PHYSICS

Chapter 4

Estática IV

4th SECONDARY

¿Es fácil sacar la tuerca con la llave que se muestra?

Para responder a la pregunta, debemos de conocer el

MOMENTO DE UNA FUERZA

MOMENTO DE UNA FUERZA

El momento de una fuerza, es la cantidad física de naturaleza vectorial, que caracteriza el efecto de giro que experimenta un cuerpo respecto a un punto, debido a una fuerza.

Esta se obtiene con:

$$M_o^F = \pm F d$$

Unidad: Nm

Es (+), cuando el giro respecto a "o" es antihorario

Es (-), cuando el giro respecto a "o" es horario

PHYSICS

Veamos ahora las siguientes situaciones:

24 in. 100 lb

En que sentido gira la barra debido a la fuerza **P** indicada respecto al punto "B".

Gira en sentido antihorario respecto a "B"

En que sentido gira la barra debido a la fuerza respecto al punto "O".

Gira en sentido horario respecto a "O"

Un cuerpo en equilibrio mecánico, se encuentra en equilibrio de rotación, si el momento resultante respecto a un punto es nulo.

$$\overrightarrow{M}_{0}^{Resul} = \overrightarrow{0}$$

De manera práctica

$$\sum M_O^F = \sum M_O^F$$

1. La barra mostrada de 4 m de longitud que se encuentra articulada en el punto A, puede girar libremente. Determine el momento de la fuerza F respecto al punto A.

Usando:

$$\overrightarrow{M}_{O}^{F} = + F d$$

$$\overrightarrow{M}_{A}^{F} = +(70 \text{ N})(4 \text{ m})$$

$$\overrightarrow{M}_{A}^{F} = +280 \text{ Nm}$$

2. La barra mostrada de 6 m de longitud que se encuentra articulada en el punto A, puede girar libremente. Determine el momento de la fuerza F respecto al punto A.

Usando:

$$\overrightarrow{M}_{0}^{F} = -F d$$

$$\overrightarrow{M}_{A}^{F} = -(25 \text{ N})(6 \text{ m})$$

$$\overrightarrow{M}_{A}^{F} = -150 \text{ Nm}$$

3. La barra homogénea de 2 kg mostrada que se encuentra articulada en el punto O, puede girar libremente. Determine el momento resultante respeto al punto O. $(g = 10 \text{ m/s}^2)$

4. La barra homogénea de 4 kg y de 8 m de longitud se encuentra en equilibrio mecánico. Determine la tensión de la cuerda (1) (g = 10m/s²)

sando:
$$\sum M_O^F \bigcirc = \sum M_O^F \bigcirc$$

$$M_O^T = M_O^{40 N}$$

$$T.8 m = 40 N.4 m$$

01

5. La barra homogénea de 5 kg se encuentra en equilibrio mecánico. Determine la fuerza del piso sobre la barra horizontal, en el punto A. (g = 10 m/s2)

$$\sum_{M_{0}^{F}} M_{0}^{F} = \sum_{M_{0}^{F}} M_{0}^{F}$$

$$M_{0}^{F} = M_{0}^{50N}$$

$$F.5 m = 50 N.1 m$$

$$\therefore$$
 F = 10 N

6. Determine la deformación del resorte, de constante de elasticidad k = 20 N/cm, comprimido por la barra homogénea de 6 kg, si la misma se encuentra en equilibrio mecánico y en forma horizontal. $(g = 10 \text{ m/s}^2)$

$$\sum M_O^F \bigcirc = \sum M_O^F \bigcirc$$

Fe 2a = 60 N a

$$Fe = 30 N$$

$$Fe = Kx$$

$$30 N = 20 (N/cm)X$$

$$\therefore X = 1,5 \text{ cm}$$

7. Determine la masa de la barra homogénea en equilibrio mecánico. La tensión en la cuerda es de 50 N. $(g = 10 \text{ m/s}^2)$

$$\sum M_O^F \bigcirc = \sum M_O^F \bigcirc$$

Fe
$$2a = 60 \text{ N} \text{ a}$$

$$Fe = 30 N$$

$$Fe = Kx$$

$$30 N = 20 (N/cm)X$$

$$\therefore X = 1,5 \text{ cm}$$

HELICO | PRACTICE

8. Para asegurar la entrada en una ciudad, una fortaleza o castillo se utilizaron este tipo de mecanismos (puente levadizo) en la Edad Media. Las entradas a los fuertes y castillos siempre fue un punto débil por lo que a lo largo de la historia se idearon diferentes artilugios para su protección. Con la ayuda de un puente levadizo, en forma efectiva y rápida.

¿Cuál es el motivo por la cual la cadena se encuentra sujeta al extremo del puente?

Es (+), cuando el giro respecto a "o" es antihorario

Es (-), cuando el giro respecto a "o" es horario

Mayor facilidad para girar

