NERO: A Neural Rule Grounding Framework for Label-Efficient Relation Extraction

Wenxuan Zhou, Hongtao Lin, Bill Yuchen Lin, Ziqi Wang, Junyi Du, Leonardo Neves, and Xiang Ren

University of Southern California, Tsinghua University, Snapchat Inc.

Relation Extraction

Microsoft was founded by Bill Gates.

Relation: founded_by

Mike was born March 26, 1965, in US.

Relation: origin

What is the **semantic relationship** between the given entities?

Neural Model for Relation Extraction

Need a lot of human-annotated labels!

Research question:

How to train a good neural model with less human labor?

Standard Pipeline for Labeling Data

Slow, redundant annotation efforts on similar instances!

Semi-supervised Learning: Self-Training

Can create pseudo labeled data, but will suffer from cascading error aggregation

(Rosenberg et al., 2005)

Alternative Labeling Scheme: Surface Pattern Rules

Corpus Labels

Microsoft was founded by Bill Gates in 1975. Apple was founded by Steven Jobs in 1976. Amazon was founded by Jeff Bezos in 1994. ORG: FOUNDED_BY ORG: FOUNDED_BY ORG: FOUNDED_BY

SUBJ-ORG was founded by **OBJ-PER** → **ORG**: **FOUNDED_BY**

Annotaator

Labeling Rules

Annotate contextually similar instances via much fewer rules

(Hearst, 1992)

Challenge: Language Variations

A lot of similar sentences cannot be matched ⇒ Not enough training data ⇒ Poor performance

Do we have to add more labeling rules?

Rethinking the Matching Process

Soft-matching

Rethinking the Matching Process

Our Idea: Neural Rule Grounding for Data Augmentation

Generalizing rules' coverage via text similarity

Soft Rule Matcher: Architecture

Joint Parameter Learning: Relation Extractor + Soft Rule Matcher

Joint Parameter Learning: Relation Extractor + Soft Rule Matcher

Contrastive loss for discriminating rule bodies

Joint Parameter Learning: Relation Extractor + Soft Rule Matcher

$$L = L_{matched} + \alpha \cdot L_{unmatched} + \beta \cdot L_{rules} + \gamma \cdot L_{clus}$$

Generating Labeling Rules

Corpus

Results on Relation Extraction

Relation Extraction Performance (in F1 score) on TACRED

Study on Label Efficiency

Spent 40min on labeling instances from TACRED

Dashed: Avg # of rules / sentences labeled by annotators.

Solid: Avg model F1 trained with corresponding annotations.

{Rules + Neural Rule Grounding} produces much more effective model with limited time!

Conclusion

- Soft-matching mechanism for increased coverage.
- A novel framework for label-efficient relation extraction.
 - Hard-matching + Dynamic Soft-matching
 - Joint Parameter Learning
- Code available at https://github.com/INK-USC/NERO