Specification and Verification of a Linear-Time Temporal Logic for Graph Transformation

Andrea Laretto¹, Fabio Gadducci², Davide Trotta²

1: Tallinn University of Technology, 2: University of Pisa

ICGT 2023, Leicester July 19th, 2023

In this work we present the classical and categorical semantics of a counterpart-based temporal logic, and formalize it using the proof assistant Agda along with results on its positive normal form.

1 Temporal logics and counterpart semantics

- Temporal logics and counterpart semantics
- 2 Positive normal form

- Temporal logics and counterpart semantics
- Positive normal form
- 3 Categorical perspective

- Temporal logics and counterpart semantics
- 2 Positive normal form
- 3 Categorical perspective
- 4 Agda formalization

- Temporal logics and counterpart semantics
- 2 Positive normal form
- 3 Categorical perspective
- 4 Agda formalization
- 6 Conclusion and future work

Well-known formalism for specifying and verifying complex systems

Well-known formalism for specifying and verifying complex systems

1 Represent the system as a transition system, called model

Well-known formalism for specifying and verifying complex systems

• Represent the system as a transition system, called model

Transition system for a simple vending machine

Well-known formalism for specifying and verifying complex systems

Represent the system as a transition system, called model

2 Express desired properties as formulas in a temporal logic

Well-known formalism for specifying and verifying complex systems

• Represent the system as a transition system, called model

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay))

Well-known formalism for specifying and verifying complex systems

• Represent the system as a transition system, called model

2 Express desired properties as formulas in a temporal logic

Always(Eventually(pay)) \neg Eventually(tea)

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

Well-known formalism for specifying and verifying complex systems

• Represent the system as a transition system, called model

2 Express desired properties as formulas in a temporal logic

 $\mathsf{Always}(\mathsf{Eventually}(\mathsf{pay})) \qquad \neg \, \mathsf{Eventually}(\mathsf{tea})$

3 Use a program to *check* that the *model* satisfies the formula

Andrea Laretto ICGT 2023 July 19th, 2023 2 / 20

• States are simply atomic points

- States are simply atomic points
- In practice, states often have structure that can change in time:

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges
 - Managing processes in memory: forking, allocation and deallocation

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges
 - Managing processes in memory: forking, allocation and deallocation
 - Dynamic behaviour of election algorithms: splitting and union of parties

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges
 - Managing processes in memory: forking, allocation and deallocation
 - Dynamic behaviour of election algorithms: splitting and union of parties
- Objectives:

Can we enrich our models to express multi-component behaviour?

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges
 - Managing processes in memory: forking, allocation and deallocation
 - Dynamic behaviour of election algorithms: splitting and union of parties
- Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

- States are simply atomic points
- In practice, states often have structure that can change in time:
 - Time evolution of graph topologies: merging nodes, deletion of edges
 - Managing processes in memory: forking, allocation and deallocation
 - Dynamic behaviour of election algorithms: splitting and union of parties
- Objectives:

Can we enrich our models to express multi-component behaviour?
Can we define logics that can reason on the fate of individual elements?

Yes! Using counterpart models and quantified temporal logics

• Standard LTL traces: sequences of states

• Associate to each state a set of individuals, called worlds

- Associate to each state a set of individuals, called worlds
- Our traces: sequences of worlds

- Associate to each state a set of individuals, called worlds
- Our traces: sequences of worlds

How do we represent transitions?

- Associate to each state a set of individuals, called worlds
- Our traces: sequences of worlds, connected with counterpart relations

• Standard LTL traces: sequences of states

- Associate to each state a set of individuals, called worlds
- Our traces: sequences of worlds, connected with counterpart relations

Intuition: individuals connected by a relation are the same after one step

- Associate to each state a set of individuals, called worlds
- Our traces: sequences of worlds, connected with counterpart relations

- Intuition: individuals connected by a relation are the same after one step
- We call these sequences of worlds and relations counterpart traces

• Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- ullet Worlds-as-algebras: generalize sets to algebras over a signature \varSigma

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- ullet Worlds-as-algebras: generalize sets to algebras over a signature \varSigma
- Idea: take Σ -algebras and structure-preserving relations between them

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- ullet Worlds-as-algebras: generalize sets to algebras over a signature \varSigma
- Idea: take Σ -algebras and structure-preserving relations between them
- Examples: (multi)graphs, undirected graphs, trees, lists, etc.

