

TINCGR01 – Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Hogeschool Rotterdam

W.M.Bergmann.Tiest@hr.nl

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Raytracing

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Eigenschappen van raytracing

- Fotorealistische afbeeldingen
- Op basis van wiskundige beschrijving objecten, materialen, lichtbronnen, atmosferische en optische effecten.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Principe

- Van alle objecten is een wiskundige beschrijving.
- Bijv. een bol heeft een middelpunt en een straal.
- Er is een "camera"-standpunt en een kijkrichting.
- Voor elke pixel in de te genereren afbeelding wordt een straal vanuit de "camera" door het projectievlak gevolgd totdat deze een object raakt.
- Dan wordt bekeken hoe dit punt verlicht wordt door alle aanwezige lichtbronnen.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Snijpunt straal/object

- Voor iedere pixel een straal (= vector \vec{r} met startpunt \vec{s}).
- Voor de straal geldt: $\vec{p} = \vec{s} + t \cdot \vec{r}$.
- Voor bijv. een bol met middelpunt \vec{m} en straal d geldt: $||\vec{q} \vec{m}|| = d$.
- Los nu t op uit $\vec{p} = \vec{q}$ voor ieder object.
- De kleinste positieve t geeft het snijpunt met het dichtstbijzijnde object.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Schaduwstralen

- ullet Vanuit het snijpunt stralen naar alle lichtbronnen $L_i.$
- ullet Test of straal een object raakt o negeren.
- Belichting is som van bijdrage alle lichtbronnen.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Secondaire stralen

- Reflectie (spiegel).
- Refractie (breking in bijv. glas).
- Stuur meer stralen uit \rightarrow raken weer objecten, enz.
- Dragen allemaal bij aan kleur van pixel.
- Recursief algoritme met maximale recursiediepte.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Diffuse belichting

- Intensiteit evenredig met inproduct normaalvector met lichtrichting (Lambertiaans).
- Kleur combinatie van kleuren lichtbron en materiaal.
- Onafhankelijk van kijkrichting.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Speculaire belichting

- Intensiteit evenredig met inproduct reflectievector met lichtrichting.
- Kleur is kleur lichtbron.
- Afhankelijk van kijkrichting.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Ambient belichting

- Overal aanwezig.
- Kleur combinatie van kleur licht en materiaal.
- Onafhankelijk van kijkrichting en lichtbronnen.

TINCGR01 — Computer Graphics

dr. Wouter Bergmann Tiest

Raytracing

Materiaal

- Kleur (pigment).
- Highlights.
- Transparantie.
- Reflectiecoëfficiënt.
- Brekingsindex.
- Verstoring van normaalvector.
- Texture mapping.

TINCGR01 — Computer

dr. Wouter Bergmann Tiest

Raytracing

