ES710 – Controle de Sistemas Mecânicos

11 – Análise do lugar das raízes

Eric Fujiwara

Unicamp – FEM – DSI

Índice

Índice:

- 1) Análise de uma planta em malha fechada;
- 2) Diagrama de lugar das raízes;
- Questionário;
- Referências;
- Exercícios.

1.1. Planta em malha fechada:

 Seja uma planta G(s) com entrada R(s) e saída C(s) em malha fechada com realimentação unitária. A TF do sistema é dada por:

$$\frac{C(s)}{R(s)} = \frac{G(s)}{1 + G(s)} \tag{1}$$

O denominador possui polinômio característico

$$1 + G(s) = 0 \Rightarrow G(s) = -1$$
 (2)

1.1. Planta em malha fechada:

• G(s) pode ser escrito como um número complexo com magnitude |G(s)| e fase $\angle G(s)$:

$$G(s) = |G(s)| \angle G(s) = -1$$

• Portanto, os polos da planta em malha fechada devem satisfazer:

$$|G(s)| = 1$$

$$\angle G(s) = \pm 180^{\circ}(2k+1)$$
(3)

- Onde k = 0, 1, 2, ...

1.2. Lugar das raízes:

• Considere agora uma planta em **malha aberta** com zeros s = z e polos s = p, multiplicada por um ganho K:

$$KG(s) = \frac{K(s - z_1)(s - z_2) \cdots}{(s - p_1)(s - p_2) \cdots}$$
 (4)

- Lembrando que $s = \sigma + i\omega$;
- Pela regra da convolução, (4) pode ser reescrito como

$$KG(s) = K(s - z_1)(s - z_2) \frac{1}{(s - p_1)} \frac{1}{(s - p_2)} \dots = KB_1(s)B_2(s)A_1(s)A_2(s) \dots$$

1.2. Lugar das raízes:

Como KG(s) também é um número complexo,

$$KG(s) = |KG(s)| \angle KG(s)$$

Pelo cálculo dos fasores:

$$|KG(s)| = K|B_1||A_1| \cdots = KB_1A_1 \cdots$$

$$\angle KG(s) = \angle B_1 + \angle A_1 + \cdots = \phi_1 + \theta_1 + \cdots$$
(5)

- A e B são as magnitudes dos polos e zeros, respectivamente;
- ϕ e θ são os ângulos de fase dos polos e zeros, respectivamente.

1.2. Lugar das raízes:

• Sejam os polos e zeros em **malha aberta** no plano complexo. Os valores de $s = \sigma + j\omega$ que satisfazem as condições de magnitude e fase em **malha fechada** (3) definem o **diagrama de lugar das raízes (root locus)** possível para o sistema.

- 2.1. Diagrama de lugar das raízes:
 - O root locus permite avaliar a localização dos polos e zeros da planta em malha aberta KG(s) no plano complexo;
 - Variando o ganho K, é possível visualizar os valores de $s = \sigma + j\omega$ possíveis (branches) que satisfaçam as condições de magnitude e fase (polinômio característico):

$$KG(s) = -1$$

$$|KG(s)| = 1$$

$$\angle KG(s) = \pm 180^{\circ}(2k+1)$$

 A partir da análise da planta em malha aberta, é possível determinar a estabilidade do sistema em malha fechada.

- 2.2. Construção do digrama de lugar das raízes:
 - Conhecer a metodologia de construção do diagrama é importante para saber interpretar o root locus;
 - Entretanto, neste curso será dada uma abordagem qualitativa, enquanto que a construção efetiva do diagrama será efetuada via software;
 - Um passo-a-passo detalhado sobre o root locus pode ser encontrado nas referências bibliográficas.

- 2.2. Construção do digrama de lugar das raízes:
 - 1) Localização dos polos e zeros no plano complexo:
 - Os polos e zeros são obtidos fatorando a planta na forma

$$KG(s) = \frac{K(s-z_1)(s-z_2)\cdots}{(s-p_1)(s-p_2)\cdots}$$

- Tradicionalmente, polos são indicados com x e zeros são indicados com ○;
- Polos complexos ocorrem em pares conjugados, simétricos em relação ao eixo real.

- 2.2. Construção do digrama de lugar das raízes:
 - 2) Branches partem dos polos:
 - Branches são linhas que ligam pontos no root locus, indicando os valores possíveis de $s = \sigma + j\omega$ dado o ganho $K \ge 0$;
 - Seja a condição de magnitude:

$$|KG(s)| = K|(s-z_m)|\left|\frac{1}{(s-p_n)}\right|\cdots = 1$$

- Se K=0, então $s=p_n$;
- Portanto, os branches sempre partem dos polos do sistema.

- 2.2. Construção do digrama de lugar das raízes:
 - 3) Branches vão em direção aos zeros ou ao infinito:
 - Seja a condição de magnitude:

$$|KG(s)| = K|(s - z_m)| \left| \frac{1}{(s - p_n)} \right| \dots = 1$$

- Se $K \to \infty$, então $s = z_m$ ou $s \to \infty$;
- Portanto, aumentando o ganho, os branches tendem a caminhar em direção aos zeros do sistema ou ao infinito.

