Data Structures Chapter 5 Tree

- 1. Introduction
- 2. Binary Tree
- 3. Binary Search Tree
 - Introduction
 - Operations
 - Demo & Coding
- 4. Balancing Tree

Minimum, Maximum:

- Minimum() and maximum() returns the node with min or max key.
 - Note that the entire tree does not need to be searched.
 - The minimum key is always located at the left most node, the maximum at the right most node.
 - Complexity of algorithm to find the maximum or minimum will be O(log N) in almost balanced binary tree. If tree is skewed, then we have worst case complexity of O(N).

```
tree minimum(tree node) { // returns left-most node key
}

tree maximum(tree node) { // returns right-most node key
}
```


Minimum, Maximum:

- Minimum() and maximum() returns the node with min or max key.
 - Note that the entire tree does not need to be searched.
 - The minimum key is always located at the left most node, the maximum at the right most node.
 - Complexity of algorithm to find the maximum or minimum will be O(log N) in almost balanced binary tree. If tree is skewed, then we have worst case complexity of O(N).

```
tree minimum(tree node) { // returns left-most node key
  if (node->left == nullptr) return node;
  return minimum(node->left);
}
```

```
tree maximum(tree node) { // returns right-most node key
}
```


pred(), succ() - predecessor, successor:

Successor

• If the given node has a right subtree then by the BST property the next larger key must be in the right subtree. Since all keys in a right subtree are larger than the key of the given node, the successor must be the smallest of all those keys in the right subtree.

Predecessor

• If the given node has a left subtree then by the BST property the next smaller key must be in the left subtree. Since all keys in a left subtree are smaller than the key of the given node, the successor must be the largest of all those keys in the left subtree.

Complexity of algorithm

 O(log N) in almost balanced binary tree. If tree is skewed, then we have worst case complexity of O(N).

```
tree successor(tree node) {
  if (node != nullptr && node->right != nullptr)
  return nullptr;
}
```

pred(), succ() - predecessor, successor:

Successor

• If the given node has a right subtree then by the BST property the next larger key must be in the right subtree. Since all keys in a right subtree are larger than the key of the given node, the successor must be the smallest of all those keys in the right subtree.

Predecessor

• If the given node has a left subtree then by the BST property the next smaller key must be in the left subtree. Since all keys in a left subtree are smaller than the key of the given node, the successor must be the largest of all those keys in the left subtree.

Complexity of algorithm

 O(log N) in almost balanced binary tree. If tree is skewed, then we have worst case complexity of O(N).

```
tree successor(tree node) {
  if (node != nullptr && node->right != nullptr)
    return minimum(node->right);
  return nullptr;
}
```

Binary Search Trees: Observations

- What do you see in the following BSTs?
 - A **balanced** tree of N nodes has a height of $\sim \log_2 N$.
 - A very unbalanced tree can have a height close to N.

Binary Search Trees: Observations

- For binary tree of height h:
 - max # of leaves: 2^h
 - max # of nodes: 2^{h+1} 1
 - min # of leaves:
 - min # of nodes: h+1
- The shallower the BST the better.
 - Average case height is O(log N)
 - Worst case height is O(N)
 - Simple cases such as adding (1, 2, 3, ..., N), or the opposite order, lead to the worst case scenario: height O(N).

Binary Search Trees: Observations

Q: If you have a sorted sequence, and we want to design a data structure for it.
 Which one are you going to use an array or BST? and why?

Time Complexity	
BST	0(h)
Array	$O(\log n)$

- Q: When searching, we're traversing a path (since we're always moving to one of the children); since the length of the longest path is the height h of the binary search tree, then finding an element takes O(h).
 - Since $h = \log n$ (where n is the number of elements), then it's good! right?
 - No, of course, it is wrong! Why?

A: The nodes could be arranged in linear sequence in BST, so the *height* h could be n. In worst case, it is O(n) instead of O(h).

- It performs a user specified number of insertion(or grow) or deletion(or trim) of nodes in the tree.
- The function growN() inserts a user specified number N of nodes in the tree.
 - If it is an empty tree, the value of keys to add ranges from 0 to N-1.
 - If there are some existing nodes in the tree, the value of keys to add ranges from max + 1 to max + 1 + N, where max is the maximum value of keys in the tree.
- This function growN() is provided for your reference^^.

- It performs a user specified number of insertion(or grow) or deletion(or trim) of nodes in the tree.
- The function growN() inserts a user specified number N of nodes in the tree.
 - If it is an empty tree, the value of keys to add ranges from 0 to N-1.
 - If there are some existing nodes in the tree, the value of keys to add ranges from max + 1 to max + 1 + N, where max is the maximum value of keys in the tree.
- This function growN() is provided for your reference^^.
- If the function is called with AVLtree = true, nodes are added using BST grow() function first. Then reconstruct the BST tree into an AVL tree using reconstruct() function which is much faster.

- The function trimN() deletes N number of nodes in the tree.
 - The nodes to trim are randomly selected from the tree.
 - If N is less than the tree size (which is not N), you just trim N nodes.
 - If the N is larger than the tree size, set it to the tree size.
 - At any case, you should trim all nodes one by one, but randomly.
 - With an AVL tree, reconstruct it after trimming N nodes from BST.

