

Speaker:

Fractional-Order Complementary Filters for Sensor Applications

P. Bertsias and C. Psychalinos

Electronics Laboratory, Physics Department, University of Patras, Greece

A. S. Elwakil

Dept. of Electrical and Computer Eng., College of Engineering, University of Sharjah, United Arab Emirates

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Complementary Filters in Sensors

General Atomics MQ-9 Reaper

□ Background

☐ Circuit implementation

Simulation results

Conclusions

☐ Future work

☐ FBD of a two-sensor system

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

✓ Frequency-domain specifications → cut-off frequency of the LP filter

$$H_1(s) + H_2(s) = k$$

☐ Importance of FO filters

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

- ✓ More precise control of the attenuation gradient
- ✓ Scaling of time-constants, allowing extremely large time-constants

☐ FBD of a two-sensor system

- □ Background
- ☐ Circuit implementation
- Simulation results
- Conclusions
- Future work

$$H_1(s) + H_2(s) = k$$

 \Box FO LP filter of order α

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

$$H_1(s) = \frac{k}{(\tau s)^{\alpha} + 1}$$

$$0 < \alpha < 1$$

> Pole frequency:

$$\omega_0 = \frac{1}{\tau}$$

> Cut-off frequency:

$$\omega_{c,lp} = \omega_0 \left[\sqrt{1 + \cos^2\left(\frac{\alpha\pi}{2}\right)} - \cos\left(\frac{\alpha\pi}{2}\right) \right]^{1/\alpha}$$

> Slope: $-6 \cdot \alpha \, dB/Oct$.

 \Box FO Complementary filter of order α

□ Background

$$H_2 = k - H_1(s) = k \frac{(\tau s)^{\alpha}}{(\tau s)^{\alpha} + 1}$$
 $0 < \alpha < 1$

- Circuitimplementation
 - Simulation results
- Conclusions
- ☐ Future work

- > Pole frequency: $\omega_0 = \frac{1}{\tau}$
- > Cut-off frequency:

$$\omega_{c,comp} = \omega_0 \left[\sqrt{1 + \cos^2\left(\frac{\alpha\pi}{2}\right)} + \cos\left(\frac{\alpha\pi}{2}\right) \right]^{1/\alpha}$$

> Slope: $+6 \cdot \alpha \, dB/Oct$.

 $\omega_0 = \frac{1}{\tau}$

 \Box FO LP filter of order $1 + \alpha$

□ Background

$$H_1(s) = \frac{k_1}{(\tau s)^{1+\alpha} + k_3(\tau s)^{\alpha} + k_2}$$

$$0 < \alpha < 1$$

$$(k = k_1/k_2)$$

$$\left| H_1(\omega_{h,lp}) \right| = 0.707k$$

Conclusions

> Slope:
$$-6 \cdot (1 + \alpha) dB/Oct$$
.

☐ Future work

FO Complementary filter of order $1 + \alpha$

Background

- Simulation results
- Conclusions
- Future work

 $H_2 = k - H_1(s) = k \frac{(\tau s)^{1+\alpha} + k_3(\tau s)^{\alpha}}{(\tau s)^{1+\alpha} + k_3(\tau s)^{\alpha} + k_2}$ $0 < \alpha < 1$ $(k = k_1/k_2)$

> Pole frequency:
$$\omega_0 = \frac{1}{\tau}$$

Cut-off frequency:

Slope: $+6 \cdot (1 + \alpha) dB/Oct$.

