Geostatistics: Kriging

8.10.2015 Konetekniikka 1, Otakaari 4, 150 10-12

- Background
- What is Geostatitics
- Concepts
- Variogram: experimental, theoretical
- Anisotropy, Isotropy
- Lag, Sill, Range, Nugget
- Types of Kriging
- Example of kriging interpolation

Interpolation

How to estimate unknown values at specific

Spatial Interpolation

- Examples
 - Trend surfaces
 - Nearest neighbours: Thiessen(voronoi)
 - Inverse distance weighting (IDW)
 - Splines
 - Kriging

Example:

Site	х	У	Z	D to (5,5)
1	2	2	3	4.2426
2	3	7	4	2.8284
3	9	9	2	5.6569
4	6	5	4	1.0000
5	5	3	6	2.0000

We would like to estimate the variable value at (5,5)

Example: IDW

 Value of z(x) is estimated from all known values of z at all n points. (Weighted Moving Average technique)

$$z(x) = \sum_{i=1}^{n} w_i z_i$$

Weights usually add to 1, $\sum_{i=1}^{n} w_i = 1$

Example: IDW

• In IDW, the weights weights are based on the distance from each of the known points (i) to the point we are trying to estimate (k): d_{ik}. In IDW, we consider the inverse distance, 1/d_{ik}

$$w_{i} = \frac{\frac{1}{d_{ik}}}{\sum_{1=1}^{n} \frac{1}{d_{ik}}}$$

Example: IDW

Location (x,y)	Z	D to (5,5)	ID	Weights
(2,2)	3	4.2426	0.2357	0.1040
(3,7)	4	2.8284	0.3536	0.1560
(9,9)	2	5.6569	0.1768	0.0780
(6,5)	4	1.0000	1	0.4413
(5,3)	6	2.0000	0.5	0.2207
sum			2.2661	1

$$Z(5,5)$$
 = 0.1040(3) + 0.1560(4) + 0.0780(2) + 0.4413(4) + 0.2207(6)
= 4.1814

Historical background

- Geostatistics, first developed by Georges Matheron (1930-2000), the French geomathematician. The major concepts and theory were discovered during 1954-1963 while he was working with the French Geological Survey in Algeria and France.
- In 1963, he defined the linear geostatistics and concepts of variography, varaiances of estimation and kriging (named after Danie Krige) in the *Traité de géostatistique appliquée*. The principles of geostatistics was published in Economic Geology Vol. 58, 1246-1266.
- Kriging was named in honour of Danie Krige (1919-2013), the South African mining engineer who developed the methods of interpolation.

What is Geostatistics

- Techniques which are used for mapping of surfaces from limited sample data and the estimation of values at unsampled locations
- Geostatistics is used for:
 - spatial data modelling
 - characterizing the spatial variation
 - spatial interpolation
 - simulation
 - optimization of sampling
 - characterizing the uncertainty
- The idea of geostatistics is the points which are close to each other in the space should be likely close in values.

- Mining
- Geography
- Geology
- Geophysics
- Oceanography
- Hydrography
- Meterology
- Biotechnology
- Environmental studies
- Agriculture

Geostatistical methods provide

- How to deal with the limitations of deterministic interpolation
- The prediction of attribute values at unvisited points is optimal
- BLUE (Best Linear Unbiased Estimate)

Geostatistical method for interpolation

- Reconigition that the spatial variation of any continuous attribute is often too irregular to be modelled by a simple mathematical function.
- The variation can be described better by a stochastic surface.
- The interpolation with geostatistics is known as kriging.

Variogram cloud

Variogram/Semivariogram

- Variogram is the variance of the difference random variables at two locations
- To examine the spatial continuity of a regionalized variable and how this continuity changes as a function of distance and direction.
- The computation of a variogram involves plotting the relationship between the semivariance and the lag distance
- Measure the strength of correlation as a function of distance
- Quantify the spatial autocorrelation

Variogram

Variograms

- Half of average squared difference between the paired data values.
- The variogram calculated by

$$\gamma(h) = \frac{1}{2N(h)} \sum_{(i,j)|h_{ii}=h} (x_i - x_j)^2$$

Variogram

- Experimental variogram (sample or observed variogram):
 - when variogram is computed from sampled data.
 - The first step towards a quantitative description of the regionalized variation.
- Theoretical variogram or variogram model:
 - when it is modelled to fit the experimental variogram.

Omnidirectional variogram

- Omnidirectional variogram is a test for erratic directional variograms
- The omnidirectional variogram contains more sample pairs than any directional variogram so it is more likely to show a clearly interpretable structure.
- If the omnidirectional variogram is messy, then try to discover the reasons for the errationess, e.g. Examine the h-scatterplots may reveal that a single sample value shows large influence on the calculations.

