Testskjema

PID FUNKSJONSBLOKK

Introduksjon

1.1 Hensikt

Testskjemaet skal fungere som et dokument der funksjonalitetene på PID-funksjonsblokken kan verifiseres, og skjemaet inneholder retningslinjer for utprøvinger av disse. Det skal blant annet verifiseres at det kan tas i bruk forskjellige regulatortyper og at de gir forventede resultat, at regulatorparametrene kan endres under drift, man unngår problemet med integrator-windup og aktivering/deaktivering av funksjonaliteter fungerer.

1.2 Utstyrsliste

For å gjennomføre testen av PID-funksjonsblokka, må følgende utstyr være tilgjengelig:

- 1. Mitsubishi Melsec FX2N PLS
- 2. Arduino Uno med prosesskjold (utviklet på ITK) og tilhørende kodebibliotek
- 3. PC med programmene GX Works 2 og Arduino IDE
- 4. PID funksjonsblokk laget i GX Works 2
- 5. USB 2.0 A-til-B-kabel (til Arduinoen)
- 6. USB 2.0 (til PLS-en)

1.3 Oppsett

1. Start med å koble prosesskjoldet (se bilde 1 og 2) til Arduino Uno-en, og koble USB-kabelen fra Uno-en til PC-en. Koble så den andre USB-kabelen fra PLS-en til PC-en. Nå skal det være to kabler tilkoblet PC-en.

Bilde 1 – Prosesskjoldet øverst og Arduino Uno nederst

Bilde 2 – Prosesskjoldet påmontert Arduino Uno-en

- 2. Vær sikker på at ProcessShield.h-biblioteket er inkludert i «Libraries»-mappa i Arduino IDE, slik at IDE-en har tilgang til funksjonene som er utviklet til bruk på skjoldet.
- 3. Last opp Arduino C-koden til Uno-en som skal simulere den fysiske tankriggen. Sjekk at riktig korttype og COM-port er valgt under Tools -> Board: -> Arduino Uno og Tools -> Port -> COM#. Tips: Riktig COM-port finner man i Device Manager i Windows. Koden lastes til slutt opp ved å trykke Upload i IDE-en. Alt skal kunne lastes opp uten feilkoder (error).
- 4. Last opp PLS-koden fra GX Works 2 til PLS-en. Dette gjøres ved å åpne den riktige .gxw-filen som inneholder funksjonsblokkoden, og kompilere denne ved å trykke på knappen «Rebuild All» (her må den riktige POU-en ligge i mappen Execution Program-mappa). Sjekk at riktig COM-port er valgt under Connection Destination -> Connection1 -> Serial USB -> COM Port. Tips: Riktig COM-port finner man i Device Manager i Windows. Koden lastes til slutt opp ved å trykke Write to PLC-knappen. Alt skal kunne lastes opp uten feilkoder (error).
- 5. Koble til Arduino Uno-en med prosesskjoldet til PLS-en. Dette gjøres i samsvar med bilde 3.

Bilde 3 – Oppkopling av prosesskjold til PLS-en

- 6. Se til at laskene på prosesskjoldet er koblet riktig i samsvar med ønsket prosessmodell.
- 7. Sett PLS-en i RUN.
- 8. Trykk på Start Monitoring i GX Works 2 for å visualisere data i variablene på PLS-en.
- 9. Start opp KEPServerEX med administratorrettigheter og velg filen "kepserverex_gr6.opf". Velg Runtime -> Connect for å starte serveren.
- 10. Start opp HMI-en i Aveva InTouch med navn "Automatiseringsprosjekt_gr6". Trykk på Runtime for å koble til KEPServerEX. Logg inn med brukernavn "Operator3" og passord "Operator3". Trykk Innstillinger -> Avanserte innstillinger for å se filterresponsvinduet, samt funksjonsblokksparametrene. Bildet på HMI-en skal se slik ut:

Bilde 4 – HMI-vindu i Aveva InTouch. I rutenettet vil man kunne se grafer for verdiene gitt i firkanten under grafvinduet.

