PHYS 304 Formula Sheet

The Wave Function

Time dependent Schrodinger Equation:

$$i\hbar\frac{\partial\Psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\Psi}{\partial x^2} + V\Psi$$

Standard Deviation:

$$\sigma = \sqrt{\langle j^2 \rangle - \langle j \rangle^2}$$

Momentum

$$\langle p \rangle = m \frac{d \langle x \rangle}{dt} = \int \Psi^* \left(\frac{\hbar}{i} \frac{\partial}{\partial x} \right) \Psi \, dx$$

Infinite Square Well

Time Independent Schrodinger Equation:

$$-\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2} + V\psi = E\psi$$

Eigenstate Expansion:

$$\Psi(x,t) = \sum_{n=1}^{\infty} c_n \psi_n(x) e^{-iE_n t/\hbar} = \sum_{n=1}^{\infty} c_n \Psi_n(x,t)$$

Energy In Infinite Square Well:

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

Stationary States:

$$\psi_n(x) = \sqrt{\frac{2}{a}} \sin\left(\frac{n\pi}{a}x\right)$$

Determining Coefficients:

$$c_n = \sqrt{\frac{2}{a}} \int_0^a \sin\left(\frac{n\pi}{a}x\right) \Psi(x,0) dx$$

Expectation Value of Energy:

$$\langle H \rangle = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

Harmonic Oscillator

$$k = \omega^2 m$$

Ladder Operators:

$$a_{\pm} = \frac{1}{\sqrt{2\hbar m\omega}} (\mp ip + m\omega x)$$

$$a_{+}\psi_{n} = \sqrt{n+1} \psi_{n+1}$$

$$a_{-}\psi_{n} = \sqrt{n} \psi_{n-1}$$

Operators:

$$x = \sqrt{\frac{\hbar}{2m\omega}} (a_{+} + a_{-})$$

$$p = i\sqrt{\frac{\hbar m\omega}{2}} (a_{+} - a_{-})$$

$$x^{2} = \frac{\hbar}{2m\omega} \left[(a_{+})^{2} + (a_{+}a_{-}) + (a_{-}a_{+}) + (a_{-})^{2} \right]$$

Commutation:

$$[x,p] = i\hbar$$
$$[a_{-},a_{+}] = 1$$

Hamiltonian:

$$H = \hbar\omega \left(a_{+}a_{-} + \frac{1}{2} \right)$$

$$a_+ a_- + a_- a_+ = 2 \left(\frac{H}{\hbar \omega} \right)$$

States:

where
$$\psi_0(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} e^{-\frac{m\omega}{2\hbar}x^2}$$

$$\psi_n = \frac{1}{\sqrt{n!}} (a_+)^n \psi_0$$

Energy:

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega$$

Generalized Statistical Interpretation

Momentum Expansion:

$$\Phi(p,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{-ipx/\hbar} \Psi(x,t) dx$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi\hbar}} \int_{-\infty}^{\infty} e^{ipx/\hbar} \Phi(p,t) dp$$

Trig Identities

$$2\cos\theta\cos\phi = \cos(\theta - \phi) + \cos(\theta + \phi)$$

$$2\sin\theta\sin\phi = \cos(\theta - \phi) - \cos(\theta + \phi)$$

$$2\sin\theta\cos\phi = \sin(\theta + \phi) + \sin(\theta - \phi)$$

$$2\cos\theta\sin\phi = \sin(\theta + \phi) - \sin(\theta - \phi)$$

Updated February 12, 2019 https://github.com/DonneyF/formula-sheets