Semester IV

SY B. Tech. Information Technology (KJSCE SVU 2020)

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04C401	Pro	Probability, Statistics and Optimization Techniques								
	TH			P		TUT	Total			
Teaching Scheme(Hrs.)	3			-		• 1		1	4	
Credits Assigned		3		-		-		1	4	
	Marks									
To a second and the second	CA		ESE	TW	0	P&O	Total			
Examination Scheme	ISE	IA	ESE	1 44	U	rau	Total			
	30	20	50	25			125			

\$ Course Common with Computer Engineering

Course prerequisites: Basics of Statistics and Probability, Introductory Linear programming problems

Course Objectives:

This course Exposes students to the concepts of Correlation, Regression for given bivariate data. Students are made familiar with different discrete and continuous probability distributions. The course acquaints students with concepts of Large sample test, Small sample test and Chi – Square test. The course familiarizes students with different methods of solving Linear and Non Linear Programming problems. Some basic queuing theory models are also discussed in the course. Using these methods it will be possible to analyze and interpret a given real life situation and think of possible solutions.

Course Outcomes

- CO1. Apply concepts of Binomial, Poisson, Exponential and Normal distribution to solve Engineering problems.
- CO2. Apply concepts of correlation, regression for given bivariate data.
- CO3. Apply Large sample test and small sample test to analyze collected data.
- CO4. Apply concepts of Linear and Nonlinear programming methods to solve problems.
- CO5. Apply the methods of single server limited queue and single server unlimited queue models to analyze and interpret the data.

Module	Unit	Details	Hrs.	CO
No.	No.			
1		bility and Probability Distribution	12	CO1
	1.1	Conditional Probability, Bayes' theorem, Joint Probability		
	1.2	Discrete and Continuous Probability Distribution		
	1.3	Binomial Distribution, Poisson Distribution		
	1.4	Uniform Distribution, Normal Distribution, Exponential Distribution		
2	Corre	lation and Regression	06	CO2
	2.1	Correlation, Co-variance, Karl Pearson Coefficient of Correlation & Spearman's Rank Correlation Coefficient.		
	2.2	Regression Coefficients, lines of regression& logistic regression.		
3	Samp	ling Theory	07	CO3
	3.1	Sampling distribution. Test of Hypothesis. Level of significance, critical region. One tailed and two tailed tests. Interval Estimation of population parameters. Large and small samples.		
	3.2	Difference between sample mean and population means for large samples, Test for significance of the difference between the means of two large samples.		
	3.3	Student's t-distribution: Test for significance of the difference between sample mean and population means, Test for significance of the difference between the means of two Samples, paired t-test.		
	3.4	Chi-square distribution as a Test of Independence, Test of the Goodness of fit and Yate's correction.		
	3.5	Fisher's z-test		
4	Optin	nization Techniques	13	CO4
	4.1	Types of solution, Standard and Canonical form of LPP, Basic and feasible solutions, simplex method.		
	4.2	Artificial variables, Big –M method (method of penalty).		
	4.3	Duality and Dual Simplex method		
	4.4	Unconstrained optimization, problems of two or three variables with one equality constraint using Lagrange's Multiplier method.		
	4.5	Problems of two or three variables with one inequality constraint using Kuhn-Tucker conditions		
5	Queu	ing Theory	07	CO5
	5.1	Introduction, Features of Queuing , solution of Queuing Models.M/M/1(Single Server ,Unlimited Queue Model)		
	5.2	M/M/1 Single Server ,limited Queue Model		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication	
1	B. S. Grewal	Higher Engineering	Khanna	43 rd Edition	
		Mathematics	Publications, India	2014	
2	Erwin Kreyszig	Advanced Engineering	Wiley Eastern	10 th Edition	
2		Mathematics	Limited, India	2015	
3	J. K. Sharma	Operation research:	Laxmi	6th Edition 2017	
3		Theory and Applications	Publications, India		
4	S.C.Gupta and	Fundamentals of	Sultan Chand &	11 th Edition	
-	V.K.Kapoor	Mathematical Statistics	Sons	2009	
5	Ronald E.Walipole,	Probabilities & Statistics	Pearson Education	9 th Edition	
3	Raymond H.Myers	for Engineers & Scientists		2010	
	P. N. Wartikar and	A text book of Applied	Pune	6 th Edition	
6	J. N. Wartikar	Mathematics Vol I & II	VidyarthiGruha,	2012	
			India		

