

带12位ADC的增强型8051微控制器

1. 特性

- 基于8051指令流水线结构的8位单片机
- Flash ROM: 64K字节
- RAM: 内部256字节,外部1280字节,LCD RAM 28字节
- 类EEPROM: 1024字节
- 工作电压:

 $f_{OSC} = 32.768kHz - 16MHz$, $V_{DD} = 2.0V - 5.5V$

- 振荡器(代码选项):
 - 晶体谐振器: 32.768kHz
 - 晶体谐振器: 2MHz 16MHz
 - 陶瓷谐振器: 2MHz 16MHz
 - 内部RC振荡器: 12MHz(±2%)/128K
- 46/42个CMOS双向I/O管脚
- 2个可选择的开漏极I/O口
- I/O内建上拉电阻
- 4个16位定时器/计数器: T2, T3, T4和T5
- 一个12位PWM定时器
- 一个8位PWM定时器
- 中断源:
 - 定时器2, 3, 4, 5
 - 外部中断0, 1, 2, 3
 - 外部中断4: 8输入
 - ADC, EUART, SCM, LPD
 - PWM, CMP, SPI
- 2个增强型EUART
- SPI接口(主从模式)
- 内建蜂鸣器

- 9通道12位模数转换器(ADC),内建比较功能
- 内建频率检测模块(带可控制的反馈电阻)
- 内建2个比较器(带施密特窗口)
- LED驱动器:
 - 3-8 X 8段(1/3-1/8占空比)
- LCD驱动器: (48脚/44脚)
 - -8 X 24段/20段(1/8占空比, 1/4偏置)
 - 6 X 26段/22段(1/6占空比,1/4或1/3偏置)
 - 5 X 27段/23段(1/5占空比,1/3偏置)
 - 4 X 28段/24段(1/4占空比,1/3偏置)
- 内建低电压复位功能(LVR)(代码选项)
 - LVR电压1: 4.1V
 - LVR电压2: 3.7V
 - LVR电压1: 2.8V
 - LVR电压2: 2.1V
- 内建CRC校验模块,校验空间大小可选
- 支持单线仿真和烧写
- CPU机器周期: 1个振荡周期
- 看门狗定时器(WDT)
- 预热计数器
- 支持省电运行模式:
 - 空闲模式
 - 掉电模式
- Flash型
- 封装: TQFP48/LQFP44

2. 概述

SH79F6484是一种高速高效率8051可兼容单片机。在同样振荡频率下,较之传统的8051芯片它有着运行更快速的优越特性。SH79F6484保留了标准8051芯片的大部分特性。这些特性包括内置256字节RAM,UART和外置中断INT0,INT1,INT2和INT3。此外,SH79F6484还集成了外部1280字节RAM,可兼容8052芯片的16位定时器/计数器(Timer2)。该单片机还包括适合于程序存储的64K字节Flash块。

SH79F6484不仅集成了如EUART/SPI等标准通讯模块,此外还集成了LCD驱动器,具有内建比较功能的ADC,PWM定时器等模块。

此外,SH79F6484内建有CRC模块,频率检测模块和2个比较器模块。

为了达到高可靠性和低功耗,SH79F6484内建看门狗定时器,低电压复位功能及系统时钟监控功能。此外SH79F6484还提供了2种低功耗省电模式。

V0.0

3. 方框图

4. 引脚配置

4.1 48引脚TQFP封装

TQFP48引脚配置图

注意:

引脚命名中,写在最外侧的引脚功能具有最高优先级,最内侧的引脚功能具有最低优先级(**参见引脚配置图**)。当一个引脚被高优先级的功能占用时,即使低优先级功能被允许,也不能作为低优先级功能的引脚。只有当软件禁止引脚的高优先级功能,相应引脚才能被释放作为低优先级端口使用。

4.2 44引脚LQFP封装

LQFP44引脚配置图

注意:

引脚命名中,写在最外侧的引脚功能具有最高优先级,最内侧的引脚功能具有最低优先级(**参见引脚配置图**)。当一个引脚被高优先级的功能占用时,即使低优先级功能被允许,也不能作为低优先级功能的引脚。只有当软件禁止引脚的高优先级功能,相应引脚才能被释放作为低优先级端口使用。

Table 4.1 引脚功能

引脚编号 (TQFP48)	引脚编号 (LQFP44)	引脚命名	默认功能
1	1	PWM01A/SEG19/P0.2	P0.2
2	2	PWM0A/T4/P0.3	P0.3
*3	*3	C1P/T2EX/INT0/P0.4	P0.4
*4	*4	C1N/T2/INT1/P0.5	P0.5
5	5	XTALX2/C2P/INT2/P0.6	P0.6
6	6	XTALX1/C2N/INT3/P0.7	P0.7
7	7	Vss	
8	8	XTAL1/P5.0	
9	9	XTAL2/P5.1	
10	10	RST/P5.2	RST
11	11	BUZ/T3/P5.3	P5.3
12	12	V_{DD}	
13	-	SEG20/P5.4	P5.4
14	-	SEG21/P5.5	P5.5
15	-	SEG22/P4.7	P4.7
16	=	SEG23/P4.6	P4.6
17	13	PWM1/SEG24/P4.5	P4.5
18	14	AVREF/AN8/P4.4	P4.4
19	15	AN3/INT43/P4.3	P4.3
20	16	INVI/AN2/INT42/P4.2	P4.2
21	17	INVO/AN1/INT41/P4.1	P4.1
22	18	INVFB/AN0/INT40/P4.0	P4.0
23	19	AN7/SEG25/LED_C8/COM8/P3.7	P3.7
24	20	AN6/SEG26/LED_C7/COM7/P3.6	P3.6
25	21	AN5/SEG27/LED_C6/COM6/P3.5	P3.5
26	22	AN4/SEG28/LED_C5/COM5/P3.4	P3.4
27	23	LED_C4/COM4/P3.3	P3.3
28	24	LED_C3/COM3/P3.2	P3.2
29	25	LED_C2/COM2/P3.1	P3.1
30	26	LED_C1/COM1/P3.0	P3.0
31	27	INT44/LED_S1/SEG1/P1.0	P1.0
32	28	INT45/LED_S2/SEG2/P1.1	P1.1

续上表

引脚编号 (TQFP48)	引脚编号 (LQFP44)	引脚命名	默认功能
33	29	INT46/LED_S3/SEG3/P1.2	P1.2
34	30	INT47/LED_S4/SEG4/P1.3	P1.3
35	31	LED_S5/SEG5/P1.4	P1.4
36	32	LED_S6/SEG6/P1.5	P1.5
37	33	LED_S7/SEG7/P1.6	P1.6
38	34	LED_S8/SEG8/P1.7	P1.7
39	35	RXD0/SEG9/P2.0	P2.0
40	36	TXD0/SEG10/P2.1	P2.1
41	37	MOSI/RXD1/SEG11/P2.2	P2.2
42	38	MISO/TXD1/SEG12/P2.3	P2.3
43	39	SCK/SEG13/P2.4	P2.4
44	40	FLT/SS/SEG14/P2.5	P2.5
45	41	PWM01C/SEG15/P2.6	P2.6
46	42	PWM0C/SEG16/P2.7	P2.7
47	43	PWM01B/SEG17/P0.0	P0.0
48	44	PWM0B/SEG18/P0.1	P0.1

^{*:} 该端口作为N-通道的开漏

5. 引脚描述

引脚命名	类型	说明
I/O端口		
P0.0 - P0.7	I/O	8位双向I/O端口
P1.0 - P1.7	I/O	8位双向I/O端口
P2.0 - P2.7	I/O	8位双向I/O端口
P3.0 - P3.7	I/O	8位双向I/O端口
P4.0 - P4.7	I/O	8位双向I/O端口
P5.0 - P5.5	I/O	6位双向I/O端口
定时器		
T2	I/O	定时器2外部输入/波特率时钟输出
T3	I	定时器3外部输入
T4	I/O	定时器4外部输入/比较输出
T2EX	I	定时器2重载/捕捉/方向控制
PWM控制器	•	
PWM0A/0B/0C	0	12位PWM0定时器输出引脚
PWM01A/01B/01C	0	12位PWM0定时器互补输出引脚
FLT	I	PWM0故障检测输入引脚
PWM1	0	8位PWM1定时器输出引脚
EUART		
RXD0/1	I	EUART0/1数据输入引脚
TXD0/1	0	EUART0/1数据输出引脚
SPI		
MOSI	I/O	SPI主输出从输入引脚
MISO	I/O	SPI主输入从输出引脚
SCK	I/O	SPI串行时钟引脚
SS	I	SPI从设备选择引脚
ADC	•	
AN0 - AN7	I	ADC输入通道
AVREF	I	ADC外部参考电压引脚
LCD控制器	·	
COM1 - COM8	0	LCD显示COM信号输出引脚
SEG1-SEG19 SEG24-SEG28	0	LCD显示Segment信号输出引脚
LED驱动器		
LED_C1 - LED_C8	0	LED显示COM信号输出引脚
LED_S1 - LED_S8	0	LED显示Segment信号输出引脚

续上表

引脚命名	类型	说明					
内部模拟比较器							
C1N	I	比较器1反相输入端					
C1P	- 1	比较器1同相输入端					
C2N	ı	比较器2反相输入端					
C2P	I	比较器2同相输入端					
频率检测模块							
INVI	I	频率检测输入					
INVO	0	频率检测输出					
INVFB	0	频率检测反馈输出					
中断&复位&时钟&电源	<u></u>						
INT0 - INT3	I	外部中断0 - 3					
INT40 - INT47	1	外部中断40 - 47					
RST	ı	该引脚上保持10μs以上的低电平,CPU将复位。由于有内建30kΩ上拉电阻 连接到V _{DD} ,所以仅接一个外部电容即可实现上电复位					
XTAL1	1	谐振器输入					
XTAL2	0	谐振器输出					
XTALX1	I	谐振器X输入					
XTALX2	0	谐振器X输出					
V_{SS}	Р	接地					
V_{DD}	Р	电源(2.0 - 5.5V)					
蜂鸣器							
BUZ	0	蜂鸣器输出					
编程接口							
TDO (P1.0)	0	四线调试接口:测试数据输出					
TMS (P1.1)	I	四线调试接口:测试模式选择					
TDI (P1.2)	I	四线调试接口:测试数据输入					
TCK (P1.3)	I	四线调试接口:测试时钟输入					
SWE (P1.0)	I/O	单线仿真接口					
注意: 当P1.0-1.3作为调i	式接口时,加	原有功能被禁止					

6. SFR映像

SH79F6484内置256字节的直接寻址寄存器,包括通用数据存储器和特殊功能寄存器(SFR),SH79F6484的SFR有以下几种::

CPU内核寄存器: ACC, B, PSW, SP, DPL, DPH

CPU内核增强寄存器: AUXC, DPL1, DPH1, INSCON, XPAGE

电源时钟控制寄存器: PCON, SUSLO

Flash寄存器: IB OFFSET, IB DATA, IB CON1, IB CON2, IB CON3, IB CON4, IB CON5

数据页面控制寄存器: XPAGE 看门狗定时器寄存器: RSTSTAT

系统时钟控制寄存器: CLKCON, SCMCON

中断寄存器: IEN0, IEN1, IENC, IPH0, IPL0, IPH1, IPL1, EXF0, EXF1, EXCON

I/O口寄存器: P0, P1, P2, P3, P4, P5, P0CR, P1CR, P2CR, P3CR, P4CR, P5CR, P0PCR, P1PCR,

P2PCR, P3PCR, P4PCR, P5PCR, P0OS

定时器寄存器: TCON, T2CON, T2MOD, TH2, TL2, RCAP2L, RCAP2H, T3CON, TH3, TL3, T4CON,

TH4, TL4, SWTHL, T5CON, TH5, TL5

EUART寄存器: SCON, SBUF, SADEN, SADDR, PCON, SCON1, SBUF1, SADEN1, SADDR1, SBRTL,

SBRTH, BFINE

SPI寄存器: SPCON, SPSTA, SPDAT

ADC寄存器: ADCON, ADT, ADCH, ADDL, ADDH, ADCON1

LCD寄存器: DISPCON, DISPCON1, DISPCLK0, P0SS, P1SS, P2SS, P3SS

LED寄存器: DISPCON, DISPCLK0, P1SS, P3SS

BUZZER寄存器: BUZCON

比较器模块: CMP1CON, CMP2CON, CMPCON1

反相器模块: INVCON, INVCTL, INVCTH

PWM寄存器: PWMEN1, PWM0C, PWM0PL, PWM0PH, PWM0DL, PWM0DH, PWM1C, PWM1P,

PWM1D

LPD寄存器: LPDCON

CRCCON, CRCDL, CRCDH

Table 6.1 C51核SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ACC	E0H	累加器	00000000	ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0
В	F0H	B寄存器	00000000	B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0
AUXC	F1H	C寄存器	00000000	C.7	C.6	C.5	C.4	C.3	C.2	C.1	C.0
PSW	D0H	程序状态字	00000000	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81H	堆栈指针	00000111	SP.7	SP.6	SP.5	SP.4	SP.3	SP.2	SP.1	SP.0
DPL	82H	数据指针低位字节	00000000	DPL0.7	DPL0.6	DPL0.5	DPL0.4	DPL0.3	DPL0.2	DPL0.1	DPL0.0
DPH	83H	数据指针高位字节	00000000	DPH0.7	DPH0.6	DPH0.5	DPH0.4	DPH0.3	DPH0.2	DPH0.1	DPH0.0
DPL1	84H	数据指针1低位字节	00000000	DPL1.7	DPL1.6	DPL1.5	DPL1.4	DPL1.3	DPL1.2	DPL1.1	DPL1.0
DPH1	85H	数据指针1高位字节	00000000	DPH1.7	DPH1.6	DPH1.5	DPH1.4	DPH1.3	DPH1.2	DPH1.1	DPH1.0
INSCON	86H	数据指针选择	-000-0		BKS0	-	-	DIV	MUL	-	DPS

Table 6.2 电源时钟控制SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	87H	电源控制	000-0000	SMOD	SSTAT	SSTAT1	-	GF1	GF0	PD	IDL
SUSLO	8EH	电源控制保护字	00000000	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0

Table 6.3 Flash控制SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFF SET	FBH Bank0	可编程flash低位字节偏移	00000000	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
IB_DATA	FCH Bank0	可编程flash数据寄存器	00000000	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
IB_CON1	F2H Bank0	flash控制寄存器1	00000000	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
IB_CON2	F3H Bank0	flash控制寄存器2	0000	-	-	-	-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
IB_CON3	F4H Bank0	flash控制寄存器3	0000	-	-	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
IB_CON4	F5H Bank0	flash控制寄存器4	0000	ı	ı	ı	-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
IB_CON5	F6H Bank0	flash控制寄存器5	0000	ı	ı	ı	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
XPAGE	F7H Bank0	编程用地址选择寄存器	00000000	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
FLASHCON	A7H Bank0	flash控制寄存器	0	-	-	-	-	-	-	-	FAC

Table 6.4 WDT SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	B1H Bank0	看门狗定时器控制寄存器	0-000000*	WDOF	1	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0

注意: *表示不同情况的复位决定RSTSTAT寄存器中的复位值,详见WDT章节

Table 6.5 时钟控制SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	B2H Bank0	系统时钟选择	111000	32k_ SPDUP	CLKS1	CLKS0	SCMIF	HFON	FS	1	-
SCMCON	A1H Bank0	SCM时钟选择	011	1	1	1	-	1	SCK2	SCK1	SCK0

Table 6.6 中断 SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	A8H Bank0	中断允许控制0	00000000	EA	EADC	ET2	ES	ECMP	EX1	ET5	EX0
IEN1	A9H Bank0	中断允许控制1	00000000	ESCM_LPD _CRC	ET4	EPWM	ET3_ES1	EX4	EX3	EX2	ESPI
IENC	BAH Bank0	中断通道允许控制	00000000	EXS47	EXS46	EXS45	EXS44	EXS43	EXS42	EXS41	EXS40
IENC1	BBH Bank0	中断通道允许控制1	-0000000	-	ECRC	ES1	ET3	ECMP1	ECMP2	ESCM	ELPD
IPH0	B4H Bank0	中断优先权控制高位0	-0000000	-	PADCH	PT2H	PSH	PCMPH	PX1H	PT5H	PX0H
IPL0	B8H Bank0	中断优先权控制低位0	-0000000	-	PADCL	PT2L	PSL	PCMPL	PX1L	PT5L	PX0L
IPH1	B5H Bank0	中断优先权控制高位1	00000000	PSCMH	PT4H	PPWMH	PT3S1H	PX4H	PX3H	PX2H	PSPIH
IPL1	B9H Bank0	中断优先权控制低位1	00000000	PSCML	PT4L	PPWML	PT3S1L	PX4L	PX3L	PX2L	PSPIL
EXF0	E8H Bank0	外部中断寄存器0	00000000	IT4.1	IT4.0	IT3.1	IT3.0	IT2.1	IT2.0	IE3	IE2
EXF1	D8H Bank0	外部中断寄存器1	00000000	IF47	IF46	IF45	IF44	IF43	IF42	IF41	IF40
EXCON	8BH Bank0	外部中断采样控制	00000000	I1PS1	I1PS0	I1SN1	I1SN0	I0PS1	I0PS0	I0SN1	IOSN0

Table 6.7 端口SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0	80H Bank0	8位端口0	00000000	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1	90H Bank0	8位端口1	00000000	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2	A0H Bank0	8位端口2	00000000	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3	B0H Bank0	8位端口3	00000000	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
P4	C0H Bank0	6位端口4	000000	-	-	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
P5	80H Bank1	4位端口5	0000	-	-	-	-	P5.3	P5.2	P5.1	P5.0
P0CR	E1H Bank0	端口0输入/输出方向控制	00000000	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR	E2H Bank0	端口1输入/输出方向控制	00000000	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR	E3H Bank0	端口2输入/输出方向控制	00000000	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR	E4H Bank0	端口3输入/输出方向控制	00000000	P3CR.7	P3CR.6	P3CR.5	P3CR.4	P3CR.3	P3CR.2	P3CR.1	P3CR.0
P4CR	E5H Bank0	端口4输入/输出方向控制	000000	-	-	P4CR.5	P4CR.4	P4CR.3	P4CR.2	P4CR.1	P4CR.0
P5CR	E1H Bank1	端口5输入/输出方向控制	0000	-	-	-	-	P5CR.3	P5CR.2	P5CR.1	P5CR.0
P0PCR	E9H Bank0	端口0内部上拉允许	00000000	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR	EAH Bank0	端口1内部上拉允许	00000000	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR	EBH Bank0	端口2内部上拉允许	00000000	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR	ECH Bank0	端口3内部上拉允许	00000000	P3PCR.7	P3PCR.6	P3PCR.5	P3PCR.4	P3PCR.3	P3PCR.2	P3PCR.1	P3PCR.0
P4PCR	EDH Bank0	端口4内部上拉允许	000000	-	-	P4PCR.5	P4PCR.4	P4PCR.3	P4PCR.2	P4PCR.1	P4PCR.0
P5PCR	E9H Bank1	端口5内部上拉允许	0000	-	-	-	-	P5PCR.3	P5PCR.2	P5PCR.1	P5PCR.0
P0OS	EFH Bank0	输出模式选择	00	-	-	P0OS.5	P0OS.4	-	-	-	-

021-31660491

Table 6.8 定时器 SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	88H Bank0	定时器/计数器控制寄存器	0000	-	1	1	-	IE1	IT1	IE0	IT0
T2CON	C8H Bank0	定时器/计数器2控制寄存器	00000000	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T 2	CP/RL 2
T2MOD	C9H Bank0	定时器/计数器2模式寄存器	000	TCLKP2	1	1	ı	1	-	T2OE	DCEN
RCAP2L	CAH Bank0	定时器/计数器2重载/截获低位字节	00000000	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	CBH Bank0	定时器/计数器2重载/截获高位字节	00000000	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	CCH Bank0	定时器/计数器2低位字节	00000000	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	CDH Bank0	定时器/计数器2高位字节	00000000	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
T3CON	88H Bank1	定时器/计数器3控制寄存器	0-00-000	TF3	1	T3PS.1	T3PS.0	1	TR3	T3CLKS.1	T3CLKS.0
SWTHL	89H Bank1	定时器/计数器读数据切换控制	00	-	-	-	1	-	-	T5HLCON	T3HLCON
TL3	8CH Bank1	定时器/计数器3低位字节	00000000	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
TH3	8DH Bank1	定时器/计数器3高位字节	00000000	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
T4CON	C8H Bank1	定时器/计数器4控制寄存器	00000000	TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS
TL4	CCH Bank1	定时器/计数器4低位字节	00000000	TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0
TH4	CDH Bank1	定时器/计数器4高位字节	00000000	TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0
T5CON	C0H Bank1	定时器/计数器5控制寄存器	0-000-	TF5	-	T5PS1	T5PS0	-	-	TR5	-
TL5	CEH Bank1	定时器/计数器5低位字节	00000000	TL5.7	TL5.6	TL5.5	TL5.4	TL5.3	TL5.2	TL5.1	TL5.0
TH5	CFH Bank1	定时器/计数器5高位字节	00000000	TH5.7	TH5.6	TH5.5	TH5.4	TH5.3	TH5.2	TH5.1	TH5.0

Table 6.9 EUART SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	98H Bank0	EUART0串行控制	00000000	SM0/FE	SM1/RXOV	SM2/TXCOL	REN	TB8	RB8	TI	RI
SBUF	99H Bank0	EUART0串行数据缓冲器	00000000	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
SADEN	9BH Bank0	EUART0从属地址掩码	00000000	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
SADDR	9AH Bank0	EUART0从属地址	00000000	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
PCON	87H Bank0	电源和串行控制	00000	SMOD	SSTAT	-	1	GF1	GF0	PD	IDL
SCON1	98H Bank1	EUART1串行控制	00000000	SM10/FE1	SM11/ RXOV1	SM12/ TXCOL1	REN1	TB18	RB18	TI1	RI1
SBUF1	99H Bank1	EUART1串行数据缓冲器	00000000	SBUF1.7	SBUF1.6	SBUF1.5	SBUF1.4	SBUF1.3	SBUF1.2	SBUF1.1	SBUF1.0
SADEN1	9AH Bank1	EUART1从属地址掩码	00000000	SADEN1.7	SADEN1.6	SADEN1.5	SADEN1.4	SADEN1.3	SADEN1.2	SADEN1.1	SADEN1.0
SADDR1	9BH Bank1	EUART1从属地址	00000000	SADDR1.7	SADDR1.6	SADDR1.5	SADDR1.4	SADDR1.3	SADDR1.2	SADDR1.1	SADDR1.0
SBRTH	9DH Bank1	EUART1波特率发生器高位	00000000	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL	9CH Bank1	EUART1波特率发生器低位	00000000	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
BFINE	9EH Bank1	EUART1波特率发生器微调	0000	BFINE.7	BFINE.6	BFINE.5	BFINE.4	-	-	-	-

Table 6.10 SPI SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SPCON	A2H Bank0	SPI控制寄存器	00000000	DIR	MSTR	СРНА	CPOL	SSDIS	SPR2	SPR1	SPR0
SPSTA	F8H Bank0	SPI状态寄存器	00000	SPEN	SPIF	MODF	WCOL	RXOV	-	-	-
SPDAT	A3H Bank0	SPI数据寄存器	00000000	SPDAT7	SPDAT6	SPDAT5	SPDAT4	SPDAT3	SPDAT2	SPDAT1	SPDAT0

Table 6.11 ADC SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCON	93H Bank0	ADC控制	00000000	ADON	ADCIF	EC	REFC	SCH2	SCH1	SCH0	GO/DONE
ADT	94H Bank0	ADC时间配置	00000000	TADC2	TADC1	TADC0	CDIR	TS3	TS2	TS1	TS0
ADCH	95H Bank0	ADC通道配置	00000000	CH7	CH6	CH5	CH4	CH3	CH2	CH1	СН0
ADDL	96H Bank0	ADC数据低位字节	0000	-	-	1	-	A3	A2	A1	A0
ADDH	97H Bank0	ADC数据高位字节	00000000	A11	A10	A9	A8	A7	A6	A5	A4
ADCON1	92H Bank0	ADC控制1	000	-	-	-	-	-	RESO	CH8	SCH3

Table 6.12 Buzzer SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BUZCON	BDH Bank0	蜂鸣器输出控制	0000	-	-	-	-	BCA2	BCA1	BCA0	BZEN

Table 6.13 LCD SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	ABH Bank0	LCD控制寄存器	00000000	DISPSEL	LCDON	ELCC	DUTY0	VOL3	VOL2	VOL1	VOL0
DISPCON1	ADH Bank0	LCD控制寄存器1	00000000	MODSW	DUTY2	DUTY1	RLCD	FCCTL1	FCCTL0	MOD1	MOD0
DISPCLK0	ACH Bank0	LCD时钟控制寄存器0	00		-	1	-	-	ı	DCK1	DCK0
P0SS	B6H Bank0	P0模式选择寄存器	0000	1	-	P4S5	-	-	P0S2	P0S1	P0S0
P1SS	9CH Bank0	P1模式选择寄存器	00000000	P1S7	P1S6	P1S5	P1S4	P1S3	P1S2	P1S1	P1S0
P2SS	9DH Bank0	P2模式选择寄存器	00000000	P2S7	P2S6	P2S5	P2S4	P2S3	P2S2	P2S1	P2S0
P3SS	9EH Bank0	P3模式选择寄存器	00000000	P3S7	P3S6	P3S5	P3S4	P3S3	P3S2	P3S1	P3S0

Table 6.14 LED SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	ABH Bank0	LED控制寄存器	00-0	DISPSEL	LEDON	ı	DUTY0	1	1	1	-
DISPCON1	ADH Bank0	LED控制寄存器1	000	MODSW	DUTY2	DUTY1	-	-	-	-	-
DISPCLK0	ACH Bank0	LED时钟控制寄存器0	00	-	-	-	-	-	-	DCK1	DCK0
P1SS	9CH Bank0	P1模式选择寄存器	00000000	P1S7	P1S6	P1S5	P1S4	P1S3	P1S2	P1S1	P1S0
P3SS	9EH Bank0	P3模式选择寄存器	00000000	P3S7	P3S6	P3S5	P3S4	P3S3	P3S2	P3S1	P3S0

Table 6.15 PWM SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWMEN	CFH Bank0	PWM0定时器允许	00000000	EPWM0	EFLT	PWM01COE	PWM01BOE	PWM01AOE	PWM0COE	PWM0BOE	PWM0AOE
PWMLO	E7H Bank0	PWM0保护	00000000	PWMLO.7	PWMLO.6	PWMLO.5	PWMLO.4	PWMLO.3	PWMLO.2	PWMLO.1	PWMLO.0
PWM0C	D2H Bank0	12位PWM0控制	00000000	PWM0IE	PWM0IF	TnCK02	FLTS	FLTC	PWM0S	TnCK01	TnCK00
PWM0PL	D3H Bank0	12位PWM0周期控制低位	00000000	PP0.7	PP0.6	PP0.5	PP.4	PP0.3	PP0.2	PP0.1	PP0.0
PWM0PH	D4H Bank0	12位PWM0周期控制高位	0000	-	1	-	-	PP0.11	PP0.10	PP0.9	PP0.8
PWM0DL	D5H Bank0	12位PWM0占空比控制低位	00000000	PD0.7	PD0.6	PD0.5	PD0.4	PD0.3	PD0.2	PD0.1	PD0.0
PWM0DH	D6H Bank0	12位PWM0占空比控制高位	0000	-	-	-	-	PD0.11	PD0.10	PD0.9	PD0.8
PWM0DT	D1H Bank0	12位PWM0死区控制	00000000	DT0.7	DT0.6	DT0.5	DT0.4	DT0.3	DT0.2	DT0.1	DT0.0
PWM1C	D9H Bank0	8位PWM1控制寄存器	0000-000	PWM1EN	PWM1S	TnCK11	TnCK10	-	PWM1IE	PWM1IF	PWM10E
PWM1P	DAH Bank0	8位PWM1周期寄存器	00000000	PP1.7	PP1.6	PP1.5	PP1.4	PP1.3	PP1.2	PP1.1	PP1.0
PWM1D	DBH Bank0	8位PWM1占空比寄存器	00000000	PD1.7	PD1.6	PD1.5	PD1.4	PD1.3	PD1.2	PD1.1	PD1.0

Table 6.16 LPD SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
LPDCON	B3H Bank0	LPD控制	00000000	LPDEN	LPDF	LPDMD	LPDIF	LPDS3	LPDS2	LPDS1	LPDS0

Table 6.17 Frequency Detect SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INVCON	C5H Bank0	Inverter控制	000000	INVEN	-	-	FBEN	RESFB1	RESFB0	INVDEB1	INVDEB0
INVCTL	C6H Bank0	Inverter计数器低位	00000000	INVC7	INVC6	INVC5	INVC4	INVC3	INVC2	INVC1	INVC0
INVCTH	C7H Bank0	Inverter计数器高位	00000000	INVC15	INVC14	INV C13	INVC12	INVC11	INVC10	INVC9	INVC8

Table 6.18 比较器SFR

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CMP1CON	C1H Bank0	比较器1控制	00000-00	CMP1EN	C1NCHS1	C1NCHS0	C1OUT	C1IF	C1RFS	C1DEB1	C1DEB0
CMP2CON	C2H Bank0	比较器2控制	00000-00	CMP2EN	C2NCHS1	C2NCHS0	C2OUT	C2IF	C2RFS	C2DEB1	C2DEB0
CMPCON0	C3H Bank0	比较器辅助控制0	00000000	C2IFS1	C2IFS0	C1IFS1	C1IFS0	C2SMT1	C2SMT0	C1SMT1	C1SMT0
CMPCON1	C4H Bank0	比较器辅助控制1	1	-	-	-	-	-	-	-	C2LIMEN

Table 6.19 CRC SFRs

符号	地址	名称	POR/WDT/LVR /PIN复位值	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CRCCON	FDH Bank0	CRC校验控制	00-00000	CRC_GO	CRCIF	-	CRCADR4	CRCADR3	CRCADR2	CRCADR1	CRCADR0
CRCDL	F9H Bank0	CRC校验结果低位	00000000	CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0
CRCDH	FAH Bank0	CRC校验结果高位	00000000	CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8

注意: -:保留位。

SFR映像图

Bank0

	可位寻址				不可位寻址				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H	SPSTA	CRCDL	CRCDH	IB_OFFSET	IB_DATA	CRCCON			FFH
F0H	В	AUXC	IB_CON1	IB_CON2	IB_CON3	IB_CON4	IB_CON5	XPAGE	F7H
E8H	EXF0	P0PCR	P1PCR	P2PCR	P3PCR	P4PCR		P0OS	EFH
E0H	ACC	P0CR	P1CR	P2CR	P3CR	P4CR		PWMLO	E7H
D8H	EXF1	PWM1C	PWM1P	PWM1D					DFH
D0H	PSW	PWM0DT	PWM0C	PWM0PL	PWM0PH	PWM0DL	PWM0DH		D7H
C8H	T2CON	T2MOD	RCAP2L	RCAP2H	TL2	TH2		PWMEN	CFH
C0H	P4	CMP1CON	CMP2CON	CMPCON0	CMPCON1	INVCON	INVCTL	INVCTH	C7H
В8Н	IPL0	IPL1	IENC	IENC1		BUZCON			BFH
вон	P3	RSTSTAT	CLKCON	LPDCON	IPH0	IPH1	P0SS		B7H
A8H	IEN0	IEN1	DISPCLK1	DISPCON	DISPCLK0	DISPCON1			AFH
A0H	P2	SCMCON	SPCON	SPDAT		ISPLO	ISPCON	FLASHCON	A7H
98H	SCON	SBUF	SADDR	SADEN	P1SS	P2SS	P3SS		9FH
90H	P1		ADCON1	ADCON	ADT	ADCH	ADDL	ADDH	97H
88H	TCON			EXCON			SUSLO		8FH
80H	P0	SP	DPL	DPH	DPL1	DPH1	INSCON	PCON	87H
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

Bank1

	可位寻址				不可位寻址				
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	
F8H									FFH
F0H	В	AUXC						XPAGE	F7H
E8H		P5PCR							EFH
E0H	ACC	P5CR							E7H
D8H									DFH
D0H	PSW								D7H
C8H	T4CON				TL4	TH4	TL5	TH5	CFH
C0H	T5CON								C7H
В8Н	IPL0	IPL1							BFH
вон					IPH0	IPH1			В7Н
A8H	IEN0	IEN1							AFH
A0H									A7H
98H	SCON1	SBUF1	SADDR1	SADEN1	SBRTL	SBRTH	BFINE		9FH
90H									97H
88H	T3CON	SWTHL			TL3	TH3	SUSLO		8FH
80H	P5	SP	DPL	DPH	DPL1	DPH1	INSCON	PCON	87H
	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	

