## Économétrie — TD 3

Regressions MCO (EViews)

Pierre Beaucoral

## Régression linéaire : rappel & pratique

## Modèle de régression linéaire simple

Une régression consiste à expliquer les variations d'une variable dépendante Y par celles d'une ou plusieurs variables indépendantes X.

On suppose la relation (droite de régression):

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i, \quad i = 1, \dots, N$$

où  $\varepsilon_i$  est centré et non corrélé aux régressseurs.

Objectif MCO (OLS). Estimer  $\beta_0, \beta_1$  en minimisant la somme des carrés :

$$\min\textstyle\sum_{i=0}^{N}\varepsilon_{i}^{2}=\min\textstyle\sum_{i=0}^{N}\left(Y_{i}-\beta_{0}-\beta_{1}X_{i}\right)^{2}.$$

Tip

 $\beta_1$  Représente ici la magnitude de "l'effet" de la variable  $X_1$  sur Y.  $\varepsilon\_i$  Représente la partie non expliquée de la relation (ou terme d'erreur)

#### Terme d'erreur

L'introduction du terme d'erreur recouvre deux grands types d'erreurs :

Erreur de spécication :

Les variables introduites ne sont pas susantes pour expliquer toutes les variations de Y

Erreur de mesure :

La variable expliquée (Y) est mesurée de manière imparfaite (bruitée)

#### Prédiction de Y

Une fois estimée, la relation s'écrit:

$$Y_i = \hat{\beta}_0 + \hat{\beta}_1 X_i + \hat{\varepsilon}_i$$

Avec  $\hat{\varepsilon}_i$ , terme d'erreur estimé aussi appelé résidu, on peut prédire Y:

$$\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$$

#### Graphique 1 — Nuage de points + droite OLS

```
set.seed(42)
N <- 60
x <- sort(runif(N, 0, 10))</pre>
y < -2 + 0.8*x + rnorm(N, sd = 1.5)
df <- data.frame(x, y)</pre>
mod <- lm(y ~ x, data = df)
plot(df$x, df$y, pch = 19, xlab = "X", ylab = "Y", cex.lab = 1.4)
abline(mod, lwd = 3)
b0 <- coef(mod)[1]
b1 <- coef(mod)[2]
## ---- 0 : ordonnée à l'origine ----
points(0, b0, pch = 21, bg = "blue", cex = 1.8)
arrows(0.6, b0 + 0.7, 0.1, b0 + 0.1, length = 0.12,
       col = "blue", lwd = 3)
text(0.8, b0 + 1.1, expression(beta[0]),
     col = "blue", cex = 1.6, font = 2)
## --- Triangle rectangle pour la pente ----
x0 <- 2
                               # point de départ en X
y0 \leftarrow b0 + b1*x0
                                # point sur la droite
```

```
# Base de 1 en X et hauteur correspondante en Y = b1
x1 < -x0 + 1
y1 <- b0 + b1*x1
# Triangle
segments(x0, y0, x1, y0, col="red", lwd=3) # base (\Delta x = 1)
segments(x1, y0, x1, y1, col="red", lwd=3) # hauteur (\Delta y = 1)
segments(x0, y0, x1, y1, col="red", lwd=3, lty=2) # hypoténuse
# Étiquettes
text((x0+x1)/2, y0 - 0.7, "1", col="red", cex=1.4, font=2)
                                                                           # ∆x
text(x1 + 0.4, (y0 + y1)/2,
     bquote(beta[1] == .(round(b1,2))),
     col="red", cex=1.4, font=2)
                                                                           \# \Delta v = 1
legend("topleft",
       legend = sprintf("\hat{Y} = %.2f + %.2f X", b0, b1),
       bty = "n", cex = 1.2)
```



Figure 1: et illustrée par un triangle rectangle ( $\Delta x = 1, \Delta y = -0.86$ ).

#### Forme matricielle (régression multiple)

En multiple : $Y = X\beta + \varepsilon$ ,  $\hat{\beta} = (X'X)^{-1}X'Y$ .

