Exercise Walkthrough: Conditional Expectation with Joint PDFs

Justin Lanfermann

25. June of 2025

1 Problem Statement

Let (Ω, \mathcal{A}, P) be a probability space, and let $X, Y : \Omega \to \mathbb{R}$ be two real-valued random variables (RVs). Their joint probability density function (PDF) [1] is given by:

$$p_{X,Y}(x,y) = \exp(-y) \cdot \chi_A(x,y)$$

where the set A is defined as $A = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le y\}$. This can also be written as:

$$p_{X,Y}(x,y) = \begin{cases} e^{-y} & \text{if } 0 \le x \le y\\ 0 & \text{otherwise} \end{cases}$$

We are tasked with the following:

- (i) Verify that $p_{X,Y}(x,y)$ is a valid PDF.
- (ii) Compute the conditional expectation $\mathbb{E}[X \mid Y]$.
- (iii) Compute the conditional expectation $\mathbb{E}[Y \mid X]$.

2 Step-by-Step Solution

2.1 (i) Verifying the PDF

Overview To verify that $p_{X,Y}(x,y)$ is a valid joint PDF, we need to check two conditions based on **Definition 1.39** (probability density function) from the script:

- 1. **Non-negativity:** The function must be non-negative everywhere, i.e., $p_{X,Y}(x,y) \ge 0$ for all $(x,y) \in \mathbb{R}^2$.
- 2. **Integration to one:** The integral of the function over the entire plane must be equal to 1, i.e., $\iint_{\mathbb{R}^2} p_{X,Y}(x,y) dx dy = 1$.

Step 1: Checking Non-negativity The exponential function e^{-y} is always positive for any real y. The indicator function [2] $\chi_A(x,y)$ is either 1 (if $(x,y) \in A$) or 0 (otherwise). Therefore, their product $e^{-y}\chi_A(x,y)$ is always greater than or equal to 0. The first condition is met.

Step 2: Integration to One Now we need to compute the double integral over \mathbb{R}^2 . The indicator function $\chi_A(x,y)$ makes the integrand non-zero only over the region A, so we can restrict our integration bounds to this region. The region A is defined by $0 \le x \le y$. This implies that for any y, x ranges from 0 to y. It also means y must be non-negative (since $x \ge 0$). We can set up the integral in two ways. Let's follow the order used in the provided solution to see how it works. The condition $0 \le x \le y$ is equivalent to $y \ge x$ for $x \ge 0$. So we integrate with respect to y first, from x to ∞ , and then with respect to x from 0 to ∞ .

$$\iint_{\mathbb{R}^2} p_{X,Y}(x,y) \, dy \, dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-y} \chi_A(x,y) \, dy \, dx$$

$$= \int_0^{\infty} \left(\int_x^{\infty} e^{-y} \, dy \right) \, dx \quad \text{(Bounds from } 0 \le x \le y \text{)}$$

$$= \int_0^{\infty} \left[-e^{-y} \right]_{y=x}^{y=\infty} \, dx \quad \text{(Inner integral w.r.t. } y \text{)}$$

$$= \int_0^{\infty} \left(-\lim_{y \to \infty} e^{-y} - (-e^{-x}) \right) \, dx$$

$$= \int_0^{\infty} (0 + e^{-x}) \, dx$$

$$= \int_0^{\infty} e^{-x} \, dx \quad \text{(Outer integral w.r.t. } x \text{)}$$

$$= \left[-e^{-x} \right]_{x=0}^{x=\infty}$$

$$= \left(-\lim_{x \to \infty} e^{-x} \right) - \left(-e^{-0} \right)$$

$$= \left(0 \right) - \left(-1 \right) = 1.$$

Since both conditions are met, $p_{X,Y}(x,y)$ is a valid PDF.

2.2 (ii) Computing E[X | Y]

Overview To find the conditional expectation $\mathbb{E}[X \mid Y]$, we first need to find the conditional PDF [3] $p_{X|Y=y}(x)$. This is given by the formula:

$$p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_Y(y)}$$

where $p_Y(y)$ is the marginal PDF [4] of Y. Once we have the conditional PDF, the conditional expectation is computed as:

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot p_{X|Y=y}(x) \, dx$$

This entire process is laid out in **Definition 2.28** (conditional expectation).

