Embracing Imperfect Datasets: A Review of Deep Learning Solutions for Medical Image Segmentation

Abstract

- 医学影像学的卷积神经网络模型需要大型、有代表性和高质量的带标注的数据集。
- 然而,很少有一个完美的训练数据集,尤其是在医学成像领域,包括数据和标注。
- 医学图像分割问题两个主要的数据集限制:①稀少的标注,其中只有有限的标注数据可用于训练;②弱标注,其中训练数据只有稀疏标注、噪声标注或图像级标注。

Data augmentation

- 传统的数据增广
 - 图像质量: 加噪、锐化、模糊
 - 图像表征: 饱和度、亮度、对比度
 - 像素值分布: B样条变换、直方图均衡
- 合成的数据增广

合成的数据增广

Table 1: Comparison between image synthesis methods suggested for medical image segmentation.

	Synthesis Type	Domains	Description
(2017)	Cross-domain synthesis	$CT \rightarrow MRI$	Cycle GAN is used to generate pairs of synthesized MR images from
(2017)		$CI \rightarrow WIKI$	pairs of CT slices and the corresponding myocardium masks
(18c)	Cross domain synthesis	CT ↔MRI	Cycle GAN with shape consistency loss is used to translate between
160)	Cross-domain synthesis	C1 ↔WKI	MR and CT scans. Segmentation and synthesis networks are trained jointly.
017)	Same-domain synthesis	Fundus	GAN is used to generate a vessel mask and a conditional GAN is used
017)	Same-domain synthesis	Fulldus	to generate the corresponding fundus image
Come dom	Same-domain synthesis	MRI	Conditional GAN to generate synthetic MR images given a lesion mask
Same-domain synthesis		MKI	and a brain segmentation mask
	Some domain eventhesis	СТ	Conditional GAN is used to synthesize pleural nodules in the
	Same-domain synthesis	CI	nodule-free CT slices
9)	Some domain synthesis	MRI	Hybrid spatial-intensity transformation network is used to synthesize
9)	Same-domain synthesis	WIKI	MR images from 1 labeled MR image
. (2018)	Same-domain synthesis	X-ray	Conditional GAN is used to synthesize X-ray images with desired abnormalitie

Leveraging External Labeled Datasets

- 没有标注的域适应
- 带有标注的域适应
- 数据集融合

omain in which segmentation is performed. The Figure column on the right shows the matching data flow from Figure 2.

Publication	Availability of Target Domain Segmentation Masks	Segmentation Domain	Modality	Figure
in Adaptation without				
Labels				
t al. (2018a)	*	Target	MRI, CT	(a)
t al. (2018b)	*	Target	MRI, CT	(a)
et al. (2018)	*	Source	X-ray	(b)
g et al. (2018b)	*	Source	DRR, X-ray	(b)
et al. (2019)	*	Target	MRI, CT	(c)
(2018)	*	Source	MRI, CT	(b)
in Adaptation with				
Labels				
sias et al. (2017)	✓	Both	MRI, CT	(i)
g et al. (2018c)	✓	Both	MRI, CT	(i)
t al. (2018)	✓	Both	MRI, CT	(e)
lria et al. (2018)	✓	Both	MRI, CT	(d),(e),(f),(g),(h)
et Fusion				
ni et al. (2018a)	✓	All domains	MRI,CT,US,X-ray	(d)
iev and Kaufman (2019)	✓	All domains	CT	(d)

main in which segmentation is performed.	The Figure column on the right shows	the matching data flow from Figure 2.
--	--------------------------------------	---------------------------------------

Publication	Availability of Target Domain Segmentation Masks	Segmentation Domain	Modality	Figure
n Adaptation without				
Labels				
al. (2018a)	×	Target	MRI, CT	(a)
al. (2018b)	*	Target	MRI, CT	(a)
t al. (2018)	*	Source	X-ray	(b)
et al. (2018b)	*	Source	DRR, X-ray	(b)
t al. (2019)	*	Target	MRI, CT	(c)
2018)	*	Source	MRI, CT	(b)
n Adaptation with				
Labels				
as et al. (2017)	✓	Both	MRI, CT	(i)
et al. (2018c)	✓	Both	MRI, CT	(i)
al. (2018)	✓	Both	MRI, CT	(e)
ia et al. (2018)	✓	Both	MRI, CT	(d),(e),(f),(g),(h)
Fusion				
i et al. (2018a)	✓	All domains	MRI,CT,US,X-ray	(d)
ev and Kaufman (2019)	✓	All domains	CT	(d)
<u> </u>	<u> </u>	<u> </u>		<u> </u>

both SOURCE and TARGET domain segmentation masks available for training; both SOURCE and TARGET images are segmented during inference; SOURCE and TARGET domains can be used interchangeably

