Primary parameters (rates are at reference temperature $T_1 = 16^{\circ}$ C)	Definition	Hatch length	Length at first-feeding	Maturity threshold at birth	Maturity threshold at puberty	Arrhenius temperature	Lower temperature boundary	Upper temperature boundary	Arrhenius temperature for lower boundary	Arrhenius temperature for upper boundary	Fraction of food energy fixed in reserve	Maximum surface specific ingestion rate (before and after metamorphosis for E , ringens)	Surface-area-specific maximum assimilation rate before and after metamorphosis	Maximum reserve density	Volume-specific costs of structure	Specific Volume-linked somatic maintenance rate	Fraction of mobilized reserve allocated to soma	Maturity maintenance rate coefficient	Energy conductance before and after metamorphosis	Volumetric length at birth (estimated at $f=1$)	Volumetric length at metamorphosis (estimated at $f=1$)	Maturity threshold at metamorphosis	Shape coefficient for larvae	Shape coefficient after metamorphosis for total length
	Unit	cm	cm	J	J	K	K	K	K	K	1	$J.cm^{-2}.d^{-1}$	$J.cm^{-2}.d^{-1}$	$J.cm^{-3}$	$J.cm^{-3}$	$J.cm^{-3}.d^{-1}$	1	d^{-1}	$cm.d^{-1}$	cm	cm	J	1	1
	E. ringens	1	ı	0.3889	42160	10000	279	294(297)	20000	(500) = 95000(570000) Figure 1. F	8.0	$\{\dot{p}_{\rm Am}\}/\kappa {\rm x}=66(389)$	53(311)	$\{\dot{p}_{\rm Am}\}/\dot{v} = 2061$	5283	50.35	0.5512	0.002	0.02572/0.15096	0.0445	0.2612	83.22	0.154	0.1889
	E. encrasicolus	0.28		1		0860	279	294(297)	20000	95000(570000)	0.71	325	$\{\dot{p}_{\rm Xm}\}\kappa{\rm x} = 231$	2700	4000	48	0.7	ı	ı	1	ı	1	0.154	0.169
	Symbol	L_1	L_2	E_H^b	E_H^p					T_{AH}		$\{\dot{p}_{ m Xm}\}$		$[E_m]$	$[E_G]$	$[\dot{p}_M]$	x	\dot{k}_J	\dot{v}	L_b	L_j	E_H^j	δ_M	δ_{Mi}