EI5IS102 Traitement de l'Information

Lecture 2: Correspondence Analysis

Charles Brazier

Postdoctoral researcher *Université de Bordeaux, CNRS, Bordeaux INP, LaBRI*France

Types of data

Quantitative (numerical values)

Interval (discrete or continuous):

Ratio:

Qualitative data

Qualitative data: non-numerical data that represent descriptive information <u>Ex:</u> describing an employee (supportive, directive, etc.), color of cars (red, blue, etc.)

Categorical data: type of qualitative data that is organized into distinct categories Ex: describing an employee by level (junior/senior)

Contingency table: cross-table that summarizes information of two categorical data.

Ex: rank vs smoking intensity Smoking intensity Rank light medium heavy Total none Senior manager 2 11 4 2nd categorical data: 1st categorical data: Junior manager 4 4 smoking intensity working rank Senior employee 25 12 4 10 Junior employee 18 24 33 13 88 Secretary 10 2 25 193 Greenacre, 1984 Total 61 45 62 25

Contingency table

Contingency table: rank vs smoking intensity

- 3 junior managers have a light smoking intensity
- 3 light smokers are junior managers
- → symmetrical role of rows/columns

column sums have meaning

Contingency table

Correspondence Analysis (CA):

Applied to contingency table

row profile <

	Smoking intensity								
Rank	none	none light medium heavy Tota							
Senior manager	4	2	3	2	11				
Junior manager	4	3	7	4	18				
Senior employee	25	10	12	4	51				
Junior employee	18	24	33	13	88				
Secretary	10	6	7	2	25				
Total	61	45	62	25	193				

column profile

Answered questions:

- 1. Which **row profiles** are close/distant
- 2. Which **column profiles** are close/distant
- 3. Find strong associations between row and column classes

Notations

n: number of instances

 V_{τ} : qualitative variable of size I

 V_2 : qualitative variable of size J

 x_{ij} : nb of instances possessing modality i of $\mathit{V_1}$ and modality j of $\mathit{V_2}$

11 instances have modality 1 ("Senior manager") of V_{τ} ("Rank")

Contingency table: $X:(x_{ij})_{1\leq i\leq I, 1\leq j\leq J}$

Margins:

- column margin: $x_{i \bullet} = \sum_{i=1}^{5} x_{ij}$

- raw margin: $x_{\bullet j} = \sum_{i=1}^{I} x_{ij}$

	\								
		Sı	moking int	tensity					
Rank	none	light	medium	heavy	x_i•				
Senior manager	4	2	3	2	(11)				
Junior manager	4	3	7	4	18				
Senior employee	25	10	12	4	51				
Junior employee	18	24	33	13	88				
Secretary	10	10 6 7 2 25							
x_•j	61	45	62	25	n=193				

overall sum:

$$x_{\bullet \bullet} = \sum_{i=1}^{r} \sum_{j=1}^{r} x_{ij} = r$$

Probability table

Probability table:
$$f_{ij} = \frac{x_{ij}}{n}$$

Marginal probabilities:

- marginal column probability:
$$f_{i\bullet} = \sum_{j=1}^{s} f_{ij}$$

- marginal row probability:
$$f_{ullet j} = \sum_{i=1}^I f_{ij}$$

$$f_{\bullet \bullet} = \sum_{i=1}^{I} \sum_{j=1}^{J} f_{ij} = 1$$

5% of the instances are senior employees with light smoking intensity

$$P(V_1=i,V_2=j)$$

		Smoking intensity				
Rank	none	light	medium	heavy	f_i•	
Senior manager	0,02	d ,01	0,02	0,01	0,06	
Junior manager	0,02	0,02	0,04	0,02	0,09	
Senior employee	0,13	(0,05)	0,06	0,02	0,26	
Junior employee	0,09	0,12	0,17	0,07	0,46	
Secretary	0,05	0,03	0,04	0,01	(0,13)	
f_•j	0,32	0,23	0,32	0,13	1,00	

13% of the instances are secretaries $P(V_i=i)$

Link between V_1 and V_2 : deviation of the observed data from the **independence model**

Probabilities in case of independence:

Independent events: $P(A \text{ and } B) = P(A) \times P(B)$ observed probability

Independent qualitative variables: $\forall i, \forall j, f_{ij} = f_{i \bullet} f_{\bullet j}$ theoretical probability \rightarrow joint probability = product of marginal probabilities

