

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	Фундаментальные науки
КАФЕЛРА	Приклалная математика

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА *К КУРСОВОЙ РАБОТЕ НА ТЕМУ:*

Численное моделирование напряженно-деформированного состояния твердого тела

Студент ФН2-62Б		Г.А. Швецов		
	(Группа)	(Подпись, дата)	(И. О. Фамилия)	
Руководитель курсовой работы			М.П. Галанин	
		(Подпись, дата)	(И.О. Фамилия)	

Оглавление

Введение	3
1. Постановка задачи	4
1.1. Тензор малых деформаций Коши	4
1.2. Соотношение Дюамеля — Неймана	4
1.3. Уравнения равновесия	5
1.4. Граничные условия	5
2. Конечноэлементная постановка задачи	6
2.1. Слабая постановка задачи	6
2.2. Метод конечных элементов	8
3. Тестовый расчет	9
3.1. Исходные данные	9
3.2. Численный анализ	10
3.3. Линейная (несвязная) термоупругая задача	12
4. Разрушение топливных таблеток	15
4.1. Модель размазанных трещин	15
4.2. Математическая модель	15
4.3. Образование радиальных и полярных трещин	17
Заключение 1	19
Church helio il 2000 il il vertoli il vertol	20

Введение 3

Введение

При создании и проектировании различных конструкций ставят задачу об их надежности при различных условиях. Для этого необходимы обширные знания из теории упругости. Особый интерес таких задач заключается в предсказании различных сценариев развития разрушения, оценки прочности, определении времени разрушения. Анализ прочности конструкций является проблемой, которая не теряет свою актуальность.

Один из важных подразделов теории упругости — *теория термоупругости*. Она связана с процессом деформирования тела при нестационарном неравномерном нагреве. Тепловое расширение в общем случае не может происходить свободно в сплошном теле, оно вызывает тепловые напряжения. Знание величины и характера действия тепловых напряжений необходимо для всестороннего анализа прочности результатов [1].

Интересная и актуальная задача из данной области — это задача разрушения топливных таблеток в ядерных реакторах, которые располагаются внутри герметично закрытых тепловыделяющих элементов, которые называют ТВЭЛами [2].

Метод конечных элементов (МКЭ) является одним из самых распространенных методов решения прикладных задач, в том числе задач теории упругости. Данный метод является мощным средством приближенного решения дифференциальных уравнений, описывающих различные физические процессы. Именно его мы и будем использовать в данной работе [3].

Цель данной работы — рассмотрение двумерной (плоской) задачи термоупругости, построение конечно-элементного алгоритма для нахождения решения на треугольной сетке, а также визуализация и графическое представление результатов.

1. Постановка задачи

Введем обозначения:

 $\mathbf{u} = (u_x, u_y)$ – вектор перемещения;

 u_x, u_y – перемещения в направлении осей координат x, y;

 f_x, f_y – плотности объемных сил в направлении осей.

1.1. Тензор малых деформаций Коши

$$\begin{cases}
\varepsilon_{xx} = \frac{\partial u_x}{\partial x}, \\
\varepsilon_{yy} = \frac{\partial u_y}{\partial y}, \\
\varepsilon_{xy} = \varepsilon_{yx} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right).
\end{cases}$$
(1.1)

1.2. Соотношение Дюамеля — Неймана

Соотношение Дюамеля — Неймана выглядит следующим образом¹

$$\sigma_{ij} = C_{ijkl}(\varepsilon_{kl} - \varepsilon_{kl}^T), \qquad i, j, k, l = x, y,$$

$$(1.2)$$

где ε_{kl}^T — компоненты тензора температурных деформаций. Для большинства конструкционных материалов температурная деформация ε_{kl}^T является пропорциональной изменению температуры ΔT , т.е.

$$\hat{\varepsilon}^T = \hat{\alpha}\Delta T = \hat{\alpha}(T(x, y, t) - T_0),$$

где $\hat{\alpha}$ — тензор теплового расширения (в общем случае тензор 2 ранга), $\Delta T = T(x,y,t) - T_0$ — приращение температуры относительно уровня нулевых деформаций [4].

