Maladaptive plastic responses of flowering time to geothermal heating

Code for analyses in the paper (revised)

Alicia Valdés

Contents

Read data	2
Correlation between instant measures of soil temperature and mean soil temperature during the period April 1st $-$ June 5th recorded by loggers	;
Is soil temperature more weakly correlated with air temperature in warmer soils?	4
May	4
Figure 2: Correlations soil-air temperature vs soil temperature	
Appendix S3 (part 1)	7
April-May_june	7
Appendix S1: Correlations soil-air temperature vs soil temperature (April-June) $\dots \dots$	7
Appendix S2 (part 2)	ć
Hypothesis 1: Effect of temperature on FFD	g
Hypothesis 2: Effect of temperature on fitness	11
Figure 3: Effects of temperature on ffd and fitness	12
Hypothesis 3: Effect of temperature on selection on FFD	14
BCa intervals	15
Figure 4: Effects of temperature on selection	16
Appendix S3	18
Effect of temperature on the relationship absolute fitness-FFD	23
BCa intervals	24
Keep separate models for both years here?	25

```
Tests of residual spatial autocorrelation
            25
25
            25
 Moran's I
            30
 31
 31
 37
39
            40
 Moran's I
            44
 48
50
 Moran's I
            55
 56
 57
 59
R. Session Info
            60
load(file="output/BCIs_selection_1.RData")
load(file="output/BCIs_selectionabs_1.RData")
```

Read data

The location of these files would need to be changed.

```
data_plants<-read_csv("data/clean/data_plants.csv")
coords_pls_2017<-read.dbf("gis/coords_pls_2017.dbf")
coords_pls_2018<-read.dbf("gis/coords_pls_2018.dbf")
coords_pls_2017$year<-2017
coords_pls_2018$year<-2018
coords_pls_2017$id_original<-coords_pls_2017$pl_id
coords_pls_2017$pl_id<-NULL
coords_pls_2018$id_original<-coords_pls_2018$pl_id
coords_pls_2018$pl_id<-NULL
coords_pls_2018$pl_id<-NULL
coords_pls_2017$Id<-NULL
data_plants<-data_plants%>%left_join(rbind(coords_pls_2017,coords_pls_2018))
logger_data<-read_csv("data/clean/logger_data_pairs.csv")</pre>
```

```
#Defining coordinates and coordinate system####
coordinates(data_plants) <- c("x", "y")
project1<-"+proj=utm +zone=27 +ellps=WGS84 +datum=WGS84 +units=m +no_defs"
proj4string(data_plants) = CRS(project1) #assign CRS with projected coordinates

#Some plots
spplot(data_plants, "temp", do.log=T, colorkey = TRUE)</pre>
```



```
euclidDist <- sp::spDists(data_plants[c(1:4),],longlat = FALSE)</pre>
```

Correlation between instant measures of soil temperature and mean soil temperature during the period April 1st – June 5th recorded by loggers

For each logger_nr, get mean temperature during April-June and compare with temp_term (which was measured with a thermometer at 10 cm depth on May 2017):

```
with(logger_data%>%
    mutate(month = month(datetime)) %>%
    filter(month==4|month==5|month==6)%>%
    filter(above_below=="B")%>%
    mutate(date=date(datetime))%>%
```

```
filter(!is.na(date))%>% # remove records with no info on date
filter(datetime<"2018-06-06")%>% # keep only data until June 5
group_by(logger_nr) %>%
summarize(mean_logger=mean(temp),temp_term=mean(temp_term)),
cor.test(mean_logger,temp_term))
```

```
##
## Pearson's product-moment correlation
##
## data: mean_logger and temp_term
## t = 21.901, df = 139, p-value < 2.2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.8370572 0.9129479
## sample estimates:
## cor
## 0.8805259</pre>
```

Is soil temperature more weakly correlated with air temperature in warmer soils?

For each date and logger pair, calculate mean, max and min of air and soil temperature (from, respectively, the above and belowground logger). Then, calculate the correlation coefficient for air and soil temperatures over the period May or April-May-June. Finally, regress these correlation coefficients on mean soil temperature (from the belowground logger) for the same period (April-May-June).

May

```
data_corr<-(logger_data_pairs%>%
     mutate(month = month(datetime).date=date(datetime))%>%
              # new variables "month" and "date"
    filter(month==5)%>% # keep data from may
     group_by(date,pair,above_below)%>%
     summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
   #calculate mean, max and min of air and soil temperature
     pivot_wider(names_from="above_below", values_from=c("mean", "max", "min"))%>%
     group_by(pair)%>%
     summarise(corr_airsoil_mean=cor(mean_A,mean_B,use="pairwise.complete.obs"),
               corr_airsoil_max=cor(max_A,max_B,use="pairwise.complete.obs"),
               corr_airsoil_min=cor(min_A,min_B,use="pairwise.complete.obs"))%>%
   # Calculate correlations air-soil temperatures
     pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                  names_to="measure", values_to="corr")%>%
  left_join(logger_data_pairs%>%
                 mutate(month = month(datetime))%>%
                 filter(month==5)%>%
                 filter(above below=="B")%>%
                 group_by(pair)%>%
```

```
summarise(meansoiltemp=mean(temp))))
  # calculate mean soil temperature for may
model_mean<-lm(corr~meansoiltemp,</pre>
                data = subset(data_corr,measure=="corr_airsoil_mean"))
model_max<-lm(corr~meansoiltemp,</pre>
                data = subset(data_corr,measure=="corr_airsoil_max"))
model_min<-lm(corr~meansoiltemp,</pre>
                data = subset(data_corr,measure=="corr_airsoil_min"))
Predictions of correlations for minimum and maximum temperatures:
ggpredict(model_mean,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted |
                                    95% CI
##
           6.14 |
                         0.83 | [0.80, 0.86]
          30.55 | 0.61 | [0.55, 0.68]
##
ggpredict(model_max,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted | 95% CI
                         0.74 | [0.69, 0.79]
##
            6.14

      6.14 |
      0.74 |
      0.09, 0.79

      30.55 |
      0.37 |
      [0.26, 0.48]

##
ggpredict(model_min,terms="meansoiltemp[minmax]")
## # Predicted values of corr
##
## meansoiltemp | Predicted |
          6.14 | 0.75 | [0.73, 0.78]
30.55 | 0.59 | [0.53, 0.65]
##
##
```

Figure 2: Correlations soil-air temperature vs soil temperature

```
#calculate mean, max and min of air and soil temperature
          pivot_wider(names_from="above_below",
                      values from=c("mean", "max", "min"))%>%
          group_by(pair)%>%
          summarise(corr_airsoil_mean=cor(mean_A,mean_B,
                                           use="pairwise.complete.obs"),
                    corr_airsoil_max=cor(max_A,max_B,
                                         use="pairwise.complete.obs"),
                    corr_airsoil_min=cor(min_A,min_B,
                                         use="pairwise.complete.obs"))%>%
          # Calculate correlations air-soil temperatures
          pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                       names_to="measure",values_to="corr")%>%
          left_join(logger_data_pairs%>%
                      mutate(month = month(datetime))%>%
                      filter(month==5)%>%
                      filter(above_below=="B")%>%
                      group_by(pair)%>%
                      summarise(meansoiltemp=mean(temp))))%>%
  # calculate mean soil temperature for may
  ggplot(.,aes(x=meansoiltemp,y=corr,color=measure,fill=measure,shape=measure))+
  geom_smooth(method="lm",size=1)+geom_point(size=2,alpha=0.5)+
  xlab("Mean soil temperature (°C)")+
  ylab("Correlation coefficient\nsoil-air temperature")+
  my_theme()+scale_fill_manual(values=cbPalette)+
  scale colour manual(values=cbPalette)+
  scale shape manual(values=c(15,16,17)) +
  geom_text_repel(data=. %>% filter(corr<0),aes(label=pair))</pre>
fig2
```


Appendix S3 (part 1)

