2nd approach: Gain Ratio

Problem of Information gain approach

- → Biased towards tests with many outcomes (attributes having a large number of values)
- → E.g: attribute acting as unique identifier
 - Produce a large number of partitions (1 tuple per partition)
 - Each resulting partition D is pure Info(D)=0
 - The information gain is maximized

Extension to Information Gain

- → C4.5, a successor of ID3 uses an extension to information gain known as gain ratio
- Overcomes the bias of Information gain
- Applies a kind of normalization to information gain using a split information value

2nd approach: Gain Ratio

The split information value represents the potential information generated by splitting the training data set D into v partitions, corresponding to v outcomes on attribute A

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{D})$$

- → High splitInfo: partitions have more or less the same size (uniform)
- → Low split Info: few partitions hold most of the tuples (peaks)
- The gain ratio is defined as

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

The attribute with the maximum gain ratio is selected as the splitting attribute

Gain Ratio: Example

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Using attribute income

1st partition (low) **D1** has **4 tuples** 2nd partition (medium) **D2** has **6 tuples** 3rd partition (high) **D3** has **4 tuples**

$$Gain(income) = 0.029$$

GainRatio (income) =
$$\frac{0.029}{0.926}$$
 = 0.031

SplitInfo
$$_{income}$$
 $(D) = -\frac{4}{14} \log_{2}(\frac{4}{14}) - \frac{6}{14} \log_{2}(\frac{6}{14}) - \frac{4}{14} \log_{2}(\frac{4}{14})$
= 0.926

3rd approach: Gini Index

- The Gini Index (used in CART) measures the impurity of a data partition D $Gini (D) = 1 \sum_{i=1}^{m} p_i^2$
 - → m: the number of classes
 - → p_i: the probability that a tuple in D belongs to class Ci
- The Gini Index considers a binary split for each attribute A, say D₁ and D₂. The Gini index of D given that partitioning is:

$$Gini_A(D) = \frac{D_1}{D}Gini(D_1) + \frac{D_2}{D}Gini(D_2)$$

- → A weighted sum of the impurity of each partition
- The reduction in impurity is given by

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

The attribute that maximizes the reduction in impurity is chosen as the splitting attribute

Binary Split: Continuous-Valued Attributes

- D: a data patition
- Consider attribute A with continuous values
- To determine the best binary split on A

What to examine?

- Examine each possible split point
- → The midpoint between each pair of (sorted) adjacent values is taken as a possible split-point

How to examine?

→ For each split-point, compute the weighted sum of the impurity of each of the two resulting partitions (D1: A<=split-point, D2: A> splitpoint)

$$Gini_A(D) = \frac{D_1}{D}Gini(D_1) + \frac{D_2}{D}Gini(D_2)$$

→ The split-point that gives the minimum Gini index for attribute A is selected as its splitting subset

Binary Split: Discrete-Valued Attributes

- D: a data patition
- Consider attribute A with v outcomes {a₁...,a_v}
- To determine the best binary split on A

What to examine?

- \rightarrow Examine the partitions resulting from all possible subsets of $\{a_1, \dots, a_v\}$
- → Each subset S_A is a binary test of attribute A of the form "A∈ S_A ?"
- → 2^v possible subsets. We exclude the power set and the empty set, then we have 2^v-2 subsets

How to examine?

→ For each subset, compute the weighted sum of the impurity of each of the two resulting partitions

$$Gini_A(D) = \frac{D_1}{D}Gini(D_1) + \frac{D_2}{D}Gini(D_2)$$

→ The subset that gives the minimum Gini index for attribute A is selected as its splitting subset

Gini(income)

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Compute the Gini index of the training set D: 9 tuples in class yes and 5 in class no

Gini
$$(D) = 1 - \left(\left(\frac{9}{14} \right)^2 + \left(\frac{5}{14} \right)^2 \right) = 0.459$$

Using attribute income: there are three values: low, medium and high Choosing the subset {low, medium} results in two partions:

- •D1 (income ∈ {low, medium}): 10 tuples
- **D2** (income ∈ {high}): 4 tuples

Gini(income)

$$Gini_{income \in \{low, median\}}(D) = \frac{10}{14}Gini(D_1) + \frac{4}{14}Gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right)$$

$$= 0.450$$

$$= Gini_{income \in \{high\}}(D)$$

The Gini Index measures of the remaining partitions are:

$$Gini_{\{low,high\}and\{medium\}}(D) = 0.315$$
 $Gini_{\{medium,high\}and\{low\}}(D) = 0.300$

