2

3

4 5

6

7

8 9

10

11

12

13 14

16

17

18 19

20

2.1

22

23

25

26

27

28

29 30

31

32

33

34 35

36

37 38

39

40

SKEW-SYMMETRIC ENTROPY STABLE DISCONTINUOUS GALERKIN FORMULATIONS WITH APPLICATIONS TO HYBRID AND NON-CONFORMING MESHES

JESSE CHAN, DAVID C. DEL REY FERNANDEZ

1. Introduction. High order methods for the simulation of time-dependent compressible flow have the potential to achieve higher levels of accuracy at lower costs compared to current low order schemes [1]. In addition to superior accuracy and efficiency on modern computing architectures, the low numerical dispersion and dissipation of high order methods [2] enables the accurate propagation of waves over long distances and time scales. The same properties also make high order methods attractive for the resolution of unsteady phenomena such as vorticular and turbulent flows, which are sensitive to numerical dissipation [3, 1]. However, while high order methods are often provably stable for wave problems, high order schemes for nonlinear conservation laws have consistently been hampered by problems of instability.

When applied to nonlinear conservation laws, high order methods can experience artificial growth and blow-up near under-resolved features such as shocks, turbulence, or boundary layers. In practice, the application of high order methods to practical problems requires shock capturing and stabilization techniques (such as artificial viscosity) or solution regularization (such as filtering or limiting) to prevent solution blow-up. The resulting schemes for nonlinear conservation laws walk a fine line between stability, robustness, and accuracy. Aggressive stabilization or regularization can result in the loss of high order accuracy, while too little can result in instability [1]. Moreover, it can be difficult to determine robust expressions for stabilization parameters, as parameters which work for one simulation can fail when applied to a different physical regime or discretization setting.

These issues have motivated the introduction of high order entropy stable discretizations, which satisfy a semi-discrete entropy inequality while maintaining high order accuracy in smooth regions. Proofs of continuous entropy inequalities rely on the chain rule. In contrast, these discrete entropy inequalities account for the loss of the chain rule due to effects such as quadrature errors, which are incurred when applying polynomially exact quadrature rules to nonlinear and rational integrands within the DG formulation. These schemes were first introduced as high order collocation methods on tensor product elements in [4, 5, 6, 7], and were extended to simplicial elements in [8, 9, 10, 11]. These methods have also been extended to staggered grid methods [12] and non-conforming meshes [13]. Entropy stable boundary conditions have also been determined for the compressible Euler and Navier-Stokes equations [14, 15].

2. Entropy stability for systems of nonlinear conservation laws. We begin by reviewing the dissipation of entropy for a d-dimensional system of nonlinear conservation laws on a domain Ω

41 (1)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \sum_{j=1}^{d} \frac{\partial \boldsymbol{f}_{j}(\boldsymbol{u})}{\partial x_{j}} = 0, \quad \boldsymbol{u} \in \mathbb{R}^{n}, \quad \boldsymbol{f} : \mathbb{R}^{n} \to \mathbb{R}^{n},$$

where u are the conservative variables and f(u) is a vector-valued nonlinear flux 42 function. We are interested in nonlinear conservation laws for which a convex entropy 43 function U(u) exists. For such systems, the *entropy variables* are an invertible map-44 ping $v(u): \mathbb{R}^n \to \mathbb{R}^n$ defined as the derivative of the entropy function with respect

6 to the conservative variables

54

56

57

58

60

64

66 67

68

69

71

80

$$v(u) = \frac{\partial U}{\partial u}.$$

- Several widely used equations in fluid modeling (Burgers, shallow water, compressible Euler and Navier-Stokes equations) yield convex entropy functions $U(\boldsymbol{u})$ [16, 9]. Let
- $\partial\Omega$ be the boundary of Ω with outward unit normal \boldsymbol{n} . By multiplying the equation (1) with $\boldsymbol{v}(\boldsymbol{u})^T$, the solutions \boldsymbol{u} of (1) can be shown to satisfy an entropy inequality
- 1) with v(u), the solutions u of (1) can be shown to satisfy an entropy med

53 (3)
$$\int_{\Omega} \frac{\partial U(\boldsymbol{u})}{\partial t} dx + \int_{\partial \Omega} \sum_{j=1}^{d} \left(\boldsymbol{v}(\boldsymbol{u})^{T} \boldsymbol{f}_{j}(\boldsymbol{u}) - \psi_{j} \left(\boldsymbol{v}(\boldsymbol{u}) \right) \right) n_{j} dx \leq 0,$$

where $\mathbf{n} = (n_1, \dots, n_d)$ denotes the outward unit normal, and $\psi_j(\mathbf{u})$ is some function referred to as the entropy potential.

The proof of (3) requires the use of the chain rule [17, 18, 19]. The instability-inpractice of high order schemes for (1) can be attributed in part to the fact that the discrete form of the equations do not satisfy the chain rule, and thus do not satisfy (3). As a result, discretizations of (1) do not typically possess an underlying statement of stability. For low order schemes, this can be offset in practice by the inherent numerical dissipation. However, because high order discretizations possess low numerical dissipation, the lack of an underlying discrete stability has been conflated with the idea that high order methods are inherently less stable than low order methods.

3. Approximation spaces. We define an approximation space using degree N polynomials on the reference element. In this work, we consider either simplicial reference elements (triangles and tetrahedra) or tensor product reference elements (quadrilaterals and hexahedra). The natural polynomial approximation space differs depending on the element type [20].

On a d-dimensional reference simplex, the natural polynomial space are total degree N polynomials

$$P^{N}\left(\widehat{D}\right) = \left\{\widehat{x}_{1}^{i_{1}} \dots \widehat{x}_{d}^{i_{d}}, \quad \widehat{\boldsymbol{x}} \in \widehat{D}, \quad 0 \leq \sum_{k=1}^{d} i_{k} \leq N\right\}.$$

In contrast, the natural polynomial space on a d-dimensional tensor product element is

$$Q^{N}\left(\widehat{D}\right) = \left\{\widehat{x}_{1}^{i_{1}} \dots \widehat{x}_{d}^{i_{d}}, \quad \widehat{\boldsymbol{x}} \in \widehat{D}, \quad 0 \leq i_{k} \leq N, \quad k = 1, \dots, d\right\}.$$

We take V^N to denote the natural approximation space on a given element. Furthermore, we denote the dimension of V^N as $N_p = \dim \left(V^N\left(\widehat{D}\right)\right)$.

We also define trace spaces for each reference element. Let \widehat{f} be a face of the reference element \widehat{D} . The trace space $V^N\left(\widehat{f}\right)$ is defined as the restrictions of functions in $V^N\left(\widehat{D}\right)$ to \widehat{f}

$$V^{N}\left(\widehat{f}\right) = \left\{ \left. u \right|_{\widehat{f}}, \quad u \in V^{N}\left(\widehat{D}\right) \right\}, \qquad \widehat{f} \in \partial \widehat{D}.$$

For example, the trace space for degree N polynomials on a quadrilateral face \widehat{f} of the bi-unit hexahedral element $[-1,1]^3$ is $Q^N\left(\widehat{f}\right)$, while the trace space for degree

N polynomials on a triangular face f of the tetrahedron is $P^N\left(\widehat{f}\right)$. We denote the dimension of the trace space as $\dim\left(V^N\left(\widehat{f}\right)\right) = N_p^f$.

