Core Tile

HBI-0131(CT926EJ-S and CT1136JF-S) HBI-0141 (CT7TDMI and CT7TDMI-S)

User Guide

Core Tile User Guide

Copyright © 2004-2011 ARM Limited. All rights reserved.

Release Information

Description	Issue	Confidentiality	Change
October 2004	A	Non-Confidential	First release (ARM926EJ-S and ARM1136JF-S versions)
February 2005	В	Non-Confidential	Second release (includes ARM7TDMI and ARM7TDMI-S)
August 2006	С	Non-Confidential	Third release updated to fix various documentation defects
May 2007	D	Non-Confidential	Fourth release updated to fix various documentation defects
October 2007	Е	Non-Confidential	Fifth release updated to fix a documentation defect
January 2009	F	Non-Confidential	Sixth release updated to fix a documentation defect
June 2011	G	Non-Confidential	Seventh release updated to fix a documentation defect

Proprietary Notice

Words and logos marked with® or ™ are registered trademarks or trademarks of ARM Limited in the EU and other countries, except as otherwise stated below in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior written permission of the copyright holder.

The product described in this document is subject to continuous developments and improvements. All particulars of the product and its use contained in this document are given by ARM Limited in good faith. However, all warranties implied or expressed, including but not limited to implied warranties of merchantability, or fitness for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable for any loss or damage arising from the use of any information in this document, or any error or omission in such information, or any incorrect use of the product.

Confidentiality Status

This document is Non-Confidential. The right to use, copy and disclose this document may be subject to license restrictions in accordance with the terms of the agreement entered into by ARM and the party that ARM delivered this document to.

Unrestricted Access is an ARM internal classification.

Product Status

The information in this document is final, that is for a developed product.

Web Address

http://www.arm.com

Conformance Notices

This section contains conformance notices.

Federal Communications Commission Notice

This device is test equipment and consequently is exempt from part 15 of the FCC Rules under section 15.103 (c).

CE Declaration of Conformity

The system should be powered down when not in use.

The Core Tile generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures:

- ensure attached cables do not lie across the card
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- · connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- consult the dealer or an experienced radio/TV technician for help

Note
It is recommended that wherever possible shielded interface cables be used.

Contents Core Tile User Guide

	Pref		
		About this document	
		Feedback	xx
Part A	Intr	oduction	
Chapter 1	Intro	oduction	
-	1.1	About the Core Tiles	1-2
	1.2	Overview of Core Tiles	
	1.3	Precautions	1-10
Chapter 2	Gett	ing Started	
-	2.1	Using the Core Tile with an Interface Module	2-2
	2.2	Using the Core Tile with an Integrator Compact Platform baseboard	
	2.3	Using the Core Tile with a Versatile Baseboard	2-6
	2.4	Using the Core Tile with a custom baseboard	2-8
	2.5	Connecting power	2-9
	2.6	Connecting RealView ICE or Multi-ICE	2-12
	2.7	Connecting Trace	

Part B

	CT ¹	1136JF-S)	
Chapter 3	нві-	-0131 Hardware Description	
•	3.1	Core Tile architecture	3-3
	3.2	ARM microprocessor test chip	
	3.3	Core Tile memory	3-8
	3.4	Clocks	3-10
	3.5	Power supply control	3-17
	3.6	Control of AHB data bus and HDRZ signals	3-26
	3.7	Overview of Core Tile configuration	3-29
	3.8	JTAG support	
	3.9	Embedded Trace support	3-47
Chapter 4	нві-	0131 Features specific to the CT926EJ-S	
•	4.1	ARM926EJ-S test chip characteristics	4-2
	4.2	Clocks	
	4.3	Memory map	
	4.4	Voltage control	4-7
Chapter 5	нві-	0131 Features specific to the CT1136JF-S	
•	5.1	ARM1136JF-S test chip characteristics	5-2
	5.2	Clocks	
	5.3	AHB memory map	
	5.4	Vectored Interrupt Controller (VIC) block	5-22
	5.5	Voltage control	5-23
Chapter 6	нві-	0131 Signal Descriptions	
•	6.1	Header connectors	6-2
	6.2	Memory expansion connector pinout	
	6.3	Trace Port connectors	
	6.4	Links and test points	6-30
	6.5	AHB bus timing specification	6-37
Part C		nted Circuit Board HBI-0141 (CT7TDMI a 7TDMI-S)	nd
Chapter 7	HBI-	0141 Hardware Description	
3p	7.1	Core Tile architecture	7-9
	7.2	ARM microprocessor test chip	
	7.3	Core Tile memory	
	7.4	Clocks	
	7.5	Power supply control	
	7.6	Isolation and foldover of header signals	
			/ _\

Printed Circuit Board HBI-0131 (CT926EJ-S and

	7.7 7.8	Overview of Core Tile configuration		
Chapter 8	HBI-	0141 Signal Descriptions		
	8.1	Header connectors	8-2	
	8.2	Memory expansion connector pinout	8-21	
	8.3	Links and test points	8-22	
Appendix A	Static Memory Expansion Board			
	A.1	About memory expansion	A-2	
	A.2	Fitting a memory board		
	A.3	EEPROM contents	A-5	
	A.4	Connector pinout	A-10	
	A.5	Mechanical layout	A-14	
Appendix B	Spec	cifications		
	B.1	Electrical specification	B-2	
	B.2	Mechanical details		
	Glos	ssary		

Contents

List of Tables Core Tile User Guide

		ii
Table 1-1	Product combinations with Core Tile	1-2
Table 3-1	Test chip signals	3-4
Table 3-2	Memory size configuration	3-8
Table 3-3	CLKSEL[5:0] signals and HCLKIN source	3-14
Table 3-4	CLKSEL[5:0] signals and REFCLK source	3-14
Table 3-5	Clock-related signals on Core Tile	3-15
Table 3-6	Data bus switch function	3-26
Table 3-7	PLD control signals	3-31
Table 3-8	PLD configuration signals	3-31
Table 3-9	Power-on configuration signals by clock cycle	3-33
Table 3-10	Run configuration signals by clock cycle	3-35
Table 3-11	Configuration signals on header connectors	3-37
Table 3-12	JTAG signal description	3-40
Table 4-1	Supply voltage connections	4-7
Table 5-1	Clock Generator Control Register	5-5
Table 5-2	AHB interfaces	5-8
Table 5-3	Test chip address map	5-10
Table 5-4	External control inputs	5-11
Table 5-5	AHB slaves	5-14
Table 5-6	ARM1136JF-S AHBPCAPT Slave Registers	5-15
Table 5-7	Pin Capture Register bit allocation	5-16
Table 5-8	Test Chip Memory Size Register	5-16

Table 5-9	Valid test chip RAM sizes	5-17
Table 5-10	Contents of each AHB Port Register	5-17
Table 5-11	Test Chip Control Register	5-18
Table 5-12	ETM11RV Pin Capture1 Register	5-18
Table 5-13	ETM11RV Pin Capture2 Register	5-18
Table 5-14	ETM11RV Pin Capture3 Register	5-19
Table 5-15	ETM11RV Pin Control1 Register	
Table 5-16	ETM11RV Pin Control2 Register	5-19
Table 5-17	ETM11RV Pin Control3 Register	5-19
Table 5-18	ETM11RV Pin Control4 Register	5-20
Table 5-19	EtmInputSel[1:0] encoding	5-20
Table 5-20	EtmInputSel[3:2] encoding	
Table 5-21	EtmInputSel[5:4]	5-21
Table 5-22	Configuration Register	5-21
Table 5-23	Test chip interrupt routing	5-22
Table 5-24	Supply voltage connections	5-23
Table 6-1	Samtec part numbers	. 6-3
Table 6-2	Signal differences between CT926EJ-S and 1136JF-S	. 6-4
Table 6-3	HDRX signals	
Table 6-4	HDRY signals	. 6-8
Table 6-5	HDRZ signals	
Table 6-6	Z memory connector signals	6-21
Table 6-7	Y memory connector signals	6-23
Table 6-8	Trace connector A J9	
Table 6-9	Trace connector B J10	
Table 6-10	Link function	6-32
Table 6-11	JTAG links	6-32
Table 6-12	Clock signal resistor links	6-33
Table 6-13	Voltage resistor links	
Table 6-14	DDR SDRAM resistor links	
Table 6-15	Test point function	6-35
Table 6-16	Clock and reset parameters	6-38
Table 6-17	AHB slave input parameters	6-38
Table 6-18	AHB slave output parameters	6-38
Table 6-19	Bus master input timing parameters	
Table 6-20	Bus master output timing parameters	
Table 7-1	Overview of Core Tile signals	
Table 7-2	Test chip signals	
Table 7-3	Clock-related signals on Core Tile	7-14
Table 7-4	MCLK clock source	
Table 7-5	ECLK destination	
Table 7-6	PLD control signals	
Table 7-7	PLD configuration signals	
Table 7-8	Power-on configuration signals by clock cycle	
Table 7-9	Run configuration signals by clock cycle	
Table 7-10	JTAG signal description	
Table 8-1	HDRX signals	. 8-3

Table 8-2	HDRY signals	8-9
Table 8-3	HDRZ signals	8-13
Table 8-4	Resistor links for JTAG logic	8-24
Table 8-5	Resistor links for clock signals	8-24
Table 8-6	Resistor links for voltage selection	8-25
Table 8-7	Resistor links for DDR SDRAM	
Table 8-8	Test point function	
Table A-1	Memory width encoding	A-3
Table A-2	Chip Select information block	A-6
Table A-3	Example contents of a static memory expansion EEPROM	A-6
Table A-4	Static memory connector signals	
Table B-1	Core Tile electrical characteristics	B-2
Table B-2	Current requirements	B-2

List of Tables

List of Figures Core Tile User Guide

Figure 1-1	Core Tile layout	1-4
Figure 1-2	Core Tile and Integrator/IM-LT3	1-5
Figure 1-3	Typical system block diagram	1-6
Figure 2-1	Core Tile and an Integrator/IM-LT3	2-3
Figure 2-2	Core Tile, Logic Tile, and Integrator/IM-LT1	2-3
Figure 2-3	Core Tile, Integrator/IM-LT3, and Integrator/CP	2-5
Figure 2-4	Core Tile and a Versatile baseboard	
Figure 2-5	Power connector on interface Module	
Figure 2-6	Power connectors on Versatile/PB926EJ-S	2-10
Figure 2-7	Powering the assembled Integrator/CP system	2-11
Figure 2-8	JTAG connector on the Interface Module	
Figure 2-9	JTAG connection to a Versatile/PB926EJ-S	
Figure 2-10	Trace connection with RealView Trace	2-15
Figure 2-11	Trace connection with Multi-Trace	2-16
Figure 3-1	Core Tile block diagram	3-3
Figure 3-2	Core Tile clock signals	3-10
Figure 3-3	Test chip clock selection (CT926EJ-S)	3-12
Figure 3-4	Voltage control and monitoring	3-17
Figure 3-5	Voltage interconnection links	3-20
Figure 3-6	Programmable regulators	3-22
Figure 3-7	Voltage divider and current sense circuit	
Figure 3-8	Read/write control	
Figure 3-9	Through/break control	3-28

Figure 3-10	Power on signals to the Core Tile PLD	. 3-32
Figure 3-11	ADC and DAC data stream	. 3-34
Figure 3-12	ADC packet format	. 3-34
Figure 3-13	DAC packet format	. 3-35
Figure 3-14	JTAG clock and data signals	. 3-43
Figure 3-15	JTAG data flow in debug mode	. 3-44
Figure 3-16	JTAG data flow in config mode	. 3-44
Figure 3-17	JTAG reset signals	. 3-45
Figure 4-1	Clock signals	4-3
Figure 5-1	Clock selection	5-4
Figure 5-2	AHB matrix and bus organization	5-9
Figure 6-1	HDRX, HDRY, and HDRZ (upper) pin numbering	6-2
Figure 6-2	Memory expansion connectors	. 6-20
Figure 6-3	Mictor connector	. 6-29
Figure 6-4	Location of links (bottom)	. 6-30
Figure 6-5	Location of links (top)	. 6-31
Figure 6-6	Test point location	. 6-35
Figure 7-1	Core Tile block diagram	7-3
Figure 7-2	Test chip internal clock signals	
Figure 7-3	Core Tile clock signals	. 7-13
Figure 7-4	Test chip clock selection	. 7-18
Figure 7-5	Voltage control and monitoring	. 7-19
Figure 7-6	Voltage interconnection links	. 7-22
Figure 7-7	Programmable regulators	
Figure 7-8	HDRX through/break control	
Figure 7-9	HDRZ through/break control	
Figure 7-10	HDRY through/break control	. 7-29
Figure 7-11	Power on signals to the Core Tile PLD	
Figure 7-12	ADC and DAC data stream	. 7-36
Figure 7-13	ADC packet format	
Figure 7-14	DAC packet format	
Figure 7-15	JTAG clock and data signals	. 7-44
Figure 7-16	Simplified data and clocks for debug mode (ARM7TDMI-S)	. 7-45
Figure 7-17	Simplified data and clocks for debug mode (ARM7TDMI)	
Figure 7-18	Simplified data and clocks for config mode (ARM7TDMI and ARM7TDMI-S)	
Figure 7-19	JTAG reset signals	
Figure 8-1	HDRX, HDRY, and HDRZ (upper) pin numbering	8-2
Figure 8-2	Location of links (top)	
Figure 8-3	Location of links (bottom)	
Figure 8-4	Test point location	
Figure A-1	Static memory board block diagram	
Figure A-2	Memory board installation	
Figure A-3	Chip select information block	
Figure A-4	Static memory board layout	
Figure B-1	Board outline (top view)	

Preface

This preface introduces the Core Tiles and their reference documentation. It contains the following sections:

- About this document on page xvi
- Feedback on page xx.

About this document

This document describes how to set up and use Core Tiles.

Intended audience

This document has been written for experienced hardware and software developers to aid the development of ARM-based products using the Core Tiles as part of a development system.

Organization

This document is organized as follows:

Chapter 1 Introduction

Read this chapter for an introduction to Core Tiles.

Chapter 2 Getting Started

Read this chapter for a description of how to set up and start using the Core Tiles.

Chapter 3 HBI-0131 Hardware Description

Read this chapter for a description of the hardware architecture of the CT926EJ-S and CT1136JF-S Core Tiles that use the HBI-0131 printed circuit board.

Chapter 4 HBI-0131 Features specific to the CT926EJ-S

Refer to this chapter for features that are specific to the CT926EJ-S Core Tiles that use the HBI-0131 printed circuit board.

Chapter 5 HBI-0131 Features specific to the CT1136JF-S

Refer to this chapter for features that are specific to the CT1136JF-S Core Tiles that use the HBI-0131 printed circuit board.

Chapter 6 HBI-0131 Signal Descriptions

Refer to this chapter for connector pinouts for the CT926EJ-S and CT1136JF-S Core Tiles that use the HBI-0131 printed circuit board.

Chapter 7 HBI-0141 Hardware Description

Read this chapter for a description of the hardware architecture of the CT7TDMI and CT7TDMI-S Core Tiles that use the HBI-0141 printed circuit board.

Chapter 8 HBI-0141 Signal Descriptions

Refer to this chapter for connector pinouts for the CT7TDMI and CT7TDMI-S Core Tiles that use the HBI-0141 printed circuit board.

Appendix A Static Memory Expansion Board

Refer to this appendix for details of the optional memory expansion board.

Appendix B Specifications

Refer to this appendix for electrical and mechanical specifications that apply to all Core Tiles.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM signal names within text, and interface elements

such as menu names. This style is also used for emphasis in

descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

monospace Denotes text that can be entered at the keyboard, such as

commands, file names and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. The

underlined text can be entered instead of the full command or

option name.

monospace italic Denotes arguments to commands or functions where the argument

is to be replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

Further reading

This following publications by ARM Limited provide additional information on using the Core Tile and related products:

- ARM926EJ-S Technical Reference Manual (ARM DDI 0198)
- *ARM946E-S Technical Reference Manual* (ARM DDI 0155)
- *ARM966E-S Technical Reference Manual* (ARM DDI 0164)
- ARM7TDMI Technical Reference Manual (ARM DDI 0210)
- ARM7TDMI-S Technical Reference Manual (ARM DDI 0084)
- ARM1136JF-S and ARM1136J-S Technical Reference Manual (ARM DDI 0211)
- ETM7 Technical Reference Manual (ARM DDI 0158)
- ETM9 Technical Reference Manual (ARM DDI 0157)
- ETM10 Technical Reference Manual (ARM DDI 0206)
- ETB Technical Reference Manual (ARM DDI 0242)
- RealView Platform Baseboard for ARM926EJ-S User Guide (ARM DUI 0224)
- ARM RealView Logic Tile LT-XC2V4000+ User Guide (ARM DUI 0186)
- ARM RealView AT1 Analyzer Tile User Guide (ARM DUI 0189)
- *ARM RealView IT1 Interface Tile User Guide* (ARM DUI 0188)
- *ARM Integrator IM-LT1 Interface Module User Guide* (ARM DUI 0187)
- *ARM Integrator IM-LT3 Interface Module User Guide* (ARM DUI 0216)
- *ARM Integrator/CP User Guide* (ARM DUI 0159)

- *ARM Multi-ICE User Guide* (ARM DUI 0048)
- AMBA Specification (ARM IHI 0011)
- *ARM Architecture Reference Manual* (ARM DDI 0100)
- *ARM Firmware Suite Reference Guide* (ARM DUI 0102)
- *ADS Tools Guide* (ARM DUI 0067)
- *ADS Debuggers Guide* (ARM DUI 0066)
- *ADS Debug Target Guide* (ARM DUI 0058)
- *ADS Developer Guide* (ARM DUI 0056)
- ADS CodeWarrior IDE Guide (ARM DUI 0065)
- RealView Debugger User Guide (ARM DUI 0153)
- RealView Compilers and Libraries Guide (ARM DUI 0205)
- RealView Linker and Utilities Guide (ARM DUI 0206)
- RealView ICE User Guide (ARM DUI 0155).

Feedback

ARM Limited welcomes feedback both on the ARM Core Tiles and on the documentation.

Feedback on this document

If you have any comments about this document, send email to errata@arm.com giving:

- the document title
- the document number
- the page number(s) to which your comments refer
- an explanation of your comments.

General suggestions for additions and improvements are also welcome.

Feedback on the ARM Core Tiles

If you have any comments or suggestions about these products, contact your supplier giving:

- the product name
- an explanation of your comments.

Part A Introduction

Chapter 1 Introduction

This chapter introduces the Core Tiles. It contains the following sections:

- *About the Core Tiles* on page 1-2
- Overview of Core Tiles on page 1-4
- *Precautions* on page 1-10.

——Note	

This guide covers both the HBI-0131 and HBI-0141 printed-circuit boards.

These boards support a variety of test chips, for example, the ARM926EJ-S and the ARM7TDMI. The availability of individual Core Tiles however, depends on the availability of test chips. Contact your sales representatives for details on currently available Core Tiles.

1.1 About the Core Tiles

Core Tiles are a compact development platform that enable you to develop products based on ARM processors. Examples of using the Core Tile with compatible Versatile or Integrator family boards are listed in Table 1-1.

Table 1-1 Product combinations with Core Tile

Configuration	Interface Tile	Logic Tile	Interface module	Baseboard
Minimal standalone Core Tile system. The FPGA in the IM-LT3 provides the system controller functions of a motherboard and drives clock selection and other control signals on the Core Tile.	Not used	Not used	IM-LT3	None
Standalone Core Tile system. The FPGA in the Logic Tile provides the system controller functions of a motherboard and drives clock selection and other control signals on the Core Tile. The IM-LT1 provides power and JTAG connections.	Optional	Required	IM-LT1	None
Integrator/CP system. The FPGA in the IM-LT3 provides the interface between the buses on the Core Tile and the Compact Platform and drives clock selection and other control signals on the Core Tile.	Optional	Optional	IM-LT3	Integrator Compact Platform
Integrator/CP system can also use the IM-LT1 and a Logic Tile. The FPGA in the Logic Tile provides the interface between the bus on the Core Tile and the Compact Platform and drives clock selection and other control signals on the Core Tile. An FPGA image is not provided for this configuration.				
Versatile/PB926EJ-S system with additional processors. The Logic Tile provides the interface between the bus on the Versatile/PB926EJ-S and the Core Tile and drives clock selection and other control signals on the Core Tile.	Optional	Required	None	Versatile/ PB926EJ-S
Third-party custom development system.	Optional	Optional	Third-party	Third party

For all configurations, a Versatile/IT1 Interface Tile or Versatile/AT1 Analyzer Tile can be used to provide access to signals on the tile header connectors.

The Core Tile must be used in conjunction with a Logic Tile (or IM-LT3) that implements the system and memory controllers in an FPGA. Through-board connectors on tile products allow stacking of multiple systems. Multiple combinations of Core Tile and Logic Tile can be used to create a multiprocessor system.

The Core Tile and Logic Tile do not have power or JTAG connectors. The tiles must be stacked on an Interface Module or baseboard that provides power and JTAG connections. The Core Tiles require a reference clock (or clocks) supplied by an attached Logic Tile or baseboard.

1.2 Overview of Core Tiles

The major components on the Core Tile are as follows:

- microprocessor test chip
- Versatile-style tile headers on the top and bottom of the board
- connectors for memory expansion
- connectors for Trace Port Analyzer (not all Core Tiles support trace)
- bus interface logic
- clock selection logic
- controllable power supply for the test chip core.

Figure 1-1 shows the layout of a Versatile/CT926EJ-S.

Figure 1-1 Core Tile layout

Figure 1-2 on page 1-5 shows a Core Tile mounted on an Integrator/IM-LT3 Interface Module.

Figure 1-2 Core Tile and Integrator/IM-LT3

1.2.1 System architecture

Figure 1-3 shows the architecture of a minimal Core Tile system consisting of a CT926EJ-S and an IM-LT3 Interface Module.

Figure 1-3 Typical system block diagram

1.2.2 External logic

The Core Tile cannot operate standalone. It must have an external board (or boards) that provides:

- power and JTAG connectors
- reference clock
- initialization signals to the clock divider inputs on the test chip

- memory controller for the expansion memory modules
- peripheral devices (for example, interrupt controller, DMA controller, system and reset controller, serial I/O)
- a serial interface to the PLD that loads the desired configuration for HDRZ isolation, clock multiplexors, AHB data bus interconnection, and programmable power supply values.

The external connectors and control logic are typically provided by an Interface Module or Logic Tile. The FPGA on the Logic Tile or Interface Module provides system control functions for the Core Tile. See also Chapter 3 *HBI-0131 Hardware Description*, Chapter 7 *HBI-0141 Hardware Description*, and the documentation for your Versatile products.

The FPGAs on the external baseboard, IM-LT3, or Logic Tile must be loaded with an appropriate image. For more information on FPGA images, see the application note covering the combination of products that you are using.

1.2.3 ARM processor test chip

The name of the Core Tile reflects the test chip fitted, for example the CT926EJ-S has an ARM926EJ-S test chip.

For more details on processors and test chips, see the *Technical Reference Manual* for the processor family. Details on variations between test chips are described in documents in the *product_name*\docs\test chips directory of the CD.

You can configure the processor using several input signals to the test chip (for example, **HCLKDIV**, **PLLCTRL**, and **PLLFBDIV**). In a production ASIC, these core signals are permanently tied HIGH or LOW. However, you can reprogram these inputs in order to experiment with different processor configurations.

1.2.4 PLD

The PLD on the Core Tile receives configuration signals from a serial link (controlled by an attached Logic Tile or IM-LT3 Interface Module) and outputs signals that control:

- the DACs that control the power supplies for the test chip core and I/O voltages
- the clock multiplexors that control the clock sources to the test chip
- the AHB data bus interface

• isolation for some of the signals on HDRZ.

The PLD transmits the following over the serial interface:

- a manufacturing identifier (MANID) that indicates the board version
- a PLL identifier (PLLID) that can be used to identify the version of the PLL image
- the current value of the VDDCORE, VDDPLL, and VDDIO voltages
- the current drawn from the VDDCORE supplies.

The current-sense resistors fitted to the board at manufacture are zero Ohm. If you require monitoring of the test chip currents, you must replace the existing resistors on the board, see *Reading the voltages and currents* on page 3-23.

 Different Core Tiles might also transmit signals that are specific to that tile. For example, the CT926EJ-S transmits a power good signal from the voltage regulators.

1.2.5 Processor bus

The processor bus depends on the type of test chip fitted. For example, the test chip on the CT926EJ-S Core Tile has an AHB bus interface. See *Overview of Core Tile configuration* on page 3-29 for a description of configuration options for the AHB data bus and *Overview of Core Tile configuration* on page 7-31 for a description of configuration options for the ARM7TDMI data bus.

1.2.6 Memory

There are two memory expansion sockets on the Core Tile. These accept static memory boards. There is not a direct connection between the memory modules and the test chip bus. The memory control and data signals are provided by external logic, typically an FPGA on a Logic Tile.

There is typically *Tightly Coupled Memory* (TCM) present in the test chip. The memory present depends on the test chip.

1.2.7 Clock generation

The primary reference clock for the Core Tile is provided by an attached Logic Tile or baseboard. Depending on the version of the Core Tile, the tile has options to generate additional secondary reference clocks. The functionality of the clocking system depends on the particular Core Tile.

1.2.8 JTAG and Trace

The Core Tile does not have a JTAG connector. Use the JTAG connector on the Interface Module or baseboard

If the test chip contains an ETM, the Core Tile has one or two trace connectors fitted to allow tracing program flow of the test chip processor. The size and configuration of the Trace Port depends on the Core Tile.

1.2.9 Power supply control

Interface logic on the Core Tile enables you to read different supply voltages. The current drawn by the test can also be read, however this requires the sense resistors on the circuit board to be replaced.

On some tiles, the interface logic also enables you to control the core voltages or shut down the voltage regulators from software. The voltage control range is set when the board is manufactured. Core voltages can be switched off to test power saving modes.

By default, the memory modules and the test chip I/O voltage level is 3.3V. Links on the Core Tile allow a different I/O voltage to be selected.

1.2.10 Links and indicators

The Core Tile has factory-installed links for tile identification code, the size of test chip memory, clock-routing, core power-supply range, and I/O voltage source. These links do not normally require changing. You must change the links if you are using non-standard I/O or memory voltages. For more details, see the section on links in the section that covers your test chip.

The Core Tile has an LED indicator for the power supply. For details on indicators present on the Logic Tiles, Interface Modules, and baseboard products, see the documentation supplied with the product.

1.3 Precautions

This section contains safety information and advice on how to avoid damage to the Core Tile.

1.3.1 Ensuring safety

The Core Tile is powered from 3.3V and 5V DC supplies.	
——— Warning ———	
To avoid a safety hazard, only Safety Extra Low Voltage (SELV) equipment must b connected to the tile.	e

1.3.2 Preventing damage

The Core Tile is intended for use within a laboratory or engineering development environment. It is supplied without an enclosure and this leaves the board sensitive to electrostatic discharges and allows electromagnetic emissions.

To avoid damage to the Core Tile you must observe the following precautions.

- Never subject the tile to high electrostatic potentials.
- Always wear a grounding strap when handling the tile.
- Only hold the tile by the edges.
- Avoid touching the component pins or any other metallic element.

Do not use the board near equipment that could be:

- sensitive to electromagnetic emissions, such as medical equipment
- a transmitter of electromagnetic emissions.

Chapter 2 **Getting Started**

This chapter describes how to set up and prepare a Core Tile for use. It contains the following sections:

- *Using the Core Tile with an Interface Module* on page 2-2
- Using the Core Tile with an Integrator Compact Platform baseboard on page 2-4
- *Using the Core Tile with a Versatile Baseboard* on page 2-6
- *Using the Core Tile with a custom baseboard* on page 2-8
- Connecting power on page 2-9
- Connecting RealView ICE or Multi-ICE on page 2-12
- Connecting Trace on page 2-15.

Note ——

The Core Tile must be used with an external board that provides the co	onfiguration
control and additional peripherals. The EPGA on the external board m	•

control and additional peripherals. The FPGA on the external board must contain an image that is explicitly designed to interface with the Core Tile.

The information in this chapter provides only a general overview. Details on using a Core Tile with different ARM products are covered in application notes. Ensure that you use the correct application note and FPGA image for your configuration.

2.1 Using the Core Tile with an Interface Module

To set up a Core Tile and IM-LT3 Interface Module as a standalone development system:

Mount the Core Tile on an IM-LT3 Interface Module.
Note
You can use the IM-LT1 Interface Module instead of the IM-LT3. The IM-LT1,
however, does not contain an FPGA so you must mount a Logic Tile between the
Core Tile and the IM-LT1.

- 2. You can fit one or two memory expansion boards to the Core Tile if you require additional memory.
- 3. If you are constructing a multiprocessor system, add additional pairs of Core Tile and Logic Tile.
- 4. Connect a JTAG debugger to the Interface Module (see *Connecting a JTAG device to an Interface Module* on page 2-13).
- 5. If required, you can connect an Analyzer Tile between the Logic Tile and the Core Tile to enable monitoring of signals between the tiles.
- 6. You can also place a Logic Tile and an Interface Tile on the top of the tile stack. The Logic Tile must be loaded with an appropriate image that contains your peripherals.

The connectors on the Interface Tile provide access to the peripherals instantiated in the Logic Tile.

- 7. Connect the CONFIG link on the Interface Module.
- 8. Supply power to the Interface Module, see *Supplying power to an Interface Module* on page 2-9.
- 9. Load the appropriate FPGA image into the IM-LT3 Interface Module, or Logic Tile if using the IM-LT1. See the application note for details on the image to use.
- 10. Remove the CONFIG link and use a JTAG debugger to load your application program.

Figure 2-1 Core Tile and an Integrator/IM-LT3

Figure 2-2 Core Tile, Logic Tile, and Integrator/IM-LT1

1.

9.

2.2 Using the Core Tile with an Integrator Compact Platform baseboard

To add a Core Tile to an Integrator/CP development system:

Mount the Core Tile on an IM-LT3 Interface Module.

Note
You can use the IM-LT1 Interface Module instead of the IM-LT3. The IM-LT1, however, does not contain an FPGA so you must mount a Logic Tile between the Core Tile and the IM-LT1. ARM Ltd. does not provide an application note or FPGA image for this configuration and you must therefore create a custom FPGA image for the IM-LT1 system.
You can fit one or two memory expansion boards to the Core Tile if you require additional memory.
If you are constructing a multiprocessor system, add additional pairs of Core Tile and Logic Tile.
Note
The Integrator/CP does not support multiple masters on the system bus.
If required, you can connect an Analyzer Tile between the Logic Tile and the Core Tile to enable monitoring of signals between the tiles.
You can also place a Logic Tile and an Interface Tile on the top of the tile stack. The Logic Tile must be loaded with an appropriate image that contains your peripherals.
The connectors on the Interface Tile provide access to the peripherals instantiated in the Logic Tile.
Connect the Interface Module and its tiles to the Integrator/CP.
Connect a JTAG device to the Interface Module.
Connect the CONFIG link on the Interface Module.

Integrator/CP on page 2-11.10. Load the appropriate FPGA images into the Interface Module (and Logic Tiles if used) and baseboard. See the application note for details on the image to use.

Supply power to the Compact Platform baseboard, see Supplying power to an

11. Remove the CONFIG link and load your application program.

Figure 2-3 Core Tile, Integrator/IM-LT3, and Integrator/CP

For details on how to load and run applications on an Integrator/CP system, see the
ARM Integrator/CP User Guide and the ARM Firmware Suite Reference Manual.

- Note -

2.3 Using the Core Tile with a Versatile Baseboard

To set up one or more Core Tiles on a Versatile platform baseboard (such as the Versatile/PB926EJ-S shown in Figure 2-4 on page 2-7) as a multi-processor development system:

- 1. You can fit memory expansion boards to the Core Tile or baseboard if you require additional memory.
- 2. Fit one or more sets of Logic Tile and Core Tile to the tile expansion headers on the baseboard.

The Logic Tile provides the interface and arbitration between the baseboard signals and the processor bus on the Core Tile.

Note
For normal operation, a Logic Tile between the Core Tile and the
Versatile/PB926EJ-S baseboard provides the interface control. For programming
the PLD on the Core Tile however, the Logic Tile must be mounted on top of the
Core Tile for the system to configure correctly. This is because the RTCK signal
must be floating in configuration mode.

- 3. If required, you can connect an Analyzer Tile between the Logic Tile and the Core Tile to enable monitoring of signals between the tiles.
- 4. You can also place a Logic Tile and an Interface Tile on the top of the tile stack. The Logic Tile must be loaded with an appropriate image that contains your peripherals.
 - The connectors on the Interface Tile provide access to the peripherals instantiated in the Logic Tile.
- 5. Connect a JTAG debugger to the baseboard (see *Connecting a JTAG device to a baseboard* on page 2-14).
- 6. Connect the CONFIG link on the baseboard.
- 7. Supply power to the Versatile/PB926EJ-S (see *Supplying power to a Versatile/PB926EJ-S* on page 2-10).
- 8. Load the appropriate FPGA images into the Logic Tiles. See the application note for details on the image to use. See the *Versatile/PB926EJ-S User Guide* and *Versatile/LT-XC2V4000+ User Guide* for details on programming procedures.
- 9. Remove the CONFIG link and load your application program.

Figure 2-4 Core Tile and a Versatile baseboard

_____Note _____

For details on how to load and run applications on an Versatile/PB926EJ-S system, see the *Versatile Platform Baseboard for ARM926EJ-S User Guide*.

2.4 Using the Core Tile with a custom baseboard

If you are designing a custom baseboard to accept a Core Tile, you must ensure that your board meets the following requirements:

Mechanical layout

The mechanical layout is described in Appendix B Specifications.

Power supplies

The Core Tile uses a 3.3V and 5V supplies to generate local voltages. The test chip core and I/O voltage are controlled by logic in the PLD on the Core Tile. There are resistor links that control the source of the VDDIO voltage (present on HDRX) and the VCCOY voltage (present on HDRY). See the hardware chapters that cover specific Core Tiles for details on the voltage control logic.

Clock control

The primary reference clock must be supplied by an attached Logic Tile or baseboard. The clocking system is described in the hardware chapters that cover specific Core Tiles. There might also be test-chip specific clocking requirements. See the chapters in this manual covering your test chip and the *Technical Reference Manual* for your core.

JTAG control

The Core Tile does not have a JTAG connector. The baseboard must provide a JTAG connector and route the JTAG signals to the header signals on the Core Tile. JTAG routing is described in *Overview of Core Tile configuration* on page 3-29 and *JTAG support* on page 7-40.

Bus configuration signals

The processor bus and some of the signals on header HDRZ are controlled through bus switches. Bus configuration is managed by the PLD on the Core Tile, see *Overview of Core Tile configuration* on page 3-29 or *Overview of Core Tile configuration* on page 7-31.