Будем рассматривать линейно-упругую **изотропную** 2 среду. Тензор упругости для изотропного материала: упругие свойства определяются постоянными Ламэ λ и μ :

$$\hat{C} = \begin{pmatrix} \lambda + 2\mu & \lambda & 0 \\ \lambda & \lambda + 2\mu & 0 \\ 0 & 0 & \mu \end{pmatrix}, \quad \lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \quad \mu = \frac{E}{2(1+\nu)}, \quad (1.3)$$

где E — модуль Юнга, ν — коэффициент Пуассона.

¹ Здесь и далее предполагается суммирование по повторяющимся индексам.

² Изотропия — неизменность свойств среды во всех направлениях.

Возвращаясь к выражению (1.2), закон Дюамеля— Неймана для плоского случая будет иметь вид

$$\begin{cases}
\sigma_{xx} = (\lambda + 2\mu)(\varepsilon_{xx} - \alpha_{xx}^T \Delta T) + \lambda(\varepsilon_{yy} - \alpha_{yy}^T \Delta T), \\
\sigma_{yy} = \lambda(\varepsilon_{xx} - \alpha_{xx}^T \Delta T) + (\lambda + 2\mu)(\varepsilon_{yy} - \alpha_{yy}^T \Delta T), \\
\sigma_{xy} = \sigma_{yx} = 2\mu(\varepsilon_{xy} - \alpha_{xy}^T \Delta T) = 2\mu(\varepsilon_{yx} - \alpha_{yx}^T \Delta T).
\end{cases}$$
(1.4)

или в матричной форме:

$$\begin{pmatrix} \sigma_{xx} \\ \sigma_{yy} \\ \frac{1}{2}\sigma_{xy} \end{pmatrix} = \begin{pmatrix} \lambda + 2\mu & \lambda & 0 \\ \lambda & \lambda + 2\mu & 0 \\ 0 & 0 & \mu \end{pmatrix} \begin{pmatrix} \varepsilon_{xx} - \alpha_{xx}^T \Delta T \\ \varepsilon_{yy} - \alpha_{yy}^T \Delta T \\ \varepsilon_{xy} - \alpha_{xy}^T \Delta T \end{pmatrix}$$

1.3. Уравнения равновесия

$$\begin{cases} \frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + f_x = 0, \\ \frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + f_y = 0, \end{cases}$$
(1.5)

где f_x , f_y — массовые силы.

1.4. Граничные условия

Границу Γ представим в виде объединения двух частей $\Gamma = \Gamma_D \cup \Gamma_N$.

Граничное условие Дирихле на Γ_D (кинематические граничные условия) может быть записано в виде

$$Mu = w$$

где M — матрица размером 2×2 .

Кинематические граничные условия

$$\begin{cases} u_x(x,y,t) = \tilde{u}_x(x,y,t), \\ u_y(x,y,t) = \tilde{u}_y(x,y,t). \end{cases}$$
(1.6)

Граничное условие второго рода (силовое граничное условие) может быть записано в виде

$$\sigma(x,y)\vec{n}(x,y) = \tilde{p}(x,y), \tag{1.7}$$

где p — заданный вектор нормальных напряжений, n — вектор единичной нормали к границе области [5].

2. Конечноэлементная постановка задачи

Выберем прямоугольную область $\Omega = [a,b] \times [c,d]$ так, чтобы левый нижний угол совпадал с началом координат a = 0, c = 0 (см. рис. 1). Будем решать уравнения равновесия (1.5) в нашей области.

Рис. 1. Область Ω

2.1. Слабая постановка задачи

Пусть v = v(x) — гладкая функция, удовлетворяющая граничным условиям (1.6), (1.7). Домножим на v и проинтегрируем по области Ω уравнения (1.5):

$$\begin{cases} \int_{\Omega} v \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + f_x \right) d\Omega = 0, \\ \int_{\Omega} v \left(\frac{\partial \sigma_{xy}}{\partial x} + \frac{\partial \sigma_{yy}}{\partial y} + f_y \right) d\Omega = 0. \end{cases}$$
(2.1)

Проинтегрируем первое уравнение (2.1) по частям:

$$\int_{\Omega} v \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{yx}}{\partial y} + f_x \right) d\Omega = \int_{\Omega} v \frac{\partial \sigma_{xx}}{\partial x} d\Omega + \int_{\Omega} v \frac{\partial \sigma_{yx}}{\partial y} d\Omega + \int_{\Omega} v f_x d\Omega = 0.$$

