1. Funkcje trygonometryczne

Korzystając z wzoru Eulera

$$e^{ix} = \cos x + i \sin x$$
$$e^{-ix} = \cos x - i \sin x$$

można przedstawić funkcje trygonometryczne:

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i}$$
 $\cos x = \frac{e^{ix} + e^{-ix}}{2}$

2. Funkcje hiperboliczne

funkcje zmiennej rzeczywistej lub zespolonej określone są następująco:

• sinus hiperboliczny: (oznaczany również $\sinh x$)

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

• cosinus hiperboliczny: (oznaczany również ch x)

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

• tangens hiperboliczny: (oznaczany również $\operatorname{th} x$ lub $\operatorname{tanh} x$)

$$tgh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

• cotangens hiperboliczny: (oznaczany również $\operatorname{cth} x$ lub $\operatorname{coth} x$)

$$\operatorname{ctgh} x = \frac{\cosh x}{\sinh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

3. Wykresy funkcji hiperbolicznych Wykres funkcji sinh(x):

Wykres funkcji cosh(x)

ma kształt linii łańcuchowej.

Wykresy funkcji sinh(x), cosh(x), tanh(x)

4. Pochodne funkcji hiperbolicznych

$$\sinh'(x) = \cosh(x)$$

$$\cosh'(x) = \sinh(x)$$

$$tgh'(x) = \frac{1}{\cosh^2(x)} = 1 - tgh^2(x)$$

$$ctgh'(x) = \frac{-1}{\sinh^2(x)} = 1 - ctgh^2(x)$$

5. Wzór jedynkowy:

• Zbiór punktów płaszczyzny o współrzędnych postaci (cos x, sin x) jest okręgiem.

$$\sin^2 x + \cos^2 x = 1$$

- Zbiór punktów o współrzędnych postaci (cosh(x), sinh(x)) wyznacza <u>hiperbolę.</u>
- Wynika to z tożsamości, znanej jako jedynka hiperboliczna:

$$\cosh^2 x - \sinh^2 x = 1$$

Wnioski

Gdy równanie charakterystyczne równania różniczkowego ma dwa pierwiastki rzeczywiste λ_1 i λ_2 , jak w poniższych przypadkach I i II, rozwiązania równania wyrażają się przez funkcje hiperboliczne. Są to funkcje monotoniczne, a zatem nie ma drgań.

Przypadek I i II to tzw. Rozwiązania aperiodyczne.

Przypadek I ($\Delta > 0$)

Równanie ma dwa różne pierwiastki rzeczywiste λ_1 i λ_2 . Zatem każda z funkcji

$$x_1(t) = e^{\lambda_1 t}$$
 $x_2(t) = e^{\lambda_2 t}$

jest rozwiązaniem równania różniczkowego. Są to rozwiązania szczególne.

Rozwiazanie ogólne ma postać:

$$x(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$

gdzie C_1 i C_2 są dowolnymi stałymi.

Przypadek II ($\Delta = 0$)

Równanie ma podwójny pierwiastek rzeczywisty Λ_0 . Można sprawdzić (wstawiając do równania), że oprócz funkcji

$$x_1(t) = e^{\lambda_0 t}$$
 również funkcja $x_2(t) = te^{\lambda_0 t}$

jest rozwiązaniem równania różniczkowego. W tym przypadku rozwiązanie ogólne ma

$$posta\acute{c}: x(t) = C_1 e^{\lambda_0 t} + C_2 t e^{\lambda_0 t}$$

gdzie C_1 i C_2 są dowolnymi stałymi.