Paolo D'Arco pdarco@unisa.it

Universitá di Salerno

Elementi di Crittografia

Contenuti

- Funzioni Hash
- 2 Trasformazione Merkle-Damgard
- Paradigma Hash-and-Mac
- Protocollo HMAC

Una funzione hash offre un modo per mappare una stringa di input lunga in una stringa di output piú corta, chiamata digest (impronta digitale)

Requisito primario: evitare collisioni

Le funzioni hash hanno innumerevoli applicazioni

- estensione del dominio dei Mac
- modellate come "funzioni impredicibili" sono ampiamente usate nella progettazione di protocolli crittografici

Da un punto di vista teorico stanno "nel mezzo" tra:

Critt. a chiave privata \rightarrow funzioni hash \leftarrow Critt. a chiave pubblica

3 / 38

Paolo D'Arco (Unisa) Funzioni Hash EC-2024

Nel mezzo perché?

- nella pratica vengono costruite utilizzando tecniche della crittografia a chiave privata
- da un punto di vista teorico l'esistenza di funzioni hash resistenti a collisioni sembra un'assunzione piú forte dell'esistenza di PRF (ma piú debole della Critt. a chiave pubblica)

Nelle strutture di dati le funzioni hash vengono usate per costruire tabelle hash

$$h: U \rightarrow \{1,\ldots,N\}$$

h(x), con $x \in U$, é la posizione nella tabella T in cui x viene memorizzato. Le funzioni hash rendono possibili ricerche in tempo O(1).

Paolo D'Arco (Unisa) Funzioni Hash EC-2024 4/38

Una "buona" funzione hash riduce le "collisioni", cioé gli x, x', tali che h(x) = h(x').

Poiché |U| >> N \Rightarrow le collisioni esistono.

Nota che le collisioni implicano extra-spazio/extra-lavoro (chaining/open addressing)

Le funzioni hash **crittografiche** resistenti a collisioni sono simili nello spirito ma

Nelle strutture dati

Evitare collisioni é un **desiderio** al fine di ottenere efficienza maggiore

L'insieme dei dati é quasi sempre indipendente dalla funzione hash e **non ha** il fine di produrre collisioni

In Crittografia

Evitare collisioni é un **requisito** fondamentale

Adv puó scegliere elementi del dominio **con l'obiettivo** esplicito di causare collisioni

Resistenza a collisioni

H é resistente a collisioni (collision-resistant) se é impraticabile per qualsiasi Adv ppt trovare una collisione in H.

Consideriamo soltanto $H: D \rightarrow R$ tali che |D| > |R|.

Funzioni hash con chiave: H é una funzione a due input

$$s, x \rightarrow H(s, x) \stackrel{\text{def}}{=} H^s(x)$$

Deve essere difficile trovare una collisione in $H^s(\cdot)$ per un s generato a caso da $Gen(1^n)$.

Nota che rispetto agli schemi di cifratura a chiave privata alcuni valori di s possono non essere generati da $Gen(1^n)$ (non tutti gli s corrispondono a chiavi valide).

Inoltre, s (generalmente) non é segreto

 \Rightarrow useremo la notazione H^s invece di H_s per ricordarci di ció.

Definizione 5.1. Una funzione hash (con output di lunghezza ℓ) é una coppia di algoritmi ppt (Gen, H) tali che:

- Gen é un algoritmo ppt che prende in input 1^n e dá in output s
- H prende in input s ed una stringa $x \in \{0,1\}^*$ e dá in output $H^s(x) \in \{0,1\}^{\ell(n)}$

Se H^s é definita solo per $x \in \{0,1\}^{\ell'(n)}$, con $\ell'(n) > \ell(n)$, allora (Gen, H) é una funzione hash a lunghezza fissa per input di lunghezza ℓ'

H é detta funzione di compressione

Nota: senza "compressione" la resistenza a collisioni é facile $\to H^s(x)=x!$

Paolo D'Arco (Unisa) Funzioni Hash EC-2024 8/38

Sicurezza

Al solito, definiamo la sicurezza attraverso un esperimento.

