

向量空间与维数

林胤榜

主要内容

- 1 线性映射
 - ■线性映射的像与核
- 2 向量组的秩与线性空间的维数
 - 例子
 - ■线性表示与秩
- 3 线性映射与线性方程组

假设 $\varphi: V \to W$ 是线性映射, 亦即对任意 $v_1, v_2 \in V$ 和 $\lambda \in \mathbb{R}$,

定义

若 φ 也是双射, 则称 φ 为线性同构, V 与 W 线性同构, 并记 $V \cong W$.

假设 $\varphi: V \to W$ 是线性映射, 亦即对任意 $v_1, v_2 \in V$ 和 $\lambda \in \mathbb{R}$,

定义

若 φ 也是双射, 则称 φ 为线性同构, V 与 W 线性同构, 并记 $V \cong W$.

定理

给出 n 维向量空间 V 的一组基 $S = \{v_1, \dots, v_n\}$, 等同于给出一个线性同构

$$\varphi \colon V \xrightarrow{\cong} \mathbb{R}^n,$$

$$w = a_1 v_1 + \dots + a_n v_n \mapsto (a_1, \dots, a_n)$$

解释.

- 给定一组基 $S = \{v_1, \dots, v_n\} \subset V$ 基, 如上定义 $\varphi: V \to \mathbb{R}^n$, 可以证明它是线性同构;
- 给定一个线性同构 $\varphi: V \to \mathbb{R}^n$, 记 $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (第 i 个坐标为 1, 其余为 0) 的原像为 v_i , 即 $\varphi(v_i) = e_i$. 则 $\{v_i\}_{i=1}^n$ 是 v 的一组基.

定义

称 $\{e_i\}_{i=1}^n$ 为 \mathbb{R}^n 的标准基.

线性映射的像与核

与线性映射相关的两个重要子空间: 像与核. 假设 V, W 是线性空间, $\varphi: V \to W$ 是线性映射.

定义

- **1** 线性映射 φ 的像集是 $\{w \in W \mid \exists v \in V \ \text{使得} \varphi(v) = w\} \subset W$, 记为 $\varphi(V)$ 或 $\operatorname{im}(\varphi)$.
- ② 它的核是 $\{v \in V \mid \varphi(v) = 0\} \subset V$, 记为 $\ker(\varphi)$.

线性映射的像与核

与线性映射相关的两个重要子空间: 像与核. 假设 V, W 是线性空间, $\varphi: V \to W$ 是线性映射.

定义

- **1** 线性映射 φ 的像集是 $\{w \in W \mid \exists v \in V \ \text{使得} \varphi(v) = w\} \subset W$, 记为 $\varphi(V)$ 或 $\operatorname{im}(\varphi)$.
- ② 它的核是 $\{v \in V \mid \varphi(v) = 0\} \subset V$, 记为 $\ker(\varphi)$.

线性映射的像与核

与线性方程组的关系

假设 $A \in M_{m \times n}$,

$$L_A \colon \mathbb{R}^n \to \mathbb{R}^m, \quad X \mapsto AX$$

是相应的线性映射.

- 1 齐次线性方程组 AX = 0 的解集就是 $ker L_A$.
- 2 线性方程组 AX = b 有解当且仅当 $b \in \text{im } L_A$.

定理

 $\operatorname{im}(\varphi) \le W, \ker(\varphi) \le V.$

首先它们非空: $0 \in \text{im}(\varphi), 0 \in \text{ker}(\varphi)$.

下证它们在线性运算下封闭.

若 $w_1, w_2 \in \operatorname{im}(\varphi)$. 假设 $\varphi(v_1) = w_1, \varphi(v_2) = w_2$,

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = w_1 + w_2$. 所以 $w_1 + w_2 \in \text{im}(\varphi)$.
- 若 $w_1 \in \operatorname{im}(\varphi), k \in \mathbb{R}^n$, 则 $\varphi(kv_1) = k\varphi(v_1) = kw_1$. 所以 $kw_1 \in \operatorname{im}(\varphi)$.

因此 $\operatorname{im}(\varphi) \leq W$.

若 $v_1, v_2 \in \ker(\varphi), k \in \mathbb{R}^n$. 则

- $\varphi(v_1 + v_2) = \varphi(v_1) + \varphi(v_2) = 0 + 0 = 0$, $\mathbb{P} v_1 + v_2 \in \ker(\varphi)$.
- $\varphi(kv_1) = k\varphi(v_1) = k0 = 0$, $\mathbb{P} kv_1 \in \ker(\varphi)$.

因此 $\ker(\varphi) \leq V$.

\mathbb{R}^n 中向量组的秩

给定一组向量 $A \subset \mathbb{R}^n$ (可能无穷).

定义

若存在 $A_0 = \{a_1, \dots, a_r\} \subset A$ 使得

- a A₀ 线性无关,
- **b** A 中任意 (r+1) 个向量 (如果有 r+1 个的话) 均线性相关,则 A 的秩为 r, 记为 R_A .

只含有零向量的向量组的秩约定为 0.

