Data Science Story:

Unleashing the Power of Data

TABLE OF CONTENTS

01 Introduction Executive Summary 02

data collection and data wrangling methodology

Data Analysis (EDA) and Interactive Visual

Analytics Methodology

Predictive Analysis Methodology: 06 EDA with visualization

07 EDA with SQL 08 Conclusion

01

introduction

introduction

- Welcome!
- Ø Embark on an Exciting Data Science Journey Ø
- Key Highlights:
- Comprehensive Curriculum
- Hands-On Projects
- Real-World Applications
- Expert-Led Learning
- Industry-Recognized Certification
- Why IBM Professional Data Science?
- Q Uncover Insights | III Drive Decisions | III Transform Data

O2 Executive Summary

Executive Summary

Objective: Empowering professionals with comprehensive data science skills for real-world applications. **Key Components:**

Foundational Knowledge: Rigorous training in data science fundamentals.

Hands-On Experience: Practical projects and labs for skill reinforcement.

Advanced Techniques: Exploration of cutting-edge tools and methodologies.

Curriculum Highlights:

Data Exploration: Understanding and visualizing data.

Machine Learning: Building predictive models and algorithms.

Big Data: Handling large datasets and extracting valuable insights.

Benefits:

Industry-Relevant Skills: Aligned with current market demands.

Certification: Recognized credential from IBM.

Networking Opportunities: Connect with a global community of data professionals.

Outcomes:

Confidence: Equip yourself with the expertise to tackle real-world data challenges.

Career Advancement: Unlock new opportunities in data-driven industries.

Impactful Insights: Translate data into actionable insights for informed decision-making.

03

data collection and data wrangling methodology

Data Collection Methodology

Overview:

•Sources:

- Describe the primary sources of data.
- Highlight any external databases, APIs, or platforms used.

Collection Process:

- Outline the step-by-step process for gathering data.
- Discuss any challenges faced during data acquisition.

• Data Types:

- Specify the types of data collected (structured, unstructured, etc.).
- Emphasize the relevance of each data type to the project.

Data Wrangling Methodology

Overview:

• Data Cleaning:

- Discuss the techniques employed to handle missing or inconsistent data.
- Highlight any transformations made to enhance data quality.

Feature Engineering:

- Explain how new features were created or existing features modified.
- Showcase the importance of feature selection for model performance.

Handling Outliers:

- Detail the approach to identify and manage outliers in the dataset.
- Explain the impact of outlier handling on analysis results.

Data Quality Assurance

Validation Checks:

Describe the validation steps performed on the dataset.

Highlight methods to ensure data integrity.

Data Standardization:

Discuss the process of standardizing data formats.

Illustrate the importance of consistency in data representation.

Documentation:

Emphasize the significance of documenting data transformations.

Showcase any data dictionaries or metadata created.

Data Analysis (EDA) and Interactive Visual Analytics Methodology

Exploratory Data Analysis (EDA)

Validation Checks:

•Purpose of EDA:

- Emphasize the role of EDA in understanding data characteristics.
- Highlight how EDA informs subsequent analysis and model development.

Key EDA Techniques:

- Showcase statistical summaries, histograms, and descriptive statistics.
- Discuss the use of visualizations such as scatter plots and correlation matrices.

•Insights from EDA:

- Share specific insights gained during the EDA phase.
- Demonstrate how initial assumptions were validated or adjusted.

Interactive Visual Analytics

Introduction to Visual Analytics:

- Define visual analytics and its importance in data exploration.
 - Highlight the value of interactive visualization tools.

•Tools Used:

- List and briefly describe the tools used for interactive visual analytics.
 - Mention any custom visualizations developed for the project.

Interactive Features:

- Discuss specific interactive features incorporated in visualizations.
 - Emphasize the user-friendly nature for deeper exploration.

Data Storytelling

Narrative Building:

- Explain the process of building a data-driven narrative.
- Showcase how insights from EDA contribute to the story.

Interactive Dashboards:

- Introduce any interactive dashboards created.
- Illustrate how users can engage with data dynamically.

User Engagement:

- Discuss the methods used to enhance user engagement with visualizations.
 - Highlight feedback mechanisms and iteration.

Predictive Analysis Methodology

Objective:

Clearly state the objective of predictive analysis in the context of the project. Emphasize the goal of forecasting or classification.

Data Preparation:

Briefly discuss the steps taken to prepare the data for predictive modeling.

Address any missing values, outliers, or feature engineering.

Model Selection

Choice of Models:

Introduce the types of models considered for predictive analysis. Discuss the rationale behind selecting specific models. Algorithms Used:

List the algorithms employed for prediction.

