CONCOURS MINES-PONTS 2023 MATHÉMATIQUES 1 - PC

Pierre-Paul TACHER

This document is published under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license. © (1) (8) (2)

1.

Supposons $S \in S_n^+(\mathbb{R})$. On rappelle que les valeurs propres d'une matrices $S \in S_n^+(\mathbb{R})$ sont réelles; soit $\lambda \in \mathbb{R}$ une valeur propre de S, et $X \not= 0$ un vecteur propre associé

$$\langle SX, X \rangle = (SX)^T X$$
$$= \lambda X^T X$$
$$= \lambda \|X\|^2$$

Ainsi,

$$\lambda = \frac{\langle SX, X \rangle}{\|X\|^2} \geqslant 0$$

Cela montre que $Sp(S) \subset \mathbb{R}^+$.

Réciproquemment, supposons $Sp(S) \subset \mathbb{R}^+$. On peut diagonaliser en base orthonormale

$$S = Q \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} Q^T$$
$$= QDQ^T$$

avec Q orthogonale et $(\lambda_1, \lambda_2, \dots \lambda_n) \in (\mathbb{R}^+)^n$.

$$\forall X \in M_{n,1}(\mathbb{R}), \quad \langle SX, X \rangle = X^T S X$$

$$= X^T Q D Q^T X$$

$$= (Q^T X)^T D Q^T X$$

$$= Q^T X^T D Q^T X$$

$$= \sum_{j=1}^n \lambda_i y_i^2 \geqslant 0$$

οù

$$Q^T X = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

1

On a bien $S \in S_n^+(\mathbb{R})$.

2.

Soit
$$(S_1, S_2) \in S_n^+(\mathbb{R})^2$$
. Soit $t \in [0, 1]$.

$$\forall X \in M_{n,1}(\mathbb{R}), \quad \langle ((1-t)S_1 + tS_2)X, X \rangle = X^T S X$$

$$= (1-t)\langle \underbrace{S_1 X, X}_{\geqslant 0} + t \underbrace{\langle S_2 X, X}_{\geqslant 0} \rangle$$

Cette dernière quantité est positive par convexité de l'ensemble \mathbb{R}^+ . Donc $(1-t)S_1 + tS_2 \in S_n^+(\mathbb{R})$ et $S_n^+(\mathbb{R})$ est convexe.

Similarement, soit $(S_1, S_2) \in S_n^{++}(\mathbb{R})^2$. Soit $t \in [0, 1]$.

$$\forall X \in M_{n,1}(\mathbb{R}) \setminus \{0\}, \quad \langle ((1-t)S_1 + tS_2)X, X \rangle = X^T S X$$

$$= (1-t)\langle \underbrace{S_1 X, X}_{>0} + t \underbrace{\langle S_2 X, X}_{>0} \rangle$$

Cette dernière quantité est strictement positive par convexité de l'ensemble \mathbb{R}^{+*} . Donc $(1-t)S_1 + tS_2 \in S_n^{++}(\mathbb{R})$ et $S_n^{++}(\mathbb{R})$ est convexe.

Ces ensembles ne sont pas des espaces vectoriels puisqu'ils contiennent I_n mais pas $-I_n$.

3.

Soit $A \in S_n^{++}(\mathbb{R})$. La diagonalisation en base orthonormale peut s'écrire

$$A = U \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} U^T$$

$$= U \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{bmatrix} \underbrace{U^T U}_{=I_n} \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{bmatrix} U^T$$

$$= S^2$$

avec U orthogonale et $(\lambda_1, \lambda_2, \dots \lambda_n) \in (\mathbb{R}^{+*})^n$. La matrice

$$S = U \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{bmatrix} U^T$$
$$= U \begin{bmatrix} \sqrt{\lambda_1} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_n} \end{bmatrix} U^{-1}$$

est une matrice symétrique réelle vérifiant $Sp(S) = \{\sqrt{\lambda_1}, \sqrt{\lambda_2}, \dots, \sqrt{\lambda_n}\} \subset \mathbb{R}^{+*}$ et donc $S \in S_n^{++}(\mathbb{R})$.

4.

La propriété est triviale pour p=1 et correspond à la définition de la convexité d'une fonction pour p=2. Soit maintenant p>2. si $\lambda_p=1$ on est ramené au cas trivial p=1 donc on peut

supposer $\lambda_p < 1$. On peut ainsi écrire:

$$\sum_{j=1}^{p} \lambda_j x_j = (1 - \lambda_p) \sum_{j=1}^{p-1} \underbrace{\frac{\lambda_j}{1 - \lambda_p}}_{\lambda'_j} x_j + \lambda_p x_p$$

En appliquant une première fois la propriété avec p=2 on obtient:

$$f(\sum_{j=1}^{p} \lambda_j x_j) \leqslant (1 - \lambda_p) f(\sum_{j=1}^{p-1} \frac{\lambda_j}{1 - \lambda_p} x_j) + \lambda_p f(x_p)$$

En appliquant une deuxième fois la propriété (hypothèse de récurrence) puisqu'on remarque que $\sum_{j=1}^{p-1} \lambda_j' = 1$,

$$f(\sum_{j=1}^{p} \lambda_j x_j) \leqslant (1 - \lambda_p) \sum_{j=1}^{p-1} \frac{\lambda_j}{1 - \lambda_p} f(x_j) + \lambda_p f(x_p)$$

$$= \sum_{j=1}^{p-1} \lambda_j f(x_j) + \lambda_p f(x_p)$$

$$= \sum_{j=1}^{p} \lambda_j f(x_j)$$

Ainsi la propriété est vraie au rang p et on peut conclure.

5.

La fonction $f: x \mapsto -\ln x$ est de classe C^2 sur \mathbb{R}^{+*} et

$$\forall x \in \mathbb{R}^{+*}, \quad f''(x) = \frac{1}{x^2} \geqslant 0$$

ce qui montre que la fonction est convexe sur \mathbb{R}^{+*} . Soit $(\lambda_1, \lambda_2, \dots \lambda_n) \in (\mathbb{R}^+)^n$ les valeurs propres de M répétées avec leur ordre de multiplicité. On a

$$\operatorname{Tr} M = \sum_{i=1}^{n} \lambda_{i}$$
$$\det M = \prod_{i=1}^{n} \lambda_{i}$$

Si $\exists i \in [1, n]$, $\lambda_i = 0$, la propriété est triviale. On peut maintenant supposer que $(\lambda_1, \lambda_2, \dots \lambda_n) \in (\mathbb{R}^{+*})^n$. On applique alors le résultat de la question précédente à la fonction f

$$f(\sum_{j=1}^{p} \frac{1}{n} \lambda_{j}) \leqslant \sum_{j=1}^{p} \frac{1}{n} f(\lambda_{j})$$

$$\Leftrightarrow -\ln(\sum_{j=1}^{n} \frac{1}{n} \lambda_{j}) \leqslant -\sum_{j=1}^{n} \frac{1}{n} \ln(\lambda_{j})$$

$$\Leftrightarrow -\ln(\sum_{j=1}^{n} \frac{1}{n} \lambda_{j}) \leqslant -\frac{1}{n} \sum_{j=1}^{n} \ln(\lambda_{j})$$

$$\Leftrightarrow \ln(\sum_{j=1}^{n} \frac{1}{n} \lambda_{j}) \geqslant \frac{1}{n} \sum_{j=1}^{n} \ln(\lambda_{j})$$

$$\Leftrightarrow \ln(\sum_{j=1}^{n} \frac{1}{n} \lambda_{j}) \geqslant \frac{1}{n} \ln(\prod_{j=1}^{n} \lambda_{j})$$

$$\Leftrightarrow \ln(\sum_{j=1}^{n} \frac{1}{n} \lambda_{j}) \geqslant \ln(\prod_{j=1}^{n} \lambda_{j}^{\frac{1}{n}})$$

$$\Leftrightarrow \frac{1}{n} \sum_{j=1}^{n} \lambda_{j} \geqslant (\prod_{j=1}^{n} \lambda_{j})^{\frac{1}{n}}$$

$$\Leftrightarrow \frac{\operatorname{Tr} M}{n} \geqslant (\det M)^{\frac{1}{n}}$$

ce qui est le résultat demandé.

6.

