Curso de Engenharia de Computação Linguagens Formais, Autômatos e Compiladores

Introdução à lógica formal

Slides da disciplina Linguagens Formais, Autômatos e Compiladores Curso de Engenharia de Computação Instituto Mauá de Tecnologia – Escola de Engenharia Mauá Prof. Marco Antonio Furlan de Souza

Conceitos

- Delineia o método organizado e cuidadoso de pensar que caracteriza qualquer investigação científica ou qualquer outra atividade de raciocínio;
- Tem aplicações diretas em Computação:
 - Suporte matemático às teorias;
 - Técnicas de Inteligência Artificial: linguagem Prolog, sistemas especialistas e outros;
 - Verificação da correção de programas de computadores;
 - Circuitos digitais;
 - ... e outros

Sentença

 Sentença (ou proposição) é uma frase que pode ser apenas verdadeira ou falsa:

Exemplos

- "Dez é menor do que sete"
 - <u>É</u> uma sentença e é falsa;
- "Como vai você?"
 - NÃO É uma sentença é uma pergunta;
- "Ela é muito talentosa"
 - NÃO É uma é uma sentença pois existe um termo não definido "ela" que impede de avaliar sua veracidade;
- "Existem formas de vida em outros planetas do universo"
 - <u>É</u> uma sentença;

Símbolos

- As sentenças podem ser representadas por meio de símbolos convenciona-se, em lógica matemática, utilizar letras maiúsculas tais como A, Z, W etc para representar as sentenças envolvidas;
- Por exemplo:
 - A = "Elefantes são grandes"
 - B = "Bolas são redondas"
- Uma expressão lógica é então composta por símbolos proposicionais e por conectivos lógicos (que serão apresentados a seguir);
- A veracidade (ou não) de uma expressão lógica depende de sua interpretação – valores-verdade dos símbolos proposicionais e dos conectivos lógicos empregados.

- Conectivos (operadores) lógicos e valores-verdade
 - Os conectivos lógicos permitem compor expressões lógicas mais complexas a partir dos símbolos utilizados ou ainda de outras expressões;
 - Aos símbolos proposicionais são atribuídos os valores-verdade;
 - Por exemplo, se:
 - A = "Elefantes são grandes";
 - Neste caso o **valor-verdade** atribuído à $A \in V$ (verdadeiro).
 - A veracidade de uma expressão contendo conectivos lógicos se dá com a aplicação destes conectivos aos valores dos símbolos proposicionais e/ou resultados de subexpressões de acordo com a semântica do conectivo.

- O conectivo lógico "e" (\(\Lambda \))
 - Também conhecido como conjunção lógica;
 - O resultado de A A B só é verdadeiro se ambos os termos forem verdadeiros;

Tabela verdade

Α	В	AAB
V	V	V
V	F	F
F	V	F
F	F	F

- O conectivo lógico "ou" (V)
 - Também conhecido como disjunção lógica;
 - O resultado de A v B só é falso se ambos os termos forem falsos;
 - Tabela verdade

Α	В	AVB
V	V	V
V	F	V
F	V	V
F	F	F

- O conectivo lógico "implicação" (→)
 - A verdade de **A implica** ou leva à verdade de **B**;
 - Também lido como "se A então B";
 - A é denominado de antecedente;
 - B é denominado de consequente.

Tabela verdade

Α	В	$A \rightarrow B$
V	V	V
V	F	F
F	V	V
F	F	V

- O conectivo lógico "implicação" (→)
 - Explicação
 - Considere a sentença: "Se eu me formar vou tirar férias na Flórida";
 - Se o aluno se formar (A) e tirar as férias na Flórida (B), a sentença foi verdadeira. Logo, se A e B forem ambas verdadeiras, considerar a implicação A→B verdadeira.
 - Se o aluno se formar (A) e não tirar as férias na Flórida (B), a sentença foi falsa. Logo, quando A é verdadeira e B é falsa, a implicação A → B é falsa;
 - Se o aluno não se formou, independentemente de ele tirar ou não férias na Flórida, não se pode afirmar que a sentença é falsa entra o "benefício da dúvida". Por convenção, aceita-se que A→B seja verdadeira se A for falsa, independentemente do valor verdade de B.

- O conectivo lógico "equivalência" (↔)
 - Trata-se de uma "dupla implicação":
 - $A \leftrightarrow B$ equivale à $(A \rightarrow B) \land (B \rightarrow A)$
 - Tabela verdade

Α	В	$A \leftrightarrow B$
V	V	V
V	F	F
F	V	F
F	F	V

- O conectivo lógico "negação" (¬)
 - Resulta na **inversão lógica** da expressão;
 - É um conectivo unário.
 - Tabela verdade

Α	¬A
V	F
F	V

Fórmulas bem formadas

- Expressões lógicas corretas são denominadas de fórmulas bem formadas (fbf);
- Assim, é necessário se estabelecer as regras (sintaxe) para se escrever fbfs:

Alfabeto

São as letras (símbolos proposicionais), conectivos lógicos (Λ, V, →, ↔ e ¬), parênteses e ∨ e F.

Regras

- V e F são fbfs;
- Um símbolo proposicional é uma fbf;
- Se A é uma fbf, então ¬A também é uma fbf;
- Se \mathbf{A} e \mathbf{B} são fbfs, então também são $A \wedge B$, $A \vee B$, $A \rightarrow B$, $A \leftrightarrow B$;
- Se A é uma fbf, então também é (A).

Fórmulas bem formadas

 A quantidade de parênteses em um fbf pode ser reduzido com a adição de regras de precedência para os conectivos:

Ordem	Conectivo
1	()
2	7
3	Λ, V
4	\rightarrow
5	\leftrightarrow

Conectivo principal

- É aquele que em uma fbf é aplicado por último.
- Exemplo: ∧ é o conectivo principal em:

- Tautologia, contradição e equivalência lógica
 - Tautologia
 - Uma fbf que é sempre verdadeira é uma tautologia:

$$A \lor \neg A$$

$$(A \to B) \leftrightarrow (\neg B \to \neg A)$$

- Contradição
 - Uma fbf que é sempre falsa é uma contradição: A ∧ ¬A
 - Equivalência lógica
 - Se P e Q são duas fbfs e concordam em valores verdade então P e
 Q são fbfs equivalentes, P⇔Q.

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

famosas: Leis de DeMorgan

Equivalências

Aplicações

Mecanismos de busca

Algoritmos e programação

 Aplicação direta dos conectivos na tomada de decisão no controle do fluxo de algoritmos e programas que os implementam.

Teste seus conhecimentos

1) Verificar que as fbfs a seguir são tautologias:

$$(\neg B \land (A \to B)) \to \neg A$$

$$((A \to B) \land A) \to B$$

$$(A \lor B) \land \neg A \to B$$

$$(A \to B) \land \neg B \to \neg A$$

2) Prove que a definição do conectivo 🕀 (ou exclusivo) a seguir é uma tautologia:

$$A \oplus B \Leftrightarrow \neg (A \leftrightarrow B)$$

- 3) Sejam A, B e C as seguintes sentenças:
 - A: Rosas são vermelhas.
 - B: Violetas são azuis.
 - C: Açúcar é doce.

Traduzir em notação simbólica: "Rosas são vermelhas apenas se as violetas não forem azuis e se o açúcar for azedo."

O "ou exclusivo" resulta
em verdadeiro apenas
quando os dois
operandos possuem
valores lógicos distintos.