Abordagem de Computação Heterogénea Para Resampling e Resizing de Vídeo de Alto Desempenho

Aluno: José Pedro Pereira Orientador: Professor Jorge Barbosa 17 de Novembro 2017 PDIS 2017 / 2018

Desenvolvimento de Software Profissional de Multimédia www.mog-technologies.com/

Processo de Produção de Vídeo

Processo de Produção de Vídeo

Processos de Produção

Resampling

Conversão do espaço de cores do vídeo

Fig. 1: RGB

Fig. 2: YUV

Resizing

Alteração da dimensão do vídeo

Fig. 3: Alteração de resolução da imagem

Problema

Processamento dos dados

Vídeos de alta resolução ou qualidade são constituídos por um elevado número de pixéis

Fps	rempo (ms)
30	~ 33,3
60	~ 16,6
120	~ 8,3

Fig. 3: Dimensão relativa de resoluções de vídeo

Solução

Paralelização do processamento das frames do vídeo

Um GPU é constituído por um maior número de núcleos em comparação com o CPU

Fig. 4: CPU vs GPU

Ferramentas Utilizadas

Frameworks para sistemas heterogéneos

Fig. 5: Intel SDK para OpenCl

Fig. 6: NVIDIA Cuda

Fig. 7: Biblioteca FFMpeg

Resultados Esperados

- Processamento completo de um vídeo em tempo real em que cada imagem será processada em tempo médio igual ou inferior ao da sua captura
- Integração da biblioteca desenvolvida numa ferramenta de produção profissional de vídeo

Obrigado

Questões?

José Pedro Pereira up201304891

