Out[1

Project: Churn rate prediction

Company target

- Churn rate is 1.7%
- retention rate is 80%

1. Importing frameworks and Data preparation

According to current situation, how to do proactive action to reduce churn rate, especially, in postpaid loyolty churner.

• Filter postpaid customers.

Loyalty customer is customers those who stayed with True more than 3 years.

• Filter loyalty customers.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv('customer_dataset.csv')
    df_postpaid_loyalty = df[(df['ACCT_TYPE']=='Postpaid') & (df['AOU_DAY']>1095)]
    df_postpaid_loyalty.head()
```

1]:		MNTH_ID	SUBR_ID	ACCT_TYPE	CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_BRAND	DVC_MODEL	DVC_GRP	DVC_CLASS	•••	VC_DO
	0	202009	1879	Postpaid	1099.0	10519	467	SAMSUNG	GALAXY A10 [SM- A105GDS]	Smartphone	Phone		
	1	202010	1879	Postpaid	1099.0	10550	498	SAMSUNG	GALAXY A10 [SM- A105GDS]	Smartphone	Phone		
	2	202011	1879	Postpaid	1099.0	10580	528	SAMSUNG	GALAXY A10 [SM- A105GDS]	Smartphone	Phone		

	MNTH_ID	SUBR_ID	ACCT_TYPE	CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_BRAND	DVC_MODEL	DVC_GRP	DVC_CLASS	•••	VC_DO
3	202012	1879	Postpaid	1099.0	10611	559	SAMSUNG	GALAXY A10 [SM- A105GDS]	Smartphone	Phone		
4	202009	7739	Postpaid	999.0	10403	110	SAMSUNG	GALAXY A6 [SM- A600GDS]	Smartphone	Phone		

5 rows × 30 columns

In [2]:

df_postpaid_loyalty.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 180133 entries, 0 to 211339
Data columns (total 30 columns):
```

#	Column	Non-Null Count	Dtype
0	MNTH_ID	180133 non-null	int64
1	SUBR_ID	180133 non-null	int64
2	ACCT_TYPE	180133 non-null	object
3	CURR_MAIN_PKG_FEE	180133 non-null	float64
4	AOU_DAY	180133 non-null	int64
5	AOU_DVC	180133 non-null	object
6	DVC_BRAND	179994 non-null	object
7	DVC_MODEL	179994 non-null	object
8	DVC_GRP	180133 non-null	object
9	DVC_CLASS	180133 non-null	object
10	DVC_SUPPORT	178599 non-null	object
11	MOST_USED_4W_REGION	180133 non-null	object
12	MOST_USED_4W_PRVNC	180133 non-null	object
13	MOST_USED_4W_AMPHUR	180133 non-null	object
14	MOST_USED_4W_TUMBON	180133 non-null	object
15	DTAC_RWRD_SEGMENT	180133 non-null	object
16	Churn_Flag	180133 non-null	object
17	REVENUE	180133 non-null	float64
18	AVG3M_REVENUE	180133 non-null	float64
19	VC_DOM_MOU	180133 non-null	int64
20	VC_DOM_CNT	180133 non-null	int64
21	AVG3M_VC_DOM_MOU	180133 non-null	float64
22	AVG3M_VC_DOM_CNT	180133 non-null	float64
23	DATA_MB	180133 non-null	float64
24	AVG3M_DATA_MB	180133 non-null	float64
25	CIN_CALLCNT	180133 non-null	int64

Out[3

```
26 VOC_ACTIVEDAY 180133 non-null int64
27 DATA_ACTIVEDAY 180133 non-null int64
28 PM_PMMTHDCOMMON 180133 non-null object
29 PCT_CALL_DROP 180133 non-null float64
```

dtypes: float64(8), int64(8), object(14)

memory usage: 42.6+ MB

In [3]: df_postpaid_loyalty.describe()