Linear models testing the effect of soil temperature on correlations between soil and air temperature (part of table in Appendix S3):

```
(logger_data_pairs%>%
    mutate(month = month(datetime), date=date(datetime))%>%
         # new variables "month" and "date"
    filter(month==5)%>% # keep data from may
    group_by(date,pair,above_below)%>%
    summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
  #calculate mean, max and min of air and soil temperature
    pivot_wider(names_from="above_below", values_from=c("mean", "max", "min"))%>%
    group by(pair)%>%
    summarise(corr_airsoil_mean=cor(mean_A,mean_B,use="pairwise.complete.obs"),
              corr_airsoil_max=cor(max_A,max_B,use="pairwise.complete.obs"),
              corr_airsoil_min=cor(min_A,min_B,use="pairwise.complete.obs"))%>%
  # Calculate correlations air-soil temperatures
    pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                 names to="measure", values to="corr")%>%
 left join(logger data pairs%>%
                mutate(month = month(datetime))%>%
                filter(month==5)%>%
                filter(above_below=="B")%>%
                 group_by(pair)%>%
             summarise(meansoiltemp=mean(temp))))%>%
 # calculate mean soil temperature for may
 group_by(measure)%>%
 do(fitcorr = tidy(lm(corr~meansoiltemp, data = .))) %>%
 unnest(fitcorr)%>%
 kable(digits=5)
```

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.83528	0.04012	20.81870	0e+00
corr_airsoil_max	meansoiltemp	-0.01521	0.00287	-5.29894	1e-05
corr_airsoil_mean	(Intercept)	0.88734	0.02275	39.00495	0e+00
corr_airsoil_mean	meansoiltemp	-0.00897	0.00163	-5.50910	0e+00
corr_airsoil_min	(Intercept)	0.79583	0.02147	37.06454	0e+00
corr_airsoil_min	meansoiltemp	-0.00684	0.00154	-4.44851	7e-05

April-May_june

Appendix S1: Correlations soil-air temperature vs soil temperature (April-June)

```
AppS1<-(logger_data_pairs%>%
    mutate(month = month(datetime),date=date(datetime))%>%
    # new variables "month" and "date"
    filter(month==4|month==5|month==6)%>% # keep data from april-june
    group_by(date,pair,above_below)%>%
    summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
    #calculate mean, max and min of air and soil temperature
    pivot_wider(names_from="above_below",
```

```
values_from=c("mean","max","min"))%>%
          group_by(pair)%>%
          summarise(corr_airsoil_mean=cor(mean_A,mean_B,
                                          use="pairwise.complete.obs"),
                    corr_airsoil_max=cor(max_A,max_B,
                                         use="pairwise.complete.obs"),
                    corr_airsoil_min=cor(min_A,min_B,
                                         use="pairwise.complete.obs"))%>%
          # Calculate correlations air-soil temperatures
          pivot longer(cols=corr airsoil mean:corr airsoil min,
                       names_to="measure",values_to="corr")%>%
          left_join(logger_data_pairs%>%
                      mutate(month = month(datetime))%>%
                      filter(month==4|month==5|month==6)%>%
                      filter(above_below=="B")%>%
                      group_by(pair)%>%
                      summarise(meansoiltemp=mean(temp))))%>%
  # calculate mean soil temperature for april-june
  ggplot(.,aes(x=meansoiltemp,y=corr,color=measure,fill=measure,shape=measure))+
  geom_smooth(method="lm",size=1)+geom_point(size=2,alpha=0.5)+
  xlab("Mean soil temperature (°C)")+
  ylab("Correlation coefficient\nsoil-air temperature")+
  my_theme()+scale_fill_manual(values=cbPalette)+
  scale_colour_manual(values=cbPalette)+
  scale shape manual(values=c(15,16,17)) +
  geom_text_repel(data=. %>% filter(corr<0),aes(label=pair))</pre>
AppS1
```



```
ggsave(filename="output/figures/AppS1.tiff",plot=AppS1,
     width=12,height=10,units="cm",dpi=300)
```

Appendix S2 (part 2)

Linear models testing the effect of soil temperature on correlations between soil and air temperature (part of table in Appendix S3):

```
(logger_data_pairs%>%
    mutate(month = month(datetime), date=date(datetime))%>%
         # new variables "month" and "date"
    filter(month==4|month==5|month==6)%>% # keep data from april-june
    group_by(date,pair,above_below)%>%
    summarise(mean=mean(temp,na.rm=T),max=max(temp),min=min(temp))%>%
  #calculate mean, max and min of air and soil temperature
    pivot_wider(names_from="above_below", values_from=c("mean", "max", "min"))%>%
    group by(pair)%>%
    summarise(corr_airsoil_mean=cor(mean_A,mean_B,use="pairwise.complete.obs"),
              corr_airsoil_max=cor(max_A,max_B,use="pairwise.complete.obs"),
              corr airsoil min=cor(min A,min B,use="pairwise.complete.obs"))%>%
  # Calculate correlations air-soil temperatures
    pivot_longer(cols=corr_airsoil_mean:corr_airsoil_min,
                 names_to="measure", values_to="corr")%>%
 left_join(logger_data_pairs%>%
                mutate(month = month(datetime))%>%
                filter(month==4|month==5|month==6)%>%
                filter(above_below=="B")%>%
                group_by(pair)%>%
             summarise(meansoiltemp=mean(temp))))%>%
 # calculate mean soil temperature for april-june
 group_by(measure)%>%
 do(fitcorr = tidy(lm(corr~meansoiltemp, data = .))) %>%
 unnest(fitcorr)%>%
 kable(digits=5)
```

measure	term	estimate	std.error	statistic	p.value
corr_airsoil_max	(Intercept)	0.77449	0.03184	24.32387	0
corr_airsoil_max	meansoiltemp	-0.01552	0.00236	-6.57111	0
corr_airsoil_mean	(Intercept)	0.91574	0.02391	38.29900	0
corr_airsoil_mean	meansoiltemp	-0.01752	0.00177	-9.88060	0
corr_airsoil_min	(Intercept)	0.75246	0.02361	31.87482	0
corr_airsoil_min	meansoiltemp	-0.01679	0.00175	-9.59056	0

Hypothesis 1: Effect of temperature on FFD

Models including quadratic effects of ffd.

```
data_plants$year_fct<-as.factor(data_plants$year)
FFD_1<-lm(ffd~(temp+I(temp^2))*year_fct,data_plants)
summ(FFD_1,vif=T)</pre>
```

Quadratic terms of ffd not significant. Refit models without quadratic terms of ffd.

Observations	349
Dependent variable	ffd
Type	OLS linear regression

F(5,343)	28.500
\mathbb{R}^2	0.294
$Adj. R^2$	0.283

	Est.	S.E.	t val.	р	VIF
(Intercept)	183.736	2.052	89.536	0.000	NA
temp	-0.779	0.254	-3.065	0.002	17.405
$I(temp^2)$	0.012	0.007	1.832	0.068	16.329
year_fct2018	18.016	4.167	4.323	0.000	16.426
$temp:year_fct2018$	-1.383	0.595	-2.322	0.021	76.002
$I(temp^2): year_fct2018$	0.021	0.017	1.219	0.224	35.733

FFD_1<-lm(ffd~temp*year_fct,data_plants)
summ(FFD_1,vif=T)</pre>

Observations	349
Dependent variable	ffd
Type	OLS linear regression

F(3,345)	44.212
\mathbb{R}^2	0.278
$Adj. R^2$	0.271

	Est.	S.E.	t val.	p	VIF
(Intercept)	180.626	1.162	155.505	0.000	NA
temp	-0.332	0.072	-4.620	0.000	1.369
$year_fct2018$	14.478	2.082	6.955	0.000	4.033
$temp:year_fct2018$	-0.738	0.140	-5.250	0.000	4.164

Standard errors: OLS

Predictions of ffd for minimum and maximum temperatures:

range(subset(data_plants,year==2017)\$temp)

