Analiza projektu

Krzysztof Smogór Piotr Widomski

1 Streszczenie

Celem projeku jest stworzenie systemu do zdalnej pracy opartego na architekturze rozproszonej. System będzie umożliwiać tworzenie, konfigurację i zarządzanie maszynami wirtualnymi. Użytkownik będzie mógł uzyskać działającą maszynę wirtualną i pracować na niej przy pomocy protokołu zdalnego pulpitu (RDP). Maszyny wirtualne mogą używać samego procesora lub procesora z bezpośrednim dostępem do GPU.

2 Słownik pojęć

- Aplikacja kliencka aplikacja uruchamiana na komputerze użytkownika, która umożliwi komunikację z systemem oraz uruchomienie zewnętrznego programu implementującego protokół RDP.
- Aplikacja nadzorcza (Nadzorca) aplikacja, która przetwarza zapytania od aplikacji klienckiej oraz komunikuje się ze wszystkimi serwerami wirtualizacji. Na podstawie tych informacji buduje model zajętości każdego z serwerów wirtualizacji oraz decyduje kiedy trzeba, i na którym serwerze, uruchomić nowe maszyny wirtualne i do której wirtualnej maszyny ma podłączyć się użytkownik proszący o utworzenie sesji.
- Serwer wirtualizacji komputer, który udostępnia swoje zasoby (CPU, GPU, pamięć, przestrzeń dyskową) w postaci uruchamianych na nim maszyn wirtualnych. Dodatkowo na tym komputerze będzie uruchomiona aplikacja, która będzie odpowiadać na pytania aplikacji nadzorczej oraz wykonywać operacje na maszynach wirtualnych (uruchamianie i wyłączanie), która dalej będzie utożsamiana z serwerem wirtualizacji.
- Maszyna wirtualna CPU jest to maszyna wirtualna, która udostępnia użytkownikowi podstawowe zasoby (procesor, pamięć i przestrzeń dyskowa) przeznaczona raczej do pracy biurowej. Uruchamiana jest na pewnym serwerze wirtualizacji z liczbą zasobów zdefiniowaną wcześniej w konfiguracji.

- Maszyna wirtualna GPU maszyna analogiczna do maszyny wirtualnej CPU tyle, że ma do dyspozycji przekazaną przez mechanizm GPU Passthrough kartę graficzną podłączona do serwera wirtualizacji.
- RDP protokół zdalnego dostępu do pulpitu od firmy Microsoft.
- Sesja jest to określenie jednorazowego dostępu do systemu przez użytkownika. Utworzenie sesji wiąże się z przypisaniem do użytkownika konkretnej maszyny wirtualnej, na której będzie pracować. Sesja kończy się w przypadku, gdy użytkownik poinformuje system o zakończeniu pracy lub gdy minie czas oczekiwania na odzyskanie połączenia jego utracie.
- Vagrant-box¹ jest to przygotowany wcześniej obraz maszyny wirtualnej, któremu można zmieniać dostępne zasoby. Uruchamiają się bardzo powtarzalnie w środowisku programu Vagrant
- Ansible playbook² jest to pewien rodzaj skryptu konfiguracyjnego dla systemu operacyjnego, który można parametryzować i wykonywać przy starcie Vagrantboxa.
- Panel administratora jest to aplikacja internetowa, na której administrator może sprawdzić jakie serwery wirtualizacji znajdują się w systemie oraz stan ich zasobów (wolne, zajęte oraz całkowite).
- Konto użytkownika jest to profil użytkownika w systemie, do którego ma dostęp na każdej maszynie wirtualnej. Używając przygotowanych wcześniej danych logowania może za ich pomocą logować się do maszyn wirtualnych. Będą one przechowywane w zewnętrznym (poza opisanym systemem) systemie katalogowym.
- Katalog użytkownika jest to prywatny folder dostępny dla użytkownika na każdej maszynie wirtualnej. Przechowywany będzie na zewnętrznym (poza opisanym systemem) dysku sieciowym.
- Konfiguracja stała jest to konfiguracja maszyny wirtualnej, która nie zmienia się w zależności od miejsca uruchomienia. Docelowo ta konfiguracja ma być zapisana w Vagrant-boxie. W razie potrzeby można ja także zdefiniować w odpowiednim Ansible playbooku.
- Konfiguracja zmienna jest to konfiguracja wirtualnej maszyny, która zmienia się w zależności od miejsca uruchomienia. Jest definiowana w odpowiednim Ansible playbooku uruchamianym przy każdym włączeniu maszyny.

