Prise de moles du 3/04/2021

QCM Doctools sur l'intégrale

link.dgpad.net/FrX8

Capacité 7 Calculer une intégrale à l'aide d'une primitive, voir capacité 4 p. 333

Calculer les intégrales suivantes :

1.
$$\int_{-1}^{1} \frac{e^x}{\sqrt{e^x + 1}} dx$$
;

4.
$$\int_0^{\pi} \cos(2\theta) \ d\theta;$$

7.
$$\int_{e}^{e^3} \frac{1}{x \ln x} \, \mathrm{d}x$$

2.
$$\int_2^4 \frac{1}{(2x-1)^4} \, \mathrm{d}x;$$

5.
$$\int_{-4}^{-2} (3x-1)^6 dx$$
;

8.
$$\int_0^x \frac{1}{1 + e^t} dt$$

3.
$$\int_0^{2\pi} \cos(\theta) \ d\theta;$$

6.
$$\int_0^x \sin^2(t) dt$$
.

9.
$$\int_{2}^{e} \frac{1}{x(\ln(x))^{2}} dx$$

Propriétés de l'intégrale

PROPRIÉTÉS Soit f et g deux fonctions continues sur un intervalle I.

a, b et c sont trois réels de l et k est une constante réelle.

(1)
$$\int_{a}^{a} f(x) dx = 0$$
. (2) $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

(3) Linéarité

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \text{ et } \int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

- (4) Relation de Chasles : $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$
- (5) Positivité : Si pour tout x de [a;b], $f(x) \ge 0$ alors $\int_a^b f(x) dx \ge 0$.
- (6) Comparaison: Si pour tout x de [a;b], $f(x) \ge g(x)$ alors $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

~ 77 A. 343

Soit f une fonction définie et continue sur l'intervalle [1;3]. Dans chacun des cas suivants, donner un encadrement $de \int_{1}^{3} f(x) dx$ sachant que pour tout réel x de l'intervalle [1;3]:

$$a. -2x \le f(x) \le x^2$$

b.
$$\frac{1}{x^2} \le f(x) \le \frac{1}{x}$$

Capacité 10 Majorer ou minorer une intégrale, voir capacité 5 p.335

1. Déterminer le signe des intégrales suivantes :

$$\mathbf{a.} \int_{\frac{1}{2}}^{1} \ln x \, \mathrm{d}x$$

b.
$$\int_{1}^{0} x^{2} dx$$

$$\mathbf{c.} \int_{1}^{\frac{1}{e}} \ln x \, \mathrm{d}x$$

- **2.** Soit (u_n) la suite définie pour tout entier $n \ge 1$ par $u_n = \int_0^1 \ln(1+x^n) dx$.
 - **a.** Etudier le sens de variation de la suite (u_n) .
 - **b.** Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$. En déduire que la suite (u_n) est convergente.
 - **c.** Démontrer que pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$ on a : $0 \le \ln(1 + x^n) \le x^n$. En déduire la limite de la suite (u_n) .

Soit
$$f$$
 définie sur $[0; +\infty[$ par $f(t) = \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}$.

1. Démontrer que pour tout $t \in [2; +\infty[$ on a $: 0 \le f(t) \le \frac{1}{\sqrt{2\pi}}e^{-t}$.

2. En déduire que pour tout entier $n \ge 2$ on a $: 0 \le \int_2^n f(t) \, dt \le \frac{e^{-2}}{\sqrt{2\pi}}$

3. Montrer que la suite $\left(\int_2^n f(t) \, dt\right)_{n \ge 2}$ est croissante.

Intégration par parties

PROPRIÉTÉS Soit u et v deux fonctions dérivables sur un intervalle I, et dont les dérivées u' et v' sont continues sur I. Soit a et b deux réels de I.

$$\int_{a}^{b} u(x)v'(x)dx = \left[u(x)v(x)\right]_{a}^{b} - \int_{a}^{b} u'(x)v(x)dx$$

DÉMONSTRATION

Les fonctions u et v sont dérivables sur I donc la fonction uv l'est aussi et (uv)' = u'v + uv'. Donc pour tout réel x de I, u(x)v'(x) = (uv)'(x) - u'(x)v(x).

