

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» $(M\Gamma T Y \text{ им. H.9. Баумана})$

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №1 по дисциплине «Анализ алгоритмов»

Тема <u>Расстояние Левенштейна и Дамерау-Левенштейна</u>
Студент Алькина А.Р.
Группа ИУ7-54Б
Оценка (баллы)
Преподаватели Волкова Л. Л., Строганов Д. В.

СОДЕРЖАНИЕ

B	ВЕД	ЕНИЕ	3
1	Ана	алитическая часть	4
	1.1	Рекурсивный алгоритм нахождения расстояния Левенштейна	5
	1.2	Матричный алгоритм нахождения расстояния Левенштейна	7
	1.3	Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна .	8
	1.4	Матричный алгоритм нахождения расстояния Дамерау-Левенштейна	9
	1.5	Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна с	
		заполнением матрицы	10
2	Koı	нструкторская часть	11
	2.1	Схема алгоритма Левенштейна	11
	2.2	Схема алгоритма Дамерау-Левенштейна	12
3	Tex	нологическая часть	16
	3.1	Требования к ПО	16
	3.2	Средства реализации	16
	3.3	Листинг кода	16
	3.4	Функциональное тестирование	20
	3.5	Пример работы	21
4	Исс	следовательская часть	23
	4.1	Технические характеристики	23
	4.2	Время выполнения алгоритмов	23
	4.3	Использование памяти	26
34	4 ΚЛ	ЮЧЕНИЕ	29
\mathbf{C}	пис	ок использованных источников	30
П	РИЛ	ІОЖЕНИЕ 1	31

ВВЕДЕНИЕ

Расстояние Левенштейна — минимальное количество редакторских операций вставки, удаления и замены символа, которое необходимо для преобрзования одной строки в другую.

Впервые задачу поставил в 1965 году советский математик Владимир Левенштейн [1] при изучении последовательностей нулей и единиц, впоследствии более общую задачу для произвольного алфавита связали с его именем. Большой вклад в изучение вопроса внёс Дэн Гасфилд.

Расстояние Левенштейна применяется в следующих областях.

- 1) Компьютерная лингвистика для исправления ошибок.
- 2) Сравнение текстовых файлов утилитой diff и другими.
- 3) Биоинформатика для сравнения генов, хромосом и белков.

Расстояние Дамерау-Левенштейна (названо в честь учёных Фредерика Дамерау и Владимира Левенштейна) — минимальное количество редакторских операций вставки, удаления, замены символа или транспозиции символов, которое необходимо для преобразования одной строки в другую.

Цель лабораторной работы— изучение, анализ и реализация алгоритмов нахождения расстояний между строками Левенштейна и Дамерау-Левенштейна.

Задачи лабораторной работы:

- изучить алгоритмы Левенштейна и Дамерау-Левенштейна;
- применить методы динамического программирования для реализации алгоритмов;
- получить практические навыки реализации алгоритмов Левенштейна и Дамерау-Левенштейна;
- провести сравнительный анализ на основе экспериментальных данных;
- подготовить отчет по лабораторной работе.

1 Аналитическая часть

Чтобы вычислить расстояние Левенштейна вводятся редакционные предписания — последовательность действий, необходимых для получения из первой строки второй кратчайшим образом. Обычно действия обозначаются так: D (англ. delete) — удалить, I (англ. insert) — вставить, R (replace) — заменить, M (match) — совпадение.

Цены операций могут зависеть от вида операции (вставка, удаление, замена) и/или от участвующих в ней символов, отражая разную вероятность мутаций в биологии, разную вероятность разных ошибок при вводе текста и т. д. В общем случае:

- w(a,b) цена замены символа a на символ b;
- $w(\lambda, b)$ цена вставки символа b;
- $-w(a,\lambda)$ цена удаления символа a.

Для решения задачи о редакционном расстоянии необходимо найти последовательность редакционных предписаний, минимизирующую суммарную цену. Расстояние Левенштейна является частным случаем этой задачи при

- w(a, a) = 0;
- $w(a,b) = 1, a \neq b;$
- $w(\lambda, b) = 1;$
- $w(a, \lambda) = 1.$

1.1. Рекурсивный алгоритм нахождения расстояния Левенштейна

Существует проблема взаимного выравнивания строк.

Следующая таблица показывает не минимальное количество редакторских операций, получившееся в результате неудачного взаимного расположения строк.