Visst alt er gjort i samsvar med oppsettet, skal systemet nå være startet opp med oppstartsverdier. Dette er en ren P-regulator i automodus med null i referanseverdi.

Testskjema

Teknisk informasjon før igangsetting:

Testskjema oppsett godkjent: (Marker med kryss)	Godkjent:	Ikke godkjent:	
Hva som skal testes:	Egenutviklet PID-funksjonsblokk for bruk på tankregulering		
Demonstrasjonsansvarlig:	Khuong Huynh		
Kunde/tester:	Torleif Anstensrud		
Andre tilstedeværende:	Prosjektmedarbeidere: Camilla Tran Håvard Olai Kopperstad Julie Klingenberg Martin Kristoffer Gløsmyr Sacit Ali Senkaya Veiledere: Torleif Anstensrud		
Dato og sted:	Fredag 23.04.2021 kl. 12:15, Microsoft Teams		
Testoppsummering:	Testen skal stegvis ta for seg hver enkeltdel av PID-funksjonsblokken og være en funksjonstest og verifikasjon på at alle delene av funksjonsblokken tilfredsstiller kundens krav.		
Kriterier for godkjenning:	Alle punktene i hver deltest skal være godkjente før testen av funksjonsblokken godkjennes. Dette innebærer at P-, PD-, PI- og PID-regulatoren fungerer som forventet og at det ikke oppstår rykk i pådraget og prosessverdien i svitsjingen mellom manuell og automodus eller mellom regulatortypene. I tillegg skal grenseverdier kunne endres, tastetid kunne endres, manuell regulering kjøres, tracking-inngang slås på/av og regulering endres mellom direkte og reversert regulering.		
Resultat: (Marker med kryss)	Godkjent:	Ikke godkjent:	

Dato: 23.04.2021	Sted: Microsoft Teams
Testansvarlig:	
	Khuong Huynh
Kunde:	
	Torleif Anstensrud

Testutførelse:

Test av P-regulator	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal fremvise regulatoregenskapene til e	n P-regulator med og uten nominel	t pådrag. I
tillegg skal virkningen av å endre regulatorparan		
	Pådraget fra regulatoren vil øke	
	momentant og prosessverdien vil	
	øke raskt. Forventer et stabilt	
	system etter omtrent fem	
	sekunder med et stasjonært avvik	
1. Sett referansenivå til 50.0 %	på omtrent 25.0 %.	
	Pådraget fra regulatoren vil øke	
	momentant og prosessverdien vil	
	øke raskt. Forventer et	
	stasjonært avvik på omtrent 15.0	
2. Sett Kp-verdien til 3.00	%.	
	Pådraget fra regulatoren vil øke	
	momentant og prosessverdien vil	
	øke raskt. Forventer nå en	
	prosessverdi uten stasjonært	
3. Sett nominelt pådrag til 50.0 %	avvik.	

Kommentar:

Med en P-regulator kan man se at regulatoren stabiliserer prosessverdien med en akseptabel hastighet. Ved en økning av Kp-verdien vil det stasjonære avviket minke, men aldri forsvinne. Ved en innføring av nominelt pådrag vil det stasjonære avviket forsvinne, men bare for et bestemt arbeidspunkt. I dette tilfellet får man null stasjonært avvik ved 50 % referanseverdi og 50 % nominelt pådrag.

