[WDEC] Wspomaganie Decyzji Laboratorium 11A ARIMA

Modele prognozowania

Czynności wstępne

Stworzenie biblioteki Lab11A

libname Lab11A '/folders/myfolders/Lab11A';

Generacja danych

- 1) Wykorzystując data step systemu sas wygeneruj tabelę z danymi o charakterystyce procesu ARIMA (2,3).
- model u = 5.0+0.14*u1 + 0.71*u2 + a 0.5*a1 + 0.7*a2 + 0.2*a3;
- współczynnik a powinien być obliczony z wykorzystaniem rozkładu normalnego o średniej 0 i wariancji 0.4.
- ilość wygenerowanych wartości: 2000
- ilość punktów startowych 100

```
data Lab11A.dane;
    u1=0; u2=0; a1 = 0; a2=0; a3 = 0;
    do i = -100 to 2000;
        a = 0 + sqrt(0.4)*rannor( 32565 );
        u = 5 + 0.14*u1 + 0.71*u2 + a - 0.5*a1 + 0.7*a2 +
```

2) <u>Oblicz następujące statystyki dla wygenerowanych danych: średnia, min, max, oraz odchylenie standardowe (PROC MEANS).</u>

Zmienna	N	Średnia	Minimum	Maksimum	Odch. std.
u1	2000	33.4695496	28.8591425	38.6922481	1.5770764
u2	2000	33.4691776	28.8591425	38.6922481	1.5773334
a1	2000	0.0147600	-1.9512978	2.0906115	0.6427077
a2	2000	0.0145809	-1.9512978	2.0906115	0.6427395
a3	2000	0.0144135	-1.9512978	2.0906115	0.6428490
i	2000	1000.50	1.0000000	2000.00	577.4945887
a	2000	0.0154910	-1.9512978	2.0906115	0.6425208
u	2000	33.4700534	28.8591425	38.6922481	1.5767913

3) Narysuj wykres wygenerowanych danych.

Obliczenia modelu

1) <u>Dla wygenerowanych danych zbuduj model ARMA(1,1) i oblicz prognozę na podstawie tego modelu.</u>

```
identify var=u scan;
run;

estimate p=1 q=1 /*printall*/ plot method=ML;
run;

outlier /*ALPHA=0.05 TYPE=additive*/;
run;

forecast id = i out=Lab11A.arma_1_1;
run;

/* Wykres obliczonej prognozy */
proc sgplot data=LAB11A.arma_1_1;
    title "Wykres prognozy na podstawie modelu ARMA(1,1)";
    series x=i y=FORECAST;
    series x=i y=u;
run;
```

Zbudowanie modelu ARMA(1,1) i obliczenie prognozy na podstawie tego modelu

Procedura ARIMA

Nazwa zmiennej = u				
Średnia szeregu roboczego	33.47005			
Odchylenie standardowe	1.576397			
Liczba obserwacji	2000			

Kontrola autokorelacji względem białego szumu									
Opóźnienie do Chi-kwadrat DF Pr. > chi-kw. Autokorelacje									
6	3251.87	6	<.0001	0.161	0.854	0.260	0.663	0.277	0.531
12	4514.91	12	<.0001	0.273	0.440	0.258	0.370	0.241	0.313
18	5063.04	18	<.0001	0.215	0.272	0.182	0.236	0.153	0.198
24	5266.07	24	<.0001	0.133	0.160	0.123	0.129	0.114	0.111

Oceny kwadratowej korelacji kanonicznej							
Opóźnienia	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5	
AR 0	0.0260	0.7299	0.0675	0.4408	0.0769	0.2825	
AR 1	0.7233	0.5913	0.3197	0.2220	0.1368	0.0932	
AR 2	0.1439	0.0897	0.0054	0.0004	<.0001	0.0011	
AR 3	0.0277	0.1381	0.0010	<.0001	0.0003	0.0007	
AR 4	0.1149	0.0472	0.0002	0.0008	0.0007	0.0007	
AR 5	0.0110	0.0325	0.0009	0.0008	0.0003	0.0002	

Chi-kwadrat SCAN [1] Wartości prawdopodobieństwa							
Opóźnienia	MA 0	MA 1	MA 2	MA 3	MA 4	MA 5	
AR 0	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
AR 1	<.0001	<.0001	<.0001	<.0001	<.0001	<.0001	
AR 2	<.0001	<.0001	0.0124	0.5063	0.8653	0.2493	
AR 3	<.0001	<.0001	0.3050	0.9921	0.5582	0.4443	
AR 4	<.0001	<.0001	0.6572	0.4361	0.4394	0.4758	
AR 5	<.0001	<.0001	0.3415	0.4355	0.5992	0.6063	

