Unidad I: Lógica proposicional

Lógica proposicional: Formas normales, completitud funcional

Clase 02 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Repaso: Sintaxis lógica proposicional

Asumimos dado un conjunto de variables proposicionales P.

Definición:

Una **fórmula proposicional** sobre P es una expresión que se puede construir aplicando las siguientes reglas:

- Cada variable proposicional *p* en *P* es una fórmula proposicional.
- Si φ es una fórmula proposicional, entonces $(\neg \varphi)$ es una fórmula proposicional.
- Si φ y ψ son fórmula proposicionales, entonces $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$ y $(\varphi \leftrightarrow \psi)$ son fórmula proposicionales.

Denotamos por L(P) al conjunto de fórmulas proposicionales sobre P.

Ejemplo:

Sea $P = \{p, q, r\}$. Una posible fórmula proposicional en L(P):

$$(q \land (\neg r)) \rightarrow (p \land q)$$

Repaso: Semántica lógica proposicional

Asumimos dado un conjunto de variables proposicionales P.

Definición:

Una valuación es una función $\sigma: P \to \{0, 1\}$.

En otras palabras:

Una valuación σ le asigna a cada variable p en P un valor de verdad $\sigma(p)$.

Ejemplos:

Sea $P = \{p, q, r\}$. Algunas valuaciones:

- $\sigma(p) = 0$ $\sigma(q) = 1$ $\sigma(r) = 0$
- $\sigma(p) = 1$ $\sigma(q) = 0$ $\sigma(r) = 0$

Repaso: Semántica lógica proposicional

Asumimos dado un conjunto de variables proposicionales P y valuación σ .

Queremos extender σ al conjunto de fórmulas proposicionales en L(P).

Definición:

$$\begin{split} \sigma(\neg\varphi) &= \begin{cases} 1 & \text{si } \sigma(\varphi) = 0 \\ 0 & \text{si } \sigma(\varphi) = 1 \end{cases} \\ \sigma(\varphi \wedge \psi) &= \begin{cases} 1 & \text{si } \sigma(\varphi) = 1 \text{ y } \sigma(\psi) = 1 \\ 0 & \text{en caso contrario} \end{cases} \\ \sigma(\varphi \vee \psi) &= \begin{cases} 1 & \text{si } \sigma(\varphi) = 1 \text{ o } \sigma(\psi) = 1 \\ 0 & \text{en caso contrario} \end{cases} \end{split}$$

Repaso: Semántica lógica proposicional

Asumimos dado un conjunto de variables proposicionales P y valuación σ .

Queremos extender σ al conjunto de fórmulas proposicionales en L(P).

Definición:

$$\sigma(\varphi \to \psi) = \begin{cases} 0 & \text{si } \sigma(\varphi) = 1 \text{ y } \sigma(\psi) = 0 \\ 1 & \text{en caso contrario} \end{cases}$$

$$\sigma(\varphi \leftrightarrow \psi) = \begin{cases} 1 & \text{si } \sigma(\varphi) = \sigma(\psi) \\ 0 & \text{en caso contrario} \end{cases}$$

Ejemplo:

Sea
$$P = \{p, q, r\}$$
 y valuación σ tal que $\sigma(p) = 0$, $\sigma(q) = 1$, $\sigma(r) = 0$.

$$\sigma((q \wedge (\neg r)) \rightarrow (p \wedge q)) = 0$$

Repaso: Tablas de verdad

Podemos representar y analizar fórmulas usando tablas de verdad:

p	q	r	$(q \land (\neg r)) \to (p \land q)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

- Cada fila corresponde a una valuación.
- En cada fila indicamos el valor de verdad de la fórmula para esa valuación.

Repaso: Equivalencia lógica

Definición:

Dos fórmulas φ y ψ en L(P) son **equivalentes** si para **cada** valuación σ , se cumple $\sigma(\varphi) = \sigma(\psi)$.

En otras palabras: φ y ψ tienen la **misma** tabla de verdad.

Notación: $\varphi \equiv \psi$.

