

A criterion for good reduction of Drinfeld modules and Anderson motives in terms of local shtukas

U. Hartl, S. Hüskens*

Abstract

For an Anderson A -motive over a discretely valued field whose residue field has A -characteristic ε , we prove a criterion for good reduction in terms of its associated local shtuka at ε . This yields a criterion for good reduction of Drinfeld modules. Our criterion is the function-field analog of Grothendieck's [SGA 7, Proposition IX.5.13] and de Jong's [dJ98, 2.5] criterion for good reduction of an abelian variety over a discretely valued field with residue characteristic p in terms of its associated p -divisible group.

Mathematics Subject Classification (2000): 11G09, (14L05)

Contents

1	Introduction	1
2	The base rings	2
3	Frobenius modules	3
4	Anderson motives	5
5	Local shtukas and analytic Anderson motives	6
6	The reduction criterion for Anderson motives	11
References		13

1 Introduction

We fix a finite field \mathbb{F} with r elements and characteristic p . Let \mathcal{C} be a smooth and geometrically irreducible projective curve over \mathbb{F} with function field $Q = \mathbb{F}(\mathcal{C})$. Let $\infty \in \mathcal{C}$ be a closed point and let $A = \Gamma(\mathcal{C} - \{\infty\}, \mathcal{O}_\mathcal{C})$ be the \mathbb{F} -algebra of those rational functions on \mathcal{C} which are regular outside ∞ . For every \mathbb{F} -algebra R we let σ be the endomorphism of $A_R := A \otimes_{\mathbb{F}} R$ given by $\sigma := \text{id}_A \otimes \text{Frob}_{r,R}: a \otimes b \mapsto a \otimes b^r$ for $a \in A$ and $b \in R$.

Let o_L be a complete discrete valuation ring containing \mathbb{F} , with fraction field L , uniformizing parameter π , maximal ideal $\mathfrak{m}_L = (\pi)$ and residue field $\ell = o_L/\mathfrak{m}_L$. We assume that ℓ is a finite field extension of ℓ^p . This is equivalent to saying that ℓ has a finite p -basis over ℓ^p in the sense of [Bou81, § V.13, Definition 1]. It holds for example if ℓ is perfect, or if ℓ is a finitely generated field. Since every Anderson A -motive over L can be defined over a finitely generated subfield of L our restriction on ℓ is not serious. Let $c^*: A \rightarrow o_L$ be a homomorphism of \mathbb{F} -algebras such that the kernel of the composition $A \rightarrow o_L \rightarrow \ell$ is a *maximal* ideal ε in A . We say that *the residue field ℓ has finite A -characteristic ε* . We do not assume that $c^*: A \rightarrow o_L$ is injective. So L can have either generic A -characteristic or finite A -characteristic ε . In the rings A_L and A_{o_L} we consider the ideals $\mathfrak{J} := (a \otimes 1 - 1 \otimes c^*(a): a \in A)$.

*The authors acknowledge support of the Deutsche Forschungsgemeinschaft in form of SFB 878.

By an *Anderson A-motive over L* we mean a pair $\underline{M} = (M, F_M)$ consisting of a locally free A_L -module M of finite rank, and an injective A_L -homomorphism $F_M: \sigma^* M \rightarrow M$ where $\sigma^* M := M \otimes_{A_L, \sigma} A_L$, such that $\text{coker}(F_M)$ is a finite dimensional L -vector space and is annihilated by a power of \mathfrak{J} . We say that \underline{M} has *good reduction over o_L* if there exists a locally free A_{o_L} -module \mathcal{M} and an injective A_{o_L} -homomorphism $F_{\mathcal{M}}: \sigma^* \mathcal{M} \rightarrow \mathcal{M}$ such that $(\mathcal{M}, F_{\mathcal{M}}) \otimes_{A_{o_L}} A_L \cong \underline{M}$ and $\text{coker}(F_{\mathcal{M}})$ is a finite free o_L -module which is annihilated by a power of \mathfrak{J} . We call $\underline{\mathcal{M}} = (\mathcal{M}, F_{\mathcal{M}})$ a *good model of \underline{M}* . In particular if $\underline{M} = \underline{M}(\varphi)$ is the Anderson A -motive associated with a Drinfeld module φ over L , then \underline{M} has good reduction if and only if φ has good reduction; see Proposition 4.9.

Anderson A -motives are function-field analogs of abelian varieties. For an abelian variety \mathcal{A} over a discretely valued field K with residue field of characteristic p there are criteria for good reduction in terms of local data. For a prime number $l \neq p$ the criterion of Néron-Ogg-Shavarevich [ST68, §1, Theorem 1] states that \mathcal{A} has good reduction if and only if the l -adic Tate module $T_l \mathcal{A}$ of \mathcal{A} is unramified as a $\text{Gal}(K^{\text{alg}}/K)$ -representation. At the prime p the criterion of Grothendieck [SGA 7, Proposition IX.5.13] (for $\text{char}(K) = 0$), respectively de Jong [dJ98, 2.5] (for $\text{char}(K) = p$) states that \mathcal{A} has good reduction if and only if the Barsotti-Tate group $\mathcal{A}[p^\infty]$ has good reduction.

These criteria have function-field analogs for Anderson A -motives. The analog of the Néron-Ogg-Shavarevich-criterion was proved by Gardeyn [Gar02, Theorem 1.1]. In this article we simultaneously prove the analog of Grothendieck's and de Jong's criterion. Here the function-field analogs of Barsotti-Tate groups are local shtukas [Har09, §§3.1, 3.2] which are defined as follows. Let $A_{o_L, (\varepsilon, \pi)}$ be the (ε, π) -adic completion of A_{o_L} . An (*effective*) *local shtuka at ε over o_L* is a pair $\hat{\underline{M}} = (\hat{M}, F_{\hat{M}})$ consisting of a finite free $A_{o_L, (\varepsilon, \pi)}$ -module \hat{M} and an injective $A_{o_L, (\varepsilon, \pi)}$ -homomorphism $F_{\hat{M}}: \sigma^* \hat{M} \rightarrow \hat{M}$ such that $\text{coker}(F_{\hat{M}})$ is a finite free o_L -module and is annihilated by a power of \mathfrak{J} . The local shtuka associated with a good model \underline{M} of an Anderson A -motive is $\hat{\underline{M}}(\underline{M}) := \underline{M} \otimes_{A_{o_L}} A_{o_L, (\varepsilon, \pi)}$. Our analog of Grothendieck's and de Jong's reduction criterion is now the following

Corollary 6.6. *Let \underline{M} be an Anderson A -motive over L . Then \underline{M} has good reduction over o_L if and only if there is an effective local shtuka $\hat{\underline{M}}$ at ε over o_L and an isomorphism $\underline{M} \otimes_{A_L} A_{o_L, (\varepsilon, \pi)}[1/\pi] \cong \hat{\underline{M}}[1/\pi]$.*

This applies in particular if \underline{M} is the Anderson A -motive associated with a Drinfeld module φ over L to give a criterion for good reduction of φ in terms of its associated local shtuka.

2 The base rings

Let o_L be an equi-characteristic complete discrete valuation ring containing the finite field \mathbb{F} , with quotient field $L = \text{Frac}(o_L)$ and residue field $\ell = o_L/\mathfrak{m}_L$, where $\mathfrak{m}_L \subseteq o_L$ is the maximal ideal of o_L . We assume that ℓ is a *finite* field extension of $\ell^p := (b^p : b \in \ell)$. We fix a uniformizer $\pi = \pi_L$ of o_L and sometimes identify o_L with $\ell[[\pi]]$. Let $v = v_\pi = \text{ord}_\pi(\cdot)$ be the discrete valuation on L normalized by $v(\pi) = 1$.

We assume that there is an o_L -valued point $c \in \mathcal{C}(o_L)$ such that the corresponding \mathbb{F} -morphism $c: \text{Spec}(o_L) \rightarrow \mathcal{C}$ factors via $\mathcal{C} - \{\infty\} \subseteq \mathcal{C}$. Such a datum corresponds to a homomorphism of \mathbb{F} -algebras $c^*: A \rightarrow o_L$ which we call the *characteristic map*. We further assume that the closed point $V(\pi) \subseteq \text{Spec}(o_L)$ is mapped to a closed point ε of $\text{Spec}(A) \subseteq \mathcal{C}$. The latter is the kernel of the composition $A \rightarrow o_L \twoheadrightarrow \ell$. So, in accordance with Drinfeld's terminology [Dri76], we call ε the *residue characteristic* or *residual characteristic place of Q* . By continuity, the characteristic map $c^*: A \rightarrow o_L$ factors through to a morphism of complete discrete valuation rings $A_\varepsilon \rightarrow o_L$ where A_ε is the completion of A at the characteristic place ε . Note that $A_\varepsilon \rightarrow o_L$ is injective if c^* is injective, and factors through A/ε if c^* is not injective.

Remark 2.1. Since A is a Dedekind domain there is a power ε^m which is a principal ideal in A . We fix a generator t of ε^m and frequently use the finite flat monomorphism of \mathbb{F} -algebras $\iota: \mathbb{F}[z] \rightarrow A, z \mapsto t$.

For any \mathbb{F} -algebra R we abbreviate $A_R := A \otimes_{\mathbb{F}} R$. In particular, $A_{o_L} \subseteq A_L$ is a noetherian integral domain, and by virtue of the equality $A_\ell \cong A_{o_L}/\pi A_{o_L}$ it follows that $\pi \in o_L$ is a prime element of A_{o_L} .

Definition 2.2. Let $A_{o_L, \pi}$ (resp., $A_{o_L, (\varepsilon, \pi)}$) be the completion of the o_L -algebra A_{o_L} for the π -adic topology (resp., the (ε, π) -adic topology).

By Krull's Theorem ([Bou67], III.3.2), the ring A_{o_L} is separated for both the π -adic and the (ε, π) -adic topology. The topological o_L -algebra $A_{o_L, \pi}$ is admissible in the sense of Raynaud, i.e. it is of topologically finite presentation and has no π -torsion. In particular, the L -algebra $A_{o_L, \pi}[1/\pi]$ is affinoid in the sense of rigid analytic geometry; see [Bos08, BL93a, BGR84].

