Contents 6.11 Factorial without prime 1 Basic 1.1 Hash.sh 6.15 Berlekamp Massey 6.16 Primes 1.4 Pragma Optimization . . . 6.17 Theorem 6.18 Estimation 2 Graph 6.19 Euclidean Algorithms . . . 2.1 EBCC* 2.2 VBCC* 6.20 General Purpose Numbers 16 VBCC* 6.21 Tips for Generating Func-tions 16 7 Polynomial 7.1 Fast Fourier Transform . . 7.2 Number Theory Transform* 7.3 Fast Walsh Transform* . . 7.4 Polynomial Operation . . . 16 16 2.10 Minimum Arborescence* . 7.5 Value Polynomial 7.6 Newton's Method 2.11 Vizing's theorem* 2.12 Minimum Clique Cover* . . 18 2.13 NumberofMaximalClique* 8 Geometry 8.1 Default Code 8.2 PointSegDist* 18 18 3 Data Structure 3.1 Discrete Trick 3.2 BIT kth* 18 3.3 Interval Container* 3.4 Leftist Tree TangentPointToHull* . . . 8.6 Heavy light Decomposition* 19 Centroid Decomposition* Intersection of line and 8.8 3.7 8.10 VectorinPoly* 3.10 KDTree 8.11 PolyUnion* 8.12 Polar Angle Sort* Flow/Matching 4.1 Bipartite Matching* 4.2 Kuhn Munkres* 4.3 MincostMaxflow* 8.13 Half plane intersection* . 8.14 HPI Alternative Form . . . 8.15 RotatingSweepLine 8.16 Minimum Enclosing Circle* 4.4 Maximum Simple Graph Matching* 8.17 Intersection of two circles* 20 8.18 Intersection of polygon Maximum Weight Matching* and circle* . 20 8.19 Intersection of line and circle* . . 8.20 Tangent line of two circles 4.8 Gomory Hu tree* Minimum Cost Circulation* 8.21 CircleCover* 21 4.10 Flow Models 10 8.22 3Dpoint* . 8.23 Convexhull3D* 5 String 8.24 DelaunayTriangulation* . 8.25 Triangulation Vonoroi* . 22 8.26 Minkowski Sum* **SAIS*** Else Aho-Corasick Automatan* 9.1 Cyclic Ternary Search* 5.6 Smallest Rotation 5.7 De Bruijn sequence* . . . 9.2 Mo's Algorithm(With mod-Extended SAM* 5.9 PalTree* Additional Mo's Algorithm 23 Math 6.1 ax+by=gcd(only exgcd*) . 6.2 Floor and Ceil 6.3 Floor Enumeration 9.6 DynamicConvexTrick* . . 9.7 All LCS* 23 DLX* 6.4 Mod Min 9.9 Matroid Intersection . . . Gaussian integer gcd . . . 9.10 AdaptiveSimpson* 9.11 Simulated Annealing . . . Miller Rabin* System of Linear Equations 13 Pollard Rho* Simplex Algorithm 24 25 6.9 6.9.1 Construction 9.15 Bitset LCS 6.10 chineseRemainder 9.16 Python Basic 1.1 Hash.sh echo "Useful for verifying that there aren't mistypes." cpp \$1 -dD -P fpreprocessed | tr -d '[:space:]' | md5sum | cut -c-6 1.2 readchar [a419b9] inline char readchar() { static const size_t bufsize = 65536; static char buf[bufsize]; static char *p = buf, *end = buf; if (p == end) end = buf + fread_unlocked(buf, 1, bufsize, stdin), p = buf; return *p++: } 1.3 Black Magic [afb343] #include <ext/pb_ds/priority_queue.hpp> #include <ext/pb_ds/assoc_container.hpp> // rb_tree #include <ext/rope> // rope

using namespace __gnu_pbds;

```
using namespace
                    _gnu_cxx; // rope
typedef __gnu_pbds::priority_queue<int> heap;
int main() {
  heap h1, h2; // max heap
  h1.push(1), h1.push(3), h2.push(2), h2.push(4);
  h1.join(h2); // h1 = {1, 2, 3, 4}, h2 = {};
tree<ll, null_type, less<ll>,
      rb_tree_tag, tree_order_statistics_node_update > st;
  tree<ll, ll, less<ll>,
      rb_tree_tag, tree_order_statistics_node_update > mp;
  for (int x : {0, 3, 20, 50}) st.insert(x);
  assert(st
      .order_of_key(3) == 1 && st.order_of_key(4) == 2);
  assert(*st.find_by_order
(2) == 20 && *st.lower_bound(4) == 20);
  rope < char > *root[10]; // nsqrt(n)
  root[0] = new rope<char>();
  root[1] = new rope < char > (*root[0]);
  // root[1]->insert(pos,
                              'a');
     root[1]->at(pos); 0-base
  // root[1]->erase(pos, size);
}
// __int128_t,__float128_t
// for (int i = bs
     ._Find_first(); i < bs.size(); i = bs._Find_next(i));</pre>
1.4 Pragma Optimization [6006f6]
#pragma GCC optimize("Ofast, no-stack-protector")
#pragma GCC optimize("no-math-errno,unroll-loops")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4")
#pragma GCC target("popcnt,abm,mmx,avx,arch=skylake")
__builtin_ia32_ldmxcsr(__builtin_ia32_stmxcsr()|0x8040)
2 Graph
2.1 EBCC* [119339]
struct EBCC { // need adj
  int n, dfcnt = 0, bccnt = 0;
  vector<int> dfn, low, bcc, st;
  EBCC() {}
  EBCC(int n)
       : n(n) { dfn = low = bcc = vector < int > (n + 1, 0); }
  void tarjan(int pos, int fa) {
    dfn[pos] = low[pos] = ++dfcnt;
    st.emplace_back(pos);
    bool vs = false;
    for (int np : adj[pos]) {
   if (np != fa || vs == true) {
         if (dfn[np] == 0) {
           tarjan(np, pos);
low[pos] = min(low[pos], low[np]);
           if (dfn[pos] < low[np]) {</pre>
             bccnt++;
              while (1) {
                int x = st.back();
                bcc[x] = bccnt;
                st.pop_back();
                if (x == np) {
                  break;
             }
         } else {
           low[pos] = min(low[pos], dfn[np]);
      } else {
         vs = true;
      }
    if (pos == fa) {
       bccnt++;
       while (st.size()) {
         bcc[st.back()] = bccnt;
         st.pop_back();
    }
  void work() {
    for (int i = 1; i <= n; i++) {</pre>
       if (dfn[i] == 0) {
         tarjan(i, i);
  }
};
```

2.2 VBCC* [eb6ad0]

```
struct VBCC { // need adj
  int n, dfcnt = 0, bccnt = 0;
  vector<int> dfn, low, st;
  vector<vector<int>> bcc;
  VBCC() {}
  VBCC(int n) : n(n) {
    dfn = low = vector < int > (n + 1, 0);
    bcc = vector<vector<int>>(n + 1, vector<int>());
  void tarjan(int pos, int fa) {
    dfn[pos] = low[pos] = ++dfcnt;
    st.emplace_back(pos);
    for (int np : adj[pos]) {
   if (np != fa) {
         if (dfn[np] == 0) {
           tarjan(np, pos);
low[pos] = min(low[pos], low[np]);
           if (dfn[pos] <= low[np]) {</pre>
             bccnt++;
             while (1) {
                int x = st.back();
                bcc[x].emplace_back(bccnt);
                st.pop_back();
                if (x == np) {
                 break;
             bcc[pos].emplace_back(bccnt);
           }
         } else {
           low[pos] = min(low[pos], dfn[np]);
         }
      }
    if (pos == fa) {
       st.pop_back();
       if (bcc[pos].size() == 0) {
         bcc[pos].emplace_back(++bccnt);
    }
  void work() {
  for (int i = 1; i <= n; i++) {</pre>
      if (dfn[i] == 0) {
         tarjan(i, i);
    }
 }
2.3 SCC* [91a2c6]
```

```
struct SCC { // need adj
 int n, dfcnt = 0, sccnt = 0;
 vector<int> dfn, low, scc, st, ist;
 vector<vector<int>> scc_adj;
 SCC() {}
 SCC(int n) : n(n) {
   dfn = low = scc = ist = vector < int > (n + 1, 0);
    scc_adj = vector<vector<int>>(n + 1, vector<int>());
 void tarjan(int pos) {
   dfn[pos] = low[pos] = ++dfcnt;
   st.emplace_back(pos);
    ist[pos] = 1;
    for (int np : adj[pos]) {
      if (dfn[np] == 0) {
        tarjan(np);
        low[pos] = min(low[pos], low[np]);
      } else if (ist[np] == 1) {
        low[pos] = min(low[pos], dfn[np]);
     }
    if (dfn[pos] == low[pos]) {
      sccnt++;
      while (1) {
        int x = st.back();
        ist[x] = 0;
        scc[x] = sccnt;
        st.pop_back();
        if (x == pos) {
          break;
        }
     }
   }
  void work() {
    for (int i = 1; i <= n; i++) {</pre>
     if (dfn[i] == 0) {
```

```
tarian(i):
        }
     }
   void build_adj() {
     for (int i = 1; i <= n; i++) {
  for (int j : adj[i]) {</pre>
          if (scc[i] != scc[j]) {
             scc_adj[scc[i]].emplace_back(scc[j]);
        }
     }
  }
};
```

2.4 2SAT* [f5630a]

```
struct SAT { // 0-base
  int n;
  vector<bool> istrue:
  SCC scc;
  SAT(int _n): n(_n), istrue(n + n), scc(n + n) {}
  int rv(int a) {
    return a >= n ? a - n : a + n;
  void add_clause(int a, int b) {
    scc.add_edge(rv(a), b), scc.add_edge(rv(b), a);
  bool solve() {
    scc.solve();
     for (int i = 0; i < n; ++i) {</pre>
      if (scc.bln[i] == scc.bln[i + n]) return false;
       istrue[i] = scc.bln[i] < scc.bln[i + n];</pre>
       istrue[i + n] = !istrue[i];
     return true:
  }
};
```

MinimumMeanCycle* [3e5d2b]

```
ll road[N][N]; // input here
struct MinimumMeanCycle {
   ll dp[N + 5][N], n;
   pll solve() {
     ll a = -1, b = -1, L = n + 1;

for (int i = 2; i <= L; ++i)
       for (int k = 0; k < n; ++k)
         for (int j = 0; j < n; ++j)</pre>
            dp[i][j] =
              min(dp[i - 1][k] + road[k][j], dp[i][j]);
     for (int i = 0; i < n; ++i) {</pre>
       if (dp[L][i] >= INF) continue;
       ll ta = 0, tb = 1;
for (int j = 1; j < n; ++j)
         if (dp[j][i] < INF &&</pre>
            ta * (L - j) < (dp[L][i] - dp[j][i]) * tb)
            ta = dp[L][i] - dp[j][i], tb = L - j;
       if (ta == 0) continue;
       if (a == -1 || a * tb > ta * b) a = ta, b = tb;
     if (a != -1) {
       ll g = \_gcd(a, b);
       return pll(a / g, b / g);
     return pll(-1LL, -1LL);
   void init(int _n) {
     for (int i = 0; i < n; ++i)</pre>
       for (int j = 0; j < n; ++j) dp[i + 2][j] = INF;</pre>
  }
};
```

2.6 Virtual Tree* [1b641b]

```
vector<int> vG[N];
int top, st[N];
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
  int p = LCA(st[top], u);
  if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 && dep[st[top - 1]] >= dep[p])
    vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
    vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
```

```
void reset(int u) {
 for (int i : vG[u]) reset(i);
  vG[u].clear();
void solve(vector<int> &v) {
  top = -1:
  sort(ALL(v),
    [&](int a, int b) { return dfn[a] < dfn[b]; });</pre>
  for (int i : v) insert(i);
  while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
  // do something
  reset(v[0]);
}
```

2.7 Maximum Clique Dyn* [d50aa9]

```
struct MaxClique { // fast when N <= 100</pre>
  bitset<N> G[N], cs[N];
  int ans, sol[N], q, cur[N], d[N], n;
void init(int _n) {
    n = _n;
    for (int i = 0; i < n; ++i) G[i].reset();</pre>
  void add_edge(int u, int v) {
    G[u][v] = G[v][u] = 1;
  void pre_dfs(vector<int> &r, int l, bitset<N> mask) {
    if (l < 4) {
      for (int i : r) d[i] = (G[i] & mask).count();
      sort(ALL(
          r), [&](int x, int y) { return d[x] > d[y]; });
    vector<int> c(SZ(r));
    int lft = max(ans - q + 1, 1), rgt = 1, tp = 0;
    cs[1].reset(), cs[2].reset();
    for (int p : r) {
      while ((cs[k] & G[p]).any()) ++k;
      if (k > rgt) cs[++rgt + 1].reset();
      cs[k][p] = 1;
      if (k < lft) r[tp++] = p;</pre>
    for (int k = lft; k <= rgt; ++k)</pre>
      for (int p = cs[k].
           _Find_first(); p < N; p = cs[k]._Find_next(p))
        r[tp] = p, c[tp] = k, ++tp;
    dfs(r, c, l + 1, mask);
  }
  void dfs(vector
      <int> &r, vector<int> &c, int l, bitset<N> mask) {
    while (!r.empty()) {
      int p = r.back();
      r.pop_back(), mask[p] = 0;
      if (q + c.back() <= ans) return;</pre>
      cur[q++] = p;
      vector<int> nr;
      for (int i : r) if (G[p][i]) nr.pb(i);
      if (!nr.empty()) pre_dfs(nr, l, mask & G[p]);
      else if (q > ans) ans = q, copy_n(cur, q, sol);
      c.pop_back(), --q;
   }
  int solve() {
    vector<int> r(n);
    ans = q = 0, iota(ALL(r), \theta);
    pre_dfs(r, 0, bitset<N>(string(n, '1')));
    return ans;
};
```

2.8 Minimum Steiner Tree* [62d6fb]

```
struct SteinerTree { // 0-base
  int n, dst[N][N], dp[1 << T][N], tdst[N];</pre>
  int vcst[N]; // the cost of vertexs
  void init(int _n) {
   n = n;
    for (int i = 0; i < n; ++i) {
      fill_n(dst[i], n, INF);
      dst[i][i] = vcst[i] = 0;
   }
  }
  void chmin(int &x, int val) {
   x = min(x, val);
  void add_edge(int ui, int vi, int wi) {
   chmin(dst[ui][vi], wi);
```

```
void shortest path() {
    for (int k = 0; k < n; ++k)
       for (int i = 0; i < n; ++i)</pre>
         for (int j = 0; j < n; ++j)</pre>
           chmin(dst[i][j], dst[i][k] + dst[k][j]);
  int solve(const vector<int>& ter) {
    shortest_path();
     int t = SZ(ter), full = (1 << t) - 1;</pre>
     for (int i = 0; i <= full; ++i)</pre>
       fill_n(dp[i], n, INF);
    copy_n(vcst, n, dp[0]);
for (int msk = 1; msk <= full; ++msk) {
       if (!(msk & (msk - 1))) {
         int who = __lg(msk);
for (int i = 0; i < n; ++i)</pre>
           dp[msk][i] = vcst[ter[who]] + dst[ter[who]][i];
       for (int i = 0; i < n; ++i)</pre>
         for (int sub =
               (msk - 1) \& msk; sub; sub = (sub - 1) \& msk)
           chmin(dp[msk][i],
                 dp[sub][i] + dp[msk ^ sub][i] - vcst[i]);
       for (int i = 0; i < n; ++i) {</pre>
         tdst[i] = INF;
         for (int j = 0; j < n; ++j)
           chmin(tdst[i], dp[msk][j] + dst[j][i]);
       copy_n(tdst, n, dp[msk]);
     return *min_element(dp[full], dp[full] + n);
}; // O(V 3^T + V^2 2^T)
2.9 Dominator Tree* [2b8b32]
```

```
struct dominator_tree {
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
    n = _n;
    for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0:
    for (int i = 1; i <= n; ++i) {</pre>
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
        find(v, pa[i]);
        idom[v] =
          semi[best[v]] == pa[i] ? pa[i] : best[v];
      tree[pa[i]].clear();
    for (int i = 2; i <= Time; ++i) {</pre>
      if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
      tree[id[idom[i]]].pb(id[i]);
```

};

```
2.10 Minimum Arborescence* [c7338d]
```

```
DSU: disjoint set
- DSU(n), .boss(x), .Union(x, y)
min_heap
    <T, Info>: min heap for type {T, Info} with lazy tag
- .push({w. i})
    , .top(), .join(heap), .pop(), .empty(), .add_lazy(v)
struct E { int s, t; ll w; }; // O-base
vector<int> dmst(const vector<E> &e, int n, int root) {
  vector<min_heap<ll, int>> h(n * 2);
for (int i = 0; i < SZ(e); ++i)</pre>
   h[e[i].t].push({e[i].w, i});
  DSU dsu(n * 2);
  vector<int> v(n * 2, -1), pa(n * 2, -1), r(n * 2);
  v[root] = n + 1;
  int pc = n;
  for (int i = 0; i < n; ++i) if (v[i] == -1) {</pre>
    for (int p = i; v[
        p] == -1 \mid \mid v[p] == i; p = dsu.boss(e[r[p]].s)) {
      if (v[p] == i) {
        int q = p; p = pc++;
        do {
          h[q].add_lazy(-h[q].top().X);
          pa[q] = p, dsu.Union(p, q), h[p].join(h[q]);
        } while ((q = dsu.boss(e[r[q]].s)) != p);
      v[p] = i;
      while (!h[
          p].empty() && dsu.boss(e[h[p].top().Y].s) == p)
        h[p].pop();
      if (h[p].empty()) return {}; // no solution
      r[p] = h[p].top().Y;
  }
  vector<int> ans;
  for (int i =
       pc - 1; i >= 0; i--) if (i != root && v[i] != n) {
    for (int f = e[r[i]].t; ~f && v[f] != n; f = pa[f])
      v[f] = n;
    ans.pb(r[i]);
  return ans; // default minimize, returns edgeid array
} // O(Ef(E)), f(E) from min_heap
```

