בניית מקבץ האוגרים

ארגון המחשב ושפת סף

מרצה: **רועי אש**

The Registers File

- Modern digital systems are based on logic with state variables, which are changed according to a clock.
 - The system consists of two types of logic -combinational and sequential.
 - Sequential logic contains state elements or memory elements.

register file: A state element that consists of a set of registers that can be read and written by supplying a register number to be accessed.

דיאגרמת בלוקים של לוגיקה סדרתית

- מעגל סדרתי מוגדר באמצעות סדרת כניסות, יציאות
 ומצבים פנימיים, והשינוי שהם עוברים הוא על ציר הזמן
- מעגלים סדרתיים סינכרוניים מערכות אלו משתמשות
 בשעון כדי לבצע את הסנכרון.

השעון במחשב – מווסת את קצב העבודה

FIGURE B.7.1 A clock signal oscillates between high and low values. The clock period is the time for one full cycle. In an edge-triggered design, either the rising or falling edge of the clock is active and causes state to be changed.

- השעון מווסת את קצב העבודה ומתזמן את הפעולות הבסיסיות של המחשב
- ניתן לתאר את השעון כאות חשמלי המשתנה בזמן מחזור קבוע. בתרשים B.7.1 ניתן לראות את אות השעון כפונקציה של הזמן, העובר בקצב קבוע בין מצב אות גבוה (נגדיר מצב זה כ- 1 לוגי) למצב אות נמוך (מצב 0 לוגי). עבור תופעה בעלת זמן מחזור קבוע, זמן המחזור מוגדר כזמן המינימלי שבו התופעה חוזרת על עצמה, כמסומן בתרשים B.7.1
- נגדיר מעבר שעון מ- 0 ל- 1 כעליית שעון, ומעבר מ- 1 ל- 0 כנפילת שעון. בבנייה שלנו בפרק ז', נניח שכתיבת שעון ליחידות הזיכרון תהיה בעליית שעון

Clocking Methodologies

- The clocking methodology defines when signals can be read and when they are written
 - An edge-triggered methodology
- Typical execution
 - read contents of state elements
 - send values through combinational logic
 - write results to one or more state elements

- Assumes state elements are written on every clock cycle; if not, need explicit write control signal
 - write occurs only when both the write control is asserted and the clock edge occurs

מנעול - Latch

An S-R (Set-Reset) latch:

שקף 6

Simple State Element

S-R Latch (Or S-R Flip-Flop)

- Feedback is the key to memory/state elements.
- Once a value is fed to the element, it circulates inside the element and renews itself, even after the input is turned off.
- Other memory devices can be built from the basic latch.

שקף 7

D-Latch – D מנעול

• ניתן למנוע את המצב האסור (S=1, R=1) על ידי חיבור S/R לאותו המקור עם שער not. במצב זה נמנע גם מצב S/R המנעול (R=S=0)

על מנת לייצר מצב של מנעול ניתן להוסיף אות אפשור
 Enable)

Е	D	Q	Ια	
0	0	latch	latch	
0	1	latch	latch	
1	0	0	1	
1	1	1	0	

Latch "D" Clocked

- ניתן לקבל את אפקט המנעול באופן מסונכרן על ידי הוספת השעות כמעין אות אפשור.
- נציין שאנשי חומרה לא נוהגים לממש שעון כאות אפשור, אולם לצורך הפשטה ובהתאמה לתרשימים בנספח B, אנו נתאר את הלוגיקה באופן זה

Latch"D"Clocked

- This latch has one input, called "D".
- When the clock is low, AND gates force zero on all inputs to the S-R latch → no change in state.
- When clock is high, the value at D sets the "S" input of the latch; inverted D sets the "R" input of the latch.
- The basic building block for the Register File

"D" Latch Clocking Waveforms

The output "D" responds to the change in input, a *characteristic delay* t delay after the clock goes high.

!! אינו מספיק D Latch

מחזור שעון ארוך והמעגל יחליף את מצבו מספר פעמים!!!

flip-flop"D"Edge Triggered

The first latch is called the *master*, the second latch is called the *slave*.

- When the clock goes high, the first D latch (master) accepts the change in input
- Because of the inverter, the change is blocked from moving on the second D latch (slave).
- When the clock goes low, the slave latch accepts the change in input.

Negative clock edge

Registers

Registers can be built from a series of Edge Triggered (ET) D latches connected to the same clock.

MIPS32 Registers File

Double Read ports
Write port

Implementation of double read port

- י באמצעות מספר האוגר המרבב מאפשר בחירה של האוגר אותו רוצים לקרוא
- המימוש באמצעות מרבב n-to-1
- כל מרבב עם 32 ביט •

Write Port Implementation

MIPS Register File

מרכיבי מסלול הנתונים

- יזכרון פקודות (Read Only, חוץ מזמן טעינת תכנית חדשה)
 - (Read / Write) יוכרון נתונים
 - רגיסטרים •
 - Program counter (PC)
 - ALU •

Decoding Instructions

- Decoding instructions involves
 - sending the fetched instruction's opcode and function field bits to the control unit

- reading two values from the Register File
 - » Register File addresses are contained in the instruction

סיימנו...

?שאלות

