

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет ИТМО"

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №4

по дисциплине "ОСНОВЫ ПРОФЕССИОНАЛЬНОЙ ДЕЯТЕЛЬНОСТИ" Тема: «Выполнение комплекса программ».

Вариант: 1379.

выполнил:
Студент группы Р3130
Птицын Максим Евгеньевич
Преподаватель
Ткешелашвили Нино Мерабиевна

1 Задание

По выданному преподавателем варианту восстановить текст заданного варианта программы и подпрограммы (программного комплекса), определить предназначение и составить его описание, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программного комплекса.

1D9: +	0200	1	1E7:	4E0D	1F5:	FDE8	Т	729:	EC01
1DA:	EE1A	Ĺ	1E8:	EE0C	i		Ĺ	72A:	0A00
1DB:	AE18	ı	1E9:	AE09	71D:	AC01	ı	72B:	FF06
1DC:	0700	Ĺ	1EA:	0740	71E:	F001	Ĺ	72C:	0027
1DD:	0C00	Ĺ	1EB:	0C00	71F:	F304	Ĺ		
1DE:	D71D	1	1EC:	D71D	720:	6E0A	1		
1DF:	0800	Ĺ	1ED:	0800	721:	F201	Ĺ		
1E0:	6E14	Ĺ	1EE:	0740	722:	CE05	Ĺ		
1E1:	EE13	Ĺ	1EF:	4E05	723:	4E07	Ĺ		
1E2:	AE0F	Ĺ	1F0:	EE04	724:	0500	Ĺ		
1E3:	0740	Ĺ	1F1:	0100	725:	0500	Ĺ		
1E4:	0C00	Ĺ	1F2:	ZZZZ	726:	6E05	Ĺ		
1E5:	D71D	ĺ	1F3:	YYYY	727:	CE01	Ĺ		
1E6:	0800	ĺ	1F4:	XXXX	728:	AE02	Ĺ		

2 Программа

2.1 Основная:

Cell Address	Cell Content	Mnemonics	Comments
1D9	+ 0200	CLA	Очистка аккумулятора.
1DA	EE1A	ST (IP+26)	Сохранение аккумулятора в ячейку 1F5 (R).
1DB	AE18	m LD~(IP+24)	Загрузка в аккумулятор данных из ячейки 1F4 (X).
1DC	0700	INC	Инкрементация значения в аккумуляторе.
1DD	0C00	PUSH	Загрузка содержимого АС в подпрограмму.
1DE	D71D	CALL 71D	Вызов подпрограммы с началом в ячейке 71D.
1DF	0800	POP	Выгрузка результата подпрограммы в АС.
1E0	6E14	SUB (IP+20)	Вычитание из аккумулятора значение ячейки 1F5 (R).
1E1	EE13	ST (IP+19)	Сохранение результата в ячейку 1F5 (R).
1E2	AE0F	$^{ m LD}$ (IP+15)	Загрузка в аккумулятор данных из ячейки 1F2 (Z).
1E3	0740	DEC	Декрементация значения в аккумуляторе.
1E4	0C00	PUSH	Загрузка содержимого АС в подпрограмму.
1E5	D71D	CALL 71D	Вызов подпрограммы в ячейке 71D.
1E6	0800	POP	Выгрузка результата подпрограммы в АС.
1E7	4E0D	ADD (IP+13)	Сложение значения из ячейки 1F5 (R) с аккумулятором.
1E8	EE0C	ST (IP+12)	Сохранение результата в ячейку 1F5 (R).
1E9	AE09	LD (IP+9)	Загрузка в аккумулятор значение из ячейки 1F3 (Y).
1EA	0740	DEC	Декрементация значения в аккумуляторе.
1EB	0C00	PUSH	Загрузка содержимого АС в подпрограмму.
1EC	D71D	CALL 71D	Вызов подпрограммы в ячейке 71D.
1ED	0800	POP	Выгрузка результата подпрограммы в АС.
1EE	0740	DEC	Декрементация значения в аккумуляторе.
1EF	4E05	ADD (IP+5)	Сложение с аккумулятором значения из ячейки 1F5 (R).
1F0	EE04	ST (IP+4)	Сохранение результата в ячейку 1F5 (R).
1F1	0100	HLT	Остановка.
1F2	0008	Z	Переменная Z. Значение 8.
1F3	FFF1	Y	Переменная Ү. Значение -15.
1F4	FFEC	X	Переменная Х. Значение -20.
1F5	FDE8	R	Ячейка для хранения результата (R).

2.2 Подпрограмма:

Cell Address	Cell Content	Mnemonics	Comments
71D	AC01	LD (SP+1)	Загрузка в аккумулятор последнего сохранённого в стек чис
71E	F001	BEQ (IP+1)	IF Z==1 THEN 720 -> IP (skip next).
71F	F304	BPL (IP+4)	IF $N==0$ THEN 724 -> IP.
720	6E0A	SUB (IP+10)	AC-MEM(72B).
721	F201	BMI (IP+1)	IF $N==1$ THEN 723 -> IP (skip next).
722	CE05	JUMP (IP+5)	728 -> IP.
723	4E07	ADD (IP+7)	Сложение с аккумулятором значения из ячейки 72B (V).
724	0500	ASL	Арифметический сдвиг влево
725	0500	ASL	$(AC_{15} - > C; AC_i = AC_{i-1}; 0 - > AC_0).$
726	6E05	SUB (IP+5)	Вычитание из аккумулятора значение ячейки 72С (В).
727	CE01	JUMP (IP+1)	729 -> IP (skip next).
728	AE02	LD (IP+2)	Загрузка в аккумулятор значения ячейки 72B (V).
729	EC01	ST (SP+1)	Сохранение результата в стек (SP)+.
72A	0A00	RET	Возвращение из подпрограммы.
72B	FF06	V	Локальная переменная подпрограммы (-250).
72C	0027	В	Локальная переменная подпрограммы (39).

