แผนการสอนประจำบทที่ 6

อาร์เรย์

หัวข้อสำคัญ

- 1. ความหมายของอาร์เรย์
- 2. ชนิดของอาร์เรย์
- 3. การประกาศตัวแปรอาร์เรย์
- 4. การอ้างอิงค่าจากอาร์เรย์
- อาร์เรย์และฟังก์ชัน

วัตถุประสงค์เชิงพฤติกรรม

- 1. ผู้เรียนสามารถอธิบายความหมายของอาร์เรย์ได้
- 2. ผู้เรียนสามารถบอกชนิดของอาร์เรย์ได้
- 3. ผู้เรียนสามารถเขียนโปรแกรมประกาศตัวแปรอาร์เรย์และการอ้างอิงค่าจากอาร์เรย์ได้
- 4. ผู้เรียนสามารถเขียนโปรแกรมอาร์เรย์โดยการประยุกต์ใช้กับฟังก์ชันได้

วิธีการสอนและกิจกรรมการเรียนการสอน

- 1. การบรรยาย
- 2. การทำแบบฝึกหัด

สื่อที่ใช้ประกอบการสอน

- 1. เอกสารประกอบการสอน
- 2. เครื่องคอมพิวเตอร์
- 3. เครื่องฉายภาพนิ่ง

การวัดและประเมินผล

- 1. สังเกตจากความสนใจของผู้เรียน
- 2. ประเมินจากการตอบคำถามของผู้เรียนและกิจกรรมในชั้นเรียน
- 3. การทำแบบฝึกหัดท้ายบท

บทที่ 6 อาร์เรย์

6.1 ความหมายของอาร์เรย์

แถวลำดับ (array) คือ ข้อมูลที่ประกอบไปด้วยรายการชนิดข้อมูลเดียวกันจำนวนหนึ่ง สามารถ กำหนดขนาดของอาร์เรย์ได้แต่ละรายการเรียกว่า เซลล์ (cell) และแต่ละเซลล์จะมี อินเด็กซ์ (index) สำหรับ ใช้เพื่ออ้างถึงข้อมูล

ปัญหา : ถ้าเราต้องการเก็บค่าคะแนนนักเรียน 5 คน และค่าเฉลี่ยคะแนน

จากปัญหาดังกล่าวจึงเกิดข้อมูลประเภท แถวลำดับ (array) แถวลำดับเป็นโครงสร้างทางคอมพิวเตอร์ ที่พบได้มากที่สุด โดยภาพจำลองอาร์เรย์ชื่อ num ขนาดเท่ากับ 5 แสดงดังภาพ 6.1

num[0]	num[1]	num[2]	num[3]	num[4]

ภาพ 6.1 ภาพจำลองอาร์เรย์ที่มีขนาดเท่ากับ 5

6.2. ชนิดและการประกาศตัวแปรของอาร์เรย์

แบ่งได้เป็น 2 ชนิด ได้แก่

- 1) อาร์เรย์ชนิด 1 มิติ (One-Dimensional)
- 2) อาร์เรย์ชนิดหลายมิติ (Multi-Dimensional)

6.2.1 อาร์เรย์ชนิด 1 มิติ (One-Dimensional)

1) การประกาศตัวแปรอาร์เรย์ชนิด 1 มิติ มี 2 แบบ ดังต่อไปนี้

ชนิดข้อมูล หมายถึง ชนิดข้อมูลที่อ้างอิงตามหลักเกณฑ์ของโครงสร้างภาษา C เช่น int, float, char

ชื่อตัวแปรอาร์เรย์ หมายถึง ชื่อของตัวแปรอาร์เรย์

n หมายถึง ขนาดของตัวแปรที่ต้องการสร้าง

	. •	. 669	. 99	د ه	9 2 2	6 6
1.1)	การประกาศตัวแบ	ไรอารเรยชน์ด	1 มต	ไดยกาหนดข	นาดเหกบ	อารเรย

รูปแบบการประกาศ ตัวแปรอาร์เรย์ 1 มิติ แบบที่ 1	ตัวอย่าง
ชนิดข้อมูล <mark>ชื่อตัวแปรอาร์เรย์[</mark> n];	#define SIZE 20
	char score[10*10];
	int num[SIZE+1];
	float student [5];
	student [0], student [1], student [2],
	student [3], student [4]

