Lecture # 26 , 12/3/21

Last time :

DHW7 deadline extended

Lo Finished magnetics & transformers (ch 10)

to Sunday night 1159pm.

Today :

La Converter Structures, Ch 6

Reading Assignment

1> Read Ch 6 over next 1 week.

- Patterns/Rules that Govern most converter topologies

· Main idea

Convertors generally built by cascading alternating L's (≈ correct source) & C's (≈ voltage source)

Why?

i will be very large b/c
differing a source weltages
* don't connect to dissimilar voltages
in parallel.

- Circuit Inversions
 - Buck is simplest, start here

Know V2 = V, Dbuck , Dbuck -> position () daty

Swap input /output ckt elements

Boost is a buck w/ input/output external elements swapped & duties swapped.

Dboost = 1 - Dbuck = D'buck

- Cascaded Conventers

* Build more complex akts with multiple cascaded converters

$$\frac{\sqrt{}}{\sqrt{2}} = \mathcal{M}_{1}(0) \mathcal{M}_{2}(0)$$

Example: Buck + Booct

$$M_{1}(D) = \frac{V_{1}}{V_{2}} = D$$

$$M_{2}(D) = \frac{V}{V_{1}} = \frac{1}{1-D}$$

$$M_{2}(D) = \frac{V}{V_{1}} = \frac{1}{1-D}$$

$$M_{3}(D) = \frac{V}{V_{3}} = M_{1}(D) M_{2}(D) = \frac{D}{1-D}$$

$$M_{4}(D) = \frac{V_{1}}{1-D}$$

$$M_{5}(D) = \frac{V_{1}}{1-D} = \frac{V_{1}}{1-D}$$

$$M_{5}(D) = \frac{V_{1}}{1-D} = \frac{V_{1}}{1-D} = \frac{V_{2}}{1-D} = \frac{V_{3}}{1-D} = \frac{V_{1}}{1-D} = \frac{V_{2}}{1-D} = \frac{V_{3}}{1-D} = \frac{V_{3$$

I abstract anelysis to show hiding " buck boust

* Redraw Fig 1 to recover classic buck-boost

Step 1 : Simplify filter

La Remove internediate cap & combine L's

Use 1 \$ 2 to get classic buck boost

$$V_{8} \stackrel{+}{\longrightarrow} \frac{1}{V_{L}} \stackrel{+}{\longrightarrow} \frac{1}{V_{2}} = \frac{-D}{1-D}$$

- Differential Connections

* Enable; generation of ac waveforms.

even if $V_1 \notin V_2$ are each \bigoplus , the difference $V_1 - V_2$ can be negative by manipulating $V_1 \notin V_2$.

Ly allows us to produce an ac waveform.