

32 位微控制器 XH-Link-Writer 编程器

用户手册

Rev1.0 2023年08月

适用对象

产品系列	产品型号	产品系列	产品型号
HC32F460	HC32F460PETB HC32F460PEHB HC32F460KETA HC32F460KEUA HC32F460JETA HC32F460JEUA HC32F460PCTB HC32F460KCTA HC32F460JCTA	HC32F4A0	HC32F4A0TIHB HC32F4A0SITB HC32F4A0SIHB HC32F4A0RITB HC32F4A0PITB HC32F4A0PIHB HC32F4A0SGT8 HC32F4A0SGHB HC32F4A0RGTB HC32F4A0RGTB
HC32L110	HC32L110C6PA HC32L110C6UA HC32L110B6PA HC32L110B6YA HC32L110C4PA HC32L110C4UA HC32L110B4PA	HC32L130/136	HC32L136K8TA HC32L136J8TA HC32L130J8TA HC32L130J8UA HC32L130F8UA HC32L130E8PA
HC32L072/073	HC32L072PATA HC32L072KATA HC32L072JATA HC32L072FAUA HC32L073PATA HC32L073KATA HC32L073JATA	-	-

声明

- ★ 小华半导体有限公司(以下简称: "XHSC")保留随时更改、更正、增强、修改小华半导体产品和/或本 文档的权利,恕不另行通知。用户可在下单前获取最新相关信息。XHSC 产品依据购销基本合同中载明 的销售条款和条件进行销售。
- ★ 客户应针对您的应用选择合适的 XHSC 产品,并设计、验证和测试您的应用,以确保您的应用满足相应 标准以及任何安全、安保或其它要求。客户应对此独自承担全部责任。
- ★ XHSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ★ XHSC 产品的转售,若其条款与此处规定不同,XHSC 对此类产品的任何保修承诺无效。
- ★ 任何带有"®"或"™"标识的图形或字样是 XHSC 的商标。所有其他在 XHSC 产品上显示的产品或服务名称均为其各自所有者的财产。
- ★ 本通知中的信息取代并替换先前版本中的信息。

©2023 小华半导体有限公司 保留所有权利

目 录

适用]对象		2
声	明		3
目	录		4
1	简介		5
	1.1	XH-Link-Writer 特性	5
	1.2	XH-LINK 特性	6
	1.3	XH-LINK 引脚	6
2	XH-Li	nk-Writer 描述	7
	2.1	编程方式	7
	2.2	供电	7
	2.3	软件界面	7
3	驱动多	·装	9
4	操作步	テ骤	10
	4.1	硬件连接	.10
	4.2	双击打开 XH-Link-Writer.exe 软件并连接	.11
	4.3	配置目标 MCU 型号	.12
	4.4	配置烧写流程设置	.13
	4.5	滚码功能设置	.14
	4.6	设置烧录目标文件	.15
	4.7	读保护 1 设置	.16
	4.8	启动烧写	.17
	4.9	软件退出	.17
5	MCU	仿真调试	18
6	MCU	ISP 编程	19
7	错误处	理	20
	7.1	提示	.20
	7.2	错误	.20
版才	修订语	ᅾ	22

1 简介

XH-Link-Writer 是为小华半导体(XHSC)的 Cortex-M 系列 MCU 提供的在线编程环境,遵循 ARM 公司 CMSIS-DAP 标准,支持小华半导体旗下所有的 Cortex-M 系列 MCU 产品,目的为用户提供一款小巧便携、安全可靠、操作简单的编程工具。

XH-Link-Writer 系统如图 1-1 所示,主要由 XH-Link-Writer 软件和 XH-LINK 主板组成,目标 MCU 通过 SWD 或者 UART 方式连接 XH-LINK。

图 1-1 XH-Link-Writer 系统连接图

1.1 XH-Link-Writer 特性

XH-Link-Writer 支持的功能如下:

- 1) 芯片编程参数可配置:
 - 芯片型号选择
 - 编程动作
 - 片擦除/页擦除
 - 读保护
 - 滚码功能
 - 复位功能
 - 编程速度(1M/5M/10M)
- 2) 芯片编程参数配置可保存,便于下次启动快速使用。
- 3) 编程接口支持 SWD。

1.2 XH-LINK 特性

XH-LINK 支持的功能如下:

