

What is RSA for?

Suppose you're using a web page (Amazon) and need to send some confidential information (your credit card number, etc.).

Problem: Internet communication is very insecure. (Someone untrustworthy could be listening!)

Solution: encrypt the information using a public key so that only permitted entities (Amazon) can decrypt it.

This is the basis of *public-key cryptography*.

But how do we do this?

Historical Progression

Earliest: Egypt, 1900 BC

Private key: Caesar cipher

Post-WWI to WWII: Enigma cipher

Going public: Diffie-Hellman key exchange

(1976)

Enter RSA (1977)

Ronald R. Rivest

Adi Shamir

Leonard Adleman

Public Key Cryptography

Bob talks to Alice:

The RSA cryptosystem procedure

Pick two prime numbers **p** and **q** and let

$$n = pq, m = \phi(n) = (p-1)(q-1).$$

Pick a positive integer \mathbf{E} such that $\gcd(\mathbf{m}, \mathbf{E}) = 1$.

Find D such that DE mod m = 1.

Publish n and E.

Sender: Encode a message \mathbf{M} : $\mathbf{M}' = \mathbf{M}^{\mathbf{E}} \mod \mathbf{n}$.

Receiver: Decode M': $M = M'^D \mod n$.

Example

Bob sends a message M = 25. Alice's key is n = pq = (23)(29) = 667.

$$m = \phi(n) = 616$$
; $E = 487$ since gcd (616, 487) = 1.

Bob encodes his message with n and E: $M' = 25^{487} \mod 667 = 169$.

Alice uses D = 191 (since $DE \mod n = (191)$ (487) mod 616 = 1) to decrypt Bob's message:

```
M = 169^{191} \mod 667 = 25.
```

You can check these computations yourself, and create your own keys!

Why we can use RSA

Multiply two large primes: easy

Factor the product of two large primes: computationally prohibitive

To prove that our message can always be retrieved, we need a result from Abstract Algebra (Lagrange's Theorem from group theory)

Future of RSA

Uncertain.

According to *Shor's Algorithm*, a quantum computer could factor any large integer in polynomial time.

Further crypto

Source: T. Judson, Abstract Algebra: Theory and Applications (examples from 7.2)

Simon Singh, The Code Book

Neal Stephenson, Cryptonomicon

Abstract Algebra I (MATH 433, fall semester. Prerequisite: Linear Algebra)

Study abroad in Budapest program