Highlight any ensemble methods or specialized models.

Model Training

Training Process:

Explain the methodology used for training the selected models. Mention any cross-validation techniques applied. Hyperparameter Tuning:

- Discuss the approach to fine-tuning model hyperparameters.
- Emphasize the significance of optimization.

Model Evaluation

Performance Metrics:

- Introduce the metrics used to evaluate predictive model performance.
- Include metrics relevant to the project's objectives.

Validation Set Results:

- Present results on a validation set.
- Showcase how well the models generalize to new data.

Model Comparison

Comparative Analysis:

- Provide a comparative analysis of different models.
 - Discuss the strengths and weaknesses of each.

Visualization of Results:

- Incorporate visualizations to represent model comparison.
- Use charts or graphs for clarity.

Deployment Strategy

Deployment Approach:

- Outline the strategy for deploying the predictive model.
- Discuss any considerations for real-world implementation.

Integration with Systems:

- Highlight how the model integrates with existing systems.
- Discuss any API or integration challenges.

C6 EDA with visualization

Pie1

```
[32]: # Filter the data
Rdata = df[df['Recession'] == 1]
NRdata = df[df['Recession'] == 0]

# Calculate the total advertising expenditure for both periods
RAtotal = Rdata['Advertising_Expenditure'].sum()
NRAtotal = NRdata['Advertising_Expenditure'].sum()

# Create a pie chart for the advertising expenditure
plt.figure(figsize=(8, 6))
labels = ['Recession', 'Non-Recession']
sizes = [RAtotal, NRAtotal]
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
plt.title('Advertising Expenditure during Recession and Non-Recession Periods')
plt.show()
```

Advertising Expenditure during Recession and Non-Recession Periods

pie2

```
# Filter the data
Rdata = df[df['Recession'] == 1]

# Calculate the sales volume by vehicle type during recessions
VTsales = Rdata.groupby('Vehicle_Type')['Advertising_Expenditure'].sum()

# Create a pie chart for the share of each vehicle type in total sales during recessions
plt.figure(figsize=(8, 6))

labels = VTsales.index
sizes = VTsales.values
plt.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)

plt.title('Share of Each Vehicle Type in Total Sales during Recessions')
plt.show()
```

Share of Each Vehicle Type in Total Sales during Recessions

Box plot 1

```
sns.boxplot(x=df["waterfront"],y=df["price"])
<AxesSubplot:xlabel='waterfront', ylabel='price'>
      1e6
   8
                      0
   5
price 4
   2
   1
   0
                                    waterfront
```

Scatter 1

Question 5 1

Use the function regplot in the seaborn library to determine if the feature sqft_above is negatively or positively correlated with price.

```
47]: sns.regplot(x=df["sqft_above"],y=df["price"])
```

47]: <AxesSubplot:xlabel='sqft_above', ylabel='price'>

Scatter 2

07 EDA with SQL

```
import mysql.connector
import pandas as pd
# Replace these values with your MySQL server details
db config = {
    "host": "localhost",
    "user": "root",
    "password": "mena Fci 4321",
    "database": "coursea data",
# Establish a connection to the MySQL server
connection = mysql.connector.connect(**db config)
# Create a cursor object to interact with the database
cursor = connection.cursor()
# Execute a SELECT query with a subquery to find the Community Area Name with the most number of crimes
cursor.execute("""SELECT ps.NAME OF SCHOOL AS School Name, cd.COMMUNITY AREA NAME AS Community Name, \
ps.AVERAGE STUDENT ATTENDANCE
FROM publicschools ps
JOIN censusdata cd ON ps.COMMUNITY AREA NUMBER = cd.COMMUNITY AREA NUMBER
WHERE cd. HARDSHIP INDEX = 98;
# Fetch the result
result = cursor.fetchone()
# Display the result
print("Community Area Name with the most number of crimes:", result[0] if result else "No data")
# Close the cursor and connection
cursor.close()
connection.close()
```

Community Area Name with the most number of crimes: George Washington Carver Military Academy High School

Question 1

Display the data types of each column using the function dtypes, then take a screenshot and subm