We similarly define the trace space for the surface $\partial \widehat{D}$ of \widehat{D}

$$V^{N}\left(\partial\widehat{D}\right) = \left\{ \left. u\right|_{\partial\widehat{D}}, \quad u \in V^{N}\left(\widehat{D}\right) \right\}.$$

4. L^2 projection and lifting matrices and a decoupled SBP operator. The schemes in [11] begin on the reference element \widehat{D} by approximating the solution in a degree N polynomial basis $\{\phi_j(\boldsymbol{x})\}_{i=1}^{N_p}$. It is assumed that volume and surface quadrature rules (\boldsymbol{x}_i, w_i) , $(\boldsymbol{x}_i^f, w_i^f)$ are provided for \widehat{D} and the surface $\partial \widehat{D}$ of \widehat{D} , respectively. We make the following assumption on the volume quadrature rule:

Assumption 1. The volume quadrature rule integrates exactly all polynomials of degree (2N-1).

In addition to being related to the positive definiteness of the mass matrix, Assumption 1 ensures that, for any $u, v \in V^N$, the following integral is exactly approximated using quadrature

$$\int_{\widehat{D}} \frac{\partial u(\widehat{\boldsymbol{x}})}{\partial \widehat{x}_i} v(\widehat{\boldsymbol{x}}) \, \mathrm{d}\widehat{\boldsymbol{x}} = \sum_{k=1}^{N_q} w_k \frac{\partial u(\widehat{\boldsymbol{x}}_k)}{\partial \widehat{x}_i} v(\widehat{\boldsymbol{x}}_k).$$

In other words, evaluating the integral of the derivative of u and v using quadrature is exact because the integrand is a polynomial of degree (2N-1).

TODO: Standardize hat notation for operators/normals: can refer to operators on reference element and do k superscript for physical elements, or do hats on reference element.

Let V_q, V_f denote interpolation matrices, and let D^i be the differentiation matrix with respect to the *i*th coordinate such that

105 (4)
$$(\mathbf{V}_q)_{ij} = \phi_j(\mathbf{x}_i), \qquad (\mathbf{V}_f)_{ij} = \phi_j(\mathbf{x}_i^f), \qquad \frac{\partial \phi_j(\mathbf{x})}{\partial x_i} = \sum_{k=1}^{N_p} (\mathbf{D}_{jk}^i) \phi_k(\mathbf{x}).$$

The interpolation matrices V_q , V_f map basis coefficients to evaluations at volume and surface quadrature points respectively, while the differentiation matrix D_i maps basis coefficients of a function to the basis coefficients of its derivative with respect to x_k . The interpolation matrices are used to assemble the mass matrix M, the quadrature-based projection matrix P_q , and lifting matrix L_f

$$\frac{112}{113} \quad (5) \qquad \qquad \boldsymbol{M} = \boldsymbol{V}_q^T \boldsymbol{W} \boldsymbol{V}_q, \qquad \boldsymbol{P}_q = \boldsymbol{M}^{-1} \boldsymbol{V}_q^T \boldsymbol{W}, \qquad \boldsymbol{L}_f = \boldsymbol{M}^{-1} \boldsymbol{V}_f^T \boldsymbol{W}_f,$$

where W, W_f are diagonal matrices of volume and surface quadrature weights, respectively. The matrix P_q is a quadrature-based discretization of the L^2 projection operator Π_N onto degree N polynomials.

Interpolation, differentiation, and L^2 projection matrices can be combined to construct finite difference operators. For example, the matrix $\mathbf{D}_q = \mathbf{V}_q \mathbf{D}^i \mathbf{P}_q$ maps function values at quadrature points to approximate values of the derivative at quadrature points. By choosing specific quadrature rules, \mathbf{D}_q recovers high order summation-byparts finite difference operators in [21, 22, 23] and certain operators in [24]. However, to address difficulties in designing efficient entropy stable interface terms for nonlinear conservation laws, the PI introduced in [11] a new "decoupled" summation by parts matrix which builds interface terms directly into the approximation of the derivative.

Let n denote the outward unit normal n on \widehat{D} , and let n_i denote the vector 125 containing values of the ith component at all surface quadrature points. The "decou-126 pled" summation by parts operator D_N^i is defined as the block matrix involving both 127 volume and surface quadratures

$$\mathbf{D}_{N}^{i} = \begin{bmatrix} \mathbf{D}_{q}^{i} - \frac{1}{2} \mathbf{V}_{q} \mathbf{L}_{f} \operatorname{diag}(\mathbf{n}_{i}) \mathbf{V}_{f} \mathbf{P}_{q} & \frac{1}{2} \mathbf{V}_{q} \mathbf{L}_{f} \operatorname{diag}(\mathbf{n}_{i}) \\ -\frac{1}{2} \operatorname{diag}(\mathbf{n}_{i}) \mathbf{V}_{f} \mathbf{P}_{q} & \frac{1}{2} \operatorname{diag}(\mathbf{n}_{i}) \end{bmatrix}.$$

- When combined with projection and lifting matrices, D_N^i produces a high order poly-131 nomial approximation of $f\frac{\partial g}{\partial x_i}$. Let f, g be differentiable functions, and let $\mathbf{f}_i = f(\mathbf{x}_i)$, $\mathbf{g}_i = g(\mathbf{x}_i)$ denote values of f, g at volume and surface quadrature points. Then,
- 133

134 (7)
$$f \frac{\partial g}{\partial x_i} \approx [P_q L_f] \operatorname{diag}(\mathbf{f}) D_N^i \mathbf{g}.$$

- The approximation can also be interpreted as solving a variational problem. Let n_i 136
- be the *i*th component of the unit normal on D. Then (7) is equivalent to finding 137
- $u(\boldsymbol{x}) \approx f \frac{\partial g}{\partial x_i}$ such that 138

139
$$\int_{\widehat{D}} u(\boldsymbol{x})v(\boldsymbol{x}) = \int_{\widehat{D}} g \frac{\partial \Pi_N f}{\partial x_i} v + \int_{\partial \widehat{D}} (f - \Pi_N f) \frac{(gv + \Pi_N(gv))}{2} n_i, \quad \forall v \in V^N \left(\widehat{D}\right).$$

- If the surface quadrature rule is exact for polynomials of degree 2N, then the decou-140
- pled SBP operator D_N^i also satisfies a summation by parts property. 141

142 (8)
$$Q_N^i = W_N D_N^i, \quad W_N = \begin{pmatrix} W \\ W_f \end{pmatrix},$$

$$Q_N^i + \left(Q_N^i\right)^T = \begin{pmatrix} \mathbf{0} & \\ & W_f \mathrm{diag}(\boldsymbol{n_i}) \end{pmatrix} = \boldsymbol{B}_N$$

- By noting that $WV_qL_q = P_q^TV_f^TW_f$, the entries of Q_N^i can be re-written as 145
- $Q_i = WV_aD^iP_a$ 146

150

147 (10)
$$\mathbf{Q}_{N}^{i} = \begin{bmatrix} \mathbf{Q}_{i} - \frac{1}{2} (\mathbf{V}_{f} \mathbf{P}_{q})^{T} \mathbf{W}_{f} \operatorname{diag}(\mathbf{n}_{i}) \mathbf{V}_{f} \mathbf{P}_{q} & \frac{1}{2} (\mathbf{W}_{f} \operatorname{diag}(\mathbf{n}_{i}) \mathbf{V}_{f} \mathbf{P}_{q})^{T} \\ -\frac{1}{2} \mathbf{W}_{f} \operatorname{diag}(\mathbf{n}_{i}) \mathbf{V}_{f} \mathbf{P}_{q} & \frac{1}{2} \mathbf{W}_{f} \operatorname{diag}(\mathbf{n}_{i}) \end{bmatrix}.$$

- from which the SBP property (8) is more apparent. 149
 - 5. Skew-symmetric entropy conservative formulations.
- 5.1. Loss of the SBP property for hybrid and non-conforming meshes. 151 While the SBP property has been used to derive entropy stable schemes, the SBP 152
- property is difficult or impossible to enforce in certain discretization settings, such as 153
- hybrid and non-conforming meshes arises. This difficulty is a result of the choices of 154
- surface quadrature which naturally arise for these settings. 155
- 156 **5.2.** A variational SBP property. It can be shown that the SBP property
- holds for \mathbf{D}_{N}^{i} if the surface quadrature is exact for polynomials of degree 2N [11]. The 157
- SBP property is lost if the surface quadrature is only exact for polynomial integrands 158
- of degree less than 2N. However, one can still show that a variational version of the 159
- SBP property is satisfied. 160

(a) Insufficiently accurate surface quadrature on the triangle element.

