

Estudio del método multiescala generalizado (GMsFEM) y aplicaciones a flujos bifásicos en medios porosos

Yessica Vanessa Trujillo Ladino Trabajo dirigido por Juan Galvis Departamento de Matemáticas, Universidad Nacional de Colombia

Resumen

En este proyecto se estudia y analiza el método de elementos finitos multiescala (MsFEM), el método de elementos finitos multiescala generalizado (GMsFEM) y el método Semi-Discreto Lagrangiano-Euleriano. Se aborda el modelo de flujo bifásico mediante el acoplamiento de los métodos GMsFEM y Semi-Discreto Lagrangiano-Euleriano.

Modelo

Se desea resolver el sistema de ecuaciones diferenciales que modela el flujo bifásico inmiscible de agua y aceite en medios porosos heterogéneos dentro de un reservorio rectangular, $\Omega = [0, X] \times [0, Y]$.

La ecuación de conservación de la masa está dada por $\nabla \cdot v = 0$, donde la velocidad total de filtración de Darcy se expresa como $v = -\Lambda(S)K(x)\nabla p$.

Este sistema está acoplado con la ecuación de transporte para la saturación de agua, $\frac{\partial S}{\partial t} + \nabla \cdot (vf(S)) = 0$, donde S representa la saturación de agua y la función de flujo fraccional f(S) está dada por $f(S) = \frac{k_{rw}(S)}{K_{rw}(S)}$

El coeficiente de movilidad total $\Lambda(S)$ se define en términos de las permeabilidades relativas $k_{r\alpha}(\tilde{S})$ y las

viscosidades de fase μ_{α} ($\alpha=w,o$) como $\Lambda(S)=\frac{k_{rw}(S)}{\mu_{w}}+\frac{k_{ro}(S)}{\mu_{o}}.$ Consideramos curvas de permeabilidad relativa cuadráticas $k_{rw}(S)=S^{2}, k_{ro}(S)=(1-S)^{2},$ con valores de viscosidad $\mu_w = 1$ y $\mu_o = 2$.

Método de Elementos Finitos Multiescala (MsFEM)

Consideremos la ecuación diferencial sobre $D \subset \mathbb{R}^2$, donde k(x) y f(x) son funciones con heterogeneidades.

$$\begin{cases} -\mathrm{div}(k(x)\nabla u(x)) = f(x), & x \in D, \\ u(x) = 0, & x \in \partial D. \end{cases}$$

El método MsFEM produce una solución aproximada $u:D\longrightarrow \mathbb{R}^2$.

Se realiza una partición \mathcal{T}^H del dominio D, cuyos bloques se llamarán K_i , es decir, $\mathcal{T}^H = \{K_i\}$.

Se elige un nodo x_i en la partición \mathcal{T}^H tal que $x_i \notin \partial D$ y se toma la función base de FEM φ_i^0 asociada a este nodo. La función base multiescala φ_i^{ms} asociada a x_i tiene el mismo soporte que φ_i^0 y cumple la siguiente condición:

$$\begin{cases} -\mathrm{div}(k(x)\nabla\varphi_i^{ms}) = 0, & \text{en } K, \\ \varphi_i^{ms} = \varphi_i^0, & \text{en } \partial K. \end{cases}$$

Este sistema se resuelve usando el método de elementos finitos (FEM).

El espacio de los elementos finitos está dado por $W_h = \text{gen}\{\varphi_i^0\}$. La aproximación de la función u(x) se escribe como combinación lineal de funciones base multiescala:

$$u^{ms}(x) = \sum_{i} \alpha_i \varphi_i^{ms}$$

Para encontrar los coeficientes α_i , se multiplica la ecuación diferencial por funciones de prueba v(x) y se resuelve el sistema en escala gruesa usando la siguiente formulación:

Petrov-Galerkin: Funciones de prueba en W_h

$$-\operatorname{div}(k(x)\nabla u^{ms}(x))v(x) = f(x)v(x), \quad v(x) \in W_h$$

Integrando sobre el subdominio K, obtenemos:

$$\sum_{K \in \mathcal{T}^H} \left(\int_K k(x) \nabla u^{ms}(x) \nabla v(x) \, dx \right) = \int_D f(x) v(x) \, dx$$

Reemplazando $u^{ms}(x)$, obtenemos el sistema matricial $A\alpha = b$, con:

$$a_{ij} = \sum_{K \in \mathcal{T}^H} \int_K k(x) \nabla \varphi_i^{ms} \nabla \varphi_j^{ms} \, dx \,, b_i = \int_D f(x) \varphi_j^{ms} \, dx$$

La matriz A es dispersa, por lo que se utilizan métodos eficientes para su resolución.

Método de Elementos Finitos Multiescala Generalizado (GMsFEM)

Consideremos nuevamente el siguiente problema

$$\begin{cases} -\operatorname{div}(k(x)\nabla u(x)) = f(x), & x \in D, \\ u(x) = 0, & x \in \partial D. \end{cases}$$

El objetivo del GMsFEM es encontrar una solución aproximada u(x) que pertenezca al espacio $H_0^1(D)$ y que cumpla con la siguiente ecuación débil para cualquier función de prueba v(x) en el mismo espacio:

$$\int_D k(x)\nabla u(x)\nabla v(x)\,dx = \int_D f(x)v(x)\,dx.$$

Para aproximar la solución u(x), se utiliza una partición gruesa \mathcal{T}^H del dominio D, a la que se le agrega una malla más fina \mathcal{T}^h . Dentro de esta formulación, el espacio de funciones base se define sobre los nodos de la malla \mathcal{T}^H , pero para hacer las funciones más robustas, se incorpora información relevante de la vecindad de cada nodo.

