

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15060043502

FCC REPORT (BLE)

Applicant: Binatone Electronics International Limited

Address of Applicant: Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong

Equipment Under Test (EUT)

Product Name: SCOUT2500

Model No.: SCOUT2500

Trade mark: motorola

FCC ID: VLJ-SCOUT2500

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Jun., 2015

Date of Test: 09 Jun., to 05 Oct., 2015

Date of report issued: 06 Oct., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	06 Oct., 2015	Original

Tested by: Oney (her Date: 06 Oct., 2015)

Test Engineer

Reviewed by: Date: 06 Oct., 2015

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER:	SION	2
3		TENTS	
4	TEST	SUMMARY	4
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	-
		GENERAL DESCRIPTION OF E.U.T	
		TEST ENVIRONMENT AND MODE	
		DESCRIPTION OF SUPPORT UNITS	
		LABORATORY FACILITY	
		LABORATORY LOCATION	
		TEST INSTRUMENTS LIST	
_			
6	TEST	FRESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2	Radiated Emission Method	22
	6.7	Spurious Emission	27
	6.7.1	Conducted Emission Method	27
	6.7.2	Radiated Emission Method	30
7	TEST	「 SETUP PHOTO	35
_			
8	EUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Binatone Electronics International Limited
Address of Applicant:	Floor 23A, 9 Des Voeux Road West, Sheung Wan, Hong Kong
Manufacturer:	ShenZhen Concox Information Technology Co., Ltd.
Address of Manufacturer:	4F, Building B, Gaoxinqi Industrial Park, Liuxian 1st Road, District 67 Bao'an, Shenzhen
Factory:	Huizhou Goldenchip Electronics Co., Ltd.
Address of Factory:	No. 12 Factory, Songyang Road, Zhongkai Hi-tech Development Zone Huizhou City, Guangdong Province, China

5.2 General Description of E.U.T.

Product Name:	SCOUT2500
Model No.:	SCOUT2500
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.5 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V/320mAh
AC adapter:	(1) Model: MLF-A0060501000U0021
	Input:100-240V AC,50/60Hz 0.18A
	Output:5V DC MAX 1A
	(2) Model: S005ANU0500100
	Input:100-240V AC,50/60Hz 200mA
	Output:5V DC MAX 1000mA
	(3) Model: S006AKU0500100
	Input:100-240V AC,50/60Hz 200mA
	Output:5V DC MAX 1000mA

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz	
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz	
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz	
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz	
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz	
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz	
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz	
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz	
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz	
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15060043502

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode	Keep the EUT in continuous transmitting with modulation			

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017	
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016	
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016	
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
5	Amplifier (10kHz-1.3GHz)	НР	8447D	CCIS0003	04-01-2015	03-31-2016	
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016	
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016	
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016	
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A	
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A	
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016	
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016	
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016	
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016	
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016	

Con	Conducted Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)		
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015		
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016		
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016		
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016		
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		

6 Test results and Measurement Data

6.1 Antenna requirement:

-

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.5 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
. , ,						
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz	1	ID 10			
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm					
Test procedure	 The E.U.T and simulators a line impedance stabilize 50ohm/50uH coupling implements. The peripheral devices through a LISN that prowith 50ohm termination. test setup and photograph. Both sides of A.C. line interference. In order to positions of equipment changed according to measurement. 	zation network (L.I.S.Network pedance for the measure are also connected ovides a 500hm/50uH (Please refer to the hs). The are checked for a find the maximum of and all of the interface.	N.), which provides a uring equipment. to the main power coupling impedance block diagram of the maximum conducted emission, the relative			
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Trace: 9

Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : 435RF Condition

Pro : SCOUT2500 EUT : SCOUT2500
Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
Remark :

