PHILIPS

Portable 50MHz storage multiplier oscilloscope

PM3243

9499 440 17102

770425/1/01-03

PHILIPS

Instruction manual Gerätehandbuch Notice d'emploi et d'entretien

Portable 50MHz storage multiplier oscilloscope PM3243

This insert must be used with the manual of the basic PM 3240 oscilloscope

Contents

GENERAL INFORMATION	:
Introduction	· .
Characteristics	·
Glossary of multiplier termo	12
DIRECTIONS FOR USE	17
Installation	17
Function of the controls and connectors	18
Preliminary settings	26
Operating instructions	27
	Introduction Characteristics Glossary of multiplier termo DIRECTIONS FOR USE Installation Function of the controls and connectors Preliminary settings

List of figures

1.1.	PM 3243	5
1.2.	Typical trigger sensitivity	11
1.3.	Analogue multiplier	12
1.4.	Four quadrant operation	12
1.5.	Input off-set	13
1.6.	Output off-set	13
1.7.	Scale factor	14
1.8.	Non-linearity	14
1.9.	Feed through	15
1.10.	Propagation delay	15
1.11.	Noise	16
2.1.	Removing the front cover	.17
2.2.	Opening the front cover	17
2.3.	Vertical deflection	18
2.4.	Horizontal deflection	20
2.5.	Main time-base	21
2.6.	Delayed time-base	23
2.7.	CRT section	24
2.8.	Rear panel	25
2.9.	Step att. balance and gain adj.	26

Instruction manual

1.General information

1.1. INTRODUCTION

The PM 3243 Portable 50 MHz Storage Multiplier Oscilloscope enables the measurement, storage and multiplying of signals at a high sensitivity (5 mV/DIV).

A wide choice of display modes is available, such as single channel operation, two channels alternately or chopped, two channels added, with normal and inverted position for one input signal, two channels multiplied, and a main and delayed time-base.

The PM 3243 oscilloscope features a tapless power supply with low dissipation.

The power supply operates satisfactorily from any a.c. mains voltage between 90 V and 264 V, or any d.c. voltage between 100 V and 200 V, thus obviating the need for adjusting the instrument to the local mains voltage.

All these features combine to make the PM 3243 oscilloscope suitable for a wide variety of applications.

Features

Summarising, the PM 3243 oscilloscope is characterised by the following features:

- 5 mV sensitivity at 50 MHz.
- Built-in 40 MHz multiplier.
- Simultaneous display of the product and one of the factors.
- Variable persistance and storage.
- Advanced design.
- Highly efficient power supply unit, operating from a wide range of a.c. or d.c. voltage supplies without voltage switching.

Note: The design of this instrument is subject to continuous development and improvement.

Consequently, this instrument may incorporate minor changes in detail from the information contained in this manual.

1.2. CHARACTERISTICS

This instrument has been designed and tested in accordance with IEC Publication 348 for Class 1 instruments and has been supplied in a safe condition. The present Instruction Manual contains information and warnings, which shall be followed by the purchaser to ensure safe operation and to retain the instrument in a safe condition.

This specification is valid after the instrument has warmed up for 30 minutes.

Properties expressed in numerical values with tolerances stated, are guaranteed by the manufacturer. Numerical values without tolerances are typical and represent the characteristics of an average instrument.

Designation	Specification	Additional information
C.R.T.	20144011/55	Rectangular, post-accelerator half-tone
Type	89L14GH/55	storage tube
Useful screen area	8 x 10 div.	1 division = 0,9 cm
Screen type	P31 phosphor	
Total acceleration voltage	8,5 kV	
Graticule	Internal	
Persistence		
Normal	Natural persistence of P31 phosphor	(10 μs 1 ms)
Variable	Continuously variable from 0,3 sec. to 1,5 min.	
Storage time		
In 'write' mode (max. persist.)	1,5 min.	
In 'read' mode	3 min.	
In 'save' mode	15 min.	
Writing speed		
Normal	0,2 div./μs	
Max. write	2 div./μs	
Erase	Pushbutton operated, erasure takes 800 ms (approx.)	
Vertical or Y Axis		
Number of channels	2	
Display modes	Channel A only Channel B only A and B chopped A and B alternated A and B added A x B multiplied A x B and B, chopped	
	The polarity of channel B can be	e inverted
Chopping frequency	1 MHz	
Display time per channel	Approx. 500 ns	
Bandwidth	d.c 50 MHz	d.c. coupled Upper bandwidth limit —3 dB
	10 Hz 50 MHz	a.c. coupled —3 dB bandwidth limit
Risetime	7 ns	
Deflection coefficients	5 mV/div 2 V/div	Nine calibrated positions in 1-2-5-sequence. Uncalibrated, continuous control

between the steps 1:2,5

Designation	Specification	Additional information
Accuracy	± 3 %	
Over/undershoot	2 % max.	
Max. permissible input voltage	± 400 V	d.c. + a.c. peak
Input impedance	1 Mohm//15 pF	
Input coupling	AC-0-DC	
Input RC time	22 ms	a.c. coupling
Attenuator balance	0,2 DIV max.	Trace movement when switching between any of the attenuator settings, or when operating continuous control.
Instability of spot position	0,05 DIV/hour max. $0,01 \text{ DIV/}^{\circ}\text{C max}$.	+10 °C 40 °C
Dynamic range	24 DIV	15 MHz sine wave
,	6 DIV max.	50 MHz sine wave
Position range	16 DIV	
Crosstalk between channels A and B	40 dB	Chopped or Alternate (d.c 50 MHz)
Max. total input signal amplitude at A minus B	24x attenuator setting	
Multiplier		
Bandwidth	d.c 40 MHz	 3 dB Multiplier bandwidth to be measured with sinewave signal on one channel an a DC signal to the other
Display modes	AxB AxB and B	+ or — B + or — B, chopped
Rise time	9 ns	
Scale factor	1 ± 2 %	Scale factor with respect to display heights of either factor or products
Dynamic rangeSignal A or BSignal A x B	8 DIV 8 DIV	(± 4 DIV from centre) (± 4 DIV from centre)
Non linearity	± 4 % max.	Of full screen deflection
Feed through	0,2 DIV max.	-30 dB
Product off-set	0,2 DIV max.	
Product off-set drift	0,03 DIV/OC max.	
Propagation delay	8 ns max.	
- Output	BNC socket at rear	d.c. coupled
Scale coefficient	100 mV/DIV ±4 % 50 mV/DIV ±5%	10 kohm load, within dynamic range50 ohm load, within dynamic range
Pulse aberations	5 %	
Output off-set	10 mV max.	10 kohm load, externally adjustable
Output drift	3 mV/°C	10 k ohm load

Additional information

Designation

Horizontal or X Axis

Horizontal deflection can be obtained either from the Main time base or from the Delayed time base, a combination of the two, or from the signal source selected for X-deflection. In the last-mentioned case, X-Y diagrams can be displayed using ch. A or B, the EXT. connector or the line (mains) as a signal source for horizontal deflection.

Display modes

Main time base

Main time base intensified by delayed time base

Delayed time base

X-Y operation

by YA, YR, External or Line (mains)

Horizontal amplifier

Bandwidth

d.c. ... 1 MHz over 6 div. -3 dB upper limit

Deflection coefficient

450 mV/div. using EXT connector

Vertical attenuator coefficients apply when YA or YB is used for X

deflection

Input impedance

1 MOhm//15 pF

Measuring accuracy

± 10 % using YA or YB input

Phase error

30 at 100 kHz

Main time base

Modes

Auto - triggered - single shot

Time coefficients

0,5 s/div ... 50 ns/div in 1-2-5 sequence.

Uncalibrated continuous control between steps 1:2,5 x5 magnifier extends max. sweep rate to 10 ns/div.

Variable hold-off

Sweep hold-off time can be increased by at least a factor of 5.

Accuracy

± 3 %

Except: 0,5 sec and 0,2 sec \pm 5 % 100 and 50 nsec \pm 5 %

Sweep accuracy over any two divisions of 10 div sweep is \pm 5 % Exclude the first and last div at the 10 ns/div and 20 ns/div

magnified sweep rates.

Delayed time base

The delayed time base either starts immediately after delay time or can be triggered after delay time by the selected time base trigger source.

Time coefficients

0,2 s/div ... 50 ns/div in 1-2-5 sequence. Uncalibrated control between steps 1:2.5.

x 5 magnifier extends max. sweep rate to 10 ns/div.

Accuracy

± 3 %

Except: 0,2 sec ± 5 %

100 and 50 nsec \pm 5 %

Sweep accuracy over any two divisions of 10 div sweep is $\pm~5~\%$ Exclude the first and last div. at the 10 ns/div and 20 ns/div

magnified sweep rates.

Sweep delay

In steps, variable with main time base.

Continuously variable by 10-turn potentiometer between 0,2x and 10x

the time coefficient of the main time base.

Delay time jitter

1:20.000

Incremental delay time error

0,5 %

Delayed gate output

Rear panel connector providing logic "1" TTL output pulse during main

time base intensified and delayed time base running times.

For Multiplier applications.

Additional information

Main time base triggering

Trigger source

Internal ch. A or B

External
Line (mains)

Slope

+ or -

Trigger coupling

DC (DC . . . 50 MHz)

(see Fig. 1.2.)

LF (DC . . . 50 kHz internal - 10 Hz . . . 30 kHz external)

HF (50 kHz . . . 50 MHz)

Auto freerun (reaction time ≤ 100 nsec)

Sensitivity

Level range

Internal < 0.5 DIV (1/3 DIV typ) External < 150 mV (100 mV typ)

Internal 24 div.

typical

External -5 to +5 V

typical

Ext. input impedance

1 MOhm//15 pF

Identical to Y-input

Delayed time base triggering

Trigger source

Internal, ch. A or B

External

Other trigger specifications of the delayed time base are identical to those

of the main time base.

Amplitude calibrator

Voltage

+3 V

Square wave, base-line zero volts

Current

6 mA

Square wave, through current loop

Accuracy

± 1 %

For both voltage and current

Frequency

2 kHz ± 2 %

Protection

The output is short-circuit-proof

Power

Line voltages

Accepts any voltage between 100 V and 240 V ± 10 % at any frequency

between 46 and 440 Hz in one range, without switching.

DC power service

Accepts any d.c. voltage between 100 V and 200 V

Power consumption

39 W

Probe power

Two sockets providing +24 V and -24 V for

active probes.

Current drain max. 2x50 mA for each output.

Environmental capabilities

Note: The environmental data are valid only if the instrument is checked in accordance with the authorised checking procedure. Details on those procedures and failure criteria are supplied on request by the PHILIPS organisation in your country, or by N.V. PHILIPS GLOEILAMPENFABRIEKEN, TEST AND

MEASURING DEPARTMENT, EINDHOVEN, HOLLAND.

Ambient temperature

+5 deg. C ... +40 deg. C rated range of use

-10 deg. C ... +55 deg. C operating

-40 deg. C ... +70 deg. C storage and transit

Altitude

To 5.000 m operating

To 15.000 m not operating

Humidity

Meets IEC 68 Db requirements

Bump tests

1000 bumps of 10 g, ½ sine, for 6 ms duration in each of three directions.

Vibration

30 min. in each of three directions, 10 Hz ... 150 Hz, 0,7 mm_{p-p} and 5 g

max. acceleration

Electromagnetic intereference

Meets VDE, Störgrad K

Recovery time

Operates within 15 min. of being subjected to -10 deg. C, soak, then taken into room conditions of 60 % relative humidity at +20 deg.

Dimensions and weight

Height 154 mm
Width 316 mm
Depth 460 mm
Weight 10,6 kg

Instrument options

The following options are available as service modifications. Contact your local Philips field service engineer for details.

- Main time base sweep output
- Main time base gate output
- Delayed time base sweep output

Accessories

Supplied with the instrument

Two passive 1:10 probes

Contrast filter
Front cover
Collapsible viewing hood PM 9366
BNC banana adaptor PM 9051
Cal. terminal to BNC adaptor
Operating and service manual.

Some of above mentioned accessories are located inside the front cover.

Optional

PM 9335	Passive probe set 1:1 (1,5 m)
PM 9335L	Passive probe set 1:1 (2,5 m)
PM 9350	50 MHz passive probe set 10:1 (1,5 m)
PM 9350L	50 MHz passive probe set 10:1 (2,5 m)
PM 9358	150 MHz HV probe set 100:1
PM 9347	Active TV triggering probe
PM 9352	Micro miniature probe
PM 9353	Active FET probe 150 MHz
PM 9355	Current probe
PM 8910	Polaroid anti-glare filter
PM 9380	Oscilloscope camera
PM 8971	Camera adaptor
M3 M5	Steinheil Oscilloscope camera range
PM 8960	19" Rack mount adaptor
PM 8980	Long viewing hood
PM 8901	Rechargeable battery pack 140 V d.c.
PM 8991	Trolley
PM 8992	Accessory pouch

Fig. 1.2. Typical trigger sensitivity as a function of frequency

1.3. GLOSSARY OF MULTIPLIER TERMS

1. Analogue multiplier

Fig. 1.3. Analogue multiplier

An analogue multiplier is a non-linear device which produces an output voltage that is proportional to the algebraic product of two input voltages.

2. Multiplier bandwidth

The multiplier bandwidth is the frequency range between DC and the upper-frequency-limit at which the multiplier output is 3 dB down with respect to the output at a given low frequency.

This bandwidth is specified by a constant amplitude sine-wave with variable frequency applied to one input and a DC voltage to the other.

3. Multiplier rise-time

The multiplier rise-time is the response time of the swing when a step voltage is applied to one input and a DC voltage to the other.

This time is measured between the 10 % and 90 % points of the step response.

4. Four quadrant operation

Fig. 1.4. Four quadrant operation

A four-quadrant multiplier can produce an output signal in any of the four quadrants (marked I to IV) of the Cartesian co-ordinate system.

5. Input off-set

Fig. 1.5. Input off-set

The input off-set is the virtual voltage at the multiplier input when no input signal is applied. This off-set can be minimized by applying a DC balance voltage.

6. Output off-set

Fig. 1.6. Output off-set

Output off-set is the unwanted voltage at the multiplier output when both input signals are zero. This output off-set is visible as a vertical shift of the displayed product.

7. Scale factor

Fig. 1.7. Scale factor

The scale factor K is the constant of proportionality that relates the C.R.T. deflection to the inputs A and B in the MULT. mode.

8. Non-linearity

Fig. 1.8. Non-linearity

Non-linearity is the peak deviation of (AxB) = f(B) from the best straight line. It is expressed as a percentage of full screen deflection.

Feed-through is the AC voltage at the multiplier output when after input off-set balancing, one input is held at zero and a maximum signal is applied to the other.

10. Propagation delay

Fig. 1.10. Propagation delay

The propagation delay is the delay between input and output signals caused by the multiplier in processing the input signals.

11. Noise

Fig. 1.11. Noise

The multiplier circuit produces no appreciable noise. However, an input voltage of A divisions at one channel will multiply the noise present at the other channel.

This can cause modulation and thus a corrugated base line.

12. Input dynamic range

The maximum signal which can be applied to inputs A and B without impairing linearity.

13. Output dynamic range

The maximum signal which can occur at the output without impairing linearity.

17

2. Direction for use

INSTALLATION 2.1.

Front cover

Removing : - Turn the knob in the centre of the cover a quarter of a turn anti-clockwise to the UNLOCKED position.

- Lift off the cover.

: - Align the key of the front cover locking knob with the slot in the text plate of the instrument.

- Fit the cover over the front of the oscilloscope.

- Press and turn the locking knob a quarter of a turn clockwise to the LOCKED position.

The room in the front cover is available to accommodate accessories such as probes, collapsible viewing hood and so on.

To open the front cover press both tongues of the locking device and lift the inner plate.

The carrying handle can be rotated by depressing the pushbuttons located on its pivots.

Warning: Before any connection is made to the instrument, the protective earth terminal shall be connected to a protective conductor (see section EARTHING).

> This instrument generates high voltages and should not be operated with the cabinet covers removed. The mains plug must be removed before attempting any maintenance work.

Line voltage and fuse

The ability of the instrument to operate at any line voltage between 90 V and 264 V a.c. or between 100 V and 200 V d.c. obviates the need of adaption to the local line voltage.

The 2 A, delayed action fuse, which is located on the rear panel, is suited for all line voltages. The use of repaired fuses and the short-circuiting of the fuse holder is dangerous and should be avoided.

Earthing

Before switching on, the instrument shall be connected to a protective earth conductor in one of the following ways:

Via the protective earth terminal at the rear (identified by the symbol $\frac{1}{2}$) or via the three-core mains lead, provided that the supply socket is equipped with an earth connection.

The protective action must not be negated by the use of an extension cable without a protective conductor.

Warning: Any interruption of the protective conductor, either inside or outside the instrument, or disconnection of the protective earth terminal, is likely to make the instrument dangerous. Intentional interruption is prohibited. When an instrument is transferred from a cold to a warm environment condensation may cause a hazardous condition. Therefore, ensure that the earthing requirements are strictly observed.

Switching on

The POWER switch is incorporated in the front panel INTENS control, immediately below the screen bezel.

CAUTION

EXTENDED HIGH INTENSITY MAY DAMAGE THE CRT

In the "Variable Persistence" mode of operation, the CRT itself warns against too high an intensity by "blooming". When "blooming" occurs, intensity should be reduced by turning the INTENSity knob slightly

In the MEMORY OFF position and the X-Y mode of operation, no warning is indicated, therefore special care must be observed.

Fig. 2.1 Removing the front cover

Fig. 2.2. Opening the front cover

2.2. FUNCTION OF THE CONTROLS AND CONNECTORS

Vertical deflection

Fig. 2.3. Vertical deflection

Vertical display switch

A depressed	Vertical deflection is achieved by the signal connected to the input of channel A.
ALT depressed	The display is switched over from one vertical channel to the other at the end of every cycle of the time-base.
CHOP depressed	The display is switched rapidly between one vertical channel and the other at a fixed frequency.
ADD depressed	Vertical deflection is achieved by the sum signal of channels A and B.
MULT depressed	Vertical deflection is achieved by the product signal of channels A and B.
B depressed	Vertical deflection is achieved by the signal connected to the input of channel B.

Display-mode controls; 6-way pushbutton switch.

MULT + B depressed simultaneously The display is switched between MULT and B (CHOP mode).

depressed.

POSITION and MULTIPL. BAL. (o x A or B)	Continuous variable control giving vertical shift of the display. PUSH FOR BALANCE facility for Multiplier balance (off-set compensations).
NORM/INVERT	2-way pushbutton switch for the inversion of the B signal polarity. Neither pushbutton depressed has the same effect as the NORM button

AMPL/DIV Step control of the vertical deflection coefficients; 9-way switch.

AMPL/CAL Continuously variable control of the vertical deflection coefficients. In the

CAL position the deflection coefficient is calibrated.

If no pushbutton is depressed, the instrument operates in the A mode.

BAL

(screwdriver operated)

GAIN

(screwdriver operated)

AC/O/DC

AC depressed

0 depressed

DC depressed

A 1 MOhm - 15 pF

B 1 MOhm - 15 pF

Pre-set control of the direct voltage balance of the vertical amplifiers.

Pre-set control of the gain-calibration of the vertical channels.

Signal coupling; 3-way pushbutton switch.

Coupling via a blocking capacitor.

Connection between input circuit and input socket is interrupted and the

amplifier input is earthed.

Direct coupling.

No button depressed has the same effect as the AC button depressed.

BNC input socket for channel A.

BNC input socket for channel B.

Horizontal deflection

Fig. 2.4. Horizontal deflection

Horizontale display mode

Horizontal deflection controls; 4-way pushbutton switch.

MAIN TB depressed

The horizontal deflection voltage is supplied by the main time-base generator.

A part of the trace is intensified (except in position OFF of the TIME/DIV switch of the delayed time-base generator).

No button depressed has the same effect as the MAIN TB button depressed.

EXT. X DEFL depressed

Horizontal deflection is achieved by an external signal applied to the input socket of the horizontal amplifier, by the channel A signal, by the channel B signal, an external signal or by a mains frequency signal.

DEL'D TB depressed

The horizontal deflection voltage is supplied by the delayed time-base generator.

TRIG or EXT X DEFL

If the instrument is used in the timebase mode, the main time-base can be triggered by:

A — Signal taken internally from channel A

B — Signal taken internally from channel B

EXT - Signal applied to the trigger input

LINE - Line voltage (mains) internally connected

POSITION TB MAGN

Continuously variable control giving horizontal shift of the display; incorporates a push-pull switch which increases the horizontal deflection coefficient by a factor of 5.

The magnifier is inoperative if an external X deflection signal is used.

Main time-base

Fig. 2.5. Main time-base

LEVEL SLOPE Continuously variable control to select the level of the triggering signal at which the time-base starts.

This control incorporates a push-pull switch which enables choice of triggering either on the positive or negative-going edge of the triggering signal.

NOT TRIG'D

Pilot light that lights up when the time-base is not triggered; i.e. in the waiting position.

AUTO/TRIG/SINGLE

Trigger-mode controls; 3-way pushbutton switch.

AUTO depressed

The main time-base generator is free-running in the absence of triggering

signals.

TRIG depressed

The time-base is normally triggered.

SINGLE depressed

After operating the SINGLE button, the time-base generator runs only once upon receipt of a trigger pulse.

If no button is depressed, the instrument operates in the SINGLE mode. If no display is obtained when the instrument is switched on, and an input signal has been connected, check that the AUTO or TRIG modes have been selected for the main time-base.

TIME/DIV or DELAY TIME

Time-coefficient control of the main time-base; 23-way rotary switch.

TIME/DIV CAL

Continuously variable control of the time coefficient of the main time-base. In the CAL position the time coefficient is calibrated.

DC/LF/HF

Trigger coupling; 3-way pushbutton switch.

DC depressed

Triggering signals are direct coupled.

LF depressed Coupling via low-pass filter for frequencies up to 50 kHz (for external

triggering via band-pass filter of 10 Hz to 50 kHz).

HF depressed Coupling via a high-pass filter for frequencies higher than 50 kHz.

No pushbuttons depressed has the same effect as button DC depressed.

TRIG or X DEFL Trigger source or external X deflection selector; 4-way pushbutton.

A depressed Internal triggering or X deflection signal derived from channel A.

B depressed Internal triggering or X deflection signal derived from channel B.

EXT depressed Triggering on external-signal connected to the adjacent 1 MOhm-15 pF

socket.

When the EXT X DEFL button of the horizontal deflection controls is depressed, this socket is connected to the input of the horizontal

amplifier.

LINE depressed Triggering or X deflection signal derived from an internal voltage at mains

frequency.

No button depressed has the same effect as button A depressed.

1 MOhm - 15 pF BNC socket for external triggering or horizontal deflection.

Delayed time-base

Fig. 2.6. Delayed time-base

Calibrated continuously variable control of the delay time, operating in **DELAY TIME** conjunction with the TIME/DIV controls of the main time-base generator. Continuously variable control to select the level of the triggering signal at **LEVEL** which the delayed time-base generator starts. This control incorporates SLOPE a push-pull switch which enables choice of triggering on the positive or negative-going slope of the triggering signal. Time-coefficient control of the delayed time-base; 22-way rotary switch. TIME/DIV Incorporates OFF position in which the delayed time-base generator is switched off. Continuously variable control of the time coefficient of the delayed TIME/DIV CAL time-base generator. In the CAL position the time coefficient is calibrated. Trigger coupling; 3-way pushbutton switch. DC/LF/HF Trigger signals are direct-coupled. DC depressed Coupling via low-pass filter for frequencies up to 50 kHz (for external LF depressed triggering via band-pass filter of 10 Hz to 50 kHz).

HF depressed

Coupling via a high-pass filter for frequencies higher than 50 kHz.

No button depressed has the same effect as the DC button depressed.

A/B/EXT/MAIN TB Trigger source and starting point of the delayed time-base; 4-way pushbutton switch.

A depressed

Triggerable, after delay time, on channel A signal.

Triggerable, after delay time, on channel B signal.

EXT depressed

Triggerable, after delay time, on an external signal

Triggerable, after delay time, on an external signal connected to the adjacent 1 MOhm - 15 pF socket.

MAIN TB depressed Delayed time-base starts immediately after delay time.

1 MOhm - 15 pF BNC input socket for external triggering signal.

CRT Section

Fig. 2.7. CRT Section

CAL	Output socket on which a 3 V _{p-p} square wave voltage to calibrate AMPL.	
	control, and frequency response of voltage divider probes.	

Current loop with 6 mA_{p-p} current for calibration of current probes.

POWER Pilot lamp indicates the ON state of the instrument.
ON/OFF

INTENS

Continuously variable control of the display-brightness, combined with power on-off switch.

FOCUS Continuously variable control of the electron beam focusing.

Storage/Persistence controls

READ

SAVE/READ/WRITE/ERASE Waveform storage facility; 4-way pushbutton switch.

SAVE Enables recorded waveform to be stored for a longer time (protected against accidental erasure).

Enables recorded waveform to be observed (protected against accidental

erasure).

MEMORY OFF Allows operation of the instrument without memory. (SAVE + READ)

WRITE Enables waveform to be recorded; in this mode PERSISTENCE control is operative.

ERASE Enables erasure of the display in the WRITE mode.

If the time base is in the SINGLE sweep mode this switch also resets the

time base.

Rear panel

Fig. 2.8. Rear panel.

DEL'D GATE

Delayed time base gate output; TTL compatible.

Logic "1" during main time base intensified and delayed time base running times.

For Multiplier application.

D.C. coupled non-integrated multiplier output.

Multiplier output balance off-set compensation.

2 A delayed action for all voltages.

A x B OUT A x B BAL

FUSE

Line cord with plug. Safety earth terminal.

2.3. PRELIMINARY SETTINGS

Before measurements with this instrument are carried out, checking and adjusting of the following functions may be necessary:

- Step attenuator balance
- Gain calibration
- Multiplier balance (0 x A, 0 x B)
- Multiplier output balance

As the first two settings are identical for both vertical channels, only the procedure for channel A has been indicated.

1. Step attenuator balance

- Depress the MAIN TB button of the horizontal deflection mode switch.
- Depress the AUTO button of the main time-base mode switch.
- Set the INTENSITY and FOCUS controls for a sharp, well-defined trace.
- Depress the relevant channel button of the vertical deflection mode switch.
- Depress the 0 button of the input coupling switch.
- Set the POSITION knob so that the trace is somewhere about in the centre
 of the screen.
- Set the AMPL, continuous control to position CAL.
- Check that the trace does not jump when the AMPL, switch knob is rotated.

If necessary adjust the BAL control.

2. Gain calibration

Unless otherwise stated, the controls occupy the same positions as in the previous procedure.

- Set the AC-0-DC switch to AC.
- Set the AMPL. switch knob to .5 V and the continuous control to CAL.
- Connect the channel input to the CAL output.
- Check the vertical deflection is exactly 6 divisions.
 If necessary adjust the GAIN control.
- Also an attenuator probe can be included in this calibration.
 The probe attenuation factor must then be taken into account with respect to the AMPL, switch position.

AMPL/OIV AC 0 0C AC 0 0C PROBE C AC 0 0C Step attenuator Gain calibration

Fig. 2.9.

3. Multiplier balance 0 x A, 0 x B

When either A or B is multiplied by 0 (zero), the product must be zero. Offset voltages at the multiplier inputs may still cause some deflection on the screen; these offset voltages must be reduced to a minimum by the following procedure:

Remark: The 0 x A and 0 x B controls are operated by pushing the POSITION knobs.

- Allow a warm-up time of at least 15 min, preferably 30 min.
- Apply an a.c. signal with an amplitude within the specified dynamic range to both input A and input B.
- Depress pushbutton MULT of the display-mode controls.
- Depress pushbutton 0 of the channel A signal coupling controls.
- Depress pushbutton AC of the channel B signal coupling controls.
- Minimize the deflection by means of the 0 x B potentiometer without changing the attenuator setting.
- Depress pushbutton AC of the channel A signal coupling controls.
- Depress pushbutton 0 of the channel B signal coupling controls.
- Minimize the deflection by means of the 0 x A potentiometer without changing the attenuator setting.

4. A x B output balance

When using the A x B output at the rear panel, the output must be zero if both inputs are zero. This can be compensated by the A x B BAL control located near this output.

Proceed as follows:

- check the $0 \times A$ and $0 \times B$ adjustment as indicated under point 3.
- Depress both 0 switches of the ch. A and B inputs.
- Adjust the A x B BAL control unless the A x B output voltage is zero.

2.4. OPERATING INSTRUCTIONS

General

Before switching-on, ensure that the oscilloscope has been correctly installed in accordance to the INSTALLATION recommendations (Chapter 2.1.) and the precautions outlined have been observed. To use the instrument as an ordinary oscilloscope; i.e. without the storage facility, depress the SAVE and READ pushbuttons simultaneously (MEMORY OFF).

Warning: Do not use a too high intensity in the EXT X DEFL. mode

Inputs A and B and their possibilities

The oscilloscope has been provided with two identical channels, each of which can be used for either YT measurements in combination with one or both time-base generators, or XY measurements in combination with the external horizontal channel.

YT measurements

To display one signal, either of the two vertical channels can be selected by operating either pushbutton A or pushbutton B of the display-mode controls.

When pushbutton ALT or CHOP is depressed, two different signals can be displayed simultaneously. The Y deflection coefficient can be selected for each channel individually. When the ALT button is depressed, the display is switched over from one channel to the other at the flyback of the time-base signal. Although the ALTERNATE mode can be used at all sweep speeds of the time-base generator, the CHOPPED

mode will give a better display quality for long sweep times, because during these long sweep times the alternate display of the two input signals would be clearly visible to the eye.

In the CHOPPED mode, the display is switched over from one channel to the other at a fixed frequency. If pushbutton ADDed of the display-mode switch is depressed, the signal voltages of both vertical channels are added. Depending on the position of the channel B polarity switch, either the sum or the difference of the input signals is displayed.

XY measurements

If pushbutton EXT X DEFL of the horizontal deflection control is operated, the time-base generators are switched off. A signal applied to the A channel is then used for horizontal deflection, if button A of the TRIG or X DEFL switch is operated.

The AC/0/DC switch and the step attenuator of channel A remain operative.

Continuous control of the deflection coefficients is possible with the continuous control AMPL and horizontal trace shift with the X POSITION control.

Vertical channel B may also be used for X deflection. In this event, the B button of the TRIG or X DEFL controls is depressed.

It is also possible to use an internal voltage at the line frequency or a signal applied to the EXT socket at the bottom right-hand side of the front panel for X deflection, after pressing the relevant pushbutton of the TRIG or X DEFL controls.

AC/0/DC switch

The signals under observation are fed to input sockets A and/or B, the AC/0/DC switch being set to either AC or DC depending on the composition of the signal. As the vertical amplifier is d.c. coupled, the full bandwidth of the instrument is available and d.c. components are displayed as trace shifts in the DC position of the AC/0/DC switch.

