Analysis für Informatiker - WS16/17

Lukas Glänzer

Inhaltsverzeichnis

1 Gri	undlegendes					
2 Zal	Zahlbereiche und mathematische Strukturen					
2.1						
	2.1.1 Induktionsprinzip					
	2.1.2 Rekursion					
2.2	Rationale und reelle Zahlen					
	2.2.1 Körper					
	2.2.2 Angeordnete Körper					
	2.2.3 Betrag					
2.3	Gleichungen und Ungleichungen					
	2.3.1 Geometrische Summenformel					
	2.3.2 Bernoullische Ungleichung					
2.4						
	2.4.1 Beschränktheit					
	2.4.2 Vollständigkeit					
	2.4.3 Satz von Archimedes					
	2.4.4 Wurzel					
	2.4.5 Potenzgesetze					
	2.4.6 Abzählbarkeit					
	2.4.0 Mozambarketi					
Fol	Folgen und Reihen					
3.1						
	3.1.1 Monotonie und Beschränktheit					
	3.1.2 Konvergenz und Grenzwerte reeller Folgen					
	3.1.3 Untersuche Folgen auf Konvergenz					
3.2						
0.2	3.2.1 Konvergenz von Reihen					
	3.2.2 Geometrische Reihe					
	3.2.3 Harmonische Reihe					
	3.2.5 Monotoniekriterium					
	3.2.6 Leibniz-Kriterium					
	3.2.7 Minoranten- und Majorantenkriterium					
	3.2.8 Quotientenkriterium					
	3.2.9 Wichtiges Anwendungsbespiel					
	3.2.10 Die Exponentialreihe					
l Ko	omplexe Zahlen und Zahlenfolgen					
4.1	•					
,	4.1.1 Rechenregeln für komplexe Zahlen					
	4.1.2 Roträge komplever Zehlen					

		4.1.3	Fundamentalsatz der Algebra	
	4.2		lexe Folgen	
		4.2.1	Konvergenz komplexer Folgen	
	4.0	4.2.2	Komplexe Cauchy-Folgen	
	4.3	_	lexe Reihen	
		4.3.1	Konvergenz komplexer Reihen	
		4.3.2	Die Exponentialreihe in den komplexen Zahlen	
	4.4	_	nometrie	
		4.4.1	Rechenregeln der Trigonometrie	. 12
5	Grui	_	des zu reellen Funktionen	13
	5.1	_	oungen	
	5.2		Funktionen	
		5.2.1	Rechenregeln für reelle Funktionen	
		5.2.2	Monotonie und Beschränktheit	
		5.2.3	Extrema	
	5.3	·	ome	
	5.4	Ration	nale Funktionen	. 14
6	Grei	nzwerte	und Stetigkeit	14
•	6.1		ngspunkt	
	6.2		wert	
		6.2.1	Rechenregeln für Grenzwerte	
		6.2.2	Grenzwerte im Unendlichen	
		6.2.3	Einseitige Grenzwerte	
	6.3		Funktionen	
		6.3.1	Verkettung stetiger Funktionen	
		6.3.2	Zwischenwertsatz	
		6.3.3	Die Exponentialfunktion	
7	D:tt	avantial	woodh war war	18
•	7.1		rechnung bleitung	
	1.1	7.1.1	Rechenregeln für Ableitungen	
		7.1.1 $7.1.2$	9	
		7.1.2 $7.1.3$	Weitere Eigenschaften	20
		7.1.3	Der Mittelwertsatz der Differenzialrechnung	
		7.1.4	Der Witterwertsatz der Differenzianeenhung	. 20
8			ctionen und Integrale	20
	8.1		nregeln für Integrale	
		8.1.1	Addition und Multiplikation	
		8.1.2	Partielle Integration	
		8.1.3	Substitutionsregel	
	0.0	8.1.4	Uneigentliche Integrale	
	8.2		entialgleichungen	
		8.2.1	Lösen eines Anfangswertproblems	
		8.2.2	Allgemeines Lösungsschema	
		8.2.3	Sonderfälle bei linearen Differentialgleichungen	. 22
9	Fun	ktionen	mehrerer Veränderlichen	22
	9.1	Kurver		
	9.2	Länger	nmessung	. 23
	3.2	O	-	
		9.2.1	Kreise und Kugeln	
	9.3			. 23

9.3.2	Differentialrechnung	23
9.3.4	Differentialgleichungen	24

1 Grundlegendes

Aus Trivialitätsgründen übersprungen

2 Zahlbereiche und mathematische Strukturen

2.1 Natürliche Zahlen, Induktion und Rekursion

2.1.1 Induktionsprinzip

• Das Prinzip der vollständigen Induktion

 $\rightarrow II(1.1)$

- \circ Zeige A(1) ist richtig $\to Induktions an fang$
- o Annahme: A gilt für ein festes aber beliebiges $n \in \mathbb{N} \to Induktionsvorraussetzung$

2.1.2 Rekursion

- Die Menge M sei nicht-leer und $b \in M$
- Für jedes $n \in \mathbb{N}$ sei $g_n : M \to M$ eine Abbildung
- Dann gibt es **genau eine** Abbildung $r: \mathbb{N} \to M$ mit $\to \text{II}(1.3)$
 - $\circ r(1) = b$
 - $\circ \ r(n+1) = g_n(r(n))$
- Summen- und Produktdefinition \rightarrow II(1.5) $\sum_{k=1}^{1} a_k = a_1 \left| \sum_{k=1}^{n+1} a_k = \left(\sum_{k=1}^{n} a_k \right) + a_{n+1} \right| \left| \prod_{k=1}^{1} a_k = a_1 \left| \prod_{k=1}^{n+1} a_k = \left(\prod_{k=1}^{n} a_k \right) + a_{n+1} \right|$

•
$$Fakult \ddot{a}t \colon n! := \prod_{k=1}^{n} k$$

$$\Rightarrow II(1.9)$$

- Binomialkoeffizient für $k \leq n$: $\binom{n}{k} := \frac{n!}{k! \cdot (n-k)!} \to \text{II}(1.9)$
- Es gilt: $\rightarrow II(1.10)$
 - $\circ \ \binom{n}{k} = \binom{n}{n-k}$
 - $\circ {n \choose k-1} + {n \choose k} = {n+1 \choose k}, \text{ falls } k > 0$
 - $\circ \ \binom{n}{k} \in \mathbb{N}$
- Binomische Formel für $n \in \mathbb{N}_0$ und $a, b \in \mathbb{R}$

$$\circ (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

• Auch für komplexe Zahlen gültig

2.2 Rationale und reelle Zahlen

2.2.1 Körper

• Es gelten die Körperaxiome in \mathbb{Q} und \mathbb{R}

 $\rightarrow II(2.1)$

 $\rightarrow II(1.11)$

- \circ K.1: Assotiativgesetz mit (a+b)+c=a+(b+c) und $(a\cdot b)\cdot c=a\cdot (b\cdot c)$
- \circ K.2: Kommutativgesetz mit a+b=b+a und $a\cdot b=b\cdot a$
- \circ K.3: Existenz eines neutralen Elements mit a + 0 = a und $a \cdot 1 = a$
- K.4: Existenz eines inversen Elements mit a + (-a) = 0 und $a \cdot a^{-1} = 1$

 \circ K.5: Distributivgesetz mit $a \cdot (b+c) = a \cdot b + a \cdot c$

• Weitere Rechenregeln

 $\rightarrow II(2.3)$

- Es existiert **genau ein** x mit $a + x = b \rightarrow x = b + (-a)$
- \circ -0 = 0 und die 0 ist eindeutig
- $\circ -(a+b) = (-a) + (-b)$
- \circ Aus a + c = b + c folgt a = b
- o Für $a \neq 0$ existiert **genau ein** y mit $a \cdot y = b \rightarrow y = b \cdot a^{-1}$
- $\circ 1^{-1} = 1$ und die 1 ist eindeutig
- \circ Aus $a \cdot c = b \cdot c$ und $c \neq 0$ folgt a = b
- a * 0 = 0
- $0 \quad 1 \neq 0$ und aus $a \cdot b = 0$ folgt a = 0 oder b = 0
- $\circ (-a) \cdot b = -(a \cdot b)$
- \circ -(-a) = a
- \circ $-1 \cdot (a) = -a$
- $\circ (-a) \cdot (-b) = a \cdot b$
- \circ Aus $a \neq 0$ und $b \neq 0$ folgt $a \cdot b \neq 0$
- $(a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$
- $(a^{-1})^{-1} = a \text{ mit } a^{-1} \neq 0$

2.2.2 Angeordnete Körper

• Angeordnete Körper haben (zusätzlich) folgende Eigenschaften

 \rightarrow II(2.4) und II(2.5)

- Für jedes $x \in K$ gilt **entweder** x < 0 **oder** x = 0 **oder** x > 0
- o Die Addition ist abgeschlossen
- o Die Multiplikation ist abgeschlossen
- $\circ a + b < b + c \Leftrightarrow a < b$
- $\circ a < b \text{ und } c \le d \implies a + c < b + d$
- $0 < a \text{ und } 0 < b \implies 0 < ab$
- $\circ \ 0 < a < b \ \mathrm{und} \ 0 < c \leq d \ \Rightarrow \ ac < bd$
- $0 < a < b \implies 0 < a^n < b^n$ für alle $n \in \mathbb{N}$
- $\circ a > 0$ und $b < 0 \implies ab < 0$
- $\circ \ a < 0 \text{ und } b < 0 \implies ab > 0$
- $0 < a^2$
- $\circ a > 0 \Leftrightarrow a^{-1} > 0$
- $0 < a < b \text{ und } c < 0 \implies bc < ac < 0$
- $\circ \ a < b \text{ und } a \neq 0 \text{ und } b \neq 0 \ \Rightarrow \ \begin{cases} a^{-1} < b^{-1}, & falls \ ab < 0 \\ b^{-1} < a^{-1}, & falls \ ab > 0 \end{cases}$

