

ARM®-based 32-bit Cortex®-M4 MCU+FPU with 256 to 1024 KB Flash, sLib, 17 timers, 3 ADCs, 20 communication interfaces (USBFS)

Feature

■ Core: ARM® 32-bit Cortex®-M4 CPU with FPU

- 240 MHz maximum frequency, with a memory protection unit (MPU), single-cycle multiplication and hardware division
- Floating point unit (FPU) and
- DSP instructions

■ Memories

- 256 to 1024 KBytes of internal Flash memory
- sLib: configurable part of main Flash set as a libruary area with code excutable but secured, non-readable
- SPIM interface: Extra interfacing up to 16 Mbytes of the external SPI Flash (as instruction/data memory)
- Up to 96+128 KBytes of SRAM
- External memory controller (XMC) with 16bit data bus. Supports multiplexed PSRAM/NOR and NAND memories

■ XMC as LCD parallel interface, compatible with 8080/6800 modes

■ Power control (PWC)

- 2.6 to 3.6 V application supply
- Power on reset (POR), low voltage reset (LVR), and power voltage monitoring (PVM)
- Low power modes: Sleep, Deepsleep, and Standby modes
- V_{BAT} supply for LEXT, RTC, and forty-two 16-bit battery powered registers (BPR)

■ Clock and reset management (CRM)

- 4 to 25 MHz crystal (HEXT)
- 48 MHz internal factory-trimmed high speed internal clock (HICK), offers 1 % accuracy at $T_{\rm A}$ = 25 °C and 2.5 % accuracy at $T_{\rm A}$ = -40 to +105 °C, with automaitc clock calibration (ACC)
- 32 kHz crystal (LEXT)
- Low speed internal clock (LICK)

Analog

- 3 x 12-bit 2 MSPS A/D converters, up to 16 input channels
- Temperature sensor (V_{TS}) and internal reference voltage (V_{INTRV})
- 2 x 12-bit D/A converters

■ DMA: 14-channel DMA controller

■ Up to 80 fast GPIOs

- all mappable on 16 external interrupts (EXINT)
- almost all 5 V-tolerant

■ Up to 17 timers (TMR)

- Up to 2 x 16-bit motor control PWM advanced timers with dead-time generator and emergency brake
- Up to 8 x 16-bit + 2 x 32-bit timers, each with 4 IC/OC/PWM or pulse counter and quadrature encoder input
- 2 x 16-bit basic timers to drive the DAC
- 2 x watchdog timers (general WDT and windowed WWDT)
- SysTick timer: a 24-bit downcounter

■ Up to 20 communication interfaces

- Up to 3 x I²C interfaces (SMBus/PMBus)
- Up to 8 x USARTs (ISO7816 interface, LIN, IrDA capability, modem control)
- Up to 4 x SPIs (50 Mbit/s), all with I²S interface multiplexed, I²S2/I²S3 support full-duplex
- Up to 2 x CAN interface (2.0B Active)
- USB 2.0 full speed interface supporting crystal-less
- Up to 2 x SDIO interfaces

■ CRC calculation unit, 96-bit unique ID (UID)

Debug mode

- Serial wire debug (SWD) and JTAG interfaces
- Cortex®-M4 Embedded Trace Macrocell (ETMTM)

■ Operating temperatures: -40 to +105 °C

Packages

- LQFP100 14 x 14 mm
- LQFP64 10 x 10 mm
- LQFP48 7 x 7 mm
- QFN48 6 x 6 mm

Table 1. Device summary

Internal Flash	Part number
1024 KBytes	AT32F403ACGT7, AT32F403ACGU7, AT32F403ARGT7, AT32F403AVGT7
512 KBytes	AT32F403ACET7, AT32F403ACEU7, AT32F403ARET7, AT32F403AVET7
256 KBytes	AT32F403ACCT7, AT32F403ACCU7, AT32F403ARCT7, AT32F403AVCT7

Contents

1	Des	criptions	9
2	Fund	ctional overview	11
	2.1	ARM® Cortex®-M4 with FPU	11
	2.2	Memory	12
		2.2.1 Internal Flash memory	12
		2.2.2 Memory protection unit (MPU)	12
		2.2.3 Embedded SRAM	12
		2.2.4 External memory controller (XMC)	12
	2.3	Interrupts	13
		2.3.1 Nested vectored interrupt controller (NVIC)	13
		2.3.2 External interrupts (EXINT)	13
	2.4	Power control (PWC)	13
		2.4.1 Power supply schemes	13
		2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)	13
		2.4.3 Voltage regulator (LDO)	13
		2.4.4 Low-power modes	14
	2.5	Boot modes	14
	2.6	Clocks	15
	2.7	General-purpose inputs / outputs (GPIOs)	15
	2.8	Remap capability	15
	2.9	Direct Memory Access Controller (DMA)	16
	2.10	Timers (TMR)	16
		2.10.1 Advanced timers (TMR1 and TMR8)	17
		2.10.2 General-purpose timers (TMRx)	17
		2.10.3 Basic timers (TMR6 and TMR7)	18
		2.10.4 SysTick timer	18
	2.11	Watchdog (WDT)	18
	2.12	Window watchdog (WWDT)	18
	2.13	Real-time clock (RTC) and battery powered registers (BPR)	
	2.14	Communication interfaces	
		2.14.1 Serial peripheral interface (SPI) / Inter-integrated sound interface (I ² S)	

		2.14.2	Universal synchronous / asynchronous receiver transmitters (USART)	19
		2.14.3	Inter-integrated-circuit interface (I ² C)	20
		2.14.4	Secure digital input / output interface (SDIO)	20
		2.14.5	Controller area network (CAN)	20
		2.14.6	Universal serial bus full-speed (USBFS)	20
	2.15	Cyclic	redundancy check (CRC) calculation unit	20
	2.16	Analo	g-to-digital converter (ADC)	21
		2.16.1	Temperature sensor (V _{TS})	21
		2.16.2	Internal reference voltage (V _{INTRV})	21
	2.17	Digita	l-to-analog converter (DAC)	22
	2.18	Debu	g	22
		2.18.1	Serial wire (SWD) / JTAG port	22
		2.18.2	Embedded Trace Macrocell (ETM TM)	22
2	Din 4	fun atia	anal definitions	22
3	Pin	iunctic	onal definitions	23
4	Men	nory m	apping	33
5	Elec	trical	characteristics	34
	5.1	Paran	neter conditions	34
		5.1.1	Minimum and maximum values	34
		5.1.2	Typical values	34
		5.1.3	Typical curves	34
		5.1.4	Power supply scheme	34
	5.2	Absol	ute maximum values	35
		5.2.1	Ratings	35
		5.2.2	Electrical sensitivity	36
	5.3	Speci	fication	37
		5.3.1	General operating conditions	37
		5.3.2	Operating conditions at power-up / power-down	37
		5.3.3	Embedded reset and power control block characteristics	38
		5.3.4	Memory characteristics	39
		5.3.5	Supply current characteristics	40
		5.3.6	External clock source characteristics	49
		5.3.6 5.3.7	External clock source characteristics	

		5.3.8	PLL characteristics	54
		5.3.9	Wakeup time from low-power mode	54
		5.3.10	EMC characteristics	55
		5.3.11	GPIO port characteristics	56
		5.3.12	NRST pin characteristics	58
		5.3.13	XMC characteristics	58
		5.3.14	TMR timer characteristics	66
		5.3.15	SPI / I ² S characteristics	67
		5.3.16	I ² C interface characteristics	70
		5.3.17	SDIO characteristics	71
		5.3.18	USBFS characteristics	72
		5.3.19	12-bit ADC characteristics	73
		5.3.20	Internal reference voltage (V _{INTRV}) characteristics	78
		5.3.21	Temperature sensor (V _{TS}) characteristics	78
		5.3.22	12-bit DAC specifications	79
6	Pac	kage in	nformation	80
	6.1	LQFP ⁻	100 package information	80
	6.2	LQFP	64 package information	82
	6.3	LQFP4	48 package information	84
	6.4	QFN4	8 package information	86
	6.5	Device	e marking	87
	6.6	Therm	nal characteristics	87
7	Part	numbe	ering	88
8	Doc	ument	revision history	89

List of Tables

Table 1. Device summary	1
Table 2. AT32F403A features and peripheral counts	10
Table 3. The Bootloader supporting part numbers and pin configurations	15
Table 4. Timer feature comparison	16
Table 5. USART / UART feature comparison	19
Table 6. AT32F403A series pin definitions	26
Table 7. XMC pin definition	31
Table 8. Voltage characteristics	35
Table 9. Current characteristics	35
Table 10. Thermal characteristics	35
Table 11. ESD values	36
Table 12. Latch-up values	36
Table 13. General operating conditions	37
Table 14. Operating conditions at power-up / power-down	37
Table 15. Embedded reset and power management block characteristics	38
Table 16. Internal Flash memory characteristics	39
Table 17. Internal Flash memory endurance and data retention	39
Table 18. Typical current consumption in Run mode	41
Table 19. Typical current consumption in Sleep mode	42
Table 20. Maximum current consumption in Run mode	43
Table 21. Maximum current consumption in Sleep mode	44
Table 22. Typical and maximum current consumptions in Deepsleep and Standby modes	44
Table 23. Typical and maximum current consumptions on V _{BAT}	46
Table 24. Peripheral current consumption	47
Table 25. HEXT 4-25 MHz crystal characteristics ⁽¹⁾⁽²⁾	49
Table 26. HEXT external source characteristics	50
Table 27. LEXT 32.768 kHz crystal characteristics ⁽¹⁾⁽²⁾	51
Table 28. LEXT external source characteristics	52
Table 29. HICK clock characteristics	53
Table 30. LICK clock characteristics	53
Table 31. PLL characteristics	54
Table 32. Low-power mode wakeup time	54
Table 33. EMS characteristics	55
Table 34. GPIO static characteristics	56

Table 35. Output voltage characteristics	57
Table 36. Input AC characteristics	57
Table 37. NRST pin characteristics	58
Table 38. Asynchronous multiplexed PSRAM / NOR read timings	59
Table 39. Asynchronous multiplexed PSRAM / NOR write timings	60
Table 40. Synchronous multiplexed PSRAM / NOR read timings	62
Table 41. Synchronous multiplexed PSRAM write timings	63
Table 42. NAND Flash read and write timings	64
Table 43. TMR characteristics	66
Table 44. SPI characteristics	67
Table 45. I ² S characteristics	69
Table 46. SD / MMC characteristics	71
Table 47. USBFS startup time	72
Table 48. USBFS DC electrical characteristics	72
Table 49. USBFS electrical characteristics	72
Table 50. ADC characteristics	73
Table 51. R _{AIN} max for f _{ADC} = 14 MHz	74
Table 52. R _{AIN} max for f _{ADC} = 28 MHz	74
Table 53. ADC accuracy ⁽¹⁾	75
Table 54. Internal reference voltage characteristics	78
Table 55. Temperature sensor characteristics	78
Table 56. DAC characteristics	79
Table 57. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package mechanical data	81
Table 58. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data	83
Table 59. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data	85
Table 60. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package mechanical data	87
Table 61. Package thermal characteristics	87
Table 62. AT32F403A series part numbering	88
Table 63. Document revision history	89

List of figures

Figure 1. AT32F403A block diagram	11
Figure 2. AT32F403A LQFP100 pinout	23
Figure 3. AT32F403A LQFP64 pinout	24
Figure 4. AT32F403A LQFP48 pinout	25
Figure 5. AT32F403A QFN48 pinout	25
Figure 6. Memory map	33
Figure 7. Power supply scheme	34
Figure 8. Power on reset and low voltage reset waveform	39
Figure 9. Typical current consumption in Deepsleep mode vs. temperature at different V_{DD}	45
Figure 10. Typical current consumption in Standby mode vs. temperature at different V_{DD}	45
Figure 11. Typical current consumption on V_{BAT} with LEXT and RTC ON vs. temperature at d	ifferent
V _{BAT}	46
Figure 12. HEXT typical application with an 8 MHz crystal	49
Figure 13. HEXT external source AC timing diagram	50
Figure 14. LEXT typical application with a 32.768 kHz crystal	51
Figure 15. LEXT external source AC timing diagram	52
Figure 16. HICK clock frequency accuracy vs. temperature	53
Figure 17. Recommended NRST pin protection	58
Figure 18. Asynchronous multiplexed PSRAM / NOR read waveforms	59
Figure 19. Asynchronous multiplexed PSRAM / NOR write waveforms	60
Figure 20. Synchronous multiplexed PSRAM / NOR read timings	62
Figure 21. Synchronous multiplexed PSRAM write timings	63
Figure 22. NAND controller read waveforms	65
Figure 23. NAND controller write waveforms	65
Figure 24. NAND controller common memory read waveforms	65
Figure 25. NAND controller for common memory write waveforms	66
Figure 26. SPI timing diagram - slave mode and CPHA = 0	68
Figure 27. SPI timing diagram - slave mode and CPHA = 1	68
Figure 28. SPI timing diagram - master mode	68
Figure 29. I ² S slave timing diagram (Philips protocol)	69
Figure 30. I ² S master timing diagram (Philips protocol)	70
Figure 31. SDIO high-speed mode	71
Figure 32. SD default mode	71

Figure 33. USBFS timings: definition of data signal rise and fall time	72
Figure 34. ADC accuracy characteristics	75
Figure 35. Typical connection diagram using the ADC	76
Figure 36. Power supply and reference decoupling (with external V _{REF} pin)	76
Figure 37. Power supply and reference decoupling (without external V _{REF} pin)	77
Figure 38. V _{TS} vs. temperature	78
Figure 39. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline	80
Figure 40. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline	82
Figure 41. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline	84
Figure 42. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package outline	86
Figure 43. Marking example	87

1 Descriptions

The AT32F403A is based on the high-performance ARM®Cortex®-M4 32-bit RISC core operating at a frequency of up to 240 MHz. The Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all ARM® single-precision data processing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security.

The AT32F403A incorporates high-speed embedded memories (up to 1024 KBytes of internal Flash memory, 96+128 KBytes of SRAM), external SPI Flash (up to 16 MBytes addressing capability), and a wide range of enhanced GPIOs and peripherals connected to two APB buses. Any block of the embedded Flash memory can be protected by the "sLib" (security library), functioning as a security area with code-excutable only.

The AT32F403A offers three 12-bit ADC, two 12-bit DAC, eight general-purpose 16-bit timers plus two general-purpose 32-bit timers, and up to two PWM timers for motor control. It supports standard and advanced communication interfaces: up to three I²Cs, four SPIs (all multiplexed as I²Ss), two SDIOs, eight USARTs/UARTs, an USBFS, and two CANs.

The AT32F403A operates in the -40 to +105 °C temperature range, from a 2.6 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power application.

The AT32F403A offers devices in different package types. They are fully pin-to-pin, software and functionally compatible with the entire AT32F403A series devices, except that the configurations of peripherals are not completely identical, depending on the package types.

