

EC600S-CN QuecPython

硬件设计手册

LTE Standard 模块系列

版本: 1.0

日期: 2021-03-15

状态: 受控文件

Build a Smarter World

上海移远通信技术股份有限公司始终以为客户提供最及时、最全面的服务为宗旨。如需任何帮助,请随时联系我司上海总部,联系方式如下:

上海移远通信技术股份有限公司

上海市闵行区田林路 1016 号科技绿洲 3 期(B区)5号楼 邮编: 200233

电话: +86 21 51086236 邮箱: <u>info@quectel.com</u>

或联系我司当地办事处,详情请登录: http://www.quectel.com/cn/support/sales.htm。

如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:

http://www.quectel.com/cn/support/technical.htm 或发送邮件至: support@quectel.com。

前言

上海移远通信技术股份有限公司提供该文档内容用以支持其客户的产品设计。客户须按照文档中提供的规范、参数来设计其产品。因未能遵守有关操作或设计规范而造成的损害,上海移远通信技术股份有限公司不承担任何责任。在未声明前,上海移远通信技术股份有限公司有权对该文档进行更新。

免责声明

上海移远通信技术股份有限公司尽力确保开发中功能的完整性、准确性、及时性或效用,但不排除上述功能错误或遗漏的可能。除非其他有效协议另有规定,否则上海移远通信技术股份有限公司对开发中功能的使用不做任何暗示或明示的保证。在适用法律允许的最大范围内,上海移远通信技术股份有限公司不对任何因使用开发中功能而遭受的损失或损害承担责任,无论此类损失或损害是否可以预见。

保密义务

除非上海移远通信技术股份有限公司特别授权,否则我司所提供文档和信息的接收方须对接收的文档和信息保密,不得将其用于除本项目的实施与开展以外的任何其他目的。未经上海移远通信技术股份有限公司书面同意,不得获取、使用或向第三方泄露我司所提供的文档和信息。对于任何违反保密义务、未经授权使用或以其他非法形式恶意使用所述文档和信息的违法侵权行为,上海移远通信技术股份有限公司有权追究法律责任。

版权申明

本文档版权属于上海移远通信技术股份有限公司,任何人未经我司允许而复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术股份有限公司 2021, 保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2021.

安全须知

为确保个人安全并保护产品和工作环境免遭潜在损坏,请遵循如下安全须知。产品制造商需要将下列安全须知传达给终端用户,并将所述安全须知体现在终端产品的用户手册中。移远通信不会对用户因未遵循所述安全规则或错误使用产品而产生的后果承担任何责任。

道路行驶,安全第一! 开车时请勿使用手持移动终端设备,即使其有免提功能。请先停车,再打电话!

登机前请关闭移动终端设备。在飞机上禁止开启移动终端的无线功能,以防止对飞机通讯系统的干扰。未遵守该提示项可能会影响飞行安全,甚至触犯法律。

出入医院或健康看护场所时,请注意是否存在移动终端设备使用限制。射频干扰可能会导致医疗设备运行失常,因此可能需要关闭移动终端设备。

移动终端设备并不保障在任何情况下均能进行有效连接,例如在设备欠费或(U)SIM卡无效时。在紧急情况下遇到上述情况时,请使用紧急呼叫功能,同时确保设备开机并且位于信号强度足够的区域。

移动终端设备在开机时会接收和发射射频信号。当靠近电视、收音机、电脑或者其他电子设备时都会产生射频干扰。

确保移动终端设备远离易燃易爆品。当靠近加油站、油库、化工厂或爆炸作业场所时,请关闭移动终端设备。在任何有潜在爆炸危险的场所操作电子设备均存在安全隐患。

文档历史

修订记录

版本	日期	作者	变更表述
-	2021-02-07	Andy ZHAO/ Owen WEI/ Felix YE	文档创建
1.0	2021-03-15	Andy ZHAO/ Owen WEI/ Felix YE	受控版本

