

COMODCoordenação de Modelagem Computacional

Relatório de Atividades

Servidor: Marcio Borges

Petrópolis-RJ September 8, 2023

1 FISHER INFORMATION

Let $f(x; \theta)$ be the probability density function of the random variable \mathbb{X} conditioned on the parameter θ . The Fisher information measures the amount of information that an observation of \mathbb{X} carries about the unknown parameter θ . The partial derivative of the natural logarithm of the likelihood function is called **score** (S):

$$S(x,\theta) = \frac{\partial}{\partial \theta} \log [f(x;\theta)]. \tag{1}$$

Fisher information is defined as the variance of the score S:

$$\mathcal{I}(\theta) = \mathsf{E}[\mathsf{S}^{2}|\theta] = \mathsf{E}\left[\left(\frac{\partial}{\partial \theta}\log\left[f\left(x;\theta\right)\right]\right)^{2}\Big|\theta\right]$$

$$= \int_{\mathbb{R}}\left(\frac{\partial}{\partial \theta}\log\left[f\left(x;\theta\right)\right]\right)^{2}f\left(x;\theta\right)dx$$
(2)

If $\log [f(x; \theta)]$ is twice differentiable with respect to θ and under certain regularity conditions, Fisher information can be written as

$$\mathcal{I}(\theta) = \mathsf{E}\left[-\frac{\partial^2}{\partial \theta^2} \log\left[f\left(x;\theta\right)\right] \middle| \theta\right]. \tag{3}$$

Let \mathbb{X} be a scalar Gaussian random variable *i.e.* $\mathbb{X} \sim \mathbb{N}(\mu, \sigma^2)$. Then the probability density function is parameterized by the parameters μ and σ :

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]. \tag{4}$$

Substituting Eq. (4) in Eq. (3) where $\theta = \mu$ or σ we can compute de Fisher information for a Gaussian variable as:

$$\mathcal{I}(\mu) = \mathsf{E}\left[-\frac{\partial^2}{\partial\mu^2} \left[\log\left(\frac{1}{\sigma\sqrt{2\pi}}\right) - \frac{1}{2}\left(\frac{\mathbb{X} - \mu}{\sigma}\right)^2\right] \Big| \mu\right]$$

$$= \mathsf{E}\left[-\frac{\partial}{\partial\mu}\left(-\frac{\mathbb{X} - \mu}{\sigma^2}\right) \Big| \mu\right]$$

$$= \mathsf{E}\left[\frac{1}{\sigma^2}\right] = \frac{1}{\sigma^2}$$
(5)

$$\mathcal{I}(\sigma) = \mathsf{E}\left[-\frac{\partial}{\partial \sigma} \left[-\frac{1}{\sigma} + \frac{(\mathbb{X} - \mu)^2}{\sigma^3} \right] \middle| \sigma\right]$$

$$= \mathsf{E}\left[-\frac{1}{\sigma^2} + \frac{3(\mathbb{X} - \mu)^2}{\sigma^4} \middle| \sigma\right]$$

$$= -\frac{1}{\sigma^2} + \frac{3\sigma^2}{\sigma^4} = \frac{2}{\sigma^2}$$
(6)

2 KLE

REFERENCES

REFERENCES