Repaso: Equivalencia lógica

Para demostrar que $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$, basta demostrar que las tablas de verdad son las mismas.

р	q	r	$(q \lor r)$	$(p \land q)$	$(p \wedge r)$	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1
1	1	1	1	1	1	1	1

Repaso: Equivalencias útiles

Ley de doble negación:

$$\neg(\neg\varphi)\equiv\varphi$$

Leyes de De Morgan:

$$\neg(\varphi \land \psi) \equiv (\neg\varphi) \lor (\neg\psi)$$
$$\neg(\varphi \lor \psi) \equiv (\neg\varphi) \land (\neg\psi)$$

Leyes de conmutatividad:

$$\varphi \wedge \psi \equiv \psi \wedge \varphi$$
$$\varphi \vee \psi \equiv \psi \vee \varphi$$

Repaso: Equivalencias útiles

Leyes de asociatividad:

$$\varphi \wedge (\psi \wedge \theta) \equiv (\varphi \wedge \psi) \wedge \theta$$
$$\varphi \vee (\psi \vee \theta) \equiv (\varphi \vee \psi) \vee \theta$$

Leyes de distributividad:

$$\varphi \wedge (\psi \vee \theta) \equiv (\varphi \wedge \psi) \vee (\varphi \wedge \theta)$$
$$\varphi \vee (\psi \wedge \theta) \equiv (\varphi \vee \psi) \wedge (\varphi \vee \theta)$$

Ley de implicancia:

$$\varphi \to \psi \equiv (\neg \varphi) \lor \psi$$

Ley de doble implicancia:

$$\varphi \leftrightarrow \psi \equiv (\varphi \to \psi) \land (\psi \to \varphi)$$

Considere la siguiente tabla de verdad:

р	q	r	T(p,q,r)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

¿Hay alguna fórmula proposicional que tenga esta tabla de verdad?

Observación: A T(p,q,r) también se le llama conectivo ternario.

Algunas convenciones útiles

- Como ∧ es asociativo, omitiremos paréntesis en caso de conjunciones:
 - Escribimos $p \wedge q \wedge r$, en vez de $(p \wedge q) \wedge r$.
- Como ∨ es asociativo, omitiremos paréntesis en caso de disyuciones:
 - Escribimos $p \lor q \lor r$, en vez de $(p \lor q) \lor r$.
- La negación tiene mayor precedencia que los otros conectivos:
 - Escribimos $\neg p \land q$, en vez de $(\neg p) \land q$.
 - Escribimos $\neg p \lor q$, en vez de $(\neg p) \lor q$.
- Utilizaremos operadores generalizados $\bigwedge_{i=1}^{n} \varphi_i$ y $\bigvee_{i=1}^{n} \varphi_i$:
 - $\bigwedge_{i=1}^{n} \varphi_i$ es una abreviación de $\varphi_1 \wedge \varphi_2 \wedge \cdots \wedge \varphi_n$.
 - $\bigvee_{i=1}^{n} \varphi_i$ es una abreviación de $\varphi_1 \vee \varphi_2 \vee \cdots \vee \varphi_n$.

p	q	r	T(p,q,r)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Estrategia:

Para cada valuación donde la tabla es verdadera, escribimos una fórmula que se hace verdadera **solamente** en esa valuación.

Tomamos la disyunción de todas estas fórmulas.

)

¿Cuál sería la fórmula para la valuación σ_1 en amarillo?

$$\neg p \land q \land r$$

Representando tablas de verdad

	р	q	r	T(p,q,r)	$\neg p \land q \land r$
	0	0	0	0	0
	0	0	1	0	0
	0	1	0	0	0
σ_1	0	1	1	1	1
	1	0	0	0	0
	1	0	1	1	0
	1	1	0	1	0
	1	1	1	1	0

¿Cuál sería la fórmula para la valuación σ_1 en amarillo?

$$\neg p \land q \land r$$

	p	q	r	T(p,q,r)
•	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	0
σ_2	1	0	1	1
σ_3	1	1	0	1
σ_4	1	1	1	1

