Controlling Self-Landing Rockets Using CVXPY

Philipp Schiele Steven Diamond

Eric Luxenberg Stephen Boyd

Austin, TX July 10, 2023

Outline

Anatomy of a CVXPY problem

```
import cvxpy as cp
x = cp.Variable(n)
objective = cp.sum_squares(A@x-b) + gamma*cp.norm(x,1)
constraints = [cp.norm(x,"inf") <= 1]
problem = cp.Problem(cp.Minimize(objective), constraints)
opt_val = problem.solve()
solution = x.value</pre>
```

- x: n-dimensional optimization variable
- objective: convex objective function
- constraints: constraints defining a convex set
- problem: optimization problem
- problem.solve(): solve the problem, return optimal value
- solution: optimal value of the variable x

Convexity analysis

- ▶ How can CVXPY determine if a problem is convex?
- ► Recall: A convex optimization problem has the form

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m$
 $Ax = b$

- ▶ variable $x \in \mathbf{R}^n$
- equality constraints are linear
- $ightharpoonup f_0, \dots, f_m$ are **convex**

Convexity analysis cont.

- ▶ How can CVXPY determine if a *function* is convex?
- ▶ Determining if an arbitrary function is convex is hard
- Yet, CVXPY can determine convexity efficiently in many cases
- Let us recap the definition of a convex function

Curvature: Convex, concave, and affine functions

• f is convex if for any $x, y, \theta \in [0, 1]$,

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

- ightharpoonup f is convex if -f is convex
- ▶ f is affine if it is convex and concave, i.e.,

$$f(\theta x + (1 - \theta)y) = \theta f(x) + (1 - \theta)f(y)$$

for any x, y, $\theta \in [0, 1]$

A general composition rule

 $h(f_1(x), \dots, f_k(x))$ is convex when h is convex and for each i

- \blacktriangleright h is increasing in argument i, and f_i is convex, or
- \blacktriangleright h is decreasing in argument i, and f_i is concave, or
- $ightharpoonup f_i$ is affine
- there's a similar rule for concave compositions (just swap convex and concave above)
- allows us to compose convex functions from a small set of building blocks with known curvature
- This is the basis for Disciplined Convex Programming (DCP)

Convex functions: Basic examples

- $> x^p \ (p \ge 1 \text{ or } p \le 0), \text{ e.g., } x^2, \ 1/x \ (x > 0)$
- ▶ e^x
- $\triangleright x \log x$
- $\triangleright a^T x + b$
- $\triangleright x^T P x (P \succeq 0)$
- ightharpoonup ||x|| (any norm)
- $ightharpoonup \max(x_1,\ldots,x_n)$

Example

let's show that

$$f(x) = \sum_{i=1}^{n} e^{(a_i^T x + b_i)_+}$$

is convex, where $(z)_+ = \max(z,0)$

- $ightharpoonup a_i^T x + b_i$ is affine
- $(z)_+$ is convex, so $(a_i^T x + b_i)_+$ is convex
- $ightharpoonup e^z$ is convex and increasing, so the composition is convex
- sum of convex functions is convex

DCP Analyzer

▶ analyzed by dcp.stanford.edu (Diamond 2014)

Exercise: DCP analysis

See notebook DCP_analysis.ipynb

CVXPY is not a solver

- best thought of as a compiler
- provides modeling language
- verifies problem convexity
- transforms problem into standard form
- includes interfaces to many solvers