Complex Analysis General Exam, August 2020

General	guideli	nes: In	order to	receive	full	credit,	a detailed	argument	(rather	than	a sketch	of	the
proof) is	s needed. '	Whenever	applying	g one of	the	standard	theorems.	, please ind	icate th	at cle	arly.		

Pledge:

1. Let f be an entire function. Assume that

$$\max_{|z|=r} |f(z)| \le 10 \log r$$

for $r \geq 100$. Shown that f is constant.

- 2. Let f be holomorphic on $\Omega = \{0 < |z| < 1\}$, and suppose that (i) |f(z)| > 1 for all $z \in \Omega$, (ii) there exists a sequence $\{z_k\}_{k=1}^{\infty} \subset \Omega, z_k \to 0, k \to \infty$ such that $|f(z_k)| \le 10$ for $k \ge 100$. Is 0 a removable singularity?

$$\int_0^\infty \frac{\log x}{x^2 + 1} \, dx$$

via complex integration. Show all estimates.

4. Let $f: D=\{|z|<1\}\to \mathbb{C}$ be holomorphic. Assume that f(0)=0 and $|\mathrm{Re}f(z)|<1, \, \text{for all} \ z\in D.$

Show that

$$|f'(0)| \le \frac{4}{\pi}.$$

Hint: A function $g(w) = \frac{e^{i\pi \frac{w}{2}} - 1}{e^{i\pi \frac{w}{2}} + 1}$ mapping {|Re w| < 1} conformally to D might prove useful.

5. Let \mathcal{F} be a family of entire functions with the property that for any circle C, there exists a constant $M_C > 0$ such that

$$\sup_{f \in \mathcal{F}} \max_{z \in C} |f(z)| \le M_C.$$

- $\sup_{f \in \mathcal{F}} \max_{z \in C} |f(z)| \leq M_C.$ (i) show that there exists a sequence $\{f_n\}_{n=1}^{\infty} \subset \mathcal{F}$ converging to an entire function g uniformly on compacts in C
- (ii) suppose that $f_n(z) \neq 7$ for $n \geq 77$ and all $z \in \{|z| < 1\}$. Can $g(\frac{1+i}{2}) = 7$?