

Functions Ex 2.1 Q6

Given, $f: A \to B$ is injective such that range $(f) = \{a\}$

We know that in injective map different elements have different images. \therefore A has only one element.

Functions Ex 2.1 Q7

$$A = \mathbf{R} - \{3\}, B = \mathbf{R} - \{1\}$$

$$f: A \to B$$
 is defined as $f(x) = \left(\frac{x-2}{x-3}\right)$.

Let $x, y \in A$ such that f(x) = f(y)

$$\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$$

$$\Rightarrow$$
 $(x-2)(y-3)=(y-2)(x-3)$

$$\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$$

$$\Rightarrow$$
 $-3x-2y=-3y-2x$

$$\Rightarrow$$
 3x - 2x = 3y - 2y

$$\Rightarrow x = y$$

Therefore, f is one-one.

Let
$$y \in B = \mathbf{R} - \{1\}.$$

Then, $y \neq 1$.

The function f is onto if there exists $x \in A$ such that f(x) = y.

Now

$$f(x) = y$$

$$\Rightarrow \frac{x-2}{x-3} = y$$

$$\Rightarrow x-2 = xy-3y$$

$$\Rightarrow x(1-y) = -3y+2$$

$$\Rightarrow x = \frac{2-3y}{1-y} \in A \qquad [y \neq 1]$$

Thus, for any $y \in B$, there exists $\frac{2-3y}{1-y} \in A$ such that

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right) - 2}{\left(\frac{2-3y}{1-y}\right) - 3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y.$$

 $\therefore f$ is onto.

Hence, function f is one-one and onto.

Functions Ex 2.1 Q8

We have $f: R \to R$ given by f(x) = x - [x]Now,

check for injectivity:

$$\forall f(x) = x - [x] \Rightarrow f(x) = 0 \text{ for } x \in Z$$

$$\therefore$$
 Range of $f = [0,1] \neq R$

 \therefore f is not one-one, where as many-one

Again, Range of $f = [0,1] \neq R$

f is an into function

********* END *******