# การวิเคราะห์การจำแนกข้อความด้วยการเปรียบเทียบความเสถียร ของอัลกอริทึม

TEXT CLASSIFICATION ANALYSIS BY STABILITY COMPARISON OF ALGORITHMS

#### วัชรีวรรณ จิตต์สกุล

นักศึกษาปริญญาเอก คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ Email: watchareewan.j@it.kmutnb.ac.th

#### ผู้ช่วยศาสตราจารย์ ดร.สุนันฑา สดสี

อาจารย์ประจำภาควิชาการสื่อสารข้อมูลและเครือข่าย คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ Email: sunantha.s@it.kmutnb.ac.th

#### บทคัดย่อ

งานวิจัยนี้นำเสนอการวิเคราะห์การจำแนกข้อความ เพื่อศึกษาความเสถียรของอัลกอริทึมเพื่อการจำแนก 4 รูปแบบพื้นฐาน ได้แก่ ฐานกฎ ฐานต้นไม้ตัดสินใจ ฐานความน่าจะเป็น และฐานการเรียนรู้ กับข้อความทดสอบ 3 ชุด จากเว็บไซต์ www.imdb.com, www.yelp.com และ www.amazon.com (ข้อมูล ณ วันที่ 11 พฤศจิกายน 2559) เพื่อศึกษาความเสถียรของอัลกอริทึม การวิเคราะห์เส้นโค้งคุณลักษณะสมบัติการทำงาน (ROC) และการทดสอบความแตกต่างของค่ากลางความถูกต้องของอัลกอริทึมที่ศึกษา ทั้งนี้ผลการวิเคราะห์แสดงให้เห็นว่า อัลกอริทึมฐานต้นไม้ตัดสิน ใจ ได้แก่ Random Forest แสดงความเสถียรของอัลกอริทึมที่ศึกษา ทั้งนี้ผลการวิเคราะห์แสดงให้เห็นว่า อัลกอริทึมฐานต้นไม้ตัดสิน ใจ ได้แก่ Random Forest แสดงความเสถียรการจำแนกข้อความทดสอบได้สูงกว่าอัลกอริทึมที่ศึกษาอื่นๆ ด้วยค่าเฉลี่ย ROC > 0.80 และผลต่างของค่ากลางความถูกต้องของการทดสอบระหว่างการแบ่งข้อมูลออกเป็น 10 ส่วน และวิธีข้อมูลทดสอบเท่ากับ 0 อย่างมีนัยสำคัญ

คำสำคัญ: การจำแนกข้อความ ความเสถียรของอัลกอริทึม อัลกอริทึมเพื่อการจำแนก

#### **ABSTRACT**

This research presents a text classification analysis aiming to compare the stability of four major types of classifiers, which are a rule based classifier, tree based classifier, probability based classifier, and learning based classifier. In this work, three-benchmark comment datasets, which were collected from "www.imdb.com", "www. yelp.com", and "www.amazon.com" (Accessed: 11 November 2016) were used to evaluate the stability of mentioned classifiers, by concerning a Receiver Operating Characteristic (ROC) and a paired t-test of predicted accuracy. The results showed that the tree based classifier, which is called Random Forest, presented the greatest stability performance with ROC > 0.80 and the difference of predicted accuracy between 10-fold cross validation and test dataset were "0".

KEYWORDS: Text Classification, Stability of Algorithm, Classifier

## ความเป็นมาและความสำคัญของปัญหา

ในปัจจุบันข้อมูลที่เป็นเอกสารที่เป็นลักษณะอิเล็กทรอนิกส์ เพิ่มขึ้นเป็นจำนวนมากในเครือข่ายอินเทอร์เน็ต โดยข้อความ ในเอกสารนั้นมีลักษณะไม่มีโครงสร้าง (Unstructured Text) อยู่ในรูปแบบของเว็บไซต์ อีเมล์ กระดานข่าวออนไลน์ ห้องสนทนา ตลอดจนสื่อสังคมออนไลน์ต่างๆ เป็นต้น ซึ่งข้อมูลลักษณะ โครงสร้างไม่แน่นอนมีมากถึง 80%-90% ของข้อมูลทั้งหมด (ชูชาติ หฤไชยะศักดิ์, 2554; Kanimozhi & Venkatesan, 2015) อีกทั้งในปัจจุบัน ผู้ใช้งานในเครือข่ายอินเทอร์เน็ตมี พฤติกรรมการเข้าถึงหรือค้นหาข้อมูล เปลี่ยนแปลงไปจากอดีต ที่เคยกระทำการค้นหาจากตำรา เอกสาร เปลี่ยนเป็นการค้นหาข้อมูลทางเว็บไซต์ อีกทั้งผู้ใช้งานในเครือข่ายอินเทอร์เน็ต ยังมีการแลกเปลี่ยนความคิดเห็น หรือแสดงความคิดเห็นใน เรื่องต่างๆ เช่น การเมือง การตลาด การศึกษา หรือบันเทิง ผ่านทางเว็บไซต์ด้วย เป็นต้น

จากข้อความดังกล่าวข้างต้น แสดงให้เห็นว่าข้อความ หรือความคิดเห็นในเครือข่ายอินเทอร์เน็ตมีจำนวนมหาศาล และมีความซับซ้อน และเพื่อให้เกิดประโยชน์ในการนำข้อความ หรือความคิดเห็นมาใช้งาน การจำแนกข้อความ (Text Classification) จึงถูกนำมาใช้ในการวิเคราะห์ หรือจัดกลุ่ม ข้อความหรือความคิดเห็น

ในปัจจุบัน ผู้วิจัยจำนวนมากนำเสนอกระบวนการ จำแนกข้อความในเครือข่ายอินเทอร์เน็ต เช่น การใช้อัลกอริทึม วิธีการจำแนกแบบสัมพันธ์ (Associative Classification) สำหรับการจำแนกความคิดเห็นทางการเมือง (พนิดา ทรงรัมย์, 2559) การจำแนกด้วยอัลกอริทึมต้นไม้ตัดสินใจ (Decision Tree) อัลกอริทึมนาอีฟเบย์ (Naïve Bayes) อัลกอริทึม ซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) สำหรับจำแนกข่าวภาษาอังกฤษด้านอาชญากรรม (ทิชากร เนตรสุวรรณ์ และไกรศักดิ์ เกษร, 2558) หรือวิเคราะห์ ข้อเสนอแนะจากบทวิจารณ์รายการโทรทัศน์(กานดาแผ่วัฒนากุล, 2555) และอัลกอริทึมเพื่อนบ้านใกล้ที่สุด (K-Nearest Neighbor) ในการจำแนกกลุ่มคำถามอัตโนมัติบนกระดาน สนทนา (ราชวิทย์ ทิพย์เสนา และคณะ, 2557) เป็นต้น

จากกงานวิจัยข้างต้นจะเห็นได้ว่า มีหลายอัลกอริทึม ที่ใช้ในการจำแนกข้อมูล ซึ่งแต่ละอัลกอริทึมมีลักษณะพื้นฐาน การทำงานที่แตกต่างกัน ดังนั้นงานวิจัยนี้จึงมีแนวคิดในการหา อัลกอริทึมที่เหมาะสมที่สุดสำหรับการจำแนกข้อความที่ แตกต่างกัน โดยการเลือกใช้อัลกอริทึมที่มีลักษณะพื้นฐานที่ ต่างกัน เช่น ฐานกฎ (Rule based Classifier) ฐานต้นไม้ตัดสินใจ (Tree based Classifier) ฐานความน่าจะเป็น (Probability based Classifier) และฐานการเรียนรู้ (Learning based Classifier)

สำหรับโครงสร้างงานวิจัยนี้ ประกอบด้วยส่วนที่ 2 ทฤษฎีและงานวิจัยที่เกี่ยวข้อง ส่วนที่ 3 วิธีการดำเนินงานวิจัย ส่วนที่ 4 ผลการดำเนินงาน และส่วนที่ 5 สรุปผลงานวิจัย

## ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

ในส่วนของทฤษฎีและงานวิจัยที่เกี่ยวข้องนั้น ผู้วิจัย ทำการศึกษาอัลกอริทึมเกี่ยวกับการจำแนกข้อมูล โดยทำการ ศึกษาอัลกอริทึมที่มีลักษณะพื้นฐานที่แตกต่างกัน ในที่นี้ศึกษา 4 พื้นฐาน ได้แก่ ฐานกฎ ฐานต้นไม้ตัดสินใจ ฐานความน่า จะเป็น และฐานการเรียนรู้ ดังนี้

#### 1. อัลกอริทึมฐานกฎ

กฎความสัมพันธ์ (Association Rules) เป็นการหา ความสัมพันธ์ของข้อมูลสองชุดหรือมากกว่าสองชุดขึ้นไปภายใน กลุ่มข้อมูลที่มีขนาดใหญ่ โดยทำการหารูปแบบที่เกิดขึ้นบ่อย (Frequent Pattern) และใช้ในการวิเคราะห์ความสัมพันธ์หรือ ทำนายปรากฏการณ์ต่าง ๆ

ในการหากฎความสัมพันธ์นั้นจะมีขั้นตอนวิธีการหา หลายวิธี ตัวอย่างหนึ่งของ Association Rules คือ Market Basket Analysis ใช้ในการหาความสัมพันธ์ของสินค้าที่ลูกค้า มักจะซื้อพร้อมกัน เพื่อใช้ในการจัดรายการส่งเสริมการขาย (Trupti A. Kumbhare, et al., 2014)

กฎความสัมพันธ์ (Association Rule) สามารถเขียน ได้ในรูปเซ็ตของ Item ที่เป็นเหตุ ไปสู่เซ็ต ของ Item ที่เป็นผล โดยกำหนดให้

I = { i1, i2, ..., im} เป็น set ของ Items

D = {t1, t2, ..., tm} เป็น set ของ Transaction ซึ่ง แต่ละ Transaction ใน D จะมีหมายเลข Transaction ID ที่ ไม่ซ้ำกันและกำหนดให้ t เป็น Subset ของ I กฎการเชื่อมต่อกัน หรือ Conjunctive Rule นั้น เป็น อัลกอริทึมประเภทหนึ่งของกฎความสัมพันธ์ ซึ่งกฎที่ใช้นั้นเป็น ลักษณะของการให้เหตุผลแบบอุปนัย ซึ่งเป็นการสรุปผลจาก การค้นหาความเป็นจริงที่ได้จากการสังเกต หรือการทดลองซ้ำ หลาย ๆ ครั้ง จากการแบ่งเป็นกรณีย่อยๆ หลังจากนั้นนำมาสรุป ให้ได้ผลลัพธ์ (Mohd Fauzi bin Othman & Thomas Moh Shan Yau, 2007)

#### 2. อัลกอริทีมฐานต้นไม้

อัลกอริทึมต้นไม้ตัดสินใจ (Decision Tree) เป็นการ นำข้อมูลมาสร้างแบบจำลองการพยากรณ์ที่มีลักษณะคล้าย กับต้นไม้ จะมีการสร้างกฎต่างๆ ขึ้นเพื่อใช้ในการตัดสินใจ ซึ่ง ต้นไม้ตัดสินใจนั้นมีการทำงานแบบ Supervised Learning คือ สามารถสร้างแบบจำลองการจัดหมวดหมู่ จากกลุ่มตัวอย่าง ของข้อมูลที่กำหนดไว้ก่อนล่วงหน้าเรียกว่า Training Set ได้ อัตโนมัติ และสามารถพยากรณ์กลุ่มของรายการที่ยังไม่เคย นำมาจัดหมวดหมู่ได้ (Qiang, Qin, et al., 2002; Quadri & Kalyankar, 2010)

รูปแบบของลักษณะโครงสร้างต้นไม้ประกอบไปด้วย โหนด (Node) และกิ่ง (Branch) ซึ่งแต่ละโหนดจะถูกแทน ด้วยคุณลักษณะ (Feature) ของชุดข้อมูลที่นำมาเรียนรู้และ ทดสอบ แต่ละกิ่งของต้นไม้แสดงผลในการทดสอบ และโหนดใบ (Leaf Node) แสดงคลาสที่ผู้ใช้กำหนด ส่วนเกณฑ์การเลือก คุณลักษณะเพื่อนำมาเป็นโหนดของต้นไม้นั้นมาจากการคำนวณ ค่าเกนสารสนเทศ (Information Gain) โดยพิจารณาคุณลักษณะ ที่มีค่าเกนสารสนเทศหรือมีค่าเอ็นโทรพี (Entropy) ต่ำ หมายความว่า คุณลักษณะนั้นมีความสามารถในการจำแนกหมวดหมู่สูง (Changki Lee & Gary Geunbae Lee, 2006)

อัลกอริทึม Random Forest เป็นอัลกอริทึมประเภท หนึ่งของอัลกอริทึมต้นไม้ตัดสินใจที่มีลักษณะแบบไม่ตัดแต่ง กิ่ง (Unpruned) หรือต้นไม้ถดถอย (Regression Trees) ซึ่งถูกสร้างจากการนำข้อมูลฝึกสอนไปสุ่มเลือกตัวอย่างข้อมูล และคุณลักษณะข้อมูลแล้วนำมาสร้างเป็นต้นไม้ตัดสินใจซึ่ง มีตัวอย่างส่วนหนึ่งที่ไม่ถูกเลือกจะถูกนำมาใช้ในการทดสอบ ต้นไม้ตัดสินใจ เรียกข้อมูลส่วนนี้ว่า Out-of-Bag (OOB) ซึ่ง วิธีการนี้เรียกว่า Bagging ผลลัพธ์ที่ได้อย่างอิสระจากต้นไม้ ตัดสินใจแต่ละต้นถูกนำมาคิดเป็นผลการโหวตที่มากที่สุด

อัลกอริทึมRandom Forest ไม่จำเป็นต้องมีข้อมูลทดสอบ เพื่อประมาณความผิดพลาดเพราะข้อมูล OOB นั้นถูกนำ มาใช้ทดสอบต้นไม้ตัดสินใจแล้ว (Leo Breiman, 2001)