3]:		MNTH_ID	SUBR_ID	CURR_MAIN_PKG_FEE	AOU_DAY	REVENUE	AVG3M_REVENUE	VC_DOM_MOU	VC_DOM_CNT	AVG
	count	180133.000000	1.801330e+05	180133.000000	180133.000000	180133.000000	180133.000000	180133.000000	180133.000000	
	mean	202010.500230	1.239937e+08	522.164028	3672.153181	532.613637	541.229503	188.340448	78.756186	
	std 1.116564		8.887744e+07	312.603697	1920.463407	345.475348	326.534668	314.279055	115.979303	
	min	202009.000000	1.879000e+03	0.000000	1096.000000	-1520.064500	-406.688200	0.000000	0.000000	
	25%	202010.000000	3.039002e+07	299.000000	2021.000000	299.000000	309.333300	41.000000	20.000000	
	50%	202010.000000	1.195342e+08	449.000000	3253.000000	463.500000	482.333300	107.000000	48.000000	
	75%	202011.000000	2.146236e+08	699.000000	5118.000000	699.000000	699.000000	225.000000	96.000000	
	max	202012.000000	2.694149e+08	5607.480000	10700.000000	17093.450000	7339.618700	19116.000000	6185.000000	
	_									

• Drop features, which are not useful.

In [5]: df_fs.head(5)

CURR MAIN PKG FEE AOU DAY AOU DVC DVC GRP DVC CLASS DVC SUPPORT MOST USED 4W REGION DTAC RWRD SEGMENT Churn Out[5]: 01) N 0 1099.0 10519 467 Smartphone Phone 4G 2300MHz **BMA** Platinum Blue Custo 01) N 1 1099.0 10550 498 Smartphone Phone 4G 2300MHz Platinum Blue BMA Custo

	CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_GRP	DVC_CLASS	DVC_SUPPORT	MOST_USED_4W_REGION	DTAC_RWRD_SEGMENT	Churn
2	1099.0	10580	528	Smartphone	Phone	4G 2300MHz	вма	Platinum Blue	01) N Custo
3	1099.0	10611	559	Smartphone	Phone	4G 2300MHz	вма	Platinum Blue	01) N Custo
4	999.0	10403	110	Smartphone	Phone	4G 2300MHz	ВМА	Platinum Blue	01) N Custo

5 rows × 22 columns

In [6]:

```
df_fs.info()
```

```
Column
                        Non-Null Count
                                         Dtype
   CURR_MAIN_PKG_FEE
                        180133 non-null float64
                        180133 non-null int64
1
   AOU DAY
   AOU DVC
                        180133 non-null object
   DVC GRP
                        180133 non-null object
4
   DVC_CLASS
                        180133 non-null object
   DVC SUPPORT
                        178599 non-null object
   MOST_USED_4W_REGION 180133 non-null object
   DTAC RWRD SEGMENT
                        180133 non-null object
   Churn Flag
                        180133 non-null object
9
   REVENUE
                        180133 non-null float64
   AVG3M REVENUE
                        180133 non-null float64
   VC DOM MOU
                        180133 non-null int64
11
12 VC DOM CNT
                        180133 non-null int64
13 AVG3M_VC_DOM_MOU
                        180133 non-null float64
   AVG3M_VC_DOM_CNT
                        180133 non-null float64
   DATA MB
                        180133 non-null float64
```

180133 non-null float64

180133 non-null int64

180133 non-null int64

180133 non-null int64

180133 non-null object 180133 non-null float64

<class 'pandas.core.frame.DataFrame'>
Int64Index: 180133 entries, 0 to 211339

Data columns (total 22 columns):

dtypes: float64(8), int64(6), object(8)

memory usage: 31.6+ MB

16 AVG3M_DATA_MB

21 PCT_CALL_DROP

17

20

CIN_CALLCNT

VOC ACTIVEDAY

DATA ACTIVEDAY

PM_PMMTHDCOMMON

```
In [7]:
         df fs.columns
Out[7]: Index(['CURR_MAIN_PKG_FEE', 'AOU_DAY', 'AOU_DVC', 'DVC_GRP', 'DVC_CLASS',
                'DVC_SUPPORT', 'MOST_USED_4W_REGION', 'DTAC_RWRD_SEGMENT', 'Churn_Flag',
                'REVENUE', 'AVG3M_REVENUE', 'VC_DOM_MOU', 'VC_DOM_CNT',
                'AVG3M_VC_DOM_MOU', 'AVG3M_VC_DOM_CNT', 'DATA_MB', 'AVG3M_DATA_MB',
                'CIN_CALLCNT', 'VOC_ACTIVEDAY', 'DATA_ACTIVEDAY', 'PM_PMMTHDCOMMON',
                'PCT CALL DROP'],
               dtype='object')
In [8]:
         df_fs['AOU_DVC'] = pd.to_numeric(df_fs['AOU_DVC'], errors='coerce')
```

