

DKE CO.,LTD

EPD Module User Manual DEPG0213RHS75AF1CP

Add.: NO.66, Jinghai Street, Economic Zone of changxing Island, Dalian, China

Tel.: 86-411-85277766/85277767/85277768

Fax: 86-411-85277769

E-mail: sales @ dkelcd .com Website: www.china-epaper.com

Specification for 2.13 inch EPD

Model NO.: DEPG0213RHS75AF1CP

DKE's Confirmation:

Prepared by	Checked by	Approved by
2.7		7
		A I
<u> </u>		TIAL
91),	FINEN	

Customer approval:

Customer	Approved by	Date

Revision History

Version	Content	Date	Producer
1.0	New release	2017/08/14	
1.1	Update Operating temperature and application c ircuit	2017/12/4	
1.2	Update Pin Assignment	2018/01/22	
1.3	Update Panel DC Characteristics and Over View	2018/03/09	
1.4	Update Circuit (Diode type)	2018/03/27	n m
1.5	Redefine typical test conditions	2018/09/28	
1.6	Update the module partial parameter	2019/07/12	
6	DKE	TIA	

CONTENTS

1.Over View
2. Features6
3. Mechanical Specification6
4.Mechanical Drawing of EPD Module
5. Input/output Pin Assignment
6. Electrical Characteristics
6.1 Absolute Maximum Rating9
6.2 Panel DC Characteristics
6.3 Panel DC Characteristics(Driver IC Internal Regulators)
6.4 Panel AC Characteristics 11
6.4.1 MCU Interface Selection
6.4.2 MCU Serial Interface (4-wire SPI)
6.4.3 MCU Serial Interface (3-wire SPI)
6.4.4 Interface Timing
7.Command Table16
8. Optical Specification
9. Handling, Safety, and Environment Requirements
10. Reliability Test
11. Block Diagram

12. Typical Application Circuit with SPI Interface	23
13 Typical Operating Sequence	24
13.1Normal Operation Flow	24
13.2Normal Operation Reference Program Code	25
13.3LUT from OTP Operation Flow	26
13.4LUT from OTP Operation Reference Program Code	27
14. Part Number Definition	28
15. Inspection condition	28
15.1 Environment	
15.2 Illuminance	
15.3 Inspect method	28
15.4 Display area	29
15.5 Inspection standard	29
15.5.1 Electric inspection standard	29
15.5.2 Appearance inspection standard	30
16 Packaging	32.

1. Over View

DEPG0213RHS75AF1CP is an Active Matrix Electrophoretic Display (AM EPD), with interface and a reference system design. The display is capable to display images at 1-bit white, black and red full display capabilities. The 2.13inch active area contains 212×104 pixels. The module is a TFT-array driving electrophoresis display, with integrated circuits including gate driver, source driver, MCU interface, timing controller, oscillator, DC-DC, SRAM, LUT, VCOM. Module can be used in portable electronic devices, such as Electronic Shelf Label (ESL) System.

2. Features

- ♦212×104 pixels display
- ♦ High contrast High reflectance
- ◆Ultra wide viewing angle Ultra low power consumption
- ◆Pure reflective mode
- ◆Bi-stable display
- ◆Commercial temperature range
- **♦** Landscape portrait modes
- ◆ Hard-coat antiglare display surface
- ♦ Ultra Low current deep sleep mode
- ◆On chip display RAM
- ◆ Waveform can stored in On-chip OTP or written by MCU
- ◆ Serial peripheral interface available
- ◆On-chip oscillator
- ◆On-chip booster and regulator control for generating VCOM, Gate and Source driving voltage
- ◆I²C signal master interface to read external temperature sensor
- ◆Built-in temperature sensor

3. Mechanical Specification

Parameter	Specifications	Unit	Remark
Screen Size	2.13	Inch	
Display Resolution	104(H)×212(V)	Pixel	DPI:110
Active Area	23.71 ×48.55	mm	
Pixel Pitch	0.228×0.229	mm	
Pixel Configuration	Square		
Outline Dimension	29.2(H)×59.2 (V) ×1.0 (D)	mm	
Weight	3.2±0.5	g	

4.Mechanical Drawing of EPD Module

5. Input/output Pin Assignment

No.	Name	I/O	Description	Remark
1	NC		Do not connect with other NC pins	Keep Open
2	GDR	О	N-Channel MOSFET Gate Drive Control	
3	RESE	I	Current Sense Input for the Control Loop	
4	NC	NC	Do not connect with other NC pins	Keep Open
5	VSH2	С	Positive Source driving voltage(Red)	
6	TSCL	О	I2C Interface to digital temperature sensor Clock pin	
7	TSDA	I/O	I2C Interface to digital temperature sensor Data pin	
8	BS1	I	Bus Interface selection pin	Note 5-5
9	BUSY	О	Busy state output pin	Note 5-4
10	RES#	I	Reset signal input. Active Low.	Note 5-3
11	D/C#	I	Data /Command control pin	Note 5-2
12	CS#	I	Chip select input pin	Note 5-1
13	SCL)) I\(Serial Clock pin (SPI)	3
14	SDA	I	Serial Data pin (SPI)	
15	VDDIO	P	Power Supply for interface logic pins It should be connected with VCI	
16	VCI	P	Power Supply for the chip	
17	VSS	P	Ground	
18	VDD	С	Core logic power pin VDD can be regulated internally from VCI. A capacitor should be connected between VDD and VSS	
19	VPP	P	FOR TEST	Keep Open
20	VSH1	С	Positive Source driving voltage	
21	VGH	С	Power Supply pin for Positive Gate driving voltage and VSH1	
22	VSL	C	Negative Source driving voltage	
23	VGL	С	Power Supply pin for Negative Gate driving voltage VCOM and VSL	
24	VCOM	C	VCOM driving voltage	

- I = Input Pin, O = Output Pin, /O = Bi-directional Pin (Input/output), P = Power Pin, C = Capacitor Pin
- Note 5-1: This pin (CS#) is the chip select input connecting to the MCU. The chip is enabled for MCU communication only when CS# is pulled LOW.
- Note 5-2: This pin is (D/C#) Data/Command control pin connecting to the MCU in 4-wire SPI mode. When the pin is pulled HIGH, the data at SDA will be interpreted as data. When the pin is pulled LOW, the data at SDA will be interpreted as command.
- Note 5-3: This pin (RES#) is reset signal input. The Reset is active low.
- Note 5-4: This pin is Busy state output pin. When Busy is High, the operation of chip should not be interrupted, command should not be sent. The chip would put Busy pin High when -Outputting display waveform -Communicating with digital temperature sensor

Note 5-5: Bus interface selection pin

BS1 State	MCU Interface					
L	4-lines serial peripheral interface(SPI) - 8 bits SPI					
Н	3- lines serial peripheral interface(SPI) - 9 bits SPI					

6. Electrical Characteristics

6.1 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit
Logic supply voltage	VCI	-0.5 to +4.0	V
Logic Input voltage	VIN	-0.5 to VCI +0.5	V
Logic Output voltage	VOUT	-0.5 to VCI +0.5	V
Operating Temp range	TOPR	10 to +40	С.
Storage Temp range	TSTG	-25 to+40	℃.
Operating Temp range Max	TOPRm	0 to +40	℃.
Optimal Storage Temp	TSTGo	23±2	С.
Optimal StorageHumidity	HSTGo	55±10	%RH

Note:

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Panel DC Characteristics tables.

6.2 Panel DC Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23 ℃.

Parameter	Symbol	Condition	Applicab le pin	Min.	Тур.	Max.	Unit
Single ground	Vss	1		-	0	-	V
Logic supply voltage	Vci	-	VCI	2.2	3.0	3.7	V
Core logic voltage	V_{DD}		VDD	1.7	1.8	1.9	V
High level input voltage	Vih	-	-	0.8 Vci	-	-	V
Low level input voltage	VIL	-	-	-	-	0.2 Vci	V
High level output voltage	Vон	IOH = -100uA	-	0.9 Vci	-	-	V
Low level output voltage	Vol	IOL = 100uA	-	-	-	0.1 Vci	V
Typical power	Ртүр	Vci =3.0V	-	-	9.0	-	mW
Deep sleep mode	PSTPY	Vci =3.0V	-	-	0.003	-	mW
Typical operating current	Iopr_VCI	Vci =3.0V	-	-	3.0	V- //	mA
Image update time	-	23 °C		. (-(15)-) \	sec
Sleep mode current	Islp_Vci	DC/DC off No clock No input load Ram data retain			20		uA
Deep sleep mode current	Idslp_Vci	DC/DC off No clock No input load Ram data not retain		75	A	5	uA

Notes: 1. The typical power is measured with following transition from horizontal 2 scale pattern to vertical 2 scale pattern.

- 2. The deep sleep power is the consumed power when the panel controller is in deep sleep mode.
- 3. The listed electrical/optical characteristics are only guaranteed under the controller & waveform provided by DKE.

6.3 Panel DC Characteristics(Driver IC Internal Regulators)

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23 °C.

