Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

Elise-Andrée Guérette¹, Clare Paton-Walsh¹, Maximilien Desservettaz¹, Thomas E.L Smith², Liubov Volkova³, Christopher J. Weston³, and C.P.(Mick) Meyer⁴

Correspondence to: E-A. Guérette (eag873@uowmail.edu.au)

S1 Additional information on prescribed fires

As mentioned in the main text, we attended nine prescribed fires between 2010 and 2015. Seven of these fires were in the greater Sydney area in NSW, and two were in the State of Victoria. Table S1 lists the fires, their location, the dates on which they were sampled, the main vegetation type, the area burnt, the fuel loading, the time elapsed since the previous fire, the coordinates of the sampling sites and the method(s) of sampling deployed. The number of grab samples collected at each fire is indicated in brackets in the last column of Table S1. For the NSW fires, the vegetation type, the area burnt, the fuel load and the time since last fire were sourced from the burn plans provided by the New South Wales National Parks and Wildlife Service. For the fires in Victoria, this information was gathered by the research team (see main text).

The emission factors from the open-path FTIR measurements at the Lane Cove, Turramurra, Abaroo Creek, Gulguer Plateau and Alfords Point fires were reported in Paton-Walsh et al. (2014) but are reanalysed here to evaluate their dependence on modified combustion efficiency (MCE).

S2 Details of the SIFT-MS analysis

As mentioned in the main text, the SIFT-MS was operated in multiple ion mode, targeting eighteen VOC species. The list includes aromatic species, nitrogen-containing species, some oxygenated species, some small hydrocarbons and some biogenic species, targeting a breadth of chemical classes. Table S2 lists the species targeted, the reagent ion used, the mass-to-charge ratios measured and the calibration factors used to quantify them. It should be noted that hydrogen cyanide was assigned the same calibration factor as formaldehyde and pyrrole was assigned the same calibration factor as isoprene. The instrument response to monoterpenes was determined using α -pinene and eucalyptol (1,8-cineole).

¹Centre for Atmospheric Chemistry, School of Chemistry, University of Wollongong, Wollongong, NSW, Australia

²Department of Geography, King's College London, London, UK

³School of Ecosystem and Forest Sciences, the University of Melbourne, Creswick, VIC, Australia

⁴CSIRO Oceans and Atmosphere Flagship, Aspendale, VIC, Australia

Table S1. Summary of prescribed fires in Australian temperate forest sampled in 2010-2013 and April 2015, including location, date, vegetation type, area burnt, pre-fire fuel loading, time elapsed since the area was last exposed to fire and sampling method(s) deployed. The number of grab samples collected at each fire is indicated in parentheses.

Fire Name	Location	Date(s)	Vegetation	Area	Fuel load	Time since	Lat, Lon	Method(s)
				(ha)	(t ha ¹)	last fire	ot sampling site	(# ot samples))
Lane Cove	Lane Cove	31 Aug 2010	Dry sclerophyll	8.8	18-26	unknown	-33.79, 151.15	$OP ext{-}FTIR^a$
	National Park, NSW		open woodland					
Turramurra	Ku-Ring-Gai Chase	28 Sep 2010	Dry sclerophyll	148.5	20-25	unknown	-33.67, 151.15	$OP ext{-}FTIR^a$
	National Park, NSW		shrubby forest/heath					
Abaroo Creek	Heathcote	11&12	Dry sclerophyll	115	12.5	10 years	-34.10, 150.99	Grab sampling (17)
	National Park, NSW	May 2012	shrubby forest/heath				-34.13, 150.99	and OP-FTIR a
Gulguer	Gulguer Nature	16 May 2012	Dry scleropyll forest,	32	8-10	30 years	-33.95, 150.62	Grab sampling (9)
Plateau	Reserve, NSW		grassy understorey					and OP-FTIR a
Alfords Point	Georges River	23 May 2012	Dry sclerophyll	18	14-18	9 years	-33.99, 151.02	Grab sampling (11)
	National Park, NSW		shrubby forest					and OP-FTIR a
Prospect	Prospect Nature	27 Apr 2013	Open woodland,	12.5	10-12	>30 years	-33.81, 150.91	Grab sampling (17)
Reservoir	Reserve, NSW		grassy/shrubby					
			understorey					
Yeramba	Georges River	26&27	Dry sclerophyll	14	18	unknown	-33.97,151.01	Grab sampling (18)
Lagoon	National Park, NSW	Aug 2013	shrubby forest					
Greendale	King Track,	13 Apr 2015	Heathy dry	254	17 ± 2	32 years	-37.52,144.28	OP-FTIR
	Greendale, VIC		sclerophyll forest					
Castlemaine	Kalimna Park,	23 Apr 2015	Heathy dry	22	16 ± 2	>30 years	-37.05, 144.24	OP-FTIR
	Castlemaine, VIC		sclerophyll forest					

