(7)
$$\int_{C} \vec{x} \, y \, ds$$
 $x = c_s t$ $y = s_i t$ $z = t$ $t \in [C, \frac{1}{2}]$ $\sqrt{c_s^2 t + s_i t^2 + t^2} = \sqrt{1 + t^2} \, dt = ds$

$$\int_{0}^{2} \cos^{2}t \sinh \sqrt{2} \int dt$$

$$\int_{0}^{2} \cos^{2}t \sinh dt \qquad V = \cos t$$

$$\int_{0}^{2} \cos^{2}t \sinh dt \qquad duz-\sinh dt$$

$$-duz \sinh dt$$

$$\int_{0}^{2} \cos^{2}t \sinh dt \qquad \int_{0}^{2} \cos^{2}t \sinh dt$$

$$\int_{0}^{2} \cos^{2}t \sinh dt \qquad \int_{0}^{2} \cos^{2}t \sinh dt$$

$$\int_{0}^{2} \cos^{2}t \sinh dt \qquad \int_{0}^{2} \cos^{2}t \sinh dt \qquad \int_{0}^{2} \cos^{2}t \sinh dt$$

(1)
$$\int_{C} x e^{x^{2}z} ds$$
 (6,0,0) (1,2,3) $r(t) = <1,24,347 + ([0,1])$

$$\int_{C} + e^{6t^{2}} \sqrt{14} dt \qquad \int_{C} + e^{6t^{2}} \sqrt{$$

(3)
$$\int_{C} xye^{yz} dy$$
 $x=t$ $y=t^2$ $z=t^3$ $t \in [C,1]$ $dy=2tdt$

$$\int_{C} t^3 e^{t^2} 2tdt = 2\int_{C} t^4 e^{t^2} dt$$
 $dv=5t^4 dt = \frac{2}{5}\int_{C} e^{t} dv$

$$= \left[\frac{2}{5}(e-1)\right]$$