2.11 Vizing's theorem* [2b5b01]

```
namespace vizing { //
    returns edge coloring in adjacent matrix G. 1 - based
const int N = 105:
int C[N][N], G[N][N], X[N], vst[N], n;
void init(int _n) { n = _n;
  for (int i = 0; i <= n; ++i)
  for (int j = 0; j <= n; ++j)</pre>
      C[i][j] = G[i][j] = 0;
void solve(vector<pii> &E) {
  auto update = [&](int u)
  { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
  auto color = [&](int u, int v, int c) {
    int p = G[u][v];
    G[u][v] = G[v][u] = c;
    C[u][c] = v, C[v][c] = u;
    C[u][p] = C[v][p] = 0;
    if (p) X[u] = X[v] = p;
    else update(u), update(v);
    return p;
  };
  auto flip = [&](int u, int c1, int c2) {
    int p = C[u][c1];
    swap(C[u][c1], C[u][c2]);
    if (p) G[u][p] = G[p][u] = c2;
    if (!C[u][c1]) X[u] = c1;
    if (!C[u][c2]) X[u] = c2;
    return p;
  fill_n(X + 1, n, 1);
  for (int t = 0; t < SZ(E); ++t) {</pre>
    int u = E
        [t].X, v0 = E[t].Y, v = v0, c0 = X[u], c = c0, d;
    vector < pii > L;
    fill_n(vst + 1, n, 0);
    while (!G[u][v0]) {
      L.emplace_back(v, d = X[v]);
```

2.12 Minimum Clique Cover* [879472]

```
struct Clique_Cover { // 0-base, 0(n2^n)
  int co[1 << N], n, E[N];</pre>
  int dp[1 << N];</pre>
  void init(int _n) {
    n = _n, fill_n(dp, 1 << n, 0);
fill_n(E, n, 0), fill_n(co, 1 << n, 0);
  void add_edge(int u, int v) {
    E[u] |= 1 << v, E[v] |= 1 << u;
  int solve() {
     for (int i = 0; i < n; ++i)</pre>
       co[1 << i] = E[i] | (1 << i);
     co[0] = (1 << n) - 1;
     dp[\theta] = (n \& 1) * 2 - 1;
     for (int i = 1; i < (1 << n); ++i) {
       int t = i & -i;
       dp[i] = -dp[i ^ t];
       co[i] = co[i ^ t] & co[t];
     for (int i = 0; i < (1 << n); ++i)</pre>
       co[i] = (co[i] \& i) == i;
     fwt(co, 1 << n, 1);
    fwt(co, i << n, i),
for (int ans = 1; ans < n; ++ans) {
  int sum = 0; // probabilistic
  for (int i = 0; i < (1 << n); ++i)</pre>
          sum += (dp[i] *= co[i]);
       if (sum) return ans;
     return n;
  }
```

2.13 NumberofMaximalClique* [11fa26]

```
struct BronKerbosch { // 1-base
  int n, a[N], g[N][N];
int S, all[N][N], some[N][N], none[N][N];
  void init(int _n) {
    n =
    for (int i = 1; i <= n; ++i)</pre>
      for (int j = 1; j <= n; ++j) g[i][j] = 0;</pre>
  void add_edge(int u, int v) {
    g[u][v] = g[v][u] = 1;
  void dfs(int d, int an, int sn, int nn) {
    if (S > 1000) return; // pruning
    if (sn == 0 && nn == 0) ++S;
    int u = some[d][0];
    for (int i = 0; i < sn; ++i) {</pre>
      int v = some[d][i];
      if (g[u][v]) continue;
      int tsn = 0, tnn = 0;
      copy_n(all[d], an, all[d + 1]);
      all[d + 1][an] = v;
      for (int j = 0; j < sn; ++j)
         if (g[v][some[d][j]])
      some[d + 1][tsn++] = some[d][j];
for (int j = 0; j < nn; ++j)
         if (g[v][none[d][j]])
      none[d + 1][tnn++] = none[d][j];
dfs(d + 1, an + 1, tsn, tnn);
      some[d][i] = 0, none[d][nn++] = v;
  int solve() {
    iota(some[0], some[0] + n, 1);
```

```
S = 0, dfs(0, 0, n, 0);
return S;
}
```

3 Data Structure

3.1 Discrete Trick

```
vector <int> val;
// build
sort(ALL
        (val)), val.resize(unique(ALL(val)) - val.begin());
// index of x
upper_bound(ALL(val), x) - val.begin();
// max idx <= x
upper_bound(ALL(val), x) - val.begin();
// max idx < x
lower_bound(ALL(val), x) - val.begin();</pre>
```

3.2 BIT kth* [e39485]

3.3 Interval Container* [c54d29]

```
/* Add and
     remove intervals from a set of disjoint intervals.
 * Will merge the added interval with
      any overlapping intervals in the set when adding.
 * Intervals are [inclusive, exclusive). */
set<pii
    >::iterator addInterval(set<pii>& is, int L, int R) {
  if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
while (it != is.end() && it->X <= R) {</pre>
    R = max(R, it->Y);
    before = it = is.erase(it);
  if (it != is.begin() && (--it)->Y >= L) {
   L = min(L, it->X);
    R = max(R, it->Y);
    is.erase(it);
 }
  return is.insert(before, pii(L, R));
void removeInterval(set<pii>& is, int L, int R) {
  if (L == R) return;
  auto it = addInterval(is, L, R);
  auto r2 = it->Y;
  if (it->X == L) is.erase(it);
  else (int&)it->Y = L;
  if (R != r2) is.emplace(R, r2);
```

3.4 Leftist Tree [e91538]

```
struct node {
  ll v, data, sz, sum;
node *l, *r;
  node(ll k)
    : v(0), data(k), sz(1), l(0), r(0), sum(k) {}
ll sz(node *p) { return p ? p->sz : 0; }
ll V(node *p) { return p ? p->v : -1; }
ll sum(node *p) { return p ? p->sum : 0; }
node *merge(node *a, node *b) {
   if (!a || !b) return a ? a : b;
  if (a->data < b->data) swap(a, b);
  a - r = merge(a - r, b);
  if (V(a->r) > V(a->l)) swap(a->r, a->l);
  a->v = V(a->r) + 1, a->sz = sz(a->l) + sz(a->r) + 1;
  a->sum = sum(a->l) + sum(a->r) + a->data;
  return a;
void pop(node *&o) {
  node *tmp = o;
  o = merge(o->l, o->r);
  delete tmp;
```

3.5 Heavy light Decomposition* [b004ae]

```
struct Heavy_light_Decomposition { // 1-base
  int n, ulink[N], deep[N], mxson[N], w[N], pa[N];
  int t, pl[N], data[N], val[N]; // val: vertex data
  vector<int> G[N];
  void init(int _n) {
    n = _n;
for (int i = 1; i <= n; ++i)</pre>
      G[i].clear(), mxson[i] = 0;
  void add_edge(int a, int b) {
    G[a].pb(b), G[b].pb(a);
  void dfs(int u, int f, int d) {
  w[u] = 1, pa[u] = f, deep[u] = d++;
    for (int &i : G[u])
      if (i != f) {
        dfs(i, u, d), w[u] += w[i];
        if (w[mxson[u]] < w[i]) mxson[u] = i;</pre>
      }
  void cut(int u, int link) {
    data[pl[u] = ++t] = val[u], ulink[u] = link;
    if (!mxson[u]) return;
    cut(mxson[u], link);
    for (int i : G[u])
      if (i != pa[u] && i != mxson[u])
        cut(i, i);
  void build() { dfs(1, 1, 1), cut(1, 1), /*build*/; }
  int query(int a, int b) {
    int ta = ulink[a], tb = ulink[b], res = 0;
    while (ta != tb) {
      if (deep[ta] > deep[tb]) swap(ta, tb), swap(a, b);
      // query(pl[tb], pl[b])
      tb = ulink[b = pa[tb]];
    if (pl[a] > pl[b]) swap(a, b);
    // query(pl[a], pl[b])
```

3.6 Centroid Decomposition* [5a24da]

```
struct Cent_Dec { // 1-base
  vector<pll> G[N];
  pll info[N]; // store info. of itself
  pll upinfo[N]; // store info. of climbing up
  int n, pa[N], layer[N], sz[N], done[N];
  ll dis[__lg(N) + 1][N];
  void init(int _n) {
    n = _n, layer[0] = -1;
    fill_n(pa + 1, n, \theta), fill_n(done + 1, n, \theta);
    for (int i = 1; i <= n; ++i) G[i].clear();</pre>
  void add_edge(int a, int b, int w) {
    G[a].pb(pll(b, w)), G[b].pb(pll(a, w));
  void get_cent(
  int u, int f, int &mx, int &c, int num) {
    int mxsz = 0;
    sz[u] = 1;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f) {
        get_cent(e.X, u, mx, c, num);
        sz[u] += sz[e.X], mxsz = max(mxsz, sz[e.X]);
    if (mx > max(mxsz, num - sz[u]))
      mx = max(mxsz, num - sz[u]), c = u;
  void dfs(int u, int f, ll d, int org) {
   // if required, add self info or climbing info
    dis[layer[org]][u] = d;
    for (pll e : G[u])
      if (!done[e.X] && e.X != f)
        dfs(e.X, u, d + e.Y, org);
  int cut(int u, int f, int num) {
    int mx = 1e9, c = 0, lc;
    get_cent(u, f, mx, c, num);
    done[c] = 1, pa[c] = f, layer[c] = layer[f] + 1;
for (pll e : G[c])
      if (!done[e.X]) {
        if (sz[e.X] > sz[c])
          lc = cut(e.X, c, num - sz[c]);
         else lc = cut(e.X, c, sz[e.X]);
         upinfo[lc] = pll(), dfs(e.X, c, e.Y, c);
    return done[c] = 0, c;
```

```
void build() { cut(1, 0, n); }
void modify(int u) {
 for (int a = u, ly = layer[a]; a;
       a = pa[a], --ly) {
    info[a].X += dis[ly][u], ++info[a].Y;
    if (pa[a])
      upinfo[a].X += dis[ly - 1][u], ++upinfo[a].Y;
 }
ll query(int u) {
  ll rt = 0;
  for (int a = u, ly = layer[a]; a;
      `a = pa[a], --ly) {
    rt += info[a].X + info[a].Y * dis[ly][u];
    if (pa[a])
       upinfo[a].X + upinfo[a].Y * dis[ly - 1][u];
  return rt;
```

```
3.7 Treap* [5ab1a1]
struct node {
 int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
   sz = 1:
    if (l) sz += l->sz;
   if (r) sz += r->sz;
  void down() {}
}:
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() % (sz(a) + sz(b)) < sz(a))
    return a->down(), a->r = merge(a->r, b), a->up(),
  return b->down(), b->l = merge(a, b->l), b->up(), b;
void split(node *o, node *&a, node *&b, int k) {
 if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)</pre>
    a = o, split(o->r, a->r, b, k), a->up();
  else b = o, split(o->l, a, b->l, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
 if (sz(o) <= k) return a = o, b = 0, void();</pre>
  o->down();
 if (sz(o->l) + 1 <= k)
   a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o->l, a, b->l, k);
  o->up();
node *kth(node *o, int k) {
 if (k <= sz(o->l)) return kth(o->l, k);
 if (k == sz(o->l) + 1) return o;
  return kth(o->r, k - sz(o->l) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
 if (o->data < key)</pre>
    return sz(o->l) + 1 + Rank(o->r, key);
  else return Rank(o->l, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
 if (o->data == k) {
   node *t = o;
   o->down(), o = merge(o->l, o->r);
    delete t;
  node *&t = k < o->data ? o->l : o->r;
  return erase(t, k) ? o->up(), 1 : 0;
void insert(node *&o, int k) {
 node *a, *b;
split(o, a, b, k),
   o = merge(a, merge(new node(k), b));
void interval(node *&o, int l, int r) {
 node *a, *b, *c;
split2(o, a, b, l - 1), split2(b, b, c, r);
 // operate
```

```
o = merge(a, merge(b, c));
```

3.8 LiChaoST* [4a4bee]

```
struct L {
  ll m, k, id;
  L() : id(-1) \{ \}
  L(ll a, ll b, ll c): m(a), k(b), id(c) {} ll at(ll x) { return m * x + k; }
class LiChao { // maintain max
private:
  int n; vector<L> nodes;
  void insert(int l, int r, int rt, L ln) {
  int m = (l + r) >> 1;
     if (nodes[rt].id == -1)
       return nodes[rt] = ln, void();
     bool atLeft = nodes[rt].at(l) < ln.at(l);</pre>
     if (nodes[rt].at(m) < ln.at(m))</pre>
     atLeft ^= 1, swap(nodes[rt], ln);
if (r - l == 1) return;
     if (atLeft) insert(l, m, rt << 1, ln);</pre>
     else insert(m, r, rt << 1 | 1, ln);</pre>
  ll query(int l, int r, int rt, ll x) {
     int m = (l + r) >> 1; ll ret = -INF;
     if (nodes[rt].id != -1) ret = nodes[rt].at(x);
     if (r - l == 1) return ret;
     if (x < m) return max(ret, query(l, m, rt << 1, x));</pre>
     return max(ret, query(m, r, rt << 1 | 1, x));</pre>
public:
  LiChao(int n_) : n(n_), nodes(n * 4) {}
  void insert(L ln) { insert(0, n, 1, ln); }
  ll query(ll x) { return query(0, n, 1, x); }
1:
```

3.9 Link cut tree* [a35b5d]

```
struct Splay { // xor-sum
  static Splay nil;
  Splay *ch[2], *f;
  int val, sum, rev, size;
  Splay (int
       _{\text{val}} = 0) : val(_{\text{val}}), sum(_{\text{val}}), rev(0), size(1)
  \{ f = ch[0] = ch[1] = &nil; \}
  bool isr()
  { return f->ch[0] != this && f->ch[1] != this; }
  int dir()
  { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void give_tag(int r) {
   if (r) swap(ch[0], ch[1]), rev ^= 1;
  void push() {
    if (ch[0] != &nil) ch[0]->give_tag(rev);
    if (ch[1] != &nil) ch[1]->give_tag(rev);
    rev = 0;
  void pull() {
    // take care of the nil!
    size = ch[0] -> size + ch[1] -> size + 1;
    sum = ch[0] -> sum ^ ch[1] -> sum ^ val;
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x - > f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x->f = p->f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector < Splay*> splayVec;
  for (Splay *q = x;; q = q->f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(ALL(splayVec));
```

```
for (auto it : splayVec) it->push();
 while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
 }
Splay* access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f)
   splay(x), x -> setCh(q, 1), q = x;
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x){
 root_path(x), x->give_tag(1);
 x->push(), x->pull();
void split(Splay *x, Splay *y) {
 chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  root_path(x), chroot(y);
 x->setCh(y, 1);
void cut(Splay *x, Splay *y) {
  split(x, y);
  if (y->size != 5) return;
 y->push();
 y - ch[0] = y - ch[0] - f = nil;
Splay* get_root(Splay *x) {
  for (root_path(x); x->ch[0] != nil; x = x->ch[0])
   x->push();
  splay(x);
  return x;
bool conn(Splay *x, Splay *y) {
 return get_root(x) == get_root(y);
Splay* lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
int query(Splay *x, Splay *y) {
 split(x, y);
  return y->sum;
```

3.10 KDTree [375ca2]

```
namespace kdt {
int root, lc[maxn], rc[maxn], xl[maxn], xr[maxn],
 yl[maxn], yr[maxn];
point p[maxn];
int build(int l, int r, int dep = 0) {
  if (l == r) return -1;
  function < bool(const point &, const point &) > f =
    [dep](const point &a, const point &b) {
      if (dep & 1) return a.x < b.x;
      else return a.y < b.y;</pre>
    };
  int m = (l + r) >> 1;
  nth_element(p + l, p + m, p + r, f);
  xl[m] = xr[m] = p[m].x;
  yl[m] = yr[m] = p[m].y;
  lc[m] = build(l, m, dep + 1);
  if (~lc[m]) {
    xl[m] = min(xl[m], xl[lc[m]]);
    xr[m] = max(xr[m], xr[lc[m]]);
yl[m] = min(yl[m], yl[lc[m]]);
    yr[m] = max(yr[m], yr[lc[m]]);
  rc[m] = build(m + 1, r, dep + 1);
  if (~rc[m]) {
    xl[m] = min(xl[m], xl[rc[m]]);
    xr[m] = max(xr[m], xr[rc[m]]);
    yl[m] = min(yl[m], yl[rc[m]]);
yr[m] = max(yr[m], yr[rc[m]]);
  return m;
bool bound(const point &q, int o, long long d) {
 double ds = sqrt(d + 1.0);
```

```
if (q.x < xl[o] - ds || q.x > xr[o] + ds ||
     q.y < yl[o] - ds || q.y > yr[o] + ds)
     return false:
   return true;
long long dist(const point &a, const point &b) {
  return (a.x - b.x) * 1ll * (a.x - b.x) +
     (a.y - b.y) * 1ll * (a.y - b.y);
void dfs(
  const point &q, long long &d, int o, int dep = 0) {
  if (!bound(q, o, d)) return;
long long cd = dist(p[o], q);
   if (cd != 0) d = min(d, cd);
   if ((dep & 1) && q.x < p[o].x</pre>
     !(dep & 1) && q.y < p[o].y) {
     if (~lc[o]) dfs(q, d, lc[o], dep + 1);
if (~rc[o]) dfs(q, d, rc[o], dep + 1);
  } else {
     if (~rc[o]) dfs(q, d, rc[o], dep + 1);
     if (~lc[o]) dfs(q, d, lc[o], dep + 1);
  }
void init(const vector<point> &v) {
  for (int i = 0; i < v.size(); ++i) p[i] = v[i];</pre>
  root = build(0, v.size());
long long nearest(const point &q) {
   long long res = 1e18;
   dfs(q, res, root);
   return res;
} // namespace kdt
```

4 Flow/Matching

4.1 Bipartite Matching* [784535]

```
struct Bipartite_Matching { // 0-base
   int mp[N], mq[N], dis[N + 1], cur[N], l, r;
   vector<int> G[N + 1];
   bool dfs(int u) {
     for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
       int e = G[u][i];
       if (mq[e] ==
             l \mid \mid (dis[mq[e]] == dis[u] + 1 && dfs(mq[e])))
          return mp[mq[e] = u] = e, 1;
     return dis[u] = -1, 0;
   bool bfs() {
     queue<int> q;
     fill_n(dis, l + 1, -1);
for (int i = 0; i < l; ++i)
       if (!~mp[i])
         q.push(i), dis[i] = 0;
     while (!q.empty()) {
       int u = q.front();
       q.pop();
       for (int e : G[u])
         if (!~dis[mq[e]])
            q.push(mq[e]), dis[mq[e]] = dis[u] + 1;
     return dis[l] != -1;
   int matching() {
     int res = 0;
     fill_n(mp, l, -1), fill_n(mq, r, l);
     while (bfs()) {
       fill_n(cur, l, 0);
for (int i = 0; i < l; ++i)
         res += (!~mp[i] && dfs(i));
     return res; // (i, mp[i] != -1)
   void add_edge(int s, int t) { G[s].pb(t); }
   void init(int _l, int _r) {
     l = _l, r = _r;
for (int i = 0; i <= l; ++i)</pre>
       G[i].clear();
  }
};
```