•	Read	LISN	Cable		Limit	Over		
Freq	Level	Factor	Loss	Level	Line	Limit	Remark	
MHz	dBu₹	₫B	₫B	dBu₹	dBu₹	d₿		
0.178	42.90	0.25	10.77	53.92	64.59	-10.67	QP	
0.182	27.04	0.25	10.77	38.06	54.42	-16.36	Average	
0.190	42.71	0.25	10.76	53.72	64.02	-10.30	QP	
0.222	40.35	0.25	10.75	51.35	62.74	-11.39	QP	
0.222	22.72	0.25	10.75	33.72	52.74	-19.02	Average	
0.266	21.01	0.26	10.75	32.02	51.25	-19.23	Average	
0.358	23.03	0.25	10.73	34.01	48.78	-14.77	Average	
0.398	33.27			44.24	57.90	-13.66	QP	
0.398	21.49	0.25	10.72	32.46	47.90	-15.44	Average	
0.486	27.49	0.29	10.76	38.54				
0.486	16.29	0.29	10.76	27.34	46.23	-18.89	Average	
8.279	29.19	0.26	10.86	40.31	60.00	-19.69	QP	
	MHz 0. 178 0. 182 0. 190 0. 222 0. 222 0. 266 0. 358 0. 398 0. 398 0. 486 0. 486	MHz dBuV 0.178 42.90 0.182 27.04 0.190 42.71 0.222 40.35 0.222 22.72 0.266 21.01 0.358 23.03 0.398 33.27 0.398 33.27 0.398 21.49 0.486 27.49 0.486 16.29	MHz dBuV dB 0.178 42.90 0.25 0.182 27.04 0.25 0.190 42.71 0.25 0.222 40.35 0.25 0.222 20.72 0.25 0.266 21.01 0.26 0.358 23.03 0.25 0.398 33.27 0.25 0.486 27.49 0.29 0.486 16.29 0.29	MHz dBuV dB dB 0.178 42.90 0.25 10.77 0.182 27.04 0.25 10.77 0.190 42.71 0.25 10.76 0.222 40.35 0.25 10.75 0.222 22.72 0.25 10.75 0.266 21.01 0.26 10.75 0.358 23.03 0.25 10.73 0.398 33.27 0.25 10.72 0.486 27.49 0.29 10.76 0.486 16.29 0.29 10.76	MHz dBuV dB dB dBuV 0.178 42.90 0.25 10.77 53.92 0.182 27.04 0.25 10.77 38.06 0.190 42.71 0.25 10.76 53.72 0.222 40.35 0.25 10.75 51.35 0.222 22.72 0.25 10.75 33.72 0.266 21.01 0.26 10.75 32.02 0.358 23.03 0.25 10.73 34.01 0.398 33.27 0.25 10.72 42.24 0.398 21.49 0.25 10.72 32.46 0.486 27.49 0.29 10.76 38.54 0.486 16.29 0.29 10.76 27.34	MHz dBuV dB dB dBuV dBuV 0.178 42.90 0.25 10.77 53.92 64.59 0.182 27.04 0.25 10.77 38.06 54.42 0.190 42.71 0.25 10.76 53.72 64.02 0.222 40.35 0.25 10.75 51.35 62.74 0.222 22.72 0.25 10.75 33.72 52.74 0.266 21.01 0.26 10.75 32.02 51.25 0.358 23.03 0.25 10.75 34.01 48.78 0.398 33.27 0.25 10.72 34.24 57.90 0.398 21.49 0.25 10.72 32.46 47.90 0.486 27.49 0.29 10.76 38.54 56.23 0.486 16.29 0.29 10.76 27.34 46.23	MHz dBuV dB dB dBuV dBuV dB 0.178 42.90 0.25 10.77 53.92 64.59 -10.67 0.182 27.04 0.25 10.77 38.06 54.42 -16.36 0.190 42.71 0.25 10.76 53.72 64.02 -10.30 0.222 40.35 0.25 10.75 51.35 62.74 -11.39 0.222 22.72 0.25 10.75 33.72 52.74 -19.02 0.266 21.01 0.26 10.75 32.02 51.25 -19.23 0.358 23.03 0.25 10.75 32.02 51.25 -19.23 0.398 33.27 0.25 10.73 34.01 48.78 -14.77 0.398 21.49 0.25 10.72 32.46 47.90 -15.44 0.486 27.49 0.29 10.76 38.54 56.23 -17.69 0.486 16.29 0.29	Treq Level Factor Loss Level Line Limit Remark MHz dBuV dB dB dBuV dBuV dB dB dBuV dB dB dB dB dB dB dB d

Report No: CCIS15060043502

Line:

Trace: 11

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

Pro 435RF **EUT** SCOUT2500 Model SCOUT2500

Test Mode : BLE mode Power Rating: AC 120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey Remark

