Jane Street Market Prediction: Kaggle Project

Shreya Vontela

Masters In Financial Engineering at UC Berkeley

Problem Statement

Weight and Returns 130 Masked Features Day (0-500) date ts_id weight feature_1 feature_2 feature_128 feature_129 resp 0 0.000000 0.006270 -1.872746-2.1912422.301488 11,445807 0 -1.304614 1.898684 1 16.673515 -0.009792 -1.349537 -1.7047091 0 6.638248 9.427299 0 2 0.000000 0.023970 0.812780 -0.256156 3.856384 1.013469 3 0 0.000000 -0.003200 1.174378 0.344640 0.362636 3.926633 0 -0.002604 -3.172026-3.093182 4 0.138531

Trade or Not Trade (Target Variable)

Predict Action

Timestamp of trades

Problem Statement

Weight and Returns 130 Masked Features Day (0-500) date ts_id weight feature_1 feature_2 feature_128 feature_129 resp 0 0.000000 0.006270 -1.872746-2.1912422.301488 11,445807 0 1.898684 -1.304614 -0.009792 -1.349537 -1.7047091 0 1 16.673515 6.638248 9.427299 0 2 0.000000 0.023970 0.812780 -0.256156 3.856384 1.013469 3 0 0.000000 -0.003200 1.174378 0.344640 0.362636 3.926633 0 -3.172026-3.093182 4 0.138531 -0.002604

Trade or Not Trade (Target Variable)

Predict Action

Not Given In Train Data

Timestamp of trades

Not Available In test data

Daily Returns:

$$p_i = \sum_{j} (weight_{ij} * resp_{ij} * action_{ij}),$$

Sharpe Ratio:

$$t = \frac{\sum p_i}{\sqrt{\sum p_i^2}} * \sqrt{\frac{250}{|i|}},$$

$$min(max(t, 0), 6) \sum p_i$$
.

Daily Returns:

$$p_i = \sum_{j} (weight_{ij} * resp_{ij} * action_{ij}),$$

Sharpe Ratio:

$$t = \frac{\sum p_i}{\sqrt{\sum p_i^2}} * \sqrt{\frac{250}{|i|}},$$

$$min(max(t, 0), 6) \sum p_i$$
.

Daily Returns:

$$p_i = \sum_{j} (weight_{ij} * resp_{ij} * action_{ij}),$$

Sharpe Ratio:

$$t = \frac{\sum p_i}{\sqrt{\sum p_i^2}} * \sqrt{\frac{250}{|i|}},$$

$$min(max(t, 0), 6) \sum p_i$$
.

Daily Returns:

$$p_i = \sum_{j} (weight_{ij} * resp_{ij} * action_{ij}),$$

Sharpe Ratio:

$$t = \frac{\sum p_i}{\sqrt{\sum p_i^2}} * \sqrt{\frac{250}{|i|}},$$

$$min(max(t,0),6) \sum p_i$$
.

Daily Returns:

$$p_i = \sum_{j} (weight_{ij} * resp_{ij} * action_{ij}),$$

Sharpe Ratio:
$$t = \frac{\sum p_i}{\sqrt{\sum p_i^2}} * \sqrt{\frac{250}{|i|}},$$

	Scenario 1	Scenario 2
Day1 : P1	1	5
Day2 : P2	9	5
Sharpe	12.3 (Lower)	15.8 (Higher)

$$min(max(t, 0), 6) \sum p_i$$
.

Methodology

- 1) Exploratory Data Analysis
- 2) Train, Test and Validation Data Split
- 4) Building the Model
 - Model 1: Benchmark XBG Classifier
 - Model 2 : Adjusting for weights distribution
 - Model 3: Ensemble model
- 5) Results
- 6) Future work

Exploratory Data Analysis

- The Cumulative Resp shows an upwards trend
- The cumulative weighted resp stays stable till 300 days and then falls
- The features are highly correlated and can be clustered

Train, Test and Validation Data Split

Benchmark XGB Classifier

- 1) Classification Problem : Predict Action as (1,0)
- 2) Created Action column in the training data:

Action =
$$1 \text{ if resp} > 0$$

Action =
$$0$$
 if resp < 0

- 3) Trained the XGB Classifier
- 4) Tuned the probability threshold based on the Validation data

Action = 1 if Prob > Threshold

Action = 0 if Prob < Threshold

5) Evaluation : **Score = 1220.64 for Th = 0.527**

Benchmark XGB Classifier

- 1) Classification Problem: Predict Action as (1,0)
- 2) Created Action column in the training data:

Action =
$$1 \text{ if resp} > 0$$

- 3) Trained the XGB Classifier
- 4) Tuned the probability threshold based on the Validation data

5) Evaluation : **Score = 1220.64 for Th = 0.527**

Contribution of weights to Utility Score

60% of the trades have weights less than 0.4 These 60% contribute to just 3% of utility score

Model 2: Weights Division

Model 2: Prediction

Evaluation:

Model Score = 1412.66 for threshold = 0.52

Improvement over Model 1:15%

Volatility of Returns

Volatility of Returns

Volatility of Returns

Model 3: Ensemble Model Architecture

Model 3: Prediction

Model Score = 1989.42 for threshold = 0.525

Improvement over Model 2:40%

Model Summary

	Utility	Sharpe	Threshold	Precision	Accuracy	Recall	F1 score
Model 1	1220.641	4.120	0.527	0.383	0.473	0.261	0.351
Model 2	1412.661 (15% Boost)	4.730	0.520	0.520	0.511	0.152	0.354
Model 3	1989.423 (40% Boost)	5.210	0.525	0.528	0.515	0.315	0.460

Future Work

Precision Issue

The models have low precision. The Ensemble model slightly improves the scores but its still not great.

Possible Solution : Sigmoid Transformation of Resp

Future Work

Data Clustering

Trades can correspond to different asset classes and return distributions.

Possible Solution:

We can cluster the data and build individual models for each cluster.

THANKYOU FOR YOUR TIME!