



# **Practical session 7: RISK PREDICTION**

# Advanced Statistics for Records Research

# **SOLUTIONS**

# **Data exploration**

4. About 25% of the 2,000 individuals die – this is a high-risk population. There is roughly 50% males and 50% females, aged 40-80.

#### . tab dead

| Cum.            | Percent        | Freq.        | event           |
|-----------------|----------------|--------------|-----------------|
| 74.55<br>100.00 | 74.55<br>25.45 | 1,491<br>509 | Alive  <br>Dead |
|                 | 100.00         | 2,000        | Total           |

. tab sex

| Cum.  | Percent        | Freq.                 | sex              |  |  |
|-------|----------------|-----------------------|------------------|--|--|
| 48.90 | 48.90<br>51.10 | 978<br>1 <b>,</b> 022 | Female  <br>Male |  |  |
|       | 100.00         | 2,000                 | Total            |  |  |

. summ age

| Variable | l Ob | s Mean   | Std. Dev | . Min | Max |
|----------|------|----------|----------|-------|-----|
| age      | 2,00 | 0 60.451 | 11.54423 | 40    | 80  |



# Randomly split data into training and validation parts

5. [No output, except a newly created indicator variable S]





### Fit model in training data and predict risks

6. The results below are for the variable S created after setting the seed to 1111 (in Stata version 14.2).

. logistic dead c.age i.sex c.sbp c.bmi if S==0

| Logistic regre |          | 3         |       | Number of<br>LR chi2(<br>Prob > c<br>Pseudo F | (4)<br>chi2 | =<br>=<br>=<br>= | 1,000<br>205.95<br>0.0000<br>0.1889 |
|----------------|----------|-----------|-------|-----------------------------------------------|-------------|------------------|-------------------------------------|
| dead           |          | Std. Err. | Z     | P> z                                          | [95%        | Conf.            | Interval]                           |
| age  <br>      | 1.10318  | .0093403  | 11.60 | 0.000                                         | 1.085       | 025              | 1.12164                             |
| sex            |          |           |       |                                               |             |                  |                                     |
| Male           | 1.299215 | .2178909  | 1.56  | 0.119                                         | .9352       | 468              | 1.804828                            |
| sbp            | 1.046004 | .0091674  | 5.13  | 0.000                                         | 1.02        | 819              | 1.064127                            |
| bmi            | 1.051433 | .0289298  | 1.82  | 0.068                                         | .9962       |                  | 1.109691                            |
| _cons          | 6.62e-07 | 9.74e-07  | -9.67 | 0.000                                         | 3.70e       | -08              | .0000118                            |

7. The predicted risks are summarised and graphed below (in datasets S=0 and S=1 combined).

```
. bysort dead: summ m2pr

-> dead = Alive

Variable | Obs Mean Std. Dev. Min Max

m2pr | 1,491 .193726 .1632586 .0114158 .8532454

-> dead = Dead

Variable | Obs Mean Std. Dev. Min Max

m2pr | 509 .3846043 .1976729 .0166571 .828801
```

. graph box m2pr, over(dead)







### **Validation**

- 8. In the training dataset, the ROC is 79%. This means that a person who did die has a 79% probability of having a higher predicted risk (of dying) than someone who did not. This shows the model has fairly good discrimination (ability to separate those who did and did not experience the event of interest).
- . roctab dead m2pr if S==0, graph specificity



- 9. The Hosmer-Lemeshow goodness of fit table for the two (S=0 and the S=1) datasets were very similar. Both showed evidence of a well calibrated model.
  - . estat gof if S==0, group(10) table

Logistic model for dead, goodness-of-fit test

(Table collapsed on quantiles of estimated probabilities)

| +   | <br> | Prob   | <br> | <br>Obs 1 | <br> | Exp 1 | <br> | <br>Obs 0 | <br> | Exp_0 | <br>  T | <br>otal |
|-----|------|--------|------|-----------|------|-------|------|-----------|------|-------|---------|----------|
|     | -+-  |        | -+-  |           | -+   |       | +-   |           | -+   |       | + – – . |          |
| 1   | 1    | 0.0410 | 1    | 4         | 1    | 2.9   |      | 96        |      | 97.1  |         | 100      |
| 1 2 |      | 0.0630 |      | 6         |      | 5.1   |      | 94        |      | 94.9  |         | 100      |
| 3   |      | 0.0909 |      | 7         |      | 7.6   |      | 93        |      | 92.4  |         | 100      |
| 4   |      | 0.1206 |      | 7         |      | 10.5  |      | 93        |      | 89.5  |         | 100      |
| 1 5 |      | 0.1678 |      | 18        |      | 14.3  |      | 82        |      | 85.7  |         | 100      |
|     | +-   |        | -+-  |           | +    |       | +-   |           | +    |       | +       |          |
| 1 6 |      | 0.2295 |      | 18        |      | 19.9  |      | 82        |      | 80.1  |         | 100      |
| 1 7 |      | 0.3214 |      | 29        |      | 27.6  |      | 71        |      | 72.4  |         | 100      |
| 8   |      | 0.4164 |      | 28        |      | 36.4  |      | 72        |      | 63.6  |         | 100      |
| 9   |      | 0.5331 |      | 52        |      | 47.5  |      | 48        |      | 52.5  |         | 100      |
| 10  |      | 0.8532 |      | 66        | -    | 63.1  |      | 34        |      | 36.9  |         | 100      |

number of observations = 1000
number of groups = 10
Hosmer-Lemeshow chi2(8) = 7.66
Prob > chi2 = 0.4671





10. Bar graphs comparing the predicted and observed risks in the S=0 and S=1 datasets also show good calibration (in both the training and validation data).



