1 Basic Concepts

- Circuit Switching (connection-oriented) requires expensive setup phase but little processing required after setup. Resources are reserved at setup time guaranteeing Quality of Service, but limits resource sharing
- Packet Switching (connectionless) has no setup cost but incurs processing cost for forwarding and space overhead as every packet is self-contained. Designed to share links achieving better network utilisation
- Bandwidth $R = \frac{L}{t_2 t_1}$ or $\frac{transferred}{duration}$ amount that can get transferred in time unit
- Throughput amount that actually gets transferred in time unit
- Latency (propagation delay) $d = t_1 t_0$ or $\frac{distance}{propagationspeed}$, time it takes for one bit to go through connection
- Packetization (transmission delay/store-and-forward delay) $d_{trans} = \frac{L}{R}$
- Transfer Time $\triangle = d_{prop} + \frac{L}{R} = \text{propagation delay} + \text{transmission delay}$
- Router Delay = processing delay (check bit error, determine output) + queuing delay (wait at output)
- Traffic Intensity = $\frac{La}{R}$ = $\frac{\text{packet length} \times \text{ avg packet arrival rate}}{\text{link bandwidth}}$ If $\frac{La}{R} \to 1$, d_q large. If $\frac{La}{R} > 1$, d_q infinite.
- (Transport Layer) Max Output Rate = $\frac{W}{RTT}$, Timeout= $\overline{RTT} + 4\sigma_{RTT}^2$, Utilisation= $\frac{\text{actually used network}}{\text{could have used network}} = \frac{d_{trans}}{RTT + d_{trans}}$

2 Application Layer

2.1 Hyper Text Transfer Protocol (HTTP)

- HTTP/1: (1996) 1 TCP connection per object leading to inefficent use of network/OS
- HTTP/1.1: (1997) Introduced persistent connections where same TCP connection used for multiple requests with multiple replies (can be pipelined). "Connection:close" by client/server to indicate otherwise.
- HTTP/2: (2015) Binary content and no longer needs to be ordered. HTTP/3: Exchanges in UDP/QUIC.
- Request: GET /a.html HTTP/2 HEADERS \n Response: HTTP/2 200 OK HEADERS \n OBJECT
- Methods: GET, POST, HEAD, PUT, DELETE, OPTIONS (not cacheable)
- Status: 1XX Informational, 2XX Success, 3XX Redirection, 4XX Client Error, 5XX Server Error
- Cache control by client/server using Cache-Control: no-chache/max-age=20;must-revalidate / Expires:
- Stateless protocol but use Set-Cookie: (from Server) and Cookie: (from Client) header for stateful sessions

2.2 Domain Name System (DNS)

- A IP Address NS Authoritative Name Server CNAME Alias Domain Name MX Mail Server Domain Name
- Round Robin DNS for load balancing: Short TTL, Order of IP addresses returned changes
- Non-authoritative means reply was extracted from cache
- nslookup -type=XX example.com nameserver.com / dig @nameserver.com example.com XX

2.3 Content Delivery Network (CDN)

- Enter Deep: Push servers deep into many networks close to users
- Bring Home: Smaller number of larger clusters in Points of Presence near access networks

2.4 Simple Mail Transfer Protocol (SMTP)

- Sends emails: Set up TCP/IP, client requests server to accept messages, server responds and client sends
- HELO \n MAIL FROM: .. \n RCPT TO: .. \n DATA \n other headers \n \n content \n . \n QUIT
- Oblivious to message content, but every receiving SMTP server must add a Received: header
- Plain text unless ESMTP(SMTPS) used (EHLO greeting).

2.5 Post Office Protocol (POP3)/Internet Message Access Protocol (IMAP)

- telnet pop3.a.com 110: OK, USER .., OK, PASS .., OK, LIST, 1 2505 \n ., RETR 1 + DELE 1 + QUIT
- POP3 implicitly assumes mail is deleted at server, IMAP solves this problem

2.6 File Transfer Protocol (FTP)

- Active Mode: Client "PORT x" to Server:21. Server ACK, connect to client from 20 to x. Client ACK.
- Passive Mode: Client "PASV" to Server:21. Server "PORT x". Client connects to X.

