Formulae und Sätze

- Dreiecksungleichung: $|a+b| \leq |a| + |b|$

- Für jede Reele Zahl x existiert eine Natürliche Zahl n mit: n > x

$$\forall n \in \mathbb{N}: \ 1+2+\ldots+n=\frac{n(n+1)}{2}$$

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} - \binom{n}{k} + \binom{n}{k-1} = \binom{n+1}{k} \quad \text{für } 1 \le k \le n$$

$$a^{n+1} - b^{n+1} = (a-b) \sum_{k=0}^{n} a^{n-k} b^k = (a-b) \sum_{k=0}^{n} a^k b^{n-k}$$

$$a^3 - b^3 = (a-b)(a^2 + ab + b^2)$$

- Binomischer Satz:
$$(a+b)^n=\sum\limits_{k=0}^n\binom{n}{k}a^{n-k}b^k=\sum\limits_{k=0}^n\binom{n}{k}a^kb^{n-k}$$

$$x \ge -1$$
 - Bernoullische Ungleichung: $\forall n \in \mathbb{N}: (1+x)^n \ge 1+nx$

$$F\ddot{u}r \ x, y \ge 0 \ und \ n \in \mathbb{N} \ gilt: x \le y \iff x^n \le y^n$$

$$\forall x \in \mathbb{R} : \sqrt{x^2} = |x|$$

Exponentialle Summe:
$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}$$

Mengen / Induktion

$M \subseteq \mathbb{R}$	Beschränktheit:
	- Nach oben beschränkt: $\exists \gamma \in \mathbb{R} \ \forall x \in M: \ x \leq \gamma$
	- Supremum = kleinste obere Schranke
	- Maximum = Supremum, falls teil von M
	- Nach unten beschränkt: $\exists \gamma \in \mathbb{R} \ \forall x \in M: \ \gamma \leq x$
	- Infimum = größte untere Schranke
	- Minimum = Infimum, falls teil von M
	- Beschränkt = sowohl nach oben als auch nach unten beschränkt
	$\gamma = \sup A \iff \forall \varepsilon > 0 \; \exists x = x(\varepsilon) \in A : x > \gamma - \varepsilon$
	$\gamma = \inf A \iff \forall \varepsilon > 0 \ \exists x = x(\varepsilon) \in A : x < \gamma + \varepsilon$
	- Induktionsmenge: $\int (i)$ $1 \in A$;
	$(ii) aus \ x \in A \ folgt \ stets \ x + 1 \in A$
	Vollständige Induktion:
	- Induktionsanfang (I.A.): Beweise A(1)
	- Induktionsvoraussetzung (I.V.): Annahmen, dass A(n) gilt
	- Induktionsschluß (I.S.): Beweise A(n+1) mit Hilfe von I.V.

Bekannte Folgen

$$a_n = \frac{5 + \frac{3}{n} + \frac{1}{n^2}}{4 - \frac{1}{n} + \frac{2}{n^2}} \xrightarrow{2.2} \frac{5}{4}$$
 $a_n \coloneqq \frac{1}{n^p}$: konvergiert für p >= 1

$$a_1 \coloneqq \sqrt[3]{6}, \ a_{n+1} \coloneqq \sqrt[3]{6+a_n} \ (n \ge 1)$$
: konvergiert gegen 2 (monoton wachsend + nach oben beschränkt => lim = sup = 2

Beispiel 2.4 (
$$(a_n)$$
 eine konvergente Folge in $[0,\infty)$ mit Grenzwert a $p \in \mathbb{N}$): $\sqrt[p]{a_n} \to \sqrt[p]{a}$.

Beispiel 2.5 (
$$(x^n)$$
 ist konvergent $\iff x \in (-1,1]$):

$$\lim_{n \to \infty} x^n = \begin{cases} 1, & \text{falls } x = 1\\ 0, & \text{falls } x \in (-1, 1) \end{cases}$$

Beispiel 2.6 (
$$s_n := 1 + x + x^2 + \ldots + x^n = \sum_{k=0}^n x^k$$
):

$$\lim_{n o \infty} s_n = rac{1}{1-x}$$
 falls x != 1, else - divergiert

$$\sqrt[n]{n} \to 1$$
 $\sqrt[n]{c} \to 1$

Beispiel 2.9 (
$$a_n := \left(1 + \frac{1}{n}\right)^n$$
, $b_n := \sum_{k=0}^n \frac{1}{k!} = 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$):
 (a_n) und (b_n) sind konvergent und $\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$

Eulersche Zahl (e = 2,718...):
$$e \coloneqq \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = \lim_{n \to \infty} \sum_{k=0}^n \frac{1}{k!}$$

$$\left(1 + \frac{2}{2k-1}\right)^{2k-1} \text{ konvergiert gegen } e^2 \text{ für } k \to \infty \qquad \left(1 + \frac{1}{k-1}\right)^{-(k-1)} \xrightarrow{k \to \infty} e^{-1}$$

$$\left(1 + \frac{2}{2k-1}\right)^{2k-1}$$
 konvergiert gegen e^2 für $k \to \infty$ $\left(1 + \frac{1}{k-1}\right)^{-(k-1)} \xrightarrow{k \to \infty} e^{-\frac{k}{2k-1}}$

Folgen und Konvergenz

- Folge = Funktion $a: \mathbb{N} \to X$

Beschränktheit:

Es sei (a_n) eine Folge und $M := \{a_1, a_2, \dots\}$

- Nach oben beschränkt: $\sup a_n \coloneqq \sup a_n \coloneqq \sup M$

M ist nach oben beschränkt. n

Nach unten beschränkt: $\inf_{M \ ist \ nach \ unten \ beschränkt.} \inf_{n \in \mathbb{N}} a_n \coloneqq \inf_{n=1}^\infty a_n \coloneqq \inf_{n} M^{-1}$

- Beschränkt: M ist beschränkt $\exists c \geq 0 \ \forall n \in \mathbb{N}: \ |a_n| \leq c$

- Für fast alle (ffa): $\exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : A(n) \ ist \ wahr$

- Epsilon-Umgebung: $U_{\varepsilon}(a) \coloneqq (a - \varepsilon, a + \varepsilon) = \{x \in \mathbb{R} : |x - a| < \varepsilon\}$

Epsilon-Definition von Konvergenz:

 $\exists a \in \mathbb{R} : \begin{cases} Zu \ jedem \ \varepsilon > 0 \ existiert \ ein \ n_0 = n_0(\varepsilon) \in \mathbb{N} \ so, & \text{a = Grenzwert / Limes} \\ da\beta \ f\"{u}r \ jedes \ n \geq n_0 \ gilt \ : |a_n - a| < \varepsilon. \end{cases}$

Grenzwert und Konvergenz (Satz 2.1):

- Der Grenzwert ist eindeutig
- Konvergenz => Beschränktheit

Rechenregeln für Folgen:

$$(a_n) \pm (b_n) := (a_n \pm b_n); \ \alpha(a_n) := (\alpha a_n); \ (a_n)(b_n) := (a_n b_n)$$

Regeln für Grenzwerte (Satz 2.2):

- Grenzwert: $a_n \to a \iff |a_n a| \to 0$
- Kleiner als Nullfolge:

$$|a_n - a| \le \alpha_n$$
 ffa $n \in \mathbb{N}$ und $\alpha_n \to 0$, so gilt $a_n \to a$

- Rechenregeln für Grenzwerte:
 - (i) $|a_n| \to |a|$;
 - (ii) $a_n + b_n \rightarrow a + b$;
 - (iii) $\alpha a_n \to \alpha a$;
 - (iv) $a_nb_n \to ab;$
 - (v) ist $a \neq 0$, so existiert ein $m \in \mathbb{N}$ mit:

$$a_n \neq 0 \ (n \geq m) \ und \ f \ddot{u}r \ die \ Folge \ \left(\frac{1}{a_n}\right)_{n=m}^{\infty} \ gilt: \frac{1}{a_n} \to \frac{1}{a}.$$

- Monotonie des Grenzwerts:

$$a_n \to a, b_n \to b \text{ und } a_n \leq b_n \text{ ffa } n \in \mathbb{N}. \text{ Dann ist } a \leq b$$

- Sandwichkriterium:

$$a_n \to a, b_n \to a \text{ und } a_n \le c_n \le b_n \text{ ffa } n \in \mathbb{N}. \text{ Dann gilt } c_n \to a$$

Monotonie:

- (streng) monoton wachsend: $\forall n \in \mathbb{N}: \ a_n \leq a_{n+1} \quad (a_n < a_{n+1})$
- Analog für (streng) monoton fallend
- (Streng) Monoton = falls entweder oder

Monotoniekriterium:

- Monoton wachsend + nach oben beschränkt $\lim_{n\to\infty} a_n = \sup_{n\in\mathbb{N}} a_n$ => konvergent:
- Monoton fallend + nach unten beschränkt $\lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$ => konvergent:

