Programowanie obiektowe

Virus

Autors:

Uladzislau Trybukhouski(lider)

Yaroslav Perepilko

Anton Homan

Prowadzacy:

Mgr. inż Tobiasz Puślecki

1 Wstep

Celem projektu jest symulująca rozprzestrzenianie się i rozwój wirusa w środowisku wirtualnym. Użytkownicy mogą dostosować różne parametry wirusa i środowiska, aby zbadać jego wpływ na populację i skuteczność różnych strategii kontroli.

2 Opis programu symulacji

1) Wybór wirusa

Na początku symulacji użytkownik ma możliwość wyboru jednego z trzech typów wirusa:

- Oddechowy
- Kontaktowy
- Pokarmowy

Każdy typ wirusa ma swoje cechy, w tym drogi przenoszenia. Użytkownik może dostosować parametry wirusa, takie jak okres inkubacji, odporność na temperaturę i listę objawów (kaszel, bóle głowy, pocenie się, itp.). Te objawy wpływają na kluczowe cechy wirusa:

- Zakaźność
- Śmiertelność
- Odporność na środowisko
- Odporność na leki

2) Konfiguracja osady

Po skonfigurowaniu wirusa użytkownik przechodzi do konfiguracji osady. Osady w symulacji są przedstawione jako heksagony, z których każdy może pomieścić do 1000 osób. Każda osada ma następujące parametry:

- Poziom medycyny
- Odporność każdego mieszkańca na wirusa

Osady mogą sąsiadować ze sobą, jednak czasami są oddzielone przeszkodami oznaczonymi szarymi heksagonami (niezamieszkałymi). Wszystkie osady są również podzielone na grupy "termiczne":

- Niebieskie najzimniejsze
- Pomarańczowe najcieplejsze
- 3) Etap symulacji

ozprzestrzenianie się wirusa zależy od następujących czynników:

- Zakaźność wirusa
- Czynniki środowiskowe
- Poziom medycyny w osadzie
- Poziom odporności osady na wirusa
- Śmiertelność wirusa

Gdy wirus dostanie się do człowieka, rozpoczyna się okres inkubacji. W tym czasie zarażony może zakażać innych zdrowych ludzi. Po zakończeniu okresu inkubacji człowiek ma dwa możliwe scenariusze:

- 1. Umiera.
- 2. Przeżywa i staje się niewrażliwy na ten szczep wirusa, ale pozostaje podatny na inne szczepy z powodu ciągłych mutacji wirusa.

Ludzkość stara się przetrwać, tworząc leki na wirusa. Opracowanie leku zależy od objawów wirusa, liczby przeżytych dni i ogólnego poziomu medycyny. Jednak proces ten może być spowolniony przez mutacje wirusa.

4) Zakończenie symulacji

Symulacja trwa do momentu, gdy cała ludzkość albo wymrze, albo wyzdrowieje.

Class Population

1) Zmienne

"worldPopulation": Całkowita liczba osób na świecie.

"worldInfected": Całkowita liczba zarażonych osób na świecie.

"worldCorpse": Całkowita liczba martwych ludzi na świecie.

"country": nazwa kraju.

"populationDensity": Gęstość zaludnienia kraju, obliczana na podstawie całkowitej liczby ludności i powierzchni kraju.

"population": Całkowita liczba ludności w kraju.

"infected": Liczba zarażonych osób w kraju.

"stepSick": Liczba nowych infekcji na krok symulacji.

"stepCorpse": Liczba nowych zgonów na krok symulacji.

"corpse": Całkowita liczba zgonów w kraju.

"stability": Poziom stabilności w kraju wpływający na rozprzestrzenianie się wirusa.

"averageTemperature": Średnia temperatura w danym kraju może wpływać na przeżywalność wirusa.

"borders": Parametr wskazujący zamkniętość granic kraju.

"medicalLevel": Poziom opieki medycznej w kraju wpływający na kontrolę wirusa

"COUNTRY AREA": Stała reprezentująca obszar kraju.

"random": do generowania liczb losowych.

2) Metody klasowe

Population(String country, double populationDensity, int population, double stability, double averageTemperature, boolean borders, double medicalLevel): Podstawowy konstruktor, który inicjalizuje wszystkie zmienne instancji i aktualizuje statystyki świata.

