BI-ZUM: Úlohy 2. cvičení Tommy Chu

Úloha 1

Stavový prostor

Zavedeme množinu $\mathcal{U} = \{1, 3, 5, 8, 12, b\}$, kde čísla představují osoby s příslušnou dobou přesunu a b = 0 baterku. Množinu stavů definujeme následovně:

$$S = \{(D, t) \mid D \subseteq \mathcal{U} \land t \in \mathbb{N}_0\},\$$

kde Dodpovídá osobám a baterce, které jsou v čase tu domku, a $\mathcal{U} \smallsetminus D$ jednoznačně určuje množinu osob na kraji lesa.

Přemístění osob a baterky z kraje lesa k domku zachycuje množina A_k a od domku A_{od} :

$$\begin{aligned} \mathbf{A}_{\mathbf{k}} &= \Big\{ \big\{ (D,t), (D \cup Q, t + \max Q) \big\} & \mid & (D,t) \in \mathbf{S} \wedge \#Q \in \{2,3\} \wedge b \in Q \subseteq \mathcal{U} \smallsetminus \mathcal{D} \\ \mathbf{A}_{\mathrm{od}} &= \Big\{ \big\{ (D,t), (D \smallsetminus Q, t + \max Q) \big\} & \mid & (D,t) \in \mathbf{S} \wedge \#Q \in \{2,3\} \wedge b \in Q \subseteq \mathcal{D} \\ \end{aligned} \right. \end{aligned}$$

Množina akcí je $A = A_k \cup A_{od}$.

Úlohu formulujeme jako prohledávání stavového prostoru (S, A) s počátečním stavem $(\emptyset, 0)$ – nikdo není u domku, a množinou koncových stavů $\{(\mathcal{U}, t) \mid t \in \mathbb{N}_0\}$ – všichni jsou u domku.

Řešení

Cesta splňující limit 30 minut je například:

t	D		Q	$\mathcal{U} \setminus D$
0	Ø	←	$\{1,3,b\}$	$\{1, 3, 5, 8, 12, b\}$
3	$\{1,3,b\}$	\rightarrow	$\{1,b\}$	$\{5, 8, 12\}$
4	{3}	←	$\{8,12,b\}$	$\{1, 5, 8, 12, b\}$
16	$\{3, 8, 12, b\}$	\rightarrow	$\{3,b\}$	$\{1, 5\}$
19	$\{8, 12\}$	\leftarrow	$\{1,5,b\}$	$\{1, 3, 5, b\}$
24	$\{1, 5, 8, 12, b\}$	\rightarrow	$\{1,b\}$	{3}
25	$\{5, 8, 12\}$	←	$\{1,3,b\}$	$\{1,3,b\}$
28	$\{1, 3, 5, 8, 12, b\}$			Ø

Úloha 2

Existuje pouze jedna nejkratší cesta z vrcholu 0 do vrcholu 3, kterou je $P_{min}: (0 \to 4 \to 7 \to 3)$.

DFS zvolí nejkratší cestu, právě když se v prvním kroku rozhodne navštívit vrchol 4. V opačném případě nalezne cestu přes vrcholy $(0 \to \cdots \to 6 \to 5 \to 7 \to 3)$, což je vždy cesta delší než P_{\min} .

Bez bližší specifikace implementace DFS, nelze určit, kterou cestu algoritmus zvolí. Může se například stát, že se zanoří $(0 \to 1 \to 6 \to 5 \to 7 \to 3)$. V takový moment algoritmus cestu do vrcholu 3 nalezne a následně skončí. Nevrátí však nejkratší cestu ($\frac{1}{2}$).