Αν. Καθηγητής Π. Λουρίδας Τμήμα Διοικητικής Επιστήμης και Τεχνολογίας Οικονομικό Πανεπιστήμιο Αθηνών

Κοινωνική Αποστασιοποίηση

Στην εποχή του κορωνοϊού, σημαντικό ρόλο στην αντιμετώπιση της επιδημίας έχει η κοινωνική αποστασιοποίηση (social distancing). Αλλάζουμε τις συνήθειές μας και τον τρόπο με τον οποίο συναναστρεφόμαστε με τους συνανθρώπους μας ώστε να ελαχιστοποιήσουμε τις πιθανότητες μετάδοσης του ιού.

Ανάμεσα στους κανόνες που καλούνται οι πολίτες να εφαρμόσουν, κάποιοι σχετίζονται με την ελάχιστη απόσταση που πρέπει να διατηρούν μεταξύ τους. Έτσι, σε διάφορους χώρους πρέπει να λαμβάνεται πρόνοια ώστε οι παρευρισκόμενοι να είναι διασπαρμένοι ώστε να μην πλησιάζουν περισσότερο από την προτεινόμενη απόσταση.

Το πρόβλημα που τίθεται τότε είναι: αν έχουμε ένα συγκεκριμένο χώρο, πόσοι άνθρωποι μπορούν να βρίσκονται ταυτόχρονα μέσα στον χώρο αυτό; Και πού ακριβώς μπορούν να τοποθετηθούν αυτοί οι άνθρωποι;

Μπορούμε να αναπαραστήσουμε το κάθε άτομο έναν κύκλο, ο οποίος έχει ακτίνα ίση με την ελάχιστη απόσταση που πρέπει να τηρείται. Τότε το πρόβλημα ανάγεται στην εισαγωγή κύκλων με την επιθυμητή διάμετρο μέσα στο γεωμετρικό σχήμα που περιγράφει τον χώρο που θέλουμε.

Για να βρούμε πού θα τοποθετηθούν αυτοί οι κύκλοι μπορούμε να εργαστούμε ως εξής.

- 1. Τοποθετούμε έναν κύκλο στο σημείο από το οποίο θέλουμε να ξεκινήσουμε τη διαδικασία της τοποθέτησης.
- 2. Τοποθετούμε έναν κύκλο εφαπτόμενο στον πρώτο, σημειώνοντας ότι ο ένας έπεται του άλλου.
- 3. Παρεμβάλουμε έναν κύκλο εφαπτόμενο στον τελευταίο κύκλο που βάλαμε και τον πρώτο.
- 4. Επιστρέφουμε στο βήμα 3.

Στο σχήμα 1 μπορείτε να δείτε την εξέλιξη καθώς εισάγουμε τους πρώτους επτά κύκλους. Εδώ όμως σταματάμε, γιατί δεν μπορούμε να συνεχίσουμε με την παραπάνω μέθοδο. Αν προσπαθήσουμε να παρεμβάλουμε έναν κύκλο μεταξύ του C_1 και του C_7 , θα πρέπει να φτιάξουμε έναν κύκλο ο οποίος πέφτει ακριβώς πάνω στον C_2 , που έχουμε ήδη φτιάξει.

Μπορούμε όμως να παρατηρήσουμε το εξής. Τα κέντρα των κύκλων σχηματίζουν ένα κλειστό πολύγωνο. Αν θέλουμε να συνεχίσουμε τη διαδικασία, θα πρέπει να βγάλουμε από το πολύγωνο την κορυφή C_1 και να συνδέσουμε απ' ευθείας τις κορυφές

Σχήμα 1: Αρχικές Εισαγωγές

 C_2 και C_7 . Τότε μπορούμε να παρεμβάλουμε έναν εφαπτόμενο κύκλο στους C_2 και C_7 , όπως φαίνεται στο πρώτο τμήμα του σχήματος 2.

Αυτό λοιπόν μας δίνει μια ιδέα. Ονομάζουμε τους κύκλους στην περιφέρεια του σχήματος, πλάι στους οποίους μπορούμε να προσάψουμε εφαπτόμενους κύκλους, μέτωπο. Για να προσθέσουμε λοιπόν κύκλους, θα εργαζόμαστε ως εξής.

- Εισάγουμε τους δύο πρώτους κύκλους (αυτοί αποτελούν ένα τετριμμένο μέτωπο).
- 2. Εντοπίζουμε τον κύκλο στο μέτωπο που είναι πιο κοντά στο σημείο εκκίνησης. Έστω ότι ο κύκλος αυτός είναι ο κύκλος C_m . Σε περίπτωση που έχουμε περισσότερους από έναν κύκλο με την ίδια ελάχιστη απόσταση, παίρνουμε τον αρχαιότερο.
- 3. Δοκιμάζουμε έναν κύκλο ανάμεσα στον C_m και σε αυτόν που τον ακολουθεί στο μέτωπο, C_n . Έστω ότι ο δοκιμαστικός αυτός κύκλος είναι ο C_i .
- 4. Αν ο C_i δεν τέμνει κανέναν κύκλο του μετώπου, τότε τον εισάγουμε και επιστρέφουμε στο βήμα 2.
- 5. Διαφορετικά, αφαιρούμε από το μέτωπο τους κύκλους που χρειάζεται και επιστρέφουμε στο βήμα 2.