#### 3. อัลกอริทึมฐานความน่าจะเป็น

Naive Bayes ใช้หลักความน่าจะเป็นซึ่งอยู่บนพื้นฐาน ของทฤษฎีเบย์ (Bayes' Theorem) โดยจะทำการวิเคราะห์ ความสัมพันธ์ระหว่างตัวแปรอิสระแต่ละตัว กับตัวแปรตาม เพื่อ ใช้ในการสร้างเงื่อนไขความน่าจะเป็นของแต่ละความสัมพันธ์ใน ทางทฤษฎีแล้วการทำนายผลของ Naive Bayes ถ้าตัวแปรอิสระ ทั้งหมดเป็นอิสระต่อกัน ไม่ขึ้นกับตัวแปรอิสระตัวใดตัวหนึ่ง ทฤษฎีเบย์ กำหนดให้ P(H) คือ ความน่าจะเป็นที่จะเกิด เหตุการณ์ H และ P(H|E) คือ ความน่าจะเป็นที่จะเกิดเหตุการณ์ H เมื่อเกิดเหตุการณ์ E จากตัวแปรที่กำหนด และแนวความ คิดของ Bayes' Theorem นั้น สามารถทำนายเหตุการณ์ที่ พิจารณาได้จากการเกิดของเหตุการณ์ต่างๆ ดังสมการที่ 1

$$P(H|E) = \frac{P(E|H) \times P(H)}{P(E)}$$
 (1)

Bayesian Logistic Regression เป็นการนำเอา การวิเคราะห์ถดถอยโลจิสติกส์ (Logistic Regression Analysis) เข้ามาช่วยเพื่อศึกษาความสัมพันธ์ระหว่างตัวแปร ตามและตัวแปรอิสระ เพื่อทำนายว่า จะเกิดเหตุการณ์หนึ่งขึ้น หรือไม่ หรือมีโอกาสเกิดขึ้นเพียงใด โดยมีการกำหนดค่าตัวแปร ตัวหนึ่ง หรือหลายตัวที่คาดว่าจะส่งผลต่อการเกิดเหตุการณ์ นั้นๆ ในการการวิเคราะห์ถดถอยโลจิสติกส์นั้น ต้องมีการ ประมาณค่าพารามิเตอร์ ซึ่งใช้วิธี Maximum likelihood (Brian Kulis, 2012)

## 4. อัลกอริทึมฐานการเรียนรู้

ซัพพอร์ตเวกเตอร์แมชชีน (Support Vector Machine) เป็นอัลกอริทึมหนึ่งที่ใช้พื้นฐานการเรียนรู้ ซึ่งใช้ วิธีการจำแนกกลุ่มข้อมูลที่อาศัยระนาบการตัดสินใจมาใช้ใน แบ่งกลุ่มข้อมูลออกเป็นสองส่วน โดยใช้หลักการสร้างเส้นแบ่ง กึ่งกลางระหว่างกลุ่มให้มีระยะห่างระหว่างขอบเขตของทั้งสอง กลุ่มมากที่สุด โดยที่ซัพพอร์ตเวกเตอร์แมชชีนจะใช้แม็ปฟังก์ชั่น (Mapping Function) สำหรับแปลงข้อมูลจากโดเมนเดิม Input Space ไปยังโดเมนที่เรียกว่า Feature Space และสร้าง

เคอเนลฟังก์ชั่น(Kernel Function) บน Feature Space เพื่อ ใช้ในการวัดความคล้ายกันของข้อมูล สำหรับเคอเนลฟังก์ชั่น ได้แก่ Linear, Polynomail Kernel, Radial Basic Function และ Sigmoid (Ali, Shamsuddin & Ismail, 2011)

จากอัลกอริทึมทั้ง 4 พื้นฐาน มีงานวิจัยที่เกี่ยวข้อง ดังตัวอย่างในตารางที่ 1

## วิธีดำเนินการวิจัย

การศึกษาอัลกอริทึมที่เหมาะสมที่สุดสำหรับการจำแนก ข้อความที่แตกต่างกัน โดยการเลือกใช้อัลกอริทึมที่มีลักษณะ พื้นฐานที่ต่างกันมีการดำเนินงาน ดังนี้

**ตารางที่ 1** ตารางแสดงงานวิจัยที่ใช้อัลกอริทึมทั้ง 4 พื้นฐานในการจำแนกข้อความ

| งานวิจัย                                                                                                                                                                                         | ปี   | พื้นฐาน                                   | อัลกอริทึม                                                     | ผลงานวิจัย                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| จำแนกความคิดเห็นทางการเมืองบน<br>เครือข่ายสังคมออนไลน์ ใช้วิธีการ<br>จำแนกแบบความสัมพันธ์<br>(พนิดา ทรงรัมย์, 2559)                                                                              | 2559 | Rule-Base                                 | Association Rule                                               | สามารถจำแนกความคิดเห็น<br>ทางการเมืองทั้งเชิงบวกและ<br>เชิงลบได้ถูกต้องถึง 77.75%                                       |
| การจำแนกจดหมายอิเล็กทรอนิกส์<br>ที่เป็นสแปมโดยใช้เทคนิคเหมืองข้อมูล<br>(จุฑาทิพย์ ทิพย์พูล และ<br>นิเวศ จิระวิชิตชัย, 2559)                                                                      | 2559 | Tree Structure<br>Probability<br>Learning | Decision Tree<br>Naïve Bayes<br>K-Nearest Neighbor             | ผลการเปรียบเทียบ พบว่า<br>นาอีฟเบย์มีประสิทธิภาพใน<br>การจำแนกจดหมายอิเล็กทรอนิกส์<br>ที่เป็นสแปมได้ดีที่สุด            |
| จำแนกข่าวภาษาอังกฤษด้าน<br>อาชญากรรมออนไลน์<br>(ทิชากร เนตรสุวรรณ์ และ<br>ไกรศักดิ์ เกษร, 2558)                                                                                                  | 2558 | Learning                                  | Neural Network                                                 | วัดประสิทธิภาพการจำแนก<br>ข่าวภาษาอังกฤษ โดยค่าความ<br>เที่ยงตรง และค่าระลึก ซึ่งได้ค่า<br>ประสิทธิภาพที่สูงมากกว่า 80% |
| การจำแนกกลุ่มคำถามอัตโนมัติบน<br>กระดานสนทนาโดยใช้เทคนิคเหมือง<br>ข้อความ (ราชวิทย์ ทิพย์เสนา<br>และคณะ, 2557)                                                                                   | 2557 | Probability<br>Learning<br>Tree Structure | Naïve Bayes<br>K-Nearest Neighbor<br>Decision Tree             | ผลการเปรียบเทียบประสิทธิภาพ<br>พบว่า อัลกอริทึมเพื่อนบ้านใกล้<br>ที่สุด ให้ประสิทธิภาพในการจำแนก<br>ดีที่สุด            |
| การวิเคราะห์เหมืองข้อเสนอแนะ<br>จากบทวิจารณ์รายการโทรทัศน์<br>(กานตา แผ่วัฒนากุล, 2555)                                                                                                          | 2555 | Tree Structure<br>Probability<br>Learning | Decision Tree<br>Naïve Bayes<br>Support Vector<br>Machine      | ผลการวัดประสิทธิภาพ พบว่า<br>อัลกอริทึมซัพพอร์ตเวกเตอร์<br>แมชชีนสามารถจำแนก<br>ข้อเสนอแนะได้ดีที่สุด                   |
| การเปรียบเทียบประสิทธิภาพ<br>การจำแนกประเภทปัญหาสำหรับ<br>ระบบถามตอบโดยใช้ชัพพอร์ต<br>เวกเตอร์แมชชีนนาอีฟเบย์และ<br>เคเนียรเรสต์เนเบอร์<br>(วลัยลักษณ์ สุขสมบูรณ์<br>และสมชาย ปราการเจริญ, 2553) | 2553 | Probability<br>Learning                   | Naïve Bayes<br>K-Nearest Neighbor<br>Support Vector<br>Machine | ผลการวัดประสิทธิภาพ<br>การเปรียบเทียบการจำแนก<br>พบว่าอัลกอริทึมซัพพอร์ตเวกเตอร์<br>แมชชีนให้ค่าความถูกต้องดีที่สุด     |
| Implementing News Article Category Browsing Based on Text Categorization Technique (Choochart Haruechaiyasak, et al., 2008)                                                                      | 2008 | Probability<br>Tree Structure<br>Learning | Naïve Bayes<br>Decision Tree<br>Support Vector<br>Machine      | ผลการเปรียบเทียบพบว่า<br>อัลกอริทึมซัพพอร์ตเวกเตอร์<br>แมชชีนมีประสิทธิภาพดีที่สุด                                      |

