Σχεσιακή Άλγεβρα

Αθανάσιος Σταυρακούδης

http://stavrakoudis.econ.uoi.gr astavrak@uoi.gr @AStavrakoudis

Άνοιξη 2016

- Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
- Το καρτεσιανό γινόμενο και οι εφαρμογές του
- 5 Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Σχεσιακή άλγεβρα

- Η σχεσιακή άλγεβρα είναι μια διαδικαστική (procedural) γλώσσα.
- Διαθέτει ένα σύνολο τελεστών για σχεσιακές πράξεις.
- Βασικές πράξεις: Προβολή, Επιλογή, Ένωση,
 Διαφορά, Καρτεσιανό Γινόμενο.
- Παράγωγες πράξεις: Σύζευξη, Διαίρεση, Τομή.
- Επιπλέον πράξεις: Συνάθροιση, Μετονομασία, Εισαγωγή, Διαγραφή, Ενημέρωση.

Κλειστότητα

- Η σχεσιακή άλγεβρα και ο σχεσιακός λογισμός παρέχουν ένα σύνολο από τελεστές για πράξεις ανάμεσα σε σχέσεις.
- Οι πράξεις με σχέσεις παράγουν νέες σχέσεις.
- Το αποτέλεσμα της πράξης έχει καθορισμένο βαθμό και πληθικότητα.

Κλειστότητα

Το αποτέλεσμα οποιασδήποτε σχεσιακής πράξης είναι σχέση.

Συμβατότητα τύπου

Ορισμός

Δύο σχέσεις r και s, έχουν συμβατότητα τύπου, αν και μόνο αν:

- Έχουν τον ίδιο βαθμό, δηλαδή έχουν το ίδιο πλήθος γνωρισμάτων.
- Τα αντίστοιχα γνωρίσματα έχουν το ίδιο πεδίο ορισμού.

Συμβατότητα τύπου

Ορισμός

 Δ ύο σχέσεις r και s, έχουν συμβατότητα τύπου, αν και μόνο αν:

- Έχουν τον ίδιο βαθμό, δηλαδή έχουν το ίδιο πλήθος γνωρισμάτων.
- Τα αντίστοιχα γνωρίσματα έχουν το ίδιο πεδίο ορισμού.

Παράδειγμα

	Α	В	С
r	1	b	10
•	5	а	30
	3	С	20

	Α	В	С
s	5	а	20
•	2	b	10
	3	С	20

Παραδείγματα μη συμβατότητας τύπου

Παράδειγμα

	Α	В	С		Α	В	С		Α	В		Α	В	С
r	1	b	10	s	5	а	20	t	5	b	u	5	b	а
-	5	а	30		2	b	10		2	b	-	2	b	b
	3	С	20		3	С	20		3	С		3	С	b

- **1** Οι σχέσεις *r* και *t* δεν έχουν συμβατότητα τύπου.
- ② Οι σχέσεις *r* και *u* δεν έχουν συμβατότητα τύπου.
- **3** Οι σχέσεις *s* και *t* δεν έχουν συμβατότητα τύπου.
- Οι σχέσεις s και u δεν έχουν συμβατότητα τύπου.
- 5 Οι σχέσεις t και u δεν έχουν συμβατότητα τύπου.

- Σ Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεω
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Προβολή

Ορισμός της προβολής

$$r[X] = \{t[X] \mid t \in r\}$$

Προβολή μιας σχέσης r(R), πάνω στο υποσύνολο γνωρισμάτων της X ($X \subseteq R$) είναι μια σχέση με σχήμα το σύνολο X και κορμό εκείνες τις πλειάδες που αντιστοιχούν σε μοναδικές τιμές για τα γνωρίσματα X.

Η προβολή συμβολίζεται με το ελληνικό γράμμα Π:

$$\Pi_{A_1,A_2,\ldots,A_m}(r)$$

Παραδείγματα προβολής

Α	В	С	Α	В	В	С	В	Α	В	С
5	а	30	5	а	a	30		5	а	30
2	b	10	2	b	b	10	b	2	b	10
3	С	20	3	С	С	20	С	3	С	20
5	b	10	5	b				5	b	10
	r		$\Pi_{A, .}$	$_B(r)$	Π_{B_i}	$_{C}(r)$	$\Pi_B(r)$		$\Pi(r)$)

Παρατηρήσεις

- Απαλοιφή διπλοεγγραφών.
- Π(r) : Ταυτοτική προβολή.

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- 🗿 Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Επιλογή

Ορισμός της Επιλογής

$$\sigma_{\phi}(r) = \{ t \in r \mid t \text{ satisfies } \phi \}$$

Η επιλογή ή αλλιώς και περιορισμός μιας σχέσης r(R), είναι μια σχέση που έχει το ίδιο σχήμα R με τη σχέση r και κορμό ένα υποσύνολο του κορμού της r που ικανοποιεί μια συνθήκη, πχ: $X \theta Y$.

Η επιλογή συμβολίζεται με:

$$\sigma_{X \theta Y}(r)$$

όπου η συνθήκη περιορισμού είναι μια παράσταση που μπορεί να αποτιμηθεί σε TRUE, FALSE ή UNK.

Διευκρινίσεις για την επιλογή

Τελεστές, τελεσταίοι, συγκρίσεις, NULL

- O τελεστής θ μπορεί να είναι ένας από $=, \neq, <, \leq, >, \geq$.
- Η τιμή ενός γνωρίσματος μπορεί να συγκριθεί με:
 - Την τιμή ενός άλλου γνωρίσματος
 - Μια κυριολεκτική τιμή
 - Μια αλγεβρική παράσταση
 - Μια σχεσιακή παράσταση (εμφώλευση ερωτημάτων)
- **⑤** Οι παραστάσεις μπορούν επίσης να περιέχουν τους λογικούς τελεστές AND (\land) , OR (\lor) και NOT (\neg) .
- Το αποτέλεσμα μιας σύγκρισης μπορεί να είναι TRUE, FALSE ή UNK.