[1] 4.1 45.5

range(subset(data_plants,year==2018)\$temp)

[1] 3.5 34.0

```
ggpredict(FFD_1,terms=c("temp[4.1,45.5]","year_fct[2017]"))
## # Predicted values of ffd
##
  temp | Predicted |
## 4.10 |
              179.26 | [177.47, 181.06]
## 45.50 |
              165.52 | [160.97, 170.08]
# 179.26-165.52=14 days earlier on warmer soils
ggpredict(FFD_1,terms=c("temp[3.5,34.0]","year_fct[2018]"))
## # Predicted values of ffd
##
## temp | Predicted |
             191.36 | [188.66, 194.06]
## 3.50 |
## 34.00 | 158.74 | [153.35, 164.13]
# 191.36-158.74=45 days earlier on warmer soils
```

Hypothesis 2: Effect of temperature on fitness

Observations	349
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.0752)$
Link	\log

$\chi^2()$	0.747	0.097	4472.025	4502.865
Pseudo-R ² (Cragg-Uhler)	0.747	0.097	4472.025	4502.865
Pseudo-R ² (McFadden)	0.747	0.097	4472.025	4502.865
AIC	0.747	0.097	4472.025	4502.865
BIC	0.747	0.097	4472.025	4502.865

Predictions of fitness for minimum and maximum temperatures:

```
range(subset(data_plants,year==2017)$temp)
```

```
## [1] 4.1 45.5
```

	Est.	S.E.	z val.	р	VIF
(Intercept)	4.227	0.168	25.104	0.000	NA
temp	-0.051	0.021	-2.498	0.012	17.929
$I(temp^2)$	0.001	0.001	1.064	0.287	16.480
$year_fct2018$	-1.158	0.334	-3.464	0.001	16.560
$\log(nfl)$	0.983	0.036	27.345	0.000	1.102
temp:year_fct2018	0.088	0.048	1.829	0.067	76.148
I(temp^2):year_fct2018	-0.003	0.001	-2.142	0.032	35.522

Standard errors: MLE

```
range(subset(data_plants,year==2018)$temp)
## [1] 3.5 34.0
ggpredict(fitness_1,terms=c("temp[4.1,45.5]","year_fct[2017]"))
## # Predicted counts of n_seed_round
##
##
  temp | Predicted |
                               95% CI
## -----
  4.10 |
            810.91 | [659.59, 996.93]
## 45.50 |
            311.40 | [142.72, 679.46]
## Adjusted for:
## * nfl = 15.17
ggpredict(fitness_1,terms=c("temp[3.5,34.0]","year_fct[2018]"))
## # Predicted counts of n_seed_round
##
##
  temp | Predicted |
## 3.50 |
             343.18 | [246.14, 478.48]
## 34.00 |
             63.33 | [ 29.27, 137.00]
##
## Adjusted for:
## * nfl = 15.17
```

Figure 3: Effects of temperature on ffd and fitness

Model prediction ffd: based on model FFD_1 (without quadratic term of ffd)

```
predict_FFD<-ggpredict(FFD_1,terms=c("temp [all]","year_fct"))</pre>
```

Model prediction fitness: based on model fitness_1

```
predict_fitness<-ggpredict(fitness_1,terms=c("temp [all]","year_fct"))</pre>
```

```
fig3<-
  grid.arrange(
    # ffd
    ggplot(data.frame(data_plants),aes(x=temp,y=ffd))+
  xlab("Soil temperature (°C)")+ylab("FFD\n(Day of year)")+my_theme()+
  geom_point(aes(color=year_fct), size=2, alpha=0.2)+
  geom_ribbon(data=subset(predict_FFD,group==2017&
                          x>=min(subset(data plants, year==2017)$temp)&
                          x<=max(subset(data_plants,year==2017)$temp)),
              aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
              alpha=0.5)+
  geom_line(data=subset(predict_FFD,group==2017&
                          x>=min(subset(data_plants,year==2017)$temp)&
                          x<=max(subset(data_plants, year==2017)$temp)),
            aes(x=x,y=predicted,color=group),size=1)+
  geom_ribbon(data=subset(predict_FFD,group==2018&
                            x>=min(subset(data_plants,year==2018)$temp)&
                            x<=max(subset(data_plants,year==2018)$temp)),
              aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
              alpha=0.5)+
  geom_line(data=subset(predict_FFD,group==2018&
                          x>=min(subset(data_plants,year==2018)$temp)&
                          x<=max(subset(data_plants,year==2018)$temp)),
            aes(x=x,y=predicted,color=group),size=1)+
  ggtitle("A)")+theme(plot.title=element text(hjust=-0.35,vjust=-3))+
  theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
  scale fill manual(values=cbPalette)+scale color manual(values=cbPalette),
    # fitness
    ggplot(data.frame(data_plants),aes(x=temp,y=nseed))+
     xlab("Soil temperature (OC)")+ylab("Fitness\n(number of seeds)")+
      my theme()+
      geom_point(aes(color=year_fct), size=2, alpha=0.2)+
      geom_ribbon(data=subset(predict_fitness,group==2017&
                          x>=min(subset(data_plants,year==2017)$temp)&
                          x<=max(subset(data_plants,year==2017)$temp)),
                  aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
                  alpha=0.5)+
      geom_line(data=subset(predict_fitness,group==2017&
                          x>=min(subset(data_plants,year==2017)$temp)&
                          x<=max(subset(data_plants,year==2017)$temp)),
                aes(x=x,y=predicted,color=group),size=1)+
    geom ribbon(data=subset(predict fitness,group==2018&
                          x>=min(subset(data_plants,year==2018)$temp)&
                          x<=max(subset(data_plants,year==2018)$temp)),
                  aes(x=x,y=predicted,ymin=conf.low,ymax=conf.high,fill=group),
                  alpha=0.5)+
      geom_line(data=subset(predict_fitness,group==2018&
                          x>=min(subset(data_plants,year==2018)$temp)&
                          x<=max(subset(data_plants,year==2018)$temp)),
                aes(x=x,y=predicted,color=group),size=1)+
      ggtitle("B)")+theme(plot.title=element_text(hjust=-0.35,vjust=-3))+
```

```
theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
    scale_fill_manual(values=cbPalette)+scale_color_manual(values=cbPalette)+
    scale_y_continuous(trans='log10'),
    ncol=2)
```


Hypothesis 3: Effect of temperature on selection on FFD

Models including quadratic effects of temp.

Observations	349
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(12,336)	26.559
\mathbb{R}^2	0.487
$Adj. R^2$	0.468

Quadratic terms of temp not significant. Refit models without quadratic terms of temp

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.612	0.277	5.812	0.000	NA
ffd_std	0.430	0.359	1.200	0.231	36.292
temp	-0.062	0.033	-1.845	0.066	18.854
$I(temp^2)$	0.001	0.001	1.040	0.299	17.109
year_fct2018	-0.227	0.716	-0.317	0.751	30.420
nfl_std	1.155	0.071	16.333	0.000	1.411
ffd_std:temp	-0.030	0.042	-0.718	0.473	174.924
$ffd_std:I(temp^2)$	0.001	0.001	0.581	0.562	76.286
$ffd_std:year_fct2018$	-0.851	0.738	-1.153	0.250	45.614
$temp:year_fct2018$	0.037	0.111	0.336	0.737	165.435
I(temp^2):year_fct2018	-0.001	0.004	-0.180	0.857	96.685
ffd_std:temp:year_fct2018	0.090	0.101	0.890	0.374	248.539
ffd_std:I(temp^2):year_fct2018	-0.002	0.003	-0.503	0.615	132.433

Observations	349
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(8,340)	39.925
\mathbb{R}^2	0.484
$Adj. R^2$	0.472

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.392	0.154	9.043	0.000	NA
ffd_std	0.285	0.189	1.510	0.132	10.148
temp	-0.029	0.010	-3.045	0.003	1.563
year_fct2018	-0.116	0.299	-0.388	0.699	5.357
nfl_std	1.146	0.070	16.436	0.000	1.382
$ffd_std:temp$	-0.008	0.009	-0.819	0.414	8.727
$ffd_std:year_fct2018$	-0.466	0.312	-1.496	0.136	8.189
$temp:year_fct2018$	0.016	0.022	0.721	0.472	6.547
ffd_std:temp:year_fct2018	0.035	0.018	1.909	0.057	8.373

Standard errors: OLS

BCa intervals

Used for assessing significance.

