Investigating Variation in Replicability across Sample and Setting

Richard Klein LIP/PC2S Université Grenoble Alpes

2018-12-10 (updated: 2018-12-10)

Open access, freely

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Open access, freely

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Journal of Personality and Social Psychology 2011, Vol. 100, No. 3, 407-425 © 2011 American Psychological Association 0022-3514/11/\$12.00 DOI: 10.1037/a0021524

Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect

Daryl J. Bem Cornell University

Open access, freely

Essay

Why Most Published Research Findings Are False

John P. A. Ioannidis

Journal of Personality and Social Psychology

© 2011 American Psychological Association 0022-3514/11/\$12.00 DOI: 10.1037/a0021524

Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect

Daryl J. Bem Cornell University

False-Positive Psychology: Undisclosed Flexibility in Data Collection and Analysis Allows Presenting Anything as Significant

Joseph P. Simmons¹, Leif D. Nelson², and Uri Simonsohn¹

The Wharton School, University of Pennsylvania, and ²Haas School of Business, University of California, Berkeley

Flexibility in Data Analysis

http://fivethirtyeight.com/features/science-isnt-broken

Flexibility in Data Analysis

http://fivethirtyeight.com/features/science-isnt-broken

Flexibility in Data Analysis

http://fivethirtyeight.com/features/science-isnt-broken

- Reproducibility Project: Psychology (OSC, 2015)
 - \circ ~40/100 studies replicated

- Reproducibility Project: Psychology (OSC, 2015)
 - ~40/100 studies replicated
- Social Sciences Replication Project (Camerer et al., 2018)
 - 13/21 replicated
 - All from Science and Nature

- Reproducibility Project: Psychology (OSC, 2015)
 - ~40/100 studies replicated
- Social Sciences Replication Project (Camerer et al., 2018)
 - 13/21 replicated
 - All from Science and Nature
- Multiple large-scale Registered Reports
 - POPS/AMPPS Registered Replication Reports

• What we know: Many studies are failing to replicate

- What we know: Many studies are failing to replicate
- Why? Not sure

- What we know: Many studies are failing to replicate
- Why? Not sure
 - Could be false positives

- What we know: Many studies are failing to replicate
- Why? Not sure
 - Could be false positives
 - Could be many other reasons:
 - Moderators (known/unknown)
 - Lack of care/expertise
 - Sensitivity of effects to sample/context

- Many Labs 1 (Klein et al., 2014)
 - o 10/13 successful replications
 - Little variation between samples

- Many Labs 1 (Klein et al., 2014)
 - 10/13 successful replications
 - Little variation between samples
- Many Labs 2 (Klein et al., in press)
 - Discussing today

- Many Labs 1 (Klein et al., 2014)
 - o 10/13 successful replications
 - Little variation between samples
- Many Labs 2 (Klein et al., in press)
 - Discussing today
- Many Labs 3 (Ebersole et al., 2016)
 - 3/10 successful replications
 - Little variation across semester

- Many Labs 1 (Klein et al., 2014)
 - o 10/13 successful replications
 - Little variation between samples
- Many Labs 2 (Klein et al., in press)
 - Discussing today
- Many Labs 3 (Ebersole et al., 2016)
 - 3/10 successful replications
 - Little variation across semester
- Many Labs 4 (Klein et al., in prep)
 - Terror Management Theory-specific
 - Compare expert replications vs "in-house" replications

- Many Labs 1 (Klein et al., 2014)
 - 10/13 successful replications
 - Little variation between samples
- Many Labs 2 (Klein et al., in press)
 - Discussing today
- Many Labs 3 (Ebersole et al., 2016)
 - 3/10 successful replications
 - Little variation across semester
- Many Labs 4 (Klein et al., in prep)
 - Terror Management Theory-specific
 - Compare expert replications vs "in-house" replications
- Many Labs 5 (Ebersole et al., in prep)
 - Follow-up to Reproducibility Project

Like Many Labs 1, but a much stronger test:

Like Many Labs 1, but a much stronger test:

• Goal: Replicate many different studies all around the world and compare if they vary based on the sample of data collection.