This may be inconvenient when small signals superimposed on high d.c. voltages must be displayed. Any attenuation of the signal will also result in attenuation of the small a.c. component. The remedy is to use the AC position of input switch, which employs a blocking capacitor, to suppress the d.c. component. Some pulse drop, however, will occur when LF square-wave signals are displayed.

The 0 position interrupts the signal and earths the amplifier input for a rapid check on the 0 V level.

Using the Multiplier

The signals to be multiplied must be applied to input sockets A and B.

Dynamic range

Both multiplicants A and B must be within the dynamic range of the multiplier and preamplifier circuits. As an overload condition for these circuits may not be noticed in the displayed product, care must be taken to keep each of the input signals within the specified dynamic range, allowing for a maximum amplitude of 8 div_{p-p}.

For the displayed product again a maximum of 8 div_{p-p} is specified. If the output maximum is exceeded, one of the input signals must be reduced in amplitude.

Multiplier output level

The multiplier output signal is displayed via the A channel. The displayed product with normally have a d.c. component. Therefore, it is important to know the zero level of the displayed product. The d.c. zero line can be shifted to the most convenient place on the screen by means of the channel A POSITION control if the 0 pushbutton of the signal-coupling control has been depressed.

Using the persistance/storage facility

Starting from the MEMORY OFF position (SAVE and READ pushbuttons simultaneously depressed), with the INTENSity and FOCUS controls set for a sharply-defined trace, the PERSISTENCE/STORAGE mode of operation can be obtained by depressing the pushbutton, WRITE.

The functions of the other controls are then as follows:

PERSIST	Depending on the position of the PERSISTence potentiometer, a rapidly
---------	---

vanishing trace will be written on a green background (knob completely anti-clockwise) or a slowly vanishing trace on a black background (knob

on its first clockwise stop).

The persistence can be set to suppress any flickering when displaying a low-frequency signal. For a signal with a low repetition rate and a short rise-time, the persistence can be set to fill-up the trace to obtain a clear,

steady display.

SAVE If a particular display needs to be retained, is can be saved by depressing

the SAVE button. The display is then just visible.

READ The intensity of the stored display increases by depressing the READ

button, but brightness is achieved at the expense of storage time.

ERASE When de display is no longer needed it can be erased by depressing the

ERASE button. Any persistence of the trace, especially those parts written with substantial brightness, can be removed by prolonged

operation of the ERASE button.

MAX WRITE The writing speed can be increased by a factor of 10 (approx.) by

rotating the PERSISTence control to its second clockwise stop (MAX

WRITE), so that the incorporated switch is operated.

The MAX WRITE mode of operation is required for short sweep times

or for signals with a short rise-time.

Triggering

If a signal must be displayed, the horizontal deflection must always be started on one fixed point of the signal to obtain a stationary display. The time-base generator is, therefore, started by narrow trigger pulses formed in the trigger unit and controlled by a signal originating from one of the vertical input signals, an internal voltage at mains frequency or an external source.

Trigger coupling

Three different trigger-coupling methods can be chosen with the DC/LF/HF switch. In the HF and LF positions, the transfer characteristic is limited.

In position DC the trigger signal is passed unchanged. In position LF, a d.c. (10 Hz for external triggering) to 50 kHz band-pass filter is inserted. This position can be used to reduce interference from noise. In position HF, a 50 kHz high-pass filter is inserted. This position can be used to reduce intereference from e.g. hum.

Selecting the trigger source and setting the trigger level

The trigger signal is obtained from channel A (button A depressed), channel B (button B depressed), an external source (button EXT depressed) or from an internal voltage at mains frequency (button LINE depressed).

The trigger pulse shaper is a multivibrator switched by the output signal of the trigger amplifier.

The trigger signal together with direct voltages which are adjustable with the LEVEL potentiometer, fed to the input of the trigger amplifier.

Depending on the LEVEL setting, a certain part of the trigger signal will be amplified by this amplifier. The multivibrator is thus switched at a fixed point of the trigger signal.

This means that, with the aid of the LEVEL control, it is possible to scan the shape of the trigger signal (in case of internal triggering A or B equal to the shape of the signal to be displayed) and, thus, to choose the point where the multivibrator will be switched.

The LEVEL potentiometer is fitted with a push-pull switch which allows selection of the trigger slope.

Automatic triggering

When the AUTOmatic button of the AUTO/TRIG/SINGLE switch is depressed, and if there are no trigger pulses available, the time-base generator is automatically free-running.

The trace is, therefore, always visible. The AUTOmatic mode can be used in all cases where the TRIG mode is also usable, except with signal frequencies lower than 10 Hz or pulse trains with an off time exceeding 100 ms. As soon as trigger pulses are available, the free-running state of the time-base generator is automatically terminated and the time-base generator is triggered again.

When the TRIGgered or SINGLE button is depressed, the auto-circuit is switched off.

The LEVEL setting can also be used in the AUTOmatic mode.

SINGLE sweep triggering

When effects that occur only once have to be observed (usually photographed), it is desirable to ensure that only one sawtooth is generated, even though several trigger pulses might be produced after the phenomenon of interest. Naturally, the single sawtooth in question must be triggered by a trigger pulse, therefore, the SINGLE button must be pressed. The first trigger pulse that appears after the button has been released will start the time-base generator.

The time-base generator is then blocked until the SINGLE pushbutton is again depressed.

The NOT TRIG'D lamp will light up as soon as the SINGLE button has been released, until a further trigger pulse arrives.

Note that also the ERASE button resets the time base in the single sweep mode.

Time-base MAGNifier

The time-base magnifier is operated by a push-pull switch incorporated in the horizontal POSITION control. If this switch is pulled to position x5, the sweep speeds of the main time-base generator are increased by a factor of 5. Thus the portion of the signal displayed over a width equal to two divisions in the centre of the screen in the x1 position (TB MAGN depressed), will occupy the full width of the screen in the x5 position. Any portion of the trace can be brought on to the screen by the horizontal POSITION control for observation. In the x5 position, the time coefficient is determined by dividing the indicated TIME/DIV value by 5.

Use of the delayed time-base

If the MAIN TB button of the horizontal display switched is depressed, and the delayed time-base TIME/DIV knob is not in the OFF position, part of the main time-base sweep line is displayed at higher intensity. In this way, part of the displayed signal can be selected for more detailed observation. The selected part of the signal is displayed over the whole screen by pressing the DEL'D TB switch.

The sweep time of the intensified part of the main-time-base sweep depends on the delayed time-base TIME/DIV knob.

With the centre knob, sweep times between the steps can be adjusted. For time measurements this knob must always be in the CAL position.

The starting time of the delayed time-base is determined by the settings of the main time-base TIME/DIV or DELAY TIME 10-turn multiplier knob.

If the MAIN TB trigger selector switch of the delayed time-base is pressed, the delay time after which the delayed time-base is started, is the product of the main time-base TIME/DIV switch setting and the DELAY TIME multiplier knob.

If instead of MAIN TB, the delayed time-base is triggered by A, B or EXT, the delayed time-base will start after this delay-time and upon receipt of a trigger pulse. This trigger pulse is supplied by the trigger unit of the delayed time-base generator. This position is used when time jitter would otherwise give a blurred image of the detail under observation. This time jitter could be part of the signal being investigated or, at extreme

2. Gebrauchsanleitung

INBETRIEBNAHME 2.1.

Frontdeckel

- Den Knopf in der Mitte des Deckels eine viertel Umdrehung nach links drehen (Stellung

- Deckel abnehmen.

: - Den Verriegelungsknopf in Stellung UNLOCKED drehen.

- Deckel an der Vorderseite des Oszillografen befestigen.

- Knopf eindrücken und eine viertel Umdrehung nach rechts drehen (Stellung LOCKED).

Im Innern des Deckels kann Zubehör wie z.B. Messköpfe, faltbarer Lichtschutztubus usw. aufbewahrt werden. Die Platte im Innern des Deckels lässt sich durch Zusammendrücken der beiden Zungen an der Verrieglungsvorrichtung herausheben (siehe Abb. 2.2).

Der Handgriff lässt sich drehen, wenn die Druckknöpfe auf ihren Lagern eingedrückt werden.

Warnung: Vor Anschluss des Geräts muss die Erdschutzklemme mit einem Schutzleiter verbunden werden (siehe Abschnitt "ERDEN).

In diesem Gerät werden hohe Spannungen erzeugt, deshalb darf es niemals in geöffnetem Zustand

Vor Wartungsarbeiten ist der Netzstecker zu ziehen und ist darauf zu achten dass alle Hochspannung führenden Teile entladen sind.

Netzspannung und Sicherung

Da das Gerät bei jeder Netzspannung zwischen 90 V und 264 V Wechselspannung oder zwischen 100 V und 200 V Gleichspannung betriebsfähig ist erübrigt sich das Umschalten auf die örtliche Netzspannung. Die an der Geräterückwand vorhandenen Sicherung von 2 A, träge ist für alle Netzspannungen geeignet. Verwendung reparierter Sicherungen und das Kurzschliessen des Sicherungshalters ist gefährlich und daher unzulässig.

Erden

Vor dem Einschalten muss das Gerät auf eine der folgenden Arten mit einem Erdschutzleiter verbunden werden. Aus Sicherheitsgründen muss der Oszillograf entweder über den Erdanschluss an der Rückseite (gekennzeichnet (1), oder über das dreiadrige Netzkabel, vorausgesetzt das Gerät wird an eine Schukosteckdose angeschlossen,

Diese Schutzmassnahme darf nicht unwirksam gemacht werden, z.B. durch eine unvollkommene Verlängerungsleitung!

Warnung: Jede Unterbrechung des Schutzleiters innerhalb oder ausserhalb des Geräts ist aus sicherheitsgründen

Wenn ein Gerät von kalter in warme Umgebung gebracht wird kann Kondensation einen gefährlichen Zustand verursachen. Deshalb ist darauf zu achten dass die Erdungsvorschriften strikt befolgt werden.

Einschalten

Der Schalter POWER ist mit dem Einsteller INTENS gekoppelt und befindet sich an der Vorderseite des Geräts unter dem Bildröhrenrahmen.

WARNUNG

EINE GROSSE HELLIGKEIT ÜBER LÄNGERE ZEIT KANN DIE ELEKTRONENSTRAHLRÖHRE BESCHÄDIGEN

In der Betriebsart PERSIST (Variable Nachleuchtdauer) warnt die Elektronenstrahlröhre selbst durch Leuchtspurzerfliessung vor übermässiger Strahlintensität. Im Falle einer solchen Leuchtspurzerfliessung muss durch geringe Drehung des Knopf INTENS die Helligkeit verringert werden.

In Stellung MEMORY OFF und in Betriebsart X-Y erfolgt keinerlei Warnung, deshalb ist dabei besondere Vorsicht geboten.

Fig. 2.1. Abnehmen des Frontdeckels

Fig. 2.2. Öffnen des Frontdeckels

2.2. FUNKTION DER BEDIENUNGSORGANE UND STECKVERBINDUNGEN

Vertikalablenkung

Fig. 2.3. Vertikalablenkung

AMPL/DIV

Vertikaldarstellungsschalter	Einstellung der Darstellungsarten; Drucktastenschälter mit 6 Stellungen
A eingedrückt	Vertikalablenkung durch Anschluss des Signals an den Eingang von Kanal A
ALT eingedrückt	Das Bild wird am Ende jedes Zyklus der der Zeitablenkung von einem Vertikalkanal auf den anderen umgeschaltet.
CHOP eingedrückt	Das Bild wird mit einer Festfrequenz rasch von einem Kanal auf den anderen umgeschaltet.
ADD eingedrückt	Vertikalablenkung durch die Summe der Signale von Kanal A und B.
MULT eingedrückt	Vertikalablenkung durch das Produkt der Signale von Kanal A und B.
B eingedrückt	Vertikalablenkung durch Anschluss des Signals an den Eingang von Kanal B.
	Wenn keine Taste eingedrückt ist, arbeitet das Gerät in betriebsart A.
MULT + B gleichzeitig gedrückt	Das Bild wird zwischen MULT und B geschaltet (Betriebsart CHOP).
POSITION und MULTIPL. BAL (0 x A oder B)	Stufenlose Einstellung der vertikalen Lage des Bildes. PUSH FOR BALANCE, Einrichtung für Multiplikator-Ausgleich (off-set Ausgleich).
NORM/INVERT	Drucktastenschalter mit 2 Stellungen zur Umkehrung der Signalpolarität Kanal B. Keine der Tasten gedrückt hat die gleiche Wirkung wie Taste NORM

Stufenweise Einstellung der Vertikalablenkkoeffizienten; Wahlschalter

gedrückt.

mit 9 Stellungen.

2. Mode d'emploi

2.1. INSTALLATION

Démontage et montage du couvercle frontal

Démontage: - Tourner le bouton au centre du couvercle d'un quart de tour vers la gauche (position

UNLOCKED)

- Enlever le couvercle

Montage:

- Tourner le bouton de verrouillage vers position UNLOCKED

- Fixer le couvercle sur la partie avant de l'oscilloscope

- Enfoncer le bouton et le tourner d'un quart de tour vers la droite (position LOCKED).

Des accessoires telles que sondes, visière repliable et autres peuvent être stockés dans le couvercle frontal. Pour accéder à cet espace exercer une pression sur les pattes de l'unité de verrouillage (voir Fig. 2.2.) et soulever la plaque

Pour faire pivoter la poignée, il faut enfoncer les boutons-poussoirs aux étriers.

Attention: Avant de brancher l'appareil, la protection de terre doit être connectée à une connexion de terre.

Le présent appareil produit des tensions élevées et ne peut donc pas être utilisé avec les plaques du châssis déposées. La fiche secteur doit être enlevée et tous les points haute tension déchargés

avant de procéder à n'importe quel travail d'entretien.

Adaptation à la tension secteur et fusible

La capacité d'utilisation à toute tension secteur comprise entre 90 et 264 V alternatif ou entre 100 et 200 V continu supprime la nécessité d'adapter le PM 3243 à la tension secteur locale.

Le porte-fusible monté sur le panneau arrière porte un fusible à action retardée de 2 A. L'utilisation de fusibles réparés et le court-circuitage de porte-fusibles sont vivement déconseillés.

Mise à la terre

Avant toute mise sous tension, l'appareil doit être connecté à la terre de l'une des manières suivantes:

Par la borne de terre de l'appareil (symbole)

Par la cordon secteur à trois conducteurs. La fiche secteur ne doit être introduite que dans une prise possédant un contact de terre. La mise à la terre ne doit pas être éliminée par l'emploi d'un câble prolongateur sans conducteur de terre.

Attention: Toute interruption de la ligne de terre, à l'intérieur ou à l'exterieur de l'appareil ou le débranchement de la borne de terre peuvent rendre l'appareil dangereux. L'interruption intentionnelle est formellement

interdite.

Lorsqu'un appareil passe d'un endroit froid à un endroit chaud, la condensation peut provoquer un certain risque. En conséquence, il faut appliquer strictement les prescription de mise à la terre.

Enclenchement

Le commutateur POWER est incorporé dans la commande INTENS (panneau avant), juste sous le bord de l'écran.

ATTENTION

UNE FORTE INTENSITE DE LONGUE DUREE PEUT ENDOMMAGER LE TRC.

En mode de persistance variable, le TRC indique que l'intensité est trop forte par expansion du point ou de la trace.

Dans ce cas, l'intensité doit être diminuée en tournant le bouton INTENS légèrement vers la gauche. En position MEMORY OFF et en mode X-Y, aucune indication n'est donnée, aussi faut-il prêter une attention toute particulière.

Fig. 2.1. Dépose du couvercle frontal

Fig. 2.2. Ouverture du couvercle frontal

2. FONCTIONS DES COMMANDES ET CONNECTEURS

Déviation verticale

Fig. 2.3. Déviation verticale

AMPL/DIV

Commutateur de déviation verticale	Commandes du mode d'affichage; sélecteur à 6 boutons-poussoirs
A enfoncé	La déviation verticale est obtenue seulement par le signal appliqué à l'entrée de la voie A.
ALT enfoncé	L'affichage est permuté d'une voie verticale à l'autre, et ce à la fin de chaque cycle du signal de base de temps.
CHOP enfoncé	L'affichage est permuté d'une voie verticale à l'autre à une fréquence fixe.
ADD enfoncé	La déviation verticale est obtenue par la somme des signaux A et B.
MULT enfoncé	La déviation verticale est obtenue par le produit des signaux A et B.
B enfoncé	La déviation verticale est obtenue seulement par le signal appliqué à l'entrée de la voie B. Si aucun bouton-poussoir n'est enfoncé, l'appareil fonctionne sur la voie A.
MULT + B enfoncées simultanément	L'affichage est commuté entre MULT et B (mode CHOP).
POSITION , et balance de multiplicateur (0 x A ou 0 x B)	Commande continuellement variable pour le positionnement vertical des traces.
	PUSH FOR BAL pour balance de multiplicateur (compensation d'offset)
NORM/INVERT	Commutateur push-pull pour l'inversion de la polarité de signal d'entrée (seule voie B).
	Si aucun n'est enfoncé, cela équivaut à NORM enfoncé.

Commutateur à 9 positions des coefficients de déviation verticale.

Contents

3.1.	DESCRIPTION OF THE BLOCK DIAGRAM	87
3.2.	STORAGE TUBE	90
3.3.	CIRCUIT DESCRIPTION	92
	 Variable persistance/storage a. WRITE mode b. SAVE and READ mode c. Manual ERASE mode d. Variable persistance 	92 92 92 93 94
	2. Beam current control (with modification)	94
	3. Dynamic focus control	95
	4. Multiplier	95
3.4.	CHECKING AND ADJUSTING	96
	 Variable persistance/storage and writing speed a. Variable persistance/storage b. Writing speed 	96 96 96
	 2. C.R.T. circuit a. Trace rotation b. Astigmatism and Focus c. Minimum Intensity Write gun d. Maximum Intensity e. Intensity Ratio f. Z-pulse g. Barrel and cushion distortion h. R 1390 (BEAM LIMIT) 	99 99 99 99 99 100 100
	 3. Input attenuator a. Balance b. A.C. compensation 4. Intermediate amplifier and multiplier a. D.C. balance b. H.F. compensation c. H.F. compensation in earlier models d. Bandwidth check 	101 101 101 101 101 103 105
3 5	PARTSLIST	107

Figures

3.1.	PM 3243 block diagram	8
3.2.	Secondary emission ratio	9
3.3.	Storage system details	9
3.4.	Simplified circuit persistence/storage functions	9:
3.5.	Save and Read modes	9:
3.6.	Storage erase cycle	9:
3.7.	Persistence mode	9.
3.8.	Barrel and cushion distortion	100
3.9.	H.F. compensation ch. A	103
3.10.	H.F. compensation ch. B	103
3.11.	H.F. compensation A MULT	104
3.12.	H.F. compensation B MULT	104
3.13.	H.F. compensation MULT. OUTPUT	10!
3.14.	H.F. compensation units, older models	10.
3.14a.	Location h.f. compensation circuits	106
3.15.	Unit location, top view	133
3.16.	Unit location, bottom view	133
3.17.	Electrical item numbers, front plate	134
3.18.	Circuit diagram attenuator	135
3.19.	Component lay-out attenuator	135
3.20.	Circuit diagram intermediate amplifier	136
3.21.	Component lay-out intermediate amplifier with multiplier	137
3.22.	As Fig. 3.21, but with incorporated H.F. compensation circuits	138
3.23.	Circuit diagram multiplier	139
3.24.	Circuit diagram final Y amplifier	140
3.25.	Circuit diagram trigger source unit	141
3.26.	Circuit diagram time-base	142
3.27.	Component lay-out time-base and X-amplifier	143
3.28.	Circuit diagram Main- and Delayed time-base sweep switches	143
3.29.	Circuit diagram blanking amplifier and c.r.t.	144
3.30.	Component lay-out blanking amplifier	145
3.31.	Circuit diagram variable persistence/storage	146
3.32.	Some wave-forms in the variable persistence/storage circuit	147
3.33.	Component lay-out variable persistence/storage	148
3.34.	Component lay-out auxilary unit	149
3.35.	Circuit diagram channel selection logic	150
3.36.	Circuit diagram probe power	150
3.37.	Circuit diagram 2 kV unit with h.t. rectifier	151
3.38.	Circuit diagram power supply unit	157
3.39.	Component lay-out power supply unit	153

3.1. DESCRIPTION OF THE BLOCK DIAGRAM

Refer to Fig. 2.10

General information

The PM 3243 oscilloscope comprises the following parts:

- a dual-channel vertical deflection system with signal multiplication facility
- a main time-base
- a delayed time-base
- a switching unit
- an X amplifier
- a Z modulator and c.r.t. circuit with persistence storage facilities
- e.h.t. supplies
- a power supply

Dual-channel vertical deflection system

The A and B vertical channels are almost identical circuits. The main differences are that channel B has a switch facility for signal inversion, and in the multiplier mode the signal is routed via the A channel after multiplication. The input signal to each channel is fed via a three-position coupling switch AC/0/DC to the input attenuator. In the AC position a capacitor is switched in series with the signal path. In the 0 position the input signal path is interrupted and the attenuator input is earthed.

The input attenuator, controlled by the AMPL/DIV switch via reed relays, enables the adjustment of the vertical deflection sensitivity in calibrated steps. This attenuator consists of a high and low impedance part separated by an impedance converter, with a drift-compensation circuit.

The d.c. balance of the entire channel is set by a BAL potentiometer which compensates for the d.c. offset voltage of the impedance converter.

The output signal of the attenuator is applied via a 50 Ohm coaxial cable to the intermediate amplifier where it is transformed into push-pull signal.

The intermediate amplifier provides the following functions:

- a signal for the trigger pre-amplifier
- GAIN calibration and BAL compensation controls
- shift for the Y trace by means of the POSITION control combined with 0 x A and 0 x B compensation controls
- electronic switching of the selected channel modes
- phase inversion of the B channel by means of the INVERT pushbutton.

The channel selector enables or inhibits the Y signals as dictated by the channel selection logic. In the A, B, ADD and MULT modes, the channel selector logic setting depends on the vertical display mode switch. In the ALT mode the channel selector logic is controlled by pulses derived from the sweep-gating multivibrator of the main time-base generator. In this way, the complete signal trace of channel A and channel B are alternately displayed on the c.r.t. screen.

In the CHOP mode, the channel selector control pulses are derived from an oscillator running at a fixed frequency of approximately 1 MHz. These pulses successively open and close the electronic switch in the channel selector so that portions of the signals of channel A and channel B are alternately and repetitively displayed.

In the MULT mode, the signals to be multiplied are taken out of the amplifier stages of channels A and B and are multiplied in the multiplier circuit. The resulting signal is amplified and re-inserted in the amplifier of channel A. If MULT and B pushbutton are simultaneously depressed, both signals are displayed in the CHOP mode.

A common output for the A and B channels feeds the delay line, which delays the vertical signals sufficiently to permit the steep leading edges of fast signals to be displayed. A delay-line correction circuit compensates for the distortion introduced by the delay line. A final stage feeds the Y signals to the vertical deflection plates of the c.r.t.

Time-bases

Main time-base

The trigger source/X deflection selector receives its signal from one of four sources:

- either A or B vertical channels via its trigger amplifier
- from the EXT input socket
- from the opto-isolator in the power supply.

Selection of these sources is by means of the four pushbutton unit in this stage.

Fig. 3.1. PM 3243 block diagram

From the selector stage, the signal is fed to either the X pre-amplifier for horizontal deflection (when external X signal is employed), or the trigger amplifier for starting the time-base generator. The input of the trigger differential amplifier stage contains the control for selecting the input frequency range of the trigger circuit. The trigger LEVEL adjustment and SLOPE selection switch are also incorporated in this stage. The SLOPE selector switches the differential amplifier to invert the polarity of the trigger signal to enable triggering of the input signals on either positive or negative-going slopes.

The output of the trigger amplifier is applied to the trigger multivibrator, which produces well-defined trigger pulses. These trigger pulses are used to switch the sweep-gating multivibrator and, when the AUTO pushbutton has been selected, for driving the auto-circuit.

The sweep-gating multivibrator controls the starting and stopping of the integrator circuit that produces the sawtooth waveform required for the horizontal deflection.

The integrator circuit consists of charging capacitors switched by transistors, and the resistors selected by the TIME/DIV switch to set the time coefficients in calibrated steps. Continuous control of these time coefficients is obtained by varying the charging current of the time-determining capacitors by means of the TIME/DIV potentiometer.

The resulting sawtooth signal of the integrator is fed to the X deflection selector, the hold-off multivibrator and the comparator, which is part of the delayed time-base unit.

The hold-off multivibrator resets the sweep-gating multivibrator and inhibits its input during the flyback period of the sawtooth waveform. The hold-off circuit also incorporates the single sweep circuit that causes the main time-base to produce a single sawtooth waveform after the SINGLE pushbutton has been depressed and on receipt of a trigger pulse.

The automatic free-run circuit or auto-circuit makes the time-base free-running when no trigger pulses are applied.

Delayed time-base

If the MAIN TB of the horizontal display switched is depressed, and the delayed time-base TIME/DIV knob is not in the OFF position, part of the main time-base sweep line is displayed at higher intensity.

In this way, part of the displayed signal can be selected for more detailed observation. The selected part of the signal is displayed over the whole screeen by pressing the DELD'D TB switch.

The sweep time of the intensified part of the main time-base sweep depends on the delayed time-base TIME/ DIV knob.

With the centre knob, sweep times between the steps can be adjusted. For time measurements this knob must always be in the CAL position.

The starting time of the delayed time-base is determined by the settings of the main time-base TIME/DIV OR DELAY TIME knob and the DELAY TIME 10-turn multiplier knob.

If the MAIN TB trigger selector switch of the delayed time-base is pressed, the delay time after which the delayed time-base is started, is the product of the main time-base TIME/DIV switch setting and the DELAY TIME multiplier knob.

If instead of MAIN TB, the delayed time-base is triggered by A, B or EXT, the delayed time-base will start after this delay-time and upon receipt of a trigger pulse.

In principle, the delayed trigger-unit and time-base generator use similar circuits to those of the main trigger-unit and time-base generator. The delayed time-base always operates in the single-shot mode. The sweep is initiated by the main time-base generator which also serves as hold-off for the delayed time-base.

The DELAY TIME control in conjunction with the comparator and reset multivibrator determine the delay time for the delayed time-base generator. The delayed time-base is operative unless its TIME/DIV control is in the OFF position. It starts immediately after the delay time, or upon receipt of the first trigger pulse after the delay time. It can be triggered by the A, or B channels, or externally.

When pushbutton MAIN TB of the horizontal deflection mode controls is depressed, the part of the trace coinciding with the delayed sweep is intensified.

Switching unit and X amplifier

The X deflection selector couples the external X deflection signal from the X (pre)amplifier, the output of the main time-base generator or the output of the delayed time-base generator to the X amplifier, which feeds the horizontal deflection plates. The X amplifier comprises the horizontal trace positioning and the x5 magnification controls.

The storage-mesh may be compared to the grid of a triode. Just as the triode grid potential controls the anode current, the storage mesh controls the current of flood-gun electrons to the display phosphor. If the var. persistance/storage functions are not operative the memory mesh is on a constant —36 V level. The writing gun electrons fly through both meshes and reach the display phosphor. The flood-gun electrons are not getting through the memory mesh but are retracted by the collector mesh.

3.3.a. Detail of storage system

3.3.b. Full brightness storage

3.3.c. Storage cut-off

Fig. 3.3. Storage system details

3.3. CIRCUIT DESCRIPTION

Only the circuits of the PM 3243 which are additional to, or different from the basic PM 3240 oscilloscope are discussed.

For the remaining description and drawings refer to the basic PM 3240 manual.

All push-button switches in the circuit-diagrams have been drawn in the released position.

1. Variable persistence/storage

Fig. 3.4. Simplified circuit persistence/storage functions

MA9707

Refer to circuit diagram Fig. 3.31.

Some wave-forms in this circuit are given in Fig. 3.32.

Fig. 3.4 shows the simplified circuit of the persistence/storage functions.

The IC 2101-A circuit forms a triangular-wave 2 kHz oscillator, which drives the variable duty-cycle generator IC 2101-B. The duty-cycle of the square-wave signal on the output of IC 2101-B depends on the PERSIST control and the position of the WRITE and SAVE switches.

a. WRITE mode

SK20-WRITE depressed.

The square-wave signal present on input 13 of IC 2102-D is applied to the emitter-follower TS 1211 via IC 1202-C.

TS 1211 feeds the memory-mesh (g9) of the cathode ray tube.

The duty-cycle of the signal on the memory-mesh depends on the PERSIST control (R15).

The voltage on the flood-gun accelerators (G2'-G2") is constant because TS 2114 is not conducting.

Z-modulation (current to R1394) is not inhibited because SK20 (10-11) is open.

b. SAVE and READ modes

The voltage on the memory-mesh is now constant because SK20 (2-3) is open.

On the flood-gun accelerators is now a square-wave voltage the duty-cycle of which controls the amount of flood-gun electrons.

Z-modulation is inhibited because R1394 is now connected to +12 V.

Fig. 3.5. Save and Read modes

The blanking pulse selector supplies blanking pulses to the Z amplifier. These pulses blank the trace at the end of the main time-base sweep and provide the extra bright-up pulse if the oscilloscope operates with a portion of the trace intensified. The blanking pulses during the switching of the traces in the chopped mode go direct from the channel selector logic to the Z amplifier.

CRT circuits and Z amplifier

The c.r.t. circuits include stages for trace blanking and unblanking, an automatic brightness control unit, circuits appertaining to the storage functions of the c.r.t. and networks for the correction of the c.r.t. characteristics. The automatic brightness control (a.b.c.) unit ensures a virtually constant trace brilliance or a blanked trace in various display modes.

In the continuous display mode, the trace is blanked and unblanked by a signal from the main time-base generator.

In the single-sweep mode, the trace is blanked via the a.b.c. unit.

The trace storage circuits provide the voltage levels and waveforms which are necessary for the storage operation of the c.r.t., under the control of the SAVE, READ, ERASE and WRITE pushbuttons.

The correction networks comprise preset potentiometers for trace rotation, astigmatism, flood gun filament potentials, distortion.

The high-voltage for the post-acceleration anode of the c.r.t. is supplied by a stabilized h.t. generator, the output of which is rectified and multiplied by a factor of 5.

The Z amplifier receives two input signals. One originates in the time-base generator and is applied, via the switching circuit, to the Z amplifier to blank the trace during flyback; the other is supplied by the channel selector logic to blank the trace during switching in the chop mode.

The INTENS potentiometer determines the amount of input current fed to the Z amplifier.

At the output of the amplifier, the signal is split into two parts: an l.f. + d.c. part and an h.f. part. The h.f. part is fed direct to the Wehnelt cylinder of the c.r.t. An oscillator signal is modulated by the l.f. + d.c. part and the composite signal is afterwards detected in a peak-to-peak detector. Both signals are combined again on the Wehnelt cylinder.

The focus control also forms part of the c.r.t. circuit.

The calibrator, an integral part of the oscilloscope, is a square-wave generator which supplies an accurate voltage and current for calibration purposes.

