2. Cálculo proposicional. Definições indutivas. Valorações

Os seguintes exercícios e problemas são adaptados a partir do livro *Lógica e Aritmética*, de Augusto Franco de Oliveira, 3ª edição, Gradiva.

- 1. Uma construção formativa de uma expressçao σ é uma sequência finita de expressões $\sigma_1, \sigma_2, \ldots, \sigma_n$, $(n \ge 1)$ tal que $\sigma_n = \sigma$ e para cada i = 1, ..., n, σ_i é uma letra proposicional, ou existe j < i tal que $\sigma_i = \neg \sigma_j$, ou existem j, k < i tais que $\sigma = (\sigma_i \diamond \sigma_k)$, onde \diamond é \land , \lor ou \rightarrow . O inteiro positivo n é o *comprimento* da construção formativa $\sigma_1, \sigma_2, \ldots, \sigma_n$. Por exemplo, $p, \neg p, q, (q \land \neg p)$ é uma construção formativa de $(q \land \neg p)$ de comprimento 4 e $p, \neg p, r, q, (q \land \neg p)$ é outra, de comprimento 5. As fórmulas que antecedem a fórmula ϕ numa construção formativa de ϕ [ver (a) e (b) adiante] de comprimento mínimo são as subfór**mulas próprias** de ϕ . Denota-se F_* o conjunto das expressões que possuem construções formativas.
 - (a) Dê um exemplo de uma construção formativa para cada uma das fórmulas:

i.
$$\neg(p \to q)$$
;
ii. $(\neg p \to q)$;
iii. $(s \to (\neg p \land q))$.

- (b) Prove, por indução na complexidade das fórmulas, que $\operatorname{Prop}(P) \subseteq F_*$, isto é, toda a fórmula possui, pelo menos, uma construção formativa.
- (c) Mostre, por indução completa no comprimento das construções formativas das expressões, que $F_* \subseteq \operatorname{Prop}(P)$, e conclua que $F^* = F_* = \operatorname{Prop}(P)$.
- 2. **(I)** Demonstre, por indução na complexidade das fórmulas, as seguintes propriedades:
 - (a) Lema do Equilíbrio.
 - (b) Para toda a fórmula ϕ e toda a valoração booleana $v, v(\phi)$ só depende dos va-

lores $v(p_i)$ atribuídos às letras proposicionais p_i que ocorrem em ϕ . [Sugestão: para quaisquer valorações v e v', tais que $v(p_i) = v'(p_i)$ para toda a letra proposicional p_i que ocorre em ϕ , tem-se $v(\phi) = v'(\phi)$.]

3. (I) A Propriedade de Extensão das Valorações é um caso particular de um princípio mais geral de definição de funções por recorrência. O contexto adequado para enunciar e demonstrar este princípio, na sua máxima generalidade, é a teoria dos conjuntos. Não pretendemos aqui embarcar nessa generalidade, mas fornecemos as indicações suficientes para demonstrar a referida propriedade.

Sejam u_{\neg} , u_{\wedge} , u_{\vee} e u_{\rightarrow} as funções booleanas correspondentes aos conectivos proposicionais. Dada uma valoração $v:\operatorname{Prop}(P)\to\{0,1\}$, pretende-se provar que existe uma única valoração booleana \hat{v} tal que

- (i) $\hat{v}(p) = v(p)$ para todo p em P,
- (ii) para qualquer fórmula ϕ , $\hat{v}(\neg \phi) = u_{\neg}(\hat{v}(\phi))$ e
- (iii) para quaisquer fórmulas ϕ , ψ , $\hat{v}(\phi \diamond \psi) = u_{\diamond}(\hat{v}(\phi), \hat{v}(\psi))$, onde \diamond é \wedge , \vee ou \rightarrow , respectivamente.
- (a) Dê uma definição indutiva de \hat{v} , como conjunto de pares ordenados (ϕ, i) , com ϕ em Prop(P) e i em $\{0, 1\}$;
- (b) Enuncie e demonstre para \hat{v} um princípio de indução;
- (c) Prove que \hat{v} é uma função definida em Prop(P);
- (d) Prove que \hat{v} é a única função definida em Prop(P) tal que (i), (ii) e (iii).
- (I) Efectue todas as deduções que foram indicadas no texto, explicitando as dependências de hipóteses.
 - (a) $\phi \wedge \psi \vdash \phi$;

- (b) $\phi, \psi \vdash \phi \land \psi$;
- (c) $\phi, \phi \to (\psi \to \theta), \phi \to \psi \vdash \theta$;
- (d) $\neg \neg \phi \vdash \phi$;
- (e) $\phi, \phi \rightarrow \psi \vdash \psi$;
- (f) $\phi, \phi \to \psi, \psi \to \theta \vdash \theta$;
- (g) $\phi \wedge \phi \vdash \phi$;
- (h) $\phi \to \psi, \neg \psi \vdash \neg \phi$:
- (i) $\phi \to \psi, \psi \to \theta \vdash \phi \to \theta$;
- (j) $\phi \vdash \neg (\neg \phi \land \neg \psi)$;
- (k) $\phi \rightarrow \psi \vdash \neg \psi \rightarrow \neg \phi$;
- (1) $\phi \to \psi \vdash (\psi \to \theta) \to (\phi \to \theta)$;
- (m) $\vdash (\phi \rightarrow \psi) \rightarrow (\psi \rightarrow \theta) \rightarrow (\phi \rightarrow \theta)$;
- (n) $\phi \vdash \neg(\neg \phi \land \neg \psi)$;
- (o) $(\phi \land \psi) \lor \theta \vdash (\phi \lor \theta) \land (\psi \lor \theta)$;
- (p) $(\phi \lor \theta) \land (\psi \lor \theta) \vdash (\phi \land \psi) \lor \theta$;
- (q) $(\phi \lor \psi) \land \theta \vdash (\phi \land \theta) \lor (\psi \land \theta)$;
- (r) $(\phi \wedge \theta) \vee (\psi \wedge \theta) \vdash (\phi \vee \psi) \wedge \theta$.