Start-up MSF

Dec. 2018

The goal of start-up

The CP (startupCP1) is created by MSF controllers.

Network configuration

Operation flow

Step 0 to 2 : Fabric building

In step 0 to 2, fabric is created as shown below.

Step0: Activate controllers

- Execute start shell and check status of each controllers.
 - Interface name: Controller status confirmation
 - URI: /v1/internal/MSFcontroller/status (FC), /v1/internal/ec_ctrl/statusget (EC/EM)

Step0: Activate controllers

■ Fabric Controller(FC) start

[root@MSF-FC bin]# /home/msf-controller/bin/fc_ctl.sh start [root@MSF-FC bin]#

■Element Controller(EC) start

[root@MSF-EC bin]# /usr/ec_main/bin/ec_ctl.sh start

<error> Notify start changeover Failed.

<error> Notify start changeover Failed.

<error> Notify start changeover Failed.

[root@MSF-EC bin]#

Step0: Activate controllers

■Element Manager(EM) start

```
[root@MSF-EM bin]# /opt/em/bin/em_ctl.sh start
EM START: PRECHECK OPERATION RUNNING...
EM STATUS: CHECKING EXISTENCE OF EM PROCESS...
EM STATUS: [ SUCCESS ] NO RUNNING PROCESS
EM START: EM MAIN MODULE STARTING...
<error> Notify start changeover Failed.
<error> Notify start changeover Failed.
EM START: AFTER START CHECK RUNNING...
EM STATUS: CHECKING EXISTENCE OF EM PROCESS...
EM STATUS: PROCESS CONFIRMED.
EM STATUS: START MONITORING MODULE...
EM STATUS: [FAILURE] ERROR OCCURED IN MONITORING MODULE 1
EM START: CHECKING MAIN MODULE STATUS...
EM STATUS: CHECKING EXISTENCE OF EM PROCESS...
EM STATUS: PROCESS CONFIRMED.
EM STATUS: START MONITORING MODULE...
EM STATUS: [ SUCCESS ] MONITOR SUCCESSFULLY OPERATED
EM START: [ SUCCESS ] MAIN MODULE SUCCESSFULLY STARTED.
[root@MSF-EM bin]#
```

Step0: Activate controllers (status check)

■ Fabric Controller (FC) status check

```
FC REST address
$ curl http://192.168.0.100:18080/v1/internal/MSFcontroller/status
 "service_status": "running", ...Startup complete
 "blockade_status": "none" ...Operation accepted
```

Step0: Activate controllers (status check)

■Element Controller(EC), Element Manager(EM) status check

```
$\text{EC REST address}$$ \text{curl http://192.168.0.101:18080/v1/internal/ec_ctrl/statusget}$$ \{\text{"ec_status":{"status":"inservice","busy":"inservice"},\text{"em_status":{"status":"inservice"},\text{"informations":.....}$$ \text{EC Startup complete}$$$ \text{EM Startup complete}$$$
```

- Register device information to be used in the cluster.
 - Interface name: Registering equipment information
 - URI : /v1/equipment-types

Typical parameters

body	overview	remarks
platform	platform	
firmware	firmware version	
capability	I2/I3 VPN compatibility	
dhcp/snmp	DHCP, SNMP	
if_definitions	IF information (port, speed, prefix,)	
slots	slot information	Mapping of physical port ID and slot.

<u>"Registering equipment information"</u> registers the model information of the equipment to be used on the MSF network in the controller.

