Perceptron

ក្នុងអត្ថបទនេះយើងនឹងលើកយក Perceptron Algorithm មកបង្ហាញ។ Perceptron គឺ ជាAlgorithm មួយដែលត្រូវបានណែនាំជាដំបូងដោយអ្នកស្រាវជ្រាវអាមេរិកគឺលោក Alexander Rosenblatt នៅឆ្នាំ១៩៥៧។ ទោះបីជាPerceptron Algorithm ជាវិធីសាស្ត្រចាស់ក្ដី ប៉ុន្តែជាត្រូវបាន គេស្គាល់ថាជាប្រភពដើមនៃវិធីសាស្ត្រគណនាក្នុងម៉ូឌែលNeural Network ឬ Deep Learningដែល កំពុងរីកដុះដាលយ៉ាងសកម្មនាសម័យនេះ។ ហេតុនេះ ការសិក្សាអំពីPerceptron Algorithm អាច ជួយឱ្យយើងដាយស្រួលក្នុងការឈានទៅសិក្សាអំពីNeural Network ឬ Deep Learning។

ห์ที่Perceptron

Perceptron ឬហៅថាម៉ូឌែលណឺរ៉ូនសិប្បនិម្មិត(artificial neuron) ជាម៉ូឌែលគណិតវិទ្យា មួយដែលទទួលសញ្ញាណ(signal)ឬ ធាតុចូល(input)ច្រើន និងផ្ដល់នូវលទ្ធផល(output)មួយ។ សញ្ញាណដែលទទួលនៅទីនេះអាចប្រៀបបានជាចន្តេអគ្គិសនីឬសញ្ញាណព័ត៌មានដូចដែលណឺរ៉ូននៃ ប្រព័ន្ធប្រសាទរបស់ការស់ទទួលដែរ។ ប៉ុន្តែសញ្ញាណឬធាតុចូលក្នុងPerceptron កត់យកតម្លៃធម្មតា ពោលគឺបញ្ជូនបន្តឬមិនបញ្ជូនបន្តដោយតម្លៃ(1 ឬ 0)។

រូបទី១ខាងក្រោមបង្ហាញអំពីPerceptronដែលទទួលសញ្ញាណឬជាតុចូល(input) 2។ រង្វង់ ដែលមានក្នុងរូបហៅថាណឺរ៉ូន(neuron) ឬnode។ x_1,x_2 ជាសញ្ញាណឬជាតុចូល ឯy គឺជាលទ្ធផល នៃណឺរ៉ូននោះ។ w_1,w_2 ជាទម្ងន់ផ្ទាល់នៃណឺរ៉ូនចំពោះជាតុចូលនិមួយៗ ពោលគឺតម្លៃដែលបង្ហាញនូវ កម្រិតឥទ្ធិពលនៃជាតុចូលនិមួយៗទៅលើលទ្ធផល។ តម្លៃនៃទម្ងន់កាន់តែធំបង្ហាញពីកម្រិតសំខាន់នៃ ជាតុចូលនោះ។

នៅពេលដែលណឺរ៉ូនមួយទទួលបាននូវសញ្ញាណឬជាតុចូល នោះផលគុណរវាងតម្លៃនៃជាតុ ចូលនោះនិងតម្លៃនៃទម្ងន់ផ្ទាល់របស់ណឺរ៉ូននោះ (w_1x_1,w_2x_2)ត្រូវបានគណនា។ លទ្ធផលដែល ណឺរ៉ូននោះត្រូវផ្ដល់គឺអាស្រ័យនឹងផលបូកនៃគ្រប់ជាតុចូលទាំងអស់ ដោយកំណត់តាមលក្ខខណ្ឌ ខាងក្រោម។ លក្ខខណ្ឌនេះគឺ ណឺរ៉ូននឹងបញ្ចេញលទ្ធផល 1 បើផលបូកនៃផលគុណជាតុចូលនិង ទម្ងន់របស់វាធំជាងតម្លៃនៃកម្រិតកំណត់របស់ណឺរ៉ូន ឬ បញ្ចេញលទ្ធផល 0 បើតូចជាង។ តម្លៃនៃ កម្រិតកំណត់របស់ណឺរ៉ូន ហ្វ បញ្ចេញលទ្ធផល 1 បើពីស្វាក់ទេhold ។

$$y = \begin{cases} 1 & (w_1 x_1 + w_2 x_2 > \theta) \\ 0 & (w_1 x_1 + w_2 x_2 \le \theta) \end{cases}$$

រូបទី១ Perceptronដែលទទួលសញ្ញាណឬធាតុចូល(input) 2

ក្នុងការអនុវត្តភាគច្រើន គេច្រើនបម្លែងទម្រង់ខាងលើជាទម្រង់ដែលមានកម្រិតកំណត់នៃ ណឺរ៉ូនស្មើ០ ដោយហៅតម្លៃ θ ដែលត្រូវបានបញ្ជូនទៅអង្គទី១ $(b=-\theta)$ ដោយ bias ។

$$y = \begin{cases} 1 & (b + w_1 x_1 + w_2 x_2 > 0) \\ 0 & (b + w_1 x_1 + w_2 x_2 \le 0) \end{cases}$$

2. បង្ហាញសៀត្វីឡូស៊ីកងាយៗដោយម៉ូនែលPerceptron

ដើម្បីស្វែងយល់អំពីដំណើរការរបស់Perceptron នៅទីនេះយើងលើកយកសៀគ្វីឡូស៊ីក (Logic circuits) ងាយៗដូចជា AND gate, OR gate មកបង្ហាញដោយប្រើម៉ូឌែលPerceptron។

2.1. AND gate

ដូចដែលអ្នកបានដឹង AND gate ផ្តល់នូវលទ្ធផលអាស្រ័យនឹងតម្លៃភាពពិតនៃធាតុចូលរបស់ វាដូចក្នុងតារាងខាងក្រោម។

តារាងទី១ តម្លៃភាពពិតនៃAND gate

$\underline{}$	x_2	y
0	0	0
0	1	0
1	0	0
1	1	1

ក្នុងករណីនេះ បើយើងយកPerceptronមួយដែលទទួលធាតុចូលពីរនិងមានតម្លៃទម្ងន់និង កម្រិតកំណត់ (threshold): $(w_1,w_2,\theta)=(0.5,0.5,0.8)$ នោះយើងអាចបង្ហាញAND gateដោយ Perceptronបាន។ ឧទាហរណ៍ ករណី $(x_1,x_2)=(1,0)$ នោះ $w_1x_1+w_2x_2=0.5<0.8$ ហេតុ នេះ y=0។ ករណី $(x_1,x_2)=(1,1)$ នោះ $w_1x_1+w_2x_2=1>0.8$ ហេតុនេះ y=1។

2.2. OR gate

OR gate ផ្តល់នូវលទ្ធផលអាស្រ័យនឹងតម្លៃភាពពិតនៃជាតុចូលរបស់វាដូចក្នុងតារាង ខាងក្រោម។

តារាងទី២ តម្លៃភាពពិតនៃOR gate

x ₁	x_2	у
0	0	0
0	1	1
1	0	1
1	1	1

ក្នុងករណីនេះ បើយើងយកPerceptronមួយដែលទទួលធាតុចូលពីរនិងមានតម្លៃទម្ងន់និង កម្រិតកំណត់(threshold): $(w_1,w_2,\theta)=(0.5,0.5,0.2)$ នោះយើងអាចបង្ហាញOR gateដោយ Perceptronបាន។ ឧទាហរណ៍ ករណី $(x_1,x_2)=(1,0)$ នោះ $w_1x_1+w_2x_2=0.5>0.2$ ហេតុ នេះ y=1 ។ ករណី $(x_1,x_2)=(0,0)$ នោះ $w_1x_1+w_2x_2=0<0.2$ ហេតុនេះ y=0 ។

ដូចដែលបង្ហាញខាងលើ ដោយប្រើPerceptronយើងអាចបង្ហាញសៀគ្វីឡូស៊ីកងាយៗបាន។ ចំណុចសំខាន់នៅទីនេះគឺ ចំពោះAND gate, OR gate ដែលមានទម្រង់សៀគ្វីឡូស៊ីកផ្សេងៗគ្នាក្ដី Perceptronដែលយើងប្រើមានគោលគំនិតឬទម្រង់តែមួយមិនប្រែប្រួលឡើយ។ អ្វីដែលខុសគ្នាគឺតម្លៃ នៃប៉ារ៉ាម៉ែត្រ(ទម្ងន់និងកម្រិតកំណត់របស់ណឺរ៉ូន)តែប៉ុណ្ណោះ។ ពោលគឺដោយប្រើទម្រង់នៃម៉ូឌែល តែមួយយើងអាចបង្ហាញទម្រង់នៃសៀគ្វីឡូស៊ីកដែលជាគ្រឹះនៃសៀគ្វីអេឡិចត្រូនិចនានាបានដោយ គ្រាន់តែកែសម្រួលតម្លៃនៃប៉ារ៉ាម៉ែត្ររបស់វាតែប៉ុណ្ណោះ។

3. ព្រំដែនសមត្ថភាពនៃPerceptron

យើងឃើញថាPerceptron អាចបង្ហាញ AND gate, OR gateបានយ៉ាងងាយ។ បន្តទៅនេះ យើងនឹងពិនិត្យលើករណីនៃ XOR gate។

តារាងទី៣ តម្លៃភាពពិតនៃXOR gate

x ₁	x_2	<u>y</u>
0	0	0
0	1	1
1	0	1
1	1	0

រូបទី២ ប្រៀបធៀបករណីOR gate និង XOR gate

មុននឹងឈានទៅមើលករណីXOR gate យើងបង្ហាញព្រមគ្នាជាមួយករណីOR gateដោយ ប្រើក្រាបដូចរូបទី២។ ក្នុងករណី OR gate យើងអាចកំណត់តម្លៃប៉ារ៉ាម៉ែត្ររបស់Perceptronបានដូច ឧទាហរណ៍ក្នុងចំណុច2. ដែលលទ្ធផល1 ឬ ០ អាចបែងចែកដាច់ពីគ្នាបានដោយបន្ទាត់ត្រង់មួយបាន ។ ផ្ទុយពីនេះ ករណី XOR gate យើងមិនអាចកំណត់បន្ទាត់ត្រង់ដើម្បីបែងចែកករណីលទ្ធផល1 ឬ ០ បានឡើយ។ ពោលគឺមិនអាចកំណត់ប៉ារ៉ាម៉ែត្រណាដែលអាចឱ្យPerceptronបង្ហាញXOR gate បានទេ។

ទិន្នន័យដូចក្នុងករណីOR gate ហៅថាទិន្នន័យដែលអាចបែងចែកលីនេអ៊ែរបាន(linear seperable) ឯទិន្នន័យដូចក្នុងករណីXOR gate ហៅថាទិន្នន័យដែលមិនអាចបែងចែកលីនេអ៊ែរបាន (linear non-seperable)។ ហេតុនេះ យើងអាចនិយាយបានថា Perceptronដែលមានទម្រង់ដូច ណែនាំក្នុងចំណុច1. មិនអាចប្រើជាម៉ូឌែលសម្រាប់ទិន្នន័យមិនអាចបែងចែកលីនេអ៊ែរបានល្អឡើយ។

4. Perceptron ប្រ៊ីនដ្ឋាក់ (Multilayer Perceptron)

ដូចដែលបានពិនិត្យខាងលើ Perceptronទម្រង់ធម្មតាមិនអាចធ្វើការពណ៌នាXOR gate បានប្រសើរឡើយ។ ដើម្បីស្វែងយល់ពីដំណោះស្រាយតាមរយៈការបង្កើនចំនួនថ្នាក់នៃPerceptron យើងពិនិត្យលើការបង្ហាញទម្រង់XOR gate ដោយប្រើបង្គុំនៃសៀគ្វីឡូស៊ីកមូលដ្ឋានAND gate, OR gate, NAND gate ។

4.1. បង្ហាញXOR gate ដោយប្រើ AND gate, OR gate, NAND gate

នៅទីនេះយើងនឹងមិនធ្វើការបកស្រាយលំអិតអំពីលក្ខណៈនៃសៀគ្វីឡូស៊ីកឡើយ ប៉ុន្តែ តាមពិតទៅXOR gate អាចបង្ហាញដោយប្រើ AND gate, OR gate, NAND gateបានដោយធ្វើតំណ ភ្ជាប់ដូចរូបទី៣។ ដោយសារតែAND gate, OR gate, NAND gate អាចបង្ហាញដោយប្រើ Perceptron ទម្រង់ធម្មតាដូចក្នុងចំណុច1. 2.ខាងលើបាន ហេតុនេះ គំនិតសំខាន់ដែលយើងអាច សិក្សាពីចំណុចនេះគឺថា យើងអាចផ្គុំPerceptronធម្មតាជាច្រើនថ្នាក់ដើម្បីបង្ហាញXOR gateបាន។

រូបទី៣ ការបង្ហាញXOR gate ដោយប្រើAND gate, OR gate, NAND gate

4.2. ការបង្កើតPerceptronងាយៗនិងច្រើនថ្នាក់ដោយប្រើPython

import numpy as np

4.2.1. ករណីទម្រង់ធម្មតា(មិនប្រើទម្រង់Bias)

```
def AND(x1, x2):
   (w1,w2,theta) = (0.5, 0.5, 0.8)
   t = w1*x1 + w2*x2
   y = 1 if t > theta else 0
   return y
```

```
def OR(x1, x2):
  (w1,w2,theta) = (0.5, 0.5, 0.2)
  t = w1*x1 + w2*x2
  y = 1 if t > theta else 0
  return y
```

```
def NAND(x1, x2):
    (w1,w2,theta) = (-0.5, -0.5, -0.8)
    t = w1*x1 + w2*x2
    y = 1 if t > theta else 0
    return y
```

4.2.2. ករណីទម្រង់ប្រើBias

```
def AND(x1, x2):
    x_vec = np.array([x1,x2])
    w = np.array([0.5,0.5])
    b = -0.8
    t = np.sum(w*x_vec) + b
    y = 1 if t > 0 else 0
    return y
```

```
def OR(x1, x2):
    x_vec = np.array([x1,x2])
    w = np.array([0.5,0.5])
    b = -0.2
    t = np.sum(w*x_vec) + b
    y = 1 if t > 0 else 0
    return y
```

```
def NAND(x1, x2):
    x_vec = np.array([x1,x2])
    w = np.array([-0.5,-0.5])
    b = 0.8
    t = np.sum(w*x_vec) + b
    y = 1 if t > 0 else 0
    return y
```

4.2.3. XOR gate

```
def XOR(x1,x2):
    s1 = NAND(x1,x2)
    s2 = OR(x1,x2)
    y = AND(s1,s2)
    return y
```


រូបទី៤ Perceptronច្រើនថ្នាក់ (Multilayer Perceptron)

ទម្រង់នៃXOR gateដោយបង្គុំនៃAND gate, OR gate, NAND gateដូចក្នុងរូបទី៣ អាច ប្រដូចបានជាករណីមួយនៃករណីទូទៅរបស់បង្គុំនៃPerceptronទម្រង់ធម្មតាច្រើនបញ្ចូលគ្នាដូចក្នុង រូបទី៤។ ទម្រង់បែបនេះហៅថា Multilayer Perceptron ដែលក្នុងអត្ថបទនេះនិងបន្តបន្ទាប់យើង កំណត់ហៅថា Perceptronច្រើនថ្នាក់។

ដូចក្នុងករណីXOR gate ដែរ ការប្រើMultilayer Perceptronអាចឱ្យយើងបង្ហាញទិន្នន័យ ដែលមិនអាចបែងចែកលីនេអ៊ែរដោយម៉ូឌែលPerceptronបាន។ ការបង្កើនចំនួនថ្នាក់(Layer)ក្នុង Perceptronនឹងជួយបង្កើនសមត្ថភាពរបស់វាក្នុងការពណ៌នាលក្ខណៈរបស់ទិន្នន័យដែលកាន់តែស្មុគ ស្មាញបានដែលនេះជាគោលគំនិតគ្រឹះក្នុង Artificial Neural Network ឬ Deep Learningដែល យើងនឹងលើកមកសិក្សាក្នុងអត្ថបទក្រោយៗ។

5. ការកំណត់ប៉ារ៉ាម៉ែត្រនៃPerceptron ១ថ្នាក់(Perceptron Algorithm)

ចំពោះPaceptronទម្រង់ធម្មតា១ថ្នាក់ យើងអាចកំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រពីទិន្នន័យដែល មានបានដោយអនុវត្តតាមវិធីសាស្ត្រខាងក្រោម ។នៅទីនេះ $\mathbf{w}^{(t)}$ សម្គាល់តម្លៃនៃប៉ារ៉ាម៉ែត្រនៅដំណាក់ កាលផ្លាស់ប្តូរទីt , η សម្គាល់តម្លៃនៃកម្រិតផ្លាស់ប្តូរប៉ារ៉ាម៉ែត្រដែលហៅថា learning rate ។

(ជំហានទី១) កំណត់តម្លៃដើមនៃប៉ារ៉ាម៉ែត្រ $m{w}$ ដោយ 0 ឬតម្លៃពីបំណែងចែកចៃដន្យ (ជំហានទី២) ចំពោះទិន្នន័យ(training data) ($m{x}_i, m{y}_i$) អនុវត្តជំហានខាងក្រោមរហូតដល់គ្មាន កំហុសក្នុងការប៉ាន់ស្មានតម្លៃ ពោលគឺ $m{\Delta} m{w}^{(t)} = m{0}$

ក. គណនាលទ្ធផលនៃណឺរ៉ូន $\hat{y}_i = \pmb{x}_i^{\mathsf{T}} \pmb{w}^{(t)}$ ដោយប្រើតម្លៃប៉ារ៉ាម៉ែត្របច្ចុប្បន្ន