(b) Incompatible surface quadrature on the quadrilateral element.

Fig. 1: Examples of interface couplings which do not result in an SBP property and are not entropy stable. On the left, the surface quadrature is a (N+1) point GLL rule, and results in a loss of the SBP property on the triangle. On the right, the surface quadrature is a (N+1) point Gauss-Legendre rule, and results in a loss of the SBP property on the quadrilateral.

(a) Hex-pyramid coupling

(b) Hex-prism coupling

Fig. 2: Illustration of a 3D coupling between a GLL hexahedral element and a pyramid. The SBP property does not hold on the pyramid due to the use of GLL quadrature on the quadrilateral face.

(a) Entropy stable inter-element coupling in [13] for a non-conforming interface.

161

(b) Entropy stable inter-element coupling in this work for a non-conforming interface. The dotted black lines denote communication between neighboring elements.

Fig. 3: Illustration of two different entropy stable inter-element couplings for h nonconforming meshes. Each dashed red line indicates a dyadic flux computation required between two nodes.

LEMMA 1. Let $v \in V^N$, and let the surface trace $v|_{\partial \widehat{D}} \in V^M\left(\partial \widehat{D}\right)$ for some

 $M \leq N$. If the surface quadrature is exact for polynomials of degree N+M, then for 162 163 an arbitrary vector \mathbf{u}_q ,

$$v_q^T Q_i u_q = v_q^T \left((V_f P_q)^T W_f \operatorname{diag}(n_i) V_f P_q - Q_i^T \right) u_q$$

where v denotes the vector of values of v of at both volume and surface quadrature 165 166

Proof. Recall that $Q_i = WV_qD^iP_q$. Since the volume quadrature is exact for 167 degree 2N-1 polynomials, we have that 168

$$\mathbf{v}_{q}^{T} \mathbf{Q}_{i} \mathbf{u}_{q} = \mathbf{v}_{q}^{T} \mathbf{W} \mathbf{D}^{i} \mathbf{P}_{q} \mathbf{u}_{q} = \int_{\widehat{D}} \frac{\partial \Pi_{N} u}{\partial \widehat{x}_{i}} v = \int_{\partial \widehat{D}} (\Pi_{N} u) v \widehat{n}_{i} - \int_{\widehat{D}} (\Pi_{N} u) \frac{\partial v}{\partial \widehat{x}_{i}}.$$

- Since the volume integrand $(\Pi_N u) \frac{\partial v}{\partial \hat{x}_i} \in V^{2N-1}$, it is exactly integrated using the 171
- volume quadrature. Additionally, since $\Pi_N u \in V^N$ and $v \in V^M$ on the surface of \widehat{D} , 172
- the surface quadrature is exact for the surface integral and

174
$$\int_{\partial \widehat{D}} (\Pi_{N} u) v \widehat{n}_{i} - \int_{\widehat{D}} (\Pi_{N} u) \frac{\partial v}{\partial \widehat{x}_{i}} =$$
175
$$v_{f}^{T} W_{f} \operatorname{diag}(\widehat{n}_{i}) V_{f} P_{q} u_{q} - \left(V_{q} D^{i} P_{q} v_{q} \right)^{T} W V_{q} P_{q} u_{q}$$
176
$$= v_{q}^{T} \left(V_{f} P_{q} \right)^{T} W_{f} \operatorname{diag}(\widehat{n}_{i}) V_{f} P_{q} u_{q} - v_{q}^{T} P_{q}^{T} \left(D^{i} \right)^{T} V_{q}^{T} W V_{q} P_{q} u_{q},$$

where we have used that, since $v \in V^N$, $v_f = V_f P_q v_q$. The proof is completed by 178 179

180
$$P_a^T \left(D^i\right)^T V_a^T W V_q P_q = P_a^T \left(D^i\right)^T M P_q = P_a^T \left(D^i\right)^T V_a^T W = Q_i^T.$$

The variational SBP property also extends to the decoupled SBP operator. This 182 property, along with the exact differentiation of constants, is necessary for the proof of entropy stability. 183

LEMMA 2. Let D_N^i be a decoupled SBP operator on the reference element \widehat{D} , and 184 let the surface quadrature be exact for polynomials of degree N+M for some $M \leq N$.

Suppose $v \in V^N$ and that $v|_{\partial \widehat{D}} \in P^M(\partial \widehat{D})$, Then, 186

181

187

$$oldsymbol{v}^T oldsymbol{Q}_N^i oldsymbol{u} = oldsymbol{v}^T \left(oldsymbol{B}_N^i - \left(oldsymbol{Q}_N^i
ight)^T
ight) oldsymbol{u}.$$

where v denotes the values of v of at both volume and surface quadrature points. 188

189 *Proof.* For convenience, let u_q, u_f denote evaluations of u at volume and surface points, such that 190

191
$$oldsymbol{u} = egin{pmatrix} oldsymbol{u}_q \ oldsymbol{u}_f \end{pmatrix}, \qquad oldsymbol{v} = egin{pmatrix} oldsymbol{v}_q \ oldsymbol{v}_f \end{pmatrix}.$$

The proof of the variational summation by parts property uses the definition of $oldsymbol{Q}_N^i$ 192 (10),193

194
$$\boldsymbol{v}^{T}\boldsymbol{Q}_{N}^{i}\boldsymbol{u} = \boldsymbol{v}_{q}^{T}\boldsymbol{Q}_{i}\boldsymbol{u}_{q} - \frac{1}{2}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{v}_{q}\right)^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{u}_{q}\right) + \frac{1}{2}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{v}_{q}\right)^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{u}_{f}$$

$$-\frac{1}{2}\boldsymbol{v}_{f}^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{u}_{q}\right) + \frac{1}{2}\boldsymbol{v}_{f}^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{u}_{f}.$$

