MATHS

Section: Maths

2ème Session

EXERCICE 1

Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = \int_1^x \frac{\cos^2 t}{t} dt$.

Répondre par vrai ou faux à chacune des affirmations suivantes, en justifiant la réponse.

- 1) Pour tout x > 0, $f'(x) \ge 0$.
- 2) Pour tout x > 0, $f(x) \ge 0$.
- 3) $f(2) \le \ln 2$.

Contenu

- Fonction définie par intégrale.
- Signe d'une intégrale.
- Comparaison de deux intégrales.

Solutions

- 1. **Vrai.** En effet : $g: x \mapsto \frac{\cos^2 x}{x}$ est continue sur $]0, +\infty[$ et $1 \in]0, +\infty[$ donc f est la primitive de g sur $]0, +\infty[$ qui s'annule en 1. Donc f est dérivable sur $]0, +\infty[$ et pour tout x > 0; $f'(x) = \frac{\cos^2 x}{x} \ge 0$.
- 2. **Faux**. Car pour 0 < x < 1; $\int_{1}^{x} \frac{\cos^{2} t}{t} dt \le 0$.
- 3. **Vrai**. En effet $\frac{\cos^2 t}{t} \le \frac{1}{t}$ pour tout $t \in [1,2]$ donc $f(2) = \int_1^2 \frac{\cos^2 t}{t} dt \le \int_1^2 \frac{1}{t} dt = \left[\ln t\right]_1^2 = \ln 2$.

EXERCICE 2

Pour tout entier naturel p supérieur ou égal à 3, on désigne par f_p la fonction définie sur $]0, +\infty[$ par

 $f_p(x) = p \ (lnx) - x$, où ln désigne la fonction logarithme népérien. On note (C_p) la courbe représentative de f_p dans un repère orthogonal (O,\vec{i},\vec{j}) .

- A-1) Etudier les variations de la fonction f_3 : $x \mapsto 3\ln x x$.
 - 2) Montrer que l'équation $f_3(x)=0$ admet exactement deux solutions, notées u_3 et v_3 , appartenant respectivement aux intervalles]1, 3[et] 3, $+\infty$ [.
 - 3) On donne ci-dessous, le tableau de variation de f_p pour $p \ge 3$.

- a) Montrer que , pour tout entier naturel $p \ge 3$, il existe un unique réel u_p appartenant à l'intervalle $]1, \, p[\ \text{tel que} \ \ f_p(u_p) = 0.$
- b) Montrer que, pour tout entier naturel $p \ge 3$, il existe un unique réel $v_p > p$ tel que $f_p(v_p) = 0$.

On définit ainsi, pour tout entier nature $p \ge 3$, deux suites (u_p) et (v_p) .

- B- Dans cette partie on se propose d'étudier les deux suites (up) et (vp) définies précédemment.
 - 1) Déterminer la limite de la suite (v_p).
 - 2) On a représenté dans la **figure 1** de l'annexe ci jointe les courbes C_3 , C_4 , C_5 et C_6 représentatives des fonctions f_3 , f_4 , f_5 et f_6 .
 - a) Placer sur l'axe des abscisses les termes u₃, u₄, u₅ et u₆ de la suite (u_p).
 - b) Représenter sur l'axe des ordonnées les réels $f_3(u_4)$, $f_4(u_5)$ et $f_5(u_6)$.
 - 3) a) Montrer que pour tout entier naturel $\ p \geq 3, \ f_p(u_{p+1}) \ < \ 0.$
 - b) En déduire que la suite (up) est décroissante et qu'elle est convergente.
 - c) Montrer que $\frac{\ln u_p}{u_p} = \frac{1}{p}$. En déduire la limite de la suite (u_p) .

Contenu

- Fonction ln
- Notion de bijection.
- Suites réelles, calcul de limites.

Aptitudes visées

- Etudier les variations d'une fonction.
- Utiliser les théorèmes des valeurs intermédiaires ou de bijection pour montrer l'existence, l'unicité et encadrer des solutions des équations de type f(x) = 0.
- Représenter graphiquement les termes d'une suite récurrente.
- Prouver la convergence d'une suite réelle et déterminer sa limite.

Solutions et commentaires

A.

1)
$$f_3$$
 est dérivable sur $]0,+\infty[$ et $f_3'(x) = \frac{3}{x} - 1 = \frac{3-x}{x}$.

X	0	3	+∞
f ₃ '(x)		+	-
f_3		$-\infty$ $3\ln 3 - 3$	<u>~</u> ∞

2) La fonction f_3 est continue et strictement croissante sur]1,3[donc elle réalise une bijection de]1,3[$\sup f_3(]1,3[)=$]-1,3 $\ln 3-3[$. $0\in]-1,3\ln 3-3[$ donc il existe un unique $u_3\in]1,3[$ tel que $f_3(u_3)=0$.

