Open Elective Course [OE]

Course Code: CSO507 Winter 2023-24

Lecture#

Deep Learning

Unit-4: Convolutional Neural Networks (Part-VI)

Course Instructor:

Dr. Monidipa Das

Assistant Professor

Department of Computer Science and Engineering

Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand 826004, India

Illustrations for Standard, Depth-wise, and Depth-wise Separable Convolution

MobileNets: Tiny Networks (For Mobile Devices)

Standard Convolution Block

Total cost: 9C²HW

Speedup = $9C^2/(9C+C^2)$ = 9C/(9+C)=> 9 (as C->inf)

Depthwise Separable Convolution

Total cost: (9C + C2)HW

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

ConvNets Application

ConvNets are today ubiquitous in computer vision!

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

ConvNets beyond vision

- CNNs are not only useful for image tasks!
- They are becoming the standard in audio tasks and very competitive in text processing tasks (e.g., sentiment classification).

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

ConvNets Application for Computer Vision

- Four major computer vision problems:
 - Image Classification
 - Image Classification with Localization
 - Object Detection
 - Object Segmentation

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

Pipeline for Object Detection

 Starts with a region proposal stage where we identify potential regions which may contain objects

cknowledgement: Prof. Mitesh M. Khapra

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Pipeline for Object Detection

• In addition we would also like to correct the proposed bounding boxes This is posed as a regression problem (for example, we would like to predict w * , h * from the proposed w and h)

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

Classifier

- Proposed regions are cropped to form mini images
- Each mini image is scaled to match the CNN's (feature extractor) input size

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

RCNN model for object detection

- For feature extraction any CNN trained for Image Classification can be used (AlexNet/ VGGNet etc.)
- Outputs from fc7 layer are taken as features
- CNN is fine tuned using ground truth (cropped) object images

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanba

RCNN model for object detection

- What are the parameters of this model?
- WCONV is taken as it is from a CNN trained for Image classification (say on ImageNet)
- WCONV is then fine tuned using ground truth (cropped) object images

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

RCNN model for object detection

- What is the computational cost for processing one image at test time?
 - Inference Time = Proposal Time + # Proposals × Convolution Time + # Proposals × classification + # Proposals × regression

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbad

RCNN model for object detection

- No joint learning
- Use ad hoc training objectives
 - Fine tune network with softmax classifier (log loss)
 - Train post-hoc linear SVMs (hinge loss)
 - Train post-hoc bounding-box regressors (squared loss)
- Training (≈ 3 days) and testing (47s per image) is slow
- Takes a lot of disk space

Prof. Monidipa Das, Department of CSE, IIT (ISM) Dhanbac

