Attack Trees, Multilateral and Multilevel Security

Software Security

Steffen Helke

Chair of Software Engineering

19th November 2018

Repetition: Security Analyses

Objectives of today's lecture

- → Repetition: Activities of Security Analyses
- → Being able to use *Attack Trees* and *Risk Assessment Matrixes*
- → Understanding differences between *Multilateral Security* and *Multilevel Security*
- → Getting to know the characteristics of an IT security model and different *access control strategies*
- → Being able to explain multilevel security using the Bell-LaPadula model as an example

Steffen Helke: Software Security, 19th November 2018

What are the most important activities of a security analysis?

Steffen Helke: Software Security, 19th November 2018

What are the most important artifacts?

1 Structure Analysis

- Network *topology model*
- Table with attributes for each system component
- Initial requirements specification

2 Protection Requirements Analysis

- Use case model to describe actors and system functionality
- Identifying damage scenarios, protection goals and conflicts
- Evaluation of the required level of protection for scenarios

3 Threat Analysis

- *Misuse case model* to decribe misactors, attacker behaviour and countermeasures
- Attack tree model to refine attacker goals

4 Risk Analysis

- Risk assessment to find out the required level of protection
- Annotated attack trees, e.g. using costs and probabilities

Steffen Helke: Software Security, 19th November 2018

Steffen Helke: Software Security, 19th November 2018

3

Example for a Misuse Case Model

Exercise: Presidential Blog Threat Analysis (Misuse Case Model)

Example: Threat Analysis Bicycle Stealing

Source: Die Welt 26.6.2014

Example: Threat Analysis Bicycle Stealing

Ride the bike <<threatens>> <includes>> i <<mitigates>> Steal the Lock the <<includes>> <<includes>> Stealer Bicycle <<pre><<pre><<pre><<pre><<pre><<pre><<pre><<pre> Steal the Take the air owner pump pump with you <threatens>> Pump up the wheel

Steffen Helke: Software Security, 19th November 2018

Attack Trees

General Remarks

- Developed by Bruce Schneier, an US security expert, in 1998
- Examples of similar modeling approaches
 - → Fault Tree Analysis (1962, FTA)
 - → Threat Trees (1994)

Quelle: http://www.schneier.com

Objectives

- How can attacks be graphically modelled?
- What is the probability of a successful attack?
- How can an attack goal be refined by subgoals?

Evaluation of the Misuse Case Notation

Advantages

- + Provides a detailed analysis of attack scenarios
- + Is supported by a distinct methodology for describing functional and non-functional requirements, e.g. by dealing with external threats
- + Similar to the popular UML notation

Disadvantages

- Trivialisation of security requirements
- Models can quickly become confusing

Steffen Helke: Software Security, 19th November 2018

8

Attack Tree based on the Web Shop Example

Activities of a Security Engineering Process

Steffen Helke: Software Security, 19th November 2018

Risk Analysis

→ Analysis and evaluation of dangerous events, their sources (hazards) and impacts

Risk identification using qualitative methods

- scenario-based analysis
- simulation-based analysis

Risk evaluation using quantitative methods

- cardinal evaluation
- ordinal evaluation

4. Risk Analysis

Remarks

- Risk is the likelihood of an unwanted incident and its consequence for a specific asset
- Can be modeled e.g. by attack trees using attributes (probabilities or costs)

Risk Analysis of the BSI

■ For low and medium security requirements there exist defaults classifications of the *IT-Grundschutz* Catalogues

Steffen Helke: Software Security, 19th November 2018

12

Risk Assessment Matrix

		Probability				
<u>EXAMPLE</u> RISK		Very High	High	Medium	Low	Very Low
	Very High	Very High	Very High	Very High	High	High
	High	Very High	High	High	Medium	Medium
Conse- quence	Medium	High	High	Medium	Medium	Low
	Low	High	Medium	Medium	Low	Very Low
	Very Low	Medium	Low	Low	Very Low	Very Low

Source: http://diarmfs.com/risk-assessment-table/

Vehicular Security Design Process

→ Gray boxes describe the activities for the risk analysis

Source: M. Wolf & M. Scheibel: A Systematic Approach to a Quantified Security Risk Analysis for Vehicular IT Systems, LNI, 2016.

