

■ fakultät für informatik

Master-Thesis

Convolutional Neural Networks auf Graphrepräsentationen von Bildern

> Matthias Fey 15. Mai 2017

Gutachter:

Prof. Dr. Heinrich Müller M.Sc. Jan Eric Lenssen

Lehrstuhl Informatik VII Graphische Systeme TU Dortmund

Inhaltsverzeichnis

1	Einl	eitung	3
	1.1	Problemstellung	
	1.2	Aufbau der Arbeit	
2	Gru	ndlagen	5
	2.1	Mathematische Notationen	Į.
	2.2	Graphentheorie	Į.
	2.3	Convolutional Neural Networks	5
3	Gra	phrepräsentationen von Bildern	7
	3.1	Gitter	7
	3.2	Superpixel	7
		3.2.1 Verfahren	7
		3.2.2 Adjazenzmatrixbestimmung	7
		3.2.3 Merkmalsextraktion	7
4	Räu	ımliches Lernen auf Graphen	g
	4.1	Räumliche Graphentheorie	Ć
	4.2	Räumliche Faltung	Ć
	4.3	Erweiterung auf ebene Graphen	Ć
	4.4	Netzarchitektur	Ć
5	Spe	ktrales Lernen auf Graphen 1	L 1
	5.1	Spektrale Graphentheorie	11
		5.1.1 Eigenwerte und Eigenvektoren reell symmetrischer Matrizen .	11
		5.1.2 Laplace-Matrix	12
	5.2	Spektraler Faltungsoperator	15
		5.2.1 Graph-Fourier-Transformation	15
		5.2.2 Spektrale Filterung	16
		5.2.3 Polynomielle Approximation	17

	5.3	Graph Convolutional Networks	18		
		5.3.1 Faltungsoperator	18		
		5.3.2 Erweiterung auf ebene Graphen	19		
	5.4	Pooling auf Graphen	19		
		5.4.1 Graphvergröberung	19		
		5.4.2 Erweiterung auf ebene Graphen	19		
	5.5	Netzarchitektur	19		
6	Eval	uation 2	21		
	6.1	Versuchsaufbau	21		
		6.1.1 Datensätze	21		
		6.1.2 Metriken	21		
		6.1.3 Parameterwahl	21		
	6.2	Merkmalsselektion	21		
	6.3	Ergebnisse	21		
	6.4	Laufzeitanalyse	21		
	6.5	Diskussion	21		
7	Ausl	olick 2	23		
Α	Wei	tere Informationen 2	25		
Αŀ	bildu	ngsverzeichnis 2	27		
ΑI	Algorithmenverzeichnis 2				
Lit	eratı	ırverzeichnis	32		

Mathematische Notationen

 $\|\cdot\|_2$

1 Einleitung

 ${\rm Homepage^1}$ Convolutional Neural Networks (CNNs) CNN $\mathbb N$ "wdawd"

1.1 Problemstellung

1.2 Aufbau der Arbeit

¹https://github.com/rusty1s/embedded_gcnn

2 Grundlagen

- 2.1 Mathematische Notationen
- 2.2 Graphentheorie
- 2.3 Convolutional Neural Networks

3 Graphrepräsentationen von Bildern

- 3.1 Gitter
- 3.2 Superpixel
- 3.2.1 Verfahren

SLIC [1]

Simple Linear Iterative Clustering (SLIC)

Quickshift [15]

Weitere Verfahren [5]

- 3.2.2 Adjazenzmatrixbestimmung
- 3.2.3 Merkmalsextraktion

4 Räumliches Lernen auf Graphen

4.1 Räumliche Graphentheorie

Färbung von Knoten awdawd

Isomorphie und kanonische Ordnung awdawd

4.2 Räumliche Faltung

Knotenauswahl awdawd

 $\textbf{Nachbarschaftsgruppierung} \quad \mathrm{awdawd} \quad$

Normalisierung awdawd

4.3 Erweiterung auf ebene Graphen

4.4 Netzarchitektur

5 Spektrales Lernen auf Graphen

5.1 Spektrale Graphentheorie

Es gibt 2 große Quellen hier:

- Spectral Graph Theory by Chung
- Discrete Laplace-Beltrami Operator

+ 5 zum Lernen:

- Semi Supervised Classification
- Fast Localized Spectral Filterung
- Wavelets on Graphs via Spectral Graph Theory
- The Emerging Field of Signal Processing on Graphs
- How powerful are Graph Convolutions? (Review)