2.2.3 Betrag

• Der Betrag von
$$x$$
 ist definiert als $|x| := \begin{cases} x, & falls \ x \ge 0 \\ -x, & falls \ x < 0 \end{cases} \to \text{II}(2.6)$

$$\circ |x| > 0 \text{ wenn } x \neq$$

$$\circ |x| = |-x| \text{ und } x \le |x|$$

$$\circ |x \cdot y| = |x| \cdot |y|$$

$$|x| = \frac{1}{|y|}$$
 und $|x| = \frac{|x|}{|y|}$

$$|x + y| \le |x| + |y|$$
 (1. Dreiecksungleichung)

$$|x + y| \ge ||x| - |y|| \le |x| - |y|$$
 (2. Dreiecksungleichung)

$$\circ |x| \le y \Leftrightarrow -y \le x \le y$$

2.3 Gleichungen und Ungleichungen

• Sei
$$D \subset \mathbb{R}$$
 und $f, g, h : D \to \mathbb{R}$ $\to II(3.2)$

$$\circ f(x) = g(x) \Leftrightarrow f(x) + h(x) = g(x) + h(x)$$

$$\circ f(x) = g(x) \implies f(x) \cdot h(x) = g(x) \cdot h(x)$$
* \Leftrightarrow wenn $h(x) \neq 0$

$$\circ f(x) < g(x) \Leftrightarrow f(x) + h(x) < g(x) + h(x)$$

$$\circ f(x) \le g(x) \Leftrightarrow f(x) + h(x) \le g(x) + h(x)$$

$$\circ$$
 Für $h(x) \ge 0$ gilt: $f(x) \le g(x) \Rightarrow^* f(x) \cdot h(x) \le g(x) \cdot h(x)$ * \Leftrightarrow wenn $h(x) > 0$

2.3.1 Geometrische Summenformel

• Geometrische Summenformel für $n \in \mathbb{N}_0$ und $q \neq 1$ und $a \neq b$ $\rightarrow II(3.5)$

$$\circ \sum_{k=0}^{n} q^{k} = \frac{q^{n+1}-1}{q-1} = \frac{1-q^{n+1}}{1-q}$$

$$\circ \sum_{k=0}^{n} a^k b^{n-k} = \frac{a^{n+1} - b^{n+1}}{a - b}$$

o Gilt auch für komplexe Zahlen

2.3.2 Bernoullische Ungleichung

• Bernoullische Ungleichung für $n \in \mathbb{N}_0$ und $a \ge -1$ $\rightarrow \text{II}(3.6)$

$$\circ (1+a)^n \ge 1 + na$$

$$\circ (1+a)^n = 1 + na$$
 wenn $n = 0$ oder $n = 1$ oder $a = 0$

2.4 Charakteristiken von Gleichungen und Ungleichungen

2.4.1 Beschränktheit

• M heißt nach oben beschränkt, falls $\exists C \in K : x < C \ \forall x \in M$ $\rightarrow II(4.1)$

 \circ C heißt obere Schranke

• C heißt Supremum von M - sup M - wenn gilt: $\rightarrow II(4.3)$

 \circ C ist obere Schranke von M

• Für jede obere Schranke C' gilt $C \leq C'$

o Ist $C \in M$ heißt C Maximum von M und ist eindeutig defineirt $\rightarrow II(4.4),II(4.6)$

• M heißt nach unten beschränkt, falls $\exists c \in K : x \geq C \ \forall x \in M$ $\rightarrow \text{II}(4.1)$

 \circ c heißt untere Schranke

• c heißt Infimum von M - inf M - wenn gilt: $\rightarrow II(4.3)$

 \circ c ist untere Schranke von M

• Für jede untere Schranke c' gilt $c \geq c'$

o Ist $c \in M$ heißt c Mimimum von M und ist eindeutig definiert $\rightarrow II(4.4)$, II(4.6)

• M heißt beschränkt, wenn M nach oben und unten beschränkt ist $\rightarrow II(4.1)$

o Ein Infimum oder Supremum muss aber nicht immer exisitieren!

2.4.2 Vollständigkeit

• \mathbb{R} ist vollständig $\rightarrow \text{II}(4.7)$

 \circ Jede nicht-leere und nach oben beschränkte Teilmenge von $\mathbb R$ besitzt ein Supremum

 $\circ\,$ Jede nicht-leere und nach unten beschränkte Teilmenge von $\mathbb R$ besitzt ein Infimum

2.4.3 Satz von Archimedes

• \mathbb{N} ist nicht nach oben beschränkt $\rightarrow II(4.10)$

• Für $a, b \in \mathbb{R}_+$ existiert $n \in \mathbb{N}$ mit $n \cdot a > b$ $\rightarrow \text{II}(4.11)$

• Für $a \in \mathbb{R}_+$ mit $a < \frac{1}{n} \ \forall n \in \mathbb{N}$ folgt a = 0

• Für alle $a, b \in \mathbb{R}$ mit a < b existiert ein $q \in \mathbb{Q}$ mit a < q < b $\rightarrow II(4.12)$

 \circ Man sagt: \mathbb{Q} liegt dicht in \mathbb{R}

2.4.4 Wurzel

• Für $n \in \mathbb{N}$ und alle $x \in \mathbb{R}_+$ gibt es eine Wurzel, d.h. es gilt: $\to \text{II}(4.13)$

o Es gibt **genau eine** nicht-negative reelle Zahl $\sqrt[n]{x} \in \mathbb{R}_+$ mit $(\sqrt[n]{x})^n = x$

$$\circ \sqrt[n]{x \cdot y} = \sqrt[n]{x} \cdot \sqrt[n]{y}$$
 $\rightarrow \text{II}(4.14)$

 $\circ \sqrt[n]{x^m} = (\sqrt[n]{x})^m$

 $\circ \sqrt[m]{\sqrt[n]{x}} = \sqrt[n \cdot m]{x}$

 $\circ \ x^{m/n} := \begin{cases} \sqrt[n]{x^m}, & falls \ m \in \mathbb{N}_0 \\ \frac{1}{\sqrt[n]{x^{-m}}}, & falls \ -m \in \mathbb{N} \end{cases} \to \text{II}(4.15)$

2.4.5 Potenzgesetze

• Es gelten die *Potenzgesetze*: $\rightarrow II(4.16)$

$$\circ \ x^{r+s} \ = \ x^r \cdot x^s$$

$$\circ x^{-r} = \frac{1}{r^r}$$

 $\circ (x^r)^s = x^{r \cdot s}$

2.4.6 Abzählbarkeit

- M heißt anzählbar, wenn gilt: $\rightarrow II(5.1)$
 - $om=\emptyset$ oder
 - \circ Es existiert eine surjektive Abbildung $f: \mathbb{N} \to M$
 - \circ Ist Mabzählbar und unendlich heißt Mabzählbar unendlich
 - $\circ \:$ Ist Mnicht abzählbar heißt M $\ddot{u}berabz\ddot{a}hlbar$
- $M \neq \emptyset$ ist **genau dann** abzählbar wenn $g: M \to \mathbb{N}$ und g injektiv existiert $\to \text{II}(5.2)$
- \bullet Eine abzählbare Vereinigung abzählbarer Mengen ist abzählbar \to II(5.5)
- ullet Q ist abzählbar o II(5.6)
- Ist M abzählbar so auch $M^{(n)} = M \times M \times ... \times M$ \rightarrow II(5.7)
- Die $Potenzmenge \text{ Pot}(\mathbb{N})$ ist überabzählbar $\rightarrow \text{II}(5.8)$
- Zu jedem $n \in \mathbb{N}$ gibt es **genau ein** Paar (m, l) mit $m \in \mathbb{N}_0$ und $1 \le l \le m + 1$, so dass $n = \frac{m(m+1)}{2} + l$
 - $\circ \ \varphi(n) = \varphi\left(\frac{m(m+1)}{2} + l\right) = (l, m+2-l) \text{ ist eine bijektive Abbildung } \varphi: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$
 - o $\mathbb{N} \times \mathbb{N}$ ist abzählbar

3 Folgen und Reihen

3.1 Reelle Folgen

- Eine (reelle) Folge ist eine Abbildung $\mathbb{N} \to \mathbb{R}, n \mapsto a_n$, kurz $(a_n)_{n \ge 1} \to \mathrm{III}(1.1)$
 - o Die Wertemenge der Folge ist $W = \{a_n \mid n \in \mathbb{N}\}\$
 - \circ Für $W \subset M$ heißt a_n Folge in M
 - \circ Auch $\mathbb{Z} \to \mathbb{R}, n \mapsto a_n$ ist eine Folge mit $(a_n)_{n > n_0}$ und $n_0 \in \mathbb{Z}$

3.1.1 Monotonie und Beschränktheit

- Die Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton wachsend, wenn $a_{n+1}\geq a_n$ für alle $n\in\mathbb{N}$ \longrightarrow III(1.3)
 - o Gilt $a_{n+1} > a_n$ für alle $n \in \mathbb{N}$ ist die Folge streng monoton wachsend
- Die Folge $(a_n)_{n\in\mathbb{N}}$ heißt monoton fallend, wenn $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$ $\longrightarrow \text{III}(1.3)$
 - \circ Gilt $a_{n+1} < a_n$ für alle $n \in \mathbb{N}$ ist die Folge streng monoton fallend
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach oben beschränkt, wenn es ein $M\in\mathbb{R}$ gibt, so dass $a_n\leq M$ für alle $n\in\mathbb{N}$ \longrightarrow III(1.3)
- Eine Folge $(a_n)_{n\in\mathbb{N}}$ heißt nach unten beschränkt, wenn es ein $M\in\mathbb{R}$ gibt, so dass $a_n\geq M$ für alle $n\in\mathbb{N}$ \longrightarrow III(1.3)

