Apprentissage Automatique (4/7): Apprentissage non supervisé

S. Herbin, B. Le Saux, A. Boulch, A. Chan Hon Tong

20 février 2018

Sélection de caractéristiques : pourquoi ?

Problèmes de l'analyse de données:

Données de grande dimension:

- ► Ex : image = qq MPixels
- ▶ Info redondante, non-pertinente
- ▶ Fléau de la dimension : espace vide (exemple : 50 dimensions, 20 niveaux par dimensions \implies 20⁵⁰ cellules...)

Grand volume de données:

- ► Ex: 1 minute de données produites par le collisionneur de particules du CERN = 100 POctets...
- ► Temps de traitement extrêmement longs

Sélection de caractéristiques : pourquoi ?

Exemple : visualiser et analyser la structure de protéines

Sélection de caractéristiques : pourquoi ?

Définition:

Action de selectionner un ensemble réduit de variables utiles pour représenter les données (avant d'appliquer les algorithmes d'apprentisssage et de prédiction)

Motivations pour sélectionner des caractéristiques:

- Avoir un modèle simple des données, humainement compréhensible
- ► Temps d'estimation et d'apprentissage réduits
- ► Éliminer l'information non-pertinente pour permettre une bonne généralisation de l'apprentissage

Sélection de caractéristiques : plan

Réduction de dimensionalité

Analyse en Composantes Principales Analyse Discriminante Linéaire Pour aller plus loin: t-SNE

Catégorisation

K-means

CApproches spectrales, DBSCAN

Pour aller plus loin : apprentissage de dictionnaire

Conclusion

Dessinez un poisson...

Les poissons vivent en 3D...

- Les poissons vivent en 3D...
- Comment les représenter sur une feuille 2D ?

- Les poissons vivent en 3D...
- Comment les représenter sur une feuille 2D ?
- En choisissant le meilleur point de vue

- Les poissons vivent en 3D...
- Comment les représenter sur une feuille 2D ?
- En choisissant le meilleur point de vue
- ► Encore mieux : en perspective (Giotto, 1420)

L'ACP est une méthode de projection qui permet de représenter au mieux les données d'origine en réduisant le nombre de dimensions.

Algèbre Linéaire (Rappel)

 Espace vectoriel E: structure permettant des combinaisons linéaires de vecteurs

$$\mathbf{x_k} = (x_k^1, \dots, x_k^n)$$

▶ Base *B* : famille de vecteurs *libre* et *génératrice*

Algèbre Linéaire (Rappel)

► Espace vectoriel *E*: structure permettant des combinaisons linéaires de *vecteurs*

$$\mathbf{x_k} = (x_k^1, \dots, x_k^n)$$

- ▶ Base *B* : famille de vecteurs *libre* et *génératrice*
- ► Changement de base : endomorphisme $E \rightarrow E$, $B \mapsto B'$.
- Projection : Application linéaire de E → F, ss-EV de E.

Objectif géométrique de l'ACP

L'ACP est la recherche du sous-espace de projection qui permet la représentation la plus fidèle des variables dans un sous-espace de dimension réduite.

Statistiques (Rappel)

Soient X, Y 2 Variables Aléatoires

- ► Moyenne $\bar{x} = \frac{1}{N} \sum x$
- ▶ Variance $\sigma_X = \frac{1}{N} \sum (x \bar{x})^2$: mesure de la dispersion
- ▶ Covariance $\sigma_{X,Y} = \frac{1}{N} \sum (x \bar{x})(y \bar{y})$: mesure prop. à la corrélation

Soit $\mathbf{X} = (X^1, \dots, X^n)$ un vecteur aléatoire :

Matrice de Variance-Covariance

$$Var(\mathbf{X}) = \begin{pmatrix} \sigma_{X^1}^2 & \sigma_{X^1X^2} & \cdots & \sigma_{X^1X_n} \\ \sigma_{X^1X^2} & \sigma_{X^2}^2 & \cdots & \sigma_{X^2X^n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{X^1X^n} & \sigma_{X^2X^n} & \cdots & \sigma_{X^n}^2 \end{pmatrix}$$

