Name: Kervin Francois

RAM ID: R02153849

Class: CSC343 - OPERATING SYSTEM

Assignment: Assignment 5

Q1: Difference Between Preemptive and Nonpreemptive Scheduling

Answer: (Reference: Operating System Concepts 10th- page 202)

Preemptive Scheduling: Allows the operating system to interrupt a running process to allocate CPU time to another process with higher priority or shorter burst time. Example: Round Robin (RR), Shortest Remaining Time First (SRTF).

Nonpreemptive Scheduling: Once a process starts execution, it runs until completion without interruption. Example: First-Come-First-Serve (FCFS), Shortest Job First (SJF).

Q2: Process Scheduling

Given the processes:

Process	Burst Time	Priority
P1	2	2
P2	1	1
Р3	8	4
P4	4	2
P5	5	3

All processes arrive at time t = 0.

(a) Gantt Charts for Different Scheduling Algorithms

1. FCFS (First Come First Serve)

	P1	P2	P3	P4	P5
(o :	2 3	3 1	1 1	5 20

2. SJF (Shortest Job First)

P2	P1		P4	P5	P3	
0	1	3	7	1	2	20

3. Non-preemptive Priority Scheduling (Higher number = Higher priority)

Р3	P5	P4	P1	P2	2
0	8	13	17	19	20

4. Round Robin (Quantum = 2)

P1	P2	P3	Р	4	P5	Р3	P4	P5	Р3	P3	
0	2	3	5	7	9	1	1	13	15	17	20

(b) Turnaround Time (TAT)

TAT = Completion Time - Arrival Time

Process	FCFS	SJF	Priority	RR
P1	2	3	19	3
P2	3	1	20	3
P3	11	20	8	20
P4	15	7	13	11
P5	20	12	17	13

(c) Waiting Time (WT)

WT = Turnaround Time - Burst Time

Process	FCFS	SJF	Priority	RR
P1	0	1	17	1
P2	2	0	19	2
P3	3	12	0	12
P4	7	3	9	7
P5	15	7	12	8

(d) Algorithm with Minimum Average Waiting Time is Shortest Job First (SJF)

Q3: Real-Time Scheduling

Given two processes:

• P1: Period = 50, Execution time = 25

• P2: Period = 75, Execution time = 30

(a) Rate-Monotonic Scheduling (RMS)

- The CPU Utilization formula: $U=\sum(ti/pi)=(25/50)+(30/75)=0.5+0.4=0.9$
 - \circ Since U \leq 1, Rate Monotonic Scheduling is feasible.

P1	P2	P1	P2	P1	P2	
0	25	50	75	100	125	150

(b) Earliest-Deadline-First (EDF) Scheduling

- EDF schedules the process with the closest deadline first.
- Gantt Chart Analysis would show tasks scheduled based on remaining time before the deadline.

P1	P2	P1	P2	P1	P2	
0	25	50	75	100	125	150

Note: The schedule looks the same as RMS in this case because both meet deadlines without overlapping.

Q4. https://github.com/kekef2002/CSC343 Assignment5.git