Reconciling CV phonotactics and high vowel deletion in Japanese

James Whang

MARCS Institute for Brain, Behaviour & Development research@jameswhang.net

The MARCS Institute for Brain, Behaviour and Development

1. Introduction

• Phonotactic restriction against tautosyllabic clusters (Ito 1986, Ito & Mester 2015).

/ʃit + ren/ → [ʃi.tsu.ren] 'heartbreak'
/stau/ → [su.taa] 'star (loan)'

- Perception studies also suggest strong CVCV bias
 (Dupoux et al. 1999; [ebzo] → /ebuzo/)
- Previously argued high vowel devoicing (HVD) only results in loss of phonation (Hirayama 2009, Tsuchida 1997).
- Recent production studies suggest voiceless consonant clusters do result from high vowel deletion (Pinto 2015; Whang 2018).

/masutaa/ \rightarrow [mas_taa] 'master' / ϕ ukoo/ \rightarrow [ϕ _koo] 'unhappiness'

• Deletion is categorical (Shaw & Kawahara 2018a).

2. Proposal & Evidence

• Both underlying and epenthetic vowels get targeted for high vowel devoicing.

 $/ku + too/ \rightarrow \langle ku.too\rangle \rightarrow [k_.too]$ 'hard fight' $/kak + too/ \rightarrow \langle ka.ku.too\rangle \rightarrow [ka.k_.too]$ 'definitive answer' $/tIkin/ \rightarrow \langle tIi.kin\rangle \rightarrow [tI_.kin]$ 'Fried chicken'

- Repair of phonotactic violations in both /underlying/ forms (production) and [overt] forms (perception).
- Separate "phonetic" and "structural phonetic processes(Hayes 1999; Boersma 2011; Tesar & Smolensky 2000).

Fig 1: Multilevel phonological representation (OT learnability).

3. Production

- /underlying/ → ⟨surface⟩: faithfulness + structural constraints.
 - CodaCondition: penalize coda consonant with independent place.
 - *Complex: penalize every tautosyllabic cluster.

/kak + too/	CodaCond	*Complex	IDENT-IO	DEP-IO
(ka.ku.too)				*!
<kak.too></kak.too>	*!	 		
(ka.ktoo)		*!		
<pre><kat.too></kat.too></pre>		 	*!	

- $\langle \text{surface} \rangle \rightarrow [\text{overt}]: \text{cue} + \text{articulatory constraints}.$
 - *\langle k \rangle (k) not represented in overt form.
 - *\u\ []: penalize \u\ not represented in overt form.
 - *[s.g][V, c.g.][s.g.]: penalize short, phonated vowel between voiceless segments.
 - *[V, s.g.]: penalize unphonated vowel.

	(ka.ku.too)	* <k>[]</k>	*[s.g][Ŭ, c.g.][s.g.]	* <u>[]</u>	*[V, s.g.]
	[ka.ktoo]			*!	
	[ka.ku.too]				*!
Ī	[ka.ku.too]		*!		
	[ka.u.too]	*!			

4. Perception

- [overt] -> (surface): structural + cue constraints.
 - *<o>[]: penalize <o> not represented in overt form.
 - $*\langle \rangle$ [k]: penalize [k] not represented in surface form.

[tak]	CodaCond	*<>[s]	* <o>[]</o>	* <u>[]</u>
r (ta.ku)				*!
<tak></tak>	*!			
<ta_></ta_>		*!		
<ta.ko></ta.ko>			*!	

adapted from Boersma (2009)

5. Conclusion

- Multilevel phonological representation reconciles seemingly contradictory treatment of high vowels in Japanese.
 - CV preference = surface level.
 - High vowel devoicing = overt level.
- Clusters from high vowel deletion not structurally reevaluated.
 - Predicts no resyllabification of overt clusters (contra Kondo 2005).
 - I.e., stranded onset consonants form consonantal syllables.
- Supported by Shaw and Kawahara (2018b).
 - No c-center effects evident in stranded onset consonants, contra expectation in case of resyllabification.

Fig 2: Respective levels of phonological processes in Japanese.

Boersma (2011) A programme for bidirectional phonology and phonetics and their acquisition and evolution. *Bidirectional optimality theory*. Hayes (1999) Phonetically driven phonology: The role of Optimality Theory and inductive grounding. *Functionalism and Formalism in Linguistics*. Ito (1986) *Syllable Theory in Prosodic Phonology*. Kondo (2005) Syllable structure and its acoustic effects on vowels in devoicing. *Voicing in Japanese*. Pinto (2015) High vowels devoicing and elision in Japanese: A diachronic approach. *ICPhS* 18. Shaw & Kawahara (2018a) The lingual articulation of devoiced /u/ in Tokyo Japanese. *J. Phon.* Shaw & Kawahara (2018b) Consequences of high vowel deletion for syllabification in Japanese. *AMP* 2017. Tesar & Smolensky (2000) *Learnability in Optimality Theory*. Tsuchida (1997) *Phonetics and phonology of Japanese vowel devoicing*. Whang (2018) Recoverability-driven coarticulation: Acoustic evidence from Japanese high vowel devoicing. *JASA*.