

Australian National University

Workshop on Decomposition Methods

Vladimir Canudas-Romo, Joo Won Park and Wen Su

Decomposing Mortality Measures

Life Tables

q(a)

Probability of Death

 $\ell(a)$

Survival Function

f(a)

Function of the Distribution of Deaths

Age-specific death rates for the population of the Netherlands.

Survival function for the population of the Netherlands.

Life expectancy

$$e_0(t) = \int_0^\omega \ell(x, t) dx$$

Period life expectancy for the population of the Netherlands.

Life Tables

$$f(a) = \ell(a)q(a)$$

Distribution of deaths for the population of the Netherlands.

$$\Delta e_0 = DE + IE$$

Direct effect

$$DE = \sum_{0}^{\omega - 1} l_{x}^{1} \left| \frac{L_{x}^{2}}{l_{x}^{2}} - \frac{L_{x}^{1}}{l_{x}^{1}} \right|$$

Indirect effect

$$IE = \sum_{x=1}^{\omega-1} T_{x+1}^2 \left| \frac{l_x^1}{l_2} - \frac{l_{x+1}^1}{l_2} \right|$$

Table 1: Female life expectancy gap, Korea - USA, 2019

	Arriaga
Life expectancy at birth for Korea	86.3
Life expectancy at birth for USA	81.5
Life expectancy difference betwen Korea and USA	4.9
Estimated difference from decompositon	4.9

Table 2: Female life expectancy gap, Korea - USA, and its components 2019

	Arriaga
Life expectancy at birth for Korea	86.3
Life expectancy at birth for USA	81.5
Life expectancy difference betwen Korea and USA	4.9
Direct component	0.1
Indirect and interaction component	4.7
Estimated difference from decompositon	4.9

The Human Cause-of-Death Database

Directors: Dmitri Jdanov (MPIDR) and France Meslé (INED)

 Home
 Data by country
 Zipped Data
 Formats

The Human Cause-of-Death Database (HCD) is a joint project of the <u>French Institute for Demographic Studies</u> (INED) in Paris, France and the <u>Max Planck Institute for Demographic Research</u> (MPIDR) in Rostock, Germany, based at the MPIDR. We seek to provide free and user-friendly access to coherent time series of cause-specific mortality for researchers, students, journalists, policy analysts, and others interested in analysis of cause-of-death patterns. In contrast to other existing databases on causes of deaths, we provide time series with causes of death classified according to a constant (fixed) list/classification of causes of death. The main goal of the database is to document trends of cause-specific mortality and to facilitate research on their comparative analyses.

Although in each country the original series of vital statistics are based on the currently acting classifications of causes of death, we provide reconstructed data according to the most recent version of the classification in use (see <u>Background</u> for details). We pay special attention to rigorous data checking and documentation and to warranting data comparability across time and countries by means of universal and standardized methodology. Due to peculiarities of the original national cause-of-death nomenclatures and procedures, computational procedures may be somewhat modified accordingly. Respective country-specific information is given in the Background and Documentation text for the country in question.

At present the database contains continuous data series for the following 16 countries:

Detailed data by country				
Belarus	Czech Republic	England & Wales	Estonia	
France	Germany	Japan	Latvia	
Lithuania	Moldova	Poland	Romania	
Russia	Spain	Ukraine	USA	

The HCD data series will be updated regularly. For more information, please begin by reading an overview of the database. If you have any comments or questions, or trouble gaining access to the data, please write to us.

Joint project of the INED and the MPIDR,

REGISTRATION

Login

New User

Change Password

ABOUT THE PROJECT

Background

Overview

History

What's New

GUIDELINES

User Agreement

Citation Guidelines

Explanatory Notes

PEOPLE

Research Team

Acknowledgements

LINKS

Human Mortality Database

French Institute for Demographic Studies

Max Planck Institute for Demographic Research

Age- & Cause-decomposition

$$\Delta e_0 = \sum_x \sum_c \Delta_x^c * \Delta_x$$

Age- & Cause-decomposition

$$\Delta_x^c = \frac{R_x^c(2) m_x(2) - R_x^c(1) m_x(1)}{m_x(2) - m_x(1)}$$

Data Description

Human Causes of Death database (HCoD)

- 1. Neoplasms
- 2. Cardiovascular Diseases
- 3. External causes
- 4. Other causes

USA Causes-decomposition

Table 3: Arriaga Decomposition by age and cause

	USA
Life expectancy at birth for USA, 2010	81.06
Life expectancy at birth for USA, 2018	81.35
Life expectancy difference betwen 2010 and 2018	0.28
Cardiovascular disease	0.01
Neoplasms	0.35
External causes	-0.20
Other causes	0.11
Estimated total difference from decompositon	0.28

Cause-decomposition

Age- and cause-decomposition of the change in the American female life expectancy between 2010 and 2018.

