Отчет по лабораторной работе 2.3.1(А)

«Современные средства получения и измерения вакуума»

Цель работы: 1) изучение принципов получения и измерения вакуума в экспериментальном стенде на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Eco, вакууметров Pfeiffer Vacuum серии DigiLine и вакуумных компонентов типов ISO-K, ISO-F, ISO-KF

В работе используются: компактный безмасляной высоковакуумный откачный пост Pfeiffer Vacuum серии HiCube 80 Eco, вакууметр Pfeiffer Vacuum серии DigiLine и вакуумные компоненты типов ISO-K, ISO-F, ISO-KF

Теоретические сведения:

Экспериментальный стенд

Рис. 1: Схема экспериментального стенда

Вакуум

В физике вакуумом называют состояние газа, при котором характерная длина свободного пробега молекул в газе λ сравнима по порядку величины с характерным линейным размером сосуда d, в котором газ находится. Для воздуха при нормальных условиях $\lambda \sim 10^{-5}$ см, откуда видно, что воздух в жилых помещениях не находится в состоянии вакуума, но, например, внутри пористых материалов, таких как древесина, уже может находится.

В технике вакуумом называют состояние газа, при котором его давление меньше атмосферного. Различают следующие типы вакуума : низкий, когда средняя длина свободного пробега молекул газа значительно меньше характерного линейного размера рассматриваемого объема, т. к. λ <d; средний, когда λ
много больше d. Иногда выделяют еще сверхвысоких вакуум, при котором не происходит заметного изменения свойств поверхности, первоначально свободной от адсорбированного газа, за время, существенное для проведения эксперимента. Газ в состоянии высокого вакуума называется ультраразреженным.

Сфера применения вакуумной техники и технологий стремительно расширяется. Вакуум является идеально чистой технологической средой, в которой можно осуществить электрохимические и электрофизические процессы при изготовлении изделий, используемых

в различных отраслях промышленности. Новые типы полупроводниковых структур, особо чистые материалы, сплавы, специальные покрытия изготавливаются в вакууме.

Понятия для работы с вакуумной техникой

Предельное остаточное давление - наименьшее давление газа, которое формируется в процессе откачки в рассматриваемом сечении вакуумпровода. Обычно выделяют предельное давление в камере или на входе в насос.

Наибольшее выпускное давление — максимально допустимое давление газа на входе насоса.

Быстрота откачивающего действия — объем газа, проходящий через рассматриваемое сечение вакуумпровода в единицу времени при текущем давлении в данном сечении:

$$S_0 = \frac{dV_0}{dt}$$

Падение давления вдоль вакуумпровода $\delta P = P_1 - P_2$ определяется его *пропускной* способностью:

$$U = \frac{Q}{P_1 - P_2},$$

где Q – *поток газа* через вакуумпровод с соответствующими давлениями на концах.

Основное уравнение вакуумной техники — уравнение, связывающее основные параметры вакуумной системы:

$$\frac{1}{S_0} = \frac{1}{S_n} + \frac{1}{U}$$

Количественной характеристикой течи является натекание Q_n , измеряемое при отключенных средствах откачки:

$$Q_n = V \frac{P_1 - P_0}{\Delta t}$$

На пропускную способность вакуумпровода существенно влияет режим течения газа, который характеризуется *числом Кнудсена*, равным отношению длины свободного пробега молекул в газе к характерному линейному размеру течения:

$$K_n = \frac{\lambda}{d}$$

Время откачки

Рассмотрим случай, когда S_0 = const. Тогда зависимость давления от времени записывается в виде:

$$P(t) = P_1 \exp\left(\frac{-S_0}{V_0}t\right)$$

Постоянная времени откачки $au=rac{V_0}{S_0}$ является мерой эффективности откачной системы.

Пластинчато-роторный насос

В цилиндрическом корпусе пластинчато-роторного насоса со смещением эксцентрично размещен ротор, касающийся корпуса с одной стороны. Ротор снабжен пластинами, которые прижимаются к стенкам и скользят по внутренней поверхности. Газ, попадающий на вход проталкивается пластинами и выталкивается из насоса через выпускной клапан.