1.2) การประกาศตัวแปรอาร์เรย์ชนิด 1 มิติ พร้อมกับการกำหนดค่าเริ่มต้น

```
รูปแบบการประกาศ ตัวแปรอาร์เรย์ 1 มิติ แบบที่ 2 พร้อมกับการกำหนดค่าเริ่มต้น
ชนิดข้อมูล ชื่อตัวแปรอาร์เรย์[n] = {ข้อมูลที่1, ข้อมูลที่2, .., ข้อมูลที่ n-1};

ตัวอย่าง

int number[5] = {0,1,2,3,4};

char grade[3] = {'A','B','C'}

float student [5]={50,55.50,60,65.25,70};
```

ข้อควรระวังในการประกาศตัวแปร Array

- 1) การประกาศตัวแปรอาร์เรย์แล้ว ไม่มีกำหนดค่าเริ่มต้นให้กับตัวแปรนั้นแล้ว ค่าที่อยู่ในตัวแปรจะ เป็นค่าที่ค้างอยู่ในหน่วยความจำ
- 2) การประกาศตัวแปรอาร์เรย์และกำหนดค่าเริ่มต้นตั้งแต่ตอนประกาศตัวแปรแล้ว <u>แต่กำหนดค่าไม่</u> <u>ครบ</u> ในกรณีที่ชนิดข้อมูลของอาร์เรย์ตัวเลขทั้งจำนวนเต็มและจำนวนจริง ค่าที่เหลือจะถูกกำหนดเป็น 0 โดย อัตโนมัติ เช่น float price[5] = {50.5,2.25,10.0};
- 3) การประกาศตัวแปรอาร์เรย์และกำหนดค่าเริ่มต้นตั้งแต่ตอนประกาศตัวแปรแล้ว <u>ไม่จำเป็น</u>ต้องใส่ ขนาดของอาร์เรย์ก็ได้ เช่น float value[] = {1,2,3,4,5}; ความหมายคือ เป็นการกำหนดตัวแปรอาร์เรย์ ของจำนวนจริงแบบ float ขนาด 5 จำนวน

<u>หมายเหตุ</u> การประกาศตัวแปรอาร์เรย์โดยไม่ใส่ขนาดของอาร์เรย์ไม่สามารถทำได้ ยกเว้นมีการ กำหนดค่าเริ่มต้นให้กับตัวแปรอาร์เรย์เท่านั้น 4) การประกาศตัวแปรอาร์เรย์โดย<u>ไม่กำหนด</u>ขนาดของอาร์เรย์ และ<u>ไม่กำหนดค่าเริ่มต้น</u>ให้กับ ตัวแปรอาร์เรย์ เช่น int value[]; ถือว่าเป็นประกาศผิด!!!

ตัวอย่างการประกาศตัวแปรอาร์เรย์ชนิด 1 มิติ เพื่อเก็บค่าคะแนนนิสิตจำนวน 5 คน

ตัวชี้ (index)	ตัวแปร score
0	สมาชิก score[0]= 90.00
1	สมาชิก score[1]= 80.00
2	สมาชิก score[2]= 60.00
3	สมาชิก score[3]= 50.00
4	สมาชิก score[4]= 40.00
	ಂ ಡ ೪ ಕ ಕ

ภาพ 6.2 ภาพจำลองการเก็บข้อมูลของอาร์เรย์

ประกาศตัวแปรอาร์เรย์ชนิด 1 มิติ ชื่อ score ให้มีชนิดข้อมูลเป็น float และจำนวนสมาชิก 5 รายการ ดังภาพ 6.2 โดยลำดับของสมาชิกเรียกว่า index เป็นตัวเลขที่อยู่ในเครื่องหมาย [] ประกอบด้วย ตัวชี้ (index) 0, 1, 2, 3, และ 4 ตามลำดับ จากข้อมูลข้างต้นประกาศตัวแปรอาร์เรย์ดังกล่าวได้ดังนี้

float score[5];

