GNNs for Recommendation Systems

Prof. O-Joun Lee

Dept. of Artificial Intelligence, The Catholic University of Korea ojlee@catholic.ac.kr

Contents

- Tasks and Evaluation metrices
- Embedding models
- GNNs for Recommendation systems
 - Traditional Collaborative Filtering
 - Neural Graph Collab. Filtering (NGCF)
 - > LightGCN
 - Recommender Systems With Knowledge Graph

Preliminary of Recommendation

Information Explosion in the era of Internet

- > 10K+ movies in Netflix
- > 12M products in Amazon (350m on Marketplace)
- > 70M+ music tracks in Spotify
- > 10B+ videos on YouTube
- > 200B+ pins (images) in Pinterest

Personalized recommendation

➤ i.e., suggesting a small number of interesting items for each user) is critical for users to effectively explore the content of their interest.

Recommender systems (RS)

> What are the inputs of recommender system?

- Main info:
 - user (attributes)
 - > item (attributes)
 - user feedback on items (user-item interactions)
- Side info: (to solve data sparsity and cold start issue)
 - social relationship between users
 - knowledge graph
- > Tasks:
 - > users' preferences
 - > item properties

Recommender System as a Graph

- Recommender system can be naturally modeled as a bipartite graph
 - > A graph with two node types: users and items.
 - > Edges connect users and items
 - ➤ Indicates user-item interaction (e.g., click, purchase, review etc.)
 - ➤ Often associated with timestamp (timing of the interaction).

							(i
	i_1	i ₂	i_3	i_4	i_5	u_1	(i)
u_1	0	1	1	0	0	(u_2)	
u_2	0	0	1	0	1	\leftrightarrow	(i)
u_3	1	0	0	1	0	(u_3)	(;
u_4	1	0	1	1	1	u_4	(i.
						(4)	(i,

Recommender System as a Graph

- > Given:
 - > Past user-item interactions
- > Task:
 - > Predict new items each user will interact in the future.
 - Can be cast as link prediction problem.
 - Predict new user-item interaction edges given the past edges.
 - For $u \in U, v \in V$, we need to get a real-valued score f(u,v)

Modern Recommender System

- \triangleright Problem: Cannot evaluate f(u, v) for every user u item v pair.
- ➤ Solution: 2-stage process:
 - Candidate generation (cheap, fast)
 - Ranking (slow, accurate)

Example f(u, v): $f(u, v) = z_u \cdot z_v$

Top-K Recommendation

- > For each user, we recommend K items.
 - For recommendation to be effective, K needs to be much smaller than the total number of items (up to billions)
 - ➤ K is typically in the order of 10—100.
- > The goal is to include as many positive items as possible in the top-K recommended items.
 - > Positive items = Items that the user will interact with in the future.
- > Evaluation metric: Recall@K

Evaluation Metric: Recall@k

- \triangleright For each user u:
 - \triangleright Let P_u be a set of positive items the user will interact in the future.
- \triangleright Let R_u be a set of items recommended by the model.
 - \triangleright In top-K recommendation, $|R_u| = K$.
 - > Items that the user has already interacted are excluded.

- \succ Recall@K for user u is $|P_u \cap R_u|/|P_u|$
- \triangleright Higher value indicates more positive items are recommended in top-K for user u.

➤ The final Recall@K is computed by averaging the recall values across all users.

Recommender Systems: Embedding-based Models

- > U: A set of all users
- > V: A set of all items
- > E: A set of observed user-item interactions

$$\mathbf{E} = \{(u, v) \mid u \in \mathbf{U}, v \in \mathbf{V}, u \text{ interacted with } v\}$$

- > To get the top-K items, we need a score function for useritem interaction:
 - For $u \in U, v \in V$, we need to get a real-valued scalar score(u, v).
 - > K items with the largest scores for a given user u (excluding alreadyinteracted items) are then recommended
 - \triangleright i.e., For K=2, recommended items for user u would be v_1, v_3 .