For example if $\mathcal{C} = \mathbb{P}_{\mathbb{F}}^1$ and $A = \mathbb{F}[z]$ then we have $A_{o_L} = o_L[z]$ and correspondingly $A_L = L[z]$. Let us specify that $\varepsilon = z\mathbb{F}[z]$. Our choice of a uniformizer π gives rise to an identification $o_L = \ell[\![\pi]\!]$. Consequently $o_L[\![z]\!] = \ell[\![\pi]\!][\![z]\!] = \ell[\![\pi, z]\!] = A_{o_L, (\varepsilon, \pi)}$. On the other hand, the π -adic completion of $o_L[z]$ equals $o_L\langle z \rangle := \{\sum_{i=0}^{\infty} b_i z^i : v(b_i) \rightarrow \infty (i \rightarrow \infty)\}$, and since $L\langle z \rangle = o_L\langle z \rangle \otimes_{o_L} L$, we may view $A_{o_L, \pi}[1/\pi]$ as a replacement, for general \mathcal{C} , of the Tate algebra $L\langle z \rangle$ of strictly convergent power series in one indeterminate z over L , which serves as coordinate ring for the one-dimensional affinoid unit ball in rigid analytic geometry.

There is a natural embedding $A_L \rightarrow A_{o_L, \pi}[1/\pi]$ which, for general \mathcal{C} , replaces the completion homomorphism $L[z] \rightarrow L\langle z \rangle$, and which itself can be regarded as a completion map with respect to the L -algebra norm-topology on the *reduced* affinoid L -algebra $A_{o_L, \pi}[1/\pi]$ and its restriction on A_L ; see [Bos08, §1.4, Proposition 19]. Note that the canonical homomorphism $A_{o_L} \rightarrow A_{o_L, (\varepsilon, \pi)}$ factors uniquely via $A_{o_L, \pi}$, where the induced map $A_{o_L, \pi} \rightarrow A_{o_L, (\varepsilon, \pi)}$ identifies $A_{o_L, (\varepsilon, \pi)}$ with the $(\varepsilon, \pi)A_{o_L, \pi}$ -adic completion of $A_{o_L, \pi}$. Since $A_{o_L, \pi}$ is a regular integral domain, it is $(\varepsilon, \pi)A_{o_L, \pi}$ -adically separated by Krull's theorem and $A_{o_L, \pi} \rightarrow A_{o_L, (\varepsilon, \pi)}$ is injective and flat.

Recall that there is a finite flat monomorphism of \mathbb{F} -algebras $\iota: \mathbb{F}[z] \rightarrow A$ which identifies the indeterminate z with the generator $t \in A$ of ε^m chosen in Remark 2.1. The o_L -algebra homomorphism $\iota \otimes \text{id}: o_L[z] \rightarrow A_{o_L}$, $\sum_{\nu} a_{\nu} z^{\nu} \mapsto \sum_{\nu} t^{\nu} \otimes a_{\nu}$, is finite flat, so that we obtain finite flat maps

$$o_L\langle z \rangle \rightarrow A_{o_L, \pi}, \quad L\langle z \rangle \rightarrow A_{o_L, \pi}[1/\pi], \quad o_L[\![z]\!] \rightarrow A_{o_L, (t, \pi)}, \quad \ell[\![z]\!] \rightarrow A_{\ell}. \quad (2.1)$$

Here the (t, π) -adic completion $A_{o_L, (t, \pi)}$ of A_{o_L} equals $A_{o_L, (\varepsilon, \pi)}$ since $(\varepsilon, \pi)^m \subseteq (\varepsilon^m, \pi) = (t, \pi)$ in A_{o_L} .

Lemma 2.3. If $A_{o_L, \varepsilon}$ denotes the ε -adic completion of A_{o_L} , the canonical map $A_{o_L, \varepsilon} \rightarrow A_{o_L, (\varepsilon, \pi)}$ is an isomorphism. \square

3 Frobenius modules

The r -Frobenius $\text{Frob}_r: o_L \rightarrow o_L, x \mapsto x^r$, gives rise to an endomorphism

$$\sigma = \text{id}_A \otimes \text{Frob}_r: A_{o_L} \rightarrow A_{o_L}, \quad a \otimes x \mapsto a \otimes x^r,$$

which extends to give a map $\text{id}_A \otimes \text{Frob}_{r, L}: A_L \rightarrow A_L$ again denoted by σ . On the other hand, reducing mod π gives $\bar{\sigma} = \text{id}_A \otimes \text{Frob}_{r, \ell}: A_{\ell} \rightarrow A_{\ell}$. The latter is a finite flat endomorphism of the Dedekind domain A_{ℓ} , because ℓ is finite over ℓ^p . The map $\sigma: A_{o_L} \rightarrow A_{o_L}$ is π -adically and (ε, π) -adically continuous and therefore extends to give endomorphisms $A_{o_L, \pi} \rightarrow A_{o_L, \pi}$ and $A_{o_L, (\varepsilon, \pi)} \rightarrow A_{o_L, (\varepsilon, \pi)}$, again denoted by σ .

Lemma 3.1. *In the commutative diagram*

$$\begin{array}{ccccc} A_{o_L} & \longrightarrow & A_{o_L, \pi} & \longrightarrow & A_{o_L, (\varepsilon, \pi)} \\ \sigma \downarrow & & \sigma \downarrow & & \sigma \downarrow \\ A_{o_L} & \longrightarrow & A_{o_L, \pi} & \longrightarrow & A_{o_L, (\varepsilon, \pi)} \end{array}$$

both squares are cocartesian, and the vertical arrows are finite flat.

We let the proof be preceded by the following

Remark. Via the identification $o_L = \ell[\![\pi]\!]$, the r -Frobenius $\text{Frob}_{r, o_L}: o_L \rightarrow o_L$ is mirrored by the map $\ell[\![\pi]\!] \rightarrow \ell[\![\pi]\!]$, $\sum_{\nu=0}^{\infty} a_{\nu} \pi^{\nu} \mapsto \sum_{\nu=0}^{\infty} a_{\nu}^r \pi^{r\nu}$. Choosing an ℓ^r -basis of ℓ and lifting it to a subset W of o_L , this implies $(\text{Frob}_{r, o_L})_* o_L = \bigoplus_{i=0}^{r-1} \bigoplus_{w \in W} o_L w \pi^i$, so that $\text{Frob}_{r, o_L}: o_L \rightarrow o_L$ is finite flat.

Proof of Lemma 3.1. By base change the remark implies that $\sigma = \text{id}_A \otimes \text{Frob}_{r, o_L}: A_{o_L} \rightarrow A_{o_L}$ is finite flat, and that $A_{o_L} \otimes_{\sigma, A_{o_L}} A_{o_L, \pi}$ is a finite flat $A_{o_L, \pi}$ -module and hence equals the π -adic completion of the A_{o_L} -module $\sigma_* A_{o_L}$. If we let $\mathfrak{a} = \sigma(\pi A_{o_L}) A_{o_L} = \pi^r A_{o_L}$ and $\mathfrak{b} = \pi A_{o_L}$, we get $\mathfrak{b}^r = \mathfrak{a} \subseteq \mathfrak{b}$. Consequently, by [Eis95, Lemma 7.14], the inverse systems $(A_{o_L}/\mathfrak{a}^n)_n$ and $(A_{o_L}/\mathfrak{b}^n)_n$ give the same limit, which shows that the square on the left is cocartesian, and that $\sigma: A_{o_L, \pi} \rightarrow A_{o_L, \pi}$ is finite flat. Similarly, we have $\sigma(\varepsilon, \pi) A_{o_L} = (\varepsilon, \pi^r) \subseteq (\varepsilon, \pi)$ as well as $(\varepsilon, \pi)^r \subseteq (\varepsilon, \pi^r)$, which proves that the displayed diagram qualifies $A_{o_L, (\varepsilon, \pi)}$ as tensor product $A_{o_L, (\varepsilon, \pi)} \otimes_{A_{o_L}, \sigma} A_{o_L}$, and that $\sigma: A_{o_L, (\varepsilon, \pi)} \rightarrow A_{o_L, (\varepsilon, \pi)}$ is finite flat. \square

Finally, note that the embedding of o_L -algebras $\iota \otimes \text{id}: o_L[z] \rightarrow A_{o_L}$ commutes with $\sigma: A_{o_L} \rightarrow A_{o_L}$ and the r -Frobenius lift of $o_L[z]$, given by $o_L[z] \rightarrow o_L[z]$, $\sum_{\nu} a_{\nu} z^{\nu} \mapsto \sum_{\nu} a_{\nu}^r z^{\nu}$. Consequently, also the embeddings from (2.1) are Frobenius-equivariant.

Let B be an o_L -algebra together with a ring endomorphism $\sigma: B \rightarrow B$ such that σ and $\text{Frob}_{r, o_L}: o_L \rightarrow o_L$ are compatible with the structure map $o_L \rightarrow B$. For example, B could be any of the base rings considered in the previous sections.

Definition 3.2. We define the category $\text{FMod}(B)$ of *Frobenius B -modules* (or simply *F -modules* over B) as follows:

- An object of $\text{FMod}(B)$ is a pair $\underline{M} = (M, F)$ consisting of an B -module M which is locally free of finite rank, together with an *injective* B -linear map $F = F_M: \sigma^* M \rightarrow M$, where $\sigma^* M := M \otimes_{B, \sigma} B$.
- A *morphism* of Frobenius B -modules $(M, F_M) \rightarrow (N, F_N)$ is an B -linear map $\varphi: M \rightarrow N$ between the underlying B -modules such that φ is *F -equivariant*, i.e. such that $\varphi \circ F_M = F_N \circ \sigma^* \varphi$. It is called an *isomorphism* if φ is an isomorphism of the underlying B -modules.

Let B' be a flat B -algebra together with a ring endomorphism $\sigma: B' \rightarrow B'$ extending the Frobenius lift of B , as explained before. Then the exact functor $\cdot \otimes_B B'$ from B -modules to B' -modules yields a functor $\text{FMod}(B) \rightarrow \text{FMod}(B')$. If the structure map $B \rightarrow B'$ is, in addition, injective then the induced functor on $\text{FMod}(B)$ is faithful since, given a map $f: M \rightarrow N$ of finite projective B -modules, restricting its image $f \otimes \text{id}: M \otimes_B B' \rightarrow N \otimes_B B'$ to M gives back f . In particular, we obtain a natural commutative diagram of categories and faithful functors

$$\begin{array}{ccccc} \text{FMod}(A_{o_L}) & \longrightarrow & \text{FMod}(A_{o_L, \pi}) & \longrightarrow & \text{FMod}(A_{o_L, (\varepsilon, \pi)}) \\ \downarrow & & \downarrow & & \downarrow \\ \text{FMod}(A_L) & \longrightarrow & \text{FMod}(A_{o_L, \pi}[1/\pi]) & \longrightarrow & \text{FMod}(A_{o_L, (\varepsilon, \pi)}[1/\pi]) \end{array}$$

Slightly abusing notation, we agree to write $\underline{M} \otimes_B B'$ for $(M \otimes_B B', F_M \otimes \text{id}_{B'})$, whenever $\underline{M} = (M, F_M)$.

