冲刺 CCF NOIP2024 模拟试题

BSZX

时间: 2024 年 11 月 27 日 08:00 ~ 12:30

题目名称	减法	染色	新月争霸	最小值
题目类型	传统型	传统型	传统型	传统型
目录	sub	paint	xinyue	min
可执行文件名	sub	paint	xinyue	min
输入文件名	sub.in	paint.in	xinyue.in	min.in
输出文件名	sub.out	paint.out	xinyue.out	min.out
每个测试点时限	1.0 秒	2.0 秒	2.0 秒	2.0 秒
内存限制	512 MiB	512 MiB	1024 MiB	512 MiB
测试点数目	3	8	6	25
测试点是否等分	否	否	否	是

提交源程序文件名

对于 C++ 语言	sub.cpp	paint.cpp	xinyue.cpp	min.cpp
-----------	---------	-----------	------------	---------

编译选项

对于 C++ 语言	-02 -std=c++14 -static
-----------	------------------------

注意事项 (请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3. 若无特殊说明, 结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 4. 选手提交的程序源文件必须不大于 100KB。
- 5. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 6. 若无特殊说明,输入文件与输出文件中同一行的相邻整数均使用一个空格分隔。
- 7. 直接复制 PDF 题面中的多行样例,数据将带有行号,并且某些字符可能无法正常显示,建议选手直接使用对应目录下的样例文件进行测试。
- 8. 评测时采用的机器配置为: Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, 内存 32GB。上述时限以此配置为准。

减法 (sub)

【题目描述】

给定两个整数 a,b (可能为负), 你可以进行任意多次操作(也可以不操作), 每次操作你需要在如下两种形式中进行选择:

- 操作 1: 将 a 赋值为 a 与 b 的差,即 $a \leftarrow a b$ 。
- 操作 2: 将 b 赋值为 b 与 a 的差,即 $b \leftarrow b a$ 。

你的目标是最小化 a 与 b 的和的绝对值 |a+b|,请输出最小值。

【输入格式】

从文件 sub.in 中读入数据。

本题输入包含多组数据。

第一行,一个正整数T,表示数据组数。

对于每组数据: 仅一行, 两个整数 a, b。

【输出格式】

输出到文件 sub.out 中。

对于每组数据:仅一行一个整数,表示答案。

【样例1输入】

```
1 5
2 1 -1
3 3 -7
4 -4 -1
5 -5 8
6 4 0
```

【样例1输出】

```
1 Ø
2 3
3 Ø
4 3
6 Ø
```

【样例1解释】

对于第 1 组数据,一种可行的操作方案是:不进行任何操作,|a+b|=0。

对于第 2 组数据,一种可行的操作方案是: 先使用操作 2, b 被赋值为 -10; 再使用操作 1, a 被赋值为 13, 此时 |a+b|=3, 可以证明这是能够达到的最小值。

对于第 3 组数据,一种可行的操作方案是: 连续使用 5 次操作 1, a 依次被赋值为 -3, -2, -1, 0, 1, 此时 a 和 b 互为相反数,|a+b|=0。

对于第 4 组数据,一种可行的操作方案是:不进行任何操作,此时 |a+b|=3。 对于第 5 组数据,一种可行的操作方案是:使用操作 2, b 被赋值为 -4,此时 |a+b|=0。

【样例 2】

见选手目录下的 sub/sub2.in 与 sub/sub2.ans。 该样例数据满足子任务 2 的限制。

【样例 3】

见选手目录下的 sub/sub3.in 与 sub/sub3.ans。 该样例数据满足子任务 3 的限制。

【数据范围】

对于 100% 的数据, $1 \le T \le 10^5$, $|a|, |b| \le 10^9$ 。

测试点编号	特殊性质	分值
1	A	27
2	В	31
3	无	42

特殊性质 A: 保证 |a|, |b| < 10。

特殊性质 B: 保证 $a \ge 1$, $b \le -1$ 。

染色 (paint)

【题目描述】

你有一个高度为 1,长度为 n 的画布,其被分成了 n 个小格。你还有 m 种颜料。不同的位置适合使用的颜料是不同的,当第 i 个小格填入了第 j 种颜色,该小格的美观度为 $a_{i,j}$ 。整个画布的美观度为所有小格的美观度的和。

最初画布上已经有颜料了。你可以进行若干次(可以为0次)以下操作:

• 指定 $1 \le i \le j \le n$,使得第 i 个小格的颜色与第 j 个小格的颜色相同,然后使用刷子将第 $i \sim j$ 小格的颜色全部变为该颜色。

你需要先求出原画布的最大**美观度**,然后处理 q 组操作,强制在线,共两类:

- 1. 由宇宙射线的影响,最初画布的第 p_i 小格的**颜色**变化为了 x_i ;
- 2. 求出将第 $l_i \sim r_i$ 个小格考虑为新的子画布的情况下,该子画布的最大**美观度**。

【输入格式】

从文件 paint.in 中读入数据。

第 1 行三个非负整数 n, m, q,代表画布长度,颜料种数和操作个数。

第 2 行 n 个正整数 c_i 代表最初画布上每个小格的颜色。

第 $3 \sim 2 + n$ 行,每行 m 个整数 $a_{i,j}$ 代表第 i 个小格中填入第 j 种颜色的美观度。

第 $3+m\sim 2+m+q$ 行,每行 3 个正整数,第一个正整数表示操作种类,后两个正整数是经过了加密的参数 p',q',你需要执行以下操作解密:

$$p \leftarrow p' \oplus \text{lastans}$$

 $q \leftarrow q' \oplus \text{lastans}$

其中 ⊕ 为异或操作, lastans 为上一次询问的输出。

【输出格式】

输出到文件 paint.out 中。

第1行一个整数,代表最初画布的最大美观度。

接下来若干行每行一个整数,代表每次查询时子画布的最大美观度。

【样例1输入】

1 3 2 4

2 2 1 2

【样例1输出】

```
    9
    9
    1
    1
```

【样例1解释】

询问进行解密后为:

```
      1
      2
      1
      3

      2
      1
      2
      1

      3
      2
      3
      3

      4
      1
      1
      1
```

对于原画布的答案,我们可以选择 1,3 小格,并将 2 小格的颜色变为 2,这样整个画布的美观度为 4+4+1=9。

【样例 2】

见选手目录下的 *paint/paint2.in* 与 *paint/paint2.ans*。

【样例 3】

见选手目录下的 *paint/paint3.in* 与 *paint/paint3.ans*。 该样例数据满足子任务 3 的限制。

【样例 4】

见选手目录下的 *paint/paint4.in* 与 *paint/paint4.ans*。 该样例数据满足子任务 5 的限制。

【样例 5】

见选手目录下的 *paint/paint5.in* 与 *paint/paint5.ans*。 该样例数据满足子任务 6 的限制。

【样例 6】

见选手目录下的 *paint/paint6.in* 与 *paint/paint6.ans*。 该样例数据满足子任务 8 的限制。

【数据范围】

对于 100% 的数据,满足 $1 \le p_i \le n \le 10^5$, $1 \le x_i, c_i \le m \le 5$, $0 \le q \le 5 \times 10^4$, $1 \le a_{i,j} \le 10^9$ 。

子任务编号	n =	m =	q =	特殊性质	分数
1	8		0		5
2	0	5	5×10^4	×	10
3	500		0		5
4	99999		0	,	10
5	99999	2	5×10^4	$\sqrt{}$	15
6			3 × 10		10
7	10^{5}	5	0	×	20
8		9	5×10^4		25

特殊性质: 保证 $c_i = (i-1) \mod 2 + 1$ 且没有一类操作。

新月争霸 (xinyue)

【题目描述】

由于你是新月的忠实粉丝,因此你要解决一道具有新月特色的题目。

现在你要玩一个名为《新月争霸 2》的游戏。游戏中有一位勇士,勇士初始有 H_0+10^{-100} 的血量,共有 n 个 Boss,每个 Boss 的血量是 h_i 。

勇士初始有一把攻击力是 a_0 的剑,每个 Boss 也有一把剑,攻击力为 a_i 。

勇士可以以任意顺序挑战每个 Boss, 挑战开始后, 勇士和 Boss 会轮流发起攻击 (勇士先进行攻击), 每次向对方造成 a_x 的伤害值 (勇士每次攻击可以选择任意一把已 经获得的剑,Boss 只有一把剑), 当对方生命值 ≤ 0 则挑战结束。

当勇士击败一个 Boss 后,可以获得该 Boss 的剑。

由于这个游戏太垃圾了,因此你决定抛弃这个游戏,转而解决这么一个问题:如果要把n个Boss全部击败, H_0 的最小非负整数取值是多少。

【输入格式】

从文件 xinyue.in 中读入数据。

第一行两个整数, n 与 a_0 。

接下来 n 行,每行两个整数,表示第 i 个 Boss 的 a_i 和 h_i 。

【输出格式】

输出到文件 xinyue.out 中。

输出一行一个非负整数,表示 H_0 的最小取值。

【样例1输入】

```
      1
      4
      1

      2
      3
      2

      3
      4
      4

      4
      5
      6

      5
      1
      6
```