3.1.2 Konvergenz und Grenzwerte reeller Folgen

Allgemein: Alle, bis auf endlich viele Folgenglieder, haben höchstens den Abstand ε zu a

- Die Folge $(a_n)_{n\in\mathbb{N}}$ heißt konvergent (gegen a), wenn ein $a\in\mathbb{R}$ existiert, sodass gilt: $\to III(1.4)$
 - Zu jedem $\varepsilon > 0$ exisitert ein $n_0 = n_0(\varepsilon) \in \mathbb{N}$ mit $|a_n a| < \varepsilon$ für alle $n \ge n_0$
- a heißt Limes oder Grenzwert der Folge und wird notiert als $\lim_{n\to\infty} a_n = a$ oder $a_n \overrightarrow{n} \to \overrightarrow{\infty} a$
 - \circ Ist a=0 heißt die Folge Nullfolge
 - o Konvergiert die Folge nicht heißt sie divergent
- Existiert der Grenzwert, so ist er eindeutig $\rightarrow III(1.6)$
- \bullet Eine konvergente Folge ist beschränkt \rightarrow III(1.6)
- Rechenregeln für Grenzwerte: \rightarrow III(1.7) Wenn $\lim_{n\to\infty} a_n = a$ und $\lim_{n\to\infty} b_n = b$ gilt:
 - $\circ (a_n + b_n)_{n \ge 1}$ konvergiert mit $\lim_{n \to \infty} (a_n + b_n) = a + b$
 - $\circ (c \cdot a_n)_{n \geq 1}$ konvergiert mit $\lim_{n \to \infty} (c \cdot a) = c \cdot a$
 - $\circ (a_n \cdot b_n)_{n \geq 1}$ konvergiert mit $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
 - $\circ \left(\frac{a_n}{b_n}\right)_{n\geq 1} \text{ konvergiert mit } \lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \frac{a}{b}, \text{ falls } b_n\neq 0 \text{ für alle } n\in\mathbb{N} \text{ und } b\neq 0$
- Wichtige Anwendungsbeispiele: $\rightarrow III(1.12)$
 - $\circ \lim_{n \to \infty} (q^n) = 0, \text{ wenn } |q| < 1$
 - $\circ \lim_{n \to \infty} \sqrt[n]{n} = 1$
 - $\circ \lim_{n\to\infty} \sqrt[n]{q} = 1, \text{ wenn } q > 0$
- Die Folge $(a'_k)_{k\geq 1}$ heißt Teilfolge von $(a_n)_{n\geq 1}$, wenn es eine streng wachsende Folge $(n_k)_{k\geq 1}$ von Indizes in $\mathbb N$ gibt mit $a'_k=a_{n_k}$ für alle $k\geq 1$ \to III(1.14)
 - \circ Konvergiert a_n gegen a, so konvergiert auch jede Teilfolge gegen $a \longrightarrow \text{III}(1.15)$
- Ist $g: M \to M$ und $a_0 \in M$, dann ist durch $a_{n+1} := g(a_n)$ die Folge $(a_n)_{n \ge 0} \to \text{III}(1.16)$ rekursiv definiert

3.1.3 Untersuche Folgen auf Konvergenz

- Die Folge $(a_n)_{n>1}$ konvergiert **genau dann** gegen a, wenn $(a_n-a)_{n>1}$ eine \rightarrow III(1.10) Nullfolge ist
- Ist $(a_n)_{n\geq 1}$ eine Nullfolge und $(b_n)_{n\geq 1}$ eine beschränkte Folge, ist $(a_nb_n)_{n\geq 1}$ eine Nullfolge
- Sandwich-Lemma $\rightarrow III(1.11)$
 - \circ Es seien die Folgen a_n, b_n und c_n mit $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = A$. Gibt es ein n_0 mit $a_n \le b_n \le c_n$, für alle $n \ge n_0$, so konvergiert auch für b_n mit $\lim_{n \to \infty} b_n = A$
- Jede monotone und beschränkte Folge $(a_n)_{n\geq 1}$ mit Wertemenge W ist beschränkt $\to III(2.2)$
 - $\circ \lim_{n \to \infty} a_n = \begin{cases} \sup W, & falls \ (a_n)_{n \ge 1} \ monoton \ wachsend \ ist \\ \inf W, & falls \ (a_n)_{n \ge 1} \ monoton \ fallend \ ist \end{cases}$
- Eine Folge heißt Cauchy-Folge, wenn es zu jedem $\varepsilon > 0$ ein $N = N(\varepsilon) \in \mathbb{N}_0$ gibt, $\to \text{III}(2.4)$ so dass $|a_m a_n| < \varepsilon$ für alle $m, n \ge N$

• Es ergibt sich das Cauchy-Kriterium:

 $\rightarrow III(2.5)$

- $\circ ((a_n)_{n\geq 1} \text{ konvergiert}) \Leftrightarrow ((a_n)_{n\geq 1} \text{ ist Cauchy-Folge})$
- \bullet Ist $(a_n)_{n\geq 1}$ eine divergente Folge heißt sie bestimmt divergent
 - o gegen ∞ , wenn es für alle M>0 ein $n_0\in\mathbb{N}$ gibt, so dass $a_n\geq M$, für alle $n>n_0$

$$\sim \lim_{n\to\infty} a_n = \infty$$

o gegen $-\infty$, wenn es für alle M>0 ein $n_0\in\mathbb{N}$ gibt, so dass $a_n\leq M$, für alle $n>n_0$

$$\sim \lim_{n\to\infty} a_n = -\infty$$

 $\circ\,$ Ansonsten heißt sie $unbestimmt\ divergent$

3.2 Reihen

• Eine unendliche Reihe ist ein Paar $((a_k)_{k\geq 1}, (s_n)_{n\geq 1})$ von Folgen mit: $\to \text{III}(3.1)$

$$\circ \ s_n = \sum_{k=1}^n a_k$$
, für alle $n \in \mathbb{N}$

- \circ s_n wird die n-te Partialsumme genannt
- Die Reihe selbst wird notiert als $\sum_{k=1}^{\infty} a_k$

3.2.1 Konvergenz von Reihen

• Eine Reihe konvergiert, wenn die Folge ihrer Partialsummen konvergiert $\rightarrow III(3.2)$

$$\circ \lim_{n \to \infty} s_n = S \qquad \to \qquad \lim_{n \to \infty} \sum_{k=1}^{\infty} a_k = S \qquad \to \qquad \sum_{k=1}^{\infty} a_k = S$$

o
$$\sum\limits_{k=1}^{\infty}a_k$$
konvergiert absolut, wenn $\sum\limits_{k=1}^{\infty}|a_k|$ konvergiert

- o Konvertiert die Reihe der Beträge nicht, so ist die Reihe bedingt konvergent
- \circ Absolute Konvergenz impliziert Konvergenz \rightarrow III(3.16)
- Eine Reihe divergiert, wenn s_n divergiert $\rightarrow \text{III}(3.2)$
 - \circ Sie heißt bestimmt divergent, wenn s_n bestimmt divergent ist
- Nach den Grenzwertregeln konvergiert die Summe zweier Reihen gegen die Summe \rightarrow III(3.7) ihrer Grenzwerte (hier A und B):

$$\circ \alpha \cdot \sum_{k=1}^{\infty} a_k + \beta \cdot \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} \alpha \cdot a_k + \beta \cdot b_k = \alpha \cdot A + \beta \cdot B$$

- Wenn die Folge $\sum_{k=1}^{\infty} a_k$ konvergiert, dann ist $(a_k)_{k\geq 1}$ eine Nullfolge \to III(3.9)
 - Ein notwendiges aber nicht hinreichendes Kriterium!

3.2.2 Geometrische Reihe

• Für alle $q \in \mathbb{R}$ mit |q| < 1 konvergiert die geometrische Reihe mit: $\rightarrow \text{III}(3.5)$ $\circ \sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$

3.2.3 Harmonische Reihe

• Die harmonische Reihe mit $\sum_{k=1}^{\infty} \frac{1}{k}$ divergiert bestimmt gegen ∞ \rightarrow III(3.6)

3.2.4 Cauchy-Kriterium für Reihen

• Eine Reihe konvergiert **genau dann**, wenn es zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ gibt, $\to \text{III}(3.8)$ sodass: $\left|\sum_{k=m}^{n} a_k\right| < \varepsilon$, für alle $n \leq m \leq n_0$

3.2.5 Monotoniekriterium

• Sei $(a_k)_{k\geq 1}$ eine Folge mit $a_k\geq 0$ für alle $k\in\mathbb{N}$. Ihre Reihe konvergiert **genau** \to III(3.10) **dann**, wenn $(s_n)_{n\geq 1}$ nach oben beschränkt ist

3.2.6 Leibniz-Kriterium

- Ist $(a_k)_{k\geq 1}$ eine reelle, monoton fallende Nullfolge dann konvergiert die Reihe $\to \text{III}(3.12)$ $\sum_{k=1}^{\infty} (-1)^k a_k$ und für jedes $n \in \mathbb{N}$ gilt: $|\sum_{k=n}^{\infty} (-1)^k a_k| \leq a_n$
 - o Gilt auch für die Reihe $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$
- Fehlerabschätzung des Grenzwertes auf Fehler < f:

$$\circ \sum_{k=1}^{m-1} (-1)^k a_k \text{ mit } m := \min\{l \mid a_l < f\}$$

3.2.7 Minoranten- und Majorantenkriterium

- Es sei eine reelle Reihe $\sum_{k=1}^{\infty} (a_k)_{k\geq 1}$
 - Existiert eine konvergente reelle Reihe $\sum_{k=1}^{\infty} c_k$ und ein $N \in \mathbb{N}$ mit $\rightarrow \text{III}(3.17)$ $|a_k| \leq c_k$, für alle $k \geq N$, dann ist $\sum_{k=1}^{\infty} a_k$ absolut konvergent

$$\sim \sum\limits_{k=1}^{\infty} c_k$$
 heißt $Majorante$

• Existiert eine divergente reelle Reihe $\sum_{k=1}^{\infty} d_k$ und ein $N \in \mathbb{N}$ mit $\rightarrow \text{III}(3.17)$ $|a_k| \geq d_k \geq 0$, für alle $k \geq N$, dann ist $\sum_{k=1}^{\infty}$ divergent

$$\sim \sum_{k=1}^{\infty} d_k$$
 heißt *Minorante*

3.2.8 Quotientenkriterium

- Sei eine reelle Reihe $\sum_{k=0}^{\infty} a_k$. Existiert ein $N \in \mathbb{N}$ für das gilt: \rightarrow Blatt 7 $a_k \neq 0$ und $\left|\frac{a_{k+1}}{a_k}\right| \leq \delta < 1$ für alle $k \geq N$, dann ist $\sum_{k=0}^{\infty} a_k$ absolut konvergent
- Sei eine reelle Reihe $\sum_{k=0}^{\infty} b_k$. Exisitert ein $N \in \mathbb{N}$ für das gilt: \rightarrow Blatt 7 $b_k \neq 0$ für alle $k \geq N$ und $\lim_{k \to \infty} |\frac{b_{k+1}}{b_k}| < 1$, dann ist $\sum_{k=0}^{\infty} b_k$ absolut konvergent

