SBOL: A community standard for communicating designs in synthetic biology

Supplementary Materials

Journal: Nature Biotechnology

Authors: Michal Galdzicki, Mandy L. Wilson, Cesar A. Rodriguez, Ernst Oberortner, Matthew Pocock, Laura Adam, J. Christopher Anderson, Bryan A. Bartley, Jacob Beal, Deepak Chandran, Joanna Chen, Douglas Densmore, Drew Endy, Raik Grünberg, Jennifer Hallinan, Nathan J. Hillson, Haiyao Huang, Jeffrey D. Johnson, Allan Kuchinsky, Matthew Lux, Goksel Misirli, Chris J. Myers, Jean Peccoud, Hector A. Plahar, Nicholas Roehner, Evren Sirin, Guy-Bart Stan, Alan Villalobos, Anil Wipat, John H. Gennari, Herbert M. Sauro.

Date: August 1, 2013

Correspondence should be addressed to Herbert Sauro (hsauro@uw.edu)

Supplementary Table 1. Glossary

Term	Definition
standards	Set of agreed upon and adhered to technical definitions and guidelines that increase
	industrial and scientific productivity ¹ .
core data model	"Representation of computer system objects together with their properties and
	relationships" (http://en.wikipedia.org/wiki/Data_model).
data standard	Standardized data model for a subject domain, i.e. synthetic biology. In this
	manuscript we describe a data standard in contrast to other standards being
	developed in the field of synthetic biology, such as reference, functional, and
	composition standards ^{2,3} .
RDF standard	"Standard model for data interchange on the Web. RDF has features that facilitate
	data merging even if the underlying schemas differ, and it specifically supports the
	evolution of schemas over time without requiring all the data consumers to be
	changed" (http://www.w3.org/RDF/).
XML	Process of converting data to an XML format that can be stored in a file or
serialization	transmitted across a computer network. For more details see
	(http://en.wikipedia.org/wiki/Serialization).
standard	Standardized data format to convey information in a consistent, computer-readable
exchange format	format so that it can be read directly by applications. SBOL defines a strict XML
	format, compatible with RDF, to enable exchange of synthetic biology designs.
Synthetic	SBOL is a data standard in synthetic biology used to exchange designs. SBOL provides
Biology Open	both a standard data model and exchange format to represent and consistently
Language (SBOL)	transfer designs among scientists. SBOL visual is used to diagram such designs.
DNA segments	Within SBOL, we consider DNA regions as elements of design for DNA circuits ⁴ ,
	analogous to electrical circuits ⁵ . This conceptualization of DNA segments as an
	element of design is a level of abstraction used to form the basis of engineering

	synthetic biological systems ⁶ .
DNA component	"A DNA component represents a segment of DNA that serves to abstract the DNA
-	sequence as an individual object, which can then be manipulated, combined, and
	reused in engineering new biological systems." ⁷
promoter	"A regulatory_region composed of the TSS(s) and binding sites for TF_complexes
	of the basal transcription machinery." ⁸
protein coding	"a contiguous sequence which begins with and includes a start codon and
sequence (CDS)	ends with and includes a stop codon."8
transcriptional	"The sequence of DNA located either at the end of the transcript that causes RNA
terminator	polymerase to terminate transcription." 8
Collection	"Organizational container, a group of DnaComponents."
Sequence	"Set of terms and relationships used to describe the features and attributes of
Ontology (SO)	biological sequence" (http://www.sequenceontology.org/) ^{9,10}
Unified	"Standardized (ISO/IEC 19501:2005), general-purpose modeling language in the field
Modeling	of software engineering. The Unified Modeling Language includes a set of graphic
Language (UML)	notation techniques to create visual models of object-oriented software-intensive
VAAL C.L.	systems." (http://en.wikipedia.org/wiki/Unified_Modeling_Language)
XML-Schema	"XML Schemas express shared vocabularies and allow machines to carry out rules
(XSD)	made by people. They provide a means for defining the structure, content and
	semantics of XML documents." (http://www.w3.org/XML/Schema)
extensions	Optional modules added to the core data model.
assembly	Physical construction of DNA molecules.
[extension] modeling	Qualitative and quantitative behavior of devices and systems, especially the
[extension]	interactions between the components used in a design.
visualization	Graphical notation that supports the description and specification for communicating
[extension]	designs.
experimental	Data and information about measurements to test performance of a device or
data [extension]	system.
context	Physical and experimental context necessary to replicate the function of a synthetic
[extension]	biological system
Systems Biology	"Interchange format for computer models of biological processes". (http://sbml.org)
Markup	
Language	
(SBML)	
Systems Biology	"Set of controlled, relational vocabularies of terms commonly used in Systems
Ontology (SBO)	Biology, and in particular in computational modeling".
	(http://www.ebi.ac.uk/sbo/main/)
devices	(Re)usable portion of functional or behavioral design, enabling annotation,
	composition and experimental characterization.
systems	Structure, behavior, and relationships of interacting components forming an
	integrated whole.