Таблица 1.1 – Пример неоптимального выбора расположения строк

s1	у	В	Л	e	Ч	e	Н	И	e		
-s2	р	a	3	В	Л	е	Ч	е	Н	И	e
Операции	R	R	R	R	R	Μ	R	R	R	I	I

Сумма цен операций равна 10.

Следующая таблица показывает, как оптимальный выбор взаимного расположения строк влияет на применяемые редакторские операции.

Таблица 1.2 – Пример оптимального выбора расположения строк

s1			у	В	Л	e	Ч	e	Н	И	<u>e</u>
$\overline{s2}$	р	a	3	В	Л	е	Ч	е	Н	И	е
Операции	I	I	R	M	М	Μ	M	M	Μ	M	M

Сумма цен операций равна 3, что и является расстоянием Левенштейна для данных строк.

Проблема решается введением рекуррентной формулы.

Обозначим:

- L1 длина S1 (первой строки);
- L2 длина S2 (второй строки);
- S1[1...i] подстрока S1 длиной i, начиная с первого символа;
- S2[1...j] подстрока S2 длиной j, начиная с первого символа;
- S1[i] i-й символ строки S1;

- S2[j] - j-й символ строки S2.

Также введём следующую функцию:

$$f(a,b) = \begin{cases} 0 & \text{если a} = b, \\ 1 & \text{иначе.} \end{cases}$$
 (1.1)

Тогда расстояние Левенштейна между двумя строками S1 и S2 может быть вычислено по следующей формуле, где функция D(S1[1...i],S2[1...j])определена как:

определена как:
$$D(S1[1...i],S[1...j]) = \begin{cases} 0 & \text{i} = 0,\,\text{j} = 0,\\ \text{j} & \text{i} = 0,\,\text{j} > 0,\\ \text{i} & \text{o},\,\text{j} = 0,\\ \text{min} \{ & D(S1[1...i],S2[1...j-1]) + 1\\ D(S1[1...i-1],S2[1...j]) + 1 & \text{i} > 0,\,\text{j} > 0\\ D(S1[1...i-1],S2[1...j-1]) + \\ + f(S1[i],S2[j])\\ \}. \end{cases}$$
 (1.2)
 Рекурсивный алгоритм реализует формулу 1.2. Функция D составлена исходя следующих соображений:

Рекурсивный алгоритм реализует формулу 1.2. Функция D составлена

- для перевода из пустой строки в пустую требуется ноль операций;
- для перевода из пустой строки в строку a требуется |a| операций (вставка), где |a| — длина строки а;
- для перевода из строки a в пустую требуется |a| операций (удаление).

Для перевода из строки S1 в строку S2 требуется выполнить последовательно некоторое количество операций (удаление, вставка, замена) в некоторой последовательности. Последовательность проведения любых двух операций можно поменять, порядок проведения операций не важен. Если S1', S2' — строки S1 и S2 без последнего символа соответственно, то цена преобразования из строки S1 в строку S2 может быть выражена как:

- сумма цены преобразования строки S1 в S2 и цены проведения операции удаления (1), которая необходима для преобразования S1' в S1;
- сумма цены преобразования строки S1 в S2 и цены проведения операции вставки (1), которая необходима для преобразования S2' в S2;
- сумма цены преобразования из S1' в S2' и цены проведения операции замены (1), предполагая, что S1 и S2 оканчиваются разные символы;
- цена преобразования из S1' в S2' при условии, что S1 и S2 оканчиваются на один и тот же символ.

Минимальной ценой преобразования будет минимальное значение приведенных вариантов.

1.2. Матричный алгоритм нахождения расстояния Левенштейна

Альтернативным подходом для более эффективного вычисления Левенштейна является использование матрицы для сохранения промежуточных значений. Этот подход позволяет избежать повторных вычислений множества значений D(S1[1...i], S2[1...j]) при больших значениях i и j. Вместо этого алгоритм заполняет матрицу $A_{|S1|+1,|S2|+1}$ построчно значениями D(S1[1...i], S2[1...j]).

Таким образом, вычисление значения D(S1[1...i], S2[1...j]) зависит от значений, сохраненных в матрице A. Вместо повторного вычисления, алгоритм может просто обращаться к матрице для получения необходимого значения. Это значительно сокращает количество вычислений и делает алгоритм более эффективным.

Искомое расстояние при этом будет находиться в элементе матрицы A[i][j].

1.3. Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна

Исходя из того, что 80% ошибок при наборе текста приходится на транспозицию (два соседних символа меняются местами), Фредерик Дамерау предложил ввести четвёртую редакторскую операцию — транспозицию (перестановку).