5.1.1 Eigenwerte und Eigenvektoren reell symmetrischer Matrizen

Das Eigenwertproblem einer Matrix $\mathbf{M} \in \mathbb{R}^{N \times N}$ ist definiert als $\mathbf{M}\mathbf{u} = \lambda \mathbf{u}$, wobei $\mathbf{u} \in \mathbb{R}^N$, $\mathbf{u} \neq \mathbf{0}$ Eigenvektor und $\lambda \in \mathbb{R}$ der entsprechende Eigenwert zu \mathbf{u} genannt werden. Ein Eigenvektor \mathbf{u} beschreibt damit einen Vektor, dessen Richtung durch die Abbildung $\mathbf{M}\mathbf{u}$ nicht verändert, sondern lediglich um den Faktor λ skaliert wird. Zu einem Eigenwert λ gibt es unendlich viele (skalierte) Eigenvektoren \mathbf{u} . Wir definieren den Eigenvektor \mathbf{u} eines Eigenwertes λ daher eindeutig über die Bedingung $\|\mathbf{u}\|_2 = 1$. Sei \mathbf{M} weiterhin symmetrisch, d.h. $\mathbf{M} = \mathbf{M}^{\top}$. Dann gilt für zwei unterschiedliche Eigenvektoren \mathbf{u}_1 und \mathbf{u}_2 , dass diese orthogonal zueinander stehen, d.h. $\mathbf{u}_1 \perp \mathbf{u}_2$. Weiterhin hat \mathbf{M} genau N reelle Eigenwerte mit $\{\lambda_i\}_{i=1}^N$. Wir definieren demnach zu \mathbf{M} die orthogonale Eigenvektormatrix $\mathbf{U} := [\mathbf{u}_1, \dots, \mathbf{u}_n] \in \mathbb{R}^{N \times N}$, d.h. $\mathbf{U}\mathbf{U}^{\top} = \mathbf{I}$,

und dessen Eigenwertdiagonalmatrix $\Lambda := \operatorname{diag}([\lambda_1, \dots, \lambda_N]^\top)$, d.h. $\Lambda_{ii} = \lambda_i$. Dann gilt $\mathbf{M}\mathbf{U} = \mathbf{U}\boldsymbol{\Lambda}$ und insbesondere ist \mathbf{M} diagonalisierbar über

$$\mathbf{M} = \mathbf{M}\mathbf{U}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}.$$

Weiterhin gilt für die k-te Potenz von $\mathbf{M}, k \in \mathbb{N}$,

$$\mathbf{M}^k = \left(\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\right)^k = \mathbf{U}\boldsymbol{\Lambda}^k\mathbf{U}^{\top}.$$
 (5.1)

Dieser Zusammenhang lässt sich verdeutlichen, wenn man die Potenz ausschreibt:

$$\left(\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\right)^{k} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top}\prod_{i=1}^{k-2}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Lambda}^{2}\mathbf{U}^{\top}\prod_{i=1}^{k-2}\mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^{\top} = \mathbf{U}\boldsymbol{\Lambda}^{k}\mathbf{U}^{\top}.$$

Falls M weiterhin schwach diagonaldominant ist, d.h.

$$\sum_{\substack{j=1\\j\neq i}}^{N} |\mathbf{M}_{ij}| \le |\mathbf{M}|_{ii},\tag{5.2}$$

und weiterhin $\mathbf{M}_{ii} \geq 0$ für alle $i \in \{1, ..., N\}$, dann ist \mathbf{M} positiv semidefinit, d.h. $\mathbf{x}^{\top} \mathbf{M} \mathbf{x} \geq 0$ für alle $\mathbf{x} \in \mathbb{R}^{N}$. Eigenwerte symmetrischer positiv semidefiniter Matrizen $\lambda_{i} \in \mathbb{R}^{+}$ sind positiv reell und es lässt sich folglich auf diesen eine Ordnung definieren mit $0 \leq \lambda_{1} \leq \cdots \leq \lambda_{N} \coloneqq \lambda_{\max}$.

5.1.2 Laplace-Matrix

Our eigenvalues relate well to other graph invariants for general graphs in a way that other definitions (such as the eigenvalues of adjacency matrices) often fail to do. The advantages of this definition are perhaps due to the fact that it is consistent with the eigenvalues in spectral geometry and in stochastic processes. Many results which were only known for regular graphs can be generalized to all graphs [2].