4.2 Kuhn Munkres* [4b3863]

```
struct KM { // 0-base, maximum matching
    ll w[N][N], hl[N], hr[N], slk[N];
    int fl[N], fr[N], pre[N], qu[N], ql, qr, n;
    bool vl[N], vr[N];
```

```
void init(int _n) {
    n = _n;
for (int i = 0; i < n; ++i)</pre>
      fill_n(w[i], n, -INF);
  void add_edge(int a, int b, ll wei) {
    w[a][b] = wei;
  bool Check(int x) {
    if (vl[x] = 1, \sim fl[x])
      return vr[qu[qr++] = fl[x]] = 1;
    while (~x) swap(x, fr[fl[x] = pre[x]]);
    return 0;
  void bfs(int s) {
    fill_n(
         slk, n, INF), fill_n(vl, n, \theta), fill_n(vr, n, \theta);
    ql = qr = 0, qu[qr++] = s, vr[s] = 1;
    for (ll d;;) {
      while (ql < qr)</pre>
         for (int x = 0, y = qu[ql++]; x < n; ++x)
          if (!vl[x] &&
                slk[x] >= (d = hl[x] + hr[y] - w[x][y])) {
             if (pre[x] = y, d) slk[x] = d;
             else if (!Check(x)) return;
      d = INF;
      for (int x = 0; x < n; ++x)
  if (!vl[x] && d > slk[x]) d = slk[x];
       for (int x = 0; x < n; ++x) {</pre>
        if (vl[x]) hl[x] += d;
         else slk[x] -= d;
        if (vr[x]) hr[x] -= d;
      for (int x = 0; x < n; ++x)
         if (!vl[x] && !slk[x] && !Check(x)) return;
    }
  ll solve() {
    fill_n
         (fl, n, -1), fill_n(fr, n, -1), fill_n(hr, n, 0);
    for (int i = 0; i < n; ++i)</pre>
      hl[i] = *max_element(w[i], w[i] + n);
    for (int i = 0; i < n; ++i) bfs(i);</pre>
    for (int i = 0; i < n; ++i) res += w[i][fl[i]];</pre>
    return res;
};
```

4.3 MincostMaxflow* [1c78db]

```
struct MinCostMaxFlow { // 0-base
 struct Edge {
    ll from, to, cap, flow, cost, rev;
  } *past[N];
  vector<Edge> G[N];
  int inq[N], n, s, t;
ll dis[N], up[N], pot[N];
  bool BellmanFord() {
    fill_n(dis, n, INF), fill_n(inq, n, 0);
    queue < int > q;
    auto relax = [&](int u, ll d, ll cap, Edge *e) {
      if (cap > 0 && dis[u] > d) {
        dis[u] = d, up[u] = cap, past[u] = e;
        if (!inq[u]) inq[u] = 1, q.push(u);
   };
    relax(s, 0, INF, 0);
    while (!q.empty()) {
      int u = q.front();
      q.pop(), inq[u] = 0;
      for (auto &e : G[u]) {
        ll d2 = dis[u] + e.cost + pot[u] - pot[e.to];
        relax(e.to, d2, min(up[u], e.cap - e.flow), &e);
    return dis[t] != INF;
  void solve(int
       _s, int _t, ll &flow, ll &cost, bool neg = true) {
                 _{t}, flow = 0, cost = 0;
    if (neg) BellmanFord(), copy_n(dis, n, pot);
    for (; BellmanFord(); copy_n(dis, n, pot)) {
      for (int
           i = 0; i < n; ++i) dis[i] += pot[i] - pot[s];
      flow += up[t], cost += up[t] * dis[t];
      for (int i = t; past[i]; i = past[i]->from) {
        auto &e = *past[i];
```

```
e.flow += up[t], G[e.to][e.rev].flow -= up[t];
}
}

void init(int _n) {
    n = _n, fill_n(pot, n, 0);
    for (int i = 0; i < n; ++i) G[i].clear();
}

void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge{a, b, cap, 0, cost, SZ(G[b])});
    G[b].pb(Edge{b, a, 0, 0, -cost, SZ(G[a]) - 1});
}
};</pre>
```

4.4 Maximum Simple Graph Matching* [0fe1c3]

```
struct Matching { // 0-base
  queue < int > q; int n;
  vector<int> fa, s, vis, pre, match;
  vector<vector<int>> G;
  int Find(int u)
  { return u == fa[u] ? u : fa[u] = Find(fa[u]); }
  int LCA(int x, int y) {
    static int tk = 0; tk++; x = Find(x); y = Find(y);
    for (;; swap(x, y)) if (x != n) {
      if (vis[x] == tk) return x;
      vis[x] = tk;
      x = Find(pre[match[x]]);
  }
  void Blossom(int x, int y, int l) {
   for (; Find(x) != l; x = pre[y]) {
      pre[x] = y, y = match[x];
if (s[y] == 1) q.push(y), s[y] = 0;
      for (int z: {x, y}) if (fa[z] == z) fa[z] = l;
  bool Bfs(int r) {
    iota(ALL(fa), 0); fill(ALL(s), -1);
    q = queue < int >(); q.push(r); s[r] = 0;
    for (; !q.empty(); q.pop()) {
      for (int x = q.front(); int u : G[x])
        if (s[u] == -1) {
           if (pre[u] = x, s[u] = 1, match[u] == n) {
             for (int a = u, b = x, last;
                 b != n; a = last, b = pre[a])
                    = match[b], match[b] = a, match[a] = b;
             return true:
        q.push(match[u]); s[match[u]] = 0;
} else if (!s[u] && Find(u) != Find(x)) {
           int l = LCA(u, x);
           Blossom(x, u, l); Blossom(u, x, l);
    return false;
  Matching(int _n) : n(_n), fa(n + 1), s(n + 1),
      vis(n + 1), pre(n + 1, n), match(n + 1, n), G(n) {}
  void add_edge(int u, int v)
  { G[u].pb(v), G[v].pb(u); }
  int solve() {
    int ans = 0;
    for (int x = 0; x < n; ++x)
      if (match[x] == n) ans += Bfs(x);
    return ans:
  } // match[x] == n means not matched
```

4.5 Maximum Weight Matching* [9ffb94]

```
#define REP(i, l, r) for (int i=(l); i<=(r); ++i)
struct WeightGraph { // 1-based
    struct edge { int u, v, w; }; int n, nx;
    vector <int > lab; vector <vector <edge >> g;
    vector <int > slk, match, st, pa, S, vis;
    vector <vector <int >> flo_from; queue <int > q;
    WeightGraph(int n_) : n(n_), nx(n * 2), lab(nx + 1),
        g(nx + 1, vector <edge >(nx + 1)), slk(nx + 1),
        flo(nx + 1), flo_from(nx + 1, vector(n + 1, 0)) {
        match = st = pa = S = vis = slk;
        REP(u, 1, n) REP(v, 1, n) g[u][v] = {u, v, 0};
    }
    int E(edge e)
    {       return lab[e.u] + lab[e.v] - g[e.u][e.v].w * 2; }
    void update_slk(int u, int x, int &s)
    {       if (!s || E(g[u][x]) < E(g[s][x])) s = u; }
    void set_slk(int x) {</pre>
```

```
REP(u, 1, n)
    if (g[u][x].w > 0 && st[u] != x && S[st[u]] == 0)
      update_slk(u, x, slk[x]);
void q_push(int x) {
  if (x <= n) q.push(x);</pre>
  else for (int y : flo[x]) q_push(y);
void set_st(int x, int b) {
 st[x] = b;
  if (x > n) for (int y : flo[x]) set st(y, b);
vector<int> split_flo(auto &f, int xr) {
  auto it = find(ALL(f), xr);
  if (auto pr = it - f.begin(); pr % 2 == 1)
    reverse(1 + ALL(f)), it = f.end() - pr;
  auto res = vector(f.begin(), it);
  return f.erase(f.begin(), it), res;
void set_match(int u, int v) {
 match[u] = g[u][v].v;
  if (u <= n) return;</pre>
  int xr = flo_from[u][g[u][v].u];
  auto &f = flo[u], z = split_flo(f, xr);
  \label{eq:rep} \texttt{REP}(\texttt{i}, \ \texttt{0}, \ \texttt{SZ}(\texttt{z}) \ - \ \texttt{1}) \ \ \mathsf{set\_match}(\texttt{z}[\texttt{i}], \ \texttt{z}[\texttt{i} \ ^ \ \texttt{1}]);
  set_match(xr, v); f.insert(f.end(), ALL(z));
void augment(int u, int v) {
  for (;;) {
    int xnv = st[match[u]]; set_match(u, v);
    if (!xnv) return;
    set_match(v = xnv, u = st[pa[xnv]]);
 }
int lca(int u, int v) {
 static int t = 0; ++t;
for (++t; u || v; swap(u, v)) if (u) {
    if (vis[u] == t) return u;
    vis[u] = t, u = st[match[u]];
    if (u) u = st[pa[u]];
  return 0:
void add_blossom(int u, int o, int v) {
  int b = find(n + 1 + ALL(st), 0) - begin(st);
  lab[b] = 0, S[b] = 0, match[b] = match[o]; vector < int > f = {o};
  for (int t : {u, v}) {
    reverse(1 + ALL(f));
    for (int x = t, y; x != o; x = st[pa[y]])
      f.pb(x), f.pb(y = st[match[x]]), q_push(y);
  flo[b] = f; set_st(b, b);
  REP(x, 1, nx) g[b][x].w = g[x][b].w = 0;
  fill(ALL(flo_from[b]), 0);
  for (int xs : flo[b]) {
    REP(x, 1, nx)
      if (g[b][x].w == 0 || E(g[xs][x]) < E(g[b][x]))
        g[b][x] = g[xs][x], g[x][b] = g[x][xs];
      if (flo_from[xs][x]) flo_from[b][x] = xs;
  set_slk(b);
void expand_blossom(int b) {
  for (int x: flo[b]) set_st(x, x);
int xr = flo_from[b][g[b][pa[b]].u], xs = -1;
  for (int x : split_flo(flo[b], xr)) {
    if (xs == -1) { xs = x; continue; }
    pa[xs] = g[x][xs].u, S[xs] = 1, S[x] = 0;
    slk[xs] = 0, set_slk(x), q_push(x), xs = -1;
  for (int x : flo[b])
    if (x == xr) S[x] = 1, pa[x] = pa[b];
    else S[x] = -1, set_slk(x);
  st[b] = 0;
bool on_found_edge(const edge &e) {
  if (int u = st[e.u], v = st[e.v]; S[v] == -1) {
    int nu = st[match[v]]; pa[v] = e.u; S[v] = 1;
    slk[v] = slk[nu] = S[nu] = 0; q_push(nu);
  } else if (S[v] == 0) {
    if (int o = lca(u, v)) add_blossom(u, o, v);
    else return augment(u, v), augment(v, u), true;
  return false;
```

```
fill(ALL(S), -1), fill(ALL(slk), 0);
    q = queue < int >();
    REP(x, 1, nx) if (st[x] == x \&\& !match[x])
      pa[x] = S[x] = 0, q_push(x);
     if (q.empty()) return false;
    for (;;) {
      while (SZ(q)) {
         int u = q.front(); q.pop();
         if (S[st[u]] == 1) continue;
         REP(v, 1, n)
           if (g[u][v].w > 0 && st[u] != st[v]) {
             if (E(g[u][v]) != 0)
               update_slk(u, st[v], slk[st[v]]);
              else if (on_found_edge(g[u][v])) return true;
      int d = INF:
      REP(b, n + 1, nx) if (st[b] == b && S[b] == 1)
d = min(d, lab[b] / 2);
       REP(x, 1, nx)
         if (int s = slk[x]; st[x] == x && s && S[x] <= 0)
  d = min(d, E(g[s][x]) / (S[x] + 2));</pre>
      REP(u, 1, n)
         if (S[st[u]] == 1) lab[u] += d;
         else if (S[st[u]] == 0) {
           if (lab[u] <= d) return false;</pre>
           lab[u] -= d;
      REP(b, n + 1, nx) if (st[b] == b \&\& S[b] >= 0)
         lab[b] += d * (2 - 4 * S[b]);
      REP(x, 1, nx)
if (int s = slk[x]; st[x] == x &&
             s \&\& st[s] != x \&\& E(g[s][x]) == 0)
           if (on_found_edge(g[s][x])) return true;
       REP(b, n + 1, nx)
         if (st[b] == b && S[b] == 1 && lab[b] == 0)
           expand_blossom(b);
    return false;
  pair<ll, int> solve() {
    fill(ALL(match), 0);
    REP(u, 0, n) st[u] = u, flo[u].clear();
     int w_max = 0;
    REP(u, 1, n) REP(v, 1, n) {
  flo_from[u][v] = (u == v ? u : 0);
      w_{max} = max(w_{max}, g[u][v].w);
    fill(ALL(lab), w_max);
    int n_matches = 0; ll tot_weight = 0;
    while (matching()) ++n_matches;
    REP(u, 1, n) if (match[u] \&\& match[u] < u)
      tot_weight += g[u][match[u]].w;
    return make_pair(tot_weight, n_matches);
  void add_edge(int u, int v, int w)
  \{ g[u][v].w = g[v][u].w = w; \}
4.6 SW-mincut [c705f5]
struct SW{ // global min cut, O(V^3)
   #define REP for (int i = 0; i < n; ++i)
   static const int MXN = 514, INF = 2147483647;</pre>
  int vst[MXN], edge[MXN][MXN], wei[MXN];
  void init(int n) {
    REP fill_n(edge[i], n, 0);
  void addEdge(int u, int v, int w){
    edge[u][v] += w; edge[v][u] += w;
  int search(int &s, int &t, int n){
    fill_n(vst, n, 0), fill_n(wei, n, 0);
    s = t = -1;
    int mx, cur;
    for (int j = 0; j < n; ++j) {</pre>
      mx = -1, cur = 0;
      REP if (wei[i] > mx) cur = i, mx = wei[i];
      vst[cur] = 1, wei[cur] = -1;
      s = t; t = cur;
      REP if (!vst[i]) wei[i] += edge[cur][i];
    return mx;
  int solve(int n) {
    int res = INF;
    for (int x, y; n > 1; n--){
      res = min(res, search(x, y, n));
```

bool matching() {

```
REP edge[i][x] = (edge[x][i] += edge[y][i]);
    REP {
        edge[y][i] = edge[n - 1][i];
        edge[i][y] = edge[i][n - 1];
      } // edge[y][y] = 0;
    }
    return res;
}
sw;
```

4.7 BoundedFlow*(Dinic*) [4a793f]

```
struct BoundedFlow { // 0-base
  struct edge {
    int to, cap, flow, rev;
  }:
  vector<edge> G[N];
  int n, s, t, dis[N], cur[N], cnt[N];
  void init(int _n) {
   n = _n;
for (int i = 0; i < n + 2; ++i)
      G[i].clear(), cnt[i] = 0;
  void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
G[u].pb(edge{v, rcap, lcap, SZ(G[v])});
    G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  void add_edge(int u, int v, int cap) {
    G[u].pb(edge{v, cap, 0, SZ(G[v])});
G[v].pb(edge{u, 0, 0, SZ(G[u]) - 1});
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      edge &e = G[u][i];
      if (dis[e.to] == dis[u] + 1 && e.cap != e.flow) {
         int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df, G[e.to][e.rev].flow -= df;
          return df;
        }
      }
    }
    dis[u] = -1;
    return 0;
  bool bfs() {
    fill_n(dis, n + 3, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop():
      for (edge &e : G[u])
        if (!~dis[e.to] && e.flow != e.cap)
          q.push(e.to), dis[e.to] = dis[u] + 1;
    return dis[t] != -1:
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int flow = 0, df;
    while (bfs()) {
      fill_n(cur, n + 3, 0);
while ((df = dfs(s, INF))) flow += df;
    return flow;
  bool solve() {
    int sum = 0;
    for (int i = 0; i < n; ++i)</pre>
      if (cnt[i] > 0)
        add_edge(n + 1, i, cnt[i]), sum += cnt[i];
      else if (cnt[i] < 0) add_edge(i, n + 2, -cnt[i]);
    if (sum != maxflow(n + 1, n + 2)) sum = -1;
    for (int i = 0; i < n; ++i)</pre>
         (cnt[i] > 0)
        G[n + 1].pop_back(), G[i].pop_back();
      else if (cnt[i] < 0)</pre>
        G[i].pop_back(), G[n + 2].pop_back();
    return sum != -1;
  int solve(int _s, int _t) {
    add_edge(_t, _s, INF);
if (!solve()) return -1; // invalid flow
    int x = G[_t].back().flow;
    return G[_t].pop_back(), G[_s].pop_back(), x;
```

4.8 Gomory Hu tree* [11be99]

|};

```
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
  for (int i = 1; i < n; ++i) {
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)
        if (g[j] == g[i] && ~Dinic.dis[j])
        g[j] = i;
  }
}</pre>
```

4.9 Minimum Cost Circulation* [ba97cf]

```
struct MinCostCirculation { // 0-base
  struct Edge {
    ll from, to, cap, fcap, flow, cost, rev;
  } *past[N];
  vector < Edge > G[N];
  ll dis[N], inq[N], n;
  void BellmanFord(int s) {
    fill_n(dis, n, INF), fill_n(inq, n, 0);
     queue<int> q;
    auto relax = [&](int u, ll d, Edge *e) {
  if (dis[u] > d) {
         dis[u] = d, past[u] = e;
         if (!inq[u]) inq[u] = 1, q.push(u);
      }
    };
     relax(s, 0, 0);
     while (!q.empty()) {
       int u = q.front();
       q.pop(), inq[u] = 0;
       for (auto &e : G[u])
         if (e.cap > e.flow)
           relax(e.to, dis[u] + e.cost, &e);
    }
  void try_edge(Edge &cur) {
    if (cur.cap > cur.flow) return ++cur.cap, void();
     BellmanFord(cur.to);
     if (dis[cur.from] + cur.cost < 0) {</pre>
       ++cur.flow, --G[cur.to][cur.rev].flow;
           int i = cur.from; past[i]; i = past[i]->from) {
         auto &e = *past[i];
         ++e.flow, --G[e.to][e.rev].flow;
      }
    }
     ++cur.cap;
  }
  void solve(int mxlg) {
    for (int b = mxlg; b >= 0; --b) {
      for (int i = 0; i < n; ++i)
for (auto &e : G[i])</pre>
           e.cap *= 2, e.flow *= 2;
       for (int i = 0; i < n; ++i)</pre>
         for (auto &e : G[i])
           if (e.fcap >> b & 1)
             try_edge(e);
    }
  void init(int _n) { n = _n;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
  void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(Edge
         {a, b, \theta, cap, \theta, cost, SZ(G[b]) + (a == b)});
    G[b].pb(Edge{b, a, 0, 0, 0, -cost, SZ(G[a]) - 1});
} mcmf; // O(VE * ElogC)
```

4.10 Flow Models

- Maximum/Minimum flow with lower bound / Circulation problem
 - 1. Construct super source S and sink T.
 - 2. For each edge (x,y,l,u), connect $x \rightarrow y$ with capacity u-l.
 - 3. For each vertex v, denote by in(v) the difference between the sum of incoming lower bounds and the sum of outgoing lower bounds.
 - 4. If in(v)>0, connect $S\to v$ with capacity in(v), otherwise, connect $v\to T$ with capacity -in(v).
 - To maximize, connect $t \to s$ with capacity ∞ (skip this in circulation problem), and let f be the maximum flow from S to T. If $f \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, the maximum flow from s to t is the answer.