2) การอ้างถึงแต่ละรายการสมาชิก

การประกาศขนาดของอาร์เรย์ จะประกอบด้วยรายการสมาชิกที่มีลำดับเป็นตัวกำหนด ลำดับดังกล่าวจะเรียกว่า index เป็นตัวเลขที่อยู่ในเครื่องหมาย [] และจะเริ่มต้นด้วย index = 0 เสมอ เมื่อ ต้องการอ้างอิงยังรายการสมาชิกลำดับที่เท่าไหร่ จะใช้งานโดย ชื่อตัวแปรอาร์เรย ตามด้วยเครื่องหมาย [] ที่ ด้านในระบุลำดับของรายการสมาชิกที่ต้องการอ้างอิง เช่น score[4], number[3]

ตัวอย่างการอ้างถึงแต่ละรายการสมาชิก

กำหนดค่าให้นักเรียนคนที่ 20 ได้คะแนน 75 ทำได้ดังนี้

score [19] = 75;

ตัวอย่างเพิ่มเติม

student [1]	หมายถึง	student [1]
student [1+1]	หมายถึง	student [2]
student [4*4]	หมายถึง	student [16]

3) การเขียนและรับข้อมูลแต่ละเซลล์

การแสดงค่าคะแนนของนักเรียนคนที่ 20 ให้มีเลขทศนิยม 2 ตำแหน่ง ทำได้ดังนี้

การรับค่าคะแนนของนักเรียนคนที่ 20 จากแป้นพิมพ์ทำได้ดังนี้

4) การใช้ loop กับ array

การใช้คำสั่งวนซ้ำ หรือ loop จะช่วยลดความยุ่งยากสำหรับการรับค่า แสดงค่า และกำหนดค่าตัว แปรประเภทอาร์เรย์

ตัวอย่างการใช้คำสั่งวนซ้ำกับอาร์เรย์ 1 มิติ

กำหนดให้อาร์เรย์ชื่อ score เป็นอาร์เรย์ 1 มิติ ขนาดเท่ากับ 5 มีข้อมูลดังต่อไปนี้ แสดงดัง ภาพ 6.3

ตัวชี้ (index)	ตัวแปร	ค่าคะแนนที่รับเข้า
0	score[0]	90.00
1	score[1]	80.00
2	score[2]	70.00
3	score[3]	60.00
4	score[4]	50.00

ภาพ 6.3 ข้อมูลของอาร์เรย์ score

คำสั่งวนซ้ำ for เหมาะที่ใช้ในการใช้งานกับอาร์เรย์ เนื่องจากทราบจำนวนสมาชิกที่ต้องการ อ้างอิง โดยคำสั่ง for ด้านล่างจะกำหนดให้ตัวแปร i เป็นตัวแปรที่ใช้วนรับค่าของอาร์เรย์ score ซึ่งค่า i เริ่มต้น ที่ 0-4 ประกอบด้วยค่า 0,1,2,3 และ 4 ตามลำดับ จำนวน 5 รายการ

ตัวอย่างการรับค่าตัวแปรอาร์เรย์โดยใช้ for

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	Input ตามภาพ 6.3
2. float student[5], sum = 0, avg = 0; int i;	
3. main()	
4. {	
5. for(i=0;i<=4;i++){	
6. printf("Enter score of student %d : ",i+1);	
7. scanf("%f",&student[i]);	
8. sum = sum + student[i];	
9. }	
10. avg = sum/5;	
11. printf("The averge of student score = %.2f",avg);	
12. }	

การใช้ตัวแปรอาร์เรย์ในการรับ-แสดงค่า โดยใช้ for

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. float student[5]; int i;	
3. main()	
4. {	
5. $for(i=0;i<=4;i++){}$	
6. printf("Enter score of student %d : ",i+1);	
7. scanf("%f",&student[i]);	
8. $printf("score[\%d+1] = \%.2f\n",i,student[i]);$	
9. }	
10. }	

6.4

6.2.2 อาร์เรย์ชนิดหลายมิติ (Multi-Dimensional)

1) อาเรย์ 2 มิติ (2-dimensional Arrays)

