Harvard University

Computer Science 20

Problem Set 3

Due Thursday, February 22, 2021 at 11:59pm

SELF CHECK

- Did you clearly state the claim at the beginning of your proof?
- Did you clearly conclude your proof with a statement of what you have proved?
- Is each assertion either a given fact, a hypothesis, a definition, or a logical conclusion from prior statements?
- Are all of your variables properly introduced and quantified? Is the domain of variables clearly specified?
- Does your proof proceed logically from claim to conclusion?
- Have you removed any extraneous information or tangents that were part of your exploratory work?
- Have you considered corner cases? If you are dividing your proof into cases, have you exhausted all cases?

PROBLEM 1

Let A, B, and C be sets. Prove that $(A - B) \cup (B - C) \subseteq (A \cup B) - (A \cap B \cap C)$.

Claim:

:

Given sets A, B, and C, then $(A - B) \cup (B - C) \subseteq (A \cup B) - (A \cap B \cap C)$.

Proof by Cases:

We are given sets A, B, and C and in order to prove

$$(A - B) \cup (B - C) \subseteq (A \cup B) - (A \cap B \cap C)$$

In general, if you want $X \subseteq Y$, then you assume $x \in X$ and then prove $x \in Y$.

We use this generalization, in our particular example with a two-prong approach:

 $\underline{\text{Case 1}} \qquad \underline{\text{Case 2}}$

Let
$$x \in (A - B) \cup (B - C)$$

Suppose $x \in (A - B)$

then $x \in A$ and $x \notin B$

So, we can prove $x \in (A \cup B)$

Since, $x \in A$, therefore $x \in (A \cup B)$

Furthermore, since $x \notin B$,

then
$$x \notin (A \cap B \cap C)$$

Thus, $x \in (A \cup B) - (A \cap B \cap C)$

Let $x \in (A - B) \cup (B - C)$

Suppose $x \in (B - C)$

then $x \in B$ and $x \notin C$

So, we can prove $x \in (A \cup B)$

Since, $x \in B$, therefore $x \in (A \cup B)$

Furthermore, since $x \notin C$,

then $x \notin (A \cap B \cap C)$

Thus, $x \in (A \cup B) - (A \cap B \cap C)$

In conclusion, since in both cases $x \in (A \cup B) - (A \cap B \cap C)$,

then $(A - B) \cup (B - C) \subseteq (A \cup B) - (A \cap B \cap C)$ for sets A, B, and C.

PROBLEM 2

For any integers s and t, we'll define the set L(s, t) as follows:

$$L(s, t) = \{ sx + ty \mid x, y \in Z \}$$

Prove the following claim.

You may use the theorem proved in class that $a \equiv b \pmod{n}$ if and only if $n \mid (a - b)$.

Claim:

For any integers a, r, m, where m is positive, if $a \equiv r \pmod{m}$, then $L(a, m) \subseteq L(r, m)$.

<u>Direct Proof</u>:

We will prove that for integers a, r, m, where m > 0, if $a \equiv r \pmod{m}$, then $L(a, m) \subseteq L(a, m)$.

To prove this we pick an arbitrary element from L(a, m) and prove that it is in L(a, m).

Suppose some arbitrary element $c \in L(a, m)$, this means $\exists x,y \in \mathbb{Z}$ such that c = ax + my

Based on the theorem, $m \mid (r-a),$ this means $\exists \ x,y \in \ \mathbb{Z}$ such that mn = r-a

Solving for a, a = r - mn

We substitute the value of a in c = ax + my

Thus we have:

$$c = (r - mn)x + my$$

$$= rx - mnx + my$$

$$= rx + m(-nx + y)$$

In conclusion, r multiplied by an integer plus m multiplied by an integer, which means

$$x \in \mathbb{Z}$$
, $-nx + y \in \mathbb{Z}$ for a set $c \in L(a, m)$.

Thus, for any integers a, r, m, where m is positive, if $a \equiv r \pmod{m}$, then $L(a, m) \subseteq L(r, m)$.

PROBLEM 3

Let $g: Z \to Z$ be an injective function.

Define $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ such that f(x,y) = (g(x) + g(y), g(x) - g(y)). Show that f is also injective.

Claim:

Given $g: Z \to Z$, which is an injective function, $f: Z^2 \to Z^2$ is also an injective function.

Direct Proof:

In mathematics an injective, or one-to-one, function is a function in which each element of the range maps to one distinct element of the domain.

We can prove that for every integers x and y, $f(x) = f(y) \rightarrow x = y$.

Let x and y be integers and suppose that f(x) = f(y).

We need to show that x = y.

We know that f(x) = f(y).

So, lets substitute, x = 3x + 7 and y = 3y + 7.

So 3x = 3y and therefore x = y, which proves our claim if an injective function.

Now, we need to show that f is injective.

We want to show this by $(x_1, y_1) = (x_2, y_2)$

Suppose $f(x_1, y_1) = f(x_2, y_2)$

In order for it to be injective if $f(x_1, y_1) = f(x_2, y_2)$, then $(x_1, y_1) = (x_2, y_2)$

Given f(x,y) = (g(x) + g(y), g(x) - g(y)),

this means $f(x_1, y_1) = (g(x_1) + g(y_1), g(x_1) - g(y_1)).$

Since $f(x_1, y_1) = f(x_2, y_2)$,

then $(g(x_1) + g(y_1), g(x_1) - g(y_1)) = (g(x_2) + g(y_2), g(x_2) - g(y_2)).$

This gives two equations:

$$g(x_1) + g(y_1) = g(x_2) + g(y_2)$$

 $g(x_1) - g(y_1) = g(x_2) - g(y_2)$

Add both equations: $2g(x_1) = 2g(x_2)$ Subtract both equations: $2g(y_1) = 2g(y_2)$ Divide by 2: $g(y_1) = g(y_2)$

Since g is injective: $x_1 = x_2$ Since g is injective: $y_1 = y_2$

In conclusion, since $x_1 = x_2$ and $y_1 = y_2$ then $f: \mathbb{Z}^2 \to \mathbb{Z}^2$ is also an injective function.