Informelle Kompetenzmessung zur standardisierten kompetenzorientierten schriftlichen Reife- und Diplomprüfung

BHS

Februar 2016

Angewandte Mathematik

Teil A + Teil B (Cluster 7)

Korrekturheft

Vergnügungspark

Möglicher Lösungsweg

a)
$$4.1 = 9 - x^2$$

 $x^2 = 4.9$
 $x = \pm 2.213...$

Der Festwagen darf rund 4,42 m breit sein.

$$\int_{3}^{3} (9 - x^2) dx = 36$$

Der Flächeninhalt der benötigten Folie beträgt 36 m².

 b) Diese Polynomfunktion hat im dargestellten Intervall 2 lokale Extremstellen. Somit muss die 1. Ableitung dieser Funktion 2 Nullstellen haben, also mindestens eine Polynomfunktion 2. Grades sein. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Eine Gerade parallel zur x-Achse hat 3 Schnittpunkte mit dem Graphen der Funktion. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

oder:

Der Graph ist keine Gerade und keine Parabel. Somit muss die gegebene Polynomfunktion mindestens Grad 3 haben.

c) rechtwinkeliges Dreieck *FPS*: $tan(\beta) = \frac{\overline{SP}}{a} \Rightarrow \overline{SP} = a \cdot tan(\beta)$

rechtwinkeliges Dreieck
$$FQS$$
: $tan(\alpha) = \frac{\overline{SQ}}{a} \Rightarrow \overline{SQ} = a \cdot tan(\alpha)$

$$h = \overline{SP} - \overline{SQ}$$

$$h = a \cdot \tan(\beta) - a \cdot \tan(\alpha) = a \cdot (\tan(\beta) - \tan(\alpha))$$

- a) 1 × B1: für die richtige Berechnung der Breite b
 - 1 × B2: für die richtige Berechnung des Flächeninhalts
- b) 1 × D: für eine richtige Erklärung
- c) 1 × A: für das richtige Erstellen der Formel

Luftdruck - Höhenformel

Möglicher Lösungsweg

a) $p(0) = p_0 \cdot e^{-\frac{0}{7991}} = p_0 \cdot 1 = p_0$

$$\frac{p_0}{2} = p_0 \cdot e^{-\frac{h}{7991}}$$

$$h = 7991 \cdot \ln(2) = 5538,9...$$

Bei einer Seehöhe von rund 5539 m beträgt der Luftdruck genau die Hälfte von p_0 .

b)
$$f(h) = 1013 - \frac{1}{10} \cdot h$$

c) Modellierung durch eine lineare Funktion g mit $g(x) = a \cdot x + b$:

$$1040 = a \cdot 990 + b$$

$$930 = a \cdot 1980 + b$$

$$g(x) = -\frac{1}{9} \cdot x + 1150$$

$$g(1\,300) = \frac{9\,050}{9} \approx 1\,006$$

Der Luftdruck in einer Höhe von 1300 m über dem Meeresspiegel beträgt rund 1006 hPa.

- a) 1 × D: für einen richtigen Nachweis
 - 1 × A: für den richtigen Lösungsansatz zur Berechnung
 - 1 × B: für die richtige Berechnung der Seehöhe
- b) 1 × A: für das richtige Aufstellen der Funktion
- c) 1 × A: für einen richtigen Ansatz (z.B. mithilfe einer linearen Funktion bzw. ähnlicher Dreiecke)
 - 1 × B: für die richtige Bestimmung des Luftdrucks

Produktion von Rucksäcken

Möglicher Lösungsweg

- a) Es wird die Wahrscheinlichkeit für das Ereignis berechnet, dass ein zufällig kontrollierter Rucksack Nahtfehler, aber keine der beiden anderen Fehlerarten aufweist.
- b) $P(\text{"mindestens 1 Fehler"}) = 1 P(\text{"kein Fehler"}) = 1 0.98 \cdot 0.97 \cdot 0.99 = 0.0589... \approx 5.9 \%$

Bei der Berechnung der Wahrscheinlichkeit, dass ein zufällig ausgewählter Rucksack mindestens 1 dieser 3 Fehler aufweist, muss bei der Verwendung der Gegenwahrscheinlichkeit nur 1 Ereignis, nämlich das Ereignis, dass kein Fehler auftritt, betrachtet werden. Bei einer direkten Berechnung müssten die Wahrscheinlichkeiten für eine Vielzahl von Ereignissen berechnet und addiert werden.

c) Berechnung mittels Binomialverteilung: n = 100 und p = 0.03 $P(X < 3) = 0.41977... \approx 41.98 \%$

