EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

02024636

PUBLICATION DATE

26-01-90

APPLICATION DATE

14-07-88

APPLICATION NUMBER

63173923

APPLICANT: FUJITSU LTD;

INVENTOR :

NAITO TAKAO:

INT.CL.

G02F 1/35 G02F 1/015 H04B 10/04

TITLE

: OPTICAL OUTPUT CONTROLLER

ABSTRACT :

PURPOSE: To easily make an output level constant even if polarization fluctuations are large by controlling the gain of an optical amplifier after specifying the output light level under polarization control.

CONSTITUTION: A control switching part 6 performs switching control so that the detection signal of a photodetector 5 is applied to a polarization control part 2 and then applied to a gain control part 4. Namely, the control part 2 controls a polarization controller 1 first to maximize the output level of the optical amplifier 3 and then the control part 4 controls the gain of the amplifier 3 to specify the output light level. Consequently, when only the polarizing direction of the input light changes, the control part 2 only controls the controller 1 to maintain the output light level at a specific value. Therefore, variation in the output light level due to polarization fluctuations can be suppressed.

COPYRIGHT: (C)1990,JPO&Japio

⑩日本国特許庁(JP)

(1) 特許出願公開

⑫ 公 開 特 許 公 報 (A) 平2-24636

®Int.Cl. 5 G 02 F

識別記号 501

庁内整理番号

@公開 平成2年(1990)1月26日

1/35 1/015 H 04 B 10/04

7348-2H 8106-2H

8523-5K

H 04 B 9/00 審査請求 未請求 請求項の数 1

(全5頁)

会発明の名称 光出力制御装置

> ②特 顧 昭63-173923

> > 男

23出 顛 昭63(1988)7月14日

個発 明者 辺 茂 渡

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

閰 輝 美 個発 明 近

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

明 小野田 義 人 個発

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

神奈川県川崎市中原区上小田中1015番地 富士通株式会社

勿出 願 人 富士通株式会社 神奈川県川崎市中原区上小田中1015番地

四代 理 人 弁理士 柏谷 昭司 外1名

発明の名称

光出力制御装置

特許請求の範囲

入力光の優光を制御する偏光制御器 (1) と; 該偏光制御器(1)の偏光状態を制御する偏光 制御部(2)と、

該偏光制御器 (1) の出力光を増幅する光増幅 器 (3) と、

該光増幅器 (3) の利得を制御する利得制御部 (4) 4.

該光増幅器 (3) の出力光を検出する光検出部

該先検出部(5)の検出信号を基に、前記偏光 制御部 (2) による前記偏光制御器 (1) の制御 と、前記利得制御郎(4)による前記光増幅器(3) の利得制御とを切替える制御切替部 (6) と を備えた

ことを特徴とする光出力制御装置。

3 発明の詳細な説明

(優要)

入力光を増幅して出力し、その出力光レベルを 一定化する光出力制御装置に関し、

入力光レベルや偏光状態の変化によっても、出 力光レベルを一定化することを目的とし、

入力光の個光を制御する個光制御器と、該個光 制御器の偏光状態を制御する偏光制御部と、弦偏 光制御器の出力光を増幅する光増幅器と、該光増 幅器の利得を期御する利得制御部と、該光増幅器 の出力光を検出する光検出部と、該光検出部の検 出信号を基に、前記偏光制御部による前記偏光制・ 御器の制御と、前記利得制御部による前記光増幅 器の利得制御とを切替える制御切替部とを備えて 構成した。

(産業上の利用分野)

本発明は、入力光を増幅して出力し、その出力 光レベルを一定化する光出力制御装置に関するも のである。

長距離光通信システムに於いては、所定距離毎

特開平2-24636(2)

〔従来の技術〕

第3回は従来例のブロック図であり、光増幅器31に、光ファイバからなる光伝送路35を介して入力光Pinが加えられ、この入力光Pinは 光増幅器31により増幅されて、光ファイバから なる光伝送路 3 6 に出力光 P o u t として送出される。この出力光 P o u t の一部が、ハーフミラー等からなる光分岐部 3 4 により分岐されて、ホトダイオード等からなる光検出部 3 3 に入力され、出力光 P o u t のレベルが予め設定された値となるように、利得制御部 3 2 により光増幅器 3 1 の利得が制御される。

