Algoritma & Pemrograman

Pertemuan 1: Pendahuluan dan Pengantar Algoritma

Tentang Saya

- Nama lengkap: Intan Yuniar Purbasari, S.Kom, M.Sc.
- Pendidikan:
 - S1: Teknik Informatika, ITS (1998-2003)
 - S2: Computer Science, Univ. of Queensland (2010-2011)
- Contact me:
 - Email (preferable): <u>intan.yuniar@gmail.com</u>
 - WhatsApp only: 083857716113
 - All e-mails will be replied after 1 day (maximum)

Tentang Mata Kuliah ini

- Nama : Algoritma dan Pemrograman
- Bobot : 4 sks (3 sks kuliah + 1 sks praktikum)
- Jadwal:
 - Kuliah: Senin, pukul 09.30-12.00
 - Praktikum: Kamis, pukul 13.00-15.30
- Prasyarat : -
- Deskripsi Umum:
 - definisi dan pengertian algoritma
 - Program dan pemrograman
 - Pengantar flowchart dan pseudocode
 - Variable penyimpanan
 - Perulangan
 - Prosedur dan fungsi
 - Rekursi
 - Array dimensi 1 dan 2

Tentang Mata Kuliah ini

- Tools/software pendukung:
 - RAPTOR Flowchart Interpreter (http://raptor.martincarlisle.com/)
 - C programming language (setelah UTS)
 - GCC (GNU Compiler Collection: https://gcc.gnu.org/)
 - MinGW (Minimalist GNU for Windows: http://mingw.org/)
 - Cygwin (Lingkungan pemrograman seperti Unix yang dijalankan di atas Windows https://www.cygwin.com/)
 - dll
- Literatur Utama:
 - Handout documents dari website RAPTOR
- Literatur Tambahan:
 - Buku algoritma dan pemrograman lainnya yang menggunakan bahasa C
 - File Help Raptor
 - Dokumentasi dari GCC/MinGW/Cygwin
 - Tutorial C: http://www.programiz.com/c-programming

Materi (sebelum UTS)

Minggu ke-	Pokok Bahasan	Sub Pokok Bahasan
1	Pendahuluan	TujuanKegunaanKonsep algoritma dan pemrograman
2	Definisi & Simbolsimbol	 Simbol-simbol flowchart Sistem flowchart Program flowchart Kaidah pembuatan flowchart (Input – Proses – Output) Analisis Persoalan Penelusuran Flowchart
3	Teknik Percabangan	 Analisis kondisi & aksi (IF-THEN 1 kondisi) Analisis kondisi & aksi lanjutan (IF-THEN lebih dari 1 kondisi) dengan operator OR & AND Analisis kondisi dan aksi bersarang
4	Teknik Perulangan	Analisis kondisi & aksi dalam perulanganAnalisis perulangan bersarang
5	Array 1 & 2 dimensi	 Definisi Array 1 Dimensi dan 2 Dimensi Membaca, menulis, ke dalam array 1 dimensi dan 2 dimensi
6	Prosedur & Fungsi	Konsep prosedur & fungsiPerbedaan antara prosedur dan fungsi
7	Rekursi	Konsep Rekursi, kelebihan dan kekurangan rekursi dibanding fungsi biasa, konversi dari fungsi biasa ke metode rekursi

Materi (setelah UTS)

Minggu ke-	Pokok Bahasan	Sub Pokok Bahasan
8	Pengenalan C dan Editor C (pengenalan Eclipse)	 Konsep pemrograman C Persiapan pemrograman C di dalam Eclipse
9	Tipe data & variabel	Pengenalan konsep masukanPengenalan tipe data dasar dan variabel
10	Tipe data dan variabel	Pengenalan konsep konversi tipe dataDeklarasi konversi tipe data
11	Kontrol alur	Deklarasi perbandingan kondisiDeklarasi percabanganDeklarasi perulangan
12	Kontrol alur (lanjut)	Percabangan dan perulangan lanjut (nested branching dan nested looping)
13	Array dan iterasi	 Deklarasi array Prosedur di dalam array Mengakses array 2 dimensi dengan looping
14	Fungsi dan prosedur	Deklarasi fungsi dan prosedurDeklarasi rekursi

Proporsi Nilai

```
• Tugas (sebelum UTS)
```

• Tugas (setelah UTS)

Absensi (setelah UTS)

UAS

:40%

: 10%

:50%

:40%

: 10%

:50%

NAS

Nilai Akhir (NA) = (NTS+NAS)/2

Tata Tertib

- Anda adalah MAHASISWA, bersikaplah seperti MAHASISWA
- Hargai diri Anda, hargai orang lain (*Respect* yourself, *respect* others)
- Toleransi keterlambatan kehadiran adalah 30 menit, berlaku bagi dosen dan mahasiswa
- Ujian susulan hanya diberikan dengan surat keterangan yang jelas (untuk UAS tidak ada ujian susulan kecuali Ujian Remidi)
- Keterlambatan pengumpulan tugas berakibat pada pengurangan nilai tugas sebesar 5% per hari
- Pengumpulan tugas/PR harus dilakukan sebelum kuliah dimulai. Jika dilakukan saat kuliah atau setelah kuliah selesai, dianggap sebagai keterlambatan.