3 Transport Layer (Layer 4)

- 0-1023 reserved, 1024-49151 registered user applications, 49152-65535 dynamic
- FTP TCP/20-21, SSH TCP/22, HTTP TCP/80, HTTPS TCP/443, DNS UDP/53, SMTP TCP/25, POP3 TCP/110, IMAP TCP/143, DHCP UDP/67-68, TELNET TCP/23

3.1 Transmission Control Protocol (TCP)

- Headers: 20+B: source & dest ports (2x16b/2B), seq no in Bytes (32), ack no (32), header length in 32b/4B (4), reserved (6), URG ACK PSH RST SYN FIN (6), receive window in Bytes (16), checksum (4), urgent (16), options (variable, optional)
- Full-duplex service so both endpoints can send and receive simultaneously
- Server: socket, bind, listen, accept, read + write, close. Client: socket, connect, write + read, close
- Maximum Segment Size (MSS): max data transmitted in a single segment
- Sequence Number: Segmentation: Position of first byte in segment, random initial sequence number (ISN) on set up
- Acknowledgement Number: First sequence number not seen by receiver (frequency depends on flow control)
- Congestion Window: LastByteSent LastByteAcked \leq W = min(CongestionWindow, ReceiverWindow)
- Three Way Handshake: SYN+ClientISN, SYN+ACK(ClientISN)+ServerISN, ACK(ServerISN)+ClientSeq
- Client: (CLOSED) open/SYN (SYN_SENT) SYN+ACK/ACK (ESTABLISHED) close/FIN (FIN_WAIT_1) ACK/ (FIN_WAIT_2) FIN/ACK (TIME_WAIT this side closed it) wait x seconds/ (CLOSED)
- Server: (CLOSED) open/ (LISTEN) SYN/SYN+ACK (SYN_RCVD) ACK/ (ESTABLISHED) FIN/ACK (CLOSE_WAIT other side closed it) send FIN/ (LAST_ACK) ACK/ (CLOSED)
- Disconnect: Client FIN, Server ACK, Server FIN, Client ACK
- Stop and Wait: Send 1 packet, requires receiving ACK before sending next. Double number of packets needed to transmit!
- Sliding Window: sender transmits packets up W segments without waiting for ack. Used with selective repeat from receiver.
- Acks: in order + prev acked: wait x ms then ACK, in order + prev not acked: cummulative ACK, out of order (gap): duplicate ACK (NACK), segment that fills gap: ACK if segment at lower end of gap
- Slow Start (SS): Initial W = MSS, doubled every ACK until ssthresh (initially receive window/very high)
- Congestion Avoidance (CA): $W = W + MSS \times \frac{MSS}{W} \approx W + MSS$ until congestion detected
- Additive-Increase/Multiplicative-Decrease (AIMD): at packet loss, half W
- Fast Recovery: Set sathresh to W/2. Timeout: W = MSS then SS. NACK: W = W / 2 then CA.
- Congestion control aims not to overflow network, Flow control aims not to overflow receiver

3.2 User Datagram Protocol (UDP)

- Header: 8B: source & dest ports (2x16b/2B), length (16b), checksum (16b)
- Max = 20B IP header + 8B UDP header + 65,507B data = 65,535B (Max IP packet). Reality: 500-1000B.
- Used for apps that require speed/do not care if data dropped. Finer Application Layer control over what data sent when, no connection state & flow control (reduced server load), smaller header/less error checking/no connection establishment (more efficient), can do broadcast. But unreliable and no congestion control (can overwhelm network). Used to support QUIC (2012).

4 Network Layer (Layer 3)

- Area Networks: Personal Local Metropolitan Wide
- Dynamic Host Configuration Protocol (DHCP): Discover, Offer, Request, Acknowledgement.

4.1 Internet Control Message Protocol (ICMP)

- **Header**: <u>8B</u>: type (8), code (8), checksum (16), rest of header (32)
- echo reply 0, echo request 8, destination unreachable 3, TLE 11
- ping -c count -s packetsize -t ttl

4.2 Internet Protocol (IP)

- IPv4 Header: 20+B: version always 4 (4), header length in 32b/4B (4), diffServe Quality of Service decisions (4), total length in Bytes (16), id fragmentation (16), flags 3rd flag More fragments follow (3), fragment offset in 64b/8B (13), TTL in secs (8), protocol (1-ICMP, 6-TCP, 17-UDP) (8), header checksum (16), source & dest address (2x32b/4B), options (variable, optional)
- IPv6 Header: 40B: version always 6 (4), traffic class (8), flow label (20), payload length in Bytes (16), next header IPv4 protocol (8), hop limit (8), source & dest address (2x128b/16B) (removed fragmentation, header check, options)
- Fragmentation if size exceeds MTU, reassembled at destination. Max IP packet 65535B into (8189 fragments \times 8 + 3)B.
- Class: A (1.0.0.0 127.255.255.255/8), B (128.0.0.0 191.255.255.255/16), C (192.0.0.0 223.255.255.255/24)
- Private: 10.0.0.0 10.255.255.255/8, 172.16.0.0 172.31.255.255/12, 192.168.0.0 192.168.255.255/16
- Loopback: 127.0.0.0/8. Link Local: 169.254.0.0/16 (error acquiring IP address)
- First subnet address is network address, last subnet address is broadcast address.
- Routers match the longest prefix possible. If not in forwarding table, default port/depends on algo.
- Network Address Translation violates machine identifiable by IP and make Internet connection-oriented