Steffen Helke: Software Security, 19th November 2018

Damage Potential Calculation

DP	Total damage potential classification
0-2	Insignificant
3 – 21	Medium
22 – 210	Critical
> 210	Catastrophic

$$DP = DP_{safety} + DP_{financial} + DP_{operational}$$

Damage category	tegory Damage reference		
Safety severity	Life-threatening injuries (survival uncertain), fatal injuries		
classes	Severe and life-threatening injuries (survival probable)		
	Light and moderate injuries	100	
	No injuries	0	
Finance severity classes (global	Existence-threatening financial damage (e.g., monetary damage is >30% of annual sales)		
sum)	Substantial financial damage, but yet not existence-threatening (e.g., monetary damage is 20% – 30% of annual sales)		
	Undesirable financial damage (e.g., monetary damage is 5% – 20% of annual sales)	10	
	No or tolerable financial damage (e.g., monetary damage is <5% of annual sales)	0	
Operational functionality severity classes	Vehicles unusable, i.e., one or more fundamental functions are affected. The vehicle usage is infeasible. This can be compared with FMEA severity rating above 8.		
	Service required, i.e., an important function is affected. The vehicle can be used only with massive restrictions. This can be compared with FMEA severity rating 6 to 8.	10	

Source: M. Wolf & M. Scheibel: A Systematic Approach to a Quantified Security Risk Analysis for Vehicular IT Systems, LNI, 2016.

Exemplary Automotive IT Security Risk Matrix

AP↓	Probability reference	Risk assessment			
Basic	Certain	Undesirable	Inacceptable	Inacceptable	Inacceptable
Enhanced Basic	Likely	Tolerable	Undesirable	Inacceptable	Inacceptable
Moderate	Possibly	Tolerable	Undesirable	Inacceptable	Inacceptable
High	Unlikely	Negligible	Tolerable	Undesirable	Inacceptable
Beyond	Rare	Negligible	Negligible	Tolerable	Inacceptable
High	Practically infeasible	Negligible	Negligible	Negligible	Undesirable
DP →		Insignificant	Medium	Critical	Catastrophic

→ Damage Potential Calculation

$$DP = DP_{safety} + DP_{financial} + DP_{operational}$$

→ Attack Potential Calculation

$$AP = AP_{time} + AP_{expertise} + AP_{knowledge} + AP_{access} + AP_{equipment}$$

Source: M. Wolf & M. Scheibel: A Systematic Approach to a Quantified Security Risk Analysis for Vehicular IT Systems, LNI, 2016.

Steffen Helke: Software Security, 19th November 2018

16

How to attribute an Attack Tree?

How to propagate the attributes?

Steffen Helke: Software Security, 19th November 2018

19

How to propagate probabilities?

How to propagate attributes?

- **1** A parent node evaluates to FEASIBLE if ...
 - all its sub-nodes also evaluated to FEASIBLE for an AND relationship or
 - one of its sub-nodes is also evaluated to FEASIBLE for a OR relationship
- 2 The *costs* of a parent node are ...
 - the sum of the costs of all sub-nodes for an *AND* relationship or
 - the costs of the most cost-effective sub-node for a *OR* relationship
- The *probability* of a parent node is ...
 - the product of the probabilities of all sub-nodes for an *AND* relationship or
 - the maximum of the probabilities of all sub-nodes for a *OR* relationship

Steffen Helke: Software Security, 19th November 2018

20

How to propagate probabilities?

How to propagate combined values?