Обозначим:

- L1 длина S1 (первой строки);
- L2 длина S2 (второй строки);
- S1[1...i] подстрока S1 длиной і, начиная с первого символа;
- S2[1...j] подстрока S2 длиной j, начиная с первого символа;
- S1[i] i-й символ строки S1;
- S2[j] j-й символ строки S2.

Определим функцию f:

$$f(a,b) = \begin{cases} 0 & \text{если a} = b, \\ 1 & \text{иначе.} \end{cases}$$
 (1.3)

Тогда расстояние Дамерау-Левенштейна между двумя строками S1 и S2 может быть вычислено по следующей формуле, где вычисляемая функция D(S1[1...i], S2[1...j]) определена как:

```
D(S1[1...i-1],S2[1...j-1]) + 1
D(S1[1...i],S2[1...j-1]) + 1 \quad \text{ecah} \ (i>1,j>1
D(S1[1...i],S2[1...j]) + 1 \quad \text{S1}[i] = S2[j-1],
D(S1[1...i-1],S2[1...j-1]) + \quad \text{S1}[i-1] = S2[j]),
+f(S1[i],S2[j])
\}, \quad \min\{
D(S1[1...i],S2[1...j-1]) + 1 \quad \text{inhave}
D(S1[1...i-1],S2[1...j-1]) + 1
D(S1[1...i-1],S2[1...j-1]) + 1
+f(S1[i],S2[j])
\}.
                                                                                                                                                                                                                                                                                                                                                 (1.4)
```

1.4. Матричный алгоритм нахождения расстояния Дамерау-Левенштейна

Матричный алгоритм нахождения расстояния Дамерау-Левенштейна реализуется практически идентично матричному алгоритму Левенштейна. Но в данном алгоритме также задействуется элемент матрицы A[i-2][j-2], если возможна транспозиция символов на текущем шаге.

1.5. Рекурсивный алгоритм нахождения расстояния Дамерау-Левенштейна с заполнением матрицы

Рекурсивную реализацию алгоритма Дамерау-Левенштейна можно ускорить, комбинируя рекуррентный и матричный подход.

Для более эффективного вычисления расстояния Левенштейна параллельно можно заполнять матрицу, которая будет использоваться для кеширования уже вычисленных результатов рекурсивных вызовов. В процессе заполнения матрицы рекурсивно вызываются только те вычисления, которые еще не были обработаны. Результаты нахождения расстояния сохраняются в матрице, и если уже обработанные данные встречаются снова, расстояние для них не находится и алгоритм переходит к следующему шагу.

Вывод

Алгоритмы Левенштейна и Дамерау-Левенштейна для вычисления расстояния между строками могут быть реализованы как рекурсивно, так и итерационно. Оба алгоритма определяют расстояние между двумя строками путем вычисления минимального количества операций (вставки, удаления и замены символов, а также транспозиции), необходимых для преобразования одной строки в другую.

2 Конструкторская часть

2.1. Схема алгоритма Левенштейна

На рисунке 2.1 приведена схема матричного алгоритма вычисления расстояния Левенштейна.

Рисунок 2.1 – Схема матричного алгоритма вычисления расстояния Левенштейна

2.2. Схема алгоритма Дамерау-Левенштейна

На рисунке 2.2 приведена схема рекурсивного алгоритма вычисления расстояния Дамерау-Левенштейна.

Рисунок 2.2 – Схема рекурсивного алгоритма вычисления расстояния Дамерау-Левенштейна

На рисунке 2.3 приведена схема рекурсивного алгоритма вычисления расстояния Дамерау-Левенштейна с заполнением матрицы. На дополнительном рисунке 2.4 приведена подпрограмма рекурсивного алгоритма вычисления расстояния Дамерау-Левенштейна с заполнением матрицы.

Рисунок 2.3 – Схема рекурсивного алгоритма Дамерау-Левенштейна с заполнением матрицы

Рисунок 2.4 – Схема подпрограммы GetDist

На рисунке 2.5 приведена схема матричного алгоритма вычисления расстояния Дамерау-Левенштейна.

Рисунок 2.5 – Схема матричного алгоритма вычисления расстояния Дамерау-Левенштейна

Вывод

В данном разделе представлены схемы алгоритмов вычисления расстояний Левенштейна и Дамерау-Левенштейна между строками, построенные в соответствии с теоретическими сведениями из аналитического раздела.

3 Технологическая часть

В данном разделе представлены требования к программному обеспечению, а также рассматриваются средства реализации и приводятся листинги кода.