Test av PD-regulator	Forventet resultat	Godkjennelse	
Beskrivelse:			
Testen skal fremvise regulatoregenskapene til e	n PD-regulator, samt virkningen av å	å endre	
regulatorparametre på denne regulatoren.			
Nullstill disse parametrene:			
Kp = 1.00	Prosessverdien vil resettes til		
Referansenivå = 0.00	0.00 % etter omtrent ti sekund,		
Nominelt pådrag = 0.00	og ligge der.		
	Grønn lampe som indikerer		
	regulatortype skal lyse under PD.		
	Td-parameteren endres		
	automatisk til 1.00 og		
2. Trykk på PD-regulator	filterkonstanten n endres til 10.0.		
	Pådraget fra regulatoren vil øke		
	momentant og prosessverdien vil		
	øke raskt. Forventer et stabilt		
	system etter omtrent tre		
	sekunder med et stasjonært avvik		
3. Sett referansenivå til 50.0 %	på omtrent 25.0 %.		
	Pådraget fra regulatoren vil øke		
	roligere og prosessverdien vil		
	reagere tregere. Forventer et		
	stabilt system etter omtrent ti		
4. Sett Td = 5.00 og videre sett referansenivå	sekunder med et stasjonært avvik		
til 70.0 %	på omtrent 35.0 %.		

En PD-regulator vil kunne motvirke endring i prosessverdien og gi et pådrag som reagerer raskere på disse endringene. Man kan se at pådraget fra regulatoren justeres etter de små endringene som oppstår i prosessverdien. Stasjonært avvik vil ikke forsvinne, men dette kan fjernes ved å anvende samme metode som for en ren P-regulator ved gitte arbeidspunkt.

Med en svært stor Td-verdi vil derivatvirkningen motvirke endringer i prosessverdien mye, og reguleringen blir veldig treg ved endringer i referansenivå.

Test av PI-regulator	Forventet resultat	Godkjennelse	
Beskrivelse:			
Testen skal fremvise regulatoregenskapene til en PD-regulator, samt virkningen av å endre			
regulatorparametre på denne regulatoren.			
1. Nullstill disse parametrene:	Prosessverdien vil resettes til		
Kp = 1.00	0.00 % etter omtrent ti sekund,		
Referansenivå = 0.00	og ligge der.		
	Grønn lampe som indikerer		
	regulatortype skal lyse under PI.		
	Td-parameteren endres		
	automatisk til 0.00 og Ti-		
2. Trykk på PI-regulator	parameteren endres til 1.00.		
	Forventer null stasjonært avvik		
	etter omtrent tre sekunder, med		
	null oversving (Ti = 1.00 er en		
3. Sett referansenivå til 50.0 %	svært rask integratortid).		
	Forventer null stasjonært avvik		
	etter omtrent 15 sekund. Ti =		
	5.00 er en tregere integratortid.		
	Dette ser man i sammenligningen		
	i tid for stasjonært system i pkt. 3		
4. Sett Ti = 5.00 og referansenivå til 70.0 %	og pkt. 4.		

En PI-regulator vil gi en prosess med null stasjonært avvik uten bruk av nominelt pådrag. Man ser at ved en økning av Ti-parameteren vil tiden regulatoren bruker på å fjerne det stasjonære avviket øke. Man må passe på å ikke ha for lav Ti-verdi, da dette kan føre til at prosessen blir ustabil.

Test av PID-regulator	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal fremvise regulatoregenskapene til er	n PID-regulator, samt virkningen av	å endre
regulatorparametre på denne regulatoren.		
Nullstill disse parametrene:	Prosessverdien vil resettes til	
Kp = 1.00	0.00 % etter omtrent ti sekund,	
Referansenivå = 0.00	og ligge der.	
	Grønn lampe som indikerer	
	regulatortype skal lyse under PID.	
	Td-parameteren endres	
	automatisk til 1.00 og Ti-	
2. Trykk på PID-regulator	parameteren endres til 1.00.	
	Forventer null stasjonært avvik	
	etter åtte sekunder, med et lite	
3. Sett referansenivå til 50.0 %	oversving.	
	Forventer null stasjonært avvik	
4. Sett Td = 0.50, Ti = 2.50 og referanseverdi	etter 15 sekunder, og nå uten	
til 70.0 %	oversving.	

En PID-regulator vil ha egenskapene til både en PI- og en PD-regulator. Det vil si at prosessen vil ha null stasjonært avvik og vil kunne reagere raskt på endringer i prosessverdien.

