Balancing different information and modelling decisions in the Bayesian estimation of demographic quantities

Marija Pejchinovska (1) and Monica Alexander (1,2)

(1) Statistical Sciences

(2) Sociology

University of Toronto

'Data science: Estimation and forecasting', BSPS 2023

Background

- We are in the 'Sustainable Development Goals' era
- Detailed and specific health and development goals for all UN member countries, to be reached by 2030
- Specific targets require monitoring of key indicators on an increasingly granular spatial and temporal scale
- But this is challenging because of lack of available data, particularly in LMICs

Increased demand for timely estimates and projections

- We need methods of obtaining estimates of outcomes of interest in data sparse contexts
- Long history of this in demography!
- (Deterministic) Inferences about populations with limited data, based on systematic empirical patterns in populations with high-quality data
- But recent efforts have focused more on datadriven statistical approaches, utilizing what limited data we have
- A range of approaches, based on different research groups, philosophies

Motivation for this project

- How sensitive are estimates and projections to different modelling decisions and information sources, and when does it matter the most?
- How can we better communicate and quantify uncertainty in model choice?
- How can we systematize and validate model choice?

The rest of this presentation

- Explore these ideas with a motivating example: estimating the neonatal mortality rate in all countries worldwide
- Review existing UN model, suggest sensible alternatives, motivated by both data-driven patterns and previously observed empirical patterns
- Quantify sensitivity of estimates to model choice
- Discuss implications, next steps

Work in progress! More questions than answers at this point!

Estimating the neonatal mortality rate in all countries worldwide

Neonatal mortality rate (NMR)

- Deaths in the first 28 days of life (per 1000 live births)
- Part of SDG goal 3.2 (<12 deaths/1000)
- UNICEF mandated to produce country-specific estimates and projections to 2030 annually
- Collate data based on civil registration and vital statistics systems, surveys (DHS, MICS)
- Current approach is a Bayesian penalized splines regression model, developed by Alexander and Alkema (2018)

Data contexts

- We model the log ratio of neonatal mortality to other child mortality (1-59 months), $\log R_{c,t}$
- **Data model** relates the observed ratio r_i to the 'true' ratio $R_{c[i],t[i]}$, allowing for different observed standard errors based on data source
- Process model: $\log R_{c,t} = \log(f(U_{c,t})) + \log(P_{c,t})$

- We model the log ratio of neonatal mortality to other child mortality (1-59 months), $\log R_{c,t}$
- **Data model** relates the observed ratio r_i to the 'true' ratio $R_{c[i],t[i]}$, allowing for different observed standard errors based on data source
- Process model: $\log R_{c,t} = \log(f(U_{c,t})) + \log(P_{c,t})$

'Expected' log ratio dictated by some function of U5MR

- We model the log ratio of neonatal mortality to other child mortality (1-59 months), $\log R_{c,t}$
- **Data model** relates the observed ratio r_i to the 'true' ratio $R_{c[i],t[i]}$, allowing for different observed standard errors based on data source
- Process model: $\log R_{c,t} = \log(f(U_{c,t})) + \log(P_{c,t})$

Country-specific effect, modelled with first-order penalized B-Splines

- We model the log ratio of neonatal mortality to other child mortality (1-59 months), $\log R_{c,t}$
- **Data model** relates the observed ratio r_i to the 'true' ratio $R_{c[i],t[i]}$, allowing for different observed standard errors based on data source

• Process model:
$$\log R_{c,t} = \log(f(U_{c,t})) + \log(P_{c,t})$$

Country-specific effect, modelled with first-order penalized B-Splines

Relationship between ratio and U5MR (Model 0)

Current model is

$$\log(f(U_{c,t})) = \beta_0$$
 if $\log U_{c,t} \le \theta$ and

$$\log(f(U_{c,t})) = \beta_0 + \beta_1 \log U_{c,t} \text{ if } \log U_{c,t} > \theta$$

- Where $U_{c,t}$ is the under-five mortality rate in that country and year
- Motivated by scatter plot of available data

But wait

A data-driven alternative (Model 1)

- Allow for systematic regional differences
- Expected level is a simple linear relationship that varies by region
- $\log(f(U_{c,t})) = \alpha_r + \beta_r \log U_{c,t}$

An alternative based on prior empirical observations

- Inspired by recent work by Guillot et al. (2022)
- Based on highly granular dataset on child mortality by age compiled from 25 countries over the years 1841–2016
- Developed 'log-quad' model which relates child mortality at various ages:

$$\log q_x = a_x + b_x \log q_5 + c_x \log q_5^2 + e_x$$

 Estimated coefficient values for mortality at different ages are provided in their paper

Table 2 Coefficients of the log-quadratic model estimated with the final U5MD, by sex and for both sexes combined