光増幅器31は、既に各種の構成が知られてれるの情域、双安定レーザダイオードと称「P極の構成が知ることができる。これは、In P極とできる。これは、In E種との間に、光吸収域を形成したも極にもの間に、光吸収域を形成したも極に入力光Pin を観域を形成制御することにより出力光レベルを制御することにより、光増幅器310利、未が流動することができる。又光検出部33は、を制づることができる。又光検出部33はなをがはすることができる。又光検出部33は、本準によりできる。という構成され、基準信号に比較する比較器等から構成され、基準信号に

対する差信号を利得制御部32に加えて、その差信号が0となるように、光増幅器31の利得制御が行われる制御ループが形成される。

(発明が解決しようとする課題)

光増幅器31は、入力光Pinの偏光方向により利得特性が異なる場合が一般的である。例えば、第4図に示すように、光増幅器31に、 TB偏光と TB偏光と が入力された時に、 TM偏光より TB偏光に対する利得が大きくなるものである。例えば、光増幅器31の注入電流と利得との関定、 TB偏光とTM偏光とについて 測定したところ、第5図に示す結果が得られた。 即5、 TM偏光よりTB偏光に対する利得が約5~10dB程度大きくなるものである。

又長距離の光伝送路に於いては、光伝送路の各種の条件により信号光の偏光方向が変化する偏光 揺らぎが生じるものである。従って、前述の光増 幅器31に対する入力光Pinの偏光方向も変化 することになる。その為、注入電流を一定として も、入力光Pinに対する利得が変化することに なり、所定の出力光Poutレベルに制御することが容易でない欠点があった。

本発明は、人力光レベルや偏光状態の変化によっても、出力光レベルを一定化することを目的と するものである。

(課題を解決するための手段)

本発明の光出力制御装置は、光増幅器の入力光の偏光制御を行うことにより、安定な出力光を得るものであり、第1図を参照して説明する。

入力光の偏光を制御する偏光制御器1と、この偏光を制御する偏光制御器1の偏光状態を制御する偏光制御部2と、この偏光制御器1の出力光を増幅する光増幅器3の利得を制御する利得制御部4と、光増幅器3の出力光を検出するホトダイオード等からなる光検出部5と、この光検出部5の検出信号を基に、偏光制御部2による偏光制御器1の制得制御とを切替える制御切替部6とを備えて構成したものである。

特開平2-24636(3)

(作用)

制御切替部 6 は、光検出部 5 の検出信号を偏光制御部 2 に加えた後、利得制御部 4 に加えるように切替制御器 1 を制御して、光増幅器 3 の出力光レスカ光 増幅器 3 の利得を制御して、出力光 ルンルカル での億となるようにするものであり、制御部 4 にいか所定の値となるようにするもは、保光 制御 2 とないできる。従って によるように制御することができる。で ほんことができるように制御することができる。

〔実施例〕

以下図面を参照して本発明の実施例について詳細に説明する。

第2図は本発明の実施例のブロック図であり、 11は偏光制御器、12は偏光制御部、13は光 増幅器、14は利得制御部、15はホトダイオー ド、16は増幅器、17は比較部、18は基準値 設定部、19は抵抗、20は制御切替部、21は切替スイッチ、22は制御回路、23は入力光伝送路、25は光分岐部、+Vは電源電圧、26は1/4板である。

偏光制御器11は、例えば、ファラディ案子により様成することができる。このファラディ案子には、姓場を加えることにより、その磁場と平行に伝数する直線偏光の偏光面を回転させることができるものであり、偏光制御部12によりその磁光の偏光面を制御することになる。又メノ4板26を設けて、このメノ4板26に対する人射偏光をを制御することにより、光増幅器13に円偏光をを制御することができる。