Registering equipment information REST body sample

```
'equipment_type": {
  ʻplatform": "Sample",
                                 ...platform name (ex. QFX5100)
 "os": "sample",
                                ...OS name (ex. Junos)
                                ...OS version (ex. 15.xxx)
 "firmware": "sample",
 "router_type": "normal",
                                ...Available only for "normal"
 "physical_if_name_syntax": null,
                                                  ...Available only for "null"
 "breakout_if_name_syntax": "<PORTPREFIX><IFSOLTNAME>: BREAKOUTIFSUFFIX>",...Breakout-IF_name_syntax"
                                                  ...breakout_if_name_suffix_list
 "breakout if name suffix list": "0:1:2:3",
                                                  ...Capability information
 "capability": {
                                ...VPN capability information
    "vpn":
                                ...L2VPN support
                                ...L3VPN support
       "I3": false
     qos": {
                                ...QoS Capability
       'remark": false.
      "remark_capability": null,
       "remark default": null.
       "shaping": false,
      "egress_queue_capability": null,
       "egress_queue_default": null
    "dhcp_template": "/root/setup/dhcp_template/dhcpd.conf.qfx5100",
                                                                                       ...File path of "dhcpd.conf"
    "config_template": "/initial-config/juniper/ztp.conf.qfx5100-48s_EL",
                                                                                      ...File path of initial config templete
    "initial config": "/initial-config/juniper/ztp.conf.gfx5100-48s EL
                                                                                       ...File path of initial config
    "if_name_oid": "1.3.6.1.2.1.31.1.1.1.1",
                                                                    ...MIB information of IF name
    "snmptrap if name oid": "1.3.6.1.2.1.31.1.1.1.1",
                                                                    ...MIB information of IF name in the SNMP trap
    "max_repetitions": 100
                                                                    ...Maximum number to get with GET Bulk
 "boot_complete_msg": "UI_COMMIT_COMPLETED: commit complete",...Syslog message for confirming the startup
                                                                    ...Syslog message for confirming the failure
 "boot error msgs": null,
```

```
"if definitions": {
         'ports": [...Available port information
               "speed": "40g",
"port_prefix": "et-"
                                          ...Port speed
                                         ...Port name prefix
               "speed": "10g",
"port_prefix": "xe-"
               "speed": "1g",
"port_prefix": "ge-"
        flag_prefix": "ae",
"unit_connector": "."
                                          ...LAG IF name prefix
                                          ...Unit IF connector
     slots": [ ...Physical slot information
           "if_id": "0",
"if_slot": "0/0/0",
                                         ...Physical port ID
...IF slot name
            "speed capabilities": [ ... Available port speed
               "1g",
"10g"
           "if_id": "1",
"if_slot": "0/0/1",
            "speed_capabilities": [
               "1g",
"10g"
               ...... (slot information follows)
```

■Registering equipment information →→Adding sample equipment-type (ID ... 4)

■Getting equipment list in switch cluster →→Check the adding equipment-type

```
$ curl http://192.168.0.100:18080/v1/equipment-types
{
    "equipment_type_ids": [
        "1",
        "2",
        "3",
        "4" ...added equipment-type

]
}
```

■Getting equipment information →→Confirm the detailed parameters

Step2 : Add Leaf/Spine nodes

- Add leaf and Spine nodes.
 - Interface name: Adding Leaf-node, Adding Spine-node
 - URI: /v1/clusters/{cluster_id}/nodes/leafs, /v1/clusters/{cluster_id}/nodes/spines

- When Leaf is added, the controller also sets the appropriate configuration for the connected Spine.
- If you add the device that has been already configured (you don't use ZTP), you set the "provisioning" body is "false", and set the same conditions for other parameters.
- You need to add Leaf/Spine node one by one.

Typical parameters (Adding Leaf-node)

body	overview	remarks
node_id	Serial number for device	Created by FC
equipment_type_id	model ID	
provisioning	Device setting necessity flag	True: Built-in device not set False: Embed setting device
VPN_type	I2/I3 VPN type	One of "I2" and "I3"
plane	Belonging side	Set "1".
internal_links	Internal link information	

<u>Typical parameters (Adding Spine-node)</u>

body	overview	remarks
node_id	Serial number for device	Created by FC
equipment_type_id	model ID	
provisioning	Device setting necessity flag	True: Built-in device not set False: Embed setting device
internal_links	Internal link information	

Step2: Add Leaf/Spine nodes

Adding Spine-node1

```
[root@MSF-FC logs]# curl -H 'Content-type: application/json' ¥
    -X POST¥
    "http://192.168.0.100:18080/v1/clusters/1/nodes/spines?notification address=192.168.0.100&notification port=19090" ¥
    -d '{
       "node_id":"1",
>
       "equipment_type_id":"1",
       "host name": "Startup-Spine01",
       "mac address":"d8:18:d3:67:ba:41",
       "username":"startup",
       "password": "Startup3000".
                                        ...Initialized equipment(true) or Configured equipment(false)
       "provisioning":false,
       "snmp_community":"ntt-msf",
       "ntp_server_address":"192.168.0.254",
       "breakout":null,
       "internal_links":null,
       "management if address": "192.168.0.244",
       "management_if_prefix":24
"operation_id": "0011538453749816"
                                        ...Return operation ID
}[root@MSF-FC logs]#
```

Step2: Add Leaf/Spine nodes

Adding Leaf-node1

```
[root@MSF-FC logs]# curl -H 'Content-type: application/json' ¥
    -X POST¥
     "http://192.168.0.100:18080/v1/clusters/1/nodes/leafs?notification_address=192.168.0.100&notification_port=19090" \( \)
       "node id": "1",
>
       "equipment_type_id": "2",
        "leaf type": "EL", ...EL or IL
>
        "host_name": "Startup-L2-Leaf01",
>
        "mac_address": "a8:2b:b5:0d:c0:e0",
        "username": "admin",
        "password": "Startup3000",
        "provisioning": false, ... Initialized equipment(true) or Configured equipment(false)
       "vpn_type": "l2", "plane": 1,
>
        "snmp_community": "ntt-msf",
        "ntp server address": "192.168.0.254",
       "breakout" : null.
        "internal links" : { "lag links" : [{
            "opposite_node_id": "1", "local_traffic_threshold": null, "opposite_traffic_threshold": null, "member_ifs": [{
               "local": { "physical_if": { "physical_if_id": "65", "physical_if_speed": "40g" }, "breakout_if": null },
               "opposite": { "physical if": { "physical if id": "50", "physical if speed": "40g" }, "breakout if": null } } } },
        "management_if_address": "192.168.0.248",
        "management if prefix": 24>
 "operation_id": "0011538455845737"
                                            ...Return operation ID
}[root@MSF-FC logs]#
```

Step2: Add Leaf/Spine nodes

Adding Leaf-node2

```
[root@MSF-FC logs]# curl -H 'Content-type: application/json' ¥
    -X POST¥
     "http://192.168.0.100:18080/v1/clusters/1/nodes/leafs?notification_address=192.168.0.100&notification_port=19090" \( \)
        "node id": "2",
>
        "equipment_type_id": "2",
        "leaf type": "EL", ...EL or IL
>
        "host_name": "Startup-L2-Leaf02",
>
        "mac_address": "a8:2b:b5:0d:c4:0e",
        "username": "admin",
        "password": "Startup3000",
        "provisioning": false, .....Initialized equipment(true) or Configured equipment(false)
        "vpn_type": "l2", "plane": 1,
>
        "snmp_community": "ntt-msf",
>
        "ntp server address": "192.168.0.254",
       "breakout" : null.
        "internal_links": { "lag_links": [{ "opposite_node_id": "1", "local_traffic_threshold": null,
          "opposite_traffic_threshold": null, "member_ifs":[{
             "local": { "physical_if": { "physical_if_id": "65", "physical_if_speed": "40g" }, "breakout_if": null },
             "opposite": { "physical if": { "physical if id": "51", "physical if speed": "40g" }, "breakout if": null } }] }]
        "management_if_address": "192.168.0.249",
        "management if prefix": 24
>
"operation id": "0011538456809941"
                                            ...Return operation ID
}[root@MSF-FC logs]#
```

Step2: Add Leaf/Spine nodes (Get)

■Get Spine-node

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/clusters/1/nodes/spines?user-type=operator
{
    "spine_node_ids": [
    "1" ...added Spine-node
]
}[root@MSF-FC logs]#
```

■Get Leaf-node

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/clusters/1/nodes/leafs
{
    "leaf_node_ids": [
        "1", ...added Leaf-node
        "2" ...added Leaf-node
]
}[root@MSF-FC logs]#
```

Network configuration after Step 2

Current network configurations are shown below. In step 3 to 5, Slice, IFs and CP are created.