目录

安全	≥须知			3
文档	肾历史			4
表目				5
表格	客引			7
图片	常引			9
1	리宣			11
	1.1.		·····································	
2				
	2.1.			
	2.2.		早性能	
	2.3.		8框图	
	2.4.	评估	5板	16
3	应用接	□		17
	3.1.	基本	5描述	17
	3.2.	引脚	₽分配	18
	3.3.	引脚	P描述	19
	3.4.	工作	=模式	27
	3.5.	节能	台功能	28
	3.5	5.1.	睡眠模式	28
			1.1. 串口应用	
			1.2. USB 应用(支持 USB 远程唤醒功能)	
			1.3. USB 应用(支持 USB 挂起和唤醒以及 MAIN_RI 功能)	
		3.5.1	1.4. USB 应用(不支持 USB 挂起功能)	
	3.5	5.2.	飞行模式	
	3.6.		复设计	
		6.1.	引脚介绍	
		5.2.	减少电压跌落	
			供电参考电路	
	3.7.		5机	
		7.1.	PWRKEY 引脚开机	
	3.7	7.2.	关机	
			2.1. PWRKEY 引脚关机	
	0.0		2.2. AT 命令关机	
	3.8.		7.功能	
	3.9.	` '	SIM 接口	
	3.10.		3 接口	
	3.11.			
	3.12.		以音频接口	
		12.1.	防止 TDD 噪声及其它噪声	
	3. 1	12.2.	久兄八汝口巳始	45

11		EDGE 调制和编码方案	
9 10		GPRS 编码方案 GPRS 多时隙	
8	附录 A	参考文档及术语缩写	80
	7.3.	包装	78
	7.2.	生产焊接	77
	7.1.	 存储	
7	存储和生	上产	76
	6.3.	模块俯视图和底视图	
	6.2.	推荐封装	
•	6.1.	模块机械尺寸	
6	机械尺寸	†	79
	5.8.	散热设计	
	5.7.	静电防护	69
	5.6.	射频接收灵敏度	
	5.5.	射频发射功率	
	5.3. 5.4.	其流	
	5.2. 5.3.	工作和存储温度	
	5.1. 5.2.	地对最人值电源额定值	
5	可靠性、 5.1.	 	
F		射频特性和电气性能	
		.1.	
		大线女装	
	4.1. 4.2.	•	
	4.1. 4.1.		
	4.1.	.,	
	4.1.	71/4 4 A A A A A A A A	
	4.1.	主天线接口	
4]	
	3.22.	USB_BOOT 接口	
	3.21.	MAIN_RI 信号	
	3.20.	ADC 接口	
	3.19.	STATUS	
	3.18.	网络状态指示	
	3.17.	按键接口*	
	3.16.	摄像头接口	
	3.15.	LCD 接口	50
	3.14.	SPI 接口	
	3.13.	PCM 和 I2C 接口	
	3.12	2.3. 听筒接口与扬声器接口电路	46

表格索引

表 1:	特殊符号	11
表 2:	模块支持频段	12
表 3:	模块主要性能	13
表 4:	I/O 参数定义	19
表 5:	引脚描述	19
表 6:	功能复用	26
表 7:	工作模式	27
表 8:	VBAT 和地引脚定义	31
表 9:	PWRKEY 引脚定义	33
表 10	:RESET_N 引脚定义	37
表 11:	(U)SIM 接口引脚定义	38
表 12	: USB 接口引脚定义	40
表 13	: 主串口引脚定义	41
表 14	:调试串口引脚定义	42
表 15	: 模拟音频接口引脚定义	43
表 16	: PCM 和 I2C 接口引脚定义	48
表 17	: SPI 接口引脚定义	49
表 18	: LCD 接口引脚定义	50
表 19	: 摄像头接口引脚定义	51
表 20	: 按键接口引脚定义	52
表 21	: 网络状态指示引脚定义	53
表 22	: 网络状态指示引脚的工作状态	53
表 23	: STATUS 引脚定义	54
表 24	: ADC 接口引脚定义	55
表 25	: ADC 特性	55
表 26	: MAIN_RI 默认指示方式	55
表 27	: USB_BOOT 接口引脚定义	56
表 28	: 主天线接口引脚定义	58
表 29	: 模块工作频段	58
表 30	: 天线要求	61
表 31	: 绝对最大值	64
表 32	: 模块电源额定值	64
表 33	: 工作和存储温度	65
表 34	: 模块耗流	65
表 35	: 射频发射功率	68
表 36	: 模块射频接收灵敏度	68
表 37	: ESD 性能参数(温度: 25 ℃,湿度: 45 %)	69
表 38	: 推荐的炉温测试控制要求	77
表 39	: 参考文档	80
表 40	: 术语缩写	80
表 41	:不同编码方案描述	84