Stabilized power supply

The mains voltage is full-wave rectified and fed to a voltage regulator. The voltage regulator contains a current sensor which controls in such a way that the output voltages of the power supply stay within specified limits. The rectified mains voltage controls a blocking oscillator which generates a voltage at a frequency of approximately 20 kHz. This voltage is applied to the primary winding of a transformer. The secondary voltages of this transformer are full-wave rectified, smoothed and applied to the various circuits.

The LINE (MAINS) triggering signal is taken direct from the mains and, via an opto-isolator, fed to the trigger circuits at a safe level, completely isolated from the mains.

3.2. STORAGE TUBE

Storage principle

The information is stored by writing the signal of the main electron beam into a STORAGE LAYER of non-conductive material. As a result of the secundary emission of electrons from this layer, a positive charge pattern is formed. This charge pattern on the storage surface will remain there for a considerable length of time. The trace is displayed on the phosphor viewing screen by means of two flood beams whose electrons can strike the display-phosphor via the positively charged parts on the storage layer.

Storage of information on non-conductive material is based on secundary emission. Fig. 3.2. shows the ratio between the number of electrons leaving the storage layer and the number of electrons arriving (secundary emission ratio) versus the surface potential. At a certain surface potential, V_a in Fig. 3.2. the number of electrons leaving the surface equals the number of electrons arriving. This point is called the first cross-over (secundary emission ratio = 1).

If the surface of the storage layer is hit by electrons of higher energy (electrons with greater velocity), the surface will become more positive, since more electrons are leaving than arriving. If the surface is hit by electrons of lower energy (electrons with lower velocity) than at V_a , the surface potential becomes more negative, as fewer electrons are leaving than arriving.

Secondary

Construction and operation of the storage c.r.t.

The storage cathode-ray tube contains two electron-gun systems: the WRITING system and the FLOOD system. The writing electron-gun system is in principle the same as in a normal cathode ray tube.

The FLOOD system consists of a pair of FLOOD GUNS operated in parallel. Both guns comprise a CATHODE k, a CONTROL GRID g1 and an ACCELERATOR GRID g2. Common to both flood guns are the FLOOD BEAM COLLIMATORS MESH g8, the STORAGE MESH g9 which carries the storage layer, and the PHOSPHOR VIEWING SCREEN g10. Refer to Fig. 3.3 and 3.30.

The flood guns are located besides the horizontal deflection plates. The cathode potential is approx. 0 V, this being 50 V negative in relation to the accelerator grids. Both flood gun cathodes emit a cloud of electrons.

These clouds are combined by both control grids g1,

emission ratio

First crossover point

Va

Storage-layer surface potential

Fig. 3.2. Secondary emission ratio

accelerated by both accelerator grids g2 and shaped by the collimator g7 which consists of a coating on the inner surface of the c.r.t. The positive voltage on the collimator is such that the electron cloud emanating from the flood gun just fills the viewing area of the c.r.t.

The cloud is further accelerated in the direction of the storage mesh and the display phospor g8. After passing through the collector mesh, the flood-gun electrons are controlled by the potentials on the storage layer surface.

Both meshes have been made from very thin material with 40 x 40 μ m apertures. The cathode side of the storage mesh is coated with a non-conductive material on which the information is stored. In other words, there exists a capacitive coupling between the storage mesh and the storage-layer surface. The storage mesh is normally at a potential of approximately +1 V in relation to the flood-gun cathode potential, i.e. approximately +32 V with respect to earth.

The potential V_a at the storage-layer surface is controlled by WRITE and ERASE signals which are applied to the storage mesh, and varies between 0 V positive and 8 V negative in relation to the flood-gun cathode. When the storage-layer surface is at a potential of 0 V in relation to the cathode (see Fig. 3.3.b.), the majority of flood-gun electrons pass through the holes in the mesh and reach the phosphor screen. The remaining electrons are repelled by the storage-layer surface and collected by the collector mesh. When the potential of the storage-layer surface is negative in relation to the cathode (see Fig. 3.3.c.), the number of electrons passing through the storage mesh is drastically reduced or, when the cut-off level is reached, no electrons pass at all (just black).

The post-accelerator voltage of approximately 7 kV is connected to the phosphor viewing screen. Electrons that are allowed to pass through the storage mesh are accelerated by this potential and strike the phosphor with such a velocity that a brilliant display is obtained.

SK20-SAVE depressed.

The duty-cycle of the flood-gun accelerator voltage is now 10% resulting in a just visible display. (This duty-cycle can be adjusted up to 50 % with preset pot. meter R2149 (SAVE) giving a brighter display but shorter store time). Factory set at 10 % for 15 min. store time. SK20-READ depressed.

The duty cycle of the flood-gun accelerator voltage is now 50 % giving a useful display.

c. Manual ERASE mode

SK21-ERASE depressed (only operative in the WRITE mode).

If the ERASE button is depressed a constant +150 V voltage is applied to the memory mesh (via GR2105). Owing to the capacitive coupling between the surface layer and the mesh itself, the surface layer voltage rises the same voltage jump. By the high positive layer voltage, secondary emission takes place over the whole layer surface and all information on the storage layer is overruled.

The voltage over the whole layer surface will now reach approx. +150 V which is the potential of the collector mesh. If the local surface layer voltage would be lower the secundairy emission takes place until the voltage is reached.

The local surface layer voltage can not grow higher than +150 V because then the secundary emission electrons are then reflected by the collector mesh.

At the moment the ERASE button is released the surface layer voltage jumps approx. 150 V due to the capacitive coupling.

After a stable situation of approx. 200 ms, a +8 V pulse of approx. 600 ms is applied to the storage mesh. The surface layer which follows capacitively will now be sprayed by low-energy electron which do not cause secondairy emission but will bring the surface to a sufficient low voltage.

At the end of the 600 ms pulse the mesh voltage jumps 8 V which will bring the surface layer at approx. —8 V.

Fig. 3.6. Storage erase cycle

The 200 ms-off and 600 ms-on pulse generated by two circuits which are activated the moment the ERASE button is released.

- One circuit (TS 2101, 2102) which generates a 800 ms positive pulse at point 5 of IC 2102-B.
- The second circuit (TS 2112 and IC 2102-A) which generates a 200 ms zero pulse at point 12 of IC 2102-D.
- A third circuit (TS 2103 . . . 2105) which generates a 100 ms pulse in addition to the 800 ms pulse from TS 2102.

The steep trailing edge of this 900 ms pulse resets both the main time-base and the delayed time-base.

The +8 V of the positive pulses which is given in this text and pulse diagrams, is only an orientational value. In practise pulses up to +15 V may occur (depending on calibrations and c.r.t. properties).

d. Variable persistence

This mode can be seen as a continuous write/erase operation.

A square-wave signal is now applied to the memory-mesh, derived from the output of IC 2101-B. The duty-cycle of this signal, adjustable with the PERSIST knob (R15) controls the persistence time. During the higher positive (+8 V) voltage on the storage mesh, the flood-gun electrons will lower the local surface layer voltage (the positive charges are filled-up by the electrons). If the duty-cycle of the higher positive voltage is increased the persistence time will decrease.

Fig. 3.7. Persistence mode

MA9605

2. Beam current control*

In order to prevent damage of the cathode ray tube, due to too high dissipation of the electron beam on the memory mesh, an automatic beam current control circuit has been applied (TS 1322).

The blanking pulse, available at the emittor of TS 1328 is integrated by C1321/R1373.

The neg. side of C1321 is connected to the +6 V as fixed reference, via TS 1319 which is used as a switch. TS 1319 is not conducting in positions:

- .5 s up to 10 ms incl. of the MTB sweep switch
- .2 s up to 10 ms incl. of the DTB sweep switch.

In this sweep-times no integration takes place, because this would include no equal brightness over the whole trace-length, however a certain negative feed-back control remains via the voltage divider R1373, 1374.

The integrated voltage across C1321 depends on:

- height of the Z-pulse (INTENS knob setting)
- duty-cycle of the Z-pulse (trigger, hold-off)

If the integrated voltage might increase, also the emitter voltage of TS 1322 increases which causes a higher current into the blanking amplifier input (TS 1323), resulting in decreasing beam circuit.

The average beam current (in the final anode circuit) is approx. 1 μ A.

The +6 V reference for C1321 is taken from the base of TS 1323 in order to improve common mode suppression of the Z-amplifier.

In the EXT X DEFL mode the beam current control of not operative.

Modification beam current control circuit

(See Fig. 3.29.; TS 1319 detail for the old situation.

TS 1318 has been added, in order to obtain the same intensity ratio (m.t.b. sweep with intensified d.t.b.), in all time-base sweep speed positions.

In the old situation the intensity ratio at sweep speeds of 10 ms/div. and slower was remarkable lower (less brightness difference between intensified part and rest of the trace) then in the higher sweep speeds. This is due to the fact that the integrated capacitor C1321 is switched-off in the slower sweep speed positions. Therefore an intensity ratio correction is then necessary.

TS 1318 draws current from the base-circuit of TS 1068 in the higher sweep speeds positions, which includes readjustment of R1115 (INTENS RATIO).

^{*} Formely known by the name: Automatic Brightness Control

Required parts:

 Transistor
 TS 1318
 BC 549C

 Resistor
 R1376
 56,2 kohm MR25

 Resistor
 R1378
 6,19 kohm MR25

 Resistor
 R1379
 26,1 kohm MR25

From serial nr. D775 this modification is included in the instrument.

3. Dynamic focus control

The optimum focus setting of the c.r.t. is depending on the momentary c.r.t. electron beam current. As this current is also depending on the duty-cycle of the blanking pulse, the focus setting would be depending on the duty-cycle of the blanking pulse (trigger, hold-off, a.s.o.).

To compensate this, the d.c. focus voltage (g3 of the c.r.t.) is combined with a block voltage derived from the blanking pulse.

The blanking pulse available at the emittor of TS1328 is not only applied to the g1-circuit of the c.r.t., but also to the amplifier circuit TS1301 ... TS1303. This circuit inverts the signal and has a voltage gain of 1. The voltage at the emittor of TS1303 is applied to the focus circuit, via a d.c. path (TS1304) and an a.c. path (C1306), at the same way as in the intensity control circuit.

Both chopper circuits for the d.c. paths of the intensity- and the focus circuits have exactly the same frequency, obtained by the common, positive feed-back transistor TS1307. In this way any frequency interference or zero-beat effect is suppressed.

4. Multiplier Fig. 3.21.

The signals on ch. A and ch. B can be multiplied.

The multiplied signal can be displayed (instead of ch. A) and taken-off from the output connector at the rear of the instrument.

The signals to be multiplied are taken from the intermediate amplifiers (points 4 and 5 of IC 302 of ch. A and 5 of IC 2302 of ch. B) and applied to the multiplier circuit.

The input circuits of the multiplier (IC 401, 402 for ch. A, and IC 2401, 2402 for ch. B) have a frequency compensation circuit for each channel. Also the $0 \times A$ and $0 \times B$ front panel adjustments take place in this circuits, for adjustment of the zero levels.

The ch. A and B signals are actually multiplied in IC 1901. Transistor TS 1901 controls the voltage levels in the multiplier circuit via the two diodes in IC 1901.

The output signal of IC 1901 is applied to IC 1902 by which the polarity of the multiplied signal can be inverted. If the ch. B signal is inverted (SK6), the ch. B signal to the multiplier is not inverted, In this case also the multiplied signal must be inverted.

With preset potm. R1912 the zero levels for both normal- and inverted mode can be made equal. The scale factor (multiplier gain) is adjustable with R1931 which controls the resistance between points 4 and 5 of IC 1902, thus controlling the gain of the relative transistor-pair of IC 1902.

From the collectors of this transistor-pair the multiplied signal is fed to IC 1903, via TS 1903, 1904.

If SK1 (MULT) is depressed (contact 2-3 closed), TS 309 feeds current into IC 302, thus interrupting the normal ch. A signal path.

At the same time TS 1905 is cut-off (contact SK1 1-2 open), which allows the multiplied signal via IC 1903 to go back to the ch. A intermediate amplifier for further amplification.

From the emittors of the IC 1902 transistor-pair, also the multiplied signal is taken-off for the A x B output at the rear of the instrument. This signal is first amplified by a transistor-pair IC 2001 with frequency compensation circuit, and then via an output-stage TS 2002 . . . 2004 applied to the output connector. The output signal is taken from the emitter-follower TS 2006, which is pre-loaded with TS 2004 for better common mode suppression.

TS 2001 regulates the A \times B zero level with pot. meter R18 at the rear panel near the A \times B output. TS 2007 delivers an extra regulated supply voltage for the A \times B output amplifier circuit.

The A \times B output at the rear panel must be terminated with 50-ohms to obtain correct multiplication factor, and full bandwidth response.

Also, if the MULT. button is not depressed the multiplied signal is available at the A x B output connector.

3.4. CHECKING AND ADJUSTING

Introduction

This procedure describes how to check and adjust the following functions:

- Variable persistence/storage
- C.r.t. circuit
- Intermediate amplifier with multiplier

For the remaining subjects refer to the basic PM 3240 manual.

Before any adjustment or checking, the instrument must attain its normal operating temperature. Under average conditions this will be approximately 30 minutes after switching on.

All controls which are mentioned without item number are located on the front panel.

Use a viewing hood for better observation of the display.

Preliminary control settings

- Depress button A of the vertical display mode switch.
- Depress button MAIN TB of the horizontal display mode switch.
- Depress button AUTO of the trigger mode switch.
- MAIN TB sweep knob in position .1 ms/DIV.
- DEL'D TB sweep knob in position OFF.
- Both AMPL/DIV. knobs in position .1 V.
- All TIME/DIV. and AMPL/DIV potmeters in CAL position.
- TB MAGN switch depressed (magnifier off).
- Set the POSITION controls to their mid-positions.
- Depress button AC of the A input coupling switch.
- Depress both buttons DC of the trigger-range selector switches.
- Depress button A of the MAIN TB source switch.
- Depress button MTB of the DEL'D TB trigger source switch.
- Knob HOLD OFF fully clockwise (shortest hold-off time).
- Depress both SAVE and READ buttons (MEMORY OFF).
- Operate the INTENS and FOCUS knobs to obtain a sharp trace of medium brightness.
- Set LEVEL controls for a stable display.
- When the instrument is in the WRITE mode, it is recommended to keep the PERSIST knob in the short-persistence position (fully counter clockwise).

In this case the dynamic erase function is optimum.

1. Variable persistence/storage and writing speed

Introduction

- All adjustment controls are located on the persistence/storage unit.
- Remember to press the ERASE button in the WRITE mode after every (trial) adjustment.
- It is recommended first to check the adjustment of R1329 (INT. MIN) on the Z-mod. unit, refer to 2c.
- The INTENS knob must be in the minimum position (fully counter clockwise) during the variable persistence/storage checking and adjusting procedure.
- Depress the WRITE button.
- No input signals.
- a. Variable persistence/storage

Required instruments:

- Oscilloscope (5 MHz)
- Voltmeter
- 1. Memory mesh voltage (Adjustment only possible in older versions)
 - PERSIST control in position MAX. WRITE (fully clockwise)
 - The voltage on g9 must be +1 V with respect to earth.
 If necessary adjust R2141 (VG 9)*

2. Collimator

- PERSIST control in position minimum persistence (fully counter clockwise).
- Check with R2128 (V collim) that the green surface just overlaps the display surface of the c.r.t.

^{*}R2142 was in series with R2140

Just no cushion-distortion; no rim-effects visible.

The collimator voltage will be between +55 V and +75 V.

3. Just black level.

Remind to press frequently the ERASE button.

- PERSIST control in position maximum persistence (not in MAX. WRITE).
- Adjust R2168 (JUST BLACK) so that both "clouds" are visible and adjust R2189 (BAL) so, that both "clouds" have same brightness.

After this, adjust R2168 (JUST BLACK) so, that the display is just black. Use viewing hood.

4. Max. write

PERSIST knob in position MAX. WRITE (press ERASE button).

Both "clouds" must be visible.

If necessary adjust R2167 (INTENS. MAX. WRITE).

If necessary readjust R2189 (BAL) for equal brightness of both "clouds". (The effect is clearly visible without operating the ERASE button).

If necessary adjust R2131 (V COLLIM. MAX. WRITE), to obtain equal "cloud" distribution over the whole display surface.

Keep R2131 as fas as possible counter clockwise, otherwise the c.r.t.'s deflection sensitivity will decrease (press ERASE button).

If necessary adjust R2124 ($\triangle V$ COLLIM) so, that the green surface just overlaps the display surface of the c.r.t. (equal background), especially in the corners and along the edge. No black centre.

If necessary repeat both points 3 and 4 for optimum results.

5. Save

- Depress button SAVE.
- The intensity of the display can be adjusted with R2149 (SAVE).
- Apply the signal on G₂'-2" of the c.r.t. to an oscilloscope.
 The duty cycle of the signal must be 10 % (for a save-time of 15 minutes).

6. Frequency

The frequency of the persist/storage control voltage depends on the position of **R2107** (FREQ.). Normally this pot, meter is in the mid-position.

Sometimes a ringing sound can be heard from the c.r.t. caused by resonance effects of the meshes.

This can be suppressed by readjusting R2107.

b. Writing speed

Abstract from specification Writing speed.

Normal:

 $0.2 \, \text{div}/\mu \text{s}$

Max. write:

2 div/μs

Required instrument:

- Sine-wave generator (2,5 kHz - 25 kHz, 1,6 V_{p-p})

1 Definition

The writing speed is the maximum speed of the electron beam in X- or Y-direction on the screen in single-shot mode in which the written line is visible.

The lines of the pictures obtained must be clearly visible in Normal, as well as in Max. write mode. Some divisions at the rim of the screen may be partly or entirely not written (the written surface of the screen must be as symmetrical as possible).

The number of not-written divisions may not be more than 16, viz. 20 % of the whole screen surface (not more than 4 in each screen-corner).

2. Checking

The writing speed is checked as follows:

- Depress button A of the vertical deflection switch.
- Depress button WRITE.
- Depress button MAIN TB of the horizontal deflection switch.
- Apply a 2,5 kHz sine-wave signal to the A input.
- MTB sweep 1 ms/DIV.
- Set PERSIST knob to minimum persistence.
- Centre the trace.
- With the input attenuator adjust the amplitude of the input signal in such a way that a picture height of 32 divisions (peak-to-peak) is obtained.

(To this end first set the input attenuator to position .2 V/DIV and adjust the picture-height to 8 divisions by varying the input signal; then set the input attenuator to position 50 mV/div.).

- Trigger and focus the picture obtained.
- Depress SINGLE button of the main time-base trigger switch.
- Set PERSIST knob to position maximum persistence (not MAX. WRITE).
- INTENS knob maximum.
- Push ERASE button (this resets also the main time-base).
- If necessary repeat and adjust the focussing*) to maximum.

For checking in Max. write mode the operation is the same but:

- Set PERSIST knob to position MAX. WRITE.
- Frequency of the input signal 25 kHz.
- Set main time-base switch to .1 ms/div.

3. Calculation

The vertical deflection is 32 divisions as mentioned under 2 above.

The path described by the electron beam is then 16 div. $\sin \omega t$ (ω being the circle frequency of the input signal).

The speed of the beam in the vertical direction is thus $16\omega\cos\omega t$ (the speed in horizontal direction is negligible).

For the visible part of the sine-wave, $\cos \omega t = 1$ may be assumed.

The writing speed is now (in Norm. writing mode):

 $16.2 \ \pi.2, 5.10^3 \ \text{div./s} = 2, 5.10^5 \ \text{div./s} = 0,25 \ \text{div./}\mu\text{s}.$

^{*)} In fact the electron beam should be focussed on the storage mesh layer to obtain optimum writing speed.

2. C.r.t. circuit

Introduction

All adjustment controls are located on the Z mod unit.

- Depress the WRITE button.
- PERSIST knob to minimum persistence (fully counter clockwise).
- No input signals.

Required instrument:

Oscilloscope (5 MHz).

a. Trace rotation

- Depress the A button of the vertical mode switch.
- Depress the AUTO button of the main time-base trigger mode.
- Adjust the TRACE ROTATION pot. meter (at the left-hand side of the cabinet) so, that the trace runs in parallel to the centre horizontal graticule line.

b. Astigmatism and Focus

Use an insulated screwdriver. High voltage on FOCUS preset-pot. meter !

- Apply a 6 divisions 10 kHz sine-wave signal to the A input.
- MAIN TB sweep knob to 50 μ s/DIV.
- Set the INTENS knob to medium intensity.
- Set the FOCUS knob for best sharpness of the displayed waveform.

If the operating range of the FOCUS knob is not correct:

- Set the FOCUS knob in its mid-position.
- Adjust R1338 (FOCUS) and R1341 (ASTIG) for a sharp trace.

c. Minimum Intensity Write-gun (just black)

- WRITE button depressed.
- Set the horizontal POSITION control such, that the start point of the trace is visible on the screen.
- Depress the SINGLE button of the MTB trigger mode selector.
- PERSIST knob in MAX. WRITE position.
- INTENS knob to minimum intensity (press ERASE button).
- Adjust R1329 (INT. MIN.) so that the spot is just not visible.

Check over a 10-seconds period at least. (after 1 or 2 minutes the spot may get visible).

d. Maximum Intensity (beam-current control)

- Connect an oscilloscope (10 V/DIV) to the testpoint on the Z-ampl. unit (near TS 1328).
- Depress the AUTO button of the mtb trigger mode switch.
- MTB sweep .1 ms/DIV.
- INTENS knob fully clockwise.
- PERSIST knob fully counter-clockwise.
- Depress the LINE button of the mtb trigger source selector.

The main time-base is now triggered by the line frequency (mains).

The pulse on the testpoint must now be 45 V_{p-p} (on +12 V level).

If necessary adjust R1386 (INT. MAX.).

- Depress the A button of the mtb trigger source selector.

The main time-base is now free running.

The pulse on the test point must now be 20...25 V_{p-p} on the 12 V level.

e. Intensity Ratio

- Depress the AUTO button of the mtb trigger mode switch.
- MTB sweep 1 ms/DIV.
- DTB sweep .2 ms/DIV.
- Check that the intensified part of the trace can well be distinguished from the rest of the trace, in the control range of the INTENS knob.

If necessary adjust R1115 (INTENS. RATIO).

The intensified part can be shifted with the DELAY TIME knob.

f. Z-pulse

- MTB sweep .05 μ s/DIV.
- DTB sweep in position OFF.
- Adjust horizontal POSITION knob so, that the start point of the trace is visible on the screen.
- The starting section of the trace must have same intensity as the rest of the trace (no intensity - under - or over-shoot).
 - If necessary adjust trimmer C1338 (Z-HF).
 - Check at various positions of the INTENS knob.

g. Barrel and cushion distortion

- Depress the A button of the vertical display mode switch.
- Depress the EXT X DEFL button of the horizontal display mode switch.
- Depress the B button of the TRIG or X DEFL switch of the main time-base.
- Depress both AC buttons of the input coupling switches.
- Apply a 100 kHz 8-div. sine-wave signal to A input.
- Apply a 50 Hz 10-div. sine-wave signal to the B input.
- Adjust both input attenuators to obtain a deflection of 7,4 x 9,4 divisions.
- The displayed rectangle must fit between the lines in indicated in Fig. 3.8. If necessary adjust R1344 (GEOM.).

Fig. 3.8. Barrel and cushion distortion

MA 9558

- Depress the 0 button of the A input coupling switch.
- Check whether the trace runs over the horizontal centre graticule line.
 If necessary adjust R18 (TRACE ROTATION) and/or R1359 (ORT).
- Depress the AC button of the A input coupling switch.
- Depress the 0 button of the B input coupling switch.
- Check whether the trace runs over the vertical centre graticule line.
 If necessary readjust R18(TRACE ROTATION).

Repeat if necessary.

h. R1390 (BEAM LIMIT). Only in older versions.

This pot. meter must be adjusted to 750 Ohm.

3. Input attenuator

Introduction

It is preferred to use the c.r.t. display in the MEMORY OFF mode (both SAVE and READ buttons depressed) for best observation of the display.

a. D.C. balance

No input signals.

- 1. 0-DC balance
- Step attenuator switch to 20 mV/DIV
 - Depress alternately the 0 and DC buttons of the input coupling switch.

The trace may not jump (max. 0,1 DIV).

If necessary adjust R129

2. Step attenuator balance

- Rotate the step attenuator between the 5 mV and 20 mV/DIV positions.

The trace may not jump (max. 0,1 DIV). If necessary adjust R12 BAL.

3. Variable gain balance

- Step attenuator switch to 5 mV/DIV,
- Rotate the variable gain knob.

The trace may not shift (max. 0,1 DIV). If necessary adjust R141 (DC OFFSET COMP).

b. A.C. compensation

Required instrument:

- Square-wave generator 120 mV_{p-p}.
- 1. 100 Hz square-wave compensation
 - Input signal 100 Hz square-wave.
 - Step attenuator switch to 20 mV/DIV.
 - Adjust input voltage to obtain 6 div's vertical deflection.
 - Main time-base sweep switch to 5 ms/DIV.

The pulse distortion must be as low as possible (2 % max.).

If necessary adjust R132 (L.F. GAIN).

- 2. 25 kHz square-wave compensation.
 - Input signal 25 kHz square-wave .
 - Step attenuator switch to 20 mV/DIV.
 - Adjust input voltage to obtain 6 div's vertical deflection.
 - Main time-base sweep 10 μ s/DIV.
 - The pulse distortion must be as low as possible (2 % max.). If necessary adjust **C122**.
- 3. For adjustment of input capacity and capacitive input attenuation refer to basic PM 3240 manual.

4. Intermediate amplifier and multiplier

Introduction

It is preferred to use the c.r.t. display in the MEMORY OFF mode (both SAVE and READ buttons depressed) for best observation of the display.

Note that during the checking of the multiplier circuits the OXA and OXB settings must be set for optimum zero-product compensation. Exact adjustment of the multiplier balance OXA and OXB settings is possible after adjustment of R338 (see point a).

a. D.C. balance

Required instruments:

- 1 V regulated d.c. voltage source.
- Sine-wave generator 1 kHz.

1. Multiplier zero balance

- Depress both MULT and B button of the vertical mode switch.
- Depress the 0 button of the A input coupling switch.
- Depress B input coupling AC switch.
- Apply a 1 kHz sine-wave signal to input B.
 - Set input attenuator B and the input voltage such that 6 DIV_{p-p} B deflection is obtained.
- Check that the zero product compensation lies symmetrically around the centre of the OXB control.

If necessary adjust R338 (+/-).

2. Multiplier balance OXA, OXB

The OXA and OXB controls are operated by pushing the POSITION knobs.

- Apply a 1 kHz sine-wave signal to both inputs A and B.
- Set both attenuators for a deflection of 6 divisions.
- Depress pushbutton MULT of the display-mode controls.
- Depress pushbutton 0 of the channel A signal coupling controls.
- Depress pushbutton AC of the channel B signal coupling controls.
- Minimize the deflection by means of the OXB potentiometer without changing the attenuator setting.
- Depress pushbutton AC of the channel A signal coupling controls.
- Depress pushbutton 0 of the channel B signal coupling controls.
- Minimize the deflection by means of the OXA potentiometer without changing the attenuator setting.

3. NORM/INVERT channel B.

- Depress the B button of the vertical display mode switch.
- Depress the 0 button of the B input coupling switch.
- Check that the trace on the display does not jump when the NORM/INVERT switch is operated.
 If necessary adjust pot. meter R2338 (+/-).

4. NORM/INVERT multiplier product.

If channel B is inverted also the product is inverted; here is how to adjust this product-norm/invert balance.

- Depress the 0 buttons of both input coupling switches.
- Check that the product-trace does not jump when the NORM/INVERT switch is operated.
 If necessary adjust R1912 (+/-).

5. Multiplier balance

If both Y channels input voltages are zero, also the multiplier product must be zero.

- Depress the 0 buttons of both input coupling switches.
- Depress alternating the A and the MULT button of the vertical display mode switch.
- Check the trace (A/MULT) does not jump.
 - If necessary adjust R1946 (BAL MULT).
- Check the signal at the A x B output of the rear.
 If necessary adjust the A x B BAL control.

6. Multiplier gain (scale factor)

- Depress the ALT button of the vertical display mode switch.
- Depress the DC button of the A input coupling switch.
- Apply the 1 V d.c. voltage to the A input.
- Set the A input attenuator to obtain a deflection of 1 division.
- Depress the AC button of the B input coupling switch.
- Apply a 1 kHz sine-wave signal to the B input
- Set the B input attenuator to obtain a deflection of 6 divisions.
- Depress the MULT button of the vertical mode switch.
- The multiplied signal must also show 6 divisions.

If necessary adjust R1931 (GAIN).

7. For adjustment of TRIG potmeters R362 and R2362 refer to basic PM 3240 manual.

b. H.F. compensation

General.

The intermediate amplifier of the -/03 version is different from the 01/ and /02 versions. At the /01 and /02 intermediate amplifier the h.f. compensation circuits are located on small p.c. boards; see Fig. 3.22 In the -/03 version the h.f. compensation circuits have been incorporated on the p.c. board itself; see Fig. 3.23.

First check whether the cause of an eventual signal distortion in the multiplier function is located in the A multipl. path, the B multipl. path, or in the multiplier-circuit itself.

- The main time-base sweep knob must be set for best possible observation of the pulse response, during the various frequency settings of the input signal.
- Depress the AC buttons (except at 1 kHz signals) of both input coupling switches, in order to remain within the dynamic range specifications.

When the d.c. voltages are applied (multiplier response) depress the relevant D.C. button.

Required instruments:

- 1 V regulated d.c. voltage source
- Pulse generator, rise time \leq 1 ns, with matched cable and cable-end termination.

Set the pulse generator to 120 mV_{p-p} output voltage.

1. Straight forward ch. A.

- Depress button A of the vertical display mode switch.
- Apply the hf test signal to the A input.
- Set the A attenuator for 6 divisions deflection.
- Check the displayed signal.

If necessary, adjust or select following components depending on the frequency of the input signal.

Fig. 3.9. H.F. compensation ch. A

C302 can be adjusted at 100 kHz...1 MHz.

2. Straight forward ch. B.

- Depress button B of the vertical mode switch.
- Apply the h.f. test signal to the B input.
- Set the B attenuator for 6 divisions delfection.
- Depress the NORM button of the B attenuator.
- Check the displayed signal.

If necessary, adjust or select following components depending on the frequency of the input signal.

Fig. 3.10. H.F. compensation ch. B

C2302 can be adjusted at 100 kHz - 1 MHz.

3. Straight-forward common A and B

Knob settings and test signals as under 1 or 2.

Check the displayed signal.

If necessary, adjust or select following components, at 1 MHz.

- C506 (22 pF)
- R514 4,99 ohm

4. A multiplier path

- Depress button ALT of the vertical display mode switch.
- Apply the h.f. test signal to the A input.
- Set the A attenuator for 6 divisions deflection.
- Apply the 1 V d.c. voltage to the B input.
- Set the B attenuator for 1 div. deflection.
- Depress the MULT button.
- Check the h.f. response of the displayed multiplied signal (the signal must be 6 div.'s p-p).

