Predictive and Descriptive Learning and Machine Learning Lab

Final Project

Title: Predicting/Classifying from
Author(s): Author A, Author B, (maximum three)
January 2017
In addition to this document you must also prepare a short presentation (10 minutes)
Abstract
This document focuses on building prediction/classification models to
Exploratory data analysis and visualization techniques are used for
We present the development and performance evaluation of different models
1 Introduction
2 Related Work

3 Dataset(s)
4 Features: Visualization & Exploratory Data Analysis
5 Models' development
6 Results and discussion
7 Conclusions and Future Work
7 Conclusions and I deale work

ANEX I: Tools and development environments (MLlab)
Include a short description of tools you have used and for what purposes
Languages R, Python

ANEX II: Summary of Theoretical Knowledge (Predictive & Descriptive Learning)

Environments: RSTudio, Jupyter Notebooks, IBM Workbench, Spark

- Statistical Analysis for exploratory data analysis: Correlation Matrix, Statistical Contrasts (Hypothesis tests)...
- Unsupervised learning for exploratory data analysis: PCA, tSNE, Clustering
- Feature selection....

Libraries: as Sklearn... XGBoost...

- Linear and non-linear models: MLR, LR,... GLM...
- Tree-based models.... RF, Bagging, Boosting,...

- SVM...
- Model assessment, selection, Crossvalidation,...

ANEX III: Team activities (only for Projects with several authors)

	Author A	Author B	Author V
Statistical Analysis in R	33%	33\$	33%
Statistical Analysis in Python	60%	20%	20%
PCA	-	-	100%
tSNE	50%	50%	
RF development in R	80%	10%	10%
RF development in Sklearn	10%	80%	10%
RF development in Spark	10%	10%	80%
XGBoost R	100%	-	-
Pipelines in Spark to compare Boosting and RF	-	50%	50%
Models assessments using Sklearn	<u>-</u>	100%	-