NASA Technical Paper 1610

Aerodynamic Performances of Three Fan Stator Designs Operating With Rotor Having Tip Speed of 337 Meters Per Second and Pressure Ratio of 1.54

I - Experimental Performance

Thomas F. Gelder

FEBRUARY 1980

NASA Technical Paper 1610

Aerodynamic Performances of Three Fan Stator Designs Operating With Rotor Having Tip Speed of 337 Meters Per Second and Pressure Ratio of 1.54

I - Experimental Performance

Thomas F. Gelder Lewis Research Center Cleveland, Ohio

Scientific and Technical Information Office

1980

CONTENTS

Page
SUMMARY
INTRODUCTION
APPARATUS AND PROCEDURES
Stage Designs
Rotor-Blade Design
Stator-Blade Designs
Stator 9
Stator 9C
Stator 9D
Compressor Test Facility
Instrumentation
Test and Calculation Procedures
RESULTS AND DISCUSSION
Overall Performance
Stator-Element Performance
Effect of free-stream reference station on indicated loss 10
Effect of weight flow on radial distribution of loss
Effect of diffusion factor and spanwise location on loss
Effect of air turning on loss
Incidence and deviation angle, loss, and loading relations across
the span
Effect of Mach number and stator design on minimum-loss incidence
and deviation angles
Effect of loading on stage stall
SUMMARY OF RESULTS
APPENDIXES
A - SYMBOLS
B - EQUATIONS
C - ABBREVIATIONS AND UNITS USED IN TABLES
REFERENCES 2
TABLES
FIGURES 8

SUMMARY

Aerodynamic performances of four stator-blade rows, each operated downstream of the same rotor are presented and evaluated. The rotor and flow path were a 0.5-meter-diameter model of the NASA QF-1 (tip speed, 337 m/sec; pressure ratio, 1.54). The aerodynamic designs of two of these stator-blade rows were compromised to reduce noise; a third design was not. The original stator for NASA QF-1, called S9, had a short chord because of the large number of blades required to achieve low noise. It also had relatively thick blades to allow casting. A second configuration, called S9R, was simply S9 reset, that is, the blades were closed 3.7°. The other two designs, S9C and S9D, had twice the chord of S9, had about half the number of blades, and were thinner. The radial distribution of incidence angle for S9C was skewed to satisfy a low-noise theory of minimum lift fluctuations. The S9D had no noise constraints but was patterned after a design that had demonstrated the best known performance at high inlet Mach numbers.

On a calculated operating line passing through the design point pressure ratio (which is also close to stator minimum loss operation) S9D had the best performance of those studied. Overall pressure-ratio and efficiency decrements across S9D were 0.031 and 0.044, respectively, providing a stage pressure ratio of 1.483 and efficiency of 0.865. The other stators showed some performance deficiencies, due partly to the design compromises for noise.

Detailed blade-element performance indicated that losses were significantly less in the endwall regions for the shorter chord blades. Also, in the midspan region air turning was more efficiently done with blade camber than with incidence angle.

Flow in the stator-hub region was of particular interest because it initiated stage stall at design speed. Near stall, the hub-element (90 percent span from tip) diffusion factors for all stators were about 0.47.

INTRODUCTION

The aerodynamic and acoustic performances of a single-stage fan with a tip speed of 337 meters per second and a pressure ratio of 1.50 have been extensively reported (refs. 1 to 7). In its 1.83-meter-diameter size (refs. 1 to 3), it has been designated the NASA QF-1 stage, and as a 0.5-meter-diameter scaled model (refs. 4 to 7), it is called stage 15-9 (for rotor 15-stator 9).

The NASA QF-1 was the first in a series of designs in support of NASA's low-noise, conventional aircraft engine program (ref. 8). All of those fan designs contained some unconventional geometric and aerodynamic features because of noise considerations. For example, not only is the QF-1 design low speed and single stage, but it has no inlet guide vanes and no part-span dampers. Also, it has large axial spacing between the rotor and stator (3.5-rotor chords) and a stator-blade-to-rotor-blade number ratio greater than two (112 to 53). Further, to attain the design pressure ratio the low tip speed requires relatively high blade loadings and high stator inlet Mach numbers. Detailed aerodynamic performance data from such designs helps to evaluate the noise-related design compromises. These data also provide design information on the effects of loading and inlet Mach number on blade performance in ranges of general interest.

Added understanding of blade-row performance is often obtained by comparing alternative designs. And the design and experimental evaluation of alternative stators, for example, is enhanced if (1) the rotor performance has already been documented, (2) stator inflow has not been distorted by rotor part-span dampers, (3) the stator is located several rotor-chord lengths downstream, and (4) the test facility, instrumentation, and data-reduction procedures are the same for all configurations. All of these features are in the present study of two alternative stator designs. Each redesigned stator had 60 blades, a chord length of 3.72 centimeters, and an aspect ratio of 2.6. Each stator-blade row was designed for operation behind the previously tested 0.5-meter-diameter rotor 15.

One new design, S9C, was motivated by an untried noise-reduction theory (ref. 9). This theory involves minimizing the fluctuating lift on the stator due to the velocity-varying oncoming flow from the rotor. The other new design, S9D, was not significantly compromised by any noise requirements; instead, it was patterned after a NASA-spon-sored design that had demonstrated the best known performance at high inlet Mach numbers (ref. 10).

Overall and blade-element aerodynamic performances of S9C and S9D were obtained for the stable operating flow range at constant rotative speeds of 70, 90, and 100 percent of design and for near-stall conditions only at 50, 60, and 80 percent of design speed. Overall performances of stages 15-9C and 15-9D were also obtained.

The present study involves two parts, each of which is reported separately under the same general title. The purposes of the present report (Part I) and (1) to present the detailed aerodynamic data over a wide range of operation for two alternative stator designs for the NASA QF-I rotor, (2) to compare these data with those from the original stator, and (3) to evaluate these performance results conventionally, that is, based on information outside the blade rows. The work reported herein also provided the data base for Part II (ref. 11). There, two-dimensional, inviscid-flow analysis codes are applied to the stator data. They provide new information about the flow within the blade

row and on the blade surfaces. Some of the blade-surface information is then correlated with the conventionally measured performance of the three stator designs. Based on this additional insight, an improved stator design is proposed.

The symbols and equations used to define the performance parameters are given in appendixes A and B. The abbreviations and units used for the tabular data are defined in appendix C.

All work was done at the NASA Lewis Research Center.

APPARATUS AND PROCEDURES

Stage Designs

Four different single-stage configurations, involving three different stator designs, were used for the present report. The designs and performances of two of the configurations, 15-9 and 15-9R (for stator 9 reset, 3.7° closed) have been previously reported (ref. 4). The two new configurations involved two new stator designs, S9C and S9D, which are described in following sections.

The flow path and blading locations for all stages are shown in figure 1. The leading edges of S9 and S9R were 3.5 rotor chords (13.3 cm) downstream of the rotor trailing edge; those for S9C and S9D were 2.9 rotor chords downstream.

The overall design parameters for stage 15-9 are listed in table I (from ref. 4). These values also apply to the design of stages 15-9C and 15-9D, with one exception: A 1-point improvement in stage adiabatic efficiency is predicted with S9D because of reduced stator loss inputs that reflect more recent experience with a similar design (ref. 10). Nominal design values for all stages were tip speeds of 337 meters per second, pressure ratios of 1.5, efficiencies of 0.85 (0.86 with S9D), and weight flows of 29.16 kilograms per second (201.8 kg/sec m² of annulus area).

Rotor-Blade Design

The design blade-element aerodynamics and geometry for rotor 15 are presented in tables II and III (both from ref. 4). The rotor, shown in figure 2, has 53 blades with a chord of 3.80 centimeters and an aspect ratio of 3.0. It has an inlet hub-to-tip ratio of 0.5 and no part-span damper is required for structural stability. The computer codes used to design rotor 15, as well as the stators, are essentially those previously described in reference 4.

Stator-Blade Designs

The blade section shapes for all designs are from the multiple-circular-arc family (ref. 12). A brief description of each design follows.

Stator 9. - The design blade-element aerodynamics and geometry of S9 are presented in tables IV and V (from ref. 4). A photograph of S9 and its mounting rings is shown in figure 3. There are 112 blades with a chord of 1.85 centimeters and an aspect ratio of 5.1. The blades were held at each end by slotted mounting rings. Electrical discharge machining made these slots conform to the blade-end sections. A second set of mounting rings was slotted at a different blade setting angle (angle between aerodynamic chord and the meridional plane). This alternative setting was closed 3.70 from the original design to reduce stator incidence angle. This stator configuration is called S9R.

The radial distribution of many of the design features of S9 are shown in figure 4, along with those for S9C and S9D to be discussed next. The coordinates and camber distributions for S9 are shown in figure 5 for blade sections near the tip, mean, and hub.

Stator 9C. - The design of S9C was motivated by a noise-reduction theory (ref. 9) that involves minimizing the fluctuating lift forces on airfoils due to changes in oncoming velocities (gusts). Details of such a design, involving both rotor and stator blading and intended to satisfy the same aerodynamic goals as those for the NASA QF-1 stage, have been reported (ref. 13). Noise results of a similar design are found in reference 14. The present application involved a redesigned stator only.

The main noise related changes for S9C compared with S9 were a doubling of the chord and a different incidence-angle distribution across the span. This in turn necessitated some reductions in blade thicknesses and camber distribution to pass the required weight flow at the various spanwise sections. These design changes are summarized in figure 4.

The blade solidity for S9C was held nearly the same as for S9, but the chord for S9C was increased to increase the reduced-frequency parameter. The longer chord reduced the response of the airfoil to the oncoming velocity variations and thus the fluctuating lift. Incidence angle at each spanwise blade element was also selected to minimize the airfoils response to gusts. Even greater incidence-angle differences between tip and hub for S9C were desirable according to the noise theory; however, limits were set to the values shown in figures 4(a) and (b) to avoid premature stall.

Fabrication restrictions were eased for S9C from those of S9. (The S9 restrictions are described in the footnote to table V.) However, the absolute value of edge radii, 0.013 centimeter (0.005-in.) for S9C, was a fabrication limit. This edge limit was used along with maximum thickness reductions from S9 of up to 25 percent at the hub. About

one-third of this reduction was to counteract the thickness added to the S9 design for fabrication purposes. The remaining reduction was to enlarge the flow areas to pass the required flow. The resulting camber distribution for S9C (fig. 4(h)) resulted from both choke margin and incidence-angle considerations.

The design blade-element aerodynamics and geometry for S9C are given intables VI and VII, respectively. A photograph of one-half the blades and rings assembly is shown in figure 6. There are 60 blades, with chords of 3.72 centimeters, and aspect ratios of 2.6. The mounting rings were machined to match and hold the blade end sections. Typical coordinates and camber distributions for S9C are shown in figure 7.

Stator 9D. - The S9D design was patterned after a successful one developed under NASA contract (ref. 10) for use with an existing, but somewhat different rotor and flow path. Although the contract called for a low-speed, high-loading fan stage for low-noise application, its stator design was not significantly compromised by noise requirements. It should be noted, however, that the S9D design with the present rotor would not meet noise requirements because of the stator-to-rotor blade number ratio.

The blade tip solidity (1.52) and aspect ratio (2.6) of S9D were close to those of reference 10, and the resulting chord length (3.72 cm) and blade number (60) were the same as for S9C. Camber distribution, incidence angles, and thickness distributions copied the referenced stator as closely as possible. The edge radii of 0.013 centimeter were a fabrication limit. The loss set used in the S9D design process came from test results (ref. 10), and the deviation angles were determined from a modified Carter's rule (described in ref. 15).

The design blade-element aerodynamics and geometry for S9D are presented in tables VIII and IX. A photograph of one-half the S9D blades and rings assembly is shown in figure 8. There are 60 blades with chords of 3.72 centimeters and aspect ratios of 2.6. These blades were mounted in the same manner as for S9 and S9C.

The incidence angles to the mean line for S9D (fig. 4(a)) are much nearer zero across the span, than for S9 or S9C. Recent data from the first stator row of a two-stage fan (ref. 16 and other sources) indicate that minimum loss does occur near zero incidence angle to the mean for blade shapes, solidities, and stator inlet Mach numbers like those for the present stators.

Many blade designs, like S9, have been based on zero incidence angle to the suction surface. This is to minimize the suction-surface Mach numbers, which might be high enough to cause significant shock losses. This approach was also applied in the high inlet-Mach-number hub region of S9D. However, such a design rule can be misapplied with relatively thick blade sections like S9 where it resulted in relatively high incidence angles to the mean line. Such high incidence angles usually result in higher losses or less flow range, or both. The thinner S9D blades avoid this problem in the hub region. In the tip region the S9D incidence angles were based on unpublished data correlations.

Transition location (fig. 4(g)) and inlet-to-outlet turning-rate ratio (fig. 4(h)) affect the blades peak suction-surface velocity and thus its loss (ref. 11). They also affect the flow-area distribution through the blade row and thus its choke margin. These geometry features differ for S9, S9C, and S9D. The camber distributions for S9D are shown in figure 9. They can be compared with those for S9C and S9 in figures 7 and 5. Front camber near the hub is only 8.3° for S9D compared with 20.0° for S9C and 14.5° for S9. This lower front camber for S9D tended to lower the peak suction-surface velocity and thus loss. At the same time, however, it contributed to its much lower design choke margin over the inner half-span (fig. 4(i)). A design compromise was made between these conflicting trends.

Compressor Test Facility

The test facility is the same as that described in reference 17 and was used with stage 15-9 of reference 4. A schematic view of the facility is shown in figure 10.

Instrumentation

The instrumentation used in testing stage 15-9C and 15-9D was the same as used for stage 15-9 (ref. 4) with the following exceptions: To determine static pressure, two 18^O wedge probes with straight stems (fig. 11(c)) were used at all measuring stations for stage 15-9D instead of the 8^O wedge probes with hooked stems (fig. 11(b)). This avoided probe interference with the leading edge of stator S9D at measuring station 2b' (fig. 1). Surveys between blade rows were taken at station 2a for stage 15-9C and at station 2b' for stage 15-9D.

Two combination probes for determining total pressure, total temperature, and flow angle (fig. 11(a)) and two wedge probes for determining static pressure (figs. 11(b) and (c)) were used at each measuring station. The probes were located approximately 90° apart, with the two like probes opposite each other (fig. 12). In testing stages 15-9C and 15-9D the combination probes at station 3 were circumferentially traversed 6° (one stator-blade gap) from the nominal values indicated in figure 12.

The estimated errors of the data, based on inherent accuracies of the instrumentation and recording system are as follows:

Weight flow, kg/sec
Rotative speed, rpm
Flow angle, deg
Temperature, K
Rotor-inlet total pressure, N/cm ² ±0.01

Rotor-outlet total pressure, N/cm ²	±0.07
Stator-outlet total pressure, N/cm ²	± 0.07
Rotor-inlet static pressure, N/cm ²	±0.04
Rotor-outlet static pressure, N/cm ²	±0.04
Stator-outlet static pressure, N/cm ²	±0.04

Further details of the instrumentation can be found in reference 4.

Test and Calculation Procedures

The test procedure for stages 15-9C and 15-9D was the same as that described for stage 15-9 in reference 4. The calculation procedure for stages 15-9C and 15-9D was the same as that described for stage 15-9 (ref. 4) with the following exceptions:

For spanwise locations near the hub and shroud, static pressures were determined directly from the straight-stemmed 18° wedge probe. The hooked-stemmed 8° wedge probe used with stage 15-9 required an interpolation to measured wall static values.

A different definition of stator-loss coefficient was used to minimize inaccuracies and the effects of different upstream measuring stations on indicated loss levels. Interblade row station 2a and then 2b were used to measure the rotor and stator performances of stages 15-9 and 15-9R (see fig. 1), with the result that small but consistent differences in indicated blade-row performances were obtained (see ref. 4).

Stage 15-9C used station 2a because that location is typical for other stages tested in the same facility. Stage 15-9D used station 2b' to insure that all rotor wake mixing would be complete and to better identify stator performance. To eliminate the differences in indicated stator performance due to difference in the location of station 2, the value of $(P_{id})_{TE}$ in the loss coefficient (eq. (B9)) was obtained from station 3, common to all configurations. An average of the three highest total pressures measured across the stator gap by the circumferential surveys at station 3 set the value of $(P_{id})_{TE}$. This is equivalent to assuming no loss in free-stream total pressure across the stator blade row. Such a definition has been used by others (e.g., refs. 18 and 19) and has sometimes been called the wake total-pressure-loss coefficient (ref. 20).

In this report the symbol $\overline{\omega}_w$ denotes that station 3 values were used to determine $(P_{id})_{TE}$, and $\overline{\omega}$ that station 2 values were used. Both values of stator-loss coefficient are given in the blade-element tabulations. The table headings are TOT LOSS COEFF, WAKE for $\overline{\omega}_w$, and LOSS COEFF TOT for $\overline{\omega}$.

RESULTS AND DISCUSSION

Overall performances of stages 15-9, 15-9R, 15-9C, and 15-9D are presented and discussed first. The overall performances of the rotor and then of the stators are next. Finally, the blade-element performances of all the stators are discussed.

Overall Performance

The overall performance parameters for the stages are listed in tables X to XIII. Stage overall performance is also graphically presented in figures 13 to 16. Rotor 15 performance with the various stators is shown in figure 17. The performance decrements across the different stators are presented in figure 18.

One way of comparing the overall performances of figures 13 to 18 is tabulated below. This comparison was made at design speed and at a weight flow where a calculated operating line (approximating that of an aircraft-installed fan with fixed-exit nozzle, see ref. 4) passes through the design-point pressure ratio. Also, for the present data, this reference point is close to the minimum overall loss condition for each blade row.

Stage	Stage	Stage	Stage	Pressure-	Efficiency	Percent
designation	total-	temperature-	stall	ratio	decrement	design
	pressure	rise	margin,	decrement	across	flow
	ratio	efficiency	percent	across	stator ^a	1
				stator ^a		
D 1 75 1-1-0		0.005		0.022	0.057	00.0
Rotor 15 - stator 9	1.475	0.835	h 4	0.033	0.057	98.0
Rotor 15 - stator 9R	1.482	.845	b ₁₁	.031	.045	98.6
Rotor 15 - stator 9C	1.475	.830	, b ₈	°,038	c.056	98.0
Rotor 15 - stator 9D	1.483	.865	$\mathbf{b_{12}}$.031	.044	98.7
Design values	1.50	.85	-	.042	.060	100.0

^aBased on measuring stations 2b and 3 (fig. 1).

bStall margins greater than about 4 percent were dependent on a positive-slope pressure-flow characteristic at design speed caused by high rotor losses. These higher stall margins are not considered usable in a practical application (see ref. 4).

^CIncludes estimated difference between stations 2a and 2b.

All stages compare favorably with the design values, with stage 15-9D the best of the four. The listed differences in stage efficiency are not generally the same as the differences in efficiency decrements across the stator. As shown in figure 17, rotor 15 performance values are somewhat different when tested with the different stators. Aside from the differences due to measuring station (ref. 4), the differing rotor performance is believed due to different installations of the rotor.

Stages 15-9 and 15-9R were tested within days of each other, and the stator reset was done without reinstalling the rotor. Stages 15-9C and 15-9D were each studied in separate test programs, months apart, and each required reinstalling the rotor. Because the emphasis in this report is on stator performance, decrements in overall pressure ratio and efficiency across the various stators (fig. 18) were used to minimize any effects of varying rotor performance due to different installations. Thus the overall performances of the different stators will be compared on this basis.

Stator 9D had the lowest pressure-ratio and efficiency decrements (0.031 and 0.044, respectively). The shorter-chord S9R exhibited the same low values but left some swirl in the exit flow due to the 3.7° reset. Without reset (S9) the pressure-ratio and efficiency decrements were 0.033 and 0.057. The efficiency decrement across S9C was about 0.056; it has the same chord as S9D. The S9 and S9C designs were strongly influenced by low-noise considerations and performed about 1 point lower in overall efficiency than the S9D design, which was essentially independent of noise constraints. However, such a penalty need not be inherent to all low-noise designs.

The present stator comparison (on the calculated operating line) shows that all designs were operating near their minimum overall pressure decrement except for S9C (fig. 18). The performance of S9C is continuing to improve as weight flow is increased. However, the rotor limits the maximum possible flow to about 100.5 percent of design. This was demonstrated by the rotor-only tests discussed in reference 4. Thus, the additional flow range available for S9C operation is not enough to significantly improve its measured performance. However, without such rotor-choke limitations, S9C performance at the higher flows could fall between that for S9 and S9D.

The varying stage stall margins at design speed (see previous tabulation) with the different stators indicate the stator initiated stage stall. This was also confirmed by rotor-alone tests (ref. 4). Stator hub-element loadings (D factors) near stall were correlated for S9 and S9R in reference 4. Similar results for S9C and S9D will be discussed in a subsequent section.

Stator-Element Performance

Blade-element data tabulations for S9C and S9D are given in tables XIV and XV, respectively. Similar tabulations for S9 and S9R appear in reference 4. An error, dis-

covered in a small portion of the S9R blade-element data of reference 4 (readings 704, 707, and 709), resulted from an improper translation of measured data to the leading edge. The corrected data appear here in table XVI. Generally, both $\overline{\omega}_W$ and $\overline{\omega}$ values of loss coefficient are presented in the tables. Loss coefficients for S9 and S9R were previously reported only as $\overline{\omega}$. Their $\overline{\omega}_W$ values are presented here in tables XVII and XVIII.

The stator blade-element performances are discussed in the following subsections. Effect of free-stream reference station on indicated loss. - In a previous section (see Test and Calculation Procedures), some of the reasons for selecting station 3 for the free-stream reference for stator loss levels are discussed. In figure 19 typical loss variations with reference station are shown. Radial distributions of stator totalloss coefficient, both $\overline{\omega}_{w}$ and $\overline{\omega}$, at design speed and nearly the same weight flow (near peak stage efficiency) are given. Between about 15- and 85-percent span, there is usually reasonable agreement between $\overline{\omega}_{w}$ and $\overline{\omega}$, except for S9C. With that stator, station 2a is much closer to the rotor than station 2b (fig. 1), used with the others, and rotor-wake mixing losses may still be evident there. This would result in the somewhat higher apparent stator-loss coefficients $\overline{\omega}_{2a}$, as shown. The remaining disagreement in this midspan region is believed due to the greater data scatter using the $\overline{\omega}$ defini– tion. As an example, the value of $\overline{\omega}$ indicated for S9D at 70 percent span (fig. 19(d)) is unrealistically low. In contrast, $\overline{\omega}_{_{\!\!\! W}}$ values exhibit much less radial variation and, although not shown here, much less data scatter over an operating range for a particular spanwise location than do the $\overline{\omega}$ values. This applies to all stators tested.

In both end-wall regions $\overline{\omega}_W$ is usually less than $\overline{\omega}$, particularly for S9C, which has the longer end-wall flow from station 2a. There are also three-dimensional flow effects in the end-wall regions, especially with the longer chord S9C and S9D designs, which cause a reduction in total pressure in the free-stream flow from inlet to outlet. This also lowers the level of $\overline{\omega}_W$. Thus, absolute values of $\overline{\omega}_W$ near the walls may not be accurate measures of total loss to be charged to the stator. However, relative values there are believed useful.

As previously discussed, the effects of different upstream measuring stations on indicated loss levels can be minimized by using the stator exit (station 3) as a reference. Such a reference also reduces data scatter, thus improving chances of correlation. For these reasons the $\overline{\omega}_W$ definition of wake total-loss coefficient, and its ally, the $\overline{\omega}_W$ cos $\beta_{TE}/2\sigma$ definition of a wake total-loss parameter, will be used in all subsequent figures and discussion.

Effect of weight flow on radial distribution of loss. – In figure 20 the $\overline{\omega}_W$ at high flow (near choke) and at low flow (near stall) operation are compared with those near peak stage efficiency (from fig. 19). Near-choke operation of S9D resulted in a sharp rise in losses over the inner half span, with the loss levels much higher than those for

S9 and S9C. This is attributed to the much smaller design choke margins in this region for S9D (fig. 4(i)).

In contrast, near-stall operation of S9 and S9C showed highest losses over the outer half-span and at levels above those for S9D. Here, design incidence angles and multiple-circular-arc inlet-segment turning rates (ref. 15) are higher for S9 and S9C than for S9D. Both of these variables led to higher peak velocities on the suction surface, and thus higher losses should be expected.

In summary, at high-flow operation, loss levels appeared sensitive to design choke margins, with greatest losses where margins were smallest. At low flow operation, loss levels were sensitive to design incidence angles and inlet-segment turning rates, with lowest losses when they were lowest.

Effect of diffusion factor and spanwise location on loss. - The total-loss parameter as a function of D-factor over the complete range of throttle settings tested is shown in figure 21. In figure 22 only minimum loss values are plotted. Compared with 100 percent of design speed data, the 70 percent of design speed data in figure 21 show an extension of the low loss range to lower D-factors. The decreasing D-factors and decreasing loss reflect decreasing incidence angles due to increased weight flow from throttle opening. If flow is increased enough, an eventual increase in blade-element loss usually occurs because of a more adverse pressure-surface velocity gradient. This gradient would be most severe if the elemental flow passage was choked. Flow area margins from choke, designed for the 100-percent speed are, of course, larger for the 70-percent speed inlet conditions. Thus, it is not surprising that the lower speed extends the low-loss range toward the higher flows (lower D factors). For S9C there is no difference in the loss curve due to speed in the low D-factor range. The generally higher design choke margins for S9C, compared with S9 or S9D (see fig. 4(i)), are believed responsible for this result.

The minimum loss values (fig. 22) in the 30- to 70-percent span region are in good agreement with a previous correlation for double-circular-arc and NACA 65- (A_{10}) -series blades. The present data extend it to the multiple-circular-arc blades studied. For them, in the midspan region Mach number reached about 0.83, and blade solidities ranged from 1.6 to 2.1.

In both end-wall regions (10- and 90-percent span) the minimum losses (fig. 22) at a given D-factor tend to be lower for the short-chord S9 and S9R than for the moderate-chord S9C and S9D. Perhaps the secondary flows or corner vortices are stronger with the longer chord because of the longer time to develop. Stage reaction and level of stator D-factor may also influence this end-wall loss comparison with stator chord. Design values of stage reaction are about 75 percent for the stages studied, along with stator D-factors of about 0.4 near the tip and 0.5 near the hub.

In summary, the effect of diffusion factor on minimum loss levels in the midspan region (30- to 70-percent span) follows the correlation of NASA SP-36 (ref. 21). In both end-wall regions (10- and 90-percent span) the minimum losses at a given D-factor tend to be lowest for the short-chord design (S9).

Effect of air turning on loss. - In figure 23 the total-loss parameter at design speed is shown as a function of air turning for 30-, 50-, and 70-percent span. Incidence and deviation angles are also listed alongside selected data points. (The shortchord data are plotted separately simply to avoid confusion of symbols.) The purpose of figure 23 is to show that the total-pressure losses involved in a given air turning can be minimized by using more blade camber and less incidence angle. For example, at 50-percent span and an air turning near 31°, both S9C and S9 are operating near their minimum loss levels, but the loss is less for S9C. The S9C data point has a 10° lower incidence angle than S9 but about a 7.2° greater camber (tables VII and V). The remaining difference in turning is mainly due to 2° less deviation angle for S9C. Similar midspan comparisons can be made between S9C and S9D at about 36°, but there, S9C is not quite at minimum loss operation.

Thus, in the midspan region and for design speed, air turning was more efficiently done with blade camber than with incidence angle.

Incidence and deviation angle, loss, and loading relations across the span. - These parameters for each stator at five spanwise locations and design speed are summarized in figure 24. The range of inlet Mach numbers are also listed. In the midspan region and for minimum-loss operation, the higher incidence angles for S9 and S9R are primarily responsible for their higher loss levels. These higher incidence angles are a consequence of the original design considerations, both aerodynamic and fabrication, as previously discussed. The higher losses stem from higher suction-surface velocity peaks with higher incidence angle as shown and discussed in Part II (ref. 11).

As previously discussed herein, the losses in both end-wall regions (figs. 24(a) and (e)) are generally less for the short-chord stator than for the moderate-chord ones for all incidence angles tested.

Deviation angles are shown to be generally insensitive to incidence angle except near wide-open throttle operation. In the midspan region deviation angles are higher for S9D than for S9C, but both are reasonably well predicted by the modified Carter's rule that was used (see ref. 15). The higher setting angle for S9D, compared with S9C, results in a shorter, covered (or controlled) passage. Location of maximum camber is also further aft on S9D, which requires more air turning to be done in the aft portion of the blade. These two design features for S9D compared with S9C account for most of the deviation angle differences measured.

Midspan deviation angles for S9 or S9R are not as well predicted. Perhaps their short chord or unusually high incidence angles, or both, are too much for a deviation angle rule that ignores both features.

In both end-wall regions the deviation angles were 3° to 5° higher than predicted for all stators studied. Some three-dimensional corrections to a two-dimensional deviation rule are obviously needed.

As the hub region is approached, both D-factor (blade loading) and inlet Mach number are increasing. Thus, it is the most critical flow region in the overall stator design. Near the hub (fig. 24(e)) the maximum blade loading expressed as D-factor does not exceed a level of about 0.5. A subsequent section discusses and correlates these near-stall loading levels.

To summarize, the relatively high design incidence angles for S9 caused relatively high loss levels in the midspan region. However, in both end-wall regions, the shorter chord S9 had the lowest losses. Midspan deviation angles are reasonably well predicted for the moderate-chord S9C and S9D designs, and near the end walls a three-dimensional correction is needed for all designs tested.

Effect of Mach number and stator design on minimum-loss incidence and deviation angles. - At minimum-loss operation and at midspan, the incidence angles $(i_{mc})_{ref}$ and deviation angles δ_{ref}^{0} , relative to the two-dimensional, low-speed, cascade rule values (from ref. 21), are shown as functions of inlet Mach number in figure 25. If minimum loss extended over a range of incidence angles, the midpoint was chosen for $(i_{mc})_{ref}$. If a minimum loss was not indicated by the data, $(i_{mc})_{ref}$ was taken as that angle at the lowest measured loss condition. The Mach number variations came from data at 70, 90, and 100 percent of design speed. The δ_{ref}^{0} values are those that accompany the $(i_{mc})_{ref}$ values.

The incidence-angle correction for compressibility for S9D varies from about -2^{0} to $+1\frac{1}{2}^{0}$ as Mach number increases from 0.55 to 0.77. Over the lower half of this range there is close agreement with the data of NASA SP-36 (ref. 21), which end at about Mach 0.65. Incidence corrections for S9 and S9C show similar trends as Mach number increases, but there are level shifts of unknown cause. Along a particular streamline and for a fixed incidence angle, higher inlet Mach numbers reduce the margin from choking the blade-to-blade passage. The higher incidence angles for minimum loss are believed required to open up the flow passage and avoid the high losses associated with choking.

The effect of increasing Mach number on the compressibility correction for deviation angle (fig. 25 (b)) was smaller than that for incidence angle for all designs tested. For S9D the correction is constant, extending the same trend shown by the NASA SP-36 data but at a 2° to 3° higher level. The location of maximum camber is aft of 50-percent chord for S9D. This increases its deviation angle relative to a circular-arc blade

according to the design rule used for S9D (ref. 15). This may account for the level shift shown.

In summary, the compressibility correction for minimum-loss incidence angle for S9D is smallest of all designs studied, and follows past experience for circular-arc stators. Deviation angles at minimum loss showed little variation with inlet Mach number especially for S9D, but its level was a few degrees higher than circular arc experience.

Effect of loading on stage stall. - The combination of high inlet Mach number and high diffusion factor D, at either the rotor tip or the stator hub generally makes one or the other (or both) region the critical one that initiates stage stall. As shown in reference 4 and based in part on rotor-alone tests, the stator-hub region initiated stage stall for stage 15-9 or 15-9R at 90 and 100 percent of design speed. At lower speeds the stator hub or rotor tip, or both, may have been critical, that is, stalled first. Following the approach of reference 4, blade-element D-factors over the entire flow range and for the four different stator-hub (90-percent span from tip) sections are shown in figure 26. (Parts (a) and (b) of fig. 26 are from ref. 4.) As discussed there, a small but consistent effect of measuring station (2a or 2b) on the value of diffusion factor was evident and is shown on figures 26(a) and (b).

Generally, the stator-hub diffusion factor increases as flow is reduced until a maximum level is reached at the near-stall flow that is nearly the same for all speeds tested with a particular stator. Also, the rotor-alone stall flows indicated were never greater than the stage values. This implies the stator hub elements were near stall when the stage was near stall for all speeds tested. The critical D-factor for S9D (fig. 26(d)) is about 0.46, midway between that shown for S9 (0.445) and S9R (0.485), all with the same interblade row measuring station 2b. Likewise the critical D-factor for S9C (fig. 26(c)) is about 0.485 which is midway between the 0.47 and 0.51 for S9 and S9R, respectively, with measuring station 2a.

