

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15070058203

FCC REPORT (WIFI)

Applicant: HUNG WAI PRODUCTS LIMITED

Address of Applicant: Unit 11, 12/F., New Commerce Centre, 19 On Sum Street,

Shatin, Hong Kong

Equipment Under Test (EUT)

Product Name: 15.6" Android non-touch LCD Media

Model No.: DT156-AS4-720, 502-1569ATM

FCC ID: 2AB6Z-DT156-AS4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 22 Jul., 2015

Date of Test: 23 Jul., to 17 Aug., 2015

Date of report issued: 17 Aug., 2015

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

Version

Version No.	Date	Description
00	17 Aug., 2015	Android player Main board with wireless
		module (FCC ID: 2AB6Z-1859ATMB) and
		same antenna were used by the device,
		only conducted emission and Radiated
		emission were re-tested.

Luna Gan Report Clerk Prepared by: Date: 17 Aug., 2015

Reviewed by: Date: 17 Aug., 2015

Project Engineer

3 Contents

			Page
1	cov	/ER PAGE	1
2	VER	SION	2
3		ITENTS	
4		T SUMMARY	
- 5		IERAL INFORMATION	
J	GEN	IERAL INFORMATION	
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	5
	5.3	TEST ENVIRONMENT AND MODE	7
	5.4	LABORATORY FACILITY	
	5.5	LABORATORY LOCATION	
	5.6	TEST INSTRUMENTS LIST	9
6	TES	T RESULTS AND MEASUREMENT DATA	10
	6.1	ANTENNA REQUIREMENT:	10
	6.2	CONDUCTED EMISSION	11
	6.3	CONDUCTED OUTPUT POWER	14
	6.4	OCCUPY BANDWIDTH	15
	6.5	Power Spectral Density	16
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2	Radiated Emission Method	22
7	TES	T SETUP PHOTO	30
8	EUT	CONSTRUCTIONAL DETAILS	31

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass*
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass*
Power Spectral Density	15.247 (e)	Pass*
Band Edge	15.247(d)	Pass*
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

Pass*: The test data refer to FCC ID: 2AB6Z-1859ATMB.

Remark: Test according to ANSI C63.4:2009

5 General Information

5.1 Client Information

Applicant:	HUNG WAI PRODUCTS LIMITED
Address of Applicant:	Unit 11, 12/F., New Commerce Centre, 19 On Sum Street, Shatin, Hong Kong
Manufacturer:	HUNG WAI ELECTRONICS (HUIZHOU) LTD.
Address of Manufacturer:	3 rd floor, NO. 3, Minfeng Road, Huinan High and New Technology Industry Park, Huiao Avenue, Huizhou City, Guangdong, China

5.2 General Description of E.U.T.

Product Name:	15.6" Android non-touch LCD Media
Model No.:	DT156-AS4-720, 502-1569ATM
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)
Channel separation:	5MHz
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps,54Mbps
Data speed (IEEE 802.11n):	Up to 150Mbps
Antenna Type:	Omni-directional
Antenna gain:	2.5 dBi
Power supply:	AC 120V/ 60Hz
AC Adapter:	MODEL: PS24A120K2000UD Input: AC 100-240V 50/60Hz 1.0A Output: DC 12V, 2000mA
Remark:	Model No.: DT156-AS4-720, 502-1569ATM were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being different model number for customer and for HUNG WAI.

Operation Frequency each of channel For 802.11b/g/n(H20)							
Channel Frequency Channel Frequency Channel Frequency Channel Frequency							
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3 2422MHz 6 2437MHz 9 2452MHz							

Operation Frequency each of channel For 802.11n(H40)								
Channel Frequency Channel Frequency Channel Frequency Channel Frequency								
		4	2427MHz	7	2442MHz			
		5	2432MHz	8	2447MHz			
3	2422MHz	6	2437MHz	9	2452MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (H20)

Channel	Frequency		
The lowest channel	2412MHz		
The middle channel	2437MHz		
The Highest channel	2462MHz		

802.11n (H40)