4.3 Routing

- Routers collaborate to build sink tree of optimal routes
- Shortest Path Routing Dijkstra's Algorithm. (Static Intra-AS)
- Flood Routing: Forward to every output (selectively/once) except original, hop counter to avoid drowning
- Distance Vector Routing: Bellman-Ford. Take direct neighbours' advertised cost to dest, advertise min (neighbours' cost + cost to neighbour) to neighbours. Count-to-infinity problem if dest goes down (Routing Information Protocol) (Dynamic Intra-AS)
- Link State Routing: Discover direct neighbours, constructs Link State Advertisement by calculating cost to them, collect/flood to all routers, run Dijkstra locally. HELLO to discover, ECHO to measure. (Open Shortest Path First) (Dynamic Intra-AS)
- AS may be divided into areas, area border routers route traffic to backbone area
- Broadcast Routing: **Reverse-path Forwarding**: every router forwards braodcasts to all neighbours except to original, routers only accept broadcast packet originating from X if on a direct unicast path between themselves and X
- Multicast Routing: Core-based trees: single spanning tree PER GROUP with a root near middle, multicast sent to root, which
 performs multicast along tree
- Hierarchical Routing: Gateway routers discover inter-AS info + intra-AS info propagated within AS
- Path-Vector Protocol: Router advertises routes (AS-PATH sequence of ASNs ad sent through + NEXT-HOP interface(IP) to forward packets) to others, AS choose to accept ad (politics/cost), AS forward ad. Routes ranked by preference value, shortest AS-PATH, closest NEXT-HOP. Count-to-infinity solved by withdrawal updates. (Broader Gateway Protocol) (Dynamic Inter-AS)

Data Link Layer (Layer 2)

• Maximum Transission Unit (MTU): largest link-layer frame avaliable to sender host. Ethernet: max of 1500B.

5.1 Ethernet

- Ethernet II Header: <u>22B + 4B</u> Footer: preamble (56), start frame delimiter (8), dest & src address (2x48b/6B), type (16), data (46-1500B); Frame Check Sequence (CRC) in footer (32)
- Introduced in 1980 with 2.94Mbps coaxial (10BASE5), standard in 1983 (IEEE 802.3)
- Unshielded Twister Pair, Shielded/Screened TP, Foiled TP, Shielded & Foiled TP to protect against EMI. Repeater every 2km.
- 100Base-TX Fast Ethernet Cat5 UTP 100m 100Mbps. 100Base-T Gigabit Ethernet Cat6 100m 1000Mbps.
- Straight-through (different layers, Media Dependent Interface), Crossover (MDI with Crossover, same layer), Rollover (directly into device troubleshoot). Modern fake swap with Auto-MDI/MDIX
- MAC Address: 6B: Organisationally Unique Identifier (7th bit Universally/Locally administered, 8th bit Individual/Group address) that is manufacturer specific and unique (3B), Network Interface Controller Specific (3B)

5.2 Switch

- Use Forwarding Information Base to remember which port is which MAC
- Store-and-Forward (receive whole frame, check errors, forward), Cut-through (forward when enough info)
- Switching Loop results in broadcast flooding. Use [Rapid] Spanning Tree Protocol ([R]STP) so switches maintain a continuously updated spanning tree by passing Bridge Protocol Data Units (BPDU) between them

5.3 Topology

- Bus: Main coaxial cable to connect all hosts. BNC T connector for new host, BNC terminator at each end.
- Ring: Each host uses 2 NICs and data flowed one way. If link cut, network died (unless designed to adjust). Dual-ring for data to flow both ways + backup uses 4 NICs.
- of frame addressed to it and forwards rest of stream. Transmit (host with token) read & transmit from memory, removes frames it sent then releases token, early release mode means token can be released before frames it sent is back. Frame Status A for dest host working, C for correctly read.

• Token Ring: MultiStation Access Unit to connect hosts in (logical) ring. If host dies, it stops getting token. Listen - keeps copy

- Priority only claim token if data priority \geq token priority. Reservation host can increase reservation priority (encoded in sent packets). Active Monitor station (by election) to generate tokens and drain orphaned frames.
- Fiber Distributed Data Interface (FDDI): Class A 2 rings, B 1. B failure affects 1 ring, A failure creates short circuit.
- Star: Single Point of Failure. Line: Ring that does not meet both ends. Tree: Star Bus Hybrid. Mesh: Some connected to some. Fully connected: Everyone to everyone.