Like Many Labs 1, but a much stronger test:

- Goal: Replicate many different studies all around the world and compare if they vary based on the sample of data collection.
- Replicated 28 studies
 - Split across two study "packages" due to length
 - Computerized in Qualtrics
 - Randomized study order, presented back-to-back

Like Many Labs 1, but a much stronger test:

- Goal: Replicate many different studies all around the world and compare if they vary based on the sample of data collection.
- Replicated 28 studies
 - Split across two study "packages" due to length
 - Computerized in Qualtrics
 - Randomized study order, presented back-to-back
- Which studies?
 - Structured selection process by committee. Documented: osf.io/8cd4r
 - Sought open nominations for studies
 - Emphasized impact (citations, etc.), diversity of content, possibility for variability across sites
 - But substantial practical constraints: Short, able to be computerized
 - Authors could decline to be replicated

- Registered Replication Report at AMPPS:
 - Each study reviewed and approved by original authors or other experts
 - o Analysis plan(s) specified in advance (osf.io/c97pd/)
 - Open data and materials

- Registered Replication Report at AMPPS:
 - Each study reviewed and approved by original authors or other experts
 - Analysis plan(s) specified in advance (osf.io/c97pd/)
 - Open data and materials
- Administer packages across 125 samples
 - Slate 1: 13 studies administered in each of 61 labs
 - Slate 2: 15 studies administered in each of 64 labs
 - Sites (mostly) randomly assigned to slates
 - Minimum of 80 participants per site
 - 15,305 participants total
 - Much more diverse

Many Labs 1 Map

Many Labs 2 Map

Many Labs 2 Hsee example

Coats range from \$100-\$1000 Your friend buys you a \$110 coat

Scarves range from \$10-\$100 Your friend buys you a \$90 scarf

How generous was your friend?

Many Labs 2 Hsee results

- 14/28 successful replications
 - \circ p < .0001, non-trivial effect size, same direction as original
 - \circ One weakly supported, p = .03 but near-zero effect size

- 14/28 successful replications
 - \circ *p* < .0001, non-trivial effect size, same direction as original
 - \circ One weakly supported, p = .03 but near-zero effect size
- 75% has smaller effect size than original
 - Median original d = 0.60
 - Median replication d = 0.15

- 14/28 successful replications
 - \circ *p* < .0001, non-trivial effect size, same direction as original
 - \circ One weakly supported, p = .03 but near-zero effect size
- 75% has smaller effect size than original
 - Median original d = 0.60
 - Median replication d = 0.15
- No evidence that the order of the studies mattered
 - In general, didn't matter if the study came first, last, or in any other position.
 - Same as ML1 and ML3

- 14/28 successful replications
 - \circ *p* < .0001, non-trivial effect size, same direction as original
 - \circ One weakly supported, p = .03 but near-zero effect size
- 75% has smaller effect size than original
 - Median original d = 0.60
 - Median replication d = 0.15
- No evidence that the order of the studies mattered
 - In general, didn't matter if the study came first, last, or in any other position.
 - Same as ML1 and ML3

- Q statistic: (~ significance test for variation across sites exceeding chance)
 - o 11/28 (39%) showed significant heterogeneity
 - Nearly all from larger-effects studies

- Q statistic: (~ significance test for variation across sites exceeding chance)
 - o 11/28 (39%) showed significant heterogeneity
 - Nearly all from larger-effects studies
- I²:
 - o 36% showed at least medium heterogeneity
 - Likely not an appropriate measure in this case:
 - See osf.io/frbuv (Marcel van Assen), Datacolada.org/63, Borenstein+Higgins

- Q statistic: (~ significance test for variation across sites exceeding chance)
 - o 11/28 (39%) showed significant heterogeneity
 - Nearly all from larger-effects studies
- I²:
 - o 36% showed at least medium heterogeneity
 - Likely not an appropriate measure in this case:
 - See osf.io/frbuv (Marcel van Assen), Datacolada.org/63, Borenstein+Higgins
- Tau is probably best
 - SD across samples in the unit of the effect size (after accounting for sampling error)

Table 3. Results of Heterogeneity Tests for Each of the 28 Effects

Table 3. (Continued)

