# Unsupervised Learning with Clustering

# K-means EM clustering Hierarchical Clustering





## Why Clustering

- A good grouping implies some structure
- In other words, given a good grouping, we can then:
  - Interpret and label clusters
  - Identify important features
  - Characterize new points by the closest cluster (or nearest neighbors)
  - Use the cluster assignments as a compression or summary of the data





# Clustering

- Basic idea: Group similar things together
- Unsupervised Learning Useful when no other info is available
- K-means
  - Partitioning instances into k disjoint clusters
  - Measure of similarity





# Clustering







## Clustering Techniques

- K-means clustering
- Hierarchical clustering
- Conceptual clustering
- Probability-based clustering
- Bayesian clustering





## Clustering Techniques

- K-means clustering
- Hierarchical clustering
- Conceptual clustering
- Probability-based clustering
- Bayesian clustering





#### Clustering Applications

- Example: Clustering of a large number of gene experiments
- Multiple sequence alignment of genes closely clustered together
- Search for metabolic pathways genes may be involved with
- Possible functional classification of genes in the same cluster
- Identifying co-regulated genes from expression arrays





#### Common uses of Clustering

- Often used as an exploratory data analysis tool
- In one-dimension, a good way to quantify realvalued variables into k non-uniform buckets
- Used on acoustic data in speech understanding to convert waveforms into one of k categories (known as Vector Quantization)
- Also used for choosing color palettes on old fashioned graphical display devices
- Color Image Segmentation





## Clustering

- Unsupervised: no target value to be predicted
- Differences ways clustering results can be produced/represented/learned
  - Exclusive vs. overlapping
  - Deterministic vs. probabilistic
  - Hierarchical vs. flat
  - Incremental vs. batch learning





# Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
  - Fuclidean distance
  - Manhattan distance
  - Mahalanobis (Euclidean w/dimensions rescaled by variance)









# Clustering Objective

- Objective: find subsets that are similar within cluster and dissimilar between clusters
- Similarity defined by distance measures
  - Euclidean distance =  $sqrt[(a1 - b1)^2 + (a2 - b2)^2 + ...)]$
  - Manhattan distance [|a1 - b1| + |a2 - b2| + ...)]
  - Cosine (insensitive to size) **Euc Dist/**

$$sqrt[(a1)^2+(a2)^2..]*sqrt[(b1)^2+...)]$$









# The k-means Algorithm Iterative Distance Based Clustering

- Clusters the data into k groups where k is specified in advance
  - 1. Cluster centers are chosen at random
  - 2. Instances are assigned to clusters based on their distance to the cluster centers
  - 3. Centroids of clusters are computed "means"
  - 4. Go to 1st step until convergence





#### K-means Clustering

A simple, effective, and standard method

Start with K initial cluster centers

Loop:

Assign each data point to nearest cluster center Calculate mean of cluster for new center Stop when assignments don't change

#### Issues:

How to choose K?

How to choose initial centers?

Will it always stop?





#### K-Means Clustering Pros & Cons

- Simple and reasonably effective
- The final cluster centers do not represent a global minimum but only a local one
- Result can vary significantly based on initial choice of seeds
  - Completely different final clusters can arise from differences in the initial randomly chosen cluster centers
- Algorithm can easily fail to find a reasonable clustering





## Getting Trapped in a Local Minimum

- Example: four instances at the vertices of a twodimensional rectangle
  - Local minimum: two cluster centers at the midpoints of the rectangle's long sides

 Simple way to increase chance of finding a global optimum: restart with different random seeds





## Clustering

- Partition unlabeled examples into disjoint subsets of clusters, such that:
  - Examples within a cluster are very similar
  - Examples in different clusters are very different
- Discover new categories in an unsupervised manner (no sample category labels provided)





# K-Means Algorithm

Let d be the distance measure between instances.

Select k random instances  $\{s_1, s_2, \dots s_k\}$  as seeds.

Until clustering converges or other stopping criterion:

For each instance  $x_i$ :

Assign  $x_i$  to the cluster  $c_j$  such that  $d(x_i, s_j)$  is minimal.

