REPORT ON EXISTING MODULAR ROBOTS & SCOPE OF RESEARCH -Madhav Wagh

What is a Modular Robot?

Self-reconfigurable modular robots are autonomous robots with a variable morphology, where they are able to deliberately change their own shapes by reorganizing the connectivity of their modules to adapt to new environments, perform new tasks, or recover from damages.

Classification according to the geometric arrangements of the modules

Architecture

· Chain Architectures:

- Modules are connected together in a string and tree topology.
- Motion controls of the modules are executed sequentially.
- Easier to design and implement.

Lattice Architectures:

- Modules are connected in some regular, space filling 3 D pattern.
- Control and motion are executed in parallel.
- More flexible and efficient to form complex structures.
- More suitable for dynamic environments.

Classification Based on Number of different modules used can be classified as

Homogeneous and Heterogeneous Reconfigurable Robots

Homogeneous

- · All modules are all the same
- · Module position determines role
- · Less-costly hardware/software design process
- · Simple to reconfigure

Heterogeneous

- · Can have different modules
- · Function of module determines role
- · Many different hardware/designs costly
- · Complex reconfiguration

EXISTING MODULAR ROBOTS

Chain: CKBot System

- The CKBot system is a reconfigurable robotic system developed by Yim at the University of Pennsylvania.
- These modules utilize a servo to rotate one portion of the module with respect to the other.
- Global inter-module communication through CANbus as well as local neighbor-to-neighbor communication is incorporated on the modules. This system has also been used in some experiments in self-repair.

Lattice: Atron System

- The Atron system reconfigures in a lattice system, but can form chains as well. This image shows a four "legged" or "wheeled" configuration depending on how the modules are actuated.
- Modules can distribute power via their bonding mechanisms and use a power management system for voltage regulation and battery charge maintenance.
- A module consists of two hemispheres where one can rotate continuously relative to the other.
- Reconfiguration is performed by having one module grab another and then rotate some multiple of 90 degrees to another position in the lattice structure.

2D Modular Robots	Homogeneity/ Heterogeneity	Dynamic Motion	Comments
CEBOT (Nagoya Univ.)	Hetero	No	A modular robot proposed first
Fractum (AIST)	Homo	No	First exmeriment of self-repair
Mirco-module (AIST)	Homo	No	Micro-sizing into 2cm cube using SMA
Metamorphic Robot (Johns Hopkins Univ.)	Homo	No	Hexagonal link mechanism
Modular robot of Riken	Homo	No	Cube-shape, can be stuck vertically

3D Modular Robots	Homogeneity / Heterogeneit y	Dynamic Motion	Self- reconfigurab lity	Control System	Comments
3D Self- reconfigurabl e Structure (AIST)	Homo	No	Yes	Centralized	First 3D self- reconfigurabl e homogeneous modular structure
Crystaline (Dartmouth)	Homo	No	Yes	Centralized	Shrinkable module to build 2D and 3D structures
Moledule (Dartmouth)	Homo	No	Yes	Centralized	Composed of a link and two connecting parts
I-Cube (CMU)	Hetero	No	Yes	Centralized	Consists of two types of modules, links and cube. The link is actuated
CONRO (USC)	Homo	Yes	Yes	Centralized	Serially connected modules with small degrees

					of freedom for dynamic motion
Polybot (Xerox PARC)	Homo	Yes	Yes	Centralized	Serially connected modules with small degrees of freedom for dynamic motion
3D Modular Structure (TiTech)	Homo	No	Yes	Centralized	Reconfigurati on performed by pneumatic actuator
RBR (TiTech)	Hetero	Yes	Yes	Centralized	Reconfigurabl e robotic arm for space applications
"Modular Transformer" MTRAN (AIST)	Homo	Yes	Yes	Centralized	Succeeded in moving by changing its locomotion mode using 9 modules
SkyWalker (CMU)	Hetero	Yes	No	Centralized	An example of modular space robot
Tetrobot (Renssaeler Polytech. Inst.)	Hetero	Yes	No	Centralized	An example of a modular robot with many possible configuration s

CONCLUSION

After going through various modular robots(mentioned in the table),

The Scope for Research are:

- There is a need for interfacing of Sensors to Modular Robots.
- Programming them with Sensor Feedback.
- -Making them interactive with the environment.

This can be efficiently, timely and proficiently done using Dtto Modular Robot because,

- 1) It has already provided free space for Sensor Attachment
- 2) Design and code is open source (for initial reference)
- 3) It is inspired from MTRAN
- 4) IR, Proximity, Gyro Sensors can be easily attached to each module
- 5) Modules are homogeneous
- 6) Thus program one program all

REFERENCES

- 1) http://thesis.library.caltech.edu/4189/1/Chen im 1994.pdf
- 2) http://155.69.254.10/users/risc/Pub/Conf/98-c-icarcv-semors.pdf
- 3) https://staff.aist.go.jp/e.yoshida/test/research-e.htm
- 4) https://hackaday.io/project/9976-dtto-explorer-modular-robot