This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

T.	\$2000 P	<u>े में</u> ,	1	· · · · · · · · · · · · · · · · · · ·	· 1 5.			10°		The state of the s
		. **					The second secon	777		y (1)
				-						÷
		л —							a N	
				* *						
T.				*	27 - 1		, <u>(</u>	1 / p	a 1 a (
A MARINE					i		*	· •		
		, A						*		
b										•
		1.		4 3	* . • . ,	· · · · · ·	*			
e e	, a fate of	e ² ti			Service Services	1 4. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ઇ∰ા ⊹્ર	*	<i>y</i> .	
	· .				100			*. *		
1	*	4 5 0		je.	?					
		P						· ·		
			1.0	Y.,	1.		· • • • • •	4		
						***		22		
EX.				*	1.					
Carlotte					**	and a	0 (0)			
k			4			4° 45		. (. (.)		
			·*.	- 100 m						ġ.
	* To 13				•			* 1.0	\$.	
						*	4,	**************************************		
X *					. •.	EX.				
			***	· **		4		. •		· .
								Eq. (*(**	`
F					. F ^(*)					
·,				•(()						
þ÷:										
E										
			F .							
Kar.		•	- ·-			*				
* *							- (=)			
	7	4."			· :			474	0 g *	
			- A ³	- 18.		1				
						for.				N _s
10				·.						
F.					* .		-8.1			
145°	٠,	4		3.				A+	a .	
P	•		¥ -		- 1	A-	8 :			
(P	to an a					1 of			3	1
			*		194	7	-	* * * * * * * * * * * * * * * * * * * *		
			*	g til som					5 A	*
*	100			1.5			A .	*	<i>*</i>	
f.						et e.	48 15.	98 <u>√</u>		
в .					*	5		· · · · · · · · · · · · · · · · · · ·		
						*				
	•						•		· ·	
4-										
* 3			·+							
4										
ī										
	·i									
K										

カド

International Publication No. WO 97/11943 A1

JUI 11200

Code: 522-77599

INTERNATIONAL PATENT OFFICE WORLD ORGANIZATION FOR INTELLECTUAL PROPERTY

International patent published on the basis

of the Patent Cooperation Treaty

INTERNATIONAL PUBLICATION NO. WO 97/11943 A1

International Patent Classification.6:	C 07 D	401/04		
	~			403/04
				417/04
	•		A 01 N	43/54,
			•	43/56
			·	43/60
	•		•	43/78

International Filing No.:

PCT/JP96/02776

International Filing Date:

September 26, 1996

International Publication Date:

April 3, 1997

Priority

Date:

September 26, 1995

Country:

No.:

Hei 7[1995]-271807

Date:

January 25, 1996

Country:

Hei. 8[1996]-31277

No.:

Date:

May 29, 1996

Country:

JP

Hei. 8[1996]-157511

No.:

Designated States:

AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE,

SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

PYRAZOLE COMPOUNDS, PROCESS FOR PREPARING THE SAME, AND AGROHORTICULTURAL BACTERICIDES

Inventor and Inventor/Applicant (only for US):

Kenji Hagiwara (JP/JP) Mitsumasa Takada (JP/JP) Teruyuki Iihama (JP/JP) Shinsuke Sano (JP/JP) Susumu Shimoda (JP/JP)

Nippon Soda Co., Ltd., Odawara Research Center 345 Takata Yanagi-cho, Odawara-shi, Kanagawa-ken 250-02 (JP)

Hiroshi Suzuki (JP/JP) 189-1, Yamaga, Ashiyamachi, Onga-gun, Fukuoka-ken 807-01 (JP)

Applicant: (for all Designated States except the US):

Nippon Soda Co., Ltd (JP/JP) 2-2-1, Otemachi, Chiyoda-ku, Tokyo 100 (JP)

Agent:

Yusaku Tokai Nippon Soda Co., Ltd. 2-2-1, Otemachi, Chiyoda-ku, Tokyo 100 (JP)

Attached Document:

International Search Report

Abstract

Pyrazole compounds represented by general formula (I-1) or salts thereof, wherein R¹ represents a C_{1.6} haloalkyl or cyano group; R² represents a hydrogen atom, a metal atom, or the like; X represents a hydrogen atom, a halogen atom, a C_{1.6} alkyl group, or the like; Ar represents a 2-pyridyl, 2-pyrazyl, 2-pyrimidyl, or 2-thiazolyl group, these groups being optionally substituted with a halogen atom, a C_{1.6} alkyl, C_{1.6} alkenyl, C_{1.6} alkynyl, C_{3.5} cycloalkyl, C_{1.6} alkoxy, C_{1.6} haloalkyl group, or the like, excluding the case wherein R¹ represents CF₃, Ar represents 2-pyridyl, and X and R² both represent a hydrogen atom. Since the compounds have an excellent bactericidal

$$\begin{array}{c|c}
R & X \\
 & X \\
 & A & r
\end{array}$$

$$\begin{array}{c|c}
 & X \\
 & A & r
\end{array}$$

$$\begin{array}{c|c}
 & & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\$$

FOR INFORMATION ONLY

Codes for the identification of PCT contract states on the cover sheets of the documents that publish the international applications in accordance with the PCT.

AL	Albania	KP	Democratic People's	TT	Trinidad and Tobago
AM	Armenia		Republic of Korea	UA	Ukraine
ΑT	Austria	KR	South Korea	UG	Uganda
AU	Australia	KZ	Kazakhstan	US	United States of
ΑZ	Azerbaijan	LI	Liechtenstein		America
BB	Barbados	ĹR	Liberia	UZ	Uzbekistan
BE	Belgium	LS	Lesotho	VN	Vietnam
BF	Burkina Faso	LT	Lithuania	YU	Yugoslavia
BG	Bulgaria	LU	Luxembourg		
BJ	Benin	LV	Latvia		
BR	Brazil	MC	Monaco		
BY	Belarus	MD	Republic of Moldavia		
CA	Canada	MG	Madagascar		
CF	Central African	MK	Macedonia (former		
	Republic		Yugoslavian Republic		
CG	Congo		of Macedonia)		
CH	Switzerland	ML	Mali		
CI	Côte d'Ivoire	MN	Mongolia		
CM	Cameroon	MR	Mauritania		
CN	China	MW	Malawi		
CZ	Czech Republic	MX	Mexico		
DE	Germany.	NE	Niger		
EE	Estonia	NL	Netherlands		
ES	Spain	NO	Norway		
FI	Finland	NZ	New Zealand		
FR	France	PL	Poland		
GA	Gabon	PT	Portugal		
GB	United Kingdom	RU	Russian Federation		
GE	Georgia	SD	Sudan		
GH	Ghana	SE	Sweden		
GN	Guinea	SG	Singapore		
GR	Greece	SI	Slovenia		
HU	Hungary	SK	Slovak Republic		
, IE	Ireland	SN	Senegal		
IS	Iceland	SZ	Swaziland		
IT	Italy	TD	Chad		
JP	Japan	TG	Togo		
KE	Kenya	TJ	Tajikistan		
KG	Kyrgyzstan	TM	Turkmenistan		
		TR	Turkey		

Technical field

The present invention relates to novel pyrazole compounds, processes for preparing the same, and agrohorticultural bactericides.

Prior art

Many agents for controlling plant diseases are used in the cultivation of agrohorticultural plants. However, for the following reasons, few of these controlling agents can be considered to be adequate in all cases. Drawbacks of these agents include an insufficient controlling effect, restrictions on use brought about by the appearance of agent-resistant disease-causing bacteria, the occurrence of pollution and chemical poisoning of plants, and toxicity of the agent to humans, livestock, and fish. As a result, there is a strong demand for an agent that can be used safely and does not have the shortcomings described above.

Technology that is relevant to the present invention is described in U.S. Patent No. 3,200,128, which discloses the compounds noted below as being useful as medicinal antibacterial agents. A description of the synthesis of this compound is included in the aforesaid publication, however, no specific description of test examples is provided, and nothing is written about the use of these compounds as agrohorticultural bactericides.

Disclosure of the invention

The object of the present invention is to present novel pyrazole compounds that can be used as agrohorticultural bactericides, and which can be safely produced, profitably and industrially synthesized, and have a reliable effect.

The present invention comprises the pyrazole compounds or salts thereof represented by general formula (I-1) (excluding cases in which R¹ represents CF₃, Ar represents 2-pyridyl, and X and R² are both hydrogen atoms).

$$\begin{array}{c|c}
R^{1} \\
N \\
N \\
R^{2}
\end{array}$$
(1-1)

(Where R¹ represents a C¹-6 haloalkyl group such as a difluoromethyl, trifluoromethyl, difluorochloromethyl, fluorochloromethyl, trichloromethyl, tribromomethyl, trifluoroethyl, or pentafluoroethyl group, etc.; a C¹-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, and butoxycarbonyl group, etc.; a carboxy group; a cyano group, a C¹-6 alkylthio group such as a methylthio, ethylthio, propylthio, isopropylthio, butylthio, or t-butylthio group, etc.; a C¹-6 alkylsulfinyl group such as a methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, t-butylsulfinyl, pentylsulfinyl group, etc.; a C¹-6 alkylsulfonyl group such as a methylsulfonyl, ethylsulfonyl group, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, t-butylsulfonyl, pentylsulfonyl, or a hexylsulfonyl group, etc.; a hydroxy group; a C¹-6 alkoxy group such as a methoxy, ethoxy, propoxy, isopropoxy, butoxy, or t-butoxy group, etc.; a thiocarbamoyl group; a hydroxyiminomethyl group; a C¹-6 alkoxyiminomethyl group such as a methoxyiminomethyl, an ethoxyiminomethyl, or a propoxyiminomethyl group, etc.; a C¹-6 alkoxymethyl group such as a dimethoxymethyl or a diethoxymethyl group, etc.; an amino group or a carbamoyl group, etc.;

R² represents a hydrogen atom; a heavy metal atom such as copper, lead, tin, manganese, nickel, cobalt or iron, etc.; a C1-6 alkoxy C1-6 alkyl group such as a methoxymethyl, ethoxymethyl, propoxymethyl, butoxymethyl, t-butoxymethyl, hexyloxymethyl, methoxyethyl, ethoxyethyl, isopropoxyethyl, isopropoxyethyl, butoxyethyl, t-butoxyethyl, hexyloxyethyl, methoxypropyl, ethoxypropyl, propoxypropyl, isopropoxypropyl, or a butoxypropyl, etc.; a C1-6 alkylcarbonyloxymethyl group such as an acetoxymethyl, propionyloxymethyl, propylcarbonyloxymethyl, isopropylcarbonyloxymethyl, or a hexylcarbonyloxydimethyl group, etc.; a C1-6 alkylthiomethyl group such as a methylthiomethyl, ethylthiomethyl, propylthiomethyl, isopropylthiomethyl, butylthiomethyl, t-butylthiomethyl, hexylthiomethyl group, etc.; a C1-6 alkylsulfinylmethyl group such as a methylsulfinylmethyl, ethylsulfinylmethyl, propylsulfinylmethyl, isopropylsulfinylmethyl, butylsulfinylmethyl, ethylsulfinylmethyl, propylsulfinylmethyl, isopropylsulfinylmethyl, butylsulfinylmethyl, t-butylsulfinylmethyl, t-butylsulfinylmethyl, group, etc.; a C1-6 alkylsulfinylmethyl, butylsulfinylmethyl, butylsulfinylmethyl, ethylsulfinylmethyl, or a hexylsulfinylmethyl group, etc.; a C1-6 alkylsulfinylmethyl group

such as a methylsulfonylmethyl, an ethylsulfonylmethyl, propylsulfonylmethyl, isopropylsulfonylmethyl, butylsulfonylmethyl, t-butylsulfonylmethyl, or a hexylsulfonylmethyl group, etc.; a benzoyl group optionally substituted with a (halogen atom, C1-4 alkyl group, C1-4 alkoxy group, a C₁₋₄ haloalkyl group, a C₁₋₄ haloalkoxy group, or a nitro group), etc.; a C₁₋₆ alkylcarbonyl group such as an acetyl, propionyl, propylcarbonyl, isopropylcarbonyl, butylcarbonyl, t-butylcarbonyl, or a hexylcarbonyl group, etc.; a C1-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, or an isopropoxycarbonyl group, etc.; a C₁₋₆ alkylsulfonyl group such as a methylsulfonyl, ethylsulfonyl, propylsulfonyl group, isopropylsulfonyl, butylsulfonyl, t-butylsulfonyl, or pentylsulfonyl group etc.; a benzoyloxymethyl group optionally substituted with a (halogen atom, C1-4 alkyl group, C1-4 alkoxy group, a C1-4 haloalkyl group, a C1-4 haloalkoxy group, or a nitro group), etc.; a C1-6 alkoxycarbonyloxymethyl group such as a methoxycarbonyloxymethyl, ethoxycarbonyloxymethyl, propoxycarbonyloxymethyl, isopropoxycarbonyloxymethyl, butoxypropoxycarbonyloxymethyl, butoxycarbonyloxymethyl, or a t-butoxycarbonyloxymethyl group, etc.; a phenylsulfonyl group optionally substituted with a (halogen atom, C1-4 alkyl group, C₁₋₄ alkoxy group, a C₁₋₄ haloalkyl group, a C₁₋₄ haloalkoxy group, or a nitro group), etc.; an N-C1-6 alkyl-N-C1-6 alkylcarbonylaminomethyl group such as an N-methyl-N-acetylaminomethyl, N-ethyl-N-acetylaminomethyl, N-propyl-N-acetylaminomethyl, N-isopropyl-N-acetylaminomethyl, N-butyl-N-acetylaminomethyl, N-t-butyl-aretylaminomethyl, or an

N-methyl-N-propionylaminomethyl group, etc.; an N,N-di C₁₋₆ alkylthiocarbamoylthiomethyl group such as an N,N-dimethylthiocarbamoylthiomethyl, N,N-diethylthiocarbamoylthiomethyl, or an N-methyl-N-ethylthiocarbamoylthiomethyl group, etc.;

X represents a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom; a formyl group; or a C₁₋₆ alkyl group such as a methyl, ethyl, propyl, isopropyl, butyl, or t-butyl group;