If necessary adjust or select following components depending on the frequency of the test signal.

Fig. 3.11. H.F. compensation A MULT

Pulse-top flatness at 30 kHz can be adjusted with

- R447 -
- C414 1 nF

5. B multiplier path

- Depress button ALT of the vertical display mode switch.
- Apply the 1 V d.c. voltage to the A input.
- Set the A attenuator for 1 div. deflection.
- Apply the h.f. test signal to the B input.
- Set the B attenuator for 6 div. deflection.
- Depress the MULT button.
- Check the h.f. response of the displayed multiplied signal (the signal must be 6 div.'s p-p).

C 2407	Sequence	Freq.	Item	Approx. value
© @ R2428	1	1 kHz	R2427 C2409	– 10 nF
C 2412	2	10 kHz	R2426 C2407	– 4,7 nF
C 2409 C 2411	3	100 kHz	R2428 C2411 C2412	 1522 pF
N. F. Daniel B. M. II. T.	4	1 MHz	C2408	33 pF

Fig. 3.12. H.F. compensation B MULT

Pulse-top flatness at 30 kHz can be adjusted with

- R2447
- C2414 1 nF

6. Multiplier common

Knob settings and test signals as under 4 or 5.

- Check the displayed multiplied signal at a frequency of 1 MHz.

If necessary adjust or select:

- R1927
- C1908 (22 pF)
- 7. Multiplier output h.f. response and gain.

Knob settings and test signals as under 4 or 5.

- Terminate the multiplier output at the rear panel with a 50 ohm termination.
- Check the multiplier output voltage with a wide-band oscilloscope.
 Set this oscilloscope to 50 mV/div. in order to obtain the same 6 div.'s p-p display as on the oscilloscope under test.
- If necessary adjust R2008, in order to obtain the exact output voltage.
- If necessary adjust or select following components depending on the frequency of the test signal.

^{*}in combination with: - C2011

c. In some earlier PM 3243 models, the h.f. response compensation p.c. board were different from those drawn in this checking and adjusting procedure.

Fig. 3.14 shows the old model p.c. boards. The sequence-numbers are identical.

Fig. 3.14. H.F. compensation units, older models

d. Bandwidth check

Required instruments:

- Constant-amplitude sine-wave generator 50 kHz 50 MHz
- 1 V regulated d.c. voltage source.
- 1. Straight-forward
 - Apply the sine-wave signal to the A-input.
 - A-input attenuator in position 0,1 V/div.
 - Adjust the signal amplitude in order to obtain 8 divisions deflection.
 Input frequency 50 kHz
 - Increase the frequency until the deflection is decreased to 5,6 divisions (-3 dB).
 - Repeat for the B channel.
- 2. Multiplier
 - Depress button ALT of the vertical display mode switch.
 - Apply the sine-wave signals to the A input, and set the A deflection as stated under 1.

- Apply the 1 V d.c. voltage to the B input.
 Set B deflection to 1 div.
- Depress button MULT.
- Increase the frequency until the deflection is decreased from 8 divisions to 5,6 divisions.
- Repeat with signals at inputs A and B interchanged.
- The multiplier output bandwidth can be checked similarly with a wide-band oscilloscope connected to the socket at the rear panel.

The output must be terminated with 50 ohm.

Fig. 3.14a. Location h.f. compensation circuits

3.5. PARTS LIST

MECHANICAL PARTS

For standard mechanical parts refer to the basic PM 3240 manual.

Complete units

Attenuator	5322 105 34044
Intermediate amplifier	5322 216 54159
Final Y-amplifier	5322 216 54161
Trigger source unit	5322 216 54163
Time-base with X-amplifier	5322 216 54157
Z-Amplifier	5322 216 54158
2 kV generator	5322 216 54156
High tension multipl. block	5322 218 64061
Var. pers./storage circuit	5322 216 54164
Auxiliary unit	5322 216 54162
Power supply unit	5322 216 54155

Various parts

Front side parts

	5322 414 24911	Red push-button
	5322 278 74007	Switch reset bar of push button switch assy's
_	5322 414 34136	Knob POSITION, 0 x BAL
_	5322 414 74019	Cover for this knob
	5322 455 84061	Test strip in carrying handle
_	5322 455 84059	Text plate, front
_	5322 480 34046	Contrast filter, grey
_	5322 480 34074	Contrast filter, blue

Internal parts

 	5322 462 54133 5322 462 54134 5322 535 74525 5322 535 74526	Magnetic shield of c.r.t., top half Magnetic shield of c.r.t., bottom half Isolating shaft, 400 mm Isolating shaft, 93 mm.
B1 T1802	5322 131 24041	Storage tube 89L14GH/55 Output transformer power supply unit

ELECTRICAL PARTS

TRANSISTORS

Туре	Stamp if SOT-23	Number in one instrument	Ordering code	Encapsulation
BC547	· —	6	5322 130 44257	TO-92 (2)
BC547C	_	2	5322 130 44503	TO-92 (2)
BC549	_	49	4822 130 40964	TO-92 (2)
BC549C	_	14	5322 130 44246	TO-92 (2)
BC557		6	5322 130 44256	TO-92 (2)
BC558		9	4822 130 40941	TO-92 (2)
BC559		21	4822 130 40963	TO-92 (2)
BCY71	_	2	5322 130 40373	TO-18
BD139	_	1	5322 130 40823	TO-126
BDY93/01	_	1	5322 130 44457	TO-3
BF199		6	5322 130 44154	TO-92(1)
BF324	_	17	5322 130 44396	TO-92(2)
BF336	_	2	4822 130 40908	TO-39
BF338	_	4	5322 130 44108	TO-39
BFR92R	P4	2	5322 130 44606	SOT-23
BFS17	E1	7	5322 130 40781	SOT-23
BFS17R	E4	6	5322 130 44338	SOT-23
BFT25R	V4	2	5322 130 44459	SOT-23
BFW44	_	4	5322 130 40672	TO-39
BFY90	_	9	5322 130 40493	TO-72(1)
BRY39	_	1	5322 130 40482	TO-72(3)
BSS38		4	4822 130 40968	TO-92(2)
BSW68	_	1	5322 130 40714	TO-39
BSX20	_	6	5322 130 40417	TO-18
BSX60		1	5322 130 44019	TO-39
BTX18/500		1	5322 130 24009	TO-39
CNY43	_	1	5322 130 44395	SOT-91B
FW5324	<u></u>	2	5322 130 40142	TO-72
FW5497	_	2	5322 130 40673	TO-72
ON471	MЗ	2	5322 130 44065	SOT-23
2N2894	_	2	5322 130 40018	TO-18
2N2894A		4	5322 130 44127	TO-18
537-BSY	В3	1	5322 130 44359	SOT-23
BU126	_	*	5322 130 44406	TO-3

^{*}Selected pair in power supply unit.

DIODES

Туре	Number in one instrument	Ordering code	
Small signal and	l rectifier diodes		
AAZ15	2	5322 130 30229	
AAZ17	2	5322 130 30283	
AAZ18	1	5322 130 30084	
BA182	3	5322 130 30644	
BAV21	10	4822 130 30842	
BAV45	2	5322 130 34037	
BAW62	64	5322 130 30613	
BAX12	2	5322 130 30424	
BR100	1	4822 130 20039	
BY206	23	4822 130 30839	
BY409	1	5322 130 34594	
BYX55/600	8	4822 130 30817	
B17(30) 000	Ü	1022 100 00017	
Voltage referen	ce and stabistor diodes		
BZX61/C36	1	5322 130 3 0 507	
BZX61/C47	1	5322 130 30565	
BZX61/C68	1	5322 130 30431	
BZX61/C75	1	5322 130 34034	
BZX75/C2V1	1	5322 130 34049	
BZX75/C2V8	3	5322 130 34048	
BZX79/B6V2	3	5322 130 34167	
BZX79/B7V5	3	4822 130 30861	
BZX79/B8V2	3	5322 130 34382	
BZX79/B27	1.	5322 130 34379	
BZX79/B62	2	5322 130 34384	
BZX79/C4V7	2	5322 130 30773	
BZX79/C5V1	1	5322 130 30767	
BZX79/C5V6	4	5322 130 34173	
BZX79/C10	1	5322 130 34297	
BZX79/C12	2	5322 130 34197	
BZX79/C12 BZX79/C16	1	5322 130 34068	
BZX79/C10 BZX79/C22	1	5322 130 30783	
BZY88/C3V3	1	5322 130 30763	
DE 1 00/03 V 3	1	3022 100 00002	
Light emitting o	diode		
CQY24A-1	2	5322 130 34595	

INTEGRATED CIRCUITS

Type	Number in one instrument	Ordering code	Encapsulation
Digital circuits			
N7400	1	5322 209 84528	DIL14p
N7426	1	5322 209 84512	DIL14p
N7472	1	5322 209 84166	DIL14p
FZH181	1	5322 209 84379	DIL14p
Op. Amp. circuits			
LM208T	2	5322 209 85475	Т
LM723CH	4	5322 209 84899	i
TCA220	1	5322 209 84386	DIL16p
709HC	1	5322 209 84452	Т
Various			
OQ002	13	5322 209 84355	_
OQ006	1	5322 209 84356	_
OQ012	3	5322 209 85484	DIL14p
Resistor pad-IC102	2	5322 111 94032	— ·

CAPACITORS

CAPACITORS					
ITEM	URDERING NUMBER	FARAD	TOL (%)	VOLTS	PEMARKS
¢ 101	5322 125 64009	3PF		500	TRIMMER
C 102	5322 125 64015	4,5 PF		500	TRIMMER
C 103	5372 123 34001	30PF	10	300	MICA
C 104	4822 121 40278	22NF	10	400	POLYESTER FOIL
C 105	4822 122 31047	5,6PF	0.25PF	100	CERAMIC PLATE
C 106	4822 122 31205	47PF	2	500	CERAMIC PLATE
C 107	5322 125 64012 5322 125 64015	1,5PF		400	TRIMMER
C 108 C 109	5322 125 64009	4,5 PF 3 PF		500 500	TRIMMER TRIMMER
Cili	5322 125 64015	4,5PF		500	TRIMMER
č îiż	5322 123 10168	300PF	io	300	MICA
C 113	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
¢ 114	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 116	4822 122 31173	220PF	2	500	CERAMIC PLATE
C 118	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 121	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 123	4822 122 30027	1NF	-20+80	. 40	CERAMIC PLATE
C 124	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 125	4822 122 30043	10NF	-20+80 -30+80	40	CERAMIC PLATE
C 128 C 129	4872 122 30043 4872 122 30043	10NF 10NF	=20+80 =20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 129 C 130	4822 122 30043	1011	-20+80	40	CERAMIC PLATE
C 301	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 302	5322 125 50051	18 PF		300	TRIMMER
¢ 303	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 3U4	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 366	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 307	4872 122 31054	lopf	2	100	CERAMIC PLATE
C 308	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 309	4822 122 30043	10115	=20+80	40	CERAMIC PLATE
C 311 C 312	4822 122 30043 4822 122 31054	10115	=20+80 2	40	CERAMIC PLATE
C 312 C 313	4822 122 30043	10PF 10NF	-20+80	100	CERAMIC PLATE
C 314	4822 122 30043	IONF	-20+80	40	
C 316	4622 122 30043	IONF	-20+80	40	CERAMIC PLATE CERAMIC PLATE
C 317	4822 122 31058	15PF	2	100	CERAMIC PLATE
C 318	4822 122 30128	4.711F	10	100	CERAMIC PLATE
C 319	5322 125 50051	18 PF	•	300	TRIMMER
0 321	4872 122 31061	18PF	2	100	CERAMIC PLATE
C 322	4822 122 30091	390PF	10	100	CERAMIC PLATE
C 323	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 324	4822 122 30045	27PF	2	100	CERAMIC PLATE
C 326	4822 122 30043	IONE	=20+80	40	CERAMIC PLATE
C 327 C 333	4872 122 30043	10NF 10NF	=20+80 =30+80	40	CERAMIC PLATE
C 333 C 334	4872 122 30043 4872 122 30043	10NF	=20+80 =20+80	40 40	CERAMIC PLATE CERAMIC PLATE
¢ 336	4872 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 406	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 407	4622 122 30048	1,8NF	10	100	CERAMIC PLATE
C 408	4872 122 30045	27PF	2	100	CERAMIC PLATE
C 409	4822 122 30128	4,711F	10	100	CERAMIC PLATE
C 411	5322 125 50051	18PF		300	TRIMMER
C 412	4822 122 31069	39PF	2	100	CERAMIC PLATE
C 413	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 414	4872 122 30055	330PF	10	100	CERAMIC PLATE
C 501	4872 122 30043	IONF	=20+80 =30+80	40	CERAMIC PLATE
C 503	4822 122 30043 4822 122 31054	10NF 10PF	=20+80 2	40 100	CERAMIC PLATE CERAMIC PLATE
C 506	4672 122 31067	33PF	2	100	CERAMIC PLATE
C 507	4872 122 31054	lopf	2	100	CERAMIC PLATE
C 508	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
Č 511	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 512	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 513	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 514	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
Ç 516	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC

ITEM	URDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
C 517	4872 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 518	4822 124 20467	15UF	-10+50	16	FLECTROLYTIC
C 519	4822 124 20467.	15UF	-10+50	16	ELECTROLYTIC
C 521	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 522	4822 124 20467	15UF	=10+50	16	ELECTROLYTIC
C 601	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 602	4822 122 30043 4822 125 50045	IONF	-20+80	40	CERAMIC PLATE
C 603	4822 125 50045 4822 122 31074	22 <i>PF</i> 56PF	2	100	TRIMMER CERAMIC PLATE
C 605	4872 122 31054	10PF	ž	100	CERAMIC PLATE
¢ 606	4822 125 50045	22PF	-	100	TRIMMER
C 607	4822 122 30103	22NF	-20+80	40	CERAMIC PLATE
C 608	4822 122 30027	1NF	10	100	CERAMIC PLATE
C 609	4822 122 31116	2,2NF	10	100	CERAMIC PLATE
C 614	4822 122 31054 4822 122 30043	10PF	- 30480	100	CERAMIC PLATE
C 618	4872 122 30043	10NF 10NF	=20+80 =20+80	.40 40	CERAMIC PLATE CERAMIC PLATE
C 613	4672 122 31054	10PF	2	100	CERAMIC PLATE
C 621	4872 122 31054	IOPF	2	100	CERAMIC PLATE
C 622	4622 122 30043	LOHE	-20+80	40	CERAMIC PLATE
C 623	4822 121 41161	IDONF	10	25 o	POLYESTER FOIL
C 624	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 626	4822 122 30043	lone	-20+80	40	CERAMIC PLATE
C 627 C 628	4822 122 30043 4822 122 30043	10NF 10NF	=20+80 =20+80	40	CERAMIC PLATE CERAMIC PLATE
C 628 C 629	4872 122 30043	10NF	-20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 631	4872 122 30043	TONE	-20+80	40	CERAMIC PLATE
C 632	4822 121 41161	IDONF	10	250	POLYESTER FOIL
C 633.	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 634	4822 122 30043	IONF	=20+80	40	CERAMIC PLATE
C 651	4672 122 30043 4622 122 30043	IONE	-20 ∔80	40	CERAMIC PLATE
C 652 C 653	4622 122 30043 4872 122 30043	10NF 10MF	=20+80 =20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 701	4872 122 31198	18PF	-2010	500	CERAMIC PLATE
C 702	4822 121 40146	IDONF	10	400	POLYESTER FOIL
C 763	4822 122 31202	33PF	2	500	CERAMIC PLATE
C 704	4872 122 30103	2211F	- 20+80	40	CERAMIC PLATE
C 706	4822 122 31038	2,7PF	0,25Pf	100	CERAMIC PLATE
C 707	4872 122 30043 4872 122 31177	10NF 470PF	-20+80	.40	CERAMIC PLATE
C 709	4872 122 31177	470PF	10 10	100 100	CERAMIC PLATE CERAMIC PLATE
Č 751	4822 122 31198	18PF	ž	500	CERAMIC PLATE
C 752	4822 121 40146	IOONF	10	400	POLYESTER FOIL
C 753	4872 122 31202	33PF	2	500	CERAMIC PLATE
C 756	4872 122 31038	2,7PF	0,25PF	100	CERAMIC PLATE
C 757 C 758	4872 122 30u43 4072 122 31177	10NF	- 20+80	40	CERAMIC PLATE
C 759	4822 122 31177	470PF 470PF	10 10	100 100	CERAMIC PLATE CERAMIC PLATE
C 761	4872 122 30103	22NF	-20+80	40	CERAMIC PLATE
C 702	4822 122 30103	22NF	-20+80	40	CERAMIC PLATE
C 801	4872 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 802	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 803	4622 122 30043 4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 804	4872 122 31036	10NF 2,2PF	-20+80 0•25PF	40	CERAMIC PLATE CERAMIC PLATE
C 806	4822 124 20467	15UF	-10+50	100 16	ELECTROLYTIC
C 807	4022 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 808	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 809	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 850	4822 122 30043 4822 124 20467	IONF	=20+80	40	CERAMIC PLATE
C 851 C 852	4822 124 20467	15UF 15UF	-10+50 -10+50	16 16	ELECTROLYTIC ELECTROLYTIC
C 853	4872 124 20467	15UF	-10+50 -10+50	16 16	ELECTROLYTIC ELECTROLYTIC
C 854	4872 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 855	4822 122 30043	IONF	-20+80	40	CERAMIC PLATE
C 856	4822 122 31061	18PF	2	100	CERAMIC PLATE
C 857	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 858	4872 124 20483 4872 122 30043	6,8UF	-10+50 -30+80	40	ELECTROLYTIC
U UJ	4015 TEE 90049	10NF	=20+80	40	CERAMIC PLATE

					•
ITEM	URDERING NUMBER	FARAD	TOL (%)	VOLTS	REMARKS
					222.4420.04.1.72
C 860	4822 122 31047	5,6PF	0+25PF	100	CERAMIC PLATE
C 801	4822 122 31061	18PF	2	100	CERAMIC PLATE
C 862	4822 122 30114	2,2NF	10	100	CERAMIC PLATE
C 863	4822 124 20459	22UF	-10+50	10	FLECTROLYTIC
C 854	4872 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 866	4822 121 50549	442PF	/	250	POLYSTYRENE FOIL
	5322 121 40224	4,7UF	10	100	POLYESTER FOIL
	4872 124 20467	15UF	-10+50	16	FLECTROLYTIC
C 868	5322 121 54108	47NF	1	63	POLYSTYRENE FOIL
C 869	5322 121 14072	330NF		35	BOX
C 871	4822 122 30034	470PF	10	100	CERAMIC PLATE
C 872		IONE	-20+80	40	CERAMIC PLATE
C 873		101F	-20+80	40	CERAMIC PLATE
C 874	4822 122 30043	22NF	-20+80	40	CERAMIC PLATE
C 876	4872 122 30103	15UF	-10+50	16	ELECTROLYTIC
C 878	4822 124 20467		-20+80	40	CERAMIC PLATE
C 879	4822 122 30043	IONF	-10+50	16	ELECTROLYTIC
C 881	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 882	4822 124 20467	15UF			ELECTROLYTIC
C 1001	4872 124 20467	15UF	-10+50	16	CERAMIC PLATE
C 1002	4822 122 30043	LONE	=20+80	40	CERAMIC PLATE
¢ 1003	4822 122 30043	10NF	-20+80	40	
C 1004	4822 122 30043	10NF	+20+80	40	CERAMIC PLATE
C 1005	4822 122 31036	2 . 2PF	0+25PF	100	CERAMIC PLATE
C 1000	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 1007	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC_
C 1008	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1009	4022 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1051	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
C 1052	4822 124 20467	15UF	-10+50	16	ELECTROLYTIC
¢ 1053	4822 124 20467	15UF	≈10+50	16	ELECTROLYTIC
C 1054	4822 124 20467	15ÚF	-10+50	16	ELECTROLYTIC
	4822 122 31061	18PF	2	100	CERAMIC PLATE
C 1050	4822 122 30043	IONE	≈20+80	40	CERAMIC PLATE
C 1057	4822 122 31061	18PF	2	100	CERAMIC PLATE
C 1058		442PF	7	250	POLYSTYRENE FUIL
C 1059	4822 121 50549 4822 122 31047	5,6PF	0+25PF	100	CERAMIC PLATE
C 1060	4012 121 24100	47NF	01-21	63	POLYSTYRENE FOIL
C 1061	5322 121 54108	470PF	10	100	CERAMIC PLATE
C 1062	4872 122 30034		-20+80	40	CERAMIC PLATE
C 1063	4822 122 30043	10NF		40	CERAMIC PLATE
C 1064	4872 122 30043	10NF	=20+80 10	100	POLYESTER FOIL
C 1065	5322 121 40224	4,7UF	-20+80		CERAMIC PLATE
C 1060	4822 122 30043	10NF		40	CERAMIC PLATE
C 1067	4822 122 30043	IONF	-20+80	40 40	CERAMIC PLATE
C 1068	4822 122 30043	10NF	=20+80	• •	
C 1069	4822 122 30043	IONF	=20+80	40	CERAMIC PLATE
C 1201	4622 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1202	4822 122 31034	1,8PF	0,25PF	100	CERAMIC PLATE
C 1203	4822 125 50077	5,5 PF		100	TRIMMER
C 1204	4822 122 31116	2 , 21 IF	10	500	CERAMIC PLATE
C 1205	4822 121 41161	IDONF	10	250	POLYESTER FOIL
C 1206	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1207	4872 121 41161	IOONF	10	250	POLYESTER FOIL
C 1208	4822 125 50077	5,5 PF	10	250	TRIMMER
C 1209	4622 122 31034	1,8PF	0,25PF	100	CERAMIC PLATE
C 1211	4872 122 31116	2,2NF	10	500	CERAMIC PLATE
C 1212	4872 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1213	4822 121 41161	IDONF	10	25 <i>0</i>	POLYESTER FOIL
C 1214	4822 121 41161	IDONF	10	250	POLYESTER FOIL
C 1216	4822 122 30043	10NF	-20+80	40	CERÁMIC PLATE
¢ 1301	4822 122 30128	4 . 7NF	10	100	CERAMIC PLATE
C 1302	4822 122 30098	3,9NF	ĩõ	100	CERAMIC PLATE
C 1302	4822 122 30098	3,9NF	io	100	CERAMIC PLATE
C 1303	4872 122 30128	4 , 7NF	10	100	CERAMIC PLATE
C 1305	4872 121 41134	IONF	10	250	POLYESTER FOIL
C 1305	4822 121 40253	INF	10	1600	POLYESTER FOIL
	4872 121 40253	INF	10	1600	POLYESTER FOIL
C 1307	4822 122 31081	100PF	.2	100	CERAMIC PLATE
	5322 122 54006	3,3NF	+20+50	зĸ	CERAMIC DISK
C 1309	SUCE TEE STOO	J 7 J 111		- ,,	- military # m = m = m = m = m = m = m = m = m = m

ITEM	URDERING NUMBER	FARAD	TOL (%)	VOLTS	PEMARKS
C 1310	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1311	5322 122 54004	47OPF	20	. 4K	CERAMIC DISK
C 1312	4822 121 40411	33NF	10	250	POLYESTER FOIL
C 1313	4822 122 31081	100PF	2	100	CERAMIC PLATE
C 1314	5322 122 54004	470PF	20	4 K	CERAMIC DISK
C 1315	4822 121 41134	IONF 3,3 NF	10	2,50	POLYESTER FOIL
C 1316 C 1317	4822 121 40357 4822 121 41134	IONF	10	1600	POLYESTER FOIL POLYESTER FOIL
C 1319	4872 122 30043	10NF	=20+80	250 40	CERAMIC PLATE
C 1321	4822 124 20452	33UF	-10+50	6,3	FLECTROLYTIC
C 1322	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 1323	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 1325	4822 122 30043	IONE	0	40	CERAMIC PLATE
C 1326	4872 124 20466	4,7UF	-10+50	16	ELECTROLYTIC
C 1327	4872 122 30043 4872 122 30043	10NF 10NF	=20+80 =20+80	-40 -40	CERAMIC PLATE CERAMIC PLATE
C 1328 C 1329	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1331	4822 121 41161	LOONE	10	250	POLYESTER FOIL
C 1332	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1333	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 1334	4822 122 30114	2,2NF	10	100	CERAMIC PLATE
C 1338	5322 125 50048	3,5°F	3.0	300	TRIMMER
C 1339	4822 122 30128 4822 121 41161	4,711F 100NF	10	100 250	CERAMIC PLATE
C 1341 C 1342	4822 121 41161 4822 122 31058	15PF	10	100	POLYESTER FOIL CERAMIC PLATE
C 1501	4872 124 20497	15UF	- 10+50	63	ELECTROLYTIC
C 1502	4822 121 41161	IDONF	10	250	POLYESTER FOIL
C 1503	4822 121 41161	100NF	10	250	POLYESTER FOIL
C 1504	4822 121 41161	IDONF	10	250	POLYESTER FOIL
C 1506	5322 122 54006	3,3NF	-2 0+50	, 3K	CERAMIC DISK
C 1507	4822 121 40363	IONF	10	1600	POLYESTER FOIL
C 1517	5322 122 54004	470PF	20 20	4K 4K	CERAMIC DISK CERAMIC DISK
C 1518 C 1519	5322 122 54004 5322 122 54004	470PF 470PF	20	4K	CERAMIC DISK
C 1521	5322 122 54004	470PF	žŏ	48	CERAMIC DISK
C 1522	5322 122 24001	600PF	20	θĶ	CERAMIC TUBULAR
C 1601	4822 122 30027	INF	10	100	CERAMIC PLATE
C 1602	4822 122 30094	220PF	10	100	CERAMIC PLATE
C 1603	4822 122 30053	680PF	10	100	CERAMIC PLATE
C 1604	4822 121 41161	JOONE	10	250	POLYESTER FOIL
C 1606 C 1608	4822 122 30043 4822 122 30043	10NF 10NF	=20+80 =20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 1608 C 1609	4822 122 30043	10NF	=20+80	40	CERAMIC PLATE
C 1621	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 1622	4822 122 30043	IONF	-20+80	40	CERAMIC PLATE
C 1623	4822 122 31081	100PF	2	100	CERAMIC PLATE
C 1624	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 1626	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 1627 C 1642	4822 122 30103 4822 122 30043	22NF 10NF	≈20+80 ≈20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 1642 C 1643	4822 122 31081	100PF	20400	100	CEPAMIC PLATE
C 1644	4822 122 30043	IONF	-20+80	40	CERAMIC PLATE
C 1646	4822 122 30043	IONF	-20+80	40	CERAMIC PLATE
C 1647	4822 122 30103	22NF	-20+80	40	CERAMIC PLATE
C 1801	5322 121 44142	220NF	10	250	POLYESTER FOIL
C 1802	5322 122 44009	2,2NF	20	25 0	CERAMIC DISK
C 1803	5322 122 44009	2 , 2NF	20	250 250	CERAMIC DISK
C 1804 C 1805	5322 121 44142 4822 121 40427	22011F 220NF	10	250 100	POLYESTER FOIL POLYESTER FOIL
C 1805 C 1806	4822 124 40066	2 x 50 U F	10	400	ELECTROLYTIC
¢ 1807	4822 124 40066	2x 50UF		400	FLECTROLYTIC
C 1808	4822 124 20462	100UF	-10+50	10	FLECTROLYTIC
C 1809	5322 124 24153	220UF		100	ELECTROLYTIC
Ç 1810	4822 124 20581	220UF	-10+50	4	FLECTROLYTIC
C 1811	4822 121 40239	47NF	10	100	POLYESTER FOIL
C 1812	4822 124 20581	220UF	=10+50	100	FLECTROLYTIC
C 1813 C 1814	4822 122 31173 4822 124 20467	220PF 15UF	10 -10+50	100 16	CERAMIC PLATE ELECTROLYTIC
C 1814	4055 154 50401	1701	-10430	10	PERMITTED IN

ITEM	URDERING NUMBER	FARAD	for (%)	VOLTS	REMARKS
C 1815	4822 121 40208	IUF	10	250	POLYESTER FOIL
C 1816	4872 121 40104	15 ONF	10 10	250	POLYESTER FOIL POLYESTER FOIL
C 1817	4822 121 40452 4822 124 20483	1,5 UF 6,8UF	-10+50	100 40	FLECTROLYTIC
C 1818	4822 124 20483 4822 121 41169	220NF	10	250	POLYESTER FOIL
C 1819 C 1820	4822 122 31175	111F	10	100	CERAMIC PLATE
C 1821	4822 121 40407	22NF	10	250	POLYESTER FOIL
C 1822	4872 121 41169	1,5UF 100NF	10	100	POLYESTER FOIL
C 1823	4822 121 41161	330UF	= 10+50	250 10	POLYESTER FOIL ELECTROLYTIC
C 1824 C 1825	4822 124 20465 5322 122 54006	3,3NF	-20+50	3K	CERAMIC DISK
C 1820	4822 121 41161	100NF	10	250	POLYESTER FOIL
C 1827	4872 121 41161	IDONE	10	250	POLYESTER FOIL
C 1828	4822 121 41161	IDONF	10	250 250	POLYESTER FOIL POLYESTER FOIL
C 1829 C 1830	4822 121 41161 4822 121 40104	ISONF	10	250	POLYESTER FOIL
C 1830 C 1831	4822 124 20497	15UF	-10+50	63	FLECTROLYTIC
C 1832	4822 124 20497	15UF	-10+50	63	ELECTROLYTIC
C 1833	4822 124 20488	100UF 33UF	=10+50 =10+50	40 40	ELECTROLYTIC ELECTROLYTIC
C 1834 C 1835	4822 124 20485 4822 121 40239	47NF	10	250	POLYESTER FOIL
C 1835 C 1836	4872 124 20488	100UF	-10+50	40	ELECTROLYTIC
C 1837	4822 124 20485	33UF	-10+50	40	ELECTROLYTIC
C 1838	4822 124 20469	68UF	-10+50	16	ELECTROLYTIC ELECTROLYTIC
C 1839	4822 124 20469 4822 121 41161	68UF 100NF	-10+50 10	16 250	POLYESTER FOIL
C 1840 C 1841	4822 121 41161 4822 124 20469	68UF	-10+50	16	ELECTROLYTIC
C 1842	4822 124 20469	68UF	-10+50	16	ELECTROLYTIC
C 1843	4822 124 20454	150UF	≈10+50	6+3	ELECTROLYTIC
C 1844	4872 124 20454	150UF 33NF	-10+50 <i>10</i>	613 400	ELECTROLYTIC POLYESTER FOIL
C 1845 C 1846	4822 121 40411 4822 124 20454	150UF	-10+50	6.3	ELECTROLYTIC
C 1847	4822 124 20454	150UF	-10+50	613	ELECTROLYTIC
C 1849	4022 122 31177	470PF	10	500	CERAMIC PLATE
C 1851	4872 122 30128	4,7NF 10NF	10	100 250	CERAMIC PLATE POLYESTER FOIL
C 1881 C 1901	4822 121 41134 4822 122 30043	lotif	-20+80	40	CERAMIC PLATE
C 1902	4822 122 30043	LONF	-20+80	40	CERAMIC PLATE
C 1903	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 1904	4872 122 30043	10NF	=20+80 =20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 1906 C 1907	4822 122 30043 4822 122 30043	10NF 10NF	=20+80	40	CERAMIC PLATE
¢ 1908	4872 122 31063	22PF	2	100	CERAMIC PLATE
C 1909	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 1916	4872 122 31054	10PF	-20+80	100 40	CERAMIC PLATE CERAMIC PLATE
C 1917 C 1918	4822 122 30043 4822 122 30043	1011F 1011F	=20+80	40	CERAMIC PLATE
C 1918 C 1919	4822 122 30043	10115	-20+80	40	CERAMIC PLATE
C 1921	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 1922	4822 122 30043	lotif	=20+80 20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 1923 C 1924	4822 122 30043 4822 122 31054	10HF 10PF	=20+80 2	100	CERAMIC PLATE
C 1924 C 1926	4822 122 31054	10PF	ž	100	CERAMIC PLATE
C 1927	4872 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 1928	4872 122 30043	10NF	=20+80	40	CERAMIC PLATE CERAMIC PLATE
C 1929 C 2002	4822 122 30043 5322 125 50051	10NF 18PF	-20+80	40	TRIMMER
C 2002	4822 122 31054	IOPF	2	100	CERAMIC PLATE
C 2608	4822 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 2012	4822 122 31054	lopf	2	100	CERAMIC PLATE CERAMIC PLATE
C 2013	4822 122 30043 4822 122 30043	10NF	=20+80 =20+80	40 40	CERAMIC PLATE
C 2014 C 2016	4822 122 30043	10HF	=20+80	40	CERAMIC PLATE
C 5101	5322 124 20377	68UF	-10+50	16	ELECTROLYTIC
C 2102	4822 121 40239	47NE	10	250	POLYESTER FOIL
C 2103	4822 121 41134 5322 121 40197	16NF	10	250 100	POLYESTER FOIL POLYESTER FOIL
C 2104 C 2105	4822 124 20466	4,7UF	-10+50	16	ELECTROLYTIC
C 2106	4822 122 30103	22NF	-20+80	40	CERAMIC PLATE

