Building Damage Detection based on Post-Hurricane Satellite Imagery using Transfer Learning and Convolutional Neural Networks

Presented To: Dr. Anu Sahni

Presented By: Aman Khanna (x19231938)

Jaswinder Singh (x19219997)

Khushboo Lavania(x19209835)

Objective

The objective of this study is to identify buildings that have been impacted by a natural disaster using satellite images of the areas impacted by the disaster.

Related Works

After critically reviewing the key literature in the domain, we can conclude that different pre trained deep learning architectures like VGG, Inception V3, Resnet have performed exceptionally well in the satellite imagery classification tasks. They were even able to outperform the state-of-the-art modelsin some cases. Therefore, for the purpose of our study, we will also be using a pre-trained VGG16 architecture for the damage annotation in the optical satellite imagery. We will also design two different custom architectures using data augmentation and Leaky ReLU activation function and compare them based on different metrics like test and validation accuracy, ROC curves, precision, etc. The next section will discuss the methodology implemented for the study.

METHODOLOGY

Data Selection

Dataset Source

IEEE data portal

https://ieee-dataport.org/open-access/detecting-damaged-buildings-post-hurricane-satellite-imagery-based-customized)

Ethical Concerns

Data Pre-Processing & Transformation

- Importing data into Google Colab
- Extracting Labels from Images

Implementation and Evaluation

VGG16 (Transfer Learning)

Model: "sequential"				
Layer (type)	Output Shape	Param #		
vgg16 (Functional)	(None, 4, 4, 512)	14714688		
<pre>global_average_pooling2d (Gl</pre>	(None, 512)	0		
dense (Dense)	(None, 1)	513		
Total params: 14,715,201 Trainable params: 7,079,937 Non-trainable params: 7,635,264				

VGG16 Model Evaluation

• Accuracy - 96.21 %

Custom Convolutional Neural Network 1

Model: "sequential_4"			
Layer (type)	Output	Shape	Param #
conv2d_1 (Conv2D)	(None,	148, 148, 32)	896
leaky_re_lu_1 (LeakyReLU)	(None,	148, 148, 32)	9
max_pooling2d (MaxPooling2D)	(None,	74, 74, 32)	9
conv2d_2 (Conv2D)	(None,	72, 72, 64)	18496
leaky_re_lu_2 (LeakyReLU)	(None,	72, 72, 64)	0
max_pooling2d_1 (MaxPooling2	(None,	36, 36, 64)	8
conv2d_3 (Conv2D)	(None,	34, 34, 128)	73856
leaky_re_lu_3 (LeakyReLU)	(None,	34, 34, 128)	9
max_pooling2d_2 (MaxPooling2	(None,	17, 17, 128)	0
conv2d_4 (Conv2D)	(None,	15, 15, 128)	147584
leaky_re_lu_4 (LeakyReLU)	(None,	15, 15, 128)	9
max_pooling2d_3 (MaxPooling2	(None,	7, 7, 128)	9
flatten (Flatten)	(None,	6272)	9
dense_1 (Dense)	(None,	512)	3211776
leaky_re_lu_5 (LeakyReLU)	(None,	512)	9
dense_2 (Dense)	(None,	1)	513
Total params: 3,453,121 Trainable params: 3,453,121 Non-trainable params: 0			

Custom CNN 1: Evaluation

• **Accuracy** : 89%

Custom Convolutional Neural Network 2

Model: "sequential_3"		
Layer (type)	Output Shape	Param #
conv2d_8 (Conv2D)	(None, 148, 148, 32)	896
leaky_re_lu_10 (LeakyReLU)	(None, 148, 148, 32)	0
max_pooling2d_8 (MaxPooling2	(None, 74, 74, 32)	0
dropout_10 (Dropout)	(None, 74, 74, 32)	0
conv2d_9 (Conv2D)	(None, 72, 72, 64)	18496
leaky_re_lu_11 (LeakyReLU)	(None, 72, 72, 64)	0
max_pooling2d_9 (MaxPooling2	(None, 36, 36, 64)	0
dropout_11 (Dropout)	(None, 36, 36, 64)	9
conv2d_10 (Conv2D)	(None, 34, 34, 128)	73856
leaky_re_lu_12 (LeakyReLU)	(None, 34, 34, 128)	9
max_pooling2d_10 (MaxPooling	(None, 17, 17, 128)	0
dropout_12 (Dropout)	(None, 17, 17, 128)	0
conv2d_11 (Conv2D)	(None, 15, 15, 128)	147584
leaky_re_lu_13 (LeakyReLU)	(None, 15, 15, 128)	9
max_pooling2d_11 (MaxPooling	(None, 7, 7, 128)	9
dropout_13 (Dropout)	(None, 7, 7, 128)	9
flatten_2 (Flatten)	(None, 6272)	0
dropout_14 (Dropout)	(None, 6272)	0
dense_4 (Dense)	(None, 512)	3211776
leaky_re_lu_14 (LeakyReLU)	(None, 512)	9
dense_5 (Dense)	(None, 1)	513
Total params: 3,453,121 Trainable params: 3,453,121 Non-trainable params: 0		

Custom CNN 2: Evaluation

• Accuracy: 97.91

Conclusion

The performance of Custom CNN 2 is better than VGG16 and Custom CNN 1 with an accuracy of 97.91.

