IN4320: Machine Learning Assignment 1

Zheng Liu (4798406)

February 23, 2019

1 Question 1

```
Proof: let = (\mathbf{x}_1, x_2, ..., x_n)^T, \vec{b} = (y_1, y_2, ..., y_n)^T, (x_i, y_i \in R, \vec{a}, \vec{b} \in R^d)) (|x_i + y_i|)^2 = |x_i^2 + y_i^2 + 2x_iy_i| = x_i + y_i + 2x_iy_i \leq x_i^2 + y_i^2 + 2|x_iy_i| = (|x_i| + |y_i|)^2, |x_i + y_i| \leq |x_i| + |y_i|, so, \sum_{i=1}^n |x_i + y_i| \leq |x_i| + |y_i|, \sum_{i=1}^n |x_i| + \sum_{i=1}^n |y_i| so, ||\vec{a} + \vec{b}||_1 \leq ||\vec{a}||_1 + ||\vec{b}||_1, ||\vec{b}||_1 \leq ||\vec{a}||_1 + ||\vec{b}||_1, ||\vec{b}||_1 \leq ||\vec{b}||_1 \leq ||\vec{b}||_1 \leq ||\vec{b}||_1 \leq ||\vec{b}||_1 \leq ||\vec{b}||_1 = ||\vec{b}||_1 = ||\vec{b}||_1, ||\vec{b}||_1 \leq ||\vec{b}||_1 = ||\vec{b}||_1 \leq ||\vec{b}||_1
```

2 Question 2

Based on the setting, the problem is transformed into solve the corner points of the following equation and the plot is shown in figure 1.

$$|1 - m_{-}| + |3 - m_{-}| + |a - m_{-}| = \pi \tag{1}$$

For these three parts of absolute value, when they are equal to 0 respectively, the derivative does not exist, so they are the corner points respectively. So, for example, set $|1 - m_-| = 0$, $|3 - m_-| + |a - m_-| = \pi$ corresponds to two corner points, it is easy to calculate that they are

Figure 1: Plot of question 2

Figure 2: Set threshold value equal to π , only a=0 it has sparsity solution

 $(1,\pi-1)$ and $(1,\pi-1)$, also it is easy to calculate the rest four corner points are $(3,1+\pi)$, $(3,5-\pi)$, $(\frac{4+\pi}{2})$ and $(\frac{4-\pi}{2})$.

3 Question 3

This term is the regularisation for the loss function, it enforces and limits the parameter m_+ and m_- not to be too large that overfits on the training dataset.

It has sparsity solution if and only if a equals to 0. Take 2-dimensions as example, let $x=m_+^{(1)}-m_-^{(1)}$ and $y=m_+^{(2)}-m_-^{(2)}$, x and y are the representation of m_+-m_- in two dimensions respectively. Set threshold equals to π , the function is presented as $|x+a|+|y+a|=\pi$ shown in figure 2 of function of x and y by changing value of a from a negative value to a positive value. The red square is when a=0 the figure of $|x|+|y|=\pi$.

Assume m_+ and m_- are fixed, each dimension of these two vectors is also fixed. It is obviously that to minimise the regularisation term is to minimise the function $||m_+ - m_- + a||_1$, it equals to minimise $\sum_{i=1}^{n} |m_+^{(i)} - m_-^{(i)} + a|$. I took the dimensions of m_+ and m_- equal to a odd number, 3,

as example, setting each dimension of $m_+ - m_-$ a value and plot the result, there exists a single point that has minimum value and the related value of a is equal to the median of values of all the dimensions $-|m_+^{(i)} - m_-^{(i)}|$. Similarly, set the dimension to an even number, there does not exist a single minimum point but a minimum curve, it starts and end on two middle value of $-|m_+^{(i)} - m_-^{(i)}|$,

Figure 3: Dimension = 3, $m_+^{(i)} - m_-^{(i)}$ concludes $\{1,2,3\}$, the minimum value exist on -2, Dimension = 4, $m_+^{(i)} - m_-^{(i)}$ concludes $\{1,2,3,4\}$, the minimum value exist between -2 and -3

obviously, the median of all the dimensions is in the curve. The result is shown in figure 3.

4 Question 4

I initialise the learning rate to a small value, 0.00001 and the turns of learning into 1000. Because the data scale is relatively small. I would rather each to move a small step each turn.

I used the gradient descent method to optimise the parameter of the loss function. I did manually program for gradient descent (not using the library function). The basic thing to do is to calculate the optimised m_+ , m_- and a by taking the partial derivative and applying the gradient descent function. As there are the absolute functions, I consider it cannot be done directly to take the derivative, there are three situation for a single absolute function, the inner term is positive, negative and zero. So I used *if*-condition in my code to separate these three situations, after which, the derivative is easy to calculate and the rest of the function is easy to apply.

Then I apply the current parameters achieved from gradient descent function into the loss function and obtain the value. I did the loop of applying "loss function-gradient descent" until the loss value changes in a small range, I regard the steady statue reach the lowest value (as proved in question 1, there exists only one local minima which is also the global minima).

Figure 4: Error rate curves of λ based on different sample size

Figure 5: Two loss function curves of λ based on different sample size

Figure 6

5 Question 5

The error rate curves, including apparent error and true error, for both when sample number is 1000 and 10 respectively are shown in figure 4, with $\lambda \in \{0,1,10,100,1000,10000\}$.

The loss curves shown in figure 5 illustrate the trend of loss when λ grows large. It is obvious that $\lambda = 10^3$ is a turning point, after which the loss grows immediately.

6 Question 6

Figure 6, 7, 8 and 9 show the average median and standard deviation of m_{+} and m_{-} .

Figure 7

Figure 8

Figure 9