Рис. 2: Конструкция одноступенчатого ПРН

- *преимущества*: неприхотлив в работе (может откачивать загрязненную среду без ущерба для конструкционных элементов); используется для предварительной (форвакуумной откачки) в системах откачки с низкими требованиями по чистоте откачиваемого объема; используется до двух последовательных ступеней.
- недостатки: присутствие в рабочей камере масла, контактирующего с откачиваемой средой (возможно попадание паров в откачиваемый объем) и необходимость периодической его замены: низкий предельный вакуум за счет обработанного потока воздуха через выпускные клапаны; малоэффективен для откачки влажных сред.
- тип вакуума: средний

1 — ротор, 2 — статор, 3 — корпус насоса, 4 — электродвигатель, 5 — нижний шарикоподшипник, 6 — высоковакуумный входной фланец, 7 — выпускной форвакуумный фланец

Рис. 3: Конструкция турбомолекулярного насоса

Турбомолекулярный насос

Откачка в турбомолекулярном насосе осуществляется за счет соударения частиц газа с быстродвижущимися турбинными лопатками дисков ротора специальной геометрии, которые придают им дополнительный импульс в заданном направлении потока. Между дисками ротора находятся диски статора с обратно обращенными лопатками, направляющие поток молекул на следующие диски турбины по оптимальной траектории, минимизируя обратный поток. Каждая пара пластин ротора-статора образует одну ступень. Насос состоит из нескольких ступеней, расположенных последовательно, каждая последующая ступень имеет меньшие геометрические размеры, что при постоянном потоке газа приводит к постепенному повышению давления до выпускного форвакуумного. Скорость вращения ротора современных турбомолекулярных насосов достигает нескольких десятков тысяч оборотов в минуту.

- -преимущества: постоянная готовность к работе; быстрый запуск(около 10 минут на раскручивание турбины); устойчивость к резкому повышению давления; широкий диапазон рабочих давлений; примерно одинаковая быстрота действия для большинства газов
- *недостатки*: требуется надежная защита вращающейся турбины от любых механических воздействий, приводящих к износу подвески ротора и разрушению лопаток турбины.
- тип вакуума: высокий

Ход работы

1. Определение откачиваемого объема и измерение скорости откачки форвакуумным насосом

Время	Показания B1(PPT ₁₀₀), mbar	Показания B2(MPT ₁₀₀), mbar	б _р , mbar	Мощность ТМН, W	Комментарий
10:16:08	1000	1000		0	Включение форвакуумного насоса (далее ФН)
10:16:20	3,4	3,6		0	Открытие МКЗ
10:20:10	200	1000		0	Спустя(≈2 мин) после
10:20:14	200	1000	5	0	Отключение ФН
10:20:48	200	1000		0	Открытие МК2
10:22:08	180-190	1000		0	Установилось давление после открытия MK2
10:22:26	180-190	1000		0	Открытие МК1
10:23:32	140	450		0	Установилось давление после открытия МК1
11:27:30	1000	1000		0	Включение форвакуумного насоса (далее ФН)
11:33:58	2,8	3		0	Открытие МКЗ
11:35:00	180	1000		0	Спустя(≈2 мин) после
11:35:18	180	1000		0	Отключение ФН

11:35:32	180	1000	5	0	Открытие МК2
11:36:06	170	1000		0	Установилось давление после открытия MK2
11:36:24	170	1000		0	Открытие МК1
11:37:00	120	380		0	Установилось давление после открытия MK1

Определим объемы вакуумных частей установки:

Объем запертого в сильфоне воздуха V_s = 265 мл. После присоединения сильфона мы закрываем МК2, изолируя высоковакуумную часть. Затем открываем МК3 и запускаем V_s в вакуумную камеру. По уравнению Бойля-Мариотта:

 $P_{\scriptscriptstyle 0}V_{\scriptscriptstyle s}\!=\!\!(V_{\scriptscriptstyle k}\!+\!V_{\scriptscriptstyle s})P_{\scriptscriptstyle 1}$, где $P_{\scriptscriptstyle 1}$ – давление после открытия МКЗ

$$V_{k} = \frac{P_{0} * V_{s}}{P_{1}} - V_{s}$$
 , $\sigma_{V_{k}} = \frac{P_{0} * V_{s}}{P_{1}^{2}} \sigma_{P_{1}}$