Παραδείγματα επιλογής

Έστω η σχέση employees:

= 0 000 1					
empid	name	salary			
101	Αθανασίου Μιχ.	1200			
102	Βαφειάδης Νικ.	1150			
104	Νικολοπούλου Ναν.	1570			
108	Βασιλειάδη Μαρ.	1320			

Παραδείγματα:

- $\sigma_{salary < 1300}(employees)$
- $\circ \sigma_{salary \geq 1200 \land salary \leq 1600}(employees)$
- $\circ \sigma_{empid=102}(employees)$

Υπάλληλοι με μισθό < 1300

empid	name	salary
101	Αθανασίου Μιχ.	1200
102	Βαφειάδης Νικ.	1150
104	Νικολοπούλου Ναν.	1570
108	Βασιλειάδη Μαρ.	1320

Απάντηση

$\sigma_{salary < 1300}(employees)$

empid	name	salary
101	Αθανασίου Μιχ.	1200
102	Βαφειάδης Νικ.	1150

Υπάλληλοι με μισθό μεταξύ 1200 και 1600

empid	name	salary
101	Αθανασίου Μιχ.	1200
102	Βαφειάδης Νικ.	1150
104	Νικολοπούλου Ναν.	1570
108	Βασιλειάδη Μαρ.	1320

Απάντηση

 $\sigma_{salary \geq 1200 \land salary \leq 1600}(employees)$

empid	name	salary
101	Αθανασίου Μιχ.	1200
104	Νικολοπούλου Ναν.	1570
108	Βασιλειάδη Μαρ.	1320

Ο υπάλληλος με κωδικό 101

empid	name	salary
101	Αθανασίου Μιχ.	1200
102	Βαφειάδης Νικ.	1150
104	Νικολοπούλου Ναν.	1570
108	Βασιλειάδη Μαρ.	1320

Απάντηση

$\sigma_{empid=102}(employees)$

empid	name	salary
101	Αθανασίου Μιχ.	1200

- Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Συνδυασμός προβολής και επιλογής

Συνδυασμός σχεσιακών πράξεων

- Στο αποτέλεσμα μια προβολής μπορεί να εφαρμοστεί επιλογή.
- Στο αποτέλεσμα μια επιλογής μπορεί να εφαρμοστεί προβολή.
- Στο αποτέλεσμα μια προβολής μπορεί να εφαρμοστεί νέα προβολή.
- Στο αποτέλεσμα μια επιλογής μπορεί να εφαρμοστεί νέα επιλογή.

Κλειστότητα

Το αποτέλεσμα κάθε σχεσιακής πράξης είναι σχέση.

Ο πίνακας employees από τη βάση company

Έστω η σχέση employees με σχήμα:

employees (empid, firstname, lastname, depid, salary, hiredate)

empid	firstname	lastname	depid	salary	hiredate
102	Νικηφόρος	Διαμαντίδης	6	1212.50	2003-06-02
109	Μαρία	Αθανασίου	1	2787.69	2000-01-26
153	Μαρία	Αλεβιζάτου	2	1321.92	2001-05-15
172	Χρήστος	Βλάσσης	3	1101.70	2000-07-04
189	Θεόδωρος	Αγγελίνας	6	1908.28	2000-06- 149/2 ΔΕΔΟΜΙ
 Δείγμα από	 τα δεδομένα του	 πίνακα.			Ma sporma

Δείτε τα πλήρη περιεχόμενα εδώ:

http://stavrakoudis.econ.uoi.gr/stavrakoudis/?iid=400

Ερωτήσεις και απαντήσεις 1-3

🚺 Να βρεθεί το όνομα και το επώνυμο όλων των υπαλλήλων:

 $\Pi_{firstname,lastname}(employees)$

Να βρεθούν οι υπάλληλοι με μισθό μεγαλύτερο του 1500:

 $\sigma_{salary>1500}(employees)$

Να βρεθεί το όνομα και το επώνυμο όλων των υπαλλήλων που παίρνουν μισθό μεγαλύτερο από 1500:

 $\Pi_{\textit{firstname}, \textit{lastname}} (\sigma_{\textit{salary} > 1500}(\textit{employees}))$

Ερωτήσεις και απαντήσεις 4–6

Να βρεθούν οι υπάλληλοι (κωδικός, επώνυμο, τμήμα) που δεν εργάζονται στο τμήμα 2 και έχουν μισθό μικρότερο από 1200:

$$\Pi_{empid,lastname,depid} \left(\sigma_{(depid \neq 2 \land salary < 1200)}(employees) \right)$$

Να βρεθεί το επώνυμο και ο μισθός του υπαλλήλου με κωδικό 109 μετά την αύξηση 5% στο μισθό του:

$$\Pi_{lastname, salary*1.05} (\sigma_{empid=109}(employees))$$

Να βρεθούν οι κωδικοί των υπαλλήλων που δεν εργάζονται συμματα 2, 3, 4:

$$\Pi_{empid}\left(\sigma_{\neg(depid=2\lor depid=3\lor depid=4)}(employees)\right)$$

- Γ Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

- Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη της ένωσης

Ορισμός της ένωσης:

$$r \cup s = \{t \mid t \in r \text{ or } t \in s\}$$

Ένωση δύο σχέσεων r(R) και s(S), που έχουν συμβατότητα τύπου, είναι μια νέα σχέση που έχει σχήμα (επικεφαλίδα) ίδιο με αυτό της r και s, και κορμό το σύνολο των κορμών των r και s, δηλαδή όλες τις πλειάδες που ανήκουν στην r, ή στην s, η και στις δύο πλειάδες. Η ένωση συμβολίζεται με $r \cup s$ ή r UNION s.

