Low energy effective description of dark Sp(4) theory with matter in non fundamental representation

Joachim Pomper

Supervisor: Dr. Suchita Kulkarni

Supported by Paul Urban Foundation

09.08.2022

Let's start with the usual story

There is a non-negligible non-visible matter component in the universe

No experimentally verified description on the fundamental level so far

Cusp vs. Core problem

Data from the DDO 154 dwarf galaxy

Figure: Taken from the talk on Dark QCD of [Murayama (2022)]

Self interacting dark matter

Introduction of self interactions within the dark sector may solve these problems as shown by N-body simulations. [arXiv:astro-ph/9909386v2]

Required self interaction cross section:

$$\frac{\sigma}{m}=0.1-1.0~\frac{\mathrm{cm}^2}{g}$$

Constraints:

• Bullet cluster constraint: $\frac{\sigma}{m} \lesssim 0.7~\frac{\rm cm^2}{g}~_{\rm [arXiv:astro-ph/0704.0261]}$

Dark matter as composite states

Cold dark matter may consist of composite states of an additional confining, non-abelian gauge sector in a chiraly broken phase.

- Natural implementation of dark matter self interactions.
- Potential velocity dependence of self interaction may relate problems at different scales.
- Accidental flavor symmetry may stabilize dark matter.

Technical aspect:

Low energy effective description of the relevant parts of the spectrum.

Symmetries and breaking patterns of fermion sector

Lightest states - pion dark matter

Explicit breaking via non degenerate mass

$U(1)_D$ charge assignments in mass degenerate scenario

Guidance principles:

Charge assignments of quarks and pions :

There is only one physically distinct charge assignment in the UV that provides stable dark pions

Further particles to be considered

Dependent on the mass-spectrum further particles will take part in the cosmological depletion of dark matter.

Dark matter depletion via self-cannibalizing $3 \rightarrow 2$ process.

$$\frac{N_C}{f_\pi^5} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr} \{\pi \ \partial_\mu \pi \ \partial_\nu \pi \ \partial_\rho \pi \ \partial_\sigma \pi \ \}$$

Results from topological Wess-Zumino-Witten terms.

Standard construction of these terms not possible since

$$\pi_4(SU(4)/SO(4)) \neq 0$$

What was done so far

- Investigation of UV-theory
 - Identification of relevant structures
 - Investigation of symmetries and flavor structure
 - Construction of gauge invariant interpolating operators.
- Modelling the effective description
 - \circ First order chiral effective Lagrangian for pions under $U(1)_D$.
 - \circ Inclusion of the η' -meson in the effective description.

Further steps in this work

- Construction of topological terms.
- Investigation of the freeze out process and the competing processes:
 - \circ Pion annihilation decay via Z'
 - \circ Pion depletion via η -decay
 - \circ Pion depletion via ρ 's
 - \circ 3 \rightarrow 2 self-cannibalizing of pions
- Investigation of self interaction strength.

Dependent on the mass $m_{\eta'}$ and lifetime $\tau_{\eta'}$ of the η' the dark matter scenario might be sufficiently altered or spoiled.

 η' -decay may lower the relic abundance of dark matter significantly and may render the model invalid.

Limiting cases:

- η' decays almost instantly \Rightarrow NO DARK MATTER
- $\tau_{\eta'} \approx$ age of universe. \Rightarrow Pion abundance not affected. BBN or CMB constraints on $m_{\eta'}$.

Interpolating operators for pions

	$\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi} \Psi + \left(\overline{\Psi_{\mathcal{C}}} \ T_n^{\Psi} \Psi \right)^*$	JD		$\overline{\Psi_{\mathcal{C}}} \ \mathcal{T}_{\mathcal{N}}^{\pi} \Psi + \left(\overline{\Psi_{\mathcal{C}}} \ \mathcal{T}_{\mathcal{N}}^{\pi op} \Psi \right)^{*}$	<i>I</i> ₃	В
π_1	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d+\overline{d}\gamma^5u\right)$	1-	π^{A}	$\overline{u}\gamma^5 d$	1	0
π_2	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d-\overline{d}\gamma^5u\right)$	1-	π^B	$\overline{d}\gamma^5 u$	-1	0
π_3	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	1-	π^{C}	$\frac{1}{\sqrt{2}}\left(\overline{u}\gamma^5u-\overline{d}\gamma^5d\right)$	0	0
π_4	$\frac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u + \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^D	$\frac{1}{\sqrt{2}}\overline{u_{\mathcal{C}}}\gamma^5u$	-1	-1
π_5	$rac{1}{2}\left(\overline{d_{\mathcal{C}}}\gamma^{5}d+\overline{d}\gamma^{5}d_{\mathcal{C}}\right)$	1-	π^E	$rac{1}{\sqrt{2}}\overline{d}\gamma^5 d_{\mathcal{C}}$	1	-1
π_6	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}+\overline{u_{\mathcal{C}}}\gamma^5d\right)$	1-	π^F	$\overline{u}\gamma^5 d_{\mathcal{C}}$	0	-1
π_7	$\frac{1}{2}\left(\overline{u_{\mathcal{C}}}\gamma^5u - \overline{u}\gamma^5u_{\mathcal{C}}\right)$	1-	π^G	$rac{1}{\sqrt{2}}\overline{u}\gamma^5 u_{\mathcal{C}}$	1	1
π_8	$rac{1}{2}\left(\overline{d}\gamma^5d_{\mathcal{C}}-\overline{d_{\mathcal{C}}}\gamma^5d ight)$	1-	π^{H}	$rac{1}{\sqrt{2}}\overline{d}_{\mathcal{C}}\gamma^{5}d$	-1	1
π_9	$rac{1}{\sqrt{2}}\left(\overline{u}\gamma^5d_{\mathcal{C}}-\overline{u_{\mathcal{C}}}\gamma^5d ight)$	1-	π'	$\overline{u_{\mathcal{C}}}\gamma^5d$	0	1