第五章 习题选讲

$$\begin{pmatrix}
1 & 2 & 2 & 1 \\
2 & 2 & 1 & 1 \\
2 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -2 & -3 & -1 \\
0 & -3 & -4 & -1 \\
0 & -1 & -1 & 0 \\
1 & -2 & -2 & -1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} & \frac{1}{2} \\
1 & -2 & 1 & 0 \\
0 & 1 & -\frac{3}{2} & -\frac{1}{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & -2 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 \\
1 & -2 & 1 & -1 \\
0 & 1 & -\frac{3}{2} & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

3. 设 $f(X) = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \dots + \lambda_n x_n^2$, $g(Y) = \lambda_{i_1} y_1^2 + \lambda_{i_2} y_2^2 + \dots + \lambda_{i_n} y_n^2$, 证明 f(X) 可经过非退化线

性替换化为 g(Y) 即可,所需线性替换为: $\begin{cases} y_1 = x_{i_1}, \\ y_2 = x_{i_2}, \\ \vdots \\ y_n = x_{i_n} \end{cases}$

4. (1) A 反对称,则 $A^{T} = -A$, $X^{T}AX = (X^{T}AX)^{T} = X^{T}A^{T}X = -X^{T}AX = X^{T}AX$,则 $X^{T}AX = 0$,

反之,取标准单位向量 ε_i ,则 $\varepsilon_i^T A \varepsilon_i = a_{ii} = 0, i = 1, 2, \cdots, n$,

$$(\varepsilon_i + \varepsilon_j)^T A(\varepsilon_i + \varepsilon_j) = a_{ii} + a_{jj} + a_{ij} + a_{ji} = a_{ij} + a_{ji} = 0,$$
任给 i, j .

故 A 是反对称矩阵.

(2) 由(1), A 既是对称阵,又是反对称阵,从而 A=0.

6. \Rightarrow :设 $f(X) = (a_1x_1 + a_2x_2 + \dots + a_nx_n)(b_1x_1 + b_2x_2 + \dots + b_nx_n)$,取系数组成的向量为 α, β

若 α , β 线性相关, 设 $\beta = k\alpha$, $f(X) = k(a_1x_1 + a_2x_2 + \dots + a_nx_n)^2$, 不妨设 $a_1 \neq 0$,

做线性替换
$$\begin{cases} y_1 = a_1x_1 + a_2x_2 + \dots + a_nx_n, \\ y_2 = x_2, \\ \vdots \\ y_n = x_n \end{cases}, 则 g(Y) = ky_1^2, 秩为1的二次型$$

若
$$\alpha$$
, β 线性相无关,不妨设 $\frac{a_1}{b_1} \neq \frac{a_2}{b_2}$,则令
$$\begin{cases} y_1 = a_1 x_1 + a_2 x_2 + \dots + a_n x_n, \\ y_2 = b_1 x_1 + b_2 x_2 + \dots + b_n x_n, \\ y_3 = x_3, \\ \vdots \\ y_n = x_n \end{cases}$$
 ,则 $f(X)$ 化为 $g(Y) = y_1 y_2$, \vdots

再令,
$$\begin{cases} y_1 = z_1 + z_2, \\ y_2 = z_1 - x_2, \\ y_3 = z_3, \\ \vdots \\ y_n = z_n \end{cases}$$
 ,则 $g(Y)$ 化为 $h(Z) = z_1^2 - z_2^2$,秩为 2 ,符号差为 0 .

 \Leftarrow : 若秩为 2 符号差为 0 ,则二次型 f(X) 可经非退化线性替换 X=CY 化为 $g(Y)=y_1^2-y_2^2$,

假设
$$X = CY$$
 中
$$\begin{cases} y_1 = a_1x_1 + a_2x_2 + \dots + a_nx_n, \\ y_2 = b_1x_1 + b_2x_2 + \dots + b_nx_n \end{cases}$$
 ,则 $g(Y) = (y_1 + y_2)(y_1 - y_2)$ 就是两个一次齐次多项式的乘积.

若秩为1,则二次型 f(X) 可经非退化线性替换 X=CY 化为 $g(Y)=ay_1^2$,仍然是两个一次齐次多项式的乘积.