Objectif statistique de l'ACP

$$\begin{pmatrix} \sigma_{X^1}^2 & \sigma_{X^1X^2} & \cdots & \sigma_{X^1X^n} \\ \sigma_{X^1X^2} & \sigma_{X^2}^2 & \cdots & \sigma_{X^2X^n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{X^1X^n} & \sigma_{X^2X^n} & \cdots & \sigma_{X^n}^2 \end{pmatrix} \rightarrow \begin{pmatrix} \sigma_{X^1}^2 & 0 & \cdots & 0 \\ 0 & \sigma_{X^2}^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma_{X^n}^2 \end{pmatrix}$$

L'ACP cherche à :

- ▶ Maximiser la dispersion sur les 1ères dimensions de la nouvelle base : $\sigma_{X^i} \gg 0$ et $\sigma_{X^i} > \sigma_{X^j} \ \forall i > j$
- ▶ Décorréler chaque dimension : $\sigma_{X^iX^j} \rightarrow 0$

Analyse en Composantes Principales : Algorithme

Algorithme

Échantillon $\{\mathbf{x}_k = (x_k^1, \dots, x_k^n)_{1 \le k \le p}\}$, réalisations d'un vecteur aléatoire $\mathbf{X} = (X^1, \dots, X^n)$. M matrice $n \times p$ des vecteurs en lignes.

- 1. Centrer l'échantillon $\forall i \, X^i \mapsto X^i \bar{X}^i$, tq : $B = M \bar{M}$
- 2. Construire la matrice de variance-covariance $Var(\mathbf{X}) = \frac{1}{\rho 1} B^T B$
- 3. Diagonaliser la matrice de variance-covariance ¹:

$$Var(\mathbf{X}) = P\Delta P^T$$

4. Trier les valeurs propres par ordre décroissant (et les vecteurs propres de *P*)

 \Rightarrow On obtient la matrice de passage P et les valeurs propres Δ_i

¹Symétrique donc diagonalisable par le th. de Weierstass

Analyse en Composantes Principales : Propriétés

Propriétés

▶ Matrice de passage $P = (\mathbf{u^1}, \dots, \mathbf{u^n})$ composée des vecteurs de la nouvelle base (même dimension) :

$$T = PM$$

Matrice de projection dans la base d'un sous-espace vectoriel optimal pour la représentation $P_{1 \rightarrow l} = (\mathbf{u^1}, \dots, \mathbf{u^n})$ pour l < n:

$$T = P_{1\rightarrow I}M$$

Analyse en Composantes Principales : Propriétés

Propriétés

- ▶ Vecteurs propres $P = (\mathbf{u^1}, \dots, \mathbf{u^n})$ associés aux valeurs propres $\Delta_i \propto \sigma_{X^i}^2$ triées par ordre décroissant.
- ightharpoonup Variance \propto information statistique portée par la dimension. Lien avec la théorie du signal :
 - les composantes principales avec une large dynamique représentent le signal,
 - celles avec une faible variance constituent le bruit.

Revenons à nos poissons

Points $\in \mathbb{R}^3$ répartis sur la surface du Discus Alenquer

Variances:

$$\Delta \propto \left(egin{array}{ccc} 0.17 & 0 & 0 \\ 0 & 0.15 & 0 \\ 0 & 0 & 0.01 \end{array}
ight)$$

Base des vecteurs propres:

Revenons à nos poissons

Projections sur les 2 premières (ou dernières) composantes

Plus de poissons...

3D vs. 1ères CP (= représentation canonique) vs. dernières CP

Plus complexe : analyse de vidéos

Images vidéos caractérisées par des histogrammes de couleurs et visualisées selon les 2 premières composantes issues de l'ACP

Analyse en Composantes Principales : Résumé

Points clés de l'ACP

- Représenter des données de grande dimension
- Réduire la dimension
- Décorréler les variables
- Basé sur la diagonalisation de la matrice de variance-covariance des données (vecteurs)

Utilisations

- Pré-traitement pour l'analyse de données (cf. cours 1, 2, 3)
- Visualisation

- ▶ L'ACP optimise la variance globale d'un ensemble de données $X = \{\mathbf{x_k} \in \mathbb{R}^n\}_{1 \le k \le p}$
- Peut-on faire mieux quand les données appartiennent à des sous-groupes connus ?
- Données étiquetées (ou labellisées
 une couleur par groupe)