	Females					Males				Both Sexes Combined			
	a_x	$b_{\scriptscriptstyle x}$	$c_{_{\chi}}$	v_x		a_x	b_x	c_{x}	v_x	a_x	$b_{\scriptscriptstyle x}$	c_{x}	$\nu_{_{\chi}}$
7d	-3.6874	-0.3064	-0.1462	-0.4771		-3.2265	-0.1892	-0.1425	-0.4727	-3.4443	-0.2496	-0.1451	-0.4766
14d	-3.0879	-0.0624	-0.1165	-0.4244		-2.7078	0.0330	-0.1134	-0.4238	-2.8860	-0.0154	-0.1155	-0.4252
21d	-2.6890	0.1033	-0.0968	-0.3918		-2.3603	0.1846	-0.0944	-0.3931	-2.5139	0.1435	-0.0960	-0.3932
28d	-2.4645	0.1925	-0.0864	-0.3673		-2.1500	0.2725	-0.0835	-0.3699	-2.2961	0.2325	-0.0853	-0.3693
2m	-1.9445	0.3793	-0.0653	-0.2860		-1.6300	0.4729	-0.0594	-0.2907	-1.7720	0.4287	-0.0624	-0.2883
3m	-1.7128	0.4418	-0.0591	-0.2310		-1.4171	0.5317	-0.0532	-0.2338	-1.5505	0.4892	-0.0562	-0.2318
4m	-1.5420	0.4857	-0.0551	-0.1926		-1.2680	0.5695	-0.0494	-0.1940	-1.3920	0.5297	-0.0523	-0.1923
5m	-1.3830	0.5344	-0.0501	-0.1663		-1.1330	0.6115	-0.0448	-0.1650	-1.2457	0.5752	-0.0475	-0.1643
6m	-1.2361	0.5824	-0.0453	-0.1461		-1.0026	0.6566	-0.0398	-0.1449	-1.1068	0.6222	-0.0425	-0.1442
7m	-1.1008	0.6282	-0.0406	-0.1311		-0.8833	0.6995	-0.0352	-0.1291	-0.9801	0.6666	-0.0378	-0.1287
8m	-0.9867	0.6671	-0.0367	-0.1190		-0.7805	0.7374	-0.0310	-0.1167	-0.8718	0.7052	-0.0337	-0.1164
9m	-0.8881	0.7011	-0.0332	-0.1079		-0.6904	0.7711	-0.0272	-0.1068	-0.7770	0.7396	-0.0300	-0.1062
10m	-0.7996	0.7325	-0.0299	-0.0998		-0.6133	0.7998	-0.0241	-0.0980	-0.6948	0.7695	-0.0268	-0.0978
11m	-0.7223	0.7603	-0.0269	-0.0923		-0.5478	0.8246	-0.0213	-0.0911	-0.6237	0.7959	-0.0239	-0.0905
12m	-0.6532	0.7854	-0.0243	-0.0863		-0.4867	0.8482	-0.0187	-0.0854	-0.5591	0.8202	-0.0212	-0.0846
15m	-0.4909	0.8439	-0.0181	-0.0710		-0.3465	0.9020	-0.0126	-0.0709	-0.4086	0.8764	-0.0151	-0.0698
18m	-0.3833	0.8835	-0.0136	-0.0601		-0.2600	0.9347	-0.0087	-0.0598	-0.3126	0.9123	-0.0109	-0.0588
21m	-0.3063	0.9119	-0.0103	-0.0514		-0.2031	0.9557	-0.0060	-0.0509	-0.2468	0.9367	-0.0079	-0.0500
2y	-0.2444	0.9335	-0.0078	-0.0433		-0.1565	0.9719	-0.0040	-0.0431	-0.1933	0.9554	-0.0057	-0.0423
3y	-0.1202	0.9696	-0.0037	-0.0207		-0.0660	0.9954	-0.0010	-0.0225	-0.0885	0.9844	-0.0022	-0.0216
4y	-0.0432	0.9912	-0.0011	-0.0085		-0.0266	0.9992	-0.0003	-0.0087	-0.0333	0.9958	-0.0007	-0.0086
5y	0.0000	1.0000	0.0000	0.0000		0.0000	1.0000	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000

An alternative based on prior empirical observations (Model 2)

Use the log-quad model to inform the functional form of the model but also the priors on coefficients:

$$\log(f(U_{c,t})) = \alpha_r + \beta_r \log U_{c,t} + \gamma_r \log U_{c,t}^2$$

With

$$\alpha_r \sim N(a_{28} + v_{28}, 2^2)$$

$$\beta_r \sim N(b_{28}, 0.5^2)$$

$$\gamma_r \sim N(c_{28}, 0.2^2)$$

Summary of models

- Model 0: Global relationship; linear relationship with log U5MR with changing slope
- Model 1: Regional relationship; linear relationship with log U5MR
- Model 2: Regional relationship, informed by prior empirical observations, quadratic relationship with U5MR

Results

Case study countries

Case study countries

Comments

- The choice of 'expected' function matters most when there's no data (and for projections)
- Projections can be quite different
 - Implications for target hitting, speed of decline
- Results suggest empirical-based priors in Model 2 may not be appropriate in high-mortality contexts
- Biggest differences overall between Model 0 and Model 2
- Uncertainty intervals overlap, but combined uncertainty is larger

Ways forward and future work

- Bayesian model averaging for better quantification of uncertainty
- Simulation

Bigger picture:

- Systematic framework for model comparison (Susmann, Alexander and Alkema)
- What to call estimates in situations where we have no data?
- Using results of uncertainty and estimation to advocate for better data collection

Thanks!

monica.alexander@utoronto.ca monicaalexander.com

Summary metrics

- Comparing the models overall (against Model 0) on NMR scale
 - $MAE_{0|1} = 0.407$, $MAE_{0|2} = 0.76$
 - $MSE_{0|1} = 0.935$, $MSE_{0|2} = 14.7$
 - $RMSE_{0|1} = 0.967$, $RMSE_{0|2} = 3.84$