Παράδειγμα ένωσης σχέσεων

$$r = \{1, 2\} \\ s = \{2, 3\} \\ r \cup s = \{1, 2, 3\}$$

Παράδειγμα ένωσης σχέσεων

$$r = \{1, 2\}$$

 $s = \{2, 3\}$
 $r \cup s = \{1, 2, 3\}$

	Α	В	C	Α	В	C	Α	В	
	1	b	10	5	а	30	1	b	
	5	а	30	2	b	10	5	а	
	3	С	20	3	С	20	3	С	
•							2	b	
		r			S			$r \cup .$	s

10 a 30

c 20 b 10

Ένωση και αντιμεταθετική ιδιότητα

Ισχύει η αντιμεταθετική ιδιότητα

$$r \cup s = s \cup r$$

Παράδειγμα

A	В	С	Α	В	С
1	b	10	5	а	30
5	а	30	2	b	10
3	С	20	3	С	20
	r			s	

Α	В	С	-
1	b	10	
5	а	30	2
3	С	20	3
2	b	10	1
	$r \cup s$	<u> </u>	

TOMOTERS TATIONAL
ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ SQL Μιε προκτική προσέγγιση
OTTO DE COMO
DATA 6 8
6

30 b 10 c = 20

 $s \cup r$

Ένωση και προσεταιριστική ιδιότητα

Ισχύει η προσεταιριστική ιδιότητα

$$r \cup (s \cup t) = (r \cup s) \cup t$$

Λόγω αυτής της της ιδιότητας, είναι δυνατό να γραφεί η παρακάτω παράσταση χωρίς παρενθέσεις:

$$r \cup s \cup t$$

για να δηλώσει την ένωση τριών ή περισσότερων σχέσεων.

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη της διαφοράς

Ορισμός της διαφοράς:

$$r-s = \{t \mid t \in r \text{ and } t \notin s\}$$

Διαφορά δύο σχέσεων r(R) και s(S), που έχουν συμβατότητα τύπου, είναι μια νέα σχέση που έχει σχήμα (επικεφαλίδα) ίδιο με αυτό της r και s, και κορμό τις πλειάδες που ανήκουν στην r αλλά όχι στην s. Η διαφορά συμβολίζεται με r-s ή r MINUS s.

Παράδειγμα διαφοράς δύο σχέσεων

$$r = \{1, 2\}$$

$$s = \{2, 3\}$$

$$r - s = \{1\}$$

$$s - r = \{3\}$$

Παράδειγμα διαφοράς δύο σχέσεων

$$r = \{1, 2\}$$

 $s = \{2, 3\}$
 $r - s = \{1\}$
 $s - r = \{3\}$

Α	В	C	Α	В	C
1	b	10	5	a	30
5	а	30	2	b	10
3	С	20	3	С	20
	r			S	

$$-s$$
 $s-r$

Αντιμεταθετική και προσεταιριστική ιδιότητα

Στη σχεσιακή πράξη της διαφοράς:

Δεν ισχύει η αντιμεταθετική ιδιότητα

$$r - s \neq s - r$$

Δεν ισχύει η προσεταιριστική ιδιότητα

$$r-(s-t)\neq (r-s)-t$$

Τπενθύμιση

$$5-3 \neq 3-5$$

 $8-(3-2) \neq (8-3)-2$

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- 🐠 Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη της τομής

Ορισμός της τομής:

$$r \cap s = \{t \mid t \in r \text{ and } t \in s\}$$

Τομή δύο σχέσεων r(R) και s(S), που έχουν συμβατότητα τύπου, είναι μια νέα σχέση που έχει σχήμα (επικεφαλίδα) ίδιο με αυτό της r και s, και κορμό τις πλειάδες που ανήκουν στην r και στην s, δηλαδή τις κοινές πλειάδες. Η τομή συμβολίζεται με $r \cap s$ ή r INTERSECT s.

Παράδειγμα τομής δύο σχέσεων

$$r = \{1, 2\}$$

 $s = \{2, 3\}$
 $r \cap s = \{2\}$

Παράδειγμα τομής δύο σχέσεων

$$r = \{1, 2\}$$

 $s = \{2, 3\}$
 $r \cap s = \{2\}$

Α	В	С	Α	В	С		Α	В	С
1	b	10	5	а	30		5	a	30
5	a	30	2	b	10		3	С	20
3	С	20	3	С	20				
	r			S		•		$r \cap x$	S

Τομή και αντιμεταθετική ιδιότητα

Ισχύει η αντιμεταθετική ιδιότητα

$$r \cap s = s \cap r$$

Παράδειγμα

В	С	Α	В	C		Α	В	С		Α	В	С
b	10	5	а	30	_	5	а	30	-	5	а	30
а	30	2	b	10		3	С	20		3	С	20
С	20	3	С	20	-				-			
r			5			$r \cap s$					$s \cap i$	r
	b a	B C b 10 a 30 c 20 r	b 10 5 a 30 2	b 10 5 a a 30 2 b	b 10 5 a 30 a 30 2 b 10	b 10 5 a 30 a 30 2 b 10	b 10 5 a 30 5 a 30 2 b 10 3 c 20 3 c 20	b 10 5 a 30 5 a a 30 2 b 10 3 c c 20 3 c 20	b 10 5 a 30 5 a 30 a 30 2 b 10 3 c 20 c 20 3 c 20	b 10 5 a 30 5 a 30 a 30 2 b 10 3 c 20 c 20 3 c 20	b 10 5 a 30 5 a 30 5 a 30 2 b 10 3 c 20 3 c 20 3 c 20	b 10 5 a 30 5 a 30 5 a a 30 2 b 10 3 c 20 3 c c 20 3 c 20

Τομή και προσεταιριστική ιδιότητα

Ισχύει η προσεταιριστική ιδιότητα

$$r\cap(s\cap t)=(r\cap s)\cap t$$

Λόγω αυτής της της ιδιότητας, είναι δυνατό να γραφεί η παρακάτω παράσταση χωρίς παρενθέσεις:

$$r \cap s \cap t$$

για να δηλώσει την τομή τριών ή περισσότερων σχέσεων.

Η τομή είναι παράγωγη πράξη

Εναλλακτικός ορισμός της τομής

$$r\cap s=r-(r-s)$$

Δηλαδή το αποτέλεσμα της τομής $r \cap s$ ισούται με το αποτέλεσμα της διαφοράς της r από τη διαφορά r-s.

Παράδειγμα

Δώστε εσείς ένα παράδειγμα που να επιβεβαιώνει (ή να αναιρεί) τον παραπάνω ορισμό.

