

## UNITED INTERNATIONAL UNIVERSITY

Department of Computer Science and Engineering (CSE) **Evaluation 3** 

| SN | Questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | $\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} & \sum x_{3i} \\ \sum x_{1i} & \sum x_{1i}^2 & \sum x_{1i}x_{2i} & \sum x_{1i}x_{3i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^2 & \sum x_{2i}x_{3i} \\ \sum x_{3i} & \sum x_{1i}x_{3i} & \sum x_{2i}x_{3i} & \sum x_{2i}^2 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} \sum y_i \\ \sum x_{1i}y_i \\ \sum x_{2i}y_i \\ \sum x_{3i}y_i \end{bmatrix}$ Using the above equation for regression, determine the values of $\mathbf{a_0}$ , $\mathbf{a_1}$ , $\mathbf{a_2}$ and $\mathbf{a}$ . It will be based on the following dataset. | 10    |
| 2  | $z=x^2\cdot\sin(y)$ $a=z^3+e^z$ $p=\ln(a)+a^2$ Consider the following equations. Using the tensorflow gradient tape, determine gradients of p with respect to x and y evaluated at x=2 and y=10.                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10    |
| 3  | Quiz: Will be based on the code you submitted and the class lecture.  Complete the assignment with THOROUGH UNDERSTANDING of the code and functions you are using.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10    |