Predicting potential loan defaults

What makes a loan risky?

Credit history explained

Did I pay previous **Credit History** loans on time? *** Example: excellent, Income good, or fair *** Term **** Personal Info ***

Income

Credit History What's my income? *** Income Example: *** \$80K per year Term **** Personal Info ***

Loan terms

How soon do I need to pay the loan?

Example: 3 years,

5 years,...

,

Personal information

Age, reason for the loan, marital status,...

Example: Home loan for a married couple

Intelligent application

(

Classifier review

This module ... decision trees

Decision trees: Intuition

What does a decision tree represent?

What does a decision tree represent?

Scoring a loan application

 $\mathbf{x}_i = (Credit = poor, Income = high, Term = 5 years)$

1

Decision tree model

Decision tree learning task

Learn decision tree from data?

ド'(*)	りょんり	り 3(以)	Lory Slatu
Credit	Term	Income	У
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Decision tree learning problem

Training data: N observations (\mathbf{x}_i, y_i)

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Quality metric: Classification error

Error measures fraction of mistakes

```
Error = # incorrect predictions # examples
```

- Best possible value : 0.0
- Worst possible value: 1.0

Find the tree with lowest classification error

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

How do we find the best tree?

Exponentially large number of possible trees makes decision tree learning hard! (NP-hard problem)

Simple (greedy) algorithm finds "good" tree

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Greedy decision tree learning: *Algorithm outline*

Step 1: Start with an empty tree

Step 2: Split on a feature

Feature split explained

Step 3: Making predictions

Step 4: Recursion

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 &
 continue (recurse) on this split

Problem 1: Feature split selection

Problem 2: Stopping condition

Recursion

Decision stump learning

Feature split learning

Start with the data

Assume N = 40, 3 features

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

Start with all the data

Compact visual notation: Root node

Decision stump: Single level tree

Visual Notation: Intermediate nodes

Making predictions with a decision stump

For each intermediate node, set $\hat{y} = \text{majority value}$

Selecting best feature to split on

How do we learn a decision stump?

How do we select the best feature?

10

How do we measure effectiveness of a split?

Error = # mistakes # data points

Calculating classification error

- Step 1: \hat{y} = class of majority of data in node
- Step 2: Calculate classification error of predicting ŷ for this data

Erro	$r = \frac{17}{22 + 18}$	
	= 0.45	
Tree	Classification erro	r

0.45

(root)

Choice 1: Split on credit history?

Choice 1: Split on Credit

How good is the split on Credit?

Choice 1: Split on Credit

Split on Credit: Classification error

Error =	4+4
	40
=	0.20

Tree	Classification error		
(root)	0.45		
Split on credit	0.2		

_

Choice 2: Split on Term?

Choice 2: Split on Term

Evaluating the split on Term

Choice 2: Split on Term

Error =	4+6
=	0.25

Tree	Classification error	
(root)	0.45	
Split on credit	0.2	
Split on term	0.25	

Г

Choice 1 vs Choice 2

Tree	Classification error	
(root)	0.45	
split on credit	0.2	-First Split!
split on loan term	0.25	9}".

Feature split selection algorithm

- Given a subset of data M (a node in a tree)
- For each feature $h_i(x)$:
 - 1. Split data of M according to feature $h_i(x)$
 - 2. Compute classification error split
- Chose feature h"(x) with lowest classification error

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Recursion & Stopping conditions

Decision Tree Learning:

Learn decision tree from data?

Credit	Term	Income	у
excellent	3 yrs	high	safe
fair	5 yrs	low	risky
fair	3 yrs	high	safe
poor	5 yrs	high	risky
excellent	3 yrs	low	risky
fair	5 yrs	low	safe
poor	3 yrs	high	risky
poor	5 yrs	low	safe
fair	3 yrs	high	safe

We've learned a decision stump, what next?

c -

Tree learning = Recursive stump learning

_

Second level

C 1

Final decision tree

_

Simple greedy decision tree learning

Stopping condition 1: All data agrees on y

- -

Stopping condition 2: Already split on all features

Greedy decision tree learning

- Step 1: Start with an empty tree
- Step 2: Select a feature to split data
- For each split of the tree:
 - Step 3: If nothing more to, make predictions
 - Step 4: Otherwise, go to Step 2 & continue (recurse) on this split

Pick feature split leading to lowest classification error

Stopping conditions 1 & 2

Recursion

Predictions with decision trees

Decision tree model

Traversing a decision tree

 $\mathbf{x}_i = (Credit = poor, Income = high, Term = 5 years)$

7/

Decision tree prediction algorithm

```
predict(tree_node, input)
```

- If current tree_node is a leaf:
 - return majority class of data points in leaf
- else:
 - next_note = child node of tree_node whose feature value agrees with input
 - return predict(next_note, input)

Multiclass classification & predicting probabilities

Multiclass prediction

Multiclass decision stump

N = 40, 1 feature, 3 classes

Credit	у	
excellent	safe	
fair	risky	
fair	safe	
poor	danger	
excellent	risky	
fair	safe	
poor	danger	
poor	safe	
fair	safe	

Predicting probabilities with decision trees

Decision tree learning: Real valued features

How do we use real values inputs?

Income	Credit	Term	у
\$105 K	excellent	3 yrs	Safe
\$112 K	good	5 yrs	Risky
\$73 K	fair	3 yrs	Safe
\$69 K	excellent	5 yrs	Safe
\$217 K	excellent	3 yrs	Risky
\$120 K	good	5 yrs	Safe
\$64 K	fair	3 yrs	Risky
\$340 K	excellent	5 yrs	Safe
\$60 K	good	3 yrs	Risky

Split on each numeric value?

Alternative: Threshold split

00

Threshold splits in 1-D

Visualizing the threshold split

Split on Age >= 38

Depth 2: Split on Income >= \$60K

Each split partitions the 2-D space

Finding the best threshold split

Consider a threshold between points

Same classification error for any threshold split between v_A and v_B Safe O Risky O Income V_{B} \$10K \$120K

Only need to consider mid-points

Threshold split selection algorithm

- Step 1: Sort the values of a feature $h_j(\mathbf{x})$: Let $\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}, ... \mathbf{v_N}\}$ denote sorted values
- Step 2:
 - For i = 1 ... N-1
 - Consider split $t_{i} = (v_i + v_{i+1}) / 2$
 - Compute classification error for treshold split $h_i(\mathbf{x}) >= \mathbf{t}_i$
 - Chose the t with the lowest classification error

Decision trees vs logistic regression: *Example*

Logistic regression

Feature	Value	Weight Learned
h ₀ (x)	1	0.22
$h_1(\mathbf{x})$	x [1]	1.12
h ₂ (x)	x [2]	-1.07

Depth 1: Split on x[1]

Depth 2

Threshold split caveat

100

Decision boundaries

Comparing decision boundaries

Decision Tree

Summary of decision trees

What you can do now

- Define a decision tree classifier
- Interpret the output of a decision trees
- Learn a decision tree classifier using greedy algorithm
- Traverse a decision tree to make predictions
 - Majority class predictions
 - Probability predictions
 - Multiclass classification