VAJE V. - Poravnava zaporedij

- 1. Poiščite najboljše ujemanje vzorca $p=\!\mathsf{AGTACA}$ v besedilu $w=\!\mathsf{CACTACAGTACGATA}$ z uporabo točkovne matrike na k-tericahza
 - (a) k = 1
 - (b) k = 4

Katera diagonala je najbolj popularna?

a) k=1:

- · Narediā pikice kjer je ujemanje ter diagonale na indeksu o in zadnjih indeksih zaporedij.
- · Za vsako diagonalo prestejes pikice.
- · Najpopularnejša diagonala ima rajvec pikic.

→ Diagonali -1 in -6 (obe imata 5).

#diagonal = m+n-k, Her m = |p| in n = |w| (6+15-1 = 20)

Hidden Markov Model

- 2. Dana imamo dva kovanca, A, B in zaporedje izidov metov X = MMCCMM.
 - (a) Kateri kovanec smo z največjo verjetnostjo uporabili za X, če veljajo naslednje verjetnosti

Prehod: A B A 0,6 0,4

Izpis:		C	M
	A	0,7	0,3
	В	0.2	0.8

lepustil bom (a) del, saj je rekla prof. da ne bo takih delgih izračurov. Bom pa vseeno narisal Hidden Markov Model.

- (c) Kakšna je verjetnost, da smo metali samo kovanec B?

b) Venjetnost, da smo metali samo A? X = M M C C M M · 2x vrzeno C

· YX vrzeno M

· 5x ostanemo v stanju A

c) Venjetrost, da smo metali samo 82.

Analogro:

$$p(B) = (0.2)^2 \times (0.8)^4 \times (0.6)^5$$

= 0.0012

$$\Rightarrow p(A) = (0.7)^2 \times (0.3)^4 \times (0.6)^5$$
= 0.003

Globalna poravnava

3. Obravnavajmo naslednjo poravnavo:

\overline{t}	С	G	Т	G	A	A	T	T	C	A	T	-
s	-	G	-	-	A	С	Т	Т	-	Α	-	С

- (a) Koliko operacij potrebujemo, da pretvorimo s v t?
- (b) Če smo za vsako ujemanje nagrajeni z 1 in imamo za vsako vstavljanje/brisanje kazen 2, ter za vsako zamenjavo kazen 3, kolikšna je vrednost zgornje poravnave?
- (c) Ali je ta vrednost optimalna?
- (d) Kako dobimo optimalno poravnavo? Ali je rešitev enolično določena?
- (e) Določite optimalno lokalno poravnavo.

- · Ĉe je nevjemanje, moramo zamenjat v s

b) Viewanje = +1 Vstavejanje/brisanje = -2 Zamenjava = -3

$$\Rightarrow 5 \times V + 5 \times U + 1 \times D + 1 \times Z$$

$$= 5 \times (-2) + 5 \times (1) + 1 \times (-2) + 1 \times (-3)$$

$$= -10 + 5 - 2 - 3$$

$$= -10$$

c) Ne morem reci dokler ne naredim globalne paravrave 2 Needleman-Nunsch algoritmom.

Fazni in nagrade veljajo od primera (b): njemanje=+1, brisanje/votavljanje=-2, zamenjava=-3

t	•	С	9	T	g	A	A	T	T	С	A	Т
1	0 -	. 🔪	»-Y-			> -1o —	>-12 -	» -1y -	-16→	-18 —	<i>-2</i> 0 →	-22
9	- 2 - I		7 - 1 -	> -3 -				- 11 -	> -13 -	» - 15 -	*-1 7 -	> _19
A	-4 -	→ - 6	-3-	1	>-7	-4 —	> - 6 —	1			» - 14 [—]	-16
С	-6	-3 —	>-5 –	» -7 –	» - 9				> -12	-9 —	> -11	-13
Τ	-8	-5 -	» -7			» -8 —	-10	-7-	» - 9 —	> -11 -	> - 13	-10
T	-10		-8-	3 >-6	1 💉	» -9 _		»-g		-8-	-10 —	<u>→</u> > -12
A	-12	-9	1	-8	- 9 1	1 <	> -8 →	-10	i .	- 9 -	3 >-7 −	-9
С	-1Y	<u>4</u> ↓ -11	- 12	-10	-11	-8	-9 -	> -11	↓ _10	-7 →	~9	- 10

sledimo puscicam razaj do zacetka da najdemo celotro poraynavo.

Ocena poravnave je otitna 12 radnjega kvadratka - 10

Ker sta oceni isti in poravnana z algoritmom je enaka prejenji (res? nisem prevenil), je vrednost iz (b) optimalna.

d) Stedimo puscicam v matriki. Ne, ni erolitro dolocera.

e) Lokalna poravrava ima podoben pristop, le da za min vrednost lakko vzameno se O.

s t	1	С	9	T	g	A	A	T	T	С	A	T
١	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	7	0	1	0	0	0	0	0	0	0
A	0	0	٥	0	0	2	7	0	0	0	7	0
С	0	7	0	0	0	0	0	0	0	1	0	0
Τ	0	0	0	1	0	0	0	7 1	4 1	0	0	4 1
T	0	0	0	1	O	0	0	1	72	0	0	1
A	0	0	0	0	0	7	1	0	Ŏ	0	7	0
С	0	7	0	0	0	0	0	0	0	1	0	0