

Compliance Laboratory - EMC Test Report

Accredited by ENAC according to EN ISO/IEC 17025

The clauses marked with * are not covered by the ENAC accreditation. See clauses out of laboratory scope on page 9.

IDNEO Technologies, S.A.U.

Polígon Industrial Can Mitjans s/n. 08232 Viladecavalls - Barcelona (Spain) Telephone: +34 937 008 471

Fax: +34 937 332 718 www.idneo.com

FORM0138 / Revision 8

Customer: Protofy.xyz

Product type: Automatic actuator system for manual resuscitators

EUT Model: OxyGEN2 #HOPE

Serial number: 0000002 / 0000007

Test Report ID: BE2020063

Test Report version: 1.0

Number of pages: 68

Test standards:

EN 60601-1-2:2015

Test results: Compliant

Revised by:	Approved by:	
Eduard Palacio	David Ortiz	
Head of EMC Laboratory	Compliance Manager	

Revision History

			ĺ	
Date	Edited by	Pages	Version	Description
2020/04/03	E. Palacio	68	1.0	Original Test Report

Index

R	evisio	on History	2
T	ables		5
F	igures	S	6
1	Tec	chnical details	7
	1.1	Test standards and results for EMI	7
	1.2	Test standards and results for EMS	8
	1.3	Clauses out of Laboratory scope	9
	1.4	Testing Verdicts	9
	1.5	Complete Test Results	10
2	Ger	neral Details	11
	2.1	Test laboratory	11
	2.2	Client details	11
	2.3	Dates of order	12
	2.4	Test object	12
	2.5	EUT operating mode description using during the EMC tests	12
	2.6	Details about uncertainty measurement	
	2.7	Testing facilities and environmental conditions	14
	2.8	Specific performance criteria for susceptibility test	16
3	Mea	asurement protocols and test set-ups	17
	3.1	Emissions	17
	3.1.1	1 Radiated Emissions in semianechoic chamber (30MHz – 1GHz)	17
	3.1.2	2 Conducted Emissions (150kHz – 30MHz)	19
	3.1.3	3 Harmonics	21
	3.1.1	1 Voltage fluctuation (Flicker)	23
	3.2	Susceptibility	25
	3.2.		
	3.2.2	,	
	3.2.3	,	
	3.2.4	,	
	3.2.5 char	Voltage dips / Short interruptions, voltage deviations, frequency variations and frequency nge (set-up according to EN61000-4-11)	
	3.2.6		
4	Mea	asurements	
	4.1	Emissions measurements	
	4.1.		
	4.1.2		

	4.1.2.1	AC power port	40
	4.1.3	Harmonics	42
	4.1.4	Voltage Fluctuations (Flicker)	45
4	4.2 Sus	sceptibility measurements	46
	4.2.1	Immunity from radiated fields from 80MHz to 1GHz	46
	4.2.2	Immunity from radiated fields from 1GHz to 2.7GHz	49
	4.2.3	Immunity to proximity fields from RF wireless communications*	52
	4.2.4	Immunity to conducted disturbances from 150kHz to 80MHz	53
	4.2.4.1	AC power port	53
	4.2.5	Electrical Fast Transient / Burst Pulse (EFT)	55
	4.2.5.1	AC power port	55
	4.2.6	Surges	56
	4.2.6.1	AC power port	56
	4.2.7	Voltage Dips / Short Interruptions	57
	4.2.7.1	Voltage Dips	57
	4.2.7.2	Short Interruptions	58
	4.2.8	Electrostatic Discharges (ESD)	59
5	Measu	rement remarks	61
6	Photos	s of the equipment under test	62
7	List of	measurement equipments	65

Tables

Table 1 Emissions Results	7
Table 2 Susceptibility Results	9
Table 3 Testing Verdicts	9
Table 4 Performance criteria for susceptibility test	16
Table 5 Accessories, auxiliary equipment and cables used for radiated emission test	17
Table 6 Accessories, auxiliary equipment and cables used for conducted emission test	19
Table 7 Accessories, auxiliary equipment and cables used for harmonics test	21
Table 8 Accessories, auxiliary equipment and cables used for flicker test	23
Table 9 Accessories, auxiliary equipment and cables used for radiated immunity test	25
Table 10 Accessories, auxiliary equipment and cables used for conducted immunity test	27
Table 11 Accessories, auxiliary equipment and cables used for electrical fast transients immunity test	
Table 12 Accessories, auxiliary equipment and cables used for surges immunity test	32
Table 13 Accessories, auxiliary equipment and cables used for voltage dips & short interruptions immunity t	test
	34
Table 14 Accessories, auxiliary equipment and cables used for electrostatic discharges immunity test	36
Table 15 Radiated Immunity measurements from 80MHz to 1GHz – Test Results	46
Table 16 Radiated Immunity measurements from 1GHz to 2.7GHz – Test Results	
Table 17 Immunity to proximity fields from RF wireless communications – Test Results	
Table 18 Conducted Immunity measurements at AC power port – Test Results	
Table 19 EFT measurements at AC power port – Test Results	
Table 20 Surges measurements at AC power port – Test Results	
Table 21 Voltage Dips measurements at AC power port – Test Results	
Table 22 Short Interruptions measurements at AC power port – Test Results	58
Table 23 ESD measurements – Test Results	59

Figures

Figure 1 Schematic for radiated emissions	17
Figure 2 EUT Set-up for radiated emissions	18
Figure 3 Schematic for conducted emissions	
Figure 4 EUT Set-up for conducted emissions at AC power port	20
Figure 5 Schematic for harmonics	
Figure 6 EUT Set-up for harmonics	22
Figure 7 Schematic for flicker	23
Figure 8 EUT Set-up for flicker	24
Figure 9 Schematic for radiated immunity	25
Figure 10 EUT Set-up for radiated immunity	
Figure 11 Schematic for conducted immunity	27
Figure 12 EUT Set-up for conducted immunity at AC power port	
Figure 13 Schematic for electrical fast transients	
Figure 14 EUT Set-up for EFT at AC power port	
Figure 15 Schematic for surges	
Figure 16 EUT Set-up for surges at AC power port	
Figure 17 Schematic for voltage dips / short interruptions	
Figure 18 EUT Set-up for voltage dips / short interruptions at AC power port	
Figure 19 Schematic for electrostatic discharge	
Figure 20 EUT Set-up for electrostatic discharge	
Figure 21 Radiated Emissions results from 30MHz to 1GHz	
Figure 22 Conducted Emissions results from 150kHz to 30MHz at AC power port	
Figure 23 Harmonics results	
Figure 24 Voltage Fluctuations results	
Figure 25 Radiated Immunity results for H polarity from 80MHz to 1GHz	
Figure 26 Radiated Immunity results for V polarity from 80MHz to 1GHz	
Figure 27 Radiated Immunity results for H polarity from 1GHz to 2.7GHz	
Figure 28 Radiated Immunity results for V polarity from 1GHz to 2.7GHz	
Figure 29 Conducted Immunity results for AC power port	
Figure 30 OxyGEN2 #HOPE Sample 1 and Sample 2 – Front view	
Figure 31 OxyGEN2 #HOPE Sample 1 and Sample 2 – Rear view	
Figure 32 OxyGEN2 #HOPE – Marking Sample 1	
Figure 33 OxyGEN2 #HOPE – Marking Sample 2	
Figure 34 AC Power cord – General view	64

1 Technical details

1.1 Test standards and results for EMI

Overview about the different emission measurements

EMISSI	ON		
Kind of Test	Applied Standard	Testing Verdict	Test Page Nº.
 Radiated Emissions (30MHz – 1GHz) Electromagnetic Field strength at 3m Enclosure 			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	39
 Conducted Emissions Continuous Disturbance Voltage (150kHz – 30MHz) AC power port Operating Mode 1 Disturbances in Supply Systems 	EN 60601-1-2:2015	Р	40
HarmonicsAC power portOperating Mode 1	EN61000-3-2:2014	P	42
Voltage FluctuationsAC power portOperating Mode 1	EN61000-3-3:2013	<u>P</u>	45

Table 1 Emissions Results

1.2 Test standards and results for EMS

Overview about the different susceptibility measurements

SUSCEPTIBILIT	TY (Part I)		
Kind of Test	Applied Standard	Testing Verdict	Test Page Nº.
Radiated, radio-frequency electromagnetic field (80MHz-1GHz) Enclosure			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	46
Radiated, radio-frequency electromagnetic field (1GHz-2.7GHz) Enclosure			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	49
 Proximity fields from wireless devices 15 spot frequencies (385MHz-5785MHz)* Enclosure 			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	52
Immunity to conducted disturbances, induced by radio-frequency fields (150kHz-80MHz) AC power port			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	53
Electrical fast transient / burst (EFT) AC power port			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	55
Surges AC power port			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	56
Voltage Dips AC power port			
- Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	57

SUSCEPTIBILIT	Y (Part II)		
Kind of Test	Applied Standard	Testing Verdict	Test Page Nº.
Short Interruptions AC power port Operating Mode 1	EN 60601-1-2:2015	<u>P</u>	58
Power frequency magnetic fields Enclosure Operating Mode 1	EN 60601-1-2:2015	N/T	#
Electrostatic Discharge (ESD) Enclosure Operating Mode 1	EN 60601-1-2:2015	_ <u>P_</u>	59

Table 2 Susceptibility Results

1.3 Clauses out of Laboratory scope

<u>Clauses out of Laboratory scope are written with italic letter and marked with *:</u> Clause 1.2 and sub clause 4.2.3 of this test report (only for frequencies above 3GHz).

1.4 Testing Verdicts

Not applicable	:	N/A
Pass	:	Р
Fail	:	F
Not tested	<u>-</u>	N/T

Table 3 Testing Verdicts

FORM0138 Revision 8 Page 9 of 68 April, 3^d 2020

1.5 Complete Test Results

The measurement was carried out according to the previous mentioned standards. Deviations from the standards, if any, are listed at chapter 5 of this report.

Exceeding of the	e ilmits was observed	:
Comment :	☐ YES	$oxed{oxed}$ NO
John Hall		

The test result is only valid for the equipment tested.

IDNEO Technologies is liable to the client for the maintenance of confidentiality and impartiality of all information related to the item under test and the results of the test.

In following cases the compliance with relevant standards for the system has to be ensured again:

- I. Tested product will not be used with other components than those mentioned in this report.
- II. Tested product will not be used in other modes than those described in the manufacturer descriptions.

Reproduction of this report is only allowed by the written consent of: **IDNEO Technologies S.A.U. - Compliance Laboratory**

Viladecavalls (Barcelona): April, 3^d 2020

FORM0138 Revision 8 Page 10 of 68 April, 3^d 2020

2 General Details

2.1 Test laboratory

Laboratory address: IDNEO Technologies S.A.U.

Polígono Industrial, Can Mitjans s/nº, C.P. 08232 Viladecavalls

(Barcelona), Spain

Telephone: +34 93-700-84-71

Fax: +34 93-733-27-18

Contact person: Mr. David Ortiz

Phone contact: +34 93-700-84-71

Email contact: david.ortiz@idneo.com

2.2 Client details

Company name: Protofy.xyz

Department/group: #

Company address: Carrer de Ramon Turró, 100 1º 2º

08005 Barcelona, (Spain)

Contact person: Mr. Lluís Rovira

Phone contact: +34 671-98-89-30

Web contact: www.protofy.xyz

Email contact: Iluis@protofy.xyz

2.3 Dates of order

Incoming date of order: 01/04/2020

Incoming date of the test object: 02/04/2020

Date of test: From: 02/04/2020 Until: 03/04/2020

2.4 Test object

Product type:

Automatic actuator system for

manual resuscitators

Tested model: OxyGEN2 #HOPE

Serial number: Sample 1 = 0000007

Sample 2 = 0000002

Software / Firmware version: N/A

Hardware version: #

Manufacturer: #

Rating Power: 230Vac - 50Hz

EUT status: Engineering Sample

2.5 EUT operating mode description using during the EMC tests

Operating Mode1:

EUT working with Dimmer max = 30 breaths/min + manual resuscitator (AMBU).

The EUT was continuously monitored by visual inspection during the immunity tests.

• EUT supply test voltage: 230Vac 50Hz except for Voltage Dips and Interruptions tests (these tests were performed at 240Vac 50Hz).

2.6 Details about uncertainty measurement

In case of measurement results close to the limit, there is the possibility, that due to the measurement uncertainty Ux = k * σ t (σ t = $\sqrt{\sigma_1^2 + \sigma_2^2 + + \sigma_n^2}$ standard deviation of the total accumulated error), at a confidence level of 95% (k =2), the limits are indeed exceeded. Measurement uncertainties calculation is available at customer's request.

2.7 Testing facilities and environmental conditions

o In the Control chamber 1 (4,5m x 3m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30% Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

o In the Semi anechoic chamber (9,4m x 6,4m x 5,5m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C
Temperature.	Max.: 25°C
Relative humidity:	Min.: 30%
Relative Hulflidity.	Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω
Normal site attenuation (NSA):	<± 4dB at 3m distance between item under test and
Normal site attendation (NOA).	receiver antenna for 30MHz to 1GHz
Field Uniformity (FII)	75% of 16 points ≤ 6dB requirements at 1,5 x 1,5m
Field Uniformity (FU):	test window (0,8m high) from 80MHz to 3GHz
Site Voltage Standing Wave Ratio	≤ 6 dB at 3m distance between item under test and
(sVSWR):	receiver antenna for 1GHz to 6GHz

o In the Shield chamber 1 (7,2m x 4,3m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30% Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

o In the Shield chamber 2 (7,8m x 3m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
	Min.: 30%
Relative humidity:	
	Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

o In the Fully anechoic chamber 1 (3,7m x 4,3m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30% Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

o In the Fully anechoic chamber 2 (7,3m x 3,4m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30%
	Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω
Field Uniformity (FU):	75% of 16 points ≤ 6dB requirements at 1,5 x 1,5m test window (0,8m high) from 80MHz to 3GHz

o In the Control chamber 2 (4,9m x 4,6m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30% Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

 In the Conducted immunity chamber (4m x 4,6m x 3m), the following limits were not exceeded during the test:

Temperature:	Min.: 18°C Max.: 25°C
Relative humidity:	Min.: 30% Max.: 70%
Shielding effectiveness	>100dB
Electric insulation:	>10kΩ
Reference resistance to earth:	<0,5Ω

2.8 Specific performance criteria for susceptibility test

Under the test conditions specified in EN 60601-1-2 item 6.2, the ME EQUIPMENT or ME SYSTEM shall be able to provide the BASIC SAFETY and ESSENTIAL PERFORMANCE. The following degradations are not allowed:

- component failures;
- change of operating mode;
- false alarms;
- cessation or interruption of any intended operation causing critical breathing conditions;
- initiation of any unintended operation, including unintended or uncontrolled motion.

The ME EQUIPMENT or ME SYSTEM may exhibit degradation of performance that does not affect BASIC SAFETY or ESSENTIAL PERFORMANCE.

Table 4 Performance criteria for susceptibility test

FORM0138 Revision 8 Page 16 of 68 April, 3^d 2020

3 Measurement protocols and test set-ups

3.1 Emissions

3.1.1 Radiated Emissions in semianechoic chamber (30MHz – 1GHz)

Test set-up

Figure 1 Schematic for radiated emissions

Operation Modes

Following operation modes	Sample 2 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables: $\ \square$ none cables connected

Table 5 Accessories, auxiliary equipment and cables used for radiated emission test

Enclosure

Figure 2 EUT Set-up for radiated emissions

3.1.2 Conducted Emissions (150kHz – 30MHz)

Test set-up

Figure 3 Schematic for conducted emissions

Operation Modes

Following operation modes	Sample 2 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables: none cables connected

Table 6 Accessories, auxiliary equipment and cables used for conducted emission test

Figure 4 EUT Set-up for conducted emissions at AC power port

3.1.3 Harmonics

Test set-up

Figure 5 Schematic for harmonics

Operation Modes

Following operation modes	Sample 2 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables:

none cables connected

Table 7 Accessories, auxiliary equipment and cables used for harmonics test

Figure 6 EUT Set-up for harmonics

3.1.1 Voltage fluctuation (Flicker)

Test set-up

Figure 7 Schematic for flicker

Operation Modes

Following operation modes	Sample 2 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Type	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Table 8 Accessories, auxiliary equipment and cables used for flicker test

Figure 8 EUT Set-up for flicker

3.2 Susceptibility

3.2.1 Radiated Immunity (set-up according to EN61000-4-3)

Test set-up

Figure 9 Schematic for radiated immunity

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 1 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables:

none cables connected

Table 9 Accessories, auxiliary equipment and cables used for radiated immunity test

FORM0138 Revision 8 Page 25 of 68 April, 3d 2020

Enclosure

Figure 10 EUT Set-up for radiated immunity

3.2.2 Conducted Immunity (set-up according to EN61000-4-6)

Test set-up

Figure 11 Schematic for conducted immunity

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 1 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables:

none cables connected

Table 10 Accessories, auxiliary equipment and cables used for conducted immunity test

FORM0138 Revision 8 Page 27 of 68 April, 3d 2020

Figure 12 EUT Set-up for conducted immunity at AC power port

3.2.3 Electrical Fast Transient/Burst (set-up according to EN61000-4-4)

Test set-up

Figure 13 Schematic for electrical fast transients

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 1 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables:

none cables connected

Table 11 Accessories, auxiliary equipment and cables used for electrical fast transients immunity test

FORM0138 Revision 8 Page 29 of 68 April, 3d 2020

Figure 14 EUT Set-up for EFT at AC power port

3.2.4 Surges (set-up according to EN61000-4-5)

Test set-up

Figure 15 Schematic for surges

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 1 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables:

none cables connected

Table 12 Accessories, auxiliary equipment and cables used for surges immunity test

FORM0138 Revision 8 Page 32 of 68 April, 3d 2020

Figure 16 EUT Set-up for surges at AC power port

3.2.5 Voltage dips / Short interruptions, voltage deviations, frequency variations and frequency rate of change (set-up according to EN61000-4-11)

Test set-up

Figure 17 Schematic for voltage dips / short interruptions

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 2 working as described in sub clause 2.5, Mode 1
have been applied to the EUT:	

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Connected cables: none cables connected

Table 13 Accessories, auxiliary equipment and cables used for voltage dips & short interruptions immunity test

Figure 18 EUT Set-up for voltage dips / short interruptions at AC power port

3.2.6 Electrostatic Discharge (ESD) (set-up according to EN61000-4-2)

Test set-up

Figure 5 — Example of test set-up for tabletop equipment — Laboratory tests
Figure 19 Schematic for electrostatic discharge

Performance criteria

The Sample must pass the test according to the acceptance criteria described in the sub clause 2.8

Operation Modes

Following operation modes	Sample 1 working as described in sub clause 2.5, Mode 1			
have been applied to the EUT:				

Accessories, auxiliary equipment and cables used for these measurements

Туре	Model	S/N	Manufacturer	Length	Shielded	Ferrites
16A / 250V (Mains plug)	M2511	N/A	Volex	N/A	N/A	N/A
16 A 250 VAC (Power cord)	NF-USE-Q050104- H05VV-F	N/A	HSING Industries LTD.	2.5m	N/A	N/A
Manual resuscitator	#	#	#	#	#	#

Table 14 Accessories, auxiliary equipment and cables used for electrostatic discharges immunity test

FORM0138 Revision 8 Page 36 of 68 April, 3d 2020

Test set-up - Photos

Enclosure

Figure 20 EUT Set-up for electrostatic discharge

4 Measurements

-3.8

31.7

4.1 Emissions measurements

4.1.1 Radiated Emissions from 30MHz to 1GHz

Test Site: SAR1

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 2

Test Description: Radiated Emissions – According to EN55011 GP1 Class B

Environmental Conditions: 20°C / 52% HR

ΕP Operator Name: Operating Mode: Mode 1 Test Report ID: BE2020063 02/04/2020 Date:

No.	Frequency	(P)	Reading	c.f	Result	Limit	Margin	Height	Angle
			QP		QP		QP		
	[MHz]		[dB(uV)]	[dB(1/m)]	[dB(uV/m)]	[dB(uV/m)]	[dB]	[cm]	[deg]
1	80.880	Н	6.7	13.3	20.0	40.0	20.0	400.0	151.0
2	82.752	Н	9.3	13.4	22.7	40.0	17.3	400.0	164.3
3	126.504	Н	8.9	18.1	27.0	40.0	13.0	270.0	153.8
4	196.244	Н	15.5	19.0	34.5	40.0	5.5	100.0	145.5
5	835.619	Н	-3.7	30.7	27.0	47.0	20.0	170.0	45.6
6	844.736	Н	-3.5	30.5	27.0	47.0	20.0	290.0	287.6
7	64.499	V	5.9	20.1	26.0	40.0	14.0	390.0	223.6
8	82.822	V	11.9	15.4	27.3	40.0	12.7	230.0	2.4
9	111.285	V	6.5	20.6	27.1	40.0	12.9	380.0	166.7
10	189.824	V	7.1	19.7	26.8	40.0	13.2	180.0	148.2
11	217.714	V	12.1	20.0	32.1	40.0	7.9	180.0	170.2
12	227.101	V	4.7	20.0	24.7	40.0	15.3	190.0	317.5

Figure 21 Radiated Emissions results from 30MHz to 1GHz

47.0

19.1

280.0

232.5

Page 39 of 68 FORM0138 Revision 8 April, 3d 2020

4.1.2 Continuous Conducted Emissions from 150kHz to 30MHz

4.1.2.1 AC power port

Test Site: SR2

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 2

Test Description: Conducted Emissions - According to EN55011 GP1 Class B

Environmental Conditions: 19.8°C / 45.3% Humidity

Operator Name: EP
Operating Mode: Mode 1
Test Report ID: BE2020063
Date: 02/04/2020

EN 55011_AC power port_Group 1_Class B

Figure 22 Conducted Emissions results from 150kHz to 30MHz at AC power port

Final Result for QPK

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	Comment
0.202000	53.0	5000.0	9.000	On	L1	10.0	10.5	63.5	
0.390000	53.7	5000.0	9.000	On	L1	10.0	4.3	58.1	
0.490000	53.1	5000.0	9.000	On	N	10.1	3.0	56.2	
0.886000	45.6	5000.0	9.000	On	L1	10.0	10.4	56.0	
1.466000	47.5	5000.0	9.000	On	N	9.9	8.5	56.0	
1.666000	48.8	5000.0	9.000	On	L1	10.0	7.2	56.0	
1.762000	47.1	5000.0	9.000	On	N	9.9	8.9	56.0	
1.962000	47.9	5000.0	9.000	On	N	10.0	8.1	56.0	
2.062000	46.4	5000.0	9.000	On	N	10.0	9.6	56.0	
2.174000	45.8	5000.0	9.000	On	N	10.0	10.2	56.0	
3.726000	32.9	5000.0	9.000	On	N	10.0	23.1	56.0	
7.558000	37.5	5000.0	9.000	On	L1	10.2	22.5	60.0	
16.590000	37.4	5000.0	9.000	On	L1	10.4	22.6	60.0	
17.962000	35.5	5000.0	9.000	On	L1	10.5	24.5	60.0	

