Advanced Classification Model

Linear and non-linear model...

Prof. Je-Won Kang
Electronic & Electrical Engineering
Ewha Womans University

Contents

- Support vector machine (SVM)
- Neural network (NN)

Assume perfect separation between the two classes using discriminant function w^*

Support Vector Machine

- Choose the linear separator (hyperplane) with the largest margin on either side
 - Maximum margin hyperplane with support vectors
 - Robust to outliers

Support vector: an instance with the minimum margin, which will be the most sensible data points to affect the performance

Margin

 Twice the distance from the hyperplane to the nearest instance on either side

w is orthogonal to the hyperplane

• Lemma : x has distance $\frac{|h_{wb}(x)|}{||w||}$ to the hyperplane $h_{wb}(x) = w^T x + b = 0$

Margin distance

Proof:

- Let $x = x_{\perp} + r \frac{w}{||w||}$, then |r| is the distance
- Multiply both sides by w^T and add b
- Left hand side: $w^T x + b = h_{w,b}(x)$
- Right hand side: $w^T x_{\perp} + r \frac{w^T w}{||w||} + b = 0 + r ||w||$

Optimization

- Optimal weight w and bias b
 - Classifies points correctly as well as achieves the largest possible margin
 - Hard margin SVM assumes linear separability
 - Soft margin SVM extends to non-separable cases
 - Nonlinear transform & kernel trick

Optimization

constraints: linearly separable; hard-margin linear SVM

$$h(x) = w^T x + b \ge 1 \text{ for } y = 1$$
$$h(x) = w^T x + b \le -1 \text{ for } y = -1$$

 $(y(w^Tx + b) \ge 1 \text{ for all samples}$

SUMMIMES sample constraints

Optimization objective function: linearly separable; hard-margin linear SVM

Distance from a support vector to the hyper plane

$$\frac{w^T x + b}{\|w\|} = \frac{\pm 1}{\|w\|} \longrightarrow \frac{2}{\|w\|}$$
 Maximize the margin

SVM Primal problem

Equivalently, we want to minimize $||w||^{2}$

Subject to $y_i(w^Tx_i + b) \ge 1$ for all samples

Constrained optimization problem, solved by convex quadratic programming

Can be converted into an unconstrained optimization problem and dual form

Support Vector Machine linearly separable; soft-margin linear SVM

- What if the data is not linearly separable? e.g., there are outliers or noisy measurements, or the data is slightly non-linear.
- Assign a slack variable to each instance $\xi i \geq 0$, which can be thought of distance from the separating hyperplane if an instance is misclassified and 0 otherwise.
- Minimize $\frac{1}{2} ||w||^2 + C \sum \xi_i$ subject to $y_i(w^T x_i + b) \ge 1 - \xi_i$

* kernel &

b) linearly sepable 时刻 ght choise 似乎如 atti 如 cen, 工科党 如 linearly sepable 为刊 oten 간程

 α =1 for scale invariance

Problem of SVM

- What if the data samples are not linearly separable?
- Linearity in w

$$\sum_{t} w^{T} x \qquad \sum_{t} w^{T} \varphi(x)$$

Both linear to x and w

linear to w which allows non linear version of x while maintaining the analytic capability

Nonlinear transforms can be applied to the input to extend the hard-margin SVM to non-linear problem

Transform input into new space and use linear model (kernel transformation)

Support Vector Machine not linearly separable; Kernel Trick

 Data is not linearly separable in the input space Data is linearly separable in the feature space obtained by a kernel

Some commonly used kernels

Polynomial

$$K(\mathbf{x},\mathbf{y}) = (\mathbf{x}.\mathbf{y}+1)^p$$

Gaussian radial basis function (RBF)

$$K(\mathbf{x}, \mathbf{y}) = e^{-||\mathbf{x} - \mathbf{y}||^2/2\sigma^2}$$
 Parameters that the user must choose