ข้อมูลในอาเรย์ 2 มิติจะเป็นลักษณะของตาราง ประกอบด้วยแถวและคอลัมน์ แสดงดังภาพ

ภาพ 6.4 ลักษณะการอ้างอิงถึงข้อมูลอาร์เรย์ 2 มิติ

การอ้างอิงถึงข้อมูลอาร์เรย์ 2 มิติ แสดงดังภาพ 6.5-6.7

ภาพ 6.5 ตัวอย่างการอ้างอิงถึงข้อมูลอาร์เรย์ 2 มิติ ขนาด 4×3

	col [0]	col [1]
row [0]	A[0,0]	A[0,1]
row [1]	A[1,0]	A[1,1]
row [2]	A[2,0]	A[2,1]

col [0] col [1] col [2]				
row [0]	A[0,0]	A[0,1]	A[0,2]	
row [1]	A[1,0]	A[1,1]	A[1,2]	
row [2]	A[2,0]	A[2,1]	A[2,2]	
row [3]	A[3,0]	A[3,1]	A[3,2]	

ภาพ 6.6 การอ้างอิงถึงข้อมูลอาร์เรย์ 2 มิติ

ภาพ 6.7 การอ้างอิงถึงข้อมูลอาร์เรย์ 2 มิติ

ขนาด 4x3

ขนาด 3x2

ตัวอย่างการประยุกต์ใช้งานตัวแปรอาร์เรย์ 2 มิติ

การเก็บข้อมูลคะแนนเก็บ 4 ครั้ง ครั้งละ 10 คะแนนของนิสิต 3 คน แสดงดังภาพ 6.8

	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	ครั้งที่ 4
นาย A	5.6	8.5	2.5	4.5
นาย B	6.0	7.25	5.0	5.0
น.ส. C	6.0	7.2	8.0	4.0

ภาพ 6.8 ตัวอย่างการเก็บข้อมูลของอาร์เรย์ 2 มิติ

2) การประกาศตัวแปรอาร์เรย์ 2 มิติ

ชนิดข้อมูล หมายถึง ชนิดข้อมูลที่อ้างอิงตามหลักเกณฑ์ของโครงสร้างภาษา C เช่น int, float, char

ชื่อตัวแปรอาร์เรย์ หมายถึง ชื่อของตัวแปรอาร์เรย์

m หมายถึง ขนาดของแถว (row) ที่ต้องการสร้าง

n หมายถึง ขนาดของคอลัมน์ (column) ที่ต้องการสร้าง

รูปแบบการประกาศ ตัวแปรอาร์เรย์ [rowm] [columnn]; ชนิดข้อมูล ชื่อตัวแปรอาร์เรย์ [rowm] [columnn]; #define SIZE_M 20 #define SIZE_N 20 char score[10][5]; float value[2*2][1*3]; int num[SIZE_M][SIZE_N]; int student[3][4]; /* มีจำนวนรายการเซลล์ของอาร์เรย์ ดังต่อไปนี้ student[0][0], student[0][1], student[0][2], student[1][3] student[1][0], student[1][1], student[1][2], student[1][3] */

3) การกำหนดค่าข้อมูลเริ่มต้นให้กับตัวแปร Array 2 มิติ

เป็นการกำหนดค่าข้อมูลเริ่มต้นให้กับตัวแปร array เช่น int number[2][3] = {{1,2,3},{4,5,6}}; เป็นคำสั่งกำหนดค่าในอาร์เรย์จำนวน 2 แถว 3 คอลัมน์ ได้ดังภาพ 6.9

ภาพ 6.9 : ตัวอย่างการกำหนดค่าในอาร์เรย์จำนวน 2 แถว 3 คอลัมน์

int number[3][2]={{1,2},{3,4},{5,6}}; เป็นคำสั่งกำหนดค่าในอาร์เรย์จำนวน 3 แถว 2 คอลัมน์ได้ดังภาพ 6.10

	col [0] col [2]		
row [0]	1	2	
row [1]	3	4	
row [2]	5	6	

ภาพ 6.10 : ตัวอย่างการกำหนดค่าในอาร์เรย์จำนวน 3 แถว 2 คอลัมน์

int number[][5]= {{1, 2, 3, 4, 5}, {2, 4, 6, 8, 10}, {1, 3, 5, 7, 9}}; การกำหนดค่าเริ่มต้น จะทำพร้อมกับการประกาศ Array เท่านั้น โดยไม่จำเป็นต้องกำหนดขนาดจำนวนแถวของ array ก็ได้ เนื่องจากเมื่อมีการกำหนดค่าเริ่มต้น จะมีการจองพื้นที่ Array ให้เท่ากับข้อมูลที่ใช้ในการกำหนดค่าเริ่มต้นนั้น จากตัวอย่าง ในที่นี้จะจอง array 2 มิติขนาด 3 แถว 5 คอลัมน์ เครื่องหมาย {} จะเป็นส่วนของการกำหนดค่า ในแต่ละแถว ดังรูปด้านล่าง

col [0] col [1] col [2] col [3] col [4]					
row [0]	1	2	3	4	5
row [1]	2	4	6	8	10
row [2]	1	3	5	7	9