La fonction f_3 est continue et strictement décroissante sur $]3,+\infty[$ donc elle réalise une bijection de $]3,+\infty[$ sur $f_3(]3,+\infty[)=]-\infty,3\ln 3-3[$. $0\in]-\infty,3\ln 3-3[$ donc il existe un unique $v_3\in]3,+\infty[$ tel que $f_3(v_3)=0$.

- ✓ Se rappeler le théorème de bijection
- 3) Remarquons que pour tout p > 3, $p \ln p p = p(\ln p 1) > 0$.

- a) La fonction f_p est continue et strictement croissante sur]1,p[donc elle réalise une bijection $de \]1,p[\ sur \ f_p \ (\]1,p[\) = \]-1,p\ln p-p[\ . \ 0 \in \]-1,p\ln p-p[\ donc \ il \ existe un$ unique $u_p \in]1,p[$ tel que $f_p \ (u_p) = 0$
- b) La fonction f_p est continue et strictement décroissante sur $]p,+\infty[$ donc elle réalise une bijection $de \]p,+\infty[\ sur \ f_p \ (]p,+\infty[) = \]-\infty, p \ ln \ p-p[\ . \ 0 \in \]-\infty, p \ ln \ p-p[\ donc \ il \ existe un unique <math display="block">v_p \in \]p,+\infty[\ tel \ que \ f_p \ (v_p) = 0.$

В.

- 1) On sait que pour tout p > 3, $v_p > p$ et $\lim_{p \to +\infty} p = +\infty$ donc $\lim_{p \to +\infty} v_p = +\infty$.
- 2) a) et b) voir la figure.
- 3) a) Pour tout $p \ge 3$, $f_p(u_{p+1}) = p \ln(u_{p+1}) u_{p+1} = (p+1) \ln(u_{p+1}) u_{p+1} \ln(u_{p+1})$ $= f_{p+1}(u_{p+1}) \ln(u_{p+1}) = -\ln(u_{p+1}) < 0 \text{ car } u_{p+1} > 1.$
 - b) on a pour tout $p \ge 3$, $f_p(u_{p+1}) < 0 = f_p(u_p)$ et la fonction f_p est strictement croissante sur]1,p[donc $u_{p+1} < u_p$ par suite la suite (u_p) est décroissante et minorée par 1 donc elle est convergente.

c)
$$f_p(u_p) = 0 \Rightarrow p \ln(u_p) - u_p = 0 \Rightarrow \frac{\ln(u_p)}{u_p} = \frac{1}{p}$$

Posons $\lim_{p\to+\infty} u_p = L$; $L \ge 1$.

$$\lim_{p\to +\infty} \frac{ln(u_{_p})}{u_{_p}} = \lim_{p\to +\infty} \frac{1}{p} = 0 \ , \ Si \ L > 1 \ \ alors \ \lim_{p\to +\infty} \frac{ln(u_{_p})}{u_{_p}} = \frac{ln\,L}{L} \neq 0 \ \ d\text{`où } \ L = 1.$$

EXERCICE 3

Dans l'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les points A(1,3,2), B(1,-1,-2) et C(2,4,1).

- 1) a) Montrer que les points A, B et C ne sont pas alignés.
 - b) Montrer qu'une équation cartésienne du plan (ABC) est 2x y + z 1 = 0.
- 2) Soit S la sphère d'équation $x^2 + y^2 + z^2 6x 2z 4 = 0$.
 - a) Déterminer le centre I et le rayon r de la sphère S.
 - b) Montrer que la sphère S coupe le plan (ABC) suivant le cercle (Γ) de diamètre [AB].
 - c) Montrer que la droite (AC) est tangente au cercle (Γ).
- 3) Soit h l'homothétie de centre C et de rapport 3 et S' l'image de la sphère S par h.
 - a) Déterminer le rayon de la sphère S' et les coordonnées de son centre J.
 - b) Montrer que le plan (ABC) coupe la sphère S'suivant un cercle (Γ ').
 - c) Montrer que la droite (AC) est tangente au cercle (Γ ') en un point E que l'on précisera.

Contenu

- Plan passant par trois points non alignés de l'espace.
- Sphère : équation d'une sphère, détermination du centre et du rayon d'une sphère, position d'une sphère et d'un plan
- Homothétie de l'espace, image d'une sphère, image d'un plan par une homothétie.

