

Министерство науки и высшего образования Российской Федерации Калужский филиал федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (КФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и управление» (ИУК)

КАФЕДРА «Системы автоматического управления» (ИУК3)

ОТЧЕТ

ЛАБОРАТОРНАЯ РАБОТА № 4

ДИСЦИПЛИНА: «Вычислительные методы теории управления»

ТЕМА: «Численные методы поиска минимума функции

многих переменных»

Выполнил: студент гр. ИУК3-41Б	Смирнов Ф.С.
Проверил:	Серегина Е.В.

Дата сдачи (защиты) лабораторной работы:

Результаты сдачи (защиты):

Количество рейтинговых баллов

Оценка

Цель работы: Изучение численных методов поиска минимума функции многих переменных. Выполняется исследование различных методов по точности вычисления и быстродействию построенных на их основе алгоритмов.

Задание:

- 1. Для указанного преподавателем варианта и 3-х численных методов необходимо написать программу поиска минимума функции многих переменных. Используемые методы:
 - 1. Метод Хука Дживса.
 - 2. Метод наискорейшего спуска.
 - 3. Метод Давидона Флетчера Пауэлла.
- 2. Написать программы минимизации функции многих переменных. При написании программ обеспечить вывод промежуточных результатов, иллюстрирующих процесс минимизации.
 - 3. Составить отчет о проделанной работе.

ПРАКТИЧЕСКАЯ ЧАСТЬ

$\mathcal{N}_{\underline{0}}$	f(x)	a	b	c	d
варианта					
14	$f(x_1, x_2) = x_1^2 \exp\{1 - bx_1^2 - a(x_1 - x_2)^2\}$	4	15		

Метод наискорейшего спуска

```
clc; clear all
f=0(x1,x2)(x1)^2*exp(1-15*(x1)^2-4*(x1-x2)^2);
xn = [0.2 0]
fun = @(x)(x(1))^2*exp(1-15*(x(1))^2-4*(x(1)-x(2))^2);
x0 = [0.2, 0];
x = fminsearch(fun, x0);
[x1, x2] = meshgrid(-1:0.01:1, -1:0.01:1);
F=(x1).^2.*exp(1-15.*(x1.^2)-4.*(x1-x2).^2);
figure(1)
mesh(x1, x2, F);
syms x1 x2
g = gradient(f,[x1,x2]);
[X, Y] = meshgrid(-1:.1:1, -1:.1:1);
G1 = subs(q(1), [x1 x2], \{X,Y\});
G2 = subs(q(2), [x1 x2], \{X,Y\});
figure(2)
quiver (X, Y, G1, G2);
G1 = 1;
G2 = 1;
eps=0.001;
while G1 > eps \mid \mid G2 > eps
    syms tk
    G1 = subs(g(1), [x1 x2], xn);
    G2 = subs(g(2), [x1 x2], xn);
    xn = [xn(1)-G1, xn(2)-G2];
    B = (diff(diff(f,x1),x1)*diff(diff(f,x2),x2)) - (diff(diff(f,x1),x2))^2;
    S2 = double (subs(B,[x1,x2],xn))
    S1 = double (diff(fun(xn)))
```

fun(xn)

Результат вычислений:

fmin =

-1.1938 0.0596;

result =

-1.2001 0.0670;

Таблица 1 – Таблица промежуточных результатов

1	' 1 2 1	J			
k	2	X		$\frac{\delta^2 f}{\delta t^2} \Big _{t=0}$	
1	0.2	0			
1	0.0780	-0.0814	0.3824		
2	-0.2224	-0.0987	1.6374		
3	-0.1420	-0.0392	0.2616		

Рис.1 График функции

Вывод: в ходе выполнения лабораторной работы были изучены численные методы поиска минимума функции многих переменных. Выполнено исследование различных методов по точности вычисления и быстродействию

построенных на их основе алгоритмов.