PAL: Tutorial, Sheet 3

Week2, Question 1

Binary fan-in sum on A = [1, 2, 3, 4, 5, 6, 7, 8].

Sum = **36**.

Work = 7 additions.

Time = 3 parallel actions carried out sequentially.

Week 3, Question 1

Max = **27**

Week 3, Question 2

Max = **27**

Work = 7 comparisons.

Time = 3 parallel actions carried out sequentially.

Week 3, Question 3

- 1. Performing pairwise check on i > j, writing 1 into M[j] where it holds true.
- 2. Remove duplicates from M.
- 3. The result is the value at the last remaining index i at which M[i] = 0.

	j	1	2	3	4	5
i		16	112	8	112	112
1	16	0	0	1	0	0
2	112	1	0	1	0	0
3	8	0	0	0	0	0
4	112	1	0	1	0	0
5	112	1	0	1	0	0
$M_1 =$		1	0	1	0	0
$M_2 =$		1	0	1	1	1

Result: A[2] = 112

Week 3, Question 4

Determine whether x=5 is present in A=[2,-1,5,33,0,5,5] using PRAM-EREW.

Part 1 - Two Problems

- The search value x=5 can only be read by one process at a time (ER), reducing the algorithm to sequential.
- $n \neq 2^k$ for any integer k, so binary fan-in would require special cases or padding to work correctly. The input contains both positive and negative values, so the padding value would need to be carefully chosen.

Part 2 - 3-Phase Solution

- 1. arrBroadcast-PRAM-EREQ to create the temporary n-array of the searched-for number x
- 2. arrMembership-PRAM-EREQ to isolate the positions that contain the searched-for number x
- 3. **arrMin**—**PRAM**—**EREQ** to return the lowest position from the previous step

Week 3, Question 6

Broadcast:

Pair-wise comparison:

Binary min fan-in:

Week 4, Question 1

Input = [3, 7, 8, 3, 9, 2, 3, 1]

Phase 1:

Phase 2:

Output = [3, 10, 18, 21, 30, 32, 35, 36]

Week 4, Question 3

$$A = [a, b, c, d]$$

$$P=[1,3,1,2]$$

Week 4, Question 4

$$A = \left[a,b,c,d,e,f,g\right]$$

$$P = [1, 1, 1, 2, 2, 3, 3]$$

