

Universidade Estadual do Rio Grande do Sul

PROF. DR. ÉDER JULIO KINAST <eder-kinast@uergs.edu.br>

MÉTODOS NUMÉRICOS – APONTAMENTOS DE AULA

05. Método de Newton-Raphson

Versão 07 - 22/09/2020

Método de Newton-Raphson

Planilha MetNum05

Algoritmo NEWRAPH

Método de Newton-Raphson Discreto

Programa C-newraph

C-newraphdisc

Em geral, este é o método mais rápido (que necessita do menor número de iterações) para estimar uma raiz com determinada precisão. Ele utiliza um teorema de convergência para a raiz da função, através da reta tangente de um ponto escolhido *próximo* da raiz.

CUIDADO! "Próximo" da raiz quer dizer um ponto que esteja dentro de um intervalo contínuo da função e da sua derivada, dentro do qual a raiz também esteja contida, e que não apresente pontos de máximo, de mínimo ou de inflexão entre a raiz e o ponto escolhido.

Exemplos

Exemplo visual: $f_1(x) = e^{\left(\frac{2}{5}x + \frac{3}{2}\right)} - 18$. Considere, $x_0 = 1$.

Exemplo visual: $f_1(x) = e^{\left(\frac{2}{5}x + \frac{3}{2}\right)} - 18$. Considere, $x_0 = 1$.

Traçar a reta tangente em x_0 .

O ponto onde a reta corta o eixo x é o valor x_1 .

Exemplo visual: $f_1(x) = e^{(\frac{2}{5}x + \frac{3}{2})} - 18$. Considere, $x_0 = 1$.

Traçar a reta tangente em x_1 .

O ponto onde a reta corta o eixo x é o valor x_2 .

Exemplo visual: $f_1(x) = e^{\left(\frac{2}{5}x + \frac{3}{2}\right)} - 18$. Considere, $x_0 = 1$.

Traçar a reta tangente em x_2 .

O ponto onde a reta corta o eixo x é o valor x_3 .

Visualmente, os valores de x_3 e da raiz estão "próximos".

Exemplo visual: $f_1(x) = e^{\left(\frac{2}{5}x + \frac{3}{2}\right)} - 18$. Considere, $x_0 = 1$.

Traçar a reta tangente em x_2 .

O ponto onde a reta corta o eixo x é o valor x_3 .

Visualmente, os valores de x_3 e da raiz estão "próximos".

Equação da reta tangente é $y - y_0 = m \cdot (x - x_0)$.

Sabendo que $y_0 = f(x_0)$ e que $m = f'(x_0)$, temos

$$y - f(x_0) = f'(x_0) \cdot (x - x_0)$$

Porém, o ponto onde a reta cruza o eixo x tem y = 0 e $x = x_1$, assim

$$-f(x_0) = f'(x_0) \cdot (x_1 - x_0)$$

Isolando x_1 fica

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

Com isto, é necessário calcular a derivada de f(x) para ser utilizada no método.

Para estimar um ponto x_0 próximo da raiz, em geral funciona tomá-lo como a média entre os valores de um intervalo [a;b] pequeno que contém a raiz, da forma $x_0 = \frac{a+b}{2}$.

Os valores de ε_1 e ε_2 ainda são utilizados como parâmetros de parada das iterações, mas as condições são alteradas para

$$|x_1 - x_0| < \varepsilon_1$$
 ou $|f(x_1)| < \varepsilon_2$

Algoritmo NEWRAPH

- 1) Dados f(x), f'(x), x_0 , ε_1 , ε_2
- 2) Para k de 1 até 100 com passo 1

$$\begin{cases} x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} \\ \text{se } |x_1 - x_0| < \varepsilon_1 \text{ ou } |f(x_1)| < \varepsilon_2 \text{ então PARAR} \\ x_0 = x_1 \end{cases}$$

3) Raiz $\cong x_1$

Exemplo – estime a raiz de $f_2(x) = x^3 - 9 \cdot x + 3$ contida no intervalo [0; 1] com $\varepsilon_1 = \varepsilon_2 = 10^{-5}$, utilizando o programa Excel com macro para definição da função e linguagem C.

