经全国中小学教材审定委员会 2004 年初审通过

普通高中课程标准实验教科书

数学o

必修

人民教育出版社 课程教材研究所 编著 中学数学教材实验研究组

普通高中课程标准实验教科书

人民教育出版社 课程教材研究所 中学数学教材实验研究组

主 编 高存明

本册主编 李建才

编 者 李建才 陈宏伯 房艮孙

韩际清 魏榕彬 刘长明

责任编辑 魏榕彬 刘长明

美术编辑 张 蓓 王 喆

绘 图 王鑫

封面设计 林荣桓

普通高中课程标准实验教科书 数学 1

必修

B版

人民教育出版社 课程教材研究所 中学数学教材实验研究组 编3

人人名者《此北出版发行

(北京沙滩后街 55 号 邮编: 100009)

网址: http://www.pep.com.cn 人人名 4 × × × × 和印刷厂印装 全国新华书店经销

开本: 890 毫米×1 240 毫米 1/16 印张: 9.75 字数: 190 000 2004 年5 月第1 版 2004 年7 月第1 次印刷

ISBN 7-107-17710-9 G·10799 (课) 定价: 10.50 元

著作权所有·请勿擅用本书制作各类出版物·违者必究 如发现印、装质量问题,影响阅读,请与出版社联系调换。 (联系地址;北京市方庄小区芳城园三区13 号楼 邮编:100078)

主编寄语

---与师生共勉

人们喜欢音乐。因为它有优美和谐的旋律;人们喜欢图画。因为它描绘人和自然的美。同样,你应该喜欢数学。因为它用空间形式和数量关系谱写自然界和人类社会的内在旋律。用简洁的、优美的公式与定理揭示世界的本质。用严谨的语言和逻辑调理人们的思维秩序。它像音乐一样和谐。像图画一样美。

"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不 用数学。"数学的应用越来越广泛,它是自然科学、技术科学的基础,并在经济科学、社会科学、人文科学的发展中发挥着越来越大的作用;它不断地渗透到社会生活的各个方面,特别是它与计算机技术的结合在许多方面能够直接为社会创造价值,推动社会经济的发展,数学是人类文化的重要组成部分,数学素质是公民必须具备的一种基本素质。

高中数学虽然不是数学的全部,但它涵盖了数学中最基本的内容,它的内容、思想与方法 是人类几千年数学文明的宝贵结晶。同学们将会从中体会数学与自然界、数学与人类社会关系 的和谐与美妙,认识数学的科学价值与文化价值,感受数学的魅力与乐趣。

本课程一个显著的特点是多样性与选择性, 总典安排了五个模块的必修课程和四个系列的 选修课程, 这和义务教育阶段的数学课程明显不同, 必修课程和义务教育阶段的数学一样, 人 人都学, 以建立起今后学习的稳健平台, 对于选修课程, 同学们可以根据自己的兴趣、特长和 愿望, 选择若干, 以获得足够的学分, 这样做的目的是要让各位同学在数学上得到不同的 发展,

本书各册按照教育部颁布的《普通高中数学课程标准(实验)》编写,并且具有自己的特色,以全面实现"课程标准"提出的基本理念,我们在编写本书时,特别注重如下诸方面;

1. 改进呈现方式, 揭示概念本质

数学经过人类几千年的积累与精炼,其呈现方式比较抽象与形式化,往往使同学们难以理解和接受,我们力图改进数学概念与结论的呈现方式,展示来龙去脉,揭示其反映现实世界客观规律的数学本质。我们力求从同学们熟悉的事物与现象出发,通过观察与分析,引出数学概念与结论,然后用其解释更多的事物与现象,从中体会概念与结论的数学本质。并能够用简洁的数学语言来表示。

2. 整合信息技术,更新教学方式

数学的发展导致现代信息技术的产生,反过未现代信息技术给数学提出了新的课题,并给 数学的应用插上了腾飞的翅膀,数学教育与现代信息技术的整合成为必然趋势,本书各册将用 现代信息技术促进教学方式的更新,不仅会使同学们容易理解或掌握有关数学概念与结论,而 且会让同学们感受到现代信息技术的成为,逐步融入现代信息社会,

3. 漆透算法思想, 提高数学素系

算法古来有之,它是解决理论与实际问题的重要的数学思想与数学方法,算法的基本思想 与创造性思维联系紧密,算法的重要性与有效性是毋庸置疑的, 本书主要从数值计算的角度讲授算法,而且与现代信息技术相结合,渗透到高中数学的有 关领域,相信会给这些领域的数学带来新的生机,学习算法不仅能使许多数学问题与实际应用 得到有效解决,而且可以使同学们从中体会解决复杂问题的思想方法,提高数学素养,为今后 的学习和工作提供强大的思想武器。

4. 加强实验操作,注重说理教学

数学的许多概念与结论,来自于人们的实践活动,而实践活动又有助于对概念与结论的理解,同时数学又是一门逻辑严谨的学科,所谓逻辑,就是用最简单的道理说明结论正确性的一种技术,简单地说,就是说理,同学们养成了说理习惯,将使自己的思维更有序,更合理.

減然, 说理并不等于证明. 同学们通过实验操作和实践活动, 逐步感受、理解结论的正确 性, 这是掌握数学的一种重要途径, 也是说明结论正确的一种说理方式, 人们常说的"用事实 说话"就是这种意思. 实验操作与实践活动在数学学习中的作用是不可忽视的.

本书将实践活动与说理教学同时并重、紧密结合,这将有助于对数学概念与结论的理解和 掌握,有助于启发创造性思维,有助于养成严谨的学风,使我们的思维更加有序,更加合乎 逻辑,

5. 遵循认知规律, 力求温故知新

温故知新是我们认识新知、学习新知的一个普遍的规律。同学们在义务教育阶段已经学习 不少数学知识,但是有的知识可能不太系统,有的知识可能印象不深,这没关系。我们在编写 本书时,力求温故知新. 从复习小学、初中的数学知识开始,尽量从温习旧知识中引出新知识,揭示新旧知识之间的联系,使同学们顺利进入高中阶段的学习.

为了引导同学们学好数学,并为喜欢数学的同学提供一定的发展空间,在教材编写时,除编好核心内容外,还通过各种栏目,如"思考与讨论"、"探索与研究"、"计算机上的练习"等,帮助同学们深入思考所学过的数学内容。教科书中所用软件或课件可在人教网(http://www.pep.com.cn)或相关网站上下载。

各位同学,也许你喜欢数学,也许你不太喜欢,但这不要紧,数学本身处处充满神奇与奥 秘,只要你怀着求知与探索的欲望,积极参与数学活动,你不仅会获得可贵的知识与能力,而 且会享受到无穷的乐趣,按照"课程标准"编写的这套教科书,既有必要的基础知识,又有多 种多样饶有兴味的选修内容,展示了初等数学和现代数学的薪新风貌.

我们相信,同学们经过对本课程生动活泼、专心刻苦的学习,不仅会达到公民所必备的数 学素质要求,而且会为进一步学习数学与其他科学打下坚实的基础。

本书成书仓促,我们惟思由于本书的缺欠给老师与同学带来不便,恳请各位多提意见,共 同参与修改,使之日臻完善,谢谢!

本册导引

同学们:

当你圆满完成了义务教育阶段的学习,怀着兴奋的心情进入高中的时候, 首先进入你的视野的是一册全新的数学教材——数学1.

本册是必修课程的第一个模块,它的基本内容是集合与函数的初步知识, 这两部分内容有着密切的联系.

集合与几何学中的点、直线、平面一样, 是最基本最原始的数学对象, 可是它迟到了几千年, 直到十九世纪下半叶, 数学中才出现集合概念, 然而, 当这个概念刚刚产生的时候, 就遇到了很大的麻烦, 就是人们说不清集合是什么, 数学家用特有的"打破砂锅问到底"的精神, 找到了解决这个困难的办法, 使这位迟到的角色很快成为数学的主角, 如今, 集合语言、集合符号、集合运算已经渗透到数学的各个领域, 成为不可数少的工具, 它使数学变得更加简洁与清晰。

在本模块,同学们只需将集合作为一种语言来学习,学会用集合语言和符号表示有关的数学对象,以提高用集合语言进行数学交流的能力.

函数概念和集合一样,也是数学中迟到的角色。虽然函数发生的年代久远,但准确的函数概念产生于二十世纪之初. 无疑,函数也是数学的一个主角,在现实世界的事物或现象中,不同变量之间往往有着互相依赖的关系,函数用明确的语言、数学表格、数学式子或图象刺画这种关系,客观事物或现象总是处在不断变化和互相关联之中,函数是描述客观世界变化规律的重要数学模型.

初中阶段我们学过一些简单的函数,那只是对函数进行研究的开始,高中 阶段,我们将用更新的观点、更现代化的手段,全面、系统地研究函数的概 念、性质和图象,并学习应用函数知识解决实际问题。

函数自变量范围和函数的取值范围是两个集合,函数关系就是这两个集合的一种特定的对应关系。因此,函数和集合有着天然的联系。同学们不仅要把函数理解为变量之间的依赖关系,同时还要用集合与对应的语言刻函函数。基本初等函数是常见的、简单的函数,认清它们的性质是非常必要的。同学们还要通过对基本初等函数的探索与研究,感受用函数建立模型的过程与方法。体会函数在理论上的重要性与实际应用价值。

我们相信,在本模块,同学们与集合的初步接触,学到一种新的数学语言, 将提高数学表述与交流能力.同时,同学们将把在义务教育阶段学得的函数知识 提高到一个新的水平,形成函数思想,为今后进一步研究事物的变化规律构筑稳 健的平台. 精品教学网www.itvb.net

全力打造全国最新最全的免费视频教学网站,现有内容已经覆盖学前,小学,初中高中,大学,职业等各学段欢迎各位爱学人士前来学习

QQ309000116

第一章 集合	
1.1 集合与集合的表示方法	3
♦ 1.1.1 集合的概念	3
◆ 1.1.2 集合的表示方法 ····································	6
1.2 集合之间的关系与运算	11
◆ 1.2.1 集合之间的关系 ····································	11
◆ 1.2.2 集合的运算 ····································	15
本章小结 ·····	23
阅读与欣赏	
聪明在于学习,天才由于积累——自学成才的华罗庚	27
第二章 函数	29
2.1 函数	31
◆ 2.1.1 函数 ···································	31
◆ 2. 1. 2 函数的表示方法 ····································	41
◆ 2.1.3 函数的单调性	48
2.1.4 函数的奇偶性 ····································	51
◆ 2.1.5 用计算机作函数的图象(选学)	54
2.2 一次函数和二次函数	59
◆ 2.2.1 一次函数的性质与图象 ····································	59
2.2.2 二次函数的性质与图象	61
◆ 2.2.3 待定系数法 ····································	
2.3 函数的应用 (1)	
2.4 函数与方程	75
◆ 2.4.1 函数的零点 ·····	75
◆ 2.4.2 求函数零点近似解的一种计算方法——二分法	78
本章小结	82
阅读与欣赏	
函数概念的形成与发展	87

第三章 基本初等函数(1)	89
3.1 指数与指数函数	91
♦ 3.1.1 有理指数幂及其运算	
♦ 3.1.2 指数函数 ··································	
3.2 对数与对数函数	
◆ 3.2.1 对数及其运算	
♦ 3.2.2 对数函数	110
◆ 3.2.3 指数函数与对数函数的关系	112
3.3 幂函数	116
3.4 函数的应用(II)	120
实习作业	
本章小结	128
阅读与欣赏	
对数的发明	
对数的功绩	133
附录Ⅰ	
科学计算自由软件——SCILAB 简介 ·····	135
附录 2	
部分中英文词汇对照表 ·····	145

第一章集合

2008 年北京要举办第29 届奥运会,奥运会组委会的工作非常繁重。例如、安排各代表团的吃、住、行就是一件大事,要考虑各地区、各民族的生活、饮食习惯、分别为他们准备餐厅;要统计各代表团中,运动员(分男、女)、工作人员(分男、女)的人数和名单,分别为他们准备住处;要统计参加各大项比赛的运动员、救练员和裁判员各有多少,分别为他们准备交通工具……

0 0 0 0 0 0 0 0 0 0 0 0 0

为了组织、安排好各项比赛,组委会还要统计参加每个小项目的运动员人数和名单,有的项目,例如羽毛球比赛,除了男、女单打,还有男双、女双、混双等,有的运动员要参加其中的两项甚至三项比赛,怎样收集、整理这些资料呢?……

我们设想建立这样一个模型,把参加奥运会的每个代表团都看成是一个集合,代表团中的每个成员就是这个集合的一个元素,这样,解决以上实际问题,就变成了研究这些集合之间的关系与性质的问题,当然,建立这样的数学模型也并非易事,它是一件复杂的工作,但运用本章学习的集合观点,借助计算机的帮忙,这些工作都能校容易地完成。

集合不仅在实际中有着广泛的应用,还是研究数学的一个重要工具,一种重要的 数学语言。

我们知道,数学之所以能成为科学的基础和应用广泛的学科,一个重要的原因是数学使用了抽象的"符号语言",通常我们把它称作数学语言。事实上,从小学到初中,你已经掌握了许多数学语言,并已经学着用数学语言表达自己的思想和解决一些问题。

学习数学的过程, 也是逐渐理解数学语言的过程, 例如写出等式

a+b=b+a,

你会理解这个等式表达的漏义,交换两个加数的顺序,它们的和不变. 这就比用自然语言叙述要简明准确得多。

数学中的符号语言是我们人类的创造,通过学习,大家一定能够理解并掌握它, 进入高中阶段,你将会学到更多更精确的数学语言,在这开篇的第一章,我们就要学 习数学中最基础、最通用的数学语言;集合语言,用集合语言能精确地表达各类对象 之间的关系,更简洁、更准确地表达相关的数学内容。

学好这一章可以为整个高中阶段的数学学习打下较好的基础,并将提高你运用数 学语言理解、表达和处理问题的能力.

1.1.1 集合的概念

《注》

集合是现代数 学的基本概念,专 门研究集合的理论 叫做集合论,康托 是集合论的创始者。 "集合"一词与我们日常熟悉的"整体"、"一类"、"一群"等词语的意义相近。例如、"数学书的全体"、"地球上人的全体"、"所有文具的全体"等都可分别看成一些"对象"的集合。

我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号,都可以看做对象. 一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集). 构成集合的每个对象叫做这个集合的元素(或成员).

例如,我们把"小于10"的自然数

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

中的各个数都分别看做对象,所有这些对象汇集在一起构成一个整体,我们就说由这些对象构成了一个集合.

节头图是中国体育代表团步入亚特兰大奥林匹克体育场的照片,代表团的309名成员构成一个集合.下面我们再举几个集合的例子:

- (1) 方程 x²=1 的解的全体构成一个集合,其中每一个解都是这个集合的元素;
 - (2) 平行四边形的全体构成一个集合, 其中每一个平行四边形

康托 (Cantor, G.F.P, 1845—1918), 德国数 学家.

都是这个集合的一个元素:

(3) 平面上与一个定点 O 距离等于r的点的全体构成一个集合,这个集合是以 O 为圆心、半径长为r的圆。圆上的每个点都是这个集合的元素。

上面是我们用自然语言来描述集合的几个例子,下面我们将逐步引入集合语言来描述集合。

集合通常用英语大写字母 A、B、C、…来表示,它们的元素通常用英语小写字母 a、b、c、…来表示。

如果 a 是集合 A 的元素,就说 a 属于 A,记作

 $a \in A$.

读作 "a属于A". 如果 a 不是集合 A 的元素,就说 a 不属于 A,记作

 $a \notin A$,

读作 "a 不属于A".

我们考虑方程 x+1=x+2 的解的全体构成的集合。显然这个集合不含有任何元素。

一般地,我们把不含任何元素的集合叫做空集,记作∅. 关于集合概念,还要作如下说明:

- (1) 确定性:作为一个集合的元素,必须是确定的. 这就是说 不能确定的对象就不能构成集合. 也就是说,给定一个集合,任何 一个对象是不是这个集合的元素也就确定了.
- (2) 互异性:对于一个给定的集合,集合中的元素一定是不同的(或说是互异的).这就是说,集合中的任何两个元素都是不同的对象,相同的对象归人同一个集合时只能算作集合的一个元素.

- 你能否确定,你所在班集体中高个子同学构成的 集合?并说明理由.
- 你能否确定,你所在班集体中,最高的3位同学 构成的集合?

集合可根据它含有的元素的个数分为两类; 含有有限个元素的集合叫做<mark>有限集</mark>,含有无限个元素的集合叫

做无限集.

我们约定,用某些大写英语字母,表示常用的一些数集。 非负整数全体构成的集合,叫做自然数集,记作 N: 在自然数集内排除 0 的集合叫做正整数集,记作 N' 或 N_+ ; 整数全体构成的集合,叫做整数集,记作 Z: 有理数全体构成的集合,叫做有理数集,记作 O: 实数全体构成的集合, 叫做实数集, 记作 R.

- 1. 下列语句是否能确定一个集合?
 - (1) 你所在的班, 体重超过 75 kg 的学生的全体:
 - (2) 大于5的自然数的全体;
 - (3) 某校高一(1)班性格开朗的女生全体;
- (4) 质数的全体;
 - (5) 平方值等于-1的实数的全体;
 - (6) 与 1 接近的实数的全体:
 - (7) 英语字母的全体;
- (8) 小于99, 且个位与十位上的数字之和是9的所有自然数,
- 2. 自然数集、整数集、有理数集、实数集通常用哪几个符号表示? 它们分别是有 限集还是无限集?
- 3. 下列关系是否正确?
 - (1) $0 \in \mathbb{N}_+$; (2) $-\frac{3}{2} \in \mathbb{Q}$; (3) $\pi \in \mathbb{Q}$; (4) $0 \in \emptyset$;

- (5) $\sqrt{2} \in \mathbb{R}$; (6) $-3 \in \mathbb{Z}$; (7) $0 \in \mathbb{Z}$; (8) $0, 9 \in \mathbb{R}$

- 1. 用符号∈或€填空:
 - (1) -3 N; (2) 3.14 Q; (3) $\frac{1}{2}$ Z; (4) 0 \emptyset ;

- (5) $\sqrt{3}$ Q; (6) $-\frac{1}{2}$ R; (7) 1 N₊; (8) π

2. 判断下列语句是否正确:

- (1) 由 1, 2, 2, 4, 2, 1 构成一个集合, 这个集合共有 6 个元素;
- (2) 1995 年末世界上的人构成一个无限集合;
- (3) 某一时刻, 地球的所有卫星构成的集合是无限集合;
- (4) 所有三角形构成的集合是无限集合;
- (5) 周长为 20 cm 的三角形构成的集合是有限集合.

1.1.2 集合的表示方法

如何表示一个集合呢?

1. 列举法

如果一个集合是有限集,元素又不太多,常常把集合的所有元素都列举出来,写在大括号"{}"内表示这个集合,例如,由两个元素0,1构成的集合可表示为

{0, 1}.

又如,24的所有正因数:1,2,3,4,6,8,12,24构成的集合可以表示为

{1, 2, 3, 4, 6, 8, 12, 24}.

这种表示集合的方法叫做列举法.

有些集合的元素较多,元素又呈现一定的规律,在不致于发生误解的情况下,也可列出几个元素作为代表,其他元素用省略号表示.

例如,不大于100的自然数的全体构成的集合,可表示为

无限集有时也用上述的列举法表示。例如自然数集 N 可表示为 $\{0, 1, 2, 3, \dots, n, \dots\}$

其中 n 表示任一个自然数.

由一个元素构成的集合,例如 $\{a\}$,要与它的元素 a 加以区别. a 与 $\{a\}$ 是完全不同的,a 是集合 $\{a\}$ 的一个元素,而 $\{a\}$ 表示一个集合。例如,某个国家代表团只有一个人,这个人本身和这个人构成的代表团是完全不同的。

用列举法表示集合时不必考虑元素的前后顺序. 例如,集合 {1,2}与(2,1)表示同一个集合.

2. 特征性质描述法

一种更有效地描述集合的方法,是用集合中元素的特征性质来 描述,

例如,正偶数构成的集合,它的每一个元素都具有性质: "能被2 整除,且大于0",

而这个集合外的其他元素都不具有这种性质。我们就可以用上述性 质把正偶数集合表示为

 $\{x \in \mathbf{R} | x$ 能被 2 整除,且大于 0} 或 $\{x \in \mathbf{R} | x = 2n, n \in \mathbf{N}_+\}$,大括号内竖线左边的 x 表示这个集合的任意一个元素,元素 x 从实数集合中取值,在竖线右边写出只有集合内的元素 x 才具有的性质.

如果在集合 I 中,属于集合 A 的任意一个元素 x 都具有性质 p(x),而不属于集合 A 的元素都不具有性质 p(x),则性质 p(x) 叫做集合 A 的一个特征性质。于是,集合 A 可以用它的特征性质 p(x) 描述为

$$\{x \in I \mid p(x)\}.$$

它表示集合 A 是由集合 I 中具有性质 p(x)的所有元素构成的.

例如,集合 $A=\langle x \in \mathbf{R} | x^2-1=0 \rangle$ 的特征性质是

$$x^2-1=0$$
.

在实数范围内,集合 A 的所有元素都满足方程 $x^2-1=0$,满足方程 $x^2-1=0$ 的所有元素也都在集合 A 内. 所以集合 A 通常用来表示方程 $x^2-1=0$ 的解集.

在求解方程时,通常用列举法表示方程的解集. 例如方程 $x^2-1=0$ 的解集,记为 $A=\{-1,1\}$.

在不致发生误解时,x的取值集合可以省略不写。例如,在实数集R中取值," $\in R$ "常常省略不写。上述集合A可以写作

$$\{x \mid x^2 - 1 = 0\}.$$

- 例 用列举法表示下列集合:
- (1) $A = \{x \in \mathbb{N} | 0 < x \le 5\};$ (2) $B = \{x | x^2 5x + 6 = 0\}.$
- \mathbf{M} : (1) $A = \{1, 2, 3, 4, 5\}$; (2) $B = \{2, 3\}$.
- 例 2 用特征性质描述法表示下列集合:
- (1) $\{-1, 1\};$
- (2) 大于 3 的全体偶数构成的集合;
- (3) 在平面 a 内, 线段 AB 的垂直平分线.
- 解:(1)这个集合的一个特征性质可以描述为:绝对值等于1

- 第一章集合

在几何中, 通

常用大写字母表示

点(元素),用小写

字母表示点的集合,

应注意区别,

的实数,即|x|=1. 于是这个集合可以表示为 $\{x \mid |x|=1\}$.

(2) 这个集合的一个特征性质可以描述为: x>3,且 x=2n, n∈N.

于是这个集合可以表示为

 $\{x | x > 3, \exists x = 2n, n \in \mathbb{N}\}.$

(3) 设点 P 为线段 AB 的垂直平分线上任一点,点 P 和线段 AB 都在平面 α 内,则这个集合的特征性质可以描述为 PA=PB.

于是这个集合可以表示为

 $\{ \triangle P \in \mathbb{P} \ \text{in } \alpha | PA = PB \}.$

思考与讨论

- (1) 哪些性质可作为集合(-1, 1)的特征性质?
- (2) 平行四边形的哪些性质,可用来描述所有平行 四边形构成的集合?

练习A

- 1. 用列举法表示下列集合,
 - (1) 大于2小于15的偶数全体;
 - (2) 平方等于16的实数全体;
 - (3) 比2大3的实数全体;
 - (4) 方程 x2=4 的解集;
 - (5) 大于 0 小于 5 的整数的全体;
 - (6) 我国现有直辖市的全体.
- 2. 用特征性质描述法表示下列集合:
 - (1) 由北京一个城市构成的集合;
 - (2) 所有偶数的集合;
 - (3) 方程 x2-2x+3=0 的解集;
 - (4) 大于3的全体实数.

- 1. 用适当的方法表示下列集合:
 - (1) 构成英语单词 mathematics(数学)字母的全体;
 - (2) 方程 $x^2+5x+6=0$ 的解集;
 - (3) 在自然数集内,小于1000的奇数构成的集合;
 - (4) 方程 $x(x^2+2x-3)=0$ 的解集:
 - (5) 绝对值等于3的实数的全体.
- 2. 用特征性质描述法表示下列集合:
 - (1) 除以3余2的数的全体;
 - (2) 大于1小于100的质数的全体构成的集合;
 - (3) 平行四边形全体构成的集合.

习题1-1 A

- 1. 用适当的方法表示下列集合:
 - (1) 大于-3 且小于 10 的所有正偶数构成的集合:
 - (2) 大于 0.9 且不大于 6 的自然数的全体构成的集合;
 - (3) 15 的约数的全体构成的集合;
 - (4) 15 的质因数全体构成的集合:
 - (5) 绝对值等于2的实数的全体构成的集合;
 - (6) 9 的平方根的全体构成的集合;
 - (7) 能够整除 111 的偶数的全体构成的集合.
- 2. 用适当的方法表示下列集合:
 - (1) 一年中有 31 天的月份的全体;
 - (2) 大于-3.5 小于 12.8 的整数的全体;
 - (3) 梯形全体构成的集合;
 - (4) 矩形的全体构成的集合;
 - (5) 绝对值小于零的实数的全体构成的集合.
- 3. 在实数范围内,用列举法表示下列方程的解集:
 - (1) 2x-1=0;
- (2) 4(x+1)-3(x-1)=2;
- (3) $x^2 5x + 4 = 0$;
- (4) $x^2+x-1=0$.
- 4. 方程 y=x 的解集的元素是什么,用特征性质描述法表示这个集合。

习题1-1 B

- 1. 用列举法表示下列集合:
 - (1) $f_{2}(x^{2}-1)(x^{2}+2x-8)=0$ 的解集;
 - (2) 方程|x-1|=3 的解集;
 - (3) 绝对值小于 3 的整数集合.
- 2. 用特征性质描述法表示下列集合:
 - (1) {0, 2, 4, 6, 8};
 - (2) {3, 9, 27, 81, ...};
 - (3) $\left\{\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{7}{8}, \cdots\right\};$
 - (4) 被 5 除余 2 的所有整数的全体组成的集合.
- 3. 下列的集合,哪些是有限集?哪些是无限集?哪些是空集?
 - (1) 今天正午12点生活在地球上的所有人构成的集合;
 - (2) 身高 6 米的人构成的集合:
 - (3) 线段 AB 上的点的全体构成的集合;
 - (4) 把线段 AB 等分为 100 等份的点的全体构成的集合;
 - (5) 以点 M 为中点的所有线段构成的集合;
 - (6) 今天生活在火星上的地球人构成的集合.

1.2.1 集合之间的关系

1. 子集

考察集合

 $A = \{1, 3\}.$

 $B = \{1, 3, 5, 6\}$:

 $C=\{x \mid x$ 是长方形 $\}$, $D=\{x \mid x$ 是平行四边形 $\}$;

 $P = \langle x | x 是菱形 \rangle$, $Q = \langle x | x 是正方形 \rangle$.

容易看出,集合 A 中的任意一个元素都是集合 B 的元素,集 合C中的任意一个元素都是集合D的元素,而集合P中的元素不 都是集合Q的元素.

如果集合A中的任意一个元素都是集合B的元素,那么集合 A 叫做集合 B 的子集,记作

 $A \subseteq B$ \overrightarrow{a} $B \supseteq A$.

读作 "A包含于B", 或 "B包含A".

如果集合 P 中存在着不是集合 Q 的元素, 那么集合 P 不包含 于Q,或Q不包含P. 分别记作

 $P \not \subseteq Q$, $g \not \supseteq P$.

依照上述定义,任意一个集合 A 都是它本身的子集,即 $A \subseteq A$. 我们规定空集是任意一集合的子集,也就是说,对任意集合 A, 都有

符号"∈"与 符号□表达的含义 相同吗?

 $\emptyset \subseteq A$.

如果集合 A 是集合 B 的子集,并且 B 中至少有一个元素不属于A,那么集合 A 叫做集合 B 的真子集,记作

A $\subseteq B$ 或 B $\supseteq A$.

读作 "A 真包含于B",或 "B 真包含A"

例如,

 $A = \{1, 2\}, B = \{1, 2, 3, 4\},\$

由观察可知, $A \in B$ 的子集, $\{0\}$ 的子集, $\{0\}$ 的真子集, $\{0\}$ 即 $\{A\}$ 以 $\{A\}$ 以 $\{A\}$ 的真子集, $\{0\}$ 和 $\{A\}$ 以 $\{A\}$ 以 $\{A\}$ 的真子

我们常用平面内一个封闭曲线的内部表示一个集合(图 1-1 (1)), 这个区域通常叫做维恩(Venn)图.

图 1-1

如果集合 A 是集合 B 的真子集,那么就把表示 A 的区域画在表示 B 的区域的内部(图 1-1(2)).

根据子集、真子集的定义可推知:

对于集合 A、B、C, 如果 $A \subseteq B$, $B \subseteq C$, 则 $A \subseteq C$; 对于集合 A、B、C, 如果 $A \subseteq B$, $B \subseteq C$, 则 $A \subseteq C$.

例 写出集合 $A = \{1, 2, 3\}$ 的所有子集和真子集.

分析:如何一个不漏地写出集合(1,2,3)的所有子集呢?我 们采用下面的步骤:

- (1) 因为空集Ø是所有集合的子集,所以首先写出Ø;
- (2) 写出所有由一个元素构成的集合: {1}, {2}, {3};
- (3) 写出所有由两个元素构成的集合: {1, 2}, {1, 3}, {2, 3};
- (4) 写出所有由三个元素构成的集合: {1, 2, 3}.
- 解:集合 A 的所有子集是:
- \emptyset , $\{1\}$, $\{2\}$, $\{3\}$, $\{1, 2\}$, $\{1, 3\}$, $\{2, 3\}$, $\{1, 2, 3\}$.

在上述子集中,除去集合 A 本身,即 $\{1, 2, 3\}$,剩下的都是 A 的真子集.

2. 集合的相等

考察集合

 $A = \{x \mid (x+1)(x+2) = 0\}, B = \{-1, -2\},$

可以看出,集合 A 和集合 B 的元素完全相同,只是表达形式不同.

一般地,如果集合 A 的每一个元素都是集合 B 的元素,反讨 来,集合B的每一个元素也都是集合A的元素,那么我们就说集合 A等于集合B,记作

A = B.

由相等的定义,可得:

如果 $A \subseteq B$, 又 $B \subseteq A$, 则 A = B; 反之, 如果 A = B, 则 $A \subseteq B$, $\exists B \subseteq A.$

例2 说出下列每对集合之间的关系:

- (1) $A = \{1, 2, 3, 4, 5\}, B = \{1, 3, 5\}$:
- (2) $P = \langle x | x^2 = 1 \rangle$, $Q = \langle x | |x| = 1 \rangle$;
- (3) $C = \{x \mid x$ 是奇数 $\}$, $D = \{x \mid x$ 是整数 $\}$.
- $\mathbf{M}_{:}$ (1) $B \subseteq A_{:}$ (2) $P = Q_{:}$ (3) $C \subseteq D_{:}$

已知集合A的特征性质为p(x),集合B的特征 性质为q(x), "如果p(x), 那么q(x)" 是正确的命 题, 试问集合 A和B的关系如何? 并举例说明.

集合的相等与

集合的特征性质有

关系吗?

1. 用适当的符号 (∈, ∉, =, ⊊, ⊋) 填空:

- (1) 3 ___{{1, 2, 3, 5};
- (2) 5 {5}:
- $(3) \{a\} \{a, b, c\};$
- (4) {a, b, c} {b, c}:

- (5) Ø {0};
- (6) {x|x是矩形} ____{{x|x是平行四边形};
- $(7) \{1, 2, 3\}$ $\{3, 2, 1\};$ $(8) \{2, 4, 6, 8\}$ $\{2, 6\}.$

- 2. 指出下列各对集合之间的关系:
 - (1) $A = \{x | x 是 等 边 三 角 形 \}$,
- (2) $A = \{x | x > 1, x \in R\}$ $B=\{x|x$ 是等腰三角形 $\};$ $B=\{x|x\geqslant 2, x\in R\};$
- (3) C={x|x是等腰直角三角形},

 $D=\{x|x$ 是有一个角是 45° 的直角三角形 $\}$.

- 3. 写出集合(0, 1, 2, 3, 4)的所有子集.
- 4. 指出下面各集合之间的关系, 并用维恩图表示:

 $A = \{x \mid x$ 是四边形 $\}$,

 $B=\{x\mid x$ 是平行四边形 $\}$,

 $C=\{x|x$ 是矩形 $\}$, $D=\{x|x$ 是正方形 $\}$.