Ar represents a 2-pyridyl group optionally substituted with a hydrogen atom; a halogen atom (such as a fluorine atom, a chlorine atom, etc.); a C₁₋₆ alkyl group such as a methyl, ethyl, propyl, isopropyl, etc.; a C₁₋₆ haloalkyl group such as a fluoromethyl, 1-fluoroethyl, 2-fluoroethyl, trifluoromethyl, chloromethyl, dichloromethyl, or trichloromethyl group, etc.; a C₁₋₆ alkoxy C₁₋₆ alkyl group such as a methoxymethyl, ethoxymethyl, propoxymethyl, methoxyethyl, ethoxyethyl, propoxypropyl, isopropoxymethyl or a isopropoxyethyl group, etc.; a hydroxymethyl group; C₁₋₆ hydroxyalkyl group such as a 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, or a 3-hydroxypropyl group, etc.; a C₁₋₆ alkylsulfonyl C₁₋₆ alkyl group such as a methylsulfonylmethyl, ethylsulfonylmethyl, propylsulfonylmethyl, methylsulfonylethyl, ethylsulfonylethyl, or a propylsulfonylethyl group, etc.; a C₁₋₆ cyanoalkyl

group such as a cyanomethyl, 1-cyanoethyl, 2-cyanoethyl, 1-cyanopropyl, 2-cyanopropyl, 3-cyanopropyl, 1-cyanobutyl, 2-cyanobutyl, or a 3-cyanobutyl group, etc.; a C₁₋₆ hydroxyiminoalkyl group such as a hydroxyiminomethyl, hydroxyiminoethyl, or a hydroxyiminopropyl group, etc.; a C1-6 alkoxyimino C1-6 alkyl group such as a methoxyiminomethyl, 1-methoxyiminoethyl, or 2-ethoxyiminoethyl group, etc.; a C₁₋₆ alkylcarbonylhydrazino C₁₋₆ alkyl group such as an acetylhydrazinomethyl, acetylhydrazinoethyl, propionylhydrazinomethyl, or propionylhydrazinoethyl group, etc.; a C1-4 alkoxy C₁₋₄ alkoxy C₁₋₆ alkyl group such as a methoxymethyl, ethoxymethyl, methoxyethoxymethyl, ethoxyethoxymethyl, methoxymethoxyethyl, ethoxymethoxyethyl, or ethoxyethoxyethyl group, etc.; a C2-6 alkenyl group such as vinyl, 1-propenyl, aryl, crotyl, or butadienyl group, etc.; a C2-6 haloalkenyl group such as a 1-chlorovinyl, 2-chlorovinyl, 3-chlorovinyl or 2-chlorocrotyl group, etc.; a C2-6 cyanoalk alkenyl group such as a 1-cyanovinyl or 2-cyanovinyl group, etc.; a C₁₋₆ alkoxycarbonyl C₂₋₆ alkenyl group such as a 1-methoxycarbonylvinyl, 2-methoxycarbonylvinyl, 1-methoxycarbonylallyl, 2-methoxycarbonylallyl, or a 3-methoxycarbonylallyl group, etc.; a C₁₋₄ alkoxy C₂₋₆ alkenyl group such as a 1-methoxyvinyl, 2-methoxyvinyl, 1-methoxyallyl, 2-methoxyallyl, or a 3-methoxyallyl group, etc.; a C2-6 alkynyl group such as an ethynyl, 1-propynyl, or a 2-propynyl group, etc.; a C2-6 haloalkynyl group such as a 2-chloroethynyl, 2-bromoethynyl, 3-chloro-2-propynyl, 3,3,3-trifluoro-1-propynyl group, etc.; a C2-6 hydroxyalkynyl group such as a 3-hydroxy-1-propynyl, or a 3-hydroxypropargyl group, etc.; a trimethylsilyl-substituted C2-6 alkynyl group such as a 2-trimethylsilylethynyl, or a 3-trimethylsilylpropargyl group, etc.; a C₁₋₆ alkoxy C2-6 alkynyl group such as a 2-methoxyethynyl, 2-ethoxyethynyl, 2-propoxyethynyl, 3-methoxypropargyl, 3-ethoxypropargyl, or a 3-methoxy-1-propynyl group, etc.; a C₁₋₃ dialkylamino group such as a methylamino, ethylamino, dimethylamino, or a diethylamino group, etc.; an amino group; a C1-6 alkylthio group such as a methylthio, ethylthio, propylthio, or isopropylthio group, etc.; a C₁₋₆ haloalkylthio group such as chloromethylthio, fluoromethylthio, or a trifluoromethylthio group, etc., a C₁₋₆ alkylsulfinyl group such as methylsulfinyl, or an ethylsulfinyl group, etc.; a C1-6 alkylsulfonyl group such as a methylsulfonyl or an ethylsulfonyl group, etc.; a C1-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, or isopropoxycarbonyl group, etc.; a C3-6 cycloalkyl group such as a cyclopropyl, cyclopentyl, or cyclohexyl group, etc.; a C₁₋₆ alkylcarbonyl group such as an acetyl or a propionyl group, etc.; a cyanate group; a thiocyanate group; a C₁₋₆ alkoxy group such as a methoxy, ethoxy, propoxy, isopropoxy, butoxy, or t-butoxy group, etc.; a C1-6 haloalkoxy group such as a trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, trichloromethoxy, or a difluoromethoxy group, etc.; a benzyloxy group; a hydroxy group; a C1-6 alkylcarbonyloxy group such as a methylcarbonyloxy, ethylcarbonyloxy, propylcarbonyloxy, or isopropylcarbonyloxy group, etc.; a

C₁₋₆ haloalkylsulfonyloxy group such as trifluoromethylsulfonyloxy, trichloromethylsulfonyloxy, or a pentafluoroethylsulfonyloxy group, etc.; a 1,2-epoxy C2-6 alkyl group such as a 1,2-epoxyethyl group, or a 1,2-epoxypropyl group, etc.; a C₁₋₄ alkylcarbamoyloxy group such as a methylcarbamoyloxy, ethylcarbamoyloxy, or propylcarbamoyloxy group, etc.; a nitro group (halogens such as fluorine, chlorine, and bromine; C1-6 alkyl groups such as methyl and ethyl groups; C1-6 alkoxy groups such as methoxy groups; C₁₋₆ alkyl groups such as trifluoromethyl; C₁₋₆ haloalkoxy groups or nitro groups such as trifluoromethoxy); a 2-pyridyl group optionally substituted with a phenyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group; a C1-6 haloalkoxy group such as a trifluoromethoxy group, etc.; or a nitro group); a benzyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C₁₋₆ alkyl group such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group; a C1-6 haloalkoxy group such as a trifluoromethoxy group, etc.; or a nitro group); a 2-pyrimidyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C₁₋₆ alkyl group such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group); a 2-pyrazinyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C₁₋₆ alkoxy group such as a methoxy group, etc.; a C₁₋₆ haloalkyl group such as a trifluoromethyl group); or a 2-thiazolyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group.))

The present invention also comprises an agrohorticultural bactericide containing as an effective ingredient 1, 2 or more of the following pyrazole compounds or salts thereof represented by general formula (I-2).

$$\begin{array}{c|c}
R^{1} \\
X \\
N \\
N \\
R^{2}
\end{array}$$
(1-2)

(Where R¹ represents a C₁₋₆ haloalkyl group such as a difluoromethyl, trifluoromethyl, difluorochloromethyl, trichloromethyl, tribromomethyl, trifluoroethyl, or

pentafluoroethyl group, etc.; a C1-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, and butoxycarbonyl group, etc.; a carboxy group; a cyano group, a C1-6 alkylthio group such as a methylthio, ethylthio, propylthio, isopropylthio, butylthio, or t-butylthio group, etc.; a C1-6 alkylsulfonyl group such as a methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, butylsulfinyl, t-butylsulfinyl, pentylsulfinyl, or hexylsulfinyl group, etc.; a C1-6 alkylsulfonyl group such as a methylsulfonyl, ethylsulfonyl group, propylsulfonyl, isopropylsulfonyl, butylsulfonyl, t-butylsulfonyl, pentylsulfonyl, or a hexylsulfonyl group, etc.; a hydroxy group; a C1-6 alkoxy group such as a methoxy, ethoxy, propoxy, isopropoxy, butoxy, or t-butoxy group, etc.; a thiocarbamoyl group; a hydroxyiminomethyl group; a C1-6 alkoxyiminomethyl group such as a methoxyiminomethyl, or a propoxyiminomethyl group, etc.; a C1-6 alkoxymethyl group such as a dimethoxymethyl or a diethoxymethyl group, etc.; an amino group or a carbamoyl group, etc.

R² represents a hydrogen atom; a heavy metal atom such as copper, lead, tin, manganese, nickel, cobalt or iron, etc.; a C₁₋₆ alkoxy C₁₋₆ alkyl group such as a methoxymethyl, ethoxymethyl, propoxymethyl, isopropoxymethyl, butoxymethyl, t-butoxymethyl, hexyloxymethyl, methoxyethyl, ethoxyethyl, propoxyethyl, isoproxyethyl, butoxyethyl, t-butoxyethyl, hexyloxyethyl, methoxypropyl, ethoxypropyl, propoxypropyl, isopropoxypropyl, or butoxypropyl, etc.; a C₁₋₆ alkylcarbonyloxymethyl group such as an acetoxymethyl, propionyloxymethyl, propylcarbonyloxymethyl, isopropylcarbonyloxymethyl, butylcarbonyloxymethyl, t-butylcarbonyloxymethyl, pentylcarbonyloxymethyl, or a hexylcarbonyloxydimethyl group, etc.; a C1-6 alkylthiomethyl group such as a methylthiomethyl, ethylthiomethyl, propylthiomethyl, isopropylthiomethyl, butylthiomethyl, t-butylthiomethyl, hexylthiomethyl group, etc.; a C1-6 alkylsulfinylmethyl group such as a methylsulfinylmethyl, ethylsulfinylmethyl, propylsulfinylmethyl, isopropylsulfinylmethyl, butylsulfinylmethyl, t-butylsulfinylmethyl, or a hexylsulfinylmethyl group, etc.; a C1-6 alkylsulfonylmethyl group such as a methylsulfonylmethyl, an ethylsulfonylmethyl, propylsulfonylmethyl, isopropylsulfonylmethyl, butylsulfonylmethyl, t-butylsulfonylmethyl, or a hexylsulfonylmethyl group, etc.; a benzoyl group optionally substituted with a (halogen atom, C1-4 alkyl group, C1-4 alkoxy group, a C1-4 haloalkyl group, a C1-4 haloalkoxy group, or a nitro group), etc.; a C1-6 alkylcarbonyl group such as an acetyl, propionyl, propylcarbonyl, isopropylcarbonyl, butylcarbonyl, t-butylcarbonyl, or a hexylcarbonyl group, etc.; a C1-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, or an isopropoxycarbonyl group, etc.; a C1-6 alkylsulfonyl group such as a methylsulfonyl, ethylsulfonyl, propylsulfonyl group, isopropylsulfonyl, butylsulfonyl, t-butylsulfonyl, or pentylsulfonyl group etc.; a benzoyloxymethyl group optionally substituted with a (halogen atom, C₁₋₄ alkyl group, C₁₋₄ alkoxy group, a C₁₋₄ haloalkyl group, a C₁₋₄ haloalkoxy group, or a nitro group), etc.;

a C₁₋₆ alkoxycarbonyloxymethyl group such as a methoxycarbonyloxymethyl, ethoxycarbonyloxymethyl, propoxycarbonyloxymethyl, isopropoxycarbonyloxymethyl, butoxypropoxycarbonyloxymethyl, or a t-butoxycarbonyloxymethyl group, etc.; a phenylsulfonyl group optionally substituted with a (halogen atom, C₁₋₄ alkyl group, C₁₋₄ alkoxy group, a C₁₋₄ haloalkyl group, a C₁₋₄ haloalkoxy group, or a nitro group), etc.; an N-C₁₋₆ alkyl-N-C₁₋₆ alkylcarbonylaminomethyl group such as an N-methyl-N-acetylaminomethyl, N-ethyl-N-acetylaminomethyl, N-propyl-N-acetylaminomethyl, N-butyl-N-acetylaminomethyl, N-t-butyl-N-aretylaminomethyl, or an N-methyl-N-propionylaminomethyl group, etc.; an N,N-di C₁₋₆ alkylthiocarbamoylthiomethyl group such as an N,N-dimethylthiocarbamoylthiomethyl, N,N-diethylthiocarbamoylthiomethyl, or an N-methyl-N-ethylthiocarbamoylthiomethyl group, etc.

X represents a hydrogen atom; a halogen atom such as a fluorine atom, a chlorine atom; a formyl group; or a C₁₋₆ alkyl group such as a methyl, ethyl, propyl, isopropyl, butyl, or t-butyl group.

Ar represents a 2-pyridyl group optionally substituted with a hydrogen atom; a halogen atom (such as a fluorine atom, a chlorine atom, etc.); a C1-6 alkyl group such as methyl, ethyl, propyl, isopropyl, etc.; a C₁₋₆ haloalkyl group such as a fluoromethyl, 1-fluoroethyl, 2-fluoroethyl, trifluoromethyl, chloromethyl, dichloromethyl, or trichloromethyl group, etc.; a C₁₋₆ alkoxy C₁₋₆ alkyl group such as a methoxymethyl, ethoxymethyl, propoxymethyl, methoxyethyl, ethoxyethyl, propoxypropyl, isopropoxymethyl or an isopropoxyethyl group, etc.; a hydroxymethyl group; C1-6 hydroxyalkyl group such as a 1-hydroxyethyl, 2-hydroxyethyl, 1-hydroxypropyl, 2-hydroxypropyl, or a 3-hydroxypropyl group, etc.; a C₁₋₆ alkylsulfonyl C₁₋₆ alkyl group such as a methylsulfonylmethyl, ethylsulfonylmethyl, propylsulfonylmethyl, methylsulfonylethyl, ethylsulfonylethyl, or a propylsulfonylethyl group, etc.; a C1-6 cyanoalkyl group such as a cyanomethyl, 1-cyanoethyl, 2-cyanoethyl, 1-cyanopropyl, 2-cyanopropyl, 3-cyanopropyl, 1-cyanobutyl, 2-cyanobutyl, or a 3-cyanobutyl group, etc.; a C₁₋₆ hydroxyiminoalkyl group such as a hydroxyiminomethyl, hydroxyiminoethyl, or a hydroxyiminopropyl group, etc.; a C1-6 alkoxyimino C1-6 alkyl group such as a methoxyiminomethyl, 1-methoxyiminoethyl, or 2-ethoxyiminoethyl group, etc.; a C1-6 alkylcarbonylhydrazino C₁₋₆ alkyl group such as an acetylhydrazinomethyl, acetylhydrazinoethyl, propionylhydrazinomethyl, or propionylhydrazinoethyl group, etc.; a C1-4 alkoxy C₁₋₄ alkoxy C₁₋₆ alkyl group such as a methoxymethoxymethyl, ethoxymethyl, methoxyethoxymethyl, ethoxyethoxymethyl, methoxymethoxyethyl, ethoxymethoxyethyl, or

ethoxyethoxyethyl group, etc.; a C2-6 alkenyl group such as vinyl, 1-propenyl, aryl, crotyl, or butadienyl group, etc.; a C2-6 haloalkenyl group such as a 1-chlorovinyl, 2-chlorovinyl, 3-chlorovinyl or 2-chlorocrotyl group, etc.; a C1-6 cyanoalkenyl group such as a 1-cyanovinyl or 2-cyanovinyl group, etc.; a C₁₋₆ alkoxycarbonyl C₂₋₆ alkenyl group such as a 1-methoxycarbonylvinyl, 2-methoxycarbonylvinyl, 1-methoxycarbonylallyl, 2-methoxycarbonylallyl, or a 3-methoxycarbonylallyl group, etc.; a C₁₋₄ alkoxy C₂₋₆ alkenyl group such as a 1-methoxyvinyl, 2-methoxyvinyl, 1-methoxyallyl, 2-methoxyallyl, or a 3-methoxyallyl group, etc.; a C2-6 alkynyl group such as an ethynyl, 1-propynyl, or a 2-propynyl group, etc.; a C2-6 haloalkynyl group such as a 2-chloroethynyl, 2-bromoethynyl, 3-chloro-2-propynyl, 3,3,3-trifluoro-1-propynyl group, etc.; a C2-6 hydroxyalkynyl group such as a 3-hydroxy-1-propynyl, or a 3-hydroxypropargyl group, etc.; a trimethylsilyl-substituted C2-6 alkynyl group such as a 2-trimethylsilylethynyl, or a 3-trimethylsilylpropargyl group, etc.; a C₁₋₆ alkoxy C2-6 alkynyl group such as a 2-methoxyethynyl, 2-ethoxyethynyl, 2-propoxyethynyl, 3-methoxypropargyl, 3-ethoxypropargyl, or a 3-methoxy-1-propynyl group, etc.; a C_{1-3} dialkylamino group such as a methylamino, ethylamino, dimethylamino, or a diethylamino group, etc.; an amino group; a C1-6 alkylthio group such as a methylthio, ethylthio, propylthio, or isopropylthio group, etc.; a C₁₋₆ haloalkylthio group such as chloromethylthio, fluoromethylthio, or a trifluoromethylthio group, etc.; a C1-6 alkylsulfinyl group such as methylsulfinyl, or an ethylsulfinyl group, etc.; a C₁₋₆ alkylsulfonyl group such as a methylsulfonyl or an ethylsulfonyl group, etc.; a C1-6 alkoxycarbonyl group such as a methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, or isopropoxycarbonyl group, etc.; a C3-6 cycloalkyl group such as a cyclopropyl, cyclopentyl, or cyclohexyl group, etc.; a C1-6 alkylcarbonyl group such as an acetyl or a propionyl group, etc.; a cyanate group; a thiocyanate group; a C1-6 alkoxy group such as a methoxy, ethoxy, propoxy, isopropoxy, butoxy, or t-butoxy group, etc.; a C1-6 haloalkoxy group such as a trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, trichloromethoxy, or a difluoromethoxy group, etc.; a benzyloxy group; a hydroxy group; a C1-6 alkylcarbonyloxy group such as a methylcarbonyloxy, ethylcarbonyloxy, propylcarbonyloxy, or isopropylcarbonyloxy group, etc.; a C1-6 haloalkylsulfonyloxy group such as trifluoromethylsulfonyloxy, trichloromethylsulfonyloxy, or a pentafluoroethylsulfonyloxy group, etc.; a 1,2-epoxy C2-6 alkyl group such as a 1,2-epoxyethyl group, or a 1,2-epoxypropyl group, etc.; a C_{1-4} alkylcarbamoyloxy group such as a methylcarbamoyloxy, ethylcarbamoyloxy, or propylcarbamoyloxy group, etc.; a nitro group (halogens such as fluorine, chlorine, and bromine; C₁₋₆ alkyl groups such as methyl and ethyl groups; C₁₋₆ alkoxy groups such as methoxy groups; C₁₋₆ alkyl groups such as trifluoromethyl; C₁₋₆ haloalkoxy groups or nitro groups such as trilfuoromethoxy); a 2-pyridyl group optionally substituted with a phenyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group

such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group; a C1-6 haloalkoxy group such as a trifluoromethoxy group, etc.; or a nitro group); a benzyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C₁₋₆ alkoxy group such as a methoxy group, etc.; a C₁₋₆ haloalkyl group such as a trifluoromethyl group; a C1-6 haloalkoxy group such as a trifluoromethoxy group, etc.; or a nitro group); a 2-pyrimidyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C₁₋₆ alkoxy group such as a methoxy group, etc.; a C₁₋₆ haloalkyl group such as a trifluoromethyl group); a 2-pyrazinyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C₁₋₆ alkoxy group such as a methoxy group, etc.; a C₁₋₆ haloalkyl group such as a trifluoromethyl group); or a 2-thiazolyl group (optionally substituted with a halogen atom such as fluorine, chlorine, or bromine, etc.; a C1-6 alkyl group such as a methyl group or an ethyl group, etc., a C1-6 alkoxy group such as a methoxy group, etc.; a C1-6 haloalkyl group such as a trifluoromethyl group.))

