

Microcontroladores AVR

Introdução

Os microcontroladores AVR RISC da fabricante ATMEL são de 8 bits e 32 bits, com arquitetura Harvard.

O código fonte (programa – firmware) para o microcontrolador necessita ser escrito, compilado, depurado e gravado.

Todas estas tarefas são realizadas com o suporte de softwares adequados.

32kB de memória flash para armazenamento de programas.

2kB de memória RAM estática para armazenamento de dados.

1kB EEPROM para armazenamento não-volátil.

Microcontroladores AVR

Introdução

23 linhas de entrada/saída de propósito geral (GPIO).

32 registradores de propósito geral.

3 temporizadores/contadores.

USART (Universal Synchronous/Asynchronous Receiver Transmitter).

Porta serial I2C (Inter-Integrated Circuit), também chamada de TWI (Two Wire Interface).

Porta serial SPI (Serial Peripheral Interface).

6 canais de 10 bits para conversão A/D

Correspondência entre ATMEGA e Arduino

Arduino	ATmega328	Arduino	ATmega328	Arduino	Atmega328 PORTB	
Analog In	PORTC		PORTD			
A0	PC0	0	PD0	8	PB0	
A1	PC1	1	PD1	9	PB1	
A2	PC2	2	PD2	10	PB2	
A3	PC3	3	PD3	11	PB3	
A4	PC4	4	PD4	12	PB4	
A5	PC5	5	PD5	13	PB5	
		6	PD6			
		7	PD7			

Pinos de Alimentação

PINOS DE ALIMENTAÇÃO				
vcc	Tensão de alimentação.			
AVCC	Pino para a tensão de alimentação do conversor AD. Deve ser externamente conectado ao VCC, mesmo se o ADC não estiver sendo utilizado.			
AREF	Pino para a tensão de referência analógica do conversor AD.			
GND	Terra.			

	$\overline{}$	
(PCINT14/RESET) PC6 □	1	28 PC5 (ADC5/SCL/PCINT13)
(PCINT16/RXD) PD0 □	2	27 PC4 (ADC4/SDA/PCINT12)
(PCINT17/TXD) PD1 □	3	26 PC3 (ADC3/PCINT11)
(PCINT18/INT0) PD2 □	4	25 PC2 (ADC2/PCINT10)
(PCINT19/OC2B/INT1) PD3 □	5	24 PC1 (ADC1/PCINT9)
(PCINT20/XCK/T0) PD4 □	6	23 PC0 (ADC0/PCINT8)
VCC VCC	7	22 ■ <u>GND</u>
<u>GND</u> ■	8	21 AREF
(PCINT6/XTAL1/TOSC1) PB6 □	9	20 AVCC
(PCINT7/XTAL2/TOSC2) PB7 [10	19 ☐ PB5 (SCK/PCINT5)
(PCINT21/OC0B/T1) PD5 □	11	18 ☐ PB4 (MISO/PCINT4)
(PCINT22/OC0A/AIN0) PD6 [12	17 ☐ PB3 (MOSI/OC2A/PCINT3)
(PCINT23/AIN1) PD7 □	13	16 ☐ PB2 (SS/OC1B/PCINT2)
(PCINT0/CLKO/ICP1) PB0 □	14	15 ☐ PB1 (OC1A/PCINT1)

Port B

É uma porta bidirecional de 8 bits, com resistores *pull-up* internos, selecionáveis para cada pino.

As funções alternativas para os pinos da PORTB são:

- XTAL
- SPI
- Comparadores de saída (Output Compare) para temporizadores

Port B

PORTB	
PB0	ICP1 – entrada de captura para o Temporizador/Contador 1. CLKO – saída de <i>clock</i> do sistema. PCINT0 – interrupção 0 por mudança no pino.
PB1	OC1A – saída da igualdade de comparação A do Temporizador/Contador 1 (PWM). PCINT1 – interrupção 1 por mudança no pino.
PB2	SS – pino de seleção de escravo da SPI (<i>Serial Peripheral Interface</i>). OC1B – saída da igualdade de comparação B do Temporizador/Contador 1 (PWM). PCINT2 – interrupção 2 por mudança no pino.
PB3	MOSI – pino mestre de saída e escravo de entrada da SPI. OC2A – saída da igualdade de comparação A do Temporizador/Contador 2 (PWM). PCINT3 – interrupção 3 por mudança no pino.
PB4	MISO – pino mestre de entrada e escravo de saída da SPI. PCINT4 – interrupção 4 por mudança no pino.
PB5	SCK – pino de <i>clock</i> da SPI. PCINT5 – interrupção 5 por mudança no pino.
PB6	XTAL1 – entrada 1 do oscilador ou entrada de <i>clock</i> externa. TOSC1 – entrada 1 para o oscilador do temporizador (RTC). PCINT6 – interrupção 6 por mudança no pino.
РВ7	XTAL2 – entrada 2 do oscilador. TOSC2 – entrada 2 para o oscilador do temporizador (RTC). PCINT7 – interrupção 7 por mudança no pino.

Port C

É uma porta bidirecional de 7 bits, com resistores pull-up internos, selecionáveis para cada pino.