Channel	Frequency		
The lowest channel	2422MHz		
The middle channel	2437MHz		
The Highest channel	2452MHz		

Report No: CCIS15070058203

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Operation mode Keep the EUT in continuous transmitting with modulation				

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate	
802.11b	1Mbps	
802.11g	6Mbps	
802.11n(H20)	6.5Mbps	
802.11n(H40)	13.5Mbps	

Final Test Mode:

According to ANSI C63.4 standards, the test results are both the "worst case" and "worst setup" 1Mbps for 802.11b, 6Mbps for 802.11g, 6.5Mbps for 802.11n(H20) and 13.5 Mbps for 802.11n(H40). Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

Report No: CCIS15070058203

5.4 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.5 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

5.6 Test Instruments list

Radia	ated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016
7	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016
12	EMI Test Receiver	Rohde & Schwarz	ESPI	CCIS0022	03-28-2015	03-28-2016
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016

Cond	Conducted Emission:											
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)						
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015						
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016						
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016						
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016						
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A						

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna of EUT is a reverse-SMA connector, which cannot be replaced by end-user. And the antenna gain is 2.5 dBi.

6.2 Conducted Emission

Test Method: ANSI C Test Frequency Range: 150 kH		7							
Test Frequency Range: 150 kH	z to 30 MHz								
1 , , ,									
Class / Severity: Class E	150 kHz to 30 MHz Class B RBW=9 kHz, VBW=30 kHz								
Receiver setup: RBW=9									
Limit:	Frequency range (MHz) Limit (dBuV) Quasi-peak Average								
Fred	quency range (MHZ)	Average							
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
* Danu	5-30 eases with the logarithm	60	50						
a I 500 2. The three wife tests 3. Both interpolation in the poor characters are seen as a seen	ne E.U.T and simulators ine impedance stabilization in impedance stabilization in impedance stabilization in impedance are peripheral devices arough a LISN that proviets 50 hm termination. (at setup and photograph of the sides of A.C. line are reference. In order to finistions of equipment arough according to AN easurement.	ation network (L.I.S.N.) pedance for the measure also connected to the des a 500hm/50uH conference refer to the blocks). The checked for maximum at the maximum emissed all of the interface care	y, which provides a curing equipment. The main power cupling impedance cock diagram of the conducted sion, the relative ables must be						
E.U.	LISN 40cm		er — AC power						
			-						
Test Instruments: Refer to	o section 5.6 for details								
	o section 5.6 for details o section 5.3 for details								

Measurement Data

Neutral:

Trace: 15

Site Condition

: CCIS Shielding Room : FCC PART 15C QP LISN NEUTRAL : 15.6" Android non-touch LCD Media player : DTDT EUT

: DT156-AS4-720

Test Mode : WIFI mode
Power Rating : AC 120V/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: Viki
Remark :

/emark								
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	dB	₫B	dBu₹	dBu√	<u>dB</u>	
1	0.220	27.95	0.25	10.76	38.96	52.83	-13.87	Average
2	0.325	37.85	0.26	10.73	48.84	59.57	-10.73	QP
3	0.499	34.72	0.29	10.76	45.77	56.01	-10.24	QP
4	0.705	36.62	0.18	10.77	47.57	56.00	-8.43	QP
2 3 4 5 6 7	0.731	29.62	0.18	10.78	40.58	46.00	-5.42	Average
6	2.554	31.71	0.29	10.94	42.94	56.00	-13.06	QP
7	2.636	23.30	0.29	10.93	34.52	46.00	-11.48	Average
8 9	3.661	24.81	0.29	10.90	36.00	46.00	-10.00	Average
9	6.121	28.23	0.27	10.82	39.32	60.00	-20.68	QP
10	7.290	26.84	0.26	10.82	37.92	50.00	-12.08	Average
11	7.893	27.34	0.26	10.84	38.44	50.00	-11.56	Average
12	18.232	34.97	0.26	10.91	46.14	60.00	-13.86	QP

Line:

Site Condition

: CCIS Shielding Room : FCC PART 15C QP LISN LINE : 15.6" Android non-touch LCD Media player EUT

