

SESA2023 Propulsion

Lecture 4: Thermodynamics - fundamentals

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

• Equilibrium, state, properties, two-property rule

Processes and the First Law

Specific Heat, Ideal Gas, Perfect Gas

THERMODYNAMIC EQUILIBRIUM these are in eg uilibrium

 P_3

Phase equilibrium

Chemical equilibrium

 H_2O

STATE AND PROPERTIES

The state of a system defines all properties of that state:

Which, and how many properties do we need to define a state?

TWO-PROPERTY RULE (STATE POSTULATE)

"The state of a simple compressible system is completely specified by two **independent**, **intensive** properties."

Note that for an *ideal* gas:

internal energy and temp not
$$u=u(T)$$
 independent for ideal f

⊳T, u, and *h* are not independent!

INTENSIVE, EXTENSIVE, AND SPECIFIC PROPERTIES

			V 0+
Property	Intensive	Extensive	Specific
Temperature	T (K)		
Pressure	P (Pa)		
Volume	$v ({\rm m}^3 {\rm kg}^{-1})$	V (m ³)	$v ({\rm m}^3 {\rm kg}^{-1})$
Internal Energy	u (J kg ⁻¹)	<i>U</i> (J)	$u (J kg^{-1})$
Enthalpy	h (J kg ⁻¹)	<i>H</i> (J)	$h (J kg^{-1})$
Entropy	$s (J kg^{-1} K^{-1})$	$S(JK^{-1})$	$s (J kg^{-1} K^{-1})$
Specific heat at constant volume	$c_V (J \text{kg}^{-1} \text{K}^{-1})$	$C_V (J K^{-1})$	$c_V (J \text{kg}^{-1} \text{K}^{-1})$
Specific heat at constant pressure	$c_P (J kg^{-1} K^{-1})$	$C_P (J K^{-1})$	$c_P (J k g^{-1} K^{-1})$
	Sinclependent of	Jopendent H quantity	cp (Jkg-1K-1) converting extensive to intensive by
	Sincependent of	of quantity	$V \qquad U$
		· · · · · · · · · · · · · · · · · · ·	_ 7

Extensive properties depend on the amount of material, with $v = \frac{v}{m}$, $u = \frac{v}{m}$,...

PROCESSES AND THE FIRST LAW: EXAMPLE Cy = 0.718 km/rg/ • Air in state 1 has a temperature T = 200 Km/rg/

- Air in state 1 has a temperature $T_1 = 300$ K.
- During an adiabatic process, 100 kJ/kg of work is done on the air.
- Find the temperature in state 2.

 $W_{AB} = -100 \times 10^3 \text{ T/ty} \qquad \qquad \Sigma_{AB} = C_V \left(\overline{Z} - \overline{I_1} \right)$

SPECIFIC HEATS, IDEAL AND PERFECT GAS

SPECIFIC HEATS, IDEAL AND PERFECT GAS

REAL FLUID PROPERTIES

CoolProp example Jupyter notebook on Blackboard:

Example: isentropic compression of nitrogen

Below an example of compressing nitrogen isentropically from 1 bar, 300 K to 25 bar, finding the change in enthalpy.

```
In [10]: # Inlet conditions:
    p1 = 1e5
    T1 = 300
    s1 = props('S', 'P', p1, 'T', T1, 'nitrogen')
    h1 = props('H', 'P', p1, 'T', T1, 'nitrogen')
    # Outlet conditions:
    p2 = 25e5
    s2 = s1
    h2 = props('H', 'P', p2, 'S', s2, 'nitrogen')
    # Change in enthalpy
    print('h2 - h1 = %0.2f kJ/kg' % ((h2-h1)/1000))
h2 - h1 = 469.46 kJ/kg
```


SUMMARY + 10 MINUTE BREAK

- Use the two-property rule to calculate the state of a fluid
- Processes and First Law of thermodynamics
 - Isothermal, isobaric, isochoric, adiabatic/isentropic, isenthalpic
- Specific heats
 - Definition, real fluid, ideal gas, perfect gas

SESA2023 Propulsion

Lecture 5: Mixtures of gases

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

Mass fractions and molar fractions

Partial pressure and partial volume

Properties of mixtures

MASS FRACTIONS AND MOLAR FRACTIONS

EXAMPLE: HYDROGEN AND OXYGEN MIXTURE

(From problem sheet 1) For complete combustion, for each kg of hydrogen, 7.94 kg of oxygen needs to be supplied...

