Gaussian Processes MATH 728

Will Consagra
Department of Statistics
University of South Carolina

Thanks to Dr. Ray Bai!

Outline

Introduction to Gaussian Processes

Gaussian Process Regression

Hyperparameter Selection

Section 1

Introduction to Gaussian Processes

What is a Gaussian Process?

Formal Definition

A stochastic process $\{f(x): x \in \mathcal{X} \subset \mathbb{R}^d, \ d \geq 1\}$, where \mathcal{X} is a continuous set, is called a *Gaussian process (GP)* if and only if for every finite set of points x_1, \ldots, x_k in \mathcal{X} , the k-dimensional vector

$$\boldsymbol{f} := (f(x_1), \ldots, f(x_k))^{\top}$$

is a multivariate Gaussian random vector.

What is a Gaussian Process?

Formal Definition

A stochastic process $\{f(x): x \in \mathcal{X} \subset \mathbb{R}^d, \ d \geq 1\}$, where \mathcal{X} is a continuous set, is called a *Gaussian process (GP)* if and only if for every finite set of points x_1, \ldots, x_k in \mathcal{X} , the k-dimensional vector

$$\boldsymbol{f} := (f(x_1), \ldots, f(x_k))^{\top}$$

is a multivariate Gaussian random vector.

Key Idea: GPs define distributions over functions.

- ► Fully specified by mean function m(x) and covariance function k(x, x')
- Notation: $f(x) \sim GP(m(x), k(x, x'))$

GP as a Distribution Over Functions

- ▶ Mean vector: $\mathbf{m}_X = (m(x_1), \dots, m(x_k))^{\top} \in \mathbb{R}^K$
- ► Covariance matrix: $\mathbf{K}_{X,X} \in \mathbb{R}^{K \times K}$, with element-wise definition $\mathbf{K}_{X,X}(i,j) = k(x_i,x_j)$
- Joint distribution over our function discretization

$$f \sim \mathcal{N}_k(m_X, \mathsf{K}_{X,X})$$

We can get high-fidelity (high-resolution) approximation to the infinite-dimensional f samples by taking a finer grid X (a larger K).

Applications of Gaussian Processes

- ▶ **Modeling and simulation**: Brownian motion $f \sim GP(0, k)$, where $k(s, t) = \sigma^2 \min(s, t)$
 - Random motion of molecules
 - Random price movements in a financial market

Applications of Gaussian Processes

- ▶ Modeling and simulation: Brownian motion $f \sim GP(0, k)$, where $k(s, t) = \sigma^2 \min(s, t)$
 - Random motion of molecules
 - Random price movements in a financial market
- ► Machine Learning: Supervised regression/classification
 - Use a GP to approximate function mapping predictors to labels: Y = f(X)

Applications of Gaussian Processes

- ▶ **Modeling and simulation**: Brownian motion $f \sim GP(0, k)$, where $k(s, t) = \sigma^2 \min(s, t)$
 - Random motion of molecules
 - Random price movements in a financial market
- ► Machine Learning: Supervised regression/classification
 - Use a GP to approximate function mapping predictors to labels: Y = f(X)
- "Uncertainty Quantification":
 - Emulation: Approximate output of expensive computer code (PDE)
 - Inversion: Solving an inverse problem when your unknown is a function
 - Discrepancy: Non-parametric model for data-model mismatch

Section 2

Gaussian Process Regression

Nonparametric vs Parametric Regression

We observe data $\mathcal{D} := (x_1, y_1), ..., (x_n, y_n) \in \mathbb{R}^p \times \mathbb{R}$

Nonparametric vs Parametric Regression

We observe data $\mathcal{D}:=(x_1,y_1),...,(x_n,y_n)\in\mathbb{R}^p imes\mathbb{R}$

Parametric

- ▶ Data generating model: $y_i = x_i^\top \beta + \varepsilon_i$, $\mathbb{E}[\varepsilon_i] = 0$
- Estimate with OLS (frequentist)

$$\widehat{\beta} = \min_{\beta} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$$

or Bayesian $p(\beta|\mathcal{D}) \propto p(\mathcal{D}|\beta)p(\beta)$

► Confidence intervals/credible intervals can be formed using standard techniques