- > We consider **embedding-based models** for scoring useritem interactions.
 - For each user $u \in U$, let $u \in R^d$ be its *d*-dimensional embedding.
 - For each item $v \in V$, let $v \in R^d$ be its *d*-dimensional embedding.
 - ightharpoonup Let $f_{\theta}(\cdot,\cdot)$: $R^d \times R^d \rightarrow R$ be a parametrized function.
 - > Then, $score(u, v) \equiv f_{\theta}(u, v)$

- > Embedding-based models have three kinds of parameters:
 - An encoder to generate user embeddings {u}
 - > An encoder to generate item embeddings {v}
 - \triangleright Score function $f_{\theta}(\cdot,\cdot)$
- ➤ Training objective: Optimize the model parameters to achieve high recall @ K on seen (i.e., training) user-item interactions
 - > We hope this objective would lead to high recall @ K on unseen (i.e., test) interactions

- > The original training objective (recall @ K) is not differentiable.
 - Cannot apply efficient gradient-based optimization.
- > Two surrogate loss functions are widely-used to enable efficient gradient-based optimization.
 - Binary loss
 - Bayesian Personalized Ranking (BPR) loss
- > Surrogate losses are differentiable and should align well with the original training objective.

- Define positive/negative edges
- > A set of **positive edges E** (i.e., observed/training user-item interactions)
- ightharpoonup A set of **negative edges** $E_{neg} = \{(u,v) | (u,v) \notin E, u \in U, v \in V\}$
- Define sigmoid function

$$\sigma(x) \equiv \frac{1}{1 + \exp(-x)}$$

➤ Maps real-valued scores into binary likelihood scores, i.e., in the range of [0,1].

 \triangleright Binary loss: Binary classification of positive/negative edges using $\sigma(f_{ heta}(m{u},m{v}))$:

$$-\frac{1}{|\mathbf{E}|} \sum_{(u,v)\in\mathbf{E}} \log \left(\sigma(f_{\theta}(\mathbf{u},\mathbf{v}))\right) - \frac{1}{|\mathbf{E}_{\text{neg}}|} \sum_{(u,v)\in\mathbf{E}_{\text{neg}}} \log \left(1 - \sigma(f_{\theta}(\mathbf{u},\mathbf{v}))\right)$$

During training, these terms can be approximated using mini-batch of positive/negative edges

- > Binary loss pushes the scores of positive edges higher than those of negative edges.
 - > This aligns with the training recall metric since positive edges need to be recalled.

- Surrogate loss function should be defined in a personalized manner.
 - ➤ For each user, we want the scores of positive items to be higher than those of the negative items
 - We do not care about the score ordering across users.
- Bayesian Personalized Ranking (BPR) loss achieves this!

- We have introduced
 - Recall@K as a metric for personalized recommendation
 - Embedding-based models
 - > Three kinds of parameters to learn
 - user encoder to generate user embeddings
 - > item encoder to generate item embeddings
 - score function to predict the user-item interaction likelihood.
 - Surrogate loss functions to achieve the high recall metric.
- Embedding-based models have achieved SoTA in recommender systems.
 - ➤ Why do they work so well?

- > Underlying idea: Collaborative filtering
 - Recommend items for a user by collecting preferences of many other similar users.
 - Similar users tend to prefer similar items.
- > **Key question**: How to capture similarity between users/items?

- Embedding-based models can capture similarity of users/items
 - ➤ Low-dimensional embeddings cannot simply memorize all user-item interaction data.
 - ➤ Embeddings are forced to capture similarity between users/items to fit the data.
 - This allows the models to make effective prediction on unseen user-item interactions.