Therefore, the best binary split for attribute income is on {medium, high} and {low}

Comparing Attribute Selection Measures

The three measures, in general, return good results but

Information Gain

→ Biased towards multivalued attributes

Gain Ratio

→ Tends to prefer unbalanced splits in which one partition is much smaller than the other

Gini Index

- → Biased towards multivalued attributes
- → Has difficulties when the number of classes is large
- → Tends to favor tests that result in equal-sized partitions and purity in both partitions

2.2.3 Tree Pruning

Problem: Overfitting

- Many branches of the decision tree will reflect anomalies in the training data due to noise or outliers
- → Poor accuracy for unseen samples

Solution: Pruning

→ Remove the least reliable branches

Tree Pruning Approaches

1st approach: prepruning

- → Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
- → Statistical significance, information gain, Gini index are used to assess the goodness of a split
- → Upon halting, the node becomes a leaf
- → The leaf may hold the most frequent class among the subset tuples

Problem

→ Difficult to choose an appropriate threshold

Tree Pruning Approaches

▶ 2nd approach: postpruning

- Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
- → A subtree at a given node is pruned by replacing it by a leaf
- → The leaf is labeled with the most frequent class

Example: cost complexity pruning algorithm

- → Cost complexity of a tree is a function of the the number of leaves and the error rate (percentage of tupes misclassified by the tree)
- → At each node N compute
 - The cost complexity of the subtree at N
 - The cost complexity of the subtree at N if it were to be pruned
- → If pruning results is smaller cost, then prune the subtree at N
- → Use a set of data different from the training data to decide which is the "best pruned tree"

2.2.4 Scalability and Decision Tree Induction

For scalable classification, propose presorting techniques on diskresident data sets that are too large to fit in memory.

- SLIQ (EDBT'96 Mehta et al.)
 - Builds an index for each attribute and only class list and the current attribute list reside in memory
- SPRINT (VLDB'96 J. Shafer et al.)
 - → Constructs an attribute list data structure
- PUBLIC (VLDB'98 Rastogi & Shim)
 - → Integrates tree splitting and tree pruning: stop growing the tree earlier
- RainForest (VLDB'98 Gehrke, Ramakrishnan & Ganti)
 - → Builds an AVC-list (attribute, value, class label)
- BOAT (PODS'99 Gehrke, Ganti, Ramakrishnan & Loh)
 - → Uses bootstrapping to create several small samples

Summary of Section 2.2

- Decision Trees have relatively faster learning speed than other methods
- Conversable to simple and easy to understand classification rules
- Information Gain, Ratio Gain and Gini Index are the most common methods of attribute selection
- Tree pruning is necessary to remove unreliable branches
- Scalability is an issue for large datasets

Chapter 2: Classification & Prediction

- 2.1 Basic Concepts of Classification and Prediction
- 2.2 Decision Tree Induction
 - 2.2.1 The Algorithm
 - 2.2.2 Attribute Selection Measures
 - 2.2.3 Tree Pruning
 - 2.2.4 Scalability and Decision Tree Induction
- 2.3 Bayes Classification Methods
 - 2.3.1 Naïve Bayesian Classification
 - 2.3.2 Note on Bayesian Belief Networks
- 2.4 Rule Based Classification
- 2.5 Lazy Learners
- 2.6 Prediction
- 2.7 How to Evaluate and Improve Classification

2.3 Bayes Classification Methods

What are Bayesian Classifiers?

- → Statistical classifiers
- → Predict class membership probabilities: probability of a given tuple belonging to a particular class
- → Based on Bayes' Theorem

Characteristics?

 Comparable performance with decision tree and selected neural network classifiers

Bayesian Classifiers

- → Naïve Bayesian Classifiers
 - Assume independency between the effect of a given attribute on a given class and the other values of other attributes
- → Bayesian Belief Networks
 - Graphical models
 - Allow the representation of dependencies among subsets of attributes

- X is a data tuple. In Bayesian term it is considered "evidence"
- H is some hypothesis that X belongs to a specified class C

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

- P(H|X) is the posterior probability of H conditioned on X
 Example: predict whether a costumer will buy a computer or not
 - → Costumers are described by two attributes: age and income
 - → X is a 35 years-old costumer with an income of 40k
 - → H is the hypothesis that the costumer will buy a computer
 - → P(H|X) reflects the probability that costumer X will buy a computer given that we know the costumers' age and income

- X is a data tuple. In Bayesian term it is considered "evidence"
- H is some hypothesis that X belongs to a specified class C

