Approximate Policy Iteration and Variants

Chen-Yu Wei

Policy Iteration

```
For k=1, 2, ...

Calculate Q^{\pi_k}(s,a) \ \forall s,a

\pi_{k+1}(s) = \operatorname*{argmax}_a Q^{\pi_k}(s,a) \ \forall s
```

Asynchronous Policy Iteration

For
$$k=1, 2, ...$$

Pick any state \hat{s}

Calculate $Q^{\pi_k}(\hat{s}, a) \quad \forall a$

$$\pi_{k+1}(\hat{s}) = \operatorname*{argmax} Q^{\pi_k}(\hat{s}, a)$$
and $\pi_{k+1}(s) = \pi_k(s) \quad \forall s \neq \hat{s}$

$$\begin{aligned}
& = \sum_{s,n} d_{p} \left(S \right) - E \left(V(s) \right) \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|s)}{Z_{K+1}(a|s)} - Z_{F}(a|s) \right) Q^{\frac{Z_{F}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|s)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{F}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{F}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{F}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{F}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{F}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K+1}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}} \\
& = \sum_{s,n} d_{p} \left(S \right) \left(\frac{Z_{K+1}(a|S)}{Z_{K}(a|S)} - Z_{K}(a|S) \right) Q^{\frac{Z_{K}}{A}}$$

Asynchronous Policy Iteration

- To improve policy, we may just evaluate Q^{π_k} on a particular state s.
- Of course, a **real improvement** is made only when $\exists a$ s.t. $Q^{\pi_k}(s, a) V^{\pi_k}(s)$ is large.
- This is **different from Value Iteration**, where ideally, we would like to find Q_{k+1} such that $Q_{k+1}(s,a) \approx R(s,a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[\max_{a'} Q_k(s',a') \right] \forall s,a$
- VI-based algorithm like DQN usually requires stronger function approximation that can generalize to unseen state.

Policy Iteration with Samples

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action $a_i \sim \pi_{\theta_k}(\cdot | s_i)$

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $(s_{i+1} = s'_i)$ f episode continues, $s_{i+1} \sim \rho$ if episode ends

Zepisale 3. epsile

Data collection

Evaluate $Z_k(s,a) \approx Q^{\pi_{\theta_k}}(s,a)$ for $s=s_1,...,s_N$ and all a or $Z_k(s,a) \approx Q^{\pi_{\theta_k}}(s,a) - b_k(s)$ for $s=s_1,...,s_N$ and all a

Policy Evaluation

Update θ_{k+1} from θ_k using the estimators $\{Z_k(s_i,a)\}_{i=1}^N$ Using any technique we introduced for policy-based contextual bandits

Policy Improvement

Why can we independently optimize the policy on each state?

Essentially treating **states** as **contexts**, but replacing R(x, a) by $Q^{\pi_{\theta_k}}(s, a)$

Policy Evaluation

Policy Evaluation

(5,4,r,s')

Given: a policy π Evaluate $V^{\pi}(s)$ or $Q^{\pi}(s,a)$ for certain (states, actions)

- **On-policy policy evaluation**: the learner can execute π to evaluate π
- \nearrow Off-policy/offline policy evaluation: the learner can only execute some $\pi_b \neq \pi$, or can only access some existing dataset to evaluate π

Use cases:

- Approximate policy iteration: $\pi_k(s) = \underset{a}{\operatorname{argmax}} Q^{\pi_{k-1}}(s, a)$
- Estimate the value of a policy before deploying it in the real world, e.g., COVID-related border measures, economic recovery policies, or policy changes in recommendation systems.

Value Iteration for V^{π} / Q^{π}

Input: π

For
$$k = 1, 2, ...$$

$$\forall s, \qquad V_k(s) \leftarrow \sum_{a} \pi(a|s) \left(R(s,a) + \gamma \sum_{s'} P(s'|s,a) V_{k-1}(s') \right)$$

Input: π

For
$$k = 1, 2, ...$$

$$\forall s, a, \qquad Q_k(s, a) \leftarrow R(s, a) + \gamma \sum_{s', a'} P(s'|s, a) \, \pi(a'|s') Q_{k-1}(s', a')$$

On-Policy Policy Evaluation

Temporal Difference (TD) Learning for V^{π}

For
$$k = 1, 2, ...$$

Collect $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$ using policy π

$$\theta_k \leftarrow \theta_{k-1} - \alpha \nabla_{\theta} \frac{1}{N} \sum_{i=1}^N \left(V_{\theta}(s_i) - r_i - \gamma V_{\theta_{k-1}}(s_i') \right)^2$$

$$\theta = \theta_{k-1}$$

No target network needed because this is an **on-policy** problem.

