Aufgabe 1

- i) Falsch. Als Gegenbeispiel nehme man $V = \mathbb{R}^3$. $v_1 = (1,0,0)$ und $v_2 = v_3 = (0,1,0)$.
- ii) Richtig. Dies ist mehr oder minder die Definition.
- iii) Falsch. v_3 ist immer ein Element von $span(v_2, v_3)$.

Aufgabe 2

- i) Falsch, denn sei $V=W=\mathbb{R},\ g$ die Nullabbildung und f die Identität. Dann gilt $\ker(g\circ f)=\mathbb{R}$ aber $\ker(f)=0.$
- ii) Richtig. Da $f(V) \subseteq W \Rightarrow g \circ f(V) = g(f(V)) \subseteq g(W)$.
- iii) Falsch, denn sei $V=W=\mathbb{R}$ und g=f die Identität. Dann gilt $Bild(f)=\mathbb{R}$ aber ker(g)=0.

Aufgabe 3

- i) Das ist richtig. Etwas ähnliches wurde in den Übungsaufgaben behandelt.
- ii) Ja. Einfach nachrechnen.
- iii) Nein, dies gilt schon für n = 1 nicht: Z.B $f(1+1) = 4 \neq 2 = f(1) + f(1)$.

Aufgabe 4

- i) Ja, dies war eine Übungsaufgabe.
- ii) Nein, denn sei $f: \mathbb{R}^2 \to \mathbb{R}^2$, $(x,y) \mapsto (y,0)$. Dann gilt $Bild(f) = ker(f) \neq \mathbb{R}^2$.
- iii) Ja, denn es gilt immer f(0) = 0 für lineare Abbildungen f.

Aufgabe 5

- i) Nein, denn (1,0), $(0,1) \in U$ aber $(1,1) \notin U$.
- ii) Ja, denn für $f, g \in U$ gilt $(\alpha g + \beta f)(0) = \alpha f(0) = \beta g(0) = 0$.
- iii) Nein, denn sei $A=\begin{pmatrix}1&0&0\\0&1&0\\0&0&0\end{pmatrix}$ and $B=\begin{pmatrix}0&0&0\\0&0&0\\0&0&1\end{pmatrix}$, dann gilt $Rang(A)=2\geq 1=Rang(B)$ aber Rang(A+B)=3.

Aufgabe 6

Aufgabe 7

Wir nennen die Matrix aus der Aufgabe M_{α} . Nun ist M_{α} ist genau dann invertierbar, wenn der Rang der Matrix gleich drei ist. Elementare Zeilen und Spaltenumformungen ändern den Rang der Matrix nicht. Man rechnet leicht nach

$$Rang(M_{\alpha}) = Rang(\begin{pmatrix} 0 & \alpha & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}) = Rang(\begin{pmatrix} 0 & \alpha & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}) = Rang(\begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & 1 \end{pmatrix})$$

Nun sieht man leicht, dass $Rang(M_{\alpha}) < 3$ genau dann, wenn gilt $\alpha = 0$.

Aufgabe 8

Man definiert $f: \mathbb{R}^4 \to \mathbb{R}^2$ durch $f(x_1, \dots, x_4) = (x_1 + x_3 - x_2, x_3 + x_4 - x_1)$. Es gilt offensichtlich ker f = U. Man sieht leicht, dass f surjektiv ist, somit folgt dim \mathbb{R}^4 – dim ker $f = \dim Bild(f)$

$$\dim U = 4 - 2 = 2$$

Sei nun $g: \mathbb{R}^4 \to \mathbb{R}^1$ definiert durch $(x_1, x_2, x_3, x_4) \mapsto x_2 - x_3 - (x_4 - x_1)$. Dann gilt wieder $\ker g = V$ und g ist surkjektiv. Entsprechend folgt wie bei f, $\dim V = 4 - 1 = 3$. Sei x = (1, 2, 1, 0). Dann gilt $x \in \ker f$ aber $x \notin \ker g$. Daher folgt $4 \ge \dim U + V > \dim V = 3$, also $\dim U + V = 4$. Aus der Dimensionsformel für Schnitte von Vektorräumen folgt $\dim U \cap V = \dim U + \dim V - \dim(U + V) = 5 - 4 = 1$.

Aufgabe 9

Aufgabe 10

Siehe Skript

Aufgabe 11

U ist eine Untergruppe von $GL_2(\mathbb{R})$: Es reicht zu zeigen, dass für beliebige A, $B \in U$ gilt $A \cdot B^{-1} \in U$. Sei

$$A = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \text{ und } B = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}$$

Dann gilt

$$A \cdot B = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix}$$

Entsprechend gilt $B^{-1} = \begin{pmatrix} 1 & -y \\ 0 & 1 \end{pmatrix}$. Daher gilt $A \cdot B^{-1} \in U$. Ausserdem gilt

$$A \cdot B = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y+x \\ 0 & 1 \end{pmatrix} = B \cdot A$$

Also ist U abelsch.

Aufgabe 12

Wir zeigen: Ad_h ist ein bijektiver Gruppenhomomorphismus. Für beliebige $g_1, g_2 \in G$ gilt

$$Ad_h(g_1 \cdot g_2) = h^{-1} \cdot g_1 \cdot g_2 \cdot h = (h^{-1}g_1h) \cdot (h^{-1}g_2h) = Ad_h(g_1) \cdot Ad_h(g_2)$$

Es bleibt zu zeigen, dass Ad_h bijektiv ist: Zuerst zeigen wir, Ad_h ist injektiv: Für beliebige $g_1, g_2 \in G$ gilt

$$Ad_h(g_1) = Ad_h(g_2) \Leftrightarrow h^{-1}g_1h = h^{-1}g_2h \Leftrightarrow g_1 = g_2$$

also ist Ad_h injektiv. Um zu zeigen, dass Ad_h surkjektiv ist müssen wir für alle g ein g' finden, mit $Ad_h(g') = g$. Nun rechnet man leicht nach, dass $Ad_h(hgh^{-1}) = g$, i.e. $g' = hgh^{-1}$.

Aufgabe 13

i) Sei $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ invertierbar. Es gilt

$$\begin{array}{rcl} M^{-1} \cdot A \cdot M & = & \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \Leftrightarrow M \text{ist invertierbar und es gilt:} A \cdot M & = & M \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \Leftrightarrow M \text{ist invertierbar und es gilt:} \begin{pmatrix} 3a - 4c & 3b - 4d \\ 2a - 3c & 2b - 3d \end{pmatrix} & = & \begin{pmatrix} a & -b \\ c & -d \end{pmatrix} \end{array}$$

Direktes Nachrechnen ergibt, dass die a=2c und b=d. Wählt man nun für a=2 und b=1=d, dann sieht man leicht, dass

$$M = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$$

die obige Gleichung erfüllt.

ii) Nach i) existiert ein M^{-1} so dass $MAM = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Daher gilt

$$A^{2014} = (M^{-1} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} M)^{2014} = M^{-1} (\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix})^{2014} M = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Aufgabe 14

Angenommen es gilt $\sum_{i=1}^{n} a_i w_i = 0$, dann gilt

$$0 = \sum_{i=1}^{n} a_i w_i = \sum_{i=1}^{n} a_i (\sum_{j=1}^{i} v_j) = \sum_{j=1}^{n} (\sum_{i=j}^{n} a_i) v_i$$

Da v_1, \ldots, v_n linear unabhängig sind gilt

$$\sum_{j=i}^{n} a_j = 0$$

für alle *i*. Vor allem ist $a_n = 0$. Nun gilt $a_n + a_{n-1} = 0 \Rightarrow a_{n-1} = 0$. Genauso folgert man per Induktion

$$a_i = 0$$

für alle j. Das heisst, w_1, \ldots, w_n sind linear unabhängig. Da dim V = n müssen w_1, \ldots, w_n eine Basis von V sein.

Aufgabe 15

Zunächst zeigen wir, dass U ein Untervektorraum von V ist. Angenommen $f,g\in U$ und $\alpha,\,\beta\in\mathbb{R}$. Dann gilt für gerade $z\in\mathbb{Z}$:

$$(\alpha \cdot f + \beta \cdot g)(z) = (\alpha \cdot f(z) + \beta \cdot g(z)) = 0 \Rightarrow \alpha \cdot f + \beta \cdot g \in U$$

Also ist U ein Unterraum von V. Man betrachte $f_i \in V$ definiert durch

$$f_i(z)$$

$$\begin{cases} 1 & \text{falls } z = 2i \\ 0 & \text{sonst} \end{cases}$$

Seien $[f_i]$ die entsprechenden Elemente in V/U. Wir werden zeigen, dass $[f_i]$ linear unabhängig sind. Angenommen $\sum_{i=1}^n a_i [f_i] = 0$. Das bedeutet es existiert ein $g \in U$ mit $\sum_{i=1}^n a_i f_i = g$. Für alle $j \in \mathbb{N}$ gilt

$$0 = g(2j) = \sum_{i=1}^{n} a_i f_i(2j) = a_j(f(2j)) = a_j$$

D.h. $[f_i]$ sind linear unabhängig.