Tinkering

Waveley Qiu (wq2162)

2022-03-17

EDA

Let's import and take a look at the data.

Let's take a look at the distributions of other variables.

tbl_summary(bc, by = diagnosis)

- ## Table printed with `knitr::kable()`, not {gt}. Learn why at
- ## https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
- ## To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	B, N = 357	M, N = 212
id	908,916 (874,662, 8,812,816)	895,366 (861,345, 8,911,290)
radius_mean	12.2 (11.1, 13.4)	17.3 (15.1, 19.6)
texture_mean	17.4 (15.2, 19.8)	21.5 (19.3, 23.8)
perimeter_mean	78 (71, 86)	114 (99, 130)
area_mean	458 (378, 551)	932 (705, 1,204)
$smoothness_mean$	$0.091 \ (0.083, \ 0.101)$	$0.102\ (0.094,\ 0.111)$
compactness_mean	$0.08 \ (0.06, \ 0.10)$	$0.13\ (0.11,\ 0.17)$
concavity_mean	$0.04 \ (0.02, \ 0.06)$	$0.15 \ (0.11, \ 0.20)$
concave.points_mean	$0.02 \ (0.02, \ 0.03)$	$0.09 \ (0.06, \ 0.10)$

Characteristic	B, N = 357	M, N = 212
symmetry_mean	0.171 (0.158, 0.189)	0.190 (0.174, 0.210)
fractal_dimension_mean	$0.062 \ (0.059, \ 0.066)$	$0.062\ (0.057,\ 0.067)$
radius_se	0.26 (0.21, 0.34)	0.55 (0.39, 0.76)
texture_se	1.11 (0.80, 1.49)	$1.10 \ (0.89, \ 1.43)$
perimeter_se	$1.85 \ (1.45, \ 2.39)$	$3.68 \ (2.72, 5.21)$
area_se	20(15, 25)	58 (36, 94)
$smoothness_se$	$0.0065 \ (0.0052, \ 0.0085)$	$0.0062 \ (0.0051, \ 0.0080)$
$compactness_se$	$0.016 \ (0.011, \ 0.026)$	$0.029\ (0.020,\ 0.039)$
concavity_se	$0.018\ (0.011,\ 0.031)$	$0.037\ (0.027,\ 0.050)$
concave.points_se	$0.009 \ (0.006, \ 0.012)$	$0.014\ (0.011,\ 0.017)$
$symmetry_se$	$0.019\ (0.016,\ 0.024)$	$0.018\ (0.015,\ 0.022)$
fractal_dimension_se	$0.0028 \ (0.0021, \ 0.0042)$	$0.0037 \ (0.0027, \ 0.0049)$
radius_worst	$13.3 \ (12.1, \ 14.8)$	20.6 (17.7, 23.8)
texture_worst	$22.8 \ (19.6, \ 26.5)$	28.9 (25.8, 32.7)
perimeter_worst	87 (78, 97)	138 (119, 160)
area_worst	547 (447, 670)	1,303 (970, 1,713)
$smoothness_worst$	$0.125 \ (0.110, \ 0.138)$	$0.143 \ (0.130, \ 0.156)$
$compactness_worst$	$0.17 \ (0.11, \ 0.23)$	$0.36 \ (0.24, \ 0.45)$
concavity_worst	$0.14 \ (0.08, \ 0.22)$	$0.40 \ (0.33, \ 0.56)$
concave.points_worst	$0.07 \ (0.05, \ 0.10)$	$0.18 \ (0.15, \ 0.21)$
symmetry_worst	$0.27 \ (0.24, \ 0.30)$	$0.31\ (0.28,\ 0.36)$
fractal_dimension_worst	$0.077 \ (0.070, \ 0.085)$	$0.088 \ (0.076, \ 0.103)$

We want our outcome variable to be binary. Let's create a new outcome variable, bin_out, which will be 1 if diagnosis == 'M' and 0 if 'diagnosis == 'B'.

```
bc <- bc %>% mutate(bin_out = ifelse(diagnosis == "M", 1, 0)) %>% relocate(bin_out)
```

Full Model

First, we want to establish logistic model using all variables in the dataset. We will do this by performing a Newton Raphson optimization in order to find the MLEs of the beta coefficients.