- 1. 用适当的符号(∈, ∉, =, ⊊, ⊋) 填空:
 - (1) $\{a, b, c\}$ $\{c, b, a\};$ (2) \emptyset $\{x \in \mathbb{R} \mid x^2 = -4\};$

(3) Ø ___{Ø};

- (4) \emptyset $\{x \mid x^2 + 2x + 1 = 0\}.$
- 2. 指出下列各对集合之间的关系:
 - (1) $E = \{x \mid x$ 是两组对边分别平行的四边形 $\}$, $F = \{x \mid x$ 是一组对边平行且相等的四边形 $\};$
 - (2) G={x|x是能被3整除的数},

 $H = \{x | x 是能被6整除的数\}.$

3. 求下列四个集合之间的关系,并用维思图表示:

 $A = \{x \mid x$ 是平行四边形 $\}$,

 $B=\{x|x是菱形\},$

 $C=\{x\mid x$ 是矩形 $\}$,

 $D = \{x | x 是正方形\}.$

- 4. 集合U、S、T、F的关系如图所示,下列关系中哪些是对
 - 的,哪些是错的?
 - (1) S⊊U; (2) F⊊T; (3) S⊊T;
 - (4) S⊋F; (5) S⊊F; (6) F⊊U.

探索与研究

填表:

集合	集合中元素的个数	子集的数目
(a)	1	
{a, b}	2	
{a, b, c}	3	100
$\{a, b, c, d\}$	4	
(a, b, c, d, e)	5	

- (1) 你能找出"元素个数"与"子集数目"之间关系的规律吗?
- (2) 如果一个集合中有 n 个元素, 你能写出计算它的所有子集数目的公式吗(用 n 表达)?

1.2.2 集合的运算

可结合课件① 1101学习集合的运算。 两个集合能进行运算吗?

过去我们只对数或式进行算术运算或代数运算,这里集合运算 的含义是,由两个已知的集合,按照某种指定的法则,构造出一个 新的集合。

1. 交集

已知

 $A = \{1, 2, 3, 4, 5\}, B = \{3, 4, 5, 6, 8\},\$

由这两个集合的所有公共元素构成一个新的集合

 ${3, 4, 5}.$

下面,给出这种新集合构成的一般定义.

对于两个给定的集合 A、B,由属于 A 又属于 B 的所有元素构成的集合,叫做 A、B 的交集,记作

 $A \cap B$

① 教科书中所使用的课件或软件可以在人教网 (http://www.pep.com.cn) 上下载.

图 1-2

图 1-3

读作 "A 交 B". 例如,

 $\{1, 2, 3, 4, 5\} \cap \{3, 4, 5, 6, 8\} = \{3, 4, 5\}.$

再例如, 直线 l 与圆 O 相交于两点 A、B(图 1-2), 用集合语言 可表示为

 $l \cap \bigcirc O = \{A, B\}.$

两个集合 A、B 的交集可用图 1-3 中的阴影部分表示. 由交集的定义可知,对于任意两个集合A、B,都有

> $A \cap B = B \cap A$: $A \cap A = A$: $A \cap \emptyset = \emptyset \cap A = \emptyset$: 如果 $A\subseteq B$,则 $A\cap B=A$.

- 1. 两个非空集合的交集能等于空集吗? 举例说明.
- 2. 如何用集合语言表示平面内的两条直线平行或重 合?

成 求下列每对集合的交集:

- (1) $A = \{x \mid x^2 + 2x 3 = 0\}, B = \{x \mid x^2 + 4x + 3 = 0\};$
- (2) $C = \{1, 3, 5, 7\}, D = \{2, 4, 6, 8\}.$
- $M: (1) A \cap B = \{1, -3\} \cap \{-1, -3\} = \{-3\}:$ (2) $C \cap D = \emptyset$.
- 例 2 设 $A=\{x|x$ 是奇数 $\}$, $B=\{x|x$ 是偶数 $\}$,

 $Z=\{x|x$ 是整数 $\}$, 求 $A\cap Z$, $B\cap Z$, $A\cap B$.

- $\mathbf{M}: A \cap \mathbf{Z} = \{x \mid x$ 是奇数 $\} \cap \{x \mid x$ 是整数 $\} = \{x \mid x$ 是奇数 $\} = A$, $B \cap \mathbf{Z} = \{x \mid x$ 是偶数 $\} \cap \{x \mid x$ 是整数 $\} = \{x \mid x$ 是偶数 $\} = B$, $A \cap B = \{x \mid x$ 是奇数 $\} \cap \{x \mid x$ 是偶数 $\} = \emptyset$.
- **倒3** 已知 $A=\{(x, y)|4x+y=6\}, B=\{(x, y)|3x+2y=7\},$ 求 $A \cap B$.

分析: 集合 A 和 B 的元素是有序实数对(x, y), A、B 的交集

即为方程组

$$\begin{cases} 4x + y = 6 \\ 3x + 2y = 7 \end{cases}$$

的解集.

$$\begin{aligned}
& \mathbf{M}; \ A \cap B = \{(x, y) | 4x + y = 6\} \cap \{(x, y) | 3x + 2y = 7\} \\
& = \{(x, y) | \begin{cases} 4x + y = 6 \\ 3x + 2y = 7 \end{cases} = \{(1, 2)\}.
\end{aligned}$$

Ø □ 已知 A=⟨x|x 是等腰三角形⟩, B=⟨x|x 是百角三角 形}, 求 A∩B.

 $\mathbf{M}: A \cap B = \langle x | x$ 是等腰三角形 $\rangle \cap \langle x | x$ 是直角三角形 \rangle $=\{x|x$ 是等腰直角三角形 $\}$.

2. 并集

已知

$$A = \{1, 3, 5\}, B = \{2, 3, 4, 6\},$$

由这两个集合的所有元素构成一个新的集合

一般地,对于两个给定的集合 A、B,把它们所有的元素并在 一起构成的集合,叫做A 与 B的并集,记作

读作"A 并 B"。例如。

 $\{1, 3, 5\} \cup \{2, 3, 4, 6\} = \{1, 2, 3, 4, 5, 6\}.$ 集合 A 与 B 的并集,可用图 1-4(1)或(2)中的阴影表示.

(1)

由并集的定义可知,对于任意两个集合 A、B,有

 $A \cup B = B \cup A$; $A \cup A = A$: $AU\emptyset = \emptyset UA = A$: 如果 $A\subseteq B$,则 $A\cup B=B$.

图 1-4

例5 已知 $Q = \{x \mid x 是有理数\}, Z = \{x \mid x 是整数\},$

求OUZ.

 $\mathbf{M}: \mathbf{O} \cup \mathbf{Z} = \{x \mid x$ 是有理数 $\} \cup \{x \mid x$ 是整数 $\} = \{x \mid x$ 是有理 数}=0.

- 1. 巴知 A={1, 2, 3, 4}, B={3, 4, 5, 6}, C={1, 3, 4, 6}, 求
 - (1) A∩B;
- (2) $A \cap C$; (3) $A \cup B$;
- (4) AUC;

- (5) B∩C:
- (6) A∩Ø; (7) B∪C;
 - (8) CUØ.
- 2. 已知 $A = \{a, b, c, d\}$, $B = \{b, d, e, f\}$, 求 $A \cap B$, $A \cup B$.
- 3. 用图示说明: 如果 $A\subseteq B$, 则 $A\cap B=A$, $A\cup B=B$.
- 4. 已知 A={x|x²-16=0}, B={x|x²-x-12=0}, 求 A∩B, A∪B (用列举法 表示).

- 1. 对于任意两个集合 A、B,关系 $(A \cap B)$ ⊆ $(A \cup B)$ 总成立吗?
- 2. 已知 $A = \{x \mid x$ 是锐角三角形 $\}$, $B = \{x \mid x$ 是钝角三角形 $\}$, 求 $A \cap B$, $A \cup B$.
- 3. 已知 A={(x, y)|2x+3y=1}, B={(x, y)|3x-2y=3}, 求 A∩B (用列举法 表示).
- 4. 已知集合 $A=\{a, b, c\}$, 集合 B 满足 $A \cup B=A$, 试问这样的集合有多少个? 如果满足A∩B=B呢?

 设有限集合 M 所含元素的个数用n(M)表示,并规定n(∅)=0. 已知A={高一年级 参加数学小组的学生}, $B = \{ 高 - 年级参加足球队的学生 \}$, n(A) = 20, n(B) = 8, $n(A \cap B) = 4$, 你能求出 $n(A \cup B)$ 吗?

 设 A、B 为两个有限集, 讨论 n(A)、n(B)、n(A∩B)、n(A∪B)四个数值之间的 关系。

3. 补集

在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,通常用 U 表示.

例如,我们在研究数集时,常常把实数集 R 作为全集. 如果我们讨论的数仅限为自然数,我们可取自然数集 N 为全集.

如果 A 是全集 U 的一个子集,由 U 中不属于 A 的所有元素构成的集合,叫做 A 在 U 中的补集,记作

CUA.

图 1-5

读作 "A 在 U 中的补集".

全集通常用矩形区域表示,全集与它的任意一个真子集之间的 关系,可用维恩图表示,如图 1-5.

由补集定义可知,对于任意集合 A,有

 $A \cup \mathcal{L}_{U}A = U$, $A \cap \mathcal{L}_{U}A = \emptyset$, $\mathcal{L}_{U}(\mathcal{L}_{U}A) = A$.

例 已知 U={1, 2, 3, 4, 5, 6}, A={1, 3, 5}, 求 fuA, A ∩ fuA, A U fuA.

例 $U = \{x | x \in \mathcal{Y}\}, \mathbf{Q} = \{x | x \in \mathcal{Y}\}, \vec{x} \in \mathcal{U}$

解: $\mathbb{L}Q = \{x \mid x$ 是无理数 $\}$.

例8 已知 $U=\mathbb{R}$, $A=\{x\mid x>5\}$, 求 $\mathcal{L}_{U}A$.

解: $\mathcal{L}_U A = \{x \mid x \leq 5\}$.

- 2. 已知全集 U=R, A={x|x<2}, 求 LvA.
- 3. 已知全集U=R, A={x|-1<x<1}, 求 luA, luA∩U, luA∪U, A∩ luA, A∪ luA.
- 4. 设全集 $U=\mathbf{Z}$, $A=\langle x|x=2k, k\in \mathbf{Z}\rangle$, $B=\langle x|x=2k+1, k\in \mathbf{Z}\rangle$, 求 \mathcal{L}_UA , \mathcal{L}_UB .

- 1. $\psi U = \{1, 2, 3, 4, 5, 6\}, A = \{5, 2, 1\}, B = \{5, 4, 3, 2\}, \not \in \mathbb{Q}A$ $\mathcal{L}_{U}B$, $\mathcal{L}_{U}A \cap \mathcal{L}_{U}B$, $\mathcal{L}_{U}A \cup \mathcal{L}_{U}B$.
- 2. 已知 $U = \{\alpha | 0^{\circ} < \alpha < 180^{\circ} \}$, $A = \{x | x 是锐角\}$, $B = \{x | x 是钝角\}$, 求 $\{uA \cap B\}$, $\mathcal{L}_{U}A \cup \mathcal{L}_{U}B$, $\mathcal{L}_{U}(A \cup B)$.
- 3. 如果 $U = \{x \mid x \in \{x \mid x \in$ 求B∩ CuA.

习题1-2 A

- 1. 判断下列关系是否正确:
 - (1) $2 \subseteq \{x \in \mathbb{R} \mid x \le 10\}$;
- (2) $2 \in \{x \in \mathbb{R} | x \leq 10\}$:
- (3) $\{2\} \subseteq \{x \in \mathbb{R} | x \le 10\}$;
- (4) $\emptyset \in \{x \in \mathbb{R} | x \leq 10\}$:
- (5) $\varnothing \subseteq \{x \in \mathbb{R} | x \leq 10\};$ (6) $\varnothing \subseteq \{x \in \mathbb{R} | x \leq 10\}.$
- 2. 如果集合 A、B分别满足下列等式, 试写出 A和B之间的关系:
 - (1) $A \cap B = A$;

- (2) $A \cup B = A$.
- 3. 已知 A={1, 2, 3, 4}, B={3, 4, 5, 6, 7}, C={6, 7, 8, 9}. 求 (1) $A \cap B$, $B \cap C$, $A \cap C$;
 - (2) $A \cup B$, $B \cup C$, $A \cup C$.
- 4. 用适当的集合填空:

n	\varnothing A B	U Ø A B
Ø		ø
A		A
В		B

- 5. 已知 $A=\{x|x 是菱形\}$, $B=\{x|x 是矩形\}$, 求 $A\cap B$.
- 6. 已知 $A=\langle x|x$ 是平行四边形 \rangle , $B=\langle x|x$ 是菱形 \rangle , 求 $A\cap B$, $A\cup B$.
- 7. 设 $A = \{x | x$ 是小于10的质数 $\}$, $B = \{x | x$ 是小于10的正奇数 $\}$,求 $A \cap B$, $A \cup B$.
- 8. 已知全集 U={1, 2, 3, 4, 5, 6, 7, 8}, A={3, 4, 5}, B={4, 7, 8}.
 - (1) 求 $\mathcal{C}_U A$, $\mathcal{C}_U B$, $\mathcal{C}_U A \cap \mathcal{C}_U B$, $\mathcal{C}_U A \cup \mathcal{C}_U B$;
 - (2) 验证: 「(A∩B) = 「UAU」 (UB, $\mathcal{L}_U(A \cup B) = \mathcal{L}_U A \cap \mathcal{L}_U B$.

习题1-2 B

- 1. $\exists \exists A = \{0, 2, 4, 6, 8\}, B = \{0, 1, 2, 3, 4, 5\}, C = \{4, 5, 6\}, \$
 - (1) $A \cap B \cap C$:

- (2) AUBUC:
- (3) $(A \cap B) \cup C$:

- (4) (AUB) ∩ C.
- 2. 下列集合中哪些是空集? 哪些是有限集? 哪些是无限集?
 - (1) $\{x | x+1=1\}$:
- (2) $\{(x, y) | x \in \mathbb{R}, y \in \mathbb{R}\};$
- (3) $\{x \in \mathbb{R} | x^2 + 9 = 0\};$ (4) $\{x | x^2 2x 3 = 0\}.$
- 3. 用适当的符号(€, €, ⊆, ⊇, =)填空:
 - (1) 2 ___(x|x是质数); (2) {0} ___Ø;

(3) Z R:

- (4) $\{x \in \mathbb{R} | x^2 = -1\}$ $\{x | x^3 = -1\}$.
- 4. 设 $A=\langle x|x 是 U$ 中的奇数 \rangle .
 - (1) 如果 $U=\{4, 5, 6\}$, 列出A中的所有元素:
 - (2) 如果 $U=\{x \mid x \in A\}$ 的正整数},列出A中的所有元素;
 - (3) 如果 $U = \{x \in \mathbb{Z} | 25 < x < 40\}$, 列出 A 中的所有元素.
- 5. 用集合语言分别表示图中的阴影部分:

(第5期)

- 6. 图中U是全集, A、B是U的两个子集, 分别用阴影表示:
 - (1) \(\mathbb{L}_{\omega} A \cap \mathbb{L}_{\omega} B; \)
- (2) [uA U [uB:
- (3) 验证: 「(A∪B) = 「(vA ∩ (vB). $\mathcal{L}_U(A \cap B) = \mathcal{L}_U A \cup \mathcal{L}_U B$.

(第6題)

では、「一」())では、「一)第一章 集 合

- 7. 当 U={0, 1, 2, 3, 4, 5, 6, 7, 8}, A={0, 1, 3, 4, 7}, B={1, 2}时, 验证第6题(3)中的两个等式。
- 8. 写出集合{农夫,狼,羊,菜}的所有子集,由此设计一个方案:农夫用船把狼、羊、菜从河的一岸送到另一岸,农夫每次驾船只能运一种东西,并且农夫不在场的情况下,狼不能和羊在一起,羊不能和菜在一起.

本章川结

I 知识结构

II思考与交流

- 1. 按照知识结构图梳理(复习)本章学习的内容.
- 如何区别"元素与集合的关系"和"集合与集合的关系"? 如何正确使用∈、€、⊆、⊈、⊊等符号?
 - 3. 请用列表的方法整理、比较集合与集合之间的各种关系.

集合与集合的关系:(下表供参考)

名	称	定义 (文字表示)	符号表示	图形表示	性 质
子集 有子集 相等 4	真子集	4.连电	全面中民建筑主	高級(8)	
	A A A A A A A A A A A A A A A A A A A				
交	集	1634	A JESTINE	40	
并	集	The second second	8=1000000000000000000000000000000000000	= (0):	
补	集	A A D T	· 沙西沙丽 李 佐	9 6 8	

第一章 集合

- 4. 什么是集合的特征性质?
- 道过用维恩图表达集合之间的关系及其运算,进一步体会集合之间的关系及其运算的意义。

III 巩固与提高

- 1. 判断下列陈述语句的真假:
 - (1) x 是集合A 的元素,记作 $x \in A$;
 - (2) $3 \in \{1, 5, 3, 7\}$;
 - (3) $\{a\} \in \{a, b, c, d\}$;
 - (4) $\{a, b, c\} \subseteq \{a, b, c\};$
 - (5) $\emptyset = \{0\}$:
 - (6) Ø⊊{0};
 - (7) {0, 1}的所有子集是{0}, {1}, {0, 1};
 - (8) $\{a, b, c, d\} = \{b, a, d, c\};$
 - (9) $\{x \mid x^2 8x + 15 = 0\} = \{5, 3\}$:
 - (10) A∩B⊆A, 且A∩B⊆B;
 - (11) 如果 A∪B=A, 则 B⊆A;
 - (12) $A \cap B = B \cap A$, $\mathbb{R} A \cup B = B \cup A$.
- 在下列集合中,哪些是非空的有限集?哪些是无限集?哪些是 空集?
 - (1) 小于 10 000 的质数全体构成的集合;
 - (2) ⊙○內点的全体构成的集合;
 - (3) 线段 AB 内包含 AB 中点 M 的所有线段构成的集合;
 - (4) 大于 0, 并且小于 1 的自然数全体构成的集合;
 - (5) $\{(x, y) | y = 2x + 1, x \in \mathbb{R}\}.$
- 3. 用列举法表示下列各性质确定的集合:
 - (1) 大于3, 并且小于10的自然数;
 - (2) 小于 100 并且可化为自然数平方的数;
 - (3) 你所在的学习小组全体成员.
- 4. 用列举法写出与下列集合相等的集合:
 - (1) $A = \{x \mid x^2 + 6x 16 = 0\};$
 - (2) $B = \{x \in \mathbb{N} | x \geqslant 1, \mathbb{R} x \leqslant 3\};$
 - (3) $C = \{x \mid |x-2| = 3\};$
 - (4) $D = \{x \in \mathbb{N} | 2x + 6 \ge 0, \mathbb{R} \ 3x 5 \le 3\}.$
- 5. 设 A、B 是平面内两定点,P 为动点,试问点集 $\{P | PA = PB\}$

表示什么图形?

- 6. 已知集合 $A=\{(x, y)|3x-5y=-2\}$, $B=\{(x, y)|2x+7y=40\}$, 求 $A \cap B$ (用列举法表示).
- 7. 给定集合 $A=\{1, 3, 5\}, B=\{3, 4, 5, 6, 7\}, C=\{1, 3, 6, 6, 7\}$ 8}, 求:
 - (1) A∩B:
- (2) A∩C; (3) A∪B;
- (4) AUC:
- (5) B∩C;
- (6) B∩Ø;

- (7) BUC:
- (8) BUØ.
- 8. 证明: (1) 如果 $A=\emptyset$ 或者 $B=\emptyset$, 则 $A\cap B=\emptyset$:
 - (2) 如果 $A \cap B = A$, 则 $A \notin B$ 的子集.
- 9. 证明: (1) 如果 $A=\emptyset$, 并且 $B=\emptyset$, 则 $A \cup B=\emptyset$:
 - (2) 如果 $A \cup B = \emptyset$, 则 $A = \emptyset$, 并且 $B = \emptyset$.
- 10. 已知 $U=\{1, 2, 3, 4, 5, 8\}$ 和它的子集 $A=\{2, 4\}, B=\{2, 4\}$ $\{4, 8\}, C=\{2\}, D=\{4, 8\},$ 用这几个集合的名称写出以下集 合运算的结果:
 - (1) AUC:
- (2) BUC:
- (3) CUD:

- (4) AUU:
- (5) A∩C;
- (6) B∩C; (9) BUD;

- (7) C∩D:
- (8) A∩U;

- (10) $\mathcal{L}_{U}A$: (11) $\mathcal{L}_{U}A \cap C$: (12) $\mathcal{L}_{U}D \cap B$.
- 11. 某校对 68 名学生去游览 A、B、C 三个公园的情况进行调查, 统计结果如下:
 - (1) 每个人至少去过 A、B、C 三个公园中的一个公园:
 - (2) 到过 A和B, B和C, C和A两个公园的人数分别为25 人, 21人, 19人;
 - (3) 到过 A 或 B, B 或 C, C 或 A 公园的人数分别为 60 人, 59 人. 56人.

试问,这些学生到过 A、B、C 公园的人数各为多少? 三个公 园都到过的学生有多少?

自测与评估

- 1. 选择适当的方法表示下列集合,并说明是有限集还是无限集.
 - (1) 中国古代四大发明的集合:
 - (2) 坐标平面上,第二象限的点的集合;
 - (3) 数轴上与原点的距离大于2且小于3的全体实数;
 - (4) 表达集合之间关系的符号组成的集合.

- 2. 判断下列命题的真假:
 - (1) {4, 5, 6, 7} 是{4, 5, 6, 7} 的子集;
 - (2) {x | x 是奇数}⊆{x | x 是奇数};
 - (3) {x|x是正方形} \\ \{x|x是长方形}.
- 3. 写出集合 (a, b, c, d) 的所有子集.
- 4. 已知全集 $U=\{1, 2, 3, 4, 5\}$, 其子集 $A=\{1, 3\}$, $B=\{2,$
 - 5}, C={2}, 求:
 - (1) \(\mathbb{L}_U A \); \((2) \) \(\mathbb{L}_U B \);
- (3) C_UC; (4) A∩B;

 - (5) AUB: (6) CU [...B:
- (7) $\mathcal{L}_{\upsilon}A \cap \mathcal{L}_{\upsilon}C$; (8) $\mathcal{L}_{\upsilon}A \cup \mathcal{L}_{\upsilon}B$.
- 5. 已知两个集合 A、B 是全集 U 的两个子集合,用维恩图说明集 合A ∩ C_UB 与集合B ∩ C_UA 的交集是空集.
- 如果集合A中有3个元素,集合B中有2个元素,试问:
 - (1) AUB最多有几个元素? 最少有几个元素?
 - (2) A∩B中最多有几个元素? 最少有几个元素?
 - 7. 某班有50名学生,先有32名同学参加学校电脑绘画比赛,后有 24 名同学参加电脑排版比赛,如果有 3 名学生这两项比赛都没 参加,问这个班有多少同学同时参加了两项比赛?

聪明在于学习,天才由于积累

——自学成才的华罗庚

华罗庚是国际著名的 数学家,又是一位伟大的的 爱国主义者,1950年,他 响应祖国的召唤,毅然从 美国回到北京,业线等出于 会主义建设事业并做工 重大贡献,1979年他光 荣加入了中国共产党,

1985年6月12日在访日做学术报告的讲台上, 不幸逝世. 党和国家对他的一生作了高度的 评价.

华罗庚 1910 年 11 月 12 日出生于江苏省金坛 县一个贫苦家庭。 1924 年,他初中毕业因家境贫 寒雨辍学。为学点本事养家棚口,他考野。只上 了一年就离开了学校,在其父亲经营的小杂货铺 里都工当学徒。渴望学习的伦,只能利用业余时间刻苦自学数学。 1929 年,他在金坛中学任庶务 主任,并开始在上海《科学》杂志发表论文。 1930 年 19 岁时写的论文 《苏家驹之代数语》 方程式解法不能成立的理由》一文、邀请他知清华大 专数学系主任熊庆来先生的赞赏、邀请他到清华大学后,他更 勤奋学习数学。 1940 日年中打下了坚实的数学基础。 并自学了英文、法文和德文、同期,仅数论这一

分支他就写了十几篇高水平的论文,成为一名优 秀的青年数学家,这时他从管理员升为助教,继 而晋升为讲师。1936~1938年他作为访问学者, 到英国剑桥大学工作并深造, 抗日战争爆发后回 国, 因成绩卓著,于1938~1946年他受聘为昆明 西南联合大学教授, 当时, 他生活条件极为艰苦, 白天教学,晚上在柴油灯下孜孜不倦地从事研究 工作, 著名的《堆垒素数论》就是在这样的条件 下写成的, 1945年, 他应前苏联科学院的邀请赴 苏旅行和讲学, 受到热烈欢迎, 1946年, 他应美 国普林斯顿高等研究院的邀请任研究员,在普林 斯顿大学执畅,后被伊利诺大学聘任为终身畅畅. 1950年回国后,他担任我国科学界诸多重要职 务, 回顾他的一生, 只有一张初中文凭, 却成为 蜚声中外的杰出数学家. 靠什么呢? 华罗庚从不 迷信天才,他说:"聪明在于学习,天才由于积 累."他就靠刻苦自学、靠勤奋钻研,给人类留 下了近 300 篇学术论文和多种学术专著,写了 10 多种科普读物. 他在晚年已有很高的声望和地位, 但仍手不释恭,顽强地读和写,他说:"树老易 空,人老易松,科学之道,戒之以空,戒之以松, 我愿一辈子从实而终。""发白才知智叟呆,埋头 苦干向未来, 勤能补拙是良训, 一分辛苦一分 才,"这是他留给我们的多么宝贵的精神财富啊!

第二章函数

2.

函

数

次函数和二次函数

函数的应用(I)

函数与方程

在本章深入学习函数概念之前,首先让我们看看物理学家是如何用函数语言来刻 画自由落体运动的,自由落体运动涉及距离和时间两个变量,在伽利略时代,物理学 家们通过实验和数学推理后发现:初速度为零的自由落体运动,物体下落的距离(s)与 所用的时间(r)的平方成正比,这个规律用数学式于可描述为

0 0 0 0 0 0 0 0 0 0 0 0 0 0

 $s=kt^2$.

共中 $k=\frac{1}{2}g$, g=9.8 m/s².

现在我们可以用计算机来模拟自由落体运动,观察物 == 体下落的距离与时间的关系. 右围是通过计算机模拟得到 == 的一组数据. ==

从这组数据可以验证;物体下落的距离(s)与所用的时间(t)的平方的比值接近一个常数,

科学家们通常都是通过实验、观察,搜集并整理数据 来发现变量之间的变化规律,并用含有变量的等式来描述 这些量之间的变化规律,科学家们为了研究事物的变化规 律,创造了函数语言,为了更确切地表达函数关系,数学 家们又用集合语言来刺函函数,并用函数语言表达不同集 合之间的关系,近代数学本盾上可以说是变量数学。

函数语言与集合语言一样,都是数学中的通用语言。函数是描述变量之间依赖关系和集合之间关系的一个基本的数学模型,是研究客观世界变化规律和集合之间关系的一个最基本的数学工具。几乎所有的科学研究领域都使用函数语言,大到宇宙起源、天体的运动,小到原子、分子的运动,以及研究人口的增长、金融市场的变化。国民经济的发展,工程技术的创新等等,都需要使用函数语言来描述。我们日常生活中碰到的各种各样的问题,也需要用变量的观点去思考。由此可见,我们学习函数的有关知识是多么的重要。

本章我们将进一步体会、理解函数概念,学习函数的基本性质,学习函数的表示 方法,通过研究一次函数和二次函数的性质,学习研究函数性质的一些基本方法,理 解函数与方程之间的联系,为下一章学习指数函数、对数函数、幂函数和进一步学习 打下基础.

2.1.1 函数

1. 变量与函数的概念

在初中,同学们已学习了变量与函数的概念。在一个变化过程中,有两个变量x和y,如果给定了一个x值,相应地就确定惟一的一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

在数学发展的过程中,函数的含义也在不断地发展变化着. 科 学家当初引入函数概念就是用来描述变量之间的依赖关系的. 例 如,在引言中所讨论的自由落体运动,是用关系式

$$s=\frac{1}{2}gt^2$$

来描述的. 这里时间 t 为自变量, 距离 s 为因变量, 时间 t 在某 个范围内变化, 距离 s 也相应地在某个范围内变化, 距离 s 是时 间 t 的函数.

用变量的观点来描述函数,可以形象生动地描述事物的变化规律,但有一定的局限性.下面我们举例对函数关系作进一步的分析,看看能否引入更为确切的语言来表达函数概念.

(1) 在研究学生好奇心指标随年龄增长的变化规律时,通过某次实验得到的数据如图 2-2 所示.

在这个图象中,给定10~15岁的每一个年龄(以岁为单位),就对应一个好奇心指标。你能从这个图象中了解到哪些信息?

(2) 农业科学家研究玉米的生长过程,把生产过程分为 32 个时间段,通过实验得到了各时间段与植株高度之间的相关数据,如图 2-3 所示.

图 2-3

在玉米生长的32个时间段内,给定生长的某个时间段,就可 从这张图中查到与这个时间段相应的玉米植株的高度.

(3) 下表展示了我国从 1998 年到 2002 年, 每年的国内生产总值.

年份	生产总值(亿元)
1998	.78 345
1999	82 067
2000	89 442
2001	95 933
2002	102 398

这张表显示了年国内生产总值是年份的函数. 给定 1998 到 2002 年中的任一年,可在表中查到当年的国内生产总值.

(4) 电路中的电压 U=220 V, 电流 I 与电阻 R 之间的变化规律, 用欧姆定律表示, 即

$$I = \frac{220}{R}$$
 (R>0).

这个公式表明,在电路中,电压(U)不变,电流(I)与电阻(R)的变 化成反比例关系. 只要测出电路中的电阻值,就可由上述公式计算 出惟一的电流值.

在上述的每个例子中,都指出了自变量的变化范围、由自变量确定因变量的法则,以及由此确定的因变量的取值范围。这就是说,一个函数关系必须涉及到两个数集(自变量和函数的取值集合)和一个对应法则。由此可见,函数关系实质上是表达两个数集的元素之间,按照某种法则确定的一种对应关系。这种"对应关系"反映了函数的本质。因此,我们可以用集合语言来更确切地刻画函数。

(注)

"f" 出自英语 单词 function (函数). 定义 设集合 A 是一个非空的实数集,对 A 内任意实数x,按 照确定的法则 f,都有惟一确定的实数值 y 与它对应,则这种对应 关系叫做集合 A 上的一个函数,记作

$$y = f(x), x \in A$$

其中 x 叫做自变量,自变量取值的范围 (数集 A) 叫做这个函数的 定义域。

如果自变量取值a,则由法则 f 确定的值y 称为函数在a 处的函数值,记作

$$y=f(a)$$
 \overrightarrow{y} $y|_{x=a}$.

所有函数值构成的集合

$$\{y|y=f(x), x\in A\}$$

叫做这个函数的值域.

函数 y = f(x)也经常写作函数 f 或函数 f(x).

因为函数的值域被函数的定义域和对应法则完全确定,所以确 定一个函数就只需两个要素;定义域和对应法则.

根据以上定义,我们要检验给定两个变量之间是否具有函数关系,只要检验:

- (1) 定义域和对应法则是否给出;
- (2) 根据给出的对应法则,自变量 x 在其定义域中的 每一个值,是否都能确定惟一的函数值 y.

可结合课件 1201 研究函数的定义城。 在函数关系式中,函数的定义域有时可以省略,这时就约定这 个函数的定义域是使得这个函数有意义的实数的全体构成的集合。 例如,函数

$$y = \frac{\sqrt{x+3}}{x}$$

没有指出它的定义城,则它的定义城是 $x \ge -3$,并且 $x \ne 0$ 的全体 实数,即 $\{x \in \mathbb{R} | x \ge -3, x \ne 0\}$.

在实际问题中,定义域要受到实际意义的制约.

函数的定义域和值域通常用区间表示,下面介绍区间的概念.设 $a, b \in \mathbf{R}$,且a < b.

満足 $a \le x \le b$ 的全体实数x的集合,叫做闭区间,记作[a, b] (图 2-5(1));

满足a < x < b的全体实数x的集合,叫做开区间,记作(a, b)(图 2-5(2));

图 2-5

满足 $a \le x \le b$ 或 $a \le x \le b$ 的全体实数 x 的集合,都叫做半开半 闭区间,分别记作[a, b)或(a, b](图 2-5(3)、(4));

分别满足 $x \ge a$, $x \ge a$, $x \le a$, $x \le a$ 的全体实数的集合分别记作[a, $+\infty$), (a, $+\infty$), ($-\infty$, a], ($-\infty$, a)(图 2-5(5), (6), (7), (8)).

a 与 b 叫做区间的端点, 在数轴上表示区间时, 属于这个区间 端点的实数, 用实心点表示, 不属于这个区间端点的实数, 用空心 占表示.

