Coherencia wavelet, una herramienta para el análisis dinámico entre series temporales.

Christian Paredes Aguilera

En colaboración con: Gabriel Rosario Roselló Jorge Valero

XI Congreso InvestMat

10 Enero 2024

Coherencia wavelet, una herramienta para el análisis dinámico entre series temporales.

- Introducción
- 2 Construcción
- Resultados de datos empíricos
- 4 Conclusión
- Bibliografía

Existen diversas técnicas, para analizar completamente dos variables a lo largo del tiempo:

- Coeficiente de correlación de Pearson → Correlación.
- Series de Fourier → Frecuencia.
- Causalidad de Granger → Causalidad.

10 Enero 2024

¿Existe otra técnica que sea capaz de análisis conjuntamente la Correlación, la Frecuencia, la Causalidad y más?

SI!!!

WAVELETS: Coherencia wavelet y diferencia de fase.

Ventajas de usar wavelets

Ventajas de usar wavelets en series de tiempo:

- Resolución en tiempo y frecuencia.
- Análisis multiescala.
- Manejo de datos no estacionarios.

Definición de coherencia wavelet

Cuando hablamos de coherencia wavelet, nos referimos a una relación dinámica.

Definición

La coherencia wavelet entre dos series de tiempo x(t) e y(t) es una función de tiempo y escala definida por:

$$R_{xy}^{2}(\tau,s) = \frac{\left| S\left(s^{-1} W_{xy;\psi(\tau,s)} \right) \right|^{2}}{S\left(s^{-1} \left| W_{x;\psi}(\tau,s) \right|^{2} \right) S\left(s^{-1} \left| W_{y;\psi}(\tau,s) \right|^{2} \right)} \tag{1}$$

6/21

Ejemplo

Demos un ejemplo:

$$\frac{\left|S\left(s^{-1}W_{xy;\psi(\tau,s)}\right)\right|^{2}}{S\left(s^{-1}\left|W_{x;\psi}(\tau,s)\right|^{2}\right)S\left(s^{-1}\left|W_{y;\psi}(\tau,s)\right|^{2}\right)}$$
 En pocas palabras la coherencia

wavelet es el grado con el que correlacionan dos series de temporales en función del tiempo y la frecuencia.

Objetivo

Ahora, para hablar de **causalidad**, necesitamos definir **diferencia de fase**. Que será el objetivo de esta presentación, seguido de detallar los **datos** analizados y presentar **resultados** empíricos.

Construcción

Transformada Wavelet Cruzada

La transformada de wavelet cruzada de dos series de tiempo x(t) y y(t) se define como:

Definición

$$W_{xy;\psi}(\tau,s) = W_{x;\psi}(\tau,s)W_{y;\psi^*}(\tau,s)$$
 (2)

Diferencia de Fase

La **diferencia de fase** entre x(t) y y(t) se define como:

Definición

$$\phi_{xy} = \tan^{-1} \left(\frac{\Im \left\{ S \left(s^{-1} W_{xy;\psi}(\tau, s) \right) \right\}}{\Re \left\{ S \left(s^{-1} W_{xy;\psi}(\tau, s) \right) \right\}} \right), \quad con \quad \varphi_{xy} \in [-\pi, \pi].$$
 (3)

Donde $\mathfrak J$ y $\mathfrak R$ son las partes imaginarias y reales de la transformada de wavelet cruzada suavizada, respectivamente.

Construcción

Retraso de Tiempo Instantáneo

Podemos convertir la diferencia de fase en el **retraso de tiempo instantáneo** entre x(t) y y(t) de la siguiente manera:

$$(\Delta t)_{xy} = \frac{\phi_{xy}}{2\pi f},\tag{4}$$

Donde $2\pi f$ es la frecuencia angular con respecto a la escala de tiempo s, y la frecuencia de Fourier usual f se da por:

$$f = \frac{\omega_{\psi}}{2\pi s},\tag{5}$$

Por lo tanto, el retraso de tiempo $(\Delta t)_{xy}$ se da finalmente por:

$$(\Delta t)_{xy} = \frac{\varphi_{xy} \cdot s}{2\pi},$$

Construcción de la Construcción

Interpretación de las Flechas

Las diferencias de fase se representan como flechas en los gráficos de coherencia de wavelet. La dirección de las flechas tiene los siguientes significados:

- Flechas apuntando a la derecha: x(t) y y(t) están en fase (o relacionadas positivamente).
- Flechas apuntando a la izquierda: x(t) y y(t) están fuera de fase (o relacionadas negativamente).
- Flechas apuntando hacia arriba: x(t) adelanta a y(t) en un cuarto de la escala correspondiente o se retrasa detrás de y(t) en tres cuartos de la escala correspondiente.
- Flechas apuntando en otras direcciones: indican retrasos o adelantos entre x(t) y y(t).

Las diferencias de fase también pueden sugerir causalidad entre x(t).

Construcción

Ejemplo

Descripción de datos

Utilizamos datos mensuales de la Unión Europea a partir de enero de 1997 hasta octubre de 2023. Extraídos del Banco Central de Europa, de las variables:

- Crecimiento de dinero (HIPC).
- Inflación (M1).

Gráficos de series de tiempo

Figura: Señal relativa al agregado monetario M1. Elaboración propia.

Figura: Señal relativa al HICP (Harmonised Index of Consumer Prices). Elaboración propia.

15 / 21

Series de Fourier

Figura: Transformada de Fourier de agregado monetario M1. Elaboración propia.

Figura: Transformada de Fourier de HICP (Harmonised Index of Consumer Prices). Elaboración propia

10 Enero 2024

Causalidad de Granger

H0	Decision	Distribution
Exclude lagged Y1 in Y2 equation	Cannot reject H0	Chi2(10)

Statistic	PValue
14.14	0.16671

CriticalValue 18.307

Cuadro: Resultados de la prueba de causalidad de Granger. Elaboración propia.

Coherencia Wavelet y diferencia de fase

Figura: Transformada de Fourier de HICP (Harmonised Index of Consumer Prices). Elaboración p

18 / 21

Conclusión

La **Coherencia Wavelet** y su complemento la Diferencia de Fase son técnicas poderosas para el análisis de series de tiempo. Permiten analizar la correlación en tiempo y frecuencia, así como la relación causal entre dos variables. A diferencia de otras técnicas como la correlación de Pearson, la transformada de Fourier y la causalidad de Granger, estas proporcionan una visión más dinámica de las relaciones entre las series de tiempo. Son especialmente útiles para manejar datos no estacionarios y proporcionar una visión detallada de cómo las relaciones entre las variables cambian con el tiempo y a diferentes frecuencias.

Fin

¡Muchas gracias por vuestra atención!

Bibliografía

- AGUIAR-CONRARIA, L., AZEVEDO, N. & SOARES, M.J., Using wavelets to decompose the time-frequency effects of monetary policy, Physica A: Statistical Mechanics and its Applications **387** (2008), pp., 2863-2878.
- JIANG, C., CHANG, T., LI XL., Money growth and inflation in China: New evidence from a wavelet analysis, International Review of Economics & Finance **35**, (2015), pp. 249-261.
- TORRENCE C. & COMPO, G., A Practical Guide to wavelet analysis, Bulletin of the American Meteorological Society **79** (1998), pp., 61-78.
- European Central Bank