The likelihood function for a logistic model is defined as follows:

$$f(\beta_0, \beta_1, ..., \beta_{30}) = \sum_{i=1}^{n} \left(Y_i \left(\beta_0 + \sum_{j=1}^{30} \beta_j x_{ij} \right) - \log(1 + e^{\left(\beta_0 + \sum_{j=1}^{30} \beta_j x_{ij} \right)} \right)$$

Let $\pi_i = \frac{e^{\beta_0 + \sum_{j=1}^{30} \beta_j x_{ij}}}{1 + e^{\beta_0 + \sum_{j=1}^{30} \beta_j x_{ij}}}$. Then, the gradient of this function is defined as follows:

$$\nabla f(\beta_0, \beta_1, ..., \beta_{30}) = \begin{pmatrix} \sum_{i=1}^n Y_i - \pi_i \\ \sum_{i=1}^n x_{i1} (Y_i - \pi_i) \\ \sum_{i=1}^n x_{i2} (Y_i - \pi_i) \\ \vdots \\ \sum_{i=1}^n x_{i30} (Y_i - \pi_i) \end{pmatrix}$$

Finally, we define the Hessian of this function as follows:

$$\nabla^{2} f(\beta_{0}, \beta_{1}, ..., \beta_{30}) = -\sum_{i=1}^{n} \begin{pmatrix} 1 \\ x_{i1} \\ x_{i2} \\ \vdots \\ x_{i30} \end{pmatrix} (1 \ x_{i1} \ x_{i2} \ ... \ x_{i30}) \pi_{i} (1 - \pi_{i})$$

$$= -\begin{pmatrix} \sum_{i=1}^{n} \pi_{i} (1 - \pi_{i}) & \sum_{i=1}^{n} x_{i1} \pi_{i} (1 - \pi_{i}) & \dots & \sum_{i=1}^{n} x_{i30} \pi_{i} (1 - \pi_{i}) \\ \sum_{i=1}^{n} x_{i1} \pi_{i} (1 - \pi_{i}) & \sum_{i=1}^{n} x_{i1}^{2} \pi_{i} (1 - \pi_{i}) & \dots & \sum_{i=1}^{n} x_{i30} x_{i1} \pi_{i} (1 - \pi_{i}) \\ \sum_{i=1}^{n} x_{i2} \pi_{i} (1 - \pi_{i}) & \sum_{i=1}^{n} x_{i1} x_{i2} \pi_{i} (1 - \pi_{i}) & \dots & \sum_{i=1}^{n} x_{i30} x_{i2} \pi_{i} (1 - \pi_{i}) \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \sum_{i=1}^{n} x_{i30} \pi_{i} (1 - \pi_{i}) & \sum_{i=1}^{n} x_{i1} x_{i30} \pi_{i} (1 - \pi_{i}) & \dots & \sum_{i=1}^{n} x_{i30}^{2} \pi_{i} (1 - \pi_{i}) \end{pmatrix}$$

$$= (1 \ x_{i1} \ x_{i2} \ \dots \ x_{i30}) I(\pi_{i} (1 - \pi_{i})) \begin{pmatrix} 1 \\ x_{i1} \\ x_{i2} \\ \vdots \\ x_{i30} \end{pmatrix}$$

Let's create a function that produces the log-likelihood, gradient vector, and hessian matrix, given a dataset and beta vector:

```
rep col <- function(x, n){</pre>
  matrix(rep(x, each = n), ncol = n, byrow = TRUE)
logistic_stuff <- function(dat, beta){</pre>
  x <- dat[[1]] %>% unname() %>% as.matrix()
  y <- dat[[2]] %>% unname() %>% as.matrix()
  x_{with_1} \leftarrow cbind(1, x)
  u <- x_with_1 %*% beta
 # return(u)
  expu <- exp(u)
  loglik \leftarrow sum(y*u - log(1 + expu))
  p \leftarrow expu/(1 + expu)
  # return(p)
  # return(p)
  grad <- t(x_with_1) %*% (y - p)
  i_mat <- diag(nrow(p))</pre>
  diag(i_mat) \leftarrow p*(1 - p)
  hess <- -(t(x_with_1) %*% i_mat %*% x_with_1)
  return(list(
    loglik = loglik,
    grad = grad,
    hess = hess
```

```
))
}
```

Newton-Raphson Algorithm

Now, let's write a Newton-Raphson algorithm to find the beta coefficients that maximize this function's likelihood.