Für einen schleifenlosen, ungerichteteten, gewichtet oder ungewichteten Graphen \mathcal{G} und dessen Adjazenzmatrix \mathbf{A} mit Gradmatrix \mathbf{D} ist die kombinatorische Laplace-Matrix \mathbf{L} definiert als $\mathbf{L} := \mathbf{D} - \mathbf{A}$ [2]. Die normalisierte Laplace-Matrix $\tilde{\mathbf{L}}$ ist

.11.

definiert als $\tilde{\mathbf{L}} := \mathbf{D}^{-\frac{1}{2}}\mathbf{L}\mathbf{D}^{-\frac{1}{2}}$ mit der Konvention, dass $\mathbf{D}_{ii}^{-\frac{1}{2}} = 0$ für isolierte Knoten $v_i \in \mathcal{V}$ in \mathcal{G} , d.h. $\mathbf{D}_{ii} = 0$ [2]. Daraus ergibt sich die elementweise Definition

$$\tilde{\mathbf{L}}_{ij} \coloneqq \begin{cases} 1, & \text{wenn } i = j, \\ -\frac{w(v_i, v_j)}{\sqrt{d(v_i)d(v_j)}}, & \text{wenn } v_i \sim v_j, \\ 0, & \text{sonst.} \end{cases}$$

Für verbundene Graphen kann $\tilde{\mathbf{L}}$ vereinfacht werden zu $\tilde{\mathbf{L}} := \mathbf{I} - \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}}$ [2]. Jeder Eintrag auf der Diagonalen der normalisierten Laplace-Matrix ist folglich Eins. $\tilde{\mathbf{L}}$ ist damit normalisiert auf den (gewichteten) Grad zweier adjazenter Knoten v_i und v_j . Es ist anzumerken, dass \mathbf{L} und insbesondere $\tilde{\mathbf{L}}$ symmetrisch sind, wohingegen eine Normalisierung der Form $\mathbf{D}^{-1}\mathbf{L}$ dies in der Regel nicht wäre [12]. \mathbf{L} und $\tilde{\mathbf{L}}$ sind keine ähnlichen Matrizen. Insbesondere sind ihre Eigenvektoren unterschiedlich. Die Nutzung von \mathbf{L} oder $\tilde{\mathbf{L}}$ ist damit abhängig von dem Problem, welches man betrachtet [6]. Wir schreiben \mathcal{L} wenn die Wahl der Laplace-Matrix, ob \mathbf{L} oder $\tilde{\mathbf{L}}$, für die weitere Berechnung irrelevant ist.

Interpretation

kurz laplac beltrami

grafik

Sei $\mathbf{f} \in \mathbb{R}^N$ eine Funktion bzw. ein Signal auf den Knoten eines Graphen \mathcal{G} . Dann kann für die kombinatorische Laplace-Matrix \mathbf{L} verifiziert werden, dass sie die Gleichung

$$(\mathbf{Lf})_i = \sum_{i \sim j} w(v_i, v_j)(\mathbf{f}_i - \mathbf{f}_j)$$

erfüllt [6]. Sei \mathcal{G} nun ein Graph, der aus einem (unendlichen) zweidimensionalen regulärem Gitter entstanden ist, d.h. jeder Knoten v_i besitzt genau 4 Nachbarn mit gleichen Kantengewichten $\frac{1}{\delta^2}$, wobei $\delta \in \mathbb{R}$ beliebige Konstante. Zur einfacheren Veranschaulichung benutzen wir dabei für die Signalstärke \mathbf{f}_i eines Knoten v_i an Position (x, y) die Indexnotation $\mathbf{f}_{x,y}$. Dann beschreibt

$$(\mathbf{Lf})_{x,y} = \frac{4\mathbf{f}_{x,y} - \mathbf{f}_{x+1,y} - \mathbf{f}_{x-1,y} - \mathbf{f}_{x,y+1} - \mathbf{f}_{x,y-1}}{h^2}$$

die 5-Punkte-Stern Approximation $-\nabla^2 f$ (bei umgekehrtem Vorzeichen) definiert auf den Punkten $\{(x,y), (x+\delta,y), (x-\delta,y), (x,\delta+h), (x,y-\delta)\}$ [6]. Ähnlich zu einem regulären Gitter lässt sich ein Graph \mathcal{G} auch über beliebig viele Abtastpunkte einer differenzierbaren Mannigfaltigkeit konstruieren. Es zeigt sich, dass mit steigender Abtastdichte und geeigneter Wahl der Kantengewichte die normalisierte Laplace-

Matrix $\tilde{\mathbf{L}}$ zu dem kontinuierlichem Laplace-Beltrami Operator konvergiert [6]. Damit kann $\tilde{\mathbf{L}}$ als die diskrete Analogie des ∇^2 Operators auf Graphen verstanden werden. Der Laplace-Beltrami Operator misst dabei, in wie weit sich eine Funktion f an einem Punkt x von dem Durchschnitt aller Funktionspunkte um einen kleinen Bereich um x unterscheidet. Die Laplace-Matrix operiert dabei völlig analog, in dem sie misst, wie sehr sich eine (diskrete) Funktion um einen Knoten im Vergleich zu seinen Nachbarknoten unterscheidet.