Testy wyboru porządku próbnego ARMA(p+d,q)					
SCAN					
p+d	q				
3	2				
2	3				

(Poziom istotności 5%)

Metoda największej wiarygodności								
Parametr	Ocena	Błąd standardowy	Wartość t	Przybl. pr. > t	Opóźnienie			
MU	33.45694	0.18647	179.42	<.0001	0			
MA1,1	0.78348	0.01831	42.79	<.0001	1			
AR1,1	0.96731	0.0074406	130.00	<.0001	1			

Ocena stałej	1.093815
Ocena wariancji	1.62675
Ocena bł. std.	1.275441
AIC	6652.779

SBC	6669.581
Liczba reszt	2000

Korelacje ocen parametrów						
Parametr	MU	MA1,1	AR1,1			
MU	1.000	0.001	0.001			
MA1,1	0.001	1.000	0.653			
AR1,1	0.001	0.653	1.000			

	Sprawdzenie autokorelacji reszt								
Opóźnienie do	Chi-kwadrat	DF	Pr. > chi-kw.	Autokorelacje					
6	2623.27	4	<.0001	-0.555	0.749	-0.335	0.445	-0.241	0.266
12	2834.58	10	<.0001	-0.179	0.169	-0.135	0.109	-0.097	0.071
18	2886.23	16	<.0001	-0.080	0.056	-0.081	0.048	-0.080	0.031
24	2900.73	22	<.0001	-0.066	0.006	-0.043	-0.013	-0.023	-0.014
30	2906.56	28	<.0001	-0.018	-0.008	-0.017	-0.022	0.001	-0.041
36	2917.91	34	<.0001	0.004	-0.023	-0.015	0.021	-0.039	0.053
42	2924.38	40	<.0001	-0.033	0.039	-0.012	0.021	0.000	0.001
48	2926.46	46	<.0001	0.012	-0.009	0.013	-0.018	0.011	-0.013

Model dla zmiennej u				
Średnia estymowana	33.45694			

Współczynniki autoregresyjne							
Współczynnik 1:	1 - 0.96731 B**(1)						

Współczynniki śro	edniej ruchomej
Współczynnik 1:	1 - 0.78348 B**(1)

Podsumowanie wykrywania wartości odstających					
Maksymalna liczba poszukiwanych 5					
Liczba znalezionych	5				
Używana istotność	0.05				

	Informacje o wartościach odstających									
Obs.	Тур	Ocena	Chi-kwadrat	Przybl. prawd.>chi-kw.						
1725	Addytywnie	-4.40295	11.53	0.0007						
1727	Addytywnie	-4.36585	11.37	0.0007						
1087	Addytywnie	3.81302	8.70	0.0032						
753	Addytywnie	-3.80007	8.65	0.0033						
742	Addytywnie	-3.72978	8.42	0.0037						

	Prognozy dla zmiennej u								
Obs.	Prognoza	Błąd std.	Prze ufnośc						
2001	33.1622	1.2754	30.6623	35.6620					
2002	33.1718	1.2968	30.6301	35.7135					
2003	33.1811	1.3165	30.6008	35.7614					
2004	33.1901	1.3346	30.5743	35.8060					
2005	33.1989	1.3514	30.5501	35.8476					
2006	33.2073	1.3669	30.5282	35.8864					
2007	33.2155	1.3813	30.5082	35.9227					
2008	33.2234	1.3946	30.4901	35.9566					
2009	33.2310	1.4069	30.4736	35.9884					
2010	33.2384	1.4183	30.4586	36.0182					
2011	33.2455	1.4289	30.4449	36.0462					
2012	33.2524	1.4388	30.4325	36.0724					
2013	33.2591	1.4479	30.4212	36.0970					
2014	33.2656	1.4565	30.4110	36.1202					
2015	33.2718	1.4644	30.4017	36.1420					
2016	33.2779	1.4718	30.3933	36.1625					
2017	33.2838	1.4787	30.3856	36.1819					
2018	33.2894	1.4851	30.3788	36.2001					
2019	33.2949	1.4910	30.3725	36.2172					
2020	33.3002	1.4966	30.3669	36.2334					
2021	33.3053	1.5018	30.3619	36.2487					
2022	33.3103	1.5066	30.3574	36.2632					

Prognozy dla zmiennej u							
Obs.	Prognoza Błąd std. Przedzi Prognoza Błąd std. ufności 9						
2023	33.3151	1.5111	30.3533	36.2768			
2024	33.3197	1.5153	30.3497	36.2897			

2) <u>Dla wygenerowanych danych zbuduj model ARMA(2,3) i oblicz prognozę na</u> podstawie tego modelu.

```
outlier /*ALPHA=0.05 TYPE=additive*/;
run;

forecast id = i out=Lab11A.arma_2_3;
run;

/* Wykres obliczonej prognozy */
proc sgplot data = Lab11A.arma_2_3;
    title "Wykres prognozy na podstawie modelu ARMA(2,3)";
    series x=i y=FORECAST;
    series x=i y=u;
run;
```

Zbudowanie modelu ARMA(2,3) i obliczenie prognozy na podstawie tego modelu Procedura ARIMA

Nazwa zmiennej = u					
Średnia szeregu roboczego	33.47005				
Odchylenie standardowe	1.576397				
Liczba obserwacji	2000				

Kontrola autokorelacji względem białego szumu										
Opóźnienie do Chi-kwadrat DF Pr. > chi-kw. Autokorelacje										
6	3251.87	6	<.0001	0.161	0.854	0.260	0.663	0.277	0.531	
12	4514.91	12	<.0001	0.273	0.440	0.258	0.370	0.241	0.313	
18	5063.04	18	<.0001	0.215	0.272	0.182	0.236	0.153	0.198	
24	5266.07	24	<.0001	0.133	0.160	0.123	0.129	0.114	0.111	

	Metoda największej wiarygodności										
Parametr	Ocena	Błąd standardowy	Wartość t	Przybl. pr. > t	Opóźnienie						
MU	33.45887	0.13655	245.03	<.0001	0						
MA1,1	0.50672	0.03349	15.13	<.0001	1						
MA1,2	-0.67492	0.02856	-23.63	<.0001	2						
MA1,3	-0.22152	0.03309	-6.69	<.0001	3						
AR1,1	0.11980	0.02353	5.09	<.0001	1						
AR1,2	0.73518	0.01916	38.36	<.0001	2						

Ocena stałej	4.852126
Ocena wariancji	0.412188
Ocena bł. std.	0.642019
AIC	3915.173
SBC	3948.779
Liczba reszt	2000

Korelacje ocen parametrów										
Parametr	MU	MA1,1	MA1,2	MA1,3	AR1,1	AR1,2				
MU	1.000	-0.001	0.001	-0.001	-0.002	-0.001				
MA1,1	-0.001	1.000	-0.896	0.925	0.755	-0.581				
MA1,2	0.001	-0.896	1.000	-0.894	-0.711	0.607				
MA1,3	-0.001	0.925	-0.894	1.000	0.746	-0.573				
AR1,1	-0.002	0.755	-0.711	0.746	1.000	-0.686				
AR1,2	-0.001	-0.581	0.607	-0.573	-0.686	1.000				

	Sprawdzenie autokorelacji reszt										
Opóźnienie do	Chi-kwadrat	DF	Pr. > chi-kw.	Autokorelacje							
6	1.45	1	0.2283	-0.002	-0.011	-0.020	-0.010	0.006	-0.008		
12	3.08	7	0.8773	-0.001	0.012	-0.001	0.017	0.018	0.006		
18	6.37	13	0.9318	0.019	0.020	-0.002	0.016	-0.015	0.019		
24	10.48	19	0.9401	-0.003	-0.001	-0.020	-0.036	0.005	0.017		
30	18.72	25	0.8105	0.032	0.024	-0.023	0.004	0.014	-0.042		
36	29.76	31	0.5296	0.003	-0.025	0.000	0.005	-0.017	0.067		
42	34.05	37	0.6079	0.000	0.007	0.023	0.017	-0.020	-0.029		
48	38.95	43	0.6476	0.025	0.028	0.006	-0.021	0.008	-0.020		

Model dla zmiennej u Średnia estymowana 33.45887

Współczynniki autoregresyjne

Współczynnik 1: 1 - 0.1198 B**(1) - 0.73518 B**(2)

Współczynniki średniej ruchomej

Współczynnik 1: 1 - 0.50672 B**(1) + 0.67492 B**(2) + 0.22152 B**(3)

Podsumowanie wykrywania wartości odstających			
Maksymalna liczba poszukiwanych			
Liczba znalezionych	5		
Używana istotność	0.05		

