as G=1, G=4

Nj = 1 x \(10^2 : C_1 x_1 + C_1 x_1 = k_j (= constante) \(\frac{1}{2} \)

 $x_1 > 0$ and $x_2 < k_3$ or $x_3 > 0$

D'après la fijure $C_{n\times_{n}} + C_{n\times_{n}}$ en maximal pour $\begin{cases}
\times_{n} = 0 \\
\times_{n} + 3\times_{n} = 18
\end{cases}$ es $\times = \binom{0}{6} = nolution optimale$ avec valeur optimale: $k_1 = 100 + 4 \times 6 = 24$

Solutions optimales:
$$\int x_1 + x_2 = 8$$
 $\int x_1 = 8 - x_1$ $\begin{cases} x_1 + x_2 = 8 \\ x_1 + x_2 \leq 15 \end{cases}$ $\begin{cases} x_1 = 8 - x_1 \\ x_2 = 8 \end{cases}$

Valen gr. male: hs = 1xx, 1 1x (8-x, 1= 8