Vertical Asymptotes and Infinite Limits

Consider
$$f(x) = \frac{3}{x-2}$$

Def If $f(x)$ approaches infinity for regative infinity as x approaches C from the right or the left, then the line $x=C$ is a vertical asymptote of the graph of f .

Common instance: Rational functions
$$f(x) = \frac{p(x)}{q(x)}$$

where p,q are polynomials. If c is such that q(x)=0 and $p(x) \neq 0$, there is a vertical asymptote at x=c.

Ex
$$f(x) = \frac{1}{x-1}$$

Asymptote at $x=1$
 $\lim_{x\to 1^+} f(x) = \infty$ $\lim_{x\to 1^+} f(x) = -\infty$

$$E \times f(x) = \frac{x+2}{x^2-2x}$$

Soln
$$0 = x^2 - 2x$$

= $x(x-2)$
 $x = 0, 2$

Then
$$x=0$$
 and $x=2$ are vertical asymptotes $(x+2 \neq 0 \text{ for } x=0 \text{ or } x=2)$.

Ex
$$f(x) = \frac{x^2 + 2x - 8}{x^2 - 4}$$

Soln $f(x) = \frac{(x+4)(x-2)}{(x+2)(x-2)}$
 $= \frac{x+4}{x+2}$, $x \neq 2$
So there is one vertical asymptote at $x = -2$.

Horizontal Asymptotes and Limits at Infinity

Pet If f is a function and L, and L2 are real numbers,

lim
$$f(x) = L_1$$
 and $\lim_{x \to -\infty} f(x) = L_2$

are limits at infinity. The lines $y = L_1$ and $y = L_2$ are horizontal asymptotes of the graph of f.

Ex $\lim_{x \to \infty} \left(5 - \frac{2}{x^2} \right)$

Solin $\lim_{x \to \infty} \left(5 - \frac{2}{x^2} \right) = \lim_{x \to \infty} \left(5 \right) - 2 \lim_{x \to \infty} \left(\frac{1}{x^2} \right)$

So there is a horizontal asymptote at y=5.

Honzontal asymptotes of rational functions.

Let f(x) = P(x)/q(x) be a rational function.

- i) If the degree of the numerator (p(x)) is less than the degree of the denominator (q(x)), then y=0 is a horizontal asymptote.
- 2) If the degree of the numerator is equal to the degree of the denominator, then there is a vertical asymptote $y = \frac{a}{b}$ where a, b are the leading coefficients of p(x), q(x), respectively.
- 3) If the degree of the numerator is greater than the degree of the denominator, then there are no vertical asymptotics.

Ex
$$y = \frac{3x^2 + 3}{3x^2 + 1}$$
 $\Rightarrow \frac{\text{degree } 2}{\text{degree } 2}$ so $y = -\frac{2}{3}$ is a horizontal asymptote

Soln 0 = 100-P

P = 100 is a Vertical asymptote.

Ve can say that cost increases dramatically as the percent P approaches 100%