4 Anderson motives

Let $\mathfrak{J} \subseteq A_{o_L}$ be the ideal generated by $a \otimes 1 - 1 \otimes c^*(a)$ for all $a \in A$. For example, if $\mathcal{C} = \mathbb{P}_{\mathbb{F}}^1$ and $A = \mathbb{F}[z]$, then $\mathfrak{J} = (z - \zeta) \subseteq o_L[z]$ where $\zeta = c^*(z)$. Note that $\zeta = 0$ if c^* is not injective. We consider the following variant of Anderson's [And86] t -motives.

Definition 4.1. An *Anderson A -motive over L* is an object $\underline{M} = (M, F_M) \in \text{FMod}(A_L)$ such that $\text{coker}(F_M)$ is a finite-dimensional L -vector space and is annihilated by a power of \mathfrak{J} . A *morphism* of Anderson A -motives is defined as a morphism inside $\text{FMod}(A_L)$.

Since $\text{Spec}(A_L)$ is of finite type over L , one can consider its rigid analytification $\text{Spec}(A_L)^{\text{an}}$; see [Bos08], [BGR84], [FP04]. In accordance with [BH07], we denote this rigid analytic L -space by $\mathfrak{A}(\infty)$. On the other hand, the formal completion of the o_L -scheme $X = \text{Spec}(A_{o_L})$ along its special fiber $V(\pi)$ leads to the formal o_L -scheme $\mathfrak{X} = \text{Spf}(A_{o_L, \pi})$; see [EGA, I_{new}, I.10.8.3]. Its associated rigid analytic space $\mathfrak{X}_{\text{rig}}$ ([Bos08], [FP04]) is given by the affinoid L -space $\mathfrak{A}(1) := \text{Sp}(A_{o_L, \pi}[1/\pi])$. This space can be regarded as the unit disc of the rigid analytic space $\mathfrak{A}(\infty)$ as it corresponds to "radius of convergence 1", hence the notation.

We study the following instance of rigid analytic τ -sheaves over $A_{o_L, \pi}[1/\pi]$, in the sense of [BH07].

Definition 4.2. An *analytic Anderson $A(1)$ -motive over L* is an object $\underline{M} = (M, F_M) \in \text{FMod}(A_{o_L, \pi}[1/\pi])$ such that $\text{coker}(F_M)$ is a finite-dimensional L -vector space and is annihilated by a power of \mathfrak{J} . A *morphism* of analytic Anderson $A(1)$ -motives is defined as a morphism in the category $\text{FMod}(A_{o_L, \pi}[1/\pi])$.

Here the prefix " $A(1)$ -" indicates that we are considering an analytic variant of Anderson A -motives over the rigid analytic "unit disc" $\mathfrak{A}(1)$ in $\text{Spec}(A_L)$.

Proposition 4.3. The natural functor $\text{FMod}(A_L) \rightarrow \text{FMod}(A_{o_L, \pi}[1/\pi])$, $\underline{M} \mapsto \underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ restricts to a functor $(\text{Anderson } A\text{-motives over } L) \rightarrow (\text{analytic Anderson } A(1)\text{-motives over } L)$. \square

Definition 4.4. (a) Let $\underline{M}_L \in \text{FMod}(A_L)$ be an F -module over A_L . A *model* of \underline{M}_L is an object $\underline{M} \in \text{FMod}(A_{o_L})$ such that $\underline{M} \otimes_{A_{o_L}} A_L \cong \underline{M}_L$ inside $\text{FMod}(A_L)$.

(b) Let $\underline{M}_L \in \text{FMod}(A_{o_L, \pi}[1/\pi])$ be an F -module over $A_{o_L, \pi}[1/\pi]$. A *(formal) model* of \underline{M}_L is an object $\underline{M} \in \text{FMod}(A_{o_L, \pi})$ such that $\underline{M} \otimes_{A_{o_L, \pi}} A_{o_L, \pi}[1/\pi] \cong \underline{M}_L$ inside $\text{FMod}(A_{o_L, \pi}[1/\pi])$.

For every $\underline{M} \in \text{FMod}(A_{o_L})$, resp. $\underline{M} \in \text{FMod}(A_{o_L, \pi})$ we can consider the reduction $\underline{M} \otimes_{A_{o_L}} A_\ell$, resp. $\underline{M} \otimes_{A_{o_L, \pi}} A_\ell$. Note, however, that this does *not* induce a functor from $\text{FMod}(A_{o_L})$, resp. $\text{FMod}(A_{o_L, \pi})$ to $\text{FMod}(A_\ell)$, since the induced F -map need not be injective. This circumstance lies at the origin of our study of good models:

Definition 4.5. Let \underline{M} be a model of an F -module \underline{M}_L over A_L , resp. over $A_{o_L, \pi}[1/\pi]$. Then \underline{M} is called a *good model* if $\underline{M}/\pi\underline{M}$ is an F -module over A_ℓ , i.e. if the induced A_ℓ -linear map

$$\bar{\sigma}^*(\mathcal{M}/\pi\mathcal{M}) = (\mathcal{M}/\pi\mathcal{M}) \otimes_{A_\ell, \bar{\sigma}} A_\ell \rightarrow \mathcal{M}/\pi\mathcal{M}$$

is injective.

If \underline{M}_L is an (analytic) Anderson motive there is a stronger notion of good reduction as follows.

Definition 4.6. Let \underline{M} be a model of an Anderson A -motive \underline{M}_L , resp. of an analytic Anderson $A(1)$ -motive \underline{M}_L . Then \underline{M} is called a *good model in the strong sense* if $\text{coker}(F_M)$ is a finite free o_L -module and is annihilated by \mathfrak{J}^d , for some $d \geq 0$. In this case we also say that \underline{M} has *good reduction over o_L* .

Remark 4.7. If \underline{M} is a good model in the strong sense of an Anderson A -motive M then \underline{M} is also a good model in the sense of Definition 4.5. Indeed, since $\sigma^*\mathcal{M}$ is locally free over A_{o_L} the natural map $\sigma^*\mathcal{M} \rightarrow \sigma^*M$ is injective and hence F_M is injective because F_M is. Tensoring the short exact sequence $0 \rightarrow \sigma^*\mathcal{M} \xrightarrow{F_M} \mathcal{M} \rightarrow \text{coker}(F_M) \rightarrow 0$ with ℓ over o_L and using that $\text{coker}(F_M)$ is supposed to be free over o_L shows that the induced A_ℓ -linear map $\bar{\sigma}^*(\mathcal{M}/\pi\mathcal{M}) \rightarrow \mathcal{M}/\pi\mathcal{M}$ remains injective.

For Anderson A -motives associated with Drinfeld modules the converse also holds; see Proposition 4.9. In general the converse is false.

Proposition 4.8. *If \underline{M}_L is an Anderson A -Motive over L having a good model \underline{M} then its analytification $\underline{M}_L \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ is an analytic Anderson $A(1)$ -motive having the good model $\widehat{\underline{M}} := \underline{M} \otimes_{A_{o_L}} A_{o_L, \pi}$ and the reduction $\widehat{\underline{M}}/\pi\widehat{\underline{M}}$ of $\widehat{\underline{M}}$ is canonically isomorphic to the reduction $\underline{M}/\pi\underline{M}$ of \underline{M} . \square*

Proposition 4.9. *Let $\varphi: A \rightarrow L[\tau]$ be a Drinfeld A -module over L ; see [Dri76] or [Mat96]. Let $M = M(\varphi)$ be the associated Anderson A -motive; see [And86, §4.1] or [Gar02, §8.1]. Then the following are equivalent:*

- (i) φ has good reduction over o_L ,
- (ii) M has good reduction over o_L in the strong sense of Definition 4.6,
- (iii) M has a good model in the weak sense of Definition 4.5.

Proof. The equivalence of (i) and (iii) was proved by Gardeyn [Gar02, Theorem 8.1]. Since (ii) implies (iii) by Remark 4.7 it remains to prove that (i) implies (ii). Denote the rank of φ by ρ and set $n(a) := \rho \text{ord}_\infty(a)$. To say that φ has good reduction means that φ can be written in the form $\varphi: A \rightarrow L[\tau], a \mapsto \varphi_a$ with

$$\varphi_a = \sum_{i=0}^{n(a)} \delta_{a,i} \tau^i$$

where $\delta_{a,0} = c^*(a)$, $\delta_{a,i} \in o_L$ and $\delta_{a,n \text{ord}_\infty(a)} \in o_L^\times$. We equip $\mathcal{M} := o_L[\tau]$ with the action of A_{o_L} on $m \in \mathcal{M}$ by $a \cdot m := m \cdot \varphi_a$ and $b \cdot m := bm$ for $a \in A$ and $b \in o_L$. Together with the σ -semilinear Frobenius $F_M^{\text{semi}}: \mathcal{M} \rightarrow \mathcal{M}, m \mapsto \tau \cdot m$ and its linearization $F_M: \sigma^*\mathcal{M} \rightarrow \mathcal{M}$ which satisfies $F_M^{\text{semi}}(m) = F_M(m \otimes 1)$ we obtain a model $\underline{M} = (\mathcal{M}, F_M)$ of the Anderson A -motive $M(\varphi)$. To prove that \underline{M} is a good model in the sense of Definition 4.6, we use the morphism $\mathbb{F}[z] \rightarrow A, z \mapsto t$ from Remark 2.1. Under the restriction of scalars to $\mathbb{F}[z]$ the $o_L[z]$ -module \mathcal{M} is isomorphic to $\bigoplus_{i=0}^{n(t)} o_L \tau^i$ with F_M given by the matrix

$$\begin{pmatrix} 0 & 0 & (z - \zeta)\delta_{n(t)}^{-1} \\ 1 & 0 & -\delta_1\delta_{n(t)}^{-1} \\ 0 & 0 & \vdots \\ 0 & 0 & -\delta_{r-1}\delta_{n(t)}^{-1} \end{pmatrix}.$$

This shows that $\text{coker}(F_M)$ is isomorphic to $o_L[z]/(z - \zeta) = o_L$ and annihilated by $z - \zeta \in \mathfrak{J}$. Therefore \underline{M} is a good model of M in the strong sense of Definition 4.6. \square

5 Local shtukas and analytic Anderson motives

Anderson A -motives can be viewed as function-field analogs of abelian varieties. Barsotti-Tate groups, which can be associated with abelian varieties over \mathbb{Z}_p -schemes, have effective local shtukas as function-field analogs.