Table 2. AT32F403A features and peripheral counts

	Dord Marris on	AT32F403AxxU7							AT32F403AxxT7						
L	Part Number	СС	CE	CG	СС	CE	CG	RC	RE	RG	VC	VE	VG		
C	CPU frequency (MHz)	240													
(1)(2)	ZW (KBytes)	256	256	256	256	256	256	256	256	256	256	256	256		
Flash ⁽¹⁾⁽²⁾	NZW (KBytes)	0	256	768	0	256	768	0	256	768	0	256	768		
Int. F	Total (KBytes)	256	512	1024	256	512	1024	256	512	1024	256	512	1024		
	SRAM ⁽²⁾ (KBytes)		I	I	I	I	96 +	128	l			I			
	Advanced		2			2			2			2			
	32-bit general-purpose		2			2			2			2			
	16-bit general-purpose		8			8			8			8			
Timers	Basic		2			2			2			2			
Ţ	SysTick		1			1			1		1				
	WDT		1			1			1			1			
	WWDT	1			1			1			1				
	RTC	1			1			1			1				
	l ² C		3			3			3			3			
tion	SPI/I ² S	4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)			4/4 (2 full-duplex)				
Communication	USART + UART	3 + 4 ⁽³⁾			$3 + 4^{(3)}$			4 + 4			4 + 4				
nmu	SDIO	SDIO 1 ⁽⁴⁾		1 ⁽⁴⁾			2			2					
ပ်	USBFS device		1		1		1			1					
	CAN		2			2			2			2			
g	12-bit ADC				3			3							
Analog	numbers/channels		10			10			16			16			
⋖	12-bit DAC numbers						2	2							
	XMC		-			-			1 ⁽⁵⁾			1			
	SPIM ⁽⁶⁾				1 ch / up			to 16 N	1B						
	GPIO	37			37			51			80				
0	perating temperatures						-40 to +	-105 °C	;						
	Packages		QFN48 x 6 mr			LQFP48 7 x 7 mm			LQFP64 10 x 10 mm			LQFP100 14 x 14 mm			

⁽¹⁾ ZW = zero wait-state, up to SYSCLK 240 MHz NZW = non-zero wait-state

- (2) The internal Flash and SRAM sizes are configurable with User System Data. Take the AT32F403AVGT7 as an example, on which the Flash/SRAM can be configured into two options below:

 - ZW: 256 KBytes, NZW: 768 KBytes, SRAM: 96 KBytes; ZW: 128 KBytes, NZW: 896 KBytes, SRAM: 224 KBytes.
- (3) For LQFP48 and QFN48 packages, UART8 is not available and USART6 is used as UART for no CK pin.
- (4) For LQFP48 and QFN48 packages, only SDIO2 exists and supports maximum 4-bit (D0~D3) mode.
- (5) For LQFP64 package, XMC only supports the LCD panel with 8-bit mode.
- (6) SPIM = External four-wire SPI Flash memory extension, for both program execution and data storage with encryption capability.

2022.11.24 10 Ver 2.03

Functional overview 2

ARM® Cortex®-M4 with FPU 2.1

The ARM®Cortex®-M4 processor is the latest generation of ARM® processors for embedded systems. It is a 32-bit RISC processor features exceptional code efficiency, outstanding computational performance and advanced response to interrupts. The processor supports a set of DSP instructions which enable efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up floating point calculation while avoiding saturation. Figure 1 shows the general block diagram of the AT32F403A.

Figure 1. AT32F403A block diagram

2.2 Memory

2.2.1 Internal Flash memory

Up to 1024 KBytes of embedded Flash is available for storing programs and data. Any part of the embedded Flash memory can be protected by the sLib (security library), a security area that is code-excutable only but non-readable. "sLib" is a mechanism designed to protect the intelligence of solution venders and facilitate the second-level development by customers.

Additionally, there is an external four-wire SPI Flash memory interface available for accessing up to 16MB. The external SPI Flash memory is used as an extended Flash memory bank 3. Ciphertext protection feature is also supported. Therefore it is possible to select wheter to encrypt data by setting the user system data. The range to be encrypted is configured through the corresponding register.

There is another 18-KByte boot code area in which the boodloader is stored.

A User System Data block is included, which is used to configure the hardware behaviors such as read/erase/write protection and watchdog self-enable. User System Data allows to set erase/write and read protection individually.

2.2.2 Memory protection unit (MPU)

The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area consists of up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the entire 4 gigabytes of addressable memory.

The MPU is especially suited to the applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system).

2.2.3 Embedded SRAM

The device offers up to 224 KBytes of embedded SRAM that is accessible (read/write) at CPU clock speed with 0 wait states.

2.2.4 External memory controller (XMC)

The XMC is embedded in the AT32F403A. It has two Chip Select outputs supporting the following modes: multiplexed PSRAM/NOR and 16-bit/8-bit NAND memory.

Main features:

- Write buffer area
- Code execution from external memory of the multiplexed PSRAM/NOR

The XMC can be configured to interface with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes.

2.3 Interrupts

2.3.1 Nested vectored interrupt controller (NVIC)

The AT32F403A embed a nested vectored interrupt controller able to manage 16 priority levels and handle maskable interrupt channels plus the 16 interrupt lines of the Cortex[®]-M4 core. This hardware block provides flexible interrupt management features with minimal interrupt latency.

2.3.2 External interrupts (EXINT)

The external interrupt (EXINT), which is connected directly with NVIC, consists of 19 edge detector lines used to generate interrupt requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The external interrupt lines connects up to 16 GPIOs.

2.4 Power control (PWC)

2.4.1 Power supply schemes

- $V_{DD} = 2.6 \sim 3.6 \text{ V}$: an external power supply for GPIOs and the internal block such as regulator (LDO), provided externally through V_{DD} pins.
- $V_{DDA} = 2.6 \sim 3.6 \text{ V}$: an external analog power supplies for ADC and DAC. V_{DDA} and V_{SSA} must be the same voltage potential as V_{DD} and V_{SS} , respectively.
- $V_{BAT} = 1.8 \sim 3.6 \text{ V}$: power supply for V_{BAT} domain through the external battery or super capacitor, or from V_{DD} when the external battery or super capacitor is not present. V_{BAT} (through power switch) supplies for RTC, external crystal 32 kHz (LEXT), and battery powered registers (BPR) when V_{DD} is not present.

2.4.2 Reset and power voltage monitoring (POR / LVR / PVM)

The device has an integrated power-on reset (POR)/low voltage reset (PDR) circuitry. It is always active, and allows proper operation starting from/down to 2.6 V. The device remains in reset mode when V_{DD} is below a specified threshold (V_{LVR}) without the need for an external reset circuit.

The device features an embedded power voltage monitor (PVM) that monitors the V_{DD} power supply and compares it to the V_{PVM} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVM} threshold and/or when V_{DD} rises above the V_{PVM} threshold. The PVM is enabled by software.

2.4.3 Voltage regulator (LDO)

The LDO has three operation modes: normal, low-power, and power down.

- Normal mode: It is used in Run/Sleep mode and in the Deepsleep mode;
- Low-power mode: It can be used in the Deepsleep mode;
- Power down mode: It is used in Standby mode: The LDO output is in high impedance and the kernel circuitry is powered down but the contents of the registers and SRAM are lost.

This LDO operates always in its normal mode after reset.

2.4.4 Low-power modes

The AT32F403A supports three low-power modes:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Deepsleep mode

Deepsleep mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the LDO domain are stopped, disabling the PLL, the HICK clock, and the HEXT crystal oscillator. The voltage regulator can also be put in normal or low-power mode.

The device can be woken up from Deepsleep mode by any of the EXINT line. The EXINT line source can be one of the 16 external lines, the PVM output, the RTC alarm, or the USBFS wakeup.

Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire LDO domain is powered off. The PLL, the HICK clock and the HEXT crystal oscillator are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the BPR domain and Standby circuitry.

The device leaves Standby mode when an external reset (NRST pin), a WDT reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC and the corresponding clock sources are not stopped by entering Deepsleep or Standby mode.

WDT depends on User System Data setting.

2.5 Boot modes

At startup, boot pins are used to select one of three boot options:

- Boot from the internal Flash memory. For the AT32F403AxG, user has an option to boot from any of two memory banks. By default, boot from Flash memory Bank 1 is selected. User can also choose to boot from Flash memory Bank 2 using the User System Data;
- Boot from boot code area;
- Boot from embedded SRAM.

The bootloader is stored in boot code area. It is used to reprogram the Flash memory through USART1, USART2, or USBFS1. If SPIM_IO0/1 pin is configured to be shared with USBFS1 pin, the SPIM Flash memory Bank 3 cannot be programmed through USBFS1. *Table 3* presents AT32F403A pin configurations relative to Bootloader.

2022.11.24 14 Ver 2.03

Table 5. The Bookloader Supporting part humbers and pin configurations										
Interface	Part number	Pin								
USART1	All most sussible se	PA9: USART1_TX								
	All part numbers	PA10: USART1_RX								
USART2	AT225 402 AVCT7	PD5: USART2_TX (remapped)								
	AT32F403AVGT7	PD6: USART2_RX (remapped)								
	Dort numbers except AT22F402A\/CT7	PA2: USART2_TX								
	Part numbers except AT32F403AVGT7	PA3: USART2_RX								
USBFS1	All part numbers	PA11: USBFS1_D-								
	All part numbers	PA12: USBFS1_D+								

Table 3. The Bootloader supporting part numbers and pin configurations

2.6 Clocks

On reset, the internal 48 MHz clock (HICK), after being divided by 6 (that is 8 MHz), is selected as default CPU clock after any reset. The application can select an external 4 to 25 MHz clock (HEXT) as a system clock. This clock can be monitored for failure. If failure is detected, HEXT will be switched off and the system automatically switches back to the internal HICK. A software interrupt is generated. Similarly, the system take the same action once HEXT fails when it is used as the source of PLL.

Several prescalers are available to allow the configuration of the AHB and the APB (APB1 and APB2) frequency. The maximum frequency of the AHB domain is 240 MHz. The maximum allowed frequency of the APB domains are 120 MHz.

The AT32F403A embedded an automatic clock calibration (ACC) block, which calibrates the internal 48 MHz HICK clock, assuring the most precise accuracy of the HICK in the full ragne of the operating temperatures.

2.7 General-purpose inputs / outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down), or as mutilple function. Most of the GPIO pins are shared with digital or analog multiple functions. All GPIOs are high current-capable.

The GPIO's configuration can be locked, if needed, in order to avoid spurious writing to the GPIO's registers by following a specific sequence.

2.8 Remap capability

This feature allows the use of a maximum number of peripherals in a given application. Indeed, multiple functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible.

For details refer to *Table 6*; it shows the list of remappable multiple functions and the pins onto which they can be remapped. See the AT32F403A reference manual for software considerations.

2022.11.24 15 Ver 2.03

2.9 Direct Memory Access Controller (DMA)

The device features two 14-channel general-purpose DMAs (7 channels for DMA1 and 7 channels for DMA2) are able to manage memory-to-memory, peripheral-to-memory, and memory-to-peripheral transfers. The two DMA controllers support circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

The DMA can be used with the main peripherals: SPI, I²C, USART, advanced, general-purpose, and basic timers TMRx, DAC, I²S, SDIO, and ADC.

2.10 Timers (TMR)

The AT32F403A device includes two advanced timers, ten general-purpose timers, two basic timers and a SysTick timer.

The table below compares the features of the advanced, general-purpose, and basic timers.

Table 4. Timer feature comparison

Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
TMR1, TMR8	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	Yes
TMR2, TMR5	32-bit	Up, down, up/down	I between 1 I Yes I 4		4	No
TMR3, TMR4	16-bit	Up, down, up/down	Any integer between 1 and 65536	Yes	4	No
TMR9, TMR12	16-bit	Up	Any integer between 1 and 65536	No	2	No
TMR10, TMR11 TMR13, TMR14	16-bit	Up	Any integer between 1 and 65536	No	1	No
TMR6, TMR7	16-bit	Up	Any integer between 1 and 65536	Yes	0	No

2.10.1 Advanced timers (TMR1 and TMR8)

The two advanced timers (TMR1 and TMR8) can each be seen three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable dead-time insertion. They can also be seen as a complete general-purpose timer. Their four independent channels can be used for:

- Input capture
- Output compare
- PWM generation (edge or center-aligned modes)
- One-cycle mode output

If configured as a standard 16-bit timer, it has the same features as the TMRx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

In debug mode, the advanced timer counter can be frozen and the PWM outputs disabled to turn off any power switch driven by these outputs.

Many features are shared with those of the general-purpose TMR which have the same architecture. The advanced timer can therefore work together with the general-purpose timers via the timer link feature for synchronization or event chaining.

2.10.2 General-purpose timers (TMRx)

There are 10 synchronizable general-purpose timers embedded in the AT32F403A.

TMR2, TMR3, TMR4, and TMR5

The AT32F403A has 4 full- featured general-purpose timers: TMR2, TMR3, TMR4, and TMR5. The TMR2 and TMR5 timers are based on a 32-bit auto-reload up/down counter and a 16-bit prescaler. The TMR3 and TMR4 timers are based on a 16- bit auto-reload up/down counter and a 16-bit prescaler. They can offer four independent channels on the largest package. Each channel can be used for input capture/output compare, PWM or one-cycle mode output.

These general-purpose timers can work together with advanced timers via the timer link feature for synchronization or event chaining. In debug mode, their countesr can be frozen. Any of these general-purpose timers can be used to generate PWM outputs. Each timer has individual DMA request.

These timers are capable of handling incremental quadrature encoder signals and the digital outputs coming from 1 to 3 hall-effect sensors.

TMR9 and TMR12

TMR9 and TMR12 are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and two independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

• TMR10, TMR11, TMR13, and TMR14

These timers are based on a 16-bit auto-reload upcounter, a 16-bit prescaler, and one independent channels for input capture/output compare, PWM, or one-cycle mode output. They can be synchronized with the TMR2, TMR3, TMR4, and TMR5 full-featured general-purpose timers. They can also be used as simple time bases.

2.10.3 Basic timers (TMR6 and TMR7)

These two timers are mainly used for DAC trigger generation. Each of them can also be used as a generic 16-bit time base.

2.10.4 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features include:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

2.11 Watchdog (WDT)

The watchdog consists of a 12-bit downcounter and 8-bit prescaler. It is clocked by an independent internal LICK clock. As it operates independently from the main clock, it can operate in Deepsleep and Standby modes. It can be used either as a watchdog to reset the device when an error occurs, or as a free running timer for application timeout management. It is self-enabled through the User System Data configuration. The counter can be frozen in debug mode.

2.12 Window watchdog (WWDT)

The window watchdog embeds a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

2.13 Real-time clock (RTC) and battery powered registers (BPR)

The RTC and the battery powered registers (BPR) are supplied with a power switch that is powered either from V_{DD} when present or from the V_{BAT} pin. The battery powered registers are forty-two 16-bit registers used to store 84 bytes of user application data. RTC and BPR are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The real-time clock provides a continuous-running counter. The RTC provides clock calendar, and alarm interrupt and periodic interrupt functions. It is clocked by a 32.768 kHz external crystal (LEXT), the internal low-power clock (LICK), or the high-speed external clock (HEXT) divided by 128. The RTC can be calibrated using a divied-by-64 output of TAMPER pin to compensate for any natural quartz deviation. The RTC features a 32-bit programmable counter that allows long time measurement with the help of the Compare register. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz.

2.14 Communication interfaces

2.14.1 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

There are up to four SPI interfaces are able to communicate up to 50 Mbits/s in slave and master modes in full-duplex and simplex communication modes. The 3-bit prescaler generates eight master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC/SDHC modes. All SPIs can be served by the DMA controller.

Four standard I²S interfaces (multiplexed with SPI) can be operated in master or slave mode in half-duplex mode, and I2S2 and I2S3 can be operated in full duplex mode. These interfaces can be configured to operate with 16/24/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When I²S configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I²Ss can be served by the DMA controller.

2.14.2 Universal synchronous / asynchronous receiver transmitters (USART)

The AT32F403A embeds four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3, and USART6) and 4 universal asynchronous receiver transmitters (UART4, UART5, UART7, and UART8).

These eight interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode, and have LIN Master/Slave capability.

These eight interfaces are able to communicate at speeds of up to 7.5 Mbit/s.

USART1, USART2, and USART3 provide hardware management of the CTS and RTS signals. USART1, USART2, USART3, and USART6 provide Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller.