			All sam	ples (no	moderato	rs)			
Effect	ES ^a	Tau	Q	df	Þ	I^2	Effect	ES^a	Т
Disgust sensitivity predicts	0.05	.00	55.80	58.00	Coh .56	en's q effect size 3.00%	Trolley Dilemma 2: principle of double effect (Hauser et al., 2007)	0.25	.(
homophobia (Inbar, Pizarro, Knobe, & Bloom, 2009) Assimilation and contrast effects in	-0.07	.10	60.39	58.00	.39	[0%, 30%]	Consumerism undermines trust (Bauer, Wilkie, Kim, & Bodenhausen, 2012)	0.12	
question sequences (Schwarz, Strack, & Mai, 1991)	0.07	.10	00.57	J0.00		[0%, 33%]	Influence of incidental anchors on judgment (Critcher & Gilovich,	0.04	.(
					Coh	en's d effect size	2008)		
Correspondence bias (Miyamoto & Kitayama, 2002)	1.82	.00	235.65	57.00	< .001	65.00% [46%, 73%]	Social value orientation and family size (Van Lange, Otten, De Bruin, & Joireman, 1997)	-0.03).
Perceived intentionality for side effects (Knobe, 2003)	1.75	.14	631.72	58.00	< .001	93.00% [92%, 97%]	Moral violations and desire for clean- sing (Zhong & Liljenquist, 2006)	0.00	
Trolley Dilemma 1: principle of double effect (Hauser, Cushman, Young, Jin, & Mikhail, 2007)	1.35	.10	131.24	58.00	< .001	54.00% [32%, 66%]	Vertical position and power (Giessner & Schubert, 2007)	0.03).
False Consensus: supermarket scenario (Ross, Greene, & House,	1.18	.00	65.54	58.00	.23	16.00% [0%, 41%]	Directionality and similarity (Tversky & Gati, 1978) Sociometric status and well-being	0.01 -0.04).
1977) Moral typecasting (Gray & Wegner, 2009)	0.95	.10	203.30	59.00	< .001	73.00% [62%, 83%]	(Anderson, Kraus, Galinsky, & Keltner, 2012)		
False Consensus: traffic-ticket scenario (Ross et al., 1977)	0.95	.00	100.19	57.00	< .001	43.00% [18%, 62%]	Priming "heat" increases belief in global warming (Zaval, Keenan, Johnson, & Weber, 2014)	-0.03	
Preferences for formal versus intuitive reasoning (Norenzayan, Smith, Kim, & Nisbett, 2002)	0.86	.10	156.75	56.00	< .001	66.00% [54%, 81%]	Structure promotes goal pursuit (Kay, Laurin, Fitzsimons, & Landau, 2014)	-0.02).
Less is better (Hsee, 1998)	0.78	.10	158.41	56.00	< .001	65.00% [49%, 77%]	Disfluency engages analytic processing (Alter, Oppenheimer,	-0.03	.(
Effect of framing on decision making (Tversky & Kahneman, 1981)	0.40	.00	55.20	54.00	.43	6.00% [0%, 36%]	Epley, & Eyre, 2007) Effect of choosing versus rejecting on	-0.13	
Cardinal direction and socioeconomic status (Huang, Tse, & Cho, 2014)	0.40	.24	626.26	63.00	< .001	89.00% [84%, 92%]	relative desirability (Shafir, 1993) Affect and risk (Rottenstreich &	-0.08	.,
Moral foundations of liberals versus conservatives (Graham, Haidt, & Nosek, 2009)	0.29	.09	175.26	59.00	< .001	64.00% [49%, 75%]	Hsee, 2001) Construing actions as choices (Savani, Markus, Naidu, Kumar, & Berlia, 2010)	-0.18).
Reluctance to tempt fate (Risen & Gilovich, 2008)	0.18	.00	87.82	58.00	.01	36.00% [6%, 54%]			