: DT156-AS4-720 Model Test Mode : WIFI mode Power Rating : AC 120V/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Viki

Remark

ешагк	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	—dBu⊽	<u>ab</u>		dBu₹	—dBu⊽	ā	
1	0.165	46.31	0.27	10.77	57.35	65.21	-7.86	QP
2	0.200	34.24	0.28	10.76	45.28	53.62	-8.34	Average
3	0.230	41.94	0.27	10.75	52.96	62.44	-9.48	QP
2 3 4 5 6 7 8 9	0.369	26.48	0.27	10.73	37.48	48.52	-11.04	Average
5	0.739	33.22	0.22	10.79	44.23	56.00	-11.77	QP
6	0.739	24.21	0.22	10.79	35.22	46.00	-10.78	Average
7	1.552	21.83	0.26	10.93	33.02	46.00	-12.98	Average
8	1.662	31.60	0.26	10.94	42.80	56.00	-13.20	QP
9	2.023	31.61	0.26	10.96	42.83	56.00	-13.17	QP
10	2.066	22.30	0.26	10.96	33.52	46.00	-12.48	Average
11	6.186	37.25	0.31	10.82	48.38	60.00	-11.62	QP
12	6.219	30.46	0.31	10.82	41.59	50.00	-8.41	Average

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB
Remark:	Test method refer to KDB558074 (DTS Measure Guidance) section 8.2, option 1.

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)				
Test Method:	ANSI C63.4:2009 and KDB558074				
Limit:	>500kHz				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.6 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB				

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.4:2009 and KDB558074
Limit:	8dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.6 for details
Test mode:	Refer to section 5.3 for details
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.4:2009 and KDB558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer					
	E.U.T					
	Non-Conducted Table					
	Ground Reference Plane					
Test Instruments:	Refer to section 5.6 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB					

6.6.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.209	and 15.205				
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	2.3GHz to 2.5GHz						
Test site:	Measurement Distance: 3m						
Receiver setup:	Frequency Above 1GHz	Poak		VBW 3MHz	Remark Peak Value		
	Above IGHZ	Peak	1MHz	3MHz	Average Value		
Limit:	Freque	ency	Limit (dBuV		Remark		
	Above 1	GHz	54.0 74.0		Average Value Peak Value		
Test Procedure:	the ground to determin 2. The EUT wantenna, wantenna, wantenna and the ground Both horizon make the numbers and to find the substitute of the emission of the EUT have 10dB	at a 3 meter come the position was set 3 meter which was mount a height is varied to determine to the and vertice measurement. The authority of the antennal the rota table maximum read ceiver system and width with sion level of the ecified, then te would be reported to the sould to the	he top of a reamber. The of the highests away from the on the total read on the total read from one he maximum all polarizations to P. Maximum He EUT in peasting could borted. Otherwise re-tested	table was rest radiation. the interfer op of a variate meter to for a value of the ans of the east Detect old Mode. It is a value was the stopped and the ans of the emisone by one	e 0.8 meters above otated 360 degrees rence-receiving able-height antenna our meters above he field strength. Intenna are set to higher to 4 ees to 360 degrees		
Test setup:	Turn 0.8m	4m	Antenna Horn Ante Spectrum Analyzer Amplif	enna			
Test Instruments:	Refer to section	5.6 for details					
Test mode:	Refer to section	5.3 for details					
Test results:	Passed						

Measurement Data:

Test mode: 802.11b			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	21.84	27.58	6.63	0.00	56.05	74.00	-17.95	Vertical
2390.00	21.36	27.58	6.63	0.00	55.57	74.00	-18.43	Horizontal
Test mode: 80)2.11b		Test channel: Lowest			Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2390.00	10.47	27.58	6.63	0.00	44.68	54.00	-9.32	Vertical
2390.00	10.36	27.58	6.63	0.00	44.57	54.00	-9.43	Horizontal

Test mode: 802.11b			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	21.98	27.52	6.85	0.00	56.35	74.00	-17.65	Vertical
2483.50	21.36	27.52	6.85	0.00	55.73	74.00	-18.27	Horizontal
Test mode: 802.11b								
Test mode: 80)2.11b		Test chan	nel: Highest		Remark: Ave	erage	
Test mode: 80 Frequency (MHz)	02.11b Read Level (dBuV)	Antenna Factor (dB/m)	Test char Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Remark: Ave Limit Line (dBuV/m)	Over Limit (dB)	Polar.
Frequency	Read Level	Factor	Cable Loss	Preamp Factor		Limit Line	Over Limit	Polar.

Test mode: 802.11g			Test chan	nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	28.66	27.58	6.63	0.00	62.87	74.00	-11.13	Vertical	
2390.00	28.33	27.58	6.63	0.00	62.54	74.00	-11.46	Horizontal	
Test mode: 80)2.11g		Test channel: Lowest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	12.87	27.58	6.63	0.00	47.08	54.00	-6.92	Vertical	
2390.00	12.36	27.58	6.63	0.00	46.57	54.00	-7.43	Horizontal	

Test mode: 80	Test mode: 802.11g			nel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	22.38	27.52	6.85	0.00	56.75	74.00	-17.25	Vertical
2483.50	21.69	27.52	6.85	0.00	56.06	74.00	-17.94	Horizontal
Test mode: 80)2.11g		Test chan	nel: Highest		Remark: Ave	erage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
2483.50	10.55	27.52	6.85	0.00	44.92	54.00	-9.08	Vertical
2483.50	10.36	27.52	6.85	0.00	44.73	54.00	-9.27	Horizontal

Remark:

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

Test mode: 80	Test mode: 802.11n-HT20			nel: Lowest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	30.78	27.58	6.63	0.00	64.99	74.00	-9.01	Vertical	
2390.00	30.18	27.58	6.63	0.00	64.39	74.00	-9.61	Horizontal	
Test mode: 80)2.11n-HT20)	Test chan	nel: Lowest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2390.00	10.39	27.58	6.63	0.00	44.60	54.00	-9.40	Vertical	
2390.00	11.36	27.58	6.63	0.00	45.57	54.00	-8.43	Horizontal	

Test mode: 80)2.11n-HT20)	Test chan	nel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	21.39	27.52	6.85	0.00	55.76	74.00	-18.24	Vertical	
2483.50	21.18	27.52	6.85	0.00	55.55	74.00	-18.45	Horizontal	
Test mode: 80)2.11n -HT2	0	Test chan	nel: Highest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	10.85	27.52	6.85	0.00	45.22	54.00	-8.78	Vertical	
2483.50	10.45	27.52	6.85	0.00	44.82	54.00	-9.18	Horizontal	

Test mode: 80)2.11n -HT4	0	Test chan	inel: Lowest		Remark: Peak			
Fraguency	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)	(dBuV/m)	Limit	Polar.	
(IVII IZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubu v/III)	(ubuv/III)	(dB)		
2390.00	21.55	27.58	6.63	0.00	55.76	74.00	-18.24	Vertical	
2390.00	21.36	27.58	6.63	0.00	55.57	74.00	-18.43	Horizontal	
Test mode: 80)2.11n -HT4	0	Test channel: Lowest			Remark: Ave			
Fraguenay	Read	Antenna	Cable	Preamp	Level	Limit Line	Over		
Frequency (MHz)	Level	Factor	Loss	Factor	(dBuV/m)		Limit	Polar.	
(IVITZ)	(dBuV)	(dB/m)	(dB)	(dB)	(ubuv/III)	(dBuV/m)	(dB)		
2390.00	10.78	27.58	6.63	0.00	44.99	54.00	-9.01	Vertical	
2390.00	10.98	27.58	6.63	0.00	45.19	54.00	-8.81	Horizontal	

Test mode: 80	Test mode: 802.11n -HT40			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	22.34	27.52	6.85	0.00	56.71	74.00	-17.29	Vertical	
2483.50	21.39	27.52	6.85	0.00	55.76	74.00	-18.24	Horizontal	
Test mode: 80)2.11n -HT4	0	Test chan	nel: Highest		Remark: Ave	erage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
2483.50	10.78	27.52	6.85	0.00	45.15	54.00	-8.85	Vertical	
2483.50	10.45	27.52	6.85	0.00	44.82	54.00	-9.18	Horizontal	

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	ECC Part 15 C Section 15 247 (d)						
	FCC Part 15 C Section 15.247 (d) ANSI C63 4:2009 and KDB558074						
Test Method:	ANSI C63.4:2009 and KDB558074						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer E.U.T Non-Conducted Table						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.6 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Refer to FCC ID: 2AB6Z-1859ATMB						

6.7.2 Radiated Emission Method

		o ana 10.200						
FCC Part 15 C Section 15.209 and 15.205 ANSI C63.4:2009								
9KHz to 25GHz								
Measurement D	istance: 3m							
Frequency	Detector	RBW	VBW	Remark				
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value				
Above 1GHz	Peak	1MHz	3MHz	Peak Value				
Above Toriz	Peak	1MHz	3MHz	Average Value				
				ı				
		,		Remark				
				Quasi-peak Value				
				Quasi-peak Value				
960IVIHZ-	TGHZ			Quasi-peak Value				
Above 1	GHz			Average Value				
1. The EUT we the ground to determine 2. The EUT we antenna, we tower. 3. The antenna the ground Both horizon make the new 4. For each secase and the meters and to find the new 5. The test-re Specified E. If the emissis the limit spoof the EUT have 10dB	vas placed on at a 3 meter of the position vas set 3 meter hich was mount a height is various and height is various and vertical and vertical and vertical and vertical and vertical the rota table maximum reacceiver system and width with sion level of the cified, then to would be reported and would be reported and would be reported.	the top of a recamber. The tace of the highest is away from need on the total ried from one the maximum cal polarization was turned to was turned to was turned to was set to Pa Maximum Hall e EUT in peasesting could borted. Otherwood be re-tested	otating table able was ro st radiation. the interfer op of a variate meter to for value of the ons of the art to heights from 0 degreeak Detect old Mode. It was arranged in the emit one by one	rence-receiving able-height antenna our meters above the field strength. Intenna are set to aged to its worst from 1 meter to 4 the es to 360 degrees. Function and so 10dB lower than and the peak values assions that did not the using peak, quasi-				
	Frequency 30MHz-1GHz Above 1GHz Freque 30MHz-8 88MHz-21 216MHz-9 960MHz- Above 1 1. The EUT w the ground to determin 2. The EUT w antenna, w tower. 3. The antenr the ground Both horizo make the n 4. For each si case and th meters and to find the n 5. The test-re Specified E 6. If the emiss the limit sp of the EUT have 10dB	Prequency Detector 30MHz-1GHz Quasi-peak Above 1GHz Peak Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz Above 1GHz 1. The EUT was placed on the ground at a 3 meter of to determine the position 2. The EUT was set 3 meter antenna, which was mountower. 3. The antenna height is van the ground to determine Both horizontal and vertice make the measurement. 4. For each suspected emisticase and then the antenna meters and the rota table to find the maximum reads. 5. The test-receiver system Specified Bandwidth with 6. If the emission level of the the limit specified, then the of the EUT would be reported to average method	Prequency Detector RBW 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Limit (dBuV/ 30MHz-88MHz 40.0 88MHz-216MHz 43.6 216MHz-960MHz 54.0 74.0 Above 1GHz Above 1GHz 54.0 1.1 The EUT was placed on the top of a ruthe ground at a 3 meter camber. The truth to determine the position of the highest to determine the position of the highest tower. 3. The antenna height is varied from one the ground to determine the maximum Both horizontal and vertical polarization make the measurement. 4. For each suspected emission, the EU case and then the antenna was tuned meters and the rota table was turned to find the maximum reading. 5. The test-receiver system was set to P Specified Bandwidth with Maximum H 6. If the emission level of the EUT in peat the limit specified, then testing could be of the EUT would be reported. Otherw have 10dB margin would be re-tested peak or average method as specified	SKHz to 25GHz Measurement Distance: 3m				