As was the case with S9 and S9R (ref. 4), small, but systematic effects of axial velocity ratio on critical loading levels were evident for S9C and S9D as shown in figure 27. As axial velocity ratio across any of the stators increased, the critical D-factor decreased linearly. Reasons for the apparent dependence of stator critical D-factor on axial velocity are not presently known. However, this relation can be used to define a modified loading parameter, the value of which is constant for the four stator configurations at their respective critical-hub-element, near-stall-operating conditions at 90 and 100 percent of design speed. This is demonstrated next.

A modified, near-stall loading parameter, D+0.64 ($V_{\rm Z3}/V_{\rm Z2}$), at 90-percent span from the tip is shown to be invariant with flow, speed, or stator configuration in figure 28. The small but consistent effect of interblade row measuring station (2a or 2b) distinguishes part (a) from part (b) in the figure. As indicated, a single value for stator critical modified loading parameter of 1.13 (based on stations 2a and 3) or the cor-

|**|| | | | | | | | | |**

responding 1.09 (based on stations 2b and 3) applies for all configurations at both 90 and 100 percent of design speed.

For close axial coupling of rotor and stator, this critical D-factor correlation may not apply. The different hub contouring required, or the unknown effects of less well-mixed flow from the rotor, could affect these results. However, when stators S9 and S9R were tested, at 1.0- and 1.5-rotor chord spacings instead of 3.5, the stall critical levels of loading were unchanged (ref. 4).

Typical stator design practice uses an axial velocity ratio of about 1.0, which decreases only a few percent at near-stall operation. With the stator critical modified loading parameter equal to 1.13 (station 2a) or 1.09 (station 2b), a critical D-factor of about 0.49 (station 2a) or 0.45 (station 2b) is indicated. These levels of D-factor compare unfavorably with those from reference 22 where two different stator designs were tested with a 305-meter-per-second rotor. There, stator-hub-element (90-percent span from tip) critical D-factors were about 0.6 for both designs. One of these designs was used as a pattern for S9D. Different facilities, model sizes, and data-reduction techniques are involved which have not been fully evaluated. Perhaps the oncoming wall boundary layer is sufficiently different to account for the different critical loading levels. The real reasons for this remain unknown.

In summary, the stator-hub region initiated stage stall for all designs tested at 100 percent of design speed. Near stall, the stator-hub-element (90-percent span from tip) D-factors were about 0.47 and essentially the same for all designs.

SUMMARY OF RESULTS

The aerodynamic performances of four stator-blade rows, each operated down-stream of the same rotor, have been presented and evaluated. The rotor and flow path were a 0.5-meter-diameter model of the NASA QF-1 fan (tip speed, 337 m/sec; pressure ratio, 1.54). The aerodynamic designs of two of these stator rows were compromised to reduce noise, a third design was not. The original stator for NASA QF-1, called S9, had a short chord because of the large number of blades required to achieve low noise. It also had relatively thick blades to allow casting. A second configuration, called S9R, was simply S9 reset 3.7° closed. The two other designs, called S9C and S9D had twice the chord of S9, about half the blade number and were thinner. The radial distribution of incidence angle for S9C was skewed to satisfy a low-noise theory of minimum lift fluctuations. The S9D had no noise constraints but was patterned after a NASA-sponsored design that had demonstrated the best known performance at high inlet Mach numbers. The following principal results were obtained:

1. Overall performance at design speed on a calculated operating line passing through the design point pressure ratio was

MODELLE TELEVISION OF

Stage	Stage	Stage	Stage	Pressure-	Efficiency
designation	total-	temperature-	stall	ratio	decrement
j	pressure	rise	margin,	decrement	across
	ratio	efficiency	percent	across	stator ^a
				stator ^a	
Rotor 15 - stator 9	1.475	0.835	. 4	0.033	0.057
Rotor 15 - stator 9R	1.482	.845	^b 11	.031	.045
Rotor 15 - stator 9C	1.475	.830	, b ₈	c.038	c.056
Rotor 15 - stator 9D	1.485	.865	$^{\mathrm{b}}_{12}$.031	.044
Design values	1.50	.85		.042	.060

^aBased on measuring stations 2b and 3 (fig. 1).

The best performing stator was S9D with overall pressure-ratio and efficiency decrements of 0.031 and 0.044, respectively. The shorter chord S9R exhibited similar values but left some swirl in the exit flow due to 3.7° of reset. Without reset, S9 had pressure ratio and efficiency decrements of 0.033 and 0.057.

- 2. In the end-wall regions, the blade-element losses were significantly less for the short-chord (1.85 cm) S9 and S9R than for the moderate-chord (3.72 cm) S9C and S9D at all design-speed operating conditions.
- 3. In the midspan region and for design speed, air turning was more efficiently done with blade camber than with incidence angle.
- 4. Flow in the stator-hub region initiated stage stall for all designs tested at design speed. Near stall, the hub-element (90-percent span from tip-diffusion factors were about 0.47 and essentially the same for all designs.

Lewis Research Center,

National Aeronautics and Space Administration, Cleveland, Ohio, October 1, 1979, 505-04.

bStall margins greater than about 4 percent were dependent on a positive-slope pressure-flow characteristic at design speed caused by high rotor losses.

These higher stall margins are not considered usable in a practical application (see ref. 4).

^CIncludes estimated difference between stations 2a and 2b.

APPENDIX A

SYMBOLS

*	
A/A*	flow area to critical area ratio
ΔA_{an}	incremental annulus area, m ²
A _{an}	annulus area at rotor leading edge, m ²
${f A_f}$	frontal area at rotor leading edge, m ²
C	change in blade angle per unit path distance, (dK/dS), deg/cm
$C_{\mathbf{p}}$	specific heat at constant pressure, 1004 J/kg K
c	aerodynamic chord, em
D	diffusion factor
i _{me}	mean incidence angle, angle between inlet air direction and line tangent to blade mean camber line at leading edge, deg
ⁱ ss	suction-surface incidence angle, angle between inlet air direction and line tangent to blade suction surface at leading edge, deg
K	local blade angle with respect to meridional direction, deg
\mathbf{M}	Mach number
N	rotative speed, rpm
NR	number of radial locations where measurements of flow conditions are made
$^{ m N}{}_{ m D}$	design rotative speed, 13 020 rpm
n	coordinate in tangential direction, cm
P	total pressure, N/cm ²
p	static pressure, N/cm ²
r	radius, cm
S	path distance on blade-element layout cone, cm
SM	stall margin
\mathbf{T}	total temperature, K
U	wheel speed, m/sec
v	velocity, m/sec
W	weight flow, kg/sec

design weight flow, 29.16 kg/sec W_{D} \mathbf{Z} axial distance from rotor-blade-hub leading edge, cm α_{c} cone angle, deg slope of streamline, deg air angle, angle between air velocity and axial direction, deg β relative meridional flow angle based on cone angle, arctan (tan $\beta_m^!$ cos α_c $\cos \alpha_{s}$), deg ratio of specific heats (1.40) γ ratio of rotor-inlet total pressure to standard pressure of 10.13 $\mathrm{N/cm}^2$ δ δο deviation angle, angle between exit-air direction and tangent-to-blade mean camber line at trailing edge, deg efficiency η θ ratio of rotor-inlet total temperature to standard temperature of 288.2 K angle between blade mean camber line and meridional plane, deg $\kappa_{\rm mc}$ angle between blade suction-surface camber line at leading edge and meri- κ_{ss} dional plane, deg density, kg/m³ ρ solidity, ratio of chord to spacing σ blade camber, deg total-loss coefficient profile-loss coefficient shock-loss coefficient wake total-loss coefficient where $(P'_{id})_{TE}$ (see eq. (B9)), is average of three $\omega_{\mathbf{w}}$ highest values measured across the stator gap Subscripts: aft blade segment

| |||

a

ad adiabatic

blade-element centerline on layout cone \mathbf{c}

 $\Pi = \Pi$

f front

h hub id ideal

LE blade leading edge

m meridional direction

mom momentum rise

p polytropic

ref reference or value at minimum loss operation (fig. 25)

TE blade trailing edge

t transition point (from inlet to outlet segment camber)

th throat

tip tip

z axial direction

0 tangential direction

instrumentation plane upstream of rotor

2a, 2b, 2b' instrumentation planes between rotor and stator (see fig. 1)

2D two-dimensional values (fig. 25)

3 instrumentation plane downstream of stator

Superscript:

' relative to blade

APPENDIX B

EQUATIONS

Mean incidence angle -

$$i_{mc} = \left(\beta_{c}^{\dagger}\right)_{LE} - \left(\kappa_{mc}\right)_{LE} \tag{B1}$$

Suction-surface incidence angle -

$$i_{SS} = \left(\beta_{C}^{\dagger}\right)_{LE} - \left(\kappa_{SS}\right)_{LE} \tag{B2}$$

Deviation angle -

$$\delta^{O} = \left(\beta_{C}^{\dagger}\right)_{TE} - \left(\kappa_{mC}\right)_{TE} \tag{B3}$$

Front suction-surface camber -

$$\varphi_{f,ss} = (\kappa_{ss})_{LE} - (\kappa_{ss})_{t}$$
 (B4)

Total camber -

$$\varphi_{t} = \left(\kappa_{mc}\right)_{LE} - \left(\kappa_{mc}\right)_{TE} \tag{B5}$$

Turn rate ratio -

$$(C_f/C_a)$$
 (B6)

Choke margin -

$$(A/A^* - 1.0)_{minimum}$$
 (B7)

Diffusion factor -

$$D = 1 - \frac{V'_{TE}}{V'_{LE}} + \left| \frac{\left(rV_{\theta}\right)_{TE} - \left(rV_{\theta}\right)_{LE}}{\left(r_{TE} + r_{LE}\right)\sigma(V'_{LE})} \right|$$
(B8)

Total-loss coefficient -

$$\overline{\omega} = \frac{\left(P_{id}^{!}\right)_{TE} - \overline{P_{TE}^{!}}}{P_{LE}^{!} - p_{LE}}$$
(B9)

Profile-loss coefficient -

$$\overline{\omega}_{\rm p} = \overline{\omega} - \overline{\omega}_{\rm S}$$
 (B10)

Total-loss parameter -

$$\frac{\overline{\omega} \cos(\beta_{\mathbf{c}}^{\prime})_{\mathrm{TE}}}{2\sigma} \tag{B11}$$

Profile-loss parameter -

$$\frac{\overline{\omega}_{p} \cos(\beta_{c}^{i})_{TE}}{2\sigma}$$
 (B12)

Rotor total-pressure ratio -

$$\left(\overline{\mathbf{P}_{2}/\mathbf{P}_{1}}\right) = \left[\frac{\int_{\mathbf{r}_{h}}^{\mathbf{r}_{t}} (\mathbf{P}_{2}/\mathbf{P}_{1})^{(\gamma-1)/\gamma} \rho \mathbf{v}_{z} \mathbf{r} d\mathbf{r}}{\int_{\mathbf{r}_{h}}^{\mathbf{r}_{t}} \rho \mathbf{v}_{z} \mathbf{r} d\mathbf{r}}\right]^{\gamma/(\gamma-1)}$$

$$= \frac{\sum_{i=1}^{NR} (P_{2}/P_{1})_{i}^{(\gamma-1)/\gamma} \rho_{2,i} V_{z2,i} \Delta A_{an,2,i}}{\sum_{i=1}^{NR} \rho_{2,i} V_{z2,i} \Delta A_{an,2,i}}$$
(B13)

Stage total-pressure ratio -

$$\left(\frac{\overline{P_3/P_1}}{\overline{P_1/P_1}}\right) = \left[\frac{\displaystyle\int_{r_h}^{r_t} (P_3/P_1)^{(\gamma-1)/\gamma} \rho v_z \ r \ dr}{\displaystyle\int_{r_h}^{r_t} \rho v_z \ r \ dr}\right]^{\gamma/(\gamma-1)}$$

$$= \left[\frac{\sum_{i=1}^{NR} \left(P_{3} / P_{1} \right)_{i}^{(\gamma-1)/\gamma} \rho_{3, i} V_{z3, i} \Delta A_{an, 3, i}}{\sum_{i=1}^{NR} \rho_{3, i} V_{z3, i} \Delta A_{an, 3, i}} \right]^{\gamma/(\gamma-1)}$$
(B14)

Total-temperature ratio -

$$\left(\overline{T_{2}/T_{1}}\right) = \frac{\int_{r_{h}}^{r_{t}} (T_{2}/T_{1}) \rho_{v_{z}} r dr}{\int_{r_{h}}^{r_{t}} \rho_{v_{z}} r dr} = \frac{\sum_{i=1}^{NR} \left(T_{2}/T_{1}\right)_{i} \rho_{2, i} V_{z2, i} \Delta A_{an, 2, i}}{\sum_{i=1}^{NR} \rho_{2, i} V_{z2, i} \Delta A_{an, 2, i}}$$
(B15)

Rotor adiabatic efficiency -

$$\eta_{\text{ad}} = \frac{\left(\overline{P_2/P_1}\right)^{(\gamma-1)/\gamma} - 1}{\left(\overline{T_2/T_1}\right) - 1}$$
(B16)

Stage adiabatic efficiency -

$$\eta_{\text{ad}} = \frac{\left(\overline{P_3/P_1}\right)^{(\gamma-1)/\gamma} - 1}{\left(\overline{T_3/T_1}\right) - 1}$$
(B17)

Rotor-inlet mass averaged temperature -

$$\frac{T}{T_{1}} = \frac{\int_{r_{h}}^{r_{t}} T_{1} \rho v_{z} r dr}{\int_{r_{h}}^{r_{t}} \rho v_{z} r dr} = \frac{\sum_{i=1}^{NR} T_{1,i} \rho_{1,i} V_{z1,i} \Delta A_{an,1,i}}{\sum_{i=1}^{NR} \rho_{1,i} V_{z1,i} \Delta A_{an,1,i}}$$
(B18)

Momentum-rise efficiency -

$$\eta_{\text{mom}} = \frac{\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma} - 1}{\int_{\mathbf{r}_{1}}^{\mathbf{r}_{t}} \left[\left(UV_{\theta}\right)_{2} - \left(UV_{\theta}\right)_{1}\right] \rho v_{z} r dr}{\overline{T_{1}} C_{p}}$$

$$= \frac{\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma} - 1}{\sum_{i=1}^{NR} \left[\left(UV_{\theta}\right)_{2} - \left(UV_{\theta}\right)_{1}\right] \rho_{2,i} V_{z2,i} \Delta A_{2,i}}{\overline{T_{1}} C_{p}}$$
(B19)

Head-rise coefficient -

$$\frac{C_{p}T_{1}}{U_{tin}^{2}}\left[\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma}-1\right]$$
(B20)

Equivalent mass flow -

$$\frac{W\sqrt{\theta}}{\delta}$$
 (B21)

Equivalent speed -

$$\frac{N}{\sqrt{\theta}}$$
 (B22)

Mass flow per unit annulus area -

$$\frac{W\sqrt{\theta}}{\frac{\delta}{A_{\text{an}}}}$$
 (B23)

Mass flow per unit frontal area -

$$\frac{W\sqrt{\theta}}{\frac{\delta}{A_{f}}} \tag{B24}$$

Flow coefficient -

$$\left(\frac{V_{Z}}{U_{t}}\right)_{LE}$$
 (B25)

Stall margin -

$$SM = \left[\frac{\left(\frac{P_3/P_1}{P_3/P_1} \right)_{stall} \left(\frac{W \sqrt{\theta}}{\delta} \right)_{ref} - 1}{\left(\frac{P_3/P_1}{P_3/P_1} \right)_{ref} \left(\frac{W \sqrt{\theta}}{\delta} \right)_{stall}} - 1 \right] \times 100$$
(B26)

Rotor polytropic efficiency -

$$\eta_{p} = \frac{\ln\left(\overline{P_{2}/P_{1}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\overline{T_{2}/T_{1}}\right)}$$
(B27)

Stage polytropic efficiency -

$$\eta_{p} = \frac{\ln\left(\overline{P_{3}/P_{1}}\right)^{(\gamma-1)/\gamma}}{\ln\left(\overline{T_{3}/T_{1}}\right)}$$
(B28)

APPENDIX C

ABBREVIATIONS AND UNITS USED IN TABLES

ABS absolute

AERO CHORD aerodynamic chord, cm

AREA RATIO ratio of actual flow area to critical area (where local Mach

number is 1)

BETAM meridional air angle, deg

CONE ANGLE angle between axial direction and conical surface representing

blade element, deg

DELTA INC difference between mean camber blade angle and suction-

surface blade angle at leading edge, deg

DEV deviation angle (defined by eq. (B3)), deg

D-FACT diffusion factor (defined by eq. (B8))

EFF adiabatic efficiency (defined by eq. (B16) or (B17))

IN inlet (leading edge of blade)

INCIDENCE incidence angle (suction surface defined by eq. (B2), and mean

by eq. (B1)), deg

KIC angle between blade mean camber line at leading edge and

meridional plane, deg

KOC angle between blade mean camber line at trailing edge and

meridional plane, deg

KTC angle between blade mean camber line at transition point and

meridional plane, deg

LOSS COEFF loss coefficient (total defined by eq. (B9), profile by eq. (B10))

LOSS PARAM loss parameter (total defined by eq. (B11), profile by

eq. (B12))

MERID meridional

MERID VEL R meridional velocity ratio

OUT outlet (trailing edge of blade)

PERCENT SPAN percent of blade span from tip at rotor trailing edge for design

streamlines

PHISS suction-surface camber ahead of assumed shock location, deg

PRESS pressure, N/cm²

PROF profile

RADII radius, cm

REL relative to blade

RI inlet radius (leading edge of blade), cm

RO outlet radius (trailing edge of blade), cm

RP radial position

RPM equivalent rotative speed, rpm

SETTING ANGLE angle between aerodynamic chord and meridional plane, deg

SOLIDITY ratio of aerodynamic chord to blade spacing

SPEED speed, m/sec

SS suction surface

STREAMLINE SLOPE slope of streamline, deg

TANG tangential

TEMP temperature, K

TI thickness of blade at leading edge, cm

TM thickness of blade at maximum thickness, cm

TO thickness of blade at trailing edge, cm

TOT total

TOTAL CAMBER difference between inlet and outlet blade mean camber lines,

deg

TURN RATE ratio of inlet-segment turning rate to outlet segment turning

rate for a blade element

VEL velocity, m/sec

WT FLOW equivalent weight flow, kg/sec

X FACTOR ratio of suction-surface camber ahead of assumed shock loca-

tion of a multiple-circular-arc blade section to that of a

double-circular-arc blade section

ZIC axial distance to blade leading edge from rotor-hub leading

edge, cm

ZMC	axial distance to blade maximum thickness point from rotor- hub leading edge, cm
ZOC	axial distance to blade trailing edge from rotor-hub leading edge, cm
ZTC	axial distance to transition point from rotor-hub leading edge, cm

REFERENCES

- Goldstein, Arthur W.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 6-Foot-Diameter Fan for Turbofan Engines.
 II - Performance of QF-1 Fan in Nacelle Without Acoustic Suppression. NASA TN D-6080, 1970.
- 2. Povinelli, Frederick P.; Dittmar, James H.; and Woodward, Richard P.: Effects of Installation Caused Flow Distortion on Noise From a Fan Designed for Turbofan Engines. NASA TN D-7076, 1972.
- 3. Woodward, Richard P.; Lucas, James G.; and Balombin, Joseph R.: Acoustic and Aerodynamic Performance of a 1.5-Pressure-Ratio, 1.83-Meter (6-Ft) Diameter Fan Stage for Turbofan Engines (QF-2). NASA TM X-3521, 1977.
- 4. Gelder, Thomas F.; and Lewis, George W., Jr.: Aerodynamic Performance of a 0.5-Meter-Diameter, 337-Meter-per-Second Tip Speed, 1.5-Pressure Ratio, Single-Stage Fan Designed for Low Noise Aircraft Engines. NASA TN D-7836, 1974.
- 5. Gelder, Thomas F.; and Soltis, Richard F.: Inlet Noise of 0.5-Meter-Diameter NASA QF-1 Fan as Measured in an Unmodified Compressor Aerodynamic Test Facility and in an Anechoic Chamber. NASA TN D-8121, 1975.
- 6. Woodward, R. P.; Wazyniak, J. A.; and Shaw, L. M.: Effectiveness of an Inlet Flow Turbulence Control Device to Simulate Flight Fan Noise in an Anechoic Chamber. NASA TM-73855, 1977.
- 7. Dittmar, J. H.; MacKinnon, M. J.; and Woodward, R. P.: Reduction of Fan Noise in an Anechoic Chamber by Reducing Chamber Wall Induced Inlet Flow Disturbances. NASA TM-78854, 1978.
- 8. Kramer, James J.; et al.: Fan Noise and Performance. Aircraft Engine Noise Reduction, NASA SP-311, 1972, pp. 7-61.
- 9. Horlock, J. H.: Fluctuating Lift Forces on Aerofoils Moving Through Transverse and Chordwise Gusts. J. Basic Eng., vol. 90, no. 4, Dec. 1968, pp. 494-500.
- 10. Harley, K. G.; Odegard, P. A.; and Burdsall, E. A.: High-Loading Low-Speed Fan Study. Part IV Data and Performance with Redesign Stator and Including a Rotor Tip Casing Treatment. (PWA-4326, Pratt & Whitney Aircraft; NASA Contract NAS3-10483.) NASA CR-120866, 1972.

- 11. Gelder, Thomas F.; Schmidt, James F.; and Esgar, Genevieve, M.: Aerodynamic Performances of Three Fan Stator Designs Operating with Rotor Having Tip Speed of 337 Meters Per Second and Pressure Ratio of 1.54. II Relation of Analytical Code Calculations to Experimental Performance. NASA TP-1614, 1980.
- 12. Monsarrat, N. T.; and Keenan, M. J.: Experimental Evaluation of Transonic Stators. Preliminary Analysis and Design Report. (PWA-2749, Pratt & Whitney Aircraft: NASA Contract NAS3-7614.) NASA CR-54620, 1967.
- 13. Dittmar, J. H.: Methods of Reducing Blade Passing Frequency Noise Generated by Rotor-Wake-Stator Interaction. NASA TM X-2669, 1972.
- 14. Dittmar, J. H.; and Woodward, R. P.: Noise Reduction From the Redesign of a Fan Stage to Minimize Stator Lift Fluctuations. AIAA Paper 76-576, July 1976.
- 15. Crouse, James E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, 1974.
- 16. Urasek, Donald C.; Gorrell, William T.; and Cunnan, Walter S.: Performance of a Two-Stage Fan Having Low Aspect Ratio Rotor One Blading. NASA TP-1493, 1979.
- 17. Urasek, Donald C.; and Janetzke, David C.: Performance of Tandem-Bladed Transonic Compressor Rotor with Tip Speed of 1375 Feet per Second. NASA TM X-2484, 1972.
- 18. Harley, K. G.; and Burdsall, E. A.: High-Loading Low-Speed Fan Study.

 Part II Data and Performance of Unslotted Blades and Vanes. (PWA-3653,

 Pratt & Whitney Aircraft; NASA Contract NAS3-10483.) NASA CR-72667, 1970.
- 19. Tesch, W. A.; and Doyle, V. L.: Inlet Flow Distortion Testing. Evaluation of Range and Distortion Tolerance for High Mach Number Transonic Fan Stages, Volume I, Task II: Stage Data and Performance Report. (GE-R70-AEG-426-Vol-1, General Electric Co.; NASA Contract NAS3-11157.) NASA CR-72786, vol. 1, 1971.
- 20. Lieblein, Seymour; Schwenk, Francis C.; and Broderick, Robert L.: Diffusion Factor for Estimating Losses and Limiting Blade Loadings in Axial-Flow-Compressor Blade Elements. NACA RM E53D01, 1953.
- 21. Johnsen, Irving A.; and Bullock, Robert O., eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- 22. Keenan, M. J.; and Burdsall, E. A.: High-Loading, Low-Speed Fan Study.

 Part V Final Report. (PWA-4517, Pratt & Whitney Aircraft; NASA Contract
 NAS3-10483.) NASA CR-121148, 1973.

TABLE I. - DESIGN OVERALL PARAMETERS

FOR STAGE 15-9

ROTOR TOTAL PRESSURE RATIO	1.541
STAGE TOTAL PRESSURE RATIO	1.499
ROTOR TOTAL TEMPERATURE RATIO	1.145
STAGE TOTAL TEMPERATURE RATIO	1.145
ROTOR ADIABATIC EFFICIENCY	0.909
STAGE ADIABATIC EFFICIENCY	0.848
ROTOR POLYTROPIC EFFICIENCY	0.915
STAGE POLYTROPIC EFFICIENCY	0.856
ROTOR HEAD RISE COEFFICIENT	0.334
STAGE HEAD RISE COEFFICIENT	0.312
STAGE TIEND RESE COLLETE	4 504
FLOW COEFFICIENT	0.581
WT FLOW PER UNIT FRONTAL AREA 1	51.534
WT FLOW PER UNIT ANNULUS AREA 2	01.797
WT FLOW	29.161
RPM	20.000
TID COUCH	37.451
TIP SPEED 3	31.431

TABLE II. - DESIGN BLADE-ELEMENT PARAMETERS FOR ROTOR 15

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 24.750 24.132 23.510 22.884 21.021 18.560 16.075 14.192 13.573 12.960 12.352	0UT 23.962 23.424 22.886 22.347 20.732 18.579 16.425 14.810 14.272 13.734	IN 0. 0. -0. -0. -0.	BETAM OUT 40.8 38.9 37.6 36.9 38.2 41.5 45.3 48.6 49.3 52.6	RELL IN 63.6 61.6 59.8 58.3 54.7 50.9 47.2 44.0 1	BETAM 0UT 45.6 44.9 44.1 43.0 37.6 27.1 11.7 -3.0 -8.3 -13.8	TOT/ IN 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2 288.2	RATIO 1.169 1.158 1.149 1.143 1.139 1.141 1.144 1.148 1.149 1.151	IN 10.13 10.13 10.13 10.13 10.13 10.13 10.13	PRESS RATIO 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541 1.541
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS IN 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2 200.0	VEL 0UT 229.2 227.4 226.5 230.9 242.4 261.7 282.0 290.1 298.8 308.3	REL IN 376.6 374.0 370.7 366.7 351.2 326.1 298.9 278.8 272.7 266.9 261.5	VEL 0UT 247.7 249.9 249.8 247.4 229.1 203.9 188.0 186.6 188.7 192.5 198.1	MERII IN 167.3 177.8 186.3 192.7 203.0 205.7 203.2 200.7 200.2	O VEL OUT 173.4 176.9 179.4 180.9 181.5 181.6 184.2 186.3 186.8 187.0	TAN IN 0. 000000000	NG VEL 0UT 149.8 142.9 138.2 135.9 142.7 160.6 185.9 211.7 221.9 233.1 245.0	WHEEL IN 337.5 329.0 320.5 312.0 286.6 253.1 219.2 193.5 185.1 176.7 168.4	SPEED OUT 326.7 319.4 312.0 304.7 282.7 253.3 224.0 201.9 194.6 187.3 179.9
RP TIP 1 2 3 4 5 6 7 8 9 HUB	ABS M IN 0.504 0.537 0.565 0.585 0.619 0.628 0.620 0.611 0.610 0.609	ACH NO 0UT 0.649 0.646 0.648 0.663 0.699 0.759 0.825 0.851 0.851 0.911	REL M IN 1.135 1.130 1.124 1.114 1.071 0.995 0.911 0.849 0.831 0.797	ACH NO OUT 0.701 0.713 0.708 0.658 0.588 0.546 0.546 0.554 0.554 0.567 0.586	IN 0.504 0.537 0.565 0.585 0.619 0.628 0.620 0.611	ACH NO OUT 0.491 0.503 0.512 0.521 0.523 0.534 0.545 0.545 0.553	1N -19.40 -16.77	NE SLOPE 0UT -14.51 -12.48 -10.63 -8.97 -4.78 -0.20 4.15 7.57 8.79 10.05 11.34	MERID VEL R 1.037 0.995 0.963 0.939 0.989 0.906 0.928 0.935 0.935	PEAK SS MACH NO 1,448 1,455 1,455 1,448 1,451 1,475 1,405 1,324 1,292 1,258 1,222
RP TIP 1 2 3 4 5 6 7 8 9 HVB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 70.00 85.00 95.00	INCI MEAN 3.3 3.4 3.5 3.6 4.2 5.5 7.8 10.3 11.6 13.1	DENCE SS -0.0 -0.0 -0.0 -0.0 -0.0 -0.0	DEV 7.0 6.4 5.9 5.7 5.8 6.4 7.4 8.1 8.2 8.3	D-FACT 0.488 0.469 0.458 0.479 0.517 0.529 0.504 0.486 0.462	0.778	TOT 0.189	0.0EFF PROF 0.154 0.100 0.059 0.031 0.018 0.035 0.081 0.129 0.147 0.165	LOSS F TOT 0.049 0.035 0.024 0.016 0.012 0.015 0.022 0.029 0.031	PROF

TABLE III. - BLADE GEOMETRY FOR ROTOR 15

RP TIP 1 234 5 6 7 8 9 HUB	PERCENT RADII SPAN RI RO 0. 24.750 23.962 5. 24.132 23.424 10. 23.510 22.886 15. 22.884 22.347 30. 21.021 20.732 50. 18.560 18.579 70. 16.075 16.425 85. 14.192 14.810 90. 13.573 14.272 95. 12.960 13.734 100. 12.352 13.195	58.16 53.63 37.89 56.33 51.57 37.68 54.69 49.88 37.00 50.52 45.02 31.80 45.41 38.87 20.63 39.39 32.45 4.28 33.67 27.61 -11.12 31.22 26.10 -16.53	10.32 9.632 11.60 10.738 13.13 11.756
RP P - 234 15 61 - 8 9 B	BLADE THICKNESSES TI TM TO 0.036 0.143 0.032 0.036 0.145 0.031 0.037 0.147 0.032 0.038 0.151 0.032 0.042 0.167 0.034 0.050 0.199 0.038 0.062 0.246 0.045 0.074 0.295 0.052 0.079 0.315 0.055 0.084 0.337 0.058 0.090 0.360 0.061	AXIAL DIMENSION ZIC ZMC ZTC 0.711 1.655 1.926 0.666 1.683 1.914 0.620 1.700 1.886 0.573 1.706 1.841 0.448 1.673 1.674 0.313 1.624 1.408 0.203 1.625 1.114 0.082 1.631 0.825 0.048 1.637 0.731 0.022 1.648 0.641 0.000 1.664 0.554	ZOC 2.831 2.920 2.990 3.042 3.196 3.407 3.638 3.723
RP TIP 1 2 3 4 5 6 7 8 9 HUB	AERO SETTING TOTAL CHORD ANGLE CAMBER 3.880 53.99 22.56 3.863 51.91 20.27 3.851 50.05 18.65 3.838 48.36 17.69 3.812 42.94 18.72 3.802 23.56 35.11 3.858 13.29 44.80 3.871 9.62 47.75 3.887 5.85 50.48 3.906 1.98 53.02	X SOLIDITY FACTOR PHISS 1.344 0.500 8.34 1.370 0.578 8.62 1.400 0.638 8.76 1.431 0.681 8.78 1.540 0.780 9.66 1.727 0.858 11.38 1.983 0.920 13.11 2.244 0.963 13.64 2.346 0.976 13.54 2.456 0.989 13.30 2.579 1.000 12.92	AREA RATIO 1.005 1.014 1.021 1.024 1.036 1.046 1.047 1.029 1.015 0.996 0.972

