Bellman Ford -> Make a list of all edges. > Relax all the edges_ -> Repeat the step 2, (V-1) fines. +> Repeat the step once more (to check for we weight cycle) (1,2) (2,3) (1,5) (1,4) (2,4) (4,5) (3,5) (2,5) (3) (3) (42) (2) (42) (4) (Key(v)) (Key(v)) (1,2) (2,3) (3,1) (3,1) 1 -13 -ve edge weight cycle 1 3 21 1 2 => Failure of Bellman ford () Output (V iteration) [= Output (V-) iteration) Floyd Warshall (All pairs Shortest Path $A^{2} = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 0 & -2 & -2 & 3 \\ 1 & 0 & 4 & 5 \\ 1 & 0 & 6 & 5 \\ 2 & 0 & 0 & 6 \\ 2 & 0 & 0 & 6 \\ 3 & 0 & 0 & 6 \\ 4 & 0 & 0 & 6 \\ 5 & 0 & 0 & 6 \\ 6 & 0 & 0 & 6 \\ 6 & 0 & 0 & 6 \\ 7 & 0 & 0 & 0 & 6 \\ 8 & 0 & 0 & 0 &$ $A^{2} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & -2 & -2 & 3 \\ 1 & 0 & -1 & 5 \\ 2 & 3 & 6 & 6 \end{bmatrix}$ (directelye (in 1 m) | in 2 mj/ in 2 min / in 1 m 2 mj) As(i,j) = min { A ~ (i, 1) } A ~ (x,i) } Jor (k=0; K(V; k+t)

for (i=0; i(V; i+t))

for (j=0; j(V; j+t))

-17:1 > Graph (i](k)+ Graph(k) if (Graph [i][j] > Graph [i][k]+ Graph [w](j)) Graph (i) Cil- Graph (i) [w) + Graph [x] [j];