Below 1GHz

Horizontal:

Site : 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-720 Condition

EUT

Model Test mode : WIFI mode Power Rating: AC120V/60Hz Environment: Temp:25.5°C Test Engineer: Viki

Huni:55% 101KPa

REMARK

	Freq		Antenna Factor						Remark
_	MHz	dBu₹	$-\overline{dB}/\overline{m}$		<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	72.084	44.03	8.26	0.80	29.70	23.39	40.00	-16.61	QP
2	154.821	48.39	8.45	1.33	29.18	28.99	43.50	-14.51	QP
3	191.745	46.81	10.56	1.37	28.89	29.85	43.50	-13.65	QP
4	252.948	46.76	12.06	1.63	28.53	31.92	46.00	-14.08	QP
5	426.521	47.70	15.50	2.19	28.83	36.56	46.00	-9.44	QP
6	771.449	39, 15	19.72	3, 10	28, 36	33, 61	46,00	-12.39	ΩP

Vertical:

: 3m chamber

: FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL : 15.6" Android non-touch LCD Media Player : DT156-AS4-720 Condition

EUT Model : WIFI mode Test mode

Power Rating: AC120V/60Hz Environment: Temp:25.5°C Huni:55% 101KPa

Test Engineer: Viki REMARK :

TWWW									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
<u></u>	MHz	—dBu∜	<u>dB</u> /m	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	110.569	32.80	12.15	1.05	29.45	16.55	43.50	-26.95	QP
2 3 4	204.955	36.56	10.74	1.41	28.80	19.91	43.50	-23.59	QP
3	239.987	38.20	12.09	1.58	28.59	23.28	46.00	-22.72	QP
4	416.179	38.30	15.39	2.16	28.81	27.04	46.00	-18.96	QP
5	752.743	40.28	19.48	3.05	28.46	34.35	46.00	-11.65	QP
6	842.130	38.32	20.51	3.24	28.03	34.04	46.00	-11.96	QP

Above 1GHz

Test mode: 80	Test mode: 802.11b			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.53	31.54	10.58	40.22	48.43	74.00	-25.57	Vertical	
4824.00	44.82	31.54	10.58	40.22	46.72	74.00	-27.28	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Lowest		Remark: Ave	erage		
_	Read	_							
Frequency (MHz)	Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
	Level	Factor	Loss	Factor			Limit	Polar.	

Test mode: 80	Test mode: 802.11b			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.15	31.57	10.64	40.15	48.21	74.00	-25.79	Vertical	
4874.00	46.23	31.57	10.64	40.15	48.29	74.00	-25.71	Horizontal	
Test mode: 80	02.11b		Test char	nnel: Middle		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	37.60	31.57	10.64	40.15	39.66	54.00	-14.34	Vertical	
4874.00	37.83	31.57	10.64	40.15	39.89	54.00	-14.11	Horizontal	

Test mode: 802.11b		Test char	nnel: Highest		Remark: Peak			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	44.53	31.61	10.70	40.08	46.76	74.00	-27.24	Vertical
4924.00	44.71	31.61	10.70	40.08	46.94	74.00	-27.06	Horizontal
Test mode: 80	02.11b		Test channel: Highest			Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	36.69	31.61	10.70	40.08	38.92	54.00	-15.08	Vertical
4924.00	35.64	31.61	10.70	40.08	37.87	54.00	-16.13	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 80	Test mode: 802.11g			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.39	31.54	10.58	40.22	48.29	74.00	-25.71	Vertical	
4824.00	45.00	31.54	10.58	40.22	46.90	74.00	-27.10	Horizontal	
Test mode: 80	02.11g		Test channel: Lowest			Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	36.63	31.54	10.58	40.22	38.53	54.00	-15.47	Vertical	
4824.00	35.51	31.54	10.58	40.22	37.41	54.00	-16.59	Horizontal	

