CHAPTER REVIEW

The Reaction Process

SECTION 1 REVIEW

- **1.** a. What is the collision theory?
 - b. According to this theory, what two conditions must be met for a collision between reactant molecules to be effective in producing new chemical species?
- **2.** a. What condition must be met for an activated complex to result from the collision of reactant particles?
 - b. Where, in terms of energy, does the activated complex occur along a typical reaction pathway?
- **3.** In a reversible reaction, how does the activation energy required for the exothermic change compare with the activation energy required for the endothermic change?
- **4.** Would you expect the following equation to represent the mechanism by which propane, C₃H₈, burns? Why or why not?

$$C_3H_8(g) + 5O_2(g) \longrightarrow 3CO_2(g) + 4H_2O(g)$$

5. The decomposition of nitrogen dioxide 2NO₂ → 2NO + O₂ occurs in a two-step sequence at elevated temperatures. The first step is NO₂ → NO + O. Predict a possible second step that, when combined with the first step, gives the complete reaction.

PRACTICE PROBLEMS

6. For each of the energy diagrams provided below, label the reactants, products, ΔE , E_a , and E_a . Also determine the values of ΔE for the forward and reverse reactions, and determine the values of E_a and E_a . (Hint: See Sample Problem A.)