Another way to write it: $\frac{f_{ij}}{f_{i\bullet}} = f_{\bullet j}$ and $\frac{f_{ij}}{f_{\bullet j}} = f_{i\bullet}$

→ conditional probability = marginal probability

Deviation of observed data from independence model:

If V_1 and V_2 are independent, **observed** and **theoretical probabilities** should be similar:

$$\forall i, \forall j, f_{ij} \approx f_{i \bullet} f_{\bullet j} = \hat{f}_{ij}$$

So **observed** and **theoretical data** should be similar:

$$\forall i, \forall j, x_{ij} = n f_{ij} \approx n f_{i \bullet} f_{\bullet j} = \hat{x}_{ij}$$

Residual = diff between observed and theoretical data = deviation from independence

$$\forall i, \forall j, r_{ij} = x_{ij} - \hat{x}_{ij}$$

Observed data X:

	Smoking intensity						
Rank	none	light	medium	heavy	x_i•		
Senior manager	4	2	3	2	11		
Junior manager	4	3	7	4	18		
Senior employee	25	10	12	4	51		
Junior employee	18	24	33	13	88		
Secretary	10	6	7	2	25		
x_•j	61	45	62	25	n=193		

Theoretical data \hat{X} :

	Smoking intensity					
Rank	none	light	medium	heavy	û_i•	
Senior manager	3,48	2,56	3,53	1,42	11,00	
Junior manager	5,69	4,20	5,78	2,33	18,00	
Senior employee	16,12	11,89	16,38	6,61	51,00	
Junior employee	27,81	20,52	28,27	11,40	88,00	
Secretary	7,90	5,83	8,03	3,24	25,00	
x _•j	61,00	45,00	62,00	25,00	193,00	

Observed data X:

	Smoking intensity					
Rank	none	light	medium	heavy	x_i•	
Senior manager	4	2	3	2	11	
Junior manager	4	3	7	4	18	
Senior employee	25	10	12	4	51	
Junior employee	18	24	33	(13)	88	
Secretary	10	6	7	2	25	
x_•j	61	45	62	25	n=193	

Theoretical data \hat{X} :

	Smoking intensity					
Rank	none	light	medium	heavy	x̂_i•	
Senior manager	3,48	2,56	3,53	1,42	11,00	
Junior manager	5,69	4,20	5,78	2,33	18,00	
Senior employee	16,12	11,89	16,38	6.61	51,00	
Junior employee	27,81	20,52	28,27	(11,40)	88,00	
Secretary	7,90	5,83	8,03	3,24	25,00	
x̂_• j	61,00	45,00	62,00	25,00	193,00	

Significant difference ?

Independence test: χ^2 test

Objective: to determine if the difference between observed and theoretical data is significant

- 1. Hypothesis: "the two variables V_1 and V_2 are independent"
- 2. Compute a distance between observed and theoretical data $\rightarrow \chi^2_{obs}$ distance
- 3. From χ^2_{obs} , compute a p-value which gives the probability of obtaining the observed data under independence hypothesis
- 4. If p-value is low (<5%), we reject the hypothesis → variables are correlated If p-value is high (≥5%), we accept the hypothesis → variables are independent

χ^2 test in practice

In practice, the p-value is fixed (generally p-value = 0.05)

Under the independence hypothesis, the statistic χ^2_{obs} follows a χ^2 distribution with (I-1)(J-1) degrees of freedom.

χ^2 test in practice:

- 1. Compute distance $\chi^2_{
 m obs}$ between $extbf{ extit{X}}$ and $extbf{ ilde{X}}$
- 2. Fix p-value to 0.05
- 3. Compute the degree of freedom: df = (I-1)(J-1)
- 4. From the χ^2 distribution table, determine χ^2_{critical}
- 5. If $\chi^2_{obs} < \chi^2_{critical}$, we accept the hypothesis \rightarrow variables are independent If $\chi^2_{obs} \ge \chi^2_{critical}$, we reject the hypothesis \rightarrow variables are correlated

 χ_c^2 = Critical Value

χ^2 distance

 χ^2 test: distance between observed data and theoretical data

$$\chi_{obs}^2 = \chi^2(X, \hat{X}) = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(\text{obs. num.} - \text{theor. num.})^2}{\text{theor. num.}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(nf_{ij} - nf_{i\bullet}f_{\bullet j})^2}{nf_{i\bullet}f_{\bullet j}}$$
$$\chi_{obs}^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} n \frac{(\text{obs. proba.} - \text{theor. proba.})^2}{\text{theor. proba.}} = n\Phi^2$$