 ω_0

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- Worlds-as-algebras: generalize sets to algebras over a signature Σ
- *Idea:* take Σ -algebras and structure-preserving relations between them
- Examples: (multi)graphs, undirected graphs, trees, lists, etc.
- A counterpart trace on the signature of directed graphs:

 ω_1 Andrea Laretto **ICGT 2023** July 19th, 2023 5 / 20

 ω_2

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- ullet Worlds-as-algebras: generalize sets to algebras over a signature \varSigma
- Idea: take Σ -algebras and structure-preserving relations between them
- Examples: (multi)graphs, undirected graphs, trees, lists, etc.
- A counterpart trace on the signature of directed graphs:

- Counterpart trace: function $\omega : \mathbb{N} \to \mathbf{Set}$ and $\{R_i \subseteq \omega(i) \times \omega(i+1)\}_{i \in \mathbb{N}}$
- ullet Worlds-as-algebras: generalize sets to algebras over a signature \varSigma
- Idea: take Σ -algebras and structure-preserving relations between them
- Examples: (multi)graphs, undirected graphs, trees, lists, etc.
- A counterpart trace on the signature of directed graphs:

• Counterpart model: a transition system enriched with worlds and counterpart relations between them

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

Counterpart model pprox a category ${\cal W}$

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

Counterpart model
$$\approx$$
 a category \mathcal{W}
+ a class T of selected morphisms of \mathcal{W}
Temporal structure

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

$$\begin{array}{c} \textit{Counterpart model} \approx \textit{a category } \mathcal{W} \\ + \textit{ a class } T \textit{ of selected morphisms of } \mathcal{W} \\ \hline \textit{Temporal structure} \\ + \textit{ a presheaf } D: \mathcal{W}^{op} \rightarrow \textit{Rel} \\ \hline \textit{Relational presheaf} \\ \end{array}$$

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

$$\begin{array}{c} \textit{Counterpart model} \approx \textit{ a category } \mathcal{W} \\ + \textit{ a class } T \textit{ of selected morphisms of } \mathcal{W} \\ \hline \textit{Temporal structure} \\ + \textit{ a presheaf } D: \mathcal{W}^{op} \rightarrow \textit{Rel} \\ \hline \textit{Relational presheaf} \\ \end{array}$$

ullet Objects of ${\cal W}$ are the states of the underlying *transition system*

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

$$\begin{array}{c} \textit{Counterpart model} \approx \textit{ a category } \mathcal{W} \\ + \textit{ a class } T \textit{ of selected morphisms of } \mathcal{W} \\ \hline \textit{Temporal structure} \\ + \textit{ a presheaf } D: \mathcal{W}^{op} \rightarrow \textit{Rel} \\ \hline \textit{Relational presheaf} \\ \end{array}$$

- ullet Objects of ${\cal W}$ are the states of the underlying transition system
- ullet Morphisms of ${\mathcal W}$ represent *transitions* between states

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

$$\begin{array}{c} \textit{Counterpart model} \approx \textit{ a category } \mathcal{W} \\ + \textit{ a class } T \textit{ of selected morphisms of } \mathcal{W} \\ \hline \textit{Temporal structure} \\ + \textit{ a presheaf } D: \mathcal{W}^{\textit{op}} \rightarrow \textit{Rel} \\ \hline \textit{Relational presheaf} \end{array}$$

- ullet Objects of ${\mathcal W}$ are the states of the underlying *transition system*
- ullet Morphisms of ${\mathcal W}$ represent ${\it transitions}$ between states
- The temporal structure identifies the one-step transitions of the model

- Counterpart model: a transition system enriched with worlds and counterpart relations between them
- Counterpart models can be understood within the unifying perspective of category theory and categorical logic:

$$\begin{array}{c} \textit{Counterpart model} \approx \textit{ a category } \mathcal{W} \\ + \textit{ a class } T \textit{ of selected morphisms of } \mathcal{W} \\ \hline \textit{Temporal structure} \\ + \textit{ a presheaf } D: \mathcal{W}^{op} \rightarrow \textit{Rel} \\ \hline \textit{Relational presheaf} \\ \end{array}$$

- ullet Objects of ${\mathcal W}$ are the states of the underlying transition system
- ullet Morphisms of ${\mathcal W}$ represent *transitions* between states
- The temporal structure identifies the one-step transitions of the model
- The relational presheaf assign worlds and counterpart relations to states

Andrea Laretto ICGT 2023 July 19th, 2023 6 / 20

Example – Counterpart model

Example - Counterpart model

• For the signature of directed graphs:

For the signature of directed graphs:

For the signature of directed graphs:

 $\llbracket \mathsf{Edge} \rrbracket$ $\llbracket \mathsf{Node} \rrbracket$

Rel

QLTL

• QLTL: (first-order) quantified linear temporal logic using traces

QLTL

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

$$\phi := \mathsf{true} \mid \neg \phi \mid \phi \land \phi$$

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

$$\phi := \mathsf{true} \mid \neg \phi \mid \phi \land \phi \mid \mathsf{Next}(\phi) \mid \phi \, \mathsf{Until} \, \phi$$

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

$$\phi := \mathsf{true} \mid \neg \phi \mid \phi \land \phi \mid \mathsf{Next}(\phi) \mid \phi \, \mathsf{Until} \, \phi \mid \exists_{\mathsf{N}} x. \phi \mid \exists_{\mathsf{E}} x. \phi \mid P(x)$$

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

$$\begin{split} \phi := \mathsf{true} \mid \neg \phi \mid \phi \wedge \phi \mid \mathsf{Next}(\phi) \mid \phi \, \mathsf{Until} \, \phi \mid \exists_{\mathsf{N}} x. \phi \mid \exists_{\mathsf{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\mathsf{N}} n \mid e =_{\mathsf{E}} e, \quad \mathsf{with} \quad n := x \mid s(e) \mid t(e), \quad \mathsf{and} \quad e := x. \end{split}$$

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

$$\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\operatorname{N}} x. \phi \mid \exists_{\operatorname{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\operatorname{N}} n \mid e =_{\operatorname{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}$$

• Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\phi := \mathsf{true} \mid \neg \phi \mid \phi \land \phi \mid \mathsf{Next}(\phi) \mid \phi \mathsf{Until} \phi \mid \exists_{\mathsf{N}} x. \phi \mid \exists_{\mathsf{E}} x. \phi \mid P(x) \mid \psi
 \psi := n =_{\mathbb{N}} n \mid e =_{\mathbb{E}} e, with n := x \mid s(e) \mid t(e), and e := x.
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - σ , $\mu \vDash$ true;

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\phi := \mathsf{true} \mid \neg \phi \mid \phi \land \phi \mid \mathsf{Next}(\phi) \mid \phi \, \mathsf{Until} \, \phi \mid \exists_{\mathsf{N}} x.\phi \mid \exists_{\mathsf{E}} x.\phi \mid P(x) \mid \psi \psi := n =_{\mathsf{N}} n \mid e =_{\mathsf{E}} e, \quad \mathsf{with} \quad n := x \mid s(e) \mid t(e), \quad \mathsf{and} \quad e := x.
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\mathsf{N}} x. \phi \mid \exists_{\mathsf{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\mathsf{N}} n \mid e =_{\mathsf{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\operatorname{N}} x. \phi \mid \exists_{\operatorname{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\operatorname{N}} n \mid e =_{\operatorname{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$
 - $\sigma, \mu \vDash \exists_{\mathbf{N}} x. \phi$ iff there is a node $n \in D(\omega_0)_N$ such that $\sigma, \mu[x \mapsto n] \vDash \phi$;

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\mathsf{N}} x. \phi \mid \exists_{\mathsf{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\mathsf{N}} n \mid e =_{\mathsf{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$
 - $\sigma, \mu \vDash \exists_{\mathsf{N}} x. \phi$ iff there is a node $n \in D(\omega_0)_N$ such that $\sigma, \mu[x \mapsto n] \vDash \phi$;
 - $\sigma, \mu \vDash \mathsf{O}\phi$ iff there is an assignment μ_1 s.t. $\langle \mu, \mu_1 \rangle \in C_0$ and $\sigma_1, \mu_1 \vDash \phi$;

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\operatorname{N}} x. \phi \mid \exists_{\operatorname{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\operatorname{N}} n \mid e =_{\operatorname{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$
 - $\sigma, \mu \vDash \exists_{N} x. \phi$ iff there is a node $n \in D(\omega_{0})_{N}$ such that $\sigma, \mu[x \mapsto n] \vDash \phi$;
 - $\sigma, \mu \vDash \mathsf{O}\phi$ iff there is an assignment μ_1 s.t. $\langle \mu, \mu_1 \rangle \in C_0$ and $\sigma_1, \mu_1 \vDash \phi$;
 - $\sigma, \mu \vDash \phi_1 \mathsf{U} \phi_2$ iff there is an $\bar{n} \ge 0$ such that