ខ. ផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្រ

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \Delta \mathbf{w}^{(t)}$$
$$\Delta \mathbf{w}^{(t)} = \eta (y_i - \hat{y}_i) \mathbf{x}_i$$

រូបទី៥ ការធ្វើចំណាត់ថ្នាក់ក្រុមទិន្នន័យ២ក្រុមដោយPerceptron Algorithm

```
import numpy as np
class Perceptron(object):
  def __init__(self, learning_rate=0.01, iteration_number=100, random_state=1):
   self.eta = learning_rate
    self.n_iteration = iteration_number
    self.random state = random state
  def fit(self, X, y):
    rand_gen = np.random.RandomState(self.random_state)
    self.w = rand_gen.normal(loc=0.0, scale=0.1, size=1+X.shape[1])
    self.errors = []
    XP = np.ones((X.shape[0], X.shape[1]+1))
    XP[:,:-1]=X
    for t in range(self.n iteration):
      error = 0
      for xi,yi in zip(XP,y):
       delta = self.eta * (yi - self.predict(xi))
       self.w += delta * xi
       error += int(delta != 0.0)
      self.errors.append(error)
    return self
  def predict(self, X):
    z = X@self.w
   return np.where(z \geq= 0.0, 1, 0)
```

Feedforward Neural Network (FNN)

ក្នុងអត្ថបទមុន យើងបានសិក្សាអំពីPerceptron ដែលជាម៉ូឌែលអាចបែងចែកទិន្នន័យ បំណែងចែកលីនេអ៊ែរបានយ៉ាងងាយដោយការកំណត់តម្លៃប៉ារ៉ាម៉ែត្រសមស្រប។ លើសពីនេះ ក្នុង ករណីទិន្នន័យមិនអាចបែងចែកលីនេអ៊ែរ ការបង្កើនចំនួនថ្នាក់នៃPerceptronត្រូវបានប្រើប្រាស់។ ម៉ូឌែលបែបនេះហៅថា Multilayer Perceptron។ ដោយការភ្ជាប់ណឺរ៉ូន (node) ច្រើនបន្តគ្នាជា ច្រើនថ្នាក់ដែលស្រដៀងគ្នានឹងទម្រង់នៃប្រព័ន្ធប្រសាទរបស់ភាវៈរស់ផងនោះម៉ូឌែលបែបនេះក៏ត្រូវ បានគេហៅថា Aritificial Neural Network ផងដែរ។

1. លទ្ធផលបញ្ជូនបន្តនៃណឺរ៉ូន

Feedforward Neural Network (FNN) គឺជាទម្រង់មួយនៃArtificial Neural Network ដែលមានណឺរ៉ូន(node)ច្រើនតម្រៀបគ្នាជាថ្នាក់និងភ្ជាប់គ្នានិងគ្នារវាងថ្នាក់នៅជាប់បន្តបន្ទាប់គ្នា ដោយទម្ងន់ផ្ទាល់ខ្លួន។ សញ្ញាណឬធាតុចូលនៃFNNត្រូវបានបញ្ជូនពីផ្នែកថ្នាក់ធាតុចូល(input layer) ទៅកាន់ផ្នែកនៃថ្នាក់លទ្ធផល(output layer)តាមទិសតែមួយ។ លទ្ធផលដែលបញ្ចេញ ដោយណឺរ៉ូននៅថ្នាក់លទ្ធផលត្រូវបានគណនាដូចក្នុងករណីPerceptronទម្រង់ធម្មតាដែរ ប៉ុន្តែនៅទី នេះលទ្ធផលមិនគ្រាន់តែប្រៀបធៀបផលបូកនៃជាតុចូលនិងកម្រិតកំណត់(threshold)នៃណឺរ៉ូន ប៉ុណ្ណោះទេ តែអនុគមន៍មិនលីនេអ៊ែរត្រូវបានអនុវត្តលើលទ្ធផលនៃផលបូកនោះដើម្បីកំណត់នូវ លទ្ធផលដែលត្រូវបញ្ជូនបន្ត។ អនុគមន៍ដែលអនុវត្តលើលទ្ធផលនៃផលបូកធាតុចូលនេះហៅថា អនុគមន៍សកម្ម(activation function)។ យើងនឹងធ្វើការបកស្រាយលម្អិតអំពីអនុគមន៍សកម្មនៅ ចំណុចបន្ទាប់។

នៅពេលដែលជាតុចូល $x_1, x_2, ..., x_d$ ត្រូវបានបញ្ជូនមកកាន់ណឺរ៉ូន(រូបទី១) ដែលមាន ទម្ងន់ផ្ទាល់នៃជាតុចូលរៀងគ្នា $w_1, w_2, ..., w_d$ នោះ ផលបូកនៃជាតុចូលសរុបកំណត់ដោយ u និង លទ្ធផលបញ្ជូនបន្តនៃណឺរ៉ូននោះត្រូវបានកំណត់ដោយ z ដូចទម្រង់ខាងក្រោម។ នៅទីនេះ b ហៅថា bias ។

$$u = w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b$$

$$z = f(u) = f(w_1 x_1 + w_2 x_2 + \dots + w_d x_d + b)$$

រូបទី១ ជាតុចូលនិងលទ្ធផលនៃណឺរ៉ូនមួយ

ក្នុងករណីទម្រង់2ថ្នាក់ដូចក្នុងរូបទី២ សញ្ញាណត្រូវបានបញ្ជូនបន្តបន្ទាប់។ សន្មតថានៅថ្នាក់ ទី១មានណឺរ៉ូនចំនួន d និង នៅថ្នាក់ទី២មានណឺរ៉ូនចំនួន k នោះលទ្ធផលបញ្ជូនបន្តនៃណឺរ៉ុននៅ ថ្នាក់លទ្ធផលទី២ត្រូវបានបង្ហាញក្នុងទម្រង់ខាងក្រោម (i=1,2,...,k)។

$$u_i = \sum_{j=1}^d w_{ij} x_j + b_i$$

$$z_i = f(u_i)$$

យើងក៏អាចបង្ហាញជាទម្រង់វ៉ិចទ័រនិងម៉ាទ្រីសជូចខាងក្រោមផងដែរ។

$$u = Wx + b$$

$$z = f(u)$$

$$\boldsymbol{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_k \end{bmatrix}, \boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}, \boldsymbol{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_k \end{bmatrix}, \boldsymbol{z} = \begin{bmatrix} z_1 \\ \vdots \\ z_k \end{bmatrix}, \boldsymbol{f}(\boldsymbol{u}) = \begin{bmatrix} f(u_1) \\ \vdots \\ f(u_k) \end{bmatrix}$$

$$\boldsymbol{W} = \begin{bmatrix} w_{11} & \cdots & w_{1d} \\ \vdots & \ddots & \vdots \\ w_{k1} & \cdots & w_{kd} \end{bmatrix}$$

2. អនុគមន៍សកម្ម Activation Function

អនុគមន៍សកម្ម(activation function) គឺជាអនុគមន៍ដែលគ្រប់គ្រងលើកម្រិតនៃការបញ្ជូន បន្តនូវលទ្ធផលរបស់ណឺរ៉ូននិមួយៗ។ ជាទូទៅអនុគមន៍សកម្មមានទម្រង់ជាអនុគមន៍មិនលីនេអ៊ែរ កើនដាច់ខាត។ មានទម្រង់ជាច្រើនត្រូវបានប្រើជាអនុគមន៍សកម្មដូចជា អនុគមន៍Sigmoid,អនុគមន៍ Tanh,អនុគមន៍Softmax,អនុគមន៍ReLU(rectified linear function)ជាដើម។

អនុគមន៍Sigmoid $\sigma(\cdot)$ មានដែនកំណត់លើសំណុំចំនួនពិត($-\infty,\infty$) និងយកសំណុំរូបភាព លើចន្លោះបើក(0,1) ។ អនុគមន៍បែបនេះអាចផ្ដល់នូវលទ្ធផលដែលយើងអាចបកស្រាយបានជាតម្លៃ ប្រូបាបនៃការបញ្ជូនបន្តឬមិនបញ្ជូនបន្ដ(1/0)។

$$f(u) = \sigma(u) = \frac{1}{1 + e^{-u}}$$

អនុគមន៍Tanh tanh(·) មានដែនកំណត់លើសំណុំចំនួនពិត(-∞,∞) និងយកសំណុំរូប ភាពលើចន្លោះបើក(-1,1)។ អនុគមន៍បែបនេះមានលក្ខណៈស្រដៀងនឹងអនុគមន៍Sigmoidដែរ ដែលអាចផ្តល់នូវលទ្ធផលដែលមានបម្រែបម្រួលតិចតួចក្បែរតម្លៃថេរនៅពេលដែលតម្លៃនៃធាតុចូលធំ ខ្លាំងដល់កម្រិតណាមួយ និងប្រែប្រួលខ្លាំងនៅពេលដែលធាតុចូលមានតម្លៃក្បែរ០។

$$f(u) = \tanh(u) = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

អនុគមន៍Softmax softmax (\cdot) មានដែនកំណត់លើវ៉ិចទ័រចំនួនពិត \mathbb{R}^d និងយកសំណុំរូបភាព លើចន្លោះបើក $(0,1)^d$ ដែលមានផលបូកគ្រប់កំប៉ូសង់ស្មើ 1។ អនុគមន៍បែបនេះអាចផ្ដល់នូវលទ្ធផល ដែលយើងអាចបកស្រាយបានជាតម្លៃប្រូបាបនៃលទ្ធផលដែលអាចចេញជាdប្រភេទផ្សេងៗគ្នាបាន។ ក្នុងករណីd=2 អនុគមន៍នេះសមមូលនឹងអនុគមន៍Sigmoid ។ចំពោះ $\mathbf{u}=(u_1 \ \cdots \ u_d)^{\mathsf{T}}$

$$f(\mathbf{u}) = \text{Softmax}(\mathbf{u}) = (\text{Softmax}(u_1) \cdots \text{Softmax}(u_d))^{\mathsf{T}}$$

$$Softmax(u_i) = \frac{e^{u_i}}{\sum_{i=1}^d e^{u_i}}$$

អនុគមន៍rectifier linear: $ReLU(\cdot)$ មានដែនកំណត់លើសំណុំចំនួនពិត $(-\infty,\infty)$ និងយក សំណុំរូបភាពលើចន្លោះបើក $(0,\infty)$ ។ នៅពេលដែលធាតុចូលមានតម្លៃតូចជាងឬស្មើសូន្យ លទ្ធផល បញ្ជូនបន្តត្រូវបានកំណត់ដោយ 0 និងបញ្ជូនបន្តនូវតម្លៃដូចធាតុចូលដដែលបើធាតុចូលមានតម្លៃ ធំជាងឬស្មើសូន្យ ។អនុគមន៍បែបនេះមានលក្ខណៈស្រដៀងនឹងអនុគមន៍ដីក្រេទី១(លីនេអ៊ែរ)ដែរ ដែលអាចប្រើក្នុងករណីប៉ាន់ស្មានទាំងម៉ូឌែលលីនេអ៊ែរនិងមិនលីនេអ៊ែរបានល្អ។

$$f(u) = \text{ReLU}(u) = \max(u, 0)$$

រូបទី៣ ក្រាបតាងអនុគមន៍សកម្ម sigmoid, tanh, ReLU

រូបទី៤ ទំនាក់ទំនងរវាងធាតុចូលនិងលទ្ធផលដោយ Softmax Function

រូបទី៥ Multilayer Network

3. បណ្តាញច្រើនថ្នាក់ (Multilayer Network)

នៅចំណុចនេះយើងពិនិត្យលើករណីម៉ូឌែលដែលមានច្រើនថ្នាក់ដូចក្នុងរូបទី៥។ ព័ត៌មាន (សញ្ញាណឬធាតុចូល)ត្រូវបានបញ្ជូនតាមលំដាប់លំដោយពីថ្នាក់នៅខាងធ្វេងទៅស្គាំ។ នៅទីនេះ យើងកំណត់ហៅថ្នាក់និមួយៗដោយ l=1,2,3,...។ ក្នុងរូបខាងលើថ្នាក់ l=1ពោលគឺថ្នាក់នៅខាង ធ្វេងបំផុតហៅថាថ្នាក់នៃធាតុចូល(input layer), ថ្នាក់l=2 ហៅថាថ្នាក់នៃធាតុកណ្ដាល(internal layer, hidden layer), ថ្នាក់l=3 ពោលគឺថ្នាក់នៅខាងស្គាំបំផុត ហៅថាថ្នាក់នៃលទ្ធផល(output layer) ។ លទ្ធផលនៅថ្នាក់និមួយៗអាចសរសេរជាទម្រង់ដូចខាងក្រោម។

$$u^{(2)} = W^{(2)}x + b^{(2)}$$
, $z^{(2)} = f(u^{(2)})$

$$m{u}^{(3)} = m{W}^{(3)} m{z}^{(2)} + m{b}^{(3)}$$
 , $m{z}^{(3)} = m{f} m{u}^{(3)}$ ជាទូទៅ លទ្ធផលនៅថ្នាក់កណ្ដាលកំណត់ដោយ $m{u}^{(l+1)} = m{W}^{(l+1)} m{z}^{(l)} + m{b}^{(l+1)}$, $m{z}^{(l+1)} = m{f} m{u}^{(l+1)}$

និង លទ្ធផលនៅថ្នាក់លទ្ធផលចុងក្រោយកំណត់ដោយ

$$y \equiv z^{(l+1)}$$

ដូចដែលបានឃើញក្នុងទម្រង់គណនាខាងលើ ក្នុងFNN សញ្ញាណត្រូវបានបញ្ជូនបន្តបន្ទាប់ ដោយការគណនាក្នុងរបៀបដូចគ្នាពីមួយថ្នាក់ទៅមួយថ្នាក់។ នេះគឺជាប្រភពដែលម៉ូឌែលនេះត្រូវបាន ហៅថា feedforward ។ ទម្ងន់ផ្ទាល់នៃណឺរ៉ូនចំពោះជាតុចូលតាមថ្នាក់និមួយៗ $\mathbf{W}^{(l)}$ និង bias $\mathbf{b}^{(l)}$ ត្រូវបានហៅជារួមថាជា ប៉ារ៉ាម៉ែត្រនៃបណ្ដាញ។ ក្នុងអត្ថបទនេះនិងបន្តបន្ទាប់យើងកំណត់ហៅដោយ ងាយនូវ បណ្ដាញដែលមានប៉ារ៉ាម៉ែត្រ(ហៅជារួម) \mathbf{w} និងជាតុចូល \mathbf{x} ដោយ $\mathbf{y}(\mathbf{x};\mathbf{w})$ ។

4. ការកំណត់ទម្រង់ណឺរ៉ូននៅថ្នាក់លទ្ធផលនិងអនុគមន៍លម្អៀង

4.1. ប្រភេទនៃបញ្ហានិងវិធីសាស្ត្ររៀន(Learning)

ដូចដែលបានរៀបរាប់ពីអត្ថបទមុននិងចំណុចខាងលើ បណ្តាញដែលបង្ហាញដោយទម្រង់ នៃអនុគមន៍ច្រើនអថេរ y(x; w)នឹងប្រែប្រួលនៅពេលដែលប៉ារ៉ាម៉ែត្ររបស់វាត្រូវបានផ្លាស់ប្តូរ។ ការជ្រើសរើសប៉ារ៉ាម៉ែត្របានល្អ នឹងធ្វើឱ្យបណ្តាញ (network)អាចបង្ហាញនូវអនុគមន៍ឬបញ្ហាដែល មានបានល្អប្រសើរ។

សន្មតថា អនុគមន៍ឬបញ្ហាជាគោលដៅដែលយើងចង់បង្ហាញដោយNeural Network មិន ប្រែប្រួលសណ្ឋានខាងក្នុងរបស់វាឡើយ ហើយទទួលជាតុចូល x និងបញ្ជូនចេញនូវលទ្ធផលt ។ គូនៃ ទិន្នន័យបែបនេះជាច្រើនត្រូវបានផ្ដល់ឱ្យ $\{(x_1,t_1),...,(x_N,t_N)\}$ ។ នៅក្នុងអត្ថបទនេះ និងអត្ថបទ បន្តបន្ទាប់ គូនិមួយៗហៅថាជាគម្រូសម្រាប់រៀន (training sample) ហើយសំណុំទាំងមូលហៅថា សំណុំទិន្នន័យសម្រាប់រៀន (training data) ។

ដោយធ្វើការកែសម្រួលនិងកំណត់នូវតម្លៃប៉ារ៉ាម៉ែត្រ យើងអាចធ្វើការបង្ហាញទំនាក់ទំនង ដែលមានក្នុងទិន្នន័យឡើងវិញបានដោយបណ្តាញ(network)របស់យើង។ ពោលគឺចំពោះគម្រូ សម្រាប់រៀន (x_n, t_n) និមួយៗ យើងចង់កំណត់នូវប៉ារ៉ាម៉ែត្រណាដែលធ្វើឱ្យយើងអាចទទួលបាន $y(x_n; w)$ ដែលមានតម្លៃជិតបំផុតនៅនឹង t_n ។ ដំណើរកំណត់រកនូវប៉ារ៉ាម៉ែត្រដោយប្រើសំណុំទិន្ន ន័យសម្រាប់រៀនបែបនេះសន្មតហៅថាជាដំណើរការរៀន(learning process)។

ហេតុនេះការប្រៀបធៀបរវាងតម្លៃលទ្ធផល $\mathbf{y}(\mathbf{x}_n; \mathbf{w})$ ដែលផ្ដល់ដោយបណ្ដាញនិងតម្លៃ \mathbf{t}_n ត្រូវបានធ្វើឡើង ។ ដើម្បីបង្ហាញពីកម្រិតជិតគ្នានៃតម្លៃទាំងពីរយើងកំណត់រង្វាស់សម្រាប់វាស់កម្រិត នេះ ។ រង្វាស់នេះយើងសន្មតហៅហិជា អនុគមន៍កម្រិតលម្អៀង(error function,loss function) ។ ការកំណត់ប្រភេទនៃអនុគមន៍កម្រិតលម្អៀងខុសគ្នាទៅតាមប្រភេទចំណោទបញ្ហាដែលយើងចង់ដោះ ស្រាយ។