Strength of the link: Φ^2

Deviation of observed probabilities from theoretical ones

Type of the link (attraction/repulsion): Correspondence Analysis

- CA does not test dependence/independence
- CA helps to understand the deviation from independence
- CA enables the visualization the types of links between modalities of the two variables

χ^2 test in our example

In our example:

$$-\chi^2_{obs} = 16.44$$

- degree of freedom: df = (I-1)(J-1)=12
- With a p-value of 5%, $\chi^2_{critical} = 21.026$
- $\chi^2_{obs} < \chi^2_{critical}$: we accept the hypothesis
- V₁ and V₂ are independent

chi-square distribution table

			•							
df	$\chi^{2}_{.995}$	$\chi^{2}_{.990}$	$\chi^{2}_{.975}$	$\chi^{2}_{.950}$	$\chi^{2}_{.900}$	$\chi^{2}_{.100}$	$\chi^{2}_{.050}$	$\chi^{2}_{.025}$	$\chi^{2}_{.010}$	$\chi^{2}_{.005}$
1	0.000	0.000	0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.801
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997

 χ^2 test helps determine whether there is a dependence between variables V_1 and V_2 . It does not provide a description of the links between the variables.

→ Correspondence Analysis

χ^2 test

Contribution to χ^2 test:

Deviation from independence:

Analysis by row:
$$f_{i\bullet} = f_{\bullet j}$$
 marginal probability

conditional probability

Probability table *F*:

	Smoking intensity						
Rank	none	light	medium	heavy	f_i•		
Senior manager	0,02	0,01	0,02	0,01	0,06		
Junior manager	0,02	0,02	0,04	0,02	0,09		
Senior employee	0,13	0,05	0,06	0,02	0,26		
Junior employee	0,09	0,12	0,17	0,07	0,46		
Secretary	0,05	0,03	0,04	0,01	0,13		
f_•j	0,32	0,23	0,32	0,13	1,00		

Row profiles N_I :

	Smoking intensity					
Rank	none	light	medium	heavy	Σ	
Senior manager	0,36	0,18	0,27	0,18	1,00	
Junior manager	0,22	0,17	0,39	0,22	1,00	
Senior employee	0,49	0,20	0,24	0,08	1,00	
Junior employee	0,20	0,27	0,38	0,15	1,00	
Secretary	0,40	0,24	0,28	0,08	1,00	
G_I	0,32	0,23	0,32	0,13	1,00	

row margin = barycenter of raw profiles with $f_{i\bullet}$ as weights

Deviation from independence:

Analysis by row: $f_{ij} = f_{\bullet j}$ marginal probability

conditional probability

Probability table *F*:

	Smoking intensity						
Rank	none	light	medium	heavy	f_i•		
Senior manager	0,02	0,01	0,02	0,01	0,06		
Junior manager	0,02	0,02	0,04	0,02	0,09		
Senior employee	0,13	0,05	0,06	0,02	0,26		
Junior employee	0,09	0,12	0,17	0,07	0,46		
Secretary	0,05	0,03	0,04	0,01	0,13		
f_•j	0,32	0,23	0,32	0,13	1,00		

Row profiles N_I :

	Smoking intensity						
Rank	none	light	medium	heavy	Σ		
Senior manager	0,36	0,18	0,27	0,18	1,00		
Junior manager	0,22	0,17	0,39	0,22	1,00		
Senior employee	0,49	0,20	0,24	0,08	1,00		
Junior employee	0,20	0,27	0,38	0,15	1,00		
Secretary	0,40	0,24	0,28	0,08	1,00		
G_I	0,32	0,23	0,32	0,13	1,00		

row margin = barycenter of raw profiles with f_i as weights

Deviation from independence:

Analysis by column:
$$\frac{f_{ij}}{f_{\bullet j}} = f_{i \bullet} - \frac{\text{marginal probability}}{\text{probability}}$$

conditional probability

Probability table *F*:

	Smoking intensity				
Rank	none	light	medium	heavy	f_i•
Senior manager	0,02	0,01	0,02	0,01	0,06
Junior manager	0,02	0,02	0,04	0,02	0,09
Senior employee	0,13	0,05	0,06	0,02	0,26
Junior employee	0,09	0,12	0,17	0,07	0,46
Secretary	0,05	0,03	0,04	0,01	0,13
f_•j	0,32	0,23	0,32	0,13	1,00

Column profiles N,:

·					
	Smoking intensity				
Rank	none	light	medium	heavy	G_J
Senior manager	0,07	0,04	0,05	0,08	0,06
Junior manager	0,07	0,07	0,11	0,16	0,09
Senior employee	0,41	0,22	0,19	0,16	0,26
Junior employee	0,30	0,53	0,53	0,52	0,46
Secretary	0,16	0,13	0,11	0,08	0,13
Σ	1,00	1,00	1,00	1,00	1,00

column margin = barycenter of column profiles with f_{•i} as weights ²⁰

Deviation from independence:

Analysis by column:
$$\frac{f_{ij}}{f_{\bullet j}} = f_{i \bullet} - \frac{\text{marginal}}{\text{probability}}$$

conditional probability

Probability table *F*:

	Smoking intensity				
Rank	none	light	medium	heavy	f_i•
Senior manager	0,02	0,01	0,02	0,01	0,06
Junior manager	0,02	0,02	0,04	0,02	0,09
Senior employee	0,13	0,05	0,06	0,02	0,26
Junior employee	0,09	0,12	0,17	0,07	0,46
Secretary	0,05	0,03	0,04	0,01	0,13
f_•j	0,32	0,23	0,32	0,13	1,00

Column profiles N_{J} :

	Smoking intensity				
Rank	none	light	medium	heavy	G_J\
Senior manager	0,07	0,04	0,05	0,08	0,06
Junior manager	0,07	0,07	0,11	0,16	0,09
Senior employee	0,41	0,22	0,19	0,16	0,26
Junior employee	0,30	0,53	0,53	0,52	0,46
Secretary	0,16	0,13	0,11	0,08	0,13
Σ	1,00	1,00	1,00	1,00	1,00

Distances

Deviation from independence between variables \Leftrightarrow distance of the I row profiles to the mean profile G_r

Distance between two profiles:

$$d_{\chi^2}^2(i,i') = \sum_{j=1}^J \frac{1}{f_{\bullet j}} \left(\frac{f_{ij}}{f_{i\bullet}} - \frac{f_{i'j}}{f_{i'\bullet}} \right)^2$$

Distance to the mean profile G_I :

$$d_{\chi^2}^2(i, G_I) = \sum_{j=1}^J \frac{1}{f_{\bullet j}} \left(\frac{f_{ij}}{f_{i\bullet}} - f_{\bullet j} \right)^2$$

Scaling factor (frequency of category)

deviation from independence

In case of independence, row profiles are equal to the mean row profile \rightarrow Data cloud N₁ of the I row profiles becomes just G₁ (zero inertia)

Distances

Deviation from independence between variables \Leftrightarrow distance of the J row profiles to the mean profile G_{r}

Distance between two profiles:

$$d_{\chi^2}^2(j,j') = \sum_{i=1}^{I} \frac{1}{f_{i\bullet}} \left(\frac{f_{ij}}{f_{\bullet j}} - \frac{f_{ij'}}{f_{\bullet j'}} \right)^2$$

Distance to the mean profile G_1 :

$$d_{\chi^2}^2(j, G_J) = \sum_{i=1}^{I} \frac{1}{f_{i\bullet}} \left(\frac{f_{ij}}{f_{\bullet j}} - f_{i\bullet} \right)^2$$

Scaling factor (frequency of category)

deviation from independence

Column profiles:

In case of independence, column profiles are equal to the mean column profile \rightarrow Data cloud N_I of the J column profiles becomes just G_I (zero inertia)

Inertia

mass of the row squared distance

Inertia of N₁ and N₁:

Inertia
$$(N_I/G_I) = \sum_{i=1}^{I} \text{Inertia}(i/G_I) = \sum_{i=1}^{I} f_{i\bullet} d_{\chi^2}^2(i, G_I)$$

$$= \sum_{i=1}^{I} f_{i\bullet} \left(\sum_{j=1}^{J} \frac{1}{f_{\bullet j}} \left(\frac{f_{ij}}{f_{i\bullet}} - f_{\bullet j} \right)^2 \right)$$

$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(f_{ij} - f_{i\bullet} f_{\bullet j})^2}{f_{i\bullet} f_{\bullet j}} = \frac{\chi^2}{n} = \Phi^2$$

 Φ^2 measures the strength of the link Studying the inertia of N_1 = studying deviation from independence

Same for N_I: Inertia (N_I/G_I) = Inertia (N_I/G_I)

 \rightarrow **CA**: studying N₁ and N₁ to understand dependencies between variables!