Teilfolgen: $b_k \coloneqq a_{n_k}$ ($b_1 = a_{n_1}, b_2 = a_{n_2}, b_3 = a_{n_3}, \ldots$) u $n_1 < n_2 < n_3 < \ldots$ Abstrakte Beispiele: (a_2, a_4, a_6, \dots) mit $n_k = 2k$ (a_1, a_4, a_9, \dots) mit $n_k = k^2$ $(a_2, a_6, a_4, a_{10}, a_8, a_{14}, \dots)$ - KEINE Teilfolge Häufungswert: wenn eine Teilfolge (a_{n_k}) von (a_n) existiert mit $a_{n_k} \to \alpha$ $(k \to \infty)$ - Menge aller Häufungswerte: $H(a_n) \coloneqq \{\alpha \in \mathbb{R} : \alpha \text{ ist ein Häufungswert von } (a_n)\}$ - Epsilon-Definition: $\alpha \in H(a_n) \iff \forall \varepsilon > 0: a_n \in U_{\varepsilon}(\alpha)$ für unendlich viele $n \in \mathbb{N}$ Konkrete Beispiele: $a_n = (-1)^n : a_{2k} \to 1, a_{2k+1} \to -1 = H(a_n) = \{1, -1\}$ $a_n = n$: $H(a_n) = \emptyset$ Teilfolgen von konvergente Folgen ($H(a_n) = \{\lim_{n o \infty} a_n\}$): $a := \lim_{n \to \infty} a_n \ und \ (a_{n_k}) \ eine \ Teilfolge => a_{n_k} \to a \ (k \to \infty)$ m heißt Niedrig einer Folge, falls $\forall n \geq m : a_n \geq a_m$ $m \in \mathbb{N}$ ist nicht niedrig $\iff \exists n \geq m : a_n < a_m \Rightarrow \exists n > m : a_n < a_m$ Jede Folge enthält eine monotone Teilfolge Satz von Bolzano-Weierstraß: $H(a_n) \neq \emptyset$ - Eine beschränkte Folge besitzt immer eine konvergente Teilfolge - Für eine beschränkte Folge gilt: $\sup H(a_n), \inf H(a_n) \in H(a_n); \text{ es existieren also } \max H(a_n) \text{ und } \min H(a_n)$

Limes superior: größter Häufungspunkt $\limsup_{n\to\infty} a_n \coloneqq \overline{\lim}_{n\to\infty} a_n \coloneqq \max H(a_n)$
Limes inferior: kleinster Häufungspunkt $\lim_{n\to\infty} \inf a_n \coloneqq \underline{\lim}_{n\to\infty} a_n \coloneqq \min H(a_n)$
Regeln für Limes superior/inferior: $a) \ \forall \alpha \in H(a_n) : \lim \inf_{n \to \infty} a_n \le \alpha \le \lim \sup_{n \to \infty} a_n.$
b) Ist (a_n) konvergent, so ist $\limsup_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \lim_{n\to\infty} a_n$.
c) $\forall \alpha \geq 0$: $\limsup_{n \to \infty} (\alpha a_n) = \alpha \limsup_{n \to \infty} a_n$.
$d) \lim \sup_{n \to \infty} (-a_n) = -\lim \inf_{n \to \infty} a_n.$
Cauchyfolgen:
$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n, m \ge n_0 : \ a_n - a_m < \varepsilon$
- Konvergente Folge <==> Cauchyfolge

Bekannte Reihen

Geometrische Reihe:
$$\sum_{n=0}^{\infty} x^n = 1 + x + x^2 + x^3 + \dots$$
 konvergiert für $|\mathbf{x}| < 1$ UND
$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \quad (|x| < 1)$$

konvergiert für
$$|x| < 1$$
 UND $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ $(|x| < 1)$

eine Teleskopsumme:
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; $a_n = \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$
 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ ist konvergent und $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$

Eulersche Zahl:
$$\sum_{n=0}^{\infty} \frac{1}{n!}$$
 konvergiert und $\sum_{n=0}^{\infty} \frac{1}{n!} = e$

$$\lim_{n \to \infty} \frac{1}{\sqrt[n]{n!}} = 0$$

Harmonische Reihe:
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 ist divergent

alternierende harmonische Reihe:
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$
 ist konvergent

P-Series:
$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ konvergient } \Leftrightarrow \alpha > 1.$$

Exponentialreihe:
$$\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$
 konvergiert absolut für jedes $x \in \mathbb{R}$

Unendliche Reihen

Majorantenkriterium:

 $|a_n| \le b_n$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ konvergent $=> \sum_{n=1}^{\infty} a_n$ absolut konvergent

Minorantenkriterium:

 $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ divergent => $\sum_{n=1}^{\infty} a_n$ divergent.

Beispiele:

- Konvergente Folgen:
$$\sum_{n=1}^{\infty} \frac{1}{(n+1)^2}$$
 und $\sum_{n=1}^{\infty} \frac{1}{n^2}$ $|a_n| = a_n = \frac{1}{(n+1)^2} = \frac{1}{n^2 + 2n + 1} \le \frac{1}{n^2 + 2n} \le \frac{1}{n(n+1)} =: b_n$ ($\sum_{n=1}^{\infty} b_n$ ist konvergent)

- Absolut konvergent: $\sum_{n=1}^{\infty} (-1)^n \frac{n+2}{n^3+1}$

$$\left| (-1)^n \frac{n+2}{n^3+1} \right| = \frac{n+2}{n^3+1} \le \frac{n+2}{n^3} \le \frac{2n}{n^3} = \frac{2}{n^2} \quad (n \ge 2)$$
 ($\sum_{n=1}^{\infty} \frac{2}{n^2}$) ist konvergent , p-Series)

- Divergent:
$$\frac{\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n+1}}{\frac{\sqrt{n}}{n+1} \ge \frac{\sqrt{n}}{2n}} = \frac{1}{2\sqrt{n}} \ge 0 \quad (n \in \mathbb{N})$$
 ($\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}}$ divergiert , p-Series)

 $c_n \ge 0 \ (n \in \mathbb{N}) \ und \lim \sup_{n \to \infty} c_n = 0, \ so \ gilt \ c_n \to 0 \ (n \to \infty)$

Wurzelkriterium: $c_n := \sqrt[n]{|a_n|} \ (n \in \mathbb{N})$ (a_n) eine Folge

- (c_n) unbeschränkt, so ist $\sum_{n=1}^{\infty} a_n$ divergent
- (c_n) beschränkt und $\alpha := \limsup_{n \to \infty} c_n$

Ist $\alpha < 1$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent

Ist $\alpha > 1$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Quotientenkriterium (QK): $c_n := \left| \frac{a_{n+1}}{a_n} \right|, \quad a_n \neq 0 \text{ ffa } n \in \mathbb{N}$

- a) Ist $c_n \geq 1$ ffa $n \in \mathbb{N}$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.
- b) Es sei (c_n) beschränkt, $\alpha := \limsup_{n \to \infty} c_n$ und $\beta := \liminf_{n \to \infty} c_n$. Dann gilt:
 - (i) Ist $\alpha < 1$, so ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent.
 - (ii) Ist $\beta > 1$, so ist $\sum_{n=1}^{\infty} a_n$ divergent.

Folgerung: (c_n) sei konvergent und $\alpha := \lim_{n \to \infty} c_n$

$$\sum_{n=1}^{\infty} a_n \text{ ist } \begin{cases} \text{absolut konvergent,} & \text{falls } \alpha < 1 \\ \text{divergent,} & \text{falls } \alpha > 1 \end{cases}$$

a)
$$a_n = \frac{1}{n} \ (n \in \mathbb{N}), \ \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1, \ \sum_{n=1}^{\infty} a_n$$
 divergiert.

b)
$$a_n = \frac{1}{n^2} \ (n \in \mathbb{N}), \ \left| \frac{a_{n+1}}{a_n} \right| = \frac{n^2}{(n+1)^2} \to 1, \ \sum_{n=1}^{\infty} a_n \ \text{konvergiert}.$$

Umordnungen: $(a_2, a_4, a_1, a_3, a_6, a_8, a_5, a_7, \dots)$ ist eine Umordnung von (a_n) $b_1=a_{\varphi(1)}, \quad b_2=a_{\varphi(2)}, \quad b_3=a_{\varphi(3)}, \dots = > \quad \textbf{(b_n) eine Umordnung von (a_n)}$ Konvergenz von Folgen und Reihen: a) Ist (a_n) konvergent, so ist (b_n) konvergent und $\lim_{n\to\infty} b_n = \lim_{n\to\infty} a_n$ b) Ist $\sum_{n=1}^{\infty} a_n$ absolut konvergent, so ist $\sum_{n=1}^{\infty} b_n$ absolut konvergent und $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ Bemerkung: sei $\sum_{n=1}^{\infty} a_n$ konvergent, aber nicht absolut konvergent a) Es existiert eine Umordnung mit: $\sum_{n=0}^{\infty} b_n \text{ ist konvergent und } \sum_{n=0}^{\infty} b_n = s$ a) Es existiert eine Umordnung mit: $\sum_{n=1}^{\infty} c_n$ ist divergent Cauchyprodukt (CP) von $\sum_{n=0}^{\infty} a_n \ und \sum_{n=0}^{\infty} b_n$ $\sum_{n=0}^{\infty} c_n$ $\sum_{n=0}^{\infty} c_n c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0$ $c_n := \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_{k-1}$ CP und absolute Konvergenz: $\sum_{n=0}^{\infty} a_n \ und \sum_{n=0}^{\infty} b_n \ absolut \ konvergent$ $\sum_{n=0}^{\infty} c_n \text{ ist absolut konvergent und } \sum_{n=0}^{\infty} c_n = (\sum_{n=0}^{\infty} a_n)(\sum_{n=0}^{\infty} b_n)$

