

Introdução a Banco de Dados

Prof. Msc Denival A. dos Santos

30

- Dados são tudo que podemos inferir ou coletar sobre uma situação específica.
- Sozinho, dissociado de um contexto, não expressa algo que traga qualquer certeza ou elimine dúvidas de qualquer natureza. No máximo, pode-se deduzir que seja um referencial.

Informação

- Os dados reunidos passam a apresentar um significado, de tal maneira que podem ser interpretados pelas pessoas, produzindo informação.
- Exemplo:
 - Lista de clientes com seus números de CPF e endereços, ordenados.

Observação: Para se gerar informação, no mínimo, é necessário conhecer (Conhecimento) antecipadamente o contexto essencial para o qual ela servirá.

Banco de Dados - Redundância - Problema

- Limitações na utilização de dados em arquivos
 - Dificuldade de acesso
 - Problemas para filtrar ou agregar dados
 - Redundância e inconsistência
 - Isolamento dos dados
 - Anomalias de acesso concorrente
 - Problemas de segurança.

Banco de Dados - Solução

Coleção de dados relacionados. Banco de Dados

Banco de Dados

Banco de dados é uma coleção de dados referentes a um assunto ou propósito específico, com o objetivo de organizar os dados de modo a tornar a vida dos usuários do negócio em questão mais prática, precisa, rápida e confiável.

Banco de Dados

- Que banco de dados temos ao nosso redor?
 - Agenda de contatos do celular.
 - Firefox Favoritos, histórico.
 - Armazenados no SQLite.
 - Caixas eletrônicos.
 - Mecanismos de busca.
 - Postagens nas redes sociais.

SGBD - Sistema Gerenciador de Banco de Dados

- SGBD É uma coleção de programas que permite aos usuários criar e manter um banco de dados.
- O principal objetivo de um SGBD é proporcionar um ambiente tanto conveniente quanto eficiente para a recuperação e armazenamento das informações do banco de dados.

SGBD - Funcionamento

- O usuário emite uma solicitação de acesso.
- O SGBD intercepta a solicitação e a analisa.
- O SGBD inspeciona os esquemas externos (ou sub esquemas) relacionados àquele usuário, os mapeamentos entre os três níveis, e a definição da estrutura de armazenamento.
- O SGBD realiza as operações solicitadas no banco de dados armazenado.

Exemplos de SGBD's

- SQL Server (da Microsoft)
- PostgreSQL (código aberto)
- Firebird (código aberto)
- MySQL (código aberto, atualmente Oracle)
- Oracle Database (da Oracle)
- DB2 (da IBM)
- MariaDB (código aberto)

SGBD - Popularidade

					1		
	Rank				Score		
Mar 2019	Feb 2019	Mar 2018	DBMS	Database Model	Mar 2019	Feb 2019	Mar 2018
1.	1.	1.	Oracle 🛨	Relational, Multi-model 🚺	1279.14	+15.12	-10.47
2.	2.	2.	MySQL 😷	Relational, Multi-model 🚺	1198.25	+30.96	-30.62
3.	3.	3.	Microsoft SQL Server 😷	Relational, Multi-model 🚺	1047.85	+7.79	-56.94
4.	4.	4.	PostgreSQL 🚹	Relational, Multi-model 🚺	469.81	-3.75	+70.46
5.	5.	5.	MongoDB ₽	Document	401.34	+6.24	+60.82
6.	6.	6.	IBM Db2 ₽	Relational, Multi-model 🚺	177.20	-2.23	-9.47
7.	1 9.	7.	Microsoft Access	Relational	146.20	+2.18	+14.26
8.	4 7.	8.	Redis 🖽	Key-value, Multi-model 🔃	146.12	-3.32	+14.90
9.	4 8.	9.	Elasticsearch 😷	Search engine, Multi-model 🔃	142.79	-2.46	+14.25
10.	10.	1 11.	SQLite 🗄	Relational	124.87	-1.29	+10.06
11.	11.	↓ 10.	Cassandra 🚹	Wide column	122.80	-0.58	-0.69
12.	12.	↑ 15.	MariaDB 🚹	Relational, Multi-model 🚺	84.31	+0.89	+21.21
13.	13.	13.	Splunk	Search engine	83.10	+0.29	+17.44
14.	14.	↓ 12.	Teradata 🚹	Relational	75.22	-0.75	+2.76
15.	15.	↑ 18.	Hive 🚹	Relational	73.00	+0.71	+16.00
16.	16.	4 14.	Solr	Search engine	60.01	-0.95	-4.80

SGBD - Funcionalidades

- Funcionalidades
 - Controle de redundância
 - Acesso limitado aos dados (segurança)
 - Armazenamento persistente dos dados
 - Definição e manutenção de restrições de integridade
 - Controle de concorrência
 - Recuperação de falhas
- Um dos maiores benefícios de um banco de dados é proporcionar ao usuário uma visão abstrata dos dados.
- Os usuários não precisam ter conhecimento sobre detalhes de implementação e manutenção dos dados.