Siano $\Pi = (Gen, H)$, Adv A, ed n par. di sicurezza.

The collision-finding experiment Hash-coll_{\mathcal{A},Π}(n):

- 1. A key s is generated by running $Gen(1^n)$.
- 2. The adversary A is given s and outputs x, x'. (If Π is a fixed-length hash function for inputs of length $\ell'(n)$, then we require $x, x' \in \{0, 1\}^{\ell'(n)}$.)
- 3. The output of the experiment is defined to be 1 if and only if $x \neq x'$ and $H^s(x) = H^s(x')$. In such a case we say that A has found a collision.

Sicurezza

Definizione 5.2. Una funzione hash $\Pi = (Gen, H)$ é resistente a collisioni se, per ogni Adv ppt A, \exists una funzione trascurabile negl tale che

$$Pr[\mathsf{Hash\text{-}coll}_{A,\Pi}(n) = 1] \leq negl(n).$$

Nota: deviazione dal modello. Nella pratica vengono usate funzioni hash "senza chiave", con lunghezza dell'output fissata. Cioé:

$$H: \{0,1\}^* \to \{0,1\}^{\ell}.$$

Tuttavia, coppie che "collidono" sono ancora non note e difficili da trovare

 \Rightarrow Le prove di sicurezza per funzioni hash "del mondo reale" sono ancora **significative** fino a quando la prova mostra che un avversario efficiente che rompe lo schema in esame puó essere usato per trovare esplicitamente collisioni in H

→□▶→□▶→□▶→□▶□ 900

Nozioni di sicurezza piú deboli

Nozioni piú deboli sono:

- Second pre-image resistance: data s ed un x scelto unif. a caso, é impraticabile per ogni Adv ppt trovare un x' ≠ x tale che H^s(x') = H^s(x)
- Pre-image resistance: data s ed un y scelto unif. a caso in $\{0,1\}^{\ell}$, é impraticabile per ogni Adv ppt trovare un x tale che $H^{s}(x) = y$.

É facile vedere che

• Collision resistance \Rightarrow Second pre-image resistance Infatti se, data s ed un x uniforme, fosse possibile trovare un x' tale che $H^s(x') = H^s(x) \Rightarrow$ la coppia (x, x') sarebbe una collisione

É facile anche vedere che:

Second pre-image resistance ⇒ Pre-image resistance
 Infatti se, data s ed un y uniforme, fosse possibile trovare un x tale che H^s(x) = y

1

Adv sceglierebbe x' unif. a caso, calcolerebbe $y'=H^s(x')$, calcolerebbe una pre-imagine di y', chiamiamola x, e con alta probabilità risulterebbe $x\neq x'$

x sarebbe una seconda pre-immagine di y'

Estensione del dominio

Progettazione di funzioni hash:

- prima progettiamo una funzione di compressione
- poi ne estendiamo il dominio per input di lunghezza arbitraria

Senza perdita di generalitá, supponiamo che:

$$(Gen, h)$$
 sia tale che comprima $2n$ bit $\rightarrow n$ bit

$$\Downarrow$$

(Gen, H), usando la trasformazione di Merkle-Damgard,

$$x \in \{0,1\}^* \quad \rightarrow \quad y \in \{0,1\}^n$$

Graficamente, la trasformazione opera come segue:

Il messaggio x é diviso in blocchi x_1, \ldots, x_B di n bit.

L'extra blocco x_{B+1} codifica la lunghezza di x con una stringa di n bit.

CONSTRUCTION 5.3

Let (Gen, h) be a fixed-length hash function for inputs of length 2n and with output length n. Construct hash function (Gen, H) as follows:

- Gen: remains unchanged.
- H: on input a key s and a string $x \in \{0,1\}^*$ of length $L < 2^n$, do the following:
 - Set B := \(\left[\frac{L}{n}\right]\) (i.e., the number of blocks in x). Pad x with zeros so its length is a multiple of n. Parse the padded result as the sequence of n-bit blocks \(x_1, \ldots, x_B \). Set \(x_{B+1} := L \), where \(L \) is encoded as an n-bit string.
 - 2. Set $z_0 := 0^n$. (This is also called the IV.)
 - 3. For i = 1, ..., B + 1, compute $z_i := h^s(z_{i-1}||x_i)$.
 - 4. Output z_{B+1} .

