UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE SISTEMAS Y COMPUTACIÓN

ASIGNATURA:

ARQUITECTURA DE SOFTWARE

DOCENTE:

FERNANDEZ BEJARANO RAUL ENRIQUE

ESTUDIANTE:

AGUILAR QUISPE GABRIELA

HUANCAYO – PERÚ 2025

ÍNDICE

1. INTRODUCCIÓN 1
2. DESCRIPCIÓN GENERAL DEL SISTEMA2
3. ACTIVIDADES 4
3.1 Actividad 1 — Análisis de Estándares 4
3.2 Actividad 2 — Diseño de Arquitectura 5
3.3 Actividad 3 — Evaluación de Calidad7
4. CONCLUSIONES 10
5 ANEYOS 11

1. INTRODUCCIÓN

1.1 Propósito

Este documento presenta el análisis de estándares internacionales aplicados, el diseño de la arquitectura y la evaluación de calidad para el sistema LlamaFood (app de delivery). Está estructurado según la práctica recomendada por IEEE 830 para garantizar claridad y trazabilidad.

1.2 Alcance

El informe cubre las tres actividades solicitadas: (1) análisis de estándares aplicables al sistema, (2) diseño de arquitectura basado en estándares, y (3) evaluación de calidad arquitectónica según ISO/IEC 25010.

1.3 Definiciones, acrónimos y abreviaturas

- SRS: Software Requirements Specification (IEEE 830)
- API: Application Programming Interface
- MFA: Multi-Factor Authentication
- SLO/SLA: Service Level Objective / Agreement

1.4 Referencias

- ISO/IEC/IEEE 42010:2011 Architecture Description
- ISO/IEC 25010:2011 Software Product Quality Model
- ISO/IEC 12207:2008 Software Life Cycle Processes
- IEEE 830-1998 Recommended Practice for Software Requirements Specifications

1.5 Visión general del documento

El documento está organizado con una descripción general del sistema, las actividades (1, 2 y 3) desarrolladas y las conclusiones y anexos. Cada actividad incluye su justificación, resultados y propuestas de mejora.

2. DESCRIPCIÓN GENERAL DEL SISTEMA

2.1 Perspectiva del producto

LlamaFood es una plataforma móvil y web que funciona como intermediario entre usuarios, restaurantes y repartidores. Se integra con pasarelas de pago, servicios de mapas y proveedores de notificaciones.

2.2 Funciones del producto

- Registro y autenticación de usuarios y repartidores.
- Catálogo de restaurantes y productos.
- Gestión completa de pedidos y estados.
- Procesamiento de pagos electrónicos.
- Seguimiento en tiempo real y notificaciones.
- Paneles de administración para restaurantes y operadores.

2.3 Características de los usuarios

- Usuarios finales: realizan pedidos y seguimiento.
- Repartidores: reciben y entregan pedidos.
- Restaurantes: gestionan menús y pedidos.
- Administradores TI y soporte: mantienen la plataforma.

2.4 Restricciones

- Cumplimiento de normativas de protección de datos.
- Integraciones con pasarelas de pago locales.
- Disponibilidad objetivo mínima (ej. 99.5%).

2.5 Suposiciones y dependencias

- Dependencia de proveedores externos (Google Maps, AWS/Azure, pasarelas de pago).
- Suposición de conectividad a internet por parte de usuarios y repartidores.

3. ACTIVIDADES

3.1 Actividad 1 — Análisis de Estándares en un Proyecto Real

Sistema seleccionado: LlamaFood (app de delivery)

Descripción: LlamaFood es una aplicación móvil y web que permite a los usuarios buscar restaurantes, realizar pedidos, pagar en línea y rastrear entregas en tiempo real. Incluye gestión para restaurantes y un panel administrativo.

Estándares identificados:

- ISO/IEC/IEEE 42010 Architecture description (vistas, stakeholders).
- ISO/IEC 25010 Modelo de calidad del software (atributos: usabilidad, seguridad, rendimiento, etc.).
- ISO/IEC 12207 Procesos del ciclo de vida del software.

Justificación:

ISO/IEC/IEEE 42010 se usa para estructurar la documentación arquitectónica; ISO/IEC 25010 para evaluar calidad; ISO/IEC 12207 para definir procesos de desarrollo y mantenimiento.

Beneficios:

- Interoperabilidad con servicios externos.
- Escalabilidad y mantenibilidad mejoradas.
- Mayor seguridad y experiencia de usuario.

3.2 Actividad 2 — Diseño de una Arquitectura Basada en Estándares

Sistema: LlamaFood - Arquitectura de software

Objetivos del sistema:

- Ofrecer una experiencia confiable y rápida de pedidos.
- Facilitar la gestión de restaurantes, clientes y repartidores.
- Garantizar seguridad y alta disponibilidad.