USART/UART name	USART1	USART2	USART3	UART4	UART5	USART6	UART7	UART8
Hardware flow control for modem	Yes	Yes	Yes	-	-	-	-	-
Continuous communication using DMA	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Multiprocessor communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Synchronous mode	Yes	Yes	Yes	-	-	Yes	-	
Smartcard mode	Yes	Yes	Yes	-	-	Yes	-	-
Single-wire half-duplex communication	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
IrDA SIR ENDEC blcok	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
LIN mode	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Table 5. USART / UART feature comparison

2.14.3 Inter-integrated-circuit interface (I²C)

Up to three I²C bus interfaces can operate in multi-master and slave modes. They support standard mode (max. 100 kHz) and fast mode (max. 400 kHz). The I²C bus frequency can be increased up to 1 MHz. For more details, please contact your local Artery sales office for technical support.

They support 7/10-bit addressing mode and 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is included.

They can be served by DMA and they support SMBus 2.0/PMBus.

2.14.4 Secure digital input / output interface (SDIO)

Two SD/SDIO/MMC host interfaces are available that supports MultiMediaCard System Specification Version 4.2 in three different data bus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz in 8-bit mode, and is compliant with SD Memory Card Specifications Version 2.0.

Two different data bus modes supported in the SDIO Card Specification Version 2.0 are: 1-bit (default) and 4-bit.

The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous.

In addition to SD/SDIO/MMC/eMMC, this interface is also fully compliant with the CE-ATA digital protocol Rev1.1.

2.14.5 Controller area network (CAN)

Two CANs are compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive buffers with 3 stages, and 14 scalable filter banks.

2.14.6 Universal serial bus full-speed (USBFS)

AT32F403A embeds a USB device peripheral compatible with the USB full-speed 12 Mbit/s. It has software-configurable endpoint setting and suspend/resume support. The dedicated 48 MHz clock is generated from the internal main PLL or direct from the 48 MHz HICK.

2.15 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity.

2.16 Analog-to-digital converter (ADC)

Three 12-bit analog-to-digital converters are embedded into AT32F403A device and they share up to 16 external channels, performing conversions in single-shot or sequential modes. In sequence mode, automatic conversion is performed on a selected group of analog inputs.

Additional logic functions embedded in the ADC interface allow:

- Simultaneous sample and hold
- Interleaved sample and hole
- Single sample

The ADC can be served by the DMA controller.

The voltage monitoring feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the general-purpose timers (TMRx) and the advanced timers (TMR1 and TMR8) can be internally connected to the ADC regular trigger and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

2.16.1 Temperature sensor (V_{TS})

The temperature sensor has to generate a voltage V_{TS} that varies linearly with temperature. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The offset of this line varies from chip to chip due to process variation. The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

2.16.2 Internal reference voltage (V_{INTRV})

The internal reference voltage (V_{INTRV}) provides a stable voltage source for ADC. The V_{INTRV} is internally connected to the ADC1_IN17 input channel.

2022.11.24 21 Ver 2.03

2.17 Digital-to-analog converter (DAC)

The two 12-bit buffered DACs can be used to convert two-channel digital signals into two-channel analog voltage signal outputs.

The DAC has the following features:

- Two DAC converters with an output channel each
- 8-bit or 12-bit monotonic output
- Left- or right-alignment data in 12-bit mode
- Synchronized update capability
- Noise-wave generation
- Triangular-wave generation
- Dual DAC channel independent or simultaneous conversions
- DMA capability for each DAC
- External triggers for conversion
- Input voltage reference V_{REF+}

Several DAC trigger inputs are available in the AT32F403A. DAC outputs can be triggered through the timer update outputs. The update output can also be connected to different DMA channels.

2.18 Debug

2.18.1 Serial wire (SWD) / JTAG port

The ARM® SWJ-DP Interface is embedded, consisting of aserial wire debug port and JTAG. It enables either a serial wire debug or a JTAG probe to be connected to the target for programming and debug operation. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK.

2.18.2 Embedded Trace Macrocell (ETM™)

The ARM® Embedded Trace Macrocell (ETMTM) provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the AT32F403A through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using USB or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. It operates with third party debugger software tools.

3 Pin functional definitions

Figure 2. AT32F403A LQFP100 pinout

Figure 3. AT32F403A LQFP64 pinout

Figure 4. AT32F403A LQFP48 pinout

Figure 5. AT32F403A QFN48 pinout

2022.11.24 25 Ver 2.03

The table below is the pin definition of the AT32F403A. "-" presents there is no such pinout on the related package. The multi-functions list follows priority from high to low. In principle, the analog signals have priority over the digital signals, and the digital output signals have priority over the digital input signals.

Table 6. AT32F403A series pin definitions

Pin	num	ber			G		Multi-funct	ions ⁽⁴⁾
LQFP48 QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap
1	1	1	PE2	I/O	FT	PE2	SPI4_SCK ⁽⁷⁾ / I2S4_CK ⁽⁷⁾ / XMC_A23 / TRACECK	-
-	-	2	PE3	I/O	FT	PE3	XMC_A19 / TRACED0	-
1	1	3	PE4	I/O	FT	PE4	SPI4_CS ⁽⁷⁾ / I2S4_WS ⁽⁷⁾ / XMC_A20 / TRACED1	-
-	-	4	PE5	I/O	FT	PE5	SPI4_MISO ⁽⁷⁾ / XMC_A21 / TRACED2	TMR9_CH1
-	1	5	PE6	I/O	FT	PE6	SPI4_MOSI ⁽⁷⁾ / I2S4_SD ⁽⁷⁾ / XMC_A22 / TRACED3	TMR9_CH2
1	1	6	V _{BAT}	S	1	V _{BAT}	-	-
2	2	7	TAMPER-RTC / PC13 ⁽⁵⁾	1/0	TC	PC13 ⁽⁶⁾	TAMPER-RTC	-
3	3	8	LEXT_IN / PC14 ⁽⁵⁾	I/O	TC	PC14 ⁽⁶⁾	LEXT_IN	-
4	4	9	LEXT_OUT / PC15 ⁽⁵⁾	I/O	TC	PC15 ⁽⁶⁾	LEXT_OUT	-
-	-	10	V _{SS_5}	S	-	V _{SS_5}	-	-
-	-	11	V _{DD_5}	S	-	V _{DD_5}	-	-
-	-	12	HEXT_IN	I	-	HEXT_IN	-	-
-	-	13	HEXT_OUT	0	-	HEXT_OUT	-	-
5	5	-	HEXT_IN / PD0 ⁽⁸⁾	I/O	TC	HEXT_IN	-	PD0 ⁽⁸⁾
6	6	-	HEXT_OUT / PD1 ⁽⁸⁾	I/O	TC	HEXT_OUT	-	PD1 ⁽⁸⁾
7	7	14	NRST	I/O	-	NRST	-	-
-	8	15	PC0	I/O	FTa	PC0	ADC123_IN10 / SDIO2_D0 ⁽⁷⁾	-
-	9	16	PC1	I/O	FTa	PC1	ADC123_IN11 / SDIO2_D1 ⁽⁷⁾	-
1	10	17	PC2	I/O	FTa	PC2	ADC123_IN12 / SDIO2_D2 ⁽⁷⁾	UART8_TX / XMC_NWE
-	11	18	PC3	I/O	FTa	PC3	ADC123_IN13 / SDIO2_D3 ⁽⁷⁾ / XMC_A0	UART8_RX
-	-	19	Vssa	S	-	Vssa	-	-
-	-	20	V_{REF}	S	-	V_{REF}	-	-
8	12	ı	V _{SSA} / V _{REF-}	S	•	V _{SSA} / V _{REF} -	-	•
-	ı	21	V _{REF+}	S	•	V _{REF+}	-	-
-	-	22	V _{DDA}	S	•	V _{DDA}	-	•
9	13	-	V _{DDA} / V _{REF+}	S	-	V _{DDA} / V _{REF+}	-	-

Pin	num	ber			6		M ulti-funct	ions ⁽⁴⁾
LQFP48 QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap
10	14	23	PA0 / WKUP	I/O	TC	PA0	ADC123_IN0 / WKUP / USART2_CTS ⁽⁷⁾ / TMR2_CH1 ⁽⁷⁾ / TMR2_EXT ⁽⁷⁾ / TMR5_CH1 / TMR8_EXT	UART4_TX
11	15	24	PA1	I/O	FTa	PA1	ADC123_IN1 / USART2_RTS ⁽⁷⁾ / TMR2_CH2 ⁽⁷⁾ / TMR5_CH2	UART4_RX
12	16	25	PA2	I/O	FTa	PA2	ADC123_IN2 / USART2_TX ⁽⁷⁾ / TMR2_CH3 ⁽⁷⁾ / TMR5_CH3 / TMR9_CH1 ⁽⁷⁾	SDIO2_CK / XMC_D4
13	17	26	PA3	I/O	FTa	PA3	ADC123_IN3 / USART2_RX ⁽⁷⁾ / TMR2_CH4 ⁽⁷⁾ / TMR5_CH4 / TMR9_CH2 ⁽⁷⁾	I2S2_MCK / SDIO2_CMD / XMC_D5
-	18	27	V_{SS_4}	S	-	V _{SS_4}	-	-
-	19	28	V_{DD_4}	S	-	V _{DD_4}	-	-
14	20	29	PA4	I/O	FTa	PA4	DAC1_OUT / ADC12_IN4 / USART2_CK ⁽⁷⁾ / SPI1_CS ⁽⁷⁾ / I2S1_WS ⁽⁷⁾ / SDIO2_D4	USART6_TX / SPI3_CS / I2S3_WS / SDIO2_D0 / XMC_D6
15	21	30	PA5	I/O	FTa	PA5	DAC2_OUT / ADC12_IN5 / SPI1_SCK ⁽⁷⁾ / I2S1_CK ⁽⁷⁾ / SDIO2_D5	USART6_RX / SDIO2_D1 / XMC_D7
16	22	31	PA6	I/O	FTa	PA6	ADC12_IN6 / SPI1_MISO ⁽⁷⁾ / SDIO2_D6 / TMR3_CH1 ⁽⁷⁾ / TMR8_BRK / TMR13_CH1	I2S2_MCK / SDIO2_D2 / TMR1_BRK
17	23	32	PA7	I/O	FTa	PA7	ADC12_IN7 / SPI1_MOSI ⁽⁷⁾ / I2S1_SD ⁽⁷⁾ / SDIO2_D7 / TMR3_CH2 ⁽⁷⁾ / TMR8_CH1C / TMR14_CH1	SDIO2_D3 / TMR1_CH1C
-	24	33	PC4	I/O	FTa	PC4	ADC12_IN14 / SDIO2_CK ⁽⁷⁾ / XMC_NE4	-
-	25	34	PC5	I/O	FTa	PC5	ADC12_IN15 / SDIO2_CMD ⁽⁷⁾	XMC_NOE
18	26	35	PB0	I/O	FTa	PB0	ADC12_IN8 / I2S1_MCK ⁽⁷⁾ / TMR3_CH3 ⁽⁷⁾ / TMR8_CH2C	TMR1_CH2C
19	27	36	PB1	I/O	FTa	PB1	ADC12_IN9 / SPIM_SCK / TMR3_CH4 ⁽⁷⁾ / TMR8_CH3C	TMR1_CH3C
20	28	37	PB2	I/O	FT	PB2 / BOOT1 ⁽⁹⁾	-	-
-	-	38	PE7	I/O	FT	PE7	UART7_RX ⁽⁷⁾ / XMC_D4 ⁽⁷⁾	TMR1_EXT
-	ı	39	PE8	I/O	FT	PE8	UART7_TX ⁽⁷⁾ / XMC_D5 ⁽⁷⁾	TMR1_CH1C
-	-	40	PE9	I/O	FT	PE9	XMC_D6 ⁽⁷⁾	TMR1_CH1
	-	41	PE10	I/O	FT	PE10	XMC_D7 ⁽⁷⁾	TMR1_CH2C
-	1	42	PE11	I/O	FT	PE11	XMC_D8	SPI4_SCK / I2S4_CK / TMR1_CH2
_	-	43	PE12	I/O	FT	PE12	XMC_D9	SPI4_CS / I2S4_WS / TMR1_CH3C
-	1	44	PE13	I/O	FT	PE13	XMC_D10	SPI4_MISO / TMR1_CH3
-	-	45	PE14	I/O	FT	PE14	XMC_D11	SPI4_MOSI / I2S4_SD / TMR1_CH4
-	-	46	PE15	I/O	FT	PE15	XMC_D12	TMR1_BRK

Pin	num	ber			(2		Multi-funct	ions ⁽⁴⁾
LQFP48 QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap
21	29	47	PB10	I/O	FT	PB10	USART3_TX ⁽⁷⁾ / I2C2_SCL	I2S3_MCK / SPIM_IO0 / TMR2_CH3
22	30	48	PB11	I/O	FT	PB11	USART3_RX ⁽⁷⁾ / I2C2_SDA	SPIM_IO1 / TMR2_CH4
23	31	49	V_{SS_1}	S	-	V _{SS_1}	-	-
24	32	50	$V_{DD_{-1}}$	S	-	V_{DD_1}	-	-
25	33	51	PB12	I/O	FT	PB12	USART3_CK ⁽⁷⁾ / CAN2_RX ⁽⁷⁾ / I2C2_SMBA / SPI2_CS / I2S2_WS / TMR1_BRK ⁽⁷⁾	XMC_D13
26	34	52	PB13	I/O	FT	PB13	USART3_CTS ⁽⁷⁾ / CAN2_TX ⁽⁷⁾ / SPI2_SCK / I2S2_CK / TMR1_CH1C ⁽⁷⁾	-
27	35	53	PB14	I/O	FT	PB14	USART3_RTS ⁽⁷⁾ / SPI2_MISO / I2S2_SDEXT / TMR1_CH2C ⁽⁷⁾ / TMR12_CH1	XMC_D0
28	36	54	PB15	I/O	FT	PB15	SPI2_MOSI / I2S2_SD / TMR1_CH3C ⁽⁷⁾ / TMR12_CH2	-
-	1	55	PD8	I/O	FT	PD8	XMC_D13 ⁽⁷⁾	USART3_TX
-	-	56	PD9	I/O	FT	PD9	XMC_D14	USART3_RX
-	ı	57	PD10	I/O	FT	PD10	XMC_D15	USART3_CK
-	-	58	PD11	I/O	FT	PD11	XMC_A16	USART3_CTS
-	1	59	PD12	I/O	FT	PD12	XMC_A17	USART3_RTS / TMR4_CH1
-	1	60	PD13	I/O	FT	PD13	XMC_A18	TMR4_CH2
-	1	61	PD14	I/O	FT	PD14	XMC_D0 ⁽⁷⁾	TMR4_CH3
-	1	62	PD15	I/O	FT	PD15	XMC_D1 ⁽⁷⁾	TMR4_CH4
-	37	63	PC6	I/O	FT	PC6	USART6_TX ⁽⁷⁾ / I2S2_MCK ⁽⁷⁾ / SDIO1_D6 / TMR8_CH1	XMC_D1 / TMR3_CH1
-	38	64	PC7	I/O	FT	PC7	USART6_RX ⁽⁷⁾ / I2S3_MCK ⁽⁷⁾ / SDIO1_D7 / TMR8_CH2	TMR3_CH2
-	39	65	PC8	I/O	FT	PC8	USART6_CK / I2S4_MCK ⁽⁷⁾ / SDIO1_D0 / TMR8_CH3	TMR3_CH3
-	40	66	PC9	I/O	FT	PC9	I2C3_SDA ⁽⁷⁾ / SDIO1_D1 / TMR8_CH4	TMR3_CH4
29	41	67	PA8	I/O	FT	PA8	CLKOUT / USART1_CK / I2C3_SCL / USBFS_SOF / SPIM_CS / TMR1_CH1 ⁽⁷⁾	-
30	42	68	PA9	I/O	FT	PA9	USART1_TX ⁽⁷⁾ / I2C3_SMBA / TMR1_CH2 ⁽⁷⁾	-
31	43	69	PA10	I/O	FT	PA10	USART1_RX ⁽⁷⁾ / TMR1_CH3 ⁽⁷⁾	I2S4_MCK
32	44	70	PA11	I/O	TC	PA11	USBFS1_D- / USART1_CTS / CAN1_RX ⁽⁷⁾ / SPIM_IO0 ⁽⁷⁾ / TMR1_CH4 ⁽⁷⁾	-
33	45	71	PA12	I/O	TC	PA12	USBFS1_D+ / USART1_RTS / CAN1_TX ⁽⁷⁾ / SPIM_IO1 ⁽⁷⁾ / TMR1_EXT ⁽⁷⁾	-
34	46	72	PA13	I/O	FT	JTMS- SWDIO	-	PA13

