Elettronica dello Stato Solido Esercitazione di Laboratorio 4: Statistica di portatori

Daniele Ielmini

DEI – Politecnico di Milano ielmini@elet.polimi.it

Outline

- Struttura a bande:
 - Si
 - Ge
 - GaAs

Concentrazione di portatori all'equilibrio

Outline

- Struttura a bande:
 - Si
 - Ge
 - GaAs

Concentrazione di portatori all'equilibrio

Esercizio 1 – Bande e popolamento

- Si considerino gli script **bs_Si.m**, **bs_Ge.m** e **bs_GaAs.m**, che raffigurano gli stati occupati in prima ZB per Si, Ge e GaAs, rispettivamente¹. Studiare le bande ed il relativo popolamento per:
- [Si, Ge] spiegare:
 - La dipendenza dalla temperatura e dal livello di Fermi
 - La collocazione degli elettroni in Si e Ge (blu, azzurro)
 - La diversa collocazione di lacune pesanti (rosso) e leggere (rosa) nello spazio k.
- [GaAs] spiegare la distribuzione degli elettroni ad alta temperatura (qual è l'origine degli elettroni in azzurro?).

¹ Approssimazioni: (i) Bande paraboliche; (ii) Maxwell-Boltzmann; (iii) Considerati solo gli stati in banda, non stati donori/accettori

Si – estrinseco

Si – intrinseco

Ge - intrinseco

GaAs

Limiti approssimazione parabolica

- Alle alte temperature si esplorano stati non parabolici
- La banda di valenza è 'warped' (incurvata) per effetto dell'anisotropia:

$$E_V - E = Ak^2 \pm \sqrt{B^2k^4 + C^2(k_x^2k_y^2 + k_x^2k_z^2 + k_y^2k_z^2)}$$

Dove A, B e C sono parametri ad hoc,
k²=kx²+ky²+kz², + e – valgono per la lh e la hh rispettivamente

	A	В	C ²
Si	4.28	0.68	24
Ge	13.38	8.5	173
GaAs	6.9	4.4	43

Warped valence band

Light hole

Heavy hole

Nota: zona di Brillouin

- Si traccia facilmente in 3D congiungendo i punti W (vertici della zona)
- Coordinate punti ad alta simmetria (in unità 2π/a):

	k _x	k _y	k _z
Γ	0	0	0
X	0	0	1
W	1/2	0	1
K	3/4	3/4	0
L	1/2	1/2	1/2

Outline

- Struttura a bande:
 - Si
 - Ge
 - GaAs

Concentrazione di portatori all'equilibrio

Esercizio 2 – Portatori e Temperatura

Con l'ausilio dello script *cc.m*, calcolare la concentrazione di portatori all'equilibrio al variare della temperatura per Si drogato n (e.g. $N_D = 10^{18}$ cm⁻³, $N_A = 10^{14}$ cm⁻³). Dare ragione dei risultati ottenuti, in particolare:

- Studiare il limite di E_F per $T \rightarrow 0$ (freeze-out)
- Spiegare l'andamento di N_{D0} (donori non ionizzati) al variare della temperatura
- Confrontare con $N_D = 10^{16}$ cm⁻³ (E_F vs. T, intervallo estrinseco)

Silicio drogato n ($N_D = 10^{18} \text{ cm}^{-3}$)

Silicio drogato n ($N_D = 10^{16} \text{ cm}^{-3}$)

Esercizio 3 – Si intrinseco vs. compensato

Mediante lo script *cc.m*, calcolare la concentrazione di portatori all'equilibrio al variare della temperatura nel caso di Si intrinseco (e.g. $N_D = 10^8$ cm⁻³, $N_A = 10^2$ cm⁻³). In particolare:

- Studiare il limite di E_F per $T \rightarrow 0$ (freeze-out)
- Confrontare con $N_D = 1.00001 \times 10^{18}$ cm⁻³ e $N_A = 10^{18}$ cm⁻³ (compensazione).

Si intrinseco

Si compensato

D. Ielmini – Elettronica dello Stato Solido L4