3.2.9 Wichtiges Anwendungsbespiel

- Sei $(d_k)_{k\geq 1}$ eine Folge in $\{0,1\}$, dann konvergiert die Reihe $\sum_{k=1}^{\infty} d_k 2^{-k}$ \rightarrow III(3.11)
- Zu jedem $x \in [0,1) \subset \mathbb{R}$ gibt es eine Folge $(c_k)_{k \geq 1}$ in $\{0,1\}$ mit $x = \sum_{k=0}^{\infty} c_k 2^{-k}$ \rightarrow III(3.11)
- ullet Es ergibt sich: $\mathbb R$ ist überabzählbar

3.2.10 Die Exponentialreihe

- Die Exponentialreihe $exp(x) := \sum_{k=0}^{\infty} \left(\frac{1}{k!} \cdot x^k\right)$ ist konvergent für alle $x \in \mathbb{R}$ $\rightarrow \text{III}(3.18)$
 - \circ Eulersche Exponentialfunktion exp: $\mathbb{R} \to \mathbb{R}$ mit $\exp(0) = 1$ und $\exp(1) = e$
 - \sim Es gilt $\exp(x) = e^x$, für alle $x \in \mathbb{Q}$
- Es gilt die Funktionalgleichung $\exp(x+y) = \exp(x) \cdot \exp(y)$ $\rightarrow \text{III}(3.19)$
- Aus der Funktionalgleichung folgt: $\rightarrow III(3.20)$
 - $\circ \exp(x) \cdot \exp(-x) = 1$, für alle $x \in \mathbb{R}$
 - $\circ \exp(x) > 0$, für alle $x \in \mathbb{R}$
 - \circ Für $x_1, x_2 \in \mathbb{R}$ mit $x_1 < x_2$ gilt $\exp(x_1) < \exp(x_2)$
 - \sim Die Funktionalgleichung ist streng monoton wachsend

4 Komplexe Zahlen und Zahlenfolgen

4.1 Komplexe Zahlen

•
$$\mathbb{C} = \{ z = x + iy \mid x, y \in \mathbb{R} \}$$
 $\rightarrow \text{IV}(1.1)$

• Für
$$z = x + iy$$
 heißt $\rightarrow IV(1.1)$

- $\circ x \operatorname{der} Realteil \operatorname{von} z \operatorname{mit} \operatorname{Re}(z) = x$
- $\circ y \operatorname{der} \operatorname{Imagin\"{a}rteil} \operatorname{von} z \operatorname{mit} \operatorname{Im}(z) = y$
- o \bar{z} die konjugierte komplexe Zahl zu z mit $\bar{z} = x i y$

•
$$(\mathbb{C}, +, \cdot)$$
 ist ein Körper mit $\to \text{IV}(1.2)$

- $\circ 0 + i \cdot 0$ als neutrales Element der Addition
- $\circ -z = -(x+iy)$ als inverses Element der Addition zu jedem z = x+iy
- o $1+i\cdot 0$ als neutrales Element der Multiplikation
- o $z^{-1} = \frac{x}{x^2 + y^2} + i \cdot \frac{-y}{x^2 + y^2}$ als inverses Element der Multiplikation zu jedem z = x + iy

4.1.1 Rechenregeln für komplexe Zahlen

Für z = x + iy und w = u + iv gilt:

•
$$(x+iy) + (u+iv) = (x+u) + i(y+v)$$
 $\to IV(1.2)$

 $\bullet (x+iy) \cdot (u+iv) = (xu-yv) + i(xv+yu)$

•
$$Re(z) = x = \frac{1}{2}(z + \bar{z})$$
 $\to IV(1.4)$

- $\operatorname{Im}(z) = y = \frac{1}{2i}(z \bar{z})$
- \bullet $\overline{z+w} = \bar{z} + \bar{w}$

- $\bullet \ \overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- \bullet $\bar{\bar{z}} = z$
- $\overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\bar{w}}$, wenn $w \neq 0$
- $z \cdot \bar{z} = x^2 + y^2 \in \mathbb{R}_+$
- Gilt $z = \bar{z}$ gilt auch $z \in \mathbb{R}$

4.1.2 Beträge komplexer Zahlen

- Für z = x + iy ist der Betrag von z definiert als $|z| := \sqrt{z \cdot \bar{z}} = \sqrt{x^2 + y^2} \in \mathbb{R}$ $\rightarrow \text{IV}(1.5)$
- $|Re(z)| \le |z|, |Im(z)| \le |z|, |z| \le |Re(z)| + |Im(z)|$ $\to IV(1.6)$
- $|z| \ge 0$, aus |z| = 0 folgt z = 0
- $|z \cdot w| = |z| \cdot |w|$
- $|z| = |\bar{z}|$
- $\left|\frac{z}{w}\right| = \frac{|z|}{|w|}$, wenn $w \neq 0$
- Bekannte Dreiecksungleichungen:
 - $\circ |z+w| \leq |z| + |w|$
 - $\circ ||z| + |w|| \le |z w|$
- $\frac{1}{z} = \frac{\bar{z}}{|z|^2}$, falls $z \neq 0$

4.1.3 Fundamentalsatz der Algebra

- ullet Jedes nicht-konstante Polynom in ${\mathbb C}$ besitzt eine Nullstelle
 - $\circ \sum_{k=0}^{n} a_k z^k = 0, \text{ für } a_0, a_1, ..., a_n \in \mathbb{C} \text{ und } n \in \mathbb{N}$

4.2 Komplexe Folgen

• Eine komplexe Folge ist eine Abbildung $\mathbb{N} \to \mathbb{C}, n \mapsto a_n$ kurz $(a_n)_{n \ge 1} \longrightarrow IV(2.1)$

 $\rightarrow IV(1.7)$

- $(a_n)_{n\geq 1}$ ist beschränkt, wenn es ein $c\in\mathbb{R}$ gibt mit $|a_n|\leq c$, für alle $n\in\mathbb{N}$
- Eine komplexe Folge ist **genau dann** beschränkt, wenn die Folgen der \rightarrow IV(2.3) Real- und Imaginärteile beschränkt sind

4.2.1 Konvergenz komplexer Folgen

- Eine komplexe Folge heißt konvergent, wenn es ein a gibt, so dass für alle $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ exisitiert mit $|a_n a| < \varepsilon$, für alle $n \ge n_0$
 - \circ a ist der *Limes* oder *Grenzwert* und wird notiert als $\lim_{n\to\infty} a_n = a$ oder a_n $\overrightarrow{n}\to\overrightarrow{\infty}$ a
 - \circ Der Grenzwert ist eindeutig bestimmt $\to IV(2.4)$
 - o Die Rechenregeln für Grenzwerte gelten weiterhin
- Ist der Limes gleich 0, so ist $(a_n)_{n\geq 1}$ eine Nullfolge
- Eine komplexe Folge konvergiert **genau dann**, wenn die reellen Folgen der \rightarrow IV(2.3) Real- und Imaginärteile konvergieren
- Aus $\lim_{n\to\infty} a_n = a$ folgt $\lim_{n\to\infty} \bar{a}_n = \bar{a}$
- Eine konvergente Folge ist immer beschränkt $\rightarrow IV(2.4)$

4.2.2 Komplexe Cauchy-Folgen

- $(a_n)_{n\geq 1}$ ist eine Cauchy-Folge, wenn zu jedem $\varepsilon > 0$ ein $n_0 \in \mathbb{N}$ existiert mit $\to IV(2.2)$ $|a_m a_n| < \varepsilon$, für alle $m, n > n_0$
- Eine komplexe Folge ist **genau dann** eine Cauchy-Folge, wenn die Folgen der \rightarrow IV(2.3) Real- und Imaginärteile Cauchy-Folgen sind
- Eine komplexe Folge ist **genau dann** eine Cauchy-Folge, wenn sie konvergiert $\rightarrow IV(2.4)$

4.3 Komplexe Reihen

• Ist $(a_k)_{k\in\mathbb{N}}$ eine komplexe Folge, dann ist $\sum_{k=1}^{\infty} a_k$ eine komplexe unendliche Reihe $\to \text{IV}(2.5)$

4.3.1 Konvergenz komplexer Reihen

- \bullet Eine komplexe Reihe ist konvergent, wenn die Folge der Partialsummen konvergiert. \to IV(2.5)
 - o Sie ist absolut konvergent, wenn die Reihe der Beträge mit $\sum_{k=1}^{\infty} |a_k|$ konvergiert
 - \circ Absolute Konvergenz impliziert Konvergenz $\to IV(2.6)$
- Sind die Reihen $\sum_{k=1}^{\infty} a_k = A$ und $\sum_{k=1}^{\infty} b_k = B$ konvergent, so gilt auch: $\rightarrow \text{IV}(2.6)$

$$\circ \alpha \sum_{k=1}^{\infty} a_k + \beta \sum_{k=1}^{\infty} b_k = \sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha A + \beta B$$

4.3.2 Die Exponentialreihe in den komplexen Zahlen

- Für alle $z \in \mathbb{C}$ konvergiert $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ absolut mit Grenzwert $\exp(z)$ $\to \text{IV}(2.7)$
- Es gilt weiterhin die Funktionalgleichung $\exp(z+w) = \exp(z) \cdot \exp(w)$ $\rightarrow \text{IV}(2.7)$
 - $\circ \exp(\bar{z}) = \overline{\exp(z)}$ $\to \text{IV}(2.8)$
 - $\circ |\exp(ix)| = 1$

4.4 Trogonometrie

- $\cos(x) := \operatorname{Re}(\exp(ix))$ $\to \operatorname{IV}(2.9)$
 - Als Reihendarstellung: $\cos x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} \cdot x^{2k}$ $\rightarrow \text{IV}(2.11)$
- $\sin(x) := \operatorname{Im}(\exp(ix))$ $\to \operatorname{IV}(2.9)$
 - Als Reihendarstellung: $\sin x = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \cdot x^{2k+1}$ $\rightarrow \text{IV}(2.11)$
- $e^{ix} = \cos x + i \cdot \sin x$ (Euler-Identität) $\rightarrow \text{IV}(2.10)$

4.4.1 Rechenregeln der Trigonometrie

- $\cos(x+y) = \cos x \cdot \cos y \sin x \cdot \sin y$ $\rightarrow \text{IV}(2.12)$
- $\sin(x+y) = \cos x \cdot \sin y + \sin x \cdot \cos y$
- $\cos(2x) = \cos^2 x \sin^2 x$ $\rightarrow \text{IV}(2.13)$
- $\sin(2x) = 2\sin x \cos x$
- $1 = \cos^2 x + \sin^2 x$ (Satz des Pythagoras)

5 Grundlegendes zu reellen Funktionen

5.1 Umgebungen

- Für $x_0 \in \mathbb{R}$ und $\varepsilon > 0$ ist die $\varepsilon Umgebung$ von x_0 definiert als $U_{\varepsilon}(x_0) := \{x \in \mathbb{R} \mid |x x_0| < \varepsilon\} = (x_0 \varepsilon, x_0 + \varepsilon)$
- Die Menge U heißt Umgebung von x_0 , falls ein unabhängiges $\varepsilon > 0$ exisitiert mit $U_{\varepsilon}(x_0) \subset U$
- Für $M \subset \mathbb{R}$ heißt $x_0 \in M$ innerer Punkt, wenn M eine Umgebung von x_0 ist $\to V(1.2)$
 - $\circ \stackrel{\circ}{M}$ bezeichnet die Menge der inneren Punkte von M
 - \circ Gilt $\stackrel{\circ}{M} = M$, so heißt M offen
 - o Gilt $\mathbb{R} \setminus M$ ist offen, so heißt M abgeschlossen

5.2 Reelle Funktionen

- Eine Abbildung $f:A\to B$ mit $A\subset\mathbb{R}$ und $B\subset\mathbb{R}$ heißt reelle Funktion $\to V(1.4)$
 - o f(x) heißt Funktionswert von f an Stelle x
 - $\sim f(x) = 0$ heißt Nullstelle

5.2.1 Rechenregeln für reelle Funktionen

Für $f: D \to \mathbb{R}, g: D \to \mathbb{R}$ und $\alpha \in \mathbb{R}$ gilt: $\to V(1.6)$

- (f+g)(x) := f(x) + g(x)
- $(\alpha \cdot f)(x) := \alpha \cdot f(x)$
- $(f \cdot g)(x) := f(x)\dot{g}(x)$
- $\left(\frac{f}{g}\right)(x) := \frac{f(x)}{g(x)}$, falls $g(x) \neq 0$

5.2.2 Monotonie und Beschränktheit

Für $f: D \to E$ mit $D, E \subset \mathbb{R}$ gilt:

- f heißt $monoton\ steigend$, wenn für alle $x,y\in D$ mit $x\leq y$ stets $f(x)\leq f(y)$ gilt $\to V(1.7)$
 - o f heißt streng monoton steigend, wenn für x < y stets f(x) < f(y) gilt
- f heißt $monoton\ fallend$, wenn für alle $x,y\in D$ mit $x\geq y$ stets $f(x)\geq f(y)$ gilt $\to V(1.7)$
 - ofheißt streng monoton fallend, wenn für x>ystets f(x)>f(y) gilt
- Ist f streng monoton steigend/fallend, dann ist f injektiv und die Umkehrfunktion \to V(1.9) $f^{-1}: W \to D$ auch streng monoton steigend/fallend
- f heißt beschränkt, wenn die Wertemenge W = f(D) beschränkt ist $\rightarrow V(1.7)$
 - \circ Ist W nur nach oben/unten beschränkt, so ist auch f nur nach oben/unten beschränkt

5.2.3 Extrema

Für $f: D \to \mathbb{R}$ mit $D \in \mathbb{R}$ gilt:

 $\rightarrow V(1.10)$

- x_0 heißt Maximalstelle und $f(x_0)$ heißt Maximum falls $f(x_0) \geq f(x), \forall x \in D$
 - o x_0 heißt relative/lokale Maximalstelle und $f(x_0)$ heißt relatives/lokales Maximum falls es eine Umgebung U_δ mit $\delta > 0$ gibt, so dass x_0 Maximalstelle für $f|_{D \cap U_{delta}(x_0)}$ ist
- x_0 heißt Minimalstelle und $f(x_0)$ heißt Minimum falls $f(x_0) \leq f(x), \forall x \in D$
 - o x_0 heißt relative/lokale Minimalstelle und $f(x_0)$ heißt relatives/lokales Minimals es eine Umgebung U_δ mit $\delta > 0$ gibt, so dass x_0 Minimalstelle für $f|_{D \cap U_{delta}(x_0)}$ ist

5.3 Polynome

- $p: \mathbb{R} \to \mathbb{R}$ heißt reelles Polynom, wenn $n \in \mathbb{N}_0$ und $a_0, a_1, ..., a_n \in \mathbb{R}$ mit $p: \mathbb{R} \to \mathbb{R}, \ x \mapsto p(x) = \sum_{k=0}^n a_k x^k$
- Die Menge der reellen Polynome heißt $\mathbb{R}[X]$
- Jede Restriktion eines Polynoms heißt Polynomfunktion
- Für $a_n \neq 0$ heißt $n \operatorname{der} \operatorname{Grad} \operatorname{von} p$
 - o Der Grad eines Polynoms ist eindeutig bestimmt

 $\rightarrow V(2.3)$

- Ist $a_i = 0$ für alle $i \in [0, n] \subset \mathbb{N}$, so heißt p das Nullpolynom
- \bullet Ein Polynom vom Grad n hat höchstens n Nullstellen

 $\rightarrow V(2.2)$

- o Zwei Polynome p, q vom Grad n sind gleich, wenn es mindestens $n+1 \rightarrow V(2.3)$ verschiedene reelle Zahlen gibt, mit $p(x_i) = q(x_i)$ (Identitätssatz für Polynome)
- Wachstumsabschätzung für Polynome

 $\rightarrow V(2.4)$

- Es exisitert ein $r \in \mathbb{R}_+$ mit $\frac{1}{2} \cdot a_n \cdot |x|^n \le |p(x)| \le 2 \cdot a_n \cdot |x|^n$, für alle $|x| \ge r$
- Für $\varepsilon > 0$ gibt es ein M > 0 mit $|p(x)| \leq M \cdot |x|^n$ für alle $x \in \mathbb{R}$ mit $|x| > \varepsilon$

5.4 Rationale Funktionen

• Eine rationale Funktion ist der Quotient zweier Polynomfunktionen

 $\rightarrow V(2.5)$

- Es seien $p(x), q(x) \in \mathbb{R}[X]$ mit $q(x) \neq 0$ und $M := \{x \in \mathbb{R} \mid q(x) = 0\}$
 - \sim Eine rationale Funktion ist dann definiert als $\mathbb{R} \setminus M \to \mathbb{R}, \ x \mapsto \frac{p(x)}{q(x)}$
- Die Menge aller rationaler Funktionen heißt $\mathbb{R}(X)$

6 Grenzwerte und Stetigkeit

6.1 Häufungspunkt

- x_0 heißt $H\ddot{a}ufungspunkt$ von $D \subset \mathbb{R}$, wenn es zu jedem $\rho > 0$ ein $x \in U_{\rho}(x_0) \setminus \{x_0\} \to VI(1.1)$ gibt. D.h.die Menge $(U_{\rho}(x_0) \setminus \{x_0\}) \cap D$ ist nicht leer
 - \circ Ist x_0 kein Häufungspunkt, so heißt er isolierter Punkt
- Oft gibt es $a, b \in \mathbb{R}$ mit $a < x_0 < b$ und $(a, x_0) \cap (x_0, b) \subset D$, dann ist x_0 Häufungspunkt

6.2 Grenzwert

Für $f: D \to \mathbb{R}$ und x_0 als Häufungspunkt von D gilt:

- $\rightarrow VI(1.2)$
- f ist konvergent gegen $L \in \mathbb{R}$ für $x \to x_0$, falls zu jedem $\varepsilon > 0$ ein $\delta = \delta(x_0, \varepsilon) > 0$ existiert, so dass gilt:
 - $\circ |f(x) L| < \varepsilon$, für alle $x \in D$ mit $0 < |x x_0| < \delta$
 - o List dann der Grenzwert von f und es gilt $\lim_{x\to x_0} f(x) = L$
 - $\sim\,$ Der Grenzwert ist eindeutig bestimmt