7 3)而二次型的矩阵为
$$A = \begin{pmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{pmatrix}$$
, 其中行列式

$$|A| = \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix} = \begin{vmatrix} 1 + \frac{n-1}{2} & \frac{1}{2} & \cdots & \frac{1}{2} \\ 1 + \frac{n-1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & & \vdots \\ 1 + \frac{n-1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix}$$

$$= (1 + \frac{n-1}{2}) \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ 1 & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & & \vdots \\ 1 & \frac{1}{2} & \cdots & 1 \end{vmatrix} = (1 + \frac{n-1}{2}) \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ 0 & \frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \frac{1}{2} \end{vmatrix} = (1 + \frac{n-1}{2}) (\frac{1}{2})^{n-1} > 0$$

其
$$k$$
 阶顺序主子式为 $\left|A_{k}\right| = \begin{vmatrix} 1 & \frac{1}{2} & \cdots & \frac{1}{2} \\ \frac{1}{2} & 1 & \cdots & \frac{1}{2} \\ \vdots & \vdots & & \vdots \\ \frac{1}{2} & \frac{1}{2} & \cdots & 1 \end{vmatrix} (1 + \frac{k-1}{2}) \left(\frac{1}{2}\right)^{k-1} > 0.$

9. 证明: 由 A 构造二次型 $f(X) = X^T A X$,正定. 假设主子式所在的行列为 $i_1 < i_2 < \cdots < i_k$ 行列,设

$$A_k = egin{pmatrix} a_{i_1i_1} & a_{i_1i_2} & \cdots & a_{i_1i_k} \ a_{i_2i_1} & a_{i_2i_2} & \cdots & a_{i_1i_k} \ dots & dots & dots \ a_{i_ki_1} & a_{i_ki_2} & \cdots & a_{i_ki_k} \end{pmatrix}, revety ig|A_kig| = p_k.$$

做k元二次型 $f_1(x_{i_1},x_{i_2},\cdots,x_{i_k})=X_1^TA_kX_1$,任取不全零的数 $c_{i_1},c_{i_2},\cdots,c_{i_k}$,则有

$$f_1(c_{i_1},c_{i_2},\cdots,c_{i_k})=f(0,\cdots,c_{i_1},\cdots,c_{i_2},\cdots,c_{i_k},\cdots,0)>0$$
,二次型正定 A_k 正定,行列式大于零.

或者如下:对A进行合同变换,可把主子式 A_k 所在的 $i_1 < i_2 < \cdots < i_k$ 行、列移到前k行前k列,即存在可

逆矩阵
$$C$$
,使得 $C^TAC = \begin{pmatrix} A_k & A_1 \\ A_1^T & A_2 \end{pmatrix}$, A 正定,从而 $C^TAC = \begin{pmatrix} A_k & A_1 \\ A_1^T & A_2 \end{pmatrix}$ 正定,从而 $\left| A_k \right| = p_k > 0$.

10. 考察tE+A的各阶顺序主子式,

$$p_1 = t + a_{11} > 0$$
, \emptyset $t > -a_{11}$,

$$p_2 = \begin{vmatrix} t + a_{11} & a_{12} \\ a_{21} & t + a_{22} \end{vmatrix} = t^2 + (a_{11} + a_{22})t + *,$$
 存在合适的 t_2 , 使得 $t > t_2$ 时, $p_2 > 0$.

$$p_3 = t^3 + (a_{11} + a_{22} + a_{33})t^2 + *$$
,存在合适的 t_3 ,使得 $t > t_3$ 时, $p_3 > 0$.

$$p_n = |tE + A|$$
 是关于 t 的 n 次多项式, 当 $t \to +\infty$ 时, $|tE + A| \to +\infty$, 故存在 t_n , 当 $t > t_n$ 时, $p_n > 0$.

从而存在合适的 t_0 ,使得 t_0E+A 的各阶顺序主子式全为正, t_0E+A 正定.

11.
$$A^{-1} = (A^{-1})^T A A^{-1}$$
, $A^{-1} 与 A$ 合同,正定. 或者 $A = C^T C$,从而 $A^{-1} = C^{-1}(C^T)^{-1}$,合同.

