

Assignment 1 Solution

Linear Statistical Models (University of Melbourne)

MAST30025: Linear Statistical Models

Assignment 1 Solutions

Total marks: 36

1. Prove that if a symmetric matrix A has eigenvalues which are all either 0 or 1, it is idempotent.

Solution [4 marks]: Diagonalise A and write it as

$$A = PDP^{T}$$
.

Then

$$A^{2} = PDP^{T}PDP^{T}$$
$$= PD^{2}P^{T}$$
$$= PDP^{T} = A$$

since D has only 0 or 1 on the diagonal and hence $D^2 = D$.

2. Prove (without using Theorem 2.5) that if A and B are symmetric matrices, A + B is idempotent and AB = BA = 0, then both A and B are idempotent. (*Hint*: Use Theorem 2.4. Then derive two relations between the diagonalisations of A and B.)

Solution [5 marks]: By Theorem 2.4, there exists a matrix P which diagonalises both A and B:

$$P^{T}AP = D_{1}$$

$$P^{T}BP = D_{2}$$

$$P^{T}(A+B)P = D_{1} + D_{2}.$$

Since A + B is idempotent, $D_1 + D_2$ has only 1s and 0s on the diagonal. Also

$$D_1D_2 = P^T A P P^T B P$$
$$= P^T A B P = 0.$$

Now consider the *i*th diagonal elements of D_1 and D_2 . Their product must be 0, so one of them is 0. Their sum is either 0 or 1, so the other must be 0 or 1. Hence all diagonal elements of D_1 and D_2 are either 0 or 1, and therefore A and B are idempotent.

3. Let y be a 3-dimensional multivariate normal random vector with mean and variance

$$\mu = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \quad V = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 2 \end{bmatrix}.$$

Let

$$A = \frac{1}{3} \left[\begin{array}{ccc} 2 & 0 & -1 \\ 0 & 3 & 0 \\ -1 & 0 & 2 \end{array} \right].$$

(a) Describe the distribution of Ay.

Solution [3 marks]: $\mathbf{y} \sim MVN(A\boldsymbol{\mu}, AVA^T)$.

$$> V \leftarrow matrix(c(2,0,1,0,1,0,1,0,2),3,3)$$

$$> A \leftarrow matrix(c(2,0,-1,0,3,0,-1,0,2),3,3)/3$$

> A%*%mu

[1,] 0.6666667

[2,] -1.0000000

[3,] -0.3333333

> A%*%V%*%t(A)

(b) Find $E[\mathbf{y}^T A \mathbf{y}]$.

Solution [2 marks]:

[1,] 4.666667

(c) Describe the distribution of $\mathbf{y}^T A \mathbf{y}$.

Solution [3 marks]: $AV = I_3$, which is idempotent. Hence $\mathbf{y}^T A \mathbf{y}$ has a non-central χ^2 distribution with 3 degrees of freedom and noncentrality parameter:

> t(mu)%*%A%*%mu/2

[,1]

[1,] 0.8333333

(d) Find a matrix B such that $\mathbf{y}^T B \mathbf{y}$ is independent of $\mathbf{y}^T A \mathbf{y}$.

Solution [2 marks]: We require a matrix B such that AVB = 0. But AV = I, and so the only possible choice is B = 0.

4. Let $\mathbf{y} \sim MVN(\boldsymbol{\mu}, V)$ be a $n \times 1$ random vector and suppose V is nonsingular. Find A and \mathbf{b} such that $A\mathbf{y} + \mathbf{b}$ is an n-length vector of independent standard normals.

Solution [4 marks]: We know that $Ay + b \sim MVN(A\mu + b, AVA^T)$. Therefore we can choose

$$A = V^{-1/2}$$

$$\mathbf{b} = -V^{-1/2}\boldsymbol{\mu}.$$

5. A study is conducted to determine if (and how) the fuel mileage of a car is dependent on its weight, and the speed at which it is driven. A linear model is assumed, and the following data is obtained:

Weight (tons)	Speed (km/hr)	Mileage (km/litre)
1.35	50	8.5
1.33	55	8
2	60	7.5
1.4	52	10
1.43	47	11
1.2	45	15
1.3	49	13.5
1.28	63	14

(a) Write down the linear model as a matrix equation, writing out the matrices in full.

Solution [2 marks]: $y = X\beta + \varepsilon$, where

$$\mathbf{y} = \begin{bmatrix} 8.5 \\ 8 \\ 7.5 \\ 10 \\ 11 \\ 15 \\ 13.5 \\ 14 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 1.35 & 50 \\ 1 & 1.33 & 55 \\ 1 & 2 & 60 \\ 1 & 1.4 & 52 \\ 1 & 1.43 & 47 \\ 1 & 1.2 & 45 \\ 1 & 1.3 & 49 \\ 1 & 1.28 & 63 \end{bmatrix}$$

and $\boldsymbol{\beta}$ and $\boldsymbol{\varepsilon}$ are obvious.

(b) Calculate the least squares estimator of the parameters.

Solution [2 marks]:

(c) Calculate the residual sum of squares SS_{Res} and sample variance s^2 .

Solution [2 marks]:

[3,] 0.006819703

[1] 7.287874

(d) Predict (using a point estimate) the average fuel mileage of a car which weighs 1.8 tons and is driven at 59 km/hr.

Solution [2 marks]:

6. Let A be a symmetric and idempotent matrix with entries a_{ij} . Prove that $0 \le a_{ii} \le 1$. Use this to derive limits on the leverage of a point in the full rank model.

Solution [5 marks]:

$$a_{ii} = [A^2]_{ii}$$

$$= \sum_j a_{ij} a_{ji}$$

$$= \sum_j a_{ij}^2.$$

Since this is a sum of squares, the lower bound follows. We also have $a_{ii} \ge a_{ii}^2$ and since a_{ii} is non-negative, the upper bound follows. Since the hat matrix is symmetric and idempotent, the leverage of a point must lie in [0,1].