La vecindad de un nodo x_i está dada por $\omega_i = \bigcup \{K_i \in \mathcal{T}^H : x_i \in \overline{K_i}\}.$

Dentro de cada vecindad ω_i , se resuelve un problema de autovalores de alto contraste:

Figura 1. Vecindad del nodo x_i en el dominio D.

Al resolver el problema de autovalores en cada vecindad ω_i , se obtiene un conjunto de vectores propios $\{\psi_{\ell}^{\omega_i}\}$, los cuales son seleccionados de acuerdo con sus valores propios dominantes. A partir de estos, se construyen las funciones base como $\phi_{i,\ell} = \chi_i \psi_\ell^{\omega_i}$, donde χ_i es una función de partición de unidad en la malla gruesa. Así, el espacio base final se define como $V_H = \text{span}\{\phi_i\}$.

Sea $V_h(D)$ el espacio de solución en la malla fina y V_H el espacio en la malla gruesa. La matriz de proyección R se define como $R = [\phi_{1,1}, \phi_{1,2}, \dots, \phi_{N,\ell_N}]$. Dado un vector en la malla gruesa v_H , su correspondiente en la malla fina se expresa como $v_H = Rv_h$.

El problema original en la malla fina está dado por Au = b. Al aplicar la proyección con R, obtenemos el problema reducido en la malla gruesa:

$$A_0 u_0 = b_0$$
, con $A_0 = R^T A R$, $b_0 = R^T b$.

Finalmente, la solución en la malla gruesa se mapea de vuelta a la malla fina mediante $u = Ru_0$.

Resultados numéricos I

Consideremos un problema de difusión isotrópica en una malla de 100×100 , con canales de contraste que conforman un medio de permeabilidad heterogéneo. Asignando un coeficiente de contraste de 1 en el fondo y 10⁶ en los canales e inclusiones (Figura 2).

$$\begin{cases}
-\nabla \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \nabla u(x_1, x_2) = 1, & x \in [0, 1] \times [0, 1], \\
u(x_1, x_2) = 0, & x \in \partial D.
\end{cases}$$

A continuación se presentan las soluciones de la ecuación anterior usando una escala fina, MsFEM y GMs-

Figura 2. Coeficiente de permeabilidad y soluciones.

A continuación se muestran los errores de las soluciones.

Método	Error norma $L_2(D)$
MsFEM	0.8770
GMsFEM	0.4245

Tabla 1. Errores en la norma L_2 .

Método semi-discreto Lagrangiano-Euleriano

Para introducir el método, consideremos el problema de Cauchy asociado a la siguiente ecuación de conservación

$$u_t + H(u)_x + G(u)_y = 0, \quad u(x,0) = u_0(x,y),$$

donde $H, G \in C^1$ y la condición inicial $u_0(x,y)$ pertenece a $L^{\infty}_{loc}(\mathbb{R}^2)$. La formulación en dos dimensiones del esquema semi-discreto Lagrangiano-Euleriano se expresa de la siguiente manera

$$\frac{d}{dt}u_{j,k}(t) = -\frac{\mathcal{F}_{j+\frac{1}{2},k} - \mathcal{F}_{j-\frac{1}{2},k}}{\Delta x} - \frac{\mathcal{G}_{j,k+\frac{1}{2}} - \mathcal{G}_{j,k-\frac{1}{2}}}{\Delta y}.$$

Donde los flujos numéricos bidimensionales en las direcciones x e y de la siguiente manera:

$$\mathcal{F}_{j+\frac{1}{2},k} = \frac{1}{4} \left[b_{j+\frac{1}{2},k}^{x} \left(u_{j+\frac{1}{2},k}^{-} - u_{j+\frac{1}{2},k}^{+} \right) \right] + \left(f_{j,k} + f_{j+1,k} \right) \left(u_{j+\frac{1}{2},k}^{-} + u_{j+\frac{1}{2},k}^{+} \right),$$

$$\mathcal{G}_{j,k+\frac{1}{2}} = \frac{1}{4} \left[b_{j,k+\frac{1}{2}}^{y} \left(u_{j,k+\frac{1}{2}}^{-} + u_{j,k+\frac{1}{2}}^{+} \right) \right] + \left(g_{j,k} + g_{j,k+1} \right) \left(u_{j,k+\frac{1}{2}}^{-} + u_{j,k+\frac{1}{2}}^{+} \right).$$

Resultados numéricos II

Se considera $\Omega = [0, 128] \times [0, 32]$, discretizado en una malla uniforme de 128×32 celdas. Se asigna un coeficiente de contraste de 1 en el fondo y 100 en los canales e inclusiones (Figura 3).

Figura 3. Coeficiente de permeabilidad y solución numérica.

Referencias

- [1] J. Galvis, E. Abreu, J. François y P. Ferraz, Integrating Semi-Discrete Lagrangian-Eulerian Schemes with Generalized Multiscale Finite Elements for Enhanced Two- and Three-Phase Flow Simulations, 2025.
- [2] Y. Efendiev, J. Galvis y T. Hou, Generalized Multiscale Finite Element Methods (GMsFEM). Cornell University, 2013.
- [3] E. Abreu, J. François, W. Lambert y J. Pérez, A class of positive semi-discrete Lagrangian-Eulerian schemes for multidimensional systems of hyperbolic conservation laws, Journal of Scientific Computing, 2022.