С учетом того, что $d\Omega=dxdy,\ 0\leqslant x\leqslant b,\ 0\leqslant y\leqslant d,$ получаем

$$\int_{0}^{d} dy \int_{0}^{b} v \frac{\partial \sigma_{xx}}{\partial x} dx + \int_{0}^{b} dx \int_{0}^{d} v \frac{\partial \sigma_{yx}}{\partial y} dy + \int_{\Omega} v f_{x} d\Omega =$$

$$= \int_{0}^{d} \left(v \sigma_{xx} \Big|_{0}^{b} - \int_{0}^{b} v_{x} \sigma_{xx} dx \right) dy + \int_{0}^{b} \left(v \sigma_{yx} \Big|_{0}^{d} - \int_{0}^{d} v_{y} \sigma_{yx} dy \right) dx + \int_{\Omega} v f_{x} d\Omega = 0. \quad (2.2)$$

Подставим уравнения (1.4) из закона Гука в (2.2):

$$\int_{0}^{d} \left(v \left((\lambda + 2\mu)(\varepsilon_{xx} - \alpha_{xx}^{T} \Delta T) + \lambda(\varepsilon_{yy} - \alpha_{yy}^{T} \Delta T) \right) \Big|_{0}^{b} - \int_{0}^{b} v_{x} \left((\lambda + 2\mu)(\varepsilon_{xx} - \alpha_{xx}^{T} \Delta T) + \lambda(\varepsilon_{yy} - \alpha_{yy}^{T} \Delta T) \right) dx \right) dy + \\
+ \int_{0}^{b} \left(2\mu v(\varepsilon_{yx} - \alpha_{yx}^{T} \Delta T) \Big|_{0}^{d} - \int_{0}^{d} 2\mu v_{y}(\varepsilon_{yx} - \alpha_{yx}^{T} \Delta T) dy \right) dx + \\
+ \int_{0}^{c} v f_{x} d\Omega = 0. \quad (2.3)$$

Подставим уравнения (1.1) в (2.3):

$$\int_{0}^{d} \left(v \left((\lambda + 2\mu) \left(\frac{\partial u_{x}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \lambda \left(\frac{\partial u_{y}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) \Big|_{0}^{b} - \int_{0}^{b} v_{x} \left((\lambda + 2\mu) \left(\frac{\partial u_{x}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \lambda \left(\frac{\partial u_{y}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) dx \right) dy + \\
+ \int_{0}^{b} \left(\mu v \left(\left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) - \alpha_{yx}^{T} \Delta T \right) \Big|_{0}^{d} - \int_{0}^{d} \mu v_{y} \left(\left(\frac{\partial u_{x}}{\partial y} + \frac{\partial u_{y}}{\partial x} \right) - \alpha_{yx}^{T} \Delta T \right) dy \right) dx + \\
+ \int_{0}^{c} v f_{x} d\Omega = 0. \quad (2.4)$$

Таким образом, от исходной задачи (1.1)–(1.7) приходим к слабой постановке задачи: определить $u \in V$, такое, что

$$\int\limits_{\Omega} \varepsilon(v) : \mathbb{C} : \varepsilon(u) \, d\Omega = \int\limits_{\Omega} fv \, d\Omega + \int\limits_{\Gamma_N} pv \, dS, \quad v \in V_D,$$
$$Mu = w \, \text{на } \Gamma_D,$$

где V — пространство достаточно гладких векторных полей, а пространство V_D определено как

$$V_D=\{v\in V: Mv=0\ \mathrm{Ha}\ \Gamma_D\}.$$

Аппроксимируем приведенную задачу методом Галеркина [5].

2.2. Метод конечных элементов

Представим расчетную область Ω в виде объединения треугольных подобластей $\Omega = \sum_{p=1}^{N} \Omega_{p}, N$ — количество элементов, т.е. построим *триангуляцию* области Ω .

Выберем пространство пробных функций, состоящее из финитных функций ϕ_{pm} , $p=1,\ldots,N,\,m=1,2,3$. Будем аппроксимировать поле перемещений функциями из данного пространства. Представим решение в следующем виде:

$$\begin{cases} u_x = \sum_{p=1}^{N} \sum_{m=1}^{3} u_{pm}^{(x)} \phi_{pm}, \\ u_y = \sum_{p=1}^{N} \sum_{m=1}^{3} u_{pm}^{(y)} \phi_{pm}, \end{cases}$$
(2.5)

где $u_p^{(x)}, u_p^{(y)}$ — неизвестные весовые коэффициенты.