- Données étiquetées (ou labellisées)
- ▶ Ensemble de couples de données avec leur groupe respectif noté $(X,Y) = \{(\mathbf{x_k},y_k), \ \mathbf{x_k} \in \mathbb{R}^n, y_k \in \{1,\dots,C\}\}_{1 \leq k \leq p}$

Objectifs

- ► En classification on vise la **séparabilité** des données
- ► Mettre en évidence les **différences** entre classes

Cas à 2 classes

- ► Recherche du vecteur unitaire **u** de la droite ALD tel que les 2 groupes sont séparés au mieux après projection
- ▶ Après projection en 1D, $\mathbf{x}'_{\mathbf{k}} = \mathbf{u}^T \mathbf{x}_{\mathbf{k}}$

Cas à 2 classes

- ▶ Après projection en 1D, $\mathbf{x}'_{\mathbf{k}} = \mathbf{u}^T \mathbf{x}_{\mathbf{k}}$
- La séparabilité des données est quantifiée par le critère de Fisher : $f(\mathbf{u}) = \frac{(m_1' m_2')^2}{\sigma_1^2 + \sigma_2^2}$

▶ Recherche de **u** tel que $f(\mathbf{u})$ est maximisée.

Cas à 2 classes

► Critère de Fisher : $f(\mathbf{u}) = \frac{(m'_1 - m'_2)^2}{\sigma_1^2 + \sigma_2^2}$

- Matrice de covariance inter-classe Γ_B à maximiser: $(m'_1 m'_2)^2 = \mathbf{u}^T \Gamma_B \mathbf{u}$
- Matrices de covariance intra-classe Γ_c , c=1,2 à minimiser: $\Gamma_c = \frac{1}{N} (\mathbf{x} \mathbf{m_c}) (\mathbf{x} \mathbf{m_c})^T$

Cas multiclasse

- Projection dans un sous-espace $\mathbf{x_k}' = V\mathbf{x_k}$
- Soient:
 - $ightharpoonup p^i$ le nombre d'exemples de la classe i,
 - $ar{x}^i = rac{1}{p^i} \sum_{\mathbf{x} \in classei} \mathbf{x}^i_k$ la moyenne de la classe i,
 - et $\bar{x} = \frac{1}{p} \sum_{\mathbf{x_k}} \mathbf{x}_k^i$ la moyenne globale.

Cas multiclasse

- Fonction objective à minimiser de l'Analyse Discriminante Multiple: $j(V) = \frac{\det(V^t S_B V)}{\det(V^t S_W V)}$
- Avec la matrice de variance intra-classe : $S_W = \sum_{i=1}^{c} \sum_{\mathbf{x} \in classei} (\mathbf{x_k} \bar{x}^i) (\mathbf{x_k} \bar{x}^i)^t$
- ► Et la matrice de variance inter-classes : $S_B = \sum_{i=1}^{c} n^i (\bar{x}^i - \bar{x}) (\bar{x}^i - \bar{x})^t$

Algorithme

- 1. Calcul des moyennes de classe \bar{x}^i (dimension n)
- 2. Calcul des matrices de variance intra-classe S_W et inter-classes S_B
- 3. Calcul des vecteurs propres $\mathbf{v_1}, \dots, \mathbf{v_n}$ et valeurs propres $\lambda_1, \dots, \lambda_n$ pour les matrices de variance
- 4. Tri des vecteurs propres par ordre décroissant des valeurs propres
- 5. Sélection des f vecteurs propres associés aux plus grandes λ_k \rightarrow matrice de passage V (dimension d*f) où chaque colonne est un vecteur propre v_k .
- 6. Projection dans le sous-espace : $\mathbf{x_k}' = V\mathbf{x_k}$

Propriétés

- Matrice de passage $V_n = (\mathbf{v^1}, \dots, \mathbf{v^n})$ composée des vecteurs de la nouvelle base (même dimension) : T = PM
- Matrice de projection dans la base d'un sous-espace vectoriel optimal pour la classification V_{1→f} = (v¹,...,vf) pour f ≤ n : T = P_{1→1}M