Final Result Average

THAT INC						_			_
Frequency	CAverage	Meas.	Bandwidth	Filter	Line	Corr.	Margin	Limit	Comment
(MHz)	(dBµV)	Time	(kHz)			(dB)	(dB)	(dBµV)	
, ,	, , ,	(ms)	,			, ,	, ,	,	
0.202000	45.4	5000.0	9.000	On	L1	10.0	8.2	53.5	
0.394000	47.1	5000.0	9.000	On	L1	10.0	0.8	48.0	
0.490000	44.3	5000.0	9.000	On	N	10.1	1.8	46.2	
1.178000	43.6	5000.0	9.000	On	L1	10.0	2.4	46.0	
1.374000	45.1	5000.0	9.000	On	L1	10.0	0.9	46.0	
1.670000	44.5	5000.0	9.000	On	L1	10.0	1.5	46.0	
1.766000	43.7	5000.0	9.000	On	N	9.9	2.3	46.0	
2.158000	41.4	5000.0	9.000	On	L1	10.0	4.6	46.0	
4.122000	26.3	5000.0	9.000	On	L1	10.1	19.7	46.0	
7.162000	34.4	5000.0	9.000	On	L1	10.2	15.6	50.0	
10.398000	26.3	5000.0	9.000	On	L1	10.2	23.7	50.0	
29.822000	24.9	5000.0	9.000	On	N	10.8	25.1	50.0	

4.1.3 Harmonics

Name: EP Serial no: Sample 2

Department: Compliance Operating modes: Mode 1: Dimmer Max

Company: IDNEO Technologies S.A.U. Comment1: AMBU

Test report no: BE2020063 Comment2: $T^a(^{\circ}C)$ / HR(%): 19.5°C - 48.4% HR Comment3: Specimen: Automatic actuator system Comment4:

Manufacturer: # Test date: 02.04.2020

Model: OxyGEN2 #HOPE

Maximum RMS current and corresponding values in timewindow 1:

Voltage: 231.41 Vrms THD=0.01 % THV=0.020 V POHV=0.011 V PWHD=0.03 % Current: 0.277 Arms -0.592 Apk THD=129.13 % THC=0.190 A POHC=0.011 A PWHD=66.18 %

Power: 31.1 W P1=31.1 W 64.1 VA

Power factor: 0.485 CosPhi1: 0.915

Test conditions: EN 61000-3-2:2014, f=50 Hz, Phase=L1, Range=0.80 A

Time window=10/12 (200ms), Grouping (>2nd harm.)=on

No Ztest selected

harmonic currents < 0.6 % of l or < 5 m A are disregard for calc. of THD, THC, POHC, PWHD

HARMONIC ANALYSIS: Test PASS
Tobs = entire measurement; POHC: avg=0.00 A, limits=0.25 A
lavg=0.223 Arms

	En	tire m eas	surement (2.5 mi	n = 750 tim	ne wind	lows)		Worst 2.5 min		Averaç	ge	P	F
На	Maximum	Window	EN61000-3-2	Margin	100 to	150 to	Ex-	100 to	Ex-	Value	Ex-	S	A
			Class A	in MaxWin	150%	200%	ce eded	150%	ceeded		ceeded	s	Ĺ
DC	-0.0293 A	293	-,		0	0	0	n.e.	n.e.	-0.0011 A	0	Х	
1	0.1470 A	1	-,		0	0	0	n.e.	n.e.	0.1012 A	0	Х	
2	0.0466 A	246	1.0800 A	-95.7 %	0	0	0	n.e.	n.e.	0.0362 A	0	Х	
3	0.1759 A	1	2.3000 A	-92.4 %	0	0	0	n.e.	n.e.	0.1340 A	0	Х	
4	0.0417 A	270	0.4300 A	-90.3 %	0	0	0	n.e.	n.e.	0.0345 A	0	Х	
5	0.0400 A	1	1.1400 A	-96.5 %	0	0	0	n.e.	n.e.	0.0314 A	0	Х	
6	0.0139 A	372	0.3000 A	-95.4 %	0	0	0	n.e.	n.e.	0.0114 A	0	Х	
7	0.0107 A	599	0.7700 A	-98.6 %	0	0	0	n.e.	n.e.	0.0093 A	0	X	
8	0.0084 A	1	0.2300 A	-96.3 %	0	0	0	n.e.	n.e.	0.0072 A	0	X	
9	0.0140 A	1	0.4000 A	-96.5 %	0	0	0	n.e.	n.e.	0.0108 A	0	Х	
10	0.0083 A	354	0.1840 A	-95.5 %	0	0	0	n.e.	n.e.	0.0067 A	0	Х	
11	0.0149 A	1	0.3300 A	-95.5 %	0	0	0	n.e.	n.e.	0.0114 A	0	Х	
12	0.0076 A	3	0.1533 A	-95.1 %	0	0	0	n.e.	n.e.	0.0062 A	0	Х	
13	0.0116 A	2	0.2100 A	-94.5 %	0	0	0	n.e.	n.e.	0.0089 A	0	X	
14	0.0086 A	1	0.1314 A	-93.5 %	0	0	0	n.e.	n.e.	0.0062 A	0	X	
15	0.0080 A	2	0.1500 A	-94.7 %	0	0	0	n.e.	n.e.	0.0066 A	0	Х	
16	0.0059 A	201	0.1150 A	-94.9 %	0	0	0	n.e.	n.e.	0.0053 A	0	X	
17	0.0066 A	1	0.1324 A	-95.1 %	0	0	0	n.e.	n.e.	0.0053 A	0	X	
18	0.0044 A	68	0.1022 A	-95.7 %	0	0	0	n.e.	n.e.	0.0038 A	0	X	
19	0.0064 A	1	0.1184 A	-94.6 %	0	0	0	n.e.	n.e.	0.0043 A	0	X	
20	0.0041 A	3	0.0920 A	-95.5 %	0	0	0	n.e.	n.e.	0.0035 A	0	X	
21	0.0053 A	1	0.1071 A	-95.1 %	0	0	0	n.e.	n.e.	0.0038 A	0	X	
22	0.0040 A	201	0.0836 A	-95.3 %	0	0	0	n.e.	n.e.	0.0034 A	0	X	
23	0.0044 A	3	0.0978 A	-95.5 %	0	0	0	n.e.	n.e.	0.0037 A	0	X	
24	0.0039 A	3	0.0767 A	-95.0 %	0	0	0	n.e.	n.e.	0.0028 A	0	X	
25	0.0046 A	1	0.0900 A	-94.9 %	0	0	0	n.e.	n.e.	0.0034 A	0	X	
26	0.0035 A	3	0.0708 A	-95.0 %	0	0	0	n.e.	n.e.	0.0027 A	0	X	
27	0.0036 A	1	0.0833 A	-95.7 %	0	0	0	n.e.	n.e.	0.0030 A	0	X	
28	0.0028 A	618	0.0657 A	-95.7 %	0	0	0	n.e.	n.e.	0.0025 A	0	X	
29	0.0030 A	248	0.0776 A	-96.1 %	0	0	0	n.e.	n.e.	0.0027 A	0	X	
30	0.0026 A	69	0.0613 A	-95.8 %	0	0	0	n.e.	n.e.	0.0022 A	0	X	
31	0.0028 A	6	0.0726 A	-96.1 %	0	0	0	n.e.	n.e.	0.0023 A	0	X	
32	0.0023 A	3	0.0575 A	-96.0 %	0	0	0	n.e.	n.e.	0.0019 A	0	X	
33	0.0023 A	659 3	0.0682 A	-96.6 %	0	0	0	n.e.	n.e.	0.0020 A	0	X	
34	0.0021 A		0.0541 A	-96.2 %	0	0	0	n.e.	n.e.	0.0018 A	0	1	
35	0.0023 A	3	0.0643 A	-96.5 %	0	0	0	n.e.	n.e.	0.0018 A	0	X	
36	0.0020 A	3	0.0511 A	-96.0 %	0	0	0	n.e.	n.e.	0.0017 A	0	X	
37	0.0023 A	3	0.0608 A	-96.2 %	0	0	0	n.e.	n.e.	0.0017 A	0	X	
38	0.0020 A	3	0.0484 A	-95.8 %	0	0	0	n.e.	n.e.	0.0015 A	0	X	
39	0.0020 A	721	0.0577 A	-96.5 %	0	0	0	n.e.	n.e.	0.0015 A	0	X	
40	0.0017 A	721	0.0460 A	-96.3 %			0	n.e.	n.e.	0.0014 A		^	

average value < 0.6 % of lavg or < 5 m A n.e. = not evaluated

Test ed with SPS EMC 4.1.3 / PAS5000 by Spitzenberger & Spies G mbH & Co. KG, Schmidstr. 32-34, 94234 Viechtach, G ermany, 02.04.2020