\mathbb{R}^n 中向量组的秩

给定一组向量 $A \subset \mathbb{R}^n$ (可能无穷).

定义

若存在 $A_0 = \{a_1, \dots, a_r\} \subset A$ 使得

- a A₀ 线性无关,
- **b** A 中任意 (r+1) 个向量 (如果有 r+1 个的话) 均线性相关,则 A 的秩为 r, 记为 R_A .

只含有零向量的向量组的秩约定为 0. 实际上, 有

 $R_A = \dim \operatorname{span}(A).$

回顾:

$$\operatorname{span}(A) = \left\{ \sum_{i=1}^{s} \alpha_i b_i \mid \alpha_i \in \mathbb{R}, b_i \in A, i = 1, \dots, s \right\}$$

解释 (秩与维数的关系):

■ 若存在 $A_0 = \{a_1, \dots, a_r\} \subset A$ 满足 (a) 和 (b), 则对任意 $b \in A$, $\{a_1, \dots, a_r, b\}$ 线性相关, b 可由 a_1, \dots, a_r 线性表示. 所以 A_0 是 A 的极大线性无关组.

回顾:

$$\operatorname{span}(A) = \left\{ \sum_{i=1}^{s} \alpha_{i} b_{i} \mid \alpha_{i} \in \mathbb{R}, b_{i} \in A, i = 1, \cdots, s \right\}$$

解释 (秩与维数的关系):

- 若存在 $A_0 = \{a_1, \dots, a_r\} \subset A$ 满足 (a) 和 (b), 则对任意 $b \in A$, $\{a_1, \dots, a_r, b\}$ 线性相关, b 可由 a_1, \dots, a_r 线性表示. 所以 A_0 是 A 的极大线性无关组.
- 任取 $\sum_{i=1}^{s} \alpha_i b_i \in \text{span}(A)$, 存在系数 β_{ij} 使得 $b_i = \sum_{i=1}^{r} \beta_{ij} a_j$. 则

$$\sum_{i=1}^{s} \alpha_i b_i = \sum_{i=1}^{s} \sum_{j=1}^{r} \alpha_i \beta_{ij} a_j$$

可由 A_0 线性表示. 所以 A_0 是 $\operatorname{span}(A)$ 的极大线性无关组, 也就是一组基, 所以 $R_A = \dim \operatorname{span}(A)$.

向量组的秩与线性映射的像的维数

假设 $A = \{a_1, \dots a_m\} \subset \mathbb{R}^n$. 亦以 A 记矩阵 $(a_1, \dots, a_m)_{n \times m}$. 它 给出线性映射

$$L_A: \mathbb{R}^m \to \mathbb{R}^n, X \mapsto AX.$$

如果记 $X = (\alpha_1, \cdots, \alpha_m)^T$, 则

$$AX = (a_1, \dots, a_m)(\alpha_1, \dots, \alpha_m)^T = \sum_{i=1}^m \alpha_i a_i.$$

所以 L_A 的像集

$$\operatorname{im} L_{A} = \{\sum_{i=1}^{m} \alpha_{i} a_{i} \mid \alpha_{i} \in \mathbb{R}, i = 1, \cdots, m\} = \operatorname{span}(A)$$

它是 \mathbb{R}^n 的线性子空间. 而且 $R_A = \dim \operatorname{im} L_A$

另一方面,

定理

矩阵的秩 = 列向量组的秩 = 行向量组的秩. 特别地, $R_A = R(a_1, \dots, a_m)$. (以上面的记号)

另一方面,

定理

矩阵的秩 = 列向量组的秩 = 行向量组的秩. 特别地, $R_A = R(a_1, \dots, a_m)$. (以上面的记号)

证明.

- 记 $A = (a_1, \dots, a_m)$, 假设 R(A) = r 以及 A 的一个 r 阶子式 $D_r \neq 0$. 则 D_r 所在的 r 列向量组构成的矩阵的秩为 r, 所以它们线性无关. 又任意 r+1 阶子式 $D_{r+1} = 0$, 所以任意 r+1 个列向量线性相关. 所以 $R_A = r = R(A)$.
- 类似可证行向量组的秩 = R(A).

总结. 以 A 记向量组 $\{a_1, \cdots, a_m\}$ 和矩阵 (a_1, \cdots, a_m) , 则 $R_A = R(A) = \dim \operatorname{im} L_A = \dim \operatorname{span}(A)$.

例子

$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & 9 & 7 & 9 \end{pmatrix} = (a_1, a_2, a_3, a_4, a_5).$$

求 *A* 的列向量组的一个极大无关组,并把不属于最大无关组的 列向量用极大无关组线性表示.

例子

$$A = \begin{pmatrix} 2 & -1 & -1 & 1 & 2 \\ 1 & 1 & -2 & 1 & 4 \\ 4 & -6 & 2 & -2 & 4 \\ 3 & 6 & 9 & 7 & 9 \end{pmatrix} = (a_1, a_2, a_3, a_4, a_5).$$

求 A 的列向量组的一个极大无关组,并把不属于最大无关组的列向量用极大无关组线性表示.

