

Application No. 09/972,994
Attorney Docket No. 01807.001874

VERSION WITH MARKINGS TO SHOW CHANGES MADE TO CLAIMS

1. (Amended) [Filtering] A filtering method [adapted to transform] for transforming an input digital signal $[(X_n)]$ into one or more output digital signals $[(y_n)]$ having even-indexed samples $[(y_{2n})]$ and odd-indexed samples $[(y_{2n+1})]$, said method including at least one iteration $[(506)]$ which contains] comprising the steps of:

[- an operation of] modifying the even-indexed samples $[(y_{2n})]$ by a function $[(R)]$ of weighted odd-indexed samples $[(\alpha_{0,j} \cdot y_{2n+mj})]$; and

[- an operation of] modifying the odd-indexed samples $[(y_{2n+1})]$ by a function $[(R)]$ of weighted even-indexed samples $[(\beta_{0,j} \cdot (y_{2n} - y_{2n+2}))]$,

[said] wherein the weighted samples [being] are obtained by at least one weighting operation[,

said method being characterised in that at least one of said weighting operations is] applied to [the] a difference between two consecutive even-indexed samples.

2. (Amended) [Filtering] A filtering method according to Claim 1, [characterised in that] wherein said [operation of] step of modifying the odd-indexed samples $[(y_{2n+1})]$ is performed [following] after said [operation of] step of modifying the even-indexed samples $[(y_{2n})]$.

3. (Amended) [Filtering] A filtering method according to Claim 1 or 2,
[characterised in that] wherein said iteration [(506) consists notably of] further comprises:

[-] weighting, by [means of] a first weighting coefficient [$(\alpha_{0,j})$], at least one odd-indexed sample [(y_{2n+m_j})] adjacent to an even-indexed sample currently being modified, so as to obtain a weighted odd-indexed sample [$(\alpha_{0,j} \cdot y_{2n+m_j})_i$];

[-] modifying at least one even-indexed sample [(y_{2n})] using the at least one weighted odd-indexed sample [$(\alpha_{0,j} \cdot y_{2n+m_j})_i$];

[-] weighting, by [means of] a second weighting coefficient [$(\beta_{0,j})$], even-indexed samples [$(y_{2n}-y_{2n-2})$] adjacent to an odd-indexed sample currently being modified, so as to obtain weighted even-indexed samples [$(\beta_{0,j} \cdot (y_{2n}-y_{2n-2}))_i$] and

[-] modifying at least one odd-indexed sample [(y_{2n+1})] using at least one weighted even-indexed sample [$(\beta_{0,j} \cdot (y_{2n}-y_{2n+2}))_i$].

4. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 3, [characterised in that] wherein the second weighting coefficient [$(\beta_{0,j})$] is a function of the first weighting coefficient [$(\alpha_{0,j})$].

5. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 4, [characterised in that] wherein the second weighting coefficient [$(\beta_{0,j})$] depends

on] is a function of the first weighting coefficient [$(\alpha_{0,j})$] as follows:

$$\beta_{0,j} = m_j / \left(1 - 2 \sum_{i=0}^j \alpha_{0,i} \right)$$

where $\alpha_{0,j}$ designates the first weighting coefficient, $\beta_{0,j}$ designates the second weighting coefficient, i and j are integers, [and] m_j is a value defined by [the] a recurrence $m_0=(-1)^{L_0}$ and $m_j=-m_{j-1}$, and L_0 [being] is a predetermined integer.

6. (Amended) [Filtering] A filtering method according to [any one of the preceding claims, characterised in that,] Claim 1, wherein at each iteration,[the] an odd-indexed sample $[(y_{2n}+m_j)]$ adjacent to [the] an even sample currently being modified is alternately [the] a sample of rank immediately below $[(y_{2n-1})]$ or immediately above $[(y_{2n+1})]$ the adjacent even sample.