DEMOGRAPHY

ISSUES FEATURED V

ADVANCE PUBLICATION

RESEARCH ARTICLE | MAY 01 2003

Decomposing change in life expectancy: A bouquet of formulas in honor of Nathan Keyfitz's 90th birthday

James W. Vaupel; Vladimir Canudas Romo

Demography (2003) 40 (2): 201-216.

https://doi.org/10.1353/dem.2003.0018

Abstract

We extend Nathan Keyfitz's research on continuous change in life expectancy over time by presenting and proving a new formula for decomposing such change. The formula separates change in life expectancy over time into two terms. The first term captures the general

Volume 40, Issue 2

May 1, 2003

Artiala Cantanta

Vaupel & Canudas-Romo Decomposition of Life Expectancy

$$\rho(x) = -\frac{\dot{m}_x}{m_x}$$

VCR decomposition

$$e^{\dagger}(t) = \int_0^{\omega} e(x,t)f(x,t)dx$$

VCR decomposition

$$\dot{e}_{0}(t) =$$

$$\bar{\rho}(t)e^{\dagger}(t)+Cov_f(\rho,e)$$

Decomposing change in life expectancy

Table 1: Life expectancy at birth, $e^{o}(0,t)$, and the decomposition of the annual change around the first of January of 1903, 1953 and 1998, in Sweden.

t	1903	1953	1998
$e^{o}(0, t-2.5)$	52.239	71.130	78.784
$e^{o}(0, t+2.5)$	54.527	72.586	79.740
$\dot{e}^o(0,t)$	0.458	0.291	0.191
$\bar{ ho}$ (%)	1.852	2.083	1.587
e^{\dagger}	22.362	11.988	10.053
$ar ho e^\dagger$	0.414	0.249	0.159
$C_f(\rho, e^o)$	0.044	0.042	0.032
$\dot{e}^o(0) = \bar{\rho}e^\dagger + C_f(\rho, e^o)$	0.458	0.291	0.191

Source: Vaupel & Canudas-Romo 2003

Original Articles

Truncated cross-sectional average length of life: A measure for comparing the mortality history of

Abstract

Period life expectancies are commonly used to compare populations, but these correspond to simple juxtapositions of current mortality levels. In order to construct life expectancies for cohorts, a complete historical series of mortality rates is needed, and these are available for only a subset of developed countries. The truncated cross-sectional average length of life (TCAL) is a new measure that captures historical

Cross-sectional Average Length of Life (CAL)

Cross-sectional Average Length of Life (CAL)

$$CAL(t) = \int_0^\omega \ell_c(x, t) dx$$

Decomposition of CAL

$$\ell_{\mathcal{C}}(x,t,i) =$$

$$p_0(t-x,i)...p_{x-1}(t-x,i)$$

Decomposition of CAL

$$CAL(t,\xi) =$$

$$\int_0^\omega \ell_c^*(x,t,\xi) \left[\sum_{a=0}^x \frac{\dot{p}_a(t-x,\xi)}{p_a(t-x,\xi)} \right] dx$$

CAL decomposition

Table 5: CAL decomposition between France & Italy

CAL- France	CAL- Italy	Diff	est-Diff
43.33	61.77	-18.44	-18.83

CAL decomposition

CAL decomposition

Relative derivatives estimation (Step 1)

$$\dot{v}(x,t) \approx$$

$$\ln \left[\frac{v(x,t+h)}{v(x,t)} \right] / h$$

Mid point estimation (Step 2)

$$v\left(x,t+\frac{h}{2}\right) \approx$$

$$[v(x,t)v(x,t+h)]^{\frac{1}{2}}$$

Derivatives estimation (Step 3)

$$\dot{v}(x,t) = \dot{v}(x,t)v\left(x,t + \frac{h}{2}\right)$$

Assignment 3

Select one of the measures in the examples of this section and apply to a different population from HMD or HFD.

Submit ONE page: one Figure (or Table) and a brief paragraph describing the results that you find.