a the emission factors from these OP-FTIR measurements were published in Paton-Walsh et al. (2014). The data are re-analysed to look at the dependence of emission factors on modified combustion efficiency (MCE)

Table S2. Summary of SIFT-MS analysis of smoke samples: targeted species, selected masses, dwell time and sensitivity.

Species Targeted	Reagent ion	m/z	Dwell time	Sensitivity
			(ms)	$(ncps ppb^{-1})$
H ₃ O ⁺ and clusters	$\mathrm{H_{3}O}^{+}$	19, 37, 55	50	-
NO ⁺ and clusters	NO^+	30, 48	50	_
O_2^+	O_2^+	32	50	-
Acetaldehyde	$\mathrm{H_{3}O^{+}}$	45	100	11.3
Acetone	$\mathrm{H_{3}O^{+}}$	59	100	14.1
Acetonitrile	$\mathrm{H_{3}O^{+}}$	42, 60	100	18.3
Acetylene	O_2^+	26	100	4.4
Benzene	NO^+	78	100	5.2
1,3-butadiene	NO^+	54	100	7.9
Butanone	NO^+	102	100	11.4
Ethanol	NO^+	45, 63	100	4.8
Ethene	O_2^+	28	100	4.5
Eucalyptol	NO^+	154	100	12
Formaldehyde	$\mathrm{H_{3}O}^{+}$	31	100	7.3
Hydrogen cyanide	$\mathrm{H_{3}O}^{+}$	28	100	7.3^{a}
Isoprene (and furan)	NO^+	68	100	7.9
Methacrolein (and	$\mathrm{H_{3}O^{+}}$	71	100	11.8
methyl vinyl ketone)				
Methanol	$\mathrm{H_{3}O^{+}}$	33, 5	100	6.5
Monoterpenes b	$\mathrm{H_{3}O^{+}}$	81, 137	100	10.4
Pyrrole	$\mathrm{H_{3}O^{+}}$	68	100	7.9^{c}
Toluene	NO^+	92	100	10.7
Xylenes	NO^+	106	100	12

 $^{^{}a}$ assigned the same sensitivity as formaldehyde

 $[^]b$ determined using α -pinene and eucalyptol (1,8-cineole)

 $^{^{}c}$ assigned the same sensitivity as isoprene

S3 Additional grab sampling results

Emission ratios (ER) were derived for individual fires for all species measured by White cell FTIR and SIFT-MS in the grab samples. For some species at some fires, the correlations were poor ($R^2 < 0.5$) and these were excluded. Also, not every trace gas species was present at a detectable level in every sample. For some fires, this resulted in too few samples to allow an emission ratio to be meaningfully derived by regression for that species for a specific fire. Emission ratios for individual fires are listed in Table S3.

Figure S1 shows the correlation of ethane with CO for each of the five individual fires, and for all fires combined, as an example.

S4 Additional open-path FTIR results

All trace gases measured by open-path FTIR at the prescribed fires in Victoria exhibited strong correlations with either CO or CO₂. Correlations between the measured species at the Castlemaine fire are shown in Figure S2 as an example.

