Práctica 2b: Sistema de E/S y dispositivos básicos

Proyecto Hardware

Índice

- Objetivos y descripción de la práctica 3
- Sistema de E/S de la placa LPC2105
- Ayudas código

Objetivo: Desarrollar código para un sistema empotrado real

- En esta placa el procesador está acompañado de muchos dispositivos, principalmente de entrada/salida
- Vamos a aprender a interaccionar con ellos trabajando en C, pero empleando ensamblador cuando sea necesario
- Depurar un código con varias fuentes de interrupción activas
- Depurar un código en ejecución (no sólo paso a paso)

¿Qué tenemos que aprender?

- Entender la configuración de la placa:
 - Registros de configuración de los elementos utilizados
 - Acceso a los registros desde C y desde el entorno
- Gestión del hardware del sistema utilizando C:
 - Utilización de las bibliotecas de la placa
 - Gestión de las interrupciones en C
 - Entender las estructuras que genera el compilador a partir del código fuente (especialmente la pila de programa)

Descripción de la práctica

- Estudiar y aprender a usar:
 - controlador de interrupciones vectorizadas (VIC)
 - GPIO (General-Purpose I/O)
 - botones (emulados con Int. Externas)
 - dormir y a despertar al procesador (uso eficiente energía)
 - FSM Maquinas de estados finitos
 - estructura modular

Reducir el consumo de energía

- Cuando el procesador no tiene trabajo se queda esperando en un bucle while.
- ¿Qué sentido tiene consumir energía cuando el procesador no tiene nada que hacer?
- En el 2020 el sector TIC fue responsable del 15% de las emisiones de CO₂!
- Hay que mejorar la eficiencia energética de nuestros diseños

Reducir el consumo de energía

- En lugar de tirar energía ejecutando un bucle de vamos a utilizar los modos de bajo consumo del procesador
 - Objetivo:
 - Reducir el consumo manteniendo el estado
 - Si no hay trabajo entramos en modo idle (el procesador para)
 - Si el juego no se usa durante mucho tiempo entramos en power-down (el procesador se duerme)

Descripción de la práctica

- Incluir la interacción con el usuario y la E/S
 - Múltiples alarmas con un reloj
 - Botones Interrupciones externas
 - Bajo consumo
 - Se reutilizará todo en la P3. ¡Es importante que todo sea modular!

Fechas de entrega

- Entrega
 - Aproximadamente semana 10
 - Los turnos de corrección aparecerán en Moodle

Material disponible

- En Moodle disponéis de:
 - Un proyecto ejemplo:
 - Documentación original de la placa

Índice

- Objetivos y descripción de la práctica
- Sistema de E/S
- Ayudas código

Chip principal:

LPC2105

System-on-Chip (Soc):

Procesador ARM7TDMI

Controladores y E/S

GPIO

UART

Timers

Power control

Controlador INT. Vectorizadas

Y muchos más componentes

TMS(2) TDI(2) RTCK

XTAL2

002aaa412

Alarmas

- Activación periódica
 - Un temporizador hardware

- Alarmas
 - Múltiples alarmas software vivas
 - alarma_activar, Acciones:
 - Activar, reprogramar, desactivar
 - Cada alarma debe guardar:
 - activa, ID_evento, auxData, retardo_ms, periódica
 - alarma_tratar_evento

GPIO

- 32 GPIO (1 puerto)
 - P0.0-P0.31
- Selección
- Dirección
- Bit-level set & clear

Pin description ...continued Table 54.

Symbol	Pin	Туре	Description		
P0.16/EINT0/MAT0.2	46 <mark>[1]</mark>	I/O	P0.16 — Port 0 bit 16.		
		I	EINT0 — External interrupt 0 input.		
		0	MAT0.2 — Match output for Timer 0, channel 2.		

GPIO

Asignar PINS a un dispositivo

cap 6 y 7.

Table 55. Pin connect block register map

Name	Description	Access	Reset value[1]	Address
PINSEL0	Pin function select register 0.	Read/Write	0x0000 0000	0xE002 C000
PINSEL1	Pin function select register 1.	Read/Write	0x0000 0000	0xE002 C004

Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Table 57. Pin function select register 1 (PINSEL1 - 0xE002 C004)

PINSEL1	Pin Name	Value		Function	Value after reset
1:0	P0.16	0	0	GPIO Port 0.16	0
		0	1	EINT0	_
		1	0	Match 0.2 (Timer 0)	_

GPIO

- P0xDIR
- P0xVAL
- P0xSET
- P0xCLR

Table 60. GPIO register map (legacy APB accessible registers)

Consider Description						
Generic Name	Description	Access	Reset value[1]	PORT0 Address & Name		
IOPIN	GPIO Port Pin value register. The current state of the GPIO configured port pins can always be read from this register, regardless of pin direction.	R/W	NA	0xE002 8000 IO0PIN		
IOSET	GPIO Port Output Set register. This register controls the state of output pins in conjunction with the IOCLR register. Writing ones produces HIGHs at the corresponding port pins. Writing zeroes has no effect.	R/W	0x0000 0000	0xE002 8004 IO0SET		
IODIR	GPIO Port Direction control register. This register individually controls the direction of each port pin.	R/W	0x0000 0000	0xE002 8008 IO0DIR		
IOCLR	GPIO Port Output Clear register. This register controls the state of output pins. Writing ones produces LOW at the corresponding port pins and clears the corresponding bits in the IOSET register. Writing zeroes has no effect.	WO	0x0000 0000	0xE002 800C IO0CLR		

[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

Table 62. GPIO port 0 Direction register (IO0DIR - address 0xE002 8008) bit description

Bit	Symbol	Value	Description	Reset value
31:0	P0xDIR		Slow GPIO Direction control bits. Bit 0 controls P0.0 bit 30 controls P0.30.	0x0000 0000
		0	Controlled pin is input.	
		1	Controlled pin is output.	