#### 1. การเลือกอัลกอริทึม

เนื่องจากผู้วิจัยต้องการศึกษาอัลกอริทึมรูปแบบใด เหมาะสมกับการจำแนกข้อมูลลักษณะที่แตกต่างกัน ดังนั้น จึงทำการเลือกอัลกอริทึมที่อยู่ในพื้นฐานที่แตกต่างกัน ดังนี้ ฐานกฎ (Rule based Classifier) ฐานต้นไม้ตัดสินใจ (Tree based Classifier) ฐานความน่าจะเป็น (Probability based Classifier) และฐานการเรียนรู้ (Learning based Classifier) โดยพิจารณาจากอัลกอริทึมที่มีการพัฒนาใหม่ล่าสุด แสดงดัง ตารางที่ 2

**ตารางที่ 2** การเลือกอัลกอริทึม

| Algorithm-based                 | Selected Algorithm                                                         |
|---------------------------------|----------------------------------------------------------------------------|
| Rule based Classifier           | Conjunctive Rule (Mohd Fauzi<br>bin Othman & Thomas Moh<br>Shan Yau, 2007) |
| Tree based Classifier           | Random Forest (Leo Breiman, 2001)                                          |
| Probability based<br>Classifier | Bayesian Logistic Regression<br>(Brain Kulis, 2012)                        |
| Learning based<br>Classifier    | Support Vector Machine<br>(Ali, W., Shamsuddin & Ismail<br>A.S., 2011)     |

# ข้อมูลที่ใช้ในการทดสอบ และขั้นตอนการเตรียม ข้อมูล

ข้อมูลที่ใช้ในการทดสอบนำมาจากฐานข้อมูล UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) (ข้อมูล ณ วันที่ 11 พฤศจิกายน 2559) จำนวน 3 ชุด ได้แก่ (1) ข้อมูลแสดงความคิดเห็นเกี่ยวกับภาพยนตร์จากเว็บไซต์ www.imdb.com มีจำนวน 1,000 ระเบียน (2) ข้อมูลแสดงความคิดเห็นเกี่ยวกับร้านอาหารจากเว็บไซต์ www.yelp.com มีจำนวน 3,726 ระเบียน และ (3) ข้อมูลแสดงความคิดเห็น เกี่ยวกับสินค้าจากเว็บไซต์ www.amazon.com จำนวน 15,004 ระเบียน ซึ่งข้อมูลทั้ง 3 ชุดเป็นลักษณะข้อความแสดงความคิดเห็น และมีการจำแนกข้อความออกเป็น 2 กลุ่ม คือ

"1" แทนการแสดงความคิดเห็นเชิงบวก และ "0" แทนการ แสดงความคิดเห็นในเชิงลบ การเตรียมข้อมูลทำโดยการกรอง เฉพาะข้อความที่นำเสนอความคิดเห็น ตัวอย่างข้อมูล เช่น Delicious and I will absolutely be back! "1", Battery lasts only a few hours. "0" เป็นต้น

วิธีการทดสอบ การทดสอบแบ่งออกเป็น 2 รูปแบบ คือ รูปแบบที่ 1 ใช้วิธี 10-fold cross validation คือ ทำการ แบ่งข้อมูลออกออกเป็น 10 ส่วนเท่ากัน หลังจากนั้นใช้ข้อมูล ส่วนหนึ่งเป็นตัวทดสอบประสิทธิภาพของโมเดล และรูปแบบ ที่ 2 ใช้วิธีข้อมูลทดสอบ (Test Dataset) ซึ่งทำการแบ่งข้อมูล ออกเป็น 2 ส่วน คือ ข้อมูลที่ใช้สำหรับสอน (Training Set) 70% และข้อมูลสำหรับทดสอบ (Test Set) 30% โดยทำ การทดสอบทั้ง 2 รูปแบบ ด้วยข้อมูล 3 ชุด กับ 4 อัลกอริทึม ที่เลือกไว้และทำซ้ำแต่ละรูปแบบจำนวน 5 ครั้ง

#### 3. การประเมินประสิทธิภาพ

เพื่อศึกษาความเสถียรของอัลกอริทึม การวิเคราะห์ Receiver Operating Characteristic (ROC) และการทดสอบ ความแตกต่างของค่ากลางความถูกต้องของอัลกอริทึม (Pairedt Test) ถูกนำมาเสนอความเสถียรของอัลกอริทึมที่ศึกษา โดยมี สมมุติฐานของการทดสอบ คือ วิธีการวัดแบบ 10-fold cross validation และวิธีการวัดแบบ Test Dataset นั้นให้ผลต่าง ของค่ากลางความถูกต้องไม่แตกต่างกันอย่างมีนัยสำคัญ

### ผลการวิจัย

หัวข้อนี้นำเสนอผลการดำเนินงานวิจัยแบ่งเป็น 3 ส่วน คือ (1) การกำหนดค่าพารามิเตอร์ต่างๆ ของแต่ละอัลกอริทึม (2) การหาประสิทธิภาพและการวิเคราะห์ค่า ROC เพื่อคัดเลือก อัลกอริทึมที่ดีที่สุด และ (3) การทดสอบ Pair t-Test อัลกอริทึมที่ทำการคัดเลือก โดยพิจารณาค่าความถูกต้องสำหรับ การทดสอบจากการวัดแบบ Cross-validation 10 folds และTest Dataset

#### 1. การกำหนดค่าพารามิเตอร์

ทำการกำหนดค่าพารามิเตอร์ที่ใช้ในการทดสอบอัลกอ ริทึมทั้ง 4 อัลกอริทึม แสดงดังตารางที่ 3

**ตารางที่ 3** การกำหนดค่าพารามิเตอร์ต่างๆ ที่ใช้ในการทดสอบอัลกอริทึม

| Algorithms                                      | Stemmer                          | Considered Parameters                              |
|-------------------------------------------------|----------------------------------|----------------------------------------------------|
| - Association Rule (Conjunctive Rule)           | Iterated Lovins Stemmer          | seed, folds, numtree,                              |
| - Decision Tree (Random Forest)                 | Lovins Stemmer                   | hyper parameter Selection,                         |
| - Naïve Bayes (Bayesian Logistic<br>Regression) | Null Stemmer<br>Snowball Stemmer | prior Class, thre shold,<br>hyper parameter Value, |
| - Support Vector Machine (LibSVM)               |                                  | kernel, gramma                                     |