BCIs_selection_1

##	lower	upper
## ffd	-0.008584666	0.684259512
## temp	-0.052020609	-0.012808410
## year	-0.797945338	0.438874288
## nfl	0.910796373	1.512663133
## ffd:temp	-0.023623329	0.006147101
## ffd:year	-1.046057968	0.086767603

```
## temp:year -0.016084941 0.058141968
## ffd:temp:year 0.005119411 0.064779651
```

Figure 4: Effects of temperature on selection

```
quantile(subset(data_plants,year==2017)$temp,probs=c(0.05,0.95))
##
      5%
           95%
   6.32 26.90
quantile(subset(data_plants, year==2018) $temp, probs=c(0.05, 0.95))
##
       5%
             95%
## 5.060 25.825
pred_fitness_17<-ggpredict(selection_1,</pre>
                            terms = c("ffd_std[all]","temp[6.32:26.90]",
                                       "year_fct[2017]"))
pred_fitness_18<-ggpredict(selection_1,</pre>
                            terms = c("ffd_std[all]","temp[5.060:25.825]",
                                       "year fct[2018]"))
legend <- as_ggplot(get_legend(ggplot(pred_fitness_17,</pre>
                           aes(x,predicted,colour=group,fill=group))+
  geom_line(aes(color=as.numeric(as.character(group))),size=0.5)+my_theme()+
  scale_color_viridis()+
  theme(legend.position=c(0.5,0.75))+labs(colour="Soil\ntemperature\n({}^{\circ}C)")+
  xlab("Standardized FFD")+ylab(NULL)+ggtitle("A) 2017")))
fig4old<-grid.arrange(
  ggplot(pred_fitness_17,aes(x,predicted,colour=group,fill=group))+
    geom_line(aes(color=as.numeric(as.character(group))), size=0.5)+my_theme()+
    scale_color_viridis()+labs(colour="Soil temperature (OC)")+
    xlab("Standardized FFD")+ylab(NULL)+ggtitle("A) 2017")+
    scale_y = continuous(limits = c(-0.4, 2.8), breaks = c(0, 0.5, 1, 1.5, 2, 2.5)),
  ggplot(pred_fitness_18,aes(x,predicted,colour=group,fill=group))+
    geom_line(aes(color=as.numeric(as.character(group))), size=0.5) + my_theme() +
    scale color viridis()+labs(colour="Soil temperature (°C)")+
    xlab("Standardized FFD")+ylab(NULL)+ggtitle("B) 2018")+
    scale_y = continuous(limits = c(-0.4, 2.8), breaks = c(0, 0.5, 1, 1.5, 2, 2.5)),
  ncol=3,left=textGrob("Relative fitness",rot=90,just=0.7,
                        gp=gpar(fontsize=16,fontfamily="serif")),
  widths=c(1,1,0.3)
```



```
ggsave(filename="output/figures/fig4old.tiff",plot=fig4old,
     width=25,height=12,units="cm",dpi=300)
```

```
fig4<-cowplot::plot_grid(ggplot(data.frame(data_plants),</pre>
                                aes(x=ffd_std,y=nseed_rel))+
                           facet_grid(~year,scales="fixed")+
                           geom_point(size=1.5,alpha=0.3)+
                           my_theme()+ggtitle("A)")+
                           xlab("Standardized FFD")+ylab("Relative fitness")+
                           theme(plot.title=element_text(hjust=-0.1,vjust=-5))+
                           theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm")),
                         ggplot(rbind(data.frame(pred_fitness_17),
                                       data.frame(pred_fitness_18)),
                                aes(x,predicted,colour=group,fill=group))+
                           facet_grid(~facet,scales="free")+
                           geom_line(aes(color=as.numeric(as.character(group))),
                                      size=0.5)+
                           my_theme_legend()+
                           theme(legend.position="right")+ggtitle("B)")+
                           scale_color_viridis()+
                           labs(colour="Soil\ntemperature\n(^{\circ}C)")+
                           xlab("Standardized FFD")+ylab("Relative fitness")+
                           theme(plot.title=element_text(hjust=-0.1,vjust=-5))+
                           theme(plot.margin = unit(c(-0.6,0.3,0,0.3), "cm"))+
                           scale_y_continuous(limits=c(-0.4,2.8),
                                               breaks=c(0,0.5,1,1.5,2,2.5)),
                         ncol=1,align="v",axis="lr")
fig4
```


