Documentation of Statistical Learning based Estimation of Mutual Information (SLEMI) R package

T. Jetka, K. Nienaltowski, T. Winarski, M. Komorowski

July 22, 2018

Contents

1	Preliminaries	2
	1.1 Requirements - Hardware	,
	1.2 Requirements - Software	
	1.3 Installation	:
2	Structure of the package	;
3	Basic workflow of the analysis	4
	3.1 Input data	
	3.2 Calculation of information capacity and mutual information	
	3.3 Calculation of probabilities of discrimination	
	3.4 Minimal working example	(
4	Diagnostic procedures	9
5		1
	5.1 Additional parameters	1
6	Examples	1:
	6.1 One-dimensional example	1:
	6.2 NfkB experimental data	
	Replication of the Results of the Section 2 of the Supplementary Information	
7	List of all functions in the package	2

The package SLEMI is designed to estimate channel capacity, mutual information, and probabilities of correct discrimination for signaling systems with a discrete input and multidimensional output. The package is based on the estimation of conditional input distributions using logistic regression.

SLEMI is released under the GNU license and is freely available from GitHub. Comprehensive documentation is available also on github.io. In case of any bugs, problems, and questions regarding the package or inquiries about information theory, contact t.jetka at sysbiosig.org The package is the component of the paper

Jetka et al., Information-theoretic analysis of multivariate signaling responses using SLEMI, 2018.

1 Preliminaries

1.1 Requirements - Hardware

- A 32 or 64 bit processor (recommended: 64bit)
- 1GHz processor (recommended: multicore for a comprehensive analysis)
- 2GB MB RAM (recommended: 4GB+, depends on the size of experimental data)

1.2 Requirements - Software

The main software requirement is the installation of the R environment (version: >= 3.2), which can be downloaded from R project website and is distributed for all common operating systems. We tested the package in R environment installed on Windows 7, 10; Mac OS X 10.11 - 10.13 and Ubuntu 18.04 with no significant differences in the performance. The use of a dedicated Integrated development environment (IDE), e.g. RStudio is recommended.

Apart from a base installation of R, SLEMI requires the following R packages:

- 1. for installation
- devtools
- 2. for estimation
- e1071
- Hmisc
- nnet
- glmnet
- caret
- doParallel (if parallel computation are needed)
- 3. for visualisation
- ggplot2
- ggthemes
- gridExtra
- corrplot
- 4. for data handling
- reshape2
- stringr
- plyr

Each of the above packages can be installed by running in the R console

```
install_packages("name_of_a_package")
```

1.3 Installation

The package can be directly installed from GitHub. For installation, open RStudio (or base R) and run following commands in the R console

```
install_packages("devtools") # run if not installed
library(devtools)
install_github("sysbiosig/SLEMI")
```

All required packages are not found, they will be installed automatically.

2 Structure of the package

Estimation of the channel capacity is the core functionality of the package and is performed by the functioncapacity_logreg_main(). Estimation of the mutual information is performed by the function mi_logreg_main(), whereas probabilities of correct discrimination by the function prob_discr_pairwise(). Below, we outline the architectures of these functions.

The function capacity_logreg_main() triggers 1) preprocessing of the data; 2) estimation of channel capacity; 3) running diagnostic procedures; 4) visualisation. Dependencies between functions implemented in the package are presented in the graph below.

The algorithm to compute the information capacity is implemented within the function <code>capacity_logreg_algorithm()</code>, which uses logistic regression from <code>nnet package</code>. Diagnostic procedures (significance and uncertainties of estimates) are given in <code>capacity_logreg_testing()</code> function, which includes a) bootstrapping data and b) overfitting test. For visualization, a set of graphs is created by a function <code>capacity_output_graphs()</code> and saved in a specified directory. In addition, <code>capacity_logreg_main()</code> returns a list with capacity estimates, optimal input probability distribution, diagnostic measures and other summary information about the analysis.

The function mi_logreg_main() serves to calculate the mutual information. It initiates similar steps as the function capacity_logreg_main() but without performing the optimization, which leads to computation of the mutual information rather than of the information capacity.

An analogous approach based on logistic regression is assumed in a function prob_discr_pairwise(), which allows to estimate probabilities of discrimination between two different values of input. For each pair of input values it fits a model to find the accuracy of predicting the input from output measurements. Its result is given as a matrix of pie charts.

3 Basic workflow of the analysis

The package enables estimation of the information capacity, mutual information and probabilities of correct discrimination based on data that contain the output of the signaling system Y measured for a range of input values, x. Precisely, as described in detail in Section 1 of the Supplementary information, single cell responses y_j^i are assumed to be measured for a finite set of stimuli levels x_1, x_2, \ldots, x_m and assumed to follow unknown distributions, $y_j^i \sim P(\cdot|X=x_i)$. Response y_j^i can be multidimensional.

