M 431: Assignment 8

Nathan Stouffer

Page 87 — Problem 2

Problem. Let G be the group of all real-valued functions on the unit interval [0,1], where we define, for $f,g\in G$, addition by (f+g)(x)=f(x)+g(x) for every $x\in [0,1]$. If $N=\{f\in G\mid f(1/4)=0\}$, prove that $G/N\cong$ the real numbers under +.

Proof.

3rd Iso Thm Example

Problem. Identify and illustrate with pictures the three quotient groups in the 3rd isomorphism theorem instantiated for $G = \mathbb{R} \times \mathbb{Z}_2$, $N = \mathbb{Z} \times \mathbb{Z}_2$, and $K = 2\mathbb{Z} \times \{0\}$.

Proof.

2rd Iso Thm Example

Problem. Identify and illustrate with pictures all the groups involved in the 2nd isomorhpism theorem isntantiated for $G = \mathbb{R} \times \mathbb{R}$, $N = \mathbb{Z} \times \mathbb{R}$, $H = \mathbb{R} \times \{0\}$. In particular, draw the cosets making up the quotient groups and recognize the groups as familiar concrete groups.

Proof.

Page 96 — Problem 5

Problem. Let G be a finite group, $N_1, N_2, ..., N_k$ normal subgroups of G such that $G = N_1 N_2 \cdots N_k$ and $|G| = |N_1| |N_2| \cdots |N_k|$. Prove that G is the direct product of N_1, N_2, \ldots, N_k .

Proof.

Page 96 — Problem 6

Problem. Let G be a group, N_1, N_2, \ldots, N_k normal subgroups of G such that:

- $1. \ G = N_1 N_2 \cdots N_k$ $2. \ \text{For each } i, \ N_i \cap (N_1 N_2 \cdots N_{i-1} N_{i+1} \cdots N_k) = (e)$ Prove that G is the direct product of N_1, N_2, \ldots, N_k

Proof.