197 Applying Lemma 1 then yields

198
$$\boldsymbol{v}^{T}\boldsymbol{Q}_{N}^{i}\boldsymbol{u} = -\boldsymbol{v}_{q}^{T}\boldsymbol{Q}_{i}^{T}\boldsymbol{u}_{q} + \frac{1}{2}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{v}_{q}\right)^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{u}_{q}\right) + \frac{1}{2}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{v}_{q}\right)^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{u}_{f}$$
199
$$-\frac{1}{2}\boldsymbol{v}_{f}^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\boldsymbol{u}_{q}\right) - \frac{1}{2}\boldsymbol{v}_{f}^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{u}_{f} + \boldsymbol{v}_{f}^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{u}_{f}$$
200
$$=\begin{pmatrix}\boldsymbol{v}_{q}\\\boldsymbol{v}_{f}\end{pmatrix}^{T}\begin{pmatrix}\boldsymbol{0}\\\boldsymbol{W}_{f}\mathrm{diag}\left(\widehat{\boldsymbol{n}}\right)\end{pmatrix}$$
201
$$+\begin{pmatrix}-\boldsymbol{Q}_{i}^{T} + \frac{1}{2}\left(\boldsymbol{V}_{f}\boldsymbol{P}_{q}\right)^{T}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{V}_{f}\boldsymbol{P}_{q} & -\frac{1}{2}\left(\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{V}_{f}\boldsymbol{P}_{q}\right)^{T}\end{pmatrix}\begin{pmatrix}\boldsymbol{u}_{q}\\\boldsymbol{u}_{f}\end{pmatrix}$$

$$\frac{1}{2}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\boldsymbol{V}_{f}\boldsymbol{P}_{q} & -\frac{1}{2}\boldsymbol{W}_{f}\widehat{\boldsymbol{n}}\end{pmatrix}$$

$$=\boldsymbol{v}^{T}\begin{pmatrix}\boldsymbol{B}_{N} - \left(\boldsymbol{Q}_{N}^{i}\right)^{T}\boldsymbol{u}.$$

Using Lemma 2, we will determine the accuracy of the surface quadrature necessary to ensure the proof of semi-discrete entropy stability is valid. This minimal degree of surface quadrature accuracy will depend on the nature of the reference-to-physical mapping (e.g. affine vs curved elements).

COROLLARY 3. Let the surface quadrature be exact for polynomials of degree N. Then,

$$\mathbf{1}^T oldsymbol{Q}_N^i oldsymbol{u} = \mathbf{1}^T oldsymbol{B}_N oldsymbol{u}, \qquad oldsymbol{Q}_N^i oldsymbol{1} = oldsymbol{0},$$

where \mathbf{u} is a vector of values of some function at volume and surface quadrature points. Proof. The proof that $\mathbf{Q}_N^i \mathbf{1} = \mathbf{0}$ follows from the property that polynomials are equal to their L^2 projection, and is identical to that of [11, 25]. The proof of the first equality follows from $\mathbf{Q}_N^i \mathbf{1} = \mathbf{0}$ and Lemma 2 with M = 0

1^T
$$\left(\mathbf{Q}_{N}^{i}\right)\mathbf{u} = \mathbf{1}^{T}\left(\mathbf{B}_{N} - \left(\mathbf{Q}_{N}^{i}\right)^{T}\right)\mathbf{u} = \mathbf{1}^{T}\mathbf{B}_{N}\mathbf{u}.$$

5.3. Entropy stability on affine meshes. The high order methods in this work ensure that (3) is satisfied discretely by avoiding the use of the chain rule in the proof of entropy dissipation. These "entropy stable" schemes rely on two main ingredients: an entropy stable numerical flux as defined by Tadmor [26] and a concept referred to as "flux differencing". Let $\mathbf{f}_S(\mathbf{u}_L, \mathbf{u}_R)$ be a numerical flux function which is a function of "left" and "right" states $\mathbf{u}_L, \mathbf{u}_R$. The numerical flux \mathbf{f}_S is entropy conservative if it satisfies the following three conditions:

223 (11)
$$f_S(\boldsymbol{u}, \boldsymbol{u}) = f(\boldsymbol{u}),$$
 (consistency)
224 $f_S(\boldsymbol{u}_L, \boldsymbol{u}_R) = f_S(\boldsymbol{u}_R, \boldsymbol{u}_R),$ (symmetry)
225 $(\boldsymbol{v}_L - \boldsymbol{v}_R)^T f_S(\boldsymbol{u}_L, \boldsymbol{u}_R) = \psi(\boldsymbol{u}_L) - \psi(\boldsymbol{u}_R),$ (conservation)

We begin by deriving a skew-symmetric formulation on the reference element \widehat{D} , and showing it is entropy conservative. This formulation is then made entropy stable by adding interface dissipation, and can extended in a straightforward manner to affine elements. The skew-symmetric formulation for (1) on \widehat{D} is

231 (12)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \sum_{i=1}^{d} \begin{bmatrix} \boldsymbol{P}_{q} & \boldsymbol{L}_{f} \end{bmatrix} \left(\left(\boldsymbol{D}_{N}^{i} - \boldsymbol{W}_{N}^{-1} \left(\boldsymbol{Q}_{N}^{i} \right)^{T} \right) \circ \boldsymbol{F}_{S} \right) \boldsymbol{1} + \boldsymbol{L}_{f} \operatorname{diag}\left(\widehat{\boldsymbol{n}} \right) \boldsymbol{f}_{i}^{*} = 0,$$

$$(\mathbf{F}_{S})_{ij} = \mathbf{f}_{S}(\tilde{\mathbf{u}}_{i}, \tilde{\mathbf{u}}_{j}), \qquad 1 \leq i, j \leq N_{q} + N_{q}^{f},$$

where f^* is some numerical flux. Multiplying the formulation (13) by M on both sides yields a weak form

236 (14)
$$M \frac{\partial \boldsymbol{u}}{\partial t} + \sum_{i=1}^{d} \begin{bmatrix} \boldsymbol{V}_q \\ \boldsymbol{V}_f \end{bmatrix}^T \left(\left(\boldsymbol{Q}_N^i - \left(\boldsymbol{Q}_N^i \right)^T \right) \circ \boldsymbol{F}_S \right) \boldsymbol{1} + \boldsymbol{V}_f^T \boldsymbol{W}_f \operatorname{diag}(\widehat{\boldsymbol{n}}) \, \boldsymbol{f}_i^* = 0.$$

where the matrix $\left(oldsymbol{Q}_{N}^{i}-\left(oldsymbol{Q}_{N}^{i}
ight)^{T}
ight)$ possesses the following structure

239
$$\left(\mathbf{Q}_{N}^{i} - \left(\mathbf{Q}_{N}^{i} \right)^{T} \right) = \begin{pmatrix} \mathbf{Q}_{i} - \mathbf{Q}_{i}^{T} & \left(\mathbf{V}_{f} \mathbf{P}_{q} \right)^{T} \mathbf{W}_{f} \operatorname{diag}\left(\mathbf{n}_{i} \right) \\ \mathbf{W}_{f} \operatorname{diag}\left(\mathbf{n}_{i} \right) \mathbf{V}_{f} \mathbf{P}_{q} & \mathbf{0} \end{pmatrix}.$$

We can now show that the skew-symmetric formulation is semi-discretely entropy conservative.