តារាងទី១ ប្រភេទនៃអនុគមន៍សកម្មនិងកម្រិតលម្អៀងតាមប្រភេទចំណោទ

ប្រភេទចំណោទបញ្ហា	អនុគមន៍សកម្មនៅថ្នាក់លទ្ធផល	អនុគមន័កម្រិតលម្អៀង
តម្រែតម្រង់(regression)	Identity function $y(x) = x$	ផលបូកការេនៃលម្អៀង
ចំណាត់ថ្នាក់២ក្រុម	Sigmoid function	Cross entropy(2 classes)
ចំណាត់ថ្នាក់ច្រើនក្រុម	Softmax function	Cross entropy

4.2. ចំណោទតម្រែតម្រង់

ចំណោទតម្រែតម្រង់(Regression) គឺជាប្រភេទចំណោទដែលធ្វើការកំណត់នូវអនុគមន៍ ដើម្បីបង្ហាញនូវទំនាក់ទំនងរវាងធាតុចូលនិងលទ្ធផលដែលមានទម្រង់ជាអថេរជាប់។ ហេតុនេះក្នុង ករណីនៃចំណោទតម្រែតម្រង់ យើងកំណត់យកអនុគមន៍សកម្ម(activation function)នៅថ្នាក់លទ្ធ ផលនៃបណ្តាញ(FNN)ដោយអនុគមន៍ដែលផ្តល់នូវសំណុំរូបភាពដូចដែននៃលទ្ធផលរបស់សំណុំទិន្ន ន័យសម្រាប់រៀន។ ឧទាហរណ៍ ក្នុងករណីដែលសំណុំទិន្នន័យសម្រាប់រៀនមានតម្លៃនៃលទ្ធផលលើ ចន្លោះ[-1,1]នោះយើងជ្រើសយកអនុគមន៍tanhសម្រាប់ជាអនុគមន៍សកម្ម។ ក្នុងករណីដែលសំណុំ ទិន្នន័យសម្រាប់រៀនមានតម្លៃនៃលទ្ធផលលើចន្លោះ(-∞,∞)នោះយើងជ្រើសយកអនុគមន៍ដែលផ្តល់ តម្លៃដូចជាតុចូល Identity function សម្រាប់ជាអនុគមន៍សកម្ម។

ក្នុងករណីចំណោទតម្រែតម្រង់នេះដើម្បីប្រៀបធៀបកម្រិតជិតគ្នារវាងលទ្ធផលនៃបណ្ដាញ និងតម្លៃលទ្ធផលនៃគម្រូសម្រាប់រៀន យើងប្រើផលបូកការេនៃតម្លៃលម្អៀង(sum of squared residuals) រវាងតម្លៃ $y(x_n; w)$ និង t_n ចំពោះគ្រប់គម្រូសម្រាប់រៀនក្នុងសំណុំទិន្នន័យសម្រាប់រៀន ទាំងអស់។ ពោលគឺអនុគមន៍កម្រិតលម្អៀងសម្រាប់សំណុំទិន្នន័យសម្រាប់រៀនកំណត់ដោយ ។

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{t} - \mathbf{y}(\mathbf{x}_n; \mathbf{w})||^2$$

នៅទីនេះការដាក់មេគុណ ½ គឺដើម្បីសម្រួលដល់់ការគណនាដល់ការធ្វើដេរីវេនាពេលខាងមុខ។ គោលដៅរបស់យើងគឺកំនត់ប៉ារ៉ាម៉ែត្រនៃបណ្តាញយ៉ាងណាដើម្បីឱ្យអនុគមន៍កម្រិតលម្អៀង ខាងលើនេះមានតម្លៃអប្បបរមា។

4.3. ចំណោទធ្វើចំណាត់ថ្នាក់២ក្រុម

ក្នុងចំណោទធ្វើចំណាត់ថ្នាក់២ក្រុម ទិន្នន័យជាតុចូល x នឹងត្រូវបែងចែកទៅក្នុងក្រុមមួយ ក្នុងចំណោមពីរក្រុម។ ឧទាហរណ៍ករណីជាតុចូលជារូបថតមួយសន្លឹក។ នៅពេលនោះក្រោយពីទាញ យកលក្ខណៈសម្គាល់របស់រូបថតនោះជាទម្រង់វ៉ិចទ័ររួច បណ្តាញនឹងទទួលយកវ៉ិចទ័រនោះជាជាតុ ចូលរួចធ្វើការបែងចែកថាជារូបមុខមនុស្សឬមិនមែន។ ក្នុងករណីនេះ លទ្ធផលនៃទិន្នន័យសម្រាប់រៀន t យកតម្លៃជាអថេរដាច់ $\{1(មុខមនុស្ស), 0(មិនមែនមុខមនុស្ស)\}$ ។ បែបនេះចំណោទចំណាត់ថ្នាក់ ២ក្រុមក៏ជាចំណោទដែលទទួលជាតុចូល x និងប៉ាន់ស្មានលទ្ធផល t ដូចតម្រែតម្រង់ដែរគ្រាន់តែ ប្រភេទនៃតម្លៃលទ្ធផលជាអថេរដាច់។

ក្នុងករណីនេះ ដើម្បីប៉ាន់ស្មានតម្លៃលទ្ធផល យើងសិក្សាលើម៉ូឌែលប្រូបាប ពោលគឺសិក្សា លើប្រូបាបដែលថាលទ្ធផល t=1នៅពេលធាតុចូល x ត្រូវបានទទួល p(t=1|x) ។ គំនិតនៅ ទីនេះគឺថា បើប្រូបាបនេះមានតម្លៃធំជាង0.5 នោះយើងសន្និដ្ឋានថាលទ្ធផលគឺ t=1 និង សន្និដ្ឋាន ថាលទ្ធផលគឺ t=0 ក្នុងករណីផ្ទុយពីនេះ។

ដោយពិនិត្យលើគំនិតបែបនេះ អ្នកអាចនឹកឃើញដល់លក្ខណៈនៃអនុគមន៍Sigmoid ដែលបានបង្ហាញខាងលើ។ បើយើងប្រើអនុគមន៍Sigmoid ជាអនុគមន៍សកម្មសម្រាប់បណ្ដាញ FNN y(x;w) នោះយើងអាចបង្ហាញម៉ូឌែលប្រូបាបខាងលើដោយFNNបាន។

$$p(t=1|x) \approx y(x;w)$$

ហេតុនេះដើម្បីកំណត់ប៉ារ៉ាម៉ែត្រនៃFNN យើងអាចសិក្សាពីសំណុំអថេរសម្រាប់រៀន (training data) $\{(x_n,t_n)\}_{n=1}^N$ បានដោយកំណត់យកប៉ារ៉ាម៉ែត្រដែលធ្វើឱ្យបំណែងចែកប្រូបាប p(t|x;w) មានភាពប្រហាក់ប្រហែលគ្នាបំផុតជាមួយនឹងរបាយនៃសំណុំអថេរសម្រាប់វៀន ។ ក្នុងការ កំណត់ប៉ារ៉ាម៉ែត្រនៃម៉ូឌែលប្រូបាបបែបនេះ យើងហៅថា ការប៉ាន់ស្មានកម្រិតសាកសមបំផុតនៃទិន្ន ន័យ (Maximum Likelihood Estimation, MLE) ។

ដោយប្រើតម្លៃនៃ $p(t=0|\mathbf{x};\mathbf{w}), p(t=1|\mathbf{x};\mathbf{w})$ យើងអាចបង្ហាញ $p(t|\mathbf{x};\mathbf{w})$ ជារួមតាម ទម្រង់ខាងក្រោម។

$$p(t|\mathbf{x};\mathbf{w}) = p(t=1|\mathbf{x};\mathbf{w})^t p(t=0|\mathbf{x};\mathbf{w})^{1-t}$$

ដោយការសន្មតខាងលើ $p(t=1|\mathbf{x}) = y(\mathbf{x};\mathbf{w})$ នោះ $p(t=1|\mathbf{x}) = 1 - y(\mathbf{x};\mathbf{w})$ ។ ក្រោមការ សន្មតនៃម៉ូឌែលបែបនេះ ការប៉ាន់ស្មានកម្រិតសាកសមបំផុតនៃទិន្នន័យ MLE គឺជាការកំណត់នូវ កម្រិតសាកសមនៃទិន្នន័យ (likelihood) សម្រាប់រៀនរបស់ប៉ារ៉ាម៉ែត្រ \mathbf{w} និងជ្រើសយកតម្លៃនៃ \mathbf{w} ណាដែលធ្វើឱ្យកម្រិតសាកសមនោះមានតម្លៃអតិបរមា។ កម្រិតសាកសមនៃទិន្នន័យសម្រាប់រៀន (training data) របស់ប៉ារ៉ាម៉ែត្រ \mathbf{w} ត្រូវបានកំណត់ដូចទម្រង់ខាងក្រោម។

$$L(\mathbf{w}) = \prod_{n=1}^{N} p(t_n | \mathbf{x}; \mathbf{w}) = \prod_{n=1}^{N} \{y(\mathbf{x}_n; \mathbf{w})\}^{t_n} \{1 - y(\mathbf{x}_n; \mathbf{w})\}^{1-t_n}$$

ដើម្បីសម្រួលដល់ការធ្វើបរមាកម្ម យើងអនុវត្តអនុគមន៍លោការីតលើកន្សោមខាងលើ។ ការធ្វើបែបនេះមិនប៉ះពាល់ដល់អថេរភាព(ភាពកើនចុះ)នៃអនុគមន៍ឡើយ។ ក្នុងករណីនេះ អនុគមន៍ កម្រិតលម្អៀងនៃចំណោទចំណាត់ថ្នាក់២ក្រុមកំណត់ដោយ E(w) ដូចខាងក្រោម។

$$E(\mathbf{w}) = -\log L(\mathbf{w}) = -\sum_{n=1}^{N} \{t_n \log y(\mathbf{x}_n; \mathbf{w}) + (1 - t_n) \log (1 - y(\mathbf{x}_n; \mathbf{w}))\}$$

ដូចដែលបានបង្ហាញខាងលើ អនុគមន៍Sigmoidត្រូវបានប្រើសម្រាប់ជាអនុគមន៍សកម្មក្នុង ថ្នាក់លទ្ធផលនៃFNN។ ចំណុចនេះអាចបកស្រាយដូចខាងក្រោម។ ប្រុបាប p(t=1|x) អាចសរសេរជាទម្រង់ប្រុបាបមានលក្ខខណ្ឌដូចខាងក្រោម។

$$p(t = 1|x) = \frac{p(x; t = 1)}{p(x; t = 0) + p(x; t = 1)}$$

ដោយយក

$$u \equiv \log \frac{p(\mathbf{x}; t=1)}{p(\mathbf{x}; t=0)}$$

នោះយើងបាន

$$p(t = 1|\mathbf{x}) = \frac{1}{1 + \exp(-u)} = \sigma(u)$$

ពោលគឺ ម៉ូឌែលប្រូបាប $p(t=1|\mathbf{x})$ ដែលសិក្សាខាងលើសមមូលទៅនឹងអនុគមន៍Sigmoid។

4.4. ចំណោទធ្វើចំណាត់ថ្នាក់ច្រើនក្រុម

ក្នុងចំណោទធ្វើចំណាត់ថ្នាក់ច្រើនក្រុម ទិន្នន័យជាតុចូល x នឹងត្រូវបែងចែកទៅក្នុងក្រុមមួយ ក្នុងចំណោមក្រុមមានកំណត់ច្រើន ។ ឧទាហរណ៍ករណីជាតុចូលជារូបថតនៃលេខសរសេរដោយដៃ មួយសន្លឹក ។ នៅពេលនោះក្រោយពីទាញយកលក្ខណៈសម្គាល់របស់រូបថតនោះជាទម្រង់វ៉ិចទ័ររួច បណ្តាញនឹងទទួលយកវ៉ិចទ័រនោះជាជាតុចូលរួចធ្វើការបែងចែកថាជាលេខណាមួយក្នុងចំណោម ០ ដល់ ១។ ក្នុងករណីនេះ លទ្ធផលនៃទិន្នន័យសម្រាប់រៀន t យកតម្លៃជាអថេរដាច់ $\{0,1,\dots,9\}$ ។

ក្នុងករណីនេះ ការប្រើបណ្តាញFNN សម្រាប់ចំណាត់ថ្នាក់ច្រើនក្រុម អាចធ្វើបានដោយ កំណត់យកថ្នាក់លទ្ធផលមានចំនួនណឺរ៉ូនស្មើនឹងចំនួននៃក្រុមដែលត្រូវបែងចែក។ សន្មតថាចំនួន ក្រុមដែលត្រូវបែងចែកក្នុងចំណោទមាន K។ នៅទីនេះ យើងប្រើបណ្តាញFNNដែលមាន Lថ្នាក់និង ចំនួនណឺរ៉ូននៅថ្នាក់លទ្ធផលមានចំនួន K។ លទ្ធផលដែលផ្តល់ដោយណឺរ៉ូននិមួយៗក្នុងថ្នាក់លទ្ធផល អាចសរសេរដោយទម្រង់ខាងក្រោម។

$$y_k \equiv z_k^{(L)} = \frac{\exp\left(u_k^{(L)}\right)}{\sum_{i=1}^K \exp\left(u_i^{(L)}\right)}$$

ដូចដែលបានបកស្រាយក្នុងចំណុចអនុគមន៍សកម្មខាងលើយើងអាចប្រើអនុគមន៍Sofmax ដើម្បីបម្លែងលទ្ធផលជាប្រូបាបនៃករណីបែងចែកចូលក្នុងក្រុមនិមួយៗ។ យើងនឹងពិនិត្យលើភាពត្រឹម ត្រូវនៃការសន្មតនេះដោយប្រើម៉ូឌែលប្រូបាបដូចករណី២ក្រុមដែរ។

រូបទី៦ FNN ក្នុងចំណោទចំណាត់ថ្នាក់ច្រើនក្រុម(K-ក្រុម)

សន្មតថាថ្នាក់និមួយៗនៃចំណោទខាងលើគឺ $c_1, c_2, ..., c_K$ លទ្ធផលនៃណឺរ៉ូនkនៅថ្នាក់ លទ្ធផលចុងក្រោយនៃបណ្តាញFNN កំណត់ដោយ $y_k \left(=z_k^{(L)}\right)$ ជាប្រូបាបនៃព្រឹត្តិការណ៍ដែលធាតុ ចូល $m{x}$ ត្រូវកំណត់ថានៅក្នុងក្រុម $m{c}_k$ ។

$$p(\mathcal{C}_k|\boldsymbol{x}) = y_k = z_k^{(L)}$$

ជាលទ្ធផល ធាតុចូល ${m x}$ ត្រូវកំណត់ថានៅក្នុងក្រុម c_{k} បើតម្លៃប្រូបាប $p(c_{k}|{m x})$ មានតម្លៃធំជាងគេក្នុង <u>ចំណោមក្រុ</u>មទាំងអស់។

ក្នុងករណីចំណាត់ថ្នាក់ច្រើនក្រុមនេះ យើងកំណត់សរសេលេទ្ធផលពិត $m{t}_n$ នៃអថេរ $m{x}_n$ ដោយ ទម្រង់វ៉ឺបទ័រ(one-hot vector) $m{t}_n = [t_{n1} \quad \cdots \quad t_{nk}]^{\mathsf{T}}$ ។

ក្នុងករណីចំណាត់ថ្នាក់រូបថតលេខសរសេរដោយដៃខាងលើនោះ $K=10\,$ ។ បើ x_n ជាលេខ០ ដែលស្ថិតនៅក្នុងក្រុម c_1 នោះ $t_n = [1\ 0\ 0\ 0\ 0\ 0\ 0\ 0\]^{\mathsf{T}}$ និង បើ x_n ជាលេខ5 ដែលស្ថិតនៅក្នុងក្រុម c_6 នោះ $t_n = [0\ 0\ 0\ 0\ 0\ 1\ 0\ 0\ 0\]^\intercal$ ។ ដោយសន្មតសរសេរបែបនេះ យើងអាចបង្ហាញ p(t|x) ជារួមតាមទម្រង់ខាងក្រោម។

$$p(t|x) = \prod_{k=1}^{K} p(\mathcal{C}_k|x)^{t_k}$$

ហេតុនេះចំពោះសំណុំទិន្នន័យសម្រាប់រៀន $\{(x_n,t_n)\}_{n=1}^N$ កម្រិតសាកសមនៃទិន្នន័យ សម្រាប់រៀន(training data) របស់ប៉ារ៉ាម៉ែត្រ w ត្រូវបានកំណត់ដូចទម្រង់ខាងក្រោម។

$$L(\mathbf{w}) = \prod_{n=1}^{N} p(\mathbf{t}_{n}|\mathbf{x}_{n}; \mathbf{w}) = \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathcal{C}_{k}|\mathbf{x})^{t_{nk}} = \prod_{n=1}^{N} \prod_{k=1}^{K} (y_{k}(\mathbf{x}_{n}; \mathbf{w}))^{t_{nk}}$$

ដើម្បីសម្រួលដល់ការធ្វើបរមាកម្ម យើងអនុវត្តអនុគមន៍លោការីតលើកន្សោមខាងលើ។ ក្នុងករណីនេះ អនុគមន៍កម្រិតលម្អៀងនៃចំណោទចំណាត់ថ្នាក់ច្រើនក្រុមកំណត់ដោយ E(w)ដូចខាងក្រោម។ អនុគមន៍កម្រិតលម្អៀងបែបនេះហៅថា cross entropy ។

$$E(\mathbf{w}) = -\log L(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log y_k(\mathbf{x}_n; \mathbf{w})$$

