```
In [23]: ▶
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import preprocessing,svm
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
```

In [24]:

df=pd.read_csv(r"C:\Users\DELL\Downloads\fiat500_VehicleSelection_Dataset.csv")
df

Out[24]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	1
0	1	lounge	51	882	25000	1	44.907242	8.6115
1	2	рор	51	1186	32500	1	45.666359	12.2418
2	3	sport	74	4658	142228	1	45.503300	11.4178
3	4	lounge	51	2739	160000	1	40.633171	17.6346
4	5	рор	73	3074	106880	1	41.903221	12.4956
1533	1534	sport	51	3712	115280	1	45.069679	7.7049
1534	1535	lounge	74	3835	112000	1	45.845692	8.6668
1535	1536	рор	51	2223	60457	1	45.481541	9.4134
1536	1537	lounge	51	2557	80750	1	45.000702	7.6822
1537	1538	рор	51	1766	54276	1	40.323410	17.5682

1538 rows × 9 columns

.

```
In [25]: ▶
```

```
df=df[['engine_power','km']]
df.columns=['Engine','Kilo']
```

In [26]: ▶

df.head(10)

Out[26]:

	Engine	Kilo
0	51	25000
1	51	32500
2	74	142228
3	51	160000
4	73	106880
5	74	70225
6	51	11600
7	51	49076
8	73	76000
9	51	89000

In [27]: ▶

sns.lmplot(x="Engine",y="Kilo",data=df,order=2,ci=None)

Out[27]:

<seaborn.axisgrid.FacetGrid at 0x1e945bb9e70>

In [28]:

df.describe()

Out[28]:

	Engine	Kilo
count	1538.000000	1538.000000
mean	51.904421	53396.011704
std	3.988023	40046.830723
min	51.000000	1232.000000
25%	51.000000	20006.250000
50%	51.000000	39031.000000
75%	51.000000	79667.750000
max	77.000000	235000.000000

```
H
In [29]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1538 entries, 0 to 1537
Data columns (total 2 columns):
     Column Non-Null Count Dtype
     Engine 1538 non-null
 0
                             int64
 1
     Kilo
             1538 non-null
                             int64
dtypes: int64(2)
memory usage: 24.2 KB
                                                                                        M
In [51]:
df.fillna(method='ffill',inplace=True)
C:\Users\DELL\AppData\Local\Temp\ipykernel_5708\4116506308.py:1: SettingWi
thCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-
view-versus-a-copy)
  df.fillna(method='ffill',inplace=True)
In [34]:
                                                                                        M
x=np.array(df['Engine']).reshape(-1,1)
y=np.array(df['Kilo']).reshape(-1,1)
In [45]:
df.dropna(inplace=True)
C:\Users\DELL\AppData\Local\Temp\ipykernel_5708\1379821321.py:1: SettingWi
thCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-doc
s/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://
pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returning-a-
view-versus-a-copy)
  df.dropna(inplace=True)
In [46]:
                                                                                        H
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
regr=LinearRegression()
regr.fit(x_train,y_train)
print(regr.score(x_test,y_test))
```

0.054152294106464716

60000 -

In [39]:

y_pred=regr.predict(x_test)
plt.scatter(x_test,y_pred,color='b')
plt.plot(x_test,y_pred,color='k')
plt.show()

130000120000100000900008000070000-

In [41]: ▶

```
df500=df[:][: 500]
sns.lmplot(x="Engine",y="Kilo",data=df500,order=1,ci=None)
```

Out[41]:

<seaborn.axisgrid.FacetGrid at 0x1e947631c00>


```
In [44]:

df500.fillna(method='ffill',inplace=True)
```

```
y=np.array(df500['Kilo']).reshape(-1,1)
df500.dropna(inplace=True)
```

x=np.array(df500['Engine']).reshape(-1,1)

```
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.25)
```

plt.show()

```
In [52]:

regr=LinearRegression()
regr.fit(x_train,y_train)
print("Regression:",regr.score(x_test,y_test))
y_pred=regr.predict(x_test)
plt.scatter(x_test,y_pred,color='b')
plt.plot(x_test,y_pred,color='k')
```

Regression: 0.054152294106464716


```
In [53]:

from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
model=LinearRegression()
model.fit(x_train,y_train)
```

Out[53]:

```
v LinearRegression
LinearRegression()
```

```
In [57]:

y_pred=model.predict(x_test)
r2=r2_score(y_test,y_pred)
print("R2_score:",r2)
```

R2 score: 0.054152294106464716

In []: