```
1:) a>0 => | a+b| < |a|+16|
   1a1 = a 1b1 = b
a+b > 0 => la+b1 a+b
  azb
  Crd
 atc > P+q
 | a+b | = a +b = | a | + 161 = (- (a +b)
   0 = 0 1 P = 0
 1a1 = - a 1b1 = - b
 a+b s 0 => 1 a+b1 = (- (9+b)
 2) a > 0, b < 0
                        1 a+b1 < 1 a1 + 161
             161 = 6
                        1a+b1 € a+(-b)
 191 = a
  0 & 0
                        10+61 < a-6
 -620
                            a + p > 0
  a-b>0
                            a tb >0
 1 Sup => 0+b > 0
      1 a+b1 = a+b = la1+ 161
  3) a+p <0 > la+p1=- (a+p)
 Lo driero gerno extest
  1a+b1 = 1a1+1b1
                                       lath= a+6 = 121 + 161.
  1a+61 = a + (-6)
  1 a+b1 ≤ a-b a=4 b=-3
  I) a+b > 0 |a+b| = |4-3|= |1|
                                       a+b = 0 - 1 q+b = - (a+b)
                                       ato=-(a+6)=-a+6)=1a+6
  1) a +p = 0 a=s p=-3 10
              | a +b| = |2-3| = |-1|
 |a+p| = a-p
  ath & a-b
   b ≤ -b
Si a > 0 entonces |x| = a si solo si -a = x = a
                                                -Ixl < x V Vxe R
 Q > O x ∈ R | x | ± Q - > - Q € X € Q
                                                X= 2
                                                X: 0
 Demostración me
```

Pl latt Saltial of 050

-1-0.011 & -0.0U1

- 0.01 4 - 0.01 W

```
X=-0,01
    |x| \ge a \rightarrow -a \le -|x| \le x \le |x|
1) - a < -1x1
            - Q & X & Q
4xeR [ ×>0 → |x|=x € a | |x| € a |
                       | X = Q =
                                          |x| = a
                4 |x| =- x
          Hipotesis - 9 = x 11 (-1)
                                          | X | S Q
                                                    YXE IR
                    0 >-x
```

Propiedades de la ecuación

Solución

Resolver: | x -2 | = 13-2x

Solución:

Ejemplo a) 13x+51 = 7 b) 12x-21>4

Maximo Entero

Ejemplo Hallar el maximo enlero de los siguientes incisar

$$[3] = 3$$

 $[7,1] = 7$

$$4x^2-5x-6 < 0$$

 $x=\frac{-(-5) t}{2} \sqrt{(-5)^2-4 (4) (6)}$

$$\frac{51\sqrt{21}}{8} = \frac{16}{8} = 2$$

Solucion

Deler base b = 2 > 1 entunces la solución esta dado por

$$\frac{3}{7} > \times$$

Solución 0 < b = 0.1 < 1

$$x^{2}+3>x-17>0$$

 $x^{2}-x+20>0$ y $x-17>0$
 y $x>17$

$$(x-5)(x-4)=0$$

 $(x-5)(x-4)=0$
 $x=4$ $x=5$

(s: (- 0,4) v (s,+00)

$$\times = \frac{-(-1) \pm \sqrt{(-1)^2 - 4(20)^2}}{2(1)} = \frac{1 \pm \sqrt{-79}}{2}$$

$$= \frac{1 \pm \sqrt{-79}}{2}$$

$$=$$

Heximus minimos Esemplo

b) Ejemplo

Flemplo b) B > (xeR/x - 4x-12<0) Solucion x2 - 4x - 18 = 0 (x-6) (x+2)=0 Cs: (-2, 6)

