Style Change Detection

Зуева Надежда 594 группа кафедра Анализа Данных Факультет Инноваций и Высоких Технологий Московский Физико-Технический Институт

курс "Моя первая научная публикация"

Литература

- Stein, B., Barrón Cedeño, L.A., Eiselt, A., Potthast, M., Rosso, P.: Overview of the 3rd international competition on plagiarism detection.
- http://pan.webis.de/clef18/pan18-web/author-identification.html
- H. A. Chowdhury, D. K. Bhattacharyya, Plagiarism: Taxonomy, tools and detection techniques
- https://pdfs.semanticscholar.org/1011/6d82a8438c78877a8a142be47c4ee86
- Zechner, M., Muhr, M., Kern, R., Granitzer, M.: External and intrinsic plagiarism detection using vector space models. Proc. SEPLN. vol. 32 (2009)
- Stamatatos, E., Tschuggnall, M., Verhoeven, B., Daelemans, W., Specht, G., Stein, B.,

Постановка задачи

Пусть нам дана коллекция текстовых документов D, здесь d_k — каждый отдельный текстовый документ.

В пару к d_k ставится в соответствия $t_k \in 0, 1$. Она принимает значение 0, если документ моноавторный и 1, если авторов несколько. Требуется построить алгоритм-классификатор $a:D \to y_k$, который получает на вход документ и проверяет его на плагиат, попутно минимизируя функцию ошибки erf:

$$erf = -rac{1}{|D|} \sum [t_k log y_k + (1 - t_k) log (1 - y_k)$$
 $a = rac{1}{|D|}] \sum argmin_a erf(y_k, t_k)$

Принципы работы

Пусть X это пространство объектов, в нашем случае это статьи из соревнования PAN-2018.

D: X o (0,1) — функция-дискриминатор. Эта функция принимает на вход объект $x \in X$ (текст некоторого размера) и возвращает вероятность того

, что входной текст является мультиавторным. G:Z o X — функция-генератор. Она принимает значение $z \in Z$ и выдает объект пространства X.

Принцип работы

Принцип работы

Переформулируя задачу обмана дискриминатора на вероятностном языке мы получаем, что необходимо максимизировать вероятность, выдаваемую идеальным дискриминатором на сгенерированных примерах. Таким образом оптимальный генератор находится как

$$G* = argmax_g E_{z \ q(x)} D_k(G(z))$$

. Известно, что log(x) монотонно возрастает и не меняет положения экстремумов аргумента, то эту формулу переписать в виде:

$$G* = argmax_g E_{z \ q(x)} log D_k(G(z)),$$
 что будет удобно далее.

Принцип работы

В реальности идеального дискриминатора нет. Так как задача дискриминатора — предоставлять сигнал для обучения генератора, вместо идеального дискриминатора достаточно взять дискриминатор, идеально отделяющий настоящие примеры от сгенерированных текущим генератором, т.е. идеальный только на подмножестве X из которого генерируются примеры текущим генератором.

Пример

Используется датасет PAN-2018

оранжевая кривая — плотность распределения реальных данных, зеленая кривая это плотность распределения генерируемых примеров, синяя кривая — результат работы дискриминатора, т.е. вероятность примера быть настоящим. dLossReal: 0.7114341 dLossFake: 0.74694636

Анализ результатов из примера

Вероятность классификации дискриминатором реального примера как реального.

Анализ результатов

Из-за большого количества параметров обучение стало гораздо более шумным. Дискриминаторы всех моделей сходятся к одному результату, но ведут себя нестабильно вокруг этой точки. Посмотрим на форму генератора. Его форма похожа на распределение *TwinPeaks*.

Анализ результатов

Самая регуляризованная модель показала себя лучше всех. Она выучила две моды, примерно совпадающие с модами распределения данных. Размеры пиков тоже не очень точно, но приближают распределение данных. Таким образом, нейросетевой генератор способен выучить мультимодальное распределение данных.

Анализ результатов

обучение мультимодальной модели dLossReal: 0.7012983 dLossFake: 0.72894649

Вывод

Итак, если использовать более сложное устройтство генератора и обучаться на больших данных, то можно будет значительно улучшить показания на метриках качества.