Memory controller

The Core Tile has two PISMO memory connectors. The memory boards are controlled from external logic (typically from an FPGA on a Logic Tile). If you are using additional memory on the Core Tile, you must implement your own memory controller on your baseboard. The memory interface signals and memory specification is described in *Memory expansion connector pinout* on page 6-20 and Appendix A *Static Memory Expansion Board*.

2.5 Connecting power

Core Tile power is supplied through the header connectors. You must connect a power source to either an external Interface Module or baseboard.

—— Caution ———

You can use only one power source for the system. For example, do not connect power supplies to both the IM-LT3 and the Integrator/CP.

For baseboards that have two different power connectors, use only one of the connectors for the power supply.

2.5.1 Supplying power to an Interface Module

When using the Core Tile with an IM-LT3 Interface Module (or with an IM-LT1 Interface Module and a Logic Tile), you must connect a bench power supply with 3.3V and 5V outputs to the power connector on the Interface Module, as illustrated in Figure 2-5.

Figure 2-5 Power connector on interface Module

2.5.2 Supplying power to a baseboard

If you are using the Core Tile on a baseboard development system, connect power to the baseboard. For more details, see the documentation supplied with your baseboard.

Supplying power to a Versatile/PB926EJ-S

Connect either the supplied brick power supply to power socket J35 or an external bench power supply to the screw-terminal connector as shown in Figure 2-6.

Figure 2-6 Power connectors on Versatile/PB926EJ-S

Note
If you are using the supplied brick power supply connected to J35 on the
Versatile/PB926EJ-S, the Standby/power pushbutton toggles the power on and off. If you are using a different power source, the Standby/power switch is not used.
——Caution ——
You can use only one power source for the system.

Supplying power to an Integrator/CP

Connect either the supplied brick power supply to power socket J35 or an external bench power supply to the screw-terminal connector as shown in Figure 2-7.

Figure 2-7 Powering the assembled Integrator/CP system

Onboard voltage regulators provide 3.3V and 5V.

When you apply power to J3 or J4, the standby LED illuminates. To power the system up, press the power button.

——— Caution		=	
You can use only	one power	source for	the system.

2.6 Connecting RealView ICE or Multi-ICE

The Core Tile does not have a JTAG connector, but there are JTAG signals present on the header connectors. The Core Tile must be used with an Interface Module or baseboard that contains a JTAG connector. External JTAG equipment can be used to:

download and debug programs.
 You can connect RealView ICE or Multi-ICE (or other JTAG debuggers) to the external JTAG connector and download and debug programs. (For a Core Tile attached to a Versatile/PB926EJ-S, you can also use the USB debug port on the Versatile/PB926EJ-S.)

download new images to the PLD on the Core Tile or to FPGAs or PLDs presen on attached boards, for example, Logic Tiles.
Note
For a Core Tile attached to an Integrator/CP, currently only Multi-ICE is supported for downloading images to FPGAs on attached boards.
For a Core Tile attached to a Versatile/PB926EJ-S, either Multi-ICE or the USE debug port on the Versatile/PB926EJ-S can be used for downloading FPGA
mages.

Selection between debugging programs and downloading new images to the FPGA is controlled by the CONFIG link that is present on the Interface Module or baseboard. See the documentation supplied with your Interface Module or baseboard for more details on connecting JTAG and connecting the CONFIG link.

Because the Core Tile does not provide nonvolatile memory, programs are lost when the power is removed. Use flash memory for nonvolatile storage. The flash memory can be:

- Any unused space in the Logic Tile flash. The Logic Tile flash is primarily used for configuration and must contain a valid configuration image for the FPGA.
- The flash memory on the baseboard.
- Nonvolatile memory in one of the two PISMO memory expansion slots present
 on the Core Tile, see Appendix A Static Memory Expansion Board. A memory
 controller must be implemented in an external Logic Tile to access the Core Tile
 PISMO expansion memory.

The JTAG connector provides a set of JTAG signals that allow JTAG debugging equipment to be used. If you are debugging a development system with multiple tiles, connect the JTAG debugging equipment to the Interface Module or baseboard and the JTAG signals will be routed through any connected tiles.

Do not use the JTAG connector on the Trace Port Adaptor board. The adapter board must only be used for Trace. Use the JTAG connector on the baseboard or interface module.

The JTAG paths are described in *JTAG support* on page 3-39 and *JTAG support* on page 7-40.

2.6.1 Connecting a JTAG device to an Interface Module

The JTAG setup for an Interface Module is shown in Figure 2-8.

Figure 2-8 JTAG connector on the Interface Module

2.6.2 Connecting a JTAG device to a baseboard

The JTAG setup for the Versatile/PB926EJ-S and Multi-ICE or RealView ICE is shown in Figure 2-9. (Refer to the documentation supplied with your debugger for information on connecting other JTAG interface products.)

Figure 2-9 JTAG connection to a Versatile/PB926EJ-S

The Versatile/PB926EJ-S has a USB debug port that can be used in place of the JTAG interface and JTAG connector.

- Note -

2.7 Connecting Trace

If the Core Tile test chip contains an *Embedded Trace Macrocell* (ETM), a Trace connector is provided on the Core Tile. Use the JTAG connector on the Interface Module or baseboard to provide the JTAG signals that are required for controlling the ETM.

Trace tools using multiplexed trace packets (such as RealView Trace and Multi-Trace) require only one Mictor connector (Trace Port A). The Core Tile supports both multiplexed (one trace connector) and demultiplexed mode (two trace connectors). The second connector is present for support trace tools that use demultiplexed trace packets.

Figure 2-10 illustrates a trace debugging setup with RealView Trace, RealView ICE, and the IM-LT3. Figure 2-11 on page 2-16 illustrates a trace debugging setup with Multi-Trace, Multi-ICE, and the IM-LT3.

Figure 2-10 Trace connection with RealView Trace

Figure 2-11 Trace connection with Multi-Trace

_____Note _____

For more details on using Trace, see the documentation supplied with your Trace hardware and with your Interface Module or baseboard product.

The routing of the JTAG scan chain is described in *JTAG signals* on page 3-39 and *JTAG signals* on page 7-40.

Part B Printed Circuit Board HBI-0131 (CT926EJ-S and CT1136JF-S)

Chapter 3 **HBI-0131 Hardware Description**

This chapter describes the on-board hardware in the CT926EJ-S and CT1136JF-S Core Tiles that use the HBI-0131 printed circuit board (companion Logic Tile or Interface Module are also described where relevant). It contains the following sections:

- *Core Tile architecture* on page 3-3
- ARM microprocessor test chip on page 3-4
- *Core Tile memory* on page 3-8
- Overview of Core Tile configuration on page 3-29
- *Clocks* on page 3-10
- *Power supply control* on page 3-17
- Control of AHB data bus and HDRZ signals on page 3-26
- Overview of Core Tile configuration on page 3-29
- JTAG support on page 3-39
- *Embedded Trace support* on page 3-47.

—— Note ———
The HBI-0131 board supports both the CT926EJ-S and CT1136JF-S processors, but the
availability of boards depends on the availability of test chips. Contact your sales
representatives for details on currently available Core Tiles.

Note
This chapter describes the generic hardware and is independent of the FPGA image

This chapter describes the generic hardware and is independent of the FPGA image used in an external Logic Tile, Interface Module, or baseboard.

The diagrams in this chapter (such as the block diagram shown in *Core Tile block diagram* on page 3-3 for example) are typical of Core Tiles, but your Core Tile architecture might be different depending on the test chip used.

The specific clock interconnections, voltage setting resistors and link, and bus interfaces might be different for different test chips. Different test chips might also use the configuration signals in different ways.

3.1 Core Tile architecture

The Core Tile supports test chips packaged according to the *Generic Test Chip* (GTC) specification. Configuration and interface logic on the Core Tile is connected to the upper and lower header connectors as shown in Figure 3-1.

Figure 3-1 Core Tile block diagram

3.2 ARM microprocessor test chip

Table 3-1 provides a brief overview of the signals present on test chips that follow the *Generic Test Chip* (GTC) specification.

—— Note	
11016	•

Test chip configuration is covered in:

- Memory located inside test chip on page 3-8
- *Clocks* on page 3-10
- Power supply control on page 3-17
- Data read/write control for AHB data on page 3-26.

Table 3-1 Test chip signals

Group	Signal	Description	Direction
AHB	HADDR[31:0]	AHB address bus	Output
AHB	HBURST[2:0]	AHB burst length indication	Output
AHB	HBUSREQ	AHB bus request	Output
AHB	HGRANT	AHB bus grant	Input
AHB	HLOCK	AHB locked transfer indication	Output
AHB	HPROT[3:0]	AHB protection indication	Output
AHB	HREADY	Transfer ready indication	Input
AHB	HRESP[1:0]	AHB transfer response	Input
AHB	HSIZE[2:0]	AHB transfer length indication	Output
AHB	HTRANS[1:0]	AHB transfer type	Output
AHB	HWRITE	AHB data direction	Output
AHB/Test	HRDATA[31:0]	AHB data bus in	Input
AHB/Test	HWDATA[31:0]	AHB data bus out	Output
Clock	CLK	Clock from PLL bypass multiplexer (this signal is internal to the test chip and not brought out to the pads)	-

Table 3-1 Test chip signals (continued)

Group	Signal	Description	Direction
Clock	HCLK	Local memory clock (this signal is internal to the test chip but some test chips output buffered versions of HCLK as HCLKEXT[4:0])	-
Clock	HCLKDIV[2:0]	Ratio of the AHB clock to CLK.HCLKDIV[1:0] is used as SnA and FASTBUS respectively in cores requiring these signals	Input
Clock	HCLKEXT[4:0]	Some test chips output buffered versions of HCLK as HCLKEXT[4:0]	Output
Clock	HCLKIN	Input clock from multiplexors. Some test chips use this clock as the main reference clock for the bus interface clock HCLK .	Input
Clock	PLLCTRL[1:0]	PLL Control	Input
Clock	PLLLOCK	In-lock indication from PLL	Output
Clock/Test	PLLFBDIV[7:0]	PLL control	Input
Clock/Test	PLLOUTDIV[3:0]	PLL control	Input
Clock	REFCLK	Input clock from multiplexors. Some test chips use this clock as the main reference clock and use the divider settings to produce the internal CPU clock CLK.	Input
Debug	COMMRX	Communications receive buffer not empty	Output
Debug	COMMTX	Communications transmit buffer empty	Output
Debug	DBGACK	Debug acknowledge	Output
Debug	DBGEN	Debug enable - synchronous	Input
Debug	DEWPT	External watchpoint - synchronous	Input
Debug	EDBGRQ	External debug request - synchronous	Input
Debug	IEBKPT	External breakpoint - synchronous	Input
Interrupt	nFIQ	External fast interrupt - asynchronous	Input
Interrupt	nIRQ	External interrupt - asynchronous	Input
JTAG	nTDOEN	Enable TDO tristate buffer	Output
JTAG	nTRST	Test reset to core, TAP and ICE	Input

Table 3-1 Test chip signals (continued)

Group	Signal	Description	Direction
JTAG	RTCK	Indicates sync of Multi-ICE TCK	Output
JTAG	TCK	Test clock	Input
JTAG	TDI	Boundary scan Input	Input
JTAG	TDO	Boundary scan Output	Output
JTAG	TMS	Test mode select	Input
Misc	BIGENDIN	Selects big endian	Input
Misc	BIGENDOUT	Indicates big-endian	Output
Misc	DMEMSIZE[2:0]	Size of data memory/cache	Input
Misc	IMEMSIZE[2:0]	Size of instruction memory/cache	Input
Misc	INITRAM	Internal RAM enabled at reset	Input
Misc	USERIN[5:0]	User inputs	Input
Misc	USEROUT[5:0]	User Outputs	Output
Misc	VINITHI	Location of exception vectors at reset	Input
Mux	CONFIGINIT	Control of test chip configuration	Input
Mux	nCONFIGRST	Reset of test chip configuration	Input
Power	ARM_VDDIO	Voltage level used for input and output signals	Input
Power	ARM_VDDCORE[6:1]	Voltage level used for processor core	Input
Power	ARM_VDDPLL[2:1]	Voltage level used for Phase-locked loop in the clock generation circuit	Input
Reset	nPORESET	Power-on reset to clock and reset control logic - asynchronous	Input
Reset	nRESET	Reset input - asynchronous	Input
Test	TESTSELECT	Test mode select	Input
Test	TICSELECT	Test mode select	Input
Trace	ETMEXTIN	ETM test control input - synchronous	Input
Trace	ETMEXTOUT	ETM test control output	Output

Table 3-1 Test chip signals (continued)

Group	Signal	Description	Direction
Trace	PIPESTATA[2:0]	Pipeline status A	Output
Trace	PIPESTATB[2:0]	Pipeline status B	Output
Trace	TRACECLK	ETM clock output	Output
Trace	TRACEPKTA[15:0]	ETM output to analyzer A	Output
Trace	TRACEPKTB[15:0]	ETM output to analyzer B	Output
Trace	TRACESYNCA	ETM clock and main clock in sync A	Output
Trace	TRACESYNCB	ETM clock and main clock in sync B	Output

3.3 Core Tile memory

This section describes the memory and memory expansion connectors present on the Core Tile.

3.3.1 Memory located inside test chip

Many ARM test chips contain internal *Tightly Coupled Memory* (TCM) or configuration registers. Refer to the processor-specific chapters in this book for details on memory internal to specific test chips. If the size of the test chip internal data and instruction memory are configurable, they can be set by the **DMEMSIZE[2:0]** and **IMEMSIZE[2:0]** signals from the PLD, see Table 3-2. The PLD configures the memory size to maximum at power-on.

Table 3-2 Memory size configuration

IMEMSIZE[2:0] and DMEMSIZE[2:0]			
2	1	0	Memory size
LOW	LOW	LOW	0KB
LOW	LOW	HIGH	4KB
LOW	HIGH	LOW	8KB
LOW	HIGH	HIGH	16KB
HIGH	LOW	LOW	32KB
HIGH	LOW	HIGH	64KB
HIGH	HIGH	LOW	Reserved
HIGH	HIGH	HIGH	Reserved

_____Note _____

The printed circuit board has links (LK1 to LK6) in parallel with the **DMEMSIZE[2:0]** and **IMEMSIZE[2:0]** signals from the PLD. These links are present for systems that do not use serial configuration of the PLD. The use of these links is not recommended and memory size configuration should be done with the PLD.

See *Core Tile PLD signals* on page 3-30 for details of the PLD interface. The PLD is configured from an FPGA in an attached Logic Tile or Interface Module. The FPGA image in the FPGA must match the configuration of boards in the stack.

3.3.2 Memory expansion boards

The Core Tile contains two memory connectors for expansion memory boards:

J7 Y memory expansion connector (Y MEMEXP).

J8 Z memory expansion connector (Z MEMEXP).

_____ Note _____

Typically the expansion boards contain static RAM. The memory connectors conform to the PISMO standard. Refer to the *PISMO Memory Interface Connector Specification* and Appendix A *Static Memory Expansion Board* for details on signals on the connectors and signals. Different memory boards might require special interface software or configuration settings.

The memory controller for expansion memory must be implemented in an external Logic Tile (or IM-LT3 Interface Module). The memory expansion signals are connected directly to HDRY and HDRZ. The Core Tile test chip pins are not connected to the memory expansion sockets.

To use the SSTL standard for a PISMO board on the Y MEMEXP connector, fit resistor links R26, R27, and R28.

3.3.3 Memory map

All bus accesses that do not access the RAM or memory-mapped peripherals inside the test chip are presented on the external 32-bit wide AHB interface consisting of **HADDR[31:0]**, **HRDATA[31:0]**, **HWDATA[31:0]** and the bus control signals.

The location of boot memory is determined by the state of the **VINITHI** signal at reset.

The byte order of memory can be selected by CP15 or by the **BIGENDIN** signal. The byte order in use is indicated by the **BIGENDOUT** signal.

3.4 Clocks

The Core Tile uses reference clocks provided by an attached Logic Tile (or Interface Module) as shown in Figure 3-2.

Figure 3-2 Core Tile clock signals

Selection of clocks for the Core Tile is done by setting multiplexors as shown in Figure 3-3 on page 3-12. Figure 3-3 on page 3-12 shows a Core Tile with an ARM926EJ-S test chip. The test chip clock logic and clock control might be different for other test chips.

Figure 3-3 Test chip clock selection (CT926EJ-S)

3.4.1 Clock multiplexors

There is not a clock generator present on the Core Tile. The internal **HCLK** (if present) and **CLK** signals in the test chip are derived from an external reference clock to the test chip (**REFCLK**), an internal PLL, and programmable dividers. See *Configuration signals on HDRX* on page 3-37 for details on signals that control the internal PLL and dividers.

Clock selection signals **CLKSEL**[5:0] control the multiplexors on the Core Tile:

CLKSEL[0] This selects between clocks on the upper and lower header connectors.

For **REFCLK**, if **CLKSEL[0]** is HIGH **X_REFCLK_DN** is the source and **X_REFCLK_UP** is the source if **CLKSEL[0]** is LOW.

For HCLKIN, if CLKSEL[0] is HIGH, CLK_NEG_DN_IN and X_HCLKIN_DN from the upper header are passed to the next multiplexor. If CLKSEL[0] is LOW, CLK_NEG_UP_IN and X_HCLKIN_UP from the lower header are passed to the multiplexor.

CLKSEL[2:1]

This selects the source for HCLKIN from CLK_GLOBAL, ground (no clock), or one of CLK_NEG_DN_IN, CLK_NEG_UP_IN, X_HCLKIN_UP, or X_HCLKIN_DN.

The CT926EJ-S Core Tile does not use the **HCLKIN** signal.

- CLKSEL[3] If LOW, the Core Tile drives the local HCLKEXT4 signal from the test chip onto the CLK_GLOBAL line. Each board in the tile stack can accept or generate CLK_GLOBAL.
- CLKSEL[4] If HIGH, the CLK_NEG_UP_OUT on the top header is driven from the HCLKEXT0 signal from the test chip.

If LOW, CLK_NEG_UP_OUT is driven by the CLK_NEG_UP_IN signal from the lower header on the Core Tile.

CLKSEL[5] If HIGH, the CLK_NEG_DN_OUT on the lower header is driven from the HCLKEXT1 signal from the test chip.

If LOW, CLK_NEG_DN_OUT is driven by the CLK_NEG_DN_IN signal from the upper header on the Core Tile.

Note _	
--------	--

Many of the existing Logic Tile clocks are not used by the Core Tile, for example CLK_POS_DN. Some Logic Tile general-purpose signals, however, are used as clock signals on the Core Tile, for example, X HCLK DN and PLDCLK.

The clock sources and clock outputs are different for different test chip variants. See the test chip information on the CD for details particular to the test chip used on the Core Tile.

For more information on clock generation and control for your test chip, see the chapter in this manual that covers your Core Tile, the *Technical Reference Manual* for the processor, and the Application Notes for using your Core Tile with other Versatile products.

The resistor links shown in Figure 3-3 on page 3-12 are fitted at manufacture depending on the Core Tile and do not require changing. See *Clock selection links* on page 6-33.

See *Core Tile PLD signals* on page 3-30 for details on controlling the **CLKSEL[5:0]** signals from the PLD. The **REFCLK** and **HCLKIN** sources for values of **CLKSEL[5:0]** are listed in Table 3-3 and Table 3-4.

Table 3-3 CLKSEL[5:0] signals and HCLKIN source

CLKSEL[5:0]	HCLKIN
bxxx000	CLK_NEG_UP_IN
b0xx001	CLK_NEG_DN_IN
b1xx001	HCLKEXT1 (from test chip)
bxxx010	X_HCLKIN_UP
bxxx011	X_HCLKIN_DN
bxxx10x	GND (no clock input)
bxx011x	CLK_GLOBAL (driven from test chip HCLKEXT4)
bxx111x	CLK_GLOBAL (driven by an attached tile)

Table 3-4 CLKSEL[5:0] signals and REFCLK source

CLKSEL[5:0]	REFCLK
bxxxxx0	X_REFCLK_UP
bxxxxx1	X_REFCLK_DN

3.4.2 Overview of clock signals

The clock related signals are summarized in Table 3-5 on page 3-15.

Table 3-5 Clock-related signals on Core Tile

Signal	Direction	Description
CLK	-	Internal test chip clock from the PLL bypass multiplexer
CLK_GLOBAL	Input/output/thru	A global clock shared with all tiles in the stack. Each tile can accept or drive the signal. HCLKEXT4 can drive this signal.
CLK_NEG_DN	Input/output/thru	A clock signal routed from the upper header (CLK_NEG_DN_IN) to the lower header (CLK_NEG_DN_OUT). The Core Tile can replace CLK_NEG_DN_OUT with HCLKEXT1.
CLK_NEG_UP	Input/output/thru	A clock signal routed from the lower header (CLK_NEG_UP_IN) to the upper header (CLK_NEG_UP_OUT). The Core Tile can replace CLK_NEG_UP_OUT with HCLKEXT0.
CLK_POS_UP, CLK_POS_DN, CLK_UP_THRU, CLK_OUT_PLUS1, CLK_OUT_PLUS2, CLK_IN_PLUS1, CLK_IN_PLUS1, and CLK_DN_THRU	Through	These Logic Tile clock signals are not used by the Core Tile. They are passed through the Core Tile unmodified for use by other tiles.
CLKSEL[5:0]	Local outputs from PLD	These signals (from the PLD) control the clock-selection multiplexors.
HCLK	-	Internal test chip local memory clock output (not present on all test chips).
HCLKDIV[2:0]	Input/through	Ratio of AHB clock to CLK.
HCLKEXT[4:0]	Output	Some test chips output buffered versions of HCLK as HCLKEXT[4:0].
HCLKIN	Input/through	For some test chips, the internal AHB clock is supplied directly from this pin and is not divided down from the internal CLK signal.
PLDCLK	Input	Clocks configuration data into (and status data out of) the PLD on the Core Tile.
PLLCTRL[1:0]	Input/through	PLL control (typically power down and enable signals)
PLLFBDIV[7:0]	Input/through	PLL feedback divisor
PLLLOCK		In-lock indication from PLL
PLLOUTDIV[3:0]	Input/through	PLL output divider. The output of this divider is the internal CLK signal.

Table 3-5 Clock-related signals on Core Tile (continued)

Signal	Direction	Description
REFCLK	-	A reference clock to the test chip clock-dividers, driven from either the XREFCLK_DN or XREFCLK_UP inputs
X_CLK_UP, X_CLK_DN	Output	The test chip HCLKEXT2 to the upper header as X_CLK_UP and HCLKEXT3 to the lower header as X_CLK_DN.
X_HCLKIN_UP, X_HCLKIN_DN	Input	X_HCLKIN_UP from the lower header or X_HCLKIN_DN from the upper header can be selected as the source of HCLKIN to the test chip.
X_REFCLK_UP, X_REFCLK_DN	Input	X_REFCLK_UP from the lower header or X_REFCLK_DN from the upper header can be selected as the source of REFCLK to the test chip.

3.5 Power supply control

The power supply on the Core Tile is controlled by the PLD and by resistor links as shown in Figure 3-4.

Figure 3-4 Voltage control and monitoring

dam	nging the resistors that control the core power-supply voltage might result in age to the test chip, see <i>Setting the VDDCORE voltage</i> on page 3-21. The resistors are fitted at manufacture enable you to modify the core voltage within a safe region.
Mod	lifying the core voltage is not required for normal operation.
on y	resistor values and links described in this section are typical values, but the values our Core Tile might be different. Refer to the BOM and schematic for your Core for details of build options that are used for your board.
	Logic Tile FPGA implements registers and a PLD interface (as shown in Figure 3-4 age 3-17) that control the PLD on the Core Tile to enable you to:
•	Individually shutdown the programmable regulators that generate the test chip core and PLL voltages. The PLL outputs PWR_nSHDN[2:0] control the regulators that generate VDDCOREC, VDDCOREB, and VDDCOREA voltages.
•	Change the voltage supplied to the core by writing values to the serially-programmed <i>digital to analog converters</i> (DACs).
•	Read onboard voltages from two 8-channel 12-bit <i>analog to digital converter</i> (ADC):
	 ARM_VDDCORE[6:1], ARM_VDDIO, and ARM_VDDPLL[2:1]. These voltages are divided by two before being fed to the ADC to prevent the ADC input range being exceeded.
	— VDDCORE_DIFF[6:1]. This is the voltage generated through current-sensing resistors in series with the ARM_VDDCORE[6:1] power connections to the test chip. The value of the voltage is proportional to the current consumed by the core.
	— TP_SENSE . Test point 22 is connected directly to the ADC.
	Note
	The ADC controller continuously reads the values from the ADC and stores them in the registers, see <i>PLD function after power on</i> on page 3-34. The serial interface between the PLD on the Core Tile and the FPGA on an attached Logic Tile regularly updates the registers in the PLD and FPGA.
•	Detect that the regulators for the ARM_VDDIO , VDDCOREC , VDDCOREB , and VDDCOREA voltages are outputting the selected voltage. The PGOOD signals from the regulators are tied together and input to the PLD for transmitting

on the serial interface.

3.5.1 Resistor links for power supply

The connections between the programmable regulators and the test chip voltage pins can be configured by resistor links on the printed circuit board as shown in Figure 3-5 on page 3-20. The Core Tile voltage sources are:

VDDIO

The output of this regulator is input to the test chip and is connected to the **ARM VDDIO** power blade on HDRX.

Resistor links R182 and R25 connect the 3.3V supply from HDRZ with the **VDDIO** voltage blades on HDRX. Do not use this link if you require custom I/O voltages on the HDRX blade.

The voltage level can be measured from ADC and a power good signal (**PGOOD**) is output from the regulator to the PLD.

VCCOY

Some memory modules have the output of an onboard regulator connected to the **VCCOY** signals. **VCCOY** is present on the power blade of HDRY.

Resistor links R183 and R24 connect the 3.3V supply from HDRZ with the VCCOY voltage. Do not use this link if you require custom I/O voltages on the HDRY blade.

VDDPLL

The output of this regulator is connected to the **VDDPLL1** input on the test chip. The voltage level can be measured from ADC.

VDDCOREA and VDDCOREB

The output of these two programmable regulators can be selected as the source for **VDDPLL2** and one or more of **VDDCORE**[6:1].

VDDCOREC

The output of this programmable regulator can be selected as the source for one or more of **VDDCORE**[6:1].

VDDCORE[6:1] interconnection

There are six groups of pads on the test chip dedicated to core voltage supply. The interconnection links to connect two or more of the groups together. These links are after the sense resistors (if fitted) therefore all of the connected voltage groups are at the same voltage. If the interconnection is made before the sense resistors, the actual voltages on the groups is different if the current loading is different. The voltage and current levels for **VDDCORE[6:1]** can be measured from ADC.

VDDPLL2

The **VDDPLL2** pads on the test chip do can be connected to **VDDPLL1**, **VDDIO**, **VDDCOREA**, or **VDDCOREB** regulator outputs. The voltage level can be measured from ADC.

Figure 3-5 Voltage interconnection links

Only a few of the resistor links shown in Figure 3-5 are fitted at manufacture. Also the ARM_VDDIO, VDDCOREA, and VDDCOREC regulators might not be fitted for some boards. **VDDIO** is typically powered from the 3.3V supply from the HDRX power blades.

– Note -

3.5.2 Setting the VDDCORE voltage

The core voltages depend on:

- The feedback resistors for the regulators. Resistors R63, R74, and R176 are the feedback resistors for VDDCOREA supply as shown in Figure 3-6 on page 3-22. These define the core voltage at power-on and the adjustment range for VDDCOREA, VDDCOREB, and VDDCOREC. These resistors are fitted at manufacture to give the correct core voltage for the test chip fitted to the Core Tile.
- The values loaded into the PLD for the DAC settings. The values provide a positive or negative offset to the default power-on voltages.
- The interconnection links between the regulators and the **VDDCORE**[6:1] power connections, see Figure 3-5 on page 3-20.

The output voltages are given by:

```
 \begin{array}{l} \textbf{VDDCOREA} = 0.8V * (1 + R63/R74 + R63/R176) - CT_VOLTAGEx[7:0]*R63*(I_{DAC}/255) \\ \textbf{VDDCOREB} = 0.8V * (1 + R89/R94 + R89/R177) - CT_VOLTAGEx[7:0]*R89*(I_{DAC}/255) \\ \textbf{VDDCOREC} = 0.8V * (1 + R106/R113 + R106/R178) - CT_VOLTAGEx[7:0]*R106*(I_{DAC}/255) \\ \textbf{Where:} \end{array}
```

 I_{DAC} The full-range DAC output current (50...A)

CT_VOLTAGEx[7:0]

The eight-bit data value loaded into the PLD from the Logic Tile FPGA. There are two DACs that drive the programmable regulators for **VDDCOREA** and **VDDCOREB**.

Resistor values

Refer to the BOM for the resistor values fitted to the Core Tile. The resistor values depend on the test chip fitted and the build variant. The resistor values are typically chosen to give a 0.5V adjustment range for the core voltage. The default value loaded into the DAC is 0x80. A value of 0xFF gives maximum negative offset from the default (-0.25V) and a value of 0x0 gives maximum positive offset from the default (+0.25V).

Figure 3-6 Programmable regulators

Shutdown of the VDDCORE regulators

The programmable regulators have can be individually shutdown by the **PWR nSHDN[2:0]** signals from the PLD:

- if PWR nSHDN[0] is LOW, the VDDCOREA regulator is shut off.
- if **PWR nSHDN[1]** is LOW, the VDDCOREB regulator is shut off.
- if **PWR nSHDN[2]** is LOW, the VDDCOREC regulator is shut off.

See *Core Tile PLD signals* on page 3-30 for a description of the PLD interface.

3.5.3 Reading the voltages and currents

The ADCs on the Core Tile continuously read the voltages and currents and update registers in the PLD, see *PLD function after power on* on page 3-34. The PLD transmits these values over the serial interface to the FPGA in the attached Logic Tile.

The LSB of the ADC reading corresponds to 1.221 mV. (Two times the 2.5V V_{REF} of the ADC divided by 4095.) The formula for the **VDDCORE**, **VDDPLL**, **VDDIO**, and voltages is:

 $V_{VDD} = 1.221 \text{mV} * VOLTAGE[11:0]$

——— Caution ————

All voltages except **VDDCOREx_DIFF** and **TP_SENSE** are divided by two before being fed to the ADC. The formula for the test point voltage is therefore:

 $V_{TP} = 2.442 \text{mV} * VOLTAGE[11:0]$

The **TP_SENSE** voltage should not exceed 2.5V for accurate readings and must not exceed 3.3V to prevent damage to the converters.

Voltages proportional to the **ARM_VDDCORE**[6:1] currents are developed across the sense resistors (see Figure 3-7 on page 3-24). Each of the sense resistors has a voltage amplifier because the sense voltage is too low to measure directly with the ADC. To calculate the current through an **ARM_VDDCOREx** line:

 $I_{ARM_VDDCOREx} = V_{ref} * VOLTAGE[11:0] / (R_{SENSE} * GAIN * (2^{12}-1))$

Figure 3-7 Voltage divider and current sense circuit

By default, all of the R_{SENSE} resistors are 0Ω . It is not therefore possible to measure the current. You can replace the existing sense resistors with new ones of, for example, 1Ω .

If you change the sense resistors, adjust the core voltage to compensate for the voltage drop, for example, a 1Ω sense resistor drops 0.1V at 100mA. The default GAIN is 22, so a 1Ω sense resistor with 100mA current results in an ADC voltage input of 2.2V.

PGOOD signal

The power-good signal (**PGOOD**) to the PLD is pulled LOW if one of the **VDDCOREA**, **VDDCOREA**, **VDDCOREA**, or **VDDIO** output voltages is not within 7.5% of its selected value.

The **VDDCOREA**, **VDDCOREA** and **VDDCOREA** voltages can be measured by the ADC if the voltage outputs are connected to one of the **VDDCOREx_CURRENT** lines. Setting the VDDCORE voltages is described in *Setting the VDDCORE voltage* on page 3-21.

The **ARM_VDDIO** voltage is measured by the **ARM_VDDIO_SENSE** signal to the ADC. The **ARM_VDDIO** voltage is fixed at manufacture by the values of resistors R122, R129, and R179 (for the CT926EJ-S, these are $30k\Omega$, $11k\Omega$, and $15k\Omega$) and is given by:

$ARM_VDDIO = 0.8V * (1)$	+ R122/R129 + R122/R179) = 4.58V
Note	<u></u>
If link R123 is fitted, the	e ARM_VDDIO supply is connected directly to the 3.3V

3.6 Control of AHB data bus and HDRZ signals

The Core Tile uses electronic switches to control signals to and from some of the header connectors:

 HDATA[31:0] on HDRX can be connected to HRDATA[31:0] or HWDATA[31:0].

The switches for the AHB data bus are required because not all test chips use a two-layer data bus with data out on **HWDATA[31:0]** and data in on **HRDATA[31:0]**.

• Signals **ZL[127:0]** can be disconnected from signals **ZU[127:0]**.

For Core Tiles, **ZL[127:0]** signals are normally connected to the **ZU[127:0]** signals. The HDRZ signals can be split if, for example, there is a Logic Tile mounted on both the top and bottom of the Core Tile and the Logic Tiles have different functions for the **Zx[127:0]** signals.

3.6.1 Data read/write control for AHB data

Interconnection between **HDATA[31:0]**, **HRDATA[31:0]**, and **HWDATA[31:0]** is selected by control signals **DATACTL[2:0]** from the Core Tile HDRZ. Figure 3-8 on page 3-27 shows an example of a Logic Tile controlling the data bus switches. The typical data bus modes are listed in Table 3-6.

See Core Tile PLD signals on page 3-30 for a description of the PLD interface.

Table 3-6 Data bus switch function

DATACTL[2:0]	Connection	Description
b111	None	Multiplexed read and write data bus in test chip (on HRDATA) and from Logic Tile. The HDATA bus is not used on either the Core Tile or Logic Tile.
b110	HDATA to HWDATA	Separate read (HRDATA) and write (HWDATA) data buses in test chip and from Logic Tile
bx00	HDATA to HWDATA, HRDATA to HWDATA	Separate read and write data buses from Logic Tile are combined to connect to single multiplexed data bus (either HRDATA or HWDATA) on test chip
b011	HRDATA to HWDATA	Separate read and write data buses in test chip and multiplexed HRDATA bus from Logic Tile. The HDATA bus is not used on either the Core Tile or Logic Tile.

Figure 3-8 Read/write control

If the **DATACTLx** signal is LOW, the corresponding switches are closed.

3.6.2 Through/Break control for HDRZ

Interconnection between **ZL[127:0]** and **ZU[127:0]** is selected by control signals **ZCTL[3:0]** from the PLD as shown in Figure 3-9. If the **ZCTLx** signal is LOW, the corresponding switches are closed.

See Core Tile PLD signals on page 3-30 for a description of the PLD interface.

