Language models

Previously in course:

- •We discussed embedding models:
 - •document vector
 - •word vector

Previously in course:

- We discussed embedding models:
 - document vector
 - word vector
- Both models do not take into account word order

Previously in course:

- We discussed embedding models:
 - document vector
 - word vector
- Both models do not take into account word order
- Language model a probabilistic model that takes into account word order

Language model

Predict a word in a sequence:
 «it's snowy in Moscow and sunny in_____»

Language model

Predict a word in a sequence:

«it's snowy in Moscow and sunny in <u>Sochi</u> »

Language model

Predict a word in a sequence:
 «it's snowy in Moscow and sunny in <u>Sochi</u> »

Choose a more likely sequence:

P(«it's sunny in <u>Sochi</u> ») >P(«it's sunny in <u>Siberia</u> »)

Example: search hints

Google

- Q language model Поиск в «Google»
- Предложения Google
 - Q language model
 - Q language models are few-shot learners
 - Q language models are unsupervised multitask learners
 - Q language modeling
 - Q language model python
 - Q language models are open knowledge graphs

Probabilistic language model

- Formal task:
- suppose W = $(w_1, w_2, ..., w_n)$ sentence, w_i a word, V vocabulary

Probabilistic language model

- Formal task:
- suppose W = $(w_1, w_2, ..., w_n)$ sentence, w_i a word, V vocabulary
- Probability of sentence W:
 - $P(W) = P(w_1, w_2, \dots, w_n)$

Probabilistic language model

- Formal task:
- suppose W = $(w_1, w_2, ..., w_n)$ sentence, w_i a word, V vocabulary
- Probability of sentence W:
 - $P(W) = P(w_1, w_2, ..., w_n)$
- Probability of the next word in sequence:
 - $P(w_n|w_{n-1},w_{n-2},...,w_1)$

$$P(W) =$$

$$P(W) =$$

$$= P(w_1, w_2, \dots, w_n) =$$


```
P(W) =
= P(w_1, w_2, ..., w_n) =
= P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_1, ..., w_n - 1)
```


• Expand the word sequence:

```
P(W) =
= P(w_1, w_2, ..., w_n) =
= P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_1, ..., w_n - 1)
```

P ("it is sunny today") =


```
P(W) =
= P(w_1, w_2, ..., w_n) =
= P(w_1)P(w_2|w_1)P(w_3|w_1w_2)...P(w_n|w_1, ..., w_n - 1)
```

```
P ("it is sunny today") = P ("it") • P ("is | it") • P ("sunny | it is")
• P ("today | it is sunny")
```


ullet Denote $w_{1:i-1}$ - left context of word w_i

- Denote $w_{1:i-1}$ left context of word w_i
- Expand the word sequence:

$$P(W) = P(w_1, w_2, ..., w_n) = \prod_{i} P(w_i | w_{1:i-1})$$

$$P(w_i|w_{1:w_i-1}) = \frac{\text{count}(w_{1:i-1}w_i)}{\text{count}(w_{1:i-1})}$$

A. A. Markov 1856 – 1922 one of the most famous Russian mathematicians

• Given a word w_i and its left context $w_{1:i-1}$

- Given a word w_i and its left context $w_{1:i-1}$
- Limit the length of left context

- Given a word w_i and its left context $w_{1:i-1}$
- Limit the length of left context:

unigram model

```
P ("it is sunny today") = P ("it") • P ("is") • P ("sunny") • P ("today")
```


- Given a word w_i and its left context $w_{1:i-1}$
- Limit the length of left context:

unigram model

```
P ("it is sunny today") = P ("it") • P ("is") • P ("sunny") • P ("today")
```

bigram model

```
P ("it is sunny today") = P ("it") • P ("is | it") • P ("sunny | is") • P ("today | sunny")
```


Maximum likelihood estimation

• Estimation $P(w_i)$: $\frac{\text{count}(w_i)}{\sum_{w_i \in V} \text{count}(w_j)}$

where V - the vocabulary

Maximum likelihood estimation

• Estimation $P(w_i)$: $\frac{\operatorname{count}(w_i)}{\sum_{w_i \in V} \operatorname{count}(w_j)}$

where V - the vocabulary

• Estimation $P(w_i|w_{i-1}): \frac{\operatorname{count}(w_{i-1}w_i)}{\operatorname{count}(w_{i-1})}$

Problems

• $count(w_{i-1}w_i)$ can be equal to zero

Then
$$\frac{\operatorname{count}(w_{i-1}w_i)}{\operatorname{count}(w_{i-1})} = 0$$
 and $P(W) = 0$

Problems

• $count(w_{i-1}w_i)$ can be equal to zero

Then
$$\frac{\operatorname{count}(w_{i-1}w_i)}{\operatorname{count}(w_{i-1})} = 0$$
 and $P(W) = 0$

