

IN THE CLAIMS:

Please amend the claims, without prejudice, without admission, without surrender of subject matter and without any intention of creating any estoppel as to equivalents as follows:

1-19 (Cancelled).

20. (Currently Amended) A compound of the formula

wherein two of R_4 , R_5 , and R_6 are of the formula

wherein for each of the two of R_4 , R_5 , and R_6 q is independently selected from 0 to 3 and the other of R_4 , R_5 , and R_6 is a branched group of the formula

wherein n is from 10 to 20 and m is $2n$, and wherein p is from 0 to 4, and wherein one of p and q is greater than 0.

21. (Original) A compound according to claim 20 wherein p is from 0 to 3.

22. (Currently Amended) A compound according to claim 20 ~~or 21~~ wherein q is 0.

23. (Currently Amended) A compound according to claim 20, ~~21 or 22~~ wherein n is from 16 to 20, ~~preferably from 16 to 18, more preferably 17~~.

24. (Currently Amended) A compound according to ~~any of claims 20 to 23~~ claim 20 wherein the branched group is a group of the formula

wherein x is from 7 to 10 and y is $2x$, and wherein p is from 0 to 4.

25. (Original) A compound according to claim 24 wherein p is from 0 to 3.

26. (Currently Amended) A compound according to claim 24 or ~~25~~ wherein p is 0.

27. (Currently Amended) A compound according to claim 24, ~~25 or 26~~ wherein x is

10.

28. (Cancelled).

29. (Original) A compound of the formula

30. (Original) A compound of the formula

31. (Cancelled).

32. (Currently Amended) A process for the preparation of a compound having the formula

wherein R₁, R₂, and R₃ are independently selected from an acyl group or a hydrogen atom,

wherein at least one of R_1 , R_2 , and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R_1 , R_2 , and R_3 is a branched chain acyl group (a long

acyl group) consisting of having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula

wherein each of R₁, R₂, and R₃ is a fatty acid group consisting of having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

(ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
 (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same.

33-36. (Cancelled)

37. (New) A compound of claim 20, wherein n is from 16 to 18.

38. (New) A compound of claim 20, wherein n is 17.

39. (New) A process for the preparation of a compound having the formula:

wherein R₁, R₂ and R₃ are independently selected from an acyl group or a hydrogen atom, wherein at least one of R₁, R₂ and R₃ is an acyl group (a short acyl group) having from 2 to 6 carbons atoms; wherein at least one of R₁, R₂ and R₃ is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 20.

40. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

- (i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 21.

41. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

- (i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 22.

42. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbons atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

(ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
 (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 23.

43. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbons atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

(ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
(iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 24.

44. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R₁, R₂ and R₃ is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 25.

45. (New) A process for the preparation of a compound having the formula:

wherein R₁, R₂ and R₃ are independently selected from an acyl group or a hydrogen atom, wherein at least one of R₁, R₂ and R₃ is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R₁, R₂ and R₃ is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

- (i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R₁, R₂ and R₃ is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 26.

46. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbons atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

- (i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 27.

47. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbons atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R_1 , R_2 and R_3 is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

(ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
 (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 29.

48. (New) A process for the preparation of a compound having the formula:

wherein R_1 , R_2 and R_3 are independently selected from an acyl group or a hydrogen atom, wherein at least one of R_1 , R_2 and R_3 is an acyl group (a short acyl group) having from 2 to 6 carbon atoms; wherein at least one of R_1 , R_2 and R_3 is a branched chain acyl group (a long acyl group) having a chain having 10 to 20 carbon atoms and a hydrophilic branch group;

the process comprising the steps of:

(i) interesterification between glycerol and a triglyceride compound having the formula:

wherein each of R₁, R₂ and R₃ is a fatty acid group having a chain having 10 to 20 carbon atoms, to provide a composition comprising glycerol, monoglyceride, diglyceride and/or triglyceride;

- (ii) optionally isolating the monoglyceride and/or diglyceride from the composition;
- (iii) acylating the monoglyceride and/or diglyceride or the composition containing the same,

wherein the compound is as in claim 30.