Laurea magistrale in ingegneria matematica

Progetto per il corso di Programmazione Avanzata per il Calcolo Scientifico.

Implementazione in LifeV dell'algoritmo di Riduzione Gerarchica di Modello

Progetto svolto da: Matteo Carlo Maria Aletti Matr. 783045 Andrea Bortolossi Matr. 783023

Anno Accademico 2012–2013

Indice

1	Intr	oduzione	2
	1.1	Nozioni base	2
	1.2	Forma matriciale	4
	1.3	Implementazione integrali	5

Capitolo 1

Introduzione

1.1 Nozioni base

L'obbiettivo primale del progetto è stato di implementare in LifeV un risolutore ADR 3D, basato sulla tecnica di Riduzione Gerarchica di Modello. Il problema trattato è il seguente:

$$\begin{cases}
-\mu \Delta u + \mathbf{b} \cdot \nabla u + \sigma u = f & \text{in } \Omega \\
u = u_{in} & \text{su } \Gamma_{in} \\
\frac{\partial u}{\partial \mathbf{n}} = 0 & \text{su } \Gamma_{out} \\
u = 0 & \text{su } \Gamma_{vaso}
\end{cases}$$
(1.1)

$$\Omega = \bigcup_{x \in \Omega_{1D}} \gamma_x \tag{1.2}$$

Si consideri il dominio Ω , come l'unione di slice poste trasversalmente alla direzione longitudinale del tubo a sezione rettangolare, la quale verrà indicata d'ora in poi con Ω_{1D} :

Lungo le slice γ_x vengono utilizzate funzioni spaziali differenti rispetto a quelle utilizzate lungo Ω_{1D} . Si consideri infatti per Ω_{1D} , lo spazio funzionale $V_{1D} = H^1_{\Gamma_{in}}(\Omega_{1D})$, mentre sulla generica γ_x si introducano le basi modali $\{\varphi_k(y,z)\}$ ortonormali in $L^2(\gamma_x)$, con $k \in \mathbb{N}$. Quest'ultime definiscono su γ_x

lo spazio funzionale $V_{\gamma_x} := span\{\varphi_k\}$. Definiamo ora il sottospazio generato solo dai primi m modi ovvero $V^m_{\gamma_x} := span\{\varphi_1,...,\varphi_m\}$ e combiniamolo con V_{1D} , ottenendo il seguente spazio ridotto:

$$V_m := \left\{ v_m(x, y, z) = \sum_{k=1}^m \varphi_k(y, z) \tilde{v}_k(x), \ con \ \tilde{v}_k \in V_{1D} \right\}$$
 (1.3)

L'ortogonalitá in $L^2(\gamma_x)$ implica che i coefficienti \tilde{v}_k in (1.3) sono il risultato del seguente prodotto scalare per k = 1, ..., m:

$$\tilde{v}_k(x) = \int_{\gamma_x} \varphi_k(y, z) v_m(x, y, z) \, dy dz$$

La convergenza di una soluzione u_m tale che soddisfi il problema (1.1) è garantita osservando che:

- $V_m \subset V \ \forall m \in \mathbb{N}$, ossia che lo spazio ridotto V_m è conforme in V;
- $\lim_{x\to+\infty} \left(\inf_{v_m\in V_m} ||v-v_m||\right) = 0$ per ogni $v\in V$, ossia che vale la proprietà di approssimazione di V_m rispetto a V;

È possibile dimostrare che le ipotesi di conformità e approssimazione sono ancora valide in una trattazione con dato di Dirichlet non omogeneo sulle pareti del tubo ([?]).

