Linear Regression Model Lecture 4: LRM with one independent variable

Robust Standard Errors

Lulu Wang

Data Analytics Dickinson College

1/31/2025

Introduction

The Linear Regression Model

Robust Standard Errors

Functional Forms

Objectives

- Review the Linear Regression Model (LRM)
- Discuss its estimation in Python
- Explore applications in financial data

I will review the regression model in broad terms and more details can be found in an introductory statistics/econometrics textbook, such as:

- Stock and Watson, Introduction to Econometrics, Pearson
- Wooldridge, Introductory Econometrics, A Modern Approach, South-Western

The Linear Regression Model (LRM)

Robust Standard Errors

The linear regression model is given by:

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t,$$

where:

- Y_t: dependent variable at time t
- X_t: independent variable / factor / predictor at time t
- β_0, β_1 : coefficients to be estimated
- ε_t : error term (mean zero, variance σ^2)
- The **expected** (or average) value of Y_t given X_t is:

$$E(Y_t \mid X_t) = \beta_0 + \beta_1 X_t.$$

Interpretation and CAPM

- Interpretation:
 - β_0 : the expected value of Y_t when $X_t = 0$
 - β_1 : the expected change of Y_t for a unit change of X_t
- The Capital Asset Pricing Model (CAPM) is an example of an LRM:

$$R_t^i = \beta_0 + \beta_1 R_t^{\text{MKT}} + \varepsilon_t,$$

where R_t^i and R_t^{MKT} represent the excess stock and market returns, respectively.

- Ordinary Least Squares (OLS) is a method to estimate the coefficients β_0 and β_1 from a sample of observations of X_t and Y_t .
- **OLS recipe**: choose the values of $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize the Sum of the Square Residuals (SSR), i.e. $\sum \hat{\varepsilon}_t^2$.
- Notice that we use ^ (^) to denote estimated quantities of a population parameter (e.g. $\hat{\beta}_1$ vs. β_1).
- In the simple case of the LRM with only one independent variable, we have analytical formulas for the estimators $\hat{\beta}_0$ and $\hat{\beta}_1$.

1.
$$\hat{\beta}_1 = \frac{\sigma_{X,Y}}{\sigma_X^2} = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X}$$

- $\sigma_{X,Y}$: sample covariance of X_t and Y_t
- σ_X : sample standard deviation of X_t
- σ_Y : sample standard deviation of Y_t

$$2. \ \hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}$$

- \overline{Y} : sample mean of Y_t
- \overline{X} : sample mean of X_t

OLS Example

- Assume that our dependent variable is the return of the equity market in excess of the risk-free rate, and the independent variable is the DP ratio.
- The I RM is then

$$EP_{t+1}^{CRSP} = \beta_0 + \beta_1 DP_t + \varepsilon_t.$$

- The quantity $\beta_0 + \beta_1 DP_t$ represents:
 - the regression line as a function of DP,
 - the expected equity premium in the following time period when the current dividend-price ratio is equal to DP_t , that is,

$$E(EP_{t+1}^{CRSP} \mid DP_t) = \beta_0 + \beta_1 DP_t.$$

Esimation in Python

Robust Standard Errors

• Rather than manually computing these estimates, Python's statsmodels automatically calculates regression coefficients, standard errors, and other diagnostic measures:

OLS Regression Results							
Dep. Variable:		ep_crsp		R-squared:			0.034
Model:			0LS	Adj. R-squared:			0.023
Method:		Least Squa	res	F-statistic:			3.061
Date:		Thu, 30 Jan 2025		Prob (F-statistic):			0.0837
Time:		19:51	:46	Log-Likelihood:			-392.57
No. Observations:			89	AIC:			789.1
Df Residuals:			87	BIC:			794.1
Df Model:			1				
Covariance Type:		nonrob	ust				
	coef	std err		t	P> t	[0.025	0.975]
const	-0.1903	5.274	 0-	.036	0.971	-10.673	10.292
DP	2.1865	1.250	1	.749	0.084	-0.298	4.671
Omnibus:			======================================			=======	1.852
Prob(Omnibus):		0.159 Jarque-Bera (JB):					3.340
Skew:		-0.	474	Prob(JB):			0.188
Kurtosis:		3.	021	Cond. No.			10.9

Fitted Values & Residuals

- Based on the coefficient estimates, we can then calculate the fitted values and the residuals of the regression model.
 - The fitted values:

$$\hat{\mathsf{EP}}_{t+1} = \beta_0 + \beta_1 \times DP_t$$

The residuals measure the difference between actual and predicted returns.