注意: 未使用的SFR地址禁止读写。

7. 标准功能

7.1 CPU

7.1.1 CPU内核特殊功能寄存器

特性

■ CPU内核寄存器: ACC, B, PSW, SP, DPL, DPH

累加器

累加器ACC是一个常用的专用寄存器,指令系统中采用A作为累加器的助记符。

B寄存器

在乘除法指令中,会用到B寄存器。在其它指令中,B寄存器可作为暂存器来使用。

栈指针 (SP)

栈指针SP是一个8位专用寄存器,在执行PUSH、各种子程序调用、中断响应等指令时,SP先加1,再将数据压栈;执行POP、RET、RETI等指令时,数据退出堆栈后SP再减1。堆栈栈顶可以是片上内部RAM(00H-FFH)的任意地址,系统复位后,SP初始化为07H,使得堆栈事实上由08H地址开始。

程序状态字(PSW)寄存器

程序状态字(PSW)寄存器包含了程序状态信息。

数据指针(DPTR)

数据指针DPTR是一个16位专用寄存器,其高位字节寄存器用DPH表示,低位字节寄存器用DPL表示。它们既可以作为一个16位寄存器DPTR来处理,也可以作为2个独立的8位寄存器DPH和DPL来处理。

Table 7.1 PSW寄存器

D0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PSW	CY	AC	F0	RS1	RS0	OV	F1	Р
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	CY	进位标志位 0: 算术或逻辑运算中,没有进位或借位发生 1: 算术或逻辑运算中,有进位或借位发生
6	AC	辅助进位标志位 0: 算数逻辑运算中,没有辅助进位或借位发生 1: 算数逻辑运算中,有辅助进位或借位发生
5	F0	F0标志位 用户自定义标志位
4-3	RS[1:0]	R0-R7寄存器页选择位 00: 页0 (映射到00H-07H) 01: 页1 (映射到08H-0FH) 10: 页2 (映射到10H-17H) 11: 页3 (映射到18H-1FH)
2	ov	溢出标志位 0: 没有溢出发生 1: 有溢出发生
1	F1	F1标志位 用户自定义标志位
0	Р	奇偶校验位 0: 累加器A中值为1的位数为偶数 1: 累加器A中值为1的位数为奇数

7.1.2 CPU增强内核特殊功能寄存器

- 扩展的'MUL'和'DIV'指令: 16位*8位, 16位/8位
- 双数据指针
- CPU增强内核寄存器: AUXC, DPL1, DPH1, INSCON

SH79F6484扩展了'MUL'和'DIV'的指令,使用一个新寄存器-AUXC寄存器保存运算数据的高8位,以实现16位运算。在16位乘除法指令中,会用到AUXC寄存器。在其它指令中,AUXC寄存器可作为暂存器来使用。

CPU在复位后进入标准模式,'MUL'和'DIV'的指令操作和标准8051指令操作一致。当INSCON寄存器的相应位置1后,'MUL'和'DIV'指令的16位操作功能被打开。

			结果				
	J *IF		Α	В	AUXC		
MUL	INSCON.2 = 0; 8位模式	(A)*(B)	低位字节	高位字节			
WICE	INSCON.2 = 1; 16位模式	(AUXC A)*(B)	低位字节	中位字节	高位字节		
DIV	INSCON.3 = 0; 8位模式	(A)/(B)	商低位字节	余数			
l Div	INSCON.3 = 1; 16位模式	(AUXC A)/(B)	商低位字节	余数	商高位字节		

双数据指针

使用双数据指针能加速数据存储移动。标准数据指针被命名为DPTR而新型数据指针命名为DPTR1。

数据指针DPTR1与DPTR类似,是一个16位专用寄存器,其高位字节寄存器用DPH1表示,低位字节寄存器用DPL1表示。它们既可以作为一个16位寄存器DPTR1来处理,也可以作为2个独立的8位寄存器DPH1和DPL1来处理。

通过对INSCON寄存器中的DPS位置1或清0选择两个数据指针中的一个。所有读取或操作DPTR的相关指令将会选择最近一次选择的数据指针。

7.1.3 寄存器

Table 7.2 数据指针选择寄存器

86H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INSCON	-	BKS0	-	-	DIV	MUL	-	DPS
读/写	-	读/写	-	-	读/写	读/写	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	-	-	0	0	-	0

位编号	位符号	说明
6	BKS0	特殊功能寄存器页选择位 0:选择特殊功能寄存器页0 1:选择特殊功能寄存器页1
3	DIV	16位/8位除法选择位 0:8位除法 1:16位除法
2	MUL	16位/8位乘法选择位 0: 8位乘法 1: 16位乘法
0	DPS	数据指针选择位 0: 数据指针 1: 数据指针1

7.2 随机数据存储器 (RAM)

7.2.1 特性

SH79F6484为数据存储提供了内部RAM和外部RAM。下列为存储器空间分配:

- 低位128字节的RAM(地址从00H到7FH)可直接或间接寻址。
- 高位128字节的RAM(地址从80H到FFH)只能间接寻址。
- 特殊功能寄存器(SFR,地址从80H到FFH)只能直接寻址。
- 外部RAM可通过MOVX指令间接访问。

高位128字节的RAM占用的地址空间和SFR相同,但在物理上与SFR的空间是分离的。当一个指令访问高于地址7FH的内部位置时,CPU可以根据访问的指令类型来区分是访问高位128字节数据RAM还是访问SFR。

SH79F6484在外部数据空间额外提供了1280字节RAM,支持高级语言。SH79F6484还配置了28字节的LCD RAM(500H - 51BH)。

内部和外部RAM配置

SH79F6484支持传统的访问外部RAM方法。使用MOVX A, @Ri或MOVX@Ri, A; 来访问外部低256字节RAM; 使用MOVX A, @DPTR或MOVX@DPTR, A来访问外部1308字节RAM。

用户也能用XPAGE寄存器来访问外部RAM,仅用MOVXA,@Ri或MOVX@Ri,A指令即可。用户能用XPAGE来表示高于256字节的RAM地址。

在Flash SSP模式下,XPAGE也能用作分段选择器(详见SSP章节)。

7.2.2 寄存器

Table 7.3 数据存储页寄存器(XPAGE)

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	-	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	-	读/写						
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

位编号	位符号	说明
6-0	XPAGE[6:0]	RAM页选择控制位

7.3 Flash程序存储器

7.3.1 特性

- Flash 存储器包括 64 X 1KB 区块,总共 64KB
- 在工作电压范围内都能进行编程和擦除操作
- 在线编程 (ICP) 操作支持写入、读取和擦除操作
- 支持整体/扇区擦除和编程
- 编程/擦除次数: 程序区: 至少 10,000 次

类 EEPROM 区: 至少 100,000 次

- 数据保存年限: 至少 10 年
- 低功耗

SH79F6484为存储程序代码内置64K可编程Flash(Program Memory Block),可以通过在线编程(ICP)模式和扇区自编程(SSP)模式对Flash存储器操作。每个扇区1024字节。

SH79F6484还内置1024字节的类EEPROM存储区用于存放用户数据,每个扇区256字节,总共4个扇区。

Flash操作定义:

在线编程(ICP)模式:通过Flash编程器对Flash存储器进行擦、读、写操作。

扇区自编程(SSP)模式:用户程序代码运行在Program Memory中,对Flash存储器进行擦、读、写操作。

Flash存储器支持以下操作:

(1) 代码保护控制模式编程

SH79F6484的代码保护功能为用户代码提供了高性能的安全措施。每个分区有四种模式可用。

代码保护模式0:允许/禁止任何编程器的写入/读取操作(不包括整体擦除)。

代码保护模式1:允许/禁止在其他扇区中通过MOVC指令进行读取操作,或通过SSP模式进行擦除/写入操作。

代码保护模式2: SSP功能允许/禁止控制,选中后,芯片对code区域的SSP操作(擦除或者写入,不包括读取)是禁止的,但是不会禁止芯片对类EEPROM的操作。

代码保护模式3:客户密码保护,可由客户自设密码,密码由6字节组成。如果将此功能开启,表示在烧写器或仿真器工具对芯片做任何操作(读出,写入,擦除或者仿真)之前先输入这个密码,如果这个密码正确,则芯片允许烧写器或仿真器工具进行相应的操作,反之则报错,无法执行相应操作。

用户必须使用下列方式才能完成代码保护控制模式的设定:

Flash编程器在ICP模式设置相应的保护位,以进入所需的保护模式。SSP模式不支持代码保护控制模式编程。

(2) 整体擦除

无论代码保护控制模式的状态如何,整体擦除操作都将会擦除所有程序、代码选项和代码保护位,但是不会擦除类EEPROM存储区。

用户必须使用下列方式才能完成整体擦除:

Flash编程器在ICP模式发出整体擦除指令,进行整体擦除。SSP模式不支持整体擦除。

(3) 扇区擦除

扇区擦除操作将会擦除所选扇区中内容。用户程序(SSP)和Flash编程器都能执行该操作。

若需用户程式执行该操作,必须禁止所选扇区的代码保护控制模式1和模式2。

若需Flash编程器执行该操作,必须禁止所选扇区的代码保护控制模式0;若代码保护模式3开启,还需输入正确的客户密码。用户必须使用下列2种方式之一才能完成扇区擦除:

- 1. Flash编程器在ICP模式发出扇区擦除指令,进行扇区擦除。
- 2. 通过SSP功能发出扇区擦除指令,进行扇区擦除(详见在扇区自编程章节)。

(4) 类EEPROM存储区擦除

类EEPROM存储区擦除操作将会擦除类EEPROM存储区中的内容。用户程序(SSP)和Flash编程器都能执行该操作。用户必须使用下列2种方式之一才能完成类EEPROM存储区擦除:

- 1. Flash编程器在ICP模式发出类EEPROM存储区擦除指令,进行类EEPROM存储区擦除。
- 2. 通过SSP功能发出类EEPROM存储区擦除指令,进行类EEPROM存储区擦除(详见在扇区自编程章节)。

(5) 写/读代码

读/写代码操作可以将代码从Flash存储器中读出或写入。用户程序(SSP)和Flash编程器都能执行该操作。

若需用户程式执行该操作,必须禁止所选扇区的代码保护控制模式1和模式2。不管安全位设置与否,用户程序都能读/写程式自身所在扇区。

若需编程器执行该操作,必须禁止所选扇区的代码保护控制模式0;若代码保护模式3开启,还需输入正确的客户密码。 用户必须使用下列2种方式之一才能完成写/读代码:

- 1. Flash编程器在ICP模式发出写/读代码指令,进行写/读代码。
- 2. 通过SSP功能发出写/读代码指令,进行写/读代码。

(6) 写/读类EEPROM存储区

读/写类EEPROM存储区操作可将数据从类EEPROM存储区中读出/写入。用户程序(SSP)和Flash编程器都能执行该操作。用户必须使用下列2种方式之一才能完成写/读类EEPROM存储区:

- 1. Flash编程器在ICP模式发出写/读类EEPROM存储区指令,进行写/读类EEPROM存储区。
- 2. 通过SSP功能发出写/读类EEPROM存储区指令,进行写/读类EEPROM存储区。

Flash存储器操作汇总

操作	ICP	SSP
代码保护	支持	不支持
扇区擦除	支持 (无安全位)	支持 (无安全位)
整体擦除	支持	不支持
类EEPROM存储区擦除	支持	支持
写/读代码	支持 (无安全位)	支持 (无安全位)
读/写类EEPROM存储区	支持	支持

7.3.2 ICP模式下的Flash操作

ICP模式共有2种:单线模式和四线模式。ICP模式为通过Flash编程器对MCU进行编程,可以在MCU焊在用户板上以后编程。ICP模式下,用户系统必须关机后Flash编程器才能通过ICP编程接口刷新Flash存储器。ICP编程接口包括6个引脚(V_{DD},GND,TCK,TDI,TMS,TDO/SWE)。

SH79F6484提供2组JTAG引脚,单线模式引脚(V_{DD} ,GND,SWE)和四线模式引脚(V_{DD} ,GND,TCK,TDI,TMS,TDO),编程器使用任意一组JTAG引脚都可以进入编程模式。只有将特定波形输入JTAG引脚后,CPU才能进入编程模式。如需详细说明请参考**Flash编程器用户指南。**

在ICP模式中,通过JTAG接口编程器能完成所有Flash操作。因为编程信号非常敏感,所以使用编程器编程时用户需要先用 跳线将芯片的编程引脚从应用电路中分离出来,如下图所示。

四线模式:

单线模式:

当采用ICP模式进行操作时,建议按照如下步骤进行操作:

- (1) 在开始编程前断开跳线(jumper),从应用电路中分离编程引脚;
- (2) 将芯片编程引脚连接至编程器编程接口,开始编程;
- (3) 编程结束后断开编程器接口,连接跳线恢复应用电路。

7.4 扇区自编程(SSP)功能

SH79F6484支持SSP功能。如果所选扇区未被保护,用户代码可以对任何扇区执行编程操作。一旦该扇区被编程,则在该扇区被擦除之前不能被再次编程。

SH79F6484内建一个复杂控制流程以避免误入SSP模式导致代码被误修改。为进入SSP模式,IB_CON2 - 5必须满足特定条件。若IB_CON2 - 5不满足特定条件,则无法进入SSP模式。

7.4.1 寄存器

Table 7.4 编程用地址选择寄存器

对于程序存储区,一个扇区为1024字节。寄存器定义如下:

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-2	XPAGE[7:2]	被编程的存储单元扇区号,0000代表扇区0,以此类推
1-0	XPAGE[1:0]	被编程的存储单元高2位地址

Table 7.5 擦除/编程用扇区选择寄存器

对于类EEPROM存储区,一个扇区为256字节。寄存器定义如下:

F7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
XPAGE	XPAGE.7	XPAGE.6	XPAGE.5	XPAGE.4	XPAGE.3	XPAGE.2	XPAGE.1	XPAGE.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
72	XPAGE[7:2]	在擦除/编程扇区时无意义					
1-0	XPAGE[1:0]	对类EEPROM扇区,00代表块0,依此类推					

Table 7.6 编程用地址偏移寄存器

FBH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_OFFSET	IB_OFF SET.7	IB_OFF SET.6	IB_OFF SET.5	IB_OFF SET.4	IB_OFF SET.3	IB_OFF SET.2	IB_OFF SET.1	IB_OFF SET.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_OFFSET[7:0]	被编程的存储单元低8位地址

Table 7.7 编程用数据寄存器

FCH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_DATA	IB_DATA.7	IB_DATA.6	IB_DATA.5	IB_DATA.4	IB_DATA.3	IB_DATA.2	IB_DATA.1	IB_DATA.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_DATA[7:0]	待编程数据

Table 7.8 SSP型选择寄存器

F2H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON1	IB_CON1.7	IB_CON1.6	IB_CON1.5	IB_CON1.4	IB_CON1.3	IB_CON1.2	IB_CON1.1	IB_CON1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IB_CON1[7:0]	SSP操作选择位 0xE6: 扇区擦除 0x6E: 存储单元编程

Table 7.9 SSP流程控制寄存器1

F3H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON2	=	=	=	-	IB_CON2.3	IB_CON2.2	IB_CON2.1	IB_CON2.0
读/写	-	=	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON2[3:0]	必须为05H,否则Flash编程将会终止

Table 7.10 SSP流程控制寄存器2

F4H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON3	-	=	-	-	IB_CON3.3	IB_CON3.2	IB_CON3.1	IB_CON3.0
读/写	-	=	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON3[3:0]	必须为OAH,否则Flash编程将会终止

Table 7.11 SSP流程控制寄存器3

F5H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON4	-	=	-	-	IB_CON4.3	IB_CON4.2	IB_CON4.1	IB_CON4.0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON4[3:0]	必须为09H,否则Flash编程将会终止

Table 7.12 SSP流程控制寄存器4

F6H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IB_CON5	-	=	=	-	IB_CON5.3	IB_CON5.2	IB_CON5.1	IB_CON5.0
读/写	-	=	=	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	IB_CON5[3:0]	必须为06H,否则Flash编程将会终止

7.4.2 Flash控制流程图

7.4.3 SSP编程注意事项

为确保顺利完成SSP编程,用户软件必须按以下步骤设置:

(1) 用于代码/数据编程:

- 1. 关闭中断;
- 2. 根据地址设置XPAGE, IB_OFFSET;
- 3. 按编程需要,设置IB_DATA;
- 4. 按照顺序设置IB_CON1 5;
- 5. 添加4个NOP指令;
- 6. 开始编程, CPU将进入IDLE模式; 烧写完成后自动退出IDLE模式;
- 7. 如需继续写入数据, 跳转至第2步;
- 8. XPAGE寄存器清0,恢复中断设置。

(2) 用于扇区擦除:

- 1. 关闭中断;
- 2. 按相应的扇区设置XPAGE;
- 3. 按照顺序设置IB CON1 5;
- 4. 添加4个NOP指令;
- 5. 开始擦除, CPU将进入IDLE模式; 擦除完成后自动退出IDLE模式;
- 6. 如需要继续擦除数据, 跳转至第2步;
- 7. XPAGE寄存器清0,恢复中断设置。

(3) 读取:

使用"MOVC A, @A+DPTR"或者"MOVC A, @A+PC"指令。

(4) 对于类EEPROM区域

对于类EEPROM的操作类似于Flash的操作,即类似上述(1)/(2)/(3)部分的描述。区别在于:

- 1. 在对类EEPROM进行擦除、写或读之前,应首先将FLASHCON寄存器的最低位FAC位置1。
- 2. 类EEPROM的扇区为256字节,而不是1024字节。

注音。

- (1) 系统时钟不得低于200kHz以确保FLASH的正常编程
- (2) 当不需对类EEPROM操作时,必须将FAC位清0

FLASHCON寄存器的描述如下:

Table 7.13 访问控制寄存器

A7H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
FLASHCON	ı	-	-	=	=	-	=	FAC
读/写	-	-	-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	-	0

位编号	位符号	说明
7-1	-	保留位
0	FAC	访问控制 0: MOVC指令或者SSP功能访问Main Block区域 1: MOVC指令或者SSP功能访问类EEPROM区域

7.5 系统时钟和振荡器

7.5.1 特性

- 支持4种振荡器类型: 32.768kHz晶体谐振器,晶体谐振器,陶瓷谐振器,内部16M/12M/8M/128K RC振荡器
- 4个振荡器引脚(XTAL1, XTAL2, XTALX1, XTALX2)从3种外部振荡器类型中产生1种或者2种时钟
- 内建16MHz/12MHz/8MHz/128KHz RC振荡器
- 内建32.768kHz加速电路
- 内建系统时钟分频器

7.5.2 时钟定义

SH79F6484几个内部时钟定义如下:

OSCCLK: 从6个可选振荡器类型中(从XTAL输入的32.768kHz晶体谐振器,晶体谐振器和陶瓷谐振器以及内部12M/8MHz128K RC振荡器)选中的那个振荡器的时钟。fosc定义为OSCCLK的频率。tosc定义为OSCCLK的周期。

OSCXCLK: 从4个可选振荡器类型中(从XTALX输入的晶体谐振器和陶瓷谐振器以及内部12M/8M RC振荡器)选中的那个振荡器的时钟。foscx定义为OSCXCLK的频率。toscx定义为OSCXCLK的周期。

注意:

当代码选项OP_OSC不是0011,0110,1010,1101时(32.768kHz/128K振荡器没有被选中,详见代码选项章节),OSCXCLK不存在。

WDTCLK: 内部看门狗RC振荡器时钟。fwort定义为WDTCLK的频率。fwort定义为WDTCLK的周期。

OSCSCLK: 系统时钟频率分频器的输入时钟。这个时钟可能为OSCCLK或者OSCXCLK。foscs定义为OSCSCLK的频率。toscs定义为OSCSCLK的周期。

SYSCLK: 系统时钟,系统频率分频器的输出时钟。这个时钟为CPU指令周期的时钟。f_{SYS}定义为SYSCLK的频率。t_{SYS}定义为SYSCLK的周期。

7.5.3 概述

SH79F6484支持4种振荡器类型: 32.768kHz晶体谐振器,晶体谐振器/陶瓷谐振器(2MHz-16MHz)和内部RC振荡器(12MHz,128K)。振荡器类型的选择由代码选项OP_OSC决定(详见代码选项章节)。SH79F6484有4个振荡器引脚(XTAL1, XTAL2, XTALX1, XTALX2),可以从3种外部振荡器类型中产生1种或者2种时钟。这些都是由代码选项OP_OSC决定(详见代码选项章节)。由振荡器产生的基本时钟脉冲提供系统时钟支持CPU及片上外围设备。

7.5.4 寄存器

Table 7.14 系统时钟控制寄存器

B2H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	32k_SPDUP	CLKS1	CLKS0	SCMIF	HFON	FS	-	-
读/写	读/写	读/写	读/写	读	读/写	读/写	-	-
复位值 (POR/WDT/LVR/PIN)	1	1	1	0	0	0	-	-

位编号	位符号	说明
7	32k_SPDUP	32.768kHz晶体谐振器加速模式控制位 0: 32.768kHz振荡器常规模式,由软件清0。 1: 32.768kHz振荡器加速模式,由软件或者硬件置1。 此位在系统发生任何形式的复位,如上电复位,看门狗复位等时,自动由硬件设置1,用以加速32.768kHz振荡器起振,缩短32.768kHz振荡器的起振时间。 如果有需要,本位也可以由软件置1或者清0。比如进入掉电模式(Power-down mode)前,可以将此位置1,掉电模式唤醒后再由软件清0。 应该注意的是关闭32.768kHz加速模式(此位清0),可以节省系统的耗电。只有代码选项OP_OSC为1010或1101时(选择32.768kHz晶体振荡器,详见代码选项章节),此控制位才有效。
6-5	CLKS[1:0]	系统时钟频率分频器 00: fsys = foscs 01: fsys = foscs/2 10: fsys = foscs/4 11: fsys = foscs/12 如果选择32.768kHz振荡器为OSCSCLK,此控制位无效。
3	HFON	OSCXCLK开关控制寄存器 0: 关闭OSCXCLK 1: 打开OSCXCLK 只有代码选项OP_OSC为0011,0110,1010,1101时(选择32.768kHz晶体振荡器或128K内部RC振荡器,详见代码选项章节),此控制位才有效。
2	FS	频率选择位 0:选择32.768kHz/128kHz为OSCSCLK 1:选择OSCXCLK为OSCSCLK 只有代码选项OP_OSC为0011,0110,1010,1101时(选择32.768kHz晶体振荡器或128K内部RC振荡器,详见 代码选项 章节),此控制位才有效。

注意:

- (1) 当代码选项OP_OSC为0011,1010时,OSCXCLK为内建12MHzRC;当代码选项OP_OSC为0110或者1101时,OSCXCLK为从XTALX输入的晶体谐振器或陶瓷谐振器;
- (2) 当代码选项OP_OSC为0011,0110,1010,1101,HFON和FS才有效;
- (3) 当OSCXCLK作为OSCSCLK时(也就是说, HFON = 1和FS = 1), HFON不能软件清0;
- (4) 当OSCSCLK从32.768kHz/128K切换到OSCXCLK时,假如当时OSCXCLK为关闭状态,则必须按以下步骤依次设置: a. 设置HFON = 1,打开OSCXCLK
 - b. 至少等待振荡器预热时间(详见振荡器预热章节)
 - c. 设置FS = 1, 选择OSCXCLK作为OSCSCLK
- (5) 当OSCSCLK从OSCXCLK切回到32.768kHz/128K时,则必须按以下步骤依次设置:
 - a. FS位清0,选择32.768kHz/128K作为OSCSCLK
 - b. 添加1个NOP指令
 - c. HFON位清0(降低功耗)
 - d.添加4个NOP指令

7.5.5 振荡器类型

(1) OP_OSC = 0000,0001,0011,0100:内部12M/128K RC振荡器,XTAL和XTALX引脚与I/O共用

(2) OP_OSC = 1010, 1011: 从XTAL输入32.768kHz晶体谐振器, 内部16M/12M/8M RC振荡器可以使能, XTALX引脚与I/O共用

(3) OP_OSC = 1101: 从XTAL输入32.768kHz晶体谐振器,从XTALX输入2M - 12M晶体谐振器/陶瓷谐振器

(4) OP_OSC = 1110: 从XTAL输入2M - 12M晶体谐振器/陶瓷谐振器, XTALX引脚与I/O共用

(5) OP_OSC = 0110: 内部128KHz RC振荡器,从XTAL输入2M - 12M晶体谐振器/陶瓷谐振器,XTALX引脚与I/O共用

7.5.6 谐振器负载电容选择

陶瓷谐振器							
频率	C1	C2					
3.58MHz	=	=					
4MHz	-	-					

晶体谐振器							
频率	C1	C2					
32.768kHz	10 - 12pF	10 - 12pF					
4MHz	8 - 22pF	8 - 22pF					
12MHz	8 - 22pF	8 - 22pF					

注意:

- (1) 表中负载电容仅供参考!
- (2) 以上电容值可通过谐振器基本的起振和运行测试,并非最优值。
- (3) 请注意印制板上的杂散电容,用户应在超过应用电压和温度的条件下测试谐振器的性能。 在应用陶瓷谐振器/晶体谐振器之前,用户需向谐振器生产厂要求相关应用参数以获得最佳性能。 请登陆http://www.sinowealth.com/以取得更多的推荐谐振器生产厂。

7.6 系统时钟监控(SCM)

为了增强系统的可靠性,SH79F6484含有一个系统时钟监控(SCM)模块。如果系统时钟出现故障(例如:外部振荡器停振等),内建SCM模块会将OSCSCLK自动切换到内部时钟,同时系统时钟监控标志位(SCMIF)被置1。当EA和ESCM位均被置1时,SCM模块将会产生中断。如果外部振荡器恢复工作,SCM将会切换OSCSCLK到外部振荡器,然后SCMIF位自动清0。

设置SCMCON选择SCM时钟,SCM监测到外部时钟发生故障后,将OSCSCLK自动切换到内部SCM时钟。

SCM功能仅在使用外部时钟时有效,选择内部RC时钟时SCM无效。

注意:

SCMIF为只读寄存器,只能由硬件清0或者置1。

如果SCMIF清0,SCM将系统时钟自动切换到系统时钟出故障前的状态。

如果代码选项选择内部RC振荡器(详见代码选项章节)作为OSCSCLK,则系统时钟监控功能不可用。

Table 7.15 系统时钟控制寄存器

B2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	-	=	=	SCMIF	-	-	=	
读/写	-	-	-	只读	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	-	-	-	0	-	-	-	-

位编号	位符号	说明
4	SCMIF	系统时钟监控标志位 0:表示系统时钟正常运行 1:表示系统时钟故障

Table 7.16 SCM时钟控制寄存器

A1H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CLKCON	=	-	-	-	-	SCK2	SCK1	SCK0
读/写	-	-	-	-	-	只读	只读	只读
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	0	1	1

位编号	位符 号	说明			
2-0	SCk[2:0]	SCM时钟选择位 000: 2MHz 001: 4MHz 010: 6MHz 011: 8MHz (默认) 100: 12MHz 101-111: 16MHz			

7.7 I/O端口

7.7.1 特性

- 46/42个双向I/O端口
- I/O端口可与其它功能共享

SH79F6484提供46/42个位可编程双向I/O端口。端口数据在寄存器Px中。每个I/O口均有内部上拉电阻。端口控制寄存器(PxCRy)控制端口是作为输入或者输出。当端口作为输入时,每个I/O端口带有由PxPCRy控制的内部上拉电阻(x = 0-5, y = 0-7)。

SH79F6484的有些I/O引脚能与选择功能共享。当所有功能都允许时,在CPU中存在优先权以避免功能冲突。(详见**端口共享**章节)。

7.7.2 寄存器

Table 7.17 端口控制寄存器

E1H - E5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0CR (E1H, Bank0)	P0CR.7	P0CR.6	P0CR.5	P0CR.4	P0CR.3	P0CR.2	P0CR.1	P0CR.0
P1CR (E2H, Bank0)	P1CR.7	P1CR.6	P1CR.5	P1CR.4	P1CR.3	P1CR.2	P1CR.1	P1CR.0
P2CR (E3H, Bank0)	P2CR.7	P2CR.6	P2CR.5	P2CR.4	P2CR.3	P2CR.2	P2CR.1	P2CR.0
P3CR (E4H, Bank0)	P3CR.7	P3CR.6	P3CR.5	P3CR.4	P3CR.3	P3CR.2	P3CR.1	P3CR.0
P4CR (E5H, Bank0)	P4CR.7	P4CR.6	P4CR.5	P4CR.4	P4CR.3	P4CR.2	P4CR.1	P4CR.0
P5CR (E1H, Bank1)	-	-	P5CR.5	P5CR.4	P5CR.3	P5CR.2	P5CR.1	P5CR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxCRy x = 0-5, y = 0-7	端口输入/输出控制寄存器 0: 输入模式 1: 输出模式

Table 7.18 端口上拉电阻控制寄存器

E9H - ECH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0PCR (E9H, Bank0)	P0PCR.7	P0PCR.6	P0PCR.5	P0PCR.4	P0PCR.3	P0PCR.2	P0PCR.1	P0PCR.0
P1PCR (EAH, Bank0)	P1PCR.7	P1PCR.6	P1PCR.5	P1PCR.4	P1PCR.3	P1PCR.2	P1PCR.1	P1PCR.0
P2PCR (EBH, Bank0)	P2PCR.7	P2PCR.6	P2PCR.5	P2PCR.4	P2PCR.3	P2PCR.2	P2PCR.1	P2PCR.0
P3PCR (ECH, Bank0)	P3PCR.7	P3PCR.6	P3PCR.5	P3PCR.4	P3PCR.3	P3PCR.2	P3PCR.1	P3PCR.0
P4PCR (EDH, Bank0)	P4PCR.7	P4PCR.6	P4PCR.5	P4PCR.4	P4PCR.3	P4PCR.2	P4PCR.1	P4PCR.0
P5PCR (E9H, Bank1)	-	=	P5PCR.5	P5PCR.4	P5PCR.3	P5PCR.2	P5PCR.1	P5PCR.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxPCRy x = 0-5, y = 0-7	输入端口内部上拉电阻控制 0: 内部上拉电阻关闭 1: 内部上拉电阻开启

Table 7.19 端口数据寄存器

80H - C0H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0 (80H, Bank0)	P0.7	P0.6	P0.5	P0.4	P0.3	P0.2	P0.1	P0.0
P1 (90H, Bank0)	P1.7	P1.6	P1.5	P1.4	P1.3	P1.2	P1.1	P1.0
P2 (A0H, Bank0)	P2.7	P2.6	P2.5	P2.4	P2.3	P2.2	P2.1	P2.0
P3 (B0H, Bank0)	P3.7	P3.6	P3.5	P3.4	P3.3	P3.2	P3.1	P3.0
P4 (C0H, Bank0)	P4.7	P4.6	P4.5	P4.4	P4.3	P4.2	P4.1	P4.0
P5 (80H, Bank1)	-	-	P5.5	P5.4	P5.3	P5.2	P5.1	P5.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	Px.y x = 0-5, y = 0-7	端口数据寄存器

Table 7.20 端口模式选择寄存器

EFH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P0OS	-	-	P0OS.5	P0OS.4	-	-	=	-
读/写	-	-	读/写	读/写	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	-	-	0	0	-	-	-	-

位编号	位符号	说明
5-4	P0OS.x x = 5-4	端口 0输出模式选择 0: 引脚输出模式为CMOS推挽输出 1: 引脚输出模式为N沟道开漏输出

注意: P0.4, P0.5端口作为为N-通道的开漏I/O, 但是此时端口电压不得超过V_{DD}+0.3V。

7.7.3 端口模块图

注意:

- (1) 输入端口读操作直接读引脚电平。
- (2) 输出端口读操作的输入源有两种,一种是从端口数据寄存器读取,另一种是直接读引脚电平。
- (3) 用读取指令来区分: 读-改-写指令是读寄存器,而其它指令读引脚电平。
- (4) 不管端口是否共用为其他功能,对端口写操作都是针对端口数据寄存器。

7.7.4 端口共用

46个双向I/O端口也能共享作为第二或第三种特殊功能。共享优先级按照外部最高内部最低的规则:

在**引脚配置图**中引脚最外边标注功能享有最高优先级,最里边标注功能享有最低优先级。这意味着一个引脚已经使用较高优先级功能(如果被允许的话),就不能用作较低优先级功能,即使较低优先级功能被允许。只有较高优先级功能由硬件或软件关闭后,相应的引脚才能用作较低优先级功能。上拉电阻也由相同规则控制。

当允许端口复用为其它功能时,用户可以修改PxCR、PxPCR(x=0-5),但在复用的其它功能被禁止前,这些操作不会影响端口状态。

当允许端口复用为其它功能时,任何对端口的读写操作只会影响到数据寄存器的值,端口引脚值保持不变,直到复用的其它功能关闭。

PORT0:

- LCD Segment 17-19 (P0.0-P0.2)
- PWM01B: PWM01B 输出(P0.0)
- PWM0B: PWM0B 输出(P0.1)
- PWM01A: PWM01A 输出(P0.2)
- PWM0A: PWM0A 输出(P0.3)
- C1P: 比较器1同相输入(P0.4)
- C1N: 比较器1反相输入(P0.5)
- C2P: 比较器2同相输入(P0.6)
- C2N: 比较器2反相输入(P0.7)
- INTO:外部中断0 (P0.4)
- INT1: 外部中断1 (P0.5)
- INT2:外部中断2 (P0.6)
- INT3: 外部中断3 (P0.7)
- T2: 定时器2外部输入/波特率时钟输出(P0.5)
- T2EX: 定时器2重载/捕捉/方向控制 (P0.4)
- T4: 定时器4外部输入/波特率时钟输出(P0.3)

Table 7.21 PORT0共享列表

引脚	编号	44.44	Th Ak	△2 <i>F P</i> +									
LQFP48	LQFP44	优先级	功能	允许位									
		1	PWM01B	PWMEN寄存器的EPWM1位和PWM01BOE位置1									
47	47 43	2	SEG17	DISPCON寄存器的DISPSEL位清0及P0SS寄存器的P0S0位置1									
		3	P0.0	无上述情况									
		1	PWM0B	PWMEN寄存器的EPWM0位置1和PWM0BOE位置1									
48	44	2	SEG18	DISPCON寄存器的DISPSEL位清0及P0SS寄存器的P0S1位置1									
		3	P0.1	无上述情况									
		1	PWM01A	PWMEN寄存器的EPWM0位置1和PWM01AOE位置1									
1	1	2	SEG19	DISPCON寄存器的DISPSEL位清0及P0SS寄存器的P0S2位置1									
		3	P0.2	无上述情况									
		1	PWM0A	PWMEN寄存器的EPWM0位置1和PWM0AOE位置1									
2	2	2	T4	T4CON寄存器的TR4和T4CLKS位置1(自动上拉)或T4CON寄存器的T4CLKS位清0且TC4位置1或方式2下TR4位置1									
		3	P0.3	无上述情况									
			C1P	CMP1CON寄存器中CMP1EN置1									
3	3	2	T2EX	在0,2,3方式下T2CON寄存器的EXEN2位置1或在方式1下T2CON寄存器的DCEN位置1或在方式1下DCEN位清0及EXEN2位置1(自动拉高)									
											3	INT0	IEN0寄存器的EX0位置1,并且P0.4输入模式(上拉由软件设置)
		4	P0.4	无上述情况									
		1	C1N	CMP1CON寄存器中CMP1EN置1, CINCHS[1:0]置为00									
4	4	2	T2	T2CON 寄存器 (自动上拉)的 TR2 位及 C/T2 位置1或 C/T2 位清0且 T2MOD 寄存器的 T2OE 位置1									
		3	INT1	IEN0寄存器中的EX1位置1,P0.5输入模式									
		4	P0.5	无上述情况									
		1	XTALX2	代码选项									
5	5	2	C2P	CMP2CON寄存器中CMP2EN置1									
5	5	3	INT2	IEN1寄存器的EX2位置1, P0.6输入模式									
		4	P0.6	无上述情况									
		1	XTALX1	代码选项									
6	6	2	C2N	CMP2CON寄存器中CMP1EN置1, C2NCHS[1:0]置为00									
	U	3	INT3	IEN1寄存器的EX3位置1, P0.7输入模式									
		4	P0.7	无上述情况									

注意: 当 POOS = 30H 时,引脚3,4配置为开漏极端口。

PORT1:

- LED Segment 1-8 (P1.0-P1.7)
- LCD Segment 1-8 (P1.0-P1.7)
- INT44-INT47 (P1.0-P1.3): 外部中断4输入

Table 7.22 PORT1共享列表

引脚	引脚编号		功能	会还给					
LQFP48	LQFP44	优先级	切肥	允许位					
		1	INT44-47	IEN1寄存器的EX4位和IENC寄存器的EXS44-47位置1, P1.0-1.3端口为输入模式					
31-34	27-30	2	LED S1-4	P1SS寄存器的相应位(P1S0-P1S3)置1且DISPCON寄存器的DISPSEL置1					
		3	LCD SEG1-4	P1SS寄存器的相应位(P1S0-P1S3)置1且DISPCON寄存器的DISPSEL清0					
		4	P1.0-P1.3	无上述情况					
		1	LED S5-8	P1SS寄存器的相应位(P1S4-P1S7)置1且DISPCON寄存器的DISPSEL置1					
35-38	31-34	2	LCD SEG5-8	P1SS寄存器的相应位(P1S4-P1S7)置1且DISPCON寄存器的DISPSEL清0					
		3	P1.4-P1.7	无上述情况					

PORT2:

- RXD0: EUART数据输入(P2.0)
- TXD0: EUART数据输出(P2.1)
- MOSI: SPI主输出从属输入 (P2.2)
- MISO: SPI主输入从属输出(P2.3)
- SCK: SPI串行时钟 (P2.4)
- FLT: 故障检测输入引脚(P2.5)
- LCD Segment 9-16 (P2.0-P2.7)
- SS: SPI从属选择 (P2.5)
- PWM0C: PWM0C 输出(P2.7)
- PWM01C: PWM01C 输出(P2.6)

Table 7.23 PORT2共享列表

引脚	编号	优先级	功能	允许位				
LQFP48	LQFP44	ルウムタ	切肥	元 叶 亚				
		1	RXD0	SCON寄存器的REN位置1(自动上拉)				
39	35	2	SEG9	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S0位置1				
			P2.0	以上情况都不符合				
		1	TXD0	对SBUF寄存器写操作				
40	36	2	SEG10	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S1位置1				
		3	P2.1	以上情况都不符合				
		1	MOSI	在从属模式下将SPSTA寄存器的SPEN位置1 (当SPEN,CPHA,SSDIS位在从属模式下都置为1时,自动上拉)				
41	37	2	RXD1	SCON1寄存器的REN1位置1(自动上拉)				
		3	SEG11	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S2位置1				
		4	P2.2	以上情况都不符合				

续上表

		1	MISO	将SPSTA寄存器的SPEN位置1 (在主模式下将SPSTA寄存器的SPEN位置1时,自动上拉)
42	38 2		TXD1	对 SBUF1 寄存器写操作
		3	SEG12	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S3位置1
		4	P2.3	以上情况都不符合
42	20	1 SCK		SPSTA寄存器的SPEN位置1 (当SPEN,CPHA,SSDIS位在从属模式下都置1时,自动上拉)
43	39			DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S4位置1
				以上情况都不符合
		1	FLT	PWMEN寄存器的EFLT位置1
44	40	2	SS	当SPSTA寄存器的SPEN = 1时,在SPI主模式下将SPCON寄存器的SSDIS位清0,或者在SPI从模式下当SPCON寄存器的CPHA = 1时将SPCON寄存器的SSDIS位清0,或者在SPI从模式下将SPCON寄存器的CPHA位清0(当SPSTA寄存器的SPEN = 1且MSTR = 1且SSDIS = 0时,或当SPEN = 1且MSTR = 0时,自动上拉)
		3	SEG14	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S5位置1
		4	P2.5	以上情况都不符合
		1	PWM01C	PWMEN寄存器的EPWM1位置1和PWM01COE位置1
45	41	2	SEG15	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S6位置1
		3	P2.6	以上情况都不符合
		1	PWM0C	PWMEN寄存器的EPWM1位置1和PWM0COE位置1
46	42	2	SEG16	DISPCON寄存器的DISPSEL位清0且P2SS寄存器的P2S7位置1
		3	P2.7	以上情况都不符合

PORT3:

- LED COM1-COM8 (P3.0-P3.7)
- LCD COM1-COM8 (P3.0-P3.7)
- AN4-AN7: ADC输入通道(P3.4-P3.7)

Table 7.24 PORT3共享列表

引脚	编号	优先级	功能	允许位				
LQFP48	LQFP44	ル元級	切肥	<i>ጋ</i> ሬ የቸባሂ				
		1	AN7-AN4	ADCH寄存器的CH7-CH4位和ADCON寄存器的ADON位都置1,并且SCH[2:0]的相应位置1				
23-26	19-22	2	LED_C8 -LED_C5	P3SS寄存器的相应位P3S7-P3S4位置1且DISPCON寄存器的DISPSEL和DUTY位置1				
		3	COM8-COM5	P3SS寄存器的相应位P3S7-P3S4位置1且DISPCON寄存器的DUTY[2:0]选择相应位,DISPSEL位清0				
		4	P3.7-P3.4	以上情况都不符合				
	1		LED_C4 -LED_C1	P3SS寄存器的相应位(P3S3-P3S0)置1且DISPCON寄存器的DISPSEL置1和DUTY[2:0]选择相应位				
27-30	0 23-26	2	COM4-COM1	P3SS寄存器的相应位(P3S3-P3S0)置1且DISPCON寄存器的DISPSEL位 清0和DUTY[2:0]选择相应位				
		3	P3.3-P3.0	以上情况都不符合				

PORT4:

- INT40-INT43 (P4.0-P4.3): 外部中断输入
- LCD SEGMENT22-24 (P4.5-P4.7)
- AN0-AN3, AN8 (P4.0-P4.4): ADC输入通道
- INVFB: 频率检测反馈端(P4.0)
- INVO: 频率检测输出端 (P4.1)
- INVI: 频率检测输入端(P4.2)
- LCD SEGMENT24 (P4.5)
- AVREF (P4.4): AD转换参考电压
- PWM1: PWM1输出(P4.5)

Table 7.25 PORT4共享列表

引脚编号		优先级	功能	允许位			
LQFP48	LQFP44	ル元級	切肥	<i>ጋ</i> ር የቸ <u>ነ</u> ደ			
15-16	-	1	SEG22-23	P0SS寄存器的相应位(P4S7-P4S6)置1且DISPCON寄存器的DISPSEL清0			
		2	P4.6-P4.7	以上情况都不符合			
		1	PWM1	PWM1C寄存器的PWM1EN位和PWM1OE位置1			
17	13	2	SEG24	P0SS寄存器的相应位(P4S5)置1且DISPCON寄存器的DISPSEL清0			
		3	P4.5	以上情况都不符合			
		1	AVREF	ADCON寄存器的REFC位置1			
18	14	2	AN8	ADCH寄存器的CH8和SCH[3:0]相应位置1			
		3	P4.4	以上情况都不符合			
		1	AN3	ADCH寄存器的CH3和SCH[3:0]相应位置1			
19	15	2	INT43	IEN1寄存器的EX4位和IENC寄存器的EXS43位置1,P4.3端口为输入模式			
		3	P4.3	以上情况都不符合			
		1	INVI	INVCON寄存器中INVEN置1			
20	16	2	AN2	ADCH寄存器的CH2和SCH[2:0]相应位置1			
20	10	16	16	16	3	INT42	IEN1寄存器的EX4位和IENC寄存器的EXS42位置1,P4.2端口为输入模式
		4	P4.2	以上情况都不符合			
		1	INVO	INVCON寄存器中INVEN置1			
21	17	2	AN1	ADCH寄存器的CH1和SCH[3:0]相应位置1			
21	17	3	INT41	IEN1寄存器的EX4位和IENC寄存器的EXS41位置1,P4.1端口为输入模式			
		4	P4.1	以上情况都不符合			
		1	INVFB	INVCON寄存器中INVEN置1,FBEN置1			
20	40	2	AN0	ADCH寄存器的CH1-CH0和SCH[2:0]相应位置1			
22	18	3	INT40	IEN1寄存器的EX4位和IENC寄存器的EXS40位置1,P4.0端口为输入模式			
		4	P4.0	以上情况都不符合			

PORT5:

- XTAL1 (P5.0): 振荡器输入

- XTAL2 (P5.1): 振荡器输出

- RST (P5.2): 系统复位

- PWM1 (P5.3): PWM1输出

- BUZ (P5.3): 蜂鸣器输出

- T3 (P5.3): 定时器3外部输入

- LCD SEGMENT20-21 (P5.4-P5.5)

Table 7.26 PORT5共享列表

引脚	编号	优先级		允许位					
LQFP48	LQFP44	ルルスしまな	切肥	ノロバドロ					
8	8	1	XTAL1	代码选项					
0	O	2	P5.0	以上情况都不符合					
9	9	1	XTAL2	代码选项					
9	9	2	P5.1	以上情况都不符合					
10	10	1	RST	代码选项					
10	10	2	P5.2	代码选项					
		1	BUZ	BUZCON寄存器中的BZEN位置1					
11	11	2	Т3	T3CON寄存器的TR3位置1且T3CLKS[1:0] = 01(自动上拉)					
		3	P5.3	以上情况都不符合					
13	-	1	SEG20	P0SS寄存器的相应位(P5S4)置1且DISPCON寄存器的DISPSEL和DUTY 位置1					
		2	P5.4	以上情况都不符合					
14	-	1	SEG21	P0SS寄存器的相应位(P5S5)置1且DISPCON寄存器的DISPSEL和DUTY 位置1					
		2	P5.5	以上情况都不符合					

7.8 定时器

7.8.1 特性

- SH79F6484有4个定时器(定时器2, 3, 4, 5)
- 定时器2兼容标准的8052,且有递增递减计数和可编程输出功能
- 定时器3是16位自动重载定时器,且可以工作在掉电模式
- 定时器4是16位自动重载定时器,且可以被选择作为波特率发生器
- 定时器5是16位自动重载定时器

7.8.2 定时器2

两个数据寄存器(TH2和TL2)串联后可作为一个16位寄存器来访问,由寄存器T2CON和T2MOD控制。设置IEN0寄存器中的ET2位能允许定时器2中断。(详见中断章节)

定时器2的C/T2选择系统时钟(定时器)或外部引脚T2(计数器)作为定时器时钟输入。通过所选的引脚设置TR2允许定时器2/计数器2数据寄存器计数。

定时器2方式

定时器2有4种工作方式:捕获/重载,带递增或递减计数器的自动重载方式,波特率发生器和可编程时钟输出。RCLK,TCLK和CP/RL2的组合能选择这些方式。

Table 7.27 定时器2方式选择

C/T2	T2OE	DCEN	TR2	CP/RL2	RCLK	TCLK		方式
Х	0	Х	1	1	0	0	0	16位捕获
Х	0	0	1	0	0	0	1	16位自动重载定时器
Х	0	1	1	0	0	0	'	10世日幼里铁足円稲
Х	0	Х	1	Х	1	Х	2	波特率发生器
^	U	^	ı	^	Χ	1	2	仮付半及生命
					0	0	3	只用于可编程时钟
0	1	Х	1	X	1	Х	3	带波特率发生器的可编程时钟输出
					Х	1	3	市伙行学及主命的可编任的打制山
1	1	Х	1	Х	Х	Х		不推荐使用
Х	Х	Х	0	Х	Х	Х	Х	定时器2停止,T2EX通路仍旧允许

方式0:16位捕获

在捕获方式中,T2CON的EXEN2位有两个选项。

如果EXEN2 = 0,定时器2作为16位定时器或计数器,如果ET2被允许的话,定时器2能设置TF2溢出产生一个中断。

如果EXEN2 = 1,定时器2执行相同操作,但是在外部输入T2EX上的下降沿也能引起在TH2和TL2中的当前值分别被捕获到RCAP2H和RCAP2L中,此外,在T2EX上的下降沿也能引起在T2CON中的EXF2被设置。如果ET2被允许,EXF2位也像TF2一样也产生一个中断。

方式1: 16位自动重载定时器

在16位自动重载方式下,定时器2可以被选为递增计数或递减计数。这个功能通过T2MOD中的DCEN位(递减计数允许)选择。系统复位后,DCEN位复位值为0,定时器2默认递增计数。当设置DCEN时,定时器2递增计数或递减计数取决于T2EX引脚上的电平。

当DCEN = 0,通过在T2CON中的EXEN2位选择两个选项。

如果EXEN2 = 0,定时器2递增到0FFFFH,在溢出后置起TF2位,同时定时器自动将用户软件写好的寄存器RCAP2H和RCAP2L的16位值装入TH2和TL2寄存器。

如果EXEN2 = 1,溢出或在外部输入T2EX上的下降沿都能触发一个16位重载,置起EXF2位。如果ET2被使能,TF2和EXF2位都能产生一个中断。

注意: 当EXEN2 = 1,C/T2 = 1(选择T2引脚时钟),且定时器[TH2,TL2]设置为0FFFFH时,T2无外灌时钟,外部输入 T2EX上的下降沿会触发TF2和EXF2全部置位。

设置DCEN位允许定时器2递增计数或递减计数。当DCEN = 1时, T2EX引脚控制计数的方向, 而EXEN2控制无效。

T2EX置1可使定时器2递增计数。定时器向0FFFFH溢出,然后设置TF2位。溢出也能分别引起RCAP2H和RCAP2L上的16位值重载入定时器寄存器。

T2EX清0可使定时器2递减计数。当TH2和TL2的值等于RCAP2H和RCAP2L的值时,定时器溢出。置起TF2位,同时0FFFFH重载入定时器寄存器。

无论定时器2溢出,EXF2位都被用作结果的第17位。在此工作方式下,EXF2不作为中断标志。

方式2:波特率发生器

通过设置T2CON寄存器中的TCLK和/或RCLK选择定时器2作为波特率发生器。接收器和发送器的波特率可以不同,如果定时器2作为接收器或发送器则定时器4相应的作为另一种的波特率发生器。

设置RCLK和/或TCLK使定时器2进入波特率发生器方式,该方式与自动重载入方式相似。

定时器2的溢出会使RCAP2H和RCAP2L寄存器中的值重载入定时器2计数器,但不会产生中断。

如果EXEN2被置1,在T2EX脚上的下降沿会置起EXF2,但不会引起重载。因此当定时器2作为波特率发生器时,T2EX可作为一个额外的外部中断。

在EUART方式1和3中的波特率由定时器2的溢出率根据下列方程式决定。

BaudRate =
$$\frac{1}{2 \times 16} \times \frac{f_{SYS}}{65536 - [RCAP2H,RCAP2L]}$$
; C/T2 = 0

$$BaudRate = \frac{1}{16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]} ; C/\overline{T2} = 1$$

方式3: 可编程时钟输出

T2 (P0.5) 可以编程输出50%的占空比时钟周期。清C/ $\overline{T2}$ 位和置T2OE位,使定时器2作为时钟发生器。TR2位启动和中止定时器。

在这种方式中, T2输出占空比为50%的时钟:

Clock Out Frequency =
$$\frac{1}{2 \times 2} \times \frac{f_{SYS}}{65536 - [RCAP2H,RCAP2L]}$$

定时器2溢出不产生中断。所以定时器2可以同时以相同频率用作波特率发生器和时钟输出。

注意:

- (1) TF2 和 EXF2 都能引起定时器 2 的中断请求,两者有相同的向量地址。
- (2) 当事件发生时或其它任何时间都能由软件设置 TF2 和 EXF2 为 1, 只有软件以及硬件复位才能使之清 0。
- (3) 当 EA = 1 且 ET2 = 1 时,设置 TF2 或 EXF2 为 1 能引起定时器 2 中断。
- (4) 当定时器 2 作为波特率发生器时,写入 TH2/TL2,写入 RCAPH2/RCAPL2 会影响波特率的准确性,因此也会引起通信 出错。

寄存器

Table 7.28 定时器2控制寄存器

C8H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2CON	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TF2	定时器2溢出标志位 0:无溢出(必须由软件清0) 1:溢出(如果RCLK=0和TCLK=0,由硬件设1)
6	EXF2	T2EX引 脚外部事件输入(下降沿)被检测到的标志位 0: 无外部事件输入(必须由软件清0) 1: 检测到外部输入(如果EXEN2 = 1,由硬件设1)
5	RCLK	EUART0接收时钟控制位 0: 定时器4产生接收波特率 1: 定时器2产生接收波特率
4	TCLK	EUART0发送时钟控制位 0: 定时器4产生发送波特率 1: 定时器2产生发送波特率
3	EXEN2	T2EX引脚上的外部事件输入(下降沿)用作重载/捕获触发器允许/禁止控制位 0: 忽略T2EX引脚上的事件 1: 当定时器2不做为EUART时钟(T2EX始终包括上拉电阻)时,检测到T2EX 引脚上一个下降沿,产生一个捕获或重载
2	TR2	定时器2开始/停止控制位 0: 停止定时器2 1: 开始定时器2
1	C/T2	定时器2定时器/计数器方式选定位 0:定时器方式,T2引脚用作I/O端口 1:计数器方式,内部上拉电阻被打开
0	CP/RL2	捕获/重载方式选定位 0: 16位带重载功能的定时器/计数器 1: 16位带捕获功能的定时器/计数器

Table 7.29 定时器2模式控制寄存器

C9H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T2MOD	TCLKP2	-	=	-	-	-	T2OE	DCEN
读/写	读/写	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	-	-	-	-	0	0

位编号	位符号	说明
7	TCLKP2	分频选择控制位 0: 系统时钟作为定时器2的时钟源 1: 选择系统时钟的1/12作为定时器2的时钟源
1	T2OE	定时器2输出允许位 0:设置P0.5/T2作为时钟输入或I/O端口 1:设置P0.5/T2作为时钟输出(波特率发生器方式)
0	DCEN	递减计数允许位 0: 禁止定时器2作为递增/递减计数器,定时器2仅作为递增计数器 1: 允许定时器2作为递增/递减计数器

Table 7.30 定时器2重载/捕获和数据寄存器

CAH-CDH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RCAP2L	RCAP2L.7	RCAP2L.6	RCAP2L.5	RCAP2L.4	RCAP2L.3	RCAP2L.2	RCAP2L.1	RCAP2L.0
RCAP2H	RCAP2H.7	RCAP2H.6	RCAP2H.5	RCAP2H.4	RCAP2H.3	RCAP2H.2	RCAP2H.1	RCAP2H.0
TL2	TL2.7	TL2.6	TL2.5	TL2.4	TL2.3	TL2.2	TL2.1	TL2.0
TH2	TH2.7	TH2.6	TH2.5	TH2.4	TH2.3	TH2.2	TH2.1	TH2.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明		
7-0	RCAP2L.x	定时器2重载/捕获数据低位高位, x = 0 - 7		
7-0	RCAP2H.x			
7-0	TL2.x	定时器2低位/高位计数器, x = 0 - 7		
,-0	TH2.x	大上門 前乙 队 上月 円 以 前 , 入 ■ U = 1		

7.8.3 定时器3

定时器3是16位自动重载定时器,通过两个数据寄存器TH3和TL3访问,由T3CON寄存器控制。IEN1寄存器的ET3位置1允许定时器3中断(详见中断章节)。

定时器3只有一个工作方式: 16位自动重载计数器/定时器,可以设置预分频比,并可以工作在CPU掉电模式。

定时器3有一个16位计数器/定时器寄存器(TH3, TL3)。当TH3和TL3被写时,用作定时器重载寄存器,当被读时,被用做计数寄存器。TR3位置1使定时器3开始递增计数。定时器在0xFFFF到0x0000溢出并置TF3位为1。溢出同时,定时器重载寄存器的16位数据被重新载入计数寄存器中,TH3写操作也导致重载寄存器的数据重新载入计数寄存器。

TH3和TL3读写操作遵循以下顺序:

写操作: 先低位后高位 读操作: 先高位后低位

定时器3可以工作在掉电模式。

当OP_OSC[3:0] (详见代码选项章节) 选为1010,1101,0011或0110,T3CLKS[1:0]可以选为00,01或10。当OP_OSC[3:0] 不为1010,1101,0011或0110时,T3CLKS[1:0]可以选为00或01,10是无效值。

如果T3CLKS[1:0]为00,定时器3不能工作在掉电模式下。如果T3CLKS[1:0]为01,T3端口输入外部时钟,定时器3可以工作在普通模式或掉电模式(在系统为高频时进入掉电模式)。当T3CLKS[1:0]为10并且OP_OSC[3:0]为1010,1101,0011或0110,定时器3可以工作在普通模式或掉电模式。当T3CLKS[1:0]为10并且OP_OSC[3:0]不为1010,1101,0011或0110时,定时器3不工作。详见下表:

OP_OSC[3:0]	T3CLKS[1:0]	工作在普通模式	工作在掉电模式
	00	YES	NO
1010,1101,0011或0110	01	YES	YES
	10	YES	YES
	00	YES	NO
不为1010,1101,0011或0110	01	YES	YES
	10	NO	NO

注意:

- (1) 在读或写TH3和TL3时,要确保TR3 = 0。
- (2) Timer3中断标志位由硬件清零,且Timer3的中断向量是和Uart1共用,若同时使用两者,请注意中断标志位的处理。

寄存器

Table 7.31 定时器3控制寄存器

88H,Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T3CON	TF3	=	T3PS.1	T3PS.0	-	TR3	T3CLKS.1	T3CLKS.0
读/写	读/写	-	读/写	读/写	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	0	0	-	0	0	0

位编号	位符号	说明
7	TF3	定时器3溢出标志位 0: 无溢出(软件或者硬件清0,由OP_TF3控制) 1: 溢出(硬件置1)
5-4	T3PS[1:0]	定时器3预分频比选择位 00: 1/1 01: 1/8 10: 1/64 11: 1/256
2	TR3	定时器3允许控制位 0: 停止定时器3 1: 开始定时器3
1-0	T3CLKS[1:0]	定时器3定时器/计数器方式选定位 00: 系统时钟,T3引脚用作I/O端口 01: T3端口输入外部时钟,自动上拉 10: 外部32.768kHz晶体谐振器或128k RC 11: 保留

Table 7.32 定时器3重载/计数数据寄存器

8CH-8DH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL3	TL3.7	TL3.6	TL3.5	TL3.4	TL3.3	TL3.2	TL3.1	TL3.0
TH3	TH3.7	TH3.6	TH3.5	TH3.4	TH3.3	TH3.2	TH3.1	TH3.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TL3.x	定时器3低位高位计数器, x = 0 - 7
7-0	TH3.x	定时器3低位高位计数器, x = 0 - 7

Table 7.33 定时器3重载/计数数据寄存器

89H, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SWTHL	-	=	=	-	-	-	T5HLCON	T3HLCON
读/写	-	=	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0

位编号	位符号	说明
0	T3HLCON	0:读TH3和TL3时,返回值为T3计数器值 1:读TH3和TL3时,返回值为T3重载寄存器值

7.8.4 定时器4

定时器4是16位自动重载定时器。两个数据寄存器TH4和TL4可作为一个16位寄存器来访问。由T4CON寄存器控制。IEN1寄存器的ET4位置1允许定时器4中断(详见中断章节)。

当TH4和TL4被写时,用作定时器重载寄存器,当被读时,被用做计数寄存器。TR4位置1使定时器4开始递增计数。定时器在0xFFFF到0x00000溢出并置TF4位为1。溢出同时,定时器重载寄存器的16位数据重新载入计数寄存器中,对TH4的写操作也导致重载寄存器的数据重新载入计数寄存器。

TH4和TL4读写操作遵循以下顺序:

写操作: 先低位后高位 读操作: 先高位后低位

定时器4方式

定时器4有三种工作方式: 16位自动重载定时器,串口波特率发生器和有T4边沿触发的16位自动重载定时器。这些方式通过T4CON寄存器的T4M[1:0]设置。

方式0:16位自动重载定时器

定时器4在方式0为16位自动重载定时器。TH4寄存器存放16位计数器/定时器高8位,TL4存放低8位。当16位定时寄存器从0xFFFF到0x0000递增,并溢出时,系统置定时器溢出标志TF4(T4CON.7)为1,16位寄存器的值被重新载入计数器,如果允许定时器4中断则产生中断。

T4CON.0寄存器的T4CLKS位选择时钟源。当T4CLKS = 1时,定时器4的时钟源为外部时钟,预分频后,计数器数据寄存器增加。当T4CLKS = 0,定时器4的时钟源为系统时钟。

T4CON.1寄存器的TR4位置1允许定时器4,且不清定时器4的计数器。在允许定时器4之前,将希望的初始值写入定时器重载寄存器中。

在比较方式中,T4端口自动被硬件设为输出。定时器4从TH4和TL4预设值开始向0xFFFF计数,当计数器溢出时,T4端口输出反转,同时定时器4中断标志位被置起。在比较方式中,定时器4必须工作在定时方式(T4CLKS = 0)。

方式1:波特率发生器

通过设置T4CON寄存器中的T4M[1:0]为01选择定时器4作为波特率发生器。如果将定时器2作为串口的接收或发送的波特率,而定时器4作为另一波特率时,发送和接收的波特率可以是不同的。

该方式与自动重载方式相似。定时器4的溢出会引起软件将定时器4重载寄存器中的16位值载入定时器4的计数器中,但不会产生中断。

EUART方式1和3的波特率由下列公式计算:

$$BaudRate = \frac{2^{SMOD}}{2 \times 16} \times \frac{f_{T4}/PRESCALER}{65536 - [TH4, TL4]}$$

上式中,TH4和TL4为定时器4重载寄存器。

方式2: 带边沿触发的16位自动重载定时器

定时器4在方式2为16位自动重载定时器。T4CON.0寄存器的T4CLKS位一直为0,定时器4只能选择系统时钟为时钟源,其余设置与方式0一致。

方式2中,T4CON.1的TR4位置1,定时器4等待T4端口的触发信号(由T4M[1:0]控制上升/下降沿)开始计数,一个触发信号使定时器4开始运行。当定时器4从0xFFFF到0x0000溢出时,TF4(T4CON.7)会被置起,如定时器4的中断使能,将产生定时器4中断。T4CLKS位始终为0。定时器4的时钟为系统时钟。定时器重载寄存器的数据重载入TH4和TL4中,保持到下一个触发信号。

在方式2下,当TR4位置1后,定时器4在来自T4口的有效信号(T4M[1:0]决定的上升或下降沿)触发下开始计数。当定时器4在0xFFFF到0x0000溢出时置TF4位为1。溢出同时,定时器重载寄存器的16位数据被重新载入计数寄存器TH4和TL4中,定时器4将保持状态并等待下一个触发沿。

在定时器4工作时同时有一个触发信号时,如果TC4 = 0,忽略此信号;如果TC4 = 1,定时器4被触发。

TR4置1不清定时器4的计数器,在允许定时器之前应该把希望的初始化值写入重载寄存器。

control : M2_en set to 1 when T4 edge trig, M2_en set to 0 when counter overflow

注意: 当定时器4用作计数器时, T4引脚的输入信号频率要小于系统时钟的一半。

寄存器

Table 7.34 定时器4控制寄存器

C8H, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T4CON	TF4	TC4	T4PS1	T4PS0	T4M1	T4M0	TR4	T4CLKS
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	TF4	定时器4溢出标志位 0: 无溢出 (硬件清0) 1: 溢出 (硬件置1)
6	TC4	比较功能允许位 当T4M[1:0] = 00 0: 禁止定时器4比较功能 1: 允许定时器4比较功能 当T4M[1:0] = 10或11 0: 定时器4不能被再触发 1: 定时器4可以被再触发
5-4	T4PS[1:0]	定时器4预分频比选择位 00: 1/1 01: 1/8 10: 1/64 11: 1/256
3-2	T4M[1:0]	定时器4方式选择位 00: Mode0, 16位自动重载定时器 01: Mode1, EUART波特率发生器 10: Mode2, T4端口上升沿触发(只用系统时钟, T4CLKS无效) 11: Mode2, T4端口下降沿触发(只用系统时钟, T4CLKS无效)
1	TR4	定时器4允许控制位 0: 禁止定时器4 1: 允许定时器4
0	T4CLKS	定时器4时钟源选择位 0: 系统时钟,T4端口作为I/O口 1: T4端口输入外部时钟,自动上拉

