Software Development Kit SDK

Maestría en Sistemas Digitales

Alejandro J. Cabrera Sarmiento

Dpto. de Automática y Computación Universidad Tecnológica de La Habana "José Antonio Echeverría" CUJAE

alex@automatica.cujae.edu.cu

Sumario

- Características de SDK
- Desarrollo de aplicaciones con SDK
 - Exportar diseño HW
 - Configuración SW de la plataforma (BSP)
 - Creación de proyecto SW
 - Compilación y descarga al FPGA
- Depuración de aplicaciones con SDK

Desarrollo de aplicaciones

Puede hacerse en XPS hasta versión 12.4

Software Development Kit

- Entorno de desarrollo de aplicaciones SW
- Basado en Eclipse
 - Programa de código abierto multiplataforma para desarrollo de aplicaciones

Facilidades:

- Configurar la plataforma SW
- Crear y compilar aplicación
- Generar download.bit
- Descargar en el FPGA
- Enlace con XMD

Flujo de desarrollo SW con SDK

Flujo de diseño con SDK

- 1. Diseñar plataforma HW con XPS
- 2. Exportar diseño a SDK
 - Sintesis, implementación y generación de system.bit
 - Creación de espacio de trabajo (Workspace)
- 3. Configurar plataforma SW en SDK
 - Board Support Package: equivalente a MSS
 - Ejecuta LibGen: compilación de drivers, bibliotecas y SO
- 4. Crear proyecto con la aplicación SW de usuario
 - Contiene los ficheros fuentes de la aplicación
- 5. [Modificar el mapeo de memoria con linker script]
- 6. Implementar la aplicación SW
 - Compilación y enlace
- 7. Descargar el bitstream sobre el FPGA
 - Genera download.bit
- 8. Ejecutar y depurar el SW sobre el FPGA

1. Diseño plataforma HW

2. Exportar HW a SDK

2. Exportar HW a SDK (cont.)

Interfaz de SDK

Workspace

- Directorio donde se almacena la información de un proyecto SDK
 - Se crea al abrir SDK
- Incluye:
 - Plataformas HW
 - Plataformas SW (Board Support Package)
 - Proyectos SW
- Pueden crearse varios Workspace

Estructura del proyecto

Plataforma HW

- system-bd.bmm: descripción de las conexiones de las BRAM utilizadas en la configuración HW.
 - Se utiliza para modificar el system.bit y obtener el download.bit en correspondencia con el programa.
- system.bit: interconexiones HW del sistema de procesamiento.
- system.xml: descripción HW del sistema de procesamiento resumido en un archivo XML
 - Equivalente a .mhs

Fichero system_bd.bmm

```
📄 system bd.bmm 🔀
system.xml
 // BMM LOC annotation file.
 // Release 12.4 - Data2MEM M.81d, build 1.9 Aug 19, 2010
 // Copyright (c) 1995-2016 Xilinx, Inc. All rights reserved.
 // Processor 'microblaze 0', ID 100, memory map.
                                                   16 kB con
 BRAM de 4k x 4
 ADDRESS MAP microblaze 0 MICROBLAZE 100
    // Processor 'microblaze 0' address space 'lmb bram combined' 0x00000000:0x000003FFF (16 KBytes).
    ADDRESS SPACE 1mb bram combined RAMB16 [0x00000000:0x000003FFF]
       BUS BLOCK
           lmb bram/lmb bram/ramb16bwe 0 [31:28] INPUT = lmb bram combined 0.mem PLACED = X1Y3;
           lmb bram/lmb bram/ramb16bwe 1 [27:24] INPUT = lmb bram combined 1.mem PLACED = X1Y2;
           lmb bram/lmb bram/ramb16bwe 2 [23:20] INPUT = lmb bram combined 2.mem PLACED = X0Y2;
           lmb bram/lmb bram/ramb16bwe 3 [19:16] INPUT = lmb bram combined 3.mem PLACED = X0Y3;
          lmb bram/lmb bram/ramb16bwe 4 [15:12] INPUT = lmb bram combined 4.mem PLACED = X1Y5;
          lmb bram/lmb bram/ramb16bwe 5 [11:8] NPUT = lmb bram combined 5.mem PLACED = X1Y7;
          lmb bram/lmb bram/ramb16bwe 6 [7:4] IMPUT = lmb bram combined 6.mem PLACED = X1Y9;
           lmb bram/lmb bram/ramb16bwe 7 [3:0] I PUT = lmb bram combined 7.mem PLACED = X1Y8;
       END BUS BLOCK;
    END ADDRESS SPACE;
```

3. Configurar plataforma SW

Board Support Package (BSP)

- Configuración de la plataforma SW
- Colección de bibliotecas y drivers que forman la capa más baja de la aplicación SW
 - Sistema operativo
 - Bibliotecas
 - Drivers de periféricos
 - E/S estándar
 - Periférico de depuración
- Equivalente a MSS
- Al salvarlo, ejecuta LibGen
- Crea carpeta en el Workspace
- Pueden existir varios BSP para un mismo HW

3a. Crear BSP

3b. Configurar BSP

3b. Configurar BSP (cont.)

3b. Configurar BSP (cont.)

3b. Configurar BSP (cont.)