¿Cuáles serían las fórmulas para las otras valuaciones $\sigma_2, \sigma_3, \sigma_4$ en amarillo?

$$p \wedge \neg q \wedge r$$
 $p \wedge q \wedge \neg r$ $p \wedge q \wedge r$

p	q	r	T(p,q,r)	φ
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	1
1	0	0	0	0
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1

La fórmula final φ es la siguiente:

$$\varphi = (\neg p \land q \land r) \lor (p \land \neg q \land r) \lor (p \land q \land \neg r) \lor (p \land q \land r)$$

Podemos generalizar lo idea anterior a **toda** tabla o conectivo *n*-ario $C(p_1, \ldots, p_n)$.

	p_1	p_2	•••	p_{n-1}	p_n	$C(p_1,\ldots,p_n)$
σ_1	0		•••		0	b_1
σ_2	0	0		0	1	b_2
÷	÷	:		÷	÷	:
σ_{2^n}	1	1	•••	1	1	b_{2^n}

La siguiente fórmula φ tiene la misma tabla de verdad que $C(p_1, \ldots, p_n)$. $(\sigma_i$ es la valuación en la fila i)

$$\varphi = \bigvee_{\substack{i=1,\ldots,2^n \\ b_i=1}} \left(\bigwedge_{\substack{k=1,\ldots,n \\ \sigma_i(\rho_k)=1}} p_k \wedge \bigwedge_{\substack{k=1,\ldots,n \\ \sigma_i(\rho_k)=0}} \neg p_k \right)$$

Acabamos de probar lo siguiente:

Teorema:

Toda tabla de verdad puede ser representada por una fórmula proposicional.

Formas normales: DNF

Una fórmula φ está en forma normal disyuntiva (DNF) si φ es de la forma:

$$\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_{i}} \ell_{i,j}$$

donde cada $\ell_{i,j}$ es un **literal**, esto es, una variable proposicional o la negación de una variable proposicional.

Ejemplos:

- $(p \land \neg r) \lor (r \land q \land \neg s \land \neg p) \lor (\neg q \land s \land r)$
- $(p \vee \neg r) \wedge r$

Formas normales: DNF

Teorema:

Toda fórmula proposicional es equivalente a una fórmula en DNF.

Esto ya lo demostramos! (¿por qué?)

Formas normales: CNF

Una fórmula φ está en forma normal conjuntiva (CNF) si φ es de la forma:

$$\bigwedge_{i=1}^{n}\bigvee_{j=1}^{m_{i}}\ell_{i,j}$$

donde cada $\ell_{i,j}$ es un **literal**, esto es, una variable proposicional o la negación de una variable proposicional.

Ejemplos:

- $(p \vee \neg r) \wedge r$

Formas normales: CNF

Teorema:

Toda fórmula proposicional es equivalente a una fórmula en CNF.

¿Cómo demostramos esto?

Paréntesis: leyes de equivalencia generalizadas

Leyes de De Morgan generalizadas:

$$\neg \left(\bigwedge_{i=1}^{n} \varphi_{i} \right) \equiv \bigvee_{i=1}^{n} \neg \varphi_{i}$$
$$\neg \left(\bigvee_{i=1}^{n} \varphi_{i} \right) \equiv \bigwedge_{i=1}^{n} \neg \varphi_{i}$$

■ También podemos usar leyes de distributividad generalizadas.

Ejemplo:

$$(\alpha_1 \vee \alpha_2) \wedge (\beta_1 \vee \beta_2) \equiv (\alpha_1 \wedge \beta_1) \vee (\alpha_1 \wedge \beta_2) \vee (\alpha_2 \wedge \beta_1) \vee (\alpha_2 \wedge \beta_2)$$

Formas normales: CNF

Teorema:

Toda fórmula proposicional es equivalente a una fórmula en CNF.

Demostración:

Sea φ una fórmula arbitraria.

Sabemos que $\neg \varphi$ es equivalente a una fórmula $\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_i} \ell_{i,j}$ en DNF.

(por teorema anterior.)

