

Forecasting: principles and practice

Rob J Hyndman

3.3 Hierarchical forecasting

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- **3** Application: Australian tourism
- 4 hts package for R

Hierarchical and grouped time series

Hierarchical and grouped time series

Examples

- Manufacturing product hierarchies
- Net labour turnover
- Pharmaceutical sales
- Tourism demand by region and purpose

Forecasting the PBS

ATC drug classification

- Alimentary tract and metabolism
- B Blood and blood forming organsC Cardiovascular system
- D Dermatologicals

Α

Н

- G Genito-urinary system and sex hormones
 - and insulins
- J Anti-infectives for systemic useL Antineoplastic and immunomodulating agents
- M Musculo-skeletal system
- N Nervous system
- P Antiparasitic products, insecticides and repellents
- R Respiratory system
- S Sensory organs

V Various

Systemic hormonal preparations, excluding sex hormones

ATC drug classification

Australian tourism

Australian tourism

Hierarchical/grouped time series

A hierarchical time series is a collection of several time series that are linked together in a hierarchical structure.

Example: Pharmaceutical products are organized in a hierarchy under the Anatomical Therapeutic Chemical (ATC) Classification System.

A grouped time series is a collection of time series that are aggregated in a number of non-hierarchical ways.

Example: Australian tourism demand is grouped by region and purpose of travel.

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

B_t: vector of all series at bottom level in time *t*.

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

B_t: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}$$

9

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

B_t: vector of all series at bottom level in time *t*.

$$\mathbf{y}_{t} = [\mathbf{Y}_{t}, \mathbf{Y}_{A,t}, \mathbf{Y}_{B,t}, \mathbf{Y}_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{S}} \underbrace{\begin{pmatrix} \mathbf{Y}_{A,t} \\ \mathbf{Y}_{B,t} \\ \mathbf{Y}_{C,t} \end{pmatrix}}_{\mathbf{B}_{t}}$$

 $\mathbf{y}_t = \mathbf{SB}_t$

Grouped data

Grouped data

Grouped data

SB_t

Outline

- 1 Hierarchical and grouped time series
- 2 Forecasting framework
- **3** Application: Australian tourism
- 4 hts package for R

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t .

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

for some matrix **P**.

Let $\hat{\mathbf{y}}_n(h)$ be vector of initial h-step forecasts, made at time n, stacked in same order as \mathbf{y}_t . (They may not add up.)

Hierarchical forecasting methods of the form:

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

for some matrix P.

- **P** extracts and combines base forecasts $\hat{\mathbf{y}}_n(h)$ to get bottom-level forecasts.
- S adds them up
- Revised reconciled forecasts: $\tilde{\mathbf{y}}_n(h)$.

Bottom-up forecasts

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Bottom-up forecasts

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Bottom-up forecasts are obtained using

$$P = [0 \mid I],$$

where ${\bf 0}$ is null matrix and ${\bf I}$ is identity matrix.

- **P** matrix extracts only bottom-level forecasts from $\hat{y}_n(h)$
- **S** adds them up to give the bottom-up forecasts.

Top-down forecasts

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Top-down forecasts

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Top-down forecasts are obtained using

$$P = [p \mid 0]$$

where $\mathbf{p} = [p_1, p_2, \dots, p_{m_K}]'$ is a vector of proportions that sum to one.

- **P** distributes forecasts of the aggregate to the lowest level series.
- Different methods of top-down forecasting lead to different proportionality vectors p.

General properties: bias and variance

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

General properties: bias and variance

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Bias

Reconciled forecasts are unbiased iff **SPS** = **S**.

General properties: bias and variance

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Bias

Reconciled forecasts are unbiased iff **SPS** = **S**.

Variance

Let error variance of h-step base forecasts $\hat{\mathbf{y}}_n(h)$ be

$$\Sigma_h = \text{Var}[\mathbf{y}_{n+h} - \hat{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n]$$

Then error variance of the reconciled forecasts is

$$Var[\mathbf{y}_{n+h} - \tilde{\mathbf{y}}_n(h) \mid \mathbf{y}_1, \dots, \mathbf{y}_n] = SP \sum_h P'S'$$

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

$$\tilde{\mathbf{y}}_n(h) = \mathbf{SP}\hat{\mathbf{y}}_n(h)$$

Theorem: MinT Reconciliation

If **P** satisfies **SPS** = **S**, then

$$\min_{P} = \operatorname{trace}[SP\Sigma_{h}P'S']$$

has solution **P** = $(S'\Sigma_h^{-1}S)^{-1}S'\Sigma_h^{-1}$.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{SP}\hat{\mathbf{y}}_{n}(h)$$

Theorem: MinT Reconciliation

If **P** satisfies **SPS** = **S**, then

$$\min_{P} = \operatorname{trace}[SP\Sigma_{h}P'S']$$

has solution **P** = $(S'\Sigma_h^{-1}S)^{-1}S'\Sigma_h^{-1}$.

