(0)} = -\nabla f(\mathbf{x}^{(0)}) = \mathbf{r}^{(0)}$	
={x ∈ K., x · u = c · u}	thin QR decomposition	•More important than $\hat{\mathbf{k}}$ for numerical analysis Matrix condition number $Cond(\mathbf{A}) = \mathbf{k}(\mathbf{A}) = \ \mathbf{A}\ \ \mathbf{A}^{-1}\ $	is maximum relative gap between FPs -Half the gap between 1 Jand next largest FP	$-\overline{\text{Result}}$ is $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1A=U$, where $L_{m-1}P_{m-1} \dots L_2P_2L_1P_1=L'_{m-1}\dots L'_1P_{m-1}\dots P_1$	•Turn metric limit $\lim_{n\to\infty} x_n = L$ into real limit	$* \underbrace{k \ge 1}_{} = > \mathbf{p}^{(k)} = \mathbf{r}^{(k)} - \sum_{i < k} \frac{(\mathbf{p}^{(i)}, \mathbf{r}^{(k)})_{A}}{(\mathbf{p}^{(i)}, \mathbf{p}^{(i)})_{A}} \mathbf{p}^{(i)}$	
characterized by normal $\mathbf{n} \in \mathbb{R}^n$ $(\mathbf{n} \star 0)$ and offset from origin $\mathbf{c} \in P$		⇒ comes up <u>so often</u> that has <u>its own name</u> •A ∈ C ^{m×m} is <u>well-conditioned</u> if κ(A) is small ,	•2 ⁻²⁴ \approx 5.96 \times 10 ⁻⁸ and 2 ⁻⁵³ \approx 10 ⁻¹⁶ for single/double	-Setting $L = (L'_{m-1} L'_1)^{-1}$, $P = P_{m-1} P_1$ gives	$\lim_{n\to\infty} d(x_n, L) = 0$ to leverage real analysis -Bounded monotone sequences converge in R	$\star \alpha^{(k)} = \operatorname{argmin}_{\alpha} f(\mathbf{x}^{(k)} + \alpha^{(k)} \mathbf{p}^{(k)}) = \frac{\mathbf{p}^{(k)} \cdot \mathbf{r}^{(k)}}{\langle \mathbf{p}^{(k)}, \mathbf{p}^{(k)} \rangle_{A}}$	
•It represents an (n-1) dimensional slice of the n-dimensional space	1: for j = 1 to n do 3: end for 2: uj = 3j 4: for j = 1 to n do	ill-conditioned if large	FP arithmetic: let *,) be real and floating counterparts of arithmetic operation	PA=LU -![[Pasted image 20250420092322.png 450]]	-Sandwich theorem for limits in R J=> pick easy	-Without rounding errors, CG converges in <u>≤ n</u>]	
 It is customary that: n₁ is a unit vector, i.e. n = n̂ = 1 	3: for $i = 1$ to $j - 1$ do 5: $r_{jj} = u_j _2$ 4: $r_{ij} = q_i^* a_j$ 6: $q_j = u_j / r_{ij}$ 5: $u_j = u_j - r_{ij} q_i$ 7: for $k = j + 1$ to n do	$\frac{\mathbf{\cdot}_{K}(\mathbf{A}) = K(\mathbf{A}^{-1})}{K(\mathbf{A}) = K(\mathbf{Y}\mathbf{A})} \underbrace{\ \mathbf{\cdot} \ = \ \mathbf{\cdot} \ _{2} \implies K(\mathbf{A}) = \frac{\sigma_{1}}{\sigma_{m}}}_{K(\mathbf{A}) = \mathbf{K}}$ For $\underline{\mathbf{A}} \in \mathbb{C}^{m \times n}$, the problem $f_{\mathbf{A}}(\mathbf{X}) = \mathbf{A}\mathbf{X}$ has	•For $x, y \in F$ we have $x \circledast y = f(x * y) = (x * y)(1 * \varepsilon), \delta \le \varepsilon_{mach}$	-Work required: $\sim \frac{2}{3} m^3$ flops $\sim O(m^3)$ results in $L_{ij} \le 1$ [so $ L = O(1)$]	upper/lower bounds $-\lim_{n\to\infty} r^n = 0 \iff r < 1$ and	iterations *Similar to to [[tutorial 1#Gram-Schmidt method to	