Resolver

→ Teurema de la suma

Demuestre

Demostración

1)
$$n=1$$
 $\frac{1(1+1)}{2} = 1 \in A \frac{2(2+1)}{2} = 2$

2) Supongemos cierto poro KEA 1+2+7, ... +
$$K = \frac{K(K+1)}{2}$$

En efecto

Funciones y "Relectiones

KEIN PZ-1

Dominio y Rango

$$0 : 2 \le x \le 3 \quad 1 - 2 \qquad \sqrt{y - 3} = |x - 2| \\ 0 \le x - 3 \le 1 \qquad \sqrt{y - 3} = x - 2$$

$$2 \le \sqrt{y-3} + 2 = x \le 3$$
, por dominio

$$2 \le \sqrt{y-3} + 2 \le 3$$
 $\sqrt{-2}$
 $0 \le \sqrt{y-3} \le 1$ $//()^2$
 $0 \le (y-3) \le 1$
 $y-3 \ge 0$; $0 \le y-3$ \wedge $y-3 \le 1$

$$y-3 \le 0$$

 $0 \le -(y-3) \le 1$
 $0 \le -y+3 \le 1 \quad ||(-3)|$
 $-3 \le -y \le -2 \quad ||(-1)|$
 $3 \ge y \ge 2$

$$\frac{\cos p \cdot e \cdot t \cdot a_0}{x^2 - 3x} = \frac{\cos a \cdot a \cdot a_0}{x^2 - 3x} = \frac{\cos a \cdot a \cdot a_0}{x^2 - \frac{3}{2}} = \frac{a}{4}$$

Calcular el dominio y rango de la función

$$\int_{0}^{\infty} \begin{cases} x_{\delta} - s & x < 0 \\ 5^{x} + 4 & 2i & x \in 4 \end{cases}$$

Solución Por el dominio

$$f_{1}(x) = 2x+2$$

$$f_{2}(x) = x^{2}-2$$

$$Y = 2x+1 \cdots R_{1} \cdot R$$

$$Y = 1x^{2}-2$$

$$Rf_{2} = [v, +\infty)$$

$$Rf_{2} = [-2, +\infty)$$

$$Luego Rf_{1} : [-2, +\infty) \cup R$$

RF: IR

Determine el dominio, rango y giaficar la funcion

Solucion

$$|x| = |x| + |x - 1|$$

$$|x| = \begin{cases} x + 1 & |x - 1| \\ -x + x < 0 \end{cases}$$

$$|x - 1| = \begin{cases} x - 1 & |x - 1| > 0 \\ -(x - 1) & |x - 1| < 0 \end{cases}$$

$$|x - 1| = \begin{cases} x - 1 & |x - 1| > 0 \\ -(x - 1) & |x - 1| < 0 \end{cases}$$

2)
$$[0, 1)$$
 $f(x) = |x| + |x-1| = x - x + 1 = 1$
 $0 \le x < 1$

$$f(x) = [1 \times 1] + \sqrt{x - [1 \times 1]} = F(x)$$

$$f(x) = [1 \times 1] + \sqrt{x - [1 \times 1]} = F(x)$$

$$f(x) = [1 \times 1] + \sqrt{x - 2}$$

$$-1 \leq \times <0 \longrightarrow [|x|] = -1 \qquad f(x) = -1 + \sqrt{x+1}$$

$$-2 \leq \times <-1 \longrightarrow [|x|] = -2 \qquad f(x) = -2 + \sqrt{x+2}$$

Ejemplo Calcular (9+9) (x) si

Solucion:

f)
$$D_{f+g} = D_F \cap D_g = \{(-\infty,0] \cup [1,+\infty)\} \cap \{(-\infty,8] \cup (10,+\infty)\}$$

 $D_{f+g} = (-\infty,0) \cup [1,8] \cup (10,+\infty)$

$$f-g = \begin{cases} x^2 - 3x - 3 & x < 0 \\ -x & 1 \le x \le 0 \\ -2x^3 + 2x + 2 & x > 10 \end{cases}$$

$$f \cdot \partial = \begin{cases} \frac{\times 10}{3 \times 10} & \times 10 \\ \frac{\times 10}{3 \times 10} & \times 10 \end{cases}$$