3.1. Требования к ПО

К программе предъявляется ряд требований:

- на вход подаются две строки;
- на выходе искомое расстояние для всех четырех методов и матрицы расстояний для всех методов, которые подразумевают использование матрицы.

3.2. Средства реализации

В качестве языка программирования для реализации лабораторной работы был выбран многопоточный язык Go [2]. Выбор был сделан в пользу данного языка программирования, вследствие наличия пакетов для тестирования ПО.

3.3. Листинг кода

В листингах 3.1–3.4 приведены реализации алгоритмов Левенштейна и Дамерау-Левенштейна.

Листинг 3.1 – Матричный (Левенштейн)

```
func MatrixLeven(str1 []rune, str2 []rune) (int, matrix.Matrix) {
      operation := 0
      matr := matrix.CreateMatrix(len(str1)+1, len(str2)+1, false)
      for i := 1; i < matr.M; i++ {</pre>
          for j := 1; j < matr.N; j++ {</pre>
              if str1[i-1] != str2[j-1] {
                  operation = 1
              } else {
                  operation = 0
11
              matr.Matr[i][j] = GetMin(matr.Matr[i][j-1]+1, matr.Matr[i-1][j]+1,
12
                  matr.Matr[i-1][j-1]+operation)
          }
13
      }
14
15
16
      return matr.Matr[matr.M-1][matr.N-1], matr
  }
17
```

Листинг 3.2 – Рекурсивный (Дамерау-Левенштейн)

```
func DamerauLeven(str1, str2 []rune) int {
      m, n := len(str1), len(str2)
      var operation, transposition int
      if m == 0 \&\& n == 0 {
          return 0
      } else if m == 0 \&\& n > 0 {
          return n
      } else if m > 0 \&\& n == 0 {
          return m
10
      } else {
11
          if str1[m-1] != str2[n-1] {
12
              operation = 1
13
          }
14
          moveLeft := DamerauLeven(str1, str2[:n-1]) + 1
          moveRight := DamerauLeven(str1[:m-1], str2) + 1
16
          moveDiag := DamerauLeven(str1[:m-1], str2[:n-1]) + operation
17
          if m \ge 2 \&\& n \ge 2 \&\& str1[m-1] == str2[n-2] \&\& str1[m-2] == str2[n-1] {
              transposition = DamerauLeven(str1[:m-2], str2[:n-2]) + 1
19
              return GetMin(moveLeft, moveRight, moveDiag, transposition)
2.0
21
          return GetMin(moveDiag, moveRight, moveLeft)
22
23
      return 0
25
26 }
```

Листинг 3.3 – Матричный (Дамерау-Левенштейн)

```
func MatrixDamerauLeven(str1 []rune, str2 []rune) (int, matrix.Matrix) {
      operation := 0
      matr := matrix.CreateMatrix(len(str1)+1, len(str2)+1, false)
      for i := 1; i < matr.M; i++ {</pre>
          for j := 1; j < matr.N; j++ {</pre>
              if str1[i-1] != str2[j-1] {
                 operation = 1
              } else {
                 operation = 0
10
11
              if i \ge 2 \&\& j \ge 2 \&\& str1[i-1] == str2[j-2] \&\& str1[i-2] == str2[j-1] {
12
                 matr.Matr[i][j] = GetMin(matr.Matr[i][j-1]+1, matr.Matr[i-1][j]+1,
13
                     matr.Matr[i-1][j-1]+operation, matr.Matr[i-2][j-2]+1)
14
              } else {
15
                 matr.Matr[i][j] = GetMin(matr.Matr[i][j-1]+1, matr.Matr[i-1][j]+1,
                     matr.Matr[i-1][j-1]+operation)
              }
17
          }
      }
19
20
      return matr.Matr[matr.M-1][matr.N-1], matr
21
22 }
```