- To minimize, let f be the maximum flow from S to T. Connect $t \to s$ with capacity ∞ and let the flow from S to T be f'. If $f+f' \neq \sum_{v \in V, in(v) > 0} in(v)$, there's no solution. Otherwise, f' is the answer.
- 5. The solution of each edge e is l_e+f_e , where f_e corresponds to the flow of edge e on the graph.
- Construct minimum vertex cover from maximum matching M on bipartite graph (X,Y)
 - 1. Redirect every edge: $y \rightarrow x$ if $(x,y) \in M$, $x \rightarrow y$ otherwise.
 - 2. DFS from unmatched vertices in X.
 - 3. $x \in X$ is chosen iff x is unvisited.
 - 4. $y \in Y$ is chosen iff y is visited.
- · Minimum cost cyclic flow
 - 1. Consruct super source S and sink T
 - 2. For each edge (x,y,c), connect x o y with (cost,cap)=(c,1) if c>0, otherwise connect y o x with (cost,cap)=(-c,1)
 - 3. For each edge with c<0, sum these cost as K, then increase d(y) by 1, decrease d(x) by 1
 - 4. For each vertex v with d(v) > 0, connect $S \rightarrow v$ with (cost, cap) = (0, d(v))
 - 5. For each vertex v with d(v) < 0, connect $v \rightarrow T$ with (cost, cap) = (0, -d(v))
 - 6. Flow from S to T, the answer is the cost of the flow C+K
- Maximum density induced subgraph
 - 1. Binary search on answer, suppose we're checking answer ${\cal T}$
 - 2. Construct a max flow model, let K be the sum of all weights
 - 3. Connect source $s \rightarrow v$, $v \in G$ with capacity K
 - 4. For each edge (u,v,w) in G, connect $u \rightarrow v$ and $v \rightarrow u$ with capacity w
 - 5. For $v\in G$, connect it with sink $v\to t$ with capacity $K+2T-(\sum_{e\in E(v)}w(e))-2w(v)$
 - 6. T is a valid answer if the maximum flow f < K|V|
- · Minimum weight edge cover
 - 1. For each $v \in V$ create a copy v', and connect $u' \to v'$ with weight w(u,v).
 - 2. Connect $v \to v'$ with weight $2\mu(v)$, where $\mu(v)$ is the cost of the cheapest edge incident to v.
 - 3. Find the minimum weight perfect matching on G'.
- · Project selection problem
 - 1. If $p_v>0$, create edge (s,v) with capacity p_v ; otherwise, create edge (v,t) with capacity $-p_v$.
 - 2. Create edge (u,v) with capacity w with w being the cost of choosing u without choosing v.
 - 3. The mincut is equivalent to the maximum profit of a subset of projects.
- Dual of minimum cost maximum flow
 - 1. Capacity c_{uv} , Flow f_{uv} , Cost w_{uv} , Required Flow difference for vertex b_u .
 - 2. If all w_{uv} are integers, then optimal solution can happen when all p_u are integers.

$$\begin{aligned} \min & \sum_{uv} w_{uv} f_{uv} \\ -f_{uv} & \geq -c_{uv} \Leftrightarrow \min \sum_{u} b_{u} p_{u} + \sum_{uv} c_{uv} \max(0, p_{v} - p_{u} - w_{uv}) \\ \sum_{v} f_{vu} - \sum_{v} f_{uv} = -b_{u} \end{aligned}$$

5 String

5.1 KMP [5a0728]

```
int F[MAXN];
vector < int > match(string A, string B) {
    vector < int > ans;
    F[0] = -1, F[1] = 0;
    for (int i = 1, j = 0; i < SZ(B); F[++i] = ++j) {
        if (B[i] == B[j]) F[i] = F[j]; // optimize
        while (j != -1 && B[i] != B[j]) j = F[j];
    }
    for (int i = 0, j = 0; i < SZ(A); ++i) {
        while (j != -1 && A[i] != B[j]) j = F[j];
        if (++j == SZ(B)) ans.pb(i + 1 - j), j = F[j];
    }
    return ans;
}</pre>
```

5.2 Z-value* [3dd732]

```
int z[SIZE];
void make_z(const string &s) {
  int l = 0, r = 0, n = s.size();
  FOR (i, 1, n - 1) {
    for (z[i] = max(0, min(r - i + 1, z[i - l]));
        i + z[i] < n && s[i + z[i]] == s[z[i]];
        ++z[i])
    ;
  if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
  }
}
```

5.3 Manacher* [29eb4f]

```
5.4 SAIS* [e74ce1]
class SAIS {
public:
  int *SA, *H;
  // zero based, string content MUST > 0
  // result height H[i] is LCP(SA[i - 1], SA[i])
  // string, length, |sigma|
void build(int *s, int n, int m = 128) {
     copy_n(s, n, _s);
    h[0] = _s[n++] = 0;
sais(_s, _sa, _p, _q, _t, _c, n, m);
    mkhei(n);
    SA = _sa + 1;
H = _h + 1;
private:
  bool _t[N * 2];
  int _s[N * 2], _c[N * 2], x[N], _p[N], _q[N * 2],
   r[N], _sa[N * 2], _h[N];
void mkhei(int n) {
    FOR (i, 0, n - 1) r[_sa[i]] = i;
FOR (i, 0, n - 1)
       if (r[i]) {
         int ans = i > 0 ? max(_h[r[i - 1]] - 1, 0) : 0;
while (_s[i + ans] == _s[_sa[r[i] - 1] + ans])
           ans++:
         _h[r[i]] = ans;
  void sais(int *s, int *sa, int *p, int *q, bool *t,
  int *c, int n, int z) {
     bool uniq = t[n - 1] = 1, neq;
     int nn = 0, nmxz = -1, *nsa = sa + n, *ns = s + n,
#define MAGIC(XD)
  fill_n(sa, n, 0);
  copy_n(c, z, x);
  copy_n(c, z - 1, x + 1);
  FOR (i, 0, n - 1)

if (sa[i] && !t[sa[i] - 1])
       sa[x[s[sa[i] - 1]]++] = sa[i] - 1;
  copy n(c, z, x);
  for (int i = n - 1; i >= 0; i--)
     if (sa[i] && t[sa[i] - 1])
       sa[--x[s[sa[i] - 1]]] = sa[i] - 1;
    fill_n(c, z, 0);
FOR (i, 0, n - 1) uniq &= ++c[s[i]] < 2;
     partial_sum(c, c + z, c);
     if (uniq) {
       FOR (i, 0, n - 1) sa[--c[s[i]]] = i;
       return;
     for (int i = n - 2; i >= 0; i--)
       t[i] = (s[i] == s[i + 1] ? t[i + 1]
                                    : s[i] < s[i + 1]);
     MAGIC(for (int i = 1; i <= n -
                 i++) if (t[i] && !t[i - 1])
              sa[--x[s[i]]] = p[q[i] = nn++] = i);
    FOR (i, 0, n - 1)
       if (sa[i] && t[sa[i]] && !t[sa[i] - 1]) {
         neq = (lst < 0) ||
            !equal(s + lst,
              s + lst + p[q[sa[i]] + 1] - sa[i],
              s + sa[i]);
         ns[q[lst = sa[i]]] = nmxz += neq;
     sais(ns, nsa, p + nn, q + n, t + n, c + z, nn,
```

5.5 Aho-Corasick Automatan* [794a77]

```
struct AC_Automatan {
  int nx[len][sigma], fl[len], cnt[len], ord[len], top;
  int rnx[len][sigma]; // node actually be reached
  int newnode() {
    fill_n(nx[top], sigma, -1);
    return top++:
  void init() { top = 1, newnode(); }
  int input(string &s) {
    int X = 1:
    for (char c : s) {
   if (!~nx[X][c - 'A']) nx[X][c - 'A'] = newnode();
   X = nx[X][c - 'A'];
    return X; // return the end node of string
  void make_fl() {
    queue < int > q;
    q.push(1), fl[1] = 0;
    for (int t = 0; !q.empty(); ) {
      int R = q.front();
      q.pop(), ord[t++] = R;
       for (int i = 0; i < sigma; ++i)</pre>
        if (~nx[R][i]) {
          int X = rnx[R][i] = nx[R][i], Z = fl[R];
          for (; Z && !~nx[Z][i]; ) Z = fl[Z];
          fl[X] = Z ? nx[Z][i] : 1, q.push(X);
        else rnx[R][i] = R > 1 ? rnx[fl[R]][i] : 1;
   }
  }
  void solve() {
    for (int i = top - 2; i > 0; --i)
      cnt[fl[ord[i]]] += cnt[ord[i]];
} ac;
```

5.6 Smallest Rotation [4f469f]

```
string mcp(string s) {
  int n = SZ(s), i = 0, j = 1;
  s += s;
  while (i < n && j < n) {
    int k = 0;
    while (k < n && s[i + k] == s[j + k]) ++k;
    if (s[i + k] <= s[j + k]) j += k + 1;
    else i += k + 1;
    if (i == j) ++j;
  }
  int ans = i < n ? i : j;
  return s.substr(ans, n);
}</pre>
```

5.7 De Bruijn sequence* [a09470]

```
constexpr int MAXC = 10, MAXN = 1e5 + 10;
struct DBSeq {
  int C, N, K, L, buf[MAXC * MAXN]; // K <= C^N</pre>
  void dfs(int *out, int t, int p, int &ptr) {
     if (ptr >= L) return;
     if (t > N) {
       if (N % p) return;
       for (int i = 1; i <= p && ptr < L; ++i)</pre>
         out[ptr++] = buf[i];
    } else {
       buf[t] = buf[t - p], dfs(out, t + 1, p, ptr);
       for (int j = buf[t - p] + 1; j < C; ++j)</pre>
         buf[t] = j, dfs(out, t + 1, t, ptr);
    }
  }
  void solve(int _c, int _n, int _k, int *out) {
     int p = 0;
    C = _c, N = _n, K = _k, L = N + K - 1;
dfs(out, 1, 1, p);
if (p < L) fill(out + p, out + L, 0);</pre>
} dbs;
```

5.8 Extended SAM* [64c3b7]

```
struct exSAM {
   int len[N * 2], link[N * 2]; // maxlength, suflink
   int next[N * 2][CNUM], tot; // [0, tot), root = 0
  int lenSorted[N * 2]; // topo. order
int cnt[N * 2]; // occurence
   int newnode() {
     fill_n(next[tot], CNUM, 0);
     len[tot] = cnt[tot] = link[tot] = 0;
     return tot++;
   void init() { tot = 0, newnode(), link[0] = -1; }
  int insertSAM(int last, int c) {
  int cur = next[last][c];
     len[cur] = len[last] + 1;
     int p = link[last];
     while (p != -1 && !next[p][c])
     next[p][c] = cur, p = link[p];
if (p == -1) return link[cur] = 0, cur;
     int q = next[p][c];
     if (len[p] + 1 == len[q]) return link[cur] = q, cur;
     int clone = newnode();
     for (int i = 0; i < CNUM; ++i)</pre>
      next[clone][i] = len[next[q][i]] ? next[q][i] : 0;
     len[clone] = len[p] + 1;
     while (p != -1 \&\& next[p][c] == q)
       next[p][c] = clone, p = link[p];
     link[link[cur] = clone] = link[q];
     link[q] = clone;
     return cur;
   void insert(const string &s) {
     int cur = 0;
     for (auto ch : s) {
       int &nxt = next[cur][int(ch - 'a')];
       if (!nxt) nxt = newnode();
       cnt[cur = nxt] += 1;
   void build() {
     queue < int > q;
     q.push(0);
     while (!q.empty()) {
       int cur = q.front();
       q.pop();
       for (int i = 0; i < CNUM; ++i)</pre>
         if (next[cur][i])
           q.push(insertSAM(cur, i));
     vector<int> lc(tot);
     for (int i = 1; i < tot; ++i) ++lc[len[i]];</pre>
     partial_sum(ALL(lc), lc.begin());
     for (int
         i = 1; i < tot; ++i) lenSorted[--lc[len[i]]] = i;</pre>
   void solve() {
     for (int i = tot - 2; i >= 0; --i)
       cnt[link[lenSorted[i]]] += cnt[lenSorted[i]];
};
```

5.9 PalTree* [d7d2cf]

```
struct palindromic_tree {
 struct node {
    int next[26], fail, len;
    node(int l = 0) : fail(0), len(l), cnt(0), num(0) {
  for (int i = 0; i < 26; ++i) next[i] = 0;</pre>
  vector<node> St:
  vector < char > s;
  int last, n;
  palindromic_tree() : St(2), last(1), n(0) {
    St[0].fail = 1, St[1].len = -1, s.pb(-1);
  inline void clear() {
    St.clear(), s.clear(), last = 1, n = 0;
    St.pb(0), St.pb(-1);
    St[0].fail = 1, s.pb(-1);
  inline int get_fail(int x) {
    while (s[n - St[x].len - 1] != s[n])
     x = St[x].fail;
    return x;
  inline void add(int c) {
    s.push_back(c -= 'a'), ++n;
```

```
int cur = get_fail(last);
if (!St[cur].next[c]) {
    int now = SZ(St);
    St.pb(St[cur].len + 2);
    St[now].fail =
        St[get_fail(St[cur].fail)].next[c];
    St[cur].next[c] = now;
    St[now].num = St[St[now].fail].num + 1;
}
last = St[cur].next[c], ++St[last].cnt;
}
inline void count() { // counting cnt
    auto i = St.rbegin();
    for (; i != St.rend(); ++i) {
        St[i->fail].cnt += i->cnt;
    }
}
inline int size() { // The number of diff. pal.
    return SZ(St) - 2;
}
};
```

6 Math

6.1 ax+by=gcd(only exgcd *) [7b833d]

```
pll exgcd(ll a, ll b) {
   if (b == 0) return pll(1, 0);
   ll p = a / b;
   pll q = exgcd(b, a % b);
   return pll(q.Y, q.X - q.Y * p);
}
/* ax+by=res, let x be minimum non-negative
g, p = gcd(a, b), exgcd(a, b) * res / g
   if p.X < 0: t = (abs(p.X) + b / g - 1) / (b / g)
   else: t = -(p.X / (b / g))
   p += (b / g, -a / g) * t */</pre>
```

6.2 Floor and Ceil [692c04]

```
int floor(int a, int b)
{ return a / b - (a % b && (a < 0) ^ (b < 0)); }
int ceil(int a, int b)
{ return a / b + (a % b && (a < 0) ^ (b > 0)); }
```

6.3 Floor Enumeration [7cbcdf]

```
// enumerating x = floor(n / i), [l, r]
for (int l = 1, r; l <= n; l = r + 1) {
   int x = n / l;
   r = n / x;
}</pre>
```

6.4 Mod Min [9118e1]

```
// min{k | l <= ((ak) mod m) <= r}, no solution -> -1
ll mod_min(ll a, ll m, ll l, ll r) {
   if (a == 0) return l ? -1 : 0;
   if (ll k = (l + a - 1) / a; k * a <= r)
      return k;
   ll b = m / a, c = m % a;
   if (ll y = mod_min(c, a, a - r % a, a - l % a))
      return (l + y * c + a - 1) / a + y * b;
   return -1;
}</pre>
```

6.5 Gaussian integer gcd [0e7740]

```
cpx gaussian_gcd(cpx a, cpx b) {
#define rnd
    (a, b) ((a >= 0 ? a * 2 + b : a * 2 - b) / (b * 2))
    ll c = a.real() * b.real() + a.imag() * b.imag();
    ll d = a.imag() * b.real() - a.real() * b.imag();
    ll r = b.real() * b.real() + b.imag() * b.imag();
    if (c % r == 0 && d % r == 0) return b;
    return
        gaussian_gcd(b, a - cpx(rnd(c, r), rnd(d, r)) * b);
}
```

6.6 Miller Rabin* [06308c]

```
ll tmp = (n - 1) / ((n - 1) & (1 - n));
ll t = __lg(((n - 1) & (1 - n))), x = 1;
for (; tmp; tmp >>= 1, a = mul(a, a, n))
    if (tmp & 1) x = mul(x, a, n);
if (x == 1 || x == n - 1) return 1;
while (--t)
    if ((x = mul(x, x, n)) == n - 1) return 1;
return 0;
}
```

6.7 System of Linear Equations [39aa4d]

```
struct matrix { // m variables, n equations
   int n, m;
   fraction
        M[MAXN][MAXN + 1], sol[MAXN], basis[MAXN][MAXN];
   bool with_basis = true;
   int rank = -1;
   bool fixed[MAXN]:
   int solve()
       { // -1: inconsistent, >= 0: rank of solution space
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m) continue;
       for (int j = 0; j < n; ++j) {</pre>
         if (i == j) continue;
         fraction tmp = -M[j][piv] / M[i][piv];
for (int k = 0; k <= m; ++k)
    M[j][k] = tmp * M[i][k] + M[j][k];</pre>
       }
     }
     rank = m;
     for (int i = 0; i < n; ++i) {</pre>
       int piv = 0;
       while (piv < m && !M[i][piv].n) ++piv;</pre>
       if (piv == m && M[i][m].n) return rank = -1;
       else if (piv < m) {</pre>
         --rank:
         if (with_basis) {
            for (int j = m;
                              j >= piv;
             M[i][j] = M[i][j] / M[i][piv];
            sol[piv] = M[i][m];
            fixed[piv] = true;
         } else {
            sol[piv] = M[i][m] / M[i][piv];
       }
     if (with_basis) {
       for (int i = 0; i < n; ++i) {</pre>
         int piv = 0;
         while (piv < m && !M[i][piv].n) ++piv;</pre>
         for (int j = 0, k = 0; j < m; ++j) {
            if (!fixed[j])
              basis[k++][piv] = -M[i][j];
         }
       for (int j = 0, k = 0; j < m; ++j) {
         if (!fixed[j])
            basis[k++][j] = 1;
       }
     return rank;
  }
};
```