ការប្រើអនុគមន៍Softmax សម្រាប់ជាម៉ូឌែលនៃបំណែងចែកច្រើនថ្នាក់នេះអាចបកស្រាយ ដូចខាងក្រោម។

ប្រូបាបដែលជាតុចូល $oldsymbol{x}$ ត្រូវកំណត់ថានៅក្នុងក្រុម $oldsymbol{c}_k$ អាចគណនាដោយ

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_k)}{\sum_{i=1}^K p(\mathbf{x}|\mathcal{C}_k)}$$

នៅទីនេះដោយតាង $u_k = \log (p(\pmb{x}, \mathcal{C}_k))$ នោះ $p(\pmb{x}, \mathcal{C}_k) = \exp(u_k)$ ហេតុនេះ

$$p(\mathcal{C}_k|\mathbf{x}) = \frac{\exp(u_k)}{\sum_{i=1}^K \exp(u_i)}$$

កន្សោម $p(\mathcal{C}_k|x)$ ដែលទាញបានខាងលើនេះដូចគ្នាទៅនឹងអនុគមន៍Softmaxដែរ។ ដូច្នេះភាពត្រឹម ត្រូវនៃការប្រើប្រាស់អនុគមន៍Softmax ជាអនុគមន៍សកម្មសម្រាប់ចំណោទចំណាត់ថ្នាក់ច្រើនក្រុម ដោយFNNត្រូវបានផ្ទៀងផ្ទាត់។

Learning Process in Neural Network

ក្នុងអត្ថបទមុន យើងបានដឹងរួចមកហើយថាដោយការផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្រនៃFNN (Feedforward Neural Network) អាចឱ្យយើងបង្ហាញពីទំនាក់ទំនងផ្សេងៗនៃទិន្នន័យដែលយើង មាន។ ចំណុចសំខាន់ក្នុងការកំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រគឺការស្វែងរកតម្លៃណាដែលសាកសមបំផុតក្នុង ការបង្កើតបានជាបណ្តាញFNNដែលអាចពណ៌នាទំនាក់ទំនងក្នុងសំណុំទិន្នន័យសម្រាប់រៀន។ ការ កំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រដោយផ្អែកលើសំណុំទិន្នន័យសម្រាប់រៀន ហៅថា ដំណើរការរៀន(Learning Process)។ មានវិធីសាស្ត្រច្រើនដែលត្រូវបានប្រើក្នុងដំណើរការរៀននៃFNN។ ក្នុងអត្ថបទនេះ យើង នឹងណែនាំវិធីសាស្ត្រកំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រដោយវិធីគណនាច្រំដែលលើតម្លៃលេខតាមប្រមាណវិធី ងាយៗគឺ Stochastic Gradient Descent (SGD)។ ដើម្បីងាយស្រួលស្វែងយល់អំពីSGD ជាដំបូង យើងនឹងណែនាំអំពីគំនិត និងការគណនាក្នុងវិធីសាស្ត្រ Gradient Descent ជាមុន។

1. វិធីសាស្ត្រ Gradient Descent

ដូចដែលបានបង្ហាញក្នុងអត្ថបទមុន ប៉ារ៉ាម៉ែត្រដែលសាកសមបំផុតក្នុងការបង្កើតបានជា បណ្តាញFNNដែលអាចពណ៌នាទំនាក់ទំនងក្នុងសំណុំទិន្នន័យសម្រាប់រៀន គឺជាតម្លៃណាដែលធ្វើឱ្យ អនុគមន៍កម្រិតលម្អៀងរវាងលទ្ធផលពីFNNនិងទិន្នន័យក្នុងសំណុំសម្រាប់រៀនតូចបំផុត ។ ហេតុនេះ គោលដៅរបស់យើងក្នុងដំណាក់កាលរៀននៃNeural Network គឺចង់កំណត់ប៉ារ៉ាម៉ែត្រនៃFNNដែល ធ្វើឱ្យអនុគមន៍កម្រិតលម្អៀងមានតម្លៃតូចបំផុត ពោលគឺតម្លៃផលបូកការេនៃលម្អៀងក្នុងករណីនៃ ចំណោទតម្រែតម្រង់ ឬ Cross Entropyក្នុងករណីចំណោទចំណាត់ថ្នាក់ក្រុម មានតម្លៃតូចបំផុត ។

$$\text{Regression}: \ E(\boldsymbol{w}) = \frac{1}{2} \sum_{n=1}^{N} \|\boldsymbol{t} - \boldsymbol{y}(\boldsymbol{x}_n; \boldsymbol{w})\|^2$$

$$\text{Classification}: \ E(\boldsymbol{w}) = -\sum_{n=1}^{N} \left\{ y(\boldsymbol{x}_n; \boldsymbol{w})^{t_n} + \left(1 - y(\boldsymbol{x}_n; \boldsymbol{w})\right)^{1-t_n} \right\}$$

គោលគំនិតក្នុងGradient Descent គឺផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្របន្តិចម្តងៗទៅតាមទិសដៅ ដែលធ្វើឱ្យតម្លៃនៃអនុគមន៍កម្រិតលម្អៀងមានការថយចុះ។ អ្នកអាចធ្វើការប្រដូចវិធីនេះទៅនឹងការ ចុះជំរាលឬចុះពីទីភ្នំដោយរំកិលខ្លួនអ្នកបន្តិចម្តងៗទៅកាន់ទីដែលទាបជាងកន្លែងដែលអ្នកនៅ។ ពេល ដែលអ្នករំកិលខ្លួនដល់ទីដែលលែងមានបម្រែបម្រួលនៃរយៈកម្ពស់ អ្នកអាចសន្និដ្ឋានបានថាអ្នកដល់ទី ដែលទាបបំផុតហើយ។ ដូចគ្នានេះដែរ នៅក្នុងវិធីសាស្ត្រGradient Descent តាមលក្ខណៈគណិត វិទ្យានៃ gradient (តម្លៃដេរីវេនៃអនុគមន៍ត្រង់ចំនុចណាមួយ) តម្លៃgradientត្រង់ចំណុចណាមួយគឺ ជាតម្លៃមេគុណប្រាប់ទិសនៃខ្សែកោងត្រង់ចំណុចនោះហើយក៏ជាតម្លៃធំបំផុតនៃបម្រែបម្រួលតម្លៃ អនុគមន៍ពេលអ្នកធ្វើបម្រែបម្រួលលើអថេរមិនអាស្រ័យ។

រូបទី១ គំនិតក្នុង Gradient Descent

ពេលនេះ យើងពិនិត្យលើការគណនាក្នុងវិធីសាស្ត្រ Gradient Descent។ យើងសិក្សា លើ ករណីសំណុំទិន្នន័យសម្រាប់រៀន $\mathcal{D}=\{(\pmb{x}_1,\pmb{t}_1),...,(\pmb{x}_N,\pmb{t}_N)\}$ និងអនុគមន៍ កម្រិត លម្អៀង $E(\pmb{w})$ ពោលគឺ ក្នុងករណីនៃចំណោទតម្រែតម្រង់

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} ||\mathbf{t} - \mathbf{y}(\mathbf{x}_n; \mathbf{w})||^2$$

និងក្នុងករណីនៃចំណោទចំណាត់ថ្នាក់ច្រើនក្រុម

$$E(\mathbf{w}) = -\sum_{n=1}^{N} \sum_{k=1}^{K} t_{nk} \log y_k(\mathbf{x}_n; \mathbf{w})$$

។ គោលដៅរបស់យើងគឺកំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រ \hat{w} ដែលធ្វើអប្បបរមាកម្មលើ E(w) ។

$$\widehat{\boldsymbol{w}} = \underset{\boldsymbol{w}}{\operatorname{argmin}} E(\boldsymbol{w})$$

សន្មតថាអនុគមន៍នេះយកតម្លៃអប្បបរមាត្រង់ចំណុច $\mathbf{w}^* \in \mathbb{R}^M$ ។ វិធីសាស្ត្រ Gradient Descent អាចឱ្យយើងគណនាតម្លៃ(ប្រហែល)នៃ \mathbf{w}^* បានដោយចាប់ផ្ដើមពីតម្លៃ $\mathbf{w}^{(0)}$ ណាមួយ រួចធ្វើកាផ្លោស់ប្ដូរតម្លៃនេះតាមការគណនាដូចខាងក្រោម។

$$\nabla E(\mathbf{w}) \equiv \frac{\partial E(\mathbf{w})}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial E}{\partial w_1} & \cdots & \frac{\partial E}{\partial w_M} \end{bmatrix}^{\mathsf{T}}$$

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \nabla E(\boldsymbol{w})|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

នៅទីនេះ $t=0,1,\dots$ គឺជាលេខរៀងនៃការផ្លាស់ប្តូរតម្លៃអថេរ \mathbf{x} ។ $\nabla E(\mathbf{w})$ គឺជាដេរីវេដោយផ្នែកនៃ អនុគមន៍E ធៀបនឹងអថេរ \mathbf{w} ឬហៅថា gradient ។ η_t គឺជាកម្រិតនៃការផ្លាស់ប្តូរតម្លៃអថេរដោយ គ្រប់គ្រងលើឥទ្ធិពលនៃតម្លៃgradient។ η_t ត្រូវបានហៅថាជា អត្រារៀនឬ learning rate ។ជាទូទៅ តម្លៃនៃ η_t ត្រូវបានកំណត់យកចន្លោះ០និង១ដោយតម្លៃយ៉ាងតូច។

យើងអាចកំណត់លក្ខខណ្ឌសម្រាប់បញ្ចប់ការផ្លាស់ប្តូរតម្លៃនៃអថេរបាន ដោយយកពេលដែ លតម្លៃដាច់ខាតនៃ gradient យកតម្លៃសូន្យឬក្បែរសូន្យ។ ពិនិត្យលើករណីគម្រុងាយមួយ $f(x) = x^2 - 2x - 3$ ។ ករណីនេះយើងដឹងច្បាស់ថាតម្លៃ អប្បបរមានៃអនុគមន៍គឺ -4 នៅពេលដែល $x^* = 1$ ។ យើងនឹងផ្ទៀងផ្ទាត់ជាមួយតម្លៃដែលគណនា តាមរយៈGradient Descent ។

ដំបូងយើងគណនាអនុគមន៍ដើរវៃ $\frac{df(x)}{dx}=2x-2$ និង កំណត់យកអត្រា $\eta=0.1$ ថេរ។ យើងចាប់ផ្ដើមពីចំណុច $x^{(0)}=0$, $f(x^{(0)})=-3$ ។ ដោយផ្លាស់ប្ដូរតម្លៃអថេរតាមរយៈGradient Descent ខាងលើយើងបានបម្រែបម្រួលនៃតម្លៃអថេរនិងតម្លៃអនុគមន៍ដូចតារាងខាងក្រោម។

THE TOTAL PROPERTY OF THE MINE AND ALL THE DESCENT			
t	$x^{(t)}$	$\frac{df(x)}{dx}$	f(x)
0	0.00	-2.00	-3.00
1	0.20	-1.60	-3.36
2	0.36	-1.28	-3.59
:	:	:	:
44	0.999946	-0.000109	-4.00
45	0.999956	-0.000087	-4.00

តារាងទី១ បម្រែបម្រួលនៃតម្លៃអថេរនិងអនុគមន៍តាម Gradient Descent

2. វិធីសាស្ត្រ Stochastic Gradient Descsent (SGD)

ការធ្វើបរមាកម្មលើតម្លៃអនុគមន៍ដោយប្រើ Gradient Descent តម្លៃអនុគមន៍កម្រិត លម្អៀងនៃគ្រប់ទិន្នន័យទាំងអស់ $E(\mathbf{w})$ ក្នុងសំណុំទិន្នន័យសម្រាប់រៀន(training data) ត្រូវបានធ្វើ អប្បបរមាកម្ម។ ទាំងក្នុងករណីចំណោទតម្រែតម្រង់(Regression) និងចំណោទចំណាត់ថ្នាក់ក្រុម ទិន្នន័យ(Classification) អនុគមន៍កម្រិតលម្អៀងនៃគ្រប់ទិន្នន័យអាចសរសេរបានជាផលបូកនៃ គ្រប់តម្លៃកម្រិតលម្អៀងក្នុងករណីគម្រូសម្រាប់រៀននិមួយៗ $E_n(\mathbf{w})$ ។

$$E(\mathbf{w}) = \sum_{n=1}^{N} E_n(\mathbf{w})$$

ការផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្រដូចបានបង្ហាញក្នុងGradient Descent ដោយប្រើអនុគមន៍កម្រិត លម្អៀងនៃគ្រប់ទិន្នន័យទាំងអស់ $E(\mathbf{w})$ ហៅថា ការរៀនជាក្រុម/ជាបាច់(batch learning) ។ ផ្ទុយពីនេះ វិធីសាស្ត្រនៃការធ្វើអប្បបរមាអនុគមន៍កម្រិតលម្អៀងដោយធ្វើការផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្រ ដោយប្រើគម្រូសម្រាប់រៀនម្តងមួយៗនិងតម្លៃអនុគមន៍កម្រិតលម្អៀងលើគម្រូនោះ $E_n(\mathbf{w})$ ហៅថា stochastic gradient descent(SGD) ។ ក្នុងវិធីSGD គម្រូទិន្នន័យសម្រាប់រៀន(training sample) ម្តងមួយៗ ត្រូវបានជ្រើសយកដោយចៃដន្យដើម្បីគណនា gradient នៃអនុគមន៍ $E_n(\mathbf{w})$ រួចធ្វើការ ផ្លាស់ប្តូរតម្លៃប៉ារ៉ាម៉ែត្រតែម្តង ដោយមិនចាំបាច់ធ្វើការបុកសរុបគ្រប់ទិន្នន័យដែលមាននោះឡើយ។

$$\nabla E_n(\mathbf{w}) \equiv \frac{\partial E_n(\mathbf{w})}{\partial \mathbf{w}} = \begin{bmatrix} \frac{\partial E_n}{\partial w_1} & \cdots & \frac{\partial E_n}{\partial w_M} \end{bmatrix}^\mathsf{T}$$

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \nabla E_n(\boldsymbol{w})|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

ដូចដែលអ្នកអាចធ្វើការកត់សម្គាល់បាន ដោយប្រើgradient descent ពេលខ្លះយើងអាច នឹងទទួលបានតម្លៃប៉ារ៉ាម៉ែត្រដែលធ្វើឱ្យតម្លៃអនុគមន៍កម្រិតលម្អៀងធ្លាក់ចុះទៅក្នុងទីតាំងដែលជា បរមាធៀបតែមិនមែនជាកន្លែងអប្បបរមាពិតប្រាកដប្រសិនបើទីតាំងនៃការចាប់ផ្ដើមរបស់អ្នក មិនប្រសើរ។ ប៉ុន្តែជាមួយ SGD ដោយសាររាល់ការផ្លាស់ប្ដូរទិន្នន័យ គម្រូទិន្នន័យនិមួយៗត្រូវបាន ជ្រើសរើសដោយចៃដន្យ ហេតុនេះភាពប្រថុយប្រថាននៃការធ្លាក់ចូលទៅក្នុងអប្បបរមាធៀបអាចត្រូវ បានដោះស្រាយមួយកម្រិត។

ផ្ទុយពី ការរៀនជាក្រុម/ជាបាច់(batch learning) ការរៀនដោយប្រើវិធីសាស្ត្រSGD ត្រូវបាន ហៅថា ការរៀនអនឡាញ(online learning)។ ក្រៅពីនេះ ការរៀនដោយប្រើវិធីសាស្ត្រផ្លាស់ប្តូរប៉ារ៉ា ម៉ែត្រដូចSGD ប៉ុន្តែជំនួសការរើសយកគម្រូទិន្នន័យម្តងមួយៗ ការរើសយកទិន្នន័យមួយចំនួន(< N) សម្រាប់ប្រើគណនាgradient ក៏ត្រូវបានអនុវត្តដែរ។ ក្នុងករណីនេះគេហៅថា ការរៀនជាក្រុមតូច/ជា បាច់តូច(minibatch learning)។ ក្នុងការរៀនជាក្រុមតូច ការផ្លាស់ប្តូរប៉ារ៉ាម៉ែត្រត្រូវធ្វើឡើងដូចខាង ក្រោម។

$$E_t(\mathbf{w}) = \frac{1}{|\mathcal{D}_t|} \sum_{n \in \mathcal{D}_t} E_n(\mathbf{w}) , \mathcal{D}_t \subset \mathcal{D}$$

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \nabla E_t(\boldsymbol{w})|_{\boldsymbol{w} = \boldsymbol{w}^{(t)}}$$

3. សមត្ថភាពទូទៅ(Generalization Performance) និងស្ថានភាពរៀនហួសកំរិត(Overfitting)

តាមការរៀបរាប់ពីដំណើរការរៀនក្នុងចំណុចខាងលើ យើងបានសិក្សាពីការកំណត់ប៉ារ៉ាម៉ែត្រ ណាដែលធ្វើឱ្យតម្លៃនៃអនុគមន៍កម្រិតលម្អៀងចំពោះសំណុំទិន្នន័យសម្រាប់រៀនមានតម្លៃតូចបំផុត។ ប៉ុន្តែតាមពិតទៅក្រៅពីសំណុំទិន្នន័យសម្រាប់រៀន យើងក៏ចង់បានបណ្តាញFNNដែលធ្វើឱ្យកម្រិត លម្អៀងក្នុងករណីទិន្នន័យផ្សេងក្រៅពីទិន្នន័យសម្រាប់រៀនមានតម្លៃតូចផងដែរ។