P - probability Do not pay for \$ - cost of an attack purchases Other user's account Own account 0.5 \$ 400 0.1 \$ 1000 0.1\$0 Find out the Find out the Change delivery Deny receipt Receive Reclaim account name password address goods of goods money 0.1 \$ 1000 0.5 \$ 2000 0.01\$0 ■ Complex evaluation Threat Extort Spy out Guess functions required \$ 2000 0.6 0.2 \$ 1000 ■ Tool support, e.g. by Access to Unencrypted stored data communication SecurlTree®

Risk Analysis Tool

Remarks

■ Software developed by Amaneza

■ Basis: Attack trees

Features

22

24

- Risk analysis for risk optimization
- Models for identifying attackers and vulnerabilities
- Adequate threat assessment
- Comprehensive libraries for standard components available
- Ability to create your own libraries

Steffen Helke: Software Security, 19th November 2018

Steffen Helke: Software Security, 19th November 2018

2.

Attack Trees and Indicators of SecurITree

Quelle: http://www.amenaza.com/

Defining Nodes & Attacker Profiles

Source: http://www.amenaza.com/

Source: http://www.amenaza.com/

Assessment Procedure for SecurITree

Problem

- Absolute values (e.g. costs) are not often reasonable
- → Even small variations of the evaluation (e.g. \$1) immediately lead to completely different results

Solution

- Advanced Analysis Function: Curve function maps the readiness of an attacker more appropriately
- Step function (dashed line) represents previous description with absolute values

Steffen Helke: Software Security, 19th November 2018

Steffen Helke: Software Security, 19th November 2018

Textual Representations of Attack Trees

```
Goal: Open Safe
OR 1 Pick Lock
2 Learn Combo
OR 2.1 Find Written Combo
2.2 Get Combo From Target
OR 2.2.1 Threaten
2.2.2 Eavesdrop
OR 2.2.2.1 Listen to Conversation
2.2.2.2 Get Target to State Combo
2.2.3 Blackmail
3 Cut Open Safe
```

Textual Representations of Attack Trees

- → Graphical representation of realistic examples as trees can quickly become confusing
- → Textual descriptions are more suitable

Numbered List Format

```
Goal: Open Safe (OR)
1 Pick Lock
2 Learn Combo
3 Cut Open Safe
```

Alternative

```
Goal: Open Safe
OR 1 Pick Lock
2 Learn Combo
3 Cut Open Safe
```

27

Example: Attack Tree for Smart-Metering-System

Quelle: D. Podkuiko: Vulnerabilities in Advanced Metering Infrastructures, Pennsylvania State University, 2012.

28

Refinement of a Attack Tree for a Smart-Metering-System

Quelle: D. Podkuiko: Vulnerabilities in Advanced Metering Infrastructures, Pennsylvania State University, 2012.

Evaluation of the Attack Tree Notation

Advantages

- + Detailed analysis of attack scenarios is possible
- + Encapsulation & reuse of subtrees are supported
- + Analysis of threats leads to systematic design of countermeasures

Disadvantages

- Defining a realistic assessment is often difficult
- Trees become too complex for real-world attacks
- Evaluation of the tree leaves can be context-dependent, therefore reuse is often not possible

Steffen Helke: Software Security, 19th November 2018

Steffen Helke: Software Security, 19th November 2018

31

Activities of a Security Engineering Process

Activities of a Security Engineering Process

Correlations between Protection Goals

Tasks for a Protection Requirement Analysis

- → Check the feasibility of the collected protection goals
- → Suggest possible compromises in case of conflicts (e.g. pseudonymity)

Basic Theory

- → Multilateral Security
- → Correlations and monotony behaviour of protection goals

Steffen Helke: Software Security, 19th November 2018

34

35

Multilateral vs. Multilevel Security

Hierarchy vs. Coexistence

- Multilateral implements *no strictly hierarchical separation*, instead (equitable) coexistence of different protection areas
- Similar to the non-ordered security categories of multilevel security, however there are additionally strong hierarchical security levels

Top Secret
Secret
Confidential
Open

Democracy vs. Dictatorship

- No single party enforces protection goals against all other parties
- Multilateral security describes a democratic view on all communication partners, also called compartmented security

Multilateral vs. Multilevel Security

Multilateral Security

Definition

Multilateral security means the inclusion of *all* participants's protection interests as well as dealing with resulting conflicts, such as the development of a communication connection

