Modeling and Constraining the Cluster Mass Function to Test Gravity at Large Scales

David Rapetti University of Colorado Boulder / NASA Ames

Work presented here in collaboration with:

Matteo Cataneo (ROE), Fabian Schmidt (MPA), Baojiu Li (Durham), Lucas Lombriser (ROE), Adam Mantz (KIPAC), Steve Allen (KIPAC), Douglas Applegate (KICP), Patrick Kelly (Berkeley), Anja von der Linden (Stony Brook), Glenn Morris (KIPAC)

Constraining alternative theories of gravity

- 1. Strength from cluster observations: constraining gravity at large scales, either using concrete models or general parameterizations.
- 2. Worked example: viable f(R) gravity models with the chameleon screening mechanism.
- 3. For f(R), current prospects for improvement are primarily based on analyses including less massive and low-z objects.

Hu-Sawicki f(R) gravity model (departing from GR)

$$f(R) = -2\Lambda - \frac{f_{R0}}{n} \frac{\bar{R}_0^{n+1}}{R^n}$$

Approximated Hu-Sawicki model in the high curvature regime. In the limit $|f_{R0}| << 10^{-2}$ closely mimics the LCDM expansion history

$$\lambda_{C0} \approx 29.9 \sqrt{\frac{|f_{R0}|}{10^{-4}} \frac{n+1}{4-3\Omega_m}} h^{-1} \text{Mpc}$$

Compton wavelength; scales below this present modified gravity until GR is recovered when the fifth force is screened by non-linear effects

$$g(a,k) \equiv -\frac{1}{3}\frac{k^2}{k^2+m_{f_R}^2a^2} \quad \begin{array}{l} m_{f_R}^{-2}=\lambda_C^2=3f_{RR} & f_R\equiv\frac{\partial f}{\partial R} \\ \text{Linear growth is different than GR+LO} \end{array}$$

$$m_{f_R}^{-2} = \lambda_C^2 = 3f_{RR}$$
 $f_R \equiv \frac{\partial f}{\partial R}$

Linear growth is different than GR+LCDM

Halo mass function modeling

$$n_{\Delta_v} \equiv rac{dn}{d\ln M_v} = rac{ar{
ho}_m}{M_v} rac{d\ln
u}{d\ln M_v}
u f(
u)$$
 Sheth-Tormen mass function

$$u f(
u) = A\sqrt{rac{2}{\pi}a
u^2}\left[1+(a
u^2)^{-p}\right]\exp\left[-a
u^2/2
ight]$$
 $u=\delta_c/\sigma(M_v)$ Peak height

$$u = \delta_c/\sigma(M_v)$$
 Pea

$$\delta_c(\Omega_m, z) = \mathcal{A}\left(1 - \mathcal{B}\log_{10}\left[1 + \frac{\Omega_m^{-1} - 1}{(1+z)^3}\right]\right)$$
 Density threshold fitting formula

$$n_{\Delta} = \left(\frac{n_{\Delta}^{f(R)}}{n_{\Delta}^{GR}}\Big|_{ST}\right) n_{\Delta}|_{Tinker}$$
 $\mathcal{A} = 1.0803 \text{ and } \mathcal{B} = 0.0123 \text{ for } GR$

$$\mathcal{A} = 1.6865$$
 and $\mathcal{B} = 0.0123$ for GR

$$A = 1.7063 \text{ and } B = 0.0136 \text{ for } f(R)$$

$$n_{
m ST}^{f(R)}/n_{
m ST}^{
m GR}$$
 We set this equal to 1 when becomes <1

Halo mass function modeling

- Using N-body simulations including the Chameleon screening mechanism (Schmidt et al 2009).
- Our modeling is based on the bottom line of the blue shaded area, which as shown here is conservative.

Halo mass function modeling

- Using N-body simulations including the Chameleon screening mechanism (Schmidt et al 2009).
- Our modeling is based on the bottom line of the blue shaded area, which as shown here is conservative.

HS n=1 f(R) growth + flat Λ CDM

Cataneo et al 15 (PRD 2015, 92, 044009)

 $|f_{R0}| < 1.62 \times 10^{-5} (All)$

Clusters: XLF: BCS+REFLEX+MACS (z<0.5) 224 survey with 94 X-ray followup (Mantz et al 2015) + 50 weak lensing (Weighing the Giants; von der Linden et al 2014)+ cluster f_{qas} (Mantz et al 2014) CMB (Planck collaboration 2014; SPT, Story et al 2013; ACT, Das et al 2014) + SNIa (Union 2.1, Suzuki et al 2012) + BAO (6dF, Beutler et al 2011; SDSS, Padmanabhan et al 2012, Anderson et al 2014; WiggleZ, Blake et al 2011)

Gold: all data sets combined

For General Relativity |f_{R0}|=0

Correlation between σ_8 and $|f_{R0}|$

$$\rho = 0.73 \, (All) \quad \rho = 0.90 \, (CMB)$$

Chameleon screening refinement

Cataneo et al 16, (JCAP 2016, 12, 024)

- Modeling the effect of the Chameleon screening mechanism on the mass function using high-resolution N-body simulations to obtain a more accurate mass function (Cataneo, Rapetti, Lombriser, Li, 2016)
- Spherical collapse thresholds at z=0 (Omega_m=0.281). Lombriser et al 2014 calculations at the peak of the environmental density distribution in blue and our corrected/calibrated delta_c in red to account for self-screening and environmental screening mechanisms.