ภาพ 6.11 : ตัวอย่างการกำหนดค่าในอาร์เรย์จำนวน 3 แถว 5 คอลัมน์

ตัวอย่างการเขียนโปรแกรมแบบอาร์เรย์ 2 มิติ โดยไม่มีการกำหนดค่าเริ่มต้น

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. main()	
3. {	
4. int number[3][4];	
5. int row,column;	
6. for (row=0; row<=2;row++)	
7. {	
8. for (column=0; column<=3; column++){	
9. number[row][column] = 0;	
10. printf("%d\t",number[row][column]);	
11. }	
12. printf("\n");	
13. }	
14. }	

ตัวอย่างการเขียนโปรแกรมแบบอาร์ 2 มิติ โดยมีการกำหนดค่าเริ่มต้น

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. main()	
3. {	
4. int number[3][4] = { {2,4,6,8},{1,3,5,7},{1,2,3,4} };	
5. int row,column;	
6. for (row=0; row<=2;row++)	
7. {	
8. for (column=0; column<=3;column ++)	
9. {	
10. printf ("%d\t",number[row][column]);	
11. }	
12. printf ("\n");	
13. }	
14. }	

4) อาร์เรย์ 3 มิติ (3-dimensional Arrays)

ข้อมูลในอาร์เรย์ 3 มิติจะมีลักษณะเป็นลูกบาศก์ประกอบด้วยแถว คอลัมน์ และสูง แสดงดัง ภาพ 6.12

การอ้างอิงข้อมูลในอาร์เรย์ 3 มิติ

ภาพ 6.12 ภาพแบบจำลองอาร์เรย์ 3 มิติ

การอ้างอิงข้อมูลในอาร์เรย์ 3 มิติ จะอ้างคล้ายกับอาร์เรย์ 2 มิติ เพียงเพิ่มมาอีก 1 ค่าคือ ความลึก ซึ่งจะได้ลักษณะเหมือนพิกัดที่อ้างอิง 1 ตำแหน่ง (แถว, คอลัมน์,ลึก) ภาพจำลองอาร์เรย์ 3 มิติขนาด 5x5x3 แสดงดังภาพ 6.13

ภาพ 6.13 ภาพจำลองอาร์เรย์ 3 มิติขนาด 5x5x3

การประกาศตัวแปรอาร์เรย์ 3 มิติ

ชนิดข้อมูล หมายถึง ชนิดข้อมูลที่อ้างอิงตามหลักเกณฑ์ของโครงสร้างภาษา C เช่น int, float, char

ชื่อตัวแปรอาร์เรย์ หมายถึง ชื่อของตัวแปรอาร์เรย์

- m หมายถึง ขนาดของแถว (Row) ที่ต้องการสร้าง
- n หมายถึง ขนาดของคอลัมน์ (Column) ที่ต้องการสร้าง
- o หมายถึง ขนาดของความลึก (Deep) ที่ต้องการสร้าง

รูปแบบการประกาศ ตัวแปรอาร์ 3 มิติ

ชนิดข้อมูล <mark>ชื่อตัวแปรอาร์เรย์</mark> [row_m] [column_n][deep_o];

ตัวอย่าง

#define SIZE row 20

#define SIZE_col 10

#define SIZE_deep 5

char score[10][5][2];

float value[2*2][1*3][2*2];

int num[SIZE_row][SIZE_col] [SIZE_deep];

5) อาร์เรย์หลายมิติ (Multi-dimensional Arrays)

การประกาศตัวแปรอาร์เรย์หลายมิติ

ชนิดข้อมูล หมายถึง ชนิดข้อมูลที่อ้างอิงตามหลักเกณฑ์ของโครงสร้างภาษา C เช่น int, float, char