Aptitudes visées

- Déterminer une équation cartésienne d'un plan.
- Déterminer le centre et le rayon d'une sphère connaissant son équation cartésienne.
- Déterminer la position d'une sphère et d'un plan.
- Reconnaître l'image d'une sphère par une homothétie.
- Reconnaître un plan globalement invariant par une homothétie .

Solutions et commentaires

1) a) $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{0}$ donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires et par suite les points A, B et C ne sont pas alignés.

Le vecteur \vec{n} de composantes $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ est colinéaire à $\overrightarrow{AB} \wedge \overrightarrow{AC}$, don \vec{n} est normal au plan (ABC) et par suite une équation du plan (ABC) est 2x - y + z + d = 0

le point $A \in (ABC)$ donc d = -1. On en déduit que (ABC) : 2x - y + z - 1 = 0.

- ✓ On peut traiter autrement cette question : il suffit de vérifier que les points A, B et C appartiennent au plan P: 2x-y+z-1=0.
- 2) a) $S: x^2 + y^2 + z^2 6x 2z 4 = 0 \Leftrightarrow (x 3)^2 + y^2 + (z 1)^2 = 14$. On en déduit que S est la sphère de centre I(3,0,1) et de rayon $r = \sqrt{14}$.
 - b) $d(I,(ABC)) = \sqrt{6} < r \text{ donc } S \text{ coupe}(ABC) \text{ suivant un cercle } (\Gamma) \text{ de rayon } r' = \sqrt{r^2 d^2} = 2\sqrt{2}$. Or $A \in S$, $B \in S$ et $AB = 4\sqrt{2} = 2r'$ ce qui prouve que [AB] est un diamètre de (Γ) .
 - c) $\overrightarrow{AB} \cdot \overrightarrow{AC} = 0$ donc $\overrightarrow{AB} \perp \overrightarrow{AC}$ par suite la droite (AC) est perpendiculaire à la droite (AB) en A. D'où (AC) est tangente à (Γ) en A.
- 3) a) on pose R' le rayon de S' donc R' = 3 r = $3\sqrt{14}$ et $J = h(I) \Leftrightarrow \overrightarrow{CJ} = 3\overrightarrow{CI}$. En posant J(x,y,z), l'égalité vectorielle précédente donne $\begin{cases} x-2=3\\ y-4=-12 \text{ il résulte que } J(5,-8,1).\\ z-1=0 \end{cases}$
 - b) On sait que h(S) = S'. Or $C \in (ABC)$ donc h((ABC)) = (ABC) et puisque S coupe (ABC) suivant le cercle (Γ) donc S' = h(S) coupe (ABC) = h((ABC)) suivant le cercle $(\Gamma) = h(\Gamma)$.
 - c) $C \in (AC)$ donc h((AC)) = (AC) et puisque (AC) est tangente à S en A donc (AC) = h((AC)) est tangente à S' en h(A) = E

$$h(A) = E \iff \overrightarrow{CE} = 3\overrightarrow{CA} \text{. En posant } E\left(x,y,z\right), \text{ l'égalité vectorielle précédente donne } \begin{cases} x-2 = -1 \\ y-4 = -1 \\ z-1 = 1 \end{cases}$$

EXERCICE 4

Le plan est orienté.

Dans la figure 2 de l'annexe ci-jointe, le triangle OAB est rectangle isocèle en O et de sens direct.

H est le projeté orthogonal du point O sur la droite (AB), A' est le point du segment [OH] tel que O A' =

 $\frac{1}{2}$ OA et H' est le projeté orthogonal du point A' sur la droite (OB).

Soit f la similitude directe de centre O qui envoie A en A'.

- 1) Déterminer le rapport et l'angle de f.
- 2) On note B' l'image du point B par la similitude directe f.
 - a) Déterminer la nature du triangle OA'B'.
 - b) Construire le point B'.
 - c) Montrer que f(H) = H'.
- 3) Soit I le milieu du segment [A'B] et J le milieu du segment [AA'].
 - a) Montrer qu'il existe un unique déplacement R qui envoie J en O et I en H.
 - b) Montrer que R est une rotation dont on déterminera l'angle.
 - c) Soit K le milieu du segment [AB']. Montrer que JK = OH' et que $(\overrightarrow{JK}, \overrightarrow{OH'}) = -\frac{\pi}{2}[2\pi]$.
 - d) Déterminer alors R(K).
 - e) En déduire que IK = HH' et que (IK) et (HH') sont perpendiculaires.
- 4) Montrer que le quadrilatère IHK H' est un carré

Contenu

- Similitude directe : détermination du centre , du rapport et de l'angle d'une similitude directe, image d'un triangle par une similitude directe.
- Déplacement : éléments caractéristique d'une rotation.
- Identification d'une configuration de base (carré).

