

Logic: resolution

Resolution

Recall: First-order logic includes non-Horn clauses

$$\forall x \, \mathsf{Student}(x) \to \exists y \, \mathsf{Knows}(x,y)$$

High-level strategy (same as in propositional logic):

- Convert all formulas to CNF
- Repeatedly apply resolution rule

- To go beyond Horn clauses, we will develop a single resolution rule which is sound and complete.
- The high-level strategy is the same as propositional logic: convert to CNF and apply resolution.

Conversion to CNF

Input:

$$\forall x \, (\forall y \, \mathsf{Animal}(y) \to \mathsf{Loves}(x,y)) \to \exists y \, \mathsf{Loves}(y,x)$$

Output:

$$(\mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x)) \land (\neg \mathsf{Loves}(x, Y(x)) \lor \mathsf{Loves}(Z(x), x))$$

New to first-order logic:

- ullet All variables (e.g., x) have universal quantifiers by default
- Introduce Skolem functions (e.g., Y(x)) to represent existential quantified variables

• Consider the logical formula corresponding to Everyone who loves all animals is loved by someone. The slide shows the desired output, which looks like a CNF formula in propositional logic, but there are two differences: there are variables (e.g., x) and functions of variables (e.g., Y(x)). The variables are assumed to be universally quantified over, and the functions are called **Skolem functions** and stand for a property of the variable.

Conversion to CNF (part 1)

Anyone who likes all animals is liked by someone.

Input:

```
\forall x \, (\forall y \, \mathsf{Animal}(y) \to \mathsf{Loves}(x,y)) \to \exists y \, \mathsf{Loves}(y,x)
```

Eliminate implications (old):

 $\forall x \neg (\forall y \neg \mathsf{Animal}(y) \lor \mathsf{Loves}(x,y)) \lor \exists y \mathsf{Loves}(y,x)$

Push ¬ inwards, eliminate double negation (old):

 $\forall x (\exists y \, \mathsf{Animal}(y) \land \neg \mathsf{Loves}(x,y)) \lor \exists y \, \mathsf{Loves}(y,x)$

Standardize variables (new):

 $\forall x (\exists y \, \mathsf{Animal}(y) \land \neg \mathsf{Loves}(x,y)) \lor \exists z \, \mathsf{Loves}(z,x)$

- We start by eliminating implications, pushing negation inside, and eliminating double negation, which is all old.
- The first thing new to first-order logic is standardization of variables. Note that in $\exists x \, P(x) \land \exists x \, Q(x)$, there are two instances of x whose scopes don't overlap. To make this clearer, we will convert this into $\exists x \, P(x) \land \exists y \, Q(y)$. This sets the stage for when we will drop the quantifiers on the variables.

Conversion to CNF (part 2)

```
\forall x (\exists y \, \mathsf{Animal}(y) \land \neg \mathsf{Loves}(x,y)) \lor \exists z \, \mathsf{Loves}(z,x)
```

Replace existentially quantified variables with Skolem functions (new):

```
\forall x \left[ \mathsf{Animal}(Y(x)) \land \neg \mathsf{Loves}(x,Y(x)) \right] \lor \mathsf{Loves}(Z(x),x)
```

Distribute \lor over \land (old):

```
\forall x \left[ \mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x) \right] \land \left[ \neg \mathsf{Loves}(x, Y(x)) \lor \mathsf{Loves}(Z(x), x) \right]
```

Remove universal quantifiers (new):

 $[\mathsf{Animal}(Y(x)) \lor \mathsf{Loves}(Z(x), x)] \land [\neg \mathsf{Loves}(x, Y(x)) \lor \mathsf{Loves}(Z(x), x)]$

- The next step is to remove existential variables by replacing them with Skolem functions. This is perhaps the most non-trivial part of the process. Consider the formula: $\forall x \exists y P(x,y)$. Here, y is existentially quantified and depends on x. So we can mark this dependence explicitly by setting y = Y(x). Then the formula becomes $\forall x P(x, Y(x))$. You can even think of the function Y as being existentially quantified over outside the $\forall x$.
- Next, we distribute disjunction over conjunction as before.
- Finally, we simply drop all universal quantifiers. Because those are the only quantifiers left, there is no ambiguity.
- The final CNF formula can be difficult to interpret, but we can be assured that the final formula captures exactly the same information as the original formula.

Resolution

Definition: resolution rule (first-order logic)

$$\frac{f_1 \vee \cdots \vee f_n \vee p, \quad \neg q \vee g_1 \vee \cdots \vee g_m}{\mathsf{Subst}[\theta, f_1 \vee \cdots \vee f_n \vee g_1 \vee \cdots \vee g_m]}$$
 where $\theta = \mathsf{Unify}[p, q]$.

Example: resolution-

$$\frac{\mathsf{Animal}(Y(x)) \vee \mathsf{Loves}(Z(x), x), \quad \neg \mathsf{Loves}(u, v) \vee \mathsf{Feeds}(u, v)}{\mathsf{Animal}(Y(x)) \vee \mathsf{Feeds}(Z(x), x)}$$

Substitution: $\theta = \{u/Z(x), v/x\}.$

ullet After convering all formulas to CNF, then we can apply the resolution rule, whi of doing exact matching of a literal p , we unify atomic formulas p and q , and t	