Word Embeddings for Descriptive Corpus Analysis

Digging Deeper into Analogies, Polysemy, and Stability

Slides: <u>bit.ly/embedding-tutorial-slides</u>

Notebook: bit.ly/embedding-tutorial-notebook

Overview

Goals

- Revisit mental models
- Learn about possible pitfalls

- Explore word embedding analogies
- Talk about how phenomena in lexical semantics affect word embeddings' behavior
- Look at factors that can affect the stability of word embeddings

Overview

Non-goals: things we won't discuss

- BERT
 - NLP+CSS: BERT for Computational Social Scientists
- How to train word embeddings (e.g. hyperparameter selection)
 - Spirling and Rodriguez
- Comparing word embedding models
 - NLP+CSS: Comparing Word Embedding Models
- Word embeddings in languages besides English

What are word embeddings?

- A representation of a word in text
- Takes the form of a vector in Rd
- Learned by a class of algorithms (including word2vec, GloVe, ...)
- Represents the meaning of a word

What are word embeddings?

- A representation of a word in text
- Takes the form of a vector in Rd
- Learned by a class of algorithms (including word2vec, GloVe, ...)
- Represents the "meaning" of a word*

* as it is used in a corpus

What are word embeddings?

- A representation of a word in text
- Takes the form of a vector in Rd
- Learned by a class of algorithms (including word2vec, GloVe, ...)
- Represents the "meaning"** of a word*

- * as it is used in a corpus
- ** if we accept that a description of a word's contexts constitute its meaning

Downstream-centered*

 Incorporated into deep learning models

Sentiment analysis: <u>Socher et al.</u>
2013

* terminology from <u>Antoniak</u> and <u>Mimno 2018</u>

BERT: Devlin et al 2019

Two different uses of word embeddings

·Corpus-centered*

•Directly studied as a representation of the mental models of the producers of corpus text

Diachronic word embeddings: <u>Hamilton et al. 2016</u>

Semantic projection: Kozlowski et al. 2019

Overview

Corpus-centered social science research with word embeddings

- Emotion and reason in political language (Gennaro and Ash 2022)
- Construct an emotion/reason dimension using vector representations for 'affect' and 'cognition' in US Congress speeches
- Findings
 - Emotionality spikes in times of war, and with patriotism
 - Emotionality is higher for:
 - Democrats, women, ethnic/religious minorities, the opposition party, members with ideologically extreme roll-call voting records.

Overview

Finding needles in haystacks

word2vec (among other pubications):
Mikolov et al. 2013

Distributed representations of words and phrases and their compositionality
T Mikolov, I Sutskever, K Chen, GS Corrado, J Dean
Neural information processing systems

GloVe:
Pennington et al.
2014

TITLE	CITED BY	YEAR
Glove: Global vectors for word representation J Pennington, R Socher, CD Manning Proceedings of the 2014 conference on empirical methods in natural language	27700	2014

Almost all of these citations are for downstream-centered tasks!

Today's focus is on corpus-centered uses of word embeddings.

The meaning of 'meaning'

- Word embedding algorithms convert co-occurrence probabilities into appropriate cosine similarities
- Why is this encoding 'meaning'?
- We'll revisit the objective functions of word2vec and GloVe

The meaning of 'meaning'

- GloVe and word2vec both build two representations for each word
 - As context word: a vector *c* for each word, in the matrix *C*
 - As focus word: a vector *v* for each word, in the matrix *V*
- The final word embeddings are built by optimizing both sets of representations

The meaning of meaning'

word2vec: represents conditional probability as

$$p(c|w; heta) = rac{e^{v_c \cdot v_w}}{\sum_{c' \in C} e^{v_{c'} \cdot v_w}}$$

Maximize if cooccurring, minimize otherwise

GloVe: objective

$$J = \sum_{i,j=1}^{V} f\left(X_{ij}\right) \left(w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij}\right)^2$$

Minimize

Takeaway

In both cases, c.v high for co-occurring words; c.v low for non-co-occurring words.