- > Two representative GNN approaches for recommender systems:
 - > (1) Neural Graph Collab. Filtering (NGCF) [Wang et al. 2019]
 - > (2) LightGCN [He et al. 2020]
 - Improve the conventional collaborative filtering models (i.e., shallow encoders) by explicitly modeling graph structure using GNNs.
 - > Assumes no user/item features.
 - > (3) KGAT [Wang et al. 2019]

Conventional Collaborative Filtering

- Conventional collaborative filtering model is based on shallow encoders:
 - No user/item features.
 - Use shallow encoders for users and items
- > Score function for user u and item i is:

$$f_{\theta}(\boldsymbol{u}, \boldsymbol{v}) \equiv \boldsymbol{z}_{\boldsymbol{u}}^T \boldsymbol{z}_{\boldsymbol{v}}.$$

Learnable shallow user/item embeddings

Conventional Collaborative Filtering: Limitations

- > The model itself does not explicitly capture graph structure
 - The graph structure is only implicitly captured in the training objective.
 - ➤ Only the first-order graph structure (i.e., edges) is captured in the training objective.
 - ➤ High-order graph structure (e.g., *K*-hop paths between two nodes) is not explicitly captured.

Learnable shallow user/item embeddings

- > We want a model that:
 - > explicitly captures graph structure (beyond implicitly through the training objective)
 - > captures high-order graph structure (beyond the first-order edge connectivity structure)
- > GNNs are a natural approach to achieve both
 - ➤ Neural Graph Collaborative Filtering (NGCF) [Wang et al. 2019]
 - ➤ LightGCN [He et al. 2020]
 - > A simplified and improved version of NGCF

- ➤ Neural Graph Collaborative Filtering (NGCF) explicitly incorporates high-order graph structure when generating user/item embeddings.
- Key idea: Use a GNN to generate graph-aware user/item embeddings.

- Given: User-item bipartite graph.
- > NGCF framework:
 - Prepare shallow learnable embedding for each node.
 - ➤ Use multi-layer GNNs to propagate embeddings along the bipartite graph.
 - High-order graph structure is captured.
 - > Final embeddings are explicitly graphaware
- Two kinds of learnable params are jointly learned:
 - Shallow user/item embeddings
 - ➢ GNN's parameters

Shallow user/item embeddings (learnable)

NGCF Framework: Initial node embeddings

- Set the shallow learnable embeddings as the initial node features:
 - For every user $u \in U$, set h_u^0 as the user's shallow embedding.
 - For every item $v \in V$, set h_v^0 as the item's shallow embedding.

> Neighbour aggregation:

Iteratively update node embeddings using neighboring embeddings.

$$\boldsymbol{h}_{v}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{v}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{u}^{(k)}\right\}_{u \in N(v)}\right)\right)$$
$$\boldsymbol{h}_{u}^{(k+1)} = \text{COMBINE}\left(\boldsymbol{h}_{u}^{(k)}, \text{AGGR}\left(\left\{\boldsymbol{h}_{v}^{(k)}\right\}_{v \in N(u)}\right)\right)$$

➤ High-order graph structure is captured through iterative neighbor aggregation.

Shallow user/item embeddings (learnable)

NGCF Framework: Final Embeddings

- \succ After k rounds of neighbor aggregation, we get the final user/item embeddings $h_u^{(k)}$ and $h_v^{(k)}$.
- > we set

$$\boldsymbol{u} \leftarrow \boldsymbol{h}_u^{(K)}, \boldsymbol{v} \leftarrow \boldsymbol{h}_v^{(K)}.$$

> Score function is the inner product

$$score(u, v) = \mathbf{u}^T \mathbf{v}$$

Final user/item embeddings (graph-aware)

- Conventional collaborative filtering uses shallow user/item embeddings.
 - > The embeddings do not explicitly model graph structure.
 - ➤ The training objective does not model high-order graph structure.
- > NGCF uses a GNN to propagate the shallow embeddings.
 - The embeddings are explicitly aware of highorder graph structure.