ชื่อตัวแปรอาร์เรย์ หมายถึง ชื่อของตัวแปรอาร์เรย์

index หมายถึง ขนาดของ Array ที่ต้องการสร้างตามลำดับ 1..n

รูปเ	แบบการประกาศ ตัวแปรอาร์ 3 มิติ	
ชนิดข้อมูล <mark>ชื่อ</mark>	ตัวแปรอาร์เรย์ [index $_1$] [index $_2$][index $_n$];	
ตัวอย่าง		
char score[10][5][2][3];		
float value[1*2][2*2][3*2][4*2][5	*2];	

6.3 อาร์เรย์และฟังก์ชัน

6.3.1 วิธีการส่งผ่านค่าของอาร์เรย์และฟังก์ชัน

1) ตัวอย่างการส่งผ่านค่าโดยตรง (Function call by value)

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. display (int num)	
3. {	
4. printf ("%d", num);	
5. }	
6. main ()	
7. {	
8. int i,value[3] = { 2, 4, 6 };	
9. for (i=0;i<=2;i++){	
10. printf ("Number %d = ",i);	
11. display (value[i]);	
12. printf ("\n");	
13. }	
14. }	

2) ตัวอย่างการส่งผ่านค่าโดยอ้างอิงที่อยู่ (Function call by reference)

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. display(int *num)	
3. {	
4. printf("Value = %d \n", *num);	
5. }	
6. main ()	
7. {	
8. int val[] = {1,2,3,4,5};	
9. int i;	
10. for (i=0; i<5; i++) display (&val[i]);	
11. }	

6.3.2 วิธีการรับและส่งค่าไปทำงานที่ฟังก์ชัน

1) ตัวอย่างการส่งค่าอาร์เรย์ 1 มิติ แบบมีการกำหนดค่า index ไปที่ฟังก์ชัน

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
3. {	
4. printf ("%d", num);	
5. }	
6. main ()	
7. {	
8. int i,value[3] = { 2, 4, 6 };	
9. for (i=0;i<=2;i++){	
10. printf ("Number %d = ",i);	
11. display (value[i]);	
12. printf ("\n");	
13. }	
14. }	

2) ตัวอย่างการส่งค่าอาร์เรย์ 1 มิติ ไปที่ฟังก์ชัน (ส่งค่าทั้งหมดของตัวแปร)

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. float average (float num[]);	
3. main ()	
4. {	
5. float avg, value[] = { 10,20,30,40,50, };	
6. avg = average(value);	
7. printf ("Average of value = %.2f", avg);	
8. }	
9. float average (float num[])	
10. {	
11. int i;	
12. float avg, sum = 0;	
13. for $(i = 0; i <=5; ++i)$ sum $+= num[i];$	
14. avg = (sum / 6);	
15. return avg;	
16. }	

3) ตัวอย่างการส่งค่าอาร์เรย์ 2 มิติ ไปที่ฟังก์ชัน (call by value)

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. #define ROWS 3	
3. #define COLS 4	
4. printMatrix (int matrix[ROWS][COLS])	
5. {	
6. int i, j;	
7. printf ("Elements in matrix: \n");	
8. for $(i = 0; i < ROWS; i++)$	
9. {	
10. for $(j = 0; j < COLS; j++)$	
11. {	
12. printf ("%d ", matrix[i][j]);	
13. }	
14. printf ("\n");	
15. }	
16. }	
17. main ()	
18. {	
19. int data[ROWS][COLS] = {	
{1, 2, 3,4},	
{5, 6, 7,8},	
{9, 10 ,11 , 11}	
};	
20. printMatrix (data);	
21. }	

4) ตัวอย่างการส่งค่าอาร์เรย์ 2 มิติ ไปที่ฟังก์ชัน (call by reference)

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. #define ROWS 2	
3. #define COLS 3	
4. void printMatrix (int *data, int row, int col)	
5. {	
6. int i, j;	
7. printf ("Elements in 2D matrix: \n");	
8. for (i = 0; i < row; i++)	
9. {	
10. for $(j = 0; j < col; j++)$	
11. {	
12. printf("%d ", *((data+i*col) + j));	
13. }	
14. printf ("\n");	
15. }	
16. }	
17. main()	
18. {	
19. int data [ROWS][COLS] = {	
20. {1,2,3},{4,5,6}	
21. };	
22. printMatrix ((int *)data, ROWS, COLS);	
23. }	