Teorema 5.4. Se (Gen, h) é resistente rispetto a collisioni, allora anche (Gen, H) lo é.

Prova. Mostriamo che, per *qualsiasi s*, una collisione in H^s dá una collisione in h^s .

Siano x ed x' due stringhe differenti di lunghezza L ed L' tali che $H^s(x) = H^s(x')$

$$x = x_1 \dots x_B x_{B+1}$$
 $x' = x'_1 \dots x'_{B'} x'_{B'+1}$

Ci sono due casi da considerare.

Caso 1. $L \neq L'$. Gli ultimi passi nel calcolo di $H^s(x)$ e di $H^s(x')$ sono

$$z_{B+1} = h^s(z_B||x_{B+1})$$
 e $z'_{B'+1} = h^s(z'_{B'}||x'_{B'+1})$
Ma $H^s(x) = H^s(x')$ \Rightarrow $z_{B+1} = z'_{B'+1}$
 \Rightarrow $w = z_B||x_{B+1}$ e $w' = z'_{B'}||x'_{B'+1}$

sono una collisione per h^s , essendo $w \neq w'$ dato che $x_{B+1} \neq x'_{B'+1}$.

Paolo D'Arco (Unisa)

Caso 2. L = L'. Quindi B = B' e $x_{B+1} = x'_{B+1}$.

Siano:

 z_1, \ldots, z_{B+1} i valori prodotti dal calcolo di $H^s(x)$.

 I_1, \ldots, I_{B+1} gli input per h^s , cioé $I_i = z_{i-1} || x_i$, per $i = 1, \ldots, B+1$.

 z_1',\ldots,z_{B+1}' i valori prodotti dal calcolo di $H^s(x')$.

 I_1',\ldots,I_{B+1}' gli input per h^s , cioé $I_i'=z_{i-1}'||x_i'|$ per $i=1,\ldots,B+1$.

Poniamo inoltre $I_{B+2} = z_{B+1}$ e $I'_{B+2} = z'_{B+1}$.

Sia N il **più grande** indice per cui risulta $I_N \neq I'_N$.

Poiché $x \neq x'$, deve esistere un i tale che $x_i \neq x_i' \Rightarrow N$ certamente esiste.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

D'altra parte, dato che

$$I_{B+2} = z_{B+1} = H^s(x) = H^s(x') = z'_{B+1} = I'_{B+2}.$$

deve essere $N \leq B + 1$.

Per definizione, N é l'indice più grande per cui $I_N \neq I'_N$. Quindi:

$$I_{N+1} = I'_{N+1} \quad \Rightarrow \quad z_N = z'_N \ \downarrow \ h^s(I_N) = z_N = z'_N = h^s(I'_N)$$

e quindi le stringhe I_N ed I_N' sono una collisione per h^s .

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・釣りで

Al momento sappiamo autenticare messaggi di lunghezza arbitraria in diversi modi

- Costruzione generica
- CBC-Mac
- GCM e Poly1305

Un'altra modalitá fa uso delle funzioni hash.

Idea:
$$m \in \{0,1\}^*$$
, $y = H^s(m)$, $Mac_k(y)$

 H^s é collision-resistant. Il Mac viene calcolato su $H^s(m)$ invece che su m.

CONSTRUCTION 5.5

Let $\Pi = (\mathsf{Mac}, \mathsf{Vrfy})$ be a MAC for messages of length $\ell(n)$, and let $\Pi_H = (\mathsf{Gen}_H, H)$ be a hash function with output length $\ell(n)$. Construct a MAC $\Pi' = (\mathsf{Gen}', \mathsf{Mac}', \mathsf{Vrfy}')$ for arbitrary-length messages as follows:

- Gen': on input 1ⁿ, choose uniform k ∈ {0, 1}ⁿ and run Gen_H(1ⁿ) to obtain s; the key is k' := ⟨k, s⟩.
- Mac': on input a key $\langle k, s \rangle$ and a message $m \in \{0, 1\}^*$, output $t \leftarrow \mathsf{Mac}_k(H^s(m))$.
- Vrfy': on input a key ⟨k, s⟩, a message m ∈ {0, 1}*, and a MAC tag t, output 1 if and only if Vrfy_k(H^s(m), t) ? 1.

