Revision exam 1st year

Author: Andyyy :)
July 2025

Answer the questions on the back of the page. You are not permitted access to any calculator for this paper.

Name and surname:

	Candidate session number:	
	Section A	
1.	(maximum mark: 5)	
	Find the value of a given that the coefficient of x^{11} in the expansion of $(x^2 + \frac{1}{ax})^{10}$ is 15.	
2.	(maximum mark: 5)	
	It is given that the polynomial $P(x) = x^4 + px^3 - 2x^2 + qx - 3$ touches the x-axis at $x = -1$. Find p and q where $p, q \in \mathbb{R}$.	
3.	(maximum mark: 5)	
	Consider the complex number $z = \pi^{i-1}$.	
	(a) Write the number π in the form of e^a where $a \in \mathbb{R}$. (1 max	rk)
	(b) Hence, giving your answer in the form $p\cos(\ln q)$ where $p,\ q\in\mathbb{R}^+$, find $1.\ \Re(z);$ $2.\ \Re(z+\bar{z}).$	ks)
4.	(maximum mark: 5)	
	Solve for x : $x^{\ln x} = x \ln x$	

5. (maximum mark: 5)

Find:

$$\int \sin(\ln x) dx$$

6. (maximum mark: 7)

Consider the function $f(x) = \frac{9}{x^2 + x - 2}$.

- (a) Determine the domain, asymptotes, stationary points, and intervals where the function is increasing or decreasing. (4 marks)
- (b) Find the equation of the tangent to y = f(x) at the point where x = 4. (3 marks) Represent the function and the tangent line on the same graph.

7. (maximum mark: 9)

Using l'Hôpital's rule, determine the value of

- 1. $\lim_{x\to 0} \frac{x\sin x}{1-\cos x};$
- 2. $\lim_{x\to\infty} \frac{x^n}{e^x}$, $n\in\mathbb{Z}^+$.
- 8. (maximum mark: 6)

Find the total area of the regions enclosed by $y = x^3 - 6x + 3$ and $y = x^2 + 3$.

9. (maximum mark: 8)

Consider the function $f(x) = \cos^{-1}(x)$ for $|x| \le 1$.

- (a) Sketch the graph of y = f(x) (2 marks) clearly indicating the y-intercept and coordinates of the endpoints.
- (b) Show that $\sin(\cos^{-1}(x)) = \sqrt{1 x^2}$. (2 marks)
- (c) Hence or otherwise, solve $\cos^{-1}(x) + \cos^{-1}(x\sqrt{3}) = \frac{3\pi}{2}$ for $x \in [-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}]$. (4 marks)

Section B

10. (maximum mark: 14)

- (a) Write down an expression for $\cos(\alpha + \beta)$ in terms of $\cos \alpha$, $\cos \beta$, $\sin \alpha$ and $\sin \beta$. (1 mark)
- (b) Hence, show that $\sin \alpha \sin \beta = \frac{1}{2}(\cos(\alpha \beta) \cos(\alpha + \beta))$. (3 marks)
- (c) Hence, show that $\sin[(k+1)\theta]\sin\frac{\theta}{2} + \sin\frac{k\theta}{2}\sin\frac{(k+1)\theta}{2} = \sin\frac{(k+1)\theta}{2}\sin\frac{(k+2)\theta}{2}$. (4 marks)

(d) Use the principle of mathematical induction to prove that: (6 marks)

$$\sin \theta + \sin 2\theta + \sin 3\theta + \dots + \sin n\theta = \frac{\sin\left[\frac{1}{2}(n+1)\theta\right]\sin\frac{1}{2}n\theta}{\sin\frac{1}{2}\theta}$$

11. (maximum mark: 13)

(a) Find the derivative of
$$x^x$$
 and x^{x^x} . (6 marks)

(b) Consider
$$y = x^{x^x}$$
. Show that $\ln y = y \ln x$. (2 marks)

(c) Hence find
$$\frac{d}{dx}(x^{x^x}$$
. (5 marks)

12. (maximum mark: 28)

Let
$$\mathcal{I} = \int_0^{\frac{\pi}{2}} \frac{\sin x \, dx}{(\sin x + \cos x)^2}$$

- (a) Show that $\int_a^b f(x)dx = \int_a^b f(a+b-x)dx$ by using an appropriate substitution. (4 marks)
- (b) Hence, show that $\mathcal{I} = \frac{1}{2} \int_0^{\frac{\pi}{2}} \frac{dx}{\sin x + \cos x}$. (3 marks)
- (c) Let $z = \tan \frac{x}{2}$. Show that $\sin \frac{x}{2} = \frac{z}{\sqrt{1+z^2}}$ and $\cos \frac{x}{2} = \frac{1}{\sqrt{1+z^2}}$. (5 marks) Hence, show that $\sin x = \frac{2z}{1+z^2}$ and $\cos x = \frac{1-z^2}{1+z^2}$.
- (d) Show that $\frac{1}{u^2 a^2} = \frac{1}{2a} \left(\frac{-1}{u+a} + \frac{1}{u-a} \right)$. Hence, show that $\int \frac{du}{u^2 a^2} = \frac{1}{2a} \ln \left| \frac{u-a}{u+a} \right| + C$ where $a \in \mathbb{R}$ and C is the constant of integration.
- (e) Using the results in (c) and (d) and z as the substitution, show that \mathcal{I} (6 marks) has the form $\frac{1}{p\sqrt{p}}\ln(p^{\frac{q}{p}}+q)$.
- (f) Let $\mathcal{J} = \int_0^{\frac{\pi}{2}} \frac{\sin x \, dx}{(\sin x + \cos x)^3}$ and $\mathcal{K} = \int_0^{\frac{\pi}{2}} \frac{dx}{1 + \sqrt{\tan x}}$. Evaluate \mathcal{J} and \mathcal{K} (6 marks using previous parts. Hint: A useful substitution for \mathcal{J} is $u = \tan x$ and write $\sin x$ and $\cos x$ in terms of $\sec x$. For \mathcal{K} first show that it is equivalent to $\int_0^{\frac{\pi}{2}} \frac{\sqrt{\cos x} \, dx}{\sqrt{\sin x} + \sqrt{\cos x}}$.

END OF EXAMINATION PAPER