Листинг 3.4 – Рекурсивный с кешем (Дамерау-Левенштейн)

```
func GetDistance(matr *matrix.Matrix, i int, j int, str1 []rune, str2 []rune) int {
      if matr.Matr[i][j] == -1 {
          matr.Matr[i][j] = RecursivePartOfLeven(str1, str2, matr)
      return matr.Matr[i][j]
  }
6
  func RecursivePartOfLeven(str1 []rune, str2 []rune, matr *matrix.Matrix) int {
      var operation int
10
      m, n := len(str1), len(str2)
11
12
      if m == 0 \&\& n == 0 {
13
          return 0
14
      } else if m == 0 \&\& n > 0 {
15
          return n
16
      } else if m > 0 \&\& n == 0 {
17
          return m
1.8
      } else {
          if str1[m-1] != str2[n-1] {
20
              operation = 1
21
22
          moveLeft := GetDistance(matr, m, n-1, str1, str2[:n-1]) + 1
23
          moveRight := GetDistance(matr, m-1, n, str1[:m-1], str2) + 1
24
          moveDiag := GetDistance(matr, m-1, n-1, str1[:m-1], str2[:n-1]) + operation
25
          if m \ge 2 \&\& n \ge 2 \&\& str1[m-1] == str2[n-2] \&\& str1[m-2] == str2[n-1] {
26
              transposition := GetDistance(matr, m-2, n-2, str1[:m-2], str2[:n-2]) + 1
27
              return GetMin(moveLeft, moveRight, moveDiag, transposition)
28
29
          return GetMin(moveLeft, moveRight, moveDiag)
30
31
32
  }
33
  func RecursiveDamerauLevenWithCache(str1 []rune, str2 []rune) (int, matrix.Matrix) {
34
      matr := matrix.CreateMatrix(len(str1)+1, len(str2)+1, true)
35
      ans := RecursivePartOfLeven(str1, str2, &matr)
36
      matr.Matr[matr.M-1][matr.N-1] = ans
37
38
      return ans, matr
39
40 }
```

Листинги со служебным кодом находятся в приложении.

3.4. Функциональное тестирование

В таблице 3.1 приведены функциональные тесты для алгоритмов вычисления расстояния Левенштейна и Дамерау-Левенштейна.

Обозначим:

- 1 алгоритм вычисления расстояния Левенштейна матричный;
- 2 алгоритм вычисления расстояния Дамерау-Левештейна рекурсивный;
- 3 алгоритм вычисления расстояния Дамерау-Левенштейна матричный;
- 4 алгоритм вычисления расстояния Дамерау-Левенштейна с кешем.

Таблица 3.1 - Функциональные тесты

		Ожидаемый результат					
Строка 1	Строка 2	1	2	3	4		
equal	equal	0	0	0	0		
call	code	2	2	2	2		
program	prorgam	2	1	1	1		
program	programmer	3	3	3	3		

3.5. Пример работы

Демонстрация работы программы приведена на рисунке 3.1.

```
Выберите опцию: 1
Введите строку 1: one
Введите строку 2: two
Выберите опцию: 3
Редакционное расстояние между строками = 3
       1 2 3
   1 1 2 2
2 2 2 3
3 3 3 3
                    2
Выберите опцию: 4
Редакционное расстояние между строками = 3
Выберите опцию: 5
Редакционное расстояние между строками = 3
Матрица:
      1 2 3
1 2 2
2 2 3
3 3 3
Выберите опцию: 6
Редакционное расстояние между строками = 3
Матрица:
   0 1 2 3
1 1 2 2
2 2 2 3
3 3 3 3
Выберите опцию: 0
```

Рисунок 3.1 – Демонстрация работы программы

Вывод

В результате, были разработаны следующие алгоритмы: алгоритм нахождения редакционного расстояния Левенштейна, алгоритм нахождения редакционного расстояния Дамерау-Левенштейна, алгоритм вычисления редакционного расстояния Дамерау-Левенштейна итерационный, алгоритм вычисления редакционного расстояния Дамерау-Левенштейна с кешированием.

4 Исследовательская часть

4.1. Технические характеристики

Технические характеристики устройства, на котором выполнялось тестирование:

- операционная система: Ubuntu [3] 22.04.3 LTS;
- оперативная память: 15 ГБ;
- процессор: 12 ядер, AMD Ryzen 5 4600ГЦ with Radeon Graphics [4].

4.2. Время выполнения алгоритмов

Во время замеров времени система не была нагружена дополнительными пользовательскими процессами.

Замеры проводились с помощью разработанной функции GetCPU, которая использует модуль syscall [5]. syscall.Rusage является структурой в пакете syscall, предназначенной для хранения информации о ресурсах, используемых процессом или потоком. Эта структура содержит различные поля, такие как Utime (время использования ЦПУ в пользовательском режиме), Stime (время использования ЦПУ в режиме ядра) и так далее.

Для получения времени использования ЦПУ, извлекаем атрибуты структуры Utime и Stime.

Выражение usage. Utime. Nano() + usage. Stime. Nano() возвращает сумму времени использования ЦПУ в наносекундах для процесса или потока. Это значение может быть использовано для измерения общего времени использования ЦПУ в пределах процесса или потока.