3.1 Input data

Conceptually, a full experimental dataset in a described setting can be represented as a table.

input	output 1	output 2	output 3	
$n_1 \left\{ \begin{array}{c} x_1 \\ \vdots \\ x_1 \end{array} \right.$	$\begin{array}{c} y_{1,1}^1 \\ \vdots \\ y_{n_1,1}^1 \end{array}$	$y_{1,2}^1 \\ \vdots \\ y_{n_1,2}^1$	$y_{1,3}^{1}$ \vdots $y_{n_{1},3}^{1}$	
$n_2 \left\{ \begin{array}{c} x_2 \\ \vdots \\ x_2 \end{array} \right.$	$\begin{array}{c} y_{1,1}^2 \\ \vdots \\ y_{n_2,1}^2 \end{array}$	$y_{1,2}^2 \\ \vdots \\ y_{n_2,2}^2$	$y_{1,3}^2$ \vdots $y_{n_2,3}^2$	
÷	i	÷	÷	•••
$n_m \left\{ \begin{array}{c} x_m \\ \vdots \\ x_m \end{array} \right.$	$\begin{array}{c c} y_{1,1}^m \\ \vdots \\ y_{n_m,1}^m \end{array}$	$y_{1,2}^m \\ \vdots \\ y_{n_m,2}^m$	$y_{1,3}^m \\ \vdots \\ y_{n_m,3}^m$	

In consequence, to use our package, it is required to represent experimental data as a data.frame R object with rows and columns organized as represented above. Specifically, we expect that for this data frame:

- each row represent a response of a single cell
- first column contains values of the input (X).
- Second and subsequent columns contain values of the measured output(s). Those columns should be of type numeric. Order and number of outputs should be the same for all cells.
- the number of unique values of the input should be finite
- a large number of observations, possibly >100, per input value is required.

An example of the input data.frame, which contains the measurements of the NfkB system presented in the paper is available within the package under the variable data_nfkb. It has the following format

	signal	${\rm response}_0$	$response_3$	response_6
1	0ng	0.3840744	0.4252835	0.4271986
2	0ng	0.4709216	0.5777821	0.5361948
3	0ng	0.4274474	0.6696011	0.8544916
10001	8ng	0.3120216	0.3475484	1.0925967
10002	8ng	0.2544961	0.6611051	2.2894928
10003	8ng	0.1807391	0.4336810	1.9783171
11540	100 ng	1.3534083	3.0158004	5.1592848
11541	100 ng	1.7007936	2.2224497	3.5463418
11542	100 ng	0.1997087	0.2886905	1.9324093

where each row represents measurements of a single-cell, the column named signal specifies the level of stimulation, while response_T is the response of the NfkB system in an individual cell at time point T. The above table can be shown in R by calling

```
library(SLEMI)
rbind(data_nkfb[1:3,1:4],data_nkfb[10001:10003,1:4],tail(data_nkfb[,1:4],3))
```

3.2 Calculation of information capacity and mutual information

To calculate channel capacity the user must call

```
capacity_logreg_main(dataRaw,signal, response, output_path)
```

where the required arguments are

- dataRaw data frame with column of type factor containing values of input (X) and columns of type numeric containing values of output (Y), where each row represents a single observation
- signal a character which indicates the name of the column in dataRaw with values of input (X)
- response a character vector which indicates the names of columns in dataRaw with values of output (Y)
- output_path a character with the directory, to which output should be saved

The function returns a list with elements

- cc a numeric with channel capacity estimate (in bits)
- p opt a numeric vector with the optimal input distribution
- model a nnet object describing fitted logistic regression model
- data a data.frame with the raw experimental data (if dataout=TRUE)
- time processing time of the algorithm
- params a vector of parameters used in the algorithm
- regression a confusion matrix of logistic regression predictions
- logGraphs a list of gg or ggtables objects with a standard set of exploratory graphs

By default, all returned elements are also saved in output_path directory in a file output.rds together with additional exploratory graphs which include:

- MainPlot.pdf a simple summary plot with basic distribution visualization and capacity estimate
- MainPlot_full.pdf a comprehensive summary plot with distribution visualization and capacity estimate
- capacity.pdf a diagram presenting the capacity estimates
- io relation.pdf a graph with input-output relation
- kdensities.pdf kernel density estimator of data distribution
- histograms.pdf histograms of data
- boxplots.pdf boxplots of data
- violin.pdf violin plots of data

Exactly the same basic list of arguments and set of plots are assumed for the function mi_logreg_main(), which estimates the mutual information (without optimising the optimal input distribution). The only exception is the resulting object of the function, which stores the value of the computed mutual information under the name

• mi - a numeric with mutual information estimate (in bits)

3.3 Calculation of probabilities of discrimination

To obtain only the probabilities of discriminating between input values, one can run

```
prob_discr_pairwise(dataRaw,signal, response, output_path)
```

where the required arguments are analogous to arguments of functions <code>capacity_logreg_main()</code> and <code>mi_logreg_main()</code>. The accuracy of determining the most likely input is computed for each pair of unique input values and returns a list with elements

- prob_matr a symmetric numeric matrix with a probability of discriminating between i-th and j-th input values in cell (i,j)
- model a list of nnet objects describing fitted logistic regression models of classification two chosen input values.

In addition, a plot of corresponding pie charts is created in output_path in pdf format.

3.4 Minimal working example

Below, we present a minimal working example that may serve as a quick introduction to the package. Firstly, we create a simple synthetic dataset. We assume a system with four different levels of stimulations: 0, 0.1, 1 and 10, a Log-normal output and Michaelis-Menten kinetics (compare with Test example 2 from Supplementary Information of the manuscript).

The data corresponding to the model can be generated and represented as the data frame tempdata with columns input and output by running

The generated data frame has the following structure

	input	output
1	0	0.9160099
2	0	-1.5514693
2001	1	2.9531914
2002	1	5.0153107
3999	10	11.6404746
4000	10	7.8090393

The generated data frame contains sufficient data to calculate information-capacity using the capacity_logreg_main() function. The data frame "tempdata" serves as dataRaw argument of the function, whereas column names "input" and "output" are used as arguments signal and response, respectively. The output_path is set as "minimal example/". Therefore, the function is run as follows

Results of the computations are returned as a data structure described before. However, results are also presented in the form of the following graph (by default saved as MainPlot.pdf in minimal_example/directory). It represents the input-output data and gives the corresponding channel capacity.