(emark	•					201 145		
	-	Read	JUNEAU PROPERTY OF THE PARTY OF	Cable		Limit	Over	D 1
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
5.00	MHz	dBu∀	dB	dB	dBu₹	dBu₹	<u>dB</u>	
1	0.150	42.24	0.27	10.78	53.29	66.00	-12.71	QP
1 2 3	0.178	42.14	0.28	10.77	53.19	64.59	-11.40	QP
3	0.178	27.81	0.28	10.77	38.86	54.59	-15.73	Average
4	0.226	38.81	0.27	10.75	49.83	62.61	-12.78	QP
4 5 6 7	0.226	23.76	0.27	10.75	34.78	52.61	-17.83	Average
6	0.354	34.50	0.27	10.73	45.50	58.87	-13.37	QP
7	0.358	21.48	0.27	10.73	32.48	48.78	-16.30	Average
8	0.402	18.12	0.28	10.72	29.12	47.81	-18.69	Average
9	0.486	30.17	0.29	10.76	41.22	56.23	-15.01	QP
10	0.489	17.28	0.29	10.76	28.33	46.19	-17.86	Average
11	0.582	29.91	0.26	10.77	40.94	56.00	-15.06	QP
12	0.938	15.64	0.24	10.85	26.73	46.00	-19.27	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2					
Limit:	30dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	0.83		
Middle	0.37	30.00	Pass
Highest	0.03		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result	
Lowest	0.782			
Middle	0.762	>500	Pass	
Highest	0.762			

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.072		
Middle	1.072	N/A	N/A
Highest	1.062		

Test plot as follows:

Highest channel

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result	
Lowest	0.01			
Middle	-0.50	8.00	Pass	
Highest	-0.80			

Test plots as follow:

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Lowest channel

Highest channel

6.6.2 Radiated Emission Method

 National Control of Matrica							
Test Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2	2013 and KD	B 558074v03r	03 section	12.1		
Test Frequency Range:	2.3GHz to 2.50	SHz					
Test site:	Measurement	Distance: 3m					
Receiver setup:	Frequency Detector RBW VBW Remark						
	Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value		
Limit:	Frequ	•	Limit (dBuV	•	Remark		
	Above	-	54.0		Average Value		
			74.0		Peak Value e 0.8 meters above		
Test Procedure:	the ground to determing to determing to determing the second seco	d at a 3 meter ne the position was set 3 met which was mo na height is wild to determine ontal and vert measurement suspected emote then the antered the rota table maximum reaseceiver system Bandwidth with the confliction of the position of the position of the position of the margin would be reposition.	camber. The n of the highes ers away from unted on the taried from one the maximum ical polarization. It is since the was turned e was turned e was turned ading. In was set to Ph Maximum Habet EUT in peatesting could be orted. Otherwild be re-tested.	table was rest radiation. If the interference meter to for value of the ons of the arms of the arms of the destroy of the emit of the one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 ees to 360 degrees		
Test setup:	A A A A A A A A A A A A A A A A A A A	furntable) Grant Test Receiv	Horn Anti	Antenna To Controller	wer		
Test Instruments:	Refer to section	n 5.7 for detai	ls				
Test mode:	Refer to section	n 5.3 for detai	ls				
Test results:	Passed						

Test channel: Lowest

Horizontal:

Site : 3m chamber

: FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: SCOUT2500 EUT : SCOUT2500 Model

Test Mode : BLE-L mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey

REMARK

	202		Antenna Factor						
-	MHz	dBu∜	$\overline{dB/m}$	dB	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1 2	2390.000 2390.000								

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: SCOUT2500 EUT . SCOUTZ500

Test Mode : BLE-L mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
REMARK :

LINCAL		Antenna Factor			Remark
		 <u>d</u> B/m	 	 	
1 2	2390.000 2390.000				

Test channel: Highest

Horizontal:

Frequency (MHz)

Site Condition

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL

EUT : SCOUT2500 : SCOUT2500 Model

: BLE-H mode Test Mode

Power Rating: AC 120/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Carey
REMARK:

		Read	Antenna	Cable	Preamo		Limit	Over		
	Freq		Factor						Remark	
-	MHz	dBu∜	dB/m	dB	<u>dB</u>	dBuV/m	$\overline{dBuV/m}$	dB		
1	2483.500	23.89	27.52	5.70	0.00	57.11	74.00	-16.89	Peak	
2	2483.500	11.16	27.52	5.70	0.00	44.38	54.00	-9.62	Average	