Solution: smoothing

ullet suppose each word occurs in text at least lpha times

Then
$$\frac{\operatorname{count}(w_{i-1}w_i) + \alpha}{\operatorname{count}(w_{i-1}) + \alpha|V|}$$

Countable language models problems

They generate nonsense text

Countable language models problems

- They generate nonsense text
 - It was rainy like your new shoes where is my wallet

Countable language models problems

- They generate nonsense text
 - It was rainy like your new shoes where is my wallet
- Require very large number of parameters:

```
bigram model = |V|^2 parameters
```


- External quality evaluation:
 - Use the language model in the next task
 - Evaluate the metrics for this task

Internal quality evaluation: perplexity

$$PP(W) = P(w_1, w_2, ..., w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1, w_2, ..., w_N)}}$$

Internal quality evaluation: perplexity

$$PP(W) = P(w_1, w_2, ..., w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1, w_2, ..., w_N)}}$$

- The less perplexity the better
- The better the language model, the better the predicted text

Internal quality evaluation: perplexity

$$PP(W) = P(w_1, w_2, ..., w_N)^{-\frac{1}{N}} = \sqrt[N]{\frac{1}{P(w_1, w_2, ..., w_N)}}$$

- The less perplexity the better
- The better the language model, the better the predicted text
- Perplexity for bigram model: $PP(W) = \sqrt[N]{\frac{1}{\prod_{i=1}(w_i|w_{i-1})}}$

• Языковые модели моделируют вероятность последовательности слов

- Models simulate the probability of word sequence
- Bigram model: estimate the probability of word pairs

- Models simulate the probability of word sequence
- Bigram model: estimate the probability of word pairs
- Smoothing allows to avoid the zero probability problem

- Models simulate the probability of word sequence
- Bigram model: estimate the probability of word pairs
- Smoothing allows to avoid the zero probability problem
- Quality metrics: perplexity; the less perplexity the better

First generation of language models

- Language models based on probabilities have a list of problems:
 - Zero probabilities
 - Difficult to operate with long contexts
 - Too many parameters
 - High perplexity
 - The generated text is often nonsense

Second generation of language models

Language models based on neural networks predict the next word based in the previous context

- N-gram model: predict word n based on previous n-1
- Input: $W_1, W_2, ..., W_{n-1}$
- Output: w_n

- N-gram model: predict word *n* based on previous *n-1*
- Input: $W_1, W_2, ..., W_{n-1}$
- Output: w_n

«love is all around _____»
Input: «love is all around»
Output: «______»

- N-gram model: predict word n based on previous n-1
- Input: $W_1, W_2, ..., W_{n-1}$
- Output: w_n

«love is all around ______»
Input: «love is all around»

Output: « me »

- N-gram model
- Input: $W_1, W_2, ..., W_{n-1}$
- Output: w_n

«love is all around ______»
Input: «love is all around»

Output: « me »

- First layer: each word corresponds to an embedding of length d
- Concatenate embeddings of input layer: $x = [f_1, f_2, ..., f_{n-1}]$

Hidden layer:

$$h = \sigma(Wx + b)$$

• W, b_1 - weight matrix and bias vector

 The probability on next word:

$$\hat{y} = \operatorname{softmax}(Uh + b_2)$$

$$\operatorname{softmax}(y) = \frac{e^{y}k}{\sum_{i} e^{y_{i}}}$$

 The probability on next word:

$$\hat{y} = \operatorname{softmax}(Uh + b_2)$$

$$\operatorname{softmax}(y) = \frac{e^{y}k}{\sum_{i} e^{y_{i}}}$$

- $\hat{y} \in \mathbb{R}^{|V|}$
- U, b_1 weight matrix and x bias vector, both trainable

Training:

- split corpus into n-grams
- take n-1 words as input, predict word n

Training:

- split corpus into n-grams
- take n-1 words as input, predict word n

Loss function: negative likelihood logarithm

$$L = -\frac{1}{T}y\log(P(\hat{y}))$$

Language models

Based on probabilities

Based on neural networks

Language models

Based on probabilities

Based on neural networks

- Many parameters
- High perplexity
- Fast inference
- Fixed length context

Language models

Based on probabilities

- Many parameters
- High perplexity
- Fast computations
- Fixed length context

Based on neural networks

 No need to store all n-grams

Slow computations

Fixed length context

- Works with input sequences of arbitrary length
- Has a state embedding that keeps information about processed input

Recurrent neural network y_t y_{t+1} y_{t-1} y h V h_t x_{t-1} x_{t+1} x_t χ

x - input words (embeddings)

