Audio Classification: Learning the Mel Scale

Amitangshu Pal

Audio Classification

- There are a bunch of sounds coming from different musical instruments
- Can your smart devices (say alexa or your smartphone) distinguish between them?
 - Human can do this distinction pretty accurately
 - How can we include this feature in smart devices?

Src: Seth Adams

Spectrogram

Spectrogram

https://github.com/musikalkemist/AudioSignalProcessingForML/blob/master/3-%20Intensity%2C%20loudness%2C%20and%20timbre/intensity_and_timbre.ipynb

Spectrogram

Logarithmic Perception of Frequency

Perception of frequency

Human perceives frequencies logarithmically

Mel Scale

- Logarithmic scale → equal distances have same perceptual distance
- 1000 Hz = 1000 Mel

$$m = 2595 \, \log \left(1 + \frac{f}{700} \right)$$

$$f = 700 \left(10^{\frac{m}{2595}} - 1 \right)$$

Mel Filter Banks

$$f = 700 \left(10^{\frac{m}{2595}} - 1 \right)$$

Mel Filter Banks

Mel Spectrogram Steps

Mel Filter Banks

Also can be looked as dimension reduction or lossy compression of spectrogram

Mel Spectrogram

Time Series

Cepstrum

MFCC → Mel Frequency Cepstral Coefficients

$$C(x(t)) = F^{-1}[log(F[x(t)])]$$
 Log spectrum

Cepstrum

Cepstrum

Cepstrum

Understanding Cepstrum

dB

Spectral envelope

Carry identity of sound

Understanding Cepstrum

An FFT on spectrum referred to as Inverse FFT (IFFT)

MFCC Steps

Cepstrum

https://www.mathworks.com/help/audio/ug/speaker-identification-using-pitch-and-mfcc.html

Mel Frequency Cepstrum Coefficients

Pretty easy to classify

MFCC Use Cases

Speaker X

MFCC Use Cases

DTW on MFCC

Goodbye

Bye

DTW on MFCC