Test mode: 80	Test mode: 802.11g		Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	46.52	31.57	10.64	40.15	48.58	74.00	-25.42	Vertical
4874.00	47.00	31.57	10.64	40.15	49.06	74.00	-24.94	Horizontal
Test mode: 80)2.11g		Test char	nel: Middle		Remark: Ave	rage	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4874.00	37.06	31.57	10.64	40.15	39.12	54.00	-14.88	Vertical
4874.00	36.32	31.57	10.64	40.15	38.38	54.00	-15.62	Horizontal

Test mode: 80	02.11g		Test char	nnel: Highest		Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	45.09	31.61	10.70	40.08	47.32	74.00	-26.68	Vertical
4924.00	44.83	31.61	10.70	40.08	47.06	74.00	-26.94	Horizontal
Test mode: 80	02.11g		Test channel: Highest			Remark: Average		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.
4924.00	35.68	31.61	10.70	40.08	37.91	54.00	-16.09	Vertical
4924.00	35.83	31.61	10.70	40.08	38.06	54.00	-15.94	Horizontal

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	46.29	31.54	10.58	40.22	48.19	74.00	-25.81	Vertical	
4824.00	45.67	31.54	10.58	40.22	47.57	74.00	-26.43	Horizontal	
Test mode: 80	02.11n(H20)		Test char	nnel: Lowest		Remark: Ave			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4824.00	37.15	31.54	10.58	40.22	39.05	54.00	-14.95	Vertical	
4824.00	36.67	31.54	10.58	40.22	38.57	54.00	-15.43	Horizontal	

Test mode: 8	Test mode: 802.11n(H20)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.26	31.57	10.64	40.15	48.32	74.00	-25.68	Vertical	
4874.00	46.68	31.57	10.64	40.15	48.74	74.00	-25.26	Horizontal	
Test mode: 80	02.11n(H20)		Test char	Test channel: Middle		Remark: Ave			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.65	31.57	10.64	40.15	38.71	54.00	-15.29	Vertical	
4874.00	37.18	31.57	10.64	40.15	39.24	54.00	-14.76	Horizontal	

Test mode: 80	Test mode: 802.11n(H20)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	46.33	31.61	10.70	40.08	48.56	74.00	-25.44	Vertical	
4924.00	45.25	31.61	10.70	40.08	47.48	74.00	-26.52	Horizontal	
Test mode: 80	02.11n(H20)		Test channel: Highest			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4924.00	37.59	31.61	10.70	40.08	39.82	54.00	-14.18	Vertical	
4924.00	35.17	31.61	10.70	40.08	37.40	54.00	-16.60	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Lowest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	45.89	31.55	10.61	40.19	47.86	74.00	-26.14	Vertical	
4844.00	46.05	31.55	10.61	40.19	48.02	74.00	-25.98	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Lowest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4844.00	35.93	31.55	10.61	40.19	37.90	54.00	-16.10	Vertical	
4844.00	36.65	31.55	10.61	40.19	38.62	54.00	-15.38	Horizontal	

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Middle			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	46.39	31.57	10.64	40.15	48.45	74.00	-25.55	Vertical	
4874.00	47.16	31.57	10.64	40.15	49.22	74.00	-24.78	Horizontal	
Test mode: 8	02.11n(H40)		Test channel: Middle			Remark: Average			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4874.00	36.91	31.57	10.64	40.15	38.97	54.00	-15.03	Vertical	
4874.00	37.85	31.57	10.64	40.15	39.91	54.00	-14.09	Horizontal	

Test mode: 8	Test mode: 802.11n(H40)			Test channel: Highest			Remark: Peak		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	46.37	31.59	10.67	40.10	48.53	74.00	-25.47	Vertical	
4904.00	46.25	31.59	10.67	40.10	48.41	74.00	-25.59	Horizontal	
Test mode: 80	02.11n(H40)		Test char	nnel: Highest		Remark: Ave	rage		
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polar.	
4904.00	36.63	31.59	10.67	40.10	38.79	54.00	-15.21	Vertical	
4904.00	37.06	31.59	10.67	40.10	39.22	54.00	-14.78	Horizontal	

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.