Fazer "a mão" o início deste exemplo, explicitando as colunas

k	x_1	$ x_1 - x_0 $	$ f(x_1) $	x_0	Continuar?

Planilha **MetNum05.xlsm** (localização e algoritmo):

	Α		В	С	D	Е	F	G
1	k	Į	x1	x1-x0	f(x1)	x0	Continuar?	ε₁
2	início					0,5		1,00E-05
3	1	1	0,333333333	0,166667	0,037037	0,333333	Continuar	€2
4	- 2	2	0,337606838	0,004274	1,83E-05	0,337607	Continuar	1,00E-05
5		3	0,337608956	2,12E-06	4,54E-12	0,337609	Parar	Passos
6								3
7								Raiz
8								0,337608956
9								

Rotina C/C++ para o Método de Newton-Raphson

```
#include<iostream>
#include<math.h>
double f(double x) { // Esta é a função f
    return(pow(x,3)-9*x+3);}
double fl(double x) { // Esta é a derivada de f
    return(3*pow(x,2)-9);}
int main()
    double x0=0.5, eps1=1e-5, eps2=1e-5, x1;
    int k;
    for(k=1;k<=100;k++) {
        x1=x0-f(x0)/fl(x0);
        if( fabs(x1-x0)<eps1 || fabs(f(x1))<eps2 ) break;</pre>
        printf("Passo k = %2d, raiz x = %14.10lf\n",k,x1);
        x0=x1;
    printf("A raiz vale %14.10lf com %d passos.\n\n",x1,k);
    system("PAUSE");
    return 0;
```


Exercícios 1 e 2 – Estime as duas raízes de $f_{12}(x) = e^{\left(-\frac{x}{7}-4\right)} + \frac{x}{5} + e^{\left(\frac{x}{4}-5\right)}$ com $\varepsilon_1 = \varepsilon_2 = 10^{-6}$, utilizando o programa Excel com macro para definição da função e linguagem C (**MetNum05b** e **MetNum05c**).

Método de Newton-Raphson Discreto

Este é um método que utiliza a aproximação da derivada $f'(x_0)$ com uma interpolação polinomial em torno de x, chamado de Diferenças Centrais.

$$f'(x_0) \cong \frac{f(x_0 - 2h) - 8f(x_0 - h) + 8f(x_0 + h) - f(x_0 + 2h)}{12h}$$

onde h é um valor pequeno, tradicionalmente na ordem do menor valor entre ε_1 e ε_2 .

Exemplo 4 – Estime a raiz de $f_2(x) = x^3 - 9x + 3$ contida no intervalo [0; 1] com $\varepsilon_1 = \varepsilon_2 = 10^{-5}$, utilizando o programa Excel com macro para definição da função e linguagem C com o Método de Newton-Raphson DISCRETO (MetNum05d-NRDiscreto) com $h = 10^{-5}$.

Rotina C/C++ para o Método de Newton-Raphson Discreto

```
#include<iostream>
#include<math.h>
double f(double x) { // Esta é a função f
    return(pow(x,3)-9*x+3);}
double fld(double x) { // Esta é a derivada de f
    double h=1e-5;
    return((f(x-2*h)-8*f(x-h)+8*f(x+h)-f(x+2*h))/(12*h));}
int main()
    double x0=0.5, eps1=1e-5, eps2=1e-5, x1;
    int k;
    for(k=1;k<=100;k++) {
        x1=x0-f(x0)/fld(x0);
        if( fabs(x1-x0)<eps1 || fabs(f(x1))<eps2 ) break;</pre>
        printf("Passo k = \%2d, raiz x = \%14.101f(n), k, x1);
        x0=x1;
    printf("A raiz vale %14.10lf com %d passos.\n\n",x1,k);
    system("PAUSE");
    return 0;
```