Test av manuell modus og grenseverdier	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal fremvise at den manuelle regulering	en fungerer, og at grenseverdier for	r
regulatorpådrag kan settes og justeres.		
	Grønn lampe som indikerer	
	regulatormodus skal lyse under	
	«Manuell».	
	Det manuelle pådraget vil være	
	den samme verdien som	
	pådraget var rett før endring av	
1. Trykk på «Modus» og så videre på	regulatormodus. Den stasjonære	
«Manuell»	prosessverdien endrer seg ikke.	
	Pådrag fra regulatoren endres til	
2. Sett manuelt pådrag til 32.0 % ved bruk av	32.0 % og blir der. Prosessverdien	
slider eller inntasting i vindu	stabiliserer seg også på 32.0 %.	
	Pådraget fra regulatoren endres	
	til 50.0 %. Prosessverdien	
3. Sett minimum pådrag til 50.0 %	stabiliserer seg også på 50.0 %.	
	Pådraget fra regulatoren endres	
4. Sett maksimum pådrag til 60.0 % og	til 60.0 %. Prosessverdien	
manuelt pådrag til 85.0 %	stabiliserer seg også på 60.0 %.	
	Pådraget fra regulatoren endres	
5. Sett minimum pådrag til 0 % og	til 85.0 %. Prosessverdien	
maksimum pådrag til 100 %	stabiliserer seg også på 85.0 %.	

I manuell modus gir regulatoren alltid ut den pådragsverdien som er gitt i det manuelle pådraget så lenge det er innenfor de satte minimum- og maksimumsverdiene.

Test av tracking-inngang og tastetid	Forventet resultat	Godkjennelse
Beskrivelse:		
Denne deltesten skal fremvise at tracking-funksj	onen i funksjonsblokken fungerer s	om forventet.
En slik fremvisning skjer gjennom demonstasjon	av: anti-windup og rykkfrie overgar	nger mellom
regulatormoduser. I tillegg fremvises endring av	tastetid.	
1. Nullstill disse parametrene:		
Regulatortype: P	Prosessverdien vil resettes til 0 %	
Referansenivå = 0.00	etter omtrent ti sekund, og ligge	
Manuelt pådrag = 0.00	der.	
	Regulatoren vil gi ut maksimalt	
	tillatt pådrag på 50.0 %.	
	Integratoren vil integrere avviket	
	så lenge maksimalt pådrag er	
	lavere enn referansenivået. Etter	
2. Sett maksimalt pådrag = 50.0 og	referanseverdien er satt ned vil	
referansenivå = 70.0. Trykk på «Modus»	man ikke få en respons på	
og så videre på «Auto». Avslutt med å	pådraget før det har gått omtrent	
trykke på PID-regulator. Vent fem	åtte sekunder. Dette er resultatet	
sekunder. Sett referanse til 40.0 %.	av integrator-windup.	
	Etter referanseverdien er satt	
	ned vil man få en momentan	
3. Sett tracking = 1.00 og referansenivå =	respons på pådraget. Problemet	
70.0. Vent fem sekunder. Sett referanse til	med integrator-windup er nå løst	
40.0 %.	ved hjelp av tracking-inngang.	
4. Sett tracking = 0.00 og maksimalt pådrag =		
100.0. Trykk igjen på «Modus» og så videre	Regulatoren vil momentant gi et	
på «Manuell». Sett manuelt pådrag til 20.0	stort sprang i pådraget, altså et	
%. Vent fem sekunder. Trykk på Modus og	rykk i overgangen mellom	
så videre på Auto.	regulatormoduser.	
	Regulatoren vil momentant	
	begynne å regulere mot	
5. Sett tracking = 1.00. Trykk igjen på	referansenivået på 40.0 %, uten	
«Modus» og så videre på «Manuell». Sett	det store hoppet som i pkt. 4.	
manuelt pådrag til 20.0 %. Vent fem	Man unngår altså problemet med	
sekunder. Trykk på «Modus» og så videre	rykk i overgangen mellom	
på «Auto».	regulatormoduser.	
	Systemet vil bli ustabilt og	
6. Sett tastetid til 2000 og referansenivå til	målingene upålitelige. Pådraget	
60.0 %.	og prosessverdien roer seg ikke.	
Kommentar:		

Under denne deltesten ser man viktigheten av en tracking-inngang på regulatorer med integratorvirkning når det gjelder anti-windup og rykkfrie overganger mellom manuell og automodus. I tillegg ser man nødvendigheten for en tastetid som er kort nok for å kunne regulere på en god måte.

