Decidability

Outline

- Algorithms and Decidability
- Turing-Unrecognizable Languages
- Halting Problem
 - Definition
 - Proof
 - Implications

Algorithm

Algorithm: a Turing machine that always accepts or rejects (a decider)

Output: the contents of the tape when the Turing machine halts

Algorithm Features:

- 1. String-encoding of input (serialization)
- 2. Finite control (instructions)
- 3. Infinite (arbitrary-length) storage

TM (Algorithm Features) Representation:

- 1. String-encoding: input string
- 2. Finite control: control states
- 3. Storage: tape

Decidability

A problem (language) is **decidable** iff there exists a Turing machine that decides (always accepts or rejects) its language. Equivalently, a problem is decidable iff an algorithm exists for the problem.

Theorem: DFA Decidability (NFA and Regex too)

Theorem (DFA decidability): Let the acceptance problem for DFAs be

 $A_{DFA} = \{(B, \omega) \mid B \text{ is a DFA that accepts input string } \omega\}$

A_{DFA} is decidable

Proof Idea: Construct Turing Machine M as follows:

- 1. Simulate B on input ω
- 2. If the simulations end in an accept state, M accepts. Otherwise, if the simulation ends in a non-accepting state, M rejects.

This proof can be applied to both NFA and regex by converting them into DFAs.

Undecidability

A problem (language) is **undecidable** iff there DOES NOT exist a Turing machine that decides (always accept or reject) its language. Equivalently, a problem is undecidable iff no algorithm exists for the problem.

Turing-Unrecognizable Languages

Turing Machine Descriptions

Descriptions of Turing machines are finite and serializable

A language may consist of descriptions of Turing machines

Turing-Unrecognizable Languages

Theorem: Some languages are not recognizable by any Turing machine

That is, there exists some language L for which no Turing machine T exists such that T recognizes L:

$$\exists L, \not\exists T, L_{acc}(T) = L$$

There are unsolvable problems D:<

Correspondences

A function f: $X \mapsto Y$ is a **correspondence** (bijection) iff:

- 1. One-to-one (injective): every element of X maps to a unique element of Y
- 2. onto (surjective): every element of Y is mapped from some element of X

Countable sets

A set S is countable iff we can assign a unique natural number to every element of S. That is, either:

- 1. S is finite ($|S| < \infty$)
- 2. S corresponds to the natural number $\mathbb{N} = \{0,1,2,\dots\}$

Languages are countable (L is a set of finite-length strings)

The set of real numbers \mathbb{R} is uncountable

The set of infinite boolean sequences \mathbb{B} is uncountable

The set of all languages is uncountable

Turing-Unrecognizable Languages: Conclusion

There exists languages which cannot be recognized by any Turing machine.

- 1. The set of Turing machines is countable
- 2. The set of all languages is uncountable
- 3. Thus there exists a language with no corresponding Turing machine

Halting Problem

Halting Problem: Given Turing machine T and input ω , does T halt on ω ?

 $HALT_{TM} = \{(T,\omega) \mid T \text{ is a TM and halts on input } \omega\}$

Theorem: halting problem is undecidable

Implications of Halting Problem

Direct: cannot generally check whether a program has an infinite loop

Corollary: we cannot generally check whether a program has any nontrivial property

Properties

Property: a set of languages

Property of TM: Turing machine T has property P iff:

$$L_{\rm acc}(T) \in P$$

Trivial properties: none or all of the Turing-recognizable languages:

• None: $E \cap T_R = \emptyset$

 $- \forall T, L_{acc}(T) \notin E$

• or All: E \cap $T_R = T_R$

 $- \forall T, L_{acc}(T) \in E$

Non-trivial: Some, but not all, of the Turing-recognizable languages:

• Some: $P \cap T_R \neq \emptyset$

 $-\exists T, L_{acc}(T) \in P$

• and not All: P \cap $T_R \neq T_R$

 $-\exists T, L_{acc}(T) \in P$

 $ightharpoonup E_{none}$: Trivial

 $ightharpoonup \forall T, \ \mathcal{L}_{\mathrm{acc}}\left(T\right)
ot\in E_{\mathsf{none}}$

 $ightharpoonup E_{\rm all}$: Trivial

 $ightharpoonup \forall T, \ \mathcal{L}_{\mathrm{acc}}(T) \in \mathcal{E}_{\mathrm{all}}$

► P: Nontrivial

▶ Some: $\exists T, \ \mathcal{L}_{acc}(T) \in P$

▶ Not all: $\exists T$, $\mathcal{L}_{acc}(T) \notin P$

Figure 1: Here is an illustration of trivial and nontrivial properties

Trivial Properties are Decidable

Theorem: Let E be a trivial property of a Turing machine. That is, E is a set of languages where either:

- 1. For all Turing machines M $L_{acc}(M) \in E$
- 2. Or all Turing machines M, $L_{acc}(M) \notin E$

Then, given Turing machine T, it is decidable to determine whether $L_{acc}(T) \in E$

Proof (construction): Turing machine D, which takes Turing machine T, as input decides membership in E. That is, D decides whether $L_{acc}(T) \in E$. D operates based on the following two cases for E:

- 1. For all Turing machines M, $L_{acc}(M) \in E$: D always accept
- 2. Or for all Turing machines M, $L_{acc}(M) \notin D$ always reject

Rice's Theorem

Theorem: Let P be a nontrivial property of a Turing machine. That is, P is a set of languages where

- 1. There exists a Turing machine M where $L_{acc}(M) \in P$
- 2. There exists a Turing machine M' where $L_{acc}(M') \notin P$

Then, given Turing machine T, it is undecidable to determine whether $L_{acc}(T) \in P$