Pertemuan 1: Konsep Algoritma & Pemrograman

Prolog: The Computer System

Algoritma Membuat Chocolate Cake

Recipe CHOCOLATE CAKE

4 oz. chocolate 3 eggs
1 cup butter 1 tsp. vanilla
2 cups sugar 1 cup flour

Melt chocolate and butter. Stir sugar into melted chocolate. Stir in eggs and vanilla. Mix in flour. Spread mix in greased pan. Bake at 350_ for 40 minutes or until inserted fork comes out almost clean. Cool in pan before eating.

Program Code

Declare variables:

chocolate eggs mix butter vanilla

sugar flour

mix = metted ((4*chocolate) + butter)

mix = stir (mix + (2*sugar))

mix = stir (mix + (3 eggs) + vanilla)

mix = mix + flour

spread (mix)

While not clean (fork).

bake (mix, 350).

Algoritma/Algorithm

- Berasal dari kata al-Khawarizmi, seorang matematikawan Persia
- Adalah urutan langkah-langkah logika yang menyatakan suatu tugas dalam menyelesaikan suatu masalah atau problem.
- Contoh: Buat algoritma untuk menentukan apakah suatu bilangan merupakan bilangan ganjil atau bilangan genap.
 Algoritmanya:
- 1. Bagi bilangan dengan bilangan 2.
- 2. Hitung sisa hasil bagi pada langkah 1.
- 3. Bila sisa hasil bagi sama dengan o maka bilangan itu adalah bilangan genap tetapi bila sisa hasil bagi sama dengan 1 maka bilangan itu adalah bilangan ganjil.

Algorithm

 Algoritma merupakan penjabaran sekumpulan instruksi yang jelas, dimulai dari keadaan awal (initial state) lalu melakukan sejumlah perhitungan, dan pada akhirnya menghasilkan sebuah output dan berhenti pada keadaan akhir (terminal state).

FLOWCHART

- BIASA DISEBUT DENGAN DIAGRAM ALIR.
- SALAH SATU METODE UNTUK MEREPRESENTASIKAN ALGORITMA SELAIN PSEUDOCODE DAN URUT-URUTAN LANGKAH.
- MENGGUNAKAN SIMBOL-SIMBOL BANGUN DATAR BESERTA ANAK PANAH SEBAGAI PENUNJUK ARAH PROSES.

SIMBOL	NAMA	FUNGSI
	TERMINATOR	Permulaan/ akhir
	ILINIIIIAION	program
	GARIS ALIR (FLOW LINE)	Arah aliran program
	PREPARATION	Proses inisialisasi/ pemberian harga awal
	PROSES	Proses perhitungan/ proses pengolahan data

INPUT/ OUTPUT DATA	Proses input/ output data, parameter, informasi
PREDEFINED PROCESS (SUB PROGRAM)	Permulaan sub program/ proses menjalankan sub program
DECISION	Perbandingan pernyataan, penyeleksian data yang memberikan pilihan untuk langkah selanjutnya
ON PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada satu halaman
OFF PAGE CONNECTOR	Penghubung bagian-bagian flowchart yang berada pada halaman berbeda

Contoh:

Flowchart untuk menentukan bilangan genap atau ganjil

LATIHAN SOAL

- Buat algoritma untuk menentukan apakah suatu bilangan merupakan bilangan prima atau bukan, kemudian buat flowchart untuk program tersebut!
- Buat algoritma untuk mencetak N buah bilangan prima yang pertama, kemudian buat flowchart untuk program tersebut!
- Buat algoritma untuk menentukan jenis akar dari suatu persamaan kuadrat, kemudian buat flowchart untuk program tersebut!
- Buat algoritma untuk menghitung jumlah N suku dari deret aritmatika berikut :
- $Sn = 3 + 7 + 11 + \dots + (4n-1)$
- Buat algoritma untuk menghitung nilai faktorial dari suatu bilangan, kemudian buat flowchart untuk program tersebut!
- Buat flowchart untuk mencetak pasangan nilai X dan Y dimana hubungan antara X dan Y memenuhi persamaan Y = X3 - 2X +1 dan nilai x berubah dari -10 sampai 10!

Pengenalan Raptor