Parameter	Symbol	Condition	Applicable pin	Min.	Тур.	Max.	Unit
VCOM output voltage	VCOM	-	VCOM	-	TBD	-	V
Positive Source output voltage	Vsh	-	S0~S151	+14.5	+15	+15.5	V
Negative Source output voltage	Vsl	-	S0~S151	-15.5	-15	-14.5	V
Positive gate output voltage	Vgh	-	G0~G151	+21	+22	+23	V
Negative gate output voltage	Vgl	-	G0~G151	-21	-20	-19	V

6.4 Panel AC Characteristics

6.4.1 MCU Interface Selection

The pin assignment at different interface mode is summarized in Table 6-4-1. Different MCU mode can be set by hardware selection on BS1 pins. The display panel only supports 4-wire SPI or 3-wire SPI interface mode.

Pin Name	Data/Comm	and Interface		Control Signa	1
Bus interface	SDA	SCL	CS#	D/C#	RES#
BS1=L 4-wire SPI	SDA	SCL	CS#	D/C#	RES#
BS1=H 3-wire SPI	SDA	SCL	CS#) L] L	RES#

6.4.2 MCU Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SDA, D/C#, CS#. This interface supports Write mode and Read mode.

Function	CS#	D/C#	SCL
Write command	L	L	↑
Write data	L	Н	1

Note: ↑ stands for rising edge of signal

In the write mode SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM /Data Byte register or command Byte register according to D/C# pin.

Parameter

SDA

(Write Mode)

Figure 6-1: Write procedure in 4-wire SPI mode

In the Read mode:

1. After driving CS# to low, MCU need to define the register to be read.

Register

D5

- 2. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0 with D/C# keep low.
- 3. After SCL change to low for the last bit of register, D/C# need to drive to high.
- 4. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 5. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-2: Read procedure in 4-wire SPI mode

6.4.3 MCU Serial Interface (3-wire SPI)

The 3-wire serial interface consists of serial clock SCL, serial data SDA and CS#. This interface also supports Write mode and Read mode.

The operation is similar to 4-wire serial interface while D/C# pin is not used. There are altogether 9-bits will be shifted into the shift register on every ninth clock in sequence: D/C# bit, D7 to D0 bit. The D/C# bit (first bit of the sequential data) will determine the following data byte in the shift register is written to the Display Data RAM (D/C# bit = 1) or the command register (D/C# bit = 0).

Function	CS#	D/C#	SCL
Write command	L	Tie	↑
Write data	L	Tie	↑

Note: ↑ stands for rising edge of signal

SDA (Write Mode)

Register

Register

Register

Register

Register

Figure 6-3: Write procedure in 3-wire SPI mode

In the Read mode:

- 1. After driving CS# to low, MCU need to define the register to be read.
- 2. D/C=0 is shifted thru SDA with one rising edge of SCL
- 3. SDA is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0.
- 4. D/C=1 is shifted thru SDA with one rising edge of SCL
- 5. SDA is shifted out an 8-bit data on every falling edge of SCL in the order of D7, D6, ... D0.
- 6. Depending on register type, more than 1 byte can be read out. After all byte are read, CS# need to drive to high to stop the read operation.

Figure 6-4: Read procedure in 3-wire SPI mode

6.4.4 Interface Timing

The following specifications apply for: VSS=0V, VCI=3.0V, TOPR =23 ℃.

Serial Interface Timing Characteristics

(VCI - VSS = 2.2V to 3.7V, TOPR = 23 °C, CL=20pF)

Write mode

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Write Mode)			20	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	20			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	20			ns
tCSHIGH	Time CS# has to remain high between two transfers	100			ns
tSCLHIGH	Part of the clock period where SCL has to remain high	25			ns
tSCLLOW	Part of the clock period where SCL has to remain low	25	\prod	10	ns
tSISU	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	10			ns
tSIHLD	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	40			ns
Read mod	de la	A	1		

Symbol	Parameter	Min	Тур.	Max	Unit
fSCL	SCL frequency (Read Mode)			2.5	MHz
tCSSU	Time CS# has to be low before the first rising edge of SCLK	100			ns
tCSHLD	Time CS# has to remain low after the last falling edge of SCLK	50			ns
tCSHIGH	Time CS# has to remain high between two transfers	250			ns
tSCLHIG H	Part of the clock period where SCL has to remain high	180			ns
tSCLLOW	Part of the clock period where SCL has to remain low	180			ns
tSOSU	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
tSOHLD	Time SO (SDA Read Mode) will remain stable after the rising edge of SCL		70		ns

