Overview

- Support Vector Machines (SVMs)
- Maximising Margin
- Gradient Descent for SVMs

Logistic Regression: Choice of Cost Function

- Hypothesis: $h_{\theta}(x) = sign(\theta^T x)$
- Parameters: θ
- Cost Function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \log(1 + e^{-y^{(i)} \theta^T x^{(i)}})$
- Goal: Select θ that minimise $J(\theta)$

Loss function: $\log(1 + e^{-y\theta^T x})/\log(2)$ (the $\log(2)$ is an optional scaling factor):

gives a small penalty when $\theta^T x \gg 0$ and y=1, and when $\theta^T x \ll 0$ and y=-1.

SVM: Choice of Cost Function

In an SVM use the "hinge" loss function $max(0, 1 - y\theta^T x)$:

Main differences from logistic loss function:

- hinge-loss is not differentiable ("non-smooth")
- hinge loss assigns zero penalty to all values of θ which ensure $\theta^T x \ge 1$ when y = 1, and $\theta^T x \le -1$ when y = -1

SVM: Choice of Cost Function

In an SVM use the "hinge" loss function $max(0, 1 - y\theta^T x)$:

- So long as $y\theta^T x > 0$ then by scaling up θ sufficiently, e.g. to 10θ or 100θ , then we can always force $y\theta^T x > 1$ i.e. $\max(0, 1 y\theta^T x) = 0$
- To get sensible behaviour we have to penalise large values of θ . We do this by adding penalty $\theta^T \theta = \sum_{i=1}^n \theta_i^2$
- Final SVM cost function is:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^T x^{(i)}) + \lambda \theta^T \theta$$

where $\lambda > 0$ is a weighting parameter that we have to choose.

- We have some freedom in the choice of line used to separate two classes
- Idea: select separating line that maximises the margin

- Margin is determined by points that touch (or "support") the upper and lower boundaries, and not affected by other points
- Hinge loss function $\max(0, 1 y\theta^T x)$ assigns zero penalty to points where $y\theta^T x \ge 1$, i.e. value of cost function $J(\theta)$ is determined only by those points for which $y\theta^T x < 1$.

- $\theta^T x = 0$ is the decision boundary. $\theta^T x = b$ is a parallel line shifted up by b, and line passing through point $x^{(i)}$ has $b = \theta^T x^{(i)}$
- $|b| = y^{(i)} \theta^T x^{(i)}$ since $y^{(i)} = 1$ or $y^{(i)} = -1$
- Margin¹ equals $\frac{|b|}{\sqrt{\theta^T \theta}} = \frac{y^{(i)} \theta^T x^{(i)}}{\sqrt{\theta^T \theta}}$. Maximising $\frac{y^{(i)} \theta^T x^{(i)}}{\sqrt{\theta^T \theta}}$ is the same as minimising $-\frac{y^{(i)} \theta^T x^{(i)}}{\sqrt{\theta^T \theta}}$.
- Hinge loss $\max(0, 1 y\theta^T x)$ assigns zero penalty to points where $y\theta^T x \ge 1$ i.e. value of cost function $J(\theta)$ is determined only by those points for which $y\theta^T x < 1$

¹https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane

- There is a trade-off between maximising the margin and classification accuracy
- Recall cost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$
- Decreasing λ tends to reduce misclassification but leads to smaller margin
- Increasing λ tends to increase misclassification but leads to larger margin

SVM Summary

- Hypothesis: $h_{\theta}(x) = sign(\theta^T x)$
- Parameters: θ
- Cost Function: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 y^{(i)} \theta^T x^{(i)}) + \lambda \theta^T \theta$
- Goal: Select θ that minimise $J(\theta)$

Gradient Descent for SVMs

As before, can find θ using:

- Start with some θ
- Repeat:

Update vector θ to new value which makes $J(\theta)$ smaller We can't use gradient descent directly since

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^{T} x^{(i)}) + \lambda \theta^{T} \theta$$

is not differentiable due to max(). But can still use a **subgradient** approach.

Gradient Descent for SVMs

- Subgradient of $\max(0, 1-z)$ is -1 when $z \le 1$ and 0 when z > 1.
- Derivative of $1 y\theta^T x$ with respect to θ_j is yx_j .
- Putting these together, subgradient of $\max(0, 1 y\theta^T x)$ is

$$\begin{cases} -yx_j & \text{when } y\theta^T x \le 1\\ 0 & \text{when } y\theta^T x > 1 \end{cases}$$

Gradient Descent for SVMs

For $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \max(0, 1 - y^{(i)} \theta^T x^{(i)}) + \lambda \theta^T \theta$, subgradient with respect to θ_j is:

• $2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1)$ where $\mathbbm{1}(y^{(i)}\theta^Tx^{(i)} \leq 1) = 1$ when $y^{(i)}\theta^Tx^{(i)} \leq 1$ and zero otherwise.

So subgradient descent algorithm for SVMs is:

- Start with some θ
- Repeat:

for
$$j=0$$
 to n { $tempj := \theta_j - \alpha(2\lambda\theta_j - \frac{1}{m}\sum_{i=1}^m y^{(i)}x_j^{(i)}\mathbb{1}(y^{(i)}\theta^Tx^{(i)} \leq 1))$ for $j=0$ to n { $\theta_j := tempj$ }

 $J(\theta)$ is convex, has a single minimum. Iteration moves downhill until it reaches the minimum

Nonlinear Decision Boundary

• As with linear and logistic regression we can add extra "features" e.g. use $\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_2^2$, so predict y=1 when $\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_2^2>0$