6.8 Pollard Rho* [cfe72f]

```
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n %
       2 == 0) return PollardRho(n / 2), ++cnt[2], void();
  ll x = 2, y = 2, d = 1, p = 1;
  #define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
      PollardRho(n / d);
      PollardRho(d);
      return;
    if (d == n) ++p;
    x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
  }
}
```

6.9 Simplex Algorithm [6b4566]

```
const int MAXN = 11000, MAXM = 405;
const double eps = 1E-10;
double a[MAXN][MAXM], b[MAXN], c[MAXM];
double d[MAXN][MAXM], x[MAXM];
int ix[MAXN + MAXM]; // !!! array all indexed from 0
// max{cx} subject to {Ax<=b,x>=0}
// n: constraints, m: vars !!!
// x[] is the optimal solution vector
// usage :
// value = simplex(a, b, c, N, M);
double simplex(int n, int m){
  fill_n(d[n], m + 1, 0);
  fill_n(d[n + 1], m + 1, 0);
iota(ix, ix + n + m, 0);
  int r = n, s = m - 1;
  for (int i = 0; i < n; ++i) {</pre>
    for (int j = 0; j < m - 1; ++j) d[i][j] = -a[i][j];
    d[i][m - 1] = 1;
d[i][m] = b[i];
     if (d[r][m] > d[i][m]) r = i;
  copy_n(c, m - 1, d[n]);
d[n + 1][m - 1] = -1;
for (double dd;; ) {
    if (r < n) {
       swap(ix[s], ix[r + m]);
       d[r][s] = 1.0 / d[r][s];
       for (int j = 0; j <= m; ++j)
  if (j != s) d[r][j] *= -d[r][s];</pre>
       for (int i = 0; i <= n + 1; ++i) if (i != r) {</pre>
         for (int j = 0; j <= m; ++j) if (j != s)
  d[i][j] += d[r][j] * d[i][s];</pre>
         d[i][s] *= d[r][s];
     r = s = -1;
    for (int j = 0; j < m; ++j)
  if (s < 0 || ix[s] > ix[j]) {
         if (d[n + 1][j] > eps ||
             (d[n + 1][j] > -eps && d[n][j] > eps))
    if (s < 0) break;</pre>
     for (int i = 0; i < n; ++i) if (d[i][s] < -eps) {
       if (r < 0 ||
            (dd = d[r][
                m] / d[r][s] - d[i][m] / d[i][s]) < -eps ||
            (dd < eps && ix[r + m] > ix[i + m]))
         r = i;
     if (r < 0) return -1; // not bounded
  if (d[n + 1][m] < -eps) return -1; // not executable</pre>
  double ans = 0;
  fill_n(x, m, 0);
  for (int i = m; i
        < n + m; ++i) { // the missing enumerated x[i] = 0
     if (ix[i] < m - 1){
  ans += d[i - m][m] * c[ix[i]];</pre>
       x[ix[i]] = d[i-m][m];
    }
  }
  return ans;
```

6.9.1 Construction

Primal	Dual
Maximize $c^\intercal x$ s.t. $Ax \leq b$, $x \geq 0$	Minimize $b^{\intercal}y$ s.t. $A^{\intercal}y \ge c$, $y \ge 0$
Maximize $c^\intercal x$ s.t. $Ax \leq b$	Minimize $b^{T}y$ s.t. $A^{T}y = c$, $y \ge 0$
Maximize $c^{\intercal}x$ s.t. $Ax = b$, $x \ge 0$	Minimize $b^{\intercal}y$ s.t. $A^{\intercal}y \ge c$

 $ar{\mathbf{x}}$ and $ar{\mathbf{y}}$ are optimal if and only if for all $i \in [1,n]$, either $ar{x}_i = 0$ or $\sum_{j=1}^m A_{ji} ar{y}_j = c_i$ holds and for all $i \in [1,m]$ either $ar{y}_i = 0$ or $\sum_{j=1}^n A_{ij} ar{x}_j = b_j$ holds.

```
1. In case of minimization, let c'_i = -c_i
```

- 2. $\sum_{1 \le i \le n} A_{ji} x_i \ge b_j \to \sum_{1 \le i \le n} A_{ji} x_i \le -b_j$
- $3. \sum_{1 \le i \le n}^{-} A_{ji} x_i = b_j$
 - $\sum_{1 \le i \le n}^{-} A_{ji} x_i \le b_j$
 - $\sum_{1 \le i \le n}^{1 \le i \le n} A_{ji} x_i \ge b_j$
- 4. If x_i has no lower bound, replace x_i with $x_i x_i'$

6.10 chineseRemainder [a53b6d]

```
ll solve(ll x1, ll m1, ll x2, ll m2) {
    ll g = gcd(m1, m2);
    if ((x2 - x1) % g) return -1; // no sol
    m1 /= g; m2 /= g;
```

```
pll p = exgcd(m1, m2);
ll lcm = m1 * m2 * g;
ll res = p.first * (x2 - x1) * m1 + x1;
// be careful with overflow
return (res % lcm + lcm) % lcm;
```

6.11 Factorial without prime factor* [c324f3]

```
// O(p^k + log^2 n), pk = p^k
ll prod[MAXP];
ll fac_no_p(ll n, ll p, ll pk) {
  prod[0] = 1;
  for (int i = 1; i <= pk; ++i)
    if (i % p) prod[i] = prod[i - 1] * i % pk;
    else prod[i] = prod[i - 1];
  ll rt = 1;
  for (; n; n /= p) {
    rt = rt * mpow(prod[pk], n / pk, pk) % pk;
    rt = rt * prod[n % pk] % pk;
  }
  return rt;
} // (n! without factor p) % p^k</pre>
```

6.12 QuadraticResidue* [e0bf30]

```
int Jacobi(int a, int m) {
  int s = 1;
  for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
if ((r & 1) && ((m + 2) & 4)) s = -s;
    a >>= г;
    if (a & m & 2) s = -s;
    swap(a, m);
  }
  return s;
int QuadraticResidue(int a, int p) {
  if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
  if (jc == 0) return 0;
  if (jc == -1) return -1;
  int b, d;
  for (; ; ) {
    b = rand() % p;
d = (1LL * b * b + p - a) % p;
    if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL)
          * g0 * f0 + 1LL * d * (1LL * g1 * f1 % p)) % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL)
         * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) % p;
    f1 = (2LL * f0 * f1) \% p;
    f0 = tmp;
  return g0;
```

6.13 PiCount* [cad6d4]

```
ll PrimeCount(ll n) { // n \sim 10^13 => < 2s
  if (n <= 1) return 0;
  int v = sqrt(n), s = (v + 1) / 2, pc = 0;
  vector<int> smalls(v + 1), skip(v + 1), roughs(s);
  vector<ll> larges(s);
  for (int i = 2; i <= v; ++i) smalls[i] = (i + 1) / 2;</pre>
  for (int i = 0; i < s; ++i) {
  roughs[i] = 2 * i + 1;</pre>
    larges[i] = (n / (2 * i + 1) + 1) / 2;
  for (int p = 3; p <= v; ++p) {</pre>
    if (smalls[p] > smalls[p - 1]) {
      int q = p * p;
      ++pc;
      if (1LL * q * q > n) break;
      skip[p] = 1;
      for (int i = q; i <= v; i += 2 * p) skip[i] = 1;</pre>
      int ns = 0;
      for (int k = 0; k < s; ++k) {
        int i = roughs[k];
```

```
if (skip[i]) continue;
       ll d = 1LL * i * p;
larges[ns] = larges[k] - (d <= v ?</pre>
             larges[smalls[d] - pc] : smalls[n / d]) + pc;
        roughs[ns++] = i;
     }
     s = ns;
     for (int j = v / p; j >= p; --j) {
               = smalls[j] - pc, e = min(j * p + p, v + 1);
       for (int i = j * p; i < e; ++i) smalls[i] -= c;</pre>
     }
  }
for (int k = 1; k < s; ++k) {</pre>
  const ll m = n / roughs[k];
ll t = larges[k] - (pc + k - 1);
for (int l = 1; l < k; ++l) {</pre>
     int p = roughs[l];
if (1LL * p * p > m) break;
     t -= smalls[m / p] - (pc + l - 1);
  larges[0] -= t;
return larges[0];
```

6.14 Discrete Log* [da27bf]

```
int DiscreteLog(int s, int x, int y, int m) {
  constexpr int kStep = 32000;
  unordered_map<int, int> p;
  int b = 1;
  for (int i = 0; i < kStep; ++i) {</pre>
    p[y] = i;
    y = 1LL * y * x % m;
    b = 1LL * b * x % m;
  for (int i = 0; i < m + 10; i += kStep) {</pre>
    s = 1LL * s * b % m;
    if (p.find(s) != p.end()) return i + kStep - p[s];
  return -1;
int DiscreteLog(int x, int y, int m) {
  if (m == 1) return 0;
  int s = 1;
  for (int i = 0; i < 100; ++i) {</pre>
    if (s == y) return i;
    s = 1LL * s * x % m;
  if (s == y) return 100;
  int p = 100 + DiscreteLog(s, x, y, m);
  if (fpow(x, p, m) != y) return -1;
  return p;
\} // find minimum k such that x^k == y \pmod{m}
```

6.15 Berlekamp Massey [3eb6fa]

```
template <typename T>
vector<T> BerlekampMassey(const vector<T> &output) {
  vector<T> d(SZ(output) + 1), me, he;
  for (int f = 0, i = 1; i <= SZ(output); ++i) {
  for (int j = 0; j < SZ(me); ++j)
    d[i] += output[i - j - 2] * me[j];
  if ((d[i] -= output[i - 1]) == 0) continue;
}</pre>
     if (me.empty()) {
        me.resize(f = i);
        continue:
     vector <T > o(i - f - 1);
T k = -d[i] / d[f]; o.pb(-k);
     for (T x : he) o.pb(x * k);
     o.resize(max(SZ(o), SZ(me)));
     for (int j = 0; j < SZ(me); ++j) o[j] += me[j];</pre>
     if (i - f + SZ(he)) = SZ(me) he = me, f = i;
     me = o;
  return me;
```

6.16 Primes

```
/* 12721 13331 14341 75577
     123457 222557 556679 999983 1097774749 1076767633
     100102021 999997771 1001010013 1000512343 987654361
     999991231 999888733 98789101 987777733 999991921
     1010101333 1010102101 100000000039 10000000000037
     2305843009213693951 4611686018427387847
     9223372036854775783 18446744073709551557 */
```

6.17 Theorem

Cramer's rule

$$ax+by = e cx+dy = f \Rightarrow x = \frac{ed-bf}{ad-bc} y = \frac{af-ec}{ad-bc}$$

Vandermonde's Identity

$$C(n+m,k) = \sum_{i=0}^{k} C(n,i)C(m,k-i)$$

· Kirchhoff's Theorem

Denote L be a $n \times n$ matrix as the Laplacian matrix of graph G, where $L_{ii} = d(i)$, $L_{ij} = -c$ where c is the number of edge (i,j) in G.

- The number of undirected spanning in G is $|\det(\tilde{L}_{11})|$.

- The number of directed spanning tree rooted at r in G is $|\det(L_{rr})|$.

Let D be a n imes n matrix, where $d_{ij} = x_{ij}$ (x_{ij} is chosen uniformly at random) if i < j and $(i,j) \in E$, otherwise $d_{ij} = -d_{ji}$. $rac{rank(D)}{2}$ is the ${\sf maximum\ matching\ on\ } G.$

· Cayley's Formula

- Given a degree sequence $d_1, d_2, ..., d_n$ for each labeled vertices, there are $\frac{(n-2)!}{(d_1-1)!(d_2-1)!\cdots(d_n-1)!}$ spanning trees.
- Let $T_{n,k}$ be the number of *labeled* forests on n vertices with k components, such that vertex 1,2,...,k belong to different components. Then $T_{n,k} = kn^{n-k-1}.$
- Erdős–Gallai theorem

A sequence of nonnegative integers $d_1 \geq \cdots \geq d_n$ can be represented as the degree sequence of a finite simple graph on n vertices if and only if

$$d_1+\cdots+d_n \text{ is even and } \sum_{i=1}^k d_i \leq k(k-1)+\sum_{i=k+1}^n \min(d_i,k) \text{ holds for every } d_i \leq k(k-1)+\sum_{i=k+1}^n \min(d_i,k)$$

 $1 \le k \le n$. Gale–Ryser theorem

A pair of sequences of nonnegative integers $a_1 \geq \cdots \geq a_n$ and b_1, \ldots, b_n

is bigraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and $\sum_{i=1}^\kappa a_i \leq \sum_{i=1}^n \min(b_i,k)$ holds for every $1 \le k \le n$.

• Fulkerson-Chen-Anstee theorem

A sequence $(a_1,\ b_1),\ ...\ ,\ (a_n,\ b_n)$ of nonnegative integer pairs with $a_1 \geq \cdots \geq a_n$ is digraphic if and only if $\sum_{i=1}^n a_i = \sum_{i=1}^n b_i$ and

$$\sum_{i=1}^k a_i \leq \sum_{i=1}^k \min(b_i,k-1) + \sum_{i=k+1}^n \min(b_i,k) \text{ holds for every } 1 \leq k \leq n.$$

Pick's theorem

For simple polygon, when points are all integer, we have $A = \#\{\text{lattice points in the interior}\} + \frac{\#\{\text{lattice points on the boundary}\}}{2} - 1.$

- Möbius inversion formula
 - $f(n) = \sum_{d|n} g(d) \Leftrightarrow g(n) = \sum_{d|n} \mu(d) f(\frac{n}{d})$
 - $f(n) = \sum_{n|d} g(d) \Leftrightarrow g(n) = \sum_{n|d} \mu(\frac{d}{n}) f(d)$
- Spherical cap
 - A portion of a sphere cut off by a plane.
 - r: sphere radius, a: radius of the base of the cap, h: height of the cap, θ : $\arcsin(a/r)$.
 - Volume = $\pi h^2(3r-h)/3 = \pi h(3a^2+h^2)/6 = \pi r^3(2+\cos\theta)(1-\theta)$
 - Area $= 2\pi rh = \pi(a^2 + h^2) = 2\pi r^2(1 \cos\theta)$.
- · Lagrange multiplier
 - Optimize $f(x_1,...,x_n)$ when k constraints $g_i(x_1,...,x_n) = 0$.
 - Lagrangian function $\mathcal{L}(x_1,\,...\,,\,x_n,\,\lambda_1,\,...\,,\,\lambda_k) = f(x_1,\,...\,,\,x_n)$ $\sum_{i=1}^{k} \lambda_i g_i(x_1, ..., x_n).$
 - The solution corresponding to the original constrained optimization is always a saddle point of the Lagrangian function.
- Nearest points of two skew lines
 - Line 1: $v_1 = p_1 + t_1 d_1$
 - Line 2: $v_2 = p_2 + t_2 d_2$
 - $n = d_1 \times d_2$
 - $\boldsymbol{n}_1 = \boldsymbol{d}_1 \times \boldsymbol{n}$
 - $n_2 = d_2 \times n$
 - $\begin{array}{l}\textbf{-} \ c_1\!=\!p_1\!+\!\frac{(p_2\!-\!p_1)\!\cdot\! n_2}{d_1\!\cdot\! n_2}d_1\\ \textbf{-} \ c_2\!=\!p_2\!+\!\frac{(p_1\!-\!p_2)\!\cdot\! n_1}{d_2\!\cdot\! n_1}d_2\end{array}$
- Derivatives/Integrals

Integration by parts: $\int_a^b f(x)g(x)dx = [F(x)g(x)]_a^b - \int_a^b F(x)g'(x)dx$ $\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}} \begin{vmatrix} \frac{d}{dx}\cos^{-1}x = -\frac{1}{\sqrt{1-x^2}} \\ \frac{d}{dx}\tan x = 1 + \tan^2 x \end{vmatrix} \int_a^b \tan x = -\frac{\ln|\cos x|}{a} \begin{vmatrix} \frac{d}{dx}\tan^{-1}x = \frac{1}{1+x^2} \\ \frac{d}{dx}\tan x = -\frac{\ln|\cos x|}{a} \end{vmatrix}$ $\int\limits_{-\infty}^{\infty} e^{-x^2} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \left| \int\limits_{-\infty}^{\infty} x e^{ax} dx = \frac{e^{ax}}{a^2} (ax - 1) \right|$ $\int \sqrt{a^2 + x^2} = \frac{1}{2} \left(x \sqrt{a^2 + x^2} + a^2 \operatorname{asinh}(x/a) \right)$

· Spherical Coordinate

$$(x,y,z) = (r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta)$$

$$(r,\!\theta,\!\phi)\!=\!(\sqrt{x^2\!+\!y^2\!+\!z^2},\!\mathsf{acos}(z/\sqrt{x^2\!+\!y^2\!+\!z^2}),\!\mathsf{atan2}(y,\!x))$$

Rotation Matrix

$$M(\theta)\!=\!\begin{bmatrix}\!\cos\!\theta & -\!\sin\!\theta\\ \!\sin\!\theta & \!\cos\!\theta\end{bmatrix}\!,\!R_x(\theta_x)\!=\!\begin{bmatrix} 1 & 0 & 0\\ 0 & \!\cos\!\theta_x & -\!\sin\!\theta_x\\ 0 & \!\sin\!\theta & \!\cos\!\theta \end{bmatrix}$$

