Models for hierarchical inheritance structures in object-oriented programming languages

Mariacristina Romano

UNIVERSITÀ DEGLI STUDI DI MILANO
FACOLTÀ DI SCIENZE E TECNOLOGIE
Corso di laurea magistrale in Fisica

15 aprile 2015

Complex Systems and Computer science

Complex Systems and Computer science

Object-oriented paradigm

Complex Systems and Computer science

Object-oriented paradigm

Inheritance

Example of inheritance hierarchy

Data Analysis - Project Soomla Cocos2dx

Noisy complex system dataset

Data Analysis - dataset

Packages have been downloaded from <u>GitHub</u>, the actual largest code host on the web.

To give a **complete overview** of inheritance hierarchies, three different programming languages have been analyzed.

The dataset contains:

- 17333 C++ projects (3233447 hierarchies)
- 25318 Java projects (3504681 hierarchies)
- 20010 Python projects (2491603 hierarchies)

Almost 10 millions of inheritance hierarchies!

Data Analysis

Data Analysis

Data Analysis

Data Analysis - Comparison among languages

(A microscopic model)

Sharing Tree model

Sharing Tree model (microscopic model)

create stars polygons draw freehand lines create text objects fill bounded areas

pick colors erase existing paths

(A mean field model)

Minimal Effort model

The Effort to build a hierarchy

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \mathsf{cost}(\sigma)$$

You need n classes to perform a task

Minimal Effort model (mean field model)

create stars polygons draw freehand lines

create text objects fill bounded areas

pick colors erase existing paths

8 / 18

The cost of each class

Reuse

Competition

Competition

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \mathsf{cost}(\sigma)$$

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \left[1 - \varepsilon(\mathfrak{m}) \right]$$

The effort of "writing" a tree

Minimal Effort model (mean field model)

The probability to find a selected symbol in a sequence of k extractions is

$$p = 1 - \left(1 - \frac{1}{\mathcal{S}}\right)^{\mathsf{k}}$$

Minimal Effort model (mean field model)

The probability to find a selected symbol in a sequence of k extractions is

$$p = 1 - \left(1 - \frac{1}{\mathcal{S}}\right)^{\mathsf{k}}$$

$$\mathcal{S} o \infty \qquad \mathsf{k} o \infty \qquad \beta \equiv rac{\mathsf{k}}{\mathcal{S}} \qquad e^{-eta} = \lim_{\mathcal{S} o + \infty} \left(1 - rac{1}{\mathcal{S}}
ight)^{eta \mathcal{S}}$$

Minimal Effort model (mean field model)

The probability to find a selected symbol in a sequence of k extractions is

$$p = 1 - \left(1 - \frac{1}{\mathcal{S}}\right)^{\mathsf{k}}$$

The probability to find the symbol in \mathfrak{m} independent sets

$$p=1-e^{-eta} \qquad
ightarrow \qquad
ho = \left(1-e^{-eta}
ight)^{\mathfrak{m}}$$

Minimal Effort model (mean field model)

The probability to find a selected symbol in a sequence of k extractions is

$$p = 1 - \left(1 - \frac{1}{S}\right)^{\mathsf{k}}$$

The probability to find the symbol in \mathfrak{m} independent sets

$$ho = 1 - e^{-eta} \qquad
ightarrow \qquad
ho = \left(1 - e^{-eta}
ight)^{\mathfrak{m}}$$

The **shareable code** is

$$\varepsilon(\mathfrak{m}) = \frac{\mathcal{S}}{\mathsf{k}} \left(1 - \mathsf{e}^{-\beta} \right)^{\mathfrak{m}} = \frac{1}{\beta} \left(1 - \mathsf{e}^{-\beta} \right)^{\mathfrak{m}} \equiv \mathsf{e}^{-\alpha \mathfrak{m}}$$

The shared code

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \mathsf{cost}(\sigma)$$

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \left[1 - arepsilon(\mathfrak{m})
ight]$$

$$\mathtt{E} = \sum_{\sigma}^{\mathcal{N}} \left[1 - \mathtt{e}^{-lpha \mathfrak{m}}
ight]$$

Mean field approach

Minimal Effort model (mean field model)

The **number of nodes** at each level

$$\{\mathfrak{n}(l)\}_{l=1}^\mathtt{L} = \{\mathfrak{n}(1),\mathfrak{n}(2),\ldots,\mathfrak{n}(\mathtt{L}) \equiv 1\}$$

The mean number of brothers is

$$\mathfrak{m}(l) = \frac{\mathfrak{n}(l)}{\mathfrak{n}(l+1)}$$

The effort as a sum over levels

$$\mathtt{E}[\mathtt{L}, \{\mathfrak{n}(l)\}] = \sum_{l=1}^{\mathtt{L}-1} \left[1 - arepsilon \left(rac{\mathfrak{n}(l)}{\mathfrak{n}(l+1)}
ight)
ight]\mathfrak{n}(l)$$

E as a function of the structure

$$egin{aligned} \mathbf{E} &= \sum_{\sigma}^{\mathcal{N}} \mathsf{cost}(\sigma) \ &= \sum_{\sigma}^{\mathcal{N}} \left[1 - arepsilon(\mathfrak{m})
ight] \ &= \sum_{\sigma}^{\mathcal{N}} \left[1 - e^{-lpha \mathfrak{m}}
ight] \end{aligned}$$

$$\mathrm{E}[\mathrm{L},\{\mathfrak{n}(l)\}] = \sum_{l=1}^{\mathrm{L}-1} \left(1 - e^{-\alpha \frac{\mathfrak{n}(l)}{\mathfrak{n}(l+1)}}\right) \mathfrak{n}(l)$$

The functional **E**

The functional **E**

Depth VS Size is logarithmic

Shareability of the code

Depth VS Size is logarithmic

Data Analysis - Comparison among languages

Hierarchies structures

Sharing Tree model

Java

Is shallow better?

