QF4102 - Financial Modelling Assignment 2 G46 Joel Liew - A0004624U Samuel Tow - A0102724U

1a)

	Output
European Call Option (Finite Difference) fd_ex3(0.005,0.02,0.5,0.45,0.35,0.25)	-5.8188e+12
European Call Option (BS-formula) bs_call(0.5,0.45,0.005,0.25,0.35,0.02)	0.062441584897532

1b)

To determine the lower bound, we just need to ensure that the monotonicity condition is fulfilled.

Hence, from coef 0 in fd ex3.m,

 $1-sig^2*isq^*dt-(r-q)*i^*dt > 0$

After some manipulations,

 $dt = 1/((sig*I)^2+r*I)$

(Note: We drop the 'q' term because it is positive, and we want to get the highest upper bound of N)

1c)

European Call Option (Finite Difference with Condition) fd_ex3_cond(0.005,0.02,0.5,0.45,0.35,0.25)	0.062358767
--	-------------

1d)

N=559, dt=T/559	Value=0.06236
N=434 dt=T/434	0.06626
N=429 dt=T/429	-0.10682
N=424 dt=T/424	-2.2070*10^2
N=419 dt=T/419	-1.5167*10^4
N=409 dt/T/409	-6.506*10^7

Comment

The value obtained when N is bigger than 434 are is rather accurate. However, beyond that, the value becomes more unpredictable. When N goes smaller to 429 the answer already becomes negative. Going even lower will return meaningless results which decreases at an increasing rate.

American Call Option (Finite Difference with Condition) fd_ex_call(0.5,0.45,0.005,0.25,,0.35,0.01,0.01,0.02) N=559 dt=T/559	0.062671
European Call Option (Finite Difference with Condition) fd_ex3_cond(0.005,0.02,0.5,0.45,0.35,0.25)	0.062358767

Comment

The amercian call value obtained is slightly larger than the value from the european call formula. This is because of the additional value of the option to exercise earlier i.e. before maturity.

2)

European Call Option (BS-formula) bs_call(0.88,0.45,0.05,0.25,0.34,0.03)	0.429015522127195	
European Call Option, Transformed (Thomas Algorithm)	dt	Output Value
fd_eur_call_thomas(0.05,0.03,0.88,0.45,0.34,0.25,0.025,0.025)	0.025	0.431497158493728
fd_eur_call_thomas(0.05,0.03,0.88,0.45,0.34,0.25,0.0125,0.025)	0.0125	0.431495032346675
fd_eur_call_thomas(0.05,0.03,0.88,0.45,0.34,0.25,0.005,0.025)	0.005	0.431494122942625
fd_eur_call_thomas(0.05,0.03,0.88,0.45,0.34,0.25,0.0025,0.025)	0.0025	0.431493886593200
fd_eur_call_thomas(0.05,0.03,0.88,0.45,0.34,0.25,0.00125,0.025)	0.00125	0.431493781529807

Comment

The output from the FD method with Thomas Algorithm is above the value of the call option using the formula (for all dt). This can be explained by $O(dt + dx^2)$. For this question, we only change the value of dt, without changing the value of dx. Since the order of dt is 1, the convergence is slow. If we were to change the dx also, we should get approximately the same results.

Derivation of the scheme:

39	24 - Vint - Vin + O(x+2) 24 - Vint - Vin + O(x+2)
	32 = 1 [With - 2 Whit + With + White - 2 With with]
	SX = 1 [Unt - Unit Unit - Unit] SX = 1 [Unit - Unit - Unit] SX = 1 [Unit - Unit]
	$\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x^2$
	$\Delta t \left(\frac{\sigma^{2}}{4\sigma x^{2}} - \left(r - q - \frac{\sigma^{2}}{2}\right) \frac{1}{4\sigma x}\right) \frac{1}{4\sigma x} \left(1 - \frac{\sigma^{2} \delta t}{2\sigma x^{2}} - \frac{r\delta t}{2}\right) \frac{1}{4\sigma x} \frac{1}{4\sigma x^{2}} \frac{1}{4\sigma x} \frac{1}{4\sigma$
	$= -\Delta t \left[\frac{\sigma^2}{4 \Delta x^2} - \left(\frac{\sigma^2}{2} \right) \frac{1}{4 \Delta x^2} \right] \frac{1}{4 \Delta x^2} \left[\frac{1}{2 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \frac{\Delta t \sigma^2}{4 \Delta x^2} + \frac{\Delta t \sigma^2}{2} + \Delta t \sigma^$

European call Option (Crank-Nicolson Finite Difference) FD_im_crank(0.95,1,.05,.25,.4,.05,.01,.03)	0.056562735
European Call Option (BS-formula) bs_call(0.95,1,0.05,0.25,0.4,0.03)	0.056591991

Comment

The values obtained are very close to each other. This is probably due to the O(dt^2+dx^2), whereby the approximate answer converges very quickly to the true value.

