Proposition 10.27. Given any $r \in \mathbb{R}_{>0}$, the number \sqrt{r} is unique in the sense that, if x is a positive real number such that $x^2 = r$, then $x = \sqrt{r}$.

Proof. Suppose u and v are such that $u^2 = r$ and $v^2 = r$. Let $w = \sup\{x \in \mathbb{R} | x^2 < r\}$. We will show u = w = v. For any $x \in A := \{x \in \mathbb{R} | x^2 < r\}$ we see that $x^2 < u^2 = r$. If x < 0, then clearly x < u. If $x \ge 0$, then proposition 10.5 (x < u if and only if $x^2 < u^2$) ensures that x < u. Since w is the least upper bound of A, we conclude that $w \le u$. But $w^2 = r = u^2$. By proposition 10.5 again it must be the case that w = u. Similarly, v = w.