Figure 1: Standard output graph of minimal working example

To compare mutual information of experimental data with its channel capacity, we can run:

and show in the console their resepctive values

[1] "Mutual Information: 1.48834475926489; Channel Capacity: 1.54537652807866"

For deeper understanding, probabilities of discriminating between input values can be explored by

which generates a following graph in output directory

Figure 2: Standard output graph presenting probabilities of discriminating between each pair of unique input values.

4 Diagnostic procedures

The x-axis arrow used to plot the capacity serves to represent results of additional diagnostics computations described below. We implemented two diagnostic procedures to control the accuracy of the channel capacity estimates and to measure uncertainty due to finite sample size and model over-fitting. These include:

- 1. Bootstrap test capacity is re-calculated using $\alpha\%$ of data, sampled from the original dataset without replacement. After repeating the procedure n times, its standard deviation can serve as an error of the obtained capacity estimate.
- 2. Over-fitting test the original data is divided into Training and Testing datasets. Then, logistic regression is estimated using $\alpha\%$ of data (training dataset), and integrals of channel capacity are calculated via Monte Carlo using remaining $(1-\alpha)\%$ of data (testing dataset). It is repeated n times.

In order to use those procedures, user must provide additional arguments to function logreg_capacity_main(), i.e.

- testing (default=FALSE) a logical value that turn on/off testing mode,
- TestingSeed (default= 1234) the seed for the random number generator used to sample original dataset,
- testing_cores (default= 4) a number of cores to use (via doParallel package) in parallel computing,
- boot_num (default= 40) a number of repetitions of the bootstrap ,
- boot_prob (default= 0.8) a fraction of initial observations to use in the bootstrap,
- traintest_num (default= 40) a number of repetitions of the overfitting test,
- partition_trainfrac (default= 0.6) a fraction of initial observations to use as a training dataset in the overfitting test

For example, a user can, by utilizing a synthetic dataset accompanying the package, run

to run diagnostics with 40 re-sampling of data, where bootstrap is calculated using 80% of data, while over-fitting test include testing dataset of size 60% of original data.

It provides the following result

The top diagram shows the value of the original capacity estimate (in black) and the mean value of bootstrap repetitions with indicated +/- standard deviation (in red). Plots that follow show histograms of calculated capacities for different testing regimes. The black dot represents the basic channel capacity estimate. In addition, corresponding empirical p-values of both tests (left- and right-sided) are calculated to assess the randomness of obtained results (PV in the plots).

To ensure the correctness of the analysis

- 1. Bootstrap should yield distribution of capacity with small variance and basic capacity should not be an outlier (p-value>0.05). Otherwise, it would indicate that the sample size is too low for an accurate estimation of channel capacity.
- 2. The over-fitting test should also provide a conclusion that the basic capacity estimate is non-significantly different from the distribution of capacities from the test. In the opposite case, it could mean that the logistic regression model does not fully grasp the essential aspects of input-output dependencies in the data.

Figure 3: Standard output graph of testing procedures. P-values (PV) are based on empirical test either left-or right- sided. In the top vapacity axis, black dot represents original estimate of channel capacity (using full data set), red dot is the mean of bootstrap procedures, while the bars are mean +/- sd. The remaining panels are histograms of all repetitions of a specific testing procedure.

5 Other Functionalities

5.1 Additional parameters

Apart from required arguments, the function capacity_logreg_main() has also other parameters that can be used to tune the activity of the algorithm (see full specification at the end of the documentation). These are

- model_out (default=TRUE) logical, specify if nnet model object should be saved into output file
- graphs (default=TRUE) logical, controls creating diagnostic plots in the output directory.
- plot_width (default = 6) numeric, the basic width of created plots
- plot_height (default = 4) numeric, the basic height of created plots
- scale (default = TRUE) logical, value indicating if the columns of dataRaw are to be centered and scaled, what is usually recommended for the purpose of stability of numerical computations. From a purely theoretical perspective, such transformation does not influence the value of channel capacity.

Calculation of the information capacity with capacity_logreg_main() is based on logistic regression implementation of nnet package. Some parameters of original nnet::nnet (used for fitting parameters) and nnet::multinom (used to implement logistic model) functions can be set via following arguments of capacity_logreg_main().

Precisely,

- lr_maxit (default = 1000) a maximum number of iterations of fitting step of logistic regression algorithm in nnet function. If a warning regarding lack of convergence of logistic model occurs, should be set to a larger value (possible if data is more complex or of a very high dimension).
- MaxNWts (default = 5000) a maximum number of parameters in logistic regression model. A limit is set to prevent accidental over-loading the memory. It should be set to a larger value in case of exceptionally high dimension of the output data or very high number of input values. In principle, logistic model requires fitting $(m-1) \cdot (d+1)$ parameters, where m is the number of unique input values and d is the dimension of the output.

6 Examples

Below we present a step-by-step example that further illustrate the applicability of the SLEMI package. The R scripts with computations described below are available in the directory testing_procedures of the package's GitHub repository.

6.1 One-dimensional example

To demonstrate how to use SLEMI, we will generate a synthetic dataset of a channel, for which the conditional output distribution, Y|X, is Log-normal. This example is analogous to the Test example 2 from SI of the corresponding manuscript (Section 3.2) and is a simple case of an experimental setup commonly seen in systems biology problems. We assume that

- i) input, X, has 6 different levels between 0 and 100;
- ii) conditional output, Y|X=x, is a one-dimensional Log-normal distribution $\exp\{\mathcal{N}(10\cdot\frac{x}{1+x},1)\}$;
- iii) for each x, there are 1000 observations.