Moreover, the benzoyl, phenyl, pyridyl, pyrimidinyl, pyrazinyl and thiazolyl groups in the present invention may also contain 1, 2 or more substituents. In this case the substituents may be either the same or different.

Moreover, there are no particular restrictions regarding the salts of the pyrazole compounds of the present invention, provided they are salts that are agrohorticulturally acceptable. Examples of acceptable salts include salts of alkaline-earth metals such as magnesium, calcium, etc.; salts of heavy metals such as iron, copper, lead, nickel, cobalt, tin, manganese, etc.; salts of mineral acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, etc.; and salts of organic acids such as benzenesulfonic acid, oxalic acid, etc., optionally substituted with methanesulfonic acid, ethanesulfonic acid, or p-toluenesulfonic acid, etc.

Manufacture of compounds

The compounds of the present invention can be manufactured using the following processes.

Manufacturing method 1

$$R \stackrel{X'}{\circ} C \stackrel{C}{\circ} C \stackrel{C}{\circ} A \stackrel{r}{\circ} + N \stackrel{H}{\circ} N \stackrel{H}{\circ} 2$$

$$(11)$$

$$R \stackrel{Y'}{\circ} \stackrel{X'}{\circ} \stackrel{X'}$$

(where R¹ represents a C₁₋₆ haloalkyl group, a C₁₋₆ alkoxycarbonyl group, a C₁₋₆ dialkoxymethyl group; X' represents a C₁₋₆ alkyl group, and Ar has the same meaning described above)

This process is a method for manufacturing the compound expressed by formula (I-3) by reacting a compound expressed by general formula (II) with hydrazine without solvent or in an appropriate organic solvent between -50°C and 150°C.

Examples of solvents that can be used in the reaction include water, alcohols such as methanol, etc., and carboxylic acids such as acetic acid, etc. It is preferred if between 0.5-3 Eq of hydrazine per 1 Eq of compound (II) is used.

Among the compounds expressed by formula (I-3) obtained with the aforesaid manufacturing method, a compound in which R¹ is a C₁₋₆ alkoxycarbonyl group can be converted to a compound in which R¹ is a carboxy group, a carbamoyl group, or a cyano group using ordinary processes of chemical synthesis. (See the schemes below.)

(Where R3 represents a C1-6 alkyl group.)

Among the compounds expressed by formula (I-3) obtained with the aforesaid manufacturing method, a compound in which R¹' is a C1-6 alkoxymethyl group can be converted to a compound in which R¹' is a hydroxyiminomethyl group, a C1-6 alkoxyiminomethyl group, a cyano group, or a thiocarbamoyl group using ordinary processes of chemical synthesis. (See the following scheme.)

Key: 1 Carboxylic acid anhydride

(Where R4 and R5 represent C1-6 alkyl groups.)

Manufacturing method 2

$$R_0 \stackrel{\text{Re}}{=} S > C \stackrel{\text{I}}{=} C - C - A r + NH \stackrel{\text{I}}{=} NH \stackrel{\text{I}$$

(where R⁶ represents a C₁₋₆ alkyl group, and X' and Ar have the same meanings described above.)

This process is a method for manufacturing the compound expressed by formula (I-4) by reacting the vinyl ketone expressed by general formula (III) with hydrazine without a solvent or in an appropriate organic solvent between -50°C and 150°C. Examples of solvents that can be used in the reaction include water, alcohols such as methanol, etc., and carboxylic acids such as acetic acid, etc. It is preferred if between 0.5-3 Eq of hydrazine per 1 Eq of compound (III) is used.

The compounds expressed by formula (I-4) obtained with the aforesaid manufacturing method can be converted to the corresponding alkylsulfinyl or alkylsulfonyl by conventional oxidation.

(Where R6, X' and Ar have the same meanings described above.)

Manufacturing method 3

Compounds in which R1 in formula (I-1) is a hydroxy group or a C1-6 alkoxy group can be manufactured using the following method.

(Where R7 and R8 represent C1-6 alkyl groups, and V represents a halogen atom.)

Manufacturing method 4

Nitration Key:

Bromination 2

This method is used to manufacture compounds in which X in formula (I-1) is a nitro group or a halogen atom, by nitrating or halogenating the compounds expressed by formula (I-4) using conventional processes of chemical synthesis.

Moreover, by further reducing a compound in which X is a nitro group, compounds in which X is an amino group can also be manufactured.

With compounds in which X is a formyl group, by protecting the NH proton of the pyrazole ring with an appropriate protecting group, the corresponding bromo compound can be obtained using conventional techniques.

(Where R⁹ represents a C₁₋₆ alkyl group, and R¹ and Ar have the same meanings described above.)

Manufacturing method 5

This method is a process for manufacturing a compound in which R² in general formula (I-1) is something other than a hydrogen atom or a metal atom, by reacting a compound expressed by general formula (I-5) (where R¹, Ar, and X have the same meanings indicated above) and a reagent expressed by general formula (IV) (where R² represents a group substituted from R², but not a hydrogen atom or a metal atom, V is a halogen atom), in the presence of a

base between -50°C and 150°C. Usually, two products (Ia) and (Ib) in this reaction. Examples of the base used in this reaction include carbonates such as potassium carbonate or sodium carbonate, etc.; metal hydroxides such as sodium hydroxide, etc.; organic bases such as triethylamine, pyridine, etc.; and metal alkoxides such as sodium methylate, t-butoxy potassium, etc.

Examples of solvents that can be used in this reaction include aromatic hydrocarbons such as benzene and toluene, etc.; esters such as ethyl acetate, etc.; ethers such as diethyl ether, tetrahydrofuran (THF), etc.; halohydrocarbons such as chloroform, etc.; alcohols such as methanol and ethanol, etc.; acetonitrile, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), etc. It is preferred if between 0.5-3 Eq of base and between 0.5-3 Eq of the compound in general formula (IV) are used per 1 Eq of the compound in general formula (I-5).

Manufacturing method 6

Among the compounds expressed by formula (I-1), compounds in which R2 is a metal atom can be manufactured by dissolving 2 Eq of the compound expressed by formula (I-5) in an organic solvent such as acetone, or ethanol, etc., then adding to this an aqueous or ethanol solution of 1 Eq of a metal salt such as a metal chloride, etc.

Manufacturing method 7

(Where R1, X, and R2' have the same meanings noted above, and Y' represents a leaving group such as a trifluoromethanesulfonyloxy group or a halogen atom; and Y" represents a C1-6 alkyl group, C₁₋₆ alkenyl group, C₁₋₆ alkynyl group, C₁₋₆ haloalkyl group, C₁₋₆ haloalkenyl group, or a C₁₋₆ haloalkynyl group, etc.)

This method is a process for manufacturing a compound expressed by formula (I-8). This is done by reacting a compound that has a leaving group such as a trifluoromethanesulfonyloxy

group or a halogen atom on the pyrazine ring of a compound expressed by formula (I-6), and a C₁₋₆ alkyl, alkenyl, or alkynyl metal reagent (optionally substituted with a halogen atom) expressed by formula (V), in the presence of an suitable metal catalyst.

A compound (II) that is an intermediate material used in manufacturing method 1 can be obtained by any of the following methods.

Key: 1 Oxidation

(Where, R¹⁰ represents a C₁₋₆ alkyl group, and V represents a halogen atom.)

Of the nitrile compounds expressed by formula (VI), a 2-cyanopyridine with a substituent in position 3 or 5 can be obtained by deriving a pyridine oxide from a pyridine compound with a substituent in the third position that are expressed by formula (VII), then reacting this with a cyanizing agent.

Key: 1 Cyano compound

Examples of cyanizing agents for reacting with the pyridine oxide include combinations such as trimethylsilyl cyanide (TMSCN)-triethylamine, dimethylcarbamoyl chloride-sodium cyanate (NaCN), TMSCl-NaCN-triethamine, etc. Compound (C) or (D) can be obtained first by selecting these cyanizing agents appropriately.

Of the pyridine compounds with a substituent in the third position that are expressed by formula (VII), a compound in which Y' is an optionally substituted C₁₋₆ alkyl group, an optionally substituted C₂₋₆ alkenyl group or a C₃₋₆ cycloalkyl group, can be obtained as shown below. For example, such a compound can be obtained by reacting a 3-bromopyridine with the corresponding Grignard reagent in the presence of a metal compound such as a nickel compound, etc.

Key: 1 Metal catalyst

(Where V represents a halogen atom, Y' represents an optionally substituted C₁₋₆ alkyl group, an optionally substituted C₂₋₆ alkenyl group or a C₃₋₆ cycloalkyl group.)

Of the pyridine compounds with a substituent in the third position that are expressed by formula (VII), a compound that has a branched alkyl, alkenyl, or alkynyl substituent in the α position can be obtained by the following method.

(Where R¹¹ and R¹² both represent a C₁₋₆ alkyl or a C₂₋₆ alkenyl or alkynyl group, and V represents a halogen atom).

Of the substituted pyridine compounds expressed by formula (VII), a compound that has a 1-alkynyl substituent can be obtained in the following way. For example, by reacting a

3-bromopyridine and an acetyl derivative corresponding thereto in the presence of a catalytic amount of a palladium compound.

$$\begin{array}{c|c} & B & r \\ \hline & & H & C = C - Z \\ \hline & P & d & \ell & \ell & \ell \\ \end{array}$$

Key: 1 Pd compound

(Where Z represents a hydrogen atom, a halogen atom, a trimethylsilyl group, or a C₁₋₆ alkoxy group, or a C₁₋₄ alkyl group (optionally substituted with a hydroxy group or a C₁₋₆ alkoxy group.)

Application examples

The present invention is further explained with application examples.

Application Example 1

Manufacture of 5-(5-methyl-2-pyridyl)-3-trifluoromethyl pyrazole

H. C
$$CF$$
, N , H , H , O
A c OH

F, C

N, H , H , O

C H , O

Hydrazine hydrate (0.32 mL, 6.5 mmol) was added to an acetic solution (30 mL) of 4,4,4-trifluoro-1-(5-methyl-2-pyridyl)-butane-1,3-dione (1.00 g, 4.3 mmol), and was heated for 15 min at 90-95°C. After the reaction was completed, it was poured over ice water, the precipitate produced was filtered, and 0.59 g of the target compound was obtained at a yield of 60%. mp 150-151°C.

Application Example 2

Manufacture of 4-bromo-5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole

One gram of 5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole (4.1 mmol) was dissolved in 15 mL of acetic acid, then under stirring, 10 mL of an acetic acid solution of 0.8 g bromine (5 mmol) was added dropwise at room temperature. After stirring at room temperature overnight, the reaction liquid was poured into ice water and extracted with ethyl acetate. The ethyl acetate layer was washed first with an aqueous solution of sodium hydrogensulfite, then an aqueous solution of sodium hydrogencarbonate, then with water. It was then dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.

The residue obtained was washed with n-hexane, and 1.15 g of the target compound were obtained. The yield was 87%, mp 181-182°C.

Application Example 3

Manufacture of 5-5(ethyl-2-pyridyl)-4-fluoro-3-trifluoromethyl pyrazole.

0.43 g of 4-bromo-5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole (1.34 mmol) was dissolved in 15 mL of dry tetrahydrofuran (THF), then 1.75 mL of an N-hexane solution of 1.69M n-butyllithium were added dropwise in a nitrogen gas flow under stirring at -78°C. After stirring the reaction liquid for one additional hour at the same temperature, 0.48 g of

N-fluorobenzenesulfonimide was added. The temperature of the reaction liquid was gradually increased to room temperature, then after stirring overnight, excess magnesium sulfuric acid anhydride was added. The reaction liquid was extracted with ethyl acetate, then rinsed with a saturated salt water, dried over anhydrous magnesium sulfate, and the solvent was concentrated under reduced pressure. The residue obtained was purified by silica gel chromatography, and 0.12 g of the target compound was obtained. The yield was 34%, mp 166-168°C.

By adding N-chlorosuccinimide instead of the N-fluorobenzenesulfonimide with the same reaction conditions described above, the corresponding 4-chloropyrazole can be obtained.

Application Example 4

Manufacture of 1-acetoxymethyl-3-(5-ethyl-2-pyridyl)-5-trifluoromethylpyrazole and 1-acetoxymethyl-5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole

5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole (0.8 g) was dissolved in 20 mL of THF, and calcium carbonate (0.69 g) was added at room temperature. After stirring for 10 min at room temperature, chloromethylacetate (0.54 g) was added, and was heated and refluxed for 3 h. The reaction mixture was poured over ice water, extracted with ethyl acetate, and after washing the organic layer with saturated salt water, anhydrous magnesium sulfate was added for drying, and the solvent was distilled off under reduced pressure. The residue was purified with silica gel chromatography (solvent: benzene-ethyl acetate = 100:1), and

1-acetoxymethyl-3-(5-ethyl-2-pyridyl)-5-trifluoromethylpyrazole (0.57 g, yield of 55%, n_D 20.6 1.5018), and 1-acetoxymethyl-5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole (0.12 g, yield of 12%, n_D 20.7 1.5060).

Application Example 5

Manufacture of 3-(5-ethyl-2-pyridyl)-1-methylsulfonyl-5-trifluoromethylpyrazole and 5-(5-ethyl-2-pyridyl)-1-methylsulfonyl-3-trifluoromethylpyrazole

5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole (0.8 g) was dissolved in methylene chloride (20 mL), and triethylamine (0.37 g) was added at room temperature. After stirring for 5 min at room temperature, 0.5 g of methanesulfonyl chloride was added gradually, and a reaction was carried out for 2 h at room temperature. The reaction mixture was poured over ice water, and extracted with chloroform. The organic layer was rinsed with saturated salt water, anhydrous magnesium sulfate was added to dry it, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (solvent benzene-ethyl acetate = 100:1), and 3-(5-ethyl-2-pyridyl)-1-methylsulfonyl-5-trifluoromethylpyrazole (0.54 g, yield 51%, mp 100-102°C) and 5-(5-ethyl-2-pyridyl)-1-methylsulfonyl-3-trifluoromethylpyrazole (0.31 g, 29% yield, NMR data shown in 1a-98 of Table 1-1).

