Steps in a full machine learning project

5. Modelling Part 4 — Comparison

"How will our model perform in the real world?"

3 parts to modelling

1. Choosing and training a model

Training Data

2. Tuning a model

Validation Data

3. Model comparison

Testing a model

Data Set	Performance
Training	98%
Test	96%

	Data Set	Performance
Jnderfitting (potential)	Training	64%
Test	47%	

ing al)	Data Set	Performance	
Overfittir (potentia	Training	93%	
	Test	99%	

Overfitting and underfitting

Overfitting and underfitting

Data leakage

Overfitting and underfitting

Fixes for overfitting and underfitting

- Try a more advanced model
- Increase model hyperparameters
- Reduce amount of features
- Train longer

- Collect more data
- Try a less advanced model

Comparing models

Experiment Training time Accuracy **Prediction time** → 87.5% 3 min 0.5 sec Model 1 Inputs **Outputs** → 91.3% 92 min 1 sec Inputs Model 2 **Outputs** → 94.7% 176 min 3 4 sec

Outputs

Inputs

Model 3

Things to remember

- Want to avoid overfitting and underfitting (head towards generality)
- Keep the test set separate at all costs
- Compare apples to apples
- One best performance metric does not equal best model

Up next

6. Experimentation

"How could we improve/what can we try next?"