#### Exemple avec deux régresseurs

```
set.seed(123)
N <- 120
x1 \leftarrow runif(N, 0, 10)
x2 \leftarrow rnorm(N, 5, 2)
y < -1.5 + 0.6*x1 - 0.3*x2 + rnorm(N, sd = 1)
d <- data.frame(y, x1, x2)</pre>
m \leftarrow lm(y \sim x1 + x2, data = d)
summary(m)
Call:
lm(formula = y \sim x1 + x2, data = d)
Residuals:
              1Q
                   Median
                                        Max
                                3Q
-1.78604 -0.62855 -0.05144 0.66068 2.06691
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.87289 0.26031 7.195 6.43e-11 ***
                       0.03088 19.931 < 2e-16 ***
x1
            0.61541
x2
           Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.9416 on 117 degrees of freedom
Multiple R-squared: 0.7792,
                               Adjusted R-squared: 0.7755
```

#### Note

Ceci est un exemple de tableau de régression, sur Eviews, le tableau sera similaire, mais un peu différent, celui-là a été fait dans R pour l'exemple.

F-statistic: 206.5 on 2 and 117 DF, p-value: < 2.2e-16

#### Procédure sur EViews

#### **Estimation**

- Faire Object  $\rightarrow$ New Object  $\rightarrow$ Equation
- Autre méthode :
  - 1. Sélectionner les variables en débutant par la variable dépendante (Y)
  - -2. Faire Open  $\rightarrow$ as Equation
- La fenêtre ouverte a deux onglets :

Specification: Entrer la spécification choisie

Options:

- Cet onglet sert pour la correction de la matrice de variance-covariance
- Nous ignorons pour le moment cet onglet

#### **Estimation**

• Equation specification : Permet d'entrer l'équation estimée

Il faut mettre d'abord la variable expliquée (Y) puis les variables explicatives (X1 ; X2, . . .) : Y X1 X2 . . . c

c sert à spécier l'introduction d'une constante

Nota : Si la deuxième méthode est utilisée, l'équation est déjà spéciée mais peut être modiée

• Estimation Settings:

Method : Permet de choisir l'estimateur (MCO [LS] par défaut)

Sample : Permet de choisir l'échantillon retenu

#### **Commandes post-estimations**

- Les coeficients estimés sont conservés dans l'objet c
- Les résidus estimés de la dernière équation sont stockés dans "resid"
- Name:
  - Permet de conserver la régression dans un workfile
- View  $\rightarrow$ representation:
  - Permet de visualiser la ligne de commande eectuée, l'équation théorique et l'équation avec les valeurs estimées des coeficients
- View  $\rightarrow$ estimation output :
  - Permet de visualiser les résultats bruts de la régression.

#### **Commandes post-estimations**

• View  $\rightarrow$ actual, fitted, residual:

actual : valeur de la variable dépendante utilisée dans la régression,

fitted : valeurs de la variable dépendante prédites par la régression en appliquant les coeficients de la régression sur les variables explicatives,

residual (actual-tted): indication sur les erreurs de prévisionéventuelles, bornes à 5%.

• Freeze:

Permet de conserver les résultats.

### **Commandes post-estimations**

• Il est possible de vouloir conserver plusieurs éléments de l'équation estimée

Ex: Pour calculer des points de retournement ou pour certains tests il faut conserver les R2, la SCR, . . .