- · black letter
- blue letter
- red letter

...Actual setting of the devices ...set by MSF controller in step 0 to 2

...set by MSF controller in step 3 to 5

Step3: Create IFs - physical interface -

- Determine the speed of the physical interface. (not confirmed at device registration)
- The selectable speed is the value defined at device registration.
 - Interface name: Updating information of physical interface
 - URI: /v1/clusters/{cluster_id}/nodes/{fabric_type}/{node_id}/interfaces/physical-ifs/{if_id}

body	overview	remarks
cluster_id	Switch cluster ID	Identify the target physical IF
fabric_type	Device type	
node_id	Device ID	
if_id	Physical IF ID	
action	Control type	
speed	IF speed	

Step3: Create IFs - LAG interface -

- Create the LAG-IF from several physical interfaces set speed.
 - Interface name: Creating Link-aggregation interface
 - URI: /v1/clusters/{cluster_id}/nodes/{fabric_type}/{node_id}/interfaces/lag-ifs

body	overview	remarks
cluster_id	Switch cluster ID	Identify the target physical IF
fabric_type	Device type	
node_id	Device ID	
physical_if_ids	List of Physical IF ID	

Step3: Create IFs - Breakout interface -

- Create the Breakout-IF.
 - Interface name: Creating or deleting breakout interface
 - URI: /v1/clusters/{cluster_id}/nodes/{fabric_type}/{node_id}/interfaces/breakout-ifs

body	overview	remarks
ор	control type	create: "add" delete: "remove"
path	Breakout IF ID	"/" + "breakout IF ID"
physical_if_id	target physical IF ID	
division_number	number of divisions of physical IF	
breakout_if_speed	Speed of each breakout IF	

Step3: Create IFs - edge-point -

- Create edge-point so that the upper systems do not identify the interface type. The CP is registered on the edge-point.
- You can not register another edge-point in the IF where the edge-point is already registered.
 - Interface name : Creating edge-point
 - URI : /v1/clusters/{cluster_id}/points/edge-points

body	overview	remarks
cluster_id	Switch cluster ID	
leaf_node_id	Leaf device ID	
laag_if_id	I .	Specify either LAGIF ID or
physical_if_ids	Physical IF ID	Physical IF ID

Step3: Create IFs - physical interface -

■Updating physical interfaces -> Set 1G speed to the physical IF:20

```
[root@MSF-FC logs]# curl -v -H 'Content-type: application/json' ¥
  -X PUT ¥
   http://192.168.0.100:18080/v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20 ¥
                                                                               Physical IF ID
                                                       Leaf node ID
       "action": "speed_set",
       "speed":"1g"
* About to connect() to 192.168.0.100 port 18080 (#0)
  Trying 192.168.0.100...
* Connected to 192.168.0.100 (192.168.0.100) port 18080 (#0)
> PUT /v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20 HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.100:18080
> Accept: */*
> Content-type: application/json
> Content-Length: 65
* upload completely sent off: 65 out of 65 bytes
< HTTP/1.1 200 OK
< Date: Tue, 02 Oct 2018 05:17:39 GMT</p>
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Methods: GET, POST, DELETE, PUT, PATCH
< Access-Control-Allow-Headers: Content-Type
< Content-Length: 0
< Server: Jetty(9.3.11.v20160721)
<
* Connection #0 to host 192.168.0.100 left intact
[root@MSF-FC logs]#
```

Step3: Create IFs (Get) - physical interface -

■Get physical interfaces -> physical IF:20

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20
Physical IF ID

"physical_if": {
    "physical_if_id": "20",
    "speed": "1g",
    "if_name": "xe20"
}
}[root@MSF-FC logs]#
```

Step3: Create IFs - edge-point -

Create edge-piont

