Х24 — Добыча нефти

Месторождения нефти представляют собой пласт пористой проводящей жидкость среды, которую сверху перекрывает покрышка плохо проводящей жидкость горной породы. Под проводящей пористой средой должна находиться нефтематеринская порода. В течение длительного (порядка миллионов лет) времени, под действием высоких температур и давлений в практически бескислородной среды, органическое вещество нефтематеринской породы (кероген) распадается на углеводороды. Поры среды заполняются смесью этих углеводородов и воды, которой в среднем всегда больше. Эта смесь называется флюидом. Из-за увеличения удельного объема, а также из-за уплотнения горной породы с течением времени под силой тяжести, в поровой жидкости, флюиде, начинает увеличиваться давление. Это приводит к движению флюида. Непроводящая глинистая покрышка является естественной преградой для флюида. За миллионы лет он накапливается у поверхности раздела в "ловушках неровностях горной породы (см. рис.).

Рис. 1: Схематичное изображение месторождения нефти

Считайте известными следующие численные данные:

- Плотность нефти $\rho = 800 \text{кг/м}^3$;
- Атмосферное давление $p_0 = 1$ атм = $10^5 \Pi a$;
- Ускорение свободного падения $g=10 {\rm m/c^2}.$ Во всех частях задачи, кроме A, полностью им пренебрегайте.

Часть А. Оценка запасов нефти (1.5 балла)

Как было указано в предисловии, весь нефтяной флюид расположен в порах среды. Важной характеристикой среды является пористость - величина

$$\varphi = \frac{V_{\text{nop}}}{V_{\text{cp}}},$$

где $V_{
m nop}$ – объём, занимаемый порами в выделенном объёме среды $V_{
m cp}.$

А1^{0.30} Пусть залежь нефти представляет собой участок древних речных отложений песчаника в форме параллелепипеда высотой h=10м, шириной b=100м и длинной L=2000м. Пористость породы $\varphi=0.1$. Оцените запасы нефти $m_{\rm H}$ в данном месторождении. Выразите ответ через L,b,h,ρ и φ , а также приведите его численное значение в тоннах. Считайте, что нефтяной флюид целиком заполняет объём пор.

Одной из наиболее важных величин в отрасли, связанной с нефтью, является пластовое давление. Пластовым давлением $p_{\rm пл}$ называют величину давления жидкостей в порах в том случае, когда поры соединены между собой. Данный случай чаще всего и реализуется в реальности.

Пластовое давление обусловлено тем, что флюид в порах сжат относительно нормальных условий. Сжатие флюида характеризуется сжимаемостью вещества β , которая определяется соотношением:

$$\beta = -\frac{1}{V}\frac{dV}{dp},$$

где p и V - давление и объём вещества, а производная dV/dp берётся при постоянном его количестве. Далее во всех пунктах данной части задачи считайте, что все поры соединены между собой, поэтому распределение давления в них определяется по законам гидростатики.

А2^{0.30} Пусть пластовое давление нефти на дне залежей составляет $p_{\text{пл}}=250$ атм. Найдите, при какой максимальной глубине залегания H_{max} месторождение будет фонтанирующим, т.е. нефть будет вытекать на поверхность под действием собственного давления. Выразите ответ через ρ , g и $p_{\text{пл}}$, а также приведите его численное значение. Сжимаемостью нефти можно пренебречь.

Из месторождения можно добыть далеко не всю нефть, а только её часть. Доля извлеченной нефти от общих запасов называется коэффициентом извлечения нефти (КИН) α . Как правило он невысок и почти никогда не достигает половины.

А3^{0.60} Оцените максимально возможный КИН α_{max} в режиме фонтанирования при пластовом давлении $p_{\Pi\Pi}=250$ атм, если сжимаемость нефти $\beta=5\cdot 10^{-10}$ Па. Выразите ответ через β и $p_{\Pi\Pi}$, а также приведите его численное значение. Считайте, что отложения русла рек изолированы непроницаемыми глинами с малой пористостью. Глубина залежей H может быть выбрана произвольным образом.

А4^{0.30} При тех же самых данных оцените максимально возможный КИН α_{max} в режиме фонтанирования, если снизу в пластовых отложениях находится вода объемом kV_0 (k=9) при начальных запасах нефти V_0 . Сжимаемость воды считайте равной сжимаемости нефти. Выразите ответ через β и $p_{\Pi \Pi}$, а также приведите его численное значение. Считайте что забор жидкости происходит сверху, т.е. забирается только нефть. Глубина залежей H может быть выбрана произвольным образом.

