Units for Magnetic Properties

Symbol	Quantity	Conversion from Gaussian and cgs emu to SI
Φ	magnetic flux	$1 \text{ Mx} \rightarrow 10^{-8} \text{ Wb} = 10^{-8} \text{ V} \cdot \text{s}$
В	magnetic flux density, magnetic induction	$1 \text{ G} \rightarrow 10^{-4} \text{ T} = 10^{-4} \text{ Wb/m}^2$
Н	magnetic field strength	$1~\text{Oe} \rightarrow 10^3/(4\pi)~\text{A/m}$
m	magnetic moment	1 erg/G = 1 emu \rightarrow 10 ⁻³ A·m ² = 10 ⁻³ J/T
М	magnetization	1 erg/(G·cm ³) = 1 emu/cm ³ \rightarrow 10 ³ A/m
$4\pi M$	magnetization	$1~G\rightarrow 10^3/(4\pi)~A/m$
σ	mass magnetization, specific magnetization	1 erg/(G·g) = 1 emu/g \rightarrow 1 A·m ² /kg
j	magnetic dipole moment	1 erg/G = 1 emu \rightarrow 4 π × 10 ⁻¹⁰ Wb·m
J	magnetic polarization	1 erg/(G·cm ³) = 1 emu/cm ³ \rightarrow 4 π × 10 ⁻⁴ T
χ, κ	susceptibility	$1 \to 4\pi$
$\chi_{ ho}$	mass susceptibility	$1~\text{cm}^3/\text{g} \rightarrow 4\pi \times 10^{-3}~\text{m}^3/\text{kg}$
μ	permeability	$1 \to 4\pi \times 10^{-7} \text{ H/m} = 4\pi \times 10^{-7} \text{ Wb/(A·m)}$
μ_{r}	relative permeability	$\mu \to \mu_{\scriptscriptstyle \Gamma}$
w, W	energy density	$1 \text{ erg/cm}^3 \rightarrow 10^{-1} \text{ J/m}^3$
N, D	demagnetizing factor	$1 \to 1/(4\pi)$

Gaussian units are the same as cgs emu for magnetostatics; Mx = maxwell, G = gauss, Oe = oersted; Wb = weber, V = volt, s = second, T = tesla, m = meter, A = ampere, J = joule, kg = kilogram, H = henry.