Tutorat mathématiques : TD2

Université François Rabelais

Département informatique de Blois

Algèbre

* *

Problème 1

On dit qu'un anneau A est un anneau de Boole si :

$$\forall x \in A, x^2 = x$$

1. Démontrer que pour tout $x \in A, x = -x$.

Par définition
$$(x+1)^2 = x+1 \Leftrightarrow x^2+1+2x = x+1$$

 $\Leftrightarrow x = -x$

2. Montrer que A est commutatif.

Soit
$$(x,y) \in A^2$$
, alors : $(x+y)^2 = (x+y) \Leftrightarrow x^2 + y^2 + xy + yx = x+y$
 $\Leftrightarrow xy = -yx$
 $\Leftrightarrow xy = yx$

- 3. On note $\mathbb{B} = \mathbb{Z}/2\mathbb{Z}$.
 - (a) Dresser la table de Cayley de $\mathbb B$ pour + et × et montrer que $(\mathbb B,+,\times)$ est un anneau de Boole. Est-ce un corps?

Soient les tables de Cayley suivantes :

+	0	1
0	0	1
1	1	0

×	0	1	
0	0	0	
1	0	1	

On a bien $x^2 = x$ et x = -x. On peut affirmer que \mathbb{B} est un anneau de Boole. De plus \mathbb{B} ne possède pas de diviseur de 0. C'est un corps (aussi parce que 2 est un nombre premier).

(b) Soient les opérations "ou exclusif" notée \oplus et "conjonction" notée \wedge du calcul propositionnel. Montrer que $(\mathbb{B}, \oplus, \wedge)$ est un corps.

On remarque que la table de vérité du \oplus est identique à celle de + sur \mathbb{B} . De même pour \wedge par rapport à \times . En considérant la fonction d'interprétation $I: \mathcal{L} \to \{0,1\}$, on en déduit par récurrence que $I(P \oplus Q) = I(P) + I(Q)$ et que $I(P \wedge Q) = I(P) \times I(Q)$ pour toutes formules P et Q.

On déduit aussi, par exemple, que \oplus est associatif.

$$I((P \oplus Q) \oplus R) = (I(P) + I(Q)) + I(R) = I(P) + (I(Q) + I(R)) = I(P \oplus (Q \oplus R))$$

On montre les autres axiomes de la même manière, du fait que $(\mathbb{B}, +, \times)$ est un anneau de Boole (et même algèbre de Boole). Ainsi, comme on a montré que $(\mathbb{B}, +, \times)$ est un corps, on en déduit que $(\mathbb{B}, \oplus, \wedge)$ est aussi un corps.

Problème 2

On appelle caract'eristique d'un anneau fini le plus petit entier n tel que :

$$n \times 1_A = 0_A$$

où 1_A est l'élément neutre de la multiplication sur A et 0_A l'élément neutre pour l'addition sur A.

1. Montrer que pour tout $x \in A$, $nx = 0_A$.

On a
$$nx = n(1_A \times x)$$

= $(n \times 1_A) \times x$
= $0_A \times x$
= 0_A

2. Montrer que si A est intègre, alors n est un nombre premier.

On raisonne par contraposée. On souhaite montrer que

Si A est intègre $\Rightarrow n$ est premier

On va démontrer que

Si n n'est pas premier $\Rightarrow A$ n'est pas intègre

On suppose que $n = p \times q$ avec $1 . Posons que <math>x = p \times 1_A$ et $y = q \times 1_A$.

On sait que x et y sont différents de 0_A puisque que p < q < n. Pourtant :

$$x \times y = p \times 1_A \times q \times 1_A$$
$$= (p \times q)1_A$$
$$= n \times 1_A$$
$$= 0.$$

Ainsi, si n n'est pas premier, alors A n'est pas intègre. Par contraposée, on retrouve l'énoncé initial qu'il fallait démontrer.

Problème 3

Soit $\mathbb{Z}/5\mathbb{Z} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}\}.$

- 1. On rappelle que $(\mathbb{Z}/5\mathbb{Z}, +, \times)$ est un anneau. Que peut-on en déduire pour $(\mathbb{Z}/5\mathbb{Z}, +)$?
- $\|$ On en déduit que $(\mathbb{Z}/5\mathbb{Z}, +)$ est un groupe abélien.
- 2. Définir $\overline{2}$.

3. Dresser la table de Cayley de $(\mathbb{Z}/5\mathbb{Z}, \times)$.

On a la table de Cayley suivante :

×	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
1	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
$\overline{2}$	$\overline{0}$	$\overline{2}$	$\overline{4}$	$\overline{1}$	$\overline{3}$
$\overline{3}$	$\overline{0}$	$\overline{3}$	$\overline{1}$	$\overline{4}$	$\overline{2}$
$\overline{4}$	$\overline{0}$	$\overline{4}$	$\overline{3}$	$\overline{2}$	$\overline{1}$

- 4. En justifiant, préciser si $(\mathbb{Z}/5\mathbb{Z}, \times)$ est :
 - (a) Un anneau commutatif.

La table de Cayley ci-dessus est symétrique. Donc $(\mathbb{Z}/5\mathbb{Z}, +, \times)$ est bien un anneau commutatif.

(b) Un anneau intègre.

D'après la table de Cayley de \times ci-dessus, Si $a \neq \overline{0}$ et $b \neq \overline{0}$ alors $a \times b \neq \overline{0}$. On n'a aucun diviseur de $\overline{0}$, donc la $(\mathbb{Z}/5\mathbb{Z},+,\times)$ est bien un anneau intègre.

