

TEMA 2. CRIPTOGRAFÍA T 2.7 AUTENTICACIÓN DE USUARIOS

Criptografía y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2012-2013

Introducción

Autenticación

Procedimiento de comprobación de la identidad de un usuario

Factores de autenticación

- Basadas en algo que el usuario conoce (secretos) Contra Hina
- Basadas en algo que el usuario tiene (tokens) Dispositivo disico, culturatico
- ▶ Basadas en algo que el usuario es (biometría) Voz, relin a, inis
- Combinaciones de lo anterior (varios factores)

Autenticación mediante secretos

- El usuario dispone de determinada información secreta que sólo él y el sistema conocen
- Incluye métodos basados en contraseñas, PIN, desafíorespuesta, etc.
- Método de autenticación simple y extendido
- Necesaria una gestión de las contraseñas

Autenticación mediante secretos – Gestión de contraseñas

- Criterios de calidad
 - Fácil de recordar, (débil) versus aleatoria (menos débil)
 - Longitud, complejidad
- Custodia de la contraseña por el usuario
 - No divulgación (ingeniería social, phishing, etc.)
- Almacenamiento de contraseñas en el sistema
 - Almacenamiento del resumen de cada contraseña
 - Cifrado de las contraseñas

Ante adquier sos pecha combion

- Caducidad de contraseñas
 - Cuanto mayor sea la criticidad del sistema, menor debe ser el periodo de validez de las contraseñas

Autenticación mediante secretos – Gestión de contraseñas

- Recuerdo de contraseñas
 - Establecer un número mínimo de contraseñas diferentes consecutivas
- Bloqueo de contraseñas / baja de cuentas de usuario
 - En caso de sospecha de uso fraudulento
- Problemática en la reutilización de contraseñas para acceso a diferentes sistemas
- Amenazas
 - Ataques de fuerza bruta y de diccionario
 - Intercepción de contraseñas
 - Ataque a la base de datos del sistema (talón de Aquiles)
 - Ingeniería social

Autenticación mediante secretos – Gestión de contraseñas

- Programas de ruptura de contraseñas
 - ▶ **L0phtcrack**, John the Ripper, Pwdump
 - Diccionarios y listados (teléfonos, matrículas...)
- Programas de gestión de las contraseñas
 - Password Safe (http://www.schneier.com/passsafe.html)
 - SplashID (http://splashdata.com/splashid/)

Autenticación mediante Token

- Dispositivos criptográficos
 - Tarjetas inteligentes, tokens USB
 - Autenticación mediante firma digital
- Tokens OTP

 One Time Passwert => Dificil recordurles todas.

Autenticación mediante Token – OTP

- OTP (One-Time Password)
- Contraseñas desechables de un solo uso (sesión, transacción)
- Se generan mediante un token que posee el usuario o software específico
- Evitan los inconvenientes derivados de la gestión de contraseñas clásicas
- Custodia segura del token

Autenticación mediante Token – OTP

Se basan en aleatoriedad, evitando ataques por predicción

- Tipos
- Síncronos: existe sincronía entre los relojes del token y el servidor de autenticación
 - **Encadenados**: La generación de un OTP depende del OTP anterior
 - Basados en desafíos: La generación de un OTP depende del desafío enviado por el servidor de autenticación y un contador interno

Autenticación mediante Token – OTP síncrono

Autenticación mediante Token – OTP encadenado

- Aplicación de una función f irreversible de forma encadenada
- Generación de una serie de OTPs basadas en el valor anterior

```
f(s), f(f(s)), f(f(f(s))) ... f(...(f(f(f(s)))...)
```

Uso de las OTPs de forma inversa

```
f(\dots(f(f(f(s)))\dots)\dots f(f(f(s))), f(f(s)), f(s))
```


Autenticación mediante Token – OTP encadenado

Inicialización

- 1. El servidor de autenticación elige la función f
- 2. El usuario elije el máximo nº de autenticaciones (n)
- El token inicializa la semilla s y calcula fⁿ(s)
- 4. El usuario envía n y fⁿ(s) al servidor de autenticación por un canal seguro
- 5. El servidor de autenticación registra fⁿ(s) junto con el ID del usuario

Uso

- 6. El token envía el ID y fⁿ⁻¹(s) al servidor de autenticación
- 7. El servidor de autenticación recupera fⁿ(s) mediante el ID

Autenticación mediante Token – OTP encadenado

- 8. El servidor de autenticación calcula f(fⁿ⁻¹(s)) y comprueba si coincide con fⁿ(s) almacenado
- 9. El servidor de autenticación borra fⁿ(s) del registro y almacena en su lugar fⁿ⁻¹(s)
- 10. El servidor de autenticación resta 1 a n
- 11. Se repite el proceso hasta que n=0
- Un atacante que intercepte un OTP deberá ser capaz de invertir la función f para conocer el siguiente valor OTP
 - Normalmente se emplean funciones resumen

Autenticación mediante Token – OTP basado en desafío

COSEC Lab. Dpto. Informática

Autenticación biométrica

- El sistema autentica al usuario basándose en rasgos biométricos (característica física única e irrepetible)
- Existe un proceso de registro en el sistema (extracción del patrón biométrico y almacenamiento)
- El proceso de autenticación implica la obtención del patrón biométrico del usuario, y su comparación con el patrón almacenado
- Múltiples técnicas biométricas (huella dactilar, iris, vascular, geometría de la mano, escritura y firma manuscrita, voz, ...)
 - Diferentes tasas de eficacia (falsos positivos / falsos positivos)

Autenticación biométrica

Autenticación biométrica

ANEXO Autenticación de entidades.

Criptografía y seguridad informática Seguridad en las tecnologías de la información @ COSEC

Curso 2012-2013

Tipos de autenticación de entidades

- Simple (basado en contraseña) Envia su nembre distintivos y una contraseña de servidor y este la verifica.
- Fuerte (basados en prueba de posesión de Se basa en los criptoristemas de dave publica, comprobando com lo plica privada) 12 unice Unidireccional 13 autention 2 se li primedo.
- Bidireccional A cutentica a B subentica a B
- 3 sulta De tres sentidos

Lo Como bidireccional, A remite a B una revera transmission enla que el emisor devolve el codigo generado pur el receptor para que este compruebe su idequida. Sin contral del tiempo.

Autenticación de entidades simple

Autenticación de entidades fuerte: Unidireccional

$$S = E_{vA} (t, r, ID(B))$$

ITU-T X.509; ISO/IEC 9594-8

Autenticación de entidades fuerte: Bidireccional

Autenticación de entidades fuerte: De tres sentidos