2°) Halleman 8+9 on cada caso

Ejemplo Haller 1/9 si

$$f(x) = \frac{2x+1}{x^2-2}; x \ge 1 \qquad g(x) = \frac{3x+1}{2x^3}; x < 8 \qquad \text{Haller } f + 9$$

$$f = \{(1,2), (3,-2), (4,0)\}, \quad g = \{(4,-5); (3,0), (7,17)\}$$

Ejemplo

P= {(0,1), (2,2), (2,3), (4,3), (5,4)}, g= {(6,7), (5,4), (4,3), (2,4), (1,4), (0,7)}

Drog = {x & Dy /x & Dg & g & & & Pr}

1) f.g

Haller Dgof, Drog asi como fog y gof

1) 90 F {x DF x P(x) & Dg}
{0,1,2,4,5}

fG € 1, 2, 3, 5, 23 € 0g = {6, 5, 4, 2, 2, 0}

D 30 F = { 0,2,4,5}

(90F) (0) = 9 (f(0)) = 9(1)=4)

Solución:

C.V.
$$M = 2 - \times$$

$$2 - 4 = \times 4$$

$$3 f(u) + 2 f(2 - u) = (2 - u)^{2} \cdots (4) / \cdot 3$$

$$3 f(u) + 6 f(2 - u) = 3(2 - u)^{2}$$

$$3 f(2 - u) + 2 f(u) = u^{2} \cdots (2) / (-2)$$

$$-6 f(2 - u) - 4 f(u) = u^{2}$$

Propietates de Limites de Punciones

Seen fig ACR-PR

s)
$$\lim_{n \to \infty} (t^n)_n \cdot (\lim_{n \to \infty} t^n)_{\mu} = T_{\mu}$$

Demostración :

mex 33: 0<1x-a1<5

1) Lim K(x) => KL = Pd | Kf(x) - KL | < E

Hipotesis: Lim fcy= L & V S>0, 35>0 YXED OCIX-al< S

1 K f a)- K1 = | K (F = 4)

Problems Demostrar que:

Sean > proximo 1 m

Le distancia PR=senx ex distancia x

minima distances del punto papandicular

distancia

IsenxI < |x1

Area de las triangulas

1.1 sonx < 1 12 x < 1.1. tyx 12

$$\frac{x \cos x}{x \cos x} < x < \frac{\cos x}{x \cos x}$$

$$5.5 \lim_{x \to 0} \cos x < \lim_{x \to 0} \frac{x}{200} < \lim_{x \to 0} = 1$$

has mo on compro generaple ses 4=x-10 + x=++x0

DSG Exo 3 S > 0 Au +no & DE 0 < INI < 2 implies

Esemplo Calcubr disguente limita

Solucion: Como en el limito x 10 tendo 9 0, hagamo Cambio do variable
b=x-11/2 - x=n+11 1x - 1/2 n+0

$$= -\frac{1}{4} \left(\frac{1}{42} \right) =$$

$$= -\frac{1}{4} \left(\frac{1}{100} \right) =$$

Trorento: Si FCH & scotado en un entero do xo al cual no portenece Yo y si lim y (w) =0

Entonce lim [f(x) · g(x)]=0

Demostración

hipoteris fer ecoteda, existe 3,00 MIDO. If up 1 < M

lim gw=0, Vexo: 35, >0 Vx e Dx 0< 1x-xol< S se tiene 1900 -01 se

Sez Exo, exista S=m.n { S1, S2} >0, 0<1x-x01<5

implice

| fcm g (0) | = | f (y g (w) |= 1 (f(y) | g (y) | < M . E

Elemph Helbr a limite do

lim x2 Sen (1)

Solucios

9.43 AM Jue, 11 Ene ≅

✓ Untitled Jam

FUNCION EXPONENCIAL

- O notional e= lim (1+1)"
- Se realiza un piestamo de 16s con un interes anual 200%.

