Lab Two: CAP Database

1)

	select * from Custo name		discountpct	CAP=# selec CAP-# from [aid name
c001 c002 c003 c004 c005 c006 (6 ro	Tiptop Tyrell Eldon ACME Weyland ACME	+ Duluth Dallas Dallas Duluth Risa Beijing	10.00 12.00 8.00 8.50 0.00	a01 Smit a02 Jone a03 Perr a04 Gray a05 Otas a06 Smit a08 Bond (7 rows)

	select > from Age name	•	commission	
a01 a02 a03	Smith Jones Perry	 New York Newark Hong Kong	5.60 6.00 7.00	
a04 a05	Gray Grasi	New York Duluth	6.00 5.00	
a06 a08	Smith Bond	Dallas London	5.00 5.00 7.07	
(7 rows)				

CAP=# select *

CAP-# from Products;

[pid	name	city	qty	priceusd
p01 p02 p03 p04 p05 p06 p07	Heisenberg compensator universal translator Commodore PET LCARS module pencil trapper keeper flux capacitor	Dallas Newark Duluth Duluth Dallas Dallas	111400 203000 150600 125300 221400 123100 100500	0.50 0.50 1.00 1.00 1.00 2.00 1.00
p08 (8 rov	HAL 9000 memory core vs)	Newark	200600	1.25

CAP=# select *
CAP-# from Orders;

CAP-# Trom Orders;						
ordno	month	cid	aid	pid	quantity	totalusd
1011	 Jan	 c001	a01	p01	1100	495.00
1012	Jan	c002	a03	p03	1200	1056.00
1015	Jan	c003	a03	p05	1000	920.00
1016	Jan	c006	a01	p01	1000	500.00
1017	Feb	c001	a06	p03	500	540.00
1018	Feb	c001	a03	p04	600	540.00
1019	Feb	c001	a02	p02	400	180.00
1020	Feb	c006	a03	p07	600	600.00
1021	Feb	c004	a06	p01	1000	457.50
1022	Mar	c001	a05	p06	450	810.00
1023	Mar	c001	a04	p05	500	450.00
1024	Mar	c006	a06	p01	880	400.00
1025	Apr	c001	a05	p07	888	799.20
1026	May	c002	a05	p03	808	711.04
(14 rows)						

Lab Two: CAP Database

2) Explain the distinctions among the terms primary key, candidate key, and super key.

A Super Key is one that can contain either one attribute or a set of attributes to uniquely identify a database record. It is possible it might contain extraneous attributes that are not necessary to uniquely identify records, however.

A Candidate Key is simply a Super Key in its furthest minimal form, containing no extraneous information; It cannot be reduced further and is also used to uniquely identify records. There are more than one possible Candidate Keys.

A Primary Key is a minimal Candidate Key that can be used to identify tuples uniquely within a relation.

3) Write a short essay on data types. Select a topic for which you might create a table. Name the table and list its fields (columns). For each Field, give its data type and whether or not it is nullable.

One might create a table to manage inventory of a media collection. The table could be named "Music Collection" and contain the fields "SongID" (A number value, unsigned int, perhaps. Is not nullable), "Title" (A Text Value, Not Nullable), "Artist" (Text Value, Not Nullable), "Rating" (TINYINT, nullable), "Release Date" (DATE, nullable), and "File Type" (Text, not nullable).

4) Explain the following relational "rules" with examples and reasons why they are important.

a. The "First normal form" rule

1NF establishes a set of rules one should follow to create an organized database. In accordance with 1NF, one must first define required data items, place related items in a table, confirm there are no redundant groups of data and make sure a primary key exists. This rule ensures that the information can be queried easily.

b. The "access rows by content only" rule

This rule implies that the user should access the contents of a row through the values of its columns. It means that the user cannot access the contents of a row by its row number and rather, through primary, candidate, or super keys.

c. The "all rows must be unique" rule

This rule ensures that multiple rows are not being referenced when using a primary, candidate, or super key. It states that there should be no duplicate tuples within a table, but really seems to simply reinforce the 1NF rules.