Advanced NLP tasks

Contents

- 1. Named Entity Recognition (NER)
 - a. Part-of-Speech Tagging (POS)
 - b. Conditional Random Field (CRF)
 - c. Weakly Supervised NER
- 2. Sentiment Analysis
- 3. Natural Language Inference (NLI)
- 4. QuestionAnswering (QA)
 - a. Going further: LM as knowledge graphs
- 5. Exploit LLMs capacities: Chain-of-thoughts & In context learning

Named Entity Recognition (NER)

NER

Named entity recognition (NER), aims at identifying real-world entity mentions from texts, and classifying them into predefined types.

Gold Dataset

Suxamethonium infusion rate and observed fasciculations.

Suxamethonium chloride (Sch) was administred i.v.

NER

We wish to predict an output vector $\mathbf{y}=(y_1,y_1,\ldots,y_L)$, of random variables, given an observed characteristic vector

$$\mathbf{x} = (x_1, x_2, \ldots, x_L)$$

y takes it value from a list of N possible values.

Part-of-Speech Tagging (POS)

POS is the process of mapping words in a text with a label corresponding to their grammatical class.

```
("He", "likes", "to", "drink", "tea"), \rightarrow ("PERSONAL PRONOUN", "VERB", "TO", "VERB", "NOUN").
```

Part-of-Speech Tagging (POS)

There several levels of granularity.: using the tag set for english

("He", "likes", "to", "drink", "tea"), \rightarrow ("PRP", "VBP", "TO", "VB", "NN").

Knowing that language models are good at generating vector spaces to better represent words:

for each token in a sentence we want to compute a probability p to belong to a class n.

$$p: f(\mathbf{x}, \theta)_l \mapsto ?$$

with $p \in [0,1]$

Where $f(\mathbf{x}, \theta)_l$ are the language model's parameters for the $l_{1 \leq L}$ -th token.

Using the softmax function?

$$p:f(\mathbf{x}, heta)_l^{\mapsto}rac{e^{f(\mathbf{x}, heta)_l^{(n)}}}{\sum_{n'=1}^N e^{f(\mathbf{x}, heta)_l^{(n')}}}$$

The probability given by the softmax function will not encode non-local dependencies!

We need to take sequential decisions: what if we add transition scores into our softmax?

$$p: f(\mathbf{x}, heta)_l \mapsto rac{e^{f(\mathbf{x}, heta)_l^{(n)} + t(y_l^{(n)}, y_{l-1})}}{\sum_{n'=1}^N e^{f(\mathbf{x}, heta)_l^{(n')} + t(y_l^{(n')}, y_{l-1})}}$$

But this is the probability for one token to belong to a class, we want to compute the probability of a whole sequence of label at once...

$$P(\mathbf{y}|\mathbf{x}) = \prod_{l=2}^{L} p(\mathbf{y}|f(\mathbf{x}, heta)_l)$$

$$=\prod_{l=2}^{L}rac{e^{f(\mathbf{x}, heta)_{l}^{(n)}+t(y_{l}^{(n)},y_{l-1})}}{\sum_{n'=1}^{N}e^{f(\mathbf{x}, heta)_{l}^{(n')}+t(y_{l}^{(n')},y_{l-1})}}$$

$$P(\mathbf{y}|\mathbf{x}) = rac{exp[\sum_{l=2}^{L} \left(f(\mathbf{x}, heta)_{l}^{(n)} + t(y_{l}^{(n)}, y_{l-1})
ight)]}{\sum_{n'=1}^{N} exp[\sum_{l=2}^{L} \left(f(\mathbf{x}, heta)_{l}^{(n')} + t(y_{l}^{(n')}, y_{l-1})
ight)]}$$

$$=rac{exp[\sum_{l=2}^{L}\left(U(\mathbf{x},y_{l}^{(n)})+T(y_{l}^{(n)},y_{l-1})
ight)]}{\sum_{n'=1}^{N}exp[\sum_{l=2}^{L}\left(U(\mathbf{x},y_{l}^{(n')})+T(y_{l}^{(n')},y_{l-1})
ight)]}$$

$$=rac{exp[\sum_{l=2}^L \left(U(\mathbf{x},y_l^{(n)})+T(y_l^{(n)},y_{l-1})
ight)]}{Z(\mathbf{x})}$$

 $Z(\mathbf{x})$ is commonly referred as the partition function. However, its not trivial to compute: we'll end up with a complexity of $\mathcal{O}(N^L)$.

Where N is the number of possible labels and L the sequence length.

How do we proceed?

NER Transition Matrix

B

C(B=3) C(B=1) C(B=20)

C(1=20) C(1=20)

C(0=20)

C= cost function

$$\infty$$
 = wouldn't happen

Linear-Chain CRF Decoded

Python comments help

Best path: B > 1 > 0 Best score: 1+10+4+3+2+11+10=31

What do we learn?

Questions?

References

[1] He, H. (2023, July 9). Robust Natural Language Understanding.

[2] Singla, S., & Feizi, S. (2021). Causal imagenet: How to discover spurious features in deep learning. arXiv preprint arXiv:2110.04301, 23.

[3] Carmon, Y., Raghunathan, A., Schmidt, L., Duchi, J. C., & Liang, P. S. (2019). Unlabeled data improves adversarial robustness. Advances in neural information processing systems, 32.

- [4] <u>Pretrained Transformers Improve Out-of-Distribution Robustness</u> (Hendrycks et al., ACL 2020)
- [5] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.
- [6] Zhao, Z., Wallace, E., Feng, S., Klein, D., & Singh, S. (2021, July). Calibrate before use: Improving few-shot performance of language models. In International Conference on Machine Learning (pp. 12697-12706). PMLR.