Разбор летучки

Лекция 7

Выбор моделей

Екатерина Тузова

Задача выбора метода обучения

X - множество объектов

Y - множество классов

Обучающая выборка: $X^l = (x_i, y_i)_{i=1}^l$

Целевая функция: f:X o Y

Набор моделей алгоритмов $A_t:X o Y$, $t\in T$ Методы обучения $\mu:(X imes Y)^l o A_t$, $t\in T$

Задача: Найти алгоритм $a \in A_t$ с наилучшей обобщающей способностью

Пример

Перцептрон

Набор моделей:

$$a(\mathbf{x}) = \operatorname{sign}(\sum_{j=1}^{n} w_j x^j - w_0)$$

Перцептрон

Набор моделей:

$$a(\mathbf{x}) = \operatorname{sign}(\sum_{j=1}^{n} \mathbf{w}_{j} x^{j} - \mathbf{w}_{0})$$

Перцептрон

Набор моделей:

$$a(\mathbf{x}) = \operatorname{sign}(\sum_{j=1}^{n} \mathbf{w}_{j} x^{j} - \mathbf{w}_{0})$$

Метод обучения:

1 function PERCEPTRON (X^l) 2 Инициализировать w_0, \dots, w_n 3 repeat[пока w изменяются] 4 for $i=1,\dots,l$ do 5 if $a(x_i) \neq y_i$ then 6 $\mathbf{w} = \mathbf{w} + y_i \mathbf{x_i}$

Задача

Научиться оценивать метод обучения и обобщающую способность алгоритма

Функция потерь

Функция потерь $\mathcal{L}(a,x_i)$ – характеризует величину ошибки алгоритма a на объекте x_i .

Если $\mathcal{L}(a,x_i)=0$, то ответ $a(x_i)$ называется корректным.

loss function

Примеры \mathcal{L}_1

loss function 7

Функционал качества

Функционал качества алгоритма a на выборке X^l :

$$Q(a, X^l) = \frac{1}{l} \sum_{i=1}^{l} \mathcal{L}(a, x_i)$$

Минимизация эмпирического риска:

$$\arg\min_{A_t} Q(a, X^l)$$

Внутренний функционал

$$Q_{\mu}(X^l) = Q(\mu(X^l), X^l)$$

Этот функционал оценивает качество обучения на выборке X^l

Внутренний функционал

$$Q_{\mu}(X^l) = Q(\mu(X^l), X^l)$$

Этот функционал оценивает качество обучения на выборке X^l

Какая с этим может быть проблема?

Сложность модели

Почему случается

переобучение?

Проблема переобучения

- Слишком мало объектов
- Слишком много признаков
- Линейная зависимость признаков

Внешний функционал

$$E_{in} = Q_{\mu}(X^l) = Q(\mu(X^l), X^l)$$

Внешний функционал по отложенной выборке:

$$E_{out} = Q_{\mu}(X^t, X^k) = Q(\mu(X^t), X^k)$$

Внешний функционал

$$E_{in} = Q_{\mu}(X^l) = Q(\mu(X^l), X^l)$$

Внешний функционал по отложенной выборке:

$$E_{out} = Q_{\mu}(X^t, X^k) = Q(\mu(X^t), X^k)$$

Какой здесь недостаток?

Внешний функционал

$$E_{in} = Q_{\mu}(X^l) = Q(\mu(X^l), X^l)$$

Внешний функционал по отложенной выборке:

$$E_{out} = Q_{\mu}(X^t, X^k) = Q(\mu(X^t), X^k)$$

Сильная зависимость от разбиения $X^l = X^t \sqcup X^k$

Кроссвалидация

 N дея: Усреднить по всем C^t_l выборкам $X^l = X^t \sqcup X^k$

$$CCV(\mu, X^l) = \frac{1}{C_l^t} \sum_{X^t} Q_{\mu}(X^t, X^k)$$

Кроссвалидация

 N дея: Усреднить по всем C^t_l выборкам $X^l = X^t \sqcup X^k$

$$CCV(\mu, X^l) = \frac{1}{C_l^t} \sum_{X^t} Q_{\mu}(X^t, X^k)$$

Во что превратится оценка при k=1?