Περιεχόμενα

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Pane Amore

- Pane, amore e fantasia, (1953)
- 2 Pane, amore e gelosia, (1954)
- **3** Pane, amore e ..., (1955)

Pane amore

	f		g
actorID	name	actorID	name
0001120	Vittorio De Sica	0001120	Vittorio De Sica
0518178	Gina Lollobrigida	0518178	Gina Lollobrigida
0581028	Marisa Merlini	0581028	Marisa Merlini
0139214	Memmo Carotenuto	0139214	Memmo Carotenuto
0728376	Roberto Risso	0681365	Tina Pica
0681365	Tina Pica	0882237	Saro Urzì
0188022	Vittoria Crispo	0188022	Vittoria Crispo
			BAZEIZ AEAC Mio spaki

MENΩN KAI SQL

Pane amore (Ερωτήματα συμμετοχής)

Έπαιξαν σε τουλάχιστον μία ταινία

 $f \cup g$

Έπαιξαν και στις δύο πρώτες ταινίες

 $f \cap g$

Έπαιξαν μόνο στην πρώτη ταινία

f-g

Έπαιξαν μόνο στη δεύτερη ταινία

g - f

Toμή fantasia ∩ gelosia

	f		g
actorID	name	actorID	name
0001120	Vittorio De Sica	0001120	Vittorio De Sica
0518178	Gina Lollobrigida	0518178	Gina Lollobrigida
0581028	Marisa Merlini	0581028	Marisa Merlini
0139214	Memmo Carotenuto	0139214	Memmo Carotenuto
0728376	Roberto Risso	0681365	Tina Pica
0681365	Tina Pica	0882237	Saro Urzì
0188022	Vittoria Crispo	0188022	Vittoria Crispo

actorID	name
0001120	Vittorio De Sica
0518178	Gina Lollobrigida
0581028	Marisa Merlini
0139214	Memmo Carotenuto
0681365	Tina Pica
0188022	Vittoria Crispo

Δ ιαφορά fantasia — gelosia

	g
actorID	name
0001120	Vittorio De Sica
0518178	Gina Lollobrigida
0581028	Marisa Merlini
0139214	Memmo Carotenuto
0681365	Tina Pica
0882237	Saro Urzì
0188022	Vittoria Crispo
	0001120 0518178 0581028 0139214 0681365 0882237

actorID	name
0728376	Roberto Risso

Περιεχόμενα

- Τ΄ Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- 🐠 Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεω
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Περιεχόμενα

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη του γινομένου

Ορισμός του γινομένου

$$r \times s = \{t \mid u \mid t \in r \text{ and } u \in s\}$$

Καρτεσιανό γινόμενο δύο σχέσεων r(R) και s(S), είναι μια σχέση που έχει επικεφαλίδα το σύνολο των γνωρισμάτων των σχέσεων R και S, και κορμό το σύνολο όλων των συνδυασμών των πλειάδων που ανήκουν στην r και στην s. Το καρτεσιανό γινόμενο συμβολίζεται με $r \times s$ ή r TIMES s.

Γνωρίσματα καρτεσιανού γινομένου

Μετονομασία κοινών γνωρισμάτων

Το σχήμα ενός καρτεσιανού γινομένου προκύπτει μετά από μετονομασία των πιθανών κοινών γνωρισμάτων δύο σχέσεων. Για παράδειγμα, αν Y είναι ένα κοινό γνώρισμα των σχέσεων r(R) και s(S), τότε το σχήμα της σχέσης $r \times s$ είναι:

$$T = (R - S) \cup (S - R) \cup \{R.Y, S.Y \mid Y \in R \cap S\}$$

Βαθμός και πληθικότητα γινομένου

Βαθμός γινομένου

Αν η σχέση r είναι n_R βαθμού και η σχέση s είναι n_S βαθμού τότε το αποτέλεσμα του γινομένου έχει βαθμό:

$$n_{r \times s} = n_R + n_S$$

Πληθικότητα γινομένου

Αν η σχέση r είναι m_r βαθμού και η σχέση s είναι m_s βαθμού τότε το αποτέλεσμα του γινομένου έχει βαθμό:

$$m_{r \times s} = m_r \cdot m_s$$

Παράδειγμα σχεσιακού γινομένου

- 1	r		S		_			$r \times s$	5	
Α	В	D	Е	F		Α	В	D	Ε	F
1	b	b	4	30		1	b	b	4	30
5	а	а	2	10		1	b	а	2	10
3	С				•	5	а	b	4	30
						5	а	а	2	10
						3	С	b	4	30
						3	С	а	2	10

Γινόμενο και μετονομασία γνωρισμάτων

	r		S					$r \times s$		
Α	В	Α	В	F		R.A	R.B	S.A	S.E	
1	b	b	4	30		1	b	b	4	
5	а	а	2	10		1	b	а	2	
3	С				•	5	а	b	4	
						5	а	a	2	
						3	С	b	4	
						2			0	

Δενδροειδής απεικόνιση καρτεσιανού γινομένου

$$A = \{a, b, c\}$$
 $B = \{1, 2\}$
 $A \times B = \{(a, 1), (a, 2)\}$
 $(b, 1), (b, 2),$
 $(c, 1), (c, 2)\}$

Απεικόνιση καρτεσιανού γινομένου σε σύνολα

$$A = \{a, b, c\}$$
 $B = \{1, 2\}$
 $A \times B = \{(a, 1), (a, 2)\}$
 $(b, 1), (b, 2), \{(c, 1), (c, 2)\}$

Προσοχή στο καρτεσιανό γινόμενο

Φοιτητές και Μαθήματα

Αν M είναι το σύνολο των μαθημάτων και Φ είναι το σύνολο των φοιτητών τότε $M \times \Phi$

είναι ο συνδυασμός όλων των μαθημάτων με όλους τους φοιτητές (όλοι εξετάζονται σε όλα).

Ηθοποιοί και ταινίες

Αν H είναι το σύνολο των ηθοποιών και T είναι το σύνολο των ταινιών τότε $H \times T$

είναι ο συνδυασμός όλων των ηθοποιών με όλες τις ταινίες (όλοι παίζουν σε όλες).

Περιεχόμενα

- 1 Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Περιεχόμενα

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- 5 Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη της φυσικής σύζευξης

Ορισμός της φυσικής σύζευξης

```
r\bowtie s=\{t\mid \mbox{ υπάρχουν πλειάδες }u\in r και v\in s έτσι ώστε t[R]=u και t[S]=v\}
```

Αν η r είναι σχέση με σχήμα $R=\{X,Y\}$ και s είναι σχέση με σχήμα $S=\{Y,Z\}$, τότε η φυσική σύζευξη των r και s είναι μια σχέση με σχήμα $R\cup S=\{X,Y,Z\}$ και κορμό το σύνολο των συνδυασμών των πλειάδων της r και s για τις οποίες οι τιμές στο κοινό γνώρισμα Y ταυτίζονται.