12. 证明:由 A,构造二次型 $f(X) = X^T A X$,则存在非退化线性替换 X = C Y,化 $f(X) = X^T A X$ 为规范形 $g(Y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$,而 $\left|A\right| < 0$,首先非零,从而二次型的秩为 n,且负惯性指数大于零,从而规范形的形式为 $g(Y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_n^2$,其中 n-p > 0,从而取 $Y_0 = (0, \dots, 0, 1)^T$,则 $g(Y_0) = -1 < 0$,令 $X_0 = C Y_0$,非零向量,且 $f(X_0) = g(Y_0) = -1 < 0$

13 证明 考察二次型
$$f(X) = X^T(A+B)X = X^TAX + X^TBX$$
, 任给非零向量 X_0 ,

 $f(X_0) = X_0^T A X_0 + X_0^T B X_0 > 0$,正定,故矩阵 A + B 正定.

15 证明 \leftarrow 若正惯性指数等于秩,则存在非退化线性替换 X = CY,二次型化为规范形 $g(Y) = y_1^2 + \dots + y_r^2$,半正定.

 \Rightarrow 反之,若二次型半正定,则存在非退化线性替换 X = CY,二次型化为规范形

 $g(Y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$,若 p < r,取列向量 $Y_0 = \varepsilon_{p+1}$, $g(Y_0) = -1 < 0$,与半正定矛盾,故 p = r, 正惯性指数等于秩.

16. 证明 由实对称阵 A,构造实二次型 $f(X) = X^T A X$,则存在非退化线性替换 X = C Y,化

$$f(X) = X^T A X$$
 为规范形 $g(Y) = y_1^2 + \dots + y_p^2 - y_{p+1}^2 - \dots - y_r^2$,

存在非零向量 X_1, X_2 ,使得 $f(X_1) > 0, f(X_2) < 0$,从而正负惯性指数均大于零.则取

$$Y_0 = (1,0,\dots,0,1,0,\dots,0)^T$$
, $f(g(Y_0)) = 1-1=0$, $f(X_0) = CY_0$, $f(X_0) = g(Y_0) = 0$.

17 证明 证明线性方程组 AX = 0与 $A^T AX = 0$ 同解.

首先, 若 $AX_0 = 0$, 则 $A^T AX_0 = 0$,即AX = 0的解是 $A^T AX = 0$ 的解.

若
$$A^T A X_0 = 0$$
, 则 $X_0^T A^T A X_0 = 0$, 即 $(A X_0)^T A X_0 = 0$, 设 $A X_0 = (y_1, y_2, \dots, y_n)^T$, 则

$$(AX_0)^T AX_0 = y_1^2 + y_2^2 + \dots + y_n^2 = 0$$
, $\forall x \in Y_1 = y_2 = \dots = y_n = 0$, $\exists x \in X_0 = 0$,

 $A^TAX = 0$ 的解是 AX = 0 的解. AX = 0 与 $A^TAX = 0$ 同解,从而 $n - r(A^TA) = n - r(A)$,即 $r(A^TA) = r(A)$.

补充题

2.
$$f(X) = \sum_{i=1}^{s} (a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n)(a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n) = \sum_{i=1}^{s} X^T \begin{pmatrix} a_{i1} \\ a_{i2} \\ \vdots \\ a_{in} \end{pmatrix} (a_{i1}, a_{i2}, \dots, a_{in})X$$
.

$$= \sum_{i=1}^{s} X^{T} \alpha_{i}^{T} \alpha_{i} X = X^{T} \left(\sum_{i=1}^{s} \alpha_{i}^{T} \alpha_{i} \right) X = X^{T} \left(\alpha_{1}^{T}, \alpha_{2}^{T}, \dots, \alpha_{s}^{T} \right) \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \\ \vdots \\ \alpha_{s} \end{pmatrix} X = X^{T} A^{T} A X$$

$$4 \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \rightarrow \begin{pmatrix} A_{11} & 0 \\ A_{21} & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix} \rightarrow \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}, \quad 因$$

$$\begin{pmatrix} E & 0 \\ -A_{21}A_{11}^{-1} & E \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} E & -A_{11}^{-1}A_{12} \\ 0 & E \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \\ 0 & A_{22} - A_{21}A_{11}^{-1}A_{12} \end{pmatrix}.$$

