CS1382 Discrete Computational Structures

Lecture 03: Sequences and Summations

Spring 2019

Richard Matovu

References

The materials of this presentation is mostly from the following:

Discrete Mathematics and Its Applications (Text book and Slides)
 By Kenneth Rosen, 7th edition

Sequences

- Sequences are ordered lists of elements.
 - 1, 2, 3, 5, 8, ...
 - 1, 3, 9, 27, 81,
- Sequences arise throughout mathematics, computer science, and in many other disciplines,
 ranging from botany to music.
- We will introduce the terminology to represent sequences and sums of the terms in the sequences.

Sequences

- A Sequence is a function from a subset of the integers (usually either the set { 0, 1, 2, 3, 4, ... } or { 1, 2, 3, 4, ... }) to a set S.
 - The notation a_n is used to denote the image of the integer n.
 - We can think of a_n as the equivalent of f(n)
 - where f is a function from {0,1,2,....} to S.
 - We call a_n a term of the sequence.
 - To denote the sequence as a whole, we often write { an }.

Note that $\{a_n\}$ unfortunately conflicts with the notation for sets introduced earlier.

Sequences - Example

• Consider the sequence $\{a_n\}$ where $a_n=rac{1}{n}$

$$\{a_n\} = \{a_1, a_2, a_3, \ldots\}$$

$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \dots$$

Geometric Progression

A geometric progression is a sequence of the form: $a, ar, ar^2, \ldots, ar^n, \ldots$ where a – initial term and r – common ratio and a, r are real numbers

Examples:

• Let a = 1 and r = -1, then

$$\{b_n\} = \{b_0, b_1, b_2, b_3, b_4, \dots\} = \{1, -1, 1, -1, 1, \dots\}$$

- Let a = 2 and r = 5, then $\{c_n\}=\{c_0,c_1,c_2,c_3,c_4,\dots\}=\{2,10,50,250,1250,\dots\}$
- Let a = 6 and r = 1/3, then $\{d_n\}=\{d_0,d_1,d_2,d_3,d_4,\dots\}=\{6,2,\frac{2}{3},\frac{2}{9},\frac{2}{27},\dots\}$

Arithmetic Progression

An arithmetic progression is a sequence of the form:

$$a, a+d, a+2d, \ldots, a+nd, \ldots$$

where a – initial term and d – common difference and a, d are real numbers

Examples:

Let a = -1 and d = 4, then

$$\{s_n\} = \{s_0, s_1, s_2, s_3, s_4, \dots\} = \{-1, 3, 7, 11, 15, \dots\}$$

Let a = 7 and d = -3, then

$$\{t_n\} = \{t_0, t_1, t_2, t_3, t_4, \dots\} = \{7, 4, 1, -2, -5, \dots\}$$

Let a = 1 and d = 2, then

$$\{u_n\} = \{u_0, u_1, u_2, u_3, u_4, \dots\} = \{1, 3, 5, 7, 9, \dots\}$$

Recurrence Relations

- A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of one or more of the previous terms of the sequence, namely, a_0 , a_1 , ..., a_{n-1} , for all integers n with $n \ge n_0$, where n_0 is a nonnegative integer.
- A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.
- The initial conditions for a sequence specify the terms that precede the first term where the recurrence relation takes effect.

Recurrence Relations

Example:

- Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 1,2,3,4,... and suppose that $a_0 = 2$. What are a_1 , a_2 and a_3 ? [Here $a_0 = 2$ is the initial condition]
- Solution: We see from the recurrence relation that

$$a_1 = a_0 + 3 = 2 + 3 = 5$$

$$a_2 = 5 + 3 = 8$$

$$a_3 = 8 + 3 = 11$$

Exercise

- Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} a_{n-2}$ for n = 2,3,4,... and suppose that $a_0 = 3$ and $a_1 = 5$. What are a_2 and a_3 ?

 [Here the initial conditions are $a_0 = 3$ and $a_1 = 5$.]
- Solution: We see from the recurrence relation that

$$a_2 = a_1 - a_0 = 5 - 3 = 2$$

$$a_3 = a_2 - a_1 = 2 - 5 = -3$$

Fibonacci Sequence

- We define the **Fibonacci sequence**, f_0 , f_1 , f_2 , ... by:
 - Initial Conditions: $f_0 = 0, f_1 = 1$
 - Recurrence Relation: $f_n = f_{n-1} + f_{n-2}$

Example: Find f_2 , f_3 , f_4 , f_5 and f_6 .

Answer:

$$f_2 = f_1 + f_0 = 1 + 0 = 1$$
,

$$f_3 = f_2 + f_1 = 1 + 1 = 2$$
,

$$f_4 = f_3 + f_2 = 2 + 1 = 3$$
,

$$f_5 = f_4 + f_3 = 3 + 2 = 5$$
,

$$f_6 = f_5 + f_4 = 5 + 3 = 8.$$

Solving Recurrence Relations

- Finding a formula for the nth term of the sequence generated by a recurrence relation is called solving the recurrence relation.
- Such a formula is called a closed formula.
- Various methods for solving recurrence relations will be covered in Chapter 8.