1.2 Forma matriciale

La risoluzione del problema ADR può avvenire quindi sullo spazio ridotto V_m . Dunque, per ogni $m \in \mathbb{N}$ si riconosca il seguente problema ridotto del problema originale (1.1), trovare $u_m \in V_m$ tale che $\forall v_m \in V_m$:

$$\int_{\Omega} (\mu \nabla u_m \nabla v_m + \mathbf{b} \nabla u_m v_m + \sigma u_m v_m) \ d\Omega = \int_{\Omega} f v \, dx dy \quad (1.4)$$

Si adoperi l'espansione tramite i coefficienti di Fourier della $u_m(x,y,z)=\sum_{j=k}^m \tilde{u}_j(x)\varphi_j(y,z)$ dove:

$$\tilde{u}_j(x) = \int_{\gamma(x)} u_m(x, y, z) \varphi_j(y, z) \, dy dz$$

e si considerino le funzioni test $v_m = \vartheta(x)\varphi_k(y,z)$ con $\vartheta(x) \in V_{1D}$ e k = 1, ...m. Il problema assume la seguente forma:

$$\sum_{j=1}^{m} \left[\int_{\Omega} \mu \nabla(\tilde{u}_{j}(x)\varphi_{j}(y,z)) \nabla(\vartheta(x)\varphi_{k}(y,z)) \, dx dy dz \right.$$

$$+ \int_{\Omega} \mathbf{b} \nabla(\tilde{u}_{j}(x)\varphi_{j}(y,z)\vartheta(x)\varphi_{k}(y,z) \, dx dy dz$$

$$+ \int_{\Omega} \sigma \tilde{u}_{j}(x)\varphi_{j}(y,z)\vartheta(x)\varphi_{k}(y,z) \, dx dy dz \right]$$

$$= \int_{\Omega} f \vartheta(x)\varphi_{k}(y,z) \, dx dy dz$$

$$(1.5)$$

Svolgendo l'operatore gradiente si ottiene:

$$\sum_{j=1}^{m} \left[\int_{\Omega} \mu(\partial_{x}\tilde{u}_{j}\partial_{x}\vartheta\varphi_{j}\varphi_{k} + \tilde{u}_{j}\vartheta\partial_{y}\varphi_{j}\partial_{y}\varphi_{k} + \tilde{u}_{j}\vartheta\partial_{z}\varphi_{j}\partial_{z}\varphi_{k}) dxdydz \right. \\
+ \int_{\Omega} (b_{1}\partial_{x}\tilde{u}_{j}\varphi_{j} + b_{2}\tilde{u}_{j}\partial_{y}\varphi_{j} + b_{3}\tilde{u}_{j}\partial_{z}\varphi_{j})\vartheta\varphi_{k} dxdydz \\
+ \int_{\Omega} \sigma\tilde{u}_{j}\vartheta\varphi_{j}\varphi_{k} dxdydz \right] \\
= \int_{\Omega} f\vartheta\varphi_{k} dxdydz \quad (1.6)$$

Definito N il numero di nodi scelti uniformemente distribuiti lungo Ω_{1D} , si determina una partizione T_h , dove $h = |\Omega_{1D}|/(N-1)$ è il passo spaziale. Introduciamo lo spazio agli elementi finiti lungo Ω_{1D} definito come segue

$$X_h^r = \{ \psi_h \in C^0(\Omega_{1D}) : \psi_h|_K \in \mathbb{P}_r, \forall K \in T_h \}$$

Nella successiva implementazione del metodo si è considerato per semplicità, una base F.E.M. di primo grado. Possiamo quindi esprimere i coefficienti di Fuorier nel seguente modo: $\tilde{u}_j(x) = \sum_{s=1}^N u_{js} \psi_s(x)$. Si ottiene dunque la formulazione matriciale del nostro problema, trovare

