Problema 51. Demostreu que la característica d'un domini d'integritat és o bé zero o bé un nombre primer. Deduïu que tot cos conté un subcòs isomorf a \mathbb{Q} o a $\mathbb{Z}/p\mathbb{Z}$, per a un cert nombre primer p.

Solució. Sea A un dominio de integridad.

Consideramos $f: \mathbb{Z} \longrightarrow A$ el único homomorfismo de anillos que aplica $f(1_{\mathbb{Z}})$ en 1_A .

Por el teorema de isomorfía podemos construir el isomorfismo:

$$q: \mathbb{Z}/Kerf \longrightarrow Imf$$

Donde Imf es un subanillo de A.

Como A es un dominio de integridad, Imf también lo es, y por isomorfía $\mathbb{Z}/Kerf$ también.

 $\mathbb{Z}/Kerf$ es un dominio de integridad $\leftrightarrow Kerf$ es un ideal primo en $\mathbb{Z} \leftrightarrow Kerf = (0)$ o bien Kerf = (p) donde $p \in \mathbb{Z}$ es primo.

En consecuencia, la característica de A es, o bien 0, o bien $p \in \mathbb{Z}$ primo.

En particular si A es un cuerpo, A es un dominio de integridad, por lo que su característica será, o bien 0, o bien $p \in \mathbb{Z}$ primo. Consideramos ambos casos:

♦ Caso característica 0:

Tenemos $\mathbb{Z}/Kerf = \mathbb{Z}/(0) \simeq \mathbb{Z}$ y el isomorfismo g queda:

$$q: \mathbb{Z} \longrightarrow Imf$$

Como $\mathbb Q$ es el cuerpo de fracciones de $\mathbb Z,$ es el menor cuerpo que lo contiene. Por lo tanto:

 $\exists K \subset A$ subcuerpo de A tal que $\mathbb{Q} \simeq K$

 \diamond Caso característica $p \in Z$ primo:

Tenemos $\mathbb{Z}/Kerf = \mathbb{Z}/(p)$ y el isomorfismo g queda:

$$q: \mathbb{Z}/p\mathbb{Z} \longrightarrow Im f$$

Como $\mathbb{Z}/p\mathbb{Z}$ es un cuerpo, Imf es el subcuerpo de A que buscamos.