Term-Work will consist of Tutorials covering entire syllabus of "Probability, Statistics and Optimization Techniques" (116U04C401). Students will be graded based on continuous assessment of their term work. At least 2 tutorials will be conducted with the help of Mathematical and Statistical software in the Laboratory.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title									
116U04C402	Information Theory and Coding									
		P		TUT	Total					
Teaching Scheme(Hrs.)			-		1	4				
Credits Assigned		3		-		1	4			
	Marks									
	CA		ESE	TIXX/		D.C.	T-4-1			
Examination Scheme	ISE	IA	ESE	TW	О	P&O	Total			
	30	20	50	25			125			

Course prerequisites: Basic concepts of Discrete Mathematics, Data Communication and Networking

Course Objectives:

The objective of the course is to impart knowledge of foundation of Information theory – the theory that provides quantitative measures of information and allows us to analyze and characterize the fundamental limits of communication systems. It includes detailed knowledge of compression techniques and error control methods . The Course also covers concept of basic number theory which forms the foundation for the cryptography

Course Outcomes

- CO 1. Understand basics of Information Theory, Information Source and Channel.
- CO 2. Illustrate different Data Compression algorithms.
- CO 3. Demonstrate the concepts and techniques for error detection and correction.
- CO 4. Apply basic number theory concepts for securing information.

Module	Unit	Details	Hrs.	CO
No.	No.			
1	Basics	of Information Theory	6	CO1
	1.1	Introduction, Measure of Information, Entropy, Information Rate.		
	1.2	Joint and Conditional Entropies, Mutual Information for two		
		discrete random variables.		
	1.3	Channel models, Channel Capacity, Shannon's Theorem		
2	Source	10	CO2	
	2.1	Introduction, Coding Parameters, Source coding Theorem		
	2.2	Classification of Codes, Shannon-Fano coding, Huffman coding, Arithmetic coding		
	2.3	LZW coding, Run Length Encoding, Image Compression		
3	Error	Control Code :Linear block code	10	CO3
	3.1	Introduction, Types of codes, Types of Errors, Error Control Strategies, Modular Arithmetic, Use of Galois field and Primitive root for generator polynomial		
	3.2	Linear block codes-Introduction, Generator matrices, Parity check matrices.		
	3.3	Error syndrome, Error detection, Error detecting and error correcting capability.		
	3.4	Standard Array and Syndrome, Decoding, Hamming Code.		
4	Error	Control Code: Cyclic code and Convolution code	09	CO3
	4.1	Cyclic codes- Introduction, Generation, Syndrome computation and error detection, Decoding.		
	4.2	Hamming code- Error syndrome, Error Detection and correction, Decoding, Extended Hamming Code, Golay code, Error detection using Cyclic Redundancy check		
	4.3	Convolution codes- Introduction, Tree and Trellis Codes		
	4.4	Encoding, Decoding, Applications		
5	Basics	of Number Theory and Cryptography	10	CO4
	5.1	Prime Number Generation, Random Number Generation. Congruences, Solving Linear Congruences ax+by=d.		
	5.2	Chinese Remainder Theorem, Fermat's Little and Euler Theorem, Quadratic Residue, Legendre and Jacobi Symbols		
	5.3	Shannon's characteristics of good cipher, confusion and diffusion, concepts of encryption, decryption.		
	5.4	Historical background, Transposition: row key and column key, Substitution: Ceaser cipher (additive), Affine cipher (additive and multiplicative), Polyalphabetic and Monoalphabetic Ciphers: Vignere cipher.		
		Total	45	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr.	Name/s of Author/s	Title of Book	Name of	Edition and Year of
No.			Publisher	Publication
			with country	
1.	ArijitSaha,Nilotpal	Information Theory	Pearson	First Edition
	Manna,Surajit	Coding and	Education,	2013
	Mandal	Cryptography	India	
2.	Ranjan Bose	Information Theory	TMH, India	Third Edition
		Coding and		2016
		Cryptography		
3.	Khalid Sayood	Introduction to Data	Elsevier	Fourth Edition,
	-	Compression		2013
4.	Trappe and	Introduction to	Pearson	Second Edition
	Washington	Cryptography with	Education,	2006
		Coding theory	India	
5.	S Gravano	Introduction to	Oxford	First Edition 2007
		Error Control Codes	University	
			Press	
6.	William Stallings	Data and Computer	Pearson	Eighth Edition, 2007
		Communications	Education,	
			India	

• Term-Work will consist of tutorial covering entire syllabus of "Information Theory Coding" (116U04C402). Students will be graded based on continuous assessment of their term work.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title									
116U04C403		Analysis of Algorithms									
	TH		TH		TH			TUT	Total		
Teaching Scheme(Hrs.)		3		-		-	3				
Credits Assigned	3		-		-		-	3			
		Marks									
To a serious Alberta Callerina	CA		ECE	TDXX/		De O	Total				
Examination Scheme	ISE	IA	ESE	TW	U	P&O	Total				
	30	20	50	-			100				

Course prerequisites: Data Structures and Programming concepts

Course Objectives:

The objective of the course is to introduce the fundamentals of analysis of algorithms. The Specifications and process for algorithm analysis is covered using sample algorithms. The course helps understanding efficiency of algorithms and comparison of algorithms based on Efficiency. The course also covers different algorithm design strategies, along with examples.

Course Outcomes

- CO 1. Analyze time and space complexity of basic algorithms
- CO 2. Implement Greedy and Dynamic Programming algorithms
- CO 3. Implement Backtracking and Branch-and-bound algorithms
- CO4. Understand NP-Completeness concept

Module No.	Unit No.	Details	Hrs.	СО					
1	Introduction to Algorithms 1.1 Algorithms as a Technology, Analyzing and Designing								
	1.1	Algorithms as a Technology, Analyzing and Designing Algorithms, Rate of growth of functions, Asymptotic notations and order of growth. Common running times: Linear, quadratic, logarithmic etc. and its examples.							
	1.2	Recurrence relations and methods to solve them: Recursion tree, Substitution and Master Method. Probabilistic Analysis, The Hiring Problem, Indicator Random Variables, Randomized Algorithms							
2	Analys	sis of Basic Algorithms	12	CO1					
	2.1 Insertion sort, Selection sort, Heap sort, Sorting in Linear Time, Lower bounds for sorting, Counting Sort, Radix Sort								
	2.2	Medians and Order Statistics: Minimum and Maximum, Selection in expected Linear time, Selection in worst-case Linear Time.							
	2.3	Divide and Conquer: Quick sort, randomized Quick sort, Merge sort, Strassen's Matrix Multiplication Algorithm							
3	Greed	12	CO2						
	3.1	The Greedy Approach, Kruskal's algorithm for Minimum Spanning Tree, Dijkstra's algorithm Single Source Shortest Path, Job Sequencing: With and Without Deadlines, Knapsack Problem: 0/1 Knapsack							
		#Self-learning topic: Prim's Algorithm for Minimum Spanning Trees, Huffman Algorithm							
	3.2	Dynamic Programming and Optimization problems, Optical Binary Search Trees, Floyd-Warshall Algorithm for All Pair Shortest Path, Longest Common Subsequence, Travelling Salesman Problem							
		#Self-learning topic: Travelling Salesman Problem using Greedy Approach and Dynamic Programming							
4	Backtı	08	CO3						
	4.1	The Backtracking Technique, N-Queens Problem, Hamiltonian Circuit Problems, Sum of Subsets Problem,							
	4.2	Travelling Salesman Problem, 15 Puzzle Problem and 0/1 Knapsack using Branch and Bound							
CATIOOO	ı	CV D T1. IT AC 20/0C/2021	Da == 50	-5.62					

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Computability Theory						
	5.1	NP and NP complete					
	5.2	NP reducibility					
		Total	45				

Self-learning topics will be evaluated through IA and/or Lab.

