

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

RESEARCH

REPORT

N° 123456789

September 27, 2017

Project-Team Bipop

Solving 3D frictional contact problems: Formulations and comparisons of numerical methods.

Project-Team Bipop

Research Report n° 123456789 — September 27, 2017 — 215 pages

Abstract: TBW

Key-words: Multibody systems, nonsmooth Mechanics, unilateral constraints, Coulomb friction, impact, numerical methods

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Sur la résolution du problème de frottement tridimensionnel. Formulations and comparaisons des méthodes numériques.

Résumé: TBW

Mots-clés : Systèmes multi-corps, Mécanique non régulière, contraintes unilatérales, frottement de Coulomb, impact, Schémas numériques de résolution

Contents

1	LMGC_100_PR_PerioBox	4
	1.1 Comments	20
2	$LMGC_945_SP_Box_PL$	22
	2.1 Comments	38
3	LMGC Aqueduc PR	39
	3.1 Comments	55
4	LMGC Bridge PR	56
5	LMGC LowWall FEM	72
6	LMGC Cubes H8	88
7	Capsules	104
8	Chain	120
9	BoxesStack1	136
10	KaplasTower	152
11	Chute_1000	168
12	Chute_4000	184
13	Chute local problems	200

$1 \quad LMGC_100_PR_PerioBox$

Figure 1: LMGC_100_PR_PerioBox time VI/UpdateRule

Figure 2: LMGC_100_PR_PerioBox time NSGS/LocalSolver

 $Figure~3:~LMGC_100_PR_PerioBox~time~NSGS/LocalSolverHybrid$

Figure 4: LMGC_100_PR_PerioBox time NSGS/LocalTol

Figure 5: LMGC_100_PR_PerioBox time NSGS/LocalTol-VI

Figure 6: LMGC_100_PR_PerioBox time NSGS/Shuffled

Figure 7: LMGC_100_PR_PerioBox time PSOR

Figure 8: LMGC_100_PR_PerioBox $\,$ time NSN

Figure 9: LMGC_100_PR_PerioBox time PROX/Internal Solvers

Figure 10: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=0.5$

Figure 11: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=1.0$

Figure 12: LMGC_100_PR_PerioBox time PROX/Parametric studies $\nu=2.0$

Figure 13: LMGC_100_PR_PerioBox $\,$ time PROX/Regularized problem

Figure 14: LMGC_100_PR_PerioBox time OPTI

Figure 15: LMGC_100_PR_PerioBox $% \frac{1}{2}$ time COMP/large

Figure 16: LMGC_100_PR_PerioBox time COMP/zoom

1.1 Comments

1. VI solvers:

- (a) The EG-VI solvers are better than FP-VI solvers.
- (b) The local update rule UPK vs. UPTS is not important
- (c) The update in the loop improves greatly the convergence rate.

2. NSGS Solvers:

(a) Local solvers

- i. NSN local solvers without line-search are the best solvers. Note that the choice of $\rho_N = \rho_T = 1$ does not degrade the performance.
- ii. GP line-search method is slowing a bit the efficiency of the solver. Since all the problems are solved without line-search procedure, there is no interest in that case to use it to improve the robustness of the NSN local solvers.
- iii. Quite surprisingly, the local solvers based on FP-VI-UPK are also efficient, especially when we limit the number of iteration or the local tolerance of the local algorithm.
- iv. The exact solver is the efficient solver but not robust at all.
- v. The use of hybrid solvers are also not very attractive since all the problems are solved by NSN methods.
- (b) Local Tolerances: The study of the local tolerances of the local solvers shows two differents tendancies for two classes of solvers:
 - i. NSN local solvers are not influenced by the local tolerances. We guessed that the problems are sufficiently easy such that the Newton solver converge to tight tolerances in few iterations.
 - ii. For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
- (c) Shuffling techniques: The shuffling of contact does not improve the convergence.