Derivation of the scheme:

	Ha Zerr	2
(a4.C	$\frac{3x}{9n} + \frac{3x}{25} \frac{3x}{9n} + \frac{(x-d-5)}{25} \frac{3x}{9n} - xn = 0.$	No.
	$\frac{1}{\sqrt{1+1}} - \frac{1}{\sqrt{1+1}} + \frac{1}{\sqrt{1+1}} = 0$	
	$\frac{1}{1-4t} \left[\frac{\sigma^2}{2\delta x^2} + \left(r - \alpha t - \frac{\sigma^2}{2} \right) \frac{1}{\delta x} \right] \sqrt{h}$	
	(26)	•

Relaxation Factor	No of Iterations	Output Value
1.1	14	0.1313637
1.2	10	0.13136719
1.3	15	0.131364834
1.4	15	0.1313624238
1.5	21	0.13136864458
1.6	26	0.13136505699
1.7	35	0.13136899879
1.8	53	0.13136877112148
1.9	113	0.131365786036172

Hence we will choose relaxation factor = 1.2

European Put Option (SOR Method) , Relaxation Factor = 1.2 FD_newSOR_put(S0,.X,r,T,sig,ds,dt,q,w)	Output Value
FD_newSOR_put(.73,.85,.0.03.0.25,.035,0.05,0.05,0.01,1.2)	0.131365
FD_newSOR_put(.73,.85,.0.03.0.25,.035,0.025,0.025,0.01,1.2)	0.1315436
FD_newSOR_put(.73,.85,.0.03.0.25,.035,0.0125,0.0125,0.01,1.2)	0.1316305
FD_newSOR_put(.73,.85,.0.03.0.25,.035,0.00625,0.00625,0.01,1.2)	0.131735

4c) Getting the vectors

v1 = FD_newSOR_putvector(.73,.85,.0.03,0.25,0.35,0.05,0.05,0.01,1.2)

v2 = FD_newSOR_putvector(.73,.85,.0.03.0.25,0.35,0.025,0.025,0.01,1.2)

v3 = FD_newSOR_putvector(.73,.85,.0.03.0.25,0.35,0.0125,0.0125,0.01,1.2)

v4 = FD_newSOR_putvector(.73,.85,.0.03.0.25,0.35,0.00625,0.00625,0.01,1.2)

Note: The vectors generated are the values of the option when T=0

We then compute (dt,dx)=max|V(dt,dx)-V(0.5*dt,0.5%dx)|

e1 compare(v1,v2)	0.015351343039817
e2 compare(v2,v3)	0.007686424515324
e3 compare(v3,v4)	0.003831500419844

e1/e2	1.9972020813
e2/e3	2.006113447232

We can clearly see that the convergence rate is 2¹ hence order=1.

5)

10,000 Price Bundles

-,					
Monte Carlo for Call Option	Х	Value	Standard Errors		
mc_call(10000,20,0.9)	0.9	0.348745478948539	0.002117523131967		
mc_call(10000,20,1.0)	1.0	0.257419635041072	0.001929266946372		
mc_call(10000,20,1.1)	1.1	0.176565031222452	0.001811847088917		

50,000 Price Bundles

Monte Carlo for Call Option	Х	Value	Standard Errors
mc_call(50000,20,0.9)	0.9	0.349210051659551	0.001026433240045

mc_call(50000,20,1.0)	1.0	0.25753526298537	0.000566158551258
mc_call(50000,20,1.1)	1.1	0.177109758819777	0.000874893109258

100,000 Price Bundles

Monte Carlo for Call Option	Х	Value	Standard Errors
mc_call(100000,20,0.9)	0.9	0.349133764645447	0.000728605042913
mc_call(100000,20,1.0)	1.0	0.257724398997125	0.000617779851916
mc_call(100000,20,1.1)	1.1	0.177274991686365	0.000504417951007

With Control Variate (using 1/3*(max(S1-X,0)+max(S2-X,0)+max(S3-X,0)))

10,000 Price Bundles

Monte Carlo for Call Option	Х	Value	Standard Errors
MC_MA_EurCall(0.9,10000)	0.9	0.348721368114775	0.000529424775985
MC_MA_EurCall(1,10000)	1.0	0.257625551990408	0.000566402227206
MC_MA_EurCall(1.1,10000)	1.1	0.177479974337519	0.000575962593609

50,000 Price Bundles

Monte Carlo for Call Option	Х	Value	Standard Errors
MC_MA_EurCall(0.9,50000)	0.9	0.349026055992790	0.000288929699255
MC_MA_EurCall(1,50000)	1.0	0.257566491221280	0.000191370314789
MC_MA_EurCall(1.1,50000)	1.1	0.177327743270607	0.000213838306288

100,000 Price Bundles

Monte Carlo for Call Option	Х	Value	Standard Errors
MC_MA_EurCall(0.9,100000)	0.9	0.34899903656124	0.000205049550516
MC_MA_EurCall(1,100000)	1.0	0.257492541271792	0.000194676723516
MC_MA_EurCall(1.1,100000)	1.1	0.177292932914285	0.000116039939022

Comment

The value of the option is similar to what we obtained using the crude monte carlo. However, standard errors are much smaller than the crude monte carlo. Interestingly, the standard errors from the MC with control variate does not decrease much as number of price bundles increases.