HYPOTHESIS TESTING

Dr. Romesh Thanuja

OUTLINE

- Introduction
- **SIMPLE VERSUS COMPOSITE HYPOTHESIS**
- **3** TEST STATISTICS
- DECISION RULE
- ERROR PROBABILITIES
- Power Function

INTRODUCTION

DEFINITION

A hypothesis is a statement about a population parameter.

DEFINITION

The two complementary hypotheses in a hypothesis testing problem are called the null hypothesis and the alternative hypothesis. they are denoted by H_0 and H_1 .

GENERAL HYPOTHESIS

For a vector of parameters θ and parameter space Θ , we test

$$H_0: \theta \in \Theta_0 \text{ vs } H_1: \theta \in \Theta_0^c$$

Note that Θ_0 and Θ_0^c must be mutually exclusive such that it is impossible for H_0 and H_1 to be true simultaneously.

SIMPLE VERSUS COMPOSITE HYPOTHESIS

SIMPLE VERSUS COMPOSITE HYPOTHESIS

A simple hypothesis takes the form

$$H_0: \theta = c$$

where c is a constant, i.e. it states an exact specification of θ .

If a vector of parameters is being tested, then we may write $H_0: \theta = c$, where c is a vector of constants of the same dimension as θ

A hypothesis which is not simple is called a composite hypothesis, for example

$$H_0: \theta \leq c$$
.

TEST STATISTICS

- The crucial part of a hypothesis test is to identify an appropriate test statistic, $T(\mathbf{X})$.
- One of the desired features of T(X) is to have an interpretation such that large values of it
 provide evidence against H₀.
- We also want to know the distribution of $T(\mathbf{X})$ under H_0 , that is when H_0 holds, we require the distribution of $T(\mathbf{X})|H_0$

DECISION RULE

- Classical hypothesis testing involves a binary choice such that we: reject H_0 or not reject H_0
- Note a hypothesis testing procedure is incapable of "accepting" a hypothesis- a test can only
 check to what extent the available evidence is consistent or inconsistent with the null
 hypothesis.
- The evidence used to make the decision is given by the observed sample $\mathbf{x} = \{x_1, x_2, \dots, x_n\}$. A test statistics, $T(\mathbf{X})$, is constructed and the computed test statistics value, $T(\mathbf{x})$, is used to make the decision of whether or not to reject H_0 .
- The decision-making process can be summarized using a single function $\delta(x)$, as follows:

$$\delta(x) = \begin{cases} 1 & \text{when } H_0 \text{ is rejected} \\ 0 & \text{when } H_0 \text{ is not rejected} \end{cases}$$

The function δ is known as the decision rule. δ partitions the space of possible observed samples into two sets:

$$R = \{ \mathbf{x} : \delta(\mathbf{x}) = 1 \} \text{ and } R^c = \{ \mathbf{x} : \delta(\mathbf{x}) = 0 \}$$

where the set R is the rejection region (critical region) and R^c is the non-rejection region.

(UoM) CM2420

ERROR PROBABILITIES

- A hypothesis test of $H_0: \theta \in \Theta_0$ versus $H_1: \theta \in \Theta_0^c$ might make one of two types of errors.
- If θ ∈ Θ₀, but the hypothesis test incorrectly decides to reject H₀, then the test has made a
 Type I error.
- If $\theta \in \Theta_1$ but the hypothesis test decides to accept H_0 , a Type II error has been made.
- Suppose R denotes the rejection region for a test. Then for $\theta \in \Theta_0$, the test will make a mistake if $\mathbf{x} \in R$, so the probability of a Type I Error is $P_{\theta}(\mathbf{X} \in R)$
- For $\theta \in \Theta_0^c$, the probability of a Type II Error is $P(X \in \mathbb{R}^c)$ (Note that $P_{\theta}(\mathbf{X} \in \mathbb{R}^c) = 1 P_{\theta}(\mathbf{X} \in \mathbb{R})$).
- We have

$$P_{\theta}(\mathbf{X} \in R) = \begin{cases} \text{probability of a Type I Error} & \text{if } \theta \in \Theta_0 \\ \text{one minus the probability of a Type II Error} & \text{if } \theta \in \Theta_0^c \end{cases}$$

POWER FUNCTION

DEFINITION

The power function of a hypothesis test with rejection region R is the function of θ defined by $\beta(\theta) = P_{\theta}(\mathbf{X} \in R)$

DEFINITION

For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a size α test if $\sup_{\theta \in \Theta_0} \beta(\theta) = \alpha$

DEFINITION

For $0 \le \alpha \le 1$, a test with power function $\beta(\theta)$ is a level (significant) α test if $\sup_{\theta \in \Theta_0} \beta(\theta) \le \alpha$

*p***-VALUE**

p-VALUE

Let T(X) be a test statistic used in a hypothesis testing procedure of a scalar parameter θ . Without loss of generality, suppose H_0 is rejected for large values of T(X). For an observed sample x the corresponding p-value is

$$p(x) = \sup_{\theta \in \Theta_0} P(T(\mathbf{X}) \ge T(x))$$

where T(x) is the test statistics value.

Note that: If we have a fixed significance level α , then we can describe the rejection region as:

$$R = \{\mathbf{x} : p(\mathbf{x}) \le \alpha\}$$