TABLE IV. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 9

RP TIP 1 2 3 4 5 6 7 8 9 HUB	RAD IN 23.414 22.948 22.478 22.004 20.577 18.682 16.786 15.343 14.848 14.344 13.833	OUT 23.409 22.945 22.475 21.999 20.575 18.718 16.916 15.622 15.165 14.683	ABS IN 37.5 35.3 33.8 32.9 33.4 36.1 40.2 45.4 47.0 50.8	S BETAM OUT 0. 0. -0. -0. -0. -0. -0. -0.	REL IN 37.5 35.3 33.8 32.9 33.4 36.1 40.2 45.4 47.2 49.0 50.8	BETAM OUT 0. 0. -0. -0. -0. -0. -0. -0.		RAT[0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	TOTA IN 15.61 15.61 15.61 15.61 15.61 15.61 15.61 15.61 15.61	0.961 0.969 0.975 0.983 0.986 0.983 0.979
RP TIP 1 23 4 5 6 7 8 9 HUB	ABS IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 287.2 289.9 293.5 297.8	VEL 0UT 187.1 190.9 193.8 195.9 198.7 199.1 198.5 195.2 188.7 177.7 162.0	REL IN 252.0 252.2 253.0 254.3 261.2 271.2 281.8 287.2 289.9 293.5 297.8	VEL 0UT 187.1 190.9 193.8 195.9 198.7 199.1 198.5 195.2 188.7 177.7 162.0	MERI IN 199.9 205.7 210.3 213.6 218.1 215.1 201.8 196.9 192.5 188.3	D VEL OUT 187.1 190.9 193.8 195.9 198.7 199.1 198.5 195.2 188.7 177.7 162.0	TAN IN 153.4 145.9 140.7 138.0 143.8 159.7 181.9 204.4 212.7 221.5 230.7	0. O.	WHEET IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP TIP 1 2 3 4 5 6 7 8 9 HUB	IN 0.719 0.724 0.730	ACH NO OUT 0.522 0.536 0.547 0.555 0.564 0.565 0.563 0.551 0.532 0.499 0.453	REL M IN 0.719 0.724 0.730 0.736 0.760 0.792 0.825 0.842 0.850 0.862 0.876	ACH NO 0UT 0.522 0.536 0.547 0.555 0.564 0.565 0.563 0.551 0.532 0.453	MERID M IN 0.571 0.591 0.606 0.618 0.634 0.640 0.630 0.592 0.578 0.565 0.554	ACH NO 0.522 0.536 0.555 0.564 0.565 0.563 0.551 0.532 0.453	STREAML (NE SLOPE OUT 0.00 0.01 0.01 0.00 0.18 1.25 3.59 7.40 9.04 10.85 12.83	MERID VEL R 0.936 0.928 0.927 0.917 0.908 0.967 0.958 0.963 0.966	PEAK SS MACH NO 1.261 1.212 1.181 1.165 1.196 1.274 1.377 1.469 1.506 1.546 1.589
RP TIP 1 2 3 4 5 6 7 8 9 HUB	PERCENT SPAN 0. 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	MEAN 13.7	DENCE SS 0.0 0.0 0.0 -0.0 0.0 0.0 0.0 0.0	DEV 5.3 4.8 4.5 4.5 5.9 6.8 7.1 7.4	D-FACT 0.474 0.445 0.424 0.411 0.412 0.433 0.460 0.485 0.513 0.557 0.616	0.	LOSS C TOT 0.165 0.131 0.103 0.082 0.053 0.040 0.048 0.056 0.130 0.264 0.455	0EFF PROF 0.165 0.131 0.103 0.082 0.053 0.040 0.045 0.046 0.116 0.245 0.428	LOSS F TOT 0.059 0.046 0.035 0.027 0.017 0.012 0.013 0.029 0.057 0.095	PROF 0.059

TABLE V. - BLADE GEOMETRY FOR STATOR 9a

RP TIP 1 2 3 4 5 6 7 8 9 HUB	5. 10. 15. 30. 50. 70. 85. 90.	RI 23.414 22.948 22.478	R0 23.409 22.945 22.475 21.999 20.575 18.718 16.916 15.622 15.165 14.683	KIC 23.77 21.22 19.49 18.58 20.32 24.88 30.81 37.14 39.39 41.60	ADE ANG KTC 14.42 14.42 14.59 15.70 17.85 20.69 23.74 24.91 26.13 27.41	K0C -5.26 -4.82 -4.49 -4.29 -4.50 -5.14 -5.94	14.30 13.09 11.19 9.39 8.06 7.64 7.22	CONE ANGLE -0.162 -0.100 -0.125 -0.180 -0.060 1.156 4.176 9.026 10.248 10.973 11.305
RP TIP 1 2 3 4 5 6 7 8 9 HVB	BLADE T1 0.037 0.036 0.035 0.035 0.032 0.030 0.028 0.028 0.028 0.028	THICKN TM 0.184 0.181 0.177 0.173 0.162 0.147 0.132 0.122 0.118 0.115	UESSES TO 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028	Z1C 17.366 17.365 17.366 17.367 17.369 17.375 17.382 17.393 17.399	ZMC 18.159 18.161 18.163 18.165 18.164 18.161 18.154 18.146 18.145	17.718 17.705 17.709 17.731 17.750 17.767 17.773	ZOC 19.162 19.163 19.164 19.166 19.165 19.164 19.159 19.155 19.154	
RP TIP 123456789	AERO CHORD 1.846 1.845 1.845 1.845 1.843 1.846 1.863 1.869 1.873 1.875	SETT ING ANGLE 7.98 7.61 7.41 7.36 8.02 9.48 11.46 13.62 14.43 15.24 16.07		2.301	1.300 1.300 1.300 1.300 1.300 1.300 1.300	R PHISS 19.35 17.05 15.39 14.36 14.11 15.13 16.87 19.13 19.88 20.55 21.15	1.054 1.078 1.124 1.140 1.157	

a The stator 9 blades that were fabricated and tested (both scale model and full size) were slightly larger than those from the aerodynamic design program tabulated here. Fabrication requirements for casting the full size stators resulted in a 0.0254-cm (0.010-in.) thickness being added completely around each blade section defined by the design program and then fabricating this enlarged blade. This enlargement was also duplicated for the 0.271-scale model by adding a 0.00686-cm (0.0027-in.) thickness to the design values. The resulting thickness-to-chord values actually tested are presented in figures 4 (d) and (e) and 5. Other than these maximum thickness, or edge-thickness-to-chord values, no other geometry features were changed.

TABLE VI. – DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR $9\mathrm{C}$

	RA	ADII	ABS	BETAM	REL	BETAM	ТОТА	L TEMP	тот	TAL PRE	SS	
RP	IN	OUT	IN	OUT	IN	OUT	IN	RATIO				
TIP	23.421	23.421	38.0	0.	38.0		337.2					
1	22.957	22.959	35.6	3 -0.	35.6	-0.	333.6					
2	22.486	22.490	34.0	0.	34.0	0.	331.0					
3	22.010	22.015	33.2	0.	33.2	0.	329.5					
4	20.572	20.589	33.7	0.	33.7	0.	328.3	1.000	15.6	0.98	32	
5	18.657	18.732	36.8	0.	36.8	0.	328.8	1.000	15.6	0.98	35	
6	16.730	16.937	41.5	2 0.	41.2	0.	329.9	1.000	15.6	0.98	31	
7	15.272	15.649	45.8	0.	45.8	0.	330.9	1.000	15.6	0.96	39	
8	14.781	15.219	47.9	0.	47.9	0.	331.4	1.000	15.6	0.94	18	
9	14.287	14.783	50.1	0.	50.1	0.	332.0	1.000	15.6	0.91	15	
HUB	13.790	14.343	52.6	G -0.	52.6	-0.	332.6	1.000	15.6	0.87	70	
	ABS		REL			DVEL	TANG	VEL	WHEEI	SPEED		
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	OUT		
TIP		185.2		185.2	197.4		154.4	0.	0.	0.		
1		190.2		190.2	203.8		145.7	-0.	0.	0.		
2	251.4			193.6	208.5		140.4	0.	0.	0.		
3	252.8			195.5	211.6		138.4	0.	0.	0.		
4	258.7	198.0		198.0	215.2		143.7	0.	0.	0.		
5 6		199.0		199.0	214.6		160.6	0.	0.	0.		
7		199.6 193.9		199.6 193.9	209.8		183.6	0.	0.	0.		
8		187.3		187.3	195.1		206.3 215.7	0.	0.	0.		
9		177.9		177.9	188.9		226.0		0.	0.		
HUB	298.7			165.7	181.6		237.2	0. -0.	0. 0.	0. 0.		
						20011	-01	٠.	٠.	٠.		
	ABS M	ACH NO	REL	MACH NO	ME	RID MAG	CH NO	STREAL	MLINE S	SLOPE	MERII	PEAK SS
RP	ABS M	ACH NO OUT	REL I	MACH NO			CH NO	STREAD IN		SLOPE		PEAK SS MACH NO
RP TIP			IN			IN C			C			
	IN	OUT	IN 0.71	OUT	0.	IN C	UT	IN	0	UT	$\mathrm{VEL}\;\mathrm{R}$	MACH NO
TIP	IN 0.715	OUT 0,516	IN 0.71	OUT 5 0.516 9 0.534	0.	IN C 563 0. 585 0.	OUT 516	IN 0.	0 0	OUT .	VEL R 0.938	MACH NO 1.163
TIP 1	IN 0.715 0.719	OUT 0.516 0.534	IN 0.71 0.71	OUT 5 0.516 9 0.534 5 0.547	0. 0. 0.	IN C 563 0. 585 0. 601 0.	OUT 516 534	IN 0. 0.07	0 0	OUT .07	VEL R 0.938 0.933	MACH NO 1.163 1.137
TIP 1 2 3 4	IN 0.715 0.719 0.725 0.731 0.742	OUT 0.516 0.534 0.547 0.554 0.562	IN 0.71 0.71 0.72 0.73 0.75	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562	0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0.	OUT 516 534 547	IN 0. 0.07 0.14	0 0 0 0		VEL R 0.938 0.933 0.929	MACH NO 1.163 1.137 1.126
TIP 1 2 3 4 5	IN 0.715 0.719 0.725 0.731 0.742 0.781	OUT 0.516 0.534 0.547 0.554 0.562 0.565	IN 0.71 0.71 0.72 0.73 0.75 0.78	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565	0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0.	516 534 547 554 562 565	IN 0. 0.07 0.14 0.22	0 0 0 0 0		VEL R 0.938 0.933 0.929 0.924	MACH NO 1.163 1.137 1.126 1.129
TIP 1 2 3 4 5	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815	OUT 0.516 0.534 0.547 0.554 0.562 0.565	IN 0.71 0.72 0.73 0.75 0.78 0.81	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565	0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 625 0.	516 534 547 554 562 565 565	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96	0 0 0 0 0 0 0 0 1 1		VEL R 0.938 0.933 0.929 0.924 0.920	MACH NO 1.163 1.137 1.126 1.129 1.178
TIP 1 2 3 4 5 6 7	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547	0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 613 0. 587 0.	516 534 547 554 562 565 565 547	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88	0 0 0 0 0 0 0 0 1 1 1 2		VEL R 0.938 0.933 0.929 0.924 0.920 0.927	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249
TIP 1 2 3 4 5 6 7 8	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85	OUT 5 0.516 9 0.534 5 0.554 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527	0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 625 0. 613 0. 587 0.	516 534 547 554 562 565 565 547 527	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62	0 0 0 0 0 0 0 0 1 1 1 2 2		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448
TIP 1 2 3 4 5 6 7 8 9	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86	OUT 5 0.516 9 0.534 5 0.554 1 0.554 2 0.565 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499	0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 6612 0. 625 0. 625 0. 613 0. 587 0. 5572 0. 554 0.	516 534 547 554 562 565 565 547 527 499	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86	OUT 5 0.516 9 0.534 5 0.554 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527	0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 6612 0. 625 0. 625 0. 613 0. 587 0. 5572 0. 554 0.	516 534 547 554 562 565 565 547 527	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448
TIP 1 2 3 4 5 6 7 8 9	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71-0.71-0.72-0.73 0.75 0.78 0.81-0.84 0.85 0.866 0.875	OUT 5 0.516 9 0.534 5 0.554 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463	0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 663 0. 587 0. 554 0. 534 0.	516 534 547 554 562 565 565 547 527 499 463	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21	0 0 0 0 0 0 0 0 0 1 1 1 2 2 2 2 2 2 2 2		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TTP 1 2 3 4 5 6 7 8 9 HUB	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71- 0.71- 0.72- 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.87	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE	0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 6612 0. 625 0. 625 0. 613 0. 587 0. 5572 0. 554 0.	516 534 547 554 562 565 565 547 527 499	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21	OEFF		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TTP 1 2 3 4 5 6 7 8 9 HUB	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878 PERCE SPAN	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71-1 0.71-1 0.72-1 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.87:	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE	0. 0. 0. 0. 0. 0. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 625 0. 613 0. 587 0. 554 0. 534 0.	516 534 547 554 562 565 565 547 527 499 463	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C	OEFF PROF		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TTP 1 2 3 4 5 6 7 8 9 HUB	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878 PERCE SPAN 0.	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78. 0.81. 0.84 0.85 0.86. 0.87: NCIDEN	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 625 0. 625 0. 587 0. 572 0. 554 0. 534 0. FACT	516 534 547 554 562 565 565 547 527 499 463 EFF	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172	OEFF PROF 0.173		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878 PERCE SPAN 0. 5.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78. 0.81. 0.84 0.85 0.86. 0.876	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 9. 0.	IN C 563 0. 585 0. 601 0. 612 0. 625 0. 625 0. 625 0. 587 0. 5572 0. 554 0. 534 0. FACT	516 534 547 554 562 565 565 547 527 499 463 EFF	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125	OEFF PROF 0.173 0.125		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.853 0.865 0.878 PERCE SPAN 0. 5.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 NCIDEN	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 4	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6625 0. 5572 0. 5572 0. 554 0. 554 0. -FACT	516 534 547 554 562 565 565 547 527 499 463 EFF 0. 0.	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095	OEFF PROF 0.173 0.125 0.095		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.843 0.853 0.865 0.878 PERCE SPAN 0. 5.0 10.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 NCIDEN EAN 7.6 5.2 3.0	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6625 0. 5572 0. 5572 0. 554 0. -FACT	516 534 547 554 562 565 565 547 527 499 463 EFF 0. 0.	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082	OEFF PROF 0.173 0.125 0.082		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.843 0.853 0.865 0.878 PERCE SPAN 0. 5.0 10.0 15.0 30.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.565 0.547 0.527 0.499 0.463	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 NCIDEN	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44 06	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6613 0. 587 0. 5572 0. 554 0. -FACT	UT 516 534 547 554 562 565 547 527 499 463 EFF	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058	OEFF PROF 0.173 0.125 0.095 0.082		VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4 5	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.865 0.878 PERCE SPAN 0. 5.0 10.0 15.0 30.0 50.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.547 0.527 0.499 0.463 ENT III	IN 0.71. 0.71. 0.72. 0.73 0.75 0.78. 0.81. 0.84 0.85 0.86. 0.876 NCIDEN EAN 7.6 5.2 3.0 1.1 7.6 5.1	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.562 1 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4. 0.9 5.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44 66 66 66 67	IN C	DUT 516 534 547 554 562 565 547 527 499 463 EFF	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058 0.045	OEFF PROF 0.173 0.125 0.095 0.082 0.058 0.045	LOSS I TOT 0.030 0.040 0.025 0.017 0.012	VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017 0.012	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4 5 6	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.865 0.878 PERCE SPAN 0. 5.0 10.0 15.0 30.0 70.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.547 0.527 0.499 0.463 ENT III N M 100 1 100 1 100 1	IN 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 0.876 0.5.2 0.3.0 0.1.1 7.6 5.1 0.3.5 -	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4. 0.9 5. 1.2 6.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 44 66 65 60 55	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6625 0. 5572 0. 5572 0. 5554 0. -FACT 0.464 0.429 0.406 0.396 0.396 0.415 0.439	DUT 516 534 547 554 562 565 547 527 499 463 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058 0.045 0.055	OEFF PROF 0.173 0.125 0.095 0.082 0.058 0.045 0.053	LOSS I TOT 0.030 0.040 0.012 0.013	VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017 0.012 0.013	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4 5 6 7	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.865 0.878 PERCE SPAN 0. 5.0 10.0 15.0 30.0 50.0 85.0	OUT 0.516 0.534 0.547 0.554 0.562 0.565 0.547 0.527 0.499 0.463 ENT III	IN 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 0.876 0.5.2 0.3.0 0.1.1 7.6 5.1 0.3.5 -1.7 -	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4. 0.9 5. 1.2 6. 3.4 7.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 5V D- 9 (6 4 4 6 6 6 5 5 6 6 5 5 6 6 5 5 6 6 6 6	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6625 0. 5572 0. 5574 0. 5554 0. -FACT 0.464 0. 0.429 0. 0.396 0. 0.396 0. 0.439 0. 0.479	DUT 516 534 547 554 562 565 547 527 499 463 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058 0.045 0.055 0.084	OEFF PROF 0.173 0.125 0.095 0.082 0.058 0.045 0.053 0.078	LOSS I TOT 0.030 0.040 0.013 0.018	VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017 0.012 0.013 0.017	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4 5 6 7 8	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.865 0.878 PERCE SPAN 0. 5.0 10.0 50.0 70.0 85.0 90.0	OUT 0.516 0.534 0.547 0.554 0.565 0.565 0.547 0.527 0.499 0.463 ENT III N M 100 1 1	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.876 0.876 0.5 1.1 7.6 5.1 3.5 - 1.7 - 0.5 0.5	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4. 0.9 5. 1.2 6. 3.4 7. 4.2 7.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	IN C	DUT 516 534 547 554 562 565 547 527 499 463 EFF	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058 0.045 0.055 0.084 0.138	OEFF PROF 0.173 0.125 0.095 0.082 0.058 0.045 0.053 0.078 0.129	LOSS I TOT 0.030 0.025 0.017 0.012 0.029	VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017 0.012 0.013 0.017 0.027	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485
TIP 1 2 3 4 5 6 7 8 9 HUB RP TIP 1 2 3 4 5 6 7	IN 0.715 0.719 0.725 0.731 0.742 0.781 0.815 0.843 0.865 0.878 PERCE SPAN 0. 5.0 10.0 15.0 30.0 50.0 85.0	OUT 0.516 0.534 0.547 0.554 0.565 0.565 0.547 0.527 0.499 0.463 ENT III N M 100 1 1	IN 0.71 0.71 0.72 0.73 0.75 0.78 0.81 0.84 0.85 0.86 0.87 0.87 0.81 0.81 0.81 0.81 0.81 0.81 0.81 0.81	OUT 5 0.516 9 0.534 5 0.547 1 0.554 2 0.565 5 0.565 3 0.547 3 0.527 5 0.499 8 0.463 CE DE SS 5.0 4. 4.4 4. 3.8 4. 3.2 4. 2.2 4. 0.9 5. 1.2 6. 3.4 7.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	IN C 563 0. 585 0. 6601 0. 6612 0. 6625 0. 6625 0. 6625 0. 5572 0. 5574 0. 5554 0. -FACT 0.464 0. 0.429 0. 0.396 0. 0.396 0. 0.439 0. 0.479	DUT 516 534 547 554 562 565 547 527 499 463 EFF 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	IN 0. 0.07 0.14 0.22 0.52 1.36 2.96 4.88 5.62 6.39 7.21 LOSS C TOT 0.172 0.125 0.095 0.082 0.058 0.045 0.055 0.084	OEFF PROF 0.173 0.125 0.095 0.082 0.058 0.045 0.053 0.078	LOSS I TOT 0.030 0.040 0.013 0.018	VEL R 0.938 0.933 0.929 0.924 0.920 0.927 0.951 0.968 0.960 0.942 0.913 PARAM PROF 0.057 0.040 0.030 0.025 0.017 0.012 0.013 0.017	MACH NO 1.163 1.137 1.126 1.129 1.178 1.249 1.334 1.414 1.448 1.485

TABLE VII. - BLADE GEOMETRY FOR STATOR 9C

		77.		DT 1 DT	ANGTE	DDI	THA CONE
	PERCENT	RA			ANGLES		LTA CONE
RP	SPAN	RI	RO		CTC KC		NC ANGLE
TIP	0.	23.421					.64 0.057
1	5.	22.957					.74 0.057
2	10.	22.486					.16 0.060
3	15.	22.010					.89 0.079
4	30.	20.572					.44 0.265 .15 1.179
5	50.	18.657					
6	70.	16.730					.77 3.294 .06 6.046
7	85.	15.272					.75 7.042
8	90.	14.781					.51 8.033
9	95.	14.287					.29 9.012
HUB	100.	13.790	14.343	54.15 3	0.81 -8	,00 1	.25 0.012
	BLADE TH	HICKNESSE	S	AXIAL DI	MENSION	IS	
RP		OT M	ZIC	ZMC	ZTC	ZOC	
TIP	0.025 0.	363 0.025	14.767	16.486	15.516	18.419	
1	0.025 0.	353 0.025	14.734	16.510	15.439	18.393	
2	0.025 0.	342 0.025	14.709	16.527	15.390	18.374	
3	0.025 0.	329 0.025	14.694	16.535	15.370	18.362	
4	0.025 0.	304 0.025	14.662	16.545	15.352	18.326	
5	0.025 0.	256 0.025	14.665	16.541	15.401	18.308	
6	0.025 0.	224 0.025	14.724	16.502	15.479	18.331	
7	0.025 0.	202 0.025	14.814	16.490	15.568	18.377	
8	0.025 0.	195 0.025	14.843	16.496	15.593	18.385	
9	0.025 0.	189 0.025	14.869	16.493	15.609	18.388	
HUB	0.025 0.	183 0.025	14.894	16.484	15.619	18.385	
	AEBO	SETTING	TOT AL.		X		AREA
DD	AERO CHORD		CAMBER	SOLIDIT		OR PHIS	
RP	3.721	8.87	25.27	1.517	1.0		
TIP	3.721	7.95	25.01	1.548	1.0		
1	3.721	7.40	25.43	1.580	1.1		
2 3	3.723	7.22	26.55	1.615	1.1		
	3.721	7.54	30.73	1.726	1.3		
5	3.722	9.75	37.24	1.901	1.3		
6	3.727	12.54	44.11	2.114	1.3		
7	3.740	15.29	51.61	2.310	1.3		
	3.747	16.41	55.19	2.385	1.3		
9	3.754	17.62	58.99	2.466	1.3		
HUB	3.763	18.94	63.09	2.554	1.3		
HOD	0.100	10.01	00.00		1		

TABLE VIII. - DESIGN BLADE-ELEMENT PARAMETERS FOR STATOR 9D $\,$

		ADII		BETAM	REL	BETAN	TOTA	L TEM	P TO	TAL PF	RESS	
RP	IN	OUT	IN	OUT	IN	OUT	IN	RATI	0 1	IN RA	OITA	
TIP	23,421		37.0		37.0		335.7	0.99	9 15	.57 0.	977	
1	22,958		34.8		34.8		332.6	1.00	0 15	5.57 0.	979	
2	22.484		33,3		33.3		350.3	1.00	0 15	.57 0.	982	
3	22.005		32.6		32.6		328.8	1.00	0 15	.57 0.	984	
4	20.559		33.4		33.4		327.8	1.00	0 15	.57 0.	984	
5	18.640		36.5		36.5		328.3		0 15	.57 0.	980	
6	16.722				40.5		329.0		0 15	.57 0.	975	
7		15.586			45.0		330.3			.57 0.	963	
8	14.802		47.1		47.1		331.0			.57 0.	956	
9	14.318		49.7		49.7		331.8			.57 0.	948	
HUB	13.838	14.389	52.5	-0.	52.5	-0.	332.6	1.000	0 15	.57 0.	939	
	ABS	VEL	REL	VEL.	MERI	D VEL	TANG	WEI	WHEL	er ener	D	
RP	IN	OUT	IN	OUT	IN	OUT	IN	OUT	IN	EL SPEE	D	
TIP	250.7	192.9		192.9	200.3	192.0				OUT		
1		193.5	250.0	193.5	206.0		150.7	-0.	0.	0.		
2		194.2		194.2	210.3	193.5 194.2	143.2	0.	0.	0.		
3	252.7	194.9	252.7	194.9	213.0		138.2	-0.	0.	0.		
4	257.7	195.8	257.7	195.8	215.0	194.9 195.8	136.0 142.0	-0.	0.	0.		
5	266.2	196.6		196.8	214.0	196.6	158.4	-0. -0.	0.	0.		
6		198.7		198.7	210.7	198.7	179.8		0.	0.		
7		198.5	287.5	198.5	203.5	198.5	203.2	-0. -0.	0.	0.		
8	290.0	199.1	290.9	199.1	197.9	199.1	213.2	-0.	0.	0.		
9	294.4	200.2	294.4	200.2	190.5	200.2	224.5	-0. -0.	0.	0.		
HUB	298.4	201.7	298.4	201.7	181.5	201.7	236.8	-0.	0.	0. 0.		
										٠.		
	ABS M.	ACH NO	REL	MACH NO) ME	RID MA	CH NO	STREA	MLINE	SLOPE	MERII	PEAK SS
RP	IN	OUT	IN	OUT		IN	OUT	II	1	OUT	VEL R	MACH NO
TIP	0.717	0.541	0.71	0.541	0.	575	.541	-0.1	L7	0.04	0.963	1.032
1	0.721	0.545	0.72	0.545	0.	592	.545	0.0)2	0.18	0.939	1.001
2	0.726	0.549	0.72	0.549	0.	607	.549	0.1	L5	0.29	0.923	0.982
3	0.731	0.552	0.73	0.552	0.	616	.552	0.2	23	0.36	0.915	0.975
4	0.749	0.556	0.749	0.556	0.	625	.556	0.4	17	0.56	0.911	0.997
5	0.776	0.558	0.77	0.558	0.	624	.558	1.1	16	1.04	0.919	1.032
6	0.810	0.563	0.810	0.563	0.	616	.565	2.7	71	2.02	0.943	1.065
7	0.844	0.562	0.84	1 0.562	0.	597	.562	4.7	79	3.30	0.976	1.102
8	0.854	0.583	0.854		0.		.563	5.8	35	3.92	1.006	1.117
9	0.865	0.566		0.566	0.	580	.566	7.1	L2	4.64	1.051	1.134
HUB	0.877	0.569	0.87	0.569	0.	533 (.569	8.8	57	5.43	1,111	1.153
	PERCE	NTT IN	JCIDEN	TE DE	T D	EACT	EEE	TORR	OPPE	TOGG	D 4 D 434	
RP	SPAI		NCIDENO EAN S	CE DE SS	, v D-	FACT	EFF	TOT	COEFF		PARAM	
TIP	0.				.9 0	.429	0	0.069	PROF	TOT		
1	5.0					.413	0.		0.060	0.025		
2	10.0					.402	0.	0.066		0.021		
3								0.060	0.060	0.019		
4	15.0 30.0					. 395 . 399	0.	0.054	0.054	0.017		
							0.		0.052	0.015		
		11 4				.418		0.061	0.061	0.016		
5	50.0 70.0		2.4 -	0 8	8 0	435	0	() (177)		0 017	0 017	
6	70.0	0 2				461	0.	0.072	0.072	0.017		
6 7	70.0 85.0	0 2 0 2	2.2 -0	0.5 9	. 6	.461	0.	0.101	0.101	0.022	0.022	
6 7 8	70.0 85.0 90.0	0 2 0 2 0 2	2.2 -0	0.5 9	.6 0).461).468	0.	0.101 0.118	0.1 0 1 0.118	0.022	0.022	
6 7	70.0 85.0	0 2 0 2 0 2 0 2 0 1	2.2 -0 2.0 -0 1.8 -0	0.5 9	.6 0 .1 0	.461	0.	0.101	0.101	0.022	0.022 0.025 0.028	

TABLE IX. - BLADE GEOMETRY FOR STATOR 9D

	PERC	ENT	RA	ADII	BL	ADE AN	GLES	DELTA	CONE
RP	SP.		RI	RO	KIC	KTC	KOC	INC	ANGLE
TIP		0.	23.421	23.421	36.51	15.77	-9.88	6.86	0.057
1		5.	22.958	22.970	34.07		-8.97	6.71	0.194
2	1	.0.	22.484	22.504	32.34	15.01	-8.25	6.53	0.315
3	1	.5.	22.005	22.028	31.37	15.50	-7.77	6.31	0.361
4	3	30.	20.559	20.587	31.69	18.43	-7.53	5.55	0.449
5	5	60.	18.640	18.701	34.01	23.45	-8.04	4.53	0.932
6	7	0.	16.722	16.883	38.04	29.09	-8.79	3.45	2.603
7	8	5.	15.285	15.586	42.80	34.47	-9.63	2.67	4.965
8	9	00.	14.802	15.174	45.10	36.79	-10.07	2.41	6.183
9	9	5.	14.318	14.773	47.83	39.42	-10.60	2.15	7.661
HUB	10	0.	13.838	14.389	50.93	42.30	-11.19	1.91	9.376
	BLAD	E THIC	KNESS	A	AXIAL DI	MENSIO	NS		
RP	TI	TM	TO	ZI	ZMC	ZTC	ZO		
TIP	0.036	0.268	0.036	24.996	26.700	26.735	28.596		
1	0.036	0.262	0.036	24.978	26.712	26.702	28.592		
2	0.036	0.257	0.035	24.964	26.722	26.640	28.588		
3	0.035	0.251	0.035	24.955	26.731	26.547	28.584		
4	0.033	0.234	0.033	24.949	26.750	26.334	28.570		
5	0.031	0.210	0.031	24.962	26.763	26.198	28.549		
6	0.029	0.188	0.028	24.994	26.776	26.119	28.525		
7	0.027	0.171	0.027	25.041	26.777	26.065	28.505		
8	0.026	0.165	0.026	25.068	26.775	26.051	28.496		
9	0.026	0.160	0.026	25.104	26.772	26.038	28,491		
HUB	0.026	0.154	0.026	25.146	26.769	26.028	28.484		
	AERO	SET	TING T	OTAL		TUR	N	CHOKE	
RP	CHOR	D AN	GLE CA	AMBER	SOLIDIT	TY RAT	E PHISS	MARGIN	
TIP	3.721	14	.77	16.39	1.517	0.78	0 16.58	0.090	
1	3.721	13	.84	13.04	1.547	0.78	9 14.63	0.079	
2	3.721	. 13	.19	10.60	1.580	0.79	8 13.16	0.072	
3	3.721	. 12	.84	39.14	1.614	0.80	8 12.19	0.058	
4	3.721	. 13	.36	39.21	1.727	0.75	10.85	0.064	
5	3.721	. 15	.50	12.05	1.903	0.57	4 9.05	0.055	
6	3.724	18	.43	16.83	2.116	0.43	39 7.58	0.038	
7	3.733	3 21	.43	52.43	2.310	0.37	1 6.87	0.023	
8	3.738	22	.76	55.17	2.382	0.35	6.80	0.023	
9	3.747	24	.29	58.43	2.460	0.34	6.82	0.025	
HUB	3.762	26	.00	32.12	2.545	0.33	6.95	0.031	

TABLE X. - OVERALL PERFORMANCE OF STAGE $15-9^{\mathrm{a}}$ - EFFECTS OF SPEED AND FLOW

[Rotor-exit instrumentation at station 2a unless otherwise noted; stator at design setting angle; axial spacing, 3.5 rotor chords.]

Parameter				Percent	of design	speed			
					100				
					Reading				
	558	538	560	539	543	551	b ₆₀₀	b ₆₀₁	b ₆₀₂
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HIST CLOW PER UNIT FRONTAL AREA MIT FLOW PER UNIT FRONTAL AREA MIT FLOW AT ROTOR INLET MIT FLOW AT ROTOR OUTLET MIT FLOW AT ROTOR OUTLET MIT FLOW AT STATOR OUTLET MIT FLOW AT STATOR OUTLET ROTATIVES SPEED PERCENT OF DESIGN SPEED PERCENT OF DESIGN SPEED	1.471 1.397 1.132 1.131 0.885 0.763 0.862 0.295 0.295 0.525 152.07 202.50 29.26 29.54 29.67 30.25 13053.3	1,480 1,432 1,134 1,133 0,886 0,812 0,803 0,274 0,518 151,49 201,73 29,15 29,25 29,76 29,87 13041,9 100,2	1.510 1.460 1.137 1.137 0.831 0.882 0.316 0.288 0.516 149.65 149.62 28.80 29.24 29.19 29.22 13065.6	1,513 1,463 1,139 1,138 0,907 0,830 0,898 0,318 0,290 0,510 148,87 198,24 28,65 28,94 29,20 13057,2	1,525 1,481 1,140 1,140 0,915 0,915 0,846 0,304 0,304 0,304 0,304 148,15 197,29 28,51 28,99 29,61 13051,8	1.547 1.484 1.146 1.146 0.908 0.821 0.905 0.337 0.303 0.494 143.67 191.31 27.65 28.19 28.89 28.81 13025.9	1,453 1,409 1,129 1,130 0,875 0,790 0,853 0,287 0,262 0,523 151,33 201,52 29,12 29,12 29,38 29,00 30,10 13004,5	1.481 1.448 1.133 1.134 0.890 0.833 0.887 0.516 149.23 198.72 28.72 22.09 28.64 29.27 12982.2	1.535 1.488 1.149 0.895 0.821 0.896 0.330 0.495 144.55 192.49 27.82 28.22 28.20 29.10

Parameter			Pe	rcent of d	esign spe	ed		
				90				80
				Rea	ding			
	564	565	566	567	568	580	545	572
ROTOR TOTAL PRESSURE RATIO	1.367	1.379	1.402	1,415	1.421	1.405	1.398	1.300
STAGE TOTAL PRESSURE RATIO	1.320	1.346	1.367	1.377	1.378	1.355	1.334	1.24
ROTOR TOTAL TEMPERATURE RATIO	1.102	1.103	1.108	1.113	1.116	1,116	1.121	1.09
STAGE TOTAL TEMPERATURE RATIO	1.102	1.104	1.108	1.112	1.116	1,115	1.120	1.09
ROTOR TEMP. RISE EFFICIENCY	0.917	0.929	0.936	0.926	0.912	0.881	0.827	0.78
STAGE TEMP. RISE EFFICIENCY	0.806	0.851	0.862	0.852	0.830	0.787	0.715	0.65
ROTOR MOMENTUM RISE EFFICIENCY	0.893	0.899	0.906	0.897	0.887	0.856	0.817	0.76
ROTOR HEAD RISE COEFFICIENT	0.292	0.300	0.316	0.324	0.329	0.322	0.315	0.30
STAGE HEAD RISE COEFFICIENT	0.259	0.276	0.291	0.298	0.299	0.287	0.269	0.25
FLOW COEFFICIENT	0.539	0.534	0.514	0.492	0.467	0.437	0.409	0.35
NT FLOW PER UNIT FRONTAL AREA	143.78	142.68	138.42	133.89	128.38	120.89	114.37	91.4
NT FLOW PER UNIT ANNULUS AREA	191.47	190.01	184.32	178.30	170.96	160.98	152.30	121.8
NT FLOW AT ORIFICE	27.67	27.46	26.64	25.77	24.71	23.26	22.01	17.6
NT FLOW AT ROTOR INLET	27.86	27.69	26.91	26.02	24.97	23.49	22.23	17.6
NT FLOW AT ROTOR OUTLET	27.99	27.79	27,11	26.25	25.31	23.97	22.94	17.9
NT FLOW AT STATOR OUTLET	28.47	27.95	27.09	26.32	25.43	23.91	22.82	18.2
ROTATIVE SPEED	11727.0	11747.4	11748.6	11766.6	11764.5	11676.5	11716.6	10446.
PERCENT OF DESIGN SPEED	90.1	90.2	90.2	90.4	90.4	89.7	90.0	80.
PERCENT DESIGN WT FLOW AT ORIFICE	94.9	94.2	91.4	88.4	84.7	79.8	75.5	60.

