

planetmath.org

Math for the people, by the people.

axiom of determinacy

Canonical name AxiomOfDeterminacy
Date of creation 2013-03-22 14:50:46
Last modified on 2013-03-22 14:50:46

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 8

Author CWoo (3771)

Entry type Axiom
Classification msc 03E60
Classification msc 03E15

Synonym AD

When doing descriptive set theory, it is conventional to use either ω^{ω} or 2^{ω} as your space of "reals" (these spaces are homeomorphic to the irrationals and the Cantor set, respectively). Throughout this article, I will use the term "reals" to refer to ω^{ω} .

Let $X \subseteq \omega^{\omega}$ be given and consider the following game on X played between two players, I and II: I starts by saying a natural number; II hears this number and replies with another (or possibly the same one); I hears this and replies with another; etc. The sequence of numbers said (in the order they were said) is a point in ω^{ω} . I wins if this point is in X, otherwise II wins.

A map $\sigma: \omega^{<\omega} \to \omega$ is said to be a winning strategy for I if it has the following property: if, after the play has gone $n_0 n_1 \dots n_M$, I plays $\sigma(n_0 \dots n_M)$ for each move, then I wins. A winning strategy for II is defined analogously.

The axiom of determinacy (AD) states that every such game is determined, that is either I or II has a winning strategy.

Using choice, a non-determined game can be constructed directly: for $\alpha < \mathfrak{c}$, enumerate the uncountable closed subsets of the reals F_{α} . Now construct two sequences $\langle x_{\alpha} : \alpha < \mathfrak{c} \rangle$ and $\langle y_{\alpha} : \alpha < \mathfrak{c} \rangle$ by choosing x_{α}, y_{α} as distinct points from F_{α} which are not in $\{x_{\gamma}, y_{\gamma} : \gamma < \alpha\}$ (this is possible as each uncountable closed set has cardinality \mathfrak{c}). Then the game on the set of all x_{α} s is non-determined.

From ZF+AD, one may prove many nice facts about the reals, such as: any subset is Lebesgue measurable, any subset has a perfect subset and the continuum hypothesis. ZF+AD also proves the axiom of countable choice.

AD itself is not taken seriously by many set theorists as a genuine alternative to choice. However, there is a weakening of AD (the axiom of quasi-projective determinacy, or QPD, which states that all games in $L[\mathbb{R}]$ are determined) which is consistent with ZFC (in fact, it's equiconsistent to a large cardinal axiom) which is a serious axiom candidate.