

Statistics Ex 7.4 Q5

Answer:

First we prepare the following cummulative table to compute the median.

Marks	No. of Students: (f_i)	Cumulative Frequency (c.f.)
10-20	20	35
20-30	25	60
30-40	24	84
40-50	12	96
50-60	31	127
60-70	71	198
70-80	52	250
	N = 250	

Here, N = 250

So,
$$\frac{N}{2} = 125$$

Thus, the cumulative frequency just greater than 125 is 127 and the corresponding class is 50-60.

Therefore, 50-60 is the median class.

Here,
$$l = 50$$
, $f = 31$, $F = 96$ and $h = 10$

We know that

Median =
$$I + \left\{ \frac{N}{2} - F \right\} \times h$$

= $50 + \left\{ \frac{125 - 96}{31} \right\} \times 10$
= $50 + \frac{29 \times 10}{31}$
= $50 + \frac{290}{31}$
= $50 + 9.35$
= 59.35

Hence, the median is 59.35.

Statistics Ex 7.4 Q6

Answer:

Let the frequency of the class 20–30 be $f_{\rm I}$ and that of class 40–50 be $f_{\rm 2}$. The total frequency is 170.

$$10 + 20 + f_1 + 40 + f_2 + 25 + 15 = 170$$

So,
$$f_1 + f_2 = 60$$
(1)

It is given that median is 35 which lies in the class 30-40. So 30-40 is the median class.

Now, lower limit of median class (I) = 30

Height of the class (h) = 10

Frequency of median class (f) = 40

Cumulative frequency of preceding median class $(F) = 10 + 20 + f_1$

Total frequency (N) = 170

Formula to be used to calculate median,

$$= I + \left(\frac{\frac{N}{2} - F}{f}\right)(h)$$

Where,

1- Lower limit of median class

h - Height of the class

f - Frequency of median class

F - Cumulative frequency of preceding median class

N - Total frequency

Put the values in the above,

$$35 = 30 + \left(\frac{\frac{170}{2} - (30 + f_1)}{40}\right) (10)$$

$$f_1 = -20 + \frac{170}{2} - 30$$
$$= 35$$

Using equation (1), we have

$$f_2 = 25$$

Therefore,

$$f_1 = 35$$

 $f_2 = 25$

********* END *******