Supplementary Table 2. Differences and similarities of SBOL and GenBank flat file format

Both GenBank format and SBOL							
Describe a contiguous piece of sequence							
List areas of biological significance, such as coding regions, transcription units, etc.							
Can be used as a file to export and import sequence							
GenBank format	SBOL	Comment					
Existing molecule	New designed sequence.	The use cases each was developed to satisfy					
sequenced.		are different. GenBank format was made for					
		the results of DNA sequencing, while SBOL is					
		made for designing a new DNA sequence.					
		For example, SBOL DNA Components are re-					
		used to specify a new design while retaining					
		the identity and information about					
		properties of its subcomponents.					
Maintained by established	The core data model serves	While, it is possible to add new conventions					
consortium, the	as connecting point for	within GenBank formatted files, ad hoc					
International Nucleotide	extensions. Optional modules can be added and	additions would make the approach fragile.					
Sequence Database Collaboration (INSDC), for	are ignored by default in	For example, software which does not conform to the modification would not read					
very focused and fixed	software applications that	the file properly. It is less likely that these					
purposes.	do not support a specific	formats would be altered to satisfy evolving					
purposes.	extension. This behavior	requirements for synthetic biology. For					
	allows an SBOL compliant	example, information about computational					
	software tool to gracefully	models, devices, and systems are outside of					
	bypass an unsupported	the scope of GenBank format files.					
	extension.						
Primarily defined to serve	Defined as a data exchange	The GenBank format has been used					
as a human readable	standard, with a specified	extensively outside of its original goal to					
format to display GenBank	format that is machine	serve the DDBJ/EMBL/GenBank repositories.					
entries. A secondary	readable by SBOL	Interpretation of files generated by other					
consideration is its	compliant software and	sources can be ambiguous when read by					
machine readability and	any software capable of	software tools. For example, software tools					
consistent interpretation.	reading RDF. To avoid	such as, A plasmid Editor (ApE) ¹¹ , use the					
	ambiguity SBOL leverages	'misc_feature' Feature Key by default and					
	terms defined by the	result in this ambiguous feature's extensive					
	Sequence Ontology (SO).	use in many files generated by the software.					
Assumes the DNA	Accounts for partial	One could develop a convention for					
molecule already exists, as	designs, intermediate	GenBank files interpreting sequences with					
a single, complete	stages of design, by	N, as incomplete. However such a					
molecule. Any unknown	allowing the DNA sequence of a DNA component to be	convention would create ambiguity as to					
segments are the result of incomplete sequencing;	optional.	whether the sequence is intentionally omitted, unspecified, or the result of					
intentional or not.	Optional.	incomplete sequencing.					
Features are defined in	The explicit hierarchical	Results of DNA sequencing, such as in					
terms of their position on	composition allows for a	GenBank format, do not have a natural					
terms of their position on	Composition allows for a	Genbank format, ao not have a nataral					

the sequence specified by	combination of DNA	hierarchy. In SBOL, a new DNA sequence can
the sequence data field;	segments, subcomponents,	be composed from multiple
these do not specify a	to make up a complete	subcomponents. Since a DNA component
hierarchical relationship	design.	with subcomponents can be used in a new
among each other.		design, multiple levels of hierarchical
		composition are possible.
No explicit mechanism for	Collection data structure,	Multiple GenBank entries can be
groups of GenBank	which allows DNA	concatenated in a single file. However, no
entries.	components to be grouped	explicit semantics are attached to such
	by the synthetic biologist	groupings.
	into meaningful libraries or	
	catalogues of components.	

