Questão 1 (2.5 pontos): a) Escreva as seguintes quantidades com apenas 1 (um) algarismo significativo na incerteza. Lembre-se de aplicar os corretos critérios de arredondamento:

Quantidade	Incerteza	Resposta
0,0835	0,015	0.08 ± 0.02
3,42930	0,0037	$3,429 \pm 0,004$
-16,0007	0,0222	$-16,00 \pm 0,02$

b) Resolva as seguintes operações respeitando o correto número de algarismos significativos:

Operação	Resposta
71,7 m + 2,158 m - 0,001 m	= 73,9 m
5,6734 cm × 2,27 cm	= 12,9 cm ²
44,85 cm ÷ 11,3 s	= 3,97 cm/s

c) A partir dos valores numéricos de força e deslocamento dados na seguinte tabela, construa um gráfico (vide próxima página) para encontrar o coeficiente angular médio, sua incerteza e seu significado físico.

Eixo F (10 ⁻¹ N)	Eixo x (mm)
$1,2 \pm 0,3$	$2,6 \pm 0,1$
$3,1 \pm 0,4$	$7,7 \pm 0,1$
$5,3 \pm 0,5$	$12,8 \pm 0,1$
$7,2 \pm 0,3$	17,2 ± 0,1

 $k = (0.40 \pm 0.04) \times 10^2 \text{ N/m}$

Questão 2 (2.5 pontos): Por estar em rotação, um corpo na superfície da Terra possui aceleração centrípeta.

- a) Qual o módulo da aceleração centrípeta no equador? (Considere o raio da Terra igual a 6,4×10⁶ m e que um dia dure 24 horas) 0,034 m/s²
- b) Compare esta aceleração com a da gravidade, calculando a razão entre ambas. $a \sim 10^{-3}a_0$
- c) Qual deveria ser o período de rotação da Terra para que a aceleração centrípeta fosse igual a g (9,8 m/s²)? 1,4 h. Qual o peso, assim como medido por uma balança (igual às que usamos no laboratório), de um objeto na superfície da Terra neste caso? Zero. (Faça um diagrama de forças e use a 2^a Lei de Newton para argumentar)

Questão 3 (2.5 pontos): Dois corpos de massas m_1 e m_2 encontram-se ligados por uma corda de massa desprezível que passa por uma polia sem atrito, também de massa desprezível (ver figura). Considere $m_2 > m_2$

- a) Determine a aceleração dos blocos. $a = (m_2 m_1)g/(m_1 + m_2)$
- b) Determine a tensão na corda. $T = 2m_1m_2g/(m_1+m_2)$
- c) Agora considere o caso limite $m_2 >> m_1$. Determine o valor aproximado da aceleração e da tensão da corda. $a \sim g$ e $T \sim 2m_1g$

Questão 4 (2.5 pontos): Um bloco de 5,0 kg está se movendo com velocidade $v_0 = 6,0$ m/s em uma superfície sem atrito na direção de uma mola com constante k = 500 N/m e massa desprezível, conforme figura abaixo.

- a) Encontre a distância máxima de compressão da mola. 0,6 m
- b) Qual deveria ser o novo valor de v₀ para a mola obter uma compressão máxima de 0,2 m? 2 m/s
- c) Considere que a mola é comprimida 0,4 m e liberada em seguida, empurrando o bloco. Considerando agora que quando a mola atinge o ponto em que está relaxada (x=0), o bloco encontra uma superfície com coeficiente de atrito μ_c = 0,5, qual é a distância máxima que o bloco se desloca nesta superfície? 1,6 m

