福州大学数学与计算机科学学院 面向对象分析与设计

第三部分 设计篇

回顾

OOD模型框架^{福州大学数学与计算机科学学院}面向对象分析与设计

——从两个侧面来描述

从另一侧面看: 00D模型每个部分 如何用00概念表达? 采用与00A相同的概念及 模型组织方式

从一个侧面看: 00D模型包括几个主要部分? 一个核心加三个外围

11.1 什么是问题域部分

问题域部分是OOD模型的四个组成部分之一,由来自问题 域的对象构成,是在OOA模型基础上,按照具体的实现条 件进行必要的修改、调整和细节补充而得到的。

按编程语言、网络 操作系统、复用 支持等实现条件进 从MDA的 观点看问 题域部分 的产生

11.2 实现条件对问题域部分的影响

编程语言

语言的实现能力

硬件、操作系统及网络设施

对象分布、并发、通信、性能

复用支持

根据复用支持对模型做适当调整,以实现复用数据管理系统

对问题域部分做某些修改以实现数据的永久存储界面支持系统

问题域部分与人机界面之间的消息传输

11.3 设计过程

设计准备

保留OOA文档 复制OOA文档,作为OOD的输入 根据需求的变化和发现的错误进行修改

设计内容与策略(本节的重点)

针对编程语言支持能力的调整 增加一般类以建立共同协议 实现复用 提高性能 为实现对象永久存储所做的修改 完善对象的细节 定义对象实例 对辅助模型、模型规约的修改和补充

建立OOD文档与OOA文档的映射

1、按编程语言调整继承与多态

起因: OOA强调如实地反映问题域, OOD考虑实现问题,

所用语言不支持多继承或者不支持多态

(1) 多继承化为单继承

方法1: 简单转换

福州大学数学与计算机科学学院 面向对象分析与设计

方法2: 重新定义对象类, 化解多继承

方法3: 保持分类,剥离多继承信息

不适当的方法增加程序代码

(2) 取消多态性

2、增加一般类以建立共同协议

增加根类:将所有的类组织在一起

提供全系统通用的协议

例:提供创建、删除、复制等操作

增加其他一般类: 提供局部通用的协议

例: 提供永久存储及恢复功能

例:

3、实现复用的设计策略

如果已存在一些可复用的类,而且这些类既有分析、设 计时的定义,又有源程序,那么,复用这些类即可提高 开发效率与质量。

目标:尽可能使复用成分增多,新开发的成分减少

例:

可复用的类

车辆**《**复用**》** 序号 一厂商 式样 序号认证

问题域部分的类

车辆

序号 颜色

式样一

出厂年月

序号认证

可复用的类

车辆

序号 厂商 式样

序号认证

4、提高性能

(1) 调整对象分布

(2) 缩短对象存取时间设立缓冲区

(3) 合并通讯频繁的类

(4) 增加属性以减少重复计算

- (5) 降低算法的计算复杂性
- (6) 细化对象的分类

(7) 将复杂对象化为整体-部分结构

5、为数据存储管理增补属性与操作 在数据接口部分设计中介绍

6、完善对象的细节

OOD在OOA模型基础上所做的主要工作,不能用"细化"

- 二字概括,但细化是不可缺少的
 - (1) 完善与问题域有关的属性和操作 在OOA阶段允许不详尽,OOD必须加以完善
 - (2)解决OOA阶段推迟考虑的问题,包括: 因封装原则而设立的对象操作 与OOD模型其他部分有关的属性和操作
 - (3) 设计类的每个操作 必要时用流程图或者活动图表示
 - (4)设计表示关联的属性 区分多重性的3种情况,决定属性设置在哪一端
 - (5) 设计表示聚合的属性 区分组合与松散的聚合 对于组合,用嵌套对象实现 对于松散的聚合,采用与关联相同的策略

7、定义对象实例

```
在逻辑上,一个类的对象实例是: 问题域中所有可用这个类描述的实际事物
```

在物理上,一个类的对象实例可以是:

内存中的对象变量 文件的一个记录,或数据库表的一个元组

一个类的对象实例可以分布到不同的处理机上 对每一台处理机 说明在它之上创建的每一个(或组)内存对象 说明在它之上保存的外存对象

类的对象实例说明:

处理机: <结点名>{,<结点名>} 内存对象: {<名称>[(n元数组)][<文字描述>]} 外存对象: {<名称>[<文字描述>]}

8、修改或补充辅助模型及模型规约

包图

类的增减、拆分、合并以及各个类之间关系的变化

顺序图

操作与消息

活动图

操作流程

其他模型图

状态机图、定时图、交互概览图、组合结构图

模型规约

类的属性、操作及其对外关系的修改或细化

建立与OOA文档的映射

福州大学数学与计算机科学学院 面向对象分析与设计

OOA 类与 OOD 类映射表

指出OOA模型中的哪个(或哪些)类演化为OOD模型中的哪个(或哪些)类

OOK 关与 OOD 关队剂农		
映射方式	OOA 类	OOD 类
1 = 1		
1 . 1		
1 to 1		
1 to m		
m to 1		
m to m		
0 to 1		

图 3.13 OOA 类与 OOD 类的映射表