

Machine Learning for BCDI

Thesis

présentée et soutenue publiquement le

Pour l'obtention du titre de

Docteur de l'Université Grenoble Alpes

(mention Physique du rayonnement et de la matière condensée)

par Matteo Masto

sous la direction de Dr. Tobias Schülli, Prof. Vincent Favre-Nicolin, Dr. Steven Leake

Composition du Jury

Steven Leake ESRF Directeur de Thèse	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	PR, XXXXXXXXXX PR, XXXXXXXXXX PR, XXXXXXXXXX PR, XXXXXXXXXX ESRF ESRF UGA,	Rapporteur Examinateur
Steven Leake ESRF Directeur de Thèse	Vincent Favre-Nicolin	ESRF UGA,	Directeur de Thèse
	Steven Leake	ESRF	Directeur de Thèse

Contents

Introduction	iii
I Deep Learning Theory	1
II Deep learning for Image Inpainting	3
1 Inpainting	5
III Deep learning for Phase Retrieval	7
2 Phase Retrieval	9
Bibliography	9
Table des annexes	11
Appendix A Appendix	13

Introduction

The present document is a draft of my PhD manuscript.

Part I Deep Learning Theory

Part II

Deep learning for Image Inpainting

CHAPTER 1

INPAINTING

In this chapter the "gap problem" in the BCDI field is introduced as well as the state of the art measures that are taken to tackle it. It follows then a presentation of the various approaches that have been investigated using Deep Learning (DL) to conclude with the optimal one that is also discussed in the scientific paper named "Patching-based deep learning model for the Inpainting of Bragg Cohrent Diffraction patterns affected by detectors' gaps" (https://doi.org/10. 1107/S1600576724004163)

Part III Deep learning for Phase Retrieval

CHAPTER 2

Phase Retrieval

Annexes

APPENDIX A

APPENDIX