Με τον τρόπο αυτό βλέπουμε ότι εισάγουμε τους κύκλους C_9 και C_{10} χωρίς πρόβλημα. Μετά ο κοντινότερος στην εκκίνηση κύκλος του μετώπου είναι ο C_2 που τον ακολουθεί ο C_{10} . Αν δοκιμάσουμε να εισάγουμε κύκλο που να εφάπτεται στους C_2 και C_{10} , θα δούμε ότι αυτός πέφτει πάνω (άρα τέμνει) τον C_3 . Ακολουθούμε το βήμα 5, αφαιρούμε τον C_2 από το μέτωπο άρα ο επόμενος του C_3 στο μέτωπο είναι ο C_{10} . Επιστρέφοντας στο βήμα 2 βρίσκουμε ότι ο κοντινότερος κύκλος του μετώπου στην εκκίνηση είναι πλέον ο C_3 , οπότε προσθέτουμε τον C_{11} .

Ο αλγόριθμος που περιγράψαμε δεν είναι πλήρης, γιατί το βήμα 5 είναι ασαφές. Δεν έχουμε ορίσει ακριβώς ποιοι είναι οι κύκλοι οι οποίοι πρέπει να αφαιρέσουμε από το μέτωπο.

Σχήμα 2: Συνέχεια Εισαγωγών

Αν επιστρέψουμε στο παράδειγμά μας, είδαμε ότι αφού ο κύκλος που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_2 και C_{10} τέμνει τον C_3 , αφαιρέσαμε τον C_2 από το μέτωπο. Γενικότερα, αν ο κύκλος C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n τέμνει έναν κύκλο C_j που προηγείται του C_m , αφαιρούμε από το μέτωπο τους κύκλους από τον επόμενο του C_j μέχρι τον προηγούμενο του C_n και ο C_m γίνεται ο C_j , όπως φαίνεται στο σχήμα 3—μην παραξενευτείτε που οι κύκλοι δεν έχουν όλοι την ίδια ακτίνα, θα θέλαμε η λύση που θα βρούμε να δουλεύει και γι' αυτήν την περίπτωση.

Σχήμα 3: Τομή Προηγείται του C_m

Αν οι κύκλοι δεν είναι ίσοι, υπάρχει και άλλο ενδεχόμενο, ο C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n να τέμνει έναν κύκλο C_j που έπεται του C_n . Τότε αφαιρούμε από το μέτωπο τους κύκλους από τον επόμενο του C_m μέχρι τον προηγούμενο του C_j και ο C_n γίνεται ο C_j , όπως φαίνεται στο σχήμα 4.

Βεβαίως, αφού τα κέντρα των κύκλων που αποτελούν το μέτωπο είναι συνδεμένα με-

Σχήμα 4: Τομή Έπεται του C_n

ταξύ τους σε ένα κλειστό πολύγωνο, ένας κύκλος που έπεται κάποιου επίσης προηγείται αυτού, αν συνεχίσουμε την πορεία μας στο μέτωπο. Επίσης μπορεί ο κύκλος που δοκιμάζουμε να βάλουμε εφαπτόμενο να τέμνει δύο κύκλους του μετώπου, όπως για παράδειγμα φαίνεται στο τμήμα του μετώπου του σχήματος 5. Πάλι, μην παραξενευτείτε για το παράξενο σχήμα του μετώπου, θα θέλαμε η λύση που θα βρούμε να δουλεύει και για τέτοιες περιπτώσεις, οι οποίες μπορούν να προκύψουν στην περίπτωση που το μέτωπο μεγαλώνει γεμίζοντας ένα κλειστό σχήμα, όπως θα δούμε στη συνέχεια.

Σχήμα 5: Ο C_i Τέμνει Δύο Κύκλους του Μετώπου

Για να εντοπίσουμε λοιπόν τον κύκλο C_j στη γενική περίπτωση, ξεκινάμε από τον C_n και προχωράμε στο μέτωπο μέχρι να φτάσουμε στον C_m . Σημειώνουμε τον πρώτο κύκλο που τέμνεται από τον C_i , και τον τελευταίο, C_j' : αν ο C_i τέμνει μόνο έναν κύκλο, $C_j = C_j'$. Υπολογίζουμε πόσοι κύκλοι βρίσκονται μεταξύ του C_n και του C_j , έστω b_{nj} , και πόσοι βρίσκονται μεταξύ του C_m και του C_j' , έστω $b_{mj'}$. Αν $b_{mj'} < b_{nj}$, τότε παίρνουμε ως C_j τον C_j' που προηγείται του C_m . Διαφορετικά παίρνουμε τον C_j που έπεται του C_n .