5. 对阶数归纳.若n=1,则A=(0)成立,

$$n=2$$
, $A=\begin{pmatrix} 0 & a_{12} \\ -a_{12} & 0 \end{pmatrix}$,若 $a_{12}=0$,成立。 $a_{12}\neq 0$,($a_{12}^{-1} & 0 \end{pmatrix}$ ($a_{12} & 0$)($a_{12}^{-1} & 0$)。成立。

假设结论对
$$n \le k$$
 成立,对 $n = k+1$. $A = \begin{pmatrix} 0 & \cdots & a_{1k} & a_{1k+1} \\ \vdots & & \vdots & \vdots \\ -a_{1k} & \cdots & 0 & a_{kk+1} \\ -a_{1k+1} & \cdots & -a_{kk+1} & 0 \end{pmatrix}$,若最后一行元素全为零,则成立.

若不全为零.可经行列的相同的互换,使得(k,k+1)位置的 $a_{k+1} \neq 0$,第k+1行、列乘 a_{k+1}^{-1} ,得

$$\begin{pmatrix} 0 & \cdots & a_{1k} & a_{kk+1}^{-1}a_{1k+1} \\ \vdots & & \vdots & \vdots \\ -a_{1k} & \cdots & 0 & 1 \\ -a_{kk+1}^{-1}a_{1k+1} & \cdots & -1 & 0 \end{pmatrix},$$
利用合同变换再化为
$$\begin{pmatrix} 0 & \cdots & b_{1k-1} & 0 & 0 \\ \vdots & & \vdots & \vdots & \vdots \\ -b_{1k-1} & \cdots & & 0 & 0 \\ 0 & \cdots & 0 & 0 & 1 \\ 0 & \cdots & 0 & -1 & 0 \end{pmatrix},$$
利用归纳假设,

6. 由本章课后题 10,对实对称阵 A,存在合适的 t,使得 tE-A和 tE+A 都是正定的.则任给列向量 X, $X^T(tE-A)X>0$, $X^T(tE+A)X>0$,即 $X^TAX< tX^TX$, $X^TAX>-tX^TX$, 故 $-tX^TX< X^TAX< tX^TX$,即 $\left|X^TAX\right|< tX^TX$.

方法 2:
$$|X^T A X| = \left| \sum_{i,j=1}^n a_{ij} x_i x_j \right| \le \sum_{i,j=1}^n \left| a_{ij} \right| |x_i| |x_j|$$
,记 $a = \max\{ |a_{ij}| |i,j\}$,则

$$\left| X^{T} A X \right| \leq \sum_{i,j=1}^{n} \left| a_{ij} \right| \left| \left| x_{i} \right| \left| x_{j} \right| \leq a \sum_{i,j=1}^{n} \left| x_{i} \right| \left| x_{j} \right| \leq a \sum_{i,j=1}^{n} \frac{x_{i}^{2} + x_{j}^{2}}{2} = \frac{a}{2} \sum_{i,j=1}^{n} (x_{i}^{2} + x_{j}^{2}) = \frac{na}{2} \sum_{i=1}^{n} x_{i}^{2} = \frac{na}{2} X^{T} X^{T} X^{T}$$

方法 3 (应用第 9 章结论)*对实对称阵 A ,存在正交矩阵 Q ,使得 $Q^TAQ = diag(\lambda_1, \lambda_2, \dots, \lambda_n)$ 为对角阵,

其中主对角线元素为矩阵 A 的特征值,设 $|\lambda_k| = \max\{\lambda_1, \lambda_2, \dots, \lambda_n\}$,则

$$\left|X^{T}AX\right| = \left|X^{T}QDQ^{T}X\right| = \left|\sum_{i=1}^{n} \lambda_{i} y_{i}^{2}\right| \leq \sum_{i=1}^{n} \left|\lambda_{i} y_{i}^{2}\right| \leq \left|\lambda_{k}\right| \sum_{i=1}^{n} y_{i}^{2} = \left|\lambda_{k}\right| X^{T}QQ^{T}X = \left|\lambda_{k}\right| X^{T}X.$$