FORM0138 Revision 8 Page 42 of 68 April, 3^d 2020

Name: EP Serial no: Sample 2

Department: Compliance Operating modes: Mode 1: Dimmer Max

Company: IDNEO Technologies S.A.U. Comment1: AMBU

Test report no: BE2020063 Comment2: $T^a(^{\circ}C) / HR(^{\circ}C)$: 19.5 $^{\circ}C$ - 48.4 $^{\circ}C$ HR Comment3: Specimen: Automatic actuator system Comment4:

Manufacturer: # Test date: 02.04.2020

Model: OxyGEN2 #HOPE

Voltage: 231.41 Vrms THD=0.01 % THV=0.020 V POHV=0.011 V PWHD=0.03 % Current: 0.277 Arms -0.592 Apk THD=129.13 %THC=0.190 A POHC=0.011 APWHD=66.18

Power: 31.1 W P1=31.1 W 64.1 VA

Power factor: 0.485 CosPhi1: 0.915

Test condition £N 61000-3-2:2014, f=50 Hz, Phase=L1, Range=0.80 A

Time window=10/12 (200ms), Grouping (>2nd harm.)=on

No Ztest selected

harmonic currents < 0.6 % of lor < 5 m A are disregard for calc. of THD, THC, POHC, PW

HARMONIC ANALYSIS: Test PASS in Timewindow 1 of 750

			LYSIS: Lest P				
На	Value	Percent	Angle	EN61000-3-2	Margin	PASS	FAIL
				Class A			
DC	-0.0046 A	-3.10 %	Deg	-,		Х	
1	0.1470 A	100.00 %	23.8 Deg			X	
2	0.0340 A	23.09 %	-173.9 Deg	1.0800 A	-96.9 %	X	
3	0.1759 A	119.64 %	-2.2 Deg	2.3000 A	-92.4 %	X	
4	0.0300 A	20.40 %	-178.9 Deg	0.4300 A	-93.0 %	Х	
5	0.0400 A	27.18 %	-22.9 Deg	1.1400 A	-96.5 %	X	
6	0.0126 A	8.57 %	30.2 Deg	0.3000 A	-95.8 %	X	
7	0.0103 A	7.04 %	-85.3 Deg	0.7700 A	-98.7 %	X	
8	0.0084 A	5.71 %	5.0 Deg	0.2300 A	-96.3 %	Х	
9	0.0140 A	9.55 %	-168.4 Deg	0.4000 A	-96.5 %	Х	
10	0.0070 A	4.75 %	48.0 Deg	0.1840 A	-96.2 %	Х	
11	0.0149 A	10.15 %	-179.9 Deg	0.3300 A	-95.5 %	X	
12	0.0075 A	5.10 %	65.8 Deg	0.1533 A	-95.1 %	X	
13	0.0112 A	7.64 %	-168.0 Deg	0.2100 A	-94.7 %	Х	
14	0.0086 A	5.82 %	73.0 Deg	0.1314 A	-93.5 %	Х	
15	0.0080 A	5.41 %	-156.5 Deg	0.1500 A	-94.7 %	Х	
16	0.0059 A	4.02 %	119.0 Deg	0.1150 A	-94.9 %	Х	
17	0.0066 A	4.46 %	-144.1 Deg	0.1324 A	-95.1 %	Х	
18	0.0043 A	2.96 %	-135.8 Deg	0.1022 A	-95.7 %	X	
19	0.0064 A	4.34 %	-156.8 Deg	0.1184 A	-94.6 %	Х	
20	0.0040 A	2.70 %	-75.7 Deg	0.0920 A	-95.7 %	X	
21	0.0053 A	3.58 %	-142.3 Deg	0.1071 A	-95.1 %	Х	
22	0.0030 A	2.07 %	35.1 Deg	0.0836 A	-96.4 %	X	
23	0.0044 A	2.98 %	-129.3 Deg	0.0978 A	-95.5 %	X	
24	0.0037 A	2.54 %	-39.8 Deg	0.0767 A	-95.1 %	X	
25	0.0046 A	3.13 %	-151.4 Deg	0.0900 A	-94.9 %	X	
26	0.0034 A	2.31 %	-44.5 Deg	0.0708 A	-95.2 %	X	
27	0.0036 A	2.42 %	177.5 Deg	0.0833 A	-95.7 %	X	
28	0.0027 A	1.81 %	68.2 Deg	0.0657 A	-96.0 %	X	
29	0.0025 A	1.68 %	-167.9 Deg	0.0776 A	-96.8 %	X	
30	0.0021 A	1.41 %	102.7 Deg	0.0613 A	-96.6 %	X	
31	0.0027 A	1.84 %	-147.9 Deg	0.0726 A	-96.3 %	X	
32	0.0023 A	1.53 %	74.5 Deg	0.0575 A	-96.1 %	X	
33	0.0021 A	1.42 %	177.1 Deg	0.0682 A	-96.9 %	X	
34	0.0019 A	1.28 %	-129.5 Deg	0.0541 A	-96.5 %	X	
35	0.0022 A	1.49 %	-49.6 Deg	0.0643 A	-96.6 %	X	
36	0.0020 A	1.36 %	-144.2 Deg	0.0511 A	-96.1 %	X	
37	0.0022 A	1.53 %	-116.3 Deg	0.0608 A	-96.3 %	X	
38	0.0020 A	1.33 %	-142.0 Deg	0.0484 A	-96.0 %	X	
39	0.0020 A	1.39 %	-149.9 Deg	0.0577 A	-96.5 %	X	
40	0.0015 A	0.99 %	-42.2 Deg	0.0460 A	-96.8 %	X	
						l	

value < 0.6 % of l or < 5 m A

Tested with SPS EMC 4.1.3 / PAS5000 by Spitzenberger & Spies GmbH & Co. KG, Schmidstr. 32-34, 94234 Viechtach, Germany, 02.04.2020

FORM0138 Revision 8 Page 43 of 68 April, 3d 2020

Figure 23 Harmonics results

4.1.4 Voltage Fluctuations (Flicker)

Name: EP Serial no: Sample 2

Department: Compliance Operating modes: Mode 1: Dimmer Max

Company: IDNEO Technologies S.A.U.Comment1: AMBU

Test report no: BE2020063 Comment2: $T^a(^{\circ}C) / HR(^{\circ}C)$: 19.5°C - 48.4% HR Comment3: Specimen: Automatic actuator system Comment4:

Manufacturer: # Test date: 02.04.2020

Model: OxyGEN2 #HOPE

Test conditions EN 61000-3-3:2013 / 230 V / 50 Hz / Phase L1

EN 61000-4-15:2011 / Obs 1 x 10 min / Ztest (0.400+j0.250) Ohm Ra+jXa (0.2400+j0.1500) Ohm / Rn+jXn (0.1600+j0.1000) Ohm

FLICKER: Test PASS!

Time	Pm ax	Pst	Sliding Plt	Tmax[s]	dmax[%]	dc [%]	PASS	FAIL
23:19:26	0.050	0.1570		0.000	+0.000		Х	
Limits:		1.000	0.650	0.500	4.000	3.300		
Plt: 0.068576 (calculated over 12 periods)								
Evaluated: PST, PLT, Sliding PLT, dc, dmax, Tmax								

FLICKER: Source test PASS!

