Memo: Interessante Sachen

Simon Kapfer

22. Juli 2014

Zusammenfassung

Merkzettel zu diversen Sachen und Mottos, die nicht in einen anderen Kontext eingebettet sind.

1 Kohomologisches

- **1.1.** *Gruppenkohomologie* einer Gruppe G soll die (singuläre) Kohomologie eines Raumes sein, dessen Fundamentalgruppe gleich G ist und dessen andere Homotopiegruppen trivial sind. Den Raum kann man konstruieren: er heißt 'Eilenberg–MacLane Raum'. Für diskrete Gruppen ist das der klassifizierende Raum BG.
- **1.2.** Tensorprodukt über Gruppenringen M, N seien Links-G-Moduln. $M \otimes_G N$ ist so definiert, daß $mg \otimes gn = m \otimes n$. Dann ist $M \otimes_G N \cong (M \otimes N)_G$.
- **1.3.** Welche Kohomologieklassen können als Chernklassen realisiert werden? Für X eine projektive Kurve kann jede Klasse aus $H^2(X,\mathbb{Z})$ als erste Chernklasse eines Vektorbündels geschrieben werden.

Für X eine komplexe Fläche geht das auch für beliebiges $c_1 \in H^{1,1}(X) \cap H^2(X,\mathbb{Z})$ und $c_2 \in H^4(X,\mathbb{Z}) \cong \mathbb{Z}$ (Satz von Schwarzenberger).

1.4. Äquivariante Kohomologie Wenn eine kompakte Liegruppe G auf einem Raum X wirkt, so wird die Äquivariante Kohomologie $H_G^*(X;\mathbb{R}) := H^*(\frac{X \times EG}{G};\mathbb{R})$ über den folgenden (Totalkomplex des Doppel-)Komplex berechnet:

$$\Omega_G^i(X) = \bigoplus \left(S^j(\mathfrak{g}^*) \otimes \Omega^{i-2j}(X) \right)^G$$

1.5. *Charakteristische Klassen* Insbesondere hat man für $X = \{pt\}$ und G = U(n)

$$H_G^*(X) = H^*(BG) = S^*(\mathfrak{g}^*)^G = \mathbb{R}[c_1, \dots, c_n], \qquad \det(\lambda - A) = \sum_i (-1)^i c_i(A) \lambda^{n-i}$$

wobei die c_i die Chernklassen sind. Für G=O(n) erhält man Pontrjagin–Klassen. Für V ein Vektorbündel über einem beliebigen X hat man durch Wahl von lokalen Rahmen die Struktur eines G-Hauptfaserbündels und damit eine Abbildung $X \to BG$. Die charakteristischen Klassen des Bündels ergeben sich dann durch Rückzug von BG.

1.6. *Eulercharakteristik des symmetrischen Produkts* G endlich wirke auf X lokal kompakt. Bezeichne X^g die Menge der Fixpunkte. Dann:

$$\chi\left(\frac{X}{G}\right) = \frac{1}{|G|} \sum_{g \in G} \chi\left(X^g\right)$$

Insbesondere gilt für das symmetrische Produkt:

$$\sum_{n} \chi \left(\operatorname{Sym}^{n} X \right) q^{n} = (1 - q)^{-\chi(X)}$$

- **1.7.** *Riemann–Roch* Der Cherncharakter ist eine natürliche Transformation zwischen dem Grothendieckschen K-Funktor und dem Chowring-Funktor (über \mathbb{C} : rationale Kohomologie), der Pullbacks respektiert. Pushforwards entlang eigentlicher Morphismen werden respektiert, wenn man mit der Toddklasse malnimmt und $\mathrm{ch}(\alpha)\mathrm{td}(\mathcal{T}_X)$ benutzt.
- **1.8.** *Picardgruppe* einer glatten Varietät sind die Isomorphismenklassen von Geradenbündeln mit Tensorprodukt als Gruppenoperation. Äquivalent Cartierdivisoren modulo lineare Äquvalenz. Äquivalent $H^1(X, \mathcal{O}_X^{\times})$.
- **1.9.** *K-Theorie* $K^{\cdot}(X)$ wird erzeugt von lokal freien Garben auf X und bildet einen Ring, $K_{\cdot}(X)$ von den kohärenten Garben (kohärent = Garbe und erste Syzygie sind lokal endlich erzeugt) und bildet einen $K^{\cdot}(X)$ -Modul. Wenn X regulär (jede Garbe besitzt freie Auflösung endlicher Länge) und noethersch ist, außerdem ein amples Geradenbündel besitzt, so stimmen $K^{\cdot}(X)$ und $K_{\cdot}(X)$ überein.
- **1.10.** *Residuum* $V \subset M$ sei die Verschwindungsmenge einer Funktion f auf der komplex n-dimensionalen Mnf. M. Das Residuum von f lebt dann in $H^n(M \setminus V, \mathbb{C})$. Wie ist es definiert?