Figure 1: Time series of the realized and predicted equity premium (top) and the residuals obtained as the difference between the realized and predicted equity premium (bottom)

Robust Standard Errors (Overview)

- By default, Python's statsmodels often assumes:
 - Homoskedasticity: errors have constant variance
 - No autocorrelation: errors are independent over time
- If errors are heteroskedastic or correlated, standard errors from the default approach are not reliable.
- OLS estimates of β_0 and β_1 remain unbiased (under certain conditions), but naive standard errors can understate the true uncertainty.
- Two main robust adjustments:
 - HC (Heteroskedasticity-Consistent) for cross-sectional or panel data.
 - HAC (Heteroskedasticity and Autocorrelation Consistent) or Newey-West for time series data.

Deciding on Robust Standard Errors in Python

• Diagnostic or Default?

- Run tests for heteroskedasticity (e.g. Breusch-Pagan) or autocorrelation (e.g. Durbin-Watson).
- Or apply robust/HAC SE by default (slight efficiency loss if errors are actually homoskedastic and uncorrelated).
- Typically, robust/HAC SEs are larger than default SEs, reflecting real-world uncertainties.
- In Python (statsmodels):
 - For cross-sectional data:
 model = sm.OLS(y, X).fit(cov_type='HC3')
 - For time series (Newey-West):
 model_hac = sm.OLS(y, X).fit(cov_type='HAC',
 cov_kwds='maxlags': lag_length)

Newey–West Example in Python

- The coefficient estimates $(\hat{\beta}_0, \hat{\beta}_1)$ remain the same.
- Standard errors and p-values change to account for heteroskedasticity and/or autocorrelation.

Nonlinear regression models

- The Linear Regression Model (LRM) assumes a linear relationship between X and Y.
- A linear model implies that a **1-unit increase** in X results in a **constant** expected change in Y by β_1 .
- However, some relationships are nonlinear (e.g., quadratic, logarithmic, exponential).
- Nonlinearity means that the effect of X on Y varies depending on the level of X.

Polynomial models

 One way to introduce nonlinearity is through the Quadratic Model:

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \varepsilon_t$$

• The **effect** of changing *X* by one unit on *Y* is given by:

$$\beta_1 + 2\beta_2 X$$

(depends on X)

 Quadratic regression can still be estimated using OLS by adding X² as a regressor.

Simulating a Quadratic Model in Python

Robust Standard Errors

Example: Simulate $Y_t = 0.5X_t + 0.05X_t^2 + \varepsilon_t$, with:

$$X_t \sim N(0,25), \quad \varepsilon_t \sim N(0,1)$$

Quadratic Model: Downward Sloping Parabola

- If the coefficient of X^2 is **negative**, the parabola slopes downward at the extremes.
- Below is a simulated quadratic model:

$$Y_t = 0.5X_t - 0.03X_t^2 + \varepsilon_t$$

Cubic Regression Model

Robust Standard Errors

- A cubic model is useful when an additional curvature is needed to explain the relationship.
- The model is:

$$Y_t = \beta_0 + \beta_1 X_t + \beta_2 X_t^2 + \beta_3 X_t^3 + \varepsilon_t$$

 Including higher-order terms may introduce correlation among regressors, requiring careful evaluation.

Piecewise Linear Model

 This model assumes different slopes below/above a threshold m:

$$Y_t = \beta_0 + \beta_1 X_t I(X_t > m) + \beta_2 X_t I(X_t < m) + \varepsilon_t$$

- Interpretation:
 - The **effect** of X_t on Y_t is different for $X_t \ge m$ vs. $X_t < m$.
 - The slopes are determined by β_1 and β_2 .

The Linear Regression Model

