

## Intelligent Analysis of Biomedical Images

Fall-2023

Seyed Amir Kasaei

Prof. M H Rohban

## Introduction

Brain Tumor Semantic segmentation of gliomas based on 3D spatially aligned MRI

#### U-Net based

- lack of global understanding of images for convolution operation
- struggle to model the dependencies between distant features and make full use of the contextual information

#### Transformer

- self-attention mechanism (can capture long-range dependencies)
- When applying 2D models, 3D images need to be sliced along one dimension (may lead to the loss of local information)
- difficulty capturing global interaction information while effectively encoding local information (just stack modalities (equally treated) and pass them through a network)

## **DBTrans**

A novel encoder-decoder model for multi-modal medical image segmentation

#### Dual-Branch Encoder

- two types of window-based attention mechanisms
  - Shuffled Window-based Multi-head Cross Attention
  - Shifted Window-based Multi-head Self Attention
- in parallel to dual-branch encoder layers

#### Dual-Branch Decoder

- two types of window-based attention mechanisms
  - Shifted Window-based Multi-head Cross Attention
  - Shifted Window-based Multi-head Self Attention
- in parallel to dual-branch encoder layers
- Both local and global feature extraction
- Designed for 3D medical images, avoiding the information loss caused by data slicing

## Methodology

- MRI data of D×H×W ×C with **four** modalities stacked along channel dimensions as the input
- 3D patch embedding  $(e^1 \in R^{D1 \times H1 \times W1 \times C1})$
- U-shaped model (Dual-Branch Encoder-Decoder)
- Segmentation head  $(D \times H \times W \times K)$



# Architecture Dual-Branch in Encoder

- Four dual-branch encoder layers including bottleneck
- Each encoder layer consists of two consecutive encoder blocks
- $e^i \in R^{D_i \times H_i \times W_i \times C_i}$  is splitted along the channel dimension  $e_1^i, e_2^i \in R^{D_i \times H_i \times W_i \times [C_i/2]}$

#### Shifted W-MSA-Based Local Branch

- $e_1^i$  is split into non-overlapping windows after a layer normalization to obtain the window matrix  $m_1^i$  (WP)
- The whole feature map is shifted by half of the window size
- Apply projection matrices  $W_0^i$ ,  $W_K^i$ ,  $W_V^i$  to obtain  $Q_1^i$ ,  $K_1^i$ ,  $V_1^i$  to get attention score
- layer normalization (LN)
- multi-layer perceptron (MLP) with two fully connected layers
- Gaussian Error Linear Unit (GELU)
- Residual connection after each module



$$\begin{split} m_{1}^{i} &= \left[ \textit{Shifted} \text{-} \right] WP \left( LN \left( e_{1}^{i} \right) \right), \\ Q_{1}^{i}, K_{1}^{i}, V_{1}^{i} &\in R^{\frac{D_{i}H_{i}W_{i}}{M^{3}} \times M^{3} \times \left[ C_{i}/2 \right]} = Proj^{i} \left( m_{1}^{i} \right) = W_{Q}^{i} \cdot m_{1}^{i}, W_{K}^{i} \cdot m_{1}^{i}, W_{V}^{i} \cdot m_{1}^{i}, \\ \hat{z}_{1}^{i} &= W \text{-} MSA \left( Q_{1}^{i}, K_{1}^{i}, V_{1}^{i} \right), \\ o_{1}^{i} &= MLP^{i} \left( LN \left( \left( \hat{z}_{1}^{i} + e_{1}^{i} \right) \right) \right) + \left( \hat{z}_{1}^{i} + e_{1}^{i} \right), \end{split}$$

## Architecture Dual-Branch in Encoder

#### Shuffle W-MCA-Based Global Branch

window partition (WP) converts the embedding

$$e_2^i \in R^{D_i \times H_i \times W_i \times [C_i/2]}$$
 to  $m_2^i \in R^{\frac{(D_i \times H_i \times W_i)}{M^3} \times M^3 \times [C_i/2]}$ 

- Shuffle operations on the patches in different windows
   (patches at the same relative position in different windows are rearranged together in a window)
- lacktriangle The query from the local branch while generating keys and values from  $m_2^i$
- Compute cross-attention scores



$$\begin{split} Q_2^i, K_2^i, V_2^i &\in R^{\frac{D_i H_i W_i}{M^3} \times M^3 \times [C_i/2]} = Proj^i \big( Shuffle(m_2^i) \big), \\ \hat{z}_2^i &= W\text{-}MCA \big( Q = Q_1^i, K = K_2^i, V = V_2^i \big), \\ o_2^i &= MLP^i \big( LN \big( \hat{z}_2^i + e_2^i \big) \big) + \big( \hat{z}_1^i + e_1^i \big). \end{split}$$

# **Architecture**Dual-Branch in Decoder

- Three dual-branch decoder layers
- Each decoder layer consists of two consecutive decoder blocks
- $d^j \in R^{D_j \times H_j \times W_j \times C_j}$  is divided into the feature maps

$$d_1^j, d_2^j \in R^{D_j \times H_j \times W_j \times [C_j/2]}$$

- The local branch based on Shifted-W-MSA is the same as that in the encoder
- Shifted W-MCA-Based Global Branch
  - global branch receives the query matrix from the split feature map
  - Receiving **key**  $(K_{e^i})$  and **value**  $(V_{e^i})$  matrices from the encoder block in the corresponding stage



