Tufts University Department of Mathematics Fall 2018

MA 126: Numerical Analysis

Homework 9 (v1.0) 1

Assigned Friday 9 November 2018 Due Friday 16 November 2018 at 3 pm

In class, we worked out the error estimate for the Trapezoidal Rule, from which we derived the Corrected Trapezoidal Rule. In this problem, we will conduct a similar analysis for Simpson's Rule. This is treated in Section 5.2.2 of the book, but the proof of Theorem 5.2.5 is omitted. This problem will fill in the details.

- 1. Recall that, for the Trapezoidal Rule, we used Eq. (4.53) for the error in one subinterval, approximating the Newton divided difference by Eq. (4.54). Moreover, we neglected the dependence of c_t on t, so that we could derive the expression in Eq. (5.26) for $\int_a^b f(x) dx$. We then used this to ultimately derive Eq. (5.32) for the error in the Trapezoidal Rule, from which we derived the Corrected Trapezoidal Rule.
 - Show that this same approach will not work for Simpson's Rule. In particular, show that the error obtained by neglecting the dependence of c_t on t vanishes, thus indicating that we can not neglect this dependence.
- 2. To do a better job on deriving the error for Simpson's Rule, let's take $x_0 = a$, $x_1 = \frac{a+b}{2}$, and $x_2 = b$, and let's define $h := \frac{b-a}{2}$, so that $x_j = a + jh$. Then follow these steps:
 - (a) Expand f(x) in a Taylor series about $x = x_1$, retaining terms in the series up to order $(x x_1)^3$ and an error term of order $(x x_1)^4$.
 - (b) Integrate the Taylor series and error term from $x = x_0 = a$ to $x = x_2 = b$. Use the fact that $x_2 x_1 = x_1 x_0 = h$ to simplify your result. When the smoke clears, you should have three terms remaining, at orders 1, 3 and 5 in h. These terms will contain derivatives of f at x_1 of orders 0, 2 and 4, respectively.
 - (c) Use your result from 2(b) to write $f''(x_1)$ in terms of $f(x_0)$, $f(x_1)$, and $f(x_2)$ plus an error term of order h^2 .
 - (d) Substitute your result from 2(c) into your result from 2(b) to eliminate $f''(x_1)$ in that expression. Collect terms to find the error in $\int_a^b f(x) dx S(f)$, where S(f) denotes Simpson's Rule applied to this interval.
 - (e) Now, for the *composite* version of Simpson's Rule (many subintervals), argue that this error accumulates to give you a Riemann sum. In this way, derive the error term for Simpson's Rule in the limit of large n.
 - (f) From your above results, see if you can derive the essential result of Theorem 5.2.5, namely Eq. (5.36).

¹©2018, Bruce M. Boghosian, all rights reserved.