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

EUT : SCOUT2500 : SCOUT2500 : BLE-H mode Model Test Mode

Power Rating : AC 120/60Hz Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey REMARK :

EMAK	200		Antenna				Limit		
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜		<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500			- Total (1997)					

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
Test Instruments:	Ground Reference Plane Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						
restresuits:	rasseu						

Test plot as follows:

Lowest channel

Date: 3.JUL.2015 16:28:18

30MHz~25GHz

Middle channel

Date: 3.JUL.2015 16:26:49

30MHz~25GHz

Highest channel

Date: 3.JUL.2015 16:25:41

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205							
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10:2009									
Test Frequency Range:	9kHz to 25GHz									
Test site:	Measurement D	istance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GHz Quasi-peak 120kHz 300kHz Quasi-peak Valu									
	Above 1GHz	Peak	1MHz	3MHz	Peak Value					
	Above IGHZ	RMS	1MHz	3MHz	Average Value					
Limit:	Freque	ncy	Limit (dBuV	/m @3m)	Remark					
	30MHz-8	8MHz	40.0)	Quasi-peak Value					
	88MHz-21	16MHz	43.5	5	Quasi-peak Value					
	216MHz-9	60MHz	46.0)	Quasi-peak Value					
	960MHz-	1GHz	54.0		Quasi-peak Value					
	Above 1	GHz								
Test Procedure:	Above 1GHz 54.0 Average Value 74.0 Peak Value 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-									

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: SCOUT2500
Model : SCOUT2500
Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C
Test Engineer: Carey
REMARK : : SCOUT2500 EUT

Huni:55%

TATAIL									
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
_	MHz	dBu₹	dB/π		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>ab</u>	
1	44.901	27.41	13.55	0.56	29.86	11.66	40.00	-28.34	QP
2	107.134	27.77	12.49	1.02	29.48	11.80	43.50	-31.70	QP
3	134.088	32.03	8.61	1.22	29.31	12.55	43.50	-30.95	QP
4	199.986	33.94	10.57	1.38	28.83	17.06	43.50	-26.44	QP
5 6	224.519	29.91	11.41	1.50	28.68	14.14	46.00	-31.86	QP
6	948, 761	30, 35	21.40	3, 45	27, 73	27.47	46, 00	-18.53	OP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : SCOUT2500 Condition

EUT : SCOUT2500 Model Test mode : BLE mode
Power Rating : AC120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

REMARK

	Freq		Antenna Factor						Remark
	MHz	dBu∀	<u>dB</u> /π		<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>db</u>	
1	44.275	31.99	13.55	0.55	29.87	16.22	40.00	-23.78	QP
2	83.816	38.78	9.87	0.87	29.61	19.91	40.00	-20.09	QP
2	91.816	36.25	12.24	0.92	29.56	19.85	43.50	-23.65	QP
4	122.834	39.81	10.00	1.14	29.37	21.58	43.50	-21.92	QP
5	129.923	38.94	8.93	1.19	29.33	19.73	43.50	-23.77	QP
6	197.893	34.82	10.57	1.38	28.84	17.93	43.50	-25.57	QP

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4808.00	51.30	31.53	8.90	40.24	51.49	74.00	-22.51	Vertical
4808.00	53.76	31.53	8.90	40.24	53.95	74.00	-20.05	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4808.00	41.72	31.53	8.90	40.24	41.91	54.00	-12.09	Vertical
4808.00	47.78	31.53	8.90	40.24	47.97	54.00	-6.03	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4880.00	47.69	31.58	8.98	40.15	48.10	74.00	-25.90	Vertical
4880.00	47.99	31.58	8.98	40.15	48.40	74.00	-25.60	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4880.00	37.15	31.58	8.98	40.15	37.56	54.00	-16.44	Vertical
4880.00	37.72	31.58	8.98	40.15	38.13	54.00	-15.87	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	47.06	31.69	9.08	40.03	47.80	74.00	-26.20	Vertical
4960.00	49.33	31.69	9.08	40.03	50.07	74.00	-23.93	Horizontal

Т	Test channel:			Highest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	37.52	31.69	9.08	40.03	38.26	54.00	-15.74	Vertical
4960.00	39.66	31.69	9.08	40.03	40.40	54.00	-13.60	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366