Hyperbolic tangent (multilayer perceptron kernel)

$$K(\mathbf{x}, \mathbf{y}) = \tanh(k \mathbf{x} \cdot \mathbf{y} - \delta)$$

Radial-basis function (RBF) kernel

Radial-basis function kernel

$$K(\mathbf{x}, \mathbf{x}') = \exp\left(-\gamma ||\mathbf{x} - \mathbf{x}'||^2\right)$$

Large γ : sharp Gaussian -> overfit

Small γ : not enough linearity

Artificial neural network (ANN) non-linear classification model

nonlinear 知图 , DNN의 71笔 Impulses carried toward cell body dendrite presynaptic terminal axon cell body nonlinear至即智 **Binary Activation function** classifier Impulses carried away from cell body This image by Felipe Perucho synapse is licensed under CC-BY 3.0 axon from a neuron w_0x_0 dendrite 1.0 cell body 0.8 w_1x_1 $\sum w_i x_i + b$ 0.6 output axon sigmoid activation function score activation 0.4 function scores w_2x_2 0.2 -1010 Images from CS231n Stanford

Artificial neural network (ANN) activation functions

- Sigmoid neurons give a real-valued output that is a smooth and bounded function of their total input.
- Non-linearity due to the activation functions

$$y = \frac{1}{1 + e^{-Z}}$$

Sigmoid BEHMOINX

Activation functions

Artificial neural network (ANN) deep neural network

 Can represent more complex (non-linear) boundaries with increasing neurons

Artificial neural network (ANN) multilayer perceptron

Artificial neural network (ANN) multilayer perceptron

- Multilayer Perceptron (MLP)
 - Proposed by Prof. Marvin Minsky at MIT (1969)
 - Can solve XOR Problem

$$x_1 - y_1 \qquad x_1 - y_2 \qquad y_1 - \overline{y}$$

$$x_2 - y_1 \qquad x_2 - y_2 \qquad y_2 - \overline{y}$$

$$W = \begin{pmatrix} 5 \\ 5 \end{pmatrix}, b = -8 \qquad W = \begin{pmatrix} -7 \\ -7 \end{pmatrix}, b = 3 \qquad W = \begin{pmatrix} -11 \\ -11 \end{pmatrix}, b = 6$$

•
$$(x_1 x_2) = (0 \ 0)$$

•
$$(0\ 0)\binom{5}{5} + (-8) = -8$$
, i.e., $y_1 = Sigmoid(-8) \cong 0$

•
$$(0\ 0)\begin{pmatrix} -7 \\ -7 \end{pmatrix} + (3) = 3$$
, i.e., $y_2 = Sigmoid(3) \cong 1$

•
$$(y_1 y_2) {-11 \choose -11} + (6) = -11 + 6 = -5$$
, i.e., $\bar{y} = Sigmoid(-5) \not\equiv 0$

	ाँ पु
\$\fo	32
0 24	×2

x_1	x_2	y ₁	y_2	$\overline{oldsymbol{y}}$	XOR
0	0	0	1	0	0
0	1				1
1	0				1
1	1				0

$$x_1 - y_1 \qquad x_1 - y_2 \qquad y_1 - \overline{y}$$

$$x_2 - y_1 \qquad x_2 - y_2 \qquad y_2 - \overline{y}$$

$$W = \begin{pmatrix} 5 \\ 5 \end{pmatrix}, b = -8 \qquad W = \begin{pmatrix} -7 \\ -7 \end{pmatrix}, b = 3 \qquad W = \begin{pmatrix} -11 \\ -11 \end{pmatrix}, b = 6$$

•
$$(x_1 x_2) = (0 \ 1)$$

•
$$(0.1)\binom{5}{5} + (-8) = -3$$
, i.e., $y_1 = Sigmoid(-3) \approx 0$

•
$$(0.1)\begin{pmatrix} -7 \\ -7 \end{pmatrix} + (3) = -4$$
, i.e., $y_2 = Sigmoid(-4) \approx 0$

