# График в параллельных осях

Студент: Тыцкий В.И.

Научный руководитель: Майсурадзе А.И.

МГУ имени М. В. Ломоносова, факультет ВМК, кафедра ММП

Введение

Введение

Модификации

Проблемы построения

Методы выбора порядка

О библиотеке

## Примеры диаграмм









# Историческая справка

The value of data visualization is not seeing "zillions" of objects but rather recognizing relations among them.

Alfred Inselberg

- Параллельные координаты были известны еще в 19-ом веке
- В 1980-ых были популяризированы Альфредом Инсельбергом

000

## Классический график в параллельных осях



## Модификации: кластеры

•00000000

Кластер — класс родственных элементов статистической совокупности.



Чаще всего именно в таком виде используют график в параллельных осях.

## Сглаживание линий

00000000

Человеку проще воспринимать гладкие линии, поэтому читаемость графика заметно возрастает.



## Связывание линий

00000000



### Связывание линий



# Иерархические графики

Изображаем статистики распределений соответствующих кластеров (std, min, max, mean) вместо отрисовки каждого объекта.



Введение

# Иерархические графики

Пусть 
$$X=(x_1,\ldots,x_n)$$
 – выборка, где  $x_i\in\mathbb{R}^n$ .

Назовем множество P m-разбиением множества X на m-подмножеств  $\{P_1, \ldots, P_m\}$  такое, что:

$$1.P_i \cap P_j = \emptyset, \quad \forall i, j = \overline{1, m}$$

$$2. \bigcup_{i=1}^{m} P_i = X$$

Организуем иерархическую структуру в виде дерева, где корню соответствует X, а каждая вершина сопоставлена элементу разбиения родительской вершины.

## Пример иерархического разбиения



# Иерархические графики

Регулируя глубину, мы добавляем/уменьшаем количество кластеров на графике







Методы выбора порядка

00000000



3D parallel coordinates



3D multi-relational parallel coordinates

## Естественные вопросы при построении

- В каком порядке расположить оси?
- В какую сторону направлять оси?
- Как много объектов отобразить?
- Какой масштаб выбрать для каждой оси?





sepal\_length

Введение



petal\_width

sepal\_length

Введение

0000000000

petal\_length



petal\_width

sepal\_width

### Влияение количества объектов на читаемость



0000000000



# Влияение количества объектов на читаемость



### Влияение количества объектов на читаемость



- Изменение степени прозрачности линий.
- Использование гладких линий.
- Связывание линий в рамках кластеров.
- Отображение лишь части объектов.
- Изменение порядка и направления осей.

## Корреляция

Введение

Пусть даны две выборки  $X = (x_1, \dots, x_n), Y = (y_1, \dots, y_n).$ 

### Корреляция Пирсона

$$\rho_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}, \quad |\rho_{XY}| \le 1$$

Пусть  $R_i$  – ранг наблюдения  $x_i$ ,  $S_i$  – ранг наблюдения  $y_i$ 

### Корреляция Спирмена

$$r_{XY} = \frac{\sum_{i=1}^{n} (R_i - \overline{R})(S_i - \overline{S})}{\sqrt{\sum_{i=1}^{n} (R_i - \overline{R})^2 \sum_{i=1}^{n} (S_i - \overline{S})^2}}, \quad |r_{XY}| \le 1$$

 $ho_{XY}=0$ ,  $r_{XY}=1$ , где  $X=Y^2$  и X симметрично распределена относительно нуля.

#### Задача о самом длинном пути

Это задача поиска простого пути максимальной длины в заданном графе. Является NP-трудной и не может быть решена за полиномиальное время для произвольных графов.

Пусть  $X=(x_1,\ldots,x_n)$  – выборка, где  $x_i\in\mathbb{R}^n$ .

Построим связный граф G(V,E), где каждая вершина  $u^i \in V$ соответствует і-ой координате (і-ой оси на графике), а каждому ребру  $\{u^{i}, u^{j}\} \in E$  сопоставим вес равный  $|r_{x^{i} x^{j}}|$ .

- ullet Простейшим перебором задача решается за O(n!)
- Можно свести к задаче коммивояжера.
- С помощью методов динамического программирования можно улучшить асимптотику решения.



## Обзор текущих средств

- Ha Python есть простейшая реализация лишь в библиотеке pandas!
- ELKI, GGobi, Mondrian, Orange и ROOT.
- Parcoords.js интерактивная библиотека на JavaScript.

## Цели

Введение

- Дать возможность исследователям "безболезненно" использовать график в параллелльных осях.
- Построение красивых и информативных графиков из "коробки".
- Реализация всевозможных видов данных графиков.

# Технические подробности

Введение

- Статические графики.
- Библиотека пишется на языке Python на базе matplotilb.
- Простой высокоуровневый интерфейс. Как и в библиотеке seaborn методы могут принимать pandas. Data Frame, обычные питру массивы или списки для всего единый интерфейс.

### Возможности

- Построение классических графиков в параллельных осях
  - Возможность рисовать гладкие линии.
  - Возможность "связывания" линий кластеров.
  - Возможность "связывания" линий на основе близости.
- Построение иерархических графиков
  - Отрисовка полупрозрачного градиента.
  - Работа с иерархическими кластерами.
  - Изображение распределения с помощью градиента.

## Дополнительные возможности

- выделение подмножества линий в диапазоне значений одной из осей.
- нахождение оптимального расположения осей.
- создание иерархических кластеров на основе входящей выборки.

# Итоги (после первого семестра)

- Возможность рисовать гладкие линии. Пока что не добавлен параметр задающий вид кривой.
- Возможность "связывания" линий кластеров. Добавлен непрерывный параметр задающий степень связывания.
- Возможность связывания линий на основе близости не реализована
- Интерфейс для пользователя практически полностью повторяет реализацию seaborn. 1

<sup>&</sup>lt;sup>1</sup>Большинство графиков в презентации нарисованы с помощью данной библиотеки.