Cada vez que finaliza la configuración SW (BSP), se ejecuta LibGen automáticamente

3c. Ejecución de LibGen

```
📳 Problems 💋 Tasks 📮 Console 🖾 🔲 Properties 🧬 Terminal 1
C-Build [LAB2_bsp_0]
make -k all
libgen -hw ../hw platform 0/system.xml\
           -pe microblaze 0 \
           -log libgen.log \
           system.mss
libgen
Xilinx EDK 12.4 Build EDK MS4.81d
Copyright (c) 1995-2010 Xilinx, Inc. All rights reserved.
Command Line: libgen -hw ../hw platform 0/system.xml -pe microblaze 0 -log
libgen.log system.mss
Staging source files.
Running DRCs.
Running generate.
Running post generate.
Running include - 'make -s include "COMPILER=mb-gcc" "ARCHIVER=mb-ar"
"COMPILER FLAGS=-mno-xl-soft-mul -mxl-barrel-shift -mxl-pattern-compare
-mcpu=v8.00.b -O2 -c" "EXTRA COMPILER FLAGS=-g"'.
Running libs - 'make -s libs "COMPILER=mb-gcc" "ARCHIVER=mb-ar"
"COMPILER FLAGS=-mno-xl-soft-mul -mxl-barrel-shift -mxl-pattern-compare
-mcpu=v8.00.b -O2 -c" "EXTRA COMPILER FLAGS=-g"'.
Compiling common
Compiling 11dma
Compiling standalone
Compiling gpio
Compiling mpmc
Compiling uartlite
Compiling cpu
Running execs generate.
Finished building libraries
```

Estructura del BSP

4a. Crear proyecto SW

4a. Crear proyecto SW

4b. Asociar con BSP

Proyecto SW

4c. Crear código fuente

4c. Crear código fuente (cont.)

4d. Optimización de la aplicación

Navegador de código Eclipse

Navegador de código Eclipse

5. [Configurar LinkerScript]

6a. Implementar aplicación

6b. Reporte de compilación

```
📳 Problems 🛂 Tasks 📮 Console 🖾 🔲 Properties 🦑 Terminal 1
C-Build [LAB2 0]
Building target: LAB2 0.elf
Invoking: MicroBlaze gcc linker
mb-gcc -W1,-T -W1,../src/lscript.ld -L../../LAB2 bsp 0/microblaze 0/lib -mxl-barrel-shift
-mxl-pattern-compare -mcpu=v8.00.b -mno-xl-soft-mul -o"LAB2 0.elf" ./src/Lab 2.o
Finished building target: LAB2 0.elf
Invoking: MicroBlaze Print Size
mb-size LAB2 0.elf |tee "LAB2 0.elf.size"
         data bss dec
                                 hex filename
   3646
           348 2098 6092
                                 17cc LAB2 0.elf
Finished building: LAB2 0.elf.size
Invoking: Xilinx ELF Check
elfcheck LAB2 0.elf -hw ../../hw platform 0/system.xml -pe microblaze 0 |tee "LAB2 0.elf.elfcheck"
elfcheck
Xilinx EDK 12.4 Build EDK MS4.81d
Copyright (c) 1995-2010 Xilinx, Inc. All rights reserved.
Command Line: elfcheck -hw ../../hw platform 0/system.xml -pe microblaze 0
LAB2 0.elf
ELF file : LAB2_0.elf
elfcheck passed.
Finished building: LAB2 0.elf.elfcheck
```


7a. Programar FPGA

7b. Generar download.bit

Se inicializa con bootlop cuando la aplicación residirá en memoria externa (o se descargará con XMD)

7b. Generar download.bit (cont.)

```
📳 Problems 💋 Tasks 📮 Console 🖾 🗎 Properties 🧬 Terminal 1
Program FPGA
elfcheck -hw D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/hw platform 0/system.xml \
-mode bootload -mem BRAM -pe microblaze 0 \
D:/Proyectos_12.4/LAB2_S3A/SDK/SDK_Workspace_35/LAB2_0/Release/LAB2_0.elf
elfcheck
Xilinx EDK 12.4 Build EDK MS4.81d
Copyright (c) 1995-2010 Xilinx, Inc. All rights reserved.
Command Line: elfcheck -hw
D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/hw platform 0/system.xml -mode
bootload -mem BRAM -pe microblaze 0
D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/LAB2 0/Release/LAB2 0.elf
ELF file
D:/Proyectos 12.4/LAB2 S3A/SDK/SDK_Workspace_35/LAB2_0/Release/LAB2_0.elf
elfcheck passed.
data2mem -bm D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/hw platform 0/system bd.bmm \
-bt D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/hw platform 0/system.bit -bd \
D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/LAB2 0/Release/LAB2 0.elf tag microblaze 0 \
-o b D:/Proyectos 12.4/LAB2 S3A/SDK/SDK Workspace 35/hw platform 0/download.bit
```


7c. Descargar bitstream al FPGA

8a. Depuración sobre el FPGA

Run

Debug

Permite correr la aplicación y detenerla desde SDK

Permite depurar la aplicación desde SDK, el cual traduce cualquier acción de la interfaz de usuario a comandos GDB, y procesa las respuestas del GDB para mostrarlos en pantalla

8a. Depuración sobre el FPGA

8b. Perspectiva de depuración

8c. Comandos de depuración

Documentación

Manuales

- Getting started with Xilinx SDK
- SDK Cheat Sheet Tutorials

Soporte Web

- SDK
 - http://www.support.xilinx.com/sdk

