Model identification and flight control design for the Prometheus mapping drone

Nicola Dal Lago

Corso di Laurea Magistrale in Ingegneria dell'Automazione Dipartimento di Ingegneria dell'Informazione

10 ottobre 2016

Prometheus mapping drone

Scopo del progetto

Realizzazione di un UAV per navigazione e mappatura 3D in autonomo

Contributo di questa tesi:

- 1 Modello matematico
- 2 Identificazione di sistema
- 3 Generatore di traiettorie
- 4 Algoritmo di controllo

Design

- Telaio di un quadricottero standard
- Uso di un sensore laser Lidar, mapping in 2D
- Aggiunta di una piattaforma rotante per mapping in 3D

Modello matematico

Cinematica di Newton-Eulero

$$\begin{bmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{bmatrix} = \begin{bmatrix} m \cdot I_3 & \mathbf{0} \\ \mathbf{0}^T & I_{cm} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}}_{\mathbf{B}} \\ \dot{\boldsymbol{\omega}}_{\boldsymbol{B}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\omega}_{\boldsymbol{B}} \times I_{cm} \cdot \boldsymbol{\omega}_{\boldsymbol{B}} \end{bmatrix}$$

$$\begin{aligned} \mathbf{f}_i(t) &= a_{f,i} \Omega_i^2 \mathbf{n}_i = a_{f,i} \Omega_{max,i}^2 u_i(t)^2 \mathbf{n}_i \\ \boldsymbol{\tau}_i(t) &= -\operatorname{sgn}(\Omega_i) b_{f,i} \Omega_{max,i}^2 u_i(t)^2 \mathbf{n}_i \\ & u_i(t) \approx \frac{1}{\tau_i s + 1} u_{in,i}(t) \end{aligned}$$

$$egin{bmatrix} \mathbf{f}_{total} \ m{ au}_{total} \end{bmatrix} = egin{bmatrix} \sum_{i=1}^4 \mathbf{f}_i(u_i^2) \ \sum_{i=1}^4 \mathbf{l}_i imes \mathbf{f}_i(u_i^2) + m{ au}_i(u_i^2) \end{bmatrix}$$

Dinamica complessiva

$$\begin{bmatrix} \ddot{\mathbf{x}}_{B} \\ \dot{\boldsymbol{\omega}}_{B} \end{bmatrix} = \begin{bmatrix} \cdots & \frac{a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i}}{m} & \cdots \\ \cdots & I_{cm}^{-1} \Big[(\mathbf{l}_{i} + \Delta \boldsymbol{l}) \times a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} - \operatorname{sgn}(\Omega_{i})b_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} \Big] & \cdots \end{bmatrix} \begin{bmatrix} \vdots \\ u_{i}^{2} \\ \vdots \end{bmatrix} + \\ + \begin{bmatrix} \mathbf{0} \\ I_{cm}^{-1}(\boldsymbol{\omega}_{B} \times I_{cm}\boldsymbol{\omega}_{B}) \end{bmatrix} + \frac{1}{m_{cart}} \begin{bmatrix} \mathbf{f}_{cart} \\ \mathbf{0} \end{bmatrix}$$

Identificazione del sistema con filtrto di Kalman esteso

Semplificazioni

$$a_{f,i}\Omega_{max,i}^2 \approx a_f$$

 $b_{f,i}\Omega_{max,i}^2 \approx b_f$
 $\tau_i \approx \tau$

Linearizzazione

- $I_{cm}^{-1}(\boldsymbol{\omega}_B \times I_{cm}\boldsymbol{\omega}_B) \approx 0$
- muovere il quadrato degli ingressi al modello del motore

Definisco nuovo stato aumentato

$$\mathbf{x}_{est} = \begin{bmatrix} \boldsymbol{\omega}_B & \mathbf{u}_{in} & \boldsymbol{\beta} & \boldsymbol{\tau} \end{bmatrix}^T \in \mathbb{R}^{15}, \quad \boldsymbol{\beta} = \begin{bmatrix} \frac{a_f}{m} & \frac{a_f}{I_{xx}} & \frac{a_f}{I_{yy}} & \frac{a_f}{I_{zz}} & \frac{b_f}{I_{zz}} & \Delta l_x & \Delta l_y \end{bmatrix}^T$$

e aggiungo dinamica dei parametri

$$\boldsymbol{\omega}_{k+1} = \boldsymbol{\omega}_k \qquad \tau_{k+1} = \tau_k$$
 \Downarrow

Filtro di Kalman esteso

Risultati

- Carrello non in movimento
- Identificazione dei parametri anche con condizioni iniziali molto sbagliate

Generatore di traiettorie

Minimizzare funzione costo

Problema quadratico di programmazione matematica

 $A_{eq}\mathbf{c} = \mathbf{b}_{eq}$

Controllo

Definizione degli errori

$$\mathbf{e}_{x} = \mathbf{x} - \mathbf{x}_{d}$$

$$\mathbf{e}_{v} = \dot{\mathbf{x}} - \dot{\mathbf{x}}_{d}$$

$$\mathbf{e}_{R} = \frac{1}{2} (R_{c}^{T} R - R^{T} R_{C})^{\vee}$$

$$\mathbf{e}_{\omega} = \boldsymbol{\omega} - R^{T} R_{C} \hat{\boldsymbol{\omega}}_{C}$$

 R_C è tale che $R_C \in SO(3)$

Contributo di forza

$$f = -(k_x \mathbf{e}_x + k_v \mathbf{e}_v - g\mathbf{e}_3 - \ddot{\mathbf{x}}_d)^T R\mathbf{e}_3$$

Contributo di momento torcente

$$\boldsymbol{\tau} = -k_R \mathbf{e}_R - k_\omega \boldsymbol{e}_\omega + \boldsymbol{\omega} \times I_{cm} \boldsymbol{\omega}$$

Risultati

Conclusioni e sviluppi futuri

Conclusioni

- Identificazione del modello semplificato con filtro di Kalman
- Generatore di traiettorie lisce
- Controllo con compensazione del movimento del sensore

Sviluppi futuri

- Identificazione per il modello non lineare
- Imporre vincoli basati sulla dinamica dell'UAV nelle traiettorie
- Controllo in grado di prevedere la dinamica, come MPC

Grazie per l'attenzione!

Prometheus mapping drone

Model Predictive Control (MPC)

Definizione

$$\min_{U_{t \to t+N|t}} J_t = \sum_{i=1}^N ||\mathbf{r}_i - \mathbf{x}_i||_{W_x}^2 + \sum_{i=1}^N ||\Delta \mathbf{u}||_{W_u}^2$$
subject to
$$\mathbf{x}_{t+k+1|t} = A\mathbf{x}_{t+k|t} + B\mathbf{u}_{t+k|t}, \qquad k = 1, \dots, N$$

$$\mathbf{x}_{t+k|t} \in X, \quad \mathbf{u}_{t+k|t} \in U, \qquad k = 1, \dots, N$$

$$\mathbf{x}_{t|t} = \mathbf{x}(t)$$

Pro:

- Include modello motori
- Vincoli negli ingressi

Contro:

- Linearizzazione del modello
- Complessità computazionale

Modello lineare più approsimazione piccoli angoli

Switching MPC