(Update the seeds to the centroid of each cluster)

For each cluster  $c_j$ 

$$s_j = \mu(c_j)$$





# K Means Example (K=2)



#### Seed Choice

- Results can vary based on random seed selection
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clusters
- Select good seeds using a heuristic or the results of another method





 For K=1, using Euclidean distance, where will the cluster center be?







 For K=1, the overall mean minimizes Sum Squared Error (SSE), aka Euclidean distance



Simple example:

#choose 1 data point as initial K centers

#10 is max loop iterations

#1 is number of initial sets to try

















무



무

-10

-5

vidace inde 11 11

#### Choosing K for K-means



- Not much improvement after K=2 ("elbow")





# K-means Example – more points

How many clusters should there be?







## Choosing K for K-means



- Smooth decrease at K ≥ 2, harder to choose
- In general, smoother decrease => less structure





#### K-means Guidelines

#### Choosing K:

- "Elbow" in total-within-cluster SSE as K=1...N
- Cross-validation: hold out points, compare fit as K=1...N

#### Choosing initial starting points:

 take K random data points, do several K-means, take best fit

#### Stopping:

- may converge to sub-optimal clusters
- may get stuck or have slow convergence (point assignments bounce around), 10 iterations is often good





# K-means Example: uniform dist.











Predictive Analytics Center of Excellence

## Choosing K - uniform



- Smooth decrease across K => less structure





## K-means Clustering Issues

#### Scale:

Dimensions with large numbers may dominate distance metrics

#### Outliers:

Outliers can pull cluster mean, K-mediods uses median instead of mean





## Probability-based Clustering

- Problems with K-means & Hierarchical methods:
  - Division by k
  - Order of examples
  - Merging/splitting operations might not be sufficient to reverse the effects of bad initial ordering
  - Is result at least local minimum of category utility?
- Solution:
  - Find the most likely clusters given the data
- Instance has certain probability of belonging to a particular cluster





#### Soft Clustering

- So far clustering methods assumed that each instance has a "hard" assignment to exactly one cluster
- No uncertainty about class membership or an instance belonging to more than one cluster
- Soft clustering gives probabilities that an instance belongs to each of a set of clusters
- Each instance is assigned a probability distribution across a set of discovered clusters
  - probabilities of all categories must sum to 1





# Soft Clustering Methods

#### Fuzzy Clustering

- Use weighted assignments to all clusters
- Weights depend on relative distance
- Find min weighted SSE

#### Expectation-Maximization:

- Initialize a mixture of multivariate Gaussian distributions
- Find means, variances, and mixture weights that maximize probability of data





#### Finite mixtures

- Probabilistic clustering algorithms model the data using a mixture of distributions
- Each cluster is represented by one distribution
  - The distribution governs the probabilities of attributes values in the corresponding cluster
- They are called finite mixtures because there is only a finite number of clusters being represented
- Usually individual distributions are normal
- Distributions are combined using cluster weights





#### A Two-Class Mixture Model

|   |    |   |      |   |    | data |    |   |    |   |    |
|---|----|---|------|---|----|------|----|---|----|---|----|
| A | 51 | В | 62   | В | 64 | A    | 48 | A | 39 | A | 51 |
| A | 43 | A | 47   | A | 51 | В    | 64 | В | 62 | A | 48 |
| В | 62 | A | 52   | A | 52 | A    | 51 | В | 64 | В | 64 |
| В | 64 | В | 64   | В | 62 | В    | 63 | A | 52 | A | 42 |
| A | 45 | A | . 51 | A | 49 | A    | 43 | В | 63 | A | 48 |
| A | 42 | В | 65   | A | 48 | В    | 65 | В | 64 | A | 41 |
| A | 46 | A | 48   | В | 62 | В    | 66 | A | 48 |   |    |
| A | 45 | A | 49   | A | 43 | В    | 65 | В | 64 |   |    |
| A | 45 | A | 46   | A | 40 | A    | 46 | A | 48 |   |    |
|   |    |   |      |   |    | 1.1  |    |   |    |   |    |







## Using the Mixture Model

 The probability of an instance x belonging to cluster A is:

$$PR[A|x] = \frac{Pr[x|A]Pr[A]}{Pr[x]} = \frac{f(x; \mu_A, \sigma_A)p_A}{Pr[x]}$$