Temporal Difference (TD) Learning for Q^{π}

For
$$k = 1, 2, ...$$

Collect $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$ using policy π

$$\theta_k \leftarrow \left. \theta_{k-1} - \alpha \, \nabla_{\boldsymbol{\theta}} \frac{1}{N} \sum_{i=1}^{N} \left(Q_{\boldsymbol{\theta}}(s_i, a_i) - r_i - \gamma \sum_{a} \pi(a|s_i') Q_{\boldsymbol{\theta}_{k-1}}(s_i', a') \right)^2 \right|_{\boldsymbol{\theta} = \boldsymbol{\theta}_{k-1}}$$

No target network needed because this is an on-policy problem.

Monte Carlo Estimation

Start from $(s_1, a_1) = (\hat{s}, \hat{a})$ and execute policy π until the episode ends and obtain trajectory $s_1 = \hat{s}, a_1 = \hat{a}, r_1, s_2, a_2, r_2, \dots, s_{\tau}, a_{\tau}, r_{\tau}$

Let
$$G = \sum_{h=1}^{\tau} \gamma^{h-1} r_h$$

 $\mathbb{E}(G)$ is an unbiased estimator for $Q^{\pi}(\hat{s}, \hat{a})$

MC estimator: unbiased, higher variance

TD estimator: biased, lower variance

A Family of Estimators

Suppose we have a state-value function estimation $V_{\phi}(s) \approx V^{\pi}(s)$

Suppose we also have a **trajectory** s_1 , a_1 , r_1 , ..., s_{τ} , a_{τ} generated by π where $s_{\tau+1}$ is a terminal state

The following are all valid estimators of $Q^{\pi}(s_1, a_1)$:

$$G_{1:1} = r_1 + \gamma V_{\phi}(s_2)$$

$$G_{1:2} = r_1 + yr_2 + y^2 (53)$$

$$G_{1:\tau-1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots + \gamma^{\tau-1} V_{\bullet}(s_{\tau})$$

$$G_{1:\tau} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau}$$

$$G_{1:\tau+1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau}$$

G1:00 =

Move biased

Same
mone unbiase
hisher varia

A Family of Estimators

```
And the following are estimators of Q^{\pi}(s_1, a_1) - V_{\phi}(s_1)
                                                                                                                                                                                      (baseline)
 A_{1:1} = r_1 + \gamma V_{\phi}(s_2) - V_{\phi}(s_1)
A_{1:\tau-1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} V_{\phi}(s_{\tau}) - V_{\phi}(s_1)
A_{1:\tau} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau} - V_{\phi}(s_1)
A_{1:\tau+1} = r_1 + \gamma r_2 + \gamma^2 r_3 + \dots + \gamma^{\tau-1} r_{\tau} - V_{\phi}(s_1)
```

Below, we will introduce a way to combine these estimators.

$$\sum_{\infty}^{j=1} (i-\lambda) \lambda_{j-1} = 1$$

Balancing Bias and Variance
$$\frac{G_{1:1}}{G_{1:2}} = I$$

$$G_{1:1} = I$$

$$G_{$$

$$A_1(\lambda) = G_1(\lambda) - V_{\phi}(s_1)$$

Computing Generalized Advantage Estimator (GAE)

$$A_{1}(\lambda) \approx Q^{R_{0}}(S_{1}, A_{1}) - V_{\phi}(S_{1}) = \frac{(1-\lambda)(G_{1}(1+\lambda G_{1}(1+\lambda G_{1$$

$$A_{i,j} = \underbrace{Y_{i,j} + y_{i+1} + y_{i+2}^2 + \dots + y_{j-i}}_{Y_{i+1}} \underbrace{Y_{i} + y_{j-i+1}}_{Y_{i}} \underbrace{V_{\phi}(S_{j+1}) - V_{\phi}(S_{i})}_{-V_{\phi}(S_{j+1})} + \underbrace{y_{i}}_{Y_{i+2}} \underbrace{V_{\psi}(S_{i+2}) - V_{\phi}(S_{i+2})}_{-V_{\phi}(S_{i+1})} + \underbrace{y_{i}}_{Y_{i+2}} \underbrace{V_{\psi}(S_{i+2}) - V_{\phi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} + \underbrace{y_{i}}_{Y_{i}} \underbrace{V_{\psi}(S_{i+2}) - V_{\phi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}(S_{i+2})}_{-V_{\phi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}(S_{i+2})}_{-V_{\psi}(S_{i+2})} - \underbrace{V_{\psi}(S_{i+2}) - V_{\psi}($$

GAE (Generalized Advantage Estimation)

Let $(s_1, a_1, r_1, s_1', s_2, a_2, r_2, s_2', ..., s_N, a_N, r_N, s_N')$ be a trajectory collected with policy π , where $s_i' = s_{i+1}$ if s_i' is not a terminal state, and $s_{i+1} \sim \rho$ otherwise.