កម្រិតលម្អៀងចំពោះសំណុំទិន្នន័យសម្រាប់រៀនហៅថា កម្រិតលម្អៀងពេលរៀន(training error) និងតម្លៃសង្ឃឹមគណិតនៃកម្រិតលម្អៀងចំពោះសំណុំទិន្នន័យទាំងអស់(population)ទាំង ទិន្នន័យដែលបានរៀននិងទាំងទិន្នន័យដែលមិនមានក្នុងសំណុំសម្រាប់រៀនហៅកម្រិតលម្អៀងទូទៅ (generalization error)។ គោលដៅយើងចង់បានបណ្ដាញដែលផ្ដល់ឱ្យនូវកម្រិតលម្អៀងទូទៅតូច បំផុត ប៉ុន្តែដោយសារកម្រិតលម្អៀងទូទៅជាតម្លៃសង្ឃឹមគណិតលើសំណុំទិន្នន័យទាំងអស់ នោះការ គណនាដោយផ្ទាល់មិនអាចធ្វើបានឡើយ។ ហេតុនេះ ជំនួសឱ្យការសិក្សាលើសំណុំទិន្នន័យទាំងអស់ គេសិក្សាលើសំណុំគម្រូទិន្នន័យមួយផ្នែកដែលមិនមានក្នុងសំណុំសម្រាប់រៀន។ សំណុំនេះហៅថា សំណុំទិន្នន័យសម្រាប់វាយតម្លៃ(test data set) ហើយកម្រិតលម្អៀងនៃសំណុំទិន្នន័យសម្រាប់វាយ តម្លៃនេះហៅថា កម្រិតលម្អៀងពេលវាយតម្លៃ(test error)។ ពោលគឺជំនួសឱ្យគោលដៅនៃអប្បបរមា កម្មលើកម្រិតលម្អៀងទូទៅយើងសិក្សាលើអប្បបរមាកម្មលើកម្រិតលម្អៀងពេលវាយតម្លៃវិញ។

រូបទី២ខាងក្រោមបង្ហាញពីបម្រែបម្រួលនៃអនុគមន៍កម្រិតលម្អៀងនៅពេលប៉ារ៉ាម៉ែត្រត្រូវ បានផ្លាស់ប្តូរក្នុងដំណើរការរៀន។ ក្រាបប្រភេទនេះហៅថាខ្សែកោងបង្ហាញដំណើរការរៀន(learning curve)។ ជាទូទៅអនុគមន៍កម្រិតលម្អៀងពេលរៀនថយនៅពេលដំណើរការរៀនត្រូវបានអនុវត្ត។ ផ្ទុយទៅវិញ អនុគមន៍កម្រិតលម្អៀងពេលវាយតម្លៃថយចុះដូចអនុគមន៍កម្រិតលម្អៀងពេលរៀនដែរ នៅដំណាក់កាលដំបូង ប៉ុន្តែនៅត្រង់ចំណុចណាមួយ វាក៏ចាប់ផ្តើមមានគម្លាតរវាងករណីរៀននិងការ វាយតម្លៃ។ ក្នុងករណីដែលមិនល្អ នៅពេលដែលដំណើរការរៀនបន្តទៅមុខ អនុគមន៍កម្រិតលម្អៀង ពេលរៀនថយ ឯកម្រិតលម្អៀងវាយតម្លៃចាប់ផ្តើមកើនឡើង។ ករណីបែបនេះបង្ហាញក្នុងរូបទី២ ផ្នែក ខាងស្តាំ។ ស្ថានភាពដែលកម្រិតលម្អៀងពេលរៀនថយចុះទាបខ្លាំងខណៈកម្រិតលម្អៀងវាយតម្លៃកើន ធំខ្លាំងហៅថា ស្ថានភាពរៀនហួសកំរិត។ ស្ថានភាពបែបនេះអាចនិយាយបែបងាយបានថា បណ្តាញ អាចផ្តល់លទ្ធផលបានល្អចំពោះតែទិន្នន័យណាដែលខ្លួនធ្លាប់បានរៀន រីឯទិន្នន័យដែលមិនមានក្នុង សំណុំសម្រាប់រៀន បណ្តាញមិនអាចផ្តល់លទ្ធផលបានល្អឡើយ។

ក្នុងការដោះស្រាយបញ្ហាបែបនេះមានតិចនិចជាច្រើនត្រូវបានស្រាវជ្រាវនិងអនុវត្ត។ យើង នឹងណែនាំលម្អិតក្នុងអត្ថបទខាងក្រោយ ប៉ុន្តែដំណោះស្រាយងាយគឺការបញ្ឈប់ដំណើរការរៀនមុន កំណត់(early stopping) ដោយបញ្ឈប់ដំណើរការរៀនមុនពេលកម្រិតលម្អៀងវាយតម្លៃកើនឡើង។

រូបទី២ អនុគមន៍កម្រិតលម្អៀងពេលរៀននិងពេលវាយតម្លៃក្នុងករណីធម្មតានិងករណីOverfitting

រូបទី៣ គម្រូទិន្នន័យក្នុងDataset(28 x 28)

4. សិក្សាឧទាហរណ៍៖ ការសម្គាល់លេខសរសេរដោយដៃដោយប្រើFNN

4.1. អំពីសំណុំទិន្នន័យនិង លក្ខណៈសម្គាល់នៃទិន្នន័យ

យើងប្រើសំណុំទិន្នន័យ MNIST¹ សម្រាប់ចំណោទធ្វើចំណាត់ថ្នាក់ក្រុមលេខសរសេរដោយ ដៃទៅតាមក្រុម(០ដល់១)ដោយប្រើFNN។ គម្រូទិន្នន័យមានបង្ហាញក្នុងរូបទី៣។ ទិន្នន័យជារូបនៃ លេខសរសេរដោយដៃទាំងនេះមានទំហំ28x28។ នៅទីនេះយើងបំលែងវាជាទម្រង់វ៉ិចទ័រដែលមាន ទំហំ784(=28x28) និង បំលែងលេខសំគាល់ថ្នាក់របស់វាជាទម្រង់one-hot vector។

ចំពោះដំណើរការរៀននិងវាយតម្លៃ យើងបែងចែក60000គម្រូទិន្នន័យសម្រាប់ដំណើរការ រៀន(training data)និង10000គម្រូទិន្នន័យសម្រាប់ការវាយតម្លៃ(test data)។

4.2. អំពីបណ្តាញFNN

យើងកំណត់យកFNN៣ថ្នាក់សម្រាប់ប្រើនៅទីនេះ ពោលគឺ input layer- hidden layeroutput layer។ ចំនួនណឺរ៉ូននៅinput layer គឺស្មើនឹងទំហំវ៉ិចទ័ររូបដែលជាធាតុចូល(784)ឯចំនួន ណឺរ៉ូននៅoutput layerគឺស្មើនឹងចំនួនក្រុម(10)។ ចំពោះចំនួនណឺរ៉ូននៅhidden layerយើងកំណត់ យកស្មើនឹង 100។

ចំពោះអនុគមន៍សកម្ម(activation function) យកកំណត់ប្រើ sigmoid function ចំពោះ លទ្ធផលពីinput layerនិងsoftmax functionសម្រាប់លទ្ធផលចុងក្រោយ។

ចំពោះដំណើរការរៀនយើងនឹងប្រើ SGD (minibatch)។

 $^{^{1} \ \}underline{\text{http://yann.lecun.com/exdb/mnist/}} \ \ , \ \ \underline{\text{https://keras.io/api/datasets/}}$

4.3. អំពីដំណើរការរៀនជាក្រុមតូច(minibatch learning)

Step-1: ជ្រើសរើស minibatch

ជ្រើសយកគម្រូទិន្នន័យពីសំណុំទិន្នន័យសម្រាប់រៀនមួយផ្នែក(minibatch)ដោយចៃដន្យ។ គោលដៅយើងគឺធ្វើអប្បបរមាតម្លៃនៃអនុគមន៍កម្រិតលម្អៀងចំពោះទិន្នន័យទាំងនេះ។

Step-2: គណនា gradient

ដើម្បីអនុវត្តGradient Descent (minibatch) យើងគណនាតម្លៃgradientធៀបនឹង ប៉ារ៉ាម៉ែត្រនិមួយៗ។

Step-3: ផ្លាស់ប្តូតម្លៃប៉ារ៉ាម៉ែត្រ

ផ្លាស់ប្តូរតម្លៃនៃប៉ារ៉ាម៉ែត្រតាមទំនាក់ទំនងដែលបានបង្ហាញនៅចំណុច2. ខាងលើ។

Step-4: អនុវត្ត Step-1, Step-2, Step-3 ម្តងហើយម្តងទៀតរហូតដល់ចំនួនដងដែលបាន កំណត់ជាមុន(Iteration number)

នៅទីនេះយើងកំណត់យក អត្រារៀន(learning rate) $\eta=0.1$, ទំហំក្រុមតូច (minibatch) $|\mathcal{D}_t|=100$ និងចំនួនដងក្នុងដំណើរការរៀន Iteration number = $10000\,\mathrm{M}$

4.4. ការបង្កើតបណ្តាញFNNដោយប្រើPython

import numpy as np

```
class SimpleFNN:
 def __init__(self, input_size, hidden_size, output_size):
   self.params = {}
    self.params['Wl'] = np.random.randn(input_size, hidden_size)
   self.params['bl'] = np.random.randn(hidden_size)
    self.params['W2'] = np.random.randn(hidden_size, output_size)
    self.params['b2'] = np.random.randn(output_size)
  def predict(self, x):
    W1, W2 = self.params['W1'], self.params['W2']
    b1, b2 = self.params['b1'], self.params['b2']
    u1 = np.dot(x,W1) + b1
    z1 = sigmoid(u1)
   u2 = np.dot(z1,W2) + b2
   y = softmax(u2)
    return y
  def loss(self, x, t):
   y = self.predict(x)
    return cross_entropy_error(y,t)
  def accuracy(self, x, t):
   y = self.predict(x)
    y = np.argmax(y, axis=1)
    t = np.argmax(t, axis=1)
    accuracy = np.sum(y == t)/float(x.shape[0])
    return accuracy
  def gradient(self, x, t):
        W1, W2 = self.params['W1'], self.params['W2']
        b1, b2 = self.params['b1'], self.params['b2']
        grads = {}
       batch_num = x.shape[0]
       a1 = np.dot(x, W1) + b1
        z1 = sigmoid(a1)
        a2 = np.dot(z1, W2) + b2
       y = softmax(a2)
        dy = (y - t) / batch_num
        grads['W2'] = np.dot(z1.T, dy)
        grads['b2'] = np.sum(dy, axis=0)
        dz1 = np.dot(dy, W2.T)
       dal = sigmoid_grad(al) * dzl
       grads['Wl'] = np.dot(x.T, dal)
grads['bl'] = np.sum(dal, axis=0)
      return grads
```

```
def sigmoid(x):
    return 1 / (1 + np.exp(-x))

def sigmoid_grad(x):
    return (1.0 - sigmoid(x)) * sigmoid(x)

def softmax(x):
    x = x - np.max(x, axis=-1, keepdims=True) # To deal with overflow
    return np.exp(x) / np.sum(np.exp(x), axis=-1, keepdims=True)

def cross_entropy_error(y, t):
    batch_size = y.shape[0]
    t = t.argmax(axis=1)
    return -np.sum(np.log(y[np.arange(batch_size), t] + le-7)) / batch_size
```


រូបទី៥ កម្រិតលម្អៀង(Cross-entropy)ក្នុងដំណើរការរៀន

រូបទី៦ អត្រាត្រឹមត្រូវនៃការប៉ាន់ស្មានក្រុមចំពោះទិន្នន័យសម្រាប់រៀននិងទិន្នន័យវាយតម្លៃ

4.5. លទ្ធផល

រូបទី៥បង្ហាញពីបម្រែបម្រួលនៃអនុគមន៍កម្រិតលម្អៀងក្នុងដំណើរការរៀនចំពោះទិន្នន័យ សម្រាប់រៀននិងទិន្នន័យវាយតម្លៃ។ រូបទី៦បង្ហាញពីអត្រាត្រឹមត្រូវនៃការធ្វើចំណាត់ថ្នាក់ក្រុមលើលេខ សរសេរដៃដោយប្រើFNN ចំពោះទិន្នន័យសម្រាប់រៀននិងទិន្នន័យសម្រាប់វាយតម្លៃ។

ក្នុងអត្ថបទក្រោយយើងនឹងណែនាំអំពីវិធីសាស្ត្រកំណត់ប៉ារ៉ាម៉ែត្រក្នុងដំណើរការរៀន ផ្សេងទៀតក្រៅពីSGD ដែលមានប្រសិទ្ធភាពក្នុងការគណនាចំពោះទម្រង់នៃNeural Network។

Backpropagation(BP)

ក្នុងអត្ថបទមុនយើងបានសិក្សាអំពីដំណើរការរៀនដើម្បីកំណត់តម្លៃប៉ារ៉ាម៉ែត្រនៃFNNតាម រយៈវិធីសាស្ត្រ stochastic gradient descend (SGD) ។ ដូចដែលអ្នកអាចចាប់អារម្មណ៍បានក្នុង SGD ការគណនាgradientឬដើរវៃនៃអនុគមន៍កម្រិតលម្អៀងត្រូវបានធ្វើឡើង ។ ជាទូទៅការគណនា នេះអាចធ្វើបានតាមរយៈការគណនាតម្លៃប្រហែលនៃដើរវៃដោយប្រើតម្លៃអនុគមន៍ផ្ទាល់។ ប៉ុន្តែការ គណនាបែបនេះចំណាយពេលច្រើន ។ ដើម្បីគណនាgradientឬដើរវៃនៃអនុគមន៍ប្រកបដោយប្រសិទ្ធ កាព វិធីសាស្ត្រគណនាgradientដោយប្រើ backpropagation ត្រូវបានប្រើប្រាស់ជាទូទៅ ។

1. ភាពលំបាកក្នុងការគណនា gradient

នៅក្នុង stochastic gradient descend ការគណនាតម្លៃ gradient នៃអនុគមន៍កម្រិត លម្អៀង ($\nabla E(w) = \partial E(w)/\partial w$)គឺជាដំណាក់កាលដ៏សំខាន់។ ចំពោះFNNច្រើនថ្នាក់ ការគណនា gradient ចំពោះប៉ារ៉ាម៉ែត្រមានភាពស្មុគស្មាញខ្លាំង។

ជាឧទាហរណ៍តម្លៃកម្រិតលម្អៀងចំពោះគម្រូទិន្នន័យសម្រាប់រៀន x_n នៃចំណោទតម្រែ តម្រង់(regression) កំណត់ដោយ $E_n=\frac{1}{2}\|y(x_n)-t_n\|^2$ ។ យើងសាកល្បងគណនាដើរវេធៀប នឹងប៉ារ៉ាម៉ែត្រទំងន់ផ្ទាល់ $w_{ji}^{(l)}$ នៃថ្នាក់ទី l ។

ដំបូងយើងពិនិត្យឃើញថា

$$\frac{\partial E_n}{\partial w_{ji}^{(l)}} = (\mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n)^{\mathsf{T}} \frac{\partial \mathbf{y}}{\partial w_{ji}^{(l)}}$$

បន្ទាប់មកទៀតយើងត្រូវគណ៌នាដេរីវេ $\frac{\partial y}{\partial w_{ji}^{(t)}}$ ។ ដោយលិទ្ធផលនៃFNN y(x) កំណត់ដោយ ទម្រង់ខាងក្រោម នោះយើងអាចមើលឃើញបានថាការគណនាដេរីវេតាមវិធីបែបនេះមិនមាន ប្រសិទ្ធភាពឡើយ ពោលគឺត្រូវចំណាយពេលច្រើនក្នុងការគណនាដោយប្រើProgramming។

$$y(x) = f(u^{(L)})$$

$$= f(W^{(L)}z^{(L-1)} + b^{(L)})$$

$$= f(W^{(L)}f(W^{(L-1)}z^{(L-2)} + b^{(L-1)}) + b^{(L)})$$

$$= f(W^{(L)}f(W^{(L)}f(\cdots f(W^{(l)}z^{(l-1)} + b^{(l)}) \cdots)) + b^{(L)})$$

វិធីសាស្ត្រ backpropagation អាចជួយដោះស្រាយបញ្ហាគណនាដេរីវេនៃអនុគមន៍បណ្តាក់ ច្រើនជាន់បែបនេះបាន ។ នៅក្នុងការបង្ហាញខាងក្រោម ដើម្បីសម្រួលដល់ការសរសេរ យើងកំណត់ សរសេរតួ bias ជាផ្នែកមួយនៃប៉ារ៉ាម៉ែត្រទំងន់ផ្ទាល់នៃណឺរ៉ូនដែរ ពោលគឺ $w_{0j}^{(l)}=b_j^{(l)}$ ។ ហេតុនេះ ដោយកំណត់ណឺរ៉ូនទី០នៃថ្នាក់(l-1) ឱ្យបញ្ចេញនូវលទ្ធផល $z_0^{(l-1)}=1$ ជានិច្ចនោះយើងអាច សរសេរលទ្ធផលនៃណឺរ៉ូនដោយទម្រង់ខាងក្រោម។

$$u_j^{(l)} = \sum_{i=1}^k w_{ji}^{(l)} z_i^{(l-1)} + b_j = \sum_{i=0}^k w_{ji}^{(l)} z_i^{(l-1)}$$

2. ការគណនាតាម backpropagation ករណីFNNមានប៉ារ៉ាម៉ែត្រពីរថ្នាក់(ណឺរ៉ូន៣ថ្នាក់)

រូបទី១បង្ហាញទម្រង់នៃFNNមានប៉ារ៉ាម៉ែត្រពីរថ្នាក់(ណឺរ៉ូន៣ថ្នាក់)នៃចំណោទតម្រែតម្រង់ (regression) ។ អនុគមន៍សកម្ម(activation function) នៃថ្នាក់លទ្ធផលចុងក្រោយកំណត់ដោយ អនុគមន៍identity(f(x) = x) ។