		All samples (no moderators)					
Effect	ES^a	Tau	Q	df	p	I^2	
Trolley Dilemma 2: principle of double effect (Hauser et al., 2007)	0.25	.00	60.40	59.00	.42	12.00% [0%, 33%]	
Consumerism undermines trust (Bauer, Wilkie, Kim, & Bodenhausen, 2012)	0.12	.00	63.78	53.00	.15	12.00% [0%, 49%]	
Influence of incidental anchors on judgment (Critcher & Gilovich, 2008)	0.04	.00	64.88	58.00	.25	6.00% [0%, 43%]	
Social value orientation and family size (Van Lange, Otten, De Bruin, & Joireman, 1997)	-0.03	.00	103.56	53.00	< .001	50.00% [28%, 68%]	
Moral violations and desire for clean- sing (Zhong & Liljenquist, 2006)	0.00	.00	65.59	51.00	.08	22.00% [0%, 52%]	
Vertical position and power (Giessner & Schubert, 2007)	0.03	.00	62.87	58.00	.31	3.00% [0%, 42%]	
Directionality and similarity (Tversky & Gati, 1978)	0.01	.00	15.33	48.00	.99	0.00% [0%, 0%]	
Sociometric status and well-being (Anderson, Kraus, Galinsky, & Keltner, 2012)	-0.04	.00	55.09	58.00	.58	2.00% [0%, 30%]	
Priming "heat" increases belief in global warming (Zaval, Keenan, Johnson, & Weber, 2014)	-0.03	.10	72.96	46.00	.01	37.00% [8%, 63%]	
Structure promotes goal pursuit (Kay, Laurin, Fitzsimons, & Landau, 2014)	-0.02	.00	33.95	51.00	.97	0.00% [0%, 2%]	
Disfluency engages analytic processing (Alter, Oppenheimer, Epley, & Eyre, 2007)	-0.03	.00	59.46	65.00	.67	0.00% [0%, 27%]	
Effect of choosing versus rejecting on relative desirability (Shafir, 1993)	-0.13	.00	51.67	40.00	.10	26.00% [0%, 52%]	
Affect and risk (Rottenstreich & Hsee, 2001)	-0.08	.00	50.75	59.00	.77	0.00% [0%, 21%]	
Construing actions as choices (Savani, Markus, Naidu, Kumar, & Berlia, 2010)	-0.18	.00	155.49	56.00	< .001	64.00% [47%, 76%]	

			All samp	All samples (no moderators)			
Effect	ES^a	Tau	Q	df	p	I^2	
Disgust sensitivity predicts homophobia (Inbar, Pizarro, Knobe, & Bloom, 2009)	0.05	.00	55.80	58.00	Coh .56	en's <i>q</i> effect size 3.00% [0%, 30%]	
Assimilation and contrast effects in question sequences (Schwarz, Strack, & Mai, 1991)	-0.07	.10	60.39	58.00	.39	15.00% [0%, 33%]	
					Coh	en's d effect size	
Correspondence bias (Miyamoto & Kitayama, 2002)	1.82	.00	235.65	57.00	< .001	65.00% [46%, 73%]	
Perceived intentionality for side effects (Knobe, 2003)	1.75	.14	631.72	58.00	< .001	93.00% [92%, 97%]	
Trolley Dilemma 1: principle of double effect (Hauser, Cushman, Young, Jin, & Mikhail, 2007)	1.35	.10	131.24	58.00	< .001	54.00% [32%, 66%]	
False Consensus: supermarket scenario (Ross, Greene, & House, 1977)	1.18	.00	65.54	58.00	.23	16.00% [0%, 41%]	
Moral typecasting (Gray & Wegner, 2009)	0.95	.10	203.30	59.00	< .001	73.00% [62%, 83%]	
False Consensus: traffic-ticket scenario (Ross et al., 1977)	0.95	.00	100.19	57.00	< .001	43.00% [18%, 62%]	
Preferences for formal versus intuitive reasoning (Norenzayan, Smith, Kim, & Nisbett, 2002)	0.86	.10	156.75	56.00	< .001	66.00% [54%, 81%]	
Less is better (Hsee, 1998)	0.78	.10	158.41	56.00	< .001	65.00% [49%, 77%]	
Effect of framing on decision making (Tversky & Kahneman, 1981)	0.40	.00	55.20	54.00	.43	6.00% [0%, 36%]	
Cardinal direction and socioeconomic status (Huang, Tse, & Cho, 2014)	0.40	.24	626.26	63.00	< .001	89.00% [84%, 92%]	
Moral foundations of liberals versus conservatives (Graham, Haidt, & Nosek, 2009)	0.29	.09	175.26	59.00	< .001	64.00% [49%, 75%]	
Reluctance to tempt fate (Risen & Gilovich, 2008)	0.18	.00	87.82	58.00	.01	36.00% [6%, 54%]	