В качестве финитных функций (функций формы) выберем следующие:

$$\phi_{pm} = \begin{cases} N_{pm} = \frac{1}{\Delta} (a_{pm} + b_{pm}x + c_{pm}y), \\ a_{pm} = x_{qm}y_{rm} - x_{rm}y_{qm}, \\ b_{pm} = y_{qm} - y_{rm}, \\ c_{pm} = x_{rm} - x_{qm}, \\ \Delta = (x_{qm} - x_p)(y_{rm} - y_p) - (x_{rm} - x_p)(y_{qm} - y_p). \end{cases}$$

Подставив (2.5) в (2.4) получаем

$$\int_{0}^{d} \int_{0}^{b} \left(\frac{\partial \phi_{m}}{\partial x} (\lambda + 2\mu) \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \frac{\partial \phi_{m}}{\partial x} \lambda \left(u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) + \frac{\partial \phi_{m}}{\partial y} \lambda \left(u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) dx dy =$$

$$= \int_{0}^{d} \left(\phi_{m} (\lambda + 2\mu) \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \phi_{m} \lambda \left(u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) \Big|_{0}^{b} dy +$$

$$+ \int_{0}^{b} \left(\mu \phi_{m} \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial y} + u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial x} \right) - \mu \phi_{m} \alpha_{yx}^{T} \Delta T \right) \Big|_{0}^{d} dx + \int_{\Omega} \phi_{m} f_{x} d\Omega. \quad (2.6)$$

Аналогично получаем для второго уравнения равновесия (2.1)

$$\int_{0}^{d} \int_{0}^{b} \left(\frac{\partial \phi_{m}}{\partial x} \mu \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial y} + u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial x} \right) - 2 \frac{\partial \phi_{m}}{\partial x} \mu \alpha_{xy}^{T} \Delta T + \right. \\
\left. + \lambda \frac{\partial \phi_{m}}{\partial y} \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \frac{\partial \phi_{m}}{\partial y} (\lambda + 2\mu) \left(u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) dy dx = \\
= \int_{0}^{d} \left(\phi_{m} \mu \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial y} + u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial x} \right) - 2\phi_{m} \mu \alpha_{xy}^{T} \Delta T \right) \Big|_{0}^{b} dy + \\
+ \int_{0}^{b} \left(\phi_{m} \lambda \left(u_{p}^{(x)} \frac{\partial \phi_{p}}{\partial x} - \alpha_{xx}^{T} \Delta T \right) + \phi_{m} (\lambda + 2\mu) \left(u_{p}^{(y)} \frac{\partial \phi_{p}}{\partial y} - \alpha_{yy}^{T} \Delta T \right) \right) \Big|_{0}^{d} dx + \int_{\Omega} \phi_{m} f_{y} d\Omega. \tag{2.7}$$

Уравнения (2.6) и (2.7) приведены к виду

$$\sum_{p=1}^{N} \left(\int_{\Omega} \varepsilon(\phi_m) : \mathbb{C} : \varepsilon(\phi_p) \, d\Omega \right) u_p = \int_{\Omega} f \phi_m \, d\Omega + \int_{\Gamma_N} p \phi_m \, dS,$$

или в матричном виде $Au_h = F$, где

$$A_{pm} = \int_{\Omega} \varepsilon(\phi_m) : \mathbb{C} : \varepsilon(\phi_p) d\Omega, \quad F_m = \int_{\Omega} f \phi_m d\Omega + \int_{\Gamma_N} p \phi_m dS, \quad m, p = \overline{1, N}.$$

3. Тестовый расчет

3.1. Исходные данные

Возьмем область (пластинку) с параметрами b=8 мм, d=8 мм. Для численного анализа метода конечных элементов (МКЭ) зададим произвольное аналитическое решение задачи u(x,y) и найдем из уравнений (1.1), (1.4) и (1.5) плотности массовых сил f_x , f_y .