实数集 \mathbf{R} , 也可用区间 $(-\infty, +\infty)$ 表示,符号" $+\infty$ "读作"正无穷大"," $-\infty$ "读作"负无穷大".

ØD 求函数
$$f(x) = \frac{1}{\sqrt{x+1}}$$
的定义域.

解:要使已知函数有意义,当且仅当x+1>0. 所以,这个函数的定义域是x>-1的所有实数,即 $(-1,+\infty)$.

例2 求函数
$$f(x) = \frac{1}{x^2 + 1}$$
, $x \in \mathbb{R}$, 在 $x = 0$, 1, 2 处的函数值和值域.

$$\mathbf{m}: f(0) = \frac{1}{0^2 + 1} = 1, \ f(1) = \frac{1}{1^2 + 1} = \frac{1}{2}, \ f(2) = \frac{1}{2^2 + 1} = \frac{1}{5}.$$

容易看出,这个函数当 x=0 时,函数取得最大值,当自变量 x逐渐变大时,函数值趋向于零,但永远不会等于 0. 于是可知这 个函数的值域为集合

$$\left\{ y \middle| y = \frac{1}{x^2 + 1}, x \in \mathbb{R} \right\} = (0, 1].$$

- 例3 (1) 已知函数 $f(x)=x^2$, 求 f(x-1);
 - (2) 已知函数 $f(x-1)=x^2$, 求 f(x).

分析: (1) 函数 $f(x)=x^2$, 即 $x\to x^2$, 表示自变量通过"平方 运算"得到它的函数值,与我们选择什么符号表达自变量没有关系. 函数 $v \rightarrow v^2$, $t \rightarrow t^2$, $u \rightarrow u^2$, …都表示同一个函数关系. 同样自变量 换为一个代数式,如x-1,平方后对应的函数值就是 $(x-1)^2$. 这 里 f(x-1)表示自变量变换后得到的新函数.

(2) 为了找出函数 y = f(x)的对应法则,我们需要用 x-1来 表示 x2.

$$\Re$$
: (1) $f(x-1)=(x-1)^2=x^2-2x+1$;

(2) 因为 $f(x-1)=x^2=(x-1)^2+2(x-1)+1$. 所以 $f(t) = t^2 + 2t + 1$.

 $f(x)=x^2+2x+1$.

在例 3 的解(2)中, 我们用"凑"的方法把等式右边的 式子用自变量t=x-1来表示,这样容易帮助你理解函数符 号的意义,事实上,解这一类问题的一般方法叫做换元法, 即在函数表达式中, 今t=x-1, 得出 f(t)的表达式, 试用 换元法解例 3(2).

1. 试用语言叙述由下列公式确定的函数关系:

- (1) S=πr2, 其中r表示圆的半径, S表示圆的面积:
 - (2) s=so+vt, 其中 s 表示物体运动的距离, t 表示运动的时间, so 表示初始距 离, v表示速度常数;
- (3) W=PR, W表示电路消耗的功率, I表示电路中的电流量, R 为固定的电阻值.
- 2. 举例说明两个变量之间的依赖关系.

- 3. 已知函数 $f(x)=1-x^2$, 求 f(0), f(-2), f(15).
- 4. 求下列函数的定义城:
 - (1) $f(x) = \frac{1}{x-5}$;
- (2) $f(x) = \sqrt{x-1} + \sqrt{x+3}$:
- (3) $f(x) = \sqrt{2x-3} + \sqrt{7-x}$;
- (4) $f(x) = \sqrt{x} \sqrt{-x}$
- 5. 已知函数 $f(x)=2x^2$, 求 f(-x), f(1+x).

- 一列火车从 A 站开出 5 km 后,以平均每小时 110 km 的速度行驶,8 小时后到 达 B 站,试用路程 s 和时间 t 表示火车开出 5 km 后的运动规律。
- 2. 如图,一灌溉渠的横断面是等腰梯形,底宽2m,边坡的倾角为45°,渠深1.8m,设水渠的横断面内有水的断面的面积为A(m²),水深为h(m),试问A如何随h的变化而变化?求出这两个变量之间的函数关系式。

- 3. 下列各题中的对应法则,是否给出了实数集 R上的一个函数:
 - (1) f: 把 x 对应到 3x+1;
- (2) g: 把 x 对应到 |x|+1;

(3) h: 把 x 对应到 $\frac{1}{x}$;

- (4) r: 把 x 对应到√x.
- 4. 已知 $f(x+1)=x^2$, 求 f(x).
- 闰年的一年中,月份构成的集合为A,每月天数构成的集合为B. f为月份与这个月天数的对应法则,求f(1)、f(2)、f(7)、f(8)、f(11).

2. 映射与函数

在现实生活和科学研究中,不仅是数集之间存在着某种对应关系,很多集合之间也存在着某种对应关系.下面看几个例子;

某个数学学习小组共有五个成员,一次数学测试,他们各自取得的成绩(分)如下表所示:

姓名	李小平	高英木	田萍萍	范江	鲁智
成绩(分)	100	98	89	95	98

五名同学构成一个集合,通过这次数学测试,每一名同学对应

图 2-7

一个数学成绩,这些成绩可构成另一集合.

例5 数轴上的点集与实数集 R, 通过法则(图 2-6):

数轴上任一点 P,对应惟一实数 x,使 |x| 等于点 P 到原点 O 的 距离。当点 P 在数轴的正半轴上时,取 x>0;当点 P 在数轴的负半轴上时,取 x<0;当 P 为数轴的原点时,取 x=0。 在这两个集合的元素之间建立起一个对应关系。

例 如图 2-7 所示,直角坐标平面内的点 P 的全体构成的 集合,与有序实数对(x,y)全体构成的集合之间,通过法则;

点 P 在x 轴上的正射影的坐标为点 P 的横坐标x, 在y 轴上正射影的坐标为点 P 的纵坐标y, 点 P 的坐标为有序实数对(x, y). 在这两个集合的元素之间建立起一个对应关系.

为了研究两个集合的对应关系,我们引入映射的概念.

定义 设 A、B 是两个非空集合,如果按照某种对应法则 f,对 A 内任意一个元素 x ,在 B 中有一个且仅有一个元素 y 与 x 对 应,则称 f 是集合 A 到集合 B 的映射。这时,称 y 是 x 在映射 f 的作用下的 \hat{y} ,记作 f(x). 于是

$$y = f(x)$$
,

x称做y的原象. 映射 f 也可记为:

$$f: A \rightarrow B,$$

 $x \rightarrow f(x).$

其中 A 叫做映射 f 的定义域(函数定义域的推广),由所有象 f(x) 构成的集合叫做映射 f 的值域,通常记作 f(A).

由以上定义,我们可以看到,上面考查的三个例子都是一个集 合到另一个集合的映射,

例 4 是 "5 名同学构成的集合"到他们相应的"测试成绩构成的 集合"的映射。

例 5 是"数轴上的点集"到"实数集 R"的映射.

例 6 是"直角坐标平面内的点集"到"实数对(x, y)集合"的映射。

如果映射 f 是集合 A 到集合 B 的映射,并且对于集合 B 中的 任一元素,在集合 A 中都有且只有一个原象,这时我们说这两个 集合的元素之间存在——对应关系,并称这个映射叫做从集合 A到集合 B 的——映射。

容易看出,例5、例6都是——映射.在引人映射概念后,我 们再来看两个变量之间的函数关系. 对定义域内每个自变量的值,根据确定的法则对应惟一的函数 值,函数值也在一个数集内变化.于是函数也就是数集到数集的映 射,例如,

一次函数

$y=kx+b \ (k\neq 0)$

就是在对应法则 y=kx+b $(k\neq 0)$ 的作用下,实数集 R 到实数集 R 的映射,映射的定义域是 R,值域也是 R.

二次函数

$$y=x^2$$

就是在对应法则 $y=x^2$ 的作用下,实数集 R 到非负实数集的映射. 映射的定义域是实数集 R,值域是非负实数集.

由上述分析可以看出,映射是函数概念的推广,函数是一种特殊的映射.

函数是数学中的一个基础概念,随着它在数学中的广泛 应用,它的含义也在不断地扩展。在初中,我们把函数理解 为两个变量之间的依赖关系,前面我们用集合语言刻画函 数,现在又可把它理解为数集到数集的映射。随着学习的深 入,我们还会不断地加深对函数概念的理解。

例7 在图 2-8 中,图(1)、(2)、(3)用箭头所标明的 A 中元素与B 中元素的对应法则,是不是映射?是不是函数关系?

图 2-8

解:在图(1)中,集合 A 中任一个数,通过"开平方"运算, 在 B 中有两个数与之对应,这种对应法则不符合上述的映射定义, 所以这种对应关系不是映射,当然也不是函数关系.

在图(2)中,元素 6 在 B 中没有象;所以这种对应关系不是映射,当然也不是函数关系.

在图(3)中,对A中任一个数,通过"2倍"的运算,在B中有 且只有一个数与之对应,所以这种对应法则是数集到数集的映射, 并且是——映射. 这两个数集之间的关系是集合 A 上的函数关系. 在图(4)中的平方运算法则,同样是映射,因为对 A 中每一个数,通过平方运算,在 B 中都有惟一的一个数与之对应,但不是一一映射. 这两个数集之间的关系是集合 A 上的函数关系. 从上例我们可以看到;

集合 A 到集合 B 上的映射或函数,允许多个元素对应一个元素,而不允许一个元素对应多个元素.

- 1. 在下列各題中,哪些对应法则是集合 A 到 B 的映射?哪些不是?
 - (1) A={0, 1, 2, 3}, B={1, 2, 3, 4}, 对应法则 f: "加1":
 - (2) A=R+, B=R, 对应法则 f: "求平方根";
 - (3) A=N, B=N, 对应法则 f: "3倍";
 - (4) A=R, B=R, 对应法则 f: "求绝对值";
 - (5) A=R, B=R, 对应法则 f: "求例数".
- 2. 已知函数 $f: \mathbb{R} \rightarrow \mathbb{R}, x \rightarrow 3x-5$.
 - (1) x=2, 5, 8 f(2), f(5), f(8);
 - (2) 求 f(x)=35, 47 时的原象.
- 3. 已知映射 f: R→R+, x→x²+1.
 - (1) x=-3, -2, 0, 2, 3 时的象;
 - (2) 求 f(x)=10,5,1 时的原象.

- 1. 举生活中两个有关映射的实例,
- 已知 f 是集合A 上的任一个映射, 试问在值域 f(A)中的任一个元素的原象, 是 否都是惟一的? 为什么?
- 3. 在下列各题中, 对应法则 f 是否都是集合 A 到集合 B 上的映射? 为什么?

- (1) A=(30°, 45°, 60°), B=(非负实数), 对应法则 f: "求正弦值";
- (2) A={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}, B={28, 29, 30, 31}, 对应法则 f: "非冈年时, 月份对应这个月的天教";
- (3) A=R, B={-1, 0, 1}; 对应法则

 $f: "x \in A, 若x < 0, 对应于 -1; 若x = 0, 对应于 0; 若x > 0, 对应于 1".$

- 4. 已知集合 $A = \{a, b\}$, $B = \{-1, 0, 1\}$, 从集合 A 到集合 B 的映射可能有几种?写出这些映射。
- 已知集合 A={x, y}, B={0, 1}. 构造从集合 A 到集合 B 的映射, 试问能构造 出多少种映射? 其中有多少是一一映射?

3. 用 Scilab 语言求函数值的方法(选学)

Scilab 语言在书后附录中有简单的介绍. 有计算机的同学可以 自学. 有条件的学校可进行适当的教学.

已知函数的表达式,用 Scilab 语言求函数值的步骤为:

- (1) 在函数的定义域内给变量 x 赋值(取值);
- (2) 给定函数表达式;
- (3) 计算函数值,并在屏幕上输出.

例如,已知函数 $y=x^2+3x-1$,求 f(3.1).

在 Scilab 工作界面的命令行输人 ("//"及后面的文字不需要输入):

-->x=3.1;

// 给变量 x 赋值, 按 "enter" 键 确认.

--> y=x2+3*x-1 //给定函数表达式,按 "enter" 键 确认并计算 f(3.1).

y=

17.91

//输出显示函数值

上面的计算步骤,实际上是对计算机发出的一串指令,让计算机去计算(每条指令都能给出惟一的结果). 用 Scilab 语言计算函数值是十分简单的事. 如果你要计算较为复杂的函数值或对自己计算的结果没有把握,不妨让 Scilab 帮你计算或验证. 计算机之所以能按你输入的函数和自变量的值计算出函数值,是因为软件工程师已为一些常用函数编写了算法程序. 什么是算法? 请看本册 2.4.2 节的二分法和数学 3 的算法初步一章.

计算机上的练习

- 1. 已知函数 $f(x)=x^3-3x^2+2x-5$, 求 f(-3), f(-1.5), f(3.8).
- 2. 已知函数 $f(x) = \frac{x+1}{x^2-2x-3}$, 求 f(-1.5), f(1.2), f(2.1).

2.1.2 函数的表示方法

1. 函数的表示方法

如何表示一个函数呢? 我们已经看到,一个函数 y=f(x) 除直接用自然语言来表述外,常用的方法还有列表法、解析法和图象法三种. 下面对函数的这三种表示方法作一小结,并举例说明如何用这三种方法来表达函数.

列表法

通过列出自变量与对应函数值的表来表达函数关系的方法叫做 列表法.

例如,新中国成立后共进行了五次人口普查,各次普查得到的 人口数据 $^{\circ}$ 如下表所示。这张表清楚地表达了年份与当年普查总人 口(单位: 亿)的函数关系。从这张表,我们可从年份查出当年普查 的人口总数。

年 份	1953	1964	1982	1990	2000
总人口数(亿)	5. 9	6.9	10.1	11.3	12.7

从这张表中,我们能清楚地看出这个函数的

定义域为 {1953, 1964, 1982, 1990, 2000},

值域为 {5.9, 6.9, 10.1, 11.3, 12.7}.

图象法

用图象表达函数关系,同学们在初中已很熟悉了,这里我们用 集合语言对函数的图象概念进行较精确完整的描述.

我们知道,对于函数 $y=f(x)(x\in A)$,定义域内每一个x值都有惟一的y值与它对应.把这两个对应的数构成的有序实数对

① 表中人口数据来源于《2002年中国统计年鉴》。其中未包括香港、澳门特别行政区及台湾省数据。

(x, y)作为点 P 的坐标,记作P(x, y),则所有这些点的集合 F 叫做函数 y = f(x)的图象,即

$$F = \{ P(x, y) | y = f(x), x \in A \}.$$

图 2-9

这就是说,如果 F 是函数 y=f(x) 的图象,则图象上的任一点的坐标 (x, y) 都满足函数关系 y=f(x); 反之满足函数关系 y=f(x)的点 (x, y) 都在图象 F 上.

这种用"图形"表示函数的方法叫做图象法,如图 2-9.

从列表法和图象法可以看到,函数也可以说就是一张表或一张 图,根据这张表或这张图,由自变量 x 的值可查找到和它对应的惟 一的函数值 v.

9 思考与讨论

如何检验一个图形是否是一个函数的图象?写 出你的检验法则,图 2-10 所示的各图形都是函数的图 象吗?哪些是,哪些不是,为什么?

图 2-10

解析法

如果在函数 $y=f(x)(x\in A)$ 中,f(x)是用代数式(或解析式)来表达的,则这种表达函数的方法叫做解析法(也称为公式法).

如

$$y=3x+2$$
, $y=x^2$, $y=\sqrt{x}$, $y=\frac{x-1}{x+1}$, ..., $\frac{x}{2}$

下面举例说明这三种表示方法的运用.

例 作函数 $y=\sqrt{x}$ 的图象.

分析: 已知函数的定义域是[0,+∞), 在直角坐标系中, 由函数 $y=\sqrt{x}$ 所确定的有序实数对有无限多个. 可以想象, 当自变量在

区间 $[0, +\infty)$ 上从0开始无限增大时,点(x, y)会形成一条连续不断的曲线。我们不可能作出一个定义在无穷区间内的图象,只能画出它在有限区间上的图象。也不可能作出函数图象上的无限多个点,但可以画出有限个坐标为(x, y)的点。现在的问题是,如何选取x值,通过描点、连线较准确地画出这个函数的图象。

解: 在这个函数的定义域内, 从 0 开始适当地取若干个 x 的值: 0, 0. 5, 1, 1. 5, 2, 2. 5, 3, 3. 5, 4, 4. 5, 5, …

算出对应的函数值,列出函数的对应值表(精确到0.1);

x	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	
		0.7										

在直角坐标系中画出这 11 个数对所对应的 11 个点,由这些点连成的—条光滑曲线就是函数 $y=\sqrt{x}$ 的图象(图 2-11).

应当指出,如果计算出更多的函数对应值,就可作出函数图象 上更多的点,从而使得作出的函数图象更准确,但工作量也将随着 增大.如果你用计算机作图,即使作出成千上万个点,也并非难 事,下一节将向大家介绍计算机的作图功能.

函数的图象能够帮助我们全面了解函数的性质. 特别是我们可 以使用计算机技术,根据公式和数据作出函数的图象,使得我们很 容易通过函数的图象发现并研究函数的性质.

"教形结合"是我们今后研究函数的重要方法,画函数 的图象是学数学必须掌握的一个重要技能。同学们在学习 中要养成画图的习惯,并会利用函数的图象来理解函数的 性质。

(例2) 设 x 是任意的一个实数, y 是不超过 x 的最大整数, 试问 x 和 y 之间是否是函数关系?如果是,写出这个函数的解析 式,并画出这个函数的图象。

解: 对每一个实数 x, 都能够写成等式: $x=y+\alpha$, 其中 y 是整数, α 是一个小于 1 的非负数。例如,

6. 48=6+0. 48, 6=6+0, π=3+0. 141 592····, -1. 35=-2+0. 65, -12. 52=-13+0. 48, ···.

图 2-11

由此可以看到,对于任一个实数x,都有惟一确定的y值与它对应,所以说x和y之间是函数关系。这个函数的定义域是实数集R、这个"不超过x的最大整数"所确定的函数通常记为

$$y = [x].$$

例 2 中的函数 通常称作取整函数。

例3 已知函数

已知函数 $y = \begin{cases} f(0) = 1 \\ f(n) = nf(n-1) \end{cases}$ $n \in \mathbb{N}_+$

求 f(0), f(1), f(2), f(3), f(4), f(5).

分析:这个函数用两个等式定义,第一个等式首先给出自变量的 初始值对应的函数值,然后由这个函数值用第二个等式依次递推地 计算下一个函数值.

$$\mathbf{m}$$
; $f(0)=1$,
 $f(1)=1 \cdot f(1-1)=1 \cdot f(0)=1$,
 $f(2)=2 \cdot f(2-1)=2 \cdot f(1)=2 \cdot 1=2$,
 $f(3)=3 \cdot f(3-1)=3 \cdot f(2)=3 \cdot 2 \cdot 1=6$,
 $f(4)=4 \cdot f(4-1)=4 \cdot f(3)=4 \cdot 3 \cdot 2 \cdot 1=24$,

 $f(5)=5 \cdot f(5-1)=5 \cdot f(4)=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=120.$

例3中的函数定义所用到的运算,通常叫做递归运算。 这种定义函数的方法在计算机语言中经常使用。

练习A

- 1. 作函数 y = f(x) = 100, $x \in \mathbf{R}$ (这类函数通常称做常值函数)的图象,并求 f(-10), f(0), f(1000).
- 2. 在同一坐标系中,作出下列一次函数的图象:
 - (1) v = x:
- (2) y=x+5:
- (3) y = -2x;
- (4) y = -2x + 5.

3. 已知函数 $y = \begin{cases} f(1) = 8 \\ f(n+1) = f(n) + 7 \end{cases}$ $n \in \mathbb{N}_+$

求 f(2), f(3), f(4).

- 4. 已知自变量 x 与因变量 y 之间有下列关系,写出函数表达式,并作出各函数的图象:
 - (1) 3x+5y=15;

- (2) $x = \frac{y+2}{y-5}$.
- 某商店有游戏机12台,每台售价200元,试求售出台数与收款总数之间的函数 关系(用解析法表示),并作出函数的图象。
- 6. 下列各图,哪些是以 x 为自变量的函数的图象:

(第6期

练习

- 1. 作下列函数的图象:
 - (1) $y = -x^3$; (3) $y = \frac{1}{x^2 + 1}$;

- (2) $y = \sqrt{x+3}$;
- $=\frac{1}{x^2+1};$ (4) $y=\frac{x+3}{x-1}.$
- 2. 在同一坐标系中分别作下列各组中函数的图象:
 - (1) $y=2x^2$, $y=x^2$, $y=0.5x^2$, $y=-0.5x^2$;

- 3. 作函数 $y=x(6-x)^2$, $x \in [0, 6]$ 的图象.
- 4. 作出下列函数的图象:

(1)
$$y=x^3$$
;
(3) $y=\frac{1}{r-1}$;

(2)
$$y=(x-2)^2$$
;

(4)
$$y = \frac{1}{(r-1)^2}$$
.

5. 已知
$$f(x)=[x+1]$$
, 求 $f(3.2)$, $f(-5.1)$, $f(-4.8)$, $f(7.2)$.

6. 已知函数
$$y = \begin{cases} f(1) = 2 \\ f(n+1) = 3f(n) \end{cases}$$
, 求 $f(2)$, $f(3)$, $f(4)$, $f(5)$.

2. 分段函数

下面我们通过具体实例,了解简单的分段函数及其简单应用.

⑤1 已知一个函数 y = f(x) 的定义域为区间[0, 2], 当 $x \in [0, 1]$ 时, 对应法则为 y = x, 当 $x \in (1, 2]$ 时, 对应法则为 y = 2 - x, 试用解析法与图象法分别表示这个函数.

解,已知的函数用解析法可表示为

$$y = \begin{cases} x & x \in [0, 1] \\ 2 - x & x \in (1, 2] \end{cases}$$

用图象表达这个函数,它由两条线段组成,如图 2-13 所示.

像例 4 这样的函数,在函数的定义域内,对于自变量 x 的不同 取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.

例 在国内投寄外埠平信,每封信不超过 20 g付邮资 80 分,超过 20 g不超过 40 g付邮资 160 分,超过 40 g不超过 60 g付邮资 240 分,依此类推,每封 x g (0<x≤100)的信应付多少分邮资(单位:分)?写出函数的表达式,作出函数的图象,并求函数的值域.

函数的值域。 解: 设每封信的邮资为 y, 则 y 是信封重量 x 的函数. 这个函数 关系的表达式为

$$f(x) = \begin{cases} 80 & x \in (0, 20] \\ 160 & x \in (20, 40] \\ 240 & x \in (40, 60] \\ 320 & x \in (60, 80] \\ 400 & x \in (80, 100] \end{cases}$$

函数的值域为{80, 160, 240, 320, 400}.

图 2-13

根据上述函数的表达式,在直角坐标系中描点,作图,这个函数的图象如图 2-14 所示.

函数 y=[x]的图象是由一些高低不同的水平线段所组成,形状上像个阶梯,这一类分段函数通常叫做阶梯函数,分段函数或阶梯函数在数学和实际问题中有着广泛的应用,同学们要学会分段函数的表达方法.

- 1. 写出下列函数的解析表达式并作出函数的图象.
 - (1) 设函数 y=f(x), 当 x<0 时, f(x)等于 0; 当 x>0 时, f(x)等于 2;
 - (2) 设函数 y=f(x), 当 $x \le -1$ 时, f(x)=x+1; 当 -1 < x < 1 时, f(x)=0; 当 $x \ge 1$ 时, f(x)=x-1.
- 2. 把下列函数分区间表达,并作出函数的图象:
 - (1) y = |x|;
- (2) y=|x-1|;
- (3) y = |x+1|.
- 3. 某市的空调公共汽车的票价制定的规则是:
 - (1) 乘坐 5 km 以内, 票价 2元;
 - (2) 5 km 以上, 每增加 5 km, 票价增加 1元 (不是 5 km 的按 5 km 计算). 已知两个相邻的公共汽车站之间相距约 1 km, 如果沿途 (包括起点站和终点
 - 站) 设 20 个汽车站, 请根据题意写出票价与里程之间的函数解析式, 并作出函数的图象.

1. 作函数
$$y=f(x)=\begin{cases} -x & -1 < x < 0 \\ x^2 & 0 \le x < 1 \\ x & 1 \le x \le 2 \end{cases}$$

的图象, 求 f(-8), $f(\frac{1}{2})$, $f(\frac{3}{2})$.

- 2. 把下列函数分区间表达,并作出函数的图象
 - (1) f(x)=5-|x|;
- (2) f(x) = -5 + |x|.

2.1.3 函数的单调性

考察函数 y=2x, y=-2x, $y=x^2+$ 的图象 (图 2-15):

图 2-15

10)

可结合课件 1205 研究函数的增、减 性质, 我们可以看到,当自变量在实数集内由小变大时,函数 y=2x 的值 也随着逐渐增大,函数 y=-2x的值反而减小,而函数 $y=x^2+1$,在区间($-\infty$, 0]上,它的函数值逐渐减小,在区间[0, $+\infty$)上又逐渐增大。为了刻画函数的这种增、减性质,我们引入增函数和减函数的概念。

在函数 y = f(x) 的图象上任取两点 $A(x_1, y_1)$ 、 $B(x_2, y_2)$, 记

$$\Delta x = x_2 - x_1$$
, $\Delta y = f(x_2) - f(x_1) = y_2 - y_1$.

 Δx 表示自变量 x 的改变量, Δy 表示因变量 y 的改变量,其中 " $\Delta "$ 为希腊字母,读作 "delta".

图 2-16

图 2-17

一般地,设函数 y=f(x)的定义域为 A,区间 $M\subseteq A$.

如果取区间M中的任意两个值 x_1, x_2 ,

当改变量 $\Delta x = x_2 - x_1 > 0$ 时,有 $\Delta y = f(x_2) - f(x_1) > 0$,那 么就称函数 y = f(x) 在区间 M 上是增函数,如图 2-16(1);

当改变量 $\Delta x = x_2 - x_1 > 0$ 时,有 $\Delta y = f(x_2) - f(x_1) < 0$,那 么就称函数 y = f(x) 在区间 $M \vdash B 減函數$,如图 2-16(2).

如果一个函数在某个区间M上是增函数或是减函数,就说这个函数在这个区间M上具有单调性(区间M称为单调区间).

⑥ 证明函数 f(x) = 2x + 1, 在 $(-\infty, +\infty)$ 上是增函数.

分析: 画出这个一次函数的图象(图 2-17),直观上很容易看出函数值随着自变量增大而增大. 下面根据定义进行证明. 同学们可根据图象理解每一步证明的几何意义.

证明:设 x_1 、 x_2 是任意两个不相等的实数,且 x_1 < x_2 ,则

$$\Delta x = x_2 - x_1 > 0$$
,

$$\Delta y = f(x_2) - f(x_1) = 2x_2 + 1 - (2x_1 + 1)$$

= 2(x_2 - x_1) = 2\Delta x > 0.

所以函数 f(x)=2x+1 在 $(-\infty, +\infty)$ 上是增函数.

⑨2 证明函数 $f(x) = \frac{1}{x}$, 在区间 $(-\infty, 0)$ 和 $(0, +\infty)$ 上分别都是减函数.

证明: 设 x_1 、 x_2 是($-\infty$, 0)内的任意两个不相等的负实数,且 $x_1 < x_2$,则

$$\Delta x = x_2 - x_1 > 0$$

$$\Delta y = f(x_2) - f(x_1) = \frac{1}{x_2} - \frac{1}{x_1} = \frac{x_1 - x_2}{x_1 x_2}$$

因为 $x_1-x_2=-\Delta x<0$, $x_1x_2>0$,

所以 Δy<0,

所以 $f(x) = \frac{1}{x}$ 在区间 $(-\infty, 0)$ 上是减函数.

同理,对区间 $(0, +\infty)$ 内的任意两个不相等的正实数 $x_1, x_2,$ 且 $x_1 < x_2,$ 同样有

$$\Delta y = f(x_2) - f(x_1) < 0$$

所以 $f(x) = \frac{1}{x}$ 在区间 $(0, +\infty)$ 上也是减函数.

函数的图象如图 2-18 所示.

图 2-18

函数值的改变量与自变量改变量的比

$$\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1}$$

叫做函数 y=f(x)从 x_1 到 x_2 之间的平均变化率.

研究一个函数在某区间上是增函数还是减函数时,你能否根据函数的平均变化率,即比值 $\frac{\Delta y}{\Delta x}$ 的符号来判断函数 y=f(x)在某区间上是增函数还是减函数?比值 $\frac{\Delta y}{\Delta x}$ 的大小与函数值增长的快慢有什么关系?

如图, 巴知函数 y=f(x), y=g(x)的 图象(包括端点), 根据图象说出函数 的单调区间,以及在每一个区间上, 函数是增函数还是减函数。

- 2. 能否说, 函数 $f(x) = \frac{1}{x}$ 在实数集上是
 - 减函数? 1个四点形像的100~~~

(第1題)

- 3. 求证函数 $f(x)=-x^2$ 在 $(-\infty,0)$ 上是增函数,在 $(0,+\infty)$ 上是减函数.
- 4. 判断函数 $y=\sqrt{x}$ 在区间 $[0,+\infty)$ 上的单调性, 并证明你的结论.

练习B

- 1. 如果函数 y=f(x)是 R上的增函数,求证 k>0 时, kf(x)在 R上也是增函数.
- 2. 研究下列函数的单调区间并分别画出它们的图象:
 - (1) y = |x| 1;
- (2) y = |x-1|;

(3) $y = \frac{1}{x-2}$;

(4) $y = \frac{1}{\sqrt{x}}$

2.1.4 函数的奇偶性

我们考察函数

$$f(x) = \frac{1}{4}x^3$$
, $g(x) = x^2$

在 x 和 - x 处的函数值:

$$f(x) = \frac{1}{4}x^3$$
, $f(-x) = \frac{1}{4}(-x)^3 = -\frac{1}{4}x^3$.
 $g(x) = x^2$, $g(-x) = (-x)^2 = x^2$.

我们发现,函数 f(x)对两个互为相反数的自变量 x 和一x,它们的函数值也是互为相反数,即

$$f(-x) = -f(x)$$
.

而函数 g(x)在 x 处的函数值与在-x 处的函数值相等。即

$$g(-x)=g(x)$$
.

由这两个例子,我们引出奇函数和偶函数的定义.

奇函数 设函数 y=f(x)的定义域为 D,如果对 D内的任意一个x,都有 $-x\in D$,且

$$f(-x) = -f(x)$$
,

则这个函数叫做奇函数.

偶函数 设函数 y=g(x)的定义域为 D, 如果对 D内的任意一个x, 都有 $-x\in D$, 目

$$g(-x)=g(x)$$
,

则这个函数叫做偶函数.

考察奇函数 y=f(x)的图象(图 2-19), 依奇函数的定义可知,

点
$$P(x, f(x))$$
 与点 $P'(-x, -f(x))$

都在这个奇函数的图象上. 直观上容易发现, 点 P 绕原点 O 旋转 180° 后与点 P'重合. 这说明这两点关于坐标原点对称, 所以它的图象关于坐标原点对称; 反之亦然. 于是我们得到;

如果一个函数是奇函数,则这个函数的图象是以坐标原点为对 称中心的中心对称图形,反之,如果一个函数的图象是以坐标原点 为对称中心的中心对称图形,则这个函数是奇函数,

再考察偶函数 y=g(x)的图象(图 2-20), 依偶函数的定义 可知,

图 2-20

点
$$(x,g(x))$$
与点 $(-x,g(-x))$

都在这个偶函数的图象上,这两点关于 y 轴对称; 反之,如果函数 y=g(x)的图象关于 y 轴对称,则 g(x)=g(-x), g 是偶函数.于 是可以得到:

如果一个函数是偶函数,则它的图象是以 y 轴为对称轴的轴对 称图形: 反之,如果一个函数的图象关于 y 轴对称,则这个函数是 偶函数.

研究函数的奇偶性对了解函数的性质非常重要,如果 我们知道一个函数是奇函数或偶函数,则只要把这个函数 的定义城分成关于坐标原点对称的两部分,得出函数在其 中一部分上的性质和图象,就可得出这个函数在另一部分 上的性质和图象。

例 判断下列函数是否具有奇偶性:

(1) $f(x) = x + x^3 + x^5$ (2) $f(x) = x^2 + 1$;

(3) f(x)=x+1; (4) $f(x)=x^2$, $x \in [-1, 3]$.

