Dr. Andreas Stein

Dr. Francesca Bartolucci

Series 1

1. (i) Write a MATLAB function Normal(v1,v2,c11,c12,c22) with input $v_1, v_2, c_{11}, c_{12}, c_{22} \in \mathbb{R}$ and output a realization of a $\mathcal{N}_{v,Q}$ -distributed random variable, where

$$v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$
 and $Q = \begin{pmatrix} c_{11} & c_{12} \\ c_{12} & c_{22} \end{pmatrix}$.

Hint: Use Proposition 0.4.15. in Chapter 0 of the lecture notes. You may also use the MATLAB function chol().

- (ii) Write a MATLAB function Poisson(N,lambda) with input $N \in \mathbb{N}$, $\lambda \in (0, +\infty)$, which returns as output N independent realizations of a Poisson distributed random variable with parameter λ . Then, write a MATLAB function PoissonPlot() which plots 10^5 realizations of a Poisson distributed random variable with $\lambda = 10$ generated with your Matlab function Poisson() in a histogram with 50 bins.
- **2.** Let $\mathbb{T} \subseteq \mathbb{R}$ be a set, let (Ω, \mathcal{F}, P) be a probability space, let (S, \mathcal{S}) be a measurable space, and let $X \colon \mathbb{T} \times \Omega \to S$ be a stochastic process. Consider the filtration \mathbb{F}^X generated by X and defined by

$$\mathbb{F}_t^X = \sigma_{\Omega}((X_s)_{s \in \mathbb{T} \cap (-\infty, t]}), \quad t \in \mathbb{T}.$$

- (i) Show that X is \mathbb{F}^X/\mathcal{S} -adapted.
- (ii) Let $\mathbb{F} \colon \mathbb{T} \to \mathcal{P}(\mathcal{P}(\Omega))$ be an other filtration such that X is \mathbb{F}/\mathcal{S} -adapted. Show that $\mathbb{F}_t^X \subseteq \mathbb{F}_t$ for every $t \in \mathbb{T}$.
- (iii) Prove or disprove the following statement: if X is a stochastic process with continuous sample paths, then the filtration \mathbb{F}^X is right-continuous.
- **3.** Let $T \in (0, \infty)$, $m \in \mathbb{N}$, let (Ω, \mathcal{F}, P) be a probability space, and let $W : [0, T] \times \Omega \to \mathbb{R}^m$ be a standard Brownian motion.
 - (i) Show that for every $t \in [0,T]$ and $s \in (0,T]$ it holds that

$$W_t = \frac{\sqrt{t}}{\sqrt{s}} W_s$$

in distribution on $\mathcal{B}(\mathbb{R}^m)$.

(ii) Prove that W has P-independent and stationary increments.

(iii) Let m = 1. Show that for every $s, t \in [0, T]$ it holds that

$$Cov_P(W_s, W_t) = \mathbb{E}[W_s W_t] = min\{s, t\}.$$

Due: 16:00 o'clock, Monday, 3rd October 2022

Webpage: https://moodle-app2.let.ethz.ch/course/view.php?id=17423

Organisation: Francesca Bartolucci, HG G 53.2