

SEMESTER TWO

MATHEMATICS METHODS UNITS 1 & 2

2018

SOLUTIONS

Calculator-free Solutions

1. (a)
$$\frac{2^{3x}}{2^{y}} = 2^{4} = 16$$

(b) $u^{\frac{7}{2} - \left(\frac{5}{2} + \frac{1}{2}\right)}$
 $= u^{\frac{1}{2}} = \sqrt{u}$

2.
$$ab = 15$$
 and $a + b = 8$
 $a = 3$, $b = 5$ or $a = 5$, $b = 3$
 $abx^2 + (2b + 7a)x + 14 = 15x^2 + cx + 14$
 $2b + 7a = 2(5) + 7(3)$ or $2b + 7a = 2(3) + 7(5)$
 $c = 31$ or 41

3. (a)
$$m = \frac{4}{3}$$

 $-5 = \frac{4}{3}(3) + c$
 $\therefore c = -9$
 $-4x + 3y = -27$
 $-8x + 6y = -14$
(b) $9x - 6y = 12$
 $x = -2$ $y = -5$
 $D(-2, -5)$
(c) $4(k-2) - 3(2k-3) = 7$
 $-2k + 1 = 7$
 $k = -3$

$$\frac{1.2 \times 10^{-4}}{3 \times 10^{-7}} = 4 \times 10^{2} = 400$$

5. (a)
$$2(3xy) + 2(3x^2) + 2xy = 32$$

$$3xy + 3x^2 + xy = 16$$

$$3x^2 + 4xy = 16$$

(b)
$$V = 3x^2y$$
 and $y = \frac{16 - 3x^2}{4x}$

$$V = 3x^2 \left(\frac{16}{4x} - \frac{3x^2}{4x}\right)$$

$$V = 12x - \frac{9x^3}{4}$$

(c)
$$V' = 12 - \frac{27x^2}{4}$$

$$12 - \frac{27x^2}{4} = 0 \text{ for stationary point}$$

$$x^2 = \frac{16}{9}$$

$$x = \frac{4}{3} \text{ (discard } -\frac{4}{3} \text{)}$$

(d)

V(x)	1	$\frac{4}{3}$	ļ
V'(x)	+	0	_

V has a maximum value

[9]

[4]

6. (a)
$$T_{n+1} = T_n + 10$$
 $T_1 = -3$

(b)
$$T_2 = -8$$

$$T_3 = -32$$

 $y = 10x^2 - 2x^3 - 16x + c$ 7.

$$3 = 10(2)^2 - 2(2)^3 - 16(2) + c$$

$$y = 10x^2 - 2x^3 - 16x + 11$$

Gradient of x - axis = 0(b)

$$\frac{dy}{dx} = 20(2) - 6(2)^2 - 16 = 0$$

:m = 0 Tangent is horizontal and parallel to the x - iaxis.

[5]

[5]

8. Vertical translation 12 units down (a)

Horizontal dilation by factor $\overline{2}$.

 $7^x = 7^{2x} - 12$

Let
$$7^x$$
 be k . $k^2 - k - 12 = 0$ $(k-4)(k+3) = 0$

$$(k-4)(k+3) = 0$$

$$7^{x} = 4 \qquad 7^{x} \neq -3 \qquad \checkmark$$

One solution, therefore intersects at only one point.

 $y = \frac{x^3}{2} + 2x - 7$ (a) 9.

$$\frac{dy}{dy} = \frac{3}{2}y^2 + 2$$

$$1 = 8(2) + c$$

$$y = 8x - 15$$

(b)

[6]

√

(b)

√√√ [5]

Calculator-assumed Solutions

11. (a) The number of phones she is given to repair for the week.