6.18 Estimation

6.19 Euclidean Algorithms

- $m = |\frac{an+b}{a}|$
- Time complexity: $O(\log n)$

$$\begin{split} f(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)}{2} + \lfloor \frac{b}{c} \rfloor \cdot (n+1) \\ + f(a \operatorname{mod} c, b \operatorname{mod} c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ nm - f(c, c - b - 1, a, m - 1), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} g(a,b,c,n) &= \sum_{i=0}^n i \lfloor \frac{ai+b}{c} \rfloor \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor \cdot \frac{n(n+1)}{2} \\ + g(a \operatorname{mod} c, b \operatorname{mod} c, c, n), & a \geq c \vee b \geq c \\ 0, & n < 0 \vee a = 0 \\ \frac{1}{2} \cdot (n(n+1)m - f(c, c - b - 1, a, m - 1) \\ - h(c, c - b - 1, a, m - 1)), & \text{otherwise} \end{cases} \end{split}$$

$$\begin{split} h(a,b,c,n) &= \sum_{i=0}^n \lfloor \frac{ai+b}{c} \rfloor^2 \\ &= \begin{cases} \lfloor \frac{a}{c} \rfloor^2 \cdot \frac{n(n+1)(2n+1)}{6} + \lfloor \frac{b}{c} \rfloor^2 \cdot (n+1) \\ + \lfloor \frac{a}{c} \rfloor \cdot \lfloor \frac{b}{c} \rfloor \cdot n(n+1) \\ + h(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{a}{c} \rfloor \cdot g(a \bmod c, b \bmod c, c, n) \\ + 2 \lfloor \frac{b}{c} \rfloor \cdot f(a \bmod c, b \bmod c, c, n), & a \geq c \lor b \geq c \\ 0, & n < 0 \lor a = 0 \\ nm(m+1) - 2g(c, c - b - 1, a, m - 1) \\ - 2f(c, c - b - 1, a, m - 1) - f(a, b, c, n), & \text{otherwise} \end{cases} \end{split}$$

6.20 General Purpose Numbers

Bernoulli numbers

$$\begin{split} &B_0 - 1, B_1^{\pm} = \pm \frac{1}{2}, B_2 = \frac{1}{6}, B_3 = 0 \\ &\sum_{j=0}^m \binom{m+1}{j} B_j = 0, \text{EGF is } B(x) = \frac{x}{e^x - 1} = \sum_{n=0}^\infty B_n \frac{x^n}{n!}. \\ &S_m(n) = \sum_{k=1}^n k^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k^+ n^{m+1-k}. \end{split}$$

• Stirling numbers of the second kind Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k), S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-i} {k \choose i} i^n$$

$$x^n = \sum_{i=0}^{n} S(n,i)(x)_i$$
 • Pentagonal number theorem

$$\prod_{n=1}^{\infty} (1-x^n) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(x^{k(3k+1)/2} + x^{k(3k-1)/2} \right)$$

$$\begin{aligned} & \overset{n=1}{\text{Catalan numbers}} & & \\ & C_n^{(k)} = \frac{1}{(k-1)n+1} \binom{kn}{n} & \\ & & C^{(k)}(x) = 1 + x[C^{(k)}(x)]^k \end{aligned}$$

Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j :s s.t. $\pi(j)>\pi(j+1)$, k+1 j :s s.t. $\pi(j)\geq j$, kj:s s.t. $\pi(j) > j$.

$$\begin{array}{l} E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k) \\ E(n,0) = E(n,n-1) = 1 \\ E(n,k) = \sum_{j=0}^k (-1)^j {n+1 \choose j} (k+1-j)^n \end{array}$$

6.21 Tips for Generating Functions

```
• Ordinary Generating Function A(x) = \sum_{i \geq 0} a_i x^i
      - A(rx) \Rightarrow r^n a_n
      - A(x) + B(x) \Rightarrow a_n + b_n
      - A(x)B(x) \Rightarrow \sum_{i=0}^{n} a_i b_{n-i}
      - A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} a_{i_1} a_{i_2} \dots a_{i_k}
      - xA(x)' \Rightarrow na_n
      - \frac{A(x)}{1-x} \Rightarrow \sum_{i=0}^{n} a_i
• Exponential Generating Function A(x) = \sum_{i > 0} \frac{a_i}{i!} x_i
     - A(x)+B(x) \Rightarrow a_n+b_n
     - A^{(k)}(x) \Rightarrow a_{n+k}
- A(x)B(x) \Rightarrow \sum_{i=0}^{n} {n \choose i} a_i b_{n-i}
      - A(x)^k \Rightarrow \sum_{i_1+i_2+\dots+i_k=n} \binom{n}{i_1,i_2,\dots,i_k} a_{i_1} a_{i_2} \dots a_{i_k}
      - xA(x) \Rightarrow na_n
• Special Generating Function
       - (1+x)^n = \sum_{i\geq 0} \binom{n}{i} x^i
```

- $\frac{1}{(1-x)^n} = \sum_{i\geq 0} {i\choose n-1} x^i$ Polynomial

Fast Fourier Transform [56bdd7]

```
template < int MAXN >
struct FFT {
  using val_t = complex < double >;
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {
  double arg = 2 * PI * i / MAXN;</pre>
       w[i] = val_t(cos(arg), sin(arg));
  }
  void bitrev(val_t *a, int n); // see NTT
  void trans
       (val_t *a, int n, bool inv = false); // see NTT;
     remember to replace LL with val_t
};
```

7.2 Number Theory Transform* [f68103]

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template < int MAXN, ll P, ll RT > //MAXN must be 2^k
struct NTT
  ll w[MAXN];
  ll mpow(ll a, ll n);
  ll minv(ll a) { return mpow(a, P - 2); }
  NTT() {
    ll dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int
         i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P;
  void bitrev(ll *a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j) {
  for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
    }
  }
  void operator()
      (ll *a, int n, bool inv = false) { //0 <= a[i] < P
    bitrev(a, n);
for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
          [j + dl] = a[j] - tmp) < 0) a[j + dl] += P;
          if ((a[j] += tmp) >= P) a[j] -= P;
      }
    if (inv) {
      reverse(a + 1, a + n);
      ll invn = minv(n);
      for (int i = 0; i < n; ++i) a[i] = a[i] * invn % P;</pre>
 }
};
```

7.3 Fast Walsh Transform* [c5d033]

```
/* x: a[j], y: a[j + (L >> 1)]
or: (y += x * op), and: (x += y * op)
xor: (x, y = (x + y) * op, (x - y) * op)
invop: or, and, xor = -1, -1, 1/2 */
void fwt(int *a, int n, int op) { //or
   for (int L = 2; L <= n; L <<= 1)</pre>
      for (int i = 0; i < n; i += L)</pre>
        FOR (j, i, j + (L >> 1) - 1)
a[j + (L >> 1)] += a[j] * op;
int f[N][1 << N], g[N][1 << N], h[N][1 << N], ct[1 << N];
void subset_convolution(int *a, int *b, int *c, int L) {
    // c_k = |sum_{{i | j = k, i & j = 0}} a_i * b_j</pre>
   int n = 1 << L;
   FOR (i, 1, n - 1)
      ct[i] = ct[i & (i - 1)] + 1;
   FOR (i, 0, n - 1)
     f[ct[i]][i] = a[i], g[ct[i]][i] = b[i];
   FOR (i,
              0, L)
   fwt(f[i], n, 1), fwt(g[i], n, 1);
FOR (i, 0, L) FOR (j, 0, i) FOR (x, 0, n - 1)
h[i][x] += f[j][x] * g[i - j][x];
   FOR (i, 0, L)
      fwt(h[i], n, -1);
   FOR (i, 0, n - 1)
      c[i] = h[ct[i]][i];
```

7.4 Polynomial Operation [105808]

```
fi(s, n) for (int i = (int)(s); i < (int)(n); ++i) template<int MAXN, ll P, ll RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
  using vector<ll>::vector;
  static NTT < MAXN, P, RT > ntt;
  int n() const { return (int)size(); } // n() >= 1
  Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
  Poly& irev
      () { return reverse(data(), data() + n()), *this; }
  Poly& isz(int m) { return resize(m), *this; }
  Poly& iadd(const Poly &rhs) { // n() == rhs.n()
    fi(0, n())
        if (((*this)[i] += rhs[i]) >= P) (*this)[i] -= P;
    return *this;
  Polv& imul(ll k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;</pre>
    Poly X(*this, m), Y(rhs, m);
    ntt(X.data(), m), ntt(Y.data(), m);
    fi(0, m) X[i] = X[i] * Y[i] % P;
    ntt(X.data(), m, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
    if (n() == 1) return {ntt.minv((*this)[0])};
    int m = 1;
    while (m < n() * 2) m <<= 1;
    Poly Xi = Poly(*this, (n() + 1) / 2). Inv().isz(m);
    Poly Y(*this, m);
    ntt(Xi.data(), m), ntt(Y.data(), m);
    fi(0, m) {
    Xi[i] *= (2 - Xi[i] * Y[i]) % P;
      if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    ntt(Xi.data(), m, true);
    return Xi.isz(n());
  Poly Sqrt
      () const { // Jacobi((*this)[0], P) = 1, 1e5/235ms}
    if (n()
         == 1) return {QuadraticResidue((*this)[0], P)};
    Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
    return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
  pair < Poly , Poly > DivMod
      (const Poly &rhs) const { // (rhs.)back() != 0
    if (n() < rhs.n()) return {{0}, *this};</pre>
    const int m = n() - rhs.n() + 1;
    Poly X(rhs); X.irev().isz(m);
    Poly Y(*this); Y.irev().isz(m);
```

```
Poly Q = Y.Mul(X.Inv()).isz(m).irev();
    X = rhs.Mul(Q), Y = *this;
    fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
    return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
    Poly ret(n() - 1);
    fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
    return ret.isz(max(1, ret.n()));
Poly Sx() const {
    Poly ret(n() + 1);
    return ret;
Poly _tmul(int nn, const Poly &rhs) const {
  Poly Y = Mul(rhs).isz(n() + nn - 1);
  return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const
    vector<ll> &x, const vector<Poly> &up) const {
const int m = (int)x.size();
    if (!m) return {};
    vector<Poly> down(m * 2);
    // down[1] = DivMod(up[1]).second;
    // fi(2, m
              * 2) down[i] = down[i / 2].DivMod(up[i]).second;
    down[1] = Poly(up[1])
            .irev().isz(n()).Inv().irev()._tmul(m, *this);
    fi(2, m * 2) down[
            i] = up[i ^ 1]._tmul(up[i].n() - 1, down[i / 2]);
    vector<ll> y(m);
    fi(0, m) y[i] = down[m + i][0];
    return v:
static vector<Poly> _tree1(const vector<ll> &x) {
  const int m = (int)x.size();
    vector<Poly> up(m * 2);
    fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
for (int i = m - 1;
            i > 0; --i) up[i] = up[i * 2].Mul(up[i * 2 + 1]);
    return up;
vector<ll> Eval(const vector<ll> &x) const { // 1e5, 1s
  auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const
         vector<ll> &x, const vector<ll> &y) { // 1e5, 1.4s
    const int m = (int)x.size();
    vector<Poly> up = _tree1(x), down(m * 2);
    vector <ll> z = up[1].Dx()._eval(x, up);
fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
    fi(0, m) down[m + i] = {z[i]};
    for (int i =
           m - 1; i > 0; --i) down[i] = down[i * 2].Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i * 2]));
    return down[1];
Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
   return Dx().Mul(Inv()).Sx().isz(n());
Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
    if (n() == 1) return {1};
Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
    Poly Y = X.Ln(); Y[0] = P - 1;
    fi(0, n()
) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] += P;
    return X.Mul(Y).isz(n());
// M := P(P - 1). If k >= M, k := k % M + M.
Poly Pow(ll k) const {
    int nz = 0;
    while (nz < n() && !(*this)[nz]) ++nz;</pre>
    if (nz * min(k, (ll)n()) >= n()) return Poly(n());
    if (!k) return Poly(Poly {1}, n());
    Poly X(data() + nz, data() + nz + n() - nz * k);
    const ll c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().
            imul(k % P).Exp().imul(c).irev().isz(n()).irev();
static ll LinearRecursion(const vector<ll> &a, const
        vector<ll> &coef, ll n) { // a_n = |sum c_j| a_n = |sum c_j|
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
    Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
    C[k] = 1;
```

```
while (n) {
    if (n % 2) W = W.Mul(M).DivMod(C).second;
    n /= 2, M = M.Mul(M).DivMod(C).second;
}
ll ret = 0;
fi(0, k) ret = (ret + W[i] * a[i]) % P;
return ret;
}
};
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

7.5 Value Polynomial [96cde9]

```
struct Poly {
  mint base; // f(x) = poly[x - base]
  vector<mint> poly;
  Poly(mint b = 0, mint x = 0): base(b), poly(1, x) {}
  mint get_val(const mint &x) {
     if (x >= base && x < base + SZ(poly))
       return poly[x - base];
     mint rt = 0;
     vector<mint> lmul(SZ(poly), 1), rmul(SZ(poly), 1);
     for (int i = 1; i < SZ(poly); ++i)</pre>
    lmul[i] = lmul[i - 1] * (x - (base + i - 1));
for (int i = SZ(poly) - 2; i >= 0; --i)
  rmul[i] = rmul[i + 1] * (x - (base + i + 1));
     for (int i = 0; i < SZ(poly); ++i)
  rt += poly[i] * ifac[i] *</pre>
             inegfac[SZ(poly) - 1 - i] * lmul[i] * rmul[i];
     return rt;
  void raise() { // g(x) = sigma\{base:x\} f(x)
     if (SZ(poly) == 1 && poly[0] == 0)
       return;
     mint nw = get_val(base + SZ(poly));
     poly.pb(nw);
     for (int i = 1; i < SZ(poly); ++i)</pre>
       poly[i] += poly[i - 1];
};
```

7.6 Newton's Method

Given F(x) where

$$F(x) = \sum_{i=0}^{\infty} \alpha_i (x - \beta)^i$$

for β being some constant. Polynomial P such that F(P)=0 can be found iteratively. Denote by Q_k the polynomial such that $F(Q_k)=0\pmod{x^{2^k}}$, then

$$Q_{k+1}\!=\!Q_k\!-\!\frac{F(Q_k)}{F'(Q_k)}\pmod{x^{2^{k+1}}}$$

8 Geometry

8.1 Default Code [7002f8]

```
typedef pair < double , double > pdd;
typedef pair<pdd, pdd> Line;
struct Cir{ pdd 0; double R; };
const double eps = 1e-8;
pdd operator+(pdd a, pdd b)
{ return pdd(a.X + b.X, a.Y + b.Y); }
pdd operator - (pdd a, pdd b)
{ return pdd(a.X - b.X, a.Y - b.Y); }
pdd operator*(pdd a, double b)
{ return pdd(a.X * b, a.Y * b); } pdd operator/(pdd a, double b)
{ return pdd(a.X / b, a.Y / b); }
double dot(pdd a, pdd b)
{ return a.X * b.X + a.Y * b.Y; }
double cross(pdd a, pdd b)
{ return a.X * b.Y - a.Y * b.X; }
double abs2(pdd a)
{ return dot(a, a); }
double abs(pdd a)
{ return sqrt(dot(a, a)); }
int sign(double a)
{ return fabs(a) < eps ? 0 : a > 0 ? 1 : -1; }
int ori(pdd a, pdd b, pdd c)
{ return sign(cross(b - a, c - a)); }
bool collinearity(pdd p1, pdd p2, pdd p3)
{ return sign(cross(p1 - p3, p2 - p3)) == 0; }
bool btw(pdd p1, pdd p2, pdd p3) {
  if (!collinearity(p1, p2, p3)) return 0;
  return sign(dot(p1 - p3, p2 - p3)) <= 0;</pre>
```

```
bool seg intersect(pdd p1, pdd p2, pdd p3, pdd p4) {
   int a123 = ori(p1, p2, p3);
   int a124 = ori(p1, p2, p4);
   int a341 = ori(p3, p4, p1);
   int a342 = ori(p3, p4, p2);
   if (a123 == 0 && a124 == 0)
     return btw(p1, p2, p3) || btw(p1, p2, p4) ||
       btw(p3, p4, p1) || btw(p3, p4, p2);
   return a123 * a124 <= 0 && a341 * a342 <= 0;
pdd intersect(pdd p1, pdd p2, pdd p3, pdd p4) {
    double a123 = cross(p2 - p1, p3 - p1);
    double a124 = cross(p2 - p1, p4 - p1);
   return (p4
         * a123 - p3 * a124) / (a123 - a124); // C^3 / C^2
pdd perp(pdd p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(pdd p1, pdd p2, pdd p3)
{ return p1 +
       (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 - p1); }
pdd reflection(pdd p1, pdd p2, pdd p3)
{ return p3 + perp(p2 -
       p1) * cross(p3 - p1, p2 - p1) / abs2(p2 - p1) * 2; }
\verb"pdd linearTransformation"
     (pdd p0, pdd p1, pdd q0, pdd q1, pdd r) {
   pdd dp = p1 -
         p0, dq = q1 - q0, num(cross(dp, dq), dot(dp, dq));
   return q0 + pdd
        (cross(r - p0, num), dot(r - p0, num)) / abs2(dp);
} // from line p0--p1 to q0--q1, apply to r
8.2 PointSegDist* [57b6de]
double PointSegDist(pdd q0, pdd q1, pdd p) {
   if (sign(abs(q0 - q1)) == 0) return abs(q0 - p); if (sign(dot(q1 - q0))
   , p - q0)) >= 0 && sign(dot(q0 - q1, p - q1)) >= 0)
return fabs(cross(q1 - q0, p - q0) / abs(q0 - q1));
return min(abs(p - q0), abs(p - q1));
}
```

8.3 **Heart** [8bc0b7]

```
pdd circenter
    (pdd p0, pdd p1, pdd p2) { // radius = abs(center)
  p1 = p1 - p0, p2 = p2 - p0;
  double x1 = p1.X, y1 = p1.Y, x2 = p2.X, y2 = p2.Y;
  double m = 2. * (x1 * y2 - y1 * x2);
  center.X = (x1 *
      x1 * y2 - x2 * x2 * y1 + y1 * y2 * (y1 - y2)) / m;
  center.Y = (x1 *
      x2 * (x2 - x1) - y1 * y1 * x2 + x1 * y2 * y2) / m;
  return center + p0;
pdd incenter
    (pdd p1, pdd p2, pdd p3) { // radius = area / s * 2
  double a
     = abs(p2 - p3), b = abs(p1 - p3), c = abs(p1 - p2);
  double s = a + b + c;
  return (a * p1 + b * p2 + c * p3) / s;
pdd masscenter(pdd p1, pdd p2, pdd p3)
{ return (p1 + p2 + p3) / 3; }
pdd orthcenter(pdd p1, pdd p2, pdd p3)
{ return masscenter
    (p1, p2, p3) * 3 - circenter(p1, p2, p3) * 2; }
```

8.4 point in circle [ecf954]