7. (Amended) [Filtering] A filtering method according to [any one of the preceding claims, characterised in that it includes] Claim 1, further comprising, at the end of said iteration [(506)], an additional step of filtering [step (508) including an operation of] that includes weighting by [means of] a third weighting coefficient $[(\gamma)]$.

8. (Amended) [Filtering] A filtering method according to [the preceding claim, characterised in that] Claim 7, wherein the third weighting coefficient $[(\gamma)]$ is a function of the weighting coefficient used [at] in the preceding step, as follows:

$$\gamma = -1 / (2\beta_{0, L_0 - 1})$$

where γ designates the third weighting coefficient, L_0 is a predetermined parameter and $\beta_{0, L_0 - 1}$ designates the weighting coefficient used [at] in the preceding step.

9. (Amended) [Filtering] A filtering method according to [any one of the preceding claims, characterized in that] Claim 1, wherein the digital input signal $[(X_n)]$ represents an image.

10. (Amended) [Filtering] A filtering method [adapted to transform] for transforming one or more input digital signals $[(y_n)]$ into an output digital signal $[(X_n)]$, [said] the input signals including even-indexed samples $[(y_{2n})]$ and odd-indexed samples $[(y_{2n+1})]$, said method including at least one iteration [(618) which contains] comprising the steps of:

[- an operation of] modifying odd-indexed samples $[(X_{2n+1})]$ by [means of] a function $[(R)]$ of weighted even-indexed samples $[(\beta_{0j} \cdot (X_{2n} - X_{2n+2}))]$; and
[- an operation of] modifying even-indexed samples $[(X_{2n})]$ by [means of] a

function [(R)] of weighted odd-indexed samples $[(\alpha_{0,j} \cdot (X_{2n+mj}))]$,

[said] wherein the weighted samples [being] are obtained by [means of] at least one weighting operation[,

 said method being characterised in that at least one of said weighting operations is] applied to [the] a difference between two consecutive even-indexed samples.

11. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 10, [characterised in that] wherein said [operation of] step of modifying even-indexed samples $[(X_{2n})]$ is performed [following] after said [operation of] step of modifying odd-indexed samples $[(X_{2n+1})]$.

12. (Amended) [Filtering] A filtering method according to Claim 10 or 11, wherein [characterised in that] said iteration [(618) consists notably of] further comprises steps of:

 [-] weighting, by [means of] a [fourth] first weighting coefficient $[(\beta_{0,j})]$, even-indexed samples $[(X_{2n}-X_{2n+2})]$ adjacent to an odd sample currently being modified, so as to obtain weighted even-indexed samples $[(\beta_{0,j} \cdot (X_{2n} - X_{2n+2}))]$;

 [-] modifying at least one odd-indexed sample $[(X_{2n+1})]$ using at least one weighted even-indexed sample $[(\beta_{0,j} \cdot (X_{2n} - X_{2n+2}))]$;

[-] weighting, by [means of] a [fifth] second coefficient $[(\alpha_{0,j})]$, at least one odd-indexed sample $[(X_{2n+m_j})]$ adjacent to an even sample currently being modified, so as to obtain a weighted odd-indexed sample $[(\alpha_{0,j} \cdot (X_{2n+m_j}))]$; and

[-] modifying at least one even-indexed sample $[(X_{2n})]$ using at least one weighted odd-indexed sample $[(\alpha_{0,j} \cdot (X_{2n+m_j}))]$.

13. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 12, [characterised in that] wherein the [fourth] first weighting coefficient $[(\beta_{0,j})]$ is a function of the [fifth] second weighting coefficient $[(\alpha_{0,j})]$.

14. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 13, [characterised in that] wherein the [fourth] first weighting coefficient $[(\beta_{0,j})]$ depends on] is a function of the [fifth] second weighting coefficient $[(\alpha_{0,j})]$ as follows:

$$\beta_{0,j} = m_j / \left(1 - 2 \sum_{i=0}^j \alpha_{0,i} \right)$$

where $\alpha_{0,j}$ designates the [fifth] second weighting coefficient, $\beta_{0,j}$ designates the [fourth] first weighting coefficient, i and j are integers, [and] m_j is a value defined by [the] a recurrence $m_0 = (-1)^{L_0}$ and

$m_j = -m_{j-1}$, and L_0 [being] is a predetermined integer.