Недостатки

- Оценка вычислительно слишком сложна
- Не учитывает дисперсию X^k

k-fold кроссвалидация

Идея: Возьмём случайное разбиение $X^l = X_1 \sqcup \cdots \sqcup X_k$ на k блоков равной длины.

$$CV_k(\mu, X^l) = \frac{1}{k} \sum_{i=1}^k Q_{\mu}(X^l \setminus X_i, X_i)$$

k-fold кроссвалидация

Идея: Возьмём случайное разбиение $X^l = X_1 \sqcup \cdots \sqcup X_k$ на k блоков равной длины.

$$CV_k(\mu, X^l) = \frac{1}{k} \sum_{i=1}^k Q_{\mu}(X^l \setminus X_i, X_i)$$

Недостатки:

- Оценка зависит от разбиения на блоки
- Каждый объект только один раз участвует в контроле

Повторяющийся k-fold CV

 $\mathsf{VI}_{\mathsf{Дея}}$: Выборка разбивается t раз случайным образом на k блоков

$$CV_{tk}(\mu, X^l) = \frac{1}{t} \sum_{j=1}^t \frac{1}{k} \sum_{i=1}^k Q_{\mu}(X^l \setminus X_{ji}, X_{ji})$$

Повторяющийся k-fold CV

 $\mathsf{VI}_{\mathsf{Дея}}$: Выборка разбивается t раз случайным образом на k блоков

$$CV_{tk}(\mu, X^l) = \frac{1}{t} \sum_{j=1}^{t} \frac{1}{k} \sum_{i=1}^{k} Q_{\mu}(X^l \setminus X_{ji}, X_{ji})$$

- + Выбором t можно улучшать точность оценки
- + Каждый объект участвует в контроле t раз

Кривая обучения

Learning curve 17

Критерий непротиворечивости моделей

Идея: Если модель верна, то алгоритмы, настроенные по разным частям данных, не должны противоречить друг другу.

Аналитический подход

Как использовать аналитические оценки

1. Получить верхнюю оценку вероятности переобучения

$$P[E_{out} - E_{in} > \varepsilon] \le \eta(\varepsilon)$$

2. Тогда с вероятностью не менее $1-\eta$ справедливо

$$E_{out} < E_{in} + \varepsilon(\eta)$$

3. Будем оптимизивать

$$E_{in} + \varepsilon(\eta) \to \min_{\mu}$$

Регуляризация

Регуляризатор ε — аддитивная добавка к внутреннему критерию, штраф за сложность модели A.

Неравенство Бернштейна-Хёфдинга

$$P[|a-b| > \varepsilon] \le 2e^{-2\varepsilon^2 l}$$

a — доля оранжевых шаров в выборке размера l b — истинная доля оранжевых шаров

Какое отношение это имеет к

нашим моделям?

Каждый шар это объект x из пространства X. Неизвестная целевая функция f.

Зелёный шар – модель
$$h$$
 верна $(h(x) = f(x))$
Оранжевый шар – модель h не верна $(h(x) \neq f(x))$

По выборке X^l можем оценить долю объектов, на которых модель ошибается.

 $E_{in}(h)=a$ - доля объектов в выборке X^l , на которых h ошибается $E_{out}(h)=b$ - доля объектов во всём множестве X, на которых h ошибается

$$P[|E_{in}(h) - E_{out}(h)| > \varepsilon] \le 2e^{-2\varepsilon^2 l}$$

Неравенство выполняется для каждой модели.

Важная деталь

Какова вероятность, что модель $a \in A$, наилучшим образом приближающая f по выборке, наилучшим образом приближает f на всём множестве?

С какой вероятностью монета, подброшенная 10 раз, выпадет одной и той же стороной все 10 раз?

С какой вероятностью монета, подброшенная 10 раз, выпадет одной и той же стороной все 10 раз?

0.001

С какой вероятностью одна из 1000 монет, каждая из которых подброшена 10 раз, выпадет одной и той же стороной все 10 раз?

С какой вероятностью одна из 1000 монет, каждая из которых подброшена 10 раз, выпадет одной и той же стороной все 10 раз?

0.63

К нашей задаче

На h_t модели наблюдаем переобучение.

Решение

$$P[|E_{in}(a) - E_{out}(a)| > \varepsilon] \le \sum_{t=1}^{T} P[|E_{in}(h) - E_{out}(h)| > \varepsilon]$$
$$\le 2Te^{-2\varepsilon^2 l}$$

нашем пространстве A?

Какое количество моделей в

Близость моделей

Близость моделей

Близость моделей

$$\triangle E_{out} =$$
 площадь жёлтой области

 $\triangle E_{in}=$ изменение меток объектов жёлтой области в выборке

$$|E_{in}(h_1) - E_{out}(h_1)| \approx |E_{in}(h_2) - E_{out}(h_2)|$$

Вопрос

Обучающая выборка x_1, \ldots, x_l и набор бинарных значений меток y_1, \ldots, y_l .

Сколько вариантов y_1, \ldots, y_l ?

Дихотомии

$$P(|E_{in}(a) - E_{out}(a)| > \varepsilon) \le 2Te^{-2\varepsilon^2 l}$$

Наш набор моделей A может породить $|A(x_1,\ldots,x_l)|$ дихотомий.

$$|A(x_1,\ldots,x_l)| \le 2^l$$

При этом сам набор моделей может быть бесконечным.