$\rightarrow VI(1.4)$

6.2.1 Rechenregeln für Grenzwerte

• Mit Einbeziehung von Folgen gilt das Folgenkriterium:

 $\rightarrow VI(1.4)$

- ∘ Für jede Folge $(x_n)_{n\geq 1}$ in $D\setminus\{x_0\}$ mit $\lim_{n\to\infty}x_n=x_0$ gilt $\lim_{n\to\infty}f(x_n)=L$
- Die Grenzwertregeln gelten weiterhin

 $\rightarrow VI(1.5)$

• Für die Polynomfunktionen p, q gilt:

 $\rightarrow VI(1.6)$

- $\circ \lim_{x \to x_0} p(x) = p(x_0)$
- Für alle $x_0 \in \{z \in \mathbb{R} \mid q(z) \neq 0\}$ ist $\lim_{x \to x_0} \frac{p(x)}{q(x)} = \frac{p(x_0)}{q(x_0)}$
- $\bullet \lim_{x \to x_0} \exp(x) = \exp(x_0)$

 $\rightarrow VI(1.7)$

- $\lim_{x \to x_0} \sin(x) = \sin(x_0)$
- $\bullet \lim_{x \to x_0} \cos(x) = \cos(x_0)$

6.2.2 Grenzwerte im Unendlichen

• Die Grenzwertsätze gelten weiterhin

 $\rightarrow VI(1.13)$

Für $f: D \to \mathbb{R}$ und ∞ als Häufungspunkt von D gilt:

- f ist konvergent gegen $L \in \mathbb{R}$, falls zu jedem $\varepsilon > 0$ ein $x_0 \in D$ existiert mit $\to VI(1.10)$ $|f(x) L| < \varepsilon$ für alle $x > x_0$
 - Es gilt $\lim_{n\to\infty} f(x) = L$
- f ist bestimmt divergent gegen ∞ , falls es zu jedem M>0 ein $R\in D$ gibt mit $\to VI(1.14)$ f(x)>M, für alle x>R
- f ist bestimmt divergent gegen $-\infty$, falls es zu jedem M > 0 ein $R \in D$ gibt mit $\to VI(1.14)$ f(x) < -M, für alle x > R
 - Man schreibt $\lim_{n\to\infty} f(x) = -\infty$

Für $f: D \to \mathbb{R}$ und $-\infty$ als Häufungspunkt von D gilt:

- f ist konvergent gegen $M \in \mathbb{R}$, falls zu jedem $\varepsilon > 0$ ein $x_0 \in D$ existiert mit $\to VI(1.10)$ $|f(x) M| < \varepsilon$ für alle $x < x_0$
 - Es gilt $\lim_{n \to -\infty} f(x) = M$

- f ist bestimmt divergent gegen ∞ , falls es zu jedem M > 0 ein $R \in D$ gibt mit $\to VI(1.14)$ f(x) > M, für alle x < R
 - Man schreibt $\lim_{n \to -\infty} f(x) = \infty$
- f ist bestimmt divergent gegen $-\infty$, falls es zu jedem M > 0 ein $R \in D$ gibt mit $\to VI(1.14)$ f(x) < -M, für alle x < R
 - Man schreibt $\lim_{n \to -\infty} f(x) = -\infty$

6.2.3 Einseitige Grenzwerte

Für $f: D \to \mathbb{R}$, $D \in \mathbb{R}$ und x_0 als Häufungspunkt von D gilt:

- $\rightarrow VI(1.8)$
- Sei $L_1 \in \mathbb{R}$ und $g_1 := f|_{D \cap (x_0, \infty)}$. Ist nun x_0 ein Häufungspunkt von $D \cap (x_0, \infty)$ und gilt $\lim_{x \to x_0} g_1(x) = L_1$, dann ist f rechtsseitig konvergent gegen L_1 für $x \to x_0$
 - \circ L1 ist der rechtsseitige Grenzwert und wird notiert als $\lim_{x\downarrow x_0} f(x) = L_1$
- Sei $L_2 \in \mathbb{R}$ und $g_2 := f|_{D \cap (-\infty, x_0)}$. Ist nun x_0 ein Häufungspunkt von $D \cap (-\infty, x_0)$ und gilt $\lim_{x \to x_0} g_2(x) = L_2$, dann ist f linksseitig konvergent gegen L_2 für $x \to x_0$
 - \circ L2 ist der *linksseitige Grenzwert* und wird notiert als $\lim_{x\uparrow x_0} f(x) = L_2$
- Existiert der Grenzwert $\lim_{x\to x_0} f(x) = L$ und ist x_0 Häufungspunkt von $D \cap (x_0, \infty) \to \text{VI}(1.10)$ und $D \cap (-\infty, x_0)$ so existieren auch die einseitigen Grenzwerte mit $\lim_{x\downarrow x_0} f(x) = \lim_{x\uparrow x_0} f(x) = L$
- Ist x_0 Häufungspunkt von $D \cap (x_0, \infty)$ und $D \cap (-\infty, x_0)$ und existieren $\lim_{x \downarrow x_0} f(x) = L_1$ und $\lim_{x \to x_0} f(x) = L_2$, so existiert auch $\lim_{x \to x_0} f(x)$ genau dann wenn $L_1 = L_2$
- Ist x_0 Häufungspunkt von $D \cap (x_0, \infty)$, so ist f rechtsseitig bestimmt divergent $\to VI(1.16)$ gegen ∞ $[bzw. -\infty]$ für $x \to x_0$, wenn es zu jedem $a \in D \cap (x_0, \infty)$ ein M > 0 gibt mit f(x) > M [bzw. <math>f(x) < -M], für alle $x \in D \cap (x_0, a)$
 - $\circ \lim_{x \downarrow x_0} f(x) = \infty [bzw. -\infty]$
- Ist x_0 Häufungspunkt von $D \cap (-\infty, x_0)$, so ist f linksseitig bestimmt divergent $\to VI(1.16)$ gegen ∞ $[bzw. -\infty]$ für $x \to x_0$, wenn es zu jedem $b \in D \cap (-\infty, x_0)$ ein M > 0 gibt mit f(x) > M [bzw. <math>f(x) < -M], für alle $x \in D \cap (b, x_0)$
 - $\circ \lim_{x \uparrow x_0} f(x) = \infty [bzw. -\infty]$

6.3 Stetige Funktionen

Für $f: D \to \mathbb{R}$ gilt:

- Ist x_0 Häufungspunkt von D, so heißt f stetig in x_0 , falls $\lim_{x \to x_0} f(x) = f(x_0)$ $\to VI(2.1)$
- Ist x_0 kein Häufungspunkt von D, so gilt f stetig in x_0 per Konvention
- f ist stetig auf einem Intervall, wenn f in jedem Punkt des Intervalls stetig ist
- f ist stetig, wenn f auf ganz D stetig ist
- Allgemein gilt: $\rightarrow VI(2.2)$
 - \circ Polynomfunktionen sind stetig auf \mathbb{R}
 - \circ Rationale Funktionen sind stetig auf \mathbb{R}

- \circ exp, sin, cos sind stetig auf \mathbb{R}
- Wieder gibt es ein Folgenkriterium:

$$\rightarrow VI(2.3)$$

 $\rightarrow VI(2.5)$

- o Sei f stetig in x_0 . **Genau dann** gilt für jede Folge $(x_n)_{n\geq 1}$ in D mit $\lim_{n\to\infty} x_n = x_0$: $\lim_{n\to\infty} f(x_n) = f\left(\lim_{n\to\infty} x_n\right) = f(x_0)$
- Ist f stetig in x_0 , so gibt es eine Umgebung U von x_0 , so dass $f|_{D\cap U}$ beschränkt ist $\to VI(2.5)$
 - o d.h. es gibt ein $c \in \mathbb{R}$ mit $|f(x)| \leq c$, für alle $x \in D \cap U$
 - o ist $f(x_0) > 0$, so gibt es ein $\rho > 0$ mit $f(x) > \rho$, für alle $c \in D \cap U$
 - o ist $f(x_0) < 0$, so gibt es ein $\rho > 0$ mit $f(x) < -\rho$, für alle $c \in D \cap U$
- Ist f streng monoton und stetig auf einem Intervall I mit W = f(I) gilt: $\rightarrow VI(2.6)$
 - o Die Umkehrfunktion $f^{-1}: W \to I$ ist auch stetig
- Ist f stetig nimmt f auf jedem Intervall $[a,b] \subset D$ Minimum und Maximum an $\rightarrow VI(2.8)$
 - o d.h. es gibt $x_{min}, x_{max} \in [a, b]$ mit $f(x_{min}) \leq f(x) \leq f(x_{max})$, für alle $x \in [a, b]$

6.3.1 Verkettung stetiger Funktionen

Seien $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}$

- Für f und g stetig in $x_0 \in D \cap E$ und $\alpha \in \mathbb{R}$ gilt:
 - $\circ \alpha \cdot f$ ist stetig
 - \circ f + g ist stetig
 - $\circ f \cdot g$ ist stetig
 - $\circ \frac{f}{g}$ ist stetig, wenn $g \neq 0$
- Für f stetig in x_0 und g stetig in $f(x_0)$ mit $f(D) \subset E$ gilt: $\to VI(2.5)$ • $g \circ f$ ist stetig

6.3.2 Zwischenwertsatz

Für $f: D \to \mathbb{R}$ stetig und $a, b \in \mathbb{R}$ mit a < b und $[a, b] \subset D$ gilt: $\to VI(2.9)$

- Ist f(a) < 0 und f(b) > 0, so hat f in (a, b) eine Nullstelle
- Ist f(a) > 0 und f(b) < 0, so hat f in (a, b) eine Nullstelle
- Ist $m := min\{f(x) \mid x \in [a,b]\}$ und $M := max\{f(x) \mid x \in [a,b]\}$ dann ist f([a,b]) = [m,M]
- Es folgt: $\rightarrow VI(2.10)$
 - o Ist p(X) ein reelles Polynom mit ungeradem Grad gibt es mindestens eine Nullstelle in \mathbb{R}