As funções alternativas para os pinos do PORTC são:

- Entradas analógicas (ADC)
- I2C.

Port C

PORTC	
PC0	ADC0 – canal 0 de entrada do conversor AD. PCINT8 – interrupção 8 por mudança no pino.
PC1	ADC1 – canal 1 de entrada do conversor AD. PCINT9 – interrupção 9 por mudança no pino.
PC2	ADC2 – canal 2 de entrada do conversor AD. PCINT10 – interrupção 10 por mudança no pino.
PC3	ADC3 – canal 3 de entrada do conversor AD. PCINT11 – interrupção 11 por mudança no pino.
PC4	ADC4 – canal 4 de entrada do conversor AD. SDA – entrada e saída de dados da interface a 2 fios (TWI – I2C). PCINT12 – interrupção 12 por mudança no pino.
PC5	ADC5 – canal 5 de entrada do conversor AD. SCL – <i>clock</i> da interface a 2 fios (TWI – I2C). PCINT13 – interrupção 13 por mudança no pino.
PC6	RESET – pino de inicialização. PCINT14 – interrupção 14 por mudança no pino.

Port D

É uma porta bidirecional de 8 bits, com resistores pull-up internos, selecionáveis para cada pino.

As funções alternativas para os pinos do PORTD são:

- Porta serial do USART.
- Interrupções externas INT0 e INT1.
- Comparadores de saída para temporizadores.

Port D

PORTD	
PD0	RXD – pino de entrada (leitura) da USART. PCINT16 – interrupção 16 por mudança no pino.
PD1	TXD – pino de saída (escrita) da USART. PCINT17 – interrupção 17 por mudança no pino.
PD2	INT0 – entrada da interrupção externa 0. PCINT18 – interrupção 18 por mudança no pino.
PD3	INT1 – entrada da interrupção externa 1. OC2B – saída da igualdade de comparação B do Temporizador/Contador 2 (PWM) PCINT19 – interrupção 19 por mudança no pino.
PD4	XCK – <i>clock</i> externo de entrada e saída da USART. T0 – entrada de contagem externa para o Temporizador/Contador 0. PCINT 20 – interrupção 20 por mudança no pino.
PD5	T1 – entrada de contagem externa para o Temporizador/Contador 1. OC0B – saída da igualdade de comparação B do Temporizador/Contador 0 (PWM). PCINT 21 – interrupção 21 por mudança no pino.
PD6	AIN0 – entrada positiva do comparador analógico. OC0A – saída da igualdade de comparação A do Temporizador/Contador 0 (PWM). PCINT 22 – interrupção 22 por mudança no pino.
PD7	AIN1 – entrada negativa do comparador analógico. PCINT 23 – interrupção 23 por mudança no pino.

Características

- 131 Instruções poderosas, a maioria executada em um único ciclo de relógio.
- Um banco de 32x8 registros de uso geral.
- Até 20 MIPS (Milhões de instruções por segundo) a 20 MHz.
- Um multiplicador de hardware onchip de 2 ciclos.

ATmega328 Features				
No. of Pins	28			
CPU	RISC 8-Bit AVR			
Operating Voltage	1.8 to 5.5 V			
Program Memory	32KB			
Program Memory Type	Flash			
SRAM	2048 Bytes			
EEPROM	1024 Bytes			
ADC	10-Bit			
Number of ADC Channels	8			
PWM Pins	6			
Comparator	1			
Packages (4)	8-pin PDIP32-lead TQFP28-pad QFN/MLF32-pad QFN/MLF			
Oscillator	up to 20 MHz			
Timer (3)	8-Bit x 2 & 16-Bit x 1			

Características

- Memória de programa FLASH de 32 KB, programável dentro do sistema.
- Memória SRAM interna de 2 KBytes.
- Memória EEPROM de 1 KByte.
- 2 Temporizadores / Contadores de 8 bits.
- 1 Temporizador / Contador de 16 bits.

	2010-0-39
Enhanced Power on Reset	Yes
Power Up Timer	Yes
I/O Pins	23
Manufacturer	Microchip
SPI	Yes
I2C	Yes
Watchdog Timer	Yes
Brown out detect (BOD)	Yes
Reset	Yes
USI (Universal Serial Interface)	Yes
Minimum Operating Temperature	-40 C to +85 C

Características

- 6 canais PWM.
- 6 canais analógicos para o ADC.
- 1 porta serial USART.
- 1 interface serial SPI.
- 1 interface serial de 2 fios, compatível com I2C.
- 1 temporizador de vigilância.
- 1 Um comparador analógico on-chip.
- Interrupções.
- Vários modos de baixo consumo

Arquitetura

Assembly

O assembly é uma linguagem de baixo nível e permite obter o máximo desempenho de um microcontrolador, gerando o menor número de bytes de programa combinados a uma maior velocidade de processamento.

Todavia, o assembly só será eficiente se o programa estiver bem estruturado e empregar algoritmos adequados.

Programar em assembly exige muito esforço de programação.

Assembly é a linguagem da CPU do microcontrolador!

