Практическое занятие №39. Решение задач по теме «Призма»

Вспомним основные определения.

Многогранник, составленный из параллелограммов и двух равных многоугольников, расположенных в параллельных плоскостях называется **призмой**

Основные элементы

 $ABCA_1B_1C_1$ — треугольная призма

Площадь боковой и полной поверхности призмы. Объем прямой призмы.

Теорема

Площадь боковой поверхности прямой призмы равна произведению **высоты призмы** на **периметр** её **основания**

$$S_{\text{бок.}} = a_1 \cdot h + a_2 \cdot h + a_3 \cdot h + \dots a_n \cdot h =$$

$$= \underbrace{(a_1 + a_2 + a_3 + \dots a_n)}_{P_{\text{осн.}}} \cdot h \Rightarrow$$

$$\Rightarrow S_{\text{бок.}} = P_{\text{осн.}} \cdot h$$

Теорема

Объём прямой призмы равен произведению площади основания на высоту

$$V = S_{och.} \cdot h$$

Задача 1

Дано:

 $ABCA_1B_1C_1$ — прямая треугольная призма $\angle ACB = 90^{\circ}, \angle BA_1C = 30^{\circ}$

$$A_1B = 10$$
, $AC = 5$

Найти: S_{бок}

Решение:

1) $A_1C \perp BC \Rightarrow \Delta A_1BC$ — прямоуг.

2) BC =
$$\frac{1}{2}$$
A₁B = 5

3)
$$AB = \sqrt{BC^2 + AC^2} = \sqrt{5^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$$

4)
$$AA_1 = \sqrt{A_1B^2 - AB^2} = \sqrt{100 - 50} = 5\sqrt{2}$$

5)
$$S_{60K} = AA_1(AB + BC + AC) = 5\sqrt{2} (5\sqrt{2} + 5 + 5) =$$

= $50 + 50\sqrt{2} = 50 (1 + \sqrt{2})$

Ответ:
$$S_{\text{бок.}} = 50 \ (1 + \sqrt{2})$$

Задача 2

Дано:

 $ABCDA_1B_1C_1D_1$ — правильная прямоугольная призма

$$\angle BDB_1 = 60^{\circ}$$

$$BD = 4\sqrt{2} \text{ cm}$$

Найти: S_{AB₁C₁D}

Решение:

1) AB \perp AD, B₁B \perp AD \Rightarrow AB₁ \perp AD

$$B_1C_1 \parallel AD \Rightarrow AB_1 \perp B_1C_1$$

 AB_1C_1D — прямоугольник

2)
$$d = B_1D = AC_1$$

3) ∠ ABD = 45°, ΔABD — прямоуг. ⇒

⇒ AB = BD · sin
$$45^{\circ} = 4\sqrt{2} \cdot \frac{\sqrt{2}}{2} = 4$$
 (cm)
⇒ AB = AD = 4 (cm)

4) BB₁ = tg 60° · BD =
$$\sqrt{3}$$
 · $4\sqrt{2}$ = $4\sqrt{6}$ (cm

5) BD = DC₁, Δ DCC₁ — прямоуг. ⇒

$$A_1$$
 A_1
 A_2
 A_3
 A_4
 A_5
 A_5
 A_4
 A_5
 A_5

$$\Rightarrow DC_1 = \sqrt{DC^2 + DC_1^2} = \sqrt{4^2 + (4\sqrt{6})^2} =$$

$$= \sqrt{16 + 16 \cdot 6} = \sqrt{16(1+6)} = 4\sqrt{7} \text{ (cm)}$$

4)
$$BB_1 = tg 60^{\circ} \cdot BD = \sqrt{3} \cdot 4\sqrt{2} = 4\sqrt{6} \text{ (cm)}$$
 6) $S_{AB_1C_1D} = AD \cdot DC_1 = 4 \cdot 4\sqrt{7} = 16\sqrt{7} \text{ (cm)}$

Ответ: $S_{AB_1C_1D} = 16\sqrt{7}$

Задачи для самостоятельного решения:

Основанием прямого параллелепипеда является ромб с диагоналя-220 ми 10 см и 24 см, а высота параллелепипеда равна 10 см. Найдите большую диагональ параллелепипеда.

- 221 Сторона основания правильной треугольной призмы равна 8 см, боковое ребро равно 6 см. Найдите площадь сечения, проходящего через сторону верхнего основания и противолежащую вершину нижнего основания.
- 222 Основанием прямой призмы является равнобедренная трапеция с основаниями 25 см и 9 см и высотой 8 см. Найдите двугранные углы при боковых ребрах призмы.
- 223 Через два противолежащих ребра куба проведено сечение, площадь которого равна $64\sqrt{2}$ см². Найдите ребро куба и его диагональ.

Глава 8 «Многогранники и круглые тела», учебник Башмаков М.И. Математика: алгебра и начала математического анализа, геометрия: учеб. для студ. учреждений сред.проф. образования/ М.И. Башмаков. — 4-е изд.,стер. — М.: ИЦ «Академия», 2017, - 256 с.

В случае отсутствия печатного издания, Вы можете обратиться к Электроннобиблиотечной системе «Академия»

Список использованных интернет-ресурсов:

- 1. https://urait.ru/
- 2. https://23.edu-reg.ru/
- 3. https://infourok.ru/videouroki/