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\operatorname{N}} x. \phi \mid \exists_{\operatorname{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\operatorname{N}} n \mid e =_{\operatorname{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$
 - $\sigma, \mu \vDash \exists_{\mathsf{N}} x. \phi$ iff there is a node $n \in D(\omega_0)_N$ such that $\sigma, \mu[x \mapsto n] \vDash \phi$;
 - $\sigma, \mu \vDash \mathsf{O}\phi$ iff there is an assignment μ_1 s.t. $\langle \mu, \mu_1 \rangle \in C_0$ and $\sigma_1, \mu_1 \vDash \phi$;
 - $\sigma, \mu \vDash \phi_1 \mathsf{U} \phi_2$ iff there is an $\bar{n} \ge 0$ such that
 - 1 for any $i < \bar{n}$, there is a μ_i such that $\langle \mu, \mu_i \rangle \in \sigma_{\leq i}$ and $\sigma_i, \mu_i \models \phi_1$;

- QLTL: (first-order) quantified linear temporal logic using traces
- Syntax of QLTL formulas:

```
\begin{split} \phi := \operatorname{true} \mid \neg \phi \mid \phi \wedge \phi \mid \operatorname{Next}(\phi) \mid \phi \operatorname{Until} \phi \mid \exists_{\operatorname{N}} x. \phi \mid \exists_{\operatorname{E}} x. \phi \mid P(x) \mid \psi \\ \psi := n =_{\operatorname{N}} n \mid e =_{\operatorname{E}} e, \quad \text{with} \quad n := x \mid s(e) \mid t(e), \quad \text{and} \quad e := x. \end{split}
```

- Semantics: given a trace σ , define a satisfiability relation on (tuples of) nodes and edges satisfying ϕ , i.e., assignments μ for the $fv(\phi)$.
 - $\sigma, \mu \vDash \text{true};$
 - $\sigma, \mu \vDash \phi_1 \land \phi_2$ iff $\sigma, \mu \vDash \phi_1$ and $\sigma, \mu \vDash \phi_2$;
 - $\sigma, \mu \vDash e_1 =_{\mathsf{E}} e_2 \text{ iff } \mu_{\mathsf{E}}^*(e_1) = \mu_{\mathsf{E}}^*(e_2);$
 - $\sigma, \mu \vDash \exists_{\mathsf{N}} x. \phi$ iff there is a node $n \in D(\omega_0)_N$ such that $\sigma, \mu[x \mapsto n] \vDash \phi$;
 - $\sigma, \mu \vDash \mathsf{O}\phi$ iff there is an assignment μ_1 s.t. $\langle \mu, \mu_1 \rangle \in C_0$ and $\sigma_1, \mu_1 \vDash \phi$;
 - $\sigma, \mu \vDash \phi_1 \mathsf{U} \phi_2$ iff there is an $\bar{n} \ge 0$ such that
 - **1** for any $i < \bar{n}$, there is a μ_i such that $\langle \mu, \mu_i \rangle \in \sigma_{\leq i}$ and $\sigma_i, \mu_i \models \phi_1$;
 - 2 there is a $\mu_{\bar{n}}$ such that $\langle \mu, \mu_{\bar{n}} \rangle \in \sigma_{\leq \bar{n}}$ and $\sigma_{\bar{n}}, \mu_{\bar{n}} \vDash \phi_2$;

$$\omega_0$$

$$\omega_1$$

 ω_2

• $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$

- $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$
- $n_0 \vDash_{\omega_0} \neg \mathsf{Next}(\mathsf{Red}(x))$

- $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$
- $n_0 \vDash_{\omega_0} \neg \mathsf{Next}(\mathsf{Red}(x))$
- $n_2 \vDash_{\omega_0} \operatorname{Red}(x) \operatorname{Until Blue}(x)$

• $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$

• $(n_3, n_4) \vDash_{\omega_1} \mathsf{Next}(x = y)$

- $n_0 \vDash_{\omega_0} \neg \mathsf{Next}(\mathsf{Red}(x))$
- $n_2 \vDash_{\omega_0} \operatorname{Red}(x) \operatorname{Until Blue}(x)$

- $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$
- $n_0 \vDash_{\omega_0} \neg \mathsf{Next}(\mathsf{Red}(x))$
- $n_2 \vDash_{\omega_0} \operatorname{Red}(x) \operatorname{Until Blue}(x)$
- $(n_3, n_4) \vDash_{\omega_1} \mathsf{Next}(x = y)$
- () $\vDash_{w_0} \exists x. \mathsf{Next}(\mathsf{Blue}(x))$

