Ściągawka algebra przemienna

kaczka dziwaczka

1. Modules

1.1. Modules and module homomorphisms

If M, N are A-modules, then $Hom_A(M, N)$ is also an A-module that contains all homorphisms $M \to N$.

Homomorphisms $u:M'\to M$ and $v:N\to N'$ induce mappings $\overline{u}:Hom(M,N)\to Hom(M',N)$ and $\overline{v}:Hom(M,N)\to Hom(M,N')$ defined: $\overline{u}(f)=f\circ u$ and $\overline{v}(f)=v\circ f$.

Dla dowolnego A-modułu M mamy Hom(A, M) \cong M (duh)

Podmoduł M' modułu M daje nam zajebistą grupę abelową M/M' które dziedziczy strukturę A-modułu zdefiniowaną a(x + M') = ax + M'.

Kokernel homomorfizmu $f: M \rightarrow N$ to

Coker(f) = N/Im(f)

 $M/Ker(f) \cong Im(f)$

1.2. Operations on submodules

- suma podmodułów modułu M, $(M_i)_{i \in I}$, to wszystkie skończone sumy $\sum x_i$, gdzie $x_i \in M_i$ (i tylko skończenie wiele jest niezerowych)
- przekrój modułów $\bigcap M_i$ to podmoduł M, czyli wszystkie podmoduły tworzą pełną kratę pod względem inkluzji (czyli każda para elementów ma sup (suma) i inf (przekrój):3)
- monstrum: $(L/N)/(M/N) \cong L/M$ (czyli działa jak dzielenie ułamków *
- \Leftrightarrow smieszne: $(M_1 + M_2)/M_1 \cong M_2/(M_1 \cap M_2)$
- **produkt podmodułów** zwykle jest niedefiniowalny, ale już mnożenie przez ideał $\mathfrak{a} \triangleleft A$ jest do zrobienia: jest to zbiór wszystkich skończonych sum $\sum a_i x_i$, gdzie $a_i \in \mathfrak{a}$, $x_i \in M$ i jest to podmoduł M
- (N:P) dla N, P podmodułów M to zbiór wszystkich takich a \in A, że aP \subseteq N i jest to ideał A, w szczególności **anihilator** M (0 : M) jest oznaczany Ann(M)

Moduł jest wierny (faithful), jeżeli Ann(M) = 0. Jeżeli Ann(M) = α , to M jest wierny jako A/ α .

Jeżeli M = \sum Ax_i, gdzie Ax_i to zbiór ax_i dla wszystkich a \in A, to mówimy, że M jest generowany przez x_i. Jeżeli jest skończenie wiele generatorów, to jest skończenie generowany.

1.3. Direct sum and product

Suma prosta $M \otimes N$ dwóch A-modułów to zbiór wszystkich par (x,y), gdzie $x \in M, y \in N$ i nadal jest to A-moduł. Dla rodziny $(M_i)_{i \in I}$ A-modułów to $\bigotimes_{i \in I} M_i$ zbiór wszystkich rodzinek $(x_i)_{i \in I}$, gdzie tylko skończenie wiele jest niezerowych. Jeżeli dopuścimy nieskończenie zerowych, to dostajemy **produkt prosty** $\prod_{i \in I} M_i$.

Jeśli A jest produktem prostym A = $\prod_{i=1}^{n} A_i$, to wtedy zbiór wszystkich elementów (0, ..., 0, a_i , 0, ..., 0) jest ideałem A.

Mając rozkład A = $\mathfrak{a}_1 \otimes ... \otimes \mathfrak{a}_n$, możemy zrobić

$$A \cong \prod_{i=1}^{n} (A/\mathfrak{b}_{i})$$

gdzie $\mathfrak{b}_i = \bigotimes_{i \neq i} a_i$ co ma sens nawet.

1.4. Finitely generated modules

Wolny A-moduł jest izomorficzny do $\bigotimes M_i$, gdzie $M_i \cong A$. To znaczy, jest sumą prostą A. Skończenie generowany A-moduł to po prostu skończenie wiele kopii A, oznaczane często A^n

M jest skończenie generowanym A-modułem \iff M jest izomorficzne do ilorazu A^n dla $n \in \mathbb{N}$.

M to skończenie genrowany A-moduł, $\mathfrak a$ jest ideałem w A, a ϕ jest endomorfizmem M takim, że $\phi(M) \subseteq \mathfrak a M$. Wtedy ϕ wyśmiguje:

$$\phi^{n} + a_{1}\phi^{n-1} + ... + a_{n} = 0,$$

gdzie a_i są w a.

Niech M będzie skończenie generowanym A-modułem i niech $\mathfrak a$ będzie ideałem w A takim, że $\mathfrak a M = M$. Wtedy istnieje $x \equiv 1 \mod \mathfrak a$ taki, że xM = 0.

Lemat Nakayamy: niech M będzie skończenie generowanym A-modułem i $\mathfrak a$ będzie ideałem zawartym w radykale Jacobsona, wtedy $\mathfrak a M = M \implies M = 0$.

Niech M będzie skończenie generowanym A-modułem, N podmodułem M a α będzie w Jacobsonie. Wtedy M = α M + N \Longrightarrow M = N.

Niech A będzie pierścieniem lokalnym, $\mathfrak m$ jest ideałem maksymalnym a M skończenie generowanym A-modułem (anihilowanym przez $\mathfrak m$). Niech x_i będą elementami M których obrazy w M/ $\mathfrak m$ M tworzą bazę tej przestrzeni wektorowe. Wtedy x_i generują M.

1.5. Exact sequences

Ciąg A-modułów i homomorfizmów

$$... \rightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \rightarrow ...$$

jest **dokładny w** M_i gdy $Im(f_i) = Ker(f_{i+1})$. Poniższe to szczególne przypadki:

$$\overset{\bullet}{\longmapsto} \ 0 \ \rightarrow \ M' \ \overset{f}{\rightarrow} \ M \ jest \ dok \\ iniekcją \qquad \qquad f \ jest$$

$$\overset{g}{\longmapsto} \ M \overset{g}{\to} \ M'' \to 0 \ jest \ dokładny \iff g \ jest \ surjekcją$$

$$\begin{array}{c} \longrightarrow & 0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0 \text{ jest dokładny} \iff \\ & \text{f jest iniekcją, g jest surjekcją i g indukuje} \\ & \text{izomorfizm Coker(f)} = M/f(M') \cong M'' \end{array}$$

Jeśli mamy diagram komutujący

wtedv

$$0 \to \text{Ker}(f') \xrightarrow{\overline{u}} \text{Ker}(f) \xrightarrow{\overline{v}} \text{Ker}(f'') \xrightarrow{d} \text{Coker}(f')$$
$$\xrightarrow{\overline{u'}} \text{Coker}(f) \xrightarrow{\overline{v'}} \text{Coker}(f'') \to 0$$

i to ma coś wspólnego z dokładną homologia *