Objectives

- Each person has individual protection goals and should formulate them
- 2 Conflicts will be identified and compromises negotiated
- **3** Everyone can enforce their protection goals on the basis of the negotiated compromise

Protection Goals for Secure Communication

Potential threats	Protection of communication content	Protection of communication circumstances
Unauthorized access on information → Confidentiality goals	Confidentiality Hiding	Anonymity Unobservability
Unauthorized modification of information → Integrity goals	Integrity	Accountability
Unauthorized impairment of functionality → Availability goals	Availability	Reachability Legal Enforceability

Steffen Helke: Software Security, 19th November 2018

Precise Definitions of Protection Goals (2)

37

Accountability ensures that sender and recipients of information cannot successfully deny having sent or received the information. This means that communication takes place in a provable way

Availability ensures that communicated messages are available when the user wants to use them

Reachability ensures that a peer entity (user, machine, etc.) either can or cannot be contacted depending on user interests

Legal Enforceability ensures that a user can be held liable to fulfill his/her legal responsibilities within a reasonable period of time

Precise Definitions of Protection Goals (1)

Confidentiality ensures that nobody apart from the communicants can discover the content of the communication

Hiding ensures the confidentiality of the transfer of confidential user data. This means that nobody apart from the communicants can discover the existence of confidential communication

Anonymity ensures that a user can use a resource or service without disclosing his/her identity, not even the communicants can discover the identity of each other

Unobservability ensures that a user can use a resource or service without others being able to observe that the resource or service is being used. Parties not involved in the communication can observe neither the sending nor the receiving of messages

Integrity ensures that modifications of communicated content (including the sender's name, if one is provided) are detected by the recipient(s)

Steffen Helke: Software Security, 19th November 2018

38

Correlations between Protection Goals

Against which parties are the protection goals to be enforced?

1 Common perspective against the rest of the world

2 *Individual* perspective from A against B and the rest of the world sometimes with the help of a trusted third party

Steffen Helke: Software Security, 19th November 2018

Properties of a Security Policy Model

Protection goal	Who against	Whom?	Common or individual perspective	
Confidentiality	A & B	С	We want to enforce confidentiality of the message content	
Hiding	A & B	С	We want to hide the existence of the message	
Anonymity	A B	B(+C) A(+C)	I want to remain anonymous He or she wants to remain anonymous	
Unobservability	A(&D) B(&D)	B(+C) A(+C)	I want to stay unobservable He or she wants to stay unobservable	
Integrity	A & B	С	We want integrity of the message content	
Accountability	A(&D) B(&D)	B(+C) A(+C)	I agree to be accountable He or she wants me to be accountable for communicating	
Availability	A&B(&D)	С	We want to access or receive messages in time	
Reachability	A B	B A	I want to reach him He or she wants to be reachable	
Legal Enforceability	A(&D)	B(+C)	/ want his promises to be legally enforceable	

Steffen Helke: Software Security, 19th November 2018

41

42

A security policy model is a design artifact

Security Policy Model

Definition

A document that describes precisely and concisely which protection mechanisms are to be implemented

- → based on attacker model
- → is the basis for the system design

Characteristic Properties

- **1** Approved by the management
- 2 Rules are valid for all employees
- 3 Only required data is made available
- 4 All policy violations are reported

Important Documents of the Security Design

1. Security Policy Model

 Security/protection properties that a system or a type of system should have

2. Security Target

- Protection mechanisms provided by a concrete implementation to achieve certain objectives related to the properties of (1.)

3. Protection Profile

- similar to (2.), but independent of the implementation, e.g. to enable the comparability of different products

Steffen Helke: Software Security, 19th November 2018

44

Steffen Helke: Software Security, 19th November 2018

45

Classification

There are *two types* of security policy models at the design level with the following properties.