Eigenwerte und Eigenvektoren von \mathcal{L} helfen uns dabei, die lineare Transformation einer Funktion \mathbf{f} (mehrfach) angewendet auf \mathcal{L} besser zu verstehen. Wir können dafür \mathbf{f} als Linearkombination der Eigenbasis $\sum_i c_i \mathbf{u}_i$ schreiben und erhalten

$$\mathcal{L}^k \mathbf{f} = \sum_i c_i \mathcal{L}^k \mathbf{u}_i = \sum_i c_i \lambda_i^k \mathbf{u}_i.$$

Somit können Eigenschaften von \mathcal{L} und damit des Graphen selber durch dessen Eigenwerte und Eigenvektoren beschrieben werden.

Eigenschaften $\mathcal{L} \in \mathbb{R}^{N \times N}$ ist eine reell symmetrische, positiv semidefinite Matrix [2]. Folglich besitzt \mathcal{L} nach Kapitel 5.1.1 genau N positiv reelle Eigenwerte $\{\lambda_i\}_{i=1}^N$ mit Ordnung $0 \le \lambda_1 \le \cdots \le \lambda_N$ und N korrespondierenden orthogonalen Eigenvektoren $\{\mathbf{u}_i\}_{i=1}^N$.

Die kombinatorische Laplace-Matrix \mathbf{L} ist nach (5.2) weiterhin schwach diagonaldominant. Insbesondere summiert sich jede Reihen- und Spaltensumme von \mathbf{L} zu
Null auf, d.h. $\sum_{j=1}^{N} \mathbf{L}_{ij} = \sum_{j=1}^{N} \mathbf{L}_{ji} = 0$. Daraus folgt unmittelbar, dass $\lambda_1 = 0$, da $\mathbf{u}_1 = \frac{1}{\sqrt{N}} [1, \dots, 1]^{\mathsf{T}} \in \mathbb{R}^N$ Eigenvektor von \mathbf{L} mit $\mathbf{L}\mathbf{u}_1 = \mathbf{0}$ [13]. $\tilde{\mathbf{L}}$ hingegen ist nicht
zwingend schwach diagonaldominant. Es lässt sich jedoch zeigen, dass auch für $\tilde{\mathbf{L}}$ gilt, dass $\lambda_1 = 0$ [2].

Eine der interessantesten Eigenschaften eines Graphs ist dessen Konnektivität. Die Laplace-Matrix \mathcal{L} bzw. dessen Eigenwerte stellen ein geeignetes Mittel zur Untersuchung dieser Eigenschaft dar. So gilt z.B. für einen verbundenen Graphen \mathcal{G} , dass $\lambda_2 > 0$. Falls $\lambda_i = 0$ und $\lambda_{i+1} \neq 0$, dann besitzt \mathcal{G} genau i verbundene Komponenten [2]. Damit ist die Anzahl der Null-Eigenwerte äquivalent zu der Anzahl an Komponenten, die ein Graph besitzt. Für $\tilde{\mathbf{L}}$ lässt sich weiterhin zeigen, dass $\lambda_{\max} \leq 2$ eine obere Schranke ihrer Eigenwerte ist [2].

Aus der Laplace-Matrix können ebenso Rückschlüsse über die kürzeste Pfaddistanz zweier Knoten gewonnen werden. So gilt für \mathcal{L}^k mit $k \in \mathbb{N}$, dass $\mathcal{L}^k_{ij} = 0$ genau dann, wenn $s(v_i, v_j) > k$ [6]. Damit beschreibt \mathcal{L}^k_i bildlich gesprochen die Menge an Knoten, die maximal k Kanten von i entfernt liegen.

5.2 Spektraler Faltungsoperator

Sei $\mathbf{f} \in \mathbb{R}^N$ ein Signal auf den Knoten eines Graphen \mathcal{G} , welches abhängig von der Struktur des Graphen weiter verarbeitet werden soll. Es ist jedoch nicht selbstverständlich, wie recht einfache, dennoch fundamentale Signalverarbeitungsprozesse wie Translation oder Filterung und die daraus entstehende Faltung in der Domäne des Graphen definiert werden können [13]. So kann z.B. ein analoges Signal f(t) mittels f(t-3) um 3 nach rechts verschoben werden. Es ist hingegen völlig unklar was es bedeutet, ein Graphsignal auf den Knoten um 3 nach rechts zu bewegen (vgl. [13]). Die spektrale Graphentheorie bietet uns dafür einen geeigneten Weg, in dem Eingabesignale in das Spektrum des Graphen zerlegt bzw. abgebildet, modifiziert und wieder retransformiert werden können.