Definition 5.1. An (*effective*) local shtuka at ε over o_L is an object $\underline{M} = (\hat{M}, F_{\hat{M}}) \in \text{FMod}(A_{o_L,(\varepsilon,\pi)})$ such that $\text{coker}(F_{\hat{M}})$ is a finite free o_L -module and is annihilated by a power of \mathfrak{J} .

Remark 5.2. If the residue field $\mathbb{F}_\varepsilon = A/\varepsilon$ of ε is larger than \mathbb{F} , i.e. $d_\varepsilon := [\mathbb{F}_\varepsilon : \mathbb{F}] > 1$, the ring $A_{o_L,(\varepsilon,\pi)}$ is not an integral domain but a product $A_{o_L,(\varepsilon,\pi)} = \prod_{i \in \mathbb{Z}/d_\varepsilon \mathbb{Z}} A_{o_L,(\varepsilon,\pi)}/\mathfrak{a}_i$ of integral domains. To describe this product

decomposition, note that $A_{o_L,(\varepsilon,\pi)} = \varprojlim_n A_{o_L}/\varepsilon^n = \varprojlim_n (A/\varepsilon^n) \otimes_{\mathbb{F}} o_L = \widehat{A}_\varepsilon \widehat{\otimes}_{\mathbb{F}} o_L$. By Cohen's structure theorem $\widehat{A}_\varepsilon \cong \mathbb{F}_\varepsilon[[z_\varepsilon]]$ for a uniformizer $z_\varepsilon \in A$ of A at ε . Then $\mathfrak{a}_i = (\alpha \otimes 1 - 1 \otimes c^*(\alpha)^{r^i} : \alpha \in \mathbb{F}_\varepsilon \subseteq \widehat{A}_\varepsilon)$, where we use that $c^*: A \rightarrow o_L$ factors through $c^*: \widehat{A}_\varepsilon \rightarrow o_L$. The factors $A_{o_L,(\varepsilon,\pi)}/\mathfrak{a}_i$ are isomorphic to $o_L[[z_\varepsilon]]$ and hence are integral domains. They are cyclically permuted by σ because $\sigma(\mathfrak{a}_i) = \mathfrak{a}_{i+1}$. By [BH11, Proposition 8.8] the functor $(\hat{M}, F_{\hat{M}}) \mapsto (\hat{M}/\mathfrak{a}_0 \hat{M}, (F_{\hat{M}})^{d_\varepsilon})$ is an equivalence between the category of effective local shtukas at ε over o_L as in Definition 5.1 and the category of pairs $(\hat{M}_0, \widetilde{F}_{\hat{M}})$ where \hat{M}_0 is a free module of finite rank over $A_{o_L,(\varepsilon,\pi)}/\mathfrak{a}_0$ and $\widetilde{F}_{\hat{M}}: (\sigma^{d_\varepsilon})^* \hat{M}_0 \rightarrow \hat{M}_0$ is injective with $\text{coker}(\widetilde{F}_{\hat{M}})$ being a finite free o_L -module. In [Har09, Har11] these pairs $(\hat{M}_0, \widetilde{F}_{\hat{M}})$ are called (*effective*) local shtukas.

The following criterion for good reduction of analytic Anderson $A(1)$ -motives can be regarded as a *good-reduction Local-Global Principle at the characteristic place*.

Theorem 5.3. Let $\underline{M}_L = (M_L, F_{M_L})$ be an analytic Anderson $A(1)$ -motive over L such that $\text{coker}(F_{M_L})$ is annihilated by \mathfrak{J}^d say. Then the following assertions are equivalent:

- (i) \underline{M}_L admits a good model in the strong sense of Definition 4.6.
- (ii) There is an effective local shtuka $\underline{M} = (\hat{M}, F_{\hat{M}})$ at ε over o_L such that $\text{coker}(F_{\hat{M}})$ is annihilated by \mathfrak{J}^d , and an isomorphism $\underline{M}_L \otimes_{A_{o_L,(\varepsilon,\pi)}} A_{o_L,(\varepsilon,\pi)}[1/\pi] \cong \underline{M} \otimes_{A_{o_L,(\varepsilon,\pi)}} A_{o_L,(\varepsilon,\pi)}[1/\pi]$ in $\text{FMod}(A_{o_L,(\varepsilon,\pi)}[1/\pi])$.

Proof. In order to show that (ii) implies (i), let $f: M_L \otimes_{A_{o_L,(\varepsilon,\pi)}} A_{o_L,(\varepsilon,\pi)}[1/\pi] \rightarrow \hat{M} \otimes_{A_{o_L,(\varepsilon,\pi)}} A_{o_L,(\varepsilon,\pi)}[1/\pi] =: \hat{M}[1/\pi]$ be an isomorphism of $A_{o_L,(\varepsilon,\pi)}[1/\pi]$ -modules as in (ii). We have canonical F -equivariant $A_{o_L,(\varepsilon,\pi)}$ -linear maps

$$i: M_L \rightarrow M_L \otimes_{A_{o_L,(\varepsilon,\pi)}} A_{o_L,(\varepsilon,\pi)}[1/\pi], \quad j: \hat{M} \rightarrow \hat{M}[1/\pi]$$

where i (resp., j) is injective since M_L (resp., \hat{M}) is flat. Consider the $A_{o_L,(\varepsilon,\pi)}$ -module $\mathcal{M} = \text{im}(i) \cap f^{-1}(\text{im}(j))$. We will show that \mathcal{M} is a good model of \underline{M}_L . The inclusion $\mathcal{M} \hookrightarrow M_L$ gives rise to an $A_{o_L,(\varepsilon,\pi)}[1/\pi]$ -linear embedding $\mathcal{M}[1/\pi] \hookrightarrow M_L[1/\pi] \cong M_L$, which is in fact an isomorphism, because if $m \in M_L$ there is an $s \geq 0$ such that $\pi^s f(m \otimes 1) \in \text{im}(j)$, i.e. $\pi^s m \otimes 1 \in \mathcal{M}$.

1. First note that $\sigma^* \mathcal{M} = \sigma^* \text{im}(i) \cap (\sigma^* f)^{-1}(\sigma^* \text{im}(j))$ because the functor σ^* is exact by Lemma 3.1. By the F -equivariance of f we obtain a Frobenius $F_{\mathcal{M}}: \sigma^* \mathcal{M} \rightarrow \mathcal{M}$. It is injective because F_{M_L} is. We set $\underline{\mathcal{M}} := (\mathcal{M}, F_{\mathcal{M}})$.
2. Next we claim that $\mathfrak{J}^d \text{coker}(F_{\mathcal{M}}) = 0$, where $\mathfrak{J} = (a \otimes 1 - 1 \otimes c^*(a), a \in A) \subseteq A_{o_L}$. Let $x = \sum_\nu \alpha_\nu m_\nu \in \mathfrak{J}^d \mathcal{M}$ where $\alpha_\nu \in \mathfrak{J}^d$ and $m_\nu \in \mathcal{M}$. Since $\text{coker}(F_{M_L})$ is annihilated by \mathfrak{J}^d , there is a (unique) $y \in \sigma^* M_L$ such that $x = \sum_\nu \alpha_\nu m_\nu = F_{M_L}(y)$. We have to show that $y \in \sigma^* \mathcal{M} = \sigma^* \text{im}(i) \cap (\sigma^* f)^{-1}(\sigma^* \text{im}(j))$. So it remains to see that $(\sigma^* f)(y) \in \text{im}(\sigma^* j)$. Indeed, inside $\hat{M}[1/\pi]$ we have $f(x) = f(F_{M_L}(y)) = F_{\hat{M}}((\sigma^* f)(y))$. On the other hand, the linearity of f and j gives that $f(x) = \sum_\nu \alpha_\nu f(m_\nu \otimes 1) = j(y')$ for some $y' \in \mathfrak{J}^d \hat{M} \subseteq \text{im}(F_{\hat{M}})$, say $y' = F_{\hat{M}}(y'')$ for a $y'' \in \sigma^* \hat{M}$. Thus $f(x) = F_{\hat{M}}((\sigma^* j)(y''))$. So finally, since $F_{\hat{M}}: \sigma^* \hat{M}[1/\pi] \rightarrow \hat{M}[1/\pi]$ is injective, we obtain that $(\sigma^* f)(y) = (\sigma^* j)(y'')$, as desired.
3. In order to show that \mathcal{M} is a finitely generated $A_{o_L,(\varepsilon,\pi)}$ -module we use the embedding $\iota: \mathbb{F}[z] \rightarrow A$ from Remark 2.1 and the induced maps $L\langle z \rangle \rightarrow A_{o_L,(\varepsilon,\pi)}[1/\pi]$ and $o_L[[z]] \rightarrow A_{o_L,(\varepsilon,\pi)}$ from (2.1). Let (e_1, \dots, e_m) be a basis of M_L over the principal ideal domain $L\langle z \rangle$. Furthermore, let (d_1, \dots, d_n) be a basis for \hat{M} over the local ring $o_L[[z]]$. Note that the basis (e_1, \dots, e_m) gives rise to an isomorphism $M_L \otimes_{L\langle z \rangle} o_L[[z]][1/\pi] \cong o_L[[z]][1/\pi]^{\oplus m}$.

For every $\nu = 1, \dots, n$ we consider $f^{-1}(d_\nu)$ and regard it as an element of the right-hand side of this isomorphism. We choose $N \geq 0$ big enough, such that $f^{-1}(\pi^N d_\nu) \in o_L[[z]]^{\oplus m}$ for all ν , say

$$f^{-1}(\pi^N d_\nu) = (\rho_{\nu,1}, \dots, \rho_{\nu,m})$$

where $\rho_{\nu,\mu} \in o_L[[z]]$. Now let $x \in \mathcal{M}$. Via f we obtain $f(x) = \sum_\nu \lambda_\nu d_\nu$ in \hat{M} , with suitable $\lambda_\nu \in o_L[[z]]$. Consequently $f(\pi^N x) = \sum_\nu \lambda_\nu (\pi^N d_\nu)$, so that the image of $\pi^N x$ in $o_L[[z]]^{\oplus m}$ satisfies $\pi^N x = \sum_\mu (\sum_\nu \lambda_\nu \rho_{\nu,\mu}) e_\mu$. The appearing scalars $\alpha_\mu = \sum_\nu \lambda_\nu \rho_{\nu,\mu}$ have, in fact, to be elements of $L\langle z \rangle \cap o_L[[z]] = o_L\langle z \rangle$. Inside M_L we may write $x = \pi^{-N} \pi^N x = \sum_\mu \alpha_\mu \pi^{-N} e_\mu$, so that we may conclude

$$\mathcal{M} \subseteq \sum_\mu o_L\langle z \rangle \pi^{-N} e_\mu.$$

Being a submodule of a finitely generated module over a noetherian ring, \mathcal{M} has to be a finitely generated $o_L\langle z \rangle$ -module and hence a finitely generated $A_{o_L,\pi}$ -module.

4. We claim that $\mathcal{M}/\pi\mathcal{M}$ is torsion-free and hence free over $\ell[z]$, because it is finitely generated. Let $x \in \mathcal{M}$, and let $\lambda \in o_L\langle z \rangle$ be such that $\lambda \notin \pi o_L\langle z \rangle$ and $\lambda x \in \pi\mathcal{M}$, say $\lambda x = \pi y$ for some $y \in \mathcal{M}$. In order to prove that $\mathcal{M}/\pi\mathcal{M}$ is torsion-free we must show that $x \in \pi\mathcal{M}$. First suppose that $\lambda \in o_L\langle z \rangle \cap o_L[[z]]^\times$. We consider $\pi^{-1}x \in M_L$. In fact, this element lies in \mathcal{M} , since we have $f(\pi^{-1}x) = \lambda^{-1}f(y) \in \hat{M}$. Consequently $x = \pi(\pi^{-1}x) \in \pi\mathcal{M}$.

Let us next assume that $\lambda = z^n$ and show that $z^n x \in \pi\mathcal{M}$ implies $x \in \pi\mathcal{M}$ for any $n \geq 0$. By induction, it suffices to consider the case $n = 1$. So suppose $zx \in \pi\mathcal{M}$, say $zx = \pi y$. Let $f(x) = \sum_\nu \beta_\nu d_\nu$, where (d_1, \dots, d_n) is the finite $o_L[[z]]$ -basis of \hat{M} fixed before. The relation $zx = \pi y$ implies that $\pi \mid z\beta_\nu$ for every index ν , so that $\pi \mid \beta_\nu$ for every ν . Therefore $\pi^{-1}x \in M_L$ necessarily maps via f to an element of \hat{M} , i.e. $x \in \pi\mathcal{M}$.

Finally we treat the case for general $\lambda = \sum_s \lambda_s z^s$ and suppose that $\lambda \notin o_L[[z]]^\times$, that is $\pi \mid \lambda_0$. This means we find $\lambda' \in o_L[z]$ and $\lambda'' \in o_L\langle z \rangle \cap o_L[[z]]^\times$ such that $\lambda = \pi\lambda' + z^N\lambda''$ for some $N \geq 1$. We have $\pi y = \lambda x = \pi\lambda'x + z^N\lambda''x$. In particular $z^N\lambda''x = \pi(y - \lambda'x) \in \pi\mathcal{M}$ and by the above $\lambda''x \in \pi\mathcal{M}$ and $x \in \pi\mathcal{M}$.

Thus we have proved that $\mathcal{M}/\pi\mathcal{M}$ is free over $\ell[z]$. It follows that $\mathcal{M}/\pi\mathcal{M}$ is locally free of finite rank over A_ℓ .

5. We claim that \mathcal{M} is locally free of finite rank over $A_{o_L,\pi}$. Since it is finitely generated it only remains to show that \mathcal{M} is flat over $A_{o_L,\pi}$. Since $A_{o_L,\pi}$ is π -adically complete and separated, $\pi A_{o_L,\pi}$ is contained in the Jacobson radical $j(A_{o_L,\pi})$ by [Mat86, Theorem 8.2], and the $A_{o_L,\pi}$ -module \mathcal{M} is finitely generated, so that \mathcal{M} is π -adically *ideally Hausdorff* in the sense of [Bou67, III.5.1]. In the preceding step we have shown that $\mathcal{M}/\pi\mathcal{M}$ is flat over $A_\ell \cong A_{o_L,\pi}/\pi A_{o_L,\pi}$, and we know that \mathcal{M} has no π -torsion, so that the canonical map $\pi A_{o_L,\pi} \otimes_{A_{o_L,\pi}} \mathcal{M} \rightarrow \pi\mathcal{M}$ is an isomorphism. Therefore, by Bourbaki's Flatness Criterion [Bou67, § III.5.2, Théorème 1(iii)], we may conclude that \mathcal{M} is indeed flat over $A_{o_L,\pi}$.

6. Our next aim is to show that the kernel V of $\bar{F}: \sigma^*(\mathcal{M}/\pi\mathcal{M}) \rightarrow \mathcal{M}/\pi\mathcal{M}$ is trivial. We have already shown that $\mathfrak{J}^d \mathcal{M} \subseteq \text{im}(F_\mathcal{M})$. Since $(z - \zeta) \in \mathfrak{J}$ for $\zeta := c^*(z) \in o_L$ we have a chain of $o_L\langle z \rangle$ -modules $(z - \zeta)^d \mathcal{M} \subseteq \text{im}(F_\mathcal{M}) \subseteq \mathcal{M}$. The element $\zeta \in o_L$ is zero mod π , and we obtain

$$z^d(\mathcal{M}/\pi\mathcal{M}) \subseteq \text{im}(\bar{F}) \subseteq \mathcal{M}/\pi\mathcal{M}. \quad (5.2)$$

We know that $\mathcal{M}/\pi\mathcal{M}$ is finite free over $\ell[z]$. Therefore the middle term $W := \text{im}(\bar{F})$ in the latter chain has full rank inside $\mathcal{M}/\pi\mathcal{M}$. Finally, taking ranks in the (split) short exact sequence of finite free $\ell[z]$ -modules

$$0 \rightarrow V \rightarrow \sigma^*(\mathcal{M}/\pi\mathcal{M}) \xrightarrow{\bar{F}} W \rightarrow 0$$

accomplishes the proof that V indeed is trivial.

7. It remains to prove that the cokernel C of $F_{\mathcal{M}}: \sigma^* \mathcal{M} \rightarrow \mathcal{M}$ is a finite free o_L -module. In a first step we show that C is finitely generated over o_L . In equation (5.2) we saw that $C/\pi C$ is a quotient of $(\mathcal{M}/\pi\mathcal{M})/z^d(\mathcal{M}/\pi\mathcal{M})$ and hence a finite dimensional ℓ -vector space. Since $\pi \in \mathfrak{j}(A_{o_L, \pi})$ and since C , being a quotient of \mathcal{M} , is finitely generated over $A_{o_L, \pi}$, we conclude by Krull's Theorem [Mat86, Theorem 8.10] that C is π -adically separated. By [Mat86, Theorem 8.4] it follows that C is finitely generated.

In a second step we show that C is a flat o_L -module, which will imply that C is finite free over the local ring o_L . Since we have just seen that $C/\pi C$ is free and hence flat over ℓ , we only need to prove that C has trivial π -torsion. Then Bourbaki's Flatness Criterion [Bou67, § III.5.2, Théorème 1(iii)], will yield the desired result. So let $x \in \mathcal{M}$ with $\pi x = F_{\mathcal{M}}(y) \in \text{im}(F_{\mathcal{M}})$ for an element $y \in \sigma^* \mathcal{M}$. Denoting residues modulo $\pi\mathcal{M}$ by a bar, we see that $0 = \bar{\pi}x = \bar{F}(\bar{y})$. By the injectivity of \bar{F} we must have $y = \pi y'$ for a $y' \in \sigma^* \mathcal{M}$ and $x = F_{\mathcal{M}}(y') \in \text{im}(F_{\mathcal{M}})$. Thus C is finite free over o_L and we have shown that $\underline{\mathcal{M}}$ is a good model for \underline{M}_L .

Conversely, in order to show that (i) implies (ii), suppose that \mathcal{M} is a good model of M_L . We define

$$\widehat{\mathcal{M}} = \mathcal{M} \otimes_{A_{o_L, \pi}} A_{o_L, (\varepsilon, \pi)},$$

i.e. $\widehat{\mathcal{M}}$ equals the completion of \mathcal{M} for the $(\varepsilon, \pi)A_{o_L, \pi}$ -adic topology. It is clear that every fixed F -equivariant isomorphism of $A_{o_L, \pi}[1/\pi]$ -modules $M_L \cong \mathcal{M}[1/\pi]$ gives rise to a natural F -equivariant $A_{o_L, (\varepsilon, \pi)}[1/\pi]$ -linear isomorphism $M_L \otimes_{A_{o_L, \pi}[1/\pi]} A_{o_L, (\varepsilon, \pi)}[1/\pi] \cong \widehat{\mathcal{M}}[1/\pi]$.

We claim that $\widehat{\mathcal{M}}$ is a local shtuka. Indeed, by base change, $\widehat{\mathcal{M}}$ is again locally free of finite rank. Furthermore, since the completion map $A_{o_L, \pi} \rightarrow A_{o_L, (\varepsilon, \pi)}$ is Frobenius-equivariant and flat, we obtain an injective map $\widehat{\mathcal{M}} \otimes_{(A_{o_L, (\varepsilon, \pi)})}, \sigma A_{o_L, (\varepsilon, \pi)} \rightarrow \widehat{\mathcal{M}}$. Let C' be its cokernel, and let $C = \text{coker}(F_{\mathcal{M}})$, i.e. $C' \cong C \otimes_{A_{o_L, \pi}} A_{o_L, (\varepsilon, \pi)}$. Since C is annihilated by \mathfrak{J}^d the module C' equals C and it is finite free over o_L . Thus $\widehat{\mathcal{M}}$ is an effective local shtuka over o_L . \square

Corollary 5.4. *Let \underline{M}_L be an analytic Anderson $A(1)$ -motive over L . Then there is a (1:1)-correspondence*

$$\left\{ \begin{array}{l} \text{isomorphism classes of good} \\ \text{models } \underline{\mathcal{M}} \text{ of } \underline{M}_L \text{ in the} \\ \text{strong sense of Definition 4.6} \end{array} \right\} \xleftrightarrow{1:1} \left\{ \begin{array}{l} \text{isomorphism classes of pairs } (\hat{M}, f) \text{ consisting of} \\ \bullet \text{ a local shtuka } \hat{M} \text{ at } \varepsilon \text{ over } o_L, \text{ and} \\ \bullet \text{ an isomorphism in } \text{FMod}(A_{o_L, (\varepsilon, \pi)}[1/\pi]) \\ f: \underline{M}_L \otimes A_{o_L, (\varepsilon, \pi)}[1/\pi] \xrightarrow{\sim} \hat{M}[1/\pi] \end{array} \right\}$$

$\underline{\mathcal{M}} \mapsto \underline{\mathcal{M}} \otimes_{A_{o_L, \pi}} A_{o_L, (\varepsilon, \pi)}$, where on the right-hand side an isomorphism of pairs $(\hat{M}, f) \xrightarrow{\sim} (\hat{N}, g)$ is defined to be an isomorphism of local shtukas $\hat{M} \rightarrow \hat{N}$ which in the obvious manner is compatible with f and g .