- 2.2. Construção do digrama de lugar das raízes:
 - 4) Polos no eixo real:
 - Pela condição de fase, pode-se concluir que os branches que caminham no eixo real ($s=\sigma$) partem de um polo em direção de outro polo ou zero, uma vez que as fases θ_n de polos complexo conjugados se cancelam:

$$\angle KG(s) = \phi_1 + \theta_1 + \dots = \pm 180^{\circ}(2k+1)$$

 Note que o fato das raízes caminharem de um polo em direção a outro polo não implica em conectar dois polos com um branch → na verdade, eles se encontram um ponto intermediário e partem em direção ao infinito.

- 2.2. Construção do digrama de lugar das raízes:
 - 5) Ponto de breakaway:
 - Para polos situados no eixo real, os branches caminham em direção a outros polos aumentando o ganho K;
 - Contudo, sabe-se que os branches vão a zero ou ao infinito para K → ∞;
 - Assim, existe um ponto no eixo real (ponto de breakaway) onde os branches concorrentes se encontram. Aumentando K acima deste valor, os branches tendem a $\pm j\infty$.

- 2.2. Construção do digrama de lugar das raízes:
 - 6) Assíntotas:
 - Branches que partem em direção ao infinito seguem assíntotas que dependem das condições de magnitude e fase impostas pelos polos e zeros do sistema;
 - O ângulo de inclinação das assíntotas é dado por:

$$\varphi = \frac{\pm 180^{\circ}(2k+1)}{n-m} \tag{6}$$

-n e m são o número de polos e zeros de KG(s), respectivamente, e k=0,1,2,...

- 2.2. Construção do digrama de lugar das raízes:
 - 7) Ângulo de partida de polos complexos e ângulo de chegada a zeros complexos:
 - Branches que partem de polos complexos ou que chegam a zero complexos possuem os seguintes ângulos de partida/chegada:

Angle of departure from a complex pole = 180°

- (sum of the angles of vectors to a complex pole in question from other poles)
- + (sum of the angles of vectors to a complex pole in question from zeros)

Angle of arrival at a complex zero = 180°

- (sum of the angles of vectors to a complex zero in question from other zeros)
- + (sum of the angles of vectors to a complex zero in question from poles)

- 2.2. Construção do digrama de lugar das raízes:
 - 8) Cruzamento com o eixo imaginário:
 - Os branches podem cruzar o eixo imaginário em $s = j\omega$;
 - Nesta condição, o sistema está no limite da estabilidade, ou seja, o ganho é crítico $K=K_{cr}$;
 - A determinação de K e ω é feita pelo critério de Routh, ou simplesmente testando $s = j\omega$ na equação característica.
 - Obs: note que é muito mais fácil avaliar a estabilidade do sistema pelo root locus ao invés de calcular o critério de Routh → pode ser utilizado para determinar K_{cr} e sintonizar os parâmetros do PID pelo método ZN.

- 2.2. Construção do digrama de lugar das raízes:
 - 9) Polos em malha fechada:
 - Se K satisfaz as condições de magnitude e fase, qualquer valor de $s = \sigma + j\omega$ sobre um branch será um polo do sistema em malha fechada;
 - Portanto, é possível avaliar os polos (e a estabilidade) da planta em malha fechada a partir do root locus da planta em malha aberta, além de verificar a sua sensibilidade ao ganho em malha aberta K.

2.3. Exemplos típicos de diagramas de lugar das raízes de G(s):

2.3. Exemplos típicos de diagramas de lugar das raízes de G(s):

Questionário

• Questionário:

- 1) Explique o que é o diagrama de lugar das raízes e quais são as informações de entrada e de saída obtidas com tal análise;
- 2) Por que os branches partem dos polos e caminham em direção aos zeros ou ao infinito com o aumento do ganho?
- 3) O root locus serve para analisar o ganho da planta em malha aberta ou em malha fechada?
- 4) Uma planta estável em malha aberta também será estável em malha fechada?
- 5) Uma planta instável em malha aberta poderá ser estável em malha fechada?

Referências

Referências:

- G. F. Franklin *et al.*, Feedback Control of Dynamic Systems, Prentice Hall, 2002.
- K. Ogata, Modern Control Engineering, Prentice Hall, 2002.

- Ex. 11.1) Sejam as funções de transferência em malha aberta G(s) apresentadas a seguir:
 - a) Plote o diagrama do root locus;
 - b) Determine os polos e zeros de G(s);
 - c) Verifique a estabilidade de G(s);
 - d) Discuta e estabilidade do sistema em malha fechada H(s);
 - e) Determine o ganho crítico K_{cr} , se aplicável.