Our method expects as input a data.frame with a column indicating the value of the input (recommended type: factor) and other columns with corresponding output measurements (type: numeric). It will be created by the following steps

1. Set parameters of the example

```
# sample size for each input concentration;
# change to investigate its influence on estimation
n_sample <- c(1000)
# standard deviation of ln(Y)|X=x;
# change to investigate its influence on estimation
dist_sd <- 1
# number of concentration of input X considered;
# change to investigate its influence on estimation
input_num <- 6</pre>
```

2. Create output directory

```
i_type <- "testing_basic"
path_output_main <-
   paste('output/',
        i_type,'/',
        sep="")
dir.create(
   path_output_main,
   recursive = TRUE)</pre>
```

3. Generating synthetic data

```
# concentration of input; spans from 0 to saturation.
xx <-
    signif(
c(0,
    exp(
        seq(
            from = log(0.01),
            to = log(100),
            length.out = input_num-1))),
digits = 2)</pre>
```

```
# mean of the dose-response relation; Michaelis-Menten assumed
    example_means <- 10*(xx/(1+xx))
    example_sds <- rep(dist_sd, input_num)</pre>
    tempdata <-
      data.frame(
    signal = c(t(replicate(n_sample, xx))),
    output = c(matrix(
      rnorm(n = input_num*n_sample,
             mean = example_means,
             sd = example_sds),
      ncol = input_num,
      byrow = TRUE)))
    tempdata$signal <-
      factor(
    x = tempdata$signal,
    levels = sort(unique(tempdata$signal)))
    print(head(tempdata))
##
    signal
                output
## 1
         0 -1.2070657
## 2
          0 -0.5747400
## 3
          0 -0.7762539
## 4
          0 -0.8371717
## 5
          0 -0.6937202
## 6
          0 1.1022975
  4. Preview the distribution of the data. It will create a graph as below
    g_plot <- ggplot(</pre>
      data = tempdata,
      aes(x = factor(signal),
      group = signal,
      y = output)) +
      geom_boxplot() +
      theme_publ(version = 2)
    if(display_plots){
```

print(g_plot)

Data distribution

- 5. Running algorithm The estimation of channel capacity can be performed by using capacity_logreg_main() function. In most basic setting it expects four arguments: 1) data.frame with data, 2) name of input column, 3) names of output columns and 4) a path to the output directory. It can be obtained by
- 6. Set required parameters for the algorithm

```
signal_name <- "signal"
response_name <- "output"</pre>
```

7. Estimate channel capacity (takes several seconds)

```
tempoutput <-
   capacity_logreg_main(
dataRaw = tempdata,
signal = signal_name,
response = response_name,
output_path = path_output_main
)</pre>
```

- 8. Access and visualise results With the algorithm finished, results can be accessed by either exploring a list returned by the function or inspecting the visualisation implemented within the package (graphs created in output directory)
- 9. Print results of the estimation in the console

[1] "Channel Capacity (bit): 1.60456660237405"

```
## [1] "Optimal input probabilities, x_i = 0 : 0.20276215140046"
```

[2] "Optimal input probabilities, $x_i = 0.01 : 0.00351480233210017$ "

```
## [3] "Optimal input probabilities, x_i = 0.1 : 0.145420938360615"
## [4] "Optimal input probabilities, x_i = 1 : 0.308751686587878"
## [5] "Optimal input probabilities, x i = 10 : 0.126971845357898"
## [6] "Optimal input probabilities, x_i = 100 : 0.212578575961048"
print(paste("Accuracy of classification:",
            tempoutput$regression$overall[1],
            sep = " " ))
## [1] "Accuracy of classification: 0.61033333333333333"
print(paste("Time of computations (sec.):",
            tempoutput$time[3],
            sep = "")
## [1] "Time of computations (sec.): 3.14"
 10. Inspect object generated during computation. We verify if results saved in rds are the same as in the
    returned list. Full output of the estimation should be saved in "output path/output.rds".
tempoutput_rds = readRDS(
  paste0(
    path_output_main,
    "/output.rds"))
print(paste("Channel Capacity assertion:",
            tempoutput_rds$cc == tempoutput$cc))
## [1] "Channel Capacity assertion: TRUE"
print(paste("Optimal input probabilities assertion:",
            sum(tempoutput_rds$p_opt != tempoutput$p_opt) == 0))
## [1] "Optimal input probabilities assertion: TRUE"
print(paste("Accuracy of classification assertion:",
            tempoutput_rds$regression$overall[1] ==
              tempoutput$regression$overall[1]))
## [1] "Accuracy of classification assertion: TRUE"
print(paste("Time of computations assertion:",
            tempoutput_rds$time[3] ==
              tempoutput$time[3]))
```

- ## [1] "Time of computations assertion: TRUE"
 - 11. Explore visualisation of the results. See pdf files in output_path/ for the visualisation of the data and capacity estimation. In the "MainPlot.pdf" the most important information are presented: mean input-output relation; distributions of output and channel capacity (see below). Graphs, as gg or gtable objects, are saved in logGraphs element of function output.

```
if(display_plots){
  grid.arrange(tempoutput$logGraphs[[9]])
}
```


12. Generate graphs of different size by specifying parameters plot_width and plot_height

13. Run analysis without generating graphs by setting argument graphs to FALSE

```
response = response_name,
output_path = path_output_main,
graphs = graphs_generate
)
```