Isotropy

- The spatial correlation structure has no directional effects, the resulting variogram averages the variogram over all directions.
- The covariance function, correlogram, and semivariogram depend only on the magnitude of the lag vector h and not the direction
- The empirical semivariogram can be computed by pooling data pairs separated by the appropriate distances, regardless of direction.
- The semevariogram describes omnidirectional.

Anisotropy

- Spatial variation is not the same in all directions
- The variogram is computed for specific directions
- If the process is anisotropy, then so is the variogram

- Why do we need a variogram model?
 - We need a variogram value for some distance or direction for which we do not have a sample variogram value.

- Fitting variogram models can be difficult
 - The accuracy of the observed semivariance is not constant
 - The variation may be anisotropic
 - The experimental variogram may contain much point-to-point fluctuation
 - Most models are non-linear in one or more parameters
- Both visual inspection and statistical fitting are recommended

- Fitting variogram models may be poor
 - Chose unsuitable model in the first place
 - Give poor estimates of the parameters at the start of the iteration
 - A lot of scatter in the expertimental variogram
 - The computer program was faulty

Description

- Lag The distance between sampling pairs.
- Range The point where the semivariogram reaches the sill on the lag h axis. Sample points that are farther apart than range are not spatially autocorrelated.
- Nugget The point where semivariance intercepts the ordinate.
- Sill The value where the semivariogram first flattens off, the maximum level of semivariance.
 The points above the sill indicate negative spatial correlation and vice versa.

Spherical model

$$\gamma(h) = \begin{cases} c_0 + c_1 \left\{ \frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right\} & \text{for } 0 < h < a \\ c_0 + c_1 & \text{for } h \ge a \end{cases}$$

where
$$a = \text{range}$$

 $c_0 = \text{nugget variance}$
 $c_0 + c_1 = \text{sill}$

Exponential model

$$\gamma(h) = c_0 + c_1 \left\{ 1 - \exp\left(-\frac{h}{a}\right) \right\}$$
$$\gamma(0) = 0$$

Linear model

$$\gamma(h) = c_0 + bh$$
$$\gamma(0) = 0$$

where b =the slope of the line

Gaussian model

$$\gamma(h) = c_0 + c_1 \left\{ 1 - \exp\left(-\frac{h^2}{a^2}\right) \right\}$$
$$\gamma(0) = 0$$

Nested structure

One variogram model can be created by several variogram models

$$\gamma(h) = \sum_{i=1}^{n} |\omega_i| \gamma_i(h)$$

and

$$\gamma_t(h) = \gamma_1(h) + \gamma_2(h) + \dots$$

Nested Structure

Example: the nested spherical or double spherical

$$\gamma(h) = \begin{cases} c_1 \left\{ \frac{3h}{2a_1} - \frac{1}{2} \left(\frac{h}{a_1} \right)^3 \right\} + c_2 \left\{ \frac{3h}{2a_2} - \frac{1}{2} \left(\frac{h}{a_2} \right)^3 \right\} & for \ 0 < h \le a_1 \\ c_1 + c_2 \left\{ \frac{3h}{2a_2} - \frac{1}{2} \left(\frac{h}{a_2} \right)^3 \right\} & for \ a_1 < h \le a_2 \\ c_1 + c_2 & for \ h > a_2 \end{cases}$$

Ordinary kriging

- In ordinary kriging, a probability model is used in which the bias and error variance can be computed and select weights for the neighbour sample locations that the everage error for the model is 0 and the error variance is minimized.
- The procedure of ordinary kriging is similar to weighted moving average except the weights are derived from geostatistical analysis.

Ordinary kriging

The estimation by ordinary kringing can be expressed by:

$$z(x_0) = \sum_{i=1}^{n} \lambda_i \cdot z(x_i)$$
 where $\sum_{i=1}^{n} \lambda_i = 1$

The minimⁱ⁼¹ wariance of $z(x_0)$ is

$$\sigma^2 = \sum_{i=1}^n \lambda_i \gamma(x_i, x_0) + \phi$$

And it is obtained when

$$\sum_{i=1}^{n} \lambda_i \gamma(x_i, x_j) + \phi = \gamma(x_j, x_0) \qquad \text{for all } j$$

Site	х	У	Z	D to (5,5)
1	2	2	3	4.2426
2	3	7	4	2.8284
3	9	9	2	5.6569
4	6	5	4	1.0000
5	5	3	6	2.0000

We would like to estimate the variable value at (5,5)

Example:Ordinary kriging

• Computing kriging weights for the unsampled point x = 5, y = 5. Let the spatial variation of the attribute sampled at the five points be modelled by a spherical variogram with parameters $c_0=2.5$, $c_1=7.5$ and range a=10. The data at the five sampled points are:

We need to solve

X	у	Z
2	2	3
3	7	4
9	9	2
6	5	4
5	3	6

$$A^{-1} \cdot b = egin{bmatrix} \lambda \ \phi \end{bmatrix}$$

Where A is the matrix of semivarainces between of pairs of data points, b is the vector of semivariances between each data point and the point to be predicted, λ is the vector of weights and φ is a lagrangian for solving the equations.

