Folland Reading Group: 2nd week hw

Due on February 12, 2014 at 3:10pm

Chapter 1

Problem 1

a. let $\mu^*(E) = \inf \left\{ \sum_{i=1}^{\infty} \mu_{|\mathcal{A}}(A_i) \middle| E \subseteq \bigcup A_i \right\}$ be the outer measure induced by \mathcal{A} and the premeasure $\mu_{|\mathcal{A}}$. Then due to proposition 1.14, $\mu^*_{|\mathcal{M}} = \mu$. We could then find for each $M \in \mathcal{M}$ and $\varepsilon > 0$ a sequence $\{A_i\}_{i=1}^{\infty} \subset \mathcal{A}$ such that $A = \bigcup_{i=1}^{\infty} A_i \supset M$ and

$$\mu_{|\mathcal{A}}(A) < \mu^*(M) + \varepsilon = \mu(M) + \varepsilon$$

and since M is a subset of A, $\mu(M \triangle A) = \mu(A) - \mu(M) < \varepsilon$ and by the finiteness of μ , the series $\sum_{i=1}^{\infty} \mu(A_i)$ is convergent which implies there exists an $N \in \mathbb{N}$ such that

$$\sum_{i=N+1}^{\infty} A_i < \varepsilon$$

which means

$$\mu\left(A \triangle \bigcup_{i=1}^{N} A_i\right) = \mu(A) - \mu\left(\bigcup_{i=1}^{N} A_i\right) \le \sum_{i=N+1}^{\infty} \mu(A_i) < \varepsilon$$

and now we have

$$\mu\!\left(M \mathbin{\vartriangle} \bigcup_{i=1}^N A_i\right) \le \mu(M \mathbin{\vartriangle} A) + \mu\!\left(A \mathbin{\vartriangle} \bigcup_{i=1}^N A_i\right) < 2\varepsilon$$

moreover, $\bigcup_{i=1}^{N} A_i \in \mathcal{A}$ which gives us what we want.

Corollary 1.1. if (X, \mathcal{M}, μ) is a σ -finite measure space, \mathcal{A} is an algebra that generates \mathcal{M} and E is a subset with finite measure then for each measurable subset F of E and $\varepsilon > 0$ there exists a set $A \in \mathcal{A}$ such that $\mu(F \triangle A) < \varepsilon$

Trivial Proof. consider $(E, \mathcal{M}_E, \mu_E)$, where \mathcal{M}_E is the restriction of \mathcal{M} to E and $\mu_E = \mu_{M_E}$, which is a finite measure space and $\mathcal{P}(E) \cap \mathcal{A}$ obviously generates \mathcal{M}_E .

enuf said :))))
$$\Box$$

b. consider the algebra $\mathcal{A} \subset \mathcal{P}(\mathbb{R})$ of bounded and co-bounded sets generated by bounded open sets. Since every open set in \mathbb{R} is countable union of bounded open sets:

$$O = O \cap \mathbb{R} = O \cap \Big(\bigcup_{i=0}^{\infty} (-i-1, -i+1) \cup (i-1, i+1)\Big) = \bigcup_{i=0}^{\infty} \Big(O \cap \big((-i-1, -i+1) \cup (i-1, i+1)\big)\Big)$$

that means \mathcal{A} generates $\mathcal{B}_{\mathbb{R}}$ but any member of \mathcal{A} obviously can't approximate, say, $[0, \infty)$ so we're going to restrict ourselves to sets with finite measure.

Now suppose (X, \mathcal{M}, μ) is a σ -finite measure space, \mathcal{A} is an algebra that generates \mathcal{M} and E is a subset with finite measure and fix $\varepsilon > 0$. There must exist a disjoint sequence $\{E_i\}_{i=1}^{\infty}$ where $\bigcup E_i = X$ and $\mu(E_i)$ is finite for all i. That means

$$\mu(E) = \mu\Big(E \cap \bigcup_{i=1}^{\infty} E_i\Big) = \sum_{i=1}^{\infty} \mu(E \cap E_i)$$

and since $\mu(E)$ is finite there must exist some $N \in \mathbb{N}$ such that

$$\sum_{i=N+1}^{\infty} \mu(E \cap E_i) < \varepsilon$$

and for each E_i where $1 \leq i \leq N$ we can find an $A_i \in \mathcal{A}$ such that $\mu(A_i \triangle (E \cap E_i)) < 2^{-i}\varepsilon$

$$\mu\left(\bigcup_{i=0}^{N} A_{i} \triangle E\right) = \mu\left(\bigcup_{i=0}^{N} A_{i} \triangle \bigcup_{i=0}^{\infty} (E \cap E_{i})\right)$$

$$\leq \mu\left(\bigcup_{i=0}^{N} A_{i} \triangle \bigcup_{i=0}^{N} (E \cap E_{i})\right) + \varepsilon$$