14. Run analysis with the minimal output by setting graphs, scale, dataout, model_out to FALSE. Respectively, it prevents creating graphs, scaling of the data, including data and regression model in the returned list. Such setting is useful mainly for batch processing.

```
graphs_generate <- FALSE</pre>
data_rescale <- FALSE
data_save <- FALSE
model_save <- FALSE</pre>
i_type <- "testing_basic_minimalOutput"</pre>
path_output_main=paste('output/',i_type,'/',sep="")
dir.create(path_output_main,recursive = TRUE)
tempoutput <- capacity logreg main(</pre>
  dataRaw = tempdata,
  signal = signal_name,
  response = response_name,
  output_path = path_output_main,
  graphs = graphs generate,
  scale = data rescale,
  dataout = data_save,
  model_out = model_save
```

- 15. Diagnostics We implemented two diagnostic procedures to test the correctness of channel capacity estimation and to compute uncertainties due to sample size and over-fitting. These include:
- 16. Set parameters of diagnostic tests

17. Run estimation with full diagnostics by using parameters and set testing argument to TRUE (takes up to 5 min)

```
tempoutput <- capacity_logreg_main(
  dataRaw = tempdata,
  signal = signal_name,
  response = response_name,
  output_path = path_output_main,
  testing = TRUE,
  plot_width = 10 ,</pre>
```

```
plot_height = 8,
  TestingSeed = seed_to_use,
  testing_cores = cores_num,
  boot_num = bootstrap_num,
  boot_prob = bootstrap_frac,
  traintest_num = overfitting_num,
  partition_trainfrac = training_frac
)
```

18. Inspect results of diagnostic tests. It is saved in the testing element of the returned list

```
## [1] "Channel Capacity, bootstrap mean (sd): 1.61(0)"
```

- ## [1] "Time of computations (sec.): 39.64"
 - 19. See the visualisation in the output directory MainPlot.pdf. For each diagnostic test, there is a corresponding histogram of calculated capacities. This graph is also obtainable from the returned list by a command

```
if(display_plots){
  grid.arrange(tempoutput$logGraphs[[9]])
}
```

20. For each diagnostic test, we provide left- and right-tailed empirical p-values of the obtained channel capacity. They indicated if the regime of data bootstrapping or dividing data into training and testing sample influence the calculation of capacity in a significant way. A small p-value in any of these tests (e.g. <0.05) means a problem with the stability of channel capacity estimation and a possible bias due to too small sample size. P-values are printed on the MainPlot.pdf graph or can be obtained in

[1] "P-values:0.3 (left-tailed); 0.7 (right-tailed) "

6.2 NfkB experimental data

The data set on NfkB pathway responses to TNF- α analysed in the corresponding manuscript is attached to the package as a data.frame object and can be accessed using data_nfkb variable. Each row of data_nfkb corresponds to an individual cell. Column 'signal' indicates the level of TNF- α stimulation, while columns 'response_T', gives the normalised ratio of nuclear and cytoplasmic fluorescence measured over time as described in Supplementary Information.

Below, we show how the analysis of the NfkB pathway presented in the main paper can be replicated. Specifically, we replicate Fig. 1 from MP.

Our investigation of the influence of the TNF- α on NfkB responses includes the analysis of information transfer by estimating channel capacity (Fig. 1A-B) and assessing the probability of discrimination between each pair of the TNF- α stimulation (Fig. 1C-D). Both of above approaches are applied to two variants of data: i) for time point (TP) measurements; ii) for time-series (TS) measurements.

The code is given in paper_MP.R file of the package and is divided into three sections that should be run consecutively:

- 1) Preliminary setting up packages and working environment. (lines 60-77)
- 2) Capacity replicates Fig.1 A-B (lines 79-180)
- 3) Probabilities of discrimination replicates Fig.1 C-D (lines 184-299)

In default mode (5 repetition of bootstrap), running Capacity section takes approx. 2 hours with a single core. Set number of cores for parallel processing in line 83. For a graphs exactly like in MP, set line 84 to analysis_type="long"

Running Probability of discrimination section takes about 3 minutes. Please follow instructions and run code in paper_MP.R to replicate the results from MP. Installation of additional packages is needed: ggplot2, gridExtra, mvtnorm, and corrplot.

6.3 Replication of the Results of the Section 2 of the Supplementary Information

In script paper_SI.R we present codes to replicate examples presented in the Section 3 of the Supplementary Methods. The code is divided into three sections that should be run in consecutively

- 1) Preliminary setting up packages and working environment
- 2) Comparison replicates Fig. S1 shows the comparison of our method to the KNN approach.
- 3) Validation replicates Fig. S3 shows the performance of our method in four examples of simple channels

In default mode (10 repetition of data sampling), running Validation section takes 1 hour, similarly computations in Comparison section also take approximately 1 hour with a single core. Set number of cores for parallel processing in line 76. For a graphs exactly like in SI, set line 77 to

```
analysis_type="long"
```

Please follow instructions and run codes in paper_SI.R to replicate the results from SI. Installation of additional packages is needed: ggplot2, gridExtra, mvtnorm, nloptr, FNN, DEoptimR, TDA and corrplot.