- 1) 在线调试的功能
 - 支持目标板 3.3V 或 5V 自供电环境;
 - 可直接在 Keil、IAR Embedded Workbench 等集成开发环境(Integrated Development Environment, IDE)下调试;
 - 支持串行线调试(Serial Wire Debug, SWD)接口。
- 2) USB 转串口功能
 - 采用 USB CDC 组合设备支持虚拟串口;
 - 只需一根 USB 线即可完成调试和虚拟串口的功能;
 - 可配置 USB 虚拟串口的波特率、奇偶校验、数据位和停止位。
- 3) 硬件复位按键功能
- 4) LED 电源及工作状态指示

1.3 XH-LINK 引脚

XH-LINK 编程接口引脚说明如表 1-1 所示。

表 1-1 调试接口说明

编程仿真接口 引脚标号	功能	备注
5V0	5.0V 电源输出	输出 5.0V 电压,调试时可悬空该引脚,也可用作目标 MCU 系统供电
3V3	3.3V 电源输出	输出 3.3V 电压,调试时可悬空该引脚,也可用作目标 MCU 系统供电
RX	UART 数据接收引脚	连接目标板 MCU UART 数据发送引脚
TX	UART 数据发送引脚	连接目标板 MCU UART 数据发送引脚
RST	目标板 MCU 复位控制引脚	连接目标板 MCU 复位引脚
CLK	SWD 接口时钟信号引脚	连接目标板 MCU SWD 串行线时钟引脚
DIO	SWD 接口数据信号引脚	连接目标板 SWD 串行线数据输入/输出引脚
GND	地	连接目标板 MCU 接地引脚
VCC	SWD/UART/RST 信号增强驱动	调试时悬空该引脚,增强驱动时外接 3.3V

2 XH-Link-Writer 描述

2.1 编程方式

XH-Link-Writer 目前支持 SWD 编程模式,SWD 编程模式使用 DIO/ CLK/ GND/ RST 四根引脚连接 MCU 系统,3V3/ 5V0 根据 MCU 端电源需要来连接。

芯片的 SWD 接线方法如图 2-1 所示。

图 2-1 SWD 接线方式

2.2 供电

目标 MCU 系统可以选择外部供电或者使用 XH-LINK 主板供电, XH-LINK 可以输出 3.3V 和 5.0V。

2.3 软件界面

双击"XH-Link-Writer.exe"打开软件,软件界面如图 2-2。

图 2-2 软件界面

XH-Link-Writer 功能及特性如下:

- 自动识别编程器并显示于列表,编程前需要点击"连接"按钮。
- 芯片配置区可以设置目标 MCU 型号,手动选择完 MCU 型号后,目标文件选择/读保护设置/滚码使能设置需要重新配置,MCU 型号可保存到配置文件。
- 擦除:擦除支持两种方式:片擦除和页擦除,片擦除是擦除整个 MCU flash,页擦除根据编程的目标文件所占 flash 页的位置进行擦除,默认片擦除使能,修改设置后可保存到配置文件。
- 空白检测:检查整个芯片 flash 是否处于空白状态 (全是 0xFF),确保 flash 擦除有效,默认使能。
- 烧写:将目标文件编程到 MCU flash 的操作,默认使能。
- 校验:验证编程到 flash 的数据是否跟烧录目标文件一致,默认使能。
- 重启: 固件编程成功后让 MCU 复位后自动运行,修改设置后可保存。
- 读保护 1:针对 flash 区域实行读保护,以防不受信任的用户读取 flash 数据,保护后后可通过密码读取 flash 数据,不同的 MCU 型号支持的保护级别不同,保护级别可保存到配置文件,密码不会被保存,重新开启软件需要再次输入密码。
- 滚码功能使能后,需要设置滚码参数。滚码参数包括滚码起始地址、起始编号、步长,使能状态/历史烧录编号及步长可保存到配置文件。
- 滚码起始地址:滚码编号写到 MCU flash 的地址,占用 4 个字节的空间,地址必须在 MCU flash 有效范围内,且不和固件本身重叠冲突,起始地址可保存到配置文件。
- 滚码起始编号:大小占用 4 个字节的空间,格式为十进制输入,有效范围为 0 到 4294967295(十六进制 0xFFFF FFFF)到达最大值后自动归零,烧录的当前数据可保存到配置文件。
- 滚码步进:每个编号之间的步进值,设置的数据可保存到配置文件,步进有效范围为 0 到 999。
- 滚码当前数据:显示本次编程写入的编号,该数据可作为历史数据保存到配置文件。
- 滚码历史数据:显示上次成功写入的编号。
- 重置按钮:当用户不需要使用保存的滚码配置信息设置时,重置后滚码功能不再使能,需要使用时可重新使能。
- 信息提示区显示操作提示性及操作进度信息。
- 烧写速度为 SWD 时钟最大频率,共有 1M/ 5M/ 10M 三种设置可供选择,速率越高,理论烧写时间越短。
- 目标文件区为要烧录到 MCU 系统的固件文件路径,可选择 hex 和 bin 格式的文件,选择 bin 格式的需要设置合法有效起始地址,推荐使用 hex 格式,XH-Link-Writer 自动识别固件地址。
- 点击启动烧写按钮,烧写动作启动。
- 底部烧写进度区实时显示烧写的进度,百分比格式提示。