សន្មតធាតុចូលនៃបណ្ដាញនេះដោយ $oldsymbol{x} = [x_1 \ x_2 \ x_3 \ x_4]^{ op}$ ។ លទ្ធផលនៃថ្នាក់ណឺរ៉ូនទីមួយ ពោលថ្នាក់ធាតុចូលគឺ $z_i^{(1)}=x_i$ និងលទ្ធផលនៃថ្នាក់កណ្ដាល $z_i^{(2)}$ ព្រមទាំងលទ្ធផលនៃថ្នាក់លទ្ធ ផលចុងក្រោយ $y_j(x)=z_j^{(3)}$ កំណត់ដោយទម្រង់ខាងក្រោម។

$$z_j^{(2)} = f(u_j^{(2)}) = f\left(\sum_i w_{ji}^{(2)} z_i^{(1)}\right)$$

$$y_j(\mathbf{x}) = z_j^{(3)} = u_j^{(3)} = \sum_i w_{ji}^{(3)} z_i^{(2)}$$

សន្មតយកផលបូកការេនៃលម្អៀងជាអនុគមន៍កម្រិតលម្អៀងនៃបណ្ដាញនេះ។

$$E_n = \frac{1}{2} \| \mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n \|^2 = \frac{1}{2} \sum_{i} (y_i(\mathbf{x}_n) - \mathbf{t}_n)^2$$

ពេលនេះយើងពិនិត្យលើការគណនាដើរវៃនៃអនុគមន៍នេះធៀបនឹងប៉ារ៉ាម៉ែត្ររបស់វា។ ដំបូងយើងគណនាដេរីវេធៀបប៉ារ៉ាម៉ែត្រនៃផ្នែកថ្នាក់លទ្ធផលចុងក្រោយនៃបណ្តាញ $rac{\partial E_n}{\partial w_n^{(3)}}$ ។

$$\frac{\partial E_n}{\partial w_{ii}^{(3)}} = \frac{\partial}{\partial w_{ii}^{(3)}} \left\{ \frac{1}{2} \| \boldsymbol{y}(\boldsymbol{x}_n) - \boldsymbol{t}_n \|^2 \right\} = (\boldsymbol{y}(\boldsymbol{x}_n) - \boldsymbol{t}_n)^{\mathsf{T}} \frac{\partial \boldsymbol{y}}{\partial w_{ii}^{(3)}}$$

ដោយ

$$y_j(x) = z_j^{(3)} = u_j^{(3)} = \sum_i w_{ji}^{(3)} z_i^{(2)}$$

នោះ

$$\frac{\partial \mathbf{y}}{\partial w_{ii}^{(3)}} = \left[0 \cdots 0 \ z_i^{(2)} \ 0 \cdots 0\right]^\mathsf{T}$$

ដូច្នេះ

$$\frac{\partial E_n}{\partial w_{ji}^{(3)}} = (\boldsymbol{y}(\boldsymbol{x}_n) - \boldsymbol{t}_n)^{\mathsf{T}} \frac{\partial \boldsymbol{y}}{\partial w_{ji}^{(3)}} = (y_j(\boldsymbol{x}_n) - t_{nj}) z_i^{(2)}$$

បន្ទាប់ពីនេះ យើងពិនិត្យលើថ្នាក់កណ្ដាល $rac{\partial E_n}{\partial w_{ii}^{(2)}}$ ។

$$\frac{\partial E_n}{\partial w_{ji}^{(2)}} = \frac{\partial E_n}{\partial u_j^{(2)}} \frac{\partial u_j^{(2)}}{\partial w_{ji}^{(2)}}$$

ដោយ

$$u_j^{(2)} = \sum_i w_{ji}^{(2)} z_i^{(1)}$$

នោះយើងបាន

$$\frac{\partial u_j^{(2)}}{\partial w_{ji}^{(2)}} = z_i^{(1)}$$

ម្យ៉ាងទៀត បើយក k ជាចំនួនណឺរ៉ូននៅ ថ្នាក់លទ្ធផលចុងក្រោយនោះ E_n មាន $u_1^{(3)},\cdots,u_k^{(3)}$ ជាអឋេរ ដែលយើងអាចសរសេរអនុគមន៍ដើរវេដូចខាងក្រោម។

$$\frac{\partial E_n}{\partial u_j^{(2)}} = \sum_k \frac{\partial E_n}{\partial u_k^{(3)}} \frac{\partial u_k^{(3)}}{\partial u_j^{(2)}}$$

$$\frac{\partial E_n}{\partial u_k^{(3)}} = \frac{\partial}{\partial u_k^{(3)}} \left\{ \frac{1}{2} \sum_j \left(y_j(\boldsymbol{x}_n) - \boldsymbol{t}_n \right)^2 \right\}$$

$$= \frac{\partial}{\partial u_k^{(3)}} \left\{ \frac{1}{2} \sum_j \left(u_j^{(3)} - \boldsymbol{t}_n \right)^2 \right\} = u_k^{(3)} - t_{nk}$$

ដោយ

$$\frac{\partial u_k^{(3)}}{\partial u_i^{(2)}} = \frac{\partial}{\partial u_i^{(2)}} \left\{ \sum_i w_{ki}^{(3)} z_i^{(2)} \right\}$$

$$= \frac{\partial}{\partial u_j^{(2)}} \left\{ \sum_i w_{ki}^{(3)} f(u_j^{(2)}) \right\}$$
$$= w_{kj}^{(3)} f'(u_j^{(2)})$$

ហេតុនេះ យើងបាន

$$\frac{\partial E_n}{\partial w_{ji}^{(2)}} = \left(f' \left(u_j^{(2)} \right) \sum_k w_{kj}^{(3)} \left(u_k^{(3)} - t_{nk} \right) \right) z_i^{(1)}$$

3. ករណីទូទៅ៖ FNNច្រើនថ្នាក់

ដំបូង យើងពិនិត្យលើប៉ារ៉ាម៉ែត្រ $w_{ii}^{(l)}$ នៃថ្នាក់ទី l ។

$$\frac{\partial E_n}{\partial w_{ji}^{(l)}} = \frac{\partial E_n}{\partial u_j^{(l)}} \frac{\partial u_j^{(l)}}{\partial w_{ji}^{(l)}}$$

ដោយពិនិត្យរូបទី២(ច្វេង) បម្រែបម្រួលនៃ $u_j^{(l)}$ ជះឥទ្ធិពលលើតម្លៃនៃ E_n តាមរយៈតម្លៃនៃ $z_j^{(l)}$ និង តម្លៃលទ្ធផលនៃណឺរ៉ូននៅថ្នាក់ទី(l+1)។ ហេតុនេះយើងបាន

$$\frac{\partial E_n}{\partial u_j^{(l)}} = \sum_k \frac{\partial E_n}{\partial u_k^{(l+1)}} \frac{\partial u_k^{(l+1)}}{\partial u_j^{(l)}}$$

។ ដោយពិនិត្យលើកន្សោមខាងលើ យើងឃើញថា $\partial E_n/\partial u_j^{(\cdot)}$ បង្ហាញនៅអង្គទាំងសង្ខាង។ នៅទីនេះ យើងសន្មតតាង

$$\delta_j^{(l)} \equiv \frac{\partial E_n}{\partial u_j^{(l)}}$$

។ ដោយប្រើទំនាក់ទំនង $u_k^{(l+1)} = \sum_j w_{kj}^{(l+1)} z_j^{(l)} = \sum_j w_{kj}^{(l+1)} f\left(u_j^{(l)}\right)$ យើងបាន $\partial u_k^{(l+1)}/\partial u_j^{(l)} = w_{kj}^{(l+1)} f'\left(u_j^{(l)}\right)$ ។ ហេតុនេះ

$$\delta_j^{(l)} = \frac{\partial E_n}{\partial u_i^{(l)}} = \sum_k \frac{\partial E_n}{\partial u_k^{(l+1)}} \frac{\partial u_k^{(l+1)}}{\partial u_j^{(l)}} = \sum_k \delta_k^{(l+1)} \left(w_{kj}^{(l+1)} f\left(u_j^{(l)}\right) \right)$$

តាមទំនាក់ទំនងនេះបង្ហាញថាយើងអាចគណនា $\delta_j^{(l)}$ បានដោយប្រើតម្លៃនៃ $\delta_k^{(l+1)}$ (k=1,2,...)។ មានន័យថា បើយើងដឹងតម្លៃ δ របស់ថ្នាក់ខាងលើពោលគឺ(l+1) នោះយើងអាចគណនាតម្លៃ δ នៅថ្នាក់ក្រោមបន្តបន្ទាប់តាមទំនាក់ទំនងនេះ។ រូបទី២ (δ_k^n) បង្ហាញពីដំណើរការនៃការគណនា

δ ពីថ្នាក់លើឆ្ពោះទៅថ្នាក់ក្រោមបែបនេះ។ ទំនាក់ទំនងខាងលើនេះពិតជានិច្ចចំពោះគ្រប់ថ្នាក់ ទាំងអស់នៃបណ្តាញ។

ដូច្នេះបើ δ នៅថ្នាក់លទ្ធផលចុងក្រោយត្រូវបានគណនា នោះ យើងអាចគណនា δ ពោលគឺ ដេរីវេនៃប៉ារ៉ាម៉ែត្រនៅថ្នាក់ក្រោមជាបន្តបន្ទាប់បានដោយអនុវត្តតាមទំនាក់ទំនងងាយខាងលើ។ ដោយ សារតែលំដាប់នៃការគណនា δ នៅទីនេះមានទិសដៅផ្ទុយពីទិសដៅបញ្ជូនសញ្ញាណក្នុងការប៉ាន់ស្មាន លទ្ធផលរបស់បណ្តាញ ដូចនេះទើបគេហៅឈ្មោះវិធីសាស្ត្រនេះថាជា backpropagation។ ត្រលប់មកផ្នែកនៅសល់នៃ $\frac{\partial E_n}{\partial w_{ji}^{(l)}} = \frac{\partial E_n}{\partial u_j^{(l)}} \frac{\partial u_j^{(l)}}{\partial w_{ji}^{(l)}}$ ។ ដោយ $\frac{\partial E_n}{\partial u_j^{(l)}}$ អាចគណនាបានដោយគណនា δ ដូច្នេះ យើងពិនិត្យលើ $\frac{\partial u_j^{(l)}}{\partial w_{ji}^{(l)}}$ ។ តាមទំនាក់ទំនង $u_j^{(l)} = \sum_{i=0}^k w_{ji}^{(l)} z_i^{(l-1)}$ នោះ $\frac{\partial u_j^{(l)}}{\partial w_{ji}^{(l)}} = z_i^{(l-1)}$ ហេតុនេះ យើងបាន

$$\frac{\partial E_n}{\partial w_{ii}^{(l)}} = \delta_j^{(l)} z_i^{(l-1)}$$

ដូចបង្ហាញក្នុងទំនាក់ទំនងដែលទាញបាននេះ ការគណនាដេរីវេដោយផ្នែកនៃអនុគមន៍កម្រិតលម្អៀង ធៀបប៉ារ៉ាម៉ែត្រ $w_{ji}^{(l)}$ ដែលភ្ជាប់ណឺរ៉ូនទី i នៃថ្នាក់ទី(l-1)និងណឺរ៉ូនទី j នៃថ្នាក់ទី(l) អាចគណនា បានយ៉ាងងាយដោយប្រើ $\delta_j^{(l)}$ នៃណឺរ៉ូនទី j នៃថ្នាក់ទី(l) និងលទ្ធផល $z_i^{(l-1)}$ នៃណឺរ៉ូនទី i នៃថ្នាក់ទី (l-1) ។ ដូចបានបញ្ជាក់ខាងលើ $\delta_j^{(l)}$ អាចគណនាបានដោយគណនាជាបន្តបន្ទាប់ពីថ្នាក់ខាងលើ តាមទំនាក់ទំនងដែលបានទាញពីខាងដើម។ ក្នុងករណីនេះ $\delta_j^{(L)}$ នៃថ្នាក់ខាងលើបំផុត (ថ្នាក់លទ្ធផល ចុងក្រោយ)អាចកំណត់បានដោយ

$$\delta_j^{(L)} = \frac{\partial E_n}{\partial u_j^{(L)}}$$

ដែលការគណនាជាក់ស្តែងប្រែប្រួលទៅតាមប្រភេទនៃអ[័]នុគមន៍កម្រិតលម្អៀង(ទៅតាមចំណោទ)។

ដោយបូកសរុបការគណនាខាងលើ នៅពេលដែលគម្រូទិន្នន័យសម្រាប់រៀន (x_n, t_n) ត្រូវ បានផ្ដល់ gradientឬដើវវ៉េនៃអនុគមន៍កម្រិតលម្អៀងអាចគណនាបានតាមលំដាប់លំដោយខាង ក្រោម។ ក្នុងករណីនៃការរៀនជាក្រុមតូច(minibatch) ផលបូកនៃgradient បានមកពីការគណនា ចំពោះគម្រូទិន្នន័យនិមួយៗត្រូវបានយកជាgradientនៃក្រុមតូចនោះ

$$\frac{\partial E}{\partial w_{ji}^{(l)}} = \sum_{n} \frac{\partial E_{n}}{\partial w_{ji}^{(l)}}$$

 $egin{array}{c|c} l+1 & l-1 & l \ \hline$ រូបទី២ ករណីទូទៅនៃ FNN ច្រើនថ្នាក់

Input : គម្រូទិន្នន័យសម្រាប់រៀន (x_n, t_n)

Output : gradientឬដើរវៃនៃអនុគមន៍កម្រិតលម្អៀង $\frac{\partial E_n}{\partial w_{ji}^{(l)}}$ (l=2,...,L)

- (1) ដោយយក $\mathbf{z}^{(1)} = \mathbf{x}$ គណនាតម្លៃនៃ $\mathbf{u}^{(l)}, \mathbf{z}^{(l)}$ (l=2,...,L)តាមលំដាប់
- (2) គណនា $\delta_j^{(L)}$ (តាមធម្មតាវាត្រូវបានកំណត់ដោយ $\delta_j^{(L)}=z_j-t_j$)
- (3) ចំពោះថ្នាក់កណ្ដាល $(l=L-1,L-2,\cdots,2)$ គណនាតម្លៃ $\delta_j^{(l)}$ តាមលំដាប់ដោយ

$$\delta_j^{(l)} = \sum_k \delta_k^{(l+1)} \left(w_{kj}^{(l+1)} f\left(u_j^{(l)}\right) \right)$$

(4) ចំពោះថ្នាក់ទី $l(l=2,\cdots,L)$ គណនាតម្លៃ $\frac{\partial E_n}{\partial w_{ii}^{(l)}}$ ដោយ

$$\frac{\partial E_n}{\partial w_{ii}^{(l)}} = \delta_j^{(l)} z_i^{(l-1)}$$

4. ការគណនា $\delta_j^{(L)}$ នៃថ្នាក់លទ្ធផលចុងក្រោយ

ដូចបានបង្ហាញខាងលើ ការគណនា $\delta_j^{(L)}$ នៃថ្នាក់លទ្ធផលចុងក្រោយអាស្រ័យនឹងប្រភេទ អនុគមន៍កម្រិតលម្អៀងដែលប្រើ ពោលគឺអាស្រ័យនឹងប្រភេទនៃចំណោទ។

4.1. ករណីចំណោទតម្រៃតម្រង់ Regression

ក្នុងករណីចំណោទតម្រៃតម្រង់អនុគមន៍កម្រិតលម្អៀងគឺជាផលបូកការេនៃលម្អៀងលើគម្រូ ទិន្នន័យនិមួយៗ។

$$E_n = \frac{1}{2} \| \mathbf{y}(\mathbf{x}_n) - \mathbf{t}_n \|^2 = \frac{1}{2} \sum_{i} (y_i - t_i)^2$$

ក្នុងករណីនេះ អនុគមន៍សកម្ម(activation)នៃថ្នាក់លទ្ធផលចុងក្រោយនៃFNNគឺជាអនុគមន៍ identity: $y_j = z_j^{(L)} = u_j^{(L)}$ ។ ហេតុនេះ $\delta_j^{(L)}$ នៃថ្នាក់លទ្ធផលចុងក្រោយគឺ

$$\delta_j^{(L)} = u_j^{(L)} - t_{nj} = z_j^{(L)} - t_j = y_j - t_j$$

ពោលគឺគម្លាតរវាងតម្លៃលទ្ធផល់នៃបណ្តាញ(ណឺរ៉ូន)និងលទ្ធផលក្នុងទិន្នន័យសម្រាប់រៀន។

4.2. ករណីចំណោទចំណាត់ថ្នាក់ក្រុម Classificaiton

ក្នុងចំណោទចំណាត់ថ្នាក់២ក្រុម អនុគមន៍កម្រិតលម្អៀងត្រូវបានកំណត់ដោយ $E_n = -t \log y - (1-t) \log (1-y)$

ក្នុងករណីនេះ អនុគមន៍សកម្មនៃថ្នាក់លទ្ធផលចុងក្រោយនៃFNNគឺជាអនុគមន៍ sigmoid ហេតុនេះ

$$y = \frac{1}{1 + \exp(-u)}$$
, $\frac{dy}{du} = -\frac{\exp(-u)}{(1 + \exp(-u))^2} = y(1 - y)$

ដូច្នេះយើងបាន

$$\begin{split} \delta_j^{(L)} &= -\frac{t}{y} \cdot \frac{dy}{du} - \frac{1-t}{1-y} \left(-\frac{dy}{du} \right) \\ &= -t(1-y) - (1-t)y = y-t \end{split}$$