_								
			All samples (no moderators)					
	Effect	ES^a	Tau	Q	df	p	I^2	
	Trolley Dilemma 2: principle of double effect (Hauser et al., 2007)	0.25	.00	60.40	59.00	.42	12.00% [0%, 33%]	
	Consumerism undermines trust (Bauer, Wilkie, Kim, & Bodenhausen, 2012)	0.12	.00	63.78	53.00	.15	12.00% [0%, 49%]	
_	Influence of incidental anchors on judgment (Critcher & Gilovich, 2008)	0.04	.00	64.88	58.00	.25	6.00% [0%, 43%]	
	Social value orientation and family size (Van Lange, Otten, De Bruin, & Joireman, 1997)	-0.03	.00	103.56	53.00	< .001	50.00% [28%, 68%]	
	Moral violations and desire for clean- sing (Zhong & Liljenquist, 2006)	0.00	.00	65.59	51.00	.08	22.00% [0%, 52%]	
	Vertical position and power (Giessner & Schubert, 2007)	0.03	.00	62.87	58.00	.31	3.00% [0%, 42%]	
	Directionality and similarity (Tversky & Gati, 1978)	0.01	.00	15.33	48.00	.99	0.00% [0%, 0%]	
	Sociometric status and well-being (Anderson, Kraus, Galinsky, & Keltner, 2012)	-0.04	.00	55.09	58.00	.58	2.00% [0%, 30%]	
	Priming "heat" increases belief in global warming (Zaval, Keenan, Johnson, & Weber, 2014)	-0.03	.10	72.96	46.00	.01	37.00% [8%, 63%]	
	Structure promotes goal pursuit (Kay, Laurin, Fitzsimons, & Landau, 2014)	-0.02	.00	33.95	51.00	.97	0.00% [0%, 2%]	
	Disfluency engages analytic processing (Alter, Oppenheimer, Epley, & Eyre, 2007)	-0.03	.00	59.46	65.00	.67	0.00% [0%, 27%]	
	Effect of choosing versus rejecting on relative desirability (Shafir, 1993)	-0.13	.00	51.67	40.00	.10	26.00% [0%, 52%]	
	Affect and risk (Rottenstreich & Hsee, 2001)	-0.08	.00	50.75	59.00	.77	0.00% [0%, 21%]	
	Construing actions as choices (Savani, Markus, Naidu, Kumar, & Berlia, 2010)	-0.18	.00	155.49	56.00	< .001	64.00% [47%, 76%]	

			All sam)		
Effect	ES ^a	Tau	Q	df	p	I^2
					Coh	en's q effect size
Disgust sensitivity predicts homophobia (Inbar, Pizarro, Knobe, & Bloom, 2009)	0.05	.00	55.80	58.00	.56	3.00% [0%, 30%]
Assimilation and contrast effects in question sequences (Schwarz, Strack, & Mai, 1991)	-0.07	.10	60.39	58.00	.39	15.00% [0%, 33%]
					Coh	en's d effect size
Correspondence bias (Miyamoto & Kitayama, 2002)	1.82	.00	235.65	57.00	< .001	65.00% [46%, 73%]
Perceived intentionality for side effects (Knobe, 2003)	1.75	.14	631.72	58.00	< .001	93.00% [92%, 97%]
Trolley Dilemma 1: principle of double effect (Hauser, Cushman, Young, Jin, & Mikhail, 2007)	1.35	.10	131.24	58.00	< .001	54.00% [32%, 66%]
False Consensus: supermarket scenario (Ross, Greene, & House, 1977)	1.18	.00	65.54	58.00	.23	16.00% [0%, 41%]
Moral typecasting (Gray & Wegner, 2009)	0.95	.10	203.30	59.00	< .001	73.00% [62%, 83%]
False Consensus: traffic-ticket scenario (Ross et al., 1977)	0.95	.00	100.19	57.00	< .001	43.00% [18%, 62%]
Preferences for formal versus intuitive reasoning (Norenzayan, Smith, Kim, & Nisbett, 2002)	0.86	.10	156.75	56.00	< .001	66.00% [54%, 81%]
Less is better (Hsee, 1998)	0.78	.10	158.41	56.00	< .001	65.00% [49%, 77%]
Effect of framing on decision making (Tversky & Kahneman, 1981)	0.40	.00	55.20	54.00	.43	6.00% [0%, 36%]
Cardinal direction and socioeconomic status (Huang, Tse, & Cho, 2014)	0.40	.24	626.26	63.00	< .001	89.00% [84%, 92%]
Moral foundations of liberals versus conservatives (Graham, Haidt, & Nosek, 2009)	0.29	.09	175.26	59.00	< .001	64.00% [49%, 75%]
Reluctance to tempt fate (Risen & Gilovich, 2008)	0.18	.00	87.82	58.00	.01	36.00% [6%, 54%]