Theorem 4. Let the surface quadrature be exact for polynomials of degree N. Then, the formulation (13) is entropy conservative such that

$$\mathbf{1}^T \mathbf{W} rac{\partial U(\mathbf{u}_q)}{\partial t} + \sum_{i=1}^d \mathbf{1}^T \mathbf{W}_f \mathrm{diag}\left(\widehat{\boldsymbol{n}}\right) \left(\psi_i(\widetilde{\boldsymbol{u}}_f) - \widetilde{\boldsymbol{v}}_f^T \boldsymbol{f}_i^*\right) = 0, \qquad \boldsymbol{u}_q = \mathbf{V}_q \boldsymbol{u}.$$

246 Proof. Testing (14) by $v_h = P_q v_q$ yields

247 (15)
$$\boldsymbol{v}_{q}^{T}\boldsymbol{W}\frac{\partial\left(\boldsymbol{V}_{q}\boldsymbol{u}\right)}{\partial t} + \sum_{i=1}^{d} \tilde{\boldsymbol{v}}^{T}\left(\left(\boldsymbol{Q}_{N}^{i} - \left(\boldsymbol{Q}_{N}^{i}\right)^{T}\right) \circ \boldsymbol{F}_{S}\right) \mathbf{1} + \tilde{\boldsymbol{v}}_{f}^{T}\boldsymbol{W}_{f}\operatorname{diag}\left(\boldsymbol{\hat{n}}\right)\boldsymbol{f}_{i}^{*} = 0.$$

249 One can show that [11]

242

243

244

245

261

262263

264

265

266

267

250
$$\tilde{\boldsymbol{v}}^{T}\left(\left(\boldsymbol{Q}_{N}^{i}-\left(\boldsymbol{Q}_{N}^{i}\right)^{T}\right)\circ\boldsymbol{F}_{S}\right)\boldsymbol{1}=\tilde{\boldsymbol{v}}^{T}\left(\boldsymbol{Q}_{N}^{i}\circ\boldsymbol{F}_{S}\right)\boldsymbol{1}-\tilde{\boldsymbol{v}}^{T}\left(\left(\boldsymbol{Q}_{N}^{i}\right)^{T}\circ\boldsymbol{F}_{S}\right)\boldsymbol{1}$$

$$=\tilde{\boldsymbol{v}}^{T}\left(\boldsymbol{Q}_{N}^{i}\circ\boldsymbol{F}_{S}\right)\boldsymbol{1}-\boldsymbol{1}^{T}\left(\boldsymbol{Q}_{N}^{i}\circ\boldsymbol{F}_{S}\right)\tilde{\boldsymbol{v}}.$$

Where we have used that F_S is symmetric and that the Hadamard product commutes.

Applying the conservation condition on f_S in (5.3) then yields

255
$$\tilde{\boldsymbol{v}}^{T} \left(\boldsymbol{Q}_{N}^{i} \circ \boldsymbol{F}_{S} \right) \boldsymbol{1} - \boldsymbol{1}^{T} \left(\boldsymbol{Q}_{N}^{i} \circ \boldsymbol{F}_{S} \right) \tilde{\boldsymbol{v}} = \sum_{jk} \left(\boldsymbol{Q}_{N}^{i} \right)_{jk} \left(\tilde{\boldsymbol{v}}_{j} - \tilde{\boldsymbol{v}}_{k} \right) \boldsymbol{f}_{S} \left(\tilde{\boldsymbol{u}}_{j}, \tilde{\boldsymbol{u}}_{k} \right)$$
256
$$= \sum_{ij} \left(\boldsymbol{Q}_{N}^{i} \right)_{jk} \left(\psi_{i}(\tilde{\boldsymbol{u}}_{j}) - \psi_{i}(\tilde{\boldsymbol{u}}_{k}) \right)$$
257
$$= \boldsymbol{1}^{T} \left(\boldsymbol{Q}_{N}^{i} \right) \psi_{i}(\tilde{\boldsymbol{u}}) - \psi_{i}(\tilde{\boldsymbol{u}})^{T} \left(\boldsymbol{Q}_{N}^{i} \right) \boldsymbol{1}$$
258
$$= \boldsymbol{1}^{T} \left(\boldsymbol{Q}_{N}^{i} \right) \psi_{i}(\tilde{\boldsymbol{u}}) = \boldsymbol{1}^{T} \boldsymbol{B}_{N}^{i} \psi_{i}(\tilde{\boldsymbol{u}})$$
258
$$= \boldsymbol{1}^{T} \boldsymbol{W}_{f} \operatorname{diag} \left(\hat{\boldsymbol{n}} \right) \psi_{i}(\tilde{\boldsymbol{u}}_{f})$$

where we have used Corollary 3 in the second to last equality.

REMARK. The only result necessary to prove Theorem 4 is Corollary 3. Thus, when generalizing to curved elements, the proof of entropy stability for the skew-symmetric form will depend only on the curved version of Corollary 3.

The skew symmetric formulation can also be shown to be locally conservative in the sense of [27], which is sufficient to show the numerical solution convergences to the weak solution under mesh refinement. Theorem 5. The formulation (13) is locally conservative such that

1^T
$$\boldsymbol{W} \frac{\partial \left(\boldsymbol{V}_{q} \boldsymbol{u}\right)}{\partial t} + \sum_{i=1}^{d} \mathbf{1}^{T} \boldsymbol{W}_{f} \operatorname{diag}\left(\hat{\boldsymbol{n}}_{i}\right) \boldsymbol{f}_{i}^{*} = 0.$$

271 Proof. To show local conservation, we test (14) with 1

268

278

282

272 (17)
$$\mathbf{1}^{T} \boldsymbol{W} \boldsymbol{V}_{q} \frac{\partial \boldsymbol{u}}{\partial t} + \sum_{i=1}^{d} \mathbf{1}^{T} \left(\left(\boldsymbol{Q}_{N}^{i} - \left(\boldsymbol{Q}_{N}^{i} \right)^{T} \right) \circ \boldsymbol{F}_{S} \right) \mathbf{1} + \mathbf{1}^{T} \boldsymbol{W}_{f} \operatorname{diag} \left(\widehat{\boldsymbol{n}} \right) \boldsymbol{f}_{i}^{*} = 0.$$

274 Because F_S is symmetric and $\left(Q_N^i - \left(Q_N^i\right)^T\right)$ is skew-symmetric, the term

$$\left(\left(\boldsymbol{Q}_{N}^{i}-\left(\boldsymbol{Q}_{N}^{i}\right)^{T}\right)\circ\boldsymbol{F}_{S}\right)$$

276 is a skew-symmetric matrix. Using that A, $x^T A x = 0$ for any skew symmetric matrix 277 A, the volume term vanishes

$$\mathbf{1}^T \left(\left(oldsymbol{Q}_N^i - \left(oldsymbol{Q}_N^i
ight)^T
ight) \circ oldsymbol{F}_S
ight) \mathbf{1} = 0.$$

Next, we extend this formulation to affinely mapped elements. Derivatives with respect to physical coordinates on D^k are computed in terms of a change of variables formula and derivatives with respect to reference coordinates

$$rac{\partial u}{\partial x_i} = \sum_{ij} m{G}^k_{ij} rac{\partial u}{\partial \widehat{x}_j}, \qquad m{G}^k_{ij} = J^k rac{\partial \widehat{x}_j}{\partial x_i},$$

where J^k is the determinant of the Jacobian of the geometric mapping on the element D^k . For affine meshes, the scaled geometric terms G^k_{ij} are constant over each element. It was shown in [11] that one can define a physical differentiation matrix as a linear combination of reference differentiation matrices. Let \widehat{D}^i_N denote the decoupled SBP operator on the reference element \widehat{D} , and let the decoupled SBP operators with respect to the physical coordinates on D^k be defined as

289 (18)
$$D_N^i = \sum_{j=1}^d G_{ij} \widehat{D}_N^j.$$

Then, an entropy conservative formulation can be given on D^k as follows:

292 (19)
$$\frac{\partial \boldsymbol{u}}{\partial t} + \sum_{i=1}^{d} \begin{bmatrix} \boldsymbol{P}_{q} & \boldsymbol{L}_{f} \end{bmatrix} \left(\left(\boldsymbol{D}_{N}^{i} - \boldsymbol{W}_{N}^{-1} \left(\boldsymbol{Q}_{N}^{i} \right)^{T} \right) \circ \boldsymbol{F}_{S} \right) \boldsymbol{1} + \boldsymbol{L}_{f} \operatorname{diag} \left(\boldsymbol{n}_{i} \right) \boldsymbol{f}_{i}^{*} = 0,$$
293
$$(\boldsymbol{F}_{S})_{ij} = \boldsymbol{f}_{S} \left(\tilde{\boldsymbol{u}}_{i}, \tilde{\boldsymbol{u}}_{j} \right), \qquad 1 \leq i, j \leq N_{q} + N_{q}^{f},$$

$$\boldsymbol{f}^{*} = \boldsymbol{f}_{S} \left(\tilde{\boldsymbol{u}}_{f}^{+}, \tilde{\boldsymbol{u}}_{f} \right), \qquad \text{on interior interfaces,}$$

where $\tilde{\boldsymbol{u}}_f^+$ denotes the face value of the entropy-projected conservative variables $\tilde{\boldsymbol{u}}_f$ on the neighboring element. The formulation can be made entropy stable by adding an appropriate penalization term, such as a Lax-Friedrichs or matrix-based dissipation [28, 9, 11]. **5.4. Curvilinear meshes.** On affine meshes, it is possible to show entropy stability of the skew-symmetric formulation (13) under a surface quadrature which is only exact for degree N polynomials. However, on curved meshes, a stronger surface quadrature rule is required to demonstrate entropy stability, where the strength of the surface rule depends on the order and approximation of geometric terms.

Let $J^k G_{ij}^k$ denote the vector of scaled geometric terms $J^k G_{ij}^k$ evaluated at volume and surface quadrature points. Decoupled SBP operators on a curved element D^k can be defined as in [25] by

308 (20)
$$\boldsymbol{D}_{N}^{i} = \sum_{j=1}^{d} \operatorname{diag}\left(\boldsymbol{G}_{ij}^{k}\right) \widehat{\boldsymbol{D}}_{N}^{j} + \widehat{\boldsymbol{D}}_{N}^{j} \operatorname{diag}\left(\boldsymbol{G}_{ij}^{k}\right).$$

 The skew-symmetric formulation (19) can be extended to curvilinear meshes using the definition of D_N^i in (20). However, additional assumptions must be satisfied in order to prove that the resulting formulation is entropy stable.

5.5. Discrete geometric conservation law and surface quadrature accuracy. Add description of how normals factor into this and note that they're computed based on G_{ij} .

The first assumption which must be satisfied is the discrete geometric conservation law (GCL) [29, 30]. For curved elements, Lemma 2 and Corollary 3 do not necessarily hold at the discrete level. For example, expanding out the condition $\mathbf{Q}_N^i \mathbf{1} = \mathbf{0}$ in terms of (20) yields

319 (21)
$$\boldsymbol{D}_{N}^{i} \mathbf{1} = \sum_{j=1}^{d} \operatorname{diag}\left(\boldsymbol{G}_{ij}^{k}\right) \widehat{\boldsymbol{D}}_{N}^{j} \mathbf{1} + \widehat{\boldsymbol{D}}_{N}^{j} \operatorname{diag}\left(\boldsymbol{G}_{ij}^{k}\right) \mathbf{1} = \sum_{j=1}^{d} \widehat{\boldsymbol{D}}_{N}^{j} \left(\boldsymbol{G}_{ij}^{k}\right) = 0,$$

where we have used that $\widehat{D}_N^j \mathbf{1} = 0$. For degree N isoparametric mappings, the GCL is automatically satisfied in two dimensions due to the fact that the exact geometric terms $G_{ij}^k \in P^{N-1}$ [30]. However, in three dimensions, the GCL is not automatically preserved due to the fact that $G_{ij}^k \in P^{2N-2}$, and thus cannot be represented exactly using degree N polynomials. As a consequence, (21) must be enforced through an alternative construction of G_{ij}^k .

A common approach is to rewrite the geometric terms as the curl of some quantity \mathbf{r}^i , but to interpolate \mathbf{r}^i before applying the curl [31, 30, 32]:

(22)
$$\mathbf{r}^{i} = \frac{\partial \mathbf{x}}{\partial \widehat{x}_{i}} \times \mathbf{x}, \qquad \begin{bmatrix} \mathbf{G}_{i1}^{k} \\ \mathbf{G}_{i2}^{k} \\ \mathbf{G}_{i3}^{k} \end{bmatrix} = -\frac{1}{2} \left(\frac{\partial I_{R} \mathbf{r}^{k}}{\partial \widehat{x}_{j}} - \frac{\partial I_{R} \mathbf{r}^{j}}{\partial \widehat{x}_{k}} \right),$$

where I_R denotes a degree R polynomial interpolation operator with appropriate interpolation nodes.¹ Because the geometric terms are computed by applying the curl, both G_{ij}^k and $n_i J^f$ are approximated using degree (R-1) polynomials.

Because \mathbf{D}_N^i are now defined through (20), Corollary 3 and the proof of entropy stability may not hold for curved elements and must be modified. The introduction of curvilinear meshes will impose slightly different conditions on the accuracy of the surface quadrature, which are summarized in the following curved version of Corollary 3.

¹This interpolation step must be performed using interpolation points with an appropriate number of nodes on each boundary [25]. These include, for example, GLL nodes on tensor product elements, as well as Warp and Blend nodes on non-tensor product elements [33, 34].

LEMMA 6. Assume that the geometric terms $G_{ij} \in V^N$ satisfy the discrete GCL (21), that $G_{ij}|_{\partial \widehat{D}} \widehat{n}_j \in V^R (\partial \widehat{D})$, and that the surface quadrature is exact for polynomials of degree N + R. Then,

$$\mathbf{1}^T \mathbf{Q}_N^i \mathbf{u} = \mathbf{1}^T \mathbf{B}_N^i \mathbf{u}, \qquad \mathbf{Q}_N^i \mathbf{1} = 0,$$

343 where

$$oldsymbol{B}_{N}^{i} = egin{pmatrix} oldsymbol{0} & & & \ & J_{f}^{k} oldsymbol{W}_{f} \mathrm{diag}\left(oldsymbol{n}_{i}
ight) \end{pmatrix}.$$

Proof. The second equality $Q_N^i \mathbf{1} = 0$ is a consequence of the discrete GCL (21), and the proof is identical to that of [25]. For the first equality, if the surface quadrature is exact for polynomials of degree 2N on the trace space, then the stronger matrix SBP property $\mathbf{Q}_N^i = \mathbf{B}_N^i - \left(\mathbf{Q}_N^i\right)^T$ holds [25]. Combining this with $\mathbf{Q}_N^i \mathbf{1} = 0$ yields the desired result. We focus on the proof of the variational SBP property for surface quadrature which are exact for polynomials of degree N + R < 2N.