ក្នុងចំណោទចំណាត់ថ្នាក់ច្រើនក្រុម អនុគមន៍កម្រិតលម្អៀងត្រូវបានកំណត់ដោយ

$$E_n = -\sum_k t_k \log y_k = -\sum_k t_k \log \left(\frac{\exp(u_k^{(L)})}{\sum_i \exp(u_i^{(L)})} \right)$$

ក្នុងករណីនេះ អនុគមន៍សកម្មនៃថ្នាក់លទ្ធផលចុងក្រោយនៃFNNគឺជាអនុគមន៍ softmax ហេតុនេះ

$$y = \frac{\exp(u_k^{(L)})}{\sum_i \exp(u_i^{(L)})}$$

ដូច្នេះយើងបាន

$$\delta_j^{(L)} = -\sum_k t_k \frac{1}{y_k} \cdot \frac{\partial y_k}{\partial u_j^{(L)}}$$

$$= -t_j (1 - y_j) - \sum_{k \neq j} t_k (-y_j)$$

$$= (y_j - t_j) \sum_k t_k$$

$$= y_j - t_j \left(\because \sum_k t_k = 1 \text{ (one - hot vector)} \right)$$

តាមលទ្ធផលខាងលើ ទាំងករណីចំណោទតម្រែតម្រង់ ទាំងករណីចំណោទចំណាត់ថ្នាក់ ក្រុម $\delta_j^{(L)}$ នៃថ្នាក់លទ្ធផលចុងក្រោយគឺ

 $\delta_j^{(L)} = y_j - t_j$ ពោលគឺគម្លាតរវាងតម្លៃលទ្ធផលនៃបណ្ដាញ(ណឺរ៉ូន)និងលទ្ធផលក្នុងទិន្នន័យសម្រាប់រៀន ។

Technique in Learning Process

យើងបានសិក្សារួចមកហើយអំពីវិធីក្នុងការកំណត់តម្លៃប៉ារ៉ាម៉ែត្រនៃNeural Networkនៅ
ក្នុងដំណើរការរៀន ដូចជាវិធីstochastic gradient descent និង វិធីក្នុងការគណនាដេរីវេដោយផ្នែក
ប្រកបដោយប្រសិទ្ធភាពដូចជា backpropagation ។ ក្នុងអត្ថបទនេះយើងនឹងលើកយកល្បិចនិងវិធី
សាស្ត្រមួយចំនួនដែលត្រូវបានប្រើដើម្បីបង្កើនប្រសិទ្ធភាពនៃការរៀនក្នុងNeural Network ។ ប្រសិទ្ធ
ភាពនៃការរៀននៅទីនេះសំដៅដល់ភាពល្អនៃអត្រាត្រឹមត្រូវក្នុងការប៉ាន់ស្មានលទ្ធផលរបស់បណ្ដាញ
ស្មុគស្មាញដូចជាFNNច្រើនថ្នាក់ដែលហៅថា Deep Learning ព្រមទាំងល្បឿននៃការរៀនរបស់វា។

1. ការកាត់បន្ថយស្ថានភាពរៀនហួសកម្រិត(Overfitting)

1.1. ការដាក់កម្រិតលើទម្ងន់ផ្ទាល់នៃណឺរ៉ូន(weight decay)

បញ្ហារៀនហួសកម្រិតគឺជាស្ថានភាពដែលបណ្តាញអាចផ្តល់លទ្ធផលល្អតែចំពោះទិន្នន័យ សម្រាប់រៀនប៉ុន្តែ មិនអាចផ្តល់ចម្លើយល្អប្រសើរចំពោះទិន្នន័យផ្សេងពីទិន្នន័យសម្រាប់រៀនឡើយ។ ស្ថានភាពនេះអាចបកស្រាយបានថាជាករណីដែលការធ្វើបរមាកម្មលើអនុគមន៍កម្រិតលម្អៀងបាន ធ្លាក់ចូលទៅចំណុចនៃអប្បបរមាធៀបដែលមិនមែនជាចំណុចអប្បបរមានៃដែនកំណត់ទាំងមូល។ បញ្ហានេះកាន់តែងាយកើតឡើងនៅពេលដែលកម្រិតសេរីភាពនៃបណ្តាញពិសេសចំនួននៃប៉ារ៉ាម៉ែត្រ មានកាន់តែច្រើន ។ ដោយសារតែកម្រិតសេរីភាពនៃបណ្តាញមួយបង្ហាញពីកម្រិតនៃសមត្ថភាពរបស់ បណ្តាញ ដូច្នេះការកាត់បន្ថយកម្រិតសេរីភាពដើម្បីដោះស្រាយស្ថានភាពរៀនហួសកម្រិតមិនមែនជា រឿងល្អឡើយបើពិនិត្យលើសមត្ថភាពទាំងមូលរបស់បណ្តាញ។ ហេតុនេះដើម្បកាត់បន្ថយការកើត ឡើងនៃស្ថានភាពរៀនហួសកំរិតនិងរក្សានូវសមត្ថភាពខ្ពស់របស់បណ្តាញផង ការគ្រប់គ្រងទៅលើ កម្រិតសេរីនៃទម្ងន់ផ្ទាល់របស់ណឺរ៉ូនត្រូវបានសិក្សាព្រមគ្នានៅពេលដំណើរការការរៀន។វិធីនេះហៅថា Regularization។ វិធីសាស្ត្រងាយមួយនៃRegularizationប្រើចំពោះNeural Networkគឺការដាក់ កម្រិតលើទម្ងន់ផ្ទាល់នៃណឺរ៉ូន(weight decay)។

ការដាក់កម្រិតលើទម្ងន់ផ្ទាល់នៃណឺរ៉ូនអាចធ្វើបានដូចខាងក្រោម។

$$E_t(\mathbf{w}) = \frac{1}{|\mathcal{D}_t|} \sum_{n \in \mathcal{D}_t} E_n(\mathbf{w}) + \frac{\lambda}{2} ||\mathbf{w}||^2$$

នៅទីនេះ λ ជាប៉ារ៉ាម៉ែត្រដើម្បីគ្រប់គ្រងកម្រិតនៃការដាក់កម្រិតលក្ខខណ្ឌលើទំហំនៃប៉ារ៉ាម៉ែត្រទម្ងន់ ផ្ទាល់នៃណឺរ៉ូន w ។ ជាទូទៅតម្លៃនេះត្រូវបានកំណត់ដោយចំនួនពិតតូចខ្លាំង $\lambda=0.1\sim0.00001$ ។ ក្នុងករណីនេះការផ្លាស់ប្តូរតម្លៃប៉ារ៉ាម៉ែត្រតាម SGD ត្រូវបានធ្វើឡើងដូចខាងក្រោម។

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} - \eta_t \left(\frac{1}{|\mathcal{D}_t|} \sum_{n \in \mathcal{D}_t} \nabla E_n + \lambda \boldsymbol{w}^{(t)} \right)$$

តាមកន្សោមខាងលើនេះ យើងអាចមើលឃើញថាតម្លៃនៃ ប៉ារ៉ម៉ែត្រនឹងត្រូវបានបន្ថយជានិច្ចរាល់ពេល នៃការផ្លាស់ប្តូរតម្លៃប៉ារ៉ាម៉ែត្រនៃដំណើរការរៀនត្រូវបានធ្វើឡើង។ ហេតុនេះហើយទើបវិធីនេះហៅថា weight decay ។ ក្រៅពីវិធីខាងលើនេះក៏មានវិធីផ្សេងដែរដូចជាការកំណត់លក្ខខណ្ឌអតិបរមានៃ ទំហំប៉ារ៉ាម៉ែត្រទៅក្នុងចំណោទអប្បបរមានៃអនុគមន៍កម្រិតលម្អៀងដោយទម្រង់ខាងក្រោម។

$$\|\boldsymbol{w}\|^2 = \sum_i w_{ji}^2 < c$$

1.2. Dropout

Dropout គឺជាវិធីសាស្ត្ររៀនដែលណឺរ៉ូនត្រូវប្រើត្រូវបានជ្រើសដោយចៃដន្យជាមួយតម្លៃប្រូ បាបដែលបានកំណត់។ រូបទី១បង្ហាញពីទម្រង់នៃFNNនៅពេលដែលណឺរ៉ូនមួយចំនួនត្រូវបានជ្រើស ដើម្បីរៀន។ នៅពេលរៀន(learning process) ណឺរ៉ូននៃថ្នាក់ជាតុចូលនិងថ្នាក់កណ្ដាលត្រូវបាន ជ្រើសរើសដោយប្រូបាប p ដោយចៃដន្យ ឯណឺរ៉ូនក្រៅពីនេះត្រូវបានចាត់ទុកថាគ្មាន រួចដំណើរការ រៀនដូចធម្មតា។ ប្រូបាប p អាចកំនត់ដោយតម្លៃផ្សេងគ្នានៅតាមថ្នាក់និមួយៗបាន។

ក្រោយពេលដំណើរការរៀនបានបញ្ចប់ ការប៉ាន់ស្មានលទ្ធផលត្រូវបានធ្វើជាមួយនឹងណឺរ៉ូន ទាំងអស់ដោយគ្មានការជ្រើសរើសតែមួយផ្នែកដូចកាលដំណាក់កាលរៀនឡើយ។ ប៉ុន្តែនៅករណីនេះ តម្លៃនៃលទ្ធផលនៅថ្នាក់និមួយៗត្រូវបានគុណនឹងតម្លៃប្រូបាបដែលបានកំណត់កាលពីពេលរៀន។

រូបទី២ ដំណើរនៅពេលប៉ាន់ស្មានលទ្ធផលក្រោយពេលរៀនដោយប្រើDropout

បំណងនៃការអនុវត្តDropoutគឺកាត់បន្ថយកម្រិតសេរីភាពនៃបណ្តាញនៅពេលដំណើរការ រៀនឱ្យតូចដើម្បីកាត់បន្ថយឱកាសនៃការកើតឡើងនូវស្ថានភាពរៀនហួសកម្រិត(overfitting)។ ការ ធ្វើបែបនេះសមមូលនឹងការរៀនដោយប្រើបណ្តាញច្រើនដែលឯករាជពីគ្នានិងដែលត្រូវបានកាត់បន្ថយ ចំនួនណឺរ៉ូន រួចធ្វើមធ្យមភាគលើលទ្ធផលនៅដំណាក់កាលប៉ាន់ស្មានលទ្ធផល។

2. វិធីសាស្ត្រជំនួយក្នុងការរៀន

2.1. ការផ្តល់ទម្រង់ស្តង់ដាលើទិន្នន័យ(standardization of data)

ក្នុងករណីដែលទិន្នន័យសម្រាប់រៀន (training data)មានស្ថានភាពលំអៀងទៅកាន់ក្រុម តម្លៃណាមួយ ការរៀននិងប៉ាន់ស្មានលទ្ធផលនឹងបានល្អប្រសើរឡើយ។ ដើម្បីដោះស្រាយបញ្ហាបែប នេះការធ្វើដំណើរការដំណាក់កាលដំបូង (preprocessing)លើសំណុំទិន្នន័យមុនពេលអនុវត្តដំណើរ ការរៀនត្រូវបានធ្វើឡើង។ ដំណើរការដំណាក់កាលដំបូងសាមញ្ញមួយគឺការធ្វើឱ្យទិន្នន័យទៅជាទម្រង់ ស្តង់ដាដែលហៅថា standardization។ ដំណើរការនេះត្រូវធ្វើឡើងដោយការបម្លែងទិន្នន័យនិមួយៗ តាមទម្រង់ខាងក្រោម។ នៅទីនេះ x_{ni} គឺជាកំប៉ូសង់ទីiនៃទិន្នន័យ x_n និង $\bar{x}_i = \frac{1}{N} \sum_{n=1}^N x_{ni}$ ។

$$\sigma_i = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (x_{ni} - \bar{x}_i)^2}$$

$$x_{ni} \leftarrow \frac{x_{ni} - \bar{x}_i}{\sigma_i}$$

ការអនុវត្តបែបនេះជាការបន្លែងទូទៅនៅក្នុងវិធីសាស្ត្រស្ថិតិដែលក្រោយបម្លែងរួចទិន្នន័យនឹងមានតម្លៃ មធ្យមនៃកំប៉ូសង់និមួយៗស្មើ០ និងវ៉ារ្យង់ស្មើរ។

2.2. របៀបកំណត់កម្រិតរៀន(learning rate)

នៅក្នុងវិធីសាស្ត្ររៀនដូចជា gradient descend ឬ stochastic gradient descend (SGD) ការផ្លាស់ប្តូរនិងកំណត់តម្លៃនៃប៉ារ៉ាម៉ែត្រប្រែប្រួលទៅតាមតម្លៃកម្រិតរៀន(learning rate) ដែលបានកំណត់។ នៅក្នុងដំណើរការរៀនមានវិធីសាស្ត្រចំបង២ដែលត្រូវបានប្រើដើម្បីកំណត់តម្លៃ កម្រិតរៀន។

វិធីសាស្ត្រទី១ គឺការកំណត់តម្លៃកម្រិតរៀនឱ្យធំនៅពេលចាប់ផ្ដើមរៀន រួចបន្ថយតម្លៃនេះ បន្តិចម្ដងៗនៅពេលដំណើរការរៀនបន្ត។ ជាឧទាហរណ៍ការកំណត់កម្រិតរៀននៅដំណាក់កាលរៀនទី t ដោយ $\eta_t = \eta_0 - \alpha t$ ដែល η_0 ជាតម្លៃកម្រិតរៀននៅពេលចាប់ផ្ដើមនិង α កម្រិតនៃការបន្ថយ។

វិធីសាស្ត្រទី២ គឺការកំណត់តម្លៃកម្រិតរៀនខុសៗគ្នានៅតាមថ្នាក់ផ្សេងៗគ្នានៃបណ្តាញ ។ របៀបនៃការកំណត់អាចប្រែប្រួលទៅតាមទម្រង់នៃបណ្តាញ។ ជាឧទាហរណ៍ការកំណត់កម្រិតរៀន វិ្យធំនៅថ្នាក់ដែលក្បែរនឹងថ្នាក់ធាតុចូល(input layer) និងកំណត់តម្លៃកាន់តែតូចនៅថ្នាក់ដែលនៅ ក្បែរថ្នាក់លទ្ធផលចុងក្រោយ(output layer)។

វិធីសាស្ត្រនៃការកំណត់តម្លៃកម្រិតរៀនដោយស្វ័យប្រវត្តិដូចជា AdaGrad ក៏ត្រូវបានប្រើជា ញឹកញាប់ផងដែរ ។ ឧបមាថា gradient នៃអនុគមន៍កម្រិតលម្អៀងកំណត់ដោយ ${m g}_t = {m \nabla} E_n$ និង កំប៉ូសង់ទីi កំណត់ដោយ $g_{t,i}$ ។ បើតាម SGD ប៉ារ៉ាម៉ែត្រនឹងត្រូវផ្លាស់ប្តូរតម្លៃដោយ $-\eta g_{t,i}$ ប៉ុន្តែ AdaGrad វាផ្លាស់ប្តូរដោយតម្លៃខាងក្រោម ។ ការផ្លាស់ប្តូរបែបនេះអាចបកស្រាយដោយងាយថាជាការ ផ្តោតការយកចិត្តទុកដាក់លើតម្លៃកំប៉ូសង់ណាដែលការផ្លាស់ប្តូរមិនសូវបានអនុវត្តជាញឹកញាប់។

$$-\frac{\eta}{\sqrt{\sum_{k=1}^t g_{k,i}^2}} g_{t,i}$$

2.3. វិធីសាស្ត្រ Momentum

វិធីសាស្ត្រនៃការកំណត់តម្លៃកម្រិតរៀនដោយស្វ័យប្រវត្តិផ្សេងទៀតដែលមានប្រសិទ្ធភាពគឺ វិធីសាស្ត្រ Momentum ។ វិធីនេះត្រូវបានដឹងថាជួយឱ្យដំណើរការផ្លាស់ប្តូរតម្លៃប៉ារ៉ាម៉ែត្រក្នុង gradient descend ឆាប់ចប់។ ក្នុងវិធីសាស្ត្រនេះប៉ារ៉ាម៉ែត្រត្រូវបានផ្លាស់ប្តូរតាមទម្រង់ខាងក្រោម។

$$\Delta \mathbf{w}^{(t-1)} = \Delta \mathbf{w}^{(t)} - \Delta \mathbf{w}^{(t-1)}$$
$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla E_t + \mu \Delta \mathbf{w}^{(t-1)}$$

នៅទីនេះ μ ច្រើនត្រូវបានកំណត់ដោយ $\mu=0.5\sim0.9$ វិធីនេះត្រូវបានបកស្រាយថាជាវិធីដែល ជួយគ្រប់គ្រងដល់ការប្រែប្រួលនៃការផ្លាស់ប្តូរតម្លៃប៉ារ៉ាម៉ែត្រកុំឱ្យមានការប្រែប្រួលខ្លាំងដែលប៉ះពាល់ ដល់ការរួចតូចនៃតម្លៃកម្រិតលម្អៀងនៅដំណាក់កាលរៀន។

រូបទី៣ ភាពខុសគ្នានៃបម្រែបម្រួលប៉ារ៉ាម៉ែត្រដោយប្រើSGDដែលមានឬគ្មាន momentum

(Ref: Stochastic Gradient Descent on your microcontroller by SIMONE

https://eloquentarduino.github.io/2020/04/stochastic-gradient-descent-on-your-microcontroller/)

Convolutional Neural Network (CNN)