- $n_1 \vDash_{\omega_0} \mathsf{Next}(\mathsf{Blue}(x))$
- $n_0 \vDash_{\omega_0} \neg \mathsf{Next}(\mathsf{Red}(x))$
- $n_2 \vDash_{\omega_0} \mathsf{Red}(x) \mathsf{Until} \, \mathsf{Blue}(x)$
- $(n_3, n_4) \vDash_{\omega_1} \mathsf{Next}(x = y)$
- () $\vDash_{w_0} \exists x. \mathsf{Next}(\mathsf{Blue}(x))$
- $(n_1, n_2) \vDash_{\omega_0} (\neg(x = y)) \operatorname{Until}(x = y)$

$$\mathsf{loop}(e) := s(e) =_{\mathsf{N}} t(e),$$

$$loop(e) := s(e) =_{\mathbb{N}} t(e),$$

 $hasLoop(n) := \exists_{\mathbb{F}} e.s(e) =_{\mathbb{N}} n \wedge loop(e),$

```
\begin{array}{rcl} \operatorname{loop}(e) &:= & s(e) =_{\operatorname{N}} t(e), \\ \operatorname{hasLoop}(n) &:= & \exists_{\operatorname{E}} e. s(e) =_{\operatorname{N}} n \wedge \operatorname{loop}(e), \\ \operatorname{composable}(x,y) &:= & t(x) =_{\operatorname{N}} s(y) \end{array}
```

```
\begin{array}{rcl} \mathsf{loop}(e) & := & s(e) =_{\mathsf{N}} t(e), \\ \mathsf{hasLoop}(n) & := & \exists_{\mathsf{E}} e. s(e) =_{\mathsf{N}} n \wedge \mathsf{loop}(e), \\ \mathsf{composable}(x,y) & := & t(x) =_{\mathsf{N}} s(y) \\ \mathsf{haveComposition}(x,y) & := & \mathsf{composable}(x,y) \end{array}
```

```
\begin{array}{rcl} \mathsf{loop}(e) & := & s(e) =_{\mathsf{N}} t(e), \\ \mathsf{hasLoop}(n) & := & \exists_{\mathsf{E}} e.s(e) =_{\mathsf{N}} n \wedge \mathsf{loop}(e), \\ \mathsf{composable}(x,y) & := & t(x) =_{\mathsf{N}} s(y) \\ \mathsf{haveComposition}(x,y) & := & \mathsf{composable}(x,y) \\ & \wedge & \exists_{\mathsf{E}} e.(s(x) =_{\mathsf{N}} s(e) \wedge t(e) =_{\mathsf{N}} t(y)) \end{array}
```

```
\begin{array}{rcl} \mathsf{loop}(e) & := & s(e) =_{\mathsf{N}} t(e), \\ \mathsf{hasLoop}(n) & := & \exists_{\mathsf{E}} e.s(e) =_{\mathsf{N}} n \wedge \mathsf{loop}(e), \\ \mathsf{composable}(x,y) & := & t(x) =_{\mathsf{N}} s(y) \\ \mathsf{haveComposition}(x,y) & := & \mathsf{composable}(x,y) \\ & \wedge & \exists_{\mathsf{E}} e.(s(x) =_{\mathsf{N}} s(e) \wedge t(e) =_{\mathsf{N}} t(y)) \\ \mathsf{adjacent}(x,y) & := & \exists_{\mathsf{E}} e.((s(e) =_{\mathsf{N}} x \wedge t(e) =_{\mathsf{N}} y) \\ & \vee (t(e) =_{\mathsf{N}} x \wedge s(e) =_{\mathsf{N}} y)) \end{array}
```


• $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$

- $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$
- $e_3 \vDash_{\omega_1} \neg \mathsf{Next}(\mathsf{loop}(x))$

- $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$
- $e_3 \vDash_{\omega_1} \neg \mathsf{Next}(\mathsf{loop}(x))$
- $(e_3, e_4) \vDash_{\omega_0} \mathsf{composable}(x, y)$

• $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$

• $(n_0, n_2) \vDash_{\omega_0} \mathsf{adjacent}(x, y)$

- $e_3 \vDash_{\omega_1} \neg \mathsf{Next}(\mathsf{loop}(x))$
- $(e_3, e_4) \vDash_{\omega_0} \mathsf{composable}(x, y)$

- $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$
- $e_3 \vDash_{\omega_1} \neg \mathsf{Next}(\mathsf{loop}(x))$
- $(e_3, e_4) \vDash_{\omega_0} \mathsf{composable}(x, y)$
- $(n_0, n_2) \vDash_{\omega_0} \mathsf{adjacent}(x, y)$
- $(n_0, n_2) \not\models_{\omega_0} \mathsf{Oadjacent}(x, y)$