ITEM	ORDERING NUMBER	FARAD	TOL (%)	VOLTS	PEMARKS
C 2107	4822 121 40257	330NF	10	iDo	POLYESTER FOIL
C 2109	4822 121 41161	470PF	10	100	POLYESTER FUIL
C 2111	4822 122 31165	330PF	10	100	CERAMIC PLATE
C 2112	4822 121 40239	47NF	10	250	POLYESTER FOIL
C 2113	4822 121 40239	47NF	10	250	POLYESTER FOIL
C 2114	4822 121 40239	47 N.F.	10	250	POLYESTER FOIL
C 2116	4822 121 40239	44 NF	10	250	POLYESTER FOIL
C 2117	4822 121 40239	47NF	10	250	POLYESTER FOIL
C 2119	4872 122 30043	LONE	-20+80	40	CERAMIC PLATE
C 2120	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 2121	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2122	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 2201	4822 124 20467	15UF	=10+50 10	16	ELECTROLYTIC
C 2202	5322 121 40233 4822 121 50611	bbonf 20NF	,,,	100	POLYESTER FOIL POLYSTYRENE FOIL
C 2203	4822 121 50611 4822 124 20467	15UF	-10+50	<i>6</i> 3 16	ELECTROLYTIC
C 2204	4822 122 30103	22NF	-20+80	40	CERAMIC PLATE
C 2206	4822 122 30043	10HF	-20+80	40	CERAMIC PLATE
C 2301 C 2302	5322 125 50051	18PF		300	TRIMMER
C 2303	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 2304	4822 122 30043	IONF	=20+80	40	CERAMIC PLATE
C 2306	4822 122 30043	LONF	-20+80	40	CERAMIC PLATE
C 2307	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 2308	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 2309	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2311	4822 122 30043	1011	-20+80	40	CERAMIC PLATE
C 2312	4822 122 31054	10PF	2	100	CERAMIC PLATE
C 2313	4822 122 30043	IONF	=20+80	40 40	CERAMIC PLATE CERAMIC PLATE
C 2314	4822 122 30043 4822 122 30043	10NF 10NF	≈20+80 ≈20+80	40	CERAMIC PLATE
C 2316	4822 122 30043 4822 122 31058	15PF	2	100	CERAMIC PLATE
C 2317 C 2318	4822 122 30128	4,7NF	10	100	CERAMIC PLATE
C 2319	5322 125 50051	IBPF	• •	300	TRIMMER
C 2321	4822 122 31061	18PF	2	100	CERAMIC PLATE
C 2322	4822 122 30091	390PF	10	100	CERAMIC PLATE
C 2323	4822 122 30043	10NF	-20+80	40	CERAMIC PLATE
C 2324	4822 122 30045	27PF	2	100	CERAMIC PLATE
C 2328	4822 122 30043	10NF	=20+80	40	CERAMIC PLATE
C 2329	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2331	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2332	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2333	4822 122 30043	LONE	=20+80	40	CERAMIC PLATE
C 2334	4822 122 30043	lone	-20+80	40	CERAMIC PLATE
C 2336	4822 122 30043	10NF	=20+80 =30+80	40	CERAMIC PLATE
C 2406	4822 122 30043	10MF 1.8MF	≈20+80	40	CERAMIC PLATE
C 2407 C 2408	4822 122 30048 4822 122 30045	27PF	10 2	100 100	CERAMIC PLATE CERAMIC PLATE
C 2408 C 2409	4822 122 30128	4,7NF	10	100	CERAMIC PLATE
C 2411	5322 125 50051	1885	• •	300	TRIMMER
C 2412	4872 122 31069	39PF	2	100	CERAMIC PLATE
C 2413	4822 122 30043	IONE	-20+80	40	CERAMIC PLATE
C 2414	4822 122 30055	330PF	10	100	CERAMIC PLATE
					· •

RESISTORS

RESISTORS					
ITEM	UR DERING NUMBER	DHM	TCL (%)	TYPE	REMARKS
Ri	5322 103 64016	5K	5	ZW	WIRE-WOUND POTENTIOMETER
R 2	5322 101 44015	50K	20	CP16	CARBON POTM LIN + SWITCH
R 3	5322 101 44026	2×500	20	0,3W	CARBON POTM LIN + SWITCH
R 5	5322 101 44026	2×500	20	0,3W	CARBON POTM LIN + SWITCH
R 7	5322 101 44014	100K	20	CP16,	CARBON POTM LIN + SWITCH
R 8	5322 101 44014	100K	20	CP16	CARBON POTM LIN + SWITCH
R 9	5322 101 54006	10K	20	0.1W	CARBON POTM LOG + SWITCH
R 10	5322 101 40041	4+7K	20	0.25W	CARBON POTM LIN + SWITCH
R 11	5322 101 40041	4,7K	20	0.25W	CARBON POTM LIN + SWITCH CARBON POTM LIN
R 12	5322 101 24099	10K 47K	20 20	0.1W 0.1W	CARBON POTM LOG
R 13	5372 101 34016	25K	20	CPIB	CARBON POTM LIN
R 14	5322 101 24055 5322 101 44027	10K	20	0.1W	CARBON POTM LIN + SWITCH
R 15 R 16	5372 101 24113	16	20	0.1%	CARBON POTM LIN
R 17	5322 101 24112	47K	20	0.1W	CARBON POTM LIN
R 18	4872 101 20455	ik	20	0.1W	CARBON POTM LIN
R 101	5322 116 64048	56	5	0.125W	METAL OXIDE
R 102	5322 116 55021	920K	0 • 25	m R 30	METAL FILM
R 103	5322 116 64052	39	5	0.125W	METAL OXIDE
R 104	5322 116 55067	88,9K	0+25	MR24C	METAL FILM
R 106	5322 116 64046	51	5	0.125W	METAL OXIDE
R 107	5322 116 54892	200K	0+25	mR25	METAL FILM
R 108	5322 116 64045	10	5	0.125W	METAL DXIDE
R 109	5322 116 64047	560	5	0.125W	METAL OXIDE
R 111	5322 116 64047	560	5	0.125W	METAL OXIDE
R 112	5322 116 64648	56	5	0.125W	METAL OXIDE
R 113	5322 116 55022	992K	0+25	mR30	METAL FILM
R 114	5322 116 64049	47	5	0.125W	METAL OXIDE
R 116	5322 116 55066	8 y 08K	0 + 25	MR24C	METAL FILM
R 117	5322 116 64051	15	5	0.125W	METAL OXIDE
R 318	5322 116 64051	15	5	0.125W	METAL OXIDE
R 119	5.322 111 30376	1004	5	0.125W	CARBON
R 121	5322 116 50484	4+64K	1	MR25	METAL FILM
R 122	5372 116 54012	6+81K	1	MR25	METAL FILM
R 123	5372 116 54519	402	1	MR25	METAL FILM
R 124	5322 116 54208	210K	1	MR25	METAL FILM
R 126	5322 116 54774	590K	1	MR30	METAL FILM
R 127	5322 116 54038	221K	1	MR25	METAL FILM
R 128	4822 110 42214	104	5	VR37	CARBON
R 129	5322 100 10143	1K	20	0.75W	TRIMMING POTM
R 131	5322 116 54208	210K	_1	MR25	METAL FILM
R 132	5322 100 10141	10K	20	0 · 75 W	TRIMMING POTM
R 133	5322 116 54689	82,5K	1	MR 25	METAL FILM
R 134	4822 110 42227	33M	5	VR37	CARBON
R 139	5322 116 50672	51+1K	1	MR25	METAL FILM
R 141	5322 100 10141	10K	20	0+754	TRIMMING POTM
R 148	5322 116 50592	442	1	MR25	METAL FILM
R 149	5322 116 50592	442	1	MR25	METAL FILM
R 301	5322 116 50524 5322 116 54508	3,01K	;	MR25 MR25	METAL FILM METAL FILM
R 302	4822 111 30067	33		CR16	CARBON
R 303	5322 116 50524	3,01K	1	MR25	METAL FILM
R 304	4822 111 30347	10	Š	CR16	CARBON
R 306	5322 116 50492	46,4	í	MR25	METAL FILM
R 307	5322 116 54464	86+6	i	MR25	METAL FILM
R 308 R 309	5372 116 34636	47	5	0.5W	NTC
R 311	5322 116 50492	46.4	1	MR25	METAL FILM
. R 312	5322 116 50568	4,99	i	MR25	METAL FILM
R 313	5322 116 54464	86,6	i	MR25	METAL FILM
R 314	4872 111 30347	10	5	CR16	CARBON
R 316	4822 111 30067	33	5	CR16	CARBON
R 317	5322 116 50515	1,78K	í	MR25	METAL FILM
R 319	5322 116 54005	3,32K	i	MR25	METAL FILM
R 322	5322 116 50452	10	i	MR25	METAL FILM
R 323	5322 116 50571	715	i	MR25	METAL FILM
R 324	4822 111 30245	47	5	CR16	CARBON
		• •	-		

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 326 R 327	4822 111 30067 4822 111 30067	33 33	5 5	CR16 CR16 MR25	CARBON CARBON METAL FILM
R 328 R 329	5322 116 54576 5322 116 54587	2+37K 3+65K	1	MR 25	METAL FILM
R 331	4822 111 30067	33	5	CR16	CARBON
R 332	4822 111 30067	33	5	CR16	CARBON
R 333	5322 116 50571	715	1	MR25	METAL FILM
R 334	4822 111 30245	47	5	CR16 MR25	CARBON METAL FILM
R 336 R 337	5322 116 50452 5322 116 50442	10 48+7K	1 1	MR25	METAL FILM
R 337 R 338	5322 100 10113	10K	20	0,5W	TRIMMING POTM
R 339	4822 111 30067	33	5	CR16	CARBON
R 341	5322 116 54492	178	1	MR 25	METAL FILM
R 342	4822 110 63067	33	5	CR25 CR16	CARBON CARBON
R 343 R 344	4822 111 30067 5322 116 54492	33 178	5 1	MR 25	METAL FILM
R 346	4822 110 63067	33	5	CR25	CARBON
R 347	5322 116 54515	348	1	MR 25	METAL FILM
R 348	5322 116 54005	3+32K	1	MR25	METAL FILM
R 349	4822 111 30067	33 8,66K	5 1	CR16 MR25	CARBON METAL FILM
R 351 R 352	5322 116 54613 5322 116 50926	40,2	i	MR 25	METAL FILM
R 353	5322 116 50926	40,2	i	MR25	METAL FILM
R 354	5322 116 50556	4,42K	1	MR25	METAL FILM
R 356	5322 100 10143	1K	20	0+754	TRIMMING POTM
R 357	5322 116 54589 5322 116 54519	3,83K 402	1	MR25 MR25	METAL FILM METAL FILM
R 358 R 359	5322 116 54012	6,81K	î	MR25	METAL FILM
R 361	5322 116 50483	38.3K	ī	MR25	METAL FILM
R 362	5322 101 14048	47K	20	0 + 5 W	TRIMMING POTM
R 363	4822 111 30067	33	5	CR16	CARBON METAL ETIM
R 364 R 366	5322 116 50481 4822 111 30324	22,6K 100	1 5	MR25 CR16	METAL FILM CARBON
R 366 R 367	5322 116 50452	10	ĺ	MR25	METAL FILM
R 368	5322 116 50926	40+2	1	MR.25	METAL FILM
R 369	5322 116 50926	4012	1	MR 25	METAL FILM
R 371	4822 111 30324	100	5 1	CR16 MR25	CARBON METAL FILM
R 372 R 381	5322 116 50527 4822 111 30067	33+2 33	5	CR16	CARBON
R 382	5322 116 54513	332	1	MR 25	METAL FILM
R 383	4822 111 30067	33	5	CR16	CARBON
R 384	5322 116 50555	1+27K	1	MR25 MR25	METAL FILM METAL FILM
R 386	5322 116 54592 5322 116 50515	4+02K 1+78K	i	MR 25	METAL FILM
R 387 R 388	5322 116 50581	2,49K	ī	MR25	METAL FILM
R 389	4822 111 30067	3 3	5	C R16	CARBON
R 391	4822 111 30067	33	5	CR16 CR16	CARBON CARBON
R 392	4822 111 30067 5322 116 54469	33 100	5 1	MR 25	METAL FILM
R 393 R 394	4822 111 30067	33	5	CR16	CARBON
R 397	5322 116 54469	100	1	MR25	METAL FILM
R 398	5322 116 50621	536	1	MR25 CR16	METAL FILM
R 399	4822 111 30067 5322 116 50524	33 3,01K	5 1	MR 25	METAL FILM
R 401 R 402	5322 116 54613	8,66K	î	MR25	METAL FILM
R 403	4822 111 30067	33	5 1	CR16	CARBON
R 404	5322 116 54469	100		MR 25	METAL FILM CARBON
R 413	4822 111 30324 4822 111 30324	100 100		CR16 CR16	CARBON
R 414 R 416	4822 111 30067	33	5 5 5	CR16	CARBON
R 417	5322 116 54536	750	1 .	MR 25	METAL FILM
R 418	5322 116 54536	750	1	MR 25	METAL FILM
R 419	5322 116 54005	3+32K	1	MR 25	METAL FILM CARBON
R 421	4822 111 30067 5322 116 54608	33 7,5K	5 1	CR16 MR25	METAL FILM
R 422 R 423	5322 116 50492	4614	i	MR 25	METAL FILM
R 424	5322 116 50492	46+4	1	MR25	METAL FILM
R 426	5322 116 50675	2,26K	1	MR 25	METAL FILM TRIMMING POTM
R 428	5322 100 10143	1K	20	0+75W	tefautho soin

ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	PEMARKS
R 429	5322 116 50676	196	1	MR25	METAL FILM
R 431 R 432	5322 116 50676 4822 111 30067	196 33	1 5	MR25 CR16	METAL FILM CARBON
R 433	4822 111 30067	33	5	CR16	CARBON
R 434	5372 116 54536	750	1	MR 25	METAL FILM
R 436 R 437	5322 116 54536 5322 116 54005	750 3,32K	1 1	MR25 MR25	METAL FILM METAL FILM
R 438	4822 111 30067	33	5	CR16	CARBON
R 439 R 441	5322 116 54608 5322 116 54561	7,5K 1,33K	1	MR25 MR25	METAL FILM METAL FILM
R 442	5322 116 54504	274	i	MR25	METAL FILM
R 444 R 446	5322 116 54462 5322 116 54504	82+5 274	1	MR25	METAL FILM
R 447	5322 116 50581	2,49K	1	MR25 MR25	METAL FILM METAL FILM
R 448	5322 116 54561	1,33K	<u>i</u>	MR 25	METAL FILM
R 449 R 5ul	4822 111 30067 5322 116 54442	. 33 51+1	5	CR16 MR25	CARBON METAL FILM
R 502	5322 116 54502	261	i	MR25	METAL FILM
R 503	5322 116 50452 5322 116 50925	10	1	MR25	METAL FILM
R 504 R 506	5322 116 50925 5322 116 54502	15•4 261	1	MR25 MR25	METAL FILM METAL FILM
R 507	5322 116 54442	51.1	ī	MR25	METAL FILM
R 508 R 509	5322 116 54492 5322 116 54492	178 178	1	MR25 MR25	METAL FILM METAL FILM
R 511	4822 111 30067	33	5	CR16	CARBON
R 512	4872 111 30245	47	5	CR16	CARBON
R 513 R 514	4822 111 30067 5322 116 50568	33 4,99	5 1	CR16 MR25	CARBON METAL FILM
R 516	5322 116 51052	4212	1	MR 25	METAL FILM
R 517 R 518	5322 116 51052 4822 111 30067	42+2 33	1 5	MR25 CR16	METAL FILM CARBON
R 519	4822 111 30245	47	5	CR16	CARBON
R 521	5322 116 54561 5322 116 54561	1,33K	1	MR25	METAL FILM
R 522 R 523	5322 116 54561 4822 111 30067	1+33K 33	1 5	MR25 CR16	METAL FILM CAPBON
R 524	5322 116 54469	100	1	MR25	METAL FILM
R 531 R 532	5322 116 54128 5322 116 50568	5+62 4+99	1	MR25 MR25	METAL FILM METAL FILM
R 533	5322 116 54258	9,53	i	MR 25	METAL FILM
R 534	5322 116 50568	4,99	1	MR 25	METAL FILM
R 536 R 538	5322 116 54258 5322 116 54258	9153 9153	1	MR25 MR25	METAL FILM METAL FILM
R 539	5322 116 54258	9,53	1	MR25	METAL FILM
R 541 R 542	5322 116 54431 5322 116 51051	16+2 8+66	1	MR25 MR25	METAL FILM METAL FILM
R 543	5322 116 51051	8,66	î	MR 25	METAL FILM
R 601	5322 116 50926	40+2	. 1	MR 25 MR 25	METAL FILM
R 602 R 603	5322 116 54506 4822 111 30067	287 33	1 5	CR16	METAL FILM CARBON
R 604	5322 116 54492	178	1	MR25	METAL FILM
R 606 R 607	5322 116 50676 5322 116 54519	196 402	1 1	MR25 MR25	METAL FILM METAL FILM
R 608	4822 111 30067	33	- 5	CR16	CARBON
R 609	5322 116 54492 5322 116 50524	178	1	MR25 MR25	METAL FILM
R 610 R 611	5322 116 50926	3+01K 40+2	1 1	MR 25	METAL FILM METAL FILM
R 612	5322 116 54506	287	1	MR25	METAL FILM
R 613 R 614	5322 116 50506 4822 111 30067	154 33	1 5	MR25 CR16	METAL FILM CARBON
R 615	5322 116 50524	3,01K	1	MR25	METAL FILM
R 616	5322 116 54444 4822 111 30067	53,4 33	1	MR25 CR16	METAL FILM CARBON
R 617 R 618	5322 116 54444	53+6	5 1	MR 25	METAL FILM
R 619	5322 101 14011	100	20	0.5H	TRIMMING PUTM
R 621 R 622	5322 100 10114 5322 100 10113	4,7K 10K	20 20	0.5W 0.5W	TRIMMING POTM TRIMMING POTM
R 623	5322 116 54613	8,66K	1	MR 25	METAL FILM
R 624 R 627	5322 116 54619 4822 111 30245	10K 47	1 5	MR25 CR16	METAL FILM CARBON
	THE SAS WINDS	7 ₽	-	01.30	A Late Maria

ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	PEMARKS
R 628 R 629 R 630	4822 111 30067 5322 116 54608 4822 111 30067	33 7+5K 33	5 1 5	CR16 MR25 CR16	CARBON METAL FILM CARBON
R 631 R 632 R 633	5322 116 50556 4822 111 30245 4822 111 30067	4,42K 47 33	1 5 5	MR25 CR16 CR16	METAL FILM CARBON CARBON
R 634 R 636	4822 111 30067 4822 111 30067	33 33	5 5	CR16 CR16	CARBON CARBON
R 637 R 638 R 639	5322 116 50457 5322 116 50669 5322 116 54451	215 205 61,9	1 1 1	MR25 MR25 MR25	METAL FILM METAL FILM METAL FILM
R 641 R 642	5322 101 14047 5322 116 50457	470 215	20 1	0+5W MR25	TRIMMING POTM THE METAL FILM
R 644 R 646 R 647	5372 116 50669 5372 116 54451 4872 111 30067	205 61+9 33	1 1 5	MR25 MR25 CR16	METAL FILM METAL FILM CARBON
R 648 R 649	4822 111 30245 5322 116 50515	47 1,78K	5 1	CR16 MR25	CARBON METAL FILM
R 650 R 651	5322 116 54615 5322 116 54585 5322 116 50474	9+09K 3+48K 42+2K	1 1 1	MR25 MR25 MR25	METAL FILM METAL FILM METAL FILM
R 652 R 653 R 654	5322 116 50417 5322 116 54011	162 5+62K	i 1	MR 25 MR 25	METAL FILM METAL FILM
R 655 R 656	5322 116 50904 5322 116 54557	30+1 1+21K	1	MR25 MR25 MR25	METAL FILM METAL FILM
R 657 R 658 R 659	5322 116 50579 5322 116 54516 4822 111 30067	3,16K 365 33	1 1 5	MR25 MR25 CR16	METAL FILM METAL FILM CARBON
R 660 R 661	5322 116 54516 5322 116 50509	365 4,87K	1	MR 25 MR 25	METAL FILM METAL FILM
R 662 R 663 R 664	5322 116 50579 5322 116 54012 5322 116 54557	3+16K 6+81K 1+21K	1 1 1	MR 25 MR 25 MR 25	METAL FILM METAL FILM METAL FILM
R 665 R 666	5322 116 54615 5322 116 54011	9:09K 5:62K	1	MR25 MR25	METAL FILM METAL FILM CARBON
R 667 R 668 R 669	4822 111 30245 5322 116 50515 5322 116 54585	47 1,78K 3,48K	5 1 1	CR16 MR25 MR25	METAL FILM METAL FILM
R 671 R 672	5322 116 50474 5322 116 50417	42+2K 162 4+99	1 1 1	MR25 MR25 MR25	METAL FILM METAL FILM METAL FILM
R 681 R 682 R 683	5322 116 50568 5322 116 50568 5322 116 50568	4,99 4,99	1 1	MR25 MR25	METAL FILM METAL FILM
R 684 R 700	5322 101 20408 5322 101 14069	100K 22K	20 20	0.1W 0.5W	CARBON POTM LIN TRIMMING POTM METAL FILM
R 701 R 702 R 703	5322 116 50527 5322 116 54263 5322 116 54549	33+2 681K 1K	1 1 1	MR 25 MR 30 MR 25	METAL FILM METAL FILM
R 704 R 705	5322 116 54549 5322 116 54595	1K 5+11K	1	MR 25 MR 25	METAL FILM METAL FILM
R 706 R 707 R 708	5322 116 54743 5322 116 50527 5322 116 50527	301K 33+2 33+2	1 1 1	MR 25 MR 25 MR 25	METAL FILM METAL FILM METAL FILM
R 709 R 710	5322 116 50527 5322 116 54038	33,2 221K	1	MR 25 MR 25	METAL FILM METAL FILM METAL FILM
R 711 R 712 R 713	5322 116 50491 5322 116 54619 5322 116 54624	22,6 10K 11,5K	1 1 1	MR 25 MR 25 MR 25	METAL FILM METAL FILM
R 714 R 716	5322 116 50527 5322 116 50664	33,2 2,05K	1	MR 25 MR 25	METAL FILM METAL FILM
R 717 R 718 R 719	5322 116 54549 5322 116 54545 5322 116 50527	1K 909 33+2	1 1 1	MR 25 MR 25 MR 25	METAL FILM METAL FILM METAL FILM
R 721 R 722	5322 116 50555 5322 116 54525	1,27K 511	1	MR 25 MR 25	METAL FILM METAL FILM
R 723 R 724 R 726	5372 116 50527 5372 116 50527 5372 116 54549	33,2 33,2 1K	1 1 1	MR 25 MR 25 MR 25	METAL FILM METAL FILM METAL FILM
R 727	5322 116 50527	33,2	i	MR 25	METAL FILM

ITEM	URDERING NUMBER	OlaM	TOL (%)	TYPE	REMARKS
Ř 728	5322 116 54469	100	1	MR25	METAL FILM
R 729	5322 116 50731	10.5K	1	MR25	METAL FILM
R 731	5322 116 50527	33,2	1	MR25	METAL FILM
R 732	5322 116 50527	33,2	1	MR25	METAL FILM
R 733	5322 116 50527	33+2	1	MR25 MR25	METAL FILM METAL FILM
R 734	5322 116 50731	10.5K	1	MR 25	METAL FILM
R 751	5322 116 50527 5322 116 54263	33•2 681K	î	MR 30	METAL FILM
R 752 R 753	5322 116 54549	1K	i	MR25	METAL FILM
R 754	5322 116 54549	iK	1	MR25	METAL FILM
R 756	5322 116 54743	301K	1	MR25	METAL FILM
R 757	5322 116 50527	3312	j	MR 25	METAL FILM METAL FILM
R 758	5322 116 50527	33.2	1 1	MR25 MR25	METAL FILM
R 759	5322 116 50527 5322 116 54038	33,2 221K	i	MR25	METAL FILM
R 760 R-761	5322 116 50491	22,6	i	MR25	METAL FILM
R 762	5322 116 54619	10K	1	MR25	METAL FILM
R 763	5322 116 54624	11.5K	1	MR25	METAL FILM
R 764	5322 116 50527	33,2	1	MR 25	METAL FILM METAL FILM
R 766	5322 116 50664	2,05K	1	MR25 MR25	METAL FILM
R 768	5322 116 54545 5322 116 50527	909 33+2	1	MR 25	METAL FILM
R 769 R 771	5322 116 50527 5322 116 50555	1,27K	i	MR25	METAL FILM
R 771 R 772	5322 116 54525	511	ĭ	MR 25	METAL FILM
R 7/3	5322 116 50527	33.2	1	MR25	METAL FILM
R 774	5322 116 50527	33+2	1	MR25	METAL FILM
R 776	5322 116 54549	1K	1	MR25 CR25	METAL FILM CARBON
R 777	4822 110 63189	1+2M 100K	10 1	MR25	METAL FILM
R 778	5322 116 54696 5322 116 50731	10.5K	i	MR25	METAL FILM
R 779 R 781	5322 116 50527	33.2	ī	MR25	METAL FILM
R 784	5322 116 50731	10.5K	1	MR25	METAL FILM
R 801	4822 111 30324	100	5	CR16	CARBON
R 802	5322 111 30396	22	5 1	CR16	CARBON METAL FILM
R 803	5372 116 54012 4872 111 30263	6,81K 3,3K	5	MR25 CR16	CARBON
R 804	4872 111 30263 5372 116 50586	1,54K	í	MR25	METAL FILM
R 806 R 807	5322 116 50895	18.7	i	MR25	METAL FILM
R 808	5322 116 50895	18+7	1	MR25	METAL FILM
R 809	5322 111 30396	22	5	CR16	CARBON
R 811	5322 116 54012	6,81K	1	MR 25	METAL FILM
R 812	5322 116 54525 5322 111 30396	511 22	1 5	MR25 CR16	METAL FILM Carbon
R 813 R 814	5322 111 30396 5322 116 54592	4102K	1 .	MR25	METAL FILM
R 816	5322 111 30390	22	5	CR16	CARBON
R 817	5322 116 50415	1,15K	1	MR25	METAL FILM
R 818	5322 116 50415	1+15K	1	MR25	METAL FILM
R 819	5322 111 30396	22	5 5	CR16 CR25	CARBON CARBON
R 821	4872 110 63054 5372 116 54683	10 68+1K	1	MR25	METAL FILM
R 822 R 823	5322 116 50636	2,74K	i	MR25	METAL FILM
R 824	5322 116 54683	68 • 1K	1	MR25	METAL FILM
R 826	5322 116 54552	1,05K	1	MR25	METAL FILM
R 827	5322 116 50635	1+47K	1	MR25	METAL FILM
R 828	5322 116 50635	1,47K	1	MR25 MR25	METAL FILM METAL FILM
R 820 R 831	5322 116 54552 5322 111 30396	1+05K 22	1 5	CR16	CARBON
R 832	5322 111 30396	22	5	CR16	CARBON
R 833	5322 116 50527	33.2	1	MR25	METAL FILM
R 834	5322 116 50506	154	1	MR25	METAL FILM
R 836	5322 116 54508	301	1	MR 25	METAL FILM
R 837	5322 116 54552	1,05K	1 5	MR25 CR16	METAL FILM CARBON
. R 838 R 839	5372 111 30396 5372 116 54552	22 1,05K	1	MR25	METAL FILM
R 840	5322 111 30396	22	5	CR16	CARBON
R 841	5322 116 54576	2,37K	1	MR 25	METAL FILM
R 842	5322 116 54519	402	1	MR25	METAL FILM
R 843	4822 110 63054	10	5	CR25	CARBON
R 844	4822 110 63054	10	5	CR25	CARBON