 $\left|H_1(\omega_{h,lp})\right| = 0.707k$

☐ Implementation of FO filters

- ✓ Fractional-order capacitor (CPE) with molybdenum-disulfide polymer composite developed in KAUST
- Mos₂

 PVDF-TrFE-CFE

 Au
- (:)
- Commercial unavailability

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

☐ Implementation of FO filters

- ✓ Approximation by appropriate RC networks
 - R_b R_c R_d R_e R_a R_b R_c R_d R_e R_d R_e R_d R_e R_d R_d

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

Absence of electronic tuning

☐ Implementation of FO filters

- > Approximation by integer-order transfer functions around a center frequency
 - ✓ Various approximation tools: Continued Fraction Expansion (CFE), Oustaloup, Matsuda etc.

$$H(s) \cong \frac{A_n s^n + A_{n-1} s^{n-1} + \dots + A_1 s + A_0}{s^n + B_{n-1} s^{n-1} + \dots + B_1 s + B_0}$$

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

☐ Implementation of FO filters

- Approximation by integer-order transfer functions around a center frequency
 - ✓ Various approximation tools: Continued Fraction Expansion (CFE), Oustaloup, Matsuda etc.

order
$$1 + \alpha$$

$$H(s) \cong \frac{A_{n+1}s^{n+1} + A_ns^n + \dots + A_1s + A_0}{s^{n+1} + B_ns^n + \dots + B_1s + B_0}$$

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

☐ Implementation of FO filters

Multi-feedback structures

(order α)

- ☐ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- Future work

☐ Implementation of FO filters

Multi-feedback structures

(order $1 + \alpha$)

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- Future work

Circuit implementation

Log-domain lossless integrator

Background

 $_{\Delta}V_{DD}$ GI_0 Mp6 Mp7 $I_0 \bigoplus$ Mp1 Mp8 i_{in} Mp3 Mp3 Mp2 GI_0 $I_0 \bigoplus$

Simulation
$$H_{int}(s) =$$

$$\tau = \frac{nCV_T}{I_0}$$

results

Conclusions

Future work

Electronic tunability of the time-constant & the scaling factor

Large signal current-voltage characteristic

Circuit implementation

☐ Multiple-output current-mirror

- Background
- ☐ Circuit implementation
- Simulation results
- Conclusions
- ☐ Future work

$$i_{out1} = i_{in}$$

 $i_{out2} = k \cdot i_{in}$

- Electronic
 - Electronic adjustment of the scaled output
- Fully electronic control of the system

Simulation results

□ AMS 0.35µm CMOS process

$$V_{DD} = -V_{SS} = 0.75V$$

- Background
- □ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

Simulation results

☐ AMS 0.35µm CMOS process

$$V_{DD} = -V_{SS} = 0.75V$$

- □ Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- Future work

Simulation results

■ Background

- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- ☐ Future work

Performance characteristics of the FO Complementary Filters

Variable	α =0.3	α =0.5	α =0.7
$f_{-3dB}(Hz)$	$ 11 (10.7) \\ 5.4 (5.7) $	10.9 (10.7) 5.6 (5.8)	$ \begin{array}{c} 10.2 (10.1) \\ 5.2 (5.4) \end{array} $
$\angle H(f_{-3dB})(^{o})$	-59.7 (-58.3) $44.9 (44)$	$ \begin{array}{c c} -67 (-66) \\ 49.5 (48.8) \end{array} $	-72.1(-71) $54(53)$
$\sigma[f_{-3dB}](Hz)$	0.09 0.08	0.12 0.06	0.11 0.06
$\sigma[\angle H(f_{-3dB})] \ (^o)$	0.4 1	0.6 1.2	0.6 1.3

Conclusions

- Background
- ☐ Circuit implementation
- ☐ Simulation results
- □ Conclusions
- ☐ Future work

- ✓ Implementation of novel FO complementary filters for the first-time in literature
- ✓ Implementation of FO complementary filters using only LP filters and a gain stage
- ✓ Log-domain lossless integrators for the implementation of the required multi-feedback structures
- ✓ Electronic tuning of the frequency characteristics and the scaling factors of the complementary filters

Future work

- Background
- ☐ Circuit implementation
- ☐ Simulation results
- Conclusions
- □ Future work

- ✓ Partial fraction decomposition tool for the implementation of the LP filter, reducing the number of MOS transistors and spread of values
- ✓ Use of other active elements which compose the integrators
- ✓ Other sensor applications, including orientation estimation in UAVs, accelerometers, gyroscopes and motion measurement

#