Social Media Mining

Case Study: Event Detection in Twitter

Based on 'Event Detection in Twitter' by Jianshu Weng, Bu-Sung Lee ICWSM 2011

Presented by :

Yue HE & Falitokiniaina RABEARISON

Motivation

social events
parties
baseball games
presidential campaign

-

santiagodord Pueblo Nuevo y CDP a la final en Santiago http://bit.ly /bsRRB8 20的以内的 APIから

risako524 そして今日はレスポムック発売日な訳だけど 20的以内的 Keital Webから

samjunanto @SuryaSujaya Mau dong su. Dm aja ya. Makasih 20的以内的 SuryaSujaya Mau dong su. Dm aja ya. Makasih 20的以内的 SuryaSujaya或 Mau dong su. Dm aja ya. Makasih 20的以内的 APIから SuryaSujaya或

yolibeza_bot 信りは返さわばならん…この月の主に 20的以内的 APIから

Vybarbosa Qual é a graça dessa criança, o Justin Bieber? Falla sério... ele é só mais uma modinha que vem e logo logo vai passar iffalaserio 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 20的以内的 webから JoshRickyz whats up swollen dick tyna chey old lol 2000以内的 web page 100 km method page 100 km metho

disastrous events
storms
fires
traffic jams
riots
heavy rain-falls
earthquakes

Outline

- Related work
- Presentation of EDCoW
- Experiments and Results
- Conclusion
- Discussion

Related Work

Related Work

Term-weighting-based approaches

Topic-modeling-based approaches

Clustering-based approaches

PRESENTATION of EDCoW Case Study: Event Detection in Twitter - 07

EDCoW [Workflow]

EDCoW [Components]

Build signal for individual words

Filter away trivial words

Cluster signals by modularitybased graph partitioning

- DF-IDF
- Wavelet transform

- Auto correlation
- Cross correlation

- Modularity of partitioning
- Newman Algorithm

$$s_w(t) = \frac{N_w(t)}{N(t)} \times \log \frac{\sum_{i=1}^{T_c} N(i)}{\sum_{i=1}^{T_c} N_w(i)}$$

$$S(t) = \sum_{j=1}^{N_J} \sum_k C_j(k) \psi_{j,k}(t) = \sum_{j=1}^{N_J} r_j(t)$$

$$(f\star g)(t) = \sum f * (\tau)g(t+\tau)$$

$$MAD(S^{\mathcal{I}}) = \text{median}(|A_i^{\mathcal{I}} - \text{median}(A_i^{\mathcal{I}})|)$$

$$s_{w}(t) = \frac{N_{w}(t)}{N(t)} \times \log \frac{\sum_{i=1}^{T_{c}} N(i)}{\sum_{i=1}^{T_{c}} N_{w}(i)}$$

$$S(t) = \sum_{j=1}^{N_{J}} \sum_{k} C_{j}(k)\psi_{j,k}(t) = \sum_{i=1}^{N_{J}} r_{j}(t)$$

$$MAD(\mathcal{S}^{\mathcal{I}}) = \operatorname{median}(|A_{i}^{\mathcal{I}} - \operatorname{median}(A_{i}^{\mathcal{I}})|)$$

$$Q = \frac{1}{2m} \sum_{ij} (w_{ij} - \frac{d_{i} \cdot d_{j}}{2m}) \delta_{c_{i},c_{j}}$$

$$\epsilon = (\sum_{i=1}^{N_{J}} w_{ij}^{c}) \times \frac{e^{1.5n}}{(2n)!}, n = |V^{c}|$$

$$\epsilon = (\sum w_{ij}^c) \times \frac{e^{1.5n}}{(2n)!}, \ n = |V^c|$$

Parameters:

window slide: delta

threshold: gamma1 gamma2

event significance: the shold E

Case Study: Event Detection in Twitter - 09

EXPERIMENTS and RESULTSCase Study: Event Detection in Twitter - 10

Dataset Description and Preparation

Signal Construction

"santa + wine"

Wine Travel - The wine anorak

www.wineanorak.com/travel.htm ▼ Traduire cette page
South Africa revisited (November 2009 and October 2010) ... The USA's most famous
wine region is in easy striking distance of San Francisco, and of two of the more
interesting wine regions, Santa Ynez (near Santa Barbara) and Sonoma ...