•
$$(y_1 y_2) {\binom{-11}{-11}} + (6) = 6$$
, i.e., $\bar{y} = Sigmoid(6) \cong 1$

XOR	\overline{y}	y_2	y_1	x_2	x_1
0	0	1	0	0	0
1	1	0	0	1	0
1				0	1
0				1	1

$$x_1 - y_1 \qquad x_1 - y_2 \qquad y_1 - \overline{y}$$

$$x_2 - y_1 \qquad x_2 - y_2 \qquad y_2 - \overline{y}$$

$$W = \begin{pmatrix} 5 \\ 5 \end{pmatrix}, b = -8 \qquad W = \begin{pmatrix} -7 \\ -7 \end{pmatrix}, b = 3 \qquad W = \begin{pmatrix} -11 \\ -11 \end{pmatrix}, b = 6$$

•
$$(x_1 x_2) = (1 \ 0)$$

•
$$(1\ 0)\binom{5}{5} + (-8) = -3$$
, i.e., $y_1 = Sigmoid(-3) \cong 0$

•
$$(1\ 0)\begin{pmatrix} -7 \\ -7 \end{pmatrix} + (3) = -4$$
, i.e., $y_2 = Sigmoid(-4) \cong 0$

•
$$(y_1 y_2) {\binom{-11}{-11}} + (6) = 6$$
, i.e., $\bar{y} = Sigmoid(6) \cong 1$

XOR	\overline{y}	y_2	y_1	x_2	x_1
0	0	1	0	0	0
1	1	0	0	1	0
1	1	0	0	0	1
0				1	1

$$x_1 - y_1 \qquad x_1 - y_2 \qquad y_1 - \overline{y}$$

$$x_2 - y_1 \qquad x_2 - y_2 \qquad y_2 - \overline{y}$$

$$W = \begin{pmatrix} 5 \\ 5 \end{pmatrix}, b = -8 \qquad W = \begin{pmatrix} -7 \\ -7 \end{pmatrix}, b = 3 \qquad W = \begin{pmatrix} -11 \\ -11 \end{pmatrix}, b = 6$$

•
$$(x_1 x_2) = (1 \ 1)$$

- $(1\ 1)\binom{5}{5} + (-8) = 2$, i.e., $y_1 = Sigmoid(2) \cong 1$
- $(1\ 1)\begin{pmatrix} -7 \\ -7 \end{pmatrix} + (3) = -11$, i.e., $y_2 = Sigmoid(-11) \cong 0$
- $(y_1 y_2) {-11 \choose -11} + (6) = -5$, i.e., $\bar{y} = Sigmoid(-5) \cong 0$

x_1	x_2	y_1	y_2	$\overline{oldsymbol{y}}$	XOR
0	0	0	1	0	0
0	1	0	0	1	1
1	0	0	0	1	1
1	1	1	0	0	0

Example: MNIST data recognition

28x28 input image ->1x28x28 input data vector

input layer (784 neurons)

Class of 1~10 Digits

MNIST data used for Optical Character Recognition (OCR)

Artificial neural network (ANN) ANN for non-linear problem

- Observation
 - There exists cases when the accuracy is low even if the # layers is high. Why?
 - Answer
 - The result of one ANN is the result of sigmoid function (between 0 and 1).
 - The numerous multiplication of this result converges to near zero.
 → Gradient Vanishing Problem #

Breakthrough in Back Propagation

- Backpropagation (BP) barely changes lower-layer parameters (vanishing gradient)
- Breakthrough
 - Pre-training+ fine tuning
 - Convolutional neural networks (CNN) for reducing redundant parameters.
 - Rectified linear unit (constant gradient propagation)
 - Dropout

Convolutional neural network

State-of-the-art classification model for high-dimensional data (image, video, etc.)

Reference

- Book: Pattern Recognition and Machine Learning (by Christopher M. Bishop)
- Book: Machine Learning: a Probabilistic Perspective (by Kevin P. Murphy)
- https://www.andrewng.org/courses/