#### 2. การหาประสิทธิภาพและการวิเคราะห์ค่า ROC

ทำการทดสอบโดยปรับค่าพารามิเตอร์ตามที่กำหนดไว้ ในแต่ละอัลกอริทึม และเปรียบเทียบผลลัพธ์ พบว่า อัลกอริทึม ที่ให้ผลลัพธ์ดีที่สุดสองอันดับแรกจากการทดสอบข้อมูลทั้ง 3 ชุด คือ อัลกอริทึม Random Forest และอัลกอริทึม Bayesian Logistic Regression ดังตารางที่ 4 ถึง 9 ซึ่งจากตารางพบว่า ในข้อมูลชุดที่ 1 และ 3 อัลกอริทึม Random Forest ให้ผลลัพธ์ ดีที่สุด ส่วนในข้อมูลชุดที่ 2 อัลกอริทึม Bayesian Logistic Regression ให้ผลลัพธ์ที่ดีที่สุด

#### การวิเคราะห์ค่า ROC



ภาพที่ 1 กราฟ ROC ของข้อมูลชุดที่ 1 โดยอัลกอริทึม Random Forest



ภาพที่ 2 กราฟ ROC ของข้อมูลชุดที่ 1 โดยอัลกอริทึม Bayesian Logistic Regression

ในการวิเคราะห์ค่า ROC เมื่อพิจารณาในแต่ละชุดข้อมูล จากภาพที่ 1 กราฟ ROC ของข้อมูลที่ 1 โดยอัลกอริทึม Random Forest แสดงให้เห็นว่า อัลกอริทึม Random Forest มีประสิทธิภาพมากกว่า เนื่องจากแนวโน้มของกราฟมีความชั้น มาก

**ตารางที่ 4** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทีม Random Forest สำหรับข้อมูลชุดที่ 1

|           |               |          |           | Area    |       | 0.827                                             |
|-----------|---------------|----------|-----------|---------|-------|---------------------------------------------------|
|           |               | Ц        | L         | Measure |       | 0.783                                             |
|           | Weighted Avg. |          | Recall    |         |       | 0.783                                             |
|           | Weight        |          | Precision |         |       | 0.408 0.431 81.652 86.191 0.783 0.217 0.783 0.783 |
|           |               |          | L         | Rate    |       | 0.217                                             |
| It        |               | d L      | <u>-</u>  | Rate    |       | 0.783                                             |
| Result    | Root          | relative | Saliared  | 5       | error | 86.191                                            |
|           | Ovitolog      | obsoluto | absolute  | error   |       | 81.652                                            |
|           | Root          | mean     | Sollared  | 5       | error | 0.431                                             |
|           | acon          | opio di  | absolute  | error   |       |                                                   |
|           |               | +0022000 | ווכסוופכו |         |       | 21.667                                            |
|           |               | 1001100  |           |         |       | 78.333                                            |
|           |               | Stommor  | סומוווומו |         |       | LovinsStemmer                                     |
| Parameter |               | Č        | מממח      |         |       | 2                                                 |
|           |               | ocutania | ומוווומם  |         |       | 06                                                |

**ตารางที่ 5** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทีม Bayesian Logistic Regression สำหรับข้อมูลชุดที่ 1

|                 |           | Parameter                        |               |        |          |          |         |                    | Result       | ıt       |       |           |               |         |       |
|-----------------|-----------|----------------------------------|---------------|--------|----------|----------|---------|--------------------|--------------|----------|-------|-----------|---------------|---------|-------|
|                 |           |                                  |               |        |          | acc. N   | Root    | 0,110              | Root         |          |       | Weight    | Weighted Avg. |         |       |
| 4.<br>Clodoscd+ |           | Hyperparameter                   | Otommor       | +00250 | +0022000 |          | mean    | obcoluto           | relative     | d F      | 9     |           |               | ш       |       |
| חופופופום       | priordass | Selection                        | סופווווופו    |        | ווכחופר  | apsolute | sanared | absolute           | sanared      | <u>-</u> | L     | Precision | Recall        | L       | 2     |
|                 |           |                                  |               |        |          | error    | -       | error              | -            | Rate     | Rate  |           |               | Measure | Area  |
|                 |           |                                  |               |        |          |          | error   |                    | error        |          |       |           |               |         |       |
| 0.5             |           | Gussian Norm-based LovinsStemmer | LovinsStemmer | 77.667 | 22.333   | 0.223    | 0.473   | 0.223 0.473 44.667 | 94.516 0.777 | 0.777    | 0.223 | 0.777     | 0.777         | 0.777   | 0.777 |
|                 |           |                                  |               |        |          |          |         |                    |              |          |       |           |               |         |       |

**ตารางที่ 6** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทีม Random Forest สำหรับข้อมูลชุดที่ 2

| <u>a</u> . | Parameter |               |        |        |          |             |            | Result        |             |       |               |             |             |       |
|------------|-----------|---------------|--------|--------|----------|-------------|------------|---------------|-------------|-------|---------------|-------------|-------------|-------|
|            |           |               |        |        | 000      | Root        | 0,:10      | Root          |             |       | Weighted Avg. | ed Avg.     |             |       |
| Control    | 0         | 200           | +000   | 0      | ואומשו   | mean        | Neighber 1 | relative      | Ę           | 5     |               |             | L           |       |
| D<br>D     | Dubos     | סופוווום      |        |        | apsolute | squared     | absolute   | squared       | Ľ.          | L     | Precision     | Recall      | Ľ           | 2     |
|            |           |               |        |        | error    | error       | error      | error         | Rate        | Rate  |               |             | Measure     | Area  |
|            | 4         | LovinsStemmer | 80.333 | 19.667 | 1 1      | 0.338 0.388 | 1 1        | 67.533 76.899 | 0.803 0.197 | 0.197 | 0.819         | 0.819 0.803 | 0.801 0.915 | 0.915 |

**ตารางที่ 7** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทึม Bayesian Logistic Regression สำหรับข้อมูลชุดที่ 2

|                        | <u>ц</u> | Parameter    |                                      |         |        |          |                                                     |                      | Result   | Ħ     |       |           |               |         |             |
|------------------------|----------|--------------|--------------------------------------|---------|--------|----------|-----------------------------------------------------|----------------------|----------|-------|-------|-----------|---------------|---------|-------------|
|                        |          |              |                                      |         |        | 2        | Root                                                | 9                    | Root     |       |       | Weight    | Weighted Avg. |         |             |
| ssel Ozoira - blodszed | <u> </u> | hyperparamet | Stemmer                              | tograce | 10000  | Magi     | mean                                                | helalive<br>sheetite | relative | 2     | 0     |           |               | Li      |             |
| 2                      | Class    | erSelection  |                                      | 122     |        | apsolute | squared                                             | apsoluto             | squared  | =     | - 5   | Precision | Recall        | -       |             |
|                        |          |              |                                      |         |        | io La    | error                                               | io la                | error    | Kate  | Kate  |           |               | Measure | Area        |
| Guí                    | ssian    | Norm-based   | 0.8 Gussian Norm-based LovinsStemmer | 85.667  | 14.333 | 0.143    | 85.667 14.333 0.143 0.379 28.667 74.962 0.857 0.143 | 28.667               | 74.962   | 0.857 | 0.143 | 0.857     | 0.857 0.857   |         | 0.857 0.857 |
|                        |          |              |                                      |         |        |          |                                                     |                      |          |       |       |           |               |         |             |

