Thermodynamische Hauptsätze, Kreisprozesse Übung

Marcus Jung

14.09.2010

Inhaltsverzeichnis

Inhaltsverzeichnis

1	The	rmodynamische Hauptsätze	3
	1.1	Aufgabe 1:	3
	1.2	Aufgabe 2:	3
	1.3	Aufgabe 3:	3
	1.4	Aufgabe 4:	3
	1.5	Aufgabe 5:	4
	1.6	Aufgabe 6:	4
	1.7	Aufgabe 7:	4
	1.8	Aufgabe 8:	4
	1.9	Aufgabe 9:	4
2	Krei	isprozesse	5
	2.1	Aufgabe 1:	5
	2.2	Aufgabe 2:	5
	2.3	Aufgabe 3:	5
	2.4	Aufgabe 4:	6
	2.5	Aufgabe 5:	6

1 Thermodynamische Hauptsätze

1.1 Aufgabe 1:

Ein Mol eines idealen Gases expandiert von Volumen V_1 auf ein Volumen $V_2 = e * V_1$, (e = 2,71828...ist die Eulerzahl). Die Expansion erfolgt isotherm und quasistatisch. Bestimme die Wärmemenge, die während des Prozesses vom Gas aufgenommen wird!

1.2 Aufgabe 2:

An einem idealen Gas wird eine reversible Zustandsänderung längs des Weges

$$\frac{V}{V_0} = (\frac{T}{T_0})^b$$

in der VT-Ebene durchgeführt, wobei V_0, T_0, b Konstanten sind. Bestimme den thermischen Ausdehungskoeffizienten $\alpha = (\frac{1}{V})\frac{dV}{dT}$ und berechne die Arbeit, die das Gas verrichtet, wenn sich die Temperatur um $\Delta T = T_2 - T_1$ erhöht.

1.3 Aufgabe 3:

Um ein angenehmes Badewasser zu haben, mischt man 50 Liter heißes Wasser von $55^{\circ}C$ mit 25 Liter kaltem Wasser von $10^{\circ}C$. Wieviel neue Entropie hat man durch diesen Vorgang erzeugt? $(C_{aq} = 4, 184 \frac{J}{qK})$

1.4 Aufgabe 4:

Ein thermisch isoliertes System bestehe aus zwei idealen Gasen (T, V, p) und (2T, V, p), die durch einen beweglichen wärmedurchlässigen Stempel getrennt sind. Das Gesamtvolumen 2V bleibt konstant.

- Berechne die Entropieänderung ΔS beim Temperaturausgleich (irreversibler Prozess). Hinweis: Benutze für die Entropie eines idealen Gases: $S(T,V,N) = Nk * (\frac{3}{2}ln(T) + ln(\frac{V}{N}) + const.).$
- Berechne die bei einem quasistatischen reversiblen Temperaturausgleich geleistete Arbeit ΔW .

1.5 Aufgabe 5:

Berechne die innere Energie U(T,V,N) des (einatomigen) Van-der-Waals- Gases. Hinweis: $(\frac{\partial U}{\partial V})_{T,N}$ ist durch die Zustandsgleichung $(p+\frac{a}{V^2})*(V-b)=NkT$ bestimmt und im Limes $V\to\infty$ ergibt sich das bekannte Ergebnis eines idealen Gases.

1.6 Aufgabe 6:

Beweise die Äquivalenz der beiden Formulierungen des 2. Hauptsatzes!

1.7 Aufgabe 7:

Der Gleichverteilungssatz der statistischen Mechanik besagt, dass im thermischen Gleichgewicht jeder thermodynamische Freiheitsgrad f_{th} eines Systems im Mittel die Energie $E = \frac{1}{2}k_BT$ trägt.

- Wie groß ist dann die molare Wärmekapazität bei konstantem Volumen c_V eines idealen Gases, dass aus nicht wechselwirkenden Teilchen mit f Freiheitsgraden besteht?
- Wie groß muss dann die molare Wärmekapazität bei konstantem Druck c_p dieses Gases sein?
- Aus dem ersten Hauptsatz, der idealen Gasgleichung und den molaren Wärmekapazitäten c_p und c_V folgt mit $\gamma = \frac{c_p}{c_V}$ das Adiabatengesetz idealer Gase: $\dot{Q} = 0 \rightarrow PV^{\gamma} = const.$ und $TV^{\gamma-1} = const.$ Beweise diese Aussage!

1.8 Aufgabe 8:

Berechne die Entropie eines idealen Gases bei konstanter Teilchenzahl in Abhängigkeit von T und V!