Informacje o wartościach odstających					
Obs.	Тур	Ocena	Chi-kwadrat	Przybl. prawd.>chi-kw.	
168	Addytywnie	0.66307	9.77	0.0018	
331	Addytywnie	-0.64370	9.25	0.0024	
1155	Addytywnie	0.63708	9.04	0.0026	
1185	Addytywnie	0.70900	11.25	0.0008	
1246	Przesunięcie	0.47397	9.18	0.0024	

Prognozy dla zmiennej u				
Obs.	Prognoza	Błąd std.	Przedział ufności 95%	
2001	32.5985	0.6420	31.3401	33.8568
2002	33.4991	0.6884	32.1499	34.8484
2003	32.9627	1.1138	30.7797	35.1456
2004	33.4290	1.1156	31.2424	35.6156
2005	33.0905	1.2919	30.5584	35.6226
2006	33.3928	1.2980	30.8488	35.9368
2007	33.1801	1.3888	30.4582	35.9021
2008	33.3769	1.3970	30.6388	36.1150

2009	33.2441	1.4481	30.4059	36.0824
2010	33.3729	1.4566	30.5180	36.2277
2011	33.2907	1.4870	30.3763	36.2051
2012	33.3755	1.4946	30.4461	36.3050
2013	33.3252	1.5135	30.3589	36.2916
2014	33.3816	1.5199	30.4026	36.3606
2015	33.3514	1.5320	30.3488	36.3540
2016	33.3892	1.5371	30.3765	36.4018
2017	33.3715	1.5450	30.3433	36.3996
2018	33.3972	1.5490	30.3612	36.4331
2019	33.3872	1.5543	30.3409	36.4336
2020	33.4049	1.5573	30.3527	36.4572
2021	33.3997	1.5609	30.3405	36.4590
2022	33.4121	1.5631	30.3484	36.4758
2023	33.4098	1.5656	30.3413	36.4783
2024	33.4186	1.5673	30.3468	36.4904

3) Oblicz średni błąd kwadratowy (MSE) dla modelu ARMA (1,1) i modelu ARMA(2,3) i porównaj te modele z punktu widzenia jakości prognozy.

```
/* ARMA(1,1) */
data Lab11A.arma 1 1;
       set Lab11A.arma_1_1;
       mean squared error = RESIDUAL*RESIDUAL;
run;
proc means data = Lab11A.arma 1 1;
      title "Statystyki MSE dla modelu ARMA(1,1)";
      var mean squared error;
run;
/* Wynik (MSE) odczytujemy z kolumny Średnia - wynosi ok. 1.6247144
*/
/* ARMA(2,3) */
data Lab11A.arma 2 3;
       set Lab11A.arma_2_3;
       mean_squared_error = RESIDUAL*RESIDUAL;
run;
proc means data = Lab11A.arma_2_3;
      title "Statystyki MSE dla modelu ARMA(2,3)";
      var mean squared error;
run;
/* Wynik (MSE) odczytujemy z kolumny Średnia - wynosi ok. 0.4123600
*/
```

Statystyki MSE dla modelu ARMA(1,1)

Procedura MEANS

Zmienna analizowana: mean_squared_error					
N	Średnia	Odch. std.	Minimum	Maksimum	
2000	1.6247144	2.1598536	9.504714E-7	19.8747191	

Statystyki MSE dla modelu ARMA(2,3)

Procedura MEANS

Zmienna analizowana: mean_squared_error					
N	Średnia	Odch. std. Minimum		Maksimum	
2000	0.4123600	0.5708542	5.1943472E-8	4.2800881	

Porównanie modeli z punktu widzenia jakości prognozy

Analizując średni błąd kwadratowy (MSE) dla modelu ARMA(1,1) oraz ARMA(2,3), widzimy, że dla modelu ARMA(1,1) wyniósł ok. 1.6247144, natomiast dla modelu ARMA(2,3) wyniósł ok. 0.4123600. Zatem model ARMA(2,3) ma mniejszą wartość MSE, a co za tym idzie, jest lepiej dopasowany do naszych danych niż model ARMA(1,1). Wartości liczbowe odczytałem z kolumn Średnia z dwóch ostatnich tabel.

Dalej, analizując wykresy korelacji reszt dla zmiennej u, możemy dostrzec, że w przypadku modelu ARMA(1,1) reszty wykazują charakter cykliczny, co świadczy o słabym dopasowaniu do naszych danych. Dla modelu ARMA(2,3) możemy dostrzec, że reszty są bardzo niewielkie (praktycznie zerowe), co świadczy o dobrym dopasowaniu tego modelu do naszych danych.