

King Mongkut's University of Technology Thonburi Midterm Examination

Semester 1 -- Academic Year 2012

Subject: EIE 210 Electronic Devices and Circuit Design I

For: Electrical Communication and Electronic Engineering, 2nd Yr (Inter. Program)

Exam Date: Tuesday October 9, 2012

Time: 13.00-16.00 pm.

Instructions:-

- 1. This exam consists of 5 problems with a total of 7 pages, including the cover.
- 2. This exam is closed books.
- 3. You are not allowed to use a written A4 note for this exam.
- 4. Answer each problem on the exam itself.
- 5. A calculator compiling with the university rule is allowed.
- 6. A dictionary is not allowed.
- 7. Do not bring any exam papers and answer sheets outside the exam room.
- 8. Open Minds ... No Cheating! GOOD LUCK!!!

Remarks:-

- Raise your hand when you finish the exam to ask for a permission to leave the exam
 room.
- Students who fail to follow the exam instruction might eventually result in a failure of the class or may receive the highest punishment with university rules.
- Carefully read the entire exam before you start to solve problems. Before jumping
 into the mathematics, think about what the question is asking. Investing a few minutes
 of thought may allow you to avoid twenty minutes of needless calculation!

Exam	1	2	3	4	5	,	 	TOTAL
No.								
Full Score								
Score								
Graded Score								
Score								

Name	C4mdan4 TD
Name	Student ID

This examination is designed by Dr. Kamon Jirasereeamornkul; Tel: 9067.

This examination has been approved by the committees of the ENE department.

(Assoc. Prof. Wudhichai Assawinchaichote, Ph.D.) Head of Electronic and Telecommunication Engineering Department

1

- 1. Find the output of clippers in Figure 1(a) and 1(b). Assume that the diodes are ideal diodes (12 marks)
 - 1.1 Series clipper (6 marks)

1.2 Parallel clipper (6 marks)

2. Consider the circuit in Figure 2. Sketch the waveform of output voltage v_0 compare with secondary voltage v_s . Also, determine the average value of v_0 . (8 marks)

3. From circuit in Figure 3 and datasheet, find V_{Z0} , $R_{L_{min}}$, and $R_{L_{max}}$ (10 marks)

ELECTRICAL CHARACTERISTICS

Rating at = 25 °C ambient temperature unless otherwise specified

TYPE	Nominal Zener Voltage		,	Maximum Zener Impedance	ī	Maximum Reverse Leakage Current		Maximum DC Zener Current
	Vz @ tz ⊤	izr	Zzt @ izt	Zzk @ lzk	izx	IR @ VR		İZM
	(V)	(mA)	(O)	(Ω)	(mA)	(µA)	(٧)	(mA)
1N4728	3.3	76.0	10	400	1.0	100	1.0	278
1N4729	3.6	69.0	10	400	1.0	100	1.0	252
1N4730	3.9	64.0	9.0	400	1.0	50	1.0	234
114731	4.3	58.0	9.0	400	1.0	10	1.0	217
1N4732	4.7	53.0	0.0	500	1.0	10	1.0	193
1N4733	5.1	49.0	7.0	550	1.0	10	1.0	178
1N4734	5.6	45.0	5.0	600	1.0	10	2.0	162
1N4735	6.2	41.0	2.0	700	1.0	10	3.0	146
1N4736	6.8	37.0	3.5	700	1.0	50	4.0	133
1N4737	7.5	34.0	4.0	700	0.5	50	5.0	121
1N4738	8.2	31.0	4.5	700	0.5	50	6.0	110
1N4739	9.1	28.0	5.0	700	0.5	50	7.0	100
1N4740	10	25.0	7.0	700	0.25	50	7.6	91

6

4. Please estimate the dc voltage from the circuit shown in Figure 4 (4 marks)

5. Please analyze the circuit in Figure 5 and conclude its function. Assume that each input voltage has only 2 levels, 0 V or 5 V. (6 marks)

