Конспект по математической логике и теории алгоритмов.

1 Исчисление высказываний.

Логическая формула - это выражение со значениями (0,1), переменными $(x,y,z\dots)$ и операциями $(\cdot,\vee,\Longrightarrow\dots)$

Пример арифметического выражения:

$$\frac{(z+x)+y-10}{2}$$

Логическое выражение:

$$(1+x) \Longrightarrow (xy \Longleftrightarrow \bar{y}\bar{z})$$

1 - Значение x, xy, yz - Переменные $\Longrightarrow, \Longleftrightarrow, \bar{y}\bar{z}$ - Операции.

Значения: 0 - ложь, 1 - истина

Операции:

1. Унарная операция:

• Отрицание -, ¬

x	\bar{x}
0	1
1	0

Таблица 1: Отрицание

2. Бинарные операции:

x	y	xy	$x \lor y$	$x \Longrightarrow y$	$x \Longleftrightarrow y$	$x \oplus y$
0	0	0	0	1	1	0
0	1	0	1	1	1	0
1	0	0	1	0	0	1
1	1	1	1	1	1	0

Таблица 2: Бинарные операции

- Конъюнкция \\, & Логическое "И"
- Дизъюнкция V Логическое "Или"
- Импликация ⇒
 Х влечет У, одно следует из другого
- Иквивалентность \iff Проверка равносильности
- Исключающее "или" Сложение по mod 2

3. Другие операции:

x	y	0	$x \triangle y$	$x \bigtriangledown y$	x	y	$x \downarrow y$	\bar{y}	$y \Longrightarrow x$	\bar{x}	x y	1
0	0	0	0	0	0	0	1	1	1	1	1	1
0	1	0	0	1	0	1	0	0	0	1	1	1
1	0	0	1	0	1	0	0	1	1	0	1	1
1	1	0	0	0	1	1	0	0	1	0	0	1

Таблица 3: Другие операции

- Ноль 0
- Запрет по $Y x \triangle y$
- Запрет по $X x \nabla y$
- X
- Y
- \bullet Стрелка Пирса $x \downarrow y$

- Отрицание Y \bar{y}
- Импликация $y \Longrightarrow x$
- Отрицание X \bar{x}
- \bullet Штрих Шеффера x|y
- Единица 1

Свойства операций:

1. Коммутативность

&, \vee , \Longleftrightarrow , \oplus - коммутативны.

$$xy = yx$$
 $x \lor y = y \lor x$ $x \Longleftrightarrow y = y \Longleftrightarrow x$ $x + y = y + x$

В данном случае, проверка может быть такой:

$$xy=yx$$
 - Умножение. $x\Longleftrightarrow y=y\Longleftrightarrow x$ - Равенство. $x+y=y+x$ - Сумма в Z_2

Универсальный способ проверки: Проверить равенство двух логический выражений с помощью таблицы.

x	y	$x \lor y$	$y \lor x$
0	0	$0 \lor 0 = 0$	$0 \lor 0 = 0$
0	1	$0 \lor 1 = 1$	$1 \lor 0 = 1$
1	0	$1 \lor 0 = 1$	$0 \lor 1 = 1$
1	1	$1 \lor 1 = 1$	$1 \lor 1 = 1$

Таблица 4: Проверка равенства выражений по таблице

2. Некоммутативность

⇒ - некоммутативная операция.

$$x \Longrightarrow y \neq y \Longrightarrow x$$

Проверка:

x	y	$x \Longrightarrow y$	$y \Longrightarrow x$	Проверка
0	0	$0 \lor 0 = 1$	$0 \vee 0 = 1$	+
0	1	$0 \lor 1 = 1$	$1 \lor 0 = 0$	-
1	0	$1 \lor 0 = 0$	$0 \lor 1 = 1$	-
1	1	$1 \lor 1 = 1$	$1 \lor 1 = 1$	+

Таблица 5: Проверка коммутативности импликации

В таблице видно, что импликация - некоммутативная операция.

3. Ассоциативность

- $(x \lor y) \lor z = x \lor (y \lor z)$ Дизъюнкция.
- (xy)z = x(yz) Конъюнкция.
- (x+y)+z=x+(y+z) Исключающее "или".
- $(x \Longleftrightarrow y) \Longleftrightarrow z = x \Longleftrightarrow (y \Longleftrightarrow z)$ Иквивалентность.

x	y	z	$x \vee y$	$(x \lor y) \lor z$	$y \lor z$	$x \lor (y \lor z)$
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	1	1	1	1
1	0	0	1	1	0	1
0	1	1	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Таблица 6: Проверка ассоциативности дизъюнкции

Неассоциативность: Импликация.

$$(x \Longrightarrow y) \Longrightarrow z \neq x \Longrightarrow (y \Longrightarrow z)$$

4. Дистрибутивность

- $x(y \lor z) = xy \lor xz$
- $\bullet \ x(y+z) = xy + xz$
- $x \lor (yz) = (x \lor y)(x \lor z)$

Недистрибутивность $x+y\cdot z \neq (x+y)(x+z)$

5. Приоритет операций

- 1. Отрицание.
- 2. Умножение, конъюнкция
- 3. Дизъюнкция, исключающее "или"
- 4. Импликация, иквивалентность

6. Правила де Моргана

$$\bullet \ \overline{x \vee y} = \bar{x} \cdot \bar{y}$$

$$\bullet \ \overline{x \cdot y} = \bar{x} \vee \bar{y}$$

7. Другие свойства

$$\bullet$$
 $\overline{\overline{x}} = x$

$$\bullet \ 0x = 0$$

$$\bullet$$
 $1x = x$

•
$$0 \lor x = x$$

•
$$1 \lor x = 1$$

•
$$x \Longrightarrow y = \bar{x} \lor y$$

Дизъюнктивная нормальная форма

Нормальная форма - один из вариантов записи логического выражения.

$$xy\vee z=(x\vee z)(y\vee z)=xy\vee z\vee 0$$
 $xy\vee z=(x\vee z)(y\vee z)$ - Дизъюнктивная нормальная форма (ДНФ) выражения.

Определение:

Выражение имеет ДН Φ , если оно является дизъюнкцией нескольких конъюнктов.

Конъюнкт - это конъюнкция литералов.

Литерал - переменная или отрицание переменной.

Пример:

- $xy \lor z$ xy,z Конъюнкты x,y,z Литералы
- $x\bar{y}z \lor x\bar{y}z \lor \bar{y}z$ 3 конъюнкта, 3 литерала
- $x \vee \bar{y} \vee z$ 3 конъюнкта по 1 литералу
- \bar{x} 1 конъюнкт, 1 литерал

He Д**HФ:** $x \lor 1$, $(x \lor y) \cdot z$, $x \lor y \lor z \lor x \Longrightarrow xy$