$$\leq \sum_{i=0}^{N} \mu(A_{i} \triangle (E \cap E_{i})) + \varepsilon$$

$$< 2\varepsilon$$

c. Suppose $E \in \mathcal{L}$ and $m(E) < \infty$ and let $\varepsilon > 0$, because of outer regularity we can find an open set $O \supset E$ such that $m(O) < m(E) + \varepsilon$. from that it follows

$$m(O \triangle E) = m(O \cup E) - m(O \cap E)$$
$$= m(O) - m(E)$$
$$< \varepsilon$$

d. suppose $\mu(E) < \infty$ and $\mu(E \cap I) \le \alpha \mu(I)$ for all intervals I. Put $\varepsilon = \frac{(1-\alpha)\mu(E)}{\alpha}$. There exists a sequence of a open intervals $\{I_i\}_{i=0}^{\infty}$ such that $E \subseteq \bigcup I_i$ and

$$\mu(\bigcup I_i) < \mu(E) + \varepsilon$$

but we have

$$\mu(E) = \mu\left(\bigcup(E \cap I_i)\right)$$

$$\leq \sum_{i=0}^{\infty} \mu(E \cap I_i)$$

$$\leq \alpha \sum_{i=0}^{\infty} \mu(I_i)$$

$$< \alpha\left(\mu(E) + \varepsilon\right)$$

which is a contradiction. Now, if $\mu(E) = \infty$, since \mathbb{R} is σ -finite, it must have a measurable subset E' such that $0 < \mu(E') < \infty$ for which for all $\alpha < 1$ we can find an interval I such that $\mu(E' \cap I) > \alpha \cdot \mu(I)$ but $\mu(E \cap I) \ge \mu(E' \cap I)$ so we're done.

Problem 2

- a. follows immediately from caratheodry (see 1.11, Folland).
- b. first we note the following lemma

Lemma 2.1. $|\mathcal{B}_{\mathbb{R}}| = |\mathbb{R}|$

Trivial Proof. Gomez said it's true so it must be.

and since $|\mathcal{B}_{\mathbb{R}}| = |\mathbb{R}| \prec |\mathcal{P}(\mathbb{R})| = |\mathcal{P}(C)|$ (where C is the cantor set, which is uncountable), there must exist subsets of C that aren't in $\mathcal{B}_{\mathbb{R}}$ and since $\mu(C) = 0$ that means μ isn't complete.

c. It should be obvious that the completion of $(X, \mathcal{B}_{\mathbb{R}}, \mu)$ is the smallest complete space containing it. So it suffices to prove $\mathcal{L} \subseteq \mathcal{B}_{\mathbb{R}}$.

Lemma 2.2. lebesgue measurable sets with 0 measure are subsets of borel sets with 0 measure.

 $m\left(\bigcap_{i=0}^{\infty}O_{i}\right)=0.$ Seconds on outer regularity, we can find an open set $O_{i}\supset E$ such that $m(O_{i})< m(E)+2^{-i}=2^{-i}$ for all $i\in\mathbb{N}$. Which means $E\subseteq\bigcap_{i=0}^{\infty}O_{i}\in\mathcal{B}_{\mathbb{R}}$ and $m\left(\bigcap_{i=0}^{\infty}O_{i}\right)=0.$ **Trivial Proof.** Let $E \in \mathcal{L}$ and m(E) = 0. Because of outer regularity, we can find an open set

$$m\Big(\bigcap_{i=0}O_i\Big)=0.$$

now any set $L \in \mathcal{L}$ can be decomposed as $L = H \cup N$ where $H \in \mathcal{F}_{\sigma} \subset \mathcal{B}_{\mathbb{R}}$ and m(N) = 0 (see 1.19, Folland) and, because of lemma 2.2, we're done.

Problem 3

a. first we construct a μ for 2 spaces and then use induction.

Lemma 3.1. the set $\mathcal{E} = \{E_1 \times E_2 | E_1 \in \mathcal{M}_1, E_2 \in \mathcal{M}_2\}$ is an elementary family

Trivial Proof. it's obvious that
$$\varnothing \in \mathcal{E}$$
 and if $E, F \in \mathcal{E}$ then $E \cap F \in \mathcal{E}$ and $(E_1 \times E_2)^c = (E_1^c \times X_2) \cup (E_1 \times E_2^c)$

now define the premeasure $\mu_0((E_1 \times E_2)) = \mu_1(E_1) \cdot \mu_2(E_2)$ using that we define the outer measure

$$\mu^*(E) = \inf \left\{ \sum_{1}^{\infty} \mu_0(E_i) | E_i \in \mathcal{E} \text{ and } E \subseteq \bigcup E_i \right\}$$

and the restriction of that to \mathcal{M} is a measure.