3 驱动安装

本软件需要 Microsoft.NET Framework v3.5,如果没有安装 Framework 3.5 将出现如下错误或者软件无法运行,如图:

图 3-1 无法运行

请确认 "C:\Windows\Microsoft.NET\Framework"是否存在 Framework 3.5,如下图:

图 3-2 Framework3.5

如果操作系统未安装,请去 Microsoft 官网进行下载,选择相应的版本进行下载,如下:

Microsoft .NET Framework 3.5

图 3-3 Framework 3.5 下载

XH-Link-Writer 软件所在文件夹文件目录如图 3-4:

图 3-4 XH-Link-Writer 文件目录

"Prj.xml"用户配置文件。用以保存用户相关设置。

"XH-Link-Writer"为执行程序文件。

"libusb-1.0.dll"为 window dll 文件。

4 操作步骤

以 MCU 型号 HC32F460JETA 为例说明硬件连接及软件设置。

4.1 硬件连接

以 EV_F460_LQ100_Rev2.0 EVB 板为例,XH-Link-Writer 编程硬件接口 DIO/ CLK/ GND/ RST 连接 EVB J21 排针上的 DIO/ CLK/ GND/ RST,EVB 使用 XH-LINK 的 3.3V 电源,J21 上 3.3V 连接编程硬件接口 3.3V,实际连接如下图 4-1。

图 4-1 XH-LINK/ EV_F460_LQ100_Rev2.0 SWD 接口连接

4.2 双击打开 XH-Link-Writer.exe 软件并连接

最高速度默认为 5M,选中编程器列表中 XH-LINK 编程器,点击"连接"按钮后,显示信息为"设备打开成功",如图 4-2。

注:点击"连接"按钮成功后会变成"断开连接",若连续点击"连接"没有出现"断开连接"可手动按 *XH-LINK* 复位按键后再尝试连接。

图 4-2 连接成功

4.3 配置目标 MCU 型号

从芯片型号下拉框选取一个与编程目标板相对应的 MCU 型号,如 HC32F460xExx/ HC3245xxExx,如 图 4-3。

图 4-3 MCU 型号选择

4.4 配置烧写流程设置

擦除方式采用默认片擦除,空白检测/烧写/校验/重启功能为使能状态,如图 4-4。

注: *MCU* 型号 *HC32F460xExx/ HC32F45xxExx or HC32F4A0* 读保护后再次使用 *XH-Link-Writer* 烧录必须选择片擦除才能烧写成功。

图 4-4 烧写流程配置

4.5 滚码功能设置

勾选滚码使能,设置滚码地址为 0x1000,滚码起始编号为 1,步长为 1,如图 4-5。

注意: 滚码起始地址跟固件大小范围内地址有冲突时,会有提示消息框确认防止覆盖固件有效数据;有历史数据时,以历史编号/步长设置值自动滚码烧录,当需要重新设置时,可通过以下两种方式:

- 重新选择 MCU 型号后,勾选滚码使能后设置参数。
- 点击重置按钮后,勾选滚码使能后设置参数。

图 4-5 滚码设置

4.6 设置烧录目标文件

目标文件格式支持 hex 和 bin 两种格式,当目标文件为 hex 文件格式时,无需配置起始地址,如图 4-6; 当目标文件为 bin 文件格式时,起始地址默认十六进制配置,如图 4-7。设置完后可以预览固件数据。

