## Hang Glider: Range Maximization

The problem is to compute the flight inputs to a hang glider so as to provide a maximum range flight. This problem first appears in [1].

The hang glider has weight W (glider plus pilot), a lift force L acting perpendicular to its velocity  $v_r$  relative to the air, and a drag force D acting in a direction opposite to  $v_r$ . Denote by x the horizontal position of the glider, by  $v_x$  the horizontal component of the absolute velocity, by y the vertical position, and by  $v_y$  the vertical component of absolute velocity.

The airmass is not static: there is a thermal just 250 meters ahead. The profile of the thermal is given by the following upward wind velocity:

$$u_a(x) = u_m e^{-\left(\frac{x}{R} - 2.5\right)^2} \left(1 - \left(\frac{x}{R} - 2.5\right)^2\right).$$

We take R = 100 m and  $u_m = 2.5$  m/s. Note, MKS units are used throughout. The upwind profile is shown in Figure 1.

Letting  $\eta$  denote the angle between  $v_r$  and the horizontal plane, we have the following equations of motion:

$$\dot{x} = v_x,$$
  $\dot{v}_x = \frac{1}{m}(-L\sin\eta - D\cos\eta),$   $\dot{y} = v_y,$   $\dot{v}_y = \frac{1}{m}(L\cos\eta - D\sin\eta - W)$ 

with

$$\eta = \arctan\left(\frac{v_y - u_a(x)}{v_x}\right), \qquad v_r = \sqrt{v_x^2 + (v_y - u_a(x))^2},$$

$$L = \frac{1}{2}c_L \rho S v_r^2, \quad D = \frac{1}{2}c_D(c_L)\rho S v_r^2, \quad W = mg.$$

The glider is controlled by the lift coefficient  $c_L$ . The drag coefficient is assumed to depend on the lift coefficient as

$$c_D(c_L) = c_0 + kc_L^2$$

where  $c_0 = 0.034$  and k = 0.069662. In addition, there is an upper limit on the lift coefficient:

$$c_L < c_{L \max} := 1.4.$$

Other constants are:

$$m=100$$
 mass of glider and pilot  $S=14$  wing area  $\rho=1.13$  air density  $g=9.81$  acc due to gravity.

1



FIGURE 1. Updraft profile

The boundary conditions are:

$$x(0) = 0,$$
  
 $y(0) = 1000,$   $y(T) = 900,$   
 $v_x(0) = 13.23,$   $v_x(T) = 13.23,$   
 $v_y(0) = -1.288,$   $v_y(T) = -1.288.$ 

The total time T for the flight is, of course, a variable. The objective is to maximize x(T).

The optimal solution depicted in Figures 2–7 was obtained using a uniform discretization of the time domain into 150 discrete points. Derivatives were approximated by differences at the midpoints of each discrete time interval. The optimal range is 1248.26 m and takes 98.4665 s to fly.

## REFERENCES

[1] Bulirsch, R., Nerz, E., Pesch, H. & von Stryk, O. (1993), Combining direct and indirect methods in optimal control: Range maximization of a hang glider, *in* R. Bulirsch, A. Miele, J. Stoer & K. Well, eds, ""Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods', Birkhauser Verlag, Basel, Boston, Berlin, pp. 273–288. 1



FIGURE 2. y vs x

FIGURE 5. cL vs t



FIGURE 3. x vs t

FIGURE 6. y vs t



FIGURE 4.  $v_x$  vs t

FIGURE 7.  $v_y$  vs t