Source Domain Segmentation Decoder

Target Domain Translation Encoder

Shared Segmentation Encoder

Target Domain Image

Segmentation Output of Target **Image**

Shared Segmentation Decoder

Source Domain Image

Segmentation Output of Source Image

main in which segmentation is performed.	The Figure column on the right shows	the matching data flow from Figure 2.
--	--------------------------------------	---------------------------------------

Publication	Availability of Target Domain Segmentation Masks	Segmentation Domain	Modality	Figure
n Adaptation without				
Labels				
al. (2018a)	×	Target	MRI, CT	(a)
al. (2018b)	*	Target	MRI, CT	(a)
t al. (2018)	*	Source	X-ray	(b)
et al. (2018b)	*	Source	DRR, X-ray	(b)
t al. (2019)	*	Target	MRI, CT	(c)
2018)	*	Source	MRI, CT	(b)
n Adaptation with				
Labels				
as et al. (2017)	✓	Both	MRI, CT	(i)
et al. (2018c)	✓	Both	MRI, CT	(i)
al. (2018)	✓	Both	MRI, CT	(e)
ia et al. (2018)	✓	Both	MRI, CT	(d),(e),(f),(g),(h)
Fusion				
i et al. (2018a)	✓	All domains	MRI,CT,US,X-ray	(d)
ev and Kaufman (2019)	✓	All domains	CT	(d)
<u> </u>	<u> </u>	<u> </u>		<u> </u>

both SOURCE and TARGET domain segmentation masks available for training; both SOURCE and TARGET images are segmented during inference; SOURCE and TARGET domains can be used interchangeably

Source Domain Segmentation Decoder

Target Domain Translation Encoder

Shared Segmentation Encoder

Target Domain Image

Segmentation Output of Target **Image**

Shared Segmentation Decoder

Source Domain Image

Segmentation Output of Source Image

提高标注效率

- 主动学习
- 迭代分割

主动学习

Algorithm 1: Active learning

Input: Initial model \mathcal{M}_0 , unlabeled dataset \mathcal{U}_0 , size of query batch k, iteration times \mathcal{T} , active learning algorithm \mathcal{A}

Output: Labeled dataset $\mathcal{L}_{\mathcal{T}}$, updated model $\mathcal{M}_{\mathcal{T}}$

- 1 $\mathcal{L}_0 \leftarrow \varnothing$;
- 2 for $i \leftarrow 1$ to \mathcal{T} do

```
/* phase 1: query batch selection
  */
```

- $3 \mid \mathcal{Q}_t \leftarrow \mathcal{A}(\mathcal{U}_{t-1}, \mathcal{M}_{t-1}, k);$
- 4 annotate samples in Q_t ;

- 5 $\mathcal{L}_t \leftarrow \mathcal{L}_{t-1} \cup \{(\mathbf{x}, y) | \mathbf{x} \in \mathcal{Q}_t, y \in \mathcal{Y}_t\};$
- 6 $\mathcal{M}_t \leftarrow \text{fine-tuning } \mathcal{M}_{t-1} \text{ using } \mathcal{L}_t;$
- 7 $\mathcal{U}_t \leftarrow \mathcal{U}_{t-1} \backslash \mathcal{Q}_t$;
- 8 end
- 9 return $\mathcal{L}_{\mathcal{T}}$, $\mathcal{M}_{\mathcal{T}}$

Publication	Туре	Sample	selection s	trategy	Annotation uni
	• •	informativeness	diversity	annotation cost	
Gorriz et al. (2017)	iterative	✓			whole 2D imag
Yang et al. (2017)	iterative	✓	✓		whole 2D imag
Ozdemir et al. (2018)	iterative	✓	✓		whole 2D imag
Kuo et al. (2018)	iterative	✓	✓	✓	whole 3D imag
Sourati et al. (2018)	iterative	✓	✓		2D image patcl
[ahapatra et al. (2018)	1-shot	✓			whole 2D imag
Sourati et al. (2019)	iterative	✓	✓		2D image patcl
Zheng et al. (2019)	iterative		✓		2D image patcl

交互式分割

Algorithm 2: Interactive segmentation

Input: Initial model \mathcal{M}_0 , unlabeled image \mathcal{I} , number of iterations \mathcal{N} , feedback operation \mathcal{R} , conversion operation \mathcal{C}

Output: Updated model $\mathcal{M}_{\mathcal{N}}$

1 for $i \leftarrow 1$ to \mathcal{N} do

7 return S_N

```
/* generate segmentation map */
\mathcal{S}_i \leftarrow \mathcal{M}_{i-1}(\mathcal{I});
/* get feedback from an expert */
\mathcal{F}_i \leftarrow \mathcal{R}(\mathcal{S}_i, \mathcal{I});
/* convert to a new annotation */
\mathcal{A}_i \leftarrow \mathcal{C}(\mathcal{F}_i);
\mathcal{M}_i \leftarrow \text{fine-tuning } \mathcal{M}_{i-1} \text{ with } \mathcal{A}_i;
6 end
```

Leveraging Unlabeled Data

- 自我监督预训练
- 自监督
- 半监督

自我监督预训练

Comparison between self-supervised training methods that can directly or indirectly aid medical image segmentation.

