Proof:
$$\#languages = 2^{\aleph_0} = \aleph_1$$
, $\#\{L \subseteq \{0,1\}^*\} = TMs = \aleph_0$.Q.E.D.

 L_{flip}

• $L_{flip} = \{\alpha | M_{\alpha} \ does \ not \ accept \ \alpha\}$

 $\it Lem~4.3~L_{\it flip}$ is undecidable.

Proof: Assume for contradiction that L_{flip} is decided by a TM M_{eta} , which implies that $L(M_{eta})=L_{flip}.$

- Case 1: $\beta \in L_{flip}$. By definition, M_{β} does not accept β , i.e. M_{β} rejects β . So, $\beta \notin L(M_{\beta}) = L_{flip}$. Contradiction.
- Case 2: $\beta \notin L_{flip}$. By definition, M_{β} accepts β . So, $\beta \in L(M_{\beta}) = L_{flip}$. Contradiction. *Q.E.D.*

Turing Halting Problem

- $L_{halt} \stackrel{def}{=} \{(\alpha,x)|M_{\alpha} \ halts \ on \ input \ x\}$
- Fermat's Last Theorem: $(\forall m \geq 3)(\forall a,b,c \geq 1)(a^m + b^m \neq c^m)$
 - M_{α} for *FLT*:
 - T=2
 - while true:
 - T = T + 1
 - for d=3 to T
 - for $a, b, c \in \{1, 2, \dots, T\}$
 - if $a^d + b^d = c^d$, exit
 - \circ FLT \Leftrightarrow $(M_{\alpha}, \epsilon) \notin L_{halt}$.

Reduction

Def 4.4 Let $L_1, L_2 \subseteq \{0,1\}^*$. Write $L_1 \le L_2$ if there is a reduction from L_1 to L_2 . That is, there exists a TM $M:\{0,1\}^* \to \{0,1\}^*$ (On any input x, M always halts and outputs a string M(x)) s.t.:

- 1. $(orall x \in L_1)(M(x) \in L_2)$
- 2. $(\forall x
 otin L_1)(M(x)
 otin L_2)$
- Let $L_1 \leq L_2$. If L_2 is decidable, then L_1 is decidable. Contrapositively, if L_1 is undecidable, then L_2 is undecidable.

Thm 4.5 L_{halt} is undecidable.

Proof: We will prove $L_{flip} \leq L_{halt}$.

Assume that L_{halt} is decidable by a TM M_{halt} , we will prove L_{flip} is decidable, which would be a contradiction.

Create a TM M_{flip} as follows:

- Run M_{halt} on input (α, α) .
 - 1. If M_{halt} rejects (lpha,lpha), let M_{flip} accept lpha.
 - 2. If M_{halt} accepts (α, α) , simulate M_{α} on input α (using a UTM), and flip the output.

It's easy to verify M_{flip} decides L_{flip} . Contradiction. *Q.E.D.*

L_{accept}

• $L_{accept} = \{(\alpha, x) | M_{\alpha} \ accepts \ x\}$

Lem 4.6 L_{accept} is undecidable.

Proof: We will prove $L_{halt} \leq L_{accept}$. Assuming for contradiction that L_{accept} is decidable, i.e. there exists a TM M_{accept} that decides L_{accept} , we construct a TM M_{halt} that decides L_{halt} as follows:

- 1. On input (α,x) , create a new TM M_{β} , which simulates M_{α} on input x, and always accepts whenever M_{α} halts. (If M_{α} loops forever, M_{β} loops forever as well)
- 2. Run M_{accept} on input (β, x) , and forward its output. Clearly, M_{halt} decides L_{halt} . Contradiction. *Q.E.D.*

L_{empty}

• $L_{empty} = \{\langle M \rangle | M \ does \ not \ accept \ any \ input, \ i.e. \ L(M) = \phi \}$

Lem 4.7 L_{empty} is undecidable.

Proof: We will prove $L_{halt} \leq L_{empty}$. Assume for contradiction that L_{empty} can be decided by a TM M_{empty} . We construct a TM M_{halt} as follows.

- 1. On input (lpha,x), we construct a new TM M_eta , whose input is $y\in\{0,1\}^*$ as follows:
 - a. Simulate M_lpha on input x
 - b. If step a halts, always accepy y

Clearly, $L(M_{\beta}) = \phi$ if M_{α} does not halt on x. Otherwise, $L(M_{\beta}) = \{0,1\}^*$.

2. Run M_{empty} on input β and flip the output. We can verify that M_{halt} decides L_{halt} .

Contradiction. Q.E.D.

$L_{regular}$

• $L_{regular} = \{\langle M \rangle | M \ is \ a \ TM \ s.t. \ L(M) \ is \ regular \}$

Thm 4.8 $L_{regular}$ is undecidable.

Proof: Assume for contradiction that $L_{regular}$ is decidable, i.e. \exists a TM $M_{regular}$ that decides $L_{regular}$. We will prove L_{accept} is decidable.

On input (α, x) , construct a TM M_{accept} as follows:

1. Construct a TM M_{β} , where $\beta=\beta(\alpha,x)$, and the input of M_{β} is denoted by y.

a. If
$$y \in \{0^n 1^n | n \ge 0\}$$
, accept

- b. Otherwise, simulate M_{lpha} on x, and accept if and only if M_{lpha} accepts x
- 2. Run $M_{regular}$ on eta, and forward its output.
 - $\hbox{o Case 1: } (\alpha,x)\not\in L_{accept}. \hbox{ i.e. } M_\alpha \hbox{ does not accept x. So, } L(M_\beta)=\{0^n1^n|n\geq 0\}.$ Thus, $M_{regular}$ rejects β , which implies that M_{halt} rejects β .
 - \circ Case 2: $(lpha,x)\in L_{accept}.$ So $L(M_{eta})=\{0,1\}^*.$ As such, $M_{regular}$ accepts eta, and so does $M_{halt}.$

Contradiction. Q.E.D.

L_{equal}

• $L_{equal} = \{(\langle M_1 \rangle, \langle M_2 \rangle) | M_1 \ and \ M_2 \ are \ TMs \ s.t. \ L(M_1) = L(M_2) \}$

$\it Lem~4.9~L_{equal}$ is undecidable.

Proof: Assume for contradiction that L_{equal} is decidable. i.e. L_{equal} is decided by a TM M_{equal} . We will prove L_{empty} is decidable.

On input $\langle M \rangle$, construct a TM M_{empty} as follows:

- 1. Run M_{equal} on input $(\langle M
 angle, \langle M_0
 angle)$, where M_0 rejects immediately.
- 2. Forward the above output. Q.E.D.