Data cleaning

```
In [9]:
         df fs.drop duplicates(inplace=True)
         df fs.dropna(inplace=True)
         df_fs = df_fs[~df_fs.isin(['No Information']).any(axis=1)]
         df fs
```

Out[9]:		CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_GRP	DVC_CLASS	DVC_SUPPORT	MOST_USED_4W_REGION	DTAC_RWRD_SEGMENT
	0	1099.0	10519	467.0	Smartphone	Phone	4G 2300MHz	ВМА	Platinum Blue
	1	1099.0	10550	498.0	Smartphone	Phone	4G 2300MHz	вма	Platinum Blue
	2	1099.0	10580	528.0	Smartphone	Phone	4G 2300MHz	вма	Platinum Blue
	3	1099.0	10611	559.0	Smartphone	Phone	4G 2300MHz	вма	Platinum Blue
	4	999.0	10403	110.0	Smartphone	Phone	4G 2300MHz	ВМА	Platinum Blue
	•••								
	211323	499.0	1096	751.0	Smartphone	Phone	4G 2300MHz	ВМА	Silver
	211327	299.0	1096	22.0	Smartphone	Phone	4G 2300MHz	Northeast	Gold

	CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_GRP	DVC_CLASS	DVC_SUPPORT	MOST_USED_4W_REGION	DTAC_RWRD_SEGMENT
211331	399.0	1096	762.0	Smartphone	Phone	4G 2300MHz	North	Silver
211335	399.0	1096	333.0	Smartphone	Phone	4G 2300MHz	ВМА	Silver
211339	699.0	1096	1095.0	Tablet	Tablet	4G 2300MHz	Central&West	Silver

178503 rows × 22 columns

```
In [10]:
          numerical_features_list = ['CURR_MAIN_PKG_FEE', 'AOU_DAY', 'AOU_DVC', 'REVENUE', 'AVG3M_REVENUE', 'VC_DOM_MOU', 'VC_DOM_C
                                      'AVG3M_VC_DOM_MOU', 'AVG3M_VC_DOM_CNT', 'DATA_MB', 'AVG3M_DATA_MB', 'CIN_CALLCNT', 'VOC_ACTIVE
                                      'DATA_ACTIVEDAY', 'PCT_CALL_DROP']
          for col in df_fs.columns:
              if col not in numerical features list:
                  print(col, df_fs[col].unique())
              print("-"*50)
         DVC GRP ['Smartphone' 'Feature Phone' 'Tablet' 'Standalone connectivity device']
         DVC_CLASS ['Phone' 'Tablet' 'Connectivity Devices']
         DVC_SUPPORT ['4G 2300MHz' '3G 2100MHz' '4G 2100MHz' '2G 1800MHz' '4G 1800MHz'
          '3G 850MHz']
         MOST_USED_4W_REGION ['BMA' 'East' 'South' 'Central&West' 'unknown' 'Northeast' 'North']
         DTAC_RWRD_SEGMENT ['Platinum Blue' 'Silver' 'Gold' 'Welcome']
         Churn_Flag ['01) Normal Customers' '02) Churn Customers']
```

```
PM_PMMTHDCOMMON ['VISA' 'Bank transfer' 'Cash' 'Recurring RC' 'Cheque Counter'
          'Recurring DD' 'MASTER' 'Cheque Mail' 'AMEX' 'Debit Card'
          'Payment After Adjust' 'Pre to Post' 'JCB']
In [11]:
          print(df_fs.isnull().sum())
         CURR_MAIN_PKG_FEE
         AOU_DAY
         AOU DVC
         DVC GRP
         DVC_CLASS
         DVC SUPPORT
         MOST USED 4W REGION
         DTAC_RWRD_SEGMENT
         Churn Flag
         REVENUE
         AVG3M REVENUE
         VC_DOM_MOU
         VC_DOM_CNT
         AVG3M_VC_DOM_MOU
         AVG3M_VC_DOM_CNT
         DATA_MB
         AVG3M_DATA_MB
         CIN_CALLCNT
         VOC_ACTIVEDAY
         DATA_ACTIVEDAY
         PM PMMTHDCOMMON
         PCT_CALL_DROP
         dtype: int64
In [12]:
          df_fs['Churn_Flag'].value_counts()
         01) Normal Customers
                                  175494
Out[12]:
         02) Churn Customers
                                    3009
         Name: Churn_Flag, dtype: int64
```