Функция роста $m_A(l)$

$$m_A(l) = \max_{x_1, \dots, x_l} |A(x_1, \dots, x_l)| \le 2^l$$

Точка разрыва

Если для некоторого k выполняется $m_A(k) < 2^k$, то k называется точкой разрыва.

Точка разрыва

Наличие точки разрыва означает наличие полиномиального ограничения на функцию роста $m_A(l)$

Пример

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{l-1}	\mathbf{x}_l
			$+1 \\ -1$	+1 +1		+1 +1	+1 -1
	S_1	α			:	;	:
			$ +1 \\ -1 $	$-1 \\ +1$		$-1 \\ -1$	$-1 \\ +1$
			+1	-1		+1	+1
	S_2^+	$oldsymbol{eta}$	-1	-1	:	+1	+1
	2	·	+1 -1	−1 −1		$^{+1}_{-1}$	+1 +1
S_2			+1	$\frac{-1}{-1}$		+1	-1
			-1	-1		+1	-1
	S_2^-	$oldsymbol{eta}$	1	:	÷	:	÷
			+1 -1	$-1 \\ -1$		$^{+1}_{-1}$	$-1 \\ -1$

Разделим на 2 ситуации относительно x_l : либо есть только один вариант (+1 или -1), либо оба (+1 и -1)

Число дихотомий

B(l,k) – максимальное число дихотомий для выборки размера l при наличии точки разрыва k.

$$B(l,k) = \alpha + 2\beta$$

$$\alpha + \beta \le B(l-1,k)$$

$$\beta \le B(l-1,k-1)$$

$$B(l,k) < B(l-1,k) + B(l-1,k-1)$$

$\mathbf O$ ценка lpha+eta

		# of rows	\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{l-1}	\mathbf{x}_l
	S_1	α	+1	+1		+1	+1
			-1	+1		+1	-1
			1	:	:	;	:
			+1	-1		-1	-1
			-1	+1		-1	+1
	S_2^+	β	+1	-1		+1	+1
			-1	-1		+1	+1
			:	:	:	:	:
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
~ 2	S_2^-						-1
			+1	-1		+1	

Oценка eta

			\mathbf{x}_1	\mathbf{x}_2		\mathbf{x}_{l-1}	\mathbf{x}_l
	S_1	α		+1		+1	-1
			+1	-1		-1	-1
			-1	+1		-1	+1
	S_2^+	β	+1	-1		+1	+1
			-1	-1		+1	+1
			1	:	:	:	:
			+1	-1		+1	+1
S_2			-1	-1		-1	+1
2							

Число дихотомий

$$B(l,k) \le \sum_{i=0}^{k-1} C_l^i$$

Доказывается по индукции:

$$B(l,1) = 1$$
, $B(1,k) = 2$

Индукционный шаг:
$$\sum\limits_{i=0}^{k-1}C_l^i=\sum\limits_{i=0}^{k-1}C_{l-1}^i+\sum\limits_{i=0}^{k-2}C_l^i$$

Полиномиальное ограничение

$$m_A(l) \le B(l,k) \le \sum_{i=0}^{k-1} C_l^i \le l^{k-1}$$

Финальное неравенство

$$P(E_{in}(a) - E_{out}(a) > \varepsilon) \le 2l^{k-1}e^{-2\varepsilon^2l}$$

Неравенство Вапника-Червоненкиса

$$P(E_{in}(a) - E_{out}(a) > \varepsilon) \le 4m_A(2l)e^{-\frac{1}{8}\varepsilon^2 l}$$

Пример регуляризации в градиентном спуске

Функционал с регуляризацией:

$$Q_{\tau} = Q + \frac{\tau}{2} \|\mathbf{w}\|^2 \to \min_{\mathbf{w}}$$

Градиент:

$$\nabla Q_{\tau} = \nabla Q + \tau \mathbf{w}$$

Градиентный шаг:

$$\mathbf{w} = \mathbf{w}(1 - \alpha\tau) - \alpha \bigtriangledown Q(\mathbf{w})$$

Вопросы?

Что почитать по этой лекции

- · Professor Yaser Abu-Mostafa MOOC
- · Tom Mitchell "Machine Learning" Chapter 4
- Hastie, T., Tibshirani R. "The Elements of Statistical Learning"
 Chapter 7.9

На следующей лекции

- Многослойная нейронная сеть
- Нелинейное преобразование
- Быстрое вычисление градиента
- Алгоритм обратного распространения ошибки
- Оптимизация структуры сети
- Сверточные нейросети