解: (1) 函数 $f(x) = x + x^3 + x^5$ 的定义域为 R, 当 $x \in \mathbb{R}$ \mathbb{H} , $-x \in \mathbb{R}$,

因为 $f(-x) = -x - x^3 - x^5 = -(x + x^3 + x^5) = -f(x)$,

所以 函数 $f(x)=x+x^3+x^5$ 是奇函数.

(2) 因为 $f(-x)=(-x)^2+1=x^2+1=f(x)$,

所以 $f(x)=x^2+1$ 是偶函数.

(3) 函数 f(x)=x+1 的定义域是 R, 当 $x \in R$ 时, $-x \in R$,

因为 f(-x)=-x+1=-(x-1), -f(x)=-(x+1),

所以 $f(-x)\neq -f(x)$, $f(-x)\neq f(x)$.

所以 f(x)=x+1 既不是奇函数也不是偶函数.

(4) 因为函数的定义域关于原点不对称,存在 $3 \in [-1, 3]$, $\overline{m}-3\notin \lceil -1, 3 \rceil$,

所以 $f(x)=x^2, x \in [-1, 3]$ 既不是奇函数也不是偶函数.

在奇函数与偶函数的定义中, 都要求 $x \in D$, $-x \in D$, 这就是说,一个函数不论是奇函数还是偶函数,它的定义域 都一定关于坐标原点对称, 如果一个函数的定义域关于坐标 原点不对称, 那么这个函数就失去了是奇函数或是偶函数的 前提条件,即这个函数既不是奇函数也不是偶函数,

研究函数 $y=\frac{1}{2}$ 的性质并作出它图象.

解:已知函数的定义域是 $x\neq 0$ 的实数集,即 $\{x\in \mathbb{R} | x\neq 0\}$

由函数的解析式可以推知,对任意的x值,对应的函数值y>0, 函数的图象在x轴的上方;并且函数的图象在x=0处断开,函 数的图象被分为两部分,且 f(-x)=f(x),这个函数为偶函数. 当 x 的绝对值变小时, 函数值增大得非常快, 当 x 的绝对值变大 时,函数的图象向 x 轴的两个方向上靠近 x 轴,由以上分析,以 x=0 为中心,在x 轴的两个方向上对称地选取若干个自变量的 值, 计算出对应的 y 值, 列出 x, y 的对应值表:

x	 -3	-2	-1	$-\frac{1}{2}$	 0	 $\frac{1}{2}$	1	2	3	
у	 $\frac{1}{9}$	$\frac{1}{4}$	1	4	 不存在	 4	1	$\frac{1}{4}$	$\frac{1}{9}$	

在直角坐标系中,描点、连成光滑曲线,就得到这个函数的图 象,如图 2-21 所示。由图象可以看出,这个函数在(一∞,0)是增 函数, $在(0, +\infty)$ 是减函数.

1. 判断下列函数是否具有奇偶性:

(1) $f(x) = x + x^3$:

(2) $f(x) = -x^2$;

(3) $h(x) = x^3 + 1$:

- (4) $k(x) = \frac{1}{x^2 + 1}, x \in [-1, 2];$
- (5) f(x)=(x+1)(x-1);
- (6) g(x) = x(x+1):

(7) $h(x) = x + \sqrt[3]{x}$:

(8) $k(x) = \frac{1}{x^2 - 1}$.

- 2. 判断下列论断是否正确:
- (1) 如果一个函数的定义城关于坐标原点对称,则这个函数为奇函数;
 - (2) 如果一个函数为偶函数,则它的定义域关于坐标原点对称;
- (3) 如果一个函数的定义城关于坐标原点对称,则这个函数为偶函数;
 - (4) 如果一个函数的图象关于 y 轴对称,则这个函数为偶函数.

练习B

- 1. 如果 $f(0)=a\neq 0$, 函数 f(x) 可以是奇函数吗? 可以是偶函数吗? 为什么?
- 2. 如果函数 f(x)、g(x)为定义城相同的偶函数, 试问 F(x)=f(x)+g(x)是不是偶函数? 是不是奇函数? 为什么?
- 3. 如图,给出了奇函数 y=f(x)的局部图象,求 f(-4).
- 4. 如图,给出了偶函数 y=f(x)的局部图象,试比较 f(1)与f(3)的大小.

2.1.5 用计算机作函数的图象(选学)

打开计算机,你就会从屏幕上看到丰富多彩的计算机图形或动画,这些生动的视觉效果会向你传递各种各样的信息,使你增强对各种信息的记忆和思考. 用图形表示的信息与其它的表示方式相比,生动、直观、并富有想象力.

屏幕上所以能够显示图形,是基于计算机图形技术.由于计算 机技术的迅速发展和普及,计算机的图形技术已广泛地应用到工程 制图、建筑设计、卫星发射、益智游戏、广告和天气预报等各个领域. 现在适用于各行各业的画图软件也都相继开发出来.使用计算 机处理图形要比手工和机械方法快速和精确得多.基于计算机图形 的上述优点,在学习高中数学的过程中,大家应初步掌握用计算机 作图的技能。

如何使用计算机图形技术作函数的图象呢? 下面我们向大家作 一简单的介绍。

我们把显示屏幕想象为一张纸,向计算机依次发出以下指令 (这里先用语言叙述);

- (1) 给自变量 x 赋值:
- (2) 给出计算法则, 求对应的 v 值;
- (3) 由 x 和对应的 y 值组成有序数对集合;
- (4) 建立直角坐标系,并根据有序数对,在直角坐标系中作出 对应的点集;
 - (5) 通过这些点集描出函数的图象,

例如,作函数 $y=x^2$ 的图象.

打开 Scilab2.7,使用 Plot2d()作图命令,依次输入以下指令,并按 Enter 键执行.

-->x=-3:0.5:3; //给x 赋值,由-3 每间隔 0.5 取一个值, --直取到 3. 输入分号 ":", 不显示结果

 $-->y=x^2$: -->[x; y] //给出函数表达式,并计算 y 的值.

//列 x, y 对应值表. 不输入";",显示结果.

!-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3! ! 9 6.25 4 2.25 1 0.25 0 0.25 1 2.25 4 6.25 9! -->plot2d (x, y, style= [-6], strf="045")

//建立坐标系,描点.

style 为描点指令,其参数[-6]

确定点形状,strf="045"使 y 轴居中.

-->xgrid (6) // 在坐标系 -->plot2d (x, y, strf="045")

// 在坐标系中画网格,参数 6 表示画粉红色, rf="045")

//作更多的点画出图象。

函数的图象如图 2-22 所示. 坐标轴刻度自动生成,每次生成 的坐标轴的刻度可能不同.

使用打印机,还可以在纸上打印出上述函数的图象.

以上作图,只要函数的表达式已知,就能画出函数的图象.

同学们可以看到,这里用计算机作函数图象的步骤与我们 用手工和工具作图的程序基本相同.用手工作图,函数图形上 选择的点越多,图画得就越精确.但随着点的增多,工作量也

一 第二章 函 数

会越来越大, 当点转换为用数字(点的坐标)表示后, 让计算机 去计算、画图,100个点、1000个点……或更多,都是很容易 的事.

爱思考的同学可能会问, 计算机是如何根据指令去计算和作图 的呢?要了解其中的原理,还需要更多的数学和编写程序的知识. 这里, 你可把"指令"所做的工作, 当成"圆规、直尺"等画图工 具,至于"圆规、直尺"是如何制造出来的,随着学习的深入,大 家就会逐渐明白其中的奥秘.

使用 Scilab 课件 1203, 按照本节叙述的作图步骤, 作下列函数的图象:

- (1) $y=0.3x^2$;
- (2) $y=x^2-3$;
- (3) $y = \sqrt{x+4}$:
- (4) $y = \sqrt{x^2 + 4}$;
- (5) $y=x^3$;
- (6) $y = -x^3$.

作出下列函数的图象,并研究函数的对称性、增减性:

- (1) $y=x^3+x^2-2x$, $x\in[-4, 4]$; (2) $y=x^3-3x^2-x+3$, $x\in[-3, 5]$;
- (3) $y = \frac{1}{r^4}$;

 $(4) y = \frac{1}{(x-1)^2}.$

习题2-1

1. 根据图中的对应法则,写出 x 的对应值 y:

(第1題)

2. 下列各图中表示的对应法则是不是映射? 为什么?

3. 求下列函数的定义域,

(1) $f(x) = \frac{\sqrt{x+3}}{x-5}$;

(2)
$$f(x) = \frac{\sqrt[3]{4x+8}}{\sqrt{3x-2}}$$
.

- 4. 说明函数 y=kx 在区间 $(-\infty, +\infty)$ 上是否具有单调性,如果有,是增函数还是减函数:
 - (1) 当 k>0 时;

- (2) 当 k<0 时.
- 5. 作出下列函数的图象,并研究它们的单调区间:
 - (1) $f(x)=(x+1)^2+2$:
- (2) $f(x) = -2x^2$;
- (3) $f(x) = \sqrt{x^2+1}$;

- (4) $f(x) = x^2 x$.
- 6. 下列函数哪些是奇函数?哪些是偶函数?哪些既不是奇函数也不是偶函数?
 - (1) f(x)=5x+3;

(2) f(x) = 5x;

(3) $f(x) = 2x^2 + 1$;

- (4) $f(x) = x^2 + 6x + 9$;
- (5) $f(x) = \frac{1}{x^2} + 2x^4$;
- (6) $f(x) = x + \frac{1}{x^3}$.
- 7. 如图,已知偶函数 f(x)在 y 轴右边的一部分图象,根据偶函数的性质,作出它在 y 轴左边的图象.

(第7题)

8. 如图,已知奇函数 f(x)在 y 轴右边的一部分图象,根据奇函数的性质,作出它在 y 轴左边的图象.

9. 已知分段函数 f(x)是奇函数,当 $x \in [0, +\infty)$ 时的解析式为 $y=x^2$,求这个函数在区 间 $(-\infty, 0)$ 上的解析表达式。

习题2-1 B

1. 求下列函数的定义域:

(1)
$$f(x) = \frac{1}{\sqrt[3]{3x+6}} + \frac{1}{x}$$
;

(2)
$$g(t) = \frac{\sqrt[3]{t}}{t-4};$$

- (3) $f(x) = \sqrt{2x-1} + \sqrt{1-2x} + 4$.
- 2. 已知函数 f(x)在 R 上是奇函数,而且在 $(0,+\infty)$ 上是减函数,试说明函数 f(x)在 $(-\infty, 0)$ 上是增函数还是减函数?
- 3. 如图,一个由集合 A 到集合 B 的映射,这个映射表示的是 奇函数还是偶函数?
- 4. 已知函数 y=f(x)在区间 D 上是奇函数,函数 y=g(x)在 区间 D 上是偶函数, 求证:

 $G(x) = f(x) \cdot g(x)$ 是奇函数.

(第3題)

5. 作出下列函数的图象:

(1)
$$y = \frac{1}{x^2 + 1} + 2;$$
 (2) $y = [2x];$ (3) $y = x - [x].$

(2)
$$y = [2x]$$

(3)
$$y = x - [x]$$

计算机上的练习

作出下列函数的图象,并研究它们的单调区间:

- (1) $y=x+\frac{1}{x}$; (2) $y=\frac{1}{x^2-1}$;
- (3) $y = \frac{1}{(r-1)^2}$;
- (4) $y=x^3+x^2-6x$.

2.2

一次函数和二次函数

在初中,我们学过一次函数与二次函数,现在进一步研究这两 类函数的性质与应用.通过对它们的进一步研究,学习研究函数和 利用函数解决实际问题的方法.

2.2.1 一次函数的性质与图象

函数

y=kx+b $(k\neq 0)$

叫做一次函数. 它的定义域为 R, 值域为 R.

- 一次函数 y=kx+b ($k\neq 0$) 的图象是直线,以后简写为直线 y=kx+b,其中 k 叫做该直线的斜率,b 叫做该直线在 y 轴上的 截距.
 - 一次函数又叫做线性函数.
 - 一次函数具有如下一些主要性质:
- (1) 函数的改变量 (y_2-y_1) 与自变量的改变量 (x_2-x_1) 的比值等于常数 k.

事实上,在直线 y=kx+b 上任取两点 $P(x_1,\ y_1)$, $Q(x_2,\ y_2)$ (图 2-23),则

两式相减,得

可结合课件 1207 研究一次函数的 性质.

 $y_2-y_1=k(x_2-x_1)$,

 $\frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_2} = k \quad \text{if} \quad \Delta y = k \Delta x \quad (x_2 \neq x_1).$

这就是说它的平均变化率为常数 k,即对任意点 x1,相应函数 值的改变量与自变量的改变量成正比.

- (2) 当k>0 时,一次函数是增函数;当k<0 时,一次函数是 减函数.
- (3) 当b=0时,一次函数变为正比例函数,是奇函数;当 $b\neq0$ 时,它既不是奇函数,也不是偶函数.
- (4) 直线 y=kx+b 与 x 轴的交点为 $\left(-\frac{b}{b}, 0\right)$, 与 y 轴的交点 为(0, b).

- 1. 下列函数中哪些是正比例函数? 哪些不是?
 - (1) y = -8x; (2) $y = \sqrt{2}x$; (3) $y = \frac{1}{3}x$;
- (4) y=2(x-1).

2. 在同一坐标系中作出下列函数的图象:

y=x, $y=\frac{1}{2}x$, y=-x, $y=-\frac{1}{2}x$.

- 3. 求下列一次函数的針率、在 y 轴上的截距,并作出它们的图象:
- (1) y=3x+2; (2) y=-2x+3; (3) $y=\frac{1}{2}x+5$; (4) $y=5x-\frac{1}{3}$.

- 1. 正比例函数和一次函数有什么关系?
- 2. 已知点 A(1, 3)、B都是正比例函数 y=kx 上的点,点 B的横坐标为 3,求点 B的纵 坐标 y.
- 3. 已知直线 y=x-3 和直线 y=-x-5, 求这两条直线的交点 A, 及它们分别与 x轴的交点B、C的坐标.

1. 设一次函数 y=5x-3, 取一系列的 x 值, 使得每一个 x 值总是比前一个大 2, 然后计算 对应的 y 值,这一系列的函数值之间有什么关系?对任意一个一次函数都有类似的性质吗?

2. 结合课件 1207, 对一次函数的性质进行探索,

二次函数的性质与图象

函数

$$y = ax^2 + bx + c \ (a \neq 0)$$

叫做二次函数. 它的定义域是 R.

如果 b=c=0, 则函数变为

$$y=ax^2(a\neq 0)$$
.

我们知道,它的图象是一条顶点为原点的抛物线(图2-24),a>0, 抛物线开口向上,a<0,抛物线开口向下;这个函数为偶函数,y轴 为它的图象的对称轴.

对二次函数 $y=ax^2$ 中的任一个, 如 $y=x^2$, 当 x 的绝对值无 限地逐渐变小时, 函数值的变化也越来越小, 从 x 轴的 上方(或下 方)无限逼近 x 轴.

在同一坐标系中(图 2-24), 作出

$$y=-3x^2$$
, $y=-2x^2$, $y=-x^2$, $y=-0.5x^2$,
 $y=0.5x^2$, $y=x^2$, $y=2x^2$, $y=3x^2$

的图象,可以看出,函数 $y=ax^2$ 中的系数 a 对函数图象的影响。 当 a 从 - 3 逐渐变化到 0 时, 抛物线开口向下并逐渐变大; 当 a = 0 时,y=0,抛物线变为x轴;当a由0(不包括 0)变到+3 时,抛 物线开口向上并逐渐变小,

下面举例说明,研究二次函数的一般方法,

解: (1) 配方
$$f(x) = \frac{1}{2}x^2 + 4x + 6 = \frac{1}{2}(x^2 + 8x + 12)$$

= $\frac{1}{2}[(x+4)^2 - 16 + 12]$

图 2-24

象的变化过程.

$$= \frac{1}{2} [(x+4)^2 - 4] = \frac{1}{2} (x+4)^2 - 2.$$

由于对任意实数 x, 都有 $\frac{1}{2}(x+4)^2 \ge 0$, 所以

$$f(x) \geqslant -2$$

并且,当且仅当 x=-4 时取等号,即 f(-4)=-2,这说明该函数在x=-4时,取得最小值-2,记为 $y_{min}=-2$ 。它的图象的顶点为(-4,-2).

(2) 求函数的图象与x轴的交点 令 y=0,即

$$\frac{1}{2}x^2+4x+6=0$$
,

$$x^2 + 8x + 12 = 0$$
.

解此一元二次方程, 得 $x_1 = -6$ 或 $x_2 = -2$, 这说明该函数的图象与x 轴相交于两点(-6, 0), (-2, 0).

(3) 列表作图 以x=-4 为中间值,取x的一些值(包括使 y=0的x值),列出这个函数的对应值表:

图 2-25

x	et in I	-7	-6	-5	-4	-3	-2	-1	
у	0.开政	5/2	0	$-\frac{3}{2}$	-2	$-\frac{3}{2}$	0	5/2	

在直角坐标系内描点作图(图 2-25).

(4) 函数图象的对称性质 从上表和函数的图象容易推测,该函数的图象是以过点 M(-4,0), 且平行于 y 轴的直线为对称轴的轴对称图形。下面我们来证明这个事实.

在 x=-4 的两边取两个对称的 x 值:

$$-4-h$$
, $-4+h$ $(h>0)$.

可以证明在这两点的函数值相等, 事实上,

$$f(-4-h) = \frac{1}{2}(-4-h)^2 + 4(-4-h) + 6 = \frac{1}{2}h^2 - 2$$

$$f(-4+h) = \frac{1}{2}(-4+h)^2 + 4(-4+h) + 6 = \frac{1}{2}h^2 - 2$$

所以可得

$$f(-4-h)=f(-4+h)$$
.

对于上述结论,可简单的说成该抛物线关于直线x=-4对称.

- 一般地,通过点 $(x_1,0)$ 平行于 y 轴的直线上的所有点的横坐标都为 x_1 ,通常将这条直线记为直线 $x=x_1$.
 - (5) 函数的增减性 再观察这个函数的图象,还可以发现,函

数在区间 $(-\infty, -4]$ 上是减函数,在区间 $[-4, +\infty)$ 上是增函数.

例2 研究二次函数 $f(x) = -x^2 - 4x + 3$ 的性质和图象.

解: (1) 配方
$$f(x) = -x^2 - 4x + 3$$
$$= -(x^2 + 4x - 3)$$
$$= -[(x+2)^2 - 7]$$
$$= -(x+2)^2 + 7,$$

由 $-(x+2)^2$ ≤0 得,该函数对任意实数 x 都有

$$f(x) \leq 7$$

当且仅当 x=-2 时取等号,即 f(-2)=7, 这说明函数在 x=-2 时取得最大值 7. 记作 $y_{max}=7$. 函数图象的顶点是(-2,7).

(2) 求函数图象与x 轴的交点 令 $-x^2-4x+3=0$,解此方程,得

$$x_1 = -2 + \sqrt{7} \approx 0.65$$
, $x_2 = -2 - \sqrt{7} \approx -4.65$.

这说明这个函数的图象与 x 轴相交于两点

$$(-2-\sqrt{7}, 0), (-2+\sqrt{7}, 0).$$

(3) 列表作图 以x=-2 为中间值,取x的一些值(包括y=0的x值),列出这个函数的对应值表。

x	 -5	-4.65	-4.5	-4	-3	-2	-1	0	0.5	0.65	1	
у	 -2	0	0.75	3	6	7	6	3	0.75	0	-2	

在直角坐标系内描点作图(图 2-26)。

(4) 类似例 1 的分析,可得到,函数

$$f(x) = -x^2 - 4x + 3$$

关于直线 x=-2 成轴对称图形.

在区间 $(-\infty, -2]$ 上是增函数,在区间 $[-2, +\infty)$ 上是减函数.

从以上两例,我们可以看到,为了有目的地列出函数对应值表 和作函数的图象,最好先对已知函数作适当的分析,克服盲目性, 以便更全面、更本质地反映函数的性质,对任何二次函数

$$y=f(x)=ax^2+bx+c \ (a\neq 0).$$

都可通过配方化为:

图 2-26

$$y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a}$$
$$= a(x - h)^2 + k$$

其中,
$$h = -\frac{b}{2a}$$
, $k = \frac{4ac - b^2}{4a}$.

综上所述,二次函数有如下性质:

- (1) 函数的图象是一条抛物线, 抛物线顶点的坐标是(h, k), 抛物线的对称轴是直线 x=h;
- (2) 当a>0 时,拋物线开口向上,函数在x=h处取最小值 k=f(h);在区间($-\infty$, h]上是减函数,在[h, $+\infty$)上是增函数;
- (3) 当a<0 时,拋物线开口向下,函数在x=h处取最大值k=f(h);在区间 $(-\infty,h]$ 上是增函数,在 $[h,+\infty)$ 上是减函数。

"配方法"是研究二次函数的主要方法, 熟练地掌握配 方法是掌握二次函数性质的关键, 对一个具体的二次函数, 通过配方就能知道这个二次函数的主要性质,

(例3) 求函数 y=3x²+2x+1 的最小值和它的图象的对称轴。 并说出它在哪个区间上是增函数? 在哪个区间上是减函数?

解: 因为
$$y=3x^2+2x+1$$

$$=3\left(x+\frac{1}{3}\right)^2+\frac{2}{3}.$$
 所以 $y_{\min}=f\left(-\frac{1}{3}\right)=\frac{2}{3}.$

函数图象的对称轴是直线 $x=-\frac{1}{3}$,它在区间 $\left(-\infty,-\frac{1}{3}\right]$ 上是 诚函数,在区间 $\left[-\frac{1}{3},+\infty\right)$ 上是增函数.

二次函数 $y=ax^2+bx+c$ 中的 a , b , c 对函数性 质与图象各有哪些影响?

1. 用配方法, 求下列函数的最大值或最小值:

- (1) $f(x)=x^2+8x+3$:
- (2) $f(x) = 5x^2 4x 3$:
- (3) $f(x) = -x^2 + x + 1$; (4) $f(x) = -3x^2 + 5x 8$.
- 2. 求下列函数图象的对称轴和顶点坐标,并作出图象。
 - (1) $y = \frac{1}{2}x^2 5x + 1;$ (2) $y = -2x^2 + x 1.$

- 1. 已知函数 $f(x) = \frac{1}{2}x^2 3x \frac{3}{4}$.
 - (1) 求这个函数图象的顶点坐标和对称轴:
 - (2) 已知 $f(\frac{7}{2}) = -\frac{41}{8}$, 不计算函数值, 求 $f(\frac{5}{2})$;
 - (3) 不直接计算函数值, 试比较 $f\left(-\frac{1}{4}\right)$ 与 $f\left(\frac{15}{4}\right)$ 的大小.
- 2. 已知函数 $f(x)=x^2-2x-3$, 不计算函数值, 试比较 f(-2)和 f(4), f(-3)和 f(3)的大小.
- 3. 求下列函数的定义城:
 - (1) $y = \sqrt{x^2 4x + 9}$:
- (2) $y = \sqrt{-2x^2 + 12x 18}$.

待定系数法

在解应用问题时,我们常用一个字母,如x,y, ···来表示未 知数,然后根据问题的条件列方程求解,在某些问题中,有时要根 据条件确定一个未知函数, 例如,

已知一个正比例函数的图象通过点(-3,4),求这个函数.

想想看,如何求 出當數於 为求出这个正比例函数,我们可设所求的正比例函数为 y=kx, 其中 k 待定.

只要能根据已知条件确定常数 k, 这个未知函数也就求出来了, 如果已知函数是二次函数,则可设所求的函数为

$$y=ax^2+bx+c$$

其中 a, b, c 待定.

请同学们自己探索研究一下,给定哪些条件,才能求出一个具体的二次函数.

一般地,在求一个函数时,如果知道这个函数的一般形式,可 先把所求函数写为一般形式,其中系数待定,然后再根据题设条件 求出这些待定系数.这种通过求待定系数来确定变量之间关系式的 方法叫做传定系数法.

例 已知一个二次函数 f(x), f(0)=-5, f(-1)=-4,

f(2)=5, 求这个函数. 解:设所求函数为

$$f(x) = ax^2 + bx + c,$$

其中a、b、c待定.

根据已知条件, 得方程组

$$\begin{cases} 0+0+c = -5 \\ a-b+c = -4 \\ 4a+2b+c = 5 \end{cases}$$

解此方程组,得 a=2, b=1, c=-5. 因此所求函数为 $f(x)=2x^2+x-5$.

- 1. 已知一个正比例函数的图象通过点(2,8),求这个正比例函数.
- 一个一次函数 y=kx+b, 当 x=-2 时, y=0, 并且当 x=1 时, y=3, 求这个一次函数。
- 3. 已知一个二次函数 y=f(x), f(0)=3, 又知当 x=-3 或 x=-5 时, 这个函数的 值都为零, 求这个二次函数.

- 已知一个二次函数的图象的顶点是(6, -12),与x轴的一个交点为(8, 0),求 这个函数.
- 2. 已知 $2x^2+x-3=(x-1)(ax+b)$, 求 a, b,

习 题 2-2 A

- 1. 已知 y 是 x 的正比例函数, 当 x=0.5 时, y=1, 求当 x=2 和 x=5 时, 相应的函 数值.
- 2. 已知 v 和 \sqrt{x} 成正比例, 并且当 x=4 时, v=10, 求:
 - (1) 当 x=64 时, y 的值;
- (2) 当 ν=75 时, x 的值.
- 3. 作函数 y=3x+12 的图象, 求:
 - (1) 该图象与两条坐标轴交点的坐标及两交点间的距离;
 - (2) 不等式 3x+12>0 的解集;
 - (3) 当 v 的取值限定在区间(-6, 6)内时, x 允许的取值范围.
- 4. 作函数 $v=x^2$ 的图象, 并根据图象求解以下问题(精确到0.1);
 - (1) \bar{x} x=2, x=2, 4, x=-1, 7 的函数值:
 - (2) $\dot{x}(1,2)^2$, $(-2,3)^2$;
 - (3) 求对应 y=2, y=5.8 时的 x 的值;
 - (4) 求 $\sqrt{3}$, $\sqrt{8}$:
 - (5) 计算上述各值,并与由图形得出的相应的值作比较.
- 5. 求下列二次函数图象顶点的坐标、函数的最大值或最小值:

 - (1) $y=2x^2-8x+1$; (2) $y=-x^2+2x+4$.
- 6. 作函数 $y=x^2-2x-3$ 的图象,并求它与x 轴的交点及顶点的坐标。
- 7. 已知二次函数 $f(x) = -x^2 + 4x 3$,
 - (1) 指出函数曲线的开口方向;
 - (2) 求函数曲线顶点的坐标和对称轴;
 - (3) 求该函数的图象与 x 轴的交点, 并画出草图.
- 8. 求函数 $y = 6x^2 23x + 20$ 的单调区间.
- 9. 某产品按质量分为10个档次,生产第一档(即最低档次)的利润是每件8元,每提高 一个档次,利润每件增加2元,但每提高一个档次,在相同的时间内,产量减少3

日本 第二章 函数

件. 如果在规定的时间内,最低档的产品可生产 60 件. 问在相同的时间内,生产第 几档次的产品的总利润最大?有多少元?

习题2-2 B

- 1. 已知二次函数 $f(x) = \frac{1}{2}x^2 3x + 4$.
 - (1) 求它的图象顶点的坐标和与 x 轴交点的坐标;
 - (2) 作它的图象:
 - (3) 求点(1, f(1)) 关于图象对称轴的对称点的坐标.
- 2. 已知函数 $f(x)=x^2+2ax-3$.
 - (1) 如果 f(a+1)-f(a)=9, 求 a 的值;
 - (2) 问 a 为何值时, 函数的最小值是-4?
- 3. 二次函数是偶函数的条件是什么?
- 4. 已知二次函数 $f(x) = -x^2 + 2(m-1)x + 2m m^2$.
 - (1) 如果它的图象经过原点, 求 m 的值;
 - (2) 如果它的图象关于 v 轴对称, 写出函数的解析表达式,
- 5. 利用函数的图象, 求函数 $y=x^2-x-2$ 小于零或等于零时, 自变量的取值范围.

计算机上的练习

结合课件 1205 探索以下问题.

- 1. 分别作出函数 $y=ax^2$, 当 a=3, 2, 1, $\frac{1}{2}$, -1, -2, -3 时的图象, 并总结当 a 在区间[-3, 3]上从-3 变到 3 时, 函数的图象变化的情况.
- 2. 通过二次函数 $y=ax^2+bx+c$ 的配方表达式和计算机作图,研究二次函数的图象与 x 轴的交点和系数 a , b , c 的关系.

2.3

函数的应用(I)

现举例说明一次和二次函数模型的应用.

[3] 某列火车从北京西站开往石家庄,全程 277 km. 火车 出发 10 min 开出 13 km 后,以 120 km/h 匀速行驶. 试写出火车行驶的总路程 S 与匀速行驶的时间 t 之间的关系,并求火车离开北京 2 h 内行驶的路程.

解: 因为火车匀速运动的时间为(277—13)÷120= $\frac{11}{5}$ (h),所以 $0 \le t \le \frac{11}{5}$.

因为火车匀速行驶 t h 所行驶路程为 120t, 所以,火车运行总路程 S 与匀速行驶时间 t 之间的关系是

$$S=13+120t$$
 $(0 \le t \le \frac{11}{5})$.

2 h 内火车行驶的路程 $S=13+120\times\frac{11}{6}=233$ (km).

⑤2 试说明函数 $f(x)=(1+x)^3$ 在区间[0,0.1]上各点的值,可近似地用函数g(x)=1+3x 在相应各点的值来表示,其绝对误差小于0.1.

$$||f(x)-g(x)|| = |(1+x)^3 - (1+3x)||$$

= $|1+3x+3x^2+x^3-1-3x||$

$$= |3x^2 + x^3|$$

$$= x^2 |3 + x|.$$

因为 x∈[0,0.1],

所以 $|f(x)-g(x)|=x^2|3+x|\leq 0.01\times 3.1<0.1.$

在区间[0,0.1]上,列出上述两个函数的近似值,如下表 所示:

x	0	0.02	0.04	0.06	0.08	0.1
$(1+x)^3$	1	1.061	1. 125	1. 191	1. 260	1. 331
1+3x	1	1.06	1.12	1.18	1. 24	1.3

从上表也可看到,在区间[0, 0.1]上,用函数g(x)=1+3x的函数值,去近似地表示函数f(x)的函数值时,其误差小于0.1.

例3 某农家旅游公司有客房300间,每间日房租为20元, 每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?

分析:由题设可知,每天客房总的租金是增加2元的倍数的函数.设提高为x个2元,则依题意可算出总租金(用y表示)的表达式.由于客房间数不太多,为了帮助同学理解这道应用题,我们先用列表法求解,然后再用函数的解析表达式求解.

解: 方法一 依题意可列表如下:

x	у
0	300×20=6 000
1	$(300-10\times1)(20+2\times1)=6380$
2	$(300-10\times2)(20+2\times2)=6720$
3	$(300-10\times3)(20+2\times3)=7020$
4	$(300-10\times4)(20+2\times4)=7280$
5	$(300-10\times5)(20+2\times5)=7\ 500$
6	$(300-10\times6)(20+2\times6)=7680$
7	$(300-10\times7)(20+2\times7)=7$ 820
8	$(300-10\times8)(20+2\times8)=7920$
9	$(300-10\times9)(20+2\times9)=7980$
10	$(300-10\times10)(20+2\times10)=8\ 000$
11	$(300-10\times11)(20+2\times11)=7980$
12	$(300-10\times12)(20+2\times12)=7920$
13	$(300-10\times13)(20+2\times13)=7820$
-5.00	Han

由上表容易得到,当 x=10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.

方法二 设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为

$$y = (20+2x)(300-10x)$$

$$= -20x^{2} + 600x - 200x + 6000$$

$$= -20(x^{2} - 20x + 100 - 100) + 6000$$

$$= -20(x - 10)^{2} + 8000.$$

由此得到,当x=10 时, $y_{max}=8000$,即每间租金为 $20+10\times$ 2=40(元)时,客房租金的总收入最高,每天为8000 元.

第 ? 最 思考与讨论

₹₩# 1900

可结合课件 1209 研究"客房问题"。 对例 3 中的"客房问题" 你有什么体会? 在现实问题中,有没有与它类似的问题? 如果有,请举例说明.