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

- P(X|H) is the posterior probability of X conditioned on H
 Example: predict whether a costumer will buy a computer or not
 - → Costumers are described by two attributes: age and income
 - → X is a 35 years-old costumer with an income of 40k
 - → H is the hypothesis that the costumer will buy a computer
 - → P(X|H) reflects the probability that costumer X, is 35 years-old and earns 40k, given that we know that the costumer will buy a computer

- X is a data tuple. In Bayesian term it is considered "evidence"
- H is some hypothesis that X belongs to a specified class C

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

P(H) is the prior probability of H

Example: predict whether a costumer will buy a computer or not

- → H is the hypothesis that the costumer will buy a computer
- → The prior probability of H is the probability that a costumer will buy a computer, regardless of age, income, or any other information for that matter
- → The posterior probability P(H | X) is based on more information than the prior probability P(H) which is independent from X

- X is a data tuple. In Bayesian term it is considered "evidence"
- H is some hypothesis that X belongs to a specified class C

$$P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$$

P(X) is the prior probability of X

Example: predict whether a costumer will buy a computer or not

- → Costumers are described by two attributes: age and income
- → X is a 35 years-old costumer with an income of 40k
- → **P(X)** is the probability that a person from our set of costumers is 35 years-old and earns 40k

Naïve Bayesian Classification

D: A training set of tuples and their associated class labels Each tuple is represented by n-dimensional vector $\mathbf{X}(\mathbf{x}_1,...,\mathbf{x}_n)$, n measurements of n attributes $A_1,...,A_n$

Classes: suppose there are m classes $C_1,...,C_m$

Principle

- Given a tuple X, the classifier will predict that X belongs to the class having the highest posterior probability conditioned on X
- Predict that tuple X belongs to the class C_i if and only if

$$P(C_i \mid X) > P(C_j \mid X)$$
 for $1 \le j \le m, j \ne i$

Maximize P(C_i | X): find the maximum posteriori hypothesis

$$P(C_i \mid X) = \frac{P(X \mid C_i)P(C_i)}{P(X)}$$

P(X) is constant for all classes, thus, maximize P(X | C_i)P(C_i)

Naïve Bayesian Classification

- To maximize P(X | Ci)P(Ci), we need to know class prior probabilities
 - → If the probabilities are not known, assume that $P(C_1)=P(C_2)=...=P(C_m)$ \Rightarrow maximize $P(X | C_i)$
 - → Class prior probabilities can be estimated by $P(C_i) = |C_{i,D}|/|D|$
- Assume Class Conditional Independence to reduce computational cost of P(X | C_i)
 - \rightarrow given $X(x_1,...,x_n)$, $P(X \mid C_i)$ is:

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

= $P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$

→ The probabilities $P(x_1 | C_i)$, ... $P(x_n | C_i)$ can be estimated from the training tuples

Estimating $P(x_i | C_i)$

Categorical Attributes

- \rightarrow Recall that \mathbf{x}_k refers to the value of attribute A_k for tuple X
- \rightarrow X is of the form $X(x_1,...,x_n)$
- \rightarrow **P**($\mathbf{x}_k | \mathbf{C}_i$) is the number of tuples of class \mathbf{C}_i in D having the value \mathbf{x}_k for \mathbf{A}_k , divided by $|\mathbf{C}_{i,D}|$, the number of tuples of class \mathbf{C}_i in D
- → Example
 - 8 costumers in class C_{ves} (costumer will buy a computer)
 - 3 costumers among the 8 costumers have high income
 - P(income=high | C_{yes}) the probability of a costumer having a high income knowing that he belongs to class C_{yes} is 3/8

Continuous-Valued Attributes

 \rightarrow A continuous-valued attribute is assumed to have a **Gaussian** (Normal) distribution with mean μ and standard deviation σ

$$g(x, \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Estimating $P(x_i | C_i)$

Continuous-Valued Attributes

→ The probability $P(x_k | C_i)$ is given by:

$$P(x_k \mid C_i) = g(x_k, \mu_{Ci}, \sigma_{Ci})$$

 \rightarrow Estimate μ_{Ci} and σ_{Ci} the mean and standard variation of the values of attribute A_k for training tuples of class C_i

→ Example

- X a 35 years-old costumer with an income of 40k (age, income)
- Assume the age attribute is continuous-valued
- Consider class C_{yes} (the costumer will buy a computer)
- We find that in D, the costumers who will buy a computer are 38±12 years of age $\Rightarrow \mu_{\text{Cves}}$ =38 and σ_{Cves} =12

$$P(age = 35 | C_{yes}) = g(35,38,12)$$

RID	age	income	student	credit-rating	class:buy_computer
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle-aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle-aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle-aged	medium	no	excellent	yes
13	middle-aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