Expanding $\mathbf{1}^T \mathbf{Q}_N^i \mathbf{u}$ yields

$$\mathbf{1}^T oldsymbol{Q}_N^i oldsymbol{u} = rac{1}{2} \sum_{i=1}^d \mathbf{1}^T \mathrm{diag}\left(oldsymbol{G}_{ij}
ight) \widehat{oldsymbol{Q}}_N^j oldsymbol{u} + \mathbf{1}^T \widehat{oldsymbol{Q}}_N^j \mathrm{diag}\left(oldsymbol{G}_{ij}
ight) oldsymbol{u}.$$

For the latter term in the sum, Lemma 2 holds and

355 (23)
$$\sum_{j=1}^{d} \mathbf{1}^{T} \widehat{\mathbf{Q}}_{N}^{j} \operatorname{diag}(\mathbf{G}_{ij}) \mathbf{u} = \sum_{j=1}^{d} \mathbf{1}^{T} \left(\widehat{\mathbf{B}}_{N}^{j} - \left(\widehat{\mathbf{Q}}_{N}^{j} \right)^{T} \right) \operatorname{diag}(\mathbf{G}_{ij}) \mathbf{u}$$
356
$$= \sum_{j=1}^{d} \mathbf{1}^{T} \widehat{\mathbf{B}}_{N}^{j} \operatorname{diag}(\mathbf{G}_{ij}) \mathbf{u},$$
357

where we have used that $\hat{Q}_N^j \mathbf{1} = \mathbf{0}$. For the former term in the sum, we expand out

359 (24)
$$\sum_{j=1}^{d} \mathbf{1}^{T} \operatorname{diag}(\boldsymbol{G}_{ij}) \, \widehat{\boldsymbol{Q}}_{N}^{j} \boldsymbol{u} = \sum_{j=1}^{d} \boldsymbol{G}_{ij}^{T} \, \widehat{\boldsymbol{Q}}_{N}^{j} \boldsymbol{u}$$

$$= \sum_{j=1}^{d} \begin{bmatrix} \boldsymbol{G}_{ij}^{q} \end{bmatrix}^{T} \begin{bmatrix} \widehat{\boldsymbol{Q}}_{i} - \frac{1}{2} (\boldsymbol{V}_{f} \boldsymbol{P}_{q})^{T} \, \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q} & \frac{1}{2} (\boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q})^{T} \\ -\frac{1}{2} \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q} & \frac{1}{2} \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_{q} \\ \boldsymbol{u}_{f} \end{bmatrix}.$$

where G_{ij}^q, G_{ij}^f denote the values of G_{ij} at volume and surface quadrature points.

Because $\mathbf{G}_{ij} \in V^N$, it is equal to its own L^2 projection, and the values at volume and surface quadrature points are related by $\mathbf{G}_{ij}^f = \mathbf{V}_f \mathbf{P}_q \mathbf{G}_{ij}^q$. We can use this to simplify (6)

366
$$\mathbf{1}^{T} \operatorname{diag}(\boldsymbol{G}_{ij}) \, \widehat{\boldsymbol{Q}}_{N}^{j} \boldsymbol{u} = \left(\boldsymbol{G}_{ij}^{q}\right)^{T} \, \boldsymbol{Q}_{i} \boldsymbol{u}_{q} - \frac{1}{2} \left(\boldsymbol{V}_{f} \boldsymbol{P}_{q} \boldsymbol{G}_{ij}^{q} + \boldsymbol{G}_{ij}^{f}\right)^{T} \, \boldsymbol{W}_{f} \operatorname{diag}(\boldsymbol{n}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q} \boldsymbol{u}_{q}$$

$$+ \frac{1}{2} \left(\boldsymbol{V}_{f} \boldsymbol{P}_{q} \boldsymbol{G}_{ij}^{q} + \boldsymbol{G}_{ij}^{f}\right)^{T} \frac{1}{2} \boldsymbol{W}_{f} \operatorname{diag}(\boldsymbol{n}_{i}) \boldsymbol{u}_{f}$$

$$= \left(\boldsymbol{G}_{ij}^{q}\right)^{T} \left(\widehat{\boldsymbol{Q}}_{i} - \left(\boldsymbol{V}_{f} \boldsymbol{P}_{q} \boldsymbol{G}_{ij}^{q}\right)^{T} \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q}\right) \boldsymbol{u}_{q}$$

$$+ \left(\boldsymbol{G}_{ij}^{f}\right)^{T} \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{u}_{f}.$$

371 The first term can be further simplified using Lemma 1

375

376 377

378

379

380 381

382 383

384

385

386

387

388

389

390

391 392

393

394

395

396 397

398

 $399 \\ 400$

401

 $402 \\ 403$

404

405

406

407 408 409

410

411

$$(\boldsymbol{G}_{ij}^{q})^{T} \left(\widehat{\boldsymbol{Q}}_{i} - \left(\boldsymbol{V}_{f} \boldsymbol{P}_{q} \boldsymbol{G}_{ij}^{q}\right)^{T} \boldsymbol{W}_{f} \operatorname{diag}(\widehat{\boldsymbol{n}}_{i}) \boldsymbol{V}_{f} \boldsymbol{P}_{q}\right) \boldsymbol{u}_{q} = \left(\boldsymbol{G}_{ij}^{q}\right)^{T} \left(\widehat{\boldsymbol{Q}}_{i}\right)^{T} \boldsymbol{u}_{q}.$$

373 The latter term can be combined with the surface term of (6) by noting that

374
$$\left(\boldsymbol{G}_{ij}^{f} \right)^{T} \boldsymbol{W}_{f} \operatorname{diag} \left(\widehat{\boldsymbol{n}}_{i} \right) \boldsymbol{u}_{f} = \boldsymbol{1}^{T} \widehat{\boldsymbol{B}}_{N}^{j} \operatorname{diag} \left(\boldsymbol{G}_{ij} \right) \boldsymbol{u} = \boldsymbol{1}^{T} \operatorname{diag} \left(\boldsymbol{G}_{ij} \right) \widehat{\boldsymbol{B}}_{N}^{j} \boldsymbol{u},$$

where we have used that $\widehat{\boldsymbol{B}}_{N}^{j}$ is diagonal and commutes with diagonal scaling by \boldsymbol{G}_{ij} . We can use polynomial exactness and the fact that the geometric terms satisfy the continuous GCL by construction [25] to show that $\sum_{j=1}^{d} \widehat{\boldsymbol{Q}}_{j} \boldsymbol{G}_{ij}^{q} = 0$. Combining this with (6) and expanding out $\widehat{\boldsymbol{B}}_{N}^{j}$ yields that

$$egin{aligned} \mathbf{1}^T oldsymbol{Q}_N^i oldsymbol{u} &= \sum_{j=1}^d \left(rac{1}{2} \left(oldsymbol{G}_{ij}^q
ight)^T \left(\widehat{oldsymbol{Q}}_i
ight)^T oldsymbol{u}_q + \mathbf{1}^T igg(oldsymbol{0} & oldsymbol{W}_f \mathrm{diag} \left(oldsymbol{G}_{ij} \circ \widehat{oldsymbol{n}}_j
ight) igg) oldsymbol{u} = \mathbf{1}^T oldsymbol{B}_N^i oldsymbol{u}. \end{aligned}$$

where we have used in the final step that $\sum_{j=1}^{d} G_{ij} \hat{n}_j = n_i J_f^k$ [35, 25] Lemma 6 implies that the polynomial degree R of the surface geometric terms must be compatible with the accuracy of the surface quadrature. This, in turn, will depend on the way in which geometric terms are approximated. Finish.

Kopriva trick to enforcing GCL still results in Q^N normals 3D. May not satisfy requirement that $\mathbf{1}^T \mathbf{Q}_N^i \psi_i(\tilde{\mathbf{u}}) = \mathbf{1}^T \mathbf{B}_N^i \psi_i(\tilde{\mathbf{u}})$ because of quadrature inaccuracy. Note - this still works regardless for conforming hexes because of the full matrix SBP property.

- **6. Numerical experiments.** In this section, we present two-dimensional experiments on hybrid meshes consisting of quadrilaterals and triangles, as well as on non-conforming meshes of quadrilateral elements.
- **6.1.** Reduced surface quadrature. Affine and curved triangles with GLL surface quadrature (under-integrated).