Parameter			Per	cent of de	sign speed	1		
			7	0			60	50
				Rea	ding			
	573	574	575	576	550	577	578	579
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOM COEFFICIENT FLOM COEFFICIENT AT FLOW AT ROTIFICE MIT FLOW AT ROTIFICE MIT FLOW AT ROTIFICE MIT FLOW AT ROTOR UNLET MIT FLOW AT STATOR OUTLET ROTATIVE SPEED	1.194 1.177 1.055 1.056 0.937 0.855 0.926 0.270 0.248 0.561 121.12 161.29 25.31 23.48 23.48 23.48 25.49	1.210 1.195 1.060 1.060 0.941 0.867 0.290 0.270 0.518 113.40 21.82 21.98 22.02 21.90 9123.1	1.229 1.211 1.066 1.066 0.922 0.851 0.909 0.314 0.290 0.457 101.50 135,16 19.53 19.72 9132.3	1.231 1.204 1.071 1.071 0.862 0.770 0.856 0.316 0.398 83.98 19.99 19.18 17.22 17.376 17.60 9127.5	1.225 1.185 1.075 1.077 0.800 0.673 0.806 0.312 0.259 0.353 79.84 106.32 15.36 15.40 15.83 9083.2	1.227 1.183 1.076 0.792 0.650 0.776 0.312 0.254 0.343 7.343 10.360 14.97 15.05 15.51 9124.0 70.1	1.162 1.133 1.055 1.055 0.791 0.659 0.784 0.310 0.256 0.336 65.67 12.64 12.73 12.98 13.13	1.10 1.03 1.03 1.03 0.82 0.77 0.78 0.28 0.25 0.36 55.0 73.3 10.5 11.1 11.0 6497.4

 $^{^{\}rm a}_{\rm From\ ref.\ 4.}$ $^{\rm b}_{\rm Rotor-exit\ instrumentation\ at\ station\ 2b.}$

Table XI. – Overall performance of stage 15-9r $^{\mathrm{a}}$ – effects of speed and flow

[Rotor-exit instrumentation at station 2a unless otherwise noted; stator reset 3.7°, closed; axial spacing, 3.5 rotor chords.]

Parameter	Percent of design speed											
	21		<i>a</i> 3	100	1	- Ja				90		
	Reading											
DOTOD YOUR PRESCRIPE BATTO	678	680	684	683	b ₇₀₄	b ₇₀₉	b ₇₀₇	686	687	688	68	
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT AT FLOW PER UNIT FRONTAL AREA AT FLOW PER UNIT ANNULUS AREA AT FLOW AT ROTOR OUTLET AT FLOW AT ROTOR OUTLET AT FLOW AT STATOR OUTLET AT FLOW AT STATOR OUTLET AT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT DESIGN SPEED PERCENT DESIGN SPEED PERCENT DESIGN SPEED	1.510 1.424 1.137 1.137 0.914 0.778 0.883 0.315 0.268 0.521, 152.04 202.46 29.26 29.26 29.38 30.04 30.26 13066.2	1.522 1.469 1.139 1.138 0.918 0.841 0.889 0.321 0.293 10.293 151.26 201.45 29.91 13080.8 100.5 99.7	1,545 1,494 1,147 1,146 0,902 0,831 0,335 0,336 0,476 140,47 187,06 27,03 27,44 28,18 13043,6 100,2 92,7	1,525 1,465 1,147 1,146 0,872 0,729 0,325 0,244 134,25 178,77 25,83 26,08 26,68 13036,6	1.501 1.470 1.138 1.137 0.892 0.848 0.869 0.514 149.63 29.04 28.80 29.04 28.59 29.65 13007.6	1.534 1.501 1.146 1.147 0.889 0.837 0.875 0.330 0.312 0.494 144.08 27.73 28.09 29.27 13040.5 100.5 95.1	1.507 1.458 1.149 1.148 0.836 0.771 0.823 0.315 0.288 0.438 132.14 175.97 25.43 25.78 25.78 25.52 26.35 13036.7	1,396 1,361 1,107 1,107 1,107 1,07 0,859 0,312 0,288 0,523 140,66 187,31 27,07 27,26 27,91 127,79 11748,1 90,2 92,8	1,419 1,385 1,114 0,924 0,858 0,890 0,330 0,306 0,479 130,70 174,05 25,15 25,15 25,39 26,16 25,84 11719,3 90,0 86,2	1,406 1,364 1,119 1,118 0,861 0,786 0,838 0,320 0,240 117,24 156,12 22,256 22,68 23,63 23,23 23,25 11733,7 90,1	1.39 1.34 1.12 0.82 0.73 0.79 0.31 0.27 0.35 111.8 148.9 21.5 21.6 22.4 22.1	

Parameter	1		Percent	of design	speed						
	80		7	0	Tego.	60	50				
	Reading										
	692	693	694	695	696	699	700				
ROIOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT FLOW COEFFICIENT FLOW COEFFICIENT MIT FLOW AT ROIT ANNULUS AREA WIT FLOW AT ROIT ANNULUS AREA WIT FLOW AT ROIT NULET WIT FLOW AT ROITE OUTLET WIT FLOW AT ROITE OUTLET WIT FLOW AT STATOR OUTLET ROTATIVE SPEED PERCENT DESIGN MIT FLOW AT ORIFICE PERCENT DESIGN WIT FLOW AT ORIFICE	1,302 1,256 1,099 0,790 0,685 0,772 0,308 0,265 0,351 90,83 120,95 17,48 17,49 18,20 18,19 10462,4 80,4	1.193 1.172 1.055 1.056 0.936 0.936 0.241 0.561 121.68 162.03 23.94 9121.4 70.1 80.3	1.219 1.204 1.062 1.062 0.939 0.872 0.302 0.282 0.493 108.79 144.88 20.94 21.05 21.61 21.12 9118.5 70.0	1.232 1.214 1.069 1.069 0.888 0.821 0.887 0.318 0.294 0.415 93.24 124.17 17.94 18.06 18.28 9127.6 70.1	1.227 1.193 1.076 1.075 0.795 0.785 0.310 0.267 77.98 103.84 15.06 15.69 9139.1 70.2 51.5	1,163 1,139 1,055 0,791 0,683 0,773 0,310 0,268 64,53 85,93 12,42 12,50 12,95 7820.5 60.1	1.112 1.096 1.039 1.039 0.802 0.691 0.785 0.311 0.268 0.325 53.78 71.62 10.41 11.85 10.76 6543.3 50.3 35.5				

^aFrom ref. 4. ^bRotor-exit instrumentation at station 2b.

TABLE XII. - OVERALL PERFORMANCE OF STAGE 15-9C - EFFECTS OF SPEED AND FLOW

[Rotor-exit instrumentation at station 2a; stator at design setting angle; axial spacing, 2.9 rotor chords.]

Parameter	Percent of design speed							
		10	00			90		
				Reading				
	1331	1332	1333	1335	1326	1327	1328	
ROTOR TOTAL PRESSURE RATIO	1,446	1,536	1.547	1.544	1.367	1,419	1.392	
STAGE TOTAL PRESSURE RATIO	1.399	1.484	1.487	1.476	1.336	1.382	1.32	
ROTOR TOTAL TEMPERATURE RATIO	1.130	1.145	1.148	1.150	1.104	1.116	1.12	
STAGE TOTAL TEMPERATURE RATIO	1.128	1.144	1.148	1.149	1.104	1.116	1.12	
ROTOR TEMP. RISE EFFICIENCY	0.853	0.902	0.898	0.883	0.896	0.903	0.78	
STAGE TEMP. RISE EFFICIENCY	0.786	0.831	0.813	0.788	0.829	0.833	0.68	
ROTOR MOMENTUM RISE EFFICIENCY	0.872	0.909	0.901	0.882	0.926	0.920	0.78	
ROTOR HEAD RISE COEFFICIENT	0.282	0.333	0.337	0.334	0.291	0.327	0.30	
STAGE HEAD RISE COEFFICIENT	0.255	0.305	0.305	0.298	0.269	0.302	0.26	
IT FLOW PER UNIT FRONTAL AREA	0.516	0.496	142.11	0.454	0.527	0.472	0.38	
T FLOW PER UNIT ANNULUS AREA	202.81	146.74	189.30	182.93	190.97	131.47	109.6	
T FLOW AT ORIFICE	29.30	28.24	27.35	26.43	27.59	25.30	21.1	
T FLOW AT ROTOR INLET	29.16	28.28	27.38	26.50	27.44	25.19	21.1	
AT FLOW AT ROTOR OUTLET	30.04	29.31	28.53	27.80	28.26	26.20	21.9	
T FLOW AT STATOR OUTLET	30.24	29.71	29.01	28.29	28.31	26.51	22.7	
ROTATIVE SPEED	13038.0	12999.1	13023.3	13050.1	11756.8	11759.1	11767.	
PERCENT OF DESIGN SPEED	100.1	99.8	100.0	100.2	90.3	90.5	90.	
PERCENT DESIGN HT FLOW AT ORIFICE	100.5	96.8	93.8	90.6	94.6	86.8	72.	

Parameter	-	Perce	nt of design	speed	
	80		70		60
			Reading		
	1325	1323	1320	1321	1318
ROTOR TOTAL PRESSURE RATIO	1.298	1.187	1.225	1.223	1.163
STAGE TOTAL PRESSURE RATIO	1.238	1.168	1.207	1.179	1.13
ROTOR TOTAL TEMPERATURE RATIO	1.101	1.055	1.066	1.077	1,056
STAGE TOTAL TEMPERATURE RATIO	1.100	1.056	1,066	1.076	1.05
ROTOR TEMP. RISE EFFICIENCY	0.769	0.909	0.903	0.774	0.78
STAGE TEMP. RISE EFFICIENCY	0.627	0.815	0.841	0.636	.0.64
ROTOR MOMENTUM RISE EFFICIENCY	0.765	0.961	0.935	0.776	0.78
ROTOR HEAD RISE COEFFICIENT	0.307	0.261	0.312	0.310	0.308
STAGE HEAD RISE COEFFICIENT	0.249	0.236	0.289	0.253	0.255
FLOW COEFFICIENT	0.336	0.566	0.458	0.330	0.32
HT FLOW PER UNIT FRONTAL AREA	87.99	123.87	102.66	75.81	65.50
HT FLOW PER UNIT ANNULUS AREA	117.21	165.00	136.75	100.99	87.25
HT FLOW AT ORIFICE	16.93	23.84	19.76	14.59	12.61
HT FLOW AT ROTOR INLET	16.72	23.65	19.64	14.43	12.4
HT FLOW AT ROTOR OUTLET	17.62	24.24	20.36	15.18	13.10
HT FLOW AT STATOR OUTLET	18.34	23.87	20.35	15.82	13.62
ROTATIVE SPEED	10422.9	9106.4	9070.2	9067.1	7841.8
PERCENT OF DESIGN SPEED	80.1	69.9	69.7	69.6	60.2
PERCENT DESIGN HT FLOW AT ORIFICE	58.0	81.8	67.8	50.8	43.2

TABLE XIII. - OVERALL PERFORMANCE OF STAGE 15-9D - EFFECTS OF SPEED AND FLOW

[Rotor-exit instrumentation at station 2b'; stator at design setting angle; axial spacing, 2.9 rotor chords.]

Parameter				Perce	ent of desig	n speed					
		100									
	Reading										
	3160	3188	3161	3187	3162	3185	3181	3183	3164		
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR HEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT TLOM COEFFICIENT TLOM COEFFICIENT AT FLOM AT ROTOR INLET AT FLOM AT ROTOR INLET AT FLOM AT ROTOR INLET AT FLOM AT ROTOR OUTLET AT FLOM AT ROTOR OUTLET AT FLOM AT STATOR OUTLET AT FLOM AT STATOR OUTLET ROTATIVE SPEED	1,496 1,450 1,134 0,910 0,799 0,509 0,272 0,528 151,78 202,14 29,22 29,80 29,51 31,30	1,497 1,454 1,135 1,135 0,909 0,840 0,509 0,525 0,525 151,26 201,45 29,12 29,73 29,45 30,95	1.514 1.481 1.157 1.137 0.916 0.867 0.920 0.520 0.520 0.502 0.502 20.502 20.055 28.92 29.52 29.52 29.39	1.521 1.490 1.139 0.918 0.973 0.525 0.525 0.506 0.518 149.35 198.91 28.75 29.40 29.36	1.538 1.507 1.144 1.142 0.911 0.873 0.951 0.352 0.315 0.505 146.51 195.15 28.20 28.83 28.99 15057.2	1.537 1.506 1.144 1.142 0.909 0.873 0.950 0.332 0.315 0.499 145.05 195.18 27.92 28.54 28.79 29.66	1.537 1.506 1.145 0.900 0.866 0.927 0.354 0.317 0.484 141.22 27.21 27.81 28.24 29.07 12987.9 99.8	1.531 1.496 1.146 0.884 0.847 0.915 0.330 0.311 0.461 137.02 182.49 26.38 26.88 27.39 28.01	1.512 1.474 1.147 1.142 0.856 0.813 0.894 0.320 0.295 176.50 25.51 25.99 26.66 27.055		

Parameter		1	Percent of d	lesign speed	d	
	N 18		90	R. S.		80
		56	Rea	ding		
	3180	3179	3178	3165	3166	3167
ROTOR TOTAL PRESSURE RATIO	1.381	1.399	1.411	1.406	1.391	1.295
STAGE TOTAL PRESSURE RATIO	1.349	1.376	1.389	1.382	1.363	1.263
ROTOR TOTAL TEMPERATURE RATIO	1.103	1.108	1.113	1.115	1.118	1.096
STAGE TOTAL TEMPERATURE RATIO	1.104	1.108	0.916	0.888	0.836	0.779
ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY	0.958	0.930	0.880	0.852	0.798	0.71
ROTOR MOMENTUM RISE EFFICIENCY	0.925	0.954	0.934	0.921	0.882	0.83
ROTOR HEAD RISE COEFFICIENT	0.303	0.315	0.323	0.322	0.310	0.30
STAGE HEAD RISE COEFFICIENT	0.280	0.299	0.308	0.305	0.291	0.27
FLOW COEFFICIENT	0.531	0.510	0.482	0.449	0.411	0.35
HT FLOW PER UNIT FRONTAL AREA	141.10	136.53	130.62	123.25	114.78	89.5
HT FLOW PER UNIT ANNULUS AREA	187.93	181.83	173.97	164.15	152.87	119.3
HT FLOW AT ORIFICE	27.16	26.28	25.15	23.73	22.10	17.2
HT FLOW AT ROTOR INLET	27.69	26.85	25.69	24.18	22.49	17.5
MT FLOW AT ROTOR OUTLET	27.69	26.89	25.89	24.61	23.05	18.0
HT FLOW AT STATOR OUTLET	28.79	27.53	26.44	24.95	23.25	18.3
ROTATIVE SPEED	11720.2	11721.6	11729.2	11697.7	11714.8	10401.
PERCENT OF DESIGN SPEED	90.0	90.0	90.1	89.8	90.0	79.9
PERCENT DESIGN HT FLOW AT ORIFICE	93.1	90.1	86.2	81.4	75.8	59.

Parameter	Percent of design speed							
	- 1	- 1	70			60	50	
				Reading				
	3174	3171	3170	3169	3168	3175	3176	
ROTOR TOTAL PRESSURE RATIO STAGE TOTAL PRESSURE RATIO ROTOR TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO STAGE TOTAL TEMPERATURE RATIO ROTOR TEMP. RISE EFFICIENCY STAGE TEMP. RISE EFFICIENCY ROTOR MOMENTUM RISE EFFICIENCY ROTOR MEAD RISE COEFFICIENT STAGE HEAD RISE COEFFICIENT HOW THE COMPANY OF	1.199 1.185 1.056 1.058 0.952 0.862 0.924 0.275 0.258 0.542 117.01 155.84 22.53 22.97 22.86 25.32 9125.2 70.1	1.217 1.205 1.061 1.061 0.948 0.896 0.949 0.293 0.282 0.503 110.12 146.66 21.20 21.57 21.64 21.81 9135.7 70.2	1.227 1.216 1.065 1.065 0.921 0.885 0.945 0.312 0.297 0.457 101.05 154.59 19.45 19.80 19.96 20.10 9122.7 70.1 66.7	1.226 1.211 1.070 1.069 0.857 0.812 0.901 0.313 0.294 0.396 87.95 117.14 16.93 17.29 17.57 17.67 9086.0 69.8	1.223 1.198 1.076 1.074 0.783 0.711 0.836 0.309 0.276 0.341 76.58 101.99 14.74 14.96 15.61 9081.4 69.7	1.159 1.138 1.050 1.048 0.856 0.787 0.821 0.305 0.267 0.369 64.31 85.65 12.38 12.75 13.10 13.51 7789.4 59.8	1.11; 1.103; 1.03; 0.80; 0.73; 0.85; 0.31; 0.35; 55.1; 73.4; 10.6; 10.9; 11.2; 6514; 50.3	

TABLE XIV. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 90

(a) 100 Percent of design speed; reading 1331

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	ABS BETAM IN OUT 25.3 6.2 24.7 5.7 24.9 3.7 27.0 1.2 30.5 0.0 35.8 -1.0 41.4 0.4 44.1 2.2 48.0 1.8	24.7 5.7 24.9 3.7 27.0 1.2 30.5 0.0 35.8 -1.0 41.4 0.4 44.1 2.2	TOTAL TEMP IN RATIO 323.3 0.996 322.6 0.998 322.3 0.998 323.3 0.999 324.5 1.000 328.2 0.996 331.5 0.996 332.3 0.996 332.5 0.996	TOTAL PRESS IN RATIO 13.78 0.933 13.92 0.954 13.99 0.973 14.39 0.982 14.61 0.987 15.17 0.975 15.80 0.950 15.92 0.914 15.39 0.911
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 246.2 191.8 252.1 205.1 254.9 215.7 268.3 228.9 282.8 238.1 302.0 248.7 314.9 253.7 313.3 241.8 302.4 228.3	REL VEL .IN OUT 246.2 191.8 252.1 206.1 254.9 215.7 268.3 228.9 282.8 238.1 302.0 248.7 314.9 253.7 313.3 241.8 302.4 228.3	MERID VEL IN OUT 222.6 190.7 229.0 205.1 231.2 215.3 239.0 228.8 243.5 238.1 245.1 248.7 236.2 253.7 225.0 241.6 202.3 228.2	TANG VEL IN OUT 105.2 20.9 105.3 20.3 107.3 13.8 121.9 4.9 143.7 0.2 176.5 -4.3 208.2 1.8 218.0 9.4 224.8 7.0	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.718 0.549 0.737 0.593 0.747 0.623 0.789 0.663 0.836 0.690 0.896 0.721 0.935 0.733 0.929 0.694 0.891 0.652	REL MACH NO IN OUT 0.718 0.549 0.737 0.593 0.747 0.623 0.789 0.663 0.836 0.690 0.896 0.721 0.935 0.733 0.929 0.694 0.891 0.652	MERID MACH NO IN OUT 0.649 0.546 0.670 0.590 0.677 0.621 0.703 0.662 0.720 0.690 0.727 0.721 0.702 0.733 0.667 0.694 0.596 0.652	TOTAL LOSS COEFF, WAKE 0.123 0.112 0.066 0.038 0.041 0.037 0.048 0.114 0.145	MERID PEAK SS VEL R MACH NO 0.857 0.876 0.896 0.905 0.931 0.936 0.957 1.055 0.978 1.157 1.015 1.302 1.074 2.353 1.074 2.430 1.128 2.495
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 4.9 10.00 3.7 15.00 2.8 30.00 0.9 50.00 -1.2 70.00 -1.9 85.00 -2.8 90.00 -3.2 95.00 -2.7	DENCE DEV SS -5.9 10.8 -5.5 10.1 -5.1 8.1 -4.5 5.9 -5.4 5.5 -6.7 5.5 -7.8 7.9 -8.0 10.2 -7.2 10.2	D-FACT EFF 0.332 0. 0.289 0. 0.267 0. 0.273 0. 0.291 0. 0.317 0. 0.354 0. 0.366 0. 0.389 0.	LOSS COEFF TOT PROF 0.230 0.230 0.151 0.151 0.087 0.087 0.055 0.055 0.036 0.036 0.061 0.059 0.117 -0.166 0.203 -0.116 0.221 -0.130	LOSS PARAM TOT PROF 0.074 0.074 0.048 0.048 0.027 0.027 0.016 0.016 0.009 0.009 0.015 0.014 0.025 -0.036 0.042 -0.024 0.045 -0.026

BLADE EDGES FOR STATOR 9C

(b) 100 Percent of design speed; reading 1332

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.957 22.487 22.012 20.571 18.656 16.728 15.273 14.780 14.287	0UT 22.959 22.489 22.014 20.589 18.732 16.937 15.649	ABS 1N 33.3 32.0 32.3 34.3 36.1 40.0 45.3 48.0 51.0	BETAM OUT 5.6 4.8 3.7 1.3 0.2 -0.2 1.7 3.2 0.2	REL 1N 33.3 32.0 32.3 34.3 36.1 40.0 45.3 48.0 51.0	BETAM OUT 5.6 4.8 3.7 1.3 0.2 -0.2 1.7 3.2 0.2	TOTAL TEMP IN RATIO 333.1 0.997 331.8 0.998 330.3 1.000 329.4 0.999 328.4 1.000 328.3 1.003 330.2 0.998 330.6 0.997 331.3 0.997	TOTAL PRESS IN RATIO 15.62 0.940 15.67 0.957 15.53 0.972 15.49 0.976 15.51 0.988 15.65 0.959 15.76 0.930 15.56 0.925
RP 1 2 3 4 5 6 7 8 9	ABS IN 251.8 254.9 255.7 259.0 272.6 281.3 290.3 293.1 288.0	VEL 0UT 194.7 203.2 205.0 202.4 209.2 216.6 207.3 197.3	REL 1N 251.8 254.9 255.7 259.0 272.6 281.3 290.3 293.1 288.0	VEL 0UT 194.7 203.2 205.0 202.4 209.2 216.6 207.3 197.3	MER II IN 210.5 216.1 216.3 213.9 220.2 215.6 204.2 196.2 181.1	0 VEL 0UT 193.8 202.5 204.5 202.3 209.2 216.6 207.2 197.0	TANG VEL IN OUT 138.2 18.9 135.2 17.1 136.5 13.1 146.0 4.4 160.7 0.9 180.8 -0.8 206.4 6.1 217.8 11.1 223.9 0.7	HHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M/ 1N' 0.723 0.735 0.739 0.751 0.797 0.826 0.853 0.862 0.844	0.549 0.575 0.581 0.575 0.596 0.596 0.589 0.559	REL M. 1N 0.723 0.735 0.739 0.751 0.797 0.826 0.853 0.862 0.844	0.549 0.575 0.575 0.575 0.596 0.589 0.559	MERID M 1N 0.605 0.625 0.625 0.620 0.643 0.633 0.600 0.577 0.531	ACH NO 0.546 0.573 0.5875 0.5985 0.5988 0.5588	TOTAL LOSS COEFF, WAKE 0.115 0.103 0.085 0.060 0.048 0.044 0.065 0.128 0.136	MERID PEAK SS VEL R MACH NO 0.921 1.089 0.937 1.094 0.946 1.118 0.946 1.192 0.950 1.254 1.005 1.318 1.015 1.417 1.004 1.467 1.052 1.476
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 12.9 11.0 10.1 8.2 4.4 2.3 1.2 0.7	DENCE SS 2.1 1.9 2.2 2.8 0.2 -2.4 -3.9 -4.1 -4.2	DEV 10.2 9.3 8.1 5.9 5.7 6.3 9.2 11.2 8.6	D-FACT 0.380 0.349 0.348 0.377 0.386 0.382 0.433 0.472 0.493	EFF 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.202 0.202 0.144 0.144 0.109 0.109 0.090 0.090 0.069 0.069 0.032 0.031 0.109 0.103 0.182 0.171 0.201 0.190	LOSS PARAM TOT PROF 0.065 0.065 0.045 0.045 0.034 0.034 0.026 0.026 0.018 0.018 0.008 0.007 0.024 0.022 0.038 0.036 0.041 0.039

BLADE EDGES FOR STATOR 9C

(c) 100 Percent of design speed; reading 1333

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	ABS BETAN IN OUT 35.3 5. 34.1 4. 34.3 3. 36.0 1. 38.1 0. 41.8 -0. 47.3 2. 49.2 3. 51.7 0.	IN OUT 3 35.3 5.3 5.3 7 34.1 4.7 8 34.3 3.8 4 36.0 1.4 6 38.1 0.6 6 38.1 0.6 2 41.8 -0.2 3 47.3 2.3 5 49.2 3.5	TOTAL TEMP IN RATIO 334.4 1.000 332.4 1.002 332.0 0.999 330.9 0.998 329.4 1.001 328.3 1.004 330.6 0.998 331.1 0.998 331.4 0.996	TOTAL PRESS IN RATIO 15.92 0.936 15.83 0.958 15.84 0.957 15.71 0.959 15.59 0.974 15.39 0.993 15.66 0.954 15.81 0.927 15.58 0.924
RP 1 2 3 4 5 6 6 7 8 9	ABS VEL 1N 0UT 250.6 195.1 251.3 201.2 253.7 200.0 255.2 193.7 265.8 201.0 271.0 206.9 285.7 198.1 290.4 190.8 285.3 183.2	REL VEL IN 0UT 250.6 195.1 251.3 201.2 253.7 200.0 255.2 193.7 265.8 201.0 271.0 206.9 285.7 198.1 290.4 190.8 285.3 183.2	2 208.2 200.5 209.7 199.6 206.3 193.7 209.0 201.0 202.1 206.9 193.8 198.0 190.0 190.5	TANG VEL IN OUT 144.9 18.2 140.7 16.6 142.9 13.3 150.1 4.7 164.2 2.1 180.7 -0.8 209.9 7.9 219.7 11.6 224.0 0.1	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.718 0.548 0.722 0.567 0.731 0.565 0.737 0.548 0.773 0.570 0.792 0.588 0.837 0.561 0.852 0.539 0.835 0.516	REL MACH NO IN OUT 0.718 0.548 0.722 0.565 0.731 0.565 0.773 0.568 0.773 0.578 0.792 0.588 0.837 0.561 0.852 0.539 0.835 0.516	IN OUT 0.586 0.545 0.599 0.565 0.604 0.564 0.596 0.548 0.608 0.570 0.508 0.561 0.557 0.538	TOTAL LOSS COEFF, WAKE 0.119 0.122 0.116 0.101 0.064 0.049 0.085 0.131 0.137	MERID PEAK SS VEL R MACH NO 0.950 1.130 0.963 1.125 0.963 1.155 0.952 1.155 0.963 1.212 0.962 1.270 1.024 1.313 1.021 1.446 1.003 1.484 1.037 1.481
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 14.9 10.00 13.1 15.00 12.1 30.00 9.9 50.00 6.4 70.00 4.1 85.00 3.1 90.00 1.8 95.00 1.1	DENCE SS 4.2 9.9 4.3 9.2 4.5 6.0 2.2 6.1 -0.6 6.2 -1.9 9.8 -2.9 11.4 -3.4 8.4	0 0.385 0. 2 0.356 0. 2 0.370 0. 0 0.406 0. 0 0.404 0. 2 0.394 0. 3 0.458 0. 4 0.491 0.	LOSS COEFF TOT PROF 0.219 0.219 0.144 0.144 0.145 0.145 0.136 0.136 0.079 0.079 0.020 0.020 0.125 0.118 0.192 0.180 0.209 0.198	LOSS PARAM TOT PROF 0.070 0.070 0.046 0.046 0.045 0.045 0.039 0.039 0.021 0.021 0.005 0.005 0.027 0.025 0.040 0.038 0.042 0.040

BLADE EDGES FOR STATOR 9C

(d) 100 Percent of design speed; reading 1335

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.957 2 22.487 2 22.012 2 20.571 2 18.656 1 16.728 1 15.273 1 14.780 1 14.287 1	0UT 22.959 22.489 22.014 20.589 18.732 16.937 15.649	ABS IN 36.3 35.1 35.7 37.6 39.4 43.5 48.2 49.5 51.8	BETAM OUT 5.4 4.9 3.9 1.5 0.7 -0.3 2.7 3.4 0.1	REL IN 36.3 35.1 35.7 37.6 39.4 43.5 48.2 49.5 51.8	BETAM OUT 5.4 4.9 3.9 1.5 0.7 -0.3 2.7 3.4	TOTAL TEMP IN RATIO 335.8 0.999 333.9 1.000 332.9 1.000 331.3 1.000 329.6 1.002 328.6 1.002 330.3 0.999 330.7 0.997 331.6 0.996	TOTAL PRESS IN RATIO 15.92 0.930 15.85 0.946 15.77 0.950 15.68 0.951 15.57 0.973 15.28 0.990 15.67 0.950 15.76 0.925 15.67 0.918
RP 1 2 3 4 5 6 7 8 9	ABS IN 248.6 251.3 251.4 251.6 260.7 264.1 283.2 288.7 286.8	VEL 0UT 193.1 197.9 196.1 188.0 195.7 199.2 194.0 187.4 183.4	REL IN 248.6 251.3 251.4 251.6 260.7 264.1 283.2 288.7 286.8	VEL 0UT 193.1 197.9 196.1 188.0 195.7 199.2 194.0 187.4 183.4	MERII IN 200.3 205.6 204.1 199.5 201.5 191.6 188.8 187.6 177.5	VEL 0UT 192.2 197.2 195.7 187.9 195.7 199.1 193.8 187.1 183.4	TANG VEL IN OUT 147.3 18.3 144.5 16.9 146.8 13.3 153.4 4.9 165.5 2.5 181.7 -1.0 211.2 9.0 219.4 11.2 225.3 0.4	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.710 0.721 0.722 0.725 0.756 0.768 0.829 0.847 0.839	ACH NO OUT 0.541 0.557 0.552 0.553 0.565 0.565 0.549 0.529 0.517	REL M IN 0.710 0.721 0.725 0.756 0.756 0.829 0.847 0.839	ACH NO 0UT 0.541 0.557 0.552 0.553 0.565 0.549 0.529 0.517	MERID M. 1N 0.572 0.590 0.587 0.575 0.585 0.558 0.553 0.551 0.519	ACH NO 0UT 0.539 0.555 0.5529 0.553 0.565 0.548 0.528 0.517	TOTAL LOSS COEFF, WAKE 0.137 0.141 0.135 0.122 0.076 0.055 0.097 0.131 0.141	MERID PEAK SS VEL R MACH NO 0.960 1.142 0.959 1.148 0.959 1.177 0.942 1.230 0.971 1.275 1.039 1.318 1.027 1.459 0.997 1.484 1.033 1.490
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 15.9 14.1 13.6 11.5 7.6 5.8 4.1 2.1	DENCE SS 5.2 4.9 5.7 6.0 3.5 1.1 -1.0 -2.6	DEV 10.0 9.3 8.3 6.1 6.2 6.2 10.2 11.4 8.5	D-FACT 0.391 0.373 0.384 0.424 0.414 0.408 0.468 0.469 0.517	EFF 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.246 0.246 0.184 0.184 0.169 0.169 0.165 0.165 0.086 0.086 0.032 0.031 0.139 0.131 0.200 0.189 0.221 0.209	LOSS PARAM TOT PROF 0.079 0.079 0.058 0.058 0.052 0.052 0.048 0.048 0.023 0.023 0.008 0.007 0.030 0.028 0.042 0.040 0.045 0.042