5) ตัวอย่างการส่งค่าอาร์เรย์ 1 มิติ จากฟังก์ชันกลับมา

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. int * displayArray()	
3. {	
4. int static num[] = {1, 2, 3, 4, 5};	
5. int i;	
6. printf ("The result of function: \n");	
7. for $(i = 0; i < 5; i++)$	
8. {	
9. printf ("Value[%d] = %d \n",i+1,num[i]);	
10. }	
11. return num;	
12. }	
13. main ()	
14. {	
15. int i;	
16. int * num;	
17. num = displayArray();	
18. printf ("\nThe result of main: \n");	
19. for (i = 0; i < 5; i++)	
20. {	
21. printf ("Value[%d] = %d \n",i+1,num[i]);	
22. }	
23. }	

6.3.3. การส่งค่าอาร์เรย์ 2 มิติ จากฟังก์ชันกลับมา

ปรับปรุงโปรแกรมจาก https://www.programming-techniques.com/2011/08/returning-two-dimensional-array-from-a-function-in-c.html

ตัวอย่างการส่งค่าอาร์เรย์ 2 มิติ จากฟังก์ชันกลับมา

โปรแกรม	ผลลัพธ์
1. #include <stdio.h></stdio.h>	
2. #include <stdlib.h></stdlib.h>	
3. int **matrix_sum (int matrix1[][3], int matrix2[][3]){	
4. int i, j;	
5. int **matrix3;	
6. matrix3 = malloc (sizeof(int*) * 3);	
7.	
8. for $(i = 0; i < 3; i++)$ {	
9. matrix3[i] = malloc (sizeof(int*) * 3);	
10. }	
11.	
12. for $(i = 0; i < 3; i++){$	
13. for(j = 0; j < 3; j++){	
14. matrix3[i][j] = matrix1[i][j] + matrix2[i][j];	
15. }	
16. }	
17. return matrix3;	
18. }	
19. main(){	
20. int mat1[3][3], mat2[3][3];	
21. int **sumMatrix;	
22. int i,j;	
23. printf ("Enter the matrix1: \n");	
24. for (i = 0; i < 3; i++){	
25. for $(j = 0; j < 3; j++){$	
26. scanf ("%d",&mat1[i][j]);	

โปรแกรม		ผลลัพธ์		
27.	}			
28.	}			
29.	printf("Enter the matrix2: \n");			
30.	for($i = 0$; $i < 3$; $i++$){			
31.	for($j = 0; j < 3; j++$){			
32.	scanf("%d",&mat2[i][j]);			
33.	}			
34.	}			
35.	sumMatrix = matrix_sum(mat1,mat2);			
36.	printf("The sum of the matrix is: \n");			
37.	for($i = 0$; $i < 3$; $i++$){			
38.	for($j = 0; j < 3; j++$){			
39.	<pre>printf("%d",sumMatrix[i][j]);</pre>			
40.	printf("\t");			
41.	}			
42.	printf("\n");			
43.	}			
44.	//free the memory			
45.	for($i = 0$; $i < 3$; $i++$) {			
46.	free(sumMatrix[i]);			
47.	}			
48.	free(sumMatrix);			
49. }				

คำถามท้ายบทที่ 6

1. จงอธิบายความหมายของการประกาศตัวแปร

```
1.1.char score[20];
1.2.int book[5][2];
1.3.float value[10][3][1];
1.4.char answer[2] = {'T','F'};
1.5.int data[5] = {10,20,30,40,50};
```

2. จงเขียนโปรแกรมเพื่อรับค่าเมตริกซ์จำนวน 2 เมเตริกซ์ โดยรับขนาดและข้อมูลแมตริกซ์เป็นจำนวนเต็ม ผ่านทางแป้นคีย์บอร์ด และแสดงผลลัพธ์ของการบวกและลบของ 2 เมเตริกซ์ดังกล่าว โดยใช้อาร์เรย์ 2 มิติ หมายเหตุ เมตริกซ์ต้องมีขนาดไม่เกิน 20*20 และมีหน้าจอการแสดงผลดังต่อไปนี้

```
Please input number of row: 2
Please input number of column: 3
*****Input MatrixA*****
Please input MatrixA[1][1]:
Please input MatrixA[1][2]:
Please input MatrixA[1][3]:
Please input MatrixA[2][1]:
Please input MatrixA[2][2]:
Please input MatrixA[2][3]:
****MatrixA*****
        25
*****Input MatrixB*****
Please input MatrixB[1][1]:
Please input MatrixB[1]
Please input MatrixB[1][3]:
Please input MatrixB[2][1]:
Please input MatrixB[2][2]:
Please input MatrixB[2][3]:
****MatrixB****
         8
10
         11
                  12
****Result****
         10
                  12
         16
                  18
```