Pin	num	ber			5)		Multi-funct	ions ⁽⁴⁾
LQFP48 QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap
-	-	73					未连接	
35	47	74	Vss_2	S	-	Vss_2	-	-
36	48	75	V_{DD_2}	S	-	V _{DD_2}	-	-
37	49	76	PA14	I/O	FT	JTCK- SWCLK	-	PA14
38	50	77	PA15	I/O	FT	JTDI	SPI3_CS ⁽⁷⁾ / I2S3_WS ⁽⁷⁾	PA15 / SPI1_CS / I2S1_WS / TMR2_CH1 / TMR2_EXT
-	51	78	PC10	I/O	FT	PC10	UART4_TX ⁽⁷⁾ / SDIO1_D2	USART3_TX / SPI3_SCK / I2S3_CK
-	52	79	PC11	I/O	FT	PC11	UART4_RX ⁽⁷⁾ / SDIO1_D3	USART3_RX / SPI3_MISO / I2S3_SDEXT / XMC_D2
-	53	80	PC12	I/O	FT	PC12	UART5_TX ⁽⁷⁾ / SDIO1_CK	USART3_CK / SPI3_MOSI / I2S3_SD / XMC_D3
-	-	81	PD0	I/O	FT	PD0	XMC_D2 ⁽⁷⁾	CAN1_RX
-	-	82	PD1	I/O	FT	PD1	XMC_D3 ⁽⁷⁾	CAN1_TX
-	54	83	PD2	I/O	FT	PD2	UART5_RX ⁽⁷⁾ / SDIO1_CMD / TMR3_EXT	XMC_NWE
-	-	84	PD3	I/O	FT	PD3	XMC_CLK	USART2_CTS
-	-	85	PD4	I/O	FT	PD4	XMC_NOE ⁽⁷⁾	USART2_RTS
-	-	86	PD5	I/O	FT	PD5	XMC_NWE ⁽⁷⁾	USART2_TX
-	-	87	PD6	I/O	FT	PD6	XMC_NWAIT	USART2_RX
-	-	88	PD7	I/O	FT	PD7	XMC_NE1 / XMC_NCE2	USART2_CK
39	55	89	PB3	I/O	FT	JTDO	SPI3_SCK ⁽⁷⁾ / I2S3_CK ⁽⁷⁾	PB3 / UART7_RX / SPI1_SCK / I2S1_CK / SWO / TMR2_CH2
40	56	90	PB4	I/O	FT	NJTRST	SPI3_MISO ⁽⁷⁾ / I2S3_SDEXT ⁽⁷⁾	PB4 / SPI1_MISO / I2C3_SDA / UART7_TX / TMR3_CH1
41	57	91	PB5	I/O	FT	PB5	SPI3_MOSI ⁽⁷⁾ / I2S3_SD ⁽⁷⁾ / I2C1_SMBA ⁽⁷⁾	SPI1_MOSI / I2S1_SD / CAN2_RX / TMR3_CH2
42	58	92	PB6	I/O	FT	PB6	I2C1_SCL ⁽⁷⁾ / SPIM_IO3 / TMR4_CH1 ⁽⁷⁾	USART1_TX / I2S1_MCK / SPI4_CS / I2S4_WS / CAN2_TX
43	59	93	PB7	I/O	FT	PB7	I2C1_SDA ⁽⁷⁾ / XMC_NADV / SPIM_IO2 / TMR4_CH2 ⁽⁷⁾	USART1_RX / SPI4_SCK / I2S4_CK
44	60	94	воото	ı	-	воото	-	-
45	61	95	PB8	I/O	FT	PB8	SDIO1_D4 / TMR4_CH3 ⁽⁷⁾ / TMR10_CH1	UART5_RX / SPI4_MISO / I2C1_SCL / CAN1_RX
46	62	96	PB9	I/O	FT	PB9	SDIO1_D5 / TMR4_CH4 ⁽⁷⁾ / TMR11_CH1	UART5_TX / SPI4_MOSI / I2S4_SD / I2C1_SDA / CAN1_TX
-	1	97	PE0	I/O	FT	PE0	UART8_RX ⁽⁷⁾ / XMC_LB / TMR4_EXT	-
-	-	98	PE1	I/O	FT	PE1	UART8_TX ⁽⁷⁾ / XMC_UB	-

Pin	in number					2	2		Multi-functions ⁽⁴⁾		
LQFP48 QFN48	LQFP64	LQFP100	Pin name	Type ⁽¹⁾	IO level ⁽²⁾	Main function ⁽³⁾	Default	Remap			
47	63	99	V_{SS_3}	S	-	V_{SS_3}	-	-			
48	64	100	V_{DD_3}	S	-	V_{DD_3}	-	-			
-/49	-	-	EPAD	S	-	Vss	-	-			

- (1) I = input, O = output, S = supply.
- (2) TC = standard 3.3 V GPIO, FT = general 5 V-tolerant GPIO, FTa = 5 V-tolerant GPIO with analog functionalities. FTa pin is 5 V-tolerant when configured as input floating, input pull-up, or input pull-down mode. However, it cannot be 5 V-tolerant when configured as analog mode. Meanwhile, its input level should not higher than V_{DD} + 0.3 V.
- (3) Function availability depends on the chosen device.
- (4) If several peripherals share the same GPIO pin, to avoid conflict between these multiple functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register).
- (5) PC13, PC14, and PC15 are supplied through the power switch. Since the switch only drives a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited not to be used as a current source (e.g. to drive an LED).
- (6) Main function after the first battery powered domain power-up. Later on, it depends on the contents of the battery powered registers even after reset (because these registers are not reset by the main reset). For details on how to manage these GPIOs, refer to the battery powered domain and register description sections in the AT32F403A reference manual.
- (7) This multiple function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the multi-function GPIO and debug configuration section in the AT32F403A reference manual.
- (8) For the LQFP64, LQFP48, and QFN48 package, the pins number 5 and 6 are configured as HEXT_IN and HEXT_OUT after reset, the functionality of PD0 and PD1 can be remapped by software on these pins. However, for the LQFP100 package, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to multi-function GPIO and debug configuration section in the AT32F403A reference manual.
- (9) If the device boots from Flash and leaves PB2 not used, suggest to pull PB2/BOOT1 pin down to Vss.

2022.11.24 30 Ver 2.03

Table 7. XMC pin definition

		XMC				
Pins	Multiplexed PSRAM/NOR	LCD	NAND	LQFP64		
PE2	A23	A23	-	-		
PE3	A19	A19	-	-		
PE4	A20	A20	-	-		
PE5	A21	A21	-	-		
PE6	A22	A22	-	-		
PC2	NWE	NWE	NWE	Yes		
PC3	-	A0	-	Yes		
PA2	DA4	D4	D4	Yes		
PA3	DA5	D5	D5	Yes		
PA4	DA6	D6	D6	Yes		
PA5	DA7	D7	D7	Yes		
PC4	NE4	NE4	-	Yes		
PC5	NOE	NOE	NOE	Yes		
PE7	DA4	D4	D4	-		
PE8	DA5	D5	D5	-		
PE9	DA6	D6	D6	-		
PE10	DA7	D7	D7	-		
PE11	DA8	D8	D8	-		
PE12	DA9	D9	D9	-		
PE13	DA10	D10	D10	-		
PE14	DA11	D11	D11	-		
PE15	DA12	D12	D12	-		
PB12	DA13	D13	D13	Yes		
PB14	DA0	D0	D0	Yes		
PD8	DA13	D13	D13	-		
PD9	DA14	D14	D14	-		
PD10	DA15	D15	D15	-		
PD11	A16	A16	CLE	-		
PD12	A17	A17	ALE	-		
PD13	A18	A18	-	-		
PD14	DA0	D0	D0	-		
PD15	DA1	D1	D1	-		
PC6	DA1	D1	D1	Yes		
PC11	DA2	D2	D2	Yes		
PC12	DA3	D3	D3	Yes		
PD0	DA2	D2	D2	-		
PD1	DA3	D3	D3	-		

]	
Pins	Multiplexed PSRAM/NOR	LCD	NAND	LQFP64
PD2	NWE	NWE	NWE	Yes
PD3	CLK	-	-	-
PD4	NOE	NOE	NOE	-
PD5	NWE	NWE	NWE	-
PD6	NWAIT	-	NWAIT	-
PD7	NE1	NE1	NCE2	-
PB7	NADV	-	-	Yes
PE0	LB	-	-	-
PE1	UB	-	-	-

4 Memory mapping

Figure 6. Memory map

5 Electrical characteristics

5.1 Parameter conditions

5.1.1 Minimum and maximum values

The minimum and maximum values are guaranteed in the worst conditions. Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

5.1.2 Typical values

Typical data are based on $T_A = 25$ °C, $V_{DD} = 3.3$ V.

5.1.3 Typical curves

All typical curves are given only as design guidelines and are not tested.

5.1.4 Power supply scheme

Backup circuitry
(OSG32K,RTC,Wake-up logic
Backup registers)

Out

In

Out

Figure 7. Power supply scheme

Caution: In this figure, the $4.7\mu F$ capacitor must be connected to V_{DD3} .

5.2 Absolute maximum values

5.2.1 Ratings

If stresses were out of the absolute maximum ratings listed in *Table 8*, *Table 9*, and *Table 10*, it may cause permanent damage to the device. These are maximum stress ratings only that the device could bear, but the functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for an extended period of times may affect device reliability.

Table 8. Voltage characteristics

Symbol	Ratings	Min	Max	Unit
V _{DD} -V _{SS}	External main supply voltage (including V _{DDA} and	-0.3	4.0	
VDD V33	V _{DD})	0.0	1.0	
	Input voltage on FT GPIO			
	Input voltage on FTa GPIO (set as input floating,	V _{SS} -0.3	6.0	V
V_{IN}	input pull-up, or input pull-down mode)			
	Input voltage on TC GPIO	V _{SS} -0.3	4.0	
	Input voltage on FTa GPIO (set as analog mode)	V _{SS} -0.3	4.0	
$ \Delta V_{DDx} $	Variations between different V _{DD} power pins	-	50	mV
V _{SSx} -V _{SS}	Variations between all the different ground pins	-	50	IIIV

Table 9. Current characteristics

Symbol	Ratings		Max	Unit
I_{VDD}	Total current into V _{DD} /V _{DDA} power lines (source)		150	
I _{VSS}	Total current out of Vss ground lines (sink)		150	mA
	Output current sunk by any GPIO and control pin		25	IIIA
lιο	Output current source by any GPIOs and control pin		-25	

Table 10. Thermal characteristics

Symbol	Ratings	Value	Unit
T_{STG}	Storage temperature range	-60 ~ +150	°C
TJ	Maximum junction temperature	125	C

2022.11.24 35 Ver 2.03

5.2.2 Electrical sensitivity

Based on three different tests (HBM, CDM, and LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges are applied to the pins of each sample according to each pin combination. This test conforms to the JS-001-2017/JS-002-2018 standard.

Table 11. ESD values

Symbol	Parameter	Conditions	Class	Max ⁽¹⁾	Unit
Veorgania	Electrostatic discharge voltage	T _A = +25 °C, conforming to	3A	5000	
VESD(HBM)	(human body model)	JS-001-2017		5000	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\/===(===	Electrostatic discharge voltage	T _A = +25 °C, conforming to	III	1000	V
VESD(CDM)	(charge device model)	JS-002-2018	111	1000	

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Static latch-up

Tests compliant with EIA/JESD78E IC latch-up standard are required to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin;
- A current injection is applied to each input, output and configurable GPIO pin.

Table 12. Latch-up values

Symbol	Parameter	Conditions	Level/Class
LU		T _A = +105 °C, conforming to	II lovel A (200 mA)
LU	Static latch-up class	EIA/JESD78E	II level A (200 mA)

5.3 Specification

5.3.1 General operating conditions

Table 13. General operating conditions

Symbol	Parameter	Со	nditions	Min	Max	Unit
		Flash memory	$3.1 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	0	240	
fhclk		bank 3 (SPIM) not used	2.6 V ≤ V _{DD} < 3.1 V	0	180	MHz
IHCLK	Internal AHB clock frequency	Flash memory	$3.1 \text{ V} \le \text{V}_{DD} \le 3.6 \text{ V}$	0	180	IVITIZ
		bank 3 used (SPIM)	2.6 V ≤ V _{DD} < 3.1 V	0	160	
f PCLK1	Internal APB1 clock frequency		0	120	MHz	
f PCLK2	Internal APB2 clock frequency		0	120	MHz	
V _{DD}	Standard operating voltage		-	2.6	3.6	V
V_{DDA}	Analog operating voltage	Must be the same	e potential as V _{DD} ⁽¹⁾	2.6	3.6	V
V_{BAT}	Backup operating voltage		-	1.8	3.6	V
		LQFP100		-	326	
P _D	Power dissipation: T _A = 105 °C	LQFP64		ı	309	mW
FD	Power dissipation: TA= T05 C	LQFP48		-	290	IIIVV
		QFN48		-	662	
T_A	Ambient temperature		-	-40	105	°C

5.3.2 Operating conditions at power-up / power-down

Table 14. Operating conditions at power-up / power-down

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DD} rise time rate			0	∞(1)	ms/V
t _{VDD}	V _{DD} fall time rate	-	20	∞	µs/V

⁽¹⁾ If V_{DD} rising time rate is slower than 120 ms/V, the code should access the backup registers after V_{DD} higher than V_{POR} + 0.1V.