3. PSOR Solvers.

- (a) For the values of the relaxation parameters ω in [1.3, 1.5], the relaxation increases the efficiency of the solver but decreases the robustness
- (b) For low values of the relaxation parameters ω in [0.5, 0.8], the relaxation increases the the robustness but decreases the efficiency
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)

5. OPTI solvers. On this problem, the ACLM and TRESCA approaches do not improve the efficiency. The problems are also better solved by the SOCLCP technique. Convexification is working well.

$2 \quad LMGC_945_SP_Box_PL$

Figure 17: LMGC_945_SP_Box_PL time VI/UpdateRule

Figure 18: LMGC _945 _SP _Box _PL $\,$ time NSGS/Local Solver

Figure 20: LMGC_945_SP_Box_PL time NSGS/LocalTol

Figure 21: LMGC_945_SP_Box_PL $\,$ time NSGS/LocalTol-VI $\,$

 $Figure~22:~LMGC_945_SP_Box_PL~time~NSGS/Shuffled$

Figure 23: LMGC_945_SP_Box_PL time PSOR

Figure 24: LMGC_945_SP_Box_PL $\,$ time NSN

Figure 25: LMGC_945_SP_Box_PL time PROX/Internal Solvers

Figure 26: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=0.5$

Figure 27: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=1.0$

Figure 28: LMGC_945_SP_Box_PL time PROX/Parametric studies $\nu=2.0$

Figure 29: LMGC_945_SP_Box_PL time PROX/Regularized problem

Figure 30: LMGC_945_SP_Box_PL time OPTI

Figure 31: LMGC_945_SP_Box_PL time COMP/large

Figure 32: LMGC_945_SP_Box_PL time COMP/zoom

2.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-FP-VI-UPK are the best solvers.
 - ii. NSGS-NSN suffers from huge robustness problem.
 - iii. GP line-search method improves a bit the efficiency of the solver
 - iv. Hybrid solvers seems to succeed but it is difficult to say if the Newton method helps to improve results
 - (b) Local Tolerances: For the NSGS-FP-VI-UPK, a limited tolerance improves the efficiency without reducing the robustness
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.
- 3. PSOR Solvers. No conclusion due to robustness problems
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)
- 5. OPTI solvers. On this problem, the TRESCA approach improves a lot the efficiency. The problems are also better solved by the SOCLCP technique/ Convexification is working well.

${\bf 3}\quad {\bf LMGC\ Aqueduc\ PR}$

Figure 33: LMGC Aqueduc PR time VI/UpdateRule

Figure 34: LMGC Aqueduc PR $\,$ time NSGS/Local Solver

 $Figure \ 35: \ LMGC \ Aqueduc \ PR \quad time \ NSGS/Local Solver Hybrid \\$

Figure 36: LMGC Aqueduc PR time NSGS/LocalTol

 $Figure \ 37: \ LMGC \ Aqueduc \ PR \quad time \ NSGS/LocalTol-VI$

Figure 38: LMGC Aqueduc PR $\,$ time NSGS/Shuffled

Figure 39: LMGC Aqueduc PR time PSOR

Figure 40: LMGC Aqueduc PR time NSN

Figure 41: LMGC Aqueduc PR $\,$ time PROX/InternalSolvers

Figure 42: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=0.5$

Figure 43: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=1.0$

Figure 44: LMGC Aqueduc PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 45: LMGC Aqueduc PR $\,$ time PROX/Regularized problem

Figure 46: LMGC Aqueduc PR time OPTI

Figure 47: LMGC Aqueduc PR $\,$ time COMP/large

Figure 48: LMGC Aqueduc PR $\,$ time COMP/zoom

3.1 Comments

- 1. VI solvers: difficult to draw conclusions since a lot of solvers are not able to converge within timeout
- 2. NSGS Solvers:
 - (a) Local solvers
 - i. NSGS-NSN-*-GP are the best solvers. Line search improves efficiency of the solvers.
 - ii. Hybrid solvers do not bring new advantages which is not surprising since NSGS-NSN solvers are the best
 - (b) Local Tolerances:
 - (c) Shuffling techniques: The shuffling of contact does not improve the convergence.
- 3. PSOR Solvers. The relaxation is not interesting in this example
- 4. NSN and PROX solvers. The direct Newton techniques on such rigid-body test set are inefficient. (link to the distribution of ranks of the matrices)
- 5. OPTI solvers. On this problem, the ACLM approach improves a lot the efficiency and the robustness. The problems are also better solved by the SOCLCP technique. Convexification is working well.