Potenzreihen (PR):

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots$$

Beispiele:

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$
. Hier: $a_n = \frac{1}{n!}$ $(n \in \mathbb{N}_0)$, $x_0 = 0$ (konvergiert absolut)

$$\sum_{n=0}^{\infty} (x-x_0)^n$$
. Hier: $a_n=1$ $(n\in\mathbb{N}_0)$ (konvergiert absolut für $|x-x_0|<1$ = geometrische Reihe)

$$\sum_{n=0}^{\infty} n^n (x-x_0)^n$$
. Hier: $a_n=n^n \ (n\in\mathbb{N}_0)$ (konvergiert nur für $x=x_0$)

Konvergenzradius (KR):

$$r := \begin{cases} 0, & \text{falls } \rho = \infty \\ \infty, & \text{falls } \rho = 0 \\ \frac{1}{\rho}, & \text{falls } \rho \in (0, \infty) \end{cases}$$

$$\rho \coloneqq \begin{cases} \infty, & \text{falls } \left(\sqrt[n]{|a_n|}\right) \text{ } unbeschränkt} \\ \limsup_{n \to \infty} \sqrt[n]{|a_n|}, & \text{falls } \left(\sqrt[n]{|a_n|}\right) \text{ } beschränkt} \end{cases}$$

Konvergenz:

- a) Ist r = 0, so konvergiert die Potenzreihe nur für $x = x_0$.
- b) Ist $r = \infty$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$.
- c) Ist $r \in (0, \infty)$, so konvergiert die Potenzreihe absolut für jedes $x \in \mathbb{R}$ mit $|x-x_0| < r$ und sie divergiert für jedes $x \in \mathbb{R}$ mit $|x-x_0| > r$. Für $x = x_0 \pm r$ ist keine allgemeine Aussage möglich.

Beispiele:

$$\sum_{n=0}^{\infty} x^n$$
; $a_n = 1 \ (n \in \mathbb{N}_0), \ x_0 = 0; \ \rho = 1, \ r = 1$

$$\sum_{n=1}^{\infty} \frac{x^n}{n}; \ a_0 = 0, \ a_n = \frac{1}{n} \ (n \ge 1), \ x_0 = 0$$

$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}; \ a_0 = 0, \ a_n = \frac{1}{n^2} \ (n \ge 1), \ x_0 = 0$$

Konvergenzradius, falls nicht 0:

$$a_n \neq 0$$
 ffa $n \in \mathbb{N}_0$, die Folge $\left(\left|\frac{a_n}{a_{n+1}}\right|\right)$ sei konvergent und $L := \overline{\lim_{n \to \infty} \left|\frac{a_n}{a_{n+1}}\right|}$

$$=> Potenzreihe \sum_{n=0}^{\infty} a_n (x-x_0)^n den Konvergenzradius L$$

Exponentialfunktion / Logarithmus

Die Exponentialfunktion:
$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$$
 $E(\mathbb{R}) = (0, \infty)$

a)
$$E(0) = 1, E(1) = e;$$

b)
$$\forall x, y \in \mathbb{R} : E(x+y) = E(x)E(y);$$

c)
$$\forall x_1, ..., x_m \in \mathbb{R} : E(x_1 + ... + x_m) = E(x_1) \cdot ... \cdot E(x_m);$$

d)
$$E(x) > 1$$
 $(x > 0)$; $E(x) > 0$ $(x \in \mathbb{R})$; $E(-x) = E(x)^{-1}$ $(x \in \mathbb{R})$;

e)
$$\forall x \in \mathbb{R} \ \forall r \in \mathbb{Q} : E(rx) = E(x)^r;$$

f)
$$\forall r \in \mathbb{Q} : E(r) = e^r$$
;

g) E ist auf \mathbb{R} streng monoton wachsend, d.h. aus x < y folgt stets E(x) < E(y)

$$\underbrace{E(x) \to \infty \quad (x \to \infty), E(x) \to 0 \quad (x \to -\infty).}_{x \to 0} \quad \underbrace{\lim_{x \to 0} \frac{E(x) - 1}{x}}_{x \to 0} = 1 \qquad \underbrace{\lim_{h \to 0} \frac{E(x_0 + h) - E(x_0)}{h}}_{h \to 0} = E(x_0)$$

Der Logarithmus: E ist auf \mathbb{R} streng monoton wachsend und $E(\mathbb{R}) = (0, \infty)$

$$\log x := \ln x := E^{-1}(x) \quad (x \in (0, \infty))$$

a > 0 Eigenschaften:

a)
$$\log 1 = 0$$
, $\log e = 1$;

$$\forall x \in \mathbb{R} \ \forall r \in \mathbb{Q} : \ E(rx) = E(x)^r$$

b)
$$\log: (0, \infty) \to \mathbb{R}$$
 ist stetig und streng monoton wachsend;

$$\forall r \in \mathbb{Q} : E(r \log a) = E(\log a)^r = a^r$$

c)
$$\log((0,\infty)) = \mathbb{R};$$

d)
$$\log x \to \infty \ (x \to \infty), \ \log x \to -\infty \ (x \to 0);$$

$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n} \quad (x \in (-1,1])$$

e)
$$\forall x, y > 0$$
: $\log(xy) = \log x + \log y$;

f)
$$\forall x, y > 0$$
: $\log\left(\frac{x}{y}\right) = \log x - \log y$.

$$\log 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Die Allgemeine Potenz:

$$a^x := E(x \log a) \quad (x \in \mathbb{R} \setminus \mathbb{Q}) \quad a = e, \text{ so ist } e^x = E(x \log e) = E(x) \quad (x \in \mathbb{R}) \quad a^x = e^x$$

$$a^x = e^{x \log a} \ (x \in \mathbb{R}, a > 0)$$

a)
$$a^x > 0$$
;

b) Die Funktion
$$x \mapsto a^x$$
 ist auf \mathbb{R} stetig;

c)
$$a^{x+y} = e^{(x+y)\log a} = e^{x\log a + y\log a} = e^{x\log a}e^{y\log a} = a^x a^y$$
;

d)
$$a^{-x} = e^{-x \log a} = \frac{1}{e^x \log a} = \frac{1}{a^x}$$
;

e)
$$\log(a^x) = \log(e^{x \log a}) = x \log a;$$

f)
$$(a^x)^y = e^{y \log a^x} \stackrel{e)}{=} e^{xy \log a} = a^{xy};$$

g) Ist auch
$$x>0$$
, so ist $a^{x^y}:=a^{(x^y)}$. Im allgemeinen ist $a^{x^y}\neq (a^x)^y$

Trigonometrie

Cosinus:
$$\begin{cases} \cos : \mathbb{R} \to \mathbb{R} \\ \cos x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} \end{cases}$$
Sinus:
$$\begin{cases} \sin : \mathbb{R} \to \mathbb{R} \\ \sin x \coloneqq \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Sinus und Cosinus sind Stetig auf R

Rechenregeln:

$$\forall x \in \mathbb{R} : \sin(-x) = -\sin(x), \cos(-x) = \cos(x)$$

$$\forall x, y \in \mathbb{R} : \sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\forall x, y \in \mathbb{R} : \cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cot x := \frac{\sin x}{\cos x} |\cos x| \le 1 \text{ und } |\sin x| \le 1$$

$$\cot x := \frac{\sin x}{\cos x} |\cos x| \le 1 \text{ und } |\sin x| \le 1$$

$$\cot x := \frac{\sin x}{\cos x} |\cos x| \le 1 \text{ und } |\sin x| \le 1$$

$$\frac{\sin(x+2\pi) = \sin x, \quad \cos(x+2\pi) = \cos x}{\sin(x+\pi) = -\sin x, \quad \cos(x+\pi) = -\cos x} \qquad \text{arctan } x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} \\
\frac{\sin(x+\pi) = -\sin x, \quad \cos(x+\pi) = -\cos x}{\sin(x+\frac{\pi}{2}) = \sin x \cos\frac{\pi}{2} + \cos x \sin\frac{\pi}{2} = \cos x} \\
\frac{\cos(x+\pi) = -\cos x}{\cos(x+\frac{\pi}{2}) = -\sin x} \qquad \text{arctan } x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$
 Konvergenzradius $r = \infty$, also ist $\rho = 0$