7 List of all functions in the package

Following functions from SLEMI package are available to the user:

- capacity_logreg_main() Main wrapper function to perform analysis of channel capacity of experimental data
- capacity_logreg_algorithm() Implements algorithm to estimate channel capacity using nnet package
- capacity_klogreg_algorithm() Implements algorithm to estimate channel capacity using glmnet package
- capacity_logreg_testing() Performs diagnostic procedures
- capacity_output_graphs() Generates exploratory graphs
- mi_logreg_main() Estimates mutual information
- prob_discr_pairwise() Calculates probabilities of discrimination between all pairs of input values
- formula_generator() Generates a formula object based on input and output specification
- sampling_bootstrap(), sampling_partition(), sampling_shuffle() Used to generate subsets of data to use in diagnostic procedures
- theme_publ() Changes the visual elements of ggplot object

dataRaw signal response output_path scale graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	data frame with input (X) and output (Y) values in separate columns character indicating a name of column of dataRaw with input (X) character vector indicating names of columns of dataRaw with measurements of outputs (Y) directory in which result and graphs will be saved logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw with side variables, if NULL no side variables are included in estimation	default (required (required (required TRUE TRUE TRUE TRUE TRUE 1234 1 10 0.8 10 0.6 NULL
signal response output_path scale graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	character indicating a name of column of dataRaw with input (X) character vector indicating names of columns of dataRaw with measurements of outputs (Y) directory in which result and graphs will be saved logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	(required (required TRUE) TRUE TRUE TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
response output_path scale graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	character vector indicating names of columns of dataRaw with measurements of outputs (Y) directory in which result and graphs will be saved logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	(required TRUE TRUE TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
output_path scale graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	with measurements of outputs (Y) directory in which result and graphs will be saved logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	(required TRUE TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
output_path scale graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	directory in which result and graphs will be saved logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	logical indicating if preprocessing (centering and scaling) should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	should be carried out before the analysis logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
graphs model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	logical indicating if standard graphs should be created logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
model_out dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	logical indicating if the model object should be returned logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE TRUE FALSE 1234 1 10 0.8 10 0.6
dataout testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	logical indicating if the dataRaw should be returned with results logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	TRUE FALSE 1234 1 10 0.8 10 0.6
testing TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	logical indicating if diagnostics should be performed the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	FALSE 1234 1 10 0.8 10 0.6
TestingSeed testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	the seed of random number generator to be used in diagnostics number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	1234 1 10 0.8 10 0.6
testing_cores boot_num boot_prob traintest_num partition_trainfrac side_variables	number of cores to use in parallel computing in diagnostics the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	1 10 0.8 10 0.6
boot_num boot_prob traintest_num partition_trainfrac side_variables	the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	10 0.8 10 0.6
boot_num boot_prob traintest_num partition_trainfrac side_variables	the number of bootstrap tests to be performed (used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	0.8 10 0.6
boot_prob traintest_num partition_trainfrac side_variables	(used if testing=TRUE) the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	10 0.6
traintest_num partition_trainfrac side_variables	the proportion of data to be used in bootstrap (used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	10 0.6
traintest_num partition_trainfrac side_variables	(used if testing=TRUE) the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	10 0.6
partition_trainfrac side_variables	the number of over-fitting tests to be performed (used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	0.6
partition_trainfrac side_variables	(used if testing=TRUE) the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	0.6
side_variables	the proportion of data to be used as a training dataset (used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	
side_variables	(used if testing=TRUE) an optional character vector indicating names of columns in dataRaw	
	an optional character vector indicating names of columns in dataRaw	NITIT T
		1 1/11/11/1
rodomen misse		NOLL
research militry	is the number of resmapling tests to be performed	10
resamp_num	(used if testing=TRUE)	10
plot_height	the basic dimnesion of plots (height)	4
	the basic dimnesions of plots (width)	6
-	the maximum number of iteration to optimise channel capacity	100
	the maximum number of iteration to optimise channel capacity the maximum number of iteration to estimate logisitic model	1000
	9	
	the maximum number of parameters in logistic regression algorithm	5000
formula_string	character object that includes a formula syntax to use in logistic model	NULL
-	logical indicating if the glmnet package should be used	FALSE
	numeric matrix with columns treated as explanatory variables	NULL
	in logistic model (used if glmnet_algorithm=TRUE)	_
glmnet_cores	the number of cores to use in parallel computing of glmnet package	1
	(used if glmnet_algorithm=TRUE)	
glmnet_lambdanum	is the lambda parameter as in glmnet package	10
	(used if glmnet_algorithm=TRUE)	
	Values – a list with elements	
name	description	
cc	a numeric with the estimate of channel capacity (in bits)	
p_opt	a numeric vector with estimated optimal input probability	
time	processing time of the algorithm	
params	a vector of parameters used in the algorithm	
data	a data.frame with the raw experimental data (if dataout=TRUE)	
	confusion matrix of logistic regression predictions	
_	nnet object describing logistic regression model (if model_out=TRUE)	
	a list of gg or ggtables objects with a standard set of exploratory graphs	
U Ir ···	(if graphs=TRUE)	
testing	a list of results of diagnostic procedures, e.g. \$testing\$bootstrap	
<u> </u>	has boot_num elements, each with results of the algorithm of each diagno	ostic run
	a list of left- and right-tailed p-values of diagnostic procedures	ooute rull

Function: mi_logreg_main()
Main wrapper function to mutual information from experimental data