解. 相当于寻找线性关系:

$$a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5 = 0 (\in \mathbb{R}^4).$$

A 是该线性方程组的系数矩阵. 对 A 作初等行变换不改变方程组的解. 将 A 通过初等行变换化成行最简形, 得到

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{\Delta}{=} (b_1, b_2, b_3, b_4, b_5).$$

那么
$$a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5 = 0$$
 当且仅当

$$b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + b_5x_5 = 0.$$

 b_1, b_2, b_4 线性无关.

$$\begin{pmatrix} 1 & 0 & -1 & 0 & 4 \\ 0 & 1 & -1 & 0 & 3 \\ 0 & 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \stackrel{\Delta}{=} (b_1, b_2, b_3, b_4, b_5).$$

那么 $a_1x_1 + a_2x_2 + a_3x_3 + a_4x_4 + a_5x_5 = 0$ 当且仅当

$$b_1x_1 + b_2x_2 + b_3x_3 + b_4x_4 + b_5x_5 = 0.$$

 b_1, b_2, b_4 线性无关. 所以

$$x_1b_1 + x_2b_2 + 0b_3 + x_4b_4 + 0b_5 = 0 \iff x_1 = x_2 = x_4 = 0.$$

所以 $x_1a_1 + x_2a_2 + x_4a_4 = 0$ 当且仅当 $x_1b_1 + x_2b_2 + x_4b_4 = 0$ 当且仅当 $x_1 = x_2 = x_4 = 0$. 所以 a_1, a_2, a_4 线性无关.

最后,

$$b_3 = -b_1 - b_2 \Rightarrow a_3 = -a_1 - a_2,$$

 $b_5 = 4b_1 + 3b_2 - 3b_4 \Rightarrow a_5 = 4a_1 + 3a_2 - 3a_4.$

线性表示与秩

线性表示与秩

假设 $A \subset \mathbb{R}^n$ (可能无穷), $b \in \mathbb{R}^n$. b 可以被 A(中元素) 线性表示 当且仅当 $b \in \text{span}(A)$. 所以

定理 (3')

若向量组 B 能被向量组 A 线性表示, 则 $R_B \le R_A$.

粗略地讲, 定理的条件意味着, 在线性代数意义下, A 中向量比 B 中向量"多".

线性表示与秩

线性表示与秩

假设 $A \subset \mathbb{R}^n$ (可能无穷), $b \in \mathbb{R}^n$. b 可以被 A(中元素) 线性表示 当且仅当 $b \in \text{span}(A)$. 所以

定理 (3')

若向量组 B 能被向量组 A 线性表示, 则 $R_B \leq R_A$.

粗略地讲, 定理的条件意味着, 在线性代数意义下, A 中向量比 B 中向量"多".

证明.

向量组 B 能被 A 表示, 也就是说 $B \subset \text{span}(A)$, 所以 $\text{span}(B) \leq \text{span}(A)$. 那么 $\dim \text{span}(B) \leq \dim \text{span}(A)$. 即 $R_B \leq R_A$.

上面用到两个事实.

- $\operatorname{span}(B) \leq \operatorname{span}(A)$. 因为 $\operatorname{span}(B)$ 在线性运算下封闭, 而且 $\operatorname{span}(B) \subset \operatorname{span}(A)$.
- 若 $W \le V$, 则 dim $W \le \dim V$. (若有限维且 $W \subsetneq V$, 则 dim $W < \dim V$.) 假设 $\{w_1, \dots, w_n\} \subset W$ 是 W 的一组基,(特别地,线性无关) 若 V 中任意向量均可由 $\{w_1, \dots, w_n\}$ 线性表示,则 dim V = n. 否则,存在 v_{n+1} 与它们线性无关,则 $\{w_1, \dots, w_n, v_{n+1}\} \subset V$ 线性无关,dim $V \ge n+1 > \dim W$.

线性映射与线性方程组

假设 $A \in M_{m \times n}(\mathbb{R})$, 以及 $b \in \mathbb{R}^m$. 考察方程

$$Ax = b(*)$$

A 诱导出一个线性映射 $L_A: \mathbb{R}^n \to \mathbb{R}^m$.

- **1** $b \in L_A(\mathbb{R}^n)$ 当且仅当方程 (*) 有解.
- 2 若 (*) 有解,则

解唯一
$$\iff$$
 L_A 是单射 \iff $N_{L_A} = 0$.

有无穷多个解
$$\iff$$
 $N_{L_A} \neq \{0\}$.

Ax = 0 解集的秩 = dim N_{L_A} .

另一方面,

定义

线性变换 L_A 的秩为 dim $L_A(\mathbb{R}^n)$.

则 $R(A) = \dim L_A(\mathbb{R}^n)$. 因为 $L_A(\mathbb{R}^n)$ 是 A 的列向量的所有线性组合,所以

命题

A 的列秩 =A 的秩.

再者,
$$R(A) = n - \{Ax = 0\}$$
的解集的秩, 所以

$$\dim L_A(\mathbb{R}^n) + \dim N_{L_A} = n.$$