

Programando sistemas físicos en entornos visuales

www.echidna.es

#OSHWDem17

¿Qué es echidnashield?

OPEN SOURCE

SISTEMAS FÍSICOS

ENTORNOS VISUALES

PILARES

PÁGINA WEB

GUÍA EDUCATIVA

COMUNIDAD

HARDWARE

EJEMPLOS

EchidnaShield

- Proyecto Open Source para aprender programación -

INICIO - HARDWARE - ACTIVIDADES - COMUNIDAD - CONTACTO - QUIERO UNA

Inicio

EchidnaShield es un proyecto **Open Source** dirigido a facilitar el aprendizaje de la programación de sistemas físicos en los últimos cursos de Primaria y en Secundaria. Con este fin se ha diseñado un escudo para **Arduino**, pensando en su uso con **entornos visuales** de **programación**. El escudo está apoyado en una **guía educativa** con propuestas de actividades para el aula.

Al tener los **sensores** y **actuadore**s integrados, **elimina** la necesidad de cablear, **minimizando** los errores de electrónica, lo que conlleva un **incremento** en el tiempo dedicado a **programación** y al **conocimiento** de los componentes.

GUÍA EDUCATIVA

Diapos de actividades

Vídeo tutoriales

Guía docente

Vídeos Ejemplos

Diapositivas

Guía docente

EchidnaShield

Guía didáctica

Video tutoriales

Videos ejemplos

GUÍA EDUCATIVA- Actividades

- 1. Hola Erizo- puesta en marcha
- Hacemos un semáforo- Salidas digitales
- 3. Pulsadores- Entradas digitales
- Midiendo la iluminación Entradas analógicas
- 5. Entradas Makey makey- Modo MKMK
- 6. Control de la luminosidad de LED- Salidas analógicas
- 7. Control de RGB con potenciómetro

- Aplicaciones creativas con el Sensor de distancia
- Controlamos la inclinación con el Giróscopo
- 10. Servomotores de posición
- 11. Servomotores continuos
- 12. Videojuego: con libertad de elección de todos los sensores
- 13. Hacemos un Robot

MANOS A LA OBRA

Funcionamiento

Snap4Arduino

 Es un entorno gráfico de programación para
 Arduino

Está basado en Snap

Entorno de Snap4Arduino

Instalación de Snap4Arduino

- 1. Pasos para instalar el programa:
 - Acceder a http://snap4arduino.rocks/#download
 - Descomprimir y ejecutar: Snap4Arduino-1....
- 2. Instalar el firmware de comunicación en el Arduino Uno.
 - Abrir el IDE Arduino
 (https://www.arduino.cc/en/Main/Software)
 - Archivo -> Ejemplos -> Firmata -> StandardFirmata
 - Herramientas > Placa > Arduino Uno
 - Herramientas > Puerto > DevttyACM0/ COMx

PRACTICAMOS: Hola Erizo

- Encender y apagar el led naranja
- Hacer que el led se encienda de forma intermitente

SOLUCIÓN: Hola Erizo

```
Al presionar

por siempre

fijar pin digital 12 • en 

esperar 1 segs

fijar pin digital 12 • en 

esperar 1 segs
```


PRACTICAMOS: Semáforo

Realizar un semáforo que se active al darle al pulsador *SR*

SOLUCIÓN: Semáforo

```
Al presionar
por siempre
 fijar pin digital 13 🕏 en 🕢
 si ( lectura digital (2 🔻 ) = (cierto
 esperar 2 segs
  fijar pin digital 13 → en 🕦
  fijar pin digital 12 → en 🐠
  esperar 2 segs
  fijar pin digital 12 → en 🕦
  fijar pin digital 11 → en 🐠
  esperar 2 segs
 fijar pin digital 🚹 🕏 en 🕦
```


PRACTICAMOS: LDR-LED

Interruptor crepuscular: controlar el encendido de un led en función de la luz recibida por el sensor

SOLUCIÓN: LDR-LED


```
Al presionar
por siempre
fijar LDR_Valor a lectura analógica 5 v
     LDR Valor < 400
 fijar pin digital 6 en 🗥
 si no
 fijar pin digital 67 en 🕦
```


PRACTICAMOS: Inclinómetro

Medir la inclinación de la placa con el acelerómetro y los **LEDs**

Alguno de los bloques que puedes usar:

SOLUCIÓN: Inclinómetro


```
Al presionar
si acelY < 250
  fijar pin digital 6♥ en 🍑
  fijar pin digital 13 ♥ en 🍑
  fijar pin digital 12 ♥ en 🍑
  fijar pin digital 11 ▼ en 🥨
    acelY > 250 y acelY < 300
  fijar pin digital 6 ♥ en 🕦
  fijar pin digital 13 ♥ en 🍑
  fijar pin digital 12 ▼ en 🥨
  fijar pin digital 11 → en 🕦
si (acelY) > 300 y (acelY) < 400
  fijar pin digital 6 ▼ en 🍑
  fijar pin digital 13 ▼ en 🥨
  fijar pin digital 12 → en 🥨
  fijar pin digital 11 ▼ en 🕨
    acelY > 400 y acelY < 450
```


PRACTICAMOS: Propuestas

- ¿Qué propones?
- Nuestras propuestas:
 - o LDR baliza
 - Joystick variación de 2 colores
 - Makey makey con sonido
 - Videojuego
 - Coche fantástico

Creamos

- 1. Pensamos en el proyecto que queremos hacer
 - ¿Qué entradas necesita?
 - ¿Modo sensores o MkMk?
 - ¿Qué salidas?
- 2. Pensamos en la secuencia necesaria para llevarlo a cabo
 - ¿Qué bloques necesitamos?
 - ¿Cómo deben estar conectados?

LICENCIA Y CRÉDITOS

Esta guía se distribuye bajo licencia Reconocimiento- Compartirlgual Creative commons 4.0

Es obra de Jorge Lobo, Jose Pujol y Xabier Rosas