 L'Analyse Discrminante Linéaire est une ACP sur les vecteurs moyens de chaque classe, normalisée par la variance intra-classe

Analyse Discriminante Linéaire : Résumé

Points clés de l'ADL

- Représenter des données labelisées de grande dimension
- Optimiser la séparabilité des données projetées
- Basé sur la variance intra-classe (à minimiser) et de la variance inter-classes (à maximiser)

Utilisations

- Pré-traitement pour l'analyse de données (cf. cours 1, 2, 3)
- Classification sommaire
- Visualisation

Définition

- ► t-SNE = t-distributed stochastic neighbor embedding
- ▶ Approche **non-linéaire** de réduction de dimension, proposée par [Van Der Maaten & Hinton, 2008]

Objectifs

Trouver un mapping en faible dimension qui réflète au mieux les similarités entre les observations dans l'espace de départ.

Algorithme (1/2)

Soient N observations $(x_1, ..., x_N)$ en grande dimension.

1. Calcul des probabilités de similarité des observations:

$$p_{j|i} = \frac{\dot{\exp}(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$
 et $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$

2. ...

Objectifs

t-SNE cherche à apprendre une représentation d-dimensionnelle $\mathbf{y}_1, \dots, \mathbf{y}_N$ (avec $\mathbf{y}_i \in \mathbb{R}^d$) qui réflète au mieux les similarités p_{ij} .

Algorithme (2/2)

Soient N observations (x_1, \ldots, x_N) en grande dimension.

1. Calcul des probabilités de **similarité** des observations:

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$
 et $p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$

2. Définition des probabilités de **similarité** des représentations cibles selon une distribution de Student : $q_{ij} = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k,m,k\neq m}(1+||y_k-y_m||^2)^{-1}}$

$$q_{ij} = \frac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k,m,k\neq m} (1+||y_k-y_m||^2)^{-1}}$$

- 3. Minimisation de la divergence de Kullback-Leibler de Q par rapport à P : $KL(P||Q) = \sum_{i \neq i} p_{ij} \log \frac{p_{ij}}{q_{ii}}$
- Distrib. de Student force les individus dissimilaires à être éloignés
- KL(P||Q) facilement dérivable, donc optimisation par descente de gradient

t-SNE sur mots chinois + anglais

t-SNE: Résumé

Points clés de t-SNE

- Approche non-linéaire de réduction de données
- Optimiser la distrib. des similarités entre observations et projections
- Dans l'espace de proj., la distrib. de Student éloigne les individus dissimilaires
- Optimisation par descente de gradient (cf. cours réseaux de neurones 5, 6)

Utilisations / liens

- Pré-traitement pour l'analyse de données (cf. cours 1, 2, 3)
- Visualisation
- Autre approche pour apprendre un espace de représentation : les auto-encodeurs (cf. cours 6)

Catégorisation

Définition

- Trouver des catégories d'objets proches ou similaires
- Synonymes : partitionnement, clustering...
- ▶ ... classification non-supervisée : des données $\{x_i|i\in\{1..N\}\}$ dans \mathbb{R}^n mais pas de labels

Objectifs

- ▶ Trouver les groupes de données *proches* dans \mathbb{R}^n (notion de distance)
- Mettre en évidence des catégories ("Qui se ressemble s'assemble")

Catégorisation : K-means

K-means

- ▶ Soit *K* le nombre de groupe cherchés.
- ▶ Un groupe (d'indice $j \in \{1 \cdots K\}$) = un ensemble de points.
- ▶ Soit $u_{ii} \in \{0,1\}$ l'appartenance de chaque x_i au groupe j
- ▶ Soient $B = \{\beta_j | j \in \{1 \cdots K\}\}$ les prototypes qui caractérisent ces groupes.