Результаты замеров приведены в таблице 4.1.

Обозначим:

— 1 — матричный алгоритм вычисления расстояния Левенштейна между строками;

- 2 матричный алгоритм вычисления расстояния между строками Дамерау-Левештейна;
- 3 рекурсивный алгоритм вычисления расстояния между строками Дамерау-Левенштейна;
- 4 рекурсивный алгоритм с кешем вычисления расстояния Дамерау-Левенштейна.

Таблица 4.1 – Замер времени для строк, размером от 5 до 300

	Время, нс								
Длина строк	1	2	3	4					
5	1936	657	17134	951					
10	5421	1265	38603216	2478					
15	25600	3200	213888700000	7600					
50	64653	59871	None	173452					
100	235207	233723	None	586421					
200	882743	855473	None	2526968					
300	2078467	2104723	None	5863640					

На следующем графике представлена зависимость времени работы алгоритма вычисления расстояния Левенштейна и Дамерау-Левенштейна от длины строк (до 15 символов).

Рисунок 4.1 – Время работы алгоритмов вычисления расстояния между строками

На следующем графике представлена зависимость времени работы алгоритма вычисления расстояния Левенштейна и Дамерау-Левенштейна от длины строк (до 300 символов, без рекурсивной реализации алгоритма Дамерау-Левенштейна).

Рисунок 4.2 – Время работы алгоритмов вычисления расстояния между строками

4.3. Использование памяти

Алгоритмы, использующие матрицы, не отличаются друг от друга по потреблению памяти, поэтому ниже приведено сравнение только рекурсивной и матричной реализации.

Матричный алгоритм Дамерау-Левенштейна:

$$11 \cdot len(int) + len(rune) \cdot (len(S_1) + len(S_2)) + len(Matrix), \tag{4.1}$$

где

$$len(Matrix) = (len(S_1) + len(S_2) + 2) \cdot len(int) + 2 \cdot len(int) + len(bool), (4.2)$$

где len — оператор вычисления размера, S_1 , S_2 — строки, int — целочисленный тип, rune — строковый тип в Go, Matrix — пользовательский тип данных, представляющий матрицу, bool — логический тип данных.

Рекурсивный алгоритм Дамерау-Левенштейна: Максимальная глубина стека вызовов при рекурсивной реализации равна сумме длин входящих строк, соответственно, максимальный расход памяти

$$(len(S_1) + len(S_2)) \cdot (2 \cdot len(rune) + 15 \cdot len(int)), \tag{4.3}$$

где len — оператор вычисления размера, S_1 , S_2 — строки, int — целочисленный тип, rune — строковый тип в Go.

Выделение памяти при работе алгоритмов указано на рисунке 4.1. Получено при помощи команды: go test -bench . -benchmem

Листинг 4.1 – Матричный (Левенштейн)

```
goos: linux
  goarch: amd64
3 pkg: lab1.com/algs1
4 cpu: AMD Ryzen 5 4600H with Radeon Graphics
5 BenchmarkDamerauLeven5-12 81226 13294 ns/op 0 B/op 0 allocs/op
6 BenchmarkDamerauLen10-12 18 65501505 ns/op 0 B/op 0 allocs/op
7 BenchmarkDamerauLevenLen15-12 1 212854803869 ns/op 0 B/op 0 allocs/op
8 BenchmarkMatrixDamerauLevenLen5-12 1000000 1042 ns/op 432 B/op 7 allocs/op
9 BenchmarkMatrixDamerauLevenLen10-12 369198 2868 ns/op 1344 B/op 12 allocs/op
BenchmarkMatrixDamerauLevenLen15-12 197188 5785 ns/op 2432 B/op 17 allocs/op
11 BenchmarkMatrixDamerauLevenLen50-12 22540 52393 ns/op 22496 B/op 52 allocs/op
BenchmarkMatrixDamerauLevenLen100-12 5368 206314 ns/op 93184 B/op 102 allocs/op
13 BenchmarkMatrixDamerauLevenCacheLen5-12 703873 1915 ns/op 432 B/op 7 allocs/op
14 BenchmarkMatrixDamerauLevenCacheLen10-12 277136 6075 ns/op 1344 B/op 12 allocs/op
  BenchmarkMatrixDamerauLevenCacheLen15-12 98534 12546 ns/op 2432 B/op 17 allocs/op
BenchmarkMatrixDamerauLevenCacheLen50-12 7834 156253 ns/op 22496 B/op 52 allocs/op
  BenchmarkMatrixDamerauLevenCacheLen100-12 1585 731190 ns/op 93184 B/op 102 allocs/op
BenchmarkMatrixLevenLen5-12 1000000 1038 ns/op 432 B/op 7 allocs/op
BenchmarkMatrixLevenLen10-12 411806 2838 ns/op 1344 B/op 12 allocs/op
20 BenchmarkMatrixLevenLen15-12 210435 5360 ns/op 2432 B/op 17 allocs/op
21 BenchmarkMatrixLevenLen50-12 23905 49641 ns/op 22496 B/op 52 allocs/op
22 BenchmarkMatrixLevenLen100-12 5313 202286 ns/op 93184 B/op 102 allocs/op
24 ok lab1.com/algs1 237.469s
```