- > Recall: NGCF jointly learns two kinds of parameters:
 - Shallow user/item embeddings (quite expressive)
 - > GNN's parameters
- Can we simplify the GNN used in NGCF (e.g., remove its learnable parameters)?
- > Overview of the idea:
 - Adjacency matrix for a bipartite graph
 - Matrix formulation of GCN
 - Simplification of GCN by removing non-linearity

LightGCN: Adjacency & Embedding matrices

- Adjacency matrix of a (undirected) bipartite graph.
- Shallow embedding matrix.

LightGCN: Adjacency & Embedding matrices

- > Given:
 - Adjacency matrix A
 - Initial learnable embedding matrix E

LightGCN: Adjacency & Embedding matrices

- > **Define**: The diffusion matrix
- ➤ Let *D* be the degree matrix of *A*.
- ightharpoonup Define the normalized adjacency matrix \tilde{A} as

$$\widetilde{A} \equiv D^{-1/2}AD^{-1/2}$$

- \triangleright Let E^k be the embedding matrix at k-th layer.
- > Each layer of GCN's aggregation can be written in a matrix form:

$$\boldsymbol{E}^{(k+1)} = \text{ReLU}(\widetilde{\boldsymbol{A}}\boldsymbol{E}^{(k)}\boldsymbol{W}^{(k)})$$

Neighbor aggregation

Learnable linear transformation

Matrix of node embeddings $E^{(k)}$

Each row stores node embedding

Removing ReLU significantly simplifies GCN

$$\mathbf{E}^{(K)} = \widetilde{\mathbf{A}}^K \mathbf{E} \mathbf{W} \qquad \mathbf{W} \equiv \mathbf{W}^{(0)} \cdots \mathbf{W}^{(K-1)}$$

- Diffusing node embeddings along the graph
- ightharpoonup Algorithm: Apply $E \leftarrow \widetilde{A} E$ for K times
- > Each matrix multiplication diffuses the current embeddings to their one-hop neighbors.
- ightharpoonup Note: \tilde{A}^K is dense and never gets materialized. Instead, the above iterative matrix-vector product is used to compute $\tilde{A}^K E$.

- The embedding propagation of LightGCN is closely related to GCN
- Recall: GCN (neighbor aggregation part)

$$\mathbf{h}_{v}^{(k+1)} = \sum_{u \in N(v)} \frac{1}{\sqrt{d_{u}} \sqrt{d_{v}}} \cdot \mathbf{h}_{u}^{(k)}$$
Node degree

- Self-loop is added in the neighborhood definition.
- LightGCN uses the same equation except that
 - Self-loop is not added in the neighborhood definition.
 - > Final embedding takes the average of embeddings from all the layers:

$$h_v = \frac{1}{K+1} \sum_{k=0}^{K} h_v^{(k)}.$$

LightGCN: Summary

- > LightGCN simplifies NGCF by removing the learnable parameters of GNNs.
- Learnable parameters are all in the shallow input node embeddings.
 - > Diffusion propagation only involves matrix-vector multiplication.
 - The simplification leads to better empirical performance than NGCF.

Recommender Systems With Knowledge Graph

- Knowledge graph:
 - Rich semantic relatedness among items in KG
 - Improve the accuracy of prediction result
 - Can reasonable extend a user's interest

- Difficulty: How to use KG to enhance the prediction?
 - Integration: Treat two graphs separately or merge them?
 - > Graph Simplification: Do we make all efforts on the KG, or on its sub-graph?
 - Multi-relation Propagation: There are different relationship. Should we give them the same weight for a certain user?

RecSys With KG: Representative Method

- > KGAT:
 - Combine two graphs into one
 - Use attention mechanism by (entity1, relation, entity2)

RecSys With KG: Representative Method

- > KGAT:
 - > For each item and user node, use attention to gather their neibor's information
 - Concatenate embeddings from different jump (I=1, I=2, I=3... I=L)

$$\pi_r^u = g(r, u)$$

$$v_{N(v)}^{u} = \sum_{e \in N(v)} \pi_{r_{v},e}^{u}$$

