

planetmath.org

Math for the people, by the people.

$\begin{array}{c} \textbf{proof of theorems in additively} \\ \textbf{indecomposable} \end{array}$

 ${\bf Canonical\ name} \quad {\bf ProofOfTheoremsInAdditivelyIndecomposable}$

Date of creation 2013-03-22 13:29:07

Last modified on 2013-03-22 13:29:07

Owner mathcam (2727)

Last modified by mathcam (2727)

Numerical id 9

Author mathcam (2727)

Entry type Proof
Classification msc 03E10
Classification msc 03F15

• H is closed.

Let $\{\alpha_i \mid i < \kappa\}$ be some increasing sequence of elements of \mathbb{H} and let $\alpha = \sup\{\alpha_i \mid i < \kappa\}$. Then for any $x, y < \alpha$, it must be that $x < \alpha_i$ and $y < \alpha_j$ for some $i, j < \kappa$. But then $x + y < \alpha_{\max\{i,j\}} < \alpha$.

• H is unbounded.

Consider any α , and define a sequence by $\alpha_0 = S\alpha$ and $\alpha_{n+1} = \alpha_n + \alpha_n$. Let $\alpha_{\omega} = \sup_{n < \omega} \alpha_n$ be the limit of this sequence. If $x, y < \alpha_{\omega}$ then it must be that $x < \alpha_i$ and $y < \alpha_j$ for some $i, j < \omega$, and therefore $x + y < \alpha_{\max\{i,j\}+1}$. Note that α_{ω} is, in fact, the next element of \mathbb{H} , since every element in the sequence is clearly additively decomposable.

• $f_{\mathbb{H}}(\alpha) = \omega^{\alpha}$.

Since 0 is not in \mathbb{H} , we have $f_{\mathbb{H}}(0) = 1$.

For any $\alpha+1$, we have $f_{\mathbb{H}}(\alpha+1)$ is the least additively indecomposable number greater than $f_{\mathbb{H}}(\alpha)$. Let $\alpha_0 = Sf_{\mathbb{H}}(\alpha)$ and $\alpha_{n+1} = \alpha_n + \alpha_n = \alpha_n \cdot 2$. Then $f_{\mathbb{H}}(\alpha+1) = \sup_{n<\omega} \alpha_n = \sup_{n<\omega} S\alpha \cdot 2 \cdots 2 = f_{\mathbb{H}}(\alpha) \cdot \omega$. The limit case is trivial since \mathbb{H} is closed and unbounded, so $f_{\mathbb{H}}$ is continuous.