(b) She fixes 23 per day, for 4 days 23 x 4 = 92 phones \checkmark

(c) $\frac{108}{23} = 4.69565$ days $0.69565 \times 8 = 5.5652$ hours

5 hours and 34 minutes ✓

(d) $T_1 = 155$ $T_2 = 128$ $T_3 = 99$ $T_4 = 68$ $T_{n+1} = T_n - (25 + 2n)$ $T_0 = 180$

12. (a) $x^2 + y^2 = 4$

(b) $\tan \theta = \sqrt{3}$ $\therefore \theta = \frac{\pi}{3}$ radians

radius = 2 units ✓

radius = 2 $OB = \frac{2}{\cos \frac{\pi}{3}} = 4$

(c)

Therefore area of $\triangle AOB = \frac{1}{2}(4)\sqrt{3} = 2\sqrt{3}$ units²

Area of sector = $\frac{\frac{1}{2}r^2\theta = \frac{1}{2}(2)^2 \left(\frac{\pi}{3}\right)}{\frac{2\pi}{3} \text{ units}^2}$

Area of shaded part = triangle – sector

 $= 2\sqrt{3} - \frac{2\pi}{3} = 1.37$ = units²(3 sig fig)

[5]

[7]

5.1 secondsv(t) = -9.8t + 25

(b)
$$v(0) = 25$$

Maximum height is 31.89 m when t = 2.55 sec(c)

$$\frac{31.89 \times 2}{2.55 \times 2}$$
 = 12.5 m/s

14. (a)
$$f(x) = (2 + x)^2 = 4 + 4x + x^2$$

 $\lim_{h \to 0} \frac{(2+x+h)^2 - (2+x)^2}{h} = 2x + 4$

(i) -7.5

(b) (ii) 18 (c) $p'(x) = 3x^2 - 3a$

 $0 = 3(\sqrt{2})^{2} - 3a$ a = 2 $-\sqrt{2} = (\sqrt{2})^{3} - 3(2)(\sqrt{2}) + b$ $b = 3\sqrt{2}$

(a) $3x^2 - \frac{4}{x^2} - 11 = 0$ x = -2 or x = 215. **//**

-2 (b) 0 0

x = -2 Maximum x = 2 Minimum

 $y = x^3 - 11x + \frac{4}{x} + c$
c = 13 (c)

 $y = x^3 - 11x + \frac{4}{x} + 13$

(d) (-2, 25) 20 (2, 1)

> **///** [10]

16. (a) (i)
$$T_{120} = 23 + (99)(9)$$
 $= 914$
(ii) $357980 = \frac{n}{2}(23 + 2534)$
 $n = 280$
(b) (i) $T_{n+1} = \overline{4T_n}$ $T_1 = 12$
 $S_{\infty} = \frac{12}{1 - \frac{1}{4}} = 16$
(ii) $Y = \frac{1}{4}$
(ii) $Y = \frac{1}{4}$
(iii) $Y = \frac{1}{4}$
(iv) $Y = \frac{1}{4}$

21. (a) (i)
$$y = 10 - w$$
 (i) $y^2 = 36 + w^2 - 12w \cos Y$ (ii) $(10 - w)^2 = 36 + w^2 - 12w \cos Y$ (iii) $(10 - w)^2 = 36 + w^2 - 12w \cos Y$ (iii) $(10 - w)^2 = 36 + w^2 - 12w \cos Y$ (iii) $A = \frac{5w - 10}{3w}$ (b) (i) $A = \frac{9w \sin Y}{2} = 3w \sin Y$ (ii) $4 = \frac{9w^2 \sin^2 Y}{2} = 3w \sin Y$ (ii) $4 = \frac{9w^2 \sin^2 Y}{3w}$ (ii) $4 = \frac{9w^2 \sin^2 Y}{3w}$ (iii) $4 = \frac{9w^2 \sin^2 Y}{3w}$ (iv) $4 = \frac{16w^2 + 160w - 256}{3w}$ (c) (i) $4 = \frac{1-16w^2 + 160w - 256}{3w}$ (f) $4 = \frac{1-16w^2 + 160w - 256}{3w}$ (ii) $y = 10 - w = 5$ (iv) $y = 10 - w = 5$ (12) $y = 3x^2 - 12x + k$ (ii) $y = 10 - w = 5$ (12) $y = 3x^2 - 12x + k$ (iii) $y = 10 - w = 5$ (12) $y = 3x^2 - 12x + k$ (iv) $y = 10 - w = 5$ (12) $y = 3x^2 - 12x + k$ (10.85) $y = 100 \cdot 95$ (1.085) $y = 100$

25. (a)

(b) (i) 0.5323

(ii) 0.2726

(iii) 0.51

(iv) 0.8026

/ / /

✓

v

[7]

26. The particle's initial displacement is 5 m to the right of the origin.

 $v = 3t^2 - 12t$... Initial velocity = 0

[2]