Find the mass and molar fraction of hydrogen in the mixture

Data book on Blackboard

TABLE 2					
	Molar mass	Gas constant	Specific heat		
Gas	kg/kmol	kJ/kg K	kJ/kg K		c_p/c_v
			c_p	c_{v}	
Air	29	0.287	1.01	0.72	1.40
Atmospheric	28.15	0.295	1.03	0.74	1.40
nitrogen†					
N_2	28	0.297	1.04	0.74	1.40
O_2	32	0.260	0.92	0.66	1.40
A	40	0.208	0.52	0.31	1.67
H_2	2*	4.120	14.2	10.08	1.41

PARTIAL PRESSURE AND PARTIAL VOLUME

PARTIAL PRESSURE AND PARTIAL VOLUME

EXAMPLE: HYDROGEN AND OXYGEN MIXTURE PART 2

(From problem sheet 1) For complete combustion, for each kg of hydrogen, 7.94 kg of oxygen needs to be supplied...

Find the partial pressure of the hydrogen and oxygen if the gas mixture is at 20 bar.

Data book on Blackboard

TABLE 2					
	Molar mass	Gas constant	Specific heat		
Gas	kg/kmol	kJ/kg K	kJ/kg K		c_p/c_v
			c_p	c_{v}	
Air	29	0.287	1.01	0.72	1.40
Atmospheric	28.15	0.295	1.03	0.74	1.40
nitrogen†					
N_2	28	0.297	1.04	0.74	1.40
O_2	32	0.260	0.92	0.66	1.40
A	40	0.208	0.52	0.31	1.67
H_2	2*	4.120	14.2	10.08	1.41

PROPERTIES OF MIXTURES

EXAMPLE: FIND THE C_P VALUE OF AIR

TABLE 2					
	Molar mass	Gas constant	Specific heat capacity		
Gas	kg/kmol	kJ/kg K	kJ/kg K		c_p/c_v
			c_p	c_{v}	
Air	29	0.287	1.01	0.72	1.40
Atmospheric	28.15	0.295	1.03	0.74	1.40
nitrogen†					
N_2	28	0.297	1.04	0.74	1.40
O_2	32	0.260	0.92	0.66	1.40
A	40	0.208	0.52	0.31	1.67
H_2	2*	4.120	14.2	10.08	1.41

Air composition:

Volumetric (and molar): 21.0% O₂, 79.0% atmospheric nitrogen.

Gravimetric: 23.2% O₂, 76.8% atmospheric nitrogen.

SUMMARY

- Mass and molar fractions
 - Convert between x_i and y_i using molar mass
- Partial pressure and partial volume
 - Relation to molar fraction
- Properties of mixtures
 - Add extensive properties
 - Use mass fractions for intensive properties

SESA2023 Propulsion

Lecture 6: SFEE and Entropy

Ivo Peters
i.r.peters@soton.ac.uk

THIS LECTURE

Steady Flow Energy Equation (SFEE) reminder, common assumptions

SFEE for a turbojet

Entropy definition and calculations

Isentropic efficiency for compressor and turbine

STEADY FLOW ENERGY EQUATION

SFEE FOR A TURBOJET ENGINE

TURBOJET EXAMPLE

A turbojet engine is operating at a velocity of 200 m/s, with a local temperature of 250 K and pressure of 50 kPa.

What is the inlet temperature and pressure of the compressor?

ENTROPY

CHANGES IN ENTROPY

ISENTROPIC EFFICIENCY

TURBINE EXAMPLE

Air at p = 30 bar and T = 1500 K enters a turbine with an outlet pressure of 1 bar and an isentropic efficiency of 85%.

What is the outlet temperature and the work done by the turbine?

SUMMARY

- Steady Flow Energy Equations basics
 - Turbojet engine component analysis
- Entropy
 - Definition
 - Finite changes in entropy
- Isentropic efficiency
 - Compressor and turbine