5.4 Wi-Fi

• Wi-Fi 0 (1997). Wi-Fi 5 802.11ac (2014) 5GHz 433-6933Mbps. Wi-Fi 6 802.11ax (2019) 2.4/5/6GHz 574-9608Mbps. WPA/2/3.

5.5 Medium Access Control

- Static: (Round Robin) Time Division Multiplexing or Frequency Division Multiplexing / Reservation
- ALOHA (1971): stations wait random time after collisions, slotted transmissions to reduce vulnerable period
- Carrier Sensing Multiple Access: check channel idle before transmission, collisions due to transmission delay
- Collision Detection: jamming signal if detected, Ethernet: min frame size 512b/64B, $2 \times d_{trans}$ at 10Mbps for 100m.
- Back-off when busy channel: 1-persistent keep checking (Ethernet: exponential $rand(0, 2^c 1)$ * min frame len, give up after 10 collisions), Non-persistent wait random time, p-persistent: keep checking, if free transmit with probability p.

6 Physical Layer (Layer 1)

- Patch Panel: Socket Panel (cable ends up), Network Switch (LAN), Private Branch Exchange (phone systems)
- Coaxial Cable: considerable shielding, wider range of frequencies, higher cost per meter (still used by TV). Repeater every 1-9km.
- Microwave 4-11Ghz, Satellite 0.5-10GHz, UHF 0.3-3GHz TV, VHF 30-300MHz, HF 3-30MHz, MF 0.3-3MHz
- Baud rate symbols per second. Digital in analogue using modem, analogue in digital using codec.
- Modulation/Shift Keying: Amplitude (high=1,low=0), Frequency (increase=1,base=0), Phase (change=1)
- Digital Subscriber Line: Remove phone line limit of 3000Hz. Asymmetric DSL: split into channels, more downstream than upstream. ADSL modem, then DSL Access Multiplexer recovers bit signal.
- Fiber optic repeater every 40km. Copper or fiber slows speeds to 2/3 of speed of light.

7 Security

- Hackers, Phreakers, Virii, Anarchists, Crackers, DDoSers, Spammers/Botters, Pirates, Cyberbullies, Social Engineers, (Phising / Vishing / Smishing / Catfishing)
- Rootkit: secretly enter system, Keyloggers, Trojan: remotely control system, Evil Twin: lure victims to fake network
- The Amnesiac Incognito Live System (Tails), Kali Linux, Metasploit (comes with Kali, similar to nmap)
- Credential Reuse/Stuffing: try revealed passwords, Session/Cookie Hijacking: steal auth token, Wardriving: search & use open WiFi,
 Dumpster Diving/Trashing: check dustbin for info, Clickjacking: force clicks on hidden links/pop-ups, Bait-and-Switch: legitimate looking ads to malicious destination, Spoofing (IP/MAC/DNS), Code/SQL Injection, Network Monitoring/Packet Sniffing.
- Firewall can be Application-level gateway (runs on host, protects host, examine packets), Proxy server (runs on network, protect LAN, examine packets), Circuit-level gateway (examine socket establishments) or Packet Filtering (Stateful/Stateless)
- Proxies can be normal (client aware), transparent (network level) or reverse (CDN server)
- Bastion Host expects attacks so logging/auditing, runs secure minimal OS and only accessed via dedicated terminal
- DMZ: Neutral zone, external only can speak to hosts in DMZ, use NAT to forward to protected internal
- Port Forwarding: Certain ports forwarded directly to internal host/port. Useful for hiding internal
- Get around firewall by tunneling with ssh, spoof IP/MAC address, using VPN to hide activity
- Public Key encryption is slower but more secure as owner does not have to disclose key
- Diffe-Helman Key Exchange: A and B agree on g and p, with secret values a and b. The public value is $x = g^b \mod p$ and $y = g^a \mod p$. The secret key is $y^b \mod p = x^a \mod p = g^{ab} \mod p$ or **Kerberos**
- Wireshark: Promiscuous (wired/wireless) keep everything. Monitor (wireless) listen on all networks
- NMap: [-sn disable port scan] [-p X-Y scan ports] [-Pn treat all hosts as online] target
- ifconfig, traceroute domain, whois domain, netstat (proto, local addr, foreign addr, state), arp -a, tcpdump, ssh [-g -N -L src_port:dest:dest_port] user@src [-p port], scp src_file user@dest:dest_path, telnet domain port