	Arguments	
name	description	default
dataRaw	data frame with input (X) and output (Y) values in separate columns	(required)
signal	character indicating a name of column of dataRaw with input (X)	(required)
response	character vector indicating names of columns of dataRaw	(required)
	with measurements of outputs (Y)	
$\operatorname{output_path}$	directory in which result and graphs will be saved	(required)
scale	logical indicating if preprocessing (centering and scaling)	TRUE
	should be carried out before the analysis	
graphs	logical indicating if standard graphs should be created	TRUE
$model_out$	logical indicating if the model object should be returned	TRUE
dataout	logical indicating if the dataRaw should be returned with results	TRUE
testing	logical indicating if diagnostics should be performed	FALSE
TestingSeed	the seed of random number generator to be used in diagnostics	1234
$testing_cores$	number of cores to use in parallel computing in diagnostics	1
boot_num	the number of bootstrap tests to be performed	10
	(used if testing=TRUE)	
$boot_prob$	the proportion of data to be used in bootstrap	0.8
	(used if testing=TRUE)	
$traintest_num$	the number of over-fitting tests to be performed	10
	(used if testing=TRUE)	
$partition_trainfrac$	the proportion of data to be used as a training dataset	0.6
	(used if testing=TRUE)	
$side_variables$	an optional character vector indicating names of columns in dataRaw	NULL
	with side variables, if NULL no side variables are included in estimation	
$resamp_num$	is the number of resmapling tests to be performed	10
	(used if testing=TRUE)	
plot _height	the basic dimnesion of plots (height)	4
plot _width	the basic dimnesions of plots (width)	6
pinput	an optional numeric vector with arbitrary probabilities of input.	NULL
	If NULL, fractions of observations in full dataset of each class are used.	
lr_maxit	the maximum number of iteration to estimate logisitic model	1000
$\max NWts$	the maximum number of parameters in logistic regression algorithm	5000
$formula_string$	character object that includes a formula syntax to use in logistic model	NULL
$glmnet_algorithm$	logical indicating if the glmnet package should be used	FALSE
dataMatrix	numeric matrix with columns treated as explanatory variables	NULL
	in logistic model (used if glmnet_algorithm=TRUE)	
$glmnet_cores$	the number of cores to use in parallel computing of glmnet package	1
	(used if glmnet_algorithm=TRUE)	
glmnet_lambdanum	is the lambda parameter as in glmnet package	10
	(used if glmnet_algorithm=TRUE)	
	Values – a list with elements	
name	description	
mi	a numeric with the estimate of mutual information (in bits)	
p_opt	a numeric vector with estimated optimal input probability	

name	description
mi	a numeric with the estimate of mutual information (in bits)
p_opt	a numeric vector with estimated optimal input probability
time	processing time of the algorithm
params	a vector of parameters used in the algorithm
data	a data.frame with the raw experimental data (if dataout=TRUE)
regression	confusion matrix of logistic regression predictions
model	nnet object describing logistic regression model (if model_out=TRUE)
logGraphs	a list of gg or ggtables objects with a standard set of exploratory graphs
	(if graphs=TRUE)
testing	a list of results of diagnostic procedures, e.g. \$testing\$bootstrap
	has boot_num elements, each with results of the algorithm of each diagnostic run
$testing_pv$	a list of left- and right-tailed p-values of diagnostic procedures

Function: prob_discr_pairwise() Computation of pairwise probabilities of discrimination

Arguments			
name	description	default	
dataRaw	data frame with input (X) and output (Y) values in separate columns	(required)	
signal	character indicating a name of column of dataRaw with input (X)	(required)	
response	character vector indicating names of columns of dataRaw	(required)	
	with measurements of outputs (Y)		
$output_path$	directory in which result and graphs will be saved	(required)	
scale	logical indicating if preprocessing (centering and scaling)	TRUE	
	should be carried out before the analysis		
$\operatorname{model}\operatorname{_out}$	logical indicating if the model object should be returned	TRUE	
$side_variables$	an optional character vector indicating names of columns in dataRaw	NULL	
	with side variables, if NULL no side variables are included in estimation		
lr_maxit	the maximum number of iteration to estimate logisitic model	1000	
$\max NWts$	the maximum number of parameters in logistic regression algorithm	5000	
$formula_string$	character object that includes a formula syntax to use in logistic model	NULL	
	Values – a graph of pie charts is created in output_path directory.		
	In addition, function returns a list with elements		
name	description		
prob_matr	a symmetric numeric matrix of size		
	$= length(unique(dataRaw[[signal]])) \times length(unique(dataRaw[[signal]])) = length(unique(dataRaw[[signa]])) = length($	nal]]))	
	with probability of discriminating between i-th and j-th input values in [i,j] cell	
model	a list of nnet objects describing logistic regression models (if model_out=	=TRUE)	

Function: capacity_logreg_algorithm()
Implements algorithm to estimate channel capacity using nnet package

Arguments				
name	description	default		
data	data frame with input (X) and output (Y) values in separate columns	(required)		
signal	character indicating a name of column of dataRaw with input (X)	(required)		
response	character vector indicating names of columns of dataRaw	(required)		
	with measurements of outputs (Y)			
$model_out$	logical indicating if the model object should be returned	TRUE		
$side_variables$	an optional character vector indicating names of columns in dataRaw	NULL		
	with side variables, if NULL no side variables are included in estimation			
cc_maxit	the maximum number of iteration to optimise channel capacity	100		
lr_maxit	the maximum number of iteration to estimate logisitic model	1000		
$\max NWts$	the maximum number of parameters in logistic regression algorithm	5000		
$formula_string$	character object that includes a formula syntax to use in logistic model	NULL		
	Values – a list with elements	1		
name	name description			
cc	cc a numeric with the estimate of channel capacity (in bits)			
p_opt a numeric vector with estimated optimal input probability				
regression	confusion matrix of logistic regression predictions			
model	model nnet object describing logistic regression model (if model_out=TRUE)			

Function: capacity_klogreg_algorithm()
Implements algorithm to estimate channel capacity using glmnet package

