Л. Йовков

НПМГ "Акад. Л. Чакалов"

26.03.2020

Нека λ е дадена равнина. Нека още \boldsymbol{a} и \boldsymbol{b} са две пресичащи се прави от тази равнина с обща точка \boldsymbol{O} (вж. фигура 1). Знаем, че под ъгъл между пресичащите се прави \boldsymbol{a} и \boldsymbol{b} се разбира острият ъгъл между тях:

$$\measuredangle(a;b) = \varphi = \measuredangle AOB.$$

Фигура 1: Ъгъл между две прави в равнината

За равнинни ъгли е в сила следната

Теорема 1

Ако раменете на два ъгъла са еднопосочни лъчи, то тези ъгли имат една и съща мярка.

Ще докажем, че тази теорема е вярна и за ъгли в пространството (вж. фигура 2).

Доказателство 1

- Нека ∠рОq и ∠р'О'q' са в различни равнини и нека раменете им са еднопосочни лъчи.
- 2. Нека $PP' \parallel OO'$. Тогава OPP'Q' е успоредник и PP' = OO', OP = O'P'.
- 3. Аналогично нека $QQ' \parallel OO'$, значи OQQ'O' е успоредник и QQ' = OO', OQ = O'Q'.
- 4. Следователно PQQ'P' е успоредник $\Rightarrow PQ = P'Q'$.
- 5. Тогава $\Delta POQ \simeq \Delta P'O'Q'$ (3 пр.), откъдето $\angle POQ = \angle P'O'Q'$.

Фигура 2: Ъгли с взаимноуспоредни рамене

Като използваме току-що доказаната теорема, можем да дадем следната дефиниция за ъгъл между две кръстосани прави.

Дефиниция 1

Ъгъл между две кръстосани прави е ъгълът между две пресичащи се прави, съответно успоредни на дадените кръстосани прави.

Геометричният смисъл е показан на фигура 3.

Фигура 3: Ъгъл между кръстосани прави в пространството

Забележка 1

Ако ъгълът между две кръстосани прави a и b е прав, те се наричат перпендикулярни. Пишем $a \perp b$. Освен това, ако $a \perp b$ и c е трета права в пространството, такава, че $c \parallel a$, то $c \perp b$.

Да разгледаме няколко примера.

Пример 1

Даден е куб $ABCDA_1B_1C_1D_1$. Да се намери ъгълът между правите AD_1 и A_1B .

Решение 1

Правите AD_1 и A_1B са кръстосани, защото лежат в различни стени на куба. Понеже $AB \parallel C_1D_1$ и $AB = C_1D_1$, то фигурата ABC_1D_1 е успоредник \Rightarrow $AD_1 \parallel BC_1$. Тогава $\varphi = \measuredangle(AD_1; A_1B) =$ $\angle(BC_1; A_1B) = \angle A_1BC_1$. Ho $BA_1 = BC_1 = A_1 C_1$ (диагонали в еднакви квадрати) $\Rightarrow \varphi = 60^{\circ}$.

Пример 2

Даден е правоъгълен паралелепипед $ABCDA_1B_1C_1D_1$ с ръбове $AA_1=1$, $AB=\sqrt{6}$ и $AD=\sqrt{3}$. Намерете ъглите между правите:

а) AA_1 и BC_1 ; б) B_1D_1 и BC_1 .

Решение 2

Да означим търсените ъгли със $\varphi_1 = \measuredangle(AA_1; BC_1)$ и $\varphi_2 = \measuredangle(B_1D_1; BC_1)$.

- а) Понеже четириъгълникът ABC_1D_1 е успоредник, то $BC_1 \parallel AD_1$. Тогава $\varphi_1 = \measuredangle(AA_1; AD_1) = \measuredangle A_1AD_1$. От
- ΔAA_1D_1 ($\angle A_1=90^\circ$) пресмятаме $an \varphi_1=rac{A_1D_1}{AA_1}=\sqrt{3},$ следователно $\varphi_1=60^\circ.$
- б) Ясно е, че $\varphi_2 = \measuredangle(BD; BC_1) = \measuredangle C_1 BD$. От $\triangle CC_1 D$ по Питагорова теорема намираме $C_1 D = \sqrt{7}$. Аналогично получаваме $BC_1 = 2$ и BD = 3. Сега от косинусовата теорема за $\triangle BC_1 D$ имаме $\cos \varphi_2 = \frac{1}{2} \Rightarrow \varphi_2 = 60^\circ$. И така, получихме, че $\varphi_1 = \varphi_2 = 60^\circ$.

Задача 1

Даден е куб $ABCDA_1B_1C_1D_1$. Намерете ъгъла между правите:

- а) **AA**₁ и **BC**; б) **AA**₁ и **DC**;
- в) **АА**₁ и **ВС**₁; г) **АВ**₁ и **ВС**₁.

Задача 2

Основата ABCD на четириъгълната пирамида ABCDS е квадрат и SA = SB = SC = SD = AB. Намерете ъгъла между правите:

а) *SD* и *AB*; б) *SD* и *BC*.

Задача 3

Дадена е правилна триъгълна пирамида ABCD с основа равностранния $\triangle ABC$ със страна 2 и околен ръб $DA = \sqrt{2}$. Ако M е средата на ръба AB, намерете ъгъла между правите DM и BC.

Задача 4

Дадена е правилна четириъгълна пирамида ABCDS с връх S, на която всичките ръбове са равни. Намерете ъгъла между правите AC и SD.

Упътване. През средата на отсечката **АС** постройте права, успоредна на **DS**.

Задача 5

Дадена е триъгълна пирамида ABCD, всички ръбове на която са равни на 12. Точка M е среда на ръба AB, а P — среда на BC. Върху ръба BD е взета точка N така, че DN = 4. Да се намери ъгълът (негова тригонометрична функция) между правите MN и AP.

Задача 6

Основата на триъгълна пирамида ABCD е равностранният $\triangle ABC$ със страна 2, а околният ръб DA има дължина $\sqrt{2}$ и е перпендикулярен на ръбовете AB и AC. Да се намери тангенсът на ъгъла между правата DA и правата, минаваща през средите на ръбовете DB и AC.

Задача 7

В правилната четириъгълна пирамида ABCDV с връх V основните ръбове са равни на 2, а околните — на $2\sqrt{2}$. Намерете мярката на ъгъла между правите AV и DM, където точка M е средата на ръба CV.

Задача 8

Точките M и N са съответно среди на околните ръбове CC_1 и BB_1 на правилната четириъгълна призма $ABCDA_1B_1C_1D_1$. Ако $AA_1=2AB$, докажете, че ъгълът между правите AN и BM е равен на 60° .

Задача 9

Даден е куб $ABCDA_1B_1C_1D_1$. Точка P е среда на ръба CD, а точка N е среда на ръба AD. Докажете, че $\cos \measuredangle(BN;\ C_1P)=0,4$.

Задача 10

В правилна четириъгълна пирамида ABCDV с връх V всички ръбове са равни. Точките M и N са среди съответно на ръбовете BC и CV. Докажете, че ъгълът между правите DM и BN е по-голям от 45° и по-малък от 60° .

Упътване. Използвайте монотонността на функцията $\cos x$ в интервала $[0^{\circ}; 90^{\circ}]$.