2022.11.24 37 Ver 2.03

Embedded reset and power control block characteristics

Table 15. Embedded reset and power management block characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PVMSEL[2:0] = 001 (rising edge) ⁽¹⁾	2.19	2.28	2.37	V
		PVMSEL [2:0] = 001 (falling edge) ⁽¹⁾	2.09	2.18	2.27	V
		PVMSEL [2:0] = 010 (rising edge) ⁽²⁾	2.28	2.38	2.48	V
		PVMSEL [2:0] = 010 (falling edge) ⁽²⁾	2.18	2.28	2.38	V
		PVMSEL [2:0] = 011 (rising edge) ⁽²⁾	2.38	2.48	2.58	٧
	Dowerveltage	PVMSEL [2:0] = 011 (falling edge)(2)	2.28	2.38	2.48	V
VPVM	Power voltage monitoring level	PLS[2:0] = 100 (rising edge) ⁽²⁾	2.47	2.58	2.69	٧
VPVM	selection	PVMSEL [2:0] = 100 (falling edge) ⁽²⁾	2.37	2.48	2.59	V
	Selection	PVMSEL [2:0] = 101 (rising edge) ⁽²⁾	2.57	2.68	2.79	V
		PVMSEL [2:0] = 101 (falling edge) ⁽²⁾	2.47	2.58	2.69	V
		PVMSEL [2:0] = 110 (rising edge) ⁽²⁾	2.66	2.78	2.9	V
		PVMSEL [2:0] = 110 (falling edge) ⁽²⁾	2.56	2.68	2.8	V
		PVMSEL [2:0] = 111 (rising edge)	2.76	2.88	3	V
		PVMSEL [2:0] = 111 (falling edge)	2.66	2.78	2.9	V
V _{HYS+P} ⁽²⁾	PVM hysteresis	-	-	100	-	mV
V _{POR} ⁽²⁾	Power on reset threshold	-	2.03	2.18	2.35	٧
V _{LVR} ⁽²⁾	Low voltage reset threshold	-	1.85 ⁽³⁾	2.02	2.2	٧
V _{LVRhyst} ⁽²⁾	LVR hysteresis	-	-	160	-	mV
	Reset temporization:					
Tresttempo ⁽²⁾	CPU starts execution		-	13		me
I RESTIEMPO(2)	after V _{DD} keeps higher	-			-	ms
	than V _{POR} for T _{RSTTEMPO}					

⁽¹⁾ PVMSEL[2:0] = 001 may be not available for its voltage detector level may be lower than VPOR/PDR.

⁽²⁾ Guaranteed by design, not tested in production.(3) The product behavior is guaranteed by design down to the minimum V_{LVR} value.

Figure 8. Power on reset and low voltage reset waveform

5.3.4 Memory characteristics

Table 16. Internal Flash memory characteristics

			Typ ⁽¹⁾ fhclk						Unit
Symbol	Parameter	Conditions							O.I.I.C
			240	200	144	72	48	8	MHz
T _{PROG}	Programming time	-		50				μs	
terase	Page (2 KB) erase time	-	50						ms
		AT32F403AxC	0.8						
t _{ME}	Mass erase time	AT32F403AxE		1.4					
		AT32F403AxG			1.4 (ead	h Bank)			
		Programming	35.5	29.9	22.5	13.4	0.0	2.7	
I _{DD}	Supply current	mode	33.5	29.9	22.3	13.4	9.9	3.7	mΑ
		Erase mode	57.4	49.2	38.8	25.4	20.6	11.4	1

⁽¹⁾ Guaranteed by design, not tested in production.

Table 17. Internal Flash memory endurance and data retention

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
NEND	Endurance	T _A = -40 ~ 105 °C	100	-	-	kcycles
tret	Data retention	T _A = 105 °C	10	-	-	years

⁽¹⁾ Guaranteed by design, not tested in production.

5.3.5 Supply current characteristics

The current consumption is subjected to several parameters and factors such as the operating voltage, ambient temperature, GPIO pin loading, device software configuration, operating frequencies, GPIO pin switching rate, and executed binary code. The current consumption is obtained by characterization results, not tested in production.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- Prefetch ON. (Reminder: this bit must be set before clock setting and bus prescaling.)
- When the peripherals are enabled:
 - f fhclk > 120 MHz: fpclk1 = fhclk/2, fpclk2 = fhclk/2, fadcclk = fpclk2/4
 - If f_{HCLK} ≤ 120 MHz: f_{PCLK1} = f_{HCLK}, f_{PCLK2} = f_{HCLK}, f_{ADCCLK} = f_{PCLK2}/4.
- Code executes in ZW area.
- Unless otherwise specified, the typical values are measured with $V_{DD} = 3.3 \text{ V}$ and $T_A = 25 \text{ °C}$ condition and the maximum values are measured with $V_{DD} = 3.6 \text{ V}$.

2022.11.24 40 Ver 2.03

Table 18. Typical current consumption in Run mode

		Table 16. Typical current			ур	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled	All peripherals disabled	Unit
			240 MHz	93.8	41.0	
			200 MHz	78.9	34.6	
			144 MHz	57.8	25.7	
			120 MHz	59.1	23.3	
			108 MHz	53.5	21.3	
			72 MHz	37.1	15.4	
			48 MHz	25.7	11.1	
		High speed external	36 MHz	19.9	8.99	
		crystal (HEXT) ⁽¹⁾⁽²⁾	24 MHz	14.2	6.86	mA
			16 MHz	10.3	5.44	
			8 MHz	6.01	3.58	
			4 MHz	4.16	2.95	
			2 MHz	3.23	2.63	
		t	1 MHz	2.77	2.47	
			500 kHz	2.55	2.39	
	Supply current		125 kHz	2.37	2.34	
I_{DD}	in Run mode		240 MHz	93.8	41.0	
			200 MHz	78.9	34.6	
			144 MHz	57.8	25.6	
			120 MHz	59.0	23.2	
			108 MHz	53.4	21.2	
			72 MHz	37.1	15.4	
			48 MHz	25.6	11.1	
		High speed internal clock	36 MHz	19.8	8.91	1
		(HICK) ⁽²⁾	24 MHz	14.1	6.78	mA
			16 MHz	10.2	5.36	
			8 MHz	5.92	3.49	
			4 MHz	4.07	2.86	
			2 MHz	3.14	2.54	
1			1 MHz	2.69	2.39	
1			500 kHz	2.46	2.31	
			125 kHz	2.29	2.25	

⁽¹⁾ External clock is 8 MHz.(2) PLL is on when f_{HCLK} > 8 MHz.

Table 19. Typical current consumption in Sleep mode

		able for typical current			ур	
Symbol	Parameter	Conditions	f _{HCLK}	All peripherals enabled	All peripherals disabled	Unit
			240 MHz	78.3	12.5	
			200 MHz	65.9	10.8	
			144 MHz	48.3	8.52	
			120 MHz	50.2	8.07	
			108 MHz	45.5	7.54	
			72 MHz	31.8	6.29	
			48 MHz	22.1	5.07	
		High speed external	36 MHz	17.2	4.45	mΛ
		crystal (HEXT) ⁽¹⁾⁽²⁾	24 MHz	12.4	3.83	mA
			16 MHz	9.12	3.42	
			8 MHz	5.42	2.57	
			4 MHz	3.87	2.45	
			2 MHz	3.09	2.39	
			1 MHz	2.71	2.36	
			500 kHz	2.52	2.34	
	Supply current		125 kHz	2.37	2.33	
I_{DD}	in Sleep mode		240 MHz	78.3	12.4	
			200 MHz	65.9	10.8	
			144 MHz	48.3	8.44	
			120 MHz	50.2	7.99	
			108 MHz	45.5	7.45	
			72 MHz	31.7	6.20	
			48 MHz	22.0	4.97	
		High speed internal clock	36 MHz	17.2	4.35	Л
		(HICK) ⁽²⁾	24 MHz	12.3	3.74	mA
			16 MHz	9.04	3.33	
			8 MHz	5.33	2.48	
			4 MHz	3.78	2.36	
			2 MHz	3.01	2.30	
			1 MHz	2.62	2.27	
			500 kHz	2.43	2.25	
			125 kHz	2.28	2.24	

⁽¹⁾ External clock is 8 MHz.(2) PLL is on when f_{HCLK} > 8 MHz.

Table 20. Maximum current consumption in Run mode

0	B	O a malistica a a		М	ax	Unit
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Oilit
			240 MHz	108.5	119.6	
			200 MHz	93.3	104.2	
			144 MHz	71.6	82.2	
			120 MHz	73.2	83.7	
		High speed external	108 MHz	67.5	77.9	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	50.4	60.6	mA
		peripherals enabled	48 MHz	38.4	48.5	
			36 MHz	32.4	42.3	
			24 MHz	26.3	36.2	
			16 MHz	22.3	32.0	
	Supply current in		8 MHz	17.8	27.5	
I_{DD}	Run mode		240 MHz	53.4	63.5	
			200 MHz	46.9	57.0	
			144 MHz	37.8	47.7	
			120 MHz	35.4	45.3	
		High speed external	108 MHz	33.3	43.2	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	27.3	37.1	mA
		peripherals disabled	48 MHz	22.9	32.6	
			36 MHz	20.7	30.4	
			24 MHz	18.5	28.2	
			16 MHz	17.0	26.7	
			8 MHz	15.2	24.8	

⁽¹⁾ External clock is 8 MHz and PLL is on when f_{HCLK} > 8 MHz.

Table 21. Maximum current consumption in Sleep mode

Cumb al	Downwater	Conditions		М	ax	11
Symbol	Parameter	Conditions	f _{HCLK}	T _A = 85 °C	T _A = 105 °C	Unit
			240 MHz	92.8	103.2	
			200 MHz	80.0	90.4	
			144 MHz	61.9	72.1	
			120 MHz	64.1	74.3	
		High speed external	108 MHz	59.2	69.3	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	44.8	54.7	mA
		peripherals enabled	48 MHz	34.6	44.4	
			36 MHz	29.5	39.2	
			24 MHz	24.4	34.0	
			16 MHz	20.9	30.5	
	Supply current in		8 MHz	17.0	26.5	
I _{DD}	Sleep mode		240 MHz	23.9	33.5	
			200 MHz	22.3	31.8	
			144 MHz	20.0	29.4	
			120 MHz	19.6	29.0	
		High speed external	108 MHz	19.0	28.4	
		crystal (HEXT) ⁽¹⁾ , all	72 MHz	17.7	27.1	mA
		peripherals disabled	48 MHz	16.4	25.8	
			36 MHz	15.8	25.2	
			24 MHz	15.2	24.6	
			16 MHz	14.8	24.2	
			8 MHz	13.9	23.3	

⁽¹⁾ External clock is 8 MHz and PLL is on when $f_{HCLK} > 8$ MHz.

Table 22. Typical and maximum current consumptions in Deepsleep and Standby modes

Symb			Typ ⁽¹⁾		Max ⁽²⁾			
ol	Parameter	Conditions	V _{DD} /V _{BAT} = 2.6 V	VDD/VBAT = 3.3 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
Supply current in	current in	LDO in Run mode, HICK and HEXT OFF (no WDT)	1.35	1.36	Refer to	13.6	23.7	mA
loo	Deepsleep mode	LDO in low-power mode, HICK and HEXT OFF (no WDT)	1.33	1.34	note (3)	13.1	22.8	
	Supply	LEXT and RTC OFF	3.93	5.72	7.49	10.4	14.9	
	current in Standby mode	LEXT and RTC ON	4.55	6.48	8.34	11.5	16.5	μΑ

⁽¹⁾ Typical values are measured at T_A = 25 °C.

2022.11.24 44 Ver 2.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

⁽³⁾ The value may be several times the typical values due to process variation.

Figure 9. Typical current consumption in Deepsleep mode vs. temperature at different V_{DD}

Figure 10. Typical current consumption in Standby mode vs. temperature at different V_{DD}

2022.11.24 45 Ver 2.03

Table 23. Typical and maximum current consumptions on V_{BAT}

			Typ ⁽¹⁾			Max ⁽²⁾			
Symbol	Parameter	Conditions	V _{BAT} = 2.0 V	V _{BAT} = 2.6 V	V _{BAT} = 3.3 V	T _A = 25 °C		T _A = 105 °C	Unit
I _{DD_VBAT}	V _{BAT} Supply current	LEXT and RTC ON, V _{DD} < V _{LVR}	0.47	0.59	0.77	0.92	1.34	2.04	μΑ

⁽¹⁾ Typical values are measured at T_A = 25 °C.

Figure 11. Typical current consumption on V_{BAT} with LEXT and RTC ON vs. temperature at different V_{BAT}

2022.11.24 46 Ver 2.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

On-chip peripheral current consumption

The MCU is placed under the following conditions:

- All GPIO pins are in analog mode.
- The given value is calculated by measuring the current consumption difference between "all peripherals clocked OFF" and "only one peripheral clocked ON".

Table 24. Peripheral current consumption

F	Peripheral	Тур	Unit
	DMA1	9.34	
	DMA2	9.39	
	GPIOA	1.41	
	GPIOB	1.41	
	GPIOC	1.47	
AHB	GPIOD	1.43	
	GPIOE	1.44	
	XMC	26.89	
	CRC	1.53	
	SDIO1	19.62	
	SDIO2	20.40	
	TMR2	9.11	
	TMR3	6.52	
	TMR4	6.54	
	TMR5	8.82	
	TMR6	0.77	
	TMR7	0.75	
	TMR12	3.89	A /NALL=
	TMR13	2.45	μΑ/MHz
	TMR14	2.48	
	SPI2/I ² S2	5.19	
	SPI3/I ² S3	4.95	
	SPI4/I ² S4	2.62	
APB1	USART2	2.60	
	USART3	2.57	
	UART4	2.60	
	UART5	2.63	
	I ² C1	2.47	
	I ² C2	2.54	
	USBFS1	6.40	
	CAN1	3.77	
	CAN2	3.77	
	DAC1/2	2.30	
	WWDT	0.34	
	PWC	0.34	
	BPR	68.36	

Per	ripheral	Тур	Unit
	IOMUX	2.32	
	SPI1/I ² S1	2.82	
	USART1	2.53	
	USART6	2.64	
	UART7	2.80	
	UART8	2.85	
	I ² C3	2.48	
APB2	TMR1	8.99	0 /0.41.1
APDZ	TMR8	8.72	μA/MHz
	TMR9	3.78	
	TMR10	2.62	
	TMR11	2.56	
	ADC1	5.17	
	ADC2	5.24	
	ADC3	5.18	
	ACC	0.95	

External clock source characteristics 5.3.6

High-speed external clock generated from a crystal / ceramic resonator

The high-speed external (HEXT) clock can be supplied with a 4 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 25. HEXT 4-25 MHz crystal characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fhext_in	Oscillator frequency	-	4	8	25	MHz
t _{SU(HEXT)} (3)	Startup time	V _{DD} is stabilized	-	2	-	ms

- (1) Oscillator characteristics given by the crystal/ceramic resonator manufacturer.
- (2) Guaranteed by characterization results, not tested in production.
- (3) tsu(HEXT) is the startup time measured from the moment HEXT is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2}, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2}. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2}.

Figure 12. HEXT typical application with an 8 MHz crystal

2022.11.24 Ver 2.03

High-speed external clock generated from an external source

The characteristics given in the table below result from tests performed using a high-speed external clock source.

Table 26. HEXT external source characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fHEXT_ext	User external clock source frequency ⁽¹⁾		1	8	25	MHz
VHEXTH	HEXT_IN input pin high level voltage		0.7V _{DD}	-	VDD	V
VHEXTL	HEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
tw(HEXT)	HEXT_IN high or low time ⁽¹⁾	-	5	-	-	
t _{r(HEXT)}	HEXT_IN rise or fall time ⁽¹⁾		-	-	20	ns
Cin(HEXT)	HEXT_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy(HEXT)	Duty cycle	-	45	-	55	%
IL	HEXT_IN Input leakage current	Vss ≤ Vin ≤ Vdd	-	-	±1	μA

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 13. HEXT external source AC timing diagram

Low-speed external clock generated from a crystal / ceramic resonator

The low-speed external (LEXT) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in the table below. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Table 27. LEXT 32.768 kHz crystal characteristics (1)(2)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
tsu(LEXT)	Startup time	V _{DD} is stabilized	-	150	-	ms

- (1) Oscillator characteristics given by the crystal/ceramic resonator manufacturer.
- (2) Guaranteed by characterization results, not tested in production.

For C_{L1} and C_{L2} , it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. C_{L1} and C_{L2} , are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} .

Load capacitance C_L has the following formula: $C_L = C_{L1} \times C_{L2} / (C_{L1} + C_{L2}) + C_{stray}$ where C_{stray} is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF.

32.768 kHz crystal LEXT_IN Bias Controlled gain

Figure 14. LEXT typical application with a 32.768 kHz crystal

Note: No external resistor is required between LEXT_IN and LEXT_OUT and it is also prohibited to add it.