Population(String country): Alternatywny konstruktor, który inicjalizuje tylko nazwę kraju.

simulateInfectionStep(Virus virus): Metoda obliczania jednoetapowej symulacji infekcji. Aktualizuje populację, gęstość zaludnienia, poziom medycyny i prawdopodobieństwo transmisji.

medicalDevelopment(): Metoda modelowania postępów lub ulepszeń medycznych.

getInfections(): Zwraca liczbę infekcji.

setInfected(int infected): Ustawia liczbę infekcji i aktualizuje krok nowych infekcji.

getStepSick(): Zwraca liczbę nowych infekcji w jednym kroku.

setAverageTemperature(double averageTemperature): Ustawia średnią temperaturę w kraju.

getPopulation(): Zwraca aktualną liczbę ludności w kraju.

getInfected(): Zwraca aktualną liczbę zakażonych w kraju.

getCorpse(): Zwraca bieżącą liczbę zgonów w kraju.

setBorders(boolean borders): Ustawia stan granic kraju (otwarte lub zamkniete).

getWorldPopulation(): Zwraca aktualną liczbę ludności na świecie.

getWorldInfected(): Zwraca aktualną liczbę zainfekowanych osób na świecie.

getWorldCorpse(): Zwraca aktualną liczbę martwych osób na świecie.

getCountryName(): Zwraca nazwę kraju.

redactWorldPopulation(boolean isCountry): Metoda edycji światowej populacji, zwiększa lub zmniejsza światową populację w zależności od stanu kraju.

Class Virus

1)Zmienne

"type": Rodzaj wirusa.

"incubationPeriod":Okres inkubacji wirusa, czas między zakażeniem a pojawieniem się objawów.

"infectionProbability": Prawdopodobieństwo zarażenia się wirusem.

"mortalityRate": Śmiertelność wirusowa.

2) Metody klasowe

Virus(String type, double incubationPeriod, double infectionProbability, double mortalityRate): Metoda dostrajania właściwości wirusa, takich jak okres inkubacji, prawdopodobieństwo infekcji i wskaźnik śmiertelności.

setCharacteristics(double incubationPeriod, double infectionProbability, double mortalityRate): Metoda dostrajania właściwości wirusa, takich jak okres inkubacji, prawdopodobieństwo infekcji i wskaźnik śmiertelności.

getTransmissionRoute(): Abstrakcyjna metoda uzyskiwania ścieżki transmisji wirusa do zaimplementowania w klasach podrzędnych.

mutation(): Abstrakcyjna metoda modelowania mutacji wirusa do zaimplementowania w klasach potomnych.

getInfectionProbability(): Abstrakcyjna metoda uzyskiwania prawdopodobieństwa infekcji, która musi zostać zaimplementowana w klasach potomnych.

isIncubationPeriod(): Metoda sprawdzania obecności okresu inkubacji.

Class RespiratoryVirus

2) Metody klasowe

Respiratory Virus (double incubation Period, double infection Probability, double mortality Rate): Konstruktor inicjujący wirusa oddechowego z danym okresem inkubacji, prawdopodobieństwem infekcji i współczynnikiem śmiertelności.

getTransmissionRoute(): Zwraca ciąg znaków "Airborne" wskazujący, że wirus jest przenoszony drogą powietrzną.

mutation(): Metoda modelowania mutacji wirusa oddechowego.

getInfectionProbability(): Odwraca prawdopodobieństwo zarażenia się wirusem układu oddechowego.

Class Map

1)Zmienne

"world": Instancja klasy Country.

"mainController": Instancja klasy MainController.

"countries": dwuwymiarowa tablica list krajów.

"quantityCountries": Liczba krajów na mapie.

"Width": Szerokość mapy.

"Height": Wysokość mapy.

"Radius": Promień sześciokata używanego do reprezentowania krajów.

"numCols": Liczba kolumn na mapie.

"numRows": Liczba linii na mapie.

"pickedCountry": Instancja klasy Country reprezentująca wybrany kraj.

2) Metody klasowe

Map(int Width, int Height, int Radius): Konstruktor, który inicjalizuje podstawowe parametry mapy i wywołuje metodę mapCreate

mapCreate(double hexRadius, double mapWidth, double mapHeight) Tworzy mapę z sześciokątnymi krajami.

newInfected(Country infectedCountry) Rozprzestrzenia infekcję na sąsiednie kraje.

setMouseEvent(String type, boolean isEvent) Ustawia lub usuwa obsługę zdarzeń myszy dla krajów.

setPickedCountry(Country country) Ustawia wybrany kraj i aktualizuje jego wybór.

getColor(int row) Zwraca kolor kraju w zależności od jego wiersza na mapie.

createHexagon(double x, double y, double radius) Tworzy sześciokąt o podanych współrzędnych i promieniu.

getCountries() Zwraca listę wszystkich krajów na mapie.

getWorld() Zwraca instancję klasy Country reprezentującą cały świat.

Class Country

1)Zmienne

"healthyCountries": Zmienna statyczna śledząca liczbę zdrowych krajów.

"infectedCountries": Zmienna statyczna śledząca liczbę zainfekowanych krajów.

"isInfected": Zmienna logiczna wskazująca, czy kraj jest zainfekowany.

"row": Numer linii kraju na mapie.

"col": Numer kolumny kraju na mapie.

"population": Instancja klasy Population reprezentująca populację kraju.

"eventSetGray": Obsługa zdarzenia zmiany statusu kraju (szary).

"eventPick": Obsługa zdarzeń dla wyboru kraju.

"color" Kolor kraju.

"area": Wielokat (sześciokat) reprezentujący kraj na mapie.

"isCountry": Zmienna logiczna wskazująca, czy obiekt jest prawdziwym krajem.