Table 7.35 定时器4重载/计数数据寄存器

CCH-CDH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL4	TL4.7	TL4.6	TL4.5	TL4.4	TL4.3	TL4.2	TL4.1	TL4.0
TH4	TH4.7	TH4.6	TH4.5	TH4.4	TH4.3	TH4.2	TH4.1	TH4.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TL4.x	定时器4低位高位计数器, x = 0 - 7
7-0	TH4.x	是可备+队也同型 I

7.8.5 定时器5

定时器5是16位自动重载定时器。两个数据寄存器TH5和TL5可作为一个16位寄存器来访问。由T5CON寄存器控制。IEN0寄存器的ET5位置1允许定时器5中断(详见中断章节)。

当TH5和TL5被写时,用作定时器重载寄存器,当被读时,被用做计数寄存器。TR5位置1使定时器5开始递增计数。定时器在0xFFFF到0x00000溢出并置TF5位为1。溢出同时,定时器重载寄存器的16位数据重新载入计数寄存器中,对TH5的写操作也导致重载寄存器的数据重新载入计数寄存器。

TH5和TL5读写操作遵循以下顺序:

写操作: 先低位后高位 读操作: 先高位后低位

定时器5方式

定时器5有一种工作方式: 16位自动重载定时器。

16位自动重载定时器

定时器5在方式0为16位自动重载定时器。TH5寄存器存放16位计数器/定时器高8位,TL5存放低8位。当16位定时寄存器从0xFFFF到0x0000递增,并溢出时,系统置定时器溢出标志TF5(T5CON.7)为1,16位寄存器的值被重新载入计数器,如果允许定时器5中断则产生中断。

T5CON.1寄存器的TR5位置1允许定时器5,且不清定时器5的计数器。在允许定时器5之前,将希望的初始值写入定时器重载寄存器中。

寄存器

Table 7.36 定时器5控制寄存器

C0H, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
T5CON	TF5	-	T5PS1	T5PS0	-	-	TR5	-
读/写	读/写	-	读/写	读/写	-	-	读/写	-
复位值 (POR/WDT/LVR/PIN)	0	-	0	0	-	-	0	-

位编号	位符号	说明
7	TF5	定时器5溢出标志位 0: 无溢出(硬件清0) 1: 溢出(硬件置1)
5-4	T5PS[1:0]	定时器 5 预分频比选择位 00: 1/1 01: 1/8 10: 1/64 11: 1/256
1	TR5	定时器5允许控制位 0: 禁止定时器5 1: 允许定时器5

Table 7.37 定时器5重载/计数数据寄存器

CEH-CFH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TL5	TL5.7	TL5.6	TL5.5	TL5.4	TL5.3	TL5.2	TL5.1	TL5.0
TH5	TH5.7	TH5.6	TH5.5	TH5.4	TH5.3	TH5.2	TH5.1	TH5.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	TL5.x	定时器5低位高位计数器, x = 0 - 7
'-0	TH5.x	是明确J队[][][][][][] 双确, 入一〇 -7

Table 7.38 定时器5重载/计数数据寄存器

89H, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SWTHL	Ī	ı	ı	=	=	ı	T5HLCON	T3HLCON
读/写	-	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0

位编号	位符号	说明
1	T5HLCON	0:读TH5和TL5时,返回值为T5计数器值 1:读TH5和TL5时,返回值为T5重载寄存器值

7.9 中断

7.9.1 特性

- 14个中断源
- 4层中断优先级

SH79F6484有16个中断源:5个外部中断(INT0,INT1,INT2,INT3,INT4),INT4共8个中断源(INT40-47共用一个向量地址),4个定时器中断(定时器2,3,4和5),2个EUART中断,SPI中断,ADC中断,PWM中断和CMP中断,SCM中断和LPD中断。

7.9.2 中断允许

任何一个中断源均可通过对寄存器IEN0和IEN1中相应的位置1或清0,实现单独使能或禁止。IEN0寄存器中还包含了一个全局使能位EA,它是所有中断的总开关。一般在复位后,所有中断允许位设置为0,所有中断被禁止。

7.9.3 寄存器

Table 7.39 初级中断允许寄存器

A8H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN0	EA	EADC	ET2	ES0	ECMP	EX1	ET5	EX0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EA	所有中断允许位 0: 禁止所有中断 1: 允许所有中断
6	EADC	ADC中断允许位 0: 禁止ADC中断 1: 允许ADC中断
5	ET2	定时器2溢出中断允许位 0: 禁止定时器2溢出中断 1: 允许定时器2溢出中断
4	ES0	EUART0中断允许位 0:禁止EUART0中断 1:允许EUART0中断
3	ECMP	比较器中断允许位 0: 禁止比较器中断 1: 允许比较器中断
2	EX1	外部中断1允许位 0: 禁止外部中断1 1: 允许外部中断1
1	ET5	定时器5溢出中断允许位 0: 禁止定时器 5溢出中断 1: 允许定时器 5溢出中断
0	EX0	外部中断0允许位 0: 禁止外部中断0 1: 允许外部中断0

注意: ECMP为比较器1/2的总允许控制位。打开比较器1/2中断, ECMP和ECMP1/2必须同时置1。

Table 7.40 次级中断允许寄存器

А9Н	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IEN1	ESCM_LPD _CRC	ET4	EPWM	ET3_ES1	EX4	EX3	EX2	ESPI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ESCM_LPD_CRC	SCM/LPD/CRC中断允许位 0:禁止SCM/LPD/CRC中断 1:允许SCM/LPD/CRC中断
6	ET4	定时器4中断允许位 0: 禁止定时器4溢出中断 1: 允许定时器4溢出中断
5	EPWM	PWM中断允许位 0:禁止PWM中断 1:允许PWM中断
4	ET3_ES1	定时器3/EUART1中断允许位 0:禁止定时器3/EUART1溢出中断 1:允许定时器3/EUART1溢出中断
3	EX4	外部中断4允许位 0: 禁止外部中断4中断 1: 允许外部中断4中断
2	EX3	外部中断3允许位 0: 禁止外部中断3中断 1: 允许外部中断3中断
1	EX2	外部中断2允许位 0: 禁止外部中断2 1: 允许外部中断2
0	ESPI	SPI中断允许位 0: 禁止SPI中断 1: 允许SPI中断

注意:

⁽¹⁾ 打开外部中断0/1/2/3/4时,相应的端口必须设置为输入状态。

⁽²⁾ EPWM为PWM0/1中断的总允许控制位,打开PWM定时器中断,EPWM位和PWM控制寄存器中的PWMIE,中断允许位必须同时置1。

Table 7.41 中断通道允许寄存器

BAH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IENC	EXS47	EXS46	EXS45	EXS44	EXS43	EXS42	EXS41	EXS40
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	EXS4x (x = 7-0)	外部中断4选择寄存器(x = 7-0) 0: 禁止外部中断4x 1: 允许外部中断4x

Table 7.42 中断通道允许寄存器1

BBH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IENC1	-	ECRC	ES1	ET3	ECMP1	ECMP2	ESCM	ELPD
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0

位编号	位符号	说明
6	ECRC	CRC中断允许位 0: 禁止CRC中断 1: 允许CRC中断
5	ES1	EUART1中断允许位 0:禁止EUART1中断 1:允许EUART1中断
4	ET3	定时器3中断允许位 0: 禁止定时器3溢出中断 1: 允许定时器3溢出中断
3	ECMP1	比较器1中断允许位 0: 禁止比较器1中断 1: 允许比较器1中断
2	ECMP2	比较器2中断允许位 0:禁止比较器2中断 1:允许比较器2中断
1	ESCM	SCM中断允许位 0: 禁止SCM中断 1: 允许SCM中断
0	ELPD	LPD中断允许位 0: 禁止LPD中断 1: 允许LPD中断

7.9.4 中断标志

每个中断源都有自己的中断标志,当产生中断时,硬件会置起相应的标志位,在中断摘要表中会列出中断标志位。

外部中断源产生外部中断**INT0/1/2/3**时,如果中断为边沿触发,CPU在响应中断后,各中断标志位IEx(x=0-3)被硬件清0;如果中断是低电平触发,外部中断源引脚电平直接控制中断标志,而不是由片上硬件控制。

外部中断INT4产生中断时,EXF1寄存器中的IF4x标志位(x=0-7)置1,由于INT4x共用一个中断向量地址,所以标志位需要用户软件清除。但是如果INT4为电平触发时,标志位不能被用户软件清0,只受INT4x中断源引脚所接信号电平直接控制。

T2CON寄存器的TF2或EXF2标志位置1时,产生**定时器2**产生中断,CPU在响应中断后,标志位都不会被硬件自动清0。事实上,中断服务程序必须决定是由TF2或是EXF2产生中断,标志必须由软件清0。

定时器3的计数器溢出时,T3CON寄存器的TF3中断标志位置1,产生**定时器3**中断,CPU在响应中断后,标志被硬件自动清0。

定时器4的计数器溢出时,T4CON寄存器的TF4中断标志位置1,产生**定时器4**中断,CPU在响应中断后,标志被硬件自动清0。

定时器5的计数器溢出时,T5CON寄存器的TF5中断标志位置1,产生**定时器5**中断,CPU在响应中断后,标志被硬件自动 清0。

SCON/SCON1寄存器的标志RI或TI被置1时,产生**EUARTx(x = 0, 1)**产生中断,CPU在响应中断后,标志不会被硬件自动清0。事实上,中断服务程序必须判断是收中断还是发中断,标志必须由软件清0。

当ADCON寄存器的ADCIF标志位被置1时,产生ADC中断。如果中断产生,ADCDH/ADCDL中的结果是有效的。如果ADC模块的连续比较功能被打开,在每次转换中,如果转换结果小于比较值时,ADCIF标志位为0;如果转换结果大于比较值时,ADCIF标志位置1,ADCIF中断标志必须由软件清除。

SPSTA寄存器的SPIF标志位或MODF标志位置1时,产生SPI中断,标志必须由软件清0。

CMPxCON(x = 0, 1) 寄存器的CxIF标志位置1时,产生CMP中断,标志必须由软件清0。

CLKCON寄存器的SCMIF标志位置1时,产生SCM中断,标志必须由硬件清0。

LPDCON寄存器的LPDF标志位置1时,产生LPD中断,标志被硬件自动清0。通过设置LPDMD位,可选择当V_{DD}电压高于或低于LPD设置检测电压时产生LPD中断。

PWMxC(x = 0, 1) 寄存器的PWMxlF标志位置1时,产生PWM中断,标志必须由软件清0。

CRCCON寄存器的CRCIF标志位置1时,产生CRC中断,标志必须由软件清0。

Table 7.43 定时器/计数器控制寄存器 (x = 0, 1)

88H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
TCON	=	=	=	=	IE1	IT1	IE0	IT0
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
1, 3	IEx (x = 0, 1)	外部中断x请求标志位 0: 无中断挂起 1: 中断挂起
0, 2	ITx (x = 0, 1)	外部中断x触发方式选择位 0: 低电平触发 1: 下降沿触发

Table 7.44 外部中断标志寄存器

E8H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXF0	IT4.1	IT4.0	IT3.1	IT3.0	IT2.1	IT2.0	IE3	IE2
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	IT4[1:0]	外部中断4触发模式位 00: 低电平触发 01: 下降沿触发 10: 上升沿触发 11: 双沿触发 IT4[1:0]控制外部中断4各中断源采用同一触发方式
5-4	IT3[1:0]	外部中断3触发模式位 00: 低电平触发 01: 下降沿触发 10: 上升沿触发 11: 双沿触发
3-2	IT2[1:0]	外部中断2触发模式位00: 低电平触发01: 下降沿触发10: 上升沿触发11: 双沿触发
1	IE3	外部中断3请求标志位 0: 无中断挂起 1: 中断挂起
0	IE2	外部中断2请求标志位 0: 无中断挂起 1: 中断挂起

Table 7.45 外部中断4标志寄存器

D8H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXF1	IF47	IF46	IF45	IF44	IF43	IF42	IF41	IF40
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	IF4x (x = 7-0)	外部中断4请求标志 0: 无中断请求 1: 有中断请求 IF4x要由软件清0

7.9.5 中断向量

当一个中断产生时,程序计数器内容被压栈,相应的中断向量地址被载入程序计数器。中断向量的地址在**中断汇总表**中详细列出。

7.9.6 中断优先级

每个中断源都可被单独设置为4个中断优先级之一,分别通过清0或置1 IPL0,IPH0,IPL1,IPH1中相应位来实现。中断优先级服务程序描述如下:

响应一个中断服务程序时,可响应更高优先级的中断,但不能响应同优先级或低优先级的另一个中断。

响应最高级中断服务程序时,不响应其它任何中断。如果不同中断优先级的中断源同时申请中断时,响应较高优先级的中断申请。

如果同优先级的中断源在指令周期开始时同时申请中断,那么内部查询序列确定中断请求响应顺序。

中断优先级							
优织	先位	山断伏华绍					
IPHx	IPLx	- 中断优先级 					
0	0	等级0 (最低优先级)					
0	1	等级1					
1	0	等级2					
1	1	等级3(最高优先级)					

Table 7.46 中断优先级控制寄存器

B8H, B4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL0	-	PADCL	PT2L	PS0L	PCMPL	PX1L	PT5L	PX0L
IPH0	-	PADCH	PT2H	PS0H	PCMPH	PX1H	PT5H	PX0H
读/写	-	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	0	0	0	0	0	0	0
B9H, B5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
IPL1	PSCML	PT4L	PPWML	PT3S1L	PX4L	PX3L	PX2L	PSPIL
IPH1	PSCMH	PT4H	PPWMH	PT3S1H	PX4H	PX3H	PX2H	PSPIH
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PxxxL/H	相应中断源xxx优先级选择

7.9.7 中断处理

中断标志在每个机器周期都会被采样获取。所有中断都在时钟的上升沿被采样。如果一个标志被置起,那么CPU捕获到后中断系统调用一个长转移指令(LCALL)调用其中断服务程序,但由硬件产生的LCALL会被下列任何条件阻止:

同级或更高级的优先级中断在运行中。

当前的周期不是执行中指令的最后一个周期。换言之,正在执行的指令完成前,任何中断请求都得不到响应。

正在执行的是一条RETI或者访问专用寄存器IEN0\1或是IPL\H的指令。换言之,在RETI或者读写IEN0\1或是IPL\H之后,不会马上响应中断请求,而至少在执行一条其它指令之后才会响应。

注意:因为更改优先级通常需要2条指令,在此期间,建议关闭相应的中断以避免在修改优先级过程中产生中断。如果当模块状态改变而中断标志不再有效时,将不会响应此中断。每一个轮询周期只查询有效的中断请求。

轮询周期/LCALL次序如下图所示:

中断响应时间

由硬件产生的LCALL把程序计数器中的内容压入堆栈(但不保存PSW),然后将相应中断源的向量地址(参照中断向量表)存入程序计数器。

中断服务程序从指定地址开始,到RETI指令结束。RETI指令通知处理器中断服务程序结束,然后把堆栈顶部两字节弹出,重载入程序计数器中,执行完中断服务程序后程序回到原来停止的地方。RET指令也可以返回到原来地址继续执行,但是中断优先级控制系统仍然认为一个同一优先级的中断被响应,这种情况下,当同一优先级或低优先级中断将不会被响应。

7.9.8 中断响应时间

如果检测出一个中断,这个中断的请求标志位就会在被检测后的每个机器周期被置起。内部电路会保持这个值直到下一个机器周期,CPU会在第三个机器周期产生中断。如果响应有效且条件允许,在下一个指令执行的时候硬件LCALL指令将调用请求中断的服务程序,否则中断被挂起。LCALL指令调用程序需要7个机器周期。因而,从外部中断请求到开始执行中断程序至少需要3+7个完整的机器周期。

当请求因前述的的三个情况受阻时,中断响应时间会加长。如果同级或更高优先级的中断正在执行,额外的等待时间取决于正执行的中断服务程序的长度。

如果正在执行的指令还没有进行到最后一个周期,假如正在执行RETI指令,则完成正在执行的RETI指令,需要8个周期,加上为完成下一条指令所需的最长时间20个机器周期(如果该指令是16位操作数的DIV,MUL指令),若系统中只有一个中断源,再加上LCALL调用指令7个机器周期,则最长的响应时间是2+8+20+7个机器周期。

所以,中断响应时间一般大于10个机器周期小于37个机器周期。

7.9.9 外部中断输入

SH79F6484有5个外部中断输入。外部中断0-3分别有一个独立的中断源,外部中断4有8个中断源共享一个中断矢量地址。外部中断0/1可以通过设置TCON寄存器的IT1,IT0位来选择是电平触发或是边沿触发。当IT $\mathbf{x} = \mathbf{0}$ ($\mathbf{x} = \mathbf{0}$,1)时,外部中断INT \mathbf{x} ($\mathbf{x} = \mathbf{0}$,1)引脚为低电平触发;当IT \mathbf{x} ($\mathbf{x} = \mathbf{0}$,1)= 1,外部中断INT \mathbf{x} ($\mathbf{x} = \mathbf{0}$,1)引脚上连续采样为高电平,而下个周期开始,连续采样SN个周期为低电平(SN为Sample Num),TCON寄存器的中断请求标志位置1,发出一个中断请求。由于外部中断引脚每个周期采样一次,输入高或低电平应当保持至少SN个周期以确保能够被正确采样到。

如果外部中断为下降沿触发,外部中断源应当将中断脚至少保持SN个周期高电平,然后至少保持SN个周期低电平。这样就确保了边沿能够被检测到以使IEx置1。当调用中断服务程序后,CPU自动将IEx清0。

如果外部中断为低电平触发,外部中断源必须一直保持请求有效,直到产生所请求的中断为止,此过程需要SN个采样周期。如果中断服务完成后而外部中断仍旧维持,则会产生下一次中断。当中断为电平触发时不必清除中断标志IEx(x=0,1,2,3),因为中断只与输入口电平有关。

中断采样时钟分频比和连续采样次数均可以设置EXCON寄存器进行调节,满足不同中断响应要求。

HALT和STOP模式下,分频比和采样次数设置无效。

外部中断2-4除了具有更多的中断触发方式外,与外部中断0,1操作类似。

当SH79F6484进入空闲或是掉电模式,中断会唤醒处理器继续工作,详见**电源管理**章节。

注意:外部中断0-3的中断标志位在执行中断服务程序时被自动硬件清0,但外部中断4标志位IF40-43必须要软件清0。

Table7.47 外部中断采样次数控制寄存器

8BH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
EXCON	I1PS1	I1PS0	I1SN1	I1SN0	I0PS1	I0PS0	I0SN1	IOSN0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	I1PS[1:0]	外部中 断INT4 采样时钟预分频比选择位 00: 1/1 01: 1/4 10: 1/16 11: 1/64
5-4	I1SN[1:0]	外部中 断INT4 连续采样次数选择位 00: 1 01: 2 10: 3 11: 4
3-2	IOPS[1:0]	外部中 断INTO , 1 , 2 , 3 采样时钟预分频比选择位 00: 1/1 01: 1/4 10: 1/16 11: 1/64
1-0	IOSN[1:0]	外部中 断INTO, 1, 2, 3 连续采样次数选择位 00: 1 01: 2 10: 3 11: 4

注意: 若IOSN[1:0]=11,则外部中断0,1,2,3(下降沿触发),连续采样4次低电平才会产生中断标志。

7.9.10 中断汇总

中断源	向量地址	允许位	标志位	轮询优先级	中断号(C51)
Reset	0000H	-	-	0 (最高级)	-
INT0	0003H	EX0	IE0	1	0
Timer5	000BH	ET5	TF5	2	1
INT1	0013H	EX1	IE1	3	2
CMP	001BH	ECMP+ECMP1/2	C1IF/C2IF	4	3
EUART0	0023H	ES0	RI+TI	5	4
Timer2	002BH	ET2	TF2+EXF2	6	5
ADC	0033H	EADC ADCIF		7	6
SPI	003BH	ESPI	SPIF	8	7
INT2	0043H	EX2	IE2	9	8
INT3	004BH	EX3	IE3	10	9
INT4	0053H	EX4+IENC	IF43-40	11	10
Timer3/EUART1	005BH	ET3/ES1+ET3_ES1	TF3/(RI+TI)	12	11
PWM	0063H	EPWM	PWM0/1IF	13	12
Timer4	006BH	ET4 TF4 14		13	
SCM/LPD/CRC	0073H	ESCM/ELPD/ECRC+ ESCM_LPD_CRC	SCMIF/LPDF/CRCI F	15(最低级)	14

8. 增强功能

8.1 LCD驱动器

传统电阻型/快速充电LCD模式

LCD驱动器包含一个控制器,一个占空比发生器及4/8个COM输出引脚和24个Segment输出引脚。由P0SS、P1SS、P2SS、P3SS寄存器控制,Segment1-19,Segment24-28和COM1-COM8脚还可以当作I/O口使用,LCD COM1-COM8脚还可以与LED共用。24字节的LCD显示数据RAM存储区的地址为500H-51BH,如果需要,它们可以作为数据存储器使用。

MCU提供传统电阻型LCD显示方式,支持对比度调节,支持1/4占空比1/3偏置电压,1/5占空比1/3偏置电压,1/6占空比1/3偏置电压,1/6占空比1/3偏置电压,1/6占空比1/4偏置电压和1/8占空比和1/4偏置电压驱动方式。在LCD驱动前,DISPSEL(DISPCON.7)必须被清0。当DISPCON寄存器的ELCC位置1时LCD驱动电压VLCD由对比度控制位决定,当ELCC位清0时,VLCD等于VDD。当MCU进入省电模式后,若32.768kHz振荡器/128kHzRC工作,则LCD工作。在上电复位、引脚复位、低电压复位或看门狗复位期间,LCD被关闭。当LCD被关闭时,Common和Segment都输出低电平。

传统电阻型LCD显示模式有以下特性:

- LCD时钟及帧频计算如下:

代码选项选择双时钟且低频为32.768K crystal时(OP_OSC为1010,1011或1101),LCD/LED的时钟源为32.768K crystal,固定帧频64Hz,DISPCLK0寄存器无效;选择不同的占空比,帧频略有差异;

代码选项选择其余时钟时(包括高频单时钟), LCD/LED的时钟源为128K RC,设置DISPCLK0寄存器DCK[1:0],选择1/4,1/3,1/2,1/1分频比,对应的LCD/LED帧频为256/4Hz,256/3Hz,256/2Hz,256/1Hz,选择不同的占空比,帧频略有差异;

代码选项选择高频单时钟时(OP_OSC为0000,0001或1110),STOP模式下,LCD/LED时钟关闭;代码选项选择双时钟(OP_OSC为0011,0100,0110,1011或1101),且工作在高频时钟,进stop模式,LCD/LED时钟继续工作;代码选项选择双时钟(OP_OSC为0011,0100,0110,1010,1011或1101),且工作在低频时钟,进stop模式,LCD/LED时钟关闭;IDLE模式下,LCD/LED时钟保持工作。

- 由DISPCON寄存器的DUTY[2:0]位选择1/4占空比1/3偏置,1/5占空比1/3偏置电压,1/6占空比1/3偏置电压,1/6占空比1/4偏置驱动方式;
 - 由DISPCON寄存器的VOL[3:0]位控制16级对比度调节;
 - 1/3偏置可选LCD偏置电阻(R_{LCD})偏20K/75K/300K, 1/4偏置为15K/56K/225K, 偏置电阻总和为60K/225K/900K。

由DISPCON1寄存器的MOD[1:0]位控制,可选择为传统电阻型LCD,也可选择为另一种即快速充电模式(Fast Charge Mode)以降低功耗。

选择20k偏置电阻可以得到较好的显示效果,但电流相对会大一些,不适合低功耗的应用。若选择75/300k偏置电阻,虽然可以达到较低的功耗,但LCD显示效果会变得差一些。

因此,SH79F6484提供了兼顾低功耗和显示效果的显示模式:快速充电模式。设置MOD[1:0] = 10可以选择此种显示方式,在显示数据刷新时刻选择20k偏置电阻,提供较大的驱动电流,在数据保持期间选择75k/300k偏置电阻,提供较小的驱动电流。由DISPCON1寄存器的FCCTL[1:0]位选择充电时间为LCD com周期的1/8、1/16、1/32或1/64。

LCD波形(1/4占空比,1/3偏置)

LCD波形(1/8占空比,1/4偏置)

8.1.1 寄存器

Table 8.1 LCD控制寄存器

ABH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	DISPSEL	LCDON	ELCC	DUTY0	VOL3	VOL2	VOL1	VOL0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	DISPSEL	LCD, LED选择控制位 0:选择LCD驱动器, LED驱动器无效 1:选择LED驱动器, LCD驱动器无效
6	LCDON	LCD使能控制位 0:禁止LCD驱动器 1:允许LCD驱动器
5	ELCC	LCD对比度控制使能位 0: 关闭LCD对比度控制 1: 打开LCD对比度控制
4	DUTY0	LCD占空比选择位(与DUTY[2:1]组合控制) 请参看DUTY[2:1]描述
3-0	VOL[3:0]	LCD对比度控制位

注意: SH79F6484兼有LCD驱动和LED驱动,不可同时有效,若DISPSEL = 1,LCD驱动无效,若DISPSEL = 0,LED驱动无效。

Table 8.2 LCD控制寄存器1

ADH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON1	MODSW	DUTY2	DUTY1	RLCD	FCCTL1	FCCTL2	MOD1	MOD0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	MODSW	LCD/LED共享总选择位 0: P0SS控制位有效 1: 所有LCD/LED共享端口设置为IO
6-5	DUTY[2:1]	LCD占空比选择位(与DUTY0组合控制) 000: 1/4占空比,1/3偏置(4 COM X 28 SEG) COM口:COM1-4 SEG口:SEG1-28 001: 1/8占空比,1/4偏置(8 COM X 24 SEG) COM口:COM1-8 SEG口:SEG1-24 010: 1/4占空比,1/3偏置(4 COM X 28 SEG) COM口:COM5-8共享为COM1-4 SEG口:SEG1-24, COM1-4共享为SEG25-28 011: 1/5占空比,1/3偏置(5 COM X 27 SEG) COM口:COM1-5 SEG口:SEG1-24, COM6-8共享为SEG25-27 100: 1/6占空比,1/3偏置(6 COM X 26 SEG) COM口:COM1-6 SEG口:SEG1-24, COM7-8共享为SEG25-SEG26 101: 1/6占空比,1/4偏置(6 COM X 26 SEG) COM口:COM1-6 SEG口:SEG1-24, COM7-8共享为SEG25-SEG26 其他: 1/4占空比,1/3偏置(4 COM X 28 SEG) COM口:COM1-6 SEG口:SEG1-28
4	RLCD	LCD偏置电阻选择控制位 0: LCD偏置电阻为225k 1: LCD偏置电阻总和为900k
3-2	FCCTL[1:0]	充电时间控制位
1-0	MOD[1:0]	驱动模式选择位 00: 传统电阻型模式,偏置电阻总和为225k/900k 01: 传统电阻型模式,偏置电阻总和为60k 10: 快速充电模式,偏置电阻总和自动在60k和225k/900k之间切换

注意: MODSW = 1时,可以设置代码选项OP_MODSW调整当前LCD扫描的counter是否保留数据。OP_MODSW = 0,则LCD继续扫描;当OP_MODSW = 1时,LCD停止扫描,保留当前COM口数据,MODSW = 0后,继续扫描。

Table 8.3 LCD时钟控制寄存器

ACH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCLK0	=	=	=	-	=	=	DCK1	DCK0
读/写	-	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0

位编号	位符号	说明			
1-0	DCK[1:0]	LCD时钟分频选择位 00: 1/4分频 01: 1/3分频 10: 1/2分频 11: 1/1分频 注意: 此寄存器仅在LCD时钟为128K RC时有效。			

注意:

- (1) 代码选项选择双时钟且低频为32.768K crystal时(OP_OSC = 1010,1011,1101),LCD/LED的时钟选择为32.768K crystal,固定帧频64Hz,DISPCLK0寄存器无效;选择不同的占空比,帧频略有差异;
- (2) 代码选项选择其余时钟时(包括高频单时钟),LCD/LED的时钟选择为128K RC,设置DISPCLK0寄存器DCK[1:0],选择1/4,1/3,1/2,1/1分频比,对应的LCD/LED帧频为256/4Hz,256/3Hz,256/2Hz,256/1Hz,选择不同的占空比,帧频略有差异。

Table 8.4 Px模式选择寄存器

B6H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
POSS	P4S7	P4S6	P4S5	P5S5	P5S4	P0S2	P0S1	P0S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明	
7-5	P4S[7:5]	P4口模式选择位 0: P4.5-P4.7作为I/O 1: P4.5-P4.7作为Segment(SEG22-24)	
4-3	P5S[5:4]	P5口模式选择位 0: P5.4-P5.5作为I/O 1: P5.4-P5.5作为Segment(SEG20 - SEG21)	
2-0	P0S[2:0]	P0口模式选择位 0: P0.0-P0.2作为I/O 1: P0.0-P0.2作为Segment(SEG17 - SEG19)	

Table 8.5 P1模式选择寄存器

9CH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P1SS	P1S7	P1S6	P1S5	P1S4	P1S3	P1S2	P1S1	P1S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	P1S[7:0]	P1口模式选择位(x = 0-7) 0: P1.0-P1.7作为I/O 1: P1.0-P1.7作为Segment(SEG1 - SEG8)

Table 8.6 P2模式选择寄存器

9DH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P2SS	P2S7	P2S6	P2S5	P2S4	P2S3	P2S2	P2S1	P2S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	P2S[7:0]	P2口模式选择位 0: P2.0-P2.7作为I/O 1: P2.0-P2.7作为Segment(SEG9 - SEG16)

Table 8.7 P3模式选择寄存器

9EH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P3SS	P3S7	P3S6	P3S5	P3S4	P3S3	P3S2	P3S1	P3S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	P3S[7:0]	P3口模式选择位 0: P3.0-P3.7作为I/O 1: P3.0-P3.7作为Common(COM1 - COM8)或segment(SEG25-SEG28)

8.1.2 LCD RAM配置

LCD 1/4占空比,1/3偏置(COM1 - 4,SEG1 - 19,SEG24 - 28)

المام المام	7	6	5	4	3	2	1	0
地址	-	-	-	-	COM4	COM3	COM2	COM1
500H	-	-	-	-	SEG1	SEG1	SEG1	SEG1
501H	-	-	-	-	SEG2	SEG2	SEG2	SEG2
502H	-	-	-	-	SEG3	SEG3	SEG3	SEG3
503H	-	-	-	-	SEG4	SEG4	SEG4	SEG4
504H	-	-	-	-	SEG5	SEG5	SEG5	SEG5
505H	-	-	-	=	SEG6	SEG6	SEG6	SEG6
506H	-	-	-	-	SEG7	SEG7	SEG7	SEG7
507H	-	-	-	-	SEG8	SEG8	SEG8	SEG8
508H	-	_	-	-	SEG9	SEG9	SEG9	SEG9
509H	-	_	-	-	SEG10	SEG10	SEG10	SEG10
50AH	-	-	-	-	SEG11	SEG11	SEG11	SEG11
50BH	-	-	-	-	SEG12	SEG12	SEG12	SEG12
50CH	-	_	-	-	SEG13	SEG13	SEG13	SEG13
50DH	-	_	-	-	SEG14	SEG14	SEG14	SEG14
50EH	-	-	-	-	SEG15	SEG15	SEG15	SEG15
50FH	-	-	-	-	SEG16	SEG16	SEG16	SEG16
510H	-	-	-	-	SEG17	SEG17	SEG17	SEG17
511H	-	-	-	-	SEG18	SEG18	SEG18	SEG18
512H	-	-	-	-	SEG19	SEG19	SEG19	SEG19
513H	-	-	-	-	SEG20	SEG20	SEG20	SEG20
514H	-	-	-	-	SEG21	SEG21	SEG21	SEG21
515H	-	_	-	-	SEG22	SEG22	SEG22	SEG22
516H	-	_	-	-	SEG23	SEG23	SEG23	SEG23
517H	-	-	-	-	SEG24	SEG24	SEG24	SEG24
518H	-	_	-	-	SEG25	SEG25	SEG25	SEG25
519H	-	-	-	-	SEG26	SEG26	SEG26	SEG26
51AH	-	_	-	-	SEG27	SEG27	SEG27	SEG27
51BH	-	_	-	-	SEG28	SEG28	SEG28	SEG28

LCD 1/8占空比,1/4偏置(COM1 - 8,SEG1 - 19,SEG24)