- a) 1 x C: für die richtige Angabe des Ereignisses (es muss auch klar erkennbar sein, dass die beiden anderen Fehlerarten nicht auftreten)
- b) 1 × B: für die richtige Berechnung der Wahrscheinlichkeit
 - 1 x D: für die richtige Erklärung zur Gegenwahrscheinlichkeit
- c) 1 × A: für das Erkennen des richtigen Wahrscheinlichkeitsmodells (Binomialverteilung)
 - 1 × B: für die richtige Berechnung der Wahrscheinlichkeit

Tennis

Möglicher Lösungsweg

a) Aufschlaggeschwindigkeit, die von 25 % der Teilnehmer nicht übertroffen wurde: 120 km/h

Quartilsabstand: 30 km/h

b) ähnliche Dreiecke:

$$\frac{2,3}{6,4+6,4+5,5} = \frac{h}{6,4}$$

$$h = 0.80... \text{ m} \approx 0.8 \text{ m}$$

Der Ball ist beim Netz in einer Höhe von rund 0,8 m. Somit geht der Ball ins Netz.

c) $f'(0) = \frac{2}{5}$ $\arctan(\frac{2}{5}) = 21,801...^{\circ} \approx 21,80^{\circ}$

Der Ball befindet sich im Abschlagpunkt in einer Höhe von $\frac{21}{50}$ Metern.

Lösungsschlüssel

a) $1 \times C1$: für das richtige Ablesen der Aufschlaggeschwindigkeit

 $1 \times C2$: für das richtige Ablesen des Quartilsabstands

- b) 1 × D: für die richtige Überprüfung
- c) $1 \times B$: für die richtige Berechnung des Steigungswinkels

1 × C: für die richtige Interpretation der Zahl $\frac{21}{50}$

Leistung einer Solaranlage

Möglicher Lösungsweg

a)
$$P'(6) = 0$$

$$0 = \frac{7}{162} \cdot 6^3 - \frac{7}{9} \cdot 6^2 + 2 \cdot a \cdot 6$$

$$a = \frac{14}{9}$$

b)
$$\int_0^{12} (0,007 \cdot t^4 - 0,165 \cdot t^3 + 0,972 \cdot t^2 + 1,221) dt = 67,5288$$

Die Solaranlage liefert an diesem Tag rund 67,53 kWh Energie.

c) An der Wendestelle x_0 einer Funktion f gilt stets: $f''(x_0) = 0$. Die 2. Ableitung einer Polynomfunktion 3. Grades ist eine lineare Funktion, die genau 1 Nullstelle mit Vorzeichenwechsel hat. Daher hat die Polynomfunktion 3. Grades genau 1 Wendestelle.

- a) 1 × A: für den richtigen Ansatz zur Berechnung des Koeffizienten a
 - 1 × B: für die richtige Berechnung des Koeffizienten a
- b) 1 × B: für die richtige Berechnung des Integrals
- c) 1 × D: für eine richtige Begründung

Aufgabe 6 (Teil B)

LED-Lampen

Möglicher Lösungsweg

a)	Verwendungsdauer in Jahren	insgesamt angefallene Kosten bei der Verwendung	
		von Glühlampen	einer LED-Lampe
	1	€ 5,75	€ 15,60
	2	€ 11,50	€ 16,20
	3	€ 17,25	€ 16,80
	4	€ 23,00	€ 17,40
	5	€ 28,75	€ 18,00

Nach 3 Jahren sind die insgesamt angefallenen Kosten bei der Verwendung einer LED-Lampe erstmals geringer als bei der Verwendung von Glühlampen.

b) Ermitteln der Gleichung der linearen Regressionsfunktion mittels Technologieeinsatz:

$$f(x) = 0.026 \cdot x + 1.534$$

x ... Lichtstrom in Lumen

f(x) ... Preis bei einem Lichtstrom x in Euro/Stück

Die Steigung 0,026 besagt, dass pro zusätzlichem Lumen Lichtstrom der Preis um € 0,026 steigt.

$$f(500) \approx 14,53$$

Für eine LED-Lampe mit 500 Lumen ist ein Preis von € 14,53 pro Stück zu erwarten.

c)
$$\mu = \frac{780 + 1140}{2} = 960$$

Der Erwartungswert beträgt 960 Lumen.

Aufgrund der Symmetrie gilt: $P(X \le 1140) = 0.975$ $\phi(z) = 0.975 \Rightarrow z = 1.959...$

$$\sigma = \frac{1140 - 960}{1,959...} = 91.8...$$

Die Standardabweichung beträgt rund 92 Lumen.

- a) 1 × A: für das richtige Vervollständigen der Tabelle
 - 1 × C: für das richtige Ablesen aus der Tabelle
- b) 1 × B1: für das richtige Ermitteln der Gleichung der linearen Regressionsfunktion
 - 1 × C: für die richtige Interpretation des Werts der Steigung im gegebenen Sachzusammenhang
 - 1 × B2: für die richtige Berechnung des Preises pro Stück
- c) 1 x B1: für die richtige Berechnung des Erwartungswerts
 - 1 x B2: für die richtige Berechnung der Standardabweichung
 - 1 × A1: für das richtige Skizzieren des Graphen der Verteilungsfunktion (charakteristischer Funktionsverlauf und Funktionswert an der Stelle μ richtig eingezeichnet)
 - 1 × A2: für das richtige Veranschaulichen der Wahrscheinlichkeit in der Abbildung

Aufgabe 7 (Teil B)

Grenzkosten

Möglicher Lösungsweg

a) Der Grenzkostenwert 1060 GE/ME bedeutet, dass bei einer Produktionsmenge von 20 ME eine Steigerung der Produktion um 1 ME zu einer Kostensteigerung von näherungsweise 1060 GE führen wird.

$$K'(20) = 1060$$

$$K'(50) = 7120$$

$$K'(60) = 10340$$

Lösen dieses Gleichungssystems mittels Technologieeinsatz:

$$K'(x) = 3 \cdot x^2 - 8 \cdot x + 20$$

b)
$$K''(x) = 0.6 \cdot x - 4$$

 $0 = 0.6 \cdot x - 4 \Rightarrow x = \frac{20}{3} \approx 6.7$

Die Kostenkehre liegt bei rund 6,7 ME.

$$\int (0,3 \cdot x^2 - 4 \cdot x + 15) dx = 0,1 \cdot x^3 - 2 \cdot x^2 + 15 \cdot x + C$$

$$K(35) = 2372,50$$
:

$$0.1 \cdot 35^3 - 2 \cdot 35^2 + 15 \cdot 35 + C = 2372.50 \implies C = 10$$

$$K(x) = 0,1 \cdot x^3 - 2 \cdot x^2 + 15 \cdot x + 10$$

c)

- a) $1 \times C$: für die richtige Interpretation der Grenzkosten im gegebenen Sachzusammenhang $1 \times A$: für das richtige Aufstellen der Funktionsgleichung
- b) 1 x B1: für die richtige Berechnung der Kostenkehre
 - 1 x A: für den richtigen Ansatz zum Aufstellen der Funktionsgleichung der Kostenfunktion K
 - 1 x B2: für die richtige Berechnung der Integrationskonstanten
- c) 1 x A1: für das richtige Einzeichnen des Graphen von E im Intervall [0; 4]
 - 1 x A2: für das richtige Einzeichnen des Graphen von K im Intervall [0; 4] als ertragsgesetzliche Kostenfunktion mit Fixkosten 5 GE und oberer Gewinngrenze 4 ME
 - 1 x A3: für die richtige Darstellung der Extremstelle der Grenzkostenfunktion als Wendepunkt des Graphen der Kostenfunktion an der Stelle x = 1

Aufgabe 8 (Teil B)

Konditorei

Möglicher Lösungsweg

- a) x ... Anzahl der Sachertorteny ... Anzahl der Topfentorten
 - (1) $x \le 10$
 - (2) $y \le 25$
 - (3) $y \ge 2 \cdot x$

Nichtnegativitätsbedingungen: $x \ge 0$, $y \ge 0$ Es ist nicht gefordert, die Nichtnegativitätsbedingungen anzugeben.

- **b)** $Z(x, y) = 23.5 \cdot x + 18 \cdot y$
- c) (1) $x \ge 0$
 - (2) $y \ge 0$
 - (3) $x \le 30$
 - (4) $y \le 20$
 - (5) $x + y \le 45$

gewinnmaximierende Menge: (30 | 15)

$$25 \cdot 30 + 20 \cdot 15 = 1050$$

Der maximale Gewinn beträgt € 1.050 pro Tag.

- a) 1 × A1: für das richtige Aufstellen der beiden Ungleichungen (1) und (2)
 - 1 × A2: für das richtige Aufstellen der Ungleichung (3)

 Die Angabe der Nichtnegativitätsbedingungen ist nicht erforderlich.
- b) 1 × A: für das richtige Aufstellen der Gleichung der Zielfunktion zur Beschreibung des Gewinns
- c) 1 × C1: für das richtige Ablesen der 4 Ungleichungen (1) bis (4)
 - 1 × C2: für das richtige Ablesen von Ungleichung (5)
 - $1 \times B1$: für das richtige Einzeichnen der Geraden, für die der optimale Wert der Zielfunktion angenommen wird
 - $1 \times B2$: für die richtige Berechnung des maximalen Gewinns