depois para 2 atm

Ex 2: Um gás de chaminé a T_g=1000K e P_T=1atm, com 10% de vapor H₂O e 20% de CO₂ por volume, flui sobre um banco de tubos disposto segundo um arranjo triangular equilátero, tendo os tubos D=7,6cm e espaçamento S=2D. Os tubos são mantidos a uma T_w=500K uniforme e são considerados negros. Calcule o intercâmbio líquido de calor radiante entre a mistura gasosa e os tubos, por m² da superfície da parede dos tubos.

Hipóteses:

Regime permanente Propriedades constantes Troca térmica somente radiativa Sem geração de energia

b) Para 2 atm:

01. HO	= 2atm Tw=500K \(\subseteq = 5,67.10^8 Whm^2 K^4 \)
201.CO2	ESPA: 104 99 × 650 140 = 45
)=7,6.10 ⁻² m	· Regime Permanente, propriectedes constan
5=20	tes, troca términa somante radiativa
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
· Comprimento equivalent	e L + tabela 13.1
	LYCH AN AND AND AND AND ASSESSED TO
L= 3,0(20-D	$) = 3D = 3.0.76.10^{-2}$
L=0,228m	
	all a self on Fore wh
· Aqua	•(CO ₂)
-Pressão: Pw=Q1. Pe = Q1.2	atm - Prosão: Pc = Q2.Pe = Q2.2atm
0 .01.	Pc=Q4atm
Pw=0,2atm	
- KM= O'ratm	In print the late of the late
<u> </u>	ul=90456 m.atm Pc.L=94atm.0,238m = 20212 m.atm
No. of the second second	ul=90456 m.atm Pc.L=94atm.0,238m =>E.L=90912 m.atm

Figura 13.5a usada para achar ϵ_g (1000K) e α_g (500K) da água

Figura 13.4a usada para achar ϵ_g (1000K) e α_g (500K) da $\mathrm{CO_2}$

· Correção da emissividade p/ A= 201m	· Correção da emissividade p/ Pr=2atm
Putt= 0,2+2 = 1,1	+Pela Figura 13.46: Co=1,2
→ Rela Figura 13.56: Cw=1,63	GOS GUILLE CONTRACTOR

Figura 13.5b usada para encontrar o Cw da água:

Figura 13.4b usada para encontrar o Cc do CO_{2:}


```
- Cákulo de DE e Aa:

Pu : Q2 = 0,33

PEL + PuL = 0,4 atm. 9228m + Glatm. 9228m

PE+Pu Q4+0,21

PL + PuL = 0,1368 m. atm = 0,449 ft. atm

OBE pelas Figuras 13.66 e 13.6c:

1000K = 7278

DE(9270) = 0,000

DE(9270) = 0,000

DE(1272) = 0

DE(1
```

Figuras 13.6 usadas para encontrar $\Delta \epsilon$ e $\Delta \alpha$:

Percebe-se que quando se dobra a Pressão (P = 1 atm para P = 2 atm), o fluxo líquido de calor aumentou em 93,4 % (q = 7213,3 W/m² para q = 13950,3 W/m²).