Tutorial 4 Solutions

5.10 A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and circuit output equation are

$$J_A = Bx + B'y'$$

$$J_B = A'x$$

$$X_B = A + xy'$$

$$Z = Ax'y' + Bx'y'$$

- (a) Draw the logic diagram of the circuit.
- (b) Tabulate the state table.
- (c)* Derive the state equations for A and B.

sol:

5.10 (a)
$$J_A = Bx + B'y'$$
 $J_B = A'x$ $K_A = B'xy'$ $K_B = A + xy'$ $z = Axy + Bx'y'$

	A Present	state	7	sındur	Next	state	N Output		tpu		
6	A	В	x	y	A	В	z	J_A	K_A	J_A	J_{B}
	0	0	0	0	1	0	0	1	0	0	0
	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	0	1	1	0	1	1	1	1
	0	0	1	1	0	1	0	0	0	1	0
	0	1	0	0	0	1	1	0	0	0	0
	0	1	0	1	0	1	0	0	0	0	0
	0	1	1	0	1	0	0	1	0	1	0
	0	1	1	1	1	1	0	1	0	1	0
	1	0	0	0	1	0	0	1	0	0	1
	1	0	0	1	1	0	0	0	0	0	1
	1	0	1	0	0	0	0	1	1	0	1
	1	0	1	1	1	0	0	0	0	0	1
2.5	1	1	0	0	1	0	1	0	0	0	1
	1	1	0	1	1	0	0	0	0	0	1
	1	1	1	0	1	0	0	1	0	0	1
	1	1	1	1	1	0	1	1	0	0	1

A(t+1) = Ax' + Bx + Ay + A'B'y

AB^{XY}	00	01	11	10	
00	m_o	m ₁	m ₃	m ₂	
A 01	m ₄	m ₅	m ₇	m ₆	
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	E
10	m_8	m ₉	m ₁₁	m ₁₀	

$$B(t+1) = A'B'x + A'B'(x'+y)$$

5.2) Construct a JK flip flop using a D flip flop, 2 x 1 mux and an inverter sol:

sol:

5.8 A counter with a repeated sequence of 00, 01, 10.

Repeated sequence:

$$\rightarrow 00 \rightarrow 01 \rightarrow 10 \rightarrow$$

- A PN flip-flop has four operations, no change, clear to 0, set 1 and complement, when inputs P and N are 00, 01, 10, and 11, respectively.
 - (a) Tabulate the characteristic table.
- (b)* Derive the characteristic equation.
- (c) Tabulate the excitation table.
- (d) Show how the *PN* flip-flop can be converted to a *D* flip-flop.

sol:

5.4

(a)	P	N	Q(t+1)
	0	0	0
	0	1	Q(t)
	1	0	Q'(t)
	1	1	1

(b)	P	N	Q(t)	Q(t+1)
	0	0	0	0
	0	0	1	0
	0	1	0	0
	0	1	1	1
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	1

$$Q(t+1) = PQ' + NQ$$

(d) Connect P and N together.

5.6 A sequential circuit with two D flip-flops A and B, two inputs x and y, and one output z is specified by the following next-state and output equations (HDL—see Problem 5.35):

$$A(t+1) = x'y + xB$$
$$B(t+1) = x'A + xB$$
$$z = A$$

- (a) Draw the logic diagram of the circuit.
- (b) List the state table for the sequential circuit.
- (c) Draw the corresponding state diagram.

sol:

5.6 (a)

11.13 b)

sol:

11.15 A set-dominant flip-flop is similar to the reset-dominant flip-flop of Problem 11.14 except that the input combination S = R = 1 sets the flip-flop. Repeat Problem 11.14 for a set-dominant flip-flop.

sol:

.15 (a)	SRQ	Q^+
	000	0
	0 0 1	1
	0 1 0	0
	0 1 1	0
	100	1
	1 0 1	1
	1 1 0	1
	1 1 1	1

11.15 (b) A set-dominant FF from an S-R FF—The arrangement will ensure that when S = R = 1, $S_1 = 1$, $R_1 = 0$, and $Q^+ = 1$.