 $P_{0}V_{s}$ = $(V_{s}$ + V_{k} + $V_{v})P_{2}$, где P_{2} – давление после открытия МК2

$$V_{v} = \frac{P_{0} * V_{s}}{P_{2}} - V_{s} - V_{k} \quad , \quad \sigma_{V_{v}} = \sqrt{\left(\frac{P_{0} * V_{s}}{P_{2}^{2}} \sigma_{P_{2}}\right)^{2} + \sigma_{v_{s}}^{2} + \sigma_{v_{k}}}$$

 $P_0V_s\!=\!P_3V_{_{ycm}}$ где P_3- давление после открытия МК1

$$V_{ycm} = \frac{P_0 * V_s}{P_3}$$
 , $\sigma_{V_{ycm}} = \frac{P_0 * V_s}{P_3^2} \sigma_{P_3}$

$$V_{m M H} = V_{y C M} - V_{k} - V_{s} - V_{v}$$
 , $\sigma_{V_{m M H}} = \sqrt{\sigma_{V_{v C M}}^{2} + \sigma_{v_{k}}^{2} + \sigma_{v_{k}}^{2}}$

1-ое измерение:

 P_1 =200 мбар, P_2 =185 мбар, P_3 =140 мбар

$$V_{k}\!=\!(1060\pm33)$$
мл , $V_{v}\!=\!(107\pm33)$ мл , $V_{vcm}\!=\!(1893\pm68)$ мл , $V_{m\!\scriptscriptstyle MH}\!=\!(461\pm82)$ мл

2-ое измерение:

 P_1 =180 мбар, P_2 =170 мбар, P_3 =120 мбар

$$V_k = (1207 \pm 41)$$
 мл , $V_v = (87 \pm 34)$ мл , $V_{vcm} = (2208 \pm 92)$ мл , $V_{mmH} = (649 \pm 108)$ мл

Как окончательный результат возьмем среднее значение:

$$V_k = (1133 \pm 41) \,\text{M}$$
 , $V_v = (97 \pm 34) \,\text{M}$, $V_{vcm} = (2050 \pm 92) \,\text{M}$, $V_{mmn} = (555 \pm 75) \,\text{M}$

Оценим эффективную скорость откачки системы ФН:

Построим $\ln P(t)$ для двух измерений, определим коэффициенты наклона графика $k = \frac{-S_0}{V_0} = \frac{-1}{\tau}$ и их погрешности. (τ – постоянная времени откачки). Из МНК:

$$k = \frac{-1}{\tau} = \frac{\langle lnP*t \rangle - \langle lnP \rangle * \langle t \rangle}{\langle t^2 \rangle - \langle t \rangle^2}$$
 и $\sigma_k = \sqrt{\frac{1}{n} (\frac{\langle (lnP)^2 \rangle - \langle lnP \rangle^2}{\langle t^2 \rangle - \langle t \rangle^2} - k^2)} \approx 3,62 c$

$$k_{\kappa\rho} = (-7.71 \pm 0.26) * 10^{2} c^{-1}$$

 $k_{\mu\rho\rho\mu} = (-7.70 \pm 0.12) * 10^{2} c^{-1}$

Таким образом, $\tau = 12,98$ с, $\sigma_{\tau} = \sigma_k/k^2 = 0,03$ с

$$S_0 = V_0 / \tau$$
 , $\sigma_{S_0} = S_0 * \sqrt{\left(\frac{\sigma_{V_0}}{V_0}\right)^2 + \left(\frac{\sigma_{\tau}}{\tau}\right)^2}$. $S_0 = (0.31 \pm 0.01) \frac{M^3}{v}$, $\varepsilon = 3.2\%$

