9. Applying the Delta Method Applying the Delta Method

Start of transcript. Skip to the end.

Everybody knows where this is coming from?

I didn't drop it on you like unprepared? So this is where the correction comes from.

When you apply the delta method, be very careful.

In our example, in the T example, what was theta?

...

视频

下载视频文件

字幕

下载 SubRip (.srt) file

下载 Text (.txt) file

An Estimator for the Mean of an Exponential Random Variable

1/1 point (graded)

In the next two problems, we will repeat the computation in lecture.

Let $X_1,\ldots,X_n\sim \exp\left(\lambda\right)$ where $\lambda>0$.

Since $\mathbb{E}\left[X
ight]=rac{1}{\lambda}$, by the central limit theorem,

$$\sqrt{n}\left(rac{1}{n}\sum_{i=1}^{n}X_{i}-rac{1}{\lambda}
ight)rac{\left(d
ight)}{n
ightarrow\infty}N\left(0,\sigma^{2}
ight).$$

What is σ^2 in terms of λ ?

$$\sigma^2 = \boxed{ \begin{tabular}{c} 1/lambda^2 \end{tabular}}$$

✓ Answer: 1/lambda^2

 $\frac{1}{\lambda^2}$

STANDARD NOTATION

提交

你已经尝试了1次(总共可以尝试3次)

Applying the Delta Method to an Exponential Random Variable

1/1 point (graded)

As above, let $X_1,\ldots,X_n\sim\exp{(\lambda)}$ where $\lambda>0$. Let $\overline{X}_n=rac{1}{n}\sum_{i=1}^nX_i$ denote the sample mean. By the CLT, we know that

$$\sqrt{n}\left(\overline{X}_{n}-rac{1}{\lambda}
ight)rac{(d)}{n
ightarrow\infty}N\left(0,\sigma^{2}
ight)$$

for some value of σ^2 that depends on λ , which you computed in the problem above.

If we set \boldsymbol{g} to be

$$g: \; \mathbb{R} o \mathbb{R} \ x \mapsto 1/x,$$

then by the Delta method,

$$\sqrt{n}\left(g\left(\overline{X}_{n}
ight)-g\left(rac{1}{\lambda}
ight)
ight) \stackrel{(d)}{\longrightarrow} N\left(0, au^{2}
ight).$$

where au^2 is the asymptotic variance and can be expressed in terms of λ .

What is the asymptotic variance au^2 in terms of λ ? (Choose all that apply.)

- $\ \ \ \ \ g'(\lambda) \operatorname{\sf Var} X$
- $g'(\lambda)\frac{1}{\lambda^2}$
- $ightharpoons g'(E[X])^2 \mathsf{Var} X
 ightharpoons g'$
- $g'\left(\frac{1}{\lambda}\right)^2\frac{1}{\lambda^2}$
- $\frac{1}{\lambda^2}$
- $ightharpoonup \lambda^2 \checkmark$

~

Solution:

By the previous problem, we have

$$\sqrt{n}\,(rac{1}{n}\sum_{i=1}^n X_i - 1/\lambda) \stackrel{(d)}{
ightarrow} \mathcal{N}\left(0,rac{1}{\lambda^2}
ight).$$

To apply the Delta method, first observe that $g'(x)=-1/x^2$ and that g is continuously differentiable for x>0. By the Delta method,

$$egin{aligned} \sqrt{n} \left(g\left(\overline{X}_n
ight) - g\left(\mathbb{E}\left[X
ight]
ight)
ight) &= \sqrt{n} \left(rac{1}{\overline{X}_n} - rac{1}{1/\lambda}
ight) \; rac{(d)}{n
ightarrow \infty} \; \mathcal{N} \left(0, g'(\mathbb{E}\left[X
ight]
ight)^2 var\left(X
ight)
ight) \ &= \; \mathcal{N} \left(0, \left(g'\left(rac{1}{\lambda}
ight)
ight)^2 \left(rac{1}{\lambda^2}
ight)
ight) \ &= \; \mathcal{N} \left(0, \lambda^2
ight). \end{aligned}$$

Since $g'\left(x
ight)=-1/x^2$, $g'\left(rac{1}{\lambda}
ight)=-\lambda^2$, and hence the asymptotic variance of $g\left(\overline{X}_n
ight)$ evaluates to λ^2 .

Warning: It's very important that we apply g' to the value $1/\lambda$, and not λ . We start with a consistent estimator, namely \overline{X}_n , whose limit is $\mathbb{E}\left[X\right]=1/\lambda$, and the Delta method asks us to apply g' to the limit of that consistent estimator. Be careful about this, as it is a common source of errors.

提交

你已经尝试了1次(总共可以尝试3次)

Answers are displayed within the problem

When does the delta method apply?

0/1 point (graded)

Let $X_1, X_2, \ldots \overset{\text{i.i.d.}}{\sim} X$. The distribution of X depends on a **positive** parameter θ , which is a function of the mean μ , i.e $\theta = g(\mu)$. You estimate θ by the estimator $\hat{\theta} = g(\overline{X}_n)$.

For which function g can the delta method be applied? Remember that heta>0. (Choose all that apply.)

$$g\left(x
ight) =\left\{ egin{array}{ll} x & ext{if }x\leq 1\ 2x-1 & ext{if }x>1 \end{array}
ight.$$

$$\square \ g\left(x
ight) = rac{1}{x-1}$$

×

Solution:

For the Delta method to apply, g' exists and is continuous at $\mathbb{E}\left[X\right]=g^{-1}\left(\theta\right)$. Since θ and $\mu=\mathbb{E}\left[X\right]$ are unknown, for the Delta method to apply, we need to make sure g is continuously differentiable at all possible values of $\mathbb{E}\left[X\right]$ given that $\theta>0$. Let us first go through the correct choices:

- 1. $g(x) = x^3$ is continuously differentiable everywhere.
- 2. $g(x) = \sqrt{x}$ is continously differentiable for all x > 0. Given any $\theta > 0$, $\mu = g^{-1}(\theta) = \theta^2 > 0$. So for all possible values of $\mathbb{E}[X]$, g satisfies the requirement; hence Delta method applies.
- 3. Similarly, $g(x) = \ln x$ is continously differentiable for all x > 0. Given any $\theta > 0$, $\mu = g^{-1}(\theta) = e^{\theta} > 0$. Again, Delta method applies.
- 4. $g(x) = \frac{1}{x-1}$ is continously differentiable everywhere except at x = 1. However, inverting $\theta = g(\mu) = \frac{1}{\mu-1}$ gives $\mu = \frac{1}{\theta} + 1$, so $\mu \neq 1$ for all $\theta > 0$. Hence the Delta method applies.

Here is the incorrect choice: $g(x) = \begin{cases} x & \text{if } x \leq 1 \\ 2x - 1 & \text{if } x \geq 1 \end{cases}$ is a 1-to-1 piecewise linear function and is continuously differentiable everywhere except at x = 1. Observe that g(1) = 1, hence when $\theta = 1$, $\mu = 1$. There is a possible value of μ when $g'(\mu)$ does not exist, so the Delta method does not apply.

提交

你已经尝试了2次(总共可以尝试2次)

Answers are displayed within the problem