Berkay Kebeci 21102706 Selçuk Gülcan 21101231

CS470 Project Proposal

We would like to implement one-to-one communication system with password authentication. There will be no chat server, clients will communicate each other directly. Here are description of some abbreviations used in protocol diagrams.

C_A = Client A (port number 5001)

 C_B = Client B (port number 5002)

AS = Authentication Server (port number 7777)

TGS = Ticket Granting Server (port number 7778)

K_{KDC} = Symmetric key shared by AS and TGS

K_A = Password of client A (Client A and AS know this information)

K_R = Password of client B

K_{AB} = Symmetric key shared by client A and B and it is used for communication

S_A = Session key of client A

TGT = Ticket granting ticket containing S_A and id_A ($K_{KDC}{S_A, id_A}$)

Note: We consider that id of clients are port numbers. That is, id_A=5001 and id_B=5002.

Login Protocol

- 1. Client A sends his id and hashed password to AS.
- 2. AS checks this hash value with its own hash value of client A password.
- 3. AS sends S_A and TGT to client A after encrypting them over K_A .

Connection Protocol

- 1. Client A sends his id, id of client B,TGT (he received it from AS) and current timestamp encrypted under S_A to TGS
- 2. TGS decrypts TGT and checks if id, and S, are matched with TGT.
- 3. TGS sends $S_A\{id_B, K_{AB}, K_R\{id_A, K_{AB}\}\}$ ($K_R\{id, K_{AB}\}$ id the ticket of B)

Communication

- 1. Client A sends K_B{id_A,K_{AB}}, K_{AB}{timestamp} to client B.
- 2. Client B sends K_{AB}{timestamp+1}

Now, client A and client B has K_{AB} . Then can communicate by using K_{AB} .

Figure 1 - Login and Connection Protocol

Figure 2 - Communication