Bekante Werte:

$$\sin 0 = 0$$
, $\cos 0 = 1$
 $\sin \frac{\pi}{2} = 1$, $\cos \frac{\pi}{2} = 0$

$$\cos x = 0 \iff x \in \{(2k+1)\frac{\pi}{2} \colon k \in \mathbb{Z}\}\$$

 $\sin x = 0 \iff x \in \{k\pi : k \in \mathbb{Z}\}\$

Grenzwerte bei Funktionen

$D \subseteq \mathbb{R}$	Häufungspunkt (HP) von D: Es gibt eine Folge (x_n) in $D \setminus \{x_0\}$ mit $x_n \to x_0$
$x_0 \in \mathbb{R}$	a) $D = (0, 1]$. Es gilt: x_0 ist Häufungspunkt von $D \iff x_0 \in [0, 1]$.
	b) $D = \{\frac{1}{n} : n \in \mathbb{N}\}$. Es gilt: D hat genau einen Häufungspunkt: $x_0 = 0$.
	Epsilon Definition der Häufungswert:
	$x_0 \text{ ist H\"{a}ufungspunkt von } D \iff \forall \varepsilon > 0 : U_{\varepsilon}(x_0) \cap (D \setminus \{x_0\}) \neq \emptyset.$ $D_{\delta}(x_0) \coloneqq U_{\delta}(x_0) \cap (D \setminus \{x_0\})$
	Funktionen vergleichen:
	- f <= g auf M für: " $f(x) \le g(x)$ ($x \in M$)"
	Grenzwert einer Funktion: $\lim_{x \to x_0} f(x) = a \ oder \ f(x) \to a \ (x \to x_0)$
	$\lim_{x\to x_0} f(x)$ existiert: \iff Es gibt ein $a\in\mathbb{R}$ so,
	$da\beta \ f\ddot{u}r \ jede \ Folge \ (x_n)$ in $D \setminus \{x_0\}$ mit $x_n \to x_0$ gilt: $f(x_n) \to a$
	Epsilon Definition des Grenzwerts:
	$\lim_{x \to x_0} f(x) = a \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_{\delta}(x_0) : \ f(x) - a < \varepsilon$
	$\lim_{x\to x_0} f(x)$ existiert \iff Für jede Folge (x_n) in $D\setminus\{x_0\}$ mit $x_n\to x_0$ ist $(f(x_n))$ konvergent.
	Cauchykriterium:
	$\lim_{x \to x_0} f(x) \text{ existiert } \iff \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x_1, x_2 \in D_{\delta}(x_0) : \ f(x_1) - f(x_2) < \varepsilon$
	Rechenregeln für Grenzwerte: $f,g,h:D\to\mathbb{R}$, $a,b,\alpha,\beta\in\mathbb{R}$, $f(x)\to a,g(x)\to b$ $(x\to x_0)$
	a) $\alpha f(x) + \beta g(x) \rightarrow \alpha a + \beta b; f(x)g(x) \rightarrow ab; f(x) \rightarrow a (x \rightarrow x_0)$
	b) Ist $a \neq 0$, so existive ein $\delta > 0$ mit $f(x) \neq 0$ $(x \in D_{\delta}(x_0))$. Für $\frac{1}{f} \colon D_{\delta}(x_0) \to \mathbb{R}$ gilt:
	$\frac{1}{f(x)} \to \frac{1}{a} (x \to x_0).$
	c) Für ein $\delta > 0$ gelte $f \leq g$ auf $D_{\delta}(x_0)$. Dann ist $a \leq b$.
	d) Für ein $\delta > 0$ gelte $f \leq h \leq g$ auf $D_{\delta}(x_0)$. Ist $a = b$, so gilt $h(x) \to a$ $(x \to x_0)$

Stetigkeit von Funktionen

Definition von Stetigkeit:

- a) f heißt $in \ x_0$ $stetig : \iff$ Für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$.
- b) f heißt auf D stetig: \iff f ist in jedem $x \in D$ stetig.
- $C(D) := C(D, \mathbb{R}) := \{g : D \to \mathbb{R} : g \text{ ist stetig auf } D\}$ (Menge stetiger Funktionen)

Epsilon Definition von Stetigkeit:

f ist in
$$x_0$$
 stetig $\iff \forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x \in U_\delta(x_0) \cap D : \; |f(x) - f(x_0)| < \varepsilon$

Stetigkeit und Häufungspunkte:

$$f \text{ ist in } x_0 \text{ stetig } \iff \lim_{x \to x_0} f(x) = f(x_0)$$

$\alpha, \beta \in \mathbb{R}$ Rechenregeln für stetige Funktionen:

- a) $f, g: D \to \mathbb{R}$ stetig in $x_0 \in D = \alpha f + \beta g$, fg und |f| stetig in x_0 $x_0 \in \tilde{D} := \{x \in D: f(x) \neq 0\}$, so ist $\frac{1}{f}: \tilde{D} \to \mathbb{R}$ stetig in x_0
- b) Sind $f, g \in C(D) = > \alpha f + \beta g$, $fg, |f| \in C(D)$

Verkettung stetiger Funktionen: Ist f in x_0 stetig und ist g in y_0 stetig, $x_0 \in D$ $y_0 := f(x_0)$

$$g \circ f \colon D \to \mathbb{R}, \ (g \circ f)(x) \coloneqq g(f(x)) \text{ stetig in } x_0$$

Stetigkeit und Potenzreihen: $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \quad (x \in D)$

$$D:=(x_0-r,x_0+r) \text{ falls } r<\infty \text{ , } r>0$$

$$D:=\mathbb{R} \text{ falls } r=\infty$$

Zwischenwertsatz:

$$f \in C([a,b])$$
 & y_0 zwischen $f(a)$ und $f(b)$ = existive ein $x_0 \in [a,b]$ mit $f(x_0) = y_0$

Nullstellensatz von Bolzano:

$$f \in C([a,b]) \ und \ f(a)f(b) \le 0 \implies \text{existiert} \ x_0 \in [a,b] \ mit \ f(x_0) = 0$$

Abgeschlossenheit und Kompaktheit von Mengen: a) D heißt abgeschlossen : \iff Für jede konvergente Folge (x_n) in D qilt $\lim x_n \in D$. b) D heißt kompakt : \iff Jede Folge (x_n) in D enthält eine konvergente Teilfolge (x_{n_k}) mit $\lim_{n \to \infty} x_{n_k} \in D.$ a) D ist abgeschlossen \iff Jeder Häufungspunkt von D gehört zu Db) D ist kompakt ⇔ D ist beschränkt und abgeschlossen (c) Ist D kompakt und $D \neq \emptyset$, so existieren max D und min D Beispiele: a) [a, b] ist kompakt, also auch abgeschlossen. b) Endliche Mengen sind kompakt. c) $[a, \infty)$, $(-\infty, a]$ und \mathbb{R} sind abgeschlossen, aber nicht kompakt d) Ø ist kompakt. e) (a, b], [a, b), (a, b) sind nicht abgeschlossen. Beschränktheit von Funktionen: $f: D \to \mathbb{R} \ heißt \ beschränkt : \iff f(D) \ ist \ beschränkt \ <=> \exists c \geq 0 \ \forall x \in D : \ |f(x)| \leq c$ Stetigkeite Funktionen bilden kompakte Mengen auf kompakte Mengen: $\emptyset \neq D \subseteq \mathbb{R} \ kompakt \ und \ f \in C(D) => f(D) \ kompakt$, $f \ beschränkt$ es existieren $x_1, x_2 \in D$ mit $f(x_1) = \min f(D)$ und $f(x_2) = \max f(D)$ $\forall x \in D: \ f(x_1) \le f(x) \le f(x_2).$ a) Ist $I \subseteq \mathbb{R}$ ein Intervall und ist $f \in C(I)$, so ist f(I) ein Intervall. b) $Sei\ f \in C([a,b]),\ A := \min f([a,b])\ und\ B := \max f([a,b]),\ so\ ist\ f([a,b]) = [A,B]$

Mon	OTONIA	hai Fiin	ktionen:
1141011	OLUITE	Del I Ulli	KLIUIIEII.

- a) $f: D \to \mathbb{R}$ heißt monoton wachsend : \iff Aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) \leq f(x_2)$.
 - $f: D \to \mathbb{R}$ heißt streng monoton wachsend: \iff Aus $x_1, x_2 \in D$ und $x_1 < x_2$ folgt stets $f(x_1) < f(x_2)$.
- b) Entsprechend definiert man (streng) monoton fallend.
- c) f heißt (streng) monoton: \iff f ist (streng) monoton wachsend oder (streng) monoton fallend.

Umkehrfunktionen von (streng) monoton wachsenden/fallenden Funktionen sind ebenso (streng) monoton wachsend/fallend.

Monotonie und Intervalle:

 $I \subseteq \mathbb{R}$ ein Intervall, $f \in C(I)$ und f sei auf I streng monoton

 $=> f(I) ein Intervall und^{f-1} <math>\in C(f(I))$

Gleichmäßige Stetigkeit:

Sind (x_n) , (y_n) Folgen in D mit $x_n - y_n \to 0$, so gilt $f(x_n) - f(y_n) \to 0$

Epsilon Definition: $\forall \varepsilon > 0 \ \exists \delta = \delta(\varepsilon) > 0 \ \forall x, y \in D : |x - y| < \delta \ \Rightarrow \ |f(x) - f(y)| < \varepsilon$

gleichmäßig stetig => stetig

Satz von Heine: Ist $D \subseteq \mathbb{R}$ kompakt und ist $f \in C(D)$, so ist f auf D gleichmäßig stetig.