Also, let V_{ϕ} be a given state-value estimation.

Then the following procedure can estimate $A_i \approx Q^{\pi}(s_i, a_i) - V_{\phi}(s_i)$

```
Parameter: \lambda (controlling variance-bias tradeoff)

For i = N, N - 1, ..., 1:

If s_i' is a terminal state:

\delta_i = r_i - V_\phi(s_i)
A_i = \delta_i

Else:
\delta_i = r_i + V_\phi(s_{i+1}) - V_\phi(s_i)
A_i = \delta_i + \lambda \gamma A_{i+1}
```

Schulman et al. High-Dimensional Continuous Control Using Generalized Advantage Estimation. 2015.

Using GAE in the Policy Iteration Framework

For k = 1, 2, ...

For i = 1, 2, ..., N:

Choose action $a_i \sim \pi_{\theta_k}(\cdot | s_i)$

Receive reward $r_i \sim R(s_i, a_i)$ and $s_i' \sim P(\cdot | s_i, a_i)$

 $s_{i+1} = s_i'$ if episode continues, $s_{i+1} \sim \rho$ if episode ends

Data collection

Evaluate $Z_k(s, a) \approx Q^{\pi_{\theta_k}}(s, a) - V_{\phi}(s)$ for $s = s_1, ..., s_N$ and all a

$$\Rightarrow Z_k(s_i, a) = \frac{\mathbb{I}\{a_i = a\}}{\pi_{\theta_k}(a|s_i)} \, \hat{A}_k(s_i, a_i)$$

Policy Evaluation

Update θ_{k+1} from θ_k using the estimator $\{Z_k(s_i, a)\}_{i=1}^N$

Using any technique we introduced for policy-based contextual bandits

Policy Improvement

Training the Baseline V_{ϕ} (in iteration k)

For
$$i=1,2,\ldots,N$$
:
 Choose action $a_i \sim \pi_{\theta_k}(\cdot \mid s_i)$
 Receive reward $r_i \sim R(s_i,a_i)$ and $s_i' \sim P(\cdot \mid s_i,a_i)$

$$s_{i+1} = s_i' \text{ if episode continues, } s_{i+1} \sim \rho \text{ if episode ends}$$

$$\phi_{k+1} \leftarrow \phi_k - \alpha \nabla_{\phi} \frac{1}{N} \sum_{i=1}^N \left(V_{\phi}(s_i) - r_1 - \gamma V_{\phi_k}(s_i') \right)^2 \Bigg|_{\phi = \phi_k}$$

$$\phi_{k+1} \leftarrow \phi_k - \alpha \nabla_{\phi} \frac{1}{N} \sum_{i=1}^N \left(V_{\phi}(s_i) - G_i(\lambda; \phi_k) \right) \Bigg|_{\phi = \phi_k}$$
where $G_i(\lambda; \phi_k) = A_i(\lambda; \phi_k) + V_{\phi_k}(s_i)$ TD(1)
$$\phi_{k+1} \leftarrow \phi_k - \alpha \nabla_{\phi} \frac{1}{N} \sum_{i=1}^N \left(V_{\phi}(s_i) - \sum_{h=i}^{\tau(i)} \gamma^{h-i} r_i \right) \Bigg|_{\phi = \phi_k}$$
TD(1)

Approximate Policy Iteration and Variants

PPO

```
For k = 1, 2, ...
                                                                                                            Requires training a separate V_{\phi}
      For i = 1, 2, ..., N:
                  Choose action a_i \sim \pi_{\theta_k}(\cdot | s_i)
                  Receive reward r_i \sim R(s_i, a_i) and s_i' \sim P(\cdot | s_i, a_i)
                 s_{i+1} = s_i' if episode continues, s_{i+1} \sim \rho if episode ends
      Define Z_k(s_i, a) = \frac{\mathbb{I}\{a_i = a\}}{\pi_{\theta_i}(a|s_i)} \hat{A}_k(s_i, a_i)
                                                                                                                                  Use another inner for-loop to solve
                                                                                                                                  the argmax with gradient ascent
      \theta_{k+1} = \operatorname{argmax} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left( \sum_{i=1}^{N} \left( \sum_{i=1}^{N} \left( \sum_{i=1}^{N} \left( \sum_{i=1}^{N} \left( x_{i} | s_{i} \right) Z_{k}(s_{i}, a) - \frac{1}{\eta} \operatorname{KL}(\pi_{\theta_{k}}(\cdot | s_{i}), \pi_{\theta}(\cdot | s_{i})) \right) \right\} \right\}
                   \approx \operatorname{argmax} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left( \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \, \hat{A}_k(s_i, a_i) - \frac{1}{\eta} \left( \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} - 1 - \log \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \right) \right\}
```

Schulman et al. Proximal Policy Optimization Algorithms. 2017.