7. (1) 设
$$A = \begin{pmatrix} A_1 & A_2 \\ A_2^T & A_3 \end{pmatrix}$$
,取特殊上三角阵 $T = \begin{pmatrix} T_1 & T_2 \\ 0 & T_3 \end{pmatrix}$,则

(2) $a_{11} \neq 0$.利用 a_{11} 把第一行和第一列的其余元素消为零,则

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ * & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a'_{22} & \cdots & a'_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & a'_{2n} & \cdots & a'_{nn} \end{pmatrix}.$$

而 $a'_{22} = \frac{P_2}{a_{11}} \neq 0$,利用 a'_{22} 将第二行和第二列的其余元素消为零,

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ * & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ * & * & \cdots & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{12} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} 1 & * & \cdots & * \\ 0 & 1 & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a'_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a'_{nn} \end{pmatrix}, 如此做下去.可找到$$

一个特殊上三角阵T,使得 T^TAT 是一个对角阵.

归纳: 分块 $A = \begin{pmatrix} A_1 & \alpha \\ \alpha^T & a_{nn} \end{pmatrix}$,则 A_1 可逆,且可用归纳假设,

$$\begin{pmatrix} T_{1}^{T} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} E & 0 \\ -\alpha^{T} A_{1}^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_{1} & \alpha \\ \alpha^{T} & a_{nn} \end{pmatrix} \begin{pmatrix} E & -A_{1}^{-1} \alpha \\ 0 & 1 \end{pmatrix} \begin{pmatrix} T_{1} & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} T_{1}^{T} A_{1} T_{1} & 0 \\ 0 & a_{nn} - \alpha^{T} A_{1}^{-1} \alpha \end{pmatrix}$$

8. (1)
$$f(Y) = \begin{vmatrix} A & Y \\ Y^T & 0 \end{vmatrix} = \begin{vmatrix} A & Y \\ 0 & -Y^T A^{-1} Y \end{vmatrix} = |A| |-Y^T A^{-1} Y| = -Y^T |A| A^{-1} Y \cdot A \text{ } EE, A^{-1} \text{ } EEE, |A| > 0,$$

从而 $|A|A^{-1}$ 正定,故 $f(Y) = -Y^T|A|A^{-1}Y$ 负定.

(2)
$$A = \begin{pmatrix} A_1 & \alpha \\ \alpha^T & a_{nn} \end{pmatrix}$$
, A 正定,则 A_1 也正定, $|A| = \begin{vmatrix} A_1 & \alpha \\ \alpha^T & a_{nn} \end{vmatrix} = \begin{vmatrix} A_1 & 0 \\ 0 & a_{nn} - \alpha^T A_1^{-1} \alpha \end{vmatrix} = |A_1| (a_{nn} - \alpha^T A_1^{-1} \alpha)$

 $A_{\mathbf{l}}$ 正定,故 $-\alpha^T A_{\mathbf{l}}^{-1} \alpha \leq 0$,从而 $a_m - \alpha^T A_{\mathbf{l}}^{-1} \alpha \leq a_m$,故 $\left| A \right| = \left| A_{\mathbf{l}} \right| (a_{nn} - \alpha^T A_{\mathbf{l}}^{-1} \alpha) \leq a_{nn} P_{n-1}$.

(3) 利用(2)归纳即可.

(4)
$$T$$
 可逆, T^TT 正定,而 $T^TT = \begin{bmatrix} \sum_{i=1}^n t_{i1}^2 & * & \cdots & * \\ * & \sum_{i=1}^n t_{i2}^2 & \cdots & * \\ \vdots & \vdots & & \vdots \\ * & * & \cdots & \sum_{i=1}^n t_{in}^2 \end{bmatrix}$,则由(3)得 $\left|T^TT\right| \le \prod_{j=1}^n (t_{1j}^2 + t_{2j}^2 + \cdots + t_{nj}^2)$.