6.3.3 Die Exponentialfunktion

Die reelle Exponentialfunktion exp ist definiert als exp : $\mathbb{R} \to \mathbb{R}_+^*$, $x \mapsto \sum_{n=0}^{\infty} \frac{x^n}{n!} \to VI(2.11)$

- exp ist streng monoton wachsend, stetig und bijektiv
- exp wächst schneller als jedes Polynom
- Für ein reelles Polynom P[X] gilt:

$$\circ \lim_{x \to \infty} \frac{P(x)}{\exp(x)} = \lim_{x \to -\infty} P(x) \cdot \exp(x) = 0$$

- Die Umkehrfunktion heißt natürlicher Logarithmus mit $\ln: \mathbb{R}_+^* \to \mathbb{R}$ $\to VI(2.12)$
- Für den natürlichen Logarithmus gilt: $\rightarrow VI(2.13)$
 - $\circ \ln(\cdot y) = \ln x + \ln y$
 - $\circ \ln(\frac{1}{x}) = -\ln x$
 - $\circ \exp(\ln x) = x$
 - $\circ \ln(\exp x) = x$
 - $\circ \ln 1 = 0$
 - $\circ \ln e = 1$
 - $\circ \lim_{x \to \infty} \ln x = \infty$
 - $\circ \lim_{x \to 0} \ln x = -\infty$
- Über die Exponentialfunktion ist nun auch x^{α} mit $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ als $x^{\alpha} = \exp(\alpha \cdot \ln x)$ definiert

7 Differentialrechnung

7.1 Die Ableitung

Für $f: D \to \mathbb{R}$ eine Funktion und x_0 ein innerer Punkt von D gilt: $\to VII(1.1)$

- f ist differenzierbar, wenn $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ existiert.
- ullet f heißt einseitig differenzierbar, wenn nur

$$\circ f'_{+}(x_0) := \lim_{h \downarrow 0} \frac{f(x_0 + h) - f(x_0)}{h} \text{ existient}$$
 $\rightarrow \text{VII}(1.4)$

$$\circ f'_{-}(x_0 :=) \lim_{h \uparrow 0} \frac{f(x_0 + h) - f(x_0)}{h}$$
 existient

- Der Grenzwert heißt Ableitung von f in x_0 mit $f'(x_0) = \frac{df}{dx}(x_0)$
 - $\circ \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y = f(x_0) + f'(x_0) \cdot (x x_0)\}$ ist die Tangente an f in $(x_0, f(x_0))$
 - \sim Die Tangente ist eine Approximation an f in der Nähe von f(x)
- Ist f differenzierbar in x_0 ist f auch stetig in x_0 $\rightarrow VII(1.3)$
- Ist f differenzierbar in x_0 , dann existieren $U_{\delta}(x_0) \subset D$ und M > 0 mit: $\rightarrow VII(1.3)$
 - $\circ |f(x) f(x_0)| \le M \cdot |x x_0|$, für alle $x \in U_{\delta}(x_0)$

Enthält D keine isolierten Punkte gilt weiter: $\rightarrow VII(1.4)$

- f heißt differenzierbar auf D, wenn f
 - o in jedem inneren Punkt differenzierbar ist
 - o in jedem Randpunkt einseitig differenzierbar ist
- Ist f differenzierbar, so heißt f'(x) die Ableitung von f mit $f'(x) = \frac{df}{dx} = \frac{d}{dx}f$

7.1.1 Rechenregeln für Ableitungen

Sind $f: D \to \mathbb{R}$ und $g: D \to \mathbb{R}$ differenzierbar in x_0 , dann gilt: $\to VII(1.5)$

- $\alpha \cdot f$ ist differenzierbar in x_0 mit $(\alpha f)'(x_0) = \alpha f'(x_0)$
- f + g ist differenzierbar in x_0 mit $(f + g)'(x_0) = f'(x_0) + g'(x_0)$
- $f \cdot g$ ist differenzierbar in x_0 mit $(f \cdot g)'(x_0) = f'(x_0) \cdot g(x_0) + f(x_0) \cdot g'(x_0)$ (Produktregel)
- $\frac{f}{g}$ ist differenzierbar in x_0 mit $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) f(x_0)g'(x_0)}{g(x_0)^2}$, wenn $g(x_0) \neq 0$ (Quotientenregel)
- $g \circ f$ ist differenzierbar in x_0 , wenn g differenzierbar in $f(x_0)$ mit $(Kettenregel) \to VII(1.8)$ $(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0)$

7.1.2 Weitere Eigenschaften

• Jedes reelle Polynom $p(x) = \sum_{k=0}^{n} a_k x^k$ ist in jedem Punkt differenzierbar mit: $\rightarrow \text{VII}(1.6)$

$$\circ \ \frac{d}{dx} \sum_{k=0}^{n} a_k x^k = \sum_{k=1}^{n} k a_k x^{k-1}$$

- Jede rationale Funktion ist differenzierbar auf ihrem Definitionsbereich
- sin, cos und exp sind auf \mathbb{R} differenzierbar mit: $\rightarrow VII(1.7)$
 - $\circ \sin' x = \cos x, \cos' x = -\sin x, \exp' x = \exp x$
- Ist f auf dem Intervall I stetig, injektiv und differenzierbar in $x_0 \in I$ mit $f'(x_0) \neq 0$, dann ist die Umkehrfunktion $f^{-1}: f(I) \to \mathbb{R}$ differenzierbar in

$$f'(x_0) \neq 0$$
, dann ist die Umkehrfunktion $f^{-1}: f(I) \to \mathbb{R}$ differenzierbar in $y_0 := f(x_0)$ mit $(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$

$$\circ \ \frac{d}{dx} \ln x = \frac{1}{x} \text{ für } x > 0$$
 $\rightarrow \text{VII}(1.11)$

$$\circ \ \frac{d}{dx}x^{\alpha} = \alpha x^{\alpha-1} \text{ für } x > 0, \alpha \in \mathbb{R}$$

• Die Ableitung einer Funktion auf einem inneren Punkt x_0 des Definitionsbereichs \rightarrow VII(2.1) ist an relativen Extremstellen gleich 0

o
$$f'(x_0) = 0$$
 ist notwendiges Kriterium für Extrema $\rightarrow VII(2.2)$

o
$$f''(x_0) \neq 0$$
 ist hinreichendes Kriterium für Extrema $\rightarrow VII(2.8)$

$$\sim f''(x_0) < 0 \rightarrow \text{lokales Maximum}$$

$$\sim f''(x_0) > 0 \rightarrow \text{lokales Minimum}$$

 $\circ\,$ liegen keine relativen Extrema auf den inneren Punkten, müssen die Randpunkte getestet werden

Für die stetig differenzierbaren Funktionen $f:I\to\mathbb{R}$ und $g:I\to\mathbb{R}$ gilt: \to VII(2.6)

- Ist $f'(x) = 0 \ \forall x \in \overset{\circ}{I}$, so exisitiert ein $c \in \mathbb{R}$ mit $f(x) = c \ \forall x \in I$
- Ist $f'(x) = g'(x) \ \forall x \in \overset{\circ}{I}$, so existiert ein $c \in \mathbb{R}$ mit $f(x) = g(x) + c \ \forall x \in I$
- f ist genau dann monoton wachsend, wenn $f'(x) \geq 0 \ \forall x \in I$
- f ist genau dann monoton fallend, wenn $f'(x) \leq 0 \ \forall x \in \overset{\circ}{I}$

7.1.3 Satz von Rolle

Ist $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar mit f(a)=f(b)=0 gilt: $\to VII(2.3)$

- Es exisitiert mindestens ein $x_0 \in (a, b)$ mit $f'(x_0) = 0$
 - Zwischen zwei Nullstellen einer differenzierbaren Funktion liegt stets eine Nullstelle der Ableitungsfunktion

7.1.4 Der Mittelwertsatz der Differenzialrechnung

Ist $f:[a,b]\to\mathbb{R}$ stetig und auf (a,b) differenzierbar mit f(a)=f(b)=0 gilt: $\to VII(2.4)$

• Es existiert mindestens ein $x_0 \in (a,b)$ mit $f'(x_0) = \frac{f(b)-f(a)}{b-a}$

8 Stammfunktionen und Integrale

- F ist Stammfunktion von f, wenn gilt F' = f $\rightarrow VIII(1.1)$
 - \circ Stamfunktionen sind nicht eindeutig und können sich um einen **konstanten** \to VIII(1.2) Summanden unterscheiden
- Für ein nichtausgeartetes Intervall I und $f: I \to \mathbb{R}$ und Stammfunktion $F \to VIII(1.3)$ definiert man das bestimmte Integral als: $\int_a^b f(x)dx := F(b) F(a) = F|_a^b$
- Stetige Funktionen auf nichtausgearteten Intervallen besitzen eine Stammfunktion \rightarrow VIII(1.5)
- Das unbestimmte Integral $\int f(x)dx = F(x)$ erfüllt die Gleichung des bestimmten \rightarrow VIII(1.6) Integrals für alle Intervalle [a,b]

8.1 Rechenregeln für Integrale

Bekannte Stammfunktionen: $\rightarrow VIII(1.7)$

- $\int x^n dx = \frac{1}{n+1} x^{n+1}, \ n \neq -1$
- $\int \frac{1}{x} dx = \ln |x|$
- $\int \sin x \, dx = -\cos x$
- $\int \cos x \, dx = \sin x$
- $\int \exp x \, dx = \exp x$
- $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)|$, für f stetig differenzierbar und $f(x) \neq 0 \ \forall x$

8.1.1 Addition und Multiplikation

•
$$\int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx = \int_{a}^{c} f(x)dx$$
 $\rightarrow VIII(1.4)$

•
$$\int_{a}^{b} \alpha \cdot f(x) + \beta \cdot g(x) dx = \alpha \cdot \int_{a}^{b} f(x) dx + \beta \cdot \int_{a}^{b} g(x) dx$$

