Paper / Subject Code: 42871 / Design of Mechanical Systems Paper/Subject Code: 42871/Design of Mechanical system Sem VII (R2019, C Scheme) "Mechanical" al" Dec' 2023 updated on 10/1/224 26/12/2023 Time: 3 Hours Marks: 80 Question 1 is c

•	Attempt any d	
	ally inroa	
	Design data book PSG, Mahadevan, Kale and Khandare are permitted to use.	
Q1,		
a)	Answer any four from the following. What do you are	5
	You mean by meant it is a changed decign? Expiall ally	3
b)	Pauses of it	_
`	What are the different types of piston rings? Explain the function of them.	5
c)	Why cleaning of belt is necessary in belt conveyor? list down different	5
	types of cleaners.	
d)	Draw a neat sketch of centrifugal pump and explain its principle of	5
	working?	5
e)	State the assumptions made in Lewis's bending strength equation and its	5
	significance.	5
Q2.	A single stage helical gear box is used to transmit 12.5 kw power at 1440	
	rpm of pinion. The desire transmission ratio is 5:1. Assume 20-degree	
	FD tooth profile and material C50 for pinion and gear.	
	a) Determine the module.	5
	b) Check gear for dynamic load.	5
	c) Check gear for contact stresses.	5
	d) Determine the gear teeth proportions and write constructional	5
	details.	3
Q3.	The following specification refers to an EOT crane. (20 Marks)	
	Application - Class II	
	load to be lifted - 100 KN	
	Hoisting Speed - 10 m/min	
	Maximum lift – 5 m	
	a) Design 6*37 type of rope and find its life.	5
	b) Select a standard hook, material and design stresses induced at the	5
	most critical section.	_
	c) Select suitable motor for hoisting.	5
	d) Design the rope drum.	5
		5
Q4 a)	Define Lead, Lead Angle, Normal pitch and Helix angle with respect to	5
	the worm gearing.	

Paper / Subject Code: 42871 / Design of Mechanical Systems

2.412	The specification of belt conveyer system are	
Q 4 b)	G	
	Material to be conveyed = Lime stone,	
	Maximum lump size 80 mm,	
	Maximum rump size	
	Inclination = 12°, Center to Center distance = 50 m,	
	Center to Center distance	
	Troughing angle 25°,	10
	Design conveyor belt.	5
	II. Find motor capacity	
Q5.a)	 A centrifugal pump directly coupled to a motor is required to deliver 1000 LPM of water at 30 degree C against a total head of 25 m. I. Select the suitable type of motor power and speed. II. Determine the impeller diameter, inlet and outlet vane angles and no. of vanes. 	5 5
Q5. b)	A Gear pump required to deliver 25 LPM of SAE20 oil at a pressure of	
Q3. b)	25 bar. Efficiency of the gear pump is 80 %.	
	I. Select suitable standard motor.	5
	II. Design gear and check for bending failure.	5
Q6. a)	Explain why an I – section with Ixx \leq 4 Iyy is selected for connecting rods of an I.C. Engine?	5
Q6. b)	A four-stroke single cylinder water cooled Diesel engine develops 7.5 KW brake power when operating at 1000rpm.	
	I. Determine the bore and stroke of a cylinder.	5
	II. Design wet liner.	5
	III. Design piston with pin and piston rings.	5
		-
