Пензенский государственный университет Кафедра «Вычислительная техника»

ОТЧЕТ

по лабораторной работе № 11 по дисциплине: "Арифметические и логические основы вычислительной техники"

на тему: "Минимизация булевых функций методом Квайна-Мак-Класски с последующим использованием алгоритма Петрика"

Выполнили: ххххххххххххххххх

Принял: xxxxxxxxxxxx

Лабораторное задание: Из четырех функций для преобразователя D-кодов в лабораторной работе №10 выбрать две функции в СДНФ, которые содержат наибольшее количество конституент 1. Выполнить минимизацию этих функций методом Квайна-Мак-Класски с последующим использованием алгоритма Петрика.

Проверить правильность минимизации моделированием МДНФ в среде Electronics Workbench v5.12.

Ход работы:

1. Из лабораторной работы №10 выбрали функции в СДНФ, содержащие наибольшее количество конституент 1.

D	\mathbf{X}_1	\mathbf{X}_2	X_3	X ₄
0	0	0	0	0
1	0	0	0	1
2	0	1	0	0
3	0	1	0	1
4	0	0	1	0
5	0	0	1	1
6	0	1	1	0
7	0	1	1	1
8	1	1	1	0
9	1	1	1	1

D	\mathbf{Y}_2	Y ₄
0	0	0
1	0	1
2	0	0
3	0	1
4	1	0
5	1	1
6	1	0
7	1	1
8	0	0
9	0	1

$$Y_2 = (\neg x_1 \land \neg x_2 \land x_3 \land \neg x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land \neg x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4)$$

$$Y_4 = (\neg x_1 \land \neg x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land x_2 \land \neg x_3 \land x_4) \lor (\neg x_1 \land \neg x_2 \land x_3 \land x_4) \lor (\neg x_1 \land x_2 \land x_3 \land x_4) \lor$$

$$\lor (x_1 \land x_2 \land x_3 \land x_4)$$

2. Выполнили минимизацию функции Y_2 .

Шаг 1

Красным зачеркиванием обозначена операция поглощения.

Nº	Конституента	Пара	Результат склеивания
1	¬X 1∧¬X2∧X3∧¬X4	1-2	$\neg X_1 \land \neg X_2 \land X_3$
2	¬X1∧¬X2∧X3∧X4	1-3	$\neg X_1 \land X_3 \land \neg X_4$
3	$\neg x_1 \land x_2 \land x_3 \land \neg x_4$	2-4	¬X1∧X3∧X4
4	<u></u> ¬X1∧X2∧X3∧X4		

Шаг 2

Nº	Импликанта	Пара	Результат склеивания
1	¬ X 1∧¬ X 2∧ X 3	2-3	¬ X 1∧ X 3
2	¬ X 1∧ X 3∧¬ X 4		
3	¬ X 1∧ X 3∧ X 4		

Больше нельзя выполнить ни одной операции склеивания.

 Y_{2C кДН $\Phi} = \neg x_1 \land x_3$

Импликантная таблица:

конституента

Та		$\neg X_1 \land \neg X_2 \land X_3 \land \neg X_4$	$\neg X_1 \land \neg X_2 \land X_3 \land X_4$	$\neg X_1 \land X_2 \land X_3 \land \neg X_4$	$\neg X_1 \land X_2 \land X_3 \land X_4$
импликан	¬х₁∧х₃ обязательная	*	*	*	*

 $Y_{2MДH\Phi} = \neg x1 \land x3$

3. Выполнили проверку полученной МДН Φ для функции Y_2 .

МДНФ найдена верно.

4. Выполнили минимизацию функции Y₄.

Шаг 1

Nº	Конституента	Пара	Результат склеивания
1	¬X1∧¬X2∧¬X3∧X4	1-2	$\neg X_1 \land \neg X_3 \land X_4$
2	¬X1/\X2/\¬X3/\X4	1-3	$\neg X_1 \land \neg X_2 \land X_4$
3	¬X1∧¬X2∧X3∧X4	2-4	$\neg X_1 \land X_2 \land X_4$
4	— X 1∧ X 2∧ X 3∧ X 4	3-4	¬X1∧X3∧X4
5	X1∧X2∧X3∧X4	4-5	X2∧X3∧X4

Шаг 2

Nº	Импликанта	Пара	Результат склеивания
1	<u>¬X1∧¬X3∧X4</u>	1-4	¬ X 1∧ X 4
2	<u>¬X1∧¬X2∧X4</u>	2-3	¬ X 1∧ X 4
3	$\neg x_1 \land x_2 \land x_4$		
4	——X1∧X3∧X4		
5	X 2∧ X 3∧ X 4		

Больше нельзя выполнить ни одной операции склеивания.

 $Y_{4C_KДH\Phi} = (\neg x_1 \land x_4) \lor (x_2 \land x_3 \land x_4)$

Импликантная таблица:

конституента

	$\neg X_1 \land \neg X_2 \land \neg X_3 \land X_4$	$\neg x_1 \land x_2 \land \neg x_3 \land x_4$	$\neg X_1 \land \neg X_2 \land X_3 \land X_4$	$\neg x_1 \land x_2 \land x_3 \land x_4$	X1∧X2∧X3∧X4
¬х₁∧х₄ обязательная	*	*	*	*	
X2∧X3∧X4 обязательная				*	*

 $Y_{4MДH\Phi} = (\neg x_1 \land x_4) \lor (x_2 \land x_3 \land x_4)$

5. Выполнили проверку полученной МДН Φ для функции Y_2 .

МДНФ найдена верно.

Вывод: получили навыки минимизации функций методом Квайна-Мак-Класски с последующим использованием алгоритма Петрика