5.2.1 Graph-Fourier-Transformation

Das Spektrum eines Graphen \mathcal{G} bilden die Eigenwerte $\{\lambda_i\}_{i=1}^N$ der Laplace-Matrix \mathcal{L} von \mathcal{G} . Diese werden deshalb auch oft als die *Frequenzen* von \mathcal{G} betitelt. In der spektralen Domäne können wir ein Eingabeignal \mathbf{f} über \mathcal{G} dann analog wie ein zeitdiskretes Abtastsignal in der Fourier-Domäne behandeln.

Klassische Fourier-Transformation Die Fourier-Transformation \hat{f} einer Funktion f(t) ist definiert als [13]

$$\hat{f}(\omega) := \langle f, e^{2\pi i \omega t} \rangle = \int_{\mathbb{R}} f(t) e^{-2\pi i \omega t} dt.$$

Die komplexen Exponentiale $e^{2\pi i\omega t}$ beschreiben dabei die Eigenfunktionen des eindimensionalen Laplace-Beltrami Operators [13]

$$-\nabla^2 e^{2\pi i\omega t} = -\frac{\partial^2}{\partial t^2} e^{2\pi i\omega t} = (2\pi\omega)^2 e^{2\pi i\omega t}.$$
 (5.3)

 \hat{f} kann damit als die Ausdehnung von f in Bezug auf die Eigenfunktionen des Laplace-Beltrami Operators ∇^2 verstanden werden [6].

Analog lässt sich die *Graph-Fourier-Transformation* einer Funktion $f: \mathcal{V} \to \mathbb{R}$ bzw. $\mathbf{f} \in \mathbb{R}^N$ auf den Knoten eines Graphen \mathcal{G} als Ausdehnung von f in Bezug auf die Eigenvektoren $\{\mathbf{u}_i\}_{i=1}^N$ der Laplace-Matrix \mathcal{L} definieren [13]:

$$\hat{f}(\lambda_i) := \langle \mathbf{f}, \mathbf{u}_i \rangle \text{ bzw. } \hat{\mathbf{f}} := \mathbf{U}^\top \mathbf{f}.$$
 (5.4)

Die inverse Graph-Fourier-Transformation ergibt sich dann als [13]

$$f(v_i) = \sum_{j=1}^{N} \hat{f}(\lambda_j) (\mathbf{u}_j)_i \text{ bzw. } \mathbf{f} = \mathbf{U}\mathbf{\hat{f}}.$$
 (5.5)

In der klassischen Fourier-Analyse sind für die Eigenwerte $\{(2\pi\omega)^2\}_{\omega\in\mathbb{R}}$ in (5.3) nahe bei Null die korrespondieren Eigenfunktionen kleine, weich schwingende Funktionen, wohingegen für größere Eigenwerte bzw. Frequenzen die Eigenfunktionen sehr schnell und zügig anfangen zu oszillieren. Bei der Graph-Fourier-Transformation ist dies ähnlich. So ist für \mathbf{L} der erste Eigenvektor $\mathbf{u}_1 = \frac{1}{\sqrt{N}}[1,\ldots,1]^{\mathsf{T}}$ zum Eigenwert $\lambda_1 = 0$ konstant und an jedem Knoten gleich. Generell zeigt sich, dass die Eigenvektoren geringer Frequenzen nur geringfügig im Graph variieren, wohingegen Eigenvektoren größerer Eigenwerte immer unähnlicher werden (vgl. [13]).

Die Graph-Fourier-Transformation (5.4) und ihre Inverse (5.5) bieten uns eine Möglichkeit ein Signal in zwei unterschiedlichen Domänen zu repräsentieren, nämlich der Knotendomäne, d.h. das unveränderte Signal auf der Knotenmenge $f(v_i)$, und der spektralen Domäne, d.h. das transformierte Signal in das Spektrum des Graphen $\hat{f}(\lambda_i)$. Diese Transformation erlaubt uns die Formulierung fundamentaler Signalverarbeitungsoperationen.

5.2.2 Spektrale Filterung

In der Signalverarbeitung versteht man unter der Frequenzfilterung die Transformation eines Eingabesignals in die Fourier-Domäne und der verstärkenden oder dämpfenden Veränderung der Amplituden der Frequenzkomponenten. Formal betrachtet ergibt dies

$$\hat{f}_{\text{out}}(\omega) := \hat{f}_{\text{in}}(\omega)\hat{g}(\omega) \tag{5.6}$$

mit dem Filter $\hat{g} \colon \mathbb{R} \to \mathbb{R}$. Shuman u. a. zeigen, dass die Filterung in der Fourier-Domäne äquivalent zu einer Faltung in der Zeitdomäne ist, d.h.

$$(f_{\rm in} \star g)(t) := \int_{\mathbb{R}} f_{\rm in}(\tau) g(t - \tau) \, d\tau = f_{\rm out}(t). \tag{5.7}$$