Step 1: Compute the Marginal PDF of Y, $p_Y(y)$ We find $p_Y(y)$ by "integrating out" the variable x from the joint PDF, as described in **Theorem 1.63 (iii)**.

$$p_Y(y) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) dx$$

$$= \int_{-\infty}^{\infty} e^{-y} \chi_A(x,y) dx$$

$$= e^{-y} \int_0^y 1 dx \quad \text{(for } y \ge 0, \text{ otherwise 0)}$$

$$= e^{-y} [x]_{x=0}^{x=y}$$

$$= y e^{-y} \quad \text{for } y \ge 0.$$

So, the marginal PDF is $p_Y(y) = ye^{-y}\chi_{\mathbb{R}_{>0}}(y)$. This is a Gamma distribution $\Gamma(2,1)$.

Step 2: Compute the Conditional PDF, $p_{X|Y=y}(x)$ Now we can find the conditional PDF.

$$p_{X|Y=y}(x) = \frac{p_{X,Y}(x,y)}{p_Y(y)} = \frac{e^{-y}\chi_{\{0 \le x \le y\}}}{ye^{-y}\chi_{\{y \ge 0\}}} = \frac{1}{y}\chi_{[0,y]}(x) \quad \text{for } y > 0.$$

This is the PDF of a uniform distribution on the interval [0, y], i.e., $X \mid Y = y \sim \text{Unif}(0, y)$ (see **Example 1.56 (i)**).

Step 3: Compute the Conditional Expectation, $\mathbb{E}[X \mid Y = y]$ The expectation of a uniform distribution $\mathrm{Unif}(a,b)$ is simply (a+b)/2. For $X \mid Y = y \sim \mathrm{Unif}(0,y)$, the expectation is (0+y)/2 = y/2. We can also compute this explicitly:

$$\mathbb{E}[X \mid Y = y] = \int_{-\infty}^{\infty} x \cdot p_{X|Y=y}(x) dx$$
$$= \int_{0}^{y} x \cdot \frac{1}{y} dx$$
$$= \frac{1}{y} \left[\frac{x^{2}}{2} \right]_{x=0}^{x=y}$$
$$= \frac{1}{y} \left(\frac{y^{2}}{2} - 0 \right) = \frac{y}{2}.$$

The conditional expectation is a function of the value of the conditioning variable. So we write the final answer as a random variable: $\mathbb{E}[X \mid Y] = \frac{Y}{2}$.

2.3 (iii) Computing E[Y | X]

Overview The procedure is symmetric to part (ii). We first find the marginal PDF of X, $p_X(x)$, then the conditional PDF $p_{Y|X=x}(y)$, and finally compute the expectation $\mathbb{E}[Y \mid X=x]$.

Step 1: Compute the Marginal PDF of X, $p_X(x)$ We integrate out y from the joint PDF. The integration is over $y \ge x$ for a fixed $x \ge 0$.

$$p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) \, dy$$

$$= \int_{x}^{\infty} e^{-y} \, dy \quad \text{(for } x \ge 0, \text{ otherwise 0)}$$

$$= \left[-e^{-y} \right]_{y=x}^{y=\infty}$$

$$= (0) - (-e^{-x}) = e^{-x} \quad \text{for } x \ge 0.$$

So, $p_X(x) = e^{-x} \chi_{\mathbb{R}_{>0}}(x)$. This is the exponential distribution Exp(1) (see **Example 1.56** (iv)).

Step 2: Compute the Conditional PDF, $p_{Y|X=x}(y)$ For $x \ge 0$:

$$p_{Y|X=x}(y) = \frac{p_{X,Y}(x,y)}{p_X(x)} = \frac{e^{-y}\chi_{\{y \ge x\}}}{e^{-x}\chi_{\{x > 0\}}} = e^{x-y}\chi_{[x,\infty)}(y).$$

This is a "shifted" exponential distribution.