¹Dokumentacja i opis na stronie Vagranta

²Dokumentacja i opis na stronie Ansible'a

3 Wymaganie funkcjonalne

3.1 Nadzorca

Aktor	Nazwa	Opis	Odpowiedź systemu	
Użytkownik	Uzyskanie se-	Uzyskanie sesji do pracy na ma-	Do użytkownika zostaje przy-	
	sji do pracy	szynie wirtualnej CPU lub GPU	dzielona maszyna wirtualna	
			oraz zestawione połączenie	
			RDP. W przypadku, gdy utracił	
			on połączenie, to przydzielana	
			jest do niego poprzednio uży-	
			wana maszyna, jeżeli jego sesja	
			nie została jeszcze umorzona.	
	Poznanie ilo-	Wyświetlanie szacowanej ilo-	Użytkownikowi zostaje wyświe-	
	ści dostępnych	ści dostępnych maszyn każdego	tlona szacowana liczba dostęp-	
	maszyn	typu	nych maszyn obliczona na pod-	
			stawie informacji o dostępnych	
			zasobach każdego z serwerów	
			wirtualizacji	
Serwer wirtualizacji	Zgłoszenie do-	Serwer zgłasza nadzorcy do-	Nadzorca wykorzystuje zgło-	
	stępnych zaso-	stępne zasoby	szone zasoby do wyliczania sza-	
	bów		cowanej liczny dostępnych ma-	
			szyn oraz do balansowania ob-	
Se			ciążenia serwerów wirtualizacji	

3.2 Serwer wirtualizacji

Aktor	Nazwa	Opis	Odpowiedź systemu
Użytkownik	Nawiązanie połączenia z	Użytkownik nawiązuje połącze- nie z maszyną wirtualną	Maszyna wirtualna zostaje za- jęta przez użytkownika; serwer wirtualizacji rozpoczyna moni-
Użytk	maszyną		torowanie, czy sesja wciąż trwa
Nadzorca	Poproś o zgłoszenie	Nadzorca wysyła do wszystkich serwerów wirtualizacji prośbę o	Serwer wirtualizacji informuje nadzorcę o stanie swoich zaso-
	zasobów	zgłoszenie swoich używanych i wolnych zasobów	bów
	Stwórz nową wirtualna	Nadzorca prosi serwer wirtuali- zacji o stworzenie nowej wirtu-	Serwer wirtualizacji tworzy wirtualna maszynę i udostępnia
	maszynę	alnej maszyny dla danego użyt- kownika na wybranym typie maszyny	możliwość połączenia się z nią
	Wyłącz kon-	Nadzorca prosi serwer wirtuali-	Serwer wirtualizacji wyłącza
	kretna wirtu-	zacji aby wyłączył konkretna	konkretna wirtualna maszynę
	alna maszynę	wirtualna maszynę.	oraz pilnuje aby na pewno się wyłączyła.
Administrator	Zmień ob-	Zmiana obrazu źródłowego ma-	Zdefiniowany przez administra-
	raz maszyn wirtualnych	szyn wirtualnych	tora vagrant-box jest używany przez serwery wirtualizacji
	Zmień kon-	Zmiana zmiennej konfiguracji	Zmodyfikowany ansible play-
	figurację maszyn wirtu-	maszyn wirtualnych	book jest używany przez ser- wery wirtualizacji
	alnych		wery wiredanzaeji
	Zdefiniuj za-	Zmiana ilości zasobów przydzie-	Zmodyfikowana konfiguracja
	soby maszyn wirtualnych	lanych na każdy z typów maszyn wirtualnych oraz łączną ilość za-	zasobów będzie wykorzysty- wana przez serwer wirtualizacji
	wirtuarnych	sobów przeznaczonych na ma-	przy kolejnym uruchomieniu
		szyny	

3.3 Panel administratora

Aktor	Nazwa	Opis	Odpowiedź systemu
Administrator	Podgląd zaso- bów serwerów wirtualizacji	Wyświetlanie wolnych oraz zajętych zasobów serwerów wirtualizacji	Wyświetlenie zasobów poszcze- gólnych serwerów wirtualizacji, liczby zajętych maszyn oraz szacowanej liczby wolnych maszyn
Serwer wirtualizacji	Zgłoszenie do- stępnych zaso- bów	Serwer zgłosza panelowi admini- stratora dostępne zasoby	Panel administratora wykorzystuje zgłoszone zasoby do wyliczania szacowanej liczny dostępnych maszyn oraz wyświetlania zasobów poszczególnych serwerów wirtualizacji