• Pour ce faire, il sut généralement de créer un objet (scalaire, matrice) qui puisse accueillir ces nouveaux éléments

Exemples:

- Scalaire: scalar nom=nomequation.operation

- Matrice: matrix nom=nomequation.operation

- Ex : scalar rsq=eq1.@r2

- Ex : matrix coefficients=eq1.@coefs



Tip

L'opération commence par .@ en général

## **Commandes post-estimations**

Quelques éléments disponibles (non exhaustif):

| Élément                               | Opération             | Type d'objet |
|---------------------------------------|-----------------------|--------------|
| ${\mathrm{R}^{2}}$                    | @r2                   | scalar       |
| ${ m R}^2$ ajusté                     | @rbar2                | scalar       |
| SCR                                   | @ssr                  | scalar       |
| Coefficient pour la $i$ -ème variable | c(i)                  | scalar       |
| t-stat pour la $i$ -ème variable      | <pre>@tstats(i)</pre> | scalar       |
| Matrice de variance-covariance        | @coefcov              | matrix       |
| Matrice des coefficients              | @coefs                | matrix       |
| Matrice des t-stat                    | @tstats               | matrix       |

Une liste plus complète est disponible dans Users Guide II page 16

Le coeficient de détermination : Le  $\mathbb{R}^2$ 

• Le pouvoir explicatif du modèle

L'économétrie cherche à expliquer les variations de Y. Ceci est la variabilité totale (SCT pour somme des carrés totale) et est donnée par :  $SCT = \sum_{i=1}^{N} (y_i - \bar{y})^2 = SCE + SCR$ 

7

Cette variabilité se décompose en :

- Variabilité expliquée : SCE (pour somme des carrés expliquée)

- Variabilité non expliquée : SCR (pour somme des carrés des résidus)

Le coefficient de détermination : le  $R^2$ 

• Le coefficient de détermination mesure le pouvoir explicatif du modèle et se calcule comme suit:

$$R^2 = \frac{SCE}{SCT} = 1 - \frac{SCR}{SCT} \quad \text{avec} \quad \begin{cases} SCR = \sum_{i=1}^N \hat{\varepsilon}_i^2 \\ SCT = \sum_{i=1}^N (y_i - \bar{y})^2 \end{cases}$$

- Ce coefficient mesure la qualité de l'ajustement de la régression en indiquant le pourcentage de la variance totale expliquée par le modèle :
  - Si (  $R^2 \to 1$  ) : le modèle est **très explicatif**. Si (  $R^2 \to 0$  ) : le modèle est **peu explicatif**.

Le coefficient de détermination : le  $\mathbb{R}^2$ 

- Il faut en réalité faire attention avec le (  $\mathbb{R}^2$  ) :
  - Le (  $\mathbb{R}^2$  ) augmente mécaniquement avec l'ajout de variables explicatives.
  - Il faut par conséquent privilégier une version ajustée du nombre de degrés de liberté, le ( $R^2$ ) ajusté :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{N-1}{N-p}$$

- $\bullet$  ( N ): nombre d'observations
- (p): nombre de variables explicatives (sans la constante)
- Le  $(R^2)$  n'est pas un objectif en soi, il ne faut pas chercher à le maximiser.

## Significativité statistique

## La significativité simple

- Objectif : déterminer si le coefficient estimé est précis.
- Pour cela, on fait un test de Student à partir de :
  - la valeur estimée du coefficient ( $\hat{\beta}_i$ ),
  - et la valeur estimée de son écart-type (  $\hat{\sigma}_{\beta}$  ).

Rappel: l'écart-type mesure la dispersion d'une série autour de sa moyenne.

• La statistique de test est la suivante :

$$t_{\beta_j} = \frac{\hat{\beta}_j - \beta_{\rm th}}{\hat{\sigma}_{\beta}}$$

- Les hypothèses testées sont :
  - $$\begin{split} &-H_0: \beta_j = \beta \mathrm{th} \\ &-H_1: \beta_j \neq \beta \mathrm{th} \end{split}$$

## La significativité simple

- Le test consiste souvent à savoir si le paramètre est significativement différent de 0 (
- La statistique de test devient donc :

$$t_{\beta_j} = \tfrac{\hat{\beta}_j}{\hat{\sigma}_\beta}$$

- Les hypothèses testées deviennent :