BLADE EDGES FOR STATOR 9C

(e) 90 Percent of design speed; reading 1326

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	23.1 23.5 25.7 29.4 34.5 40.7 43.6	OUT 5.3 2 4.6 2.7 2 0.3 2 1.1 2 1.5 3 0.2 4 1.9	REL BETAM IN OUT 23.9 5.3 23.1 4.6 23.5 2.7 0.3 29.4 -1.1 54.5 -1.5 40.7 0.2 43.6 1.9 47.1 1.8	IN RATIO 316.2 0.998 315.6 0.999 315.6 0.999 317.8 0.999 317.8 0.999 319.8 1.001 322.5 1.000 323.7 0.998	TOTAL PRESS IN RATIO 13.10 0.950 13.26 0.961 13.68 0.983 13.93 0.984 14.21 0.989 14.54 0.981 14.67 0.945 14.58 0.925
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N OUT 225.2 180.6 231.3 194.4 235.1 203.5 245.1 212.7 260.1 222.3 272.1 232.9 282.2 238.0 285.1 227.2 281.1 216.8	225.2 1 231.3 1 235.1 2 245.1 2 260.1 2 272.1 2 282.2 2 285.1 2	OUT 80.6 20 94.4 21 03.5 21 12.7 22 22.3 22 32.9 22 38.0 21 27.2 20	MERID VEL IN OUT 06.0 179.8 12.8 193.8 15.7 203.3 20.8 212.7 26.6 222.3 24.3 232.8 14.0 238.0 06.4 227.1 91.3 216.7	8 90.7 15.6 93.7 9.5 106.3 1.1 127.6 -4.3 154.0 -5.9 184.0 0.9 196.6 7.5	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 5 4 5 6 7 8 9	ABS MACH NO IN OUT 0.659 0.520 0.679 0.563 0.691 0.591 0.723 0.619 0.770 0.648 0.807 0.679 0.837 0.692 0.845 0.657 0.831 0.624	0.659 0 0.679 0 0.691 0 0.723 0 0.770 0 0.807 0 0.837 0	0UT 1 .520 0. .563 0. .591 0. .619 0. .648 0. .679 0. .692 0. .657 0.	RID MACH NO IN 0.518 .602 0.561 .634 0.591 .651 0.619 .671 0.648 .665 0.678 .635 0.692 .612 0.657	COEFF, WAKE 0.108 0.098 0.060 0.036 0.032 0.033 0.040 0.098	MERID PEAK SS VEL R MACH NO 0.873 0.765 0.910 0.788 0.943 0.827 0.963 0.932 0.981 1.034 1.038 1.137 1.112 1.259 1.101 1.313 1.133 1.343
RP 1 2 3 4 5 6 7 8 9	PERCENT IN SPAN MEA 5.00 3.10.00 2.15.00 1.30.00 -0.50.00 -2.70.00 -3.85.00 -3.90.00 -3.	5 -7.3 1 -7.1 4 -6.5 4 -5.8 4 -6.5 2 -7.9 5 -8.5	9.9 0. 9.0 0. 7.1 0. 4.9 0. 4.4 0. 5.0 0. 7.7 0.	-FACT EFF .305 0. .262 0. .245 0. .257 0. .278 0. .282 0. .295 0. .340 0.	LOSS COEFF TOT PROF 0.199 0.199 0.125 0.125 0.071 0.071 0.058 0.058 0.048 0.048 0.030 0.030 0.053 0.053 0.147 0.145 0.206 0.204	LOSS PARAM TOT PROF 0.064 0.064 0.039 0.039 0.022 0.022 0.017 0.017 0.013 0.013 0.007 0.011 0.031 0.030 0.042 0.041

BLADE EDGES FOR STATOR 9C

(f) 90 Percent of design speed; reading 1327

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	ABS BETAM IN OUT 32.7 5.1 31.3 4.7 31.8 3.4 33.4 1.0 36.0 0.2 40.3 -0.4 45.6 1.5 47.8 3.3 50.4 0.5	31.8 3.4 33.4 1.0 36.0 0.2 40.3 -0.4 45.6 1.5 47.8 3.3	TOTAL TEMP IN RATIO 323.7 0.999 322.5 1.000 322.2 0.999 321.3 0.999 320.1 1.002 320.6 1.002 322.8 0.999 323.7 0.997 323.9 0.998	TOTAL PRESS IN RATIO 14.38 0.955 14.43 0.966 14.39 0.976 14.39 0.976 14.22 0.988 14.25 0.991 14.56 0.970 14.77 0.940 14.58 0.937
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 225.1 178.5 228.6 184.8 228.4 187.5 231.7 183.9 236.7 188.5 244.8 193.0 260.6 194.4 267.7 187.0 263.6 180.2	REL VEL 1N OUT 225.1 178.5 228.6 184.8 228.4 187.5 231.7 183.9 236.7 188.5 244.8 193.0 260.6 194.4 267.7 187.0 263.6 180.2	MERID VEL 1N OUT 189.4 177.8 195.3 184.2 194.2 187.2 193.4 183.9 191.4 188.5 186.6 193.0 182.4 194.4 179.7 186.7 167.9 180.2	TANG VEL IN OUT 121.6 15.8 118.8 15.0 120.3 11.2 127.7 3.1 139.3 0.7 158.5 -1.2 186.1 5.0 198.4 10.6 203.2 1.6	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1N OUT 0.650 0.508 0.662 0.527 0.662 0.536 0.674 0.526 0.691 0.540 0.716 0.554 0.765 0.557 0.787 0.534 0.773 0.513	REL MACH NO 1N OUT 0.650 0.508 0.662 0.527 0.662 0.536 0.674 0.526 0.691 0.540 0.716 0.554 0.765 0.557 0.787 0.534 0.773 0.513	MERID MACH NO IN OUT 0.547 0.506 0.566 0.526 0.563 0.535 0.562 0.526 0.559 0.540 0.546 0.554 0.535 0.556 0.528 0.533 0.493 0.513	TOTAL LOSS COEFF, WAKE 0.101 0.096 0.072 0.064 0.052 0.045 0.063 0.129 0.148	MERID PEAK SS YEL R MACH NO 0.939 0.965 0.943 0.969 0.964 0.991 0.951 1.050 0.985 1.086 1.034 1.152 1.065 1.277 1.039 1.334 1.073 1.337
RP 1 2 3 4 5 6 7 8 9	PERCENT INC SPAN MEAN 5.00 12.3 10.00 10.3 15.00 9.7 30.00 7.4 50.00 4.3 70.00 2.7 85.00 1.4 90.00 0.5 95.00 -0.2	1.5 9.7 1.1 9.1 1.8 7.9 1.9 5.6 0.1 5.7 -2.1 6.1 -3.6 9.0 -4.3 11.2	D-FACT EFF 0.359 0. 0.335 0. 0.327 0. 0.362 0. 0.357 0. 0.365 0. 0.402 0. 0.446 0. 0.469 0.	LOSS COEFF TOT PROF 0.184 0.184 0.134 0.134 0.093 0.093 0.092 0.092 0.042 0.042 0.032 0.032 0.092 0.092 0.179 0.179 0.194 0.193	LOSS PARAM TOT PROF 0.059 0.059 0.042 0.042 0.029 0.029 0.027 0.027 0.011 0.011 0.008 0.008 0.020 0.020 0.038 0.037 0.039 0.039

BLADE EDGES FOR STATOR 9C

(g) 90 Percent of design speed; reading 1328

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.449 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	44.0 3.9 42.6 3.0 41.8 1.0 44.6 0.2 44.9 0.5 48.2 2.8 49.5 3.7	44.0 3.9 42.6 3.0 41.8 1.0 44.6 0.2 44.9 0.5 48.2 2.8 49.5 3.7	TOTAL TEMP IN RATIO 330.4 0.993 328.4 0.995 327.0 0.996 324.0 0.999 322.6 1.000 321.8 0.999 323.3 0.998 324.0 0.996 323.9 0.998	TOTAL PRESS IN RATIO 13.89 0.937 13.95 0.940 13.95 0.952 13.87 0.965 14.22 0.958 14.86 0.933 14.72 0.932
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 207.1 154.2 210.0 157.3 211.0 156.2 211.9 154.2 217.4 161.0 235.0 171.6 255.3 182.3 264.1 178.8 261.4 175.6	211.0 156.5 211.9 154.2 217.4 161.0 235.0 171.6	MERID VEL IN 0UT 136.1 153.8 151.2 157.0 155.3 156.3 158.1 154.2 154.9 161.0 166.6 171.6 170.3 182.1 171.4 178.4 163.0 175.6	TANG VEL IN OUT 156.1 11.1 145.7 10.6 142.8 8.3 141.2 2.6 152.5 0.5 165.7 1.6 190.2 8.8 201.0 11.5 204.4 2.4	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 5 4 5 6 7 8 9	ABS MACH NO IN OUT 0.588 0.432 0.598 0.443 0.603 0.441 0.609 0.436 0.627 0.456 0.683 0.489 0.747 0.520 0.775 0.509 0.766 0.499	REL MACH NO IN OUT 0.588 0.432 0.598 0.443 0.603 0.441 0.609 0.436 0.627 0.456 0.683 0.489 0.747 0.520 0.775 0.509 0.766 0.499	MERID MACH NO IN OUT 0.386 0.451 0.442 0.444 0.454 0.456 0.447 0.456 0.484 0.498 0.519 0.503 0.508 0.478 0.499	TOTAL LOSS COEFF, WAKE 0.131 0.131 0.130 0.099 0.085 0.074 0.091 0.126 0.140	MERID PEAK SS VEL R MACH NO 1.130 1.203 1.038 1.135 1.006 1.124 0.975 1.121 1.039 1.168 1.030 1.204 1.069 1.313 1.041 1.359 1.077 1.351
RP 1 2 3 4 5 6 7 8 9	PERCENT IN SPAN MEA 5.00 28. 10.00 23. 15.00 20. 30.00 15. 50.00 7.000 7. 85.00 4. 90.00 2. 95.00 0.	5 17.8 8.7 0 13.8 8.3 5 12.6 7.5 7 10.2 5.6 8 8.6 5.7 2 2.4 7.0 0 -1.1 10.3 2 -2.5 11.6	D-FACT EFF 0.482 0. 0.454 0. 0.456 0. 0.462 0. 0.443 0. 0.434 0. 0.438 0. 0.471 0. 0.482 0.	LOSS COEFF TOT PROF 0.304 0.304 0.279 0.279 0.267 0.267 0.218 0.218 0.149 0.149 0.121 0.121 0.136 0.136 0.206 0.205 0.211 0.210	LOSS PARAM TOT PROF 0.098 0.098 0.088 0.088 0.083 0.083 0.063 0.063 0.039 0.039 0.029 0.029 0.030 0.029 0.043 0.043

BLADE EDGES FOR STATOR 9C

(h) 80 Percent of design speed; reading 1325

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.957 2 22.487 2 20.571 2 16.728 1 16.728 1 14.287 1	0UT 22.959 22.489 22.014 20.589 18.732 16.937 15.649	ABS IN 52.3 45.7 43.7 48.2 51.4 47.5 48.5 49.4 51.2	BETAM OUT 3.3 2.8 2.2 1.0 0.1 1.8 3.1 3.5 0.7	REL 1N 52.3 45.7 43.7 48.2 51.4 47.5 48.5 49.4 51.2	BETAM OUT 3.3 2.8 2.2 1.0 0.1 1.8 3.1 3.5 0.7	TOTAL TEMP IN RATIO 322.3 0.994 320.2 0.999 318.6 1.001 317.0 1.001 315.2 1.000 315.2 1.000 316.0 0.999 316.0 0.999 316.1 0.999	TOTAL PRESS IN RATIO 12.98 0.939 13.08 0.934 12.91 0.950 12.89 0.966 13.21 0.968 13.57 0.967 13.71 0.949 13.73 0.941
RP 1 2 3 4 5 6 7 8 9	ABS IN 174.8 179.2 180.2 176.2 182.7 202.8 222.9 229.7 231.1	VEL 0UT 121.4 121.2 120.4 119.3 147.7 164.0 160.4 158.5	REL IN 174.8 179.2 180.2 176.2 182.7 202.8 222.9 229.7 231.1	VEL 0UT 121.4 121.2 120.4 119.3 129.4 147.7 164.0 160.4 158.5	MERII IN 106.9 125.3 130.3 117.4 114.1 137.0 147.8 149.5 144.9	D VEL 0UT 121.2 121.0 120.3 119.3 129.4 147.7 163.8 160.1 158.5	TANG VEL IN OUT 138.4 7.0 128.2 5.9 124.4 4.6 131.4 2.1 142.7 0.3 149.5 4.7 166.8 8.8 174.4 9.9 180.0 1.8	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.498 0.513 0.517 0.506 0.527 0.589 0.652 0.673	ACH NO OUT 0.342 0.342 0.340 0.338 0.368 0.460 0.454	REL M. 1N 0.498 0.513 0.517 0.506 0.527 0.652 0.673 0.677	ACH NO OUT 0.342 0.342 0.340 0.338 0.368 0.422 0.471 0.460 0.454	MERID M 1N 0.304 0.358 0.374 0.337 0.329 0.329 0.432 0.438 0.425	ACH NO OUT 0.342 0.342 0.340 0.338 0.368 0.422 0.470 0.459	TOTAL LOSS COEFF, WAKE 0.171 0.167 0.155 0.163 0.140 0.122 0.117 0.144 0.152	MERID PEAK SS VEL R MACH NO 1.134 1.082 0.966 1.003 0.923 0.983 1.016 1.050 1.134 1.111 1.078 1.093 1.108 1.152 1.071 1.178 1.094 1.189
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 31.9 24.7 21.5 22.1 19.6 9.9 4.3 2.1 0.5	DENCE SS 21.2 15.5 13.7 16.7 15.4 5.1 -0.8 -2.7	7.9 7.2 6.6 5.6 5.6 8.3 10.6 11.5	D-FACT 0.548 0.540 0.538 0.535 0.496 0.439 0.415 0.449	EFF 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.395 0.395 0.411 0.411 0.399 0.399 0.311 0.311 0.200 0.200 0.154 0.154 0.131 0.131 0.196 0.196 0.221 0.221	LOSS PARAM TOT PROF 0.127 0.127 0.130 0.130 0.123 0.123 0.090 0.090 0.053 0.053 0.036 0.036 0.028 0.028 0.041 0.041 0.045 0.045

BLADE EDGES FOR STATOR 9C

(i) 70 Percent of design speed; reading 1323

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	ABS BETAM IN OUT 14.9 2. 15.4 0. 15.9 -1. 18.5 -2. 23.6 -3. 29.9 -2. 36.4 -1. 39.4 0. 42.3 1.	IN OUT 5 14.9 2.5 5 15.4 0.5 1 15.9 -1.1 1 18.5 -2.7 0 23.6 -3.0 6 29.9 -2.6 0 36.4 -1.0 5 39.4 0.5	TOTAL TEMP IN RATIO 300.3 1.000 300.2 1.000 300.4 0.999 301.8 0.999 303.9 1.000 306.4 1.000 309.1 1.001 310.1 1.000 310.7 1.000	TOTAL PRESS IN RATIO 11.36 0.966 11.45 0.982 11.51 0.990 11.74 0.990 12.06 0.988 12.41 0.986 12.72 0.986 12.72 0.986 12.86 0.972 12.90 0.938
RP 1 23 4 5 6 6 7 8 9	ABS YEL IN OUT 186.0 157.3 190.1 167.5 191.9 172.8 198.9 179.7 213.6 200.7 227.9 213.5 239.5 226.1 243.2 225.7 242.6 214.7	REL VEL IN OUT 186.0 157.3 190.1 167.5 191.9 179.7 213.6 200.7 227.9 213.5 239.5 226.1 243.2 225.7 242.6 214.7	183.2 167.5 184.5 172.8 188.7 179.5 195.8 200.5 197.7 213.2 192.7 226.0 188.0 225.7	TANG VEL IN OUT 47.7 6.8 50.6 1.3 52.6 -3.4 63.0 -8.3 85.4 -10.4 113.5 -9.8 142.3 -4.0 154.2 1.9 163.3 5.6	0. 0.
RP 1 2 5 4 5 6 7 8 9	ABS MACH NO 1N OUT 0.552 0.462 0.564 0.494 0.570 0.510 0.591 0.531 0.635 0.594 0.679 0.632 0.713 0.669 0.724 0.667 0.722 0.631	REL MACH NO 1N OUT 0.552 0.462 0.564 0.494 0.570 0.510 0.591 0.531 0.635 0.594 0.679 0.632 0.713 0.669 0.724 0.667 0.722 0.631	MERID MACH NO 1N OUT 0.533 0.462 0.544 0.494 0.548 0.510 0.561 0.530 0.582 0.594 0.589 0.631 0.574 0.669 0.560 0.667 0.534 0.631	TOTAL LOSS COEFF, WAKE 0.109 0.074 0.036 0.030 0.029 0.044 0.037 0.062 0.135	MERID PEAK SS VEL R MACH NO 0.874 0.552 0.914 0.564 0.936 0.570 0.951 0.591 1.024 0.706 1.079 0.844 1.173 0.969 1.201 1.020 1.196 1.049
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 -5.6 10.00 -5.6 15.00 -6.2 30.00 -7.6 50.00 -8.2 70.00 -7.8 85.00 -7.7 90.00 -8.0 95.00 -8.4	DENCE SS -16.3 7.1 -14.7 4.9 -14.1 3.3 -13.1 2.0 -12.3 2.5 -12.6 3.8 -12.8 6.5 -12.7 8.4 -12.9 9.9	D-FACT EFF 0.225 0. 0.201 0. 0.190 0. 0.201 0. 0.178 0. 0.191 0. 0.187 0. 0.201 0. 0.244 0.	LOSS COEFF TOT PROF 0.180 0.180 0.092 0.092 0.051 0.051 0.050 0.050 0.050 0.050 0.054 0.054 0.048 0.048 0.094 0.094 0.212 0.212	LOSS PARAM TOT PROF 0.058 0.058 0.029 0.029 0.016 0.016 0.014 0.014 0.013 0.013 0.013 0.013 0.010 0.010 0.020 0.020 0.043 0.043

BLADE EDGES FOR STATOR 9C

(j) 70 Percent of design speed; reading 1320

RP 1 2 3 4 5 6	RAD IN 22.957 22.487 22.012 20.571 18.656 16.728	0UT 22.959 22.489 22.014 20.589 18.732 16.937	IN 29.5 28.5 28.4 31.1 34.5 38.9	BETAM OUT 4.3 4.4 2.6 0.4 -0.3 -0.5	IN 29.5 28.5 28.4 31.1 34.5 38.9	BETAM OUT 4.8 4.4 2.6 0.4 -0.3 -0.5	TOTAL TEMP IN RATIO 307.4 1.000 306.6 1.000 306.6 0.999 306.2 1.000 306.6 0.999 307.4 1.000	TOTAL PRESS IN RATIO 12.30 0.970 12.30 0.982 12.29 0.988 12.31 0.990 12.36 0.990 12.47 0.991
7 8 9	15.273 14.780 14.287	15.220	44.0 46.2 48.5	0.6 2.9 1.2	44.0 46.2 48.5	0.6 2.9 1.2	308.7 0.999 309.2 0.999 309.4 1.000	12.64 0.985 12.79 0.965 12.67 0.965
RP 1 2 3 4 5 6 7 8 9	ABS IN 171.3 172.4 173.5 181.0 190.4 201.4 208.0 205.1	VEL 0UT 137.1 144.1 146.2 146.0 150.5 157.4 161.8 157.1 153.8	REL IN 171.3 172.4 172.4 173.5 181.0 190.4 201.4 208.0 205.1	VEL 0UT 137.1 144.1 146.2 146.0 150.5 157.4 161.8 157.1 153.8	MERII IN 149.0 151.5 151.6 148.6 149.2 148.2 145.0 144.0	VEL 0UT 136.6 143.7 146.1 146.0 150.5 157.4 161.8 156.9 153.7	TANG VEL IN OUT 84.4 11.5 82.2 11.0 82.1 6.7 89.5 0.9 102.4 -0.8 119.5 -1.4 139.8 1.7 150.0 7.8 153.8 3.2	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M 1N 0.499 0.503 0.503 0.507 0.530 0.558 0.592 0.612 0.603	0.417 0.424 0.424 0.424 0.437 0.457 0.457 0.455 0.445	REL M IN 0.499 0.503 0.503 0.507 0.530 0.558 0.592 0.612 0.603	ACH NO OUT 0.396 0.417 0.424 0.424 0.437 0.457 0.470 0.455 0.445	MERID M IN 0.434 0.442 0.443 0.435 0.435 0.435 0.426 0.424 0.399	OUT 0.395 0.416 0.424 0.424 0.437 0.457 0.455 0.445	TOTAL LOSS COEFF, WAKE 0.093 0.074 0.053 0.042 0.039 0.046 0.044 0.118 0.148	MERID PEAK SS VEL R MACH NO 0.917 0.687 0.948 0.698 0.964 0.695 0.982 0.749 1.009 0.804 1.062 0.871 1.116 0.955 1.089 1.003 1.132 1.003
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 9.1 7.5 6.3 5.0 2.7 1.2 -0.2 -1.2	DENCE SS -1.6 -1.7 -1.6 -0.5 -1.5 -3.5 -5.3 -5.9 -6.6	9.4 8.8 7.0 5.0 5.2 6.0 8.1 10.8 9.6	D-FACT 0.337 0.295 0.287 0.306 0.318 0.322 0.343 0.386 0.397	EFF 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.192 0.192 0.112 0.112 0.076 0.076 0.062 0.062 0.057 0.057 0.045 0.045 0.070 0.070 0.159 0.159	LOSS PARAM TOT PROF 0.062 0.062 0.035 0.035 0.024 0.024 0.018 0.018 0.015 0.015 0.011 0.011 0.015 0.015 0.033 0.033 0.032 0.032

BLADE EDGES FOR STATOR 9C

(k) 70 Percent of design speed; reading 1321

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.957 22.959 22.487 22.489 22.012 22.014 20.571 20.589 18.656 18.732 16.728 16.937 15.273 15.649 14.780 15.220 14.287 14.783	ABS BETAM IN OUT 52.3 3.1 45.8 2.6 43.5 2.0 48.2 0.9 51.6 0.2 48.5 1.8 48.7 3.3 49.2 3.7 51.2 0.6	45.8 2.6 43.5 2.0 48.2 0.9 51.6 0.2 48.5 1.8 48.7 3.3 49.2 3.7	TOTAL TEMP IN RATIO 313.9 0.995 312.3 0.999 311.2 1.001 310.0 1.001 309.4 1.000 309.1 1.000 309.7 0.998 309.4 0.998 309.4 0.999	TOTAL PRESS IN RATIO 12.28 0.951 12.33 0.949 12.34 0.949 12.22 0.962 12.19 0.975 12.44 0.977 12.74 0.968 12.83 0.955 12.74 0.958
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 151.7 105.0 154.5 105.9 155.6 104.8 152.4 104.0 157.7 113.2 175.8 129.7 194.9 140.4 200.0 137.3 198.5 136.7	REL VEL 1N OUT 151.7 105.0 154.5 105.9 155.6 104.8 152.4 104.0 157.7 113.2 175.8 129.7 194.9 140.4 200.0 137.3 198.5 136.7	MERID VEL IN OUT 92.8 104.9 107.8 105.7 112.8 104.7 101.6 103.9 98.0 113.2 116.6 129.6 128.6 140.2 130.6 137.0 124.4 136.7	TANG VEL IN OUT 119.9 5.7 110.7 4.9 107.1 3.7 113.6 1.7 123.5 0.4 131.6 4.0 146.4 8.0 151.5 8.9 154.7 1.3	HHEEL SPEED IN OUT O.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.435 0.299 0.445 0.302 0.449 0.299 0.440 0.297 0.456 0.324 0.512 0.373 0.570 0.405 0.586 0.396 0.582 0.394	REL MACH NO IN OUT 0.435 0.299 0.445 0.302 0.449 0.299 0.440 0.297 0.456 0.324 0.512 0.373 0.570 0.405 0.586 0.396 0.582 0.394	MERID MACH NO IN OUT 0.266 0.299 0.310 0.301 0.325 0.299 0.293 0.297 0.284 0.324 0.339 0.375 0.376 0.404 0.383 0.395 0.365 0.394	TOTAL LOSS COEFF, WAKE 0.173 0.162 0.173 0.158 0.142 0.117 0.115 0.143 0.145	MERID PEAK SS VEL R MACH NO 1,130 0,945 0,981 0,872 0,928 0,851 1.023 0,912 1.155 0,967 1.112 0,966 1.090 1.013 1.049 1.023 1.099 1.022
RP 1 2 3 4 5 6 7 8 9	SPAN MEAN 5.00 31.8 10.00 24.8 15.00 21.4 30.00 22.1 50.00 19.8 70.00 10.8 85.00 4.5 90.00 1.9	DENCE SS 21.1 7.7 15.6 7.1 13.5 6.5 16.7 5.6 15.7 5.7 6.0 8.2 -0.5 10.8 -2.8 11.6 -4.0 9.0	D-FACT EFF 0.551 0. 0.532 0. 0.532 0. 0.530 0. 0.487 0. 0.433 0. 0.431 0. 0.460 0. 0.465 0.	LOSS COEFF TOT PROF 0.401 0.401 0.399 0.399 0.394 0.394 0.303 0.303 0.188 0.188 0.141 0.141 0.161 0.161 0.218 0.218 0.203 0.203	LOSS PARAM TOT PROF 0.129 0.129 0.126 0.126 0.122 0.122 0.088 0.088 0.049 0.049 0.033 0.033 0.035 0.035 0.046 0.046 0.041 0.041

BLADE EDGES FOR STATOR 9C

(1) 60 Percent of design speed; reading 1318

RP 1	RADII IN 0U 22.957 22.9	T IN 559 51.2	OUT 3.2	IN 51.2	OUT 3.2	IN 307.0	RAT 10 0.997	IN 11.71	PRESS RATIO 0.965
2	22.487 22.4		2.7	44.9	2.7	306.0 305.1	0.999	11.75	0.963
4	20.571 20.5	89 47.8	1.2	47.8	1.2	304.4	1.000	11.68	0.972
5	18.656 18.7 16.728 16.9		0.5	50.9	0.5	304.1	1.000	11.67	0.981
7	15.273 15.6	49 48.4	3.5	48.4	3.5	303.6	1.000	11.98	0.980
8	14.780 15.2		3.9 0.6	49.3	3.9	303.8	0.999	12.05	0.971
3	14.201 14.1	05 50.5	0.0	30.3	0.0	304.0	0.555		
	ABS VEL		VEL		D VEL		G VEL	WHEEL	
RP 1	IN 0U 129.7 92	IT IN	0UT 92.1	IN 81.3	0UT 92.0	IN 101.0	0UT 5.1	IN O.	OUT O.
2		.7 132.6	92.7	93.8	92.5	93.7	4.4	0.	0.
3 4		133.0	92.1	97.0	92.0 90.6	91.0	1.9	0.	0.
5		1.6 131.6	90.6	88.4	98.2	97.5	0.9	0.	0.
5	148.8 112	.0 148.8	112.0	99.7	111.9	110.5	4.1	0.	0.
7	164.7 120 169.6 118		120.2	109.3	120.0	123.3	7.3	0.	0.
9	169.5 117		117.0	106.9	117.0	131.6	1.2	0.	0.
	ABS MACH	NO DEL M	ACH NO	MERID M	ACH NO	TOTAL	1.055	MEDIA	PEAK SS
RP	IN OU		OUT	IN	OUT	COEFF,	WAKE	VEL R	MACH NO
1	0.374 0.2		0.264	0.235	0.264	0.1		1.131	0.798
2	0.384 0.2 0.385 0.2		0.266	0.272	0.266			0.948	0.727
4	0.382 0.2	61 0.382	0.261	0.256	0.261	0.1	60	1.025	0.786
5	0.397 0.2		0.283	0.250	0.283	0.1		1.141	0.831
7	0.482 0.3	48 0.482	0.348	0.320	0.348	0.1	17	1.098	0.853
8	0.497 0.3 0.497 0.3		0.342	0.324	0.341	0.1	500	1.066	0.869
9	0.497 0.5	0.457	0.555	0.515	0.555	0.1	40		*****
	PERCENT	INCIDENCE	DEV	D-FACT	EFF	LOSS C		LOSS F	PARAM
RP		MEAN SS 50.8 20.0	7.8	0.529	0.	TOT 0.384	PROF 0.384	0.124	
2		3.9 14.8	7.1	0.514	0.	0.387	0.387	0.122	0.122
3 4		21.1 13.2	6.6 5.8	0.512	0.	0.369	0.369	0.114	0.114
		9.2 15.0	6.0	0.483	0.	0.186	0.186	0.049	0.049
5	70.00 1	0.3 5.5	8.6	0.415	0.	0.105	0.105	0.025	0.025
7 8	85.00 90.00	4.3 -0.8 2.0 -2.7	11.0	0.420	0.	0.134	0.134	0.029	0.039
9	95.00	0.2 -4.3	9.0	0.463	0.	0.186	0.186	0.038	0.038

TABLE XV. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 9D

(a) 100 Percent of design speed; reading 3160

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM 1N OUT 30.2 5.6 28.6 5.0 28.6 2.8 31.4 -0.8 34.7 0.2 34.7 0.2 42.4 0.9 44.0 2.4 48.1 2.3	28.6 5.0 28.6 2.8 31.4 -0.8 2.34.7 0.2 39.1 0.8 42.4 0.9 44.0 2.4	TOTAL TEMP IN RATIO 325.9 1.000 325.6 1.000 325.6 1.000 326.1 1.001 327.0 1.002 329.3 1.000 330.2 0.997 330.3 0.996	TOTAL PRESS IN RATIO 15.87 0.963 14.60 0.951 14.86 0.966 15.12 0.981 15.37 0.965 15.57 0.939 15.85 0.918 15.90 0.898 15.05 0.925
RP 1 235 4 15 61 - 8 9	ABS VEL 1N 0UT 223.7 195.9 245.4 213.9 253.3 228.1 264.2 243.7 274.9 248.3 287.0 247.8 304.7 252.5 310.9 251.5 292.9 247.9	REL VEL 1N OUT 223.7 195.9 245.4 213.9 253.3 228.1 264.2 243.7 274.9 248.3 287.0 247.8 304.7 252.5 310.9 251.5 292.9 247.9	MERID VEL 1N OUT 193.3 195.0 215.5 213.1 222.4 227.8 225.6 243.7 225.9 248.3 222.8 247.8 224.8 252.5 223.8 251.2 195.5 247.7	TANG VEL IN OUT 112.6 19.0 117.4 18.8 121.3 11.1 137.6 -3.3 156.7 0.7 181.0 3.3 205.6 3.9 215.8 10.4 218.0 9.9	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.643 0.558 0.712 0.613 0.737 0.776 0.807 0.772 0.706 0.807 0.717 0.903 0.730 0.924 0.727 0.862 0.716	REL MACH NO 1N OUT 0.643 0.558 0.712 0.613 0.737 0.657 0.772 0.706 0.807 0.720 0.847 0.717 0.903 0.730 0.924 0.727 0.862 0.716	MERID MACH NO IN OUT 0.556 0.555 0.625 0.611 0.647 0.656 0.659 0.706 0.663 0.720 0.657 0.717 0.667 0.730 0.665 0.726 0.575 0.716	TOTAL LOSS COEFF, WAKE 0.166 0.156 0.110 0.066 0.112 0.164 0.161 0.171	MERID PEAK SS VEL R MACH NO 1.009 0.785 0.989 0.834 1.024 0.872 1.080 0.969 1.099 1.022 1.112 1.069 1.123 1.094 1.123 1.096 1.267 1.080
RP 1 2 3 4 5 6 7 8 9	PERCENT INCIDENT SPAN MEAN 5.00 -3.8 10.00 -3.8 15.00 -2.8 30.00 -0.3 50.00 0.7 70.00 1.0 85.00 -0.4 90.00 -1.2 95.00 0.3	DENCE SS -10.6 14.5 -10.3 13.3 -9.1 13.5 -5.9 6.8 -3.8 8.2 -2.4 9.5 -3.0 10.5 -3.6 12.4 -1.9 12.9	D-FACT EFF 0.259 0. 0.255 0. 0.234 0. 0.232 0. 0.245 0. 0.282 0. 0.313 0. 0.328 0. 0.295 0.	LOSS COEFF TOT PROF 0.151 0.151 0.171 0.171 0.113 0.113 0.060 0.060 0.102 0.102 0.162 0.162 0.200 0.200 0.240 0.240 0.196 0.196	LOSS PARAM TOT PROF 0.049 0.049 0.054 0.054 0.035 0.035 0.017 0.017 0.027 0.027 0.038 0.038 0.043 0.043 0.050 0.050 0.040 0.040