- $e_4 \vDash_{\omega_1} \mathsf{Next}(\mathsf{loop}(x))$
- $e_3 \vDash_{\omega_1} \neg \mathsf{Next}(\mathsf{loop}(x))$
- $(e_3, e_4) \vDash_{\omega_0} \mathsf{composable}(x, y)$
- $(n_0, n_2) \vDash_{\omega_0} \mathsf{adjacent}(x, y)$
- $(n_0, n_2) \not\models_{\omega_0} \mathsf{Oadjacent}(x, y)$
 - $e_0 \vDash_{\omega_0} \Diamond \mathsf{loop}(x)$

PNF: a standard presentation for temporal logics

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant
- PNF for QLTL:

$$\phi := \psi \mid \neg \psi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \exists_{\mathsf{E}} x. \phi \mid \exists_{\mathsf{N}} x. \phi \mid \forall_{\mathsf{E}} x. \phi \mid \forall_{\mathsf{N}} x. \phi$$

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant
- PNF for QLTL:

$$\begin{split} \phi := \psi \mid \neg \psi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \exists_{\mathsf{E}} x. \phi \mid \exists_{\mathsf{N}} x. \phi \mid \forall_{\mathsf{E}} x. \phi \mid \forall_{\mathsf{N}} x. \phi \\ \mid \mathsf{Next}(\phi) \mid \phi_1 \mathsf{Until} \phi_2 \mid \phi_1 \mathsf{WUntil} \phi_2 \end{split}$$

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant
- PNF for QLTL:

$$\phi := \psi \mid \neg \psi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \exists_{\mathsf{E}} x. \phi \mid \exists_{\mathsf{N}} x. \phi \mid \forall_{\mathsf{E}} x. \phi \mid \forall_{\mathsf{N}} x. \phi$$
$$\mid \mathsf{Next}(\phi) \mid \phi_1 \mathsf{Until} \phi_2 \mid \phi_1 \mathsf{WUntil} \phi_2 \mid \underline{\mathsf{NextF}}(\phi) \mid \phi_1 \underline{\mathsf{UntilF}} \phi_2 \mid \phi_1 \underline{\mathsf{WUntilF}} \phi_2$$

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant
- PNF for QLTL:

$$\phi := \psi \mid \neg \psi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \exists_{\mathsf{E}} x. \phi \mid \exists_{\mathsf{N}} x. \phi \mid \forall_{\mathsf{E}} x. \phi \mid \forall_{\mathsf{N}} x. \phi$$
$$\mid \mathsf{Next}(\phi) \mid \phi_1 \mathsf{Until} \phi_2 \mid \phi_1 \mathsf{WUntil} \phi_2 \mid \underline{\mathsf{NextF}}(\phi) \mid \phi_1 \underline{\mathsf{UntilF}} \phi_2 \mid \phi_1 \underline{\mathsf{WUntilF}} \phi_2$$

Intuition: universal counterparts to the previous operators

$$\begin{array}{rcl} \neg \mathsf{Next}(\phi) & \equiv & \mathsf{NextF}(\neg \phi) \\ \neg (\phi_1 \mathsf{Until}\phi_2) & \equiv & (\neg \phi_2) \mathsf{WUntilF}(\neg \phi_1 \wedge \neg \phi_2) \\ \neg (\phi_1 \mathsf{WUntil}\phi_2) & \equiv & (\neg \phi_2) \mathsf{UntilF}(\neg \phi_1 \wedge \neg \phi_2) \end{array}$$

- PNF: a standard presentation for temporal logics
- Usually given to simplify model checking and for fixpoint semantics
- PNFs are essential to work in a constructive proof assistant
- PNF for QLTL:

$$\phi := \psi \mid \neg \psi \mid \phi_1 \lor \phi_2 \mid \phi_1 \land \phi_2 \mid \exists_{\mathsf{E}} x. \phi \mid \exists_{\mathsf{N}} x. \phi \mid \forall_{\mathsf{E}} x. \phi \mid \forall_{\mathsf{N}} x. \phi$$
$$\mid \mathsf{Next}(\phi) \mid \phi_1 \mathsf{Until} \phi_2 \mid \phi_1 \mathsf{WUntil} \phi_2 \mid \underline{\mathsf{NextF}}(\phi) \mid \phi_1 \underline{\mathsf{UntilF}} \phi_2 \mid \phi_1 \underline{\mathsf{WUntilF}} \phi_2$$

