Metody Numeryczne - Sprawozdanie 6

Piotr Moszkowicz

11 kwietnia 2019

Spis treści

1	$\mathbf{W}\mathbf{s}$	tęp Teoretyczny
	1.1	Metoda siecznych
	1.2	Metoda newtona
	1.3	Bezwzględny błąd iteracji
	1.4	Parametr zbieżności metody
2	Opi	s problemu
3	$\mathbf{W}\mathbf{y}$	
	3.1	Funkcja $f(x)$
		3.1.1 Uzyskane wartości za pomocą metody siecznych
		3.1.2 Uzyskane wartości za pomocą metody Newtona
	3.2	Funkcja $g(x)$
		3.2.1 Uzyskane wartości za pomocą metody siecznych
		3.2.2 Uzyskane wartości za pomocą metody Newtona
	3.3	Warunek zakończenia obliczeń

1 Wstęp Teoretyczny

Na szóstych zajęciach wyznaczaliśmy pierwiastki równania nieliniowego metodą siecznych oraz metodą Newtona i badaliśmy szybkość zbieżności metod.

1.1 Metoda siecznych

Metoda siecznych jest iteracyjną metodą wyznaczania przybliżeń pojedynczych pierwiastków rzeczywistych równania liniowego. Bazujemy tutaj na regule Falsi, jednak jest to metoda dwuetapowa korzystając z dwóch ostatnich przybliżeń x_k oraz x_{k-1} . W każdej kolejnej iteracji wyznaczamy przybliżenia za pomocą poniższego wzoru:

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$
(1)

Zbieżność tej metody jest większa niż w regule Falsi. Należy również pamiętać, że kolejne przybliżenia $|f(x_k)|$ mają być malejące w stosunku do poprzedników. Gdy następuje odstępstwo od tej metody należy przerwać oraz ponownie wyznaczyć punkty startowe.

1.2 Metoda newtona

Metoda Newtona jest metodą jednopunktową. Polega na ciągłym prowadzeniu stycznej do wykresu funkcji badanej, w przedziale [a,b] w którym funkcja ma ten sam znak co jej druga pochodna. Następnie bierzemy punkt x_1 , który jest przecięciem stycznej z osią OX jako rozwiązanie. Weryfikujemy sprawdzając porównane $f(x_1) = 0$. Jeśli nie to prowadzimy kolejną styczną i weryfikujemy nowe rozwiązanie aż do momentu uzyskania poprawnego wyniku. Warunek uzyskania poprawnego wyniku:

$$|x_{k+1} - x_k| < \epsilon \tag{2}$$

Przy implementacji będziemy korzystać ze wzoru iteracyjnego na k-te położenie przybliżenia pierwiastka równania nieliniowego:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)} \tag{3}$$

1.3 Bezwzględny błąd iteracji

Błąd bezwzględny w k-tej iteracji definiujemy za pomocą poniższego wzoru:

$$\epsilon_k = |x_k - x_d| \tag{4}$$

gdzie x_k jest aktualnie wyznaczonym przybliżeniem, a x_d dokładną wartości pierwiastka.

1.4 Parametr zbieżności metody

Parametr zbieżności metody otrzymujemy przekształcając wzór na zbieżność metody. Finalnie przedstawia się poniższym wzorem:

$$p = \frac{\ln \frac{\epsilon_k}{\epsilon_{k+1}}}{\ln \frac{\epsilon_{k-1}}{\epsilon_k}} \tag{5}$$

2 Opis problemu

Na zajęciach naszym zadaniem było zaimplementowanie obu metoda, a następnie znalezienie pierwiastka poniższych funkcji wraz z poniższymi punktami startowymi:

Funkcja	Ps dla metody siecznych	Ps dla metody Newtona	Rozwiązanie dokładnie
$f(x) = (\ln(x) - x)^6 - 1$	$x_0 = 3.0, x_{-1} = 3.01$	$x_0 = 3.0$	$x_d = 1.0$
$g(x) = x^3 + 2x^2 - 3x + 4$	$x_0 = -20.0, x_{-1} = -20.1$	$x_0 = -20.0$	$x_d = -3.284277537306950$

Funkcje zapisywaliśmy jako funkcję w języku C++, przy metodzie Newtona musieliśmy również obliczyć ich pochodne i finalnie również zapisywaliśmy jako funkcję w C++.