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of Publication
1	T.H. Coreman , C.E. Leiserson,R.L. Rivest, and C. Stein	Introduction to algorithms	Prentice Hall India Publication	3rd Edition 2009
2	Richard E. Neapolitan	Foundation of Algorithms	Jones & Bartlett Students Edition	5th Edition 2016
3	Harsh Bhasin	Algorithms : Design & Analysis	Oxford Higher education, India	1st Edition 2013
4	Jon Kleinberg, Eva Tardos	Algorithm Design	Pearson India Education Services Pvt. Ltd.	10th Edition 2013
5	Jeffrey J. McConnell	Analysis of Algorithms : An Active Learning Approach	Jones and Bartlett Student Edition	2nd Edition 2017

• Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code		Course Title								
116U04C404		Advanced Databases								
	TH		P		TUT	Total				
Teaching Scheme(Hrs.)	3			-		-	3			
Credits Assigned	3			-				-	3	
		Marks								
E	CA		ESE	TW		P&O	Total			
Examination Scheme	ISE	IA	ESE	1 77	U	rao	Total			
	30	20	50	-			100			

Course prerequisites: Knowledge of Database Management systems

Course Objectives:

The course will impart the skills that can help design and develop advanced database models. Students will be able to select appropriate advanced database model depending on the application requirement. This course will also make them aware of challenges and limitations while implementing the models. Further, the student will learn that how enterprise can organize and analyze large amounts of data by creating a data warehouse.

Course Outcomes

- CO 1. Design advanced database systems using Parallel, Distributed and In-memory databases and its implementation.
- CO 2. Design advanced database systems using Object relational, Spatial and NOSQL databases and its implementation.
- CO 3. Understanding of data warehouse and its multi-dimensional modeling.
- CO 4. Apply ETL processing and Online Analytical Processing on the warehouse data.

Module No.	Unit No.	Details	Hrs.	СО
1	• Para	allel and Distributed Databases		
	1.1	Parallel Database Concepts, Parallel Query Evaluation		
	1.2	Parallelizing Individual Operations-Sorting, Join		
	1.3	Distributed Database - Concepts, Types , Architecture		
	1.4	Distributed Database Design - Data Fragmentation, Replication, and Allocation Techniques	10	CO 1
	1.5	Query Processing and Optimization in Distributed Databases.		
	1.6	Concurrency Control and Recovery in Distributed Databases		
	1.7	In-memory Databases: Architecture, in- memory database vs disk residence database, practical applications of in-memory databases, challenges of in-memory database.		
2	• Obj	ect Based, Spatial Databases and NOSQL Databases		
	2.1	Features Of Object based DBMS		
	2.2	Database Design concepts for an ORDBMS		
	2.3	Nested Relations and Collections		
	2.4	Spatial Database Components, Spatial Objects	10	CO 2
	2.5	Spatial Dimensions, Spatial Relations, Spatial SQL Queries		
	2.6	NOSQL databases: What is NOSQL?, NOSQL business drivers		
	2.7	NOSQL data architectural patterns: Document type, Key-Value, Graph and Column family		
3	•Intro	oduction to Data Warehousing and multi-dimensional Modeling		
	3.1	Operational Vs Decisional Support System ,The Need for Data Warehousing		
	3.2	Data Warehouse Definition, Features , The Information Flow Mechanism, Architecture , Role of Metadata, Classification of Metadata	10	CO 3
	3.3	Data Warehouse Vs Data Marts, Data Warehousing Design Strategies, Data Warehouse Modeling Vs Operational Database Modeling		
	3.4	The Star Schema - Fact Tables and Dimension Tables, The Fact less Fact Table, Keys in the Data Warehouse Schema- Primary		

		Keys, Surrogate Keys & Foreign Keys, The Snowflake Schema, Fact Constellation Schema(Family of Stars)				
	3.5	Updates To Dimension Tables - Slowly Changing Dimensions, Type 1, Type 2 and Type 3 Changes, Large Dimensions, Rapidly Changing Dimensions, Junk Dimensions, Aggregate Fact Tables				
	3.6	Data lake, Architecture of Data lake, Data Warehouse Vs Data lake				
4	• ETI	L Process				
	4.1	Introduction to ETL Process				
	4.2 Data Extraction - Identification of Data Sources, Types - Immediate Data Extraction and Deferred Data Extraction					
	4.3 Data Transformation: Tasks Involved in Data Transformation					
	4.4	Data Loading: Techniques, Loading the Fact Tables and Dimension Tables				
	4.5	Data Quality, Issues in Data Cleansing				
5	Online	e analytical processing (OLAP)	06	CO4		
	5.1 Need for Online Analytical Processing; OLTP Vs OLAP, OLAP and Multidimensional Analysis					
	5.2 • OLAP Operations in Multidimensional Data Model - Rollup, Drill-down, Dice, Slice and Pivot					
	5.3	OLAP Models: MOLAP, ROLAP, HOLAP				
		Total	45			

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher	Edition and Year of
110.			with country	Publication
1.	Elmasri and Navathe	Fundamentals of Database	Pearson	7th Edition
		Systems	Education	2015
2.	Korth,	Database System Concepts	McGraw -	6 th Edition
	Slberchatz,Sudarshan		Hill	2010
3.	Raghu Ramakrishnan and	Database Management	McGraw Hill	3rd Edition
	Johannes Gehrke	Systems		2002
4.	Paulraj Ponniah,	Data Warehousing	Wiley India	2 nd Edition 2009
		Fundamentals: A		
		Comprehensive Guide for		
		IT Professionals		
5.	McCreary, D., and Kelly	Making sense of NoSQL	Manning Press	2014

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code	Course Title																	
116U04L401		Competitive Programming Laboratory																
	TH		P		TUT	Total												
Teaching Scheme(Hrs.)	-		2	2		4												
Credits Assigned	-		-		1		1		1		1		1		1		2	3
	Marks																	
Examination Scheme	ISE	A IA	ESE	TW	o	P&O	Total											
	-	-	-	50	-	50	100											

Course prerequisites: Knowledge about any of the programming language, Data Structures

Course Objectives:

The major objective of the course is to develop the programmer with the comprehensive capabilities required for the efficient software development. It covers best practices required for the quick and optimized development of the most frequently used operations and algorithms belonging to different application domains.

Course Outcomes

- CO1. Inculcate the best practices that are essential for competitive programming
- CO2. Understand the fundamental concepts for managing the data using different data structures such as lists, queues, trees etc.
- CO3 . Understand the Graphs, related algorithms, efficient implementation of those algorithms and applications
- CO4. Learn effective computation and programming practices for numeric and string operations and computation geometry

Module	Unit	Details	Hrs.	CO
No.	No.		0.5	001
1	1.1	practices for Competitive programing Mastering the programming language, efficient testing and	05	CO1
	1.1	debugging		
	1.2	Quick identifying problem type, Algorithm analysis, time		
		complexity, calculation rules, common time complexities,		
_		estimated efficiency, examples		
2		mization of Data Structures and Algorithms	08	CO2
	2.1	Optimized implementation of Arrays, Dynamic arrays, single, doubly linked list		
	2.2	Optimized implementation of Stack, queue, priority queue, tree,		
		Tree traversal, Optimized binary search tree (OBST), Heap, Hash tables, Set and Map structures, Trie structure		
		Segment Trees using Lazy Propagation, Fenwick Trees or Binary		
		Indexed Trees, Applications of Fenwick and Segment Trees,		
		Heavy light Decomposition, Sparse table algorithm		
	2.3	Basic concepts of Greedy programming, coin problems		
		, scheduling, data compression, knapsack problem		
	2.4	Basic concepts of dynamic programming, coin problems, longest		
2	- 04 -	increasing subsequence, knapsack problem	00	001
3	3.1	gs, Arithmetic and Algebra operations Introduction to Strings, Arithmetic and Algebra operations and its	08	CO3
	3.1	applications		
		Character codes, representing strings		
	3.2	Searching, Pattern searching, String manipulation, string merging		
		, pruning search, generating subsets, generating permutations		
	3.3	Number theory, primes and factors, modular arithmetic, Program		
		arithmetic operations on rationals, Algebra: square root		
		algorithms – combining algorithms, Logarithm, Basic counting techniques, Other Counting Sequences		
	3.4	Recurrence Relations, Binomial Coefficients, Recursion and		
	3.4	Induction Problems		
4	Grap		05	CO3
	4.1	Introduction to Graph theory and applications, Data structure for		
		graphs, Traversal: Breadth first and Depth first		
	4.2	Dijkstra's Shortest path algorithm, Kruskals algorithm for		
		spanning trees, topological sorting, Cycle detection, all longest		
_		paths		
5		nputational Geometry	04	CO4
	5.1	Introduction to Computational Geometry and its applications,		
	5.2	Line segment and intersections, Polygon and angle computation Algorithms on Grids		
	3.4	Algorithms on Grids Total	30	
		Total	30	

