

Deep Learning for Language Analysis Deep Learning Introduction

Introduction

What are you going to learn?

- Brief introduction to Machine Learning
- Neural Network Architectures
- Implementing Neural Networks in Keras

Introduction

Which technologies are we going to use?

- Python
- Keras
- Jupyter Notebook
- ... in a Docker Container

Schedule

Time	Monday, September 09	Tuesday, September 10
09:00		Neural Network Architecture
10:30		Coffee Break
11:00		Tuning the Neural Network
12:30		Lunch Break
14:00	Welcome / Introduction	Hands on: Text Classification
15:30	Coffee Break	
16:00	Introduction / Setup	Parallel Session Presentation
17:00	Closing	Closing

Data Pipeline

- 1. Define Research Goal
- 2. Retrieve Data
- 3. Prepare Data
- 4. Explore Data
- Model Data
- 6. Improve Model

Data Pipeline 1. Define Research Goal

WE HAVE THIS AWESOME DATA
ON (INSERT MOUTH-WATERING
DESCRIPTION OF DATA)! WE
CLEANED IT UP AND WE'RE
RUNNING (SOPHISTICATED
ANALYSIS) ON IT. WE SEE
(STORY ABOUT FASCINATING
PATTERNS). ISN'T THAT COOL?!

https://medium.com/the-data-experience/building-a-data-pipeline-from-scratch-32b712cfb1db

Data Pipeline 2. Retrieve Data

- Depending on your research area
- Example repositories:
 - https://archive.ics.uci.edu/ml/datasets.php
 - https://www.kaggle.com/datasets
- Collect own data

Data Pipeline 3. Prepare Data

- Data cleansing: remove false, inconsistent or unnecessary data)
- Data integration: enrich data with other sources
- Data transformation: transform data into suitable format
- How to transform text data into a model?

Data Pipeline 3. Prepare Data

Types of Data

- Structured data (e.g. SQL Databases)
- Semi-structured data (e.g. CSV files)
- Unstructured data (e.g. text files)

Sources of Data

- Machine generated (e.g. server log files)
- Natural Language
- Audio, video, images
- Streaming

Data Pipeline 3. Prepare Data

Types of Data

- Structured data (e.g. SQL Databases)
- Semi-structured data (e.g. CSV files)
- Unstructured data (e.g. text files)

Sources of Data

- Machine generated (e.g. server log files)
- Natural Language
- Audio, video, images
- Streaming

Data Pipeline 4. Explore Data

- Understand retrieved data
- How do variables interact?
- Is my data set representative? No? → retrieve data
- Methods: descriptive statistics, plotting and simple modelling

- Build a model which suits your research goal
- Model should depend on the task you want to solve

https://bentoml.com/posts/2019-04-19-one-model/

ML Task: Clustering

Example Goal: grouping tweets on similar topics

Time

"Words"

Involved twitter users

...

Fancy ML-Model

Similar Tweets

/ Separated from dissimilar tweets

- ML Task: Clustering
- Solved (for example) by K-Means
 - Vector space
 - Iteratively adjusts the centroid of a cluster

ML Task: Classification

Example Goal: predict heart disease for a person

Age
Cholesterol Level
Heart Rate
Fitness Level
...

- ML Task: Classification
- Solved (for example) by (Gaussian) Naïve Bayes

P (No Heart Disease)
P (35 | NoHeartDisease)=0.65
P (242 | NoHeartDisease)=0.2
P (80 | NoHeartDisease)=0.8

P (Heart Disease | patient)
P (No Heart Disease | patient)

P (Heart Disease)
P (35 | Heart Disease)=0.15
P (242 | Heart Disease)=0.7
P (80 | Heart Disease)=0.5

ML Task: Regression

Example Goal: estimating real estate values

Number of bathrooms

Distance supermarket

Years since construction

Distance primary school

• • • •

- ML Task: Regression
- Solved (for example) by neural network

Data Pipeline 6. Improve Model

- Evaluate the results of your model
- Change configurations to improve the results
 - Input variables
 - Model configuration
 - Number of clusters
 - Number of Layers
 - Activation Functions on Layers
 - ...
 - Whole Model

And Now: Introduction to Docker, Keras and Jupyter Notebook

