

EINSATZ VON LLM TOOLS IM SOFTWARE ENGINEERING PROZESS

BACHELORARBEIT

ZUR ERLANGUNG DES AKADEMISCHEN GRADES

BACHELOR OF ENGINEERING (B.Eng.)

Jonas Gundlach

Betreuerin:

Prof. Dr. rer. nat. Andrea Baumann

Tag der Abgabe: XX.XX.XXXX

eingereicht bei
Universität der Bundeswehr München
Fakultät für Elektrotechnik und Technische Informatik

Neubiberg, Juli 2024

Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbstständig verfasst, noch nicht anderweitig
für Prüfungszwecke vorgelegt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt
habe, insbesondere keine anderen als die angegebenen Informationen.

Der Speicherung meiner Bachelorarbeit zum Zweck der Plagiatsprüfung stimme ich zu. Ich versichere, dass die elektronische Version mit der gedruckten Version inhaltlich übereinstimmt.

Neubiberg, den XX.XX.XXXX
Jonas Gundlach

Zusammenfassung

TODO!!!!!!!!!!!!

Ein Abstract ist ein Text, der kurz und knapp die wichtigsten Punkte deiner Bachelorarbeit wiedergibt Er soll die Fragestellung, Methoden, Quellen und Ergebnisse zusammenfassen, damit die Lesenden schnell die Relevanz der Bachelorarbeit für ihr Interessensgebiet beurteilen können.

Inhaltsverzeichnis

Er	kläru	ing	III
1	Einl	eitung	1
	1.1	Motivation	1
	1.2	Zielsetzung der Arbeit	1
	1.3	Struktur der Arbeit	1
2	Gru	ndlagen	3
	2.1	LLM Tools	3
		2.1.1 ChatGPT	4
		2.1.2 Google Gemini	5
		2.1.3 Le Chat	5
	2.2	Software Engineering Prozess	6
		2.2.1 einzelne Phasen	6
3	Anv	vendung von LLM Tools im Software Engineering	7
	3.1	Einzelne Phasen	7
4	Pra	xisergebnisse und Vergleich	9
	4.1	??????	9
	4.2	ChatGPT	9
	4.3	Gemini	9
	4.4	Le Chat	9
	4.5	Vergleich	9
5	Her	ausforderungen und Limitationen	11
	5.1	Technische Herausforderungen	11
	5.2	Limitationen von LLM Tools im Software Engineering Kontext	11
6	Zus	ammenfassung und Ausblick	13
	6.1	Zusammenfassung der Ergebnisse	13
	6.2	Implikationen für die Praxis	13
	6.3		
Αŀ	bild	ungsverzeichnis	٧
To	halla	nverzeichnie	VII

Quellcodeverzeichnis	IX
Stichwortverzeichnis	x
Literaturverzeichnis	XII

1 Einleitung

TODO!!!!!!!!!

1.1 Motivation

In einer Welt, die von immer komplexeren und dynamischeren Softwareanwendungen geprägt ist, wird die effektive Nutzung von Technologien zunehmend entscheidend für den Erfolg von Softwareprojekten. In diesem Zusammenhang gewinnen Werkzeuge des Natural Language Processing eine immer größere Bedeutung. Insbesondere die jüngsten Fortschritte im Bereich der Large Language Models (LLM) eröffnen neue Möglichkeiten für die Verbesserung des Software Engineering Prozesses.

Die Motivation hinter dieser Arbeit liegt in der Erkundung des Einsatzes von LLM-Tools im Software Engineering und der Analyse ihrer Auswirkungen auf verschiedene Phasen des Entwicklungszyklus. Die Frage, wie diese fortschrittlichen LLM-Tools genutzt werden können, um den Softwareentwicklungsprozess effizienter, präziser und insgesamt erfolgreicher zu gestalten, steht im Mittelpunkt dieser Untersuchung.

1.2 Zielsetzung der Arbeit

Todo!!!!!!!!!!!!!!!!!

1.3 Struktur der Arbeit

Todo!!!!!!!!!!!!!!!!!

2 Grundlagen

TODO!!!!!!!!

2.1 LLM Tools

Unter LLM-Tools versteht man Sprachmodelle, die auf einem Large Language Model (LLM) basieren. Ein LLM ist ein Deep-Learning-Algorithmus, der mit sehr großen Datensätzen trainiert wird. Diese Modelle finden häufig Anwendung im Bereich des Natural Language Processing (NLP), wo sie verwendet werden, um Abfragen in natürlicher Sprache zu beantworten oder Ergebnisse zu liefern. LLMs können neue Inhalte verstehen, zusammenfassen, generieren und vorhersagen. Durch das Training sammeln LLMs Milliarden von Parametern, bei denen es sich um Variablen handelt, die im Modell angepasst werden, um neue Inhalte abzuleiten.