  - $\begin{array}{l} -\ H_0: \beta_j = 0 \\ -\ H_1: \beta_j \neq 0 \end{array}$

#### La significativité simple

- La statistique de test calculée  $t_{\beta_j}$  est comparée à la statistique théorique  $t\alpha$  tabulée pour un risque de première espèce  $\alpha$ .
- Remarque : il s'agit en général d'un test bilatéral.

```
alpha <- 0.05
      <- 30
df
xlim < -c(-4, 4)
tcrit \leftarrow qt(1 - alpha/2, df = df)
xx \leftarrow seq(xlim[1], xlim[2], length.out = 2000)
yy \leftarrow dt(xx, df = df)
plot(xx, yy, type = "l", lwd = 2,
     xlab = "t", ylab = "densité",
     main = sprintf("Loi t(%d) - test bilatéral ( = %.2f)", df, alpha),
     xaxt = "n") # on dessine l'axe X nous-mêmes
shade_region <- function(x_from, x_to, col){</pre>
  xseq \leftarrow seq(x_from, x_to, length.out = 500)
  yseq \leftarrow dt(xseq, df = df)
 polygon(c(xseq, rev(xseq)), c(yseq, rep(0, length(yseq))),
          col = col, border = NA)
}
# Colorier les zones
shade_region(-tcrit, tcrit, col = rgb(0.2, 0.6, 1, 0.3))  # zone centrale
shade_region(xlim[1], -tcrit, col = rgb(1, 0.2, 0.2, 0.35)) # queue gauche
shade_region(tcrit, xlim[2], col = rgb(1, 0.2, 0.2, 0.35)) # queue droite
# Traits verticaux
abline(v = c(-tcrit, tcrit), lwd = 2, lty = 2)
# Axe X avec -t* et t* comme graduations
axis(1,
     at = c(xlim[1], -tcrit, 0, tcrit, xlim[2]),
     labels = c("", sprintf("-t* = %.2f", -tcrit), "0", sprintf("t* = %.2f", tcrit), ""),
     tick = TRUE)
# Étiquettes
text(0, max(yy)*0.65, expression(1 - alpha), cex = 1.4)
```

#### Loi t(30) - test bilatéral (. = 0.05)



Figure 2: Test bilatéral : /2 décalés vers l'extérieur, -t\* et t\* en graduations de l'axe X.

#### La significativité simple — procédure

1. Calculer la statistique de Student (Coef / SE) :  $t_{\beta_j} = \hat{\beta} j/\sigma \hat{\beta}$ .

- 2. Choisir un niveau de risque de première espèce  $\alpha$ .
- 3. Déterminer la valeur critique tabulée  $t_{\alpha/2,\nu}$  pour un test bilatéral, avec  $\nu=N-1$ p (ddl: nb d'observations N moins nb de paramètres p).
- 4. Conclure sur la significativité selon la règle de décision :
  - $\begin{array}{ll} \bullet & \text{si } |t| < t_{\alpha/2,\; \nu}) (\Rightarrow) \text{ non-rejet de } H_0 \\ \bullet & \text{si } |t| \geq t_{\alpha/2,\; \nu}) (\Rightarrow) \text{ rejet de } (H_0) \end{array}$

#### Tableau de décision test bilatéral

| Décision / Réalité                   | $H_0$ vraie                          | $H_0$ fausse                     |
|--------------------------------------|--------------------------------------|----------------------------------|
| $f Rejeter~H_0$ Ne pas rejeter $H_0$ | Erreur $\alpha$<br>Décision correcte | Décision correcte Erreur $\beta$ |



#### Caution

On parle de rejet ou non rejet d'une hypothèse, pas d'acceptation.

#### La significativité conjointe



#### Tip

Dans un modèle, nous pouvons nous intéresser à déterminer si nos différentes variables ont un effet significatif sur notre variable Y, dépendemment les unes des autres. C'est à dire, est-ce que mes variables sont significatives conjointement ( $X_1$  significative ET  $X_N$ 

Dans ce cadre, les simples tests de Student ne sont pas suffisants, pour tester plusieurs restrictions, il faut recourir à d'autres tests:

Test de Fisher dans le cas des modèles linéaires

Tests de Wald, du log de vraisemblance ou du multiplicateurs de Lagrange dans les cas plus complexes

#### La significativité conjointe le test de Fisher (F-test)

• Le **F-test** permet de tester la significativité conjointe de plusieurs paramètres, voire la significativité globale d'un modèle linéaire. La statistique de test est la suivante :

$$F = \frac{SCR_r - SCR_{nr}}{SCR_{nr}} \frac{N - p}{q}$$

où:

- q: nombre de restrictions testées (sans la constante),
- p: nombre de paramètres dans le modèle non restreint (avec la constante),
- $\bullet$  N: nombre d'observations.
- $SCR_r$ : somme des carrés des résidus du modèle **restreint** (les paramètres imposés sont fixés),
- $SCR_{nr}$ : somme des carrés des résidus du modèle **non restreint** (modèle usuel non contraint).

### La significativité conjointe — F-test (unilatéral)

- Le test de Fisher est unilatéral (rejet dans la queue droite).
- Sous (H\_0), la statistique suit une loi de **Fisher–Snedecor** :  $F \sim F(q, N-p)$  , où q = nb de restrictions testées et N-p = ddl résiduels du modèle non restreint.
- Les logiciels (EViews, R, etc.) donnent directement (F), la p-value et la table ANOVA.

```
shade_region <- function(x_from, col){</pre>
  xseq <- seq(x_from, xmax, length.out = 600)</pre>
  yseq \leftarrow df(xseq, df1 = q, df2 = df2)
 polygon(c(xseq, rev(xseq)), c(yseq, rep(0, length(yseq))),
          col = col, border = NA)
}
# Zones
polygon(c(0, xx[xx <= Fcrit], Fcrit),</pre>
        c(0, yy[xx \le Fcrit], 0),
        col = rgb(0.2, 0.6, 1, 0.15), border = NA)
shade_region(Fcrit, col = rgb(1, 0.2, 0.2, 0.35))
abline(v = Fcrit, lwd = 2, lty = 2)
# Axe X plus lisible avec F* bien marqué
axis(1,
     at = c(0, Fcrit, round(xmax, 1)),
     labels = c("0",
                bquote(F^{"*"} == .(round(Fcrit, 2))),
                round(xmax,1)),
     cex.axis = 1.2)
# Étiquettes
text(mean(c(0,Fcrit))*0.5, max(yy)*0.5, expression(H[0]), cex = 1.4)
text((Fcrit + xmax)/2, max(yy)*0.25, expression(H[A]), cex = 1.4)
text(Fcrit, par("usr")[3] - 0.02, expression(alpha),
     xpd = NA, pos = 1, cex = 1.3
legend("topright",
       legend = c("densité F(q, N-p)",
                   "région HO (non rejet)",
                   "région de rejet ()"),
       lty = c(1, NA, NA), lwd = c(2, NA, NA),
       pch = c(NA, 15, 15), pt.cex = 2,
       col = c("black", rgb(0.2, 0.6, 1, 0.15), rgb(1, 0.2, 0.2, 0.35)),
       bty = "n", cex = 1)
```

#### Loi F(3, 30) - test unilatéral (. = 0.05)



Figure 3: Loi F(3,30) — test unilatéral : étiquettes lisibles.

La significativité conjointe — hypothèses usuelles du F-test

- On teste généralement la contrainte selon laquelle tous les coefficients (hors constante) sont nuls.
  - $H_0$  : tous les coefficients du modèle sont égaux à 0 (sauf l'intercept), c.-à-d.  $H_0$  :  $\beta_1=\beta_2=\cdots=\beta_p=0$
  - $-H_1$ : au moins un coefficient est différent de 0.
- Dans ce cas, le modèle contraint est le modèle avec seule la constante. Règle de décision :

si  $F > F_{\text{table}}$  (au niveau  $\alpha$ )et ddl (q, N-p))  $\Rightarrow$  rejet de  $H_0$ .