Time	Pm ax	Pst	Sliding Plt	Tmax[s]	dmax[%]	dc [%]	PASS	FAIL	
23:19:26	0.000	0.0100		0.000	+0.000		Х		
Plt: 0.0043	Plt: 0.004368 (calculated over 12 periods)								
Evaluated: PST <= 0.4 dmax < 20 % dmax1									

Tested with SPIS EMC 4.1.3 / PAIS5000 by Spitzenberger & Spies GmbH & Co. KG, Schmidstr. 32-34, 94234 Viechtach, Germany, 02.04.2020

Figure 24 Voltage Fluctuations results

4.2 Susceptibility measurements

4.2.1 Immunity from radiated fields from 80MHz to 1GHz

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-3

Test condition

Frequency range: 80MHz to 1GHz

Test level: According to EN 60601-1-2

Dwell time: 3s

Modulation: AM: 80,0%; 1,0kHz

Step Width: 1%

Performance criteria: Acceptance criteria is described in sub clause 2.8

Field orientation: Vertical / Horizontal

Antenna height: 1.55m

EUT position: Top table for 0°, 90°, 180° and 270°

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Frequency	Polarization	Exposed side	Result
80MHz – 1GHz	Н	0º/90º/180º/270º	Р
80MHz – 1GHz	V	0º/90º/180º/270º	P

Table 15 Radiated Immunity measurements from 80MHz to 1GHz - Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

FORM0138 Revision 8 Page 46 of 68 April, 3^d 2020

Test Site: FAR2

EUT Name: OxyGEN2 #Hope

Serial Number: Sample 1

Test Description: Radiated Immunity according to EN61000-4-3

Environmental Conditions: 21°C / 45% RH

Operator Name: EP
Operating mode: MODE 1

Comment: Antenna polarization: H EUT side: 0° / 90° / 180° / 270°

Test Report ID: BE2020063 Date: 02/04/2020

Imm Level

Figure 25 Radiated Immunity results for H polarity from 80MHz to 1GHz

Test Site: FAR2

EUT Name: OxyGEN2 #Hope

Serial Number: Sample 1

Test Description: Radiated Immunity according to EN61000-4-3

Environmental Conditions: 21°C / 45% RH

Operator Name: EP
Operating mode: MODE 1

Comment: Antenna polarization: V EUT side: 0° / 90° / 180° / 270°

Test Report ID: BE2020063 Date: 02/04/2020

Imm Level

Figure 26 Radiated Immunity results for V polarity from 80MHz to 1GHz

4.2.2 Immunity from radiated fields from 1GHz to 2.7GHz

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-3

Test condition

Frequency range: 1GHz to 2.7GHz

Test level: According to EN 60601-1-2

Dwell time: 3s

Modulation: AM: 80,0%; 1,0kHz

Step Width: 1%

Performance criteria: Acceptance criteria is described in sub clause 2.8

Field orientation: Vertical / Horizontal

Antenna height: 1.55m

EUT position: Top table for 0°, 90°, 180° and 270°

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Frequency	Polarization	Exposed side	Result
1GHz – 2.7 GHz	Н	0º/90º/180º/270º	Р
1GHz – 2.7 GHz	V	0º/90º/180º/270º	Р

Table 16 Radiated Immunity measurements from 1GHz to 2.7GHz - Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

FORM0138 Revision 8 Page 49 of 68 April, 3^d 2020

Test Site: FAR2

EUT Name: OxyGEN2 #Hope

Serial Number: Sample 1

Test Description: Radiated Immunity according to EN61000-4-3

Environmental Conditions: 21°C / 45% RH

Operator Name: EP

Operating mode: MODE 1

Comment: Antenna polarization: H EUT side: 0° / 90° / 180° / 270°

Test Report ID: BE2020063 Date: 02/04/2020

Imm Level

Figure 27 Radiated Immunity results for H polarity from 1GHz to 2.7GHz

Test Site: FAR2

EUT Name: OxyGEN2 #Hope

Serial Number: Sample 1

Test Description: Radiated Immunity according to EN61000-4-3

Environmental Conditions: 21°C / 45% RH

Operator Name: EP
Operating mode: MODE 1

Comment: Antenna polarization: V EUT side: 0° / 90° / 180° / 270°

Test Report ID: BE2020063 Date: 02/04/2020

Imm Level

Figure 28 Radiated Immunity results for V polarity from 1GHz to 2.7GHz

4.2.3 Immunity to proximity fields from RF wireless communications*

Test condition

Frequency range: From 385MHz to 5785 MHz

Test level: From 9V/m to 28V/m according to EN 60601-1-2

Dwell time: 3s

Modulation: PM 18Hz or 217Hz (50% duty cycle)

Step Width: 1%

Performance criteria: Acceptance criteria is described in sub clause 2.8

Field orientation: Vertical / Horizontal

Antenna height: 1.55m

EUT position: Top table for 0°, 90°, 180° and 270°

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Test Frequency (MHz)	Modulation	Immunity test level	Exposed side	Polarization	Result	Comments
385	Pulse modulation 18Hz	27 V/m	0º/90º/180º/270º	H/V	P	
450	FM ±5kHz deviation 1kHz sine	28 V/m	0º/90º/180º/270º	H/V	Р	
710			0º/90º/180º/270º	H/V	P	
745	Pulse modulation 217Hz	9 V/m	0º/90º/180º/270º	H/V	Р	
780			0º/90º/180º/270º	H/V	Р	
810			0º/90º/180º/270º	H/V	P	
870	Pulse modulation 18Hz	28 V/m	0º/90º/180º/270º	H/V	P	
930			0º/90º/180º/270º	H/V	Р	1
1720			0º/90º/180º/270º	H/V	Р	
1845	Pulse modulation 217Hz	28 V/m	0º/90º/180º/270º	H/V	Р	
1970			0º/90º/180º/270º	H/V	Р	
2450	Pulse modulation 217Hz	28 V/m	0º/90º/180º/270º	H/V	Р	
5240*			0º/90º/180º/270º	H/V	Р	
5500*	Pulse modulation 217Hz	9 V/m	0º/90º/180º/270º	H/V	Р	
5785*			0º/90º/180º/270º	H/V	Р	

Table 17 Immunity to proximity fields from RF wireless communications – Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: FAR2

EUT Name: OxyGEN2 #Hope

Serial Number: Sample 1

Test Description: Immunity to proximity fields from RF wireless communications – According to EN61000-4-3

Environmental Conditions: 21°C / 45% RH

Operator Name: EP
Operating mode: MODE 1

Comment: Antenna polarization: H/V EUT side: 0° / 90° / 180° / 270°

Test Report ID: BE2020063

Date: 02/04/2020 and 03/04/2020

FORM0138 Revision 8 Page 52 of 68 April, 3^d 2020

4.2.4 Immunity to conducted disturbances from 150kHz to 80MHz

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-6

4.2.4.1 AC power port

Test condition

Frequency range: 150kHz to 80MHz

Test level: According to EN 60601-1-2

Dwell time: 3s

Modulation: AM: 80,0%; 1,0kHz

Step Width: 1%

Performance criteria: Acceptance criteria is described in sub clause 2.8

Application method: CDN for direct injection at AC power port

EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5 The EUT monitoring as described in sub clause 2.5

Test results

Frequency	Coupling Path	Result	
150kHz - 80MHz	AC power port	P	

Table 18 Conducted Immunity measurements at AC power port – Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: CIR

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 1

Test Description: Conducted Immunity according to EN61000-4-6

Environmental Conditions: 19.9°C / 47.5% RH

Operator Name: EP

Operating mode: MODE 1

Comments: Coupling Path: AC power port

Test Report ID: BE2020063 Date: 02/04/2020

Imm Level

Figure 29 Conducted Immunity results for AC power port

4.2.5 Electrical Fast Transient / Burst Pulse (EFT)

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-4

4.2.5.1 AC power port

Test condition

Test level: According to EN 60601-1-2

Repetition Frequency: 100kHz
Burst Duration: 0,75ms
Burst Period: 300ms

Application method: CDN for direct injection at AC power port

Performance criteria: Acceptance criteria is described in sub clause 2.8

Duration of each test: 1 minute EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Туре	Lines	Test level (kV)	Result
	LCND	+2	Р
	L-GND	-2	Р
	N-GND	+2	P
	IN-GIND	-2	Р
	LN-GND	+2	Р
	LIN-GIND	-2	Р
AC power port	PE-GND	+2	Р
Ac power port	PE-GND	-2	Р
	LPE-GND	+2	Р
	LF L-GND	-2	Р
	NPE-GND	+2	Р
	INI L-GIND	-2	Р
	LNPE-GND	+2	Р
	LINF E-GIND	-2	Р