ក្នុងអត្ថបទនេះ យើងនឹងសិក្សាអំពីប្រភេទមួយផ្សេងទៀតនៃNeural Network ដែលហៅថា Convolutional Neural Network (CNN) ។ CNNត្រូវបានប្រើប្រាស់យ៉ាងទូលំទូលាយក្នុងការអនុវត្ត លើបច្ចេកវិទ្យាកំណត់សម្គាល់រូបភាពឬកំណត់សម្គាល់សម្លេង និងប្រកបដោយប្រសិទ្ធភាពខ្ពស់បើ ធៀបនឹងបណ្តាញFNNធម្មតា។ ក្នុងបច្ចេកវិទ្យាកំណត់សម្គាល់រូបភាពឬ បច្ចេកវិទ្យានានាទាក់ទងនឹង ការប្រើប្រាស់រូបភាពក្នុងបញ្ញាសិប្បនិម្មិតត្រូវបានមើលឃើញថាមានការប្រើប្រាស់CNNជាមូលដ្ឋាន ។ ថ្មីៗនេះទៀត សូម្បីក្នុងបច្ចេកវិទ្យាភាសា (Natural Language Processing) បណ្តាញCNNក៏ត្រូវ បានប្រើប្រាស់ផងដែរ។

1. ទម្រង់និងដំណើរការទូទៅរបស់CNN

ដើម្បីស្វែងយល់អំពីCNN ជាដំបូងយើងនឹងពិនិត្យលើទម្រង់ជាទូទៅរបស់វាជាមុន។ CNNក៏ ដូចជាបណ្តាញNeural Network ដទៃដែរគឺកើតឡើងពីការផ្គុំបញ្ចូលគ្នានូវថ្នាក់ណឺរ៉ូនជាច្រើនថ្នាក់។ ប៉ុន្តែចំណុចពិសេសគឺនៅក្នុងCNN មានថ្នាក់ពិសេសពីរដែលមិនមាននៅក្នុងFeedforward Neural Network(FNN) ដែលយើងសិក្សាកន្លងមក គឺ ថ្នាក់Convolution និង ថ្នាក់ Pooling។ យើងនឹង សិក្សាលម្អិតអំពីថ្នាក់ទាំងពីរនេះនៅចំណុចបន្ទាប់។

ក្នុងបណ្តាញFNN ណឺរ៉ូននៃថ្នាក់ដែលនៅជាប់គ្នាត្រូវបានភ្ជាប់គ្នាទាំងអស់ដោយទម្ងន់ផ្ទាល់ របស់វា។ ទម្រង់បែបនេះគេហៅថា តំណភ្ជាប់ពេញទី(fully-connected)។ ក្នុងរូបនិងការបកស្រាយ ខាងក្រោម យើងនឹងបង្ហាញតំណភ្ជាប់ពេញទីបែបនោះដោយ Dense រីឯអនុគមន៍សកម្មនឹងបង្ហាញ ដោយឈ្មោះនៃអនុគមន៍នោះ។ ក្នុងករណីនេះ ទម្រង់នៃបណ្តាញFNNអាចបង្ហាញបានដូចរូបទី១។ បណ្តាញFNNអាចត្រូវបាននិយាយថាជាបណ្តុំនៃតំណភ្ជាប់ពេញទីនិងអនុគមន៍សកម្មច្រើនថ្នាក់ បន្តគ្នា។ ផ្ទុយពីនេះ ទម្រង់នៃបណ្តាញCNNអាចបង្ហាញបានដូចរូបទី២។ ដូចដែលអ្នកបានឃើញថ្នាក់ ថ្មី (Convolution និង Pooling)ត្រូវបានប្រើជាបន្តបន្ទាប់ មុនពេលដែលបណ្តុំនៃតំណភ្ជាប់ពេញទី និងអនុគមន៍សកម្មត្រូវបានអនុវត្ត។ ទម្រង់ដែលថ្នាក់ Convolution និង Pooling ត្រូវបានប្រើមុន ត្រូវបានមើលឃើញជាទូទៅក្នុងបណ្តាញCNN។

រូបទី១ ទម្រង់នៃបណ្តាញFNNដោយប្រើតំណភ្ជាប់ពេញទី(fully-connected layer)

រូបទី២ ទម្រង់នៃCNN

2. អំពីថ្នាក់ Convolution

ជាដំបូងយើងនឹងពិនិត្យលើភាពខុសគ្នារវាងថ្នាក់តំណភ្ជាប់ពេញទី (fully-connected)ដែល ត្រូវបានប្រើក្នុងFNNនិងថ្នាក់Convolutionនេះ។

2.1. បញ្ហានៃថ្នាក់តំណភ្ជាប់ពេញទី

នៅក្នុងបណ្តាញFNNណឺរ៉ូននៃថ្នាក់តំណភ្ជាប់ពេញទីត្រូវបានភ្ជាប់គ្នាគ្រប់ណឺរ៉ូនទាំងអស់ ដែលមាននៅថ្នាក់ជាប់គ្នា រីឯចំនួននៃណឺរ៉ូននៅថ្នាក់លទ្ធផលអាចត្រូវបានកំណត់ដោយសេរី។

បញ្ហានៃថ្នាក់តំណភ្ជាប់ពេញទីគឺ ទម្រង់នៃទិន្នន័យមិនត្រូវបានប្រើប្រាស់ឱ្យសមស្របនោះ ឡើយ។ ឧទាហរណ៍បើជាតុចូលជារូបថតដូចរូបទី១និងទី២ នោះជាតុចូលស្ថិតនៅក្នុងទម្រង់វិមាត្រ៣ ពោល គឺ បណ្ដោយ ទទឹង និង channel(RGB)។ បើជាតុចូលនេះ ត្រូវបានបញ្ជូនទៅក្នុងFNNដែល មានថ្នាក់តំណភ្ជាប់ពេញទី នោះដូចដែលបានបង្ហាញនៅឧទាហរណ៍នៃមេរៀនអំពីFNN ទិន្នន័យនេះ ត្រូវបានពន្លាតជា១វិមាត្រដោយតម្រៀបគ្រប់តម្លៃនៃPixelទាំងអស់ជាកំប៉ូសង់នៃវ៉ិចទ័រ១វិមាត្រនោះ។ ក្នុងឧទាហរណ៍ដែលយើងបានសិក្សាកន្លងមក រូបថតដែលមានទម្រង់(28,28,1) ត្រូវបានប្រើជា វ៉ិចទ័រ១វិមាត្រដែលមានកំប៉ូសង់ចំនួន784(=28x28x1)។ ហេតុនេះការប្រើប្រាស់ថ្នាក់តំណភ្ជាប់ពេញ ទីធ្វើឱ្យខាតបង់ព័ត៌មានដែលយើងអាចទាញយកពីទម្រង់ដើមនៃទិន្នន័យដូចជាទិន្នន័យអំពី ចម្ងាយនៃរបស់ក្នុងរូបដែលបង្ហាញដោយទម្រង់ RGB ច្រើនchannelជាដើម។

ផ្ទុយពីនេះ ថ្នាក់Convolution ទទួលយកជាតុចូលដោយរក្សាទម្រង់ដើមនៃទិន្នន័យ។ ក្នុង ករណីរូបថតទម្រង់៣វិមាត្រដូចពណ៌នាខាងលើ ថ្នាក់Convolutionនឹងទទួលយករូបថតវិមាត្រ៣នោះ ជាធាតុចូលនិងបញ្ចេញរូបថតវិមាត្រ៣ជាលទ្ធផល។ ហេតុនេះ CNN អាចមានលទ្ធភាពក្នុងការសិក្សា បានស៊ីជម្រៅលើលក្ខណៈពិសេសរបស់ទិន្នន័យបាន។ នៅក្នុងCNN ធាតុចូលនៃថ្នាក់Convolution ហៅថា ផែនទីលក្ខណៈចូល(input feature map) និងធាតុចេញ(លទ្ធផល)របស់វាហៅថា ផែនទីលក្ខណៈចេញ(output feature map)។ ក្នុងករណីខ្លះយើងហៅជារួមថា feature map។

2.2. ប្រមាណវិធី Convolution

ក្នុងថ្នាក់Convolution ប្រមាណវិធីConvolutionត្រូវបានអនុវត្ត។ ប្រមាណវិធីនេះអាចប្រៀប បានជាដំណើរការនៃFilterនៅក្នុងបច្ចេកវិទ្យារូបភាព (Image Processing) ។ ការធ្វើប្រមាណវិធី Convolution លើរូបភាពដែលមានទំហំ $W \times W$ និងFilter ដែលមានទំហំ $H \times H$ គឺកំណត់ដោយ ទម្រង់ខាងក្រោម។ u_{ij} ជាតម្លៃលទ្ធផលនៅទីតាំង(i,j) និង x_{st} ជាតម្លៃនៅPixel (s,t) និង h_{pq} ជាតម្លៃFilterនៃទីតាំង (p,q)។

$$u_{ij} = \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} x_{i+p,j+q} h_{pq}$$

រូបទី៣បង្ហាញពីឧទាហរណ៍នៃប្រមាណវិធីConvolution។ ឧបមាថាទិន្នន័យជាធាតុចូលមានទម្រង់ ២វិមាត្រ(height, width) ដែលមានទំហំ(4,4) និង Filterមានទំហំ(3,3)នោះលទ្ធផលធាតុចេញ មានទំហំ(2,2)។ របៀបនៃការគណនាគឺ ចន្លោះនៃទិន្នន័យដែលមានទំហំដូចFilterត្រូវបានគណនា ដោយធ្វើផលគុណគ្រប់ធាតុដែលមានទីតាំងត្រូវគ្នារួចធ្វើប្រមាណវិធីបូកបញ្ចូលគ្នា។ ឧទាហរណ៍ នៅក្នុងចន្លោះពណ៌ក្រហម និងពណ៌បៃតងការគណនាត្រូវបានអនុវត្តដូចខាងក្រោម។

$$1 \times 2 + 0 \times 0 + 2 \times 1 + 2 \times 1 + 3 \times 2 + 0 \times 0 + 0 \times 0 + 1 \times 1 + 3 \times 2 = 19$$

$$2 \times 2 + 3 \times 0 + 0 \times 1 + 0 \times 1 + 1 \times 2 + 3 \times 0 + 3 \times 0 + 4 \times 1 + 1 \times 2 = 12$$

ដំណើរការConvolution នេះអាចទាញយកនូវលក្ខណៈឬទម្រង់ជាក់លាក់ដែលមាននៅ ទីតាំងផ្សេងៗនៃរូបភាពបានតាមការកំណត់Filterសមស្រប។ រូបទី៤បង្ហាញពីឧទាហរណ៍នៃលក្ខណៈ នោះ។

រូបទី៤ ឧទាហរណ៍នៃដំណើរការទាញយកFeature MapដោយConvolution

(Image from: Simple Introduction to Convolutional Neural Networks https://towardsdatascience.com/simple-introduction-to-convolutional-neural-networks-cdf8d3077bac)

2.3. ការតម្រឹម Padding

ដូចដែលបានបង្ហាញខាងលើ តាមរយៈប្រមាណវិធីConvolution ទំហំនៃលទ្ធផលដែល ទទួលបានមានទំហំតូចជាធាតុចូលដើមជានិច្ច។ ទំហំនៃលទ្ធផលនោះកំណត់ដោយទម្រង់ខាងក្រោម ។ នៅទីនេះ [x] ជាតម្លៃចំនួនគត់ធំបំផុតដែលតូចជាងx។

$$\left(W - 2\left\lfloor\frac{H}{2}\right\rfloor\right) \times \left(W - 2\left\lfloor\frac{H}{2}\right\rfloor\right)$$

ប៉ុន្តែក្នុងដំណើរការវិភាគទិន្នន័យ នៅដំណាក់កាលខ្លះការរក្សាទំហំនៃធាតុចូលនិងលទ្ធផល ឱ្យដូចគ្នាជារឿងចាំបាច់។ ក្នុងករណីនេះដំណើរការនៃតម្រឹម(Padding) ត្រូវបានប្រើ។ ដំណើរការ នេះគឺបន្ថែមតម្លៃនៅផ្នែកជាយជុំវិញនៃរូបភាពដោយតម្លៃសួន្យ។ រូបទី៥បង្ហាញពីគម្រូដំណើរការនេះ។

រូបទី៥ ឧទាហរណ៍នៃដំណើរការ Padding

2.4. ប្រមាណវិធីរំកិល Sride

ក្នុងការគណនាខាងលើ តំបន់ដែលប្រើដើម្បីអនុវត្តFilterត្រូវបានរំកិលម្ដង១ៗពីឆ្វេងទៅស្ដាំ និងពីលើចុះក្រោម។ ចន្លោះឬទំហំដែលត្រូវប្រើក្នុងដំណើរការរំកិលតំបន់ដើម្បីអនុវត្តFilter នេះហៅថា Sride។ ក្នុងករណីសាមញ្ញខាងលើ តម្លៃនៃ Sride ត្រូវបានកំណត់ដោយ 1 ។ ជាទូទៅក្នុងករណីដែល តម្លៃ Srideគឺ s លទ្ធផលនៃConvolution ត្រូវបានកំណត់ដោយទម្រង់ខាងក្រោម។

$$u_{ij} = \sum_{p=0}^{H-1} \sum_{q=0}^{H-1} x_{si+p,sj+q} h_{pq}$$

ក្នុងករណីដែលប្រើ Padding ជាមួយផង លទ្ធផលនឹងផ្ដល់ឱ្យដោយទំហំខាងក្រោម។

$$\left(\left\lfloor \frac{W-1}{s} \right\rfloor + 1\right) \times \left(\left\lfloor \frac{W-1}{s} \right\rfloor + 1\right)$$

3. ថ្នាក់ Pooling

ក្នុងថ្នាក់Pooling ប្រមាណវិធីដែលអនុវត្តគឺការបង្រួមទំហំនៃទិន្នន័យឱ្យរួមតូចជាងមុនដោយ កំណត់យកតម្លៃតំណាងនៅក្នុងតំបន់។ ជាទូទៅថ្នាក់Pooling មានពីរផ្នែកលើប្រភេទនៃតម្លៃតំណាង ដែលកំណត់យក ពោលគឺ តម្លៃអតិបរមាក្នុងតំបន់ និងតម្លៃមធ្យមក្នុងតំបន់។ ក្នុងករណីតម្លៃអតិបរមា ត្រូវបានប្រើប្រាស់ត្រូវបានហៅថា Max Pooling ឯករណីតម្លៃមធ្យមត្រូវបានប្រើហៅថា Average Pooling។ លក្ខណៈពិសេសនៅដំណាក់កាលនេះគឺ គ្មានប៉ារ៉ាម៉ែត្រដែលត្រូវរៀន។

14	5	12	18
9	19	10	8
21	12	18	7
11	24	12	8

Max Pooling		
19	18	
24	18	

រូបទី៦ ឧទាហរណ៍នៃដំណើរការ Pooling

រូបទី៧ ទម្រង់នៃCNN

4. ទម្រង់នៃបណ្តាញCNNនិងការរៀន(Learning)

ដូចបង្ហាញខាងដើម CNN ត្រូវបានប្រើច្រើនក្នុងបច្ចេកវិទ្យារូបភាព។ ទម្រង់នៃបណ្ដាញនេះ ច្រើនកំណត់ដោយទម្រង់ដូចរូបទី៧ ដោយប្រើថ្នាក់ដែលកើតពីConvolutionនិងPoolingច្រើនដង និងប្រើថ្នាក់ដែលកើតពីតំណភ្ជាប់ពេញទីចុងក្រោយ។ ចំពោះចំណោទធ្វើចំណាត់ថ្នាក់រូបភាពច្រើន ក្រុម យើងអាចបកស្រាយបានថា ថ្នាក់ដែលប្រើConvolutionនិងPooling ជាថ្នាក់ដែលទាញយក លក្ខណៈសម្គាល់ពិសេស(feature map)ពីរូបភាព រីឯថ្នាក់កើតពីតំណភ្ជាប់(Dense)ត្រូវបានប្រើ ដើម្បីធ្វើចំណាត់ថ្នាក់ក្រុមដូចក្នុងFNNដែរ។

ដូចដែលអ្នកអាចធ្វើការកត់សម្គាល់បាន ថ្នាក់និមួយៗនៃCNNត្រូវបានតភ្ជាប់គ្នាជាបន្តបន្ទាប់ ប្រៀបដូចជាថ្នាក់នៃFNNដែរ។ ហេតុនេះការកំណត់តម្លៃប៉ារ៉ាម៉ែត្រនៃថ្នាក់និមួយៗ(ដំណើរការរៀន) អាចធ្វើបានដោយប្រើ Backpropagation Algorithmដូចក្នុងករណីFNNផងដែរ។ អ្នកអាចប្រើប្រាស់ FrameWork ដែលផ្តល់ឱ្យប្រើជាសេរីជាច្រើនដើម្បីបង្កើតម៉ូឌែលCNNបានដូចជា Keras, PyTorch, Tensorflow ជាដើម។

5. អនុវត្តន៍នៃបណ្តាញCNN

CNNត្រូវបានអភិវឌ្ឍជាបណ្តាញធំនិងស្មុគស្មាញដើម្បីដោះស្រាយបញ្ហានានាពិសេសក្នុង បច្ចេកវិទ្យាធ្វើកំណត់សម្គាល់វត្ថុក្នុងរូបភាព។ រូបទី៤បង្ហាញពីគម្រូនៃម៉ូនែលដែលប្រើCNNដើម្បីធ្វើ ចំណាត់ថ្នាក់1000ក្រុមនៃវត្ថុក្នុងរូបភាពដែលត្រូវបានស្គាល់ថាផ្តល់នូវលទ្ធផលល្អប្រសើរខ្លាំង។ សម្រាប់ចំណេះដឹងបន្ថែមទាក់ទងនឹងការប្រកួតប្រជែងបង្កើតម៉ូឌែលសម្រាប់ធ្វើចំណាត់ថ្នាក់ក្រុមវត្ថុក្នុងរូបភាព មិត្តអ្នកអានអាចចូលទៅកាន់តំណភ្ជាប់ខាងក្រោម។

http://www.image-net.org/challenges/LSVRC/

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In Proc. of NIPS, pp. 1097-1105.

រូបទី៨ គម្រូម៉ូឌែលដែលប្រើCNN