$-\underline{\mathbf{c}} \in P$ is closest point to origin , i.e. $\underline{\mathbf{c}} = \lambda \mathbf{n}$ -With those $\Rightarrow P = \{ x \in \mathbb{R}^n \mid x \cdot \mathbf{n} = \lambda \}$	6: end for 8: $r_{jk} = q_j^* u_k$ 7: $r_{jj} = u_j _2$ 9: $u_k = u_k - r_{jk} q_j$	$\kappa = \ \mathbf{A}\ \frac{\ \mathbf{x}\ }{\ \mathbf{A}\mathbf{x}\ } \implies \text{if } \underline{\mathbf{A}^{-1}} \text{ exists then } \underline{\kappa \leq \text{Cond}(\mathbf{A})}$	-Holds for <i>any</i> arithmetic operation ⊕ = •, •, •, •] •Complex floats implemented pairs of real floats, so	Stability depends on growth-factor $\rho = \frac{\max_{i,j} u_{i,j} }{ u_{i,j} }$	$\lim_{n \to \infty} \sum_{i=0}^{n} ar^{i} = \frac{a}{1-r} \iff r < 1$	generate orthonormal basis from any linearly independent vectors Gram-Schmidt]] (different	
 If c·n ≠0 ⇒ P not vector-subspace of Rⁿ i.e. 0 ∉P , i.e. P doesn't go through the origin 	8: $q_j = u_j/r_{jj}$ 10: end for 9: end for 11: end for	•If Ax = b] problem of finding x given b] is just	above applies to complex ops as-well -Caveat: $\epsilon_{\text{mach}} = \frac{1}{2} \beta^{1-t}$ must be scaled by factors		Eigenvalue Problems: Iterative Tech-	inner-product) $\star \langle \mathbf{p}^{(0)},, \mathbf{p}^{(n-1)} \rangle$ and $\langle \mathbf{r}^{(0)},, \mathbf{r}^{(n-1)} \rangle$ are bases for	
-P_lis affine-subspace of \mathbb{R}^n •If $\mathbf{c} \cdot \mathbf{n} = 0$, i.e. $P = (\mathbb{R}\mathbf{n})^{\perp}$ => P_lis vector-subspace of	•Computes at j th step: •Classical GS => j th column of Q Jand the j th column	$\frac{f_{\mathbf{A}^{-1}}(b) = \mathbf{A}^{-1}b}{\text{For } \mathbf{b} \in \mathbb{C}^{\mathbf{M}}} \text{ the problem } f_{\mathbf{b}}(A) = \mathbf{A}^{-1}\mathbf{b} \mid (i.e. \ finding \ x \ jin)$	on the order of 2 ^{3/2} , 2 ^{5/2} for \otimes , \otimes respectively	$-\ U\ = O(\rho \ A\) = \sum_{\tilde{L}\tilde{U}} = \tilde{P}A + \delta A,$	niques -If A] is [[tutorial 1#Properties of	QR Algorithm to find Schur decomposi-	
\mathbb{R}^{n} -i.e. $0 \in P$, i.e. P goes through the origin	of \underline{R}] -Modified GS $\Rightarrow j$ th column of \underline{Q} and the j th row of	$Ax = b$ has $\kappa = A A^{-1} = Cond(A)$	$(x_1 \bullet \bullet x_n) \circ (x_1 \circ \circ x_n) \circ \sum_{i=1}^n x_i \left(\sum_{j=i}^n \delta_j \right); \delta_j \le \epsilon_{mach}$	$\frac{\ OA\ }{\ A\ } = O\left(\rho \epsilon_{\text{machine}}\right) \Rightarrow \text{only backwards stable if}$ $\rho = O(1)$	matrices diagonalizable]] then [[tutorial 1#Eigen-values/vectors eigen-decomposition]]	tion A = QUQ [†]	