- → It provides a general security framework,
- → and it has to be instantiated for specific applications

Models

- 1. Multilevel Security
- 2. Multilateral Security

Access Control Strategies

... are the core of a security policy model

1. Discretionary Access Control (DAC)

- restricting access to objects based on the identity of subjects

2. Role Based Access Control (RBAC)

- access control mechanism defined around roles and privileges

3. Mandatory Access Control (MAC)

- the operating system constrains the ability of a subject to access to an object

Discretionary Access Control (DAC)

documents \$ \$ \$ \$ \$ \$ \$ permissions

Role Based Access Control (RBAC)

Steffen Helke: Software Security, 19th November 2018

48

Steffen Helke: Software Security, 19th November 2018

49

Mandatory Access Control (MAC)

Multilevel Security

Which type of access control is required for Multilevel Security?

Problem

- User-based Access Control is often not sufficient for security-critical applications, e.g. in the military domain

Solution

- Implementation of multilevel security concepts
- System-based Access Control (Mandatory Access Control, MAC)
- *Confidentiality* can be implemented using the Bell-LaPadula model (BLP)

Bell-LaPadula Security Model (BLP)

- Developed by David Elliott Bell and Len J. LaPadula
- Late 1960s / early 1970s
- 1969: First practical implementation with the operating system MULTICS (predecessor of UNIX)
- 1973: Bell-LaPadula model was designed for the U.S. Air Force
 - ⇒ U.S. Air Force had increased security interest in its software (especially confidentiality)

Steffen Helke: Software Security, 19th November 2018

51

Steffen Helke: Software Security, 19th November 2018

52

How would a hardware design for BLP look like?

- Idea: Use of an *information* pump [Anderson01]
- Copy all data permanently from lower to higher security levels
- Benefit: Approach guarantees confidentiality
- Drawback: High costs

→ Based on this simple idea, software solutions were developed

The most important elements of BLP are Security Classes

... **Security classes** are represented as pairs (A, C), where

A: Sensitivity level (security label)

C: Compartments (set of security categories)

Sensitivity level Compartments (e.g.) 0 unclassified D doctor

1 confidential N nurse

2 secret P patient

3 top secret A admin staff

How to compare security classes?

Determinations for BLP

- Sensitivity levels are totally ordered top secret (3) >secret (2) >confidential (1) >unclassified (0)
- 2 Compartments are sets which can only be partially ordered $\{\} \subseteq \{D\} \subseteq \{D, N\} \subseteq \dots$
- → Security classes form a lattice structure and are only partially ordered

Example

- Assuming there are three labels given $L_1 = (3, \{D, N, P\}), L_2 = (2, \{N\}), L_3 = (3, \{N, P, A\})$
- Is $L_1 < L_2$? no
- Is $L_2 \leq L_3$? yes
- Is $L_1 \le L_3$? L_1 and L_3 are not comparable

How does access control work in BLP?

... Information from (A, C) to (A', C') shall flow if and only if

- 1 A < A' and
- $C \subset C'$

Two Rules for Confidentiality

- No Read Up: Subjects are not allowed to read an object (data) from a higher security class
- No Write Down: Subjects are not allowed to write an object (data) of a lower security class

Determinations for BLP

- Security class of a subject is also called security *clearance*
- Security class of an object is also called security *classification*

Steffen Helke: Software Security, 19th November 2018

Steffen Helke: Software Security, 19th November 2018

56

No Read Up (Simple Security Property)

... assumed if SC3 < SC2 < SC1, then what is allowed?

No Read Up (Simple Security Property)

... assumed if $SC3 \leq SC2 < SC1$, then what is allowed?

57

No Write Down (*-Property)

... assumed if $SC3 < SC2 \le SC1$, then what is allowed?

Example: Hospital Scenario

Note:

- all compartments of a security class must be linked by conjunction
- e.g. (_, {D, N}) means, reading is only allowed if the subject is authorized for both compartments doctor and nurse
- Will it be possible for a person or process P with $SC = (1, \{D\})$ to read a document with $SC = (0, \{D\})$? yes
- Is it possible for P to expand/write a document with $SC = (2, \{D, N\})$? yes
- Are there documents that P is allowed to read and write at the same time? yes, documents with $SC = (1, \{D\})!$