【样例1输出】

1 9

【样例 2】

见选手目录下的 *xinyue/xinyue2.in* 与 *xinyue/xinyue2.ans*。 该样例数据满足子任务 2 的限制。

【样例 3】

见选手目录下的 *xinyue/xinyue3.in* 与 *xinyue/xinyue3.ans*。 该样例数据满足子任务 3 的限制。

【样例 4】

见选手目录下的 *xinyue/xinyue4.in* 与 *xinyue/xinyue4.ans*。 该样例数据满足子任务 4 的限制。

【样例 5】

见选手目录下的 *xinyue/xinyue5.in* 与 *xinyue/xinyue5.ans*。 该样例数据满足子任务 5 的限制。

【样例 6】

见选手目录下的 *xinyue/xinyue6.in* 与 *xinyue/xinyue6.ans*。 该样例数据满足子任务 6 的限制。

【数据范围】

对于 100% 的数据,满足 $1 \le n, a_i, h_i \le 2 \times 10^5$ 。

子任务编号	$n \leq$	特殊性质	分值
1	10	无	15
2	2×10^5	A	15
3	10^{3}	无	25
4	5×10^4		10
5	2×10^{5}	В	15
6	2 × 10°	无	20

特殊性质 A: 满足 $\forall 1 \leq i < n, a_i > a_{i+1}, h_i < h_{i+1}$ 。

特殊性质 B: 满足 $\forall 1 \leq i < j \leq n, a_i \neq a_j$ 。

开启合理的子任务依赖。

最小值 (min)

【题目描述】

小 X 有两个长度为 N 的整数序列 A_1, A_2, \dots, A_N 和 B_1, B_2, \dots, B_N 。

小 X 现在越来越喜欢对称的东西了,当他看到两个序列 C,D 时,他会找到序列 C 的最小值 C_{min} 和 D 的最小值 D_{min} ,他认为这两个最小值相差越小越好,所以他定义 $f(C,D) = |C_{min} - D_{min}|$ 。

更进一步的,他定义 w(l,r) 表示当 $C = \{A_l, A_{l+1}, \cdots, A_r\}$, $D = \{B_l, B_{l+1}, \cdots, B_r\}$ 时 f(C,D) 的值,即 $\{A_l, A_{l+1}, \cdots, A_r\}$ 的最小值和 $\{B_l, B_{l+1}, \cdots, B_r\}$ 的最小值的差的绝对值。

对于每个 $k=1,2,\cdots,N$,小 X 想求出所有长度为 k 的区间 [l,r] 中,w(l,r) 的最小值,即求 $min_{r-l+1=k}w(l,r)$ 。

【输入格式】

从文件 min.in 中读入数据。

第一行一个整数 N。

第二行 N 个整数 A_1, A_2, \cdots, A_N 。

第三行 N 个整数 B_1, B_2, \cdots, B_N 。

【输出格式】

输出到文件 min.out 中。

输出 N 行, 第 i 行一个整数表示 k = i 的答案。

【样例1输入】

1 3

2 1 3 4

3 **8 5 7**

【样例1输出】

1 2

2 2

3 **4**

【样例 1 解释】

k = 1, l = 2, r = 2;

k = 2, l = 2, r = 3;

k = 3, l = 1, r = 3.

【样例 2】

见选手目录下的 min/min2.in 与 min/min2.ans。 该样例满足测试点 $1 \sim 3$ 的限制。

【样例 3】

见选手目录下的 min/min3.in 与 min/min3.ans。 该样例满足测试点 $4 \sim 8$ 的限制。

【样例 4】

见选手目录下的 min/min4.in 与 min/min4.ans。 该样例满足测试点 $9 \sim 10$ 的限制。

【样例 5】

见选手目录下的 min/min5.in 与 min/min5.ans。 该样例满足测试点 $11 \sim 16$ 的限制。

【样例 6】

见选手目录下的 min/min6.in 与 min/min6.ans。 该样例满足测试点 $17 \sim 20$ 的限制。

【样例 7】

见选手目录下的 min/min7.in 与 min/min7.ans。 该样例满足测试点 $21 \sim 25$ 的限制。

【数据范围】

对于全部数据,满足 $1 \le N \le 2 \times 10^5, 1 \le A_i, B_i \le 10^9$ 。

测试点编号	$N \leq$	特殊性质	
$1 \sim 3$	100	无	
$\frac{}{4 \sim 8}$	1000		
$9 \sim 10$	2×10^{5}	A	
$\boxed{11 \sim 16}$	2 × 10	В	
$\boxed{17 \sim 20}$	10^{5}	无	
$21 \sim 25$	2×10^5		

特殊性质 A: 满足 $B_i = 1$ 。 特殊性质 B: 满足 $B_i = 10^9$ 。