LLMs basieren auf einem Transformer-Modell, das Eingaben in Token umwandelt und dann gleichzeitig mathematische Gleichungen ausführt, um Beziehungen zwischen den Token zu ermitteln. Dadurch kann der Computer Muster erkennen, die auch ein Mensch wahrnehmen würde, wenn ihm die gleiche Frage gestellt wird. Zudem verwenden Transformer-Modelle Selbstaufmerksamkeitsmechanismen, die es dem Modell ermöglichen, schneller zu lernen als herkömmliche Modelle. Dadurch kann das Transformer-Modell verschiedene Teile der Sequenz oder den gesamten Kontext eines Satzes berücksichtigen, um Vorhersagen zu generieren.

Grundsätzlich bestehen LLMs aus vier neuronalen Netzwerkschichten: der wiederkehrenden Ebene, der Einbettungsebene, der Feedforward-Ebene und der Aufmerksamkeitsebene. Diese Schichten arbeiten zusammen, um den Eingabetext zu verarbeiten und Ausgabeinhalte zu generieren.

Die wiederkehrende Ebene dient dazu, die Wörter des Eingabetextes der Reihe nach zu interpretieren und die Beziehungen zwischen den Wörtern in einem Satz zu erfassen. Die Einbettungsebene erfasst die semantische und syntaktische Bedeutung der Eingabe, sodass das Modell den Kontext verstehen kann. Die Feedforward-Schicht besteht aus mehreren vollständig verbundenen Schichten, die die Eingabeeinbettungen transformieren. Dadurch ermöglichen diese Schichten dem Modell, Abstraktionen auf höherer Ebene zu verstehen und somit die Absicht des Benutzers mit der Texteingabe zu erfassen. Die Aufmerksamkeitsebene ermöglicht es dem Sprachmodell, sich auf einzelne Teile des Eingabetextes zu konzentrieren, die für die Aufgabe relevant sind, und dadurch die genausten Ausgaben zu generieren. Damit ein großes Sprachmodell Texteingaben empfangen und eine Ausgabevorhersage generieren kann, muss es zunächst allgemein geschult und anschließend feinabgestimmt werden, um spezifische Aufgaben ausführen zu können. Für die Schulung werden riesige Datenmengen im Petabyte-Bereich benötigt. Das Training verläuft mehrstufig und beginnt in der Regel mit einem unbeaufsichtigten Lernansatz, bei dem das Modell mit unstrukturierten und unbeschrifteten Daten trainiert wird, da diese in größeren

Mengen verfügbar sind. In dieser Phase leitet das Modell Beziehungen zwischen verschiedenen Wörtern und Konzepten ab.

Anschließend erfolgt die Schulung und Feinabstimmung durch eine Form des selbstüberwachten Lernens. Dabei wird eine Datenkennzeichnung durchgeführt, durch die das Modell verschiedene Konzepte besser und genauer identifizieren kann. Im nächsten Schritt durchläuft das LLM den transformatorischen neuronalen Netzwerkprozess im Rahmen des Deep Learning. Die Transformer-Modellarchitektur ermöglicht es dem LLM, mittels eines Selbstaufmerksamkeitsmechanismus Beziehungen und Verbindungen zwischen Wörtern und Konzepten zu erkennen, indem bestimmten Elementen (Token) Bewertungen zugewiesen werden, um die Beziehungen festzulegen.

Entscheidend über die Leistungsfähigkeit und die Qualität des Sprachmodells sind die Datensätze, welche zum trainieren benutzt werden. Im folgenden wird auf die drei unterschiedliche LLM-Tools eingeganden, welche in dieser Arbeit näher untersucht werden[1].

