Single Phase Pressure Drop.

Any channele:

Pin-Pout = Spinnha + A Pace + Apgravity + Apprichen Sporm

where
$$\Delta p_{\text{inertia}} = \left(\frac{l}{A}\right)_{T} \left(\frac{d\dot{m}}{dt}\right)$$

$$\Delta p_{acc} = \frac{ro^2}{2p} \left(\frac{1}{A_N^2} - \frac{1}{\lambda_1^2} \right)$$

* Table 9-1. for K- form loss 10.

fricken factor f = 64 for laminar flow

Fig 9-15, 9-16, 9-17.

Turbulant flow: 1 = -0.8 + 0.87 ln (ReVf)

Table 9-1 Form loss coefficients for various flow restrictions*

Parameter Pipe entrance from a plenum			
	0.04	In pipe	
	0.23	In pipe	
	0.50	In pipe	
	0.78	In pipe	
		in pipe	
	1.0	T	
	1.0	In pipe	
	$0.5 (1 - \beta^2)$	Downstream	
	$(1 - \beta)^2$	Upstream	
<u>irea</u>			
rea			
$(L/D)_{ m equiv}$			
30	0.35-0.9		
20	100 000		
16	2000-000		
20	, 10) IFLENIO		
60	0.65-1.70		
	0.15-15.00		
	A CONTROL MANAGEMENT AND A CONTROL MANAGEMENT		
	30 20 16 20	$ \begin{array}{c} 0.50 \\ 0.78 \end{array} $ $ \begin{array}{c} 1.0 \\ 0.5 (1 - \beta^2) \\ (1 - \beta)^2 \end{array} $ $ \begin{array}{c} \text{area} \\ \text{rea} \end{array} $ $ \begin{array}{c} (L/D)_{\text{equiv}} \end{array} $ $ \begin{array}{c} 30 \\ 20 \\ 0.2 - 0.6 \\ 16 \\ 0.17 - 0.45 \\ 20 \\ 0.2 - 0.6 \end{array} $	

^{*}Approximate values; consult Idelchik [13] for extensive tabulation. Also, section VII gives an accounting for the theoretical basis for obtaining K.

and

$$K_{\rm T} = \sum_{i} K_{\rm i} \left(\frac{A_{\rm ref}}{A_{\rm i}}\right)^{2}$$

 $^{^{\}dagger}$ Values of K depend on the pipe diameter.

Figure 9-15 Product of laminar friction factor and Reynolds number for fully developed flow with rectangular geometry. (From Kays [14].)

Figure 9-16 Product of laminar friction factor and Reynolds number for fully developed flow in an annular channel. (From Kays [14].)

Figure 9-17 Developing laminar flow friction factor. (From Langhaar and No [17].)

 $f = 0.184 \text{ Re}^{-0.2}$ $30,000 \angle \text{Re} \angle 1 \times 10^6$ -0.25 McAdam) f = 0.316 Re $\text{Re} \angle 30,000 \text{ CBlasius}$

Fig. 9-20, Mordy's chart

L = -210g10 [7/D + 2.51] - (cole brook)

Bare Red bundle: ₽

Fig 9-22, Table 9-2, 9-3.

Fig 9-23.

fiC = CfiC Re'iC

C/ = a+b, CP/D-1) + b2 CP/D-D2

Figure 9-20 Moody's chart for friction factors: Friction factor for use in the relation Δp for pressure drop for flow inside circular pipes. (From Moody [20].)

Table 9-2 Coefficients in Eqs. 9-82 and 9-87 for bare rod subchannel friction factor constants C'_{fi} in hexagonal array

	$1.0 \le P/D \le 1.1$			$1.1 < P/D \le 1.5$		
Subchannel	а	b_1	b_2	а	b_1	b_2
Laminar flow						
Interior	26.00	888.2	-3334	62.97	216.9	-190.2
Edge	26.18	554.5	-1480	44.40	256.7	-267.6
Corner	26.98	1636.	-10,050	87.26	38.59	- 55.12
Turbulent flow						
Interior	0.09378	1.398	-8.664	0.1458	0.03632	-0.03333
Edge	0.09377	0.8732	-3.341	0.1430	0.04199	-0.04428
Corner	0.1004	1.625	-11.85	0.1499	0.006706	-0.00956

Table 9-3 Coefficients in Eqs. 9-82 and 9-87 for bare rod subchannel friction factor constants $C_{\rm fi}'$ in square array

	$1.0 \le P/D \le 1.1$			$1.1 < P/D \le 1.5$		
Subchannel	а	b_1	b_2	а	b_1	b_2
Laminar flow						
Interior	26.37	374.2	-493.9	35.55	263.7	-190.2
Edge	26.18	554.5	-1480	44.40	256.7	-267.6
Corner	28.62	715.9	-2807	58.83	160.7	-203.5
Turbulent flow						
Interior	0.09423	0.5806	-1.239	0.1339	0.09059	-0.09926
Edge	0.09377	0.8732	-3.341	0.1430	0.04199	-0.04428
Corner	0.09755	1.127	-6.304	0.1452	0.02681	-0.03411

Figure 9-22 Product of laminar friction factors and Reynolds number for parallel flow in a rod bundle. From Sparrow and Loeffler [28].)