2. Exploratory data analysis (EDA)

```
In [13]: df_fs.shape
```

```
(178503, 22)
Out[13]:
In [14]:
           df fs.columns
          Index(['CURR_MAIN_PKG_FEE', 'AOU_DAY', 'AOU_DVC', 'DVC_GRP', 'DVC_CLASS',
Out[14]:
                  'DVC_SUPPORT', 'MOST_USED_4W_REGION', 'DTAC_RWRD_SEGMENT', 'Churn_Flag',
                  'REVENUE', 'AVG3M REVENUE', 'VC DOM MOU', 'VC DOM CNT',
                  'AVG3M_VC_DOM_MOU', 'AVG3M_VC_DOM_CNT', 'DATA_MB', 'AVG3M_DATA_MB',
                  'CIN CALLCNT', 'VOC ACTIVEDAY', 'DATA ACTIVEDAY', 'PM PMMTHDCOMMON',
                  'PCT CALL DROP'],
                dtype='object')
In [15]:
           df fs.head()
             CURR MAIN PKG FEE AOU DAY AOU DVC
                                                       DVC GRP DVC CLASS DVC SUPPORT MOST USED 4W REGION DTAC RWRD SEGMENT
Out[15]:
                                                                                                                                         01) N
          0
                          1099.0
                                     10519
                                               467.0 Smartphone
                                                                               4G 2300MHz
                                                                                                             BMA
                                                                                                                            Platinum Blue
                                                                      Phone
                                                                                                                                          Custo
                                                                                                                                          01) N
          1
                          1099.0
                                     10550
                                               498.0 Smartphone
                                                                      Phone
                                                                               4G 2300MHz
                                                                                                             BMA
                                                                                                                            Platinum Blue
                                                                                                                                          Custo
                                                                                                                                          01) N
          2
                          1099.0
                                     10580
                                                                               4G 2300MHz
                                                                                                             BMA
                                                                                                                            Platinum Blue
                                               528.0 Smartphone
                                                                      Phone
                                                                                                                                          Custo
                                                                                                                                          01) N
          3
                          1099.0
                                                                                                             BMA
                                     10611
                                               559.0 Smartphone
                                                                      Phone
                                                                               4G 2300MHz
                                                                                                                            Platinum Blue
                                                                                                                                          Custo
                                                                                                                                          01) N
          4
                           999.0
                                     10403
                                               110.0 Smartphone
                                                                      Phone
                                                                               4G 2300MHz
                                                                                                             BMA
                                                                                                                            Platinum Blue
                                                                                                                                          Custo
         5 rows × 22 columns
In [16]:
           df fs.describe()
Out[16]:
                 CURR MAIN PKG FEE
                                         AOU DAY
                                                       AOU DVC
                                                                     REVENUE AVG3M REVENUE VC DOM MOU VC DOM CNT AVG3M VC DOM M
                                     178503.000000
                                                   178503.000000
                                                                 178503.000000
                                                                                  178503.000000
                                                                                                 178503.000000
                                                                                                              178503.000000
                                                                                                                                     178503.000
                       178503.000000
          count
                          523.807431
                                       3672.628309
                                                      627.353025
                                                                    534.316257
                                                                                     542.878558
                                                                                                    188.492485
                                                                                                                   78.693691
                                                                                                                                        190.697
          mean
```

	CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	REVENUE	AVG3M_REVENUE	VC_DOM_MOU	VC_DOM_CNT	AVG3M_VC_DOM_M
std	312.610852	1920.474449	502.803347	344.979079	326.018580	314.517588	115.152689	303.103
min	0.000000	1096.000000	1.000000	-1520.064500	-406.688200	0.000000	0.000000	0.000
25%	299.000000	2021.000000	222.000000	299.000000	313.808600	41.000000	20.000000	48.666
50%	449.000000	3253.000000	521.000000	468.000000	487.661900	108.000000	48.000000	114.000
75%	699.000000	5118.000000	929.000000	699.000000	699.000000	225.000000	96.000000	225.666
max	5607.480000	10700.000000	3684.000000	17093.450000	7339.618700	19116.000000	6185.000000	15133.333.

• Understand the distribution of features

```
In [17]:
    def plot_histogram(df_fs, column_name):
        plt.figure(figsize=(8, 4))
        sns.histplot(df_fs[column_name], kde=True)
        plt.title(f"Distribution of {column_name}")

    # calculate the mean and median values for the columns
        col_mean = df_fs[column_name].mean()
        col_median = df_fs[column_name].median()

# add vertical lines for mean and median
        plt.axvline(col_mean, color="red", linestyle="--", label="Mean")
        plt.axvline(col_median, color="green", linestyle="--", label="Median")

        plt.legend()
        plt.show()
In [18]:

plot_histogram(df_fs, 'AOU_DAY')
```


In [20]: plot_histogram(df_fs, 'CURR_MAIN_PKG_FEE')


```
In [22]:

df_fs['DTAC_RWRD_SEGMENT'].value_counts().plot(kind='bar')
```

Out[22]: <AxesSubplot:>


```
In [73]:
    def plot_boxplot(df_fs, column_name):
        plt.figure(figsize=(5, 8))
        sns.boxplot(y=df_fs[column_name])
        plt.title(f"Box Plot of {column_name}")
        plt.ylabel(column_name)
        plt.show
In [74]:
    plot_boxplot(df_fs, "AOU_DAY")
```


In [75]: plot_boxplot(df_fs, "AOU_DVC")

In [76]: plot_boxplot(df_fs, "CURR_MAIN_PKG_FEE")

In [77]: plot_boxplot(df_fs, "REVENUE")


```
plt.figure(figsize=(12, 6))
sns.heatmap(df_fs[numerical_features_list].corr(), annot=True, cmap="coolwarm", fmt=".2f")
plt.title("Correlation Heatmap")
plt.show()
```



```
In [49]:

df_pie = df_fs['Churn_Flag'].value_counts()

plt.figure(figsize=(5, 5))
    df_pie.plot(kind='pie', autopct='%1.1f%', startangle=90, colors=['#ff9999','#99ff99'], fontsize = 12)
    plt.title('', size = 20)
    plt.show()
```


3. Model conducting

```
In [29]:
          df_fs['Churn_Flag'] = df_fs['Churn_Flag'].replace({'02) Churn Customers': 1, '01) Normal Customers': 0})
          df_fs['Churn_Flag'].value_counts()
Out[29]: 0
               175494
                 3009
         Name: Churn_Flag, dtype: int64
          • Label encoding for categorical features
In [30]:
          object_columns = df_fs.select_dtypes(include="object").columns
          object_columns
         Index(['DVC_GRP', 'DVC_CLASS', 'DVC_SUPPORT', 'MOST_USED_4W_REGION',
Out[30]:
                 'DTAC_RWRD_SEGMENT', 'PM_PMMTHDCOMMON'],
                dtype='object')
In [31]:
          from sklearn.preprocessing import LabelEncoder
          import pickle
          encoders = {}
```

```
for column in object_columns:
            label_encoder = LabelEncoder()
            df_fs[column] = label_encoder.fit_transform(df_fs[column])
            encoders[column] = label_encoder
          # save the encoders to a pickle file
          with open("encoders.pkl", "wb") as f:
            pickle.dump(encoders, f)
In [32]:
          encoders
```

```
Out[32]: {'DVC_GRP': LabelEncoder(),
           'DVC_CLASS': LabelEncoder(),
           'DVC_SUPPORT': LabelEncoder(),
           'MOST_USED_4W_REGION': LabelEncoder(),
           'DTAC_RWRD_SEGMENT': LabelEncoder(),
           'PM_PMMTHDCOMMON': LabelEncoder()}
```

```
In [33]:
          df_fs.head()
```

