Dezvoltarea unei aplicații practice în cadrul unui proiect de semestru

~ Proiect ~

Intro Proiect

• Proiectul își propune:

- să abordeze perspectiva practică din dezvoltarea unei aplicații complexe
 - ca o componentă a unui sistem ce include viziune computerizată.

• Studenții se vor familiariza cu

- algoritmii de bază practici și simpli de prelucrare a semnalelor digitale,
 - oferind o posibilă bază de pregătire practică pentru activități de dezvoltare și cercetare în acest domeniu.

Simplificări la nivel de disciplină

- Domeniul este foarte vast, astfel în cadrul orelor de la această disciplină se vor aplica câteva simplificări:
 - se discută doar *metode de baza*,
 - algoritmii mai avansați presupun utilizarea cascadată/ combinată a metodelor de bază.
 - se tratează mai mult imagini pe nivele de gri;
 - generalizarea pentru imagini color fiind mult mai usoara ulterior (si directa in unele cazuri)
 - se va realiza procesare pe *imagini mici* (de dimensiune/rezoluție redusă)
 - pentru a ne putea axa pe efectul procesării date de algoritmul nostru, fără a fi influențați de efectul dat de interpolare/zoom la faza de vizualizare/afișare rezultat prin redimensionarea imaginilor

Exemplu proiect: extragere muchii – in etapa de afisare a rezultatului se poate sa fie eliminate parte din muchii prin procesul de sub-esantionare a imaginii (pentru ca nu vizualizam complet rezultatul 1:1) - noi o sa ne gândim ca NU ne funcționează corect algoritmul – FALS, problema e la afisare.

- se va lucra si cu imagini de rezoluție mare, imagini color si secvente video
 - unde este relevant si necesar pentru tema/ algoritmul cerut (doar pe unele teme!)

Temele proiectelor urmăresc structura cursului de la această disciplină și se vor realiza în echipe.

De ce?

• De ce bazele si **NU notiuni avansate**?

• Care este **rolul** acestei discipline?

Proiect de semestru

• Se dorește:

- înțelegerea principială și matematică sau logică a temei alese precum și:
 - proiectarea și implementarea practică intr-o aplicatie software

• Toate proiectele conțin

- parte de documentare,
- implementare software și
- validare experimentală,

având aproximativ același grad de dificultate.

Proiect de semestru

- Nivele de intelegere/ dezvoltare a aplicatiei in cadrul proiectului de semestru:
 - (1) Implementarea proiectului utilizând funcții gata implementate din pachetele publice online
 - se vor folosi funcții gata implementate pentru partile de citire/ afisare/ operații intermediare
 - (2) Implementarea propriilor functii pentru partea matematica/ logica a algoritmilor din proiect
 - se vor implementa propriile functii pentru partea de algoritmica din spatele temei
 - legături intre etape per proiect

Complexitate teme proiect

- Timpul de lucru și complexitatea pe proiect este similară pentru toate temele
 - chiar dacă în cazul unor proiecte:
 - partea de implementare software pare mai ușoară, partea de validare experimentală a algoritmilor este mai complexă, fiind necesare mai multe experimente cu diverși parametrii interpretați corect,
 - sau viceversa *partea software poate fi mai dificilă* dar validarea rezultatelor se realizează mult mai ușor.
- Toate temele sunt **interesante**, chiar dacă numele algoritmilor sunt de "neînțeles" momentan pentru voi!
- Proiectul trebuie să se finalizeze cu o aplicație software ușor de rulat de un utilizator nou.

Echipa

- Prezența la ședințele de proiect este obligatorie,
 - la fiecare ședință fiind necesară predarea unor livrabile, sau
 - prezentarea modului de lucru/ cum s-a avansat pe proiect
- Proiectele se vor realiza în echipe de 2 studenți (este recomandat ca cel puțin un membru din echipă să aibă cunoștințe de programare!)
 - existând activități de management, documentare, programare, testare și validare aplicație.
- Rolurile in echipa se pot gândi astfel:
 - membrii echipei pot fi un manager și un dezvoltator.
 - Fiecare membru al echipei:
 - trebuie să cunoască și să se implice în sarcinile atribuite celuilalt membru a echipei, pentru a se ajuta reciproc in a intelege/ implementa proiectul.