-PJhas dim(P) = n-1	*Both have flop (floating-point operation) count of	Stability Given a problem $f: X \to Y$, an algorithm for f is	$(x_1 \otimes \cdots \otimes x_n) \approx (x_1 \times \cdots \times x_n)(1 + \epsilon), \epsilon \le 1.06(n-1)\epsilon_{mach}$	•Full pivoting is PAQ = LU finds largest entry in bottom-right submatrix	A= $X\Lambda X^{-1}$ Dominant λ_1 ; \mathbf{x}_1 are such that $ \lambda_1 $ is strictly largest	-Any $\underline{A \in \mathbb{C}^{m \times m}}$ has Schur decomposition $\underline{A = QUQ^{\dagger}}$ - \underline{Q} jis unitary, i.e. $\underline{Q}^{\dagger} = \underline{Q}^{-1}$ and upper-triangular \underline{U}	
Notice $\underline{L = \mathbb{R}_{\mathbf{n}}}$ Jand $\underline{P = (\mathbb{R}_{\mathbf{n}})^{\perp}}$ are orthogonal compliments, so:	$O(2mn^2)$ -NOTE: Householder method has $2(mn^2 - n^3/3)$ flop	$\tilde{f}: X \to Y$ Input $\underline{x} \in X$ is first rounded to $fl(x)$, i.e. $\tilde{f}(x) = \tilde{f}(fl(x))$	$\frac{fl(\sum x_i y_i) = \sum x_j y_i (1 + \epsilon_i)}{1 + \epsilon_i = (1 + \delta_i) \times (1 + \eta_i) \cdots (1 + \eta_n)} \text{ and } \delta_j , \eta_i \le \epsilon_{mach}$	-Makes it pivot with row/column swaps before normal elimination	for which $Ax = \lambda x$ - Rayleigh quotient for Hermitian $A = A^{\dagger}$ is	- Diagonal of U]contains eigenvalues of A] •![[Pasted image 20250420135506.png[300]]	
•proj _L = nn ^T is orthogonal projection onto L](along P)	count, but better numerical properties •Recall: $Q^{\dagger}Q = \mathbf{I}_{n}$ => check for loss of orthogonality	•Absolute error $\Rightarrow \ \hat{f}(x) - f(x) \ $	$-\frac{1+\epsilon_{i} \approx 1+\delta_{i} + (\eta_{i} + \dots + \eta_{n}) }{- fl(x^{T}y) - x^{T}y \leq \sum x_{i}y_{i} \epsilon_{i} }$	-Very expensive $O(m^3)$ search-ops, partial pivoting only needs $O(m^2)$	$P_{+}(\mathbf{x}) = \mathbf{x}^{\dagger} A \mathbf{x}$	*For $\underline{A \in \mathbb{R}^{m \times m}}$ each iteration $\underline{A^{(k)} = Q^{(k)}R^{(k)}}$ produces orthogonal $\underline{Q^{(k)}}^T = \underline{Q^{(k)}}^{-1}$	
• $\operatorname{proj}_P = \operatorname{id}_{\mathbb{R}^n} - \operatorname{proj}_L = \operatorname{I}_n - \hat{\mathbf{n}} \hat{\mathbf{n}}^T$ is orthogonal projection onto P] *(along L]	with I _n = 0 [†] 0 = loss	relative error $\Rightarrow \frac{\ \vec{f}(x) - f(x)\ }{\ f(x)\ }$	-Assuming ne _{mach} ≤0.1 =>	Systems of Equations: Iterative Tech-	*Eigenvectors are stationary points of RA	*So $A^{(k+1)} = R^{(k)}Q^{(k)} = (Q^{(k)}^TQ^{(k)})R^{(k)}Q^{(k)} = Q^{(k)}^TA^{(k)}Q^{(k)}$	
