Sampling distributions with intractable normalizing constants using a Markov Chain Monte Carlo method *

Yice Luo, Tian Qin, Amir Kazemi December 15, 2018

Contents

1	Goal	2
2	Method	2
3	Application: The Ising Model	4
4	Algorithm	5
5	Results	6
6	References	8
7	Appendix: Codes	9

^{*}Based on the work by Moller et al. (2006)

1 Goal

Proposition 1. Consider the problem of Metropolis-Hastings sampling from

$$\pi(\theta|y) \propto \pi(\theta)\pi(y|\theta)$$
 (1)

where the likelihood is defined by

$$\pi(y|\theta) = q_{\theta}(y)/Z_{\theta} \tag{2}$$

with Z_{θ} as a normalizing constant. The Metropolis-Hastings ratio is

$$H(\theta'|\theta) = \frac{\pi(\theta')q_{\theta'}(y)p(\theta|\theta')}{\pi(\theta)q_{\theta}(y)p(\theta'|\theta)} \frac{Z_{\theta}}{Z_{\theta'}}$$
(3)

where $p(\theta'|\theta)$ denotes the proposal distribution.

Proof.

$$H(\theta'|\theta) = \frac{\pi(\theta'|y)p(\theta|\theta')}{\pi(\theta|y)p(\theta'|\theta)}$$

$$= \frac{\pi(\theta')\pi(y|\theta')p(\theta|\theta')}{\pi(\theta)\pi(y|\theta)p(\theta'|\theta)}$$

$$= \frac{\pi(\theta')(q_{\theta'}(y)/Z_{\theta'})p(\theta|\theta')}{\pi(\theta)(q_{\theta}(y)/Z_{\theta})p(\theta'|\theta)}$$

$$= \frac{\pi(\theta')q_{\theta'}(y)p(\theta|\theta')}{\pi(\theta)q_{\theta}(y)p(\theta'|\theta)} \frac{Z_{\theta}}{Z_{\theta'}}$$

$$(4)$$

As Eq. (3) shows, the Metropolis-Hastings ratio depends on the unknown fraction $Z_{\theta}/Z_{\theta'}$ which is usually approximated. The method in this report avoids apporixmation to $Z_{\theta}/Z_{\theta'}$ by considering an auxiliary variable which cancels $Z_{\theta}/Z_{\theta'}$.

2 Method

Proposition 2. Let the auxiliary variable x be defined on the state space of y. The Metropolis-Hastings ratio for sampling from the posterior $\pi(\theta, x|y)$ becomes

$$H(\theta', x'|\theta, x) = \frac{f(x'|\theta', y)\pi(\theta')q_{\theta'}(y)q_{\theta}(x)p(\theta|\theta')}{f(x|\theta, y)\pi(\theta)q_{\theta}(y)q_{\theta'}(x')p(\theta'|\theta)}$$
(5)

provided that

- $p(x'|\theta',\theta,x) = \pi(x'|\theta')$, and
- $p(\theta'|\theta, x) = p(\theta'|\theta)$

where $f(x|\theta, y)$ and $p(\theta'|\theta)$ are auxiliary and proposal densities, respectively. Then, (θ', x') is accepted with probability $\min(1, H(\theta', x'|\theta, x))$; otherwise, (θ, x) is accepted.

Proof.

$$H(\theta', x'|\theta, x) = \frac{\pi(\theta', x'|y)p(\theta, x|\theta', x')}{\pi(\theta, x|y)p(\theta', x'|\theta, x)}$$

$$= \frac{f(x'|\theta', y)\pi(\theta'|y) \times p(x|\theta, \theta', x')p(\theta|\theta', x')}{f(x|\theta, y)\pi(\theta|y) \times p(x'|\theta', \theta, x)p(\theta'|\theta, x)}$$
(6)

The assumptions $p(x'|\theta', \theta, x) = \pi(x'|\theta')$ and $p(\theta'|\theta, x) = p(\theta'|\theta)$ give

$$H(\theta', x'|\theta, x) = \frac{f(x'|\theta', y)\pi(\theta'|y) \times \pi(x|\theta)p(\theta|\theta')}{f(x|\theta, y)\pi(\theta|y) \times \pi(x'|\theta')p(\theta'|\theta)}$$
(7)

and applying Eqs. (1-2) yield

$$H(\theta', x'|\theta, x) = \frac{f(x'|\theta', y)\pi(\theta') (q_{\theta'}(y)/Z_{\theta'}) \times (q_{\theta}(x)/Z_{\theta}) p(\theta|\theta')}{f(x|\theta, y)\pi(\theta) (q_{\theta}(y)/Z_{\theta}) \times (q_{\theta'}(x')/Z_{\theta'}) p(\theta'|\theta)}$$

$$= \frac{f(x'|\theta', y)\pi(\theta')q_{\theta'}(y)q_{\theta}(x)p(\theta|\theta')}{f(x|\theta, y)\pi(\theta)q_{\theta}(y)q_{\theta'}(x')p(\theta'|\theta)}.$$
(8)

Corollary 1. The ideal choice for auxiliary density $f(x|\theta,y)$ is

$$f(x|\theta, y) = \frac{q_{\theta}(x)}{Z_{\theta}} \tag{9}$$

which gives $H(\theta', x'|\theta, x) = H(\theta'|\theta)$

Proof. Eq. (5) can be written as

$$H(\theta', x'|\theta, x) = \frac{\pi(\theta')q_{\theta'}(y)p(\theta|\theta')}{\pi(\theta)q_{\theta}(y)p(\theta'|\theta)} \times \frac{q_{\theta}(x)/f(x|\theta, y)}{q_{\theta'}(x')/f(x'|\theta', y)}$$
(10)

which may alternatively be obtained by substituting normalizing constants in Eq. (3) as follows

$$Z_{\theta} = q_{\theta}(x)/f(x|\theta, y)$$

$$Z'_{\theta} = q_{\theta'}(x')/f(x'|\theta, y).$$
(11)

In another view, Eq. (11) is one-sample importance sampling for

$$Z_{\theta} = \operatorname{E}\left[q_{\theta}(x)\right] = \operatorname{E}_{g_{\theta}}\left[q_{\theta}(x)/g_{\theta}(x)\right]$$

$$Z'_{\theta} = \operatorname{E}\left[q_{\theta'}(x')\right] = \operatorname{E}_{q_{\theta}}\left[q_{\theta'}(x')/g_{\theta'}(x')\right]$$
(12)

where $g_{\theta}(x)$ and $g_{\theta'}(x')$ are instrumental densities for importance sampling.