Αν στο μέτωπο για κάθε κύκλο κρατάμε όχι μόνο τον επόμενό του αλλά και τον προηγούμενό του, τότε μπορούμε να εντοπίσουμε τον κύκλο C_j και με άλλο τρόπο. Ξεκινάμε από τον C_n και προχωράμε κύκλο-κύκλο προς τον C_n . Ταυτόχρονα ξεκινάμε από τον C_n και προχωράμε κύκλο-κύκλο προς τον C_m . Έτσι, κάνουμε κάθε φορά ένα βήμα προς τη μία κατεύθυνση του μετώπου, ακολουθώντας τους επόμενους κύκλους, και ένα βήμα προς την άλλη κατεύθυνση του μετώπου, ακολουθώντας τους προηγούμενους κύκλους. Αν βρούμε ένα τεμνόμενο κύκλο είτε προς τη μία κατεύθυνση, είτε προς την άλλη, ή αν ξεπεράσουμε το μέσο του μετώπου, σταματάμε. Αν σταματήσαμε επειδή βρήκαμε τεμνόμενο κύκλο, ελέγχουμε αν τον βρήκαμε πηγαίνοντας προς την κατεύθυνση των επόμενων, ή αν τον βρήκαμε στην κατεύθυνση των προηγούμενων.

Ο αλγόριθμός μας τότε μετασχηματίζεται ως εξής:

- Εισάγουμε τους δύο πρώτους κύκλους (αυτοί αποτελούν ένα τετριμμένο μέτωπο).
- 2. Εντοπίζουμε τον κύκλο στο μέτωπο που είναι πιο κοντά στο σημείο εκκίνησης. Έστω ότι ο κύκλος αυτός είναι ο κύκλος C_m . Σε περίπτωση που έχουμε περισσότερους από έναν κύκλο με την ίδια ελάχιστη απόσταση, παίρνουμε τον αρχαιότερο.
- 3. Δοκιμάζουμε έναν κύκλο ανάμεσα στον C_m και σε αυτόν που τον ακολουθεί στο μέτωπο, C_n . Έστω ότι ο δοκιμαστικός αυτός κύκλος είναι ο C_i .
- 4. Αν ο C_i δεν τέμνει κανέναν κύκλο του μετώπου, τότε τον εισάγουμε στο μέτωπο και επιστρέφουμε στο βήμα 2.
- 5. Διαφορετικά:
- Αν ο κύκλος C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n τέμνει έναν κύκλο C_j που προηγείται του C_m , αφαιρούμε από το μέτωπο τους κύκλους από τον επόμενο του C_j μέχρι τον προηγούμενο του C_n , θέτουμε τον C_m να είναι ο C_i , και επιστρέφουμε στο βήμα 3.
- Αν ο κύκλος C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n τέμνει έναν κύκλο C_j που έπεται του C_n , αφαιρούμε από το μέτωπο τους κύκλους από τον επόμενο του C_m μέχρι τον προηγούμενο του C_j , θέτουμε τον C_n να είναι ο C_j , και επιστρέφουμε στο βήμα 3.

Ο αλγόριθμός μας τώρα δουλεύει και θα γεμίζει το χώρο, ξεκινώντας από το σημείο εκκίνησης. Δεν ελέγχει όμως πού πρέπει να σταματά η προσθήκη κύκλων επειδή έχουμε συναντήσει κάποιο όριο του χώρου που θέλουμε να γεμίσουμε. Για να το επιτύχουμε και αυτό, πρέπει να κάνουμε ακόμα μια προσαρμογή στον αλγόριθμό μας για να συμπεριλάβουμε τον σχετικό έλεγχο. Στη νέα εκδοχή του αλγορίθμου θα σημειώνουμε τους κύκλους του μετώπου που είναι ζωντανοί, δηλαδή αυτοί στους οποίους μπορούμε να προσθέσουμε εφαπτόμενο κύκλο χωρίς να φτάσουμε στα όρια του σχήματός μας. Κάθε κύκλος που μπαίνει στο μέτωπο είναι κατ' αρχήν ζωντανός.

1. Εισάγουμε τους δύο πρώτους κύκλους (αυτοί αποτελούν ένα τετριμμένο μέτωπο).