- x input words (embeddings)
- h memory embedding

- x input words (embeddings)
- h memory embedding
- U, W, V trainable weight matrices
- y output

$$\bullet \quad h_t = \sigma(Vh_{t-1} + Ux_t + b_1)$$

Recurrent neural network

- $\bullet \quad h_t = \sigma(Vh_{t-1} + Ux_t + b_1)$
- $\widehat{y_t} = softmax(Wh_t + b_2) \in \mathbb{R}^{|V|}$

split corpus into words

$$W_1, W_2, \ldots, W_n$$

split corpus into words

$$W_1, W_2, \ldots, W_n$$

word embeddings

$$x_i = Ew_i$$

split corpus into words

$$W_1, W_2, \ldots, W_n$$

word embeddings

$$x_i = Ew_i$$

slide over corpus

$$y_1 = w_2, y_{n-1} = w_n$$

split corpus into words

$$W_1, W_2, \ldots, W_n$$

word embeddings

$$x_i = Ew_i$$

slide over corpus

$$y_1 = w_2, y_{n-1} = w_n$$

predict

$$(x_i, y_i)$$

 Supplementary characters for the beginning and end of the sentence: <s>, </s>

 at each step calculate the loss function, for example, cross entropy

$$loss_{local} = CE(y_t, \widehat{y_t})$$
$$= -\sum_{w \in V} y_t^w \log \widehat{y_t^w}$$

 at each step calculate the loss function, for example, cross entropy

$$loss_{local} = CE(y_t, \widehat{y_t})$$
$$= -\sum_{w \in V} y_t^w \log \widehat{y_t^w}$$

$$loss_{global} = \sum loss_{local}$$

Recurrent neural network

Advantages

- Works with input sequences of arbitrary length
- Has a state embedding that keeps information about processed input
- The number of parameters doesn't depend on the corpus size

Recurrent neural network

Advantages

- Works with input sequences of arbitrary length
- Has a state embedding that keeps information about processed input
- The number of parameters doesn't depend on the corpus size

Disadvantages

- Slow computations
- Memory mechanism doesn't work well

Memory mechanism

$$h_n = \sigma(h_{n-1}, x_n) = \sigma\left(\overbrace{\sigma(h_{n-2}, x_{n-1})}^{h_{n-1}}, x_n\right) = \sigma\left(\sigma\left(\overbrace{\sigma(h_{n-3}, x_{n-3})}^{h_{n-2}} x_{n-1}\right), x_n\right)$$

We update memory state at each step

calculate all local losses

- calculate all local losses
- calculate the gradient from the last word down to the first one

- calculate all local losses
- calculate the gradient from the last word down to the first one
- gradient vanishes due to the large amount of partial derivatives

Advanced RNN architectures

Long short term memory (LSTM)

Gated Recurrent Unit (GRU)

Advanced RNN architectures

RNN variations use additional masks for memory mechanism

Recurrent neural networks

- Architectures that handle sequences of derived length
- Can be used in a variety of text processing tasks, including text classification, text generation, and named entity recognition

Text generation

Problem statement

- given a context $x_1, ..., x_m$ generate next n words $x_{m+1}, ..., x_{m+n}$
- generation strategy P defines which word will be generated on every step:

$$P(x_{1:m+n}) = \prod_{i=1}^{m+n} P(x_i|x_1,...,x_{i-1})$$

Problem statement

- given a context $x_1, ..., x_m$ generate next n words $x_{m+1}, ..., x_{m+n}$
- generation strategy P defines which word will be generated on every step:

$$P(x_{1:m+n}) = \prod_{i=1}^{m+n} P(x_i|x_1,...,x_{i-1})$$

estimation all possible combinations is too difficult

Generation strategies

softmax gives a probability distribution over words

Generation strategies

softmax gives a probability distribution over words

- greedy sampling
- beam search
- greedy sampling with temperature
- top-k sampling
- nucleus sampling

Decoding strategies

Search

- Deterministic algorithm
- Chooses the most likely words at each step

Generation

- Non-deterministic algorithms
- Generate from the distribution specified on the last layer

Start with the beginning symbol <s>

Choose the most possible first word

 With the first word as input generate the most probable second word

generate untill we get the </s> symbol

Start with the beginning symbol <s>

Choose k most probable words

For each word choose k next most probable words

For each k*k options choose k most probable

Greedy search VS beam search

Greedy search

Greedy search VS beam search

Greedy search

- deterministic
- quick
- chooses an optimal word at each step
- doesn't give diversity

Greedy search VS beam search

Greedy search

- deterministic
- quick
- chooses an optimal word at each step
- doesn't give diversity

- deterministic
- equivalent to greedy search at k = 1
- difficult to compute
- gives more diversity
- generated replics can be too general