PPO with Clipping

$$\theta_{k+1} = \operatorname{argmax}_{\theta} \left\{ \frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{\pi_{\theta}(a_i|s_i)} - 1 - \log \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} - 1 - \log \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \right) \right\}$$

$$\min \left\{ \frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \, \hat{A}_k(s_i, a_i), \qquad \text{clip}_{[1-\epsilon, 1+\epsilon]} \left(\frac{\pi_{\theta}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} \right) \hat{A}_k(s_i, a_i) \right\}$$

A2C (Advantage Actor Critic) / PG

```
For k = 1, 2, ...
For i = 1, 2, ..., N:
Choose action a_i \sim \pi_{\theta_k}(\cdot | s_i)
Receive reward r_i \sim R(s_i, a_i) and s_i' \sim P(\cdot | s_i, a_i)
s_{i+1} = s_i' \text{ if episode continues, } s_{i+1} \sim \rho \text{ if episode ends}
\theta_{k+1} = \theta_k - \eta \left( \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \right) \Big|_{\theta = \theta_k} \hat{A}_k(s_i, a_i)
```

In standard A2C, $\hat{A}_k(s_i, a_i) = r_i + \gamma V_{\phi_k}(s_i') - V_{\phi_k}(s_i)$ (GAE estimator with $\lambda = 0$) and ϕ_k is trained with TD(0):

$$\phi_{k+1} \leftarrow \phi_k - \alpha \nabla_{\phi} \frac{1}{N} \sum_{i=1}^{N} \left(V_{\phi}(s_i) - r_1 - \gamma V_{\phi_k}(s_i') \right)^2 \bigg|_{\phi = \phi_k}$$

A2C (Advantage Actor Critic) / PG

```
For k=1, 2, ...
For i=1,2,...,N:
   Choose action a_i \sim \pi_{\theta_k}(\cdot | s_i)
   Receive reward r_i \sim R(s_i,a_i) and s_i' \sim P(\cdot | s_i,a_i)
   s_{i+1} = s_i' if episode continues, s_{i+1} \sim \rho if episode ends

\theta_{k+1} = \theta_k - \eta \left( \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \right) \Big|_{\theta = \theta_k} \hat{A}_k(s_i,a_i)
```

In standard PG, $\hat{A}_k(s_i, a_i) = \sum_{h=i}^{\tau(i)} \gamma^{h-i} r_i - V_{\phi_k}(s_i)$ (GAE estimator with $\lambda = 1$)

A2C (Advantage Actor Critic) / PG

```
For k=1, 2, ...
For i=1,2,...,N:
   Choose action a_i \sim \pi_{\theta_k}(\cdot | s_i)
Receive reward r_i \sim R(s_i,a_i) and s_i' \sim P(\cdot | s_i,a_i)
s_{i+1} = s_i' if episode continues, s_{i+1} \sim \rho if episode ends
\theta_{k+1} = \theta_k - \eta \left( \nabla_{\theta} \log \pi_{\theta}(a_i | s_i) \right) \Big|_{\theta = \theta_k} \hat{A}_k(s_i,a_i)
```

In general, one can use GAE with any λ to calculate $\hat{A}_k(s_i, a_i)$, with V_{ϕ} calculated from $TD(\lambda')$ with any λ' .

Summary: Algorithms based on Policy Iteration

- The algorithms are almost the same as those we introduced for contextual bandits
 - PPO / NPG
 - A2C / PG
- The only change is replacing $r(x_i, a_i) b(x_i)$ by Advantage Estimator:
 - $\lambda = 0$: $r(s_i, a_i) + \gamma V_{\phi}(s_{i+1}) V_{\phi}(s_i)$
 - $\lambda = 1$: $r(s_i, a_i) + \gamma r(s_{i+1}, a_{i+1}) + \gamma^2 r(s_{i+2}, a_{i+2}) + \dots + \gamma^{\tau-i} r(s_\tau, a_\tau) V_\phi(s_i)$
 - Any $\lambda \in [0,1]$: calculated by the GAE procedure
- The baseline $V_{\phi}(s)$ tries to track $V^{\pi_{\theta}}(s)$ where π_{θ} is the current policy
 - It is trained with a separate procedure $TD(\lambda')$

$$\phi_{k+1} \leftarrow \phi_k - \alpha \nabla_{\phi} \frac{1}{N} \sum_{i=1}^{N} \left(V_{\phi}(s_i) - r_1 - \gamma V_{\phi_k}(s_i') \right)^2 \bigg|_{\phi = \phi_k}$$

$$\mathsf{TD}(0)$$