< Image Classifier Assignment>

- PeopleSpace Online Internship Program -

Name (ENG) : Lily

Name (KOR) : Hyomin Kim

Category: Nike vs Adidas vs Reebok (Shoes)

1. The confusion matrix for your dataset (2points)

2. A screenshot of the output printed of the 10 images with the highest loss in your dataset (1 point)

3. For each of the 10 images, give an explanation of why this image was included in the top loss plot, and the resulting action you took. Did you remove the image, why? And if not, why did you include it? (2 points)

Image	Prediction	Ground	Action	Reason
0.922016		Truth(Label)		
	Nike	Reebok	Moved to	Has good features
9			Reebok	of Reebok shoes
				(triangle logo in
				shoes)
	Reebok	Nike	Moved to Nike	Has good features
1				of Nike(Nike logo
				on shoes and color
				combination)
The O	Adidas	Nike	Removed	It's not image of
MIKE				shoes. It's hoodie
1				and doesn't have
				any relationship
				with shoes data.
A .	Reebok	Adidas	Moved to Adidas	Has good features
111				of adidas
				shoes(Logo of
·				adidas and design)
	reebok	Adidas	Moved to Adidas	Has good features
P 2				of adidas
				shoes(Clean
				background, logo
				of shoes, and
				design)
	Nike	Reebok	Moved to	Has good
			Reebok	features(Design
				and logo of
				Reebok)
	Nike	Adidas	Moved to adidas	Has good
8				features(Adidas
				logo, design, clean
				background)

	Nike	Adidas	Removed	Doesn't have any
				information. Just a
				black background.
8	Reebok	Nike	Moved to Nike	Has good features(Nike logo and design)
8	Reebok	Nike	Moved to Nike	Has good features(Nike logo and design)

4. A summary of your approach to acquiring the data. (1 point)

At first I used original Bing API function (search_images_bing). However this function can get up to 150 images and I guessed it is too small for training. To get more image data I used modified Bing API function (search_images_bing_many) and gathered 449 images for each category(nike/adidas/reebok). However accuracy became much lower than before. Therefore I decided to use model which got more higher accuracy but smaller dataset(150 images for each category).

In original code, epoch was set to 5 and I increased it to 10, and I changed model from "Resnet34" to "Resnet50", which has more hidden layer. However "Resnet34" got better result so I used "Resnet34".

I tried to get optimized learning rate by drawing graph of loss-learning rate graph.

I tried to train again with learning rate about 1e-3. However, after training with modified learning rate, I got lower accuracy. Therefore, I used model which I used before.

Finally, I can get the accuracy with about 81%.

epoch	train_loss	valid_loss	error_rate	time			
0	1.842211	2.671608	0.580247	02:01			
/usr/local/lib/python3.6/dist-packages/PIL/Image.py:932: Usa "Palette images with Transparency expressed in bytes shou							
epoch	train_loss	valid_loss	error_rate	time			
0	1.153562	1.902706	0.469136	02:50			
1	1.025188	1.229774	0.308642	02:32			
2	0.891434	0.989559	0.333333	02:42			
3	0.779697	0.977535	0.308642	02:45			
4	0.691033	0.898852	0.234568	02:57			
5	0.621642	0.855881	0.271605	02:42			
6	0.561179	0.842546	0.197531	02:58			
7	0.518351	0.832619	0.185185	02:30			
8	0.476852	0.798015	0.197531	02:32			
9	0.440538	0.815685	0.197531	02:53			