又光増幅器13は、前述の従来例と同様な、例えば、双安定レーザダイオード等の構成を用いることができる。又光分岐部25で分岐した出力光の一部を入力するホトダイオード15と、その出力信号を増幅する一定利得の増幅器16と、基準値設定部18で設定した基準値と比較する比較部

17とにより、第1図に於ける光検出部5を構成し、又制御切替部20は、切替スイッチ21とそれを制御する制御回路22とから構成され、制御回路22はタイマ等により、所定時間毎に切替スイッチ21の切替動作を行わせるか、或いは、比較部17からの差信号を判断して、出力光レベルの変化が生じた場合のみ偏光制御部12から利得のは、よができる。

又基準値設定部!8は、ツェナーダイオード等により形成した基準電圧を、可変抵抗等により所望の設定値として比較部17に加える構成を有するものである。

入力光伝送路 2 3 を介して加えられた入力光の 傷光而が変化して、光増幅器 1 3 の出力光レベル が低下した時、比較部 1 7 からの差信号が制御切 替部 2 0 の切替スイッチ 2 1 を介して偏光制御部 1 2 に加えられる。偏光制御部 1 2 は、出力光レベルが低下したことを示す差信号が加えられたことにより、偏光制御器 1 1 を構成するファラディ 素子の磁場を制御して、光増幅器13への入力光の偏光面を、出力光レベルが大きくなるように制御する。即ち、光増幅器13への入力光をTE偏光となるように調整した後に、入力光の偏光揺らぎにより出力光レベルが低下した場合、偏光制御器11により偏光面を回転させて、元のTE偏光となるように制御するものである。

そして、この偏光制御器11の制御が終了した 後、或いは所定の時間後に、制御切替部20の制御四路22により切替スイッチ21は利得制御部14に切替えられる。それによって、比較部17からの差信号が利得制御部14に加えられる。前述の偏光制御器11により光増幅器13への入力光の偏光面が制御されて、出力光レベルが元に戻った時は、比較部17からの差信号は0となるから、利得制御部14は、光増幅器13の利得を前の状態のままとすることになる。

又光増幅器13の利得も変化している場合に於いては、偏光関御器11の制御によっても、出力 光レベルが所定の値に戻らないので、制御切替部

特開平2-24636(4)

20により利得制御部14に制御が切替えられた時に、比較部17からの差信号に応じて利得制御部14は、光増幅器13の注入電流等によりその利得を制御して、出力光レベルを所定の値に戻すことになる。

偏光制御により、第5図に示すように、光増幅器13の利得を5~10 dB程度制御できるので、先ず、偏光制御を行って出力光レベルを最大等の所定の値とした後、光増幅器13の利得を注入電流等により制御するもので、偏光揺らぎが大きい場合でも、容易に出力光レベルを一定化することができる。

又点線で示す 4 / 4 板 2 6 を設けて、光増幅器 1 3 へ円偏光を入力することができるもので、入力光伝送路 2 3 による偏光揺らぎが生じた場合、ファラディ素子による偏光面の回転を制御することにより、光増幅器 1 3 へは常に円偏光としした場合、T E 偏光については 3 d B 低下することになるが、光増幅器 1 3 への入力光パワーを一定化す

ることができるから、出力光パワーを一定化する ことができ、それによって、出力光パワーの安定 制御を容易にすることができる。

本発明は、前述の実施例のみに限定されるもの ではなく、種々付加変更することができる。

4 図面の簡単な説明

第1図は本発明の原理説明図、第2図は本発明の実施例のブロック図、第3図は従来例のブロック図、第3図は従来例のブロック図、第4図は偏光依存性の説明図、第5図は利得特性曲線図である。

1 は偏光制御器、 2 は偏光制御部、 3 は光増幅器、 4 は利得制御部、 5 は光検出部、 6 は制御切替部である。

特許出顧人 富士通株式会社 代理人弁理士 柏 谷 昭 司 代理人弁理士 渡 邊 弘 一

本発明の原理説明図

第 | 図

本発明の実施例のプロック図

第2図

特開平2-24636(5)

利得特性曲線図 第5図