21-484 Notes JD Nir jnir@andrew.cmu.edu April 9, 2012

Edge coloring

$$f_k: E \to \{1,\ldots,k\}$$

$$\forall u, v_1, v_2 \ f(uv_1) \neq f(uv_2)$$

k-edge colorable $\exists f_k$

k-edge chromatic, $\chi_1(G)$ k-edge colorable and not k-1 edge colorable

3-edge colorable 3-edge chromatic 4-edge colorable not 4-edge chromatic

Vizing's Theorem: (10.12) All
$$G$$
 $\chi_1(X) = \Delta(G)$ or $\chi_1(G) = \Delta(G) + 1$

Pr:
$$\chi_1(G) \ge \Delta(G)$$

Take v of max degree. v has $\Delta(G)$ edges; each needs a color.

$$\chi_1(G) \le \Delta(G) + 1$$

Induction on m (number of edges)

Take xy to be arbitrary.

$$IH: \chi_1(G - xy) \le \Delta(G - xy) + 1 \le \Delta(G) + 1$$

fix φ , color xy somehow

 $\varphi(uv)$ is the color of uv

 $\varphi(u)$ is the set of colors incdient with u

 $\overline{\varphi}(u)$ is the set of colors missing at u

$$\forall u, \overline{\varphi}(u) \neq \emptyset$$

Kempe Chain H(a, b)

Subgraph induced by taking edges of colors a and b (only)

 y_0, y_1, \dots vertices

 c_0, c_1, \ldots colors

Set $y_0 = y$

 $c_i := a \text{ color missing at } y_i$

 $c_i \in \overline{\varphi}(y_i)$

 $y_{i+1} := \text{vertex such that } \varphi(xy_{i+1}) = c_i$

(1) $c_k \in \overline{\varphi}(x)$ color xy_i with $c_i \ \forall 0 \le i \le k$.

(2) y's and c's infinite

 $c_k = \varphi(xy_i)$

 $\overline{\varphi}(x) \neq \emptyset$ Let $a \in \overline{\varphi}(x)$

(2a) $a \in \overline{\varphi}(y_j) \ \forall 0 \le i < j \text{ color } xy_i \text{ with } c_i. \text{ Color } xy_j \text{ with } a.$

(2b) $a \in \overline{\varphi}(y_k) \ \forall 0 \le i < k \text{ color } xy_i \text{ with } c_i.$ Color xy_k with a.

 $c_k \in \varphi(x) \qquad a \in \varphi(y_j)$

 $c_k \in \overline{\varphi}(y_k) \quad a \in \varphi(y_k)$

 $c_k \in \overline{\varphi}(y_i)$ $a \in \overline{\varphi}(x)$

color xy_i with $c_i \ \forall 0 \le i < j$ uncolor xy_j

 $H(C_k,a)$ each of x,y_j,y_k has degre 1. One of them is in its own compoent.

Without loss of generality

By (1), (2a), or (2b)

König's Theorem: (10.17) G Bipartite, $\chi_1(G) = \Delta(G)$ [Class 1]

Sketch Pf: H bipartite, $\Delta(G)$ -regular, $G \subseteq H$.

Given H, from exam 2 we know it has a perfect matching. Take one such matching, color some color, delete it. We now have a $\Delta(G)$ – 1-regular graph, take another perfect matching. Continue this process. This gives a $\Delta(G)$ coloring of H. Restrict to G's edges.

 $G = H_0$

Copy and swap partitions. Connect corresponding minimum degree vertices. Repeat.

$$H_0, H_1, \dots, H_{\Delta(G) - \delta(G)} H_i$$
 bipartite

$$\delta(H_{i+1}) = \delta(H_i) + 1$$

$$\Delta(H) = \delta(H) \Rightarrow \text{Regular}$$