TABLE XV. - Continued. BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 9D

(b) 100 Percent of design speed; reading 3188

RP 1 23 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM 1N OUT 30.4 4.6 28.5 4.8 28.8 3.2 31.4 -0.1 34.8 0.1 34.9 0.1 34.9 1.9 42.4 1.9 44.1 3.9 48.4 3.4	28.5 4.8 28.8 3.2 31.4 -0.1 34.8 0.1 38.9 0.1 42.4 1.9 44.1 3.9	TOTAL TEMP IN RATIO 326.4 0.999 326.1 0.999 326.1 0.999 326.1 1.001 326.3 1.001 327.0 1.002 529.2 0.999 330.2 0.996 330.2 0.995	TOTAL PRESS IN RATIO 13.98 0.968 14.69 0.954 14.94 0.968 15.10 0.992 15.38 0.986 15.57 0.967 15.77 0.947 15.83 0.915 15.04 0.931
R-1354561-89	ABS VEL IN OUT 222.2 183.3 244.0 200.3 252.1 214.4 261.6 230.8 273.7 238.8 286.7 241.1 300.9 243.0 307.9 235.9 290.4 227.1	REL VEL 1N 0UT 222.2 183.3 244.0 200.3 252.1 214.4 261.6 230.8 273.7 238.8 286.7 241.1 300.9 243.0 307.9 235.9 290.4 227.1	MERID VEL 1N OUT 191.6 182.7 214.4 199.6 221.0 214.0 223.4 230.8 224.7 238.8 223.3 241.1 222.1 242.9 221.0 235.3 192.8 226.7	TANG VEL IN OUT 112.5 14.8 116.5 16.7 121.3 11.8 136.1 -0.6 156.2 0.2 179.9 0.4 203.0 8.0 214.4 16.2 217.1 13.5	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.638 0.520 0.707 0.571 0.733 0.614 0.764 0.665 0.803 0.690 0.846 0.696 0.890 0.701 0.913 0.678 0.853 0.651	REL MACH NO IN OUT 0.638 0.520 0.707 0.571 0.733 0.614 0.764 0.665 0.803 0.690 0.846 0.696 0.890 0.701 0.913 0.678 0.853 0.651	MERID MACH NO IN OUT 0.550 0.518 0.621 0.569 0.643 0.613 0.652 0.665 0.659 0.690 0.657 0.700 0.655 0.676 0.567 0.650	TOTAL LOSS COEFF, WAKE 0.136 0.128 0.088 0.038 0.060 0.109 0.124 0.170 0.179	MERID PEAK SS VEL R MACH NO 0.953 0.784 0.931 0.826 0.968 0.871 1.033 0.958 1.063 1.019 1.080 1.061 1.094 1.078 1.065 1.090 1.176 1.079
RP 1 23 4 5 6 7 8 9	PERCENT INCIDENT SPAN MEAN 5.00 -3.6 10.00 -3.8 15.00 -2.6 30.00 -0.3 50.00 0.8 70.00 0.8 85.00 -0.4 90.00 -1.0 95.00 0.5	DENCE SS -10.4 13.6 -10.4 13.0 -8.9 10.9 -5.9 7.4 -3.7 8.1 -2.6 8.9 -3.0 11.5 -3.4 14.0 -1.6 14.0	D-FACT EFF 0.317 0. 0.308 0. 0.284 0. 0.269 0. 0.277 0. 0.306 0. 0.331 0. 0.367 0. 0.358 0.	LOSS COEFF TOT PROF 0.132 0.132 0.163 0.163 0.107 0.107 0.024 0.024 0.042 0.042 0.089 0.089 0.131 0.131 0.205 0.205 0.183 0.183	LOSS PARAM TOT PROF 0.043 0.043 0.051 0.051 0.033 0.033 0.007 0.007 0.011 0.011 0.021 0.021 0.028 0.028 0.043 0.043 0.037 0.037

BLADE EDGES FOR STATOR 9D

(c) 100 Percent of design speed; reading 3161

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	32.7 30.5 30.3 32.1 35.5 39.1 42.5 44.3	TAM REL DUT IN 4.4 32.7 5.2 30.5 3.7 30.3 0.8 32.1 0.5 35.5 0.1 39.1 3.3 42.5 4.5 44.3 2.6 48.4	BETAM 0UT 4.4 5.2 3.7 0.8 0.5 0.1 3.3 4.5 2.6	TOTAL TEMP IN RATIO 329.5 0.999 328.2 1.000 327.2 1.001 327.1 1.000 326.6 1.001 327.1 1.002 329.2 0.998 330.1 0.996 330.6 0.994	TOTAL PRESS IN RATIO 14.61 0.966 15.09 0.957 15.20 0.975 15.33 0.988 15.43 0.993 15.54 0.996 15.74 0.958 15.83 0.924 15.22 0.930
R-254561-89	ABS VEL 1N OUT 226.7 175.4 243.5 189.3 249.7 203.0 260.4 215.9 270.7 225.0 281.7 234.0 295.1 227.7 300.1 218.8 287.7 208.8	REL VEL 1N 00 226.7 175 243.5 189 249.7 203 260.4 215 270.7 225 281.7 234 295.1 227 300.1 218 287.7 208	IT !N 5.4 190.8 6.3 209.7 5.0 215.7 5.9 220.5 5.0 220.5 6.0 218.7 7.7 217.7 8.8 214.9	D VEL OUT 174.8 188.5 202.6 215.8 225.0 234.0 227.3 218.2 208.6	TANG VEL IN OUT 122.4 13.4 123.7 17.1 125.9 13.0 138.5 2.8 157.1 1.8 177.5 0.4 199.3 13.2 209.5 17.3 215.2 9.3	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.649 0.494 0.703 0.536 0.724 0.578 0.759 0.618 0.793 0.646 0.829 0.673 0.871 0.653 0.886 0.625 0.844 0.595	REL MACH IN OU 0.649 0.4 0.703 0.5 0.724 0.5 0.759 0.6 0.793 0.6 0.829 0.6 0.871 0.6 0.886 0.6 0.884 0.5	IT IN 94 0.546 0.605 0.605 0.625 0.642 0.643 0.642 0.635	OUT 0.492 0.534 0.577 0.618 0.646 0.673 0.652 0.623 0.594	TOTAL LOSS COEFF, WAKE 0.117 0.117 0.078 0.034 0.045 0.048 0.100 0.138 0.148	MERID PEAK SS VEL R MACH NO 0.917 0.852 0.899 0.879 0.939 0.904 0.979 0.974 1.020 1.026 1.070 1.046 1.044 1.056 1.015 1.063 1.093 1.067
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 -1.4 10.00 -1.8 15.00 -1.1 30.00 0.4 50.00 1.5 70.00 1.0 85.00 -0.3 90.00 -0.8 95.00 0.5	SS -8.1 13 -8.3 13 -7.4 11 -5.1 8 -3.1 8 -3.0 13 -3.3 14	D-FACT 0.3 0.382 0.4 0.361 .5 0.327 0.3 0.322 0.5 0.319 0.9 0.317 0.0 0.363 0.6 0.403 0.417	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.139 0.139 0.153 0.153 0.085 0.085 0.039 0.039 0.021 0.021 0.010 0.010 0.107 0.107 0.190 0.190 0.188 0.188	LOSS PARAM TOT PROF 0.045 0.045 0.048 0.048 0.026 0.026 0.011 0.011 0.006 0.006 0.002 0.002 0.023 0.023 0.040 0.040 0.038 0.038

BLADE EDGES FOR STATOR 9D

(d) 100 Percent of design speed; reading 3187

RP 1 23 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	1N 33.9 31.5 30.5 32.8 35.6 39.1 42.6 44.4	BETAM OUT 4.3 4.9 3.9 0.9 0.4 0.0 3.4 4.7 2.7	REL IN 33.9 31.5 30.5 32.8 35.6 42.6 44.4 48.6	BETAM OUT 4.3 4.9 3.9 0.9 0.4 0.0 3.4 4.7 2.7	TOTAL TEMP IN RATIO 331.3 0.998 329.4 0.999 328.2 1.000 327.3 1.000 326.7 1.001 327.0 1.002 329.1 0.998 330.2 0.996 330.4 0.994	TOTAL PRESS IN RATIO 14.93 0.963 15.35 0.957 15.36 0.976 15.37 0.991 15.47 0.993 15.51 0.999 15.76 0.958 15.86 0.924 15.17 0.935
R - 284661-89	ABS VEL 1N OUT 229.2 175.9 244.8 188.2 248.6 200.1 259.0 213.3 270.1 222.7 279.8 231.7 294.6 225.3 300.9 216.5 285.3 206.2	1N 229.2 244.8 248.6 259.0 270.1 279.8 294.6 300.9	VEL 0UT 175.9 188.2 200.1 213.3 222.7 231.7 225.3 216.5 206.2	MERI 1N 190.2 208.7 214.3 217.8 219.7 217.0 216.7 215.0 188.6	D VEL 0UT 175.4 187.5 199.6 213.2 222.7 231.7 224.9 215.8 206.0	TANG VEL IN OUT 127.9 13.2 128.0 16.1 126.0 13.5 140.3 3.4 157.1 1.5 176.6 0.1 199.5 13.2 210.4 17.8 214.1 9.8	WHEEL SPEED IN OUT 0.
RP 1 23 4 5 6 7 8 9	ABS MACH NO IN OUT 0.655 0.494 0.706 0.532 0.719 0.568 0.754 0.609 0.791 0.639 0.822 0.666 0.869 0.646 0.889 0.618 0.836 0.587	IN 0.655 0.706 0.719 0.754 0.791 0.822 0.869 0.889	0.494 0.532 0.568 0.609 0.639 0.646 0.646 0.618 0.587	MERID M IN 0.543 0.602 0.620 0.634 0.643 0.638 0.640 0.635	OUT 0.493 0.530 0.567 0.609 0.639 0.666 0.644 0.616 0.586	TOTAL LOSS COEFF, WAKE 0.106 0.103 0.062 0.033 0.041 0.046 0.107 0.148 0.160	MERID PEAK SS VEL R MACH NO 0.922 0.889 0.898 0.908 0.932 0.902 0.979 0.986 1.013 1.025 1.068 1.041 1.038 1.059 1.004 1.070 1.092 1.064
RP 1 2 3 4 5 6 7 8 9	SPAN MEA 5.00 -0. 10.00 -0. 15.00 -0. 30.00 1. 50.00 1. 70.00 1. 85.00 -0. 90.00 -0.	1 -6.8 8 -7.4 9 -7.2 1 -4.5 6 -3.0 1 -2.3 -2.9 -3.1	DEV 13.3 13.2 11.7 8.5 8.4 8.8 13.0 14.8	D-FACT 0.394 0.376 0.335 0.330 0.327 0.320 0.370 0.413 0.420	0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.147 0.147 0.153 0.153 0.081 0.081 0.030 0.030 0.021 0.021 0.002 0.002 0.108 0.108 0.188 0.188 0.176 0.176	LOSS PARAM TOT PROF 0.047 0.047 0.048 0.048 0.025 0.025 0.009 0.009 0.006 0.006 0.000 0.000 0.023 0.023 0.039 0.039 0.036 0.036

BLADE EDGES FOR STATOR 9D

(e) 100 Percent of design speed; reading 3162

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM 1N OUT 36.2 5. 33.7 5. 32.6 4. 34.5 1. 36.4 0. 39.6 0. 43.3 3. 44.7 4. 48.7 2.	IN OUT 0 36.2 5.0 7 33.7 5.7 6 32.6 4.6 4 34.5 1.4 7 39.6 0.1 6 43.3 3.6 7 44.7 4.7	TOTAL TEMP :N RATIO 354.1 0.999 552.4 0.999 530.6 1.000 329.3 0.999 327.4 1.000 327.7 1.001 329.2 0.998 530.4 0.996 530.8 0.994	TOTAL PRESS IN RATIO 15.19 0.969 15.67 0.958 15.59 0.981 15.65 0.988 15.55 0.994 15.63 0.994 15.75 0.960 15.85 0.928 15.26 0.936
RP 1 234 567 89	ABS VEL 1N 0UT 225.5 169.4 240.9 181.3 245.6 195.0 255.8 205.2 266.5 214.4 277.7 222.4 289.0 215.9 295.5 208.2 281.2 198.3	REL VEL 1N OUT 225.5 169.4 240.9 181.3 245.6 193.0 255.8 205.2 266.5 214.4 277.7 222.4 289.0 215.9 295.5 208.2 281.2 198.3	MERID VEL IN OUT 182.0 168.7 200.4 180.4 207.0 192.4 210.8 205.1 214.6 214.4 213.9 222.4 210.5 215.5 210.0 207.5 185.7 198.1	TANG VEL IN OUT 133.1 14.7 133.7 18.1 132.2 15.4 145.0 4.9 158.0 1.4 177.2 0.3 198.0 13.6 207.9 16.9 211.1 7.2	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.640 0.473 0.690 0.509 0.707 0.545 0.741 0.583 0.778 0.613 0.815 0.637 0.850 0.616 0.870 0.592 0.822 0.562	REL MACH NO IN OUT 0.640 0.473 0.690 0.509 0.707 0.545 0.741 0.583 0.778 0.613 0.815 0.637 0.850 0.616 0.870 0.592 0.822 0.562	MERID MACH NO IN OUT 0.517 0.471 0.574 0.507 0.596 0.543 0.610 0.583 0.627 0.613 0.627 0.637 0.619 0.615 0.619 0.590 0.543 0.562	TOTAL LOSS COEFF, WAKE 0.113 0.108 0.073 0.033 0.037 0.040 0.098 0.130 0.148	MERID PEAK SS VEL R MACH NO 0.927 0.919 0.900 0.942 0.930 0.942 0.973 1.015 0.999 1.031 1.040 1.046 1.024 1.057 0.988 1.059 1.067 1.047
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN MEAN 5.00 2.1 10.00 1.4 15.00 2.8 50.00 2.4 70.00 1.6 85.00 0.4 90.00 -0.4 95.00 0.8	DENCE SS -4.6 14.0 -5.2 14.0 -5.1 12.3 -2.7 8.9 -2.2 8.4 -1.8 8.9 -2.2 13.2 -2.8 14.7 -1.4 12.7	D-FACT EFF 0.419 0. 0.399 0. 0.361 0. 0.356 0. 0.350 0. 0.349 0. 0.389 0. 0.429 0. 0.440 0.	LOSS COEFF TOT PROF 0.129 0.129 0.154 0.154 0.067 0.067 0.041 0.041 0.018 0.018 0.017 0.017 0.106 0.106 0.184 0.184 0.177 0.177	LOSS PARAM TOT PROF 0.041 0.041 0.048 0.048 0.021 0.021 0.012 0.012 0.005 0.005 0.004 0.004 0.023 0.023 0.038 0.038 0.036 0.036

BLADE EDGES FOR STATOR 9D

(f) 100 Percent of design speed; reading 3185

RP 1 2 3 4 5 6 7 8 9	20.559 18.639 16.723	0UT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS 1N 37.2 34.0 33.1 34.9 36.5 39.8 43.3 45.1 49.0	BETAM OUT 4.7 5.1 4.4 1.5 0.3 0.3 5.7 4.9 2.2	REL IN 37.2 34.0 35.1 34.9 36.5 39.8 43.3 45.1 49.0	BETAM OUT 4.7 5.1 4.4 1.5 0.3 0.3 3.7 4.9 2.2	TOTAL TEMP IN RATIO 334.6 0.998 332.6 0.999 331.2 0.999 329.2 0.999 327.3 1.000 327.4 1.001 329.4 0.997 330.3 0.996 330.9 0.994	TOTAL PRESS IN RATIO 15.26 0.969 15.68 0.961 15.75 0.975 15.64 0.989 15.52 0.993 15.52 0.998 15.76 0.957 15.74 0.935 15.26 0.937
R 1 235 4 5 61: 8 9	ABS IN 224.9 239.7 245.5 254.1 265.2 274.0 289.0 289.7	VEL OUT 169.1 180.0 190.7 202.5 212.0 219.6 212.7 205.6 195.7	REL 1N 224.9 239.7 245.5 254.1 265.2 274.0 289.0 291.6 280.7	VEL 0UT 169.1 180.0 7 202.5 212.0 219.6 212.7 205.6 195.7	MERI IN 179.3 198.8 205.5 208.4 213.2 210.5 210.4 205.7 184.1	D VEL 0UT 168.6 179.3 190.1 202.4 212.0 219.6 212.3 204.9 195.5	TANG VEL IN OUT 135.8 13.7 134.0 15.9 134.2 14.5 145.5 5.3 157.7 1.1 175.3 1.2 198.2 13.7 206.6 17.4 211.8 7.5	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.638 0.686 0.736 0.774 0.803 0.850 0.857 0.820	OUT 0.472 0.505 0.538 0.575 0.606 0.629 0.607 0.585 0.555	REL M. IN 0.638 0.686 0.706 0.736 0.774 0.803 0.850 0.857 0.820	ACH NO OUT 0.472 0.505 0.538 0.575 0.606 0.629 0.607 0.585	MERID M IN 0.508 0.569 0.603 0.622 0.617 0.619 0.605 0.538	ACH NO OUT 0.470 0.503 0.503 0.575 0.606 0.629 0.606 0.582 0.554	TOTAL LOSS COEFF, WAKE 0.108 0.101 0.071 0.034 0.038 0.042 0.100 0.139 0.154	MERID PEAK SS VEL R MACH NO 0.940 0.937 0.902 0.943 0.925 0.955 0.971 1.018 0.994 1.029 1.043 1.035 1.009 1.058 0.996 1.057 1.062 1.055
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN. 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 3.1 1.6 1.8 3.2 2.5 1.7 0.5 0.0	DENCE SS -3.6 -4.9 -4.5 -2.3 -2.0 -1.7 -2.2 -2.4 -1.0	DEV 13.6 13.3 12.1 9.0 8.3 9.1 13.3 14.9 12.8	D-FACT 0.425 0.405 0.374 0.363 0.356 0.348 0.401 0.429 0.448	EFF 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.128 0.128 0.143 0.143 0.090 0.090 0.037 0.037 0.020 0.020 0.006 0.006 0.114 0.114 0.170 0.170 0.178 0.178	LOSS PARAM TOT PROF 0.041 0.041 0.045 0.045 0.028 0.028 0.011 0.011 0.005 0.005 0.002 0.002 0.025 0.025 0.036 0.036 0.036 0.036

BLADE EDGES FOR STATOR 9D

(g) 100 Percent of design speed; reading 3181

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959-22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM IN OUT 38.1 5.1 35.7 5.5 34.9 4.6 35.6 1.6 37.4 0.5 40.2 0.5 43.8 3.9 45.4 4.4 49.4 1.9	IN OUT 38.1 5.1 5.5 35.7 5.5 34.9 4.6 5.5 37.4 0.5 40.2 0.1 43.8 3.9	TOTAL TEMP IN RATIO 355.3 0.998 355.7 0.998 352.2 0.999 350.1 0.998 327.7 1.000 327.2 1.000 327.2 1.000 328.8 0.998 350.0 0.996 350.4 0.995	TOTAL PRESS IN RATIO 15.31 0.972 15.73 0.962 15.80 0.975 15.69 0.988 15.56 0.992 15.41 0.998 15.56 0.994 15.75 0.932 15.19 0.940
RP 1 23 4 5 6 7 8 9	ABS VEL 1N OUT 223.7 167.6 237.5 176.5 242.3 187.0 250.4 196.8 261.3 205.2 266.9 210.1 281.1 205.5 288.6 199.4 275.7 190.2	REL VEL IN OUT 223.7 167.6 237.5 176.5 242.3 187.0 250.4 196.8 261.3 205.2 266.9 210.1 281.1 205.5 288.6 199.4 275.7 190.2	MERID VEL !N OUT 176.1 167.0 192.9 175.7 198.8 186.4 203.5 196.8 207.5 205.2 203.8 210.1 202.8 205.0 202.8 198.7 179.4 190.1	TANG VEL IN OUT 137.9 14.8 138.5 16.8 138.6 14.9 145.9 5.6 158.8 1.8 172.3 0.3 194.7 13.8 205.4 16.4 209.3 6.3	WHEEL SPEED !N OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 23 4 5 6 7 8 9	ABS MACH NO IN OUT 0.633 0.467 0.678 0.494 0.695 0.526 0.722 0.557 0.761 0.585 0.779 0.600 0.824 0.585 0.848 0.566 0.804 0.538	REL MACH NO IN OUT 0.633 0.467 0.678 0.494 0.695 0.526 0.722 0.557 0.761 0.585 0.779 0.600 0.824 0.585 0.848 0.566 0.804 0.538	MERID MACH NO IN OUT 0.499 0.465 0.550 0.492 0.570 0.524 0.587 0.557 0.604 0.585 0.595 0.600 0.595 0.584 0.596 0.564 0.523 0.538	TOTAL LOSS COEFF, WAKE 0.112 0.106 0.073 0.040 0.039 0.042 0.103 0.125 0.147	MERID PEAK SS VEL R MACH NO 0.948 0.950 0.911 0.972 0.938 0.982 0.967 1.017 0.989 1.037 1.031 1.017 1.011 1.043 0.980 1.053 1.059 1.046
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 4.0 10.00 3.3 15.00 3.5 30.00 3.9 50.00 3.4 70.00 2.2 85.00 1.0 90.00 0.2 95.00 1.5	DENCE SS -2.7 14.0 -3.2 13.7 -2.8 12.3 -1.6 9.2 -1.1 8.5 -1.3 8.9 -1.6 13.5 -2.2 14.8 -0.6 12.5	D-FACT EFF 0.428 0. 0.419 0. 0.386 0. 0.376 0. 0.372 0. 0.364 0. 0.407 0. 0.444 0. 0.457 0.	LOSS COEFF TOT PROF 0.118 0.118 0.145 0.145 0.089 0.089 0.040 0.040 0.026 0.026 0.005 0.005 0.099 0.099 0.181 0.181 0.174 0.174	LOSS PARAM TOT PROF 0.038 0.038 0.046 0.046 0.028 0.028 0.012 0.012 0.007 0.007 0.001 0.001 0.021 0.021 0.038 0.038 0.035 0.035

BLADE EDGES FOR STATOR 9D

(h) 100 Percent of design speed; reading 3183

RP 1 2 3 4 5 6 7 8 9		OUT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS IN 38.4 36.0 35.3 36.9 39.1 42.2 44.9 46.1 50.0	BETAM OUT 4.9 5.2 4.6 1.6 0.6 4.5 4.9	REL IN 38.4 36.0 35.3 36.9 39.1 42.2 44.9 46.1 50.0	BETAM OUT 4.9 5.2 4.6 0.6 0.2 4.5 4.9	TOTA IN 335.5 333.8 332.7 330.4 328.1 327.6 329.2 330.0 330.4	RATIO 0.998 0.998 0.998 0.998 0.999 0.999 0.998 0.996 0.995	TOTAL IN 15.26 15.69 15.78 15.65 15.44 15.62 15.62 15.68 15.20	PRESS RATIO 0.971 0.960 0.972 0.986 0.991 0.991 0.957 0.936 0.942
R-254561.89	ABS IN 221.9 235.9 245.7 252.1 252.1 276.5 280.6 270.0	VEL 0UT 166.1 174.7 184.6 190.5 193.1 195.0 194.1 188.6 180.7	REL IN 221.9 235.9 245.7 252.3 258.1 276.5 280.6 270.0	VEL 0UT 166.1 174.7 184.6 190.5 193.1 195.0 194.1 188.6 180.7	MERI IN 173.8 190.8 196.6 196.5 195.9 191.2 195.7 194.6 173.7	D VEL OUT 165.5 173.9 184.0 190.4 193.0 195.0 193.5 187.9 180.6	TAN IN 138.0 138.7 139.0 147.5 159.1 173.4 195.4 202.2 206.7	G VEL OUT 14.1 15.7 14.7 5.4 2.0 0.6 15.2 16.2 4.5	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.628 0.673 0.689 0.707 0.731 0.750 0.809 0.821 0.785	OUT 0.462 0.489 0.519 0.538 0.548 0.554 0.550 0.534 0.510	REL M. IN 0.628 0.673 0.689 0.707 0.731 0.750 0.809 0.821 0.785	OUT 0.462 0.489 0.519 0.538 0.554 0.550 0.534	MERID M IN 0.492 0.544 0.563 0.566 0.556 0.556 0.572 0.569	ACH NO OUT 0.461 0.461 0.517 0.538 0.5548 0.554 0.554 0.554 0.552 0.510	TOTAL COEFF, 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.1	WAKE 10 01 74 46 43 46 24 35		PEAK SS MACH NO 0.950 0.972 0.985 1.026 1.039 1.033 1.056 1.043
RP 1 2 3 4 5 6 7 8	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00	INCI MEAN 4.4 3.7 3.9 5.2 5.1 4.2 2.1	DENCE SS -2.3 -2.9 -2.4 -0.3 0.5 0.7 -0.5	DEV 13.8 13.4 12.3 9.2 8.6 9.0 14.1	D-FACT 0.432 0.424 0.393 0.392 0.398 0.402 0.437	EFF 0. 0. 0. 0.	LOSS CO TOT 0.124 0.153 0.101 0.051 0.032 0.029 0.123	0EFF PROF 0.124 0.153 0.101 0.051 0.032 0.029 0.123	LOSS P TOT 0.040 0.048 0.031 0.015 0.008 0.007	ARAM PROF 0.040 0.048 0.031 0.015 0.008 0.007

BLADE EDGES FOR STATOR 9D

(i) 100 Percent of design speed; reading 3164

RP 1 23 4 5 6 7 8 9 RP 1 23	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773 ABS VEL IN OUT 218.2 163.3 231.8 171.7	ABS BETAM IN OUT 38.8 5.0 36.2 5.4 35.6 4.6 37.2 1.6 40.1 0.5 42.8 0.3 44.9 4.2 46.3 4.7 49.7 1.3 REL VEL IN OUT 218.2 163.3 231.8 171.7	IN OUT 38.8 5.0 4 36.2 5.4 55.6 4.6 5 37.2 1.6 5 40.1 0.5 4 42.8 0.3 4 44.9 4.4 7 46.3 4.7 49.7 1.3 MERID VEL IN OUT 170.0 162.7 187.0 170.9	TOTAL TEMP IN RATIO 335.8 0.996 334.0 0.997 532.6 0.998 330.1 0.999 328.2 0.999 328.2 0.999 329.3 0.998 330.0 0.997 330.6 0.995 TANG VEL IN OUT 136.8 14.3 136.9 16.3	TOTAL PRES IN RAT 15.05 0.9 15.48 0.9 15.55 0.9 15.37 0.98 15.17 0.98 15.17 0.98 15.54 0.95 15.65 0.93 15.29 0.94 WHEEL SPEE IN OUT 0. 0. 0. 0.
234567-89 RP	236.3 180.8 239.9 184.7 246.9 184.8 255.1 188.9 275.0 188.7 278.3 187.1 271.2 181.7 ABS MACH NO IN OUT 0.616 0.455	236.3 180.8 239.9 184.7 246.9 184.8 255.1 188.9 273.0 188.7 278.3 187.1 271.2 181.7 REL MACH NO IN OUT 0.616 0.455	192.0 180.2 191.0 184.6 188.9 184.8 187.2 188.9 193.4 188.2 192.2 186.5 175.5 181.6 MERID MACH NO IN OUT 0.480 0.453	137.7 14.6 145.1 5.1 159.0 1.7 173.3 1.1 192.6 14.3 201.2 15.5 206.8 4.3 TOTAL LOSS COEFF, WAKE 0.116	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
2 3 4 5 6 7 8 9	0.660 0.480 0.675 0.508 0.689 0.521 0.714 0.523 0.740 0.536 0.797 0.534 0.813 0.529 0.789 0.513	0.660 0.480 0.675 0.508 0.689 0.521 0.714 0.523 0.740 0.536 0.797 0.534 0.813 0.529 0.789 0.513	0.532 0.478 0.549 0.506 0.549 0.521 0.546 0.523 0.543 0.536 0.564 0.533 0.562 0.527 0.511 0.512	0.108 0.080 0.057 0.054 0.054 0.122 0.131 0.147	0.957 0.94 0.914 0.95 0.938 0.97 0.967 1.00 0.978 1.03 1.009 1.03 0.973 1.03 0.970 1.04
RP 1 2 3 4 5 6 7 8 9	SPAN MEAN 5.00 4.7 10.00 3.9 15.00 4.3 30.00 5.5 50.00 6.1 70.00 4.8 85.00 2.1 90.00 1.2	DENCE SS -2.0 14.0 -2.7 13.7 -2.0 12.4 -0.0 9.1 1.5 8.6 1.3 9.1 -0.6 14.0 -1.2 14.8 -0.3 11.9	D-FACT EFF 0.433 0. 0.424 0. 0.396 0. 0.399 0. 0.418 0. 0.418 0. 0.448 0. 0.466 0. 0.480 0.	LOSS COEFF TOT PROF 0.126 0.126 0.162 0.162 0.112 0.112 0.062 0.062 0.049 0.049 0.039 0.039 0.128 0.128 0.175 0.175 0.178 0.178	LOSS PARAM TOT PROF 0.041 0.04 0.051 0.05 0.035 0.03 0.018 0.01 0.013 0.01 0.009 0.00 0.028 0.02 0.037 0.03 0.036 0.03

BLADE EDGES FOR STATOR 9D

(j) 90 Percent of design speed; reading 3180

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.959 22.484 22.004 20.559 18.639 16.723 15.286 14.803 14.318	OUT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS IN 27.5 25.9 25.9 28.1 31.9 36.5 40.8 42.7 46.5	BETAM OUT 5.8 5.2 2.6 -1.3 -1.0 -0.5 1.3 3.3 4.0	REL IN 27.5 25.9 25.9 28.1 31.9 36.5 40.8 42.7 46.5	BETAM OUT 5.8 5.2 2.6 -1.3 -1.0 -0.5 1.3 3.3 4.0	TOTAL TEMP IN RATIO 318.1 0.998 317.2 0.999 316.4 1.000 316.3 1.001 316.9 1.002 318.2 1.003 320.8 1.000 322.0 0.998 323.0 0.995	TOTAL PRESS IN RATIO 13.20 0.964 13.67 0.958 13.81 0.973 13.92 0.990 14.04 0.991 14.22 0.962 14.65 0.936 14.31 0.928
RP 1 235 4 5 67 8 9	ABS IN 210.5 227.3 232.9 240.7 250.4 263.6 282.1 289.1 284.5	VEL 0UT 178.9 193.9 205.8 219.2 227.6 234.8 239.8 238.3 232.0	REL IN 210.5 227.3 232.9 240.7 250.4 263.6 282.1 289.1 284.5	VEL 0UT 178.9 193.9 205.8 219.2 227.6 234.8 239.8 239.8 238.3 232.0	IN 186.7 204.5 209.6 212.4 212.6	0 VEL 0UT 178.0 193.1 205.5 219.2 227.6 234.8 239.8 237.9 231.4	TANG VEL IN OUT 97.3 18.2 99.2 17.4 101.6 9.4 113.2 -5.0 132.2 -3.9 156.6 -2.2 184.3 5.4 196.1 13.9 206.2 16.3	0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M/IN 0.610 0.664 0.683 0.708 0.739 0.781 0.839 0.861 0.844	OUT 0.514 0.514 0.560 0.597 0.639 0.665 0.686 0.700 0.694 0.674	REL M/IN 0.610 0.664 0.683 0.708 0.739 0.781 0.839 0.861 0.844	OLGAN OUT 0.514 0.560 0.597 0.639 0.665 0.686 0.700 0.694 0.674	MERID M. IN 0.541 0.598 0.615 0.625 0.628 0.628 0.636 0.633 0.581	OUT 0.511 0.558 0.596 0.665 0.665 0.686 0.700 0.693 0.673	TOTAL LOSS COEFF, WAKE 0.148 0.132 0.078 0.033 0.050 0.073 0.095 0.137 0.169	MERID PEAK SS VEL R MACH NO 0.954 0.673 0.944 0.681 0.981 0.711 1.032 0.790 1.070 0.850 1.107 0.904 1.123 0.958 1.119 0.974 1.181 1.003
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -6.5 -5.5 -3.6 -2.1 -1.6 -2.0 -2.4	DENCE SS -13.3 -13.0 -11.8 -9.2 -6.7 -5.0 -4.7 -4.8 -3.6	DEV 14.8 13.4 10.4 6.2 7.1 8.2 10.9 13.4 14.6	D-FACT 0.271 0.261 0.239 0.231 0.233 0.251 0.286 0.306 0.318	0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.164 0.164 0.162 0.162 0.099 0.099 0.036 0.036 0.028 0.028 0.051 0.051 0.102 0.102 0.167 0.167 0.193 0.193	LOSS PARAM TOT PROF 0.053 0.053 0.051 0.051 0.031 0.031 0.011 0.011 0.007 0.007 0.012 0.012 0.022 0.022 0.035 0.035 0.039 0.039