Wir können die Filterung der Frequenzen in der Fourier-Domäne analog zu (5.6) für die spektrale Domäne auf Graphen über

$$\hat{f}_{\text{out}}(\lambda_i) \coloneqq \hat{f}_{\text{in}}(\lambda_i)\hat{q}(\lambda_i) \text{ bzw. } \hat{\mathbf{f}}_{\text{out}} \coloneqq \hat{\mathbf{f}}_{\text{in}} \odot \hat{\mathbf{g}}$$

beschreiben, wobei \odot das elementweise Hadamard-Produkt ist [13]. $\hat{\mathbf{g}} \in \mathbb{R}^N$ ist damit ein *nicht-parametrischer* Filter, d.h. ein Filter, dessen Werte für alle Frequenzen $\{\lambda_i\}_{i=1}^N$ frei wählbar sind [3]. Daraus ergibt sich analog zu (5.7) der *spektrale Faltungsoperator* auf Graphen in der Knotendomäne mit Hilfe der Graph-Fourier-Transformation (5.4) und ihrer Inversen (5.5) als [3, 13]

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} := \mathbf{U} (\mathbf{U}^{\mathsf{T}} \mathbf{f}_{\text{in}} \odot \hat{\mathbf{g}}) = \mathbf{f}_{\text{out}}.$$
 (5.8)

5.2.3 Polynomielle Approximation

Es zeigt sich, dass die Benutzung des spektralen Faltungsoperators in (5.8) im Kontext eines CNNs auf Graphen mehrere Schwächen aufweist. Es ist z.B. leicht ersichtlich, dass die Auswertung von $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ extrem berechnungsintensiv ist. So liegt die Laufzeit der Multiplikation mit der dichtbesetzten Eigenvektormatrix \mathbf{U} in $\mathcal{O}(N^2)$, zudem muss \mathbf{U} zuerst bestimmt werden — ein kostspieliger Aufwand für Graphen mit möglicherweise weit mehr als hundert Knoten [9]. Desweiteren führt ein Filter $\hat{\mathbf{g}} \in \mathbb{R}^N$ der Größe N zu einem Lernaufwand in $\mathcal{O}(N)$, d.h. der Dimensionalität der Eingabedaten [3]. Ebenso kann $\hat{\mathbf{g}}$ so nicht für das Lernen auf unterschiedlich großen Graphen verwendet werden.

Um die oben genannten Schwächen zu umgehen kann $\hat{g}(\lambda_i)$ über ein Polynom

$$\hat{g}(\lambda_i) \approx \sum_{k=0}^{K} c_k \lambda_i^k =: \hat{g}'(\lambda)$$
 (5.9)

vom Grad K mit Koeffizienten $c_0, \ldots, c_K \in \mathbb{R}$ approximiert werden [3, 6]. Die Filtergröße von \hat{g}' sinkt somit auf einen konstanten Faktor K mit Lernaufwand $\mathcal{O}(K)$, d.h. dem gleichen Aufwand klassischer zweidimensionaler CNNs [3]. $\mathbf{f}_{in} \star \hat{\mathbf{g}}$ ergibt sich dann mittels (5.1), (5.8) und (5.9) approximiert durch [3]

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k \mathbf{U} \mathbf{\Lambda}^k \mathbf{U}^{\top} \mathbf{f}_{\text{in}} = \sum_{k=0}^{K} c_k \mathcal{L}^k \mathbf{f}_{\text{in}}.$$
 (5.10)

Insbesondere ist die spektrale Faltung damit nicht mehr abhängig von der Berechnung der Eigenwerte bzw. Eigenvektoren von \mathcal{L} . Mittels Kapitel 5.1.2 kann $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ in der Knotendomäne nun als eine lokaliserte lineare Transformation interpretiert werden. So sammelt ein Summand $\mathcal{L}^k \mathbf{f}_{\text{in}}$ des spektralen Filters an einem Knoten v genau die Signale von Knoten auf, die maximal k Kanten von v entfernt liegen [6].

tes todo

Tensorimplementierung

5.3 Graph Convolutional Networks

Kipf und Welling motivieren einen weiteren Ansatz zur Faltung auf Graphen, genannt Graph Convolutional Network (GCN), der auf der Methodik des spekralen Faltungsoperators aus Kapitel 5.2 aufbaut, und dabei wie eine differenzierbare und parametriesierte Generalisierung des eindimensionalen Weisfeiler-Lehman Algorithmus auf Graphen fungiert [9].