表 42:	不同等级的多时隙分配表	85
表 43.	FDGE 调制和编码方案	86

图片索引

图	1:	功能框图	15
图	2:	EC600S-CN QuecPython 模块引脚分配俯视图	18
		串口睡眠应用	
图	4:	带 USB 远程唤醒功能的睡眠应用	29
图	5:	带 MAIN_RI 功能的睡眠应用	30
图	6:	不支持 USB 挂起功能的睡眠应用	30
图	7:	突发传输电源要求	32
图	8:	模块供电电路	32
图	9:	供电电路参考设计	33
图	10:	开集驱动参考开机电路	34
图	11:	按键开机参考电路	34
图	12:	开机时序图	35
图	13:	关机时序图	36
图	14:	RESET_N 复位开集参考电路	37
图	15:	RESET_N 复位按钮参考电路	37
图	16:	RESET_N 复位时序图	38
		8-pin (U)SIM 接口参考电路图	
图	18:	6-pin (U)SIM 接口参考电路图	39
图	19:	USB 接口参考设计	40
图	20:	电平转换芯片参考电路	42
图	21:	电平转换参考电路	43
图	22:	麦克风通道参考电路	45
图	23:	听筒输出参考电路	46
图	24:	音频功放接口(外接功放)输出参考电路	46
图	25:	短帧模式时序图	47
图	26:	长帧模式时序图	48
图	27:	PCM 和 I2C 接口电路参考设计	49
图	28:	SPI 接口电路参考设计(模块作为主设备)	50
图	29:	SPI 接口电路参考设计(模块作为从设备)	50
图	30:	网络指示参考电路	53
图	31:	STATUS 参考电路	54
图	32:	USB_BOOT 接口参考设计电路	56
图	33:	进入强制下载模式时序	57
图	34:	射频参考电路	59
图	35:	两层 PCB 板微带线结构	60
图	36:	两层 PCB 板共面波导结构	60
图	37:	四层 PCB 板共面波导结构(参考地为第三层)	60
图	38:	四层 PCB 板共面波导结构(参考地为第四层)	61
图	39:	U.FL-R-SMT 连接器尺寸(单位:毫米)	62
图	40:	U.FL-LP 连接线系列	63
图	41:	安装尺寸(单位:毫米)	63

图 42:	散热设计示例(散热片在模块正面)	70
图 43:	散热设计示例(散热片在 PCB 背面)	71
图 44:	模块尺寸(俯视图及侧视图)	72
图 45:	模块尺寸图(底视图)	73
图 46:	推荐封装(俯视图)	74
图 47:	模块俯视图和底视图	75
图 48:	推荐的回流焊温度曲线	77
图 49:	载带尺寸(单位:毫米)	78
图 50:	卷盘尺寸(单位:毫米)	79
图 51:	卷带方向	79

1 引言

QuecPython™是基于 MicroPython 开源项目的 Python 运行环境,是可以在微控制器和资源受限环境中进行嵌入式应用程序开发的全新物联网开发方案。该方案秉持简单、快捷、高效、可靠、安全的特点,用户可以更加快捷方便地在物联网模块上进行应用程序开发。

本文档定义了 EC600S-CN QuecPythonTM模块及其与客户应用连接的空中接口和硬件接口。

本文档可以帮助客户快速了解模块的硬件接口规范、电气特性、机械规范以及其他相关信息。借助此文档,结合移远通信提供的应用手册和用户指导书,客户可以快速将模块应用于无线应用场景中。