Nonparametric vs Parametric Regression

We observe data $\mathcal{D}:=(x_1,y_1),...,(x_n,y_n)\in\mathbb{R}^p\times\mathbb{R}$

Parametric

- ▶ Data generating model: $y_i = x_i^\top \beta + \varepsilon_i$, $\mathbb{E}[\varepsilon_i] = 0$
- Estimate with OLS (frequentist)

$$\widehat{\beta} = \min_{\beta} \sum_{i=1}^{n} (y_i - x_i^{\top} \beta)^2$$

or Bayesian $p(\beta|\mathcal{D}) \propto p(\mathcal{D}|\beta)p(\beta)$

► Confidence intervals/credible intervals can be formed using standard techniques

Nonparametric:

- ▶ Data generating model: $y_i = f(x_i) + \varepsilon_i$, where f is infinite-dimensional (e.g. belongs to some function space).
- Frequentist: Kernel smoothing, basis expansion, neural networks, etc.
- ▶ Bayesian: Use a GP prior on f and calculate the posterior "p(f|D)"

Gaussian Process Regression Model

Bayesian Model

Prior
$$f|k \sim \mathsf{GP}(0,k(x,x'))$$

Likelihood $y_i|f,\sigma^2 = N(f(x_i),\sigma^2)$ $i=1,...,n$
where $\sigma^2 = \mathsf{Var}[\varepsilon_i]$.

Gaussian Process Regression Model

Bayesian Model

Prior
$$f|k \sim \mathsf{GP}(0, k(x, x'))$$

Likelihood $y_i|f, \sigma^2 = N(f(x_i), \sigma^2)$ $i = 1, ..., n$

where $\sigma^2 = \text{Var}[\varepsilon_i]$.

Posterior

- We will define the posterior over some finite discretization
 Can be points or basis function, we'll focus on points.
- Define a discretization of the input ("test points") $X^* := (x_1^*, ..., x_k^*)$, and the corresponding function values $\mathbf{f}^* := (f(x_1^*), ..., f(x_k^*))$.
- Our goal is perform Bayesian inference to obtain the posterior $p(\mathbf{f}^*|\mathcal{D})$ under the Bayesian model above.

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

Common Kernels:

Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x - x'\|^2}{2\ell^2}\right)$

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

- Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|^2}{2\ell^2}\right)$
 - ► **Assumption**: *f* is an infinitely differentiable (very smooth) function

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

- Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|^2}{2\ell^2}\right)$
 - Assumption: f is an infinitely differentiable (very smooth) function
- ▶ Ornstein-Uhlenbeck kernel: $k(x,x') = \tau^2 \exp\left(-\frac{\|x-x'\|_2}{\ell}\right)$

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

- Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|^2}{2\ell^2}\right)$
 - ► **Assumption**: *f* is an infinitely differentiable (very smooth) function
- ▶ Ornstein-Uhlenbeck kernel: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|_2}{\ell}\right)$
 - ► **Assumption**: *f* is a continuous but not differentiable (not very smooth) function

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

- Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|^2}{2\ell^2}\right)$
 - Assumption: f is an infinitely differentiable (very smooth) function
- ▶ Ornstein-Uhlenbeck kernel: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|_2}{\ell}\right)$
 - ► **Assumption**: *f* is a continuous but not differentiable (not very smooth) function
- Periodic kernel: $k(x, x') = \tau^2 \exp\left(-\frac{2\sin^2(\pi ||x x'||/p)}{\ell^2}\right)$

► The choice of covariance function k (and its hyperparameters) in our GP prior reflect prior beliefs on the function smoothness, "wiggliness", periodicity, etc.