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}' \Sigma_{h}^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_{h}^{-1} \hat{\mathbf{y}}_{n}(h)$$

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}' \Sigma_{h}^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_{h}^{-1} \hat{\mathbf{y}}_{n}(h)$$

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

Optimal forecast reconciliation

$$\tilde{\mathbf{y}}_{n}(h) = \mathbf{S}(\mathbf{S}' \Sigma_{h}^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_{h}^{-1} \hat{\mathbf{y}}_{n}(h)$$

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

WLS solution

 \blacksquare Approximate Σ_1 by its diagonal.

Optimal forecast reconciliation

$$\tilde{\mathbf{y}}_n(h) = \mathbf{S}(\mathbf{S}' \Sigma_h^{-1} \mathbf{S})^{-1} \mathbf{S}' \Sigma_h^{-1} \hat{\mathbf{y}}_n(h)$$

Assume that $\Sigma_h = k_h \Sigma_1$ to simplify computations.

WLS solution

 \blacksquare Approximate Σ_1 by its diagonal.

GLS solution

Estimate Σ_1 using shrinkage to the diagonal.

Features

- Covariates can be included in initial forecasts.
- Adjustments can be made to initial forecasts at any level.
- Very simple and flexible method. Can work with any hierarchical or grouped time series.
- Conceptually easy to implement: regression of base forecasts on structure matrix.
- Weights are independent of the data and of the covariance structure of the hierarchy.

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- 3 Application: Australian tourism
- 4 hts package for R

Domestic visitor nights

Quarterly data: 1998 - 2006.

From: *National Visitor Survey*, based on annual interviews of 120,000 Australians aged 15+,

collected by Tourism Research Australia.

Reconciled forecasts

Reconciled forecasts

Reconciled forecasts

Forecast evaluation

- Select models using all observations;
- Re-estimate models using first 12 observations and generate 1- to 8-step-ahead forecasts;
- Increase sample size one observation at a time, re-estimate models, generate forecasts until the end of the sample;
- In total 24 1-step-ahead, 23 2-steps-ahead, up to 17 8-steps-ahead for forecast evaluation.

Hierarchy: states, zones, regions

			Forecast	horizon				
RMSE	h = 1	h = 2	h = 3	h = 4	h = 5	h = 6	Ave	
			Aus	tralia				
Base	1762.04	1770.29	1766.02	1818.82	1705.35	1721.17	1757.28	
Bottom	1736.92	1742.69	1722.79	1752.74	1666.73	1687.43	1718.22	
WLS	1705.21	1715.87	1703.75	1729.56	1627.79	1661.24	1690.57	
GLS	1704.64	1715.60	1705.31	1729.04	1626.36	1661.64	1690.43	
			Sta	ates				
Base	399.77	404.16	401.92	407.26	395.38	401.17	401.61	
Bottom	404.29	406.95	404.96	409.02	399.80	401.55	404.43	
WLS	398.84	402.12	400.71	405.03	394.76	398.23	399.95	
GLS	398.84	402.16	400.86	405.03	394.59	398.22	399.95	
			Reg	ions				
Base	93.15	93.38	93.45	93.79	93.50	93.56	93.47	
Bottom	93.15	93.38	93.45	93.79	93.50	93.56	93.47	
WLS	93.02	93.32	93.38	93.72	93.39	93.53	93.39	
GLS	92.98	93.27	93.34	93.66	93.34	93.46	93.34	

Outline

- 1 Hierarchical and grouped time series
- **2** Forecasting framework
- **3** Application: Australian tourism
- 4 hts package for R

hts package for R

R

hts: Hierarchical and grouped time series

Methods for analysing and forecasting hierarchical and grouped time series

Version: 5.1.5

Depends: R (\geq 3.2.0), forecast (\geq 8.1)

Published: 2018-03-26

Author: Rob J Hyndman, Earo Wang, Shanika Wickramasuriya, Alan Lee

Maintainer: Earo Wang < Earo. Wang at monash.edu>

BugReports: https://github.com/earowang/hts/issues

License: GPL (\geq 2)

URL: http://pkg.earo.me/hts

Example using R

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```

Example using R

```
# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```


Example using R

```
library(hts)

# bts is a matrix containing the bottom level time series
# nodes describes the hierarchical structure
y <- hts(bts, nodes=list(2, c(3,2)))</pre>
```



```
# Forecast 10-step-ahead using WLS combination method
# ETS used for each series by default
fc <- forecast(y, h=10)</pre>
```

forecast.gts() function

Usage

```
forecast(object, h,
  method = c("comb", "bu", "mo", "tdgsf", "tdgsa", "tdfp"),
  fmethod = c("ets", "rw", "arima"),
  weights = c("wls", "ols", "minmt", "nseries"),
  covariance = c("shr", "sam"),
  positive = TRUE,
  parallel = FALSE, num.cores = 2, ...)
```

Arguments

object	Hierarchical time series object of class gts.
h	Forecast horizon
method	Method for distributing forecasts within the hierarchy.
fmethod	Forecasting method to use
positive	If TRUE, forecasts are forced to be strictly positive
weights	Weights used for "optimal combination" method.
parallel	If TRUE, allow parallel processing
num.cores	If parallel = TRUE, specify how many cores are going to be used