

Capstone Project 3 Mobile Price Range Prediction

Submitted by: Karan Tiwari

Content

Introduction

Problem Statement

Data Description

Data Cleaning

Exploratory Data Analysis

Data modeling

Machine learning Models

Conclusion

Introduction

- Nowadays, having a mobile phone is practically necessary to stay in touch with the outside world. As a result, massive amounts of mobile phones are getting manufactured and due to that lot of data is also generating
- The more expensive phones will have a lot more features than the less expensive ones, mobile phone forecasts can be useful for evaluating a phone's price range based on its characteristics. This information can be used to inform industry-level decisions on mobile phone specifications.

Problem Statement

In the competitive mobile phone market companies want to understand sales data of mobile phones and factors which drive the prices. The objective is to find out some relation between features of a mobile phone(eg:- RAM, Internal Memory, etc) and its selling price. In this problem, we do not have to predict the actual price but a price range indicating how high the price is.

Data Description

Battery_power -Total energy a battery can store in one time measured in mAh

Blue -Has Bluetooth or not

Clock_speed-speed at which microprocessor executes instructions

Dual_sim-Has dual sim support or not

Fc-Front Camera megapixels

Four_g-Has 4G or not

Int_memory-Internal Memory in Gigabytes

M_dep-Mobile Depth in cm

Mobile_wt-Weight of mobile phone

N_cores-Number of cores of processor

Pc -Primary Camera megapixels

Px height-Pixel Resolution Height

Px width-Pixel Resolution Width

Ram-Random Access Memory in Megabytes

Sc_h-Screen Height of mobile in cm

Sc w-Screen Width of mobile in cm

Talk_time-longest time that a single battery charge will last when you are

Three_g-Has 3G or not

Touch screen-Has touch screen or not

Wifi-Has wifi or not

Price_range-This is the target variable with value of 0(low cost), 1(medium cost), 2(high cost)

Dataset have 2000 rows and 21 columns

Data Cleaning

Dataset

- Does not have any outlier.
- Does not have any null values.
- Does not have any duplicate rows

So we don't have to do any transformation.

Exploratory Data Analysis

Price range and their counts.

There are 4 types of mobile phones ,their price range labeled as 0,1,2,3 and all are present in equal counts.

How many devices have Dual Sim Support?

Almost 50% of the mobile phones have dual sim.

How many devices are Touch Screen?

Almost 50% of the mobile phones are Touch screen.

How many devices Support Wi-Fi?

Almost 50% of the mobile phones have Wi-Fi connectivity.

Average mobile phones Battery in MAh according to their price range.

For price range 0 the average battery is around 1100 mAh, for price range 1 and 2 it's around 1230 mAh and for price range 3 it's around 1370 mAh.

Average mobile phones Ram in megabytes according to their price range

The average ram for price range 0,1,2,3 is approx 700,1650,2600 and 3400 megabytes respectively.

Outliers

No outliers found!

Multicollinearity

There is no highly correlated data inputs in our dataset, so there is no multicollinearity problem.

DATA MODELLING

- ·First Assigning independent and dependent variable.
- •Then do train test split in which 20% is test set and rest is for training set.
- ·x_train shape is 1600 rows and 20 columns.
- •x_test shape is 400 rows and 20 columns.

Implementing Machine learning Models

	Model_Name	Model_accuracy%
0	Logistic Regression	76
1	Decision Tree	82
2	Random forest	88
3	XG Boost	89
4	K-Nearest Neighbors	93

ML Models with their accuracy score.

Confusion matrix of ML Models

Logistic regression

Decision Tree

Random Forest

XG Boost

K-Nearest Neighbors

Conclusion

- 1:This data contain 2000 rows and 21 columns.
- 2:Data does not have any null value.
- 3:Data does not have any outlier.
- 4:EDA
 - 1: There are 4 types of mobile phones ,their price range labeled as 0,1,2,3 and all are present in equal counts.
 - 2: Almost 50% of the mobile phones have dual sim.
- . 3: Almost 50% of the mobile phones are Touch screen.
 - 4: Almost 50% of the mobile phones have Wi-Fi connectivity.
 - 5:For price range 0 the average battery is around 1100 mAh, for price range 1 and 2 it's around 1230 mAh and for price range 3 it's around 1370 mAh.
 - 6: The average ram for price range 0,1,2,3 is approx 700,1650,2600 and 3400 megabytes respectively.
 - 7: Those mobile phones which are of class 0 are the cheaper phones and those mobiles which comes in class three are the expensive mobile phones.
 - 5:There is no highly correlated data inputs in our dataset, so there is no multicollinearity problem.
- 6:Then we apply Logistic Regression ,Decision Tree, Random Forest , XGBoost and K-Nearest Neighbors machine learning models.
- 7;The accuracy of logistic regression is 76% and it was the lest accuracy we got among all ML models.
- 8:The accuracy of Decision tree model is 82%.
- 9:The accuracy of Random forest model is 88%.
- 10:The accuracy of XGBoost model is 89%.
- 11:The accuracy of K-Nearest Neighbors model is 93%
 - 12:So we conclude that K-Nearest Neighbors is our best model.