Or, les fonctions u et v sont continues sur I car elles sont dérivables sur I. De plus u' et v' sont continues sur I donc les fonctions uv' et u'v le sont également.

Donc
$$\int_{a}^{b} u(x)v'(x)dx = \int_{a}^{b} ((uv)'(x) - u'(x)v(x))dx$$
$$= \int_{a}^{b} (uv)'(x)dx - \int_{a}^{b} u'(x)v(x)dx \text{ (propriété de linéarité)}.$$

Or, une primitive de la fonction (uv)' est la fonction uv.

Donc
$$\int_a^b u(x)v'(x)dx = \left[u(x)v(x)\right]_a^b - \int_a^b u'(x)v(x)dx.$$

Cette méthode permet de transformer le calcul de l'intégrale d'une fonction. Un bon choix des fonctions u et v' conduit au calcul de l'intégrale d'une fonction dont on sait déterminer une primitive.

EXEMPLE: Calcul de $\int_0^{\pi} x \sin(x) dx$.

On pose u(x) = x et $v'(x) = \sin(x)$ donc u'(x) = 1 et $v(x) = -\cos(x)$.

Les fonctions u et v sont dérivables sur $[0; \pi]$ et les fonctions u' et v' sont continues sur $[0; \pi]$.

Donc:
$$\int_{0}^{\pi} x \sin(x) dx = [-x \cos(x)]_{0}^{\pi} - \int_{0}^{\pi} -\cos(x) dx = [-x \cos(x)]_{0}^{\pi} + [\sin(x)]_{0}^{\pi} = \pi.$$

🕏 Capacité 12 Calculer une intégrale à l'aide d'une intégration par parties, voir capacité 6 p.335 1. Soit l'intégrale $K = \int_0^{\pi} x \sin(x) dx$. a. Compléter: Pour tout réel x de l'intervalle $[0; \pi]$, on pose : $u'(x) = \dots$ u(x) = x $v'(x) = \sin(x)$ $v(x) = \dots$ **b.** Calculer l'intégrale *K* en appliquant la méthode d'intégration par parties. **2.** Calculer l'intégrale $\int_{1}^{e} (3x-2) \ln(x) dx$ avec la méthode d'intégration par parties. **a.** Soit x un réel strictement positif, avec la méthode d'intégration par parties, calculer $\int_1^x \ln(t) dt$. **b.** En déduire une primitive de la fonction logarithme népérien sur $]0; +\infty[$.

Enercice de synthèse

Fishe d'exercices

https://frederic-junier.org/TS2020/Cours/TS-Exos-Integration2020-Fiche1-Web.pdf

Exercice 1

Cloches de Pâques

On considère la fonction f définie sur l'intervalle [1;2] par $f(x)=\frac{4}{\sqrt{2\pi}}\mathrm{e}^{-\frac{x^2}{2}}+\frac{1-\ln x}{(x-\ln x)^2}$. f est dérivable et donc continue sur [1;2] comme somme de fonctions dérivables sur [1;2]. On munit le plan d'un repère orthonormal $\left(0,\overrightarrow{t},\overrightarrow{j}\right)$.

- 1. La fonction $g: x \mapsto \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$ est dérivable donc continue sur $\mathbb R$ et on donne ci-dessous des valeurs approchées à 0,001 près :
 - de l'aire du domaine \mathcal{D}_1 délimité par les droites d'équations x = -1, x = 1, y = 0 et par la courbe d'équation $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$;
 - ter de l'aire du domaine \mathcal{D}_2 délimité par les droites d'équations x = -1, x = 2, y = 0 et par la courbe d'équation $y = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$.

En déduire une valeur approchée à 0,002 près (les erreurs s'ajoutent) de l'intégrale :

$$\int_{1}^{2} g(x) dx = \int_{1}^{2} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}}{2}} dx$$

- 2. On considère la fonction H définie et dérivable sur [1; 2] par $H(x) = \frac{\ln x}{x \ln x}$.
 - **a.** Démontrer que H est une primitive de la fonction $h: x \mapsto \frac{1 \ln x}{(x \ln x)^2}$ sur l'intervalle [1; 2].
 - **b.** En déduire la valeur exacte de l'intégrale $\int_1^2 h(x) dx = \int_1^2 \frac{1 \ln x}{(x \ln x)^2} dx$.
- 3. Déterminer une valeur approchée à 0,002 près de l'intégrale $\int_1^2 f(x) dx$.

