Esercizio 1. The language L contains only the binary relations < and e. The theory T_0 says that < is a strict linear order and that e is an equivalence relation. Let $\mathfrak M$ consist of models of T_0 and partial isomorphisms.

- 1. Do rich models exist?
- 2. Describe T_1 , the set of sentences that hold in all rich models (if they exist).
- 3. Does T_1 have elimination of quantifiers?
- 4. Is T_1 λ -categorical for some λ ?

Esercizio 2. Let T_0 and \mathfrak{M} be as in Example 7.15 except that we restrict the language to the relations $r_0, ..., r_n$ for a fixed n.

- 1. Do rich models of T_0 exist?
- 2. Describe T_1 , the set of sentences that hold in all rich models (if they exist).
- 3. Does T_1 has elimination of quantifiers?
- 4. Is $T_1 \lambda$ -categorical for some λ ?

Answer the questions above if we add to the language a constant 0 to the language.

Answer the questions above when we drop the axioms $\neg \exists x [r_n(x) \land r_m(x)]$ from T_0 .

(Rispondere sinteticamente.)