每4 某单位计划用围墙围出一块矩形场地,现有材料可筑墙的总长度为1,如果要使围墙围出的场地的面积最大,问矩形的长、宽各等于多少?

解:设矩形的长为x,则宽为 $\frac{1}{2}(l-2x)$,从而矩形的面积为

$$S = x \cdot \frac{l - 2x}{2}$$

$$= -x^2 + \frac{l}{2}x$$

$$= -\left[x^2 - \frac{l}{2}x + \left(\frac{l}{4}\right)^2 - \left(\frac{l}{4}\right)^2\right]$$

$$= -\left(x - \frac{l}{4}\right)^2 + \frac{l^2}{16}.$$

由此可得,该函数在 $x=\frac{l}{4}$ 时取得最大值,且 $S_{\max}=\frac{l^2}{16}$. 这时矩形的宽为

$$\frac{l-2x}{2} = \frac{l}{4}$$
,

即这个矩形是边长等于 $\frac{l}{4}$ 的正方形时,所围出的面积最大.

例 5 建立函数数学模型的例子.

问题 我国 1999 年至 2002 年国内生产总值(单位: 万亿元)如 下表所示。

年 份	1999	2000	2001	2002
x	0	1	2	3
生产总值	8. 206 7	8. 944 2	9. 593 3	10. 239 8

- (1) 画出函数图形,猜想它们之间的函数关系,近似地写出一个函数关系式;
- (2) 利用得出的关系式求生产总值,与表中实际生产总值 比较:
 - (3) 利用关系式预测 2003 年我国的国内生产总值.
 - 解: (1) 画出函数图形,如图 2-27 所示.从函数的图形可以看出,画出的点近似地落在一条直线上,设所求的线性函数为

y=kx+b. 把直线通过的两点 (0, 8, 206 7) 和 (3, 10, 239 8) 代人上式, 解

方程组,可得 k=0,6777, b=8,2067.

因此所求的函数关系式为

10.02

y = f(x) = 0.6777x + 8.2067.

(2) 由得到的关系式计算出 2000 年和 2001 年的国内生产总值 分别为

 $f(1)=0.677.7\times1+8.206.7=8.884.4$

 $f(2) = 0.6777 \times 2 + 8.2067 = 9.5621$

与实际的生产总值相比,误差不超过 0.1 万亿元.

(3) 经济专家估计,我国今后几年内国内生产总值还会按此规律增长,所以2003年,即x=4时,由上述关系式,得

 $y=f(4)=0.6777\times4+8.2067=10.9175,$

即预測 2003 年国内生产总值约为 10.917 5 万亿元.

根据国家统计局公布的数据,我国 2003 年国内生产总值为 11.6694 万亿元,比预测的数字高得多.这说明为解决实际问题所 建立的数学模型是否符合实际情况,还要经过实践的验证,如果与 实际误差较大,就要修正得到的数学模型。 这里是同学们第一次学习数学建模,问题虽然简单,但 体现了数学建模的主要思路.

探索与研究

田径队的小刚同学, 在教练的指导下进行 3 000 m 的跑步训练, 训练计划的要求是:

- (I)起跑后匀加速,10s后达到5m/s的速度,然后匀速跑到2分;
- (Ⅱ)开始均匀减速,到5分时已减到4m/s,再保持匀速跑4分时间;
- (Ⅲ)在1分之内,逐渐加速到5 m/s的速度,保持匀速往下跑;
- (N) 最后 200 m, 匀加速冲刺, 使撞线的速度达到 8 m/s.
- 按照下面的要求,解以下问题:
- (1) 作出小刚跑步的时间与速度的函数图象;
- (2) 写出小刚进行长跑训练时, 跑步速度关于时间的函数表达式;
- (3) 按照上面的要求, 计算跑完 3 000 m 所用的时间.

习题2-3 A

- 如果一辆汽车匀速行驶, 1.5 h 行驶路程为 90 km, 求这辆汽车行驶路程与时间之间的函数关系,以及汽车 3 h 所行驶的路程.
- 已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元。
- 3. 有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大?
- 4. 某市一种出租车标价为 1.20元/km,但事实上的收费标准如下:最开始 4 km 内不管车行驶路程多少,均收费 10元(即起步费),4 km 后到 15 km 之间,每公里收费 1.20元,15 km 后每公里再加收 50%,即每公里 1.80元,试写出付费总数 f 与打车路程 x 之间的函数关系。

习题2-3 B

1. 某种产品每件80元每天可售出30件.如果每件定价120元,则每天可售出20件.

○ 第二章 函 数

如果售出件数是定价的一次函数, 求这个函数.

- 某个弹簧的长度 l 与悬挂在它下面的物体所受的重力 g 之间是一次函数关系。已知 g=0.02 N 时, l=8.9 cm, g=0.04 N 时, l=10.1 cm, 求这个函数。
- 3. 如图甲、乙两船分别沿着箭头方向,从A、B两地同时开出.已 知AB=10 n mile,甲乙两船的速度分别为16 n mile/h和 12 n mile/h,求多少时间后,两船距离最近,最近距离是多少?
- 4. 窗户的形状如图,它的上部是半圆形,下部是矩形.如果窗框的 外沿的周长固定为6 m,半圆的半径是多长时,窗户透光的面积最大。
- 5. 等腰梯形的周长为60 cm, 底角为60°, 间梯形各边长为多少时, 梯形的面积最大?

(第3題)

(第4題)

2.4

函数与方程

这一小节,我们通过二次函数或简单的三次函数说明函数与方程的联系.

2.4.1 函数的零点

请你先担一个问题.

已知二次函数: $y=x^2-x-6$, 试问 x 取哪些值时, y=0? 求使 y=0 的 x 值, 也就是求二次方程

$$x^2 - x - 6 = 0$$

的所有根.

解得 $x_1 = -2$, $x_2 = 3$.

这就是说, 当 x=-2 或 x=3 时, 这个函数的函数值 y=0.

画出这个函数的简图(图 2-28). 从图象上可以看出,它与x 轴相交于两点

$$(-2, 0), (3, 0).$$

这两点把 x 轴分成 3 个区间:

 $(-\infty, -2), (-2, 3), (3, +\infty).$

当 $x \in (-2, 3)$ 时, y < 0,

当 $x \in (-\infty, -2) \cup (3, +\infty)$ 时, y > 0.

二次方程 $x^2-x-6=0$ 的根-2,3常称做函数 $y=x^2-x-6$ 的零点,在它的图象上表示图象与x轴的公共点是(-2,0),(3,0).

∢注▶

这里只讨论零 点为实数的情况, 说到零点指的都是 实零点. 一般地,如果函数 y=f(x)在实数 α 处的值等于零,即 $f(\alpha)=0$,

则α叫做这个函数的零点.

有时我们也把一个函数的图象与 x 轴的公共点,叫做这个函数 的零点,

我们知道,对于二次函数

$$y=ax^2+bx+c$$

当 $\Delta = b^2 - 4ac > 0$ 时, 方程 $ax^2 + bx + c = 0$ 有两个不相等的实根, 汶时二次函数 $y = ax^2 + bx + c$ 有两个零点;

当 $\Delta = b^2 - 4ac = 0$ 时,方程 $ax^2 + bx + c = 0$ 有两个相等的实根 (重根),这时二次函数 $y = ax^2 + bx + c$ 有一个二重的零点或说有二 阶零点:

当 $\Delta=b^2-4ac<0$ 时,方程 $ax^2+bx+c=0$ 没有实根,这时二次函数 $v=ax^2+bx+c$ 没有零点.

考虑函数是否有零点是研究函数性质和精确地画出函数图象的 重要一步,例如,求出二次函数的零点及其图象的顶点坐标,就能 确定二次函数的一些主要性质,并能粗略地画出函数的简图.

另外, 我们还能从二次函数的图象看到零点的性质:

(1) 二次函数的图象是连续的,当它通过零点时(不是二重零点),函数值变号,如上例,函数

$$y = x^2 - x - 6$$

的图象在零点-2的左边时,函数值取正号,当它通过第一个零点 -2时,函数值由正变为负,再通过第二个零点3时,函数值又由 负变正。

(2) 相邻两个零点之间的所有函数值保持同号.

对任意函数,只要它的图象是连续不间断的,上述性质同样成立. 由此可见,我们可以通过方程研究函数的一些性质.

例 求函数 $y=x^3-2x^2-x+2$ 的零点,并画出它的图象.

解: 因为
$$x^3-2x^2-x+2=x^2(x-2)-(x-2)$$

= $(x-2)(x^2-1)$
= $(x-2)(x-1)(x+1)$.

所以已知函数的零点为-1,1,2.

3 个零点把 x 轴分成 4 个区间:

$$(-\infty, -1], [-1, 1], [1, 2], [2, +\infty).$$

在这 4 个区间内,取x 的一些值(包括零点),列出这个函数的 对应值表:

							1.5			
y	 -4.38	0	1.88	2	1. 13	0	-0.63	0	2.63	

在直角坐标系内描点连线,这个函数的图象如图 2-29 所示.

图 2-29

- 1. 求下列函数的零点:
 - (1) $y=x^2-3x+2$; (2) $y=x^2-5x+4$;
 - (3) $y = -x^2 + 5x$;
- (4) $y=x^3-8x$;

2. 下列函数的自变量在什么范围内取值时,函数值大于零、小于零或等于零:

- (5) $f(z) = -3z^2 7z + 6$;
- (6) $f(t) = -3t^2 + 7t + 6$.
- (1) $y=x^2-2x-10$;
- (2) $y = -x^2 2x + 3$.

练习B

- 1. 求下列函数的零点:
 - (1) f(x)=2x+7;
- (2) $f(x) = 2x^2 5x + 1$:
- (3) f(x)=(x-1)(x-2)(x+3).
- 2. 下列函数的自变量在什么范围内取值时,函数值大于零、小于零或等于零:
 - (1) $y=x^2+7x-8$;
- (2) $y = -x^2 + 2x + 8$.

24.2 求函数零点近似解的一种计算方法——二分法

由于实际问题的需要,人们经常需要寻求函数 y=f(x)的 零点(也就是方程f(x)=0的根)。求一次函数或二次函数的零 点,我们可以用熟知的公式解法(二次时,称为求根公式).

在十六世纪,人们已经找到了三次函数和四次函数的求根 公式,但对于高于四次的函数,类似的努力却一直没有成功. 到了十九世纪,根据阿贝尔(Abel)和伽罗瓦(Galois)的研究,人 们认识到高于四次的函数(即高于四次的代数方程)不存在求根 公式,也就是说,不存在用四则运算及根号表示的一般的公式 解,同时,对于三次和四次的代数方程,由于公式解的表示相 当复杂,一般来讲并不适宜用作具体计算. 因此对于高次多项 式函数及其他的一些函数,有必要寻求求零点的近似解的方法, 这在计算数学中是一个十分重要的课题.

在分析二次函数零点的性质时,我们已经看到,如果函数 y=f(x)在一个区间[a,b]上的图象不间断,并且在它的两个端点 处的函数值异号(见图 2-30),即 f(a) f(b) < 0,则这个函数在这个 区间上,至少有一个零点,即存在一点 $x_0 \in (a, b)$,使 $f(x_0) = 0$. 这样的零点叫做变号零点,有时曲线通过零点时不变号,这样的零 占叫做不变号零点.

已知函数 y=f(x)定义在区间 D上,求它在 D上的一个变号 零点 x₀ 的近似值 x, 使它与零点的误差不超过正数 ε, 即使 得 $|x-x_0| \leq \varepsilon$.

下面我们分步写出,用二分法求函数零点的一般步骤.

第一步 在 D 内取一个闭区间[a, b] $\subseteq D$, 使 f(a) 与 f(b) 异号, 即 $f(a) \cdot f(b) < 0$. $\diamondsuit a_0 = a$, $b_0 = b$.

$$x_0 = a_0 + \frac{1}{2}(b_0 - a_0) = \frac{1}{2}(a_0 + b_0).$$

计算 $f(x_0)$ 和 $f(a_0)$.

判断: (1) 如果 $f(x_0)=0$, 则 x_0 就是 f(x) 的零点, 计算

图 2-30

终止:

- (2) 如果 $f(a_0) \cdot f(x_0) < 0$,则零点位于区间 $[a_0, x_0] + \phi_0 = a_0$, $b_1 = x_0$;
- (3) 如果 $f(a_0) \cdot f(x_0) > 0$,则零点位于区间 $[x_0, b_0] \mathbf{p}$,令 $a_1 = x_0, b_1 = b$.

第三步 取区间 $[a_1, b_1]$ 的中点,则此中点对应的横坐标为

$$x_1 = a_1 + \frac{1}{2}(b_1 - a_1) = \frac{1}{2}(a_1 + b_1).$$

计算 $f(x_1)$ 和 $f(a_1)$.

判断: (1) 如果 $f(x_1)=0$, 则 x_1 就是 f(x)的零点, 计算 终止;

- (2) 如果 $f(a_1) \cdot f(x_1) < 0$,则零点位于区间 $[a_1, x_1]$ 上,令 $a_2 = a_1$, $b_2 = x_1$;
- (3) 如果 $f(a_1) \cdot f(x_1) > 0$,则零点位于区间 $[x_1, b_1]$ 上,令 $a_2 = x_1, b_2 = b_1$.

.....

实施上述步骤,函数的零点总位于区间 $[a_n, b_n]$ 上,当 $|a_n-b_n|$ < 2ε 时,区间 $[a_n, b_n]$ 的中点

$$x_n = \frac{1}{2}(a_n + b_n)$$

就是函数 y=f(x)的近似零点, 计算终止. 这时函数 y=f(x)的近似零点与真正零点的误差不超过 ϵ .

解:由于 f(1)=-2<0, f(2)=6>0, 可以取区间[1,2]作为计算的初始区间.

用二分法逐次计算,列表如下:

端点 (中点) 坐标	计算中点的函数值	取区间	$ a_n-b_n $
AND THE PARTY OF LAND	Marie Control	[1, 2]	1
$x_0 = (1+2)/2 = 1.5$	$f(x_0)=0.625>0$	[1, 1.5]	0.5
$x_1 = (1+1.5)/2 = 1.25$	$f(x_1) = -0.984 < 0$	[1.25, 1.5]	0. 25
$x_2 = (1.25+1.5)/2$ = 1.375	$f(x_2) = -0.260 < 0$	[1. 375, 1. 5]	0. 125
$x_3 = (1.375 + 1.5)/2$ = 1.438	SANCE NAME OF STREET	MAD SUF	

可结合课件 1210 研究例中函数的 零点.

图 2-32

想想看, 你还 能找到计算函数零 点的另一种算法吗?

由上表的计算可知,区间[1.375,1.5]的长度小于0.2,所以这 个区间的中点 $x_3=1.438$ 可作为所求函数误差不超过 0.1 的一个正 实数零点的近似值.

函数 $f(x)=x^3+x^2-2x-2$ 的图象如图 2-32.

实际上还可用二分法继续算下去,进而得到这个零点精确度更 高的近似值,

以上求函数零点的二分法, 对函数图象是连续不间断的 一类函数的变号零点都有效, 如果一种计算方法对某一类问 题(不是个别问题)都有效,计算可以一步一步地进行,每一 步都能得到惟一的结果, 我们常把这一类问题的求解过程叫 做解决这一类问题的一种算法, 算法是刻板的、机械的, 有 时要进行大量的重复计算, 但它的优点是一种通法, 只要按 部就班地去做, 总会算出结果, 更大的优点是, 它可以让计 算机来实现, 例如, 我们可以编写程序, 快速地求出一个函 数的零点,有兴趣的同学,可以在"Scilab"界面上调用二 分法程序,对上例进行计算,求出精确度更高的近似值.本 系列各册书的一个重要特点是, 引导同学们认识算法思想的 重要性,并希望同学们在学习前人算法的基础上,去寻求解 决各类问题的算法, 在数学3中, 我们还要系统地学习算法,

- 1. 使用计算器或数学软件,用二分法求函数 y=x2-2 的一个正零点的近似值(误 差不超过 0.01).
- 2. 求函数 $y=x^3-3x^2+2x-6$ 的一个正零点(误差不超过 0.1).

1. 使用计算器或数学软件, 用二分法求函数 $f(x) = x^3 - 2$ 的零点(误差不超过 0.01).

2. 使用计算器或数学软件,用二分法求函数 $f(x)=x^5-x^3-5x^2+5$ 的无理零点 (误差不超过 0.01).

习题2-4 A

- 1. 求下列函数的零点:
 - (1) $y=x^2-5x-14$;

- (2) $y = -x^2 x + 20$;
- (3) $y=(x-1)(x^2-3x+1)$;
- (4) $f(x) = (x^2-2)(x^2-3x+2)$.
- 求下列函数的零点,图象顶点的坐标,画出各函数的简图,并指出函数值在哪些区间上大于零,哪些区间上小于零;
 - (1) $y = \frac{1}{3}x^2 2x + 1$;

- (2) $y = -2x^2 4x + 1$.
- 3. k 为何值时,函数 $f(x) = -3x^2 + 2x k + 1$ 的图象与 x 轴不相交.
- 4. 已知函数 $f(x)=2(m+1)x^2+4mx+2m-1$.
 - (1) m 为何值时,函数的图象与 x 轴有两个交点:
 - (2) 如果函数的一个零点在原点,求m的值.
- 5. 求下列函数的定义域:
 - (1) $y = \sqrt{x^2 9}$:

- (2) $y = \sqrt{x^2 + 3x 4}$;
- (3) $y = \sqrt{-x^2 + 4x + 12}$.
- 6. 用二分法求函数 $f(x)=x^2-5$ 的一个正零点 (误差不超过 0.01).

习题2-4 B

- 1. 求下列函数的图象与 x 轴交点的坐标:
 - (1) $f(x)=x^2-3x-1$;
- (2) $f(x) = -3x^2 + 8x 2$,
- 2. 用二分法求函数 $f(x)=x^3-3$ 的一个正零点(误差不超过 0.01).
- 3. 用二分法求√3的近似值(误差不超过0.01).
- 4. 除二分法外, 你能想出求√3近似值的其他算法吗?

本章川结

I 知识结构

II思考与交流

- 1. 用变量的观点, 说明两个变量之间的函数关系.
- 2. 如何判定两个变量之间是否具有函数关系?
- 3. 通过实例说明, 什么叫映射, 什么叫一一映射.
- a数有几种表示法?图象表示法的优点是什么?据此说明数形结合的意义。
 - 5. 如何判定一个函数是增函数还是减函数?

本章小结コークトークトークトー

6. 一次函数 $y=kx+b(k\neq 0)$ 中,平均变化率 $\frac{\Delta y}{\Delta x}=?$ 请画图加以说明。

- 7. 如何判断一个函数是奇函数还是偶函数?
- 8. 学习函数零点的意义是什么? 你对函数与方程的关系有什么认识?
- 列表总结二次函数的图象和性质,并举例说明配方法在研究二次函数中的作用。
 - 10. 说明待定系数法在求未知函数中的作用。
 - 11. 找一个生活中分段函数的例子,写出它的解析表达式.

III 巩固与提高

1. 说明下列各对集合元素间的对应关系是否是 A 到 B 的映射?

2. 下列图形中,哪些是函数的图象?

(第2題)

2 (3, 2) -3 0 2 4 x

(第3題)

- 3. 如图,函数 f 的图象由四条线段组成,求
 - (1) f(1):

- (2) f(0);
- (3) f(-2):
- (4) f(0.5);
- (5) f(-0.5);
- (6) f(3.2);
- (7) f 的定义域;
- 4. 求下列函数的值:
- (8) f 的值域.
- (1) $f(x)=3x^2-5x+2$, $\sharp f(2)$, f(a);

- (2) $g(x) = -2x^3 + 5x^2 3x + 2$, $x \in g(-3)$, g(b);
- (3) $h(x) = \frac{|4-x|}{r^2}$, x h(8), h(a);
- (4) $r(x) = \frac{1}{x} + \sqrt[3]{x+5}$, $\not x r(3)$, r(-6).
- 5. 在下列方程中, x 为自变量, 试问哪些可以表示成函数关系?
 - (1) $x^2 + y = 0$;
- (2) $v^2 x = 0$:

(3) x=5:

- (4) y=3.
- 6. 求下列函数的定义域:
 - (1) $y = \sqrt{3-2x+3}$;
- (2) y=x(x-1);
- (3) $y = \sqrt{\frac{3}{x-1}};$
- (4) $y = \frac{\sqrt{x+5}}{x-3}$.
- 7. 作出下列函数的图象:
 - (1) $y=x, x \in [-3, 4]$; (2) $y=\sqrt{x^2}$;
 - (3) y = |x+1|:
- (4) $y = x^4$.

8. 已知函数

$$f(x) = \begin{cases} 2 & x \le -2 \\ 0 & -2 < x < 2, \\ -2 & x \ge 2 \end{cases}$$

作出这个函数的图象, 并求 f(-3), f(2), f(-1), f(1), f(100).

- 9. 已知一次函数通过点 A(-3, -1), B(1, 1), 求这个函数的 表达式。
- 10. 已知 $y=9x^2-6x+6$, 求 y_{min} .
- 11. 已知 $y = -4x^2 + 28x + 1$, 求 y_{max}
- 12. 求函数 $y = -x^2 + 2x + 3$ 单调区间.
- 13. 求函数 $y=x^2+2x-3$ 的零点和顶点的坐标.
- 14. 二次函数 $y=x^2+kx-(k-8)$ 与 x 轴至多有一个交点, 求 k 的 取值范围.
- 15. 已知二次函数 $f(x) = ax^2 + bx + c$, f(2) = 0, f(-5) = 0, f(0)=1, 求此二次函数.
- 16. 画出函数 y=|x|+3 和 y=|x+3| 的图象.
- 17. 已知 $f(x) = \frac{1+x^2}{1-x^2}$, 求证:

 - (1) f(x)是偶函数; (2) $f(\frac{1}{x}) = -f(x)$.
- 18. 设 $A = \{a, b, c\}$, $B = \{m, n\}$, 从集合 A 到集合 B 的映射有 几种? 试用列表法把它逐一列出来.

- 19. 根据单调函数的定义,证明下列函数的单调性:
 - (1) 函数 $y=x^2+6x$ 在区间 $[-3, +\infty)$ 上是增函数:
 - (2) 函数 $y = \frac{1}{2}$ 在区间(0, +∞)上是滅函数.
- 20. 分析下列函数具有哪些性质,并分别作出它们的图象:

$$(1) y = \begin{cases} x+1 & \text{if } x \leqslant -1 \\ 0 & \text{if } -1 < x < 1 \\ x-1 & \text{if } x \geqslant 1 \end{cases}$$

$$(2) y = \begin{cases} -x-1 & \text{if } x \leqslant -1 \\ -x^2+1 & \text{if } -1 < x < 1 \end{cases}$$

21. $^{\circ}$ \bigcirc $^{\circ}$ $^{\circ}$ 的值.

自测与评估

- 1. 选择题.
 - (1) 已知 f(x)是区间($-\infty$, $+\infty$)上的奇函数, f(1)=-2,
 - f(3)=1, 则(). (A) f(3) > f(-1)
- (B) f(3) < f(-1)
- (C) f(3) = f(-1) (D) f(3) = f(-1) £ £ £ £ £
- (2) 二次函数 $y=x^2-2x+5$ 的值域是 ().
 - (A) $[4, +\infty)$
- (B) $(4. +\infty)$
- (C) (-∞, 4]
- (D) $(-\infty, 4)$
- (3) 如果二次函数 $y=ax^2+bx+1$ 的图象的对称轴是x=1, 并且 通过点 A(-1, 7), 则 a, b 的值分别是().
 - (A) 2. 4

(B) 2, -4

(C) -2.4

- (D) -2, -4
- (4) 如果二次函数 $y=5x^2+mx+4$ 在区间($-\infty$, -1]上是滅函 数,在区间 $[-1, +\infty)$ 上是增函数,则 m=().
 - (A) 2

(B) -2

(C) 10

- (D) -10
- (5) 如果二次函数 $y=x^2+mx+(m+3)$ 有两个不同的零点,则 m 的取值范围是().
 - (A) $(-\infty, -2) \cup (6, +\infty)$ (B) (-2, 6)
 - (C) $\begin{bmatrix} -2, 6 \end{bmatrix}$
- (D) $\{-2, 6\}$

- 2. 已知函数 y=f(x)的定义城为(0, 1), 求 $f(x^2)$ 的定义城.
- 3. 如果直角三角形的一个锐角的度数为 A, 这个锐角的对边长为 x, 相邻直角边长为1. 试问: tan A, sin A, cos A 分别与x 之间 是否有函数关系?如果有,写出函数关系式.当x由0逐渐增 大时, tan A, sin A, cos A 各自如何变化?
- 4. 求下列函数的定义城:

(1)
$$y = \frac{x}{3x-2}$$
; (2) $y = \frac{\sqrt{4-x}}{(x+1)(x-1)}$.

5. 某城市出租车,乘客上车后,行驶3km内收费都是10元,之后每行驶1km收费1.6元,超过15km,每公里收费为2.4元(假设途中一路顺利,没有停车等候).分别用表达式和图形表示行驶里程(x)与收费(y)之间的函数关系(定义城取(0,20]).

函数概念的形成与发展

17世纪是工业生产和科学技术飞速发展的时代,天文学、航海业及机械工业的发展,促进了数学的进一步研究与发展,当时人们把函数理解为变化的数量关系,把曲线理解为几何形象,法国哲学家、数学家笛卡尔(R. Descartes, 1596—1650)引入了坐标系,创立了解析几何,他把几何问题转化为代数问题,对此,思格斯给予了很高的评价,他说,"数学中的转折点是笛卡尔的变数,有了变数、动进入了数学,有了变数,辨证法进入了数学。"

英国數學家、物理學家、自然哲學家牛顿 (I. Newton. 1642—1727),以流數來定义描述连 续量—流量(fluxion)的变化率,用以表示变量之 间的关系,因此曲线是当时研究考察的主要模型,这是那个时代函数的概念。

函数(function)一词首先是由德国哲学家莱布尼茨(G. W. Leibniz, 1646—1716)引入的。 他用函数一词来表示一个随着曲线上的点的变动而变动的量,并引入了常量、变量、参变量等模

念. 瑞士数学家欧拉(L. Euler, 1707—1783)于 1734年引入了函数符号 f(x), 并称变量的函数 是一个解析表达式, 认为函数是由一个公式确定 的数量关系。他于1775年在微分学中写道: "如 果某些量以这样一种方式依赖于另一些变量。即 当后面这些变量变化时, 前面的变量也随之变 化, 则称前面的变量为后面变量的函数。"

1859 年我国清代数学家、天文学家、翻译家 和教育家李善兰(1811—1882)第一次将"function"译成函数,这一名词一直沿用至今.

第三章基本初等函数(I)

我们先讲一个有趣的故事:

一个叫杰米的百万富翁,一天,他碰上一件奇怪的事.一个叫韦伯的人对他说, 我想和你定个合同,我将在整整一个月中每天给你10万元,而你第一天只需给我一分 钱,以后每天给我的钱是前一天的两倍.杰米说:"真的?!你说话算数?"

0 0 0 0 0 0 0 0 0 0 0 0 0 0

合同开始生效了, 杰米欣喜若狂. 第一天杰米支出 1 分钱, 收入 10 万元; 第二天, 杰米支出 2 分钱, 收入 10 万元; 第三天, 杰米支出 4 分钱, 收入 10 万元; 第四天, 杰米支出 8 分钱, 收入 10 万元; ……到了第十天, 杰米共得到 100 万元, 而总共才付出 10 元2 角 3 分. 到了第 20 天, 杰米共得到 200 万元, 而韦伯才得到 1 048 575 分, 共 10 000 元多点. 杰米想: 要是合同定两个月, 三个月该多好! 可从第 21 天起, 情况发生了变化.

第21天杰米支出1万多,收入10万元,到第28天,杰米支出134万多,收入10万元,结果杰米在一个月(31天)内得到310万元的同时,共付给韦伯2147483647分,也就是2000多万元!杰米破产了.

这个故事一定会让你吃惊,开始微不足道的数字,两倍两倍地增长,会变得这么巨大!事实的确如此,因为杰米碰到了"指数爆炸".一种事物如果成倍成倍地增大(如2×2×2···),则它是以指数形式增大,这种增大的速度就像"大爆炸"一样,非常惊人. 在科学领域中,常常需要研究这一类问题.

例如,生物学中研究某种细胞的分裂问题:

某个细胞第一次分裂,1个分裂为2个;第二次分裂,2个分裂为4个;……,这样下去,问第8次,第10次,第20次……分裂后分别共有多少个细胞?

有时,还要求解上述问题的逆问题:经过多少次分裂,细胞总数为512个,或为4096个? ……这样我们就要研究指数运算的逆运算.

这一章我们要学习指数运算和指数运算的逆运算:对数运算.在此基础上,我们分别从实际问题中抽象出指数函数和对数函数模型,并分别研究它们的性质.

指数函数和对数函数在工程、生物、社会科学中有着重要的应用.

最后我们还归纳了幂函数 $y=x^{\alpha}(\alpha \in \mathbb{R})$ 的性质.

3.1.1 有理指数幂及其运算

我们先复习初中学过的整数指数幂概念及其运算,然后推广到 分数指数幂和无理指数幂及其运算.

1. 整数指数

在初中我们学习了正整数指数. 知道:

$$a^{2} = a \cdot a$$
, $a^{3} = a \cdot a \cdot a$, $a^{n} = \underbrace{a \cdot a \cdot \cdots \cdot a}_{n \uparrow}$.

由此可见, a^n 不过是n 个相同因子a 的连乘积的缩写。 a^n 叫做a 的 n 次幂,a 叫做幂的底数,n 叫做幂的指数。并规定 $a^1=a$.

在上述定义中, n 必须是正整数, 所以这样的幂叫做正整指数幂, 容易验证, 正整指数幂的运算满足如下法则:

(1)
$$a^m \cdot a^n = a^{m+n}$$
;

(2)
$$(a^m)^n = a^{mn}$$
;

(3)
$$\frac{a^m}{a^n} = a^{m-n} (m > n, a \neq 0);$$

$$(4) (ab)^m = a^m b^m.$$

在法则(3)中,作了 m > n 的限制. 如果取消这种限制,则正整指数幂就推广到整数幂. 例如,当 $a \neq 0$ 时,有

$$\frac{a^3}{a^3} = a^{3-3} = a^0$$
, $\frac{a^3}{a^5} = a^{3-5} = a^{-2}$.

这些结果不能用正整指数幂的定义来解释, 但我们知道,

$$\frac{a^3}{a^3} = 1$$
, $\frac{a^3}{a^5} = \frac{1}{a^2}$.

这就启示我们, 如果规定

$$a^0 = 1$$
, $a^{-2} = \frac{1}{a^2}$,

则上述运算就合理了. 于是我们规定

$$a^{0}=1 \ (a\neq 0),$$
 $a^{-n}=\frac{1}{a^{n}} \ (a\neq 0, \ n\in \mathbb{N}_{+}).$

如此规定的零指数幂和负整指数幂,就把正整指数幂推广到整 数指数幂,并且正整指数幂的运算法则对整数指数幂运算仍然成 立,例如,

$$8^{0} = 1; (-8)^{0} = 1; (a-b)^{0} = 1 (a \neq b);$$

$$10^{-3} = \frac{1}{10^{3}} = 0.001;$$

$$\left(-\frac{1}{2}\right)^{-6} = \frac{1}{\left(-\frac{1}{2}\right)^{6}} = \frac{1}{\frac{1}{64}} = 64;$$

$$(2x)^{-3} = 2^{-3}x^{-3} = \frac{1}{8x^{3}} (x \neq 0);$$

$$\left(\frac{x^{3}}{r^{2}}\right)^{-2} = \frac{x^{-6}}{r^{-4}} = \frac{r^{4}}{r^{6}}; 0.000 1 = 10^{-4}; \frac{a^{2}}{b^{2}c} = a^{2}b^{-2}c^{-1}.$$

2. 分数指数

在初中我们还学习了平方根和立方根的概念.

如果 $x^2=a$,则 x 叫做 a 的平方根(或二次方根).

当a>0时,有两个平方根,它们互为相反数,正平方根为 \sqrt{a} , 负平方根为 $-\sqrt{a}$;

当 a < 0 时,在实数范围内没有平方根.

如果 $x^3=a$,则x叫做a的立方根(或三次方根),在实数范围

内 a 只有一个立方根,记作 \sqrt{a} .

方根的概念可进一步推广如下:

如果存在实数 x, 使得 $x^n=a$ $(a \in \mathbb{R}, n > 1, n \in \mathbb{N}_+)$, 则 x 叫做 a 的 n 次方根. 求 a 的 n 次方根, 叫做把 a 开 n 次方,称做开 方运算.

正数 a 的偶次方根有两个,它们互为相反数,正、负平方根分别表示为

负数的偶次方根没有意义;

正数的奇次方根是一个正数,负数的奇次方根是一个负数,都 表示为

正数 a 的正 n 次方根叫做 a 的 n 次算术根.

当√a有意义的时候, √a叫做根式, n叫做根指数.

根据 n 次方根的定义,根式具有性质:

$$(1)(\sqrt[n]{a})^n = a \quad (n > 1, \; \coprod n \in \mathbb{N}_+);$$

$$(2)\sqrt[n]{a^n} = \begin{cases} a & \text{if } n \text{ 为奇数} \\ |a| & \text{if } n \text{ 为偶数} \end{cases}$$

例如,

$$(\sqrt[4]{5})^4 = 5$$
, $(\sqrt[3]{-5})^3 = -5$, $(\sqrt[5]{2^3})^5 = 2^3 = 8$; $\sqrt{5^2} = 5$, $\sqrt[4]{(-3)^4} = \sqrt[4]{3^4} = 3$.

我们还可以把整数指数幂的运算法则推广到正分数指数幂. 例如,

$$(a^{\frac{1}{3}})^3 = a^{\frac{1}{3} \times 3} = a,$$

 $(a^3)^{\frac{2}{3}} = a^{\frac{2}{3} \times 3} = a^2.$

显然,这些运算都不能用整数指数幂的定义来解释. 但是如果规定

$$a^{\frac{1}{3}} = \sqrt[3]{a}$$
, $a^{\frac{2}{3}} = \sqrt[3]{a^2}$,

则上述分数指数幂的运算就能像整数指数幂那样运算了.

为避免讨论,如不特别说明,我们约定底数a>0.于是,正分数指数幂可定义为:

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$
 $(a>0)$,
 $a^{\frac{m}{n}} = (\sqrt[n]{a})^m = \sqrt[n]{a^m}$ $(a>0, n, m \in \mathbb{N}_+, \underline{\mathbf{L}}\frac{m}{n}$ 为既约分数).

○ 应注意, √a"
不一定等于a.

负分数指数幂的意义与负整数指数幂的意义相同,同样可定 义为:

$$a^{-\frac{m}{n}} = \frac{1}{a^{\frac{m}{n}}} \quad (a > 0, n, m \in \mathbb{N}_+, \, \underline{\mathrm{L}}_n^m$$
为既约分数).

至此,我们已把整数指数幂推广到有理指数幂. 设 a>0, b>0, 对任意有理数 α 、 β ,有理指数幂有如下三条运算法则:

$$a^{a}a^{\beta} = a^{a+\beta}$$

$$(a^{a})^{\beta} = a^{a\beta}$$

$$(ab)^{a} = a^{a}b^{a}$$

例如,

$$8^{\frac{3}{5}} \times 8^{\frac{7}{5}} = 8^{\frac{3+2}{5}} = 8^{1} = 8;$$

$$8^{\frac{7}{5}} = (8^{\frac{1}{3}})^{2} = 2^{2} = 4;$$

$$3\sqrt{3} \times \sqrt[3]{3} \times \sqrt[5]{3} = 3 \times 3^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 3^{\frac{1}{6}} = 3^{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{6}} = 3^{2} = 9;$$

$$(a^{\frac{7}{3}}b^{\frac{1}{4}})^{3} = (a^{\frac{7}{3}})^{3} \cdot (b^{\frac{1}{4}})^{3} = a^{2}b^{\frac{3}{4}};$$

$$(a^{\frac{1}{2}} + b^{\frac{1}{2}}) \cdot (a^{\frac{1}{2}} - b^{\frac{1}{2}}) = (a^{\frac{1}{2}})^{2} - (b^{\frac{1}{2}})^{2} = a - b;$$

$$(a^{\frac{1}{2}} + b^{\frac{1}{2}})^{2} = a + b + 2a^{\frac{1}{2}}b^{\frac{1}{2}}.$$

有理指数幂还可以推广到无理数指数幂,我们在这里不能给出无理指数幂严格的定义,而是通过一个例子来描述其中的思想.

例如, $3^{\sqrt{2}}$ 是一个确定的实数. 我们按照要求的精确度,取 $\sqrt{2}$ 的不足近似值或过剩近似值:

于是可用序列

来近似地计算 $3^{1/2}$ 的不足或过剩近似值. 如果 $\sqrt{2}$ 的任一个有理数不足近似值记作 a_n ,其相应的过剩近似值记作 b_n ,那么当 a_n 、 b_n 越接近于 $\sqrt{2}$ 时, 3^{a_n} 、 3^{b_n} 就越接近于 $3^{\sqrt{2}}$. 这就是说,我们可用两个有理数幂的序列 3^{a_n} 、 3^{b_n} 无限逼近 $3^{\sqrt{2}}$.

一般地, 当 a>0, α 为任意实数值时, 实数指数幂 a° 就都有意义了.

可以证明,对任意实数值 α 、 β ,上述有理指数幂的运算法则仍

然成立.

例 利用科学计算器^①计算(精确到 0.001):

 $0.2^{1.52}$; 3.14^{-2} ; $3.1^{\frac{7}{3}}$; $5^{\sqrt{2}}$.

解:

按键	显示
0. 2 1. 52 =	0.086609512
3.14 (-) 2 =	0. 101423993
3. 1 \(\) (2 \(ab/c \) 3 \(\) =	2. 12605484
5 A 2 =	9. 738517742

所以 $0.2^{1.52} \approx 0.087$, $3.14^{-2} \approx 0.101$, $3.1^{\frac{2}{3}} \approx 2.126$, $5^{\sqrt{2}} \approx 9.739$.

例2 利用科学计算器计算函数值. 已知 $f(x)=2.72^x$, 求 f(-3), f(-2), f(-1), f(1), f(2), f(3) (精确到 0.001). 解:

按键	显示
2.72 (1) 3 =	0.049692779

所以 $f(-3) \approx 0.050$.

在输入行保持 2.72 Λ 不变, 把x 的值-3 依次换为

-2(按等号键=), -1(=), 1(=), 2(=), 3(=), 就可分别得到:

0. 135164359, 0. 367647059, 2. 72, 7. 3984, 20. 123648. 所以 f(-2)≈0. 135, f(-1)≈0. 368, f(1)≈2. 72, f(2)≈7. 398, f(3)≈20. 124,

例 3 化简下列各式:

(1)
$$\frac{5x^{-\frac{2}{3}}y^{\frac{1}{2}}}{\left(-\frac{1}{4}x^{-1}y^{\frac{1}{2}}\right)\left(-\frac{5}{6}x^{\frac{1}{3}}y^{-\frac{1}{4}}\right)};$$

(2)
$$\frac{m+m^{-1}+2}{m^{-\frac{1}{2}}+m^{\frac{1}{2}}}$$
.

解: (1) 原式=
$$\frac{24}{5}$$
×5× $x^{-\frac{2}{3}+1-\frac{1}{3}}$ × $y^{\frac{1}{2}-\frac{1}{2}+\frac{1}{6}}$

① 不同的计算器,按键的功能和位置可能不同.

() 第三章 基本初等函数(1)

$$= 24x^{0}y^{\frac{1}{6}} = 24y^{\frac{1}{6}};$$
(2) 原式=
$$\frac{(m^{\frac{1}{2}})^{2} + 2m^{\frac{1}{2}} \cdot m^{-\frac{1}{2}} + (m^{-\frac{1}{2}})^{2}}{m^{\frac{1}{2}} + m^{-\frac{1}{2}}}$$

$$= \frac{(m^{\frac{1}{2}} + m^{-\frac{1}{2}})^{2}}{m^{\frac{1}{2}} + m^{-\frac{1}{2}}}$$

$$= m^{\frac{1}{2}} + m^{-\frac{1}{2}}.$$

练习A

1. 计算:

(1)
$$x^5x^7$$
;

(2)
$$(-3x^3)^2$$
;

(3)
$$\left(-\frac{1}{2}x^2\right)^3$$
;

$$(4) (-x^3)^7$$
;

(5)
$$(2x)^2(-x)^{-3}$$
;

(6)
$$\left(\frac{1}{5}x\right)^{-2}(5x)^2$$
.

2. 用分数指数幂表示下列各式:

$$\sqrt[3]{x^2}$$
; $\frac{1}{\sqrt[3]{a}}$; $\sqrt[4]{(a+b)^3}$; $\sqrt[3]{m^2+n^2}$; $\frac{\sqrt{x}}{\sqrt[3]{y^2}}$.

3. 计算:

(1)
$$36^{\frac{1}{2}}$$
;

(2)
$$\left(\frac{64}{49}\right)^{-\frac{1}{2}}$$
;

(5)
$$4^{-\frac{1}{2}}$$
;

(6)
$$\left(6\frac{1}{4}\right)^{\frac{1}{2}}$$
.

练习B

1. 计算:

(1)
$$a^{\frac{1}{4}} \cdot a^{\frac{1}{3}} \cdot a^{\frac{5}{8}}$$
;

(3)
$$(x^{\frac{1}{2}}y^{-\frac{1}{3}})^6$$
;

(2)
$$a^{\frac{1}{3}} \cdot a^{\frac{1}{6}} \div a^{-\frac{1}{2}}$$
;

(4)
$$4a^{\frac{2}{3}}b^{-\frac{1}{3}} \div \left(-\frac{2}{3}a^{-\frac{1}{3}}b^{-\frac{1}{3}}\right).$$

2. 计算:

(1)
$$2\sqrt{2} \cdot \sqrt[4]{2} \cdot \sqrt[8]{2}$$
;

(2)
$$\sqrt[3]{3} \cdot \sqrt[4]{3} \cdot \sqrt[4]{27}$$
;

$$(3) \sqrt[3]{\frac{3y}{x}} \cdot \sqrt{\frac{3x^2}{y}};$$

(4)
$$\sqrt[6]{\left(\frac{8a^3}{125b^3}\right)^4}$$
.

- 3. 利用科学计算器计算下列各題 (精确到 0.000 01):
- (1) $\sqrt[5]{2}$; (2) $\sqrt[40]{3}$; (3) $\sqrt[100]{5}$; (4) $3^{\frac{1}{2}}$;
- (5) 0. $4012^{-\frac{1}{4}}$; (6) 1. $414^{1.12}$; (7) 0. $0301^{\frac{3}{4}}$; (8) 0. $618^{0.23}$;
- (9) 1. $2^{\sqrt{3}}$; (10) $\left(\frac{5}{4}\right)^{\sqrt{2}}$.
- 4. 在同一坐标系内作出函数 $y=x^3$ 和 $y=\sqrt[3]{x}$ 的图象, 试问这两个函数各有什么性 质?这两个函数及它们的图象有什么关系?

指数函数

先看两个具体的例子, 研究问题中两个变量之间的依赖关系.

(1) 细胞分裂问题。

细胞分裂,每次每个细胞分裂为2个,则1个这样的细胞第一 次分裂后变为2个细胞,第2次分裂后就得到4个细胞,第3次分 裂后就得到8个细胞, …….

在这个问题中, 分裂的次数是一个变量, 我们把它看作自变 量,用x表示。每次分裂后,细胞的个数是一个变量,显然这个变 量是自变量x的函数,用y表示.如何由x来计算y?

$$x=0, y=2^{0}=1;$$

 $x=1, y=2^{1}=2;$
 $x=2, y=2^{1} \cdot 2=2^{2}=4;$
 $x=3, y=2^{2} \cdot 2=2^{3}=8;$

这样,我们可归纳出,第x次分裂后,细胞的个数

$$y=2^{x}$$
.

这个函数的定义域是非负整数集,由上式,任给一个 x 值,我 们就可求出对应的 y 值.

(2) 一种放射性物质不断衰变为其他物质,每经过一年剩留的 质量约是原来的84%。求出这种物质的剩留量随时间(单位。年) 变化的函数关系.

设最初的质量为 1,时间变量用 x 表示,剩留量用 v 表示,则 经过1年, $y=1\times84\%=0.84^{\circ}$;

经过2年, y=1×0.84×0.84=0.842;

.....

这样,我们可归纳出,经过 x 年,

$$y=0.84^{x}$$
.

这个函数的定义域是正整数集.由上式,任意给一个x值,我们就可求出对应的y值.

从这两个实例中,我们得到两个同类的函数,自变量都出现在 指数位置上.

一般地,函数

$$y=a^{x}$$
 (a>0, a\neq 1, x\in \mathbf{R})

叫做指数函数.

下面研究指数函数的图象和性质.

画出指数函数

$$y=2^x$$
, $y=\left(\frac{1}{2}\right)^x$

的图象.

列出x、y的对应值表:

x	 -3	-2	-1	0	1	2	3	
y=2"	 1/8	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	
$y = \left(\frac{1}{2}\right)^x$	 8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	1/8	

2 3

-3-2-1

可结合课件 1301 研究指数函数的 性质. 用描点法画出图象(图 3-1).

从这个函数的对应值表和图象,可看到:

 $y=2^{x}$ 在 $(-\infty, +\infty)$ 上是增函数,当 x 逐渐增大时,函数值 y 增大得越来越快,当 x 逐渐减小时,函数值 y 逐渐减小,函数的 曲线从 x 轴的上方逐渐逼近 x 轴.

 $y = \left(\frac{1}{2}\right)^x$ 在 $(-\infty, +\infty)$ 上是减函数. 当x逐渐增大时,函数值y逐渐减小,函数的曲线从x轴的上方逐渐逼近x轴,当x逐渐减小时,函数值y增大得越来越快.

这两个函数的图象都在x轴的上方,它的函数值y都大于零,且它们的图象都通过点(0,1).

由以上实例,我们可归纳出指数函数

$$y=a^x$$
 $(a>0, a\neq 1, x\in \mathbb{R})$

GAOZIONE SIUNE

4?>

指数函数 $y=a^x$ (a>0, 且 $a\neq 1$), a>1时, x取何值, y>1? x取何值, 0< y<1? 0< a<1呢? 具有下列性质:

- (1) 定义域是实数集 \mathbf{R} , 对任意实数 x, 都有 y>0, 即值域是 $(0, +\infty)$.
 - (2) 函数图象在 x 轴的上方且都通过点(0, 1).
 - (3) 当 a>1 时,这个函数是增函数; 当 0<a<1 时,这个函数是减函数.

由指数函数的定义可知,指数函数的定义域是实数集,但在实际问题中不都如此. 例如开始引进的两个函数的例子,第1个例子,函数y=2*的定义域是非负整数集,第2个例子函数 y=0.84* 的定义域是正整数集,它们的定义域都是指数函数定义域的子集,而且它们在其定义域内分别与指数函数 y=2*, y=0.84* 取相同的值. 通常,我们把这类函数称为指数函数的"限制函数".

- 例 利用指数函数的性质,比较下列各题中两个值的大小:
- (1) 1.7^a与 1.7^{a+1};
- (2) 0.8-0.1与 0.8-0.2.
- (3) 已知 $\left(\frac{4}{7}\right)^a > \left(\frac{4}{7}\right)^b$, 比较 a、b 的大小.
- 解: (1) 考察函数 $y=1.7^x$, 它在实数集上是增函数. 因为 a < a+1, 所以 $1.7^a < 1.7^{a+1}$;
 - (2) 考察函数 $y=0.8^{\circ}$, 它在实数集上是减函数. 因为 -0.1>-0.2, 所以 $0.8^{-0.1}<0.8^{-0.2}$.
 - (3) 考察函数 $y = \left(\frac{4}{7}\right)^{s}$, 它在实数集上是减函数, 因为 $\left(\frac{4}{7}\right)^{s} > \left(\frac{4}{7}\right)^{b}$, 所以 a < b.

- 1. 在同一坐标系内,画出下列每对函数的图象,并说出每对函数的相同和不同性质:
 - (1) $y=3^x + y=3^{-x}$;
- (2) $y=0.5^x = y=0.5^{-x}$.
- 2. 比较下列各题中两个值的大小:
 - (1) 30.8 与 30.7;

- (2) 0.75^{-0.1}与 0.75^{0.1};
- (3) 1.01⁻²与 1.01^{-3.5};
- (4) 0,99³与 0,99^{4.5}.

1. 已知函数 $f(x)=2^x$, 计算:

f(0)-f(-1), f(2)-f(1), f(4)-f(3), f(6)-f(5).

这些计算结果说明了什么?

2. 利用指数函数的性质,比较下列各题中两个指数幂的大小:

(1) 0.9°与 0.9°-0.1;

(2) 1. 1a-2 与 1. 1a-2.1:

(3) 1.7313与 1.73121;

(4) 0.6181.9 与 0.6181.8.

3. 求下列函数的定义域和值域:

(1) $y=2^x+3$:

(2) $v = \sqrt{2^x}$.

习题3-1 (A)

1. 计算:

(1) $2^{-1} \times 64^{\frac{1}{7}}$:

(2) $(0.2)^{-2} \times (0.064)^{\frac{1}{3}}$;

(3) $\left(\frac{8a^{-3}}{27b^6}\right)^{-\frac{1}{3}}$;

(4) $\frac{\sqrt{3}\sqrt[3]{9}}{\sqrt[3]{6}}$;

(5) $\frac{\sqrt{x} \sqrt[3]{x^2}}{x \sqrt[6]{x}}$;

(6) $(a^{\frac{1}{2}}-b^{\frac{1}{2}})^2$;

(7) $(a^{\frac{1}{3}} + b^{\frac{1}{3}})^3$:

(8) $\left(\frac{b}{2a^2}\right)^3 \div \left(\frac{2b^2}{3a}\right)^0 \times \left(-\frac{b}{a}\right)^{-3}$.

2. 求下列函数的定义域和值域:

(1) $v=2^{x+1}$:

(2) $v = \sqrt{1-2^x}$:

(3) $v = 2^{\sqrt{x}}$:

(4) $y=2^{x^2}$.

- 3. 已知 $f(x) = \frac{7}{3}x + 1$, $g(x) = 2^x$, 在坐标纸上画出这两个函数的图象.
 - (1) 求它们交点的坐标;
 - (2) 在哪个区间上, f(x)的值小于 g(x)? 哪个区间上, f(x)的值大于 g(x)?
- 4. 分别把下列各题中的三个数按从小到大的顺序用不等号连接起来.

(1) $2^{2.5}$, $(2.5)^{0}$, $\left(\frac{1}{2}\right)^{2.5}$; (2) $\left(\frac{2}{3}\right)^{-\frac{1}{3}}$, $\left(\frac{5}{3}\right)^{\frac{2}{3}}$, $3^{\frac{2}{3}}$.

习 题 3 - 1 B

1. 求下列函数的定义域:

(1)
$$y = \sqrt{3^x - 3}$$
;

(2)
$$y = \frac{1}{\sqrt{1-5^x}}$$
.

- 2. 化简: $\sqrt{a^{\frac{1}{2}}-2a+a^{\frac{1}{2}}}$ (0<a<1).
- 3. 设 $f(x)=a^{x}(a>0, a\neq 1)$, 求证:

$$f(x_1) \cdot f(x_2) = f(x_1 + x_2).$$

- 4. 在同一坐标系中作函数 $y=2^x$ 和函数 $y=\left(\frac{1}{2}\right)^x$ 的图象,再作函数 $f(x)=2^x+\left(\frac{1}{2}\right)^x$ 的图象,并讨论这个函数的性质.
- 5. 在同一坐标系中, 作函数 $y=3^x$ 和函数 $y=2(3^x-1)$ 的图象.
- 6. 用清水漂洗衣服,若每次能洗去污垢的3/4,写出存留污垢 y 与漂洗次数 x 的函数关系式,若要使存留的污垢不超过原有的1%,则至少要漂洗几次?

探索与研究

- 1. 你能严格地证明本节叙述的指数函数的三条性质吗?
- 2. 利用函数作图软件,探索函数 y=a · 2tx 当a、b分别变化时函数图象的变化情况.

对数及其运算

1. 对数概念

在上一节,我们研究细胞分裂时,曾归纳出,第x次分裂后, 细胞的个数

$$y=2^x$$
.

给定分裂次数x,可求出细胞个数y,在实际问题中,又常常 需要由细胞分裂若干次后的个数 y, 计算分裂的次数 x. 为解决这类 问题,我们引入一个新的概念——对数.

在指数函数 $y=a^{x}(a>0$, 且 $a\neq 1$) 中, 对于实数集 R 内的每 一个值 x, 在正实数集内都有惟一确定的值 y 和它对应; 反之, 对 于正实数集内的每一个确定的值 y, 在 R 内都有惟一确定的值 x 和 它对应(图 3-2)。幂指数 x,又叫做以 a 为底 v 的对数。例如:

图 3-2

因为
$$4^{\frac{1}{2}}=2$$
,

所以
$$\frac{1}{2}$$
是以 4 为底 2 的对数;

因为
$$4^{-1} = \frac{1}{4}$$

因为
$$4^{-1} = \frac{1}{4}$$
, 所以 -1 是以 4 为底 $\frac{1}{4}$ 的对数;

因为
$$4^{-\frac{1}{2}} = \frac{1}{2}$$

因为
$$4^{-\frac{1}{2}} = \frac{1}{2}$$
, 所以 $-\frac{1}{2}$ 是以 4 为底 $\frac{1}{2}$ 的对数.

我们常用符号"log"(拉丁字 logarithm 的缩写)表示对数. 则 2是以4为底16的对数,就可写成

$$2 = \log_4 16$$
.

一般地,我们把"以a为底y的对数x"记作 $\log_a y$,即 $x = \log_a y$ $(a > 0, \exists a \neq 1).$

其中,数a叫做对数的底数,y叫做真数,读作"x等于以a为底 ν 的对数".

实质上,上述对数表达式,不过是指数函数式 $y=a^x$ 的另一种 表达形式.

例如,

这两个式子表达的是同一关系.

根据对数的定义,可以得到下面的对数恒等式:

$$a^{\log_{a} y} = y$$

例如, $2^{\log_2 32} = 32$, $10^{\log_{10} 100} = 100$.

$$10^{\log_{10} 100} = 100$$
.

根据对数的定义,对数 $\log_a N(a > 0$ 且 $a \ne 1$)具有下列性质:

- (1) 零和负数没有对数, 即 N>0:
- (2) 1 的对数为零,即 log,1=0;
- (3) 底的对数等于 1. 即 $\log_a a = 1$.

例 求 $\log_2 2$, $\log_2 1$, $\log_2 16$, $\log_2 \frac{1}{2}$.

解: 因为 21=2,

所以 log₂2=1;

因为 20=1,

所以 log₂1=0;

因为 24=16,

所以 log₂16=4;

因为 $2^{-1} = \frac{1}{2}$, 所以 $\log_2 \frac{1}{2} = -1$.

2. 常用对数

以 10 为底的对数叫做常用对数. 为了简便,通常把底 10 略去 不写, 并把 "log" 写成 "lg", 即把 log10N 记做 lg N. 以后如果没 有指出对数的底,都是指常用对数.例如,"100的对数是2",就 是 "100 的常用对数是 2".

例2 求 lg 10, lg 100, lg 0.01.

解: 因为 101=10,

所以 lg 10=1;

因为 102=100,

所以 lg 100=2;

因为 10-2=0.01,

所以 lg 0.01=-2.

求一个正实数的常用对数,可通过查对数表或使用科学计算器 求解.

例3 利用科学计算器求对数(精确到 0.000 1):

lg 2 001; lg 0.061 8; lg 0.004 5; lg 396.5.

解:用科学计算器计算:

按键	显示
log 2001 =	3. 301247089
log 0.0618 =	-1. 209011525
log 0.0045 =	-2.346787486
log 396. 5 =	2. 598243192

所以 lg 2 001≈3. 301 2, lg 0. 061 8≈−1. 209 0,

 $\log 0.0045 \approx -2.3468$, $\log 395.6 \approx 2.5982$.

1. 把下列指数式改写成对数式:

(1)
$$2^3 = 8$$
;

(2)
$$8^2 = 64$$
;

$$(3) 2^5 = 32$$

(1)
$$2^3 = 8$$
; (2) $8^2 = 64$; (3) $2^5 = 32$; (4) $3^5 = 243$;

(5)
$$2^{-5} = \frac{1}{32}$$
;

(6)
$$4^{-3} = \frac{1}{64}$$

$$(7) 8.8^{\circ} = 1;$$

(5)
$$2^{-5} = \frac{1}{32}$$
; (6) $4^{-3} = \frac{1}{64}$; (7) $8.8^{0} = 1$; (8) $81^{-\frac{1}{4}} = \frac{1}{27}$;

(9)
$$25^{\frac{1}{2}} = 5$$
;

(9)
$$25^{\frac{1}{2}} = 5$$
; (10) $27^{-\frac{1}{3}} = \frac{1}{3}$.

2. 把下列对数式改写成指数式,并检验原等式是否正确:

(1)
$$\log_3 9 = 2$$
;

(1)
$$\log_3 9 = 2$$
; (2) $\log_4 16 = 2$; (3) $\log_5 125 = 3$;

(4)
$$\log_7 49 = 2$$
; (5) $\log_2 \frac{1}{4} = -2$; (6) $\log_2 \frac{1}{8} = -3$;

(6)
$$\log_2 \frac{1}{8} = -3$$
;

(7)
$$\log_5 \frac{1}{5} = -1$$
; (8) $\log_8 16 = \frac{4}{3}$; (9) $\log_{\frac{1}{3}} 9 = -2$;

(9)
$$\log_{\frac{1}{2}}9 = -2$$
;

(10)
$$\log_{1} 1000 = -3$$
.

3. 用对数的形式来表达下列各式中的 x:

(1)
$$10^x = 25$$
:

(2)
$$2^x = 12$$
:

(3)
$$5^x = 6$$
;

(4)
$$4^x = \frac{1}{6}$$
.

4. 求下列各式的值:

- (1) 2log28;
- (3) 2log25;
- 5. 求下列各式的值:
 - (1) lg 10;
 - (3) lg 1;
 - (5) $\lg 10^{-5}$;
 - (7) lg 0.1;

- (2) 3log39;
- (4) 3log37.
- (2) lg 10 000;
- (4) lg 106;
- (6) lg 0.01;
- (8) lg 0.000 001.

练习B

1. 求值:

- (1) log₆36;
- (2) $\log_2 \frac{1}{8}$;
- (3) lg 0.001;

- (4) $\log_{27}\frac{1}{81}$;
- (5) log₄8;
- (6) log 4.

2. 计算:

- (1) lg 1+lg 10+lg 100;
- (2) lg 0. 1+lg 0. 01+lg 0. 001.
- 3. 已知 $\log_x \frac{1}{16} = -4$,求 x.

3. 积、商、幂的对数

现在研究对数的运算.

已知 $\log_a M$, $\log_a N(M, N>0)$, 求 $\log_a (MN)$, $\log_a \frac{M}{N}$, $\log_a M^a$.

设 $\log_a M = p$, $\log_a N = q$, 根据对数的定义, 可得

$$M=a^p$$
, $N=a^q$.

因为
$$MN=a^pa^q=a^{p+q}$$
,

所以
$$\log_a(MN) = p + q = \log_a M + \log_a N$$
.

同理,因为
$$\frac{M}{N} = \frac{a^p}{a^q} = a^{p-q}$$
,

所以
$$\log_a \frac{M}{N} = p - q = \log_a M - \log_a N$$
.

因为
$$M^a = (a^p)^a = a^{pa}$$
,

所以
$$\log_a M^a = \alpha p = \alpha \log_a M$$
.

总结以上论证,我们得到下面的对数运算法则:

(1) $\log_a(MN) = \log_a M + \log_a N$.

因为同底数的幂相乘,不论有多少因数,都是把指数相加,所 以这个性质可推广到若干个正因数的积:

$$\log_{\sigma}(N_1N_2\cdots N_k) = \log_{\sigma}N_1 + \log_{\sigma}N_2 + \cdots + \log_{\sigma}N_k.$$

即 正因数积的对数等于同一底数的各因数对数的和.

(2)
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$
.

即 两个正数商的对数等于同一底数的被除数的对数减去除数的对数。

(3) $\log_a M^a = \alpha \log_a M$.

即 正数幂的对数等于幂指数乘以同一底数幂的底数的对数.

例 用 log_ax, log_ay, log_az 表示下列各式:

(1)
$$\log_a \frac{xy}{z}$$
;

(2)
$$\log_a(x^3y^5)$$
;

(3)
$$\log_a \frac{\sqrt{x}}{yz}$$
;

(4)
$$\log_a \frac{x^2 \sqrt{y}}{\sqrt[3]{z}}$$
.

解: (1)
$$\log_a \frac{xy}{z} = \log_a xy - \log_a z$$

= $\log_a x + \log_a y - \log_a z$;

(2)
$$\log_a(x^3y^5) = \log_a x^3 + \log_a y^5$$

= $3\log_a x + 5\log_a y$;

(3)
$$\log_a \frac{\sqrt{x}}{yz} = \log_a \sqrt{x} - \log_a (yz)$$
$$= \log_a x^{\frac{1}{2}} - (\log_a y + \log_a z)$$
$$= \frac{1}{2} \log_a x - \log_a y - \log_a z;$$

(4)
$$\log_a \frac{x^2 \sqrt{y}}{\sqrt[3]{z}} = \log_a (x^2 y^{\frac{1}{2}} z^{-\frac{1}{3}})$$

 $= \log_a x^2 + \log_a y^{\frac{1}{2}} + \log_a z^{-\frac{1}{3}}$
 $= 2\log_a x + \frac{1}{2}\log_a y - \frac{1}{3}\log_a z.$

例 5 计算:

(1) lg √√100;

- (2) $\log_2(4^7 \times 2^5)$;
- (3) $\lg 4 + \lg 25$;
- (4) $(\lg 2)^2 + \lg 20 \times \lg 5$.

$$\mathfrak{M}: (1) \text{ lg } \sqrt[5]{100} = \frac{1}{5} \text{ lg } 100 = \frac{2}{5};$$

(2)
$$\log_2(4^7 \times 2^5) = \log_2 4^7 + \log_2 2^5$$

= $7\log_2 4 + 5\log_2 2$
= $14+5$
= 19 :

(3)
$$\lg 4 + \lg 25 = \lg(4 \times 25) = \lg 100 = 2;$$

(4)
$$(\lg 2)^2 + \lg 20 \times \lg 5 = (\lg 2)^2 + (1 + \lg 2)(1 - \lg 2)$$

= $(\lg 2)^2 + 1 - (\lg 2)^2$
= 1.

- 1. 用 lg x, lg y, lg z, lg(x+y), lg(x-y)来表示下列各式:
 - (1) lg xyz;

(2) $\lg(x+y)z$;

(3) $\lg(x^2-y^2)$;

(4) $\lg \frac{xy^2}{z}$.

2. 计算:

 $\log_3(27\times9^2)$, $\log 100^2$, $\log 0.0001^3$, $\log_7\sqrt[3]{49}$.

- 3. 计算下列各式:
 - (1) $\log_2 6 \log_2 3$;

(2) $\lg 5 + \lg 2$;

(3) $\log_5 3 + \log_5 \frac{1}{3}$;

- (4) $\log_3 5 \log_3 15$.
- 4. 指出下列式子中的错误,并说明原因:
 - (1) $\log_2(8-2) = \log_2 8 \log_2 2;$
- (2) $\lg(4-2) = \frac{\lg 4}{\lg 2}$;

(3) $\frac{\log_2 4}{\log_2 8} = \log_2 4 - \log_2 8$.

ラートートートートートー 第三章 基本初等函数(I

1. 求值:

(1)
$$\lg \frac{300}{7} + \lg \frac{700}{3} + \lg 100;$$

(2)
$$\log_7 \frac{2}{35} - \log_7 \frac{2}{5}$$
;

(4)
$$\log_2(\sqrt[3]{100} \times \sqrt[6]{16})$$
.

2. 已知 lg 2=0.301 0, 求 lg 5.

4. 换底公式与自然对数

在实际应用中,常常碰到底数不为 10 的对数,如何求这类对数呢?例如,如何求 log₃5?

我们可以根据对数的性质,利用常用对数来计算.

设
$$log_35=x$$
, 写成指数形式, 得

$$3^{x}=5$$
.

两边取常用对数,得

$$x \lg 3 = \lg 5$$
.

所以
$$x = \frac{\lg 5}{\lg 3} = \frac{0.6990}{0.4771} = 1.465$$

即 log₃5=1.465.

上面求解的关键是将以3为底的对数用以10为底的对数来表示.

一般地,下面的换底公式成立:

$$\log_b N = \frac{\log_a N}{\log_a b}$$

证明:设 $\log_b N = x$,则

$$b^{x} = N$$
.