图 4-6 hex 格式烧录文件设置

图 4-7 Bin 格式烧录文件设置

4.7 读保护 1 设置

根据 MCU 型号不同读保护的可支持级别不同,XH-Link-Writer 自动识别支持的级别,最高可支持到 Lv3, Lv1 需要设置密码的长度必须为 96 位即 12 个字符如图 4-8。

图 4-8 读保护设置

4.8 启动烧写

点击 "启动烧写"按钮后,XH-Link-Writer 底部烧写进度条实时显示烧写进度百分比,信息区显示烧写编程成功信息及连接时间,如图 4-9。

图 4-9 启动烧录

4.9 软件退出

可通过点击右上角的×按钮退出软件,然后会有提示信息窗口确认是否要保存此次烧录的配置,点击确定按钮后,配置信息保存到 Prj.xml 文件中,下次打开 XH-Link-Writer 软件会自动加载上次保存的配置信息;点击取消则不保存,如图 4-10。

图 4-10 保存配置提示

5 MCU 仿真调试

XH-LINK 主板遵循 ARM 公司 CMSIS-DAP 标准,使用硬件 SWD 接口连接 MCU 目标板后可使用 Keil、IAR Embedded Workbench 等集成开发环境调试下载固件;详细步骤可参考《UM_Cortex-M 仿真器用户手册_RevX.XX.pdf》。

6 MCU ISP 编程

XH-LINK 主板支持 UART 接口,搭配"xhsc.exe"软件可用 ISP 方式升级 MCU 固件,详细步骤参考《Cortex-M 在线编程器用户手册_RevX.XX.pdf》。

7 错误处理

7.1 提示

表 7-1 提示

提示信息	描述	处理
设备打开成功	连接 XH-LINK 成功	-
设备关闭	断开 XH-LINK 成功	-
编程操作前,需先连接设备!请 点击对应按键	打开软件后请首先连接 XH-LINK 设备	-
未指定 Bin 文件地址!	目标文件选择为 bin 格式文件时需要手动输入烧录 起始地址	-
目标芯片 Halt 失败!	芯片处于保护状态	-
自动编号地址与用户代码重叠,	滚码起始地址和固件有效地址重叠,询问是否继续	点击"是"继续自动编号,否则停
是否继续操作	自动编号	止写入编号
未找到目标芯片!	芯片处于保护状态或者本体异常	解除保护或者检查本体是异常
空白检查成功! 检查结果: XX	Flash 空白检查结果	-

7.2 错误

表 7-2 错误

错误信息	描述	处理
请选择需要烧录的文件!	未选取烧录目标文件	选取烧录目标文件
文件路径不正确或文件无效!	选取的目标文件路径不存在或者文件无效或者被	重新选取目标文件并确保目标文件
文件路径个正确或文件无效:	占用	有效且不被占用
Hex 文件格式错误!	hex 文件格式错误	确认 hex 文件是否正确
与设备失去连接!请重新启动!	XH-Link-Writer 无法连接编程器	按 XH-LINK 复位按键
密码不能为空,请填写	密码栏位可输入时需要输入密码	输入正确密码
参数不能为空,请填写!或参数	滚码使能选项勾选时,起始地址要填写正确	正确填写合法起始地址
长度超过5		
始编号参数不能大于	滚码写入起始编号设置值超出范围	填写合法及正确格式数值
0xFFFF FFFF,请重新填写		
Bin 文件地址非法,请重新填写	bin 文件起始地址值非法	正确填写合法及正确格式数值
参数不能为空,请填写!或参数	滚码自动编码步长太长	设置合法步长数值
长度超过3		
文件错误! 长度超出所选芯片	烧录文件大小超出所选芯片 Flash 大小	重新选择正确的烧录文件或重新选
Flash 大小。		择正确的目标 MCU
		检查硬件连接,检查烧写流程,尝
火涂体心力 大蚁	页擦除方式擦除失败 	试重新上电
验证成功,验证结果是:不匹	固件烧写后校验	检查硬件连接,检查烧写流程,尝

错误信息	描述	处理
配		试重新上电
7/T 7 - 1/4	固件烧写后校验	检查硬件连接,检查烧写流程,尝
验证不成功		试重新上电
松砂和山東大井山		检查硬件连接,检查烧写流程,尝
检验和归零不成功! 	检验和归零失败	试重新上电
始年了武士	编程失败	检查硬件连接,检查烧写流程,尝
编程不成功 		试重新上电

版本修订记录

版本号	修订日期	修订内容
Rev1.0	2023/08/07	初版发布。