FDA Critical Path Project

"Generation and Review of Regulatory-Grade Computational Evidence Using a Generic Inferior Vena Cava Filter"

Summary of Preliminary FEA

The objectives of this project are to...

- Develop a generic IVC filter
- Predict & demonstrate:
 - fatigue resistance
 - embolus-trapping efficiency

- Ideally,
 - single strut shape (simplify fatigue simulation/testing)
 - resist tilt, migration, and vein wall perforation

???

FEA performed to evaluate filter design

Setup:

- ABAQUS Dynamic/Implicit (quasi-static); 10x mass scaling
- C3D8I elements (4 per strut thickness & width; ~3,000 to 6,000 per strut)
- SE508 nitinol (material properties from Craig Bonsignore's example on GitHub)

4 elements through strut

Simulated conditions → extracted quantities

- 1. Sheathing → prestrain
- 2. Filter placement → contact force/area
- 3. Valsalva → mean/amplitude strain

Pelton, A. R. (2011). J. Mater. Eng. Perform., 20(4-5), 613-617

Two IVC diameters considered (human variability):

- 1. 14mm (3.5mm wall displacement during Valsalva)
- 2. 28mm (7.0mm wall displacement during Valsalva)

We assume Valsalva is the limiting loading scenario for fatigue life

Performance goals are set for quantities extracted from FEA simulations

	distal end contacts wall?	(max/min	force (N)	contact area (mm²) (per strut)	ε amplitude, Valsalva (CI=0.5)	mean ε, Valsalva (CI=0.5)
target	yes	<6%	0.010 to 0.100	>0.05?	<0.4%	<6%

^{*}to avoid plastic deformation during sheathing

Stress-strain history diagram (Rev1)

*FEA simulations of Valsalva shown for reference; note that the contact point between the IVC wall and the filter strut changes as the strut deforms

Valsalva (fatigue loading) (Rev1)

IVC diamter	distal end contacts wall?	(max/min	force (N)	contact area (mm²) (per strut)	Valsalva	mean ε, Valsalva (CI=0.5)
14mm	yes	0.80%	0.028	0.018	0.07%	0.45%
28mm	yes	0.80%	0.010	0.018	0.12%	0.24%

Mesh refinement (Rev1)

IVC diamter	distal end contacts wall?	prestrain (max/min prin. LE)	contact force (N) (per strut)	contact area (mm²) (per strut)	ε amplitude, Valsalva (CI=0.5)	mean ε, Valsalva (CI=0.5)
coarse (4x4)	yes	0.80%	0.0096	0.018	0.121%	0.24%
medium (8x8)	yes	0.92%	0.0096	0.0048	0.134%	0.26%
fine (12x12)	yes	1.04%	0.0102	0.0050	0.139%	0.27%

GCI: -2.81%

Eccentric loading of filter strut (Rev1)

	IVC diamter		(max/min	force (N)	contact area (mm²) (per strut)	ε amplitude, Valsalva (CI=0.5)	mean ε, Valsalva (CI=0.5)
а	28mm	yes	0.80%	0.010	0.018	0.12%	0.24%
b	28mm	yes	0.80%	0.0086	0.0091	0.14%	0.26%

Static/Implicit vs. Dynamic/Implicit (Rev1)

	IVC diamter	contacts	(max/min	force (N)	contact area (mm²) (per strut)		mean ε, Valsalva (CI=0.5)
Static/Imp	28mm	yes	0.798%	0.00884	0.0182	0.122%	0.239%
Dynamic/Imp	28mm	yes	0.797%	0.00959	0.0182	0.121%	0.238%

^{*}Simulations were performed using Abaqus Standard, Dynamic/Implicit to increase stability of contact interactions. Simulations performed using Static/Implicit yield similar results.