(c) Un corps.

$$\overline{1}^{-1} = \overline{1}$$
 $\overline{2}^{-1} = \overline{3}$ $\overline{3}^{-1} = \overline{2}$ $\overline{4}^{-1} = \overline{1}$

 $\overline{1}^{-1} = \overline{1}$ $\overline{2}^{-1} = \overline{3}$ $\overline{3}^{-1} = \overline{2}$ $\overline{4}^{-1} = \overline{1}$ Ainsi, $\forall a \in \mathbb{Z}/5\mathbb{Z} | a \neq \overline{0}$ est inversible, donc $\mathbb{Z}/5\mathbb{Z}$ est un corps.

Plus simplement, on sait que tout anneau intègre est un corps.

5. En détaillant les calculs. Développer puis simplifier $(x - \overline{2018})^3$ pour tout $x \in \mathbb{Z}/5\mathbb{Z}$.

On a
$$2018 = 3[5]$$
, donc et $-\overline{3} = \overline{2}$

Donc
$$\forall x \in \mathbb{Z}/5\mathbb{Z}, (x - \overline{2018})^3 = (x + \overline{2})^3.$$

Puisque $\mathbb{Z}/5\mathbb{Z}$ est un anneau commutatif, on peut utiliser la formule du binôme de Newton.

Il vient que :
$$(x + \overline{2})^3 = x^3 + x^2 + \overline{2}x + \overline{3}$$

Problème 4

Soit \mathbb{F} , un corps fini commutatif. Calculer le produit de tous les éléments de \mathbb{F}^* .

$$\prod_{x \in \mathbb{F}^*} x$$

On sait que dans un corps, tout élément non nul possède un inverse. De plus, comme $\mathbb F$ est commutatif, on peut regrouper chaque élément avec son inverse $xx^{-1} = 1$.

Ainsi, il reste uniquement les éléments tels que $x = x^{-1}$. Soit

$$\prod_{x \in \mathbb{F}^*} x = \prod_{x = x^{-1}} x$$

De plus $x = x^{-1} \Leftrightarrow x^2 = 1$. Il vient que

$$\prod_{x \in \mathbb{F}^*} x = \prod_{x^2 = 1} x$$

Or, dans un corps, l'équation $x^2 = 1$ a pour solution que 1 et -1 (opposé de 1). Et donc $1 \times -1 = -1$.

$$\prod_{x\in\mathbb{F}^*} x = -1$$

Problème 5

Résoudre les équations suivantes :

1.
$$x^2 + x + \overline{7} = \overline{0}$$
 pour $x \in \mathbb{Z}/13\mathbb{Z}$.

$$x^{2} + x + 7 = 0$$
. On remarque que $14 = 1$.

$$x^2 + x + \overline{7} = \overline{0}$$
. On remarque que $\overline{14} = \overline{1}$.
$$x^2 + \overline{14}x + \overline{7} = \overline{0} \Leftrightarrow (x + \overline{7})^2 - \overline{42} = \overline{0}$$
$$\Leftrightarrow (x + \overline{7})^2 - \overline{3} = \overline{0}$$

$$\Leftrightarrow (x+\overline{7})^2 - \overline{4}^2 = \overline{0}$$

On sait comme 13 est premier que $\mathbb{Z}/13\mathbb{Z}$ est un anneau intègre sans diviseur de zéro. On peut factoriser.

$$\Leftrightarrow (x+\overline{7}+\overline{4})(x+\overline{7}-\overline{4})=\overline{0}$$

$$\Leftrightarrow (x + \overline{11})(x + \overline{3}) = \overline{0}$$

Ainsi, on a les solutions $\mathscr{S} = \{\overline{2}, \overline{10}\}$

2.
$$x^2 - \overline{4}x + \overline{3} = \overline{0}$$
 pour $x \in \mathbb{Z}/12\mathbb{Z}$.

On va chercher à mettre le polynôme sous forme canonique. En particulier, la méthode de résolution classique ne fonctionne par ici. $x^2-\overline{4}x+\overline{3}=\overline{0}\Leftrightarrow (x-\overline{2})^2-\overline{1}=\overline{0}$

$$x^{2} - \overline{4}x + \overline{3} = \overline{0} \Leftrightarrow (x - \overline{2})^{2} - \overline{1} = \overline{0}$$

Cependant $\mathbb{Z}/12\mathbb{Z}$ n'est pas un anneau intègre car 12 n'est pas premier et il existe alors des diviseurs de zéro. Il vaut donc mieux chercher à résoudre $(x-\overline{2})^2=\overline{1}$, soit $t^2=\overline{1}$.

On a alors $(x-\overline{2}) \in \{\overline{1}, \overline{5}, \overline{7}, \overline{11}\}$. Il vient alors que l'ensemble des solutions est $\mathscr{S} = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$

Problème 6

Soit $(A, +, \times)$ un anneau intègre.

Démontrer les propriétés (i) et (ii).

$$\forall a \in A^*, \forall (x,y) \in A^2, \begin{cases} ax = ay \Rightarrow x = y & (i) \\ xa = ya \Rightarrow x = y & (ii) \end{cases}$$

Autrement dit, tout élément non nul d'un anneau intègre est simplifiable à gauche (i) et à droite (ii) pour la multiplication.

Soient $a \in A^*$ et $(x, y) \in A^2$.

$$ax = ay \Leftrightarrow ax - ay = 0_A$$

$$\Leftrightarrow a(x-y) = 0$$

 $\Leftrightarrow a(x-y)=0_A$ Puisque A est intègre et $a\neq 0_A$, alors nécessairement $x-y=0_A$ et donc x=y.

La proposition (ii) se montre de manière similaire.