

UiO Department of Technology Systems University of Oslo

Introduction to TEK4030 Kim Mathiassen

UiO Department of Technology Systems
University of Oslo

About me

- 90 % at FFI
- 20% at UiO
- Master in engineering cybernetics from NTNU
- PhD in Medical robotics at UiO
- Main research area at FFI is Unmanned Ground Vehicles and Vehicle Autonomy

Course organization

- Two hours of weekly lecture
- One hour of exercises after the lecture
- Two hours of weekly group session
- Three mandatory assignments

Recommended previous knowledge

- Knowledge of robotic theory (kinematics and dynamics)
 - (INF3480 Introduksjon til Robotteknologi)
 - IN3140 Introduksjon til Robotteknologi
 - (UNIK4540 Matematisk modellering av dynamiske systemer)
 - TEK4040 Matematisk modellering av dynamiske systemer
- Object orient programming (preferable C++)
- Mathematics
 - Linear algebra
 - Laplace transform

Course content – Control theory

- Laplace transform
- Frequency analysis
- State space systems
- Feedback systems
- Stability

Course content – Actuators and Sensors

- Joint actuating system
- Drives
- Proprioceptive sensors
 - Position transducers
 - Velocity transducers
- Exteroceptive sensors
 - Force sensors
 - Range sensors
 - Vision sensors

Course content – Motion Control

- Joint space control
 - Decentralized control
 - Centralized control
- Operational space control
 - Decentralized control
 - Centralized control

Course content – Robotic Operating System

- Distributed framework for robotic control
- Publisher/subscriber model
- Services
- Deployment
- Simulation

Video lecture

UiO: Department of Technology Systems
University of Oslo

Course content – Force control

- Indirect force control
 - Compliance control (PD control with gravity compensation)
 - Impedance control (Inverse dynamics control)

https://www.youtube.com/watch?v=sbhiNNIxMNQ

Direct force control
 https://www.youtube.com/watch?v=00-cC2ST5L8

Course content – Tele-operations

Control architectures

Course content – Visual servoing

- Position-based visual servoing
- Image-based visual servoing
- Will not cover the image processing aspects in depth
 - Consider taking TEK5030 Maskinsyn

Course content – Mobile robotics

- Nonholonomic contraint
- Kinematics
- Dynamics
- Planning
- Motion control
- Odometric localization
- Motion planning

https://vimeo.com/202172522

Course content – AUV and USV control

Guest lecture

https://vimeo.com/286316704

Exam

- Written exam at the end of the semester
- 18th of December
- May change

UiO: Department of Technology Systems University of Oslo

Mandatory assignments

Three mandatory assignments

 Two first will mainly be theoretic and with simulations

 Last will be a project to implement a controller on a manipulator or mobile robot

UiO Department of Technology Systems University of Oslo

Questions?