2022.11.24 51 Ver 2.03

Low-speed external clock generated from an external source

The characteristics given in the table below result from tests performed using a low-speed external clock source.

Table 28. LEXT external source characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
fLEXT_ext	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
VLEXTH	LEXT_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
VLEXTL	LEXT_IN input pin low level voltage		Vss	-	0.3V _{DD}	V
tw(LEXT)	LEXT_IN high or low time ⁽¹⁾	-	450	-	-	
tr(LEXT)	LEXT_IN rise or fall time ⁽¹⁾		-	-	50	ns
Cin(LEXT)	LEXT_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy(LEXT)	Duty cycle	-	30	-	70	%
IL	LEXT_IN input leakage current	Vss ≤ V _{IN} ≤ V _{DD}	-	-	±1	μA

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 15. LEXT external source AC timing diagram

5.3.7 Internal clock source characteristics

High-speed internal clock (HICK)

Table 29. HICK clock characteristics

Symbol	Parameter	Co	nditions	Min	Тур	Max	Unit		
fніск	Frequency		-	-	48	-	MHz		
DuCy(HICK)	Duty cycle		-	45	-	55	%		
		User-trimme		-	-	1 ⁽¹⁾	%		
	4 (11 11101/	ACC-trimme	d	-	-	0.25(1)			
ACCHICK	Accuracy of the HICK				T _A = -40 ~ 105 °C	-2.5		2	
	oscillator	Factory-	T _A = -40 ~ 85 °C	-2.5	-	2	0/		
		calibrated ⁽²⁾	T _A = 0 ~ 70 °C	-1.5	-	1.5	%		
			T _A = 25 °C	-1	-	1			
tsu(HICK) ⁽²⁾	HICK oscillator startup time		-	-	-	10	μs		
IDD(HICK) ⁽²⁾	HICK oscillator power consumption		-	-	240	290	μA		

⁽¹⁾ Guaranteed by design, not tested in production.

Figure 16. HICK clock frequency accuracy vs. temperature

Low-speed internal clock (LICK)

Table 30. LICK clock characteristics

	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Ī	fLICK ⁽¹⁾	Frequency	-	30	40	60	kHz

⁽¹⁾ Guaranteed by characterization results, not tested in production.

2022.11.24 53 Ver 2.03

⁽²⁾ Guaranteed by characterization results, not tested in production.

5.3.8 PLL characteristics

Table 31. PLL characteristics

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f	PLL input clock ⁽²⁾	2	8	16	MHz
fpll_in	PLL input clock duty cycle	40	-	60	%
f PLL_OUT	PLL multiplier output clock	16	-	240	MHz
tLOCK	PLL lock time	-	-	200	μs
Jitter	Cycle-to-cycle jitter	-	-	300	ps

⁽¹⁾ Guaranteed by characterization results, not tested in production.

5.3.9 Wakeup time from low-power mode

The wakeup times given in the table below is measured on a wakeup phase with the HICK. The clock source used to wake up the device depends from the current operating mode:

- Sleep mode: the clock source is the clock that was set before entering Sleep mode.
- Deepsleep or Standby mode: the clock source is the HICK.

Table 32. Low-power mode wakeup time

Symbol	Parameter	Тур	Unit
twusleep(1)	Wakeup from Sleep mode	3.3	μs
. (1)	Wakeup from Deepsleep mode (regulator in normal mode)	280	
twudeepsleep ⁽¹⁾	Wakeup from Deepsleep mode (regulator in low-power mode)	320	μs
twustdby ⁽¹⁾	Wakeup from Standby mode	8	ms

⁽¹⁾ The wakeup times are measured from the wakeup event to the point in which the user application code reads the first instruction.

2022.11.24 54 Ver 2.03

⁽²⁾ Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by f_{PLL_OUT}.

5.3.10 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

• **EFT:** A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a coupling/decoupling network, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

Table 33. EMS characteristics

Symb	Parameter	Conditions	Level/Class
Veft	Fast transient voltage burst limits to be applied through coupling/decoupling network conforms to IEC 61000-4-4 on V _{DD} and V _{SS} pins to induce a functional disturbance, V _{DD} and V _{SS} input has one 47 µF capacitor and each V _{DD} and V _{SS} pin	V _{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 240 MHz, conforms to IEC 61000-4-4 V _{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 72 MHz, conforms to IEC 61000-4-4	4A (4kV)
	pair 0.1 µF	= 72 MHz, conforms to IEC 61000-4-4	

EMC characterization and optimization are performed at component level with a typical application environment. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

2022.11.24 55 Ver 2.03

5.3.11 GPIO port characteristics

General input / output characteristics

All GPIOs are CMOS and TTL compliant.

Table 34. GPIO static characteristics

Symb	Parameter	Conditions	Min	Тур	Max	Unit
VIL	GPIO input low level voltage	-	-0.3	-	0.28 * V _{DD} + 0.1	V
	TC GPIO input high level voltage	-			V _{DD} + 0.3	
	FTa GPIO input high level voltage	Analog mode		-	V DD + 0.3	
VIH	FT GPIO input high level voltage	-	0.31 * V _{DD}			V
VIH	FTa GPIO input high level voltage	Input floating, input pull- up, or input pull-down mode	+ 0.8	-	5.5	V
	TC GPIO Schmitt trigger voltage hysteresis ⁽¹⁾		200	-	-	mV
Vhys	FT and FTa GPIO Schmitt trigger voltage hysteresis ⁽¹⁾	-	5% V _{DD}	-	-	-
	(2)	Vss ≤ V _{IN} ≤ V _{DD} TC GPIOs	-	-	±1	
llkg	Input leakage current ⁽²⁾	Vss ≤ V _{IN} ≤ 5.5V FT and FTa GPIO	-	-	±1	μA
Rpu	Weak pull-up equivalent resistor	V _{IN} = V _{SS}	60	70	100	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = V _{DD}	60	70	100	kΩ
Cıo	GPIO pin capacitance	-	-	9	-	pF

⁽¹⁾ Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results.

All GPIOs are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters.

Output driving current

In the user application, the number of GPIO pins which can drive current must be controlled to respect the absolute maximum rating defined in *Section 5.2.1*:

- The sum of the currents sourced by all GPIOs on V_{DD}, plus the maximum Run consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating I_{VDD} (see *Table 9*).
- The sum of the currents sunk by all GPIOs on V_{SS}, plus the maximum Run consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating I_{VSS} (see *Table 9*).

2022.11.24 56 Ver 2.03

⁽²⁾ Leakage could be higher than max if negative current is injected on adjacent pins.

⁽³⁾ The pull-down resistor of BOOT0 exists permanently.

Output voltage levels

All GPIOs are CMOS and TTL compliant.

Table 35. Output voltage characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
Maximum	sourcing/sinking strength				
Vol	Output low level voltage	CMOS standard L. = 15 mA	-	0.4	V
Vон	Output high level voltage	CMOS standard, I _{IO} = 15 mA	V _{DD} -0.4	-	□
V _{OL}	Output low level voltage	TTI standard I - C - A	-	0.4	
V _{OH}	Output high level voltage	−TTL standard, I _{IO} = 6 mA	2.4	-	V
Large sou	rcing/sinking strength				
Vol	Output low level voltage	CMOC standard I - C - A	-	0.4	V
V _{OH}	Output high level voltage	− CMOS standard, I _{IO} = 6 mA	V _{DD} -0.4	-	7
V _{OL}	Output low level voltage	TTI standard I O A	-	0.4	
Vон	Output high level voltage	TTL standard, I _{IO} = 3 mA	2.4	-	_ V
Vol ⁽¹⁾	Output low level voltage	L 00 A	-	1.3	
V _{OH} ⁽¹⁾	Output high level voltage	- I _{IO} = 20 mA	V _{DD} -1.3	-	V
Normal so	urcing/sinking strength				
Vol	Output low level voltage	CMCC standard I = 4 m A	-	0.4	V
Vон	Output high level voltage	CMOS standard, I _{IO} = 4 mA	V _{DD} -0.4	-	7
Vol	Output low level voltage	TTI standard I = 2 m A	-	0.4	V
Vон	Output high level voltage	TTL standard, I _{IO} = 2 mA	2.4	-	V
V _{OL} ⁽¹⁾	Output low level voltage	1 40	-	1.3	.,
V _{OH} ⁽¹⁾	Output high level voltage	- I _{IO} = 10 mA	V _{DD} -1.3	-	V

⁽¹⁾ Guaranteed by characterization results.

Input AC characteristics

The definition and values of input AC characteristics are given as follows.

Table 36. Input AC characteristics

Symbol	Parameter	Min	Max	Unit
t EXINTpw	Pulse width of external signals detected by EXINT controller	10	-	ns

us

5.3.12 NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see the table below).

Conditions Symbol Parameter Min Тур Max Unit $V_{\mathsf{IL}(\mathsf{NRST})}^{(1)}$ -0.5 NRST input low level voltage 8.0 ٧ $V_{DD} + 0.3$ $V_{IH(NRST)}^{(1)}$ NRST input high level voltage 2 NRST Schmitt trigger voltage $V_{hys(NRST)}$ 500 mV hysteresis VIN = Vss Rpu Weak pull-up equivalent resistor 30 40 50 kΩ $V_{F(NRST)}^{(1)}$ NRST input filtered puLEXT 33.3 μs

Table 37. NRST pin characteristics

V_{NF(NRST)}⁽¹⁾

Figure 17. Recommended NRST pin protection

66.7

(1) The reset network protects the device against parasitic resets.

NRST input not filtered puLEXT

(2) The user must ensure that the level on the NRST pin can go below the V_{IL} (NRST) max level specified in *Table* 37. Otherwise the reset will not be taken into account by the device.

5.3.13 XMC characteristics

Asynchronous waveforms and timings of PSRAM / NOR

The results shown in these tables are obtained with the following XMC configuration:

- AddressSetupTime = 0
- AddressHoldTime = 1
- DataSetupTime = 1

⁽¹⁾ Guaranteed by design.

Table 38. Asynchronous multiplexed PSRAM / NOR read timings

Symbol	Parameter	Min	Max	Unit
t _{w(NE)}	XMC_NE low time	7t _{HCLK} - 2	7t _{HCLK} + 2	ns
t _{v(NOE_NE)}	XMC_NE low to XMC_NOE low	3t _{HCLK} - 0.5	3t _{HCLK} + 1.5	ns
t _{w(NOE)}	XMC_NOE low time	4t _{HCLK} - 1	4t _{HCLK} + 2	ns
t _{h(NE_NOE)}	XMC_NOE high to XMC_NE high hold time	-1	-	ns
t _{v(A_NE)}	XMC_NE low to XMC_A valid	-	0	ns
t _{v(NADV_NE)}	XMC_NE low to XMC_NADV low	3	5	ns
t _{w(NADV)}	XMC_NADV low time	t _{HCLK} - 1.5	t _{HCLK} + 1.5	ns
t _{h(AD_NADV)}	XMC_AD (address) valid hold time after XMC_NADV high	t _{HCLK} + 3	-	ns
t _{h(A_NOE)}	Address hold time after XMC_NOE high	t _{HCLK} + 3	-	ns
t _{h(UBLB_NOE)}	XMC_UB/LB hold time after XMC_NOE high	0	-	ns
t _{v(UBLB_NE)}	XMC_NE low to XMC_UB/LB valid	-	0	ns
t _{su(Data_NE)}	Data to XMC_NE high setup time	2t _{HCLK} + 24	-	ns
t _{su(Data_NOE)}	Data to XMC_NOE high setup time	2t _{HCLK} + 25	-	ns
t _{h(Data_NE)}	h(Data_NE) Data hold time after XMC_NE high		-	ns
t _{h(Data_NOE)}	Data hold time after XMC_NOE high	0	-	ns

Figure 18. Asynchronous multiplexed PSRAM / NOR read waveforms

Table 39. Asynchronous multiplexed PSRAM / NOR write timings

Symbol	Parameter	Min	Max	Unit
tw(NE)	XMC_NE low time	5t _{нськ} - 1	5tнськ + 2	ns
tv(NWE_NE)	XMC_NE low to XMC_NWE low	2t _{HCLK}	2t _{HCLK} + 1	ns
tw(NWE)	XMC_NWE low time	2t _{HCLK} - 1	2t _{HCLK} + 2	ns
th(NE_NWE)	XMC_NWE high to XMC_NE high hold time	t _{HCLK} - 1	-	ns
tv(A_NE)	XMC_NE low to XMC_A valid	-	7	ns
tv(NADV_NE)	XMC_NE low to XMC_NADV low	3	5	ns
tw(NADV)	XMC_NADV low time	t _{HCLK} - 1	t _{HCLK} + 1	ns
th(AD_NADV)	XMC_AD (address) valid hold time after XMC_NADV	t _{HCLK} - 3	-	ns
	high			
th(A_NWE)	Address hold time after XMC_NWE high	4t _{HCLK} + 2.5	-	ns
th(UBLB_NWE)	XMC_UB/LB hold time after XMC_NWE high	t _{HCLK} - 1.5	-	ns
tv(UBLB_NE)	UBLB_NE) XMC_NE low to XMC_UB/LB valid		1.6	ns
tv(Data_NADV)	XMC_NADV high to Data valid	-	t _{HCLK} + 1.5	ns
th(Data_NWE)	Data hold time after XMC_NWE high		-	ns

Figure 19. Asynchronous multiplexed PSRAM / NOR write waveforms

Synchronous waveforms and timings of PSRAM / NOR

The results shown in these tables are obtained with the following XMC configuration:

- BurstAccessMode = XMC_BurstAccessMode_Enable (enable burst transfer mode)
- MemoryType = XMC_MemoryType_CRAM (memory type is CRAM)
- WriteBurst = XMC_WriteBurst_Enable (enable burst write operation)
- CLKPrescale = 1; (memory cycle = 2 HICK cycles) (note: CLKPrescale refers to the CLKPSC bit in XMC_BK1TMGx register. Refer to the AT32F403A reference manual.)
- DataLatency = 1 stands for NOR Flash; DataLatency = 0 for PSRAM (Note: DataLatency refers to the DATLAT bit in XMC_BK1TMGx register. Refer to the AT32F403A reference manual.)