**ตารางที่ 8** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทึม Random Forest สำหรับข้อมูลชุดที่ 3

|           | Parameter             |               |        |           |          |                                       |          | Result   |          |       |           |               |             |       |
|-----------|-----------------------|---------------|--------|-----------|----------|---------------------------------------|----------|----------|----------|-------|-----------|---------------|-------------|-------|
|           |                       |               |        |           | 0000     | Root                                  | ovito O  | Root     |          |       | Weight    | Neighted Avg. |             |       |
| Costonico | (                     | Otomoro       | 0      | 0         | ואוממו   | mean                                  | opening. | relative | F        | 5     |           |               | L           |       |
| בומווות   | D<br>D<br>D<br>D<br>D | סומווווום     |        | ווכסוופכו | apsointe | sanared                               | apsolute | squared  | <u>_</u> | L     | Precision | Recall        | Ľ           | 202   |
|           |                       |               |        |           | error    | _                                     | error    | -        | Rate     | Rate  |           |               | Measure     | Area  |
|           |                       |               |        |           |          | error                                 |          | error    |          |       |           |               |             |       |
| 100       | 2                     | LovinsStemmer | 83.000 | 17.000    |          | 0.340 0.382 67.900 76.353 0.830 0.170 | 67.900   | 76.353   | 0.830    | 0.170 |           | 0.830 0.830   | 0.830 0.898 | 0.898 |

**ตารางที่ 9** ผลลัพธ์การวัดประสิทธิภาพด้วยอัลกอริทึม Bayesian Logistic Regression สำหรับข้อมูลชุดที่ 3

|           |               | ,.                  | ,           | -        |                | o            |
|-----------|---------------|---------------------|-------------|----------|----------------|--------------|
|           |               | ROC                 | ) (         | <u>C</u> |                | 0.820        |
|           |               | L.                  |             | Medadie  |                | 0.820        |
|           | Neighted Avg. |                     | Recall      |          |                | 0.820        |
|           | Weight        |                     | Precision   |          |                | 0.820        |
|           |               | <u>.</u>            | . 6         | צמנם     |                | 0.180        |
|           |               | 4                   | : 6         | Nate     |                | 84.853 0.820 |
| Result    | Root          | relative            | squared     | error    |                |              |
|           | ovitelod.     | absolute            | 10110       | 5        |                | 36.000       |
|           | Root          | mean                | squared     | error    |                | 0.424        |
|           | Noon a        | absolute            | 10110       | 5        |                | 0.180        |
|           |               | Incorrect           |             |          |                | 18.000       |
|           |               | Correct             |             |          |                | 82.000       |
|           |               | Stemmer             |             |          | IteratedLovins | Stemmer      |
| Parameter |               | hyperparamet        | erSelection |          |                | Norm-based   |
| _         |               | hreshold priorClass |             |          |                | Gussian      |
|           |               | threshold           |             |          |                | 0.5          |

ตั้งแต่ค่า False Positive Rate มีค่า 0.4 ทำให้ค่า True Positive Rate มีค่า สูงถึง 0.8 และเส้นกราฟจะเริ่ม คงที่โดยที่ค่า True Positive Rate เข้าใกล้ 1 ตั้งแต่ค่า False Positive Rate มีค่า 0.6 แสดงว่า จากกราฟแสดงให้เห็นว่า ไม่ว่าค่า False Positive Rate จะเป็นอย่างไร ตั้งแต่ 0.6 เป็นต้นไป จะทำให้ค่า True Positive Rate เข้าใกล้ 1 ซึ่งตรงกับวัตถุประสงค์ ของงานวิจัยที่มุ่งเน้นความเสถียรของอัลกอริทีม

เมื่อพิจารณาจากภาพที่ 2 กราฟ ROC ของข้อมูลที่ 1 โดยอัลกอริทึม Bayesian Logistic Regression จะเห็นว่า ค่า True Positive Rate กับ ค่า False Positive Rate แปรผัน ไปในทิศทางเดียวกัน หมายความว่าเมื่อค่า True Positive Rate สูง ค่า False Positive Rate ก็จะสูงด้วยเช่นกัน



ภาพที่ 3 กราฟ ROC ของข้อมูลชุดที่ 2 โดยอัลกอริทึม Random Forest



ภาพที่ 4 กราฟ ROC ของข้อมูลชุดที่ 2 โดยอัลกอริทึม Bayesian Logistic Regression

เมื่อพิจารณาข้อมูลชุดที่ 2 จากภาพที่ 3 กราฟ ROC ของข้อมูลที่ 2 โดยอัลกอริทึม Random Forest แสดงให้เห็น ว่าอัลกอริทึม Random Forest มีประสิทธิภาพดีกว่าอัลกอริทึม Bayesian Logistic Regression เนื่องจากแนวโน้มของกราฟ เริ่มมีความชันสูงขึ้นตั้งแต่ค่า False Positive Rate มีค่า 0.2 ทำให้ค่า True Positive Rate มีค่าสูงถึง 0.8 และเส้นกราฟ จะเริ่มคงที่ โดยที่ค่า True Positive Rate เข้าใกล้ 1 ตั้งแต่ ค่า False Positive Rate มีค่า 0.5 แสดงว่า ไม่ว่าค่า False Positive Rate จะเป็นค่าอะไร ตั้งแต่ 0.5 เป็นต้นไป ก็ทำให้ได้ค่า True Positive Rate ที่เข้าใกล้ 1 ซึ่งตรงกับวัตถุประสงค์ของ งานวิจัยที่มุ่งเน้นความเสถียรของอัลกอริทึม

เมื่อพิจารณาจากภาพที่ 4 กราฟ ROC ของข้อมูลที่ 2 โดยอัลกอริทึม Bayesian Logistic Regression ค่า True Positive Rate กับ ค่า False Positive Rate แปรผันไปในทิศทางเดียวกัน คือ ค่า True Positive Rate ใกล้เคียง 1 จะทำให้ค่า False Positive Rate ใกล้เคียง 1 ด้วยหมายความว่า หากต้องการค่า True Positive Rate ที่สูง ค่า False Positive Rate ก็จะสูงด้วยเช่นกัน



ภาพที่ 5 กราฟ ROC ของข้อมูลชุดที่ 3 อัลกอริทึม Random Forest





ภาพที่ 6 กราฟ ROC ของข้อมูลชุดที่ 3 อัลกอริทึม Bayesian Logistic Regression

เมื่อพิจารณาข้อมูลชุดที่ 3 จากภาพที่ 5 กราฟ ROC ของข้อมูลที่ 3 โดยอัลกอริทึม Random Forest กราฟแสดง ให้เห็นว่าอัลกอริทึม Random Forest มีประสิทธิภาพสูงกว่า อัลกอริทึม Bayesian Logistic Regression เนื่องจากแนวโน้ม ของกราฟมีความชันสูงตั้งแต่ค่า False Positive Rate มีค่า 0.3 ทำให้ค่า True Positive Rate มีค่าสูงถึง 0.8 และเส้นกราฟ จะเริ่มคงที่ โดยที่ค่า True Positive Rate เข้าใกล้ 1 ตั้งแต่ค่า False Positive Rate มีค่า 0.6 แสดงว่าให้เห็น ว่าค่า False Positive Rate ตั้งแต่ 0.6 เป็นต้นไปจะทำให้ได้ค่า True Positive Rate ที่เข้าใกล้ 1 ซึ่งตรงกับวัตถุประสงค์ของงานวิจัยที่มุ่งเน้น ความเสถียรของอัลกอริทึม