SGBD - Usuários

Usuários finais

São aqueles que vão trabalhar diariamente com as aplicações desenvolvidas.

Analistas de sistemas

Determinam os requisitos dos usuários finais.

Projetista de Banco de Dados

- Identificam os dados a serem armazenados.
- Escolhem estruturas adequadas para representar e armazenar esses dados.

Programadores de aplicação

- Implementam essas especificações como programas.
- Administrador do Banco de Dados (DBA)
 - Gerencia os dados dados armazenados no SGBD.

SGBD - Usuários - Funções de um DBA

- Coordenam e monitoram o uso do BD.
- Definir o esquema criar o esquema do BD escrevendo um conjunto de definições em DDL, que resultarão no dicionário de dados;
- Definir a estrutura de dados e o método de acesso aos dados;
- Modificar o esquema e a organização física do BD;
- Fornecer autorização de acesso ao BD, regulando o acesso de usuários à partes específicas do sistema;
- Especificar regras de integridade.

Instâncias e Esquemas

- Um banco de dados muda ao longo do tempo por meio de informações que nele são inseridas ou excluídas.
- Segundo Silberschatz (2006), os esquemas de dados dizem respeito ao projeto geral do banco de dados e é um aspecto que raramente é modificado.
- Uma instância do banco de dados diz respeito à coleção de dados armazenados em um banco de dados em um determinado momento (SILBERSCHATZ, 2006). A instância modifica toda vez que uma alteração no banco de dados é feita. O SGBD é responsável por garantir que toda instância do banco de dados satisfaça o seu esquema do banco de dados, respeitando sua estrutura e suas restrições.

Modelo de Dados

- Um *modelo de (banco de) dados* é uma descrição dos tipos de informações que estão armazenadas em um banco de dados.
 - Por exemplo:
 - No caso de uma indústria, o modelo de dados poderia informar que o banco de dados armazena informações sobre produtos e que, para cada produto, são armazenados seu código, preço e descrição.
- O projeto de banco de dados tem o objetivo de transformar as necessidades de informações no negócio em um banco de dados.

Modelo de Dados

- Modelo de Rede
- Modelo Hierárquico
- Modelo Entidade-Relacionamento
- Modelo Relacional
- Modelo de dados baseados em objeto
- Modelo de dados semiestruturado

Níveis de Abstração

Modelo conceitual

- Um modelo conceitual é uma descrição do banco de dados de forma independente de implementação em um SGBD. O modelo conceitual registra que dados podem aparecer no banco de dados, mas não registra como estes dados estão armazenados a nível de SGBD.
- A técnica mais difundida de modelagem conceitual é a abordagem entidade-relacionamento (ER). Nesta técnica, um modelo conceitual é usualmente representado através de um diagrama, chamado diagrama entidade-relacionamento (DER).

Modelo lógico

- Um modelo lógico é uma descrição de um banco de dados no nível de abstração visto pelo usuário do SGBD.
- O modelo lógico é dependente do tipo particular de SGBD que está sendo usado.
- Exemplo de modelo lógico textual:

TipoDeProduto(<u>CodTipoProd</u>, DescrTipoProd)

Produto(<u>CodProd</u>, DescrProd, PrecoProd, CodTipoProd)
CodTipoProd referencia TipoDeProduto

Modelo Físico

- Contém detalhes de armazenamento interno de informações.
- Detalhes que:
 - Não têm influência sobre a programação de aplicações no SGBD, mas, influenciam a performance da aplicações.
 - São usados por profissionais que fazem sintonia (ajuste de desempenho - "tuning") de banco de dados.

Linguagens de Acesso a um BD

- Podemos dividir em duas categorias os tipos de linguagem oferecidas por um SGBD. Uma delas para expressar consultas e atualizações e outra específica para os esquemas do banco de dados. São elas:
 - Linguagem de definição de dados (DDL)
 - Utilizada para o esquema de um BD.
 - Linguagem de manipulação de dados (DML)
 - Utilizada para permitir:
 - consultas sobre um BD;
 - Inserção em tabelas;
 - Remoção em uma tabela e;
 - atualização de dados em uma tabela.

Linguagens de Acesso a um BD

Exemplo DDL (SQL)

```
    create table Empregado
(matr integer not null,
nome varchar(35),
salário real,
primary key(matr))
```

Linguagens de Acesso a um BD

- Exemplos DML (SQL)
 - Consultas sobre um BD
 - Exemplo (SQL)
 select nome
 from Empregado
 where salario > 7000
 - Inserções em uma tabela
 - Exemplo (SQL)
 insert into Empregado values(123, "Bárbara", 5000.00)
 - Remoções em uma tabela
 - Exemplo (SQL)
 delete from Empregado
 where matr=14
 - Atualizar valores de atributos de uma tabela
 - Exemplo (SQL)
 update Empregado set salário=salário*1.15
 where salário<1500.00