Figure 3-9 Through/break control

3.7 Overview of Core Tile configuration

The test chip, clock source, and voltages levels on the Core Tile are configurable from input signals on the header connectors and signals output from the on-board PLD. In a final product, core configuration is static and the core configuration signals are tied HIGH or LOW and the voltage and clocks are fixed. However, the Core Tile allows you to program these signals for experimentation.

There are several ways that Core Tile configuration occurs:

- Signals present on the Core Tile connector HDRX:
 - control signals for the PLL in the test chip (PLLCTRL, PLLOUTDIV, PLLFBDIV, PLLREFDIV, and PLLBYPASS)
 - HCLKDIV divider value for the HCLKEXT outputs
 - internal memory enable (INITRAM), memory order (BIGENDIN and BIGENDOUT) and vector location memory (VINITHI)
 - configuration control signals CONFIGINIT and nCONFIGRST are used by some test chips to load configuration data from the AHB data bus.

HDRX signals are described in *Configuration signals on HDRX* on page 3-37.

- Configuration by the serial interface to the PLD on the Core Tile. (The PLD is normally controlled by a serial interface implemented in an FPGA present on an external Logic Tile.) The PLD controls the following signals:
 - the DAC inputs that select the voltages for the programmable regulators
 - the clock multiplexors
 - the HDRZ isolation switches,

PLD configuration signals are described in *Core Tile PLD signals* on page 3-30.

- Control registers in the test chip:
 - Registers in coprocessor 15 are typically used to control endian settings and memory management units.
 - Some test chips (the CT1136JF-S, for example) have internal registers for controlling the test chip clocks.

See the *Technical Reference Manual* for the core used in your test chip for details of register usage. See Chapter 5 *HBI-0131 Features specific to the CT1136JF-S*.

You can use an external JTAG unit such as Multi-ICE or RealView ICE to modify the contents of the test chip registers or internal memory. The contents can of course also be modified by an application program.

- Links present on the printed circuit board. The links, usually 0Ω resistors, are normally set at manufacture to select voltage and clock options. These links are normally not modified after manufacture. Some of the functions performed by links are:
 - voltage range for the programmable regulators
 - clock selected for connection to multiplexors
 - manufacturing identification number
 - voltage source for header and memory connectors.

The resistor links are set at manufacture and do not normally require modification. Changing the voltage regulator resistors can result in excessive voltages being applied to the test chip.

To change the configuration of the processor, program the appropriate values in the control registers implemented in the FPGA on the Logic Tile (or IM-LT3). Depending on the test chip present in the Core Tile, the contents of registers in the test chip might require modification. See the application note for your product configuration for details on the control registers.

3.7.1 Core Tile PLD signals

The PLD on the Core Tile performs the following functions:

- loading data to the DACs that control the programmable power supplies, see *Power supply control* on page 3-17
- selectively shutting down the regulators on the Core Tile, see *Power supply control* on page 3-17
- reading data from the ADCs that monitor the test chip voltages, see *Reading the voltages and currents* on page 3-23
- controlling the clock selection multiplexors, see *Clocks* on page 3-10
- setting the size of the data and instruction TCM and cache, see *Memory located inside test chip* on page 3-8
- isolating HDRZ signals, see *Through/Break control for HDRZ* on page 3-28.

The PLD is controlled by the serial interface signals listed in Table 3-7 on page 3-31. These signals typically connect to an attached Logic Tile or IM-LT3 Interface Module. The FPGA in the external tile contains registers that hold the values to send to the PLD and received values from the PLD. The FPGA also provides the serialization and deserialization logic required for the PLD interface.

—— Note	

The images for the Logic Tile FPGA and Core Tile PLD depend on the combination of boards that are in the stack. The application notes include FPGA and PLD images.

Table 3-7 PLD control signals

Signal	Description	
PLDCLK	Clocks data into or out of the PLD	
PLDD1	Serial data input to PLD	
PLDD0	Serial data output from PLD	
PLDRESETn	Reset selects mode for PLD (LOW is startup, HIGH is runtime configuration)	

The Core Tile PLD manages the Core Tile configuration and status signals listed in Table 3-8

Table 3-8 PLD configuration signals

Signal	Direction	Function	
ZCTL[3:0]	PLD output	Z Through control, see <i>Through/Break control for HDRZ</i> on page 3-28.	
CLKSEL[4:0]	PLD output	Clock selection, see <i>Clocks</i> on page 3-10.	
DACnCS[2:0]	PLD output	Chip select to DAC.	
DAC_DIN[2:0]	PLD output	Data to DAC, see Setting the VDDCORE voltage on page 3-21.	
ADC_nCS[1:0]	PLD output Chip select to ADC.		
ADC_CLK[1:0]	PLD input	Clock for data from ADC.	
ADC_SSTRB[1:0]	PLD input	Strobe for ADC. Indicates that a conversion has finished.	
ADC_DOUT[1:0]	PLD input	Data from ADC, see <i>Reading the voltages and currents</i> on page 3-23.	
PGOOD	PLD input	Power good indication from power supply regulators, see <i>PGOOD</i> signal on page 3-25.	

Table 3-8 PLD configuration signals (continued)

Signal	Direction	Function	
DMEMSIZE[2:0]	EMSIZE[2:0] PLD output Test chip data TCM configuration, see <i>Memochip</i> on page 3-8.		
IMEMSIZE[2:0]	PLD output	Test chip instruction TCM configuration, see <i>Memory located inside test chip</i> on page 3-8.	
MAN_ID[3:0]	PLD input	Board identification from resistor links. This is set at manufacture and identifies the board build.	
PWR_nSHDN[2:0]	PLD output	Shutdown to the Vdd core power supplies, see <i>Power supply control</i> on page 3-17.	

PLD function at power on

At power-on-reset, a controller in an external tile sends a configuration sequence to the PLD on the Core Tile as shown in Figure 3-10. The PLD control signals are described in Table 3-7 on page 3-31. **nSYSRST** is an external signal from an attached motherboard.

Figure 3-10 Power on signals to the Core Tile PLD

Table 3-9 lists the configuration and status signals that are received by or transmitted from the PLD at power on (after **nSYSPOR** goes HIGH).

Table 3-9 Power-on configuration signals by clock cycle

Clock	PLDD1	PLDD0	Description
-	LOW	LOW	No activity while nSYSPOR is LOW
0	LOW	LOW	First rising edge of clock after nSYSPOR goes HIGH
1	ZCTL[3]	MANID[3]	ZCTL data is clocked into the PLD
2	ZCTL[2]	MANID[2]	 and the state of the MANID links is clocked out of the PLD.
3	ZCTL[1]	MANID[1]	_
4	ZCTL[0]	MANID[0]	_
5	CLKSEL[5]	PLDID[3]	CLKSEL multiplexor data is
6	CLKSEL[4]	PLDID[2]	 clocked into the PLD and the internal PLD ID is clocked out.
7	CLKSEL[3]	PLDID[1]	_
8	CLKSEL[2]	PLDID[0]	_
9	CLKSEL[1]	PGOOD	_
10	CLKSEL[0]	-	_
11	DMEMSIZE[2]	-	The requested size for the
12	DMEMSIZE[1]	-	 TCM/cache data memory is clocked into the PLD.
13	DMEMSIZE[0]	-	
14	IMEMSIZE[2]	-	The requested size for the
15	IMEMSIZE[1]	-	 TCM/cache instruction memory is clocked into the PLD.
16	IMEMSIZE[0]	-	_
17	LOW	LOW	No further activity until nSYSRST goes HIGH

PLD function after power on

After the power-on configuration finishes, the PLD is inactive until the **nSYSRST** signal goes HIGH. If **nSYSRST** is HIGH, The PLD continuously receives DAC packets from the serial interface and transmits ADC packets to the serial interface as shown in Figure 3-11.

Figure 3-11 ADC and DAC data stream

——Note ————
After nSYSRST goes HIGH, the ADC and DAC data packets repeat continuously.

The format of the ADC packet is shown in Figure 3-12.

Figure 3-12 ADC packet format

The format of the DAC packet is shown in Figure 3-13 on page 3-35.

Figure 3-13 DAC packet format

Table 3-10 lists the PLD input and output signals after nSYSPOR goes HIGH.

Table 3-10 Run configuration signals by clock cycle

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
-	LOW	LOW	No activity while nSYSPOR is LOW
0	DACSELA[2]	ADCSELB[2]	First cycle after nSYSPOR goes HIGH. The
1	DACSELA[1]	ADCSELA[2]	DACSEL signals select which DAC value is transmitted in the current packet.
2	DACSELA[0]	ADCSELB[1]	The value of the ADCSEL signals indicate the ADC value that is transmitted in the
3	LOW	ADCSELA[1]	current packet.
4	DACDIN[7]	ADCSELB[0]	Start of DAC data.
5	DACDIN[6]	ADCSELA[0]	-
6	DACDIN[5]	LOW	-
7	DACDIN[4]	LOW	-
8	DACDIN[3]	LOW	-
9	DACDIN[2]	LOW	-
10	DACDIN[1]	LOW	-
11	DACDIN[0]	LOW	-
12	PWR_nSHDN[2]	LOW	Shutdown settings for power supply are clocked into the PLD.
13	PWR_nSHDN[1]	LOW	-
14	PWR_nSHDN[0]	LOW	-

Table 3-10 Run configuration signals by clock cycle (continued)

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
15	LOW	LOW	-
16	DACSELA[2]	HIGH	Second DAC packet starts with DAC
17	DACSELA[1]	HIGH	— selection bits.
18	DACSELA[0]	LOW	-
19	LOW	LOW	-
20	DACDIN[7]	ADC_DOUTB[11]	ADC data starts. DAC data starts.
21	DACDIN[6]	ADC_DOUTA[11]	-
22	DACDIN[5]	ADC_DOUTB[10]	-
23	DACDIN[4]	ADC_DOUTA[10]	-
24	DACDIN[3]	ADC_DOUTB[9]	-
25	DACDIN[2]	ADC_DOUTA[9]	-
26	DACDIN[1]	ADC_DOUTB[8]	-
27	DACDIN[0]	ADC_DOUTA[8]	-
28	PWR_nSHDN[2]	ADC_DOUTB[7]	Shutdown settings for power supply are
29	PWR_nSHDN[1]	ADC_DOUTA[7]	clocked into the PLD.
30	PWR_nSHDN[0]	ADC_DOUTB[6]	
31	LOW	ADC_DOUTA[6]	
32	DACSELA[2]	ADC_DOUTB[5]	Third DAC packet starts.
33	DACSELA[1]	ADC_DOUTA[5]	-
34	DACSELA[0]	ADC_DOUTB[4]	-
35	LOW	ADC_DOUTA[4]	-
36	DACDIN[7]	ADC_DOUTB[3]	Start of DAC data
37	DACDIN[6]	ADC_DOUTA[3]	-
38	DACDIN[5]	ADC_DOUTB[2]	-

Table 3-10 Run configuration signals by clock cycle (continued)

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
39	DACDIN[4]	ADC_DOUTA[2]	-
40	DACDIN[3]	ADC_DOUTB[1]	-
41	DACDIN[2]	ADC_DOUTA[1]	-
42	DACDIN[1]	ADC_DOUTB[0]	-
43	DACDIN[0]	ADC_DOUTA[0]	End of ADC data. End of DAC packet.
44	PWR_nSHDN[2]	LOW	Shutdown settings for power supply are
45	PWR_nSHDN[1]	LOW	clocked into the PLD.
46	PWR_nSHDN[0]	LOW	
47	LOW	LOW	-
48	DACSELA[2]	LOW	Fourth DAC packet starts.
49	DACSELA[1]	PGOOD	Power good signal is clocked out of PLD. End of ADC packet.
50	DACSELA[0]	LOW	-

3.7.2 Configuration signals on HDRX

The signals listed in Table 3-11 are present on HDRX and are also used for configuring the Core Tile. Unless otherwise indicated, signal changes immediately affect the configuration. These signals typically connect to a Logic Tile (or IM-LT3 Interface Module) connected to the Core Tile.

Table 3-11 Configuration signals on header connectors

Signal	Direction	Description
PLLFBDIV[7:0]	Input	Feedback divisor for PLL logic. Clock dividers should be set at reset and not changed. Changing the clock dividers might cause an out-of-range clock or a glitch in the clock signal.
PLLREFDIV[3:0]	Input	Reference divisor for PLL logic.
PLLOUTDIV[3:0]	Input	Output divisor for PLL logic.
HCLKDIV[2:0]	Input	Divisor for PLL output frequency to HCLK frequency.

Table 3-11 Configuration signals on header connectors (continued)

Signal	Direction	Description
INITRAM	Input	Use this signal to enable (HIGH) or disable (LOW) the internal (tightly-coupled) SRAM. The signal is tested at reset.
VINITHI	Input	Use this signal to initialize the vector base address to 0xFFFF0000 (HIGH) or 0x00000000 (LOW). If the high vector address is used, ensure that there is physical memory at this location. The signal is tested at reset.
PLLBYPASS	Input	Use this signal to control clock usage by processors that contain an internal PLL. When PLLBYPASS is HIGH, the processor uses the clock signal supplied on its PLLCLKIN signal pin. When PLLBYPASS is LOW, the processor uses the clock signal supplied by its internal PLL (derived from PLLCLKIN).
BIGENDIN	Input	Use this signal to control whether the big-endian or little-endian memory organization is used. This signal is typically modified by setting a bit in CP15. When BIGENDIN is HIGH, the processor uses big-endian memory organization. The signal is tested at reset.
BIGENDOUT	Output	Indicates whether the big-endian or little-endian memory organization is used. When BIGENDOUT is HIGH, the processor uses big-endian memory organization.
HRDATA[31:0]	Input/output	Some test chips (the ARM1136JF-S for example) load configuration data at reset from the data bus.
CONFIGINIT	Input	Some test chips load test chip configuration from the HDATA bus when this signal goes HIGH.
nCONFIGRST	Input	Some test chips reset the test chip configuration to its default values when this signal is LOW.

3.7.3 Core configuration from ARM CP15 and on-chip registers

Some processor configuration settings (for example, cache enable/disable, MMU enable/disable, TCM enable/disable, and translation registers) are controlled by setting bits in coprocessor 15 (CP15) registers.

For example, set bit 7 of CP15 register r1 to select big-endian operation. For more information on system control via the CP15 registers, see the *Technical Reference Manual* for the processor.

3.8 JTAG support

JTAG signals are present on both the upper and lower HDRZ connectors. An external board provides the JTAG connector and the routing of the JTAG signals from the connector to HDRZ (see *JTAG signals*). The Core Tile routes the JTAG scan path through devices on the board. The logic devices that are placed in the Core Tile scan chain depend on the JTAG mode:

Debug mode Debug mode is selected by default. When a jumper is *not* fitted at the CONFIG link on the external Interface Module or baseboard. It is the mode used for general system development and debug, including using trace, see *Embedded Trace support* on page 3-47. In this mode, the JTAG signals flow through the Debug Scan Chain, this typically just connects to the system microprocessor.

Configuration mode

In configuration mode, all FPGAs and PLDs in the system are placed into the scan chain. This mode allows the programmable logic devices in the system to be reprogrammed.

To select configuration mode, fit a jumper to the CONFIG link on the Interface Module or baseboard. This pulls the **nCFGEN** signal LOW on the system and reroutes the JTAG scan path.

3.8.1 JTAG signals

There are two separate JTAG paths through the Core Tile:

- One is used for configuration of programmable devices (the PLD for example). If the test chip has a boundary scan interface, this is included in the scan chain. These JTAG signals are identified by the C prefix.
- One is used in debug mode to connect to the debug TAP controller in the test chip. These JTAG signals are identified by the **D** prefix.

Table 3-12 on page 3-40 provides a description of the JTAG signals.

Note
In the description in Table 3-12 on page 3-40, the term JTAG equipment refers to any
hardware that can drive the JTAG signals to devices in the scan chain. Typically,
Multi-ICE or RealView ICE is used, although you can also use hardware from
third-party suppliers to debug ARM processors.

Some signals are split in to configuration and debug versions. For example, $\mathbf{D}_{-}\mathbf{TDO}$ is the data signal for the debug mode chain and $\mathbf{C}_{-}\mathbf{TDO}$ is the data signal for the configuration mode chain.

Table 3-12 JTAG signal description

Name	Description	Function
nBSTAPEN	Boundary scan TAP enable	In configuration mode, the boundary scan TAP logic (if present) in a test chip is enabled.
DBGRQ	Debug request (from JTAG equipment)	DBGRQ is a request for the processor core to enter the debug state.
DBGACK	Debug acknowledge (to JTAG equipment)	DBGACK indicates to the debugger that the processor core has entered debug mode.
DONE	FPGA configured	DONE is an open-collector signal that indicates when FPGA configuration is complete. Although this signal is not a JTAG signal, it does affect nSRST . The DONE signal is routed between all FPGAs in the system. The master reset controller on the motherboard senses this signal and holds all the boards in reset (by driving nSRST LOW) until all FPGAs are configured.
nCFGEN	Configuration enable (from jumper on the board at the bottom of the stack)	nCFGEN is an active LOW signal used to put the boards into configuration mode. In configuration mode all FPGAs and PLDs are connected to the scan chain so that they can be configured by the JTAG equipment.
nRTCKEN	Return TCK enable (from Core Tile to motherboard)	nRTCKEN is an active LOW signal driven by any Core Tile that requires RTCK to be routed back to the JTAG equipment. If nRTCKEN is HIGH, the motherboard drives RTCK LOW. If nRTCKEN is LOW, the motherboard drives the TCK signal back up the stack to the JTAG equipment.

Table 3-12 JTAG signal description (continued)

Name	Description	Function
nSRST	System reset (bidirectional)	nSRST is an active LOW open-collector signal that can be driven by the JTAG equipment to reset the target board. Some JTAG equipment senses this line to determine when a board has been reset by the user. The open collector nSRST reset signal can be driven LOW by the reset controller on the Core Tile to cause the motherboard to reset
		the whole system by driving the motherboard signal nSYSRST LOW.
		This is also used in configuration mode to control the initialization pin (nINIT) on the FPGAs.
		Though not a JTAG signal, nSRST is described because it can be controlled by JTAG equipment.
nTRST	Test reset (from JTAG equipment)	This active LOW open-collector signal is used to reset the JTAG port and the associated debug circuitry on the processor. It is asserted at power-up by each module, and can be driven by the JTAG equipment. This signal is also used in configuration mode to control the programming pin (nPROG) on FPGAs.
RTCK, D_RTCK	Return TCK (to JTAG equipment)	Some devices sample TCK (for example a synthesizable core with only one clock), and this has the effect of delaying the time at which a component actually captures data. RTCK is a mechanism for returning the sampled clock to the JTAG equipment, so that the clock is not advanced until the synchronizing device captured the data. In <i>adaptive clocking mode</i> , Multi-ICE is required to wait until it detects an edge on RTCK before changing TCK. In a multiple device JTAG chain, the D_RTCK output from a component connects to the TCK input of the down-stream device. The RTCK signal on the module connectors HDRB returns TCK to the JTAG equipment.
		Note
		If an Integrator motherboard is present (nMBDET LOW), the RTCK signal to the motherboard is gated with RTCKEN. nRTCKEN is HIGH if there are no synchronizing components in the scan chain the RTCK signal returned from the motherboard is disabled.
		D_RTCK is the RTCK signal in the debug scan chain.

Table 3-12 JTAG signal description (continued)

Name	Description	Function
TCK, D_TCK, C_TCK	Test clock (from JTAG equipment)	TCK synchronizes all JTAG transactions. TCK connects to all JTAG components in the scan chain. Series termination resistors are used to reduce reflections and maintain good signal integrity. TCK flows up the stack of modules and connects to each JTAG component. However, if there is a device in the scan chain that synchronizes TCK to some other clock, then all down-stream devices are connected to the RTCK signal on that component (see RTCK). D_TCK is the clock for the debug mode chain and C_TCK is the
	m . 1	clock for the configuration mode chain.
TDI, D_TDI, C_TDI	Test data in (from JTAG equipment)	TDI goes up the stack of tiles from the baseboard (or Interface Module) and then back down the stack (as TDO) connecting to each component in the scan chain.
		D_TDI is the data signal for the debug mode chain and C_TDI is the data signal for the configuration mode chain.
TDO, D_TDO, C_TDO	Test data out (to JTAG equipment)	TDO is the return path of the data input signal TDI . For a stack of Versatile products, TDI goes up to the top of the stack and returns down as TDO . The JTAG components are connected in the return path so that the length of track driven by the last component in the chain is kept as short as possible.
		D_TDO is the data signal for the debug mode chain and C_TDO is the data signal for the configuration mode chain.
TMS	Test mode select (from JTAG equipment)	TMS controls transitions in the tap controller state machine. TMS connects to all JTAG components in the scan chain.

JTAG data and clock logic

Figure 3-14 on page 3-43 shows the JTAG clock and data signals.

Figure 3-14 on page 3-43 shows the FFAO clock and data signals.
Note
Single-pole switches are closed if a HIGH signal is present at the control input. Multi-pole switch positions are marked with a 1 for the condition where a HIGH signal is present at the control input.
For Figure 3-14 on page 3-43, nCFGEN and nTILEDET are both HIGH indicating normal debug mode and no tile connected above the Core Tile.

Figure 3-14 JTAG clock and data signals

The clock and data flow in debug and config mode are different. Figure 3-15 on page 3-44 and Figure 3-16 on page 3-44 show the equivalent flow for each mode. The switches have been replaced by direct connections and the diagram simplified. There is not a tile present above the Core Tile (nTILEDET is pulled HIGH).

Figure 3-15 JTAG data flow in debug mode

Figure 3-16 JTAG data flow in config mode

JTAG reset and configure logic

Figure 3-17 shows the reset and TMS signals.

Lower Core Tile headers

Figure 3-17 JTAG reset signals

3.8.2 Debug communications interrupts

The processor core incorporates EmbeddedICE logic that contains a communications channel used for passing information between the core and the JTAG equipment. The debug communications channel is implemented as coprocessor 14.

The processor accesses the debug communications channel registers using MCR and MRC instructions. The JTAG equipment reads and writes the register using the scan chain. For a description of the debug communications channel, see the Technical Reference Manual for your test chip.

The debug interrupt signals from the test chip are connected to HDRX pin 66 (COMMTX) and pin 68 (COMMRX).

3.9 Embedded Trace support

Note —

Many ARM test chips incorporate an Embedded Trace Macrocell (ETM).

The trace macrocell enables you to carry out real-time debugging by connecting external trace equipment to the Core Tile. To trace program flow, the ETM broadcasts branch addresses, data accesses, and status information through the trace port. Later in the debug process, the complete instruction flow can be reconstructed by debug software running on a host machine that is connected to the RealView Trace or Multi-Trace interface.

The logic analyzer connection is a high-density AMP Mictor connector. The pinout for	r
this connector is provided in <i>Trace Port connectors</i> on page 6-27.	

The presence (and size) of the ETM packets depends on the test chip fitted to the board. ETM functionality is not guaranteed for all test chip versions.

HBI-0131 Hardware Description

Chapter 4

HBI-0131 Features specific to the CT926EJ-S

This chapter describes features specific to the CT926EJ-S Core Tiles that use the HBI-0131 printed circuit board. It contains the following sections:

- *ARM926EJ-S test chip characteristics* on page 4-2
- *Clocks* on page 4-3
- *Memory map* on page 4-6
- *Voltage control* on page 4-7.

Note	
Additional information on the C	CT926EJ-S might be available on the release notes
supplied with the product.	

4.1 ARM926EJ-S test chip characteristics

The CT926EJ-S Core Tile test chip conforms to the generic test chip specification.

ARM926EJ-S processor macrocell in the test chip is based on the ARM9EJ-S™ RISC processor core. The macrocell is user-code compatible with code written for earlier versions of the ARM architecture (for example, ARM7TDMI™ and ARM9TDMI™). They also support the instructions specific to the ARMv5TE architecture. The additional instructions improve DSP performance.

The ARM926EJ-S combines the ARM9EJ-S core with:

- instruction and data caches
- tightly coupled instruction and data SRAM
- write buffer
- memory management unit
- ETM9 Embedded Trace Macrocell.

See the *ARM926EJ-S Technical Reference Manual* for more information on the ARM926EJ-S processor.

4.2 Clocks

Clock related signals for the CT926EJ-S are shown in Figure 4-1.

Figure 4-1 Clock signals

The ARM926EJ-S test chip on the Core Tile accepts or generates the following clocks:

REFCLK A reference clock to the test chip clock dividers. This is the source for the PLL incorporated into the test chip. The PLL generates the core clock **CLK** that is used internally in the test chip.

CLK the core clock (this is internal to the test chip). The frequency of **CLK** is controlled by a PLL within the test chip.

The internal PLL can be bypassed by setting **PLLBYPASS** HIGH. This sets **CLK** to the same frequency as the reference clock and allows you to model implementations where the core does not have a PLL.

HCLK The test chip produces the HCLK signal by dividing CLK by a value of between 1 and 8 as determined by HCLKDIV[2:0]. The divider can be effectively bypassed by setting a divide by value of 1. The HCLK signal is distributed by the test chip on five identical signals:

- HCLKEXT0 can be selected for CLK NEG UP OUT
- HCLKEXT1 can be selected for CLK_NEG_DN_OUT
- HCLKEXT2 is output on the upper header as X HCLK UP
- HCLKEXT3 is output on the lower header as X HCLK DN
- HCLKEXT4 can be selected for CLK GLOBAL.

See *Clocks* on page 3-10 and the *ARM926EJ-S Technical Reference Manual* for details of the Core Tile clock signals.

The core clock frequency for the CT926EJ-S is calculated from:

CLK = (REFCLK/(PLLREFDIV[3:0]+1) * (PLLFBDIV[7:0]+1)) / (PLLOUTDIV[2:0]+1)

That is:

137kHz < REFCLK/PLLRFDIV[3:0] + 1 < 275MHz

55MHz < CLK < 275MHz

The ARM926EJ-S test chip does not use the **HCLKIN** signal. The test chip **HCLK** is always generated internally based on the **REFCLK** input and the dividers.

The ARM926EJ-S Core Tile has a manufacturing test block that, if enabled, changes the clock division ratios and disables the interrupt request signals. The test block can be disabled by writing 0x0 to the USERIN bits of the SYS_CONFIGDATA1 register on the Emulation Baseboard. The block can also be disabled by using a FPGA image in the baseboard that drives the USERIN[3] signal LOW.

If the PLLBYPASS signal is HIGH, the core uses the external clock instead of the internal PLL. (This signal is typically LOW.)

4.3 Memory map

The behavior of memory accesses from the core depend on the operating mode and the specific test chip. In general, bus accesses in the range 0x3FF00000–0x3FFFFFFF are reserved for on-chip registers and other accesses are presented on the test chip external 32-bit wide AHB interface.

4.4 Voltage control

The CT926EJ-S Core Tile voltage connections are listed in Table 4-1.

Table 4-1 Supply voltage connections

Voltage	Source	Description
ARM_VDDCORE1, ARM_VDDCORE2, ARM_VDDCORE3, ARM_VDDCORE4, ARM_VDDCORE5, and ARM_VDDCORE6	VDDCOREA regulator	All core voltages are supplied from the VDDCOREA regulator.
VDDIO	3.3V	The I/O voltage is supplied from the HDRX 3.3V power blade (See <i>Power supply control</i> on page 3-17).
VDDPLL1	VDDPLL regulator	Supplied from the dedicated PLL regulator.
VDDPLL2	VDDPLL regulator	Supplied from the dedicated PLL regulator.

HBI-0131 Features specific to the CT926EJ-S

Chapter 5

HBI-0131 Features specific to the CT1136JF-S

This chapter describes features specific to the CT1136JF-S Core Tiles that use the HBI-0131 printed circuit board. It contains the following sections:

- *ARM1136JF-S test chip characteristics* on page 5-2
- *Clocks* on page 5-3
- *AHB memory map* on page 5-8
- *Vectored Interrupt Controller (VIC) block* on page 5-22
- *Voltage control* on page 5-23.

—— Note ———
Additional information on the CT1136JF-S might be available on the release notes
supplied with the product.

5.1 ARM1136JF-S test chip characteristics

The CT1136JF-S Core Tile uses test chips that conform to the generic test chip specification. The test chip in the CT1136JF-S contains:

- a Clock Generator Control Block that configures the clocking scheme for the core
- an AHB matrix
- a vectored interrupt controller (VIC)
- Tightly-coupled memory (TCM)
- Data and instruction cache
- The test chip is contains an ETM11RV embedded trace macrocell.

See the *ARM1136JF-S Technical Reference Manual* for further details of the TCMs and cache memory. See the *ETM11RV Technical Reference Manual* for more details on the ETM.

5.2 Clocks

The ARM1136JF-S can be operated with synchronous or asynchronous core and internal bus clocks.

If the ARM1136JF-S is operating synchronously, the core frequency is divided to clock the internal bus and the Core Tile local memory bus. The dividers are programmable and set the bus frequencies.

5.2.1 Test chip clock control

During a power-on reset the value on the **HRDATA[31:0]** pins is loaded into the test chip PLL configuration register. The value comes from the attached Logic Tile FPGA image and typically sets:

- the clock circuit to synchronous operation with a ratio of 1:5:5
- **REFCLK** is an input to the test chip
- the PLL control is set to BYPASS by default
- the CPU core runs from the core clock CLK.

The core clock frequency can be set from the clock control logic on the external Logic Tile. The ARM1136JF-S test chip does not use the HCLK DIV functions implemented on other Core Tiles. For details of the clock selection and routing logic that is inside the test chip, see the *ARM1136JF-S Technical Reference Manual*.

—— Note ———
If the PLLBYPASS signal is HIGH, the core uses the external clock instead of the internal PLL. (This signal is typically LOW.)

Figure 5-1 Clock selection

The clocks generated by the clock and reset generator are controlled by the Clock Generator Control Register at 0x3F200080. Table 5-1 lists the format of the Clock Generator Control Register.

Table 5-1 Clock Generator Control Register

Bit	Description
[31]	Reserved, should be zero
[30]	Value of HSYNCENIRW and SYNCENIRW when the port is configured as asynchronous:
	0 = HSYNCENIRW and SYNCENIRW signals are driven to 0
	1 = HSYNCENIRW and SYNCENIRW signals are driven to 1.
[29]	Value of HSYNCENPD and SYNCENPD when the port is configured as synchronous:
	0 = HSYNCENPD and SYNCENPD signals are driven to 0
	1 = HSYNCENPD and SYNCENPD signals are driven to 1.
[28]	Selects the clock source for HCLKI and HCLKE:
	0 = HCLKI and HCLKE derived from PLLCLK
	1 = HCLKI and HCLKE derived from HCLKIN .
[27]	Configures Instruction, Data Read, and Data Write ports of the ARM1136JF-S test chip as synchronous or asynchronous:
	If Bit 27 is set to 0 the ports are configured as synchronous:
	HCLKIRW is driven from CLK
	HCLKIRWEN is driven from HCLKIEN
	HSYNCENIRW and SYNCENIRW are driven to 1.
	If Bit 27 is set to 1 the ports are configured as asynchronous:
	HCLKIRW is driven from HCLKI
	HCLKIRWEN is driven to 1
	HCLKIRW is driven from HCLKI
	HSYNCENIRW and SYNCENIRW are driven from bit 30 of this register.

Table 5-1 Clock Generator Control Register (continued)

Bit	Description
[26]	Configures whether Peripheral and DMA ports of the ARM1136JF-S processor are configured as synchronous or asynchronous:
	If Bit 26 is set to 0 the ports are configured as synchronous:
	HCLKPD is driven from CLK
	HCLKPDEN is driven from HCLKIEN
	HSYNCENPD and SYNCENPD are driven to 1
	If Bit 26 is set to 1 the ports are configured as asynchronous:
	HCLKPD is driven from HCLKI
	HCLKPDEN is driven to 1
	HSYNCENPD and SYNCENPD are driven from bit 30 of this register.
[25:20]	Sets the clock ratio for the HCLKE domain.
[19:14]	Sets the clock ratio for the HCLKI domain.
[13:8]	Sets the clock ratio for the CLK domain.
[7:0]	Reserved, should be zero

The programmed clock ratios determine the divisor between the source clock and the output clock. The source clock for **CLK** is always **PLLCLK** (the signal **PLLBYPASS** must be LOW). The divisor selected is given by the following equation:

Divisor = Programmed ratio +1

The maximum divisor that you can program is 63.

Not all values of the Clock Generator Control Register are legal. The following restrictions apply:

- 1. **HCLKE** ratio must be an integer multiple of the **HCLKI**.
- 2. If you program the ports to be synchronous, that is if bit 27 is 0 and bit 26 is 0, you must program the **CLK** ratio to be 1:1.
- 3. If you select the clock source for **HCLKI** and **HCLKE** from **HCLKIN** (bit 28 is set to 1), then you must program the ports to be asynchronous (set bits 27 and 26 to 1). You must also set the **HCLKI** ratio must be 1:1.

Changes to bits [28:26] of this register only take effect during reset (**ARM_nRESET** is LOW). The changes to the clock ratios can take place at any point. You must exercise care to ensure that the programming of bits [28:26] have propagated to the clock

generator before selecting an asynchronous ratio. This means that the sequence for programming an asynchronous clock ratio involves setting bits [27:26], forcing a simple reset, and then programming the asynchronous clock ratio.

The clocks are disabled if **ARM_nPORESET** is LOW.

Changing any of the clock ratio values only takes effect during a reset. This is because clock ratio values are propagated from the register to the clock dividers during a reset only. This reset might be the same reset used to propagate changes in the asynchronous control bits, bits[28:26].

The minimum duration of an externally applied reset on the signal **ARM_nRESET** is one clock cycle of the slowest clock.

The Clock Divisor Register is accessed using the AHBPCAPT block.

The reset values of the Clock Generator Control Register are defined from the Configuration Register, see *Configuration Register* on page 5-21.

5.2.2 Synchronous/asynchronous clock control

Under normal operation, the clock ratios can be changed dynamically by accessing the Clock Generator Control Register at address 0x3F200080. However, the synchronous/asynchronous mode of operation cannot be changed dynamically and requires the test chip to be reset.

During reset, predefined bits in the same format as the Test Chip Clock Generator are presented on **HRDATA**. This value is sampled on the rising edge of **CONFIGINIT**, when **nCONFIGRST** is HIGH and **ARM_nPORESET** is LOW, and written into the Test Chip Clock Generator Control Register. This programs the default clock ratios for the CP image from a power on reset

In asynchronous mode, **HCLKIN** is driven directly from **BUSCLK**. This enables you to drive core clock **REFCLK** independently from **HCLKIN**.

5.3 AHB memory map

This section describes the AHB interfaces present on the test chip.

5.3.1 AHB matrix and memories block

The AHB matrix and memories block provides a routing network for all memory accesses generated by the ARM1136JF-S ports. Memory accesses can be routed to:

- RAM implemented on the test chip
- memory mapped peripherals contained on the test chip
- the external AHB interface of the test chip.