Implements algorithm to estimate channel capacity using gimnet package					
Arguments					
name	description	default			
dataMatrix	numeric matrix with columns treated as explanatory variables	(required)			
	(output, Y, of the channel)				
dataSignal	factor vector with inputs (X) of the channel	(required)			
	length must be equal to the number of rows of dataMatrix				
cv_core_num	the number of cores to use in parallel computing of glmnet package	1			
lambda_num	is the lambda parameter as in glmnet package	10			
$model_out$	logical indicating if the model object should be returned	TRUE			
cc_maxit	the maximum number of iteration to optimise channel capacity	100			
Values – a list with elements					
name	name description				
cc a numeric with the estimate of channel capacity (in bits)					
p_opt a numeric vector with estimated optimal input probability					
regression	confusion matrix of logistic regression predictions				
model					

Function: capacity_logreg_testing()
Performs diagnostic procedures

	Arguments	
name	description	default
data	data frame with input (X) and output (Y) values in separate columns	(required)
signal	character indicating a name of column of dataRaw with input (X)	(required)
response	character vector indicating names of columns of dataRaw	(required)
	with measurements of outputs (Y)	
$output_path$	directory in which result and graphs will be saved	(required)
TestingSeed	the seed of random number generator to be used in diagnostics	1234
$testing_cores$	number of cores to use in parallel computing in diagnostics	1
$boot_num$	the number of bootstrap tests to be performed	10
	(used if testing=TRUE)	
$boot_prob$	the proportion of data to be used in bootstrap	0.8
	(used if testing=TRUE)	
$traintest_num$	the number of over-fitting tests to be performed	10
	(used if testing=TRUE)	
partition_trainfrac	the proportion of data to be used as a training dataset	0.6
	(used if testing=TRUE)	
$side_variables$	an optional character vector indicating names of columns in dataRaw	NULL
	with side variables, if NULL no side variables are included in estimation	
$resamp_num$	is the number of resmapling tests to be performed	10
	(used if testing=TRUE)	
cc_maxit	the maximum number of iteration to optimise channel capacity	100
lr_maxit	the maximum number of iteration to estimate logisitic model	1000
$\max NWts$	the maximum number of parameters in logistic regression algorithm	5000
$formula_string$	character object that includes a formula syntax to use in logistic model	NULL
$glmnet_algorithm$	logical indicating if the glmnet package should be used	FALSE
dataMatrix	numeric matrix with columns treated as explanatory variables	NULL
	in logistic model (used if glmnet_algorithm=TRUE)	
$glmnet_cores$	the number of cores to use in parallel computing of glmnet package	1
	(used if glmnet_algorithm=TRUE)	
glmnet_lambdanum	is the lambda parameter as in glmnet package	10
	(used if glmnet_algorithm=TRUE)	
	Values – a list with elements	
bootstrap	list of size boot_num, where each element is the returned value of	
	capacity_logreg_algorithm() from a single run of bootstrap	
traintest	list of size traintest_num, where each element is the returned value of	
	capacity_logreg_algorithm() from a single run of over-fitting test	
resamplingMorph	list of size resamp_num, where each element is the returned value of	
	capacity_logreg_algorithm() from a single run of resampling test	
	(used if side_variables is not NULL)	
bootResampMorph	list of size resamp_num, where each element is the returned value of	
	capacity_logreg_algorithm() from a single run of resampling test II	
	(used if side_variables is not NULL)	

Function: capacity_output_graphs() Generates exploratory graphs

	${f Arguments}$	
name	description	default
data	data frame with input (X) and output (Y) values in separate columns	(required)
signal	character indicating a name of column of dataRaw with input (X)	(required)
response	character vector indicating names of columns of dataRaw	(required)
	with measurements of outputs (Y)	
$output_path$	directory in which result and graphs will be saved	(required)
cc_output	logical indicating if preprocessing (centering and scaling)	TRUE
height	the basic dimnesion of plots (height)	4
width	the basic dimnesions of plots (width)	6
	Values – a list with elements	
name description		
1	A comprehensive summary plot	
2	Input-Output relation	
3	Boxplots of data	
4	Violin plots of data	
5	Histograms of data	
6	Boxplot of side variables in data	
7	Capacity results	
8	Density plots	
9	A simple summary plot	

Function: formula_generator()
Generates a formula object based on input and output specification

Arguments			
name	description	default	
signal	character indicating a name of column of dataRaw with input (X)	(required)	
response	character vector indicating names of columns of dataRaw	(required)	
	with measurements of outputs (Y)		
$side_variables$	an optional character vector indicating names of columns in dataRaw	NULL	
	with side variables, if NULL no side variables are included in estimation		
Values – a list with elements			
name	description		
formula_string	character object that includes a formula syntax to use in logistic model	NULL	

Function: sampling_bootstrap(), sampling_partition(), sampling_shuffle() Used to generate subsets of data to use in diagnostic procedures

Arguments				
name	description	default		
data	data.frame to be resampled	(required)		
dataDiv	character indicating column of data, with respect to which split the data;	(required)		
	only in sampling_bootstrap() and sampling_partition()			
prob	the of data that should be sampled from the whole dataset;	(required)		
	only in sampling_bootstrap()			
partition_trainfrac	the proportion of data to be used as a training dataset;	(required)		
	only in sampling_partition()			
$side_variables$	vector of characters indicating columns of data the will be reshuffled;	(required)		
	only in sampling_shuffle()			
Values – a data.frame with the same structure as initial data object				

Function: theme_publ()
Changes the visual elements of ggplot object

Changes the visual elements of Sapiot object				
Arguments				
name	description	default		
version	possible values: 1,2,3. Selects different coloring and presentation options	1		
$base_size$	the size of font to use in graph	12		
base_family	the type of font to use in graph	sans		
Values – a ggplot theme object				