 Fil final del 272 se devolverai
- d Esto es adecuado y justo? de purque?

 Alguno rozon, puede ser perdidu del vobr de lo moneta. Seria mas

 + adecuado actual for el copital cada se is meses Al final del
 serto mes el nocuo capital será

$$\lim_{x\to\infty} (f(x)^{9(x)}) = \lim_{x\to\infty} f(x) = \frac{1}{2} = 0$$

$$\lim_{x\to\infty} (f(x)^{9(x)}) = \lim_{x\to\infty} f(x) = \frac{1}{2} = 0$$

$$\lim_{x\to\infty} (f(x)^{9(x)}) = \lim_{x\to\infty} f(x) = \frac{1}{2} = 0$$

$$\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = \varepsilon$$

$$\lim_{n\to\infty} \left(1+z\right)^{\frac{1}{2}} = \varepsilon$$

2
$$\lim_{x\to\infty} \left[\frac{x^2+3}{x^2+4x} \right]^{\frac{x^2-1}{x}} = \lim_{x\to\infty} \left[1 + \frac{x^2+3}{x^2+4x} - 1 \right]^{\frac{x^2-1}{x}}$$

$$\lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}} \right] = \lim_{x \to 0} \left[1 + \frac{1}{\frac{x^2 + ux}{x^2 + ux}}$$

$$\lim_{x \to \infty} \left[1 + \frac{x^2 - 1}{x^2 + 1} - 1 \right] \xrightarrow{\frac{x - 1}{x + 1}}$$

$$\lim_{x \to \infty} \left[1 + \frac{x^2 - 1 - x^2 - \lambda}{x^2 + 1} \right] \xrightarrow{\frac{x - 1}{x + 1}}$$

$$\lim_{x \to \infty} \left[1 + \frac{-2}{x^2 + 1} \right] \xrightarrow{\frac{x - 1}{x + 1}}$$

$$\lim_{x \to \infty} \left[1 + \frac{1}{x^2 + 1} \right] \xrightarrow{\frac{x - 1}{x + 1}}$$

$$\lim_{x \to \infty} \left[1 + \frac{1}{x^2 + 1} \right] \xrightarrow{\frac{x - 1}{x + 1}}$$

$$\lim_{x \to \infty} \frac{-2}{2} = 1$$

$$\lim_{n\to\infty} \left(\frac{n+1}{2n}\right)$$

$$\lim_{n\to\infty} x\left(\frac{1+\frac{n}{n}}{n}\right)$$

$$\lim_{n\to\infty} \frac{1+\frac{1}{n}}{2} =$$

$$\frac{1+\frac{1}{\infty}}{2}$$

1)
$$\lim_{x\to 0} \frac{x^2 - 2x + 3}{x^2 - 3x + 2}$$
 $\lim_{x\to 0} \frac{\operatorname{Sen}(x)}{x}$

Evaluent.

$$\frac{0^{2}-2(0)+3}{0^{2}-3(0)+2} = \frac{\text{Sen}(0)}{6}$$

$$=\frac{3}{2}^{1}$$

Ejemplo

Encuentie une ecuscion do la recta tangente a la parabola $y=x^2-1$ en el punto (2,3), Dibuje la parabola x muestre un segmento de x recta tangente en (2,3).