Appendix S3

```
quantile(subset(data_plants,year==2017)$temp)

## 0% 25% 50% 75% 100%
## 4.1 7.4 10.7 20.6 45.5

mean(subset(data_plants,year==2017&temp<=7.4)$temp)

## [1] 6.714286

# Mean cat 1 = 6.714286

mean(subset(data_plants,year==2017&temp>7.4&temp<=10.7)$temp)

## [1] 8.748333</pre>
```

```
# Mean cat 2 = 8.748333
mean(subset(data_plants,year==2017&temp>10.7&temp<=20.6)$temp)</pre>
## [1] 16.2129
# Mean\ cat\ 3 = 16.2129
mean(subset(data_plants,year==2017&temp>20.6)$temp)
## [1] 25.10667
# Mean cat 4 = 25.10667
quantile(subset(data_plants,year==2018)$temp)
       0%
             25%
                    50%
                            75%
                                  100%
## 3.500 6.875 9.300 17.075 34.000
mean(subset(data_plants,year==2018&temp<=6.875)$temp)
## [1] 5.784615
# Mean cat 1 = 5.784615
mean(subset(data_plants,year==2018&temp>6.875&temp<=9.300)$temp)</pre>
## [1] 7.95
# Mean cat 2 = 7.95
mean(subset(data_plants,year==2018&temp>9.300&temp<=17.075)$temp)</pre>
## [1] 12.45
# Mean\ cat\ 3 = 12.45
mean(subset(data_plants,year==2018&temp>17.075)$temp)
## [1] 23.28846
# Mean cat 4 = 23.28846
pred_fitness_17_cats<-rbind(</pre>
  (data.frame(ggpredict(selection_1,
                            terms = c("ffd_std[all]","temp[6.714286]",
                                      "year_fct[2017]")))%>%
     mutate(temp_cat=1)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                         terms = c("ffd_std[all]","temp[8.748333]",
                                      "year fct[2017]")))%>%
     mutate(temp_cat=2)%>%
```

```
dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[16.2129]",
                                      "year_fct[2017]")))%>%
     mutate(temp_cat=3)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd std[all]","temp[25.10667]",
                                      "year fct[2017]")))%>%
     mutate(temp cat=4)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)))
pred_fitness_18_cats<-rbind(</pre>
  (data.frame(ggpredict(selection_1,
                           terms = c("ffd_std[all]","temp[5.784615]",
                                      "year_fct[2018]")))%>%
     mutate(temp_cat=1)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[7.95]",
                                      "year fct[2018]")))%>%
     mutate(temp_cat=2)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd std[all]", "temp[12.45]",
                                      "year fct[2018]")))%>%
     mutate(temp cat=3)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)),
  (data.frame(ggpredict(selection_1,
                        terms = c("ffd_std[all]","temp[23.28846]",
                                      "year_fct[2018]")))%>%
     mutate(temp_cat=4)%>%
     dplyr::rename(FFD_std=x, fitness=predicted,temp=group)))
label_names1 <- list(</pre>
  '1'="First quarter\nMean temperature = 6.7°C",
  '2'="Second quarter\nMean temperature = 8.7°C",
  '3'="Third quarter\nMean temperature = 16.2°C",
  '4'="Fourth quarter\nMean temperature = 25.1°C"
labeller_function1 <- function(variable, value){</pre>
 return(label names1[value])
}
leg <- as_ggplot(get_legend(ggplot(subset(data.frame(data_plants),</pre>
                                           year==2017)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp_cat=as.factor(
           ifelse(temp\leq 7.4,1,
                  ifelse(temp>7.4&temp<=10.7,2,
                         ifelse(temp>10.7&temp<=20.6,3,4))))),
```

```
aes(x=ffd_std,y=nseed_rel))+
 facet_grid(~temp_cat,scales="free",
             labeller=labeller(temp_cat=labeller_function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_17_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_17_cats,aes(x=FFD_std,y=fitness,
                                     ymin=conf.low,ymax=conf.high,
                                     fill=temp_cat),alpha=0.3)+
 my theme()+scale color viridis(labels=NULL)+scale fill viridis(labels=NULL)+
 theme(legend.position="top")+labs(colour="Temperature (°C)
 xlab("Standardized FFD")+
 ylab("Relative fitness")+
 \#scale_x\_continuous(breaks=c(-4,-2,0,2,4,6,8))+
 theme(strip.text.x=element_text(margin=margin(2,0,2,0)))+
 guides(fill=FALSE)+ggtitle("A) 2017")))
AppS3<-grid.arrange(leg,
            ggplot(subset(data.frame(data_plants),year==2017)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp_cat=as.factor(
           ifelse(temp\leq 7.4,1,
                  ifelse(temp>7.4&temp<=10.7,2,
                         ifelse(temp>10.7&temp<=20.6,3,4))))),
       aes(x=ffd std,y=nseed rel))+
 facet grid(~temp cat,scales="free",
            labeller=labeller(temp cat=labeller function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_17_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_17_cats,aes(x=FFD_std,y=fitness,
                                     ymin=conf.low,ymax=conf.high,
                                     fill=temp_cat),alpha=0.3)+
 my_theme()+scale_color_viridis(labels=NULL)+scale_fill_viridis(labels=NULL)+
                                     ")+
 labs(colour="Temperature (°C)
 xlab("Standardized FFD")+
 ylab("Relative fitness")+
  \#scale_x\_continuous(breaks=c(-4,-2,0,2,4,6,8))+
 theme(strip.text.x=element_text(margin=margin(2,0,2,0)))+
 guides(fill=FALSE)+ggtitle("A) 2017"),
 ggplot(subset(data.frame(data_plants),year==2018)%>%
         # Define 4 temp categories based on quartiles
         mutate(temp cat=as.factor(
           ifelse(temp<=6.875,1,
                  ifelse(temp>6.875&temp<=9.300,2,
                         ifelse(temp>9.300&temp<=17.075,3,4))))),
       aes(x=ffd_std,y=nseed_rel))+
 facet_grid(~temp_cat,scales="free",
             labeller=labeller(temp_cat=labeller_function1))+
 geom_jitter(size=1.5,alpha=0.3,width=0.05)+
 geom_line(data=pred_fitness_18_cats,
            aes(x=FFD_std,y=fitness,color=temp_cat),size=1)+
 geom_ribbon(data=pred_fitness_18_cats,aes(x=FFD_std,y=fitness,
```

Temperature (°C)

A) 2017

B) 2018

Predictions of fitness:

In 2018, the model predicted that selection favoured earlier flowering at soil temperatures up to 6.5 $^{\circ}$ C, while later flowering was favoured at higher soil temperatures.

Effect of temperature on the relationship absolute fitness-FFD

Models including quadratic effects of temp.

Observations	349
Dependent variable	nseed
Type	OLS linear regression

F(12,336)	22.428
\mathbb{R}^2	0.445
$Adj. R^2$	0.425

Quadratic terms of temp not significant. Refit models withouth quadratic terms of temp.

	Est.	S.E.	t val.	p	VIF
(Intercept)	-3702.327	4319.099	-0.857	0.392	NA
ffd	19.653	24.277	0.810	0.419	61.046
temp	222.177	498.972	0.445	0.656	14320.683
$I(temp^2)$	-4.978	13.387	-0.372	0.710	14002.892
year_fct2018	3144.184	6321.543	0.497	0.619	8065.191
$\log(\mathrm{nfl})$	515.262	35.200	14.638	0.000	1.436
ffd:temp	-1.437	2.833	-0.507	0.612	13179.891
$ffd:I(temp^2)$	0.031	0.076	0.404	0.687	13350.712
ffd:year_fct2018	-22.143	35.261	-0.628	0.530	8366.639
$temp:year_fct2018$	-688.831	808.454	-0.852	0.395	29903.418
I(temp^2):year_fct2018	17.705	23.116	0.766	0.444	13413.326
$ffd:temp:year_fct2018$	4.243	4.613	0.920	0.358	29190.766
ffd:I(temp^2):year_fct2018	-0.107	0.134	-0.799	0.425	12886.949

Observations	349
Dependent variable	nseed
Type	OLS linear regression

F(8,340)	33.702
R^2	0.442
$Adj. R^2$	0.429

	Est.	S.E.	t val.	p	VIF
(Intercept)	-2643.509	2290.279	-1.154	0.249	NA
ffd	13.084	12.794	1.023	0.307	17.081
temp	54.818	110.909	0.494	0.621	712.772
$year_fct2018$	-226.645	2888.248	-0.078	0.937	1696.073
$\log(\text{nfl})$	509.726	34.707	14.686	0.000	1.407
ffd:temp	-0.396	0.630	-0.628	0.530	657.537
ffd:year_fct2018	-1.890	15.990	-0.118	0.906	1733.237
$temp:year_fct2018$	-125.856	157.307	-0.800	0.424	1140.545
ffd:temp:year_fct2018	0.845	0.891	0.948	0.344	1097.854

Standard errors: OLS

BCa intervals

Used for assessing significance.

BCIs_selectionabs_1

```
##
                       lower
                                    upper
## ffd
                   -7.183279 40.9875411
                 -110.875215 246.8754244
## temp
                -4437.256576 4207.5829387
## year
## nfl
                  387.139500 711.7212794
## ffd:temp
                   -1.508089
                               0.5633312
                  -27.527025
## ffd:year
                               21.3947202
## temp:year
                 -362.614782 92.6495408
## ffd:temp:year
                   -0.417493
                                2.2024819
```

Keep separate models for both years here?

Tests of residual spatial autocorrelation

I think it makes no sense to test for spatial autocorrelation in the residuals of models with year as a factor, because we are mixing plants for different years.

By now, I will run separate models for each year and test for residual spatial autocorrelation in those.

Hypothesis 1

```
FFD_2017<-lm(ffd~temp, subset(data_plants, year==2017))
FFD_2018<-lm(ffd~temp, subset(data_plants, year==2018))
summ(FFD_2017)</pre>
```

Observations	245
Dependent variable	ffd
Type	OLS linear regression

F(1,243)	29.049
\mathbb{R}^2	0.107
$Adj. R^2$	0.103

	Est.	S.E.	t val.	р
(Intercept)	180.626	0.996	181.397	0.000
$_{\mathrm{temp}}$	-0.332	0.062	-5.390	0.000

Standard errors: OLS

summ(FFD_2018)

Spatial correlograms

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(1,102)	48.102
\mathbb{R}^2	0.320
$Adj. R^2$	0.314