Echipa

- Managerul va trebui:
 - sa structureze optim si cat mai clar partea teoretica din spatele algoritmilor
 - să verifice/testeze fiecare pas din program cum că este corect realizat,
 - să realizeze raportul tehnic și un manual de utilizare a aplicației.
 - => Activitățile de management: conduc la o înțelege mai bună/extragere corectă și completă a părții teoretice, matematice sau logice a algoritmului.
- **Dezvoltatorul** va realiza aplicația software, fiind necesar sa se ocupe de:
 - implementare software si testarea algoritmilor din cadrul proiectului, conform studiului teoretic/raportului tehnic;
- Etape care se realizează de către toți membrii echipei:
 - documentarea teoretică,
 - instalare si setare mediu de programare si pachete conexe utilizate,
 - testare și validare aplicație.

Structura orelor de proiect

- Descrierea modului de derulare a orelor de proiect, ETAPE:
 - 1) Formarea echipelor și alegerea unei teme de proiect;
 - 2) Faza de documentare
 - Prezentare PowerPoint pe tema proiectului (fiecare echipă)
 - (~6 slide-uri − extragere ecuații/parte logică ce urmează să fie implementate);
 - 3) Implementare 10% din proiect familiarizare cu mediul de programare.
 - Testarea unor funcții de procesare din pachete disponibile gratuit online (pe direcția proiectului)
 - Identificare date intrare/ date ieșire pentru proiect (de la ce plecăm/ ce trebuie să obținem)
 - 4) Implementare între 30-80% din proiect
 - Implementare pe baza teoriei structurate (partea matematică sau logică din spatele algoritmilor nu utilizând funcțiile gata dezvoltate în pachete disponibile gratuit online)!
 - Revizuire parte teoretică și includere în raportul tehnic a proiectului (vezi model);
 - 5) Implementare 100%; revizuire/completare raport tehnic; validare rezultate experimentale de către manager; realizare prezentare.
 - 6) Predarea si prezentarea proiectului

Predarea proiectului

- Pentru **predarea proiectului** se va realiza un folder, denumit după tema proiectului/ membrii echipei (sub forma unui cod), care va conține DOAR următoarele:
 - Resurse aplicație software
 - partea de implementare realizată (cod toate fișierele necesare rulării; cod-ul trebuie sa fie ușor de rulat);
 - imagini pentru testarea programului (maxim 10).
 - Raport tehnic realizat în Word (documentul se va preda DOAR în format electronic).
 - Prezentare PowerPoint prezentare tehnică și comercială a "produsului software" realizat.
- Fiecare semi-grupa va primi o locație online (sub forma unui link) unde fiecare echipă va încarcă folderul cu resursele proiectului (încărcarea se va realiza înainte de a începe prezentările, acasă/sau in sala).
 - Va rog sa nu incarcati totul ca si o arhiva sa putem sa deschidem direct prezentarea ppt din folder-ul incarcat! Se poate arhiva partea de cod/imagini (daca este cazul), dar nu si ppt-ul!
- Fiecare student își va susține proiectul în fața colegilor; codul se va rula după prezentare.
 - realizați prezentarea astfel încât colegii voștri să înțeleagă proiectului vostru.
- **Observație!!!** Încărcarea online pe site-uri publice a oricărui tip de fișier realizat în cadrul orelor de proiect (raport tehnic, prezentare PowerPoint sau cod) este strict interzisă fără acordul coordonatorului de proiect.

Mod de notare

- Punctajul se va acorda ținând cont de: înțelegerea teoriei, implementare corecta (in ce grad), obținerea unor rezultate experimentale corecte, validarea corecta a algoritmilor (scenarii de testare adaptate metodelor/ algoritmilor implementați), organizare raport tehnic/ prezentare.
- Atribuire punctaj:
 - 5 puncte pentru modul de lucru în cadrul orelor de proiect (pe parcursul semestrului), respectarea termenelor de realizare a activitatilor de la o sedinta de proiect la alta.
 - 5 puncte pentru predarea finala:
 - 1 puncte pentru modul de realizare a raportului tehnic (documentația scrisă)
 - Selecția/structurarea informației relevante temei.
 - Includerea secțiunilor (capitolelor) cerute cu respectarea proporțiilor.
 - 2 puncte pentru modul de implementare a părții practice, precum si gradul de dificultate in abordarea problemei
 - 2 puncte pentru modul de realizare a prezentării proiectului
 - 0.5 puncte exista o prezentare / si 0.5 puncte exista un/o prezentator/oare
 - 0.5 puncte prezentarea este bine structurata
 - 0.5 puncte modul in care s-a răspuns la întrebări/ s-a înțeles algoritmul implementat

Nota obținută pe proiect reprezintă 25% din nota finală la această disciplină.