CAMINHOS

QUE CONECTAM

COM O FUTURO

Assembly

```
//LED é o substituto de PB5 na programação
          = PB5
.equ LED
                        //endereço de início de escrita do código
.ORG 0x000
INICIO:
                       //carrega R16 com o valor 0xFF
   LDI R16,0xFF
   OUT DDRB, R16
                        //configura todos os pinos do PORTB como saída
PRINCIPAL:
     SBI PORTB, LED
                        //coloca o pino PB5 em 5V
                        //chama a sub-rotina de atraso
     RCALL ATRASO
                        //coloca o pino PB5 em ØV
    CBI PORTB, LED
     RCALL ATRASO
                        //chama a sub-rotina de atraso
     RJMP PRINCIPAL
                        //volta para PRINCIPAL
                        //atraso de aprox. 200ms (16 MHz)
ATRASO:
   LDI R19,16
volta:
   DEC R17
                       //decrementa R17, começa com 0x00
                        //enquanto R17 > 0 fica decrementando R17
   BRNE volta
                        //decrementa R18, começa com 0x00
   DEC R18
                        //enquanto R18 > 0 volta decrementar R18
   BRNE volta
   DEC R19
                        //decrementa R19
                        //enquanto R19 > 0 vai para volta
   BRNE volta
   RET
```


Linguagem C

Com a evolução tecnológica (compiladores), o Assembly foi quase que totalmente substituído pela linguagem C.

As vantagens do uso do C são numerosas:

- Redução do tempo de desenvolvimento.
- O reuso do código é facilitado.
- Facilidade de manutenção.
- Portabilidade.

Linguagem C

- O problema de um código em C é que o mesmo pode consumir muita memória e reduzir a velocidade de processamento.
- Os compiladores tentam traduzir da melhor forma o código para o Assembly (antes de se tornarem código de máquina), mas esse processo não consegue o mesmo desempenho de um código escrito exclusivamente em Assembly.
- Como os compiladores C são eficientes para a arquitetura do AVR, a programação dos microcontroladores ATMega é feita em C.

Só existe a necessidade de se programar puramente em Assembly em casos críticos.

Linguagem C

```
#define F CPU 16000000UL
                           //define a frequência do microcontrolador 16MHz
#include <avr/io.h>
                            //definições do componente especificado
#include <util/delay.h>
                           //biblioteca para o uso das rotinas de delay
//Definicões de macros
#define set_bit(Y,bit_x) (Y|=(1<<bit_x))</pre>
                                            //ativa o bit x da variável Y
#define clr bit(Y,bit x) (Y&=~(1<<bit x)) //limpa o bit x da variável Y
                                           //testa o bit x da variável Y
#define tst_bit(Y,bit_x) (Y&(1<<bit_x))</pre>
#define cpl bit(Y,bit x) (Y^=(1<<bit x))</pre>
                                            //troca o estado do bit x da variável Y
#define LED PB5
                            //LED é o substituto de PB5 na programação
int main( )
                           //configura todos os pinos do PORTB como saídas
    DDRB = 0xFF;
    while(1)
                           //laco infinito
       set_bit(PORTB, LED); //liga LED
        delay ms(200);
                         //atraso de 200 ms
       clr bit(PORTB, LED); //desliga LED
                                                                                    7,2 vezes maior
                                                                    216 Bytes
        delay_ms(200);
                         //atraso de 200 ms
```


Linguagem "Arduino"

30 bytes Assembly 216 bytes C 1084 bytes IDE Arduino

Introdução

Quando desejamos programar um microcontrolador, é fundamental o conhecimento de suas características (arquitetura).

Um dos pontos iniciais de grande importância é a manipulação de registradores.

Um registrador é um tipo de memória de pequena capacidade porém muito rápida, contida na CPU, utilizado no armazenamento temporário de dados durante o processamento.

Os registradores estão no topo da hierarquia de memória, sendo desta forma o meio mais rápido e de menor custo para armazenar um dado.

Introdução

Os mesmos podem ser divididos em registradores de propósito geral ou de função específica (SFR).

Os registradores (SFR – Special Function Regiters) recebem nomes específicos e têm função bem definida: guardar a configuração e o estado de funcionamento atual do microcontrolador.

Introdução

Normalmente, cada bit do registrador tem uma função específica. Assim, temos um registrador para definir se as portas são de entrada ou de saída, ativar e desativar interrupções, apresentar o estado da CPU, etc.

Os registradores de I/O são o painel de controle dos Microcontroladores pois todas as configurações de trabalho, incluindo acesso às entradas e saídas, se encontram nessa parte da memória.

Introdução

PORTB – The Port B Data Register

Bit	7	6	5	4	3	2	1	0	_
0x05 (0x25)	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	
Read/Write	R/W	1							
Initial Value	0	0	0	0	0	0	0	0	

PORTB

Prof. João Magalhães

Horário de Atendimento:

• Segunda-feira: 17h30

• Quinta-feira: 19h30

E-mail: joao.magalhaes@inatel.br

Celular: (35) 99895-4450

Linkedin: https://www.linkedin.com/in/joaomagalhaespaiva/

