142. Soit $A\left(\frac{-1}{2}+i\right)^{\frac{1}{2}}$ et B (2 + 2i) deux nombres complexes.

Le vecteur AB a pour affixe:
1.
$$\frac{1}{2} + 3i$$
 2. $\frac{9}{2} + 3i$ 3. $\frac{7}{2} + 2i$ 4. $\frac{3}{2} + 2i$ 5. $\frac{5}{2} \div i$ (M-2006)

143. Le plan est rapporté à un repère ortho normal $(0, \bar{i}, \bar{j})$, l'unité graphique étant égale à 2 cm. On désigne par A, B et C les points d'affixes respectives :

$$Z_{\dot{A}} = 4 + \frac{5}{2}i$$
, $Z_{B} = 4 - \frac{5}{2}i$ et $Z_{C} = 2 + \frac{3}{2}i$. Le triangle ABC est : 1. rectangle 3. scalène 5. isocèle rectangle 2. équilatéral 4. isocèle (M-2006)

144. Le plan (P) est rapporté à un repère ortho normal (O, i, j), l'application de P dans P présentée ici sous forme complexe, définie par $Z = (2 + i)\overline{Z} + 1 + 3i$ est une similitude indirecte de P dont les coordonnées du centre sont :

1.
$$\left(2, \frac{3}{2}\right)$$
 2. $(0, -1)$ 3. $(1, 2)$ 4. $\left(\frac{4}{9}, \frac{1}{3}\right)$ 5. $(1, 2)$ (M-2006)

145. Dans l'ensemble C des nombres complexes, on considère l'ensemble s (Y) des points M, d'affixe Z tels que : $|Z + 2\overline{Z} + 1| = \sqrt{3}|Z + \overline{Z}|$ Les coordonnées du centre de cette sont :

1. z = 2 + 2i
$$\sqrt{3}$$
 3. z = $-\sqrt{3}$ + i 5. z = 1 + i $\sqrt{2}$
2. z = $\sqrt{2}$ - i $\sqrt{2}$ 4. z = 1 + 2i (B-2009)

147. Soit z un nombre complexe : On pose : z = x + iy, $x \in R$, $x \in R$. La partie imaginaire Im(Z) du nombre complexe $Z = 3z^2 + zz' - 6i\sqrt{2}$, z' étant le conjugué de z, est : $5. xv^2 + \sqrt{5}$ 3. 6(xy $-\sqrt{2}$) 1, $xy - \sqrt{3}$ (M-2009)

4. $2(x^2y + \sqrt{3})$

2.3(xy + $\sqrt{2}$)