The unmodified estimate of $\theta_i = \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_3 0 \end{bmatrix}$ at each step i of the Newton Raphson algorithm is:

$$\theta_i = \theta_{i-1} - [\nabla^2 f(\theta_{i-1})]^{-1} \nabla f(\theta_{i-1})$$

In this modified Newton Raphson algorithm, we want to first ensure that the $\nabla^2 f(\theta_{i-1})$ is either negative definite or replaced with a similar matrix that is negative definite. To do this, we will update the algorithm to be as follows:

$$\theta_i = \theta_{i-1} - \left[\nabla^2 f(\theta_{i-1}) - kI \right]^{-1} \nabla f(\theta_{i-1}),$$

where I is the identity matrix and k is a constant that allows $\nabla^2 f(\theta_{i-1}) - kI$ to be negative definite. If $\nabla^2 f(\theta_{i-1})$ is already negative definite, k will be 0.

Next, we want to add step-halving into our algorithm. We will proceed as follows:

$$\theta_i = \theta_{i-1} - \frac{1}{2^j} [\nabla^2 f(\theta_{i-1}) - kI]^{-1} \nabla f(\theta_{i-1}),$$

where j is chosen in a stepwise fashion, until $f(\theta_i) > f(\theta_{i-1})$.

```
NewtonRaphson <- function(dat, func, start, tol = 1e-8, maxiter = 200) {</pre>
  i <- 0
  cur <- start
  stuff <- func(dat, cur)</pre>
  res <- c(0, stuff$loglik, cur)
  prevloglik <- -Inf</pre>
  while (i < maxiter && abs(stuff$loglik - prevloglik) > tol && !is.na(stuff$loglik)) {
    i \leftarrow i + 1
    prevloglik <- stuff$loglik</pre>
    prev <- cur
    newhess <- ((stuff$hess + t(stuff$hess))/2)</pre>
    if (!is.negative.definite(newhess)) { # redirection
     while (!is.negative.definite(newhess)) {
       # subtracts identity matrix until a negative definite matrix is achieved
        newhess1 <- newhess - 0.0001*diag(31)</pre>
       # sanity check print("changing ascent direction")
        newhess <- ((newhess1 + t(newhess1))/2)</pre>
    }
    cur <- prev - solve(newhess) %*% stuff$grad</pre>
    stuff <- func(dat, cur)</pre>
```

```
if (stuff$loglik < prevloglik) { # back tracking (half-step)
    j = 1
    while (stuff$loglik < prevloglik & (!is.na(stuff$loglik))) {
        halfstep = 1/(2^j)
        cur <- prev - halfstep*solve(newhess) %*% stuff$grad
        stuff <- func(dat, cur)
        # sanity check print("backtracking")
        j = j + 1
    }
}
res <- rbind(res, c(i, stuff$loglik, cur))
}
return(res)
}</pre>
```

Let's start with all beta coefficients being 0.001.

```
beta_init <- rep(0.001, 31) %>% as.matrix()

test1 <- logistic_stuff(
    list(x = bc[,-c(1,2, 3)] %>% as.matrix(),
        y = bc$bin_out %>% as.matrix()),
    beta = beta_init)

ans <- NewtonRaphson(
    list(x = bc[,-c(1,2, 3)] %>% as.matrix(),
        y = bc$bin_out %>% as.matrix()),
        logistic_stuff,
        beta_init)
```

The beta estimates are as follows:

```
if (sum(is.na(ans[nrow(ans),])) > 0) {
  beta_est <- ans[nrow(ans) - 1, -c(1,2)]
}

if (sum(is.na(ans[nrow(ans),])) == 0) {
  beta_est <- ans[nrow(ans), -c(1,2)]
}

tibble(beta_subscript = seq(0, 30), beta_estimates = beta_est) %>% knitr::kable()
```