Similarly to PCA, we aim to find eigenvectors of N_I and N_I using the χ^2 metric

Admitted equivalence on the probability matrix *F*:

$$\tilde{F} = D_I F D_J = D_I^{-1} N_I D_J = D_I N_J D_J^{-1}$$

with diagonal weighting matrices D_I and D_I :

$$D_{I} = \begin{pmatrix} \frac{1}{\sqrt{f_{1\bullet}}} & \cdots & 0\\ & \ddots & \\ 0 & \cdots & \frac{1}{\sqrt{f_{I\bullet}}} \end{pmatrix} \qquad D_{J} = \begin{pmatrix} \frac{1}{\sqrt{f_{\bullet 1}}} & \cdots & 0\\ & \ddots & \\ 0 & \cdots & \frac{1}{\sqrt{f_{\bullet J}}} \end{pmatrix}$$

Row analysis:

• Diagonalization: $\tilde{F}\tilde{F}^T = P_I\Lambda_I P_I^T$

• Eigenvectors: P_I

• Inertia: $\Lambda_I = \operatorname{diag}(1, \lambda_1^I, \cdots, \lambda_{I-1}^I)$

Projection of row coordinates:

$$\alpha = D_I \tilde{F} P_I$$

Column analysis:

• Diagonalization: $\tilde{F}^T \tilde{F} = P_J \Lambda_J P_J^T$

• Eigenvectors: P_J

• Inertia: $\Lambda_J = \operatorname{diag}(1, \lambda_1^J, \cdots, \lambda_{J-1}^J)$

Projection of column coordinates:

$$\beta = D_J \tilde{F}^T P_J$$

Superimposed representation of rows and columns

Duality between N_I and N_I : same data table from two different point of views

- Same total inertia: χ²/n
- Inertia projected on the k^{th} axis of N_I = Inertia projected on the k^{th} axis of N_I = λ_k (admitted)

-
$$\lambda_k^I = \lambda_k^J, \forall k = 1, \dots, K = \min(I - 1, J - 1)$$

- $\lambda_k^I, \lambda_k^J = 0, \forall k > K$
- Relation between coordinates α_i^k and β_j^k of the row and column profiles projected on the eigenvectors (barycentric property, admitted):

$$\alpha_i^k = \frac{1}{\sqrt{\lambda_k}} \sum_{i=1}^J \frac{f_{ij}}{f_{i\bullet}} \beta_j^k \qquad \beta_j^k = \frac{1}{\sqrt{\lambda_k}} \sum_{i=1}^I \frac{f_{ij}}{f_{\bullet j}} \alpha_i^k$$

Superimposed representation of rows and columns

NB: Proximity between row dots and column dots is relevant if they are on the periphery of the cloud (deviations from independence)

Contributions

Contribution of each row or column profiles to each axis:

 \rightarrow helps in interpreting the significance of each axis

The data analysis process

Data: statistics on employees in a company

Selection: two features (rank and smoking intensity)

Preprocessing: contingency table

Transformation: probability matrix F and also $\tilde{F}\tilde{F}^T$

Model: Eigenvectors, eigenvalues, projection

Knowledge: Correlation between features

Multiple Correspondence Analysis

Multiple Correspondence Analysis (MCA):

- generalization of CA
- Analysis of more than two categorical variables
- Attraction or repulsion between several variables

Dummy variable table ("tableau disjonctif complet") for n instances, J variables, and K total number of modalities:

$$K = K_1 + \ldots + K_J$$

$$T = (t_i^k)_{1 \le i \le n, 1 \le k \le K} \text{ where } t_i^k = \begin{cases} 1 & \text{if instance } i \text{ has modality } k \\ 0 & \text{otherwise} \end{cases}$$

Implies several corrections:

- Benzécri: correct eigenvalues
- Greenacre: correct variance explained

Multiple Correspondence Analysis

Example: dummy variable table

- n=3 instances
- J=2 variables
- K=5 modalities

	Gender	Eyes
Father	M	Hazel
Mother	F	Blue
Child	М	Green

	Gender F	Gender M	Eyes B	Eyes G	Eyes H
Father	0	1	0	0	1
Mother	1	0	1	0	0
Child	0	1	0	0	1

MCA: CA on the dummy variable table!

Next course

Introduction to Machine Learning

Two tasks:

- 1. Classification
- 2. Clustering

Questions?

Sources, images courtesy and acknowledgment:

N. Papadakis, R.Rakotomalala,

J. Dabounou, F. Husson

Charles Brazier charles.brazier@u-bordeaux.fr