Nombre desiré

f (xp) est l'image de xp par f.

To est la droite tengente en x_q à la courbe $\ell_{\mathfrak{f}}$.

Le nombre derivé en x_p est le coefficient directeur de la droite tongente en x_p (T_p) .

On nate $f'(x_p)$.

Équation de la tangente en
$$x_p$$
:

$$y = f'(x_p)(x - x_p) + f(x_p)$$

$$y = ax + b''$$

- 1) Déterminar le nombre derivé
 - 2) Déterminer l'égration de Tp et TM.
- 2) Drosser le tableau de Variations de f.

- 1) $f'(x_p)$ est le coefficient directeur de T_p . Donc f'(3) = -2. $f'(x_n) = f'(6) = 4$.
 - 2) T_{p} : $y = f'(x_{p})(x x_{p}) + f(x_{p})$ $x_{p} = 3$ $f'(x_{p}) = -2$ $f(x_{p}) = 2$ y = -2(x - 3) + 2 = -2x + 6 + 2 = -2x + 8

$$T_{H}$$
; $y = f'(x_{H})(x - x_{M}) + f(x_{M})$
 $x_{H} = 6$ $f'(x_{H}) = 4$ $f(x_{H}) = 5$
 $y = 4(x - 6) + 5 = 4x - 24 + 5 = 4x - 13$

3)
$$x - \infty$$
 4 $+ \infty$ $y = 1$ $y = 1$

Utilisation d'un graphique

Ex 2 : C est la courbe représentative d'une fonction f dérivable. Les droites T_1 , T_2 , T_3 sont tangentes à C aux points A, B, C.

- 1. Déterminer par lecture graphique les nombres dérivés f'(-1) , f'(0) , f'(2) .
- 2. Donner une équation des droites T_1 , T_2 , T_3 .