Application Example 6

Manufacture of 1-(1-ethoxyethyl)-3-trifluoromethyl-5-(3-bromo-2-pyridyl)pyrazole and 1-(1-ethoxyethyl)-3-(3-bromo-2-pyridyl)-5-trifluoromethylpyrazole

4.2 g (1.106 mol) of 60% sodium hydride were added to 150 mL of dry DMF, then a solution of 25.7 g (0.088 mol) of 3-trifluoromethyl-5-(3-bromo-2-pyridyl)pyrazole dissolved in

150 mL of DMF was added dropwise to this under ice cooling. After stirring for 30 min at room temperature, it was ice-cooled again, then 12.4 g (0.114 mol) of 1-chloroethyl ethyl ether were added. After the dropwise addition, it was stirred for 1 h at room temperature, then allowed to react for 2 additional h between 50-60°C. The reaction liquid was concentrated under reduced pressure and the majority of the DMF was removed. Water and ether were added to the residue, and the liquids were separated. The organic layer was washed with water, then after drying and concentration, 31.3 g of an oily material that is to become the object of the process were obtained. At a yield of 98%, the ratio between the components was 5-CF3 compound/3-CF3 compound = 2/1.

 $1_{\mbox{H-NMR}}$ data of the mixture (CDCl3, δ ppm):

(1) 5-CF3 compound

(2) 3-CF3 compound

Application Example 7

Manufacture of

1-(1-ethoxyethyl)-3-trifluoromethyl-5-[3-(2-trimethylsilylethynyl)-2-pyridyl]pyrazole and 1-(1-ethoxyethyl)-3-[3-(2-trimethylsilylethynyl)-2-pyridyl]-5-trifluoromethylpyrazole

H. C
$$CF_{s}$$
 $HC \equiv C - S_{i} (CH_{s})_{s}$
 CF_{s}
 CF_{s}
 $C \equiv C - S_{i} Me_{s}$
 CF_{s}
 $C \equiv C - S_{i} Me_{s}$
 CF_{s}
 $C = C - S_{i} Me_{s}$

10.0 g (27.4 mmol) of the mixture obtained in Application Example 6, 0.52 g (27 mmol) of cuprous iodide, and 0.96 g (1.4 mmol) bistriphenylphosphine dichloropalladium were added to 100 mL of triethylamine. Then under stirring, 3.5 g (35.6 mmol) of trimethylsilylacetylene were added to this, and it was heated and refluxed for 3 h. Next, an additional 3.5 g of trimethylsilylacetylene were added, and it was heated and refluxed again. The reaction liquid was then concentrated, water, chloroform, and Celite were added to the residue, and after filtration, the liquids were separated. By drying and concentrating the organic layer, a crude product of the target compound was obtained as an oily mixture. The yield was 13.0 g. 1H-NMR data of the mixture (CDCl3, δppm):

Application Example 8

Manufacture of 1-(1-ethoxyethyl)-3-(3-ethynyl-2-pyridyl)-5-trifluoromethylpyrazole

$$CF_{:}$$
 $C \equiv C - S \text{ i Me} \text{ s}$ $K_{:}$ $CO_{:}$
 $CF_{:}$ $C \equiv CH$
 $CF_{:}$ $C \equiv CH$
 $CF_{:}$ $C \equiv CH$
 $CF_{:}$ $C \equiv CH$
 CH
 CH

13.0 g of the crude oily mixture obtained in Application Example 7 were dissolved in

130 mL of methanol, then 0.65 g of potassium carbonate was added, and it was stirred overnight at room temperature. The reaction liquid was concentrated under reduced pressure, water, chloroform and Celite were added, and after filtration, the liquids were separated. The residue obtained by washing the chloroform layer with water, drying and concentrating was purified by silica gel chromatography, and 4.40 g of the target material were obtained. The total yield beginning from Application Example 7 was 52%.

l_{H-NMR} data (CDCl₃, δppm):

Application Example 9

Manufacture of 3-trifluoromethyl-5-(3-ethynyl-2-pyridyl)pyrazole

4.40 g of 1-(1-ethoxyethyl)-3-(3-ethynyl-2-pyridyl)-5-trifluoromethylpyrazole (0.0142 mol) were dissolved in 40 mL of methanol, then 5 mL of 1N hydrochloric acid were added dropwise under stirring. After dropwise addition of the acid, it was stirred for an additional '5 h at room temperature, then the reaction liquid was concentrated under reduced pressure. Then after washing the chloroform layer with water and drying it, it was concentrated under reduced pressure and white crystals were obtained. By recrystallization from benzene, 2.80 g of the target material were obtained. The yield was 84%, mp 140-141°C.

Reference Example 1

Manufacture of 3-cyclopropylpyridine

2.8 g (5.1 mmol) of Ni (dppp)Cl2* were added to 8.0 g (50.6 mmol) of 3-bromopyridine and 100 mL of dry tetrahydrofuran (THF), and the air in the reaction vessel was replaced with nitrogen gas. This mixture was cooled to 0°C, then a tetrahydrofuran solution of a Grignard reagent compounded from 12.2 g (101.1 mmol) of cyclopropylbromide and 2.4 g (101.2 mmol) of magnesium was added dropwise to this mixture, then stirred for 2 h at room temperature. The reaction liquid was poured into aqueous ammonium chloride, then extracted with ethyl acetate. The ethyl acetate layer was washed with water, dried, then concentrated, and the residue obtained was purified by silica gel chromatography, and 4.2 g of the target material were obtained. The yield were 69%, bp 75°C/8 mmHg

Reference Example 2

Manufacture of 3-cyclopropylpyridine-N-oxide

$$\begin{array}{c|c}
\hline
 & m-CPBA \\
\hline
 & CHC1:
\end{array}$$

4.2 g (35.3 mmol) of 3-cyclopropylpyridine were dissolved in 40 mL of chloroform, and cooled to 0°C. Then 8.4 g (38.8 mmol) of 80% pure m-chloroperbenzoic acid were added, and it was stirred overnight at room temperature. The precipitated m-chloroperbenzoic acid [sic] was filtered, the filtrate was washed with a saturated aqueous solution of sodium carbonate, dried and concentrated, and 4.6 g of the target substance was obtained. The yield was 96.4%. 1H-NMR data of (CDCl₃, δppm):

^{*} Dichloro-1,3-bis(diphenylphosphine)propane nickel

Reference Example 3

Manufacture of 2-cyano-5-cyclopropylpyridine

4.4 g (32.6 mmol) of 3-cyclopropylpyridine-N-oxide were dissolved in 120 mL of N,N-dimethylformamide (DMF), and 13.2 g (130.4 mmol) of triethylamine and 4.8 g (97.8 mmol) of sodium cyanide were added, and after ice-cooling, 10.6 g (97.8 mmol) of trimethylsilylchloride were added dropwise. After dropwise addition, the reaction mixture was heated for 48 h at 100-110°C, the reaction liquid was concentrated under reduced pressure, water, chloroform, and Celite were added to the residue, and following filtration, the liquids were separated. The chloroform layer was rinsed with water, dried and concentrated, and the resulting residue was purified by silica gel column chromatography, whereby 2.0 g of the target substance were obtained. Yield was 43%.

1_{H-NMR} data (CDCl₃, δppm):

Reference Example 4

Manufacture of 2-acetyl-5-cyclopropylpyridine

5.7 g (39.6 mmol) of 2-cyano-5-cyclopropylpyridine were dissolved in 50 mL of dried THF, and the air in the reaction vessel was replaced with nitrogen gas. The reaction liquid was

cooled to 0°C, then 16.0 mL (47.5 mmol) of a THF solution of 3.0M methylmagnesium chloride were added dropwise. After stirring for 2 h at room temperature, the reaction liquid was ice-cooled, and an aqueous solution of 1N-hydrochloric acid was added dropwise. Next, the mixture was made alkaline with an aqueous solution of 1N sodium hydroxide, and then extracted with chloroform. The chloroform layer was rinsed with water, dried and concentrated, and 6.1 g of the target material were obtained. The yield was 96%. 1H-NMR data (CDCl₃, δppm):

Reference Example 5

Manufacture of 4,4,4-trifluoro-1-(5-cyclopropyl-2-pyridyl)butane-1,3-dione

1.3 g (8.1 mmol) of 2-acetyl-5-cyclopropylpyridine and 1.9 g (13.7 mmol) of trifluoroethyl acetate were dissolved in 15 mL of THF, then 3.3 g (17.0 mmol) of a methanol solution of 28% sodium methoxide were added at room temperature. After stirring as is for 1 h, 1.1 g (18.3 mmol) of acetic acid were added to the reaction liquid. After concentration, the residue was dissolved in chloroform, rinsed with water, dried, and concentrated, and 1.9 g of the crude target material were obtained.

Application Example 10

Manufacture of 5-(5-cyclopropyl-2-pyridyl)-3-trifluoromethylpyrazole

1.8 g (7.0 mmol) of 4,4,4-trifluoro-1-(5-cyclopropyl-2-pyridyl)butane-1,3-dione were dissolved in 15 mL of acetic acid, then 0.42 g (8.4 mmol) of hydrazine hydrate was added, and it

was heated for 15 min at 90-95°C. After the reaction was completed, it was poured into ice water, the precipitated crystals were filtered, and 1.3 g of the target substance was obtained. The total yield beginning with Reference Example 5 was 67%.

Melting point: 152-153°C.

Application Example 11

Manufacture of 3-diethoxymethyl-5-(3-chloro-2-pyridyl)pyrazole

9.92 g (51.4 mL) of a methanol solution of 28% sodium methoxide were added under ice-cooling to a 30 mL THF solution of 5.00 g (32.1 mmol) of 3-chloro-2-acetylpyridine and 6.80 g (38.6 mmol) diethoxyethyl acetate, and it was stirred as is for 2.5 h. Next 1.36 g (7.72 mmol) of diethoxyethyl acetate, and 1.98 g (10.3 mmol) of a methanol solution of 28% sodium methoxide were added under ice-cooling, and it was stirred for an additional 17 h at room temperature. 3.70 g of acetic acid were added to the reaction liquid, and after condensation under reduced pressure, water and ethyl acetate were added to the residue, and the liquids were separated. The organic layer was washed with saturated salt water, and after drying over anhydrous magnesium sulfate, the solvent was distilled off, and 10.57 g of a crude 1,3-diketone were obtained. 7.71 g of this crude product were dissolved in 100 mL of ethanol, and under ice-cooling, 1.29 g (25.8 mmol) of hydrazine hydrate were added, and it was stirred for 4.5 h under ice-cooling. The solvents, etc., were distilled off and removed from the reaction liquid under reduced pressure, water was added to the residue, and it was extracted first with chloroform, then with ethyl acetate. Together with the organic layer, it was dried over anhydrous magnesium sulfate, then concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (hexane: ethyl acetate = 2:1), and 4.57 g of 3-diethoxymethyl-5-(3-chloro-2-pyridyl)pyrazole were obtained.

69% yield from 3-chloro-2-acetylpyridine.

Refractive index: n_D^{22.5} 1.5598

Application Example 12

Manufacture of 3-hydroxyiminomethyl-5-(3-chloro-2-pyridyl)pyrazole

$$(E t O) \cdot H C \qquad HON = H C$$

$$NH_{\bullet}OH \cdot HCI \qquad NH_{\bullet}OH \cdot HCI$$

1.50 g (5.32 mmol) of 3-diethoxymethyl-5-(3-chloro-2-pyridyl)pyrazole were dissolved in 20 mL of ethanol, then 0.74 g (10.6 mmol) of hydroxyamine hydrochloride was added, and it was heated and refluxed for 4 h. Sodium hydrogencarbonate was added to the reaction liquid, and after extracting with chloroform and ethyl acetate, it was dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was washed with n-hexane, and 0.77 g of 3-hydroxyiminomethyl-5-(3-chloro-2-pyridyl)pyrazole (isomeric mixture) crystals was obtained. 65% yield.

Melting point: 214-216°C

Application Example 13

Manufacture of 3-cyano-5-(3-chloro-2-pyridyl)pyrazole

$$H \circ N = H \circ C$$

$$\downarrow N$$

$$\downarrow N$$

$$\downarrow C \circ I$$

$$\downarrow N \circ C$$

$$\downarrow N \circ$$

1.30 g (12. 7 mmol) of acetic anhydride were added to 0.57 g (2.56 mmol) of 3-hydroxyiminomethyl-5-(3-chloro-2-pyridyl)pyrazole, and it was heated for 4 h at 110°C. After the reaction mixture was concentrated under reduced pressure, ethanol was added to the residue, and it was concentrated under reduced pressure again. This process was repeated 2 times, then the residue was suspended in 15 mL of ethanol, 2.8 mL (2.8 mmol) of an aqueous solution of 1N sodium hydroxide was added, and it was stirred for 2 h under ice-cooling. Salt water was added to the reaction liquid, and it was extracted with ethyl acetate. After drying the organic layer over anhydrous magnesium sulfate, it was concentrated under reduced pressure. It was crystallized by washing the residue with n-hexane, and 0.40 g of 3-cyano-5-(3-chloro-2-pyridyl)pyrazole was obtained. 77% yield.

Melting point: 204-205°C

Reference Example 6

Manufacture of 2,6-dimethylpyrazine-4-oxide

7.23 g (66.9 mmol) of 2,6-dimethylpyrazine were dissolved in 70 mL of chloroform, and under ice-cooling, 15.88 g (73.6 mmol) of 80% pure m-chloroperbenzoic acid were added, and it was stirred overnight at room temperature. After the reaction was completed, the precipitated crystals were filtered, the filtrate was washed with an aqueous solution of sodium hydrogencarbonate, then after drying and concentrating under reduced pressure, 6.43 g of crude 2,6-dimethylpyrazine-4-oxide were obtained.

Reference Example 7

Manufacture of 3-cyano-2,6-dimethylpyrazine

6.20 g (50 mmol) of the 2,6-dimethylpyrazine-4-oxide obtained in Reference Example 6, and 10.1 g (100 mmol) of triethylamine were dissolved in 50 mL of acetonitrile. Then 15.67 g (158.3 mmol) of trimethylsilylcyanide were added, and it was heated and refluxed overnight. After the reaction liquid was cooled, an aqueous solution of sodium carbonate was added, then following concentration under reduced pressure, water and chloroform were added and the liquids were separated. The chloroform layer was dried, and then concentrated under reduced pressure, and the residue obtained was purified by silica gel column chromatography, and 1.60 g of the target substance were obtained. The total yield beginning from Reference Example 6 was 19%.

Reference Example 8

Manufacture of 3-acetyl-2,6-dimethylpyrazine

$$H : C \xrightarrow{N} C H : \xrightarrow{\text{MeNgBr}} H : C \xrightarrow{N} C C H :$$

1.52 g (11.4 mmol) of 3-cyano-2,6-dimethylpyrazine were dissolved in 25 mL of dry THF, and under ice-cooling, in a nitrogen gas atmosphere, 4.0 mL (12 mmol) of 3.0M methylmagnesium bromide-diethyl ether solution were added dropwise. After cooling under ice and stirring for an additional 2 h, 1 mL of a saturated aqueous solution of ammonium chloride was added to the reaction liquid, then 5 mL of 4N hydrochloric acid were added, at it was stirred for 2 h. The reaction mixture was concentrated under reduced pressure, and the majority of the THF was removed. Chloroform and a saturated aqueous solution of sodium hydrogencarbonate were added to the residue, and after separating the liquids, the organic layer was dried and concentrated, and a crude product was obtained. This was purified by silica gel column chromatography, and 0.30 g of the target oily substance was obtained. Yield 17%.

Reference Example 9

Manufacture of 1-(3,5-dimethyl-2-pyrazinyl)-4,4,4-trifluorobutane-1,3-dione

0.30 g (20 mmol) of the product obtained in Reference Example 8 and 0.34 g (24 mmol) of trifluoroethyl acetate were dissolved in 30 mL of THF. Then 0.46 g (24 mmol) of a 28% methanol solution of sodium methoxide was added to this and it was stirred for 15 min at room temperature. 1 mL of acetic acid was added to the reaction liquid, and when the reaction was completed, the reaction mixture was concentrated under reduced pressure, and the majority of the THF was removed. Chloroform and saturated aqueous sodium carbonate were added to the residue, the liquids were separated, the chloroform layer was dried, then concentrated under reduced pressure, and 0.30 g of an oily crude product was obtained. Without further purification, this product was used in the following reaction.

Application Example 14

Manufacture of 3-trifluoromethyl-5-(3,5-dimethyl-2-pyrazinyl)pyrazole

0.30 g (12.2 mmol) of the crude product obtained in Reference Example 9 was dissolved in 5 mL of acetic acid, then 0.09 g (18.3 mmol) of hydrazine hydrate was added to this, and the reaction mixture was heated and refluxed for 2 h. After cooling the reaction liquid, the reaction mixture was poured into water. Then chloroform and a saturated aqueous solution of sodium hydrogencarbonate were added, and the liquids were separated. The organic layer was dried and concentrated, whereby 0.30 g of the target substance was obtained. The total yield beginning from Reference Example 9 was 65%.