Entonces, tenemos que:

$$\varphi \; \equiv \; \neg \left(\neg \varphi\right) \; \equiv \; \neg \left(\bigvee_{i=1}^{n} \bigwedge_{j=1}^{m_{i}} \ell_{i,j}\right) \; \equiv \; \bigwedge_{i=1}^{n} \, \neg \left(\bigwedge_{j=1}^{m_{i}} \ell_{i,j}\right) \; \equiv \; \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} \neg \ell_{i,j} \; \equiv \; \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_{i}} \ell'_{i,j}$$

donde $\ell'_{i,j}$ es un literal.

(si
$$\ell_{i,j} = p$$
, entonces $\ell'_{i,j} = \neg p$; si $\ell_{i,j} = \neg p$, entonces $\ell'_{i,j} = p$.)

Concluimos que φ es equivalente a una fórmula en CNF.

Formas normales: CNF

Teorema:

Toda fórmula proposicional es equivalente a una fórmula en CNF.

Comentarios:

- Otra posible demostración es utilizando distributividad generalizada.
 (¿cómo sería?)
- ¿Cómo demostraría el teorema, sin usar el resultado para DNF?

Conectivos funcionalmente completos

¿Son necesarios todos los conectivos $\neg, \land, \lor, \rightarrow, \leftrightarrow$?

Definición:

Un conjunto C de conectivos es **funcionalmente completo** si para **cada** conjunto P de variables proposicionales y **cada** fórmula proposicional φ en L(P), **existe** una fórmula α tal que $\alpha \equiv \varphi$ y α sólo ocupa conectivos en C.

Ya demostramos que $\{\neg, \land, \lor\}$ es funcionalmente completo.

 $\{\neg,\wedge\}$ y $\{\neg,\vee\}$ también son funcionalmente completos. (¿por qué?)

$$\{\neg, \rightarrow\}$$
 es funcionalmente completo

Sabemos que $\{\neg, \lor\}$ es funcionalmente completo.

Basta representar $\alpha \vee \beta$, usando sólo los conectivos en $\{\neg, \rightarrow\}$.

Notar que:

$$(\neg \alpha) \to \beta \ \equiv \ \neg (\neg \alpha) \lor \beta \ \equiv \ \alpha \lor \beta$$

Luego,
$$\alpha \vee \beta \equiv (\neg \alpha) \rightarrow \beta$$
.

Concluimos que $\{\neg, \rightarrow\}$ es funcionalmente completo.

 $\{\land,\lor,\rightarrow,\leftrightarrow\}$ no es funcionalmente completo

¿Qué fórmula no podemos escribir con estos conectivos?

Demostremos que la fórmula $\neg p$ no se puede escribir con estos conectivos. (acá tenemos $P = \{p\}$.)

Por contradicción, supongamos que existe una fórmula φ que sólo usa la variable p y sólo usa los conectivos en $\{\land,\lor,\to,\leftrightarrow\}$, tal que $\varphi \equiv \neg p$. $(\varphi \text{ no usa necesariamente todos los conectivos en } \{\land,\lor,\to,\leftrightarrow\}.)$

Tomemos la valuación σ tal que $\sigma(p) = 1$.

Tenemos que:

- $\sigma(\neg p) = 0.$
- $\sigma(\varphi) = 1$, ya que $\sigma(\alpha * \beta) = 1$ si $\sigma(\alpha) = 1$ y $\sigma(\beta) = 1$, y * es uno de los conectivos en $\{\land, \lor, \to, \leftrightarrow\}$.

Concluimos que φ no es equivalente a $\neg p$, lo cual es una contradicción.

¿Existe algún conectivo que sea funcionalmente completo por sí solo?

Definimos el conectivo binario NAND como:

p	q	NAND
0	0	1
0	1	1
1	0	1
1	1	0

¿A qué corresponde este conectivo?

NAND es funcionalmente completo

Teorema:

{NAND} es funcionalmente completo.

Demostración:

Sabemos que $\{\neg, \land\}$ es funcionalmente completo.

Representamos ¬ y ∧ usando NAND, con las siguientes equivalencias: