

Financial Econometrics Difference-in-Difference Design

Tim C.C. Hung 洪志清

May 30th, 2022

- If we can observe **group-level** outcomes several times (at least before and after treatment).
- Assume in the absence of treatment, outcomes of treatment and control group move in a parallel way.
- Then, we can construct the counterfactual trend in outcomes of treatment group by using:
 - ► Trend in outcomes of control group!
- Comparing observed trend with counterfactual trend in outcome of treatment group, we can get causal effect of treatment.

Example for Difference-in-Differences

- David Card and Alan Krueger (1994) "Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania", AER
 - ► They want to estimate the causal effect of raising minimum wage on employment of low-skilled workers.

- What is the effect of increasing the minimum wage on employment?
- Minimum wage is effective only in certain jobs:
 - Low-skilled jobs
- How much does an increase in the minimum wage reduce demand for low-skilled workers?
 - In a competitive labor market, increases in the minimum wage would move up a downward-sloping labor demand curve.
 - Employment would fall.

- Card and Krueger (1994) analyse the effect of a minimum wage increase in New Jersey (NJ) using a DID methodology.
- 1992 Feb., NJ increased the state minimum wage from \$4.25 to \$5.05.
- Pennsylvania (PA)'s minimum wage stayed at \$4.25.

• They surveyed about 400 fast food stores both in NJ and in PA both before and after the minimum wage increase in NJ.

- Two Groups:
 - ► Treatment Group: NJ
 - Control Group: PA
- Two Periods:
 - ▶ Pre-treatment period: February 1992
 - Post-treatment period: November 1992
- Let Y_{st} denote the average employment in state s at time t.

- To estimate the effect of minimum wage on employment in NJ, we would like to know the following counterfactual:
 - ► In absence of raising minimum wage to \$5.05, what the average employment level in NJ would be ?
- DID method suggests us construct the counterfactual employment in NJ by using:
 - Average employment level in NJ before reform +
 - ► The trend in average employment level in PA (control group)

$$Y_{NJ,Feb} + (Y_{PA,Nov} - Y_{PA,Feb})$$

 We can identify the effect of minimum wage on employment in NJ by taking difference in realized employment and counterfactual employment in NJ:

$$\alpha_{DID} = Y_{NJ,Nov} - [Y_{NJ,Feb} + (Y_{PA,Nov} - Y_{PA,Feb})]$$

= $(Y_{NJ,Nov} - Y_{NJ,Feb}) - (Y_{PA,Nov} - Y_{PA,Feb})$

- If PA is a good control group.
- The trend in employment rate of PA should absorb any other changes in employment that are unrelated to increase minimum wage.

Employment

$$\alpha_{DID} = (Y_{NJ,Nov} - Y_{NJ,Feb}) - (Y_{PA,Nov} - Y_{PA,Feb})$$

$$= (21.03 - 20.44) - (21.17 - 23.33)$$

$$= 0.59 - (-2.16) = 2.76$$

- Instead of comparing the employment of NJ in February (before reform) and November (after reform),
- DID suggests we need to adjust for change (trend) in labor demand when there was no increase in minimum wage.

$$\alpha_{DID} = (Y_{NJ,Nov} - Y_{PA,Nov}) - (Y_{NJ,Feb} - Y_{PA,Feb})$$

$$= (21.03 - 21.17) - (20.44 - 23.33)$$

$$= (-0.14) - (-2.89) = 2.76$$

- Instead of comparing the employment of NJ and PA after reform,
- DID suggests we need to adjust for the fact that in the pre-reform period, NJ had less employment than PA.

		Store by State		
				Difference
		PA	NJ	NJ - PA
Variables		(1)	(2)	(3)
1.	Mean Employment at	23.33	20.44	-2.89
	Feburary 1992	(1.35)	(0.51)	(1.44)
2.	Mean Employment at	21.17	21.03	-0.14
	November 1992	(0.94)	(0.52)	(1.07)
3.	Change in Mean Employment	-2.16	0.59	2.76
	between Feb. and Nov.	(1.25)	(0.54)	(1.44)

- Surprisingly, employment \nearrow in NJ relative to PA after min. wage \nearrow .
- Extensions: 白經濟 調漲基本工資—少數贏家或全民勝利? 基本工資害死你?

DID and Potential Outcomes

- Basic setup: two time periods, two groups
- Two Periods:
 - ▶ In period t = 0: neither group is treated (pre-period)
 - ▶ In period t = 1: one of the groups is treated (post-period)

- Two Groups:
 - ▶ $D_i = 1$: those that are treated at t = 1 (treatment group)
 - ▶ $D_i = 0$: those that are always untreated (control group)

DID and Potential Outcomes

- Potential Outcomes:
 - lacksquare Y^1_{it} : the potential outcome for i if she would receive treatment at time t.
 - Y_{it}^0 : the potential outcome for i if she would NOT receive treatment.
- Realized Outcomes:
 - $ightharpoonup Y_{it}$ is the observed outcome for unit i at time t
 - ightharpoonup Observed outcomes Y_{it} are realized as

$$Y_{it} = Y_{it}^0 (1 - D_i) + Y_{it}^1 D_i$$

▶ Observed outcomes at t = 0:

$$Y_{i0} = Y_{i0}^0$$

▶ Observed outcomes at t = 1:

$$Y_{i1} = Y_{i1}^0 (1 - D_i) + Y_{i1}^1 D_i$$

Identification Results for DID

- Our main interest is average treatment effect on treated (ATT):
- DID can help us identify ATT

$$\alpha_{ATT} = E[Y_{i1}^1 - Y_{i1}^0 | D_i = 1]$$

• Missing data problem: $E[Y_{i1}^0|D_i=1]$ is unknown!