เมื่อพิจารณาจากภาพที่ 6 กราฟ ROC ของข้อมูลที่ 3 โดยอัลกอริทึม Bayesian Logistic Regression ค่า True Positive Rate กับ ค่า False Positive Rate แปรผันไปในทิศทางเดียวกัน คือ ค่า True Positive Rate ใกล้เคียง 1 จะทำให้ค่า False Positive Rate ใกล้เคียง 1 จะทำให้ค่า False Positive Rate ใกล้เคียง 1 ด้วย หมายความว่า หากต้องการค่า True Positive Rate ที่สูง ค่า False Positive Rate ก็จะสูง ด้วยเช่นกัน เช่นเดียวกับการทดสอบในชุดข้อมูลที่ 1 และ 2 เมื่อเปรียบเทียบผลการวัดประสิทธิภาพระหว่าง อัลกอริทึม Random Forest และ อัลกอริทึม Bayesian Logistic Regression พบว่า อัลกอริทึม Random Forest แสดงผลลัพธ์ที่ดี

3. การทดสอบ Pair t-Test ของอัลกอริทีม Random Forest

การทดสอบ Pair t-Test ถูกนำมาพิจารณาค่าความ ถูกต้องสำหรับการทดสอบจากการวัดแบบ 10 folds-cross validation และ Test Set เพื่อยืนยันความเสถียรของ อัลกอริทึม Random Forest

จากผลการทดสอบ Pair t-Test ของอัลกอริทึม Random Forest กับทั้ง 3 ชุดข้อมูลทดสอบ พบว่า วิธีการวัด แบบ 10 folds-cross validation และวิธีการวัดแบบ Test Dataset นั้นให้ผลต่างของค่ากลางความถูกต้องเท่ากับ 0 อย่างมีนัยสำคัญในข้อมูลทดสอบจากผลการทดสอบแสดงว่า อัลกอริทึม Random Forest นั้นมีความเสถียรเนื่องจากไม่ว่า จะวัดด้วยวิธีการไหนก็ให้ค่าผลลัพธ์ที่ไม่แตกต่างกัน

#### อภิปรายผล

งานวิจัยนี้นำเสนอการวิเคราะห์การจำแนกข้อความ เพื่อศึกษาความเสถียรของอัลกอริทึมเพื่อการจำแนก 4 รูปแบบ พื้นฐาน ได้แก่ ฐานกฎ เลือกอัลกอริทึม Conjunctive Rule ฐานต้นไม้ตัดสินใจ เลือกอัลกอริทึม Random Forest ฐานความ น่าจะเป็น เลือกอัลกอริทึม Bayesian Logistic Regression และฐานการเรียนรู้ เลือก Support Vector Machine กับ ข้อความทดสอบนำมาจากฐานข้อมูล UCI Machine Learning Repository (http://archive.ics.uci.edu/ml) จำนวน 3 ชุด ได้แก่ ข้อมูลแสดงความคิดเห็นเกี่ยวกับภาพยนตร์จากเว็บไซต์ www.imdb.com ข้อมูลแสดงความคิดเห็นเกี่ยวกับร้านอาหาร จากเว็บไซต์ www.yelp.com และ ข้อมูลแสดงความคิดเห็น เกี่ยวกับสินค้าจากเว็บไซต์ www.amazon.com ซึ่งข้อมูล ทั้ง 3 ชุดเป็นลักษณะข้อความแสดงความคิดเห็น แบ่งออกเป็น 2 กลุ่ม คือ "1" แทนการแสดงความคิดเห็นเชิงบวก และ "0" แทนการแสดงความคิดเห็นในเชิงลบ ทำการปรับค่าพารามิเตอร์ ตามที่กำหนด ใช้การทดสอบ 2 รูปแบบ คือ วิธี 10-fold cross validation และวิธี Test Dataset ผลลัพธ์ พบว่า อัลกอริทึมที่ให้ผลลัพธ์ดีที่สุดสองอันดับแรกของข้อมูลทั้ง 3 ชุด คือ อัลกอริทีม Random Forest และอัลกอริทีม Bayesian Logistic Regression ต่อมาทำการวิเคราะห์ ROC พบว่า อัลกอริทึม Random Forest นั้นให้ประสิทธิภาพที่ดีกว่าเนื่องจากแนวโน้ม

**ตารางที่ 10** ตารางแสดงผลลัพธ์ของการทดสอบ Pair t-Test สำหรับข้อมูลชุดที่ 1

|          |                                                                   | Paired Samples Test         | Test           |       |     |                 |
|----------|-------------------------------------------------------------------|-----------------------------|----------------|-------|-----|-----------------|
|          |                                                                   | Paired Differences          | ferences       | ţ     | df  | Sig. (2-tailed) |
|          |                                                                   | Mean                        | Std. Deviation |       |     |                 |
| Pair 1   | SuppliedTestSet - CrossValidation10Folds                          | 0.03373                     | 2.39496        | 0.154 | 119 | 0.878           |
|          |                                                                   |                             |                |       |     |                 |
| ตารางที่ | <b>ตารางที่ 11</b> ตารางแสดงผลลัพธ์ของการทดสอบ Pair t-Test  สำหรั | t-Test สำหรับข้อมูลชุดที่ 2 |                |       |     |                 |
|          |                                                                   | Paired Samples Test         | Fest           |       |     |                 |
|          |                                                                   | Paired Differences          | erences        | +     | df  | Sig. (2-tailed) |
|          |                                                                   | Mean                        | Std. Deviation |       |     |                 |
| Pair 1   | SuppliedTestSet - CrossValidation10Folds                          | 0.35873                     | 1.61983        | 2.426 | 119 | 0.071           |
|          |                                                                   |                             |                |       |     |                 |
| ตารางที่ | <b>ตารางที่ 12</b> ตารางแสดงผลลัพธ์ของการทดสอบ Pair t-Test  สำหรั | t-Test สำหรับข้อมูลชุดที่ 3 |                |       |     |                 |
|          |                                                                   | Paired Samples Test         | Fest           |       |     |                 |
|          |                                                                   | Paired Differences          | erences        | ļ     | df  | Sig. (2-tailed) |
|          |                                                                   | Mean                        | Std. Deviation |       |     |                 |
| Pair 1   | SuppliedTestSet - CrossValidation10Folds                          | 00516                       | 1.47175        | 038   | 119 | 0.969           |
|          |                                                                   |                             |                |       |     |                 |

ของกราฟมีความชั้นตั้งแต่ค่าตั้งแต่ 0.2-0.4 ก็ทำให้ได้ค่า True Positive Rate เข้าใกล้ 1 ซึ่งตรงกับวัตถุประสงค์ของงานวิจัย ที่มุ่งเน้นความเสถียรของอัลกอริทึม และเพื่อยืนยันความเสถียรของอัลกอริทึม และเพื่อยืนยันความเสถียรของอัลกอริทึม (Paired-t Test) ทั้งนี้ ผลการวิเคราะห์แสดงให้เห็นว่า อัลกอริทึมฐาน Random Forest แสดงความเสถียรการจำแนกข้อความได้สูงกว่า อัลกอริทึมที่ศึกษาอื่นๆ ด้วยค่าเฉลี่ย ROC > 0.80 และ ผลต่างของค่ากลางความถูกต้องเท่ากับ 0 เมื่อทดสอบระหว่างวิธี 10-fold cross validation และวิธี Test Dataset อย่างมี นัยสำคัญ ซึ่งงานวิจัยนี้สามารถนำไปประยุกต์ใช้ในเรื่องของ การสนับสนุนการตัดสินใจ การให้คำแนะนำได้