5.3.1 Faltungsoperator

Sei $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx \sum_{k=0}^{K} c_k T_k(\mathcal{L}) \mathbf{f}_{\text{in}}$ der in (??) definierte spektrale Faltungsoperator mit K=1. Dann ist $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ eine lineare Funktion bzgl. \mathcal{L} und damit eine lineare Funktion auf dem Spektrum des Graphen [9]. Mit K=1 betrachtet der spektrale Faltungsoperator nur noch die lokale Nachbarschaft eines jeden Knoten (vgl. 5.2.3). Es ist anzumerken, dass dies in der Regel keinen Nachteil darstellt. So hat es sich bei gegenwärtigen "State-of-the-Art"-CNNs auf Bildern ebenfalls eingebürgert, nur noch über minimale 3×3 Fenster zu falten und stattdessen mehr Informationen über die mehrfache Aneinanderreihung der Faltungsschichten mittels tieferer Netze zu gewinnen (vgl. [7, 9, 14]). Unter dieser Restriktion vereinfacht sich $\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}}$ zu

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx c_0 \mathbf{f}_{\text{in}} + c_1 \left(\frac{2}{\lambda_{\text{max}}} \mathcal{L} - \mathbf{I} \right) \mathbf{f}_{\text{in}}$$
 (5.11)

mit zwei freien Parametern c_0 und c_1 [9]. Für $\tilde{\mathbf{L}}$ auf einem verbundenen Graphen \mathcal{G} gilt dann für (5.11) weiter

$$\mathbf{f}_{\text{in}} \star \hat{\mathbf{g}} \approx c_0 \mathbf{f}_{\text{in}} + c_1 (\tilde{\mathbf{L}} - \mathbf{I}) \mathbf{f}_{\text{in}} = c_0 \mathbf{f}_{\text{in}} - c_1 \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \mathbf{f}_{\text{in}}, \tag{5.12}$$

wobei $\lambda_{\text{max}} \approx 2$ auf dessen oberste Schranke gesetzt wird [9]. Um die Gefahr des Overfittings und die Anzahl an Berechnungen pro Schicht weiter zu beschränken, reduziert sich (5.12) mit einem einzigen Parameter $c := c_0$ mit $c = -c_1$ zu [9]

$$\mathbf{f}_{\mathrm{in}} \star \mathbf{\hat{g}} \approx c \left(\mathbf{I} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \right) \mathbf{f}_{\mathrm{in}}.$$

Die reskalierten Eigenwerte von $\tilde{\Lambda}$ liegen auf Grund der Addition mit I nun im Intervall [0, 2] (vgl. [9]). Demnach können wiederholte Anwendungen des Faltungs-

operators zu "numerischen Instabilitäten und folglich zu explodierenden oder verschwindenen Gradienten" führen [9]. Kipf und Welling führen zur Behebung dieses Problems die folgende Renormalisierung durch: $\mathbf{I} + \mathbf{D}^{-\frac{1}{2}} \mathbf{A} \mathbf{D}^{-\frac{1}{2}} \to \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}}$ mit $\tilde{\mathbf{A}} := \mathbf{A} + \mathbf{I}$ und $\tilde{\mathbf{D}}_{ii} := \sum_{j=1}^{N} \tilde{\mathbf{A}}_{ij}$. Der entgültige Faltungsoperator des GCNs ergibt sich dann als

$$\mathbf{f}_{\mathrm{in}} \star \mathbf{\hat{g}} \approx c \, \tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{f}_{\mathrm{in}}$$

auf einem einzigen freien Parameter $c \in \mathbb{R}$.

Tensorimplementierung

Weisfeiler-Lehman Analogie

5.3.2 Erweiterung auf ebene Graphen

Warum ist der Algorithmus nicht so gut [8]?

B-Spline-Kurven

Faltungsoperator

5.4 Pooling auf Graphen

5.4.1 Graphvergröberung

Clustering von Knoten

5.4.2 Erweiterung auf ebene Graphen

5.5 Netzarchitektur

6 Evaluation

6.1 Versuchsaufbau

6.1.1 Datensätze

 $\mathbf{MNIST} \quad [11]$

Cifar-10 [10]

Pascal VOC [4]