2.1.1 ChatGPT

ChatGPT wurde von dem Unternehmen OpenAl am 30. November 2022 veröffentlicht. Aufgrund der fortschrittlichen generativen KI-Fähigkeiten wurde der Chatbot schnell zu einer internationalen Sensation. Die Beta-Version der Plattform war ursprünglich kostenlos verfügbar, und OpenAI stellte den Nutzern weiterhin eine kostenlose Basisversion der Plattform zur Verfügung. Im Februar 2023 kündigte OpenAI ein kostenpflichtiges Abonnement an, das den Nutzern unbegrenzten Zugriff auf ChatGPT und eine breitere Palette von Funktionen und Diensten bietet. Neben begeisterter Kritik löste ChatGPT jedoch auch schnell mehrere Kontroversen aus. Es wurden fehlerbehaftete Antworten ausgegeben, insbesondere wenn sie aufgefordert werden, Schlussfolgerungen zu ziehen, Nuancen zu untersuchen, Meinungen zu analysieren oder Vorhersagen zu treffen. Außerdem äußerten sich Pädagogen auf der ganzen Welt besorgt über den Platz von ChatGPT im Klassenzimmer und auch an Universitäten wurde der Einsatz von ChatGPT kritisch gesehen. Doch auch mit den Kontroversen schien ChatGPT bereit zu sein, die Art und Weise, wie Internetnutzerinhalte erstellt werden, zu revolutionieren. Webentwickler und Ersteller von Inhalten begannen schnell, ChatGPT als Recherche- und Schreibhilfe für Website-Texte zu nutzen. Im März 2023 veröffentlichte OpenAI eine neue Version, bekannt als GPT-4. Ein großer Unterschied ist, dass GPT-4 Eingaben sowohl in text- als auch in bildbasierten Formaten akzeptiert, was dem ChatBot ermöglicht, Daten aus Diagrammen, Grafiken und Screenshots zu interpretieren. Ebenfalls macht GPT-4 weitaus weniger Denkfehler und sachliche Fehler, die in der KI als "Halluzinationen"bezeichnet werden, als das GPT-3.5-Modell, das in der ersten ChatGPT-Version verwendet wurde. Am Ende des Jahres war es immer fortschrittlicher geworden und ChatGPT könnte beispielsweise Bilder analysieren, Sprachansagen abhören und seine eigene gesprochene Antwort anbieten. Im Mai 2024 kündigte OpenAl ein aktualisiertes Modell namens ChatGPT-4o an, das schnellere Ergebnisse und verbesserte Text- und Audiofunktionen versprach, einschließlich eines neuen Konversations-KI-Systems namens SSky"[2].

Wenn man ChatGPT fragt, ob es einen Infotext zu sich selbst erstellen kann erhält man folgende Antwort:

Prompt: Erstell mir einen Infotext über dich für meine Bachelorarbeit

ChatGPT ist ein fortschrittlicher KI-gestützter Sprachassistent, der auf der GPT-4-Architektur von OpenAI basiert. Entwickelt im Rahmen der Forschung und Entwicklung im Bereich Künstliche Intelligenz, ist ChatGPT in der Lage, natürliche Sprache zu verstehen und darauf zu antworten. Dies macht ihn zu einem vielseitigen Werkzeug für eine Vielzahl von Anwendungen, von der Beantwortung alltäglicher Fragen bis hin zur Unterstützung bei komplexeren Aufgaben wie dem Schreiben von Texten, der Generierung von Ideen und der Bereitstellung von Informationen.

Die GPT-4-Architektur, auf der ChatGPT basiert, verwendet tiefes maschinelles Lernen, um menschliche Sprache zu verarbeiten und zu erzeugen. Durch die Analyse großer Mengen an Textdaten kann das Modell Muster und Zusammenhänge erkennen, die es ihm ermöglichen, kontextuell relevante und kohärente Antworten zu geben. Diese Fähigkeiten machen ChatGPT zu einem nützlichen Instrument in Bereichen wie Bildung, Forschung, Kundenservice und mehr.

Ein weiterer bemerkenswerter Aspekt von ChatGPT ist seine Fähigkeit, sich an eine Vielzahl von Themen anzupassen und Informationen auf klare und präzise Weise zu vermitteln. Dies wird durch kontinuierliches Training und Verbesserung des Modells erreicht, wobei sowohl technische Fortschritte als auch Nutzerfeedback berücksichtigt werden.

Zusammengefasst ist ChatGPT ein leistungsstarker und vielseitiger KI-Assistent, der durch seine fortschrittliche Technologie und seine breite Anwendbarkeit einen wertvollen Beitrag in vielen Bereichen leistet.

Wenn man

2.1.2 Google Gemini

Google Gemini (ehemals Bard) wurde von DeepMind entwickelt, was ein Tochterunternehmen von Google ist. Das Erstveröffentlichungsdatum war der 6. Dezember 2023 und basiert auf der Meena-Architektur von Google AI, die 2020 veröffentlicht wurde.