- 2. Θέλουμε να προσθέσουμε στο σχήμα τον i-οστό κύκλο. Εντοπίζουμε τον ζωντανό κύκλο στο μέτωπο που είναι πιο κοντά στο σημείο εκκίνησης. Έστω ότι ο κύκλος αυτός είναι ο κύκλος C_m . Σε περίπτωση που έχουμε περισσότερους από έναν κύκλο με την ίδια ελάχιστη απόσταση, παίρνουμε τον αρχαιότερο.
- 3. Δοκιμάζουμε έναν κύκλο ανάμεσα στον C_m και σε αυτόν που τον ακολουθεί στο μέτωπο, C_n . Έστω ότι ο δοκιμαστικός αυτός κύκλος είναι ο C_i .
- 4. Αν ο C_i τέμνει κάποιον κύκλο του μετώπου:
- Αν ο κύκλος C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n τέμνει έναν κύκλο C_j που προηγείται του C_m , αφαιρούμε από το μέτωπο και από τους ζωντανούς τους κύκλους από τον επόμενο του C_j μέχρι τον προηγούμενο του C_n , θέτουμε τον C_m να είναι ο C_j , και επιστρέφουμε στο βήμα 3.
- Αν ο κύκλος C_i που δοκιμάζουμε να βάλουμε εφαπτόμενο στους C_m και C_n τέμνει έναν κύκλο C_j που έπεται του C_n , αφαιρούμε από το μέτωπο και από τους ζωντανούς τους κύκλους από τον επόμενο του C_m μέχρι τον προηγούμενο του C_j , θέτουμε τον C_n να είναι ο C_j , και επιστρέφουμε στο βήμα 3.
- 5. Στο σημείο αυτό έχουμε βρεί έναν κύκλο C_i που δεν τέμνει κύκλο του μετώπου. Ελέγχουμε λοιπόν αν τέμνει τα όρια του σχήματός μας.
 - Αν ναι, τότε ο κύκλος C_m που επιλέξαμε στο βήμα 2 δεν μπορεί να χρησιμοποιηθεί για να προσθέσουμε εφαπτόμενον σε αυτό μέσα στο όριο του σχήματός μας, άρα πρέπει να ανακρούσουμε πρύμναν και να προσπαθήσουμε κάπου αλλού. Επανεισάγουμε στο μέτωπο τους κύκλους που τυχόν έχουμε αφαιρέσει στο βήμα 4. Επαναφέρουμε στους ζωντανούς τους κύκλους που τυχόν έχουμε αφαιρέσει στο βήμα 4, εκτός από αυτούς που έχουμε βρει στο βήμα 2 όσο προσπαθούμε να βάλουμε τον i-οστό κύκλο. Αφαιρούμε τον κύκλο που είχαμε βρει στο βήμα 2 από τους ζωντανούς. Επιστρέφουμε στο βήμα 2.
 - Αν όχι, εισάγουμε τον C_i στο μέτωπο και επιστρέφουμε στο βήμα 2 για να εισάγουμε τον επόμενο κύκλο $(i\leftarrow i+1)$, ζωντανεύοντας όλους τους κύκλους του μετώπου.

Η διαδικασία των βημάτων 2–5 επαναλαμβάνεται μέχρι να προσθέσουμε τον επιθυμητό αριθμών κύκλων ή να μην μπορούμε να προσθέσουμε άλλους κύκλους στο σχήμα, γιατί δεν έχει μείνει κανένας ζωντανός.

Ας σταθούμε λίγο στο τι συμβαίνει με τους ζωντανούς κύκλους, τους πεθαμένους, και την ανάστασή τους. Όταν προσπαθούμε να βάλουμε έναν κύκλο C_i συγκεκριμένης ακτίνας, εντοπίζουμε τον πιο κοντινό στην εκκίνηση ζωντανό κύκλο του μετώπου, τον C_m . Ο εφαπτόμενος κύκλος που θα δοκιμάσουμε μπορεί να προσκρούει σε κάποιον κύκλο του μετώπου, οπότε πρέπει να προσαρμόσουμε το μέτωπο. Οι κύκλοι που αφαιρούμε από το μέτωπο αφαιρούνται και από τους ζωντανούς. Αφού το κάνουμε όμως αυτό, μπορεί να ανακαλύψουμε ότι η προσπάθειά μας ήταν μάταια, γιατί ο κύκλος προσκρούει στα όρια του σχήματος. Τότε κακώς προσαρμόσαμε το μέτωπο: ο κύκλος ο οποίος πρέπει να παραμείνει νεκρός είναι ο C_m που βρήκαμε στο βήμα 2, μαζί με τους άλλους κύκλους που τυχόν έχουμε βρει προηγουμένως στο βήμα 2 κατά

την προσπάθειά μας να εισάγουμε τον C_i , ενώ οι άλλοι που σκοτώσαμε βγάζοντάς τους από το μέτωπο θα πρέπει να αναστηθούν. Όταν καταφέρουμε να εισάγουμε τον C_i κάπου, τότε ξεκινάμε την προσπάθεια να εισάγουμε τον επόμενο κύκλο· όταν αρχίζει μια νέα προσπάθεια, ξεκινάμε έχοντας εν ζωή όλους τους κύκλους του μετώπου.

Όσον αφορά την ίδια τη διαδικασία της ανάστασης, στην πραγματικότητα δεν είναι τίποτε άλλο από μια υλοποίηση λειτουργικότητας αναίρεσης ενεργειών, κοινώς undo. Στη λειτουργία undo οι ενέργειες αναιρούνται από την πιο πρόσφατη πηγαίνοντας προς τα πίσω στο χρόνο, δηλαδή με μία λογική Last In First Out (LIFO).

Στρογγυλοποιήσεις

Έστω ότι έχουμε τρεις κύκλους με ακτίνα 1 (σχήμα 5). Ο C_1 έχει κέντρο στο (0,0), ο C_2 στο (2,0) και ο C_3 με κέντρο $(1,\sqrt{3})$ εφάπτεται στους C_1 και C_2 , όπως στο σχήμα 6. Πόσο απέχει το κέντρο του C_2 από το C_1 και πόσο απέχει το κέντρο του C_3 από το C_1 ; Και στις δύο περιπτώσεις ίση με 2, αφού όλες οι ακτίνες είναι ίδιες. Επιπλέον, από το Πυθαγόρειο θεώρημα, οι συντεταγμένες του C_3 είναι $(1,\sqrt{3})$.

Έστω τώρα ότι με βάση της συντεταγμένες των σημείων C_1 και C_3 θέλουμε να υπολογίσουμε εκ νέου την απόσταση C_1C_3 . Αυτή, πάλι με βάση το Πυθαγόρειο θεώρημα, θα είναι ίση με $\sqrt{(\sqrt{3})^2+1^2}$. Αν όμως κάνουμε την πράξη στον υπολογιστή, θα δούμε ότι το αποτέλεσμα είναι $1{,}999\ldots<2$.

Σχήμα 6: Τρεις Ίσοι Εφαπτόμενοι Κύκλοι

Αυτό συμβαίνει γιατί οι πραγματικοί αριθμοί αποθηκεύονται με συγκεκριμένη ακρίβεια στον υπολογιστή, συνεπώς άρρητοι αριθμοί δεν αποθηκεύονται ακριβώς και πράξεις με άρρητους αριθμούς βγάζουν διαφορετικά αποτελέσματα από αυτά που θα περιμέναμε στη θεωρία. Για να μπορούμε να παρακολουθήσουμε ευκολότερα τα αποτελέσματα στο πρόγραμμά μας θα κάνουμε στρογγυλοποιήσεις όπου απαιτούνται. Συγκεκριμένα:

- Να στρογγυλοποιείτε την απόσταση ενός κύκλου από το σημείο εκκίνησης.
- Αφού κάνετε τους υπολογισμούς για την εύρεση του κέντρου ενός νέου κύκλου, να στρογγυλοποιείτε τις συντεταγμένες του αποτελέσματος.
- Όταν ελέγχετε αν δύο κύκλοι τέμνονται, θα πρέπει να εξετάζετε αν η απόσταση

των κέντρων των δύο κύκλων είναι μεγαλύτερη από το άθροισμα των ακτίνων τους. Να στρογγυλοποιείτε την απόσταση αυτή πριν τον έλεγχο.

• Να στρογγυλοποιείτε την απόσταση κύκλου από ευθύγραμμο τμήμα.

Οι στρογγυλοποιήσεις να γίνονται στα δύο δεκαδικά ψηφία. Τότε, στο σχήμα 6 το πρόγραμμά μας πράγματι θα βρει ότι το κέντρο του C_3 είναι πιο κοντά στο κέντρο του C_1 από ό,τι είναι το κέντρο του C_2 , αλλά τουλάχιστον δεν θα μας προκαλέσει έκπληξη.

Εύρεση Κοντινότερου Κύκλου στο Σημείο Εκκίνησης

Αν (x,y) οι συντεταγμένες του σημείου εκκίνησης, τότε για να βρούμε τον κοντινότερο κύκλο του μετώπου στο σημείο εκκίνησης, αρκεί να συγκρίνουμε τις αποστάσεις των κέντρων των κύκλων από το σημείο εκκίνησης. Για κάθε κύκλο C_m του μετώπου με κέντρο (m_x,m_y) , η απόσταση είναι:

$$d=\sqrt{(m_x-x)^2+(m_y-y)^2}$$

Aν (x, y) = (0, 0), τότε έχουμε:

$$d = \sqrt{m_x^2 + m_y^2}$$

Εύρεση Εφαπτόμενου Κύκλου

Αν έχουμε δύο κύκλους C_m και C_n και θέλουμε να βρούμε έναν τρίτο κύκλο C_k ακτίνας r που να εφάπτεται σε αυτούς τους δύο, όπως στο σχήμα 7, εργαζόμαστε ως ακολούθως:

• Υπολογίζουμε την οριζόντια απόσταση d_x και την κάθετη απόσταση d_y των κέντρων των δύο κύκλων C_m και C_n . Αν (m_x,m_y) είναι το κέντρο του C_m και (n_x,n_y) είναι το κέντρο του C_n , έχουμε:

$$d_x = n_x - m_x$$

$$d_y = n_y - m_y$$

• Υπολογίζουμε την απόσταση μεταξύ των κέντρων των δύο κύκλων C_m και C_n :

$$d = \sqrt{d_x^2 + d_y^2}$$

• Αν r_m είναι η ακτίνα του C_m και r_n είναι η ακτίνα του c_n , υπολογίζουμε τις τιμές:

$$r_1 = r_m + r$$

$$r_2=r_n+r$$

• Υπολογίζουμε τα:

$$\lambda = \frac{{r_1}^2 - {r_2}^2 + d^2}{2d^2}$$

$$\varepsilon = \sqrt{\frac{{r_1}^2}{d^2} - \lambda^2}$$

• Το κέντρο (k_x,k_y) του κύκλου C_k έχει τις συντεταγμένες:

$$k_x = m_x + \lambda d_x \mp \varepsilon d_y$$

$$k_y = m_u + \lambda d_y \pm \varepsilon d_x$$

• Παρατηρούμε ότι υπάρχουν δύο κέντρα. Εμείς θα χρησιμοποιούμε το πρώτο από αυτά (δηλαδή το $-\varepsilon d_y$ στο k_x και το $+\varepsilon d_x$ στο k_y). Τότε οι κύκλοι θα προστίθενται στο μέτωπο με φορά αντίθετη των δεικτών του ρολογιού, όπως στα παραδείγματά μας.

Αν στη διάθεσή μας έχουμε γεωμετρικά όργανα, χαρτί και μολύβι, τότε μπορούμε να βρούμε τους εφαπτόμενους κύκλους με κανόνα και διαβήτη. Στο σχήμα 7 μπορείτε να δείτε ότι αρκεί να βρούμε τα σημεία τομής των δύο κύκλων με κέντρα C_m και ακτίνα r_m+r και r_n+r αντίστοιχα. Οι μαθηματικοί τύπου που δώσαμε προκύπτουν από ανάλυση διανυσμάτων.

Σχήμα 7: Εύρεση Εφαπτόμενου Κύκλου

Απόσταση Κύκλου από Ευθύγραμμο Τμήμα

Αν έχουμε ένα ευθύγραμμο τμήμα μεταξύ των σημείων (u,v), τότε για να βρούμε την απόσταση ενός κύκλου από αυτό, πρέπει πρώτα να βρούμε την απόσταση του κέντρου του κύκλου από το ευθύγραμμο τμήμα. Αν το κέντρο του κύκλου έχει συντεταγμένες (c_x,c_y) τότε κάνουμε τους παρακάτω υπολογισμούς.

• Υπολογίζουμε το τετράγωνο της απόστασης μεταξύ των δύο σημείων:

$$l_2 = (u_x - v_x)^2 + (u_y - v_y)^2$$

 Αν αυτή η απόσταση είναι ίση με το μηδέν, τότε τα δύο άκρα του ευθύγραμμου τμήματος συμπίπτουν, οπότε η απόσταση του κύκλου είναι απλώς:

$$d = \sqrt{(u_x - c_x)^2 + (u_y - c_y)^2}$$

• Διαφορετικά, υπολογίζουμε το:

$$t = \frac{(c_x - u_x)(v_x - u_x) + (c_y - u_y)(v_y - u_y)}{l_2}$$

• Εξασφαλίζουμε ότι το t είναι μεταξύ 0 και 1:

$$t = \max(0, \min(1, t))$$

• Βρίσκουμε τη προβολή p του κέντρου του κύκλου πάνω στο ευθύγραμμο τμήμα:

$$p_x = u_x + t(v_x - u_x) \\$$

$$p_y = u_y + t(v_y - u_y)$$

• Η απόσταση του κέντρου του κύκλου από το ευθύγραμμο τμήμα είναι:

$$d=\sqrt{(p_x-c_x)^2+(p_y-c_y)^2}$$

• Για να βρούμε την απόσταση του κύκλου από το ευθύγραμμο τμήμα, αρκεί

Τα παραπάνω προκύπτουν επειδή αν έχουμε δύο σημεία (u,v), τότε η ευθεία γραμμή που περνάει από τα δύο αυτά σημεία δίνεται από τις παραμετρικές εξισώσεις:

$$x = u_x + t(v_x - u_x)$$

$$y = u_y + t(v_y - u_y)$$

Η προβολή ενός σημείου p πάνω στη γραμμή προκύπτει για την τιμή του t που υπολογίζουμε αρχικά. Πλην όμως η προβολή του p μπορεί να εκτείνεται πέραν των ορίων του ευθύγραμμου τμήματος, όπως φαίνεται στο σχήμα 8. Η προβολή του κέντρου του αριστερού κύκλου είναι εκτός του ευθύγραμμου τμήματος από τα αριστερά, οπότε παίρνουμε την απόσταση του κέντρου από το u θέτοντας t=0. Η προβολή του κέντρου του μεσαίου κύκλου πέφτει μέσα στο ευθύγραμμο τμήμα άρα δεν χρειάζεται να προσαρμόσουμε το t. Συμμετρικά ως προς τον αριστερό κύκλο, η προβολή

Σχήμα 8: Απόσταση Κύκλου Από Ευθύγραμμο Τμήμα

του κέντρου του δεξιού κύκλου είναι εκτός του ευθύγραμμου τμήματος από τα δεξιά, οπότε παίρνουμε την απόσταση του κέντρου από το v θέτοντας t=1. Τελικά υπολογίζουμε την απόσταση του κέντρου του κύκλου από αυτήν την προβολή.

Αφού βρούμε την απόσταση του κέντρου του κύκλου από το ευθύγραμμο τμήμα, η απόσταση του κύκλου είναι αυτή μείον την ακτίνα του. Έτσι, αν θέλουμε να δούμε αν ένας κύκλος τέμνει ένα ευθύγραμμο τμήμα, αρκεί να συγκρίνουμε την ακτίνα του με την απόσταση που βρήκαμε.

Απαιτήσεις Προγράμματος

Κάθε φοιτητής θα εργαστεί σε αποθετήριο στο GitHub. Για να αξιολογηθεί μια εργασία θα πρέπει να πληροί τις παρακάτω προϋποθέσεις:

- Για την υποβολή της εργασίας θα χρησιμοποιηθεί το ιδιωτικό αποθετήριο του φοιτητή που δημιουργήθηκε για τις ανάγκες του μαθήματος και του έχει αποδωθεί. Το αποθετήριο αυτό έχει όνομα του τύπου username-algo-assignments, όπου username είναι το όνομα του φοιτητή στο GitHub. Για παράδειγμα, το σχετικό αποθετήριο του διδάσκοντα θα ονομαζόταν louridas-algo-assignments και θα ήταν προσβάσιμο στο https://github.com/dmst-algorithms-course/louridas-algo-assignments. Τυχόν άλλα αποθετήρια απλώς θα αγνοηθούν.
- Μέσα στο αποθετήριο αυτό θα πρέπει να δημιουργηθεί ένας κατάλογος assignment-2020-3.
- Μέσα στον παραπάνω κατάλογο το πρόγραμμα θα πρέπει να αποθηκευτεί με το όνομα social_distancing.py.
- Δεν επιτρέπεται η χρήση έτοιμων βιβλιοθηκών γράφων ή τυχόν έτοιμων υλοποιήσεων των αλγορίθμων, ή τμημάτων αυτών, εκτός αν αναφέρεται ρητά ότι επιτρέπεται.
- Επιτρέπεται η χρήση δομών δεδομένων της Python όπως στοίβες, λεξικά, σύνολα, κ.λπ.
- Επιτρέπεται η χρήση της βιβλιοθήκης math και της βιβλιοθήκης random.

- Επιτρέπεται η χρήση της βιβλιοθήκης argparse ή της βιβλιοθήκης sys (συγκεκριμένα, της λίστας sys.argv) προκειμένου να διαβάσει το πρόγραμμα τις παραμέτρους εισόδου.
- Το πρόγραμμα θα πρέπει να είναι γραμμένο σε Python 3.

Το πρόγραμμα θα καλείται ως εξής (όπου python η κατάλληλη εντολή στο εκάστοτε σύστημα):

Οι παράμετροι εμφανίζονται σε διαφορετικές γραμμές προς χάρη της τυπογραφίας. Η σημασία των παραμέτρων είναι η εξής:

- -i ITEMS, --items ITEMS: ο αριθμός των αντικειμένων (κύκλων) που θέλουμε να εισάγουμε. Αν δίνεται, το πρόγραμμα θα προσπαθεί να παράξει αυτόν τον αριθμό των κύκλων.
- -r RADIUS, --radius RADIUS: η ακτίνα των κύκλων. Αν δίνεται, όλοι οι κύκλοι θα έχουν αυτήν την ακτίνα.
- --min_radius: η ελάχιστη ακτίνα των κύκλων, αν δίνεται οι κύκλοι θα έχουν τυχαίες ακτίνες, με τουλάχιστον αυτό το μήκος. Η παράμετρος αυτή συνδυάζεται με την παράμετρο --max radius.
- --max_radius:: η μέγιστη ακτίνα των κύκλων, αν δίνεται οι κύκλοι θα έχουν τυχαίες ακτίνες όχι μεγαλύτερες από αυτό το μήκος. Η παράμετρος αυτή συνδυάζεται με την παράμετρο --min_radius.
- -b BOUNDARY_FILE, --boundary_file BOUNDARY_FILE: τα όρια του σχήματος στο οποίο θα περιλαμβάνονται οι κύκοι. Αν δίνεται, το πρόγραμμα θα εισάγει κύκλους μέσα στα όρια του σχήματος που δίνεται.
- -s SEED, --seed SEED: αν δίνεται, η τιμή αρχικοποίησης (σπόρος) της γεννήτριας ψευδοτυχαίων αριθμών. Στην αρχή του προγράμματός σας, θα πρέπει να εκτελείται η εντολή random.seed (SEED)
- output_file: το αρχείο όπου αποθηκεύονται τα αποτελέσματα του προγράμματος, υποχρεωτική παράμετρος.

Όταν το πρόγραμμα τελειώνει, στην έξοδό θα τυπώνει μόνο έναν ακέραιο αριθμό, τον αριθμό των κύκλων που εισήγαγε. Στο αρχείο output_file θα αποθηκεύει τους κύκλους αυτούς, έναν σε κάθε γραμμή, με τη μορφή:

x y r

δηλαδή κάθε γραμμή θα αποτελείται από τρεις πραγματικούς αριθμούς, τη συντεταγμένη x του κέντρου του κύκλου, τη συντεταγμένη y του κέντρου του κύκλου, και την ακτίνα του r. Οι αριθμοί θα δίνονται με ακρίβεια εκατοστού.

Αν δίνονται τα όρια του σχήματος με την παράμετρο -b BOUNDARY_FILE, η παράμετρος BOUNDARY_FILE θα είναι το όνομα του αρχείου που ορίζει το σχήμα. Το αρχείο θα περιέχει γραμμές της μορφής:

```
x1 y1 x2 y2
```

δηλαδή τα δύο ζευγάρια συντεταγμένων που αντιστοιχούν σε κάθε ευθύγραμμο τμήμα. Στην περίπτωση αυτή, τις γραμμές αυτές θα τις περιλαμβάνετε στο αρχείο output_file όπως τις διαβάσατε από το αρχείο BOUNDARY_FILE, μετά από όλους τους κύκλους που βρήκατε.

Για την οπτικοποίηση των αποτελεσμάτων, μπορείτε να χρησιμοποιήσετε τα παρακάτω προγράμματα:

• svg_draw.py το οποίο μπορείτε να καλείτε ως:

```
python svg_draw.py input_file output_file
```

όπου input_file είναι το αρχείο των αποτελεσμάτων σας και output_file είναι ένα αρχείο τύπου SVG. Για να λειτουργήσει, θα πρέπει να εγκαταστήσετε τη βιβλιοθήκη svgwrite.