Физические характеристики диоксида урана UO₂:

- модуль Юнга $E = 1,75 \cdot 10^{11} \text{ Па};$
- коэффициент Пуассона $\nu = 0,316$;
- плотность $\rho = 10800 \text{ кг/м}^3$;
- удельная теплоемкость $c_{\varepsilon} = 310 \ \text{Дж/(кг·K)};$
- теплопроводность $\lambda = 3,487 \; \text{Bt/(м·K)};$
- предел прочности напряжений $\sigma_f = 1, 1 \cdot 10^8 \; \Pi \mathrm{a};$
- коэффициент теплового расширения $\alpha = 10^{-5} \ \mathrm{K}^{-1};$
- температура естественного состояния $T_{ref} = 300 \text{ K}$.

3.2. Численный анализ

Рис. 3. Напряжения

Таблица 1. Порядок сходимости

Параметры сетки	AbsErr_C	Δ_C	${ m AbsErr}_{L_2}$	Δ_{L_2}
$\mathbf{u} = (xy; xy), T(x,y) = x^2 + y^2$				
Количество узлов: 9				
Количество элементов: 8	1.918e-06		8.750e-07	
Количество граничных узлов: 8				
Количество узлов: 25				
Количество элементов: 32	2.979e-07	6.4384	1.878e-07	4.6592
Количество граничных узлов: 16				
Количество узлов: 81				
Количество элементов: 128	7.7783e-08	3.8300	3.7796e-08	4.6695
Количество граничных узлов: 32				
Количество узлов: 289				
Количество элементов: 512	1.981e-08	3.9106	1,0510e-08	3.5956
Количество граничных узлов: 64				

В таблице приведены ошибки в нормах $\|.\|_C$ и $\|.\|_{L_2}$, AbsErr — абсолютная ошибка, Δ — модуль отношения ошибок на двух соседних сетках.

В качестве функции температуры возьмем:

$$T(x,y) = -1000\sqrt{\left(x - \frac{b}{2}\right)^2 + \left(y - \frac{d}{2}\right)^2}$$

Таблица 2. Порядок сходимости

Параметры сетки	$AbsErr_C$	Δ_C	$AbsErr_{L_2}$	Δ_{L_2}
$\mathbf{u} = \left(e^{x^2 + y^2}; \tanh(xy)\right)$				
Количество узлов: 5				
Количество элементов: 4	1.9320e-06		8.6403e-07	
Количество граничных узлов: 4				
Количество узлов: 12				
Количество элементов: 14	2.8491e-07	6.7812	1.4671e-07	5.8893
Количество граничных узлов: 8				
Количество узлов: 36				
Количество элементов: 54	7.7783e-08	3.6629	3.7796e-08	3.88172
Количество граничных узлов: 16				
Количество узлов: 136				
Количество элементов: 238	2.0339e-08	3.8244	1.0721e-08	3.5255
Количество граничных узлов: 32				
Количество узлов: 509				
Количество элементов: 952	6.3894e-09	3.6139	3.2510e-09	3.6250
Количество граничных узлов: 64				
$\mathbf{u} = \left(y^2 e^x\right)$	$\cos(xy) + \sin(xy)$	n(xy)		
Количество узлов: 5				
Количество элементов: 4	2.0485e-06		9.1612e-07	
Количество граничных узлов: 4				
Количество узлов: 12				
Количество элементов: 14	3.2178e-07	6.3660	1.8426e-07	4.9718
Количество граничных узлов: 8				
Количество узлов: 36				
Количество элементов: 54	9.9139e-08	3.2458	4.9698e-08	3.7077
Количество граничных узлов: 16				
Количество узлов: 136				
Количество элементов: 238	2.3091e-08	4.2934	1.1785e-08	4.2170
Количество граничных узлов: 32				
Количество узлов: 509				
Количество элементов: 952	6.3894e-09	3.6139	3.2510e-09	3.6320
Количество граничных узлов: 64				

В качестве конечных элементов выбраны стандартные линейные лагранжевы элементы. Из результатов видно, что сходимость схемы со вторым порядком точности.