Iterative Solution Example

Method 1: Working upward, forward substitution

• Let $\{a_n\}$ be a sequence that satisfies the recurrence relation $a_n = a_{n-1} + 3$ for n = 2,3,4,... and suppose that $a_1 = 2$.

$$a_2 = 2 + 3$$

$$a_3 = (2 + 3) + 3 = 2 + 3 \cdot 2$$

$$a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3$$

Exercise:

Solve the recurrence relation $a_n = 2 a_{n-1} + 1$ for n = 2,3,4,... and suppose that $a_1 = 1$

 $a_n = a_{n-1} + 3 = (2 + 3 \cdot (n - 2)) + 3 = 2 + 3(n - 1)$

Exercise

• Consider the recurrence relation $a_n = 2 a_{n-1} - a_{n-2}$ for $n \ge 2$.

Does $a_n = 3n$ satisfy this relation?

$$a_n = 2 a_{n-1} - a_{n-2}$$

$$= 2(3(n-1)) - 3(n-2)$$

$$= 6n - 6 - 3n + 6$$

$$= 3n$$
OK!

• Verify that $a_n = 3^{n+4}$ is a solution to the recurrence relation $a_n = 4a_{n-1} - 3a_{n-2}$

Exercise

1. Find formulae for the sequences with the following first five terms: $1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}$

Solution: Note that the denominators are powers of 2. The sequence with $a_n = 1/2^n$ is a possible match. This is a geometric progression with a = 1 and $r = \frac{1}{2}$.

2. Consider 1, 3, 5, 7, 9

Solution: Note that each term is obtained by adding 2 to the previous term. A possible formula is $a_n = 2n + 1$. This is an arithmetic progression with a = 1 and d = 2.

3. 1, -1, 1, -1,1

Solution: The terms alternate between 1 and -1. A possible sequence is $a_n = (-1)n$. This is a geometric progression with a = 1 and r = -1.

Useful Sequences

TABLE 1 Some Useful Sequences.		
nth Term	First 10 Terms	
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,	
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,	
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,	
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,	
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,	
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,	
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,	

Applications of Integer Sequences

Integer sequences appear in a wide range of contexts:

- Sequence of prime numbers (Chapter 4)
- The number of ways to order n discrete objects (Chapter 6)
- The number of moves needed to solve the Tower of Hanoi puzzle with n disks (Chapter 8)
- The number of rabbits on an island after n months (Chapter 8)

Example – Compound Interest

- Suppose a person deposits \$1,000 in a savings account yielding 3% per year with interest compounded annually. How much is in the account after 20 years?
 - Let P_n denote amount after n years

•
$$P_n = P_{n-1} + 0.03 P_{n-1} = (1.03) P_{n-1}$$

- The initial condition $P_0 = 1000$.
- $P_1 = (1.03) P_0$, ..., $P_n = (1.03) P_{n-1} = (1.03)^n P_0$
- $P_{20} = (1.03)^{20} 1000 = 1,806$

Summations

- Sum of the terms $a_m, a_{m+1}, \ldots, a_n$ from the sequence $\{a_n\}$
- The notation: $\sum_{j=m}^{n} a_j \qquad \sum_{j=m}^{n} a_j \qquad \sum_{m \leq j \leq n} a_j$

represents
$$a_m + a_{m+1} + \cdots + a_n$$

• The variable *j* is called the *index of summation*. It runs through all the integers starting with its *lower limit m* and ending with its *upper limit n*.

Summations

• More generally for a set S: $\sum_{j \in S} a_j$

$$r^{0} + r^{1} + r^{2} + r^{3} + \dots + r^{n} = \sum_{j=0}^{n} r^{j}$$

• Examples:

$$1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots = \sum_{i=1}^{\infty} \frac{1}{i}$$

If
$$S = \{2, 5, 7, 10\}$$
 then $\sum_{j \in S} a_j = a_2 + a_5 + a_7 + a_{10}$

Product Notation

- Product of the terms $a_m, a_{m+1}, \ldots, a_n$ from the sequence
- $\{a_n\}$

The notation:

$$\prod_{j=m}^{n} a_j$$

$$\prod_{j=m}^{n} a_j$$

$$\prod a_j \qquad \prod_{j=m}^n a_j \qquad \prod_{m \le j \le n} a_j$$

$$a_m \times a_{m+1} \times \cdots \times a_n$$

Some Useful Summation Formulae

TABLE 2 Some Useful	_	
Sum	Closed Form	G€ W
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	th
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	P ₁
$\sum_{k=1}^{\infty} kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	(1

Geometric Series: We just proved this.

Later we will prove some of these by induction.

Proof in text (requires calculus) Questions?

Thank You!