## Learning the Clusters

- Assume we know that there are k clusters
- To learn the clusters we need to determine their parameters
  - I.e. their means and standard deviations
- Start with the initial guess for the 5
   parameters use them to calculate cluster
   probabilities for each instance, use these
   probabilities to re estimate the parameters
   and repeat
- We actually have a performance criterion: the likelihood of the training data given the clusters

## Expectation Maximization (EM)

- Probabilistic method for soft clustering
- Iterative method for learning probabilistic categorization model from unsupervised data
- Direct method that assumes k clusters: $\{c_1, c_2, \dots c_k\}$
- Soft version of k-means
- Assumes a probabilistic model of categories that allows computing P(c<sub>i</sub> | E) for each category, c<sub>i</sub>, for a given example, E





## EM Algorithm

- Initially assume random assignment of examples to categories
- Learn an initial probabilistic model by estimating model parameters from this randomly labeled data





## The EM Algorithm

- EM algorithm:
  - expectation-maximization algorithm
- Generalization of k-means to probabilistic setting
- Similar iterative procedure
  - 1. Calculate cluster probability for each instance (expectation step)
  - 2. Estimate distribution parameters based on the cluster probabilities (maximization step)
- Cluster probabilities are stored as instance weights





## Kmeans – unequal cluster variance



Can you guess K?





## K-means – unequal cluster variance







## Choosing K – unequal distributions



- Smooth decrease across K => less structure





## EM clustering

#### Classification



- Selects K=2

   (either by Information Criterion=
   min of SSE+ K\*logN,
   Or by cross-validation)
- Handles unequal variance





## K-means computations

- Distance of each point to each cluster center
  - For N points, D dimensions: each loop requires N\*D\*K operations
- Update Cluster centers
  - only track points that change, get change in cluster center
- But for EM errors to each cluster center update a probability function





## K-means vs EM performance

1 Gordon compute node, normal random matrices R: system.time(Mclust())



Number of Dimensions (i.e. columns in data matrix)





## Kmeans big data example

45,000 NYTimes articles, 102,000 unique words

(UCI Machine Learning repository)

Full Data Matrix: 45Kx102K ~ 40Gb

article 1
article 2
article 3
...

article 45K

Cell i,j is count of ith-word in jth-article





### Kmeans results



7 viable clusters found





#### Other distance measures

Cosine: each row is treated as vector in R<sup>p</sup>, then take angles



C is closer to A because ABC°<ABD°

Jaccard (over sets A,B):

1- (|A∩B| / |AUB|)



### Other distance measures

 Hamming distance: count 1 if values different e.g. appropriate for binary strings







## Summary

- Labeled clusters can be interpreted by using supervised learning - train a tree or learn rules
- Can be used to fill in missing attribute values
- All methods have a basic assumption of independence between the attributes
  - Some methods allow the user to specify in advanced that two of more attributes are dependent and should be modeled with a joint probability





### Clustering algorithms in scikit-learn

| Method name                          | Parameters                                                    | Scalability                                                              | Usecase                                                                   | Geometry (metric used)                       |
|--------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------|
| <u>K-Means</u>                       | number of clusters                                            | Very large n_samples,<br>medium n_clusters with<br><u>MiniBatch code</u> | General-purpose, even cluster size, flat geometry, not too many clusters  | Distances between points                     |
| Affinity<br>propagation              | damping, sample preference                                    | Not scalable with n_samples                                              | Many clusters, uneven cluster size, non-flat geometry                     | Graph distance (e.g. nearest-neighbor graph) |
| Mean-shift                           | bandwidth                                                     | Not scalable with n_samples                                              | Many clusters, uneven cluster size, non-flat geometry                     | Distances between points                     |
| <u>Spectral</u><br><u>clustering</u> | number of clusters                                            | Medium n_samples, small n_clusters                                       | Few clusters, even cluster size, non-flat geometry                        | Graph distance (e.g. nearest-neighbor graph) |
| Ward hierarchica clustering          | number of clusters                                            | Large n_samples and n_clusters                                           | Many clusters, possibly connectivity constraints                          | Distances between points                     |
| Agglomerative clustering             | number of<br>clusters, linkage<br>type, distance              | Large n_samples and n_clusters                                           | Many clusters, possibly connectivity constraints, non Euclidean distances | Any pairwise distance                        |
| <u>DBSCAN</u>                        | neighborhood size                                             | Very large n_samples, medium n_clusters                                  | Non-flat geometry, uneven cluster sizes                                   | Distances between nearest points             |
| <u>Gaussian</u><br><u>mixtures</u>   | many                                                          | Not scalable                                                             | Flat geometry, good for density estimation                                | Mahalanobis distances to centers             |
| <u>Birch</u>                         | branching factor,<br>threshold, optional<br>global clusterer. | Large n_clusters and n_samples                                           | Large dataset, outlier removal, data reduction.                           | Euclidean distance between points            |