6.2. Hybrid meshes.

6.3. Non-conforming meshes.

REFERENCES

- [1] Zhijian J Wang, Krzysztof Fidkowski, Rémi Abgrall, Francesco Bassi, Doru Caraeni, Andrew Cary, Herman Deconinck, Ralf Hartmann, Koen Hillewaert, Hung T Huynh, et al. Highorder CFD methods: current status and perspective. *International Journal for Numerical Methods in Fluids*, 72(8):811–845, 2013.
- Mark Ainsworth. Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. *Journal of Computational Physics*, 198(1):106–130, 2004.
- [3] Miguel R Visbal and Datta V Gaitonde. High-order-accurate methods for complex unsteady subsonic flows. AIAA journal, 37(10):1231–1239, 1999.
- [4] Travis C Fisher and Mark H Carpenter. High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains. *Journal of Computational Physics*, 252:518– 557, 2013
- [5] Mark H Carpenter, Travis C Fisher, Eric J Nielsen, and Steven H Frankel. Entropy Stable Spectral Collocation Schemes for the Navier–Stokes Equations: Discontinuous Interfaces. SIAM Journal on Scientific Computing, 36(5):B835–B867, 2014.

412 [6] Gregor J Gassner, Andrew R Winters, and David A Kopriva. Split form nodal discontinuous
413 Galerkin schemes with summation-by-parts property for the compressible Euler equations.
414 Journal of Computational Physics, 327:39–66, 2016.

415

416

 $\begin{array}{c} 417 \\ 418 \end{array}$

419

420

421

422

423

424

425

426

427

428

 $429 \\ 430$

431

 $432 \\ 433$

434

435

 $436 \\ 437$

438

439

440

441

442 443

444

445

446

447

448 449

450

451

452

 $\begin{array}{c} 453 \\ 454 \end{array}$

455

456

 $457 \\ 458$

459

462 463

464

465

 $466 \\ 467$

469

470

- [7] Gregor J Gassner, Andrew R Winters, Florian J Hindenlang, and David A Kopriva. The BR1 Scheme is Stable for the Compressible Navier-Stokes Equations. arXiv preprint arXiv:1704.03646, 2017.
- [8] Jared Crean, Jason E Hicken, David C Del Rey Fernández, David W Zingg, and Mark H Carpenter. High-Order, Entropy-Stable Discretizations of the Euler Equations for Complex Geometries. In 23rd AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, 2017.
- [9] Tianheng Chen and Chi-Wang Shu. Entropy stable high order discontinuous Galerkin methods with suitable quadrature rules for hyperbolic conservation laws. *Journal of Computational Physics*, 345:427–461, 2017.
- [10] Jared Crean, Jason E Hicken, David C Del Rey Fernández, David W Zingg, and Mark H Carpenter. Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements. *Journal of Computational Physics*, 356:410–438, 2018.
- [11] Jesse Chan. On discretely entropy conservative and entropy stable discontinuous Galerkin methods. Journal of Computational Physics, 362:346 – 374, 2018.
- [12] Matteo Parsani, Mark H Carpenter, Travis C Fisher, and Eric J Nielsen. Entropy Stable Staggered Grid Discontinuous Spectral Collocation Methods of any Order for the Compressible Navier-Stokes Equations. SIAM Journal on Scientific Computing, 38(5):A3129-A3162, 2016.
- [13] Lucas Friedrich, Andrew R Winters, David C Fernández, Gregor J Gassner, Matteo Parsani, and Mark H Carpenter. An Entropy Stable h/p Non-Conforming Discontinuous Galerkin Method with the Summation-by-Parts Property. arXiv preprint arXiv:1712.10234, 2017.
- [14] Matteo Parsani, Mark H Carpenter, and Eric J Nielsen. Entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. *Journal of Computational Physics*, 292:88-113, 2015.
- [15] Magnus Svärd, Mark H Carpenter, and Matteo Parsani. Entropy stability and the no-slip wall boundary condition. SIAM Journal on Numerical Analysis, 56(1):256–273, 2018.
- [16] Thomas JR Hughes, LP Franca, and M Mallet. A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Computer Methods in Applied Mechanics and Engineering, 54(2):223–234, 1986.
- [17] Michael S Mock. Systems of conservation laws of mixed type. Journal of Differential equations, 37(1):70–88, 1980.
- [18] Amiram Harten. On the symmetric form of systems of conservation laws with entropy. *Journal of computational physics*, 49(1):151–164, 1983.
- [19] Constantine M Dafermos. Hyperbolic conservation laws in continuum physics. Springer, 2005.
- [20] Jesse Chan, Zheng Wang, Axel Modave, Jean-Francois Remacle, and T Warburton. GPU-accelerated discontinuous Galerkin methods on hybrid meshes. *Journal of Computational Physics*, 318:142–168, 2016.
- [21] Gregor J Gassner. A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods. SIAM Journal on Scientific Computing, 35(3):A1233–A1253, 2013.
- [22] David C Del Rey Fernández, Pieter D Boom, and David W Zingg. A generalized framework for nodal first derivative summation-by-parts operators. *Journal of Computational Physics*, 266:214–239, 2014.
- 460 [23] Hendrik Ranocha. Generalised summation-by-parts operators and variable coefficients. *Journal*461 of Computational Physics, 362:20 48, 2018.
 - [24] Jason E Hicken, David C Del Rey Fernndez, and David W Zingg. Multidimensional summationby-parts operators: General theory and application to simplex elements. SIAM Journal on Scientific Computing, 38(4):A1935–A1958, 2016.
 - [25] Jesse Chan and Lucas Wilcox. On discretely entropy conservative and entropy stable discontinuous Galerkin methods: curvilinear meshes. In preparation.
- 467 [26] Eitan Tadmor. The numerical viscosity of entropy stable schemes for systems of conservation 488 laws. I. Mathematics of Computation, 49(179):91–103, 1987.
 - [27] Cengke Shi and Chi-Wang Shu. On local conservation of numerical methods for conservation laws. Computers and Fluids, 2017.
- 471 [28] Andrew R Winters, Dominik Derigs, Gregor J Gassner, and Stefanie Walch. A uniquely de-472 fined entropy stable matrix dissipation operator for high Mach number ideal MHD and 473 compressible Euler simulations. *Journal of Computational Physics*, 332:274–289, 2017.

- 474 [29] PD Thomas and CK Lombard. Geometric conservation law and its application to flow computations on moving grids. AIAA journal, 17(10):1030–1037, 1979.
- 476 [30] David A Kopriva. Metric identities and the discontinuous spectral element method on curvi-477 linear meshes. *Journal of Scientific Computing*, 26(3):301–327, 2006.
- 478 [31] Miguel R Visbal and Datta V Gaitonde. On the use of higher-order finite-difference schemes
 479 on curvilinear and deforming meshes. *Journal of Computational Physics*, 181(1):155–185,
 480 2002.
 - [32] Florian Hindenlang, Gregor J Gassner, Christoph Altmann, Andrea Beck, Marc Staudenmaier, and Claus-Dieter Munz. Explicit discontinuous Galerkin methods for unsteady problems. Computers & Fluids, 61:86-93, 2012.
- 484 [33] T Warburton. An explicit construction of interpolation nodes on the simplex. *Journal of engineering mathematics*, 56(3):247–262, 2006.
- 486 [34] Jesse Chan and T Warburton. A comparison of high order interpolation nodes for the pyramid.
 487 SIAM Journal on Scientific Computing, 37(5):A2151–A2170, 2015.
- 488 [35] Philippe G Ciarlet. The finite element method for elliptic problems. Elsevier, 1978.

 $481 \\ 482$

483