4 LMGC Bridge PR

Figure 49: LMGC Bridge PR $\,$ time $\,$ VI/UpdateRule

Figure 50: LMGC Bridge PR $\,$ time NSGS/LocalSolver

Figure 51: LMGC Bridge PR time NSGS/LocalSolverHybrid

Figure 52: LMGC Bridge PR $\,$ time NSGS/LocalTol

Figure 53: LMGC Bridge PR $\,$ time NSGS/LocalTol-VI

Figure 54: LMGC Bridge PR time NSGS/Shuffled

Figure 55: LMGC Bridge PR $\,$ time PSOR

Figure 56: LMGC Bridge PR $\,$ time NSN

Figure~57:~LMGC~Bridge~PR~~time~PROX/Internal Solvers

Figure 58: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=0.5$

Figure 59: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=1.0$

Figure 60: LMGC Bridge PR $\;$ time PROX/Parametric studies $\nu=2.0$

Figure 61: LMGC Bridge PR $\,$ time PROX/Regularized problem

Figure 62: LMGC Bridge PR time OPTI

Figure 63: LMGC Bridge PR $\,$ time COMP/large

Figure 64: LMGC Bridge PR $\,$ time COMP/zoom

5 LMGC LowWall FEM

Figure 65: LMGC LowWall FEM $_{
m time}$ VI/UpdateRule

Figure 66: LMGC LowWall FEM $\,$ time NSGS/LocalSolver

Figure 67: LMGC LowWall FEM $\,$ time NSGS/LocalSolverHybrid

Figure 68: LMGC LowWall FEM $\,$ time NSGS/LocalTol

Figure 69: LMGC LowWall FEM $\,$ time NSGS/LocalTol-VI $\,$

Figure 70: LMGC LowWall FEM $\,$ time NSGS/Shuffled

Figure 71: LMGC LowWall FEM time PSOR

Figure 72: LMGC LowWall FEM $\,$ time NSN $\,$

Figure 73: LMGC LowWall FEM $\,$ time PROX/Internal Solvers

Figure 74: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 75: LMGC LowWall FEM time PROX/Parametric studies $\nu=1.0$