7. Command Table

R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	01	0	0	0	0	0	0	0	1	Driver Output	Gate setting
0	1		A7	A6	A5	A4	A3	A2	A1	A0	control	Set A[8:0]=0097h
0	1		0	0	0	0	0	0	0	A8		Set B[8:0]=00h
0	1		0	0	0	0	0	B2	B1	B0		
0	0	03	0	0	0	0	0	0	1	1	Gate Driving	SetGate Driving voltage
0	1		0	0	0	A4	A3	A2	A1	A0	voltage control	A[4:0]=17h[POR],VGH at 20V[POR] VGH setting from 10V to 21V
0	0	04	0	0	0	0	0	1	0	0	Source Driving	SetSource Driving voltage
0	1		A7	A6	A5	A4	A3	A2	A1	A0	voltage control	A[7:0] = 41h[POR], VSH1 at 15V
0	1		B7	B6	B5	B4	В3	B2	B1	B0		B[7:0]=A Ch[POR],VSH2 at 5.4V C[7:0]= 32h[POR], VSL at -15V
0	1		C7	C6	C5	C4	C3	C2	C1	C0		6[7.0]= 32h[1 6R], VBL ut 13 V
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep	Deep Sleep mode Control
0	1		0	0	0	0	0	0	0	A_0	mode	A[0]: Description
												0 Normal Mode [POR] 1 Enter Deep Sleep Mode
												I Division Deep steep 131000
0	0	11	0	0	0	1	0	0	0	-	Data Entry	Define data entry sequence
0	1		0	0	0	0	0	A_2	A_1	A_0	mode setting	A [1:0] = ID[1:0]Address automatic increment / decrement setting
		1			$\mathbb{R}^{\mathbb{R}}$	//	\					The setting of incrementing or
4			\\	1)	1 / 7		_ \					decrementing of the address counter can
	16	Δ.	\\	1)		1					M	be made independently in each upper and
((((9,	V).							2 515	IF		lower bit of the address.
/ //	L	4				-	Π	T	3	. \\		00 – Y decrement, X decrement, 01 – Y decrement, X increment,
	and the second				1	10	U	1	5	P 1.		10 –Y increment, X decrement,
			())	1/2	7 2				11 –Y increment, X increment [POR]
			\		9							A[2] = AM
												Set the direction in which the address counter is updated automatically after data
												are written to the RAM.
												AM= 0, the address counter is updated in
												the X direction. [POR]
												AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SWRESET	It resets the commands and parameters to
												their S/W Reset default values except
												R10h-Deep Sleep Mode Note: RAM are unaffected by this
												command.
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor Control	Temperature Sensor Selection A[7:0] = 48h [POR], external temperature
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Sensor Connor	sensor
												A[7:0] = 80h Internal temperature sensor

	0	1 4		0	0	1	1	0	1	0	m .	XX7 *
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor Control	Write to temperature register. A[7:0] – MSByte 01111111[POR]
0	1		A7	A6	A5	A4	A3	A2	A1	A0	Sensor Control	B[7:0] – LSByte 1111111[POR]
0	1		B7	B6	B5	B4	0	0	0	0		
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence The Display Update Sequence Option is located at R22h User should not interrupt this operation to avoid corruption of panel images.
0	0	21	0	0	1	0	0	0	0	1	Display Update	RAM content option for Display Update
0	1		0	0	0	0	A3	A2	A1		Control 1	BW RAM option
0	1			U	U	U	AS	AL	AI	AU		A[7:4]=0100 (For BW)
												A[3:0]=0000[POR] Normal
												A[3:0]=0100 Bypass RAM content as 0 A[3:0]=0100 Inverse RAM content
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option:
	1		A7	A6	A5	A4	A3	A2	A1	A0	Control 2	Enable the stage for Master Activation
	1		11/	710	713	//	713	112	7 1 1	710		Setting for LUT from MCU
	5				\{				7 2 Tr		DEN	Enable Clock Signal, Then Enable Analog Then PATTERN DISPLAY C7 Then Disable Analog Then Disable OSC
						7	11.11	11	=]	7 F		Setting for LUT from OTP according to
			/	7	((<i>))</i> /	111	7 17				external Temperature Sensor operation
			\			2)	77					Then Enable Analog Then Load LUT 90
												Enable Analog Then PATTERN DISPLAY Then Disable Analog Then Disable OSC
0	0	24	0	0	1	0	0	1	0	0	Write RAM (BW)	After this command, data entries will be written into the 1RAM until another command is written. Address pointers will advance accordingly. For Write pixel: Content of write RAM(BW)=1 For Black pixel: Content of write RAM(BW)=0