2022.11.24 61 Ver 2.03

Table 40. Synchronous multiplexed PSRAM / NOR read timings

Symbol	Parameter	Min	Max	Unit
t _{w(CLK)}	XMC_CLK period	20	-	ns
t _{d(CLKL-NEL)}	XMC_CLK low to XMC_NE low	-	1.5	ns
t _{d(CLKH-NEH)}	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns
t _{d(CLKL-NADVL)}	XMC_CLK low to XMC_NADV low	-	4	ns
t _{d(CLKL-NADVH)}	XMC_CLK low to XMC_NADV high	5	-	ns
t _{d(CLKL-AV)}	XMC_CLK low to XMC_A valid	-	0	ns
t _{d(CLKH-AIV)}	XMC_CLK low to XMC_A invalid	t _{HCLK} + 2	-	ns
t _{d(CLKL-NOEL)}	XMC_CLK high to XMC_NOE low		t _{HCLK} + 1	ns
t _{d(CLKH-NOEH)}	XMC_CLK low to XMC_NOE high	t _{HCLK} + 0.5	-	ns
t _{d(CLKL-ADV)}	XMC_CLK low to XMC_AD valid	-	12	ns
t _{d(CLKL-ADIV)}	XMC_CLK low to XMC_AD invalid	0	-	ns
t _{su(ADV-CLKH)}	XMC_AD valid data before XMC_CLK high	6	-	ns
t _{h(CLKH-ADV)}	XMC_AD valid data after XMC_CLK high	t _{HCLK} - 10	-	ns
t _{su(NWAITV-CLKH)}	XMC_NWAIT valid before XMC_CLK high	8	-	ns
t _{h(CLKH-NWAITV)}	XMC_NWAIT valid after XMC_CLK high	6	-	ns

Figure 20. Synchronous multiplexed PSRAM / NOR read timings

Table 41. Synchronous multiplexed PSRAM write timings

Symbol	Parameter	Min	Max	Unit
tw(CLK)	XMC_CLK period	20	-	ns
td(CLKL-NEL)	XMC_CLK low to XMC_NE low	-	2	ns
td(CLKH-NEH)	XMC_CLK low to XMC_NE high	t _{HCLK} + 2	-	ns
td(CLKL-NADVL)	XMC_CLK low to XMC_NADV low	-	4	ns
td(CLKL-NADVH)	XMC_CLK low to XMC_NADV high	5	-	ns
td(CLKL-AV)	XMC_CLK low to XMC_A valid	-	0	ns
td(CLKH-AIV)	XMC_CLK low to XMC_A invalid	t _{HCLK} + 2	-	ns
td(CLKL-NWEL)	XMC_CLK low to XMC_NWE low	-	1	ns
td(CLKH-NWEH)	XMC_CLK low to XMC_NWE high	t _{HCLK} + 1	-	ns
td(CLKL-ADV)	XMC_CLK low to XMC_AD valid	-	12	ns
td(CLKL-ADIV)	XMC_CLK low to XMC_AD invalid	3	-	ns
td(CLKL-Data)	XMC_AD valid after XMC_CLK low	-	6	ns
td(CLKL-UBLBH)	XMC_CLK low to XMC_UB/LB high	t _{HCLK} + 1	-	ns
tsu(NWAITV-CLKH)	XMC_NWAIT valid before XMC_CLK high	7	-	ns
th(CLKH-NWAITV)	XMC_NWAIT valid after XMC_CLK high	2	-	ns

Figure 21. Synchronous multiplexed PSRAM write timings

NAND controller waveforms and timings

The results shown in this table are obtained with the following XMC configuration:

- COM.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGMEM)
- COM.XMC_WaitSetupTime = 0x03; (Note: OP in XMC_BKxTMGMEM)
- COM.XMC_HoldSetupTime = 0x02; (Note: HLD in XMC_BKxTMGMEM)
- COM.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGMEM)
- ATT.XMC_SetupTime = 0x01; (Note: STP in XMC_BKxTMGATT)
- ATT.XMC_WaitSetupTime = 0x03; (Note: OP in XMC_BKxTMGATT)
- ATT.XMC_HoldSetupTime = 0x02; (Note: HLD in XMC_BKxTMGATT)
- ATT.XMC_HiZSetupTime = 0x01; (Note: WRSTP in XMC_BKxTMGATT)
- Bank = XMC_Bank_NAND;
- MemoryDataWidth = XMC_MemoryDataWidth_16b; (Note: Memory data width = 16 bits)
- ECC = XMC_ECC_Enable; (Note: enable ECC calculation)
- ECCPageSize = XMC_ECCPageSize_512Bytes; (Note: ECC page size = 512 Bytes)
- DLYCRSetupTime = 0; (Note: DLYCR in XMC_BKxCTRL)
- DLYARSetupTime = 0; (Note: DLYAR in XMC_BKxCTRL)

Table 42. NAND Flash read and write timings

Symbol	Parameter	Min	Max	Unit
tw(NOE)	XMC_NWE low width	4T _{HCLK} - 1.5	4T _{HCLK} + 1.5	ns
tsu(D-NOE)	XMC_D valid data before XMC_NOE high	25	-	ns
th(NOE-D)	XMC_D valid data after XMC_NOE high	14	-	ns
td(ALE-NOE)	(ALE-NOE) XMC_ALE valid before XMC_NOE low		3T _{HCLK} + 2	ns
th(NOE-ALE)	XMC_NOE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns
tw(NWE)	XMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 2.5	ns
tv(NWE-D)	XMC_NWE low to XMC_D valid	-	0	ns
th(NWE-D)	XMC_NWE high to XMC_D invalid	10T _{HCLK} + 4	-	ns
td(D-NWE)	XMC_D valid before XMC_NWE high	6T _{HCLK} + 12	-	ns
td(ALE-NWE)	ALE-NWE) XMC_ALE valid before XMC_NWE low		3T _{HCLK} + 1.5	ns
th(NWE-ALE)	XMC_NWE high to XMC_ALE invalid	3T _{HCLK} + 4.5	-	ns

Figure 22. NAND controller read waveforms

Figure 23. NAND controller write waveforms

Figure 24. NAND controller common memory read waveforms

2022.11.24 65 Ver 2.03

ALE(XMC_A17
CLE(XMC_A16

t d(ALE-NOE)

XMC_NWE

XMC_NOE

XMC_NOE

XMC_D[15:0]

Figure 25. NAND controller for common memory write waveforms

5.3.14 TMR timer characteristics

The parameters given in the table below are guaranteed by design.

Table 43. TMR characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
t (TMD)	Timer resolution time	-	1	-	tmrxclk
tres(TMR)		f _{TMRxCLK} = 240 MHz	4.17	-	ns
£	Timer external clock frequency on		0	ftmrxclk/2	MHz
f EXT	CH1 to CH4	-	0	50	MHz

5.3.15 SPI / I²S characteristics

The parameters are listed in *Table 44* for SPI and in *Table 45* for I²S.

Table 44. SPI characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
fsск		V _{DD} = 3.3 V, T _A = 25 °C	-	50	
$(1/t_{c(SCK)})^{(1)}$	SPI clock frequency ⁽²⁾⁽³⁾	V _{DD} = 3.3 V, T _A = 105 °C	-	36	MHz
(I/Ic(SCK))		V _{DD} = 2.6 V, T _A = 105 °C	-	30	
tr(SCK)	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
t _{su(CS)} (1)	CS setup time	Slave mode	4t _{PCLK}	-	ns
t _{h(CS)} ⁽¹⁾	CS hold time	Slave mode	2t _{PCLK}	-	ns
tw(SCKH) ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 100 MHz,	15	25	no
$t_{\text{w}(\text{SCKL})}^{(1)}$	SCK high and low time	prescaler = 4	15	25	ns
t _{su(MI)} ⁽¹⁾	(1) D-1- in	Master mode	5	-	no
t _{su(SI)} ⁽¹⁾	- Data input setup time	Slave mode	5	-	ns
t _{h(MI)} ⁽¹⁾	Data input action times	Master mode	5	-	
t _{h(SI)} ⁽¹⁾	- Data input setup time	Slave mode	4	-	ns
t _{a(SO)} (1)(4)	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3t _{PCLK}	ns
t _{dis(SO)} (1)(5)	Data output disable time	Slave mode	2	10	ns
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	ns
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	ns
t _{h(SO)} ⁽¹⁾	Data autout bald time	Slave mode (after enable edge)	15	-	
t _{h(MO)} (1)	Data output hold time	Master mode (after enable edge)	2	-	ns

⁽¹⁾ Guaranteed by characterization results, not tested in production.

2022.11.24 67 Ver 2.03

⁽²⁾ The maximum SPI clock frequency should not exceed fPCLK/2.

⁽³⁾ The maximum SPI clock frequency is highly related with devices and the PCB layout. For more details about the complete solution, please contact your local Artery sales representative.

⁽⁴⁾ Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the

⁽⁵⁾ Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

CS input $t_{c(SCK)}$ - $\mathbf{t}_{\mathsf{h}(\mathsf{CS})}$ su(CS) -CPHA=0 t_{w(SCKH)} CPOL=0 t_{w(SCKL)} CPHA=0 -CPOL=1 $t_{v(SO)} \rightarrow \blacksquare$ t_{h(SO)} $t_{a(SO)}$ t_{dis(SO)} MSB out LSB out MISO output $t_{su(SI)}$ $t_{h(SI)}$ MOSI input MSB in LSB in

Figure 26. SPI timing diagram - slave mode and CPHA = 0

Figure 27. SPI timing diagram - slave mode and CPHA = 1

Figure 28. SPI timing diagram - master mode

Table 45. I²S characteristics

Symbol	Parameter	Conditions	Min	Max	Unit
fск 1/t _{c(СК)}	I ² S clock frequency	Master mode (data: 16 bits, audio frequency = 48 kHz)		1.525	MHz
T/tc(CK)		Slave mode	0	6.5	
tr(CK)	I ² S clock rise and fall time	Capacitive load: C = 50 pF	-	8	
t _{v(WS)} (1)	WS valid time	Master mode	3	-	
t _{h(WS)} (1)	WS hold time	Master mode	2	-	
tsu(WS) ⁽¹⁾	WS setup time	Slave mode	4	-	
t _{h(WS)} (1)	WS hold time	Slave mode	0	-	
tw(CKH) ⁽¹⁾	CK high and law times	Master f _{PCLK} = 16 MHz,	312.5	-	
tw(CKL) ⁽¹⁾	CK high and low time	audio frequency = 48 kHz	345	-	
tsu(SD_MR) ⁽¹⁾	Data innut actus times	Master receiver	6.5	-	ns
tsu(SD_SR) ⁽¹⁾	Data input setup time	Slave receiver	1.5	-	
t _{h(SD_MR)} (1)(2)	Data input hald time	Master receiver	0	-	
t _{h(SD_SR)} (1)(2)	Data input hold time	Slave receiver	0.5	-	
t _{v(SD_ST)} (1)(2)	Data output valid time	Slave transmitter (after enable edge)	-	18	
th(SD_ST) ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)	11	-	
t _{v(SD_MT)} (1)(2)	Data output valid time	Master transmitter (after enable edge)	-	3	
th(SD_MT) ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)	0	-	

⁽¹⁾ Guaranteed by design and/or characterization results.

SD receive

CPOL=0 CPOL=1 t w(CKH) -^t h(WS) WS input ^LV(SD_ST)|<mark>◆</mark> t h(SD_ST) $^{\mathsf{SD}}_{\mathsf{transmit}}$ LSB transmit (2) MSB transmit Bitn transmit LSB_{transmit}

t su(SD_SR) -

LSB receive⁽²⁾

Figure 29. I²S slave timing diagram (Philips protocol)

MSB receive (1) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

th(SD_SR)

Bitn receive

LSB receive

⁽²⁾ Depends on fPCLK. For example, if fPCLK=8 MHz, then TPCLK = 1/fPCLK = 125 ns.

Figure 30. I²S master timing diagram (Philips protocol)

(1) LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

5.3.16 I²C interface characteristics

GPIO pins SDA and SCL have limitation as follows: they are not "true" open-drain. When configured as open-drain, the PMOS connected between the GPIO pin and V_{DD} is disabled, but is still present.

I²C bus interface can support standard mode (max. 100 kHz) and fast mode (max. 400 kHz). The I²C bus frequency can be increased up to 1 MHz. For more complete information, please contact your local Artery sales office for technical support.

2022.11.24 70 Ver 2.03

5.3.17 SDIO characteristics

tw(ck/H) tW(CKL) CK D,CWD (output) D,CWD (input)

Figure 31. SDIO high-speed mode

Figure 32. SD default mode

Table 46. SD / MMC characteristics

Symbol Parameter		Conditions	Min	Max	Unit
fpp	Clock frequency in data transfer mode	-	0	48	MHz
tw(CKL)	Clock low time, f _{PP} = 16 MHz	-	32	-	
tw(CKH)	Clock high time, f _{PP} = 16 MHz	-	30	-]
tr	Clock rise time	-	-	4	ns
t f	Clock fall time	-	-	5	
CMD, D inp	uts (referenced to CK)				
tısu	Input setup time	-	2	-	200
tıн	Input hold time	-	0	-	ns
CMD, D out	puts (referenced to CK) in MMC and SD HS	mode			
tov	Output valid time	-	-	6	
tон	Output hold time	-	0	_	ns
CMD, D out	puts (referenced to CK) in SD default mode	(1)			•
tovd	Output valid default time	-	-	7	no
tond	Output hold default time	-	0.5	-	ns

⁽¹⁾ Refer to SDIO_CLKCTRL, the SDIO clock control register to control the CK output.

2022.11.24 Ver 2.03

5.3.18 USBFS characteristics

Table 47. USBFS startup time

Symbol	Parameter	Max	Unit
t _{STARTUP} (1)	USBFS transceiver startup time	1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

Table 48. USBFS DC electrical characteristics

Symbol		Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V_{DD}	USBFS operating voltage	-	3.0(2)		3.6	V
	V _{DI} (3)	Differential input sensitivity	I (USBFS_D+, USBFS_D-)	0.2		-	
Input levels	V _{CM} (3)	Differential common mode range	Includes V _{DI} range	0.8		2.5	V
	V _{SE} (3)	Single ended receiver threshold	-	1.3		2.0	
Output	V _{OL}	Static output level low	R_L of 1.24 $k\Omega$ to 3.6 $V^{(4)}$	-		0.3	V
levels	V _{OH}	Static output level high	R_L of 15 $k\Omega$ to $V_{SS}{}^{(4)}$	2.8		3.6	V
R₽	U	USBFS_D+ internal pull- up	VIN = VSS	0.97	1.24	1.58	kΩ

- (1) All the voltages are measured from the local ground potential.
- (2) The AT32F403A USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics which are degraded in the 2.7 to 3.0 V V_{DD} voltage range.
- (3) Guaranteed by characterization results, not tested in production.
- (4) R_L is the load connected on the USB drivers.

Figure 33. USBFS timings: definition of data signal rise and fall time

Table 49. USBFS electrical characteristics

Symbol	Parameter	Conditions	Min ⁽¹⁾	Max ⁽¹⁾	Unit
tr	Rise time (2)	C _L ≤ 50 pF	4	20	ns
t _f	Fall Time (2)	C _L ≤ 50 pF	4	20	ns
t _{rfm}	Rise/fall time matching	t _r /t _f	90	110	%
V _{CRS}	Output signal crossover voltage	-	1.3	2.0	V

⁽¹⁾ Guaranteed by design, not tested in production.

2022.11.24 72 Ver 2.03

⁽²⁾ Measured from 10% to 90% of the data signal. For more detailed information, please refer to USB Specification - Chapter 7 (version 2.0).

5.3.19 12-bit ADC characteristics

Unless otherwise specified, the parameters given in the table below are preliminary values derived from tests performed under ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 13*.

Note: It is recommended to perform a calibration after each power-up.

Table 50. ADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{DDA}	Power supply	-	2.6	-	3.6	V
V _{REF+}	Positive reference voltage ⁽³⁾	-	2.0	-	VDDA	V
Idda	Current on the V _{DDA} input pin	-	-	380(1)	445	μΑ
Ivref	Current on the V _{REF+} input pin ⁽³⁾	-	-	200(1)	220	μA
fadc	ADC clock frequency	-	0.6	-	28	MHz
fs ⁽²⁾	Sampling rate	-	0.05	-	2	MHz
f (2)	Estamal trimmon from success	f _{ADC} = 28 MHz	-	-	1.65	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	-	-	-	17	1/fadc
Vain	Conversion voltage range ⁽³⁾	voltage range ⁽³⁾ o (Vssa o tied to gro		-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	- See <i>Table 51</i> and <i>Table 52</i> for detail			2 for details	Ω
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	10	-	pF
± (2)	O-liberties times	f _{ADC} = 28 MHz	6.61			μs
$t_{CAL}^{(2)}$	Calibration time	-	185			1/fadc
t _{lat} (2)	Injection trigger conversion	f _{ADC} = 28 MHz	-	-	107	ns
llat ^(−)	latency	-	-	-	3(4)	1/fadc
t _{latr} (2)	Regular trigger conversion	f _{ADC} = 28 MHz	-	-	71.4	ns
Uatr ^(−)	latency	-	-	-	2(4)	1/fadc
ts ⁽²⁾	Sampling time	f _{ADC} = 28 MHz	0.053	-	8.55	μs
LS\-/	Sampling lime	-	1.5	-	239.5	1/fadc
t _{STAB} (2)	Power-up time	-		42		1/fadc
	Total conversion time (including	f _{ADC} = 28 MHz	0.5	-	9	μs
tconv ⁽²⁾ Total conversion time (including sampling time)		-	14 to 252 (t _s for sampling + 12.5 for successive approximation)			1/fadc

⁽¹⁾ Guaranteed by characterization results, not tested in production.