Stakeholders y sus preocupa	aciones:		
Stakeholder	Preocupaciones principales	Relación con el sistema	
Usuarios finales (clientes)	Facilidad de uso, seguridad en pagos, rapidez en entregas, promociones.	Realizan pedidos, pagan en línea y rastrean entregas.	
Repartidores (delivery)	Asignación justa de pedidos, seguridad en rutas, pagos puntuales.	Reciben pedidos, gestionan entregas y confirman finalización.	
Restaurantes asociados	Flujo correcto de pedidos, visibilidad de productos, reportes de ventas.	Gestionan menús, reciben pedidos y administran ventas.	

Administradores TI	Rendimiento, escalabilidad, disponibilidad, seguridad del sistema.	Mantienen servidores, actualizan módulos y supervisan el
		funcionamiento.
Soporte al cliente	Resolver reclamos, devoluciones y problemas técnicos.	Atienden incidencias de usuarios, repartidores y restaurantes.
Inversionistas / dueños	Rentabilidad, crecimiento del negocio, fidelización de clientes.	Reciben reportes estratégicos y deciden nuevas funcionalidades.
Entidades financieras	Seguridad en transacciones, prevención de fraudes, cumplimiento normativo.	Procesan pagos electrónicos integrados (Visa, Yape, Plin, bancos).
Proveedores de tecnología	Integración de servicios externos y estabilidad de infraestructura.	Brindan servicios de nube, mapas y notificaciones.
Gobierno / reguladores	Protección de datos, regulaciones tributarias y laborales.	Supervisan el cumplimiento legal y normativo.

Vistas arquitectónicas (ISO/IEC/IEEE 42010)

- Vista lógica: módulos de autenticación, catálogo, carrito, gestión de pedidos, pagos, seguimiento GPS y notificaciones.
- Vista de desarrollo: arquitectura en capas (presentación, negocio, datos).
- Vista de procesos: flujo del pedido (orden \to asignación \to confirmación \to pago \to seguimiento \to entrega).
- Vista física: servidores en la nube, base de datos central, servicios externos (mapas, pagos).

Relación con estándares aplicados:

- ISO/IEC/IEEE 42010: organiza vistas y preocupaciones de stakeholders.
- ISO/IEC 25010: define y evalúa atributos de calidad (usabilidad, rendimiento, seguridad, mantenibilidad).

3.3 Actividad 3 — Evaluación de Calidad Arquitectónica (ISO/IEC 25010)

La evaluación se realiza con sub-criterios ponderados por atributo. Resultados agregados:

Atributo	Sub-criterio	Peso	Actual	Ideal	Puntaje
					ponderado

Usabilidad	Aprendizaje (learnability)	0.3	3	5	0.9
Usabilidad	Eficiencia (tiempo de tarea)	0.3	3	5	0.9
Usabilidad	Accesibilidad (WCAG, idiomas)	0.2	2	5	0.4
Usabilidad	Satisfacción (experiencia)	0.2	3	5	0.6
Rendimiento	Tiempo de respuesta (P95)	0.4	4	5	1.6
Rendimiento	Concurrencia / throughput	0.2	3	5	0.6
Rendimiento	Consumo de recursos	0.2	4	5	0.8
Rendimiento	Escalabilidad	0.2	3	5	0.6
Seguridad	Autenticación / autorización	0.25	3	5	0.75
Seguridad	Protección de datos (cifrado)	0.25	3	5	0.75
Seguridad	Gestión de vulnerabilidades	0.25	2	5	0.5
Seguridad	Monitoreo y prevención de fraudes	0.25	3	5	0.75
Mantenibilidad	Modularidad de código	0.3	2	5	0.6
Mantenibilidad	Cobertura de pruebas	0.25	2	5	0.5
Mantenibilidad	Automatización de despliegues	0.2	2	5	0.4

Mantenibilidad	Documentación	0.25	2	5	0.5

4. CONCLUSIONES

La evaluación con ISO/IEC 25010 y la documentación bajo IEEE 830 han permitido identificar brechas y proponer mejoras arquitectónicas priorizadas. La adopción de las recomendaciones mejorará la calidad global y la sostenibilidad del sistema.

5. ANEXOS

Herramientas recomendadas:

- Redis / ElastiCache
- Prometheus + Grafana
- OpenTelemetry / Jaeger
- ELK/EFK
- AWS Secrets Manager / HashiCorp Vault
- Dependabot / Snyk
- RabbitMQ / Kafka
- API Gateway / WAF