0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED)	After this command, data entries will be written into the 2 RAM until another command is written. Address pointers will advance accordingly. For RED pixel: Content of write RAM(RED)=1 For White/Black pixel: Content of write RAM(RED)=0
0	0	2C	0	0	1	0	1	1	0	0	register	Set A[7:0]=5Ah
0	1	20	A7	A6	A5	A4	A3	A2	A1	A0		D. I.D. St. Comp.
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read	Read Register stored in OTP: 1. A[7:0]~ B[7:0]: VCOM Information
1	1		A7	A6	A5	A4	A3	A2	A1	A0	Read	3. C[7:0]~F[7:0]: Reserved
1	1		B7	B6	B5	B4	B3	B2	B1	B0		4. G[7:0]~H[7:0]: Module ID/ Waveform
1	1		C7	C6	C5	C4	C3	C2	C1	C0		Version [2bytes]
1	1		D7	D6	D5	D4	D3	D2	D1	D0		
1	1		E7	E6	E5	E4	E3	E2	E1	E0		п [
1	1		F7	F6	F5	F4	F3	F2	F1	F0		
1	1		G7	G6	G5	G4	G3	G2	G1	G0		
1	1		H7	Н6	H5	H4	Н3	H2	H1	H0		
0	0	2F	0	0	1	0	1	1	1	1/	Status Bit Read	Read IC status Bit [POR 0x21]
1	1		0	0	A5	A4	0	0	A1	A0		A[5]: HV Ready Detection flag [POR=1]
											DEN	0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal 1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	32	0	0	1	1	0	0	1	0	Write LUT	Write LUT register from MCU interface
0	1		A7	A6	A5	A4	A3	A2	A1	A0	register	[70 bytes].
0	1		В7	B6	B5	B4	В3	B2	B1	B0		
0	1		:	:	:	:	:	:	:	:		
0	1		:	:	:	:	:	:	:	:		
0	1		:	:	:	:	:	:	:	:		
0	1		:	:	:	:	:	:	:	:		

O				1								1	
O	0	0	3A	0	0	1	1	1	0	1			
O	0	1		0	A_6	A_5	A_4	A_3	A_2	A_1	A_0	period	
O	0	0	3B	0	0	1	1	1	0	1	1	Set Gate line	Set A[3:0]=0Dh
Control	0	1		0	0	0	0	A ₃	A_2	A_1	\mathbf{A}_0	width	
Note								j			0		Frame frequency
No. No.	0	0	3C	0	0	1	1	1	1	0	0		
A[7:6] Select VBD as O0[POR] GS Transition Define A[1:0] O1 Fix Level Define A[1:0] O1 CIV O1 O1 VSH1 O1 UUT2 O1 UUT2 O1 UUT3 UUT3 O1 UUT3 UUT3 O1 UUT3 UUT3 O1 UUT3	0	1		A_7	A_6	A_5	A_4	0	0	A_1	A_0		
												Control	
Define A[1:0]													
01 Fix Level Define A [5:4] 10 VCOM 11 HIZ A [5:4] Fix Level Setting for VBD A[5:4] Fix Level Setting for the RAM X A[6:0]													
1													
1													
A 5:4 Fix Level Setting for VBD A 5:4 VBD level O0 POR VSS O1 VSH O0 POR VSS O1 VSH O0 POR VSS O1 VSH													
A S:4 VBD level													
0													
1													
A													
A											/		
0								TE					
0						\Box		\\		7	\		
10			1		1	11	//	\	\				
1	4			\\),	1		1				- 1	
O	1///		1/1	\\		\.).						11 11 12
O	0	0	44	0	1	0	0	0	1	0.1	0	Set RAM X -	
Color Colo	1 /		9					- 11		- 1	- 11	7.7 ()	
Alf-0], ASA[4-0], ASA[4-						11			- 11		-	End position	
0 0 45 0 1 0 0 1 0 1 Set Ram Y-address Start / End position Specify the start/end positions of the window address in the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 00D3h B[8:0]: YSA[8:0], Y Start, POR = 00D3h B[8:0]: YEA[8:0], Y End, POR = 0000h 0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ B[8:0]: YSA[8:0], Y Start, POR = 00D3h B[8:0]: YEA[8:0], Y End, POR = 0000h B[8:0]: YEA[8:0], Y End, POR = 0000h </td <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1)4</td> <td>23</td> <td>12</td> <td>D</td> <td>20</td> <td></td> <td></td>		1					1)4	23	12	D	20		
0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ A ₁ A ₀ address Start / End position window address in the Y direction by an address unit A[8:0]: YSA[8:0], Y Start, POR = 00D3h B[8:0]: YSA[8:0], Y End, POR = 00D0h 0 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ B ₁ B ₀ 0 1 0 0 0 0 0 B ₈ 0 1 0 0 0 0 0 B ₈ 0 1 0 0 0 0 0 B ₈ 0 1 0 0 0 0 B ₈ 0 1 0 0 0 0 B ₈ 0 1 0 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ 0 1 0 0 0 1 1 1 1 1 A ₁ 0 1 0 0 0		0	4.5			0	0	0	1	0	1	C . D . W	
O			45										
0 1 0 0 0 0 0 A ₈ B ₀ position A[8:0]: YSA[8:0], Y Start, POR = 00D3h B[8:0]: YEA[8:0], Y End, POR = 0000h 0 1 0 0 0 0 0 B ₈ 0 0 4E 0 1 0 0 1 1 0 0 0 4F 0 1 0 0 1										_	A()		1
0 1 0 0 0 0 0 B ₈ 0 0 4E 0 1 0 0 1 1 0 Set RAM X address counter ACN A[4:0]: XAD[4:0], POR is 00h 0 1 0 0 0 1 1 1 Set RAM Y address counter ACN A[4:0]: XAD[4:0], POR is 00h 0 0 4F 0 1 0 0 1 1 1 Set RAM Y address counter ACN A[4:0]: XAD[4:0], POR is 00h Make initial settings for the RAM Y address in the address counter ACN A[8:0]: YAD[8:0], POR is 00D3h A[8:0]: YAD[8:0], POR is 00D3h A[8:0]: YAD[8:0], POR is 00D3h A[7:0] = 54h 0 0 74 0 1 1 0 0 Set Analog Block control A[7:0] = 54h 0 0 7E 0 1 1 1 1 0 Set Digital A[7:0] = 3Bh									_	_			A[8:0]: YSA[8:0], Y Start, POR = 00D3h
0 0 4E 0 1 0 0 1 1 1 0 Set RAM X address counter Address in the													B[8:0]: YEA[8:0], Y End, POR = 0000h
0 1 0 0 A ₄ A ₃ A ₂ A ₁ A ₀ address counter address in the address counter (AC) A[4:0]: XAD[4:0], POR is 00h 0 0 4F 0 1 0 1 1 1 1 Set RAM Y address counter address in the address for the RAM Y address in the address counter (AC) A[8:0]: YAD[8:0], POR is 00D3h 0 1 0 0 0 0 0 0 A ₈ 0 0 74 0 1 1 0 0 0 Set Analog Block control A[7:0] = 54h 0 0 7E 0 1 1 1 1 0 0 Set Digital A[7:0] = 3Bh	0	1		0	0	0	0	0	0	0	B_8		
O O O O O O O O O O	0	0	4E	0	1	0	0	1	1	1	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		0	0	0	$\overline{A_4}$	A ₃	A_2	A_1	A_0	address counter	` '
0 1 A7 A6 A5 A4 A3 A2 A1 A0 0 1 0 0 0 0 0 0 A8 0 0 74 0 1 1 1 0 0 Set Analog Block control 0 1 A7 A6 A5 A4 A3 A2 A1 A0 Block control 0 0 7E 0 1 1 1 1 1 0 Set Digital A[7:0] = 3Bh	0	0	4F	0	1	0	0	1	1	1	1		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	address counter	` ,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	1		0	0	0	0	0	0	0	A_8]	A[8:0]: YAD[8:0], POR is 00D3h
0 0 7E 0 1 1 1 1 1 0 Set Digital A[7:0] = 3Bh	0	0	74	0	1	1	1	0	1	0	0	Set Analog	A[7:0] = 54h
	0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Block control	
	0	0	7E	0	1	1	1	1	1	1	0	Set Digital	A[7:0] = 3Bh
$\begin{bmatrix} 0 & 1 & A_7 & A_6 & A_5 & A_4 & A_3 & A_2 & A_1 & A_0 \end{bmatrix}$ Block control	0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Block control	