Key & Value

$$\begin{split} Q_{2}^{j}, K_{2}^{j}, V_{2}^{j} &= Proj^{j} \big( \big[ \textit{Shifted-} \big] WP \big( LN (d_{2}^{i}) \big) \big), \\ \hat{z}_{2}^{j} &= W\text{-}MCA \Big( Q = Q_{2}^{j}, K = K_{e_{1}^{4-j}}, V = V_{e_{1}^{4-j}} \Big), \\ o_{2}^{j} &= MLP^{i} \Big( LN \Big( \hat{z}_{2}^{j} + d_{2}^{j} \Big) \Big) + \Big( \hat{z}_{1}^{j} + d_{1}^{j} \Big), \end{split}$$

# **Architecture**Channel-Attention-Based Dual-Branch Fusion

- Combines the features  $o_1^m$ ,  $o_2^m \in R^{D_m \times H_m \times W_m \times [C_m/2]}$  for each encoder or decoder layer
- The dependencies between the feature channels within the individual branches are implicitly modeled with the SE-Weight assignment first proposed in Squeeze-and-excitation networks
- Dynamically assign weights for both dual-branch fusion and multi-modal fusion
- $Z_p^m \in R^{[C/2] \times 1 \times 1 \times 1}$  is the attention weight of a single branch
- Re-calibrated using a Softmax function
- multiplied with the corresponding scale feature map to
- obtain the refined output feature map with richer multi-scale feature information



$$Z_p = SE\_Weight(o_p^m), p = 1, 2,$$

$$attn_p = Softmax(Z_p) = \frac{\exp(Z_p)}{\sum_{p=1}^2 \exp(Z_p)},$$
  

$$Y_p = o_p^m \odot attn_p, p = 1, 2,$$
  

$$O = Cat([Y_1, Y_2]),$$

### **DBTrans**

#### Contribution

- Two attention mechanisms to model close-window and distant-window dependencies without any extra computational cost.
- An extra path to facilitate the decoding process in addition to traditional skip-connection (Shifted-W-MCA-based global branch a bridge between encoder and decoder)
- Strengthening the fusion effect of the multi-modal information from a global perspective by improving channel attention

## **Training Details**

- Cross Entropy Loss & Dice Loss
- 300 epochs on a single RTX 3090 with 24G
- Adam optimizer
- Learning rate was set to 1×10-4
- Data augmentation includes random flipping, intensity scaling and intensity shifting on each axis with probabilities set to 0.5, 0.1 and 0.1

## **Experiments & Results**

#### Dataset

- Multimodal Brain Tumor Segmentation Challenge (BraTS 2021)
- Four modalities T1, T1CE, T2, Flair
- Three distinct sub-regions of brain tumors peritumoral edema, enhancing tumor, and tumor core

#### Comparative Experiments

- the Dice scores and 95% Hausdorff distances of different methods for segmentation results
- Three different tumor regions
   Enhancing Tumor(ET), Tumor Core(TC)
   and Whole Tumor(WT)
- Higher Dice score and a lower 95% HD indicates better performance
- Floating point operation per second(FLOPS)



| Method           | #param       | FLOPS         | Dice Score |       |       |       | 95% Hausdorff Distance |       |       |       |
|------------------|--------------|---------------|------------|-------|-------|-------|------------------------|-------|-------|-------|
|                  |              |               | ET         | TC    | WT    | AVG   | ET                     | TC    | WT    | AVG   |
| 3D U-Net[31]     | <u>11.9M</u> | 557.9G        | 83.39      | 86.28 | 89.59 | 86.42 | 6.15                   | 6.18  | 11.49 | 7.94  |
| Swin-Unet[27]    | 52.5M        | <u>93.17G</u> | 83.34      | 87.62 | 89.81 | 89.61 | 6.19                   | 6.35  | 11.53 | 8.03  |
| TransBTS[25]     | 33M          | 333G          | 80.35      | 85.35 | 89.25 | 84.99 | 7.83                   | 8.21  | 15.12 | 10.41 |
| UNETR[22]        | 102.5M       | 193.5G        | 79.78      | 83.66 | 90.10 | 84.51 | 9.72                   | 10.01 | 15.99 | 11.90 |
| nnFormer[23]     | 39.7M        | 110.7G        | 82.83      | 86.48 | 90.37 | 86.56 | 8.00                   | 7.89  | 11.66 | 9.18  |
| VT-Unet-B[26]    | 20.8M        | 165.0G        | 85.59      | 87.41 | 91.02 | 88.07 | 6.23                   | 6.29  | 10.03 | 7.52  |
| NestedFormer[36] | 10.48M       | 71.77G        | 85.62      | 88.18 | 90.12 | 87.88 | 6.08                   | 6.43  | 10.23 | 7.63  |
| DBTrans(Ours)    | 24.6M        | 146.2G        | 86.70      | 90.26 | 92.41 | 89.69 | 6.13                   | 6.24  | 9.84  | 7.38  |

## **Ablation Study**

- 1) SwinUnet-1 (baseline): We use Swin-Transformer layers without any dual-branch module
- 2) SwinUnet-2: Based on (1), we add dual-branch encoder layers to the model
- 3) SwinUnet-3: Based on (1), we add dual-branch decoder layers to the model
- 4) SwinUnet-4: Based on (1), add both the encoder and decoder without the dual-branch fusion module
- 5) Our proposed DBTrans

| Name       | Index | DB-E     | DB-D     | Dual-branch fusion | Avg-Dice | Param |
|------------|-------|----------|----------|--------------------|----------|-------|
| SwinUnet-1 | (1)   | x        | ×        | x                  | 86.73    | 52.5M |
| SwinUnet-2 | (2)   | ✓        | x        | x                  | 87.52    | 43.2M |
| SwinUnet-3 | (3)   | x        | <b>√</b> | x                  | 88.26    | 46.1M |
| SwinUnet-4 | (4)   | <b>√</b> | <b>√</b> | x                  | 88.86    | 27.7M |
| proposed   | (5)   | <b>√</b> | <b>√</b> | ✓                  | 89.69    | 24.6M |