1 Atividade 6

1.1 Introdução ao Modelo com Controlador PID

Os controladores PID são amplamente reconhecidos por sua eficácia e flexibilidade, combinando três elementos distintos para obter um desempenho superior: proporcional, integral e derivativo. Ao contrário dos controladores proporcionais, que ajustam a resposta do sistema de maneira direta ao erro atual, os controladores PID aproveitam três abordagens diferentes, cada uma desempenhando uma função específica.

O componente proporcional funciona de modo semelhante ao controlador proporcional simples, ajustando a saída do sistema em relação direta ao erro, com o objetivo de reduzir a diferença entre o valor medido e o valor desejado. No entanto, quando o componente proporcional sozinho não consegue corrigir totalmente o erro acumulado, entra em ação o componente integral, que soma e integra o erro ao longo do tempo para eliminá-lo.

Além disso, o componente derivativo desempenha um papel crucial ao prever mudanças no erro, ajudando a evitar que essas variações causem impactos negativos na saída do sistema. Com a integração desses três elementos, os controladores PID conseguem oferecer um controle mais preciso e estável, ajustando continuamente a saída para manter o sistema no estado desejado. A fórmula padrão de um controlador PID pode ser representada pela equação 1:

$$u(t) = K_p e(t) + K_i \int_0^t e(T)dT + K_d \frac{de(t)}{dt}$$
(1)

O método de Ziegler-Nichols, desenvolvido por John G. Ziegler e Nathaniel B. Nichols, é uma técnica consolidada para a sintonia de controladores PID. Este método é particularmente útil porque simplifica a configuração dos controladores ao fornecer fórmulas práticas para calcular os ganhos K_p , K_i , e K_d com base na resposta do sistema a uma entrada de teste. Esses parâmetros são ajustados para otimizar a resposta do sistema em termos de tempo de subida, sobreposição e tempo de assentamento.

Os valores dos ganhos são estabelecidos de acordo com a estabilidade observada do sistema e são tipicamente calculados a partir do ganho crítico K_c e do período crítico P_c , que são obtidos através de testes de malha aberta. A Tabela 1 resume os valores recomendados para cada tipo de ganho:

$$\begin{array}{c|cccc}
K_p & K_i & K_d \\
\hline
0.6 \times K_c & \frac{2 \times K_p}{P_c} & 0.125 \times P_c
\end{array}$$

Table 1: Valores dos ganhos segundo o método de Ziegler-Nichols

1.2 Controlador PID

Baseando-se nas análises realizadas na Atividade 4, foi possível determinar um valor limite para o ganho crítico K_c de 14.93. Esta descoberta é essencial para o ajuste dos parâmetros do controlador PID segundo o método de Ziegler-Nichols.

Figure 1: Diagrama mostrando o sistema no ponto crítico com $K_c = 14.93$

A simulação realizada com $K_c = 14.93$ demonstrou que o sistema alcança um estado crítico, como evidenciado no gráfico abaixo:

Figure 2: Resposta do sistema com o controlador PID ajustado para $K_c = 14.93$

A resposta simulada revela claramente o comportamento do sistema na condição de ganho crítico, possibilitando a utilização desses dados para calibrar os parâmetros do controlador PID, garantindo eficiência e estabilidade no controle do sistema.

1.2.1 Determinação dos Parâmetros do Controlador PID

Após identificarmos o ganho crítico $K_c = 14.93$ através de análises detalhadas, o que nos permite empregar o método de Ziegler-Nichols para ajustar os parâmetros do controlador PID. Este método é eficaz para sintonizar controladores em sistemas onde a resposta precisa ser otimizada em termos de estabilidade e rapidez.

1.2.2 Cálculo dos Parâmetros do Controlador PID

O método de Ziegler-Nichols é conhecido por sua eficiência na configuração inicial de controladores PID. Ele utiliza o ganho crítico K_c e o período crítico P_c para estabelecer os parâmetros de controle, ajustando assim a resposta do sistema.

• Ganho Proporcional K_p :

$$K_p = 0.6 \times K_c = 0.6 \times 14.93 \approx 8.958$$

• Ganho Integral K_i (assumindo um P_c conhecido de 10 segundos para exemplificação):

$$K_i = \frac{2 \times K_p}{P_c} = \frac{2 \times 8.958}{10} \approx 1.7916$$

• Ganho Derivativo *K_d*:

$$K_d = 0.125 \times P_c = 0.125 \times 10 = 1.25$$

1.2.3 Implementação e Validação dos Parâmetros

Os parâmetros $K_p = 8.958$, $K_i = 1.7916$, e $K_d = 1.25$ são implementados no controlador PID no ambiente de simulação, como Scilab. Esses valores são projetados para ajustar o sistema para responder de forma ideal em várias condições operacionais, melhorando a estabilidade e precisão do sistema.

A eficácia desses parâmetros será validada por meio de simulações subsequentes, as quais confirmarão se eles mantêm o desempenho desejado do sistema, garantindo que o controle PID seja tanto eficiente quanto efetivo.

Figure 3: Resposta do sistema com os parâmetros do PID ajustados.

Após a validação inicial, um refinamento manual dos parâmetros pode ser necessário para otimizar ainda mais a resposta do sistema. Este processo de ajuste fino baseia-se na análise das respostas obtidas e na experiência prática, permitindo uma sintonia mais precisa que responde de maneira adequada às especificidades do sistema e às variações nas condições operacionais. Este ajuste fino é crucial para alcançar a melhor performance, equilibrando a estabilidade e a rapidez da resposta do controlador PID.

Subsequentemente, novas simulações serão realizadas para validar a eficácia dos parâmetros ajustados. Essa etapa é crucial para verificar se os ajustes refinados mantêm a saída do sistema próxima ao valor desejado sob uma gama mais ampla de condições operacionais, garantindo a eficácia e a eficiência do controlador.

1.3 Refinamento dos Parâmetros do Controlador PID

Os parâmetros iniciais K_p , K_i , e K_d obtidos pelo método de Ziegler-Nichols, baseados no ganho crítico estimado de $K_c = 14.93$, fornecem um ponto de partida útil para a configuração do controlador PID. No entanto, a precisão inicial na estimativa de K_c pode influenciar diretamente a eficácia destes parâmetros, necessitando de ajustes refinados para alinhar o desempenho do controlador às características específicas do sistema.

- Ajuste do Ganho Proporcional (K_p) : O valor inicial de $K_p = 8.9754$ pode precisar ser ajustado se a resposta do sistema for muito lenta ou rápida demais, o que indica que a estimativa de K_c pode não ter capturado perfeitamente as dinâmicas do sistema.
- Ajuste do Ganho Integral (K_i): Da mesma forma, o valor de $K_i = 1.79508$ (calculado com um P_c hipotético de 10) pode requerer modificações para otimizar a correção de erros de longo prazo, sugerindo que a sensibilidade do sistema a erros acumulados pode ter sido subestimada.
- Ajuste do Ganho Derivativo (K_d): O valor inicial de $K_d = 1.25$ pode também necessitar de ajustes para melhor controlar a resposta do sistema a mudanças rápidas nas condições de entrada ou perturbações.

1.3.1 Teste de Ajuste do Ganho Proporcional (K_p)

Para otimizar ainda mais o desempenho do controlador PID e garantir a eficiência e eficácia do sistema sob várias condições operacionais, procederemos com uma série de testes. Nestes testes, focaremos inicialmente em ajustar o ganho proporcional K_p enquanto mantemos os valores de K_i e K_d fixos, a fim de entender o impacto de K_p na resposta dinâmica do sistema.

1.3.2 Configuração dos Testes

Os testes são configurados para variar K_p em uma faixa específica enquanto K_i e K_d são mantidos constantes nos valores calculados anteriormente. Essa abordagem permite observar como ajustes no ganho proporcional afetam características como o tempo de subida, o sobressinal e o tempo de assentamento do sistema.

1.3.3 Resultados dos Testes

Os resultados desses testes são apresentados através de gráficos que mostram a resposta do sistema a uma entrada de degrau padrão para diferentes valores de K_p . Cada gráfico ilustrará como as variações em K_p influenciam o desempenho do sistema, destacando a eficácia do ajuste do ganho proporcional em melhorar a resposta do controlador.

Esse aqui é o diagrama

Figure 4: Resposta do sistema para diferentes valores de K_p com K_i e K_d fixos.

agora o resultado

Figure 5: Resposta do sistema para diferentes valores de K_p com K_i e K_d fixos.

1.3.4 Resultados dos Testes de Variação de K_p

O gráfico a seguir apresenta a resposta do sistema para quatro diferentes configurações de K_p , com K_i e K_d mantidos constantes. Cada curva representa uma tentativa distinta de ajustar a rapidez e o amortecimento da resposta do sistema através da modificação do ganho proporcional.

1.3.5 Discussão dos Resultados

A análise visual das respostas mostra que:

- A curva azul ($K_p = 9.858$) apresenta maior sobressinal e oscilações prolongadas, indicando uma resposta potencialmente muito agressiva.
- A curva amarela ($K_p = 6.858$) e a vermelha ($K_p = 7.858$) mostram menor sobressinal, mas ainda com oscilações visíveis, sugerindo uma melhoria em estabilidade em comparação ao azul.
- A curva verde (K_p = 8.858), que é a configuração padrão, oferece um equilíbrio entre rápida estabilização e controle de oscilações, possivelmente representando a configuração mais eficaz entre as testadas.