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

- Term-Work will consist of Tutorials and laboratory work covering entire syllabus and a Mini Project developed incorporating all the technical skills learned in "Competitive Programming Laboratory" (116U04L401), Students will be graded based on continuous assessment of their laboratory work; one of the assessment will be of 10 marks which may be conducted using any of the online platforms available to evaluate the best programming practices such as HackerRank, LeetCode, CodeChef etc.
- Practical and oral Examination will be based on laboratory work and entire syllabus of "Competitive Programming Laboratory" (116U04L401).

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with	Edition and Year of Publication
			country	
1.	Antti	Guide to Competitive	Springer	2018
	Laaksonen	Programming		
2.	Gayle	Cracking the Coding	CareerCup,	2015
	Laakmann	Interview	LLC	
	McDowell			
3.	Steven S.	Programming challenges	Springer	2006
	Skiena Miguel	The		
	A. Revilla	Programming Contest		
		Training Manual		
4.	Antti	Competitive		Hand book, 2018
	Laaksonen	Programmer's		
		Handbook		
5.	Steven Halim	Competitive		Handbook for ACM ICPC
	and Felix Halim	Programming 3: The		And IOI
		Lower Bounds of		CONTESTANTS 2013
		Programming		
		Contests		

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

Course Code				Course Title										
116U04L402		Web Programming I Laboratory												
	TH		P	P		Total								
Teaching Scheme(Hrs.)	-			2	2		4							
Credits Assigned	-		-		1		1		1		1 2		2	3
	Marks													
Examination Scheme	ISE	A IA	ESE	TW	o	P&O	Total							
	-	-	-	50	-	50	100							

Course prerequisites: Knowledge of Programming language

Course Objectives:

The objective of this project-driven course is to acquaint with necessary techniques for developing client/server applications. The course will introduce concept of HTML and CSS to create and maintain Web pages, grid layout and responsive web page. Students will be familiarizing with Document Object Model to learn how browser represents web page. In addition, the course will make students conversant with JavaScript, ReactJS, JSON.

Course Outcomes

At the end of successful completion of the course the student will be able to

CO1: Comprehend basics of web technologies

CO2: Create Web pages using HTML 5 and CSS

CO3: Apply JavaScript and JSON for web application development

CO4: web application using ReactJS

Module	Unit	Details	Hrs.	CO				
No. 1	No.	luction to web technologies	02	CO1				
1	1.1 Introduction to OSI layers, Web system architecture- 1,2,3 and n tier architecture, URL, domain name system, overview of HTTP							
	1.2	Planning a Web Site – Objective and Goals, Audience, Organizing contents, Publishing of Web Site, Function of Web Server, Introduction to user interface						
		#Self-learning topic: Working of Web Browser, Introduction to Internet Application Protocols – FTP, Telnet, SMTP						
2	• Web	Page Creation with HTML 5 and CSS3	09	CO2				
	2.1	Formatting and Fonts, Anchors, Backgrounds, images, Hyperlinks, Lists, Tables						
	2.2	HTML5, New Element, Forms, Audio and Video, HTML5 Canvas, SVG in HTML5, Google Map, Geolocation, Web storage, Web Worker, Application cache						
	2.3 Understanding the need for CSS, Basic syntax and structure using CSS, Positioning using CSS, Apply styles to Box Model Class and ID							
	2.4	Create a flexible content layout, Implement a layout using multi-column; implement a layout using position floating, implement a layout using grid alignment						
	2.5	Responsive Web page, Web accessibility						
		#Self-learning topic - HTML <meta tag=""/>, Introduction to XHTML						
3	Introd	duction to XML	02	CO1				
	3.1	Syntax, Document structure, Document type definitions, Namespaces, XML schemas, Displaying raw XML documents, XSLT,XML Parsing						
		#Self-learning topic - Using XML as Database						
4	Work	king with JavaScript and JSON	08	CO3				
	4.1	Introduction to JavaScript with variables, Types, operators, conditions, functions						
	4.2	JavaScript Object, Array, Regular Expression, Event Handling						
	4.3 Comprehending advanced Javascript functions-Closures, Callback, Promise and Arrow Functions							
	4.4	The DOM and the Web browser Environment, DOM Manipulation						
	4.5	Data handling with JSON – Data types, Objects, Arrays, JSON Parse, Stringify						
	4.6	Introduction to CBOR, JSON Vs. CBOR						