The meaning of 'meaning'

- In both cases, we maximize v.c for all words c occurring in v's context.
- If v and v' both appear near the same words c_1 , c_2 , ... c_n
- <=> We're optimizing distances to similar sets of cs
- <=> v and v' are optimized with similar constraints
- <=> v and v' are similar (in space)

So, words appearing in similar contexts have similar vectors

The meaning of 'meaning'

- Distributional hypothesis: Words that occur in similar contexts tend to have similar meanings
- Similar contexts <=> similar meanings ; similar contexts <=> similar vectors
- So, words with similar meanings have similar vectors.

Recap

Word embedding analogies. Source

Linear substrcture in GloVe. Source

The analogy task

- 19,544 questions, of the format:
 - Athens: Greece:: Madrid: Spain
 - policeman: policewoman:: groom: bride
 - flying: flew:: swimming: swam
 a a' b b'
- (a'-a) is supposed to encode a country-capital/masculine-feminine/past tense-present tense relation
- Predict the word b' by calculating x = b + (a' a), and finding its nearest neighbor

- flying and flew occur in a lot of similar contexts, and are close together in vector space
- (a'-a) in the formula x = b + (a'-a) is often quite small
- Originally, {b, a', a} were excluded as candidates
- But b is often the nearest neighbor of b + (a' a)

Effects of proximity

Reproduction of results shown in Linzen 2016

Takeaway

Performance on the analogy task can be explained by other phenomena besides the existence of a constant offset

Other relations

- The Google analogy dataset measured performance on 9 analogical relations
- BATS (Rogers et al. 2017) introduced 40 relations that are substantially more difficult than the original analogies
 - animal typical sound (fly buzz)
 - thing color (emerald green)
 - meronym holonym (*star galaxy*)
- Ethayarajh et al. 2019 was able to predict which sets of word pairs would be successful as analogies
 - Based on their co-occurrence and geometric properties of the space

Takeaway

Some analogy tasks are easier than others.
i. e. Some relations are better suited to vector analogies than others

- A semantic dimension is built based on antonyms like {small, little, tiny}, {big, large, huge}
- A word's position along this dimension corresponds to its qualities
- How is semantic projection affected by these findings?
- Don't need analogies to hold perfectly
- Can use a litmus test (Colab notebook)

And semantic projection

Semantic projection: Grand et al. 2022

And other shenanigans in lexical semantics

Posted by u/Ignarus 9 years ago
Why hands become red in front of a light bulb?

Anyone can do it, put one of your hand in front of an incandescent light bulb, et voilà. Why?

Share Save Hide Report 50% Upvoted

Prevalence

... bulb of a syringe ...
... tulip bulb ...

- ... hired hand ...
- ... try their hand ...
- ... give me a hand ...
- ... 20 **hands** tall ...
- ... the minute **hand** ...

... a cold front ...

... the Western front ...

... national liberation front ...

... **front** man ...

... **red** state ...

... **Red** Scare ...

... in the **red** ...

... a different **light** ...

... light as a feather ...

... do you have a **light** ...

... **light** a fire ...

... light load ...

... a **light** diet ...

Effect on word embedding models

- A word *v* (e.g. *mouse*) might have multiple sets of less-related context vectors:
 - c_1 , c_2 , c_3 , (e.g. console, printer, keyboard)
 - c'₁, c'₂, c'₃ (e.g. tail, pet, cow)
- Two sets of constraints, pulling *v* in two different directions
- Consequently, pulling words like *keyboard* and *cow* together

```
console pointer

macintosh windows buttons keyboard chicken computer

worms cat robots robots flash animal duck dog animal mouse trap

mickey pet rat rabbit cow
```

Camacho-Collados et al. 2018

How this affects you

- If you are using a very particular corpus, multiple senses not present: so no worries!
- If you are interested in a primary sense, most of the contexts are relevant: so no worries!
- One possibility: you happen to care about a particular word (sense) which is overshadowed by a more prevalent sense
- e.g. you are looking for contexts of *rich/poor* in Wikipedia, and you get *vibrant*, *tangy*, *lively*, *fertile* as nearest neighbors

Mitigations

- Multi-prototype embeddings
- Dictionary-based methods
- Since 2018: BERT-based approaches
 - Contextual embeddings like BERT account for different senses by design

Figure 1: 2D t-SNE visualization of layer 8 vectors for tokens of *asylum* and *madhouse* sampled from the BNC.

Multi-prototype BERT embeddings: Chronis and Erk 2020

Takeaway

Polysemy is prevalent, but it may or may not affect you If you find that it does, contextual embeddings are the way to go

Antonyms

What even are they?

- Perfect antonyms aren't easy to come by
- Republican is the opposite of democrat, but it is substantially more similar to democrat than most things
 - examples: stapler, mitosis, carelessly, luminous

Takeaway

Antonyms

Antonyms are very similar, and you should take their counterintuitive behavior into account if relying on them

- Antonyms are often nearest neighbors!
- To really get a sense of embedding space, feel free to play the game Semantle
 - It will make you cry
- It was found (<u>Levy and Goldberg 2014</u>) windows of size 5 or larger contain topical content, while smaller windows contain information about the focus word itself.

Antonyms

A definition

- They differ along one dimension of meaning (perhaps occupying opposing poles), but are identical in all other dimensions. (Cruse 1986)
- Is 'progressive' the opposite of 'redneck'?
 - Dissimilar with respect to political orientation
 - Also dissimilar with respect to connotations

Stability of word embeddings

Results from Antoniak and Mimno 2018

Training is stochastic!

- The final values of the vectors depend on
 - The precise combination of documents used to train your model
 - The order in which documents appear

- Preprocessing
- The random seed used for training

• The order in which threads are scheduled during training

Due to change in random seed

- Two models trained with the exact same corpus, but different random seeds
- Cosine similarities between pairs of 'topic' words in /r/AskScience dataset:
 - bacteria, plant, species, brain, muscle, sleep, human, galaxy, space, planet, universe, electricity, light, magnetic, field, power, calorie, chemical, temperature, pressure

Takeaway

The exact cosine value does not have any intrinsic meaning — it only has meaning with respect to other cosines in the same space

We can't rely on cosine values?

- If you have two training settings, A and B, what can you compare with cosine?
 - cosine(cat_A, dog_A) and cosine(cat_A, tree_A)
 - cosine(cat_A, dog_A) and cosine(tree_A, car_A) ?
 - cosine(cat_A, dog_A) and cosine(cat_B, dog_B) !
 - cosine(cat_A, dog_B) omg please no X

Mitigation?

- One way to mitigate instability is to run multiple runs and report averages
- Word embeddings are a representation of the author's mental model
 - Only a sample of the author's mental model
 - This can introduce error but how much?

Document selection

• Results of 50 models trained on /r/AskScience data, showing cosines of *marijuana* and its most similar words

Source: Table 4, Antoniak and Mimno 2018

Mitigation!

- Run multiple instantiations of the same model, and report averages rather than raw values
 - Draw documents with replacement (Colab notebook)
- You can also report ranks of nearest neighbors, rather than their similarity scores

Instability

Caution

- Why draw documents with replacement instead of drawing sentences with replacement?
- A word's contexts in a document are likely to be similar to each other
- 'One sense per discourse' (Gale et al. 1992)

... light **bulb** ...

... tulip **bulb** ...

Parting thoughts

Cosine v/s Euclidean distance

- For normalized vectors, the ranking of nearest neighbors using cosine or Euclidean distance is the same (Manning and Schütze 1999, Sec. 8.5)
- You can use a dot product to calculate a lot of cosine distances at the same time
 - Just make sure you remember normalize everything first!
- Magnitude is hard to interpret

Parting thoughts

Bias in word embeddings

- The flip side of corpora reflecting authors' mental models
- Word embeddings and other machine learning models reproduce hegemonic viewpoints (who produces the texts we are studying?)
- Machine learning models can reify these viewpoints
- References
 - Bolukbasi et al. 2016
 - Caliskan et al. 2017

Thank you!

http://www.github.com/nnkennard/embeddings-tutorial/