			All samples (no moderators)						
Effect	ES^a	Tau	Q	df	Þ	I^2			
Trolley Dilemma 2: principle of double effect (Hauser et al., 2007)	0.25	.00	60.40	59.00	.42	12.00% [0%, 33%]			
Consumerism undermines trust (Bauer, Wilkie, Kim, & Bodenhausen, 2012)	0.12	.00	63.78	53.00	.15	12.00% [0%, 49%]			
Influence of incidental anchors on judgment (Critcher & Gilovich, 2008)	0.04	.00	64.88	58.00	.25	6.00% [0%, 43%]			
Social value orientation and family size (Van Lange, Otten, De Bruin, & Joireman, 1997)	-0.03	.00	103.56	53.00	< .001	50.00% [28%, 68%]			
Moral violations and desire for clean- sing (Zhong & Liljenquist, 2006)	0.00	.00	65.59	51.00	.08	22.00% [0%, 52%]			
Vertical position and power (Giessner & Schubert, 2007)	0.03	.00	62.87	58.00	.31	3.00% [0%, 42%]			
Directionality and similarity (Tversky & Gati, 1978)	0.01	.00	15.33	48.00	.99	0.00% [0%, 0%]			
Sociometric status and well-being (Anderson, Kraus, Galinsky, & Keltner, 2012)	-0.04	.00	55.09	58.00	.58	2.00% [0%, 30%]			
Priming "heat" increases belief in global warming (Zaval, Keenan, Johnson, & Weber, 2014)	-0.03	.10	72.96	46.00	.01	37.00% [8%, 63%]			
Structure promotes goal pursuit (Kay, Laurin, Fitzsimons, & Landau, 2014)	-0.02	.00	33.95	51.00	.97	0.00% [0%, 2%]			
Disfluency engages analytic processing (Alter, Oppenheimer, Epley, & Eyre, 2007)	-0.03	.00	59.46	65.00	.67	0.00% [0%, 27%]			
Effect of choosing versus rejecting on relative desirability (Shafir, 1993)	-0.13	.00	51.67	40.00	.10	26.00% [0%, 52%]			
Affect and risk (Rottenstreich & Hsee, 2001)	-0.08	.00	50.75	59.00	.77	0.00% [0%, 21%]			
Construing actions as choices (Savani, Markus, Naidu, Kumar, & Berlia, 2010)	-0.18	.00	155.49	56.00	< .001	64.00% [47%, 76%]			

• Low variation across sample/context

- Low variation across sample/context
 - \circ Not reasonable to discount replications by default based on sample

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly
- Personal takeaways:

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly
- Personal takeaways:
 - Robust replicability is a feasible goal (for many studies)

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly
- Personal takeaways:
 - Robust replicability is a feasible goal (for many studies)
 - Nudges me towards "false-positive" explanation for replication failures (in general)

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly
- Personal takeaways:
 - Robust replicability is a feasible goal (for many studies)
 - Nudges me towards "false-positive" explanation for replication failures (in general)
 - Reinforces need for preregistration/Registered Reports

- Low variation across sample/context
 - Not reasonable to discount replications *by default* based on sample
 - Instead, test moderators empirically
- Big caveat: Mostly student samples, mostly short computerized studies
- Replication rate aligns with other projects
 - Is this meaningful?
- Many studies replicate robustly
- Personal takeaways:
 - Robust replicability is a feasible goal (for many studies)
 - Nudges me towards "false-positive" explanation for replication failures (in general)
 - Reinforces need for preregistration/Registered Reports
- Open data: https://osf.io/8cd4r/
 - CC0, free use (any purpose)
 - We barely scratched surface

Thanks!

Special thanks to co-leads Fred Hasselman, Michelangelo Vianello, and Brian Nosek + 186 other co-authors.

Questions/comments?

@raklein3
raklein22@gmail.com
https://www.raklein.me