Melting point: 175-177°C.

Application Example 15

Manufacture of nickel(II) salt of 5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole 1.4 g (5.81 mmol) of 5-(5-ethyl-2-pyridyl)-3-trifluoromethylpyrazole were dissolved in 15 mL of acetone, then a mixture comprised of 0.38 g (2.41 mL) of nickel(II) chloride dissolved in 30 mL of water was gradually added to this. After stirring at room temperature for 3 h, the precipitated crystals were filtered, washed with 50 mL of water, and 0.6 g of the target substance was obtained. The yield was 38%.

Melting point: 180-185°C

MS m/z: 538 (M + 1)

Representative examples of the compounds of the present invention, including the application examples noted above, are shown in Tables 1-1 and 1-2.

Table 1-1

			R¹ N	X	Y N	(I-a)	·
_			R ²			2	3
P	化合物版	R¹	Y	X	R²	置換位 口	物理恒改(℃)
	la- I	CP ₈	H	Н	H (2)	3-R1	[126-127]
	ia-2	CF ₈	H	H	飼(Ⅱ) 塩	3-R1	>260
	1a-3	CF ₈	H	NO ₂	H	3-R1	[149-150]
	Ia- 4	CP ₈	H	Br	cv.H	3-R1	[156-157]
	la — 5	CF a	H	Br	網 (II) 塩		>250
	la-6	CF a	H	NO ₂	智(JI) 復	3-R1	>250
	1a-7	CF ₃	Н	NH2	H	3-R1	[123-124]
	1a-8	C ₂ F ₈	H	H	H	3-R1	[170-175]
	1a-9	C_zF_s	H	H	蜀(II)塩	3-R1	>250
	la-10	CP _s	6-сн.	H	H	3-R1	[148-150]
	la-11	CP ₂	6-C1	Ħ	H.	3-R1	[90-92]
	Ia-12	CF _s	H	CH,	H.	3-R1	[97-98]
	[a-13	· CP8	4-C1	H	H	3-R1	[125-127]
	la-14	CF ₃	3-CH2	H	H	3-R1	[140-142]
	ia-15	CF ₈	5-CH;	Н	Н	3-R1	[150-151]
-	la-16	CF.	5-Ph	н	Н	3-R1	[167-169]

Compound No. Substitution site Key: 1

- 2
- Physical constant (°C) 3
- Cupric salt 4

	•		(β)				\sim 2
•			表 1-1	(統さ))	(2)	(3)
) -	化合物Na	R'	Y	X	R²	置換位置	物理恒数
-	18-17	CF.	3, 5-(CH ₂) ₂	H	H	3-R1	[125-126]
	la-18	CF ₃	4-CH _a	H	H	3-R1	[163-165]
	Ia-19	CF 3	4,5-(CH ₃) ₂	H	H	3-R1	[188-189]
	Ia-20	CF a	3, 4-(CH _a) ₂	H	Ħ	3-R1	[124-125]
	1a-21	CF.	5-C2H5	H	H	3-R1	[128-130]
	Ia-22	CF s	5-NO ₂	H	H	3-R1	[150-151]
	Ia-23	CF ₂	5-C1	H	H	3-R1	[136-137]
	Ia-24	CF.	5-Br	H	H	3-R1	[144-145]
	1a-25	CF.	5-OCH ₃	H	H	3-R1	[169-170]
	la-26	CF.	5-CH _z Ph	H	Н	3-R1	[121-124]
	Ia-27	CF.	5-CN	H	H	3-R1	[163-168]
	1a-28	CF.	5-CF.	H	H	3-R3	[155-160]
	1a-29	CF ₃	3-CF;	H	H	3-R1	[109-110]
	1a-30	CF ₃	3-Ph	H	H	3-R1	[130-131]
	1a-31	CF ₃	3-CH _z Ph	H	H	3-R1	[145-150]
	[a-32	CF.	3-Br	H	H	3-R1	[122-124]
	la-33	CF;	3-C1	Н	H	3-R1	[120-122]
	la-34	CF s	3.6-(CH ₁) ₂	H	H	3-R1	[158-160]
	Ia-35	CF:	3-C2H5	H	Н	3-R1	[103-104]
	1a-36	CF:	3-N(CH ₃) ₂	H	H	3-R1	[85-88]
	Ia-37	CF.	5-C:H7	H	H	3-R1	[79-82]
	1a-38	CF.	3-CaH7"	H	H	3-R1	[111-112]

- A
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

丧	1	_	1	(統	송)

0	化合物Na	R¹	Y	X	R²	置換位置	物理恒数 (°C) -
•	Ia-39	CF ₂	3-CH(C ₂ H ₅) ₂	Н	H	3-R1	np ^{10.0} 1.5122
	Ia-40	CF ₃	5, 6-(CH ₃) ₂	H	H	3-R1	[165-167]
	la-41	CF _s	5-C4H9*	H	H	3-R1	[70-72]
	1a-42	CF ₃	5-C3H7 i	·H	H	3-R1	[94-95]
	1a-43	CF ₂ H	5-C2H5	H	H	3-R1	[121-122]
	la-44	CF ₈	5-NH ₂	H	H	3-R1	[178-180]
	la-45	CF ₂ -C1	5-C2H5	H	H	3-R1	[119-120]
	la-46	CHFC1	5-C2H5	H	H	3-R1	[111-113]
	1a-47	CF ₂	3.5-Cl ₂	H	H	3-R1	[138-140]
	Ia-48	CF,	3-CH ₂ -5-C ₂ H ₅	H	H .	3-R1	[117-119]
	la-49	CF,	3-CH ₃ -5-C ₃ H ₇ "	H	H	3-81	
	1a-50	CF:	3, 5-(C ₂ H ₅) ₇	H	H	3-R1	[91-93]
	1a-51	CF3	3-CH2CH=CH2	H	H	3-R1	[81-84]
	1a-52	CF,	5-CH2CH=CH2	H	H	3-R*	[97-98]
	1a-53	CF ₃	3-SCH ₃	H	H	3-R'	[161-163]
	1a-54	CF:	5-SCH ₃	H	H	3-R1	[169-171]
	la-55	CF 3	3~802CH3	H	H	3-K1	
	[a-56	CF ₃	5-S0, CH,	H	H	3-R1	[220-221]
	la-57	CF,	3-C02CH3	H	H	3-R1	
	Ia-58	CF.	5-CO2CH3	H	H	3-R1	[179-180]
	18-59	CF ₄	5-C0zC2Hs	H	H	3-R1	[174-176]
	1a-60	CF ₃	3-CH2OCH3	H	H	3-R t	[105-107]
			•				

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

丧	1 - 1	(続き)
		97

		The second secon	表 1-1	(統多)		(2)	3
	化合物Na	R¹ 3	Y	X	R²	置换位置	物理恒数 _ (℃)
•	la-61	CF ₃ 5	S-CH ₂ OCH ₃	H	H.	3-R1	[133-134]
	[a-62	CF _a	3-C1-5-C2H5	H	H	3-R1	
	1a-63	CF ₃	3-0CH ₃	H	H	3-R1	[124-126]
	1a-64	CF3	5-0C2H5	H	H	3-R1	[165-167]
	1a-65	CF ₃	5-C(CH ₂) ₃	H	H	3-R1	
	1a-66	CF ₃	5-CHC2Hs (CH3	H	H	3-R1	
	1a-67	CF ₂	5-CH ₂ CH(CH ₃) ₂	H	H	3-R1	
	la-68	CF.	3-CH ₃ -5-OCH ₃	H	H	3-K,	[164-167]
	la-69	CF.	3-CH2C≡CH	H	H	3-R1	•
	1a-70	CF.	5-CH₂C≡CH	H	H	3-81	
	[a-71	CF ₂	5-CHOCH ₃ I CH ₃	H	Н	3-81	
	la-72	CF ₃	3-CH2SO2CH3	Н	H	3-R1	
	Ia-73	CF.	5-CH2SO2CH3	H	H	3-R1	
	[a-74	CF ₃	5 -	Н	H	3-R1	
	1a-75	CF ₂	3-COCH 2	н	H	3-R1	[89-91]
	1a-76	CF ₅	5-COCH _a	H	H	3-R1	[200-201]
	1a-77	CO₂CH₃	5-C ₂ H ₅	Н	H	3-81	[130-133]
	1a-78	CO2H	5-CzHo	H -	Н	3-R1	

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

(Z)

3

~		- 4X X	_ \	WC)		
化合物Na	R'	Y	X	R²	置換位置	物理恒数 (℃)
la-79	CN	3,5-C1 ₂	H	H	3-R1	[206-207]
[a-80	cn 3	, 5-(CH ₁) ₂	H	H	3-R1	[218-219]
la-81	CN	5-C ₂ H ₅	H	H	3-R1	[183-185]
la-82	CONH ₂	5-C2H5	H	H	3-R1	
1a-83	NH ₂	5-C:11s	H	H	3-R1	
Ia-84	SCH.	5-Calle	Ħ	Ħ	3-R1	
Ia-85	SO2CH2	5-C:H:	R	H	3-R1	
Ia-86	CF ₁	5-C:Hs	H	O # CH ₂ OCCH ₃	3-R1	no ^{20, 7} 1.5060
Ia-87	CF ₃	5-C ₂ H ₆	Н	O A CH ₂ OCCH ₂	5-R1	n _D ^{20. 7} 1.5018
la-88	CF.	5-C2Hs	H	CH*OCC*H*	3-R1	
Ia-89	CF ₂	5-C _z H ₅	Н	0 # ch_occ_H5	5-R ¹	
[a-90	CF,	5-C ₂ H ₅	H	COPh	3-R1	
Ia-91	CF.	5~CzH5	H	сорь	5-R1	
1a-92	CF.	5-C ₂ H ₅	H	∞ <u></u>	C1 3-R1	[78-84]
la-93	CF.	5-C2H6	H	∞ <u>{</u>	C1 5-R1	
la-94	CF,	5-C ₂ H ₅	H	CH2SCH3	3-R1	np ^{26. 6} 1.5276

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

表	١	_	1	(統き)
ZX			•	(DUC)

			表	1 -	1(統き)	②	3
(V)	化合物No	R'	Y	х	R²	置換位置	物理恒数(℃)
	la-95	CF.	5-C2H5	H	CH2SCH2	5-R1	n _D ^{20.9} 1.5240
	1a-96	CF:	5-C2H5	H	COCH ₂	3-R1	[35-37]
	la-97	CF.	.5-CzHs	H	COCH ₃	5-R¹	1H-NMR 1. 33(3H. t) 2. 75(2H. d) 2. 78(3H. s) 6. 8(1H. s) 7. 42(1H. d) 7. 63(1H. dd) 8. 51(1H. d)
	Ia-98	CF;	5-C ₂ II ₅	Ħ	SO2CH3	3-R'	'H-NMR 1.3(3H.t) 2.72(2H.q) 3.44(3H.s) 7.56(1H.s) 7.64(1H.dd) 8.04(1H.d) 8.50(1H.d)
	la-99	CF ₂	5-C2H5	Н	SO2CH3	5-R1	[100-102]
	la-100	CF,	5-C2H5	Н	CH2SOCH3	3-R1	[88-92]
	[a-10]	CF s	5-C2H5	H	CH2SO2CH3	3-R1	[114-116]
	Ia-102	CF _s	H	H	CH2OCzH5	5-R1	np ^{2 5} 1.4829
	Ia-103	CF.	H	Ħ	CH2OC2H5	3-R1	•
	Ia-104	'CF ₃	5-C2H5	H	0 CH2OC	3-R1	
	la-105	CF s	5-C ₂ H ₅	Н	CH*0C	> 5-R1	
	1a-106	CF ₃	5-CzHs	Н		3-R ¹	
	la-107	CF a	5-C2H5	Н	O ∥ CH2OCOC2H	s 5-R1	
	la-108	CF,	5-C2H3	Н	\$0 ₂	CH: 3-R1	

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

丧	1	- 1	(続き)	
-	•	_	1000	

	•	表 1~	1 (統	き)	(2)	(3)
化合物Na	R¹	Y	X	R²	置換位置	物理恒数 (°C)-
Ia-109	CF:	5-C2H6	Н	\$0₂ € CH₃	5-R1	
la-110	CF ₃	5-C2H5	H	CH2NCOCH3 i CH3	3-R1	
[a-111	CF ₃	5-C2H5	H	CH ₂ NCOCH ₃ i CH ₃	5-R1	·
Ia-112	CF ₂	5-C2H5	Н	S II CH2SCN(CH3)2	3-R1	
la-113	CF _s	5-C2H5	н	S A CH2SCN(CH3);	5-R ¹	
1a-114	CF3	5-C2H5	Cl	H	3-R1	[179-181]
la-115	CF ₃	5-C2H5	Br	H	3-R1	[181-182]
1a-116	CF3	5-C2H5	F	H	3-R1	[166-168]
la-117	CF ₃	5-CH=CHCH3	H	H	3-R1	[153-155]
la-118	CF a	3-CH=CH-CH.	H	H	3-R1	[116-117]
la-119	CF3	3-CH=CH2	H	H	3-81	[104-105]
Ia-120	CF ₃	5-CH=CH2	H	Н	3-R1	[113-114]
[a-12]	CF,	3-C1-5-CaH7	H	H	3-R1	•
Ia-122	CF s	3-CH3-5-C3H7	· H	. н	3-R1	
la-123	CF s	5-C(CH ₃) ₂ OH	H	H	3-R1	[58-61
la-124	CF 3	3-C ≡CH	Н	Н	3-F	[140-141
Ia-125	CF:	5-C ≡CH	H	H	3-1	(167-169

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

	·		表 1	- 1 (続	き)	(2)	3)
$\mathcal{D}^{'}$	化合物No	R¹	Y	Х	Rz	置換位置	物理恒数(℃)_
	Ia-126	CF.	3-CN	н	Н	3-R1	[150-151]
	1a-127	CF _x	5-CH2CN	H	H	3-R1	
	Ia-128	CF.	5-SCN	H	н	3-R1	
	Ia-129	CF.	3-SCN	. Н	Н	3-R1	•
	la-130	CF.	3-F	H	Н	3-R1	[119-121]
	Ia-131	CF ₃	5-P	Ħ	H·	3-R1	
	Ia-132	CF,	3, 5-F ₂	H	H	3-R1	
	Ia-133	CF 3	3-C1-5-F	H	H	3-R1	
	Ia-135	CF s	3-F-5-C1	Н .	н	3-R1	
	[a-136	CF ₃	3-Br-5-C2H5	H	H	3-R1	[132-134]
	Ia-137	CF ₃	3-F-5-CH.	H	H	3-R1	
	1a-138	CF ₃	3-C1-5-CH ₃	Н	H	3-R1	[152-153]
	Ia-139	CF,	3-Br-5-CH,	Н	H	3-R1	[150-152]
	Ia-140	CF3	3-F-5-C2H5	H	н.	3-R1	
	Ia-141	CF.	3-C1-5-C3H7	. Н	H	3-R1	•
	Ia-142	CF ₃	3-Br-5-C3H7	H	H	3-R ^t	·
	1a-143	CF:	3-F -5-CaH7	н	H	3-R1	
	Ia-144	CF s	3-C1-5-C3H7	·	H	3-R ¹	
	Ia-145	CF ₁	3-Br-5-C3H1	i H.	H	3-R1	
	la-146	CF.	3-C1-5-C4Ho	Н	Ħ	3-R1	
	18-147	CF ₃	3-Br-5-C4H0	Н	H	3-R1	

la-148

CF3

3-C1-5-C4H9 ' H

3-R1

H

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

		表	1-1	(統き)	(2)	(3)
化合物Na	R¹	Y	х	R²	置換位置	物理恒数 (℃)-
Ia-149	CF ₃	5-C2H5	H	CO _z C _z H _s	3-R1	π _D 1.5158
1a-150	CF ₃	5-C ₂ H ₅	Ħ	CH2OC-C4He'	3-R1	[47 - 48]
1a-151	CF ₃	5-C2H5	H	O CH⁵OC-C⁴H°, Ω	5-R [‡]	np 1.4874
la-152	CF3	5-SOCH ₃	Н	о Н	3-R1	[194 -196]
Ia-153	CF a	5-C ₂ H ₅	Н	CH2OC-O-N	0 ₂ 5-R ¹	[128 -129]
1a-154	CF 3	5-CzHa	н		0 ₂ 3-R ¹	[122 -124]
Ia-155	CF ₃	3 - C1	Н	O U CH2OCCH3	5-R¹	[62 - 64]
la-156	CF ₃	3-C1	Н	CH ² OCCH ³	3-R1	n _D 1. 5195
la-157	CF,	3-CH ₃ -5-C1	н	Н	3-R ₁	[150 -151]
[a-158	CF ₃	5-CH-CH.	H	Н	3-R 1	[138 -140]
la-159	CF.	5-C=CH ₂ C1	Н	Н	3-R1	[149 -151]