Network		Surrogate task			
INCLWOIK	Туре	Description	Annotation		
Encoder	Image-to-scalar	Predict if two longitudinal studies belong to the same patient	1(same)/0(different)		
Encoder	Image-to-scalar	Predict the order of two slices random selected from the same CT scan	0(top)/1(bottom)		
Encoder	Image-to-scalar	Predict the degree of rotation applied to a chest CT scan	$\frac{\theta}{90^{\circ}}$ ($\theta \in \{0, 90, 180, 270\}$)		
Siamese	Image-to-scalar	Predict the distance between two patches sampled from the same MR image	Float distance		
Siamese	Image-to-scalar	Predict if two patches sampled from the same MR image are spatially near	1(near)/0(far)		
Encoder-decoder	Image-to-image	Learn how to remove noise from MR image patches	Original patch before injec		
Encoder-decoder	Image-to-image	Learn how to colorize gray-scale colonoscopy frames	Original frame before remo		
Encoder-decoder	Image-to-image	Learn how to colorize gray-scale tele-med skin images	Original image before rem		
Encoder-decoder	Image-to-image	Learn how to restore the image from various degradation transformations	Original image before degr		
Encoder-decoder	Image-to-image	Learn how to weakly localize anatomical landmarks in MR images	Approximate landmark pos		

自学习

```
Algorithm 3: Self learning
    Input: Small labeled dataset \mathcal{L}, unlabeled dataset \mathcal{U},
                    iteration times \mathcal{T}, masks generation function \mathcal{F}
    Output: Updated model \mathcal{M}_{\mathcal{T}}
1 \mathcal{M}_0 \leftarrow training base model with \mathcal{L};
2 for i \leftarrow 1 to \mathcal{T} do
           /* generate pseudo segmentation
               masks
                                                                                                    */
3 \mathcal{S}_i \leftarrow \mathcal{F}(\mathcal{M}_{i-1}, \mathcal{U});
4 \mathcal{D}_i \leftarrow \mathcal{L} \cup \{(\mathbf{x}, s) | \mathbf{x} \in \mathcal{U}, s \in \mathcal{S}_i\};
5 \mathcal{M}_i \leftarrow \text{fine-tuning } \mathcal{M}_{i-1} \text{ using } \mathcal{D}_i;
6 end
7 return \mathcal{M}_{\mathcal{T}}
```

on	Initial annotations by	Pseudo masks generated by	Label noise handled by
2018a)	K-means	single segmentation model	N/A
017)	expert	single segmentation model + CRF	N/A
2018a)	expert	ensemble segmentation model	N/A
2018)	expert	ensemble segmentation model	a two-stream network
. 018)	expert	single segmentation model	a discriminator network

半监督学习

Algorithm 4: Semi-supervised learning

Input: Limited labeled dataset \mathcal{L} , unlabeled dataset \mathcal{U} , shared backbone \mathcal{M}_c , branch model and loss function for labeled data \mathcal{M}_l , ℓ_l , branch model and loss function for unlabeled data \mathcal{M}_u , ℓ_u

Output: Fine-tuned model \mathcal{M}

- 1 $\zeta_l \leftarrow \ell_l(\mathcal{M}_l(\mathcal{M}_c(\mathcal{L})));$
- 2 $\zeta_u \leftarrow \ell_u(\mathcal{M}_u(\mathcal{M}_c(\mathcal{U})) + \ell_u(\mathcal{M}_u(\mathcal{M}_c(\mathcal{L}));$
- 3 minimize($\zeta_l + \zeta_u$);
- 4 return \mathcal{M}

Publication	Unsupervised task
Bai et al. (2017)	Embedding consistency
Zhang et al. (2017b)	Image classification
Sedai et al. (2017)	Image reconstruction
Baur et al. (2017)	Manifold learning
Chartsias et al. (2018)	Image reconstruction
Huo et al. (2018a)	Image synthesis
Zhao et al. (2019)	Image registration
Li et al. (2019)	Transformation consistency