1.9 Aufgabe 9:

Ein Physikstudent hat gelernt, dass bei jeder Temperaturangleichung eines heißen mit einem kalten System die Unordnung der Welt zunimmt. Seither hat er beim Kaffeetrinken ein schlechtes Gewissen, wenn er kalte Milch hinzugibt. Er will nun wissen, wie viel Entropie er pro Kaffee erzeugt, um zu entscheiden, ob er das mit seinem Gewissen vereinbaren kann.

- Wie viel Entropie erzeugt der Student also, wenn er 200 ml Kaffee (90°C warmes Wasser) mit 50 ml Milch (5°C warmes Wasser) mischt?
- Welchen, unter Umständen noch größeren Entropieerzeugungsprozess bei der Mischung von Kaffee mit Milch hat der Student vergessen?

2 Kreisprozesse

2.1 Aufgabe 1:

Ein einatomiges, ideales Gas durchläuft einen Kreisprozess $a \to a \to b \to c \to a$, wobei: $a \to b$ eine Isobare mit $V_b = 2V_a$ ist, $b \to c$ eine Isochore ist und $c \to a$ eine Isotherme ist. Berechne den Wirkungsgrad für diesen Kreisprozess und vergleiche ihn mit dem Wirkungsgrad einer Carnotmaschine, die zwischen der höchsten und der niedrigsten vorkommenden Temperatur arbeitet.

2.2 Aufgabe 2:

Der Diesel-Zyklus ist in der beigefügten Figur im pV-Diagramm skizziert. Es bezechne $r=\frac{V_1}{V_2}$ die relative Kompression und $r_c=\frac{V_3}{V_2}$ die relative Vorexpansion. Nimm an, dass die Arbeitssubstanz ein ideales Gas mit $\frac{C_p}{C_V}=\gamma$ ist, und berechne den Wirkungsgrad η_D des Diesel-Zyklus. Hinweis: drücke zuerst η_D durch die Temperaturen $T_{1,2,3,4}$ an den vier Eckpunkten aus. Der zweite Hauptsatz $\oint \frac{\delta Q}{T}=0$ liefert eine Beziehung zwischen ihnen. Benutze schließlich die Zustands- und Adiabatengleichung, um die Volumenverhältnisse r und r_c als alleinige Variablen zu haben.

2.3 Aufgabe 3:

Der Otto-Kreisprozess ist in der beigefügten Figur im pV-Diagramm skizziert. Die Arbeitssubstanz sei wieder ein ideales Gas. Drücke den Wirkungsgrad η_O des Otto-Zyklus durch das Kompressionsverhältnis $r=\frac{V_1}{V_2}$ aus. Hinweis: Verfahre analog wie beim Diesel-Zyklus.

Welcher der beiden Prozesse (Otto, Diesel) hat den höheren Wirkungsgrad?

2.4 Aufgabe 4:

Betrachte den sogenannten Stirling'schen Kreisprozess, wobei eine Wärmekraftmaschine (mit einem idealen Gas als Arbeitsmittel) mechanische Arbeit gemäß dem folgenden quasistatischen Zyklus leistet:

- Isotherme Expansion bei Temperatur T_1 vom Volumen V_1 auf das Volumen V_2 .
- Abkühlung bei konstantem Volumen V_2 von T_1 nach T_2 .
- \bullet Isotherme Kompression bei Temperatur T_2 von V_2 nach V_1 .
- \bullet Erwärmung bei konstantem Volumen V_1 von T_2 auf $T_1.$

Bestimme den Wirkungsgrad η für diesen Prozess. Was erhält man für η , falls man die im 2. Prozessschritt abgegebene Wärme zwischenspeichert und im 4. Prozessschritt vollständig wieder einspeisen könnte?

2.5 Aufgabe 5:

Wenn ein Carnotscher Kreisprozess linksläufig betrieben wird, wandelt er Arbeit in Wärme um. Der Carnot-Prozess kann auf diese Weise entweder einem kalten Reservoir Wärme entziehen, um ein bereits Warmes aufzuheizen (Wärmepumpe), oder einem bereits warmen Reservoir Wärme zuführen, um ein kaltes abzukühlen (Kältemaschine).

Die tatsächliche Technik ist natürlich wesentlich komplizierter, jedoch kann man damit eine Klimaanlage in erster Näherung modellieren.

In einem Beispiel arbeite der linksläufige Carnotprozess zwischen einem kalten Reservoir der Temperatur T_k und einem heißen Reservoir T_h .

Je nach Jahreszeit hat die Klimaanlage die oben erwähnten konträren Ziele:

- Wie groß ist die Leistungsziffer ϵ für eine Raumheizung $(T_h = 298K, T_k = 268K)$?
- Wie groß ist ϵ_0 im Falle einer Raumkühlung $(T_h = 313K, T_k = 298K)$?