Step 3: Compute the Conditional Expectation, $\mathbb{E}[Y \mid X = x]$ For $x \geq 0$, we compute:

$$\mathbb{E}[Y \mid X = x] = \int_{-\infty}^{\infty} y \cdot p_{Y|X=x}(y) \, dy = \int_{x}^{\infty} y \cdot e^{x-y} \, dy = e^{x} \int_{x}^{\infty} y e^{-y} \, dy.$$

This integral requires integration by parts [5] ($\int u \, dv = uv - \int v \, du$). Let u = y and $dv = e^{-y} \, dy$. Then du = dy and $v = -e^{-y}$.

$$\int_{x}^{\infty} ye^{-y} \, dy = \left[y(-e^{-y}) \right]_{x}^{\infty} - \int_{x}^{\infty} (-e^{-y}) \, dy$$

$$= \left(\lim_{y \to \infty} -ye^{-y} - (-xe^{-x}) \right) + \int_{x}^{\infty} e^{-y} \, dy$$

$$= (0 + xe^{-x}) + \left[-e^{-y} \right]_{x}^{\infty}$$

$$= xe^{-x} + (0 - (-e^{-x}))$$

$$= xe^{-x} + e^{-x} = (x+1)e^{-x}.$$

Now, we substitute this back into our expression for the expectation:

$$\mathbb{E}[Y \mid X = x] = e^x \cdot ((x+1)e^{-x}) = x+1.$$

This holds for $x \geq 0$. As a random variable, the result is $\mathbb{E}[Y \mid X] = X + 1$.

3 Summary of Takeaways

- PDF Validation: Always check non-negativity and that the integral over the entire domain equals 1. The support of the PDF (where it's non-zero) is crucial for setting up the correct integration limits.
- Marginalization: To find the distribution of a single variable from a joint distribution, you "integrate out" the other variable(s). This is a fundamental operation.
- Conditioning: The conditional PDF $p_{Y|X}$ tells you the distribution of Y given that X has taken a specific value. It is found by dividing the joint PDF by the marginal PDF of the conditioning variable.
- Conditional Expectation: $\mathbb{E}[Y \mid X]$ is the expected value of Y computed using the conditional distribution $p_{Y|X}$. It is not a constant but a random variable itself, as its value depends on the value of X.

4 In-depth Explanations

[1] Probability Density Function (PDF) A function $p: \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ is a PDF if it's nonnegative and its integral over the entire space \mathbb{R}^n is 1. For a continuous random variable X, the probability of X falling into a set A is given by integrating the PDF over that set: $P(X \in A) = \int_A p(x)dx$. Crucially, for any single point c, P(X = c) = 0, and the value p(c) is not a probability itself, but a measure of probability *density*. (Script Reference: Definition 1.39)

[2] Indicator Function (χ_A) The indicator function of a set A, denoted $\chi_A(x)$, is a simple but powerful tool. It is defined as:

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

In probability, it's used to define PDFs that are non-zero only on a specific region (their support), simplifying the notation for integration bounds. (Script Reference: Used in Proposition 1.42)

[3] Conditional PDF and Expectation Given two continuous RVs X and Y with joint PDF $p_{X,Y}(x,y)$, the conditional PDF of Y given X=x is defined as $p_{Y|X=x}(y) = \frac{p_{X,Y}(x,y)}{p_X(x)}$, provided $p_X(x) > 0$. It describes the probability distribution of Y when we know the value of X. The conditional expectation $\mathbb{E}[Y \mid X=x]$ is the mean of this conditional distribution. (Script Reference: Definitions 1.73, 2.28)

[4] Marginal PDF The marginal PDF of a single variable is obtained from a joint PDF by integrating over all possible values of the other variables. For a joint PDF $p_{X,Y}(x,y)$, the marginal PDF of X is $p_X(x) = \int_{-\infty}^{\infty} p_{X,Y}(x,y) \, dy$. It represents the distribution of X irrespective of the value of Y. (Script Reference: Theorem 1.63)

[5] Integration by Parts This is a fundamental calculus technique used to integrate the product of two functions. The formula stems from the product rule for differentiation and is given by:

$$\int u \, dv = uv - \int v \, du$$

Choosing the functions for u (which will be differentiated) and dv (which will be integrated) is the key to successfully applying this method. A common mnemonic for choosing u is LIATE (Logarithmic, Inverse trig, Algebraic, Trigonometric, Exponential).