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^2 + 7s + 6}$$

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^2 + 7s + 6}$$

- Polos de G(s):
 - s = -6, s = -1;
 - Os dois polos estão no SPE → sistema estável;

- Ex. 11.1)
 - Diagrama de lugar das raízes:
 - Note os dois polos de G(s);
 - Os branches se encontram em s = -3.5 (K = 6.25) e depois tendem ao infinito;
 - O sistema é estável para qualquer valor de ganho.

rlocus(Gs)

- Ex. 11.1)
 - Resposta ao degrau:
 - K = 1;
 - Aumentando o ganho, é possível reduzir o erro estacionário, mas o sistema sempre será estável;
 - O que acontece se o ganho for ajustado em K > 6.25?

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^2 + 0.4s + 0.29}$$

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^2 + 0.4s + 0.29}$$

- Polos de G(s):
 - $s = -0.2 \pm j0.5$;
 - Polos complexo conjugados → sistema sub-amortecido;
 - Os dois polos estão no SPE → sistema estável;

- Ex. 11.1)
 - Diagrama de lugar das raízes:
 - Os branches tendem ao infinito com o aumento do ganho (não se cruzam porque os polos não estão no eixo real);
 - O sistema é estável para qualquer valor de ganho.

- **Ex. 11.1**)
 - Resposta ao degrau:
 - K = 1;
 - Aumentando o ganho, é possível reduzir o erro estacionário, mas o sistema sempre será estável.

- **Ex. 11.1)**
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^3 + 4.5s^2 + 15s + 25}$$

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{1}{s^3 + 4.5s^2 + 15s + 25}$$

- Polos de G(s):
 - s = -2.5, $s = -1 \pm j3$;
 - O sistema possui um polo real e um par de polos complexo conjugados;
 - Todos os polos estão no SPE → sistema estável.

- Ex. 11.1)
 - Diagrama de lugar das raízes:
 - Os branches tendem ao infinito com o aumento do ganho;
 - Os branches cruzam o eixo imaginário em $K = K_{cr} = 40.5$;
 - Para qualquer ganho acima de K_{cr} , o sistema se torna instável.

- **Ex. 11.1**)
 - Resposta ao degrau:
 - $K = 10 e K = K_{cr}$.

- Ex. 11.1)
 - Função de transferência malha aberta:

$$G(s) = \frac{s+1}{s^2 + 4s + 29}$$

- **Ex. 11.1)**
 - Função de transferência malha aberta:

$$G(s) = \frac{s+1}{s^2 + 4s + 29}$$

- Polos de G(s): $s = -2 \pm 5j$;
- Zeros de G(s): s = -1;
 - O sistema possui um zero real e um par de polos complexo conjugados;
 - Todos os polos estão no SPE → sistema estável.

- Ex. 11.1)
 - Diagrama de lugar das raízes:
 - Um dos branches tende ao infinito enquanto o outro branch tende ao zero;
 - O sistema é sempre estável com o aumento do ganho.

• Ex. 11.1)

- Resposta ao degrau:
 - K = 1;
 - Como todos os polos e zeros estão no SPE, o sistema é de fase mínima (causal e estável);
 - Sistemas com pelo menos um polo ou zero no SPD são sistemas de fase não-mínima.

- **Ex. 11.2)** Sejam o diagrama do lugar das raízes abaixo:
 - a) Determine a função de transferência G(s);
 - b) Projete um controlador PID pelo método ZN e verifique a resposta da planta controlada em malha fechada.

- Ex. 11.2)
 - Pela análise do root locus, pode-se concluir que G(s) possui 5 polos no SPE:
 - $s_1 = -1$;
 - $s_{2,3} = -2.5 \pm j$;
 - $s_{4,5} = -5 \pm j2$;

$$G(s) = \frac{1}{s^5 + 16s^4 + 101.3s^3 + 303.8s^2 + 427.8s + 710.3}$$

- **Ex. 11.2**)
 - Ganho crítico: $K_{cr} = 788$ (utilize a função sisotool);
 - Período crítico: $P_{cr} = 3.026 \text{ s.}$

- **Ex. 11.2**)
 - Resposta ao degrau:

Malha aberta

Malha fechada com controle PID

Ex. 11.3) Verifique o diagrama de lugar das raízes dos sistemas com **multiplicidade de polos ou zeros** apresentados abaixo.

$$G(s) = \frac{1}{(s+1)^2 s}$$

$$G(s) = \frac{(s+2)^2}{s(s+1)(s+4)}$$

$$G(s) = \frac{1}{s^2}$$

$$G(s) = \frac{1}{s^3}$$

Ex. 11.3)

- Em caso de multiplicidades, os polos e zeros podem ser interpretados como polos e zeros independentes;
- Por exemplo:
 - Dois branches independentes saem de um polo duplo, sendo que eles podem ir em direção a um polo ou ao infinito;
 - Dois branches independentes chegam em um zero duplo quando o ganho tende ao infinito;
 - As assíntotas seguidas em cada caso dependem das condições de fase de KG(s) = -1.

Ex. 11.3)

$$G(s) = \frac{1}{(s+1)^2 s}$$

$$G(s) = \frac{(s+2)^2}{s(s+1)(s+4)}$$

Ex. 11.3)