BLADE EDGES FOR STATOR 9D

(k) 90 Percent of design speed; reading 3179

RP 1 23 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM IN OUT 31.1 3.9 29.0 4.1 28.9 2.1 30.4 0.1 34.0 0.0 37.9 -0.1 41.9 2.2 43.5 4.4 47.0 3.3	29.0 4.1 28.9 2.1 30.4 0.1 34.0 0.0 37.9 -0.1 41.9 2.2 43.5 4.4	TOTAL TEMP IN RATIO 320.7 0.999 319.4 1.000 318.7 1.000 318.2 1.000 318.8 1.001 320.9 1.000 322.2 0.998 323.2 0.995	TOTAL PRESS IN RATIO 13.63 0.972 14.07 0.965 14.12 0.980 14.18 0.988 14.18 0.994 14.19 1.000 14.47 0.980 14.67 0.945 14.33 0.944
RP 1 2 3 4 5 6 7 8 9	ABS VEL 1N CUT 204.6 164.7 220.7 178.0 224.8 187.9 235.8 197.5 243.9 205.8 253.3 213.3 270.3 217.0 279.0 211.6 273.2 205.7	REL VEL 1N OUT 204.6 164.7 220.7 178.0 224.8 187.9 233.8 197.5 243.9 205.8 253.3 213.3 270.3 217.0 279.0 211.6 273.2 205.7	MERID VEL IN OUT 175.2 164.3 193.0 177.5 196.8 187.8 201.7 197.5 202.1 205.8 199.9 213.3 201.2 216.8 202.6 211.0 186.3 205.3	TANG VEL IN OUT 105.7 11.2 106.9 12.8 108.5 7.0 118.2 0.3 136.6 0.0 155.6 -0.3 180.5 8.4 191.9 16.4 199.7 12.0	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.589 0.469 0.641 0.510 0.654 0.540 0.716 0.596 0.746 0.618 0.799 0.628 0.827 0.610 0.806 0.592	REL MACH NO 1N OUT 0.589 0.469 0.641 0.510 0.654 0.540 0.683 0.570 0.716 0.596 0.746 0.618 0.799 0.628 0.827 0.610 0.806 0.592	MERID MACH NO IN OUT 0.505 0.468 0.561 0.508 0.573 0.540 0.590 0.570 0.594 0.596 0.589 0.618 0.595 0.627 0.600 0.609 0.550 0.591	TOTAL LOSS COEFF, WAKE 0.116 0.106 0.058 0.031 0.037 0.042 0.062 0.129 0.143	MERID PEAK SS VEL R MACH NO 0.938 0.740 0.920 0.761 0.954 0.781 0.979 0.831 1.018 0.888 1.067 0.909 1.078 0.950 1.042 0.964 1.102 0.975
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 -3.0 10.00 -3.4 15.00 -2.5 30.00 -1.3 50.00 -0.1 85.00 -0.9 90.00 -1.7 95.00 -0.9	DENCE DEV SS -9.7 12.9 -9.9 12.4 -8.8 9.6 -4.5 8.1 -3.6 8.7 -3.6 11.8 -4.1 14.5 -3.0 13.9	D-FACT EFF 0.344 0. 0.328 0. 0.304 0. 0.301 0. 0.303 0. 0.303 0. 0.303 0. 0.372 0. 0.384 0.	LOSS COEFF TOT PROF 0.132 0.132 0.146 0.146 0.082 0.082 0.043 0.043 0.021 0.021 0.001 0.001 0.059 0.059 0.151 0.151 0.162 0.162	LOSS PARAM TOT PROF 0.043 0.043 0.046 0.025 0.012 0.012 0.006 0.006 0.000 0.000 0.013 0.013 0.032 0.032 0.033 0.033

BLADE EDGES FOR STATOR 9D

(1) 90 Percent of design speed; reading 3178

RP 1 2 3 4 5 6 7 8 9	IN 22.959 22.484 22.004 20.559 18.639 16.723	22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS 1N 34.6 32.4 31.6 33.4 35.8 39.4 43.3 44.8 48.2	BETAM OUT 4.3 5.1 3.7 1.0 0.3 -0.3 3.2 4.9 2.7	REL IN 34.6 32.4 *31.6 33.4 35.8 39.4 43.3 44.8 48.2	BETAM OUT 4.3 5.1 3.7 1.0 0.3 0.3 3.2 4.9 2.7	TOTAL TEMP IN RATIO 325.4 0.998 322.1 0.999 521.2 1.000 320.1 1.000 319.0 1.000 519.2 1.001 521.4 0.998 322.4 0.997 523.2 0.995	TOTAL PRESS IN RATIO 13.93 0.974 14.30 0.969 14.38 0.981 14.34 0.992 14.25 0.995 14.20 0.999 14.47 0.979 14.67 0.946 14.33 0.946
RP 1 2 5 4 5 6 7 8 9	ABS IN 200.2 214.5 219.7 226.5 235.6 244.4 260.7 269.1 261.4	VEL 0UT 156.4 168.3 178.1 186.7 191.7 196.8 199.4 193.8 186.9	REL !N 200.2 214.5 219.7 226.5 235.6 244.4 260.7 269.1 261.4	VEL 0UT 156.4 168.3 178.1 186.7 191.7 196.8 199.4 193.8 186.9	MERI IN 164.7 181.2 187.1 189.0 191.1 188.9 189.9 190.9	D VEL 0UT 156.0 167.7 177.7 186.7 191.7 196.8 199.1 193.1	TANG VEL iN OUT 113.8 11.8 114.9 15.1 115.1 11.4 124.8 3.4 137.8 1.0 155.0 -1.0 178.6 11.3 189.7 16.7 194.9 8.8	IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.573 0.619 0.636 0.658 0.689 0.716 0.767 0.793 0.767	OUT 0.443 0.479 0.508 0.535 0.551 0.567 0.573 0.556 0.535	REL M. IN 0.573 0.619 0.636 0.658 0.658 0.716 0.767 0.793 0.767	OUT 0.443 0.479 0.508 0.535 0.551 0.556 0.556 0.535	MERID M IN 0.472 0.522 0.542 0.554 0.558 0.554 0.559 0.563 0.511	ACH NO OUT 0.442 0.477 0.507 0.535 0.551 0.551 0.572 0.554	TOTAL LOSS COEFF, WAKE -0.109 0.102 0.062 0.032 0.037 0.042 0.081 0.126 0.140	MERID PEAK SS VEL R MACH NO 0.947 0.793 0.926 0.816 0.950 0.825 0.988 0.877 1.003 0.899 1.042 0.913 1.048 0.953 1.011 0.969 1.072 0.964
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 70.00 85.00 90.00 95.00	INCI MEAN 0.6 0.0 0.2 1.8 1.8 1.3 0.4 -0.3	DENCE SS -6.1 -6.5 -6.1 -3.8 -2.7 -2.1 -2.2 -2.7 -1.8	DEV 13.3 13.4 11.5 8.6 8.3 8.5 12.9 15.0 13.3	D-FACT 0.383 0.362 0.335 0.331 0.339 0.345 0.373 0.413	EFF 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.129 0.129 0.136 0.136 0.081 0.081 0.030 0.030 0.020 0.020 0.020 0.020 0.004 0.004 0.064 0.064 0.158 0.158 0.167 0.167	LOSS PARAM TOT PROF 0.042 0.042 0.043 0.043 0.025 0.025 0.009 0.009 0.005 0.005 0.001 0.001 0.014 0.014 0.033 0.033 0.034 0.034

BLADE EDGES FOR STATOR 9D

(m) 90 Percent of design speed; reading 3165

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM IN OUT 36.7 4.7 35.9 5.2 35.9 4.2 35.3 1.3 38.3 0.1 41.4 -0.4 44.3 3.9 45.6 5.0 48.9 2.3	36.7 4.7 33.9 5.2 33.9 4.2 35.3 1.3 38.3 0.1 41.4 -0.4 44.3 3.9 45.6 5.0	TOTAL TEMP IN RATIO 324.7 0.999 325.5 0.999 320.7 0.999 319.4 0.999 319.6 0.999 321.6 0.998 322.8 0.996 323.4 0.995	TOTAL PRESS IN RATIO 13.99 0.978 14.36 0.968 14.40 0.981 14.25 0.991 14.08 0.995 14.15 0.992 14.49 0.973 14.64 0.948 14.37 0.948
R - 254567-89	ABS VEL IN OUT 195.5 151.2 209.9 160.6 213.9 169.6 217.0 173.4 222.8 180.2 253.4 185.4 260.1 181.7 254.6 176.6	REL VEL 1N OUT 195.5 151.2 209.9 160.6 213.9 169.6 217.0 175.4 222.8 174.9 224.8 180.2 253.4 185.4 260.1 181.7 254.6 176.6	MERID VEL 1N OUT 156.8 150.7 174.2 160.0 177.6 169.1 177.0 175.3 174.7 174.9 176.2 180.2 181.3 184.9 182.0 181.0 167.5 176.4	TANG VEL IN OUT 116.8 12.3 117.2 14.5 119.1 12.5 125.4 4.0 138.2 0.4 155.2 -1.4 177.0 12.7 185.8 16.0 191.7 7.0	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO 1N OUT 0.558 0.426 0.603 0.455 0.616 0.482 0.628 0.495 0.647 0.500 0.685 0.516 0.743 0.530 0.763 0.519 0.744 0.503	REL MACH NO 1N OUT 0.558 0.426 0.603 0.455 0.616 0.482 0.628 0.495 0.647 0.500 0.685 0.516 0.743 0.530 0.763 0.519 0.744 0.503	MERID MACH NO IN OUT 0.447 0.425 0.500 0.453 0.512 0.481 0.512 0.495 0.508 0.500 0.514 0.516 0.531 0.529 0.534 0.517 0.490 0.503	TOTAL LOSS COEFF, WAKE 0.111 0.104 0.066 0.039 0.042 0.045 0.092 0.121 0.147	MERID PEAK SS VEL R MACH NO 0.961 0.811 0.919 0.828 0.952 0.849 0.979 0.877 1.001 0.903 1.023 0.923 1.023 0.953 0.994 0.955 1.054 0.954
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 2.6 10.00 1.6 15.00 2.5 30.00 3.6 50.00 4.3 70.00 3.3 85.00 1.5 90.00 0.5 95.00 1.0	DENCE SS -4.1 13.6 -4.9 13.4 -3.8 12.0 -1.9 8.8 -0.2 8.2 -0.1 8.4 -1.2 13.5 -1.9 15.1 -1.1 12.9	D-FACT EFF 0.399 0. 0.389 0. 0.362 0. 0.363 0. 0.377 0. 0.389 0. 0.407 0. 0.437 0. 0.451 0.	LOSS COEFF TOT PROF 0.117 0.117 0.146 0.146 0.035 0.085 0.038 0.038 0.019 0.019 0.028 0.028 0.088 0.088 0.162 0.162 0.169 0.169	LOSS PARAM TOT PROF 0.038 0.038 0.046 0.046 0.026 0.026 0.011 0.011 0.005 0.005 0.007 0.007 0.019 0.019 0.034 0.034 0.034 0.034

BLADE EDGES FOR STATOR 9D

(n) 90 Percent of design speed; reading 3166

RP 1 23 4 5 6 7 8 9	16.723	OUT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS IN 39.1 37.1 36.8 38.1 41.1 42.2 44.9 46.2 49.4	BETAM OUT 4.6 5.4 4.5 1.2 0.5 -0.0 4.5 5.3 2.2	REL IN 39.1 37.1 36.8 38.1 41.1 42.2 44.9 46.2 49.4	BETAM OUT 4.6 5.4 4.5 1.2 0.5 -0.0 4.5 5.3 2.2	TOTAL TEM IN RATI 325.0 0.99 324.3 0.99 323.5 0.99 321.8 0.99 320.9 0.99 320.4 0.99 322.1 0.99 322.9 0.99 323.6 0.99	0 IN 9 13.79 9 14.05 9 14.09 13.96 13.95 8 14.12 7 14.50 14.68	
RP 1 23 4 5 61- 8 9	!N 187.1 198.4 202.3 205.4 215.3 229.0 248.4 255.6	VEL 0UT 141.3 148.0 155.2 157.6 162.7 170.4 177.9 175.4 170.4	REL 1N 187.1 198.4 202.3 205.4 215.3 229.0 248.4 255.6 249.9	VEL 0UT 141.3 148.0 155.2 157.6 162.7 170.4 177.9 175.4 170.4	MERI. IN 145.2 158.3 162.1 161.5 162.3 169.6 175.8 176.9 162.6	D VEL 0UT 140.8 147.4 154.7 157.6 162.7 170.4 177.3 174.6 170.2	TANG VEL IN OUT 118.0 11. 119.5 13. 121.1 12. 126.9 3. 141.5 1. 153.9 -0. 175.4 14. 184.4 16. 189.7 6.	3 0. 2 0. 3 0. 5 0. 1 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS M. 1N 0.532 0.567 0.580 0.591 0.622 0.666 0.726 0.729	OUT 0.397 0.417 0.439 0.447 0.463 0.508 0.508 0.500 0.485	REL M. IN 0.532 0.567 0.580 0.591 0.622 0.666 0.726 0.726 0.748 0.729	OUT 0.397 0.417 0.439 0.447 0.463 0.463 0.508 0.500 0.485	MERID M IN 0.413 0.452 0.465 0.465 0.469 0.514 0.514 0.518 0.474	ACH NO OUT 0.396 0.415 0.437 0.447 0.463 0.506 0.506 0.498 0.484	TOTAL LOSS COEFF, WAKE 0.114 0.110 0.077 0.061 0.064 0.044 0.101 0.123 0.048		PEAK SS MACH NO 0.817 0.840 0.357 0.983 0.927 0.917 0.948 0.953 0.948
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN 5.0 4.7 5.4 6.5 7.1 4.2 2.1 1.1	DENCE SS -1.7 -1.8 -0.9 0.9 2.6 0.7 -0.5 -1.3	DEV 13.6 13.6 12.3 8.7 8.6 8.7 14.2 15.3	D-FACT 0.429 0.423 0.400 0.407 0.415 0.414 0.423 0.450 0.465	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.116 0.11 0.145 0.14 0.102 0.10 0.063 0.06 0.036 0.03 0.046 0.04 0.100 0.10 0.173 0.17	TOT 0.037 0.046 0.032 0.018 0.009 0.011 0.022 5.0036	PARAM PROF 0.037 0.046 0.032 0.018 0.009 0.011 0.022 0.036 0.036

BLADE EDGES FOR STATOR 9D

(o) 80 Percent of design speed; reading 3167

RP 1 2 3 4 5 6 7 8 9		ABS BETAM IN OUT 52.3 2.3 48.4 2.44.9 2.6 42.8 2.45.2 0.9 44.6 1.4 45.5 4.6 46.9 5.2 49.8 1.8	IN OUT 2.3 2.3 2.3 2.3 48.4 2.7 44.9 2.6 42.8 2.1 45.2 0.9 444.6 1.4 45.5 4.6 45.5 4.6 46.9 5.2	TOTAL TEMP IN RATIO 320.3 0.998 319.5 0.998 318.8 0.997 316.5 0.999 315.3 0.999 315.1 0.998 315.1 0.998 315.5 0.998 316.4 0.996	TOTAL PRESS IN RATIO 12.82 0.974 12.91 0.971 12.97 0.971 12.98 0.976 12.97 0.983 13.23 0.986 13.52 0.974 13.63 0.962 13.51 0.957
RP 1 23 4 5 6 7 8 9	ABS VEL IN OUT 155.5 110.3 162.1 113.7 166.7 117.1 172.9 123.3 180.8 128.8 198.6 145.4 215.6 153.8 221.7 154.1 220.4 150.0	REL VEL 1N OUT 155.5 110.3 162.1 113.7 166.7 117.1 172.9 123.3 180.8 128.8 198.6 145.4 215.6 153.8 221.7 154.1 220.4 150.0	MERID VEL IN OUT 95.0 110.2 107.7 113.6 118.0 116.9 126.9 123.2 127.4 128.8 141.4 145.4 151.0 153.3 151.4 153.5 142.2 149.9	TANG VEL IN OUT 123.1 4.5 121.1 5.3 117.7 5.3 117.4 4.6 128.2 2.0 139.4 3.4 153.8 12.3 161.9 14.0 168.4 4.6	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 23 4 5 6 7 8 9	ABS MACH NO IN OUT 0.442 0.311 0.462 0.321 0.476 0.331 0.497 0.350 0.522 0.367 0.577 0.416 0.629 0.441 0.648 0.442 0.643 0.429	REL MACH NO IN OUT 0.442 0.311 0.462 0.321 0.476 0.331 0.497 0.350 0.522 0.367 0.577 0.416 0.629 0.441 0.648 0.442 0.643 0.429	MERID MACH NOT IN OUT 0.270 0.310 0.307 0.321 0.337 0.331 0.364 0.350 0.368 0.367 0.411 0.416 0.444 0.443 0.440 0.443 0.449 0.445 0.429	TOTAL LOSS COEFF, WAKE 0.175 0.158 0.148 0.136 0.094 0.077 0.108 0.123 0.125	MERID PEAK SS VEL R MACH NO 1.159 0.881 1.055 0.862 0.991 0.836 0.971 0.820 1.011 0.849 1.028 0.841 1.015 0.835 1.013 0.843 1.054 0.847
RP 1 2 3 4 5 6 7 8 9	PERCENT INCI SPAN MEAN 5.00 18.3 10.00 16.0 15.00 13.6 30.00 11.1 50.00 11.2 70.00 6.6 85.00 2.7 90.00 1.8 95.00 2.0	DENCE SS 11.6 11.3 9.5 10.9 7.2 10.4 5.5 9.7 6.6 8.9 3.1 10.1 0.0 14.2 -0.6 15.3 -0.2 12.3	D-FACT EFF 0.537 0. 0.524 0. 0.507 0. 0.476 0. 0.471 0. 0.429 0. 0.427 0. 0.443 0. 0.468 0.	LOSS COEFF TOT PROF 0.205 0.205 0.215 0.215 0.204 0.204 0.154 0.154 0.101 0.101 0.070 0.070 0.110 0.110 0.155 0.155 0.177 0.177	LOSS PARAM TOT PROF 0.066 0.066 0.068 0.068 0.063 0.063 0.045 0.045 0.027 0.027 0.016 0.016 0.024 0.024 0.032 0.032 0.036 0.036

BLADE EDGES FOR STATOR 9D

(p) 70 Percent of design speed; reading 3174

RP 1 2 3 4 5 6 7 8 9		0UT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS 1N 21.5 20.9 20.9 23.2 27.5 32.8 37.9 39.8 42.9	BETAM OUT 2.9 2.6 0.2 -1.8 -2.2 -1.7 0.6 2.6 3.8	REL IN 21.5 20.9 20.9 23.2 27.5 32.8 37.9 39.8 42.9	BETAM OUT 2.9 2.6 0.2 -1.8 -2.2 -1.7 0.6 2.6 3.8	TOTAL TEMP IN RATIO 302.5 1.002 302.2 1.002 302.1 1.002 302.5 1.002 305.5 1.003 305.5 1.002 307.7 1.002 308.5 1.000 309.7 0.998	TOTAL PRESS IN RATIO 11.46 0.978 11.75 0.977 11.80 0.989 11.97 0.992 12.16 0.995 12.43 0.993 12.70 0.991 12.79 0.972 12.72 0.959
RP 1 2 3 4 5 6 7 8 9	ABS IN 161.0 176.0 179.8 189.7 201.9 216.4 232.7 238.8 241.3	VEL 0UT 143.8 157.6 167.3 177.5 189.2 201.3 213.5 213.1 210.6	REL IN 161.0 176.0 179.8 189.7 201.9 216.4 232.7 238.8 241.3	VEL 0UT 143.8 157.6 167.3 177.5 189.2 201.3 213.5 213.1 210.6	MERI IN 149.8 164.4 167.9 174.4 179.1 182.0 183.7 183.5 176.6	D VEL 0UT 143.6 157.5 167.3 177.4 189.0 201.3 213.4 212.9 210.1	TANG VEL IN OUT 59.1 7.2 62.9 7.2 64.1 0.7 74.7 -5.6 93.1 -7.2 117.1 -5.9 142.8 2.1 152.8 9.8 164.4 13.9	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MA IN 0.472 0.518 0.530 0.561 0.598 0.643 0.693 0.712 0.718	OUT 0.419 0.461 0.491 0.522 0.558 0.558 0.630 0.629 0.620	REL M. IN 0.472 0.518 0.530 0.561 0.598 0.643 0.693 0.712 0.718	OUT 0.419 0.461 0.491 0.522 0.558 0.558 0.630 0.629 0.620	MERID M IN 0.439 0.484 0.495 0.516 0.531 0.540 0.547 0.547 0.526	ACH NO OUT 0.419 0.461 0.522 0.557 0.557 0.630 0.628 0.619	TOTAL LOSS COEFF, WAKE 0.120 0.107 0.062 0.043 0.036 0.046 0.045 0.095 0.136	MERID PEAK SS VEL R MACH NO 0.959 0.472 0.958 0.518 0.996 0.530 1.018 0.561 1.055 0.598 1.106 0.643 1.162 0.693 1.160 0.712 1.190 0.718
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN -12.5 -11.4 -10.5 -8.5 -6.6 -5.3 -4.9 -5.3 -4.9	DENCE SS -19.2 -17.9 -16.8 -14.0 -11.1 -8.7 -7.6 -7.7	DEV 11.8 10.9 8.0 5.7 5.8 7.1 10.2 12.7	D-FACT 0.211 0.204 0.179 0.187 0.193 0.203 0.212 0.231 0.252	0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.154 0.154 0.138 0.138 0.062 0.062 0.040 0.040 0.023 0.023 0.030 0.030 0.034 0.034 0.099 0.099 0.140 0.140	LOSS PARAM TOT PROF 0.050 0.050 0.044 0.044 0.019 0.019 0.012 0.012 0.006 0.006 0.007 0.007 0.007 0.007 0.021 0.021 0.028 0.028

BLADE EDGES FOR STATOR 9D

(q) 70 Percent of design speed; reading 3171

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BETAM IN OUT 27.0 2.6 25.5 2.7 25.0 0.6 27.1 -1.5 30.9 -1.5 35.4 -1.0 41.6 3.6 44.7 3.8	7 25.5 2.7 6 25.0 0.6 6 27.1 -1.5 7 30.9 -1.5 9 35.4 -1.0 12 39.7 1.2 6 41.6 3.6	TOTAL TEMP IN RATIO 305.3 1.000 304.7 1.000 304.4 1.001 304.4 1.000 305.0 1.000 306.1 1.001 307.9 1.000 308.6 0.997	TOTAL PRESS IN RATIO 11.85 0.984 12.09 0.981 12.15 0.989 12.21 0.994 12.33 0.995 12.49 0.996 12.70 0.990 12.81 0.971 12.71 0.965
RP 1 23 4 5 6 7 8 9	ABS VEL 1N OUT 155.9 132.9 168.4 144.1 172.7 151.9 179.9 159.7 191.5 169.4 204.0 178.5 219.5 186.5 225.2 184.0 226.2 182.6	REL VEL IN OUT 155.9 132.9 168.4 144.1 172.7 151.9 179.9 159.7 191.5 169.4 204.0 178.5 219.5 186.5 225.2 184.0 226.2 182.6	MERID VEL 1N OUT 138.9 132.8 152.0 143.9 156.5 151.9 160.2 159.6 164.2 169.3 166.3 178.5 168.8 186.4 168.5 183.7 160.7 182.2	TANG VEL IN OUT 70.8 5.9 72.4 6.7 72.8 1.6 81.8 -4.1 98.4 -4.5 118.2 -3.1 140.2 4.0 149.4 11.5 159.3 12.1	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.454 0.385 0.493 0.419 0.506 0.443 0.529 0.466 0.564 0.495 0.602 0.522 0.650 0.546 0.668 0.538 0.670 0.533	REL MACH NO IN OUT 0.454 0.385 0.493 0.419 0.506 0.443 0.529 0.466 0.564 0.495 0.602 0.522 0.650 0.546 0.668 0.538 0.670 0.533	MERID MACH NO 1N OUT 0.405 0.385 0.445 0.418 0.459 0.443 0.471 0.466 0.484 0.495 0.491 0.522 0.500 0.546 0.499 0.537 0.476 0.532	TOTAL LOSS COEFF, WAKE 0.102 0.088 0.045 0.027 0.027 0.037 0.040 0.098 0.125	MERID PEAK SS VEL R MACH NO 0.956 0.488 0.947 0.493 0.971 0.506 0.996 0.561 1.031 0.624 1.073 0.668 1.104 0.707 1.090 0.716 1.134 0.744
RP 1 2 3 4 5 6 7 8 9	SPAN MEAN 5.00 -7.0 10.00 -6.9 15.00 -6.4 30.00 -4.6 50.00 -3.1 70.00 -2.6 85.00 -3.1 90.00 -3.5	DENCE DEV SS -13.8 11.5 -13.4 10.9 -12.7 8.4 -10.2 6.0 -7.6 6.5 -6.1 7.8 -5.8 10.9 -6.0 13.6 -5.3 14.4	D-FACT EFF 0.282 0. 0.268 0. 0.248 0. 0.251 0. 0.256 0. 0.265 0. 0.283 0. 0.310 0. 0.323 0.	LOSS COEFF TOT PROF 0.124 0.124 0.122 0.122 0.069 0.069 0.034 0.034 0.024 0.024 0.020 0.020 0.040 0.040 0.113 0.113 0.133 0.133	LOSS PARAM TOT PROF 0.040 0.040 0.039 0.039 0.021 0.021 0.010 0.010 0.006 0.006 0.005 0.005 0.009 0.009 0.024 0.024 0.027 0.027

BLADE EDGES FOR STATOR 9D

(r) 70 Percent of design speed; reading 3170

RP 1 2 3 4 5 6 7 8 9		0UT 22.969 22.504 22.027 20.587 8.702 6.883 5.585 5.174	ABS 1N 33.5 30.6 29.7 31.4 34.8 38.7 42.6 44.2 46.4	BETAM OUT 3.9 4.1 2.4 0.1 -0.2 -0.2 4.9 3.2	REL IN 33.5 30.6 29.7 31.4 34.8 38.7 42.6 44.2 46.4	BETAM OUT 3.9 4.1 2.4 0.1 -0.2 -0.2 2.5 4.9 3.2	TOTA IN 308.5 307.3 306.6 306.2 306.0 306.5 308.2 308.9 309.6	L TEMP RATIO 0.999 1.000 1.000 1.000 1.000 1.001 0.999 0.998 0.997	TOTAL IN 12.12 12.32 12.38 12.38 12.46 12.69 12.69	PRESS RAT10 0.985 0.982 0.989 0.995 0.997 0.999 0.969 0.969
RP 1 2 3 4 5 6 7 8 9	164.8 170.1 179.2 189.8 205.9 212.4	VEL 0UT 122.1 131.1 138.6 145.1 150.8 157.9 163.7 160.2 157.6	REL IN 149.6 160.7 164.8 170.1 179.2 189.8 205.9 212.4 211.6	VEL 0UT 122.1 131.1 138.6 145.1 150.8 157.9 163.7 160.2 157.6	MERII IN 124.8 138.3 143.2 145.1 147.2 148.2 151.5 152.4 145.9	D VEL OUT 121.8 130.8 138.5 145.1 150.8 157.9 163.6 159.6 157.4	TAN 1N 82.5 81.8 81.5 88.7 102.1 118.7 139.4 148.0 153.3	G VEL OUT 8.3 9.3 5.9 0.3 -0.7 -0.5 7.0 13.7 8.8	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 2 3 4 5 6 7 8 9	ABS MA IN 0.433 0.467 0.480 0.497 0.525 0.558 0.606 0.623	CH NO OUT 0.351 0.378 0.401 0.421 0.421 0.438 0.459 0.476 0.465 0.457	REL M. IN 0.433 0.467 0.480 0.497 0.525 0.558 0.606 0.626 0.623	OUT 0.351 0.378 0.401 0.421 0.438 0.459 0.476 0.465 0.457	MERID M IN 0.361 0.402 0.417 0.424 0.431 0.435 0.446 0.449	OUT 0.350 0.378 0.401 0.421 0.438 0.459 0.475 0.463 0.456	0.0	WAKE 089 105 064 000		PEAK SS MACH NO 0.581 0.585 0.588 0.625 0.665 0.665 0.738 0.748 0.759
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00 95.00	INCI MEAN -0.6 -1.7 -1.7 -0.3 0.7 0.6 -0.2 -1.0	DENCE SS -7.3 -8.3 -8.0 -5.8 -3.8 -2.9 -3.4 -3.6	DEV 12.9 12.3 10.2 7.6 7.8 8.6 12.1 15.0	D-FACT 0.344 0.327 0.301 0.298 0.309 0.316 0.342 0.377 0.391	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS C TOT 0.124 0.128 0.077 0.035 0.020 0.003 0.050 0.135 0.147	0EFF PROF 0.124 0.128 0.077 0.035 0.020 0.003 0.050 0.135 0.147	LOSS P TOT 0.040 0.041 0.024 0.010 0.005 0.001 0.011 0.028 0.030	PROF 0.040 0.041 0.024 0.010 0.005 0.001 0.011 0.028 0.030

BLADE EDGES FOR STATOR 9D

(s) 70 Percent of design speed; reading 3169

RP 1 2 3 4 5 6 7 8 9	RAD IN 22.959 2 22.484 2 20.559 1 18.639 16.723 15.286 14.803 14.318	0UT 22.969 22.504 22.027 20.587 18.702 16.883 15.585	ABS IN 41.7 38.5 36.0 36.7 40.5 43.1 46.5 48.7	BETAM OUT 5.2 4.9 3.7 0.6 0.4 0.0 4.0 5.2	REL 1N 41.7 38.5 36.0 36.7 40.5 43.1 45.1 46.5 48.7	BETAM OUT 5.2 4.9 3.7 0.6 0.4 0.0 4.0 5.2	TOTAL TEMP IN RATIO 310.8 0.999 309.8 0.999 308.8 1.000 307.6 1.000 307.5 1.000 307.5 0.999 308.6 0.998 308.9 0.998 309.5 0.997	TOTAL PRESS IN RATIO 12.20 0.986 12.31 0.984 12.37 0.987 12.36 0.992 12.37 0.994 12.46 0.993 12.70 0.980 12.75 0.969 12.66 0.965
RP 1 25 4 5 6 7 8 9	ABS IN 141.8 148.8 157.4 165.7 176.8 193.4 197.4	VEL 0UT 108.8 113.8 120.1 125.4 129.6 135.9 141.3 139.2 135.6	REL IN 141.8 148.8 153.0 157.4 165.7 176.8 193.4 197.4 196.8	VEL 0UT 108.8 115.8 120.1 125.4 129.6 135.9 141.3 139.2 135.6	MERI IN 105.8 116.5 123.8 126.0 129.0 136.4 136.0 129.8	D VEL 0UT 108.4 113.4 119.8 125.4 129.6 135.9 141.0 138.6 135.5	TANG VEL IN OUT 94.4 9.8 92.6 9.6 90.0 7.8 94.1 1.4 107.6 1.0 120.9 0.1 137.1 10.0 143.2 12.7 147.8 4.2	WHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MAIN 0.408 0.430 0.443 0.457 0.482 0.516 0.567 0.576	OUT 0.311 0.326 0.345 0.361 0.374 0.393 0.408 0.402 0.391	IN 0.408 0.430 0.443 0.457 0.482 0.516 0.567	OUT 0.311 0.326 0.345 0.361 0.374 0.393 0.408 0.402 0.391	MERID M IN 0.304 0.356 0.358 0.366 0.367 0.377 0.400 0.399 0.380	OUT 0.310 0.325 0.344 0.361 0.374 0.393 0.407 0.400 0.391	TOTAL LOSS COEFF, WAKE 0.130 0.104 0.080 0.050 0.057 0.047 0.098 0.127 0.129	MERID PEAK SS VEL R MACH NO 1.024 0.663 0.973 0.657 0.968 0.643 0.994 0.660 1.029 0.708 1.054 0.727 1.034 0.744 1.019 0.744 1.044 0.735
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70:00 85.00 90.00 95.00	INCI MEAN 7.7 6.1 4.6 5.0 6.5 5.1 2.3 1.4	DENCE SS 1.0 -0.4 -1.7 -0.5 1.9 1.7 -0.3 -1.1	DEV 14.1 13.1 11.5 8.2 8.5 8.8 13.7 15.3	D-FACT 0.426 0.412 0.382 0.374 0.386 0.392 0.410 0.432 0.457	EFF 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.125 0.125 0.132 0.132 0.103 0.103 0.061 0.061 0.040 0.040 0.041 0.041 0.102 0.102 0.155 0.155 0.174 0.174	LOSS PARAM TOT PROF 0.040 0.040 0.041 0.041 0.032 0.032 0.018 0.018 0.011 0.011 0.010 0.010 0.022 0.022 0.032 0.032 0.035 0.035