Figure 76: LMGC LowWall FEM $\,$ time PROX/Parametric studies $\nu=2.0$

Figure 77: LMGC LowWall FEM $\,$ time PROX/Regularized problem

Figure 78: LMGC LowWall FEM time OPTI

Figure 79: LMGC LowWall FEM $\,$ time COMP/large

Figure 80: LMGC LowWall FEM $\,$ time COMP/zoom

6 LMGC Cubes H8

Figure 81: LMGC Cubes H8 time VI/UpdateRule

Figure 82: LMGC Cubes H8 time NSGS/Local Solver

Figure 83: LMGC Cubes H8 $\,$ time NSGS/LocalSolver Hybrid

Figure 84: LMGC Cubes H8 time NSGS/LocalTol

Figure 85: LMGC Cubes H8 time NSGS/LocalTol-VI

Figure 86: LMGC Cubes H8 $\,$ time NSGS/Shuffled

Figure 87: LMGC Cubes H8 time PSOR

Figure 88: LMGC Cubes H8 time NSN

Figure 89: LMGC Cubes H8 $\,$ time PROX/InternalSolvers

Figure 90: LMGC Cubes H8 $\,$ time PROX/Parametric studies $\nu=0.5$

Figure 91: LMGC Cubes H8 $\,$ time PROX/Parametric studies $\nu=1.0$

Figure 92: LMGC Cubes H8 $\,$ time PROX/Parametric studies $\nu=2.0$

Figure 93: LMGC Cubes H8 $\,$ time PROX/Regularized problem

Figure 94: LMGC Cubes H8 time OPTI

Figure 95: LMGC Cubes H8 time COMP/large

Figure 96: LMGC Cubes H8 time COMP/zoom

7 Capsules

Figure 97: Capsules time VI/UpdateRule

Figure 98: Capsules time NSGS/LocalSolver

Figure 99: Capsules $% \left(1\right) =\left(1\right) +\left(1\right)$

Figure 100: Capsules time NSGS/LocalTol

Figure 101: Capsules time NSGS/LocalTol-VI

Figure 102: Capsules time NSGS/Shuffled

Figure 103: Capsules time PSOR

Figure 104: Capsules time NSN

Figure 105: Capsules time PROX/InternalSolvers

Figure 107: Capsules time PROX/Parametric studies $\nu=1.0$

Figure 110: Capsules time OPTI

Figure 111: Capsules time COMP/large

Figure 112: Capsules time COMP/zoom

8 Chain

Figure 113: Chain time VI/UpdateRule

Figure 114: Chain time NSGS/LocalSolver

Figure 115: Chain $% \left(1,...,N\right) =1$ time NSGS/LocalSolverHybrid

Figure 116: Chain $% \left(1.01\right) =1.01$ time NSGS/LocalTol

Figure 117: Chain time NSGS/LocalTol-VI

Figure 118: Chain time NSGS/Shuffled

Figure 119: Chain time PSOR

Figure 120: Chain $\,$ time NSN

Figure 121: Chain time PROX/InternalSolvers

Figure 122: Chain time PROX/Parametric studies $\nu=0.5$

Figure 123: Chain time PROX/Parametric studies $\nu = 1.0$

Figure 124: Chain time PROX/Parametric studies $\nu=2.0$

Figure 125: Chain $% \left(1,0\right) =\left(1$

Figure 126: Chain time OPTI

Figure 127: Chain $% \left(1,0\right) =\left(1$

Figure 128: Chain $time\ COMP/zoom$

9 BoxesStack1

Figure 129: BoxesStack1 time VI/UpdateRule

Figure 130: BoxesStack1 time NSGS/LocalSolver

Figure~131:~BoxesStack1~time~NSGS/LocalSolverHybrid

Figure 132: BoxesStack1 time NSGS/LocalTol

Figure 133: BoxesStack1 time NSGS/LocalTol-VI

Figure 134: BoxesStack1 time NSGS/Shuffled

Figure 135: BoxesStack1 time PSOR

Figure 136: BoxesStack1 time NSN

Figure 137: BoxesStack1 time PROX/InternalSolvers

Figure 138: BoxesStack1 time PROX/Parametric studies $\nu=0.5$

Figure 139: BoxesStack1 time PROX/Parametric studies $\nu=1.0$

Figure 140: BoxesStack1 time PROX/Parametric studies $\nu=2.0$

Figure 141: BoxesStack1 $\,$ time PROX/Regularized problem

Figure 142: BoxesStack1 time OPTI

Figure 143: BoxesStack1 time COMP/large

Figure 144: BoxesStack1 time COMP/zoom

10 KaplasTower

Figure 145: Kaplas Tower $% \left(1,0\right) =1$ time VI/UpdateRule

