Dave Dubin and Jodi Schneider

October 10, 2016

Concepts from earlier in the semester

• Propositions are the bearers of truth values: the kinds of things that can be true or false.

Concepts from earlier in the semester

- Propositions are the bearers of truth values: the kinds of things that can be true or false.
- States of affairs are the parts of reality responsible for making propositions true or false.

• We represent propositions with lower case letters (typically p, q, and r).

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.
- n proposition letters generate 2^n states of affairs.

- We represent propositions with lower case letters (typically p, q, and r).
- A set of proposition letters generates a set of states of affairs: ways the world might be.
- n proposition letters generate 2^n states of affairs.
- $\{pqr, pq\overline{r}, p\overline{q}r, p\overline{q}\overline{r}, \overline{p}qr, \overline{p}q\overline{r}, \overline{pq}r, \overline{pq}r, \overline{pq}r\}$

Logical Operators

Table 1: 2.15 from van Benthem, et al.

Symbol	In natural language	Technical name
_	not	negation
\wedge	and	conjunction
\vee	or	disjunction
\rightarrow	if then	implication
\leftrightarrow	if and only if	equivalence

Logical Expressions

• A sentence constructed from proposition letters and operators is true or false in each state of affairs.

Logical Expressions

- A sentence constructed from proposition letters and operators is true or false in each state of affairs.
- Consider, for example: $(\neg p \lor q) \to r$

Logical Expressions

- A sentence constructed from proposition letters and operators is true or false in each state of affairs.
- Consider, for example: $(\neg p \lor q) \to r$
- The sentence is mapped to a truth value via the following tables

Semantics of the operators

φ	$\neg \varphi$
0	1
1	0

Table 3: 2.18 from van Benthem, et al.

φ	ψ	$\varphi \wedge \psi$	$\varphi \vee \psi$	$\varphi \to \psi$	$\varphi \leftrightarrow \psi$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Exercise 2.3

You are given the information that p-or-q and (not-p)-or-r. What can you conclude about q and r? What is the strongest valid conclusion you can draw? (A statement is stronger than another statement if it rules out more possibilities.)

p	q	r	((~	p	\vee	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	1	1	
0	0	0	1	0	1	0	0	0	

1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0	p	q	r	$ $ ((\sim	р	\vee	q) ightarrow	r)
1 1 0 0 1 1 1 0 0	1	1	1	0	1	1	1	1	1	
	1	1	0	0	1	1	1	0	0	
1 0 1 0 1 0 0 1 1	1	0	1	0	1	0	0	1	1	
1 0 0 0 1 0 0 1 0	1	0	0	0	1	0	0	1	0	
0 1 1 1 0 1 1 1 1	0	1	1	1	0	1	1	1	1	
0 1 0 1 1 0 0	0	1	0	1	0	1	1	0	0	
0 0 1 1 0 1 0 1 1	0	0	1	1	0	1	0	1	1	
0 0 0 1 0 0 0	0	0	0	1	0	1	0	0	0	

p	q	r	((~	р	V	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	1	1	
0	0	0	1	0	1	0	0	0	

p	q	r	((~	р	\vee	q) ightarrow	r)
1	1	1	0	1	1	1	1	1	
1	1	0	0	1	1	1	0	0	
1	0	1	0	1	0	0	1	1	
1	0	0	0	1	0	0	1	0	
0	1	1	1	0	1	1	1	1	
0	1	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	1	1	
0	0	0	1	0	1	0	0	0	

Grammar of propositional logic

Let P be a set of proposition letters and let $p \in P$.

The following expression defines the recursive grammar for a logical expression φ in Backus–Naur Form:

$$\varphi ::= p |\neg \varphi|(\varphi \land \varphi)|(\varphi \lor \varphi)|(\varphi \to \varphi)|(\varphi \leftrightarrow \varphi)$$

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

r

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- •
- ¬q

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

- ¬ ∨ p
- ∨)p¬

Let
$$P = \{o, q, r, s\}$$

Examples of grammatically conforming expressions include:

- r
- ¬q
- $(s \leftrightarrow o)$
- $\bullet \ (\neg(s \leftrightarrow \neg \neg \neg o) \rightarrow (q \land q))$

Grammatically incorrect expressions would include:

- ¬ ∨ p
- ∨)p¬
- $\neg p \lor q \rightarrow r$

•
$$((\neg p \lor q) \to r)$$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$
- $\neg((p \lor q) \to r)$
- $(\neg p \lor (q \rightarrow r))$

- $((\neg p \lor q) \to r)$
- $(\neg(p \lor q) \to r)$
- $\bullet \ \neg((p \lor q) \to r)$
- $\bullet \ (\neg p \lor (q \to r))$
- $\neg (p \lor (q \rightarrow r))$

• Semantics is the relationship of a language to the part of the world that we're modeling.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.
- For " $V(\varphi) = 1$ " we also write " $V \models \varphi$ " read as "V is a model of φ " or "V satisfies φ ."

- Semantics is the relationship of a language to the part of the world that we're modeling.
- Valuations are functions from expressions to truth values.
- " $V(\varphi)=1$ " means the formula (or sentence) φ is true in the state of affairs represented by the function V. " $V(\varphi)=0$ " means that φ is false in the state of affairs represented by the function V.
- For " $V(\varphi) = 1$ " we also write " $V \models \varphi$ " read as "V is a model of φ " or "V satisfies φ ."
- If V doesn't satisfy φ we write " $V \not\models \varphi$ ". In other words $V(\varphi) = 0$.

Logical truth and logical falsity.

• A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.

- ullet A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- ullet A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.
- Examples:

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- If a statement φ is neither logically true or logically false then it is contingent.
- Examples:
 - **1** $(q \lor \neg q)$ is logically true.

- A statement φ is logically true if it is true in every state of affairs generated by its propositional variables.
- A statement φ is logically false if it is false in every state of affairs generated by its propositional variables.
- \bullet If a statement φ is neither logically true or logically false then it is contingent.
- Examples:
 - **1** $(q \lor \neg q)$ is logically true.
 - **2** $(q \land \neg q)$ is logically false.

Consistency

 A set of propositional logic statements is consistent if at least one state of affairs satisfies every statement in the set.

Consistency

- A set of propositional logic statements is consistent if at least one state of affairs satisfies every statement in the set.
- A set of propositional logic statements is inconsistent if no state of affairs satisfies every statement in the set.

Inference and validity

 A conclusion is valid with respect to a set of premises if the conclusion is true in every sitation where the premises are true (van Benthem, et al, page 2-4).

Inference and validity

- A conclusion is valid with respect to a set of premises if the conclusion is true in every sitation where the premises are true (van Benthem, et al, page 2-4).
- One can validly infer a conclusion φ from a set of premises P if the negation of φ is inconsistent with the set of statements P.

Computation and expressive power

(From van Bentham, et al., chapter 2)

Computing a truth value for a formula takes linear time.

Computation and expressive power

(From van Bentham, et al., chapter 2)

- Computing a truth value for a formula takes linear time.
- Computing a truth table for validity takes exponential time.

Computation and expressive power

(From van Bentham, et al., chapter 2)

- Computing a truth value for a formula takes linear time.
- ② Computing a truth table for validity takes exponential time.
- The problem of testing for validity in propositional logic is decidable: there exists a mechanical method that computes the answer, at least in principle.