- 3. จงเขียนโปรแกรมเหมือนข้อ 2 โดยใช้มีการอาร์เรย์ 2 มิติ โดยกำหนดให้มีการเรียกใช้ 3 ฟังก์ชัน ดังนี้
 - 1) ฟังก์ชันรับค่าข้อมูลทั้ง 2 เมตริกซ์
- 2) ฟังก์ชันบวก
- 3) ฟังก์ชันลบ
- 4. จงเขียนโปรแกรมในการรับค่าจำนวนจริงทางแป้นคีย์บอร์ดแล้วนำไปเก็บใน ตัวแปรชุดแบบ 2 มิติ มี ขนาด 4 แถว 2 คอลัมน์ (4x2) แสดงผลค่าในสมาชิกของ ตัวแปรชุดทุกตัวทางจอภาพ

	[col 0]	[col 1]
[row 0]		
[row 1]		
[row 2]		
[row 3]		

- 5. จงเขียนโปรแกรมในการรับค่าคะแนนเก็บวิชา Computer Programming จำนวน 3 ครั้ง ครั้งละ 10 คะแนน ของนิสิตจำนวน 5 คน โดยกำหนดให้
 - รับค่าคะแนนทางแป้นคีย์บอร์ด
 - หาค่าผลรวมคะแนนเก็บของแต่ละคน
 - หาค่าคะแนนเก็บที่มากที่สุดในแต่ละครั้งว่า พร้อมทั้งระบุว่านิสิตคนใดที่ได้คะแนนดังกล่าว

ครั้งที่/คนที่	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3	รวม
1	5.00	9.00	6.00	20.00
2	4.00	7.50	10.00	21.50
3	7.00	10.00	3.00	20.00
4	9.00	3.00	4.50	16.50
5	8.00	1.50	9.50	19.00

6. จงเขียนโปรแกรมเหมือนข้อ 5 โดยใช้มีการอาร์เรย์ 2 มิติ โดยกำหนดให้มีการ 3 ฟังก์ชันในการรับค่า คะแนนเก็บ 7. จงเขียนโปรแกรมเพื่อคำนวณหาค่า determinant ของ matrix

8. จงเขียนโปรแกรมเปรียบเทียบเงินเดือนของพนักงาน 10 คน โดยใช้ array กำหนดให้นิสิตชนิดข้อมูลของ ข้อมูลเงินเดือนพนักงานเป็น float โดยแสดงผลลัพธ์ดังต่อไปนี้

Result

1. ลำดับของพนักงานที่ได้เงินเดือนมากที่สุด

2. เงินเดือนที่มากที่สุด

No. Person: 9

Salary : 30000.00

9. จงเขียนโปรแกรมหาผลรวมเงินเดือน 12 ปีของพนักงาน 1 คนโดยใช้ array กำหนดให้นิสิตชนิดข้อมูลของ ข้อมูลเงินเดือนพนักงานเป็น Real โดยแสดงผลลัพธ์

ดังต่อไปนี้

1. แสดงลำดับที่ของเดือนที่พนักงานได้เงินเดือน มากกว่า 15000 บาท

2. ผลรวมของเงินเดือนพนักงานจำนวน 12 เดือน

Result

No. Month: 1

No. Month: 12

Total Salary: 3000000

10. จงเขียนคำนวณค่าอาหารของร้านอาหารแห่งหนึ่งที่มีโต๊ะอาหาร 10 โต๊ะโดยใช้ array กำหนดให้ราคา อาหารเป็น float โดยแสดงผลลัพธ์ดังต่อไปนี้ Result

1. ลำดับของโต๊ะอาหารที่มีค่าอาหารมากที่สุด

2. เงินค่าอาหารที่มากที่สุด

No. Table: 1

Money : 3000