Η φυσική σύζευξη των σχέσεων r και s συμβολίζεται με $r\bowtie s$, ή r NATURAL JOIN s, ή απλά r JOIN s.

A	В	С		C	D	Α	В	С	D
1	b	10	_	20	1	 1	b	10	3
5	a	30		10	3	3	С	20	1
3	С	20		20	3	3	С	20	3
	r		_	5	5		r		

- ① Τα κοινά γνωρίσματα, εδώ το C, μόνο μία φορά στο αποτέλεσμα.
- ② Πλειάδες με μη ταιριαστές τιμές δεν συμμετέχουν στο αποτέλεσμα.

		C	C	_	Α	В	C	D
1	b	10	20 10	1	1	b	10	3
5	а	30	10	3	3	С	20	1
3	С	20	20	3	3	С	20	3
	r		s	•		r		

- ① Τα κοινά γνωρίσματα, εδώ το C, μόνο μία φορά στο αποτέλεσμα.
- ② Πλειάδες με μη ταιριαστές τιμές δεν συμμετέχουν στο αποτέλεσμα.

A	В	C	C	D		Α	В	С	D
1	b	10	20	1	_	1	b	10	3
5	а	30	10	3		3	С	20	1
3	С	20	20	3		3	С	20	3
	r			;	•		r		

- ① Τα κοινά γνωρίσματα, εδώ το *C*, μόνο μία φορά στο αποτέλεσμα.
- ② Πλειάδες με μη ταιριαστές τιμές δεν συμμετέχουν στο αποτέλεσμα.

- ① Τα κοινά γνωρίσματα, εδώ το *C*, μόνο μία φορά στο αποτέλεσμα.
- Πλειάδες με μη ταιριαστές τιμές δεν συμμετέχουν στο αποτέλεσμα.

- Τα κοινά γνωρίσματα, εδώ το C, μόνο μία φορά στο αποτέλεσμα.
- Πλειάδες με μη ταιριαστές τιμές δεν συμμετέχουν στο αποτέλεσμα.

Υπάλληλοι και τμήματα, ξένο κλειδί, 1:Ν

departments:			employees:	
depid	depname	empid	empname	depid
1	Μελετών	102	Αποστολάκης	2
2	Λογιστήριο	154	Βασιλάκης	1
3	Δ ιαφήμισης	132	Χρηστάκης	2
		432	Δ ημητράκης	3
		203	Κωστάκης	1

departments ⋈ employees:

donoutus onto

depid	depname	empid	empname
1	Μελετών	154	Βασιλάκης
1	Μελετών	203	Κωστάκης
2	Λογιστήριο	102	Αποστολάκης
2	Λογιστήριο	132	Χρηστάκης
3	Δ ιαφήμισης	432	Δ ημητράκης

Περιεχόμενα

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Η σχεσιακή πράξη της σύζευξης θ

Ορισμός

Αν η r είναι σχέση με σχήμα $R = \{A_1, A_2, \ldots, A_n\}$, s είναι σχέση με σχήμα $S = \{B_1, B_2, \dots, B_m\}$, τα γνωρίσματα A_i και B_i έχουν το ίδιο πεδίο ορισμού, και θ είναι τελεστής σύγκρισης, $\theta \in \{=, \neq, <, <, >, >\},\$ τότε η θ σύζευξη των r και s, $r \bowtie_{A_i\theta B_i} s$, είναι μια σχέση με σχήμα το σύνολο των γνωρισμάτων των R και S, $\{A_1, A_2, ..., A_n B_1, B_2, ..., B_m\}$ και κορμό το σύνολο των πλειάδων από κάθε συνδυασμό των πλειάδων των r και s, που ικανοποιούν τη συνθήκη $A_i\theta B_i$.

Παρατηρήσεις για τη θ σύζευξη

- Το αποτέλεσμα είναι μια σχέση με βαθμό $n_R + n_S$, και πληθικότητα ανάμεσα στο 0 και στο $m_r \cdot m_s$.
- Αν κάποια πλειάδα έχει στο γνώρισμα που συμμετέχει στη σύζευξη τιμή NULL τότε δεν συμμετέχει στο αποτέλεσμα.
- Αν ο τελεστής θ είναι το = τότε η σύζευξη καλείται ισοσύζευξη.
- Η σύζευξη θ (θ JOIN) είναι παράγωγη πράξη γινομένου και επιλογής, έτσι ισχύει:

$$\sigma_{X\theta Y}(r \times s) = r \bowtie_{X\theta Y} s$$

Παράδειγμα σύζευξης θ, ξένο κλειδί, 1:Ν

1	M	1ελετών	
2	٨	ογιστήριο	
3	Δ	λιαφήμισης	
			_

depname

departments:

emp	loy	ees	:
		_	

203

empid	empname	depid
102	Αποστολάκης	2
154	Βασιλάκης	1
132	Χρηστάκης	2
432	Δημητράκης	3

Κωστάκης

departments $\bowtie_{depcode=depid}$ employees:

depcode=depid construction				
depcode	depname	empid	empname	depid
1	Μελετών	154	Βασιλάκης	1
1	Μελετών	203	Κωστάκης	1
2	Λογιστήριο	102	Αποστολάκης	2
2	Λογιστήριο	132	Χρηστάκης	2

/ 113

Ενδυματολογικές προτιμήσεις και θ σύζευξη

shoes:	
color	price
blue	55
green	45
red	30

skirts:	
color	price
red	30
green	40
green	65
blue	30

Να βρεθούν οι συνδυασμοί:

- Παπούτσια και φούστες ίδιου χρώματος.
- Παπούτσια και φούστες διαφορετικού χρώματος.
- Παπούτσια και φούστες με ακριβότερη τη φούστα.

