\mathbf{SETS}

Question

$Prove: \overline{A} \equiv (\Omega \setminus A) \cup \overline{(A \cup (C \cap B))}$	$State\ proof$	(1)
Answer		
$(\Omega \setminus A) \cup \overline{(A \cup (C \cap B))} \equiv \overline{A} \cup \overline{(A \cup (C \cap B))}$	Definition	(2)
$\overline{A} \equiv \overline{A} \cup \overline{(A \cup (C \cap B))}$	Difference	(3)
$\overline{A} \equiv \overline{A} \cup \left(\overline{A} \cap \overline{C \cap B}\right)$	DeMorgan	(4)
$\overline{A} \equiv \overline{A} \cup \left(\overline{C \cap B} \cap \overline{A} \right)$	Commutative	(5)
$\overline{A} \equiv \overline{A}$	Absorption	(6)