Aufgabenstellung und Lösung

Es ist die folgende Aufgabe zu lösen:

Es sei das Anfangswertproblem

$$x'(t) = \sin(tx(t)), \quad x(0) = \xi$$

mit $\xi \in \mathbb{R}$ gegeben. Beweisen Sie die beiden Aussagen (a) und (b) und geben Sie eine begründete Antwort auf die Frage in (c).

- (a) Das Anfangswertproblem besitzt für jedes $\xi \in \mathbb{R}$ eine eindeutige Lösung $x_{\xi} : \mathbb{R} \to \mathbb{R}$.
- (b) Für jedes $\xi \in \mathbb{R}$ ist die Lösung x_{ξ} eine gerade Funktion, das heißt $x_{\xi}(t) = x_{\xi}(-t)$ für alle $t \in \mathbb{R}$.
- (c) Nimmt die Lösung x_{π} zum Anfangswert $\xi = \pi$ negative Werte an?

Lösungsvorschlag: *Hinweis:* Wir schreiben für eine einfachere Lesbarkeit im Folgenden in der Differentialgleichung lediglich x statt x(t).

Teilaufgabe (a): Die rechte Seite der Differentialgleichung, $(t, x) \mapsto \sin(tx)$, ist stetig partiell differenzierbar nach x mit $\partial_x(\sin(tx)) = t\cos(tx)$. Insbesondere ist die rechte Seite damit lokal Lipschitz-stetig in x und das Anfangswertproblem besitzt nach dem Satz von Picard-Lindelöf für jedes $\xi \in \mathbb{R}$ eine eindeutige, maximale Lösung x_{ξ} . Es bleibt zu zeigen, dass diese Lösung auch global ist. Betrachten wir zunächst $x_{\xi}: J \to \mathbb{R}$ mit $J \subset \mathbb{R}$. Wegen der Beschränktheit des Sinus $(|\sin(y)| \leq 1 \text{ für alle } y \in \mathbb{R})$ gilt

$$-1 \le x_\xi'(t) \le 1.$$

Also ist auch jede Lösung x_{ξ} der Differentialgleichung beschränkt und es gilt

einerseits
$$-t + \xi \le x_{\xi}(t) \le t + \xi$$
 für $t \ge 0$,

andererseits
$$\xi + t \le x_{\xi}(t) \le \xi - t$$
 für $t \le 0$.

Wegen dieser Beschränktheit von x_{ξ} kann jedes $x_{\xi}: J \to \mathbb{R}$ in der Tat zu einer globalen Lösung, die auf ganz \mathbb{R} erklärt ist, fortgesetzt werden.

Teilaufgabe (b): Aus Teilaufgabe (a) wissen wir, dass das Anfangswertproblem für jedes $\xi \in \mathbb{R}$ eine eindeutige und globale Lösung hat. Wenn wir zeigen, dass die Funktion

 $y_{\xi}: \mathbb{R} \to \mathbb{R}$, die durch $y_{\xi}(t) := x_{\xi}(-t)$ erklärt ist, ebenfalls eine Lösung desselben Anfangswertproblems ist, folgt wegen der Eindeutigkeit der Lösung die Behauptung $x_{\xi}(t) = x_{\xi}(-t)$ für alle $t \in \mathbb{R}$. Um dies zu tun, betrachten wir die Ableitung von y_{ξ} und erhalten

$$y'_{\xi}(t) = \frac{\mathrm{d}}{\mathrm{d}t} x_{\xi}(-t) \stackrel{\mathrm{KR}}{=} (-1) \cdot x'_{\xi}(-t),$$

wobei wir beim zweiten Gleichheitszeichen die Kettenregel (KR) verwendet haben. Zusammen mit der Differentialgleichung ergibt sich, wenn wir zunächst $x'_{\xi}(-t)$ einsetzen und im zweiten Schritt die Funktion y_{ξ} benutzen, nun

$$x'_{\xi}(-t) = \sin(-tx_{\xi}(-t)) \qquad \underset{x_{\xi}(-t) = y_{\xi}(t)}{\overset{\text{Einsetzen}}{\Longleftrightarrow}} \qquad y'_{\xi}(t) = (-1) \cdot \sin(-ty_{\xi}(t)) = \sin(ty_{\xi}(t)),$$

wobei wir im letzten Schritt verwendet haben, dass die Sinusfunktion eine ungerade Funktion ist, also $-\sin(-y) = \sin(y)$ für alle $y \in \mathbb{R}$ gilt. Die Funktion y_{ξ} erfüllt also offenbar auch die gegebenen Differentialgleichung. Weil auch noch

$$y_{\xi}(0) = x_{\xi}(-0) = x_{\xi}(0) = \xi$$

gilt, löst y_{ξ} sogar dasselbe Anfangswertproblem wie x_{ξ} , woraus mit der Eindeutigkeit der Lösung folgt, dass $x_{\xi}(t) = y_{\xi}(t) = x_{\xi}(-t)$ ist. Genau das ist die Behauptung.

Teilaufgabe (c): Für $\xi = 0$ ist offensichtlich $x_0 : \mathbb{R} \to \mathbb{R}$ mit $x_0(t) = 0$ die eindeutige und globale Lösung des Anfangswertproblems. Da $x_{\pi}(0) = \pi > 0 = x_0(0)$ gilt, verläuft die globale und eindeutige Lösung des Anfangswertproblems für $\xi = \pi$ komplett in der oberen Halbebene des Koordinatensystems. Das folgt aus dem Vergleichsprinzip für die Lösungen skalarer Differentialgleichungen: Es gilt die obige Ungleichung nicht nur für eine Stelle, sondern für alle $t \in \mathbb{R}$. Graphisch gesehen kann die stetige Lösung x_{π} die ebenfalls stetige Lösung x_0 niemals schneiden. Daher bleibt die Reihenfolge, die die Lösungen an einer Stelle (etwa bei t = 0) haben, auch an allen anderen Stellen $t \in \mathbb{R}$ erhalten.