

Ist Materie fundamental?

Michael Windau – Big Questions Seminar 28.01.21

Historischer Kontext

- 1926 Schrödinger: Elektronen werden durch Wellenfunktionen beschrieben
 - Diskrete Quantenzahlen ergeben sich durch Knoten der Wellenfunktion
 - Spezialfall Harmonischer Oszillator: Bewegende Teilchen lassen sich als Wellenpakete darstellen

Historischer Kontext

- Heisenberg: Es sind Teilchen
- Erklärung über Matrixmechanik
- Ergänzt mit der Unschärferelation (In der Wellenmechanik eine Folge der Fouriertransformation)

$$\Delta \chi \Delta \rho \ge \frac{\hbar}{2}$$

Interpretation

- Wellenfunktionen sind ein Maß für die Wahrscheinlichkeit der Entstehung einer Teilcheneigenschaft wie Ort oder Impuls
- Wellenfunktionen "kollabieren" zu teilchenartigen Wellenpaketen während einer Messung
- Teilchen-Wellen-Dualismus
- Heisenberg-Cut: Grenze zwischen Quanten- und klassischer Mechanik
- Eugene Wigner: "Balkanization of Physics"

Wellenfunktion im Konfigurationsraum

- Problem: Wellenfunktionen beschrieben örtliche Wellen
- Schrödinger: Hamiltons Gleichungen sind Approximationen für kurze Wellenlängen einer fundamentalen Wellentheorie
 - → Lokale Teile bewegen sich unabhängig voneinander
 - → Kohärenz: Sie existieren als eine Realität (Eine Wellenfunktion)
- Diese Wellen existieren im Konfigurationsraum aller möglichen klassischen Zustände
 - → Können nicht-klassische Eigenschaften besitzen

Universelle Wellenfunktionen

- Superpositionsprinzip ist universell
 →Heisenberg & Bohr: Wellenfunktion
 verliert ihre Bedeutung nach der Messung.
 Sie "kollabiert" in einen Wert!
- Wann endet Messung? (Heisenberg-Cut)
- Universelle Wellenfunktion:
 - → Messapparatur und mikroskopisches
 System einer Superposition mehrerer
 Variablen erzeugt ein verschränktes System

$$(\sum_{n} c_{n} \psi_{n}) \Phi_{0} \rightarrow \sum_{n} c_{n} \psi_{n} \Phi_{n}$$

→ Viele Welten Interpretation

Dekohärenz

- Systeme wechselwirken mit ihrer Umgebung über Zeit
 - → Lokale Phasenkohärenz verschwindet
- Es ergibt sich eine reduzierte Dichtematrix
- Dies führt für zu einer bevorzugten Detektorbasis
 - → "pointer basis"

Dekohärenz

- In der realen Welt führt Dekohärenz zum irreversiblen Verlust von Kohärenz durch Korrelation mit der Umgebung
 - → Wechselwirkungen mit Photonen führen zu irreversiblen Verschränkungen
- Makroskopische Systeme werden permanent "gemessen" durch wechselwirkungen mit Photonen
 - \rightarrow Dekohärenzzeit Staubteilchen ca. $10^{-18}s$
- Erklärung für Grenze zwischen klassischer Welt und Mikroskopischer Welt

Konsequenz für die universelle Wellenfunktion

- Es entstehen keine Teilchen durch plötzlich kollabierende Wellenfunktionen
- Die Universelle Wellenfunktion dekoriert lokal in detektierbare klassische Variablen, welche durch die Umgebung bestimmt werden
- Beispiel:
 - Dekohärenz zerstört Interferenz zwischen örtlich getrennten Anteile der Wellenfunktion → Dichtematrix ergibt Ensemble an schmalen Wellenpaketen welche als Teilchenorte interpretiert werden können.
 - 2) Dekohärenz mit dem örtlichen elektromagnetischen Feld führt zu der möglichen Detektierung von Ladungseigenzuständen

Lokale Dekohärenz

- Das Universum als Ganzes kann nicht dekorieren
- Konsequenz: Alle Interferenzterme der universellen Wellenfunktion bleiben bestehen
 - → Lösung durch Korrelierung des Beobachters mit dem Messgerät
 → Viele Welten
 - → Es wird nur eine Komponente "beobachtet" aber alle "existieren"

Konsequenz: Quantenfeldtheorie und Gibbsches Paradoxon

- Gibbsches Paradoxon: Mischung zweier gleicher Stoffe lässt im Experiment die Entropie unverändert
- In QFT würde die Formulierung "Ein Teilchen befindet sich in einem Quantenzustand beschrieben durch die räumliche Wellenfunktion φ_1 und ein anderes Teilchen mit φ_2 " zu "Zwei Feldmoden φ_1 und φ_2 sind in ihrem ersten angeregten Quantenzustand (Teilchenzahl von 1)"
 - → Permutation der beiden Moden verändert die Aussage nicht

Konsequenz: Spuren von Teilchen in Nebelkammern

- Spuren von Alpha-Teilchen in Nebelkammern durch die Interaktionen mit den Elektronen im Gas
- Es entsteht ein Kontinuum aus schmalen Wellenpaketen, die mit den ionisierten Molekülen korreliert sind
 - → Die Systeme dekorieren und werden durch gestreutes Licht aufgezeichnet
 - → Es werden Spuren für den Beobachter sichtbar

Ouantum discreteness is an illusion – H.D. Zeh

Zusammenfassung

- Der Welle-Teilchen-Dualismus ist eine unnötige Folgerung aus der Quantenmechanik
- Diskrete Ereignisse wie der Kollaps einer Wellenfunktion lassen sich durch kontinuierliche Prozesse der Dekohärenz erklären
- Die Wellenfunktion eines Systems kann physikalische Eigenschaften tragen und ist nicht nur ein Maß für eine Wahrscheinlichkeitsdichte
 → Eine universelle Wellenfunktion könnte existieren
- Grenze zwischen Quanten- und Klassischer Welt lässt sich besser erklären

"Denn eben wo Begriffe fehlen, da stellt ein Wort zur rechten Zeit sich ein." – Faust, J.W von Goethe

Vielen Dank für ihre Aufmerksamkeit!

Gibt es Fragen?