实验名称 高温超导材料特性测试和低温温度计

实验日期 \_2024 年 \_4 月 \_7 日

姓名 李灿辉 学号

2200017799

实验地点 南楼 110

## 第一部分 数据记录及处理(注:同组实验同学为杨永坤)

### 1 室温检测

- 1. 进行本实验时,室温为: $T_0 = 295.03K$
- 2. 室温下,通过铂电阻、硅二极管和高温超导材料的电流分别设定为:

 $I_{Pt} = 1.0000 mA$ 

 $I_{SiD} = 100.00A$ 

 $I_x = 10.0040mA$ 

- 3. 测得此时超导样品上的电压为:  $U_x=0.185mV$ , 由此可以得到室温下超导样品的电阻为:  $R_{x0}=0.0186\Omega$
- **4.** 铂电阻温度计电压为:  $U_{Pt} = 108.57 mV$ , 铂电阻阻值为  $108.57 \Omega$

### 2 测量数据结果

本次实验过程中,在不同时刻测量了铂电阻温度计上的电压,SiD 上的电压,样品上的电压,并查表利用插值 法计算了 Pt 电阻对应的温度,并计算了硅二极管和样品的电阻,列表于下一页

## 3 低温温度计比对

室温下铂电阻的电阻为:  $R_{Pt0} = 108.57$ 

液氮沸点下铂电阻温度计的电压为:  $U_{Pt}=20.33mV$ ,所以液氮沸点时下铂电阻的电阻为:  $R_{Pt1}=20.33\Omega$  故末态液氮沸点温度估计为 T=77.59K

由以上两个点可以线性拟合出铂电阻任一电阻对应的温度值:  $T=R*2.464K/\Omega+27.493K$  对比线性拟合结果和插值结果,温度差结果误差均在  $0.3\Omega$  以内

由不同温度下硅二极管的电阻结果,可以绘制出硅二极管电阻随温度的变化关系:



图 1: SiD 电阻温度关系图

| 组号 n | Pt 电压/mV | SiD 电压/V | 样品电压/mV | T/K      | $R_{SiD}/k\Omega$ | $R/\Omega$ |
|------|----------|----------|---------|----------|-------------------|------------|
| 1    | 106.7600 | 0.5326   | 0.181   | 290.9072 | 5.326             | 18.0928    |
| 2    | 97.2300  | 0.5923   | 0.166   | 267.3681 | 5.923             | 16.5934    |
| 3    | 87.9800  | 0.6517   | 0.153   | 244.5206 | 6.517             | 15.2939    |
| 4    | 80.5600  | 0.6964   | 0.143   | 226.1932 | 6.964             | 14.2943    |
| 5    | 75.8700  | 0.7252   | 0.136   | 214.6089 | 7.252             | 13.5946    |
| 6    | 70.4100  | 0.7581   | 0.129   | 201.1227 | 7.581             | 12.8948    |
| 7    | 66.5600  | 0.7812   | 0.125   | 191.6132 | 7.812             | 12.4950    |
| 8    | 63.1200  | 0.8016   | 0.120   | 183.1164 | 8.016             | 11.9952    |
| 9    | 59.7200  | 0.8221   | 0.116   | 174.7184 | 8.221             | 11.5954    |
| 10   | 56.0800  | 0.8432   | 0.112   | 165.7276 | 8.432             | 11.1955    |
| 11   | 52.9000  | 0.8610   | 0.108   | 157.8730 | 8.610             | 10.7957    |
| 12   | 49.5500  | 0.8802   | 0.104   | 149.5985 | 8.802             | 10.3958    |
| 13   | 46.7300  | 0.8977   | 0.100   | 142.6331 | 8.977             | 9.9960     |
| 14   | 43.7100  | 0.9150   | 0.096   | 135.1737 | 9.150             | 9.5962     |
| 15   | 41.5000  | 0.9273   | 0.093   | 129.7150 | 9.273             | 9.2963     |
| 16   | 38.8700  | 0.9424   | 0.089   | 123.2189 | 9.424             | 8.8964     |
| 17   | 35.5700  | 0.9613   | 0.083   | 115.0679 | 9.613             | 8.2967     |
| 18   | 32.2500  | 0.9794   | 0.077   | 106.8675 | 9.794             | 7.6969     |
| 19   | 30.0500  | 0.9909   | 0.072   | 101.4335 | 9.909             | 7.1971     |
| 20   | 28.6900  | 0.9977   | 0.069   | 98.0743  | 9.977             | 6.8972     |
| 21   | 28.0300  | 1.0011   | 0.066   | 96.4441  | 10.011            | 65.9736    |
| 22   | 27.6100  | 1.0033   | 0.064   | 95.4067  | 10.033            | 6.3974     |
| 23   | 27.0000  | 1.0068   | 0.059   | 93.9000  | 10.068            | 5.8976     |
| 24   | 26.7100  | 1.0083   | 0.056   | 93.1837  | 10.083            | 5.5978     |
| 25   | 26.5300  | 1.0093   | 0.051   | 92.7391  | 10.093            | 5.0980     |
| 26   | 26.4400  | 1.0097   | 0.043   | 92.5168  | 10.097            | 4.2983     |
| 27   | 26.3900  | 1.0099   | 0.033   | 92.3933  | 10.099            | 3.2987     |
| 28   | 26.3600  | 1.0101   | 0.023   | 92.3192  | 10.101            | 2.2991     |
| 29   | 26.3100  | 1.0102   | 0.011   | 92.1957  | 10.102            | 1.0996     |
| 30   | 26.2800  | 1.0104   | 0.004   | 92.1216  | 10.104            | 0.3998     |
| 31   | 26.2400  | 1.0106   | 0.000   | 92.0228  | 10.106            | 0.0000     |
| 32   | 26.1700  | 1.0108   | -0.002  | 91.8499  | 10.108            | -0.1999    |
| 33   | 26.0200  | 1.0117   | -0.002  | 91.4794  | 10.117            | -0.1999    |
| 34   | 25.7300  | 1.0132   | -0.003  | 90.7631  | 10.132            | -0.2999    |
| 35   | 20.3300  | 1.0398   | -0.001  | 77.4251  | 10.398            | -0.1000    |