- A
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

					•		
			(A)				
<i>(</i> 1)		表	1 – 1	(統き)	(2)	3	
化合物Na	R¹	Y	X	R²	置換位置	物理恒数 (℃)	
la-160	CF ₃	3-C=CH ₂	H	Н	3-R1	[105 -106]	
1a-161	CF ₃	5-OCH₂Ph	H	Н	3-R1	[158 -159]	
1a-162	CF _a		H .	H	3-R1	[234 -235]	
1a-163	CF3	0 5-0cch,	. Н	H	3-R1	[163 -165]	
la-164	CF ₃	3-CH-CH:	Н	H	3-8 ₁	[90 - 91]	
Ia-165	CF.	3-0CH ₄ -5-CI	Н	н	3-R1	[152 -153]	
la-166	CF.	3-C1-5-OCH ₃	H	Н	3-R1	[191 -192]	
la-167	CF:	3-CH2OCH2OCH	la H	н	3-R1	[101 -103]	
Ia-168	CF.	5-CH2OCH2OCH	Ha H	н	3-R1	[95 -97]	
la-169	CF3	5-OCONHC≥I	Hs H	મ (પે)	3-R1	[175 -177]	
1a-170	CF3	5-C2H3	Н	銅 (II) 塩	3-R1	[250°Cup]	

- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C)
 Cupric salt Α

物理恒数 (℃)-Y X R* 置換位置 R1 化合物Na H 3-R1 [250°Cup] 銅(II)塩 1a-171 CF₃ 3-C1 la-172 CF, ニッケル(Ⅱ)塩 [180 - 185]5-C2H5 H . 3-R1 [170 -180] la-173 H コ/い (Ⅱ)塩 3-R1 CF, 5-C2H5 5-C2H5 鉄(Ⅱ)塩 3-R1 [250 °Cup] la-174 CF. H [152 -160] la-175 CF3 3-C1 ニックル(Ⅱ)塩 Н 3-R1 **午** 鉄(Ⅱ)塩 [217 -220] CF3 H 1a-176 3-R1 3-C1 [122 -123] la-177 CF, 3-C≡C-SiMe, H H 3-R1 H Ia-178 3-R1 5-C2H5 [260 °Cup] CF: la-179 3-C≡C-CF₅ H H 3-R1 CF: [122 -124] Ia-180 CF, 3-C=C-C1 H 3-R1 la-181 H 3-R1 [85 -86] 3-C=CH2 CF. H

CH2

- Table 1-1 (continued) Α
- Compound No.
 Substitution site 1
- 2
- Physical constant (°C) 3
- 4
- Cupric salt
 Nickel(II) salt 5
- Cobalt(II) salt 6
- Ferric salt 7
- Nickel(II) salt 8
- Stannic salt 9

		0.				
				(A)	· · · · · · · · · · · · · · · · · · ·	
0		表 1	- 1	(続き)	(2)	3
化合物Na	R¹	Y	X	R²	置換位置	物理恒数 (℃)
la-182	CF:	3-CH=CHC1	H	H.	3-R1	
Ia-183	CF:	3-CH=CHCN (trans)	H	н	3-R1	[156 -157]
la-184	CF,	3-C=CH ₂ I CN	H	Н	3-R1	
Ia-185	CF.	3-C=N-OCH ₃ CH ₃	H	Н	3-R1	[113 -116]
Ia-186	CF:	3-C=CH ₂ OCH ₃	H	Н	3-R1	
Ia-187	CF a	3-CH=NOH	H	H	3-R1	[187 -189]
la-188	CF ₃	3-CH=NOCH.	H	H	3-R1	[122 -123]
1a-189	CF.	3-0CF ₁	Н	Н	3-R1	
Ia-190	CF:	3-0CHF ₂	H	. H	3-R1	[99 -100]
1a-191	CF;	5-OCHP ₂	Н		3-R1	[122 -123]
la-192	CF,	3-SCF ₃	H	H	3-R1	

- Α
- 1
- 2
- Table 1-1 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

		*			1.8	s Tree	
10				9			
			***				N
*					e de la companya de l	* ;	
	· · · · · · · · · · · · · · · · · · ·		***				· * .
ig.	•						
e,					*		
:		4					
				• .			
	V.		* * * * * * * * * * * * * * * * * * * *				*
				المراقع			
					* * * *		* *
		= 0			*		, K
	**	· · · · · · · · · · · · · · · · · · ·				Talendaria (No. 1974)	*
i, la				. B	, i		
Not	4 . 4	· · ·		F		e.	
1					And the second	1994	
e .						· · · · · · · · · · · · · · · · · · ·	
		. *					
	10			* *		*.*	-00
1							
					4 1	roote .	
3							
*							
₹ -	* * * * * * * * * * * * * * * * * * * *			* 00			**************************************
Ž.,	10 mg		er en				
		A**					
* ! *.	19 19 19 19 19 19 19 19 19 19 19 19 19 1						0
1		* * * * *	***				e action
× ·	e e e e e e e e e e e e e e e e e e e		in the second	4		*	
			3				
2"							
₹ ት			s.				*
	<i>y</i> **	·					
	* , *				,	•	
	·			د. 			•
/ 4 .							
÷							

			Á)		
0		表 1-	-1 (1	洗き)	2	(3)
化合物Na	R'	Y	Х	R ^z	最换位置	物理恒数 (℃)-
la-193	CF,	3-CH2CN	H	н	3-R'	
la~194	CF:	3—	H	Н	3-R1	[95 -97]
1a-195	CF,	5—	H	H	3-R1	[152 -153]
1a-196	CF:	3-CO.CH.	H	н	3-R1	,
Ia-197	CF,	3-C = C-OCH ₃	H	H	3-R1	[140 -141]
18-198	CF:	5-SCF ₃	H	H	3-R1	
Ia-199	CF3	5-CHCH ₃ C1	H	H	3-R1	[123 -124]
18-200	CF ₃	5-CH ₂ F	H	н	3-R1	•
18-201	CF ₃	5-CHF:	H	H	3-R1	[161 -162]
1a-202	CF:	5-CH2CH2F	H	H	3-R1	[145 -146]
la-203	CF _s	3-C=CH-5-C1	H .	н	3-R1	·
Ia-204	CF ₃	3-C≡CH-5-CH ₃	H	Н	3-R1	
1a-205	CF.	3-C1-5-CN	Н	H	3-R1	

- Α
- 2
- Table 1-1 (continued) Compound No. Substitution site Physical constant (°C) 3

1-1 (絞き) 物理恒数(℃) 置換位置 R X 化合物的 R' Y [117 -123] 3-R1 3-0CH3-5-CH3 H H CF₃ Ia-206 3-R1 [222 -223] H 3.5-(OCH₈)₂ H la-207 CF_s CF₈ 3. 5-C12-4-CH3 H H 3-R1 Ia-208 H H 3-R1 CF₃ 3,5-(CH₃)₂-4-C1 1a-209 3-R1 CF2 3. 5, 6-(CH₂)₃ H H la-210 3-R' CF_{3} 3, 5-(CH_{2}) 2-6-C1 H la-211 [80 -82] 3-R1 CF₂ H CH₃ 1a-212 3-C1 [104 - 106]3-R1 H la-213 5-C2Hs CH₈ CFs CHOC 8 H 5 \$ <u>]</u> 3-R1 CF_s 3-Br H 18-214 CE

^{81 &#}x27;H-NMR(CDCl₈, δ ppm): 1.19(3H, t), 1.79(3H, d), 3.40-3.57(2H, m), 5.79(1H, q),

^{7. 17(1}H. dd), 7. 28(1H. s), 8. 02(1H. d), 8. 63(1H. d)

^{*2 &#}x27;H-NMR(CDC1₃, δ ppm):1.02(3H, t).1.78(3H, d).3.11-3.40(2H, m).5.60(1H, q).6.82(1H, s).7.28(1H, dd).8.07(1H, d), 8.69(1H, d)

- Table 1-1 (continued)
 Compound No.
 Substitution site Α
- 1
- 2
- Physical constant (°C) 3

(A) i 1-1 (統e)

18-216 CF₂ 3-C≡C-Si(CH₈)₂ H CHOC₂H₆ 5-R' \$3

\$3 'H-NMR(CDC1₈, δ ppm):0,17(9H, s), 1,02(3H, t), 1,79(3H, d), 3,13-3,31(2H, m),

5. 93(1H. q), 7. 00(1H. s), 7. 31(1H. dd), 7. 90(1H. d)

18-217 CF_3 3-C=CH H $CHOC_2H_5$ 5-R¹ \$4 CH_3

84 'H-NMR(CDC1₂, δ ppm):1.02(3H, t).1.08(3H, d), 3.14-3.30(2H, m).3.34(1H, s).

5. 93(1H. q), 6. 99(1H. s). 7. 36(1H. dd), 7. 97(1H. d), 8. 68(1H. d)

 1a-218 CF_s $3-SOCH_s$ H
 H
 $3-R^1$ [173-174]

 1a-219 CF_s $3-C=C-CH_s$ H
 H
 $3-R^1$ [132-134]

- Table 1-1 (continued)
 Compound No.
 Substitution site Α
- 1
- 2
- Physical constant (°C) 3

$(\hat{\theta})$. R*		(1) (3)
化合物版	R¹ Y	Х	R ⁸ 鼠袋位鼠 物理恒敨 (℃)
la-220	CF a 3-CH=NNHCOCHs	H	H 3-R' [244-248]
1a-221	CF ₃ 3-OCH ₂ Ph	H	H (3) 3-R' [154-161]
Ia-222	CF ₀ 5-C ₂ H ₅	H	H 3-R' HC1塩 [194-195]
la-223	CF ₃ 3-C1	H	H 3-R' HC1塩 [157-160]
la-224	CF3 3-CH=CHCO2CH3	H	H 3-R ¹ [138-140]
la-225	CF ₃ 3-Cl	H	H 3-R ¹ p-TsOK塩 「180-181]
Ia-226	CF _s 3-Cl	H	H 3-R' CH.SO.H 塩[163-166]
1a-227	CFa 3-C1	Н	H 3-R (CO ₂ H)。塩 [132-135]
1a-228	CF ₂ 5-CH=NOCH ₃	H	H 3-R' [145-147]
la-229	CO2CH3 3-C1	Н	H 3-R1 [159-160]
1a-230	CF: 3-C1	Br	H 3-R' [111-113]
Ia-231	CF₃ 3-C≡CH	H	H 3-R' CH. SO. H塩 [137-139]
[a-232	CF. 3-C≡CH	H	Cu(II) 编 ³ -3-R ^t (148-150)
la-233	CF₃ 3-C≡CH	H	H ' 3-R' HC1塩 [151-155]
1 a - 234	CF _s 5-C=NOCH _s l CH _s	H	H 3-R ¹ [150-151]
1a-235	CF ₈ 5-CH₂OH	H	H 3-R ¹ [151-152]

- Table 1-1 (continued) Α
- Compound No.
 Substitution site 1
- 2
- Physical constant (°C) 3
- 4
- HCl salt p-TsOH salt 5
- CH₃SO₃H salt 6
- (CO₂H)₂ salt
- 7 8 Cupric salt

$\langle \cdot \rangle$	
(A)	

$\langle \hat{i} \rangle$		表 1-1	1 (統	<u>¥</u>)	(2)	<u>B</u>
化合物No	R¹	Y	X	R²	置換位置	物理恒数 (℃) -
la-236	CF.	3, 5-Br:	H	H	3-R1	[141-143]
1a-237	CF:	3-C≡C-CH2OH	H	H 4) 3-R1	[134-135]
1a-238	CF:	3-C≡CH	H	Ni(II) 塩	3-R1	[163-165]
la-239	SCH.	3-C1	H	H	3-R 1	[107-108]
Ia-240	SOCH ₃	3- <u>C1</u>	. Н	.— H	3-R1 .	[134-135]
[a-241	SO2CH2	3-C1	H	H	3-R1	[159-161]
1a-242	CF.	3-4	H	H	3-R1	[118-119]
Ia-243	CF.	3-C≡C-Br	H	H	3-R1	[140-142]
la-244	CF.	3-CH=CHOCH ₃	H	H	3-R1	[167-168]
Ia-245	CPa	(cis) 3-CH=CHOCH:	. Н	H	3-R1	[129-130]
[a-246	OH	(trans) H	H	H (3-R1	[185-190]
18-247	CF.	5-CaHs	H	序(11) 稿	£ 3~R1	[250°Cup]
1a-248	OCH.	H	H	H	(j) 3-R1	[92-93]
la-249	CF.	5—	H	Cu(I) #	3-R'	[260°Cup]
1a-250	CF:	3—	H	Ni(I) #	₹(1) 3-K,	[185-187]
Ia-251	CF.	5—	H	Ni(II) #	= 3-R¹	[184-188]
Ia-252	CF.	3-0S0*CF*	H.	H	3-R1	[85-88]
1a-253	CF.	S-C _z H ₅	СНО	H	3-R1	[141-143]
la-254	· CF ₂	5-C2H5	H	Cu(I) \$		[250°Cup]
la-255	CF.	5-C2H5	H	Pe(II) 均	≝ 3-R¹	amorphous
. Ia-256	CN	3-01	H	H	\mathcal{A}^{3-R_1}	[204-205]
la-257	CH(OC ₂ H)	3)2 3-01	H	Ħ	3-R ¹	n p 1.5598

- Table 1-1 (continued) Α
- Compound No.
 Substitution site 1
- 2
- Physical constant (°C) 3
- 4
- Nickel(II) salt
 Manganese(II) salt 5
- 6 Cupric salt
- Nickel(II) salt Cuprous salt 7
- 8
- Iron(III) salt

	_		$\boldsymbol{\omega}$				
(Ď	裘	1-1 (8	(き)	2	3	
化合物№	R'	Y	Х	R ²	配換位置	物理恒效 _ (℃)	
1a-258	сн=Мон	3-C1	Н	н	3-R1	[214-216]	•
la-259	CH=NOCH.	3-C1	H	н	3-R1	[175-176]	
1a-260	(anti) CH=NOCH _s (syn)	3-C1	H 	Н .	3-R ¹	[163-164]	
1a-261	CF ₈	5-C ₈ H ₅	H	CH ₈ OCO- -Ph-4-0	3-R1		
la-262	CF _s	5-C2H3	H	COPh-4-CH	3-R1	٠	
la-263	CPs .	3-C1	Н	COPh-4-OCI	13 3-R1		
la-264	CF _B	3-C1	H	coph-3-cf	3-R ¹		•
1a-265	CFo	3-C1	H	COPh-4-OC	F ₈ 3-R ¹		
la-266	CF ₃	5-C8H8	H	COPh-4-NO	3-K ₁	·	
1a-267	CF ₃	3-C1	Н	CH2OCO- -Ph-4-	3-R1 CH ₃		
Ia-268	CF ₃	3-C1	H	CH2OCO- -Ph-4-	3-R1		
la-269	CF 8	3-C1	H	CH20CO- -Ph-3-	3-R1		
Ia-270	CF ₂	5-C2H5	н	CH ₂ OCO- -Ph-4-	OCF ₃		
1a-271	CF ₈	3-C1	Н	SO ₂ -Ph	3-R1	•	
1a-272	CF a	3-C1	Н	SO₂-Ph-4	-C1 3-R1		
1a-273	CF ₈	3-C1	H	SO2-Ph-4	-NO2 3-R1		
la-274	CF 2	S-C ₂ H ₅	Н	SO2-Ph-4-	OCHa 3-R		
1a-275	CF s	5-C2H3	H	\$02-Ph-3-	-CF, 3-R1		

