Seminar 1 - Wahrscheinlichkeitstheorie und Statistik - Lösungen

A1. Ein Restaurant bietet 4 Vorspeisen, 8 Hauptgerichte und 5 Desserts an. Auf wie viele Arten kann ein Gast ein Menü aus Vorspeise, Hauptgericht und Nachspeise wählen? (Vorspeise, Hauptgericht und Dessert müssen in der üblichen Reihenfolge bestellt werden.)

L: $4 \cdot 8 \cdot 5 = 160$

A2. Man wählt zufällig eine sechsstellige natürliche Zahl. Welche ist die Wahrscheinlichkeit, dass alle Ziffern verschieden sind?

L: $\frac{9 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5}{9 \cdot 10^5}$

- A3. Zwei Würfel werden geworfen. Man bestimme die Wahrscheinlichkeit folgender Ereignisse:
- a) "die beiden Zahlen sind verschieden"
- b) "die Summe der Zahlen ist eine gerade Zahl"
- c) "die Summe der Zahlen ist höchstens 10."

L: a) $\frac{30}{36} = \frac{5}{6}$; b) $\frac{3^2+3^2}{36}$; c) $1 - \frac{3}{36} = \frac{33}{36}$.

A4. Wie viele verschiedene Strings der Länge 11 kann man aus den 11 Buchstaben des Wortes MISSIS-SIPPI bilden?

L: $\frac{11!}{1!4!4!2!}$.

- **A5.** Wie viele Permutationen der Elemente $\{1, 2, 3, 4, 5, 6, 7, 8\}$ beginnen mit:
- a) 5;
- b) mit 123;

In wie vielen Permutationen der Elemente $\{1, 2, 3, 4, 5, 6, 7, 8\}$ stehen $\{8, 6, 4, 2\}$:

- c1) nebeneinander in wachsender Reihenfolge;
- c2) nebeneinander in beliebiger Ordnung?

L: a) 7!; b) 5!; c1) 5!; c2) $5! \cdot 4!$

A6. Wie viele Kombinationen von 5 Elementen aus der Menge der Ziffern $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ enthalten genau 3 ungerade Ziffern?

L: $C_5^3 \cdot C_5^2$

A7. Wie viele Verbindungslinien sind zwischen n Punkten möglich, von denen nicht mehr als zwei auf einer Geraden liegen? Wie viele Diagonalen hat ein konvexes n-Eck (die Verbindungsstrecken zweier nicht benachbarter Eckpunkte eines n-Ecks werden als Diagonalen bezeichnet)?

L: $C_n^2 = \frac{n(n-1)}{2}$; $C_n^2 - n = \frac{n(n-3)}{2}$

A8. Man bestimme die Anzahl der 8 stelligen binären Kodes die 5-mal die 1 und 3-mal die 0 enthalten und in denen die Ziffern 1 nicht alle nebeneinander stehen?

L: $C_8^5 - 4 = C_8^3 - 4 = 56 - 4 = 52$.

A9. Man bestimme die Anzahl der binären Kodes die 4-mal die 1 und 6-mal die 0 enthalten und in denen keine zwei aufeinanderfolgende Ziffern gleich 1 sind?

A10. Wie viele Möglichkeiten gibt es, 2 Tafeln Schokolade auf 3 Kinder aufzuteilen, wenn jedes Kind beliebig viele Tafeln bekommen darf und die beiden Tafeln Schokolade von einander unterscheidbar (verschiedene Sorten) sind.

L: Variation mit Wiederholung: 3^2

⇔ Die bezeic	${ m e}~Kom$	$\overset{nbinato}{\odot}$	rik wii	rd häuf	fig als d	ie <i>Kun</i>	st des	$Z\ddot{a}hlen$	$s ext{ oder}$	die	Kunst	des	geschion	ckten	$Z\ddot{a}hlens$: