MOS FIELD EFFECT TRANSISTOR

Patent number:

JP5160396

Publication date:

1993-06-25

Inventor:

ARUBERUTO OO ADAN

Applicant:

SHARP CORP

Classification:

- international:

H01L29/784

- european:

Application number:

JP19910323317 19911206

Priority number(s):

Abstract of JP5160396

PURPOSE:To provide MOS FETs capable of higher-density integration by making the width of a field oxide region (FOX) smaller and widening the width of an active region larger, by a simple method performable by the use of a conventional CMOS process. CONSTITUTION:Regions of a source 16 and the drain 16' are self-aligned to the gate electrode 14, and held on an insulating oxide layer 7 by the layer 7 which is buried in a single-crystal silicon substrate 1 shallowly. And the bottom part of a channel region is connected to the silicon substrate.

Data supplied from the esp@cenet database - Patent Abstracts of Japan

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平5-160396

(43)公開日 平成5年 (1993) 6月25日

(51) Int. Cl. *

戲別記号 广内整理番号

FΙ

技術表示箇所

H01L 29/784

8225-4M

H01L 29/78

Н

審査請求 未請求 請求項の数1 (全 5 頁)

301

(21)出願番号

特顯平3-323317

(71)出窟人 000005049

シャープ株式会社

(22)出顧日 平成3年(1991)12月6日

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 アルベルト オー アダン

大阪府大阪市阿倍野区長池町22番22号 シ

ヤープ株式会社内

(74)代理人 弁理士 野何 信太郎

(54) [発明の名称] MOS形電界効果トランジスタ

(57)【要約】 (修正有)

【目的】 従来のCMOSの製造工程を利用しうる簡単な方法で酸化物電界分離領域(FOX)の幅を小さくし能動領域の幅を拡大して、より高度な集積密度を可能にするMOSFETを提供する。

【構成】 ソース16とドレイン16'の領域が、ゲート電極14に自己整合し且つシリコン単結晶基板1中の浅い埋設位置にある酸化物絶縁層7により抱持されて、
該酸化物絶縁層7の上にあり、チャネル領域は、その底部が前記シリコン基板に連続している構造を有するMO S形電界効果トランジスタ。 【請求項1】 ソースとドレインの領域が、ゲート電極に自己整合し且つシリコン単結品基板中の浅い埋設位置にある酸化物絶縁層により抱持されて、該酸化物絶縁層の上にあり、チャネル領域は、その底部が前記シリコン

の上にあり、チャネル領域は、その底部が前記シリコン 基板に連続している構造を有するMOS形電界効果トラ ンジスタ

【発明の詳細な説明】

[0001]

[産業上の利用分野] この発明は、半導体を用いるデバ 10 イス及びその製作方法に関し、特に集積回路に利用し得 る金属酸化物半導体電界効果トランジスタ(MOSFE T) の改良に関する。

[0002]

【従来の技術】半導体を用いる大規模集積回路(LS I)の急速な発展と改良は、MOS型トランジスタの小型化によって達成されている。しかし従来のLSIでは、幾つかの制約、例えばチャネルの長さが1ミクロン以下の短さとなる為にトランジスタとしての働きが低下するという障害が現われている。更に、デバイスが小規模化されるに従って、基体の表面からより浅い位置にソース/ドレインを設けて接合すること及び隣接トランジスタ間を分離する酸化物電界分離領域(FIELDOXIDE ISOLATION、又はFOX)をより狭くつくることが困難になって来た。

【0003】上記の制約を或る程度解決する方法は、絶縁体上のシリコンにMOSを構成する方法であり、そうすれば能動性の素子は完全に分離層の上に形成されるのである。 [通常、これを、酸化物上の電界形成、即ち、酸素イオンの注入 (IMPLANTATION) により埋股位置に酸化物の層をつくるという方法—SIMOX—(酸素の注入による分離)を用い、その上にトランジスタを構成する方法と言われる]。これらの技術でつくられるMOSトランジスタには、チャネル領域にパイアスをかける為にもう1つの技点を設ける必要があるが、もしくはそれは浮揚状態に維持することもある。後者の場合には、トランジスタの特性は"浮揚体の効果"により低下する。

【0004】図5 (a) (b) は各々、バルク型のMO SFETとSOI形のMOSFETを例示する。ここで、VS、VG、VD、及びVBは、それぞれソース、ゲート、ドレイン及び基板或は基体にかけるパイアスの電位をいう。

[0005]

【発明が解決しようとする課題】図5 (a)に示すバルク型MOSFETにおける制約をまとめると、

* 浅いソース/ドレイン間のPN接合が、サブミクロンのデバイスでは要求されるので、寄生的な直列抵抗が増加し実効コンダクタンスを低下させる。

*基体表面における高いドープ機度が、パンチスルーを 50

防止する為に要求されるので、ソース/ドレイン間のP N接合領域での寄生容量が増加し、トランジスタのスイッチング速度を低下させる。

*ソース/ドレイン-基板間の広い面積が電荷の為に生起するα粒子の蓄積を招くので、シングル・イベント・アプセット (single event upset) に対して影響を受け易くなり、ラジエーション・ハードネス (radiation hardness) を低下させる。

*ラッチ・アップ現象が生じ易くなる。

(0006) 図5 (b) に示すSOI型MOSFETに おける制約事項は、

*埋設酸化物は、非常に高品質で均一な厚さを要求される。

* 浮揚体効果の結果 (i) ドレインの破壊電位が低下する, (ii) 単独トランジスタのラッチアップが起こり 易くなる。

*SOIを形成する操作は、標準のCMOSの製造方法 に適合し難く、高エネルギーの酸素イオンの注入を必要 とし、これはシリコン結晶に損傷を与え、特に、SIM 20 OX法では、エピタキシ・シリコン層への損傷、アモル ファスシリコン層の再結晶を生起するので、結果得られ る能動シリコン領域は結晶欠陥とそれによる性能の低下 を招くという欠点がある。

【0007】この発明は、従来のCMOSの製造工程を利用しうる簡単な方法で酸化物電界分離領域(FOX)の幅を小さくし能動領域の幅を拡大して、より高度な集積密度を可能にするMOSFETを提供しようとするものである。

[0008]

【課題を解決するための手段】この発明によれば、ソースとドレインの領域が、ゲート電極に自己整合し且つシリコン単結品基板中の残い埋設位置にある酸化物絶縁層により抱持されて、該酸化物絶縁層の上にあり、チャネル領域は、その底部が前記シリコン基板に連続している構造を有するMOS形電界効果トランジスタが提供される。

【0009】この発明においては、ソースとドレイン領域が強化物絶縁層で抱持され基体から分離されている

(図1を参照)。図1において、1はシリコン基板、2 40 は酸化物電界分離領域 (FOX)、4は薄い酸化物絶縁 層、5はゲート電極、7は酸化物絶縁層、12はゲート 酸化物絶縁層、16はソース、16 (はドレイン、19 は低濃度ドレイン、20は酸化膜である。

【0010】この構造はSOIとバルク型MOSの両方の長所を有するもので、この新しい構造の特徴は次の通りである。ソース/ドレインPN接合の面積は、それらの領域を酸化物絶縁層により基板から分離することにより、減少する。この結果、

- (i)接合面からの漏れ電流が減少する。
- 50 (ii) 寄生的な接合容量が減少する。

(iii) α粒子に誘起される電荷の蓄積の減少と、その 結果、ラジエーション・ハードネス (radiation hardne ss) が改良される。

【0011】この発明においては、チャネル領域は、そ の底部が前記シリコン基板に連続している構造を有す る。チャネル領域は埋敗酸化物絶縁膜が除かれる。チャ ネル領域は埋設酸化物絶録層とは関係なくなるので、埋 設設化物絶録層の品質及び均一性に対する配慮が不要と なる。またチャネル領域は基板との接点が存在する。チ ャネル領域は基板へ底部で接触する部分を有するので、 SOI型MOSの"浮揚体効果"を排除し得る。簡単な 生産手段を採用することができ、高エネルギー酸素注入 の必要性が無く、シリコン・エピタキシ又は固相結晶再 成長(固相エピタキシ)の採用が可能である。

【0012】この発明のMOS形電界効果トランジスタ は、例えば図4に示すように作製することができる。す なわち、酸化物電界分離領域(FOX)と該FOXから ソース16及びドレイン16′形成領域の間隔をおいて ポリシリコン層5が形成された半導体基板1の上方か ら、ポリシリコン層5をマスクとして所定のエネルギー の酸素イオンを注入し、ソース16、ドレイン16′の 形成領域下方の所定の深さに酸化物的緑層?を形成す る。この結果チャネル領域下方は、ゲート電極のマスク によって酸化物絶録層が形成されずチャネル領域は基板 1と連続するように形成される。この後、公知の方法に よってMOSFETを作製する。

[0013]

【作用】酸化物絶縁層が、接合面からの漏れ電流を減ら し酸化物電界分離領域(FOX)の幅を小さくさせ動領 域幅を拡大させることにより高度な集積密度にする。 [0014]

【実施例】この発明の実施例を図面を用いて説明する。 まず図2 a に示すようにシリコン基板1に酸化物電界分 軽領域(FOX)2、能動領域3は、公知のMOS形成 技術によりつくられる。能動領域の上に、薄い酸化物絶 最層4を熱作用成長法か、或はCVD堆積法で約20~ 30 nmの厚さにつくる。次に300~500 nmの厚 さのポリシリコン層5を堆積し、ゲート電極を規定する パターン・マスクを用いてフォトリソグラフィ法で、所 定のパターンをつくる。この状態をマスクとして用い、 酸素イオン6,6′の注入を実施する。その照射密度 (dose) は~1011イオン/cm で、エネルギーレベル は基体表面の下の約0.1~0.2 mの埋設位置に、 酸化物の層が出来るように選択する。SIMOX法の場 合のように、このイオン注入は多くの欠陥を結晶中につ くるので、この後、基板は高温 (~1000°C) でア ニールし、その時、図2(b)に示すようにソース/ド レインの為の能動領域の下にシリコン酸化物の層7を顕

CVD法で、ポリシリコン層 5、と略同一高さになるよ うに堆積し、更に、平坦化層9を堆積する。この層は、 フォトレジスト又はスピン・オン・ガラス (Spin On G) ass)でもよい。次に平坦化層9とSiN層8は異方性 エッチング法で、但し、略同一の速さでエッチングを行 い、エッチングをポリシリコン層5の頂面で止める(図 2 (c)).

【0016】次に図2 (d) に示すようにポリシリコン 層 5 はエッチング液 (例えば、Ctb COOH+HNO +HF) で 10 除去し、MOSFETゲートと同一の大きさのウインド 10をつくる。このウインドを通して、ポロンイオン1 1 を照射密度 10"~10" ions/cm"で注入を行い、M OSFETとしてのしきい電圧値を決めるチャネル領域 のドーピング濃度を与える。

【0017】次にウインド10の中の薄い酸化物絶縁層 4を除去し、図3 (e) に示すようにゲート酸化物絶縁 膜12を熱作用で成長し、MOSFETの電気的特性に より決る厚さとする。例えば、0.5 µmを最小チャネ ル長さの場合には、ゲート酸化物 (SiO₁) の厚さは 20 10~13 nmとする。次に図3(f)に示すように4 00~600nmの厚さのポリシリコン層13をLPC VD法でN'ドープで堆積する。次にポリシリコン層1 3を異方性エッチング法によって最終的なゲート電極1 4を形成する(図3(g))。

【0018】 次に図3 (h) に示すようにSiN層8 は、エッチング液で除去し、MOSFETのソース16 とドレイン16′領域は、公知の不純物イオン15のイ オン往入法によりドーピングして形成される。次に図3 (1) に示すように分離層17が堆積され、コンタクト 30 穴があけられ、金属層18が堆積され、デバイス間をつ なぐパターンが、公知の方法でつくられる。

[0019]

【発明の効果】この発明における埋設酸化物絶縁層の形 成は、同時に、酸化物電界分離領域(FOX)の幅を小 さくし得る、即ち、能動館城幅を拡大し、より高度な集 積密度を可能にする。この発明の、酸素を浅く注入して (約0.2 μm以下の深さ)、電界を酸化物上に作り分 離することは、標準のCMOSの製作工程に適合する簡 単な方法であるから、特別な基板を必要としない。この 40 発明の構造を用いると、CMOSトランジスタの大きさ を1/2マイクロメータ以下のチャネル長さにすること が可能である。

【図面の簡単な説明】

【図1】この発明の実施例で作成したMOSFETの説 明図である。

【図2】同じくMOSFETの製造工程の説明図であ

【図3】同じくMOSFETの製造工程の説明図であ

【0015】 更に図2 (b) に示すようにSiN層8を 50 【図4】同じくMOSFETの製造工程の説明図であ

5

る。 【図5】従来のMOSFETの説明図である。 【符号の説明】

- 1 シリコン基板
- 2 酸化物電界分離領域 (FOX)
- 3 能動領域
- 4 薄い酸化物絶縁層
- 5 ポリシリコン層
- 6 酸素イオン
- 7 酸化物铯最層
- 8 SIN層

[図1]

9 平坦化層

- 10 ウインド
- 11 ポロンイオン
- 12 ゲート酸化物絶縁膜
- 13 ポリシリコン層
- 14 ゲート電極
- 15 不純物イオン
- 16 ソース
- 16' ドレイン
- 10 17 分離層

18 金属層

[図2]

