

Plano de Ensino para o Ano Letivo de 2020

	IDE	NTIFICAÇÃO			
Disciplina:				Có	digo da Disciplina:
Automação da Manufatura					ECA516
Course:					
Manufacturing automation					
Materia:					
Periodicidade: Anual	Carga horária total:	80	Carga horária sen	nanal: 00	0 - 00 - 02
Curso/Habilitação/Ênfase:			Série:	Períod	0:
Engenharia de Controle e Auto	mação		6	Notur	no
Engenharia de Controle e Auto	mação		5	Diurn	0
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação
Fernando Silveira Madani		Engenheiro em	Controle e Aut	omação	Doutor
Professores:		Titulação - Graduaç	ção		Pós-Graduação
Fernando Silveira Madani	Engenheiro em Controle e Automação			Doutor	

Conhecimentos:

- C1-Ter uma visão geral de um sistema de manufatura.
- C2-Ter uma noção básica dos controles do sistema.
- C3-Adquirir conhecimentos do hardware básico de automação, como, sensores, atuadores, máquinas CNC, máquinas NC, equipamentos de movimentação e armazenagem de amteriais, e noções de robótica.
- C4-Adquirir noções da integração dos equipamentos de automação de processos, tais como sistemas flexíveis de manufatura, sistemas de células.
- C5-Reconhecer as ferramentas de integração da manufatura, como CAD, CAE, CAQ, CIM, CAPP.]
- C6-Noções de projetos práticos de automação.
- C7-Identificação das formas da aquisição de dados do sistema, por RF, código de barras, teoria dos grupos.

Habilidades:

- H1-Escolher um sistema de automação de processos mais adequado para a atividade desenvolvida.
- H2-Determinar o melhor nível de automação.
- H3-Calcular os custos envolvidos na mudança dos sistemas para automatizados.

Atitudes:

- Al-Encarar a automação com uma visão multifacetada.
- A2-Incorporar a cultura da automação e integração dos sistemas como um passo para a melhoria dos processos.

2020-ECA516 página 1 de 9

EMENTA

Fundamentos de manufatura automatizada. Movimentação e armazenagem automatizada de materiais. Tecnologia de grupo. Sistemas flexíveis de manufatura (FMS). Manufatura integrada por computador (CIM). Controle de qualidade e inspeção automatizados. Planejamento do processo assistido por computador (CAPP). Fábrica automatizada do futuro. Manufatura Digital. Estudo de casos.

SYLLABUS

Basics of automated manufacturing. Automated movement and storage of materials. Group technology. Flexible Manufacturing Systems (FMS). Computer-integrated manufacturing (CIM). Automated quality control and inspection. Computer Assisted Process Planning (CAPP). Automated factory of the future. Digital Manufacturing. Case Study.

TEMARIO

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Sala de aula invertida
- Project Based Learning
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas com retroprojetor e data show, uso do laboratório de robótica e automação da manufatura, visitas técnicas à empresas e aulas de exercícios.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Eletricidade básica, para acompanhamento dos sensores, atuadores e lógica booleana.

Estatística básica, para acompanhamento dos cálculos envolvidos nas decisões. Cálculo, para acompanhamento dos cálculos de matrizes de decisão.

CONTRIBUIÇÃO DA DISCIPLINA

Esta disciplina visa fornecer ao aluno uma visão geral da automação de processo industriais que inclui o conhecimento do hardware básico para a automação (sensosres e atuadores), bem como uma visão macro da integração da manufatura automatizada. O aluno ao final do curso deve ser capaz de entender os principais aspectos multifacetados que fazem parte da automação, a fim de possibilitar ao aluno as condições básicas para o gerenciamento e participação de projetos práticos da automação. A contribuição fundamental é que o aluno tenha uma visão holística da automação, interagindo com qualidade, métodos e tempos, entre outros, conseguindo assim enxergar as vantagens da automação, muito além das de caráter social e econômico.

2020-ECA516 página 2 de 9

BIBLIOGRAFIA

Bibliografia Básica:

ANGELES, Jorge. Fundamentals of robotic mechanical systems: theory, methods, and algorithms. 3. ed. New York: Springer, c2007. 549 p. (Mechanical Engineering Series). ISBN 0387294120.

CAPELLI, Alexandre. Automação industrial: controle do movimento e processos contínuos. 3. ed. São Paulo: Érica, 2014. 236 p. ISBN 139788536501178.

COSTA, Luiz Sergio Salles, org; CAULLIRAUX, Heitor M., org. Manufatura integrada por computador: sistemas de produção: estratégia, organização, tecnologia e recursos humanos. Rio de Janeiro, RJ: Campus, 1995. 420 p. ISBN 85-7001-962-9.

Bibliografia Complementar:

ASTRÖM, Karl J; WITTENMARK, Björn. Computer-controlled systems: theory and design. 3. ed. Upper Saddle River: Prentice Hall, 1997. 557 p. (Prentice Hall Information and System Sciences Series). ISBN 0-13-314899-8.

BEDWORTH, David D; HENDERSON, Mark R; WOLFE, Philip M. Computer-integrated design and manufacturing. New York: McGraw-Hill, c1991. 653 p. (McGraw-Hill Series in Industrial Engineering and Management Science).

BEGA, Egídio Alberto (Org.) et al. INSTRUMENTAÇÃO industrial. 3. ed. Rio de Janeiro, RJ: Interciência, 2011. 694 p. ISBN 9788571932456.