Supplementary Table 3. Author Contributions

Name	Affiliation	con- ceived the idea	wrote the manu- script	edited the man- uscript	designed data model	fostered commu- nity	devel- oped libSBOL	supervised libSBOL de- velopment	developed serializa- tion	demon strated use	supervised deploy- ment
Michal Galdzicki	Biomedical and Health Informatics, University of Washington, 850 Republican Street, Building C, Seattle, WA, 98109-4714, USA	•	•	•	•	•	•	•	•		•
Mandy L. Wilson	Virginia Bioinformatics Institute, Virginia Tech, Bioinformatics Facility Phase 1 (0477), 1015 Life Science Cir, Blacksburg, VA, 24061-0477, USA		•	•	•	•		•			•
Cesar A. Rodriguez	Autodesk Research, Autodesk Inc., Pier 9, The Embarcadero, San Francisco, CA, 94111, USA	•			•	•		•			
Ernst Oberortner	Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA			•	•	•	•	•		•	•
Matthew Pocock	School of Computing Science, Newcastle University, Clarement Tower, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK		•		•	•	•	•			•
Laura Adam	Virginia Bioinformatics Institute, Virginia Tech, Bioinformatics Facility Phase 1 (0477), 1015 Life Science Cir, Blacksburg, VA, 24061-0477, USA				•						
J. Christopher Anderson	Department of Bioengineering, University of California, Berkeley, 512E EBB, Berkeley, CA, 94720, USA	•			•	•					•
Bryan A. Bartley	Department of Bioengineering, University of Washington, Box 355061, Seattle, WA, 98195-5061, USA				•	•				•	
Jacob Beal	Raytheon BBN Technologies, 10 Moulton Street, Cambridge, MA, 2138, USA			•	•	•				•	•
Deepak Chandran	OCTO, Autodesk, 1290 Beethoven Cmn - 207, Fremont, 94538, USA	•			•	•					•
Joanna Chen	Fuels Synthesis Division, Joint Bioenergy Institute (JBEI), 1 Cyclotron Road MS978R4121, Berkeley, CA, 94720, USA									•	
Douglas Densmore	Electrical and Computer Eng., Boston University, 8 Saint Mary's St., Boston MA, 02215, USA	•		•		•					•
Drew Endy	Department of Bioengineering, Stanford University, Y2E2-269B, 473 Via Ortega, Stanford, CA, 94305-4201, USA	•		•		•					
Raik Grünberg	IRIC, University of Montreal, PO Box 6128 STN Centre-Ville, Montreal, QC, H3C 3J7, Canada	•		•	•				•		
Jennifer Hallinan	School of Computing Science, Newcastle University, Claremont Tower, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK	•			•	•					•
Nathan J. Hillson	Fuels Synthesis Division, Joint Bioenergy Institute (JBEI), 1 Cyclotron Road MS978R4121, Berkeley, CA, 94720, USA			•	•						•
Haiyao Huang	Department of Electrical and Computer Engineering, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA			•						•	
Jeffrey D. Johnson	Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA, 94720, USA						•			•	
Allan Kuchinsky	Molecular Tools Laboratory, Agilent Technologies, 5301 Stevens Creek Blvd, Santa Clara, CA, 95051, USA			•	•	•		•			
Matthew Lux	Virginia Bioinformatics Institute, Virginia Tech, Bioinformatics Facility Phase 1 (0477), 1015 Life Science Cir, Blacksburg, VA, 24061-0477, USA				•						
Goksel Misirli	School of Computing Science, Newcastle University, Claremont Tower, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK			•	•	•	•			•	
Chris J. Myers	Dept. of Electrical & Computer Eng., University of Utah, 50 S. Central Campus Dr., Rm. 3280, Salt Lake City, UT, 84112, USA	•		•	•	•				•	•
Jean Peccoud	Virginia Bioinformatics Institute, Virginia Tech, Washington St, MCO477, Blacksburg, VA, 24061, USA	•		•	•	•					•
Hector A. Plahar	Fuels Synthesis Division, Joint Bioenergy Institute (JBEI), 1 Cyclotron Road MS978R4121, Berkeley, CA, 94720, USA						•			•	
Nicholas Roehner	Bioengineering, University of Utah, 50 S. Central Campus Dr., Rm. 3280, Salt Lake City, UT, 84112, USA			•	•		•			•	
Evren Sirin	Clark & Parsia, 180 Massachusetts Ave, Arlington, MA, 02474, USA						•	•	•	•	•
Guy-Bart Stan	Bioengineering, Imperial College London, South Kensington Campus, Exhibition Road, London, SW7 2AZ, UK	•		•	•						•
Alan Villalobos	DNA2.0, 1140 Obrien Dr. Ste A, Menlo Park, CA, 94107, USA									•	•
Anil Wipat	School of Computing Science, Newcastle University, Claremont Tower, Claremont Road, Newcastle upon Tyne, NE1 7RU, UK			•	•	•				•	•
John H. Gennari	Biomedical and Health Informatics, University of Washington, 850 Republican Street, Building C, Seattle, WA, 98109-4714, USA	•	•			•			•		•
Herbert M. Sauro	Department of Bioengineering, University of Washington, William H. Foege Building, 3720 15th Ave NE, Seattle, WA, 98195-5061, USA	•	•	•		•					•