Definacion (De recta normal A una grafica

La recta normal a una grafica en un punto donde es la recta perpendicular a la recta tangente en ese punto

Ejemplo heller en (2,3)

Solución:

Del exemplo anterior la recta tangente es x-4x+5:LT (2,3)

Por la recta normal la pendiente m debe ser perpendicular entonce
nu estra pendiente es: - 1

Perpendicular

Ejemplo: grafico fcy=x)->x

Sol:

$$\lim_{\Delta x \to 0} \frac{1(x_{11} \Delta x) - \frac{1}{2}(x_{11})}{\Delta x} = \lim_{\Delta x \to 0} \frac{(x_{11} \Delta x)^{3} - 3(x_{11} \Delta x) - (x_{11}^{3} - 3x_{11})}{\Delta x}$$

$$= 3x_1^2 - 3$$

tengente a horizontel arendo

Ejemplo

$$\frac{1}{3}$$
 $\frac{1}{3}$

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\frac{\Im}{x + \Delta x} - \frac{\Im}{x}}{\Delta x} : x \neq 0$$

$$\frac{\lim_{\Delta x \to 6} \frac{\Im x - \Im (x + \Delta x)}{\times (x + \Delta x)}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Im x - \Im x - \Im \Delta x}{\Delta x (x^2 + \lambda \Delta x)} = \frac{\Im}{x^2}$$

2: fc1 = c01 x f(x) > f(0)

$$\int_{0}^{\infty} \frac{\cos(x-\Delta x)-\cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos(x-\Delta x)-\cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos x \cdot \cos \Delta x - \sin x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos x \cdot \cos \Delta x - \cos x}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\cos x \cdot \cos \Delta x - \cos x}{\Delta x}$$

$$= \frac{(1 - (\omega A_x) c_{\omega x}}{\Delta x} - \lim_{\Delta x \to 0} \frac{s_{\omega x}}{\Delta x} = s_{\omega x}$$

Demostración:

$$f'(0) = \lim_{\Delta x \to 0} \frac{(0+1x)^3 - 0}{\Delta x} = \lim_{\Delta x \to 0} \frac{2/3}{\Delta x} = \lim_{\Delta x \to 0} \frac{1}{\Delta x}$$

$$= \frac{1}{0} \approx \infty \in \mathbb{R}$$

M exists en 0

$$\int_{1}^{1} (x) = \lim_{\Delta x \to 0} \frac{|\Delta x + x| - |x|}{\Delta x} = \begin{cases} \frac{|\Delta x + x| - x}{\Delta x} = 2 \\ \frac{|\Delta x - x|}{\Delta x} = -1 \end{cases}$$

TROSEME

$$f'(x_0) = \lim_{\delta x \to 0} \frac{f(x_0 + \delta x) - f(x_0)}{\delta x} e^{x_0 + \delta x}$$

$$\lim_{\delta x \to \infty} f(x_0) = f(x_0)$$

1) I fao por Woote

2)
$$\lim_{x \to x_3} f(x) = (f(x_3) = \lim_{x \to x_3} f(x) \cdot f(x_3) = 0$$

$$\lim_{x\to x_0} f(x) - f(x_0) = \lim_{x\to x_0} \frac{f(x) - f(x_0)}{x-x} (x-x_0) = \lim_{x\to x_0} \frac{f(x) - f(x_0)}{x-x} \cdot \lim_{x\to x_0} (x-x_0)$$

$$= f'(x_0 - 0) = 0$$

lin
$$f(w - f(x_0) = 0) = 0$$
 (=) In $f(x) = f(x_0)$
 $x - x_0$
 $f(x) = f(x_0)$

Definición derivada lateral

Ejemplo: See & le funcion definide por for = 11-x2

$$\begin{vmatrix} 1-x^2 \\ 0 \\ -(1-x^2) \end{vmatrix} = \begin{vmatrix} 1-x^2 > 0 \\ 0 \\ 1-x^2 = 0 \\ 1-x^2 < 0 \end{vmatrix}$$

$$|1-x^2| = \begin{cases} 1-x^2 & -1 < x < 1 \\ 0 & x = -1 : x = 1 \\ x^2 - 1 & x < -1 & 0 & x > 1 \end{cases}$$