3 Wyniki

3.1 Funkcja f(x)

Rysunek 1: Wykres funkcji f(x) oraz funkcji f'(x) uzyskanych z danych

Rysunek 2: Wykres parametru zbieżności p

3.1.1 Uzyskane wartości za pomocą metody siecznych

f(x)	X
46.252424452347761	3.0000000000000000
16.243526613870952	2.539161186718001
8.736723881112683	2.289713587257920
3.974600443183228	1.999396274165512
1.889237476926461	1.757089383905113
0.843952802938374	1.537571119984295
0.360158681554230	1.360334182772441
0.144071888821004	1.228390823381668
0.055376436648966	1.140420018852742
0.020934150517808	1.085496011311683
0.007900744372801	1.052112993804446
0.002988775589459	1.031876481201142
0.001133935043116	1.019563211807077
0.000431191543195	1.012035638782651
0.000164228616169	1.007416847105068
0.000062615960669	1.004575487167817
0.000023889993355	1.002824578472433
0.000009118701029	1.001744445424768
0.000003481501287	1.001077651340947
0.000001329452335	1.000665843250544

3.1.2 Uzyskane wartości za pomocą metody Newtona

f(x)	f'(x)	X
46.252424452347761	99.406184589776757	3.0000000000000000
16.070783451001567	38.648041098099398	2.534712808431192
5.554066854947189	15.179439438572103	2.118888797837499
1.863743622359420	6.193569598282096	1.752994729257214
0.578803898653489	2.733057146160846	1.452078820783954
0.159331602728268	1.314875169863017	1.240299897878320
0.040121093741128	0.659945157518182	1.119123677975357
0.009866856406290	0.333402730541801	1.058329090297784
0.002433057073089	0.167932113187810	1.028734682386800
0.000603304922161	0.084319794842475	1.014246345243276
0.000150163099294	0.042253984921607	1.007091383311880
0.000037455319372	0.021151212590332	1.003537562303685
0.000009352992162	0.010581748031506	1.001766726744653
0.000002336883740	0.005292420250425	1.000882847055418
0.000000584049803	0.002646598032026	1.000441294111911
0.000000145991023	0.001323396161335	1.000220614660148
0.000000036495074	0.000661722385313	1.000110299225442
0.0000000009123434	0.000330867274991	1.000055147586501
0.000000002280817	0.000165435148528	1.000027573284967
0.000000000570199	0.000082717930373	1.000013786511788

3.2 Funkcja g(x)

Rysunek 3: Wykres funkcji g(x) oraz funkcji g'(x) uzyskanych z danych

Rysunek 4: Wykres parametru zbieżności p

3.2.1 Uzyskane wartości za pomocą metody siecznych

g(x)	X
-7136.0000000000000000	-20.00000000000000000
-2122.959238562557402	-13.644516881751990
-1037.232128870450651	-10.953050316149170
-419.205315564355828	-8.381800532752379
-180.422816327561975	-6.637731256732501
-73.999213060696889	-5.319921569441183
-29.399554374462937	-4.403612810576951
-10.581782340573309	-3.799593184114191
-3.097302317289593	-3.459935322112651
-0.579074266939768	-3.319374711383486
-0.045074690144274	-3.287052367659576
-0.000754586837253	-3.284324051587053
-0.000001012539922	-3.284277599723393
-0.000000000022798	-3.284277537308358
0.000000000000000	-3.284277537306952
0.000000000000000	-3.284277537306952
nan	nan

3.2.2 Uzyskane wartości za pomocą metody Newtona

g(x)	g'(x)	X
-7136.0000000000000000	1157.00000000000000000	-20.0000000000000000
-2218.419795915797749	543.334992966789628	-13.832324978392394
-703.327829599682104	262.651128266977082	-9.749356230507249
-228.397886153403988	132.877511846441251	-7.071553800186942
-76.001036766635934	72.248594697623602	-5.352693452942105
-25.653653704512966	43.887983285314093	-4.300755528270806
-8.553069625562095	30.998632959741251	-3.716229838454085
-2.726235674214282	25.626619685970251	-3.440312199225600
-0.824948044591615	23.677394025936763	-3.333929238553389
-0.241987103852210	23.053770164575916	-3.299088071333384
-0.070127632834392	22.867317961132390	-3.288591432296700
-0.020244316944755	22.812968502822415	-3.285524713543168
-0.005837361050069	22.797252148627027	-3.284637309655233
-0.001682613602146	22.792718160208992	-3.284381254188021
-0.000484964738920	22.791411055572315	-3.284307431768495
-0.000139773163705	22.791034304904244	-3.284286153369464
-0.000040284124516	22.790925719156665	-3.284280020555927
-0.000011610289684	22.790894423472679	-3.284278253004885
-0.000003346199966	22.790885403733014	-3.284277743578204
-0.000000964407644	22.790882804154364	-3.284277596756354

3.3 Wnioski

Jak widać powyżej metoda Newtona daje nam lepsze rezultaty niż metoda siecznych. Dochodzi do szybszej stabilizacji wyników oraz finalnie dokładniejszego wyniku otrzymanego. W naszym przypadku rozwiązania dla funkcji f(x) są zbieżne, natomiast dla funkcji g(x) nie. W metodzie siecznych trzeba również pamiętać o warunku odcięcia, który wynika z danych otrzymanych dla funkcji g(x), wnioski na ten temat można przeczytać poniżej.

3.4 Warunek zakończenia obliczeń

Jak widać po danych dla funkcji g(x) przy metodzie siecznych, musimy się zabezpieczyć na wypadek dzielenia przez 0, więc nasza pętla powinno kończyć się w momenci spełnienia warunku: g(x) == 0.