Table 19 EFT measurements at AC power port – Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: SR2

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 1

Test Description: EFT at AC power port – According to EN61000-4-4

Environmental Conditions: 19.9°C / 46.7% HR

Operator Name: EP
Operating mode: Mode 1

Comment: Application method: CDN for direct injection at AC power port

Test Report ID: BE2020063
Date: 02/04/2020

FORM0138 Revision 8 Page 55 of 68 April, 3^d 2020

4.2.6 Surges

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-5

4.2.6.1 AC power port

Test condition

Test level: According to EN 60601-1-2

Polarity: Positive/ Negative
Number of pulses: 5 at each polarity
Phase shifting: 0°, 90°, 180° and 270°

Performance criteria: Acceptance criteria is described in sub clause 2.8

Repetition rate: 1 minute EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Туре	Lines	Test level (kV)	Phase (º)	Result
Line to Line		+0.5		P
	L-N	-0.5	0º, 90º, 180º, 270º	Р
(Differential)	L-IN	+1	0=, 90=, 160=, 270=	Р
		-1		P
	L-PE	+0.5		Р
	L-PE	-0.5	0º, 90º, 180º, 270º	Р
	L-PE	+1		Р
	L-PE	-1		P
	L-PE	+2		P
Line to Earth	L-PE	-2		P
(Common)	N-PE	+0.5		Р
	N-PE	-0.5		P
	N-PE	+1		Р
	N-PE	-1		Р
	N-PE	+2		P
	N-PE	-2		Р

Table 20 Surges measurements at AC power port - Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: SR2

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 1

Test Description: Surges at AC power port – According to EN61000-4-5

Environmental Conditions: 20°C / 46.7% HR

Operator Name: EP
Operating mode: Mode 1
Test Report ID: BE2020063
Date: 02/04/2020

FORM0138 Revision 8 Page 56 of 68 April, 3^d 2020

4.2.7 Voltage Dips / Short Interruptions

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-11

4.2.7.1 Voltage Dips

Test condition

Test Voltage: 240Vac

Test Frequency: 50Hz for 240Vac

△Voltage / Duration: 100% reduction / 0.5 periods_50Hz 100% reduction / 1 period_50Hz 30% reduction / 25 periods_50Hz

0° / 180° except for 100% reduction / 0.5p (0°→315° Δ 45°)

Number of events: 3 at each level

Recovery time between pulses: 10s

Phase angle of insertion:

Performance criteria: Acceptance criteria is described in sub clause 2.8

EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5
EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Туре	Test level (% reduction)	Phase angle of insertion (2)	Duration (periods)	Result
Voltage dips at AC power port	100%	$0^{\circ} \rightarrow 315^{\circ}$ with $\Delta 45^{\circ}$	0.5	Р
	100%	0º / 180º	1	Р
	30%	0º / 180º	25	Р

Table 21 Voltage Dips measurements at AC power port – Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: Generic standard EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 2

Test Description: Voltage Dips at AC power port – According to EN61000-4-11

Environmental Conditions: 19.5°C / 48.4% HR

Operator Name: EP
Operating mode: Mode 1
Test Report ID: BE2020063
Date: 02/04/2020

4.2.7.2 Short Interruptions

Test condition

Test Voltage: 240Vac

Test Frequency: 50Hz for 240Vac

ΔVoltage / Duration: 100% reduction / 250 periods_50Hz

Phase angle of insertion: 0° / 180°

Number of events: 3 at each level

Recovery time between pulses: 10s

Performance criteria: Acceptance criteria is described in sub clause 2.8

EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5
EUT monitoring: The EUT monitoring as described in sub clause 2.5

Test results

Туре	Test level (% reduction)	Phase angle of insertion (º)	Duration (periods)	Result
Short Interruptions at AC power port	100% red.	0º / 180º	250	Р

Table 22 Short Interruptions measurements at AC power port - Test Results

The EUT lost power and function during the test. Once the EUT recovers power, EUT recovers its normal operation mode. The EUT passed the test under the acceptance described in sub clause 2.8.

Test Site: Generic standard EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 2

Test Description: Short Interruptions at AC power port – According to EN61000-4-11

Environmental Conditions: 19.5°C / 48.4% HR

Operator Name: EP
Operating mode: Mode 1
Test Report ID: BE2020063
Date: 02/04/2020

4.2.8 Electrostatic Discharges (ESD)

TEST SET-UP UNDER THE REQUIREMENTS OF THE EN61000-4-2

Test condition

Test level: Contact discharge: ± 8KV

Air discharge: ± 2KV, ± 4KV, ± 8KV and ± 15KV

Discharge impedance: $330 \Omega / 150 pF$

Number of discharges: Air ≥ 10 per test point

Contact ≥ 10 per test point

Discharge mode: Single Discharge
Discharge period: 1 second minimum

Performance criteria: Acceptance criteria is described in sub clause 2.8

EUT position: Top table

EUT operating mode: The EUT operating as described in sub clause 2.5 EUT monitoring: The EUT monitoring as described in sub clause 2.5

Electrostatic discharges were applied only to those points and surfaces of the EUT that are accessible to the users during normal operation.

Test results

	Lavial		Amuliantina	Result	
Part under test	Level Type	Application mode	+	-	
				Polarity	Polarity
Top cover selected points	15kV	Air	Direct	P	P
Emergency stop button	15kV	Air	Direct	P	Р
AC Inlet	15kV	Air	Direct	P	P
Dimmer	15kV	Air	Direct	Р	Р
Main switch	15kV	Air	Direct	Р	Р
Metallic enclosure selected points	8kV	Contact	Direct	Р	Р
Enclosure screws	8kV	Contact	Direct	Р	Р
Enclosure	8kV	Contact	Front VCP	Р	Р
Enclosure	8kV	Contact	Rear VCP	Р	Р
Enclosure	8kV	Contact	Left VCP	Р	Р
Enclosure	8kV	Contact	Right VCP	Р	Р
Enclosure	8kV	Contact	Front HCP	Р	Р
Enclosure	8kV	Contact	Rear HCP	Р	Р
Enclosure	8kV	Contact	Left HCP	Р	Р
Enclosure	8kV	Contact	Right HCP	Р	Р

Table 23 ESD measurements - Test Results

There was no change compared with initial operation during and after the test. The EUT passed the test under the acceptance criteria described in sub clause 2.8.

Test Site: CIR

EUT Name: OxyGEN2 #HOPE

Serial Number: Sample 1

Test Description: Electrostatic Discharges – According to EN61000-4-2

Environmental Conditions: 19.6°C / 44.7% HR

Operator Name: EP
Operating mode: Mode 1
Test Report ID: BE2020063
Date: 03/04/2020

Test points

5 Measurement remarks

Deviations from the applied test Specification
--

- no deviations -

Remarks:

- no remarks -

Other Participants:

- no other participants -

6 Photos of the equipment under test

EUT: OxyGEN2 #HOPE

Figure 30 OxyGEN2 #HOPE Sample 1 and Sample 2 - Front view

Figure 31 OxyGEN2 #HOPE Sample 1 and Sample 2 - Rear view

FORM0138 Revision 8 Page 62 of 68 April, 3^d 2020

Figure 32 OxyGEN2 #HOPE - Marking Sample 1

Figure 33 OxyGEN2 #HOPE - Marking Sample 2

FORM0138 Revision 8 Page 63 of 68 April, 3d 2020

AUXILIARY / ACCESSORY EQUIPMENT

Figure 34 AC Power cord – General view

7 List of measurement equipments

Measurement equipments which are used

	Radiated Emissions							
	SAR1							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date			
433	VULB 9163	Comb Broadband Antenna	Schwarzbeck	226	28/04/2017			
435	DC-12.4GHz	6dB Atenuator	Huber Suhner	6806.17.A	20/12/2019			
562	Sucoflex 100 & Enviroflex 393	RE Path	Huber Suhner	562	20/12/2019			
693	413 7617	Thermohygrometer	RS	C02054	13/05/2019			
715	SAR1	Semi-Anechoic Room	Albatross-projects	T162	09/01/2020			
719	Type2	EMI Table	ETS-Lindgren	719	N/A			

