1. DÉFINITION. Soient E, \tilde{E} et F trois ensembles. Une fonction $\tilde{f} \colon \tilde{E} \longrightarrow F$ prolonge une autre fonction $f \colon E \longrightarrow F$ lorsque $E \subset \tilde{E}$ et $\tilde{f}|_E = f$.

1. Prolongement par continuité

2. NOTATION. On considère un intervalle de I de \mathbf{R} .

1.1. Résultat principaux

3. Proposition. Soient $a \in I$ un réel et $f: I \setminus \{a\} \longrightarrow \mathbf{R}$ une fonction continue. Si la limite de f(x) existe lorsque $x \longrightarrow a$ et $x \in I$, alors la fonction f se prolonge en une unique fonction continue $\tilde{f}: I \longrightarrow \mathbf{R}$. De plus, cette dernière vérifie

$$\tilde{f}|_{I\setminus\{a\}} = f$$
 et $\tilde{f}(a) = \lim_{x\to a} f(x)$.

- 4. Exemple. Les fonctions $x \neq 0 \mapsto \sin(x)/x$ et $x \neq 0 \mapsto (e^x 1)/x$ se prolongent par continuité en 0.
- 5. Contre-exemple. La fonction $x \neq 0 \longmapsto \sin(1/x)$ ne se prolonge pas par continuité en 0 puisque la quantité $\sin(1/x)$ n'admet pas de limite lorsque $x \longrightarrow 0$.
- 6. PROPOSITION. Soit $f: I \setminus \{a\} \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^1 . Si la limite de f'(x) existe lorsque $x \longrightarrow a$, alors la fonction f se prolonge en une unique fonction $I \longrightarrow \mathbf{R}$ de classe \mathscr{C}^1 .
- 7. COROLLAIRE. Soit $k \in \mathbb{N}$. Soit $f: I \setminus \{a\} \longrightarrow \mathbb{R}$ une fonction de classe \mathscr{C}^k . Si les limites de $f^i(x)$ existe lorsque $x \longrightarrow a$ pour tout $i \in [0, k]$, alors la fonction f se prolonge en une unique fonction $I \longrightarrow \mathbb{R}$ de classe \mathscr{C}^k .
- 8. EXEMPLE. La fonction $\varphi \colon \mathbf{R} \longrightarrow \mathbf{R}$ définie par la relation

$$\varphi(x) = \begin{cases} e^{-1/x} & \text{si } x > 0, \\ 0 & \text{sinon} \end{cases}$$

est de classe \mathscr{C}^{∞} .

9. APPLICATION (fonctions plateaux). Soient $U \subset \mathbf{R}$ un ouvert et $K \subset U$ un compact. Alors il existe une fonction $\chi \in \mathscr{C}^{\infty}(\mathbf{R}, [0, 1])$ telle que

$$supp(f) \subset U$$
 et $f|_K = 1$.

- 10. Proposition. Soient X et Y deux espaces topologiques séparés et $f,g\colon X\longrightarrow Y$ deux fonctions continues coïncidant sur une partie dense de X. Alors f=g.
- 11. APPLICATION. Les seules fonctions continues $f: \mathbf{R} \longrightarrow \mathbf{R}$ vérifiant

$$f(x+y) = f(x) + f(y), \quad x, y \in \mathbf{R}$$

sont les fonctions linéaires.

12. THÉORÈME (*Tietze*). Soient X un espace métrique et $Y \subset X$ une partie fermée. Soit $g_0: Y \longrightarrow \mathbf{R}$ une application continue. Alors cette dernière se prolonge en une fonction continue $f_0: X \longrightarrow \mathbf{R}$.

1.2. Application aux équations différentielles

13. NOTATION. Soient $\Omega \subset \mathbf{R}$ un ouvert et $I \subset \mathbf{R}$ un intervalle. On considère une fonction continue $f: I \times \Omega \longrightarrow \mathbf{R}$ et l'équation différentielle

$$y' = f(t, y). (1)$$

14. PROPOSITION. Soient $a,b,c \in I$ trois réels vérifiant a < b < b. Soient $y_1 :]a,b[\longrightarrow \mathbf{R}$ et $y_2 :]b,c[\longrightarrow \mathbf{R}$ deux solutions de l'équation (1). Si $\ell := \lim_{t \to b^-} y_1(t) = \lim_{t \to b^+} y_2(t)$, alors la fonction $y :]a,c[\longrightarrow \mathbf{R}$ donnée par l'égalité

$$y(t) = \begin{cases} y_1(t) & \text{si } t < b, \\ y_2(t) & \text{si } t > b, \\ \ell & \text{si } t = b \end{cases}$$

est une solution de l'équation (1).

15. Exemple. L'équation $y'(t) = \sin |t|$ admet comme solution

$$t \in \mathbf{R} \longmapsto \begin{cases} \cos t - 1 & \text{si } t \leq 0, \\ 1 - \cos t & \text{si } t \geq 0. \end{cases}$$

16. Théorème (Cauchy-Lipschitz). Soit $(t_0, x_0) \in I \times \Omega$. On suppose que la fonction f est localement lipschitzienne en sa seconde variable. Alors le problème

$$\begin{cases} y' = f(t, y), \\ y(t_0) = x_0 \end{cases}$$
 (2)

admet une unique solution maximale $x\colon J\longrightarrow \mathbf{R}$ définie sur un intervalle $J=|T_*,T^*|\subset I.$

- 17. Théorème (des bouts). On suppose I =]a, b[. Soit $x:]T_*, T^*[\longrightarrow \mathbf{R}$ une solution maximale du problème (2). Alors
 - ou bien $T_* = b$;
 - ou bien $T_* < b$ et $|x(t)| \longrightarrow +\infty$ lorsque $t \longrightarrow T^*$.
- 18. APPLICATION. Soient $y_0 \in \mathbf{R}^n$ un point et $U \in \mathcal{C}^2(\mathbf{R}^n, \mathbf{R})$ une fonction de classe \mathcal{C}^2 tendant vers $+\infty$ en ∞ . Alors les solutions maximales du système gradient

$$\begin{cases} y' = -\nabla U(y), \\ y(0) = y_0 \end{cases}$$

sont définis sur l'intervalle \mathbf{R}_{+} .

2. Prolongement dans les espaces fonctionnels

2.1. Applications uniformément continues

- 19. Théorème. Soient E et F deux espace métriques tels que le second soit complet. Soient $D \subset E$ une partie dense et $f \colon D \longrightarrow F$ une application uniformément continue. Alors l'application f se prolonge en une unique fonction continue $E \longrightarrow F$. De plus, ce prolongement est uniformément continu.
- 20. Contre-exemple. Le théorème est faux lorsque l'espace d'arrivé F n'est pas complet. En effet, la fonction $\mathrm{Id}_{\mathbf{Q}} \colon \mathbf{Q} \longrightarrow \mathbf{Q}$ ne se prolonge pas en une fonction

- 21. Contre-exemple. Le théorème est également faux sans l'hypothèse d'uniforme continuité. En effet, la fonction $x>0\longmapsto \sqrt{x}\in \mathbf{R}$ est uniformément continue, mais son prolongement $\mathbf{R}_+\longrightarrow \mathbf{R}$ n'est l'est pas.
- 22. EXEMPLE. Soient $(\Omega, \mathscr{F}, \mathbf{P})$ un espace probabilité et $\mathscr{G} \subset \mathscr{F}$ une sous-tribu. Alors l'application d'espérance conditionnelle

$$\mathbf{E}[\cdot \mid \mathscr{G}] \colon \mathrm{L}^2 \cap \mathrm{L}^1(\Omega, \mathscr{F}, \mathbf{P}) \longrightarrow \mathrm{L}^1(\Omega, \mathscr{F}, \mathbf{P})$$

est uniformément continue et se prolonge donc à $L^1(\Omega, \mathcal{F}, \mathbf{P})$.

2.2. Application à la transformée de Fourier

- 23. NOTATION. On note $\mathscr{S}(\mathbf{R}^d)$ l'espace de Schwarz.
- 24. Proposition. L'espace $\mathscr{S}(\mathbf{R}^d)$ est dense dans l'espace $L^p(\mathbf{R}^d)$ pour tout $p \in [1, +\infty[$.
- 25. DÉFINITION. La transformée de Fourier d'une fonction de Schwartz $\varphi \in \mathscr{S}(\mathbf{R}^d)$ est la fonction $\hat{\varphi} \colon \mathbf{R}^d \longrightarrow \mathbf{C}$ définie par l'égalité

$$\hat{f}(\xi) = \int_{\mathbf{R}^d} e^{i\langle \xi, x \rangle} f(x) \, \mathrm{d}x, \qquad \xi \in \mathbf{R}^d.$$

26. Théorème. L'application de transformée de Fourier $\varphi \in \mathscr{S}(\mathbf{R}^d) \longmapsto \hat{\varphi} \in \mathscr{S}(\mathbf{R}^d)$ est un isomorphisme de **C**-espaces vectoriels. De plus, elle s'étend de manière unique à l'espace $L^2(\mathbf{R})$ et ce prolongement est un isométrie.

2.3. Théorème de Hahn-Banach

- 27. THÉORÈME. Soient E un \mathbf{R} -espace vectoriel, $p \colon E \longrightarrow \mathbf{R}$ une semi-norme, $G \subset E$ un sous-espace vectoriel et $g \colon G \longrightarrow \mathbf{R}$ une forme linéaire telle que $g \leqslant p$. Alors elle se prolonge en une unique forme linéaire $f \colon E \longrightarrow \mathbf{R}$ vérifiant $f \leqslant p$.
- 28. COROLLAIRE. Soient $G \subset E$ un sous-espace vectoriel et $g \in G'$ une forme linéaire continue. Alors elle se prolonge en une unique forme linéaire $f \in E'$ vérifiant ||f|| = ||g||.
- 29. COROLLAIRE. Soit E un \mathbf{R} -espace vectoriel. L'application canonique $J: E \longrightarrow E^{**}$ est injective et de norme une.

3. Holomorphie

30. NOTATION. Dans cette section, on considère un ouvert $U \subset \mathbf{C}$ et l'ensemble $\mathscr{H}(U)$ des fonctions holomorphes sur U.

${\bf 3.1.}\ \ {\bf Prolongement\ holomorphe}$

- 31. Théorème. Une fonction $U \longrightarrow \mathbf{C}$ est holomorphe si et seulement si elle est développable en série entière au voisinage de tout point de U.
- 32. Théorème. On suppose que U est connexe. Soit $f \in \mathcal{H}(U)$. Si $D := f^{-1}(\{0\}) \subset U$ admet un point d'accumulation dans D, alors f = 0.
- 33. Contre-exemple. Il faut que le point d'accumulation soit dans D. En prenant la fonction $z \in \mathbb{C} \longmapsto \sin(\pi/z)$, l'ensemble D admet le point d'accumulation $0 \notin D$.
- 34. COROLLAIRE. Deux fonctions de $\mathcal{H}(U)$ coïncidant sur un ensemble possédant une point d'accumulation sont égales.

35. APPLICATION. L'exponentielle complexe est le seul prolongement analytique à ${\bf C}$ de l'exponentielle réelle.

3.2. Singularités effaçables et fonctions méromorphes

- 36. DÉFINITION. Un point $a \in \mathbf{C}$ est une singularité effaçable d'une fonction $f \in \mathcal{H}(U)$ s'il est possible de prolonger f en une fonction holomorphe sur $U \cup \{a\}$.
- 37. Théorème. Soient $f \in \mathcal{H}(U)$ et $a \in \mathbf{C} \setminus U$. Alors les points suivants sont équivalents :
 - (i) le point a est une singularité effaçable :
- (ii) la fonction se prolonge en une fonction continue sur $U \cup \{a\}$;
- (iii) la fonction f est bornée sur un voisinage épointé de a;
- (iv) lorsque $z \longrightarrow a$, on a $(z-a)f(z) \longrightarrow 0$.
- 38. Exemple. La fonction $z \in \mathbb{C}^* \longrightarrow \sin(z)/z$ admet une singularité effaçable en 0.
- 39. Proposition. La fonction gamma d'Euler

$$\Gamma : \begin{vmatrix} \{\operatorname{Re} > 0\} \longrightarrow \mathbf{C}, \\ z \longmapsto \int_0^{+\infty} t^{z-1} e^{-t} \, \mathrm{d}t \end{vmatrix}$$

s'étend en une unique fonction holomorphe sans zéro sur l'ouvert $\mathbf{C} \setminus \mathbf{Z}_-$ et la fonction $1/\Gamma$ est entière.

40. Proposition. La fonction zêta de Riemann

$$\zeta : \left| \begin{cases} \operatorname{Re} > 1 \end{cases} \longrightarrow \mathbf{C}, \\ s \longmapsto \sum_{n=1}^{+\infty} \frac{1}{n^s} \right|$$

s'étend en une unique fonction holomorphe sur $\mathbb{C} \setminus \{1\}$.

4. Résolution d'équations aux dérivées partielles

4.1. Espace de Sobolev

41. DÉFINITION. L'espace de Sobolev est l'ensemble

$$H_0^1(]0,1[) := \{ u \in L^2(]0,1[) \mid u' \in L^2(]0,1[) \text{ dans } \mathscr{D}'(]0,1[) \}$$

munit du produit scalaire $\langle u, v \rangle_{H^1} := \langle u, v \rangle_{L^2} + \langle u', v' \rangle_{L^2}$.

42. Proposition. Soit $u \in H^1(]0,1[)$. Alors il existe une unique fonction $\overline{u} \in \mathcal{C}^0([0,1])$ égale presque partout à la fonction u et vérifiant

$$\forall x, y \in [0, 1], \quad \overline{u}(x) - \overline{u}(y) = \int_{y}^{x} u'(t) dt.$$

43. PROPOSITION. L'adhérence de $\mathcal{D}(]0,1[)$ dans $H^1(]0,1[)$ s'écrit

$$H_0^1([0,1]) := H^1([0,1]) \cap \{ f \in \mathcal{C}^0([0,1]) \mid f(0) = f(1) = 0 \}$$

44. REMARQUE. En quelque sorte, les fonctions de l'espace $H_0^1(]0,1[)$ se prolongent aux points 0 et 1 en des fonctions continues.

4.2. Un problème de Dirichlet simple

45. NOTATION. Soit $f\colon]0,1[\,\longrightarrow {\bf R}$ une fonction. On considère le problème de Dirichlet

$$-u'' + u = f \quad \text{sur } I :=]0, 1[,$$

$$u(0) = u(1) = 0.$$
 (3)

46. DÉFINITION. Une solution faible du problème (3) est une fonction $u \in \mathrm{H}^1_0(I)$ telle que

$$\forall v \in \mathrm{H}_0^1(I), \qquad \int_I u'v' + \int_I uv = \int_I fv.$$

- 47. Proposition. Une solution classique du problème (3) est une solution faible.
- 48. Proposition. Lorsque $f \in L^2(I)$, le problème (3) admet une unique solution dans $H_0^1(I)$.

^[1] Éric Amar et Étienne Matheron. Analyse complexe. Cassini, 2004.

^[2] Haïm Brézis. Analyse fonctionnelle. 2e tirage. Masson, 1983.

^[3] Xavier Gourdon. Algèbre. 2e édition. Ellipses, 2008.

^[4] Hervé Queffélec et Claude Zully. Analyse pour l'agrégation. 5° édition. Dunod, 2020.