The implementation of this block is constrained by the pinout of the test chip, and requires the external AHB interface to have a 32-bit data bus. The ARM1136JF-S processor has four 64-bit AHB-Lite master ports, and one 32-bit AHB-Lite master port. Table 5-2 describes the five AHB-Lite interfaces.

Table 5-2 AHB interfaces

Port	Type of port	Direction	Data bus width
ARM1136 Instruction Port	AHB-Lite	Input	64
ARM1136 Data Read Port	AHB-Lite	Input	64
ARM1136 Data Write Port	AHB-Lite	Output	64
ARM1136 DMA Port	AHB-Lite	I/O	64
ARM1136 Peripheral Port	AHB-Lite	I/O	32

The RAM implemented on the test chip is split into two parts:

- a large area of 64-bit wide RAM (the primary test chip RAM)
- a 8KB block of 32-bit wide RAM (the secondary test chip RAM).

These blocks, combined with the external AHB interface, enable accesses from any four ports to occur concurrently. Figure 5-2 on page 5-9 shows the AHB matrix and memories

Note	
he HADDRx signal names in Figure 5-2 on page 5-9 indicate the different AHE	3
ises.	

Figure 5-2 AHB matrix and bus organization

For details of components, see the AMBA Design Kit Technical Reference Manual and AMBA Extension Infrastructure Blocks Technical Reference Manual.

5.3.2 External AHB interface

All accesses that do not access the primary test chip RAM, the secondary test chip RAM, or the on-chip memory-mapped peripherals are presented on the test chip external 32-bit wide AHB interface. This is a full AHB interface provides the interface to the majority of the memory map of the test chip. The rest of the test chip memory infrastructure is implemented using AHB-Lite and multi-layer AHB. For more details on the memory map see the documentation for the motherboard or the application note covering the combination of Core Tile and motherboard you are using.

5.3.3 AHB address map

Table 5-3 lists the base address of the various ARM1136JF-S test chip AHB peripherals. These peripherals are multiply mapped throughout their allocated address ranges. The table also indicates the ARM1136JF-S AHB-Lite ports that are able to access each peripheral.

Table 5-3 Test chip address map

Module name	Address	Accessible from	Size	Description
XRAM2Kx32	0x3F000000- 0x3F0FFFFF	All ports	1MB	Internal 32-bit secondary test chip RAM. 8KB RAM is typically implemented within this space.
AHBVIC	0x3F100000- 0x3F1FFFFF	All ports	1MB	Control port for VIC.
AHBPCAPT	0x3F200000- 0x3F2FFFFF	All ports	1MB	Pin capture and ETM11RV validation control.
Etb11TraceSRAM	0x3F380000- 0x3F3FFFFF	All ports	512KB	ETB11 memory.
ETBREG	0x3F300000- 0x3F37FFFF	All ports	512KB	ETB11 registers.

Table 5-3 Test chip address map (continued)

Module name	Address	Accessible from	Size	Description
SPARE	0x3F400000- 0x3F7FFFFF	All ports	4MB	SPARE (access is presented on the test chip AHB interface).
TestChipRAM (BANK1)	0x3F800000- 0x3FFFFFF	Instruction read, Data Read, Data Write	4MB	Internal 64-bit primary test chip RAM bank. Interleaved on 1KB boundaries with BANK0. Actual size of this RAM depends on the space available within the test chip, but typically it is 256KB.
TestChipRAM (BANK0)	0x3F800000- 0x3FFFFFF	Instruction read, Data Read, Data Write	4MB	Internal 64-bit primary test chip RAM bank. Interleaved on 1KB boundaries with BANK1. Actual size of this RAM depends on the space available within the test chip, but typically it is 256KB.

For ARM test chips, accesses in the range 0x3FF00000–0x3FFFFFF are normally reserved for on-chip registers and other accesses are presented on the test chip external 32-bit wide AHB interface

5.3.4 Block disables

Table 5-4 lists block disables controlled from the Configuration Register and defined for the memory block. The programming of these registers is described in *Configuration Register* on page 5-21.

Table 5-4 External control inputs

Signal	Description
BLKDISABL[5]	Disables the AHBRAM0 and AHBRAM1 primary test chip RAM blocks. Accesses are presented on the test chip AHB interface if this bit is configured HIGH.
BLKDISABL[4]	Disables the AHBETB Mem address range. Accesses are presented on the test chip AHB interface if this bit is configured HIGH.
BLKDISABL[3]	Disables the AHBETB Reg address range. The accesses are presented on the test chip AHB interface if this bit is configured HIGH.

Table 5-4 External control inputs (continued)

Signal	Description
BLKDISABL[2]	Disables the AHBPCAPT block. Accesses are presented on the test chip AHB interface if this bit is configured HIGH.
BLKDISABL[1]	Disables the AHBVIC block. Accesses are presented on the test chip AHB interface if this bit is configured HIGH.
BLKDISABL[0]	Disables the AHBRAM2 secondary test chip RAM block. Accesses are presented on the test chip AHB interface if this bit is configured HIGH.

5.3.5 AHB submodules

This section describes the submodules in the test chip.

Bus matrix 64

The 64-bit bus matrix, provides a connection between the Instruction Read, Data Read, and Data Write ports of the ARM1136JF-S core to the primary test chip RAM blocks. There are other connections to pass the accesses in parallel to the rest of the memory system. The 64-bit bus matrix consists of five slave ports, and three master ports.

The bus matrix 64 includes extensions to AHB for the use of byte lane strobes, providing support for **HUNALIGN** and **HBSTRB[n:0]**.

Bus matrix arbitration is fixed IR-DR-DW (highest to lowest priority).

Primary test chip RAMs

The two 64-bit wide RAMs are designed to be fast RAM blocks that can be accessed efficiently close to the core, enabling a high-performance memory system.

The three primary ports of the ARM1136JF-S core (the Instruction Read, Data Read, and Data Write ports) are each 64 bits wide, and have accesses to the two 64-bit wide primary test chip RAMs, and to other parts of the memory map. You cannot use the remaining two ports, the DMA port and Peripheral port, to access the primary test chip RAMs. The primary test chip RAMs exist to provide a relatively high capacity, high bandwidth, and low latency area of RAM that can be accessed by the primary ports. The primary RAMs are interleaved on 1KB boundaries.

AHB 1:1 bridges

The AHB 1:1 bridges connect to three of the master ports in the bus matrix 64, providing a cycle boundary between the two bus matrices, so avoiding an unacceptable critical path. These bridges include extensions to AHB for the use of byte lane strobes providing support for **HUNALIGN** and **HBSTRB[n:0]**.

Byte lane strobe converter

The byte lane strobe converter block takes in ARM11 AMBA extension signals that include **HUNALIGN** and **HBSTRB[n:0]**, and provide a mirror slave AHB port on the other side without **HBSTRB[n:0]** or **HUNALIGN**, that is AMBA v2.0 compliant signals. These blocks are inserted so that any slaves after these blocks do not have to support **HUNALIGN** and **HBSTRB[n:0]**.

The byte lane strobe converters are implemented only for ports that can do unaligned writes. These are the Data Write port and the DMA port.

Downsizer 64-bit to 32-bit

The downsizer converts an AMBA AHB v2.0 with 64-bit data bus to the same type of bus, but with a 32-bit data bus. It arranges for two accesses to be performed on the narrow side for each wide (64-bit) access.

Secondary test chip RAM

One of the AHB peripherals connected to the bus matrix 32 is a 32-bit SRAM to give a maximum of four parallel accesses being handled in the design. The secondary test chip RAM exists to increase the number of regions of RAM that can be accessed concurrently. It consists of a simple 32-bit 8KB block of RAM which is implemented in parallel with the on-chip peripherals.

Bus matrix 32

Bus matrix arbitration must be fixed IR-DR-DW-DMA-PERIPH (highest to lowest priority).

You can configure bus matrix blocks to have round-robin or fixed priority. The ARM1136JF-S test chip bus matrix (32-bit) is a fixed priority block. Input port 0 has the highest priority, and the priority decreases as the input port number increases.

AHB N:1 bridge

The AHB N:1 bridge provides the boundary between the **HCLKI** and the **HCLKE** clock domains. The clock ratio between **HCLKI** and **HCLKE** can be any integer value, including 1.

Lite2AHB converter

To convert from an AHB-Lite to full AHB functionality, a Lite2AHB converter block is used. This provides a full AHB port at the external AHB interface.

5.3.6 AHB slaves and support blocks

There are various AHB slaves connected to the bus matrix port M1. Standard AHB Decoder and AHB MuxS2M blocks are required to support the connection of multiple slaves to a single port. Table 5-5 lists the AHB slaves. See the *AMBA Specification (Rev 2.0)* for details on how to connect up an AMBA AHB system.

Table 5-5 AHB slaves

Component	Description
AHBVIC	Control port for the Vectored Interrupt Controller
AHBPCAPT	Pin capture block.
AHBRAM2	32-bit AHB SRAM. This RAM is 8KB.
AHBETB	ARM11 Embedded Trace Buffer (ETB11) Control.

The base address of these AHB slave ports is defined in *AHB address map* on page 5-10.

5.3.7 AHBPCAPT slave registers

Table 5-6 lists the addresses of the ARM1136JF-S AHBPCAPT Slave Registers.

Table 5-6 ARM1136JF-S AHBPCAPT Slave Registers

Address	Туре	Register
0x3F200000	Read/write	ARM1136JF-S Pin Capture Register
0x3F200010	Read-only	Test Chip Memory Size Register
0x3F200020	Read-only	Instruction AHB Port Register 0
0x3F200024	Read-only	Instruction AHB Port Register 1
0x3F200028	Read-only	Instruction AHB Port Register 2
0x3F200030	Read-only	Data Read AHB Port Register 0
0x3F200034	Read-only	Data Read AHB Port Register 1
0x3F200038	Read-only	Data Read AHB Port Register 2
0x3F200040	Read-only	Data Write AHB Port Register 0
0x3F200044	Read-only	Data Write AHB Port Register 1
0x3F200048	Read-only	Data Write AHB Port Register 2
0x3F200050	Read-only	DMA AHB Port Register 0
0x3F200054	Read-only	DMA AHB Port Register 1
0x3F200058	Read-only	DMA AHB Port Register 2
0x3F200060	Read-only	Peripheral AHB Port0 Register
0x3F200064	Read-only	Peripheral AHB Port1 Register
0x3F200068	Read-only	Peripheral AHB Port2 Register
0x3F200080	Read/write	Clock Generator Control Register
0x3F2000C0	Read/write	Test Chip Control Register
0x3F200100	Read-only	ETM11RV Pin Capture1 Register
0x3F200104	Read-only	ETM11RV Pin Capture2 Register
0x3F200108	Read-only	ETM11RV Pin Capture3 Register
0x3F200110	Read/write	ETM11RV Pin Control1 Register

Table 5-6 ARM1136JF-S AHBPCAPT Slave Registers (continued)

Address	Туре	Register
0x3F200114	Read/write	ETM11RV Pin Control2 Register
0x3F200118	Read/write	ETM11RV Pin Control3 Register
0x3F20011C	Read/write	ETM11RV Pin Control4 Register

Table 5-7 lists the Pin Capture Register bit allocation.

Table 5-7 Pin Capture Register bit allocation

Bit	Pins	Reset Value
[31:24]	Reserved, should be zero	Unpredictable
[23:16]	DMAASID	0
[15:8]	COREASID	0
[7:5]	Reserved, should be zero	Unpredictable
[4]	DBGNOPWRDWN	0
[3]	CFGBIGENDPD	0
[2]	CFGBIGENDIRW	0
[1]	STANDBYWFI	0
[0]	Sticky STANDBYWFI	Unpredictable

The Sticky STANDBYWFI bit is set if STANDBYWFI has been asserted in any cycle since the value was written by the core.

Table 5-8 lists the Test Chip Memory Size Register bit allocation.

Table 5-8 Test Chip Memory Size Register

Bit	Function
[31:5]	Unpredictable
[4:0]	Test chip RAM size

ID060911

Table 5-9 lists the valid test chip RAM size values.

Table 5-9 Valid test chip RAM sizes

Hex	Size
0x07	64KB
0x08	128KB
0x09	256KB
0x0A	512KB
0x0B	1MB
0x0C	2MB
0x0D	4MB
0x0E	8MB

The AHB port registers read the values of the **HBSTRB[7:0]**, **HUNALIGN**, and **HSIDEBAND** signals to the last three non-sequential AHB transfers that have occurred for each port. The values are held as follows:

- The most recent transfer is held in Register 0
- The second most recent is held in Register 1
- The third most recent is held in Register 2.

The registers therefore act as FIFOs. Table 5-10 lists the contents of each AHB Port Register.

Table 5-10 Contents of each AHB Port Register

BIT	Function
[31:14]	Unpredictable
[13]	WRITEBACK (Data Write Port only. Other ports are UNP)
[12:9]	HSIDEBAND[3:0]
[8]	HUNALIGN
[7:0]	HBSTRB[7:0] for the Peripheral Port bits [7:4] are UNP

Table 5-11 lists the Test Chip Control Register bit allocations.

Table 5-11 Test Chip Control Register

Bit	Function	Reset value
[31:1]	Reserved, should be zero	Unpredictable
[0]	VIC enable	0

The VIC is disabled by default. This means that no programming of the VIC is required to connect **nFIQX** and **nIRQX** directly to the ARM1136JF-S core.

Table 5-12 lists the ETM11RV Pin Capture1 Register bit allocation.

Table 5-12 ETM11RV Pin Capture1 Register

Bit	Function	Reset value
[31:10]	Reserved, should be zero	Unpredictable
[9]	nETMWFIREADY	0
[8:6]	ETMPORTMODE	0
[5:2]	ETMPORTSIZE	0
[1]	ETMEN	0
[0]	ETMPWRUP	0

Table 5-13 lists the ETM11RV Pin Capture2 Register bit allocation.

Table 5-13 ETM11RV Pin Capture2 Register

Bit	Function	Reset value
[31:2]	Reserved, should be zero	Unpredictable
[1:0]	ETMEXTOUTX	Unpredictable

Table 5-14 lists the ETM11RV Pin Capture3 Register bit allocation.

Table 5-14 ETM11RV Pin Capture3 Register

Bit	Function	Reset value
[31:8]	Reserved, should be zero	Unpredictable
[7:0]	ETMASICCTL	Unpredictable

Table 5-15 lists the ETM11RV Pin Control1 Register bit allocation.

Table 5-15 ETM11RV Pin Control1 Register

Bit	Function	Reset value
[31:4]	Reserved, should be zero	Unpredictable
[3:0]	EtmExtInRega	0

Table 5-16 lists the ETM11RV Pin Control2 Register bit allocation.

Table 5-16 ETM11RV Pin Control2 Register

[31:11] Reserved, should be zero	Unpredictable
[10] ORed into ETMWFIPENDING	0
[9:6] ETMMAXPORTSIZE	b0100
[5:3] ETMMAXEXTOUT	b010
[2:0] ETMMAXEXTIN	0

Table 5-17 lists the ETM11RV Pin Control3 Register bit allocation.

Table 5-17 ETM11RV Pin Control3 Register

Bit	Function	Reset value
[31:20]	Reserved, should be zero	Unpredictable
[19:0]	EtmEvntBusRega	0

Table 5-18 lists the ETM11RV Pin Control4 Register bit allocation.

Table 5-18 ETM11RV Pin Control4 Register

Bit	Function	Reset value	
[31:6]	Reserved, should be zero	Unpredictable	
[5:0]	EtmInputSel	0	

Table 5-19 lists the EtmInputSel[1:0] encoding used to determine the source of **ETMEXTINX**.

Table 5-19 EtmInputSel[1:0] encoding

EtmInputSel[1:0]	ETMEXTINX to ETM
b00	0
b01	EtmExtInReg
b10	(DBGACKX, PseudoRandom[2:0])
b11	((b000, ETMEXTINX (test chip))

Table 5-20 lists the EtmInputSel[3:2] encoding used to determine the source of **ETMEVNTBUS**

Table 5-20 EtmInputSel[3:2] encoding

EtmInputSel[3:2]	ETMEVNTBUS to ETM		
b00	0		
b01	EtmEvntBusReg		
b10	PseudoRandom[19:0]		
b11	ETMEVNTBUS from ARM1136JF-S		

Table 5-21 lists the EtmInputSel[5:4] encoding used to determine the source of **ETMTRACEREADY**

Table 5-21 EtmInputSel[5:4]

EtmInputSel[5:4]	ETMEVNTBUS to ETM
b00	1
b01	PseudoRandom[0]
b10	0
b11	1 whenever an instruction is executed.

Configuration Register

The AHBPCAPT block contains the configuration register space. This space is programmed when the test chip is held in its lowest level of reset (that is, when **ARM_nPORESET** is asserted). The Configuration Register is a 32-bit register that is programmed to the value on **HRDATAX** signals at the rising edge of **CONFIGINIT**.

The Configuration Register is reset by asserting **nCONFIGRST**, and only when **ARM_nPORESETX** is asserted. The Configuration Register contents cannot be modified from software. Use the Clock Generator Control Register to change the clock frequency after power on.

Table 5-22 lists the bit allocation of the Configuration Register.

Table 5-22 Configuration Register

Bit	Function	Reset value (nCONFIGRST)
[31]	Reserved, should be zero	0
[30:8]	Reset value of bits [28:8] of the Clock Generator Control Register	0
[7:2]	Test chip memory block disables	0
[1:0]	Reserved, should be zero	0

5.4 Vectored Interrupt Controller (VIC) block

The VIC has the following interfaces:

- interrupt sources
- AHB slave interface to control the VIC
- daisy chain interface to connect two or more VICs together

Register to enable the VIC (see Table 5-11 on page 5-18).

• scan chain interface.

There are 32 interrupt source inputs. For details of the VIC interrupts sources connections, see the *ARM PrimeCell Vectored Interrupt Controller (PL192) Technical Reference Manual*.

——Note ———
The daisy chain interface is tied off, because only a single VIC is present in the ARM1136JF-S test chip. By default, the VIC is disabled. Use the Test Chip Control

Table 5-23 lists the ARM1136JF-S test chip signal routing to the VIC interrupt sources.

Table 5-23 Test chip interrupt routing

VIC input	Source	Comment	
VICINTSOURCE[0]	(Inverted) nFIQ	Pin on the test chip	
VICINTSOURCE[1]	(Inverted) nVALFIQ	ARM1136JF-S output	
VICINTSOURCE[6]	COMMRX	ARM1136 JF-S output	
VICINTSOURCE[7]	COMMTX	ARM1136 JF-S output	
VICINTSOURCE[10]	(Inverted) nIRQ	Pin on the test chip	
VICINTSOURCE[11]	(Inverted) nVALIRQ	ARM1136 JF-S output	
VICINTSOURCE[12]	(Inverted) nDMAIRQ	ARM1136 JF-S output	
VICINTSOURCE[13]	(Inverted) nPMUIRQ	ARM1136 JF-S output	
VICINTSOURCE[14]	(Inverted) nVALRESET	ARM1136 JF-S output	

——Note ———
All other VICINTSOURCE signals are tied to 0.

5.5 Voltage control

The CT1136JF-S Core Tile voltage connections are listed in Table 5-24.

Table 5-24 Supply voltage connections

Voltage	Source	Description
ARM_VDDCORE1, ARM_VDDCORE2, ARM_VDDCORE3, ARM_VDDCORE4, ARM_VDDCORE5, and ARM_VDDCORE6	VDDCOREA regulator	All core voltages are supplied from the VDDCOREA regulator.
VDDIO	3.3V	The I/O voltage is supplied from the HDRZ 3.3V power blade.
VDDPLL1	VDDPLL regulator	Supplied from the dedicated PLL regulator.
VDDPLL2	VDDPLL regulator	Supplied from the dedicated PLL regulator.

HBI-0131 Features specific to the CT1136JF-S

Chapter 6 **HBI-0131 Signal Descriptions**

This chapter provides a summary of signals present on the CT926EJ-S and CT1136JF-S Core Tile connectors and test points and the links that can be modified to change signal routing. It contains the following sections:

- *Header connectors* on page 6-2
- *Memory expansion connector pinout* on page 6-20
- Trace Port connectors on page 6-27
- Links and test points on page 6-30
- *AHB bus timing specification* on page 6-37.

Note	
For the Multi-ICE connector pipage 3-39.	nout and signal descriptions see JTAG signals on

6.1 Header connectors

Figure 6-1 shows the pin numbers and power-blade usage of the HDRX, HDRY, and HDRZ headers on the upper side of the tile. For details on the **VDDIO** and **VCCOY** voltages, see *Power supply control* on page 3-17.

Figure 6-1 HDRX, HDRY, and HDRZ (upper) pin numbering

Table 6-1 on page 6-3 lists the Samtec part numbers.

Core Tiles use the -05- connectors on the top of the board and the -01- connectors on the bottom of the board. The total separation is 22mm. The Core Tiles have a maximum component height of 2.5mm on the bottom and 19mm on the top of the board. This ensures that there are no component interference problems with mated boards.

Table 6-1 Samtec part numbers

Header	Part number	Mating height
HDRX (upper)	QTH-090-05-F-D-A-K	19mm
HDRXL (lower)	QSH-090-01-F-D-A-K	5mm
HDRY (upper)	QTH-090-05-F-D-A-K	19mm
HDRYL (lower)	QSH-090-01-F-D-A-K	5mm
HDRZ (upper)	QTH-150-05-F-D-A-K	19mm
HDRZL (lower)	QSH-150-01-F-D-A-K	5mm

6.1.1 HDRX signals

Table 6-3 on page 6-4 describes the signals on the HDRX pins for the Core Tile and Logic Tile. (Replace x by L for the lower header and by U for the upper header for Logic Tile signals.)

Except for the HCLK, REFCLK, HCLKIN signals, all of the signals on the upper and lower HDRX connectors are the same for the Core Tile.

Most of the pins on the RealView Logic Tiles have different signals on the upper and lower Logic Tile HDRZ pins. If the upper signal on the Logic Tile is named XUn and the lower signal is named XLn, the table entry is Xxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower connector is XL90 and the pin 1 signal for the upper connector is XU90.

There the following differences between the CT926EJ-S and CT1136JF-S header signals:

Table 6-2 Signal differences between CT926EJ-S and 1136JF-S

Signal	CT926EJ-S	CT1136JF-S
USERIN[2:0]	Reserved, should be LOW	Reserved, should be LOW
USERIN[3]	Manufacturing test for VIC and PLL bypass, should be LOW	Reserved, should be LOW
USERIN[4]	Manufacturing test, should be LOW	UBITINTX, Initial value of ARM1136 U bit
USERIN[5]	Manufacturing test, should be LOW	HRESPX[2], AHB response signal
USEROUT[3:0]	Reserved output, do not drive	Reserved output, do not drive
USEROUT[5:4]	Reserved output, do not drive	HPROTX[5:4], AHB protection information

Table 6-3 HDRX signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
PLLCTRL0	Xx90	1	2	Xx89	USEROUT5 (see Table 6-2)
PLLCTRL1	Xx91	3	4	Xx88	USEROUT4
PLLREFDIV0	Xx92	5	6	Xx87	USEROUT3
PLLREFDIV1	Xx93	7	8	Xx86	USEROUT2
PLLREFDIV2	Xx94	9	10	Xx85	USEROUT1
PLLREFDIV3	Xx95	11	12	Xx84	USEROUT0
HADDR0	Xx96	13	14	Xx83	USERIN5
HADDR1	Xx97	15	16	Xx82	USERIN4
HADDR2	Xx98	17	18	Xx81	USERIN3
HADDR3	Xx99	19	20	Xx80	USERIN2
HADDR4	Xx100	21	22	Xx79	USERIN1
HADDR5	Xx101	23	24	Xx78	USERIN0

Table 6-3 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
HADDR6	Xx102	25	26	Xx77	IEBKPT
HADDR7	Xx103	27	28	Xx76	DEWPT
HADDR8	Xx104	29	30	Xx75	EDBGRQ
HADDR9	Xx105	31	32	Xx74	HCLKDIV2
HADDR10	Xx106	33	34	Xx73	HCLKDIV1
HADDR11	Xx107	35	36	Xx72	HCLKDIV0
HADDR12	Xx108	37	38	Xx71	INITRAM
HADDR13	Xx109	39	40	Xx70	PLLBYPASS
HADDR14	Xx110	41	42	Xx69	PLLLOCK
HADDR15	Xx111	43	44	Xx68	VINITHI
HADDR16	Xx112	45	46	Xx67	ETMEXTOUT
HADDR17	Xx113	47	48	Xx66	ETMEXTIN
HADDR18	Xx114	49	50	Xx65	NCONFIGRST
HADDR19	Xx115	51	52	Xx64	ARM_NPORESET
HADDR20	Xx116	53	54	Xx63	ARM_NRESET
HADDR21	Xx117	55	56	Xx62	NIRQ
HADDR22	Xx118	57	58	Xx61	NFIQ
HADDR23	Xx119	59	60	Xx60	DBGEN
HADDR24	Xx120	61	62	Xx59	DBGACK
HADDR25	Xx121	63	64	Xx58	CONFIGINIT
HADDR26	Xx122	65	66	Xx57	COMMTX
HADDR27	Xx123	67	68	Xx56	COMMRX
HADDR28	Xx124	69	70	Xx55	BIGENDOUT
HADDR29	Xx125	71	72	Xx54	BIGENDIN

Table 6-3 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
HADDR30	Xx126	73	74	Xx53	HRESP1
HADDR31	Xx127	75	76	Xx52	HRESP0
TESTSELECT	Xx128	77	78	Xx51	HGRANT
TICSELECT	Xx129	79	80	Xx50	HREADY
PLLFBDIV0	Xx130	81	82	Xx49	HLOCK
PLLFBDIV1	Xx131	83	84	Xx48	HBUSREQ
PLLFBDIV2	Xx132	85	86	Xx47	HWRITE
PLLFBDIV3	Xx133	87	88	Xx46	HBURST2
PLLFBDIV4	Xx134	89	90	Xx45	HBURST1
PLLFBDIV5	Xx135	91	92	Xx44	HBURST0
PLLFBDIV6	Xx136	93	94	Xx43	HPROT3
PLLFBDIV7	Xx137	95	96	Xx42	HPROT2
PLLOUTDIV0	Xx138	97	98	Xx41	HPROT1
PLLOUTDIV1	Xx139	99	100	Xx40	HPROT0
PLLOUTDIV2	Xx140	101	102	Xx39	HSIZE1
PLLOUTDIV3	Xx141	103	104	Xx38	HSIZE0
EXTTRIG	Xx142	105	106	Xx37	HTRANS1
X143	Xx143	107	108	Xx36	HTRANS0
X144	Xx144	109	110	Xx35	HSIZE2
X145	Xx145	111	112 (U) 112 (L)	Xx34	X_HCLK_UPX_HC LK_DN
X146	Xx146	113	114 (U) 114 (L)	Xx33	X_REFCLK_DN X_REFCLK_UP
X147	Xx147	115	116 (U) 116 (L)	Xx32	X_HCLKIN_DNX_ HCLKIN_UP
HDATA0	Xx148	117	118	Xx31	HRDATA31

Table 6-3 HDRX signals (continued)

Core Tile	Logic Tile	Odd pins	Even	Logic Tile	Core Tile signals
signals	signals	Odd pills	pins	signals	Core The Signals
HDATA1	Xx149	119	120	Xx30	HRDATA30
HDATA2	Xx150	121	122	Xx29	HRDATA29
HDATA3	Xx151	123	124	Xx28	HRDATA28
HDATA4	Xx152	125	126	Xx27	HRDATA27
HDATA5	Xx153	127	128	Xx26	HRDATA26
HDATA6	Xx154	129	130	Xx25	HRDATA25
HDATA7	Xx155	131	132	Xx24	HRDATA24
HDATA8	Xx156	133	134	Xx23	HRDATA23
HDATA9	Xx157	135	136	Xx22	HRDATA22
HDATA10	Xx158	137	138	Xx21	HRDATA21
HDATA11	Xx159	139	140	Xx20	HRDATA20
HDATA12	Xx160	141	142	Xx19	HRDATA19
HDATA13	Xx161	143	144	Xx18	HRDATA18
HDATA14	Xx162	145	146	Xx17	HRDATA17
HDATA15	Xx163	147	148	Xx16	HRDATA16
HDATA16	Xx164	149	150	Xx15	HRDATA15
HDATA17	Xx165	151	152	Xx14	HRDATA14
HDATA18	Xx166	153	154	Xx13	HRDATA13
HDATA19	Xx167	155	156	Xx12	HRDATA12
HDATA20	Xx168	157	158	Xx11	HRDATA11
HDATA21	Xx169	159	160	Xx10	HRDATA10
HDATA22	Xx170	161	162	Xx9	HRDATA9
HDATA23	Xx171	163	164	Xx8	HRDATA8
HDATA24	Xx172	165	166	Xx7	HRDATA7

Table 6-3 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
HDATA25	Xx173	167	168	Xx6	HRDATA6
HDATA26	Xx174	169	170	Xx5	HRDATA5
HDATA27	Xx175	171	172	Xx4	HRDATA4
HDATA28	Xx176	173	174	Xx3	HRDATA3
HDATA29	Xx177	175	176	Xx2	HRDATA2
HDATA30	Xx178	177	178	Xx1	HRDATA1
HDATA31	Xx179	179	180	Xx0	HRDATA0

6.1.2 HDRY signals

Table 6-4 describes the signals on the HDRY pins for the Core Tile and Logic Tile.

_____ Note _____

All signals on the upper and lower HDRY connectors are the same for the Core Tile.

For Logic Tile signals, most of the pins on the upper and lower connector have different signals. If the upper signal on the Logic Tile is named YUn and the lower signal is named YLn, the table entry is Yxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower connector is **YL89** and the pin 1 signal for the upper connector is **YU89** and the corresponding Core Tile signal is **MEMEXPA25**.

Table 6-4 HDRY signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA25	Yx89	1	2	Yx90	MEMEXPA26
MEMEXPA24	Yx88	3	4	Yx91	MEMEXPA27
MEMEXPA23	Yx87	5	6	Yx92	MEMEXPA28
MEMEXPA22	Yx86	7	8	Yx93	MEMEXPA29

Table 6-4 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA21	Yx85	9	10	Yx94	MEMEXPA30
MEMEXPA20	Yx84	11	12	Yx95	MEMEXPA31
MEMEXPA19	Yx83	13	14	Yx96	MEMEXPA32
MEMEXPA18	Yx82	15	16	Yx97	MEMEXPA33
MEMEXPA17	Yx81	17	18	Yx98	MEMEXPA34
MEMEXPA16	Yx80	19	20	Yx99	MEMEXPA35
MEMEXPA15	Yx79	21	22	Yx100	MEMEXPA36
MEMEXPA14	Yx78	23	24	Yx101	MEMEXPA37
MEMEXPA13	Yx77	25	26	Yx102	MEMEXPA38
MEMEXPA12	Yx76	27	28	Yx103	MEMEXPA39
MEMEXPA11	Yx75	29	30	Yx104	MEMEXPA40
MEMEXPA10	Yx74	31	32	Yx105	MEMEXPA41
MEMEXPA9	Yx73	33	34	Yx106	MEMEXPA42
MEMEXPA8	Yx72	35	36	Yx107	MEMEXPA43
MEMEXPA7	Yx71	37	38	Yx108	MEMEXPA44
MEMEXPA6	Yx70	39	40	Yx109	MEMEXPA45
MEMEXPA5	Yx69	41	42	Yx110	MEMEXPA46
MEMEXPA4	Yx68	43	44	Yx111	MEMEXPA47
MEMEXPA3	Yx67	45	46	Yx112	MEMEXPA48
MEMEXPA2	Yx66	47	48	Yx113	MEMEXPA49
MEMEXPA1	Yx65	49	50	Yx114	MEMEXPA50
MEMEXPA0	Yx64	51	52	Yx115	MEMEXPA51
MEMEXPA103	Yx63	53	54	Yx116	MEMEXPA52
MEMEXPA102	Yx62	55	56	Yx117	MEMEXPA53

Table 6-4 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA101	Yx61	57	58	Yx118	MEMEXPA54
MEMEXPA100	Yx60	59	60	Yx119	MEMEXPA55
MEMEXPA99	Yx59	61	62	Yx120	MEMEXPA56
MEMEXPA98	Yx58	63	64	Yx121	MEMEXPA57
MEMEXPA97	Yx57	65	66	Yx122	MEMEXPA58
MEMEXPA96	Yx56	67	68	Yx123	MEMEXPA59
MEMEXPA95	Yx55	69	70	Yx124	MEMEXPA60
MEMEXPA94	Yx54	71	72	Yx125	MEMEXPA61
MEMEXPA93	Yx53	73	74	Yx126	MEMEXPA62
MEMEXPA92	Yx52	75	76	Yx127	MEMEXPA63
MEMEXPA91	Yx51	77	78	Yx128	MEMEXPA64
MEMEXPA90	Yx50	79	80	Yx129	MEMEXPA65
MEMEXPA89	Yx49	81	82	Yx130	MEMEXPA66
MEMEXPA88	Yx48	83	84	Yx131	MEMEXPA67
MEMEXPA87	Yx47	85	86	Yx132	MEMEXPA68
MEMEXPA86	Yx46	87	88	Yx133	MEMEXPA69
MEMEXPA85	Yx45	89	90	Yx134	MEMEXPA70
MEMEXPA84	Yx44	91	92	Yx135	MEMEXPA71
MEMEXPA83	Yx43	93	94	Yx136	MEMEXPA72
MEMEXPA82	Yx42	95	96	Yx137	MEMEXPA73
MEMEXPA81	Yx41	97	98	Yx138	MEMEXPA74
MEMEXPA80	Yx40	99	100	Yx139	MEMEXPA75
Y39	Yx39	101	102	Yx140	MEMEXPA76
Y38	Yx38	103	104	Yx141	MEMEXPA77

Table 6-4 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Y37	Yx37	105	106	Yx142	MEMEXPA78
Y36	Yx36	107	108	Yx143	MEMEXPA79
Y35	Yx35	109	110	Yx144	Y144
Y34	Yx34	111	112	Yx145	Y145
Y33	Yx33	113	114	Yx146	Y146
Y32	Yx32	115	116	Yx147	Y147
Y31	Yx31	117	118	Yx148	Y148
Y30	Yx30	119	120	Yx149	Y149
Y29	Yx29	121	122	Yx150	Y150
Y28	Yx28	123	124	Yx151	Y151
Y27	Yx27	125	126	Yx152	Y152
Y26	Yx26	127	128	Yx153	Y153
Y25	Yx25	129	130	Yx154	Y154
Y24	Yx24	131	132	Yx155	Y155
Y23	Yx23	133	134	Yx156	Y156
Y22	Yx22	135	136	Yx157	Y157
Y21	Yx21	137	138	Yx158	Y158
Y20	Yx20	139	140	Yx159	Y159
Y19	Yx19	141	142	Yx160	Y160
Y18	Yx18	143	144	Yx161	Y161
Y17	Yx17	145	146	Yx162	Y162
Y16	Yx16	147	148	Yx163	Y163
Y15	Yx15	149	150	Yx164	Y164
Y14	Yx14	151	152	Yx165	Y165

Table 6-4 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Y13	Yx13	153	154	Yx166	Y166
Y12	Yx12	155	156	Yx167	Y167
Y11	Yx11	157	158	Yx168	Y168
Y10	Yx10	159	160	Yx169	Y169
Y9	Yx9	161	162	Yx170	Y160
Y8	Yx8	163	164	Yx171	Y171
Y7	Yx7	165	166	Yx172	Y172
Y6	Yx6	167	168	Yx173	Y173
Y5	Yx5	169	170	Yx174	Y174
Y4	Yx4	171	172	Yx175	Y175
Y3	Yx3	173	174	Yx176	Y176
Y2	Yx2	175	176	Yx177	Y177
Y1	Yx1	177	178	Yx178	Y178
Y0	Yx0	179	180	Yx179	Y179

6.1.3 HDRZ

Table 6-5 on page 6-13 describes the signals on the HDRZ pins for the Core Tile and the RealView Logic Tile.