Lipschitz-stetig: $\exists L \ge 0 \ \forall x, y \in D: \ |f(x) - f(y)| \le L|x - y|$

Lipschitz-stetig => gleichmäßig stetig

Funktionsfolgen und -reihen

$$(f_n)$$
 eine Folge von Funktionen $f_n \colon D \to \mathbb{R}$

$$s_n := f_1 + f_2 + \dots + f_n \ (n \in \mathbb{N})$$

Punktweise Konvergenz:

von Funktionsfolgen:

Die Funktionenfolge (f_n) heißt **auf** D **punktweise konvergent** : \iff Für jedes

 $x \in D$ ist die Folge $(f_n(x))$ konvergent.

Grenzfunktion: $f: D \to \mathbb{R}$ heißt die **Grenzfunktion** von (f_n) $f(x) := \lim_{n \to \infty} f_n(x)$ $(x \in D)$

von Funktionsfolgen:

Die Funktionenreihe $\sum_{n=1}^{\infty} f_n$ heißt **auf** D **punktweise konvergent** : \iff Für

jedes $x \in D$ ist die Folge $(s_n(x))$ konvergent.

Summenfunktion: $f: D \to \mathbb{R}$ heißt die Summenfunktion von (f_n)

 $f(x) \coloneqq \sum_{n=1}^{\infty} f_n(x) \quad (x \in D)$

Beispiel: $D = [0, 1], f_n(x) = x^n \ (n \in \mathbb{N})$

$$f(x) := \lim_{n \to \infty} f_n(x) = \begin{cases} 0, & 0 \le x < 1 \\ 1, & x = 1 \end{cases}$$

Epsilon Definition: $\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon, x) \in \mathbb{N} \ \forall n \geq n_0: \ |f_n(x) - f(x)| < \varepsilon$

Gleichmäßige Konvergenz:

 (f_n) konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R}: \iff$ - von Funktionsfolgen:

 $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n \geq n_0 \ \forall x \in D : \ |f_n(x) - f(x)| < \varepsilon$

 $\sum_{n=1}^{\infty} f_n$ konvergiert auf D gleichmäßig (glm) gegen $f: D \to \mathbb{R}: \iff$ von Funktionsreihen:

 $\forall \varepsilon > 0 \ \exists n_0 = n_0(\varepsilon) \in \mathbb{N} \ \forall n \ge n_0 \ \forall x \in D : \ |s_n(x) - f(x)| < \varepsilon$

- gleichmäßig konvergent => punktweise konvergent

Beispiel: $D = [0, 1], f_n(x) = x^n \ (n \in \mathbb{N})$

Bekannt: (f_n) konvergiert punktweise gegen

$$-f(x) = \begin{cases} 0, & \text{falls } x \in [0, 1) \\ 1, & \text{falls } x = 1 \end{cases}$$

Es sei $0 < \varepsilon < \frac{1}{2}$. Wegen $f_n(\frac{1}{\sqrt[n]{2}}) = \frac{1}{2}$ und $\frac{1}{\sqrt[n]{2}} \in [0,1)$ gilt

$$\left| f_n(\frac{1}{\sqrt[n]{2}}) - f(\frac{1}{\sqrt[n]{2}}) \right| = \frac{1}{2} > \varepsilon \quad (n \in \mathbb{N})$$

Also konvergiert (f_n) auf [0,1] nicht gleichmäßig gegen f.

$\alpha_n \to 0$	Punktweise Konvergenz und Nullfolgen:
	(f _n) konvergiere auf D punktweise gegen $f: D \to \mathbb{R}$ & $\forall n \geq m \ \forall x \in D: \ f_n(x) - f(x) \leq \alpha_n$
	$=> konvergiert (f_n)$ auf D gleichmäßig gegen f
(c_n) in $[0,\infty)$	Kriterium von Weierstraß:
	$\sum_{n=1}^{\infty} c_n sei \ konvergent \& \forall n \ge m \ \forall x \in D : \ f_n(x) \le c_n$
	$=> konvergiert \sum_{n=1}^{\infty} f_n \ auf \ D \ gleichmäßig.$
	Gleichmäßige Konvergenz von Potenzreihen:
	$\sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ eine Potenzreihe mit Konvergenzradius } r > 0$ $D := (x_0 - r, x_0 + r) \ (D := \mathbb{R}, \text{ falls } r = \infty)$
	$[a,b] \subseteq D$ => konvergiert die Potenzreihe auf $[a,b]$ gleichmäßig.
	Gleichmäßige Konvergenz und Stetigkeit:
	(f_n) bzw. $\sum_{n=1}^{\infty} f_n$ konvergiere auf D gleichmäßig gegen $f: D \to \mathbb{R}$ a) Sind alle f_n in $x_0 \in D$ stetig, so ist f in x_0 stetig
	b) Sind alle $f_n \in C(D)$, so ist $f \in C(D)$.
	a) Konvergiert (f_n) auf D punktweise gegen $f: D \to \mathbb{R}$ und gilt $f_n \in C(D)$ $(n \in \mathbb{N})$
	aber $f \notin C(D)$, so ist die Konvergenz nicht gleichmäßig.
	b) Häufungspunkt von D: $\lim_{x \to x_0} \left(\lim_{n \to \infty} f_n(x) \right) = \lim_{x \to x_0} f(x) \stackrel{8.3 \text{ a}}{=} f(x_0) = \lim_{n \to \infty} f_n(x_0)$
	$= \lim_{n \to \infty} \left(\lim_{x \to x_0} f_n(x) \right).$
	Identitätssatz für Potenzreihen:
	$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ eine Potenzreihe mit Konvergenzradius } r > 0$ $D := (x_0 - r, x_0 + r) \ (D := \mathbb{R}, \text{ falls } r = \infty)$
	(x_k) eine Folge in $D \setminus \{x_0\}$ mit $x_k \to x_0$ und $f(x_k) = 0$ $(k \in \mathbb{N})$
	$=> orall n \in \mathbb{N}_0: \ a_n = 0 \ r_* = \infty \ und \ f(x) = 0 \ (x \in \mathbb{R})$

Bekannte Ableitungen

$$c \in \mathbb{R}$$

$$(c)' = 0 \text{ auf } \mathbb{R}$$

$$(a^x)' = a^x \log a \text{ auf } \mathbb{R}$$

$$(x^n)' = nx^{n-1} \text{ auf } \mathbb{R}$$

$$(x^n)' = nx^{n-1} \text{ auf } \mathbb{R}$$

$$(e^x)' = e^x \text{ auf } \mathbb{R}$$

$$(\sin x)' = \cos x$$

$$(\cos x)' = -\sin x$$

$$(\cot x)' = -\sin x$$

$$(e^x)'' = e^x, (\sin x)'' = (\cos x)' = -\sin x$$

$$(e^x)''' = e^x, (\sin x)'' = (\cos x)' = -\sin x$$

$$Es \text{ gih: } E. \sin, \cos \in C^{\infty}(\mathbb{R})$$

Differentialrechnung

 $I \subseteq \mathbb{R}$ ein Intervall

Differenzierbarkeit:

f heißt in $x_0 \in I$ differenzierbar $(db) : \iff Es$ existiert **Definition:**

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \in \mathbb{R}.$$

Äquivalent:^{Es existiert}

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \in \mathbb{R}$$

Grenzwert = $\frac{f'(x_0)}{f'(x_0)}$ = Ableitung von f in $\frac{x_0}{f'(x_0)}$

Beispiel: $c \in \mathbb{R}$ und f(x) := c $(x \in \mathbb{R})$. Dann ist f auf \mathbb{R} differenzierbar und f'(x) = 0

differenzierbar => stetig

Differentiationsregeln: $f,g:I\to\mathbb{R}$ seien in $x_0\in I$ differenzierbar

a) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta q$ differenzierbar in x_0 und

$$(\alpha f + \beta g)'(x_0) = \alpha f'(x_0) + \beta g'(x_0)$$

b) fg ist differenzierbar in x_0 und

$$(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

c) Ist $g(x_0) \neq 0$, so existive ein $\delta > 0$ mit $g(x) \neq 0$ $(x \in J := I \cap U_{\delta}(x_0))$. Die Funktion $\frac{f}{a}: J \to \mathbb{R}$ ist differenzierbar in x_0 und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}.$$

Stetigkeit und Differenzierbarkeit der Umkehrfunktion:

 $f \in C(I)$ streng monoton, in $x_0 \in I$ differenzierbar

&
$$f'(x_0) \neq 0$$

$$= > f^{-1} : f(I) \to \mathbb{R} \text{ differenzierbar in } y_0 := f(x_0) \text{ und}$$

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}.$$

Kettenregel:

 $J\subseteq\mathbb{R}$ sei ein weiteres Intervall, $g\colon J o\mathbb{R}$, $f(I)\subseteq J$ &

f in $x_0 \in I$ differenzierbar und g sei in $y_0 := f(x_0)$ differenzierbar

$$=> (g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$$

	Lokales/Globales Extremum:
	- Innerer Punkt von M: $\exists \delta > 0: U_{\delta}(x_0) \subseteq M$
	- Lokales Maximum (bzw. Minimum):
	$\exists \delta > 0 \ \forall x \in U_{\delta}(x_0) \cap M : \ g(x) \leq g(x_0) \ [bzw. \ g(x) \geq g(x_0)]$
	- Globales Maximum (bzw. Minimum): $\forall x \in M: g(x) \leq g(x_0)$ [$bzw. g(x) \geq g(x_0)$]
	- Extremum = Maximum Minimum
	Lokales Extremum und Differenzierbarkeit:
	$f\colon I \to \mathbb{R} \ habe \ in \ x_0 \in I \ ein \ lokales \ Extremum \ und \ sei \ in \ x_0 \ differenzierbar$
	x_0 ein innerer Punkt von $I = f'(x_0) = 0$
$f \in C([a,b])$	Mittelwertsatz (MWS) der Differentialrechnung: $\frac{f(b) - f(a)}{f(b)} = \frac{f(a)}{f(a)} = \frac{f(b)}{f(a)}$
	$f \ sei \ auf \ (a,b) \ differenzierbar. => \exists \xi \in (a,b): \ \frac{f(b)-f(a)}{b-a} = f'(\xi)$
	Differenzierbarkeit und Konstanz: $f: I \to \mathbb{R}$ differenzierbar auf I
	$f \text{ ist auf } I \text{ konstant} \iff \forall x \in I: f'(x) = 0$
	Differenzierbarkeit und Monotonie: a) Ist $f' = g'$ auf I , so existiert ein $c \in \mathbb{R}$ mit $f = g + c$ auf I .
	b) Ist $f' \geq 0$ auf I , so ist f monoton wachsend auf I .
	Ist f' > 0 auf I, so ist f streng monoton wachsend auf I.
	c) Ist $f' \leq 0$ auf I , so ist f monoton fallend auf I .
	Ist $f' < 0$ auf I , so ist f streng monoton fallend auf I .

Regeln von de l'Hospital:

$$I=(a,b)$$
, wobei $a=-\infty$ oder $b=\infty$, $c=a$ oder $c=b$

$$f,g:I\to\mathbb{R}$$
 auf I differenzierbar & $g'(x)\neq 0 \ (x\in I)$

(I)
$$\lim_{x\to c} f(x) = \lim_{x\to c} g(x) = 0$$

$$|| \quad (II) \lim_{x \to c} g(x) = \pm \infty$$

$$\lim_{x \to c} \frac{f(x)}{g(x)} = I$$

Beispiele:

a)
$$\lim_{x \to 0} \frac{\alpha^x - \beta^x}{x} = \lim_{x \to 0} \frac{\alpha^x \log \alpha - \beta^x \log \beta}{1} = \frac{\log \alpha - \log \beta}{1}$$

b)
$$\lim_{x \to \infty} \frac{\log x}{x} = \lim_{x \to \infty} \frac{\frac{1}{x}}{1} = 0$$

Differenzierbarkeit von Potenzreihen:

$$x \in I$$

$$f(x) \coloneqq \sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 eine Potenzreihe mit Konvergenzradius $r>0$ $I = (x_0-r,x_0+r)$ $(I=\mathbb{R}, falls \ r=\infty)$

- a) Die Potenzreihe $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ hat den Konvergenzradius r.
- b) f ist auf I differenzierbar und

$$f'(x) = \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1} \quad (x \in I).$$

Abelscher Grenzwertsatz für Potenzreihen:

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 eine Potenzreihe , Konvergenzradius $r \in (0,\infty)$

Konvergiert die Potenzreihe auch in
$$x_0 + r$$
 &
$$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ für } x \in (x_0 - r, x_0 + r]$$

$$=> f stetig in x_0 + r$$

- analog für
$$\frac{x_0-r}{r}$$

	Zweite Ableitung: $f: I \to \mathbb{R}$ auf I differenzierbar
	- Differenzierbar in einem Punkt:
	$f' \text{ in } x_0 \in I \text{ differenzierbar} => f''(x_0) := (f')'(x_0) \text{ (analog: } f'''(x_0), f^{(4)}(x_0), f^{(5)}(x_0) \text{)}$
	- Differenzierbar auf einer Menge:
	f' auf I differenzierbar $=>$ $f''\coloneqq (f')'$ (analog: $f''', f^{(4)}, f^{(5)}, \dots$)
	n-mal Stetige Differenzierbarkeit:
	c) Für $n \in \mathbb{N}$ heißt f auf I n -mal stetig differenzierbar : \iff f ist auf I n -mal differenzierbar und $f^{(n)} \in C(I)$. In diesem Fall gilt: $f, f', \ldots, f^{(n)} \in C(I)$. Wir
	setzen $C^0(I) \coloneqq C(I), f^{(0)} \coloneqq f,$
	$C^n(I):=\{f:I o\mathbb{R}:\ f\ ist\ auf\ I\ n ext{-mal\ stetig\ differentiar}\} (n\in\mathbb{N}),$
	$C^{\infty}(I) := \bigcap_{n \ge 0} C^n(I).$
	and the Difference to the office of the Difference of the Differen
_ *	n-malige Differenzierbarkeit von Potenzreihen: $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n \text{ eine Potenzreihe mit Konvergenzradius } r > 0$
$x \in I$	
	$\forall k \in \mathbb{N}_0 \ \forall x \in I: \ f^{(k)}(x) = \sum_{n=0}^{\infty} n(n-1) \cdots (n-k+1) a_n (x-x_0)^{n-k}$
	$f \in C^{\infty}(I) \& \forall k \in \mathbb{N}_0 \ \forall x \in I: \ f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdots (n-k+1) a_n (x-x_0)^{n-k}$ $F \ddot{\mathbf{u}} \mathbf{r} \mathbf{r} \mathbf{x} = x_0 : \frac{f^{(k)}(x_0) = k! a_k, \ also}{f^{(k)}(x_0)} \underbrace{\mathbf{f}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n}_{\mathbf{n}!}$
	$\forall k \in \mathbb{N}_0: \ a_k = \frac{f^{(k)}(x_0)}{k!}$
	n:

$x, x_0 \in I$	Satz von Taylor: f sei auf I $(n+1)$ -mal differenzierbar
$x \neq x_0$	$existiert \ ein \ \xi \in \left(\min\{x, x_0\}, \max\{x, x_0\}\right) \ mit f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \ldots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1} + \frac{f^{(n+1)}(\xi)}{n!}(x - x_0)^{n+1} + \frac{f^{(n+1)}(\xi)}{n!}$
	$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$
	κ=0
$Grad \leq n$	n-tes Taylorpolynom von f im Punkt Xo: $T_n f(x,x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$
	Restglied: $\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1}$
	Lokales Extremum und Taylorpolynom: $n \ge 2$, $f \in C^n(I)$, $x_0 \in I$ sei ein innerer Punkt von I
	$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0$ und $f^{(n)}(x_0) \neq 0$ => a) Ist n gerade und $f^{(n)}(x_0) < 0$, so hat f in x_0 ein lokales Maximum.
	b) Ist n gerade and $f^{(n)}(x_0) > 0$, so hat f in x_0 ein lokales Minimum.
	c) Ist n ungerade, so hat f in x_0 kein lokales Extremum.

Riemann-Integral

$$a < b$$
 $f: [a, b] \rightarrow \mathbb{R}$ $m := \inf f([a, b]), M := \sup f([a, b])$

Definitionen:

- Zerlegung: $Z = \{x_0, x_1, ..., x_n\}$ $mi_a = x_0 < x_1 < ... < x_n = b$
- Menge aller Zerlegungen: $\mathcal{Z} := \{Z : Z \text{ ist eine Zerlegung von } [a, b]\}$

$$I_j := [x_{j-1}, x_j], \ |I_j| := x_j - x_{j-1}, \ m_j := \inf f(I_j), \ M_j := \sup f(I_j) \quad (j = 1, \dots, n)$$

Untersumme: $s_f(Z) \coloneqq \sum_{j=1}^n m_j |I_j|$

Obersumme: $S_f(Z) := \sum_{j=1}^n M_j |I_j|$

 $j \in \{1, \dots, n\}$

 $m \le m_j \le M_j \le M$ $m|I_j| \le m_j|I_j| \le M_j|I_j| \le M|I_j|$

 $m(b-a) = m \sum_{j=1}^{n} |I_j| \le s_f(Z) \le S_f(Z) \le M \sum_{j=1}^{n} |I_j| = M(b-a)$

Verfeinerung: $Z_1, Z_2 \in \mathcal{Z}$. Z_2 heißt eine Verfeinerung von $Z_1 : \iff Z_1 \subseteq Z_2$