Тогда пропускная способность равна:
$$U = \frac{S_{\scriptscriptstyle H} S_0}{S_{\scriptscriptstyle H} - S_0}$$
 и $\sigma_U = \sigma_{S_0} * S_{\scriptscriptstyle H} * (\frac{1}{S_{\scriptscriptstyle H} - S_0} + \frac{S_0}{(S_{\scriptscriptstyle H} - S_0)^2})$

$$U = (0.816 \pm 0.003) \frac{M^3}{q}$$
, $\varepsilon = 0.4\%$

2. Измерение скорости откачки ТМН и определение предельного вакуума

Время	Показания B1(PPT ₁₀₀), mbar	Показания B2(MPT ₁₀₀), mbar	б _р , mbar	Мощность ТМН, W	Комментарий
10:28:24	1000	1000		0	Включение ФН
10:31:10	3,1	3,3		0	Открытие ШЗ
10:31:18	3,1	3,3		0	Закрытие МК2
10:38:56	3	3,2		27	Включение ТМН
10:42:10	2*10-4	3,7 *10 ⁻⁵		13	Закрытие ШЗ
10:42:26	7,5*10-4	1 *10-3		13	Открытие ШЗ
10:44:44	1*10-4	1,7 *10-5	5	13	Закрытие ШЗ
10:45:26	1*10 ⁻³	8 *10-4		13	Открытие ШЗ

10:47:18	1*10-4	1,4 *10-5	14	Закрытие ШЗ
10:48:12	7,5*10-4	1 *10-3	13	Открытие ШЗ
10:57:20	1,5*10-4	1,4 *10-5	14	Закрытие ШЗ
10:58:48	7*10-4	9,9 *10-4	14	Открытие ШЗ

Аналогично оценим эффективную скорость откачки системы ТМН:

 $k_{cp} \!=\! (-10.7 \!\pm\! 1.1) \!*\! 10^{-3} c^{-1}\,$, отсюда $S_0 \!=\! 12.1$ мл/с, $\sigma_{S0} \!=\! 1.3$ мл/с.

$$\tau$$
 = (93,5±9,6) c, S_{0cp} = (12,1±1,3) мл/c, ϵ =10,5%

U=12,1 мл/с, σ_U =1,3 мл/с, U = (12,1±1,3) мл/с, ϵ =10,5%

3. Создание искусственной течи

Время	Показания B1(PPT ₁₀₀), mbar	Показания B2(MPT ₁₀₀), mbar	б _р , mbar	Мощность ТМН, W	Комментарий
11:04:24	1000	1000		14	Предельное давление
11:06:06	10-4	6,1*10-6		14	
11:07:34	10-4	3*10-5		15 (15-16)	
11:08:08	2*10-4	1,8*10-4		16 (17-18)	
11:09:02	3*10-4	3,3*10-4		19 (18-19)	
11:09:42	4*10-4	4,8*10-6		20 (19-20)	
11:10:10	5,5*10-4	6,3*10-6		20 (20-21)	
11:10:32	7,5*10-4	9,1*10-6	5	22 (21-22)	
11:10:48	8*10-4	1*10-3		23 (22-23)	
11:11:10	1,1*10 ⁻³	1*10-3		24 (23-24)	
11:11:44	1,2*10-3	1,2*10-3		24 (24-25)	

11:12:12	1,5*10 ⁻³	1,5*10 ⁻³		26 (25-26-27)	
11:12:56	1,8*10 ⁻³	1,8*10-3		28 (27-28)	
11:13:14	2*10 ⁻³	2*10 ⁻³		29 (28-29)	
11:13:32	2,3*10 ⁻³	2,4*10 ⁻³		29 (29-30-31)	
11:14:06	2,7*10 ⁻³	2,8*10 ⁻³		32 (31-32)	
11:15:06	2,5*10 ⁻³	2,6*10-3		30 (29-30-31)	
11:15:34	2,3*10 ⁻³	2,4*10 ⁻³		28 (28-29)	
11:16:02	2*10 ⁻³	2,1*10 ⁻³		27 (26-27-28)	
11:16:26	1,7*10-3	1,8*10-3	5	25 (25-26)	
11:16:44	1,5*10 ⁻³	1,5*10 ⁻³		24 (24-25)	
11:17:06	1,4*10 ⁻³	1,5*10 ⁻³		24 (23-24)	
11:17:36	1,2*10-3	1,2*10-3		22 (22-23)	
11:18:06	1,1*10 ⁻³	1,1*10 ⁻³		21 (21-22)	
11:18:34	8*10-4	1*10-3		21 (20-21)	
11:19:48	7*10-4	7,8*10-4		19 (19-20)	
11:20:32	5,5*10-4	6*10-4		18 (18-19)	
11:21:04	4*10-4	3,8*10-4		17 (17-18)	
11:21:34	3*10-4	2,6*10-4		16 (16-17-18)	
11:22:12	1,5*10-4	3,9*10 ⁻⁵		16 (15-16)	
11:23:06	1*10-4	5,3*10-6		15	