表 1: 测量数据及处理结果表

实验名称 高温超导材料特性测试和低温温度计

实验日期 2024 年 4 月 7 日

姓名 李灿辉 学号

2200017799

实验地点 南楼 110

硅二极管在该温度范围内线性良好,是比较理想的温度计。对硅二极管电阻和温度的关系进行拟合我们可以得到:  $R_{SiD}=(23.66T+12298)\Omega$  相关系数为  $r^2=0.9993$ , 可见线性拟合效果良好。

#### 3.1 温度计特性对比

经过简单比对后发现:

- 1. Si 半导体电压随温度升高而降低,静态电阻温度系数为负,呈线性关系,线性性较好。
- **2.** Pt 电阻的电压随温度升高而升高,电阻温度系数为正,线性关系好(这是由于铂电阻是本实验的温度基准,而拟合表中数据后线性性确实很好)
- 3. 温差电偶温度计比较简单,电压与两端温度差呈正相关,低温下线性性相比前两个温度计较差,但是使用更为简易方便。可以作为液面计使用

## 4 超导转变曲线

根据数据表,知乱真电动势约为-0.002V,超导转变过程中数据修改记录后绘图如下:



图 2: 超导转变曲线数据图

实验名称 高温超导材料特性测试和低温温度计

实验日期 \_2024 年 \_4 月 \_7 日

姓名 李灿辉 学号

2200017799

实验地点 南楼 110

选取转变前的几组温度-电阻关系(此处选取了第3-17组)做线性拟合后,得到

$$R = 0.052\Omega/K + 2.49\Omega$$

r = 0.9985

选取转变过程中的几组温度-电阻关系(此处选取了第26-29组)做线性拟合后,得到

$$R = 10.1\Omega/K - 930\Omega$$

r = 0.9990

得到超导转变起始点为 T=92.80K 零电阻温度为 T=92.08K 转变温度为 T=92.44K 其不确定度计算约为  $\sigma_T=0.03K$ 

该结果可以直观的展示于数据图中,拟合图像与课上结果基本一致,此处仅展示其交点的计算结果。

### 5 液氮沸点检测

最终稳定状态下

由铂电阻读出的电阻值和液氮温度为

 $R = 20.33\Omega$ 

T = 77.59K

实际的液氮沸点为

T = 77.36K

由 SiD 读出的电阻值和液氮温度为

 $R = 10.398k\Omega$ 

T=80.30K

铂电阻和 SiD 测得的结果偏差分别为:

 $\delta_{Pt} = 1.30\%$ 

 $\delta_{SiD} = 3.80\%$ 

误差在合理范围内,说明本实验采用铂电阻温度计是较为准确的计温方法。 液氮温度下超导样品的电阻(修正后)为

 $R = 0\Omega$ 

通过铂电阻、硅二极管和高温超导材料的电流分别为:

$$I_{Pt} = 1.0001mA$$
 (1)

$$I_{SiD} = 100.00A$$
 (2)

$$I_x = 10.0098mA$$
 (3)

对比室温下的 d 读数结果,一致性很好,说明本实验的系统较为稳定,电流源可以近似作为理想恒流源使用,系统的稳定性较好,在本实验的精度范围内不需要额外的校正。

实验名称 高温超导材料特性测试和低温温度计

实验日期 \_2024 年 \_4 月 \_7 日

姓名 李灿辉 学号

2200017799

实验地点 南楼 110

## 第二部分 分析与讨论

- 1. 本实验要想得到精确的数据,需要每个时间段都达到近似热平衡,实验中前期温度下降较慢,因此我们下降 样品过慢,浪费了大量时间,后期接近转变温度处转变区电阻下降太快,难以达到平衡,因此转变部分的结 果难以得到准确的数值,可能有一定的偏差。
- 2. 实验使用的系统恒流源稳定性很好,但是仍需要经常检查,这是保证实验严谨性的必然要求
- 3. 开始下降时,需要常观察液面计以保证样品和液氮距离合适,但下降至温度相近时,液面计将无法继续有效工作,此时应当停止下降样品,耐心等待超导转变记录数据。
- 4. 本实验测定 SiD 的电阻温度关系时,发现 SiD 的电阻温度关系为负,符合实验前了解到背景知识,计算发现使用线性拟合 Pt 电阻温度关系得到的 SiD 电阻温度关系更为线性,但是为了准确,此处依然适用查表插值的结果。
- 5. 转变过程中,数据组数较少,实际上转变过程中使用手机摄像得到的数据组数是充足的,但是由于温度变化较快,系统达到的热平衡是不充分的,因此仅增加数据组数并不能提高结果准确性,改进的方法是尽可能减慢超导转变温度附近降温的速率。