Design principles of biochemical oscillators

Novák, B., & Tyson, J. J. (2008). Design principles of biochemical oscillators. Nature Reviews Molecular Cell Biology, 9(12), 981–991. https://doi.org/10.1038/nrm2530

Keith Kennedy
Department of Experimental and Health Sciences
Universitat Pompeu Fabra
E-mail: keith.kennedy@prof.esci.upf.edu

URL: http://dsb.upf.edu

Overview

- Cellular rhythms from complex/dynamic interactions of genes
- Control cell physiology
- General requirements for oscillations
- Oscillators classified by topology of feedback loops in regulatory mechanism

Dynamics of Oscillators

- Systems-level characteristics
 - Periodicity, robustness, entrainment
 - Topology of network
- Theoretical perspective and quantitative mathematical modeling of processes
- Demonstrate design principles by rate plots, signal-response curves, constraint diagrams

General Requirements for Oscillation

- Negative feedback
 - Carries reaction back to starting point
- Time delay
 - Feedback signal delayed
 - Prevents settling at steady state
- Sufficient nonlinearity
 - Kinetic rates destabilize steady state
- Appropriate timescales
 - Balance of production and decay rates

Self-Repressing Gene

$$\frac{dY}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_2 E_T \frac{Y}{K_m + Y}$$

- S: transcription factor
- Y: protein concentration
- *K*_d: dissociation constant
- p: monomer, dimer, etc.
- E_T : total protease, degrades 'Y
- *k*₂: turnover rate
- *K_m*: Michelis-Menton constant

Self-Repressing Gene

$$\frac{dY}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_2 E_T \frac{Y}{K_m + Y}$$

Self-Repressing Gene with Explicit Time Delay

$$\frac{dY}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y(t - \tau)^p} - k_2 E_T \frac{Y(t)}{K_m Y(t)}$$

Attributes of Rate Constants

- **r** sufficiently long
- p or (K_d/K_m) increases \rightarrow smaller τ_{min}
- τ vs. signal strength: $(\tau/T_{deg}, T_{deg}/T_{syn})$
- Constraint curves depend on p and K_d / K_m
- Oscillation period 2–4x time delay

Attributes of Rate Constants

- Negative feedback with mRNA
- X [mRNA], Y [protein]

$$\frac{dX}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_{dx} X$$

$$\frac{dY}{dt} = k_{sy} X - k_2 E_T \frac{Y}{K_m + Y}$$
Protein

Alone only damped oscillations

$$\frac{dX}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_{dx} X \qquad \frac{dY}{dt} = k_{sy} X - k_2 E_T \frac{Y}{K_m + Y}$$

$$\frac{dY}{dt} = k_{sy}X - k_2E_T \frac{Y}{K_m + Y}$$

- mRNA alone not enough
 - Still need time delay

- Transport of mRNA and protein
 - Expand equations to 4 variables
 - Nucleus (X_n, Y_n)
 - Cytoplasm (X_c, Y_c)

- Only 3 components for oscillations
 - Half-life affects number of components
- Goodwin modeled enzyme synthesis
- Circadian rhythm, PER protein
 - Slow post-translational modifications
- Elowitz and Leibler engineered repressilator

Time Delay by Positive-Feedback

- Time delay pseudo-memory
 - Current rate depends on past concentration
 - Property of systems with bistability
- Y both inhibits itself and activity of X

$$\frac{dX}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_{dx} X$$

$$\frac{dY}{dt} = k_{sy} X - k_{dy} Y - k_2 E_T \frac{Y}{K_m + Y + K_1 Y^2}$$

Time Delay by Positive Feedback

$$\frac{dX}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_{dx} X$$

$$\frac{dX}{dt} = k_1 S \frac{K_d^p}{K_d^p + Y^p} - k_{dx} X \quad \frac{dY}{dt} = k_{sy} X - k_{dy} Y - k_2 E_T \frac{Y}{K_m + Y + K_1 Y^2}$$

Time Delay by Positive Feedback

Time Delay by Positive Feedback

Effects of Positive Feedback

- Kink in nullcline curve for protein
 - Over/undershooting of steady state
- Sustained oscillations
 - Provided S and K₁ within certain bounds
- Possible source of circadian rhythms for PER gene in fruit flies
 - Tyson et al. believe PER forms dimers
 - Less prone to degradation

Biochemical Interaction Networks

- Two distinct oscillation mechanisms
 - Three component negative feedback loop
 - Combination of short positive and negative feedback loops
- X = activator, Y = inhibitor
 - Direct or indirect
- No auto-catalysis

Oligomer binding

Cooperativity and allostery

Multisite phosphorylation

Kinase/phosphatase

Stoichiometric inhibition

Delayed Negative Feedback Loops

- 3 components, odd number of inhibitory links
- Biological examples:
 - PER in fruit flies
 - p53 response to ionizing radiation
 - NF-кВ response to tumor necrosis factor
- Needs three variables
 - Trajectories in XY and XZ planes
- Flow through nullclines not strictly vertical/horizontal

Delayed Negative Feedback Loops

Amplified Negative-Feedback Loops

- Activator amplification by positive feedback
 - Kink in X-nullcline
 - Bistability of X with respect to Y
- Inhibitor amplification
 - Kink in Y-nullcine
 - Bistability of Y with respect to X
- Negative feedback causes rotation around SS
- Positive feedback prevents spiraling into SS
- Models
 - Mitosis-promoting factor in frog eggs
 - Endoreplication in mutant fission yeast cells

Amplified Negative-Feedback Loops

Incoherently Amplified Negative-Feedback Loops

- Rewire activator-amplified feedback loop
 - Positive feedback has 2 components
 - Negative feedback has 3 components
- Negative loop can oscillate on its own
 - Positive loop adds bistability and robustness
- Models of glycolytic , cAMP, p53 oscillations, cell cycle transitions

Incoherently Amplified Negative-Feedback Loops

Ordinate	Abscissa	Motifs	Ordinate	Abscissa
X	Z	(TZZ	Z	Υ
Υ	Z	$\begin{pmatrix} X \\ T \\ Y \end{pmatrix} Z$	Z	Х
X or Y	Z	(X Z		
		Z X Z	Z	X or Y

Other Possibilities

- Coherently repressed loops
 - Two negative loops
- Another incoherently amplified negative loop
 - Positive has three components, negative has 2
- Two positive loops
 - Expect bistability, but no oscillations

More Complex Topologies and Oscillatory Behaviors

- Examined all motifs with 3 components and at most 4 links
- Combine motifs that oscillate individually
 - Deterministic chaos possible
 - However, not seen much experimentally
 - Canceled out by white noise
- Model circadian oscillations in phosphorylation state of KaiC protein in cyanobacteria

More Complex Topologies and Oscillatory Behaviors

Review – Requirements for Oscillation

- Negative-feedback loop
 - Bring reaction back to start
- Time delay or memory in negative loop
 - Positive feedback or long negative loops
- Sufficient nonlinearity
 - Reaction kinetics
- Timescale balance of components in loop

Review – Classes of Oscillators

- Delayed negative-feedback loops
- Amplified negative-feedback
- Incoherently amplified negative-feedback

Review – Biochemical Connections

- Oscillators can evolve
 - Mutations affect rate constants
 - Dynamical diseases can occur
- Circadian rhythm
 - Likely evolved multiple times
- Cell cycle
 - Likely from one common ancestor
 - Highly constrained and universal