Note -	
--------	--

Except for the clock and JTAG signals, the Core Tile has the same signal on both the upper and lower pins. Some of the upper and lower HDRZ signals can be isolated, see *Control of AHB data bus and HDRZ signals* on page 3-26.

Most of the pins on the RealView Logic Tiles have different signals on the upper and lower Logic Tile HDRZ pins. If the upper signal on the Logic Tile is named ZUn and the lower signal is named ZLn, the table entry is Zxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header. For example, the pin 1 signal for the lower connector is **ZL128** and the pin 1 signal for the upper connector is **ZU128**.

If the upper signal on the Logic Tile has a completely different name than the lower signal, both names are listed and the signal on the upper connector is indicated by a (U) and the signal on the lower connector is indicated by a (L).

Table 6-5 HDRZ signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB0	Zx128	1	2	Zx255	Z255
MEMEXPB1	Zx129	3	4	Zx254	Z254
MEMEXPB2	Zx130	5	6	Zx253	Z253
MEMEXPB3	Zx131	7	8	Zx252	Z252
MEMEXPB4	Zx132	9	10	Zx251	Z251
MEMEXPB5	Zx133	11	12	Zx250	Z250
MEMEXPB6	Zx134	13	14	Zx249	Z249
MEMEXPB7	Zx135	15	16	Zx248	Z248
MEMEXPB8	Zx136	17	18	Zx247	Z247
MEMEXPB9	Zx137	19	20	Zx246	Z246
MEMEXPB10	Zx138	21	22	Zx245	Z245
MEMEXPB11	Zx139	23	24	Zx244	Z244
MEMEXPB12	Zx140	25	26	Zx243	Z243
MEMEXPB13	Zx141	27	28	Zx242	Z242
MEMEXPB14	Zx142	29	30	Zx241	Z241
MEMEXPB15	Zx143	31	32	Zx240	Z240
MEMEXPB16	Zx144	33	34	Zx249	Z239
MEMEXPB17	Zx145	35	36	Zx248	Z238

Table 6-5 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB18	Zx146	37	38	Zx237	Z237
MEMEXPB19	Zx147	39	40	Zx236	Z236
MEMEXPB20	Zx148	41	42	Zx235	Z235
MEMEXPB21	Zx149	43	44	Zx234	Z234
MEMEXPB22	Zx150	45	46	Zx233	Z233
MEMEXPB23	Zx151	47	48	Zx232	Z232
MEMEXPB24	Zx152	49	50	Zx231	MEMEXPB103
MEMEXPB25	Zx153	51	52	Zx230	PLDCLK
MEMEXPB26	Zx154	53	54	Zx229	PLDRESETN
MEMEXPB27	Zx155	55	56	Zx228	PLDD0
MEMEXPB28	Zx156	57	58	Zx227	PLDD1
MEMEXPB29	Zx157	59	60	Zx226	MEMEXPB98
MEMEXPB30	Zx158	61	62	Zx225	MEMEXPB97
MEMEXPB31	Zx159	63	64	Zx224	MEMEXPB96
MEMEXPB32	Zx160	65	66	Zx223	MEMEXPB95
MEMEXPB33	Zx161	67	68	Zx222	MEMEXPB94
MEMEXPB34	Zx162	69	70	Zx221	MEMEXPB93
MEMEXPB35	Zx163	71	72	Zx220	MEMEXPB92
MEMEXPB36	Zx164	73	74	Zx219	MEMEXPB91
MEMEXPB37	Zx165	75	76	Zx218	MEMEXPB90
MEMEXPB38	Zx166	77	78	Zx217	MEMEXPB89
MEMEXPB39	Zx167	79	80	Zx216	MEMEXPB88
MEMEXPB40	Zx168	81	82	Zx215	MEMEXPB87
MEMEXPB41	Zx169	83	84	Zx214	MEMEXPB86

Table 6-5 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB42	Zx170	85	86	Zx213	MEMEXPB85
MEMEXPB43	Zx171	87	88	Zx212	MEMEXPB84
MEMEXPB44	Zx172	89	90	Zx211	MEMEXPB83
MEMEXPB45	Zx173	91	92	Zx210	MEMEXPB82
MEMEXPB46	Zx174	93	94	Zx209	MEMEXPB81
MEMEXPB47	Zx175	95	96	Zx208	MEMEXPB80
MEMEXPB48	Zx176	97	98	Zx207	MEMEXPB79
MEMEXPB49	Zx177	99	100	Zx206	MEMEXPB78
MEMEXPB50	Zx178	101	102	Zx205	MEMEXPB77
MEMEXPB51	Zx179	103	104	Zx204	MEMEXPB76
MEMEXPB52	Zx180	105	106	Zx203	MEMEXPB75
MEMEXPB53	Zx181	107	108	Zx202	MEMEXPB74
MEMEXPB54	Zx182	109	110	Zx201	MEMEXPB73
MEMEXPB55	Zx183	111	112	Zx200	MEMEXPB72
MEMEXPB56	Zx184	113	114	Zx199	MEMEXPB71
MEMEXPB57	Zx185	115	116	Zx198	MEMEXPB70
MEMEXPB58	Zx186	117	118	Zx197	MEMEXPB69
MEMEXPB59	Zx187	119	120	Zx196	MEMEXPB68
MEMEXPB60	Zx188	121	122	Zx195	MEMEXPB67
MEMEXPB61	Zx189	123	124	Zx194	MEMEXPB66
MEMEXPB62	Zx190	125	126	Zx193	MEMEXPB65
MEMEXPB63	Zx191	127	128	Zx192	MEMEXPB64
D_nSRST	D_nSRST	129	130(U) 130(L)	CLK_POS_DN_INC LK_POS_DN_OUT	CLK_POS_DN

Table 6-5 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
D_nTRST	D_nTRST	131	132 (U) 132 (L)	CLK_NEG_DN_INC LK_NEG_DN_OUT	CLK_NEG_DN_INC LK_NEG_DN_OUT
D_TDO_IND_TD O_OUT	D_TDO_IN D_TDO_OUT	133 (U) 133 (L)	134 (U) 134 (L)	CLK_POS_UP_OUT CLK_POS_UP_IN	CLK_POS_UP
D_TDI	D_TDI	135	136 (U) 136 (L)	CLK_NEG_UP_OUT CLK_NEG_UP_IN	CLK_NEG_UP_OUT CLK_NEG_UP_IN
D_TCK_OUTD_ TCK_IN	D_TCK_OUT D_TCK_IN	137 (U) 137 (L)	138 (U) 138 (L)	CLK_UP_THRU CLK_IN_MINUS2	CLK_IN_MINUS2
D_TMS_OUTD_ TMS_IN	D_TMS_OUTD_ TMS_IN	139 (U) 139 (L)	140 (U) 140 (L)	CLK_OUT_PLUS1C LK_IN_MINUS1	CLK_IN_MINUS1
D_RTCK	D_RTCK	141	142 (U) 142 (L)	CLK_OUT_PLUS2C LK_UP_THRU	CLK_UP_THRU
C_NSRST	C_nSRST	143	144 (U) 144 (L)	CLK_IN_PLUS2 CLK_DN_THRU	CLK_IN_PLUS2
C_NTRST	C_nTRST	145	146 (U) 146 (L)	CLK_IN_PLUS1CLK _OUT_MINUS1	CLK_IN_PLUS1
PLD_TDIC_TDO _OUT	C_TDO_INC_TD O_OUT	147 (U) 147 (L)	148 (U) 148 (L)	CLK_DN_THRUCL K_OUT_MINUS2	CLK_DN_THRU
C_TDI	C_TDI	149	150	CLK_GLOBAL	CLK_GLOBAL
C_TCK_OUTC_ TCK_IN	C_TCK_OUT	151 (U) 151 (L)	152	FPGA_IMAGE	FPGA_IMAGE
C_TMS_OUTC_ TMS_IN	C_TMS_OUT	153 (U) 153 (L)	154	nSYSPOR	nSYSPOR
nTILE_DET	nTILE_DET	155	156	nSYSRST	nSYSRST
NCFGEN	nCFGEN	157	158	nRTCKEN	nRTCKEN
GLOBAL_DONE	GLOBAL_DONE	159	160	SPARE12 (reserved)	SPARE12
SPARE11	SPARE11 (reserved)	161	162	SPARE10 (reserved)	SPARE10
SPARE9	SPARE9 (reserved)	163	164	SPARE8 (reserved)	SPARE8

Table 6-5 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
SPARE7	SPARE7 (reserved)	165	166	SPARE6 (reserved)	SPARE6
SPARE5	SPARE5 (reserved)	167	168	SPARE4 (reserved)	SPARE4
SPARE3	SPARE3 (reserved)	169	170	SPARE2 (reserved)	SPARE2
SPARE1	SPARE1 (reserved)	171	172	SPARE0 (reserved)	SPARE0
Zx63	Z63	173	174	Z64	Zx64
Zx62	Z62	175	176	Z65	Zx65
Zx61	Z61	177	178	Z66	Zx66
Zx60	Z60	179	180	Z67	Zx67
Zx59	Z59	181	182	Z68	Zx68
Zx58	Z58	183	184	Z 79	Zx69
Zx57	Z57	185	186	Z70	Zx70
Zx56	Z56	187	188	Z71	Zx71
Zx55	Z55	189	190	Z 72	Zx72
Zx54	Z54	191	192	Z73	Zx73
Zx53	Z53	193	194	Z 74	Zx74
Zx52	Z52	195	196	Z 75	Zx75
Zx51	Z51	197	198	Z 76	Zx76
Zx50	Z50	199	200	Z 77	Zx77
Zx49	Z49	201	202	Z 78	Zx78
Zx48	Z48	203	204	Z 79	Zx79
Zx47	Z 47	205	206	Z80	Zx80
Zx46	Z46	207	208	Z81	Zx81

Table 6-5 HDRZ signals (continued)

Zx45 Z45 209 210 Z82 Zx82 Zx44 Z44 211 212 Z83 Zx83 Zx43 Z43 213 214 Z84 Zx84 Zx42 Z42 215 216 Z85 Zx85 Zx41 Z41 217 218 Z86 Zx86 Zx40 Z40 219 220 Z87 Zx87 Zx39 Z39 221 222 Z88 Zx88 Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93 Zx33 Z33 Z33 Z34 Z94 Zx94	signals
Zx43 Z43 213 214 Z84 Zx84 Zx42 Z42 215 216 Z85 Zx85 Zx41 Z41 217 218 Z86 Zx86 Zx40 Z40 219 220 Z87 Zx87 Zx39 Z39 221 222 Z88 Zx88 Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx42 Z42 Z15 Z16 Z85 Zx85 Zx41 Z41 Z17 Z18 Z86 Zx86 Zx40 Z40 Z19 Z20 Z87 Zx87 Zx39 Z39 Z21 Z22 Z88 Zx88 Zx38 Z38 Z23 Z24 Z89 Zx89 Zx37 Z37 Z25 Z26 Z90 Zx90 Zx36 Z36 Z27 Z28 Z91 Zx91 Zx35 Z35 Z29 Z30 Z92 Zx92 Zx34 Z34 Z31 Z32 Z93 Zx93	
Zx41 Z41 217 218 Z86 Zx86 Zx40 Z40 219 220 Z87 Zx87 Zx39 Z39 221 222 Z88 Zx88 Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx40 Z40 219 220 Z87 Zx87 Zx39 Z39 221 222 Z88 Zx88 Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx39 Z39 221 222 Z88 Zx88 Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx38 Z38 223 224 Z89 Zx89 Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx37 Z37 225 226 Z90 Zx90 Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx36 Z36 227 228 Z91 Zx91 Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx35 Z35 229 230 Z92 Zx92 Zx34 Z34 231 232 Z93 Zx93	
Zx34 Z34 231 232 Z93 Zx93	
Zx33 Z33 234 Z94 Zx94	
Zx32 Z35 236 Z95 Zx95	
Zx31 Z31 237 238 Z96 Zx96	
Zx30 Z30 239 240 Z97 Zx97	
Zx29 Z29 241 242 Z98 Zx98	
Zx28 Z28 243 244 Z99 Zx99	
Zx27 Z27 245 246 Z100 Zx100	
Zx26 Z26 247 248 Z101 Zx101	
Zx25 Z25 249 250 Z102 Zx102	
Zx24 Z24 251 252 Z103 Zx103	
Zx23 Z23 253 254 Z104 Zx104	
Zx22 Z22 255 256 Z105 Zx105	

Table 6-5 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Zx21	Z21	257	258	Z106	Zx106
Zx20	Z20	259	260	Z107	Zx107
Zx19	Z19	261	262	Z108	Zx108
Zx18	Z18	263	264	Z109	Zx109
Zx17	Z17	265	266	Z110	Zx110
Zx16	Z16	267	268	Z111	Zx111
Zx15	Z15	269	270	Z112	Zx112
Zx14	Z14	271	272	Z113	Zx113
Zx13	Z13	273	274	Z114	Zx114
Zx12	Z12	275	276	Z115	Zx115
Zx11	Z11	277	278	Z116	Zx116
Zx10	Z10	279	280	Z117	Zx117
Zx9	Z 9	281	282	Z118	Zx118
Zx8	Z8	283	284	Z119	Zx119
Zx7	Z 7	285	286	Z120	Zx120
Zx6	Z 6	287	288	Z121	Zx121
Zx5	Z 5	289	290	Z122	Zx122
Zx4	Z 4	291	292	Z123	Zx123
Zx3	Z 3	293	294	Z124	Zx124
Zx2	Z 2	295	296	Z125	Zx125
Zx1	Z1	297	298	Z126	Zx126
Zx0	Z0	299	300	Z127	Zx127

6.2 Memory expansion connector pinout

The Core Tile has two 120-way Samtec QSH memory expansion connectors as shown in Figure 6-2. The connector pinout for the J6 (Z MEMEXP) is listed in Table 6-6 on page 6-21. The connector pinout for the J7 (Y MEMEXP) is listed in Table 6-7 on page 6-23.

Refer to the documentation supplied with the memory boards and the *PISMO Memory Interface Specification* for details of signal assignment on the boards. Different memory boards might have different voltage levels or different arrangement of address or control signals.

Figure 6-2 Memory expansion connectors

6.2.1 Memory expansion connector J6

The signals on the Z MEMEXP socket are listed in Table 6-6 on page 6-21.

Table 6-6 Z memory connector signals

Pin No.	Core Tile signal	Pin No.	Core Tile signal
1	MEMEXPA0	2	3V3
3	MEMEXPA1	4	3V3
5	MEMEXPA2	6	3V3
7	MEMEXPA3	8	3V3
9	MEMEXPA4	10	VDDIO ^a
11	MEMEXPA5	12	VDDIO ^a
13	MEMEXPA6	14	VDDIO ^a
15	MEMEXPA7	16	VDDIO ^a
17	MEMEXPA8	18	1V8
19	MEMEXPA9	20	1V8
21	MEMEXPA10	22	1V8
23	MEMEXPA11	24	1V8
25	MEMEXPA12	26	MEMEXPA103
27	MEMEXPA13	28	MEMEXPA102
29	MEMEXPA14	30	MEMEXPA101
31	MEMEXPA15	32	MEMEXPA100
33	MEMEXPA16	34	5V
35	MEMEXPA17	36	5V
37	MEMEXPA18	38	5V
39	MEMEXPA19	40	5V
41	MEMEXPA20	42	MEMEXPA99
43	MEMEXPA21	44	MEMEXPA98
45	MEMEXPA22	46	MEMEXPA97
47	MEMEXPA23	48	MEMEXPA96

Table 6-6 Z memory connector signals (continued)

Pin No.	Core Tile signal	Pin No.	Core Tile signal
49	MEMEXPA24	50	MEMEXPA95
51	MEMEXPA25	52	MEMEXPA94
53	MEMEXPA26	54	MEMEXPA93
55	MEMEXPA27	56	MEMEXPA92
57	MEMEXPA28	58	MEMEXPA91
59	MEMEXPA29	60	MEMEXPA89
61	MEMEXPA30	62	SBSCL (level-shifted MEMEXPA90)
63	MEMEXPA31	64	SBSDA (level-shifted MEMEXPA88)
65	MEMEXPA32	66	MEMEXPA87
67	MEMEXPA33	68	MEMEXPA86
69	MEMEXPA34	70	MEMEXPA85
71	MEMEXPA35	72	MEMEXPA84
73	MEMEXPA36	74	MEMEXPA83
75	MEMEXPA37	76	MEMEXPA82
77	MEMEXPA38	78	MEMEXPA81
79	MEMEXPA39	80	MEMEXPA80
81	MEMEXPA40	82	MEMEXPA79
83	MEMEXPA41	84	MEMEXPA78
85	MEMEXPA42	86	MEMEXPA77
87	MEMEXPA43	88	MEMEXPA76
89	MEMEXPA44	90	MEMEXPA75
91	MEMEXPA45	92	MEMEXPA74
93	MEMEXPA46	94	MEMEXPA73

Table 6-6 Z memory connector signals (continued)

Pin No.	Core Tile signal	Pin No.	Core Tile signal
95	MEMEXPA47	96	MEMEXPA72
97	MEMEXPA48	98	MEMEXPA71
99	MEMEXPA49	100	MEMEXPA70
101	MEMEXPA50	102	MEMEXPA69
103	MEMEXPA51	104	MEMEXPA68
105	MEMEXPA52	106	MEMEXPA67
107	MEMEXPA53	108	MEMEXPA66
109	MEMEXPA54	110	MEMEXPA65
111	MEMEXPA55	112	MEMEXPA64
113	MEMEXPA56	114	MEMEXPA63
115	MEMEXPA57	116	MEMEXPA62
117	MEMEXPA58	118	MEMEXPA61
119	MEMEXPA59	120	MEMEXPA60

a. **VDDIO** is the I/O voltage to host. This is not routed through on stackable boards.

6.2.2 Memory expansion connector J7

The signals on the Y MEMEXP socket are listed in Table 6-7.

Table 6-7 Y memory connector signals

Pin No.	Core Tile signal	Pin No.	Core Tile signal
1	MEMEXPB0	2	3V3
3	MEMEXPB1	4	3V3
5	MEMEXPB2	6	3V3
7	MEMEXPB3	8	3V3
9	MEMEXPB4	10	3V3

Table 6-7 Y memory connector signals (continued)

Pin No.	Core Tile signal	Pin No.	Core Tile signal
11	MEMEXPB5	12	3V3
13	MEMEXPB6	14	3V3
15	MEMEXPB7	16	3V3
17	MEMEXPB8	18	1V8
19	MEMEXPB9	20	1V8
21	MEMEXPB10	22	1V8
23	MEMEXPB11	24	1V8
25	MEMEXPB12	26	MEMEXPB103
27	MEMEXPB13	28	MEMEXPB102
29	MEMEXPB14	30	MEMEXPB101
31	MEMEXPB15	32	MEMEXPB100
33	MEMEXPB16	34	5V
35	MEMEXPB17	36	5V
37	MEMEXPB18	38	5V
39	MEMEXPB19	40	5V
41	MEMEXPB20	42	MEMEXPB99
43	MEMEXPB21	44	MEMEXPB98
45	MEMEXPB22	46	MEMEXPB97
47	MEMEXPB23	48	MEMEXPB96
49	MEMEXPB24	50	MEMEXPB95
51	MEMEXPB25	52	MEMEXPB94
53	MEMEXPB26	54	MEMEXPB93
55	MEMEXPB27	56	MEMEXPB92
57	MEMEXPB28	58	MEMEXPB91
59	MEMEXPB29	60	MEMEXPB89

Table 6-7 Y memory connector signals (continued)

Pin No.	Core Tile signal	Pin No.	Core Tile signal
61	MEMEXPB30	62	Serial bus clock (MEMEXPB90)
63	MEMEXPB31	64	Serial bus data (MEMEXPB88)
65	MEMEXPB32	66	MEMEXPB87
67	MEMEXPB33	68	MEMEXPB86
69	MEMEXPB34	70	MEMEXPB85
71	MEMEXPB35	72	MEMEXPB84
73	MEMEXPB36	74	MEMEXPB83
75	MEMEXPB37	76	MEMEXPB82
77	MEMEXPB38	78	MEMEXPB81
79	MEMEXPB39	80	MEMEXPB80
81	MEMEXPB40	82	MEMEXPB79
83	MEMEXPB41	84	MEMEXPB78
85	MEMEXPB42	86	MEMEXPB77
87	MEMEXPB43	88	MEMEXPB76
89	MEMEXPB44	90	MEMEXPB75
91	MEMEXPB45	92	MEMEXPB74
93	MEMEXPB46	94	MEMEXPB73
95	MEMEXPB47	96	MEMEXPB72
97	MEMEXPB48	98	MEMEXPB71
99	MEMEXPB49	100	MEMEXPB70
101	MEMEXPB50	102	MEMEXPB69
103	MEMEXPB51	104	MEMEXPB68
105	MEMEXPB52	106	MEMEXPB67
107	MEMEXPB53	108	MEMEXPB66
109	MEMEXPB54	110	MEMEXPB65

Table 6-7 Y memory connector signals (continued)

Pin No.	Core Tile signal	Pin No.	Core Tile signal
111	MEMEXPB55	112	MEMEXPB64
113	MEMEXPB56	114	MEMEXPB63
115	MEMEXPB57	116	MEMEXPB62
117	MEMEXPB58	118	MEMEXPB61
119	MEMEXPB59	120	MEMEXPB60

6.3 Trace Port connectors

Table 6-8 and Table 6-9 on page 6-28 lists the pinout of the trace connectors A and B. The Mictor connector is shown in Figure 6-3 on page 6-29.

Table 6-8 Trace connector A J9

Channel	Pin	Pin	Channel
Not connected	1	2	Not connected
GND	3	4	Not connected
Not connected	5	6	TRACECLKA
Not connected	7	8	Not connected
Not connected	9	10	EXTTRIG
Not connected	11	12	ARM_VDDIO
Not connected	13	14	3V3
Not connected	15	16	TRACEPKTA7
Not connected	17	18	TRACEPKTA6
Not connected	19	20	TRACEPKTA5
Not connected	21	22	TRACEPKTA4
TRACEPKTA15	23	24	TRACEPKTA3
TRACEPKTA14	25	26	TRACEPKTA2
TRACEPKTA13	27	28	TRACEPKTA1
TRACEPKTA12	29	30	TRACEPKTA0
TRACEPKTA11	31	32	TRACESYNCA
TRACEPKTA10	33	34	PIPESTATA2
TRACEPKTA9	35	36	PIPESTATA1
TRACEPKTA8	37	38	PIPESTATA0

Table 6-9 Trace connector B J10

Channel	Pin	Pin	Channel
5V	1	2	Not connected
GND	3	4	Not connected
Not connected	5	6	TRACECLKB
Not connected	7	8	Not connected
Not connected	9	10	Not connected
Not connected	11	12	ARM_VDDIO
Not connected	13	14	3V3
Not connected	15	16	TRACEPKTB7
Not connected	17	18	TRACEPKTB6
Not connected	19	20	TRACEPKTB5
Not connected	21	22	TRACEPKTB4
TRACEPKTB15	23	24	TRACEPKTB3
TRACEPKTB14	25	26	TRACEPKTB2
TRACEPKTB13	27	28	TRACEPKTB1
TRACEPKTB12	29	30	TRACEPKTB0
TRACEPKTB11	31	32	TRACESYNCB
TRACEPKTB10	33	34	PIPESTATB2
TRACEPKTB9	35	36	PIPESTATB1
TRACEPKTB8	37	38	PIPESTATB0

——Note	

Agilent (formerly HP) and Tektronix label these connectors differently, but the assignments of signals to physical pins is appropriate for both systems and pin 1 is always in the same place. The schematic is labelled according to the Agilent pin assignment.

Figure 6-3 Mictor connector

6.4 Links and test points

This section describes the links and test points present on the Core Tile.

6.4.1 Links

Figure 6-4 shows the location of the links on the bottom of the Core Tile. Figure 6-4 shows the location of the links on the top of the Core Tile. The function of each link is listed in Table 6-10 on page 6-32.

There are also resistor links that are fitted for routing clock signals, enabling voltage measurements, or for specific test chip functions. These are described in Table 6-11 on page 6-32 to Table 6-14 on page 6-34.

Figure 6-4 Location of links (bottom)

Figure 6-5 Location of links (top)

Table 6-10 Link function

Link	Description
1-3	IMEMSIZE[2:0], sets size of instruction TCM memory.
	——— Note ———
	These links are not used. Select the memory size using the PLD configuration signals, see <i>Memory located inside test chip</i> on page 3-8 and <i>Core Tile PLD signals</i> on page 3-30,.
4-6	DMEMSIZE[2:0], sets size of instruction TCM memory.
	Note
	These links are not used. Select the memory size using the PLD configuration signals, see <i>Memory located inside test chip</i> on page 3-8 and <i>Core Tile PLD signals</i> on page 3-30.
10-7	MANID[3:0], identifies the board build variant.
	Note
	These links are set at manufacture and should not be changed).

JTAG links

Resistor links bypass some of the JTAG signals depending on the test chip fitted as listed in Table 6-11. See the BOM file for the fitting options used at manufacture.

Table 6-11 JTAG links

Resistor link	Description
R44	If fitted, nRTCKEN is connected to ground when the system is in debug mode (CONFIG link not fitted).
R188	Links D_TCK_BYPASS to RTCK_ARM
R190	Links a buffered version of D_TCK_IN to D_TCK_BYPASS

Clock selection links

Some of the clock signals (see *Clocks* on page 3-10) have associated resistor links as listed in Table 6-12. The resistor links are set at manufacture and do not normally require changing.

Table 6-12 Clock signal resistor links

Resistor link	Description
R133	Links X_REFCLK_UP on the lower header to X_REFCLK_DN on the upper header
R46	Links X_HCLKIN_UP on the lower header to X_HCLKIN_DN on the upper header
R47	Links X_HCLK_DN on the lower header to X_HCLK_UP on the upper header. This link is used if the test chip does not output both HCLKEXT2 and HCLKEXT3 .
R40 R49, R41 R50, R39 R52, R42 R45, and R43 R51	These links select between buffered and non-buffered signals for HCLKEXT0, HCLKEXT1, HCLKEXT4, CLK_NEG_x, and CLK_GLOBAL_IN. The buffer amplifiers are bypassed if short delays are more important than minimum loading. These links are set at manufacture for the specific Core Tile and do not normally require changing.

The resistor links shown in Figure 3-3 on page 3-12 are not normally fitted at manufacture. Resistors R46, R47, and R133 are only used if no test chip is fitted to the Core Tile in order to, for example, test the printed-circuit board.

Voltage links

There are resistor links that select the operating voltages for the tile, see *Power supply control* on page 3-17.

The resistor links listed in Table 6-13 on page 6-34 are set at manufacture and (other than the current sense resistors for **VDDCORE**[6:1]) do not normally require changing.

Table 6-13 Voltage resistor links

Resistor link	Description
R182 and R25	Links 3.3V from HDRZ to ARM_VDDIO line.
R183 and R24	Links 3.3V from HDRZ to VCCOY line.
R60	Current sense resistor for VDDCORE1.
R67	Current sense resistor for VDDCORE2.
R103	Current sense resistor for VDDCORE3.
R166	Current sense resistor for VDDCORE4.
R167	Current sense resistor for VDDCORE5.
R168	Current sense resistor for VDDCORE6.

SDRAM links

The resistor links listed in Table 6-14 enable support for the **VREF** signals used with DDR SDRAM memory modules. These signals must be driven by an attached board such as a Logic Tile.

Table 6-14 DDR SDRAM resistor links

Resistor link	Description
R26	links MEXPA77 to YU3
R27	links MEXPA78 to YU17
R28	links MEXPA79 to YU25

6.4.2 Test points

Figure 6-6 on page 6-35 shows the location of test points on the Core Tile. Table 6-15 on page 6-35 lists the function of each test point.

Figure 6-6 Test point location

Table 6-15 Test point function

Test point	Description
1-3	Manufacturing test
9-4	USEROUT from test chip
10	PLLLOCK
11	CLKGLOBAL_IN
12-15	Ground
16	CLKGLOBAL_OUT

Table 6-15 Test point function (continued)

Test point	Description
17	Vdd CORE A
18	Vdd CORE B
19	Vdd CORE C
20	Vdd I/O
21	Vdd PLL
22	VDD SENSE

6.5 AHB bus timing specification

This section describes the timing for Core Tiles that use an AHB system bus.
Note
Timings in this section refer to the AHB bus in general. For timings specific to the test chip used on your Core Tile, refer to the release notes for your Core Tile.

6.5.1 Core Tile timing and the AMBA Specification

The parameters listed are those specified in the AMBA Specification with the following important differences:

- only output valid and input setup times are quoted
- the required input hold time (Tih) is always less than or equal to 0ns
- the output hold time (Toh) is always greater than 2ns.

Each version and revision of the FPGA in an attached Logic Tile or baseboard has subtly different timing. The typical figures shown in Table 6-16 on page 6-38 are those you can expect under nominal conditions and must be used as a guideline when designing your own boards. The typical figures have been rounded to simplify timing analysis and constraints.

The system bus on Versatile Logic Tiles and baseboards is routed between FPGAs. These FPGAs are routed with timing constraints similar to those shown the tables in *Timing parameter tables* on page 6-38. The exact performance of a system depends on the timing parameters of the baseboard and all tiles in the system. Some allowance also has to be made for clock skew, routing delays and number of modules (that is, loading).

Not all Logic Tile or baseboard FPGA implementations meet the ideal timing parameters, due to the complexity of the design or routing congestion within the device. For this reason, the PLL clock generators on baseboards default to a safe low value that all modules can achieve. See the documentation supplied with your baseboard for details on changing the clock frequency.

A detailed timing analysis involves calculating the input/output delays between modules for all timing parameters. In general, the simplest approach to determine the maximum operating frequency is to increase the frequency of the clock generators until the system becomes unstable.

6.5.2 Timing parameter tables

Table 6-16 shows the clock and reset timing parameters.

Table 6-16 Clock and reset parameters

Parameter	eter Description	
Telk	HCLK clock period	30
Tisrst	HRESETn deasserted setup time before HCLK	15

Table 6-17 shows the AHB slave input parameters.

Table 6-17 AHB slave input parameters

Parameter	Description	Тур
Tistr	Transfer type setup time before HCLK	5
Tisa	HADDR[31:0] setup time before HCLK	10
Tisctl	HWRITE, HSIZE[2:0] and HBURST[2:0] setup time before HCLK	5
Tiswd	Write data setup time before HCLK	5
Tisrdy	Ready setup time before HCLK	5

Table 6-18 shows the AHB slave output parameters.

Table 6-18 AHB slave output parameters

Parameter Description		Тур
Tovrsp	Response valid time after HCLK	15
Tovrd	Data valid time after HCLK	15
Tovrdy	Ready valid time after HCLK	15

Table 6-19 shows the bus master input parameters.

Table 6-19 Bus master input timing parameters

Parameter	Description	Тур
Tisgnt	HGRANTx setup time before HCLK	5
Tisrdy	Ready setup time before HCLK	5
Tisrsp	Response setup time before HCLK	5
Tisrd	Read data setup time before HCLK	5

Table 6-20 shows the bus master output timing parameters.

Table 6-20 Bus master output timing parameters

Parameter	Description	Тур
Tovtr	Transfer type valid time after HCLK	15
Tova	Address valid time after HCLK	15
Tovctl	HWRITE, HSIZE[2:0] and HBURST[2:0] valid time after HCLK	15
Tovwd	Write data valid time after HCLK	15
Tovreq	Request valid time after HCLK	15
Tovlck	Lock valid time after HCLK	15

HBI-0131 Signal Descriptions

Part C Printed Circuit Board HBI-0141 (CT7TDMI and CT7TDMI-S)

Chapter 7 **HBI-0141 Hardware Description**

This chapter describes the on-board hardware on the ARM7TDMI and ARM7TDMI-S Core Tiles that use the HBI-0141 printed circuit board (the companion Logic Tile or Interface Module for these tiles are also described where relevant). It contains the following sections:

- Core Tile architecture on page 7-3
- ARM microprocessor test chip on page 7-5
- Core Tile memory on page 7-12
- Clocks on page 7-13
- Power supply control on page 7-19
- Isolation and foldover of header signals on page 7-26
- Overview of Core Tile configuration on page 7-31
- *JTAG support* on page 7-40.

—— Note ———
The HBI-0141 board supports both the ARM7TDMI and ARM7TDMI-S processors,
but the availability of boards depends on the availability of test chips. Contact your sales
representatives for details on currently available Core Tiles.

——Note	

This chapter describes the generic hardware and is independent of the FPGA image used in an external Logic Tile, Interface Module, or baseboard.

The diagrams in this chapter (such as the block diagram shown in *Core Tile block diagram* on page 7-3 for example) are typical of Core Tiles, but your Core Tile architecture might be different depending on the test chip used.

The specific clock interconnections, voltage setting resistors and link, and bus interfaces might be different for different test chips. Different test chips might also use the configuration signals in different ways. Refer to the *Technical Reference Manual* for your processor family, the test chip reference information on the CD supplied with your Core Tile, and the appendices in this manual for more detail.

7.1 Core Tile architecture

Configuration and interface logic on the Core Tile is connected to the upper and lower header connectors as shown in Figure 7-1.

Figure 7-1 Core Tile block diagram

The signals shown in Figure 7-1 are summarized in Table 7-1 on page 7-4.

