Ajay Kumar Garg Engineering College, Ghaziabad

Department of Applied Sciences & Humanities

Sessional Test-1

Course, B Tech

Session: 2024-25 Subject: Engg. Mathematics -II

Max Marks: 25

Semester: 2nd

Section: All sections excluding S-10

Sub. Code: BAS-203

Time: 1 hour

OBE Remarks: All questions are related to CO1

OBE Remarks: All q	uestions are	e related to	CO1.		E	6	7
Q.Ne	1	2	3	CO1	COI	COI	CO1
CO No.	COI	COI	COI	COI			
Bloom's Level*	٠,,	,,	1.2	L3	L4	L5	L5
(L1 to L6)	LI	Li		Analyma IS:	Evaluate 1.6: C	reate	

^{*}Bloom's Level: L1: Remember, L2: Understand, L3: Apply, L4: Analyze, L5: Evaluate, L6: Create

Note: Answer all the sections.

Section-A

A. Attempt all the parts.

 $(3 \times 2 = 6)$

- 1. Using the method of changing the independent variable find P_1 and Q_1 for the differential equation $\frac{d^2y}{dx^2} + (3\sin x - \cot x)\frac{dy}{dx} + 2y\sin^2 x = e^{-\cos x}\sin^2 x.$
- 2. Solve the differential equation: $(D^2 + 1)^3(D^2 + D + 1)^2y = 0$ where $D = \frac{d}{dx}$
- 3. Find Particular integral of $\frac{d^2y}{dx^2} + 4y = \sin 2x$.

Section-B

B. Attempt all the parts.

 $(3 \times 4 = 12)$

- **4.** Find the general solution of the differential equation: $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^{e^x}$.
- 5. Solve: $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + y = xe^x \cos x$.
- 6. Solve: $(1+x)^2 \frac{d^2y}{dx^2} + (1+x) \frac{dy}{dx} + y = 4\cos(\log(1+x))$.

Section-C

C. Attempt all the parts.

 $(1 \times 7 = 7)$

7. Solve by the method of variation of parameters:

$$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = \frac{e^x}{1 + e^x}$$