1.1. 特殊符号

表 1: 特殊符号

符号 定义

* 若无特别说明,模块功能、特性、接口、引脚名称、AT 命令或参数后面所标记的星号(*)表示该功能、特性、接口、引脚、AT 命令或参数正在开发中,因此暂不支持。

2 综述

2.1. 基本描述

EC600S-CN QuecPython 模块采用 ARM Cortex-R5 内核的基带处理器平台, 主频最高可达 624 MHz。 客户基于 QuecPython 的应用方案可在 EC600S-CN QuecPython 模块上应用。

模块向后兼容 GSM 网络,支持 LTE-FDD、LTE-TDD、EDGE 和 GPRS 网络数据连接。模块支持的频段如下表所示:

表 2: 模块支持频段

网络制式	频段
LTE-FDD	B1/B3/B5/B8
LTE-TDD	B34/B38/B39/B40/B41
GSM (可选)	900/1800 MHz

EC600S-CN QuecPython 模块封装紧凑,仅为 22.9 mm × 23.9 mm × 2.4 mm,能满足几乎所有 M2M 应用需求,例如:自动化领域、智能计量、跟踪系统、安防系统、路由器、无线 POS 机、移动计算设备、PDA 电话和平板电脑等。

EC600S-CN QuecPython 是贴片式模块, 共有 92 个引脚, 其中 76 个为 LCC 引脚, 其余 16 个为 LGA 引脚。

2.2. 主要性能

下表详细描述了 EC600S-CN QuecPython 模块的主要性能。

表 3: 模块主要性能

参数	描述
供电	● VBAT 供电电压范围: 3.4~4.5 V
·	● 典型供电电压: 3.8 V
	 Class 4 (33 dBm ±2 dB) for EGSM900
	 Class 1 (30 dBm ±2 dB) for DCS1800
发射功率	 Class E2 (27 dBm ±3 dB) for EGSM900 8-PSK
汉 和初于	 Class E2 (26 dBm ±3 dB) for DCS1800 8-PSK
	 Class 3 (23 dBm ±2 dB) for LTE-FDD bands
	 Class 3 (23 dBm ±2 dB) for LTE-TDD bands
	● 最大支持 non-CA Cat 1 FDD 和 TDD
LTE 特性	● 支持 1.4/3/5/10/15/20 MHz 射频带宽
	● LTE-FDD:最大下行速率 10 Mbps,最大上行速率 5 Mbps
	● LTE-TDD:最大下行速率 7.5 Mbps,最大上行速率 1 Mbps
	GPRS:
	● 支持 GPRS 多时隙等级 12
	● 编码格式: CS-1、CS-2、CS-3 及 CS-4
	● 最大下行速率 85.6 kbps,最大上行速率 85.6 kbps
GSM 特性	EDGE:
COM 10 1T	● 支持 EDGE 多时隙等级 12
	● 支持 GMSK 和 8-PSK 的调制编码方式
	● 下行编码格式: MCS 1-9
	● 上行编码格式: MCS 1-9
	● 最大下行速率 236.8 kbps,最大上行速率 236.8 kbps
	● 支持 TCP/UDP/PPP/NTP/NITZ/FTP/HTTP/PING/CMUX/HTTPS/
网络协议特性	FTPS/SSL/FILE/MQTT/MMS*/SMTP*/SMTPS*协议
	● 支持 PPP 协议的 PAP 和 CHAP 认证
	● 文本与 PDU 模式
短消息 (SMS)	● 点对点短信收发
应们心(SIVIO)	● 短消息小区广播
	● 短消息存储:目前存储在(U)SIM卡
(U)SIM 接口	支持 USIM/SIM 卡: 1.8 V 和 3.0 V
	● 符合 USB 2.0 规范(只支持从模式),最大数据传输速率 480 Mbps
USB 接口	● 用于 AT 命令传送、数据传输、软件调试和固件升级
	● USB 虚拟串口驱动: 支持 Windows 7/8/8.1/10、Linux 2.6~5.10、