8. Optical Specification

Measurements are made with that the illumination is under an angle of 45 degree, the detection is perpendicular unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур.	Max	Units	Notes
R	White Reflectivity	White	30	35	-	%	8-1
CR	Contrast Ratio	indoor	8:1		ı		8-2
GN	2Grey Level	-	-	DS+(WS-DS)*n(m-1)			8-3
T update	Image update time	at 23 ℃	1	15	ı	sec	
Life		Topr		1000000times or 5years			

Notes: 8-1. Luminance meter: Eye-One Pro Spectrophotometer.

- 8-2. CR=Surface Reflectance with all white pixel/Surface Reflectance with all black pixels.
- 8-3 WS: White state, DS: Dark state

9. Handling, Safety, and Environment Requirements

Warning

The display glass may break when it is dropped or bumped on a hard surface. Handle with care. Should the display break, do not touch the electrophoretic material. In case of contact with electrophoretic material, wash with water and soap.

Caution

The display module should not be exposed to harmful gases, such as acid and alkali gases, which corrode electronic components. Disassembling the display module.

Disassembling the display module can cause permanent damage and invalidates the warranty agreements.

Observe general precautions that are common to handling delicate electronic components. The glass can break and front surfaces can easily be damaged. Moreover the display is sensitive to static electricity and other rough environmental conditions.

Data sheet status								
Product specification	This data sheet contains final product specifications.							
	Limiting values							
or more of the limiting values operation of the device at these	ccordance with the Absolute Maximum Rating System (IEC 134). Stress above one may cause permanent damage to the device. These are stress ratings only and e or at any other conditions above those given in the Characteristics sections of the Exposure to limiting values for extended periods may affect device reliability.							
Application information								
Where application information	n is given, it is advisory and does not form part of the specification.							

