Phéromères interfacioux impliquent des fluides.

9

Niveau: Licence

Prorequis: Hydrodynamque.

errol liourit.

Il Tension superficielle

Expérience du fil tiré par un film de souon.

Stille

1) Orgine

liquide ENIL >>

->: interactions intermolecul.

Le particule à la surface pard en énorgie d'interaction, il y a apparition d'esne tension de surface. Elle est associée aux forces de cohésion internes qui s'exercent seur la particule, par la présence des fluide environnent: o Van der Wools

· Léaisens H

Dons le volume, la résultante des forces est nulle, elles recompensant.

A la seuface, il y a apparition de la tension superficialle y.

Elle dépend de la température et de la nature des forces
d'interaction entre les particules.

2) Interprétation énergétique

Il fant fourier de l'énergie mécanique pour augmenter la senface d'un fluide: Secouer une vinaignette Battre des œufs en neige.

Soit et l'aire de la serface initiale d'un fluide. On fournit een travoil SW pour augmenter la surface de et à et+det: SW = 8dA

avec 8: coefficient de tension superficielle (J/m²)

Ainsé, 8 caractérise l'énergie à fournier pour augmenter la surface d'un fluide.

D'autre part, SW=F'.dl'.

L) Sovon Forphiques donc: F= 8LF à la surface

3) Facteurs influençant &

- D'és espèces de chaque côte de l'interface et leur énergie d'interaction - La temperateure. entre elles

Au névereu des point critique, & s'annule.

II/Contact entre plusieurs phases

Liquide-copour: Yu

Solide - Vapour: 8

Solide - Liquide: 8 st

12 phases: L-V

Soit une goute de rayon R supposée sphérique. (Surface minimale) Décorpée en 2 parties égales

12 : tension superficialle de 2 seur 1

Equilibre mécanique: $(P_{ext} - P_{ext}) \pi R^2 = 2\pi R X_{LV}$

* Pint > Pext

* Pint est donc proportionnelle à 1/2, elle augmente quand la taille de la goutte déminée.

Pour rene bulle de souon:

RinRenR.

Loi de Laplace: P. -P. = 48h

expérience

donc

2 Contact à 3 phases - Capillarité

4

Remontée d'un fluide dans un tube de rayon rafin de déterminer la hauteur h d'ascension du fluide.

« Au nivoan des ménisque:

Loi de Léplace:
$$P(h) - P(h) = 28u \cos \theta$$
 (r. = Rosse)
et $P(h) = Poten - Pegh$ et $P(h) = Poten$
Donc: $h = 28u \cos \theta$

* Au révocair de la colonne; lors de la remontée des fluide:

*
$$\Delta E_{P,g} = e_p \times \pi r^2 h \times h \times g$$
 avec $\frac{h}{2}$ avec $\frac{h}{2}$ centre de gravité de la colonne.

* Changement d'interface:

$$\Delta E_{P,S} = 2 \pi h_{\Gamma \times} (\chi_{LS} - \chi_{SV})$$

L'énergie totale formie est donc: $E_P = \frac{P}{2}g \times \frac{\pi r^2}{2}h^2 + 2\pi r(8 - 8 \times 1)h$.

Finalement:
$$h = 2(8_{sv} - 8_{Ls})$$
 Loi de
epgr Jurin

En combinant les 2 expressions de h:

+ Schema over forces pour expliquer.

3) Loi de Jurin, expérimentale

$$\delta_{th} = (22,9 \pm 0,5) \times 10^3 \text{ N/m}$$

 $\delta_{exp} = (48,4 \pm 0,7) \times 10^{-3} \text{ N/m}$

Conclusion.

Movillabelete

O = angle de contact.

O = 180° pas movillable, O = 0° totalement ("perfait")

3 forces, tangentes aux interfaces

Longueur Capélaire: $l_c = \sqrt{\frac{8}{eg}}$, Sie R>>, la goutte est une fleque, la capillarité c_1 eau d's air $\sim 3mm$

- * Discuter minimisal senface
- * Seer factort.
- * Vagues patit 1: ressent tension senfore