Propriétés de l'intégrale

PROPRIÉTÉS Soit f et g deux fonctions continues sur un intervalle I.

a, b et c sont trois réels de l et k est une constante réelle.

(1)
$$\int_{a}^{a} f(x) dx = 0$$
. (2) $\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$.

(3) Linéarité:

$$\int_{a}^{b} kf(x)dx = k \int_{a}^{b} f(x)dx \text{ et } \int_{a}^{b} (f(x) + g(x))dx = \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx.$$

(4) Relation de Chasles: $\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$

(5) Positivité: Si pour tout x de $[a; b], f(x) \ge 0$ alors $\int_a^b f(x) dx \ge 0$.

6) Comparaison : Si pour tout x de [a; b], $f(x) \ge g(x)$ alors $\int_a^b f(x) dx \ge \int_a^b g(x) dx$.

3.3.3 Intégrale et inégalités

Propriété 3 Intégrale et inégalités

Soient f et g deux fonctions continues sur un intervalle I et $a \le b$ deux réels de I.

1. Si $f \ge 0$ sur I alors $\int_a^b f(x) dx \ge 0$.

3. Si
$$f \le g$$
 sur I alors $\int_a^b f(x) dx \le \int_a^b g(x) dx$.

2. Si $f \le 0$ sur I alors $\int_a^b f(x) dx \le 0$.

Enervier sur le croissance de l'intégrale

- 1. Démontrer que, pour tout réel x de [0 ; 1], $0 \le x e^{-x} \le x e^{-x^2}$
- **2.** En déduire que $0 \le \int_0^1 x e^{-x} dx \le \frac{1}{2} \left(1 \frac{1}{e} \right)$.

1) Pau to is sel on E [0;1].

donc $0 > -x^2 > -x$ donc $0 > -x^2 > -x$ car l'exponentielle est univente.

27 Pour bout-réel n ([0;1]:

0 \le n e^n \le n \timbér né n^2

her voissance de l'intègrale en a :

(10 dn \le \frac{1}{2} xe^2 dn \le \frac{1}{2} ne^{-2} dn

0 \ \(\) xe an \(\) \(\) xe adm

Or on peut calcular (1 xe^{-n²}dx a' l'aide d'uno peimilière de xe^{-x²} qui of de la forme: -1 22 est avec u(n) = -x²

Donc on a $\int_0^1 xe^{-x^2} dx = \left[-\frac{1}{2}e^{-x^2} \right]_0^1 = -\frac{1}{2}e^{-\frac{1}{2}} + \frac{1}{2}e^{-\frac{1}{2}}$ = 1/2 (1-e-1)

Donc on a . 0 < 1 x = 2 dx < \ \frac{1}{2} (1-\frac{1}{4})

a.
$$-2x ≤ f(x) ≤ x^2$$

$$\mathbf{b.} \frac{1}{x^2} \leq f(x) \leq \frac{1}{x}$$

Capacité 10 Majorer ou minorer une intégrale, voir capacité 5 p.335

1. Déterminer le signe des intégrales suivantes :

a.
$$\int_{\frac{1}{2}}^{1} \ln x \, dx$$

b.
$$\int_{1}^{0} x^{2} dx$$

c.
$$\int_{1}^{\frac{1}{e}} \ln x \, dx$$

- **2.** Soit (u_n) la suite définie pour tout entier $n \ge 1$ par $u_n = \int_0^1 \ln(1+x^n) dx$.
 - **a.** Etudier le sens de variation de la suite (u_n) .
 - **b.** Démontrer que pour tout entier $n \ge 1$, on a $0 \le u_n \le \ln 2$. En déduire que la suite (u_n) est convergente.
 - **c.** Démontrer que pour tout entier $n \ge 1$, pour tout réel $x \in [0; 1]$ on $a : 0 \le \ln(1 + x^n) \le x^n$. En déduire la limite de la suite (u_n) .

https://frederic-junier.org/TS2021/Cours/Corrige-Cours-CalculIntegralPartie2-2021-Web.pdf