## Hierarchical Clustering

 Build a tree-based hierarchical taxonomy (dendrogram) from a set of unlabeled examples



 Recursive application of a standard clustering algorithm can produce a hierarchical clustering





## Incremental & Hierarchical Clustering

- Start with 1 cluster (all instances) and do splits
   OR
   Start with N clusters (1 per instance) and do merges
- Can be greedy & expensive in its search
   some algorithms might merge & split
   algorithms need to store and recalculate distances
- Need distance between groups in contrast to K-means





## Incremental & Hierarchical Clustering

#### Result is a hierarchy of clusters

displayed as a 'dendrogram' tree

#### Useful for tree-like interpretations

- syntax (e.g. word co-occurences)
- concepts (e.g. classification of animals)
- topics (e.g. sorting Enron emails)
- spatial data (e.g. city distances)
- genetic expression (e.g. possible biological networks)
- exploratory analysis





## Incremental Clustering

- Works incrementally instance by instance forming a a hierarchy of clusters
- COBWEB nominal; CLASSIT numeric attributes
- Instances are added one at the time
  - Tree is updated appropriately at each step
  - Finding the right leaf for an instance
  - Restructuring the tree
- How and where to update based on category utility value





## Clustering: Weather Data

| Weather Data Set |          |             |          |       |  |  |  |
|------------------|----------|-------------|----------|-------|--|--|--|
| ID Code          | Outlook  | Temperature | Humidity | Windy |  |  |  |
| Α                | Sunny    | Hot         | High     | False |  |  |  |
| В                | Sunny    | Hot         | High     | True  |  |  |  |
| С                | Overcast | Hot         | High     | False |  |  |  |
| D                | Rain     | Mild        | High     | False |  |  |  |
| E                | Rain     | Cool        | Normal   | False |  |  |  |
| F                | Rain     | Cool        | Normal   | True  |  |  |  |
| F                | Overcast | Cool        | Normal   | True  |  |  |  |
| Н                | Sunny    | Mild        | High     | False |  |  |  |
| 1                | Sunny    | Cool        | Normal   | False |  |  |  |
| J                | Rain     | Mild        | Normal   | False |  |  |  |
| K                | Sunny    | Mild        | Normal   | True  |  |  |  |
| L                | Overcast | Mild        | High     | True  |  |  |  |
| M                | Overcast | Hot         | Normal   | False |  |  |  |
| N                | Rain     | Mild        | High     | True  |  |  |  |





## Clustering







## Clustering









## Merging

- Consider all pairs of nodes for merging and evaluate category utility of each
  - Computationally expensive
- When scanning nodes for a suitable host both the best matching node and the runner-up are noted
- The best will form the host for new instance unless merging host and runner-up produces better CU





## Final Hierarchy







### Iris Data







## Category utility

 Category utility is a kind of quadratic loss function defined on conditional probabilities:

$$CU(C_{1}, C_{2}, ..., C_{k}) = \frac{\sum_{l} \Pr[C_{l}] \sum_{i} \sum_{j} (\Pr[a_{i} = v_{ij} \mid C_{l}]^{2} - \Pr[a_{i} = v_{ij}]^{2})}{k}$$

- C<sub>1</sub>, ..C<sub>k</sub> are k clusters
- a<sub>i</sub> is the *i*th attribute
- Takes on values v<sub>i1</sub>, v<sub>i2</sub>, ...