Вывод

Рекурсивный алгоритм Дамерау-Левенштейна имеет большую вычислительную сложность и работает медленнее итеративных реализаций. Время выполнения рекурсивного алгоритма увеличивается экспоненциально с ростом длины строк. Например, на словах длиной 10 символов, матричная реализация алгоритма Дамерау-Левенштейна работает минимум в 12000 раз быстрее, чем рекурсивная реализация.

Однако, рекурсивный Дамерау-Левенштейна имеет преимущество в использовании памяти. Итеративные алгоритмы требуют большего объема памяти, так как их потребление памяти растет как произведение длин строк. В то же время, рекурсивный алгоритм требует памяти пропорционально сумме длин строк.

Алгоритм Дамерау-Левенштейна по времени выполнения сопоставим с алгоритмом Левенштейна.

ЗАКЛЮЧЕНИЕ

В ходе выполнения работы были выполнены все поставленные задачи, в том числе изучение методов динамического программирования на основе алгоритмов вычисления расстояния Левенштейна.

Исследование позволило выявить различия в производительности различных алгоритмов вычисления расстояния Левенштейна. В частности, матричные алгоритмы продемонстрировали большее потребление памяти по сравнению с рекурсивными из-за выделения дополнительной памяти под матрицы и использования большего количества локальных переменных.

Также были проведены теоретические расчеты использования памяти в каждом из алгоритмов вычисления расстояния Левенштейна, включая алгоритм Дамерау-Левенштейна. В результате рекурсивный алгоритм продемонстрировал более эффективное использование памяти по сравнению с матричными алгоритмами, которые требуют дополнительного выделения памяти под матрицы и более широкий набор локальных переменных.

В целом, исследование позволило получить практические и теоретические результаты, подтверждающие различия в производительности и использовании памяти различных алгоритмов вычисления расстояния Левенштейна. Эти результаты могут служить основой для выбора наиболее эффективного алгоритма в зависимости от конкретных требований и ограничений проекта.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Левенштейн В. И. Двоичные коды с исправлением выпадений, вставок и замещений символов. М.: Доклады АН СССР, 1965. Т. 163. С. 845—848.
- [2] The Go Programming Language [Электронный ресурс]. Режим доступа: https://golang.org/ (дата обращения: 15.09.2023).
- [3] Linux Официальная документация [Электронный ресурс]. Режим доступа: https://www.linux.org/ (дата обращения: 15.09.2023).
- [4] AMD Processors [Электронный ресурс]. Режим доступа: https://www.amd.com/en.html (дата обращения: 15.09.2023).
- [5] Пакет syscall [Электронный ресурс]. Режим доступа: https://pkg.go.dev/syscall (дата обращения: 15.09.2023).

ПРИЛОЖЕНИЕ 1

В листинге 4.2 приведена структура Matrix.

Листинг 4.2 – Структура Matrix

```
package matrix
  import (
      "fmt"
  type Matrix struct {
      Matr [][]int
      M int
      N int
10
      Inf bool
11
12 }
13
14 func (m *Matrix) MakeMatrix() {
      m.Matr = make([][]int, m.M)
      for i := range m.Matr {
16
          m.Matr[i] = make([]int, m.N)
17
18
  }
19
20
  func (m *Matrix) InitMatrix() {
      for j := 0; j < m.N; j++ {</pre>
22
          m.Matr[0][j] = j
23
      }
24
25
      for i := 0; i < m.M; i++ {</pre>
26
          m.Matr[i][0] = i
28
29
      if m.Inf {
           for i := 1; i < m.M; i++ {</pre>
31
               for j := 1; j < m.N; j++ {</pre>
32
                   m.Matr[i][j] = -1
34
          }
35
      }
36
37
38
  func (m *Matrix) OutputMatrix() {
      for i := 0; i < m.M; i++ {</pre>
40
          for j := 0; j < m.N; j++ {</pre>
41
               fmt.Printf("%5d", m.Matr[i][j])
          }
43
```

```
fmt.Println()
44
      }
45
      fmt.Println()
46
  }
47
48
  func CreateMatrix(m, n int, inf bool) Matrix {
      matr := Matrix{M: m, N: n, Inf: inf}
50
      matr.MakeMatrix()
51
      matr.InitMatrix()
      return matr
53
54 }
```

В листинге 4.3 приведен модуль для замеров процессорного времени выполнения программы.