- Table 1-1 (continued) Compound No. Substitution site Physical constant (°C)

0 (2) 裘 1-1(統含) 物理恒效 (℃) * 化合物Na R^a Y X R8 过换位置 18-276 SO₂-Ph-4-OCF₂ CF 8 5-C2H8 . H 3-R1 1a-277 CF a 5-NHCH_a H H 3-R1 1a-278 CF3 5-Ph-4-C1 H H 3-R1 1a-279 CF 2 5-Ph-4-CH2 H H 3-R1 H 1a-280 CF 8 5-Ph-4-OCH a H 3-R1 Ia-281 CFa 5-Ph-3-CF8 H H 3-R1 1a-282 CP2 5-Ph-4-OCF 8 H H 3-R1 18 - 283CF₈ 5-Ph-4-NO₂ H H 3-R1 la-284 CP a 5-CH2-Ph-4-C1 H H 3-81 1a - 285CP_a 5-CH2-Ph-4-CH3 H 3-81 H 1a-286 5-CH2-Ph-4-OCH2 3-R1 CF₃ H H Ia-287 CF 0 5-CH₈-Ph-3-CF₉ H H 3-R1 18 - 288CF8 5-CH₃-Ph-4-OCP₈ H H 3-R1 la-289 CF 8 5-CH₂-Ph-4-NO₂ H 3-R1 H la-290 CH 3-CHa H 3-R1 [238-239] H 1a-291 5-CHa CH H 3-R1 [244-246]H 1a-292 3-CaN7" H CN [127-128]H 3-R1 5-CoH7 -Ia-293 CN H H 3-R1 [120-122] Ia-294 CN H H 3-R1 [158-160] 18 - 295CN H H 3-R1 [176-177] 1a-296 3-Br H CN H 3-R1

H

H

3-R1

[128-129]

Ia-297

CF₈

- Table 1-1 (continued)
 Compound No.
 Substitution site Α
- 1
- 2
- 3. Physical constant (°C)

X R8 物理恒效 (℃) 化合物No R Y 四級位回 3-R1 [240-241] 5-C1 H H la-298 CN [235-238] 3-R1 H H Ia-299 CN 3-0CH₉ 1a-300 H 3-R1 CN 5-0CH₃ H [172-174] H 3-R' 3-CPs la-301 CN H 3-R1 CH 5-cp_s H 1a-302 H [227-228] 3-R1 CN 3-0CH 9-5-C1 Ia-303 H H 3-C1-5-OCH₂ H . 3-K1 1a - 304CN H 3-81 1a - 3055-0CN H H CF 8 3-R1 [233-234] 1a-306 CSNH2 3-C1 H H H 3-8: Ia-307 CSNH₂ 5-C1 H

- Table 1-1 (continued) Compound No. Substitution site Physical constant (°C) Α
- 1
- 2
- 3

寒 1-2

$$\begin{array}{cccc}
R^{1} & X \\
N & Ar
\end{array} (1b)$$

$$\begin{array}{cccc}
R^{2} & C
\end{array}$$

(1) 物理恒致 R2 口換位匠 X 化合物地 R1 Ar [134-135] 3-R1 H H 1b-1 CF 2 [164-166] 3-R1 H CF a 1b-2H 飼(II)塩 3-R' >250 16-3 CF 3 [193-194] 3-R1 H H $\text{CF}_{\,8}$ 1b-4 3-R1 H H CF 9 1b-5 3-R1 H CF o 16-6 3-R1 H CF 9 1b-7 3-R1 CF 9 H H 1b-8

- Table 1-2 Α
- 1
- 2
- Compound No.
 Substitution site
 Physical constant (°C) 3
- Cupric salt 4

1-2 (つづき) 化合物的 R8 Ar 置換位置 物理恒效 Rt CHs 3-R1 CF_a 16-9 H H CHs OCH₂ CF 8 1b-10 H 3-R1 1b-11 3-R1 CF 8 H CHa lb-12 H H [175-177] CF s 3-R1 1b-13 H H CF3 3-R1 CHa Ib-14 CF3 3-R1 H H Ib-15 CF_s H H 3-R1 OCH₃ Ib-16 OCH: Н H CF s 3-R1 [222-224]

- Α
- 1
- 2
- Table 1-2 (continued)
 Compound No.
 Substitution site
 Physical constant (°C) 3

\mathcal{O}		表 1-	(A)) つづき)	(Z)	3
化合物Na	R1	Ar	X	R ²	置換位置	物理恒数
Ib-17	CF3	→N C1	Н	H	. 3-R¹	
16-18	CF.	$-\langle N \rangle c F_s$	H	н	3-R1	
1b-19	CF ₃	CI N CI	Н	H	3-R1	
1b-20	CF _a	$- \bigvee_{N}^{N} CF_{3}$	н	H	3-R1	·
Ib-21	CF ₈	S CF.	H	Н	3-R 1	·
Ib-22	CP ₃	S OCH.	H	н	3-R ·	•
1b-23	CN	$\prec_{N}^{N} \bigcirc$	Н	H	3-R1	
Ib-24	CN	S	H	H	3-R1	
Ib-25	CF ₃	$\overline{\langle O_N \rangle}$	H	H	3-R1	

- Table 1-2 (continued)
 Compound No.
 Substitution site Α
- 1
- 2
- Physical constant (°C) 3

Because the compounds of the present invention have an excellent bacetericidal effect against a wide range of filimentous bacteria, they can be used to prevent diseases that occur in the cultivation of agricultural or horticultural plants, including flowering plants and grasses, etc. Examples of diseases the compounds of the present invention can control include the following:

Rice Pyricularia oryzae

Rhizoctonia solani Gibberella fujikuroi

Cochliobolus miyabeanus

Barley Ustilago nuda

Wheat

Grape

Gibberella zeae Puccinia recondita

Pseudocercosporella herpotrichoides

Leptosphaeria nodorum

Erysiphe graminis f. sp. tritici

Micronectriella nivalis

Potato Phytophthora infestans

Peanut Mycosphaerella arachidis

Sugar beet Cercospora beticola
Cucumber Sphaerotheca fuliginea

Sclerotinia sclerotiorum

Botrytis cinerea

Pseudoperonospora cubensis

Tomato Cladosporium fulvum

Phytophthora infestans

Eggplant Corynespora melongenae

Onion Botrytis allii

Strawberry Sohaerotheca humuli

Apple Podosphaera leucotricha

Venturia inaequalis

Monilinia mali

Persimmon Gloeosporium kaki
Peach Monilinia fructicola

Uncinula necator

Plasmopara viticola

Japanese pear Gymnosporangium asiaticum

Alternaria kikuchiana

Tea

Pestalotia theae

Colletotrichum theae-sinensis

Citrus fruit

Elisinoe fawcetti

Pennisillium italicum

Western camellia

Sclerotinia borealis

Recently, it has been discovered that various pathogenic bacteria have developed resistance to benzimidazoles, dicarboximides and acylalanine agents. As a result, the effect of these drugs becomes insufficient, and there is a demand for an agent that is effective against resistant types of pathogenic bacteria. Even with sensitive strains, the compounds of the present invention are agents which have an excellent bactericidal effect even against pathogenic bacterial strains that were resistant to benzimidazoles, dicarboximides and acylalanine agents.

Preferred examples of diseases for which the present invention can be applied include Venturia inaequalis (apple), Erysiphe graminis f. sp. tritici (wheat), Botrytis cinerea (cucumber), Plasmopara viticola (grape), etc.

The compounds of the present invention can also be used as antipollution agents for preventing water-borne microorganisms from adhering to objects that contact the water, such as ships, fish nets, etc.

Moreover, by blending the compounds of the present invention with coatings, fibers, etc., they can be used as antifungal and protective agents for walls and bathtubs as well as shoes and clothing.

Some of the compounds of the present invention display insectidal, miticidal, and herbicidal activities.

Bactericides

The compounds of the present invention produced in this way can be actually used in pure form without the addition of any other component. In addition, when used as agricultural chemicals, which is an object of the present invention, the compounds of the present invention can also be used in a form in which agricultural chemicals are generally used, for example, in the form of a wettable powder, granules, powder, emulsion, water-soluble agent, suspension, a flowable agent, etc. Examples of solid agents that can be used as additives or carriers include vegetable powders such as soy powder, wheat powder, etc.; mineral fine powders such as diatomaceous earth, apatite, gypsum, talc, bentonite, pyrophyllite, clay, etc.; and organic and inorganic compounds such as benzoate soda, urea, Glauber's salt, etc. When used in liquid form, solvents that can be used include petroleum fractions such as kerosene, xylene, solvent naphtha,

etc.; and cyclohexane, cyclohexanone, dimethylformamide, dimethyl sulfoxide, alcohol, acetone, trichloroethylene, methyl isobutyl ketone, mineral oil, vegetable oil, water, etc. Surfactants can be added to these preparations if necessary to provide uniformity and stability to the form.

Such wettable powders, emulsions, and flowable agent can be diluted to a specific concentration with water to create a suspension or emulsion. The powders and granules can be used as is by spreading them on the plants.

Moreover, although the compounds of the present invention display sufficient effect by themselves, they can also be used in combination with one or more other types of bactericide, insecticide, miticide, or agents with combined effects.

Substances that can be mixed with the compounds of the present invention to create bactericides, insecticides, miticides, nematocides, or plant growth regulators are listed below.

Bactericides:

Copper fungicides:

Basic copper chloride, basic copper sulfide, etc.

Sulfur agents:

Thiuram, maneb, mancozeb, polycarbamate, propineb, ziram, and zineb, etc.; Polyhaloalkylthio agents:

Captan, dichlofluanid, folpet, etc.

Organochlorine agents:

Chlorothalonil, Fusalide, etc.

Organophosphorus agents:

IBP, EDDP, tolclofos methyl, pyrazophos, fosetyl, etc.

Benzimidazole agents:

Thiophanate-methyl, benomyl, carbendazim, thiabendazole, etc.

Dicarboximide agents:

Iprodione, vinclozolin, procymidone, fluorimide, etc.

Carboxamide agents:

Oxycarboxin, mepronil, flutolanil, teclofutram*, triclamide, pencycuron, etc. Acylalanine agents:

Metalaxyl, oxadixyl, furalaxyl, etc.

^{*} [Editor's note: An asterisk indicates a transliteration.]

SBI agents:

Triadimefon, triadimenol, Bitertanol, myclobutanyl, hexaconazole, Propiconazole, triflumizole, prochloraz, peflazoate*, Fenarimol, pyrifenox, triforine, flusilazole, etaconazole, diclobutrazol, fluotrimazol*, flutriafen*, penconazol, diniconazole, cyproconazole, imazalil, tridemorph, fenpropimorph, buthiobat, etc.

Antibiotics:

Polyoxin, blasticidin S, casgamycin*, validamycin, dihydrostreptomycin sulfate, etc.

Other:

Propamocarb hydrochloride, Quintozene, hydroxyisooxazole, methasulfocarb, anilazine, isoprothiolane, probenazole, chinomethionate, dithianon, dinocap, dichlomezin, mepanipyrim*, felimuzon*, fluazinam, pyroquilon, tricyclazole, oxolinic* acid, dithianon [sic], iminokutadine* acetate, cymoxanil, pyrolnithrin*, methasulfocarb [sic], diethofencarb, binapacryl, lecithin, sodium bicarbonate, fenaminosulf, dodine, dimethomorph, fenadine oxide, etc.

Insecticide and miticides:

Organophosphorus and carbamate insecticides:

Fenthion, fenitrothion, diazinon, chlorpyriphos, ESP, vamidithion, phenthoate, dimethoate, formothion, marathon, trichlorfon, thiometon, Phosmet, dichloros, acephate, EPBP, methyl parathion, oxydemeton-methyl, ethion, salithion, cyanophos, isoquisathion, pyridaphenthion, phosalone, methidathion, sulprofos, chlorfenvinphos, tetrachlorvinphos, diethylvinphos, propaphos, isofenphos, ethylthiometon*, profenfos, pyraclofos, monocrotophos, azinphos methyl, aldicarb, methomyl, thiodicarb, carbofuran, carbosulfan, benfuracarb, furathiocarb, Propoxur, BPMC, MTMC, MIPC, carbaryl, pirimicarb, ethiofencarb, phenoxycarb, etc.

Pyrethroid insecticides:

Permethrine, cypermethrin, deltamethrin, fenvalerate, Fenpropathrin, pyrethrin, allethrin, tetramethrin, resmethrin, simetryn, propathrin, phenothrin, protrin, fluvalinate, cyfluthrin, cyhalothrin, flucythrinate, ethofenprox, cycloprothrin, tralomethrin, silafluofen, brofenprox*, acrynathli*, etc.

Benzourea and other insecticides:

Diflubenzuron, chlorfurazon*, hexaflumalon, trilumalon, tetrabenzuron, flucycloxuron, buprofezin, pyriproxyfine*, methoprene, cartap, thicyclam, bensultap, benzpin*, thiafenthiuron*, acetamprid*, nitenpiram*, imidacloprid, fepronil*, nicotine sulfate, rotenone, metaldehyde, machine oil, BT and microbiological agricultural chemicals such as entopathological viruses, etc.

Nematocides:

Fenamiphos, phosthiazate*, etc.

Miticides:

Chlorobenzilate, fenisobromolate*, Dicofol, amitraz, BPPS, benzomate*, hexythiazox, fenbutatin oxide, polynaktin, chinomethionate, CPCBS, tetradifon, abamectin, milbemectin*, clofentezine, cyhexatin, pyridaben*, fenpyroximate*, tebufenpyrad*, pirimidifen*, fenthiocarb, dienochlor*, etc.

Plant growth regulators:

Divalerins (for example, divalerin A3, divalerin A4, divalerin A7) IAA, NAA.

Application examples

Bactericides

A few application examples of compositions of the present invention are put forth below. The additives and percentages added are not limited to those noted in the application examples, and are widely modifiable.

The term "parts" in the application examples is used to indicate "parts by weight."

<u>Application Example 10</u> Wettable powder

Compound of the present invention	40 parts
Diatomaceous earth	53 parts
Higher alcohol sulfuric ester	4 parts
Alkyl naphthalene sulfonate	3 parts

A wettable powder containing 40% active ingredient is obtained by uniformly mixing and pulverizing the above.

Application Example 11 Emulsion

Compound of the present invention	30 parts
Xylene	33 parts
Dimethylformamide	30 parts
Polyoxyethylene alkylaryl ether	7 parts

An emulsion containing 30% active ingredient is obtained by mixing and dissolving the above.

Application Example 12 Suspension

Compound of the present invention	10 parts
Sodium lignosulfonate	4 part
Sodium dodecylbenzenesulfonate	1 part
Xantham gum	0.2 parts
Water	84.8 parts

A suspension containing 10% active ingredients is obtained by mixing the above and wet pulverizing to a granularity of 1 μm or less.

Effect of the Invention

Test examples are offered below in which the compounds of the present invention are used as the active ingredients in agents for controlling various plant diseases. The controlling effect was calculated by macroscopic observation of the degree of growth of the diseased spots and fungus apparent on the leaves and roots, etc., during inspections.

Test Example 1 Control test of apple (Venturia inaequalis)

An emulsion of a compound of the present invention was scattered at a concentration of 200 ppm of active ingredient on apple seedlings cultivated in an unglazed pot (cultivar: "Kokubei," at 3-4 leaves). After scattering, it was allowed to dry naturally at room temperature, condia of apple *Venturia inaequalis* were sown, and kept for 2 weeks in a room at a constant temperature (20°C) and high humidity in which light and darkness was repeatedly alternated every 12 h. The condition of disease spots on the leaves was inspected and compared to untreated plants to calculate the controlling effect of the agent. The results showed that the compounds noted below had an excellent controlling effect of at least 75%.

Test Example 2 Control test of wheat (Erysiphe graminis f. sp. tritici)

An emulsion of a compound of the present invention was scattered at a concentration of 200 ppm of active ingredient on wheat seedlings cultivated in an unglazed pot (cultivar: "Chihoku," at 0.1 to 1.2 leaves). After scattering, it was allowed to dry naturally at room temperature, condia of wheat *Erysiphe graminia f. sp. tritici* were sown, and kept for 7 days in a 22-25°C room. The condition of disease spots on the leaves was inspected and compared to untreated plants to calculate the controlling effect of the agent. The results showed that the compounds noted below had an excellent controlling effect of at least 75%.