3.3. Линейная (несвязная) термоупругая задача

В качестве постановки задачи для термоупругости также можно добавить уравнение теплопроводности без *термомеханической связности* для изотропного тела:

$$\rho c_{\varepsilon} \frac{\partial T}{\partial t} = \frac{\partial}{\partial x_i} \left(\lambda_{ij} \frac{\partial T}{\partial x_j} \right) + f \quad \Leftrightarrow \quad \rho c_{\varepsilon} \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \operatorname{grad} T) + f,$$

Для стационарного случая получим эллиптическое уравнение

$$-\operatorname{div}(\lambda \operatorname{grad} T) = f \tag{3.1}$$

В постоянном режиме температурное поле отделено от механических полей, а последние зависят от температуры из-за наличия тепловых деформаций.

Рассмотрим стационарный режим и положим f=0. Пусть верхняя и нижняя стороны пластинки находится по температурой T_{ref} , а боковые стороны зажаты и их нагревают на $\Delta T=100~{\rm K}$.

Рис. 4. Температурное поле

Рис. 5. Перемещения

Рис. 6. Напряжения

Рассмотрим нестационарную задачу и положим f=0.

$$\rho c_{\varepsilon} \frac{\partial T}{\partial t} = \operatorname{div}(\lambda \operatorname{grad} T),$$

Для дискретизации по времени воспользуемся методом конечных разностей. Временной интервал разобъем на M+1 слоев с шагом $au=\frac{T_f}{M}$. На каждом из них будем решать стационарную задачу теории упругости с учетом температуры.

Параметры задачи:

$$T(x, y, 0) = T_{ref},$$

$$T(0, y, t) = T(b, y, t) = T_{ref},$$

$$T(x, 0, t) = T(x, d, t) = 400 \text{ K},$$

$$u(0, y, t) = u(d, 0, t) = 0,$$

$$T_f = 10 \text{ c}, M = 10.$$

Рис. 7. Температурное поле

Рис. 8. Перемещения

Рис. 9. Температурное поле

Рис. 10. Перемещения

Рис. 11. Напряжения

4. Разрушение топливных таблеток

4.1. Модель размазанных трещин

Для моделирования разрушения топливных таблеток из диоксида урана (UO_2) применяют подход размазанных трещин [5].

Рис. 12. Экспериментальная (1) и аналитическая (2) кривые нормализованного растягивающего отклика для керамических материалов

На рис. 12 видно, что пока напряжение меньше предела прочности $\sigma < \sigma_f$ и деформации меньше соответствующего значения $\varepsilon < \varepsilon_f$, материал ведет себя, как линейно-упругий, а затем происходит разгрузка по нелинейному закону. При достижении предельного значения прочности σ_f происходит инициализация трещины. Она формируется лишь после достижения значений деформаций, превышающих ε_f в 5-10 раз. Кривую, имеющую данный характер поведения, можно аппроксимировать в следующем виде:

$$\frac{\sigma}{\sigma_f} = A + Be^{-C\frac{\varepsilon}{\varepsilon_f}},\tag{4.1}$$

где $A \approx -0.024, B \approx 1.69, C \approx 0.5$. Полагается, что зависимость (4.1) справедлива при $\varepsilon < \varepsilon_0$ (ε_0 — значение деформации, большее предела прочности в 5-10 раз, при котором материал не передает напряжения в направлении, ортогональном направлению трещины).

4.2. Математическая модель

Будем рассматривать две конфигурации твердого тела — без растрескивания (K_1) и с учетом образования трещин (K_2) . Для начала определим некоторые соотношения.

Зависимость (4.1) запишем в другом виде

$$\frac{\sigma}{\sigma_f} = \frac{\sigma}{\varepsilon} \frac{\varepsilon}{\varepsilon_f} \frac{\varepsilon_f}{\sigma_f} = A + Be^{-C\frac{\varepsilon}{\varepsilon_f}},$$

$$E = \frac{\sigma}{\varepsilon}, \quad E_0 = \frac{\sigma_f}{\varepsilon_f} \Rightarrow \frac{E}{E_0} \frac{\varepsilon}{\varepsilon_f} = A + Be^{-C\frac{\varepsilon}{\varepsilon_f}},$$

где E и E_0 — текущий и начальный модули Юнга.