Часть В. Гидроразрыв пласта (3.2 балла)

Распространенный метод повышения отдачи нефти на месторождении заключается в том, что перед добычей в скважину под большим давлением закачивается специальная жидкость – расклинивающий агент. Это приводит к образованию трещины плоской формы порядка 100м в длину и не более 1см в ширину. Созданная в нефтесодержащих слоях трещина заметно упрощает приток нефти в скважину при том же давлении, что существенно ускоряет добычу и уменьшает затраты. Этот метод называется гидроразрывом пласта.

При описании трещины воспользуемся следующей моделью:

- Трещина состоит из двух одинаковых симметричных половин, лежащих в одной вертикальной плоскости (рис. a);
- Скорость жидкости, текущей в трещине, считайте направленной горизонтально вдоль трещины (рис. б);
 - Скорость элементов жидкости, лежащих на одной вертикали, совпадают;
- Поток $Q = 6 \text{м}^3$ /мин расклинивающей жидкости делится поровну между половинами рассматриваемой трещины, поступает в них при x = 0 и остаётся постоянным во всех сечениях wh (рис. б);
 - Высота h = 10м рассматриваемой трещины одинакова в любой её точке;

• Ширина трещины w (рис. a) зависит от избыточного по сравнению с горным давления $p'=p-\sigma_0$, где $\sigma_0=const$, по закону

$$w=\frac{p'h}{E},$$

где $E = 10^{10}$ Па – модуль плоской деформации;

• Вязкость расклинивающей жидкости равна $\eta=1.00\Pi a\cdot c.$

На (рис. а) показан вид сверху на трещину, а на (рис. б) приведено поперечное сечение трещины wh, лежащее в вертикальной плоскости и перпендикулярное оси x. через которое течёт жидкость.

Рис. 2:

В пунктах В1 и В2 рассматривается половина трещины, соответствующая x>0, в которой скорость расклинивающей жидкости направлена вдоль оси x.

B1^{1.00} Рассмотрим горизонтальное течение жидкости вдоль оси x между двумя параллельными плоскостями высотой h. Расстояние между плоскостями $w \ll h$. Определите объёмный расход (далее во всех пунктах задачи - поток) жидкости Q через поперечное сечение wh. Ответ выразите через η , w, h и градиент давления dp(x)/dx.

Поскольку расстояние между плоскостями уменьшается медленно по длине трещины, всегда считайте применимым результат, полученный в пункте В1.

B2^{1.00} В центре щели создается избыточное давление Δp . Найдите зависимость избыточного давления p' в щели от координаты x. Ответ выразите через Δp , Q, E, h, η и x.

B3^{0.20} Трещина заканчивается в положении, соответствующем равному нулю избыточному давлению. Определите длину трещины L. Ответ выразите через Δp , E, h, η и Q.

В4^{0.70} Определите объем трещины V. Ответ выразите через $\Delta p, h, \eta, Q$ и E.

Критическое избыточное давление, выдерживаемое барьерами, составляет $\Delta p = 100$ атм.

 ${f B5^{0.30}}$ Рассчитайте максимально возможные значения длины трещины L_{max} и её объёма V_{max} .

Часть С. Время добычи нефти (3.2 балла)

Пусть по краям нефтяного месторождения пробурено по скважине, каждая из которых создает трещину. Трещины параллельны боковым граням месторождения и полностью их перекрывают. Нагнетающая скважина создает повышенное давление, а добывающая - пониженное давление. Распространение жидкости в пласте описывается законом Дарси

$$\vec{v} = -\frac{k\nabla p}{\eta},$$

страница 3 из 6 ≈ ∞

где \vec{v} - скорость течения жидкости, η - вязкость жидкости, а k - величина, называющаяся проницаемостью пласта для данной жидкости. В рамках данной задачи движение является одномерным, поэтому величину ∇p можно записать следующим образом:

$$\nabla p = \vec{e}_x \frac{dp}{dx}.$$

Рис. 3:

Рассмотрим следующую модель течения жидкости:

- Жидкости можно считать несжимаемыми;
- Жидкости текут по трубе постоянного сечения не перемешиваясь друг с другом;
- При течении жидкостей область их контакта (далее фронт) всегда сохраняет плоскую форму, перпендикулярную направлению скорости жидкостей;
- Нагнетающая жидкость с проницаемостью k_2 и вязкостью $\eta_2 = 1 \cdot 10^{-3} \Pi a \cdot c$ поступает в трубку при давлении $p_2 = 350$ атм, а вытекающая жидкость с проницаемостью k_1 и вязкостью $\eta_1 = 5 \cdot 10^{-2} \Pi a \cdot c$ вытекает из трубки при давлении $p_1 = 100$ атм;
 - Длина трубки равна L=2км, а величина S обозначает координату x фронта;
 - В начальный момент времени жидкость 1 полностью заполняет трубку, так что S(0)=0;
 - Считайте, что в каждой из жидкостей давление меняется вдоль пласта линейно.