Etapa I - Documentare

• Obiectiv etapă de documentare:

- Studiu teoretic pentru identificarea părții matematice sau logice a algoritmilor de implementat (NU este necesar să înțelegem algoritmii – doar să-i identificăm) .
- Realizarea listei bibliografice a documentelor consultate relevante temei proiectului
- Pentru ședința următoare de proiect se va pregăti:
 - o Prezentare PowerPoint (~6 slide-uri):
 - 1 slide pagina de start: titlu proiect, membrii echipei proiect;
 - 1 slide cerițe, date de intrare și date de ieșire
 - ~2-3 slide-uri prezentarea algoritmului (parte matematică sau logică);
 - 1 slide bibliografie
- Prezentarea va conduce la discuții/ observații benefice înțelegerii temei proiectului.
 - Urmăresc dacă au fost identificate corect ecuațiile sau partea logică care urmează să o implementați.
- Faza de documentare se realizează de toți membri din echipă O SINGURĂ PREZENTARE!

Modalitatea de documentare

- Documentarea trebuie să se realizeze plecând de la:
 - suportul pentru curs de la această disciplină:
 - prezentările powerpoint și un set de cărți suport curs disponibile online
 - prin consultarea a altor cel puțin 5 surse bibliografice
 - disponibile pe internet, în biblioteca Universității sau personală (studii online, articole științifice, cărți, capitole de cărți)
- Mare parte din documentele/ cărțile valoroase ca și conținut *sunt redactate în limba engleză*, astfel cel puțin jumătate din documentele consultate trebuie să fie în limba engleză.

Lista bibliografică

- Specificațiile tehnice, formule, tabele preluate din literatura de specialitate vor fi însoțite de referință bibliografică, specificată clar între paranteze drepte.
- **Lista bibliografică -** recomand: similar cu referințele din cărți astfel, adresarea spre referință se face prin concatenarea numelui primului autor cu anul de apariție a documentului/ articolului/ cărții [**AutorAn**], deci nu prin numere.
 - acest mod ușurează păstrarea corespondenței corecte: idee lucrare de unde a fost preluată ideea (prin adresarea cu un număr este mult mai ușor să ne încurcăm).
 - în cadrul lucrării încă nu știm ordinea în care o să rămână informația din studiile găsite e mai ușor de mutat daca referința nu este numerică (pentru referința numerică primul articol referit trebuie sa fie 1, dacă modificăm ordinea informației/ includem informație nouă trebuie renumerotate referințele să fie referite în ordine crescătoare)
 - de asemenea, putem salva și local articolele cu includerea acestui 'cod' în numele fișierului.
- Nu se permite preluarea identică a textelor din documentele consultate.
 - referință spre un document = în acel document se găsesc detalii despre ideea introdusă în paragraful referit (NU înseamnă că ideea a fost copiată din acel document!). Astfel, spre un paragraf se pot pune mai multe referințe spre toate documentele care oferă detalii despre ideea/ conceptul prezentat.
- Ecuațiile, tabelele și figurile se numerotează. Tabelele și figurile vor avea și titlu. Zonele de cod (chiar dacă sunt preluate ca și print screen/ imagine NU se numerotează și NU au titlu.
- Abrevierile și notațiile folosite vor fi explicitate în clar.

Lista bibliografică – continuare

- Lista bibliografică trebuie să includă datele de identificare a referinței complete,
 - în funcție de tipul referinței: carte [Lima2019], articol de conferință [Li1996], articol de revistă [Siegwart2001], capitol de carte [Arai1999] sau este vorba de informații preluate de pe o adresă de internet [Wolfram].
 - [Lima2019] Author(s) (ex: P. Lima, A. Bonarini, M. Mataric), Name of Book in Italics, Publisher, Place of Publication (City, Country), year (ex. 2019).
 - [Li2010] Author(s), Title of conference paper, Proceedings of xxx xxx, Publisher, conference location (City, Country), month and year, pp. (page numbers: first-last).
 - [Siegwart2001] Author(s), Name of paper. Name of Journal in Italics, Vol., month and year of the edition, pp. (page numbers: first-last).
 - [Arai1999] Author(s), Name of paper, In: Name of Book in Italics, Name(s) of Editor(s), (Ed.), pp. (page numbers: first-last), Publisher, Place of publication (City, Country), Year.
 - [Wolfram] The Wolfram Solution for Image Processing, [Online
 25.09.2022], http://www.wolfram.com/solutions/industry/image-processing/