两边取以 a 为底的对数, 得

$$x \log_a b = \log_a N$$
.

所以

$$x = \frac{\log_a N}{\log_a b}$$
.

即

$$\log_b N = \frac{\log_a N}{\log_a b}$$
.

在科学技术中,常常使用以无理数 $e=2.71828\cdots$ 为底的对数. 以 e 为底的对数叫做 e 为底的对数则以 e 为底的对象,

换底公式,可以得到自然对数与常用对数的关系:

$$\ln N = \frac{\lg N}{\lg e} \approx \frac{\lg N}{0.434 \ 3}.$$

即

In N≈2. 302 6lg N.

实际上,用科学计算器可直接求自然对数. 例如,求 ln 34(精 确到 0.000 1), 可用科学计算器计算如下:

按键	显示
ln 34 =	3. 526360525

所以 ln 34≈3, 526 4.

例 6 求 log₈9 · log₂₇32 的值.

#:
$$\log_8 9 \cdot \log_{27} 32 = \frac{\lg 9}{\lg 8} \times \frac{\lg 32}{\lg 27} = \frac{2\lg 3}{3\lg 2} \cdot \frac{5\lg 2}{3\lg 3} = \frac{2}{3} \times \frac{5}{3} = \frac{10}{9}$$
.

例 7 求证: $\log_r y \log_y z = \log_r z$.

证明: 因为
$$\log_x y \log_y z = \log_x y \frac{\log_x z}{\log_x y} = \log_x z$$
, 所以 $\log_x y \log_y z = \log_x z$.

例 8 求证: log_*b"=log_b.

解: 因为
$$\log_a b^n = \frac{\log_a b^n}{\log_a a^n} = \frac{n \log_a b}{n \log_a a} = \log_a b$$
, 所以 $\log_a b^n = \log_a b$.

- 1. 求下列各式的值:
 - (1) lne²; (2) e^{ln *};
- (3) ln 5;

- 2. 求证: log_b = 1 log_a.
- 3. 计算: log₅4 · log₈5.
- 4. 已知 lg 2=0.301 0, lg 7=0.845 1, 求 lg 35.
- 计算: log₂3 · log₂₇125.

- 1. 计算下列各题:
 - (1) $(\lg 5)^2 + \lg 2 \cdot \lg 50$;
 - (2) $\log_2 \frac{1}{25} \cdot \log_3 \frac{1}{8} \cdot \log_5 \frac{1}{9}$.
- 2. 求证: log/gN=2log,N.
- 3. 求证: log_y · log_z · log_x = 1.
- 4. 已知 $\log_5 3 = a$, $\log_5 4 = b$, 求证: $\log_{25} 12 = \frac{1}{2}(a+b)$.

3.2.2 对数函数

根据对数式

$$x = \log_a y(a > 0, a \neq 1),$$

对于 y 在正实数集内的每一个确定的值,在实数集 R 内都有惟一确定的 x 值和它对应.根据函数的定义,这个式子确定了正实数集上的一个函数关系,其中 y 是自变量, x 是因变量.函数

$$x = \log_a y(a > 0, a \neq 1, y > 0)$$

叫做对数函数. 它的定义域是正实数集,值域是实数集 R.

由对数函数的定义可知,在指数函数 $y=a^x$ 和对数函数 $x=\log_a y$ 中, x, y两个变量之间的关系是一样的. 所不同的只是在指数函数 $y=a^x$ 里, x 当作自变量, y 当作因变量, 而在对数函数 $x=\log_a y$ 中, y 当作自变量, x 是因变量. 习惯上,常用 x 表示自变量, y 表示因变量,因此对数函数通常写成

$$y = \log_a x \ (a > 0, \ a \neq 1, \ x > 0).$$

作下面两个对数函数的图象:

(1)
$$y = \log_2 x$$
;

(2)
$$y = \log_{\frac{1}{2}} x$$
.

首先作 x, y 的对应值表. 简便的作法是把 3.1.2 节的两个指数函数

$$y=2^x$$
, $y=\left(\frac{1}{2}\right)^x$

的对应值表里 x 和 y 的数值对调,就可得到下面的两个表:

可结合课件 1302 研究对数函数的 性质. 表一 $y = \log_2 x$.

x	 1/8	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	
у	 -3	-2	-1	0	1	2	3	

表二 $y = \log_{\frac{1}{2}} x$.

x	 8	4	2	1	$\frac{1}{2}$	$\frac{1}{4}$	1/8	
у	 -3	-2	-1	0	1	2	3	

在同一坐标系里,用描点法画出图象(图 3-3). 从这两个函数的对应值表和图象可看到, $y=\log_2 x$ 在区间(0, $+\infty$)上是增函数,而 $y=\log_2 x$ 在区间(0, $+\infty$)上是减函数. 这两个函数的定义域都是(0, $+\infty$),并且它们的图象都通过点(1, 0).

一般地,由对数函数

$$y = \log_a x \quad (a > 0, a \neq 1),$$

的定义可知,它的定义域是正实数集,即 $x \in (0, +\infty)$.

对数函数还具有下列性质:

- (1) 值域是实数集 R;
- (2) 在定义域内, 当 a>1 时是增函数, 当 0<a<1 时是减函数;
 - (3) 图象都通过点(1,0).

(1) $\log_{\alpha} x^2$;

(2)
$$y = \log_a(4-x)$$
.

解: (1) 要使函数有意义,必须 $x^2 > 0$,即 $x \neq 0$,所以函数 $y = \log_a x^2$ 的定义域是 $\{x \mid x \neq 0\}$ 或是 $\{-\infty,0\} \cup \{0,+\infty\}$;

(2) 要使函数有意义, 必须 4-x>0, 即 x<4, 所以函数 $y=\log_a(4-x)$ 的定义域是 $(-\infty,4)$.

例2 (1) 比较 log23 与 log23.5 的大小;

(2) 已知 log_{0.7}2m<log_{0.7}(m-1), 求 m 的取值范围.

解: (1) 考察函数 $y=\log_2 x$, 它在区间(0, $+\infty$)上是增函数. 因为 3<3.5, 所以 $\log_2 3<\log_2 3.5$;

(2) 考察函数 $y = \log_{0.7} x$, 它在(0, $+\infty$)上是减函数. 因为 $\log_{0.7} 2m < \log_{0.7} (m-1)$, 所以 2m > m-1 > 0.

由
$${2m>m-1 \atop m-1>0}$$
, 得 $m>1$.

图 3-3

对数函数 $y = \log(a > 0 \text{ 且 } a \neq 1)$, 当a > 1, x 取何值时, y > 0? x 取何值时, y < 0? 0 < a < 1 呢?

- 1. 在同一坐标系中, 画出 $y = \log_3 x$ 及 $y = \log_{\frac{1}{2}} x$ 的图象, 并说出这两个函数相同 和不同的性质.
- 2. 求下列函数的定义域:

(1)
$$y = \log_5(1+x)$$
;

(2)
$$y = \frac{1}{\log_2 x}$$
;

(3)
$$y = \log_7 \frac{1}{1 - 3x}$$
;

(4)
$$y = \sqrt{\log_3 x}$$
.

- 3. 比较下列各题中两个值的大小:
 - (1) lg 6与 lg 8;

- (2) log_{0.5}6 与 log_{0.5}4;
- (3) log; 0.5 与 log; 0.6;
- (4) log1.51.6与 log1.51.4.

- 1. 根据下列各式,确定 a 的取值范围:
 - (1) log_a 0. 8>log_a 1. 2;
- (2) $\log_a \sqrt{10} > \log_a \pi$;

(3) $\log_{0.2}a > \log_{0.2}3$;

(4) $\log_2 a > 0$.

2. 求下列函数的定义域:

(1)
$$y = \sqrt{\lg x}$$
;

(2)
$$y = \log_2(x-1)^2$$
;

(3)
$$y = \sqrt{1 - \log_{\frac{1}{2}} x}$$
;

(4)
$$y = \sqrt{\log_{\frac{1}{2}} x - 1}$$
.

指数函数与对数函数的关系

由对数函数的定义可知,对数函数 $y = \log_2 x$ 是把指数函数 $y=2^x$ 中的自变量与因变量对调位置而得出的。在列表画 $y=\log_2 x$ 的图象时, 也是把指数函数 $y=2^x$ 的对应值表里的 x 和 y 的数值对 换,而得到对数函数 $y = \log_2 x$ 的对应值表,如下:

表一 $y=2^x$.

表二 $y = \log_2 x$.

x	 $\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4	8	
у	 -3	-2	-1	0	1	2	3	

在同一坐标系里,用描点法画出图象 (图 3-4).

当一个函数是一一映射时,可以把这个函数的因变量作为一个 新的函数的自变量,而把这个函数的自变量作为新的函数的因变量. 我们称这两个函数互为反函数.

由图 3-4 可知,对数函数 $y=\log_x x$ 与指数函数 $y=a^x$ 互为反函数. 它们的图象关于直线 y=x 对称.

又如,函数 y=5x, $x \in \mathbb{R}$. 如果把 y 作为自变量,x 作为 y 的函数,则 $x=\frac{y}{5}$, $y \in \mathbb{R}$. 通常自变量用 x 表示,函数用 y 表示,则

$$y=\frac{x}{5}, x \in \mathbf{R}$$

我们就说函数 $y=\frac{x}{5}$, $x \in \mathbb{R}$ 与函数 y=5x, $x \in \mathbb{R}$ 互为反函数.

函数 y=f(x)的反函数常用 $y=f^{-1}(x)$ 表示.

从反函数的概念可知,如果函数 y=f(x)有反函数 $y=f^{-1}(x)$,那么函数 $y=f^{-1}(x)$ 的反函数就是 y=f(x). 这就是说,函数 y=f(x)与 $y=f^{-1}(x)$ 互为反函数.

上面我们已分别研究了指数函数与对数函数的性质. 现在我们来比较这两个函数增长的差异.

观察图 3-4,我们可以看到,当x>1时,对相同的自变量的增量,指数函数的增量与对数函数的增量存在着很大的差异.

指数函数 $y=2^x$, 当 x 由 $x_1=1$ 增加到 $x_2=3$ 时, $\Delta x=2$, $\Delta y=2^3-2^1=7$;

对数函数 $y = \log_2 x$, 当 x 由 $x_1 = 1$ 增加到 $x_2 = 3$ 时, $\Delta x = 2$, 而 $\Delta y = \log_2 3 - \log_2 1 = 1.585$ 0.

由此可知,在区间 $[1, +\infty)$ 内,指数函数 $y=2^x$ 随着 x 的增长函数值的增长速度逐渐加快,而对数函数 $y=\log_2 x$ 的增长的速度逐渐变得很缓慢.

图 3-4

可结合课件 1303 研究指数函数与对 数函数之间的关系。

ライトー 第三章 基本初等函数(I)

- 1. 求下列函数的反函数:
 - (1) $y=3^x$;

- (2) $y = \log_6 x$.
- 2. 由图 3-4, 分析指数函数 $y=2^x$ 在区间 $(-\infty,0]$ 上与对数函数 $y=\log_2 x$ 在区间 (0,1] 上函数的增减情况.

- 1. 求下列函数的反函数:
 - (1) x 1 2 3 4 y 3 5 7 9
- (2) x 0 1 2 3 y 0 1 4 9
- 2. 不查表,不使用计算器求值,比较 log₂ 5, 21.5, log₄ 15 这三个数的大小.

习题3-2 A

- 1. 把下列指数式化为对数式,或把对数式化为指数式 (a>0,且 $a\neq 1$):
 - (1) $\log_a N = b$;

(2) $a^0 = 1$;

(3) $a^1 = a$;

(4) $\log_a \sqrt[3]{a^2} = \frac{2}{3}$.

- 2. 求证:
 - (1) $\log_2 64 = 3\log_8 64$;
- (2) $\log_8 81 = \frac{4}{3} \log_2 3$.

- 3. 求下列各式的值:
 - (1) log₆₄32;

- (2) log₂9 log₃2.
- 4. 求下列函数的定义域:
 - (1) $y = \sqrt[8]{\log_2 x}$;

- (2) $y = \sqrt{\log_{0.5}(4x-3)};$
- (3) $y = \sqrt{x^2 x 2} + \log_2 3x$.

5. 如果 $f(x) = \log_a x (a > 0$, 且 $a \neq 1$), 求证:

$$f(x_1 \cdot x_2) = f(x_1) + f(x_2).$$

- 6. 利用指数和对数的定义及其性质,解下列方程:
 - (1) $3^{2x-2}=81$:

(2) $\sqrt{5^x} = \sqrt[3]{25}$;

(3) $\sqrt{7^x} = \sqrt[5]{343}$:

(4) $\sqrt{2^x}\sqrt{3^x}=36$;

(5) $\left(\frac{3}{4}\right)^x = \left(\frac{4}{3}\right)^5$;

- (6) $\left(\frac{2}{3}\right)^x \left(\frac{9}{8}\right)^x = \frac{27}{64}$;
- (7) $\lg x + \lg(x-3) = 1;$
- (8) $\frac{1}{12}(\lg x)^2 = \frac{1}{3} \frac{1}{4}\lg x$.
- 7. 用图象法求下列方程的近似解 (精确到 0.1):
 - (1) $3^x = 2$;

(2) $\lg x + x^2 = 0$.

习题3-2 B

- 1. 求下列各式的值:
 - (1) $-\log_2\log_2\sqrt{\sqrt{2}}$;
- (2) $\log_4 8 \log_{\frac{1}{2}} 3 \log_{\frac{7}{2}} 4$;
- (3) (log₄3)(log₉25)(log₅8);
- (4) $\left(\log_2 5 + \log_4 \frac{1}{5}\right) \left(\log_5 2 + \log_{25} \frac{1}{2}\right)$.
- 2. 已知 log₉5=a, log₉7=b, 求 log₃₅9.
- 3. 解下列方程:
 - (1) $\left(\frac{1}{2}\right)^x 8^{2x} = 4;$

- (2) $5^{x-1}10^{3x} = 8^x$;
- (3) $5^{2x}-6\times5^x+5=0$;
- (4) $3^x 3^{-x} = \frac{80}{9}$;
- (5) $2\log_x 25 3\log_{25} x = 1$;
- (6) $\log_7(\log_3 x) = -1$.

考察一下已经学过的函数

$$y=x, y=x^2, y=\frac{1}{x}, \cdots$$

可以发现这些函数的表达式有着共同的特征:幂的底数是自变 量,指数是常数.

一般地,形如

$$y=x^{\alpha}(\alpha \in \mathbf{R})$$

的函数称为幂函数,其中α为常数.

下面我们通过举例来研究这类函数的一些性质.

作出下列函数的图象:

(1)
$$y=x$$

(1)
$$y=x$$
; (2) $y=x^{\frac{1}{2}}$;

(3)
$$y=x^2$$
;

(4)
$$y=x^{-1}$$
; (5) $y=x^3$.

(5)
$$y=x^3$$

解: 列各函数的对应值表:

x	 -3	-2	-1	0	1	2	3	
y=x	 -3	-2	-1	0	1	2	3	
$y=x^{\frac{1}{2}}$			100	0	1	1.41	1.73	
$y=x^2$	 9	4	1	0	1	4	9	
$y=x^{-1}$	 $-\frac{1}{3}$	$-\frac{1}{2}$	-1	313	1	$\frac{1}{2}$	$\frac{1}{3}$	
$y=x^3$	 -27	-8	-1	0	1	8	27	

它们的图象如图 3-5 所示.

从这些函数的图象大家可以看到,幂函数随着 α 的取值不同,它 们的定义域、性质和图象也不尽相同. 但它们也有一些共同的性质:

可结合课件

1304、1305、研究幂

函数的图象与性质.

- (1) 所有的幂函数在(0, +∞)都有定义,并且图象都通过点 (1, 1):
- (2) 如果 $\alpha > 0$, 则幂函数的图象通过原点,并且在区间 $[0, +\infty)$ 上是增函数:
- (3) 如果 $\alpha < 0$,则幂函数在区间 $(0, +\infty)$ 上是减函数. 在第一 象限内, 当x 从右边趋向于原点时, 图象在y 轴右方无限地逼近 y 轴, 当 x 趋于 $+\infty$ 时, 图象在 x 轴上方无限地逼近 x 轴.

- (1) 在暴函数 $y=x^{\alpha}$ 中,如果 α 是正偶数 $(\alpha=2n,$ n为非零自然数),如 $\alpha=2,4,6,\dots$,这一类函数具 有哪些重要性质?
- (2) 在幂函数 $y=x^{\alpha}$ 中,如果 α 是正奇数 $(\alpha=$ 2n-1, n 为非零自然数), $\omega = 1$, 3, 5, ..., 这一 类函数具有哪些重要性质?
- (3) 暴函数 $y=x^a$, $x \in [0, +\infty)$, $\alpha > 1$ 与 0<α<1的图象有何不同?</p>

Ø 比较下列两个代数式值的大小:

(1) $(a+1)^{1.5}$, $a^{1.5}$; (2) $(2+a^2)^{-\frac{2}{3}}$, $2^{-\frac{2}{3}}$.

解: (1) 考察幂函数 $y=x^{1.5}$, 在第一象限内, y 的值随x 的增 大而增大.

因为 a+1>a,

所以 (a+1)1.5>a1.5.

(2) 考察幂函数 $y=x^{-\frac{2}{3}}$, 在第一象限内, y 的值随 x 的 增大而减小.

因为 2+a²≥2,

所以 $(2+a^2)^{-\frac{2}{3}} \le 2^{-\frac{2}{3}}$.

例 2 讨论函数 $y=x^{\frac{1}{2}}$ 的定义域、奇偶性,作出它的图象. 并根据图象说明函数的增减性.

解:函数 $y=x^{\frac{3}{3}}=\sqrt[3]{x^2}$,定义域是实数集 R.

因为 $f(-x)=(-x)^{\frac{2}{3}}=[(-x)^2]^{\frac{1}{3}}=(x^2)^{\frac{1}{3}}=x^{\frac{2}{3}}$.

所以 函数 $y=x^{\frac{1}{2}}$ 是偶函数. 因此它的图象关于 y 轴对称. 作这个函数在 $[0, +\infty)$ 上的图象: 列表作图:

x	0	1	2	3	4	
у	0	1	1.59	2.08	2. 52	

再根据这个函数的图象关于 y 轴对称, 作出它的图象, 如图 3-6 所示.

由它的图象可以看出,这个函数在区间 $(-\infty, 0]$ 上是减函数,在区间 $[0, +\infty)$ 上是增函数.

习题3-3 A

1. 在同一坐标系内,作出下列函数的图象,你能发现什么?

(1)
$$y=x^{-3} \neq y=x^{-\frac{1}{3}};$$

(2)
$$y=x^{\frac{4}{4}} \neq y=x^{\frac{4}{5}}$$
.

2. 求下列函数的定义域,并判断函数的奇偶性:

(1)
$$f(x)=x^2+x^{-2}$$
;

(2)
$$f(x)=x+3x^{\frac{2}{3}}$$
;

(3)
$$f(x) = 2x + x^{\frac{1}{3}}$$
;

(4)
$$f(x) = 2x^{-4} + x^{-\frac{1}{2}}$$
.

- 3. 作出函数 $y=x^{\dagger}$ 的图象,讨论这个函数的性质.
- 4. 求函数 $y=(x+2)^{-2}$ 的定义域,并指出函数的单调区间.

习 题 3 −3 B

1. 利用幂函数的性质,比较下列各题中两个幂的值的大小:

(1) $2.3^{\frac{1}{4}}$, $2.4^{\frac{3}{4}}$;

- (2) $0.31^{\frac{4}{5}}$, $0.35^{\frac{4}{5}}$;
- (3) $(\sqrt{2})^{-\frac{1}{2}}$, $(\sqrt{3})^{-\frac{1}{2}}$;
- (4) $1.1^{-\frac{1}{2}}$, $0.9^{-\frac{1}{2}}$.

2. 作出函数 $y=x^{\frac{1}{2}}$ 的图象,根据图象讨论这个函数有哪些性质,并给出证明.

3. 参照第 53 页作函数 $y=x^{-2}$ 图象的分析,作函数 $y=(x-3)^{-2}$ 的图象,并研究这个函数的定义域和单调区间。

4. 用图象法求下列方程的近似解:

(1)
$$\sqrt{x} = x - 1$$
;

(2)
$$x^3 = x^2 - 3$$
.

幂函数与凸函数

考察幂函数 $y=x^2$ $(x \in \mathbb{R})$ 和 $y=x^{\frac{1}{2}}$ $(x \ge 0)$ 的图象,你发现它们有什么不同?

在图象上任意取两个点 $M_1(x_1, y_1)$ 、 $M_2(x_2, y_2)$, 连结 M_1M_2 , 函数 f(x)在 区间[x_1 , x_2]上的图象与线段 M_1M_2 的位置有什么关系? 变化 M_1 、 M_2 两点的位置,你能发现什么规律? (几何特征或代数特征)

画图考察,也可以在计算机上作图、探索.

我们发现,函数 $y=x^2$ 的图象是向下凸的, f(x)在 $[x_1, x_2]$ 上的图象总是在线段 M_1M_2 的下方;函数 $y=x^{\frac{1}{2}}$ 的图象是向上凸的, f(x)在 $[x_1, x_2]$ 上的图象总是在线段 M_1M_2 的上方.

通常我们把图形向下凸的函数称为凸函数, 把图形向上凸的函数称为凹函数.

关于函数的凹凸性,也可以用它的代数特征来描述:设线段 M_1M_2 所对应的函数为 y=g(x), $x\in[x_1,x_2]$. 当 $x_0\in[x_1,x_2]$ 时,关于函数 $f(x)=x^2$ 总有 $f(x_0)\leqslant g(x_0)$;关于函数 $f(x)=x^2$ 总有 $f(x_0)\geqslant g(x_0)$.

凸(凹)函数是与函数的定义域密切相关的. 例如, $y=x^3$ 在($-\infty$, 0]上为凹函数, 在 $[0, +\infty)$ 上为凸函数.

可以证明:幂函数 $y=x^{\alpha}$, $x\in[0,+\infty)$, 当 $\alpha\geq 1$ 时为凸函数, 当 $0<\alpha\leq 1$ 时为凹函数. (自己举几个例子验证一下.)

凸函数理论在现代分析和控制论中起着非常重要的作用.

计算机上的练习

结合课件1305研究以下问题:

- 1. 幂指数与函数奇偶性的关系;
- 2. 幂指数与函数单调性的关系:
- 3. 幂指数对函数定义域与函数图象的影响.

通过研究,写一篇"幂指数对幂函数性质的影响"的小论文.

指数函数、对数函数和幂函数在经济学、生物学、电学和核物 理学中都有着广泛的应用,下面举例说明:

例 1995 年我国人口总数是 12 亿. 如果人口的自然年增 长率控制在 1.25%, 问哪一年我国人口总数将超过 14 亿?

解:设 x 年后人口总数超过 14 亿. 依题意,得

$$12 \cdot (1+0.0125)^x = 14,$$

即

$$(1+0.0125)^x = \frac{14}{12}$$
.

两边取对数,得

$$x \lg 1.0125 = \lg 14 - \lg 12$$
,

所以

$$x = \frac{\lg 14 - \lg 12}{\lg 1.012} \approx 12.4.$$

答: 13 年后,即 2008 年我国人口总数将超过 14 亿.

- 例2 已知一个RC电路,电容器充电后经过电阻R放电(图 3-6), C=50 μ F, R=100 kΩ,则电容器C充电后的初始电 EU_C =6 V. 试求:
 - (1) 开始放电时的初始电流;
 - (2) 电流的时间常数;
 - (3) 电容器上电压衰减到 3 V 时所需要的时间.

分析:在图 3-6 中,先将开关合在 a 端,使电容器 C 充电,然后再将开关合向 b 端,则电容器通过电阻 R 放电.经理论分析,电容器在放电过程中,经充电已存在的两端电压 u_c 随时间按指数规

律衰减,变化曲线如图 3-7 所示,函数关系是

$$u_C=U_C e^{-\frac{t}{\tau}}$$
. (*)

其中 τ =RC,是电流的时间常数,当电阻 R 的单位是欧姆(Ω),电压的单位是伏特(V),电容 C 的单位是法拉(F)时,时间 t 的单位是秒 (s). 又知 1F= 10^6 μF ,1 k Ω =1000 Ω . 根据以上分析,可解答如下:

图 3-7

解: (1) 初始电流=
$$\frac{U_C}{R}$$
= $\frac{6}{100\times10^3}$ =6×10⁻⁵ (A) =0.06(mA).

(2) 时间常数
$$\tau = RC = 100 \times 10^3 \times 50 \times 10^{-6}$$

=5(s).

$$e^{-\frac{1}{3}} = 0.5$$
.

因此 $t=-5\ln 0.5\approx -5\times (-0.69)=3.5(s)$.

即电压减到 3 V 时, 所需时间为 3.5 s.

例3 一种放射性元素,最初的质量为 500 g,按每年 10% 衰减.

(2) 由求出的函数表达式,求这种放射性元素的半衰期(精确到 0.1).

剩留量为原来 的一半所需要的时 间叫做半衰期.

解: (1) 最初的质量为 500g,

经过1年, $w=500(1-10\%)=500\times0.9^{1}$,

经过2年, $w=500\times0.9^2$,

由此推知, t年后, w=500×0.9'.

(2) 解方程 500×0.9 = 250.

$$0.9' = 0.5,$$

$$\lg 0.9^t = \lg 0.5$$

$$t \log 0.9 = \log 0.5$$
,

$$t = \frac{\lg 0.5}{\lg 0.9} \approx 6.6.$$

即 这种放射性元素的半衰期约为 6.6 年.

例 设流过二极管的电流为 I, 加在它两端的电压为 U, 我们知道 I 是 U 的函数,即 I=f(U). 这种函数关系称为二极管伏安特性. 通过实验,测得某二极管 I 与 U 的关系为:

GAOZHONGSHUXUE

正向

U (V)	0	0. 25	0.50	0.75	1
I (mA)	0	1	5	12	20

反向

U (V)	0	-5	-10	 -100	-105
Ι (μΑ)	0	-1.0	-1.0	 -1.1	-100

- (1) 画出对应值表对应的函数图象;
- (2) 分析函数的性质.

解: (1) 由上述的对应值表,在 UOI 的直角坐标系中描点,并 用光滑的曲线连结,就可作出这个函数的图象,如图 3-8(1)、(2) 所示.

图 3-8

(2) 由函数的图象可以看出:

- (i)在二极管的两端加正向电压时,电压从 0逐渐升高,对应的电流逐渐增大,而且变化的速度越来越快,在外加电压达到一定的数值后(约 0.7V),图象近似于直线,函数值直线上升(图 3-8 (1));
- (ii) 在二极管两端加上反向电压时,只要外加电压小于 100(V),电流 $I \approx 0$; 当外加电压大于 100(V)时,电流突然增大 (这时表明二极管被击穿)(图 3-8(2)).

如何建立数学模型

我们在研究函数概念时,曾举我国农业科学家研究玉米的生长阶段与植株高度的函数关系的例子,这里我们再进一步研究此例,引导大家学习建立数学模型的方法。

下表给出了某地区玉米在不同生长阶段的高度数据:

生长 阶段	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
植株 高度 (cm)	0. 67	0.85	1. 28	1. 75	2. 27	2. 75	3. 69	4. 71	6. 36	7. 73	9. 91	12. 75	16. 55	20. 1	27. 35	32. 55
生长阶段	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
植株 高度 (cm)	37. 55	44. 75	53, 38	71. 61	83. 89	97. 46	112. 73	135. 12	153. 6	160. 32	167. 05	174. 9	177. 87	180. 19	180. 79	

- (1) 作出函数图象, 近似地写出一个函数关系式表达两个变量之间的关系;
- (2) 利用得出的关系式列表;
- (3) 与表中实际数据比较,说出关系式给出的一些信息.

解: (1) 作出函数图形,如图所示.函数的图形近似于"S"形.

以我们现有的知识很难找出一个函数关系式来近似地表达这个图象,但我们仔细观察第 1个生长阶段至第25个生长阶段的函数图象后会发现,它与我们比较熟悉的指数函数的图 象相象.

下面我们来考虑给出第1至第25个生长阶段的一个指数函数关系式。

假设指数函数为 $y=ae^{bx}$,

并且通过点(2, 0.85)和 (23, 112.73). 把这两个点的坐标代入函数关系式, 解方程组得

$$a=0.534$$
, $b=0.233$.

因此,用指数函数近似得到的关系式为

$$y=f(x)=0.534e^{0.233x}$$
.

(2) 由得到的关系式计算出各个生长阶段的近似值如下:

生长阶段工	1	2	3	4	5	6	7	8	9	10	11	12	13
函数值 f(x)	0. 67	0. 85	1.07	1. 36	1.71	2. 16	2. 73	3. 44	4. 34	5. 48	6. 92	8. 74	11.03
生长阶段工	14	15	16	17	18	19	20	21	22	23	24	25	
函数值 f(x)	13. 93	17. 58	22. 2	28. 02	35. 37	44. 66	56. 37	71. 16	89. 84	113. 41	143. 17	180. 73	

(3)从表中我们可以清楚地看出。第1到第6个生长阶段与实际得到的数据相差很小, 后面除第23生长阶段外的其它生长阶段数据相差较大。

这个指数函数在玉米生长的后几个阶段增长较快,与实际数据中稳定于某一数值附近 不符.

要得到效果更好的关系式,我们需要更多的数学知识.

人们在实际生活中发现生物种群的增长也有类似玉米株高生长的"S"形曲线。如 SARS(非典型肺炎)病的传播,时间与病例数的关系,科学家们研究发现这类曲线近似于以 下函数:

$$y = \frac{k}{1 + ce^{-rx}}$$
.

这类函数称为 Logistic 模型.

对于玉米生长的这组数据,也可以建立 Logistic 模型,玉米的整个生长过程近似于函数

$$y = \frac{300}{1 + 393.06e^{-0.23x}}$$
.

Logistic 模型在现实生活中有很多应用. 例如,它可以预测生物生长状况,这对我们了解生物生长发育情况,控制和预防疾病都有很大帮助.

习题3-4 A

- 一种产品的年产量原来是a件,在今后的m年内,计划使年产量平均每年比上一年增加p%.写出年产量随着年数变化的函数关系式.
- 一种产品原来是 a 元,在今后的 m 年内,计划成本每年比上一年降低 p%.写出成本随着年数变化的函数关系式。
- 3. 把物体放在冷空气中冷却,如果物体原来的温度是 θ_1 摄氏度,空气的温度是 θ_0 摄氏度,t分钟后物体的温度 θ 摄氏度可由公式

$$\theta = \theta_0 + (\theta_1 - \theta_0) e^{-kt}$$

求得,这里 k 是一个随着物体与空气的接触状况而定的正的常量,现有 62 ℃物体,放在 15°的空气中冷却,一分钟后,物体的温度是 52 ℃。求上式中的 k 值;然后计算开始冷却后多少分钟时,物体的温度是 42 ℃,32 ℃,22 ℃,15.1 ℃ (保留一个有效数字)。物体会不会冷却到 12 ℃?

- 4. 深圳特区 1980 年生产总值为 2.7 亿元, 1999 年生产总值为 1 436.51 亿元, 问 19 年中每年平均增长百分之几?
- 已知镭经过100年剩留原来质量的95.76%,计算它约经过多少年剩留一半(结果保留4个有效数字).

习题3-4 B

- 一个乡去年粮食平均每公顷产量是6125 kg,从今年起的5年内,计划平均每年比上 一年提高7%,问约经过几年可以提高到每公顷7500 kg(结果保留一位有效数字).
- 2. 仓库库存的某种商品价值是50万元,如果每年的损耗率是4.5%(就是每年比上一年减少库存品价值的4.5%)那么经过几年,它的价值降为20万元(结果保留两个有效数字)?
- 3. 设在离海平面高度x米处的大气压是y毫米水银柱高,y与x的函数关系是 $y=Ce^{kx}$,

这里 C、k 都是常量. 已知某地某天在海平面与 1 000 m 高空的大气压强分别是 760 mm及 675 mm 水银柱高,求在 600 m 高空的大气压强,又求大气压强是720 mm 水银柱高处的高度(结果都保留 3 个有效数字).

- 4. 一个已充电的电容器,经过电阻 R 放电,已知 C=50 μF, R=10 k Ω ,电容器的初始电压 $U_C=6$ V.试求:(1)开始放电的初始电流;(2)电路的时间常数;(3)电容器的电压衰减到1.5 V所需的时间.
- 5. 一电容器每秒放电 90%, 约多长时间后剩下电量为原有电量的 1/5? 你能快速回答这

个问题吗?