Example:Ordinary kriging

- Value at (5,5) = weights * z= 4.3985
- With estimation variance = (weights*b)+ Φ
 = 4.2177 + (-0.1544)
 - = 4.0628

Note: The estimation error variance is also known as kriging variance.

Comparison of the results

Method	Estimate value z(5,5)	
IDW	4.1814	
Ordinary Kriging	4.3985	
(Kriging variance)	(4.0628)	

 The modification of kriging equations to estimate an average value z(B) of the variable z over a block of area B.

Example showing a regular 2x3 grid of point locations within a block. Each discretizing point accounts for the same area.

 The average value of z(B) over the block B is given by

$$z(B) = \int_{B} \frac{z(x)dx}{areaB}$$

is estimated by

with
$$\sum_{i=1}^{n} \lambda_i = 1$$

$$\hat{z}(B) = \sum_{i=1}^{n} \lambda_i \cdot z(x_i)$$

The minimum variance is

$$\sigma^{2}(B) = \sum_{i=1}^{n} \lambda_{i} \bar{\gamma}(x_{i}, B) + \phi - \bar{\gamma}(B, B)$$

and is obtained with

$$\sum_{i=1}^{n} \lambda_{i} \gamma(x_{i}, x_{j}) + \phi = \overline{\gamma}(x_{j}, B) \qquad \text{for all } j$$

Example: Block kriging

Point	Estimate	Kriging weights for samples				
		1	2	3	4	5
а	336	0.17	0.11	0.09	0.60	0.03
b	361	0.22	0.03	0.05	0.56	0.14
С	313	0.07	0.12	0.17	0.61	0.03
d	339	0.11	0.03	0.12	0.62	0.12
Average	337	0.14	0.07	0.11	0.60	0.08

Simple kriging

- It is similar to ordinary kriging except that the weights sum equation (=1) is not added.
- The mean is a known constant.
- It uses the average of the entire data set. (ordinary kriging uses local average: the average of the points in the subset for a particular interpolation point)

Cokriging

 It is an extension of ordinary kriging where two or more variables are interdependent.

• How:

- U and V are spatial correlated
- Variable U can be used to predict variable V that is information about spatial variation of U can help to map V.

– Why:

- V data may be expensive to measure or collect or have some limitations in data collection process so the data may be infrequent.
- U data, on the other hand, may be cheap to measure and possible to collect more observations.

Indicator kriging

- Binary value
- From a continuous variable z(x), an indicator can be created by indicating it 1 for z(x) is less than or equal to a cut-off value, z_c , and 0 otherwise $\omega(x) = \begin{cases} 1 & \text{if } z(x) \leq z_c \\ 0 & \text{otherwise} \end{cases}$

54

Kriging: Step by step

- Studying the gathered data: data analysis
- Fitting variogram models: experimental variogram and theoretical variogram models
- Estimating values at those locations which have not been sampled (kriging) e.g. ordinary kriging, simple kriging, indicator kriging and so on
- Examining standard error which may be used to quantify confidence levels
- Kriging interpolation

- Elevation data set in Rastila
- 2000 laser scanning points

Minimum	0
Maximum	18
Mean	4.7247
Median	0
Skewness	0.64651
Kurtosis	2.0344
Standard deviation	5.543
Variance	30.725

Variogram model	range	nugget	sill	length
Exponential	0.5	0.10847	1.1232	0.18064
Linear	0.5	0.50754	1.806	-
Gaussian	0.5	0.4546	1.0447	0.22811
Spherical	0.75	0.35265	1.0666	0.48576
Exponential	0.75	0.13161	1.1388	0.19144
Linear	0.75	0.58671	1.5711	-
Gaussian	0.75	0.48089	1.0728	0.24717
Spherical	0.95	0.54285	1.9597	1.8513
Exponential	0.95	0.36872	1.4082	0.40794
Linear	0.95	0.55676	1.6424	-
Gaussian	0.95	0.57831	1.1922	0.34484

Variogram model	RMSE
Exponential (0.5)	3.281
Linear (0.5)	3.367
Gaussian (0.5)	3.431
Spherical (0.75)	3.307
Exponential (0.75)	3.272
Linear (0.75)	3.397
Gaussian (0.75)	3.439
Spherical (0.95)	3.381
Exponential (0.95)	3.302
Linear (0.95)	3.386
Gaussian (0.95)	3.466

References:

- Geographic information Analysis by Sullivan, D. And Unwin, D.
- Geostatistics for Environmental Scientists by Richard Webster and Margaret Oliver
- Principle of Geographical Information Systems, Chapter 5 and 6 by Peter Burrough and Rachael McDonnell
- An Introduction to Applied Geostatistics by Edward Isaaks and Mohan Srivastava
- Quality Aspects in Spatial Data Mining by Alfred Stein,
 Wenzhong Shi and Wietske Bijker