$\frac{L = \operatorname{im}(\operatorname{proj}_{L}) = \operatorname{ker}(\operatorname{proj}_{P})}{P = \operatorname{ker}(\operatorname{proj}_{L}) = \operatorname{im}(\operatorname{proj}_{P})}$		$\underline{\tilde{f}} \text{ is accurate if } \underline{\forall x \in X} \text{.} \underline{\underline{\ \tilde{f}(x) - f(x)\ }} = O\left(\epsilon_{\text{mach}}\right)$	fl($x^T y$)- $x^T y$ $\leq \phi(n) \epsilon_{\text{mach}} x ^T y $ where $ x _i = x_i $ is vector and $\phi(n)$ is small function of n_1	niques •Let $A, R, G ∈ \mathbb{R}^{n \times n}$ where G^{-1} exists => splitting	$*R_A(\mathbf{x})$ is closest to being like eigenvalue of $\underline{\mathbf{x}}$, i.e. $R_A(\mathbf{x}) = \underset{\alpha}{\operatorname{argmin}} \ A\mathbf{x} - \alpha\mathbf{x}\ _2$	means A ^(k+1) is similar to A ^(k)	
$\mathbb{R}^n = \mathbb{R} \mathbb{N} \oplus (\mathbb{R}^n)^{\perp}$, i.e. all vectors $\underline{\mathbf{v} \in \mathbb{R}^n}$ Juniquely decomposed into $\underline{\mathbf{v}} = \underline{\mathbf{v}}_{\perp} + \underline{\mathbf{v}}_{P}$	-Modified GS $\Rightarrow \ \mathbf{I}_n - Q^{\dagger} Q\ \approx \text{Cond}(A) \epsilon_{\text{mach}}\ $ -NOTE: Householder method has $\ \mathbf{I}_n - Q^{\dagger} Q\ \approx \epsilon_{\text{mach}}\ $	$\frac{\tilde{f}}{\ \tilde{f}(x) - f(\tilde{x})\ } = O\left(\epsilon_{\text{mach}}\right) \text{ and } \frac{\ \tilde{X} - X\ }{\ x\ } = O\left(\epsilon_{\text{mach}}\right)$	•Summing a series is more stable if terms added in order of increasing magnitude	A=G+R]helps iteration -Ax=b rewritten as x=Mx+c where	* $R_A(\mathbf{x}) - R_A(\mathbf{v}) = O(\ \mathbf{x} - \mathbf{v}\ ^2)$ as $\mathbf{x} \to \mathbf{v}_J$ where \mathbf{v}_J is eigenvector	- Setting $\underline{A^{(0)}} = \underline{A}$ we get $\underline{A^{(k)}} = \underline{\tilde{Q}^{(k)}}^T \underline{A}\underline{\tilde{Q}^{(k)}}$ where $\underline{\tilde{Q}^{(k)}} = \underline{Q^{(0)}} \underline{Q^{(k-1)}}$	
Householder Maps: reflections	Multivariate Calculus	•i.e. nearly the right answer to nearly the right question •outer-product is stable	For FP matrices , let $ M _{ij} = M_{ij} $ i.e. matrix $ M $ of absolute values of M	$M = -G^{-1}R; c = -G^{-1}b$ -Define $f(x) = Mx + c$ and sequence	•Power iteration: define sequence $b^{(k+1)} = Ab^{(k)}$	•Under certain conditions QR algorithm converges to Schur decomposition	
•Two points $\underline{x}, \underline{y} \in \mathbb{E}^n$ are reflections w.r.t hyperplane $P = (\mathbb{R}\mathbf{n})^{\perp} + \mathbf{c}$ if:		\tilde{f} is backwards stable if $\forall x \in X$], $\exists \tilde{x} \in X$ s.t. $\tilde{f}(x) = f(\tilde{x})$	$ \frac{fl(\lambda A) = \lambda A + \mathcal{E}; \mathcal{E} _{ij} \leq \lambda A _{ij} \in_{\text{mach}}}{fl(A + B) = (A + B) + \mathcal{E}; \mathcal{E} _{ij} \leq A + B _{ij} \in_{\text{mach}}} $	$\frac{\mathbf{x}^{(k+1)} = f(\mathbf{x}^{(k)}) = M\mathbf{x}^{(k)} + \mathbf{c}}{\mathbf{Limit}} \text{ of } \langle \mathbf{x}_k \rangle \text{ is fixed point of } f \Rightarrow \text{ unique fixed point}$	with initial $b^{(0)}$ s.t. $ b^{(0)} = 1$	•We can apply shift $\mu^{(k)}$ at iteration \underline{k}]=> $A^{(k)} - \mu^{(k)} = Q^{(k)} R^{(k)}, A^{(k+1)} = R^{(k)} Q^{(k)} + \mu^{(k)}$	