	Est.	S.E.	t val.	р
(Intercept)	195.104	2.206	88.424	0.000
$_{\mathrm{temp}}$	-1.070	0.154	-6.936	0.000

```
res_FFD_2017<-residuals(FFD_2017)
res_FFD_2018<-residuals(FFD_2018)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_FFD_2017)

Correlogram

plot(correlog_FFD_2018)

Correlogram

plot(spline.correlog_FFD_2017)

plot(spline.correlog_FFD_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_FFD_2017 # Significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.04303, observed rank = 980, p-value = 0.02
## alternative hypothesis: greater
```

```
##
    Monte-Carlo simulation of Moran I
##
##
## data: res_FFD_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
## statistic = 0.082696, observed rank = 962, p-value = 0.038
## alternative hypothesis: greater
Moran's eigenvector mapping
ME.FFD_2017 <-ME(FFD_2017, listw=data_plants.listw_2017,
                data=subset(data_plants,year==2017),
                alpha=0.1,verbose=T)
## eV[,11], I: 0.01463088 ZI: NA, pr(ZI): 0.16
ME.FFD_2018 <-ME(FFD_2018, listw=data_plants.listw_2018,
                data=subset(data_plants,year==2018),
                alpha=0.1,verbose=T)
## eV[,4], I: 0.02947613 ZI: NA, pr(ZI): 0.19
vector1_2017_FFD<-ME.FFD_2017$vectors[,1]</pre>
vector1_2018_FFD<-ME.FFD_2018$vectors[,1]</pre>
FFD_2017_ME<-lm(ffd~temp+vector1_2017_FFD,
                 subset(data_plants,year==2017))
FFD_2018_ME<-lm(ffd~temp+vector1_2018_FFD,subset(data_plants,year==2018))
summ(FFD_2017_ME)
                            Observations
                                                                245
                            Dependent variable
                                                                 ffd
                                                OLS linear regression
                            Type
                                        F(2,242)
                                                  18.245
                                        \mathbb{R}^2
                                                   0.131
                                        Adj. R<sup>2</sup>
                                                   0.124
```

moran_FFD_2018 # Significant autocorrelation in the residuals

Tests of residual spatial autocorrelation

summ(FFD_2018_ME)

	Est.	S.E.	t val.	р
(Intercept)	180.866	0.988	182.973	0.000
temp	-0.349	0.061	-5.700	0.000
$vector1_2017_FFD$	19.614	7.548	2.599	0.010

Observations	104
Dependent variable	ffd
Type	OLS linear regression

F(2,101)	28.531
\mathbb{R}^2	0.361
$Adj. R^2$	0.348

	Est.	S.E.	t val.	p
(Intercept)	193.920	2.200	88.129	0.000
temp	-0.974	0.155	-6.284	0.000
vector1_2018_FFD	28.781	11.368	2.532	0.013

Standard errors: OLS

```
res_FFD_2017_ME<-residuals(FFD_2017_ME)
res_FFD_2018_ME<-residuals(FFD_2018_ME)
```

Spatial correlograms

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_FFD_2017_ME)

Correlogram

plot(correlog_FFD_2018_ME)

Correlogram

plot(spline.correlog_FFD_2017_ME)

plot(spline.correlog_FFD_2018_ME)

Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_FFD_2017_ME # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.014631, observed rank = 846, p-value = 0.154
## alternative hypothesis: greater

moran_FFD_2018_ME # No significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_FFD_2018_ME
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.029476, observed rank = 818, p-value = 0.182
## alternative hypothesis: greater
```

Plots SI

```
# FFD 2017
corr FFD 2017<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog FFD 2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog_FFD_2017$correlation[1:31]),
                      p=as.vector(correlog_FFD_2017$p[1:31])))
corr_FFD_2017_ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog_FFD_2017_ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog_FFD_2017_ME$correlation[1:31]),
                                   p=as.vector(correlog_FFD_2017_ME$p[1:31])))
corr_FFD_2017$type<-"FFD_2017"
corr_FFD_2017_ME$type<-"FFD_2017_ME"
corr_FFD_2017<-rbind(corr_FFD_2017,corr_FFD_2017_ME)</pre>
corr FFD 2017$sig<-as.factor(ifelse(corr FFD 2017$p<0.05,1,0))
# FFD 2018
corr_FFD_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_FFD_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog FFD 2018$correlation[1:31]),
                       p=as.vector(correlog_FFD_2018$p[1:31])))
corr_FFD_2018_ME<-data.frame(cbind(distance=</pre>
                                      correlog_FFD_2018_ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog_FFD_2018_ME$correlation[1:31]),
                                   p=as.vector(correlog_FFD_2018_ME$p[1:31])))
corr_FFD_2018$type<-"FFD_2018"
corr_FFD_2018_ME$type<-"FFD_2018_ME"
corr_FFD_2018<-rbind(corr_FFD_2018,corr_FFD_2018_ME)</pre>
corr_FFD_2018$sig<-as.factor(ifelse(corr_FFD_2018$p<0.05,1,0))</pre>
# CHANGE MORAN'S I VALUES
App_FFD<-grid.arrange(
  ggplot(corr_FFD_2017,aes(x=distance, y=correlation)) +
    geom_point(aes(colour=type,shape=sig),size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                        breaks=c(0,5,10,15,20,25,30)) +
```

scale_y_continuous(limits=c(-2,1),

```
breaks = seq(-2,1,0.5))+
  scale_shape_manual(values=c(1,19))+
  scale_color_manual(values=c("black", "darkgrey"))+
  geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
 my_theme()+ggtitle("A) 2017")+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.043, p = 0.027",
                                      x=0.1,y=0.97,hjust=0,
                                      gp=gpar(col="black",fontsize=14,
                                              fontfamily="serif"))))+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.015, p = 0.174",
                                      x=0.1, y=0.92, hjust=0,
                                      gp=gpar(col="darkgrey",fontsize=14,
                                              fontfamily="serif")))),
ggplot(corr_FFD_2018,aes(x=distance, y=correlation)) +
  geom_point(aes(colour=type,shape=sig),size=2) +
 geom_line(aes(colour=type)) + ylab(NULL)+
  scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                     breaks=c(0,5,10,15,20,25,30)) +
  scale_y_continuous(limits=c(-2,1),
                     breaks = seq(-2,1,0.5))+
  scale_shape_manual(values=c(1,19))+
  scale_color_manual(values=c("black", "darkgrey"))+
 geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
 my_theme()+ggtitle("B) 2018")+
  annotation custom(grobTree(textGrob("Global Moran's I = 0.083, p = 0.035",
                                      x=0.1, y=0.97, hjust=0,
                                      gp=gpar(col="black",fontsize=14.
                                              fontfamily="serif"))))+
  annotation_custom(grobTree(textGrob("Global Moran's I = 0.029, p = 0.209",
                                      x=0.1, y=0.92, hjust=0,
                                      gp=gpar(col="darkgrey",fontsize=14,
                                              fontfamily="serif")))),
ncol=2,left=textGrob("Correlation (Moran's I)",just="center",
                    hjust=0.42,
                    gp=gpar(fontsize=16,fontfamily="serif"),
                    rot = 90))
```


Hypothesis 2

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative Binomial(2.0993)
Link	\log

$\chi^2()$	0.722	0.088	3273.106	3287.112
Pseudo-R ² (Cragg-Uhler)	0.722	0.088	3273.106	3287.112
Pseudo-R ² (McFadden)	0.722	0.088	3273.106	3287.112
AIC	0.722	0.088	3273.106	3287.112
BIC	0.722	0.088	3273.106	3287.112

	Est.	S.E.	z val.	p	VIF
(Intercept)	4.079	0.113	36.029	0.000	NA
$_{ m temp}$	-0.030	0.006	-5.117	0.000	1.094
$\log(\mathrm{nfl})$	0.982	0.042	23.377	0.000	1.094

Standard errors: MLE

summ(fitness_2018, vif=T)

Observations	104
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative Binomial(1.9313)
Link	\log

$\chi^2()$	0.684	0.091	1203.369	1213.947
Pseudo-R ² (Cragg-Uhler)	0.684	0.091	1203.369	1213.947
Pseudo-R ² (McFadden)	0.684	0.091	1203.369	1213.947
AIC	0.684	0.091	1203.369	1213.947
BIC	0.684	0.091	1203.369	1213.947

	Est.	S.E.	z val.	p	VIF
(Intercept)	3.543	0.188	18.878	0.000	NA
$_{ m temp}$	-0.042	0.010	-4.166	0.000	1.003
$\log(nfl)$	0.981	0.069	14.202	0.000	1.003

Standard errors: MLE

Spatial correlograms