地址	7	6	5	4	3	2	1	0
भन्त्रा	COM8	COM7	COM6	COM5	COM4	COM3	COM2	COM1
500H	SEG1							
501H	SEG2							
502H	SEG3							
503H	SEG4							
504H	SEG5							
505H	SEG6							
506H	SEG7							
507H	SEG8							
508H	SEG9							
509H	SEG10							
50AH	SEG11							
50BH	SEG12							
50CH	SEG13							
50DH	SEG14							
50EH	SEG15							
50FH	SEG16							
510H	SEG17							
511H	SEG18							
512H	SEG19							
513H	SEG20							
514H	SEG21							
515H	SEG22							
516H	SEG23							
517H	SEG24							

LCD 1/5占空比,1/3偏置(COM1 - 5,SEG1 - 19,SEG24 - 27)

Lile Lel.	7	6	5	4	3	2	1	0
地址	-	•	-	COM5	COM4	COM3	COM2	COM1
500H	=	-	-	SEG1	SEG1	SEG1	SEG1	SEG1
501H	-	-	-	SEG2	SEG2	SEG2	SEG2	SEG2
502H	=	ı	-	SEG3	SEG3	SEG3	SEG3	SEG3
503H	=	ı	-	SEG4	SEG4	SEG4	SEG4	SEG4
504H	=	=	-	SEG5	SEG5	SEG5	SEG5	SEG5
505H	=	ı	-	SEG6	SEG6	SEG6	SEG6	SEG6
506H	=	ı	-	SEG7	SEG7	SEG7	SEG7	SEG7
507H	=	=	-	SEG8	SEG8	SEG8	SEG8	SEG8
508H	-	-	-	SEG9	SEG9	SEG9	SEG9	SEG9
509H	-	-	-	SEG10	SEG10	SEG10	SEG10	SEG10
50AH	-	=	-	SEG11	SEG11	SEG11	SEG11	SEG11
50BH	-	-	-	SEG12	SEG12	SEG12	SEG12	SEG12
50CH	=	ı	-	SEG13	SEG13	SEG13	SEG13	SEG13
50DH	=	=	-	SEG14	SEG14	SEG14	SEG14	SEG14
50EH	=	=	-	SEG15	SEG15	SEG15	SEG15	SEG15
50FH	-	-	-	SEG16	SEG16	SEG16	SEG16	SEG16
510H	-	-	-	SEG17	SEG17	SEG17	SEG17	SEG17
511H	=	=	-	SEG18	SEG18	SEG18	SEG18	SEG18
512H	-	-	-	SEG19	SEG19	SEG19	SEG19	SEG19
513H	-	-	-	SEG20	SEG20	SEG20	SEG20	SEG20
514H	-	-	-	SEG21	SEG21	SEG21	SEG21	SEG21
515H	-	=	-	SEG22	SEG22	SEG22	SEG22	SEG22
516H	-	-	-	SEG23	SEG23	SEG23	SEG23	SEG23
517H	-	-	-	SEG24	SEG24	SEG24	SEG24	SEG24
518H	-	=	-	SEG25	SEG25	SEG25	SEG25	SEG25
519H	-	-	-	SEG26	SEG26	SEG26	SEG26	SEG26
51AH	=	=	-	SEG27	SEG27	SEG27	SEG27	SEG27

LCD 1/6占空比,1/3或1/4偏置(COM1 - 6,SEG1 - 19,SEG24 - 26)

Lile Jel.	7	6	5	4	3	2	1	0
地址	-	•	COM6	COM5	COM4	COM3	COM2	COM1
500H	=	=	SEG1	SEG1	SEG1	SEG1	SEG1	SEG1
501H	ı	Ī	SEG2	SEG2	SEG2	SEG2	SEG2	SEG2
502H	=	=	SEG3	SEG3	SEG3	SEG3	SEG3	SEG3
503H	=	-	SEG4	SEG4	SEG4	SEG4	SEG4	SEG4
504H	=	=	SEG5	SEG5	SEG5	SEG5	SEG5	SEG5
505H	=	-	SEG6	SEG6	SEG6	SEG6	SEG6	SEG6
506H	=	-	SEG7	SEG7	SEG7	SEG7	SEG7	SEG7
507H	=	-	SEG8	SEG8	SEG8	SEG8	SEG8	SEG8
508H	=	Ī	SEG9	SEG9	SEG9	SEG9	SEG9	SEG9
509H	=	-	SEG10	SEG10	SEG10	SEG10	SEG10	SEG10
50AH	=	-	SEG11	SEG11	SEG11	SEG11	SEG11	SEG11
50BH	-	-	SEG12	SEG12	SEG12	SEG12	SEG12	SEG12
50CH	=	-	SEG13	SEG13	SEG13	SEG13	SEG13	SEG13
50DH	=	=	SEG14	SEG14	SEG14	SEG14	SEG14	SEG14
50EH	=	-	SEG15	SEG15	SEG15	SEG15	SEG15	SEG15
50FH	=	-	SEG16	SEG16	SEG16	SEG16	SEG16	SEG16
510H	=	=	SEG17	SEG17	SEG17	SEG17	SEG17	SEG17
511H	=	-	SEG18	SEG18	SEG18	SEG18	SEG18	SEG18
512H	=	-	SEG19	SEG19	SEG19	SEG19	SEG19	SEG19
513H	-	-	SEG20	SEG20	SEG20	SEG20	SEG20	SEG20
514H	=	-	SEG21	SEG21	SEG21	SEG21	SEG21	SEG21
515H	=	-	SEG22	SEG22	SEG22	SEG22	SEG22	SEG22
516H	-	-	SEG23	SEG23	SEG23	SEG23	SEG23	SEG23
517H	=	=	SEG24	SEG24	SEG24	SEG24	SEG24	SEG24
518H	=	-	SEG25	SEG25	SEG25	SEG25	SEG25	SEG25
519H	=	=	SEG26	SEG26	SEG26	SEG26	SEG26	SEG26

8.2 LED驱动器

LED驱动器包含一个控制器,一个占空比发生器及3-8个COM输出引脚和8个Segment输出引脚。支持1/3-1/8占空比电压驱动方式,占空比1/3-1/8可调。通过DISPSEL位对驱动模式进行选择。控制器由显示数据RAM存储区和一个占空比发生器组成。

LED SEG1-SEG8脚还可以当作I/O口使用。当DISPSEL位置1时,LED功能有效,LCD功能无效。P0SS和P2SS寄存器设置无效,P1SS寄存器和P3SS寄存器分别用于控制LED_SEG1-8,LED_C1 - LED_C8和I/O端口模式的选择。

在使用LED驱动前,DISPSEL必须被置1。

COM口集成大电流SINK能力,当OP_P37-P34 = 0和OP_P33-P.0 = 1时,打开P3(COM口)大电流SINK能力。(见代码选项)

在上电复位、引脚复位、低电压复位或看门狗复位期间,LED被关闭。

8.2.1 寄存器

Table 8.8 LED控制寄存器

ABH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON	DISPSEL	LEDON	=	DUTY0	-	=	=	-
读/写	读/写	读/写	-	读/写	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	0	0	-	0	-	-	-	-

位编号	位符号	说明
7	DISPSEL	LCD, LED选择控制位 0:选择LCD驱动器, LED驱动器无效 1:选择LED驱动器, LCD驱动器无效
6	LEDON	LED使能控制位 0: 禁止LED驱动器 1: 允许LED驱动器
4	DUTY0 DUTY[2:1]	LED占空比选择位(与DUTY[2:1]组合控制) 000: 1/4占空比 001: 1/8占空比 010: 1/3占空比 011: 1/5占空比 100: 1/6占空比 101: 1/7占空比 其他: 1/4占空比

注意: SH79F6484兼有LCD驱动和LED驱动,不可同时有效,若DISPSEL = 1,LCD驱动无效,若DISPSEL = 0,LED驱动无效。

Table 8.9 LED控制寄存器1

ADH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCON1	MODSW	DUTY2	DUTY1	=	=	=	=	-
读/写	读/写	读/写	读/写	-	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	0	0	0	-	-	-	-	-

位编号	位符号	说明
6-5	DUTY0 DUTY[2:1]	LED占空比选择位(与DUTY0组合控制) 000: 1/4占空比 001: 1/8占空比 010: 1/3占空比 011: 1/5占空比 100: 1/6占空比 101: 1/7占空比 其他: 1/4占空比
7	MODSW	LCD/LED共享总选择位 0: P0SS控制位有效 1: 所有LCD/LED共享端口设置为IO

Table 8.10 LED时钟控制寄存器

ACH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
DISPCLK0	-	-	-	-	-	-	DCK0.1	DCK0.0
读/写	-	-	-	-	-	-	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	0	0

位编号	位符号	说明
1-0	DCK[1:0]	LED时钟分频选择位

注意:

- (1) 代码选项选择双时钟且低频为32.768K crystal时(OP_OSC = 1010,1011,1101),LCD/LED的时钟选择为32.768K crystal,固定帧频64Hz,DISPCLK0寄存器无效;选择不同的占空比,帧频略有差异;
- (2) 代码选项选择其余时钟时(包括高频单时钟),LCD/LED的时钟选择为128K RC,设置DISPCLK0寄存器DCK[1:0],选择1/4,1/3,1/2,1/1分频比,对应的LCD/LED帧频为256/4Hz,256/3Hz,256/2Hz,256/1Hz,选择不同的占空比,帧频略有差异。

Table 8.11 P1模式选择寄存器

9CH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P1SS	P1S7	P1S6	P1S5	P1S4	P1S3	P1S2	P1S1	P1S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	P1S[7:0]	P1口模式选择位(x = 0-7) 0: P1.0-P1.7作为I/O 1: P1.0-P1.7作为Segment(LED_S1 - LED_S8)

Table 8.12 P3模式选择寄存器

9EH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
P3SS	P3S7	P3S6	P3S5	P3S4	P3S3	P3S2	P3S1	P3S0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	P3S[7:0]	P3口模式选择位(x = 0-7) 0: P3.0-P3.7作为I/O 1: P3.0-P3.7作为COM(LED_C1 - LED_C8)

8.2.2 LED RAM配置

LED 1/3占空比(LED_C1 - 3,LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED 1/4占空比(LED_C1 - 4, LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
503H	COM4	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED 1/5占空比(LED_C1 - 5, LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
503H	COM4	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
504H	COM5	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED 1/6占空比(LED_C1 - 6, LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
503H	COM4	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
504H	COM5	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
505H	COM6	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED 1/7占空比(LED_C1 -7, LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
503H	COM4	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
504H	COM5	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
505H	COM6	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
506H	COM7	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED 1/8占空比(LED_C1 - 8, LED_S1 - 8)

地	址	7	6	5	4	3	2	1	0
500H	COM1	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
501H	COM2	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
502H	COM3	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
503H	COM4	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
504H	COM5	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
505H	COM6	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
506H	COM7	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1
507H	COM8	SEG8	SEG7	SEG6	SEG5	SEG4	SEG3	SEG2	SEG1

LED波形

注意: t_{OL}为LED Common信号间的重叠时间,取值范围: 20μs-40μs。

8.3 12bit脉冲宽度调制 (PWM0)

8.3.1 特性

- 3路带死区控制的互补输出
- 提供每个PWM周期溢出中断
- 输出极性可选择
- 提供出错侦测功能可紧急关闭PWM输出
- 提供保护寄存器可使重要寄存器免受干扰出错

SH79F6484集成了一个12位PWM模块。PWM模块可以产生周期和占空比分别可调整的脉宽调制波形。

如果EFLT置位,PWM输出能由FLT引脚的输入信号变化自动关闭。

PWM定时器也为PWM0提供1个中断源,在每个PWM周期都会产生中断。这样用户可以实现每个PWM周期中更改下一次循环的周期或占空比。

8.3.2 PWM允许寄存器

Table 8.13 PWM定时器允许寄存器

CFH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWMEN	EPWM0	EFLT	PWM01COE	PWM01BOE	PWM01AOE	PWM0COE	PWM0B0E	PWM0AOE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	EPWM0	12位PWM0输出使能位 0: PWM0输出禁止,用作I/O功能 1: PWM0输出允许
6	EFLT	FLT引脚配置位 0: 普通I/O端口或SS引脚 1: PWM故障检测输入引脚
5-3	PWM01COE PWM01BOE PWM01AOE	12位PWM输出端口PWM01x使能位(PWM0下桥) 0: PWM01x(x = A, B, C) 输出禁止,用作I/O功能 1: PWM0模块使能,PWM01x输出允许
2-0	PWM0COE PWM0BOE PWM0AOE	12位PWM输出端口PWM0x使能位(PWM0上桥) 0: PWM0x(x = A, B, C)输出禁止,用作I/O功能 1: PWM0模块使能,PWM0x输出允许

当PWMEN清0后,PWM输出立即关闭。

FLT端口主要用于检测异常信号,快速关闭PWM输出。FLT探测到故障后,由硬件执行使PWM输出关闭,所以当故障发生后,它可以快速响应,使得PWM输出无效以保护连接PWM的大功率器件。FLT引脚没有内建上拉电阻。

如果EFLT位清0,则表示FLT端口对PWM定时器输出控制无效。

8.3.3 PWM保护寄存器

PWM保护寄存器用来控制对PWM允许寄存器、PWM控制寄存器、PWM周期寄存器、PWM占空比寄存器和PWM死区时间控制寄存器的更改。只有当保护寄存器中的数据为55h时,才允许修改这些寄存器内容,否则不能修改。

这个寄存器能增强SH79F6484的抗干扰能力。

Table 8.14 PWM保护寄存器

E7H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWMLO	PWMLO.7	PWMLO.6	PWMLO.5	PWMLO.4	PWMLO.3	PWMLO.2	PWMLO.1	PWMLO.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明					
7-0	PWMLO[7:0]	PWM锁定位 只有当PWMLO = 0x55,才能允许修改其他PWM寄存器					

8.3.4 12位PWM定时器

SH79F6484包含一个12位PWM模块。PWM模块可以产生周期和占空比分别可调整的脉宽调制波形。PWMC寄存器用于控制PWM模块的时钟,PWMPH/L寄存器用于控制PWM输出波形的周期,PWMDH/L寄存器用于控制PWM模块输出波形的占空比。在PWM输出允许期间可以修改这三个寄存器,但在下一个PWM周期修改才会起作用。

Table 8.15 12位PWM控制寄存器

D2H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0C	PWM0IE	PWM0IF	TnCK02	FLTS	FLTC	PWM0S	TnCK01	TnCK00
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	PWM0IE	PWM0中断允许位(当IEN1寄存器中的EPWM位置1) 0:禁止PWM0中断 1:允许PWM0中断
6	PWM0IF	PWM0中断标志位 0: 软件清0 1: 硬件置1, PWM0周期计数器溢出
5	TnCK02	12位PWM时钟源选择位(与TnCK0[1:0]配合控制) 参见TnCK0[1:0]描述
4	FLTS	FLT状态位 0: PWM正常状态,软件清0 1: PWM输出关闭,硬件置1
3	FLTC	FLT引 脚配置位 0: FLT为低电平时,PWM输出关闭 1: FLT为高电平时,PWM输出关闭
2	PWM0S	PWM0输出模式 0: 高电平驱动,PWM占空比期间输出高电平,占空比溢出后输出低电平 1: 低电平驱动,PWM占空比期间输出低电平,占空比溢出后输出高电平
1-0	TnCK0[1:0]	12位PWM时钟源选择位(与TnCK02配合控制) 000: 振荡器时钟/2 001: 振荡器时钟/4 010: 振荡器时钟/8 011: 振荡器时钟/16 100: 振荡器时钟/1 101: 振荡器时钟/32 110: 振荡器时钟/64 111: 振荡器时钟/256 注意: 当OP_OSC 取0000,0011或1010时,PWM时钟采用内部RC;当OP_OSC 取1110时,PWM时钟为XTAL端的晶振或陶瓷谐振器;当OP_OSC 取0110或1101时,PWM时钟为XTLAX端晶振或陶瓷谐振器。

注意:

- (1) PWM输出关闭时, PWM0x和PWM01x(x = A, B, C)输出固定低电平(PWM0S = 0)或高电平(PWM0S = 1)。
- (2) 一旦检测到FLT引脚的高/低电平,内部状态会保持,PWM输出会关闭。
- (3) 当FLT输入信号有效期间,FLTS位无法清除。只有当FLT输入信号消失后,才能清除FLTS状态位。

Table 8.16 PWM周期控制寄存器低位(PWM0PL)

D3H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0PL	PP0.7	PP0.6	PP0.5	PP0.4	PP0.3	PP0.2	PP0.1	PP0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PP0[7:0]	12位PWM周期低8位寄存器

Table 8.17 PWM周期控制寄存器高位(PWM0PH)

D4H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0PH	-	=	=	=	PP0.11	PP0.10	PP0.9	PP0.8
读/写	-	=	=	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-0	PP0[11:8]	12位PWM周期高4位寄存器

PWM输出周期 = [PP0.11, PP0.0] X PWM时钟。

当[PP0.11, PP0.0] = 000H, 如果PWM0S = 0, 不管PWM占空比为多少, PWM0x(x = A, B, C) 输出低电平。

当[PP0.11, PP0.0] = 000H, 如果PWM0S = 1, 不管PWM占空比为多少, PWM0x(x = A, B, C)输出高电平。

Table 8.18 PWM占空比控制寄存器低位(PWM0DL)

D5H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0DL	PD0.7	PD0.6	PD0.5	PD0.4	PD0.3	PD0.2	PD0.1	PD0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PD0[7:0]	12位PWM占空比低8位寄存器

Table 8.19 PWM占空比控制寄存器高位(PWM0DH)

D6H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0DH	-	=	=	-	PD0.11	PD0.10	PD0.9	PD0.8
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	ı	ı	-	0	0	0	0

位编号	位符号	说明
3-0	PD0[11:8]	12位PWM占空比高4位寄存器

PWM输出占空比 = [PD0.11, PD0.0] X PWM时钟

当[PP0.11, PP0.0] ≤ [PD0.11, PD0.0],如果PWM0S = 0,PWM0x (x = A,B,C)输出高电平。当[PP0.11,PP0.0] ≤ [PD0.11,PD0.0],如果PWM0S = 1,PWM0x (x = A,B,C)输出低电平。

编程注意事项:

- (1) 设置PWMLO寄存器内容为0x55; 选择PWM模块时钟源。
- (2) 通过写适当的值到PWM周期控制寄存器(PWMP)或PWM占空比寄存器(PWMD)设置PWM周期/占空比,先设置低位,再设置高位。注意,即使高位数值不变,也要重写一次,否则,低位的修改无效。
 - (3) 通过设置PWM控制寄存器(PWMC)的PWM0S位选择PWM输出模式(高电平有效或低电平有效)。
- (4) 通过设置PWM控制寄存器(PWMC)中的EPWM0、EPWM0x(x = A,B,C)或EPWM01x(x = A,B,C)位为"1" 来允许PWM端口输出。
 - (5) 如果PWM周期或者占空比需要改变,操作流程如同步骤2或者步骤3说明。修改后的重载计数器的值在下一个周期开始有效。
 - (6) 为避免干扰,设置PWMLO寄存器中的数据不等于0x55。

PWM0输出周期或占空比更改示例

8.3.5 PWM01x (x = A, B, C)

如下图所示,一般的,当没有插入死区时间时,PWM01x(x = A, B, C)输出波形与PWM0x(x = A, B, C)输出波形互补。当PWM控制寄存器中EPWM01x(x = A, B, C)位置1时,PWM01x(x = A, B, C)的输出波形硬件自动产生。

PWM0和PWM01引脚输出波形

注意:

- (1) 尽管PWM0x(x=A,B,C)被禁止,但是如果PWM01x(x=A,B,C)被允许,则它们仍然会有输出信号。
- (2) 如果EFLT置位,当FLT端口有效时,PWM01x(x = A, B, C)和PWM0x(x = A, B, C)都输出低(PWM0S = 0) 或者都输出高(PWM0S = 1)。

8.3.6 死区时间

SH79F6484 PWM提供死区时间控制功能。

当PWM0S = 0时,死区时间产生如下图所示。

当PWM0S = 1时,死区时间产生如下图所示。

通过写PWM0死区时间控制寄存器,在PWM0x(x = A, B, C)和PWM01x(x = A, B, C)之间产生死区时间。PWM01与PWM0周期相同。

注意:

- (1) 死区时间必须在PWM输出允许前置位,否则,死区时间不会改变。所以为了修改死区时间,先禁止PWM输出(PWMLO = #55h),然后改变死区时间,允许PWM输出。最后,为保证PWM相关寄存器不受干扰影响而改变,修改PWMLO寄存器内容不等于55h。
- (2) 为了产生死区时间,请确保(PWM0x周期-PWM0x占空比)>2*PWM01x的死区时间。否则,PWM01x当PWM0S=1时输出高电平,当PWM0S=0时输出低电平。
 - (3) PWMDT寄存器用于控制死区时间,它的时基为系统时钟,而周期和占空比的时基由TnCK2-0控制,最小为2个系统时钟。
 - (4) 每次重新开启PWM前,须先将死区控制寄存器清0,然后再重新设置此寄存器。

Table 8.20 PWM0死区时间控制寄存器

D1H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM0DT	DT0.7	DT0.6	DT0.5	DT0.4	DT0.3	DT0.2	DT0.1	DT0.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	DT0[7:0]	12位PWM0死区时间控制 死区时间为(DT0.7 - DT0.0)X t _{OSC}

8.4 8bit脉冲宽度调制模块(PWM1)

8.4.1 特性

- 8位分辨率PWM模块,提供预分频功能
- 提供每个PWM周期溢出中断
- 输出极性可选择,带输出独立允许位,允许位为0时可做通用定时器使用

SH79F6484内建1个8位PWM模块。PWM模块可以产生周期和占空比分别可以调整的脉宽调制波形。寄存器PWM1C用于控制PWM模块的时钟源和引脚选择输出,寄存器PWM1P用于设置PWM模块的周期,寄存器PWM1D用于设置PWM模块的占空比。

8.4.2 寄存器

Table 8.21 PWM1控制寄存器

D9H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM1C	PWM1EN	PWM1S	TnCK11	TnCK10	=	PWM1IE	PWM1IF	PWM10E
读/写	读/写	读/写	读/写	读/写	=	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	-	0	0	0

位编号	位符号	说明
7	PWM1EN	PWM1模块使能控制位 0: 关闭PWM1模块 1: 打开PWM1模块
6	PWM1S	PWM1输出模式 0: 高电平有效,PWM1占空比有效期间输出高电平,其余时间输出低电平 1: 低电平有效,PWM1占空比有效期间输出低电平,其余时间输出高电平
5-4	TnCK1[1:0]	PWM1时钟选择位 00: 系统时钟/1 01: 系统时钟/8 10: 系统时钟/64 11: 系统时钟/256
2	PWM1IE	PWM1中断允许位(只有当IEN1中的EPWM位也为1时,功能才有效) 0:禁止PWM1周期溢出中断 1:允许PWM1周期溢出中断
1	PWM1IF	PWM1中断标志位 0: PWM1周期计数器没有溢出 1: PWM1周期计数器溢出,由硬件置1
0	PWM10E	PWM1输出控制位 0: PWM1输出禁止,用作I/O功能

Table 8.22 PWM1周期控制寄存器

DAH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM1P	PWM1P.7	PWM1P.6	PWM1P.5	PWM1P.4	PWM1P.3	PWM1P.2	PWM1P.1	PWM1P.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PWM1P[7:0]	PWM1输出周期 = PWM1P * PWM时钟 当PWM1P = 00H时,如果PWM1S = 0,PWM1引脚输出低 当PWM1P = 00H时,如果PWM1S = 1,PWM1引脚输出高

Table 8.23 PWM1占空比控制寄存器

DBH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PWM1D	PWM1D.7	PWM1D.6	PWM1D.5	PWM1D.4	PWM1D.3	PWM1D.2	PWM1D.1	PWM1D.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	PWM1D[7:0]	PWM1占空比控制,控制PWM波形占空比的输出时间 特殊情况: 1. 当PWM1P ≤ PWM1D时 如果PWM1S = 0,则PWM1引脚输出高电平 如果PWM1S = 1,则PWM1引脚输出低电平 2. 当PWM1D = 00H时 如果PWM1S = 0,则PWM1引脚输出低电平 如果PWM1S = 1,则PWM1引脚输出

注意事项:

- (1) PWM1EN位控制PWM1模块打开。
- (2) PWM1OE位能选择P4.5端口是作为I/O端口还是PWM1输出端口。
- (3) 在IEN1寄存器中的EPWM位能允许/禁止PWM1中断。
- (4) 如果PWM1EN置1,PWM1模块打开,但PWM1OE = 0,PWM1输出关闭,此时PWM1模块可以用作一个8bit timer,此时如果中断控制寄存器IEN1的EPWM位置1,PWM1中断照样发生。

PWM1输出范例

PWM1输出周期或者占空比改变范例

8.5 比较器模块

8.5.1 特性

- 集成2个独立的电压比较器
- 比较器1/2反相输入端参考信号可以从外部输入,也可以采用内部电源基准
- 内部电源基准多档可调
- 比较器1/2反相输入增加限幅功能
- 比较器1/2内置施密特窗口和数字滤波电路,输出可触发不同类型中断

8.5.2 寄存器

Table 8.24 PWM1周期控制寄存器

C1H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CMP1CON	CMP1EN	C1NCHS1	C1NCHS0	C1OUT	C1IF	C1RFS	C1DEB1	C1DEB0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	CMP1EN	比较器1使能控制位 0: 比较器1关闭 1: 比较器1开启
6-5	C1NCHS[1:0]	比较器1反相输入端选择位 00: 选择C1N作为比较器1反相输入端 01: 选择内部基准源1作为比较器1反相输入端, C1N做I/O或用作其他功能 10: 选择内部基准源2作为比较器1反相输入端, C1N做I/O或用作其他功能 11: 选择内部基准源3作为比较器1反相输入端, C1N做I/O或用作其他功能 注意: (1) 内部基准源分三档,依次为0.75V,1V,1.25V。 (2) 选择内部基准源作为反相输入端并开启比较器(CMP1EN=1),内部基准源 开始启动,启动时间<100us,请延迟100us后读取输出状态。
4	C1OUT	比较器1输出状态标志位(表示经过滤波器以后的状态,只读) 0:比较器1输出低 1:比较器1输出高
3	C1IF	比较器1输出上升沿中断标志位(经过滤波器以后) 0:比较器1没有产生中断请求 1:比较器1发生中断请求
2	C1RFS	比较器1内建反馈电阻选择位 0: 内建反馈电阻(100k)关闭 1: 内建反馈电阻(100k)打开
1-0	C1DEB[1:0]	比较器1输出信号滤波时间 00: 无滤波 01: 滤波时间常数为1us 10: 滤波时间常数为4us 11: 滤波时间常数为8us 注意: 上述滤波常数时间不是精确值,仅供参考。

Table 8.25 比较器2控制寄存器

C2H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CMP2CON	CMP2EN	C2NCHS1	C2NCHS0	C2OUT	C2IF	C2RFS	C2DEB1	C2DEB0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	CMP2EN	比较器2使能控制位 0: 比较器2关闭 1: 比较器2开启
6-5	C2NCHS[1:0]	比较器2反相输入端选择位 00: 选择C2N作为比较器2反相输入端 01: 选择内部基准源1作为比较器2反相输入端, C2N做I/O或用作其他功能 10: 选择内部基准源2作为比较器2反相输入端, C2N做I/O或用作其他功能 11: 选择内部基准源3作为比较器2反相输入端, C2N做I/O或用作其他功能 注意: (1) 内部基准源分三档,依次为0.75V,1V,1.25V。 (2) 选择内部基准源作为反相输入端并开启比较器(CMP2EN = 1),内部基准源 开始启动,启动时间 < 100us,请延迟100us后读取输出状态。
4	C2OUT	比较器2输出状态标志位(表示经过滤波器以后的状态,只读) 0:比较器2输出低 1:比较器2输出高
3	C2IF	比较器2中断标志位(经过滤波器以后) 0:比较器2没有产生中断请求 1:比较器2产生中断请求
2	C2RFS	比较器2内建反馈电阻选择位 0: 内建反馈电阻(100k)关闭 1: 内建反馈电阻(100k)打开
1-0	C2DEB[1:0]	比较器2输出信号滤波时间

Table 8.26 比较器辅助控制寄存器0

C3H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CMPCON0	C2IFS1	C2IFS0	C1IFS1	C1IFS0	C2SMT1	C2SMT0	C1SMT1	C1SMT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	C2IFS[1:0]	比较器2中断模式选择位 00: 不触发中断标志 01: 下降沿触发,比较器2输出由高变低时触发中断标志 10: 上升沿触发,比较器2输出由低变高时触发中断标志 11: 双沿触发,比较器2输出由高变低时和由低变高时都触发中断标志
5-4	C1IFS[1:0]	比较器1中断模式选择位 00: 不触发中断标志 01: 下降沿触发,比较器1输出由高变低时触发中断标志 10: 上升沿触发,比较器1输出由低变高时触发中断标志 11: 双沿触发,比较器1输出由高变低时和由低变高时都触发中断标志
3-2	C2SMT[1:0]	比较器2施密特电压选择位 00: 没有施密特窗口特性 01: 施密特窗口为10mv 10: 施密特窗口为20mv 11: 施密特窗口为50mv
1-0	C1SMT[1:0]	比较器1施密特电压选择位 00: 没有施密特窗口特性 01: 施密特窗口为10mv 10: 施密特窗口为20mv 11: 施密特窗口为50mv

Table 8.27 比较器辅助控制寄存器1

C4H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CMPCON1	-	=	-	-	-	-	-	C2LIMEN
读/写	-	-	-	-	-	-	-	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	-	-	1

位编号	位符号	说明						
0	C2LIMEN	比较器2反相输入限幅功能控制位 0: 开启限幅功能 1: 关闭限幅功能 <i>注意: 开启限幅功能,比较器2的反相端接限幅共模电压(约V_{DD}/2);</i> <i>关闭限幅功能,比较器2的反相端由C2NCHS控制,C1N和Ref1-3四选一。</i>						

8.5.3 比较器用法

比较器1和2的输出波形的产生流程具体可参考下图:

多通道模拟比较器1

多通道输入模拟比较器2

比较器1/2可以通过设置寄存器CxSMT[1:0](x = 1, 2)设置施密特比较器窗口(迟滞比较器),如下图所示:

施密特窗口为双边窗口, 上下对称。

8.5.4 比较器2限幅功能

输入信号	输入信号幅值a	匹配電阻RLMT
±10v正弦波	10v	47k
±310v正弦波	310v	510K

注意: 上表中匹配电阻为推荐限流电阻, 此电阻条件下, 限幅前后过零点信号重合度和响应时间最优。

8.6 频率检测模块

8.6.1 特性

- 集成3个反相器,带可控反馈电阻
- 内置滤波电路
- 内置频率计电路,timer5定时触发,计数结果可读

SH79F6484内置频率檢測模块,可用于交流小信号频率测量。内置可调反馈电阻,和滤波电路。

INVI和INVO外接振荡电路,INVEN位控制反相器启动,打开TR5启动频率计,TIMER5定时溢出后,频率计将当前计数值载入16位数据寄存器中,清零频率计,并重载定时器初值,重新启动频率计。

反相器模块图:

8.6.2 寄存器

Table 8.28 反向器控制寄存器

C5H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INVCON	INVEN	-	=	FBEN	RESFB1	RESFB0	INVDEB1	INVDEB0
读/写	读/写	-	=	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	-	-	0	0	0	0	0

位编号	位符号	说明
7	INVEN	反相器模块使能控制位 0: 反相器模块关闭 1: 反相器模块开启
4	FBEN	反相器模块反馈引脚选择位 0: P4.1当普通I/O使用 1: P4.1当INVFB引脚使用,内建反馈电阻无效
3-2	RESFB[1:0]	反相器模块内建反馈电阻选择位 00: 选择反馈电阻1 (47k) 01: 选择反馈电阻2 (38k) (-20%) 10: 选择反馈电阻3 (56k) (+20%) 11: 选择反馈电阻4 (100k)
1-0	INVDEB[1:0]	反相器模块输出信号滤波时间 00: 无滤波 01: 滤波时间常数为1us 10: 滤波时间常数为4us 11: 滤波时间常数为8us 注意: 上述滤波常数时间不是精确值,仅供参考。

Table 8.29 频率计结果寄存器

C6H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INVCTL	INVC7	INVC6	INVC5	INVC4	INVC3	INVC2	INVC1	INVC0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0
C7H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
INVCTH	INVC15	INVC14	INVC13	INVC12	INVC11	INVC10	INVC9	INVC8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0 15-8	INVC[15:0]	频率计结果寄存器 频率计Timer定时时间溢出后,频率计的计数Count值将被载入此寄存器, 即Timer定时时间内的脉冲个数。