Intuition: universal counterparts to the previous operators

$$\begin{array}{rcl} \neg \mathsf{Next}(\phi) & \equiv & \mathsf{NextF}(\neg \phi) \\ \neg (\phi_1 \mathsf{Until}\phi_2) & \equiv & (\neg \phi_2) \mathsf{WUntilF}(\neg \phi_1 \wedge \neg \phi_2) \\ \neg (\phi_1 \mathsf{WUntil}\phi_2) & \equiv & (\neg \phi_2) \mathsf{UntilF}(\neg \phi_1 \wedge \neg \phi_2) \end{array}$$

Become particularly useful to treat duplicating relations

• $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$

- $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$
- $n_1 \not\models_{\omega_1} \mathsf{NextF}(\mathsf{Blue}(x))$

- $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$
- $n_1 \not\models_{\omega_1} \mathsf{NextF}(\mathsf{Blue}(x))$
- $e_5 \vDash_{\omega_1} \mathsf{NextF}(\mathsf{loop}(x))$

- $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$
- $n_1 \not\models_{\omega_1} \mathsf{NextF}(\mathsf{Blue}(x))$
- $e_5 \vDash_{\omega_1} \mathsf{NextF}(\mathsf{loop}(x))$

Andrea Laretto ICGT 2023 July 19th, 2023 15 / 20

• $e_1 \vDash_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{Until}(\mathsf{loop}(x))$

- $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$
- $n_1 \not\models_{\omega_1} \mathsf{NextF}(\mathsf{Blue}(x))$
- $e_5 \vDash_{\omega_1} \mathsf{NextF}(\mathsf{loop}(x))$

- $e_1 \vDash_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{Until}(\mathsf{loop}(x))$
- $e_1 \not\models_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{UntilF}(\mathsf{loop}(x))$

- $n_0 \vDash_{\omega_0} \mathsf{NextF}(\mathsf{Blue}(x))$
- $n_1 \not\models_{\omega_1} \mathsf{NextF}(\mathsf{Blue}(x))$
- $e_5 \vDash_{\omega_1} \mathsf{NextF}(\mathsf{loop}(x))$

- $e_1 \vDash_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{Until}(\mathsf{loop}(x))$
- $e_1 \not\models_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{UntilF}(\mathsf{loop}(x))$
- $e_4 \vDash_{\omega_1} \mathsf{Blue}(s(x)) \mathsf{WUntilF}(\mathsf{false})$

Agda formalization

Agda: dependently typed programming language and proof assistant

Agda formalization

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:
 - 1 A formalization of categorical QLTL and its models in Agda

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:
 - A formalization of categorical QLTL and its models in Agda
 - ② Categorical semantics formalized using the agda-categories library

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:
 - A formalization of categorical QLTL and its models in Agda
 - 2 Categorical semantics formalized using the agda-categories library
 - 3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:
 - A formalization of categorical QLTL and its models in Agda
 - Categorical semantics formalized using the agda-categories library
 - 3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
 - 4 A classical set-based semantics without the use of categorical logic

- Agda: dependently typed programming language and proof assistant
- Can be used in practice to formalize mathematical constructions
- Mechanization work:
 - A formalization of categorical QLTL and its models in Agda
 - 2 Categorical semantics formalized using the agda-categories library
 - 3 Algebraic QLTL: worlds-as-algebras over any multi-sorted signature
 - 4 A classical set-based semantics without the use of categorical logic
 - 5 Presentation of the positive normal forms of QLTL, also in Agda

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics
- Establishes a foundation to build *verified model checkers* for QTL

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics
- Establishes a foundation to build verified model checkers for QTL
- Gives a program to convert standard models into categorical ones:

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics
- Establishes a foundation to build verified model checkers for QTL
- Gives a program to convert standard models into categorical ones:
 - 1 Define the semantics of the logic with categorical notions and models

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics
- Establishes a foundation to build verified model checkers for QTL
- Gives a program to convert standard models into categorical ones:
 - 1 Define the semantics of the logic with categorical notions and models
 - 2 Provide a standard non-categorical transition system as model

- Categorical semantics: 1388 lines of Agda code
- Positive normal form: 1740 lines of Agda code
- Why is a formal presentation of our logic useful?
- Formalizing constructions and semantics establishes their correctness
- Provides a formal setting to test and experiment with temporal logics
- Establishes a foundation to build verified model checkers for QTL
- Gives a program to convert standard models into categorical ones:
 - 1 Define the semantics of the logic with categorical notions and models
 - 2 Provide a standard non-categorical transition system as model
 - Use the procedure ClassicalToCategorical to construct the categorical model so that the logic can be applied

https://github.com/agda/agda-categories

• The de-facto (non-univalent) standard category theory library in Agda

https://github.com/agda/agda-categories

- The de-facto (non-univalent) standard category theory library in Agda
- Extremely practical and flexible, no magic involved