2 Algebraisches

2.1. *Lieableitung und Intuition.* Seien f(x), g(x) parameterabhängige, lineare Operatoren (z. B. einfach Multiplikation mit Zahlen: $f(x) \in \mathbb{R}$). Differentialope-

ratoren wie $\frac{d}{dx}$ fallen auch in diese Kategorie. Es gilt

$$\frac{d}{dx}fg = \left(\frac{\partial}{\partial x}f\right)g + f\frac{d}{dx}g$$

Daher macht es Sinn, den abgeleiteten Operator $f' := \left(\frac{\partial}{\partial x} f\right)$ zu definieren als:

$$f' = \frac{d}{dx}f - f\frac{d}{dx} = \left[\frac{d}{dx}, f\right]$$

Hier also eine Möglichkeit, die Lieklammer zu verstehen. Die Jacobi-Identität wird dann zu einem Spezialfall der Leibnizregel:

$$[x, [y, z]] = [[x, y], z] + [y, [x, z]]$$

Die blauen Klammern stehen jeweils für Ableitung nach x, die schwarzen Klammern sind einfach nur eine Bilinearform, die hier zufällig gleich der Lieklammer ist.

2.2. *Über* $\mathfrak{sl}_2(\mathbb{C})$. Erzeuger: H, X, Y mit [X,Y]=H, [H,X]=2X, [H,Y]=-2Y. Vorstellung: H, X, Y haben Grad 0, 2, -2 und H zählt den Grad. Jede irreduzible Darstellung von $\mathfrak{sl}_2(\mathbb{C})$ sieht aus wie $V_{-n} \oplus \ldots \oplus V_n$ mit $V_k \cong \mathbb{C}$ Eigenraum von H zum Eigenwert k. Ein Modell dafür ist $\operatorname{Sym}^n\mathbb{C}^2$ mit Koordinaten x vom Grad 1 und y vom Grad -1.

2.3. Bialgebren

- Die gruppenartigen Elemente einer Bialgebra (d. h. $\Delta g = g \otimes g$) sind alle linear unabhängig. Ihr Spann bildet eine Unterbialgebra.
- Die primitiven Elemente einer Bialgebra (d. h. $\Delta c = c \otimes 1 + 1 \otimes c$) bilden eine Liealgebra mit dem Kommutator als Lieklammer.
- Auf den linearen Endomorphismen einer Bialgebra wird eine Algebrenstruktur (Faltung) erklärt durch $f*g:=\mu\circ(t\otimes g)\circ\Delta$. Die Bialgebra ist eine Hopfalgebra, wenn eine Antipode S mit $S*\mathrm{id}=\mathrm{id}*S=\eta\circ\varepsilon$ existiert.
- **2.4.** Es gibt keinen Körper, der als \mathbb{Z} -Modul frei ist.
- **2.5.** *Klassifikation von indefiniten unimodularen Gittern* [?] Wenn es einen Gitterpunkt x gibt, so daß $\langle x, x \rangle$ ungerade ist, so heißt das Gitter ungerade und ist isomorph zu $(1) \oplus (-1)^n$, ansonsten heißt das Gitter gerade und ist isomorph zu $E_8(\pm 1)^m \oplus U^n$. In jedem indefiniten Gitter gibt es einen Vektor $x \neq 0$ mit $\langle x, x \rangle = 0$.

3 Exakte Sequenzen

3.1. *Eulersequenz* Auf \mathbb{P}^n hat man

$$\begin{split} 0 &\to \mathscr{O} \to \mathscr{O}(1)^{\oplus n+1} \to \mathscr{T} \to 0 \quad \text{bzw.} \\ 0 &\to \Omega \to \mathscr{O}(-1)^{\oplus n+1} \to \mathscr{O} \to 0 \end{split}$$

3.2. Exponentialsequenz Auf komplexen Räumen liefert die exp-Funktion

$$0 \to 2\pi i \mathbb{Z} \to \mathcal{O} \to \mathcal{O}^{\times} \to 0$$

Dazu die lange exakte Sequenz in Kohomologie:

$$\to H^1(X, \mathcal{O}^{\times}) \to H^2(X, 2\pi i \mathbb{Z}) \to H^2(X, \mathcal{O}) \to$$

 $H^1(X, \mathcal{O}^{\times})$ ist die Picardgruppe. Der erste Pfeil ist die erste Chernklasse. Deren Bild (oder der Kern des nächsten Pfeils) ist die Néron-Severi Gruppe.

3.3. *Koszul-Komplex* Angenommen, ein Ideal $I \subset A$, wird von einer regulären Sequenz (a_1, \ldots, a_n) aufgespannt (d. h. a_i ist kein Nullteiler in $A/(a_1, \ldots, a_{i-1})$) und $d: A^n \to A$ schickt die kanonische Basis auf die Erzeuger, dann ist

$$0 \to \Lambda^n A^n \to \dots \to \Lambda^1 A^n \to A \to 0$$

eine Auflösung von A/I, die (außer bei A) exakt ist.

Analog sei $Y \to X$ eine reguläre Einbettung mit Idealgarbe \mathscr{I} . Dann ist $\Lambda^* \left(\mathscr{I}/\mathscr{I}^2 \right)$ eine lokal freie Auflösung von $\mathscr{O}_Y = \mathscr{O}_X/\mathscr{I}$. Die Idee ist, daß man zum Auflösen von \mathscr{O}_Y nur das Konormalenbündel / eine tubulare Umgebung von Y braucht.

3.4. Beilinson Auflösung