Zerlegungen und Summen:

$$a) s_f(Z_1) \le S_f(Z_2).$$

b) Ist
$$Z_1 \subseteq Z_2$$
, so gilt: $s_f(Z_1) \le s_f(Z_2)$, $S_f(Z_1) \ge S_f(Z_2)$

$$s_f := \sup\{s_f(Z) \colon Z \in \mathcal{Z}\} \text{ und } S_f := \inf\{S_f(Z) \colon Z \in \mathcal{Z}\}\$$

$$m(b-a) \le s_f \le S_f \le M(b-a)$$

	(Riemann-)integrierbar (ib) über [a,b]: $s_f = S_f$
	(Riemann-)Integral von f über [a,b]: $\int_a^b f dx := \int_a^b f(x) dx := S_f(=s_f)$
	$\int_a^b f dx := \int_a^b f(x) dx := S_f(=s_f)$ $f \in R([a,b]) \text{ oder } f \in R([a,b],\mathbb{R})$
	Beispiele:
	$f(x) = c \ (x \in [a,b]) = c(b-a) \le s_f \le c(b-a)$ = $f \in R([a,b]) \ und \int_a^b cdx = c(b-a)$
	$f(x) := \begin{cases} 1, & x \in [0,1] \cap \mathbb{Q} \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases} = > m_j = \inf f(I_j) = 0, M_j = \sup f(I_j) = 1 \ (j = 1, \dots, n) $ $= > s_f(Z) = 0 \neq 1 = S_f(Z) \qquad = \not \Rightarrow \notin R([0,1])$
$f,g \in R([a,b])$	Rechenregeln für Integrale:
	a) Ist $f \leq g$ auf $[a, b]$, so ist $\int_a^b f dx \leq \int_a^b g dx$
	b) Für $\alpha, \beta \in \mathbb{R}$ ist $\alpha f + \beta g \in R([a, b])$ und $\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f dx + \beta \int_{a}^{b} g dx$
	Riemannsches Integrabilitätskriterium:
	$f \in R([a,b]) \iff \forall \varepsilon > 0 \ \exists Z = Z(\varepsilon) \in \mathcal{Z} : \ S_f(Z) - s_f(Z) < \varepsilon$
	Monotonie und Integrierbarkeit: Ist $f:[a,b] \to \mathbb{R}$ monoton, so ist $f \in R([a,b])$
	Stetigkeit und Integrierbarkeit: $C([a,b]) \subseteq R([a,b])$
	Stammfunktion von g auf I: G ist auf I differenzierbar und $G' = g$ auf I
	Mehrere Stammfunktionen:
	$G' = g = H' \text{ auf } I \& \exists c \in \mathbb{R} \ \forall x \in I : \ G(x) = H(x) + c$

Erster Hauptsatz der Differential- und Integralrechnung:

 $f \in R([a,b])$ & besitzt auf [a,b] eine Stammfunktion F

$$=>\int_a^b f(x)dx = F(b) - F(a)$$

$$= > \int_{a}^{b} f(x)dx = F(b) - F(a)$$
 $F(x)\Big|_{a}^{b} := [F(x)]_{a}^{b} := F(b) - F(a)$

Beispiele:

$$f(x) = \frac{1}{x}, x \in [a, b], 0 < a < b , f \in C([a, b]) \xrightarrow{10.5} f \in R([a, b]) \quad F(x) := \log x$$

$$= > \int_a^b \frac{1}{x} dx = \log x \Big|_a^b = \log b - \log a = \log \frac{b}{a}$$

$$\int_0^{\frac{\pi}{2}} \cos x dx = \sin x \Big|_0^{\frac{\pi}{2}} = \sin \frac{\pi}{2} - \sin 0 = 1$$

BEMERKUNG:

Es gibt integrierbare Funktionen OHNE Stammfunktionen!

Es gibt nicht integrierbare Funktionen MIT Stammfunktionen

Integrierbarkeit und Mittelwerte:

$$c \in (a, b)$$

$$f \in R([a,b]) \iff f \in R([a,c]) \text{ und } f \in R([c,b])$$

$$\int_a^b f dx = \int_a^c f dx + \int_c^b f dx.$$

Motivation:

$$f_n \colon [0,1] \to \mathbb{R}, \quad f_n(x) = \begin{cases} n^2 x, & x \in [0, \frac{1}{n}), \\ n - (x - \frac{1}{n})n^2, & x \in [\frac{1}{n}, \frac{2}{n}), \\ 0, & x \in [\frac{2}{n}, 1]. \end{cases}$$

Es gilt:

$$f_n \in C([0,1]) \xrightarrow{10.5} f_n \in R([0,1]) \xrightarrow{10.6} \int_0^1 f_n dx = 1 \ (n \ge 2).$$

Übung: (f_n) konvergiert auf [0,1] punktweise gegen f=0. Also gilt:

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = 1 \neq 0 = \int_0^1 f(x) dx = \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) dx.$$

Abbildung 10.1: f_n für n = 5.

	Integrierbarkeit und Funktionsfolgen:
	(f_n) eine Folge in $R([a,b])$ & konvergiert auf $[a,b]$ gegen $f:[a,b] \to \mathbb{R}$
	$=> f \in R([a,b])$ & $\lim_{n\to\infty} \int_a^b f_n(x)dx = \int_a^b f(x)dx$.
	$\lim_{n\to\infty} \int_a^{\infty} f(x) dx = \int_a^{\infty} f(x) dx$
	Stammfunktionen und Potenzreihen:
$x \in I$	$f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$ eine Potenzreihe mit Konvergenzradius $r > 0$
	$I = (x_0 - r, x_0 + r) (I = \mathbb{R}, \text{ falls } r = \infty)$
	$g(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n - G(x) := \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1}$
	$\sum_{n=0}^{\infty} \frac{a_n}{n+1} (x-x_0)^{n+1} den Konvergenzradius r$
	G' = g (G ist Stammfunktion v g)
	g (e ist starring)
$f, g \in R([a, b])$	Rechenregeln für Integrale und Funktionen:
$J,g \in \mathcal{W}([a,b])$	a) Es sei $D := f([a,b])$ und mit einem $L \ge 0$ gelte für $h : D \to \mathbb{R}$:
	$ h(s) - h(t) \le L s - t (t, s \in D).$
	Dann ist $h \circ f \in R([a,b])$.
	b) $ f \in R([a,b])$ und $ \int_a^b f(x)dx \le \int_a^b f(x) dx$ (\triangle -Ungleichung für Integrale). <- Dreiecksungleichung
	c) $fg \in R([a,b])$.
	d) Ist $g(x) \neq 0$ $(x \in [a, b])$ und $\frac{1}{g}$ auf $[a, b]$ beschränkt, so ist $\frac{1}{g} \in R([a, b])$.
	Integral mit gleiche Grenzen: $\int_{\alpha}^{\alpha} f(x)dx := 0$
$\alpha, \beta \in [a, b]$	Integrierbarkeit auf Teilintervalle:
	$\alpha < \beta = f \in R([\alpha, \beta])$
	Grenzen von Intervalle vertauschen: $\int_{\beta}^{\alpha} f(x)dx := -\int_{\alpha}^{\beta} f(x)dx$

Zweiter Hauptsatz der Differential- und Integralrechnung:

$$f \in R([a,b])$$
 & $F(x) := \int_a^x f(t)dt$ $(x \in [a,b])$ \Longrightarrow

a)
$$F(y) - F(x) = \int_{x}^{y} f(t)dt \ (x, y \in [a, b]).$$

c) Ist
$$f \in C([a,b])$$
, so ist $F \in C^1([a,b])$ und $F'(x) = f(x)$ $(x \in [a,b])$

^ = Stetige Funktionen besitzen immer eine Stammfunktion

Stammfunktionen über Intervalle:

$$I \subseteq \mathbb{R}$$
 ein Intervall, $g \in C(I)$, $x_0 \in I$ (fest)

$$G: I \to \mathbb{R}$$
 mit $G(x) = \int_{x_0}^x f(t)dt = > G \in C^1(I)$ und $G' = g$ auf I

Unbestimmtes Integral von g:

$$\int gdx \ oder \int g(x)dx$$
 = Stammfunktion von g auf I

Beispiel:
$$\int \cos x dx = \sin x, \quad \int \cos x dx = \sin x + 17$$

$f,g \in C^1(I)$ Partielle Integration:

a)
$$\int f'gdx = fg - \int fg'dx$$
 auf I .

b) Ist
$$I = [a, b]$$
, so ist $\int_a^b f'gdx = fg\Big|_a^b - \int_a^b fg'dx$.