15. (Amended) [Filtering] A filtering method according to [any one of Claims] Claim 10 [to 15], [characterised in that] wherein, at each iteration, [the] an odd-indexed sample $[(x_{2n} + m_j)]$ adjacent to [the] an even sample currently being modified is alternately [the] a sample of rank immediately below $[(x_{2n-1})]$ or immediately above $[(x_{2n+1})]$ the adjacent even sample.

16. (Amended) [Filtering] A filtering method according to [any one of Claims] Claim 10 [to 15], [characterised in that it includes] further comprising, prior to said iteration [(618)], an additional step of filtering [(614) including an operation of] that includes weighting by [means of] a [sixth] third weighting coefficient $[(\gamma)]$.

17. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 16, [characterised in that] wherein the [sixth] third weighting coefficient $[(\gamma)]$ is a function of the weighting coefficient used [at] in the following step, as follows:

$$\gamma = -1 / (2 \beta_{0, L_0 - 1})$$

where γ designates the [sixth] third weighting coefficient, L_0 is a predetermined parameter and

$\beta_{0, L_0 - 1}$ designates the weighting coefficient used [at] in the following step.

18. (Amended) [Filtering] A filtering method according to [any one of Claims] Claim 10 [to 17], [characterised in that] wherein the digital [input] output signal [(X_n)] represents an image.

19. (Amended) [Filtering] A filtering method according to [any one of the preceding claims] Claim 1 or 10, [characterised in that the] wherein said modification [operations] steps [consist of] comprise applying an approximation function [(R)].

20. (Amended) [Filtering] A filtering method according to [the preceding claim] Claim 19, [characterised in that] wherein the approximation function [(R)] is [the] an identity function.

21. (Amended) [Filtering] A filtering method according to Claim 19, [characterised in that] wherein the approximation function [(R)] is a function of a real variable which supplies the closest integer to the variable.

22. (Amended) [Filtering] A filtering method according to Claim 19,

[characterised in that] wherein the approximation function [(R)] is a function of a real variable which supplies the first integer below the variable.

23. (Amended) [Filtering] A filtering method according to Claim 19, [characterised in that] wherein the approximation function [(R)] is a function of a real variable which supplies the first integer above the variable.

24. [Filtering] A filtering method according to Claim 19, [characterised in that] wherein the approximation function [(R)] is a function of a variable decomposed into sub-variables whose sum is equal to the variable, which supplies a sum of approximate values of the sub-variables, each of the approximate values of the sub-variables being[,] (i) either a function of a real variable which supplies the integer closest to the variable, [or] (ii) a function of a real variable which supplies the first integer below the variable, or (iii) a function of a real variable which supplies the first integer above the variable.

25. (Amended) [Signal] A signal processing device [(10)], [characterised in that it has] comprising means adapted to implement a filtering method according to [any one of the preceding claims] Claim 1 or 10.

26. (Amended) [Digital filtering] A digital filtering device adapted to transform an input digital signal $[(X_n)]$ into one or more output digital signals $[(y_n)]$ containing even-indexed samples $[(y_{2n})]$ and odd-indexed samples $[(y_{2n+1})]$, said filtering device [having] comprising:

[-] at least one weighting module[,]; and
[-] means for modifying even-indexed samples $[(y_{2n})]$ by [means of] a function $[(R)]$ of weighted odd-indexed samples $[(\alpha_{0,j} \cdot y_{2n+m_j})]$,
[said] wherein weighted samples [being] are supplied by said at least one weighting [means] module, said modification means functioning iteratively, so as to modify even-indexed samples $[(y_{2n})]$ at least once and then odd-indexed samples $[(y_{2n+1})]$ at least once, and [said filtering device being characterised in that] said at least one [of said] weighting [means] module receives as an input the difference between two consecutive even-indexed samples.

27. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 27, [characterised in that] wherein said means for modifying odd-indexed samples $[(y_{2n+1})]$ are] is disposed downstream of said means for modifying even-indexed samples $[(y_{2n})]$.

28. (Amended) [Filtering] A digital filtering device according to Claim 26 or

27, [characterised in that it has] further comprising:

[-] means for weighting, by [means of] a first weighting coefficient [$(\alpha_{0,j})$], at least one odd-indexed sample [(y_{2n+m_j})] adjacent to an even sample currently being modified, so as to obtain a weighted odd-indexed sample [$(\alpha_{0,j} \cdot y_{2n+m_j})_i$];

[-] means for modifying at least one even-indexed sample [(Y_{2n})] from] using at least one weighted odd-indexed sample [$(\alpha_{0,j} \cdot (Y_{2n+m_j}))_i$]

[-] means for weighting, by [means of] a second weighting coefficient [$(\beta_{0,j})$], even-indexed samples [$(y_{2n} - y_{2n+2})$] adjacent to an odd sample currently being modified, so as to obtain weighted even-indexed samples [$(\beta_{0,j} \cdot (y_{2n} - y_{2n+2}))_i$] and

[-] means for modifying at least one odd-indexed sample [(y_{2n+1})] using the at least one weighted even-indexed sample [$(\beta_{0,j} \cdot (y_{2n} - y_{2n+2}))_i$].

29. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 28, [characterised in that] wherein the second weighting coefficient [$(\beta_{0,j})$] is a function of the first weighting coefficient [$(\alpha_{0,j})$].

30. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 29, [characterised in that] wherein the second weighting coefficient [$(\beta_{0,j})$] depends on] is a function of the first weighting coefficient [$(\alpha_{0,j})$] as follows:

$$\beta_{0,j} = m_j / \left(1 - 2 \sum_{i=0}^j \alpha_{0,i} \right)$$

where $\alpha_{0,j}$ designates the first weighting coefficient, $\beta_{0,j}$ designates the second weighting coefficient, i and j are integers, [and] m_j is a value defined by [the] a recurrence of $m_0=(-1)^{L_0}$ and $m_j=-m_{j-1}$, and L_0 [being] is a predetermined integer.

31. (Amended) [Filtering] A digital filtering device according to [any one of claims] Claim 26 [to 30], [characterised in that] wherein, at each iteration, [the] an odd-indexed sample $[(y_{2n+m_j})]$ adjacent to [the] an even sample currently being modified is alternatively the sample of rank immediately below $[(y_{2n-1})]$ or immediately above $[(y_{2n+1})]$ the adjacent even sample.

32. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 26 [to 31], [characterised in that it has] further comprising additional filtering means including means of weighting by [means of] a third weighting coefficient $[(\gamma)]$.

33. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 32, [characterised in that] wherein the third weighting coefficient $[(\gamma)]$ is

a function of the weighting coefficient used upstream of said additional filtering means, as follows:

$$\gamma = -1 / (2\beta_{0, L_0 - 1})$$

where γ designates the third weighting coefficient, L_0 is a predetermined parameter and $\beta_{0, L_0 - 1}$ designates the weighting coefficient used upstream of said additional filtering means.

34. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 26 [to 33], [characterised in that] wherein the input digital signal $[(X_n)]$ represents an image.