8.5 Convex hull* [feda6f]

8.6 PointInConvex* [f86640]

```
bool PointInConvex
    (const vector<pll> &C, pll p, bool strict = true) {
    int a = 1, b = SZ(C) - 1, r = !strict;
    if (SZ(C) == 0) return false;
    if (SZ(C) <= 3) return r && btw(C[0], C.back(), p);
    if (ori(C[0], C[a], C[b]) > 0) swap(a, b);
    if (ori
        (C[0], C[a], p) >= r || ori(C[0], C[b], p) <= -r)
        return false;
    while (abs(a - b) > 1) {
        int c = (a + b) / 2;
        (ori(C[0], C[c], p) > 0 ? b : a) = c;
    }
    return ori(C[a], C[b], p) < r;
}</pre>
```

8.7 TangentPointToHull* [523bc1]

```
/* The point should be strictly out of hull
  return arbitrary point on the tangent line */
pii get_tangent(vector<pll> &C, pll p) {
  auto gao = [&](int s) {
    return cyc_tsearch(SZ(C), [&](int x, int y)
      { return ori(p, C[x], C[y]) == s; });
  };
  return pii(gao(1), gao(-1));
} // return (a, b), ori(p, C[a], C[b]) >= 0
```

8.8 Intersection of line and convex [157258]

```
int TangentDir(vector<pll> &C, pll dir) {
  return cyc_tsearch(SZ(C), [&](int a, int b) {
    return cross(dir, C[a]) > cross(dir, C[b]);
  });
#define cmpL(i) sign(cross(C[i] - a, b - a))
pii lineHull(pil a, pll b, vector<pil> &C) {
  int A = TangentDir(C, a - b);
  int B = TangentDir(C, b - a);
  int n = SZ(C);
  if (cmpL(A) < 0 \mid \mid cmpL(B) > 0)
  return pii(-1, -1); // no collision auto gao = [&](int l, int r) {
    for (int t = l; (l + 1) % n != r; ) {
      int m = ((l + r + (l < r? 0 : n)) / 2) % n;
      (cmpL(m) == cmpL(t) ? l : r) = m;
    return (l + !cmpL(r)) % n;
  };
  pii res = pii(gao(B, A), gao(A, B)); // (i, j)
  if (res.X == res.Y) // touching the corner i
    return pii(res.X, -1);
  if (!cmpL(res.X) && !cmpL(res.Y)) // along side i, i+1
   switch ((res.X - res.Y + n + 1) % n) {
      case 0: return pii(res.X, res.X);
       case 2: return pii(res.Y, res.Y);
     crossing sides (i, i+1) and (j, j+1)
  crossing corner i is treated as side (i, i+1)
  returned
       in the same order as the line hits the convex */
  return res;
} // convex cut: (r, l]
```

8.9 minMaxEnclosingRectangle* [180fb8]

```
const double INF = 1e18, qi = acos(-1) / 2 * 3;
pdd solve(vector<pll> &dots) {
#define diff(u, v) (dots[u] - dots[v])
#define vec(v) (dots[v] - dots[i])
hull(dots);
double Max = 0, Min = INF, deg;
int n = SZ(dots);
dots.pb(dots[0]);
for (int i = 0, u = 1, r = 1, l = 1; i < n; ++i) {
   pll nw = vec(i + 1);
   while (cross(nw, vec(u + 1)) > cross(nw, vec(u)))
        u = (u + 1) % n;
   while (dot(nw, vec(r + 1)) > dot(nw, vec(r)))
        r = (r + 1) % n;
   if (!i) l = (r + 1) % n;
```

8.10 VectorInPoly* [c6d0fa]

8.11 **PolyUnion*** [3c9b0b]

```
double rat(pll a, pll b) {
   return
        sign(b.X) ? (double)a.X / b.X : (double)a.Y / b.Y;
} // all poly. should be ccw
double polyUnion(vector<vector<pll>>> &poly) {
   double res = 0;
   for (auto &p : poly)
     for (int a = 0; a < SZ(p); ++a) {</pre>
       pll A = p[a], B = p[(a + 1) \% SZ(p)];
       vector<pair<double, int>> segs = \{\{0, 0\}, \{1, 0\}\}\;
       for (auto &q : poly) {
         if (&p == &q) continue;
         for (int b = 0; b < SZ(q); ++b) {</pre>
           pll C = q[b], D = q[(b + 1) \% SZ(q)];
           int sc = ori(A, B, C), sd = ori(A, B, D);
           if (sc != sd && min(sc, sd) < \theta) {
             double sa = cross
                  (D - C, A - C), sb = cross(D - C, B - C);
             segs.emplace_back
                  (sa / (sa - sb), sign(sc - sd));
           if (!sc && !sd &&
                 &q < &p && sign(dot(B - A, D - C)) > 0) {
              segs.emplace_back(rat(C - A, B - A), 1);
             segs.emplace_back(rat(D - A, B - A), -1);
           }
         }
       sort(ALL(segs));
       for (auto &s : segs) s.X = clamp(s.X, 0.0, 1.0);
       double sum = 0;
       int cnt = segs[0].second;
       for (int j = 1; j < SZ(segs); ++j) {
  if (!cnt) sum += segs[j].X - segs[j - 1].X;</pre>
         cnt += segs[j].Y;
       res += cross(A, B) * sum;
  return res / 2;
1
```

8.12 Polar Angle Sort* [b20533]

```
int cmp(pll a, pll b, bool same = true) {
#define is_neg(k)
        (sign(k.Y) < 0 || (sign(k.Y) == 0 && sign(k.X) < 0))
    int A = is_neg(a), B = is_neg(b);
    if (A != B)
        return A < B;
    if (sign(cross(a, b)) == 0)
        return same ? abs2(a) < abs2(b) : -1;
    return sign(cross(a, b)) > 0;
}
```

8.13 Half plane intersection* [3753a5]

```
pll area_pair(Line a, Line b)
{ return pll(cross(a
    .Y - a.X, b.X - a.X), cross(a.Y - a.X, b.Y - a.X)); }
bool isin(Line l0, Line l1, Line l2) {
  // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(l0, l2);
  auto [a12X, a12Y] = area_pair(l1, l2);
  if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;</pre>
  return (
       __int128) a02Y * a12X - (__int128) a02X * a12Y > 0;
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(ALL(arr), [&](Line a, Line b) -> int {
    if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
return cmp(a.Y - a.X, b.Y - b.X, 0);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  });
  deque<Line> dq(1, arr[0]);
  auto pop_back = [&](int t, Line p) {
    while (SZ
        (dq) >= t \&\& !isin(p, dq[SZ(dq) - 2], dq.back()))
       dq.pop_back();
  auto pop_front = [&](int t, Line p) {
    while (SZ(dq) >= t \&\& !isin(p, dq[0], dq[1]))
       dq.pop_front();
  for (auto p : arr)
    if (cmp
         (dq.back().Y - dq.back().X, p.Y - p.X, 0) != -1)
  pop_back(2, p), pop_front(2, p), dq.pb(p);
pop_back(3, dq[0]), pop_front(3, dq.back());
  return vector < Line > (ALL(dq));
```

8.14 HPI Alternative Form [043534]

```
using i128 = __int128;
struct LN {
 ll a, b, c; // ax + by + c <= 0
  pll dir() const { return pll(a, b); }
  LN(ll ta, ll tb, ll tc): a(ta), b(tb), c(tc) {}
  LN(pll S
      , pll T): a((T-S).Y), b(-(T-S).X), c(cross(T,S)) {}
pdd intersect(LN A, LN B) {
  double c = cross(A.dir(), B.dir());
  i128 \ a = i128(A.c) * B.a - i128(B.c) * A.a;
  i128 b = i128(A.c) * B.b - i128(B.c) * A.b;
  return pdd(-b / c, a / c);
bool cov(LN l, LN A, LN B) {
  i128 c = cross(A.dir(), B.dir());
  i128 a = i128(A.c) * B.a - i128(B.c) * A.a;
  i128 b = i128(A.c) * B.b - i128(B.c) * A.b;
  return
       sign(a * l.b - b * l.a + c * l.c) * sign(c) >= 0;
bool operator < (LN a, LN b) {</pre>
 if (int c
       = cmp(a.dir(), b.dir(), false); c != -1) return c;
  return i128(abs(b.a) +
       abs(b.b)) * a.c > i128(abs(a.a) + abs(a.b)) * b.c;
}
```

8.15 RotatingSweepLine [af0be4]

```
void rotatingSweepLine(vector<pii> &ps) {
  int n = SZ(ps), m = 0;
  vector<int> id(n), pos(n);
  vector<pii> line(n * (n - 1));
  for (int i = 0; i < n; ++i)</pre>
    for (int j = 0; j < n; ++j)
  if (i != j) line[m++] = pii(i, j);
sort(ALL(line), [&](pii a, pii b) {
    return cmp(ps[a.Y] - ps[a.X], ps[b.Y] - ps[b.X]);
  }); // cmp(): polar angle compare
  iota(ALL(id), 0);
  sort(ALL(id), [&](int a, int b) {
  if (ps[a].Y != ps[b].Y) return ps[a].Y < ps[b].Y;</pre>
    return ps[a] < ps[b];</pre>
  \}); // initial order, since (1, 0) is the smallest
  for (int i = 0; i < n; ++i) pos[id[i]] = i;</pre>
  for (int i = 0; i < m; ++i) {</pre>
    auto l = line[i];
    // do something
```

8.16 Minimum Enclosing Circle* [c4b2d8]

```
pdd Minimum_Enclosing_Circle
     (vector<pdd> dots, double &r) {
   pdd cent:
   random_shuffle(ALL(dots));
   cent = dots[0], \Gamma = 0;
   for (int i = 1; i < SZ(dots); ++i)</pre>
     if (abs(dots[i] - cent) > r) {
       cent = dots[i], r = 0;
       for (int j = 0; j < i; ++j)
  if (abs(dots[j] - cent) > r) {
           cent = (dots[i] + dots[j]) / 2;
            r = abs(dots[i] - cent);
            for(int k = 0; k < j; ++k)</pre>
              if(abs(dots[k] - cent) > r)
                cent =
                     excenter(dots[i], dots[j], dots[k], r);
         }
     }
   return cent;
| }
```

8.17 Intersection of two circles* [f7a2fe]

8.18 Intersection of polygon and circle* [d4d295]

```
// Divides into multiple triangle, and sum up
const double PI=acos(-1);
double _area(pdd pa, pdd pb, double r){
  if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
  double S, h, theta;
  double a=abs(pb),b=abs(pa),c=abs(pb-pa);
  double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
  double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
     if (h < r &&
         B < PI/2) S -= (acos(h/r)*r*r - h*sqrt(r*r-h*h));
  else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
     S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
  else S = .5*sin(C)*a*b;
  return S:
double area_poly_circle
    (const vector<pdd> poly,const pdd &0,const double r){
  double S=0;
  for(int i=0;i<SZ(poly);++i)</pre>
    S+=_area(poly[i]-0,poly[(i+1)%SZ
         (poly)]-0,r)*ori(0,poly[i],poly[(i+1)%SZ(poly)]);
  return fabs(S);
1
```

8.19 Intersection of line and circle* [7a7c59]

```
vector<pdd> circleLine(pdd c, double r, pdd a, pdd b) {
   pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a);
   double s = cross
        (b - a, c - a), h2 = r * r - s * s / abs2(b - a);
   if (h2 < 0) return {};
   if (h2 == 0) return {p};
   pdd h = (b - a) / abs(b - a) * sqrt(h2);
   return {p - h, p + h};
}</pre>
```

8.20 Tangent line of two circles [2f476e]

```
vector < Line
    > go( const Cir& c1 , const Cir& c2 , int sign1 ){
  // sign1 = 1 for outer tang, -1 for inter tang
  vector<Line> ret;
  double d_sq = abs2(c1.0 - c2.0);
  if (sign(d_sq) == 0) return ret;
  double d = sqrt(d_sq);
  pdd v = (c2.0 - c1.0) / d;
  double c = (c1.R - sign1 * c2.R) / d;
  if (c * c > 1) return ret;
  double h = sqrt(max(0.0, 1.0 - c * c));
  for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
    pdd n = pdd(v.X * c - sign2 * h * v.Y,
      v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sign(p1.X - p2.X) == 0 and
        sign(p1.Y - p2.Y) == 0)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
  return ret;
}
```

8.21 CircleCover* [b8ba2d]

```
const int N = 1021;
struct CircleCover {
  int C:
  Cir c[N];
  bool g[N][N], overlap[N][N];
  // Area[i] : area covered by at least i circles
  double Area[ N ];
  void init(int _C){ C = _C;}
  struct Teve {
    pdd p; double ang; int add;
    Teve() {}
    Teve(pdd
          _a, double _b, int _c):p(_a), ang(_b), add(_c){}
    bool operator < (const Teve &a)const
    {return ang < a.ang;}
  }eve[N * 2];
  // strict: x = 0, otherwise x = -1
bool disjuct(Cir &a, Cir &b, int x)
  {return sign(abs(a.0 - b.0) - a.R - b.R) > x;}
  bool contain(Cir &a, Cir &b, int x)
  {return sign(a.R - b.R - abs(a.0 - b.0)) > x;}
  bool contain(int i, int j) {
    /* c[j] is non-strictly in c[i]. */
         (sign(c[i].R - c[j].R) > 0 \mid | (sign(c[i].R - c[
         j].R) == 0 && i < j)) && contain(c[i], c[j], -1);
  void solve(){
    fill_n(Area, C + 2, 0);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        overlap[i][j] = contain(i, j);
    for(int i = 0; i < C; ++i)</pre>
      for(int j = 0; j < C; ++j)</pre>
        g[i][j] = !(overlap[i][j] || overlap[j][i] ||
            disjuct(c[i], c[j], -1));
    for(int i = 0; i < C; ++i){</pre>
      int E = 0, cnt = 1;
      for(int j = 0; j < C; ++j)</pre>
        if(j != i && overlap[j][i])
          ++cnt;
      for(int j = 0; j < C; ++j)</pre>
        if(i != j && g[i][j]) {
          pdd aa, bb;
          CCinter(c[i], c[j], aa, bb);
          double A
                = atan2(aa.Y - c[i].0.Y, aa.X - c[i].0.X);
          double B
                = atan2(bb.Y - c[i].0.Y, bb.X - c[i].0.X);
          eve[E++] =
               Teve(bb, B, 1), eve[E++] = Teve(aa, A, -1);
          if(B > A) ++cnt;
      if(E == 0) Area[cnt] += pi * c[i].R * c[i].R;
      else{
        sort(eve, eve + E);
        eve[E] = eve[0];
        for(int j = 0; j < E; ++j){</pre>
          cnt += eve[j].add;
          Area[
              cnt] += cross(eve[j].p, eve[j + 1].p) * .5;
```

8.22 3Dpoint* [badbbd]

```
struct Point {
   double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x(_x), y(_y), z(_z){}
Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator - (Point p1, Point p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point operator+(Point p1, Point p2)
{ return Point(p1.x + p2.x, p1.y + p2.y, p1.z + p2.z); }
Point operator*(Point p1, double v)
{ return Point(p1.x * v, p1.y * v, p1.z * v); }
Point operator/(Point p1, double v)
{ return Point(p1.x / v, p1.y / v, p1.z / v); }
Point cross(Point p1, Point p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.
    z * p2.x - p1.x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(Point p1, Point p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(Point a)
{ return sqrt(dot(a, a)); }
Point cross3(Point a, Point b, Point c)
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
 { return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
 { return dot(cross3(a, b, c), d - a); }
//Azimuthal
       angle (longitude) to x-axis in interval [-pi, pi]
double phi(Point p) { return atan2(p.y, p.x); }
//Zenith
       angle (latitude) to the z-axis in interval [0, pi]
double theta(Point p
     ) { return atan2(sqrt(p.x * p.x + p.y * p.y), p.z); }
Point masscenter(Point a, Point b, Point c, Point d)
{ return (a + b + c + d) / 4; }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
   Point e1 = b - a;
   Point e2 = c - a;
   e1 = e1 / abs(e1);
   e2 = e2 - e1 * dot(e2, e1);
   e2 = e2 / abs(e2);
   Point p = u - a;
   return pdd(dot(p, e1), dot(p, e2));
Point rotate_around(Point p, double angle, Point axis) {
   double s = sin(angle), c = cos(angle);
   Point u = axis / abs(axis);
   return
         u * dot(u, p) * (1 - c) + p * c + cross(u, p) * s;
}
```

8.23 Convexhull3D* [875f37]

```
struct convex_hull_3D {
struct Face {
  int a, b, c;
  Face(int ta, int tb, int tc): a(ta), b(tb), c(tc) {}
}; // return the faces with pt indexes
vector < Face > res;
vector < Point > P:
convex_hull_3D(const vector<Point> &_P): res(), P(_P) {
  all points coplanar case will WA, O(n^2)
  int n = SZ(P);
  if (n <= 2) return; // be careful about edge case</pre>
  // ensure first 4 points are not coplanar
  swap(P[1], *find_if(ALL(P), [&](
      auto p) { return sign(abs2(P[0] - p)) != 0; }));
  swap(P[2], *find_if(ALL(P), [&](auto p) {
      return sign(abs2(cross3(p, P[0], P[1]))) != 0; }));
  swap(P[3], *find_if(ALL(P), [&](auto p) {
      return sign(volume(P[0], P[1], P[2], p)) != 0; }));
  vector<vector<int>> flag(n, vector<int>(n));
  res.emplace_back(0, 1, 2); res.emplace_back(2, 1, 0);
for (int i = 3; i < n; ++i) {</pre>
   vector<Face> next:
```

```
for (auto f : res) {
      int d = sign(volume(P[f.a], P[f.b], P[f.c], P[i]));
      if (d <= 0) next.pb(f);</pre>
      int ff = (d > 0) - (d < 0);
      flag[f.
          a][f.b] = flag[f.b][f.c] = flag[f.c][f.a] = ff;
    for (auto f : res) {
      auto F = [&](int x, int y) {
        if (flag[x][y] > 0 && flag[y][x] <= 0)</pre>
          next.emplace_back(x, y, i);
      F(f.a, f.b); F(f.b, f.c); F(f.c, f.a);
    }
    res = next;
  }
bool same(Face s, Face t) {
  if (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.a])) != 0) return 0;
    (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.b])) != 0) return 0;
  if (sign(volume
      (P[s.a], P[s.b], P[s.c], P[t.c])) != 0) return 0;
  return 1;
int polygon_face_num() {
  int ans = 0;
  for (int i = 0; i < SZ(res); ++i)</pre>
    ans += none_of(res.begin(), res.begin
        () + i, [&](Face g) { return same(res[i], g); });
  return ans;
double get_volume() {
  double ans = 0;
  for (auto f : res)
    ans +=
         volume(Point(0, 0, 0), P[f.a], P[f.b], P[f.c]);
  return fabs(ans / 6);
double get_dis(Point p, Face f) {
  Point p1 = P[f.a], p2 = P[f.b], p3 = P[f.c]; double a = (p2.y - p1.
      y) * (p3.z - p1.z) - (p2.z - p1.z) * (p3.y - p1.y);
  double b = (p2.z - p1.
      z) * (p3.x - p1.x) - (p2.x - p1.x) * (p3.z - p1.z);
  double c = (p2.x - p1.
      x) * (p3.y - p1.y) - (p2.y - p1.y) * (p3.x - p1.x);
  double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
  return fabs(a * p.x + b
      * p.y + c * p.z + d) / sqrt(a * a + b * b + c * c);
// n^2 delaunay: facets with negative z normal of // convexhull of (x, y, x^2 + y^2), use a pseudo-point
// (0, 0, inf) to avoid degenerate case
```