https://github.com/agda/agda-categories

- The de-facto (non-univalent) standard category theory library in Agda
- Extremely practical and flexible, no magic involved
- Design choices do not necessarily get in the way of practical applications

https://github.com/agda/agda-categories

- The de-facto (non-univalent) standard category theory library in Agda
- Extremely practical and flexible, no magic involved
- Design choices do not necessarily get in the way of practical applications
- Main definitions used:
 - Categories, functors, natural transformations
 - Rel: category of sets and relations
 - Free categories generated from a quiver (PathCategory)
 - Presheaves, the category of (relational) presheaves is complete
 - Relational presheaves and morphisms between them

https://github.com/agda/agda-categories

- The de-facto (non-univalent) standard category theory library in Agda
- Extremely practical and flexible, no magic involved
- Design choices do not necessarily get in the way of practical applications
- Main definitions used:
 - Categories, functors, natural transformations
 - Rel: category of sets and relations
 - Free categories generated from a quiver (PathCategory)
 - Presheaves, the category of (relational) presheaves is complete
 - Relational presheaves and morphisms between them
- Functoriality and setoid-equality preservation can be annoying to prove

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

https://github.com/agda/agda-categories

- The de-facto (non-univalent) standard category theory library in Agda
- Extremely practical and flexible, no magic involved
- Design choices do not necessarily get in the way of practical applications
- Main definitions used:
 - Categories, functors, natural transformations
 - Rel: category of sets and relations
 - Free categories generated from a quiver (PathCategory)
 - Presheaves, the category of (relational) presheaves is complete
 - Relational presheaves and morphisms between them
- Functoriality and setoid-equality preservation can be annoying to prove
- © Relatively limited use of the theorems/properties given by the library

Andrea Laretto ICGT 2023 July 19th, 2023 18 / 20

• Formalized in Agda: PNF equivalence (using classical reasoning)

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:
 - PNF with partial functions as counterpart relations

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:
 - PNF with partial functions as counterpart relations
 - PNF with general relations (i.e. allow duplication of entities)

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:
 - PNF with partial functions as counterpart relations
 - PNF with general relations (i.e. allow duplication of entities)
- Expansion laws and equivalences in QLTL in both settings

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:
 - PNF with partial functions as counterpart relations
 - PNF with general relations (i.e. allow duplication of entities)
- Expansion laws and equivalences in QLTL in both settings
- ⇒ LTL-like expansion laws break down in the case of relations!

- Formalized in Agda: PNF equivalence (using classical reasoning)
- Two cases, using non-categorical semantics:
 - PNF with partial functions as counterpart relations
 - PNF with general relations (i.e. allow duplication of entities)
- Expansion laws and equivalences in QLTL in both settings
- ⇒ LTL-like expansion laws break down in the case of relations!
- \Rightarrow (But they can be mostly recovered in the case of partial functions.)

In this work we present a counterpart-based temporal logic that can reason on the temporal evolution of algebraic structures and formalize its semantics in Agda along with results on its PNF.

• Many possible extensions of this work:

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models
 - interfacing Agda with SMT solvers and model checkers for QLTL

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models
 - interfacing Agda with SMT solvers and model checkers for QLTL
 - formalize syntax and models of the logic with indexed categories and morphisms between them, as in categorical logic [Jacobs, 2001]

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models
 - interfacing Agda with SMT solvers and model checkers for QLTL
 - formalize syntax and models of the logic with indexed categories and morphisms between them, as in categorical logic [Jacobs, 2001]
- A study of formally-presented temporal logics is absent in the literature

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models
 - interfacing Agda with SMT solvers and model checkers for QLTL
 - formalize syntax and models of the logic with indexed categories and morphisms between them, as in categorical logic [Jacobs, 2001]
- A study of formally-presented temporal logics is absent in the literature
- Other verified model checkers: LTL in Isabelle [Nipkow, 2013]

- Many possible extensions of this work:
 - formalization of second-order QLTL to express set quantification
 - extending counterpart semantics to CTL, CTL* and their models
 - interfacing Agda with SMT solvers and model checkers for QLTL
 - formalize syntax and models of the logic with indexed categories and morphisms between them, as in categorical logic [Jacobs, 2001]
- A study of formally-presented temporal logics is absent in the literature
- Other verified model checkers: LTL in Isabelle [Nipkow, 2013]
- Proof searching using reflection in Agda for CTL [O'Connor, 2016]

Thank you for your attention!

Agda formalization:

https://github.com/iwilare/algebraic-temporal-logics