1) The translation $xy = y - x$ is parallel to normal n , i.e. $xy = \lambda n$	Level carve w.i.t. to Le is its air points s.t. f(x)=c	and $\frac{\ \tilde{x}-x\ }{\ x\ } = O(\epsilon_{\text{mach}})$ •i.e. exactly the right answer to nearly the right	$\bullet fl(\mathbf{AB}) = \mathbf{AB} \bullet E; E _{ij} \le n\epsilon_{mach}(\mathbf{A} \mathbf{B})_{ij} \bullet O(\epsilon_{mach}^2)$	of f is solution to Ax = b -If - is consistent norm and M < 1 then (x _k)	-Assume dominant \(\lambda_1; \dotx_1 \ \text{ [exist for A]}\) and that	-If shifts are good eigenvalue estimates then last column of $\tilde{Q}^{(k)}$ converges quickly to an eigenvector	
2) Midpoint $m = 1/2(\mathbf{x} + \mathbf{y}) \in P$ lies on P i.e. $m \cdot \mathbf{n} = \mathbf{c} \cdot \mathbf{n}$	•Projecting level curves onto R ⁿ gives f s contour-map	question, a subset of stability ••, ⊕, ⊗, ⊗, inner-product , back-substitution w/	Taylor series about $\underline{a} \in \mathbb{R}$ is	converges for any x(0) (because	$\begin{array}{c} \operatorname{proj}_{\mathbf{X}_{1}} \left(\mathbf{b}^{(0)} \right) * 0 \\ - \operatorname{Under above assumptions,} \end{array}$	-Estimate $\mu^{(k)}$ with Rayleigh quotient =>	
-Suppose $P_{\underline{u}} = (\mathbf{R}\underline{u})^{\perp}$ goes through the origin with unit normal $\underline{u} \in \mathbf{R}^n$	n_k th order partial derivative w.r.t i_k of, of n_1 th	triangular systems, are backwards stable •If backwards stable f and f has condition number	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^{k} + O((x-a)^{n+1}) $ as $\underline{x \to a}$	*For splitting, we want M < 1 and easy to compute	$\mu_R = R_A \left(\mathbf{b}^{(R)} \right) = \frac{\mathbf{b}^{(R)}^{\dagger} \mathbf{A} \mathbf{b}^{(R)}}{\mathbf{b}^{(R)}^{\dagger} \mathbf{b}^{(R)}} \begin{vmatrix} \text{converges to } \mathbf{dominant} \\ \text{converges to } \mathbf{dominant} \end{vmatrix}$	$\frac{\mu^{(k)} = (A_k)_{mm} = \bar{\mathbf{q}}_m^{(k)\top} A \bar{\mathbf{q}}_m^{(k)}}{\text{column of } \tilde{\mathbf{Q}}_m^{(k)}} \text{ where } \underline{\tilde{\mathbf{q}}_m^{(k)}} \text{ is } \underline{m} \text{ th}$	
-Householder matrix $H_{\underline{u}} = I_n - 2uu^T$ is reflection w.r.t. hyperplane $P_{\underline{u}}$	order partial derivative w.r.t i_1 of f is:	$\frac{K(x)}{\ f(x)\ } = O\left(K(x)\epsilon_{\text{mach}}\right)$	•Need $\underline{a} = 0$ $J \Rightarrow f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k + O(x^{n+1})$ as	M; c *Stopping criterion usually the relative residual	λ ₁		
-Recall: let $L_{\underline{u}} = Ru$ *proj $L_{\underline{u}} = uu^{T}$ and proj $P_{\underline{u}} = I_{n} - uu^{T}$ =>	$\begin{array}{c} \bullet \frac{\partial n_k \cdots \circ n_1}{\partial x_{i_k}^n \cdots \partial x_{i_1}^{n_1}} = \delta_{i_k}^n \cdots \delta_{i_1}^{n_1} \int_{f} -\int_{i_1 \cdots i_k}^{(n_1, \dots, n_k)} \\ \bullet i_k \cdots \delta_{i_1}^{n_1} \end{array}$	Accuracy, stability, backwards stability are norm-independent for fin-dim X, Y	$ \underbrace{\begin{array}{l} \Sigma_{k=0}^{n}\binom{p}{k} \in \mathbb{R} + O\left(\varepsilon^{n+1}\right) \\ \bullet e.g.(1 \bullet \varepsilon)^{p} = \Sigma_{k=0}^{n}\binom{p}{k!(p-k)!} \in \mathbb{R} + O\left(\varepsilon^{n+1}\right) \end{array}}_{= \Sigma_{k=0}^{n}} \operatorname{ass} \underbrace{\left(\varepsilon^{n+1}\right)}_{k!(p-k)!} \operatorname{ass} \underbrace{\left(\varepsilon^{n+1}\right)}_{= \Sigma_{k=0}^{n}} \operatorname{ass} \left($	$\frac{\left\ \mathbf{b}-\mathbf{A}\mathbf{x}^{(R)}\right\ }{\left\ \mathbf{b}\right\ } \le \epsilon$	$-(b_k)$ converges to some dominant x_1 associated with $\lambda_1 = \ Ab^{(k)}\ $ converges to $\ \lambda_1\ $		
$H_{\mathbf{u}} = \operatorname{proj}_{P_{\mathbf{u}}} - \operatorname{proj}_{L_{\mathbf{u}}}$	•Its an N -th order partial derivative where $N = \sum_{k} n_{k}$ • $\nabla f = [\partial_{1} f,, \partial_{n} f]^{T}$ is gradient of f => $(\nabla f)_{i} = \frac{\partial f}{\partial \mathbf{x}_{i}}$	Big-O meaning for numerical analysis		•Assume Afs diagonal is non-zero (w.l.o.g. permute/change basis if isn't) then A=D+L+U	$-\text{If proj}_{X_1}\left(\mathbf{b}^{(0)}\right)=0$ then (\mathbf{b}_k) ; $(?_k)$ converge to		
*Visualize as preserving component in $P_{\underline{u}}$, then flipping component in $L_{\underline{u}}$	$\bullet \nabla^T f = (\nabla f)^T \text{ is } \underbrace{\text{transpose}}_{\text{def}} \text{ of } \nabla f \text{ i.e. } \nabla^T f \text{ is } \underbrace{\text{row vector}}_{\text{def}}$	In complexity analysis $\underline{f(n)} = O(g(n))$ as $\underline{n} \to \infty$ But in numerical analysis $\underline{f(\varepsilon)} = O(g(\varepsilon))$ as $\underline{\varepsilon} \to 0$, i.e.	Elementary Matrices •Identity $I_n = [e_1 e_n] = [e_1;; e_n]$ has elementary	-Where D is diagonal of A L, U are strict lower/upper triangular parts of A	second dominant $\lambda_2; \mathbf{x}_2$ instead −If no dominant λ_1 (i.e. multiple eigenvalues of		
$-H_{\underline{u}}$ is involutory, orthogonal and symmetric, i.e. $H_{\underline{u}} = H_{\underline{u}}^{-1} = H_{\underline{u}}^{T}$	$D_{\mathbf{u}}f(\mathbf{x}) = \lim_{\delta \to 0} \frac{f(\mathbf{x} \cdot \delta \mathbf{u}) - f(\mathbf{x})}{\delta} $ is	$\limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty$ •i.e. $\exists C, \delta > 0 \text{ s.t. } \forall \epsilon \text{ , we have}$	vectors e ₁ ,,e _n for rows/columns •Row/column switching: permutation matrix P _{ij}	• Jacobi Method: $G = D$; $R = L + U$] => $M = -D^{-1} (L + U)$; $C = D^{-1} b$	maximum [λ] then (b _k) will converge to linear combination of their corresponding eigenvectors		