Minimal Effort model

Conclusions

Conclusions

- Different OO programming languages show <u>common behaviors</u> (in sizes distribution, outdegree distribution, depth VS size, ...)
- The two different <u>models</u> (microscopic and mean field) are compatible
- Hierarchies arise from a mechanism of **competition** between the sake of the reuse and the difficulty of the abstraction
- We have an interpretation about the shallow hierarchies in Java
- Both models predict the growth of the <u>mean outdegree</u> close to the root
- We argue that depths are sub-optimal

Sizes distribution

Outdegrees distribution

Indegrees distribution

Tree Approximation - Java

Tree Approximation - Python

Tree Approximation - C++

Abstractability in Sharing Tree model

Most common symbol in Sharing Tree model 1/3 Extra

Probability to find a selected symbol in one sequence is

$$p = \frac{\binom{\mathcal{S}-1}{\mathsf{k}-1}}{\binom{\mathcal{S}}{\mathsf{k}}} = \frac{\mathsf{k}!(\mathcal{S}-1)!}{\mathcal{S}!(\mathsf{k}-1)!}$$

Probability that w classes contain a selected symbol with

$$Pr(w) = \binom{\mathcal{N}}{w} p^w (1-p)^{\mathcal{N}-w}$$

Each symbol $s \in \mathcal{S}$ appears in w_s classes. The set $\{w_s\}_{s=1}^{\mathcal{S}}$ contains \mathcal{S} IIDRV. The most common symbol is the one that appears ω times

$$\omega = \max\{w_1, \ldots, w_S\}$$

Most common symbol in Sharing Tree model 2/3

Consider the cumulative distribution function of ω

$$F_{\omega}(y) = Pr(\omega \leq y)$$

Since ω is the maximal occurrence and w_s are independent

$$Pr(\omega \leq y) = Pr(w_1 \leq y, w_2 \leq y, \dots, w_S \leq y)$$

= $Pr(w_1 \leq y)Pr(w_2 \leq y) \dots Pr(w_S \leq y)$

and since all w_s have the same cumulative mass function

$$F_{\omega}(y) = F_{w}^{\mathcal{S}}(y)$$

The probability distribution of ω

$$Pr(y = \omega) = Pr(\omega \le y) - Pr(\omega \le y - 1)$$

= $F_w^{\mathcal{S}}(y) - F_w^{\mathcal{S}}(y - 1)$

Most common symbol in Sharing Tree model 3/3

Remembering that w_s are binomial random variables, the occurrence ω of the most common symbol is therefore distributed as

$$\Psi(\omega) = \left(\sum_{i=0}^{\omega} \mathsf{Bin}(\mathcal{N}, i)\right)^{\mathcal{S}} - \left(\sum_{i=0}^{\omega-1} \mathsf{Bin}(\mathcal{N}, i)\right)^{\mathcal{S}}$$

Making explicit the formula of the Binomial distribution

$$\Psi(\omega) = \left(\sum_{i=0}^{\omega} \binom{\mathcal{N}}{i} p^i (1-p)^{\mathcal{N}-i}\right)^{\mathcal{S}} - \left(\sum_{i=0}^{\omega-1} \binom{\mathcal{N}}{i} p^i (1-p)^{\mathcal{N}-i}\right)^{\mathcal{S}}$$

The mean of the distribution is

$$\langle \omega \rangle = \mathcal{N} - \sum_{i=0}^{\mathcal{N}-1} \left(\sum_{k=0}^{j} \binom{N}{k} p^k (1-p)^{\mathcal{N}-k} \right)^{\mathcal{S}}$$

Most common symbol distribution

Sharing Tree process

Extra

The mean number of elements of a group at each step t is given by

$$f(x_t, t) = x_t - \sum_{j=0}^{x_t-1} \left(\sum_{i=0}^{j} {x_t \choose i} \Pi_t^i (1 - \Pi_t)^{x_t-i} \right)^{S-t}$$

where Π_t is obtained with the hypergeometric distribution and considering that if a symbol has been used as *the most common* then it cannot be reused, and so at each step $\mathcal{S} \to \mathcal{S} - 1$ and $k \to k - 1$.

$$\Pi_t = \frac{\binom{\mathcal{S}-1-t}{\mathsf{k}-1-t}}{\binom{\mathcal{S}-t}{\mathsf{k}-t}} = \frac{\Gamma(\mathcal{S}-t)\Gamma(\mathsf{k}-t+1)}{\Gamma(\mathsf{k}-t)\Gamma(\mathcal{S}-t+1)}$$

The process for the mean number of elements can so be defined as

$$x_{t+1} = f(x_t, t)$$

where $x_0 = x(0)$ and is equal to \mathcal{N} for the main process.

Null model 1

Null model 2