$$f'(xy) = \lim_{x \to 2y} \frac{f(x) - f(xy)}{y - xy}$$
 Exists

3)
$$1) = 2$$

2)
$$\lim_{x\to 2} f(x) = \lim_{x\to 1^+} x^2 - 1 = 0$$

$$\frac{x^2-1-0}{x-1}=\lim_{x\to p}\frac{(x-1)(x+1)}{x-1}=2$$

$$f(x) = \lim_{x \to 1^-} \frac{f(x) - f(x)}{x - 1} = \lim_{x \to 1^-} \frac{1 - x^2}{x - 2}$$

$$a + b = 2$$
 $a = 4$
 $a = \frac{4}{9}$
 $a = \frac{4}{9}$

$$\frac{3}{4+39} = 6-29$$

$$l_{(x)} = ((x)^{\frac{1}{2}})^{1} + ((1-x)^{\frac{1}{2}})^{1}$$
 $b = \frac{14}{9}$

Integral Indefinida

$$\int 5\sqrt{x} \sqrt[3]{x^2} dx = \int 5x^{1/2} \times \sqrt[2]{3} dx$$

$$= 5 \int x^{\frac{1}{2} + \frac{2}{3}} dx$$

$$= 5 \int x \sqrt[4]{x^2 + \frac{2}{3}} dx$$

= 5 1 × 3 dx

$$= 3 \frac{3}{x_3} - 2p \frac{n}{x_n} + C$$

Cambio de variable

①
$$\int (x^2-5x)(3x^2-5)dx = \int udv = \frac{2}{u^2} + c = \frac{(x^3-5x)^2}{2} + c$$

(2)
$$\int \frac{2x - 4x^{3}}{x^{2} - x^{4}} dx = \int \frac{du}{u} = \ln |u| + c$$

$$= \ln |x^{2} - x^{4}| + c$$

$$qx = qx$$

$$qx = (1+0)qx$$

$$0 = x+3$$

$$C \cdot A$$

$$\frac{3}{C \cdot A} + C$$

$$\frac{3}{C \cdot A} + C$$

$$\frac{3}{C \cdot A} + C$$

$$\frac{5\pi^{2}-9}{5\pi^{2}-9}$$
 = $\frac{1}{4}\frac{6}{6\pi^{2}}$
 $\pi = \frac{1}{4}\frac{6}{6\pi^{2}}$

$$\frac{1}{2}\int \frac{16x}{x^2\cdot 4x+13}$$

$$\int \frac{x_5 - 4x_{113}}{10^{2x}} = \int \frac{(x - 5)_5 + 3_5}{4} \, dx = \int \frac{(x - 5)_5 + 3_5}{1} \, dx = \int \frac{1}{10^{2x}} \, d$$

Solucios

$$5 - 2x + x^{2} = x^{2} - ex + \left(\frac{2}{2}\right)^{2} - \left(\frac{2}{2}\right)^{2} + 5 = (x - 1)^{2} + 4$$

$$\int \frac{dx}{\sqrt{5 - 2x} x^{2}} = \int \frac{dx}{\sqrt{(x - 1)^{2} + 2^{2}}} = \int \frac{du}{\sqrt{u^{2} + 2^{2}}}$$

$$\begin{array}{ll}
\text{(5)} & \frac{3 \times + \ln x}{\times} \, dx = \int \frac{(3 + \ln t \times)}{\times} \, dx \\
\text{Solucion} & = \int u^{2} \, du \\
u = 3 + \ln x & = \frac{u^{2}}{2} + C \\
du & = (0 + \frac{1}{2}) \, dx = \frac{dx}{2}
\end{array}$$

$$du = \frac{1}{2} \, dx = \frac{dx}{2}$$

$$\int Sen \left(x^{2} - u_{x} + 3 \right) \left(x - 2 \right) dx = \int Sen u \frac{du}{2}$$

$$\frac{Solution}{c.v}$$

$$\frac{c.v}{A^{2} + u^{2} + 3} = \frac{1}{2} \int Sen u du$$

$$\frac{du}{dn^{2}} \left(2n - u \right) dx$$

$$\frac{du}{du} = 2(x - 2) dx$$

$$\frac{du}{du} = (x - 2) dx$$

Teorema del velor medio

Eyemplo: See $f(x) = x^3 - x^2 - 2x$ pers 0 = 1 y b = 3 determiner c en el intervalo abierto (1,3)