- The function trimN() deletes N number of nodes in the tree.
 - The nodes to trim are randomly selected from the tree.
 - If N is less than the tree size (which is not N), you just trim N nodes.
 - If the N is larger than the tree size, set it to the tree size.
 - At any case, you should trim all nodes one by one, but randomly.
 - With an AVL tree, reconstruct it after trimming N nodes from BST.
- Step 1: Get a list (vector) of all keys from the tree first.

 Get the size of the tree using the size().

 Use assert to check two sizes;
- Step 2: Shuffle the vector with keys. shuffle()
- Step 3: Invoke trim() N times with a key from the vector in sequence. Inside a for loop, trim() may return a new root of the tree.
- Step 4: The function is called with AVLtree = true, then reconstruct the tree.

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- For example:

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- For example:

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- Algorithm: only for pedagogical reason
 - Step 1 store keys of a binary tree into a container like vector or set. (Do not use an array.)
 - Step 2 sort the keys in vector. Skip this step if set is used since it is already sorted.
 - Step 3 Now, do the inorder traversal of the tree and copy back the elements of the
 container into the nodes of the tree one by one.

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- Algorithm:
 - Step 1 store keys of a binary tree into a container like vector or set. (Do not use an array.)
 - Step 2 sort the keys in vector. Skip this step if set is used since it is already sorted.
 - Step 3 Now, do the inorder traversal of the tree and copy back the elements of the
 container into the nodes of the tree one by one.


```
(1) Retrieve the keys from BT: 3 6 8 1 4 0 5 7 2 // if in-order used
```

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- Algorithm:
 - Step 1 store keys of a binary tree into a container like vector or set. (Do not use an array.)
 - Step 2 sort the keys in vector. Skip this step if set is used since it is already sorted.
 - Step 3 Now, do the inorder traversal of the tree and copy back the elements of the
 container into the nodes of the tree one by one.

- (1) Retrieve the keys from BT: 3 6 8 1 4 0 5 7 2 // if in-order used
- (2) Sort keys in the container: 0 1 2 3 4 5 6 7 8

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
- Algorithm:
 - Step 1 store keys of a binary tree into a container like vector or set. (Do not use an array.)
 - Step 2 sort the keys in vector. Skip this step if set is used since it is already sorted.
 - Step 3 Now, do the inorder traversal of the tree and copy back the elements of the
 container into the nodes of the tree one by one.

- (1) Retrieve the keys from BT: 3 6 8 1 4 0 5 7 2 // if in-order used
- (2) Sort keys in the container: 0 1 2 3 4 5 6 7 8
- (3) Replace keys in BT with sorted keys while in-order traversal.

- Convert a binary tree to a binary search tree while keeping its tree structure as it is.
 - (1) Retrieve the keys from BT: 3 6 8 1 4 0 5 7 2 // if in-order used
 - (2) Sort keys in the container: 0 1 2 3 4 5 6 7 8
 - (3) Replace keys in BT with sorted keys while in-order traversal.


```
void get_keys(tree root, set<int> &keys) {
   if (root == nullptr) return;
   keys.insert(root->key);
   get_keys(root->left, keys);
   get_keys(root->right, keys);
}
```

Data Structures Chapter 5 Tree

- 1. Introduction
- 2. Binary Tree
- 3. Binary Search Tree
 - Introduction
 - Operations
 - Demo & Coding
- 4. Balancing Tree

• Example: Case 3: Two children

1. find the node 5 to delete

• **Example:** Case 3: Two children

- 1. find the node 5 to delete
- 2. if (two children case),
 find 5's successor's key = 1

• **Example:** Case 3: Two children

- 1. find the node 5 to delete
- 2. if (two children case),
 find 5's successor's key = 1
- 3. replace 5 with 1

• **Example:** Case 3: Two children

- 1. find the node 5 to delete
- 2. if (two children case),
 find 5's successor's key = 1
- 3. replace 5 with 1
- 4. invoke
- node->right = trim(node->right, 1)

Example: Case 3: Two children

- 1. find the node 5 to delete
- 2. if (two children case),
 find 5's successor's key = 1
- 3. replace 5 with 1
- 4. invoke
- node->right = trim(node->right, 1)

Some thoughts:

- Step 2 Get the heights of two subtree first.
 - If right subtree height is larger, then use the successor.

 Otherwise use the predecessor to shorten the tree height.
- Step 4 simply uses the code for one-child case deletion.

Example: Case 3: Two children

- 1. find the node 5 to delete
- 2. if (two children case),
 find 5's successor's key = 1
- 3. replace 5 with 1
- 4. invoke
- node->right = trim(node->right, 1)

Some thoughts:

- Step 2 Get the heights of two subtree first.
 - If right subtree height is larger, then use the successor.

 Otherwise use the predecessor to shorten the tree height.
- Step 4 simply uses the code for one-child case deletion.

Some questions:

- What if successor has two children?
 - Not possible!
 - Because if it has two nodes, at least one of them is less than it, then in the process of finding successor, we won't pick it!