Chapter 0

- 基于Numpy和Matplotlib
- Pandas 的主要数据结构是 Series (一维数据) 与 DataFrame (二维数据)
 - Series可以认为是一维数组(矩阵),只有行索引
 - DataFrame可以认为是二维数组(矩阵),有行和列索引

Chapter 1

• 查看DataFrame

https://campus.datacamp.com/courses/data-manipulation-with-pandas/transforming-dataframes?ex=2

- Sorting: df.sort_values(["性别","地区"], ascending = [True, False])
- Subsetting
 - subsetting columns
 https://campus.datacamp.com/courses/data-manipulation-with-pandas/transforming-dataframes?ex=6
 - subsetting rows: create logical conditions to filter rows
 - df["地区"].isin(["东部","西部"])
 - df.loc[("东部", "上海"):("中部", "河南")]
 - df[df["性别"]=="女"]
 - subsetting rows and columns
 - df.loc[:, ["地区","性别"]]
 - df.iloc[[2:4, 0:3]]
 https://campus.datacamp.com/courses/data-manipulation-with-pandas/transforming-dataframes?ex=7
- Adding
 - Adding columns: df.["bmi"] = ...

- Dropping duplicates
 - df.drop_duplicates(subset = ["列1","列2"], keep='first', inplace=True)
- Missing values
 - df.isna()
 - df.isna().any()
 - df.isna().sum()
 - df.dropna()
 - df.fillna(0)

Chapter 2

- Summary statistics
 - 连续变量
 - mean: df.["体重"].mean()
 - 其他描述性统计 .min() .max() .median() .mode() .var() .std() .sum()
 - 同时计算多个统计指标可以用.agg()
 - df.["体重"].agg(["mean", "median"])
 - df.agg(func=None, axis=0, args,kwargs)
 - 类别变量
 - df["性别"].value_counts(normalize=False, sort=True, ascending=False, bins=None, dropna=True)
- 分组计算描述性统计
 - df.groupby("性别")["体重"].mean()
 - df.groupby("性别")["体重"].agg([min, max, sum])
 - df.groupby(["性别","地区"]).mean()
 - df.groupby(["性别","地区"]).agg([np.mean, np.median])
- 用透视表计算描述性统计
 - The pivot_table () function is used to create a spreadsheet-style pivot table as a DataFrame
 - 一个分组:
 - df.pivot_table(values="体重",index="性别")
 - value --> columns want to summarize
 - index --> columns want to groupby
 - df.pivot_table(values="体重",index="性别", aggfunc=np.median)
 - df.pivot_table(values="体重",index="性别", aggfunc=[np.mean, np.median])
 - 一个以上分组:
 - df.pivot_table(values="体重",index="性别",column="地区", full_value=0, margins=True)

- Indexing
- https://campus.datacamp.com/courses/data-manipulation-with-pandas/slicing-and-indexing-dataframes?ex=2
- Slicing: We can select specific ranges of our data in both the row and column directions using either label or integer-based indexing.
- loc: works on labels in the index.
- iloc: works on the positions in the index (so it only takes integers).
 - df.iloc[row slicing, column slicing]
 - df.iloc[0:10, :]
 - df.loc[0:10, :]
 - df.iloc[:, 0:10]
 - df.loc[:, 0:10]

透视表选区

pt = df.pivot_table(values=, index=, column=)

- pt.loc[]
- pt.mean(axis="index") --> calculate the statistic across rows
- pt.mean(axis="column") --> calculate the statistic across columns

Chapter 4

- Visualizing
- https://campus.datacamp.com/courses/data-manipulation-with-pandas/creating-andvisualizing-dataframes?ex=2
 - df.hist(bins=5)
 - df.plot(kind="hist")
 - df.plot(x="", y="", kind="line", rot=45)
 - df.plot(x="", y="", kind="scatter")
 - df.isna().any().plot(kind="bar")
- Create DataFrame
- https://campus.datacamp.com/courses/data-manipulation-with-pandas/creating-andvisualizing-dataframes?ex=11

- list of dictionary
- dictionary of list
- import CSV file
 - pd.read_csv()