Multivariate analysis of variance (MANOVA)

Multivariate analysis of variance

- Standard ANOVA has just one response variable.
- What if you have more than one response?
- Try an ANOVA on each response separately.
- But might miss some kinds of interesting dependence between the responses that distinguish the groups.

Packages

```
library(car)
library(tidyverse)
```

Small example

- Measure yield and seed weight of plants grown under 2 conditions: low and high amounts of fertilizer.
- Data (fertilizer, yield, seed weight):

```
url <- "http://ritsokiguess.site/datafiles/manova1.txt"</pre>
hilo <- read delim(url, " ")
```

```
## -- Column specification
## Delimiter: " "
```

i Use `spec()` to retrieve the full column specification for

```
## chr (1): fertilizer
## dbl (2): yield, weight
```

Rows: 8 Columns: 3

##

```
## i Specify the column types or set `show col types = FALSE`
                        Multivariate analysis of variance (MANOVA)
```

The data

hilo

fertilizer	yield	weight	
low	34	10	
low	29	14	
low	35	11	
low	32	13	
high	33	14	
high	38	12	
high	34	13	
high	35	14	

Boxplot for yield for each fertilizer group

Yields overlap for fertilizer groups.

Boxplot for weight for each fertilizer group

Weights overlap for fertilizer groups.

ANOVAs for yield and weight

Residuals 6 12.750 2.125

##

```
hilo.y <- aov(yield ~ fertilizer, data = hilo)
summary(hilo.y)

## Df Sum Sq Mean Sq F value Pr(>F)
## fertilizer 1 12.5 12.500 2.143 0.194

## Residuals 6 35.0 5.833

hilo.w <- aov(weight ~ fertilizer, data = hilo)
summary(hilo.w)
```

Df Sum Sq Mean Sq F value Pr(>F)

```
Neither response depends significantly on fertilizer. But...
```

fertilizer 1 3.125 3.125 1.471 0.271

Plotting both responses at once

- Have two response variables (not more), so can plot the response variables against each other, labelling points by which fertilizer group they're from.
- First, create data frame with points (31, 14) and (38, 10) (why? Later):

• Then plot data as points, and add line through points in d:

The plot

Comments

- Graph construction:
 - Joining points in d by line.
 - geom_line inherits colour from aes in ggplot.
 - Data frame d has no fertilizer (previous colour), so have to unset.
- Results:
 - High-fertilizer plants have both yield and weight high.
 - True even though no sig difference in yield or weight individually.
 - Drew line separating highs from lows on plot.

MANOVA finds multivariate differences

• Is difference found by diagonal line significant? MANOVA finds out.

```
response <- with(hilo, cbind(yield, weight))
hilo.1 <- manova(response ~ fertilizer, data = hilo)
summary(hilo.1)</pre>
```

```
## Df Pillai approx F num Df den Df Pr(>F)
## fertilizer 1 0.80154 10.097 2 5 0.01755 *
## Residuals 6
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

 Yes! Difference between groups is diagonally, not just up/down (weight) or left-right (yield). The yield-weight combination matters.

Strategy

- Create new response variable by gluing together columns of responses, using cbind.
- Use manova with new response, looks like 1m otherwise.
- With more than 2 responses, cannot draw graph. What then? '
- If MANOVA test significant, cannot use Tukey. What then?
- Use discriminant analysis (of which more later).

Another way to do MANOVA

Install (once) and load package car:

library(car)

Another way...

```
hilo.2.lm <- lm(response ~ fertilizer, data = hilo)
hilo.2 <- Manova(hilo.2.lm)
hilo.2
##
## Type II MANOVA Tests: Pillai test statistic
             Df test stat approx F num Df den Df Pr(>F)
##
## fertilizer 1 0.80154 10.097 2 5 0.01755 *
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

- Same result as small-m manova.
- Manova will also do repeated measures, coming up later.

Another example: peanuts

- Three different varieties of peanuts (mysteriously, 5, 6 and 8) planted in two different locations.
- Three response variables: y, smk and w.

```
u <- "http://ritsokiguess.site/datafiles/peanuts.txt"
peanuts.orig <- read_delim(u, " ")</pre>
```

```
## Rows: 12 Columns: 6
```

##

-- Column specification ----

```
## Delimiter: " "
```

```
## dbl (6): obs, location, variety, y, smk, w
```

```
## i Use `spec()` to retrieve the full column specification fo
## i Specify the column types or set `show_col_types = FALSE`
```

The data

peanuts.orig

obs	location	variety	у	smk	w
1	1	5	195.3	153.1	51.4
2	1	5	194.3	167.7	53.7
3	2	5	189.7	139.5	55.5
4	2	5	180.4	121.1	44.4
5	1	6	203.0	156.8	49.8
6	1	6	195.9	166.0	45.8
7	2	6	202.7	166.1	60.4
8	2	6	197.6	161.8	54.1
9	1	8	193.5	164.5	57.8
10	1	8	187.0	165.1	58.6
11	2	8	201.5	166.8	65.0
12	2	8	200.0	173.8	67.2

Setup for analysis

[6,] 195.9 166.0 45.8

```
peanuts <- peanuts.orig %>%
  mutate(
    location = factor(location),
    variety = factor(variety)
response <- with(peanuts, cbind(y, smk, w))
head(response)
##
                smk
## [1,] 195.3 153.1 51.4
   [2,] 194.3 167.7 53.7
  [3,] 189.7 139.5 55.5
## [4,] 180.4 121.1 44.4
## [5,] 203.0 156.8 49.8
```

Analysis (using Manova)

```
peanuts.1 <- lm(response ~ location * variety, data = peanuts)</pre>
peanuts.2 <- Manova(peanuts.1)</pre>
peanuts.2
##
## Type II MANOVA Tests: Pillai test statistic
##
                  Df test stat approx F num Df den Df
                1 0.89348 11.1843 3
## location
            2 1.70911 9.7924 6 10
## variety
## location:variety 2 1.29086 3.0339 6 10
                 Pr(>F)
##
## location 0.020502 *
## variety 0.001056 **
## location:variety 0.058708 .
## ---
## Signif. codes:
## 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Comments

- Interaction not quite significant, but main effects are.
- Combined response variable (y,smk,w) definitely depends on location and on variety
- Weak dependence of (y,smk,w) on the location-variety combination.
- Understanding that dependence beyond our scope right now.