STAT 401A - Statistical Methods for Research Workers Two-way ANOVA

Jarad Niemi (Dr. J)

Iowa State University

last updated: December 1, 2014

Data

An experiment was run on tomato plants to determine the effect of

- 3 different varieties (A,B,C) and
- 4 different planting densities (10,20,30,40)

on yield.

There is an expectation that planting density will have a different effect depending on the variety. Therefore a balanced, complete, randomized design was used.

- complete: each treatment (variety × density) is represented in the experiment
- balanced: each treatment in the experiment has the same number of replications
- randomized: treatment was randomly assigned to the plot

This is also referred to as a full factorial or fully crossed design.

Hypotheses

- Does variety affect mean yield?
 - Is the mean yield for variety A different from B on average?
 - Is the mean yield for variety A different from B at a particular value for density?
- Does density affect mean yield?
 - Is the mean yield for density 10 different from density 20 on average?
 - Is the mean yield for density 10 different from density 20 at a particular value for variety?
- Does density affect yield differently for each variety?

For all of these questions, we want to know

- is there any effect and
- if yes, what is the nature of the effect.

Confidence intervals can answer these questions.

Summary statistics

Number of replicates

Mean Yield

```
Variety 10 20 30 40
1 A 9.20000 12.4333 12.9000 10.80000
2 B 8.93333 12.63333 14.50000 12.76667
3 C 16.300000 18.10000 19.93333 18.16667
```

Standard deviation of yield

```
Variety 10 20 30 40

1 A 1.300000 1.096966 0.9848858 1.7000000

2 B 1.040833 1.101514 0.8544004 1.6165808

3 C 1.113553 1.345362 1.6772994 0.8736895
```

Two-way ANOVA

- ullet Setup: Two categorical explanatory variables with I and J levels
- Model:

$$Y_{ijk} \stackrel{ind}{\sim} N(\mu_{ij}, \sigma^2)$$

where Y_{ijk} is the

- kth observation at the
- ith level of variable 1 (variety) with i = 1, ..., I and the
- jth level of variable 2 (density) with j = 1, ..., J.

Consider the models:

- Additive: $\mu_{ij} = \mu + \alpha_i + \eta_j$
- Cell-means: $\mu_{ij} = \mu + \alpha_i + \eta_j + \gamma_{ij}$

	10	20	30	40
Α	μ_{11}	μ_{12}	μ_{13}	μ_{14}
В	μ_{21}	μ_{22}	μ_{23}	μ_{24}
С	μ_{31}	μ_{32}	μ_{33}	μ_{34}

As a regression model

- Assign a reference level for both variety (C) and density (40).
- ② Let V_i and D_i be the variety and density for observation i.
- **3** Build indicator variables, e.g. $I(V_i = A)$ and $I(D_i = 10)$.
- The additive model:

$$\mu_{ij} = \beta_0 + \beta_1 I(V_i = A) + \beta_2 I(V_i = B) + \beta_3 I(D_i = 10) + \beta_4 I(D_i = 20) + \beta_5 I(D_i = 30).$$

 β_1 is the expected difference in yield between varieties A and C at any fixed density

The cell-means model:

$$\mu_{ij} = \beta_0 + \beta_1 I(V_i = A) + \beta_2 I(V_i = B) \\ + \beta_3 I(D_i = 10) + \beta_4 I(D_i = 20) + \beta_5 I(D_i = 30)$$

$$+ \beta_6 I(V_i = A) I(D_i = 10) + \beta_7 I(V_i = A) I(D_i = 20) + \beta_8 I(V_i = A) I(D_i = 30) \\ + \beta_9 I(V_i = B) I(D_i = 10) + \beta_{10} I(V_i = B) I(D_i = 20) + \beta_{11} I(V_i = B) I(D_i = 30)$$

 eta_1 is the expected difference in yield between varieties A and C at a density of 40

ANOVA Table

ANOVA Table - Additive model

Source	SS	df	MS	F
Factor A	SSA	(I-1)	SSA/(I-1)	MSA/MSE
Factor B	SSB	(J-1)	SSB/(J-1)	MSB/MSE
Error	SSE	n-I-J+1	SSE/(n-I-J+1)	
Total	SST	n-1		

ANOVA Table - Cell-means model

Source	SS	df	MS	
Factor A	SSA	I-1	SSA/(I-1)	MSA/MSE
Factor B	SSB	J-1	SSB/(J-1)	MSB/MSE
Interaction AB	SSAB	(I-1)(J-1)	SSAB /(I-1)(J-1)	MSAB/MSE
Error	SSE	n-IJ	$SSE/(n\text{-}\mathrm{IJ})$	
Total	SST	n-1		

Additive vs cell-means

Opinions differ on Whether to use an additive vs a cell-means model when the interaction is not significant. Remember that an insignificant test does not prove that there is no interaction.

	Additive	Cell-means
Interpretation	Direct	Complicated
Estimate of σ^2	Biased	Unbiased

We will continue using the cell-means model to answer the scientific questions of interest.

Two-way ANOVA using PROC GLM

```
DATA tomato;
  INFILE 'Ch13-tomato.csv' DSD FIRSTOBS=2;
  INPUT variety $ density yield;
PROC GLM DATA=tomato PLOTS=all:
  CLASS variety density;
  MODEL yield = variety|density / SOLUTION;
  LSMEANS variety / cl adjust=tukey;
  LSMEANS density / cl adjust=tukey;
  LSMEANS variety*density / cl adjust=tukey;
  RUN;
```

Two-way ANOVA using PROC GLM

The GLM Procedure

Dependent Variable: yield

			Sum	of				
Source		DF	Squa	res	Mean Squ	uare F	Value	Pr > F
Model		11	422.3155	556	38.3923	3232	24.22	<.0001
Error		24	38.0400	000	1.5850	0000		
Corrected Total		35	460.3555	556				
	R-Square	Coeff	Var	Root M	SE yie	eld Mean		
	0.917368	9.06	4568	1.2589	68	13.88889		
Source		DF	Type I	SS	Mean Squ	uare F	Value	Pr > F
variety		2	327.5972	222	163.7986	6111	103.34	<.0001
density		3	86.6866	667	28.895	5556	18.23	<.0001
variety*density		6	8.0316	667	1.3386	6111	0.84	0.5484
Source		DF	Type III	SS	Mean Squ	uare F	Value	Pr > F
variety		2	327.5972	222	163.7986	6111	103.34	<.0001
density		3	86.6866	667	28.895	5556	18.23	<.0001
variety*density		6	8.0316	667	1.3386	6111	0.84	0.5484

The Type I and Type III SS are equal because the design is balanced.

Two-way ANOVA using PROC GLM

MODEL yield = variety|density / SOLUTION;

The GLM Procedure

				Standard		
Parameter		Estimate		Error	t Value	Pr > t
Intercept		18.16666667	В	0.72686542	24.99	<.0001
variety I	A	-7.36666667	В	1.02794293	-7.17	<.0001
variety H	В	-5.40000000	В	1.02794293	-5.25	<.0001
variety (C	0.00000000	В			
density 1	10	-1.8666667	В	1.02794293	-1.82	0.0819
density 2	20	-0.06666667	В	1.02794293	-0.06	0.9488
density 3	30	1.76666667	В	1.02794293	1.72	0.0986
density 4	40	0.00000000	В			
variety*density A	A 10	0.26666667	В	1.45373083	0.18	0.8560
variety*density A	A 20	1.70000000	В	1.45373083	1.17	0.2537
variety*density A	A 30	0.33333333	В	1.45373083	0.23	0.8206
variety*density A	A 40	0.00000000	В			
variety*density B	B 10	-1.96666667	В	1.45373083	-1.35	0.1887
variety*density B	B 20	-0.06666667	В	1.45373083	-0.05	0.9638
variety*density B	B 30	-0.03333333	В	1.45373083	-0.02	0.9819
variety*density B	B 40	0.00000000	В			
variety*density (C 10	0.00000000	В			