Листинг 4.3 – Измерение времени

```
package time_measure
  import (
      "math/rand"
      "syscall"
      "lab1.com/algs1"
      "lab1.com/matrix"
  )
10
  const N int = 1000
  const symbols string = "abcdefghijklmnopqrstuvwxyz"
12
13
  const maxInd int = 26
14
15
16 func GetCPU() int64 {
      usage := new(syscall.Rusage)
17
      syscall.Getrusage(syscall.RUSAGE_SELF, usage)
18
      return usage.Utime.Nano() + usage.Stime.Nano()
19
  }
20
^{21}
  func GetRandomString(len int) []rune {
22
      rstr := make([]rune, len)
23
      for i := 0; i < len; i++ {</pre>
24
          symb := rand.Intn(maxInd)
25
          rstr[i] = rune(symbols[symb])
26
      return rstr
28
29 }
30
31 func MatrixLevenTimeMeasurement(str1 []rune, str2 []rune) (float32, int) {
      var sum float32
^{32}
```

```
33
      var startTime, finishTime int64
34
      var ans int
      var mtr matrix.Matrix
36
37
      for i := 0; i < N; i++ {</pre>
          startTime = GetCPU()
39
          ans, mtr = algs1.MatrixLeven(str1, str2)
40
          finishTime = GetCPU()
          sum += float32(finishTime - startTime)
42
      }
43
      mtr.Matr[0][0] += 1
45
46
47
      return (sum / float32(N)) / 1, ans
  }
48
49
50 func DamerauLevenTimeMeasurement(str1 []rune, str2 []rune) (float32, int) {
      var sum float32
51
52
      var startTime, finishTime int64
53
      var ans int
54
55
      for i := 0; i < N; i++ {</pre>
56
          startTime = GetCPU()
57
          ans = algs1.DamerauLeven(str1, str2)
58
          finishTime = GetCPU()
59
          sum += float32(finishTime - startTime)
60
      }
61
62
      return (sum / float32(N)) / 1, ans
63
64 }
65
  func MatrixDamerauLevenTimeMeasurement(str1 []rune, str2 []rune) (float32, int) {
66
      var sum float32
67
68
      var startTime, finishTime int64
69
      var ans int
70
      var matr matrix.Matrix
71
72
      for i := 0; i < N; i++ {</pre>
73
          startTime = GetCPU()
74
          ans, matr = algs1.MatrixDamerauLeven(str1, str2)
75
          finishTime = GetCPU()
76
          sum += float32(finishTime - startTime)
77
      }
78
79
      matr.Matr[0][0] += 1
80
```

```
81
       return (sum / float32(N)) / 1, ans
82
83 }
84
85 func RecursiveDamerauLevenWithCacheTimeMeasurement(str1 []rune, str2 []rune) (float32,
       int) {
       var sum float32
86
87
       var startTime, finishTime int64
       var ans int
89
       var matr matrix.Matrix
90
91
       for i := 0; i < N; i++ {</pre>
92
          startTime = GetCPU()
93
          ans, matr = algs1.RecursiveDamerauLevenWithCache(str1, str2)
          finishTime = GetCPU()
95
          sum += float32(finishTime - startTime)
96
       }
97
98
       matr.Matr[0][0] += 1
99
100
101
       return (sum / float32(N)) / 1, ans
102 }
103
   func MeasureTime(rstr1 []rune, rstr2 []rune) [4]float32 {
104
       var seconds [4]float32
105
       var ans int
106
107
       seconds[0], ans = MatrixLevenTimeMeasurement(rstr1, rstr2)
108
       seconds[1], ans = DamerauLevenTimeMeasurement(rstr1, rstr2)
109
       seconds[2], ans = MatrixDamerauLevenTimeMeasurement(rstr1, rstr2)
110
       seconds[3], ans = RecursiveDamerauLevenWithCacheTimeMeasurement(rstr1, rstr2)
111
112
113
       ans += 1
114
115
       return seconds
116 }
```