Out[33]:		CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_GRP	DVC_CLASS	DVC_SUPPORT	MOST_USED_4W_REGION	DTAC_RWRD_SEGMENT	Churn_F
	0	1099.0	10519	467.0	1	1	5	0	1	
	1	1099.0	10550	498.0	1	1	5	0	1	
	2	1099.0	10580	528.0	1	1	5	0	1	
	3	1099.0	10611	559.0	1	1	5	0	1	
	4	999.0	10403	110.0	1	1	5	0	1	

5 rows × 22 columns

• Train test split

```
In [34]:
          X = df_fs.drop(columns='Churn_Flag')
          y = df_fs['Churn_Flag']
```

```
print(X.shape)
          print(y.shape)
         (178503, 21)
         (178503,)
In [35]:
          from sklearn.model_selection import train_test_split, cross_val_score
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
          print(X train.shape)
          print(y_train.shape)
         (142802, 21)
         (142802,)
          • Synthetic Minority Oversampling Technique (SMOTE)
In [36]:
          from imblearn.over_sampling import SMOTE
          smote = SMOTE(random state=42)
          X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
          print(y train smote.shape)
          print(y_train_smote.value_counts())
         (280790,)
              140395
              140395
         Name: Churn_Flag, dtype: int64

    Model training

In [41]:
          from sklearn.tree import DecisionTreeClassifier
          from sklearn.ensemble import RandomForestClassifier
          from xgboost import XGBClassifier
          from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
          models = {
              "Decision Tree": DecisionTreeClassifier(random_state=42),
              "Random Forest": RandomForestClassifier(random_state=42),
               "XGBoost": XGBClassifier(random_state=42)
```

```
In [42]:
          cv scores = {}
          for model name, model in models.items():
            print(f"Training {model name}")
            scores = cross_val_score(model, X_train_smote, y_train_smote, cv=5, scoring="accuracy")
            cv scores[model name] = scores
            print(f"{model name} cross-validation accuracy: {np.mean(scores):.2f}")
            print("-"*70)
         Training Decision Tree
         Decision Tree cross-validation accuracy: 1.00
         Training Random Forest
         Random Forest cross-validation accuracy: 1.00
         Training XGBoost
         XGBoost cross-validation accuracy: 1.00
In [43]:
          cv_scores
Out[43]: {'Decision Tree': array([0.99864668, 0.99960825, 0.99976851, 0.99985754, 0.99966167]),
           'Random Forest': array([0.99964386, 0.9997507 , 0.99982193, 0.99991097, 0.9997329 ]),
           'XGBoost': array([0.99966167, 0.99971509, 0.9997507 , 0.99982193, 0.99960825])}
In [44]:
          rf = RandomForestClassifier(random state=42)
          rf.fit(X train smote, y train smote)
                   RandomForestClassifier
Out[44]:
         RandomForestClassifier(random_state=42)
```

4. Model evaluation

```
In [45]:
    y_test_pred = rf.predict(X_test)
    print("Accuracy Score:\n", accuracy_score(y_test, y_test_pred))
    print("Confusion Matrix:\n", confusion_matrix(y_test, y_test_pred))
    print("Classification Report:\n", classification_report(y_test, y_test_pred))
```

```
Accuracy Score:
0.9994397916024761
Confsuion Matrix:
[[35079
            20]
         602]]
     0
Classification Report:
               precision
                            recall f1-score
                                               support
                             1.00
                                       1.00
                   1.00
                                                35099
          1
                   0.97
                             1.00
                                       0.98
                                                  602
                                       1.00
                                                35701
   accuracy
  macro avg
                   0.98
                             1.00
                                       0.99
                                                35701
weighted avg
                  1.00
                             1.00
                                       1.00
                                                35701
```

To do:

- 1. Apply hyperparameter tuning to optimize model performance.
- 2. Experiment with different model architectures to identify the most effective one.
- 3. Use downsampling techniques to address class imbalance.
- 4. Implement strategies to reduce overfitting and improve generalization.
- 5. Utilize stratified K-Fold cross-validation for more reliable model evaluation.