8.7 增强型通用异步收发器(EUART)

8.7.1 特性

- SH79F6484带有2个EUART(EUART0/1),兼容传统8051
- EUART0波特率可选择为系统时钟分频或定时器4/2的溢出率,EUART1自带一个波特率发生器
- 增强功能包括帧出错检测及自动地址识别
- EUART有四种工作方式

8.7.2 EUART0

EUART0有4种工作方式。在通信之前用户必须先初始化SCON,选择方式和波特率。如果使用方式1或方式3应先初始化定时器2或定时器4。

在所有四种方式中,任何将SBUF作为目标寄存器的写操作都会启动发送。在方式0中由条件RI=0和REN=1初始化接收。这会在TXD引脚上产生一个时钟信号,然后在RXD引脚上移8位数据。在其他方式中由输入的起始位初始化接收(如果REN=1)。通过发送起始位,外部发送器开始通信。

EUART方式列表

SM0	SM1	方式	类型	波特率	帧长度	起始位	停止位	第9位
0	0	0	同步	f _{SYS} / (4或12)	8位	无	无	无
0	1	1	异步	定时器4或2的溢出率/(16或32)	10位	1	1	无
1	0	2	异步	f _{SYS} /(32或64)	11位	1	1	0, 1
1	1	3	异步	定时器4或2的溢出率/(16或32)	11位	1	1	0, 1

方式0:同步,半双工通讯

方式0支持与外部设备的同步通信。在RXD引脚上收发串行数据。TXD引脚用作发送移位时钟。SH79F6484提供TXD引脚上的移位时钟。因此这个方式是串行通信的半双工方式。在这个方式中,每帧收发8位,低位先接收或发送。

通过置SM2位(SCON.5)为0或1,波特率固定为系统时钟的1/12或1/4。当SM2位为0时,串行端口以系统时钟的1/12运行。当置1时,串行端口以系统时钟的1/4运行。与标准8051唯一不同的是,SH79F6484在方式0中有可变波特率。

功能块框图如下图所示。数据通过RXD引脚进入和移出串行端口。移位时钟由TXD引脚输出,用来移位进出SH79F6484的数据。

任何将SBUF作为目标寄存器的写操作都会启动发送。下一个系统时钟Tx控制块开始发送。数据转换发生在移位时钟的下降 沿,移位寄存器的内容逐次从左往右移位,空位置0。当移位寄存器中的所有8位都发送后,Tx控制模块停止发送操作,然后在 下一个系统时钟的上升沿将TI置1(SCON.1)。

REN(SCON.4)置1和RI(SCON.0)清0初始化接收。下一个系统时钟启动接收,在移位时钟的上升沿锁存数据,接收转

换寄存器的内容逐次向左移位。当所有8位都接收到接收移位寄存器中后,Rx控制块停止接收,然后在下一个系统时钟的上升沿 上RI置1,直到被软件清0才允许接收。

Receive Timing of Mode 0

方式1:8位EUART,可变波特率,异步全双工

方式1提供10位全双工异步通信,10位由一个起始位(逻辑0),8个数据位(低位为第一位),和一个停止位(逻辑1)组 成。在接收时,这8个数据位存储在SBUF中而停止位储存在RB8(SCON.2)中。方式1中的波特率是可变的,串行收发波特率 可被设置为定时器4溢出率的1/16或1/32,或定时器2溢出率的1/16(详见**波特率**章节)。功能块框图如下图所示:

任何将SBUF作为目标寄存器的写操作都会启动发送,实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TxD引脚上移出,然后是8位数据位。在发送移位寄存器中的所有8位数据都发送完后,停止位在TxD引脚上移出,在停止位发出的同时Tl标志置1。

Send Timing of Mode 1

只有REN位置1时才允许接收。当RXD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RxD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位,这有助于16分频计数器与RxD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RxD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RxD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。8个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置1,但必须满足下列条件:

1. RI = 0

2. SM2 = 0或者接收的停止位 = 1

如果这些条件被满足,那么停止位装入RB8,8个数据位装入SBUF,RI被置1。否则接收的帧会丢失。这时,接收器将重新去探测RxD端是否另一个下降沿。用户必须用软件清除RI,然后才能再次接收。

Receive Timing of Mode 1

方式2:9位EUART,固定波特率,异步全双工

这个方式使用异步全双工通信中的11位。一帧由一个起始位(逻辑0),8个数据位(低位为第一位),一个可编程的第9数据位和一个停止位(逻辑1)组成。方式2支持多机通信和硬件地址识别(详见**多机通讯**章节)。在数据传送时,第9数据位(SCON中的TB8)可以写0或1,例如,可写入PSW中的奇偶位P,或用作多机通信中的数据/地址标志位。当接收到数据时,第9数据位进入RB8而停止位不保存。PCON中的SMOD位选择波特率为系统工作频率的1/32或1/64。功能块框图如下所示。

任何将SBUF作为目标寄存器的写操作都会启动发送,同时也将TB8载入到发送移位寄存器的第9位中。实际上发送是从16分频计数器中的下一次跳变之后的系统时钟开始的,因此位时间与16分频计数器是同步的,与对SBUF的写操作不同步。起始位首先在TxD引脚上移出,然后是第9位数据。在发送转换寄存器中的所有9位数据都发送完后,停止位在TxD引脚上移出,在停止位开始发送时TI标志置1。

Send Timing of Mode 2

只有REN位置1时才允许接收。当RxD引脚检测到下降沿时串行口开始接收串行数据。为此,CPU对RxD不断采样,采样速率为波特率的16倍。当检测下降沿时,16分频计数器立即复位。这有助于16分频计数器与RxD引脚上的串行数据位同步。16分频计数器把每一位的时间分为16个状态,在第7、8、9状态时,位检测器对RXD端的电平进行采样。为抑制噪声,在这3个状态采样中至少有2次采样值一致数据才被接收。如果所接收的第一位不是0,说明这位不是一帧数据的起始位,该位被忽略,接收电路被复位,等待RxD引脚上另一个下降沿的到来。若起始位有效,则移入移位寄存器,并接着移入其它位到移位寄存器。9个数据位和1个停止位移入之后,移位寄存器的内容被分别装入SBUF和RB8中,RI置1,但必须满足下列条件:

1. RI = 0

2. SM2 = 0或者接收的第9位 = 1, 且接收的字节符合实际从机地址。

如果这些条件被满足,那么第9位移入RB8,8位数据移入SBUF,RI被置1。否则接收的数据帧会丢失。 在停止位的当中,接收器回到寻找RxD引脚上的另一个下降沿。用户必须用软件清除RI,然后才能再次接收。

Receive Timing of Mode 2

方式3:9位EUART,可变波特率,异步全双工

方式3使用方式2的传输协议以及方式1的波特率产生方式。

波特率产生

在方式0中,波特率可编程为系统时钟的1/12或1/4,由SM2位决定。当SM2为0时,串行端口在系统时钟的1/12下运行。当SM2为1时,串行端口在系统时钟的1/4下运行。

在方式1和方式3中,波特率可选择来至定时器4或定时器2的溢出率。

分别置TCLK(T2CON.4)和RCLK(T2CON.5)位为1来选择定时器2作为TX和RX的波特时钟源(详见**定时器**章节)。无论TCLK还是RCLK为逻辑1,定时器2都为波特率发生器方式。如果TCLK和RCLK为逻辑0,定时器4作为Tx和Rx的波特时钟源。

方式1和方式3波特率公式如下所示,其中[RCAP2H, RCAP2L]是定时器2的16位自动重载寄存器,SMOD为EUART的波特率二倍频器(PCON.7),[TH4, TL4]是定时器4的16位自动重载寄存器。

BaudRate =
$$\frac{1}{2 \times 16} \times \frac{f_{SYS}}{65536 - [RCAP 2 H, RCAP 2 L]}$$
,用定时器2作为波特率发生器,定时器2时钟源为系统时钟

$$BaudRate = \frac{1}{16} \times \frac{f_{T2}}{65536 - [RCAP2H, RCAP2L]}$$
,用定时器2作为波特率发生器,定时器2时钟源为时钟源为T2引脚输入时钟

BaudRate =
$$\frac{2^{\text{SMOD}}}{2 \times 16} \times \frac{f_{\text{T-4}}/\text{PRESCALER}}{65536 - [\text{TH-4}, \text{TL-4}]}$$
,用定时器4作为波特率发生器,定时器4工作在方式1

在**方式2**中,波特率固定为系统时钟的1/32或1/64,由SMOD位(PCON.7)决定。当SMOD位为0时,EUART以系统时钟的1/64运行。当SMOD位为1时,EUART以系统时钟的1/32运行。

BaudRate =
$$2^{\text{SMOD}} \times (\frac{f_{\text{SYS}}}{64})$$

多机通讯

软件地址识别

方式2和方式3有一个专门的适用于多机通讯的功能。在这两个方式下,接收的是9位数据,第9位移入RB8中,然后再来一位停止位。EUART可以这样来设定: 当接收到停止位时,只有在RB8 = 1的条件下,串行口中断才会有效(请求标志RI置1)。可以通过将SCON寄存器的SM2位置1使EUART具有这个功能。

在多机通讯系统中,以如下所述来利用这一功能。当主机要发送一数据块给几个从机中的一个时,它先送出一地址字节,以辨认目标从机。地址字节与数据字节可用第9数据位来区别,地址字节的第9位为1,数据字节的第9位为0。

如果从机SM2为1,则不会响应数据字节中断。地址字节可以中断所有从机,这样,每一个从机都检查所接收到的地址字节,以判别自己是不是目标从机。被寻到的从机清0 SM2位,并准备接收即将到来的数据字节,当接收完毕时,从机再一次将SM2置1。没有被寻址的从机,则维持它们的SM2位为1,忽略到来的数据字节,继续做自己的事情。

注意: 在方式0中,SM2用来选择波特率加倍。在方式1中,SM2用来检测停止位是否有效,如果SM2 = 1,接收中断不会响应直到接收到一个有效的停止位。

自动(硬件)地址识别

在方式2和方式3中,SM2置1将使EUART在如下状态下运行:当1个停止位被接收时,如果载入RB8的第9数据位为1(地址字节)并且接收到的数据字节符合EUART的从机地址,EUART产生一个中断。接着,从机应该将SM2清零,以接收后续的数据字节。

在9位方式下要求第9位为1以表明该字节是地址而非数据。当主机要发送一组数据给几个从机中的一个时,必须先发送目标从机的地址。所有从机在等待接收地址字节时,为了确保仅在接收地址字节时产生中断,SM2位必须置1。自动地址识别的特点是只有地址匹配的从机才能产生中断,地址比较通过硬件完成而不是软件。

中断产生后,地址相匹配的从机清零SM2,继续接收数据字节。地址不匹配的从机不受影响,将继续等待接收和它匹配的地址字节。一旦全部信息接收完毕,地址匹配的从机应该再次把SM2置1,忽略所有传送的非地址字节,直到接收到下一个地址字节。

使用自动地址识别功能时,主机可以通过调用给定的从机地址选择与一个或多个从机通信。使用广播地址可以联系所有的从机。有两个特殊功能寄存器用来定义从机地址(SADDR)和地址屏蔽(SADEN)。从机地址是一个8位的字节,存于SADDR寄存器中。SADEN用于定义SADDR内位的有效与否,如果SADEN中某一位为0,则SADDR中相应位的被忽略,如果SADEN中某一位置1,则SADDR中相应位的将用于得到给定的从机地址。这可以使用户在不改变SADDR寄存器中的从机地址的情况下灵活地寻址多个从机。使用给定地址可以识别多个从机而排除其他的从机。

	从机1	从机2
SADDR	10100100	10100111
SADEN(为0的位被忽略)	11111010	11111001
实际从机地址	10100x0x	10100xx1
广播地址(SADDR或SADEN)	1111111x	11111111

从机1和从机2给定地址的最低位是不同的。从机1忽略了最低位,而从机2的最低位是1。因此只与从机1通讯时,主机必须发送最低位为0的地址(10100000)。类似地,从机1的第1位为0,从机2的第1位被忽略。因此,只与从机2通讯时,主机必须发送第1位为1的地址(10100011)。如果主机希望同时与两从机通讯,则第0位为1,第1位为0,第2位被两从机都忽略,此时有两个不同的地址用于选定两个从机(1010 0001和1010 0101)。

主机可以通过广播地址与所有从机同时通讯。这个地址等于SADDR和SADEN的逻辑或,结果中的0表示该位被忽略。多数情况下,广播地址为0xFFh,该地址可被所有从机应答。

系统复位后,SADDR和SADEN两个寄存器初始化为0,这两个结果设定了给定地址和广播地址为XXXXXXXX(所有位都被忽略)。这有效地去除了多处机通讯的特性,禁止了自动寻址方式。这样的EUART将对任何地址都产生应答,兼容了不支持自动地址识别的8051控制器。用户可以按照上面提到的方法实现软件识别地址的多机通讯。

帧出错检测

当寄存器PCON中的SSTAT位为逻辑1时,帧出错检测功能才有效。3个错误标志位被置1后,只能通过软件清零,尽管后续接收的帧没有任何错误也不会自动清零。

注意: SSTAT位必须为逻辑1是访问状态位(FE,RXOV和TXCOL),SSTAT位为逻辑0时是访问方式选择位(SM0,SM1和SM2)。

发送冲突

如果在一个发送正在进行时,用户软件写数据到SBUF寄存器时,发送冲突位(SCON寄存器中的TXCOL位)置1。如果发生了冲突,新数据会被忽略,不能被写入发送缓冲器。

接收溢出

如果在接收缓冲器中的数据未被读取之前,RI清0。又有新的数据存入接收缓冲器,那么接收溢出位(SCON寄存器中的RXOV位)置1。如果发生了接收溢出,接收缓冲器中原来的数据将丢失。

帧出错

如果检测到一个无效(低)停止位,那么帧出错位(寄存器SCON中的FE)置1。

暂停检测

当连续检测到11个位都为低电平位时,则认为检测到一个暂停。由于暂停条件同样满足帧错误条件,因此检测到暂停时也会报告帧错误。一旦检测到暂停条件,UART将进入空闲状态并一直保持,直至接收到有效停止位(RXD引脚上出现上升沿)。

8.7.3 EUART1

EUART1的控制和工作方式与EUART0类似,不同之处是EUART1自带一个波特率发生器,它实质上就是一个15位递增计数器。

另外,EUART1的自带波特率发生器具有波特率微调功能,通过设置寄存器BFINE调整。

Baudrate Generator for EUART

由图得到,波特率发生器的溢出率为 SBRToverflowrate = $\frac{\text{Fsys}}{32768 - \text{SBRT}}$, SBRT = [SBRTH, SBRTL]

因此,EUART1在各模式下的波特率计算公式如下。

方式0:

EUART1的工作方式与EUART0相同,波特率可编程为系统时钟的1/12或1/4,由SM2位决定。当SM2为0时,串行端口在系统时钟的1/12下运行。当SM2为1时,串行端口在系统时钟的1/4下运行。

方式1和方式3:

EUART1的工作方式与EUART0类似,波特率可微调,精度为一个系统时钟,公式如下:

$$BaudRate = \frac{Fsys}{16 \times (32768 - SBRT) + BFINE}$$

例如: Fsys = 8MHz,需要得到115200Hz的波特率,SBRT和BFINE值计算方法如下:

8000000/16/115200 = 4.34 SBRT = 32768 - 4 = 32764

由BaudRate计算公式: 115200 = 8000000/(16×4 + BFINE)

得到: BFINE = 5.4 ≈ 5

此微调方式计算出的实际波特率为115942,误差为0.64%;以往方式计算出的波特率误差为8.5%。

方式2:

EUART1的工作方式与EUART0相同,波特率固定为系统时钟的1/32或1/64,由SMOD位(PCON.7)中决定。当SMOD位为0时,EUART以系统时钟的1/64运行。当SMOD位为1时,EUART以系统时钟的1/32运行。

$$BaudRate = 2^{SMOD} \times (\frac{F_{SYS}}{64})$$

注意: Uart1的中断向量是和Timer3共用,且Timer3中断标志位由硬件清零,若同时使用两者,请注意中断标志位的处理。

8.7.4 寄存器

Table 8.30 EUARTO控制及状态寄存器

98H,Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON	SM0 /FE	SM1 /RXOV	SM2 /TXCOL	REN	TB8	RB8	TI	RI
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	SM[0:1]	EUART0串行方式控制位, SSTAT = 0 00: 方式0, 同步方式, 固定波特率 01: 方式1, 8位异步方式, 可变波特率 10: 方式2, 9位异步方式, 固定波特率 11: 方式3, 9位异步方式, 可变波特率
7	FE	EUART0帧出错标志位,当FE位被读时,SSTAT位必须被设置为1 0:无帧出错,由软件清除 1:发生帧出错,由硬件置1
6	RXOV	EUART0接收完毕标志位,当RXOV位被读时,SSTAT位必须被设置为1 0:无接收完毕,由软件清除 1:接收完毕,由硬件置1
5	SM2	EUART0多处理机通讯允许位(第9位"1"校验器),SSTAT = 0 0: 在方式0下,波特率是系统时钟的1/12 在方式1下,禁止停止位确认检验,停止位将置RI为1产生中断 在方式2和3下,任何字节都会置RI为1产生中断 1: 在方式0下,波特率是系统时钟的1/4 在方式1下,允许停止位确认检验,只有有效的停止位(1)才能置RI为1产生中断 在方式2和3下,只有寻址字节(第9位 = 1)能置RI为1产生中断
5	TXCOL	EUART0发送冲突标志位,当TXCOL位被读时,SSTAT位必须被设置为1 0: 无发送冲突,由软件清0 1: 有发送冲突,由硬件置1
4	REN	EUART0接收器允许位 0:接收禁止 1:接收允许
3	TB8	在EUART0的方式2和3下发送的第9位,由软件置1或清0
2	RB8	在EUART0的方式1,2和3下接收的第9位 在方式0下,不使用RB8 在方式1下,如果接收中断发生,RB8的停止位会收到信号 在方式2和3下,由第9位接收
1	TI	EUART0的传送中断标志位 0:由软件清0 1:由硬件置1,在方式0下的第8位最后,或在其它方式下的停止位开始
0	RI	EUART0的接收中断标志位 0:由软件清0 1:由硬件置1,在方式0下的第8位最后,或在其它方式下的停止位开始

Table 8.31 EUART0数据寄存器

99H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBUF	SBUF.7	SBUF.6	SBUF.5	SBUF.4	SBUF.3	SBUF.2	SBUF.1	SBUF.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SBUF[7:0]	SFR访问两个寄存器:一个移位寄存器和一个接收锁存寄存器 SBUF的写入将发送字节到移位寄存器中,然后开始传输 SBUF的读取返回接收锁存器中的内容

Table 8.32 电源控制寄存器

87H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	SSTAT1	=	GF1	GF0	PD	IDL
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	-	0	0	0	0

位编号	位符号	说明
7	SMOD	波特率加倍器 在方式1和3中,SMOD = 1,若使用定时器4作为波特率发生器, 波特率加倍 (仅适用EUATO) 在方式2中,SMOD = 1,波特率加倍 (EUARTO和EUART1都适用)
6	SSTAT	SCON[7:5]功能选择位 0: SCON[7:5]工作方式作为SM0,SM1,SM2 1: SCON[7:5]工作方式作为FE,RXOV,TXCOL
5	SSTAT1	SCON1[7:5]功能选择位 0: SCON1[7:5]工作方式作为SM10,SM11,SM12 1: SCON1[7:5]工作方式作为FE1,RXOV1,TXCOL1
3-0	-	Other: 参见"电源管理"章节

Table 8.33 EUARTO从属地址及地址掩码寄存器

9AH-9BH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SADDR	SADDR.7	SADDR.6	SADDR.5	SADDR.4	SADDR.3	SADDR.2	SADDR.1	SADDR.0
SADEN	SADEN.7	SADEN.6	SADEN.5	SADEN.4	SADEN.3	SADEN.2	SADEN.1	SADEN.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SADDR[7:0]	EUART从机地址 SADDR寄存器用于定义EUART0从机地址
7-0	SADEN[7:0]	SFR SADEN是一个位屏蔽寄存器,决定检验SADDR的哪些位对应接收地址 0:在SADDR中的相应位被忽略 1:SADDR中的相应位被检验是否对应接收地址

Table 8.34 EUART1控制及状态寄存器

98H, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SCON1	SM10 /FE1	SM11 /RXOV1	SM12 /TXCOL1	REN1	TB18	RB18	TI1	RI1
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-6	SM1[0:1]	EUART1串行方式控制位, SSTAT1 = 0 00: 方式0, 同步方式, 固定波特率 01: 方式1, 8位异步方式, 可变波特率 10: 方式2, 9位异步方式, 固定波特率 11: 方式3, 9位异步方式, 可变波特率
7	FE1	EUART1帧出错标志位,当FE1位被读时,SSTAT1位必须被设置为1 0:无帧出错,由软件清除 1:发生帧出错,由硬件置1
6	RXOV1	EUART1接收完毕标志位,当RXOV1位被读时,SSTAT1位必须被设置为1 0:无接收完毕,由软件清除 1:接收完毕,由硬件置1
5	SM12	EUART1多处理机通讯允许位(第9位"1"校验器),SSTAT1 = 0 0: 在方式0下,波特率是系统时钟的1/12 在方式1下,禁止停止位确认检验,停止位将置RI为1产生中断在方式2和3下,任何字节都会置RI1为1产生中断 1: 在方式0下,波特率是系统时钟的1/4 在方式1下,允许停止位确认检验,只有有效的停止位(1)才能置RI1为1产生中断在方式2和3下,只有寻址字节(第9位 = 1)能置RI1为1产生中断
5	TXCOL1	EUART1发送冲突标志位,当TXCOL1位被读时,SSTAT1位必须被设置为1 0:无发送冲突,由软件清0 1:有发送冲突,由硬件置1
4	REN1	EUART1接收器允许位 0: 接收禁止 1: 接收允许
3	TB18	在EUART1的方式2和3下发送的第9位,由软件置1或清0
2	RB18	在EUART1的方式1,2和3下接收的第9位 在方式0下,不使用RB18 在方式1下,如果接收中断发生,RB18的停止位会收到信号 在方式2和3下,由第9位接收
1	TI1	EUART1的传送中断标志位 0:由软件清0 1:由硬件置1,在方式0下的第8位最后,或在其它方式下的停止位开始
0	RI1	EUART1的接收中断标志位 0:由软件清0 1:由硬件置1,在方式0下的第8位最后,或在其它方式下的停止位开始

Table 8.35 EUART1数据寄存器

99H,Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBUF1	SBUF1.7	SBUF1.6	SBUF1.5	SBUF1.4	SBUF1.3	SBUF1.2	SBUF1.1	SBUF1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SBUF1[7:0]	SFR访问两个寄存器:一个移位寄存器和一个接收锁存寄存器 SBUF1的写入将发送字节到移位寄存器中,然后开始传输 SBUF1的读取返回接收锁存器中的内容

Table 8.36 EUART1从属地址及地址掩码寄存器

9AH-9BH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SADDR1	SADDR1.7	SADDR1.6	SADDR1.5	SADDR1.4	SADDR1.3	SADDR1.2	SADDR1.1	SADDR1.0
SADEN1	SADEN1.7	SADEN1.6	SADEN1.5	SADEN1.4	SADEN1.3	SADEN1.2	SADEN1.1	SADEN1.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SADDR1[7:0]	EUART1从机地址 SADDR1寄存器用于定义EUART1从机地址
7-0	SADEN1[7:0]	SFR SADEN1是一个位屏蔽寄存器,决定检验SADDR1的哪些位对应接收地址 0:在SADDR1中的相应位被忽略 1:SADDR1中的相应位被检验是否对应接收地址

Table 8.37 EUART1波特率发生器寄存器

9DH-9CH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SBRTH	SBRTEN	SBRT.14	SBRT.13	SBRT.12	SBRT.11	SBRT.10	SBRT.9	SBRT.8
SBRTL	SBRT.7	SBRT.6	SBRT.5	SBRT.4	SBRT.3	SBRT.2	SBRT.1	SBRT.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	SBRTEN	EUART1波特率发生器使能控制位 0: 关闭(默认) 1: 打开
6-0 7-0	SBRT[14:0]	EUART1波特率发生器计数器高7位和低8位寄存器

Table 8.38 EUART1波特率发生器微调寄存器

9EH, Bank1	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BFINE	BFINE.7	BFINE.6	BFINE.5	BFINE.4	-	-	-	-
读/写	读/写	读/写	读/写	读/写	-	-	-	-
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	-	-	-	-

位编号	位符号	说明
7-4	BFINE[7:4]	EUART1波特率发生器微调数据寄存器

8.8 串行外部设备接口(SPI)

8.8.1 特性

- 全双工,三线同步传输
- 主从机操作
- 6个可编程主时钟频率
- 极性相位可编程的串行时钟
- 带MCU中断的主模式故障出错标志
- 写入冲突标志保护
- 可选择LSB或MSB传输

串行外部设备接口(SPI)是一种高速串行通信接口,允许MCU与外围设备(包括其它MCU)进行全双工,同步串行通讯。下图所示即为典型的由一个主设备和若干从属外部设备组成的SPI总线网络,主设备通过3条线连接所有从设备,主设备控制连接从属设备SS引脚的4个并行端口来选中其中一个从属设备进行通讯。

8.8.2 信号描述

主输出从输入 (MOSI)

该路信号连接主设备和一个从设备。数据通过MOSI从主设备串行传送到从设备,主设备输出,从设备输入。

主输入从输出(MISO)

该路信号连接从设备和主设备。数据通过MISO从从设备串行传送到主设备,从设备输出,主设备输入。当SPI配置为从设备并未被选中(SS引脚为高电平),从设备的MISO引脚处于高阻状态。

SPI串行时钟 (SCK)

SCK信号用作控制MOSI和MISO线上输入输出数据的同步移动。每8时钟周期线上传送一个字节。如果从设备未被选中(SS引脚为高电平),SCK信号被此从设备忽略。

从设备选择引脚(SS)

每个从属外围设备由一个从选择引脚(SS引脚)选择,当引脚信号为低电平时,表明该从设备被选中。主设备可以通过软件控制连接于从设备SS引脚的端口电平选择每个从设备,很明显,只有一个主设备可以驱动通讯网络。为了防止MISO总线冲突,同一时间只允许一个从设备与主设备通讯。在主设备模式中,SS引脚状态关联SPI状态寄存器SPSTA中MODF标志位以防止多个主设备驱动MOSI和SCK。

下列情况,SS引脚可以作为普通端口或其它功能使用:

- (1)设备作为主设备,SPI控制寄存器SPCON寄存器的SSDIS位置1。这种配置仅仅存在于通讯网络中只有一个主设备的情况,因此,SPI状态寄存器SPSTA中MODF标志位不会被置1。
- (2) 设备配置为从设备,SPI控制寄存器SPCON的CPHA位和SSDIS位置1。这种配置情况存在于只有一个主设备一个从设备的通讯网络中,因此,设备总是被选中的,主设备也不需要控制从设备的SS引脚选择其作为通讯目标。

注意: 当CPHA = '0'时, SS 引脚电平被拉低表示启动发送。

8.8.3 波特率

在主模式下,SPI的波特率有六种可选择的频率,分别是内部时钟的4,8,16,32,64或128分频,可以通过设定SPCON 寄存器的SPR[2:0]位进行选择。

8.8.4 功能描述

下图所示是SPI模块的详细结构。

SPI模块框图

8.8.5 工作模式

SPI可配置为主模式或从属模式中的一种。SPI模块的配置和初始化通过设置SPCON寄存器(串行外围设备控制寄存器)和 SPSTA(串行外围设备状态寄存器)来完成。配置完成后,通过设置SPCON,SPSTA,SPDAT(串行外围设备数据寄存器)来完成数据传送。

在SPI通讯期间,数据同步地被串行的移进移出。串行时钟线(SCK)使两条串行数据线(MOSI和MISO)上数据的移动和采样保持同步。从设备选择线(SS)可以独立地选择SPI从属设备:如果从设备没有被选中,则不能参与SPI总线上的活动。

当SPI主设备通过MOSI线传送数据到从设备时,从设备通过MISO线发送数据到主设备作为响应,这就实现了在同一时钟下数据发送和接收的同步全双工传输。发送移位寄存器和接收移位寄存器使用相同的特殊功能器地址,对SPI数据寄存器SPDAT进行写操作将写入发送移位寄存器,对SPDAT寄存器进行读操作将获得接收移位寄存器的数据。

全双工主从互联图

主模式

(1) 模式启动

SPI主设备控制SPI总线上所有数据传送的启动。当SPCON寄存器中的MSTR位置1时,SPI在主模式下运行,只有一个主设备可以启动传送。

(2) 发送

在SPI主模式下,写一个字节数据到SPI数据寄存器SPDAT,数据将会写入发送移位缓冲器。如果发送移位寄存器已经存在一个数据,那么主SPI产生一个WCOL信号以表明写入太快。但是在发送移位寄存器中的数据不会受到影响,发送也不会中断。另外如果发送移位寄存器为空,那么主设备立即按照SCK上的SPI时钟频率串行地移出发送移位寄存器中的数据到MOSI线上。当传送完毕,SPSTA寄存器中的SPIF位被置1。如果SPI中断被允许,当SPIF位置1时,也会产生一个中断。

(3) 接收

当主设备通过MOSI线传送数据给从设备时,相对应的从设备同时也通过MISO线将其发送移位寄存器的内容传送给主设备的接收移位寄存器,实现全双工操作。因此,SPIF标志位置1即表示传送完成也表示接收数据完毕。从设备接收的数据按照MSB或LSB优先的传送方向存入主设备的接收移位寄存器。当一个字节的数据完全被移入接收寄存器时,处理器可以通过读SPDAT寄存器获得该数据。如果发生超限(SPIF标志未被清0,就试图开始下一次传送),RXOV位置1,表示发生数据超限,此时接收移位寄存器保持原有数据并且SPIF位置1,这样直到SPIF位被清0,SPI主设备将不会接收任何数据。

从模式

(1) 模式启动

当SPCON寄存器中的MSTR位清0,SPI在从模式下运行。在数据传送之前,从设备的SS引脚必须被置低,而且必须保持低电平直到一个字节数据传送完毕。

(2) 发送与接收

从属模式下,按照主设备控制的SCK信号,数据通过MOSI引脚移入,MISO引脚移出。一个位计数器记录SCK的边沿数,当接收移位寄存器移入8位数据(一个字节)同时发送移位寄存器移出8位数据(一个字节),SPIF标志位被置1。数据可以通过读取SPDAT寄存器获得。如果SPI中断被允许,当SPIF置1时,也会产生一个中断。

为防止超限,SPI从设备在向接收移位寄存器移入数据之前也必须软件清零SPIF标志位,否则RXOV位置1,表示发生数据超限。此时接收移位寄存器保持原有数据并且SPIF位置1,这样SPI从设备将不会接收任何数据直到SPIF清0。

SPI从设备不能启动数据传送,所以SPI从设备必须在主设备开始一次新的数据传送之前将要传送的数据写入发送移位寄存器。如果从设备在第一次开始发送之前未写入数据,从设备将传送"0x00"字节给主设备。如果写SPDAT操作发生在传送过程中,那么SPI从设备的WCOL标志位置1,即如果传送移位寄存器已经含有数据,SPI从设备的WCOL位置1,表示写SPDAT冲突。但是移位寄存器的数据不受影响,传送也不会被中断。

8.8.6 传送形式

通过软件设置SPCON寄存器的CPOL位和CPHA位,用户可以选择SPI时钟极性和相位的四种组合方式。CPOL位定义时钟的极性,即空闲时的电平状态,它对SPI传输格式影响不大。CPHA位定义时钟的相位,即定义允许数据采样移位的时钟边沿。在主从通讯的两个设备中,时钟极性相位的设置应一致。

数据传送形式(CPHA=0)

如果CPHA = 0,SCK的第一个沿捕获数据,从设备必须在SCK的第一个沿之前将数据准备好,因此,SS引脚的下降沿从设备开始发送数据。SS引脚在每次传送完一个字节之后必须被拉高,在发送下一个字节之前重新设置为低电平,因此当CPHA = 0,SSDIS不起作用。

数据发送形式(CPHA=1)

如果CPHA = 1,主设备在SCK的第一个沿将数据输出到MOSI线上,从设备把SCK的第一个沿作为开始发送信号。用户必须在第一个SCK的第二个沿之前完成写SPDAT的操作。SS引脚在每个字节数据的传送过程始终保持低电平。这种数据传输形式是一个主设备一个从设备之间通信的首选形式。

