Лабораторная работа № 3.05: Температурная зависимость электрического сопротивления металла и полупроводника

Исхаков Камиль Фархатович

2 декабря 2024 г.

1 Основные формулы

Закон Ома для участка цепи:

$$R = \frac{U}{I}$$

где R - сопротивление, U - напряжение, I - сила ток Сопротивление полупроводника:

$$R_{\Pi} = R_m \exp\left(\frac{E_g}{2kT}\right)$$

где kT - средняя энергия теплового движения, R_m - предел к которому стремится значение сопротивления полупроводника при повышении температуры Формула для расчета ширины запрещенной зоны:

$$E_g = 2k \cdot \frac{\Delta \ln(R_{\pi})}{\Delta(1/T)}$$

где k - постоянная Больцмана, $k=1,38*10^{-23}~\rm Дж/K=8,62*10^{-5}~\rm эВ/K)$ Зависимость сопротивления от температуры для металла при небольших диапазонах температур:

$$R_{\rm\scriptscriptstyle M} = R_0(1 + \alpha T)$$

где R_0 - сопротивление данного образца при температуре $0^{\circ}C, \, \alpha$ - температурный коэффициент сопротивления

2 Результаты эксперимента

<i>T</i> , K	I, мк A	U, B	R, Om	$\ln R$	$\frac{10^3}{T}$, 1/K
305	1159	0.360	310.613	5.739	3.279
315	1258	0.256	203.498	5.316	3.175
325	1337	0.184	137.622	4.925	3.077
335	1387	0.128	92.286	4.525	2.985
345	1424	0.091	63.904	4.157	2.899

Таблица 1: Полупроводниковый образец

T, K	I, MKA	U, B	<i>R</i> , кОм	t, °C
345	1098	1.496	1.362	72°
335	1113	1.468	1.319	62°
325	1125	1.439	1.279	52°
315	1146	1.412	1.232	42°
305	1164	1.384	1.189	32°

Таблица 2: Металлический образец образец

i	j	$\alpha_{ij}, 10^{-3} \text{ K}^{-1}$
1	3	3.903
2	4	4.146
3	5	4.306
$\langle \alpha \rangle$		4.118

Таблица 3: Температурный коэффициент сопротивления металла

i	j	E_{ij} , Дж	E_{ij} , эВ
1	3	$0.111 \cdot 10^{-18}$	0.695
2	4	$0.115 \cdot 10^{-18}$	0.718
3	5	$0.119 \cdot 10^{-18}$	0.741
$\langle I$	$\Xi\rangle$	$0.115 \cdot 10^{-18}$	0.718

Таблица 4: Ширина запрещенной зоны полупроводника

Рис. 1: График зависимости $\ln R$ от $\frac{1}{T}$

Рис. 2: График зависимости t от $R_{\scriptscriptstyle \mathrm{M}}$

3 Оценка погрешностей

Для погрешности температурного коэффициента сопротивления используем формулу для стандартного отклонения среднего значения:

$$\Delta \alpha = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (\alpha_{ij} - \langle \alpha \rangle)^2}{n(n-1)}}$$

Вычисленная погрешность ($\Delta \alpha$): $0.25 \cdot 10^{-3} \frac{1}{{}^{\circ}C}$

Для погрешности ширины запрещенной зоны используем формулу для стандартного отклонения среднего значения:

$$\Delta E_g = t_{\alpha,n} \sqrt{\frac{\sum_{i=1}^{n} (E_{gij} - \langle E_g \rangle)^2}{n(n-1)}}$$

Вычисленная абсолютная погрешность (ΔE_g): $0.452 \cdot 10^{-20}$ Дж Вычисленная абсолютная погрешность (ΔE_g): 0.028 эВ

4 Выводы

Табличное значение коэффициента сопротивления меди: $4,28 \cdot 10^{-3} \text{ K}^{-1}$

Табличное значение ширины запрещенной зоны германия: 0,72 эВ

Построенные графики имеют линейный вид, что согласуется с теоретическим поведением полупроводника и металла при нагревании. Исходя из полученного среднего значения коэффициента
сопротивления металла и абсолютной погрешности, можно сделать вывод, что наиболее вероятным металлическим образцом в данной лабораторной работе является медь. Аналогично, исходя
из полученного среднего значения ширины запрещенной зоны полупроводника и абсолютной
погрешности, можно сделать вывод, что наиболее вероятным полупроводниковым образцом образцом в данной лабораторной работе является германий. Также в данной лабораторной работе
подтвердились следующие теоретические выкладки — сопротивление металла при нагревании
увеличивается, а у полупроводника наоборот — уменьшается.