La costruzione é sicura se Π é un Mac sicuro per messaggi di lunghezza fissa e Π_H é collision-resistant.

Intuizione: Π_H collision-resistant \Rightarrow autenticare $H^s(m)$ é "essenzialmente uguale" ad autenticare m.

Precisamente: supponiamo che un mittente usi la costruzione per autenticare un insieme di messaggi Q, ed A riesca a produrre una contraffazione per $m^* \notin Q$.

Ci sono due casi:

- **1** un messaggio $m \in Q$ tale che $H^s(m) = H^s(m^*)$ $\Rightarrow A$ ha trovato una collisione per H^s
- ② $\forall m \in Q, H^s(m) \neq H^s(m^*).$ $\Rightarrow A$ ha trovato un tag valido rispetto a Π per $H^s(m^*).$

Teorema 5.6. Se Π é un Mac sicuro per messaggi di lunghezza ℓ e Π_H é resistente a collisioni, allora la Costruzione 5.5 é un Mac sicuro per messaggi di lunghezza arbitraria.

Dim. Sia Π' la Costruzione 5.5 e A' un Adv che attacca Π' .

In una esecuzione di Mac- $forge_{A',\Pi'}(n)$ sia k'=< k,s> e sia Q l'insieme dei messaggi di cui A' chiede i tag.

Sia $m^* \notin Q$. Indichiamo con *Coll* l'evento in *Mac-forge*_{A', Π'}(n)

"c'é un messaggio
$$m \in Q$$
 per cui $H^s(m) = H^s(m^*)$."

Risulta $Pr[Mac-forge_{A',\Pi'}(n) = 1]$

$$= Pr[\textit{Mac-forge}_{\textit{A'},\Pi'}(\textit{n}) = 1 \land \textit{Coll}] + Pr[\textit{Mac-forge}_{\textit{A'},\Pi'}(\textit{n}) = 1 \land \overline{\textit{Coll}}]$$

$$\leq Pr[Coll] + Pr[Mac-forge_{A',\Pi'}(n) = 1 \land \overline{Coll}]$$

4 D > 4 B > 4 B > B = 900

Mostreremo che entrambi i termini sono trascurabili.

Intuitivamente, il primo é trascurabile per via di Π_H .

L'algoritmo C che segue usa A' che attacca Π' per trovare collisioni per Π_H

Algorithm C:

The algorithm is given s as input (with n implicit).

- Choose uniform $k \in \{0,1\}^n$.
- Run $\mathcal{A}'(1^n)$. When \mathcal{A}' requests a tag on the *i*th message $m_i \in \{0,1\}^*$, compute $t_i \leftarrow \mathsf{Mac}_k(H^s(m_i))$ and give t_i to \mathcal{A}' .
- When \mathcal{A}' outputs (m^*, t) , then if there exists an i for which $H^s(m^*) = H^s(m_i)$, output (m^*, m_i) .

Analisi: C computa in tempo polinomiale.

Quando s viene generato da $Gen_H(1^n)$, la "vista" di A' quando eseguito come subroutine di C é distribuita identicamente alla "vista" che A' ha quando esegue in Mac- $forge_{A',\Pi'}(n)$.

Poiché C dá in output una collisione **esattamente** quando essa occorre, risulta

$$Pr[Hash-Coll_{C,\Pi_H}(n)=1]=Pr[Coll].$$

Dall'assunzione che Π_H é collision-resistant, segue che \exists *negl* tale che

$$Pr[Hash-Coll_{C,\Pi_H}(n)=1] \leq negl(n)$$
 $\qquad \qquad \downarrow$ $\qquad \qquad Pr[Coll] \leq negl(n).$

Il secondo termine é trascurabile per via della sicurezza dello schema Mac Π.