Etapa II - Implementare 10%

Obiectiv etapă:

- Acomodare cu mediul de programare Python pentru procesarea semnalului/ imaginilor.
- Implementare proiect utilizând pachete disponibile gratuit online.
- Încercăm să înțelegem cum continuăm cu partea de implementare.
- Implementarea se va realiza pe celule, în stilul lucrărilor de laborator, astfel să putem urmări mai bine pașii din implementare, precum și rezultate intermediare.
- **Mod de lucru s**cripturi notebook .jpynb, online sau local (pentru evidențierea pașilor implementați)
 - Google Colab și Drive, cu partajare conținut între membrii echipei.
 - Se definește modul de lucru utilizând Google Colab corelat cu Drive.
 - Se vor încărca în Drive: imagini pentru testare, prezentarea .ppt , precum și restul documentelor necesare dezvoltării proiectului. Partajăm informația cu partenerul de echipă!
 - **Instalarea și rularea locală** pe sistemul propriu de operare este recomandată, dar opțională în această etapă (fiind necesară până la sfârșit în ultima etapă).

• Implementare utilizând pachete disponibile gratuit online

- Unele proiecte se pot realiza ușor cu funcții din pachete publice, dar la unele proiecte este mai complicat acest aspect - deci nu o să se poată să realizați proiectul utilizând funcții din pachete publice.
 - Astfel, doresc să încercați să folosiți funcții din pachete publice online, fie pentru a rezolva cerințele proiectului, fie pentru a realiza cerințe conexe proiectului sau pași intermediari.
- **Echipa**: Momentan putem avea teste diferite, scripturi separate să se familiarizeze cu Python-ul fiecare membru. Ulterior decideți un mod de implementare comun pe care doriți să mergeți.
 - Se implică toți membri ai echipei în realizarea acestei etape!

Probleme uzuale care apar

- Modalitatea de citirea a imaginilor difera in functie de biblioteca care o folosim
 - OpenCv-ul citeste imaginile ca si BGR si daca vrem sa le afisam cu Matplotlib avem nevoie ca ordinea canalelor sa fie RGB

- In Google Colab nu putem folosi functia cv2.imshow(...) pentru afisare imagine
 - Aceasta functie genereaza o fereastra externa si in Colab lucrand in cloud, nu se poate genera aceasta fereastra
 - Exista versiune de afisare cu OpenCv direct pentru Colab

Probleme uzuale care apar

• Problemele uzuale care apar - mesaj primit de la o echipă pentru această etapă:

Buna ziua! Am incercat sa implementam etapa 3 de proiect in Google Colab folosind functiile oferite de opency, dar am intalnit o eroare si nu putem sa folosim functia .dct pentru ca nu o recunoaste. Aveti idee cum am putea rezolva asta?

- Greșeala e că se aplică funcția pe imaginea color, funcția DCT are nevoie să aibă la intrare o matrice 2D nu o intrare cu 3 dimensiuni (cum e imaginea color).
- Trebuie să înțelegem cum să aplicăm corect algoritmii pe imagine, și nu uităm majoritatea algoritmilor se aplică la nivel de canale sau pe versiunea imaginii pe nivele de gri!

Etapa III - Implementare 30-80%

Obiectiv etapă:

- Implementare pe baza teoriei structurate

implementare partea matematică sau logică din spatele algoritmilor - aplicare pe imagine = o matrice 2D, NU utilizând funcțiile gata dezvoltate în pachete disponibile gratuit online!

- rămâne și implementarea cu funcții din pachete publice (NU le ștergem)
- Revizuire parte teoretică și includere în raportul tehnic a proiectului (vezi model "RaportTehnic.docx")
 - se completează la partea de introducere/ fundamentare teoretică și parțial implementare.
- Fiecare membru de echipă *va avea propriile atribuții*, dar ambii membri ai echipei trebuie să se gândească și să discute care este următorul pas în implementarea algoritmului echipei.
 - Un membru se concentrează pe implementare celălalt pe raportul tehnic.