	Android 4.x~10.x 等操作系统下的 USB 驱动
	主串口:
	● 用于 AT 命令传送和数据传输
	● 波特率默认为 115200 bps
	● 支持 RTS 和 CTS 硬件流控
	调试串口:
	● 用于 Linux 控制和日志输出
串口	● 波特率为 115200 bps
	辅助串口:
	● 用于与外设通信
	● 波特率为 115200 bps
	● 可从 SPI 接口的数据输入接口(SPI_RXD)及数据输出接口(SPI_TXD)
	复用;也可从主串口的硬件流控接口(MAIN_CTS、MAIN_RTS)复
	用
	● 支持 1 路数字音频接口: PCM 接口
音频特性	● 支持 1 路模拟音频输入和 1 路模拟音频输出
日少久17日二	 GSM: HR/FR/EFR/AMR/AMR-WB
	● 支持回音消除和噪声抑制
	● 用于音频使用,需要外接 Codec 芯片
PCM 接口	● 支持 16 位线性编码格式
FUII 按口	● 支持长帧和短帧模式
	● 支持主从模式,但是在长帧下只可以用作主模式
SPI 接口	支持主从模式,最高时钟频率 26 MHz
	● 支持最大分辨率为 240 × 320 的 LCD 显示模块
LCD 接口	● 支持 4 线 1 通道等 SPI 数据传输
	● 支持 RGB565 格式输出
#T /A Ⅵ +☆ □	● 支持最高 30W 像素传感器
摄像头接口	● 支持 1 或 2 位 SPI 接口
按键接口*	支持 5×5 矩阵键盘
AT	3GPP TS 27.007 和 3GPP TS 27.005 定义的命令,以及移远通信增强型
AT命令	AT 命令
网络指示	NET_MODE 和 NET_STATUS/USB_BOOT 引脚指示网络状态
7 (h l>	● 主天线接口(ANT_MAIN)
天线接口	● 50 Ω 特性阻抗
ald correct to be demanded	● 尺寸: (22.9 ±0.15) mm × (23.9 ±0.15) mm × (2.4 ±0.2) mm
物理特征	● 重量:约 2.7 g
	● 正常工作温度: -35 ~ +75 °C ¹⁾
温度范围	● 扩展工作温度: -40 ~ +85 °C ²)
	● 存储温度: -40 ~ +90 °C
固件升级	可通过 USB 接口或 DFOTA 升级
四日月	引他と USD 阪口祭 DI UTA 月級

RoHS

所有器件完全符合 EU RoHS 标准

备注

- 1. 1) 表示当模块在此温度范围内工作时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块在此温度范围内工作时,模块仍能保持正常工作状态,具备语音、短信、数据传输等功能,不会出现不可恢复的故障,射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

2.3. 功能框图

下图为 EC600S-CN QuecPython 模块的功能框图,阐述了其如下主要功能:

- 电源管理
- 基带部分
- 存储器
- 射频部分
- 外围接口

图 1: 功能框图

2.4. 评估板

移远通信提供一整套评估板,以方便 EC600S-CN QuecPython 模块的测试和使用。所述评估板工具包括 LTE OPEN EVB 板、USB 转 RS-232 串口线、耳机、天线和其他外设。详细信息请参考*文档* [1]。

3 应用接口

3.1. 基本描述

EC600S-CN QuecPython 模块共有 92 个引脚,其中 76 个为 LCC 引脚,另外 16 个为 LGA 引脚。后续章节详细阐述了模块各组接口的功能:

- 电源供电
- (U)SIM接口
- USB接口
- 串口
- 音频接口
- PCM 和 I2C 接口
- SPI接口
- LCD接口
- 摄像头接口
- 按键接口*
- 状态指示接口
- ADC 接口
- USB_BOOT接口

3.2. 引脚分配

下图为 EC600S-CN QuecPython 模块引脚分配图:

图 2: EC600S-CN QuecPython 模块引脚分配俯视图

备注

在模块开机成功前,禁止将 SLEEP_IND 和 NET_STATUS/USB_BOOT 引脚上拉到高电平。

3.3. 引脚描述

下表详细描述了 EC600S-CN QuecPython 模块的引脚定义。

表 4: I/O 参数定义

类型	描述		
Al	模拟输入		
AO	模拟输出		
AIO	模拟输入/输出		
DI	数字输入		
DO	数字输出		
DIO	数字输入/输出		
Н	高电平		
L	低电平		
OD	漏极开路		
PD	内部下拉		
PI	电源输入		
РО	电源输出		
PU	内部上拉		

表 5: 引脚描述

电源					
引脚名	引脚号	I/O	描述	DC 特性	备注
VBAT_BB	29	PI	模块基带电源	Vmax = 4.5 V Vmin = 3.4 V Vnom = 3.8 V	外部电源必须能够提 供达 0.8 A 的电流。
VBAT_RF	36、37	PI	模块射频电源	Vmax = 4.5 V $Vmin = 3.4 V$ $Vnom = 3.8 V$	外部电源必须能够提 供达 2 A 的电流。

GND 18、30、35、38、43~45、47、73、77~92						
输出电源						
引脚名	引脚号	I/O	描述	DC 特性	备注	
VDD_EXT	76	РО	外部电路 1.8 V 供电	$Vnom = 1.8 V$ $I_0max = 50 mA$	可为外部 GPIO 提供 上拉。 不用则悬空。	
开/关机接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
PWRKEY	74	DI	模块开/关机	V _{IL} max = 0.5 V	控制模块开/关机,详 见 第 3.7 章 。	
RESET_N	75	DI	模块复位	V_{IL} max = 0.5 V	低电平有效。 不用则悬空。	
状态指示接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
NET_MODE	52	DO	注册的网络制式指示	V_{OH} min = 1.35 V V_{OL} max = 0.45 V	1.8 V 电压域。 不用则悬空。	
SLEEP_IND	53	DO	睡眠模式指示	V_{OH} min = 1.35 V V_{OL} max = 0.45 V	1.8 V 电压域。 不用则悬空。 模块开机成功前禁止 上拉高电平。	
STATUS	54	DO	运行状态指示	V_{OH} min = 1.35 V V_{OL} max = 0.45 V	1.8 V 电压域。 不用则悬空。	
NET_STATUS/ USB_BOOT	55	DO	网络状态指示	V _{OH} min = 1.35 V V _{OL} max = 0.45 V	1.8 V 电压域。 复用引脚,开机成功 后作NET_STATUS 功能输出。 正常模式下模块成功 开机前禁止上拉。 建议预留测试点。	
USB 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
USB_DP	26	DIO	USB 差分数据 (+)		符合 USB 2.0 规范。	
USB_DM	27	DIO	USB 差分数据 (-)		- 要求 90 Ω 差分阻抗。 不用则悬空。	
USB_VBUS	28	Al	USB 检测	Vmax = 5.25 V Vmin = 3.0 V	不用则悬空。	