$beta_subscript$	$beta_estimates$
0	-35.6788855
1	-25.8450679
2	0.2364029
3	0.5233921
4	0.1930977
5	374.2231831
6	-274.0661692
7	112.3745441
8	197.4735980
9	-81.7535878
10	159.0248149

beta_{-}	$_{ m subscript}$	beta_estimates
	11	-8.7382958
	12	-3.6859107
	13	-3.5505959
	14	0.6320060
	15	229.4048089
	16	491.9823911
	17	-394.7461298
	18	1835.8287537
	19	-331.3771487
	20	-5753.5678242
	21	9.2644874
	22	0.8250521
	23	0.1906329
	24	-0.0454310
	25	-131.4051756
	26	-43.7531684
	27	47.8195818
	28	-22.8843059
	29	80.0735290
	30	555.5843554

Logistic-Lasso Model

Now, we want to establish a logistic-lasso model, in which we want to minimize the weighted residual sum of squares of the logistic regression.

$$f(\beta_{0}, \beta_{1}, \dots, \beta_{30}) \approx -\frac{1}{2n} \sum_{i=1}^{n} w_{i} \left(z_{i} - (\mathbf{1} \quad \mathbf{x}_{i}) \begin{pmatrix} \beta_{0} \\ \beta_{1} \\ \vdots \\ \beta_{30} \end{pmatrix} \right)^{2} + C(\tilde{\beta}_{0}, \tilde{\beta}_{1}, \dots, \tilde{\beta}_{30})$$

$$z_{i} = (\mathbf{1} \quad \mathbf{x}_{i}) \begin{pmatrix} \tilde{\beta}_{0} \\ \tilde{\beta}_{1} \\ \vdots \\ \tilde{\beta}_{30} \end{pmatrix} + \frac{\mathbf{y}_{i} - \tilde{\mathbf{p}}_{i}(\mathbf{x}_{i})}{\tilde{\mathbf{p}}_{i}(\mathbf{x}_{i})(\mathbf{1} - \tilde{\mathbf{p}}_{i}(\mathbf{x}_{i}))}$$

$$w_{i} = \tilde{p}_{i}(x_{i})(1 - \tilde{p}_{i}(x_{i}))$$

$$\exp \left((\mathbf{1} \quad \mathbf{x}_{i}) \begin{pmatrix} \tilde{\beta}_{0} \\ \tilde{\beta}_{1} \\ \vdots \\ \tilde{\beta}_{30} \end{pmatrix} \right)$$

$$1 + \exp \left((\mathbf{1} \quad \mathbf{x}_{i}) \begin{pmatrix} \tilde{\beta}_{0} \\ \tilde{\beta}_{1} \\ \vdots \\ \tilde{\beta}_{30} \end{pmatrix} \right)$$

Quadratic Approximation to the Log-likelihood

```
quad_loglik <- function(dat, beta){ # beta vector includes beta_0</pre>
  x <- dat[[1]] %>% unname() %>% as.matrix()
  y <- dat[[2]] %>% unname() %>% as.matrix()
  x_with_1 \leftarrow cbind(1, x)
  u <- x_with_1 %*% beta
  expu <- exp(u)
  p <- expu/(1 + expu) # estimated outcome probability
  w_i <- p * (1 - p) # weights
  z_i \leftarrow x_with_1 \%\% beta + (y - p)/(p * (1 - p)) # working response
  loglik \leftarrow -(1/(2*nrow(x))) * t(w_i) %*% ((z_i - x_with_1 %*% beta)^2)
  return(loglik)
beta_init <- rep(0.001, 31) %>% as.matrix()
test_quad <- quad_loglik(</pre>
  list(x = bc[,-c(1,2, 3)] \%\% as.matrix(),
       y = bc$bin_out %>% as.matrix()),
  beta = beta_init)
test_quad
              [,1]
```

Lasso Minimization

[1,] -1.210166

We want to achieve the following minimization:

$$\min_{(\beta_0, \beta_1, \dots, \beta_{30})} L(\beta_0, \beta_1, \dots, \beta_{30}, \lambda) = \left\{ -l(\beta_0, \beta_1, \dots, \beta_{30}) + \lambda \sum_{j=0}^{30} |\beta_j| \right\}$$