2.1.3 Le Chat

Le Chat ist ein, von dem französischem KI-Startup Mistral AI veröffentlichter Chatbot. Mistral AI startete mit seinen frei verwendbaren Sprachmodellen, also auf der Grundlage von Open Source, erfolgreich durch. Nun(????) hat Mistral AI sein bislang größtes Modell 'Mistral Large' veröffentlicht. Diesmal allerdings nicht auf der Basis von Open Source, sondern ausschließlich über die eigene Webseite und der KI-Infrastruktur Microsoft Azure. Es lassen sich allerdings API-Keys für Programmierschnittstellen erstellen, um z.B. Mistral Large über seinen eigenen Server laufen zu lassen und so für andere User

auf der eigenen Homepage verfügbar zu machen. Mit Mistral Large wurde auch Le Chat veröffentlicht, welcher aktuell(????????) kostenfrei verwendet werden kann. Le Chat bietet derzeit noch sehr wenige Funktionen an. Es stehen Lediglich Texteingabe und -ausgabe zur Verfügung. Die Datengrundlage reicht nur bis 2021, weshalb es auch hier, für die Jahre 2022 bis heute, zu der Problematik der Halluzination kommen kann. Grundsätzlich kann man zwischen drei Sprachmodellen auswählen: Large, Next und Small. Large bietet überlegene Denkfähigkeit, Next ist ein Prototyp-Modell für erhöhte Kürze und Small arbeitet schnell und kosteneffektiv. [3]

2.2 Software Engineering Prozess

Test Verweis auf Buch [4] Das ist ein Text.

2.2.1 einzelne Phasen

3 Anwendung von LLM Tools im Software Engineering

TODO!!!!!!!!

3.1 Einzelne Phasen

4 Praxisergebnisse und Vergleich

TODO!!!!!!!!

- 4.1 ??????
- 4.2 ChatGPT
- 4.3 Gemini
- 4.4 Le Chat
- 4.5 Vergleich

5 Herausforderungen und Limitationen

TODO!!!!!!!!

5.1 Technische Herausforderungen

TODO!!!!!!!!!!!

5.2 Limitationen von LLM Tools im Software Engineering Kontext

6 Zusammenfassung und Ausblick

TODO!!!!!!!!

6.1 Zusammenfassung der Ergebnisse

TODO!!!!!!!!!!

6.2 Implikationen für die Praxis

TODO!!!!!!!!!!

6.3 Ausblick und zukünftige Entwicklungen

TODO!!!!!!!!!!

Anhang

Abbildungsverzeichnis

Tabellenverzeichnis

Quellcodeverzeichnis

Stichwortverzeichnis

????, 9 Anwendung von LLM Tools im Software Engineering, 7 Ausblick und zukünftige Entwicklungen, 13 ChatGPT, 4, 9 Einleitung, 1 Einzelne Phasen, 7 einzelne Phasen, 6 Gemini, 9 Google Gemini, 5 Grundlagen, 3 Herausforderungen und Limitationen, 11 Implikationen für die Praxis, 13 Le Chat, 5, 9 Limitationen von LLM Tools im Software Engineering Kontext, 11 LLM Tools, 3 Motivation, 1 Praxisergebnisse und Vergleich, 9 Struktur der Arbeit, 1 Technische Herausforderungen, 11 Vergleich, 9 Zielsetzung der Arbeit, 1

Zusammenfassung der Ergebnisse, 13 Zusammenfassung und Ausblick, 13

Literaturverzeichnis

- [1] Milfad Sadar. Large Language Models Grundlagen KI-getriebener Kommunikation.

 Zugriff am 27. Mai 2024. 2023. URL: https://weissenberg-group.de/was-ist-ein-large-language-model/#:~:text=Zum%20IPA%20Whitepaper-,Wie%20funktioniert%20ein%20LLM%3F,zwischen%20den%20Token%20zu%20ermitteln (siehe Seite 4).
- [2] Jim Greene. *ChatGPT*(*software*). Zugriff am 28. Mai 2024. 2024. URL: https: //eds.p.ebscohost.com/eds/detail/detail?vid=3&sid=1983b266-2f53-4090-a0f2-1aef00f51d1f% 40redis&bdata=Jmxhbmc9ZGUmc2l0ZT1lZHMtbGl2ZQ%3d%3d#AN=163030996&db=ers (siehe Seite 4).
- [3] Matthias Kindt.

 Mistral AI: Französisches KI-Startup stellt Chatbot "Le Chatünd Kooperation mit Microsoft Azure vor.

 Zugriff am 16. Mai 2024. 2024. URL: https://www.unidigital.news/mistral-ai-franzoesisches-ki-startup-stellt-chatbot-le-chat-und-kooperation-mit-microsoft-azure-vor/ (siehe Seite 6).
- [4] Ian Sommerville. *Software Engineering*. 9. Auflage. Harlow, England: Addison-Wesley, 2010. ISBN: 978-0-13-703515-1 (siehe Seite 6).