Aptitudes visées

- Déterminer les éléments caractéristiques d'une similitude directe.
- Déterminer la nature et les éléments caractéristiques d'un déplacement.
- Utiliser une similitude ou une isométrie pour déterminer la nature d'une configuration usuelle (triangle rectangle, carré).

Solutions et commentaires

1)
$$k = \frac{OA'}{OA} = \frac{\frac{1}{2}OA}{OA} = \frac{1}{2}$$
 et $\theta = (\overrightarrow{OA}, \overrightarrow{OA'}) = \frac{\pi}{4}[2\pi]$.

- 2) a) Le triangle OAB est rectangle isocèle en O et de sens direct or f(O) = O, f(A) = A' et f(B) = B' donc le triangle OA'B' est rectangle isocèle en O et de sens direct (f est une similitude directe).
 - b) Le triangle OA'B' est rectangle isocèle en O et de sens direct donc B' est l'image de B par la rotation de centre O et d'angle $\frac{\pi}{2}$.
 - c) Montrons que H' est le milieu de [A'B']. on sait que

$$(\overrightarrow{OA'}, \overrightarrow{OB}) = \frac{\pi}{4} [2\pi]$$
 et $(\overrightarrow{OA'}, \overrightarrow{OB'}) = \frac{\pi}{2} [2\pi]$ donc $(\overrightarrow{OH'}, \overrightarrow{OB'}) = \frac{\pi}{4} [2\pi]$ donc (\overrightarrow{OB}) est la bissectrice de $(\overrightarrow{OA'}, \overrightarrow{OB'})$ et puisque le triangle $(\overrightarrow{OA'}, \overrightarrow{OB'})$ est rectangle isocèle en (\overrightarrow{OB}) est la médiatrice de $(\overrightarrow{A'B'})$ par suite $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'H'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ et $(\overrightarrow{OB}) \perp (\overrightarrow{A'B'})$ donc les points $(\overrightarrow{A'}, \overrightarrow{A'})$ et $(\overrightarrow{A'B'})$ et $(\overrightarrow$

Puisque H est le milieu de [AB] et f(A) = A' et f(B) = B' donc f(H) = H'.

- 3) a) I est le milieu de [A'B] et J est le milieu de [AA'] donc $IJ = \frac{1}{2}AB = AH = OH \neq 0$ donc il existe un unique déplacement R qui envoie J en O et I en H.
 - b) $(\overrightarrow{IJ}, \overrightarrow{HO}) = (\overrightarrow{HA}, \overrightarrow{HO})[2\pi] = -\frac{\pi}{2}[2\pi]$ donc R est une rotation d'angle $-\frac{\pi}{2}$.
 - c) K est le milieu de [AB'] et J est le milieu de [A'A] donc $KJ = \frac{1}{2}A'B' = A'H' = OH'$ de plus $\overrightarrow{JK} = \frac{1}{2}\overrightarrow{A'B'}$ donc $(\overrightarrow{JK}, \overrightarrow{OH'}) = (\overrightarrow{A'B'}, \overrightarrow{OH'})[2\pi] = (\overrightarrow{A'H'}, \overrightarrow{OH'})[2\pi] = -\frac{\pi}{2}[2\pi]$.

d) On pose R(K) = K' on obtient alors JK = OK' et
$$\left(\overrightarrow{JK}, \overrightarrow{OK'}\right) = -\frac{\pi}{2}[2\pi]$$
 or JK = OH' et $\left(\overrightarrow{JK}, \overrightarrow{OH'}\right) = -\frac{\pi}{2}[2\pi]$ on en déduit que OK' = OH' et $\left(\overrightarrow{OH'}, \overrightarrow{OK'}\right) = \left(\overrightarrow{OH'}, \overrightarrow{JK}\right) + \left(\overrightarrow{JK}, \overrightarrow{OK'}\right)[2\pi] = 0[2\pi]$ donc K' = H'. ainsi R(K) = H'.

- e) R(K) = H' et R(I) = H donc IK = HH' et $(IK) \perp (HH')$
- 4) I est le milieu de [A'B] et H est le milieu de [AB] donc $\overrightarrow{IH} = \frac{1}{2} \overrightarrow{A'A}$

H' est le milieu de [A'B'] et K est le milieu de [AB'] donc $\overrightarrow{H'K} = \frac{1}{2}\overrightarrow{A'A}$

Donc $\overrightarrow{IH} = \overrightarrow{H'K}$ par suite IHKH' est un parallélogramme (les points I, H et K ne sont pas alignés) et puisque IK= HH' et (IK) \perp (HH') donc c'est un carré.