```
res_fitness_2017<-residuals(fitness_2017)
res_fitness_2018<-residuals(fitness_2018)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_fitness_2017)

Correlogram

plot(correlog fitness 2018)

Correlogram

plot(spline.correlog_fitness_2017)

plot(spline.correlog_fitness_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

```
moran_fitness_2017 # Significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.12186, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

moran_fitness_2018 # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.054454, observed rank = 891, p-value = 0.109
## alternative hypothesis: greater
```

Moran's eigenvector mapping

Observations	245
Dependent variable	n_seed_round
Type	Generalized linear model
Family	Negative $Binomial(2.2191)$
Link	\log

$\chi^2()$	0.739	0.092	3261.922	3282.929
Pseudo-R ² (Cragg-Uhler)	0.739	0.092	3261.922	3282.929
Pseudo-R ² (McFadden)	0.739	0.092	3261.922	3282.929
AIC	0.739	0.092	3261.922	3282.929
BIC	0.739	0.092	3261.922	3282.929

Tests of residual spatial autocorrelation

```
res_fitness_2017_ME<-residuals(fitness_2017_ME)
```

	Est.	S.E.	z val.	p
(Intercept)	4.102	0.112	36.788	0.000
temp	-0.029	0.006	-5.027	0.000
$\log(nfl)$	0.960	0.042	22.870	0.000
$vector 1_2017_fitness$	-2.297	0.684	-3.360	0.001
$vector 2_2017_fitness$	-1.418	0.693	-2.046	0.041

Standard errors: MLE

Spatial correlograms

```
## 10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_fitness_2017_ME)
```

Correlogram

plot(spline.correlog_fitness_2017_ME)

Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

```
moran_fitness_2017_ME # STILL significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_fitness_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.098683, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

Plots SI

```
# fitness_2017
corr_fitness_2017<-data.frame(cbind(distance=</pre>
```

```
as.vector(correlog_fitness_2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog_fitness_2017$correlation[1:31]),
                      p=as.vector(correlog_fitness_2017$p[1:31])))
corr_fitness_2017_ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog_fitness_2017_ME$mean.of.class[1:31]),
                                  correlation=
                                   as.vector(correlog fitness 2017 ME$correlation[1:31]),
                                  p=as.vector(correlog_fitness_2017_ME$p[1:31])))
corr_fitness_2017$type<-"fitness_2017"
corr_fitness_2017_ME$type<-"fitness_2017_ME"
corr_fitness_2017<-rbind(corr_fitness_2017,corr_fitness_2017_ME)</pre>
corr fitness 2017$sig<-as.factor(ifelse(corr fitness 2017$p<0.05,1,0))
# fitness 2018
corr_fitness_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_fitness_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog_fitness_2018$correlation[1:31]),
                      p=as.vector(correlog_fitness_2018$p[1:31])))
corr_fitness_2018$sig<-as.factor(ifelse(corr_fitness_2018$p<0.05,1,0))</pre>
# CHANGE MORAN'S I VALUES
App_fitness<-grid.arrange(</pre>
  ggplot(corr_fitness_2017,aes(x=distance, y=correlation)) +
   geom_point(aes(colour=type,shape=sig),size=2) +
   geom_line(aes(colour=type)) + ylab(NULL)+
    scale x continuous ("Distance (mean of class)", limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale y continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    scale_color_manual(values=c("black", "darkgrey"))+
    geom hline(aes(yintercept=0), colour="grey",linetype=3)+
   my_theme()+ggtitle("A) 2017")+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.043, p = 0.027",
                                         x=0.1, y=0.97, hjust=0,
                                         gp=gpar(col="black",fontsize=14,
                                                 fontfamily="serif"))))+
    annotation custom(grobTree(textGrob("Global Moran's I = 0.015, p = 0.174",
                                         x=0.1,y=0.92,hjust=0,
                                         gp=gpar(col="darkgrey",fontsize=14,
                                                 fontfamily="serif")))),
  ggplot(corr_fitness_2018,aes(x=distance, y=correlation)) +
    geom point(aes(shape=sig),size=2,color="black") +
   geom_line(color="black") + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale_shape_manual(values=c(1,19))+
    geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
   my_theme()+ggtitle("B) 2018")+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.083, p = 0.035",
```


Hypothesis 3

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,240)	51.549
\mathbb{R}^2	0.462
$Adj. R^2$	0.453

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.408	0.166	8.460	0.000	NA
ffd_std	0.331	0.206	1.602	0.110	7.311
temp	-0.030	0.010	-2.937	0.004	1.151
nfl_std	1.213	0.089	13.663	0.000	1.354
$ffd_std:temp$	-0.009	0.010	-0.848	0.397	6.682

Standard errors: OLS

summ(selection_2018, vif=T)

Observations	104
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(4,99)	34.660
\mathbb{R}^2	0.583
$Adj. R^2$	0.567

	Est.	S.E.	t val.	p	VIF
(Intercept)	1.374	0.201	6.825	0.000	NA
ffd_std	-0.293	0.205	-1.431	0.156	5.999
temp	-0.021	0.016	-1.368	0.174	1.805
nfl_std	0.976	0.101	9.679	0.000	1.453
$ffd_std:temp$	0.027	0.012	2.241	0.027	5.976

Standard errors: OLS

${\bf Spatial\ correlograms}$

```
res_selection_2017<-residuals(selection_2017)
res_selection_2018<-residuals(selection_2018)
```

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_selection_2017)

Correlogram

plot(correlog_selection_2018)

Correlogram

plot(spline.correlog_selection_2017)

plot(spline.correlog_selection_2018)

Moran's I

Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

```
moran_selection_2017 # Significant autocorrelation in the residuals
```

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2017
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.097925, observed rank = 1000, p-value = 0.001
## alternative hypothesis: greater
```

moran_selection_2018 # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2018
## weights: data_plants.listw_2018
## number of simulations + 1: 1000
##
## statistic = 0.025308, observed rank = 772, p-value = 0.228
## alternative hypothesis: greater
```

Moran's eigenvector mapping

Observations	245
Dependent variable	$nseed_rel$
Type	OLS linear regression

F(6,238)	41.275
\mathbb{R}^2	0.510
$Adj. R^2$	0.498

	Est.	S.E.	t val.	p
(Intercept)	1.377	0.163	8.456	0.000
ffd_std	0.422	0.200	2.113	0.036
temp	-0.029	0.010	-2.848	0.005
nfl_std	1.150	0.086	13.326	0.000
vector1_2017_selection	-4.244	1.158	-3.666	0.000
vector2_2017_selection	-3.725	1.188	-3.135	0.002
ffd_std:temp	-0.012	0.010	-1.284	0.200

Standard errors: OLS

Tests of residual spatial autocorrelation

```
res_selection_2017_ME<-residuals(selection_2017_ME)
```

Spatial correlograms

10 of 100 20 of 100 30 of 100 40 of 100 50 of 100 60 of 100 70 of 100 80 of 100 90 plot(correlog_selection_2017_ME)

Correlogram

Moran's I Calculation of global Moran's I with a permutation test (1000 random permutations), based on a connectivity matrix of pairwise Euclidean distances among the plants up to a distance of 30 m.

moran_selection_2017_ME # No significant autocorrelation in the residuals

```
##
## Monte-Carlo simulation of Moran I
##
## data: res_selection_2017_ME
## weights: data_plants.listw_2017
## number of simulations + 1: 1000
##
## statistic = 0.019028, observed rank = 876, p-value = 0.124
## alternative hypothesis: greater
```

Plots SI