```
[root@MSF-FC logs]# curl -H 'Content-type: application/json' \( \)
> -X POST \( \)
> http://192.168.0.100:18080/v1/clusters/1/points/edge-points \( \)
> -d '{
> "leaf_node_id" : "1",
> "physical_if_id" : "20"
> }'
{
    "edge_point_id": "1"
}[root@MSF-FC logs]#
```

Get edge-piont

Step4: Create slices

- Create network slice.
 - Interface name : Creating Slice
 - URI : /v1/slices/{slice_type}

body	overview	remarks
slice_type	, · ·	"l2vpn" : L2 slice "l3vpn" : L3 slice
slice_id	Slice ID	If it is not specified, FC creates ID.

Step4: Create slices

■Create L2Slice

```
[root@MSF-FC logs]# curl -H 'Content-type: application/json' \\
>    -X POST \\
>    http://192.168.0.100:18080/v1/slices/l2vpn \\
>    -d '{\\
>        "slice_id":"startup",
>        "remark_menu":null
>    }'
{
    "slice_id": "startup"
}[root@MSF-FC logs]#
```

■Get L2Slice

- CP is set above the edge-point.
- L3CP needs to specify the protocol to be used. (BGP, OSPF, static, VRRP)
 - Interface name: Creating CP
 - URI : /v1/slices/{slice_type}/{slice_id}/cps

Parameters (slice type -> L2 slice)

body	overview	remarks
slice_type	Slice ID	"l2vpn"
slice_id	Slice ID	
cluster_id	Switch cluster ID	
edge_point_id	Edge-point ID to be created for CP	
vlan_id	VLAN ID	VLAN ID of CP
cp_id	Create CP ID	
port_mode	Port mode of VLAN	"access" or "trunk"

Typical parameters (slice type -> L3 slice)

body	overview	remarks
slice_type	Slice ID	"l2vpn"
slice_id	Slice ID	
ipv4_addr	Housing equipment IF address	
bgp	Information for BGP	specified when setting BGP
static_routes	Static Route information list	specified when setting static
vrrp	information for VRRP	specified when setting VRRP

■Creating CP -> Create the L2CP "startupCP1"

```
[root@MSF-FC logs]# curl -v -H "Accept: application/json" -H "Content-type: application/json" -X POST ¥
         -d '{
                     "cluster id": "1",
                     "edge point id": "1",
                     "vlan id": 4001,
                    "cp_id" : "startupCP",
                     "pair_cp_id": null,
                     "qos": {"ingress_shaping_rate": null, "egress_shaping_rate": null, "egress_queue_menu": null},
                     "port_mode": "access"
                     \text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{
                                                                                                                                                                                                                     Slice ID
    "operation id": "0011538459176544"
* Connection #0 to host 192.168.0.100 left intact
}[root@MSF-FC logs]#
```

■Get CP -> Create the L2CP "startupCP1"

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/slices/l2vpn/startup/cps
{
    "l2_cp_ids": [
        "startupCP1"
    ]
}[root@MSF-FC logs]#
```

Check the device configuration.

```
Startup-L2-Leaf01>show running-config
...

vlan database ....VLAN configuration
vlan 4001 bridge 1 state enable
...

interface xe20 ....IF setting
switchport
...

nvo vxlan access-if port xe20 ....VNI<-->VLAN mapping
no shutdown
map vnid 2
....
```

Network configuration after Step 5

Current network configuration

black letterActual setting of the devices
 blue letterset by MSF controller in step 3 to 5

Be sure to set in the following order.

Execution in an unexpected order may cause an error, and additionally, the state mismatch of the controller may occur.

