6	(a) A p	roton in a nucleus decays to form a neutron and a β^+ particle.
	(i)	State the name of another lepton that is produced in the decay.
	(ii)	State the name of the interaction (force) that gives rise to this decay.
		[1]
	(iii)	State which of the three particles (proton, neutron or β^+ particle) has the largest ratio of charge to mass.
		[1]
	(iv)	the quark model to show that the charge on the proton is $+e$, where e is the elementary charge.
		[2]
	(v)	The quark composition of the proton is changed during the decay.
		Describe the change to the quark composition.
		[1]
	(b) An	ucleus X ($^{12}_{6}$ X) and a nucleus Y ($^{16}_{8}$ Y) are accelerated by the same uniform electric field.
	(i)	Determine the ratio
		$\frac{\text{electric force acting on nucleus X}}{\text{electric force acting on nucleus Y}}.$
		ratio = [2]

(ii) Determine the ratio

acceleration of nucleus X due to the field acceleration of nucleus Y due to the field

(iii) Nucleus X is at rest in the uniform electric field at time t = 0.

The field causes nucleus X to accelerate so that it moves through the field.

On Fig. 6.1, sketch the variation with time *t* of the acceleration *a* of nucleus X due to the field.

Fig. 6.1

[1]

[Total: 10]