Παπούτσια και φούστες ίδιου χρώματος

shoes ⋈_{shoes.color=skirts.color} skirts

shoes.color	shoes.price	skirts.color	skirts.price
blue	55	blue	30
green	45	green	40
green	45	green	65
red	30	red	30

Παπούτσια και φούστες διαφορετικού χρώματος

$shoes \bowtie_{shoes.color \neq skirts.color} skirts$

shoes.color	shoes.price	skirts.color	skirts.price
blue	55	red	30
blue	55	green	40
blue	55	green	65
green	45	red	30
green	45	blue	30
red	30	green	40
red	30	green	65
red	30	blue	30

Παπούτσια και φούστες με ακριβότερη φούστα

shoes ⋈_{shoes.price} < skirts.price skirts

shoes.color	shoes.price	skirts.color	skirts.price
blue	55	green	65
green	45	green	65
red	30	green	40
red	30	green	65

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Εξωτερική σύζευξη

Ορισμός εξωτερική σύζευξης

Αν η r είναι σχέση με σχήμα $R=\{X,Y\}$, s είναι σχέση με σχήμα $S=\{Y,Z\}$, τότε η εξωτερική σύζευξη $t=r \bowtie s$ έχει σχήμα $T=\{X,Y,Z\}$ και κορμό που αποτελείται από :

- lacktriangle Τις πλειάδες της εσωτερικής σύζευξης των $r\bowtie s$
- ② Τις πλειάδες της σχέσης r που δεν έχουν ταιριαστές τιμές στην s, με τιμές **NULL** στα αντίστοιχα γνωρίσματα της s
- Τις πλειάδες της σχέσης s που δεν έχουν ταιριαστές τιμές στην r, με τιμές **NULL** στα αντίστοιχα γνωρίσματα της r

Εξωτερική σύζευξη

Επέκταση της σύζευξης

Η εξωτερική σύζευξη είναι επέκταση της σύζευξης, στην περίπτωση που υπάρχουν πλειάδες σε μία ή περισσότερες σχέσεις, χωρίς ταιριαστές τιμές.

Για παράδειγμα:

θεωρείστε τις δύο σχέσεις του σχήματος, που παριστάνουν ένα δείγμα από τα υποκαταστήματα (Υ) και τους πελάτες (Π) μιας εταιρείας. Θέλουμε να βρούμε το αποτέλεσμα της εξωτερικής σύζευξης των δύο σχέσεων με βάση την πόλη:

$$\Gamma$$
 \bowtie Γ

Δηλαδή τα υποκαταστήματα, ανεξάρτητα από το αν έχουν ή όχι πελάτες, και τους πελάτες, ανεξάρτητα από το αν υπάρχει υποκατάστημα στην πόλη τους.

Εξωτερική σύζευξη

<u>Υ</u>	
id	city
1	Αθήνα
2	Πάτρα
3	Θεσσαλονίκη

П	
name	city
Νίκος	Πάτρα
Βάσω	Κοζάνη
Αγγελική	Πάτρα
Βασίλης	Αθήνα

<u> </u>		
id	city	name
1	Αθήνα	Βασίλης
2	Πάτρα	Νίκος
2	Πάτρα	Αγγελική
3	Θεσσαλονίκη	NULL
NULL	Κοζάνη	Βάσω

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Αριστερή εξωτερική σύζευξη

Ορισμός

Αν r είναι σχέση με σχήμα $R=\{X,Y\}$ και s είναι μία σχέση με σχήμα $S=\{Y,Z\}$, τότε η αριστερή εξωτερική σύζευξη $t=r\bowtie s$ έχει σχήμα $T=\{X,Y,Z\}$ και κορμό που αποτελείται από τις πλειάδες:

$$r\bowtie s=(r\bowtie s)\cup((r-\Pi_R(r\bowtie s))\times w)$$

όπου w είναι μία σχέση με σχήμα R-S και μία πλειάδα με τιμές $\{null, null, \ldots, null\}$.

Δηλαδή

Επεξήγηση ορισμού αριστερής σύζευξης

Η αριστερή εξωτερική σύζευξη (ή απλώς αριστερή σύζευξη):

 $r \bowtie s$

έχει σαν αποτέλεσμα μια σχέση με:

- Σχήμα όμοιο αυτό της φυσικής σύζευξης $r \bowtie s$.
- Κορμό τις πλειάδες που προκύπτουν από την ένωση των πλειάδων:
 - ullet της φυσικής σύζευξης $r \bowtie s$
 - όλων των πλειάδων της r (αριστερής σχέσης) που δεν είναι στο αποτέλεσμα της φυσικής σύζευξης, με NULL τιμές στα γνωρίσματα της s (δεξιάς σχέσης)

Παράδειγμα αριστερής σύζευξης

 $\frac{\Upsilon}{}$

id city

1 Αθήνα 2 Πάτος

2 Πάτρα

3 Θεσσαλονίκη

П

name	city
Νίκος	Πάτρα
Βάσω	Κοζάνη
Αγγελική	Πάτρα
Βασίλης	Αθήνα

$\Upsilon \bowtie \Pi$

id	city	name
1	Αθήνα	Βασίλης
2	Πάτρα	Νίκος
2	Πάτρα	Αγγελική
3	Θεσσαλονίκη	NULL

$\Upsilon \bowtie \Pi$

id	city	name
1	Αθήνα	Βασίλης
2	Πάτρα	Νίκος
2	Πάτρα	Αγγελική

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Δεξιά εξωτερική σύζευξη

Ορισμός

Αν r είναι σχέση με σχήμα $R=\{X,Y\}$ και s είναι μία σχέση με σχήμα $S=\{Y,Z\}$, τότε η δεξιά εξωτερική σύζευξη $t=r\bowtie s$ έχει σχήμα $T=\{X,Y,Z\}$ και κορμό που αποτελείται από τις πλειάδες:

$$r \bowtie s = (r \bowtie s) \cup (w \times ((s - \Pi_S(r \bowtie s)))$$

όπου w είναι μία σχέση με σχήμα S-R και μία πλειάδα με τιμές $\{null, null, \dots, null\}$.