Finding the ideal choice for $f(x|\theta, y)$ is impractical; therefore, if the posterior $\pi(x|\theta) = q_{\theta}(x)/Z_{\theta}$ does not strongly depend on θ , a simple choice for the auxiliary density is

$$f(x|\theta,y) = \frac{q_{\tilde{\theta}}(x)}{Z_{\tilde{\theta}}} \tag{13}$$

where $\tilde{\theta} = \tilde{\theta}(y)$ estimates θ in terms of y and the normalizing constants of the auxiliary density is canceled in Eq. (5) i.e.

$$H(\theta', x'|\theta, x) = \frac{q_{\tilde{\theta}}(x)\pi(\theta')q_{\theta'}(y)q_{\theta}(x)p(\theta|\theta')}{q_{\tilde{\theta}}(x')\pi(\theta)q_{\theta}(y)q_{\theta'}(x')p(\theta'|\theta)}.$$
(14)

3 Application: The Ising Model

A common example of densities with intractable normalizing constants is Ising model, which is a special case of autologistic model. The unnormalized probability measure of state configurations for the sites of a $m \times n$ lattice is obtained by

$$q_{\theta}(y) = \exp(\theta_0 V_0 + \theta_1 V_1) \tag{15}$$

where y is a $m \times n$ matrix representing the state realization of the sites with $y_{i,j} = \{-1, +1\}$, θ_0 and θ_1 are constants for external field and assoication states together, and

$$V_{0} = \sum_{i=1}^{m} \sum_{j=1}^{n} y_{i,j}$$

$$V_{1} = \sum_{i=1}^{m-1} \sum_{j=1}^{n} y_{i,j} y_{i+1,j} + \sum_{i=1}^{m} \sum_{j=1}^{n-1} y_{i,j} y_{i,j+1}.$$
(16)

Therefore, $\theta_1 = 0$ means that $y_{i,j}$ do not assoicate together and are i.i.d.

4 Algorithm

```
Data:
\boldsymbol{\theta}_0 = (\theta_0^{(0)}, \theta_1^{(0)}): initial value for (\theta_0, \theta_1)
MSS: maximum sample size
i: iteration index
Result: \theta_{i} for i \leq MSS

while \theta_{0}^{(0)} \notin [-1,1] or \theta_{1}^{(0)} \notin [0,1] do

| Choose \theta_{0} = (\theta_{0}^{(0)}, \theta_{1}^{(0)}) s.t. \theta_{0}^{(0)} \in [-1,1] and \theta_{1}^{(0)} \in [0,1];
          \boldsymbol{\theta}_0 \leftarrow \text{MPLE of the given } \boldsymbol{\theta}_0
end
  Draw \boldsymbol{x} \sim q_{\boldsymbol{\theta}}(\boldsymbol{x}) by perfect sampling or Gibbs sampler
while i < MSS do
         Draw \theta_0^{\prime(i)} \sim \mathcal{N}(\theta_0^{(i)}, \sigma)

Draw \theta_1^{\prime(i)} \sim \mathcal{N}(\theta_1^{(i)}, \sigma)

\boldsymbol{\theta}_i^{\prime} \leftarrow (\theta_0^{\prime(i)}, \theta_1^{\prime(i)})

Draw \boldsymbol{x}^{\prime} \sim q_{\boldsymbol{\theta}^{\prime}}(\boldsymbol{x}^{\prime}) by perfect sampling or Gibbs sampler
          Draw U \sim U[0,1]
           H \leftarrow H(\boldsymbol{\theta}', \boldsymbol{x}' | \boldsymbol{\theta}_i, \boldsymbol{x}) \text{ from Eq. (14)}
          if U \leq H then
           \mid \ (oldsymbol{	heta}_{i+1}, oldsymbol{x}) \leftarrow (oldsymbol{	heta}', oldsymbol{x}')
          else
            | (\boldsymbol{\theta}_{i+1}, \boldsymbol{x}) \leftarrow (\boldsymbol{\theta}_i, \boldsymbol{x}) |
          \mathbf{end}
end
```

Algorithm 1: Sampling θ

	Case ID					
	case1	case2	case3	casePERFECT	caseGIBBS	
Sampling method	perfect	perfect	perfect	perfect	Gibbs	
Size of lattice	50	50	50	5	5	
σ	0.01	0.005	0.005	0.005	0.005	
$ heta_0^{(0)} heta_1^{(0)}$	0.2	0.1	0.2	0.2	0.2	
$ heta_1^{(0)}$	0.1	0.3	0.1	0.1	0.1	
\overline{MSS} (iterations)	1e4	1e4	1e4	1e3	1e3	

5 Results

Figure 1: Case1

Figure 2: Case2

Figure 3: Case3

Figure 4: CasePERFECT

Figure 5: CaseGIBBS

6 References

Moller, J., Pettitt, A. N., Reeves, R., & Berthelsen, K. K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants. Biometrika, 93(2), 451-458.

7 Appendix: Codes