Faculdade de Engenharia Elétrica e de Computação - FEEC Universidade Estadual de Campinas - UNICAMP EE400 - Métodos da Engenharia Elétrica 2ª prova - 22/10/2008 - prof. Rafael

1) Considere a função analítica f(z) = u + iv, onde:

$$u(x, y) = -\arctan(y/x).$$

Determine uma possível expressão para v(x,y) e escreva f(z) explicitamente em função de z.

- 2) Considere a função $w=f(z)=\frac{1}{z}$. Obtenha a imagem da região $x\geq 1$ e $y\geq 1$ no plano w. Esboce a região obtida no plano w.
- 3) Mostre que todas as soluções da equação abaixo estão sobre o círculo unitário.

$$e^{2\pi \frac{1+z}{1-z}} = 1.$$

- 4) Obtenha uma transformação bilinear w=f(z) que mapeie o semi-plano direito no círculo unitário e que mapeie o círculo $\left|z-\frac{5}{2}\right|=\frac{3}{2}$ no círculo $\left|w\right|=r_0$ para algum valor real $r_0<1$.
- 5) Considere o potencial elétrico entre dois cilindros coaxiais no plano w dado por:

$$\Phi(u,v) = Re \left[\frac{V_0}{Log(r_0)} Log(w) \right] = \frac{V_0}{2Log(r_0)} Log(u^2 + v^2)$$

onde o círculo de raio unitário tem potencial nulo e o círculo de raio r_0 tem potencial V_0 . A partir deste resultado e da transformação da questão anterior, obtenha o potencial elétrico nos pontos entre um plano infinito com potencial nulo e um cabo cilíndrico, definido por $\left|z-\frac{5}{2}\right|=\frac{3}{2}$, com potencial 100 Volts, conforme a figura a seguir.

