

Chapter 06. 순환 신경망(RNN)

STEP2. 순환 신경망의 학습법

BPTT

시간펼침 역전파(Backpropagation through time; BPTT)를 개념적으로 배웠다. 이것을 실제로 학습에 사용하기 위해 어떻게 해야 하는지 자세히 알아보자.

BPTT 데이터 입력

학습 데이터 입력 $(N \times L \times I)$

배치로 나눈 학습 데이터 입력 $(B \times L \times I)$

BPTT의 배치 학습법

시간적으로 펼치면서 계산해야 하는 점을 제외하면, 보통의 역전파와 동일하다.

단, 시간적으로 펼칠 때 역전파를 위한 추가적인 메모리가 필요하다.

STEP2. 순환 신경망의 학습법

BPTT의 문제점 Loss RNN **RNN RNN RNN** RNN RNN 0 $\boldsymbol{x_1}$ \boldsymbol{x}_2 \boldsymbol{x}_3 \boldsymbol{x}_0 x_4 \boldsymbol{x}_{5}

순차 데이터의 길이 L이 매우 클 경우, 시간 펼침이 늘어나면서 <mark>필요 메모리가 L배 증가</mark>한다. B개의 샘플을 동시에 계산하므로, 얕은 신경망에 비해 훨씬 큰 메모리 필요.

다중 입력, 다중 출력

다중 입력, 다중 출력의 경우 Truncated BPTT를 이용해 BPTT에서 발생하는 메모리 문제를 해결할 수 있다.

Truncated BPTT 데이터 입력

학습 데이터 입력 $(N \times L \times I)$

Truncated BPTT 학습 데이터 입력 $(B \times T \times I)$

순차 데이터의 길이를 일정한 T 길이로 잘라서 배치를 나누듯이 한번에 계산하는 크기를 줄인다.

STEP2. 순환 신경망의 학습법

Truncated BPTT

Truncated BPTT는 길이L의 입력을 길이T로 쪼개어 순서대로 학습한다. 한번에 역전파 하는 길이가 제한되므로 메모리 사용이 줄어든다.

Truncated BPTT의역전파 흐름

길이 T로 쪼개진 Truncation 사이에서는 기울기 역전파가 이루어지지 않는다.