- Interprétation :
  - Non-rejet de  $H_0 \Rightarrow$  pas de relation linéaire significative entre la variable expliquée et l'ensemble des variables explicatives.
  - Autrement dit, la **SCE** (somme des carrés expliquée) n'est pas significativement différente de 0 ; la variabilité de (Y) demeure essentiellement **aléatoire**.

## La significativité conjointe — F-Test : procédure EViews

- Procédure à suivre :
  - 1. Régresser le modèle non contraint et relever la SCR.
  - 2. Régresser le modèle contraint et relever la SCR.
  - 3. Calculer la statistique de Fisher.
  - 4. Comparer la valeur obtenue à la valeur théorique (table de Fisher).

#### La significativité conjointe — F-Test : Exemple de commandes EViews

```
equation eqnr Y X1 X2 X3 X4 X5 c
scalar scrnr = eqnr.@ssr
equation eqr Y X1 X3 c
scalar scrr = eqr.@ssr
scalar F = ((scrr - scrnr) / scrnr) * ((129 - 5) / 3)
```

- Ici:
  - eqnr : estimation du modèle non restreint (toutes les variables).
  - eqr : estimation du modèle restreint.
  - scrnr et scrr : sommes des carrés des résidus respectivement non restreint et restreint.
  - F : statistique de Fisher calculée manuellement.

### La significativité conjointe — Wald-test

- La procédure selon le Wald-test est pré-enregistrée dans EViews :
  - 1. Ouvrir les résultats de l'estimation.
  - 2. Menu: View → Coefficient diagnostic → Wald test.
  - 3. Saisir les contraintes de la forme :

```
c(numéro_coef1) = 0
c(numéro_coef2) = 0
par exemple:
c(3) = 0
c(5) = 0
```

## Significativité économique

## ! Important

Une variable peut avoir une très grande significativité statistique mais une faible significativité économique. Ici nous ne nous intéréssons pas à la "robustesse" de l'estimation de l'effet, mais à sa "magnitude"

L'interprétation du coefficient estimé  $\beta$  dépend de la manière dont  $\mathbf{Y}$  (variable expliquée) et  $\mathbf{X}$  (variable explicative) sont exprimées : en **niveau** ou en **logarithme**.

## Significativité économique - un tableau récapitulatif :

| Variable expliquée (Y) | Variable explicative (X) | Interprétation du coefficient $\beta$                                                    |
|------------------------|--------------------------|------------------------------------------------------------------------------------------|
| Niveau                 | Niveau                   | Une augmentation de 1 unité de X entraı̂ne une variation moyenne de $\beta$ unités de Y. |

| Variable expliquée (Y) | Variable explicative (X) | Interprétation du coefficient $\beta$                                                           |  |
|------------------------|--------------------------|-------------------------------------------------------------------------------------------------|--|
| Niveau                 | Logarithme               | Une augmentation de 1 % de X entraîne une variation moyenne de $\beta/100$ unités de Y.         |  |
| Logarithme             | Niveau                   | Une augmentation de 1 unité de X entraı̂ne une variation moyenne de $\beta \times 100 \%$ de Y. |  |
| Logarithme             | Logarithme               | Une augmentation de 1 % de X entraı̂ne une variation moyenne de $\beta$ % de Y.                 |  |

# Questions – Réponses TD2 (Module 2)

Question : Importez la base de données sur les compagnies aériennes.

Afficher la réponse

Menu File  $\to$  Open  $\to$  Foreign Data as Workfile puis sélectionner le fichier de données.