L'algoritmo A attacca Π in Mac-forge $_{A,\Pi}(n)$.

Adversary A:

The adversary is given access to a MAC oracle $\mathsf{Mac}_k(\cdot)$.

- Compute $Gen_H(1^n)$ to obtain s.
- Run $\mathcal{A}'(1^n)$. When \mathcal{A}' requests a tag on the *i*th message $m_i \in \{0,1\}^*$, then: (1) compute $\hat{m}_i := H^s(m_i)$; (2) obtain a tag t_i on \hat{m}_i from the MAC oracle; and (3) give t_i to \mathcal{A}' .
- When \mathcal{A}' outputs (m^*, t) , then output $(H^s(m^*), t)$.

Analisi: A computa in tempo polinomiale.

La "vista" di A' quando eseguito come subroutine di A é distribuita identicamente alla "vista" che A' ha quando esegue in $Mac\text{-}forge_{A',\Pi'}(n)$.

Quando entrambi gli eventi "Mac- $forge_{A',\Pi'}(n) = 1$ " e " \overline{Coll} " si verificano, A dá in output una falsificazione (t é un tag valido per $H^s(m^*)$ rispetto a Π). Infatti, poiché Coll non si verifica, $H^s(m^*)$ non é stata una query di A all'oracolo $Mac_k(\cdot)$. Quindi:

$$Pr[Mac ext{-}forge_{A,\Pi}(n)=1]=Pr[Mac ext{-}forge_{A',\Pi'}(n)=1 \land \overline{Coll}].$$

Dall'assunzione che Π é un Mac sicuro, segue che \exists *negl* tale che

É possibile costruire uno schema Mac sicuro per messaggi di lunghezza arbitraria, basandosi direttamente su una funzione hash?

Idea: usare "due livelli" di hash: $H^s(k_1, H^s(k_2, m))$

- un primo livello per creare il "digest"
- un secondo per autenticare

CONSTRUCTION 5.7

Let (Gen_H, H) be a hash function constructed by applying the Merkle–Damgård transform to a compression function (Gen_H, h) taking inputs of length n+n'. (See text.) Let opad and ipad be fixed constants of length n'. Define a MAC as follows:

- Gen: on input 1^n , run $\text{Gen}_H(1^n)$ to obtain a key s. Also choose uniform $k \in \{0,1\}^{n'}$. Output the key $\langle s,k \rangle$.
- Mac: on input a key $\langle s, k \rangle$ and a message $m \in \{0, 1\}^*$, output

$$t:=H^{s}\Big((k\oplus\operatorname{opad})\,\|\,H^{s}\big(\,(k\oplus\operatorname{ipad})\,\|\,m\big)\Big)\,.$$

• Vrfy: on input a key $\langle s, k \rangle$, a message $m \in \{0, 1\}^*$, and a tag t, output 1 if and only if $t \stackrel{?}{=} H^s((k \oplus \mathsf{opad}) \parallel H^s((k \oplus \mathsf{ipad}) \parallel m))$.

Osservazioni: la funzione di compressione

$$h: \{0,1\}^{n+n'} \to \{0,1\}^n$$

corrisponde alla funzione $h: \{0,1\}^{2n} \to \{0,1\}^n$ nell'analisi della trasformazione di Merkle-Damgard (n'=n).

La lunghezza del messaggio nella trasformazione viene codificata con un blocco extra x_{B+1} . In realtá, in pratica viene codificata in una porzione di blocco, usando ℓ bit.

Il messaggio x viene completato con zeri fino ad ottenere una lunghezza multiplo di n' a meno di ℓ bit. Poi viene aggiunta L=|x|, codificata con ℓ bit (assumiamo che $n+\ell < n'$ nella costruzione).

Perché dovremmo convincerci che HMAC é sicuro?

Puó essere vista come una specifica istanza del paradigma Hash-and-Mac.

