ECE 5770 : Resilient Computer Systems Modeling On-Die Termination Power Overhead of Encrypted Data

Udit Gupta, Monica J. Lin

School of Electrical and Computer Engineering, Cornell University, Ithaca, NY ug28@cornell.edu, mjl256@cornell.edu

Abstract

1. Introduction

Since the advent of the Internet, compute devices have become not only more prolific but also varied - encompassing not only high performance compute clusters but also general purpose computers and mobile systems. Moreover, the assumptions made about the security model of a system has changed drastically; users can no longer be trusted, and devices have the potential to interact with unknown and possibly untrustworthy hosts while communicating sensitive information. For example, the boom in smartphones has caused a secondary explosion in the mobile application industry, allowing users to log in to various trusted systems (e.g. bank accounts, medical records and shopping accounts) remotely.

However, the sudden increase in connectivity exposes users to adversaries that may attempt to leverage these interactions in order to obtain confidential information or disrupt the use of services or applications.

In response to these changes, there has been an increasing effort in developing trusted computing platforms augmented with specialized hardware modules that provide security features such as authentication and decryption/encryption. One such security feature that remains a focus in trusted computing research is protecting off-chip memory. Protecting offchip memory includes maintaining confidentiality of private data. Challenges in designing memory protection mechanisms involves providing encryption primitives at a low cost (money, area, power and design complexity), high throughput and low latency without compromising security. Current work also focuses on memory protection schemes for general purpose and high performance computing systems. The domain of memory protection in the mobile and embedded computing domains is relatively less studied and poses interesting challenges. Mobile and embedded devices often operate under strict power and area constraints. Providing secure memory protection while following the prescribed power and area constraints as well as maintaining performance of the computing devices is an ongoing challenge.

- 1. Characterizing the power overhead of the memory system is still an open problem especially in the context of encryption.
- We use first order approximations to model the power overhead of
- 3. On die termination ODT encrypting data on the memory system.
- 4. We verify that encrypted data has a significant power overhead [add numbers]
- 5. Outline the paper's sections

Figure 1: DDR DRAM Chip Topologies [1]

2. Problem Formulation

Figure 2 illustrates the general secure memory encryption architecture used in this study. The threat model assumes that the on-chip memory, data-cache, is secure and tamper-proof whereas the off-chip memory is not. The encryption core between the data-cache is supposed to provide cryptographic confidentiality properties that prevent unauthorized principals from reading sensitive information that user's wish to keep secret.

Figure 2: General Memory Encryption Architecture: All onchip memory accesses, between the processor and datacache, are performed in plaintext whereas all off-chip, between the data-cache and DRAM, are encrypted.

Typically, the encryption core seen in Figure 2 implements the AES-CTR mode scheme. Where previous studies have focused on the performance and area overhead of memory encryption, we wish to explore the impact of memory encryption on the power consumption of off-chip memory storage systems. Specifically we want use various computer architecture analysis tools to simulate memory access traces and model the power overhead of encryption on DDR4 memory technology. Our first order model characterizes the ODT power overhead when using Data-Bus Inversion for realisitic benchmarks targetting mobile systems using DDR4 memory technology.

3. Methodology

As mentioned earlier, DRAM power consumption is dominated by charging/discharging chip capacitances and signal reflections caused by link terminations. Once the capacitors have reached steady state, their power consumption is negligible in comparison to the system as a whole and thus can be neglected from our power models. Instead we focus on link termination and signal reflections. Specifically, DDR4 memory technology leverages DBI to reduce the signal reflections and power consumption. Intuitively, DBI aims to reduce the number of bit flips (DBI-AC) and binary signal probabilities (DBI-DC) to improve power consumption of read and write operations. For reducing bit flips, take for example the case where memory location M previously had the value 00000000 that was being overwritten by the value 11111111. Instead of flipping every bit in M, a DBI-AC enabled memory system would retain the previous state of 00000000 and set the DBI flag that signifies that all the bits are flipped. This would incur the power consumption of 1 bit flip, not the entire data byte. Since the power consumption of 0 and 1 is not the same, depending on memory technology constraints, DBI-DC aims to reduce the prevalence of the higher power consuming bit. In the case of DDR4, 0 consumes more power and thus DBI aims to reduce the number of 0's and increase the number of 1's [add citation]. Figure 3 illustrates the impact of DBI-DC on improving signal quality

and consequently power consumption of read and write operations. The larger open data eye illustrates that there is less interference between the driver and reflected signals when using DBI-DC and the smaller V_{pp} suggests that the driver has to work less with DBI-DC enabled.

Figure 3: Using DBI-DC increases the open data eye and reduces the required V_{pp} for effectively driving the DRAM chip. Taken from [2]

The following sections outline our model, and experimental setup for measuring the ODT power overhead of memory encryption on DBI-enabled DDR4 memory technology.

3.1 Model

In order to model the power overhead of memory encryption on DBI-enabled memory technologies, we use the same model described by Hollis [2], shown below:

$$P_t = A \times P_{dc} + B \times P_{ac}$$

Where P_t is the ODT power consumption, P_{dc} is the intrinsic DC-power consumed and P_{ac} is the intrinsic AC-power consumed by bit flips. The ratios A and B determine the DC and AC factors of P_t respectively. DBI-DC aims to exploit program structure and reduce A whereas DBI-AC aims to reduce B. Together they can significantly decrease the ODT power consumption. As Hollis [2] describes - under the assumption that data written to memory or read from memory are completely random:

$$A = 0.5$$

$$B = 0.5$$

Intuitively, truly random data would have equal probability of each binary digit making A=0.5. Similarly, truly random data would have equal probability of flipping or not flipping and thus, B=0.5. In order to model ODT power consumption, we must determine the values of A and B for secure memory systems with encryption and insecure memory systems without encryption. The following sections outline our experimental setup for analyzing the DBI enabled power model described.

3.2 Experimental Setup

- 1. PIN dynamic binary instrumentaiton tool : describe cache settings
- 2. Computer architecture analysis tool
- 3. MiBench Justify why MiBench (mobile) SPEC is not as good
- 4. DRAMSim Did not work for us.
- 5. Python Script to analyze the loads and stores from the trace outptted from PIN

4. Evaulation

- 1. Looking at A, B ratios for loads and stores.
- 2. Put graphs and analyze them.

- 3. Intuition for decrease (store is lower mostly misses)
- 5. Group Dynamics
- 6. Related Work
- 7. Conclusion

References

- [1] J. Burnett. DDR3 Design Considerations for PCB Applications. Jul 2009.
- [2] T. M. Hollis. Data Bus Inversion in High-Speed Memory Applications. *IEEE Transactions on Circuits and Systems*, 2009.