TO PASS 75% or higher

Practice quiz on Exponents and Logarithms

TOTAL POINTS 12

1. Re write the number $784 = 2 \times 2 \times 2 \times 2 \times 7 \times 7$ using exponents.

1/1 point

1/1 point

1/1 point

- \bigcirc (16⁴)(49²)
- \bigcirc (2⁶)(7⁶)
- \bigcirc $(2 \times 7)^6$

✓ Correct

For this type of problem, count the number of times each relevant factor appears in the product. That number is the exponent for that factor.

- 2. What is $(x^2 5)^0$?
 - $\bigcirc (x^2)$
 - \bigcirc -4
 - $(x^2) 5$
 - 1

✓ Correct

Any real number (except zero) raised to the "zeroith" power =1.

- 3. Simplify $((x-5)^2)^{-3}$
 - $\bigcirc (x-5)$
 - $(x-5)^{-5}$
 - $(x-5)^{-6}$
 - $(x-5)^{-1}$

✓ Correct

By Rule 2, "Power to a Power," multiply the exponents and get:

$$(x-5)^{(2\times-3)} = (x-5)^{-6}$$

By the definition of negative exponents, this is equal to $\dfrac{1}{\left(x-5
ight)^6}$

4. Simplify $(\frac{8^2}{8^7})^2$

1/1 point

- $\bigcirc 8^{-1}$
- \bigcirc 8⁻⁵
- $\bigcirc 8^{-4}$

✓ Correct

We can first simplify what is inside the parenthesis to $8^{-5} \mathrm{using}$ the Division and Negative Powers Rule.

Then apply division and negative powers— the result is the same. $\dfrac{8^4}{8^{14}}=8^{-10}$

5. $\log 35 = \log 7 + \log x$

1/1 point

5

✓ Correct $\log(x) = \log 35 - \log 7$

$$\log(x) = \log \left(\frac{35}{7}\right)$$

By the Quotient Rule $\log x = \log 5$

6. $\log_2(x^2 + 5x + 7) = 0$

1/1 point

Solve for x

- x = 3
- $\bigcirc \ \ x=2 \ \text{or} \ \ x=3$
- $\bigcirc x = 2$

✓ Correct

We use the property that $\,b^{\log_b a} = a\,$

Use both sides as exponent for 2.

$$2^{\log_2 x^2 + 5x + 7} = 2^0$$

$$x^2 + 5x + 7 = 1$$

$$x^2 + 5x + 6 = 0$$

$$(x+3)(x+2) = 0$$

$$x=-3 \qquad \quad \text{OR} \qquad \quad$$

$$x = -2$$

7. Simplify $\log_2 72 - \log_2 9$

- $\bigcirc \log_2 4$
- O 4
- $\bigcirc \log_2 63$
- 3

✓ Correct

By the quotient rule, this is $\log_2 \, \frac{72}{9} = \log_2 2^3 = 3$

8. Simplify $\log_3 9 - \log_3 3 + \log_3 5$

1/1 point

1/1 point

1/1 point

- log₃ 15
- $\bigcirc \log_3 8$
- 0 8
- O 15

✓ Correct

By the Quotient and Product Rules, this is $\log_3 \frac{9 \times 5}{3} = \log_3 15$

9. Simplify $\log_2(3^8 imes 5^7)$

 $\bigcirc \hspace{0.8cm} (8 \times \log_2 3) + (7 \times \log_2 5)$

15		1	2)		10		1	۲
(O	X	10go	0)	+	(0	X	logo	G

- $\bigcirc 56 \times \log_2 15$
- \bigcirc 15 $\times \log_2 56$

✓ Correct

We first apply the Product Rule to convert to the sum: $\log_2(3^8) + \log_2(5^7)$. Then apply the power and root rule.

10. If $\log_{10}y=100$, what is $\log_2y=?$

1/1 point

- 301.03
- O 500
- 332.19
- O 20

✓ Correct

Use the change of base formula, $\log_a b = \ \frac{\log_x b}{\log_x a}$

Where the "old" base is \boldsymbol{x} and the "new" base is \boldsymbol{a} .

$$\text{So } \frac{100}{\log_{10}(2)} = \frac{100}{0.30103} = 332.19$$

11. A tree is growing taller at a continuous rate. In the past 12 years it has grown from 3 meters to 15 meters. What is its rate of growth per year?

1/1 point

- $\bigcirc~10.41\%$
- 13.41%
- O 12.41%
- 11.41%

$$\begin{array}{c} \checkmark \text{ correct} \\ \frac{\ln \frac{15}{3}}{12} = 0.1341 \end{array}$$

12. Bacteria can reproduce exponentially if not constrained. Assume a colony grows at a continually compounded rate of 400% per day. How many days before a colony with initial mass of 6.25×10^{-10} grams weights 1000 Kilograms?

1/1 point

- O 875 days
- O .875 days
- 8.75 days
- O 87.5 days

$$6.25 \times 10^{-10} \times e^{4t} = 10^6$$

$$4t = \ln \big(\frac{10^6}{\left(6.25 \times 10^{-10}\right)}\big) = 35.00878$$

$$t = \ln \, \frac{10^6}{6.25 \times 10^{-10}} = 8.752195$$