ITEH	URDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 851	4822 110 63036	2,2	5	CR25	CARBON
R 852	4822 110 63036	2+2	5	CR25	CARBON
R 853	4872 110 63036	2,2	5	CR25	CARBON
R 854	4822 110 63036	212	5	CR25 MR25	CARBON Metal film
R 856 R 857	5322 116 54564 5322 111 44156	1•5K 510	1 5	CR16	CARBON
R 857 R 858	5322 116 54549	1K	i	MR25	METAL FILM
R 859	5322 116 54619	10K	î	MR25	METAL FILM
R 861	5322 116 54629	14K	1	MR25	METAL FILM
R 862	5322 111 34094	620	5	CR16	CARBON
R 863	4822 111 30303	8+2K	5	CR16	CARBON
R 864	4822 111 30267 4822 111 30119	1•5K 3K	5 5	CR16 CR16	CARBON CARBON
R 866 R 867	5322 116 50561	590	í	MR25	METAL FILM
R 868	5322 116 54011	5,62K	Ĭ.	MR25	METAL FILM
R 869	5322 116 54585	3,48K	1	MR25	METAL FILM
R 871	5322 111 44153	15	5	CR16	CARBON
R 872	5322 116 54474	110	1	MR25 0.5W	METAL FILM
R 873	5322 101 14069 5322 116 54661	22K 34•8K	20 1	MR25	TRIMMING POTM METAL FILM
R 874 R 876	5322 116 54619	10K	i	MR25	METAL FILM
R 877	5322 116 54597	5,36K	ī	MR25	METAL FILM
R 878	5322 116 50415	1,15K	1	MR 25	METAL FILM
R 879	5322 116 54481	130	1	MR25	METAL FILM
R 880	5372 116 54585	3,48K	1	MR25	METAL FILM
R 881	5322 116 50676	196	1	MR25	METAL FILM METAL FILM
R 882 R 883	5322 116 54696 5322 116 54632	100K 14•7K	1 1	MR25 MR25	METAL FILM METAL FILM
R 883 R 884	5322 116 54632	14.7K	· i	MR 25	METAL FILM
R 885	5322 116 50583	5 9K	ĭ	MR 25	METAL FILM
R 886	5322 116 50481	22,6K	ī	MR 25	METAL FILM
R 887	5322 116 50459	422	1	MR25	METAL FILM
R 888	5322 116 54005	3,32K	ļ	MR25	METAL FILM
R 889	5322 116 54603 5322 116 50527	6;49K	1	MR25 MR25	METAL FILM METAL FILM
R 890 R 891	5322 116 50527 5322 116 50675	33,2 2,26K	1	MR25	METAL FILM
R 892	5322 116 54608	7.5K	ī	MR 25	METAL FILM
R 893	4822 111 30067	33	5	CR16	CARBON
R 894	5322 116 50509	4,87K	1	MR25	METAL FILM
R 895	5322 116 50586	1+54K	1	MR25	METAL FILM
R 897	5322 116 54519	402	1	MR 25	METAL FILM METAL FILM
R 898 R 899	5322 116 54534 5322 116 50636	681 2,74K	1	MR25 MR25	METAL FILM
R 900	4822 111 30067	33	5	CR16	CARBON
R 901	5322 116 54549	1K	1	MR 25	METAL FILM
R 9u2	4822 111 30067	33	5	CR16	CARBON
R 903	5322 116 50527	33,2	1	MR25	METAL FILM
R 904	5322 116 50636	2,74K	1	MR 25	METAL FILM
R 905 R 906	5322 116 54587 5322 111 30396	3,65K 22	1 5	MR25. CR16	METAL FILM Carbon
R 907	5322 116 50556	4,42K	í	MR 25	METAL FILM
R 908	4822 111 30067	33	5.	CR16	CARBON
R 909	5322 116 50798	898	0 , 5	MR24C	METAL FILM
R 910	5322 116 54549	1K	1	MR25	METAL FILM
R 911	5322 116 50579	3,16K	1	MR25	METAL FILM
R 912 R 913	5322 116 50556 5322 116 50664	4,42K 2,05K	1	MR25 MR25	METAL FILM METAL FILM
R 913 R 914	5322 100 10114	4+7K	20	0.5%	TRIMMING POTM
R 915	5322 116 54624	11.5K	ĩ	MR25	METAL FILM
R 916	5322 116 50481	22+6K	1	MR25	METAL FILM
R 917	5322 116 54549	1K	1	MR25	METAL FILM
R 918	5322 116 54549	1K	1	MR 25	METAL FILM
R olo	5322 116 50559 5322 116 50559	27+4K	1	MR25	METAL FILM METAL FILM
R 921 R 922	5322 116 50559 5322 116 50556	27,4K 4,42K	1 1	MR25 MR25	METAL FILM
R 923	5322 116 50556	4,42K	i	MR25	METAL FILM
R 925	5322 116 54619	10K	i	MR25	METAL FILM
R 926	5322 116 54011	5+62K	1	MR25	METAL FILM
R 927	5322 116 54011	5+62K	1	MR25	METAL FILM

ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 928	5322 111 30396	22	5	CR16	CARBON
R 929	5322 116 54627	13+3K	1	MR25	METAL FILM
R 931	4872 111 30352	82	5	CR16	CARBON
R 932	4822 111 30245	47	5 5 5 5	CR16	CARBON
R 933	5322 111 30396	22 33K		CR16 CR16	CARBON CARBON
R 934	5322 111 30279 5322 116 54565	1,62K	ĩ	MR25	METAL FILM
R 936 R 937	5322 111 44156	510		CR16	CARBON
R 937 R 939	5322 111 44156	510	5 5	CR16	CARBON
R 941	4822 111 30327	220	5	CR16	CARBON
R 942	5322 116 54632	14+7K	1	MR25	METAL FILM
R 944	5322 116 50664	2 <u>.05</u> K	1	MR25	METAL FILM
R 946	5322 116 54608	7,5K	1 1	MR25	METAL FILM METAL FILM
R 948 R 949	5322 116 54617 5322 116 54576	9,53K 2,37K	i	MR25 MR25	METAL FILM
R 949 R 961	5322 116 54408	909K	i	MR30	METAL FILM
R 962	5322 116 54762	365K	ī	MR30	METAL FILM
R 963	5322 116 54939	35,2K	0,5	MR24C	METAL FILM
R 964	5322 116 55167	17+2K	0+5	MR24C	METAL FILM
R 966	5322 116 55168	8 , 16K	0,5	MR24C	METAL FILM
R 967	5322 116 54832	2,71K	0+5	MR24C MR24C	METAL FILM METAL FILM
R 968 R 969	5322 116 50798 5322 116 54722	898 182K	0,5	MR25	METAL FILM
R 969 R 971	5322 116 54977	89,8K	0,5	MR24C	METAL FILM
R 976	5322 116 50527	33,2	ī	MR25	METAL FILM
R 977	5322 116 50729	4,22K	1 .	MR25	METAL FILM
R 978	5372 116 50451	21.5K	1	MR25	METAL FILM
R 979	5322 101 14069	22K	20	0.5W	TRIMMING POTM
R 981	5322 116 54005	3,32K 33,2	1 1	MR25 MR25	METAL FILM METAL FILM
R 982 R 983	5322 116 505 2 7 5322 116 50484	4,64K	1	MR25	METAL FILM
R 984	5322 116 50664	2,05K	i	MR25	METAL FILM
R 986	5322 116 54595	5+11K	. 1	MR25	METAL FILM
R 987	5322 101 14069	22K	20	0.5W	TRIMMING POTM
R 1001	4822 111 30324	100	5	CR16	CARBON
R 1002	5322 111 30396	22	5	CR16 MR25	CARBON Metal Film
R 1003	5322 116 54012 4822 111 30263	6,81K 3,3K	1 5	CR16	CARBON
R 1004 R 1006	5322 116 50586	1,54K	ĩ	MR25	METAL FILM
R 1007	5322 116 50895	18,7	ĩ	MR25	METAL FILM
R 1008	5322 116 50895	18,7	1	MR25	METAL FILM
R 1009	5322 111 30396	22	5	CR16	CARBON
R 1011	5322 116 54012	6,81K	1	MR25	METAL FILM
R 1012	5322 116 54525 5322 111 30396	511 22	5	MR25 CR16	METAL FILM CARBON
R 1013 R 1014	5322 116 54592	4,02K	í	MR25	METAL FILM
R 1014	5322 111 30396	22	5	CR16	CARBON
R 1017	5322 116 50415	1,15K	1	MR25	METAL FILM
R 1u18	5322 116 50415	1+15K	1 5 5	MR25	METAL FILM
R 1019	5322 111 30396	22	5	CR16	CARBON CARBON
R 1021	4822 110 63054	10 68,1K	1	CR25 MR25	METAL FILM
R 1022 R 1023	5322 116 54683 5322 116 50636	2,74K	i ′	MR25	METAL FILM
R 1023 R 1024	5322 116 54683	68.1K	i i	MR25	METAL FILM
R 1020	5322 116 54552	1,05K	Ĩ	MR25	METAL FILM
R 1027	5322 116 50635	1,47K	1	MR25	METAL FILM
R 1028	5322 116 50635	1,47K	1	MR25	METAL FILM
R 1029	5322 116 54552	1,05K	1	MR25	METAL FILM
R 1031	5322 111 30396	22 22	5 5	CR16 CR16	CARBON CARBON
R 1032	5322 111 30396 5322 116 50527	33,2	1	MR25	METAL FILM
R 1033 R 1034	5322 116 50506	154	i	MR25	METAL FILM
R 1034	5322 116 54508	301	1	MR25	METAL FILM
R 1037	5322 116 54552	1,05K	1	MR25	METAL FILM
R 1u38	5322 111 30396	2 2	5	CR16	CARBON
R 1039	5322 116 54552	1,05K	1	MR25	METAL FILM
R 1040	5322 111 30396	22 2. 37k	5 1	CR16 MR25	CARBON METAL FILM
R 1041	5322 116 54576 5322 116 54519	2,37K 402	i	MR25	METAL FILM
R 1042	7926 110 97917	706	•	, 417 E. B.	ं सार्यस्य र श्रे स्टेर

ITEM	URDERING NUMBER	OhM	TOL (%)	TYPE	PEMARKS
R 1043	4822 110 63054	10	5	CR25	CARBON
R 1044	4822 110 63054	10	5	CR25	CARBON
R 1051	4822 110 63036	2,2	5	CR25	CARBON
R 1052	4822 110 63036 4822 110 63063	2+2	5 5 5	CR25 CR25	CARBON CARBON
R 1053 R 1054	4822 110 63036	2,2	Š	CR25	CARBON
R 1055	5322 116 50636	2,74K	ī	MR25	METAL FILM
R 1056	5322 116 54576	2,37K	1 .	MR25	METAL FILM
R 1057	5322 116 54525	511	1	MR25	METAL FILM
R 1058	5322 116 54474	110	1	MR25	METAL FILM
R 1059	5322 111 44153	15	5 1	CR16 MR25	CARBON METAL FILM
R 1061 R 1062	5372 116 54532 5372 116 50729	649 4122K	i	MR25	METAL FILM
R 1062 R 1063	5372 116 54011	5,62K	i	MR25	METAL FILM
R 1064	5322 101 14069	22K	20	0.5W	TRIMMING POTM
R 1065	5322 116 50636	2,74K	1	MR25	METAL FILM
R 1066	5322 116 54629	14K	1	MR 25	METAL FILM
R 1067	5322 116 54597	5 + 36K	1	MR25 MR25	METAL FILM METAL FILM
R 1068 R 1069	5322 116 54597 5322 116 50415	5,36K 1,15K	1	MR25	METAL FILM
R 1069 R 1070	5322 116 54516	365	i	MR25	METAL FILM
R 1071	5322 116 54648	24+9K	î	MR25	METAL FILM
R 1072	5322 116 54519	402	1	MR25	METAL FILM
R 1073	5322 116 54545	909	1	MR25	METAL FILM
R 1074	5322 116 50664	2+05K	1	MR 25	METAL FILM
R 1075	5322 111 30396 5322 116 54597	22 5,36K	5 1	CR16 MR25	CARBON METAL FILM
R 1076 R 1077	5322 116 54005	3,32K	î	MR25	METAL FILM
R 1078	5372 116 54603	6,49K	i	MR 25	METAL FILM
R 1079	5322 116 50767	2,15K	1	MR25	METAL FILM
R 1080	5322 100 10114	4 <u>•7</u> K	20	0.54	TRIMMING PUTM
R 1081	4822 111 30067	33	5	CR16	CARBON ETIM
R 1082	5322 116 54608 5322 116 54635	7•5K 16•9K	1	MR25 MR25	METAL FILM METAL FILM
R 1083 R 1084	4822 111 30067	33	5	CR16	CARBON
R 1085	5322 116 50481	22+6K	1	MR 25	METAL FILM
R 1086	5322 116 50798	898	0+5	MR24C	METAL FILM
R 1087	4822 111 30067	33	5	CR16	CARBON
R 1088	5322 116 50579	3,16K	1	MR25	METAL FILM
R 1089	5322 116 50527 5322 116 54549	33•2 1K	1	MR25 MR25	METAL FILM METAL FILM
R 1090 R 1091	4822 111 30067	33	5	CR16	CARBON
R 1092	5322 116 54587	3,65K	ĩ	MR25	METAL FILM
R 1093	5322 116 50556	4,42K	1	MR25	METAL FILM
R 1094	5322 116 54595	5,11K	1	MR25	METAL FILM
R 1095	5322 116 50636	2,74K	1	MR 25	METAL FILM
R 1096	5322 116 50479	15,4K 22K	20	MR25 0.5W	METAL FILM TRIMMING POTM
R 1097 R 1098	5322 101 14069 5322 116 54549	1K	1	MR25	METAL FILM
R 1099	5322 111 30278	27K	5	CR16	CARBON
R 1101	4822 111 30352	82	5	CR16	CARBON
R 1102	4822 111 30245	47	5 5	CR16	CARBON
R 1103	5372 111 30396	22	5 5	CR16	CARBON CARBON
R 1104	5322 111 30396 5322 111 30279	22 33k	5 5	CR16 CR16	CARBON
R 1106 R 1107	5322 116 54565	1,62K	. 1	MR 25	METAL FILM
R 1107 R 1108	5322 116 54576	2,37K	i	MR25	METAL FILM
R 1109	5322 116 50514	64+9K	1	MR 25	METAL FILM
R 1111	5322 116 54595	5+11K	1	MR25	METAL FILM
R 1112	5322 116 50586	1+54K	1	MR25	METAL FILM
R 1113	5322 116 54576 5322 116 54587	2+37K	1	MR25 MR25	METAL FILM METAL FILM
R 1114	5322 116 54557 5322 100 10113	1+21K 10K	20	0,5W	TRIMMING POTM
R 1115 R 1116	5322 116 54469	100	ĭ	MR 25	METAL FILM
R 1117	5322 116 54561	1,33K	1	MR25	METAL FILM
R 1118	5322 116 54576	2,37K	1	MR25	METAL FILM
R 1119	5322 116 54617	9,53K	1	MR 25	METAL FILM
R 1121	5322 116 54561	1+33K	1 1	MR25 MR25	METAL FILM METAL FILM
R 1122	5322 116 50524	3,01K	1	uil/¢5	ாரை அவரு மித் வெடி

ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	PEMARKS
R 1123	5322 116 54561	1,33K	1	MR25	METAL FILM
R 1124	4822 111 30067	33	5	CR16	CARBON
R 1126	4822 111 30067	33	5	CR16	CARBON
R 1127	5322 116 54617	9,53K	1	MR25	METAL FILM
R 1128	5322 116 50583	5,9K		MR25	METAL FILM
R 1129	5322 116 54592	4,02K	1	MR25	METAL FILM
R 1131	5322 116 54641	19,6K		MR25	METAL FILM
R 1132	5322 116 54663	37+4K	i	MR25	METAL FILM
R 1162	5322 116 54762	365K		MR30	METAL FILM
R 1163	5322 116 54939	35+2K	0,5	MR24C	METAL FILM
R 1164	5322 116 55167	17.2K	0+5	MR24C	METAL FILM
R 1166	5322 116 55168	8.16K	0+5	MR24C	METAL FILM
R 1167	5322 116 54832	2,71K	0+5	MR24C	METAL FILM
R 1168	5322 116 50798	898	0+5	MR24C	METAL FILM
R 1169 R 1171	5322 116 54722 5322 116 54977	182K 89+8K	0,5	MR25 MR24C	METAL FILM METAL FILM
R 1201	5322 116 54558	8,25K	1	MR25	METAL FILM
R 1202	5322 116 50479	15,4K		MR25	METAL FILM
R 1203	5372 116 50484	4,64K	î	MR25	METAL FILM
	4872 111 30067	33	5	CR16	CARBON
R 1204 R 1206	5372 116 54619	10K	1	MR25	METAL FILM
R 1207	5322 116 54576	2+37K	1	MR25	METAL FILM
R 1208	5322 116 54619	10K		MR25	METAL FILM
R 1209	5322 101 14008	2+2K	20	0.5W	TRIMMING POTM METAL FILM
R 1211	5322 116 50621	536	1	MR25	
R 1212	5322 116 50635	1,47K	1	MR25	METAL FILM
R 1213	5322 116 50621	536		MR25	METAL FILM
R 1214	5322 116 50511	48•7	1	MR25	METAL FILM
R 1216	5322 116 50457	215		MR25	METAL FILM
R 1217	4822 111 30333	1M	10	CR16	CAPBON
	4822 111 30333	1M	10	CR16	CARBON
R 1218 R 1219	5322 116 54619	10K	1	MR25	METAL FILM
R 1221	5322 116 50511	48.7	1	MR25	METAL FILM
R 1222	5322 116 50579	3.16K		MR25	METAL FILM
R 1223	5322 100 10113	10K	20	0,5W	TRIMMING POTM METAL FILM
R 1224	5322 116 50579	3,16K	1	MR25	
R 1225	5372 116 50728	1+87K	1	MR25	METAL FILM
R 1226	5372 116 54615	9+09K		MR25	METAL FILM
R 1227	5322 116 54541	825	1	MR25	METAL FILM
R 1228	5322 116 54541	825		MR25	METAL FILM
R 1229	4822 111 30067	33	5	CR16	CARBON
	5322 116 50583	5,9K	1	MR25	METAL FILM
R 1231 R 1232	5322 116 54012	6,81K	1	MR25 MR25	METAL FILM METAL FILM
R 1233 R 1234	5322 116 50555 5322 116 54716	1,27K 162K	1 1	MR25	METAL FILM
R 1236	4822 111 30067	33	5	CR16	CARBON
R 1237	5322 116 50481	22,6K	1	MR25	METAL FILM
R 1238	4822 111 30067	33	5	CR16	CARBON
R 1239	5322 116 54549	1K	1	MR25	METAL FILM
R 1241	5322 116 54336	475K	1	MR30	METAL FILM
R 1242	5322 116 50481	22+6K		MR25	METAL FILM
R 1243	4822 111 30067	33	5	CR16	CARBON
	5322 116 50451	21.5K	1	MR25	METAL FILM
R 1244 R 1246	5322 116 54592	4102K	î 1	MR25 MR25	METAL FILM METAL FILM
R 1247 R 1248	5322 116 50579 4822 111 30067	3+16K 33	5	CR16	CARBON
R 1249	5322 116 50481	22.6K	1	MR25	METAL FILM
R 1251	5322 116 50481	22.6K		MR25	METAL FILM
R 1252	5322 116 54549	1K	1	MR25	METAL FILM
R 1253	5322 116 54188	1M		MR30	METAL FILM
R 1254	4822 111 30067	33	5	CR16	CARBON
R 1256	5322 116 54716	162K	1	MR25	METAL FILM
R 1257	4822 111 30067	33	5	CR16	CARBON
R 1258	5322 116 50555	1,27K	1	MR25	METAL FILM
R 1302	5322 116 54655	30 · 1K	i	MR25 MR25	METAL FILM METAL FILM
R 1303 R 1304	5322 116 50414 5322 116 50479	2,87K 15,4K	1	MR 25	METAL FILM
R 1306	5322 116 54627	13.3K	1	MR25	METAL FILM

ITEM	URDERING NUMBER	МНО	TOL (%)	TYPE	REMARKS
R 1307	5322 116 50479	15+4K	1	MR25	METAL FILM
R 1308	5322 116 50492	46+4	1	MR25	METAL FILM
R 1309	5322 116 50479	15+4K	1	MR25	METAL FILM
R 1310	5322 116 55165 5322 116 50491	4+64K	1	MR30	METAL FILM
R 1311 R 1312	5322 116 50491 4822 110 63187	22+6 1M	1 5	MR25 CR25	METAL FILM Carbon
R 1313	5322 116 54696	100K	ĩ	MR25	METAL FILM
R 1314	5322 116 50559	27,4K	Ĩ.	MR25	METAL FILM
R 1316	5322 116 50536	464	1	MR25	METAL FILM
R 1317	5322 116 54619	10K	1	MR25	METAL FILM
R 1318	5322 116 50559	27,4K	1	MR25	METAL FILM
R 1319 R 1320	5322 116 50536 5322 116 544 6 9	464 100		MR25 MR25	METAL FILM METAL FILM
R 1320 R 1321	5322 116 50668	11,3K	i	MR25	METAL FILM
R 1322	5322 116 54561	1,33K	i	MR25	METAL FILM
R 1323	5322 116 50557	46 • 4K	1	MR25	METAL FILM
R 1324	5322 116 50668	11.3K	1	MR25	METAL FILM
R 1325 R 1320	5322 116 54469 5322 116 50524	100 3:01K	1	MR25 MR25	METAL FILM METAL FILM
R 1320 R 1327	5322 116 54627	13.3K	i	MR25	METAL FILM
R 1328	5322 116 50492	46.4	i	MR25	METAL FILM
R 1329	5322 101 14008	2+2K	20	0.5W	TRIMMING POTM
R 1330	5322 116 50664	2,05K	1	MR25	METAL FILM
R 1331 R 1332	5322 116 54549 4822 110 63187	1K 1M	1	MR 25	METAL FILM
R 1333	4822 110 63187	1M	5 5	CR25 CR25	CARBON CARBON
R 1334	5322 116 54469	100	ĩ	MR25	METAL FILM
R 1335	4822 110 63161	100K	5	CR25	CARBON
R 1336	4822 110 42194	1.84	5	VR37	CARBON
R 1337	4822 11u 42203 5322 101 14094	3,9M 1M	5	VR37	CARBON
R 1338 R 1339	5322 116 54738	274K	20 1	0:5W MR25	TRIMMING POTM METAL FILM
R 1341	5322 101 14142	220K	20	0,5W	TRIMMING POTM
R 1342	5372 116 54716	162K	1	MR 25	METAL FILM
R 1343	5372 116 54686	75K	1	MR25	METAL FILM
R 1344 R 1345	5322 101 14142 4822 116 30041	220K 4	20 10	0:5W 1W	TRIMMING POTM
R 1346	5322 116 50559	27,4K	1	MR25	METAL FILM
R 1350	4822 116 30041	4	10	IW	NTC
R 1350	5322 116 50559	27+4K	1	MR25	METAL FILM
R 1357	5322 116 50559	27:4K	1	MR.25	METAL FILM
R 1358 R 1359	5322 116 54005 5322 101 14069	3•32K 22K	1 20	MR25 0.5W	METAL FILM Trimming Potm
R 1361	5322 116 54005	3,32K	ĩ	MR25	METAL FILM
R 1366	5322 116 54647	24.3K	i	MR25	METAL FILM
R 1367	5322 116 54003	22+1K	1	MR25	METAL FILM
R 1373	5322 116 54685	71,5K	1	MR 25	METAL FILM
R 1374 R 1376	5322 116 50731 5322 116 54706	10,5K 127K	1	MR25 MR25	METAL FILM METAL FILM
R 1377	5372 116 50664	2,05K	1	MR25	METAL FILM
R 1386	5322 100 10114	4.7K	20	0.5W	TRIMMING POTM
R 1387	5322 116 50675	2,26K	1	MR25	METAL FILM
R 1388	5322 116 50675	2+26K	1	MR25	METAL FILM
R 1389	5322 116 54549	1K	1	MR25	METAL FILM
R 1300 R 1391	5322 100 10112 5322 116 50492	·1K 4614	20 1	0+5W MR25	TRIMMING POTM METAL FILM
R 1392	5372 116 50492	46+4	î	MR25	METAL FILM
R 1393	5322 116 50492	4614	Ĭ	MR25	METAL FILM
R 1394	5322 116 50515	1,78K	1	MR25	METAL FILM
R 1396	5372 116 50415 5322 116 50492	1,15K	1	MR25	METAL FILM
R 1397 R 1398	5322 116 50492 5322 116 50579	46+4 3+16K	1	MR25 MR25	METAL FILM METAL FILM
R 1399	5322 116 50635	1,47K	i	MR25	METAL FILM
R 1401	5322 116 50492	46,4	1	MR25	METAL FILM
R 1402	5322 116 50557	46+4K	1	MR 25	METAL FILM
R 1403	5322 116 54549	1K	1	MR25	METAL FILM
R 1404 R 1406	5322 116 50491 5322 116 50492	22+6 46+4	1	MR25 MR25	METAL FILM
U 1400	75.5 110 3077E	7 U T 7		OVES	METAL FILM

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	PEMARKS
R 1407	5322 116 54462	82+5	1	MR 25	METAL FILM
R 1408	5322 116 54005	3,32K	i	MR25	METAL FILM
R 1409	5322 116 54493	182	1	MR25	METAL FILM
R 1411	5322 116 50671	2,61K	1	MR25	METAL FILM
R 1412	5322 116 54462	82+5	1	MR25	METAL FILM
R 1413	5322 116 50491 5322 116 50491	2216 2216	1	MR25 MR25	METAL FILM METAL FILM
R 1414 R 1416	5322 116 54643	20,5K	i	MR25	METAL FILM
R 1417	5322 116 54426	121	i	MR25	METAL FILM
R 1418	5322 116 50451	21,5K	ī	MR25	METAL FILM
R 1419	5372 116 54508	301	1	MR25	METAL FILM
R 1421	5322 116 50524	3,01K	1	MR25	METAL FILM
R 1422	5322 116 54534	681	1	MR25	METAL FILM
R 1423	5322 116 50524 5322 116 50586	3:01K 1:54K	1	MR25 MR25	METAL FILM METAL FILM
R 1424 R 1426	5322 116 50586 5322 116 54492	178		MR25	METAL FILM
R 1427	5372 116 51052	42,2	i	MR25	METAL FILM
R 1428	5322 116 54508	301	1	MR 25	METAL FILM
R 1429	5322 116 50571	715	1	MR 25	METAL FILM
R 1501	5322 116 54665	40 + 2K	j	MR25	METAL FILM
R 1502	5322 116 50442	48•7K	1	MR25	METAL FILM METAL FILM
R 1503	5322 116 54683 5322 116 50474	68,1K 42,2K	1	MR25 MR25	METAL FILM METAL FILM
R 1504 R 1506	5322 116 54549	IK	i	MR 25	METAL FILM
R 1507	5322 116 54655	30,1K	ī	MR25	METAL FILM
R 1508	5322 116 54632	14+7K	1	MR 25	METAL FILM
R 1509	5322 116 50672	51+1K	1	MR 25	METAL FILM
R 1516	5322 116 64015	7,5	5	VR68	METAL OXIDE
R 1517	5322 116 64053	12M 1M	5 5	VR68 VR37	METAL OXIDE CARBON
R 1518 R 1601	4822 110 42187. 5322 116 54466	90+9	1	MR 25	METAL FILM
R 1602	5322 116 54466	9019	i	MR25	METAL FILM
R 1603	5322 116 50417	162	i	MR25	METAL FILM
R 1604	5322 116 50675	2,26K	1	MR 25	METAL FILM
R 1606	5322 116 50675	2,26K	1	MR25	METAL FILM
R 1607	5322 116 50586	1 = 54K	1	MR25 MR25	METAL FILM METAL FILM
R 1608 R 1609	5322 116 50636 5322 116 50636	2,74K 2,74K	1	MR25	METAL FILM
R 1610	5322 116 54525	511	i	MR25	METAL FILM
R 1611	5322 116 50636	2,74K	i	MR25	METAL FILM
R 1612	5322 116 50636	2,74K	1	MR25	METAL FILM
R 1613	5322 116 50636	2,74K	. 1	MR25	METAL FILM
R 1614	5322 116 50636	2,74K 1,21K	1	MR25 MR25	METAL FILM METAL FILM
R 1616 R 1617	5322 116 54557 5322 116 54557	1,21K	i	MR25	METAL FILM
R 1618	5322 116 50568	4,99	i	MR25	METAL FILM
R 1619	5322 116 50452	10	1	MR.25	METAL FILM
R 1626	5322 116 54595	5+11K	1	MR 25	METAL FILM
R 1627	5322 116 54587	3,65K	1	MR25	METAL FILM
R 1628	5322 116 54099	8,25	1	MR25	METAL FILM METAL FILM
R 1629	5322 116 54635 5322 116 54455	16,9K 68,1	1	MR25 MR25	METAL FILM
R 1630 R 1631	5322 116 54606	7,15K	i	MR25	METAL FILM
R 1632	5322 116 54606	7.15K	i	MR25	METAL FILM
R 1633	5322 116 54648	24,9K	1	MR 25	METAL FILM
R 1634	5322 116 54549	1K	1	MR25	METAL FILM
R 1636	5322 116 54648	24,9K	1	MR 25	METAL FILM
R 1637	5322 116 54587	3,65K	1	MR25 MR25	METAL FILM METAL FILM
R 1638	5322 116 54455 5322 116 54099	68,1 8,25	1	MR 25	METAL FILM
R 1642 R 1646	5322 116 54595	5,11K	i	MR25	METAL FILM
R 1647	5322 116 54587	3,65K	i	MR 25	METAL FILM
R 1648	5322 116 54099	8,25	1	MR25	METAL FILM
R 1649	5322 116 54635	16+9K	1	MR25	METAL FILM
R 1650	5322 116 54455	68:1	1	MR 25	METAL FILM
R 1651	5322 116 54606	7,15K	1	MR 25	METAL FILM METAL FILM
R 1652	5322 116 54606 5322 116 54648	7,15K 24,9K	1 1	MR 25 MR 25	METAL FILM
R 1653 R 1654	5322 116 54549	1K	i	MR25	METAL FILM
15 4847	रक्षक १ ०० क्यांक्य	• * .	•	7	was a second of the second of