8.1.2 Partielle Integration

Für stetig differenzierbare Funktionen $f:[a,b]\to\mathbb{R}$ und $g:[a,b]\to\mathbb{R}$ gilt: \to VIII(1.8)

•
$$\int_{a}^{b} f(x) \cdot g'(x) dx = f(x) \cdot g(x)|_{a}^{b} - \int_{a}^{b} f'(x) \cdot g(x) dx$$

8.1.3 Substitutionsregel

Für ein stetiges $f: D \to \mathbb{R}$ und stetig differenzierbares $\varphi: [a, b] \to \mathbb{R}$ gilt: $\to \text{VIII}(1.9)$

- $\int_{a}^{b} f(\varphi(x)) \cdot \varphi'(x) dx = \int_{\varphi(a)}^{\varphi(b)} f(x) dx$
- Ist φ streng monoton und ψ die Umkehrfunktion so gilt: $\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{\psi(\varphi(a))}^{\psi(\varphi(b))} f(\varphi(x)) \cdot \varphi'(x) dx$

8.1.4 Uneigentliche Integrale

Eine stetige Funktion f heißt uneigentlich integrierbar, wenn gilt:

• Unbeschränktes Integral: \rightarrow VIII(3.1)

$$\circ f: [a,\infty) \to \mathbb{R} \text{ und } \lim_{b \to \infty} \int_a^b f(x) dx \text{ existient } \to \int_a^\infty f(x) dx$$

$$\circ f: (-\infty, b] \to \mathbb{R} \text{ und } \lim_{a \to -\infty} \int_a^b f(x) dx \text{ exisitient } \to \int_{-\infty}^b f(x) dx$$

$$\circ \ f: \mathbb{R} \to \mathbb{R} \text{ und } c \in \mathbb{R} \text{ mit } \int\limits_{-\infty}^{\infty} f(x) dx := \int\limits_{-\infty}^{c} f(x) dx + \int\limits_{c}^{\infty} f(x) dx$$

• Unbeschränkter Integrand:

$$\circ \ f:(a,b] \to \mathbb{R} \ \text{und} \ \lim_{\alpha \downarrow a} \int\limits_{\alpha}^{b} f(x) dx \ \text{existiert} \to \int\limits_{a}^{b} f(x) dx$$

$$\circ \ f:[a,b)\to \mathbb{R} \ \mathrm{und} \ \lim_{\beta\uparrow b} \int\limits_a^\beta f(x) dx \ \mathrm{existiert} \to \int\limits_a^b f(x) dx$$

8.2 Differentialgleichungen

Für die nichtausgearteten Intervalle I,J mit stetigem $f:I\to\mathbb{R}$ und $g:J\to\mathbb{R}$ gilt: \to VIII(4.1)

 $\rightarrow VIII(3.4)$

- $y' = f(x) \cdot g(y)$ heißt separierbare Differentialgleichung
- $\varphi: I' \to \mathbb{R}$ heißt Lösung der Differentialgleichung, wenn gilt $\varphi'(x) = f(x) \cdot g(\varphi(x))$
- Ist $x_0 \in I'$ und $y_0 = \varphi(x_0)$ ist φ Lösung des Anfangswertproblems $y' = f(x) \cdot g(y), \ y(x_0) = y_0$

8.2.1 Lösen eines Anfangswertproblems

Für $y' = f(x) \cdot g(y)$, $y(x_0) = y_0$ und $g(y_0) \neq 0$ gilt: $\rightarrow \text{VIII}(4.3)$

- $F: I \to \mathbb{R}$ sei Stammfunktion zu f mit $F(x_0) = 0$, also $\int_{x_0}^x f(t) dt$
- $J' \subset J$ mit $y_0 \in J'$ und $g(y) \neq 0 \ \forall y \in J'$
- $H:J'\to\mathbb{R}$ sei Stammfunktion von $\frac{1}{g}$ mit $H(y_0)=0$ also $\int\limits_{y_0}^y\frac{1}{g(s)}ds$
- Es exisitiert I' auf dem das Anfangswertproblem eine eindeutige Lösung φ hat:

$$\circ \ H(\varphi(x)) = F(x) \ \forall x \in I'$$

Ist jedoch $g(y_0) = 0$, so gilt: $\rightarrow VIII(4.4)$

• $\varphi: I \to \mathbb{R}, \ \varphi(x) = y_0$

 \circ Ist g differenzierbar in y_0 , so ist dies auch die einzige Lösung

8.2.2 Allgemeines Lösungsschema

8.2.3 Sonderfälle bei linearen Differentialgleichungen

Für ein nichtausgeartetes Intervall I und stetigem $f: I \to \mathbb{R}$ gilt: $\to \text{VIII}(4.6)$

- Die homogene Gleichung mit $y' = f(x) \cdot y$, $y(x_0) = y_0$ besitzt die Lösung: $\varphi(x) = y_0 \cdot \exp\left(\int_{x_0}^x f(t)dt\right)$
- Die inhomogene Gleichung mit $y' = f(x) \cdot y + b(x, y(x_0) = y_0)$ besitzt die Lösung: $\psi(x) = \varphi(x) \cdot u(x)$ mit: $\varphi(x) = \exp\left(\int\limits_{x_0}^x f(t)dt\right) \quad \text{und} \quad u(x) = y_0 + \int\limits_{x_0}^x \frac{b(t)}{\varphi(t)}dt$

9 Funktionen mehrerer Veränderlichen

- Matrizenrechnung wie gehabt $\rightarrow IX(1.1)$
- Die Determinante einer 2x2-Matrix ist definiert als det $A := a_{11}a_{22} a_{12}a_{21} \neq 0 \longrightarrow IX(1.2)$

9.1 Kurven

Sei I ein nichtausgeartetes Intervall, $n \in \mathbb{N}$ mit $n \ge 2$ und $\Phi_1, ..., \Phi_n : I \to \mathbb{R}$: $\longrightarrow IX(2.1)$

•
$$\Phi: I \to \mathbb{R}^n, \ t \mapsto \begin{pmatrix} \Phi_1(t) \\ \vdots \\ \Phi_n(t) \end{pmatrix}$$
 heißt $Kurve \text{ in } \mathbb{R}^n$

• Ist jede Komponente von Φ stetig oder differenzierbar, so heißt Φ stetig oder differenzierbar

- Die Ableitung von Φ ist definiert als: $\Phi'(t) := \begin{pmatrix} \Phi'_1(t) \\ \vdots \\ \Phi'_n(t) \end{pmatrix}$
 - o Jedes $\Phi'(t_0)$ heißt Tangentenvektor der Kurve Φ an der Stelle $\Phi(t_0)$
- Das Bild $\Phi(I) = \{\Phi(t) \mid t \in I\}$ heißt Spur der Kurve Φ

9.2 Längenmessung

- Die Norm oder auch Betrag von $x \in \mathbb{R}^n$ ist definiert als $||x|| = \sqrt{x_1^2 + ... + x_n^2}$ $\to IX(3.1)$
- ||x-y|| ist der Abstand von x und y
- Für $x \in \mathbb{R}^n$ und $c \in \mathbb{R}$ gilt: $||c \cdot x|| = |c| \cdot ||x||$ $\to IX(3.3)$
- Für $x, y \in \mathbb{R}^n$ gilt: $||x + y|| \le ||x|| + ||y||$ \rightarrow Dreiecksungleichung

9.2.1 Kreise und Kugeln

Für $a \in \mathbb{R}^n$ und r > 0 ist: $\rightarrow IX(3.4)$

- K_r(a) := {x ∈ ℝ | ||x − a|| < r} eine offene Kugel mit Mittelpunkt a und Radius r
 ∘ Für n = 1 ist dies äquivalent zu einem Intervall, Für n = 2 zu einer Kreisscheibe
- Eine Teilmenge U heißt Umgebung von a, wenn es ein r > 0 mit $K_r(a) \subset U$ gibt
 - o a ist innerer Punkt von $M \subset \mathbb{R}^n$, wenn eine Umgebung U von a mit $U \subset M$ existiert
 - \circ Ist jeder Punkt von M innerer Punkt, so heißt M offen

9.3 Stetigkeit

- f ist stetig in a, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, sodass für $||x a|| < \delta$ stets $\to IX(4.1)$ $||f(x) f(a)|| < \varepsilon$ gilt.
 - \circ f ist stetig, wenn es in allen Punkten stetig ist

9.3.1 Rechenregeln für Stetigkeit

- f ist stetig, wenn jede Komponente stetig ist $\rightarrow IX(4.3)$
- Jede Komposition von stetigen Funktionen bleibt stetig $\rightarrow IX(4.4)$
- Die Verkettung von stetigen Funktionen bleibt stetig

9.3.2 Differentialrechnung

Für $D \subset \mathbb{R}^n$ mit $f: D \to \mathbb{R}^m$, $v \in \mathbb{R}^n \setminus \{0\}$ gilt:

- Exisitiert $D_v f(a) := \lim_{t \to 0} \frac{1}{t} (f(a+tv) f(a))$, ist dies die *Richtungsableitung* $\to IX(5.1)$ von f im Punkt a in Richtung v (\to auch Partielle Ableitung)
- f heißt partiell differenzierbar in einer Koordinate k, wenn $D_k F(a) := \frac{\partial F}{\partial x_k}(a) = \lim_{t \to 0} \frac{1}{t} (f(a + te_k) f(a))$ existiert
 - o f ist partiell differenzierbar, wenn alle Komponenten partiell differenzierbar sind
 - \circ Die Anordnung der partiellen Ableitungen in einer $m \times n$ -Matrix heißt Funktionalmatrix oder Jacobi-Matrix
 - o f ist stetig partiell differenzierbar, wenn alle partiellen Ableitungen stetig sind

9.3.3

•

9.3.4 Differentialgleichungen

•