```
# selection_2017
corr_selection_2017<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_selection_2017$mean.of.class[1:31]),
                      correlation=as.vector(correlog selection 2017$correlation[1:31]),
                      p=as.vector(correlog_selection_2017$p[1:31])))
corr selection 2017 ME<-data.frame(cbind(distance=</pre>
                                    as.vector(
                                      correlog selection 2017 ME$mean.of.class[1:31]),
                                  correlation=
                                    as.vector(correlog_selection_2017_ME$correlation[1:31]),
                                   p=as.vector(correlog_selection_2017_ME$p[1:31])))
corr_selection_2017$type<-"selection_2017"
corr_selection_2017_ME$type<-"selection_2017_ME"</pre>
corr_selection_2017<-rbind(corr_selection_2017,corr_selection_2017_ME)</pre>
corr_selection_2017$sig<-as.factor(ifelse(corr_selection_2017$p<0.05,1,0))</pre>
# selection_2018
corr_selection_2018<-data.frame(cbind(distance=</pre>
                                 as.vector(correlog_selection_2018$mean.of.class[1:31]),
                      correlation=as.vector(correlog_selection_2018$correlation[1:31]),
                      p=as.vector(correlog selection 2018$p[1:31])))
corr_selection_2018$sig<-as.factor(ifelse(corr_selection_2018$p<0.05,1,0))</pre>
# CHANGE MORAN'S I VALUES
App_selection<-grid.arrange(
  ggplot(corr_selection_2017,aes(x=distance, y=correlation)) +
    geom_point(aes(colour=type, shape=sig), size=2) +
    geom_line(aes(colour=type)) + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale_y_continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
    scale shape manual(values=c(1,19))+
    scale_color_manual(values=c("black", "darkgrey"))+
    geom_hline(aes(yintercept=0), colour="grey",linetype=3)+
    my_theme()+ggtitle("A) 2017")+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.043, p = 0.027",
                                         x=0.1, y=0.97, hjust=0,
                                         gp=gpar(col="black",fontsize=14,
                                                 fontfamily="serif"))))+
    annotation_custom(grobTree(textGrob("Global Moran's I = 0.015, p = 0.174",
                                         x=0.1, y=0.92, hjust=0,
                                         gp=gpar(col="darkgrey",fontsize=14,
                                                 fontfamily="serif")))),
  ggplot(corr_selection_2018,aes(x=distance, y=correlation)) +
    geom_point(aes(shape=sig),size=2,color="black") +
    geom_line(color="black") + ylab(NULL)+
    scale_x_continuous("Distance (mean of class)",limits=c(0,30),
                       breaks=c(0,5,10,15,20,25,30)) +
    scale y continuous(limits=c(-2,1),
                       breaks = seq(-2,1,0.5))+
```


R Session Info

```
## R version 4.1.2 (2021-11-01)
## Platform: x86_64-w64-mingw32/x64 (64-bit)
```

```
## Running under: Windows 10 x64 (build 19043)
##
## Matrix products: default
##
## locale:
## [1] LC COLLATE=English Sweden.1252 LC CTYPE=English Sweden.1252
## [3] LC MONETARY=English Sweden.1252 LC NUMERIC=C
## [5] LC_TIME=English_Sweden.1252
##
## attached base packages:
## [1] grid
                 stats
                           graphics grDevices utils
                                                          datasets methods
## [8] base
## other attached packages:
  [1] spatialreg_1.2-1
                           Matrix_1.4-0
                                               spdep_1.2-1
                                                                   sf_1.0-5
##
   [5] spData_2.0.1
                           ncf_1.2-9
                                               sp_1.4-6
                                                                   foreign_0.8-82
## [9] ggrepel_0.9.1
                           viridis_0.6.2
                                               viridisLite_0.4.0
                                                                   car_3.0-12
## [13] lmtest 0.9-39
                           zoo 1.8-9
                                               ggforce 0.3.3
                                                                   lubridate 1.8.0
## [17] effects_4.2-1
                           carData_3.0-5
                                               segmented_1.3-4
                                                                   MASS_7.3-54
## [21] MuMIn 1.43.17
                           ggeffects_1.1.1
                                               kableExtra 1.3.4
                                                                   jtools_2.1.4
## [25] ggpubr_0.4.0
                           broom_0.7.11
                                               RColorBrewer_1.1-2 DHARMa_0.4.5
## [29] gridExtra_2.3
                                               ggthemes 4.2.4
                                                                   forcats_0.5.1
                           knitr_1.37
## [33] stringr_1.4.0
                                                                   readr_2.1.1
                           dplyr_1.0.6
                                               purrr 0.3.4
                           tibble_3.1.2
## [37] tidyr_1.1.4
                                               ggplot2_3.3.5
                                                                   tidyverse 1.3.1
##
## loaded via a namespace (and not attached):
  [1] readxl_1.3.1
                           backports_1.4.1
                                               systemfonts_1.0.3
                                                                   splines_4.1.2
   [5] digest_0.6.27
                           htmltools_0.5.2
                                                                   fansi_0.4.2
##
                                               gdata_2.18.0
## [9] magrittr_2.0.1
                           tzdb_0.2.0
                                               modelr_0.1.8
                                                                   gmodels_2.18.1
## [13] vroom_1.5.7
                           svglite_2.0.0
                                               colorspace_2.0-1
                                                                   rvest_1.0.2
## [17] mitools_2.4
                           haven_2.4.3
                                               xfun_0.29
                                                                   rgdal_1.5-28
## [21] crayon_1.4.2
                           jsonlite_1.7.3
                                               lme4_1.1-27.1
                                                                   survival_3.2-13
## [25] glue_1.4.2
                           polyclip_1.10-0
                                               gtable_0.3.0
                                                                   webshot_0.5.2
                           scales_1.1.1
## [29] abind_1.4-5
                                               DBI_1.1.2
                                                                   rstatix_0.7.0
## [33] Rcpp 1.0.8
                           units 0.7-2
                                               bit 4.0.4
                                                                   proxy_0.4-26
## [37] stats4_4.1.2
                           survey_4.1-1
                                               httr_1.4.2
                                                                   wk_0.6.0
## [41] ellipsis_0.3.2
                           pkgconfig 2.0.3
                                               farver 2.1.0
                                                                   nnet 7.3-17
## [45] dbplyr_2.1.1
                           deldir_1.0-6
                                               utf8_1.2.1
                                                                   labeling_0.4.2
                           rlang_0.4.10
                                               munsell_0.5.0
                                                                   cellranger_1.1.0
## [49] tidyselect_1.1.1
                           cli_3.1.1
## [53] tools_4.1.2
                                               generics_0.1.1
                                                                   sjlabelled_1.1.8
                           fastmap_1.1.0
                                                                   bit64 4.0.5
## [57] evaluate 0.14
                                               yaml_2.2.2
## [61] fs 1.5.2
                           pander 0.6.4
                                               s2 1.0.7
                                                                   nlme 3.1-155
## [65] xml2 1.3.3
                           compiler_4.1.2
                                               rstudioapi_0.13
                                                                   e1071_1.7-9
## [69] ggsignif_0.6.3
                                               tweenr_1.0.2
                                                                   stringi_1.7.6
                           reprex_2.0.1
## [73] highr_0.9
                           lattice_0.20-45
                                               classInt_0.4-3
                                                                   nloptr_1.2.2.3
## [77] vctrs_0.3.8
                           pillar_1.6.1
                                               LearnBayes_2.15.1
                                                                   lifecycle_1.0.1
## [81] cowplot_1.1.1
                           insight_0.15.0
                                               raster_3.4-10
                                                                   R6_2.5.1
## [85] KernSmooth_2.23-20 codetools_0.2-18
                                               boot_1.3-28
                                                                   gtools_3.9.2
## [89] assertthat_0.2.1
                           withr_2.4.3
                                               mgcv_1.8-38
                                                                   expm_0.999-6
## [93] parallel_4.1.2
                           hms_1.1.1
                                               coda_0.19-4
                                                                   class_7.3-20
## [97] minqa_1.2.4
                           rmarkdown_2.11
```