## Category Utility Extended to Numeric Attributes

Assuming normal distribution:

$$CU = \frac{\sum_{l} \Pr[C_{l}] \frac{1}{2\sqrt{\pi}} \sum_{i} \left( \frac{1}{\sigma_{il}} - \frac{1}{\sigma_{i}} \right)}{k}$$

- When Standard deviation of attribute a<sub>i</sub> is zero it produced infinite value of the category utility formula
- Acuity parameter: pre-specified minimum variance on each attribute
  - only one instance in a node produces 0 variance





## Iris Data Final Hierarchy







## Clustering with Cutoff







## Incremental & Hierarchical Clustering

- Clusters are merged/split according to distance or utility measure
  - Euclidean distance (squared differences)
  - conditional probabilities (for nominal features)
- Options to choose which clusters to 'Link'
  - single linkage, mean, average (w.r.t. points in clusters)
     (may lead to different trees, depending on spreads)
  - Ward method (smallest increase within cluster variance)
  - change in probability of features for given clusters





## Linkage options

• e.g. single linkage (closest to any cluster instance)



• e.g. mean (closest to mean of all cluster instances)







## Linkage options (cont')

e.g. average (mean of pairwise distances)



e.g. Ward's method (find new cluster with min. variance)







## Hierarchical Clustering Demo

3888 Interactions among 685 proteins

From Hu et.al. TAP dataset http://www.compsysbio.org/bacteriome/dataset/)

```
b0014
b0009
                0.92
b0009
        b2231
                0.87
b0014
        b0169
                1.0
b0014
       b0595
                0.76
       b2614
b0014
                1.0
b0014
       b3339
                0.95
b0014
        b3636
                0.9
b0015
        b0014
                0.99
```

. . . . . . .





# Interactions as connections – structure is hard to see







## Hierarchical Clustering Demo

hclust with "single" distance: chaining



Items that cluster first

d2use hdust (\*, "single")





### Hierarchical Clustering Demo

hclust with "Ward" distance: spherical clusters

Cluster Dendrogram







### Hierarchical Clustering Demo

Where height change looks big, cut off tree

#### Cluster Dendrogram







### Summary

- Having no label doesn't stop you from finding structure in data
- Labeled clusters can be interpreted by using supervised learning - train a tree or learn rules
- Can be used to fill in missing attribute values
- All methods have a basic assumption of independence between the attributes
  - Some methods allow the user to specify in advanced that two of more attributes are dependent and should be modeled with a joint probability
- Unsupervised methods are somewhat related





# Exercise: Clustering Athlete's Data in Weka

Is there a relationship between athlete's physical attributes and their sport?

Let's filter data to try a few, good, candidate sport categories.





Weka not nice for picking out instances with multi-criteria, so I used excel: (Excel, data -> advanced -> click on column and then drop down selection menu. Include only a few sports)

Download AHW\_withHWbmi\_cycbaskten2.csv from pace.sdsc.edu, open in weka







### Notice the number of sports and their nominal values







 Visualize correlation with sport as class – any problems, any promising relationships?







#### Are there one or more variables we should ignore?







Select Ignore attributes -> ctrl-space to ignore sport (why?) and total medals won (why or why not?) What about sex attribute?







select cluster tab; choose -> simple Kmeans; choose 3 classes, accept other defaults



# Results end up in output panel. Take note of sum squared error. Any other message to note?





Rt click on model result, visualize cluster assignment, add jitter Compare sport and cluster number – how do they correspond? Are the clusters useful to distinguish (or predict) an athlete's sport?







# Compare clusters in the 2 dimension subspace of BMI and Age - (or any other subspace)





# Try rerunning with different random seed, you get different clustering, but similar SSE







### Try EM algorithm, accept defaults and start







### Rt click on model result, visualize cluster assignment, Compare sport and cluster number







### Rerun with 5 clusters, compare sport and cluster number







#### **Exercise:**

For simple Kmeans Get a full sweep of K – ie change N to 1,3,4,5, what K would you choose?



