Convolutional Neural Network Hung-yi Lee

Can the network be simplified by considering the properties of images?

Why CNN for Image

Some patterns are much smaller than the whole image

A neuron does not have to see the whole image to discover the pattern.

Connecting to small region with less parameters

Why CNN for Image

• The same patterns appear in different regions.

Why CNN for Image

 Subsampling the pixels will not change the object bird

We can subsample the pixels to make image smaller

cat dog

Convolution **Max Pooling** Convolution **Max Pooling**

Can repeat many times

Property 1

Some patterns are much smaller than the whole image

Property 2

The same patterns appear in different regions.

Property 3

Subsampling the pixels will not change the object

Can repeat many times

Flatten

cat dog

Can repeat many times

CNN – Convolution

Those are the network parameters to be learned.

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6	X	6	image
U	Λ	U	iiiiagc

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1
Matrix

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2
Matrix

Each filter detects a small pattern (3 x 3).

Property 1

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

stride=1

1	0	0	0	0	1
0	1	1 0 0		1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
			0 1		

3 -1

6 x 6 image

CNN – Convolution

1	-1	-1
-1	1	-1
-1	-1	1

Filter 1

If stride=2

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

3 -3

We set stride=1 below

6 x 6 image

CNN — Convolution

Filter 1

stride=1

6 x 6 image

CNN — Convolution

-1	1	-1
-1	1	-1
-1	1	-1

Filter 2

stride=1

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

6 x 6 image

Do the same process for every filter

如何理解feature map? 每一个feature map就是对图像从一个不一样的角度去描述, 就像我们描述一个人时,也会从身高体重等多个角度去描述一样。 多个feature map就是从多个角度来描述图片。

4 x 4 image

CNN – Colorful image

Convolution v.s. Fully Connected

Fullyconnected

1	0	0	0	0	1
0	1	0	0	1	0
0	0	1	1	0	0
1	0	0	0	1	0
0	1	0	0	1	0
0	0	1	0	1	0

cat dog

Can repeat many times

CNN – Max Pooling

	1	-1	-1			-1	1	-1	
	-1	1	-1	Filter 1		-1	1	-1	Filter 2
	-1	-1	1			-1	1	-1	
3	-1		-3	-1	-1	-	1	-1	-1
-3	1		0	-3	-1	-	1	-2	1
-3	-3		0	1	-1	-	1	-2	1
3	-2		-2	-1	-1)	-4	3

CNN – Max Pooling

Smaller than the original image

The number of the channel is the number of filters

Can repeat many times

cat dog

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

CNN in Keras

Only modified the *network structure* and *input format (vector -> 3-D tensor)*

Live Demo

What does machine learn?

http://newsneakernews.wpengine.netdna-cdn.com/wp-content/uploads/2016/11/rihanna-puma-creeper-velvet-release-date-02.jpg

First Convolution Layer

 Typical-looking filters on the trained first layer

11 x 11 (AlexNet)

http://cs231n.github.io/understanding-cnn/

How about higher layers?

Which images make a specific neuron activate

Ross Girshick, Jeff
Donahue, Trevor
Darrell, Jitendra Malik, "Rich
feature hierarchies for accurate
object detection and semantic
segmentation", CVPR, 2014

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_{i,j}^k$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

The output of the k-th filter is a 11 x 11 matrix.

Degree of the activation of the k-th filter: $a^k = \sum_{i=1}^{11} \sum_{j=1}^{11} a_{i,j}^k$

 $x^* = arg \max_{x} a^k$ (gradient ascent)

For each filter

Find an image maximizing the output of neuron:

$$x^* = arg \max_{x} a^j$$

Each figure corresponds to a neuron

$$x^* = arg \max_{x} y^i$$
 Can we see digits?

Deep Neural Networks are Easily Fooled https://www.youtube.com/watch?v=M2IebCN9Ht4

Over all pixel values

$$x^* = arg \max_{x} y^i$$

$$x^* = arg \max_{x} \left(y^i - \sum_{i,j} |x_{ij}| \right)$$

Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR, 2014

Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, "Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps", ICLR, 2014

Reference: Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. In *Computer Vision–ECCV 2014* (pp. 818-833)

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Dream

• Given a photo, machine adds what it sees

http://deepdreamgenerator.com/

Deep Style

Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

• Given a photo, make its style like famous paintings

https://dreamscopeapp.com/

Deep Style

A Neural Algorithm of Artistic Style

https://arxiv.org/abs/150

8.06576

More Application: Playing Go

Black: 1

white: -1

none: 0

Fully-connected feedforward network can be used

But CNN performs much better.

More Application: Playing Go

record of 黑:5之五→白:天元→黑:五之5 ... Training: previous plays 5 之五!? Target: "天元" = 1 **CNN** else = 0Target: **CNN**

else = 0

Why CNN for playing Go?

Some patterns are much smaller than the whole image

Alpha Go uses 5 x 5 for first layer

The same patterns appear in different regions.

Why CNN for playing Go?

Subsampling the pixels will not change the object

Max Pooling How to explain this???

Neural network architecture. The input to the policy network is a $19 \times 19 \times 48$ image stack consisting of 48 feature planes. The first hidden layer zero pads the input into a 23 \times 23 image, then convolves k filters of kernel size 5×5 with stride 1 with the input image and applies a rectifier nonlinearity. Each of the subsequent hidden layers 2 to 12 zero pads the respective previous hidden layer into a 21×21 image, then convolves k filters of kernel size 3×3 with stride 1, again followed by a rectifier nonlinearity. The final layer convolves 1 filter of kernel size 1×1 with stride 1 with a different bias for each position, and applies a softmax function. The Alpha Go does not use Max Pooling Extended Data Table 3 additionally show the results of training with k = 128, 256 and 384 filters.

More Application: Speech

More Application: Text

Acknowledgment

• 感謝 Guobiao Mo 發現投影片上的打字錯誤