35. (Amended) [Digital] A digital filtering device adapted to transform one or more input digital signals $[(y_n)]$ into an output digital signal $[(X_n)]$, [said] the input signals containing even-indexed samples $[(X_{2n})]$ and odd-indexed samples $[(X_{2n+1})]$, said filtering device [having] comprising:

[-] at least one weighting means[,];
[-] means for modifying odd-indexed samples $[(X_{2n+1})]$ by [means of] a function of weighted even-indexed samples $[(\beta_{0,j} \cdot (X_{2n} - X_{2n+2}))]$; and

[-] means for modifying even-indexed samples $[(X_{2n})]$ by [means of] a function $[(R)]$ of weighted odd-indexed samples $[(\alpha_{0j} \cdot X_{2n+mj})]$,
wherein said weighted samples [being] are supplied by said at least one weighting means, said modification means functions [functioning] iteratively, so as to modify odd-indexed samples $[(X_{2n+1})]$ at least once and then even-indexed samples $[(X_{2n})]$ at least once, and [said filtering device being characterised in that at least one of] wherein said at least one weighting means receives as an input the difference between two consecutive even-indexed samples.

36. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 35, [characterised in that] wherein said means for modifying even-indexed samples $[(X_{2n})]$ is disposed downstream of said means for modifying odd-indexed samples $[(X_{2n+1})]$.

37. (Amended) [Filtering] A digital filtering device according to [Claim] Claims 35 or 36, [characterised in that it has] further comprising:

[-] means for weighting, by [means of] a [fourth] first weighting coefficient $[(\beta_{0j})]$, even-indexed samples $[(X_{2n}-X_{2n+2})]$ adjacent to an odd sample currently being modified, so as to obtain weighted even-indexed samples $[(\beta_{0j} \cdot (X_{2n} - X_{2n+2}))]$;

[-] means for modifying at least one odd-indexed sample $[(X_{2n+1})]$ using at least one weighted even-indexed sample $[(\beta_{0,j} \cdot (X_{2n} - X_{2n+2}))]$;

[-] means for weighting, by [means of] a [fifth] second coefficient $[(\alpha_{0,j})]$, at least one odd-indexed sample $[(X_{2n+m_j})]$ adjacent to an even sample currently being modified, so as to obtain a weighted odd-indexed sample $[(\alpha_{0,j} \cdot (X_{2n+m_j}))]$; and

[-] means for modifying at least one even-indexed sample $[(y_{2n})]$ using at least one weighted odd-indexed sample $[(\alpha_{0,j} \cdot (X_{2n+m_j}))]$.

38. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 37, [characterised in that] wherein the [fourth] first weighting coefficient $[(\beta_{0,j})]$ is a function of the [fifth] second weighting coefficient $[(\alpha_{0,j})]$.

39. (Amended) [Filtering] A digital filtering device according to [the preceding claim, characterised in that] Claim 38 wherein the [fourth] first weighting coefficient $[(\beta_{0,j})]$ depends on] is a function of the [fifth] second weighting coefficient $[(\alpha_{0,j})]$ as follows:

$$\beta_{0,j} = m_j / \left(1 - 2 \sum_{i=0}^j \alpha_{0,j} \right)$$

where $\alpha_{0,j}$ designates the [fifth] second weighting coefficient, $\beta_{0,j}$ designates [a] the

[fourth] first weighting coefficient, i and j are integers, [and] m_j is a value defined by [the] a recurrence $m_0 = (-1)^{L_0}$ and $m_j = -m_{j-1}$, and L_0 [being] is a predetermined integer.

40. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 35 [to 39], [characterised in that] wherein, at each iteration, an [the] odd-indexed sample $[(X_{2n+m_j})]$ adjacent to an [the] even sample currently being modified is alternatively the sample of rank immediately below $[(X_{2n-1})]$ or immediately above $[(X_{2n+1})]$ the adjacent even sample.

41. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 35 [to 40], [characterised in that it also has] further comprising additional filtering means including means for [of] weighting by [means of] a [sixth] third weighting coefficient $[(\gamma)]$.

42. (Amended) [Filtering] A digital filtering device according to [the preceding claim] Claim 41, [characterised in that] wherein the [sixth] third weighting coefficient $[(\gamma)]$ is a function of the weighting coefficient used downstream of said additional filtering means, as follows:

$$\gamma = -1 / (2 \beta_{0, L_0 - 1})$$

where γ designates the [sixth] third weighting coefficient, L_0 is a predetermined parameter and $\beta_{0, L_0 - 1}$ designates the weighting coefficient used downstream of said additional filtering means.

43. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 35 [to 42], [characterised in that] wherein the digital output signal $[(X_n)]$ represents an image.

44. (Amended) [Filtering] A digital filtering device according to [any one of Claims] Claim 26 [to 43] or 35, [characterised in that] wherein said modification means [have] has means for applying an approximation function $[(R)]$.

45. (Amended) [Filtering] A digital filtering device according to [the preceding claim, characterised in that] Claim 44, wherein the approximation function $[(R)]$ is [the] an identity function.

46. (Amended) [Filtering] A digital filtering device according to Claim 44, [characterised in that] wherein the approximation function $[(R)]$ is a function of a real variable which supplies the integer closest to the variable.

47. (Amended) [Filtering] A digital filtering device according to Claim 44,
[characterised in that] wherein the approximation function [(R)] is a function of a real variable
which supplies the first integer below the variable.

48. (Amended) [Filtering] A digital filtering device according to Claim 44,
[characterised in that] wherein the approximation function [(R)] is a function of a real variable
which supplies the first integer above the variable.

49. (Amended) [Filtering] A digital filtering device according to Claim 44,
[characterised in that] wherein the approximation function [(R)] is a function of a variable
decomposed into sub-variables whose sum is equal to the variable, which supplies a sum of
approximate values of the sub-variables, each of the approximate values of the sub-variables
being[,] either (i) a function of a real variable which supplies the integer closest to the variable,
(ii) [or] a function of a real variable which supplies a first integer below the variable, or (iii) a
function of a real variable which supplies the first integer above the variable.

50. (Amended) [Signal] A signal processing device [(2, 5), characterised in
that it includes] comprising a digital filtering device according to [any one of Claims] Claim 26
[to 49] or 35.

51. (Amended) [Signal] A signal processing device [(2, 5) including]
comprising at least two digital filtering devices according to [any one of Claims] Claim 26 [to 49] or 35, the output signal of one of the digital filtering devices being the input signal of the other digital filtering device.

52. (Amended) [Digital] A digital apparatus[, characterised in that it includes]
comprising a signal processing device according to [any one of Claims] Claim 25[, 50 and 51].

53. (Amended) [Digital] A digital photographic apparatus[, characterised in that it includes] comprising a signal processing device according to [any one of Claims] Claim 25[, 50 and 51].

54. (Amended) [Encoding] An encoding method[, characterised in that it includes] comprising steps adapted to implement a filtering method according to [any one of Claims] Claim 1 [to 24] or 10.

55. (Amended) [Encoding] An encoding device[, characterised in that it includes] comprising at least one filtering device according to [any one of Claims] Claim 26 [to 49] or 35.

56. (Amended) [Digital] A digital compression method[, characterised in that it includes] comprising steps adapted to implement a filtering method according to [any one of Claims] Claim 1 [to 24] or 10.

57. (Amended) [Digital] A digital signal compression device[, characterised in that it includes] comprising at least one filtering device according to [any one of Claims] Claim 26 [to 49] or 35.

58. (Amended) An information storage means[, possibly removable,] which can be read by a computer or by a microprocessor, and which stores a program, [characterised in that it comprises] comprising means adapted to implement a filtering method according to [any one of Claims] Claim 1 [to 24] or 10.

59. (Amended) A computer program product[, characterised in that it contains sequences of instructions] comprising code for implementing a filtering method according to [any one of Claims] Claim 1 [to 24] or 35.

60. (New) A digital apparatus comprising a signal processing device according to Claim 50.

61. (New) A digital photographic apparatus comprising a signal processing device according to Claim 50.

62. (New) A digital apparatus comprising a signal processing device according to Claim 51.

63. (New) A digital photographic apparatus comprising a signal processing device according to Claim 51.