Comments on Efficient Division of Profits for Complex Innovations (Richard Gilbert and Michael Katz)

Rufus Pollock

Department of Economics
University of Cambridge

IIOC 2007-04-14

Basic Question

How Should We Divide Up the Pie When Dealing with Complex/Componentized Innovations?

Can We Do This in an 'Implementable Manner'?

That is using the observables available to a court ...

- Number of patents each party has
- Sales (and perhaps profits)

Take a Step Back: Patent Races Generally

2 Basic (Opposing) Effects:

1. Wedge Between Private Value (Π) and Social Value (W):

```
(\Pi < W)
```

- Level of innovation will be too low compared to optimal
- 2. 'Pooling' externality of patent races
 - Too much innovation compared to social optimum
- ⇒ Level of innovation can be too high, too low (or just right)

Suppose we can Manipulate Payoffs

- π_0 = Payoff from losing (0 patents)
- π_1 = Payoff from winning (1 patent)
- Budget balance: $\pi_0 + \pi_1 = \Pi$ (Private value)
- Difference: $\Delta = \pi_1 \pi_0$
- Total R&D effort N is an increasing function of Δ

- If Δ unrestricted can achieve any effort level including the socially efficient effort level
- BUT: very unlikely $\Delta = \Pi$
- Δ > Π: impossible to have budget balance (Government must put money in the pot)
- $\Delta < \Pi \Rightarrow$ must violate one of:
 - Budget balance
 - Zero reward for zero success $\pi_0 = 0$
- General result (Holmstrom 1982)

The Paper

Main Results

- Generalize to case of componentised innovation
 - Need exactly L distinct innovations for product to be useful
- Explicit formula for shares: $s(k, L k) = \frac{1}{2} + (k \frac{L}{2}) \frac{\theta}{\alpha}$
 - Assumptions: Duopoly, Linear hazard rates, $\alpha \ge \theta L$)
 - $\alpha > \theta L \Rightarrow s(0, L) > 0$: i.e. positive reward for zero patents
- Compare this with 2 implementable schemes
 - Shares equal to share of patents: s(k, L k) = k/L
 - Equal shares per patent-holder: s(k, L k) = 1/2

The Paper (2): Implementable Schemes

- Unsurprisingly neither regime will deliver optimality in general
- Shares equal to share of patents: s(k, L k) = k/L
 - \Rightarrow s(0, L) = 0
 - So if $\alpha > \theta L$ cannot be optimal
 - Too much R&D ...
- Equal shares per patent-holder: s(k, L k) = 1/2
 - Too little incentive once both firms have patents
 - Too large incentives when one firm without any patents
 - In general one might imagine that first effect would prevail but algebra will be hairy

Issues and Extensions

$$\alpha \geq \theta L$$

- A non-trivial requirement ($\alpha^2 = w/rc$, $\theta = 2w/\pi 1$)
- $\alpha < \theta L$:
 - Corresponds to Δ > Π: insufficient incentives under budget balance
 - Occurs when $\frac{1}{\sqrt{rc}} < (\frac{2w-\pi}{\pi w^{1/2}})L$
 - r, c large, π small compared to w or L large.
- In this situation we want more R&D
- When $\alpha > \theta L$ proportional shares result in too much R&D
- Suggests proportional shares will do 'well' here ...

Non-zero Reward for Zero Success: What's the Problem?

- Adverse selection/Free-riding?
- Get the idea: anyone could just turn up and ask for s(0, L)
 - Concrete example: ACM paper on 3G
- But have a Nash Equilibrium: so firms will invest
 - What exactly is the entry game?
 - What form does cost heterogeneity take (w/o back to Nash)

Further Suggestions

- Equal shares per patent holder seems to do poorly
 - Does this suggest a role for compulsory licensing
- Devil is in the details: not all patents are the same ...
 - Back to 3G example: how do we model free-riding
- More than 2 firms (n firms)