Table 7-1 Overview of Core Tile signals

Function	Signals	Description
Power	VDDCORE, VDDIO, ADC_OUT, DAC_DIN	The test chip voltages are supplied by on-board regulators. Some of the voltages can be controlled and measured by the serial data interface on the PLD. See <i>Power supply control</i> on page 7-19.
PLD configuration	PLDD[1:0], PLDCLK	The PLD on the Core Tile is configured over a dedicated serial link to an attached Logic Tile. See <i>Core Tile PLD signals</i> on page 7-32.
Expansion memory	MEMEXPB[102:22], MEMEXPA[103:0]	Connection to the on-board memory expansion connectors. There is no connection between these memory signals and the test chip bus. See <i>Memory expansion boards</i> on page 7-12.
Test chip signals	ADDR[31:0], DATA[31:0], and bus control signals	The test chip buses and control signals are brought out to header connectors. The interface to the buses is provided by an attached Logic Tile. See <i>ARM microprocessor test chip</i> on page 7-5.
Fold and isolation switches	nZ_FOLD, nZ_THRU, nY_FOLD[1:0], nY_THRU[1:0], nX_FOLD[1:0], nX_THRU[1:0],	Some of the signals have isolation switches or foldover switches that control the signal routing. See <i>Isolation and foldover of header signals</i> on page 7-26.
Debug	TDI, TDO, TDO, TMS and others	The JTAG signals connect to the test chip, the PLD, and the tile mounted above the Core Tile (if present). See <i>JTAG support</i> on page 7-40.
Clocks	MCLK, ECLK, CLK_GLOBAL, CLK_NEG_UP_IN, and others	The Core Tile does not have a clock generator. The clock for the test chip is selected from one of the external clocks provided by an attached Logic Tile. See <i>Clocks</i> on page 7-13.

7.2 ARM microprocessor test chip

Table 7-2 provides a brief overview of the signals present on test chips that follow the ARM7 bus specification. The ARM7TDMI test chip, not the ARM7TDMI-S, is normally fitted to the Core Tile. The signals on the schematic and the figures in this chapter use the ARM7TDMI signal names except when the equivalent signal does not exist on the ARM7TDMI. Refer to the *ARM7TDMI-S Technical Reference Manual* for details on the ARM7TDMI-S.

NT 4	
——— Note	

Different test chips variants might use some of the pins in ways that are specific to that test chip. For more information on signals for particular test chip variants, see the chapter in this manual for the test chip family, the *Technical Reference Manual* for the test chip, and the information provided on the CD.

Test chip configuration is covered in:

- *Clocks* on page 7-13
- Power supply control on page 7-19
- *Through/break control for HDRX* on page 7-26.

Table 7-2 Test chip signals

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Bus	ABE	MEM64M	Address bus enable, address bus drivers are disabled if this signal is LOW	Output
Bus	ABORT	ABORT	Memory abort or bus error	Input
Bus	ADDR[31:0]	ADDR[31:0]	Address bus	Output
Bus	ALE	CLKHI	Address latch enable, the address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS signals are latched when this signal is held LOW.	Output
			Note	
			This signal is provided for backward compatibility. New designs should use APE .	

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Bus	APE	-	Address pipeline enable, selects whether the address bus, LOCK, MAS[1:0], nRW, nOPC, and nTRANS signals operate in pipelined (APE HIGH) or depipelined mode (APE LOW) (ARM7TDMI only)	Input
Bus	BL[3:0]	-	Byte latch control, values on the data bus are latched on the falling edge of MCLK when these signals are HIGH (ARM7TDMI only)	Output
Bus	BC[1:0]	SWT_T, LED_N	Cycle type, versions of MREQ and SEQ that may be modified by F[1:0] (ARM7TDMI-S I/O signals)	Output
Bus	ВСЕ	TRAMBE	Enable BC[1:0] if LOW	Input
Bus	СРА	СРА	Coprocessor absent	Input
Bus	СРВ	СРВ	Coprocessor busy	Input
Bus	TBIT	DRAMWE_N	Thumb instruction set code being executed (ARM7TDMI-S memory control)	Output
Bus	CPSEQ	CPSEQ	Sequential address	Output
Bus	DATA[31:0]	DATA[31:0]	Data bus (input and output)	I/O
Bus	DBE	SCANIN	Data bus enable, if HIGH, data appears on the data bus (serial test input for ARM7TDMI-S)	Input
Bus	EABE	-	External Address Bus Enable, if driven LOW, the A[31:0], nRW, LOCK, nOPC, nTRANS, and MAS[1:0] drivers are put into high impedance state. (ARM7TDMI only)	Input
Bus	EDBE	DBE	External Data Bus Enable, if driven LOW, the D[31:0] drivers are put into high impedance state.	Input
Bus	ЕЕВЕ	INPUT180	External Enable, if driven LOW, places external outputs not controlled by EABE or EDBE into high impedance state.	Input

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Bus	F[1:0]	CFGMEM1, CFGMEM0	Cycle function modifiers, these signals can be used to override the requests normally made by the ARM7 processor.	Input
Bus	LOCK	LOCK	Locked transfer indication	Output
Bus	MAS[1:0]	SIZE[1:0]	Memory access size, indicates to the memory system the size of the data transfer for read and write cycles.	Output
Bus	nCPI	LCDEN	Coprocessor instruction (active LOW) (ARM7TDMI-S is I/O signal)	Output
Bus	nENIN	POR_N	Not enable input, used in conjunction with nENOUT to control the data bus during write cycles.	Input
Bus	nENOUT	SCC_N	Not enable output, driven LOW before the rising edge of MCLK .	Output
Bus	nM[4:0]	RAS0_N, CAS3_N, CAS2_N, CAS1_N, CAS0_N	Not processor mode, inverse logic level from the internal status bits that indicate processor operation mode (ARM7TDMI-S CAS[3:0] and RAS[0] are DRAM control signals)	Output
Bus	nMREQ	CPnMREQ	Memory request (active LOW)	Output
Bus	nOPC	PROT0	Opcode fetch (active LOW)	Output
Bus	nRW	WRITE	Data bus direction	Output
Bus	nTRANS	PROT1	Not memory translate, LOW if processor is in USER mode	Output
Bus	nWAIT	CLKEN	System memory clock enable. If LOW, do not advance the core clock on the next rising CLK input.	Input
Bus	SEL[1:0]	CORESYNC, COREFLOW	Data bus lane select, used to steer data to and from the macrocell and the external data bus. (CORESYNC usually LOW for ARM7TDMI-S, HIGH for ARM7TDMI validationCOREFLOW usually HIGH for ARM7TDMI-S, LOW for ARM7TDMI)	Input

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Bus	SEQ	CPSEQ	Indicates sequential access to memory.	
Bus	WAIT2	CFGMEM3	WAIT (ARM7TDMI-S memory configuration)	Input
Bus	WAITSEL	CFGMEM2	Wait source select, if HIGH, selects WAIT2 instead of nWAIT (ARM7TDMI-S CFGMEM[3:0] is usually b01)	Input
Bus	CPnTRANS	-	Memory translation (active LOW to indicate that the processor is in User mode) (ARM7TDMI only)	Output
Clock	ECLKEN	-	Clock output enable (ARM7TDMI only)	Output
Clock	ECLK	CLKENCORE	Clock output. In normal mode, this is MCLK output from the core. In debug mode ECLK is generated internally from TCK.	Output
Clock	MCLK	CLKLO	Clock to test chip. Times all memory accesses and internal operations.	Input
Debug	BREAKPT	-	Pulling this signal HIGH causes a conditional request for the processor to enter debug state (ARM7TDMI only)	Input
Debug	COMMRX	RAMA4	ICE communications receive buffer not empty (ARM7TDMI-S RAM[4] is a memory address)	Output
Debug	COMMTX	RAMA3	ICE communications transmit buffer empty (ARM7TDMI-S RAM[3] is a memory address)	Output
Debug	DBGACK	DBGACK	Debug acknowledge	Output
Debug	DBGEN	DBGEN	Debug enable	Input
Debug	-	DBGEXT[1:0]	ICE external inputs (ARM7TDMI-S only)	Input
Debug	DBGINSTRVALID	DBGINSTRVALID	Instruction executed. Goes HIGH for one cycle for each instruction committed to the execute stage of the pipeline	Output

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Debug	DBGnEXEC		Current instruction is not being executed	Output
Debug	DBGRQ	DBGRQ	Debug request	Input
Debug	DBGRQI	-	Internal debug request, this signal is the logical OR of DBGRQ and bit 1 of the debug control register (ARM7TDMI only)	Output
Debug	DBGRNG[1:0]	DBGRNG[1:0]	ICE range out	Output
Debug	DBGTCKEN	-	Test clock enable (ARM7TDMI only)	Input
Debug	EXTERN[1:0]	DBGEXT0, DBGEXT1	Embedded ICD EXTERN debug qualifiers (tie LOW if not required)	Input
Debug	HIGHZ	OE_N	Tri-state test chip signals. If the HIGHZ instruction has been loaded into the TAP controller, this signal is HIGH.	Input
Debug	IR[3:0]	WBYTE[3:0]_N	Instruction register, reflects the current instruction loaded into the TAP controller instruction register. (ARM7TDMI-S is memory write control)	Output
Debug	ISYNC	CFGBOOT	Synchronous interrupts, set HIGH if nIRQ and nFIQ are synchronous to the processor clock. (ARM7TDMI-S is configuration control)	Input
Debug	nENOUTI	XIO_N	Not enable output for coprocessor transfer, driven LOW during a coprocessor register transfer C cycle from the Embedded ICE communications channel processor	Output
Debug	nEXEC	DBGnEXEC	Not executed. Indicates that the instruction in the execution unit is not being executed	Output
Debug	nTDOEN	nTDOEN	Enable TDO tristate buffer	Output
Debug	RANGEOUT[1:0]	RAMA[10:9]	EmbeddedICE rangeout qualifier outputs for ARM7TDMI. (Equivalent ARM7S signals are DBGRNG[1:0]) (ARM7TDMI-S RAMA[10:9] are RAM addresses)	Output

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Debug	SCANENABLE	SCANENABLE	Scan test path enable for test pattern generation	Input
Debug	SCREG[3:0]	RAMA[8:5]	Scan chain register, reflects the ID number of the scan chain selected by the TAP controller (ARM7TDMI-S RAMA[8:5] are RAM addresses)	Output
Debug	TAPSM[3:0]	-	TAP controller state machine, reflects the current state of the TAP controller. (ARM7TDMI only)	Output
Debug	ТВЕ	INPUT116	Test bus enable, if LOW, D[31:0] , A[31:0] , LOCK , MAS[1:0] , nRW , nTRANS , and nOPC are set to high impedance.	Input
Debug	TCK[2:1]	ROMB[1:0]	TCK phase 1 and 2	Output
Debug	TEST[3:0]	RAMDISABLE, RAS1_N, EXP_N, SCANOUT	Test signals related to internal bus MD[0], MDOUT[31], and chip delays. (ARM7TDMI-S signals are memory control, if RAMDISABLE is HIGH, the memory controller in the ARM7TDMI-S test chip is disables and the pin function reverts to the ARM7TDMI definition.)	-
Interrupt	nFIQ	nFIQ	External fast interrupt (active LOW)	Input
Interrupt	nIRQ	nIRQ	External interrupt (active LOW)	Input
JTAG	ARM_nTRST	DBGnTRST	Test reset to core, TAP and ICE	Input
JTAG	ARM_TDI	DGBTDI	Boundary scan Input	Input
JTAG	ARM_DBGRQI	RTCK	Debug request (ARM7TDMI-S return JTAG clock)	Input
JTAG	ARM_TDO	DBGTDO	Boundary scan Output	Output
JTAG	ARM_TMS	DBGTMS	ICE mode select	Input
JTAG	DBBREAK		ICE breakpoint/watchpoint indicator	Input
Memory	NC[2:0]	RAMA0, RAMA1, RAMA2	Reserved signals for ARM7TDMI (ARM7TDMI-S RAM[2:1] are memory addresses)	Output

Table 7-2 Test chip signals (continued)

Group	ARM7TDMI Signal	ARM7TDMI-S Signal	Description	Direction
Misc	BIGEND	CFGBIGEND	Selects big endian memory mode if HIGH	Input
Power	ARM_VDDCORE	VDDCORE	Voltage level used for processor core	Input
Power	ARM_VDDIO	VDDIO	Voltage level used for input and output signals	Input
Reset	nRESET	nRESET	Reset input - asynchronous	Input

Figure 7-2 shows the internal clock signals.

Figure 7-2 Test chip internal clock signals

7.3 Core Tile memory

This section describes the memory and memory expansion connectors present on the Core Tile.

7.3.1 Memory expansion boards

The Core Tile	e contains two memory connectors for expansion memory boards:
J7	Y memory expansion connector (Y MEMEXP).
J8	Z memory expansion connector (Z MEMEXP).
—— Note	
Typically the	expansion boards contain static RAM or flash memory. The memory

Typically the expansion boards contain static RAM or flash memory. The memory connectors conform to the PISMO standard. Refer to the PISMO Memory Interface Connector Specification and Appendix A Static Memory Expansion Board for details on signals on the connectors and signals. Different memory boards might require special interface software or configuration settings.

The memory controller for expansion memory must be implemented in an external Logic Tile (or IM-LT3). The memory expansion signals are connected directly to HDRY and HDRZ. The Core Tile test chip is not connected to the memory expansion sockets.

To use the SSTL standard for a PISMO board on the Y MEMEXP connector, fit resistor links R26, R27, and R28.

The test chip on the CT7TDMI Core Tile can be disabled to allow the Core Tile to function as a dedicated memory tile (see *Disabling the test chip output signals* on page 7-29).

7.3.2 Memory map

All memory accesses are presented on the external 32-bit wide interface consisting of **ADDR[31:0]**, **DATA[31:0]**, and the bus control signals.

The byte order of memory can be selected by the **BIGENDIN** signal.

7.4 Clocks

Figure 7-3 shows the clock-related signals that are present on the Core Tile and an attached Logic Tile.

The selection of clock sources and outputs depends on the specific combination of Versatile products. Refer to the application notes for more detail on clock usage.

Figure 7-3 Core Tile clock signals

There is not a clock generator present on the Core Tile. The processor clock (MCLK) can be selected from one of the external clocks (CLOCK_GLOBAL, X_MCLK_DN, X_MCLK_UP, CLK_NEG_DN_IN, or CLK_NEG_UP_IN) as shown in Figure 7-4 on page 7-18. Multiplexor signals from the PLD are set from the serial configuration data.

Note

Many of the normal Logic Tile clocks are not used by the Core Tile (for example CLK_POS_DN). There are, however, signals input to the Core Tile from an attached Logic Tile that are not standard Logic Tile clocks (for example, X_ECLK_DN and PLDCLK). The new signals are Logic Tile FPGA outputs or inputs that are used as clocks with the Core Tile.

The resistor links shown in Figure 7-4 on page 7-18 are fitted at manufacture and do not normally require modification. For details on links, see *Links and test points* on page 8-22.

The clock sources and clock outputs might be different for different test chip variants. See the test chip information on the CD for details particular to the test chip used on the Core Tile.

For more information on clock generation and control for your test chip, see the *Technical Reference Manual* for your processor family, the test chip information supplied on the CD, and the Application Notes for using your Core Tile with other Versatile products.

The clock-related signals are summarized in Table 7-3.

Table 7-3 Clock-related signals on Core Tile

Signal	Direction	Description
MCLK	Input	Master clock for the test chip. MCLK is the ARM7TDMI clock input for the core and the bus, and ECLK is derived from it.
CLK_GLOBAL	Input/through	A global clock shared with all tiles in the stack.
CLK_NEG_DN_IN CLK_NEG_DN_OUT	Input/output and through	A clock signal routed from the upper header (CLK_NEG_DN_IN) to the lower header (CLK_NEG_DN_OUT).
CLK_NEG_UP_IN CLK_NEG_UP_OUT	Input/output and through	A clock signal routed from the lower header (CLK_NEG_UP_IN) to the upper header (CLK_NEG_UP_OUT).

Table 7-3 Clock-related signals on Core Tile (continued)

Signal	Direction	Description
CLK_POS_UP, CLK_POS_DN, CLK_UP_THRU, CLK_OUT_PLUS1, CLK_OUT_PLUS2, CLK_IN_PLUS1, CLK_IN_PLUS1, and CLK_DN_THRU	Through	These Logic Tile clock signals are not used by the Core Tile. They are passed through the Core Tile unmodified for use by other tiles.
CLKSEL[5:0]	Local outputs from PLD	These signals (from the PLD) control the clock-selection multiplexors.
ECLK	Output	Output clock from the test chip. The destination can be selected as either X_ECLK_DN or XL33
X_MCLK_UP, XL32	Input/output and through	Clock source from an external tile that is an input to the clock selection multiplexor.
X_ECLK_DN,XL33	Input/output and through	Clock output from test chip that is distributed to external tiles.
X146	Output and through	This signal is normally passed through the Core Tile. If nX_FOLD1 is HIGH, however, the signal is connected to X_MCLK_DN .
X147	Output and through	This signal is normally passed through the Core Tile. If nX_FOLD1 is HIGH, however, the signal is connected to X_ECLK_UP .

7.4.1 Clock multiplexors

Clock selection signals CLKSEL[5:0] and foldover control signals nX_FOLD1 and nX THRU1 control the multiplexors on the Core Tile:

CLKSEL[0] This selects between clocks on the upper or lower header connectors as the source for MCLK and the destination for ECLK.

CLKSEL[2:1]

This selects the source for MCLK. The input is either one of the clocks on the upper or lower header connector, ground, or the buffered CLK_GLOBAL.

CLKSEL[3] If HIGH, the CLK_NEG_UP_OUT on the top header is connected to ground. If LOW, CLK_NEG_UP_OUT is driven by the CLK_NEG_UP_IN signal from the lower header on the Core Tile.

- CLKSEL[4] If HIGH, the CLK_NEG_DN_OUT on the lower header is connected to ground. If LOW, CLK_NEG_DN_OUT is driven by the CLK_NEG_DN_IN signal from the upper header on the Core Tile.
- CLKSEL[5] If HIGH, the X_ECLK_UP and X_MCLK_DN on the upper header are connected to the isolation switches for XL33 and XL32. If CLKSEL[5] is LOW and nX_THRU is HIGH, the signals on XL33 and XL32 can be used by the multiplexor as alternative source for MCLK and destination for ECLK.
- nX_FOLD1 Connects signals on the upper header to signals on the lower header. If HIGH, X_ECLK_UP and X_MCLK_DN on the upper header are connected to the X147 and X146 (on both the upper and lower headers).
- nX_THRU1 Enables signals onto the lower header. If CLKSEL[5] is LOW and nX_THRU is HIGH, the signals on XL33 and XL32 are connected to the multiplexors and can be used as an alternative source for MCLK and destination for ECLK.

See *Core Tile PLD signals* on page 7-32 for details on controlling the **CLKSEL[5:0]** signals from the PLD using **PLDCLK**, **PLDD0**, and **PLDD1**. The **MCLK** and **ECLK** routing for values of **CLKSEL[5:0]** are listed in Table 7-4 and Table 7-5 on page 7-17.

Table 7-4 MCLK clock source

CLKSEL[5:0]	MCLK source
bxxx000	CLK_NEG_UP_IN
bxxx001	CLK_NEG_DN_IN
b0xx010	X_MCLK_UP (This signal is connected to XL32 if nX_THRU1 is HIGH and is floating if nX_THRU1 is LOW)
b0xx011	X_MCLK_DN (If nX_FOLD1 is HIGH X_MCLK_DN is also connected to X146.)
b1xx01x	X_MCLK_DN and X_MCLK_DN are connected together. (If nX_THRU1 is HIGH, the signal can be sourced from either the upper or lower header. If nX_FOLD1 is HIGH X_MCLK_DN is also connected to X146.)
bxxx100	GND (no clock input)
bxxx101	GND (no clock input)
bxxx110	CLK_GLOBAL
bxxx111	CLK_GLOBAL

Table 7-5 ECLK destination

CLKSEL[5:0]	ECLK output
b0xxxx0	X_ECLK_UP (If nX_FOLD1 is HIGH X_ECLK_UP is connected to X147.)
b0xxxx1	X_ECLK_DN (X_ECLK_DN is also connected to XL33 if nX_THRU1 is HIGH)
b1xxxxx	Both X_ECLK_UP and X_ECLK_DN. (X_ECLK_DN is also connected to XL33 if nX_THRU1 is HIGH. If nX_FOLD1 is HIGH X_ECLK_UP is also connected to X147.)

Figure 7-4 Test chip clock selection

7.5 Power supply control

The power supply on the Core Tile is controlled by the PLD and by resistor links as shown in Figure 7-5.

Figure 7-5 Voltage control and monitoring

Caution	

Changing the resistors that control the core power-supply voltage might result in damage to the test chip (see *Setting the VDDCORE voltage* on page 7-23). The resistors that are fitted at manufacture enable you to modify the core voltage within a safe region.

Modifying the core voltage is not required for normal operation.

The resistor values and links described in this section are typical values, but the values on your Core Tile might be different. Refer to the BOM and schematic for your Core Tile for details of build options that are used for your board.

The Logic Tile FPGA implements registers and a PLD interface (as shown in Figure 7-5 on page 7-19) that control the PLD on the Core Tile to enable you to:

- Change the VDDCOREA and VDDCOREB voltages by writing values to the serially-programmed digital to analog converters (DACs). Resistor links allow these supplies to be connected to test chip signals ARM VDDCORE[5:1].
- Read onboard voltages and currents:
 - ARM_VDDCORE[5:1] and ARM_VDDIO are the core and I/O voltage levels
 - VDDCOREA_DIFF and VDDCOREB_DIFF are proportional to the current through current-sensing resistors
 - TP1_SENSE and TP2_SENSE are the voltages present on test points 4 and 5.

Note	
—— Note	

The ADC controller continuously reads the values from the ADC and stores them in the registers. The serial interface between the PLD on the Core Tile and the FPGA on an attached Logic Tile continuously updates the registers in the PLD and FPGA. (See *Core Tile PLD signals* on page 7-32.)

7.5.1 Resistor links for power supply

The connections between the programmable regulators and the test chip voltage pins can be configured by resistor links on the printed circuit board as shown in Figure 7-6 on page 7-22. The Core Tile voltage sources are:

1V8 The output of this regulator is input to the memory expansion connectors.

VDDIO The output of this regulator is input to the test chip and is connected to the **ARM VDDIO** power blade on HDRX.

Resistor links R3 and R4 connect the 3.3V supply from HDRZ with the **VDDIO** voltage blades on HDRX. Do not use this link if you require custom I/O voltages on the HDRX blade.

VDDIO can also be selected as the voltage supply for test chip signals **VDDORE2**, **VDDCORE4**, or **VDDCORE5**.

VCCOY

Some memory modules have the output of an onboard regulator connected to the **VCCOY** signals. **VCCOY** is present on the power blade of HDRY.

Resistor links R1 and R2 connect the 3.3V supply from HDRZ with the **VCCOY** voltage. Do not use this link if you require custom I/O voltages on the HDRY blade.

VDDCOREA and VDDCOREB

The output of the two programmable regulators can be selected as the voltage supply for the test chip. (VDDCOREA can be selected for VDDORE2, VDDCORE3, or VDDCORE5. VDDCOREB can be selected for VDDCORE[4:3].

VDDCORE[5:1] interconnection

There are the core voltage supplies to the test chip core. The interconnection links to connect two or more of the groups together.

Figure 7-6 Voltage interconnection links

Refer to the BOM for details of resistor links shown in Figure 7-6 that are fitted at manufacture. Also the **VDDIO** and **VDDCOREB** regulators might not be fitted for some boards. **VDDIO** is typically powered from the 3.3V supply from the HDRX power blades.

Note -

7.5.2 Setting the VDDCORE voltage

The core voltages are set by:

- Resistors R13, R18. R19, R35, R40, and R41, see Figure 7-7 on page 7-24. These define the core voltage at power-on and the range of adjustment possible for VDDCOREA and VDDCOREB. These resistors are fitted at manufacture to give the correct core voltage for the test chip fitted to the Core Tile.
- The values loaded into the PLD for the DAC settings. The values provide a positive or negative offset to the default power-on voltages.
- The interconnection links between the regulators and the **VDDCORE**[5:1] power connections (see Figure 7-6 on page 7-22).

The output voltages are given by:

```
VDDCOREA = 0.6V * (1 + R13/R18 + R13/R19) - CT_VOLTAGE_A[7:0]*R13*(<math>I_{DAC}/255)

VDDCOREB = 0.6V * (1 + R13/R40 + R35/R41) - CT_VOLTAGE_B[7:0]*R13*(<math>I_{DAC}/255)

where:
```

 I_{DAC} The full-range DAC output current (50µA)

CT_VOLTAGEx[7:0]

The eight-bit data value loaded into the PLD from the Logic Tile FPGA. There are two DACs that drive the programmable regulators for **VDDCOREA** and **VDDCOREB**. The default value loaded into the DAC is 0x80. A value of 0xFF gives maximum negative offset (-0.25V) and a value of 0x0 gives maximum positive offset (+0.25V).

Resistor values

Refer to the BOM for the resistor values fitted to the build variant.

See Core Tile PLD signals on page 7-32 for a description of the PLD interface.

Figure 7-7 Programmable regulators

7.5.3 Reading the voltages and currents

The ADCs on the Core Tile regularly read the voltages and currents and update registers in the PLD. The PLD transmits these values over the serial interface to the FPGA in the attached Logic Tile.

The LSB of the ADC reading corresponds to 1.221 mV. (Two times the 2.5V V_{REF} of the ADC divided by 4095.) The formula for the **VDDCORE** and **VDDIO** voltages is:

 $V_{VDDx} = 1.221 \text{mV} * VOLTAGE[11:0]$

——— Caution ————

All voltages except VDDCOREx_DIFF, 1V8, ADC_VREF, TP1_SENSE, and TP2_SENSE are divided by two before being fed to the ADC. The formula for these voltages is therefore:

V = 2.442 mV * VOLTAGE[11:0]

The **TPx_SENSE** voltages should not exceed 2.5V for accurate readings and must not exceed 3.3V to prevent damage to the converters.

Voltages proportional to the **VDDCOREA** and **VDDCOREB** currents are developed across the sense resistors. Each of the sense resistors has a voltage amplifier because the sense voltage is too low to measure directly with the ADC. To calculate the current through an **VDDCOREx** line:

 $I_{VDDCOREx} = V_{ref} * VOLTAGE[11:0] / (R_{SENSE} * GAIN * (212-1))$

____ Note ____

By default, all of the R_{SENSE} resistors are 0Ω . It is not therefore possible to measure the current flow. You can replace the existing sense resistors with new ones of, for example, 1Ω .

7.6 Isolation and foldover of header signals

The Core Tile uses electronic switches to control signals to and from some of the header connectors:

- X MCLK UP can be connected to XL[32].
- X_MCLK_DN can be connected to X[147].
- X ECLK DN can be connected to XL[33].
- X ECLK UP can be connected to X[146].
- SEL[1:0] can be connected to XL[35:34] or X[145:144].
- DATA[31:0] can be connected to XL[31:0] or X[179:148].
- YU[35:0] can be connected to YL[35:0] or Y[179:144].
- Signals ZL[127:0] can be disconnected from signals ZU[127:0].
 For Core Tiles, ZL[127:0] signals are connected to the ZU[127:0] signals. The HDRZ signals can be split if, for example, there is a Logic Tile mounted on both the top and bottom of the Core Tile and the Logic Tiles have different functions for the Zx[127:0] signals.
- The test chip can be disabled and any header signals connected to the test chip can be used for an alternative function by tiles mounted above or below the Core Tile.

7.6.1 Through/break control for HDRX

Interconnection between some signals on HDRX of the Core Tile is controlled by signals **nX_THRU[1:0]** and **nX_FOLD[1:0]** from the Core Tile PLD (see Figure 7-8 on page 7-27). If the **nX_THRU** and **nX_FOLD** signals are LOW, the corresponding switches are closed. See *Core Tile PLD signals* on page 7-32 for a description of the PLD interface.

Figure 7-8 HDRX through/break control

7.6.2 Through/Break control for HDRZ

Interconnection between **ZL[127:0]** and **ZU[127:0]** is selected by control signals **ZCTL[3:0]**, Z_THRU, and Z_FOLD from the PLD as shown in Figure 7-9 on page 7-28. If the control signal is LOW, the corresponding switches are closed.

Z[255:235] MEMEXPB[21:0] ZU[31:0] ZU[63:32] ZU[95:64] ZU[127:96] Core Tile ZCTL3 ZCTL2 • PLD ZCTL1 ZCTL0 **Z_FOLD Z_THRU** ZL[127:96] ZL[95:64] ZL[63:32] ZL[31:0] Z[31:0] **nSYSPOR** Z[63:32] Z[95:64] Z[127:96] PLDCLK PLDD0 PLDD1 FPGA Logic Tile

See *Core Tile PLD signals* on page 7-32 for a description of the PLD interface.

Figure 7-9 HDRZ through/break control

7.6.3 Through/Break control for HDRY

Interconnection between Y[179:144], YL[35:0], and YU[35:0] is selected by control signals nY_FOLD[1:0] and nY_THRU[1:0] from the PLD as shown in Figure 7-10 on page 7-29. If the nY_THRU and nY_FOLD signals are LOW, the corresponding switches are closed.

See Core Tile PLD signals on page 7-32 for a description of the PLD interface.

Figure 7-10 HDRY through/break control

7.6.4 Disabling the test chip output signals

The test chip on the CT7TDMI Core Tile can be disabled by driving the **BCE** signal HIGH. This tri-states all output signals from the Core Tile. Any header signals that are connected directly to the test chip can be used for other purposes by tiles connected above and below the Core Tile.

If the test chip is disabled, the PLD on the Core Tile can still be used to control header signals through the fold and thru switches and to provide access to the memory expansion connectors.

Note
The BCE signal is not available on the test chip used on the CT7TDMI-S Core Tile

7.7 Overview of Core Tile configuration

The clock sources, and voltages levels on the Core Tile are configurable from input signals on the header connectors and signals output from the on-board PLD. In a production ASIC, core configuration is typically static and the core configuration signals are tied HIGH or LOW and the voltage and clocks are fixed. However, the Core Tile allows you to program these signals for experimentation.

There are several ways that Core Tile configuration occurs:

- The **BIGENDIN** signal present on HDRX selects memory byte order.
 - When an external Logic Tile drives **BIGENDIN** HIGH, the processor uses big-endian memory organization. The signal typically connects to a Logic Tile (or IM-LT3 Interface Module) connected to the Core Tile.
- Configuration by the serial interface to the PLD on the Core Tile. (The PLD is normally controlled by a serial interface implemented in an FPGA present on an external Logic Tile.) The PLD controls the following signals:
 - the DAC inputs that select the voltages for the programmable regulators
 - the data bus interface switches
 - the clock multiplexors
 - tri-stating all output signals from the test chip
 - the header isolation and fold switches.

PLD configuration signals are described in *Core Tile PLD signals* on page 7-32.

• Registers in coprocessor 15 (if present for the test chip variant) are typically used to control endian settings and memory management units.

See the *Technical Reference Manual* for the core used in your test chip for details of register usage.

Note
The ARM7TDMI does not have a coprocessor 15. Configuration is done by
signals on the test chip.

You can use an external JTAG unit such as Multi-ICE or RealView ICE to modify the contents of the test chip registers or internal memory. The contents can of course also be modified by an application program.

• Links present on the printed circuit board. The links, usually 0Ω . resistors, are normally set at manufacture to select voltage and clock options. These links are normally not modified after manufacture.

Some of the functions performed by links are:

voltage range for the programmable regulators

—	clock selected for connection to multiplexors
	manufacturing identification number
_	voltage source for header and memory connectors.
	— Caution ———
The	resistor links are set at manufacture and do not normally require
mod	ification. Changing the voltage regulator resistors can result in excessive

To change the configuration of the processor, program the appropriate values in the control registers implemented in the FPGA on the Logic Tile (or IM-LT3). Depending on the test chip present in the Core Tile, the contents of registers in the test chip might require modification. (See the application note for your product configuration for details on the control registers.)

7.7.1 Core Tile PLD signals

The PLD on the Core Tile performs the following functions:

voltages being applied to the test chip.

- loading data to the DACs that control the programmable power supplies (see *Power supply control* on page 7-19)
- reading data from the ADCs that monitor the test chip voltages (see *Reading the voltages and currents* on page 7-24)
- controlling the clock selection multiplexors (see *Clocks* on page 7-13)
- isolating HDRZ signals (see *Through/Break control for HDRZ* on page 7-27)
- tri-stating all of the test chip outputs (see *Disabling the test chip output signals* on page 7-29)
- selecting the test chip interface to the **DATA[31:0]** signals (see *Isolation and foldover of header signals* on page 7-26)

The PLD is controlled by the serial interface signals listed in Table 7-6 on page 7-33. These signals typically connect to an attached Logic Tile or IM-LT3 Interface Module. The FPGA in the external tile contains registers that hold the values to send to the PLD and received values from the PLD. The FPGA also provides the serialization and deserialization logic required by interface

Table 7-6 PLD control signals

Signal	Description	
PLDCLK	Clocks data into or out of the PLD	
PLDD1	Serial data input to PLD	
PLDD0	Serial data output from PLD	
PLDRESETn	Reset selects mode for PLD (LOW is startup, HIGH is runtime configuration)	

The Core Tile PLD manages the Core Tile configuration and status signals listed in Table 7-7 $\,$

Table 7-7 PLD configuration signals

Signal	Direction	Function
ZCTL[3:0]	PLD output	Z Through control (see <i>Through/Break control for HDRZ</i> on page 7-27)
CLKSEL[4:0]	PLD output	Clock selection (see <i>Clocks</i> on page 7-13)
DACnCS[1:0]	PLD output	Chip select to DAC
DAC_DIN[1:0]	PLD output	Data to DAC (see Setting the VDDCORE voltage on page 7-23)
ADC_nCS	PLD output	Chip select to ADC
ADC_CLK	PLD input	Clock for data from ADC
ADC_SSTRB	PLD input	Strobe for ADC. Indicates that a conversion has finished
ADC_DOUT	PLD input	Data from ADC (see <i>Reading the voltages and currents</i> on page 7-24)
ADC_DIN	PLD output	Data to ADC (see Reading the voltages and currents on page 7-24)
nX_FOLD[1:0], nX_THRU[1:0]	PLD output	Signal passthrough and fold switches for HDRX (see <i>Through/break control for HDRX</i> on page 7-26)
nY_FOLD[1:0], nY_THRU[1:0]	PLD output	Signal passthrough and fold switches for HDRY (see <i>Through/Break control for HDRY</i> on page 7-28)
nZ_FOLD, nZ_THRU	PLD output	Signal passthrough and fold switches for HDRZ (see <i>Through/Break control for HDRZ</i> on page 7-27)

Table 7-7 PLD configuration signals (continued)

Signal	Direction	Function
MAN_ID[3:0]	PLD input	Board identification from resistor links. This is set at manufacture and identifies the board build.
PWR_nSHDN[2:0]	PLD output	Shutdown to the Vdd core power supplies (see <i>Power supply control</i> on page 7-19)
BCE, ABE, EEBE, EDBE, EABE, TBE,	PLD output	Disable test chip by tri-stating all output pins (see <i>Disabling the test chip output signals</i> on page 7-29)

PLD function at power on

At power-on-reset, a controller in an external tile sends a configuration sequence to the PLD on the Core Tile as shown in Figure 7-11. The PLD control signals are described in Table 7-6 on page 7-33.