ITEM U	RDERING NUMBER		TOL (%)	TYPE	REMARKS
R 1650	5322 116 54648	24,9K	1	MR25	METAL FILM
R 1657	5322 116 54587	3,65K	1	MR25	METAL FILM
	5322 116 54455	68:1	1	MR25	METAL FILM
,	5322 116 54099	8,25	1	MR25	METAL FILM
	4822 110 53029	1.2	5	CR37	CARBON
	5322 116 54743	301k	1	MR25 MR25	METAL FILM METAL FILM
	5322 116 54743 5322 116 55149	301K 24,9K	1	MR30	METAL FILM
	4872 110 63214	10%	10	CR25	CARBON
	4822 110 63196	2,2M	10	CR25	CARBON
	5322 116 54426	121	1	MR25	METAL FILM
	5322 116 54549	1K	1	MR 25	METAL FILM
	5322 116 50557	46 • 4K	1	MR25	METAL FILM
	4822 112 21054	10	5	4.2W	WIRE-WOUND
	5322 116 54549	1K	1	MR25	METAL FILM
	5322 116 54619	10k	1	MR25	METAL FILM
	4872 110 53054 5372 116 34028	10 150K	5 · 5	0.5W	CARBON NTC
	5322 116 50442	48 • 7K	í	0.5W MR25	METAL FILM
	5322 116 54965	82	5	PR52	METAL FILM
R 1819	5322 116 54619	10K	í	MR25	METAL FILM
	5322 116 54549	īK	1	MR25	METAL FILM
R 1821	5322 116 54549	1K	1	MR25	METAL FILM
	5322 116 50731	10•5K	1	MR25	METAL FILM
	5322 116 54529	619	1	MR 25	METAL FILM
	5322 116 54549	1K	ļ	MR 25	METAL FILM
	5322 116 54469 5322 116 54574	100 2:21K	1	MR25 MR25	METAL FILM METAL FILM
R 1827	5322 116 54558	8,25K	i	MR25	METAL FILM
	5322 100 10115	1K	20	0,5W	TRIMMING POTM
	5322 116 50586	1,54K	1	MR25	METAL FILM
	5372 116 50669	205	1	MR25	METAL FILM
	5322 116 54558	8,25K	1	MR25	METAL FILM
	5372 116 50664	2,05K	1	MR25	METAL FILM
	5322 116 54906 5322 116 54619	75 10K	1	MR30 MR25	METAL FILM METAL FILM
	5322 116 54619 5322 116 54014	23.7	i	MR 25	METAL FILM
	5322 116 50559	27.4K	î	MR25	METAL FILM
R 1837	5322 116 54696	100K	ĭ	MR25	METAL FILM
	4822 110 63187	1M	5	CR25	CARBON
	5322 116 54648	24.9K	1	MR25	METAL FILM
	5322 116 54192	5.1	5	CR25	METAL FILM
	5322 116 54469	100	1	MR25	METAL FILM METAL FILM
R 1842 R 1843	5372 116 54469 5372 116 54738	100 274K	i	MR25 MR25	METAL FILM
	5322 116 54619	10K	i	MR25	METAL FILM
	4622 110 63045	4,7	5	CR25	CARBON
	5322 116 54726	200K	1	MR25	METAL FILM
	5322 116 54726	200K	1	MR 25	METAL FILM
	5322 116 54525	511	1	MR25	METAL FILM
	5322 116 55097	47	5	PR37	METAL FILM
R 1851	5322 116 54069	22	20	0.5W	TRIMMING POTM
	5322 116 54069	12+1 12+1	1	MR 25 MR 25	METAL FILM METAL FILM
	5322 116 54696	TOOK	i	MR 25	METAL FILM
	5322 116 50904	30+1	ī	MR 25	METAL FILM
	4822 112 21114	1.8K	5	4.2W	WIRE-WOUND
	5322 116 54648	24+9K	1	MR25	METAL FILM
	5322 116 54516	365	1	MR25	METAL FILM
	5322 116 54469	100 2-15k	ļ	MR25	METAL FILM
R 1901 R 1902	5322 116 50767 5322 116 54589	2,15K 3,83K	1	MR25 MR25	METAL FILM METAL FILM
	4822 111 30067	33	5	CR16	CARBON
	4822 111 30067	33	5	CR16	CARBON
R 1906	4822 111 30067	33	5	CR16	CARBON
	4822 111 30067	33	5	CR16	CARBON
	4822 111 30067	33	5	CR16	CARBON
	4822 111 30067 5322 116 50442	33 49.74	5 1	CR16	CARBON
R 1911	-J-C 110 JUTTS	48•7K		MR25	METAL FILM

ITEM	ORDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 1912	5322 101 14069	22K	20	0.5W	TRIMMING POTM
R 1913	5322 116 50608 5322 116 50608	6,19K 6,19K	1	MR25 MR25	METAL FILM METAL FILM
R 1914 R 1916	5322 116 50479	15+4K	i	MR25	METAL FILM
R 1917	5322 116 50479	15,4K	1	MR 25	METAL FILM
R 1918	5322 116 50608	6,19K	1	MR 25	METAL FILM
R 1919	5322 116 50608 4822 111 30067	6,19K 33	1 5	MR25 CR16	METAL FILM CARBON
R 1921 R 1923	4822 111 30067 5322 116 54502	261	ĭ	MR 25	METAL FILM
R 1924	5322 116 54502	261	i	MR25	METAL FILM
R 1926	5322 116 54009	562	1	MR25	METAL FILM
R 1927	5322 116 50568 5322 116 544 5 3	4,99 64,9	1 1	MR25 MR25	METAL FILM METAL FILM
R 1928 R 1929	5322 116 54444	53,6	i	MR25	METAL FILM
R 1931	5322 100 10143	1K	20	0.75W	TRIMMING PUTM
R 1932	5322 116 54453	64+9	1	MR 25	METAL FILM
R 1933	5322 116 54444	53,6 1,27K	1	MR25 MR25	METAL FILM METAL FILM
R 1934 R 1936	5322 116 50555 4822 111 30067	33	5	CR16	CARBON
R 1937	5322 116 54561	1,33K	1	MR 25	METAL FILM
R 1938	5322 116 50731	10.5K	1	MR25	METAL FILM
R 1941	4822 111 30067 4822 111 30245	33 47	5 5	CR16 CR16	CARBON CARBON
R 1942 R 1943	5322 116 54519	402	í	MR 25	METAL FILM
R 1944	5322 116 50452	10	1	MR 25	METAL FILM
R 1946	5322 100 10113	10K	20	0,5W MR25	TRIMMING POTM METAL FILM
R 1947 R 1948	5322 116 50442 5322 116 54554	48•7K 1•1K	1	MR25	METAL FILM
R 1949	5322 116 50452	10	i	MR25	METAL FILM
R 1951	4822 111 30245	47	5	CR16	CARBON
R 1952	5322 116 54549 4822 111 30067	1K 33	1 5	MR25 CR16	METAL FILM CARBON
R 1953 R 1954	4822 111 30067 5322 116 54571	1,96K	1	MR 25	METAL FILM
R 1956	4872 111 30067	33	5	CR16	CARBON
R 1957	5322 116 54617	9,53K	1	MR 25	METAL FILM
R 1958 R 1959	5322 116 50581 5322 116 50452	2;49K 10	1	MR 25 MR 25	METAL FILM METAL FILM
R 1960	4822 111 30067	33	5	CR16	CARBON
R 1961	5322 116 54519	402	1	MR25	METAL FILM
R 1962	4822 111 30245 5322 116 54554	47 1+1K	5 1	CR16 MR25	CARBON METAL FILM
R 1963 R 1964	5322 116 54554 4822 111 30245	47	5	CR16	CARBON
R 1966	5322 116 50452	10	1 .	MR 25	METAL FILM
R 1967	4822 111 30067	33	5	CR16	CARBON
R 1968 R 1969	5322 116 54619 5322 116 54571	10K 1,96K	1	MR25 MR25	METAL FILM METAL FILM
R 1971	4822 111 30067	33	5	CR16	CARBON
R 1972	5322 116 54538	787	1	MR25	METAL FILM
R 1973	4822 111 30067	33 33	5 5	CR16 CR16	CARBON CARBON
R 1974 R 2001	4622 111 30067 5322 116 50527	33+2	í	MR25	METAL FILM
R 2001 R 2002	5322 100 10143	1K	20	0.75W	TRIMMING POTM
R 2000	5322 116 54476	115	1	MR 25	METAL FILM METAL FILM
R 2007	5322 116 54444	53+6 1K	1 20	MR25 0,5W	TRIMMING POTM
R 2008 R 2009	5322 100 10112 5322 116 54476	115	1	MR25	METAL FILM
R 2011	5322 116 54444	53+6	1	MR25	METAL FILM
R 2012	5322 116 50527	33,2	1	MR25	METAL FILM CARBON
R 2013	4822 111 30067 5322 116 50635	33 1,47K	5 1	CR16 MR25	METAL FILM
R 2014 R 2016	5322 116 50635	1,47K	i	MR25	METAL FILM
R 2017	4822 111 30067	33	5	CR16	CARBON
R 2018	4822 111 30245	47	5 1	CR16 MR25	CARBON METAL FILM
R 2019	5322 116 54494 5322 116 54549	187 1K	i	MR25	METAL FILM
R 2021 R 2022	5322 116 54536	750	1	MR25	METAL FILM
R 2023	4822 111 30067	33	5	CR16	CARBON
R 2024	4822 111 30067	33	5	CR16	CARBON

				L	
ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	PEMARKS
R 2025	5322 116 54565	1,62K	1	MR25	METAL FILM
R 2026	5322 116 50586	1,54K	1	MR25	METAL FILM
R 2027 R 2028	5322 116 54497 4822 111 30067	226 33	1 5	MR25 CR16	METAL FILM CARBON
R 2028 R 2029	5322 116 54549	îĸ	í	MR 25	METAL FILM
R 2031	5322 116 54549	1K	1	MR25	METAL FILM
R 2032	5322 116 50586	1+54K	1	MR25	METAL FILM
R 2033 R 2034	4822 111 30067 5322 116 54504	33 274	1	CR16 MR25	CARBON Metal Film
R 2034 R 2036	4822 111 30245	47	ŝ	CR16	CARBON
R 2037	5322 116 54595	5,11K	ì	MR 25	METAL FILM
R 2038	4822 111 30067	33	5	CR16	CARBON
R 2039	5322 116 50592 5322 116 50492	442 46+4	1	MR 25 MR 25	METAL FILM METAL FILM
R 2041 R 2042	5322 116 54513	332	i	MR25	METAL FILM
R 2043	5322 116 54536	750	ī	MR25	METAL FILM
R 2044	4822 111 30067	33	5	CR16	CARBON
R 2101	5322 116 54469 5322 116 50482	100 33,2K	1 1	MR25 MR25	METAL FILM METAL FILM
R 2102 R 2103	5322 116 54469	100	î	MR25	METAL FILM
R 2104	4822 110 63196	2.24	10	CR25	CARBON
R 2100	5322 116 50479	15+4K	1	MR25	METAL FILM
R 2107	5322 100 10114	4+7K	20	0.5W MR25	TRIMMING POTM METAL FILM
R 2108 R 2109	5322 116 54655 5322 116 50484	30+1K 4+64K	1 1	MR25	METAL FILM
R 2111	5322 116 54732	237K	ī	MR 25	METAL FILM
R 2112	4872 110 60184	750K	5	CR25	CARBON
R 2113	5322 116 54619	10K 1,54K	1	MR 25 MR 25	METAL FILM METAL FILM
R 2114 R 2116	5322 116 50586 5322 116 54712	147K	1	MR25	METAL FILM
R 2117	5322 116 50636	2,74K	ĩ	MR 25	METAL FILM
R 2118	5322 116 50415	1,15K	1	MR 25	METAL FILM
R 2119	5322 116 54549	1K 22+6K	1	MR 25 MR 25	METAL FILM METAL FILM
R 2121 R 2122	5322 116 50481 5322 116 54592	4,02K	i	MR 25	METAL FILM
R 2123	5322 116 50664	2.05K	1	MR25	METAL FILM
R 2124	5322 100 10114	4+7K	20	0.5W	TRIMMING POTM
R 2126	5322 116 54619 5322 116 54008	10K 4,75K	1	MR25 MR25	METAL FILM METAL FILM
R 2127 R 2128	5322 101 14008	2,2K	20	0.5W	TRIMMING POTM
R 2129	5322 116 54674	53,6K	1	MR25	METAL FILM
R 2131	5322 101 14142	. 220K	20	0+5W	TRIMMING POTM
R 2132	5322 116 54629 5322 116 54696	14K 100K	1 1	MR 25 MR 25	METAL FILM METAL FILM
R 2133 R 2134	5322 116 50664	2,05K	i	MR 25	METAL FILM
R 2136	5322 116 54696	100K	1	MR 25	METAL FILM
R 2137	5322 116 54661	34+8K	1	MR 25	METAL FILM
R 2138	5322 116 54661 5322 116 54674	34+8K 53+6K	1 1	MR 25 MR 25	METAL FILM METAL FILM
R 2139 R 2140	5322 116 54549	1K	i	MR25	METAL FILM
R 2141	5322 100 10113	10K	20	0 . 5W	TRIMMING POTM
R 2142	5322 116 54661	34,8K	1	MR25	METAL FILM
R 2143	5322 116 54743 5322 116 54696	301K	1 1	MR25 MR25	METAL FILM METAL FILM
R 2144 R 2146	5322 116 54469	100	i	MR25	METAL FILM
R 2147	5322 116 50729	4,22K	ĺ	MR25	METAL FILM
R 2148	5322 116 54549	1K	1	MR 25	METAL FILM
R 2149	5372 100 10113	10K 715	20 1	0 ; 5 H MR 2 5	TRIMMING POTM METAL FILM
R 2151 R 2153	5322 116 50571 5322 116 50556	715 4,42K	i	MR25	METAL FILM
R 2154	5322 116 54696	inok	1	MR 25	METAL FILM
R 2156	5322 116 54671	47,5K	1	MR 25	METAL FILM
R 2157	5322 116 50536 5322 116 54732	464 237K	1	MR 25 MR 25	METAL FILM METAL FILM
R 2158 R 2159	4822 110 60184	750K	5	CR25	CARBON
R 2161	5322 116 54619	10K	1.	MR 25	METAL FILM
R 2162	5322 116 54619	10K	1	MR 25	METAL FILM
R 2163	5322 116 54595 5322 116 54595	5+11K 5+11K	1	MR25 MR25	METAL FILM METAL FILM
R 2164	3356 TIO 34333	24772	,	OBCA	क्रारक्ला ह्याचनीडें

ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
R 2160	4822 110 63178	470K	5	CR25	CARBON
R 2167	5322 101 14142	220K	20	0,5W 0.5W	TRIMMING POTM TRIMMING POTM
R 2168	5322 101 14069 5322 116 54005	22K 3,32K	20 1	MR25	METAL FILM
R 2169 R 2170	5322 116 54008	4.75K	i	MR25	METAL FILM
R 2171	5322 116 54005	3,32K	1	MR25	METAL FILM
R 2172	5322 116 54006	392	1	MR25	METAL FILM
R 2173	5322 116 54649 5322 116 54008	25,5K 4,75K	1	MR25 MR25	METAL FILM METAL FILM
R 2178 R 2179	5372 116 54661	34+8K	i	MR25	METAL FILM
R 2181	5322 116 54696	100K	1	MR25	METAL FILM
R 2182	5322 116 54619	10K	ļ	MR25	METAL FILM METAL FILM
R 2183	5322 116 54629 5322 116 54006	14K 392	1	MR25 MR25	METAL FILM
R 2184 R 2186	5322 116 50452	10	i	MR25	METAL FILM
R 2187	5322 116 50442	48.7K	1	MR25	METAL FILM
R 2188	5322 116 50572	12.1K	1	MR25	METAL FILM
R 2189	5322 100 10114	417K	20	0.5W	TRIMMING POTM METAL FILM
R 2191 R 2192	5322 116 50572 5322 116 50442	12•1K 48•7K	1	MR25 MR25	METAL FILM
R 2193	5322 116 50593	16.2K	î	MR25	METAL FILM
R 2194	5322 116 50593	16+2K	1	MR25	METAL FILM
R 2196	5322 116 54655	30+1K	1	MR25	METAL FILM
R 2197 R 2198	5322 116 55164 5322 116 54549	22,6K 1K	1	MR30 MR25	METAL FILM METAL FILM
R 2199	5322 116 54549	ik	i	MR25	METAL FILM
R 2201	5322 116 54469	100	1	MR 25	METAL FILM
R 2202	5372 116 54639	19•1K	1	MR25	METAL FILM
R 2203 R 2204	5322 116 50608 5322 116 54502	6,19K 261	1	MR25 MR25	METAL FILM METAL FILM
R 7200	5322 116 50608	6,19K	î	MR25	METAL FILM
R 2207	5322 116 54469	100	1	MR25	METAL FILM
R 2208	5322 116 54533 5322 100 10114	665 4,7K	1 20	MR 25	METAL FILM
R 2209 R 2211	5322 116 54576	2,37K	1	0.5W MR25	TRIMMING POTM METAL FILM
R 2212	5322 116 54524	499	ĭ	MR25	METAL FILM
R 2301	5322 116 50524	3,01K	1	MR25	METAL FILM
R 2302 R 2303	5322 116 54508 4822 111 30067	301 33	1 5	MR25 CR16	METAL FILM Carbon
R 2304	5322 116 50524	3,01K	í	MR 25	METAL FILM
R 2306	4822 111 30347	10	5	CR16	CARBON
R 2307	5322 116 50492	46+4	1	MR25	METAL FILM
R 2308 R 2309	5322 116 54464 5322 116 34036	8616 47	1 5	MR25 0.5W	METAL FILM NTC
R 2311	5322 116 50492	46.4	ĺ	MR25	METAL FILM
R 2312	5322 116 50568	4,99	1	MR25	METAL FILM
R 2313	5322 116 54464	86,6 10	1 5	MR25 CR16	METAL FILM
R 2314 R 2316	4822 111 30347 4822 111 30067	33	. 5	CR16	CARBON Carbon
R 2317	5322 116 50515	1,78K	1	MR25	METAL FILM
R 2319	5322 116 54005	3,32K	1	MR 25	METAL FILM
R 2322 R 2323	5322 116 50452 5322 116 50571	10 715	1	MR25 MR25	METAL FILM METAL FILM
R 2324	4822 111 30245	47	5	CR16	CARBON
R 2326	4822 111 30067	33	5	CR16	CARBON
R 2327	4822 111 30067	33	5	CR16	CARBON
R 2328 R 2329	5322 116 54576 5322 116 54587	2,37K 3,65K	1	MR25 MR25	METAL FILM METAL FILM
R 2331	4822 111 30067	33	ż	CR16	CARBON
R 2332	4822 111 30067	33	5	CR16	CARBON
R 2333	5322 116 50571	715	1	MR25	METAL FILM
R 2334 R 2336	4822 111 30245 5322 116 50452	47 10	5 1	CR16 MR25	CARBON METAL FILM
R 2337	5322 116 50442	48,7K	i	MR25	METAL FILM
R 2338	5322 100 10113	10K	20	0 , 5W	TRIMMING POTM
R 2339	4822 111 30067	33	5	CR16	CARBON
R 2341 R 2342	5322 116 54492 4822 110 63067	178 33	1 5	MR25 CR25	METAL FILM Carbon
R 2343	4822 111 30067	33	5	CR16	CARBON
• •					

					•
ITEM	URDERING NUMBER	OHM	TOL (%)	TYPE	REMARKS
	£122 114 £4462	178	1	MR25	METAL FILM
R 2344 R 2346	5322 116 54492 4822 110 63067	33	5	CR25	CARBON
R 2347	5322 116 54515	348	ī	MR 25	METAL FILM
R 2348	5322 116 54005	3,32K	1	MR25	METAL FILM
R 2349	4822 111 30067	33	5	CR16	CARBON
R 2351	5322 116 54613	8,66K	1	MR25	METAL FILM
R 2352	5322 116 50926	40+2	1	MR25	METAL FILM METAL FILM
R 2353	5322 116 50926 5322 116 50556	4012 4142K	1	MR25 MR25	METAL FILM
R 2354 R 2356	5322 100 10143	1K	20	0.75	TRIMMING POTM
R 2357	5322 116 54589	3,83K	ī	MR25	METAL FILM
R 2358	5322 116 54519	402	1	MR25	METAL FILM
R 2359	5322 116 54012	6,81K	1	MR25	METAL FILM
R 2361	5322 116 50483	38+3K 47K	1 20	MR25 0,5W	METAL FILM TRIMMING POTM
R 2362	5322 101 14048 4822 111 30067	33	. 5	CR16	CARBON
R 2363 R 2364	5322 116 50481	22.6K	ĺ	MR25	METAL FILM
R 2366	4822 111 30324	100	5	CR16	CARBON
R 2367	5322 116 50452	10	1	MR25	METAL FILM
R 2368	5322 116 50926	40+2	1	MR25	METAL FILM
R 2369	5322 116 50926	40+2	1	MR25	METAL FILM CARBON
R 2371	4822 111 30324	100 33,2	5 1	CR16 MR25	METAL FILM
R 2372	5322 116 50527 5322 116 54585	3,48K	1	MR25	METAL FILM
R 2373 R 2374	5322 116 50581	2,49K	î	MR 25	METAL FILM
R 2375	4822 111 30067	33	5	CR16	CARBON
R 2376	5322 116 54585	3,48K	1	MR25	METAL FILM
R 2377	5322 116 54585	3,48K	1	MR 25	METAL FILM METAL FILM
R 2378	5322 116 50581 5322 116 54585	2,49K 3,48K	1	MR25 MR25	METAL FILM
R 2379 R 2380	5322 116 54585 4822 111 30067	33	5	CR16	CARBON
R 2380 R 2381	5322 116 50527	3312	1	MR 25	METAL FILM
R 2391	4822 111 30067	33	5	CR16	CARBON
R 2392	4822 111 30067	33	5	CR16	CARBON
R 2393	5322 116 54469	100	1 5	MR25 CR16	METAL FILM CARBON
R 2394	4822 111 30067 5322 116 54469	33 100	í	MR25	METAL FILM
R 2397 R 2398	5322 116 54469 5322 116 50621	536	i	MR25	METAL FILM
R 2399	4822 111 30067	33	5	CR16	CARBON
R 2401	5322 116 50524	3+01K	1	MR25	METAL FILM
R 2402	5322 116 54613	8,66K	1	MR25	METAL FILM METAL FILM
R 2404	5322 116 54469	100 100	1 5	MR25 CR16	CARBON
R 2413	4822 111 30324 4822 111 30324	100	ź	CR16	CARBON
R 2414 R 2416	4822 111 30067	33	5	CR16	CARBON
R 2417	5322 116 54536	750	1	MR 25	METAL FILM
R 2418	5322 116 54536	750	1	MR25	METAL FILM
R 2419	5322 116 54005	3+32K 33	1 5	MR25 CR16	METAL FILM CARBON
R 2421	4822 111 30067 5322 116 54608	7•5K	í	MR25	METAL FILM
R 2422 R 2423	5322 116 50492	4614	i	MR25	METAL FILM
R 2424	5322 116 50492	4614	1	MR 25	METAL FILM
R 2426	5322 116 50675	2,26K	. 1 .	MR25	METAL FILM
R 2427	5322 116 50414	2,87K	1	MR25	METAL FILM
R 2428	5322 100 10143	1K	20	0+75W MR25	TRIMMING POTM METAL FILM
R 2429	5322 116 50676 5322 116 50676	196 196	1	MR25	METAL FILM
R 2431	4822 111 30067	33	5	CR16	CARBON
R 2432 R 2433	4822 111 30067	33	5	CR16	CARBON
R 2434	5322 116 54536	750	1	MR25	METAL FILM
R 2436	5322 116 54536	750	1	MR 25	METAL FILM
R 2437	5322 116 54005	3,32K	1 5	MR25 CR16	METAL FILM CARBON
R 2438	4822 111 30067	33 7•5K	1	MR 25	METAL FILM
R 2439	5322 116 54608 5322 116 54561	1+33K	i	MR25	METAL FILM
R 2441 R 2442	5322 116 54504	274	i	MR 25	METAL FILM
R 2444	5322 116 54462	82,5	1	MR 25	METAL FILM
R 2446	5322 116 54504	274	1	MR 25	METAL FILM
R 2447	5322 116 50581	2,49K	1	MR 25	METAL FILM METAL FILM
R 2448	5322 116 54561	1,33K 33	1 5	MR25 CR16	CARBON
R 2449	4822 111 30067	33	J	CUIO	चाप्रधार सहस्र चर्चित्र

Fig. 3.15. Unit location, top view

Fig. 3.16. Unit location, bottom view

Fig. 3.17. Electrical item numbers, front plate

Fin 2 20 Circuit diagram intermediate amnlifier

C [23] C [28]

RE 106

RE 107

RE 108

· 1C102

RE1.09

0 0 0 0 0

0

0

0 O 0 Ç

0

O

R122

RE 101

لطب ملطب

CIII)

लक्

RE112

0 0

Fig. 3.18. Circuit diagram attenuator

MA 9624 Fig. 3.19. Component lay-out attenuator

-R127

---R139

0

Fig. 3.21. Component lay-out intermediate amplifier with multiplier

Fig. 3.22. As Fig. 3.21. but with incorporated H.F. compensation circuits

Fig. 3.23. Circuit diagram multiplier

Fig. 3.24. Circuit diagram final Y amplifier

Fig. 3.25. Circuit diagram trigger source unit

Fig. 3.30. Component lay-out blanking amplifier

Fig. 3.31. Circuit diagram variable persistance/storage

ERASE

Fig. 3.32. Some wave-forms in the variable persistence/storage circuit

Fig. 3.33. Component lay-out variable persistence/storage

(mulliple)

Fig. 3.36. Circuit diagram probe power

Fig. 3.37. Circuit diagram 2 kV unit with h.t. rectifier

Fig. 3.38. Circuit diagram power supply unit

C.R.T. HEATER SUPPLY P.C. BOARD

Fig. 3.39. Component lay-out power supply unit

		•					
							1
	•				-		
						-	
					•		
							7.
			•				
							:

154

CODING SYSTEM OF FAILURE REPORTING FOR QUALITY ASSESSMENT OF T & M INSTRUMENTS

(excl. potentiometric recorders)

The information contents of the coded failure description is necessary for our computerized processing of quality data.

Since the reporting of repair and maintenance routines must be complete and exact, we give you an example of a correctly filled-out PHILIPS SERVICE Job sheet.

Country Day Month Year Ty	penumber	A4!	r . /o		
		/Version	Factory/Serial no.		
3 2 1 5 0 4 7 5 0	P M 3 2 6	0 0 2	D 0 0 0 7 8 3		
CODED FAILURE DESCRIPTION 6					
\$					
Nature of call Location	Componen	t/sequence no. Ca	ategory		
Installation Pre sale repair Preventive	T S 0 6 R 0 0 6 9 9 0 0	3 1 2	Job completed Working time 8 1 2 Hrs		
Detailed description of the information t	to be entered in t	the various boxes:			
①Country: 3 2 = Switzerland					
②Day Month Year 1 5 0 4 7 5 =	15 April 1975	•			
③Type number/Version O P M 3 2 6 0 0 2 = Oscilloscope PM 3260, version 02 (in later oscilloscopes this number is placed in front of the serial no)					
(4) Factory/Serial number D 0 0 7 8 3 = D0 783 These data are mentioned on the type plate of the instrument					
⑤ Nature of call: Enter a cross in the relevant box ⑥ Coded failure description					
Location Co	omponent/seque	nce no.	Category		
to isolate the problem area. Write the code of the part in which the fault occurs, e.g. unit no or mechanical item no of this part (refer to 'PARTS LISTS' in the manual). Example: 0001 for Unit 1 000A for Unit A 0075 for item 75 If units are not numbered, do not fill in the four boxes; see Example Job sheet. genumber of the part in A. ded did did did did in the four boxes occurs, e.g. unit in the four boxes occurs genumber	graticule, 20002 Knob (index.) 20003 Probe (on to instrum 20004 Leads and 20005 Holder (v fuse, boar 20006 Complete board, h.	y component. ponent d in the circuit signation is etters must be rom the left) nd boxes and be written (in he last digit most box) in d boxes. ified in the //Not applicable r rack (text blem, grip, rail, etc.) cl. dial knob, cap, ly if attached hent) d associated plugs alve, transistor, rd, etc.) unit (p.w. t. unit, etc.) r (only those ype number) tation (manual, nt, etc.)	O Unknown, not applicable (fau not present, intermittent or disappeared) 1 Software error 2 Readjustment 3 Electrical repair (wiring, solder joint, etc.) 4 Mechanical repair (polishing, filing, remachining, etc.) 5 Replacement (of transistor, resistor, etc.) 6 Cleaning and/or lubrication 7 Operator error 8 Missing items (on pre-sale test) 9 Environmental requirements and not met		

- ① Job completed: Enter a cross when the job has been completed.
- ® Working time: Enter the total number of working hours spent in connection with the job (excluding travelling, waiting time, etc.), using the last box for tenths of hours.
- 1 2 = 1,2 working hours (1 h 12 min.)

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

1977-03-28

TEST AND MEASURING EQUIPMENT

OSC 6

MULTIPLIER-STORAGE OSCILLOSCOPE

PM 3243

Re.: a. Suppression of ripple and jitter

b. Time-base sweep time accuracy

a. In order to suppress ripple on the trace, spurious intensity modulation and delayed time-base jitter, the filtering of some supply voltages has been improved.

Four electrolytic capacitors have been added:

- Between +6 V and earth, and between -6 V and earth, each a 330 muF 10 V capacitor.
- Between +12 V and earth, and between -12 V and earth, each a 150 muF 16 V capacitor These capacitors have been mounted on the power distribution p.c. board located at the inner side of the rear panel of the instrument.

Moreover the 9,53 ohms resistors R533, R536, R538 and R539 (+6 V attenuator filtering) located on the intermediate amplifier unit have been changed to 20,5 ohms each; refer to Fig. 1.

Above modification is present in instruments from serialnr D725 onwards.

b. In some instruments the sweep times (main- and delayed time-base) of $2 \,\mu s/DIV$ and shorter may be approx. 3 % too long.

In these instruments capacitors C866 and C1059 are probably 453 pF each. Changing these capacitors to 442 pF improves the sweep time accuracy in above mentioned time-base range; refer to Fig. 2 and 3.

Codenumbers:

 Capacitors 4822 124 20465 330 muF 10 V d.c. 4822 124 20586 150 muF 16 V d.c. 4822 121 50549 442 pF 1%

- Resistors

5322 116 50678 20,5 ohms MR25 1 %

Fig. 1. R533, R536, R538 and R539 on intermediate amplifier unit

Fig. 2. C866 (MTB) on time-base unit

Fig. 3. C1059 (DTB) on time-base unit

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Weiding Equipment / X-Ray Analytical Equipment

equipment for science and industry

800311

TEST AND MEASURING EQUIPMENT

OSC63

OSCILLOSCOPES

SUBJECT: Upper and lower cabinet plates (complete) (new service ordering codes)

PM 3240 - PM 3244 - PM 3260 - PM 3261 - PM 3265

(without holes)

UPPER CABINET PLATE LOWER CABINET PLATE

5322 447 94147

5322 447 94146

PM 3262 (with holes)

UPPER CABINET PLATE LOWER CABINET PLATE

5322 447 94574

5322 447 94575

PM 3243

(without holes)

UPPER CABINET PLATE LOWER CABINET PLATE

5322 447 94602

5322 447 94603

PM 3263 - PM 3266

(with holes)

UPPER CABINET PLATE LOWER CABINET PLATE

5322 447 94482

5322 447 94483

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

800731

TEST AND MEASURING EQUIPMENT

OSC 73

Concerns:

The 50 MHz Storage, Multiplier Oscilloscope PM3243.

Already published:

OSC 38 for manual 9499 440 17102

OSC 57 for manual 9499 440 20302

Subject:

Modifications to change the memory-off voltage from -36V to -48V.

This service information sheet will be packed together with a c.r.t. for the PM 3243, which needs a -48V memory-off voltage on the memory mesh G9.

In older instruments (up to PM 3243/05) this memory-off voltage is -36V.

See manual 9499 440 17102, fig. 3.31, SK20 point 3 (READ).