Proof. Suppose that $\underline{\mathcal{M}}$ is a good model of \underline{M}_L . In the proof of 5.3 we have seen that its completion $\hat{\mathcal{M}} := \underline{\mathcal{M}} \otimes_{A_{o_L, \pi}} A_{o_L, (\varepsilon, \pi)}$ is a local shtuka at ε . Let $\mathcal{M}[1/\pi] \cong M_L$ be an F -equivariant isomorphism of $A_{o_L, \pi}[1/\pi]$ -modules. It induces a natural isomorphism

$$f: (\mathcal{M} \otimes_{A_{o_L, \pi}} A_{o_L, \pi}[1/\pi]) \otimes_{A_{o_L, \pi}[1/\pi]} A_{o_L, (\varepsilon, \pi)}[1/\pi] \xrightarrow{\sim} \widehat{\mathcal{M}} \otimes_{A_{o_L, (\varepsilon, \pi)}} A_{o_L, (\varepsilon, \pi)}[1/\pi]$$

which is F -equivariant, and satisfies $\mathcal{M} = \mathcal{M}[1/\pi] \cap f^{-1}(\widehat{\mathcal{M}})$, because $A_{o_L, \pi} = A_{o_L, \pi}[1/\pi] \cap A_{o_L, (\varepsilon, \pi)}$.

Conversely let a local shtuka \hat{M} together with an isomorphism $f: \underline{M}_L \otimes_{A_{o_L, \pi}[1/\pi]} A_{o_L, (\varepsilon, \pi)}[1/\pi] \cong \hat{M}[1/\pi]$ be given. It remains to show that the $(\varepsilon, \pi)A_{o_L, \pi}$ -adic completion $\hat{\mathcal{M}} := \underline{\mathcal{M}} \otimes_{A_{o_L, \pi}} A_{o_L, (\varepsilon, \pi)}$ of the good model $\mathcal{M} = M_L \cap f^{-1}(\hat{M})$ gained in the above construction gives back \hat{M} . By construction of $\underline{\mathcal{M}}$, the map f restricts to an embedding $\mathcal{M} \hookrightarrow \hat{M}$, which in turn induces an F -equivariant and $A_{o_L, (\varepsilon, \pi)}$ -linear map

$\psi: \hat{\mathcal{M}} \rightarrow \hat{M}$, which becomes an isomorphism after inverting π . Our aim is to show that already the map ψ is an isomorphism. We know that \mathcal{M} is finite free over $o_L\langle z \rangle$ and that $\text{rk}_{o_L[[z]]}(\hat{\mathcal{M}}) = \text{rk}_{o_L[[z]]}(\hat{M}) =: s$. We fix an $o_L[[z]]$ -basis \mathfrak{B} (resp., \mathfrak{C}) of $\hat{\mathcal{M}}$ (resp., of \hat{M}) and let $\mathbf{A} = \mathfrak{c}[\psi]_{\mathfrak{B}} \in o_L[[z]]^{s \times s}$ be the matrix which describes ψ with respect to \mathfrak{B} and \mathfrak{C} . Likewise, we let

$$\mathbf{T} = {}_{\mathfrak{B}}[F_{\hat{\mathcal{M}}}]_{\sigma^*\mathfrak{B}}, \quad \mathbf{T}' = {}_{\mathfrak{C}}[F_{\hat{M}}]_{\sigma^*\mathfrak{C}}$$

be the matrices corresponding to $F_{\hat{\mathcal{M}}}$ and $F_{\hat{M}}$, so that $\mathbf{AT} = \mathbf{T}'\sigma(\mathbf{A})$ by virtue of the F -equivariance of ψ . In order to see that ψ is an isomorphism, we need to show that $\det(\mathbf{A})$ is a unit in $o_L[[z]]$. To begin with, an elementary application of the Weierstraß Division Theorem for $o_L[[z]]$ ([Bou67, VII.3.8.5]) shows that the kernel of the epimorphism $o_L[[z]] \rightarrow o_L, z \mapsto \zeta$, is generated by $z - \zeta$, so that the latter is a prime element of $o_L[[z]]$. Furthermore, recall that $o_L[[z]]$, being a regular local ring, is factorial ([Mat86], 20.3). We know that $\hat{\mathcal{M}}$ is a local shtuka, so that $F_{\hat{\mathcal{M}}}$ becomes an isomorphism after inverting $z - \zeta$ which means that $\det(\mathbf{T})^{-1}$ lies in $o_L[[z]][\frac{1}{z-\zeta}]$. Say we have a relation $(z - \zeta)^e = \det(\mathbf{T})u$ in $o_L[[z]]$, for some $e \geq 0$ and some $u \in o_L[[z]]$. By a comparison of powers of $z - \zeta$, we may assume that u is not divisible by $z - \zeta$. In this equation there is only one prime element of $o_L[[z]]$ occurring on both sides, which, by factoriality, implies that u has to be a unit in $o_L[[z]]$. Let $(z - \zeta)^{e'} = \det(\mathbf{T}')u'$ be the corresponding relation for the local shtuka \hat{M} , with a unit $u' \in o_L[[z]]^\times$ and some suitable $e' \geq 0$. Since $\hat{\mathcal{M}} \rightarrow \hat{M}$ becomes an isomorphism after inverting π , we see that $\det(\mathbf{A}) \in o_L[[z]][1/\pi]^\times$. Note that the natural reduction-mod- z map $o_L[[z]] \rightarrow o_L, h \mapsto h(0)$, induces an epimorphism of abelian groups $o_L[[z]][\frac{1}{\pi}]^\times \rightarrow L^\times$, so that the absolute term $\alpha := \det(\mathbf{A})(0)$ of $\det(\mathbf{A})$ lies in L^\times . By virtue of the relations derived above, the equation $\det(\mathbf{A})\det(\mathbf{T}) = \det(\mathbf{T}')\sigma(\det(\mathbf{A}))$ yields

$$\det(\mathbf{A})u^{-1}(z - \zeta)^e = u'^{-1}(z - \zeta)^{e'}\sigma(\det(\mathbf{A}))$$

which modulo z gives $\alpha^{q-1} = \frac{u'(0)}{u(0)}(-\zeta)^{e-e'}$ in L^\times . Suppose for a moment that $e = e'$. In this case it follows at once that α is a unit in o_L , so that $\det(\mathbf{A})$ is a unit in $o_L[[z]]$. Therefore it remains to verify that our assumption $e = e'$ is justified. This can be seen as follows: The reduction-mod- π map $o_L[[z]] \rightarrow \ell[[z]]$ is an epimorphism with kernel $\pi o_L[[z]]$, and via applying the functor $\cdot \otimes_{o_L[[z]]} \ell[[z]]$ to $F_{\hat{M}}: \sigma^*\hat{M} \rightarrow \hat{M}$ we obtain a commutative diagram

$$\begin{array}{ccc} \sigma^*\hat{M} = \hat{M} \otimes_{o_L[[z]], \sigma} o_L[[z]] & \longrightarrow & \hat{M} \\ \downarrow & & \downarrow \\ \bar{\sigma}^*\hat{M}/\pi\hat{M} = \hat{M}/\pi\hat{M} \otimes_{\ell[[z]], \bar{\sigma}} \ell[[z]] & \longrightarrow & \hat{M}/\pi\hat{M} \end{array}$$

where in the upper row (resp., the bottom row) both modules are finite free of the same rank over $o_L[[z]]$ (resp., over $\ell[[z]]$) and the arrow is given by $F_{\hat{M}}$ (resp., by $\bar{F} = F_{\hat{M}} \otimes \text{id}_{\ell[[z]]}$). The reduced matrix $\bar{\mathbf{T}}' \in \ell[[z]]^{s \times s}$ describes the map \bar{F} with respect to the $\ell[[z]]$ -bases $\overline{\sigma^*\mathfrak{C}} = \bar{\sigma}^*\bar{\mathfrak{C}}$ of $\bar{\sigma}^*\hat{M}/\pi\hat{M}$ and $\bar{\mathfrak{C}}$ of $\hat{M}/\pi\hat{M}$ respectively, and from what we have seen before, we derive the relation $\det(\bar{\mathbf{T}}')\bar{u}' = z^{e'}$, i.e. $e' = \text{ord}_z(\det(\bar{\mathbf{T}}'))$, the latter being true since $\bar{u}' \in \ell[[z]]^\times$. In particular we have $\det(\bar{\mathbf{T}}') \in \ell[[z]] - \{0\}$. A similar observation for the local shtuka $\hat{\mathcal{M}}$ instead of \hat{M} shows that $e = \text{ord}_z(\det(\bar{\mathbf{T}}))$. Let $C = \text{coker}(F_{\hat{\mathcal{M}}})$ and $C' = \text{coker}(F_{\hat{M}})$. Multiplication with the matrix $\bar{\mathbf{T}}'$ gives rise to a finite presentation $\ell[[z]]^s \rightarrow \ell[[z]]^s \rightarrow C'/\pi C' \rightarrow 0$. Taking determinants in an equation of the form $\mathbf{S}_1 \bar{\mathbf{T}}' \mathbf{S}_2 = \text{Diag}(a_1, \dots, a_d, 0, 0, \dots, 0)$, where $\mathbf{S}_1, \mathbf{S}_2 \in \text{GL}_s(\ell[[z]])$ are suitable matrices such that $a_1, \dots, a_d \in \ell[[z]] - \{0\}$ are the elementary divisors of $\bar{\mathbf{T}}'$ (see [Bou81], VII.4.5.1), yields that necessarily $d = s$, so that $C'/\pi C'$ is a torsion $\ell[[z]]$ -module and

$$C'/\pi C' \cong \ell[[z]]/a_1\ell[[z]] \oplus \dots \oplus \ell[[z]]/a_s\ell[[z]] \cong \ell^{n_1} \oplus \dots \oplus \ell^{n_s}$$