Precisamente, HMAC opera come segue:

associa una stringa corta ad un messaggio di lunghezza arbitraria

$$y := H^s((k \oplus ipad)||m)$$

calcola con una funzione (a chiave segreta)

$$t := H^s((k \oplus opad)||\stackrel{\sim}{y})$$

Ma possiamo essere piú precisi. Sia $\overset{\sim}{H^s}(m) \stackrel{def}{=} H^s((k \oplus ipad)||m)$

 \Rightarrow $\overset{\sim}{H^s}$ é collision-resistant se h lo é, per qualsiasi valore di $k \oplus ipad$.

Paolo D'Arco (Unisa)

Inoltre, il primo passo nel calcolo di $t:=H^s((k\oplus opad)||\stackrel{\sim}{\mathcal{Y}})$ consiste nel calcolare il valore

$$k_{out} \stackrel{def}{=} h^{s}(IV \mid\mid k \oplus opad)$$

per poi calcolare

$$t := h^s(k_{out} \mid\mid \stackrel{\sim}{y})$$

Il valore $\stackrel{\sim}{y}$ é y "con pad", i.e., include la lunghezza che é n+n', codificata con ℓ bit. Pertanto, se trattiamo k_{out} come una stringa uniforme e assumiamo che

$$\stackrel{\sim}{\textit{Mac}_k}(y)\stackrel{\textit{def}}{=} h^s(k||y)$$

sia un Mac sicuro a lunghezza fissa, allora HMAC é un'instanziazione di Hash-and-Mac.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Precisamente:

Paolo D'Arco (Unisa)

$$HMAC_{s,k} = \stackrel{\sim}{Mac}_{k_{out}} \stackrel{\sim}{(H^s} (m))$$

A cosa servono le costanti *ipad* ed *opad*? A derivare efficientemente due chiavi da una sola.

Perché incorporare *k* nella computazione "piú interna"? Occorre che la funzione hash sia collision-resistant e una chiave non é necessaria ma ...

Rende possibile provare la sicurezza della costruzione su una assunzione "piú debole", la weak collision-resistance (resistenza a collisioni debole).

Nell'esperimento $Hash-Coll_{A,\Pi}$, l'Adv A interagisce con un oracolo $H^s_{k_{in}}(\cdot)$ che restituisce $H^s_{k_{in}}(m)$ su m come richiesta.

 $H^s_{k_{in}}(\cdot)$ usa la trasformata di Merkle-Damgard applicata ad h^s , ma usando come IV la chiave segreta k_{in} .

Osservazione: H collision-resistant $\Rightarrow H$ weakly collision-resistant

La seconda é potenzialmente piú semplice da soddisfare.

Usare $\Pi = (Gen_H, H)$ weakly collision-resistant é una buona strategia difensiva.

Caso reale: MD5, funzione hash usata ampiamente in passato.

Primi attacchi mostrarono MD5 non collision-resistant ... ma ancora weakly collision resistant

Gli sviluppatori che usavano MD5 in HMAC ebbero "tempo" per sostituirla con un'altra funzione hash.

Usare assunzioni piú deboli é sempre preferibile.

Due chiavi indipendenti -interna ed esterna - ed uniformi dovrebbero essere usate.

Definiamo:

$$G^{s}(k) = h^{s}(IV||(k \oplus opad)) || h^{s}(IV||(k \oplus ipad)) = k_{out} || k_{in}$$

Se assumiamo che G^s sia un PRG per qualsiasi valore di s, allora k_{out} e k_{in} possono essere considerate chiavi indipendenti ed uniformemente distribuite.

Teorema 5.8. Sia G^s un PRG per qualsiasi s, sia $Mac_{k_{out}}(\cdot)$ un Mac sicuro per messaggi di lunghezza fissa n, e sia (Gen_H, H) una funzione hash weakly collision-resistant. Allora HMAC é un MAC sicuro per messaggi di lunghezza arbitraria.

HMAC in pratica: ampiamente usato, piú efficiente di CBC-MAC.

4 D > 4 B > 4 E > 4 E > 4 E > 4 C

Esercizi

Si formalizzi lo sketch della prova di sicurezza per la trasformata di Merkle-Damgard esibendo una riduzione rigorosa.