6.1.2 Metriken

6.1.3 Parameterwahl

Vorstellung aller Parameter Superpixelalgorithmen Parameterwahl

6.2 Merkmalsselektion

6.3 Ergebnisse

Vergleich mit anderen Implementierungen

6.4 Laufzeitanalyse

Vergleich mit anderen Implementierungen

6.5 Diskussion

7 Ausblick

Weitere Anwendungsgebiete

Augmentierung von Graphen

Spatial-Pyramid-Pooling

Attention-Algorithmus

A Weitere Informationen

Abbildungsverzeichnis

Algorithmenverzeichnis

Literaturverzeichnis

- [1] ACHANTA, Radhakrishna; SHAJI, Appu; SMITH, Kevin; LUCCHI, Aurelien; FUA, Pascal; SUSSTRUNK, Sabine: SLIC Superpixels Compared to State-of-the-Art Superpixel Methods. In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2012), S. 2274–2282
- [2] Chung, Fan .R.K.: Spectral Graph Theory. American Mathematical Society, 1997
- [3] Defferrard, Michaël; Bresson, Xavier; Vandergheynst, Pierre: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. In: Advances in Neural Information Processing Systems 29. Curran Associates, Inc., 2016, S. 3844–3852
- [4] EVERINGHAM, Mark; ESLAMI, S.M. Ali; VAN GOOL, Luc; WILLIAMS, Christ-oper K. I.; WINN, John; ZISSERMAN, Andrew: The Pascal Visual Object Classes Challenge: A Retrospective. In: *International Journal of Computer Vision* (2015), S. 98–136
- [5] FELZENSZWALB, Pedro F.; HUTTENLOCHER, Daniel P.: Efficient Graph-Based Image Segmentation. In: International Journal of Computer Vision (2004), S. 167–181
- [6] HAMMOND, David K.; VANDERGHEYNST, Pierre; GRIBONVAL, Réne: Wavelets on Graphs via Spectral Graph Theory. In: Applied and Computational Harmonic Analysis (2011), S. 129–150
- [7] HE, Kaiming; ZHANG, Xiangyu; REN, Shaoqing; Sun, Jian: Deep Residual Learning for Image Recognition. In: Computer Vision and Pattern Recognition (2016), S. 83–98
- [8] HUSZÁR, Ferenc: How Powerful are Graph Convolutions? http://www.inference.vc/how-powerful-are-graph-convolutions-review-of-kipf-welling-2016-2/. 2016

32 Literaturverzeichnis

[9] Kipf, Thomas N.; Welling, Max: Semi-Supervised Classification with Graph Convolutional Networks. In: Computing Research Repository (2016)

- [10] Krizhevsky, Alex: Learning Multiple Layers of Features from Tiny Images, Department of Computer Science, University of Toronto, Diplomarbeit, 2009
- [11] LECUN, Yann; CORTES, Corinna; BURGES, Christopher J.C.: The MNIST Database of Handwritten Digits. (2010)
- [12] REUTER, Martin; BIASOTTI, Silvia; GIORGI, Daniela; PATANÈ, Guiseppe; SPA-GNUOLO, Michela: Discrete Laplace-Beltrami Operators for Shape Analysis and Segmentation. In: *Computers & Graphics* (2009), S. 381–390
- [13] Shuman, David I.; Narang, Sunil. K.; Frossard, Pascal; Ortega, Antonio; Vandergheynst, Pierre: The Emerging Field of Signal Processing on Graphs: Extending High-Dimensional Data Analysis to Networks and Other Irregular Domains. In: *IEEE Signal Processing Magazine* (2013), S. 83–98
- [14] SIMONYAN, Karen; ZISSERMAN, Andrew: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: Computing Research Repository (2014)
- [15] VEDALDI, Andrea; SOATTO, Stefano: Quick Shift and Kernel Methods for Mode Seeking. In: European Conference on Computer Vision, 2008, S. 705–718

Eidesstattliche Versicherung

Name, Vorname	MatrNr.
Ich versichere hiermit an Eides statt, dass dem Titel	ich die vorliegende Bachelorarbeit/Masterarbeit* mit
angegebenen Quellen und Hilfsmittel benu	e Hilfe erbracht habe. Ich habe keine anderen als die utzt sowie wörtliche und sinngemäße Zitate kenntlich nnlicher Form noch keiner Prüfungsbehörde
Ort, Datum	Unterschrift
	*Nichtzutreffendes bitte streichen
Belehrung:	
Hochschulprüfungsordnung verstößt, hand einer Geldbuße von bis zu 50.000,00 € ge die Verfolgung und Ahndung von Ordnung	g über Prüfungsleistungen betreffende Regelung einer delt ordnungswidrig. Die Ordnungswidrigkeit kann mit ahndet werden. Zuständige Verwaltungsbehörde für swidrigkeiten ist der Kanzler/die Kanzlerin der le eines mehrfachen oder sonstigen schwerwiegender udem exmatrikuliert werden. (§ 63 Abs. 5
Die Abgabe einer falschen Versicherung a oder mit Geldstrafe bestraft.	n Eides statt wird mit Freiheitsstrafe bis zu 3 Jahren
	gfls. elektronische Vergleichswerkzeuge (wie z.B. die rdnungswidrigkeiten in Prüfungsverfahren nutzen.
Die oben stehende Belehrung habe ich zu	r Kenntnis genommen:
Ort, Datum	