Vnom = 5.0 V

(U)SIM 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
				1.8 V (U)SIM:	
				V_{OL} max = 0.45 V	
				$V_{OH}min = 1.35 V$	
USIM_CLK	5	DO	(U)SIM 卡时钟		
				3.0 V (U)SIM:	
				V_{OL} max = 0.45 V	
				$V_{OH}min = 2.55 V$	
				1.8 V (U)SIM:	
				V_{IL} max = 0.6 V	
				$V_{IH}min = 1.2 V$	
				$V_{OL}max = 0.45 V$	
				$V_{OH}min = 1.35 V$	
USIM_DATA	6	DIO	(U)SIM 卡数据		
				3.0 V (U)SIM:	
				$V_{IL}max = 1.0 V$	
				$V_{IH}min = 1.95 V$	
				V_{OL} max = 0.45 V	
				$V_{OH}min = 2.55 V$	
				1.8 V (U)SIM:	
				V_{OL} max = 0.45 V	
				$V_{OH}min = 1.35 V$	
USIM_RST	7	DO	(U)SIM 卡复位		
				3.0 V (U)SIM:	
				$V_{OL}max = 0.45 V$	
				$V_{OH}min = 2.55 V$	
				Iomax = 50 mA	
				1.8 V (U)SIM:	
				Vmax = 1.9 V	1901
USIM_VDD	8	РО	(U)SIM 卡供电电源	Vmin = 1.7 V	模块自动识别 1.8 V
_			()		或 3.0 V (U)SIM 卡。
				3.0 V (U)SIM:	
				Vmax = 3.05 V	
				Vmin = 2.7 V	
				V _{IL} min = -0.3 V	
				V_{IL} max = 0.6 V	1.8 V 电压域。
USIM_DET	9	DI	(U)SIM 卡插拔检测	V_{IH} min = 1.2 V	不用则悬空。
				V_{IH} max = 2.0 V	, / 14 / 14 - 14 -
				- 1111	

主串口					
引脚名	引脚号	I/O	描述	DC 特性	备注
MAIN_RXD	31	DI	主串口接收	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
MAIN_TXD	32	DO	主串口发送	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
MAIN_CTS	33	DO	主串口清除发送	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
MAIN_RTS	34	DI	主串口请求发送	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
MAIN_DTR	39	DI	主串口数据终端就绪	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
MAIN_RI	40	DO	主串口输出振铃提示	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
MAIN_DCD	48	DO	主串口输出载波检测	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
调试串口					
引脚名	引脚号	I/O	描述	DC 特性	备注
DBG_TXD	71	DO	调试串口发送	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
DBG_RXD	72	DI	调试串口接收	$V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.2 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$	1.8 V 电压域。 不用则悬空。
ADC 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
ADC	19	AI	通用 ADC 接口	电压范围: 0~1.3 V	不用则悬空。
音频接口					
引脚名	引脚号	I/O	描述	DC 特性	备注

SPK_N	21	АО	差分音频输出通道 (-)		可驱动 32 Ω 喇叭,功率 37 mW。若输出功	
SPK_P	22	АО	差分音频输出通道 (+)		率无法满足需求,可 用此接口驱动外部功 放器件。不用则悬空。	
MIC_N	23	AI	差分音频输入通道 (-)			
MIC_P	24	AI	差分音频输入通道 (+)		- 不用则悬空。	
MIC_BIAS	25	РО	麦克风偏置电压		不用则悬空。	
PCM 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
PCM_SYNC	58	DIO	PCM 帧同步	$V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$ $V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.2 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$	1.8 V 电压域。 模块作为主设备时, 该引脚为输出信号。 模块作为从设备时, 该引脚为输入信号。 不用则悬空。	
PCM_DIN	59	DI	PCM 数据输入	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V		
PCM_DOUT	60	DO	PCM 数据输出	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。	
PCM_CLK	61	DIO	PCM 时钟	$V_{OL}max = 0.45 \text{ V}$ $V_{OH}min = 1.35 \text{ V}$ $V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.2 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$	1.8 V 电压域。 模块作为主设备时, 该引脚为输出信号。 模块作为从设备时, 该引脚为输入信号。 不用则悬空。	
I2C 接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	
I2C_SDA	56	OD	I2C 串行数据		需外部 1.8 V 上拉。 不用则悬空。	
I2C_SCL	57	OD	I2C 串行时钟		需外部 1.8 V 上拉。 不用则悬空。	
摄像头接口						
引脚名	引脚号	I/O	描述	DC 特性	备注	

