Machine Learning:

An introduction for Developers (part. 1 & 2)

AUGUST / SEPTEMBER

| Agenda

- What is Machine Learning?
 - History
 - Why only in recent years?
 - Objectives
- 2. Main types of machine learning algorithms & Technologies
- 3. Demonstration 1
- 4. Metrics
- 5. Consuming Models
- 6. Black-box
- 7. Demonstration 2
- 8. Starting the study

History

| Why only in recent years?

• If Machine Learning is so old, why is it only in recent years that technologies that use statistical models are emerging?

| Why only in recent years?

• If Machine Learning is so old, why is it only in recent years that technologies that use statistical models are emerging?

Mainly because of

| What is Machine Learning?

 Machine Learning is a subfield of Artificial Intelligence, which was developed from the study of pattern recognition and computational learning.

 Machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed".
 [1] Arthur Samuel, 1959

| Objectives

- The purpose of Machine Learning is to build computational models that can adapt and learn from experience. [2] Tom M. Mitchell, 1997
- In practical terms, machine learning algorithms aim to discover the relationship between the variables of a system (input / output) from data. [3] Cherkassky & Mulier, 2007

| Main types of machine learning algorithms

There are three main types of machine learning algorithms.

| Main types of machine learning algorithms

Basic idea of each type:

Algorithm Reinforcement learning: <u>Markov Decision Process</u> Super Mario Bros: Marl/O - <u>Machine Learning for Video Games</u>

| Technologies

Languages used to work with Machine Learning algorithms:

| Demonstration 1

 In this demo, I show the difference in practice between supervised and unsupervised Machine Learning. (<u>source code</u>)

Iris Versicolor

Iris Setosa

Iris Virginica

| Demonstration 1 : Flow Supervised Learning

Algorithms:

Support Vector Machine (SVM) Artificial Neural Networks(ANN)

| Demonstration 1 : Flow Unsupervised Learning

Algorithms: K-Means

Metrics

• Metrics is the main way to validate the results of a Machine Learning algorithm. And for each type of learning, there is a metric.

Metrics

• Cluster assessment measures:

Índice de Rand: $\frac{(A+D)}{(A+B+C+D)}$

Índice de Jaccard: $\frac{A}{(A+B+C)}$

The Rand index
Jaccard index
Avaliacao Clustering

| Consuming Models

- There are three main ways to consume models created from machine learning algorithms:
 - a. Creating http endpoint:
 - programming language;
 - black-box.
 - b. Create a stream to produce / consume the input / output:
 - Apache Kafka; RabbitMQ; ActiveMQ; and etc.
 - c. Creating batch processes to process and store in storages.

| Black-box

- They are tools and libraries that facilitate the development of models or products of Machine Learning.
 - **Amazon Machine Learning**;
 - **Watson Machine Learning**;
 - AI and machine learning products;
 - **Azure Machine Learning**;
 - outros.

| Consuming Models

 More recently, ONNX (Open Neural Network Exchange) technology has emerged.

ONNX is an open format built to represent machine learning models.

| Demonstration 2 - The ONNX technology in action

In this demo, a statistical model will be created in Python using the
 <u>MNIST</u> data set and this model will be used in C# to make a prediction
 of a drawn number. (<u>source code</u>)

I loved it... I want to learn more!

| Starting the study - Video lessons

- MIT 6.034 Artificial Intelligence, Fall 2010 (30 lessons)
- <u>University of Oxford Deep Learning</u> (16 lessons)
- Stanford CS229: Machine Learning 2018 (20 lessons)
- <u>Redes Neurais USP Introdução às Redes Neurais</u> (10 lessons)
- Reconhecimento de Padrões USP (52 lessons)
- [SEI 2019] Automated Machine Learning by WeDo Univ. Minho
- Aplicações de Inteligência Artificial nas áreas fiscal, auditoria e saúde 2020
- Introduction to the Developer's Intro to Data Science Video Series (28 videos)
- ML.NET Machine Learning Introduction (8 videos)
- [Online] Nerdzão #214 Linguagem R

| Starting the study - Websites

- DAVE TANG'S BLOG
- Machine Learning for Everyone (blog)

| Starting the study - Courses

Coursera:

- Machine Learning, by Andrew Ng;
- Data Science.

• EDX:

<u>Data, Analytics and Learning</u>.

• Udemy:

- Data Science A-Z™: Real-Life Data Science Exercises Included;
- Machine Learning A-Z (Python & R in Data Science Course);
- Complete Google Cloud Data Engineer & Architect Course (GCP).

Udacity:

- Intro to Machine Learning;
- Machine Learning.

| Starting the study - Books

Machine Learning, Tom Mitchell, McGraw Hill, 1997.

Introdução à Mineração de Dados: Com aplicações em R, 2016.

Introduction to Machine Learning with Python: A Guide for Data Scientists, 2016

| Starting the study - Books

Hands-On Unsupervised Learning Using Python, 2019. <u>Code Examples</u> on GitHub.

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 2nd Edition, 2019. Code Examples on GitHub.

Mastering Azure Machine Learning, 2020. Book free, <u>link</u>.

Thank you

Contacts

GitHub: <u>MackMendes</u>

Twitter: @CharlesMendesMa

• Blog: http://charlesmms.azurewebsites.net/