■Deleting CP -> Delete the L2CP "startupCP1"

```
[root@MSF-FC logs]# curl -X DELETE

"http://192.168.0.100:18080/v1/slices/l2vpn/startup/cps/startupCP1?notification_address=192.168.0.10
0&notification_port=19090"
Slice ID
CP ID

{
    "operation_id": "0011538459433945"
}[root@MSF-FC logs]#
```

■Get CP -> Delete the L2CP "startupCP1"

Deleting Slice -> Delete the L2Slice "startup"

```
[root@MSF-FC logs]# curl -v -X DELETE http://192.168.0.100:18080/v1/slices/l2vpn/startup
* About to connect() to 192.168.0.100 port 18080 (#0)
                                                                                 Slice ID
 Trying 192.168.0.100...
* Connected to 192.168.0.100 (192.168.0.100) port 18080 (#0)
> DELETE /v1/slices/I2vpn/startup HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.100:18080
> Accept: */*
< HTTP/1.1 204 No Content
< Date: Tue, 02 Oct 2018 05:54:24 GMT</p>
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Methods: GET, POST, DELETE, PUT, PATCH
< Access-Control-Allow-Headers: Content-Type
< Server: Jetty(9.3.11.v20160721)
* Connection #0 to host 192.168.0.100 left intact
[root@MSF-FC logs]#
```

■Get Slice -> Delete the L2Slice "startup"

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/slices/l2vpn
{
  "l2_slice_ids": []
}[root@MSF-FC logs]#
```

Delete edge-point

```
[root@MSF-FC logs]# curl -v -X DELETE http://192.168.0.100:18080/v1/clusters/1/points/edge-points/1
* About to connect() to 192.168.0.100 port 18080 (#0)
                                                                                                 Edge-point ID
 Trying 192.168.0.100...
* Connected to 192.168.0.100 (192.168.0.100) port 18080 (#0)
> DELETE /v1/clusters/1/points/edge-points/1 HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.100:18080
> Accept: */*
< HTTP/1.1 204 No Content
< Date: Tue, 02 Oct 2018 05:59:37 GMT</p>
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Methods: GET, POST, DELETE, PUT, PATCH
< Access-Control-Allow-Headers: Content-Type
< Server: Jetty(9.3.11.v20160721)
<
* Connection #0 to host 192.168.0.100 left intact
[root@MSF-FC logs]#
```

■Get edge-point

```
[root@MSF-FC logs]# curl -X GET http://192.168.0.100:18080/v1/clusters/1/points/edge-points?format=detail-list {
    "edge_points": []
}[root@MSF-FC logs]#
```

Updating physical interface -> Delete the speed setting at physical IF:20

```
[root@MSF-FC logs]# curl -v -H 'Content-type: application/json' ¥
  -X PUT ¥
   http://192.168.0.100:18080/v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20 ¥
   -d '{
                                                                               Physical IF ID
       "action": "speed delete"
>
* About to connect() to 192.168.0.100 port 18080 (#0)
 Trying 192.168.0.100...
* Connected to 192.168.0.100 (192.168.0.100) port 18080 (#0)
> PUT /v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20 HTTP/1.1
> User-Agent: curl/7.29.0
> Host: 192.168.0.100:18080
> Accept: */*
> Content-type: application/json
> Content-Length: 45
* upload completely sent off: 45 out of 45 bytes
< HTTP/1.1 200 OK
< Date: Tue, 02 Oct 2018 06:01:17 GMT</p>
< Access-Control-Allow-Origin: *
< Access-Control-Allow-Methods: GET, POST, DELETE, PUT, PATCH
< Access-Control-Allow-Headers: Content-Type
< Content-Length: 0
< Server: Jetty(9.3.11.v20160721)
* Connection #0 to host 192.168.0.100 left intact
[root@MSF-FC logs]#
```

