High-Radix Dividers

Chapter	er · January 2014				
CITATIONS	ns	READS			
0		3,569			
1 author	or:				
	Shadrokh Samavi				
	McMaster University				
	383 PUBLICATIONS 4,081 CITATIONS				
	SEE PROFILE				
Some of the authors of this publication are also working on these related projects:					
Project	Computer Arithmetic View project				
Project	Integral image generation enhancement View project				

High-Radix Dividers

Contents

- 1. Basics of High-Radix Division
- 2. Radix-2 SRT Division
- 3. Using Carry-Save Adders
- 4. Choosing the Quotient Digits
- 5. Radix-4 SRT Division
- 6. General High-Radix Dividers

Textbook: Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, New York, 2000, by Behrooz Parhami. Many of the slides are either from the textbook or from Parhami's slides.

1. Basics of High-Radix Division

Radix-r version of division recurrence of Section 13.1 $s(j) = r s^{(j-1)} - q_{k-j} (r^k d)$ with $s^{(0)} = z$ and $s^{(k)} = r^k s$

High-radix dividers of practical interest have $r = 2^b$

Fig. 14.1 Radix-4 division in dot notation.

Radix-4 integer division

z 4 ⁴ d	01231123 1203
$s^{(0)} \\ 4s^{(0)} \\ -q_3 4^4 d$	0 1 2 3 1 1 2 3 0 1 2 3 1 1 2 3 0 1 2 0 3 $\{q_3 = 1\}$
$s^{(1)}$ $4s^{(1)}$ $-q_2 4^4 d$	$\begin{array}{ccccc} 0 & 0 & 2 & 2 & 1 & 2 & 3 \\ 0 & 0 & 2 & 2 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 & 0 & \{q_2 = 0\}\end{array}$
$ \begin{array}{c} s^{(2)} \\ 4s^{(2)} \\ -q_1 4^4 d \end{array} $	022123 022123 01203 $\{q_1 = 1\}$
$s^{(3)} 4s^{(3)} -q_0 4^4 d$	10033 10033 03012 {q ₀ =2}
s ⁽⁴⁾ s q	1021 1021 1012

Radix-10 fractional division

z _{frac} d _{frac}	. 7 . 9		0	3	
$s^{(0)}$ $10s^{(0)}$ $-q_{-1}d$. 7 7 . 0 6 . 9	0	3		7}
$s^{(1)}$ $10s^{(1)}$ $-q_{-2}d$. 0 0 . 7 0 . 0	3		₋₂ =	0}
s ⁽²⁾ s _{frac} q _{frac}	. 7 . 0 . 7	0	7	3	•

Fig. 14.2 Examples of high-radix division with integer and fractional operands.

Radix-4 Restoring

- Select quotient digit q₁
 −0, 1, 2, or 3
- Subtract $q_i d$ from p
- ◆ Shift p left

- Must consider all digits to select digit q_i
- Must form "awkward multiple" 3d

$$1.213_4/1.301_4$$
= 0.322_4 , r= 0.0001212_4
 $1.609_{10}/1.766_{10}$ = 0.906_{10} , r= 0.00585

Randal E. Bryant

Digit Selection Radix 4 Restoring

Randal E. Bryant

Difficulty of High-Radix Division

- ·Guessing the correct quotient digit is more difficult.
- Division is naturally a sequential process:
- a) guess a quotient digit q_{k-j}
- b) compute term $q_{k-j}(r^kd)$
- c) compute partial remainder

$$s^{(j)} = rs^{(j-1)} - q_{k-j} (r^k d)$$

Carry-Save Remainders

- More important for speed than high-radix.
- Lead to large performance increases by replacing carrypropagate adder with carry-save adder.
- Key to keeping remainder in carry-save form is:

Redundancy in the representation of q.

- allows less precise guessing of quotient digit based on approximate magnitude of partial remainder
- more redundancy → less precision required

2. Radix-2 SRT Division

Fig. 14.3 The new partial remainder, $s^{(j)}$, as a function of the shifted old partial remainder, $2s^{(j-1)}$, in radix-2 nonrestoring division.

Fig. 14.4 The new partial remainder $s^{(j)}$ as a function of $2s^{(j-1)}$, with q_{-j} in $\{-1, 0, 1\}$.

SRT division (Sweeney, Robertson, Tocher)

Fig. 14.5 The relationship between new and old partial remainders in radix-2 SRT division. (Sweeney, Robertson, Tocher) $d \ge 1/2$, $-1/2 \le s^{(0)} < 1/2$

Quotient Digit Selection

$$q_{i} = \begin{cases} 1 & if & 2S^{j-1} \ge \frac{1}{2} \\ 0 & if & -\frac{1}{2} \le 2S^{j-1} < \frac{1}{2} \\ \bar{1} & if & 2S^{j-1} < -\frac{1}{2} \end{cases}$$

SRT Division Algorithm

$$2S^{(j-1)} = 0.1 \times \times \times \times \to 2S^{(j-1)} \ge \frac{1}{2} \to q_i = 1$$

$$2S^{(j-1)} = 0.0 \times \times \times \times \to 2S^{(j-1)} < \frac{1}{2} \to q_i = 0$$

$$2S^{(j-1)} = 1.1 \times \times \times \times \to 2S^{(j-1)} \ge -\frac{1}{2} \to q_i = 0$$

$$2S^{(j-1)} = 1.0 \times \times \times \times \to 2S^{(j-1)} < -\frac{1}{2} \to q_i = -1$$

3. Using Carry-Save Adders

Carry-Save Partial Remainders

$$2s^{(j-1)} = u + v$$

$$u = (u_1 u_0. u_{-1} u_{-2} \cdots)_{2'\text{s-comp}}$$

$$v = (v_1 v_0. v_{-1} v_{-2} \cdots)_{2'\text{s-comp}}$$
Let $t = t_1 t_0. t_{-1} t_{-2} = u_1 u_0. u_{-1} u_{-2} + v_1 v_0. v_{-1} v_{-2}$
 t is an approximation of $u + v$

Truncation error is less than $1/4 + 1/4 = 1/2$:
$$0 \le (u + v) - t \le 1/2$$

Digit Selection

$t_1 t_0 . t_{-1} t_{-2}$	$2s^{(j-1)} = u_0. u_{-1}$	$t_1 t_0 . t_{-1} t_{-2}$	$2s^{(j-1)} = u_0. u_{-1}$
01.11	$[1.75, 2.0) \rightarrow q_{-j} = 1$	11.11	$[-0.25, 0.00) \rightarrow q_{-j} = 0$
01.10	$[1.5, 1.75) \rightarrow q_{-j} = 1$	11.10	$[-0.5, -0.25) \rightarrow q_{-j} = 0$
01.01	$[1.25, 1.5) \rightarrow q_{-j} = 1$	11.01	$[-0.75, -0.5) \rightarrow q_{-j} = -1$
01.00	[1.0, 1.25) $\rightarrow q_{-j} = 1$	11.00	$[-1.0, -0.75) \rightarrow q_{-j} = -1$
00.11	$[0.75, 1.0) \rightarrow q_{-j} = 1$	10.11	$[-1.25, -1.0) \rightarrow q_{-j} = -1$
00.10	$[0.5, 0.75) \rightarrow q_{-j} = 1$	10.10	$[-1.5, -1.25) \rightarrow q_{-j} = -1$
00.01	$[0.25, 0.5) \rightarrow q_{-j} = 1$	10.01	$[-1.75, -1.5) \rightarrow q_{-j} = -1$
00.00	$[0.0, 0.25) \rightarrow q_{-j} = 1$	10.00	$[-2.0, -1.75) \rightarrow q_{-j} = -1$

Tolerating Truncation Error


```
Sum part of 2s^{(j-1)}:
                                U = (U_1 U_0 . U_{-1} U_{-2} \cdot \cdot \cdot)_{2's-compl}
                              V = (V_1 V_0 . V_{-1} V_{-2} \cdot \cdot \cdot)_{2's\text{-compl}}
Carry part of 2s^{(j-1)}:
      t = u_{[-2,1]} + v_{[-2,1]} {Add the 4 MSBs of u and v}
      if t < -1/2
      then q_{-i} = -1
      else if t \ge 0
             then q_{-i} = 1
             else q_{-i} = 0
             endif
      endif
```


Fig. 14.9 Overlap regions in radix-2 SRT division.

4. Choosing the Quotient Digits

Fig. 14.10 A p-d plot for radix-2 division with $d \in [1/2,1)$, partial remainder in [-d, d), and quotient digits in [-1, 1].

Choosing the Quotient Digits

5. Radix-4 SRT division

Fig. 14.11 New versus shifted old partial remainder in radix-4 division with q_{-j} in [-3, 3].

Fig. 14.12 p-d plot for radix-4 SRT division with quotient digit set [-3, 3].

Restricting the Range of s

Fig. 14.13 New versus shifted old partial remainder in radix-4 division with q_{-j} in [-2, 2].

$$-hd \le s^{(j-1)} < hd$$
, for some $h < 1$

$$-4hd \le 4s^{(j-1)} < 4hd$$

$$-4hd - q_{-j}d \le 4s^{(j-1)} - q_{-j}d < 4hd - q_{-j}d$$

$$\underbrace{-4hd + 2d}_{q_{-j} = -2} \leq \underbrace{4s^{(j-1)} - q_{-j}d}_{s^{(j)}} < \underbrace{4hd - 2d}_{q_{-j} = 2}$$

$$-hd \le s^{(j)} < hd$$

Fig. 14.14 A p-d plot for radix-4 SRT division with quotient digit set [-2, 2].