Figure 9-23 Laminar flow results in triangular array bare rod bundles. (From Cheng and Todreas [3].)

Two-Phase Pressure Dorp

· Flow Regime: Verticle: bubbly slug Churn

Annula.

Horizontal: Brubbly
Plug
Strahified
Wany
Sung.
Annular.

· Flow Regime Maps

$$\Delta p = \Delta p_{acc} + \Delta p_{fric} + \Delta p_{gravity}$$

$$\Delta p_{acc} = \left(\frac{G_m^2}{P_m}\right)_{out} - \left(\frac{G_m^2}{P_m}\right)_{in}$$

$$\left(\frac{dp}{dz}\right)_{foic} = \frac{\overline{Z}_{w} P_{w}}{A_{z}} = \frac{f_{TP}}{De} \left[\frac{G_{rm}}{\alpha f_{m}}\right]$$

Figure 11-2 Flow patterns in vertical flow.

Figure 11-3 Flow patterns in horizontal flow.

Stratified

Bubble

Plug

Slug

Wavy

Annular

10

1

10-1

10-2

{/d} (m/s)

Figure 11-9 Flow regime map of Taitel et al. [36] for air-water at 25°C and 0.1 MPa in 25 mm diameter tube.

Table 11-3 Two-phase multiplier $(\phi_{\ell o}^2)$ of various models

		-						
	$\phi_{\ell_0}^2$ at various qualities (x)							
p(psia)	x = 0.0	x = 0.1	x = 0.2	x = 0.5	x = 0.8	x = 1.0		
1020	1	2.73	4.27	8.30	11.81	13.98		
1020	1	2.07	4.14	10.35	16.6	20.7		
1020	1	5.4	8.6	17.0	22.9	15.0		
738	1	3.9	6.4	12.9	18.5	21.9		
738	1	2.98	5.96	14.9	23.8	29.8		
738	1	7.1	12.4	25.5	35	22.5		
291	1	8.25	14,4	29.7	42.9	51.0		
291	1	8.5	17.0	42.5	67.0	85.0		
291	1	18.4	36.2	90	132	80.0		

• Single Phase mass flux = two phase mass flux
$$\frac{dp}{dz} \int_{fric}^{TP} = +\frac{2}{40} \left(\frac{dp}{dz}\right)_{fric}^{to} = +\frac{2}{40} \left(\frac{dp}{dz}\right)_{fric}^{to}$$

Single phase multipliers
$$\Rightarrow \oint_{0}^{2} = \frac{f_{1}}{f_{m}} \frac{f_{7p}}{f_{6o}}$$

$$f_{vo} = \frac{\int v}{f_{m}} \frac{f_{7p}}{f_{vo}}$$

Table 11-3.

· Separated Flow Mudel. Lockhart-Martinelli -

$$\left(\frac{dp}{dz}\right)_{fric}^{Tp} = \phi_1^2 \left(\frac{dp}{dz}\right)_{fric}^1 = \phi_v^2 \left(\frac{dp}{dz}\right)_{fric}^v$$

· single phase flow separately.

$$P_{1}^{2} = 1 + \frac{C}{x} + \frac{1}{x^{2}}$$

$$E_{1} = \frac{C}{x} + \frac{1}{x^{2}}$$

$$F_{-1} = \frac{C}{x} + \frac{1}{x^{2}}$$

$$V_{-1} = \frac{12}{12}$$

$$V_{-1} = \frac{1}{x^{2}}$$

Fig. 11-14

Markinelli- Nelson. (Steam- Water)

Fig 11-15.

Figure 11-14 Martinelli model for pressure gradient ratios and void fractions (From Martinelli and Nelson [27].)

Figure 11-15 Martinelli-Nelson's ϕ_{t0}^2 as a function of quality and pressure. (From Martinelli and Nelson [27].)

Figure 11-21 Baroczy two-phase friction multiplier $(\overline{\phi_{(0)}^2})$. (From Baroczy [4].)

Figure 11-22 Baroczy mass flux correction factor. (From Baroczy [4].)