- Squared Exponential kerenl: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|^2}{2\ell^2}\right)$
 - ► **Assumption**: *f* is an infinitely differentiable (very smooth) function
- ▶ Ornstein-Uhlenbeck kernel: $k(x, x') = \tau^2 \exp\left(-\frac{\|x x'\|_2}{\ell}\right)$
 - ► **Assumption**: *f* is a continuous but not differentiable (not very smooth) function
- Periodic kernel: $k(x, x') = \tau^2 \exp\left(-\frac{2\sin^2(\pi ||x x'||/p)}{\ell^2}\right)$
 - **Assumption**: *f* is a periodic over some period *p*

Prior Draws from Different Covariance Functions

Figure: Samples from mean-zero GP priors with different kernels to encode different assumptions on the function smoothness.

Measurement Model

▶ Recall that we have the data generating model for i = 1, ..., n:

$$y_i = f(x_i) + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2)$$

- Denote $\mathbf{y} = (y_1, ..., y_n)^{\mathsf{T}}$, $\mathbf{f} = (f(x_1), ..., f(x_n))^{\mathsf{T}}$, $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_n)$.
- ► The vectorized model is given by

$$\mathbf{y} = \mathbf{f} + \boldsymbol{\epsilon}$$

Measurement Model

▶ Recall that we have the data generating model for i = 1, ..., n:

$$y_i = f(x_i) + \varepsilon_i, \varepsilon_i \sim N(0, \sigma^2)$$

- Denote $\mathbf{y} = (y_1, ..., y_n)^{\mathsf{T}}$, $\mathbf{f} = (f(x_1), ..., f(x_n))^{\mathsf{T}}$, $\boldsymbol{\varepsilon} = (\varepsilon_1, ..., \varepsilon_n)$.
- ► The vectorized model is given by

$$y = f + \epsilon$$

Using standard results from multivariate statistics

- $ightharpoonup \mathbb{E}(\mathbf{y}) = \mathbb{E}[\mathbb{E}(\mathbf{y} \mid \mathbf{f})] = \mathbb{E}(\mathbf{f}) = \mathbf{0}_n$
- $ightharpoonup \operatorname{Cov}(\mathbf{y}) = \operatorname{Cov}(\mathbf{f} + \boldsymbol{\varepsilon}) = \operatorname{Cov}(\mathbf{f}) + \operatorname{Cov}(\boldsymbol{\varepsilon}) = \mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n$
- $\qquad \mathsf{Cov}(\mathsf{y},\mathsf{f}_{\star}) = \mathsf{Cov}(\mathsf{f} + \varepsilon,\mathsf{f}_{\star}) = \mathsf{Cov}(\mathsf{f},\mathsf{f}_{\star}) = \mathsf{K}_{X,X_{\star}}$
- $ightharpoonup \operatorname{\mathsf{Cov}}(\mathbf{f}_\star,\mathbf{y}) = [\operatorname{\mathsf{Cov}}(\mathbf{y},\mathbf{f}_\star)]^\top = \mathbf{K}_{X_\star,X}$

Deriving the Posterior Predictive Distribution

Approach I: Properties of Conditional Multivariate Normals

▶ Joint Distribution:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{X,X} + \sigma^2 \mathbf{I} & \mathbf{K}_{X,X_{\star}} \\ \mathbf{K}_{X_{\star},X} & \mathbf{K}_{X_{\star},X_{\star}} \end{bmatrix} \right),$$

where this comes from the means and covariances derived on the previous side.

Deriving the Posterior Predictive Distribution

Approach I: Properties of Conditional Multivariate Normals

▶ Joint Distribution:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{f}_{\star} \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{X,X} + \sigma^2 \mathbf{I} & \mathbf{K}_{X,X_{\star}} \\ \mathbf{K}_{X_{\star},X} & \mathbf{K}_{X_{\star},X_{\star}} \end{bmatrix} \right),$$

where this comes from the means and covariances derived on the previous side.

