All you can Creep!

Lukas Dennert Sofie Henghuber Balthasar Schüss Denny Steigmeier

Domäne = Wurm 3x Segmente Reward → Bodenkontakt → = Velocity * Orientation ← Geschwindigkeit → Random Agent Reward = 1 Winkelgeschwindigkeit → Baseline Avg. = 800 ← Anfangs geringer **Richtung** Information Gain ← Segmentrotation 3x Gelenke 1x Kopf — Bodenkontakt Sichtdistanz Winkelgeschwindigkeit ← Rotation → Winkel ← je 3 Aktionsmöglichkeiten

Hyperparametersuche

Evolutionärer Algorithmus →

Gridsearch

https://upload.wikimedia.org/wikipedia/commons/b/b6/Hyp ernarameter Ontimization usino Grid Search svo

ML-Flow

Remote Server, 2000+ training runs, Slurm parallelization & 00M

Evaluierung: A2C

Hidden neurons: 64, gamma: 0.995, max_scale_clamping: 0.3, batch_size: 10, scale_activation: sigmoid

0 Episoden

5000 Episoden \Rightarrow Reward: 159

7500 Episoden ⇒ Reward: 341

Evaluierung: PP0

Hidden neurons: 512, gamma: 0.995, batch_size: 2024, buffer_size: 20240, scale_activation: sigmoid

0 Episoden

10000 Episoden \Rightarrow Reward: 300

25000 Episoden ⇒ Reward: 1000

Modifikationen

~60% größerer Kopf

€) unity

Kopf zu groß \rightarrow zu schwer ("Kopflastig")

2° Breite und 2° Länge gekipp

⇔ unity

Environment zu stark gekippt

Andere Domänen

Time Scale = 3x

Vergleich

	Schneller und stabilere Performance → Baseline übertroffen	A2C Implementierung nicht stabil genug
	512 Hidden Neurons vorteilhaft	64 Hidden Neurons ausreichend
	Wichtige Parameter: Batch- und Buffersize (Vielfaches)	Deutliche Modifikationen: Gamma, Batchsize (A3C), max clamping action_scale
1	Sigmoid activation für action_scale	Sigmoid activation für action_scale

Algorithmen aus Papern nicht 100% anwendbar Modifikationen für komplexere Aufgaben

PP0

A2C

Aufgabenverteilung (letztendlich)

Visual Studio Code mit Live Share


```
a2c.py
                             executor.pv
                                             train.py
                    elif self.advantage == "reinforce":
                        advantages = reinforce(Rs=normalized returns,)
                    else:
                        raise RuntimeError()
                                                                                                     SPRACHKANÄLE
                    advantages = advantages # Shape[1000]
                                                                                                       Allgemein
                    cur entropy beta = self.entropy beta * (self.entropy fall ** nr episode)
                                                                                                              Denny
                                                                                                                             LIVE
                     DNNYSTGMR
                                                                                                              Balthasar
321
322
                                                                                                              sofie
                    entropy loss, policy loss, = entropy losses.sum(), policy losses.sum(),
325
                    loss = entropy loss + value loss + policy loss
327
                    measures = {
                        "loss": loss.item(),
                        "loss policy": policy loss.item() ,
                        "loss entropy": entropy loss.item(),
                        "loss value" : value loss.item().
                        "advantages std" : advantages std() item()
```

Thank you, for your attention.

Credit: Presentation template by Slidesgo & icons by Flaticon

PPO Instabilität

PPO 25000 Episoden Model

PPO Bighead

A2C Instabilität

Aufgabenverteilung (ursprünglich)

Xtreme-Pair Programming mit Hauptverantwortlichen (HV, NV)

Einbindung in Unity, Konzeption Experimente - Denny, Sofie

A2C - Lukas, Denny

Hyperparameter Tuning - Sofie, Balthasar

Evaluation und Visualisierung - Balthasar, Lukas

(Future Work: Off-Policy Alternative / A3C)

Aufgabenverteilung (letztendlich)

Topic	Name	Info	
A2C			
Split- & Multihead NN	Sofie		
Activation	Balthasar	Sigmoid, Softplus, Softmax, Tank	H, ReLu
Min-Max-Clamping	Balthasar	, ppo	
Loss & Entropy	Balthasar Ashas 9 Caibis NN	Actor & Critic NN	Luk
Advantages	Sofie		Luk
Return	Sofie	Memory, Buffer, Batches	
A2C vs A3C	Sofie	Hyperparameter	Der
		Reward	Den

PPO		
Actor & Critic NN	Lukas	
Memory, Buffer, Batches	Lukas	
Hyperparameter	Denny	
Reward	Denny	
log_prob & prob_ratio	Denny	
weighted_probs & clipping	Lukas	

Slurm	Denny	Slurm Runner
Parameter Search	Sofie	Grid Search, Evolutionary Algorithm
Environments + Unity	Lukas	
Ml-Flow	Balthasar	Measures, Artifacts
Save and Load Models	Balthasar	

4 Segments **≪** unity