6. 据世界人口组织公布,地球上的人口在公元元年为2.5亿,1600年为5亿,1830年为10亿,1930年为20亿,1960年为30亿,1974年为40亿,1987年为50亿,到1999年底,地球上的人口数达到了60亿.请你根据20世纪人口增长规律推测,到哪年世界人口将达到100亿?到2100年地球上的人口总数将会有多少?

1

实习作业

1. 调查函数概念的形成与发展

要求:分成小组,分别收集十七世纪笛卡儿、牛顿、莱布尼茨等数学家对变量 关系研究的资料(包括当时的社会背景,他们的研究成果及其对数学发展的贡献, 他们的科学精神、科学方法等),在小组交流的基础上,每人自定题目写成小论文, 全班进行交流.

2. 研究温度变量与时间变量之间的函数关系

要求:分成小组,记录当地某一天 24 h 内温度变化的数据,对数据进行分析处理,建立函数关系,对其说明解释,写出实习报告.下面给出实习报告的一个样式,供同学们参考.

实习报告

年 月 日

題 目	
实际问题	
数据处理	
建立函数关系	
说明与解释	
负责人及 参加人员	
指导教师 审核意见	

本章小结

I 知识结构

II思考与交流

- 1. 解释整数指数幂、分数指数幂、无理指数幂的意义. 将指数概念从正整数扩展到实数时, 对底数的要求有什么变化? 为什么?
- 2. 比較($\sqrt[n]{a}$)"和 $\sqrt[n]{a}$ "(n>1,且 $n\in \mathbb{N}_+$),指出它们的区别并求值.
- 比较幂的运算法则和对数的运算法则,举例说明,应用幂的运算法则有时能简化分式、根式计算的原因,及应注意的问题.
 - 4. 应用对数的定义证明:
 - 対数恒等式 a^{log},y=y;
 - (2) 对数的三条性质.
- 5. 什么叫常用对数? 自然对数? 什么是换底公式? 简述换底公式在解决相关计算问题中的作用.

6. 用列表的方法比较指数函数与对数函数。(下表供参考)

	指责	枚函数	对數函數		
	a>1	0 <a<1< th=""><th>a>1</th><th>0<a<1< th=""></a<1<></th></a<1<>	a>1	0 <a<1< th=""></a<1<>	
定义					
定义域		THE PARTY			
值域			19/5		
图象	A de la constante de la consta				
与坐标轴的交点	p . Maria		Marie Sales		
单调性					

通过指数函数与对数函数的比较,总结出互为反函数的两个函数在定义域、值域、图象、性质等方面的关系,并与同学交流.

- 7. 找两个生活中的例子,分别说明指数爆炸和对数增长的含义.
- 在同一坐标系内,分别画出下列各组幂函数 y=x° 的草图. 分析图象,找出它们的差异:
 - (1) $\alpha_1 = 1$, $\alpha_2 = -1$;
 - (2) $\alpha_1 = 2$, $\alpha_2 = 3$;
 - (3) $\alpha_1 = 4$, $\alpha_2 = \frac{1}{4}$, $\alpha_3 = 1$.
- 通过这两章的学习,你能总结出研究基本初等函数的一般 思路和方法吗?

111 巩固与提高

- 1. 判断下列命题的真假:
 - (1) $a^0 = 1(a \in \mathbf{R});$
 - (2) $a^{\frac{a}{n}} = \sqrt[m]{a^n} (a > 0);$
 - (3) $(-1)^{2n+1} = -1(n \in \mathbb{Z});$
 - (4) $a^m b^n = (ab)^{mn}$;
 - (5) $125^{\frac{2}{3}} = 25$;
 - (6) $(x+y)^3 = x^3 + y^3 + 3xy(x+y)$;
 - (7) $a^5 > a^3 (a > 0, \mathbb{L} a \neq 1);$
 - (8) 函数 y=2-x是减函数;
 - (9) 对任何指数函数都有 $f(x_1 \cdot x_2) = f(x_1) \cdot f(x_2)$;

→ 第三章 基本初等函数

- ionuale i
 - (10) y=2x 的最小值是0;
 - (11) $\frac{\log_2 x_1}{\log_2 x_2} = \log_2 x_1 \log_2 x_2$;
 - (12) $\log_2 3 = \frac{1}{\log_3 2}$;
 - (13) 函数 $y = \log_2(-x)$ 的定义城是(0, + ∞);
 - (14) 如果 log_a5>log_a7, 则 a<1;
 - (15) 函数 $y = \log_3 x$ 的递增区间是[0, + ∞);
 - (16) log_{0.1}5>log_{0.1}2;
 - (17) 零和负数无对数;
 - (18) 方程 $2^{x-1}=1$ 的解集是 $\{1\}$;
 - (19) 方程 log₂x=-1 无实数解;
 - (20) 函数 $y=2^x$ 与 $y=2^{-x}$ 的图象关于 y 轴对称.

2. 填空:

- (1) $8^{\frac{2}{3}} = _{_{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}};$
- (2) $3^{\frac{5}{3}}3^{\frac{4}{3}} =$;
- (3) 所有指数函数的图象都通过点____;
- (4) 所有对数函数的图象都通过点 ;
- (5) 所有幂函数的图象都通过点 ;
- (6) $\log_2 0.25 =$;
- (7) 如果 $\log_{\frac{1}{3}}x = \frac{4}{3}$, 则 $x = ____;$
- (8) 已知 lg 2=0.301 0, lg 3=0.477 1, 则 lg 6=;
- (9) 函数 $\nu = \sqrt{\log_{+}(x-1)}$ 的定义域是 :
- (10) $\log_2 20 \log_4 25 =$ ____.

3. 求下列各式的值:

- (1) $\sqrt{5} \times \sqrt[3]{25} \times \sqrt[6]{25}$;
- (2) log₃2 log₂5 log₅3;
- (3) $\log_2(\log_2 32 \log_2 \frac{3}{4} + \log_2 6)$.

4. 求下列函数的定义域:

(1)
$$y=8^{\frac{1}{2r-1}};$$
 (2) $y=\sqrt{1-\left(\frac{1}{2}\right)^r};$

- (3) $y = \log_a(2-x)$ (a>0, $\mathbb{L} a \neq 1$);
- (4) $y = \log_a (1+x)^2$ (a>0, $\mathbb{L} a \neq 1$).
- 5. 在空格中填上相应的名称,并体会指数与对数的关系:

	a (a>0, a≠1)	ь	N (N≥0)
$a^b = N$			3871860
$\log_a^N = b$			

- 6. 画出函数 $y=3^{-x}$ 与 $y=\log_{\frac{1}{3}}x$ 的图象,不求值,比较 $3^{-\frac{1}{7}}$ 与 $\log_{\frac{1}{3}}\frac{4}{6}$ 的大小.
- 已知方程 x²-2(log₃N+1)x-log₃N=0 有两个不相等的实根, 试求 N 的值。
- 8. 在同一坐标系中,画出函数 $f(x) = \log_2(-x)$ 和 g(x) = x+1 的图 象. 当 f(x) < g(x) 时,求 x 的取值范围.
- 9. 求证.

$$f(x) = \frac{a^x - a^{-x}}{2} (a > 0, a \neq 1)$$
是奇函数.

- 10. 如果函数 y=f(x)的定义城是[1, 3], 求函数 $y=f(\lg x)$ 的定义城。
- 11. 上海浦东开发区 1990 年国内生产总值为 60.24 亿元,到 1999年底国内生产总值就达到 800.05 亿元,求这 9 年的平均增长率(保留 3 个有效数字)。
- 12. 某种产品销售收入 R(纯利润)与广告支出 A 之间有关系式: $R=10^{\frac{1}{2} \lg A + \lg 25}$, 试比较当 A 取值 $A_1=100$, $A_2=156.25$, $A_3=169$ 时,所得纯利润的大小.
- 13. 用二分法求函数 $f(x) = \ln x + x 3$ 的一个零点(误差不超过 0.01).
- 14. 用二分法求函数 $f(x)=2^x+x-3$ 的一个零点(误差不超过 0.01).

IV 自测与评估

- 1. 选择题:
 - (1) √(lg 8-1)²的值等于().
 - (A) $\lg 8-1$ (B) $1-\lg 8$ (C) $\lg 7$
 - (2) 若 $a^{\frac{1}{2}}=b(a>0, a\neq 1)$, 则().
 - (A) $\log_a \frac{1}{2} = b$ (B) $2\log_a b = 1$
 - (C) $\log_{\frac{1}{2}} a = b$ (D) $\log_{\frac{1}{2}} b = a$
- 2. 已知 $f(x)=3^x$, 求证:
 - (1) $f(a) \cdot f(b) = f(a+b);$ (2) $f(a) \div f(b) = f(a-b).$

(D) 2

- 3. 判断函数 $f(x) = \frac{(a^x + 1) x}{a^x 1} (a > 0, a \neq 1)$ 的奇偶性.
- 4. 已知下列不等式, 比较 m、n的大小:
 - (1) $2^m < 2^n$:

- (2) $\log_{0.2}m > \log_{0.2}n$:
- (3) $a^m < a^n$ (0<a<1); (4) $\log_a m > \log_a n$ (a>1).
- 5. 已知 $\log_2[\log_3(\log_4 x)] = \log_3[\log_4(\log_2 y)] = 0$, 求 x+y=?
- 6. 设函数 $f(\lg x)$ 的定义城是[0.1, 100], 求函数 $f(\frac{x}{2})$ 的定义城.
- 7. 设函数 $f(x) = \begin{cases} 2^{-x} 1 & x \leq 0 \\ x^{\frac{1}{2}} & x > 0 \end{cases}$, 如果 $f(x_0) > 1$, 求 x_0 的取值 范围,并画图加以说明.
- 8. 中国人民银行某段时间内规定的整存整取定期储蓄的年利率如

存 期	1年	2年	3年	5年
年利率 (%)	2. 25	2. 43	2.70	2. 88

个人存款取得的利息应依法纳税 20%, 某人存入银行 5000 元, 存期3年,试问3年到期后,这个人取得的银行利息是多少?应 纳税多少?实际取出多少?

对数的发明

对数的创始人是苏格兰 数学家纳皮尔(J. Napier 1550—1617). 他对数字计 算很有研究, 他发明的球面 三角中"纳皮尔比拟式"、 "纳皮尔算筹"在当时都很

有名,而贡献最大的发明是对数.

1614年,纳皮尔出版了《奇妙的对数》,在 前官里,纳皮尔告诉我们他发明对数的动机。

没有什么比大数的乘、除、开平方或开立方

运算更让数学工作者头痛、更阻碍计算者了. 这 不仅浪费时间,而且容易出错. 因此,我们开始 考虑怎样消除这些障碍. 经过长时间的思索,我 练干找到了一些漂客的简短法则......

奇怪的是,纳皮尔发明对数是在指数的书写 方法发明之前完成的. 一直到18世纪,瑞士数学 家欧拉(Euler,1707—1783)才发现指数与对数的 联系,他指出"对数源于指数",这个见解很快 被人们接受,如今,人们大都先学指数再学对 数,但这并不符合它们发展的历史顺序.

对数的功绩

对数 $b = \log_n m$ 是实数,其中b、a、m 的关系是 $m = a^b$. 对数具有一种奇妙的性质:可以把高一级的乘、除、乘方、开方运算分别转化为低一级的加、减、乘、除运算,进行大量的计算时,对数的这种功能可使计算的效率成倍的根据。

比如计算 2⁶⁴的近似值,若用 64 个 2 连乘,其 繁难与费时可以想象,如果利用 lg 2⁶⁴ = 64 · lg 2 = 64 × 0.301 0,求出对数值,再查反对数表就可求出 2⁶⁴的近似值,就可以体会到对数在数字计算上的优越性。

早在公元前 200 多年, 阿基米德就注意到 1, 10, 10², 10³, 10⁴, …与 0, 1, 2, 3, 4, …之间 的对应关系. 这是关于对数的原始思想. 到 17 世 纪初叶,商业、工业的兴起促进了天文学、力学等学科的发展,在航海、天文观测、透镜设计和 拋物体运动等实际工作中,出现了大量极繁杂的 计算,耗去了工作人员的大量时间.提高计算效率成了当务之急.苏格兰的纳皮尔(J. Napier 1550—1617)在 1594 年产生了把乘、除计算归结为加减运算的想法.经过研究他发现了对数,揭示了对数的理论,并认识到对数的广泛应用在于提供对数表.以后 20 年间,他埋头于对数的计算,于 1614 年造出了以一个为底的八位对数表。与此同时,端士人比尔吉(1552—1632)也做了类似的工作.1615 年英国人布里格斯(1561—1631)看手编造以 10 为底的常用对数表。他尽毕生努力

AOZHONGSHUXUE

拿出了分段的十四位常用对数表,余下的一大段 常用对数表是由荷兰人佛郎哥 (1600—1667) 在 1628 年宗成的。

编造对数表有如此之难吗?是的,当时只能 使用初等数学的方法,一个人进行笔算,仅求5 的对数就需完成22次开方运算,要拿出完整的对 数表,其难度之大是可想而知的。

后来有了高等数学,利用级数理论中的公式 $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + \cdots$

(-1 < x < 1).

求对数值就容易多了,

三百年来,世界科技界一直把对数作为不可 缺少的工具,它把科学家们从繁杂的计算里解放 出来,等于延长了科学家的生命,对数为人类劳动生产率的提高做出了巨大的贡献,

现在科学技术又发展到一个新的阶段,随着 计算机科学的快速发展,计算机功能愈来愈强 大. 求一个数的对数,进行一些繁难的计算,简 单到只要按一下计算器上的按键就可以了. 如求 x= lg 964 的近似值,只要在计算器上按顺序 按键:

ON	log	9	6	4	=
----	-----	---	---	---	---

显示屏上就可给出答案: 2.984077034.

反之,要求 10^{2.984 08} 的近似值,只要按顺序 按键:

			_		_	_					
ON	1	0	xy	2		9	8	4	0	8	=

显示屏上就可给出答案: 964.0065838.

科学计算自由软件--SCILAB 简介

科学计算软件,现已在工程和科学研究中得到了广泛的应用,同时也成为教师和学生的必备工具.这里我们向大家介绍由法国国立信息与自动化研究院推出的科学计算自由软件—Scilab. "科学无国界"、"科学成果是人类共同努力的结晶",基于这种共识,法国科学家正与我国科学家合作,推广这一软件,期望这一自由软件能使中国科学工作者、教师和学生受益,并参与这一软件的继续研究与开发.

Scilab 是一个非常优秀的科学计算软件. 它不仅能解决各种各样的计算问题, 而且能使计算过程和计算结果可视化,同时还能模拟一些事物的变化过程. 我们希望 Scilab 能成为你很好的朋友,时刻伴随着你,帮助你学好数学. 如果你还没有这个软件,请访问 Scilab 主页;

http://www.inria.fr/scilab/或中法实验室主页:

http://liama.ia.ac.cn/scilab/.

在这些网站上,可下载最新版本的 Scilab 软件, 当前最新版本为 3.0. 下面我们对 Scilab 做一简要的介绍,这里只是给大家引路, 如果想更深入地学习,请参考网站上介绍的有关书籍。

当前 Scilab 没有汉化,一般在英文状态下使用.

1. 数值的四则运算与数组

Scilab 的界面与 Windows 的一些应用软件基本相同。这里不做介绍。界面主要 包括菜单栏和工作窗口。各菜单用英文标记。点击菜单后还会看到下拉菜单的内容。

1.1 四则运算

Scilab 的工作界面, 你可以把它作为一个计算器, 在其上可以进行各类科学计算, 计算完可以保存, 需要时还可打印出来,

例 1 计算: 3+6-7×2+12÷3.

解:运行 "Scilab". 在命令行输入算式:

-->3+6-7 * 2+12/3 //新

//输入算式时, "×" 号用 "*" 号替代, "÷" 用 "/" 符号替代, 按 Enter 键, 即 生成计算结果. ans =

-1.

// ans 英语 answer 的缩写, 意思是"答", Scilab 把它作为生成计算结果的默认变量 名称。

例 2 计算[5+3×(12-7)]÷4. 解: 在命令行输入算式:

--> (5+3*(12-7))/4

//注意:在表达式中,外层的中括号,仍输 入小括号, 碰到大括号也是输入小括号, 被除式(分子)或除式(分母),如果是运算 式,要用小括号括起来,告诉计算机进行 优先计算,

ans =

5.

0

0

0

从以上计算可以看到,只要正确地输入算式,按 Enter 键立刻就可得到计算结果,如果你遇到繁难的数值计算,不妨让 Scilab 替你代劳.

1.2 数值、变量和表达式

数值、变量和表达式的含义与数学上的含义基本相同.

Scilab 的数值采用十进制. 精确度的默认值为小数点后7位.

给变量命名,第一个字母必须是英文字母.

在命令行输人:

--> a = 2/3

a =

. 6666667

运算结果,分数值 $\frac{2}{3}$ 以它的近似值 0.6666667 储存起来,以便下面计算时调 用。 这时变量 a 取值为 0.6666667

变量 a 的值一直保存到给 a 重新赋值或用命令 "clear"清除.

如果在命令行输入 "clear", 按 "Enter" 键, 则清除 Scilab 临时保存的所有变量.

1.3 数组及其在计算中的应用

如果算式只是求和, Scilab 可把各个加數输入到中括号内, 两數之间用空格或逗号分开, 然后给这组数起个名称。例如, 求 2+3-5+8, 可在命令行输入:

-->a=[2 3 -5 8]; //如果在命令行输入结束后,输入分号,则命 令计算机储存但不显示输入结果.

0

0

0 // "sum" 是 Scilab 的一条命令,命令计算机求 - -> sum(a) 数组 a 中各项的和. ans = 8. 0 向命令行输入的[2 3 -5 8]称为数组、数组中的数,除用空格分隔外,还可 用逗号分隔. 如以上数组可输入 [2, 3, -5, 8]. 创建数组和利用数组进行计算是 Scilab 的重要特色和核心内容. 同学们一定要 0 学会它的输入方法。在 Scilab 界面上,数组排列有横排和竖排两种,分别称为行数 组和列数组. 在 Scilab 中还有多行多列组成的数组, 称为多维数组, 这里我们暂不 提及, 一行或一列数组统称为一维数组, 行向量或列向量的输入方法如下: 在命令行输入: a=[1, 2, 3, 4, 5] //按 Enter, 生成行向量. a = ! 1. 2. 3. 4. 5.! 输入 -->b=[1; 2; 3; 4; 5] //数字之间用分号分开,这时分号表示此行数据

至此结束,后面的数据(若有的话)为下一行的 数据. 按 Enter, 生成列向量.

b =! 1. ! ! 2. ! ! 3. ! ! 4. ! ! 5. !

0

0

0

0

0

上面输入数组是逐个元素输入, 有些特殊的数组可用冒号":" 生成, 例如 输入:

-->c=1: 0.5: 4 //按 Enter, 生成行向量. c =

1 1. 1. 5 2. 2. 5 3. 3. 5 4. 1

这种生成方式表明,在1和4之间按间距0.5生成一个行向量,中间的数字0.5 称作这个向量的步长.

下面举例说明数组在计算中的应用。

例 3 (1) $\diamondsuit x = -3$, -2.5, -2, ..., 2, 2.5, 3, \vec{x} \vec{x}^2 值.

(2) $x=\pi$, 求 x^2 的值. 解。(1) 在 Scilab 的命令行、输入行向量。 -->x=-3, 0, 5, 3**v**= column 1 to 12 (显示行中第 1 至第 12 个元素) ! - 3 - 2.5 - 2 - 1.5 - 1 - 0.5 0 0.5 1 1.5 2 2.5!column 13 (显示第 13 个元素) 1 3. 1 $-->v=x^2$ //注意 x2 是如何输入的。 v =column 1 to 11 1 9. 6, 25 4. 2, 25 1. , 25 0. , 25 1. 2, 25 4 1 column 12 to 13 ! 6. 25 9. ! 行数组 v 中每一个元素与行数组 x 中的元素相对应、即 f(-3)=9, f(-2,5)=6,25, ..., f(3)=9. (2) 输入: --> x = % pi: // %pi 表示圆周率 n 的近似值 3, 141 592 7, $--> y=x^2$ 0 y =9.8696044 由此可见, 使用数组计算一组变量的函数值非常方便, 如果你想保留你的计算作业,你可点击界面上部的标有"File"(文件)的按钮, 再在下拉菜单中点击 "save" (保存)存盘, 如果第一次存盘, 计算机还要求你给文 件命名. 练习 1. 计算: (1) 1+3+5+7+9+11: (2) 5-3+7+28-315+300: (4) $\frac{1}{2} + \frac{4}{5} - \frac{6}{11} + \frac{7}{13}$. (3) $2 \times 3 + 4 \times 5 - 15 \div 3$;

2. $x=-2, -1.8, -1.6, \cdots, 1.6, 1.8, 2$, $x=4, y=x^2, z=x^2+2x-8$ 的值.

1.4 函数命令

我们知道,函数是一个数集中的元素生成与另一数集中元素的对应法则,两个 实数的加、减、乘、除四则运算都可看成一对数偶构成的集合到实数集的对应法则, 实质上,Scilab就是一种函数语言。编程人员按照计算法则编写各种各样的计算程序,生成各种函数供我们使用。

Scilab 中许多函数都有专门的名字供我们直接调用. 下面举例说明.

```
【求平方根】指令为 sqrt().
```

例如,在 Scilab 命令行输入:

-->sqrt(2)

//按 Enter 铣.

ans =

1.4142136

 $\mathbb{E}\sqrt{2} = 1.4142.$

【求数的绝对值】指令为 abs().

例如,在 Scilab 命令行输入:

-->abs(-3)

//按 Enter 键.

ans =

3.

||P|| - 3| = 3.

【求幂】若求某常数 a 的幂, 先输入 a, 再输入向上的箭号"", 最后输入幂的 指数, 若幂的底数为 e, 则直接输入 exp().

例如,在 Scilab 命令行输入,

 $-->2^{\circ}(2/3)$

//按 Enter 键.

ans =

1.5874011

求 e3. 在 Scilab 命令行输入:

 $--> \exp(3)$

//按 Enter 键.

ans =

20, 085537

【求以 10 为底的常用对数】指令为 log10().

例如,求 lg 5,在 Scilab 命令行输入:

 $-->\log 10$ (5)

//接 Enter 键.

ans=

. 69897

【求以 e 为底的自然对数命令】指今为 log()。 例如,求 ln8,在 Scilab 命令行输入。 $-->\log(8)$ //按 Enter 键. ans = 2.0794415 【日期】指令为 date(). 如果忘记今天是几月几号,不妨在命令行输入: -->date() //按 Enter 银. ans = 17-Sep-2003 【求多项式函数的零点】roots(). 在 Scilab 中、输入一个多项式分两步。 (1) 定义多项式的变量,例如: x=poly (0, 'x'); (2) 输入多项式,例如: p=2-3 * x+x-2. 于是,求函数 $f(x)=x^2-3x+2$ 零点,在 Scilab 命令行输人. --> x = poly(0, 'x'); $--> p=2-3 * x+x^2;$ --> roots(p)//接 Enter 键. ans = ! 1. ! 1 2. 1 0 这个函数的零点为: x=1 或 x=2. 【解一次方程组】指令为 inv(). 在 Scilab 中,解方程组,首先要输入方程组中的系数数组和常数项构成列数组。 然后用指令 inv()*(), 前一个括号内输入未知数系数构成数组的变量名, 后一括 号内输入列数组的变量名,括号可以不输入。 例如,解方程组 $\begin{cases} x+3y=-7 \\ 2x-5y=19 \end{cases}$,在 Scilab 命令行输人: -->A=[1, 3; 2, -5]; -->B=[-7: 19]: -->inv(A) * B ans = ! 2. ! ! - 3. !即此方程组的解为 x=2, y=-3.

在 Scilab 中现已有几百条函数命令,以后我们将有机会陆续学习如何使用它们.

练习

- 1. 计算:
 - (1) 21.5, 31.2, 0.33.3:
 - (2) lg 23, lg 345, ln 8.3;
 - (3) lg 2, lg 16, lg 32,
- 2. 求下列函数的零点:
 - (1) $f(x) = x^3 x^2 5x + 6$;
- (2) $f(x) = 3x^3 x^2 + 5x 8$,

3. 解方程组:

0

0

0

0

- (1) $\begin{cases} 2x 3y = -10 \\ 2x + 7y = 56 \end{cases}$
 - x+3y-z=4
- (3) $\begin{cases} 2x+5y+3z=21\\ 3x-y-z=-2 \end{cases}$
- (2) $\begin{cases} 2x 3y = -5 \\ 3x + y = 3.5 \end{cases}$
 - 5x 7y + 2z = -39
- (4) $\begin{cases} 2x 7y + 11z = -108 \\ x + y + z = 0 \end{cases}$

2. 函数图形的绘制

plot 是绘制平面图形的最基本的指令. 它的基本格式为:

(1) plot(Y)

如果 Y 为一数组、则以 Y 的元素为纵坐标,以相应元素的下标为横坐标值绘制。

(2) plot(X, Y)

如果 X 和 Y 为两个数组,则其中 Y 是 X 的函数.

(3) plot2d(X, Y)这里 X, Y 的意义同上,分别代表 X 和函数 Y 的计算法则.

$$-->$$
plot(x, x³ $-2*$ x² $-5*$ x+6)

plot2d 与 plot 用法类似,用 plot2d 可在同一坐标系中,同时绘制多条曲线.

$$-->$$
plot2d(x, [x-3, $-2 * x-2, -5 * x+6])$

3. 程序控制语句

一般说来,前面两节讲的数值计算、函数调用命令等都是按顺序执行的,但 是,有时我们需要计算机按照某种条件的成立与否。有选择地执行某些语句或者 重复执行某些语句。 为此,Scilab 提供了选择控制语句和循环控制语句以满足这种 需求,下面我们仅通过 i i 语句和 for 语句来简单地介绍 Scilab 中选择控制语句和循 环控制语句的语法形式及其功能。

3.1 if 语句

if 语句的基本语法形式为:

if 条件表达式

语句序列;

end

该语句的功能为,如果条件表达式的结果为真,则依次执行其后面的语句序列,如果该表达式的结果为假,则不执行其后面的语句序列,如果希望在表达式的结果为假时执行其他语句,则应该使用如下形式的 计语句;

if 条件表达式 语句序列 1; else 语句序列 2; end

此时当条件表达式的结果为真时,依次执行语句序列 1,然后结束本 ii 语句;如条件表达式的结果为假时,则依次执行语句序列 2,然后结束本 ii 语句. 应该注意的是 ii 语句的书写格式,如果将条件表达式及语句序列写在同一行,则需要在条件表达式后加上关键字 "then"或","以示分隔;

if 条件表达式 then 语句序列; end

或者

0

0

0

0

if 条件表达式,语句序列; end

例 1 一运动物体, 其运动速度为时间 t 的函数:

$$v = \begin{cases} 5 & 0 \leq t < 5 \\ 5 + 10(t - 5) & t \geq 5 \end{cases}$$

对任意给定的 $t(t \ge 0)$, 试写出求这个物体在t 时刻的速度的程序语句.

解:在 Scilab 命令行,直接输入

$$-->$$
t=input(" t=:"); if t<5 v=5; else v=5+10 *(t-5); end; disp(v) t=: $-->$ 4

5.

$$-->$$
t=input(" t=:"); if t<5 v=5; else v=5+10 *(t-5); end; disp(v) t=. -->8

35.

其中 disp 是 Scilab 的输出命令.

3.2 for 语句

for 语句的基本语法形式为:

for 循环变量=初值:步长:终值 循环体

end

for 语句的执行过程可描述如下: 先对循环变量赋初值, 然后与循环变量的终值 进行比较. 若比较的结果为真, 则执行循环体, 然后循环变量 "增加" 一个步长值. 再与循环变量的终值进行比较, 若比较为真, 再执行循环体, 循环变量再"增加" 一个步长值. 依此类推, 循环往复, 直到循环变量与终值的比较为假时停止. 应该 指出的是, 若将 for 语句写在一行, 则必须在终值之后增写关键字 "do"或",", 以 示分隔, 具体形式如下;

for 循环变量=初值:步长:终值 do 循环体 end

业

0

0

0

0

for 循环变量=初值:步长:终值,循环体 end 另外,若循环变量每次"增加"的步长为1,则此时步长可以缺省:

for 循环变量= 初值:终值

循环体

end

值得注意的是,在 for 语句中,若步长为正值,则仅当初值小于或等于终值时,循环体才能够被执行,若步长为负值,则必须初值大于或等于终值时循环体才能被执行,这可以从我们关于 for 语句的执行过程中看出来,也可以从数学 3 算法初步一章中的循环语句的框图中看出来.

例 2 输出 1~9 的平方根表.

解:在 Scilab 命令行,直接输入

-->for i=1:9, A(1, i)=i; A(2, i)=sqrt(i); end; disp(A) //按 "Enter" 键. column 1 to 6

1. 2. 3. 4. 5. 6. !

1. 1.4142136 1.7320508 2. 2.236068 2.4494897 !

3.

column 7 to 9

7. 8. 9. !

2. 6457513 2. 8284271

其中 A(1, i), A(2, i)分别表示当 i 从 1 取到 9 时,第一行数组和第二行数组.

0

部分中英文词汇对照表

集合(集)

元素

属于 不属于

空集 有限集

无限集

非负整数集

自然数集 正整数集

整数集

m # .

有理数集 实数集

头奴朱 子集

包含

包含于

真子集 维恩图

交集 并集

全集

补集

自变量 函数

定义域

值域

set

element

belong to

not belong to empty set

finite set

infinite set

immite set

the set of all non-negative integers

the set of all natural numbers

the set of all rational numbers

the set of all integers

the set of all rational numbers

the set of all real numbers

subset

inclusion, include

lie in

... ...

proper subset Venn diagram

intersection

union

universe

complementary set

argument

function

domain

range

区间 interval 闭区间 closed interval 开区间 open interval 函数的图象 graph of function 映射 mapping 一一映射 bijection 2 image 原象 inverse image 列表法 tabular method 图象法 graphical method 解析法 analytic method 分段函数 segment-function 增函数 increasing function 减函数 decreasing function 单调 monotone 单调区间 monotone interval 奇函数 odd function 偶函数 even function 一次函数 linear function 二次函数 quadratic function 零点 zero point 二分法 bisection method 指数 exponent n次方根 nth root 根式 radical 根指数 radical exponent 被开方数 radicand 指数函数 exponential function 对数 logarithm 常用对数 common logarithm 自然对数 natural logarithm 对数函数 logarithmic function 反函数 inverse function

后记

根据教育部制订的普通高中各学科课程标准(实验),人民教育出版社课程教材研究所编写的各学科普通高中课程标准实验教科书。得到了诸多教育界前辈和各学科专家学者的热情帮助和大力支持。在各学科教科书终于同课程改革实验区的师生见面时,我们特别感谢担任教科书总顾问的丁石孙、许嘉璐、叶至善、顾明远、吕型伟、王梓坤、梁衡、金冲及、白春礼、陶西平同志,感谢担任教科书编写指导委员会主任委员的柳斌同志和编写指导委员会委员的江蓝生、李吉林、杨焕明、顾泠沅、袁行儒等同志。

本套高中数学实验教科书由丁尔陞教授、李建才教授、陈宏伯编审等组成编写指导委员会。负责指导教科书的编写工作。教科书编写的总指导为丁尔陞教授、主编为高存明编审。参加本套教科书编写的其他成员有:罗声雄、万庆炎、邱万作、郭鸿、韩际清、罗才忠、房艮孙、江守礼、王殿军、黄铎、陈研、高尚华、张爱和、张增喜、张润琦、朱铉道、范登晨、段发善、魏榕彬、徐望根、邵光砚、王人伟、曹惠中、秦静、许玉铭、李冱岸、杨静、刘长明、闫燕南、王旭刚、陈亦飞等。山东省的尹玉柱、秦玉波、王文清、颜长安、杨冠夏、于善胜、田明泉、邵丽云、韩相和和广东省的郭伟才、刘会金、梁钖焜、郑其中、何洌、罗建中等第一线教师审读了书稿、提出了许多宝贵意见。这套教科书是众多专家、学者和教师集体智慧的结晶。在此,特向参与、帮助、支持这套教科书编写的专家、学者和教师集表谢意。

我们还要感谢使用本套教科书的实验区的师生们。希望你们在使用本套教 科书的过程中,能够及时把意见和建议反馈给我们,对此,我们将深表谢意。 让我们携起手来,共同完成教材建设工作。我们的联系方式如下;

电话: 010-64016633 转 6656 或 6231

E-mail; jcfk@pep. com. cn

人民教育出版社 中学数学教材实验研究组 课程教材研究所