[11]:	df.dtypes	
[11]:	Unnamed: 0	int64
	id	int64
	date	object
	price	float64
	bedrooms	float64
	bathrooms	float64
	sqft_living	int64
	sqft_lot	int64
	floors	float64
	waterfront	int64
	view	int64
	condition	int64
	grade	int64
	sqft_above	int64
	sqft_basement	int64
	yr_built	int64
	yr_renovated	int64
	zipcode	int64
	lat	float64
	long	float64
	sqft_living15	int64
	sqft_lot15	int64
	dtype: object	

```
import mysql.connector
import pandas as pd
# Replace these values with your MySQL server details
db config = {
    "host": "localhost",
    "user": "root",
    "password": "mena Fci 4321",
    "database": "coursea data",
# Establish a connection to the MySQL server
connection = mysql.connector.connect(**db config)
# Create a cursor object to interact with the database
cursor = connection.cursor()
# Execute a SELECT query with a subquery to find the Community Area Name with the most number of crimes
cursor.execute("""SELECT c.CASE NUMBER, c.PRIMARY TYPE, p.COMMUNITY AREA NAME
FROM crimedata c
JOIN publicschools p ON c.COMMUNITY AREA NUMBER = p.COMMUNITY AREA NUMBER;
# Fetch the result
result = cursor.fetchone()
# Display the result
print("Community Area Name with the most number of crimes:", result[0] if result else "No data")
# Close the cursor and connection
cursor.close()
connection.close()
Community Area Name with the most number of crimes: JA261898
```

Question 2

Drop the columns "id" and "Unnamed: 0" from axis 1 using the method drop(), then use the method describe() to obtain a statistical summary of the data. Take a screenshot and submit it, make sure the inplace parameter is set to True

```
[32]: df.drop(["id", "Unnamed: 0"], axis=1, inplace=True)
```

lf.descri			

1:	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	SI
count	2.161300e+04	21600.000000	21603.000000	21613.000000	2.161300e+04	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	21613.000000	
mean	5.400881e+05	3.372870	2.115736	2079.899736	1.510697e+04	1.494309	0.007542	0.234303	3.409430	7.656873	1788.390691	
std	3.671272e+05	0.926657	0.768996	918.440897	4.142051e+04	0.539989	0.086517	0.766318	0.650743	1.175459	828.090978	
min	7.500000e+04	1.000000	0.500000	290.000000	5.200000e+02	1.000000	0.000000	0.000000	1.000000	1.000000	290.000000	
25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000	0.000000	0.000000	3.000000	7.000000	1190.000000	
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.000000	0.000000	3.000000	7.000000	1560.000000	
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000	0.000000	0.000000	4.000000	8.000000	2210.000000	
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.000000	4.000000	5.000000	13.000000	9410.000000	

Activate Windows

Go to Settings to activate Windows.

```
import mysql.connector
import pandas as pd
# Replace these values with your MySQL server details
db config = {
    "host": "localhost",
    "user": "root",
    "password": "mena Fci 4321",
    "database": "coursea data",
# Establish a connection to the MySQL server
connection = mysql.connector.connect(**db config)
# Create a cursor object to interact with the database
cursor = connection.cursor()
create procedure query = """
-- Create or replace the stored procedure
CREATE OR REPLACE PROCEDURE UPDATE LEADERS SCORE (
    IN in School ID INT,
   IN in Leader Score INT
BEGIN
    -- Your SQL statements for the stored procedure go here
    -- Example: Update the leaders' score for the specified school
    UPDATE your table
    SET Leader Score = in Leader Score
   WHERE School_ID = in_School_ID;
    -- End of SQL statements
END:
20 21 21
# Execute a SELECT query with a subquery to find the Community Area Name with the most number of crimes
cursor.execute(create procedure query)
# Fetch the result
result = cursor.fetchone()
# Display the result
print("Community Area Name with the most number of crimes:", result[0] if result else "No data")
# Close the cursor and connection
cursor.close()
connection.close()
```

08 Conclusion

Conclusion

Insights Gained:

Summarize the major insights and discoveries made during the entire data analysis process.

Impact on Decision-Making:

Discuss how the findings from the analysis have influenced decision-making or project direction.

Successes and Challenges:

- Reflect on the successes achieved in the analysis.
- Acknowledge any challenges encountered and how they were addressed.

Project Significance:

Relevance to Objectives:

- Highlight how the analysis aligns with the initial project objectives.
- Emphasize the relevance of the results to the broader goals.

Value Added:

- Discuss the value added to the project through the data analysis process.
 - Mention any unexpected or particularly insightful outcomes.

Cont...

Future Directions:

Areas for Further Exploration:

- Identify any areas within the dataset that warrant further exploration.
- Suggest potential avenues for future analysis.

Improvements and Iterations:

- Discuss ways the analysis or methodology could be improved in future iterations.
- Consider feedback and lessons learned for continuous improvement.

Closing Remarks:

Acknowledgments:

Thank any collaborators, team members, or stakeholders who contributed to the analysis.

Gratitude:

Express gratitude for the opportunity to conduct the analysis and present the findings.

Thank You!