Определим уровень течей по ухудшению вакуума после перекрытия откачки насосом ТМН:
$$Q_{\rm H}\!\!=\!\!V_k\frac{\left(P_k\!-\!P_{\rm H}\right)}{\Delta t}, \quad V_k\!\!=\!\!1133~{\rm м}{\pi}$$

$$Q_{\rm 1H}\!\!=\!\!3,\!00^*\!\!10^{-2}~{\rm м}{\pi}^*{\rm m}{\rm баp/c};$$

$$Q_{\rm 2H}\!\!=\!\!2,\!78^*\!\!10^{-2}~{\rm m}{\pi}^*{\rm m}{\rm бap/c};$$

$$Q_{\rm 3H}\!\!=\!\!2,\!07^*\!\!10^{-2}~{\rm m}{\pi}^*{\rm m}{\rm бap/c};$$

$$Q_{\rm 4H}\!\!=\!\!1,\!24^*\!\!10^{-2}~{\rm m}{\pi}^*{\rm m}{\rm бap/c};$$

 $Q_{cp}=2,28*10^{-2}$ мл*мбар/с; $G_{Qcp}=8,21*10^{-4}$ мл*мбар/с

Возьмем среднее значение $P_1=5*10^{-4}$ мбар, тогда $Q=6,1*10^{-3}$ мл*мбар/с $< Q_H$

Исследуем зависимость мощности турбины ТМН от давления в камере К при создании искусственной течи:

Построим график W(P) для повышения и понижения давления, затем найдем коэффициент наклона линейного участка прямой.

 $k_{\text{повышение}} = 5349,8 \text{ Bт/мбар}; k_{\text{понижение}} = 3797,5 \text{ Bт/мбар}$ Предельное давление $P_{np} = 10^{-3}$ мбар — ниже нелинейно

Понижение:

Повышение:

Вывод

- Мы изучили принципы получения и измерения вакуума в экспериментом стенде на основе компактного безмасляного высоковакуумного откачного поста Pfeiffer Vacuum серии HiCube 80 Eco, вакууметров Pfeiffer Vacuum серии DigiLine и вакуумных компонентов типов ISO-K, ISO-F, ISO-KF.
- Также были получены объемы частей установки и самой установки:

$$V_k = (1133 \pm 41)$$
 мл - объем камеры $V_k = (97 \pm 24)$ мл - объем форрация

$$V_{_{\nu}} = (97 \pm 34)$$
мл - объем форвакуумной магистрали

$$V_{\rm\scriptscriptstyle mmh}$$
= (555 ± 75) мл - объем насоса ТМН

$$V_{ycm}^{\text{------}} = (2050 \pm 92)\,\text{мл}$$
 - объем установки

- Была оценена эффективная скорость откачки системы форвакуумным насосом S_0 и пропускная способность U: $S_0 = (0.31 \pm 0.01) \frac{M^3}{v}$, $\epsilon = 3.2\%$ $U = (0.816 \pm 0.003) \frac{M^3}{v}$, $\epsilon = 0.4\%$ совпадает с реальными значениями.
- Была оценена эффективная скорость откачки системы турбомолекулярным насосом S_0 и пропускная способность U: $S_0 = (12,1\pm 1,3)\frac{\mathit{MI}}{\mathit{c}}$, $\epsilon = 10,5\%$ $U = (12,1\pm 1,3)\frac{\mathit{MI}}{\mathit{c}}$, $\epsilon = 10,5\%$ совпадает с реальными значениями. Возможные причины: небольшое натекание из-за небольшой разгерметизации после опыта с сильфоном.
- Был оценен уровень течи после перекрытия откачки ТМН насосом: Q_{cp} =2,28*10⁻² мл*мбар/с, что меньше Q=6,1*10⁻³ мл*мбар/с
- Была найдена зависимость мощности ТМН от давления