Тогда введем функцию памяти материала e(t) для двумерного случая:

$$e_{i}(t) = \begin{cases} 0, & \varepsilon_{i} > \varepsilon_{0}, \\ \frac{E}{E_{0}} = \frac{\varepsilon_{f}}{\varepsilon_{i}} \left(A + Be^{-C\frac{\varepsilon}{\varepsilon_{f}}} \right), & \varepsilon_{f} \leqslant \varepsilon_{i} \leqslant \varepsilon_{0}, \\ 1, & \varepsilon_{i} < \varepsilon_{f}, \\ i = 1, 2. \end{cases}$$

$$(4.2)$$

Для двумерной задачи определим матрицу \hat{E}

$$\hat{E} = \begin{pmatrix} e_1 & 0 & 0 \\ 0 & e_2 & 0 \\ 0 & 0 & e_1 e_2 \end{pmatrix},$$

которая является матрицей перехода: $K_1 \to K_2$.

Для того, чтобы использовать функцию памяти необходимо привести тензор деформации $\hat{\varepsilon}$ к главным осям. Введем матрицу перехода \hat{T} , которая диагонализирует тензор деформаций $\hat{\varepsilon}$

$$\begin{pmatrix} \varepsilon_1 & 0 \\ 0 & \varepsilon_2 \end{pmatrix} = \hat{T}^{-1} \,\hat{\varepsilon} \hat{T}.$$

Известно, что из матрицы \hat{T} единственным образом составляется матрица преобразования \hat{P} , которая приводит вектор деформаций $\vec{\varepsilon}$ в нотации Фойгта к следующему виду $\bar{\varepsilon} = \{\varepsilon_1, \varepsilon_2, 0\}^{\mathrm{T1}}$.

Для конфигурации K_1 справедлив закон Гука:

$$\vec{\sigma} = [C] \, \vec{\varepsilon^e}.$$

Рассмотрим в конфигурации K_1 систему координат, связанную главными направлениями тензора деформаций. В этой системе координат закон Γ ука имеет вид

$$\overline{\sigma} = [\overline{C}] \, \overline{\varepsilon}^e.$$

¹ Символ — обозначает запись в главных осях.

Отметим, что матрица перехода \hat{P} к главным направлениям тензора деформаций является ортогональной, поэтому

$$\vec{\varepsilon}^T \vec{\sigma} = \overline{\varepsilon}^T \overline{\sigma}.$$

Закон Гука для конфигурации K_2 имеет вид

$$\tilde{\sigma} = \tilde{C} \left(\tilde{\varepsilon} - \tilde{\varepsilon}^T \right).$$

Поскольку матрица перехода \hat{E} из конфигурации K_1 в конфигурацию K_2 является диагональной и поворота осей при этом не происходит, то соотношение (4.2) будет иметь вид

$$\overline{\sigma} = \tilde{C} \left(\overline{\varepsilon} - \overline{\varepsilon}^T \right), \quad \tilde{C} = \hat{E}^T \overline{C} \hat{E}.$$

Вернемся к исходной системе координат с помощью соотношений

$$\vec{\sigma} = \hat{P}^{T} \, \overline{\sigma}, \quad \vec{\varepsilon} = \hat{P}^{-1} \overline{\varepsilon}, \quad \overline{C} = \left(\hat{P}^{-1}\right)^{T} \, [C] \, \hat{P}^{-1},$$
$$\Rightarrow \vec{\sigma} = \hat{P}^{T} \tilde{C} \hat{P} \left(\vec{\varepsilon} - \vec{\varepsilon}^{T}\right).$$

причем

$$\hat{P}^{\mathrm{T}}\tilde{C}\hat{P} = \hat{P}^{\mathrm{T}}\hat{E}^{T}\,\overline{C}\,\hat{E}\hat{P} = \left(\hat{P}^{\mathrm{T}}\hat{E}^{T}(\hat{P}^{-1})^{\mathrm{T}}\right)[C]\left(\hat{P}^{-1}\hat{E}\hat{P}\right),$$

$$\hat{Z} = \hat{P}^{-1}\hat{E}\hat{P}.$$

Тогда

$$\vec{\sigma} = \hat{Z}^{\mathrm{T}} \hat{C} \hat{Z} \left(\vec{\varepsilon} - \vec{\varepsilon}^{T} \right) = \hat{C}^{\mathrm{crk}} \left(\vec{\varepsilon} - \vec{\varepsilon}^{T} \right).$$

4.3. Образование радиальных и полярных трещин

Рассмотрим топливную таблетку в горизонтальном сечении. Оно представляет собой кольцо с внутренним радиусом $r_a = 0,8$ мм, внешним радиусом $r_b = 3,8$ мм. Закрепим его в одной точке на горизонтальной оси по вертикали и на вертикальной оси по горизонтали. Остальные границы будем считать свободными. Граничные условия в данном случае имеют следующий вид:

$$u_x(0, r_a) = u_y(-r_a, 0) = 0, \quad \sigma_{xx} \mid_{x^2 + y^2 = r_a^2} = \sigma_{yy} \mid_{x^2 + y^2 = r_b^2} = 0.$$

Также зададим зависимость температуры от пространственных координат T(x,y). Будем решать задачу с постоянным коэффициентом теплового расширения ($\alpha=$ const).

На каждом временном слое в качестве изменения температуры ΔT возьмем:

$$\Delta T = T(x, y, t) - T_0 = \frac{T_1(t) \ln \frac{r_b}{r} - T_2(t) \ln \frac{r_a}{r}}{\ln \frac{r_b}{r}},$$

где $T_1(t) = (T_a - T_0) \frac{t}{t_f} + T_0, \ T_2(t) = (T_b - T_0) \frac{t}{t_f} + T_0, \ T_a = 1700 \ \mathrm{K}, \ T_b = 600 \ \mathrm{K}, \ T_0 = T_{ref}.$

Будем наблюдать характер изменения напряжений от пространственных координат в разные моменты времени.

На момент времени $t=0.06t_f$ тело ведет себя как упругое. Функция памяти e(t) в упругой области равна 1.

Рис. 13. Напряжения

При $t = 0.2t_f$ происходит развитие 4-х трещин в топливной таблетке. Напряжение и деформации достигли пределов прочности σ_f и ε_f . Функция памяти отклоняется от единицы, т.е. появляются анизотропные эффекты.

При $t=0.9t_f$ разрушение продолжается, появляются новые трещины. Многие деформации достигли значение ε_0 , при котором материал не способен передавать напряжения в направлении, ортогональном трещине.

Заключение 19

Рис. 15. Напряжения

При $t=t_f$ видно большое количество трещин по 8 направлениям. При появлении трещин напряжения спадают практически до нуля, и на всех графиках не превышают предел прочности σ_f .

Рис. 16. Напряжения

Заключение

Была исследована математическая модель разрушения пластины, состоящей из диоксида урана UO₂. Данная задача была решена методом конечных элементов на треугольной сетке. Для тестовой задачи подтвержден порядок точности схемы.

Проведено математическое моделирование разрушения топливной таблетки в двумерной задаче, описывающей горизонтальное сечение. Применение описанной модели размазанных трещин приводит к непротиворечивым результатам.

Решение вышеуказанной задачи было реализовано с помощью библиотеки FEniCS на языке программирования «Python».

Список использованных источников

- 1. *Коваленко А.Д.* Основы термоупругости : учебное пособие / А.Д. Коваленко. Киев: Наукова думка, 1970. – 307 с.
- 2. *Фрост Б.* ТВЭЛы ядерных реакторов: пер. с англ. М.: Энергоатомиздат, 1986. 248 с.
- 3. Зенкевич О., Морган К. Конечные элементы и аппроксимация: Пер. с англ. М.: Мир, 1986. 318 с.
- 4. Зарубин В.С., Кувыркин Г.Н. Математические модели механики и электродинамики сплошной среды. М.: Изд-во МГТУ им. Н.Э. Баумана, 2008. 512 с.: ил. (Математическое моделирование в технике и в технологии).
- 5. Галанин М.П., Савенков Е.Б. Методы численного анализа математических моделей. М.: Изд-во МГТУ им. Н.Э. Баумана, 2010. 592 с.
- 6. Математическое моделирование разрушения хрупкого материала под действием тепловых нагрузок / М.П. Галанин [и др.] // Препринты ИПМ им. М.В. Келдыша. 2013. № 100. 36 с. URL: http://library.keldysh.ru/preprint.asp?id=2013-100.
- 7. Dahlblom O., Ottosen N.S. Smeared Crack Analysis of Concrete Using a Nonlinear Fracture Model // Fracture Mechanics of Concrete. Nordic Seminar Held at Division of Building Materials, November 6, 1986, p. 31-46.