注意: 当 SPI 用作从设备模式,且 SPCON 寄存器的 CPOL 位清 0,P2.4/SCK 端口必须设置为输入模式,并在 SPEN 位置 1 前打开上拉电阻。

8.8.7 出错检测

SPSTA寄存器中的标志位表示在SPI通讯中的出错情况:

(1) 模式故障 (MODF)

SPI主模式下的模式故障出错表明SS引脚上的电平状态与实际的设备模式不一致。SPSTA寄存器中MODF位置1后,表明系统控制存在多主设备冲突的问题。这种情况下,SPI系统受到如下影响:

- 产生 SPI 接收/错误 CPU 中断请求:
- SPSTA 寄存器的 SPEN 位清 0, SPI 被禁止;
- SPCON 寄存器的 MSTR 位清 0。

当SPCON寄存器的SS引脚禁止位(SSDIS)清0, SS引脚信号为低时,MODF标志位置1。然而,对于只有一个主设备的系统来说,主设备的SS引脚被拉低,那决不是另外一个主设备试图驱动网络。这种情况下,为防止MODF置1,可使SPCON寄存器中的SSDIS位置1, SS引脚作为普通I/O口或是其它功能引脚。

重新启动串行通信时,用户必须将MODF位软件清0,将SPCON寄存器中的MSTR位和SPSTA寄存器的SPEN位置1,重新启动主模式。

(2) 写冲突 (WCOL)

在发送数据序列期间写入SPDAT寄存器会引起的写冲突,SPSTA寄存器中的WCOL位置1。WCOL位置1不会引起中断,发送也不会中止。WCOL位需由软件清0。

(3) 超限情况(RXOV)

主设备或从设备尚未清除SPIF位,主或从设备又试图发送几个数据字节时,超限情况发生。在这种情况下,接收移位寄存器保持原有数据,SPIF置1,同样SPI设备直到SPIF被清除后才会再接收数据。在SPIF位被清除之前继续调用中断,发送也不会中止。RXOV位置1不会引起中断,RXOV位需由软件清0。

8.8.8 中断

两种SPI状态标志SPIF & MODF能产生一个CPU中断请求。

串行外围设备数据发送标志,SPIF: 完成一个字节发送后由硬件置1。

模式故障标志,MODF:该位被置1表示SS引脚上的电平与SPI模式不一致的。SSDIS位为0并且MODF置1将产生SPI接收器/出错CPU中断请求。当SSDIS置1时,无MODF中断请求产生。

SPI中断请求的产生

8.8.9 寄存器

Table 8.39 SPI控制寄存器

A2H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SPCON	DIR	MSTR	CPHA	CPOL	SSDIS	SPR2	SPR1	SPR0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	DIR	传送方向选择位 0: MSB优先发送 1: LSB优先发送
6	MSTR	SP设备选择位 0: 配置SPI作为从属设备 1: 配置SPI作为主设备
5	СРНА	时钟相位控制位 0: SCK周期的第一沿采集数据 1: SCK周期的第二沿采集数据
4	CPOL	时钟极性控制位 0: 在Idle状态下SCK处于低电平 1: 在Idle状态下SCK处于高电平
3	SSDIS	SS引脚控制位 0:在主和从属模式下,打开SS引脚 1:在主和从属模式下,关闭SS引脚 如果SSDIS置1,不产生MODF中断请求。 在从属模式下,如果CPHA=0,该位不起作用。
2-0	SPR[2:0]	串行外部设备时钟速率选择位 000: f _{SYS} /4 001: f _{SYS} /8 010: f _{SYS} /16 011: f _{SYS} /32 100: f _{SYS} /64 其他: f _{SYS} /128

Table 8.40 SPI状态寄存器

F8H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SPSTA	SPEN	SPIF	MODF	WCOL	RXOV	-	-	-
读/写	读/写	读/写	读/写	读/写	读/写	-	-	-
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	-	-	-

位编号	位符号	说明
7	SPEN	SPI控制位 0: 关闭SPI 1: 打开SPI接口
6	SPIF	串行外部设备数据传送标志位 0: 由软件清0 1: 表明已完成数据传输,由硬件置1
5	MODF	模式故障位 0: 由软件清0 1: 表明SS引脚电平与SPI模式不一致,由硬件置1
4	WCOL	写入冲突标志位 0:由软件清0,表明已处理写入冲突 1:由硬件置1,表明检测到一个冲突
3	RXOV	接收超限位 0:表明已处理接收超限,由软件清0 1:表明已检测到接收超限,由硬件置1

Table 8.41 SPI数据寄存器

A3H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SPDAT	SPDAT7	SPDAT6	SPDAT5	SPDAT4	SPDAT3	SPDAT2	SPDAT1	SPDAT0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SPDAT[7:0]	写入SPDAT的数据被放置到发送移位寄存器中。 读取SPDAT时将获得接收移位换寄存器的数据。

注意: 当关闭SPI功能后,读取SPI数据寄存器SPDAT的数据无效。

8.9 模/数转换器 (ADC)

8.9.1 特性

- 12位分辨率
- 内建基准电压
- 可选外接或内建基准电压
- 9模拟通道输入

SH79F6484包含一个单端型、12位逐次逼近型模/数转换器(ADC)。ADC内建的基准电压V_{REF}直接与V_{DD}相连,用户也可以选择AVREF端口输入基准电压。10个ADC通道都可以输入独立的模拟信号,但是每次只能使用一个通道。GO/DONE信号控制开始转换,提示转换结束。当转换完成时,更新ADC数据寄存器,设置ADCON寄存器中的ADCIF位,并产生一个中断(如果ADC中断被允许)。

ADC模块整合数字比较功能可以比较ADC中的模拟输入的值与数字值。如果允许数字比较功能(在ADCON寄存器中的EC位置1),并且ADC模块使能(在ADCON寄存器中的ADON位置1),只有当相应的模拟输入的数字值大于或等于寄存器中的比较值(ADDH/L)时,才会产生ADC中断。当GO/DONE置1时,数字比较功能会持续工作,直到GO/DONE清0。这一点与模数转换工作方式不同。

带数字比较功能的ADC模块能在Idle模式下工作,并且ADC中断能够唤醒Idle模式。但是,在掉电模式下,ADC模块被禁止。

8.9.2 ADC模块图

AD转换器模块图

8.9.3 寄存器

Table 8.42 ADC控制寄存器

93H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCON	ADON	ADCIF	EC	REFC	SCH2	SCH1	SCH0	GO/DONE
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	ADON	ADC控制位 0: 关闭ADC模块 1: 打开ADC模块
6	ADCIF	ADC标志中断标志 0: 无ADC中断,由软件清0 1: 由硬件置1,表示已完成AD转换、模拟输入大于ADDATH/L(EC = 1, CDIR = 0) 或模拟输入小于ADDATH/L(EC = 1, CDIR = 1)
5	EC	比较功能允许位 0: 关闭比较功能 1: 打开比较功能
4	REFC	基准电压选择位 0: 选择内部V _{DD} 为基准电压 1: 选择外部AVREF端口输入为基准电压
3-1	SCH[2:0]	ADC通道选择位(与SCH3配合使用) 0000: ADC通道AN0 0001: ADC通道AN1 0010: ADC通道AN2 0011: ADC通道AN3 0100: ADC通道AN4 0101: ADC通道AN5 0110: ADC通道AN6 0111: ADC通道AN7 1000: ADC通道AN8 11xx: 内部1.2V基准
0	GO/DONE	ADC状态标志位 0: 当完成AD转换时,该位由硬件自动清0。如在转换期间清0该位会中止当前的转换。如果允许数字比较功能,该位只能软件清0,不能硬件清0 1: 设置开始AD转换或者启动数字比较功能

注意:

- (1) 当选择外部AVREF端口输入为基准电压时(REFC = 1),P4.4作为V_{REF}输入。
- (2) ADON置1后,请延时10us后,再设置GO/DONE = 1,以保障AD转换正常。

Table 8.43 ADC辅助控制寄存器

92H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCON1	-	=	=	-	-	RESO	CH8	SCH3
读/写	-	-	-	-	-	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	-	0	0	0

位编号	位符号	说明
2	RESO	ADC分辨率选择位 0:分辨率为12bit,ADDH为高八位,ADDL[3:0]为低四位 1:分辨率为10bit,ADDH为高八位,ADDL[1:0]为低两位
1	СН8	信道配置位 0: P4.4作为I/O端口 1: P4.4作为ADC输入口 <i>注意: 若REFC = 1,P4.4作为AVREF端口,此控制位无效</i>
0	SCH3	ADC通道选择补充位(与SCH[2:0]配合) 1000: ADC通道AN8 11xx: 内部1.2V基准 注意: 建立时间 < 12us

Table 8.44 ADC定时控制寄存器

94H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADT	TADC2	TADC1	TADC0	CDIR	TS3	TS2	TS1	TS0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-5	TADC[2:0]	ADC时钟周期选择位 000: ADC时钟周期t _{AD} = 2 t _{SYS} 001: ADC时钟周期t _{AD} = 4 t _{SYS} 010: ADC时钟周期t _{AD} = 6 t _{SYS} 011: ADC时钟周期t _{AD} = 8 t _{SYS} 100: ADC时钟周期t _{AD} = 12 t _{SYS} 101: ADC时钟周期t _{AD} = 16 t _{SYS} 110: ADC时钟周期t _{AD} = 24 t _{SYS} 111: ADC时钟周期t _{AD} = 32 t _{SYS}
4	CDIR	ADC比较方向选择位(比较功能打开有效)0:模拟输入大于ADDATH/L值,ADCIF置11:模拟输入小于ADDATH/L值,ADCIF置1
3-0	TS[3:0]	采样时间选择位 2 t _{AD} ≤ 采样时间 = (TS[3:0]+1) * t _{AD} ≤ 15 t _{AD}

注意:

- (1) 请确保ADC时钟周期t_{AD} ≥ 1μs;
- (2) 即使TS[3:0] = 0000, 最小采样时间为2t_{AD}; 即使TS[3:0] = 1111, 最大采样时间为15t_{AD};
- (3) 在设置TS[3:0]前,请估算连接到ADC输入引脚的串联电阻;
- (4) 选择 $2*t_{AD}$ 为采样时间时,请确保连接到ADC输入引脚的串联电阻小于 $10k\Omega$;
- (5) 全部转换时间 = 12t_{AD} + 采样时间。

举例说明:

系统时钟 (SYSCLK)	TADC[2:0]	t _{AD}	TS[3:0]	采样时间	转换时间
	000	30.5 *2=61μs	0000	2*61=122μs	12*61+122=854μs
	000	30.5 *2=61μs	0111	8*61=488μs	12*61+488=1220μs
32.768kHz	000	30.5 *2=61μs	1111	15*61=915μs	12*61+915=1647μs
32.7 OOKI 12	111	30.5 *32=976μs	0000	2*976=1952μs	12*976+1952=13664μs
	111	30.5 *32=976μs	0111	8*976=7808μs	12*976+7808=19520μs
	111	30.5 *32=976μs	1111	15*976=14640μs	12*976+14640=26352μs
	000	0.25 *2=0.5μs	-	-	(t _{AD} < 1μ s ,不推荐)
	001	0.25 *4=1μs	0000	2*1=2μs	12*1+2=14μs
	001	0.25 *4=1μs	0111	8*1=8μs	12*1+8=20μs
4MHz	001	0.25 *4=1μs	1111	15*1=15μs	12*1+15=27μs
	111	0.25 *32=8μs	0000	2*8=16μs	12*8+16=112μs
	111	0.25 *32=8μs	0111	8*8=64μs	12*8+64=160μs
	111	0.25 *32=8μs	1111	15*8=120μs	12*8+120=216μs
	000	0.083*2=0.166μs	-	-	(t _{AD} < 1μs,不推荐)
	100	0.083*12=1μs	0000	2*1=2μs	12*1+2=14μs
	100	0.083*12=1μs	0111	8*1=8μs	12*1+8=20μs
12MHz	100	0.083*12=1μs	1111	15*1=15μs	12*1+15=27μs
	111	0.083*32=2.7μs	0000	2*2.7=5.4μs	12*2.7+5.4=37.8μs
	111	0.083*32=2.7μs	0111	8*2.7=21.6μs	12*2.7+21.6=54μs
	111	0.083*32=2.7μs	1111	15*2.7=40.5μs	12*2.7+40.5=72.9μs

Table 8.45 ADC通道设置寄存器

95H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADCH	CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	CH[7:0]	信道配置位 0: P4.0-P4.3,P3.4-P3.7作为I/O端口 1: P4.0-P4.3,P3.4-P3.7作为ADC输入口

Table 8.46 AD转换数据寄存器(比较值寄存器)

96H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADDL	-	-	-	-	A3	A2	A1	A0
读/写	-	-	=	=	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0
97H,Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
ADDH	A11	A10	A9	A8	A7	A6	A5	A4
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明						
3-0 7-0	A11-A0	ADC数据寄存器 采样模拟电压的数字值。当完成转换后,这个值会更新。 如果ADC数字比较功能使能(EC = 1),这个值将与模拟输入进行比较。 注意: RESO = 0时,分辨率为12位,[A11:A4]作为数据高8位,[A3:A0]作为数据低4位; RESO = 1时,分辨率为10位,[A11:A4]作为数据高8位,[A1:A0]作为数据低2位。						

启动ADC转换步骤:

- (1) 选择模拟输入通道以及基准电压
- (2) 使能ADC模块
- (3) 延时10us
- (4) GO/DONE置1开始ADC转换
- (5) 等待GO/DONE = 0或者ADCIF = 1,如果ADC中断使能,则ADC中断将会产生,用户需要软件清0 ADCIF
- (6) 从ADDH/ADDL获得转换数据
- (7) 重复步骤4-5开始另一次转换

启动数字比较功能步骤:

- (1) 选择模拟输入通道以及基准电压
- (2) 写入ADDH/ADDL,设置比较值
- (3) EC置1使能数字比较功能
- (4) 使能ADC模块
- (5) 延时10us
- (6) GO/DONE置1开始数字比较功能
- (7) 如果模拟输入的值比设置的比较值大,ADIF会被置1。如果ADC中断使能,则ADC中断将会产生,用户需要软件清0 ADCIF
- (8) 数字比较功能会持续工作,直到GO/DONE清0

8.10 蜂鸣器

8.10.1 特性

- 为音频发生器输出方波信号
- 有8种频率可供选择输出或者禁止输出

8.10.2 寄存器

Table 8.47 蜂鸣器控制寄存器

BDH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
BUZCON	-	-	-	-	BCA2	BCA1	BCA0	BZEN
读/写	-	-	-	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	-	-	-	-	0	0	0	0

位编号	位符号	说明
3-1	BCA[2:0]	蜂鸣器输出载波频率控制位 000: 系统时钟/8192 001: 系统时钟/4096 010: 系统时钟/2048 011: 系统时钟/1024 100: 系统时钟/512 101: 系统时钟/32 110: 系统时钟/16 111: 系统时钟/8
0	BZEN	蜂鸣器输出使能控制位 0: P5.3作为I/O口 1: P5.3作为蜂鸣器输出口

8.11 低电压检测 (LPD)

8.11.1 特性

- 低电压检测并产生中断
- 可选的LPD检测电压
- LPD去抖动时间T_{LPD}为30-60µs

低电压检测(LPD)功能用来监测电源电压,如果电压低于指定值时产生内部标志。LPD功能用来通知CPU电源是否被切断或电池是否用尽,因此在电压低于最小工作电压之前,软件可以采取一些保护措施。

LPD中断可以唤醒Power-down模式。

8.11.2 寄存器

Table 8.48 低电压检测控制寄存器

ВЗН	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
LPDCON	LPDEN	LPDF	LPDMD	LPDIF	LPDS3	LPDS2	LPDS1	LPDS0
读/写	读/写	读	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7	LPDEN	LPD允许位 0: 禁止低电压检测 1: 允许低电压检测
6	LPDF	LPD状态标志位(只读状态位) 0: 无LPD发生,由硬件清0 1: LPD发生,由硬件置1
5	LPDMD	LPD模式选择控制位 0: 当V _{DD} 电压小于设定的LPD检测电压时,LPDF标志置1 1: 当V _{DD} 电压大于设定的LPD检测电压时,LPDF标志置1
4	LPDIF	LPD中断标志查询位 0: 无LPD发生,由软件清0 1: LPD发生
3-0	LPDS[3:0]	LPD电压设置位 0000: 2.4V 0001: 2.55V 0010: 2.7V 0011: 2.85V 0100: 3.00V 0101: 3.15V 0110: 3.30V 0111: 3.45V 1000: 3.60V 1001: 3.75V 1010: 3.90V 1011: 4.05V 1110: 4.35V 1110: 4.50V 1111: 4.65V

8.12 低电压复位(LVR)

8.12.1 特性

- 通过代码选项选择, LVR 设定电压 V_{LVR} 可为 2.1V、2.8V、3.7V 或 4.1V
- LVR 去抖动时间 T_{LVR} 为 30-60µs
- 当供电电压低于设定电压 V_{LVR}时,将产生内部复位

低电压复位(LVR)功能是为了监测供电电压,当供电电压低于设定电压 V_{LVR} 时,MCU将产生内部复位。LVR去抖动时间 T_{LVR} 大约为 30μ s- 60μ s。

LVR功能打开后,具有以下特性(t表示电压低于设定电压 V_{LVR} 的时间):

当 V_{DD} ≤ V_{LVR} 且t ≥ T_{LVR} 时产生系统复位。

当 $V_{DD} > V_{LVR}$ 或 $V_{DD} < V_{LVR}$,但 $t < T_{LVR}$ 时不会产生系统复位。

通过代码选项,可以选择LVR功能的打开与关闭。

在交流电或大容量电池应用中,接通大负载后容易导致MCU供电暂时低于定义的工作电压。低电压复位可以应用于此,保护系统在低于设定电压下产生有效复位。

http://www.vicor.top/

SH79F6484

8.13 看门狗定时器(WDT),程序超范围溢出(OVL)复位及其它复位状态

8.13.1 特性

- 看门狗可以工作在掉电模式下
- 程序超范围溢出后硬件自动检测,并产生 OVL 复位
- 看门狗溢出频率可选

程序超范围溢出复位

SH79F6484为进一步增强CPU运行可靠性,内建程式超范围溢出检测电路,一旦检测到程式计数器的值超出ROM最大值,或者发现指令操作码(不检测操作数)为8051指令集中不存在的A5H,便认为程式跑飞,产生CPU复位信号,同时将WDOF标志位置1。为应用这个特性,用户应该将未使用的Flash ROM用0xA5填满。

看门狗

看门狗定时器(WDT)是一个递减计数器,独立内建RC振荡器作为时钟源,因此可以通过代码选项在掉电模式下仍会持续运行。当定时器溢出时,将芯片复位。通过代码选项可以打开或关闭该功能。

WDT控制位(第2 - 0位)用来选择不同的溢出时间。定时器溢出后,WDT溢出标志(WDOF)将由硬件自动置1。通过读或写**RSTSTAT**寄存器,看门狗定时器在溢出前重新开始计数。

其它一些复位标志列举如下:

8.13.2 寄存器

Table 8.49 复位状态寄存器

B1H, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
RSTSTAT	WDOF	-	PORF	LVRF	CLRF	WDT.2	WDT.1	WDT.0
读/写	读/写	=	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR)	0	-	1	0	0	0	0	0
复位值 (WDT)	1	=	u	u	u	0	0	0
复位值 (LVR)	u	-	u	1	u	0	0	0
复位值 (PIN)	u	=	u	u	1	0	0	0

位编号	位符号	说明
7	WDOF	看门狗溢出或程式超范围溢出标志位 看门狗溢出时由硬件置1,可由软件或上电复位清0 0:未发生WDT溢出或程式超范围溢出 1:发生WDT溢出或程式超范围溢出
5	PORF	上电复位标志位 上电复位后硬件置1,只能由软件清0 0:没有发生上电复位 1:发生过上电复位
4	LVRF	低压复位标志位 低压复位后置1,可由软件或上电复位清0 0:没有发生低压复位 1:发生过低压复位
3	CLRF	Reset引脚复位标志位 引脚复位后置1,由软件或上电复位清0 0:没有发生引脚复位 1:发生过引脚复位
2-0	WDT[2:0]	WDT溢出周期控制位 000: 溢出周期最小值 = 4096ms 001: 溢出周期最小值 = 1024ms 010: 溢出周期最小值 = 256ms 011: 溢出周期最小值 = 128ms 100: 溢出周期最小值 = 64ms 101: 溢出周期最小值 = 16ms 110: 溢出周期最小值 = 4ms 111: 溢出周期最小值 = 1ms 注意: 应用中如果看门狗打开,程序清看门狗的最大间隔时间不能大于以上所列最小值

8.14 CRC校验模块

8.14.1 特性

- FLASH 内容 CRC 校验,可设置校验 Flash ROM 范围和初始值
- CRC 生成多项式采用 CRC-CCITT 标准: X¹⁶+X¹²+X⁵+1, 高位优先
- 2 种模式: 高速 CRC 模式和普通 CRC 模式

为提高系统可靠性,SH79F6484内建1个CRC校验模块,可用来实时生成code的CRC校验码,采用的生成多项式采用CRC-CCITT标准: X¹⁶+X¹²+X⁵+1。用户可利用此校验码和理论值比较,监测Flash内容是否有变化。CRC理论值可存放在所选ROM范围的最后两个Byte(不参与CRC校验),或其他位置(比如类EEPROM区,序列号区,用户识别码区等)。

设置CRCADR[3:0]控制位可以选择校验空间大小,设置CRC_GO位启动CRC模块,校验完成后,CRC_GO自动清0,并置起CRCIF标志,如果中断允许位ESCM_LPD_CRC和ECRC都为1,则CPU产生CRC中断,程序响应中断后此标志位被硬件自动清0。

普通CRC模式:在CPU运行程序指令过程中,利用一些特殊指令的执行间隙,进行CRC校验,不会影响CPU的指令执行时间,但校验时间较长,且不可控。

高速CRC模式:为提高CRC的校验时间,可以打开CRC模块,让CPU进入IDLE模式,将执行高速CRC模式,校验时间较短,CRC中断可唤醒IDLE模式。

注意: 掉电(Power-Down)模式下,且CRC模块处于运行状态,会导致CRC校验结果不正确;请确保CRC运行结束前,系统不进掉电(Power-Down)模式。

8.14.2 寄存器

Table 8.50 CRC控制寄存器

FDH, Bank0	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CRCCON	CRC_GO	CRCIF	=	CRCADR4	CRCADR3	CRCADR2	CRCADR1	CRCADR0
读/写	读/写	读/写	-	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	-	0	0	0	0	0

位编号	位符号	说明
7	CRC_GO	CRC启动控制位 0: 关闭CRC模块 1: 启动CRC模块, CRC校验完成后自动清0
6	CRCIF	CRC完成中断请求标志位 0: 未启动或启动后未完成 1: CRC校验完成,向CPU请求中断,如果中断允许位ESCM_LPD_CRC和ECRC都为1,则CPU响应中断,程序响应中断后此标志位 软件 清0
4-0	CRCADR[4:0]	CRC校验范围设置位 0000: 校验地址范围为0000 - 07FDH(2K-2Byte) 0001: 校验地址范围为0000 - 0FFDH(4K-2Byte) 1110: 校验地址范围为0000 - F7FDH(62K-2Byte) 1111: 校验地址范围为0000 - FFFDH(64K-2Byte)

Table 8.51 CRC校验结果寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
CRCDL (F9H, Bank0)	CRCD7	CRCD6	CRCD5	CRCD4	CRCD3	CRCD2	CRCD1	CRCD0
CRCDH (FAH, Bank0)	CRCD15	CRCD14	CRCD13	CRCD12	CRCD11	CRCD10	CRCD9	CRCD8
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	CRCD[15:0]	CRC校验结果寄存器 启动CRC模块前,此寄存器值作为CRC校验初值,校验完成后,校验结果存储于此 寄存器中,覆盖之前的数据。

注意:

- (1) CRC启动之前,需要对CRC结果寄存器赋初始值。
- (2) CRC_GO 置为1 启动CRC 校验,在校验过程中,不允许对CRCADR[3:0] 重新设置,也不允许对CRC 结果寄存器 CRCDL/CRCDH有修改动作。
 - (3) 所选择的CRC校验范围的最后2个byte,不参与CRC校验,可以存放CRC理论值。

8.15 电源管理

8.15.1 特性

- 空闲模式和掉电模式两种省电模式
- 发生中断和复位可退出空闲(Idle)、掉电(Power-Down)模式

为减少功耗,SH79F6484提供两种低功耗省电模式:空闲(Idle)模式和掉电(Power-Down)模式,这两种模式都由PCON和SUSLO两个寄存器控制。

8.15.2 空闲模式(Idle)

空闲模式能够降低系统功耗,在此模式下,程序中止运行,CPU时钟停止,但外部设备时钟继续运行。空闲模式下,CPU 在确定的状态下停止,并在进入空闲模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为0x55,随即将PCON寄存器中的IDL位置1,使SH79F6484进入空闲模式。如果不满足上述的两条连续指令,CPU在下一个机器周期清0SUSLO寄存器或IDL位,CPU也不会进入空闲模式。

IDL位置1是CPU进入空闲模式之前执行的最后一条指令。

两种方式可以退出空闲模式:

- (1) 中断产生。恢复CPU时钟,硬件清除SUSLO寄存器和PCON寄存器的IDL位。然后执行中断服务程序,随后跳转到进入空闲模式指令之后的指令。
- (2) 复位信号产生后(复位引脚上出现低电平,WDT复位,LVR复位)。CPU恢复时钟,SUSLO寄存器和在PCON寄存器中的IDL位被硬件清0,最后SH79F6484复位,程序从地址位0000H开始执行。此时,RAM保持不变而SFR的值根据不同功能模块改变。

8.15.3 掉电模式 (Power-Down)

掉电模式可以使SH79F6484进入功耗非常低的状态。当单时钟信号输入时(OP_OSC[3:0]取0000,1110),掉电模式将停止CPU和外围设备的所有时钟信号。当双时钟信号输入时(OP_OSC[3:0]取0011,0110,1010或1101),若系统时钟取32.768kHz晶振或128kHzRC时,掉电模式将停止CPU和外围设备的所有时钟信号;如果高频振荡器被用作系统时钟,当进入掉电模式时,用于LCD(或LED)和定时器3的32.768kHz晶振或128kHzRC时钟打开。在掉电模式下,如果通过代码选项使能WDT,WDT模块将继续工作。在进入掉电模式前所有CPU的状态都被保存,如PC,PSW,SFR,RAM等。

两条连续指令:先设置SUSLO寄存器为0x55,随即将PCON寄存器中的PD位置1,使SH79F6484进入掉电模式。如果不满足上述的两条连续指令CPU在下一个机器周期清除SUSLO寄存器或的PD位,CPU也不会进入掉电模式。

PD位置1是CPU进入掉电模式之前执行的最后一条指令。

注意:如果同时设置IDL位和PD位,SH79F6484进入掉电模式。退出掉电模式后,CPU也不会掉电进入空闲模式,从掉电模式退出后硬件清0 IDL及PD位。

有三种方式可以退出掉电模式:

- (1) 有效外部中断(如INT0,INT1,INT2,INT3和INT4)和LPD中断使SH79F6484退出掉电模式。在中断发生后振荡器启动,在预热计时结束之后CPU时钟和外部设备时钟恢复,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,然后继续运行中断服务程序。在完成中断服务程序之后,跳转到进入掉电模式之后的指令继续运行。
- (2) 当32.768kHz晶振或128kHzRC作为时钟时,定时器3中断可使SH79F6484退出掉电模式。在预热计时后会恢复CPU时钟及外部设备,SUSLO寄存器和PCON寄存器中的PD位将由硬件清0。然后继续运行中断服务程序。当完成中断服务子程序后,跳转到进入掉电模式之后的指令继续运行。
- (3) 复位信号(复位引脚上出现低电平,WDT复位如果被允许,LVR复位如果被允许)。在预热计时之后会恢复CPU时钟,SUSLO寄存器和PCON寄存器中的PD位会被硬件清除,最后SH79F6484会被复位,程序会从0000H地址位开始运行。RAM将保持不变,而根据不同功能模块SFR的值可能改变。

注意:如要进入这两种低功耗模式,必须在置位PCON中的IDL/PD位后增加3个空操作指令(NOP)。

8.15.4 寄存器

Table 8.52 电源控制寄存器

87H	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
PCON	SMOD	SSTAT	SSTAT1	-	GF1	GF0	PD	IDL
读/写	读/写	读/写	读/写	-	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	-	0	0	0	0

位编号	位符号	说明
7	SMOD	UART波特率加倍器
6	SSTAT	SCON[7:5]功能选择位
5	SSTAT1	SCON1[7:5]功能选择位
3-2	GF[1:0]	用于软件的通用标志
1	PD	掉电模式控制位 0: 当一个中断或复位产生时由硬件清0 1: 由软件置1激活掉电模式
0	IDL	空闲模式控制位 0: 当一个中断或复位产生时由硬件清0 1: 由软件置1激活空闲模式

Table 8.53 省电模式控制寄存器

8EH	第7位	第6位	第5位	第4位	第3位	第2位	第1位	第0位
SUSLO	SUSLO.7	SUSLO.6	SUSLO.5	SUSLO.4	SUSLO.3	SUSLO.2	SUSLO.1	SUSLO.0
读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写	读/写
复位值 (POR/WDT/LVR/PIN)	0	0	0	0	0	0	0	0

位编号	位符号	说明
7-0	SUSLO[7:0]	此寄存器用来控制CPU进入省电模式(空闲或掉电)。只有像下面的连续指令才能使CPU进入省电模式,否则在下个周期中SUSLO,IDL或PD位将被硬件清0。

程序举例:

IDLE_MODE: MOV ORL NOP NOP NOP	SUSLO, #55H PCON, #01H	
POWERDOWN_ MOV ORL NOP NOP NOP	MODE: SUSLO, #55H PCON, #02H	

8.16 预热计数器

8.16.1 特性

- 内建电源预热计数器消除电源的上电的不稳定状态
- 内建振荡器预热计数器消除振荡器起振时的不稳定状态

SH79F6484内建有电源上电预热计数器,主要是用来消除上电电压建立时的不稳定态,同时完成内部一些初始化序列,如读取内部客户代码选项等。

SH79F6484内建振荡器预热计数器,它能消除振荡器在下列情况下起振时的不稳定状态:上电复位,引脚复位,从低功耗模式中唤醒,看门狗复位和LVR复位。

上电后,SH79F6484会先经过电源上电预热计数过程,等待溢出后再进行振荡器的预热计数过程过程,溢出后开始运行程式。

电源上电预热计数时间

	复位 / 氐电压复位	看门狗复位 (不包含掉电模式)		看门狗复位 (唤醒掉电模式)		掉电模式下中断唤醒	
电源上电 预热计数时间	振荡器上电 预热计数时间	电源上电 预热计数时间	振荡器上电 预热计数时间	电源上电 预热计数时间	振荡器上电 预热计数时间	电源上电 预热计数时间	振荡器上电 预热计数时间
11ms	有	≈1ms	无	≈1ms	有	≈500us	有

振荡器上电预热计数时间

代码选项: OP_WMT 振荡器类型	00	01	10	11			
陶振/晶振	2 ¹⁷ X Tosc	2 ¹⁴ X Tosc	2 ¹¹ X Tosc	2 ⁸ X Tosc			
32kHz晶振	2 ¹³ X Tosc						
内部RC	2 ⁷ X Tosc						

8.17 代码选项

OP_WDT:

- 0: 允许看门狗复位(默认)
- 1: 禁止看门狗复位

OP WDTPD:

- 0: 掉电模式下禁止看门狗工作(默认)
- 1: 掉电模式下允许看门狗工作

OP_RST:

- 0: P5.2允许引脚复位(默认)
- 1: P5.2作为普通I/O

OP_WMT: (不适用于32k晶体振荡器和内建RC)

- 00: 最长预热时间(默认)
- 01: 长预热时间
- 10: 短预热时间
- 11: 最短预热时间

OP_OSC:

- 0000: 内部12MHz RC振荡器作为振荡器1,振荡器2关闭
- 0001: 内部8MHz RC振荡器作为振荡器1,振荡器2关闭
- 0010: 内部16MHz RC振荡器作为振荡器1,振荡器2关闭
- 0011: 内部128KHz RC振荡器作为振荡器1,12MHz内部RC作为振荡器2
- 0100: 内部128KHz RC振荡器作为振荡器1,8MHz内部RC作为振荡器2
- 0110: 内部128KHz RC振荡器作为振荡器1, 2M-16MHz晶体/陶瓷谐振器作为振荡器2
- 1010: 32.768kHz晶体谐振器作为振荡器1,12MHz内部RC作为振荡器2
- 1011: 32.768kHz晶体谐振器作为振荡器1,8MHz内部RC作为振荡器2
- 1101: 32.768kHz晶体谐振器作为振荡器1,2M-16MHz晶体/陶瓷谐振器作为振荡器2
- 1110: 2M-16MHz晶体/陶瓷谐振器作为振荡器1,振荡器2关闭
- 其他:内部12MHz RC振荡器作为振荡器1,振荡器2关闭

OP LVREN:

- 0: 禁止低电压复位功能(默认)
- 1: 允许低电压复位功能

OP_LVRLE:

- 00: 低电压复位设定电压为4.1V (默认)
- 01: 低电压复位设定电压为3.7V
- 10: 低电压复位设定电压为2.8V
- 11: 低电压复位设定电压为2.1V

OP SCM:

- 0: 在预热期间禁止时钟单元检测功能(默认)
- 1: 在预热期间允许时钟单元检测功能

OP_OSCDRIVE:

- 011: 8M 16M crystal (默认)
- 001: 4M crystal
- 111: 12M ceramic
- 101: 8M ceramic
- 110: 4M ceramic
- 100: 2M ceramic

OP P1DRIVE:

- 0: Port1 drive电流能力保持不变(默认)
- 1: Port1 drive电流能力加大

OP_PORTDRIVE: (不适用于P3)

- 0:除P3外所有PORT口(包括P1)drive电流能力保持不变(默认)
- 1: 除P3外所有PORT口(包括P1) drive电流能力加大

OP P33-P30:

- 0: Port3[3:0]的sink电流能力保持不变
- 1: Port3[3:0]的sink电流能力加大(默认)

OP_P37-P34:

- 0: Port3[7:4]的sink电流能力保持不变(默认)
- 1: Port3[7:4]的sink电流能力加大

OP MODSW:

- 0: MODSW设置为1时,LCD/LED扫描计数器继续计数
- 1: MODSW设置为1时,LCD/LED扫描计数器暂停计数,保留当前的com值,再次打开LCD/LED时,从当前COM口继续扫描

OP_OSCRFB:

- 00:设置OSC反馈电阻2M
- 01:设置OSC反馈电阻1M
- 10: 设置OSC反馈电阻500K
- 10: 设置OSC反馈电阻300K

8.18 編程注意

(1) 程序编辑中,请设置相关寄存器如下:

POSS (B6H, Bank0) 寄存器写0;

P1SS (9CH, Bank0) 寄存器写0;

P2SS (9DH, Bank0) 寄存器写0;

P3SS (9EH, Bank0) 寄存器写0;

DISPCON (ABH, Bank0) 寄存器写0;

BUZCON(BDH, Bank0)寄存器写0。

程序举例:

MOV P0SS, #00H
MOV P1SS, #00H
MOV P2SS, #00H
MOV P3SS, #00H
MOV DISPCON, #00H
MOV BUZCON, #00H

(2) 为了提高可靠性,请将PxCR(x = 0-5)寄存器未使用位写1,PxPCR(x = 0-5)寄存器未使用位写0,Px(x = 0-5)寄存器未使用位写0。(20引脚封装的比SOP28封装减少的管脚,对应的PxCR(x = 0-5)寄存器位写1,PxPCR(x = 0-5)寄存器位写0,Px(x = 0-5)寄存器位写0)

程序举例(P0):

MOV P0CR, #11XX1XXXB ; P0CR未使用位写1, X为用户设定值 MOV P0PCR, #00XX0XXXB ; P0PCR未使用位写0, X为用户设定值 MOV P0, #00XX0XXXB ; P0未使用位写0, X为用户设定值

9. 指令集

指令	功能描述	代码	字节	周期	
ADD A, Rn	累加器加寄存器	0x28-0x2F	1	1	
ADD A, direct	累加器加直接寻址字节	0x25	2	2	
ADD A, @Ri	累加器加内部RAM	0x26-0x27	1	2	
ADD A, #data	累加器加立即数	0x24	2	2	
ADDC A, Rn	累加器加寄存器和进位位	0x38-0x3F	1	1	
ADDC A, direct	累加器加直接寻址字节和进位位	0x35	2	2	
ADDC A, @Ri	累加器加内部RAM和进位位	0x36-0x37	1	2	
ADDC A, #data	累加器加立即数和进位位	0x34	2	2	
SUBB A, Rn	累加器减寄存器和借位位	0x98-0x9F	1	1	
SUBB A, direct	累加器减直接寻址字节和借位位	0x95	2	2	
SUBB A, @Ri	累加器减内部RAM和借位位	0x96-0x97	1	2	
SUBB A, #data	累加器减立即数和借位位	0x94	2	2	
INC A	累加器加1	0x04	1	1	
INC Rn	寄存器加1	0x08-0x0F	1	2	
INC direct	直接寻址字节加1	0x05	2	3	
INC @Ri	内部RAM加1	0x06-0x07	1	3	
DEC A	累加器减1	0x14	1	1	
DEC Rn	寄存器减1	0x18-0x1F	1	2	
DEC direct	直接寻址字节减1	0x15	2	3	
DEC @Ri	内部RAM減1	0x16-0x17	1	3	
INC DPTR	数据指针加1	0xA3	1	4	
MUL AB 8 X 8 16 X 8	累加器乘寄存器B	0xA4	1	11 20	
DIV AB 8 / 8 16 / 8	累加器除以寄存器B	0x84	1	11 20	
DA A	十进制调整	0xD4	1	1	

逻辑操作指令					
指令	功能描述	代码	字节	周期	
ANL A, Rn	累加器与寄存器	0x58-0x5F	1	1	
ANL A, direct	累加器与直接寻址字节	0x55	2	2	
ANL A, @Ri	累加器与内部RAM	0x56-0x57	1	2	
ANL A, #data	累加器与立即数	0x54	2	2	
ANL direct, A	直接寻址字节与累加器	0x52	2	3	
ANL direct, #data	直接寻址字节与立即数	0x53	3	3	
ORL A, Rn	累加器或寄存器	0x48-0x4F	1	1	
ORL A, direct	累加器或直接寻址字节	0x45	2	2	
ORL A, @Ri	累加器或内部RAM	0x46-0x47	1	2	
ORL A, #data	累加器或立即数	0x44	2	2	
ORL direct, A	直接寻址字节或累加器	0x42	2	3	
ORL direct, #data	直接寻址字节或立即数	0x43	3	3	
XRL A, Rn	累加器异或寄存器	0x68-0x6F	1	1	
XRL A, direct	ect 累加器异或直接寻址字节		2	2	
XRL A, @Ri	累加器异或内部RAM	0x66-0x67	1	2	
XRL A, #data	累加器异或立即数	0x64	2	2	
XRL direct, A	直接寻址字节异或累加器	0x62	2	3	
XRL direct, #data	直接寻址字节异或立即数	0x63	3	3	
CLR A	累加器清零	0xE4	1	1	
CPL A	累加器取反	0xF4	1	1	
RL A	累加器左环移位	0x23	1	1	
RLC A	累加器连进位标志左环移位	0x33	1	1	
RR A	累加器右环移位	0x03	1	1	
RRC A	累加器连进位标志右环移位	0x13	1	1	
SWAP A	累加器高4位与低4位交换	0xC4	1	4	

数据传送指令		/h/fil	44-44	[32] 11) 11
指令	功能描述	代码	字节	周期
MOV A, Rn	寄存器送累加器	0xE8-0xEF	1	1
MOV A, direct	直接寻址字节送累加器	0xE5	2	2
MOV A, @Ri	内部RAM送累加器	0xE6-0xE7	1	2
MOV A, #data	立即数送累加器	0x74	2	2
MOV Rn, A	累加器送寄存器	0xF8-0xFF	1	2
MOV Rn, direct	直接寻址字节送寄存器	0xA8-0xAF	2	3
MOV Rn, #data	立即数送寄存器	0x78-0x7F	2	2
MOV direct, A	累加器送直接寻址字节	0xF5	2	2
MOV direct, Rn	寄存器送直接寻址字节	0x88-0x8F	2	2
MOV direct1, direct2	直接寻址字节送直接寻址字节	0x85	3	3
MOV direct, @Ri	内部RAM送直接寻址字节	0x86-0x87	2	3
MOV direct, #data	立即数送直接寻址字节	0x75	3	3
MOV @Ri, A	累加器送内部RAM	0xF6-0xF7	1	2
MOV @Ri, direct	直接寻址字节送内部RAM	0xA6-0xA7	2	3
MOV @Ri, #data	立即数送内部RAM	0x76-0x77	2	2
MOV DPTR, #data16	16位立即数送数据指针	0x90	3	3
MOVC A, @A+DPTR	程序代码送累加器(相对数据指针)	0x93	1	7
MOVC A, @A+PC	程序代码送累加器(相对程序计数器)	0x83	1	8
MOVX A, @Ri	外部RAM送累加器(8位地址)	0xE2-0xE3	1	5
MOVX A, @DPTR	外部RAM送累加器(16位地址)	0xE0	1	6
MOVX @Ri, A	累加器送外部RAM(8位地址)	0xF2-F3	1	4
MOVX @DPTR, A	累加器送外部RAM(16位地址)	0xF0	1	5
PUSH direct	直接寻址字节压入栈顶	0xC0	2	5
POP direct	栈顶弹至直接寻址字节	0xD0	2	4
XCH A, Rn	累加器与寄存器交换	0xC8-0xCF	1	3
XCH A, direct	累加器与直接寻址字节交换	0xC5	2	4
XCH A, @Ri	累加器与内部RAM交换	0xC6-0xC7	1	4
XCHD A, @Ri	累加器低4位与内部RAM低4位交换	0xD6-0xD7	1	4

指令	功能描述	代码	字节	周期
ACALL addr11	2KB内绝对调用	0x11-0xF1	2	7
LCALL addr16	64KB内长调用	0x12	3	7
RET	子程序返回	0x22	1	8
RETI	中断返回	0x32	1	8
AJMP addr11	2KB内绝对转移	0x01-0xE1	2	4
LJMP addr16	64KB内长转移	0x02	3	5
SJMP rel	相对短转移	0x80	2	4
JMP @A+DPTR	相对长转移	0x73	1	6
JZ rel (不发生转移) (发生转移)	累加器为零转移	0x60	2	3 5
JNZ rel (不发生转移) (发生转移)	累加器为非零转移	0x70	2	3 5
JC rel (不发生转移) (发生转移)	C置位转移	0x40	2	2 4
JNC rel (不发生转移) (发生转移)	C清零转移	0x50	2	2 4
JB bit, rel (不发生转移) (发生转移)	直接寻址位置位转移	0x20	3	4 6
JNB bit, rel (不发生转移) (发生转移)	直接寻址位清零转移	0x30	3	4 6
JBC bit, rel (不发生转移) (发生转移)	直接寻址位置位转移并清该位	0x10	3	4 6
CJNE A, direct, rel (不发生转移) (发生转移)	累加器与直接寻址字节不等转移	0xB5	3	4 6
CJNE A, #data, rel (不发生转移) (发生转移)	累加器与立即数不等转移	0xB4	3	4 6
CJNE Rn, #data, rel (不发生转移) (发生转移)	寄存器与立即数不等转移	0xB8-0xBF	3	4 6
CJNE @Ri, #data, rel (不发生转移) (发生转移)	内部RAM与立即数不等转移	0xB6-0xB7	3	4 6
DJNZ Rn, rel (不发生转移) (发生转移)	寄存器减1不为零转移	0xD8-0xDF	2	3 5
DJNZ direct, rel (不发生转移) (发生转移)	直接寻址字节减1不为零转移	0xD5	3	4 6
NOP	空操作	0	1	1

指令	功能描述	代码	字节	周期	
CLR C	C清零	0xC3	1	1	
CLR bit	直接寻址位清零	0xC2	2	3	
SETB C	C置位	0xD3	1	1	
SETB bit	直接寻址位置位	0xD2	2	3	
CPL C	C取反	0xB3	1	1	
CPL bit	直接寻址位取反	0xB2	2	3	
ANL C, bit	C逻辑与直接寻址位	0x82	2	2	
ANL C, /bit	C逻辑与直接寻址位的反	0xB0	2	2	
ORL C, bit	C逻辑或直接寻址位	0x72	2	2	
ORL C, /bit	C逻辑或直接寻址位的反	0xA0	2	2	
MOV C, bit	直接寻址位送C	0xA2	2	2	
MOV bit, C	C送直接寻址位	0x92	2	3	

10. 电气特性

极限参数* *注释

 如果器件的工作条件超过左列"**极限参数**"的范围,将造成器件永久性破坏。只有当器件工作在说明书所规定的范围内时功能才能得到保障。器件在极限参数列举的条件下工作将会影响到器件工作的可靠性。

直流电气特性1(V_{DD} = 2.0V - 5.5V, GND = 0V, T_A = +25℃, 除非另有说明)

参数	符号	最小值	典型值*	最大值	单位	条件
工作电压	V_{DD}	2.0	5.0	5.5	V	32.768kHz或2MHz ≤ f _{OSC} ≤ 16MHz
工作由流	I _{OP}	ı	5	10	mA	fosc = 12MHz, V _{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动); CPU打开(执行NOP指令); WDT打开,关闭其 它所有功能
工作电流	I _{OP2}	I	25	35	μА	f_{OSC} = 32.768kHz,高频振荡器关闭, V_{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动); CPU打开(执行NOP指令); LVR关闭,WDT关闭,关闭其它所有功能
佐切由添(公阳楷 子)	I _{SB1}	ı	3	5	mA	f _{OSC} = 12MHz, V _{DD} = 5.0V, 所有输出引脚无负载CPU关闭(空闲模式); 所有数字输入引脚不浮动 LVR打开, WDT关闭, LCD打开(不包括LCD面板) 关闭其它所有功能
待机电流(空闲模式) 	I _{SB2}	-	15	25	μА	f _{OSC} = 32.768kHz, V _{DD} = 5.0V, 高频振荡器关闭 所有输出引脚无负载CPU关闭(空闲模式); 所有数字输入引脚不浮动 LVR打开,WDT关闭,CRC关闭,LCD关闭, 关闭其它所有功能
	I _{SB3}	-	2	6	μА	所有振荡器关闭,V _{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动); CPU停止(掉电模式); LCD关闭,WDT关闭,LVR打开,CRC关闭, 关闭其它所有功能
待机电流(掉电模式) 	I _{SB4}	ı	4	15	μА	fosc = 32.768kHz, 高频振荡器关闭, V _{DD} = 5.0V 所有输出引脚无负载(所有数字输入引脚不浮动); CPU关闭(掉电模式); LCD关闭, WDT关闭, LVR打开, CRC关闭, 关闭其它所有功能
WDT电流	I _{WDT}	-	1	3	μА	所有输出引脚无负载, V _{DD} = 5.0V, WDT打开
LCD电流	I _{LCD}	-	6	7	μΑ	传统电阻型LCD模式,V _{DD} = 5V 300kΩ LCD偏置电阻,contrast[3:0] = 1111
LPD电流	I_{LPD}	-	-	1	μА	V _{DD} = 2.0 - 5.5V

续上表

参数	符号	最小值	典型值*	最大值	单位	条件
输入低电压1	V _{IL1}	GND	-	$0.3 \times V_{DD}$	V	I/O端口
输入高电压1	V _{IH1}	$0.7~X~V_{DD}$	-	V_{DD}	V	I/O端口
输入低电压2	V _{IL2}	GND	-	0.2 X V _{DD}	V	$\overline{\text{RST}}$, T2, T3, T4, INT0/1/2/3/4, T2EX, RXD0, RXD1, FLT, V _{DD} = 2.4 - 5.5V
输入高电压2	V _{IH2}	0.8 X V _{DD}	-	V_{DD}	V	$\overline{\text{RST}}$, T2, T3, T4, INT0/1/2/3/4, T2EX, RXD0, RXD1, FLT, V _{DD} = 2.4 - 5.5V
输入漏电流	I _{IL}	-1	-	1	μΑ	输入口,V _{IN} = V _{DD} 或者GND
输出漏电流	I _{OL}	-1	-	1	μΑ	开漏输出,V _{DD} = 5.0V V _{OUT} = V _{DD} 或者GND
复位引脚上拉电阻	R _{RPH}	-	30	-	kΩ	$V_{DD} = 5.0V$, $V_{IN} = GND$
上拉电阻	R _{PH}	-	30	-	kΩ	$V_{DD} = 5.0V$, $V_{IN} = GND$
输出高电压1	V _{OH1}	V _{DD} - 0.7	-	-	V	I/O端口(P2-P5),I _{OH} = -10mA,V _{DD} = 5.0V
输出高电压2	V _{OH2}	V _{DD} - 0.7	-	-	V	I/O端口(P1),I _{OH} = -10mA,V _{DD} = 5.0V 代码选项为Port1口drive电流能力保持不变
输出高电压3	V _{OH3}	V _{DD} - 0.7	-	-	V	I/O端口(P1),I _{OH} = -18mA,V _{DD} = 5.0V 代码选项为Port1口drive电流能力加大
输出低电压1	V _{OL1}	-	-	GND + 0.6	V	I/O端口(P0,P1,P2,P4,P5), I _{OL} = 15mA,V _{DD} = 5.0V
输出低电压2	V _{OL2}	-	-	GND + 0.6	V	I/O端口(P3),I _{OL} = 15mA,V _{DD} = 5.0V 代码选项为Port3口sink电流能力保持不变
大驱动口灌电流能力	I _{OL}	120	140	-	mA	I/O端口(P3),V _{DD} = 5.0V,V _{OL} = GND + 1.5V 代码选项为Port3口sink电流能力加大
LCD输出电阻	R _{ON}	-	5	-	kΩ	SEG1 - 28,COM1 - 8,V _{DD} = 3.6V - 5.0V V1,V2,V3电压偏差低于0.2V

注意:

- (1) "*"表示典型值下的数据是在5.0V, 25°C下测得的, 除非另有说明。
- (2) 流过V_{DD}的最大电流值在5.0V, 25℃下须小于150mA。
- (3) 流过GND的最大电流值在5.0V, 25℃下须小于200mA。

5V模/数转换器电气特性

参数	符号	最小值	典型值	最大值	单位	条件
供电电压	V_{AD}	2.5	3	5.5	V	
精度	N_R	-	12	-	bit	$GND \leq V_{AIN} \leq V_{REF}$
A/D输入电压	V_{AIN}	GND	-	V_{REF}	V	
A/D输入电阻*	R _{AIN}	2	-	ı	МΩ	V _{IN} = 5.0V
模拟电压源推荐阻抗	Z _{AIN}	-	-	10	kΩ	
A/D转换电流	I_{AD}	ı	1	3	mA	ADC模块打开, V _{DD} = 5.0V
A/D输入电流	I _{ADIN}	-	-	10	μΑ	V _{DD} = 5.0V
微分非线性误差	D _{LE}	ı	-	±1	LSB	$f_{OSC} = 12MHz$, $V_{DD} = 5.0V$
积分非线性误差	I _{LE}	-	-	±2	LSB	f_{OSC} = 12MHz, V_{DD} = 5.0V
满刻度误差	E _F	ı	±1	±8	LSB	$f_{OSC} = 12MHz$, $V_{DD} = 5.0V$
偏移量误差	Ez	-	±0.5	±8	LSB	f_{OSC} = 12MHz, V_{DD} = 5.0V
总绝对误差	E _{AD}	-	-	±8	LSB	$f_{OSC} = 12MHz$, $V_{DD} = 5.0V$
总转换时间**	T _{CON}	16	-	-	t _{AD}	12 bit精度,V _{DD} = 5.0V,t _{AD} = 1μs
内部参考电压	V _{ADREF}	1.225	1.25	1.275	V	±2%,T _A = +25°C,CMP共用

注意:

- (1) "*"表示ADC输入电阻就是直流条件下ADC自身的输入电阻。
- (2) "**"建议与ADC连接的信号源内阻小于10kΩ。

比较器1电气特性(V_{DD} = 2.7V - 5.5V,GND = 0V, T_A = +25°C,除非另有说明)

参数	符号	最小值	典型值	最大值	单位	条件
输入失调电压	V _{IO}	=	5	10	mV	
输入共模电压范围	V_{ICM}	0	-	V _{DD} - 1.2	٧	
小信号响应时间	T _{RS1}	=	1	2	μS	$V_{DD} = 5V$, C1P = 1.25V, C1N = 1.20V
大信号响应时间	T _{RS2}	ı	0.3	0.5	μS	$V_{DD} = 5V$, $C1P = 3V$, $C1N = 1V$
比较器施密特窗口1	V _{SMT1}	=	0	-	mv	$V_{DD} = 5V$, C1SMT[1:0] = 00
比较器施密特窗口2	V_{SMT2}	-	10	16	mv	V _{DD} = 5V, C1SMT[1:0] = 01
比较器施密特窗口3	V_{SMT3}	-	20	30	mv	V _{DD} = 5V, C1SMT[1:0] = 10
比较器施密特窗口4	V_{SMT4}	-	50	70	mv	V _{DD} = 5V, C1SMT[1:0] = 11
内部参考电压1	V _{CREF1}	-	0.75	-	V	
内部参考电压2	V_{CREF2}	=	1	-	V	
内部参考电压3	V _{CREF3}	-	1.25	-	V	

比较器2电气特性(V_{DD} = 2.7V - 5.5V,GND = 0V, T_A = +25°C,除非另有说明)

参数	符号	最小值	典型值	最大值	单位	条件
输入失调电压	V _{IO}	=	5	10	mV	
输入共模电压范围	V_{ICM}	0	-	V _{DD} - 1.2	V	
小信号响应时间	T _{RS1}	=	1	2	μS	V _{DD} = 5V, C2P = 1.25V, C2N = 1.20V
大信号响应时间	T _{RS2}	=	0.3	0.5	μS	$V_{DD} = 5V$, $C2P = 3V$, $C2N = 1V$
比较器施密特窗口1	V_{SMT1}	=	0	-	mV	V _{DD} = 5V, C2SMT[1:0] = 00
比较器施密特窗口2	V_{SMT2}	=	10	16	mV	V _{DD} = 5V, C2SMT[1:0] = 01
比较器施密特窗口3	V_{SMT3}	-	20	30	mV	V _{DD} = 5V, C2SMT[1:0] = 10
比较器施密特窗口4	V_{SMT4}	=	50	70	mV	V _{DD} = 5V, C2SMT[1:0] = 11
内部参考电压1	V _{CREF1}	-	0.75	-	V	
内部参考电压2	V_{CREF2}	=	1	-	V	
内部参考电压3	V _{CREF3}	-	1.25	-	V	
限幅特性	V_{LIMIT}					TBD

参数	符号	最小值	典型值	最大值	单位	条件
静态电流	I _{DD}	-	1	-	μА	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or GND
俞出低电压	V _{OL}	-	-	0.05	V	$V_{DD} = 5V$, $ I_O < 1\mu A$
俞 出高电压	V _{OH}	4.95	-	-	V	$V_{DD} = 5V, I_O < 1\mu A$
俞 入低电压	V _{IL}	-	-	1.0	V	$V_{DD} = 5V$, $ I_O < 1\mu A$, $V_O = 4.5V$
俞 入高电压	V _{IH}	4.0	-	-	V	$V_{DD} = 5V$, $ I_O < 1\mu A$, $V_O = 0.5V$
渝出低电流	I _{OL}	0.44	0.88	-	mA	$V_{DD} = 5V, V_{O} = 0.4V$
计出高电流	I _{OH}	-0.44	-0.88	-	mA	$V_{DD} = 5V, V_{O} = 4.6V$
流电气特性(V _{DD} = 5V	, CL =	50pF,RL	= 200kΩ	,tr OR tf:	= 20ms	, T _A = +25°C,除非另有说明)
i入输出传播延迟时间	t _{PHL}	-	50	90	ns	V _{DD} = 5V
渡时间	t _{THL}	1	80	150	ns	V _{DD} = 5V
均输入电容	C _{IN}	1	6	15	рF	Any Gate
]耗电容	C _{PD}	-	12	-	pF	Any Gate
VIN		V	OUT	VDD- INPUT		tr

交流电气特性(V_{DD} = 2.0V - 5.5V,GND = 0V, T_A = +25°C, f_{OSC} = 12MHz,除非另有说明)

参数	符号	最小值	典型值	最大值	单位	条件	
振荡器起振时间	Tosc	ı	-	1	S	f _{OSC} = 32.768kHz	
派初帝建派时间	Tosc	ı	1	2	ms	f _{OSC} = 12MHz	
复位脉冲宽度	t_{RESET}	10	-	-	μS		
WDT RC频率	f_{WDT}	ı	2	3	kHz		
		-	-	±1	%	RC振荡器: F - 12MHz /12MHz (V _{DD} = 2.0 - 5.0V,T _A = +25°C)	
	ΔF / F	1	-	±2	%	RC振荡器: F - 12MHz /12MHz (V _{DD} = 2.0 - 5.0V,T _A = -40°C至+85°C)	
		-	-	±2	%	RC振荡器: F - 128kHz /128kHz (V _{DD} = 2.0 - 5.0V,T _A = 25°C)	

低电压复位电气特性(V_{DD} = 2.0V - 5.5V,GND = 0V, T_A = +25°C,除非另有说明)

参数	符号	最小值	典型值	最大值	单位	条件
LVR设定电压1	V _{LVR1}	4.0	4.1	4.2	٧	LVR使能 V _{DD} = 2.0V - 5.5V
LVR设定电压2	V _{LVR2}	3.6	3.7	3.8	V	LVR使能 V _{DD} = 2.0V - 5.5V
LVR设定电压3	V _{LVR3}	2.7	2.8	2.9	٧	LVR使能 V _{DD} = 2.0V - 5.5V
LVR设定电压4	V _{LVR4}	2.0	2.1	2.2	٧	LVR使能 V _{DD} = 2.0V - 5.5V
LVR电压检测迟滞窗口	V _{SMTLV}	ı	50	-	mV	
LVR低电压复位宽度	T _{LVR}	-	60	-	μS	

12MHz 晶体振荡器特性

参数	符号	最小值	典型值	最大值	单位	条件
频率	F _{12M}	-	12	-	MHz	
匹配电容	CL	-	12.5	-	pF	

32.768kHz 晶体振荡器特性

参数	符号	最小值	典型值	最大值	单位	条件
频率	F _{32k}	-	32768	-	Hz	
匹配电容	CL	1	12.5	1	pF	

11. 订购信息

产品编号	封装
SH79F6484P/044PR	LQFP44
SH79F6484U/048UR	TQFP48

12. 封装信息 TQFP48外形尺寸

单位: 英寸/毫米

符号	英寸单	位尺寸	毫米单	位尺寸
17) 7	MIN	MAX	MIN	MAX
Α		0.047		1.2
A1	0.002	0.006	0.05	0.15
A2	0.035	0.041	0.9	1.05
D	0.027	0.028	6.85	7.10
Е	0.270	0.280	6.85	7.10
H_D	0.346	0.362	8.8	9.2
H _E	0.346	0.362	8.8	9.2
b	0.007	0.010	0.19	0.26
е	0.020	TYP	0.500	TYP
С	0.004	0.008	0.090	0.200
L	0.018	0.030	0.45	0.75
L1	0.033	0.045	0.85	1.15
	0°	10°	0°	10°

LQFP 44外形尺寸 (BODY SIZE: 10*10)

单位: 英寸/毫米

符号	英寸单	位尺寸	毫米单	位尺寸	
10.2	MIN	MAX	MIN	MAX	
Α	0.057	0.065	1.45	1.65	
A1	0.001	0.001	0.015	0.21	
A2	0.051	0.059	1.3	1.5	
D	0.388	0.396	9.85	10.15	
E	0.388	0.396	9.85	10.15	
H _D	0.465	0.48	11.8	12.2	
HE	0.465	0.48	11.8	12.2	
b	0.01	0.014	0.25	0.35	
е	0.031	TYP	0.8 TYP		
С	0.005	5 TYP	0.127	' TYP	
L	0.017	0.028	0.42	0.78	
L1	0.037	0.045	0.95	1.15	
θ	0 °	10°	0°	10°	

13. 规格更改记录

版本	记录	日期
0.0	初始版本	

目录	
1. 特性	
2. 概述	
3. 方框图	
4. 引脚配置	
4.1 44引脚LQFP封装	
4.2 32引脚LQFP封装	
5. 引脚描述	
6. SFR映像	
7. 标准功能	
7.1 CPU	
7.1.1 CPU内核特殊功能寄存器	
7.1.2 CPU增强内核特殊功能寄存器	21
7.1.3 寄存器	21
7.2 随机数据存储器(RAM)	22
7.2.1 特性	
<i>7.2.2 寄存器</i>	
7.3 FLASH程序存储器	
7.3.1 特性	
7.3.2 ICP模式下的Flash操作	
7.4 扇区自编程(SSP)功能	
7.4.1 寄存器	
7.4.2 Flash控制流程图	
7.4.3 SSP 编程注意事项	
7.5 系统时钟和振荡器	
7.5.1 特性	
7.5.2 时钟定义	
7.5.3 概述	
7.5.4 寄存器	
7.5.5 振荡器类型	
7.5.6 谐振器负载电容选择	
7.6 系统时钟监控(SCM)	
7.7 I/O端口	
7.7.1 特性 7.7.2 寄存器	
* 1 *	
7.7.3 端口模块图	
7.8 定时器	
7.8.1 特性	
7.8.2 定时器2	
7.8.3 定时器3	
7.8.4 定时器4	
7.8.5 定时器5	
7.9 中断	
7.9.1 特性	
7.9.2 中断允许	
7.9.3 寄存器	
7.9.4 中断标志	
7.9.5 中断向量	
7.9.6 中断优先级	
7.9.7 中断处理	
7.9.8 <i>中断响应时间</i>	
7.9.9 外部中断输入	
7.9.10 中断汇总	
O 사업기무 구나스아	

8.1 LCD驱动器	67
8.1.1 寄存器	
8.1.2 LCD RAM配置	74
8.2 LED驱动器	
8.2.1 寄存器	
8.2.2 LED RAM配置	
8.3 12BIT脉冲宽度调制(PWM0)	
8.3.1 特性	
8.3.2 PWM允许寄存器	
8.3.3 PWM保护寄存器	
8.3.4 12位PWM定时器	
$8.3.5 PWM0Ix (x = A , B , C) \dots$	
8.3.6 死区时间	87
8.4 8BIT脉冲宽度调制模块(PWM1)	
8.4.1 特性	
8.4.2 寄存器	
8.5 比较器模块	
8.5.1 特性	
8.5.2 寄存器	
8.5.3 比较器用法	
8.5.4 比较器2限幅功能	
8.6 频率检测模块	
8.6.1 特性	
8.6.2 寄存器	
8.7 增强型通用异步收发器(EUART)	
8.7.1 特性	
8.7.2 EUARTO 8.7.3 EUARTI	
8.7.4 寄存器	
8.8 串行外部设备接口(SPI)	
8.8.1 特性	
8.8.2 信号描述	
8.8.3 波特率	
8.8.4 功能描述	
8.8.5 工作模式	
8.8.6 传送形式	
8.8.7 出错检测	
8.8.8 中断	
8.8.9 寄存器	
8.9 模/数转换器(ADC)	117
8.9.1 特性	
8.9.2 ADC模块图	117
8.9.3 寄存器	118
8.10 蜂鸣器	122
8.10.1 特性	122
8.10.2 寄存器	
8.11 低电压检测(LPD)	123
8.11.1 特性	123
8.11.2 寄存器	123
8.12 低电压复位(LVR)	124
8.12.1 特性	
8.13 看门狗定时器(WDT),程序超范围溢出(OVL)复位及其它复位状态	125
8.13.1 特性	
8.13.2 寄存器	
8.14 CRC 核	127

	8.14.1 <u>特性</u>	127
	8.14.1 特性	127
8.1	5 电源管理	129
	5 电源管理	129
	8.15.2 空闲模式(Idle)	129
	8.15.3 掉电模式(Power-Down)	129
	8.15.4 寄存器	130
8.1	6 预热计数器	131
	6 预热计数器	131
8.1	7代码选项	132
8.1	8編桿注意	134
9.	指令集	135
10.	电气特性	140
11.	订购信息	
12.	封装信息	146
13.	规格更改记录	148