10. Reliability Test

NO	Test items	Test condition
1	Low-Temperature Storage	T = -25 °C, 240 h Test in white pattern
2	High-Temperature Storage	T=60 °C, RH=40%, 240h Test in white pattern
3	High-Temperature Operation	T=40 °C, RH=35%, 240h
4	Low-Temperature Operation	0℃, 240h
5	High-Temperature, High-Humidity Operation	T=40 °C, RH=80%, 240h
6	High Temperature, High Humidity Storage	T=50 °C, RH=80%, 240h Test in white pattern
7	Temperature Cycle	1 cycle:[-25°C 30min]→[+60 °C 30 min] : 50 cycles Test in white pattern
8	UV exposure Resistance	765W/m ² for 168hrs,40 °C Test in white pattern
9	ESD Gun	Air+/-15KV;Contact+/-8KV (Test finished product shell, not display only) Air+/-8KV;Contact+/-6KV (Naked EPD display, no including IC and FPC area) Air+/-4KV;Contact+/-2KV (Naked EPD display, including IC and FPC area)

Note: Put in normal temperature for 1hour after test finished, display performance is ok.

11. Block Diagram

12. Typical Application Circuit with SPI Interface

13 Typical Operating Sequence

13.1Normal Operation Flow

13.2 Normal Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT			
	POWER ON	1			
delay	10ms				
-	PIN CONFIG				
RESE#	high	Hardware reset			
delay	200us				
RESE#	low				
delay	200us				
Read busy pin		Wait for busy low			
Command 0x12		Software reset			
Read busy pin		Wait for busy low			
Command 0x74	Data 0x54	Set Analog Block Control			
Command 0x7E	Data 0x3B	Set Digital Block Control			
Command 0x01	Data 0x97 0x00 0x00	Set display size and driver output control			
Command 0x11	Data 0x01	Ram data entry mode			
Command 0x44	Data 0x00 0x0C	Set Ram X address			
Command 0x45	Data 0xD3 0x00 0x000x00	Set Ram Y address			
Command 0x3C	Data 0x01	Set border			
	SET VOLTAGE AND	LOAD LUT			
Command 0x2C	Data 0x5A	Set VCOM value			
Command 0x03	Data 0x17	Gate voltage setting			
Command 0x04	Data 0x41 0xAC 0x32	Source voltage setting			
Command 0x3A	Data 0x02	Frame setting 50hz			
Command 0x3B	Data 0x0D				
Command 0x32	Write 70bytes LUT	Load LUT			
	LOAD IMAGE AND	UPDATE			
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0xD3 0x00	Set Ram Y address counter			
Command 0x24	2756bytes	Load BW image (104/8*212)			
Command 0x4E	Data 0x00	Set Ram X address counter			
Command 0x4F	Data 0x D3 0x00	Set Ram Y address counter			
Command 0x24	2756bytes	Load RED image (104/8*212)			
Command 0x22	Data 0XC7	Image update			
Command 0x20					
Read busy pin		Wait for busy low			
Command 0x10	Data 0X01	Enter deep sleep mode			
	POWER OFF				

13.3 LUT from OTP Operation Flow

13.4 LUT from OTP Operation Reference Program Code

ACTION	VALUE/DATA	COMMENT		
	POWER ON			
delay	10ms			
	PIN CONFIG			
RESE#	high	Hardware reset		
delay	200us			
RESE#	low			
delay	200us			
Read busy pin		Wait for busy low		
Command 0x12		Software reset		
Read busy pin		Wait for busy low		
Command 0x74	Data 0x54	Set Analog Block Control		
Command 0x7E	Data 0x3B	Set Digital Block Control		
Command 0x01	Data 0x97 0x00 0x00	Set display size and driver output control		
Command 0x11	Data 0x01	Ram data entry mode		
Command 0x44	Data 0x00 0x0C	Set Ram X address		
Command 0x45	Data 0xD3 0x00 0x000x00	Set Ram Y address		
Command 0x3C	Data 0x01	Set border		
	LOAD LUT			
Command 0x18	Data 0x80	Set built-in temperature sensor		
Command 0x22	Data 0xB1	Load LUT		
Command 0x20				
Read busy pin		Wait for busy low		
7/10	LOAD IMAGE AND I			
Command 0x4E	Data 0x00	Set Ram X address counter		
Command 0x4F	Data 0xD3 0x00	Set Ram Y address counter		
Command 0x24	2756bytes	Load BW image (104/8*212)		
Command 0x4E	Data 0x00	Set Ram X address counter		
Command 0x4F	Data 0xD3 0x00	Set Ram Y address counter		
Command 0x26	2756bytes	Load RED image (104/8*212)		
Command 0x22	Data 0XC7	Image update		
Command 0x20				
Read busy pin		Wait for busy low		
Command 0x10	Data 0X01	Enter deep sleep mode		
	POWER OFF			