Posterior:

$$ho(\mathbf{f}_{\star}|\mathbf{y}) \sim \mathcal{N}(oldsymbol{\mu}_{\star}, oldsymbol{\Sigma}_{\star})$$

where

$$\begin{split} \boldsymbol{\mu}_{\star} &= \mathbf{K}_{X_{\star},X}[\mathbf{K}_{X,X} + \sigma^{2}\mathbf{I}_{n}]^{-1}\mathbf{y} \\ \boldsymbol{\Sigma}_{\star} &= \mathbf{K}_{X_{\star},X_{\star}} - \mathbf{K}_{X_{\star},X}[\mathbf{K}_{X,X} + \sigma^{2}\mathbf{I}_{n}]^{-1}\mathbf{K}_{X,X_{\star}}, \end{split}$$

and this follows from standard conditioning properties of multivariate Gaussian.

Deriving the Posterior Predictive Distribution

Approach II: Bayes Rule

$$p(\mathbf{f}, \mathbf{f}_{\star} \mid \mathbf{y}) \propto \underbrace{\mathcal{N}(\mathbf{y} \mid \mathbf{f}, \sigma^{2} \mathbf{I}_{n})}_{\text{Likelihood}} \times \underbrace{\mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{f}_{\star} \end{bmatrix} \middle| \mathbf{0}, \mathbf{K}\right)}_{\text{Prior}}$$
(12)

- Use the *completing the square* trick to derive the joint normal posterior $p(\mathbf{f}, \mathbf{f}_* \mid \mathbf{y})$.
- ► Then apply the **marginalization property** of Gaussians to get:
 - the marginal posterior $p(\mathbf{f} \mid \mathbf{y})$
 - ▶ the predictive posterior $p(\mathbf{f}_* \mid \mathbf{y})$

This is a standard derivation that you can find online.

Estimation and Uncertainty Quantification

Using the posterior predictive distribution we can compute:

Point estimates: For each test point $x_{\star i}$, the predicted value is the posterior mean

$$\hat{f}(x_{\star i}) = \mu_{\star i}, \quad i = 1, \ldots, m,$$

which is also the MAP since we are dealing with Gaussians.

▶ 95% Prediction intervals: The interval for $f(x_{\star i})$ is based on the 2.5th and 97.5th percentiles of $\mathcal{N}(\mu_{\star i}, \Sigma_{\star ii})$:

$$\left[\mu_{\star i} - z_{0.975}\sqrt{\Sigma_{\star ii}}, \ \mu_{\star i} + z_{0.975}\sqrt{\Sigma_{\star ii}}\right], \quad i = 1,\ldots,m$$

GPs have a very fast, closed form expression for uncertainty quantification that avoids costly MCMC-type sampling!

Note: $z_{0.975} \approx 1.96$ for a standard normal distribution.

Toy Example

True function: $f(x) = x \sin(x)$ Measurement error variance $\sigma^2 = 0.3^2$

Figure: Posterior GP inference on dense grid.

Computational

Exact GP Inferenence:

- ▶ Requires inverting $n \times n$ matrix: $[\mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n]^{-1}$
- ▶ Time complexity $\mathcal{O}(n^3)$, space complexity $\mathcal{O}(n^2)$
- Intractable for large n (e.g., n > 10,000)

Computational

Exact GP Inferenence:

- ▶ Requires inverting $n \times n$ matrix: $[\mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n]^{-1}$
- ▶ Time complexity $\mathcal{O}(n^3)$, space complexity $\mathcal{O}(n^2)$
- ▶ Intractable for large n (e.g., n > 10,000)

In many modern applications, n > 1,000,000, e.g. 3D brain imaging!

What can we do?

Computational

Exact GP Inferenence:

- ▶ Requires inverting $n \times n$ matrix: $[\mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n]^{-1}$
- ▶ Time complexity $\mathcal{O}(n^3)$, space complexity $\mathcal{O}(n^2)$
- ▶ Intractable for large n (e.g., n > 10,000)

In many modern applications, n > 1,000,000, e.g. 3D brain imaging!

What can we do?

Possible Solutions: Approximate the distribution Sparse GP Approximations (using q << n inducing inputs)

For more details, see:

Approximation Methods for Gaussian Process Regression, Quiñonero-Candela, Rasmussen, and Williams.

Section 3

Hyperparameter Selection

Marginal Maximum Likelihood

- Previous analysis assumes kernel parameters (e.g. ℓ , τ) and noise σ^2 are known
 - ► This is often not the case!