Sanford Winery

www.sanfordwinery.com/ ▼ Traduire cette page
THE HEART OF THE SANTA RITA HILLS. May 2010 Wine Club Events 1 of 13
November 2009 Harvesting Pinot ... Sure, call us biased, but we think we call

Santa Ynez Wine Country in Southern California | USA ...
www.wrsol.com/usatravelguide/.../santa-ynez-wine-co... ▼ Traduire cette page
19 oct. 2012 - In the shadows of the rolling Santa Ynez and San Rafael Mountain ranges
lie a six mile patch of family owned vineyards and wineries.

November 09 Newsletter - Wandering Dog Wine Bar

Case Study: Event Detection in Twitter - 13

Signal Construction

Auto Correlation Computation

Filter: Median Absolute Deviation(MAD):

2400 words

32 keywords

Cross Correlation Computation

Correlation Matrix for 32 Keywords (the lighter the color of the cell in the matrix, the higher similarity between signals)

Correlation Matrix of 32 Keywords after filtering

Cross Correlation Computation

Correlation Matrix for 32 Keywords (the lighter the color of the cell in the matrix, the higher similarity between signals)

Correlation Matrix of 32 Keywords after filtering

Reduction

words	after filtering by auto	after filteri correl		# of	
	correlation	node(keywords)	edge(weight)	event	
2400	32	20	15	8	
2400	47	33	75	2	
2400	31	22	19	6	
2400	122	67	121	2	
2400	137	15	25	2	
2400	100	12	15	1	

Modularity-based Graph Partition

Time Period		Significance	V W		
Begin	End	of event	Key Words		
		7. 094459382	photos	put	
		5. 95984265	wishing	wonder	
11/21/2009	11/30/2009	5. 632178398	rest	wondering	1
11/21/2005	11/30/2005	2.900670455	busy	hrs	rush
		0.467600004	em	episode	macbook wearing
		0.336489143	girl	society	suppose whos

Network contains 22 nodes and 19 edges.

After using Newman Alg, we find 6 clusters(event).

The events' significance is presented by weights of the edges between keywords and the lengths of the event.

Event

Parameter:	gamma1 = 12	gamma2 = 10 thresholdE = 0.1 delta = 16			delta = 16
Time	Significanc e of event	Keywords in Event			
01/11/09	0.905574323	diet	quiet	dream	
02/11/09	0.140348795	bug	house	meet	program
04/11/09	8.843723289	bible	build		
05/11/09	0.138681618	person	stock	video	win
07/11/09	3.942605774	biggest	page		
09/11/09	0.000032543		box	flight	
09/11/09	0.783191902	public	strategy	tried	
10/11/09	18.03409289	hill	table	youve	
12/11/09	4.911412701	kick	yahoo		
14/11/09	0. 275774247	blue	flight	ice	nope
15/11/09	5. 032902893	flickr	usa		
16/11/09	2. 226469888	sleep	una		
17/11/09	7. 78609984	freedom	spirit		
18/11/09	1.467770626	latest	risk	streaming	
22/11/09	1.217226836	baby	lights	page	quote
23/11/09	4. 582530554	deserve	reason	set	
23/11/09	0. 264357552	creative	dead	easier	ratings
27/11/09	1.278909451	episode	imagine	small	
28/11/09	0.195049121	chair	strong	thought	tuesday
20/11/00	2.761999223	coach	effect	matter	
29/11/09	0.168426699	developer	gold	ha	lots