Table S3. Emission ratios determined at individual fires for species measured by SIFT-MS and White cell FTIR in grab samples

Species	Ref.	Abaroo	\mathbb{R}^2	Alfords	\mathbb{R}^2	Gulguer	\mathbb{R}^2	Prospect	\mathbb{R}^2	Yeramba	\mathbb{R}^2	Mean
	species	Creek		Point		Plateau		Reservoir		Lagoon		(std. dev.)
White cell FTIR	~											
00	CO_2	0.15 ±	0.57	0.08 ±	0.62	0.44 ±	0.83	0.08 ±	0.89	0.18 ±	0.92	0.19
		0.03		0.02		80.0		0.02		0.03		(0.15)
CH_4	00	$0.067 \pm$	98.0	$0.065\pm$	0.98	$0.060 \pm$	0.79	$0.037 \pm$	0.92	$0.07 \pm$	0.89	90.0
		0.009		0.004		0.009		0.004		0.01		(0.01)
Ethane	CO	$0.0045\pm$	0.83	$0.0045\pm$	96.0	$0.003 \pm$	0.76	$0.0026\pm$	96.0	$0.0055\pm$	0.97	0.004
		0.0007		0.0003		0.001		0.0002		0.0006		(0.001)
SIFT-MS												
Acetaldehyde	00	0.0104 ±	0.99	0.0101 ±	0.99	∓ 900.0	0.63	0.010 ±	06:0	0.011 ±	96.0	0.010
		0.0004		0.0007		0.002		0.002		0.005		(0.002)
Acetone	00	$0.0034 \pm$	0.85	$0.0052\pm$	0.98	$0.003 \pm$	08.0	$0.0040 \pm$	0.90			0.004
		0.0000		900000		0.001		0.0000				(0.001)
Acetonitrile	00	$0.0031 \pm$	0.82	$0.0050\pm$	0.98	$0.0009 \pm$	0.83	$0.006\pm$	0.94	$0.005\pm$	0.98	0.005
		0.0000		0.0005		0.0003		0.002		0.001		(0.001)
Benzene	Ethene	$0.09 \pm$	0.64	$0.068 \pm$	0.98	$0.010\pm$	0.58	$0.088 \pm$	0.99	$0.07 \pm$	0.99	0.08
		0.02		0.004		0.02		0.002		0.01		(0.01)
Butadiene	Ethene	$0.048 \pm$	0.93	$0.047 \pm$	0.97	$0.037 \pm$	0.82	$0.04\pm$	0.95	$0.045\pm$	96.0	0.042
		0.003		0.003		0.005		0.01		0.005		(0.006)
$Ethanol^b$	CO			$0.00021 \pm$	0.97							
				0.00005								
Furan +	CO	$0.0022\pm$	0.83	$0.0018\pm$	96.0	$0.0023\pm$	0.75			$0.0017\pm$	0.85	0.0020
isoprene		0.0003		0.0002		0.0009				0.0002		(0.0003)
Methanol	00	$0.023 \pm$	0.88	$0.028 \pm$	0.95	$0.023\pm$	0.30	$0.016\pm$	0.52	$0.027\pm$	99.0	0.023
		0.007		0.003		90000		0.004		0.009		(0.005)
Toluene	00	$0.0004 \pm$	0.81	$0.00086 \pm$	0.98			$0.00045\pm$	0.63	$0.0007 \pm$	0.89	900000
		0.0002		0.00003				0.00000		0.0004		(0.0002)
mean MCE		$0.88 \pm$		$0.93 \pm$		$0.77 \pm$		$0.92\pm$		$0.88 \pm$		0.88
of samples		0.07		0.02		0.09		0.03		90.0		(0.07)

Figure S1. Emission ratios of ethane to CO for each individual fire sampled by grab sampling and for all the fires combined.

Figure S2. Correlation plots for open-path FTIR measurements at the Castlemaine fire.

References

Paton-Walsh, C., Smith, T. E. L., Young, E. L., Griffith, D. W. T., and Guérette, A.: New emission factors for Australian vegetation fires measured using open-path Fourier transform infrared spectroscopy - Part 1: Methods and Australian temperate forest fires, Atmospheric Chemistry and Physics, 14, 11313–11333, https://doi.org/10.5194/acp-14-11313-2014, 2014.