## Question : Créez le logarithme du nombre de passagers. Quelle est l'utilité de cette transformation ?

Afficher la réponse

Commande : genr logpassagers = log(passagers)

Cette transformation:

- réduit l'impact des valeurs extrêmes en compressant l'échelle,
- rapproche la distribution d'une loi normale,
- stabilise les variances,
- permet une interprétation en pourcentage : une variation d'une unité du log une variation d'environ 100~% de la variable d'origine,

| • aide à linéariser les relations et donc facilite l'usage de la régression linéaire.                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question : Estimez l'équation suivante par les MCO. Dans quelle mesure cette équation peut-elle être considérée comme linéaire ?                                                                                                                                                                       |
| Afficher la réponse                                                                                                                                                                                                                                                                                    |
| Menu $\mathbf{Object} \to \mathbf{New} \ \mathbf{Object} \to \mathbf{Equation}$ , choisir « Linear ». Même si la variable dépendante est en logarithme, l'équation reste <b>linéaire</b> car les variables explicatives apparaissent en <b>première puissance</b> et la relation est <b>additive</b> . |
| Question : Distinguez les variables dépendantes, indépendantes, d'intérêt et de contrôle.                                                                                                                                                                                                              |
| Afficher la réponse                                                                                                                                                                                                                                                                                    |
| • Variable dépendante (expliquée) : logpass (log du nombre de passagers).                                                                                                                                                                                                                              |
| • Variables explicatives : Ratio, croissance annuelle du trafic aérien de la destination principale (2010-2013), public, low cost, age, intercontinental, croissance annuelle du trafic aérien du pays d'origine (2010-2013).                                                                          |
| • Variable d'intérêt : Ratio.                                                                                                                                                                                                                                                                          |
| • Variables de contrôle : toutes les autres variables explicatives listées ci-dessus.                                                                                                                                                                                                                  |
| Question : D'après le R <sup>2</sup> de l'estimation, l'équation a-t-elle un pouvoir explicatif correct ?                                                                                                                                                                                              |
| Afficher la réponse                                                                                                                                                                                                                                                                                    |
| Le R <sup>2</sup> obtenu est 0,39 : le modèle explique environ <b>40</b> % <b>de la variabilité</b> du nombre de passagers. <b>pouvoir explicatif modéré</b> , le modèle reste relativement peu explicatif.                                                                                            |
|                                                                                                                                                                                                                                                                                                        |

Question : Le nombre d'accidents par passagers est-il significativement différent de zéro ?

Afficher la réponse

Test de Student bilatéral :

•  $|t_{\text{calcul\'e}}| = 3,22 > t_{\alpha/2,,N-p} = 1,658.$ \* Avec N - p = 94 - 8 = 86.

Rejet de  $(H_0)$ : le coefficient du nombre d'accidents par passagers est significativement différent de 0.

Question : Distinguer entre accidents mortels et non mortels et réestimer l'équation.

Afficher la réponse

Créer les variables :

genr Dummy\_fatal = fatal>=1 genr Dummy\_non\_fatal = non\_fatal>=1

Puis relancer la régression en remplaçant ratio par les deux nouvelles variables.

Question: Ces variables sont-elles individuellement et conjointement significatives?

Afficher la réponse

- Individuellement :
  - Accidents mortels: |t| = 1,713 > 1,658 significatif.
  - Accidents non mortels: |t| = 1,671 > 1,658 significatif.
- Conjointement (test de Fisher):
  - F calculé = 6,792 > F table = 3,07 rejet de H0,
  - donc les deux variables sont **conjointement significatives**.

## Question : Quelle variable semble la plus importante d'un point de vue économique ? Comment interpréter le coefficient obtenu ?

Afficher la réponse

#### Procédure:

 $Dans\ EViews \rightarrow \texttt{View} \ \ \textbf{-} \ \texttt{Coefficient diagnostics} \ \ \textbf{-} \ \texttt{Scaled coefficient}.$ 

Le **coefficient standardisé** indique de combien d'écarts-types Y varie quand X varie d'un écart-type.

Cela permet de comparer directement l'importance relative des variables.

#### Résultat:

La variable intercontinentale a le plus grand coefficient standardisé ( $\sim 0,42$ ).

Comme Y est en logarithme et X en niveau, cela signifie qu'une compagnie qui devient **inter-continentale** augmente en moyenne le nombre de passagers d'environ 10 %, toutes choses égales par ailleurs.

C'est la variable la plus importante d'un point de vue économique.