Επεξήγηση ορισμού δεξιάς σύζευξης

Ορισμός

Η δεξιά εξωτερική σύζευξη (ή απλώς δεξιά σύζευξη): $r\bowtie s$

έχει σαν αποτέλεσμα μια σχέση με :

- Σχήμα όμοιο αυτό της φυσικής σύζευξης $r \bowtie s$.
- Κορμό τις πλειάδες που προκύπτουν από την ένωση των πλειάδων:
 - Της φυσικής σύζευξης $r\bowtie s$
 - Όλων των πλειάδων της s (δεξιάς σχέσης) που δεν είναι στο αποτέλεσμα της φυσικής σύζευξης, με NULL τιμές στα γνωρίσματα της r (αριστερής σχέσης)

Παράδειγμα δεξιάς σύζευξης

Υ	
id	city
1	Αθήνα
2	Πάτρα
3	Θεσσαλονίκη

11	
name	city
Νίκος	Πάτρα
Βάσω	Κοζάνη
Αγγελική	Πάτρα
Βασίλης	Αθήνα

$\Upsilon \bowtie \Pi$

id	city	name
1	Αθήνα	Βασίλης
2	Πάτρα	Νίκος
2	Πάτρα	Αγγελική
NULL	Κοζάνη	Βάσω

\sim		
	\bowtie	н
-		

id	city	name
1	Αθήνα	Βασίλης
2	Πάτρα	Νίκος
2	Πάτρα	Αγγελική

- 1 Κλειστότητα και συμβατότητα τύπου
- ② Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
- Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Γενική μορφή συνάθροισης

Η σύνοψη (ή αλλιώς ομαδοποίηση) ομαδοποιεί πλειάδες μιας σχέσης με βάση κοινές τιμές σε ένα ή περισσότερα γνωρίσματα. Σε κάθε ένα από τα υποσύνολα των πλειάδων που προκύπτουν μπορεί να εφαρμοστεί μια συναθροιστική συνάρτηση.

Συνάθροιση:

Αν R είναι μια σχεσιακή παράσταση και $X\subset R$ και $A\subset R$ τότε η παράσταση:

$$_{X}\mathcal{G}_{F(A)}(R)$$

δηλώνει την ομαδοποίηση ως προς X των πλειάδων της r(R) και την εφαρμογή της συνάρτησης F πάνω στα γνωρίσματα A. Η συνάθροιση δηλώνεται με το καλλιγραφικό G, \mathscr{G} . Η χρήση της ομαδοποίησης (X) είναι προαιρετική.

Συναρτήσεις συνάθροισης

5 κύριες συναρτήσεις συνάθροισης:

- COUNT(), πλήθος εγγραφών
- SUM(), άθροισμα αριθμητικού γνωρίσματος,
- AVG(), μέση τιμή αριθμητικού γνωρίσματος,
- ΜΙΝ(), μικρότερη τιμή.
- ΜΑΧ(), μεγαλύτερη τιμή.

Παράδειγμα άθροισης τιμών γνωρίσματος

area	employee	amount
Ημαθίας	Ευθυμίου	1890
Μαγνησίας	Αλεξανρίδης	2400
Καβάλας	Αλεξανρίδης	780
Μαγνησίας	Ευθυμίου	2100
Τρικάλων	Πετρίδης	4400
Πιερίας	Πετρίδης	1820
Καβάλας	Ευθυμίου	2400

Έστω η σχέση sales:

Να υπολογιστεί το άθροισμα των πωλήσεων

 $\mathcal{G}_{\mathsf{sum}(\mathsf{amount})}(\mathsf{sales})$

Ανατομία συνάθροισης με ομαδοποίηση

$_{employee}\mathcal{G}_{sum(amount)}(sales)$

- Λαμβάνεται ο κορμός της σχέσης sales, δηλαδή όλες οι πλειάδες.
- Ομαδοποίηση ως προς τις τιμές του γνωρίσματος employee. εδώ, σε 3 υποσύνολα.
- Ο δείκτης sum(amount) δεξιά από το G (καλλιγραφικό G), σημαίνει πως θα υπολογιστεί το άθροισμα των τιμών amount για κάθε διακριτή τιμή employee.
- Το αποτέλεσμα της σχεσιακής παράστασης έχει σχήμα το {employee, sum(amount)}.

Παράδειγμα άθροισης με ομαδοποίηση

Άθροισμα πωλήσεων ανά υπάλληλο

 $_{employee}\mathcal{G}_{\mathbf{sum}(amount)}(sales)$

employee	sum(amount)	
Ευθυμίου	6390	
Αλεξανρίδης	3180	
Πετρίδης	6220	

area	employee	amount
Ημαθίας	Ευθυμίου	1890
Μαγνησίας	Αλεξανρίδης	2400
Καβάλας	Αλεξανρίδης	780
Μαγνησίας	Ευθυμίου	2100
Τρικάλων	Πετρίδης	4400
Πιερίας	Πετρίδης	1820
Καβάλας	Ευθυμίου	2400

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Ο πίνακας employees από τη βάση company

Έστω η σχέση employees με σχήμα:

employees (empid, firstname, lastname, depid, salary, hiredate)

empid	firstname	lastname	depid	salary	hiredate
102	Νικηφόρος	Διαμαντίδης	6	1212.50	2003-06-02
109	Μαρία	Αθανασίου	1	2787.69	2000-01-26
153	Μαρία	Αλεβιζάτου	2	1321.92	2001-05-15
172	Χρήστος	Βλάσσης	3	1101.70	2000-07-04
189	Θεόδωρος	Αγγελίνας	6	1908.28	2000-06- 149/2 ΔΕΔΟΜΙ
 Δείγμα από	 τα δεδομένα του	 πίνακα.			Ma sparmy

Δείτε τα πλήρη περιεχόμενα εδώ:

http://stavrakoudis.econ.uoi.gr/stavrakoudis/?iid=400

Παραδείγματα συναρτήσεων συνάθροισης

Το άθροισμα των μισθών όλων των υπαλλήλων

 $\mathcal{G}_{sum(salary)}(employees)$

Ο μέσος μισθός των υπαλλήλων του τμήματος 3

 $\mathcal{G}_{avg(salary)}(\sigma_{depid=3}(employees))$

Πόσοι υπάλληλοι εργάζονται στο τμήμα 4

 $\mathcal{G}_{count(empid)}(\sigma_{depid=4}(employees))$

Ημερομηνία της πιο πρόσφατης πρόσληψης

 $\mathcal{G}_{max(hiredate)}(employees)$

Παραδείγματα συνάθροισης με ομαδοποίηση

Ο μικρότερος μισθός ανά τμήμα υπαλλήλων

 $_{depid}\mathcal{G}_{min(salary)}(employees)$

Να βρεθεί το εύρος μισθού ανά τμήμα

 $_{depid}\mathcal{G}_{max(salary)-min(salary)}(employees)$

Πλήθος υπαλλήλων ανά τμήμα με μισθό > 1300

 $_{depid}\mathcal{G}_{count(depid)}\left(\sigma_{salary>1300}(employees)
ight)$

Περιορισμός μετά από ομαδοποίηση

Τμήματα με περισσότερους από 4 υπαλλήλους

$$\sigma_{count(depid)>4}\left({}_{depid}\mathscr{G}_{count(empid)}(employees)
ight)$$

depid	count(empid)
1	3
2	4
3	9
4	5
5	2
6	7

Μόνο οι σκιασμένες γραμμές στο αποτέλεσμα, δηλαδή μόνο εκείνες για τις οποίες η σύγκριση

αποδίδει την τιμή TRUE.

- 1 Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- ③ Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- 4 Η σχεσιακή πράξη του γινομένου
- Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Ενημέρωση

Εκτός από τις πράξεις επιλογής, η σχεσιακή άλγεβρα έχει ανάγκη από τις πράξεις ενημέρωσης της βάσης δεδομένων. Με αυτές υπάρχει η δυνατότητα:

- Εισαγωγής δεδομένων στις σχέσεις, δηλαδή εισαγωγής μιας ή περισσοτέρων πλειάδων.
- Τροποποίησης δεδομένων στις σχέσεις, δηλαδή αλλαγή στις τιμές των γνωρισμάτων μιας σχέσης.
- Διαγραφής δεδομένων από τις σχέσεις, δηλαδή απαλοιφή μιας ή περισσότερων πλειάδων της σχέσης.

Επιπτώσεις της ενημέρωσης

Σχήμα της σχέσης

- Δεν επηρεάζεται το σχήμα της σχέσης.
- Δεν μεταβάλλεται ο βαθμός της σχέσης.

Κορμός της σχέσης

- Εισαγωγή : αύξηση πληθικότητας.
- Τροποποίηση : σταθερή πληθικότητα.
- Διαγραφή : μείωση πληθικότητας.

Η σχέση movies

Έστω η σχέση movies(code, title, year):

code	title	year
658	Blade Runner	1982
583	Casablanca	1943
779	La Dolce Vita	1960
884	Paris Texas	1984

Μια μικρή βάση δεδομένων με τίτλους ταινιών και το έτος πρώτης προβολής.

Το γνώρισμα code είναι πρωτεύον κλειδί.

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Εισαγωγή

Η εισαγωγή των δεδομένων Ε (σχεσιακής έκφρασης) στη σχέση *r*, γράφετε ως:

$$r \leftarrow r \cup E$$

Εισαγωγή της ταινίας Blade Runner του 1982 με κωδικό 658

 $movies \leftarrow movies \cup \{658, 'Blade Runner', 1982\}$

Παραβίαση πρωτεύοντος κλειδιού

code	title	year	code	title	year
658	Blade Runner	1982	658	Blade Runner	1982
583	Casablanca	1943	583	Casablanca	1943
779	La Dolce Vita	1960	779	La Dolce Vita	1960
884	Paris Texas	1984	884	Paris Texas	1984
				The Pink Panther	1963

Η τιμή του πρωτεύοντος κλειδιού δεν είναι έγκυρη

 $movies \leftarrow movies \cup \{779, 'The Pink Panther', 1963\}$

Η παράσταση δεν είναι έγκυρη, η εισαγωγή **πλειάδας** θα αποτύχει.

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Τροποποίηση

Τελεστής γενικευμένης προβολής

$$r \leftarrow \Pi_{A_1,A_2,...,A_n}(r)$$

Αλλαγή του έτους κυκλοφορίας

 $movies \leftarrow \Pi_{code, title, year=1942}(movies)$

Τροποποίηση του έτους σε 1942

Καθολική εφαρμογή της τροποποίησης

 $movies \leftarrow \Pi_{code,title,year=1942}(movies)$

code	title	year
658	Blade Runner	1942
583	Casablanca	1942
779	La Dolce Vita	1942
884	Paris Texas	1942

Τροποποίηση του έτους σε 1942

Επιλεκτική εφαρμογή της τροποποίησης

$$movies \leftarrow \Pi_{code,title,year=1942}(\sigma_{code=583}(movies))$$

code	title	year
658	Blade Runner	1982
583	Casablanca	1942
779	La Dolce Vita	1960
884	Paris Texas	1984

- Κλειστότητα και συμβατότητα τύπου
- 2 Οι βασικές πράξεις προβολής και επιλογής
 - Η σχεσιακή πράξη της προβολής
 - Η σχεσιακή πράξη της επιλογής
 - Συνδυασμός προβολής και επιλογής
- Συνολοθεωρητικές πράξεις
 - Η σχεσιακή πράξη της ένωσης
 - Η σχεσιακή πράξη της διαφοράς
 - Η σχεσιακή πράξη της τομής
 - Επιπλέον παραδείγματα συνολοθεωρητικών πράξεων
- Η σχεσιακή πράξη του γινομένου
 - Το καρτεσιανό γινόμενο και οι εφαρμογές του
- Σύζευξη και είδη συζεύξεων
 - Φυσική σύζευξη
 - Θήτα σύζευξη
 - Εξωτερική σύζευξη

Διαγραφή

Διαγραφή των δεδομένων που προκύπτουν από μια σχεσιακή παράσταση Ε στη σχέση r

$$r \leftarrow r - E$$

Διαγραφή της ταινίας Blade Runner με κωδικό 658

 $movies \leftarrow movies - \sigma_{code=658}(movies)$

Σχόλια και ερωτήσεις

Σας ευχαριστώ για την προσοχή σας

Είμαι στη διάθεσή σας για σχόλια, απορίες και ερωτήσεις