K. J. Somaiya College of Engineering, Mumbai -77 (A Constituent College of Somaiya Vidyavihar University)

5	Intro	oduction to ReactJS	09	CO4
	5.1	Evolutiion of React, Classes, ES6 Modules, Functional programming with Javascript		
	5.2	React page setup, React Elements, React components		
	5.3	React elements as JSX, Bable, Recipies as JSX, React Fragments		
	5.4	Working with webpack		
	•	Total	30	

- Students should prepare all self-learning topics on their own. Self-learning topics will enable students to gain extended knowledge of the topic. Assessment of these topics may be included in term work and Laboratory.
- Term-Work will consist of Tutorials and laboratory work covering entire syllabus.
 Students will be graded based on continuous assessment of their term work.
 Practical and Oral examination based on laboratory experiments and entire syllabus

Recommended Books:

Sr. No.	Name/s of Author/s	Title of Book	Name of Publisher with country	Edition and Year of
. 1	Kogent Learning Solutions	HTML 5 Black Book: Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP and	DreamTech Press,India	Publication 2 nd Edition, 2016
2	Inc., Robin Nixon	jQuery Learning PHP, MySQL & JavaScript: With jQuery, CSS & HTML5	O'Reilly Media	5 th Edition, 2018
3	Flanagan, David	JavaScript: the definitive guide	O'Reilly Media, Inc	7 th Edition, 2020
4	Kogent Learning Solutions Inc.,	Web Technologies: HTML, JAVASCRIPT, PHP, JAVA, JSP, ASP.NET, XML and Ajax, Black Book: HTML, Javascript, PHP, Java, Jsp, XML and Ajax, Black Book	DreamTech Press,India	2013
5	Alex Banks, Eve Porcello	Learning React	O'Reilly Media	2 nd Edition, 2020

[•] Instructor needs to provide additional resources to students for in-depth understanding and practical applicability of the indicated topic/topics.

Course Code	Course Title							
116U04L403	Aı	sis of A	Algorithms Laboratory					
	TH		P		TUT	Total		
Teaching Scheme(Hrs.)		-		2		-	2	
Credits Assigned		-				-	1	
	Marks							
	C	4	EGE	reve v	o	D.O.O.	75. ()	
Examination Scheme	ISE	IA	ESE	TW		P&O	Total	
	-	-	-	25	-	25	50	

- Term-Work will consist of practical covering entire syllabus of "Analysis of Algorithms Laboratory" (116U04C403). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Analysis of Algorithms Laboratory" (116U04C403).

Course Code	Course Title								
116U04L404	Advanced Datab				atabases Laboratory				
	TH		P		TUT	Total			
Teaching Scheme(Hrs.)		-		2		•	2		
Credits Assigned	-			1		-	1		
	Marks								
Examination Scheme	CA		EGE			De O	Total		
Dammadi Scheme	ISE	IA	ESE	TW	O	P&O	Total		
	_	-	_	25	•	25	50		

- Term-Work will consist of practical covering entire syllabus of "Advanced Databases" (116U04C404). Students will be graded based on continuous assessment of their term work.
- Practical and Oral Examination will be based on laboratory work and entire theory syllabus of "Advanced Databases" (116U04C404).