Marginal Maximum Likelihood

- Previous analysis assumes kernel parameters (e.g. ℓ , τ) and noise σ^2 are known
 - ► This is often not the case!
- Proper hyperparameter selection can have an enormous effect on the quality of the inference, both in terms of estimation accuracy and well-calibrated uncertainty.

Marginal Maximum Likelihood

- Previous analysis assumes kernel parameters (e.g. ℓ , τ) and noise σ^2 are known
 - This is often not the case!
- Proper hyperparameter selection can have an enormous effect on the quality of the inference, both in terms of estimation accuracy and well-calibrated uncertainty.
- We will use the marginal likelihood

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}_n(\mathbf{0}, \mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n)$$

"The probability of the observed data \mathbf{y} given the model $(y = f(x) + \varepsilon)$ over the prior (p(f))".

Marginal Maximum Likelihood

- Previous analysis assumes kernel parameters (e.g. ℓ , τ) and noise σ^2 are known
 - This is often not the case!
- Proper hyperparameter selection can have an enormous effect on the quality of the inference, both in terms of estimation accuracy and well-calibrated uncertainty.
- We will use the marginal likelihood

$$p(\mathbf{y}) = \int p(\mathbf{y}|\mathbf{f})p(\mathbf{f})d\mathbf{f} = \mathcal{N}_n(\mathbf{0}, \mathbf{K}_{X,X} + \sigma^2 \mathbf{I}_n)$$

- The probability of the observed data \mathbf{y} given the model $(y = f(x) + \varepsilon)$ over the prior (p(f))".
- Select the parameters

$$(\widehat{\ell},\widehat{\tau},\widehat{\sigma}^2) = \max_{(\ell,\tau,\sigma^2)} p(\mathbf{y}),$$

using some numerical optimizer.

Hyperpriors

▶ A "fully Bayesian" approach places priors on hyperparameters:

$$\sigma^2 \sim p(\sigma^2), \quad (\ell, \tau) \sim p(\ell)p(\tau)$$

Hyperpriors

► A "fully Bayesian" approach places priors on hyperparameters:

$$\sigma^2 \sim p(\sigma^2), \quad (\ell, \tau) \sim p(\ell)p(\tau)$$

► These are called *hyperpriors*, and model our uncertainty in hyperparameter values.

Hyperpriors

A "fully Bayesian" approach places priors on hyperparameters:

$$\sigma^2 \sim p(\sigma^2), \quad (\ell, \tau) \sim p(\ell)p(\tau)$$

- ► These are called *hyperpriors*, and model our uncertainty in hyperparameter values.
- But marginalizing over unknown hyperparameters involves an integral:

$$p(\mathbf{f}_{\star} \mid \mathbf{y}) = \int p(\mathbf{f}_{\star}, \ell, \tau, \sigma^{2} \mid \mathbf{y}) d\sigma^{2} d\ell d\tau$$
 (1)

and hence $p(\mathbf{f}_{\star} \mid \mathbf{y})$ is no longer multivariate normal, but some more complicated distribution.

Hyperpriors

► A "fully Bayesian" approach places priors on hyperparameters:

$$\sigma^2 \sim p(\sigma^2), \quad (\ell, \tau) \sim p(\ell)p(\tau)$$

- ► These are called *hyperpriors*, and model our uncertainty in hyperparameter values.
- But marginalizing over unknown hyperparameters involves an integral:

$$p(\mathbf{f}_{\star} \mid \mathbf{y}) = \int p(\mathbf{f}_{\star}, \ell, \tau, \sigma^{2} \mid \mathbf{y}) d\sigma^{2} d\ell d\tau$$
 (1)

and hence $p(\mathbf{f}_{\star} \mid \mathbf{y})$ is no longer multivariate normal, but some more complicated distribution.

- ➤ To approximate the posterior (1) we will have to use a more complicated inference algorithm:
 - ► Some Markov chain Monte Carlo (MCMC) variant or variational inference

Software