Modified Gram-Schmidt Go check Classical GM first, as this is just an alternative	directional designative of f	$0 < \ \epsilon\ < \delta \implies \ f(\epsilon)\ \le C \ g(\epsilon)\ $ • O(g) is set of functions	obtained by switching e j and e j in In (same for rows/columns)		-Slow convergence if dominant $\underline{\lambda_1}$ not "very dominant"		
computation method	$\frac{\text{unit-vector}}{\bullet D_{\mathbf{u}} f(\mathbf{x}) = \nabla f(\mathbf{x}) \bullet \mathbf{u} = \ \nabla f(\mathbf{x})\ \ \mathbf{u}\ \cos(\theta)\ \Rightarrow D_{\mathbf{u}} f(\mathbf{x})\ $	$\overline{\{f: \limsup_{\epsilon \to 0} \ f(\epsilon)\ / \ g(\epsilon)\ < \infty\}}$	-Applying P _{ij} from left will switch rows, from right will swap columns	· ''' \ j*i · ' /	$-\ \mathbf{b}^{(k)} - \alpha_k \mathbf{x}_1\ = O\left(\left \frac{\lambda_2}{\lambda_1}\right ^k\right)$ for phase factor		
•Let $P_{\perp} \mathbf{q}_{j} = \mathbf{I}_{m} - \mathbf{q}_{j} \mathbf{q}_{j}^{T}$ be projector onto <u>hyperplane</u> $(\mathbf{R} \mathbf{q}_{j})^{\perp} \mid \text{i.e. } \underline{\text{orthogonal compliment of line } \mathbf{R} \mathbf{q}_{j}}$	maximized when $\cos \theta = 1$ •i.e. when x , u jare parallel \Rightarrow hence $\nabla f(x)$ is direction	Smallness partial order $O(g_1) \le O(g_2)$ defined by set-inclusion $O(g_1) \subseteq O(g_2)$	$-P_{ij} = P_{ij}^{T} = P_{ij}^{-1}$, i.e. applying twice will undo it	b_i ; $x^{(k)}$; $A_{i\star}$ => row-wise parallelization •Gauss-Seidel (G-S) Method: $G=D+L; R=U$ =>	$\alpha_k \in \{-1, 1\}$ it may alternate if $\lambda_1 < 0$		
i i	of max. rate-of-change	•i.e. as $\underline{\epsilon} \to 0$], $g_1(\underline{\epsilon})$ goes to zero faster than $g_2(\underline{\epsilon})$ •Roughly same hierarchy as complexity analysis but	•Row/column scaling: $D_i(\lambda)$ obtained by scaling e_i by $\Delta \lim_n (same for rows/columns)$	$\frac{M = -(D+L)^{-1} U; \mathbf{c} = (D+L)^{-1} \mathbf{b}}{(b+1) 1 i-1 (b+1) n (b)}$	* $\alpha_k = \frac{(\lambda_1)^k c_1}{ \lambda_1 ^k c_1 }$ where $c_1 = x_1^{\dagger} b^{(0)}$ and assuming		
-Notice: $P_{\perp j} = I_m - Q_j Q_j^T = \prod_{i=1}^{J} \left(I_m - \mathbf{q}_i \mathbf{q}_i^T \right) = \prod_{i=1}^{J} P_{\perp} \mathbf{q}_i$	\underline{f} has local minimum at \underline{x}_{loc} if there's radius $\underline{r>0}$ s.t. $\forall x \in B[r; x_{loc}]$ we have $f(\overline{x}_{loc}) \le f(x)$	flipped (some don't fit the pattern) -e.g. $\underline{\dots, O(\epsilon^3) < O(\epsilon^2) < O(\epsilon)} < O(1)$	-Applying P _{ij} from left will scale rows, from right will scale columns	$-\mathbf{x}_{i}^{(k+1)} = \frac{1}{A_{ij}} \left(\mathbf{b}_{i} - \sum_{j=1}^{i-1} A_{ij} \mathbf{x}_{j}^{(k+1)} - \sum_{j=i+1}^{n} A_{ij} \mathbf{x}_{j}^{(k)} \right)$	$b^{(k)}; x_1$ are normalized $-(A-\sigma I)$ has eigenvalues $\lambda - \sigma = 0$ power-iteration on		
