Ridge regression and mixed models

19 Oct 2023

Ridge in a nutshell

- **penalized** models: instead of minimizing SSQ = $\sum ((\mathbf{y} \mathbf{X}\beta)_i)^2$, minimize SSQ + $\lambda ||\beta||_2$ (ridge)
- or + $||\beta||_1$ (lasso)
- optimize bias-variance tradeoff
- equivalent to imposing iid Gaussian priors on each element of β
- lasso (and elastic net, which is a convex combination of L2 and L1 penalties) are popular because they **induce sparsity**
 - *likelihood surfaces* are non-convex with cusps at zero
 - optimization with non-convex surfaces is a nuisance because it makes the basic optimization problem nonlinear; we need to use a different algorithm (coordinate descent/soft thresholding); can't use *only* linear algebra
- can generalize from penalized LM to penalized GLM

Andrew Gelman on variable selection

Variable selection (that is, setting some coefficients to be exactly zero) can be useful for various reasons, including: *It's a simple form of regularization. *It can reduce costs in future data collection. Variable selection can be fine as a means to an end. Problems can arise if it's taken too seriously, for example as an attempt to discover a purported parsimonious true model.

Choosing penalty strength

- typically by cross-validation
- leave-one-out (LOOCV) vs k-fold

Practical points

- Predictors must be standardized
- Intercept should usually be unpenalized
- Avoid data leakage
 - don't include variables that are 'future' indicators of the outcome (e.g. see here)
 - full pipeline must be cross-validated (i.e. don't do data-dependent variable selection *before* cross-validating, or use the full data set to select a pipeline)
 - cross-validation must account for structure in the data
 - either ensure that residuals are conditionally independent
 - or take account of grouping structures in the data (block bootstrap, spatial stratification, etc. Wenger and Olden (2012)

Ridge vs lasso

- In practice people just try both (or elastic net)
- Conjecture: whether ridge or lasso is a better *predictive* model in a particular case depends on the *effect size spectrum*

Ridge by data augmentation

• set

$$\mathbf{B} = \left(\begin{array}{c} \mathbf{X} \\ \sqrt{\lambda} \mathbf{I} \end{array}\right)$$

- and $\mathbf{v}^* = (\mathbf{v} \ \mathbf{0})$
- so that $\mathbf{B}^{\mathsf{T}}\mathbf{B} = \mathbf{X}^{\mathsf{T}}\mathbf{X} + \lambda I$ and the residual sum of squares is unchanged

Inference

- inference from penalized models is really hard
- classical CIs for ridge are **identical** to OLS (Obenchain 1977) > ridge techniques do not generally yield new'' normal theory statistical inferences: in particular, ridging does not necessarily produceshifted' confidence regions.
- **no free lunch** (i.e., no true narrowing of CIs/decreased uncertainty without additional assumptions)
- post-selection inference is a big deal but requires very strong assumptions (asymptotic, 'gap')
- prediction intervals are often neglected (conformal prediction, jackknife+ (Barber et al. 2021)): MAPIE

Practical

- glmnet is very good
- ridge, lmridge, ... ('library(sos); findFn("{ridge regression}")1)
- need to give y and X directly (although see glmnetUtils package)

Tangent: how do I know if an R package is any good?

- how old is it/how many releases has it had?
- is it actively developed?
- does the documentation give literature citations?
- does it have reverse dependencies?
- what is its ranking on CRAN? packageRank::packageRank("lmridge") (80th percentile)

James-Stein estimators

- more formally, why is ridge better?
- based on a single observation, \mathbf{y} , of a *multivariate* response with dimension $m \geq 3$, shrinking the value (usually toward zero) is a better estimate of the mean than the value itself

From ridge to mixed models

• what if we say

$$\mathbf{y} \sim \text{Normal}(\mathbf{X}\beta, \sigma^2)$$
$$\beta \sim \text{MVN}(\mathbf{0}, \sigma_g^2 \mathbf{I})$$

?

i.e. treat this as an *empirical Bayesian* problem (we estimate the β values, but do not put a prior on σ^2 or a hyperprior on σ_g^2 (= $1/\lambda$)

References

- Barber, Rina Foygel, Emmanuel J. Candès, Aaditya Ramdas, and Ryan J. Tibshirani. 2021. "Predictive Inference with the Jackknife+." *The Annals of Statistics* 49 (1): 486–507. https://doi.org/10.1214/20-AOS1965.
- Obenchain, R. L. 1977. "Classical F-Tests and Confidence Regions for Ridge Regression." *Technometrics* 19 (4): 429–39. https://doi.org/10.1080/00401706.1977.10489582.
- Roberts, David R., Volker Bahn, Simone Ciuti, Mark S. Boyce, Jane Elith, Gurutzeta Guillera-Arroita, Severin Hauenstein, et al. 2017. "Cross-Validation Strategies for Data with Temporal, Spatial, Hierarchical, or Phylogenetic Structure." *Ecography* 40 (8): 913–29. https://doi.org/10.1111/ecog.02881.
- Wenger, Seth J., and Julian D. Olden. 2012. "Assessing Transferability of Ecological Models: An Underappreciated Aspect of Statistical Validation." *Methods in Ecology and Evolution* 3 (2): 260–67. https://doi.org/10.1111/j.2041-210X.2011.00170.x.