Beispiele:

$$\int \sin^2 x dx = \int \underbrace{\sin x \sin x}_{f'} \underbrace{\sin x}_g dx = -\cos x \sin x - \int -\cos^2 x dx$$
Ungeeignete Anwendung der partiellen Integration:

Besser:

$$= -\cos x \sin x + \int \cos^2 x dx = -\cos x \sin x + \int (1 - \sin^2 x) dx$$

$$\int \underbrace{x}_{t'} \underbrace{e^x}_{q} dx = \frac{1}{2} x^2 e^x - \int \frac{1}{2} x^2 e^x dx.$$

$$= x - \cos x \sin x - \int \sin^2 x dx$$

$$\int \underbrace{x}_{a} \underbrace{e^{x}}_{tt} = xe^{x} - \int e^{x} dx = xe^{x} - e^{x}$$

$$\Rightarrow \int \sin^2 x dx = \frac{1}{2}(x - \cos x \sin x).$$

$$\int \log x dx = \int \underbrace{1}_{f'} \underbrace{\log x}_{g} dx = x \log x - \int x \frac{1}{x} dx = x \log x - x$$

$$\neg \langle \alpha, \beta \rangle := \begin{cases} [\alpha, \beta], & \text{falls } \alpha < \beta \\ [\beta, \alpha], & \text{falls } \alpha > \beta \end{cases}$$

Substitutionsregeln:

I und J Intervalle in \mathbb{R}

$$f \in C(I), g \in C^1(J) \text{ und } g(J) \subseteq I$$

a) Es gilt

$$\int f(g(t))g'(t)dt = \int f(x)dx \Big|_{x=g(t)} \quad auf \ J.$$

b) Es sei $g'(t) \neq 0$ $(t \in J)$ $(\Rightarrow g' > 0$ auf J oder g' < 0 auf $J \Rightarrow g$ ist streng monoton).

Dann gilt:

$$\left| \int f(x)dx = \int f(g(t))g'(t)dt \right|_{t=g^{-1}(x)} auf I.$$

c) Ist $I = \langle a, b \rangle$, $J = \langle \alpha, \beta \rangle$, $g(\alpha) = a$ und $g(\beta) = b$, so gilt

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(g(t))g'(t)dt.$$

Merkregel: sei y = y(x) eine differenzierbare Funktion => y' = $\frac{dy}{dx}$

Fasse x als Funktion von t auf: x = g(t) = >

$$\frac{dx}{dt} = g'(t) \& "dx = g'(t)dt"$$

Beispiele:

Beschränktheit und integrierbarkeit: $f,g:[a,b] \to \mathbb{R}$ beschränkt

a) Ist $\{x \in [a,b] : f \text{ ist in } x \text{ nicht stetig } \}$ endlich, so ist $f \in R([a,b])$.

b) Ist $f \in R([a,b])$ und $\{x \in [a,b] : f(x) \neq g(x)\}$ endlich, so ist $g \in R([a,b])$ und

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} g(x)dx.$$

	Integrierbarkeit und inf/sup von f([a,b]):
	$f, g \in R([a, b]), g \ge 0 \text{ auf } [a, b], m := \inf f([a, b]) \text{ und } M := \sup f([a, b])$ $a) \exists \mu \in [m, M]: \int_a^b fg dx = \mu \int_a^b g dx.$
	(b) $\exists \mu \in [m, M]: \int_a^b f dx = \mu(b - a).$
	Ist $f \in C([a,b])$, so existivet ein $\xi \in [a,b]$ mit $\mu = f(\xi)$ in a) bzw. b)
(f_n) eine Folge	Differenzierbarkeit und Funktionsfolgen: $i) \ f_n \in C^1([a,b]) \ (n \in \mathbb{N}),$
	$ii) \ (f_n(a)) \ ist \ konvergent,$
	iii) (f'_n) konvergiert auf $[a,b]$ gleichmäßig gegen $g\colon [a,b] \to \mathbb{R}$.
	$=> \frac{(f_n)}{(f_n)}$ konvergiert gleichmäßig auf [a,b] & für $f(x) \coloneqq \lim_{x \to \infty} f_n(x) \ (x \in [a,b])$
	$f \in C^1([a,b]) \text{ und } f'(x) = g(x) (x \in [a,b])$
	Bemerkung: $\lim_{n\to\infty} f_n'(x) = g(x) = f'(x) = (\lim_{n\to\infty} f_n(x))' (x\in[a,b])$

Uneigentliche Integrale

 $f \in R(J)$ für jedes kompakte Intervall $J \subseteq I$

Konvergenz nach oben:

Konvergenz nach unten:

 $a \in \mathbb{R}, \ \beta \in \mathbb{R} \cup \{\infty\}, \ a < \beta \ und \ f : [a, \beta) \to \mathbb{R} \ eine \ Funktion$

 $b \in \mathbb{R}, \ \alpha \in \mathbb{R} \cup \{-\infty\}, \ \alpha < b \ und \ f : (\alpha, b] \to \mathbb{R} \ eine \ Funktion$

Es existiert
$$\lim_{t \to \alpha+} \int_t^b f(x) dx \in \mathbb{R}$$
.

Es existiert
$$\lim_{t \to \alpha +} \int_t^b f(x) dx \in \mathbb{R}$$
.

$$\int_{a}^{b} f(x)dx := \lim_{t \to a+} \int_{t}^{b} f(x)dx.$$

$$\int_{a}^{b} f(x)dx := \lim_{t \to a+} \int_{a}^{b} f(x)dx.$$

Beispiele:

a)
$$\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx$$
, $\gamma > 0$ $(a = 1, \beta = \infty)$. Für $t > 1$ gilt:

c)
$$\int_0^1 \frac{1}{x^{\gamma}} dx$$
, $\gamma > 0$ ($\alpha = 0, b = 1$). Wie in Beispiel a) sieht man:

$$\int_{1}^{t} \frac{1}{x^{\gamma}} dx = \begin{cases} \log t, & \text{falls } \gamma = 1\\ \frac{1}{1-\gamma} (t^{1-\gamma} - 1), & \text{falls } \gamma \neq 1 \end{cases}$$

$$\int_0^1 \frac{1}{x^{\gamma}} dx \text{ konvergiert } \iff \gamma < 1.$$

Also gilt: $\int_1^\infty \frac{1}{x^\gamma} dx$ konvergiert $\iff \gamma > 1.$ In diesem Fall ist — In diesem Fall ist

$$\int_{1}^{\infty} \frac{1}{x^{\gamma}} dx = \frac{1}{\gamma - 1}.$$

$$\int_0^1 \frac{1}{x^{\gamma}} dx = \frac{1}{1 - \gamma}.$$

b)
$$\int_0^\infty \frac{1}{1+x^2} dx \ (a=0, \beta=\infty)$$
. Für $t>0$ gilt:

d)
$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx$$
 ($\alpha = -\infty, b = 0$). Wie in Beispiel b) sieht man:

$$\int_0^t \frac{1}{1+x^2} dx = \arctan t \to \frac{\pi}{2} \ (t \to \infty)$$

$$\int_{-\infty}^{0} \frac{1}{1+x^2} dx \text{ konvergiert und } = \frac{\pi}{2}$$

Also ist $\int_0^\infty \frac{1}{1+x^2} dx$ konvergent und $= \frac{\pi}{2}$.

Konvergenz: $\alpha < \beta, \ \alpha \in \mathbb{R} \cup \{-\infty\}, \ \beta \in \mathbb{R} \cup \{\infty\} \ und \ f : (\alpha, \beta) \to \mathbb{R}$

 $\exists c \in (\alpha, \beta): \int_{\alpha}^{c} f(x)dx \ und \int_{c}^{\beta} f(x)dx \ sind \ konvergent$

$$\int_{\alpha}^{\beta} f(x)dx := \int_{\alpha}^{c} f(x)dx + \int_{c}^{\beta} f(x)dx.$$

Beispiele:

b) Es sei $\gamma > 0$. Obige Beispiele a) und c) zeigen:

$$\int_0^\infty \frac{1}{x^\gamma} dx$$
 ist divergent.

c) Obige Beispiele b) und d) zeigen:

$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx \text{ ist konvergent und} = \pi$$

Für
$$t \in [a, \beta)$$
 sei $g(t) := \int_a^t f(x) dx$. Dann gilt:

$$\int_{a}^{\beta} f(x)dx \text{ konvergient } \iff \lim_{t \to \beta^{-}} g(t) \text{ existient und ist in } \mathbb{R}$$

Cauchykriterium:

$$\int_{a}^{\beta} f(x)dx \text{ konvergient} \iff \forall \varepsilon > 0 \ \exists c \in (a,\beta) \ \forall u,v \in (c,\beta) : \ \left| \int_{u}^{v} f(x)dx \right| < \varepsilon$$

Absolute Konvergenz: $\int_{a}^{\beta} |f(x)| dx \text{ ist konvergent}$

absolut konvergent => konvergent &
$$\left|\int_a^\beta f(x)dx\right| \le \int_a^\beta |f(x)|dx$$

Majorantenkriterium:

$$|f| \le h$$
 auf $[a,\beta)$ und $\int_a^\beta h(x)dx$ konvergent $=>\int_a^\beta f(x)dx$ absolut konvergent

Minorantenkriterium:

$$f \ge h \ge 0$$
 auf $[a, \beta)$ und $\int_a^\beta h(x)dx$ divergent $=>$ $\int_a^\beta f(x)dx$ divergent.

Beispiel:
$$\int_{1}^{\infty} \frac{x}{\sqrt{1+x^5}} dx. \text{ Für } x \ge 1 \text{ gilt: } |f(x)| = f(x) \le \frac{x}{\sqrt{x^5}} = \frac{1}{x^{\frac{3}{2}}} = g(x).$$

$$\int_{1}^{\infty} g(x)dx$$
 konvergiert $\Rightarrow \int_{1}^{\infty} f(x)dx$ konvergiert