Test av bytting mellom regulatortyper	Forventet resultat	Godkjennelse
Beskrivelse:		
Testen skal fremvise at bytting mellom forskjellig	ge regulatortyper forstyrrer prosess	sen så lite som
mulig.		
Nullstill disse parametrene:		
Modus = Auto		
Regulator = P		
Kp = 1.00		
Ti = 1.00		
Referansenivå = 60.0	Prosessverdien stabiliserer seg på	
Makimum pådrag = 100.0	55.0 % etter omtrent fem	
Nominelt pådrag = 50.0	sekunder, og blir liggende der.	
	Prosessverdien stabiliserer seg	
	uten stasjonært avvik på 60.0 %.	
	Det er ingen sprang i	
 Bytt fra P- eller PD-reg. til PI-reg. 	referansenivå eller prosessverdi.	
	Prosessverdien vil ligge stabilt på	
2. Bytt fra PI-reg. til P- eller PD-reg. når	60.0 %. Det nominelle pådraget	
systemet er stabilt	blir justert til 60.0 % automatisk.	
	Prosessverdien stabiliserer seg	
3. Sett nominelt pådrag til 50.0 % og vent	uten stasjonært avvik på 60.0 %.	
åtte sekunder til systemet er stabilt. Bytt	Det er ingen sprang i	
fra P- eller PD-reg. til PID-reg.	referansenivå eller prosessverdi.	
	Prosessverdien vil ligge stabilt på	
4. Bytt fra PID-reg. til P- eller PD-reg. når	60.0 %. Det nominelle pådraget	
systemet er stabilt	blir justert til 60.0 % automatisk.	
Vommentar:	Jane Jacker e in colo 70 datomatisk.	

Ved inn/utkobling av integralvirkningen på enten en P- eller PD-reg, vil det ikke oppstå rykk i regulatorovergangen. Ved innkobling vil pådraget og prosessverdien går rolig mot referanseverdien, mens i utkoblingen vil prosessverdien ligge der den lå før regulatorendringen.

Test av direkte og reversert regulering	Forventet resultat	Godkjennelse	
Beskrivelse:			
Testen skal fremvise at endring av direkte og reversert regulering gir forventede resultat.			
1. Sett regulator i PID med disse verdiene:			
Kp = 1.00			
Td = 1.00			
Ti = 1.00			
Referansenivå = 50.0			
Tastetid = 100.00	Systemet stabiliserer seg på		
Filter (n) = 1.00	prosessverdi 50 % etter omtrent		
Tracking = 1.00	ti sekunder, og blir liggende der.		
	Pådraget fra regulator vil øke i		
	stedet for å minke, og		
	prosessverdien følger etter dette.		
2. Trykk på knappen Div/Rev og trykk videre	Pådraget og prosessverdien		
på «På». Sett referansenivå til 20.0 %.	legger seg fast på 100 %.		
	Pådraget og prosessverdien		
	endres, og jobber seg ned mot		
	referansenivået på 20.0 %.		
3. Trykk på knappen Div/Rev og trykk videre	Stabiliserer seg på 20.0 % etter		
på «Av».	omtrent seks sekunder.		

I denne enkle prosessmodellen som er simulert, er det riktige valget av regulering reversert regulering. Dette gjelder også prosessen til kunde, da simuleringen er en enkel modell av denne. Ved en prosess med reguleringsventil på utløpet hadde det vært riktig å anvende direkte regulering.