⁽²⁾ Guaranteed by design, not tested in production.

⁽³⁾ V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package.

⁽⁴⁾ For external triggers, a delay of 1/f_{PCLK2} must be added to the latency specified in *Table 50*.

Table 51 and *Table 52* are used to determine the maximum external impedance allowed for an error below 1/4 of LSB.

Table 51. R_{AIN} max for f_{ADC} = 14 MHz

T _S (Cycle)	t _S (μ s)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.11	0.25
7.5	0.54	1.3
13.5	0.96	2.5
28.5	2.04	5.0
41.5	2.96	8.0
55.5	3.96	10.5
71.5	5.11	13.5
239.5	17.11	40

⁽¹⁾ Guaranteed by design.

Table 52. R_{AIN} max for f_{ADC} = 28 MHz

T _S (Cycle)	ts (µs)	R _{AIN} max (kΩ) ⁽¹⁾
1.5	0.05	0.1
7.5	0.27	0.6
13.5	0.48	1.2
28.5	1.02	2.5
41.5	1.48	4.0
55.5	1.98	5.2
71.5	2.55	7.0
239.5	8.55	20

⁽¹⁾ Guaranteed by design.

Table 53. ADC accuracy(1)

Symbol	Parameter	Test Conditions	Typ ⁽²⁾	Max ⁽²⁾	Unit
ET	Total unadjusted error	f _{PCLK2} = 56 MHz,	±1.5	±2.5	
EO	Offset error	f_{ADC} = 28 MHz, R_{AIN} < 10 k Ω ,	+0.5	±1.5	
EG	Gain error	V _{DDA} = 3.0 to 3.6 V, T _A = 25 °C	+1	+2/-0.5	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±0.6	±0.9	
EL	Integral linearity error	V _{REF+} = V _{DDA}	±0.8	±1.5	
ET	Total unadjusted error	f _{PCLK2} = 56 MHz.	±2	±4	
EO	Offset error	$f_{ADC} = 28 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega,$	+0.5	±2	
EG	Gain error	V _{DDA} = 2.6 to 3.6 V, T _A = -40 ~ 105 °C	+1	+2.5/-1.5	LSB
ED	Differential linearity error	Measurements made after ADC calibration	±0.6	±1.2	
EL	Integral linearity error	modean smalle made and 7100 samplation	±1	±2	

- (1) ADC DC accuracy values are measured after internal calibration.
- (2) Guaranteed by characterization results, not tested in production.

Figure 34. ADC accuracy characteristics

- (1) Example of an actual transfer curve.
- (2) Ideal transfer curve.
- (3) End point correlation line.
- (4) ET = Maximum deviation between the actual and the ideal transfer curves.
 - EO = Deviation between the first actual transition and the first ideal one.
 - EG = Deviation between the last ideal transition and the last actual one.
 - ED = Maximum deviation between actual steps and the ideal one.
 - EL = Maximum deviation between any actual transition and the end point correlation line.

2022.11.24 75 Ver 2.03

RAIN (1)
ADCx_INx

VT
0.6V

Sample and hold ADC coverter
RADC 12-bit coverter

Cparasitic

Cparasitic

Figure 35. Typical connection diagram using the ADC

- (1) Refer to Table 50 for the values of RAIN and CADC.
- (2) C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 36* or *Figure 37*.depending on whether V_{REF+} is connected to V_{DDA} or not. The 100 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip.

If HEXT is enabled while ADC uses any input channel of ADC123_IN10~13, following PCB layout guide line below benefits to isolate the high frequency interference from HEXT emitting to ADC input signals nearby.

- Use different PCB layers to route ADC_IN signal apart from HEXT path
- Do not route ADC_IN signals and HEXT path parallel

1 μF // 100 nF V_{REF+}
V_{REF+}
V_{REF+}
V_{REF+}
V_{REF+}
V_{REF+}
V_{REF+}
Connected to V_{DDA}

Figure 36. Power supply and reference decoupling (with external V_{REF} pin)

(1) V_{REF} input is available only on 100-pin package and above.

2022.11.24 76 Ver 2.03

Figure 37. Power supply and reference decoupling (without external V_{REF} pin)

(1) V_{REF} input is available only on 100-pin package and above.

5.3.20 Internal reference voltage (VINTRV) characteristics

Table 54. Internal reference voltage characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
VINTRV	Internal reference voltage	-	1.16	1.20	1.24	V
T _{Coeff} ⁽¹⁾	Temperature coefficient	-	-	-	120	ppm/°C
T _{S_VINTRV}	ADC sampling time when reading the internal reference voltage	-	-	5.1	17.1	μs

⁽¹⁾ Guaranteed by design, not tested in production.

5.3.21 Temperature sensor (V_{TS}) characteristics

Table 55. Temperature sensor characteristics

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V_{TS} linearity with temperature	-	±2	±4	°C
Avg_Slope ⁽¹⁽²⁾⁾	Average slope	-4.11	-4.26	-4.41	mV/°C
V ₂₅ ⁽¹⁾⁽²⁾	Voltage at 25 °C	1.19	1.28	1.37	V
t _{START} (3)	Startup time	-	-	100	μs
Ts_temp ⁽³⁾	ADC sampling time when reading the temperature	-	8.6	17.1	μs

⁽¹⁾ Guaranteed by characterization results, not tested in production.

Obtain the temperature using the following formula:

Temperature (in °C) = $\{(V_{25} - V_{TS}) / Avg Slope\} + 25$.

Where,

 $V_{25} = V_{TS}$ value for 25° C and

Avg_Slope = Average Slope for curve between Temperature vs. V_{SENSE} (given in mV/° C).

Figure 38. V_{TS} vs. temperature

⁽²⁾ The temperature sensor output voltage changes linearly with temperature. The offset of this line varies from chip to chip due to process variation (up to 50 °C from one chip to another). The internal temperature sensor is more suited to applications that detect temperature variations instead of absolute temperatures. If accurate temperature readings are needed, an external temperature sensor part should be used.

⁽³⁾ Guaranteed by design, not tested in production.

5.3.22 12-bit DAC specifications

Table 56. DAC characteristics

Symbol	Parameter	Comments	Min	Тур	Max	Unit
VDDA	Analog supply voltage	-	2.6	_	3.6	V
V _{REF+} (3)	Reference supply voltage	-	2.0	-	3.6	V
Vssa	Ground	-	0	-	0	V
RLOAD ⁽¹⁾	Resistive load with buffer ON	-	5	-	-	kΩ
Ro ⁽²⁾	Impedance output with buffer OFF	-	-	13.2	16	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	-	50	pF
	Lower DAC_OUT voltage with buffer ON	-	0.15	-	-	V
DAC_OUT ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	-	V _{REF+} - 0.2	V
DAC_OUT	Lower DAC_OUT voltage with buffer OFF	-	-	0.5	3.5	mV
	Higher DAC_OUT voltage with buffer OFF	-	-	-	V _{REF+} - 1.5 mV	V
Idda	DC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	480	625	μΑ
I _{VREF} (3)	DC current consumption in quiescent mode	With no load, V _{REF+} = 3.6 V	-	330	340	μΑ
DNL ⁽²⁾	Differential non linearity	-	-	±0.4	±0.8	LSB
INL ⁽²⁾	Integral non linearity (difference between measured value and a line drawn between DAC_OUT min and DAC_OUT max)	-	-	±0.8	±1.5	LSB
	Offset error (difference between measured		-	15	30	mV
Offset ⁽²⁾	value at Code (0x800) and the ideal value = V _{REF+} /2)	-	-	20	35	LSB
Gain error ⁽²⁾	Gain error	-	-	0.1	0.25	%
tsettling	Settling time	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$	-	1	4	μs
Update rate	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1 LSB)	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$	-	-	1	MSPS
twakeup	Wakeup time from off state (setting the EN bit in the DAC Control register)	$C_{LOAD} \le 50 \text{ pF},$ $R_{LOAD} \ge 5 \text{ k}\Omega$	-	1.2	4	μs

2022.11.24 Ver 2.03

Guaranteed by design, not tested in production.
 Guaranteed by characterization results, not tested in production.

⁽³⁾ V_{REF+} can be internally connected to V_{DDA} and V_{REF-} can be internally connected to V_{SSA}, depending on the package.

6 Package information

6.1 LQFP100 package information

Figure 39. LQFP100 – 14 x 14 mm 100 pin low-profile quad flat package outline

AT32F403A Series Datasheet

Table 57. LQFP100 - 14 x 14 mm 100 pin low-profile quad flat package mechanical data

O. w. b. a l	Millimeters						
Symbol	Min	Тур	Max				
А	-	-	1.60				
A1	0.05	-	0.15				
A2	1.35	1.40	1.45				
b	0.17	0.20	0.26				
С	0.10	0.127	0.20				
D	15.75	16.00	16.25				
D1	13.90	14.00	14.10				
E	15.75	16.00	16.25				
E1	13.90	14.00	14.10				
е	0.50 BSC.						
L	0.45	0.60	0.75				
L1		1.00 REF.					

6.2 LQFP64 package information

Figure 40. LQFP64 - 10 x 10 mm 64 pin low-profile quad flat package outline

AT32F403A Series Datasheet

Table 58. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data

O. mark at	millimeters					
Symbol	Min	Тур	Max			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.20	0.27			
С	c 0.09		0.20			
D	11.75	12.00	12.25			
D1	9.90	10.00	10.10			
E	11.75	12.00	12.25			
E1	9.90	10.00	10.10			
е		0.50 BSC.				
Θ	3.5° REF.					
L	0.45	0.60	0.75			
L1	1.00 REF.					
ccc	0.08					

6.3 LQFP48 package information

Figure 41. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package outline

AT32F403A Series Datasheet

Table 59. LQFP48 – 7 x 7 mm 48 pin low-profile quad flat package mechanical data

O. wash and	millimeters					
Symbol	Min	Тур	Max			
А	-	-	1.60			
A1	0.05	-	0.15			
A2	1.35	1.40	1.45			
b	0.17	0.22	0.27			
С	0.09	-	0.20			
D	8.80	9.00	9.20			
D1	6.90	7.00	7.10			
Е	8.80	9.00	9.20			
E1	6.90	7.00	7.10			
е	0.50 BSC.					
Θ	0°	3.5°	7°			
L	0.45	0.60	0.75			
L1	1.00 REF.					

6.4 QFN48 package information

Figure 42. QFN48 – 6 x 6 mm 48 pin quad flat no-leads package outline

Table 60	OFN48 -	- 6 x 6 mm 4	18 nin 4	guad flat	no-leads	nackage	mechanical data
Table ou.	QI 11TO -	- O A O IIIIII -	to piii v	quau mat	IIO-ICAUS	package	ili c ciialiicai uala

O maked	millimeters					
Symbol	Min	Тур	Max			
А	0.80	0.85	0.90			
A1	0.00	0.02	0.05			
A3	0.203 REF.					
b	0.15	0.20	0.25			
D	5.90	6.00	6.10			
D2	3.07	3.17	3.27			
E	5.90	6.00	6.10			
E2	3.07	3.17	3.27			
е	0.40 BSC.					
K	0.20	-	-			
L	0.35	0.40	0.45			

6.5 Device marking

Figure 43. Marking example

(1) Not In Scale.

6.6 Thermal characteristics

Table 61. Package thermal characteristics

Symbol	Parameter	Value	Unit
$\Theta_{ extsf{JA}}$	Thermal resistance junction-ambient LQFP100 – 14 × 14 mm/0.5 mm pitch	61.2	- °C/W
	Thermal resistance junction-ambient LQFP64 – 10 × 10 mm/0.5 mm pitch	64.6	
	Thermal resistance junction-ambient LQFP48 – 7 × 7 mm/0.5 mm pitch	68.8 37.8	
	Thermal resistance junction-ambient QFN48 – 6 × 6 mm/0.4 mm pitch		

2022.11.24 87 Ver 2.03

7 Part numbering

 $7 = -40 \, ^{\circ}\text{C} \text{ to } +105 \, ^{\circ}\text{C}$

For a list of available options (speed, package, etc.) or for more information concerning this device, please contact your local Artery sales office.

2022.11.24 88 Ver 2.03

8 Document revision history

Table 63. Document revision history

Date	Version	Change
2020.1.8	1.00	Initial release
2020.2.10	1.01	Modified the max. frequency of the system and the internal AHB clock as 240
		MHz; and the internal APB clock as 120 MHz
	1.02	1. Modified the minimum value of V _{REF+} of ADC and DAC as 2.0 V
		2. Modified conditions and max. frequencies of the internal AHB clock in <i>Table 13</i>
2020.4.22		3. Updated current values in sector 5.3.4
2020.4.22		4. Removed the original note (9) of <i>Table 6</i>
		5. Modified the parameter descriptions, conditions, and the maximum values of
		the SPI clock frequency in <i>Table 44</i>
2020.8.7	1.03	Corrected values in <i>Table 55</i>
	2.00	Modified paragraph orders and descriptions of the whole document
		2. Added <i>Table 6</i> note (9)
2021.7.20		3. Added LQFP48 package mechanical D, D1, E, E1 Min. and Max. in <i>Table</i> 59
		4. Modified QFN48 package mechanical D2, E2 and added D, E Min. and Max. in
		Table 60
2022.1.27	2.01	1. Updated Figure 42
2022.1.27		2. Added Section 6.5 device marking example
	2.02	1. Added max value and notes (T _A = 25 °C) in <i>Table 22</i> and <i>Table 23</i> .
2022.6.10		2. Added min and max values in D, D1, E and E1 lines of all package mechanic
		data tables.
2022 11 24	2.03	1. Updated Figure 36 and Figure 37
2022.11.24		2. Modified the value of Θ_{JA} in <i>Table 61</i>

IMPORTANT NOTICE - PLEASE READ CAREFULLY

Purchasers understand and agree that purchasers are solely responsible for the selection and use of Artery's products and services.

Artery's products and services are provided "AS IS" and Artery provides no warranties express, implied or statutory, including, without limitation, any implied warranties of merchantability, satisfactory quality, non-infringement, or fitness for a particular purpose with respect to the Artery's products and services.

Notwithstanding anything to the contrary, purchasers acquires no right, title or interest in any Artery's products and services or any intellectual property rights embodied therein. In no event shall Artery's products and services provided be construed as (a) granting purchasers, expressly or by implication, estoppel or otherwise, a license to use third party's products and services; or (b) licensing the third parties' intellectual property rights; or (c) warranting the third party's products and services and its intellectual property rights.

Purchasers hereby agrees that Artery's products are not authorized for use as, and purchasers shall not integrate, promote, sell or otherwise transfer any Artery's product to any customer or end user for use as critical components in (a) any medical, life saving or life support device or system, or (b) any safety device or system in any automotive application and mechanism (including but not limited to automotive brake or airbag systems), or (c) any nuclear facilities, or (d) any air traffic control device, application or system, or (e) any weapons device, application or system, or (f) any other device, application or system where it is reasonably foreseeable that failure of the Artery's products as used in such device, application or system would lead to death, bodily injury or catastrophic property damage.

© 2022 ARTERY Technology - All rights reserved