#### เอกสารอ้างอิง

- กานดา แผ่วัฒนากุล. 2555. "การวิเคราะห์เหมืองข้อเสนอแนะ จากบทวิจารณ์รายการโทรทัศน์." วิทยานิพนธ์ ปริญญามหาบัณฑิต สาขาวิชาบริหารเทคโนโลยี สารสนเทศ คณะสถิติประยุกต์ สถาบันบัณฑิตพัฒน บริหารศาสตร์
- จุฑาทิพย์ ทิพย์พูล และนิเวศ จิระวิชิตชัย. 2559. "การจำแนก จดหมายอิเล็กทรอนิกส์ที่เป็นสแปมโดยใช้เทคนิค เหมืองข้อมูล." **วารสารวิทยาศาสตร์และเทคโนโลยี** มทร.ธัญบุรี 6, 1: 102-109.
- ชูชาติ หฤไชยะศักดิ์. 2554. Material: Text mining. สืบค้น วันที่ 11 พฤศจิกายน 2559 จาก http://www2.it. kmutnb.ac.th/teacher/choochart
- ทิชากร เนตรสุวรรณ์ และไกรศักดิ์ เกษร. 2558. "การจำแนก ข่ายภาษาอังกฤษด้านอาชญากรรมออนไลน์ ด้วยเทคนิค การทำเหมืองข้อความ." **รายงานสืบเนื่องการประชุม** วิชาการระดับชาติ NCCIT2015 ครั้งที่ 11 วันที่ 2-3 กรกฎาคม 2558 ณ โรงแรมอโนมา กรุงเทพ, หน้า 61-65.
- พนิดา ทรงรัมย์. 2559. "การจำแนกความคิดเห็นทางการเมือง บนเครือข่ายสังคมออนไลน์ โดยใช้วิธีการจำแนกแบ สัมพันธ์." วารสารวิทยาศาสตร์และเทคโนโลยี มทร.ธัญบุรี 6, 1: 83-93.

- ราชวิทย์ ทิพย์เสนา ฉัตรเกล้า เจริญผล และแกมกาญจน์ สมประเสริฐศรี. 2557. "การจำแนกกลุ่มคำถาม อัตโนมัติบนกระดานสนทนา." วารสารวิทยาศาสตร์ และเทคโนโลยี มหาวิทยาลัยมหาสารคาม 33, 5: 493-502.
- วลัยลักษณ์ สุขสมบูรณ์ และสมชาย ปราการเจริญ. 2553.
   "การเปรียบเทียบประสิทธิภาพการจำแนกประเภท
   ปัญหาสำหรับระบบถามตอบโดยใช้ ซัพพอร์ ต
   เวกเตอร์แมชชีน นาอีฟเบย์และเคเนียรเรสต์เนเบอร์."
   **รายงานสืบเนื่องการประชุมวิชาการ มหาวิทยาลัย เกษตรศาสตร์ วิทยาเขตกำแพงแสน ครั้งที่ 7** วันที่ 7-8 ธันวาคม 2553 ณ มหาวิทยาลัย
   เกษตรศาสตร์ วิทยาเขตกำแพงแสน, หน้า 747-756.
- Ali, W., Shamsuddin and Ismail A.S. 2011. "Web Proxy Cache Content Classification based on Support Vector Machine." **Journal of Artificial Intelligence** 4, 1: 100-109.
- Brian Kulis. 2012. Lecture 6: Bayesian Logistic Regression. CSE 788.04: Topics in Machine Learning.
- Changki Lee and Gary Geunbae Lee, 2006. "Information Gain and Divergence base Feature Selection for Machine Learning-based Text Categorization."

  Journal of Information Processing and Management: an International Journal Special issue: Formal methods for information retrieval 42, 1: 155-165.
- Choochart tHaruechaiyasak, Wittawat Jitkrittum,
  Chatchawal Sangkeettrakarn, and Chaianun
  Damrongrat. 2008. "Implementing News Article
  Category Browsing Based on Text Categorization
  Technique." In: IEEE/WIC/ACM International
  Conference on Web Intelligence and Intelligent
  Agent Technology, pp. 143-146.

Kanimozhi K. V. and Venkatesan M. 2015. "Unstructured Data Analysis - A Survey." International Journal of Advanced Research in Computer and Communication Engineering 4, 3: 223-225.

Leo Breiman, 2001. "Random Forests." Machine Learning 45, 1: 5-32.

Mohd Fauzi bin Othman and Thomas Moh Shan Yau. 2007. "Comparison of Different Classification Techniques Using WEKA for Breast Cancer."

In: 3rd Kuala Lumpur International Conference on Biomedical Engineering, pp. 520-523.

Quadri M. and Kalyankar. D. N. V. 2010. "Drop Out Feature of Student Data for Academic Performance Using Decision Tree Techniques." Global Journal of Computer Science and Technology 10, 2: 2-5. Qiang Ding, Qin Ding, and William Perrizo. 2002. "Decision tree classification of spatial data streams using Peano Count Trees." In:

Proceedings of the 2002 ACM symposium on Applied computing, pp. 413-417.

Trupti A. Kumbhare and Santosh V. Chobe 2014.

"An Overview of Association Rule Mining Algorithms." International Journal of Computer Science and Information Technologies 5, 1: 927-930.



## วัชรีวรรณ จิตต์สกุล

สำเร็จการศึกษาปริญญาโท (วท.ม.) สาขาวิชาเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยี พระจอมเกล้าพระนครเหนือ พ.ศ. 2549 และสำเร็จการศึกษาปริญญาตรี (วศ.บ.) สาขาวิชาวิศวกรรม คอมพิวเตอร์ มหาวิทยาลัยเทคโนโลยีสุรนารี พ.ศ. 2545

ปัจจุบันปฏิบัติงานในตำแหน่งนักวิจัย คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยี พระจอมเกล้าพระนครเหนือ



## ผู้ช่วยศาสตราจารย์ ดร.สุนันฑา สดสี

สำเร็จการศึกษาปริญญาเอก (Dr.-Ing) สาขาวิศวกรรม Communication Network มหาวิทยาลัย FernUniversität in Hagen สหพันธ์สาธารณรัฐเยอรมนี พ.ศ. 2555 สำเร็จการศึกษาปริญญาเอก (ปร.ค.) สาขาวิชาเทคโนโลยีสารสนเทศ (นานาชาติ) มหาวิทยาลัยเทคโนโลยีสรสนเทศ(นานาชาติ) มหาวิทยาลัย เทคโนโลยีสรสนเทศ(นานาชาติ) มหาวิทยาลัย เทคโนโลยีพระจอมเกล้าพระนครเหนือ พ.ศ. 2548 และสำเร็จการศึกษาปริญญาตรี (วศ.บ.) สาขาวิชา วิศวกรรมโทรคมนาคม สถาบันเทคโนโลยีพระจอมเกล้า เจ้าคุณทหารลาดกระบัง พ.ศ. 2545

ปัจจุบันปฏิบัติงานในตำแหน่งรองคณบดีฝ่ายวิชาการและวิจัย คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