4 Wymaganie niefunkcjonalne

Grupa wymagań	Nr wymagania	Opis	
Użytkowanie	1	Aplikacja kliencka ma działać na systemach opera-	
(Usability)		cyjnych GNU/Linux oraz MS Windows	
	2	Aplikacja kliencka musi udostępniać możliwość uży-	
		cia własnego klienta RDP do nawiązania połączenia	
		z maszyną wirtualną	
	3	Maszyny wirtualne muszą mieć dostęp do systemu	
		przechowującego konta użytkowników wraz z ich	
		katalogami domowymi	
Niezawodność	4	System musi być odporny na awarie poszczególnych	
(Reliability)		serwerów wirtualizacji i kontynuować działanie w	
		sposób niezauważalny dla użytkowników nie uży-	
		wających danego serwera.	
	5	Awaria nadzorcy może spowodować uniemożliwie-	
		nie rozpoczęcia nowych sesji, ale nie może przerwać	
		istniejących sesji	
Wydajność	6	Łącznie zużywane zasoby przez maszyny wirtualne	
(Performance)		na poszczególnym serwerze wirtualizacji nie mogą	
		przekroczyć wcześniej zdefiniowanych limitów	
	7	Nadzorca musi balansować obciążenie serwerów	
		wirtualizacji	
	8	W systemie zawsze musi istnieć jedna działająca	
		maszyna wirtualna nie połączona z żadną sesją, aby	
		można było ją szybko przydzielić użytkownikowi	
	9	Zwolnione maszyny wirtualne, które nie są wyko-	
		rzystywane jako zapas, muszą być wyłączane	
Utrzymanie	10	Możliwe jest działanie więcej niż jednego nadzorcy	
(Supportability)		w systemie, w celu zwiększenie dostępności lub	
		przeprowadzenia prac utrzymaniowych	

5 Analiza ryzyka

Mocne strony

- 1. Łatwa skalowalność pod względem liczby sesji w systemie
- 2. Wiele rozwiązań Open Source
- 3. Elastyczność pod względem konfiguracji
- 4. Tańsze rozwiązanie niż kupno stacji roboczych

Słabości

- 1. System trudny w konfiguracji
- 2. Potrzeba wymiany sprzętu komputerowego
- 3. Krótki czas rozwoju systemu
- 4. Ograniczenie doświadczenie twórców systemu
- 5. Małe prawdopodobieństwo wsparcia projektu po zakończeniu prac

Okazje

- 1. Grupa docelowa to firmy z dużą ilością stacji roboczych
- 2. Zwiększenie zapotrzebowania na prace zdalną na rynku pracy

Zagrożenia

- 1. Istnienie konkurencji ugruntowanej na rynku
- 2. System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje

5.1 Omówienie zagrożeń

1. System trudny w konfiguracji - wysoko prawdopodobne

Można temu zaradzić poprzez udostępnienie dokładnej dokumentacji lub ścisła współprace z klientem przy wdrażaniu systemu.

Wartość: duża

2. Potrzeba wymiany sprzętu komputerowego - średnio prawdopodobne

Klient może potrzebować wymienić aktualne stacje robocze na terminale oraz zainwestować w sprzęt serwerowy. Jednak gdy klientami będą firmy, które mają dużo pracowników pracujących spoza firmy lub dopiero tych pracowników pozyskują, to kupno terminali i serwerów powinno być bardziej zachęcające niż kupno stacji roboczych.

Wartość: średnia.

3. Krótki czas rozwoju systemu - wysoko prawdopodobne

Czas rozwoju systemu jest bardzo ograniczony. Aby pomimo tego ograniczenia działał on w sposób akceptowalny powinniśmy skupić się na dobrym przedyskutowaniu i opisaniu kluczowych modułów systemu. W czasie projektu należy pilnować aby nie dodawać nadmiarowych funkcjonalności do systemu. W czasie implementacji krytyczne będzie dokładne zaplanowanie aplikacji pod kątem testowania automatycznego. Ułatwi to wyłapywanie prostych błędów jeszcze we wczesnej fazie projektu.

Wartość: wysoka

4. Ograniczone doświadczenie twórców systemu - pewne

Tutaj jedynym sposobem na ograniczenie ryzyka jest rozważna implementacja.

Wartość: średnia

5. Małe prawdopodobieństwo wsparcia projektu po zakończeniu prac - wysoko prawdopodobne

Trudno teraz przewidzieć co się stanie z projektem po zakończeniu prac. Jednak prawdopodobnie twórcy systemu zajmą się innymi projektami. Można jedynie dokładnie komentować kod i pokrywać jak najwięcej jego części testami. Wtedy inne osoby będą w stanie szukać błędów albo próbować w taki sposób uzupełnić brakującą wiedzę o systemie.

Wartość: niska

6. Istnienie konkurencji ugruntowanej na rynku - bardzo prawdopodobne

Konkurencyjne systemy oferujące podobne rozwiązania są już dobrze ugruntowane na rynku i przetestowane. Nasz system może spróbować konkurować jedynie z nimi ceną implementacji oraz elastycznością.

Wartość: średnia

7. System w dużej mierze oparty o oprogramowanie rozwijane przez inne organizacje - nisko prawdopodobne

W czasie życia systemu mogą pojawić się błędy w oprogramowaniu nie rozwijanym w ramach naszego systemu. naprawa takich błędów może trwać bardzo długo. Pewnym sposobem wsparcia takiego systemu jest własnoręczne poprawiania błędów w zewnętrznym oprogramowaniu i zgłaszanie ich do odpowiedniej organizacji. Do czasu zastosowania poprawki jest możliwość korzystania z wersji, na którą nanieśliśmy własną poprawkę.

Wartość: wysoka

6 Harmonogram projektu

