Latent Semantic Indexing

Seminar "Theoretical Topics in Data Science"

Vahe Eminyan

vahe.eminyan@rwth-aachen.de

18.11.2023

Overview

Introduction

LSI Background

Original Paper Overview and Emphasized Aspect

LSI by Random Projection

References

Introduction

Motivation

- Large datasets, often organized in tabular form, represented as matrices
 - Term-document matrix representing word occurrence in documents
 - Movie-user matrix representing watched movies of users
- Interesting aspects
 - Find documents semantically associated with a query
 - Recommend a new movie to a user

			1	_		Document
	Doc 1	Doc 2		Doc m		0 1
Term 1	0	1		1		
Term 2	1	0		1	——— Terms	1 0
						• •
Term n	1	0		0		(10
	<u> </u>					$n \times m$

Introduction

Latent Semantic Indexing

- LSI as an information retrieval method
- Finds the latent (hidden) semantic structure of textual data
- Represent term-document matrix as product of three matrices: term-topic, topic-topic and topic-document matrix
- Answer queries with help of these matrices
- Based on singular value decomposition of the matrix

LSI Background

In this section

- SVD explanation
- How does LSI work

LSI Background

Singular Value Decomposition (SVD)

Original Paper Overview and Emphasized Aspect

In this section

- Two interesting questions Papadimitriou et al. investigated [1]
 - Why does LSI perform well (why does it find the documents semantically related to each other)
 - How can we speed up the computation
- We will focus on the second question

LSI by Random Projection

In this section

- In this section we will investigate the question "How we can speed up the computation": Informal formulation of the main theorem of this section (Theorem 5 original paper)
- Introduction of theorems and lemmas that are necessary for the proof of the main theorem
- Introduction: the main theorem (Theorem 5 original paper)
- Proof of the main theorem (Theorem 5 original paper)
- Computational savings achieved by LSI by random projection

References

Christos H. Papadimitriou, Prabhakar Raghavan, Hisao Tamaki, and Santosh Vempala.

Latent semantic indexing: A probabilistic analysis.

Journal of Computer and System Sciences, 61(2):217–235, 2000.

URL: https://www.sciencedirect.com/science/article/pii/S0022000000917112, doi:10.1006/jcss.2000.1711.

References

The End