• mpl_draw.py το οποίο μπορείτε να καλείτε ως:

```
python mpl_draw.py input_file output_file
```

όπου input_file είναι το αρχείο των αποτελεσμάτων σας και output_file είναι ένα αρχείο, ο τύπος του οποίου εξαρτάται από την κατάληξή του. Για παράδειγμα, αν δώσετε ως output_file το myfile.png θα πάρετε αρχείο PNG, αν δώσετε ως output_file το myfile.svg θα πάρετε αρχείο SVG, αν δώσετε ως output_file το myfile.pdf θα πάρετε αρχείο PDF, κ.λπ. Για να λειτουργήσει, πρέπει να εγκαταστήσετε τη βιβλιοθήκη matplotlib.

Παραδείγματα

Παράδειγμα 1

Αν καλέσετε το πρόγραμμα με:

```
python social_distancing.py -i 11 -r 10 circles_equal_11.txt
```

τότε το πρόγραμμα θα τυπώσει στην οθόνη τον αριθμό 11 και θα αποθηκεύσει τα αποτελέσματα στο αρχείο circles_equal_11.txt. Το αρχείο αυτό αντιστοιχεί στο τέλος του σχήματος 2.

Παράδειγμα 2

Αν καλέσετε το πρόγραμμα με:

```
python social_distancing.py -i 1000 -r 10 circles_equal_1000.txt
```

τότε το πρόγραμμα θα τυπώσει στην οθόνη τον αριθμό 1000 και θα αποθηκεύσει τα αποτελέσματα στο αρχείο circles_equal_1000.txt. Μπορείτε να δείτε τους κύκλους στο σχήμα 9, μαζί με το μέτωπο, ενώ πορτοκαλί χρώμα έχει ο τελευταίος κύκλος που προστέθηκε.

Σχήμα 9: Παράδειγμα με 1000 Ίσους Κύκλους

Παράδειγμα 3

Αν καλέσετε το πρόγραμμα με:

```
python social_distancing.py -i 200 -r 10 -b rectangle.txt \
circles_rectangle_equal.txt
```

τότε το πρόγραμμα θα χρησιμοποιήσει το αρχείο rectangle.txt για τον ορισμό των ορίων, θα τυπώσει στην οθόνη τον αριθμό 159 και θα αποθηκεύσει τα αποτελέσματα στο αρχείο circles_rectangle_equal.txt. Μπορείτε να δείτε τους κύκλους στο σχήμα 10.

Σχήμα 10: Παράδειγμα με Οριοθετημένους Ίσους Κύκλους

Παράδειγμα 4

Αν καλέσετε το πρόγραμμα με:

```
python social_distancing.py -i 1000 --seed 13 \
--min_radius 5 --max_radius 10 circles_random_1000.txt
```

τότε το πρόγραμμα θα τυπώσει στην οθόνη τον αριθμό 1000 και θα αποθηκεύσει τα αποτελέσματα στο αρχείο circles_random_1000.txt. Το αρχείο αυτό αντιστοιχεί στο σχήμα 11.

Σχήμα 11: Παράδειγμα με 1000 Τυχαίους Κύκλους

Παράδειγμα 5

Αν καλέσετε το πρόγραμμα με:

```
python social_distancing.py --seed 42 \
--min_radius 5 --max_radius 10 -b square_holes.txt \
square_holes_random.txt
```

τότε το πρόγραμμα θα χρησιμοποιήσει το αρχείο square_holes.txt για τον ορισμό των ορίων, τότε το πρόγραμμα θα τυπώσει στην οθόνη τον αριθμό 584 και θα αποθηκεύσει τα αποτελέσματα στο αρχείο square_holes_random.txt. Το αρχείο αυτό αντιστοιχεί στο σχήμα 12.

Καλή Επιτυχία.

Για Περισσότερες Πληροφορίες

• Η απόδειξη για την εύρεση του εφαπτόμενου κύκλου υπάρχει στο 1.12.2 και 3.12.2 του John Vince, Geometry for Computer Graphics: Formulae, Examples and Proofs, Springer, 2005. Η απόδειξη για την εύρεση της απόστασης σημείου

Σχήμα 12: Παράδειγμα με Οριοθετημένους Τυχαίους Κύκλους

απο ευθύγραμμο τμήμα προκύπτει από τα 1.11.12 και 3.11.10 του ίδιου βιβλίου και το https://stackoverflow.com/a/1501725.

- Ο αλγόριθμος της εργασίας είναι μια παραλλαγή του αλγορίθμου των Weixin Wang, Hui Wang, Guozhong Dai, Hongan Wang, Visualization of Large Hierarchical Data by Circle Data, in CHI '06: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 517–520, April 2006.
- Το πρόβλημα είναι περίπτωση του γενικότερου προβλήματος που ονομάζεται circle packing. Αυτό έχει προσελκύσει την προσοχή των μαθηματικών εδώ και αιώνες, όπως για παράδειγμα μπορείτε να δείτε στο σχετικό άρθρο της Wikipedia: https://en.wikipedia.org/wiki/Circle_packing.