-Re-state: $\mathbf{u}_{j+1} = (\mathbf{I}_{\mathbf{m}} - Q_j Q_j^T) \mathbf{a}_{j+1} \Rightarrow$	$f \mid \text{has global minimum } \mathbf{x}_{\text{glob}} \mid \text{if } \forall \mathbf{x} \in \mathbb{R}^n \mid \text{we have}$	-Maximum: $O(\max(g_1 , g_2)) = O(g_2) \iff O(g_1) \leq O(g_2)$	$-\underline{D_i(\lambda)} = \text{diag}(1,, \lambda,, 1)$ so all diagonal properties	-Computing $\mathbf{x}_{i}^{(k+1)}$ needs \mathbf{b}_{i} ; $\mathbf{x}^{(k)}$; $\mathbf{A}_{i\star}$ and $\mathbf{x}_{i}^{(k+1)}$	$\frac{(A-\sigma I)}{(A-\sigma I)} has \frac{\lambda_2 - \sigma}{\lambda_1 - \sigma} $		
$\begin{array}{l} \mathbf{u}_{j+1} = \left(\prod_{i=1}^{j} P_{\perp \mathbf{q}_{i}} \right) a_{j+1} = \left(P_{\perp \mathbf{q}_{j}} \cdots P_{\perp \mathbf{q}_{1}} \right) a_{j+1} \\ - Projectors \ P_{\perp \mathbf{q}_{1}}, \cdots, P_{\perp \mathbf{q}_{j}} \end{array}$ are iteratively applied to	$\frac{f(\mathbf{x}_{glob}) \le f(\mathbf{x})}{\text{A local minimum satisfies optimality conditions:}}$	-e.g. $O(\max(\varepsilon^{k}, \varepsilon)) = O(\varepsilon)$	apply, e.g. $D_i(\lambda)^{-1} = D_i(\lambda^{-1})$ •Row addition: $L_{ij}(\lambda) = I_n + \lambda e_i e_i^T$ performs	for j < i => lower storage requirements •Successive over-relaxation (SOR):	- Eigenvector guess => estimated eigenvalue		
a_{j+1} removing its components along a_{1} then along	• $\nabla f(\mathbf{x}) = 0$, e.g. for $\underline{n} = 1$ its $\overline{f'(\mathbf{x})} = 0$ • $\nabla^2 f(\mathbf{x})$ is positive-definite, e.g. for $\underline{n} = 1$ its $f''(\mathbf{x}) > 0$	Using $\underline{\text{functions }} f_1, \dots, f_n$ let $\underline{\Phi}(f_1, \dots, f_n)$ be $\underline{\text{formula}}$ defining some function	$R_i \leftarrow R_i * \lambda R_j$ when applying from left	$\frac{G = \omega^{-1}D + L; R = (1 - \omega^{-1})D + U}{M = -(\omega^{-1}D + L)^{-1}((1 - \omega^{-1})D + U); c = -(\omega^{-1}D + L)^{-1}b}$	•Inverse (power-)iteration: perform power iteration on $(\underline{A} - \sigma I)^{-1}$ to get $\underline{\lambda_{1,\sigma}}$ closest to $\underline{\sigma}$		
q2 and so on		•Then $\Phi(O(g_1),, O(g_n))$ is the class of functions	$-\frac{\lambda e_i e_j^i}{\sum_{i=1}^{n} i ^2}$ is zeros except for $\frac{\lambda i }{\sum_{i=1}^{n} i ^2}$ th entry		$-(A-\sigma I)^{-1}$ has eigenvalues $(\lambda-\sigma)^{-1}$ so power iteration		