	CR1						
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date		
699	ESU26	EMI Test Receiver	Rohde&Schwarz	100203	25/06/2018		
701	V-SCAN Software	EMI Software	Toyo Corporation	v4.0.10	N/A		
708	CR1	Control Room	Albatross-projects	T162	N/A		
1112	608-H1	Termohygrometer	Testo	45227542	09/03/2020		

	Conducted Emissions							
	SR2							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date			
421	ESCI3	EMI Test Receiver	Rohde&Schwarz	100129	28/11/2018			
425	ENV216	LISN Two-Line V-Network	Rohde&Schwarz	100101	21/11/2019			
550	W10.03	CE Path: Cable Conducted EMI	Rohde&Schwarz	550	27/01/2020			
702	EMC32 Software	EMS Software	Rohde&Schwarz	v8.54.0	N/A			
691	608-H1	Thermohygrometer	Testo	45053716	14/05/2019			
707	SR2	Shield Room	Albatross-projects	T161	N/A			

Harmonics & Flicker							
	Generic Standards						
ID Equip.	ID Equip. Model Type Manufacturer Serial Number Cal. Date						
549	ARS16/1	Analyzer Reference System	Spitzenberger&Spies	A272207/00201	28/11/2019		
690	413 7617	Thermohygrometer	RS	C02057	13/05/2019		
704	SPS-PHE EMC SOFTWARE	EMI Software	Spitzenberger&Spies	v.4.1.3	N/A		
806	NT5000	Power Supply	Spitzenberger&Spies	A292002/00202	N/A		
807	Sycore	Oscillator	Spitzenberger&Spies	A292012/00202	N/A		
809	PAS5000	4 Quadrant Amplifier	Spitzenberger&Spies	A292001/00202	N/A		

FORM0138 Revision 8 Page 65 of 68 April, 3d 2020

	Radiated Immunity & Proximity fields from RF wireless							
	FAR2							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date			
527	HL046	EMS Antenna	Rodhe&Schwarz	100028	N/A			
559	W41.15	Cable Antenna	Huber Suhner	559	30/10/2018			
678	STLP9149	Logperiodic Antenna	Schwarzbeck	9149-023	N/A			
692	413 7617	Thermohygrometer	RS	C02056	13/05/2019			
713	FAR2	Fully Anechoic Room	Albatross-projects	T161	30/10/2018			
717	PT91	Video Camara	PONTIS	6210524022	N/A			
1019	AK 9515 G	Cable Antenna	Schwarzbeck	187	16/10/2018			

CR2							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date		
446	URV5-Z4	100V Insertion Unit	Rodhe&Schwarz	100107	24/10/2018		
520	NRVS	Power Meter	Rohde&Schwarz	101197	22/11/2018		
538	SML03	Signal Generator	Rodhe&Schwarz	102320	22/11/2018		
687	608-H1	Thermohygrometer	Testo	45053727	15/05/2019		
703	EMC32 Software	EMS and EMI Software	Rohde & Schwarz	v.10.30.00	N/A		
711	CR2	Control Room	Albatross-projects	T162	N/A		
716	CVM3551D	Monitor	BARCO	5633906	N/A		

	AR						
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date		
529	BLWA 0810-160/100D	RF Amplifier	Bonn	055968B	02/07/2018		
530	TS-RSP	RF System Pannel	Rohde&Schwarz	100201	22/11/2018		
578	URV5-Z2	10V Insertion Unit	Rohde&Schwarz	100254	22/11/2018		
680	SMF100A	Signal Generator	Rodhe&Schwarz	100565	25/11/2019		
685	BLMA 1040-60/110D	RF Amplifier	Bonn	87100	02/07/2018		
714	AR	Amplifier Room	Albatross-projects	T161	N/A		
1024	BBA150	Power Amplifier	Rohde&Schwarz	102822	17/09/2019		
1025	NRP6AN	Average Power Sensor	Rohde&Schwarz	101068	22/11/2019		
1026	NRP6AN	Average Power Sensor	Rohde&Schwarz	101069	22/11/2019		

Conducted Immunity								
CR2								
ID Equip.	ID Equip. Model Type Manufacturer Serial Number Cal							
446	URV5-Z4	100V Insertion Unit	Rodhe&Schwarz	100107	24/10/2018			
520	NRVS	Power Meter	Rohde&Schwarz	101197	22/11/2018			
538	SML03	Signal Generator	Rodhe&Schwarz	102320	22/11/2018			
687	608-H1	Thermohygrometer	Testo	45053727	15/05/2019			
703	EMC32 Software	EMS and EMI Software	Rohde & Schwarz	v.10.30.00	N/A			
711	CR2	Control Room	Albatross-projects	T162	N/A			
716	CVM3551D	Monitor	BARCO	5633906	N/A			

CIR							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date		
513	CDN L-801 M2/M3	Coupling/Decoupling Network	Lüthi	2139	21/11/2019		
515	150-SA-MFN-06	6dB Atennuator/150W	Bird Electronics	527	29/10/2018		
517	EM-101	Injection Clamp	Luthi	35735	29/10/2018		
552	W21.07	Cable 6dB att. CDN-Clamp	Rohde&Schwarz	1506.5328	29/10/2018		
688	608-H1	Thermohygrometer	Testo	410 0116	14/05/2019		
712	CIR	Conduted Immunity Room	Albatross-projects	T162	N/A		

AR							
ID Equip.	Model	Туре	Manufacturer	Serial Number	Cal. Date		
528	BSA0125-25	RF Amplifier	Bonn	055968A	02/07/2018		
530	TS-RSP	RF System Pannel	Rohde&Schwarz	100201	22/11/2018		
578	URV5-Z2	10V Insertion Unit	Rohde&Schwarz	100254	22/11/2018		
714	AR	Amplifier Room	Albatross-projects	T161	N/A		

EFT/BURST								
	SR2							
ID Equip.	ID Equip. Model Type Manufacturer Serial Number Cal. Date							
534	PEFT4010	Burst Simulator	Haefely	146289	11/12/2018			
565	Absorbing clamp Test AG	Absorbing Clamp IP 4A	HAEFELY	153115	15/05/2019			
686	608-H1	Thermohygrometer	Testo	45053716	14/05/209			
707	SR2	Shield Room	Albatross-projects	T161	N/A			

SURGES							
SR2							
ID Equip.	ID Equip. Model Type Manufacturer Serial Number Cal. Date						
533	PSURGE4010	Surge Simulator	Haefely	152811	22/11/2018		
686	686 608-H1 Thermohygrometer Testo		Testo	45053716	14/05/209		
707	SR2	Shield Room	Albatross-projects	T161	N/A		

Voltage DIPS & Interruptions									
	Generic Standards								
ID Equip.	ID Equip. Model Type Manufacturer Serial Number Cal. Dat								
549	ARS16/1	Analyzer Reference System	Spitzenberger&Spies	A272207/00201	28/11/2019				
690	413 7617	Thermohygrometer	RS	C02057	13/05/2019				
704	SPS-PHE EMC SOFTWARE	EMI Software	Spitzenberger&Spies	v4.1.3	N/A				
806	NT5000	Power Supply	Spitzenberger&Spies	A292002/00202	N/A				
807	Sycore	Oscillator	Spitzenberger&Spies	A292012/00202	N/A				
809	PAS5000	4 Quadrant Amplifier	Spitzenberger&Spies	A292001/00202	N/A				

ESD							
	CIR						
ID Equip.	Model Type Manufacturer Serial Number Cal. Dat						
688	608-H1	Thermohygrometer	Testo	410 0116	14/05/2019		
712	CIR	Conduted Immunity Room	Albatross-projects	T162	N/A		
971	PESD 1610	ESD Simulator	HAEFELY	H505591	22/11/2019		