EXT INT

Cap3, 6.1

Table 9. External interrupt registers

Name	Description	Access	Reset value[1]	Address
EXTINT	The External Interrupt Flag Register contains interrupt flags for EINT0, EINT1, EINT2. See Table 3–10.	R/W	0	0xE01F C140
EXTWAKE	The External Interrupt Wakeup Register contains four enable bits that control whether each external interrupt will cause the processor to wake up from Power-down mode. See Table 3–11.	R/W	0	0xE01F C144
EXTMODE	The External Interrupt Mode Register controls whether each pin is edge- or level sensitive.	R/W	0	0xE01F C148
EXTPOLAR	The External Interrupt Polarity Register controls which level or edge on each pin will cause an interrupt.	R/W	0	0xE01F C14C

 EXTMODE y EXTPOLAR no están en el sistema: las interrupciones se activan por nivel con un '0'

EXT INT

EXT INT

- Cap3, 6.1
 - permiten despertar al procesador desde power-down

Table 9. External interrupt registers

Name	Description	Access	Reset value[1]	Address
EXTINT	The External Interrupt Flag Register contains interrupt flags for EINT0, EINT1, EINT2. See Table 3–10.	R/W	0	0xE01F C140
EXTWAKE	The External Interrupt Wakeup Register contains four enable bits that control whether each external interrupt will cause the processor to wake up from Power-down mode. See Table 3–11.	R/W	0	0xE01F C144
EXTMODE	The External Interrupt Mode Register controls whether each pin is edge- or level sensitive.	R/W	0	0xE01F C148
EXTPOLAR	The External Interrupt Polarity Register controls which level or edge on each pin will cause an interrupt.	R/W	0	0xE01F C14C

están en el sistema: las interrupciones se activan por nivel con un '0'

Power

10.1

Table 25. Power control registers

Name	Description	Access	Reset value ^[1]	Address		
PCON	Power Control Register. This register contains control bits that enable the two reduced power operating modes of the microcontroller. See Table 3-26 .	R/W	0x00	0xE01F C0C0		
PCONP	Power Control for Peripherals Register. This register contains control bits that enable and disable individual peripheral functions, Allowing elimination of power consumption by peripherals that are not needed.	R/W	0x0000 1FBE	0xE01F C0C4		

^[1] Reset value reflects the data stored in used bits only. It does not include reserved bits content.

PLL - Phase Locked Loop

- CCLK CPU clock
 - 60 MHz startup
 - PowerDown lo vuelve a 12MHz
- PCLK Peripheral Clock
 - CPU/VPB
 - VPB Divider (4)

Demostrador

Índice

- Objetivos y descripción de la práctica
- Sistema de E/S
- Ayudas código

Autómatas. Implementación

- Ej.: Detección sentido contrario
 - MOORE
 - Entradas nivel muestreadas (síncronas)
 - Salidas asíncronas

```
01,11,10 00,11 01,11,10 00,11 01,11,10 C2/1 00 C2/1
```

```
// Estado pertenece al conjunto de estados
Entrada = Leer Entrada ();
switch (Estado)
    case C1 : Salida(NO ALARMA) ;
              switch (Entrada) {
                case I01 : Estado = C3 ; break ;
                case I10 : Estado = C2 ; break ;
                default : }
              break ;
    case C2 : Salida (NO_ALARMA) ;
              if (Entrada == I00) Estado = C1;
              break ;
    case C3 : Salida (ALARMA) ;
              if (Entrada == I00) Estado = C1;
              break;
```

Autómatas. Implementación

```
Espera_Sincronismo () ;
Entrada = Leer_Bit () ;
switch (Estado)
{
   case NADA : if (Entrada==0) {Salida=0; Estado=NADA;}
        else if (Entrada==1) {Salida=0; Estado=E1;}
        break ;
   case E1 : if (Entrada==0) {Salida=0; Estado=E10;}
        else if (Entrada==1) {Salida=0; Estado=E1;}
        break ;
   case E10 : if (Entrada==0) {Salida=0; Estado=NADA;}
        else if (Entrada==1) {Salida=1; Estado=E101;}
        break ;
   case E101 : if (Entrada==0) {Salida=0; Estado=NADA;}
        else if (Entrada==1) {Salida=0; Estado=E101;}
}
```

Ej: reconocedor de cadenas: **MEALY**

Podéis encontrar una forma más eficiente de implementar MSF en: http://johnsantic.com/comp/state.html