Test Example 3 Control test of cucumber (Botrytis cinerea)

An emulsion of a compound of the present invention was scattered at a concentration of 200 ppm of active ingredient on cucumber seedlings cultivated in an unglazed pot (cultivar:

"Sagami Semi-white"). After scattering, it was allowed to dry naturally at room temperature, a suspension of condia of cucumber *Botrytis cinerea* was added dropwise onto and sown [sic] on the cucumber leaves, and kept for 4 days in a room in complete darkness at a constant temperature (20°C) and high humidity. The condition of disease spots on the leaves was inspected and compared to untreated plants to calculate the controlling effect of the agent. The results showed that the compounds noted below had an excellent controlling effect of at least 75%.

```
I a - 1 . 2 . 1 3 . 1 4 . 1 5 . 1 7 . 2 0 . 2 1 . 2 2 . 2 3 . 2 4 . 2
5 . 2 8 . 2 9 . 3 2 . 3 3 . 3 4 . 3 5 . 3 6 . 3 7 . 3 8 . 3 9 . 4 0 . 4
1 . 4 2 . 4 3 . 4 5 . 4 6 . 4 7 . 4 8 . 5 0 . 6 0 . 6 1 . 6 3 . 8 6 . 8
7 . 9 4 . 9 5 . 9 6 . 9 8 . 9 9 . 1 1 6 . 1 1 7 . 1 1 8 . 1 1 9 . 1 2 0
. 1 2 4 . 1 2 5 . 1 3 0 . 1 3 6 . 1 3 8 . 1 3 9 . 1 5 5 . 1 5 6 . 1 5 7
. 1 5 8 . 1 5 9 . 1 6 0 . 1 6 4 . 1 6 5 . 1 6 6 . 1 6 7 . 1 6 8 . 1 7 0
. 1 7 1 . 1 7 2 . 1 7 3 . 1 7 4 . 1 7 6 . 1 7 7 . 1 7 8 . 2 1 8 . 2 2 2
. 2 2 3 . 2 2 4 . 2 2 5 . 2 2 6 . 2 2 7 . 2 2 8 . 2 3 1 . 2 3 2 . 2 3 3
. 2 3 6 . 2 3 8 . 2 3 9 . 2 4 2 . 2 4 3 . 2 4 4 . 2 4 5 . 2 4 6 . 2 4 7
. 2 5 0 . 2 5 1
I b - 2 . 4
```

<u>Test Example 4</u> Control test of cucumber (*Pseudoperonospora cubensis*)

An emulsion of a compound of the present invention was scattered at a concentration of 200 ppm of active ingredient on cucumber seedlings cultivated in an unglazed pot (cultivar: "Sagami Semi-white"). After scattering, it was allowed to dry naturally at room temperature, a suspension of condia of cucumber *Pseudoperonospora cubensis* was sprayed onto and sown on the cucumbers, and kept for 4 days in a room at a constant temperature (25°C) and dry humidity in which light and darkness was repeatedly alternated every 12 h. The condition of disease spots on the leaves was inspected and compared to untreated plants to calculate the controlling effect of the agent. The results showed that the compounds noted below had an excellent controlling effect of at least 75%.

1 a - 2 . 4 . 1 7 . 2 0 . 2 1 . 2 4 . 3 2 . 3 7 . 3 9 . 4 1 . 4 2 . 4
3 . 4 5 . 4 7 . 1 1 8 . 1 2 0 . 1 3 6 . 1 3 8 . 1 3 9 . 1 5 7 . 1 7 0 .
2 3 6 . 2 4 3

Test Example 5 Control test of grape (Plasmopara viticola)

The leaves of field-cultivated grapes (cultivar: "Kohairo," 3 years old) were punched into 30 mm diameter disks, which were then immersed in a liquid containing an emulsion of a compound of the present invention at a concentration of 200 ppm of active ingredient. After immersion, it was allowed to dry naturally at room temperature, and a suspension of zoospores of grape *Plasmopara viticol* was sprayed on and sown, and kept for 10 days in a room at a constant temperature (20°C) under lighted conditions. The condition of disease spots on the leaves was inspected and compared to untreated plants to calculate the controlling effect of the agent. The results showed that the compounds noted below had an excellent controlling effect of at least 75%.

 1 a - 1.
 1 1 1.
 1 3.
 2 0.
 2 1.
 2 3.
 2 4.
 2 9.
 3 1.
 3 2.
 3 3.

 3 5.
 3 7.
 3 9.
 4 1.
 4 2.
 4 6.
 4 7.
 5 0.
 8 6.
 8 7.
 9 6.
 1 1 8

 . 1 1 9.
 1 2 0.
 1 3 0.
 1 3 6.
 1 3 8.
 1 3 9.
 1 5 5.
 1 5 6.
 1 5 7

 . 1 5 9.
 1 6 0.
 1 7 0.
 1 7 1.
 1 7 6.
 2 3 0.
 2 3 6.
 2 4 3.
 2 4 5

 . 2 5 1.
 2 5 3

Claims

1. Pyrazole compounds or salts thereof represented by general formula (I-1) (excluding cases wherein R¹ represents CF₃, Ar represents 2-pyridyl, and X and R² are both hydrogen atoms):

$$\begin{array}{c|c}
R^{1} \\
X \\
N \\
N \\
A \\
R^{2}
\end{array}$$
(1-1)

(where R¹ represents a C₁₋₆ haloalkyl group, a C₁₋₆ alkoxycarbonyl group, a carboxy group, a cyano group, a C₁₋₆ alkylthio group, a C₁₋₆ alkylsulfinyl group, a C₁₋₆ alkylsulfonyl, C₁₋₆ alkoxy group, a C₁₋₆ alkoxyiminomethyl group, a C₁₋₆ alkoxymethyl group, an amino group, or a carbamoyl group;

R² represents a hydrogen atom, a heavy metal atom, a C₁₋₆ alkoxy C₁₋₆ alkyl group, a C₁₋₆ alkylcarbonyloxymethyl group, a C₁₋₆ alkylthiomethyl group, a C₁₋₆ alkylsulfinylmethyl group, a C₁₋₆ alkylsulfonylmethyl group, a benzoyl group optionally substituted with a (halogen atom, C₁₋₆ [C₁₋₄] alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group), a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkoxycarbonyl group, a C₁₋₆ alkylsulfonyl group, a benzoyloxymethyl group optionally substituted with a (halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group), a C₁₋₆ alkoxycarbonyloxymethyl group, a phenylsulfonyl group optionally substituted with a (halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, or a nitro group), an N-C₁₋₆ alkyl-N-C₁₋₆ alkylcarbonylaminomethyl group, or an N,N-di C₁₋₆ alkylthiocarbamoylthiomethyl group;

X represents a hydrogen atom, a halogen atom, a nitro group, amino group, formyl group, or a C₁₋₆ alkyl group;

Ar represents a 2-pyridyl group optionally substituted (with a hydrogen atom; a C₁₋₆ alkyl group (optionally substituted with a halogen atom, C₁₋₆ alkoxy group, hydroxy group, C₁₋₆ alkylsulfonyl group, cyano group, hydroxyimino group, C₁₋₆ alkoxyimino group, C₁₋₆ alkoxycarbonylhydrazino group, C₁₋₆ alkoxycarbonyl group, or C₁₋₄ alkoxy C₁₋₄ alkoxy group); C₂₋₆ alkenyl group (optionally substituted with a halogen atom, cyano group, C₁₋₆ alkoxycarbonyl group, or C₁₋₆ alkoxy group); a C₂₋₆ alkynyl group (optionally substituted with a halogen atom, a trimethylsilyl group, a hydroxy group, or a C₁₋₆ alkoxy group); a mono C₁₋₃ alkylamino group; a di C₁₋₃ alkylamino group; an amino group; a C₁₋₆ alkylthio group optionally substituted with a halogen atom; a C₁₋₆ alkylsulfinyl

group; a C₁₋₆ alkoxycarbonyl group; a C₃₋₆ cycloalkyl group, C₁₋₆ alkylcarbonyl group, cyanate group, thiocyanate group; a C₁₋₆ alkoxy group optionally substituted with a halogen atom; a benzyloxy group; hydroxy group; C₁₋₆ alkycarbonyloxy group, C₁₋₆ alkycarbamoyloxy group, C₁₋₆ haloalkylsulfonyloxy group; a 1-2-epoxy C₂₋₆ alkyl group, nitro group; a phenyl group (optionally substituted with a halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, C₁₋₆ haloalkyl group, C₁₋₆ haloalkoxy group, or nitro group); or a benzyl group (optionally substituted with a halogen atom, a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group)); a 2-pyrimidinyl group (optionally substituted with a halogen atom, C₁₋₆ alkoxy group, C₁₋₆ haloalkyl group); a 2-pyrazinyl group (optionally substituted with a halogen atom, C₁₋₆ alkoxy group, C₁₋₆ alkoxy group, C₁₋₆ haloalkyl group); or a 2-thiazolyl group (optionally substituted with a halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, C₁₋₆ haloalkyl group); or a 2-thiazolyl group (optionally substituted with a halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, C₁₋₆ haloalkyl group).

2. A method for manufacturing a pyrazole compound expressed by formula (I-3):

(where R¹' represents a C₁₋₆ haloalkyl group, a C₁₋₆ alkoxycarbonyl group, or a C₁₋₆ alkoxymethyl group; X' represents a hydrogen atom or a C₁₋₆ alkyl group, and Ar has the same meaning described above), which is characterized in that hydrazine is reacted with a β-diketone represented by formula (II):

$$R_{I,-} = C_{CHCV} = 0$$

$$X_{I}$$

(where R1', X' and Ar have the same meanings described above).

3. A method for manufacturing a pyrazole compound expressed by formula (I-9):

$$\begin{array}{c}
R \\
N \\
N \\
R \\
R \\
R
\end{array}$$
(1-9)

(where R¹ X, and Ar have the same meanings described above, and R² represents a C₁-6 alkoxy C₁-6 alkyl group, a C₁-6 alkylcarbonyloxymethyl group, a C₁-6 alkylthiomethyl group, a C₁-6 alkylsulfonylmethyl group, a benzoyl group optionally substituted with a (halogen atom, C₁-6 alkyl group, C₁-6 alkoxy group, a C₁-6 haloalkyl group, C₁-6 haloalkoxy group, or a nitro group), a C₁-6 alkylcarbonyl group, a C₁-6 alkoxycarbonyl group, a C₁-6 alkylsulfonyl group, a benzoyloxymethyl group optionally substituted with a (halogen atom, C₁-6 alkyl group, C₁-6 alkoxy group, a C₁-6 haloalkyl group, C₁-6 haloalkoxy group, or a nitro group), a C₁-6 alkoxycarbonyloxymethyl group, a phenylsulfonyl group optionally substituted with a (halogen atom, C₁-6 alkyl group, C₁-6 alkoxy group, a C₁-6 haloalkoxy group, or a nitro group), an N-C₁-6 alkyl-N-C₁-6 alkylcarbonylaminomethyl group, or a N,N-di C₁-6 alkylthiocarbamoylthiomethyl group)

which is characterized by reacting a compound expressed by formula (IV)

$$R^{2}V$$
 (IV)

(where R² has the same meanings described above, and V represents a halogen atom);

and a compound expressed by formula (I-5):

$$\begin{array}{c|c}
R & X \\
N & A r
\end{array}$$

(where R1, Ar, and X have the same meanings described above).

4. A method for manufacturing a pyrazole compound expressed by formula (I-12):

(where X and Ar have the same meanings described above);

which is characterized in that a hydroxyamine is reacted with a compound expressed by the formula (I-10):

the formula (I-10): (R' O)
$$_{2}$$
 CH $_{N}$ $_{N}$ $_{A}$ $_{r}$ (I-10)

(where X and Ar have the same meanings described above, and R' " represents a C₁₋₆ alkyl group);

and reacting the compound created that can be expressed by the formula (I-11):

$$H O N = C H$$
 N
 $A r$
 $(1-11)$

(where X and Ar have the same meanings described above) with an acid anhydride.

5. An agrohorticultural bactericide containing, as an effective ingredient, 1 or 2 or more of the pyrazole compounds or salts thereof expressed by formula (I-2):

$$\begin{array}{c|c}
R & \\
X \\
X \\
A & \\
R & \\
\end{array}$$
(1 - 2)

(where R¹ represents a C₁₋₆ haloalkyl group, a C₁₋₆ alkoxycarbonyl group, a carboxy group, a cyano group, a C₁₋₆ alkylthio group, a C₁₋₆ alkylsulfinyl group, a hydroxy group, a hydroxyiminomethyl group, a C₁₋₆ alkoxyiminomethyl group, a C₁₋₆ di-alkoxymethyl group, a C₁₋₆ alkoxy group, a thiocarbamoyl group, a C₁₋₆ alkylsulfonyl group, an amino group, or a carbamoyl group;

R² represents a hydrogen atom, a heavy metal atom, a C₁₋₆ alkoxy C₁₋₆ alkyl group, a C₁₋₆ alkylcarbonyloxymethyl group, a C₁₋₆ alkylthiomethyl group, a C₁₋₆ alkylsulfinylmethyl group, a C₁₋₆ alkylsulfonylmethyl group, a benzoyl group optionally substituted with a (halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group), a C₁₋₆ alkylcarbonyl group, a C₁₋₆ alkoxycarbonyl group, a C₁₋₆ alkylsulfonyl group, a benzoyloxymethyl group optionally substituted with a (halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group), a C₁₋₆ alkoxycarbonyloxymethyl group, a phenylsulfonyl group optionally substituted with a (halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, a C₁₋₆ haloalkyl group, a C₁₋₆ haloalkoxy group, or a nitro group), an N-C₁₋₆ alkyl-N-C₁₋₆ alkylcarbonylaminomethyl group, or a N,N-di C₁₋₆ alkylthiocarbamoylthiomethyl group;

X represents a hydrogen atom, a halogen atom, a nitro group, amino group, formyl group, or a C₁₋₆ alkyl group;

Ar represents a 2-pyridyl group optionally substituted with (a hydrogen atom; a C₁₋₆ alkyl group (optionally substituted with a halogen atom, C₁₋₆ alkoxy group, hydroxy group, C₁₋₆ alkylsulfonyl group, cyano group, hydroxyimino group, C₁₋₆ alkoxyimino group, C₁₋₆ alkoxycarbonylhydrazino group, C₁₋₆ alkoxycarbonyl group, or C₁₋₄ alkoxy C₁₋₄ alkoxy group); C₂₋₆ alkenyl group (optionally substituted with a halogen atom, cyano group, C₁₋₆

alkoxycarbonyl group, or C₁₋₄ alkoxy group); a C₂₋₆ alkynyl group (optionally substituted with a halogen atom, a C₁₋₄ alkoxy group, a hydroxy group, or a trimethylsilyl group); a mono C₁₋₃ alkylamino group; a di C₁₋₃ alkoxyamino group; an amino group; a C₁₋₆ alkylthio group optionally substituted with a halogen atom; a C₁₋₆ alkylsulfinyl group; a C₁₋₆ alkylsulfonyl group; a C₁₋₆ alkoxycarbonyl group; a C₃₋₆ cycloalkyl group, C₁₋₆ alkylcarbonyl group, cyanate group, thiocyanate group; a C₁₋₆ alkoxy group optionally substituted with a halogen atom; a benzyloxy group; hydroxy group; a C₁₋₆ alkylcarbonyloxy group, a C₁₋₆ alkylcarbamoyloxy group, C₁₋₆ haloalkylsulfonyloxy group; a 1-2-epoxy C₂₋₆ alkyl group, nitro group; a phenyl group (optionally substituted with a halogen atom, C₁₋₆ alkyl group, or nitro group); or a benzyl group or cyano group (optionally substituted with a halogen atom, a C₁₋₆ alkyl group, a C₁₋₆ alkoxy group, or a nitro group)); a 2-pyrimidinyl group (optionally substituted with a halogen atom, C₁₋₆ alkoxy group, or C₁₋₆ haloalkyl group); a 2-pyrazinyl group (optionally substituted with a halogen atom, C₁₋₆ alkyl group, C₁₋₆ alkoxy group, C₁₋₆