conceived the idea: Proposed the need for a data standard at the first workshop or original online discussion; wrote the manuscript: Initial manuscript: Made corrections and provided critical feedback on the manuscript; designed data model: Participated in the discussions of the data model structure online or at workshops; fostered community: Organized workshops or online community; developed libSBOL: Contributed code to libSBOL development: Management of developer and priorities of implementation; developed serialization: Contributed ideas to the structure of the serialization; demonstrated use: A demonstration of software support for SBOL in the paper; supervised deployment: Coordinated local effort with community

References

- 1. Sage, A. P. & Rouse, W. B. *Handbook of systems engineering and management*. p. 466 (Wiley-Interscience: 2011).
- 2. Müller, K. M. & Arndt, K. M. Standardization in synthetic biology. *Synthetic Gene Networks: Methods and Protocols, Methods in Molecular Biology* **813**, 23–43 (2012).
- 3. Kelly, J. R. *et al.* Measuring the activity of BioBrick promoters using an in vivo reference standard. *Journal of biological engineering* **3**, 4 (2009).
- 4. Savageau, M. A. Design principles for elementary gene circuits: Elements, methods, and examples. *Chaos* **11**, 142 (2001).
- 5. Kaern, M., Blake, W. J. & Collins, J. J. The engineering of gene regulatory networks. *Annual Reviews in Biomedical Engineering* **5**, 179–206 (2003).
- 6. Endy, D. Foundations for engineering biology. *Nature* **438**, 449–53 (2005).
- 7. Galdzicki, M. *et al.* Synthetic Biology Open Language (SBOL) Version 1.1.0. *BBF RFC #87* (2012).doi:1721.1/73909
- 8. Eilbeck, K. *et al.* The Sequence Ontology: a tool for the unification of genome annotations. *Genome biology* **6**, R44 (2005).
- 9. Eilbeck, K. *et al.* The Sequence Ontology: a tool for the unification of genome annotations. *Genome biology* **6**, R44 (2005).
- 10. Mungall, C. J., Batchelor, C. & Eilbeck, K. Evolution of the Sequence Ontology terms and relationships. *Journal of biomedical informatics* (2010).doi:10.1016/j.jbi.2010.03.002
- 11. Davis, M. W. ApE- A Plasmid Editor . (2009).at http://www.biology.utah.edu/jorgensen/wayned/ape/