1) fes continue en [1,3] 2) fes diferenciable en (1,3)

existe $c \in (1,3)$ ty $f'(c) = \frac{f(3) - f(3)}{3-1}$

Remplazemos = $(3^3 - 3^2 - 2 \cdot 3) - (1^3 - 1^2 - 2 \cdot 1)$ = $\frac{27 - 9 - 6 - (1 - 1 - 2)}{2}$ = $\frac{12 + 2}{2} = \frac{27}{2}$

= 7 Pendiento

Calculo de 'C" $\begin{cases}
1 & \text{calculo de 'C'} \\
3 & \text{calculo de 'C'} \\
4 & \text{calculo de 'C'} \\
6 & \text{calculo de 'C'} \\
7 & \text{calculo de 'C'} \\
7 & \text{calculo de 'C'} \\
7 & \text{calculo de 'C'} \\
8 & \text{calculo de 'C'} \\
8 & \text{calculo de 'C'} \\
9 & \text{cal$

\$ Para (1 € (1,3)

Funcion Creciente: $f(x_1) < f(x_2)$ siempre que $x_1 < x_2$ Funcion Decreciente: $f(x_1) > f(x_2) = x_1 < x_2$

TEOREMA CRITERIO DE LA PRIMERA DERIVADA PARA EXTREMOS

Sea f una función continua en (a,5) y ce(a,5) un número critico y f'(x) estateticida para tobos los puntos de (a,5) excepto posiblemente en c. Entonces:

- i) si f'(x)<0, \(\times \(\(\(\(\(\(\(\) \\ \) \) \) \(\times \(\(\(\(\) \\ \) \) \) \(\times \(\(\(\) \\ \) \) \(\times \(\) \) \(\(\) \) \(\times \(\) \) \(\(\) \(\) \) \(\) \
- i) si f'(x) <>> \forall x \in (a, c)] => f(s) es un vabr minimo relativo de f

 f'(x) >> \forall x \in (c, b)] => f(s) es un vabr minimo relativo de f
- (iii) Si f'(x) no combia de signo, crondo x posà por c, entonces f(c) no esur volor maximo ni minimo relativo

Ejemplo: Utilice un polinomio de Maclarin para determinar el valor de etcon una exactifud de 4 cifras decimales

 $P_n(x)$ se denomina polinomio de Taylor de *n*-ésimo grado de la función f en el número a, y $R_n(x)$ se llama residuo. El término $R_n(x)$, dado en (5), se denomina forma de Lagrange del residuo, llamada así en honor al matemático francés Joseph L. Lagrange (1736-1813).

El caso especial de la fórmula de Taylor que se obtiene al considerar

$$a = 0 \text{ en } (2) \text{ es}$$

$$f(x) = f(0) + \frac{f'(0)}{1!}x' + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + \frac{f^{(n+1)}(z)}{(n+1)}x^{n+1}$$

donde z está entre 0 y x. Esta fórmula recibe el nombre de fórmula de Maclaurin, en honor al matemático escocés Colin Maclaurin (1698-1746). Sin embargo, la fórmula fue obtenida por Taylor y por otro matemático inglés, James Stirling (1692-1770). El polinomio de Maclaurin de n-ésimo grado para una función f, obtenido a partir de (4) con a = 0, es

$$P_n(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \ldots + \frac{f^{(n)}(0)}{n!} x^n$$
 (6)

De este modo, una función puede aproximarse por medio de un polinomio de Taylor en un número a o por un polinomio de Maclaurin.

$$-\frac{1}{2} + \frac{2}{3} = \frac{-3+4}{6} = \frac{1}{6}$$