Is the mean yield for variety A different from B on average?

```
LSMEANS variety / cl adjust=tukey;
                                     Least Squares Means
                          Adjustment for Multiple Comparisons: Tukey
                            Least Squares Means for effect variety
                            Pr > |t| for HO: LSMean(i)=LSMean(i)
                                  Dependent Variable: yield
                        i/j
                                                 0.2249
                                                               < .0001
                                   0.2249
                                                               <.0001
                                    <.0001
                                                 <.0001
                     varietv
                               vield LSMEAN
                                                 95% Confidence Limits
                                  11.333333
                                                 10.583245 12.083422
                     Α
                                  12.208333
                                                 11.458245 12.958422
                                  18.125000
                                                  17.374912 18.875088
                             Least Squares Means for Effect variety
                                  Difference
                                                    Simultaneous 95%
                                                 Confidence Limits for
                                    Retween
                                                 LSMean(i)-LSMean(j)
                                      Means
                                  -0.875000
                                                  -2.158534 0.408534
                                  -6.791667
                                                  -8.075201 -5.508132
                                  -5.916667
                                                  -7.200201 -4.633132
```

Is the mean yield at density 10 different from density 20 on average?

```
LSMEANS density / cl adjust=tukey;
```

Least Squares Means
Adjustment for Multiple Comparisons: Tukey

density	yield LSMEAN	95% Confiden	ce Limits
10	11.477778	10.611650	12.343905
20	14.388889	13.522762	15.255016
30	15.777778	14.911650	16.643905
40	13.911111	13.044984	14.777238

Least Squares Means for Effect density Difference Simultaneous 95% Confidence Limits for Between i LSMean(i)-LSMean(i) Means -2.911111 -4.548299 -1.273923 -4.300000 -5.937188 -2.662812 -2.433333 -4.070521 -0.796145 0.248299 -1.388889 -3.026077 0.477778 -1.159410 2.114966

1.866667

0.229479

3.503855

Is mean yield different for particular combinations?

LSMEANS variety*density / cl adjust=tukey;

variety	density	yield LSMEAN	95% Confiden	ce Limits
A	10	9.200000	7.699824	10.700176
A	20	12.433333	10.933157	13.933510
A	30	12.900000	11.399824	14.400176
A	40	10.800000	9.299824	12.300176
В	10	8.933333	7.433157	10.433510
В	20	12.633333	11.133157	14.133510
В	30	14.500000	12.999824	16.000176
В	40	12.766667	11.266490	14.266843
C	10	16.300000	14.799824	17.800176
C	20	18.100000	16.599824	19.600176
C	30	19.933333	18.433157	21.433510
C	40	18.166667	16.666490	19.666843

Is mean yield different for particular combinations?

LSMEANS variety*density / cl adjust=tukey;

Least Squares Means for Effect variety*density

		Difference	Simultane	ous 95%
		Between	Confidence Limits f	
i	j	Means	LSMean(i)-L	SMean(j)
1	2	-3.233333	-6.939704	0.473037
1	3	-3.700000	-7.406371	0.006371
1	4	-1.600000	-5.306371	2.106371
1	5	0.266667	-3.439704	3.973037
1	6	-3.433333	-7.139704	0.273037
1	7	-5.300000	-9.006371	-1.593629
1	8	-3.566667	-7.273037	0.139704
1	9	-7.100000	-10.806371	-3.393629
1	10	-8.900000	-12.606371	-5.193629
1	11	-10.733333	-14.439704	-7.026963
1	12	-8.966667	-12.673037	-5.260296
2	3	-0.466667	-4.173037	3.239704
2	4	1.633333	-2.073037	5.339704
2	5	3.500000	-0.206371	7.206371
2	6	-0.200000	-3.906371	3.506371
2	7	-2.066667	-5.773037	1.639704
2	8	-0.333333	-4.039704	3.373037
2	9	-3.866667	-7.573037	-0.160296
2	10	-5.666667	-9.373037	-1.960296
2	11	-7.500000	-11.206371	-3.793629
2	12	-5.733333	-9.439704	-2.026963
3	4	2.100000	-1.606371	5.806371
3	5	3.966667	0.260296	7.673037
3	6	0.266667	-3.439704	3.973037

Summary

- The analysis follows the design.
- Use LSMEANS to answer questions of scientific interest.
- Check model assumptions
- Consider alternative models, e.g. treating density as continuous