Tuple to classify is

X (age=youth, income=medium, student=yes, credit=fair)

Maximize $P(X \mid C_i)P(C_i)$, for i=1,2

Given X (age=youth, income=medium, student=yes, credit=fair)

Maximize $P(X | C_i)P(C_i)$, for i=1,2

First step: Compute P(C_i). The prior probability of each class can be computed based on the training tuples:

P(buys_computer=yes)=9/14=0.643

P(buys_computer=no)=5/14=0.357

Second step: compute $P(X \mid C_i)$ using the following conditional prob.

P(age=youth | buys_computer=yes)=0.222

P(age=youth | buys_computer=no)=3/5=0.666

P(income=medium | buys_computer=yes)=0.444

P(income=medium | buys_computer=no)=2/5=0.400

P(student=yes|buys_computer=yes)=6/9=0.667

P(tudent=yes | buys_computer=no)=1/5=0.200

P(credit_rating=fair | buys_computer=yes)=6/9=0.667

P(credit_rating=fair | buys_computer=no)=2/5=0.400

```
P(X | buys_computer=yes) = P(age=youth | buys_computer=yes) ×
                            P(income=medium | buys_computer=yes) ×
                            P(student=yes|buys_computer=yes) ×
                            P(credit_rating=fair | buys_computer=yes)
                           = 0.044
P(X | buys_computer=no) = P(age=youth | buys_computer=no) ×
                            P(income=medium | buys_computer=no) ×
                            P(student=yes|buys_computer=no) ×
                            P(credit_rating=fair | buys_computer=no)
                            = 0.019
Third step: compute P(X \mid C_i)P(C_i) for each class
P(X \mid buys\_computer=yes)P(buys\_computer=yes)=0.044 \times 0.643=0.028
P(X \mid buys\_computer=no)P(buys\_computer=no)=0.019 \times 0.357=0.007
```

The naïve Bayesian Classifier predicts buys_computer=yes for tuple X

Avoiding the 0-Probability Problem

Naïve Bayesian prediction requires each conditional prob. be non-zero. Otherwise, the predicted prob. will be zero

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

- Ex. Suppose a dataset with 1000 tuples, income=low (0), income=medium (990), and income = high (10),
- Use Laplacian correction (or Laplacian estimator)
 - → Adding 1 to each case

Prob(income = low) = 1/1003

Prob(income = medium) = 991/1003

Prob(income = high) = 11/1003

→ The "corrected" prob. estimates are close to their "uncorrected" counterparts

Summary of Section 2.3

- Advantages
 - → Easy to implement
 - → Good results obtained in most of the cases
- Disadvantages
 - Assumption: class conditional independence, therefore loss of accuracy
 - → Practically, dependencies exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc.
 - Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?
 - → Bayesian Belief Networks

2.3.2 Bayesian Belief Networks

- Bayesian belief network allows a subset of the variables conditionally independent
- A graphical model of causal relationships
 - → Represents <u>dependency</u> among the variables
 - → Gives a specification of joint probability distribution

- → Nodes: random variables
- → Links: dependency
- → X and Y are the parents of Z, and Y is the parent of P
- → No dependency between Z and P
- → Has no loops or cycles

The conditional probability table (CPT) for variable LungCancer:

	(FH, S)	$(FH, \sim S)$	(~FH, S)	(~FH, ~S)
LC	0.8	0.5	0.7	0.1
~LC	0.2	0.5	0.3	0.9

CPT shows the conditional probability for each possible combination of its parents

Derivation of the probability of a particular combination of values of X, from CPT:

Bayesian Belief Networks
$$P(x_1,...,x_n) = \prod_{i=1}^n P(x_i | Parents (Y_i))$$

Training Bayesian Networks

- Several scenarios:
 - → Given both the network structure and all variables observable: *learn* only the CPTs
 - Network structure known, some hidden variables: gradient descent (greedy hill-climbing) method, analogous to neural network learning
 - Network structure unknown, all variables observable: search through the model space to reconstruct network topology
 - Unknown structure, all hidden variables: No good algorithms known for this purpose

Summary of Section 2.3

- Bayesian Classifiers are statistical classifiers
- They provide good accuracy
- Naïve Bayesian classifier assumes independency between attributes
- Causal relations are captured by Bayesian Belief Networks