where $n_j = \text{ord}_z(a_j)$ and $\sum_j n_j = e'$, i.e. $e' = \text{ord}_z(\det(\bar{\mathbf{T}}')) = \text{rk}_{\ell}(C'/\pi C') = \text{rk}_{o_L}(C')$, the latter equation being valid since $C'/\pi C' \cong C' \otimes_{o_L[[z]]} \ell[[z]]$. Finally, imitating this argument for the local shtuka $\hat{\mathcal{M}}$ yields

that $e = \text{ord}_z(\det(\bar{\mathbf{T}})) = \text{rk}_{\ell}(C/\pi C) = \text{rk}_{o_L}(C)$. So it remains to show that $\text{rk}_{o_L}(C) = \text{rk}_{o_L}(C')$. Indeed, we know that $\psi: \hat{\mathcal{M}} \rightarrow \hat{M}$ gives back f in the generic fiber, which means that ψ is an isomorphism after inverting π . Therefore, inverting π in the commutative diagram with exact rows

$$\begin{array}{ccccccc} 0 & \longrightarrow & \sigma^*(\hat{\mathcal{M}}) & \longrightarrow & \hat{\mathcal{M}} & \longrightarrow & C \longrightarrow 0 \\ & & \sigma^*\psi \downarrow & & \psi \downarrow & & \downarrow \\ 0 & \longrightarrow & \sigma^*\hat{M} & \longrightarrow & \hat{M} & \longrightarrow & C' \longrightarrow 0 \end{array}$$

exhibits $(\sigma^*\psi)[1/\pi] = \sigma^*(\psi[1/\pi])$ and $\psi[1/\pi]$ as $o_L[[z]][1/\pi]$ -linear isomorphisms, so that the Snake Lemma yields $C'[1/\pi] \cong C[1/\pi]$, and we obtain $\text{rk}_{o_L}(C') = \dim_L(C'[1/\pi]) = \dim_L(C[1/\pi]) = \text{rk}_{o_L}(C)$, as desired. \square

6 The reduction criterion for Anderson motives

Definition 6.1. (a) Let $\underline{M} \in \text{FMod}(A_{o_L})$. Following Gardeyn [Gar03], \underline{M} is called A_{o_L} -maximal if for every $\underline{N} \in \text{FMod}(A_{o_L})$ the canonical map

$$\text{Hom}_{\text{FMod}(A_{o_L})}(\underline{N}, \underline{M}) \rightarrow \text{Hom}_{\text{FMod}(A_L)}(\underline{N}[1/\pi], \underline{M}[1/\pi])$$

is surjective (and hence bijective).

(b) An object $\underline{M}' \in \text{FMod}(A_{o_L, \pi})$ is called $A_{o_L, \pi}$ -maximal if for every $\underline{N}' \in \text{FMod}(A_{o_L, \pi})$ the canonical map

$$\text{Hom}_{\text{FMod}(A_{o_L, \pi})}(\underline{N}', \underline{M}') \rightarrow \text{Hom}_{\text{FMod}(A_{o_L, \pi}[1/\pi])}(\underline{N}'[1/\pi], \underline{M}'[1/\pi])$$

is surjective (and hence bijective).

(c) Let $\underline{M} \in \text{FMod}(A_L)$. An object $\underline{M} \in \text{FMod}(A_{o_L})$ is called an A_{o_L} -maximal model for \underline{M} if $\underline{M}[1/\pi] \cong \underline{M}$ inside $\text{FMod}(A_L)$ (i.e. \underline{M} is a model for \underline{M}) and if \underline{M} is A_{o_L} -maximal. Correspondingly, given $\underline{M}' \in \text{FMod}(A_{o_L, \pi}[1/\pi])$, an object $\underline{M}' \in \text{FMod}(A_{o_L, \pi})$ is called an $A_{o_L, \pi}$ -maximal model for \underline{M}' if $\underline{M}'[1/\pi] \cong \underline{M}'$ inside $\text{FMod}(A_{o_L, \pi}[1/\pi])$ and if \underline{M}' is $A_{o_L, \pi}$ -maximal.

The existence of (A_{o_L} - and $A_{o_L, \pi}$ -)maximal models has been established in [Gar03].

Proposition 6.2 ([Gar03, Proposition 2.13]). *Let $\underline{M} \in \text{FMod}(A_L)$. Then the following assertions hold:*

- (i) *\underline{M} admits an A_{o_L} -maximal model, which is unique up to unique isomorphism.*
- (ii) *If a model $\underline{M} \in \text{FMod}(A_{o_L})$ of \underline{M} is good in the weak sense of Definition 4.5, then it is A_{o_L} -maximal.*

The next proposition is a variant of Gardeyn's theory of maximal models.

Proposition 6.3. *The following assertions hold:*

- (i) *Every $\underline{M} \in \text{FMod}(A_{o_L, \pi}[1/\pi])$ admits a maximal model, which is unique up to unique isomorphism.*
- (ii) *If $\underline{M} \in \text{FMod}(A_L)$ is given and if $\underline{M} \in \text{FMod}(A_{o_L})$ is an A_{o_L} -maximal model of \underline{M} then $\underline{M} \otimes_{A_{o_L}} A_{o_L, \pi} \in \text{FMod}(A_{o_L, \pi})$ is an $A_{o_L, \pi}$ -maximal model of $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi] \in \text{FMod}(A_{o_L, \pi}[1/\pi])$.*
- (iii) *Let $\underline{M} \in \text{FMod}(A_{o_L, \pi}[1/\pi])$ and let $\underline{M} \in \text{FMod}(A_{o_L, \pi})$ be a model of \underline{M} ; if \underline{M} is a good model in the weak sense of Definition 4.5, then it is $A_{o_L, \pi}$ -maximal.*

Proof. For (i) (resp. (ii); resp. (iii)), see [Gar03], 3.3(i) (resp. 3.4(i); resp. 2.13(ii)). Note that strictly speaking Gardeyn proves these statements for the rings $\Gamma(\mathfrak{A}(\infty), \mathcal{O}_{\mathfrak{A}(\infty)})$ instead of $A_{o_L, \pi}[1/\pi]$ and $\Gamma(\mathfrak{A}(\infty), \mathcal{O}_{\mathfrak{A}(\infty)}) \cap A_{o_L, \pi}$ instead of $A_{o_L, \pi}$. His arguments carry over literally to our rings. \square

We may conclude:

Proposition 6.4. *A Frobenius A_L -module \underline{M} admits a good model over A_{o_L} if and only if $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi] \in \text{FMod}(A_{o_L, \pi}[1/\pi])$ admits a good model over $A_{o_L, \pi}$. Then, up to isomorphism inside $\text{FMod}(A_{o_L, \pi})$, a good model of $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ is given by $\underline{M} \otimes_{A_{o_L}} A_{o_L, \pi}$ where \underline{M} is a good model of \underline{M} .*

Proof. First suppose that \underline{M} admits a good model $\underline{M}' \in \text{FMod}(A_{o_L})$. It follows that \underline{M}' is an A_{o_L} -maximal model of \underline{M} . Furthermore, its image $\underline{M}' \otimes_{A_{o_L}} A_{o_L, \pi}$ inside $\text{FMod}(A_{o_L, \pi})$ is an $A_{o_L, \pi}$ -maximal model of $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$. Since the reduction of \underline{M}' is canonically isomorphic to the reduction of $\underline{M}' \otimes_{A_{o_L}} A_{o_L, \pi}$ by Proposition 4.8, it follows that the latter is a good model. Conversely, suppose that $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ admits a good model $\underline{M}' \in \text{FMod}(A_{o_L, \pi})$. Necessarily \underline{M}' is a maximal model by Proposition 6.3(iii). We know that there is an A_{o_L} -maximal model $\underline{M}' \in \text{FMod}(A_{o_L})$ of \underline{M} such that $\underline{M}' \otimes_{A_{o_L}} A_{o_L, \pi} \cong \underline{M}'$, and that the reduction of \underline{M}' is canonically isomorphic to the reduction of \underline{M} by Propositions 6.2, 6.3(ii) and 4.8. Since \underline{M}' is a good model, so is \underline{M} , which completes the proof. \square

If \underline{M} is an Anderson A -motive we are more interested in good models in the strong sense of Definition 4.6. Then Proposition 6.4 has the following strong variant.

Theorem 6.5. *Let \underline{M} be an Anderson A -motive over L . Then in the strong sense of Definition 4.6, \underline{M} admits a good model \underline{M}' if and only if the associated analytic Anderson $A(1)$ -motive $\hat{\underline{M}} := \underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ admits a good model \underline{M}' . If this is the case then $\underline{M}' \cong \underline{M} \otimes_{A_{o_L}} A_{o_L, \pi}$.*

Proof. To prove one direction let $\underline{M} = (\mathcal{M}, F_{\mathcal{M}})$ be a good model of \underline{M} in the sense of Definition 4.6. We claim that the π -adic completion $\widehat{\underline{M}} = \underline{M} \otimes_{A_{o_L}} A_{o_L, \pi}$ of \underline{M} is a good model for the analytic Anderson $A(1)$ -motive $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$. Since $A_{o_L, \pi}$ is flat over A_{o_L} we see that $\widehat{\underline{M}}$ is locally free of finite rank over $A_{o_L, \pi}$, that $F_{\widehat{\underline{M}}} := F_{\mathcal{M}} \otimes \text{id}$ is again injective and that $\text{coker}(F_{\widehat{\underline{M}}}) = \text{coker}(F_{\mathcal{M}})$ is finite free over o_L and annihilated by a power of \mathfrak{J} . So $\widehat{\underline{M}}$ is a good model in the strong sense by Proposition 4.8.