5. Customer segmentation

• Categorized customers, who stay

```
In [51]:
    df_st = df_fs[df_fs['Churn_Flag'] == 0]
    df_st.head()
```

Out[51]:		CURR_MAIN_PKG_FEE	AOU_DAY	AOU_DVC	DVC_GRP	DVC_CLASS	DVC_SUPPORT	MOST_USED_4W_REGION	DTAC_RWRD_SEGMENT	Churn_F
	0	1099.0	10519	467.0	1	1	5	0	1	
	1	1099.0	10550	498.0	1	1	5	0	1	
	2	1099.0	10580	528.0	1	1	5	0	1	
	3	1099.0	10611	559.0	1	1	5	0	1	
	4	999.0	10403	110.0	1	1	5	0	1	

 $5 \text{ rows} \times 22 \text{ columns}$

```
In [52]: df_st.shape
Out[52]: (175494, 22)

In [56]: from sklearn.preprocessing import StandardScaler
    from sklearn.cluster import KMeans
    X = df_st.drop(columns='Churn_Flag')
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
```

Figure out an optimal point

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default

value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
 value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
 value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
 value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
 value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

A value is trying to be set on a copy of a slice from a DataFrame.

C:\Users\ADMIN\AppData\Roaming\Python\Python38\site-packages\sklearn\cluster_kmeans.py:1416: FutureWarning: The default
value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning
 super()._check_params_vs_input(X, default_n_init=10)
<ipython-input-61-081a115a96a4>:2: SettingWithCopyWarning:

```
Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-v
         iew-versus-a-copy
           df st['Cluster'] = kmeans.fit predict(X scaled)
In [62]:
          cluster centers = pd.DataFrame(kmeans.cluster centers , columns=X.columns)
          print("Cluster Centers (Centroids):")
          print(cluster centers)
         Cluster Centers (Centroids):
            CURR MAIN PKG FEE AOU DAY
                                                            DVC CLASS DVC SUPPORT \
                                         AOU DVC DVC GRP
         0
                    -0.510445 -0.496990 -0.012716 -0.045965
                                                             0.163243
                                                                         -0.061491
         1
                    1.168251 -0.285142 -0.165067 -0.055352
                                                             0.065311
                                                                         0.263982
         2
                    1.668617 0.097881 -0.132899 -0.116135
                                                             0.054526
                                                                         0.140319
                    -0.130720 0.836246 0.051033 -0.087462
                                                             0.071069
                                                                         0.110117
                    -1.427695 -1.004254 1.289711 3.274363 -5.519996
                                                                        -3.470822
            MOST USED 4W REGION DTAC RWRD SEGMENT
                                                    REVENUE AVG3M REVENUE ... \
         0
                      0.076695
                                         0.962281 -0.522215
                                                                 -0.531044 ...
         1
                      -0.150665
                                        -0.427131 1.167230
                                                                 1.183017 ...
         2
                                        -0.211030 1.789458
                                                                1.820152 ...
                     -0.007134
         3
                      -0.016509
                                        -0.995528 -0.130737
                                                                -0.128832 ...
                      0.145196
                                         1.013655 -1.382877
                                                                -1.438633 ...
            VC DOM CNT AVG3M VC DOM MOU AVG3M VC DOM CNT DATA MB AVG3M DATA MB \
            -0.270602
                              -0.267479
                                                -0.271259 -0.286204
                                                                         -0.286306
              0.206188
                               0.219908
                                                 0.209136 1.163129
                                                                         1.177253
              3.491926
                                                 3.492057 0.023961
                                                                         0.021879
                               3.470099
         3 -0.110546
                              -0.123284
                                                -0.110368 -0.273698
                                                                        -0.279691
            -0.669763
                              -0.614825
                                                -0.688362 -0.760467
                                                                        -0.792348
            CIN CALLCNT VOC ACTIVEDAY DATA ACTIVEDAY PM PMMTHDCOMMON PCT CALL DROP
              -0.069949
                            -0.281305
                                            -0.253073
                                                                            -0.089757
                                                             -0.055759
         1
               0.238471
                             0.438188
                                             0.394719
                                                             -0.150501
                                                                            0.280229
              0.180587
                             1.180238
                                             0.115629
                                                             0.244005
                                                                            0.101554
              -0.052597
                             0.088184
                                             0.110715
                                                              0.081573
                                                                           -0.040614
              -0.293429
                            -1.972550
                                            -0.593347
                                                              0.860256
                                                                           -0.345078
         [5 rows x 21 columns]
In [64]:
          cluster summary = df st.groupby('Cluster').mean() # Average for each cluster
          print("\nCluster Summary (Average values per cluster):")
          print(cluster summary)
         Cluster Summary (Average values per cluster):
                                        AOU DAY
                  CURR MAIN PKG FEE
                                                     AOU DVC
                                                               DVC GRP DVC CLASS \
```

```
Cluster
         0
                         365.786732 2728.004712 620.082630 1.014341
                                                                         1.022949
                         890.345556 3136.309154 543.762973 1.011574
                                                                         1.005331
         2
                        1046.892168 3871.231666 560.168852 0.993686
                                                                         1.003400
         3
                         484.368021 5290.843931 652.005568 1.002067
                                                                         1.006388
                         79.205726 1753.207202 1272.420897 2.000000
                                                                         0.000000
                  DVC_SUPPORT MOST_USED_4W_REGION DTAC_RWRD_SEGMENT Churn_Flag \
         Cluster
                                         1.919359
                                                                             0.0
         0
                     4.650291
                                                            1.957371
         1
                     4.967662
                                          1.496908
                                                            0.650144
                                                                             0.0
         2
                                         1.763639
                                                            0.853327
                                                                             0.0
                     4.848308
         3
                     4.817612
                                         1.745965
                                                            0.115472
                                                                             0.0
                     1.324085
                                         2.046635
                                                            2.005608
                                                                             0.0
                              ... VC DOM CNT AVG3M VC DOM MOU AVG3M VC DOM CNT \
                      REVENUE
         Cluster
         0
                   365.562444
                               ... 48.240425
                                                     110.423989
                                                                        49.272431
         1
                   941.231515 ... 103.491400
                                                     258.974407
                                                                       103.826579
         2
                  1153.402936 ... 484.199126
                                                    1249.517997
                                                                       476,497949
         3
                   498.843061 ... 66.749398
                                                     154.305238
                                                                        67.504372
                                     2.030401
                                                       4.657713
                   72.341502 ...
                                                                         1.960449
                       DATA_MB AVG3M_DATA_MB CIN_CALLCNT VOC_ACTIVEDAY \
         Cluster
                                                               16.164919
         0
                  12011.480431
                                12335.799479
                                                  0.905576
         1
                                                 2.094599
                  47843.794290 46911.936373
                                                               22.850592
         2
                  19693.985545 19626.491304
                                                 1.874373
                                                               29.738546
         3
                  12318.506255 12489.781942
                                                 0.972725
                                                               19.594524
         4
                    275.739687
                                   371.205955
                                                 0.043388
                                                                0.457202
                  DATA ACTIVEDAY PM PMMTHDCOMMON PCT CALL DROP
         Cluster
         0
                       24.455587
                                        1.878214
                                                       0.416897
         1
                       30.130500
                                        1.612829
                                                       1.019842
         2
                       27.694026
                                        2.718472
                                                       0.729498
         3
                       27.640706
                                        2.263070
                                                       0.496850
                       21.473731
                                        4.441558
                                                       0.000000
         [5 rows x 22 columns]
In [68]:
          plt.figure(figsize=(8,6))
          plt.scatter(df_st.iloc[:, 0], df_st.iloc[:, 1], c=df_st['Cluster'], cmap='viridis', s=10)
          plt.title('K-Means Clustering (k=5)')
          plt.xlabel(X.columns[0])
          plt.ylabel(X.columns[1])
          plt.show()
```


To do:

- 1. Tailor benefits and offers for each customer segment based on their specific needs and behavior.
- 2. Monitor and evaluate the effectiveness of each offer or strategy using measurable KPIs.
- 3. Identify which offers drive positive results, and proactively present those to customers who are at high risk of churning.