Case Study : Event Detection in Twitter - 20

Detect Event

Parameter:	gamma1 = 12	gamma2 = 10	thresholdE = 0.1		delta = 16	
Time F	Time Period		V			
Begin	End	of event	Keywords in Event			
01/11/09	10/11/09	10. 54879631	tonight	website		
		9. 569440935	central	kick		
		5. 425693084	santa	wine		
		5. 238103263	simply	upgrade		
		5.006220337	hospital reading			
		4.146540539	development las		usa	
		4.00962903	11 hour		town	
		0. 425628924	bring	gym	kim	standing
11/11/09	20/11/09	10.69636029	home	personal		
		7. 428329551	ice	broke		
21/11/09	30/11/09	7. 094459382	photos	put		
		5. 95984265	wishing	wonder		
		5. 632178398	rest	wondering		
		2. 900670455	busy	hrs	rush	
		0.467600004	em	episode	macbook	wearing
		0.336489143	girl	society	suppose	whos

Case Study: Event Detection in Twitter - 21

Detect Event

Parameter:	gamma1 = 12 gamma2 = 10				
Time F	Significance				
Begin	End	of event			
01/11/09	10/11/09	10. 54879631			
		9. 569440935			
		5. 425693084			
		5. 238103263			
		5.006220337			
		4.146540539			
		4.00962903			
		0. 425628924			
11/11/09	20/11/09	10.69636029			
		7. 428329551			
21/11/09	30/11/09	7.094459382			
		5. 95984265			
		5. 632178398			
		2. 900670455			
		0.467600004			
		0.336489143			

Home » Events by Year » 2009 » November

Historical Events for November 2009

CONCLUSION

Conclusion

- After studying and implementing the Event Detection with Clustering of Wavelet-based Signals Algorithm in Java, we find it works in different time period. We also try to use different parameters to evaluate it on the twitter dataset.
- Some places to improve:
- How to control the parameters?
- How to let the keywords(events) make sense?
- It need some background to translate the combined keywords into event.
- How to utilize the results from public opinion?

Integrate EDCoW into SONDY

EDCoW [Javadoc]

Case Study Detect Event in Social Network (20/03/2014 18/06/2014)						- check the devision by 0 (in the first step of construction signal) - change log_e into log_2 - write the load code * aims: load big file with all the keywords, output the result in one	everything is done
	Task Schedule Meeting Time Target Task What we did					file - analysis the real data from pro, try	
ID	Meeting Time	Talget Task				to explain the result (shown in the matlab) - make sure the code to be correct	
		- present the paper EDCoW - the workload	- present the paper EDCoW(1/2) - devide the case study into 3 parts [1. study the EDCoW	5			
1	20/03/2014	the deadlines	implement the EDCoW in the platform of SONDY critical analysis of EDCoW			the level number should not be the input change the wavelet family change the deltha(the size of	everything is done
	21/03/2014	Learning Basic Wavelet	- Wavelet Families - CWT	6		sliding window) - find the lib in Java to comput the Cross Correlation	-
2		Knowledge from Jairo	 DWT[wavelet expression, quantities, how to measure the similiarity between signals> shannon wavelet entropy] 			- play with the parametrs - [modify the code to generate files for gephi input]	everything is done
	3/4/2014	- finish the presentation - implement DWT [Comupute coeffiecient in each scale/the shannon wavelet entropy in matlab]	* Provide clean code	7		- [play with gephi] - screenshots (signals transform, bar of autocorrelation, matrix of crosscorrelation, clusters of the graph) - import Jmod to do the cluster	
3		- make the code easy to read - code till SWE function with: input:words signals - do some experiments in real data - send the code on Thursday 10- 04-2014 - build function in MATLAB to plot data (Technical meeting for real data /	* Documents for code - make the code easy to read - code till SWE function with : input :words signals output: construction of signal in the first step and second step - build function in MATLAB to plot data	8	9/5/2014	implementation: clean: not write on harddrive [ok] flag: debug true/false [ok] epsylon: number(18)[ok] put 0 instead of 0.000000001 (using JMT) sparse vector, matrix [ok] return (sum<0.00001)?0:sum; not put the tsv in the hard [ok] time window parameter: one day size of the window	everything is done
4	1 1	plot some data)		9		clean the code; correct mistakes; finish the documentation; finish the slide for presentation	
				_		Case Study : F	vent Detection in Twitter - 27

Case Study: Event Detection in Twitter - 27

Acknowledge

Thank Jairo Cugliari & Adrien Guille for your guides, comments and discussions!

DISCUSSION

Thanks for your attention!;)