Conversely, suppose that the analytification $\hat{\underline{M}}$ admits a good model \underline{M}' in the strong sense of Definition 4.6. In particular, by 6.4, the F -module \underline{M} over A_L admits a good model $\underline{M} \in \text{FMod}(A_{o_L})$ in the weak sense of F -modules, Definition 4.5, and it remains to show that \underline{M} is a good model of \underline{M} in the strong sense, i.e. that $C = \text{coker}(F_{\mathcal{M}})$ is a finite free o_L -module and is annihilated by a power of the ideal $\mathfrak{J} \subseteq A_{o_L}$. We start with the latter claim. Let $\mathfrak{J}^d \text{coker}(F_{\mathcal{M}}) = 0$ and $\mathfrak{J}^d \text{coker}(F_{\mathcal{M}'}) = 0$ for some integer d , and let $x \in \mathfrak{J}^d \mathcal{M}$. We need to show that $x \in \text{im}(F_{\mathcal{M}})$. Since the good model of $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ as an F -module is uniquely determined up to unique isomorphism, we may by Proposition 6.4 assume that $\underline{M} \otimes_{A_{o_L}} A_{o_L, \pi}$ (which is necessarily isomorphic to \underline{M}') is a good model of $\underline{M} \otimes_{A_L} A_{o_L, \pi}[1/\pi]$ in the strong sense. We remark that \mathcal{M} is finite free over $o_L[z]$, say with finite basis \mathfrak{B} . Fixing an isomorphism $\underline{M}[1/\pi] \cong \underline{M}$ inside $\text{FMod}(A_L)$, the $o_L[z]$ -basis \mathfrak{B} of \mathcal{M} induces an $L[z]$ -basis on $M[1/\pi]$ and hence on M , which in turn gives rise to a canonical induced basis on each remaining entry of the commutative diagram

$$\begin{array}{ccccc}
& \sigma^*(\mathcal{M} \otimes_{o_L[z]} o_L\langle z \rangle) & \longrightarrow & \mathcal{M} \otimes_{o_L[z]} o_L\langle z \rangle & \\
& \downarrow & & \downarrow & \\
\sigma^*\mathcal{M} & \xrightarrow{\quad} & \mathcal{M} & \xrightarrow{\quad} & M \\
& \downarrow & & \downarrow & \\
\sigma^*M & \xrightarrow{\quad} & M & \xrightarrow{\quad} & M \otimes_{L[z]} L\langle z \rangle \\
& \downarrow & & \searrow & \\
& \sigma^*(M \otimes_{L[z]} L\langle z \rangle) & \longrightarrow & M \otimes_{L[z]} L\langle z \rangle &
\end{array}$$

where each arrow is injective. Our chosen element $x \in \mathfrak{J}^d \mathcal{M}$ in particular lies in $\mathfrak{J}^d M$, so that there is a uniquely determined $y \in \sigma^* M$ such that $x = F_M(y)$. On the other hand, x gives rise to an element of $\mathcal{M}' \cong \mathcal{M} \otimes_{o_L[z]} o_L\langle z \rangle$. According to our assumption, we know that the cokernel of the map $F_{\mathcal{M}'}$ is annihilated by \mathfrak{J}^d . This implies that there is a uniquely determined element $y' \in \sigma^* \mathcal{M}'$ which is mapped to (the image of) x in \mathcal{M}' . Finally, since y' is necessarily mapped to (the image of) y via the dashed vertical arrow, writing y' in terms of the $o_L\langle z \rangle$ -basis induced by \mathfrak{B} and keeping track of linear combinations shows that the coefficients of y' have, in fact, to lie inside $o_L\langle z \rangle \cap L[z] = o_L[z]$, which proves that $\mathfrak{J}^d C = 0$. In particular, C is finitely generated over o_L .

It remains to see that C does not have π -torsion. In order to prove this, we need to see that $\pi x \in \text{im}(F_M)$ for a given $x \in \mathcal{M}$ implies $x \in \text{im}(F_M)$. We again use that \mathcal{M} is finite free over $o_L[z]$ and remark that, since $\underline{\mathcal{M}}$ is a good model of \underline{M} as an F -module, the bottom horizontal arrow in the commutative diagram

$$\begin{array}{ccc} \sigma^* \mathcal{M} & \longrightarrow & \mathcal{M} \\ \downarrow & & \downarrow \\ \bar{\sigma}^*(\mathcal{M} \otimes_{o_L[z]} \ell[z]) & \longrightarrow & \mathcal{M} \otimes_{o_L[z]} \ell[z] \end{array}$$

is injective. Furthermore, the vertical maps are surjective and in the upper (resp. bottom) row both modules are finite free over $o_L[z]$ (resp. over $\ell[z]$) of the same rank. From $\pi x \in \text{im}(F_M)$ it follows that there is a uniquely determined $y \in \sigma^* \mathcal{M}$ such that $\pi x = F_M(y)$. Since πx goes to zero under the right-hand projection, necessarily y has to go to zero via the left-hand projection. A chosen $o_L[z]$ -basis of \mathcal{M} induces bases of each of the other entries of the above diagram. Keeping track of coefficients in linear combinations one verifies that $y \in \pi \sigma^* \mathcal{M}$. Finally, since \mathcal{M} is torsion-free, we obtain $x = F_M(y)$, as desired. So, for example, by [Bou67, § III.5.2, Théorème 1(iii)], we may conclude that C is flat over o_L . \square

Theorem 5.3 implies the following criterion for good reduction of Anderson A -motives, which can be regarded as an analog of Grothendieck's [SGA 7, Proposition IX.5.13] and de Jong's [dJ98, 2.5] reduction criteria for abelian varieties.

Corollary 6.6. *Let \underline{M} be an Anderson A -motive over L such that $\text{coker}(F_{\underline{M}})$ is annihilated by \mathfrak{J}^d say. Then the following assertions are equivalent:*

- (i) *\underline{M} admits a good model $\underline{\mathcal{M}}$ in the strong sense of Definition 4.6, i.e. there is an object $\underline{\mathcal{M}} \in \text{FMod}(A_{o_L})$ such that $\text{coker}(F_{\underline{\mathcal{M}}})$ is a finite free o_L -module and is annihilated by \mathfrak{J}^d , together with an isomorphism $\underline{\mathcal{M}}[1/\pi] \cong \underline{M}$ inside $\text{FMod}(A_L)$;*
- (ii) *There is an effective local shtuka \hat{M} at ε over o_L such that $\text{coker}(F_{\hat{M}})$ is annihilated by \mathfrak{J}^d , and an isomorphism $\underline{M} \otimes_{A_L} A_{o_L, \varepsilon}[1/\pi] \cong \hat{M}[1/\pi]$ inside $\text{FMod}(A_{o_L, \varepsilon}[1/\pi])$.*

In particular, we obtain a one-to-one correspondence between (isomorphism classes of) good models of \underline{M} and (isomorphism classes of) pairs (\hat{M}, f) consisting of a local shtuka \hat{M} at ε over o_L and an isomorphism $f: \underline{M} \otimes_{A_L} A_{o_L, \varepsilon}[1/\pi] \xrightarrow{\sim} \hat{M}[1/\pi]$ inside $\text{FMod}(A_{o_L, \varepsilon}[1/\pi])$. \square

References

- [And86] G. Anderson: *t-Motives*, Duke Math. J. **53** (1986), 457–502.
- [BH07] G. Böckle, U. Hartl: *Uniformizable Families of t-motives*, Trans. Amer. Math. Soc. **359** (2007), no. 8, 3933–3972; also available as arXiv:math.NT/0411262.
- [BH11] M. Bornhofen, U. Hartl: *Pure Anderson motives and abelian τ -sheaves*, Math. Z. **268** (2011), 67–100; also available as arXiv:0709.2809.

- [Bos08] S. Bosch: *Lectures on Formal and Rigid Geometry*, Preprint **378**, University of Münster, SFB 478–Preprint Series, Münster 2008, available at <http://wwwmath1.uni-muenster.de/sfb/about/publ/heft378.pdf>.
- [BGR84] S. Bosch, U. Güntzer, R. Remmert: *Non-Archimedean Analysis*, Grundlehren **261**, Springer-Verlag, Berlin etc. 1984.
- [BL93a] S. Bosch, W. Lütkebohmert: *Formal and Rigid Geometry I. Rigid Spaces*, Math. Ann. **295** (1993), 291–317.
- [Bou81] N. Bourbaki: *Eléments de mathématique – Algèbre*, Masson, Paris 1981.
- [Bou67] N. Bourbaki: *Eléments de mathématique – Algèbre Commutative*, Hermann, Paris 1967.
- [Dri76] V.G. Drinfeld: *Elliptic Modules*, Math. USSR-Sb. **23** (1976), 561–592.
- [Eis95] D. Eisenbud: *Commutative Algebra with a View Toward Algebraic Geometry*, GTM **150**, Springer-Verlag, Berlin etc. 1995.
- [FP04] J. Fresnel, M. van der Put: *Géométrie analytique rigide et applications*, Progress in Mathematics **218**, Birkhäuser, Basel 2004.
- [Gar02] F. Ardakov: *A Galois criterion for good reduction of τ -sheaves*, J. Number Theory **97** (2002), 447–471.
- [Gar03] F. Ardakov: *The structure of analytic τ -sheaves*, J. Number Th. **100** (2003), 332–362.
- [EGA] A. Grothendieck: *Éléments de Géométrie Algébrique*, Publ. Math. IHES **4, 8, 11, 17, 20, 24, 28, 32**, Bures-Sur-Yvette, 1960–1967; see also Grundlehren **166**, Springer-Verlag, Berlin etc. 1971.
- [SGA 7] P. Deligne, A. Grothendieck, et al.: *Séminaire de Géométrie Algébrique 7: Groupes de monodromie en géométrie algébrique*, LNM 288, Springer, Berlin-Heidelberg 1972.
- [Har09] U. Hartl: *A Dictionary between Fontaine-Theory and its Analogue in Equal Characteristic*, J. Number Th. **129** (2009), 1734–1757; also available as arXiv:math.NT/0607182.
- [Har11] U. Hartl: *Period Spaces for Hodge Structures in Equal Characteristic*, Annals of Math. **173**, n. 3 (2011), 1241–1358; also available as arXiv:math.NT/0511686.
- [dJ98] A.J. de Jong: Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic, *Invent. Math.* **134** (1998), no. 2, 301–333; also available at <http://www.math.columbia.edu/~dejong/papers/>.
- [Mat86] H. Matsumura: *Commutative ring theory*, Cambridge Studies in Advanced Mathematics **8**, Cambridge University Press 1986.
- [Mat96] H. Matzat: *Introduction to Drinfeld modules*, in Drinfeld modules, modular schemes and applications (Alten-Biesen, 1996), World Sci. Publishing, River Edge, NJ, 1997, pp. 3–16.
- [ST68] J.-P. Serre, J. Tate: *Good reduction of abelian varieties*, Ann. of Math. **88**, no. 3, (1968), 492–517.

Urs Hartl
 Universität Münster
 Mathematisches Institut
 Einsteinstr. 62
 D – 48149 Münster
 Germany

www.math.uni-muenster.de/u/urs.hartl/

Simon Hüskens
 Universität Münster
 Mathematisches Institut
 Einsteinstr. 62
 D – 48149 Münster
 Germany