Lab 4. Regression and Clustering

Yongjae Yoo, Ph. D.
Assistant Professor
Department of Artificial Intelligence
Hanyang University ERICA

Yesterday So Far,

- We have leant draw a scatter plot from dataset.
- Today, we're going to learn how AI
 - Finds a trend from existing data, and
 - How to handles new inputs.

Regression

- Regression: to find the relationship between variables.
- Easiest way: find a linear trend (straight line).

Starting Point

- Drawing a scatter plot from data first.
- Can you see trend(s)?

```
import matplotlib.pyplot as plt

x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]

plt.scatter(x, y)
plt.show()
```


Middle School Math Revisited

• Generalized, straight line function: y = ax + b

• Where, a = slope, b = intercept.

Linear Regression

• To infer a linear trend, we will use scipy library.

```
import matplotlib.pyplot as plt
from scipy import stats
x = [5,7,8,7,2,17,2,9,4,11,12,9,6]
y = [99,86,87,88,111,86,103,87,94,78,77,85,86]
slope, intercept, r, p, std err = stats.linregress(x, y)
def myfunc(x):
  return slope * x + intercept
mymodel = list(map(myfunc, x))
plt.scatter(x, y)
plt.plot(x, mymodel)
plt.show()
```

Linear Regression

• The result would be:

So, What Does The Code Means?

• Here, the function parameter has been inferred from:

```
slope, intercept, r, p, std_err = stats.linregress(x, y)
```

- Using the existing x and y.
- Let's see

```
def myfunc(x):
   return slope * x + intercept
```

• That is, the line function form.

So, What Does The Code Means?

 To draw the line on the scatter plot, we need to infer the data of each point. Could be done by:

```
mymodel = list(map(myfunc, x))
```

And finally, we draw a line using:

```
plt.plot(x, mymodel)
```

That's all folk!

Does The Function Really Good?

- Here the function: slope * x + intercept
- Really explains/describes the data well?
- The indicator for "fitting" is so-called r, correlation.

Based on This, Let's Predict Future

Let us try to predict the speed of a (N) years old car.

```
def myfunc(x):
   return slope * x + intercept
```

• Put in x to the number you want to predict, e.g., 10, 5, ···

Lab Exercise #1

Here is the data x: "exercise hours/week" and y: body fat (%).

```
x = [12, 4, 2, 18, 15, 12, 0, 9, 3, 6, 10, 8, 9, 4, 1, 5, 21, 20, 7, 16]

y = [25, 33, 26, 16, 14, 26, 38, 21, 33, 22, 25, 27, 29, 32, 32, 20, 10, 13, 25, 14]
```

Draw the scatter plot to see the relation between x and y

Lab Exercise #1

- Find a regression y = ax + b, where a = slope, b = intercept.
- Explain the relation between two variables.
- Find r to decide whether the fitting is good or not.

Now, Move on To Clustering

- KNN (K-nearest Neighbors)
 - Classifies a new input, based on the adjacent (prior) points.
 - It infers missing values.
 - Requires prior knowledges (pre-trained points)
 - Infers new input (missing value) class by using K nearest points.

Starting from Prior Data

Let's define (x, y) data with two-classes.

```
import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14, 8, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]
classes = [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]

plt.scatter(x, y, c=classes)
plt.show()
```


Applying K = 1 KNN

Putting in all prior knowledges into KNN:

```
from sklearn.neighbors import KNeighborsClassifier

data = list(zip(x, y))
knn = KNeighborsClassifier(n_neighbors=1)

knn.fit(data, classes)
```

Using This,

Predict a new point (8, 21)

```
new_x = 8
new_y = 21
new_point = [(new_x, new_y)]

prediction = knn.predict(new_point)

plt.scatter(x + [new_x], y + [new_y], c=classes + [prediction[0]])
plt.text(x=new_x-1.7, y=new_y-0.7, s=f"new point, class: {prediction[0]}")
plt.show()
```

Using This,

Repeat this with K = 5 KNN

```
from sklearn.neighbors import KNeighborsClassifier

data = list(zip(x, y))

knn = KNeighborsClassifier(n_neighbors=5)

knn.fit(data, classes)
```

And repeat the above page.

Now, Let's Play With Multiple Classes

- Hierarchical Clustering
 - Clusters based on measuring the dissimilarities between data.
- Useful for "group" the data
- Often referred as "Dendrogram."
- Starting from this data:

```
import numpy as np
import matplotlib.pyplot as plt

x = [4, 5, 10, 4, 3, 11, 14, 6, 10, 12]
y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]

plt.scatter(x, y)
plt.show()
```


Now, Let's Play With Multiple Classes

Use a dendrogram, explains which data differs how much.

```
import numpy as np
import matplotlib.pyplot as plt
                                                                      17.5
from scipy.cluster.hierarchy import dendrogram, linkage
                                                                      15.0
x = [4, 5, 10, 4, 3, 11, 14, 6, 10, 12]

y = [21, 19, 24, 17, 16, 25, 24, 22, 21, 21]
                                                                      12.5
                                                                      10.0
                                      Here, watch the [nth-index]
                                                                       7.5
data = list(zip(x, y))
                                                                       5.0
linkage_data = linkage(data, method='ward',
                                                                       2.5
metric='euclidean')
dendrogram(linkage data)
                                                                       0.0
```

plt.show()

Lab Exercises #2 - KNN

- We will use Pizza-simp.csv
- There are five different pizza's nutrition data. Also, we will us e ONLY two data columns and one class variable today.
- Brand = A E, p = protein, f = fat
- Draw the scatter plot first.

Lab Exercises #2 - KNN

• Let's assume that we found a new pizza, with p = 18.0, f = 25.0

 Use KNN algorithm, with K = 3, predict the new pizza's brand (A-E).

How about if we use K = 5?

Lab Exercise #3 - Hierarchical Clustering

- Calculate the mean values of protein and fat (p and f) for each pizza brands A-E.
- Using these five points, draw a dendrogram of five pizza brands.

 Which brand(s) are having similar characteristics in terms of nutrition?