Unit 5: Exponential and Logarithmic Functions 5.3 Transformations of Logarithmic Functions

General Observations

The graph of a logarithmic function where b > 1 is always increasing. The greater the value of the base, b, the slower the curve increases as x increases.

The graph of a logarithmic function where 0 < b < 1 is always decreasing. The smaller the value of the base, b, the slower the curve decreases as x increases.

Transformations of Logarithmic Functions

The parameters a, b, d, and c in the equation $y = a \log_b(k(x-d)) + c$ correspond to the following transformations:

- If a < 0, $y = log_b(x)$ is reflected in the *x*-axis.
- $y = log_b(x)$ is stretched vertically about the x-axis by a factor of |a|
- If $k < 0, y = log_b(x)$ is reflected in the y-axis.
- $y = log_b(x)$ is stretched horizontally about the y-axis by a factor of $\frac{1}{|k|}$
- $y = log_b(x)$ is translated horizontally d units.

If d > 0, then $y = log_b(x)$ is translated right.

If d < 0, then $y = log_b(x)$ is translated left.

• $y = log_b(x)$ is translated vertically c units.

If c > 0, then $y = log_b(x)$ is translated up.

If c < 0, then $y = log_b(x)$ is translated down.

The transformation of each point is defined by the mapping $(x, y) \rightarrow \left(\frac{1}{k}x + d, ay + c\right)$

Example 1

Graph the function $f(x) = 2\log_5(3-x) + 1$. Identify the domain, range, and any asymptote of the function. Is the function increasing or decreasing?

Solution:

Start with the graph of $y = \log_5(x)$.

Mapping rule: $(x,y) \rightarrow (\underline{\hspace{1cm}},\underline{\hspace{1cm}})$

х	$y = \log_5(x).$	X	f(x)
$\frac{1}{5}$			
5 1			
5			
25			

	1	1	1	1	1	1	1	

Practice- Using a mapping rule, sketch the following functions on the grids provided.

1. a)
$$f(x) = 2\log_2(x+3)$$

b)
$$f(x) = -\log_5(\sqrt{x}) - 3$$

c) $f(x) = 3\log_2(-x) + 1$

d)
$$f(x) = -\log\left(\frac{1}{3}x\right) + 4$$

e)*
$$f(x) = 1 - \log_2(x^2)$$

			1		

f)
$$y = 2\log_4(3x+12)-4$$

Exit Card!

Graph the function $y = \frac{6}{\log_{(5x-15)}(4)}$ on the grid below.

Mapping statement: $(x,y) \rightarrow$