8.24 DelaunayTriangulation* [982e64]

```
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle. */
struct Edge {
  int id; // oidx[id]
  list<Edge>::iterator twin;
  Edge(int _id = 0):id(_id) {}
struct Delaunay { // 0-base
  int n, oidx[N];
  list<Edge> head[N]; // result udir. graph
  pll p[N];
  void init(int n, pll p[]) {
    n = n, iota(oidx, oidx + n, 0);
    for (int i = 0; i < n; ++i) head[i].clear();</pre>
    sort(oidx, oidx + n, [&](int a, int b)
    { return _p[a] < _p[b]; });
for (int i = 0; i < n; ++i) p[i] = _p[oidx[i]];
    divide(0, n - 1);
  void addEdge(int u, int v) {
    head[u].push_front(Edge(v));
    head[v].push_front(Edge(u));
    head[u].begin()->twin = head[v].begin();
    head[v].begin()->twin = head[u].begin();
  void divide(int l, int r) {
    if (l == r) return;
    if (l + 1 == r) return addEdge(l, l + 1);
```

```
int mid = (l + r) >> 1, nw[2] = {l, r};
      divide(l, mid), divide(mid + 1, r);
      auto gao = [&](int t) {
        pll pt[2] = {p[nw[0]], p[nw[1]]};
        for (auto it : head[nw[t]]) {
           int v = ori(pt[1], pt[0], p[it.id]);
           if (v > 0 || (v == 0 && abs2(
    pt[t ^ 1] - p[it.id]) < abs2(pt[1] - pt[0])))</pre>
              return nw[t] = it.id, true;
        return false;
      }:
      while (gao(0) || gao(1));
      addEdge(nw[0],\ nw[1]);\ //\ add\ tangent
      while (true) {
        pll pt[2] = {p[nw[0]], p[nw[1]]};
        int ch = -1, sd = 0;
for (int t = 0; t < 2; ++t)
              for (auto it : head[nw[t]])
                   if (ori(pt[0], pt[1],
                         p[it.id]) > 0 && (ch == -1 || in_cc
        ({pt[0], pt[1], p[ch]}, p[it.id])))

ch = it.id, sd = t;

if (ch == -1) break; // upper common tangent
        for (auto it = head
              [nw[sd]].begin(); it != head[nw[sd]].end(); )
           if (seg_strict_intersect
                (\mathsf{pt}[\mathsf{sd}],\;\mathsf{p}[\mathsf{it}\text{-}\mathsf{sid}],\;\mathsf{pt}[\mathsf{sd}\;\;^{\wedge}\;\;1],\;\mathsf{p}[\mathsf{ch}]))
              head[it->id].
                   erase(it->twin), head[nw[sd]].erase(it++);
           else ++it;
        nw[sd] = ch, addEdge(nw[0], nw[1]);
     }
   }
} tool;
```

8.25 Triangulation Vonoroi* [da0c5e]

8.26 Minkowski Sum* [9fbd05]

```
vector<pll> Minkowski
    (vector<pll> A, vector<pll> B) { // |A|, |B|>=3}
hull(A), hull(B);
vector<pll> C(1, A[0] + B[0]), s1, s2;
for (int i = 0; i < SZ(A); ++i)
    s1.pb(A[(i + 1) % SZ(A)] - A[i]);
for (int i = 0; i < SZ(B); i++)
    s2.pb(B[(i + 1) % SZ(B)] - B[i]);
for (int i = 0, j = 0; i < SZ(A) || j < SZ(B);)
    if (j >=
        SZ(B) || (i < SZ(A) && cross(s1[i], s2[j]) >= 0))
    C.pb(B[j % SZ(B)] + A[i++]);
    else
    C.pb(A[i % SZ(A)] + B[j++]);
return hull(C), C;
}
```

9 Else

9.1 Cyclic Ternary Search* [9017cc]

```
/* bool pred(int a, int b);
f(0) ~ f(n - 1) is a cyclic-shift U-function
return idx s.t. pred(x, idx) is false forall x*/
int cyc_tsearch(int n, auto pred) {
   if (n == 1) return 0;
   int l = 0, r = n; bool rv = pred(1, 0);
   while (r - l > 1) {
      int m = (l + r) / 2;
      if (pred(0, m) ? rv: pred(m, (m + 1) % n)) r = m;
      else l = m;
   }
   return pred(l, r % n) ? l : r % n;
}
```

9.2 Mo's Algorithm(With modification) [f05c5b]

```
Mo's Algorithm With modification
Block: N^{2/3}, Complexity: N^{5/3}
struct Query {
  int L, R, LBid, RBid, T;
  Query(int l, int r, int t):
    L(l), R(r), LBid(l / blk), RBid(r / blk), T(t) {}
  bool operator < (const Query &q) const {</pre>
    if (LBid != q.LBid) return LBid < q.LBid;</pre>
    if (RBid != q.RBid) return RBid < q.RBid;</pre>
    return T < b.T;</pre>
  }
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0, T = -1;
  for (auto q : query) {
    while (T < q.T) addTime(L, R, ++T); // TODO
while (T > q.T) subTime(L, R, T--); // TODO
    while (R < q.R) add(arr[++R]); // TODO</pre>
    while (L > q.L) add(arr[--L]); // TODO
    while (R > q.R) sub(arr[R--]); // TODO
    while (L < q.L) sub(arr[L++]); // TODO</pre>
    // answer query
}
```

9.3 Mo's Algorithm On Tree [8331c2]

```
Mo's Algorithm On Tree
Preprocess:
1) LCA
2) dfs with in[u] = dft++, out[u] = dft++
3) ord[in[u]] = ord[out[u]] = u
4) bitset < MAXN > inset
struct Query {
  int L, R, LBid, lca;
  Query(int u, int v) {
     int c = LCA(u, v);
     if (c == u || c == v)
   q.lca = -1, q.L = out[c ^ u ^ v], q.R = out[c];
     else if (out[u] < in[v])</pre>
       q.lca = c, q.L = out[u], q.R = in[v];
     else
       q.lca = c, q.L = out[v], q.R = in[u];
     q.Lid = q.L / blk;
  bool operator < (const Query &q) const {</pre>
     if (LBid != q.LBid) return LBid < q.LBid;</pre>
     return R < q.R;</pre>
  }
void flip(int x) {
     if (inset[x]) sub(arr[x]); // TODO
     else add(arr[x]); // TODO
     inset[x] = ~inset[x];
void solve(vector<Query> query) {
  sort(ALL(query));
  int L = 0, R = 0;
  for (auto q : query) {
     while (R < q.R) flip(ord[++R]);</pre>
     while (L > q.L) flip(ord[--L]);
     while (R > q.R) flip(ord[R--]);
while (L < q.L) flip(ord[L++]);</pre>
     if (~q.lca) add(arr[q.lca]);
     // answer query
     if (~q.lca) sub(arr[q.lca]);
  }
}
```

9.4 Additional Mo's Algorithm Trick

- Mo's Algorithm With Addition Only
- Sort querys same as the normal Mo's algorithm.
- For each query [l,r]:
 - If l/blk = r/blk, brute-force.
 - If $l/blk \neq curL/blk$, initialize $curL := (l/blk+1) \cdot blk$, curR := curL-1
- If $r\!>\!cur R$, increase cur R
- decrease curL to fit \emph{l} , and then undo after answering
- Mo's Algorithm With Offline Second Time
 - Require: Changing answer \equiv adding f([l,r],r+1).
 - Require: f([l,r],r+1) = f([1,r],r+1) f([1,l),r+1).
 - Part1: Answer all f([1,r],r+1) first.

- Part2: Store $curR \to R$ for curL (reduce the space to O(N)), and then answer them by the second offline algorithm.
- Note: You must do the above symmetrically for the left boundaries.

9.5 Hilbert Curve [1274a3]

```
ll hilbert(int n, int x, int y) {
  ll res = 0;
  for (int s = n / 2; s; s >>= 1) {
    int rx = (x & s) > 0;
    int ry = (y & s) > 0;
    res += s * 1ll * s * ((3 * rx) ^ ry);
    if (ry == 0) {
        if (rx == 1) x = s - 1 - x, y = s - 1 - y;
            swap(x, y);
      }
  }
  return res;
} // n = 2^k
```

9.6 DynamicConvexTrick* [673ffd]

```
// only works for integer coordinates!! maintain max
struct Line {
  mutable ll a, b, p;
  bool operator
       <(const Line &rhs) const { return a < rhs.a; }
  bool operator<(ll x) const { return p < x; }</pre>
struct DynamicHull : multiset<Line, less<>> {
  static const ll kInf = 1e18;
  ll Div(ll
       a, ll b) { return a / b - ((a ^b) < 0 && a ^b); }
  bool isect(iterator x, iterator y) {
     if (y == end()) { x->p = kInf; return 0; }
     if (x->a == y->a) x->p = x->b > y->b ? kInf : -kInf;
    else x -> p = Div(y -> b - x -> b, x -> a - y -> a);
    return x->p >= y->p;
  void addline(ll a, ll b) {
    auto z = insert({a, b, 0}), y = z++, x = y;
     while (isect(y, z)) z = erase(z);
     if (x !=
         begin() && isect(--x, y)) isect(x, y = erase(y));
     while ((y = x) !=
          begin() && (--x)->p >= y->p) isect(x, erase(y));
  ll query(ll x) {
     auto l = *lower_bound(x);
     return l.a * x + l.b;
};
```

9.7 All LCS* [78a378]

```
void all_lcs(string s, string t) { // 0-base
  vector <int> h(SZ(t));
  iota(ALL(h), 0);
  for (int a = 0; a < SZ(s); ++a) {
    int v = -1;
    for (int c = 0; c < SZ(t); ++c)
        if (s[a] == t[c] || h[c] < v)
            swap(h[c], v);
        // LCS(s[0, a], t[b, c]) =
        // c - b + 1 - sum([h[i] >= b] | i <= c)
        // h[i] might become -1 !!
  }
}</pre>
```

9.8 DLX* [fbcf6c]

```
#define TRAV(i, link, start
    ) for (int i = link[start]; i != start; i = link[i])
template
   <bool E> // E: Exact, NN: num of 1s, RR: num of rows
struct DLX
  int lt[NN], rg[NN], up[NN], dn
  [NN], rw[NN], cl[NN], bt[NN], s[NN], head, sz, ans; int rows, columns;
  bool vis[NN];
  bitset<RR> sol, cur; // not sure
  void remove(int c) {
    if (E) lt[rg[c]] = lt[c], rg[lt[c]] = rg[c];
    TRAV(i, dn, c) {
      if (E) {
        TRAV(j, rg, i)
          up[dn[
              j]] = up[j], dn[up[j]] = dn[j], --s[cl[j]];
        lt[rg[i]] = lt[i], rg[lt[i]] = rg[i];
```

```
}
}
void restore(int c) {
 TRAV(i, up, c) {
   if (E) {
      TRAV(j, lt, i)
       ++s[cl[j]], up[dn[j]] = j, dn[up[j]] = j;
    } else {
      lt[rg[i]] = rg[lt[i]] = i;
  if (E) lt[rg[c]] = c, rg[lt[c]] = c;
void init(int c) {
  rows = 0, columns = c;
  for (int i = 0; i < c; ++i) {</pre>
   up[i] = dn[i] = bt[i] = i;
    lt[i] = i == 0 ? c : i - 1;
    rg[i] = i == c - 1 ? c : i + 1;
    s[i] = 0;
 rg[c] = 0, lt[c] = c - 1;
 up[c] = dn[c] = -1;
 head = c, sz = c + 1;
void insert(const vector<int> &col) {
  if (col.empty()) return;
  int f = sz;
  for (int i = 0; i < (int)col.size(); ++i) {</pre>
    int c = col[i], v = sz++;
    dn[bt[c]] = v;
    up[v] = bt[c], bt[c] = v;
    rg[v] = (i + 1 == (int)col.size() ? f : v + 1);
    rw[v] = rows, cl[v] = c;
    ++s[c];
    if (i > 0) lt[v] = v - 1;
  ++rows, lt[f] = sz - 1;
int h() {
 int ret = 0;
  fill_n(vis, sz, false);
  TRAV(x, rg, head) {
    if (vis[x]) continue;
    vis[x] = true, ++ret;
    TRAV(i, dn, x) TRAV(j, rg, i) vis[cl[j]] = true;
  return ret;
void dfs(int dep) {
  if (dep + (E ? 0 : h()) >= ans) return;
  if (rg[head
       == head) return sol = cur, ans = dep, void();
  if (dn[rg[head]] == rg[head]) return;
  int w = rg[head];
 TRAV(x, rg, head) if (s[x] < s[w]) w = x;
  if (E) remove(w);
  TRAV(i, dn, w) {
    if (!E) remove(i);
    TRAV(j, rg, i) remove(E ? cl[j] : j);
    cur.set(rw[i]), dfs(dep + 1), cur.reset(rw[i]);
    TRAV(j, lt, i) restore(E ? cl[j] : j);
    if (!E) restore(i);
  if (E) restore(w);
int solve() {
  for (int i = 0; i < columns; ++i)</pre>
   dn[bt[i]] = i, up[i] = bt[i];
  ans = 1e9, sol.reset(), dfs(0);
  return ans;
```

9.9 Matroid Intersection

```
Start from S\!=\!\emptyset. In each iteration, let
```

• $Y_1 = \{x \notin S \mid S \cup \{x\} \in I_1\}$ • $Y_2 = \{x \notin S \mid S \cup \{x\} \in I_2\}$

If there exists $x \in Y_1 \cap Y_2$, insert x into S. Otherwise for each $x \in S, y \not \in S$, create edges

 $\begin{array}{ll} \bullet & x \mathop{\rightarrow} y \text{ if } S \mathop{-} \{x\} \mathop{\cup} \{y\} \mathop{\in} I_1. \\ \bullet & y \mathop{\rightarrow} x \text{ if } S \mathop{-} \{x\} \mathop{\cup} \{y\} \mathop{\in} I_2. \end{array}$

Find a *shortest* path (with BFS) starting from a vertex in Y_1 and ending at a vertex in Y_2 which doesn't pass through any other vertices in Y_2 , and alternate the path. The size of S will be incremented by 1 in each iteration. For the weighted case, assign weight w(x) to vertex x if $x \in S$ and -w(x) if $x \not\in S$.

Find the path with the minimum number of edges among all minimum length

paths and alternate it. 9.10 AdaptiveSimpson* [4074b3]

```
template < typename Func, typename d = double >
struct Simpson {
   using pdd = pair<d, d>;
   Func f;
  pdd mix(pdd l, pdd r, optional<d> fm = {}) {
   d h = (r.X - l.X) / 2, v = fm.value_or(f(l.X + h));
   return {v, h / 3 * (l.Y + 4 * v + r.Y)};
  d eval(pdd l, pdd r, d fm, d eps) {
  pdd m((l.X + r.X) / 2, fm);
     d s = mix(l, r, fm).second;
     auto [flm, sl] = mix(l, m);
auto [fmr, sr] = mix(m, r);
     d delta = sl + sr - s;
     if (abs
           (delta) <= 15 * eps) return sl + sr + delta / 15;
     return eval(l, m, flm, eps / 2) +
  eval(m, r, fmr, eps / 2);
   d eval(d l, d r, d eps) {
     return
            eval({l, f(l)}, {r, f(r)}, f((l + r) / 2), eps);
  d eval2(d l, d r, d eps, int k = 997) {
  d h = (r - l) / k, s = 0;
     for (int i = 0; i < k; ++i, l += h)</pre>
       s += eval(l, l + h, eps / k);
     return s;
  }
}:
template < typename Func >
Simpson<Func> make_simpson(Func f) { return {f}; }
```

9.11 Simulated Annealing [de78c6]

9.12 Tree Hash* [34aae5]

```
ull seed;
ull shift(ull x) {
    x ^= x << 13;
    x ^= x >> 7;
    x ^= x << 17;
    return x;
}
ull dfs(int u, int f) {
    ull sum = seed;
    for (int i : G[u])
        if (i != f)
            sum += shift(dfs(i, u));
    return sum;
}</pre>
```

9.13 Binary Search On Fraction [765c5a]

```
struct Q {
  ll p, q;
  Q go(Q b, ll d) { return {p + b.p*d, q + b.q*d}; }
};
bool pred(Q);
// returns smallest p/q in [lo, hi] such that
  pred(p/q) is true, and 0 <= p,q <= N
Q frac_bs(ll N) {
  Q lo{0, 1}, hi{1, 0};
  if (pred(lo)) return lo;
  assert(pred(hi));
  bool dir = 1, L = 1, H = 1;
  for (; L || H; dir = !dir) {
    ll len = 0, step = 1;
    for (int t = 0; t < 2 && (t ? step/=2 : step*=2);)</pre>
      if (Q mid = hi.go(lo, len + step);
          mid.p > N \mid\mid mid.q > N \mid\mid dir ^ pred(mid))
      else len += step;
    swap(lo, hi = hi.go(lo, len));
```

```
(dir ? L : H) = !!len;
}
return dir ? hi : lo;
}
```

9.14 Min Plus Convolution* [09b5c3]

9.15 Bitset LCS [330ab1]

```
cin >> n >> m;
for (int i = 1, x; i <= n; ++i)
  cin >> x, p[x].set(i);
for (int i = 1, x; i <= m; i++) {
  cin >> x, (g = f) |= p[x];
  f.shiftLeftByOne(), f.set(0);
  ((f = g - f) ^= g) &= g;
}
cout << f.count() << '\n';</pre>
```

9.16 Python