Chameleon screening refinement

$$\delta_c^{\text{eff}} = \epsilon(M \mid M_{\text{th}}^{(1)}, \mu, M_{\text{th}}^{(2)}, \nu, \alpha) \times \delta_c(\delta_{\text{env}}^{\text{peak}})$$

$$\epsilon = \frac{1 + (M/M_{\text{th}}^{(1)})^{\eta} (\delta_{\text{c}}^{\Lambda}/\delta_{\text{c}}^{f(R)})^{\chi} + (M/M_{\text{th}}^{(2)})^{\vartheta} (\delta_{\text{c}}^{f(R)}/\delta_{\text{c}}^{\Lambda})}{1 + (M/M_{\text{th}}^{(1)})^{\eta} + (M/M_{\text{th}}^{(2)})^{\vartheta}}$$

GR/LCDM environmental density probability distribution (Lam & Sheth 08); z=0, 0.2, 0.5; Omega_m=0.281

New halo mass function

Cataneo et al 16

- High-resolution: L_box=1024 Mpc/h; N particles=1024; force resolution = 15.3 kpc/h; N realizations = 1; z = 0(blue), 0.1, 0.2 (red), 0.3, 0.4, 0.5 (green); n s=0.971, Omega m=0.281, H0=69.7, T CMB=2.7255, Y He=0.24, N_nu=3, sigma_8=0.82 (flat LCDM background). Current fits: $5\% \text{ for } 10^{13.5} \leqslant M_{300\text{m}} (M_{\odot}/h)^{-1} \leqslant 10^{15.5}$ $10^{-6} \leqslant |f_{R0}| \leqslant 10^{-4} \text{ and } 0 \leqslant z \leqslant 0.5$ - Rockstar halo finder with spherical overdensity masses with average density equals 300p_m; simulations divided in octants; uncertainties on the HMF f(R)/GR ratios propagated with the jackknife method with halos in mass bins of $\Delta \log 10(M) = 0.15$. (We only keep mass bins with N halos>20.)

Jan 26, 2017

Testing Gravity, SFU, Vancouver

New halo mass function

Cataneo et al 16

- Low-resolution: L_box=1.5 Gpc/h; N_particles=1024; force resolution = 22.9 kpc/h; N_realizations = 6; z = 0 (blue), 0.11, 0.25 (red), 0.43 (green); n_s=0.958, Omega_m=0.24, H0=73, T_CMB=2.7255, Y_He=0.24, N_nu=3, sigma_8=0.796 (flat LCDM background).
- Rockstar halo finder with spherical overdensity masses with average density equals 300ρ_m; uncertainties on the HMF f(R)/GR ratios propagated with the jackknife method using the six realizations with halos in mass bins of Δlog10(M)=0.15. (We only keep mass bins with N_halos>20.)

Jan 26, 2017

Testing Gravity, SFU, Vancouver

New halo mass function

$$\mathcal{R}(M, z, \bar{f}_{R0}, \boldsymbol{\theta}) = rac{n_{\ln M}^{f(R)}}{n_{\ln M}^{GR}}$$

- Dashed lines show the effect of neglecting the correction,
- which is only weakly dependent on standard cosmological parameters
- and potentially insensitive to baryonic physics and massive neutrinos

Comparison of current and prospective constraints

Gray band, 7% mass calibration from WtG with the corresponding lower mass limit; red line, current 2-sigma level from the WtG constraints using the previous mass function; blue line, projected constraints for the next WtG constraints with the new f(R) HMF (~a factor of 2 improvement).

Prospective constraints for a lower mass/z survey

Gray band, 5% mass calibration from DES with the corresponding lower mass limit; blue line, projected constraints for DES constraints with the new f(R) HMF (~an order of magnitude improvement).

Comparison of current and prospective constraints

Adapted from Joyce, Jain, Khoury & Trodden 2014 (review)

Cataneo et al 15 λ_c <^10Mpc |f_{R0}|<^10⁻⁵

Cataneo et al 17 (in pr.), a factor of ~2 better

DES forecast λ_c <~3Mpc |f_{R0}|<~10⁻⁶ (Cataneo et al 2016)

Jan 26, 2017

Testing Gravity, SFU, Vancouver