C1^{1.00} Определите скорость v движения границы жидкостей при перемещении фронта на величину S. Ответ выразите через $p_1, p_2, L, \eta_1, \eta_2, k_1$ и k_2 .

В пунктах С2 и С3 считайте, что $k_1 = k_2 = k = 5 \cdot 10^{-12} \text{м}^2$.

С2^{0.90} Определите зависимость перемещения S фронта от времени t. Ответ выразите через $p_1, p_2, L, \eta_1, \eta_2, k$ и t

С3^{0.50} Определите полное время τ вытеснения нефти из месторождения. Выразите ответ через p_1 , p_2 , L, η_1 , η_2 и k и рассчитайте его.

С4^{0.80} При каком условии на параметры системы движение границы будет устойчивым, то есть при малом отклонении формы границы от плоской это отклонение не будет возрастать? Запишите условие устойчивости через η_1 , η_2 , k_1 и k_2 . Устойчиво ли течение жидкости, рассмотренное в пунктах С2 и С3?

Часть D. Течение нефти в забое скважины (2.1 балла)

с Страница 4 из 6 ≈

Забой скважины - цилиндрический участок скважины с проницаемыми стенками, через который может проникать нефть. В рамках данной части задачи вам предлагается изучить распределение поля скоростей жидкости внутри данного цилиндра.

Для начала рассмотрим классическое течение жидкости с вязкостью η в трубе длиной L радиусом R, к концам которой приложена разность давлений Δp . В пунктах D1 и D2 боковая поверхность цилиндра непроницаема, т.е жидкость через стенки не выходит, а движение каждого её элемента является одномерным.

D1^{0.80} Найдите зависимость скорости течения жидкости в такой трубе от расстояния до оси трубы v(r), максимальное значение скорости v_{max} и полный поток Q жидкости через сечение цилиндра. Ответы выразите через Δp , η , L, R и r.

 ${\bf D2^{0.20}}$ Выразите распределение скорости течения жидкости v(r) через полный поток Q,R и r.

Рис. 4:

Далее перейдём непосредственно к анализу течения жидкости в забое скважины. Он представляет собой цилиндр радиусом R и высотой H, через стенки которого поступает полный поток нефти Q_0 . При решении задачи используйте следующие модель и обозначения:

- Величина *h* является расстоянием, отсчитываемым от нижнего края забоя;
- Жидкость поступает в забой равномерно по всей площади боковой поверхности цилиндра, а её поток через нижний края забоя равен нулю;
- Величина u_r обозначает радиальную компоненту скорости течения жидкости, направленную от оси цилиндра;
- Несмотря на наличие радиальной компоненты скорости течения жидкости, она является малой, поэтому при нахождении распределения осевой компоненты скорости *v* течения жидкости используйте результаты, полученные в пунктах D1 и D2.

D3^{0.20} Найдите поток Q в сечении забоя на расстоянии h от его нижнего края и соответствующее выражение для вертикальной скорости v(r,h) в зависимости от расстояния до оси r и высоты h. Ответы выразите через Q_0 , H, R, r и h.

 ${f D4^{0.30}}$ Рассмотрим кольцо высотой dh с внутренним и внешним радиусами r и r+dr соответственно. Используя тот факт, что жидкость несжимаема, покажите, что из условия постоянства объёма жидкости внутри выделенного кольца следует соотношение:

$$\frac{\partial v}{\partial h} = -\frac{1}{r} \frac{\partial (u_r r)}{\partial r}.$$

Вы можете использовать это соотношение, даже если не смогли его доказать.

D5^{0.50} Найдите радиальную скорость течения жидкости $u_r(r,h)$ в зависимости от расстояния до оси r и высоты h, а также максимальную величину её модуля $u_{r(max)}$. Ответы выразите через Q_0 , R, H, h и r.

D6^{0.10} Чему равно отношение $u_{r(max)}/v_{max}$? Ответ выразите через R и H.