1.3.6 Conclusões dos Testes

Estes resultados indicam que ajustes finos em K_p podem significativamente alterar a dinâmica do sistema. O valor de $K_p = 8.858$ parece oferecer o melhor compromisso entre estabilidade e tempo de resposta, fazendo dele uma escolha preferencial para futuras configurações do controlador PID neste sistema específico.

1.3.7 Teste de Ajuste do Ganho Integral (K_i)

Nesta série de testes, exploramos o impacto de ajustes no ganho integral K_i enquanto mantemos K_p e K_d fixos. O objetivo é observar como variações em K_i influenciam a capacidade do sistema de eliminar o erro estático

e estabilizar a resposta ao longo do tempo.

1.4 Refinamento dos Parâmetros do Controlador PID

Os parâmetros iniciais K_p , K_i , e K_d obtidos pelo método de Ziegler-Nichols, baseados no ganho crítico estimado de $K_c=14.959$, fornecem um ponto de partida útil para a configuração do controlador PID. No entanto, para refinar esses parâmetros, realizamos uma série de testes variando o ganho integral K_i enquanto mantemos K_p e K_d fixos. O objetivo é avaliar como ajustes em K_i afetam a estabilidade e a rapidez da resposta do sistema.

Figure 6: Diagrama do sistema com diferentes configurações de K_i .

Figure 7: Resposta do sistema para diferentes valores de K_i com K_p e K_d fixos. As cores representam diferentes valores de K_i : verde para $K_i = 1.7916$, vermelho para $K_i = 1.3916$, amarelo para $K_i = 0.8916$, e azul para $K_i = 2.3916$.

1.4.1 Discussão dos Resultados

A análise dos gráficos revela:

- A curva verde (K_i = 1.7916) apresenta uma resposta rápida e estabilizada, indicando um ajuste eficaz para as condições atuais do sistema.
- As curvas vermelha ($K_i = 1.3916$) e amarela ($K_i = 0.8916$) exibem respostas mais lentas e menos eficientes para eliminar o erro permanente.
- A curva azul ($K_i = 2.3916$) tende a oscilar excessivamente, sugerindo que um valor de K_i mais elevado pode induzir instabilidade.

1.4.2 Conclusões dos Testes

Os testes indicam que um ajuste cuidadoso de K_i é crucial para otimizar a resposta do sistema. O valor de $K_i = 1.7916$ se mostrou mais adequado, equilibrando a redução do erro permanente com uma resposta estável. Estes resultados serão usados para recomendar ajustes finais nos parâmetros do controlador PID, assegurando que ele opere eficientemente sob as condições esperadas.

1.4.3 Teste de Ajuste do Ganho Derivativo (K_d)

Com os ganhos proporcional K_p e integral K_i fixados, conduzimos uma série de testes alterando o ganho derivativo K_d para observar seu impacto na dinâmica de resposta do sistema. Estes testes ajudam a entender melhor como o ajuste fino de K_d pode controlar as oscilações e melhorar a estabilidade do sistema.

Figure 8: Diagrama do sistema com diferentes configurações de K_d .

Figure 9: Resposta do sistema para diferentes valores de K_d com K_p e K_i fixos. As cores representam diferentes valores de K_d : verde para $K_d = 1.25$, vermelho para $K_d = 1.00$, amarelo para $K_d = 0.85$, e azul para $K_d = 1.70$.

1.4.4 Discussão dos Resultados

A análise dos gráficos indica:

- A curva verde (K_d = 1.25) apresenta uma resposta equilibrada, com oscilações moderadas e rápido tempo de assentamento.
- As curvas vermelha ($K_d = 1.00$) e amarela ($K_d = 0.85$) mostram maior oscilação e um tempo de assentamento mais prolongado, indicando menor eficácia no controle de perturbações rápidas.
- A curva azul ($K_d = 1.70$) tem o menor sobressinal, indicando que um valor mais alto de K_d pode suprimir oscilações eficientemente, mas pode também resultar em uma resposta mais lenta.

1.4.5 Conclusões dos Testes

Os resultados sugerem que um K_d entre 1.25 e 1.70 proporciona uma boa compensação entre estabilidade e rapidez na resposta. Valores mais baixos de K_d resultam em maior oscilação, enquanto valores mais altos podem atrasar a resposta do sistema. Estes insights são cruciais para o ajuste final do controlador PID, garantindo uma operação eficaz e eficiente do sistema.