BONACORSO, Nelso Guaze; NOLL, Valdir. Automação eletropneumática. 6. ed. São Paulo, SP: Érica, 2002. 137 p. ISBN 85-7194-425-3.

CARO, Dick; INTERNATIONAL Society of Automation. Automation network selection: a reference manual. 2. ed. Research Triangle Park, NC: ISA, c2009. 174 p. ISBN 9781934394892.

CHWIF, Leonardo; MEDINA, Afonso Celso. Modelagem e simulação de eventos discretos: teoria e aplicações. 4. ed. rev. e ampl. Rio de Janeiro: Elsevier, c2015. 309 p. ISBN 9788535279320.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

2020-ECA516 página 3 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

k₁: 1,0 k₂: 1,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A	nota	T1	é	a	média	dos	trab	alhos	rea	aliza	idos	no	prin	neir	sem	est	re e	e a	Т2	а
mé	dia	dos	tr	ab	alhos	do	segun	do s	emes	tre.	0s	tra	abalh	os	serão	r	eali	zado	s e	em
lal	oorat	tóri	ο,	em	forma	a de	expe	rimen	tos	e av	<i>r</i> alia	ados	no	prój	prio	lab	orat	óric). <i>I</i>	ls
no	tas (de t	rak	bal	hos do	s al	lunos	depe	nden	tes p	poder	n, p	or s	soli	citaç	ão	dos	alur	nos	е
ace	eite	do	pro	fe	ssor,	ser ı	utiliz	zadas	na (disci	plin	na.								

2020-ECA516 página 4 de 9

OUTRAS INFORMAÇÕES

2020-ECA516 página 5 de 9

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

OOI TWARLO REGEOGRATIOO FARA A DIGGII EIRA
Melfa sw Mitsubishi
RT Toolbox3
GX Works3
GT Designer3

2020-ECA516 página 6 de 9

2020-ECA516 página 7 de 9

	PROGRAMA DA DISCIPLINA	
Nº da	Conteúdo	EAA
semana		
1 L	Sistemas de Produção - definições e classificações. Organograma	1% a 10%
	de um sistema produtivo geral. Exercício de classificação.	
2 L	Automação industrial - fixa, programável e flexível.	1% a 10%
	Justificativas para automatizar ou não. Terminologia e definições	
	dos CA\'s.	
3 L	Sistemas de controle - discretos e contínuos. Controles por tempo	1% a 10%
	e evento.	
4 L	Computador utilizado para controle - softwares e hardwares.	11% a 40%
	Exemplos de softwares e hardwares mais utilizado na indústria.	
5 L	Sistemas de medição de controles - atuadores, sensores e	11% a 40%
	transdutores.	
6 L	Sistemas digitais de controle - lógica Booleana, sequencial e	11% a 40%
	paralela.	
7 L	Linguagem Ladder e grafset.	41% a 60%
8 L	Exercício de lógica sequencial, CLP.	41% a 60%
9 L	Exercício desenvolvimento de projeto de automação industrial.	61% a 90%
10 L	Semana de Provas	0
11 L	Controle numérico - definições e aplicações. Diferenças entre NC	11% a 40%
	e CNC.	
12 L	Programação de NC e CNC.	11% a 40%
13 L	Robótica - introdução	11% a 40%
14 L	Robótica Industrial - aplicações e considerações	61% a 90%
15 L	Princípio de MAM - movimentação e armazenagem de materiais.	41% a 60%
16 L	Conceitos e aplicações do MAN.	41% a 60%
17 L	Esteiras, conveyors, carrossel.	11% a 40%
18 L	Trabalho T1	61% a 90%
19 L	Semana de Provas	0
20 L	Semana de Provas	0
21 L	Captura de dados de processo - verificação e validação da	41% a 60%
22.7	automação.	410 - 600
22 L	Código de barras - comercial e industrial.	41% a 60%
23 L	RDIF - rastreamento na industria	41% a 60% 41% a 60%
24 L 25 L	QRcode - controle e rastreamento	
25 L 26 L	Tecnologia de grupo. Células e manufatura I.	11% a 40% 11% a 40%
27 L 28 L	Células e manufatura II. Sistemas de Manufatura Flexível - FMS.	41% a 60% 41% a 60%
28 L 29 L	Sistemas de Manufatura Flexível - FMS. Sistemas de Manufatura Flexível - FMS.	41% a 60% 41% a 60%
30 L	Semana de Provas	0
30 L 31 L	Introdução ao conceito de CIM - computer integrated	11% a 40%
21 11	· · · · · · · · · · · · · · · · · · ·	110 a 406
32 L	manufacturing.	119 ~ 400
32 L 33 L	Planejamento de processos industriais utilizando a automação. Protocolos de comunicação	11% a 40% 11% a 40%
34 L	Software para integração e comissionamento. Manufatura digital	41% a 60%
24 11	bortward para integração e comissionamento. Manuratura digital	1 1% a 0∪6

2020-ECA516 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

35 L	Estudo de Caso I	61% a 90%
36 L	Estudo de Caso II	61% a 90%
37 L	Trabalho T2	61% a 90%
38 L	Semana de Provas	0
39 L	Semana de Provas	0
40 L	Semana de Provas	0
41 L	Revisão e prazo final de apresentação do T2.	61% a 90%
Legenda	: T = Teoria, E = Exercício, L = Laboratório	

2020-ECA516 página 9 de 9