Soit $M \in S_n^+(\mathbb{R})$. La diagonalisation en base orthonormale peut s'écrire

$$M = U \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} U^T$$
$$= UDU^T$$

avec U orthogonale et $(\lambda_1, \lambda_2, \dots \lambda_n) \in (\mathbb{R}^+)^n$.

$$\operatorname{Tr} M^{T} M = \operatorname{Tr} U D \underbrace{U^{T} U}_{=I_{n}} D U^{T}$$

$$= \operatorname{Tr} U D^{2} U^{T}$$

$$= \operatorname{Tr} D^{2} U^{T} U$$

$$= \operatorname{Tr} D^{2}$$

$$= \sum_{i=1}^{n} \lambda_{i}^{2}$$

Donc

$$\|M\| = \sqrt{\sum_{i=1}^n \lambda_i^2}$$

7.

On peut noter que le résultat précédent est valable pour les matrices de $S_n(\mathbb{R})$. Ensuite, en notant $\rho(M) = \max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}$, on a

$$||M|| = \sqrt{\sum_{i=1}^{n} \lambda_i^2}$$

$$\geqslant \sqrt{\rho(M)^2}$$

$$= \rho(M)$$

De plus, la diagonalisation de la matrice $M - \det^{\frac{1}{n}}(M)I_n$ s'obtient facilement à l'aide de celle de M:

$$M - (\det M)^{\frac{1}{n}} I_n = U \begin{bmatrix} \lambda_1 - \det^{\frac{1}{n}}(M) & 0 & \dots & 0 \\ 0 & \lambda_2 - \det^{\frac{1}{n}}(M) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n - \det^{\frac{1}{n}}(M) \end{bmatrix} U^T$$
$$= U(D - (\det M)^{\frac{1}{n}} I_n) U^T$$

ce qui permet en particulier de déterminer son spectre. On peut maintenant appliquer directement la formule de l'énoncé aux valeurs propres de $M \in S_n^+(\mathbb{R}) \setminus \{0\}$:

$$2\rho(M)\left(\frac{\operatorname{Tr} M}{n} - (\det M)^{\frac{1}{n}}\right) \geqslant \frac{1}{n} \left\| M - (\det M)^{\frac{1}{n}} I_n \right\|^2$$

Comme $\rho(M) > 0$,

$$\frac{\operatorname{Tr} M}{n} - (\det M)^{\frac{1}{n}} \geqslant \frac{\left\| M - (\det M)^{\frac{1}{n}} I_n \right\|^2}{2n\rho(M)}$$

$$\geqslant \frac{\left\| M - (\det M)^{\frac{1}{n}} I_n \right\|^2}{2n \|M\|}$$

8.

On commence par suivre l'indication de l'énoncé en utilisant le résultat de la question ??:

$$A = S^{2}$$

$$= U \begin{bmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_{n} \end{bmatrix} U^{T}$$

$$= U \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_{n}} \end{bmatrix} \underbrace{U^{T}U}_{=I_{n}} \begin{bmatrix} \sqrt{\lambda_{1}} & 0 & \dots & 0 \\ 0 & \sqrt{\lambda_{2}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \sqrt{\lambda_{n}} \end{bmatrix} U^{T}$$

$$= UD_{1}D_{1}U^{T}$$

$$= (UD_{1})(UD_{1})^{T}$$

On est alors tenté de choisir $Q' = UD_1$ pour répondre à la question posée; toutefois il n'y a peu de chance que ce choix fournisse la forme souhaitée pour la matrice B car on ne l'a pas fait encore

intervenir dans le raisonnement. Essayons:

$$\begin{aligned} Q'^{-1}B(Q'^T)^{-1} &= (UD_1)^{-1}B((UD_1)^T)^{-1} \\ &= D_1^{-1}U^{-1}B((U^T)^{-1}((D_1^T)^{-1} \\ &= D_1^{-1}U^TBUD_1^{-1} \\ &= B' \end{aligned}$$

Cette matrice B' n'est a priori pas diagonale, par contre elle est symétrique et donc orthogonalement semblable à une matrice diagonale D:

$$\exists V \in O_n(\mathbb{R}), \quad B' = VDV^T$$

On peut alors voir que

$$\forall W \in O_n(\mathbb{R}), \quad A = UD_1 \underbrace{WW^T}_{=I_n} D_1 U^T$$
$$= (UD_1 W)(UD_1 W)^T$$

Le choix qui s'impose est donc W = V, soit $Q = Q'V = UD_1V$:

$$Q^{-1}B(Q^T)^{-1} = V^T Q'^{-1}B(Q'^T)^{-1}V$$

= $V^T B'V$
= D