L'algorithme K-means minimise :

$$J_{B,U}(X) = \sum_{j=1}^{K} \sum_{i=1}^{N} (u_{ji})^m d^2(x_i, \beta_j)$$

Catégorisation : K-means

Algorithme

Initialiser les β_i , puis itérer :

- 1. Assigner chaque donnée x_i au plus proche β_j
- 2. Recalculer les prototypes selon: $\beta_j = \frac{\sum_{i=1}^N u_{ji}*x_i}{\sum_{i=1}^N u_{ji}}$ (moyenne des observations du groupe)

Catégorisation : K-means

Propriétés

- L'algorithme fait diminuer la fonction de coût $J_{B,U}(X)$ à chaque itération.
- Il y a un nombre fini de K partitions possible, donc l'algorithme converge.
- Mais la solution peut ne pas être optimale (minimum local)!

- ▶ importance de l'initialisation
- ▶ Par exemple: choisir β_j parmi les observations x_i ...

Catégorisation

Variante statistique :

- ► Paramètres d'un *Modèle de Mélange de Gaussiennes (GMM)* estimé par l'algorithme *Expectation-Maximisation*
- ▶ x_i réalisation d'un V.A. modélisée par un Mélange de Gaussiennes : $p(x_i) = \sum_{1}^{K} p(x_i|k)P(k)$
- ▶ $d(x_i, \mu_k) \longrightarrow p(x_i|k) \propto \exp(-||x_i \mu_k||^2/2\sigma_k^2)$ (Gaussienne simplifiée)
- ▶ Paramètres à estimer : $\forall k : P(k), \mu_k, \sigma_k$

Catégorisation

Variantes et trucs :

- lacksquare Fuzzy C-means : appartenance $u_i^j \in [0,1]$
- Formes variées : distance de Mahalanobis (FCM) / Matrice de covariance complète (GMM)
- ▶ Données aberrantes : $si \forall k \ d(x_i, \mu_k), x_i \mapsto \text{categorie bruit}$
- Critères pour estimer le nombre de catégorie :
- Initialisation des μ_k : uniformément dispersés parmi les données

Partitionnement spectral:

- Matrice de similarité,
- Réduction de dimension (1ers vecteurs propres)
- K-means

https://fr.wikipedia.org/wiki/Partitionnement_spectral

⇒ objets complexes, non vectoriels

Catégorisation : catalogue de méthodes alternatives

DBSCAN:

- \blacktriangleright Partionnement des données en catégories de MinPts points se trouvant dans un rayon ϵ
- Parcours de proche en proche de tous les points pour ajouter des points à la catégorie courante
- \Rightarrow estime automatiquement le nombre catégories,
- ⇒ gère les données aberrantes

Catégorisation : pour aller plus loin

Apprentissage de dictionnaire:

- ► Estime un dictionnaire (=ensemble d'éléments de base) qui représente un ensemble de données
- Encode chaque donnée en fonction du dictionnaire (sparse encoding)

Catégorisation : pour aller plus loin

Apprentissage de dictionnaire:

- ► Estime un dictionnaire (=ensemble d'éléments de base) qui représente un ensemble de données
- Encode chaque donnée en fonction du dictionnaire (sparse encoding)
- ▶ Notion-clé : parcimonie (*sparsity*); une donnée est représentée par seulement quelques éléments du dictionnaire

Exemple: Bag-of-Words pour les images

Catégorisation : Résumé

Points clés du clustering

- Regrouper des données non-labelisées en catégories
- Notion de distance ou de similarité entre échantillons
- Comme l'ADL, idée de variance intra-classe (à minimiser) et de variance inter-classes (à maximiser)

Utilisations

- Pré-traitement pour l'analyse de données (cf. cours 1, 2, 3) : Bag-of-words, superpixels, etc.
- Classification non-supervisée
- Visualisation

Cours n°3: Sélection de caractéristiques

Notions phares du jour

- ACP, LDA, t-SNE
- Catégorisation, classification non-supervisée
- Préparation des données (pre-processing)

Concepts généraux

- Grande dimension / Big data (curse of dimensionality)
- Caractéristiques, espace de représentation (projection et mapping, linéaire et non-linéaire)
- Similarité intra-classe, variance inter-classes

Sélection de caractéristiques

TD à suivre:

- ► ACP sur exemple jouet
- ► Eigen faces
- k-means pour la segmentation couleur