BLADE EDGES FOR STATOR 9D

(t) 70 Percent of design speed; reading 3168

RP 1 23 4 5 6 7 8 9	RAD IN 22.959 22.484 22.004 20.559 18.639 16.723 15.286 14.803 14.318	OUT 22.969 22.504 22.027 20.587 18.702 16.883 15.585 15.174	ABS IN 54.4 50.7 46.9 43.7 45.9 45.3 45.7 47.0 50.1	BETAM OUT 1.8 2.1 1.9 0.9 1.3 4.6 5.3	IN 54.4 50.7 46.9 43.7 45.9 45.3 45.7 47.0	BETAM OUT 1.8 2.1 1.9 0.9 1.3 4.6 5.3	TOTAL TE IN RAT 313.3 0.9 312.7 0.9 311.6 0.9 310.0 0.9 308.7 0.9 309.0 0.9 309.0 0.9 309.2 0.9 309.8 0.9	10 IN 98 12.19 98 12.20 99 12.20 99 12.20 99 12.20 98 12.40 98 12.70 99 12.75	3 0.977 6 0.977 8 0.979 8 0.985 0.989 0.974 0.967
RP 1 2 3 4 5 6 7 8 9	ABS IN 135.3 139.9 143.6 149.3 157.0 171.8 188.3 192.2 191.7	VEL OUT 95.8 98.5 101.1 112.5 127.2 131.8 131.8 128.9	REL IN 135.3 139.9 143.6 149.3 157.0 171.8 188.3 192.2 191.7	VEL 0UT 95.8 98.5 101.1 112.3 127.2 131.8 131.8 128.9	MERI 1N 78.9 88.6 98.2 107.9 109.3 120.9 131.6 131.0	D VEL 0UT 95.8 98.4 101.0 106.1 112.3 127.1 131.4 131.3 128.9	108.3 3 104.8 3 103.2 3 112.7 1 122.0 2 134.7 10 140.6 12		O. O
RP 1 2 3 4 5 6 7 8 9	ABS M. IN 0.387 0.401 0.413 0.431 0.455 0.500 0.5560 0.5660	0.272 0.280 0.288 0.304 0.322 0.366 0.380 0.380 0.371	REL M. 1N 0.387 0.401 0.413 0.455 0.500 0.550 0.562 0.560	ACH NO OUT 0.272 0.280 0.288 0.304 0.322 0.366 0.380 0.380 0.371	MERID M IN 0.226 0.254 0.282 0.311 0.316 0.352 0.385 0.385	ACH NO OUT 0.272 0.280 0.288 0.303 0.322 0.366 0.379 0.378 0.371	TOTAL LOSS COEFF, WAKI 0.182 0.150 0.162 0.121 0.103 0.082 0.108 0.115 0.140		0.782 0.752 0.725 0.751 0.740 0.733 0.733
RP 1 2 3 4 5 6 7 8 9	PERCENT SPAN 5.00 10.00 15.00 30.00 50.00 70.00 85.00 90.00	INCI MEAN 20.3 18.4 15.5 12.1 11.9 7.2 2.9 1.9 2.3	DENCE SS 13.6 11.8 9.2 6.5 7.3 3.8 0.2 -0.5	DEV 10.8 10.4 9.8 9.5 9.0 10.1 14.3 15.3	D-FACT 0.547 0.533 0.514 0.482 0.470 0.423 0.441 0.452 0.477	EFF 0. 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROI 0.230 0.22 0.220 0.22 0.211 0.2 0.173 0.1 0.114 0.1 0.072 0.0 0.140 0.12 0.169 0.16 0.187 0.18	TOT 50 0.074 20 0.070 11 0.065 73 0.050 14 0.030 72 0.017 40 0.030 59 0.035	0.070 0.065 0.050 0.030 0.017 0.030

BLADE EDGES FOR STATOR 9D

(u) 60 Percent of design speed; reading 3175

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.959 22.969 22.484 22.504 22.004 22.027 20.559 20.587 18.639 18.702 16.723 16.883 15.286 15.585 14.803 15.174 14.318 14.773	ABS BE IN 58.7 54.7 50.7 43.7 41.7 43.7 46.9 48.9 51.6	TAM REL OUT IN 1.5 58.7 2.3 54.7 2.3 50.7 1.5 43.7 1.7 41.7 1.9 43.7 3.9 46.9 4.1 48.9 1.3 51.6	BETAM OUT 1.5 2.3 1.5 1.7 1.9 3.9 4.1	TOTAL IN 306.5 305.6 304.4 302.1 300.9 301.4 302.8 303.4 303.8	TEMP RATIO 0.992 0.993 0.994 0.997 1.000 1.000 0.999 0.998	TOTAL IN 11.58 11.68 11.65 11.69 11.78 11.91 11.94 11.85	PRESS RATIO 0.977 0.970 0.973 0.984 0.992 0.990 0.974 0.969 0.972
RP 1 25 4 5 6 7 8 9	ABS VEL IN OUT 114.3 77.4 125.8 80.1 128.3 83.2 128.5 93.0 136.4 104.4 148.3 111.7 161.4 110.1 164.9 110.3 163.0 109.0	114.5 7 125.8 8 128.3 8 128.5 9 136.4 10 148.3 11 161.4 11 164.9 11	IL MER IVT IN 17.4 59.3 10.1 72.6 135.2 81.3 135.0 92.9 14.4 101.8 1.7 107.2 0.1 110.4 0.3 108.4 19.0 101.4	ID VEL OUT 77.5 80.1 83.1 92.9 104.3 111.6 109.9 110.0 108.9	TANG IN 97.7 102.7 99.2 88.8 90.8 102.6 117.8 124.2 127.7	VEL OUT 2.0 3.2 3.4 2.4 3.1 3.7 7.5 7.9 2.4	WHEEL IN 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	SPEED OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.329 0.222 0.364 0.231 0.372 0.240 0.374 0.269 0.398 0.303 0.434 0.324 0.473 0.319 0.483 0.319 0.477 0.315	0.329 0. 0.364 0. 0.372 0. 0.374 0. 0.398 0. 0.434 0. 0.475 0. 0.483 0.	H NO MERID I DUT IN 222 0.171 231 0.210 240 0.236 269 0.270 303 0.297 324 0.314 319 0.323 319 0.318 315 0.297	MACH NO OUT 0.222 0.231 0.240 0.369 0.303 0.324 0.318 0.319	TOTAL COEFF, 0.0 0.1 0.0 0.1 0.1 0.0 0.1	WAKE 83 39 65 25 14 96 21		PEAK SS MACH NO 0.735 0.763 0.728 0.629 0.602 0.621 0.650 0.662 0.657
RP 1 2 3 4 5 6 7 8 9	SPAN MEAN 5.00 24.7 10.00 22.4 15.00 19.3 30.00 12.0 50.00 7.7 70.00 5.7 85.00 4.1 90.00 3.8	15.9 1 13.0 1 6.5 3.2 2.2 1 1.4 1	DEV D-FAC 10.4 0.594 10.6 0.613 10.1 0.583 19.0 0.471 19.7 0.404 10.7 0.404 13.5 0.464 14.1 0.477 11.9 0.485	0. 0. 0. 0. 0. 0.	LOSS C TOT 0.319 0.348 0.299 0.170 0.079 0.082 0.183 0.208 0.195	0EFF PR0F 0.319 0.348 0.299 0.170 0.079 0.082 0.183 0.208 0.195	LOSS F TOT 0.103 0.110 0.092 0.049 0.021 0.019 0.040 0.044	PROF 0.103 0.110 0.092 0.049 0.021 0.019 0.040 0.044 0.040

BLADE EDGES FOR STATOR 9D

(v) 50 Percent of design speed; reading 3176

	RAD	11	ABS	BETAM	RFL	BETAM	TOTA	AL TEMP	TOTAL	PRESS
RP 1	IN 22.959	0UT 22.969	IN 51.3	0UT 3.7		0UT 3.7	IN 301.0	RATIO 0.999	IN 11.18	0.989
2 3	22.484	22.027	47.8	4.2 3.2	44.2	3.2	300.5	1.000	11.20	0.990
5		18.702	42.3 45.3 46.2	2.3 1.2 1.2	45.3	1.2	299.1 298.6 298.7	1.000	11.23	0.991 0.995 0.995
6 7 8		15.585	47.1	4.7	47.1	4.7	298.7	1.000	11.38	0.988
9	14.318		50.9	1.3		1.3	299.2	0.999	11.37	0.981
RP		VEL	REL		MERI			NG VEL	WHEEL	
1	IN 97.4 100.3	0UT 71.2 73.7	IN 97.4 100.3	0UT 71.2 73.7	60.9	0UT 71.1	1N 76.0	0UT 4.6	IN 0.	OUT O.
3 4	102.9	75.9 80.1	102.9	75.9 80.1	67.4 73.7 79.4	73.5 75.8 80.1	74.3 71.8 72.2	5.5 4.2 3.2	0. 0.	0.
5 6 7	111.6	83.6	111.6	83.6 92.8	78.5 84.6	83.6 92.8	79.3	1.8	0.	0.
7 8	132.4	94.6	132.4	94.6	90.2	94.2	96.9	7.8	0.	0.
9		91.2	135.5	91.2	85.5	91.2	105.1	2.1	0.	0.
20		ACH NO		ACH NO	MERID M			LOSS WAKE		PEAK SS
RP 1	0.282	0.206	0.282	0.206	IN 0.177	0.205 0.213	0.3	220 106	1.167	MACH NO 0.552 0.538
2 3 4	0.291	0.213 0.220 0.232	0.291	0.213	0.196	0.219	0.	104	1.028	0.518
5 6	0.313 0.325 0.357	0.232	0.313 0.325 0.357	0.232 0.243 0.270	0.231 0.229 0.247	0.232	0.0	185 086 072	1.009	0.531
7 8	0.388	0.275	0.388	0.275	0.264	0.274	0.	124 113	1.045	0.536
9	0.397	0.265	0.397	0.265	0.250	0.265		118	1.067	0.537
	PERCENT		DENCE	DEV	D-FACT	EFF	LOSS C		LOSS P	
RP 1	5.00	MEAN 17.2	SS 10.5	12.7	0.505	0.	TOT 0.197	PROF 0.197	TOT 0.064	PROF 0.064
2 3	10.00	15.4	8.9 6.6	12.5	0.482	0.	0.176	0.176	0.056	0.056
4 5	30.00 50.00	10.6	5.0	9.8	0.439	0.	0.130	0.130	0.038	0.038
-										
5 6 7 8	70.00 85.00 90.00	8.1 4.2 2.9	4.7 1.6 0.5	10.0 14.4 15.4	0.407 0.430 0.450	0.	0.053 0.117 0.167	0.053 0.117 0.167	0.013 0.025 0.035	0.013 0.025 0.035

TABLE XVI. - BLADE-ELEMENT DATA AT BLADE EDGES FOR STATOR 9R^a

(a) 100 Percent of design speed; reading 704

RP 1 2 3 4 5 6 7 8 9	RP 1 2 3 4 5 6 7 8 9	RP 1 2 3 4 5 6 7 8 9	RP 1 2 3 4 5 6 7 8 9
PERCENT INCI SPAN MEAN 5.00 8.0 10.00 9.0 30.00 9.2 50.00 7.6 70.00 5.0 85.00 3.6 95.00 5.5	ABS MACH NO IN OUT 0.677 0.532 0.726 0.597 0.612 0.770 0.597 0.814 0.605 0.847 0.606 0.870 0.621 0.858 0.601 0.801 0.533	ABS VEL IN OUT 235.6 186.7 250.5 209.3 254.7 214.2 263.9 209.1 277.3 212.1 287.3 212.3 295.2 217.7 291.9 211.1 274.5 188.6	RADII IN OUT 22.949 22.944 22.479 22.474 22.004 21.999 20.577 20.574 18.682 18.717 16.787 16.916 15.342 15.624 14.849 15.164 14.343 14.684
DENCE SS -6.1 13.8 -6.2 10.2 -5.3 8.5 -3.6 8.9 -4.4 7.2 -4.4 8.8 -3.8 11.0 -1.7 12.9	REL MACH NO IN OUT 0.677 0.532 0.726 0.597 0.740 0.612 0.770 0.597 0.814 0.605 0.847 0.606 0.870 0.621 0.858 0.601 0.801 0.533	REL VEL IN OUT 235.6 186.7 250.5 209.3 254.7 214.2 263.9 212.1 277.3 212.1 287.3 212.3 295.2 217.7 291.9 211.1 274.5 188.6	ABS BETAM IN OUT 33.0 12.6 31.3 7.6 31.3 7.6 33.2 7.7 36.2 7.4 39.6 5.0 44.6 5.7 47.1 7.6 51.0 9.2
D-FACT EFF 0.337 0. 0.295 0. 0.375 0. 0.375 0. 0.407 0. 0.408 0. 0.418 0. 0.455 0.	MERID MACH NO IN OUT 0.568 0.519 0.620 0.589 0.632 0.607 0.644 0.592 0.657 0.600 0.653 0.604 0.619 0.618 0.584 0.596 0.504 0.526	MERID VEL IN 0UT 197.7 182.2 214.0 206.5 217.6 212.3 220.9 207.2 223.9 210.3 221.5 211.5 210.0 216.6 198.7 209.3 172.7 186.2	31.3 9.4 31.3 7.6 33.2 7.7 36.2 7.4 39.6 5.7 44.6 5.7 47.1 7.6
LOSS COEFF TOT PROF 0.148 0.145 0.078 0.075 0.048 0.046 0.054 0.051 0.033 0.030 0.045 0.042 0.071 0.069 0.109 0.107 0.131 0.129	TOTAL LOSS COEFF, WAKE 0.097 0.050 0.039 0.052 0.057 0.049 0.051 0.070	TANG VEL IN DUT 128.2 40.9 130.3 34.4 132.4 28.4 144.4 28.2 163.7 27.4 182.9 18.4 207.4 21.6 213.9 28.0 213.3 30.2	TOTAL TEMP IN RATIO 329.0 0.986 328.0 1.000 327.4 1.000 327.3 0.999 326.9 1.004 327.5 1.001 330.0 0.998 330.8 0.996 330.0 0.998
LOSS PARAM TOT PROF 0.050 0.049 0.026 0.025 0.016 0.015 0.017 0.016 0.009 0.008 0.011 0.011 0.017 0.016 0.024 0.024 0.028 0.028	MERID PEAK SS VEL R MACH NO 0.922 0.994 0.965 1.022 0.976 1.038 0.938 1.109 0.940 1.212 0.955 1.288 1.031 1.387 1.053 1.407 1.078 1.389	WHEEL SPEED IN OUT O.	TOTAL PRESS IN RATIO 14.55 0.961 15.05 0.985 15.20 0.983 15.29 0.983 15.37 0.983 15.68 0.972 15.59 0.958 14.75 0.955

^aCorrected data; see ref. 4.

BLADE EDGES FOR STATOR 9R

(b) 100 Percent of design speed; reading 709

RP 1 2 3 4 5 6 7 8 9	22.949 22 22.479 22 22.004 21 20.577 20 18.682 18 16.787 16 15.342 15 14.849 15	0UT 1 .944 39 .474 37 .979 36 .574 37 .717 36 .916 39 .624 44 .164 47 .684 51	.1 12.5	REL BETAM IN OUT 39.1 12.5 37.2 10.6 36.8 8.9 37.6 8.6 36.3 7.3 39.6 5.3 44.9 5.9 47.2 7.8 51.7 9.3	TOTAL TEMP IN RATIO 336.4 0.997 334.3 1.000 333.0 0.999 330.6 1.001 327.1 1.005 327.7 1.001 330.3 0.998 331.2 0.996 330.2 0.998	TOTAL PRESS IN 0.959 15.83 0.974 15.89 0.978 15.70 0.982 15.33 0.990 15.45 0.983 15.68 0.975 15.66 0.955 14.54 0.972
RP 1 2 3 4 5 6 7 8 9	236.6 10 245.9 10 249.2 10 255.0 10 275.3 20 286.9 20 292.9 20 291.3 20	DUT 18 81.5 236 96.8 245 99.5 249 99.8 255 10.0 286 14.2 292	6 181.5 9 196.8 2 199.5 0 192.8 3 208.9 9 214.2 3 207.2	MERID VEL IN OUT 183.7 177.2 196.0 193.4 199.5 197.1 202.0 190.7 222.0 207.3 221.0 209.1 207.4 213.0 197.9 205.3 166.5 182.8	TANG VEL 1N OUT 149.1 39.3 148.5 36.3 149.3 31.0 155.6 28.8 162.8 26.4 183.0 19.4 206.9 22.1 213.7 28.2 210.6 30.1	HHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	0.672 0.704 0.705 0.715 0.737 0.807 0.845 0.862 0.865 0.855	H NO REL DUT IN .507 0.67 .553 0.70 .563 0.71 .544 0.73 .595 0.80 .610 0.86 .589 0.85 .523 0.78	4 0.553 5 0.563 7 0.544 7 0.595 5 0.599 2 0.610 5 0.589	MERID MACH NO IN OUT 0.522 0.495 0.561 0.544 0.573 0.556 0.583 0.538 0.651 0.590 0.651 0.596 0.661 0.596 0.610 0.607 0.581 0.583 0.484 0.516	TOTAL LOSS COEFF, WAKE 0.121 0.084 0.068 0.056 0.053 0.043 0.054 0.071	MERID PEAK SS VEL R MACH NO 0.964 1.126 0.987 1.130 0.988 1.138 0.944 1.173 0.934 1.203 0.946 1.287 1.027 1.384 1.037 1.406 1.098 1.373
RP 123456789	15.00	INCIDENCE MEAN SS 14.1 0.14.0 -0.14.5 0.17.7 -3.5.1 -4.3.9 -4.3.9 -3.6.2 -1.	3 11.4 9.5 9.4 5 8.7 7.5 1 9.0 7 11.2	D-FACT EFF 0.395 0. 0.356 0. 0.358 0. 0.359 0. 0.382 0. 0.413 0. 0.414 0. 0.430 0. 0.454 0.	LOSS COEFF TOT PROF 0.158 0.156 0.093 0.092 0.075 0.073 0.060 0.058 0.028 0.026 0.046 0.045 0.045 0.046 0.118 0.116 0.085 0.084	LOSS PARAM TOT PROF 0.054 0.053 0.031 0.031 0.025 0.024 0.018 0.018 0.008 0.007 0.012 0.011 0.015 0.015 0.026 0.026 0.018 0.018

BLADE EDGES FOR STATOR 9R

(c) 100 Percent of design speed; reading 707

RP 1 2 3 4 5 6 7 8 9	RADII IN OUT 22.949 22.944 22.479 22.474 22.004 21.999 20.577 20.574 18.682 18.717 16.787 16.916 15.342 15.624 14.849 15.164 14.343 14.684	ABS 1N 40.6 38.7 38.2 40.0 42.6 44.8 47.4 49.4 52.9	BETAM OUT 12.7 10.7 9.4 9.1 8.2 7.5 7.7 9.5 9.9	REL 1N 40.6 38.7 38.2 40.0 42.6 44.8 47.4 49.4 52.9	BETAM OUT 12.7 10.7 9.4 9.1 8.2 7.5 7.7 9.5	TOTAL TEMP IN RATIO 335.9 0.998 334.2 0.999 330.7 1.000 329.1 1.000 329.1 1.000 329.0 1.000 330.4 0.996 330.7 0.996 330.3 0.997	TOTAL PRESS IN RATIO 15.09 0.964 15.50 0.961 15.57 0.964 15.26 0.977 15.12 0.971 15.15 0.976 15.59 0.953 15.57 0.941 14.65 0.963
RP 1 2 3 4 5 6 7 8 9	ABS VEL IN OUT 228.3 176.4 238.2 187.7 241.0 189.1 245.1 182.6 251.7 175.5 264.2 180.2 280.1 187.1 280.1 182.3 262.6 165.9	REL 1N 228.3 238.2 241.0 245.1 251.7 264.2 280.1 280.1 262.6	VEL 0UT 176.4 187.7 189.1 182.6 175.5 180.2 187.1 162.3 165.9	MERI IN 173.3 185.8 189.5 187.8 185.2 187.3 189.6 182.3 158.6	D VEL OUT 172.1 184.5 186.6 180.3 173.7 178.7 185.4 179.8 163.4	TANG VEL IN OUT 148.6 38.6 149.0 34.9 148.9 30.9 157.5 28.8 170.4 25.1 186.3 23.6 206.1 25.2 212.7 30.1 209.3 28.4	HHEEL SPEED IN OUT 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
RP 1 2 3 4 5 6 7 8 9	ABS MACH NO IN OUT 0.647 0.492 0.679 0.527 0.690 0.532 0.705 0.514 0.728 0.494 0.768 0.508 0.819 0.529 0.818 0.514 0.762 0.466	REL MA IN 0.647 0.679 0.690 0.705 0.728 0.768 0.819 0.818 0.762	CH NO OUT 0.492 0.527 0.532 0.514 0.494 0.508 0.529 0.514 0.466	MERID M. IN 0.491 0.530 0.542 0.540 0.536 0.545 0.554 0.532 0.460	ACH NO OUT 0.480 0.517 0.525 0.508 0.489 0.504 0.524 0.524 0.507	TOTAL LOSS COEFF, WAKE 0.108 0.087 0.068 0.077 0.066 0.063 0.074 0.087	MERID PEAK SS VEL R MACH NO 0.993 1.118 0.993 1.128 0.985 1.129 0.960 1.179 0.938 1.241 0.954 1.306 0.978 1.382 0.986 1.382 0.986 1.382
RP 1 2 3 4 5 6 7 8 9	PERCENT INCII SPAN MEAN 5.00 15.7 10.00 15.5 15.00 15.9 30.00 16.0 50.00 14.0 70.00 10.3 85.00 6.4 90.00 6.1 95.00 7.4	DENCE SS 1.6 1.2 1.6 2.9 2.8 0.9 -1.7 -1.5 0.2	DEV 13.8 11.5 10.0 9.9 9.7 9.8 10.8 12.8 13.5	D-FACT 0.395 0.376 0.379 0.419 0.467 0.475 0.481 0.494 0.516	EFF 0. 0. 0. 0. 0. 0.	LOSS COEFF TOT PROF 0.147 0.146 0.149 0.148 0.131 0.130 0.082 0.081 0.097 0.096 0.073 0.072 0.131 0.130 0.167 0.166 0.117 0.116	LOSS PARAM TOT PROF 0.050 0.050 0.050 0.050 0.043 0.043 0.025 0.025 0.027 0.027 0.019 0.018 0.030 0.030 0.037 0.037 0.025 0.025

TABLE XVII. – BLADE-ELEMENT TOTAL-LOSS COEFFICIENT $\label{eq:forstator} \text{FOR STATOR S9}^{\text{a}}$

(a) 100 Percent of design speed

RP	Reading									
	600		601		602		543			
	Total-loss coefficient, $\overline{\omega}$ or $\overline{\omega}_{w}$, based on data taken at station –									
	2b	3	2b	3	2b	3	2a	3		
1	0.128		0.115		0.108		0.239			
2	.061	0.056	.086	0.066	. 146	0.109	.135	0.072		
3	.048		.067		.147		.119			
4	.074	.074	.052	.053	.111	.099	.085	.061		
5	.094	.088	.050	.058	.052	.066	.075	.057		
6	.089	.082	.052	.054	.063	.055				
7	.110		.079		.119		.079			
8	.110	.075	.140	.091	.144	.097	.136	.090		
9	.148		.126		.148		.226			

(b) 70 Percent of design speed

RP	Reading								
	5'	73	5	50	574				
	Total-loss coefficient, $\overline{\omega}$ or $\overline{\omega}_{\mathrm{W}}$, based on data taken at station -								
	2a	3	2a	3	2a	3			
1	0.202		0.353		0.198				
2	.061	0.030	.370	0.097	.064	0.033			
3	.041		. 365		.045				
4	.047	.026	.258	.114	.050	.031			
5	.054	.035	.187	.110	.051	.036			
6	.051	.038	.098	.101	.034	.045			
7	.086		.174		.073				
8	.073	.053	.219	.112	.073	.058			
9	.134		.217		.160				

^aSee ref. 4 for other blade-element data for this stator.

TABLE XVIII. - BLADE-ELEMENT TOTAL-LOSS COEFFICIENT

FOR STATOR S9R^a

(a) 100 Percent of design speed

RP	Reading									
	678		704		709		684		707	
	Total-loss coefficient, $\overline{\omega}$ or $\overline{\omega}_{W}$, based on data taken at station -									
	2a ·	3	2b	3	2b	3	2a	3	2b	3
1	0.235		0.148	0.097	0.158	0.121	0.232		0.147	0.108
2	.098	0.057	.078	.050	.093	.084	.136	0.078	.149	.087
3	.097		.048	.039	.075	.068	.082		.131	.068
4	.143	.086	.054	.052	.060	.056	.078	.062	.082	.077
5	.139	.089	.033	.057	.028	.053	.066	.047	.097	.066
6	.174	.087	.045	.049	.046	.043	.047	.037	.073	.063
7	.164		.071	.051	.065	.054	.064		.131	.074
8	.123	.089	.109	.070	.118	.071	.166	.077	.167	.087
9	.276		.131	.106	.085	.114	.278		.117	.109

(b) 70 Percent of design speed

RP	Reading						
	69	93	694				
	Total-loss coefficient, $\overline{\omega}$ or $\overline{\omega}_W$, based on data taken at station -						
	2a 3		2a	3			
1	0.194		0.186				
2	.073	0.037	.062	0.023			
3	.043		.039				
4	.052	.040	.053	.031			
5	.062	.050	.049	.037			
6	.057	.053	.035	.038			
7	.096		.044				
8	.071	.069	.056	.052			
9	.151		.220				

^aSee ref. 4 for other blade-element data for this stator.

Flow path coordinates

Axial	Radius, r, cm				
distance, Z, cm	Inner	Outer			
-10. 183 -5, 365 -3, 300 a-1, 916 -1, 235 . 314 3, 411 4, 961 a5, 628 7, 025 10, 467 a13, 804 13, 908 a14, 439 15, 974 17, 350 19, 278 a21, 122 21, 480 24, 919 28, 364	9. 611 10. 909 11. 468 11. 843 12. 027 12. 443 13. 132 13. 365 13. 437 13. 503 13. 597 13. 600 13. 600 13. 652 13. 764 14. 145 14. 389 14. 389	25. 412 25. 412 25. 412 25. 385 25. 311 24. 917 23. 792 23. 528 23. 475 23. 426 23. 421			

a Instrumentation survey

Figure 1. - Flow path for stages showing axial locations of blading and instrumentation.

Figure 2. - Rotor 15.

Figure 3. - Stator 9 (looking downstream).

Figure 4. - Radial distribution of design parameters for stators S9, S9C, and S9D.

Figure 5. - Stator 9 coordinates and camber distributions near hub, mean, and tip sections.

Figure 6. - Stator 9C (one-half of assembly).

Figure 7. - Stator 9C coordinates and camber distributions near hub, mean, and tip sections.

Figure 8. - Stator 9D (one-half of assembly).

Figure 9. - Stator 9D coordinates and camber distributions near hub, mean, and tip sections.

Figure 10. - Compressor test facility.

(a) Combination total pressure, total temperature, and flow angle probe (double barrel probe).

(b) 8⁰ Wedge static pressure probe.

(c) $18^{\rm O}$ Wedge static-pressure probe.

Figure 11. - Sensing probes.

 $1 \cdot 11 \cdot 11 \cdot 1$

Figure 12. - Circumferential location of instrumentation at measuring stations (facing downstream).

1 11

Figure 13. - Overall performance for stage 15-9.

Figure 14. - Overall performance for stage 15-9R.

Figure 15. - Overall performance for stage 15-9C.

Figure 16. - Overall performance for stage 15-9D.

Figure 17. - Comparison of overall performance of rotor 15 operating with various stators at design speed.

Figure 18. - Comparison of overall performance of various stators operating with rotor 15 at design speed.

to Stator 90; reading 5167; weight now ratio, 0.986.

Figure 19. - Effect of free-stream total-pressure reference station on radial distribution of stator total-loss coefficient. Near peak stage efficiency at design speed.

Figure 20. - Effect of weight flow on radial distribution of stator total-loss coefficient at design speed.

Figure 21. - Effect of diffusion factor and spanwise location on total-loss parameter at 100 and 70 percent of design speed.

Figure 22. - Effect of diffusion factor and spanwise location on minimum values of stator total-loss parameter at 100 and 70 percent of design speed.

Figure 23. - Effect of air turning on total-loss parameter in midspan region of stators at design speed.

Plain symbols denote measuring station 2b Tailed symbols denote measuring station 2a Half-solid symbols denotes design values

Figure 24. - Blade-element performance at design speed.

Figure 24. - Concluded.

(b) Deviation angle at minimum loss minus twodimensional cascade rule value using equivalent camber as defined in reference 15.

Figure 25. - Variation with Mach number of stator minimum-loss incidence angle and accompanying deviation angle at midspan, relative to a two-dimensional, low-speed cascade rule value from reference 21 (eqs. 279 and 281).

Figure 26. - Stator loadings at 90 percent span from tip.

Figure 27. - Stator loading-axial velocity ratio relation near stall; 90 percent span from tip.

(b) From measuring stations 2b and 3.

Figure 28, - Correlation of stator modified loading parameters near-stall: 90 percent span from tip.

			-
1. Report No. NASA TP-1610	2. Government Accession No.	3. Recipient's Catalo	g No.
	ERFORMANCES OF THREE FAN		
	WITH ROTOR HAVING TIP SPEED		
OF 337 METERS PER SECOND A I - EXPERIMENTAL PERFORMA		6. Performing Organi	zation Code
7. Author(s)		8. Performing Organia	zation Report No.
Thomas F. Gelder		E-136	
		_ 10. Work Unit No.	
 Performing Organization Name and Address National Aeronautics and Space 	Administration	505-04	
	Administration	11. Contract or Grant	: No.
Lewis Research Center			
Cleveland, Ohio 44135		13. Type of Report a	nd Period Covered
12. Sponsoring Agency Name and Address	A. J. Cond. and a	Technical Pa	aper
National Aeronautics and Space	Administration	14. Sponsoring Agence	y Code
Washington, D.C. 20546			
15. Supplementary Notes	-	1	
	- -		
16. Abstract		- () -) -) - ;	. 1 (73)
	of four stator-blade rows are pre		
dynamic designs of two of these	stators were compromised to red	uce noise, a third	design was
not. On a calculated operating	line passing through the design po	int pressure ratio,	, the best sta-
tor had overall pressure-ratio a	and efficiency decrements of 0.031	l and 0.044 , respe	ectively, pro-
viding a stage pressure ratio of	1.483 and efficiency of 0.865. The	he other stators sl	howed some
	rtly to the design compromises for		
_	ificantly less for the shortest chor		_
51mgc 6161mem 1652 65 61 6 5-8-1			
17. Key Words (Suggested by Author(s))	18. Distribution Statem	ent	
Turbomachinery	Unclassified - 1	unlimited	
	STAR Category	07	
10. Consider Classify (of this arrange)	20. Security Classif. (of this page)	21. No. of Pages	
19. Security Classif. (of this report)		I AL INO OT Pages	an Price*
Unclassified	Unclassified	107	22. Price* A06

National Aeronautics and Space Administration

Washington, D.C. 20546

Official Business
Penalty for Private Use, \$300

THIRD-CLASS BULK RATE

Postage and Fees Paid National Aeronautics and Space Administration NASA-451

4 1 10, A, 020880 S00903DS DEPT OF THE AIR FORCE AF WEAPONS LABORATORY ATTN: TECHNICAL LIBRARY (SUL) KIRTLAND AFB NM 87117

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return