```
[root@MSF-FC logs]# curl http://192.168.0.100:18080/v1/clusters/1/nodes/leafs/1/interfaces/physical-ifs/20
{
  "physical_if": {
  "physical_if_id": "20"
  }
}[root@MSF-FC logs]# }
```

Network configuration after Step 6

black letter ...Actual setting of the devices
 gray letter ...deleted by MSF controller in step 6

CP: startupCP1

Appendix> Initial config

<Appendix> RR (BGP Route Reflector) setting

- You need to set the RR configuration and network setting yourself, because the current controller does not implement the function of automating the setting of RR.
- The node configuration for peering the neighbor with RR is set automatically when Leaf/Spine
 is added, by registering the ID and loopback address of RR in the initial configuration of FC.

 <u>But</u> you need to configure the added node as a neighbor in RR conf. when you add any nodes.
- When both L2Leaf and L3Leaf exist, RR must be connected to L3Leaf.

<Appendix> sample configuration of RR

```
hostname sosetsu-RR1
clock timezone JST 9
logging trap alerts
logging buffered 12500000
logging buffered debugging
logging facility local5
logging source-interface Loopback0
service timestamps log datetime msec
service timestamps debug datetime msec
telnet vrf default ipv4 server max-servers 100
domain lookup disable
 server 192.168.134.14
source MgmtEth0/RSP0/CPU0/0
 update-calendar
 interface Loopback0
 ipv4 address 10.0.100.1 255.255.255.255
interface MgmtEth0/0/CPU0/0
ipv4 address 192.168.2.36 255.255.0.0
interface GigabitEthernet0/0/0/0
 description To Leaf4
 ipv4 address 10.121.54.202 255.255.255.252
route-policy PASS ALL
  pass
end-policy
router ospf v4_MSF_OSPF router-id 10.0.100.1
 mpls ldp auto-config
 dead-interval 40
 hello-interval 10
 timers throttle spf 200 200 2000
 area 0
  interface Loopback0
   cost 10
   passive enable
  interface GigabitEthernet0/0/0/0
   cost 100
   priority 10
router bgp 64050
timers bgp 30 90
 bgp router-id 10.0.100.1
 address-family vpnv4 unicast
```

```
neighbor 10.0.1.1
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client
route-policy PASS_ALL out
neighbor 10.0.1.2
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client
route-policy PASS_ALL out
neighbor 10.0.1.3
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client
route-policy PASS_ALL out
neighbor 10.0.1.4
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client route-policy PASS_ALL out
neighbor 10.0.1.5
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client
  route-policy PASS ALL out
neighbor 10.0.1.6
 remote-as 64050
 update-source Loopback0
 address-family vpnv4 unicast route-policy PASS_ALL in
  route-reflector-client
  route-policy PASS ALL out
```

```
mpls ldp
router-id 10.0.100.1
interface GigabitEthernet0/0/0/0
discovery hello holdtime 15
discovery hello interval 5
!
!
ssh server vrf default
end
```

<u>Configuration of the BGP neighbor</u> When you add any nodes, you need to add it.

<Appendix> sample configuration to connect RR

NCS 5001 RR (IOS XRv) **Interface setting** interface TenGigE0/0/0/39 description To_RR2 mtu 4110 ipv4 address 10.121.54.205 255.255.255.252 ipv4 access-group ipv4_filter_input ingress router ospf v4 MSF OSPF area 0 TenGigE0/0/0/39 interface TenGigE0/0/0/39 cost 10 priority 10 L3Leaf (NCS 5501)

QFX 5100

```
Xe-0/0/47

L3Leaf
(QFX 5100)
```

Interface setting

```
description To_RR1; family inet {
              filter {
                  input ipv4_filter_msf_input;
              address 10.121.54.201/30;
           family mpls;
protocols {
    ospf
       area 0.0.0.0 {
    interface xe-0/0/47.0 {
        metric 100;
        priority 10;
class-of-service { interfaces { xe-0/0/47 <u>{</u>
           forwarding-class-set {
    fcs_unicsat_af_and_be_class_{
output-traffic-control-profile tcp_unicast_af_and_be;
fcs_multicast_class {
output-traffic-control-profile
tcp_multicast;
              rewrite-rules {
                  exp msf mpls exp remark;
           classifiers {
              dscp msf unicast dscp classify;
           rewrite-rules { dscp msf_dscp_remark;
```