3 Функция, реализуемая программой

3.1 Основная программа:

$$R(X, Y, Z) = F(X+1) + F(Z-1) + F(Y-1) - 1.$$

3.2 Подпрограмма:

$$F(t) = egin{cases} 4t - 39 & , \ if \ t < -250 \ ; \ -250 & , \ if \ -250 \leqslant t \leqslant 0 \ ; \ 4t - 39 & , \ if \ t > 0 \ . \end{cases}$$

3.3 График функции подпрограммы:

- 4 Область представления данных и область допустимых значений
- 4.1 Область представления:

В ячейках X, Y, Z, V, B, R находятся знаковые 16теричные целые числа.

- 4.2 ОДЗ
- 4.2.1 Подпрограммы:

$$F(x) \in \left[\frac{-2^{15}+1}{3}; \frac{2^{15}}{3}\right]$$

4.2.2 X:

$$\begin{array}{c} \frac{-2^{15}+118}{12}-1\leqslant X\leqslant \frac{2^{15}+117}{12}-1\\ \text{or}\\ -2721\leqslant X\leqslant 2739 \end{array}$$

4.2.3 Y:

$$\begin{array}{c} \frac{-2^{15}+118}{12}+1\leqslant Y\leqslant \frac{2^{15}+117}{12}+1\\ \text{or}\\ -2719\leqslant Y\leqslant 2741 \end{array}$$

4.2.4 Z:

$$\begin{array}{c} \frac{-2^{15}+118}{12}+1\leqslant Z\leqslant \frac{2^{15}+117}{12}+1\\ \text{or}\\ -2719\leqslant Z\leqslant 2741 \end{array}$$

4.2.5 Результата:

$$-2^{15} \le R \le 2^{15} - 1$$

5 Расположение программы в памяти БЭВМ:

Oсновной программы - $1D9 ext{-}1F1$.

Первый аргумент программы – 1F2.

Bторой аргумент программы - 1F3 .

Tретий аргумент программы - 1F4.

Pезультат программы – **1F5** .

 Π одпрограммы – 71D-72A .

Bcпомогательная переменная подпрограммы – 72B .

Bспомогательная переменная подпрограммы – 72C .

6 Трассировка

```
ADDIDIDIDE TO BE THE SEASON DE SEAS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STATE | STAT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0007
01E6
```

6.1 Проверка программы:

```
\begin{split} &F(\text{-}20\text{+}1) = \text{-}250~;\\ &F(\text{8-}1) = 7\text{*}4\text{ - }39 = \text{-}11~;\\ &F(\text{-}15\text{-}1) = \text{-}250~;\\ &Result = (\text{-}250) + (\text{-}11) + (\text{-}250) \text{ - }1 = \text{-}512 = FE00~. \end{split}
```

7 Доп. задание

Написать программу, реализующую пробег по двум массивам, сравнивая объекты в них: если i-ый номер во втором массиве равен нулю, то i-тый номер в первом массиве необходимо записать.

7.1 Программа

Cell Address	Cell Content	Mnemonics	Comments
001	0016	Addr M_1	Адрес начала массива №1
002	001B	Addr M_2	Адрес начала массива №2
003	FFFF	$M_{1,i}$ caller	Ячейка, в которую сохраняется адрес для обращения
			к элементу массива №1
004	FFFF	M_2 caller	Ячейка, в которую сохраняется адрес для обращения
			к элементу массива №2
005	FFFF	iterator	Итератор цикла
006	+0200	CLA	Очистка аккумулятора
007	AF05	LD #5	Прямая загрузка числа 5 в АС
008	E005	ST 5	Сохранение 5 в ячейку итератора
009	4002	ADD 2	${ m AC + Aдреc}$ начала M_2
00A	E004	ST 4	Сохранить AC в M_2 caller
00B	ABF8	LD -(IP-8)	Загрузка в аккумулятор значения, на которую
			указывает M_2 caller с предекрементом
00C	F106	BNE 6	IF $Z \neq 0$ THEN IP+6
00D	A001	LD 1	Загрузка в АС адреса начала массива №1
00E	0740	DEC	Декрементация значения в АС
00F	4005	ADD 5	AC + iterator
010	E003	ST 3	Сохранить AC в $M_{1,i}$ caller
011	A8F1	LD (IP-15)	Загрузка в аккумулятор ячейки, на которую
			указывает $M_{1,i}$ caller
012	0C00	PUSH	Запись в стек значения из аккумулятора
013	8005	LOOP 5	LOOP итератора
014	C00B	JUMP 00B	Возврат на ячейку 00В для следующего цикла
015	0100	HLT	Остановка программы
016	0001	$M_{1,1}$	
017	0002	$M_{1,2}$	
018	0003	$M_{1,3}$	
019	0004	$M_{1,4}$	
01A	0005	$M_{1,5}$	
01B	00FF	$M_{2,1}$	
01C	0000	$M_{2,2}$	
01D	5555	$M_{2,3}$	
01E	0000	$M_{2,4}$	
01F	1234	$M_{2,5}$	

7.2 Описание программы:

Пробегает по массиву N^2 , если i-ый элемент равен нулю, то она вычисляет адрес i-го элемента в массиве N^2 1, загружает его в аккумулятор и записывает в стек. По завершении программы в стеке лежит список элементов массива N^2 1, порядковый номер которых соответствует нулю в массиве N^2 2