14. Part Number Definition

DEPG0213RHS75AF1 1 2 3 45 6 7

1: DEP:DKE product

2: G:Dot matrix type

3: The E-paper size:2.13inch:0213

4: The color of E-paper:

B: Black/White R: Black/White/Red Y: Black/White/Yellow

5: OT range: N: Normal L: Low temperature H: High temperature

6: Driver type: internal temperature sensor

7: FPC type

15. Inspection condition

15.1 Environment

Temperature: $25\pm3^{\circ}$ C Humidity: $55\pm10\%$ RH

15.2 Illuminance

Brightness:1200~1500LUX;distance:20-30CM;Angle:Relate 45 °surround.

15.3 Inspect method

15.4 Display area

15.5 Inspection standard

15.5.1 Electric inspection standard

15.5.1	Electric inspection	on standard			P
NO.	Item	Standard	Defect level	Method	Scope
1	Display	Display complete Display uniform	MA		
	Black/White spots	D≤0.25mm, Allowed 0.25mm < D≤0.4mm on N≤3, and Distance≥5mm 0.4mm < D Not Allow	MI	Visual inspection	
3	Black/White spots (No switch)	L\(\leq 0.6\text{mm}, \text{ W}\leq 0.2\text{mm}, \text{ N}\leq 1 L\(\leq 2.0\text{mm}, \text{W} \rightarrow 0.2\text{mm}, \text{ Not Allow} L\(\rightarrow 0.6\text{mm}, \text{ Not Allow}		Visual/ Inspection card	Zone A
4	Ghost image	Allowed in switching process	MI	Visual inspection	

5	Flash spots/ Larger FPL size	Flash spots in switching, Allowed FPL size larger than viewing area, Allowed	MI	Visual/ Inspection card	Zone A Zone B
6	Display wrong/Missing	All appointed displays are showed correct	MA	Visual inspection	Zone A
7	Short circuit/ Circuit break/ Display abnormal	Not Allow			

15.5.2 Appearance inspection standard

NO.	Item	Standard	Defect level	Method	Scope
	B/W spots /Bubble/ Foreign bodies/ Dents	D= $(L+W)/2$ D ≤ 0.25 mm, Allowed 0.25mm $<$ D ≤ 0.4 mm, N ≤ 3 D >0.4 mm, Not Allow	MI	Visual inspection	Zone A
2	Glass crack	Not Allow	MA	Visual / Microscope	Zone A Zone B
3	Dirty	Allowed if can be removed	MI		Zone A Zone B
4	Chips/Scratch/ Edge crown	$X \le 3$ mm, $Y \le 0.5$ mm And without affecting the electrode is permissible 2 mm $\le X$ or 2 mm $\le Y$ Not Allow $W \le 0.1$ mm, $L \le 5$ mm, No harm to the electrodes and $N \le 2$ allow	MI	Visual / Microscope	Zone A Zone B

					,
5	TFT Cracks	Not Allow	MA	Visual / Microscope	Zone A Zone B
6	Dirty/ foreign body	Allowed if can be removed/allow	MI	Visual / Microscope	Zone A / Zone B
7	FPC broken/ Goldfingers xidation/ scratch	Not Allow	MA	Visual / Microscope	Zone B
8	TFT edge bulge /TFT chromatic aberration	TFT edge bulge: $X \le 3$ mm, $Y \le 0.3$ mm Allowed TFT chromatic aberration :Allowed	MI	Visual / Microscope	Zone A Zone B
9	PCB damaged/ Poor welding/ Curl	PCB (Circuit area) damaged Not Allow PCB Poor welding Not Allow PCB Curl≤1%			
10	Edge glue height/ Edge glue bubble	Edge Adhesives H≤PS surface (Including protect film) Edge adhesives seep in≤1/2 Margin width Length excluding Edge adhesives bubble: bubble Width ≤1/2 Margin width; Length ≤0.5mm₀ n≤5	MI	Visual / Ruler	Zone B
11	Protect film	Surface scratch but not effect protect function, Allowed		Visual Inspection	
12	Silicon glue	Thickness≤PS surface(With protect film): Full cover the IC; Shape: The width on the FPC≤0.5mm (Front) The width on the FPC≤1.0mm (Back) smooth surface,No obvious raised.	MI	Visual Inspection	
13	Warp degree (TFT substrate)	FPL TFT t≤2.0mm	MI	Ruler	
14	Color difference in COM area (Silver point area)	Allowed		Visual Inspection	

16.Packaging