Identification Results for DID

Assumption (Common Trend Assumption)

$$E[Y_{i1}^0 - Y_{i0}^0 | D_i = 1] = E[Y_{i1}^0 - Y_{i0}^0 | D_i = 0]$$

= $E[Y_{i1} - Y_{i0} | D_i = 0]$

- The treatment group and control group would have exhibited the same trend in the absence of the treatment.
- \bullet We can use common trend assumption to construct a counterfactual for treatment group at t=1.

$$E[Y_{i1}^{0}|D_{i} = 1] = E[Y_{i0}^{0}|D_{i} = 1] + E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 0]$$
$$= E[Y_{i0}|D_{i} = 1] + E[Y_{i1}^{0} - Y_{i0}|D_{i} = 0]$$

ullet We can use oberved outcomes to represent unobserved $E[Y_{i1}^0|D_i=1].$

Identification Results for DID

Apply common trend assumptions:

$$\alpha_{ATT} = E[Y_{i1}^{1} - Y_{i1}^{0}|D_{i} = 1]$$

$$= E[Y_{i1}^{1}|D_{i} = 1] - E[Y_{i1}^{0}|D_{i} = 1]$$

$$= E[Y_{i1}^{1}|D_{i} = 1] - E[Y_{i0}^{0}|D_{i} = 1] - E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 0]$$

$$= E[Y_{i1}^{1} - Y_{i0}^{0}|D_{i} = 1] - E[Y_{i1}^{0} - Y_{i0}^{0}|D_{i} = 0]$$

$$= E[Y_{i1} - Y_{i0}|D_{i} = 1] - E[Y_{i1} - Y_{i0}|D_{i} = 0] = \alpha_{DID}$$

 The average treatment effect on treated (ATT) can be identified by difference in trend of outcome between treatment and control groups.

- We can estimate the DID estimator in a regression framework
- Advantages:
 - It is easy to calculate standard errors.
 - We can control for other variables which may reduce the residual variance (lead to smaller standard errors).
 - ▶ It is easy to include multiple periods.
 - ▶ We can study treatments with different treatment intensity (e.g. varying increases in the minimum wage for different states): continous DID.

- Basic case: two groups and two periods.
- To implement DID method in a regression framework, we estimate:

$$Y_{ist} = \mu + \gamma D_s + \delta Post_t + \alpha_{DID} D_s \cdot Post_t + \epsilon_{ist}$$

- lackbox D_s is a dummy indicating treatment group.
- ▶ $Post_t$ is a dummy indicating post-treatment period.
- $ightharpoonup \gamma$ captures differences across groups that are constant over time.
- lacktriangleright δ captures differences over time that are common to all groups.
- ightharpoonup ho a_{DID} is the coefficient of interest (the causal effect of treatment).

$$Y_{ist} = \mu + \gamma D_s + \delta Post_t + \alpha_{DID} D_s \cdot Post_t + \epsilon_{ist}$$

- If $E[\epsilon_{ist}|D_s, Post_t] = 0$, we can show that
 - ▶ Pre-treatment mean of outcome for control group: $E[\epsilon_{ist}|D_s=0, Post_t=0]=\mu$
 - Post-treatment mean of outcome for control group: $E[\epsilon_{ist}|D_s=0, Post_t=1]=\mu+\delta$
 - ▶ Pre-treatment mean of outcome for treatment group: $E[\epsilon_{ist}|D_s=1, Post_t=0]=\mu+\gamma$
 - ▶ Post-treatment mean of outcome for treatment group: $E[\epsilon_{ist}|D_s=1, Post_t=1] = \mu + \gamma + \delta + \alpha_{DID}$

	Pre	Post	Pre/Post Difference
Control Group	μ	$\mu + \delta$	δ
	$\mu + \gamma$	$\mu + \gamma + \delta + \alpha_{DID}$	$\delta + \alpha_{DID}$
DID			α_{DID}

• α_{DID} can represent treatment effect identified by DID method:

$$\begin{split} \alpha_{DID} &= \{ E[\epsilon_{ist} | D_s = 1, Post_t = 1] - E[\epsilon_{ist} | D_s = 1, Post_t = 0] \} \\ &- \{ E[\epsilon_{ist} | D_s = 0, Post_t = 1] - E[\epsilon_{ist} | D_s = 0, Post_t = 0] \} \\ &= \{ (\mu + \gamma + \delta + \alpha_{DID}) - (\mu + \gamma) \} - \{ (\mu + \delta) - \mu \} \end{split}$$

Test Common Trend Assumption

- The key assumption for any DID strategy is common trend assumption.
- The outcome in treatment and control group would follow the same time trend in the absence of the treatment.
 - ▶ This does not mean they have the same mean of the outcome!
 - Common trend assumption is difficult to verify.
 - ▶ We can use pre-treatment data to show that the trends are the same:
 - 1. Graphical evidence; 2. DID event-study design
- We can include leads and lags into the DID design:
 - 1 Examine common trend assumption.
 - 2 Analyze whether the treatment effect changes over time.
- It is so-called DID event-study design.

Example of Tests on Parallel Trends

- A recent debate of massive lockdowns on future economic outputs.
- Correia, Luck, and Verner (2020): regions with stricter lockdowns experience stronger economic bounce backs.
- Lilley, Lilley, and Rinaldi (2020): parallel trend does not exist!

Log manufacturing employment on Days of NPI

Log manufacturing output on Days of NPI

0.25

0.25

0.25

0.26

Figure 4: Effect of NPI intensity on manufacturing employment and output

Controlling for linear pretrend
 Correia, Luck, and Verner (2020)

oursia, Easil, and vorior (Eule)