Figure 7-11 Power on signals to the Core Tile PLD

Table 7-8 lists the configuration and status signals that are received by or transmitted from the PLD at power on (after **nSYSPOR** goes HIGH).

Table 7-8 Power-on configuration signals by clock cycle

Clock	PLDD1	PLDD0	Description	
-	LOW	LOW	No activity while nSYSPOR is LOW	
0	LOW	LOW	First rising edge of clock after nSYSPO goes HIGH	OR
1	ZCTL[3]	MANID[3]	ZCTL data is clocked into the PLD and	
2	ZCTL[2]	MANID[2]	 state of the MANID links is clocked or the PLD. 	it oi
3	ZCTL[1]	MANID[1]	_	
4	ZCTL[0]	MANID[0]	-	
5	TCENABLE	PLDID[3]	TCENABLE collectively controls the chip bus output enables: ABE Address bus enable BCE BC external output ena EEBE External enable EDBE External data bus enabl EABE Extrnal address bus ena TBE Test bus enable	ble le
6	CLKSEL[4]	PLDID[2]	CLKSEL multiplexer data is clocked in the PLD and the internal PLD ID is clocked out.	
7	CLKSEL[3]	PLDID[1]		
8	CLKSEL[2]	PLDID[0]		
9	CLKSEL[1]	PGOOD		
10	CLKSEL[0]	_		
11	nX_THRU[1]	_		
12	nX_THRU[0]	-		
13	nX_FOLD[1]	_		
14	nX_FOLD[0]	-		
15	nY_THRU[1]	_		

Table 7-8 Power-on configuration signals by clock cycle (continued)

Clock	PLDD1	PLDD0	Description
16	nY_THRU[0]	_	
17	nY_FOLD[1]	-	
18	nY_FOLD[0]	_	
19	nZ_THRU	_	
20	nZ_FOLD	_	
21	_	_	
22	LOW	LOW	No further activity until nSYSRST goes HIGH

PLD function after power on

After the power-on configuration finishes, the PLD is inactive until the **nSYSRST** signal goes HIGH. If **nSYSRST** is HIGH, The PLD continuously receives DAC packets from the serial interface and transmits ADC packets to the serial interface as shown in Figure 7-12.

Figure 7-12 ADC and DAC data stream

_____Note _____

After **nSYSRST** goes HIGH, the ADC and DAC data packets repeat continuously.

nSYSRST is an external signal from an attached motherboard.

The format of the ADC packet is shown in Figure 7-13.

Figure 7-13 ADC packet format

The format of the DAC packet is shown in Figure 7-14.

Figure 7-14 DAC packet format

Table 7-9 lists the PLD input and output signals after nSYSPOR goes HIGH.

Table 7-9 Run configuration signals by clock cycle

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
-	LOW	LOW	No activity while nSYSPOR is LOW
0	-	ADCSELA[2]	First cycle after nSYSPOR goes HIGH. The
1	DACSELA[1]	ADCSELA[2]	DACSEL signals select which DAC value is transmitted in the current packet.
2	DACSELA[0]	ADCSELA[1]	The value of the ADCSEL signals indicate the ADC value that is transmitted in the current packet.
3	LOW	ADCSELA[1]	— value that is transmitted in the earlest packet.
4	DACDIN[7]	ADCSELA[0]	Start of DAC data.
5	DACDIN[6]	ADCSELA[0]	

Table 7-9 Run configuration signals by clock cycle (continued)

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
6	DACDIN[5]	LOW	
7	DACDIN[4]	LOW	
8	DACDIN[3]	LOW	
9	DACDIN[2]	LOW	
10	DACDIN[1]	LOW	
11	DACDIN[0]	LOW	End of first input packet
12	-	LOW	
13	LOW	LOW	
14	DACSELA[1]	LOW	Second DAC packet starts with DAC selection bits.
15	DACSELA[0]	LOW	
16	LOW	HIGH	
17	DACDIN[7]	HIGH DAC data starts.	
18	DACDIN[6]	LOW	
19	DACDIN[5]	LOW	
20	DACDIN[4]	ADC_DOUTA[11] ADC data starts.	
21	DACDIN[3]	ADC_DOUTA[11]	
22	DACDIN[2]	ADC_DOUTA[10]	
23	DACDIN[1]	ADC_DOUTA[10]	
24	DACDIN[0]	ADC_DOUTA[9]	
25	-	ADC_DOUTA[9]	
26	LOW	ADC_DOUTA[8]	
27	DACSELA[1]	ADC_DOUTA[8] DAC data ends.	
28	DACSELA[0]	ADC_DOUTA[7]	
29	LOW	ADC_DOUTA[7]	

Table 7-9 Run configuration signals by clock cycle (continued)

Clock	PLDD1 (PLD input)	PLDD0 (PLD output)	Description
30	DACDIN[7]	ADC_DOUTA[6]	Third DAC packet starts.
31	DACDIN[6]	ADC_DOUTA[6]	
32	DACDIN[5]	ADC_DOUTA[5]	
33	DACDIN[4]	ADC_DOUTA[5]	
34	DACDIN[3]	ADC_DOUTA[4]	
35	DACDIN[2]	ADC_DOUTA[4]	
36	DACDIN[1]	ADC_DOUTA[3]	Start of DAC data
37	DACDIN[0]	ADC_DOUTA[3]	
38	-	ADC_DOUTA[2]	
39	LOW	ADC_DOUTA[2]	
40	DACSELA[1]	ADC_DOUTA[1]	
41	DACSELA[0]	ADC_DOUTA[1]	
42	LOW	ADC_DOUTA[0]	
43	DACDIN[7]	ADC_DOUTA[0]	Fourth DAC packet starts. End of ADC data.
44	DACDIN[6]	LOW	
45	DACDIN[5]	LOW	
46	DACDIN[4]	LOW	
47	DACDIN[3]	LOW	
48	DACDIN[2]	LOW	
49	DACDIN[1]	PGOOD	Power good (always HIGH)
50	DACDIN[0]	LOW	End of ADC packet.

7.8 JTAG support

JTAG signals are present on both the upper and lower HDRZ connectors. An external board provides the JTAG connector and the routing of the JTAG signals from the connector to HDRZ (see *JTAG signals*). The Core Tile routes the JTAG scan path through devices on the board. The logic devices that are placed in the Core Tile scan chain depend on the JTAG mode:

Debug mode Debug mode is selected by default (when a jumper is *not* fitted at the CONFIG link on the external board. It is the mode used for general system development and debug. In this mode, the JTAG signals flow through the debug scan chain (this is typically just connects to the system microprocessor).

Configuration mode

In configuration mode, all FPGAs and PLDs in the system are placed into the configuration scan chain. If the test chip implements a boundary scan chain, it is also placed in the scan chain. This mode allows the programmable logic devices in the system to be reprogrammed in the field.

To select configuration mode, fit a jumper to the CONFIG link on either the Interface Module or baseboard. This pulls the **nCFGEN** signal LOW on the system and reroutes the JTAG scan path.

7.8.1 JTAG signals

There are two separate JTAG paths through the Core Tile:

- One is used for configuration of programmable devices (the PLD for example). If the test chip has a boundary scan interface, this is included in the scan chain. These JTAG signals are identified by the C prefix.
- One is used in debug mode to connect to the debug TAP controller in the test chip. These JTAG signals are identified by the **D** prefix.

The JTAG path chosen depends on whether the system is in configuration mode or debug mode. The CONFIG link on the baseboard or Interface Module controls the **nCFGEN** signal that is routed through the Interface Module and Core Tile connectors.

Table 7-10 on page 7-41 provides a description of the JTAG signals.

In the description in Table 7-10, the term JTAG equipment refers to any hardware that can drive the JTAG signals to devices in the scan chain. Typically, Multi-ICE or RealView ICE is used, although you can also use hardware from third-party suppliers to debug ARM processors.

----- Note -----

Single-pole switches are closed if a HIGH signal is present at the control input. Multi-pole switch positions are marked with a 1 for the condition where a HIGH signal is present at the control input.

For Figure 7-15 on page 7-44, **nCFGEN** and **nTILEDET** are both HIGH indicating normal debug mode and no tile connected above the Core Tile.

Table 7-10 JTAG signal description

Name	Description	Function
DBGRQ	Debug request (from JTAG equipment)	DBGRQ is a request for the processor core to enter the debug state. This is not a JTAG signal, but it can be controlled by JTAG equipment.
DBGACK	Debug acknowledge (to JTAG equipment)	DBGACK indicates to the debugger that the processor core has entered debug mode. This is not a JTAG signal, but it can be controlled by JTAG equipment.
nCFGEN	Configuration enable (from CONFIG link on Interface Module or baseboard)	nCFGEN is an active LOW signal used to put the boards into configuration mode. In configuration mode all FPGAs and PLDs in the system are connected to the scan chain so that they can be configured by the JTAG equipment.
nRTCKEN	Return TCK enable (from Core Tile to motherboard)	nRTCKEN is an active LOW signal driven by any Core Tile that requires RTCK to be routed back to the JTAG equipment. If nRTCKEN is HIGH, the motherboard drives RTCK LOW. If nRTCKEN is LOW, the motherboard drives the TCK signal back to the JTAG equipment.

Table 7-10 JTAG signal description (continued)

Name	Description	Function
RTCK, D_RTCK	Return TCK for the debug scan chain (to JTAG equipment)	Some devices sample TCK (for example a synthesizable core with only one clock), and this has the effect of delaying the time at which a component actually captures data. RTCK is a mechanism for returning the sampled clock to the JTAG equipment, so that the clock is not advanced until the synchronizing device captured the data. In <i>adaptive clocking mode</i> , Multi-ICE is required to detect an edge on RTCK before changing TCK. In a multiple device JTAG chain, the RTCK output from a component connects to the TCK input of the down-stream device. The RTCK signal on the header connector returns TCK to the JTAG equipment. If there are no synchronizing components in the scan chain then it is unnecessary to use the RTCK signal and it is connected to ground on the motherboard. D_RTCK the RTCK signal for the debug scan chain. The config scan chain does not use RTCK.
nSRST	System reset (bidirectional)	nSRST is an active LOW open-collector signal that can be driven by the JTAG equipment to reset the target board. Some JTAG equipment senses this line to determine when a board has been reset by the user. The open collector nSRST reset signal can be driven LOW by the reset controller on the Core Tile to cause the motherboard to reset the whole system by driving the motherboard signal nSYSRST LOW. This is also used in configuration mode to control the initialization pin (nINIT) on the FPGAs. Though not a JTAG signal, nSRST is described because it can be controlled by JTAG equipment.
nTRST	Test reset (from JTAG equipment)	This active LOW open-collector signal is used to reset the JTAG port and the associated debug circuitry on the processor. It is asserted at power-up by each module, and can be driven by the JTAG equipment. This signal is also used in configuration mode to control the programming pin (nPROG) on FPGAs.
TCK, D_TCK, C_TCK	Test clocks for the debug and config scan chains (from JTAG equipment)	TCK synchronizes all JTAG transactions. TCK connects to all JTAG components in the scan chain. Series termination resistors are used to reduce reflections and maintain good signal integrity. TCK flows down the stack of modules and connects to each JTAG component. However, if there is a device in the scan chain that synchronizes TCK to some other clock, then all down-stream devices are connected to the RTCK signal on that component (see RTCK). D_TCK is the clock for the debug mode chain and C_TCK is the clock for the configuration mode chain.

Table 7-10 JTAG signal description (continued)

Name	Description	Function
TDI, D_TDI, C_TDI	Test data in for the debug and config scan chains (from JTAG equipment)	TDI goes up the stack of modules to the motherboard and then back down the stack, labeled TDO, connecting to each component in the scan chain. D_TDI is the data signal for the debug mode chain and C_TDI is the data signal for the configuration mode chain.
TDO, D_TDO, C_TDO	Test data out for the debug and config scan chains (to JTAG equipment)	TDO is the return path of the data input signal TDI. The JTAG components are connected in the return path so that the length of track driven by the last component in the chain is kept as short as possible. D_TDO is the data signal for the debug mode chain and C_TDO is the data signal for the configuration mode chain.
TMS	Test mode select (from JTAG equipment)	TMS controls transitions in the tap controller state machine. TMS connects to all JTAG components in the scan chain.

JTAG data and clock logic

Figure 7-15 on page 7-44 shows the JTAG clock and data signals.

Figure 7-15 JTAG clock and data signals

Unlike the ARM7TDMI-S, the ARM7TDMI does not have a separate boundary scan chain and a BS_TAP controller. The resistor links R65, R74, R77, and R81 allow both test chips to be fitted to the PCB. The resistor links route the TCK and TDI signals depending on the test chip fitted.

Figure 7-16 shows a simplified clock and data diagram for a ARM7TDMI-S in debug mode without a tile connected above the Core Tile. The two buffers in the ARM_TCK signal consist of a level-shifter that produces **D_TCK_ARM** from **D_TCK_IN**. After passing through a multiplexor, this signal is buffered again to become **ARM_TCK**.

Lower Core Tile headers

Figure 7-16 Simplified data and clocks for debug mode (ARM7TDMI-S)

The clock and data flow in debug and config mode are different. Figure 7-17 on page 7-46 and Figure 7-18 on page 7-46 show the equivalent flow for each mode. The switches have been replaced by direct connections and the diagram simplified. There is not a tile present above the Core Tile (**nTILEDET** is pulled HIGH).

Figure 7-17 Simplified data and clocks for debug mode (ARM7TDMI)

Figure 7-18 Simplified data and clocks for config mode (ARM7TDMI and ARM7TDMI-S)

JTAG reset and configure logic

Figure 7-19 on page 7-47 shows the reset and TMS signals.

Lower Core Tile headers

Figure 7-19 JTAG reset signals

7.8.2 Debug communications interrupts

The processor core incorporates EmbeddedICE logic that contains a communications channel used for passing information between the core and the JTAG equipment. The debug communications channel is implemented as coprocessor 14.

The processor accesses the debug communications channel registers using MCR and MRC instructions. The JTAG equipment reads and writes the register using the scan chain. For a description of the debug communications channel, see the Technical Reference Manual for your test chip.

The debug interrupt signals from the test chip are connected to HDRX pin 66 (COMMTX) and pin 68 (COMMRX).

Chapter 8 **HBI-0141 Signal Descriptions**

This index provides a summary of signals present on the CT7TDMI and CT7TDMI-S Core Tiles that use the HBI-0141 printed circuit board and describes the connectors and test points and the links that can be modified to change signal routing. It contains the following sections:

- *Header connectors* on page 8-2
- *Memory expansion connector pinout* on page 8-21
- *Links and test points* on page 8-22.

Note
For the Multi-ICE connector pinout and signal descriptions see JTAG signals of
page 7-40

The CT7TDMI and CT7TDMI-S Core Tiles do not have trace connectors.

8.1 Header connectors

Figure 8-1 shows the pin numbers and power-blade usage of the HDRX, HDRY, and HDRZ headers on the upper side of the tile. For details on the **VDDIO** and **VCCOY** voltages, see *Power supply control* on page 7-19.

Figure 8-1 HDRX, HDRY, and HDRZ (upper) pin numbering

Table 6-1 on page 6-3 lists the Samtec part numbers.

Core Tiles use the -05- connectors on the top of the board and the -01 connectors on the bottom of the board. The total separation is 22mm. The Core Tiles have a maximum component height of 2.5mm on the bottom and 19mm on the top of the board. This ensures that there are no component interference problems with mated boards.

8.1.1 HDRX signals

Table 8-1 describes the signals on the HDRX pins for the Core Tile and Logic Tile. (Replace *x* by L for the lower header and by U for the upper header for Logic Tile signals.)

Except for the **SEL[1:0]**, **X_ECLK**, **X_MCLK** and **DATA[31:0]** signals, all of the signals on the upper and lower HDRX connectors are the same for the Core Tile.

Most of the pins on the RealView Logic Tiles, however, have different signals on the upper and lower Logic Tile HDRX pins. If the upper signal on the Logic Tile is named XUn and the lower signal is named XLn, the table entry is Xxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header.

For example, the pin 1 signal for the Logic Tile lower connector is **XL90** and the pin 1 signal for the upper connector is **XU90**. The corresponding signal for the Core Tile is **RANGEOUT1** (both upper lower pins).

If the upper signal on a tile has a completely different name than the lower signal, both names are listed and the signal on the upper connector is indicated by a (U) and the signal on the lower connector is indicated by a (L).

Table 8-1 HDRX signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
RANGEOUT1	Xx90	1	2	Xx89	RANGEOUT0
SCREG0	Xx91	3	4	Xx88	NM4
SCREG1	Xx92	5	6	Xx87	NM3
SCREG2	Xx93	7	8	Xx86	NM2
SCREG3	Xx94	9	10	Xx85	NM1
NTDOEN	Xx95	11	12	Xx84	NM0
ADDR0	Xx96	13	14	Xx83	NEXEC
ADDR1	Xx97	15	16	Xx82	NENOUTI
ADDR2	Xx98	17	18	Xx81	NENOUT

Table 8-1 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
ADDR3	Xx99	19	20	Xx80	NENIN
ADDR4	Xx100	21	22	Xx79	IR3
ADDR5	Xx101	23	24	Xx78	IR2
ADDR6	Xx102	25	26	Xx77	IR1
ADDR7	Xx103	27	28	Xx76	IR0
ADDR8	Xx104	29	30	Xx75	DBGRQ
ADDR9	Xx105	31	32	Xx74	DBGRQI
ADDR10	Xx106	33	34	Xx73	HIGHZ
ADDR11	Xx107	35	36	Xx72	EXTERN1
ADDR12	Xx108	37	38	Xx71	EXTERN0
ADDR13	Xx109	39	40	Xx70	BL3
ADDR14	Xx110	41	42	Xx69	BL2
ADDR15	Xx111	43	44	Xx68	BL1
ADDR16	Xx112	45	46	Xx67	BL0
ADDR17	Xx113	47	48	Xx66	BREAKPT
ADDR18	Xx114	49	50	Xx65	APE
ADDR19	Xx115	51	52	Xx64	ALE
ADDR20	Xx116	53	54	Xx63	NRESET
ADDR21	Xx117	55	56	Xx62	NIRQ
ADDR22	Xx118	57	58	Xx61	NFIQ
ADDR23	Xx119	59	60	Xx60	DBGEN
ADDR24	Xx120	61	62	Xx59	DBGACK
ADDR25	Xx121	63	64	Xx58	ISYNC
ADDR26	Xx122	65	66	Xx57	COMMTX

Table 8-1 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
ADDR27	Xx123	67	68	Xx56	COMMRX
ADDR28	Xx124	69	70	Xx55	DBE
ADDR29	Xx125	71	72	Xx54	BIGENDIN
ADDR30	Xx126	73	74	Xx53	TBIT
ADDR31	Xx127	75	76	Xx52	ABORT
СРА	Xx128	77	78	Xx51	WAIT2
СРВ	Xx129	79	80	Xx50	NWAIT
NCPI	Xx130	81	82	Xx49	LOCK
TAPSM0	Xx131	83	84	Xx48	WAITSEL
TAPSM1	Xx132	85	86	Xx47	NRW
TAPSM2	Xx133	87	88	Xx46	F1
TAPSM3	Xx134	89	90	Xx45	F0
TCK1	Xx135	91	92	Xx44	BC1
TCK2	Xx136	93	94	Xx43	BC0
TEST0	Xx137	95	96	Xx42	BCE
TEST1	Xx138	97	98	Xx41	NTRANS
TEST2	Xx139	99	100	Xx40	NOPC
TEST3	Xx140	101	102	Xx39	MAS1
NC0	Xx141	103	104	Xx38	MAS0
NC1	Xx142	105	106	Xx37	SEQ
NC2	Xx143	107	108	Xx36	NMREQ
X144	Xx144	109	110 (U) 110 (L)	XU35XL3 5	SEL1XL35
X145	Xx145	111	112 (U) 112 (L)	XU34XL3	SEL0XL34

Table 8-1 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
X146	Xx146	113	114 (U) 114 (L)	XU33XL3 3	X_ECLK_UPX L33
X147	Xx147	115	116 (U) 116 (L)	XU32XL3 2	X_MCLK_DN XL32
X148	Xx148	117	118 (U) 118 (L)	XU31XL3	DATA31XL31
X149	Xx149	119	120 (U) 120(L)	XU30XL3	DATA30XL30
X150	Xx150	121	122 (U) 122 (L)	XU29XL2 9	DATA29XL29
X151	Xx151	123	124 (U) 124 (L)	XU28XL2 8	DATA28XL28
X152	Xx152	125	126 (U) 126 (L)	XU27XL2 7	DATA27XL27
X153	Xx153	127	128 (U) 128 (L)	XU26XL2	DATA26XL26
X154	Xx154	129	130 (U) 130 (L)	XU25XL2 5	DATA25XL25
X155	Xx155	131	132 (U) 132 (L)	XU24XL2 4	DATA24XL24
X156	Xx156	133	134 (U) 134 (L)	XU23XL2	DATA23XL23
X157	Xx157	135	136 (U) 136 (L)	XU22XL2 2	DATA22XL22
X158	Xx158	137	138 (U) 138 (L)	XU21XL2 1	DATA21XL21
X159	Xx159	139	140 (U) 140(L)	XU20XL2	DATA20XL20
X160	Xx160	141	142 (U) 142 (L)	XU19XL1	DATA19XL19

Table 8-1 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
X161	Xx161	143	144 (U) 144 (L)	XU18XL1 8	DATA18XL18
X162	Xx162	145	146 (U) 146 (L)	XU17XL1 7	DATA17XL17
X163	Xx163	147	148 (U) 148 (L)	XU16XL1 6	DATA16XL16
X164	Xx164	149	150 (U) 150 (L)	XU15XL1 5	DATA15XL15
X165	Xx165	151	152 (U) 152 (L)	XU14XL1 4	DATA14XL14
X166	Xx166	153	154 (U) 154 (L)	XU13XL1	DATA13XL13
X167	Xx167	155	156 (U) 156 (L)	XU12XL1 2	DATA12XL12
X168	Xx168	157	158 (U) 158 (L)	XU11XL11	DATA11XL11
X169	Xx169	159	160 (U) 160 (L)	XU10XL1	DATA10XL10
X170	Xx170	161	162 (U) 162 (L)	XU9XL9	DATA9XL9
X171	Xx171	163	164 (U) 164 (L)	XU8XL8	DATA8XL8
X172	Xx172	165	166 (U) 166 (L)	XU7XL7	DATA7XL7
X173	Xx173	167	168 (U) 168 (L)	XU6XL6	DATA6XL6
X174	Xx174	169	170 (U) 170 (L)	XU5XL5	DATA5XL5
X175	Xx175	171	172 (U) 172 (L)	XU4XL4	DATA4XL4

Table 8-1 HDRX signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
X176	Xx176	173	174 (U) 174 (L)	XU3XL3	DATA3XL3
X177	Xx177	175	178 (U) 178 (L)	XU2XL2	DATA2XL2
X178	Xx178	177	178 (U) 178 (L)	XU1XL1	DATA1XL1
X179	Xx179	179	180 (U) 180 (L)	XU0XL0	DATA0XL0

8.1.2 HDRY signals

Table 8-2 on page 8-9 describes the signals on the HDRY pins for the Core Tile and Logic Tile.

	— N	ote			
_	m:1		1	/B # E B # E B # D A 100 01 B 7 E 4 4 # 6 1	1

Core Tile signals (MEMEXPA[80:0], Y[144:79] and Y[39:36] are the same on the upper and lower HDRY connectors.

For the remaining Core Tile signals (and most Logic Tile signals), pins on the upper and lower connector have different signals. If the upper signal is named YUn and the lower signal is named YUn, the table entry is Yxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header.

For example, the pin 1 signal for the lower connector on the Logic Tile is **YL89** and the pin 1 signal for the Logic Tile upper connector is **YU89**. The corresponding Core Tile signal for pin 1 (upper and lower) is **MEMEXPA25**.

Table 8-2 HDRY signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA25	Yx89	1	2	Yx90	MEMEXPA26
MEMEXPA24	Yx88	3	4	Yx91	MEMEXPA27
MEMEXPA23	Yx87	5	6	Yx92	MEMEXPA28
MEMEXPA22	Yx86	7	8	Yx93	MEMEXPA29
MEMEXPA21	Yx85	9	10	Yx94	MEMEXPA30
MEMEXPA20	Yx84	11	12	Yx95	MEMEXPA31
MEMEXPA19	Yx83	13	14	Yx96	MEMEXPA32
MEMEXPA18	Yx82	15	16	Yx97	MEMEXPA33
MEMEXPA17	Yx81	17	18	Yx98	MEMEXPA34
MEMEXPA16	Yx80	19	20	Yx99	MEMEXPA35
MEMEXPA15	Yx79	21	22	Yx100	MEMEXPA36
MEMEXPA14	Yx78	23	24	Yx101	MEMEXPA37
MEMEXPA13	Yx77	25	26	Yx102	MEMEXPA38
MEMEXPA12	Yx76	27	28	Yx103	MEMEXPA39
MEMEXPA11	Yx75	29	30	Yx104	MEMEXPA40
MEMEXPA10	Yx74	31	32	Yx105	MEMEXPA41
MEMEXPA9	Yx73	33	34	Yx106	MEMEXPA42
MEMEXPA8	Yx72	35	36	Yx107	MEMEXPA43
MEMEXPA7	Yx71	37	38	Yx108	MEMEXPA44
MEMEXPA6	Yx70	39	40	Yx109	MEMEXPA45
MEMEXPA5	Yx69	41	42	Yx110	MEMEXPA46
MEMEXPA4	Yx68	43	44	Yx111	MEMEXPA47
MEMEXPA3	Yx67	45	46	Yx112	MEMEXPA48

Table 8-2 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA2	Yx66	47	48	Yx113	MEMEXPA49
MEMEXPA1	Yx65	49	50	Yx114	MEMEXPA50
MEMEXPA0	Yx64	51	52	Yx115	MEMEXPA51
MEMEXPA103	Yx63	53	54	Yx116	MEMEXPA52
MEMEXPA102	Yx62	55	56	Yx117	MEMEXPA53
MEMEXPA101	Yx61	57	58	Yx118	MEMEXPA54
MEMEXPA100	Yx60	59	60	Yx119	MEMEXPA55
MEMEXPA99	Yx59	61	62	Yx120	MEMEXPA56
MEMEXPA98	Yx58	63	64	Yx121	MEMEXPA57
MEMEXPA97	Yx57	65	66	Yx122	MEMEXPA58
MEMEXPA96	Yx56	67	68	Yx123	MEMEXPA59
MEMEXPA95	Yx55	69	70	Yx124	MEMEXPA60
MEMEXPA94	Yx54	71	72	Yx125	MEMEXPA61
MEMEXPA93	Yx53	73	74	Yx126	MEMEXPA62
MEMEXPA92	Yx52	75	76	Yx127	MEMEXPA63
MEMEXPA91	Yx51	77	78	Yx128	MEMEXPA64
MEMEXPA90	Yx50	79	80	Yx129	MEMEXPA65
MEMEXPA89	Yx49	81	82	Yx130	MEMEXPA66
MEMEXPA88	Yx48	83	84	Yx131	MEMEXPA67
MEMEXPA87	Yx47	85	86	Yx132	MEMEXPA68
MEMEXPA86	Yx46	87	88	Yx133	MEMEXPA69
MEMEXPA85	Yx45	89	90	Yx134	MEMEXPA70
MEMEXPA84	Yx44	91	92	Yx135	MEMEXPA71
MEMEXPA83	Yx43	93	94	Yx136	MEMEXPA72

Table 8-2 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPA82	Yx42	95	96	Yx137	MEMEXPA73
MEMEXPA81	Yx41	97	98	Yx138	MEMEXPA74
MEMEXPA80	Yx40	99	100	Yx139	MEMEXPA75
Y39	Yx39	101	102	Yx140	MEMEXPA76
Y38	Yx38	103	104	Yx141	MEMEXPA77
Y37	Yx37	105	106	Yx142	MEMEXPA78
Y36	Yx36	107	108	Yx143	MEMEXPA79
Yx35	Yx35	109	110	Yx144	Y144
Yx34	Yx34	111	112	Yx145	Y145
Yx33	Yx33	113	114	Yx146	Y146
Yx32	Yx32	115	116	Yx147	Y147
Yx31	Yx31	117	118	Yx148	Y148
Yx30	Yx30	119	120	Yx149	Y149
Yx29	Yx29	121	122	Yx150	Y150
Yx28	Yx28	123	124	Yx151	Y151
Yx27	Yx27	125	126	Yx152	Y152
Yx26	Yx26	127	128	Yx153	Y153
Yx25	Yx25	129	130	Yx154	Y154
Yx24	Yx24	131	132	Yx155	Y155
Yx23	Yx23	133	134	Yx156	Y156
Yx22	Yx22	135	136	Yx157	Y157
Yx21	Yx21	137	138	Yx158	Y158
Yx20	Yx20	139	140	Yx159	Y159
Yx19	Yx19	141	142	Yx160	Y160

Table 8-2 HDRY signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Yx18	Yx18	143	144	Yx161	Y161
Yx17	Yx17	145	146	Yx162	Y162
Yx16	Yx16	147	148	Yx163	Y163
Yx15	Yx15	149	150	Yx164	Y164
Yx14	Yx14	151	152	Yx165	Y165
Yx13	Yx13	153	154	Yx166	Y166
Yx12	Yx12	155	156	Yx167	Y167
Yx11	Yx11	157	158	Yx168	Y168
Yx10	Yx10	159	160	Yx169	Y169
Yx9	Yx9	161	162	Yx170	Y160
Yx8	Yx8	163	164	Yx171	Y171
Yx7	Yx7	165	166	Yx172	Y172
Yx6	Yx6	167	168	Yx173	Y173
Yx5	Yx5	169	170	Yx174	Y174
Yx4	Yx4	171	172	Yx175	Y175
Yx3	Yx3	173	174	Yx176	Y176
Yx2	Yx2	175	176	Yx177	Y177
Yx1	Yx1	177	178	Yx178	Y178
Yx0	Yx0	179	180	Yx179	Y179

8.1.3 HDRZ

Table 8-1 on page 8-3 describes the signals on the HDRZ pins for the Core Tile and the RealView Logic Tile.

— Note —

Except for the clock, JTAG, and **MEMEXPB[21:0]** signals, the Core Tile has the same signal on both the upper and lower pins. Some of the upper and lower HDRZ signals can also be isolated from each other, see *Isolation and foldover of header signals* on page 7-26.

Most of the pins on the RealView Logic Tiles have different signals on the upper and lower Logic Tile HDRZ pins. If the upper signal on the Logic Tile is named ZUn and the lower signal is named ZLn, the table entry is Zxn. Replace x by L for the signal on the lower header and by U for the signal on the upper header.

For example, the pin 1 signal for the Logic Tile lower connector is **ZL128** and the pin 1 signal for the upper connector is **ZU128**. The corresponding signals for the Core Tile are **MEMEXPB0** (upper) and **ZL128** (lower).

If the upper signal on a tile has a completely different name than the lower signal, both names are listed and the signal on the upper connector is indicated by a (U) and the signal on the lower connector is indicated by a (L).

Table 8-3 HDRZ signals

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB0ZL1 28	Zx128	1 (U) 1 (L)	2	Zx255	Z255
MEMEXPB1ZL1 29	Zx129	3 (U) 3 (L)	4	Zx254	Z254
MEMEXPB2ZL1 30	Zx130	5 (U) 5 (L)	6	Zx253	Z253
MEMEXPB3ZL1 31	Zx131	7 (U) 7 (L)	8	Zx252	Z252
MEMEXPB4ZL1 32	Zx132	9 (U) 9 (L)	10	Zx251	Z251
MEMEXPB5ZL1 33	Zx133	11 (U) 11 (L)	12	Zx250	Z250
MEMEXPB6ZL1 34	Zx134	13 (U) 13 (L)	14	Zx249	Z249

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB7ZL1 35	Zx135	15 (U) 15 (L)	16	Zx248	Z248
MEMEXPB8ZL1 36	Zx136	17 (U) 17 (L)	18	Zx247	Z247
MEMEXPB9ZL1 37	Zx137	19 (U) 19 (L)	20	Zx246	Z246
MEMEXPB10ZL 138	Zx138	21 (U) 21 (L)	22	Zx245	Z245
MEMEXPB11ZL 139	Zx139	23 (U) 23 (L)	24	Zx244	Z244
MEMEXPB12ZL 140	Zx140	25 (U) 25 (L)	26	Zx243	Z243
MEMEXPB13ZL 141	Zx141	27 (U) 27 (L)	28	Zx242	Z242
MEMEXPB14ZL 142	Zx142	29 (U) 29 (L)	30	Zx241	Z241
MEMEXPB15ZL 143	Zx143	31 (U) 31 (L)	32	Zx240	Z240
MEMEXPB16ZL 144	Zx144	33 (U) 33 (L)	34	Zx249	Z239
MEMEXPB17ZL 145	Zx145	35 (U) 35 (L)	36	Zx248	Z238
MEMEXPB18ZL 146	Zx146	37 (U) 37 (L)	38	Zx237	Z237
MEMEXPB19ZL 147	Zx147	39 (U) 39 (L)	40	Zx236	Z236
MEMEXPB20	Zx148	41 (U) 41 (L)	42	Zx235	Z235
MEMEXPB21ZL 149	Zx149	43 (U) 43 (L)	44	Zx234	Z234
MEMEXPB22	Zx150	45	46	Zx233	Z233

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB23	Zx151	47	48	Zx232	Z232
MEMEXPB24	Zx152	49	50	Zx231	MEMEXPB103
MEMEXPB25	Zx153	51	52	Zx230	PLDCLK
MEMEXPB26	Zx154	53	54	Zx229	PLDRESETN
MEMEXPB27	Zx155	55	56	Zx228	PLDD0
MEMEXPB28	Zx156	57	58	Zx227	PLDD1
MEMEXPB29	Zx157	59	60	Zx226	MEMEXPB98
MEMEXPB30	Zx158	61	62	Zx225	MEMEXPB97
MEMEXPB31	Zx159	63	64	Zx224	MEMEXPB96
MEMEXPB32	Zx160	65	66	Zx223	MEMEXPB95
MEMEXPB33	Zx161	67	68	Zx222	MEMEXPB94
MEMEXPB34	Zx162	69	70	Zx221	MEMEXPB93
MEMEXPB35	Zx163	71	72	Zx220	MEMEXPB92
MEMEXPB36	Zx164	73	74	Zx219	MEMEXPB91
MEMEXPB37	Zx165	75	76	Zx218	MEMEXPB90
MEMEXPB38	Zx166	77	78	Zx217	MEMEXPB89
MEMEXPB39	Zx167	79	80	Zx216	MEMEXPB88
MEMEXPB40	Zx168	81	82	Zx215	MEMEXPB87
MEMEXPB41	Zx169	83	84	Zx214	MEMEXPB86
MEMEXPB42	Zx170	85	86	Zx213	MEMEXPB85
MEMEXPB43	Zx171	87	88	Zx212	MEMEXPB84
MEMEXPB44	Zx172	89	90	Zx211	MEMEXPB83
MEMEXPB45	Zx173	91	92	Zx210	MEMEXPB82
MEMEXPB46	Zx174	93	94	Zx209	MEMEXPB81

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
MEMEXPB47	Zx175	95	96	Zx208	MEMEXPB80
MEMEXPB48	Zx176	97	98	Zx207	MEMEXPB79
MEMEXPB49	Zx177	99	100	Zx206	MEMEXPB78
MEMEXPB50	Zx178	101	102	Zx205	MEMEXPB77
MEMEXPB51	Zx179	103	104	Zx204	MEMEXPB76
MEMEXPB52	Zx180	105	106	Zx203	MEMEXPB75
MEMEXPB53	Zx181	107	108	Zx202	MEMEXPB74
MEMEXPB54	Zx182	109	110	Zx201	MEMEXPB73
MEMEXPB55	Zx183	111	112	Zx200	MEMEXPB72
MEMEXPB56	Zx184	113	114	Zx199	MEMEXPB71
MEMEXPB57	Zx185	115	116	Zx198	MEMEXPB70
MEMEXPB58	Zx186	117	118	Zx197	MEMEXPB69
MEMEXPB59	Zx187	119	120	Zx196	MEMEXPB68
MEMEXPB60	Zx188	121	122	Zx195	MEMEXPB67
MEMEXPB61	Zx189	123	124	Zx194	MEMEXPB66
MEMEXPB62	Zx190	125	126	Zx193	MEMEXPB65
MEMEXPB63	Zx191	127	128	Zx192	MEMEXPB64
D_nSRST	D_nSRST	129	130 (U) 130 (L)	CLK_POS_DN_INC LK_POS_DN_OUT	CLK_POS_DN
D_nTRST	D_nTRST	131	132 (U) 132 (L)	CLK_NEG_DN_INC LK_NEG_DN_OUT	CLK_NEG_DN_INC LK_NEG_DN_OUT
D_TDO_IN D_TDO_OUT	D_TDO_IN D_TDO_OUT	133 (U) 133 (L)	134 (U) 134 (L)	CLK_POS_UP_OUT CLK_POS_UP_IN	CLK_POS_UP
D_TDI	D_TDI	135	136 (U) 136 (L)	CLK_NEG_UP_OUT CLK_NEG_UP_IN	CLK_NEG_UP_OUT CLK_NEG_UP_IN
D_TCK_OUT D_TCK_IN	D_TCK_OUT D_TCK_IN	137 (U) 137 (L)	138 (U) 138 (L)	CLK_UP_THRU CLK_IN_MINUS2	CLK_IN_MINUS2

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
D_TMS_OUTD_ TMS_IN	D_TMS_OUTD_ TMS_IN	139 (U) 139 (L)	140 (U) 140 (L)	CLK_OUT_PLUS1C LK_IN_MINUS1	CLK_IN_MINUS1
D_RTCK	D_RTCK	141	142 (U) 142 (L)	CLK_OUT_PLUS2C LK_UP_THRU	CLK_UP_THRU
C_nSRST	C_nSRST	143	144 (U) 144 (L)	CLK_IN_PLUS2 CLK_DN_THRU	CLK_IN_PLUS2
C_nTRST	C_nTRST	145	146 (U) 146 (L)	CLK_IN_PLUS1CLK _OUT_MINUS1	CLK_IN_PLUS1
PLD_TDIC_TDO _OUT	C_TDO_INC_TD O_OUT	147 (U) 147 (L)	148 (U) 148 (L)	CLK_DN_THRUCL K_OUT_MINUS2	CLK_DN_THRU
C_TDI	C_TDI	149	150	CLK_GLOBAL	CLK_GLOBAL
C_TCK_OUTC_ TCK_IN	C_TCK_OUT	151 (U) 151 (L)	152	FPGA_IMAGE	FPGA_IMAGE
C_TMS_OUTC_ TMS_IN	C_TMS_OUT	153 (U) 153 (L)	154	nSYSPOR	nSYSPOR
nTILE_DETGND	nTILE_DETGND	155 (U) 155 (L)	156	nSYSRST	nSYSRST
nCFGEN	nCFGEN	157	158	nRTCKEN	nRTCKEN
GLOBAL_DONE	GLOBAL_DONE	159	160	SPARE12 (reserved)	SPARE12
SPARE11	SPARE11 (reserved)	161	162	SPARE10 (reserved)	SPARE10
SPARE9	SPARE9 (reserved)	163	164	SPARE8 (reserved)	SPARE8
SPARE7	SPARE7 (reserved)	165	166	SPARE6 (reserved)	SPARE6
SPARE5	SPARE5 (reserved)	167	168	SPARE4 (reserved)	SPARE4
SPARE3	SPARE3 (reserved)	169	170	SPARE2 (reserved)	SPARE2

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
SPARE1	SPARE1 (reserved)	171	172	SPARE0 (reserved)	SPARE0
Zx63	Z63	173	174	Z64	Zx64
Zx62	Z62	175	176	Z65	Zx65
Zx61	Z61	177	178	Z66	Zx66
Zx60	Z60	179	180	Z 67	Zx67
Zx59	Z59	181	182	Z68	Zx68
Zx58	Z58	183	184	Z 79	Zx69
Zx57	Z 57	185	186	Z70	Zx70
Zx56	Z56	187	188	Z71	Zx71
Zx55	Z55	189	190	Z 72	Zx72
Zx54	Z54	191	192	Z 73	Zx73
Zx53	Z53	193	194	Z 74	Zx74
Zx52	Z52	195	196	Z 75	Zx75
Zx51	Z51	197	198	Z 76	Zx76
Zx50	Z50	199	200	Z 77	Zx77
Zx49	Z49	201	202	Z 78	Zx78
Zx48	Z48	203	204	Z 79	Zx79
Zx47	Z 47	205	206	Z80	Zx80
Zx46	Z46	207	208	Z81	Zx81
Zx45	Z45	209	210	Z82	Zx82
Zx44	Z44	211	212	Z83	Zx83
Zx43	Z43	213	214	Z84	Zx84
Zx42	Z42	215	216	Z85	Zx85
Zx41	Z41	217	218	Z86	Zx86

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Zx40	Z40	219	220	Z 87	Zx87
Zx39	Z39	221	222	Z88	Zx88
Zx38	Z38	223	224	Z89	Zx89
Zx37	Z37	225	226	Z90	Zx90
Zx36	Z36	227	228	Z91	Zx91
Zx35	Z35	229	230	Z92	Zx92
Zx34	Z34	231	232	Z93	Zx93
Zx33	Z33	233	234	Z94	Zx94
Zx32	Z32	235	236	Z95	Zx95
Zx31	Z31	237	238	Z 96	Zx96
Zx30	Z30	239	240	Z97	Zx97
Zx29	Z29	241	242	Z98	Zx98
Zx28	Z28	243	244	Z 99	Zx99
Zx27	Z27	245	246	Z100	Zx100
Zx26	Z26	247	248	Z101	Zx101
Zx25	Z25	249	250	Z102	Zx102
Zx24	Z24	251	252	Z103	Zx103
Zx23	Z23	253	254	Z104	Zx104
Zx22	Z22	255	256	Z105	Zx105
Zx21	Z21	257	258	Z106	Zx106
Zx20	Z20	259	260	Z107	Zx107
Zx19	Z19	261	262	Z108	Zx108
Zx18	Z18	263	264	Z109	Zx109
Zx17	Z17	265	266	Z110	Zx110

Table 8-3 HDRZ signals (continued)

Core Tile signals	Logic Tile signals	Odd pins	Even pins	Logic Tile signals	Core Tile signals
Zx16	Z16	267	268	Z111	Zx111
Zx15	Z15	269	270	Z112	Zx112
Zx14	Z14	271	272	Z113	Zx113
Zx13	Z13	273	274	Z114	Zx114
Zx12	Z12	275	276	Z115	Zx115
Zx11	Z11	277	278	Z116	Zx116
Zx10	Z10	279	280	Z117	Zx117
Zx9	Z 9	281	282	Z118	Zx118
Zx8	Z8	283	284	Z119	Zx119
Zx7	Z 7	285	286	Z120	Zx120
Zx6	Z 6	287	288	Z121	Zx121
Zx5	Z 5	289	290	Z122	Zx122
Zx4	Z 4	291	292	Z123	Zx123
Zx3	Z 3	293	294	Z124	Zx124
Zx2	Z 2	295	296	Z125	Zx125
Zx1	Z1	297	298	Z126	Zx126
Zx0	Z0	299	300	Z127	Zx127

8.2 Memory expansion connector pinout

The Core Tile has two 120-way Samtec QSH memory expansion connectors.
Note
See <i>Memory expansion connector pinout</i> on page 6-20 for details of the expansion connectors on the Core Tile. Refer to Appendix A <i>Static Memory Expansion Board</i> , the documentation supplied with the memory boards, and the <i>PISMO Memory Interface Specification</i> for details of signal assignment on the expansion boards. Different memory boards might have different voltage levels or different arrangement of address or control signals.

8.3 Links and test points

This section describes the links and test points present on the Core Tile.

8.3.1 Links

Figure 8-2 shows the location of the configuration resistors on the top of the Core Tile. Figure 8-3 on page 8-23 shows the location of the links and configuration resistors on the bottom of the Core Tile.

Figure 8-2 Location of links (top)

Figure 8-3 Location of links (bottom)

Board identifier links

LK5-LK2 determine the value of the **MANID[3:0]** signals that identifies the board build variant.

——— Caution ————

The board identifier links are set at manufacture and must not be changed.

JTAG links

The ARM7TDMI does not have a boundary scan chain. Resistor links bypass some of the JTAG signals depending on the test chip fitted as listed in Table 8-4. See the BOM file for the fitting options used at manufacture.

Table 8-4 Resistor links for JTAG logic

Link	Description
LK1	Selects either ARM_RTCK or DBGRQI as ARM_DBGRQI signal.
R67	Links ARM_RTCK to RTCK_ARM
R74	Links D_TCK_BYPASS to RTCK_ARM
R65	Links a buffered version of D_TCK_IN to D_TCK_BYPASS
R77	Links PLD_TDO to CD_TDO_THRU
R81	Links D_TDO_IN to D_TDO_OUT
R79	Links nRTCKEN to ground. See <i>JTAG signals</i> on page 7-40.

Clock selection links

Some of the clock signals (see also *Clocks* on page 3-10) have associated resistor links as listed in Table 8-5.

These links are set at manufacture for the specific Core Tile and do not normally require changing.

Table 8-5 Resistor links for clock signals

Link	Description
R70, R75	R70 links GLB_MCLK input of the MCLK multiplexor to a buffered version of CLK_GLOBAL_IN . If the buffer amplifier is not fitted, R75 bridges the amplifier input and output signals.
R69, R72	R69 links the X_MCLK input of the MCLK multiplexor to a buffered version of X_MCLK . If the buffer amplifier is not fitted, R72 bridges the amplifier input and output signals.
R83, R76	R83 links a buffered version of the ECLK output of the test chip to the X_ECLK multiplexor. If the buffer amplifier is not fitted, R75 bridges the amplifier input and output signals.

Voltage selection links

There are also resistors and resistor links that select the operating voltages for the tile, see *Power supply control* on page 7-19.

The resistor links listed in Table 8-6 are set at manufacture. Changing the resistors can result in voltages that are out of the normal operating range for the test chip.

Table 8-6 Resistor links for voltage selection

Link	Description
R11	Current sense resistor for VDDCOREA
R32	Current sense resistor for VDDCOREB
R1 and R2	Connects 3V3 to VCCOY
R3 and R4	Connects 3V3 to ARM_VDDIO

SDRAM resistor links

The resistor links listed in Table 8-7 enable support for the VREF signals used with DDR SDRAM memory modules. These signals must be driven by an attached board such as a Logic Tile.

Table 8-7 Resistor links for DDR SDRAM

Link	Description
R5	links MEXPA77 to YU3
R6	links MEXPA78 to YU17
R7	links MEXPA79 to YU25

8.3.2 Test points

Figure 8-4 on page 8-26 shows the location of test points on the Core Tile. Table 8-8 on page 8-26 lists the function of each test point.

Figure 8-4 Test point location

Table 8-8 Test point function

Test point	Description
1	VDDCOREA voltage
2	VDDCOREB voltage
3	VDDIO voltage
4	VDDSENSE1 voltage input to ADC
5	VDDSENSE2 voltage input to ADC
6	CLK_GLOBAL

Table 8-8 Test point function (continued)

Test point	Description
7-10	Ground
15-11	Manufacturing test for PLD
16	1V8 voltage

HBI-0141 Signal Descriptions

Appendix A **Static Memory Expansion Board**

This appendix describes the static memory expansion board. It contains the following sections:

- *About memory expansion* on page A-2
- Fitting a memory board on page A-4
- *EEPROM contents* on page A-5
- *Connector pinout* on page A-10
- *Mechanical layout* on page A-14.

A.1 About memory expansion

You can fit one or two static expansion boards to the Core Tile.

There are five chip select signals available on the static expansion board. Each of these can select 64MB of SRAM or flash memory.

The block diagram for a typical memory board is shown in Figure A-1.

_____ Note _____

Figure A-1 is an example only. Different expansion boards might have different features. For example, the links selecting which chip select to use might be omitted.

See the documentation provided with your memory board for details on signals and link options.

Figure A-1 Static memory board block diagram

A.1.1 Memory board configuration

The E2PROM on the memory board can be read from an attached Logic Tile to identify the type of memory on the board and how it is configured. This information can be used by the application or operating system to initialize the memory space.

Note	
Additional configuration info	ormation is present in the E2PROM on the expansion
board, see <i>EEPROM</i> content	s on page A-5.

Memory width selection on the static memory board

The memory width on the memory board is encoded into the **CSWIDTH[1:0]** signals as shown in Table A-1. These signals are defined by links on the memory board and are fixed at manufacture and cannot be changed.

Table A-1 Memory width encoding

CSWIDTH[1:0]	Width
00	8 bit
01	16 bit
10	32 bit (default)
11	No memory present

A.2 Fitting a memory board

To install a memory expansion board:

- 1. Ensure that the Core Tile is powered down.
- 2. Align the memory board with the connectors on the interface board as shown in Figure A-2.
- 3. Press the memory board into the connector.

Figure A-2 Memory board installation

A.3 EEPROM contents

The Static Memory Expansion EEPROM is 256 bytes in size and contains 5 chip select information blocks, a manufacturer string and a checksum. The EEPROM is read and written using a serial bus implemented on HDRX signals **MEMEXPB88** (**SBSDA** data) and **MEMEXPB90** (**SBSCL** clock). The Logic Tile must implement a controller for these signals on Logic Tile signals **Z216** and **Z218**.

Each chip select information block contains details about the memory devices accessed with the corresponding chip select signal. The organization of a chip select information block is listed in table Table A-2 on page A-6.

	0×00
EXPnCS	0x30
CS4	0x60
CS5	0x90
CS6	0xC0
CS7	0xF0
Board string and CRC	0xff

Figure A-3 Chip select information block

Table A-2 Chip Select information block

Function	Address offset	Value
Memory Type	0x0	0x0= Reserved 0x1= Static Disk On Chip 0x2= Static NOR flash 0x3= Static SRAM 0x4-0xFE = Reserved (used by dynamic memory expansion modules) 0xFF = Not fitted.
Memory Width	0x01	Bits [3:0] indicate the chip-select width:
		0= byte wide1= 16-bit wide2= 32-bit wide3= Reserved.
		Bits [7:4] indicate the device memory width:
		0= byte wide1= 16-bit wide2= 32-bit wide3= Reserved.
Access time	0x02	Two bytes containing the access time (tACC) decoded as a binary multiple of 100ps. Location 2 contains the LSB and location 3 contains the MSB. For example, a flash device with 120ns access is 1200 * 0.1ns. The decimal value is 1200 and the hex value is 0x04B0, therefore location 2 contains 0xb0 and location 3 contains 0x04.
Size	0x04	Four bytes containing the size of the memory in bytes. Location 4 is the LSB and location 7 is MSB.
Reserved	0x08-0x0F	Eight bytes reserved for future expansion
Device string	0x10-0x2F	Null terminated string of up to 32 characters (31 characters + null character) containing the manufacturer name and part number.

The base address of the information block is determined by the device chip select used.

The contents of a typical static memory expansion EEPROM with devices on **EXPnCS** and **CS4** is listed in Table A-3. Unused chip select blocks are filled with 0xFF.

Table A-3 Example contents of a static memory expansion EEPROM

Address offset	Contents	Contents
0x00	EXPnCS memory type	0x02 = Static NOR flash
0x01	EXPnCS memory width	0x12 - 32 bit chip select width, 16-bit device memory width
0x02	EXPnCS access time in 0.1ns (LSB)	0xb0 - LSB (of 1200 which 1200 * 0.1ns = 120ns access time)

Table A-3 Example contents of a static memory expansion EEPROM (continued)

Address offset	Contents	Contents
0x03	EXPnCS access time in 0.1ns (MSB)	0x04 - MSB (of 1200 which 1200 * 0.1ns = 120ns access time)
0x04	EXPnCS memory size in bytes (LSB)	0x00
0x05	EXPnCS memory size in bytes	0x00
0x06	EXPnCS memory size in bytes	0x00
0x07	EXPnCS memory size in bytes (MSB)	0x04 (0x04000000 Bytes = 64MBytes)
0x8-0xF	Reserved	0xFF
0x10-0x2F	EXPnCS memory device string	"Intel GE28F256K3C120" + null character
0x30	CS4 memory type	0x01 = Static SRAM
0x31	CS4 memory width	0x02 - 32 bit wide
0x32	CS4 access time in 0.1ps (LSB)	0x26 - LSB (of 550 which 550 * 0.1ns = 55ns access time)
0x33	CS4 access time in 0.1ps (MSB)	0x02 - MSB (of 550 which 550 * 0.1ns = 55ns access time)
0x34	CS4 memory size in bytes (LSB)	0×00
0x35	CS4 memory size in bytes	0x00
0x36	CS4 memory size in bytes	0x00
0x37	CS4 memory size in bytes (MSB)	0x20 (0x00200000 Bytes = 2MBytes)
0x38-0x3F	Reserved	0xFF
0x40-0x5F	CS4 memory device string	"Samsung K6F8016U6A-F55" + null character
0x60	CS5 memory type	0xFF - not fitted
0x61	CS5 memory width	0xFF
0x62	CS5 access time in 0.1ps (LSB)	0xFF
0x63	CS5 access time in 0.1ps (MSB)	0xFF
0x64	CS5 memory size in bytes (LSB)	0xFF
0x65	CS5 memory size in bytes	0xFF
0x66	CS5 memory size in bytes	0xFF

Table A-3 Example contents of a static memory expansion EEPROM (continued)

Address offset	Contents	Contents
0x67	CS5 memory size in bytes (MSB)	0xFF
0x68-0x6F	Reserved	0xFF
0x70-0x8F	CS5 memory device string	0xFF
0×90	CS6 memory type	0xFF - not fitted
0x91	CS6 memory width	0xFF
0x92	CS6 access time in 0.1ps (LSB)	0xFF
0x93	CS6 access time in 0.1ps (MSB)	0xFF
0x94	CS6 memory size in bytes (LSB)	0xFF
0x95	CS6 memory size in bytes	0xFF
0x96	CS6 memory size in bytes	0xFF
0x97	CS6 memory size in bytes (MSB)	0xFF
0x98-0x9F	Reserved	0xFF
0xA0-0xBF	CS6 memory device string	0xFF
0xC0	CS7 memory type	0xFF - not fitted
0xC1	CS7 memory width	0xFF
0xC2	CS7 access time in 0.1ps (LSB)	0xFF
0xC3	CS7 access time in 0.1ps (MSB)	0xFF
0xC4	CS7 memory size in bytes (LSB)	0xFF
0xC5	CS7 memory size in bytes	0xFF
0xC6	CS7 memory size in bytes	0xFF
0xC7	CS7 memory size in bytes (MSB)	0xFF
0xC8-0xCF	Reserved	0xFF

Table A-3 Example contents of a static memory expansion EEPROM (continued)

Address offset	Contents	Contents	
0xD0-0xEF	CS7 memory device string	0xFF	
0xF0-0xFE	Board manufacturer string	"ARM HBI0124A"+ null character	
0xFF	Checksum Byte	The LSB of the sum of bytes 0x00-0xFE	

A.4 Connector pinout

The static memory expansion board uses a 120-way Samtec QSH style connector. The Core Tile uses the corresponding 120-way Samtec QTH connector on the interface board, see *Memory expansion connector pinout* on page 6-20 for details of the Core Tile signals on the memory connector. The connector pinout for the static memory board is shown in Table A-4.

Note			
The numbering of pins on the co	onnector is for the connectors as	s viewed from belo	W

Table A-4 Static memory connector signals

Pin No.	Signal	Pin No.	Signal
1	DATA[0]	2	3V3
3	DATA[1]	4	3V3
5	DATA[2]	6	3V3
7	DATA[3]	8	3V3
9	DATA[4]	10	VDDIO ^a
11	DATA[5]	12	VDDIO ^a
13	DATA[6]	14	VDDIOa
15	DATA[7]	16	VDDIOa
17	DATA[8]	18	1V8
19	DATA[9]	20	1V8
21	DATA[10]	22	1V8
23	DATA[11]	24	1V8
25	DATA[12]	26	NC
27	DATA[13]	28	Reserved, do not drive
29	DATA[14]	30	Reserved, do not drive
31	DATA[15]	32	Reserved, do not drive

Table A-4 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal
33	DATA[16]	34	5V
35	DATA[17]	36	5V
37	DATA[18]	38	5V
39	DATA[19]	40	5V
41	DATA[20]	42	Reserved, do not drive
43	DATA[21]	44	Reserved, do not drive
45	DATA[22]	46	Reserved, do not drive
47	DATA[23]	48	Reserved, do not drive
49	DATA[24]	50	Reserved, do not drive
51	DATA[25]	52	Reserved, do not drive
53	DATA[26]	54	Reserved, do not drive
55	DATA[27]	56	Reserved, do not drive
57	DATA[28]	58	Reserved, do not drive
59	DATA[29]	60	Reserved, do not drive
61	DATA[30]	62	SBSCL, E2PROM serial interface clock (3.3V signal level)
63	DATA[31]	64	SBSDA, E2PROM serial interface data (3.3V signal level)
65	ADDR[0]	66	nRESET
67	ADDR[1]	68	nBOARDPOR , asserted on hardware power cycle
69	ADDR[2]	70	nFLWP , flash write protect. Drive HIGH to write to flash.
71	ADDR[3]	72	nEARLYRESET , Reset signal. Differs from nRESET in that it is not delayed by nWAIT .

Table A-4 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal	
73	ADDR[4]	74	nWAIT , Wait mode input from external memory controller. Pull HIGH if not used.	
75	ADDR[5]	76	nBURSTWAIT , Synchronous burst wait input. This is used by the external device to delay a synchronous burst transfer if LOW. Pull to HIGH if not used.	
77	ADDR[6]	78	CANCELWAIT , If HIGH, this signal enables the system to recover from an externally waited transfer that has taken longer than expected to finish. Pull LOW if not used.	
79	ADDR[7]	80	nCS[4]	
81	ADDR[8]	82	nCS[3]	
83	ADDR[9]	84	nCS[2]	
85	ADDR[10]	86	nCS[1]	
87	ADDR[11]	88	Reserved, do not drive	
89	ADDR[12]	90	Reserved, do not drive	
91	ADDR[13]	92	Reserved, do not drive	
93	ADDR[14]	94	Reserved, do not drive	
95	ADDR[15]	96	nCS[0]	
97	ADDR[16]	98	nBUSY , Indicates that memory is not ready to be released from reset. If LOW, this signal holds nRESET active.	
99	ADDR[17]	100	nIRQ , interrupt request from memory board. This signal might be used by a memory-mapped peripheral implemented on the board.	
101	ADDR[18]	102	nWEN , write enable for memory on expansion board.	
103	ADDR[19]	104	nOEN, Output enable for memory data	

Table A-4 Static memory connector signals (continued)

Pin No.	Signal	Pin No.	Signal
105	ADDR[20]	106	nBLS[3] , Byte Lane Select for bits [31:24]
107	ADDR[21]	108	nBLS[2] , Byte Lane Select for bits [23:16]
109	ADDR[22]	110	nBLS[1] , Byte Lane Select for bits [15:8]
111	ADDR[23]	111	nBLS[0], Byte Lane Select for bits [7:0]
113	ADDR[24]	114	CSWIDTH[0], Indicates bus width for fitted part. Do not route through stackable boards.
115	ADDR[25]	116	CSWIDTH[1], Indicates bus width for fitted part. Do not route through stackable boards.
117	ADDRVALID, Indicates that the address output is stable during synchronous burst transfers	118	CLK[1]
119	BAA , Burst Address Advance. Used to advance the address count in the memory device	120	CLK[0]

a. VDDIO is the data voltage to the host. Do not route through on stackable boards

A.5 Mechanical layout

Figure A-4 shows the static memory expansion board, viewed from above.

Figure A-4 Static memory board layout

Appendix B **Specifications**

This appendix contains the specifications for the Core Tile. It contains the following sections:

- *Electrical specification* on page B-2
- *Mechanical details* on page B-3.

See *AHB bus timing specification* on page 6-37 for the timing specifications for Core Tiles that use the HBI-0131 board.

For timings specific to Core Tiles that use an ARM7TDMI or ARM7TDMI-S test chip, refer to the release notes for the Core Tile.

B.1 Electrical specification

This section provides details of the voltage and current characteristics for the Core Tile.

B.1.1 Bus interface characteristics

Table B-1 shows the Core Tile electrical characteristics for the system bus interface. The Core Tile uses 3.3V and 5V sources.

Table B-1 Core Tile electrical characteristics

Symbol	Description	Min	Max	Unit
3V3	Supply voltage (interface signals)	3.1	3.5	V
5V	Supply voltage (regulators)	4.75	5.25	V
V _{IH}	High-level input voltage	2.0	3.6	V
V _{IL}	Low-level input voltage	0	0.8	V
V _{OH}	High-level output voltage	2.4	-	V
V _{OL}	Low-level output voltage	-	0.4	V
C _{IN}	Input capacitance	-	20	pF

B.1.2 Current requirements

Table B-2 shows current requirements measured at room temperature and nominal voltage. These measurements include the current drawn by Multi-ICE (approximately 160mA at 3.3V).

The power regulators are all powered from the 5V supply. Interface logic on the board is powered from 3.3V.

Table B-2 Current requirements

	3.3V	5V
Core Tile and IM-LT3 Interface Module	1A	1A
Integrator/CP, IM-LT1 Interface Module, and one Core Tile	1.5A	1.5A

_____Note _____

The current requirements depend on the test chip used and the application being run.

B.2 Mechanical details

Figure B-1 shows the mechanical outline of the Core Tile.

Figure B-1 Board outline (top view)

Specifications

Glossary

This glossary lists all the abbreviations used in the User Guide.

ADC Analog to Digital Converter. A device that converts an analog signal into digital data.

AMBA Design Kit. The ADK comprises the building blocks required to create an

example system based on the low-power, generic design methodology of the Advanced

Microcontroller Bus Architecture (AMBA).

AHB Advanced High-performance Bus. The ARM open standard for on-chip buses.

AMBA Advanced Microcontroller Bus Architecture.

APB Advanced Peripheral Bus. The ARM open standard for peripheral buses. This design is

optimized for low power and minimal interface complexity

BOM Bill Of Materials. A list of all the parts used on the printed circuit board and any specific

build instructions for board variants.

DAC Digital to Analog Converter. A device that converts digital data into analog level

signals.

DCC Debug Communications Controller.

ETB Embedded Trace Buffer.

ETM Embedded Trace Macrocell.

FPGA Field Programmable Gate Array.

General Test Chip. A packaging and signal assignment specification for test chips.

ICE In Circuit Emulator. A interface device for configuring and debugging processor cores.

Integrator/CP Integrator Compact Platform.

Integrator/IM-LT1 Interface Module.

Integrator/IM-LT3 Interface Module.

I/O Input/Output.

JTAG Joint Test Action Group. The committee which defined the IEEE test access port and

boundary-scan standard.

Multi-ICE Multi-ICE is a system for debugging embedded processor cores using a JTAG interface.

PCB Printed Circuit Board.

PISMO Memory specification for plug in memory modules.

PLD Programmable Logic Device.

PLL Phase-Locked Loop, a type of programmable oscillator.

POR Power On Reset.

RAM Random Access Memory.

RVI RealView ICE. A system for debugging embedded processor cores using a JTAG

interface.

SRAM Static Random Access Memory.

TCM Tightly Coupled Memory. Memory present inside the test chip that typically runs at or

near the processor speed.

Index

The items in this index are listed in alphabetical order, with symbols and numerics appearing at the end. The references given are to page numbers.

CT7TDMI 7-13	signals 6-1, 8-1
CT926EJ-S 4-3	Trace 6-27
generators 3-10, 5-5	CT1136JF-S 5-1
programming 5-3	CT7TDMI 7-1
selection 3-13	CT7TDMI-S 7-1
Configuration	CT926EJ-S 4-1
header signals 3-37, 7-26	
memory board A-3	
mode 3-39, 7-40	E
on-chip registers 3-38	_
overview 3-29, 7-31	Electrical characteristics B-2
PLD 3-30, 7-32	
processor 1-7	
voltage 3-21	G
Connecting	O .
JTAG 2-12	GTC 3-4
memory board A-4	
power 2-9	
Trace 2-15	Н
Connectors	• •
JTAG 2-13	HDRX
memory module A-10	AHB routing 3-26
power 2-9	I/O voltage 3-19, 7-21
	CT926EJ-S 4-3 generators 3-10, 5-5 programming 5-3 selection 3-13 Configuration header signals 3-37, 7-26 memory board A-3 mode 3-39, 7-40 on-chip registers 3-38 overview 3-29, 7-31 PLD 3-30, 7-32 processor 1-7 voltage 3-21 Connecting JTAG 2-12 memory board A-4 power 2-9 Trace 2-15 Connectors JTAG 2-13 memory module A-10

pinouts 6-2, 8-2 through/break control 7-26 HDRY pinouts 6-8, 8-8 VCCOY power 3-19, 7-21 HDRZ break control 3-28, 7-27, 7-28 pinouts 6-12, 8-12 Headers 6-2, 8-2	Core Tile B-3 memory module A-14 Memory expansion 3-9, 7-12, A-2 expansion connectors 6-20, 8-21 map 3-9, 7-12 test chip 3-8 VCCOY supply 3-19, 7-21 Multi-ICE 1-9, 2-15, 3-39, 7-40 Multi-Trace 2-15	RealView ICE 2-15, 3-39, 7-40 RealView Trace 2-15 Registers AHBCAPT 5-15 CM1136JF-S config 5-21 memory size 5-16 pin capture 5-16 PLD 3-30, 7-32
1	N	S
IM-LT1 2-2, 3-9, 7-12 IM-LT3 2-2, 3-9, 7-12 INITRAM signal 3-31, 3-38, 7-33 Integrator Compact Platform 2-4 Interface Module 2-2, 3-10 Interrupts CT1136JF-S 5-22 debug communications 3-46, 7-48 J JTAG connecting 2-12 debug 1-9 interface module 2-13 links 8-24 signals 3-39, 7-40 support 3-39, 7-40 Versatile/PB926EJ-S 2-14	P PGOOD signal 3-23 Pinout HDRX 6-3, 8-3 HDRY 6-8, 8-8 HDRZ 6-12, 8-12 memory board A-10 Trace 6-27 PLD configuration 3-30, 7-32 registers 3-30, 7-32 signals 3-30, 7-32 voltage control 3-18, 7-20 PLL voltage 3-19 PLLBYPASS bit 4-4 PLLBYPASS signal 3-31, 3-32, 3-37,	Setup CP 2-4 JTAG 2-12 power connections 2-9 standalone 2-2 Trace 2-15 Versatile Baseboard 2-6 Signals ADC 3-31, 7-33 AHB 3-26 ARM7TDMI 7-5 ARM7TDMI-S 7-5 BCE 7-34 BIGENDIN 3-29, 7-31 CLKSEL 3-31, 7-16, 7-33 clock 3-14, 4-3 CONFIGINIT 3-38 CSWIDTH A-3 DAC 3-31, 7-33 ECLK 7-14 FOLD 7-33
L	3-38, 7-33, 7-34 Power supply	GTC test chip 3-4 HCLK 3-11, 3-14
Layout Core Tile B-3 memory module A-14 Links clock 8-24 location 6-30, 8-22 voltage selection 3-20, 7-22	connecting 2-9 connector 2-9 overview 3-17, 7-19 PGOOD 3-23 reading voltages 3-23, 7-25 setting voltages 3-4, 3-21, 7-23 specification B-2 Precautions 1-10 Processor	HCLKDIV 3-37 headers 3-26, 6-2 IMEMSIZE 3-32 INITRAM 3-31, 3-38, 7-33 JTAG 3-39 Logic Tile 7-14 MAN_ID 3-32, 7-34 MCLK 7-14 memory 3-9, 6-20, 8-21
M	configuration 1-7	memory expansion 6-20 PGOOD 3-25
Mechanical		PLD 3-30, 7-32

PLL 3-31, 3-32, 3-37 Volatile memory 1-8 PLLBYPASS 3-31, 3-32, 3-37, Voltage 3-38, 7-33, 7-34 configuration 3-21, 7-19 PLLCLKIN 3-38 CT1136JF-S 5-23 PLLOUTDIV 3-37 CT7TDMI 7-19 PLLREFDIV 3-37 CT7TDMI-S 7-19 PWR_nSHDN 3-32, 7-34 CT926EJ-S 4-7 REFCLK 3-13 HDRX 3-19, 7-21 test chip 3-4, 7-5 memory module 3-19, 7-21 THRU 7-33 PLD 3-18, 7-20 PLL 3-19 Trace 6-27 VCCOY 7-20, 8-2 reading 3-23, 7-24 VDDIO 7-20, 8-2 setting 3-21, 7-23 VINITHI 3-38 voltage control 3-17, 7-19 ZCTRL 3-28 Standalone core module 2-2 Supplying power 2-9 System architecture 1-6 System overview 1-3, 1-4 Т Test chip AHB data bus 3-26, 7-26 ARM1136JF-S 5-2 ARM7TDMI 7-5 ARM7TDMI-S 7-5 ARM926EJ-S 4-2 core voltage 3-21, 7-23 disabling 7-34 memory 3-8 overview 3-4, 7-5 signals 7-5 Test points 6-34, 8-25 Timing specification 6-37 Trace connecting 2-15 signals 6-27 support 3-47 Trace connector 6-27

٧

Versatile/PB926EJ-S 2-6 VINITHI signal 3-38 Index