Etapa III - Implementare 30-80%

- Observații în urma ședințelor de proiect anterioare:
 - Din fiecare echipa, un rol a managerului este să citească mesajele mele, pentru a fi la curent cu observațiile mele transmise spre voi.
 - Se va include în cod o celulă cu titlul proiectului/ cerințe proiect să-mi fie clar despre ce discutăm când vorbim pe cod.
 - Imagini le vreau să fie citite din Google Drive corelare Google Colab și Drive
 - Atenție la modul de deschidere a imaginii și utilizarea ei, reprezentarea corectă este: când folosim imagine pe nivele de gri (H×W), când folosim imagine color (H×W×3).
 - Uzual, pentru majoritatea proiectelor lucrăm pe imaginea pe nivele de gri.
 - Atenție, reprezentarea imaginii pe nivele de gri este ca o matrice de dimensiune (H×W).
 - Dacă este o matrice de dimensiune (H×W×3), dar la afișare arată ca o imagine pe nivele de gri, atunci cele trei canale sunt egale R=G=B și avem reprezentarea RGB, nu Gray. Astfel, pentru citirea imaginii pe nivele de gri utilizând pachetul *OpenCv* se folosește corect setând la funcția de citire parametru al doilea egal cu 0 cv2.imread(numeImg, 0); sau utilizare conversie RGB spre Gray daca imaginea este citită RGB.
 - La afișare imagini pe nivele de gri utilizând pachetul pyplot se specifică 'cmap=gray'.
 - Unele proiecte necesită imagini color fie pentru procesare, sau afișare a rezultatelor (ilustrare cu roșu peste imagine a rezultatelor), imaginea color se tratează pe 3 canale $(H \times W \times 3)$.
 - Nu uităm, utilizăm imagini de rezoluție redusă, pentru a ne putea axa pe efectul procesării date de algoritmul nostru, fără a fi influențați de efectul de interpolare/ zoom de la vizualizare prin redimensionarea imaginilor.

Etapa IV - Implementare 99%

• Obiectiv etapă:

- Finalizare implementare rămâne să ne concentrăm pe partea de validare rezultate experimentare (testare algoritm)
 - selecție imagini de lucru, optimizare parametrii în funcție de imaginea aleasă (dacă este cazul), etc.
- Raport tehnic tot, excepție partea de validare a rezultatelor experimentale.

Etapa V - Predare Proiect

- Finalizarea tuturor task-urilor
 - Implementare finală şi validarea rezultatelor experimentale
 - Rulare atât în Google Colab cât și local (fișier .ipynb, și .py).
 - Fișierele din Colab se pot descărca și cu extensia .py și rula în Spyder.
 - Raport tehnic final
 - Prezentare PowerPoint finală
- Pentru **predarea proiectului** se va realiza un folder (ne-arhivat), denumit după tema proiectului/ membrii echipei (sub forma unui cod), care va conține DOAR următoarele:
 - Resurse aplicație software
 - partea de implementare realizată (cod toate fișierele necesare rulării; cod-ul trebuie sa fie ușor de rulat) versiunea din Colab, salvata direct din Colab ca si .py, si ca si pdf;
 - imagini pentru testarea programului (maxim 10).
 - Raport tehnic realizat în Word (documentul se va preda DOAR în format electronic).
 - Prezentare PowerPoint prezentare tehnică și comercială a "produsului software" realizat.

Prezentare PowerPoint Finala

- **Prezentare PowerPoint Finală** prezentare tehnică și comercială a "produsului software" realizat care va conține:
 - sinteza temei de proiect;
 - descrierea teoretică a algoritmului implementat (puțin text; descriere matematică);
 - aspecte legate de partea de implementare (doar codul relevant pentru implementarea părții teoretice, asociate pașilor algoritmului implementat fără toate funcțiile de afișare rezultate);
 - includerea şi descrierea rezultatelor experimentale proprii (pe ~ 5 imagini) cu axare pe rezultate corecte, când/în ce condiții algoritmii funcționează optim;
 - concluzii/ perspective viitoare de continuare a temei;
 - lista bibliografica (și includerea referințelor bibliografice în textul prezentării).
- Rularea codului după prezentarea ppt-ului proiectului după prezentarea tuturor proiectelor, pot cere deschiderea codului pentru a îmi reîmprospăta memoria cu toate părțile proiectului
 - Din partea de prezentare trebuie să reiasă toate aspectele importante, și contribuțiile, pe părțile de:
 - teorie/ implementare / rezultate experimentale
 - Rularea codului după prezentare este doar să văd că este funcțional!!!! Nu o să puteți/ aveți timp să-mi explicați ce face/cum funcționează codul atunci trebuie să reiasă din ppt!
 - Posibil să nu vă mai cer rularea codului, având în vedere că l-am văzut pe parcurs!