Chapter 1 – Conceitos introdutórios

ELEVENTH EDITION

Digital Systems

Principles and Applications

Tradução e adaptação: Profa. Denise Stringhini

Ronald J. Tocci
Monroe Community College

Neal S. Widmer Purdue University

Gregory L. Moss
Purdue University

1-1 Introdução aos sistemas digitais

 Uma grande parte dos sistemas de comunicação mundiais recaem na categoria de "sistemas digitais".

Exemplo histórico: no telégrafo existem dois estados para representar a informação

Um sistema de telégrafo consistia de uma bateria, uma chave de código (normalmente aberta, com contato momentâneo do interruptor), um fio telegráfico e um "clacker" eletromagnético.

1-1 Introdução aos sistemas digitais

Um diagrama de tempos mostra em qual estado (1 ou 0) está o sistema em qualquer ponto no tempo.

Também mostra o momento em que uma alteração no estado ocorre.

Sistemas físicos usam quantidades que devem ser manipuladas aritmeticamente.

As quantidades podem ser representados numericamente na forma analógica ou digital.

Representação Analógica - um indicador continuamente variável, proporcional.

Exemplos:

- Som: através de um microfone provoca variações de tensão.
- Velocímetro: muda com a velocidade.
- •Termômetro de mercúrio: varia com a temperatura ao longo de um intervalo de valores.

Em 1875, Alexander Graham Bell descobriu como alterar sua voz em um sinal elétrico continuamente variável, enviá-lo através de um fio, e alterá-lo de volta à energia sonora na outra extremidade.

Representação Digital - varia em passos discretos (separados).

Exemplos:

- A passagem do tempo é mostrada como uma alteração no mostrador em um relógio digital em intervalos de um minuto.
- Uma mudança na temperatura é mostrada num visor digital apenas quando as mudanças de temperatura são de pelo menos um grau.

1-3 Sistemas analógicos e digitais

Sistema digital: Uma combinação de dispositivos que manipulam os valores representados em forma digital.

Sistema analógico: Uma combinação de dispositivos que manipulam os valores representados em forma analógica.

1-3 Sistemas analógicos e digitais

Vantagens do Digital:

- Facilidade de projeto
- •Bem adequado para o armazenamento de informações.
- •Exatidão e precisão são mais fáceis de manter.
- Operação programável.
- Menos afetados pelo ruído.
- •Facilidade de fabricação em circuitos integrados.

1-3 Sistemas analógicos e digitais

Há limites para técnicas digitais.

A natureza analógica do mundo requer um processo demorado conversão:

- Converter a variável física em um sinal elétrico (analógico).
- Converter o sinal analógico para a forma digital.
- Processar (operar) a informação digital.
- •Converter a saída digital de volta para a forma analógica no mundo real.

Entender sistemas digitais exige uma compreensão dos sistemas de numeração decimal, binário, octal e hexadecimal.

- Decimal 10 símbolos (base 10)
- Hexadecimal 16 símbolos (base 16)
- Octal 8 símbolos (base 8)
- Binary 2 símbolos (base 2)

- Decimal (base 10)
 - 10 símbolos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
 - Cada número é um dígito (digit).

Most significant digit (MSD) & least significant digit (LSD). (Dígito mais significativo e dígito menos significativo)

- Binário (base 2)
 - 2 símbolos: 0,1
 - Presta-se para o projeto de circuitos eletrônicos uma vez que apenas dois níveis diferentes de tensão são necessários.

1-5 Representação de quantidades binárias

Os sinais analógicos podem ser convertidos para o digital, tomando as medidas ou "amostras" do sinal que varia continuamente em intervalos regulares.

•O tempo adequado entre amostras depende da taxa máxima de mudança do sinal analógico.

A temperatura do ar é uma quantidade analógica.

 Amostras gravadas são dados inteiros discretos.

1-5 Representação de quantidades binárias

Representação típica dos dois estados de um sinal digital.

A faixa mais alta de tensões representa o 1 válido e a faixa mais baixa de tensões representam um 0 válido.

ALTO e BAIXO são muitas vezes utilizados para descrever os estados de um sistema digital ao invés de "1" e "0"

1-5 Representação de quantidades binárias

- Diagramas de tempo mostram a voltagem em função do tempo.
 - Usados para mostrar como os sinais digitais mudam com o tempo ou para comparar dois ou mais sinais digitais.

C

Um circuito digital que responde ao nível de uma entrada binária de 0 ou 1 - não à sua tensão real.

- Um circuito que retém uma resposta a uma entrada momentânea é uma memória.
 - A memória é importante porque fornece uma maneira de armazenar números binários temporária ou permanentemente.

Memory elements: magnetic, optical, electronic latching circuits.

- Um computador é um sistema de hardware que executa operações aritméticas, manipula dados, e toma decisões.
 - Realiza operações com base em instruções no forma de um programa a alta velocidade, e com um elevado grau de precisão.

1-9 Sistemas de computação

- Os principais componentes de um computador:
- Unidade de Entrada coloca instruções e dados na memória.
- Memória armazena os dados e instruções.
- Unidade de Controloe interpreta instruções e envia sinais apropriados para outras unidades conforme instruído.
- Unidade Lógica e Aritmética aritmética e decisões lógicas são realizadas.
- •Unidade de Saída apresenta informações da memória para o operador ou processo.

1-9 Sistemas de computação

As unidades de controle e aritmética / lógica são tratadas frequentemente em conjunto como unidade de processamento central (CPU).

END

Digital Systems

Principles and Applications

Ronald J. Tocci

Monroe Community College

Neal S. Widmer

Purdue University

Gregory L. Moss

Purdue University