Si ottiene dunque la formulazione matriciale del nostro problema, trovare $\mathbf{u} \in \mathbb{R}^{N*m}$ tale che $\forall \psi_l$ e $\forall \varphi_k$, con l=1,...N e k=1,...m si ha che:

$$\sum_{j=1}^{m} \sum_{s=1}^{N} u_{js} \left[\int_{\Omega} \mu(\partial_{x} \psi_{s} \partial_{x} \psi_{l} \varphi_{j} \varphi_{k} + \psi_{s} \psi_{l} \partial_{y} \varphi_{j} \partial_{y} \varphi_{k} + \psi_{s} \psi_{l} \partial_{z} \varphi_{j} \partial_{z} \varphi_{k}) dx dy dz \right]$$

$$+ \int_{\Omega} (b_{1} \partial_{x} \psi_{s} \varphi_{j} + b_{2} \psi_{s} \partial_{y} \varphi_{j} + b_{3} \psi_{s} \partial_{z} \varphi_{j}) \psi_{l} \varphi_{k} dx dy dz$$

$$+ \int_{\Omega} \sigma \psi_{s} \psi_{l} \varphi_{j} \varphi_{k} dx dy dz$$

$$= \int_{\Omega} f \psi_{l} \varphi_{k} dx dy dz \quad (1.7)$$

Si osservi che il doppio indice "js", in realtà scorre un vettore, la rimappatura in un solo indice può facilmente essere dedotta ottenenedo che $[\mathbf{u}]_{js} = \mathbf{u}[(j-1)N+s]$. La matrice generata ha quindi dimensioni $(mN)^2$, tuttavia fissata la frequenza delle soluzione e della funzione test è possibile identificare un blocco che corrisponde ad un problema monodimensionale. Se utilizziamo, in direzione x, gli elementi finiti di grado 1, il blocco risulta tridiagonale e, in questo caso, la matrice ha un numero di elementi non zero pari a $m^2(3N-2)$. Il pattern di sparsità per un caso con m=3 e N=14 è riportato in figura ??. La matrice dei coefficienti è dunque sparsa ed inoltre il pattern è noto a priori, queste informazioni hanno permesso un assemblaggio più veloce in sede implementativa.

In generale il problema che si porrebbe ora sarebbe la scelta della base modale. Esistono svariati metodi al fine di determinare la natura della base modale, tuttavia questa problematica va al di fuori degli scopi di questo elaborato. Seguendo le linee guida in (e qua ci autocitiamo!!!!) scegliamo la base modale in grado di garantire le condizioni di parete:

$$\varphi_j(y,z) = \sin\left(\frac{\alpha}{\pi L_y}y\right) \sin\left(\frac{\beta}{\pi L_z}z\right) \quad \lambda_j = \alpha^2 + \beta^2$$
 (1.8)

1.3 Implementazione integrali

Nel caso i coefficienti del problema ADR siano dipendenti dalla sola coordinata x o risultino fattorizabili lungo la direzione x e il piano ortogonale, il

risultato finale di HiMod è la trasformazione di un problema ADR full 3D a m^2 problemi ADR 1D accoppiati con coefficienti modificati opportunatamente dalle funzioni modali a seconda della coppia di frequenze considerata. Nel caso non ricadiamo in tale ipotesi vale comunque la scomposizione in problemi 1D ma risulta più delicata l'integrazione. Nel caso si fattorizza anche μ proiettandola sulle basi modali, non penso che dia dei buoni risultati, tuttavia è fattibile

$$\frac{\partial_{x}\psi_{s}\partial_{x}\psi_{l}}{\partial_{x}\psi_{s}\psi_{l}} = \frac{\int_{\gamma_{x}}\mu\varphi_{j}\varphi_{k}\,dydz}{\int_{\gamma_{x}}\varphi_{j}\varphi_{k}\,dydz}
\psi_{s}\psi_{l} = \frac{\int_{\gamma_{x}}\mu\varphi_{j}\varphi_{k}\,dydz}{\int_{\gamma_{x}}(\mu\partial_{y}\varphi_{j}\partial_{y}\varphi_{k} + \mu\partial_{z}\varphi_{j}\partial_{z}\varphi_{k} + b_{2}\partial_{y}\varphi_{j}\varphi_{k} + b_{3}\partial_{z}\varphi_{j}\varphi_{k} + \sigma\varphi_{j}\varphi_{k})\,dydz}
(1.9)$$