Starting with the PM 3243/05 this memory-off voltage is changed in -48V.

See manual 9499 443 00902, fig. 3.45, SK20 point 3 (READ).

To adapt an older instrument to a new c.r.t., which needs a memory-off voltage of -48V, the following modifications must be made:

- 1. Remove the variable persistence and storage unit as indicated in manual 9499 443 00902, section 3.4.6.
- 2. Interrupt the track (on the track-side of the p.w.b.) between point 3 of SK20B (READ) and the anode of GR2117 as indicated in fig. 1 (A)
- 3. Remove resistor R2197 (22k6)
- 4. Solder one side of a resistor of 20k5 (5322 116 55255) on the point, which is connected with C2117 as indicated in fig. 1 (B) (on the component side of the p.w.b.)
- 5. Solder between the resistor of 20k5 and the anode of the zenerdiode GR2117 a zenerdiode (GR2115) BZX 79 C12 (4822 130 34197). The cathode of GR2115 to the anode of GR2117 (see fig. 1)
- 6. Mount an interconnection wire between the anode of GR2115 (fig. 1 (C)) and point 3 of the switch SK20B (READ)
- 7. Mount the unit in the instrument.

Fig. 1. Part of variable persistence and storage unit.

9499 448 14811

PRINTED IN THE NETHERLANDS

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Messuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

810126

TEST AND MEASURING EQUIPMENT

OSC 89

OSCILLOSCOPE PM 3243

Already published:

- OSC 6, OSC 10, OSC 38 belonging to manual 9499 440 17102 for the PM 3243
 - up to version 08.
- manual 9499 443 00902 for the PM 3243/08

Subject:

Modifications to manual 9499 443 00902 for the PM 3243/08 and following versions.

Contents:

- 1. Z-amplifier (unit 11 B 1301).
- 2. 2kV converter (unit 6 R 1508).
- 3. Memory off voltage (unit 7).
- 4. Final Y amplifier (unit 13 TS 604, TS 608).
- 5. Power supply (unit 5 R 1826).
- 6. Variable persistence/storage (unit 7 GR 2111).
- 7. Earthing of the rear cabinet plate.
- 8. Removing the carrying handle.

1. Z-amplifier (unit 11).

The neon-tube B 1301 (ZA 1004) is no longer available.

This neon-tube can only be replaced by a temperature independent circuit (see fig. 1), to get a stabilised voltage drop between the cathode and g1 of the c.r.t.

Fig. 2. Part of Z-unit (fig. 3.42 and 3.43 of the manual).

Parts list:

TS1	BF 423	4822 130 41543
TS2	BF 423	4822 130 41543
GR1	BZX 79C 7V5	4822 130 30861
R1	56K2	4822 116 51264
R2	536K	5322 116 54758

If the neon-tube must be replaced, proceed as follows:

- Solder the parts together as indicated in fig. 2.
- Solder the collectors of the two transistors on points E and D of the Z-amplifier.
- Solder the resistors R1 and R2 and the diode GR1 on the points A, B and C of the Z-amplifier (see fig. 2.).
- Readjust the Minimum Intensity (R 1329) as described in section 3.8.6.3 of the manual.
- Check the Intensity Ratio (R 1115) as described in section 3.8.6.5 of the manual.
- Readjust the Just Black Level (R 2168) and check the Intensity Max. Write as described in section 3.8.5.2

2. 2kV converter (unit 6).

To improve the performance of this unit resistor R 1508 is changed to 24k9, ordering number 5322 116 54648

3. Memory-off voltage (unit 7).

Starting with the PM 3243/05 the memory-off voltage is changed from -36V to -48V (memory-mesh G9). Together with a new c.r.t., which needs a memory-off voltage of-48V, service information sheet OSC 73 is packet. This OSC 73 describes the modifications which must be made to change the memory-off voltage from -36V to -48V.

4. Final Y amplifier (unit 13).

The transistors TS 604 and TS 608 are changed to:

BFX 48 ordering number 5322 130 40208

This modification is introduced because the FW 5324 is no longer available.

5. Power supply (unit 5).

To prevent starting problems of the power supply at high mains voltages and at high temperatures resistor R 1826 is changed to 10k5, ordering number 5322 116 50731

6. Variable persistence/storage unit (unit 7).

The zenerdiode GR 2111 is changed to BZX 79 C 16 ordering number 4822 130 34268

This modification is introduced to increase the maximum positive voltage level of the Just Black potentiometer R 2168 from + 13V to + 16V.

The amplitude of the erase-pulse (600 ms) can now be adjusted to maximum + 16V.

The specifications of the c.r.t. L 14 - 111 GH/55 indicate that some c.r.t.'s need an erase-pulse of + 15V.

So if the Just Black level can not be reached in older instruments replace GR 2111.

7. Earthing of the rear cabinet plate.

The earthing of the rear cabinet plate is improved for safety purposes.

The rear cabinet plate must be mounted with two screws, toothed rings and lock-washers on the cabinet.

8. Removing the carrying handle.

When the carrying handle can not be removed as described in the manual, proceed as follows:

- Remove the upper and lower cabinet plates.
- Remove the plastic strip which is snapped on to the grip.
- Remove the four screws which secure the grip to the brackets (these screws have been locked with a 3. sealing varnisch).
- Depress the push-buttons in the brackets and turn the carrying handle as far as possible to the upper side of the oscilloscope.
- Keep the push-button of the right-hand bracket depressed and pull the bracket from its bearing 1) 5.
- Remove the grip from the remaining bracket.
- Depress the push-button of the left-hand bracket and turn the latter as far as possible to the lower side 7. of the instrument.
- Keep the push-button depressed and pull the bracket from its bearing. 8.

If it is impossible to remove the left-hand bracket in this way, remove also its bearing in a similar way as described in footnote 1).

- 1) With some instruments it may be impossible to remove the handle in the described way. This is due to an extra securing plate in the right-hand bearing. In that case, DO NOT USE FORCE, but work in accordance with the following procedure which replaces points 3, 4 and 5.
 - 3. Remove the two screws which secure the grip to the right-hand bracket.
 - 4. Remove the two hexagonal bolts which secure the right-hand bearing to the side strip.
 - 5. Depress the push-button of the right-hand bracket and take the bearing from the bracket.

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

820129

TEST AND MEASURING EQUIPMENT

OSC115

OSCILLOSCOPE PM3243

Already published:

OSC6, OSC10, OSC38 modifications to manual 9499 440 17102 for the PM3243

up to version 08.

- Manual 9499 443 00902 for the PM3243/08.
 OSC89, modifications to manual 9499 443 00902.
- OSC114, power supply modifications (TS1803).

Subjects:

- 1. Modifications to manual 9499 443 00902.
- 2. Y-attenuator modifications (R133, R104 and R116).
- 3. Power supply modifications.
- 1. Modifications to manual 9499 443 00902.
- 1.1. Mechanical parts top view (page 166).

Additional code numbers:

- Cast aluminium rear plate for all versions: 5322 447 94504.
- Cast aluminium front plate for all versions: 5322 459 84023.
- 1.2. Parts list (Resistors, page 179).

The ordering numbers of the following potentiometers must be changed into:

R1 5322 103 54027

5kΩ 2W

R2 5322 101 44015

50k Ω

1.3. Component lay-out power supply (fig. 3.50).

The connections of TS1808 indicated in the p.c.b. drawing must be changed into:

TOP VIEW TS1808

1.4. Circuit diagram power supply (fig. 3.52).

The position-number of the thyristor BRY39 must be changed from TS1801 into TS1808.

1.5. Survey of adjusting elements and checking procedure of the power supply.

In the "Survey of adjusting elements" (chapter 3.8.3, page 145) and in the checking procedure (page 149) of the power supply the + 15V output voltage must be changed into + 12V output voltage (+ or -120mV).

2. Y-attenuators modifications.

- During production of the PM3243/09 the resistor R133 is changed to 86k6, ordering number 5322 116 54692, to improve the LF gain adjustment.
- The resistors R104, 88k9 MR24C and R116, 8k08 MR24C are obsolete and are replaced by:

R104 88k9 MPR24 5322 116 51466 R116 8k08 MPR24 5322 116 51465

3. Power supply modifications.

- 3.1. The ordering number of the NTC resistor R1851 (22 Ω) is changed into 5322 116 30214.
- 3.2. Selected transistor pair BU126 (TS1803) is obsolete.

Transistor pair BU126 is replaced by a modification kit, which also improves the starting up of the power supply.

The kit that will be delivered under the same ordering number as transistor pair BU126, 5322 130 44406 consists of:

- 2 selected transistors BUX82 TS1803 - electrolytic capacitor 47 μ F, 63V C1835

- 2 ceramic capacitors 22NF C1851 and C1855

- resistor 100 Ω MR25 R1813

- 2 resistors 4,64 Ω MR25 R1852 and R1853

- service information OSC114.

The following modifications must be made:

(see also the figures below).

- 1. Mount the selected transistors BUX82 (TS1803).
- 2. Remove capacitor C1835 (47NF).
- 3. Remove the diodes GR1821 and GR1822.
- 4. Resistor R1813 must be changed to 100 Ω .
- 5. Remove resistor R1854.
- 6. The resistors R1852 and R1853 must be changed to 4,64 Ω .
- 7. Remove resistor R1808 and capacitor C1851.
- 8. Mount a capacitor of 22NF (C1851) in parallel with R1833.
- 9. Mount a capacitor of 22NF (C1855) in parallel with R1813.
- 10. Mount an electrolytic capacitor of 47μ F, 63V (C1835) between the cathode of GR1814 and C1815 (emitter of TS1803).

Part of modified circuit diagram

Part of modified printed circuit board.

- 3.3. The following important modifications must be carried out on all power supplies of the PM3243 that come into the workshop for repair or recalibration:
 - To prevent that the power supply reacts too slow on a sudden short-circuit condition, the following modification must be made: remove capacitor C1860 and mount between anode and anode-gate of TS1808 (BRY39) a resistor of $10k\Omega$ (MR25): 5322 116 54619.
 - To improve the "switching series regulator" circuit the following modifications must be made:
 - 1. Remove diode GR1810 (BAX12).
 - 2. Replace the electrolytic capacitor C1810 (220 μ F) by a capacitor of 470NF, type nugget 100V ordering number: 5322 121 40175.
 - 3. Replace the resistor R1848 (511 Ω) by a resistor with a value of 61,9 Ω , type MR25, ordering number: 5322 116 54451.
 - 4. Mount in parallel with R1818 (82 Ω) a resistor of 237 Ω , type MR25, ordering number: 5322 116 50679.

Check the output voltages as follows:

Connect the instrument to the mains voltage and check the +45V output voltage. This output must be +45V + or -100mV; if necessary readjust R1828.

Sales and service all over the world

Alger: Sadetel; 41 Rue des Frères Mouloud Alger; tel. 656613-656607

Argentina: Philips Argentina S.A., Cassila Correo 3479, Buenos Aires; Tel. T.E. 70, 7741 al 7749

Australia: Philips Scientific & Industrial Equipment, Centre Court, 25 - 27 Paul Street, North Ryde, Sydney 2113 N.S.W.

Bangla Desh: Philips Bangla Desh Ltd. P.O. Box 62; Ramna, Dacca, tel. 28332

België/Belgique: M.B.L.E. Philips Bedrijfsapparatuur, 80 Rue des Deux Gares, Bruxelles; tel. 02/13.76.00

Bolivia: Industrias Bolivianas Philips S.A. LA Jón postal 2964 La Paz tel. 50029

Brasil: S.A. Philips Do Brasil; Avenida Paulista 2163; P.O. Box 8681; Sao Paulo S.P.; tel. 81-2161

Burundi: Philips S.A.R.L., Avenue de Grèce B.P. 900, Bujumbura

Canada: Philips Test and Measuring Instruments Inc.; 6 Leswyn Road, Toronto (Ontario)

Chile: Philips Chiléna S.A., Casilla 2687, Santiago de Chile; tel. 94001

Colombia: Industrias Philips de Colombia S.A., Calle 13 no. 51–03, Apartado Aered 4282, Bogota; tel. 473640

Costa Rica: Philips de Costa Rica Ltd., Apartado Postal 4325, San José; tel. 210111

Danmark: Philips Elektronik Systemer A/S Afd. Industri & Forskning; Strandlodsvej 4 2300-Kobenhavn S; tel. (0127) AS 2222; telex 27045

Deutschland (Bundesrepublik): Philips GmbH Unternehmensbereich Elektronik für Wissenschaft und Industrie. Postfach 120, 35 Kassel-Bettenhausen, Miramstrasse 87, tel. (0561) 501521

Ecuador: Philips Ecuador S.A., Casilla 343, Quito; tel. 239080

Egypt: Ph. Scientific Bureau 1687, 5 Sherif Str. Cairo — A.R. Egypt P.O. Box 1807; tel. 78457-57739

Eire: Philips Electrical (Ireland) Ltd., New stead, Clonskeagh, Dublin 14; tel. 976611

El Salvador: Philips de El Salvador, Apartado Postal 865, San Salvador; tel. 217441

España : Philips Iberica S.A.E., Dpto Aparatos de Medida, Martinez Villergas 2, Madrid 27; tel. 404—2200

Ethiopia: Philips Ethiopia (Priv. Ltd. Co.), P.O.B. 2565; Ras Abebe Areguay Avenue, Addis Abeba; tel. 48300

Finland: Oy Philips Ab, Kaivokatu 8, P.O. Box 255, 00101 Helsinki 10

France: Philips Industrie, Division de la S.A. Philips Industrielle et Commerciale 105 Rue de Paris, 93 002 Bobigny; tel. 830-11-11

Ghana: Philips (Ghana) Ltd., P.O.B. M 14, Accra; tel. 66019

Great Britain: Pye Unicam Ltd, York Street, Cambridge; tel. (0223) 58866

Guatemala: Philips de Guatemala S.A., Apartado Postal 238, Guatemala City; tel. 64857 Hellas: Philips S.A. Hellénique, 54, Ave Syngrou, Athens; tel. 230476, P.O. Box 153

Honduras: Hasbun de Honduras Apartado Postal 83, Tegucigalpa; tel. 2-9121...5

Hong Kong: Philips Hong Kong Ltd, P.O.B, 2108, St. George's Building, 21st floor, Hong Kong,; tel. 5–249246

India: Philips India Ltd., Shivsagar Estate, Block "A", Dr. Annie Besant Road, P.O.B. 6598, Worli, Bombay 18; tel. 370071

Indonesia: P.T. Philips Development Corporation, Jalan Proklamasi 33, P.O.B. 2287 Jakarta; tel. 51985-51986

Iran: Philips Iran Ltd., P.O.B. 1297, Teheran; tel. 662281

Iraq: Philips Iraq W.L.L. Munir Abbas Building 4th floor; South Gate, P.O. box 5749 Baghdad; tel. 80409

Island: Heimilistaeki SF, Saetún 8, Reykjavik; tel. 24000

Islas Canarias : Philips Ibérica S.A.E., Triana 132, Las Palmas; Casilla 39-41, Santa Cruz de Tenerife

Italia: Philips S.p.A., Sezione PIT; Viale Elvezia 2, 20052 Monza; tel. (039) 361-441; telex 35290

Kenya: Philips (Kenya) Ltd., P.O.B. 30554, Nairobi; tel. 29981

Kuwait: Delegate Office of Philips Industries P.O. Box 3801; Kuwait, tel. 33814

Malaysia: Philips Malaya Sdn Bhd. P.O. Box 332, Kuala Lumpur;/Selangor W. Malaysia; tel. 774411

Mexico: Philips Mexicana S.A. de C.V., Durango 167, Col. Roma, Apartado Postal 24—328, Mexico 7 D.F.

Nederland: Philips Nederland B.V., Boschdijk, Gebouw VB, Eindhoven; tel. 793333

Ned. Antillen: N.V. Philips Antillana, Postbus 523, Willemstad; tel. Curação 36222—

New Zealand: Philips Electronical Industries (N.Z.) Ltd., Professional and Industrial Division, Wakefield Street 181-195 P.O.B. 2097 Layll Bay, Wellington; tel. 73–156

Nigeria: Philips (Nigeria) Ltd., 6 Ijora Causeway, P.O.B. 1921, Lagos; tel. 45414/7

Nippon: Nihon Philips Coporation, Shuwa Shinagawa Building 26–33, Takanawa 3–Chome, Minato-Ku, Tokyo 108; tel. (03) 448–5611

Norge: Norsk A.S. Philips, Postboks 5040, Oslo; tel. 463890

Österreich: Oesterreichische Philips Industrie GmbH, Abteilung Industrie Elektronik, Partartgasse 32, A-1230 Wien; tel. (0222)-831501

Pakistan: Philips Electrical Co. of Pakistan Ltd., El-Markaz, M.A. Jinnah Road, P.O.B. 7101, Karachi; tel. 70071

Paraguay: Philips del Paraguay S.A., Casilla de Correo 605, Asuncion; tel. 8045-5536-6666

Perù: Philips Peruana S.A., Apartado Postal 2769. Lima; tel. 326070

Philippines: Philips Industrial Development Inc., 2246 Pasong Tamo P.O.B. 911, Makati Rizal D-708; tel. 889453 to 889456 **Portugal**: Philips Portuguesa S.A.R.L., Av. Eng. Duarte Pacheco, 6—Lisboa—1

Rwanda: Philips Rwanda S.A.R.L., B.P. 449, Kigali

Saoudi Arabia: A. Rajab and A. Silsilah P.O. Box 203 Jeddah - Saudi Arabia; tel. 5113–5114

Schweiz-Suisse-Svizzera: Philips A.G., Binzstrasse 15, Postfach 8027, Zürich; tel. 051–442211

Singapore: Philips Singapore Private Ltd. P.O. Box 1358; Toa Payoh Central Post Office; Singapore 12; tel. 538811

South Africa: South African Philips (Pty) Ltd., P.O.B. 7703, 2, Herb Street, New Doornfontein, Johannesburg; tel. 24—0531

S-Korea: Philips Electronics (Korea) Ltd., P.O.Box 3680, Seoul; tel. 737222

Sverige: Svenska A.B. Philips, Fack, Liding övägen 50, Stockholm 27; tel. 08/635000

Syria: Philips Moyen-Orient S.A. Rue Fardoss 79 Immeuble Kassas and Sadate B.P. 2442 Damas; tel. 18605—21650

Taiwan: Philips Taiwan Ltd., San Min Building, P.O. Box 22978, Taipei

Tanzania: Philips (Tanzania) Ltd., Box 20104, Dar es Salaam: tel. 29571

Thailand: Philips Thailand Ltd., 283, Silom Road, Bangkok; tel. 36980, 36984-9

Tunisia: S.T.I.E.T., 32815 Rue Ben Ghedhahem, Tunis.: tel. 244268

Turkey: Türk Philips Ticaret A.S., Posta Kutusu 504, Beyoglu, Gümüssüyü Caddesl 78/80 Istanbul 1 Turkey

Uganda: Philips Uganda Ltd. p.o.Box 5300 Kampala; tel. 59039

Uruguay: Industrias Philips del Uruguay Avda Uruguay 1287, Montevideo; tel. 915641 Casilla de Correo 294

U.S.A.: PhilipsTest and Measuring Instruments Inc.; 400 Crossways Park Drive, Woodbury, N.Y. 11797; tel. (516) 921-8880

Venezuela: C.A. Philips Venezolana, Apartado Postal 1167, Caracas; tel. 360511

Zaire: Philips S.Z.R.L., B.P. 1798, Kinshasa; tel. 31887-31888-31693

Zambia: Philips Electrical Ltd., Professional Equipment Division, P.O.B. 553 Kitwe; tel. 2526/7/8; Lusaka P.O. Box 1878

T&M/770101

For information on change of address: N.V. Philips' Gloeilampenfabrieken Test and Measuring Instrument Dept. Eindhoven - The Netherlands

For countries not listed: N.V. Philips S&I Export Dept.

N.V. Philips S&I Export Dept.
Test and measuring Instruments Dept.
Eindhoven - The Netherlands

DAILDS

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industriel Data Systems / Numerical Control / Philips Pollution Messuring / Radiation Messuring Equipment / Test and Messuring Equipment / Weiding Equipment / X-Ray Analytics! Equipment

equipment for science . and industry

800731

TEST AND MEASURING EQUIPMENT

OSC 73

Concerns:

The 50 MHz Storage, Multiplier Oscilloscope PM3243.

Already published:

OSC 38 for manual 9499 440 17102 OSC 57 for manual 9499 440 20302

Subject:

Modifications to change the memory-off voltage from -36V to -48V.

This service information sheet will be packed together with a c.r.t. for the PM 3243, which needs a -48V memory-off voltage on the memory mesh G9.

In older instruments (up to PM 3243/05) this memory-off voltage is -36V.

See manual 9499 440 17102, fig. 3.31, SK20 point 3 (READ).

Starting with the PM 3243/05 this memory-off voltage is changed in -48V.

See manual 9499 443 00902, fig. 3.45, SK20 point 3 (READ).

To adapt an older instrument to a new c.r.t., which needs a memory-off voltage of -48V, the following modifications must be made:

- 1. Remove the variable persistence and storage unit as indicated in manual 9499 443 00902, section 3.4.6.
- 2. Interrupt the track (on the track-side of the p.w.b.) between point 3 of SK208 (READ) and the anode of GR2117 as indicated in fig. 1 (A)
- 3. Remove resistor R2197 (22k6)
- 4. Solder one side of a resistor of 20k5 (5322 116 55255) on the point, which is connected with C2117 as indicated in fig. 1 (B) (on the component side of the p.w.b.)
- 5. Solder between the resistor of 20k5 and the anode of the zenerdiode GR2117 a zenerdiode (GR2115) BZX 79 C12 (4822 130 34197). The cathode of GR2115 to the anode of GR2117 (see fig. 1)
- 6. Mount an interconnection wire between the anode of GR2115 (fig. 1 (C)) and point 3 of the switch SK20B (READ)
- 7. Mount the unit in the instrument.

Fig. 1. Part of variable persistence and storage unit.

9499 448 14811
PRINTED IN THE NETHERLANDS

SENIGE

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollutian Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment / X-Ray Analytical Equipment

equipment for science . and industry

800731

TEST AND MEASURING EQUIPMENT

OSC 73

Concerns:

The 50 MHz Storage, Multiplier Oscilloscope PM3243.

Already published:

OSC 38 for manual 9499 440 17102

OSC 57 for manual 9499 440 20302

Subject:

Modifications to change the memory-off voltage from -36V to -48V.

This service information sheet will be packed together with a c.r.t. for the PM 3243, which needs a -48V memory-off voltage on the memory mesh G9.

In older instruments (up to PM 3243/05) this memory-off voltage is -36V.

See manual 9499 440 17102, fig. 3.31, SK20 point 3 (READ).

Starting with the PM 3243/05 this memory-off voltage is changed in -48V.

See manual 9499 443 00902, fig. 3.45, SK20 point 3 (READ).

To adapt an older instrument to a new c.r.t., which needs a memory-off voltage of -48V, the following modifications must be made:

- 1. Remove the variable persistence and storage unit as indicated in manual 9499 443 00802, section 3.4.6.
- 2. Interrupt the track (on the track-side of the p.w.b.) between point 3 of SK20B (READ) and the anoda of GR2117 as indicated in fig. 1 (A)
- 3. Remove resistor R2197 (22k6)
- 4. Solder one side of a resistor of 20k5 (5322 116 55255) on the point, which is connected with C2117 as indicated in fig. 1 (B) (on the component side of the p.w.b.)
- 5. Solder between the resistor of 20k5 and the anode of the zenerdiode GR2117 a zenerdiode (GR2115) BZX 79 C12 (4822 130 34197). The cathode of GR2115 to the anode of GR2117 (see fig. 1)
- 6. Mount an interconnection wire between the anode of GR2115 (fig. 1 (C)) and point 3 of the switch SK208 (READ)
- 7. Mount the unit in the instrument.

Fig. 1. Part of variable persistence and storage unit.

9499 448 14811 RINTED IN THE NETHERLANDS

SENUGE

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Messuring / Radiation Messuring Equipment / Test and Messuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

800731

TEST AND MEASURING EQUIPMENT

OSC 73

Concerns:

The 50 MHz Storage, Multiplier Oscilloscope PM3243.

Already published:

OSC 38 for manual 9499 440 17102

OSC 57 for manual 9499 440 20302

Subject:

Modifications to change the memory off voltage from -36V to -48V.

This service information sheet will be packed together with a c.r.t. for the PM 3243, which needs a -48V memory-off voltage on the memory mesh G9.

In older instruments (up to PM 3243/05) this memory-off voltage is -36V.

See manual 9499 440 17102, fig. 3.31, SK20 point 3 (READ).

Starting with the PM 3243/05 this memory-off voltage is changed in -48V.

See manual 9499 443 00902, fig. 3.45, SK20 point 3 (READ).

To adapt an older instrument to a new c.r.t., which needs a memory-off voltage of -48V, the following modifications must be made:

- 1. Remove the variable persistence and storage unit as indicated in manual 9499 443 00902, section 3.4.5.
- 2. Interrupt the track (on the track-side of the p.w.b.) between point 3 of SK20B (READ) and the anode of GR2117 as indicated in fig. 1 (A)
- 3. Remove resistor R2197 (22k6)
- 4. Solder one side of a resistor of 20k5 (5322 116 55255) on the point, which is connected with C2117 as indicated in fig. 1 (B) (on the component side of the p.w.b.)
- 5. Solder between the resistor of 20k5 and the anode of the zenerdiode GR2117 a zenerdiode (GR2115) BZX 79 C12 (4822 130 34197). The cathode of GR2115 to the anode of GR2117 (see fig. 1)
- 6. Mount an interconnection wire between the anode of GR2115 (fig. 1 C) and point 3 of the switch SK20B (READ)
- 7. Mount the unit in the instrument.

Fig. 1. Part of variable persistence and storage unit.

9499 448 14811

PRINTED IN THE NETHERLANDS

SERVICE

Cryogenic Equipment / Electro Chemistry / Electron Optics / Electronic Weighing / Industrial Data Systems / Numerical Control / Philips Pollution Measuring / Radiation Measuring Equipment / Test and Measuring Equipment / Welding Equipment / X-Ray Analytical Equipment

equipment for science and industry

810126

TEST AND MEASURING EQUIPMENT

OSC 89

OSCILLOSCOPE PM 3243

Already published:

- OSC 6, OSC 10, OSC 38 belonging to manual 9499 440 17102 for the PM 3243 up to version 08.
- manual 9499 443 00902 for the PM 3243/08

Subject:

Modifications to manual 9499 443 00902 for the PM 3243/08 and following versions.

Contents:

- 1. Z-amplifier (unit 11 B 1301).
- 2. 2kV converter (unit 6 R 1508).
- 3. Memory off voltage (unit 7).
- 4. Final Y amplifier (unit 13 TS 604, TS 608).
- 5. Power supply (unit 5 R 1826).
- 6. Variable persistence/storage (unit 7 GR 2111).
- 7. Earthing of the rear cabinet plate.
- 8. Removing the carrying handle.

1. Z-amplifier (unit 11).

The neon-tube B 1301 (ZA 1004) is no longer available.

This neon-tube can only be replaced by a temperature independent circuit (see fig. 1), to get a stabilised voltage drop between the cathode and g1 of the c.r.t.

Fig. 2. Part of Z-unit (fig. 3.42 and 3.43 of the manual).

Parts list:

TS1	BF 423	4822 130 41543
TS2	BF 423	4822 130 41543
GR1	BZX 79C 7V5	4822 130 30861
R1	56K2	4822 116 51264
R2	536K	5322 116 54758

If the neon-tube must be replaced, proceed as follows:

- Solder the parts together as indicated in fig. 2.
- Solder the collectors of the two transistors on points E and D of the Z-amplifier.
- Solder the resistors R1 and R2 and the diode GR1 on the points A, B and C of the Z-amplifier (see fig. 2.).
- Readjust the Minimum Intensity (R 1329) as described in section 3.8.6.3 of the manual.
- Check the Intensity Ratio (R 1115) as described in section 3.8.6.5 of the manual.
- Readjust the Just Black Level (R 2168) and check the Intensity Max. Write as described in section 3.8.5.2

2. 2kV converter (unit 6).

To improve the performance of this unit resistor R 1508 is changed to 24k9, ordering number 5322 116 54648

3. Memory-off voltage (unit 7).

Starting with the PM 3243/05 the memory-off voltage is changed from -36V to -48V (memory-mesh G9). Together with a new c.r.t., which needs a memory-off voltage of-48V, service information sheet OSC 73 is packet. This OSC 73 describes the modifications which must be made to change the memory-off voltage from -36V to -48V.

4. Final Y amplifier (unit 13).

The transistors TS 604 and TS 608 are changed to:

BFX 48 ordering number 5322 130 40208

This modification is introduced because the FW 5324 is no longer available.

5. Power supply (unit 5).

To prevent starting problems of the power supply at high mains voltages and at high temperatures resistor R 1826 is changed to 10k5, ordering number 5322 116 50731

6. Variable persistence/storage unit (unit 7).

The zenerdiode GR 2111 is changed to BZX 79 C 16 ordering number 4822 130 34268

This modification is introduced to increase the maximum positive voltage level of the Just Black potentiometer R 2168 from + 13V to + 16V.

The amplitude of the erase-pulse (600 ms) can now be adjusted to maximum + 16V.

The specifications of the c.r.t. L 14 - 111 GH/55 indicate that some c.r.t.'s need an erase-pulse of + 15V.

So if the Just Black level can not be reached in older instruments replace GR 2111.

7. Earthing of the rear cabinet plate.

The earthing of the rear cabinet plate is improved for safety purposes.

The rear cabinet plate must be mounted with two screws, toothed rings and lock-washers on the cabinet.

8. Removing the carrying handle.

When the carrying handle can not be removed as described in the manual, proceed as follows:

- 1. Remove the upper and lower cabinet plates.
- 2. Remove the plastic strip which is snapped on to the grip.
- 3. Remove the four screws which secure the grip to the brackets (these screws have been locked with a sealing varnisch).
- 4. Depress the push-buttons in the brackets and turn the carrying handle as far as possible to the upper side of the oscilloscope.
- 5. Keep the push-button of the right-hand bracket depressed and pull the bracket from its bearing 1)
- 6. Remove the grip from the remaining bracket.
- Depress the push-button of the left-hand bracket and turn the latter as far as possible to the lower side
 of the instrument.
- 8. Keep the push-button depressed and pull the bracket from its bearing.

If it is impossible to remove the left-hand bracket in this way, remove also its bearing in a similar way as described in footnote 1).

- 1) With some instruments it may be impossible to remove the handle in the described way. This is due to an extra securing plate in the right-hand bearing. In that case, **DO NOT USE FORCE**, but work in accordance with the following procedure which replaces points 3, 4 and 5.
 - 3. Remove the two screws which secure the grip to the right-hand bracket.
 - 4. Remove the two hexagonal bolts which secure the right-hand bearing to the side strip.
 - 5. Depress the push-button of the right-hand bracket and take the bearing from the bracket.