Figure~146:~KaplasTower~time~NSGS/LocalSolver

Figure~147:~KaplasTower~time~NSGS/LocalSolverHybrid

Figure 148: KaplasTower time NSGS/LocalTol

Figure 151: KaplasTower time PSOR

Figure 152: KaplasTower time NSN

Figure 153: Kaplas Tower $\,$ time PROX/Internal Solvers

Figure 154: Kaplas Tower time PROX/Parametric studies $\nu=0.5$

Figure 155: Kaplas Tower time PROX/Parametric studies $\nu=1.0$

Figure 156: Kaplas Tower time PROX/Parametric studies $\nu=2.0$

Figure 158: KaplasTower time OPTI

11 Chute_1000

Figure 161: Chute_1000 time VI/UpdateRule

Figure 162: Chute_1000 time NSGS/LocalSolver

 $Figure~163:~Chute_1000~time~NSGS/LocalSolverHybrid$

Figure 164: Chute_1000 time NSGS/LocalTol

 $Figure~165:~Chute_1000~time~NSGS/LocalTol-VI$

Figure 166: Chute_1000 time NSGS/Shuffled

Figure 167: Chute_1000 time PSOR

Figure 168: Chute_1000 $\,$ time NSN

Figure 169: Chute_1000 time PROX/InternalSolvers

Figure 170: Chute_1000 time PROX/Parametric studies $\nu=0.5$

Figure 171: Chute_1000 time PROX/Parametric studies $\nu=1.0$

Figure 172: Chute_1000 time PROX/Parametric studies $\nu=2.0$

Figure 173: Chute_1000 $\,$ time PROX/Regularized problem

Figure 174: Chute $_1000$ time OPTI

Figure 175: Chute_1000 $\,$ time COMP/large

Figure 176: Chute_1000 time COMP/zoom

12 Chute_4000

 $Figure~177:~Chute_4000~time~VI/UpdateRule$

Figure 178: Chute_4000 time NSGS/LocalSolver

 $Figure~179:~Chute_4000~time~NSGS/LocalSolverHybrid$

Figure 180: Chute $_4000$ time NSGS/LocalTol

 $Figure~181:~Chute_4000~time~NSGS/LocalTol-VI$

Figure 182: Chute_4000 $\,$ time NSGS/Shuffled

Figure 183: Chute $_4000$ time PSOR

Figure 184: Chute $_4000$ time NSN

Figure 185: Chute $_4000$ time PROX/InternalSolvers

Figure 186: Chute_4000 time PROX/Parametric studies $\nu=0.5$

Figure 187: Chute_4000 time PROX/Parametric studies $\nu=1.0$

Figure 188: Chute_4000 time PROX/Parametric studies $\nu=2.0$

Figure 189: Chute $_4000$ time PROX/Regularized problem

Figure 190: Chute $_4000$ time OPTI

Figure 191: Chute $_4000$ time COMP/large

Figure 192: Chute $_4000$ time COMP/zoom

$13 \quad \text{Chute_local_problems}$

Figure 193: Chute_local_problems time VI/UpdateRule

 $Figure~194:~Chute_local_problems~time~NSGS/LocalSolver$

 $Figure~195:~Chute_local_problems~time~NSGS/LocalSolverHybrid$

Figure 196: Chute_local_problems time NSGS/LocalTol

Figure 197: Chute_local_problems $% \frac{1}{2}$ time NSGS/LocalTol-VI

 $Figure~198:~Chute_local_problems~time~NSGS/Shuffled$

Figure 199: Chute_local_problems time PSOR

Figure 200: Chute_local_problems time NSN

 $Figure~201:~Chute_local_problems~time~PROX/InternalSolvers$

Figure 202: Chute_local_problems time PROX/Parametric studies $\nu=0.5$

Figure 203: Chute_local_problems time PROX/Parametric studies $\nu=1.0$

Figure 204: Chute_local_problems time PROX/Parametric studies $\nu=2.0$

Figure 205: Chute_local_problems $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) =$

Figure 206: Chute_local_problems time OPTI

Figure 207: Chute_local_problems time COMP/large

Figure 208: Chute_local_problems time COMP/zoom

RESEARCH CENTRE GRENOBLE – RHÔNE-ALPES

Inovallée

655 avenue de l'Europe Montbonnot

38334 Saint Ismier Cedex

Publisher Inria Domaine de Voluceau - Rocquencourt BP 105 - 78153 Le Chesnay Cedex inria.fr