R documentation

of 'armitage_eval2.Rd'
April 27, 2021

armitage_eval

Evaluate the updated Armitage model

Description

Evaluate the Armitage model for chemical distribution in vitro. Takes input as data table or vectors of values. Outputs a data table. Updates over the model published in Armitage et al. 2014 include binding to plastic walls and lipid and protein compartments in cells.

Usage

```
armitage_eval(
  casrn.vector = NA_character_,
  nomconc.vector = 1,
  this.well_number = 384,
  this.FBSf = NA_real_,
  tcdata = NA,
  this.sarea = NA_real_,
  this.v_total = NA_real_,
  this.v_working = NA_real_,
  this.cell_yield = NA_real_,
  this. Tsys = 37,
  this. Tref = 298.15,
  this.option.kbsa2 = F,
  this.option.swat2 = F,
  this.pseudooct = 0.01,
  this.memblip = 0.04,
  this.nlom = 0.2,
  this.P_nlom = 0.035,
  this.P_{dom} = 0.05,
  this.P_cells = 1,
  this.csalt = 0.15,
  this.celldensity = 1,
  this.cellmass = 3,
  this.f_oc = 1
)
```

2 armitage_eval

Arguments

casrn.vector For vector or single value, CAS number nomconc.vector For vector or single value, micromolar nominal concentration (e.g. AC50 value) this.well_number For single value, plate format default is 384, used if is.na(tcdata)==T this.FBSf Fraction fetal bovine serum, must be entered by user. tcdata A data.table with casrn, nomconc, MP, gkow, gkaw, gswat, sarea, v_total, v_working. Otherwise supply single values to this.params. this.sarea Surface area per well (m^2) this.v_total Total volume per well (m^3) this.v_working Working volume per well (m^3) this.cell_yield Number of cells per well this.Tsys System temperature (degrees C) this.Tref Reference temperature (degrees K) this.option.kbsa2 Use alternative bovine-serum-albumin partitioning model this.option.swat2 Use alternative water solubility correction this.pseudooct Pseudo-octanol cell storage lipid content this.memblip Membrane lipid content of cells this.nlom Structural protein conent of cells this.P_nlom Proportionality constant to octanol structural protein this.P_dom Proportionality constant to dissolve organic material this.P_cells Proportionality constant to octanol storage lipid this.csalt Ionic strength of buffer, mol/L this.celldensity Cell density kg/L, g/mL this.cellmass Mass per cell, ng/cell this.f_oc 1, everything assumed to be like proteins

Value

Column	Description	units
casrn	Chemical Abstracts Service Registry Number	
nomconc	Nominal Concentration	mol/L
well_number	Number of wells in plate	unitless
sarea	Surface area of well	m^2
v_total	Total volume of well	m^3
v_working	Filled volume of well	m^3
cell_yield	Number of cells	cells
gkow	log10 octanol-water partition coefficient	log10
logHenry	log10 Henry's law constant '	log10 atm-m3/mol
gswat	log10 Water solubility	log10 mol/L
MP	Melting Point	degrees Celsius

armitage_eval 3

MW gkaw dsm duow duaw dumw gkmw gkcw gkbsa gkpl ksalt Tsys Tref option.kbsa2 option.swat2 FBSf pseudooct memblip nlom	Molecular Weight air-water partition coefficient	g/mol (mol/m3)/(mol/m3)
P_nlom P_dom P_cells csalt celldensity cellmass f_oc cellwat Tcor	dissolved organic matter b water partition coefficient	Dimesnsionless
Vm	Volume of media	L

Author(s)

Greg Honda

References

Armitage, J. M.; Wania, F.; Arnot, J. A. Environ. Sci. Technol. 2014, 48, 9770-9779. https://doi.org/10.1021/es501955g Honda et al. PloS one 14.5 (2019): e0217564. https://doi.org/10.1371/journal.pone.0217564

Examples

```
library(httk)
# Check to see if we have info on the chemical:
"80-05-7" %in% get_cheminfo()

#We do:
temp <- armitage_eval(casrn.vector = c("80-05-7", "81-81-2"), this.FBSf = 0.1,
this.well_number = 384, nomconc = 10)</pre>
```

4 armitage_eval

```
print(temp$cfree.invitro)
# Check to see if we have info on the chemical:
"793-24-8" %in% get_cheminfo()
# Since we don't look up phys-chem from dashboard:
cheminfo <- data.frame(</pre>
  Compound="6-PPD",
  CASRN="793-24-8",
 DTXSID="DTXSID9025114",
  logP=4.27,
  logHenry=log10(7.69e-8),
  logWSol=log10(1.58e-4),
  MP = 99.4,
 MW=268.404
  )
# Add the information to HTTK's database:
chem.physical_and_invitro.data <- add_chemtable(</pre>
 cheminfo,
 current.table=chem.physical_and_invitro.data,
 data.list=list(
 Compound="Compound",
 CAS="CASRN",
 DTXSID="DTXSID",
  MW="MW",
  logP="logP",
  logHenry="logHenry",
  logWSol="logWSol",
  MP="MP"),
  species="Human",
  reference="CompTox Dashboard 31921")
# Run the Armitage et al. (2014) model:
out <- armitage_eval(</pre>
  casrn.vector = "793-24-8",
  this.FBSf = 0.1,
  this.well_number = 384,
  nomconc = 10)
print(out)
```