CAM_MCLK	10	DO	摄像头时钟	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
CAM_I2C_SCL	11	OD			1.8 V 电压域。 不用则悬空。
CAM_I2C_SDA	12	OD	摄像头 I2C 数据		1.8 V 电压域。 不用则悬空。
CAM_SPI_CLK	13	DI	摄像头 SPI 时钟	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
CAM_SPI_ DATA0	14	DI	摄像头 SPI 数据位 0	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
CAM_SPI_ DATA1	15	DI	摄像头 SPI 数据位 1	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
CAM_PWDN	16	DO	摄像头关断 V_{OL} max = 0.45 V V_{OH} min = 1.35 V		1.8 V 电压域。 不用则悬空。
CAM_VDD	17	РО	摄像头供电	Vnom = 2.8 V	不用则悬空。
CAM_VDDIO	68	РО	摄像头 I/O 供电	Vnom = 1.8 V	1.8 V 电压域。 不用则悬空。
LCD 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
LCD_TE	62	DI	LCD 帧同步信号	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
LCD_SPI_RS	63	DO	LCD 寄存器选择	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
LCD_SPI_RST	64	DO	LCD SPI 复位	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
LCD_CS	65	DO	LCD 片选	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
LCD_SPI_DOUT	66	DO	LCD SPI 数据输出	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
LCD_SPI_CLK	67	DO	LCD SPI 时钟	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
SPI 接口					

引脚名	引脚号	I/O	描述	DC 特性	备注
SPI_CLK	1	DO	SPI 时钟	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
SPI_RXD	2	DI	SPI 数据输入	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
SPI_TXD	3	DO	SPI 数据输出	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
SPI_CS	4	DO	SPI 片选	V_{OL} max = 0.45 V V_{OH} min = 1.35 V	1.8 V 电压域。 不用则悬空。
天线接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
ANT_MAIN	46	AIO	主天线接口	主天线接口	
其他接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
WAKEUP_IN	49	DI	睡眠模式控制	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
AP_READY	50	DI	应用处理器睡眠状态 检测	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 不用则悬空。
W_DISABLE#	51	DI	飞行模式控制	$V_{IL}min = -0.3 \text{ V}$ $V_{IL}max = 0.6 \text{ V}$ $V_{IH}min = 1.2 \text{ V}$ $V_{IH}max = 2.0 \text{ V}$	1.8 V 电压域。 默认上拉,低电平可 使模块进入飞行模 式。 不用则悬空。
USB_BOOT 接口					
引脚名	引脚号	I/O	描述	DC 特性	备注
NET_STATUS/ USB_BOOT	55	DI	紧急下载模式控制	V_{IL} min = -0.3 V V_{IL} max = 0.6 V V_{IH} min = 1.2 V V_{IH} max = 2.0 V	1.8 V 电压域。 高电平有效。 建议预留测试点。
GPIO 引脚					

引脚名	引脚号	I/O	描述	DC 特性	备注
				V_{OL} max = 0.45 V	
				$V_{OH}min = 1.35 V$	
GPIO1	69	DIO	通用 GPIO	$V_{IL}min = -0.3 V$	1.8 V 电压域。
GFIOT	09	DIO	通用 GPIO	$V_{IL}max = 0.6 V$	不用则悬空。
				$V_{IH}min = 1.2 V$	
				V_{IH} max = 2.0 V	
				$V_{OL}max = 0.45 V$	
				$V_{OH}min = 1.35 V$	
GPIO2	70	DIO	通用 GPIO	$V_{IL}min = -0.3 V$	1.8 V 电压域。
GF102	70	DIO	通用 GFIO	$V_{IL}max = 0.6 V$	不用则悬空。
				$V_{IH}min = 1.2 V$	
				V_{IH} max = 2.0 V	
预留引脚					
引脚名	引脚号				备注
RESERVED	20、41	、42			保持悬空。

表 6: 功能复用

引脚名	QuecPython 对应 GPIO	引脚号	模式0(默认)	模式1	模式 2	复位状态 1)	中断唤醒
CAM_MCLK	GPIO1	10	CAM_MCLK	GPIO_71	-	DIO-PD, L	支持
CAM_I2C_ SCL	GPIO2	11	CAM_I2C_ SCL	GPIO_72	-	DIO-PU, H	支持
CAM_I2C_ SDA	GPIO3	12	CAM_I2C_ SDA	GPIO_73	-	DIO-PU, H	支持
CAM_SPI_ CLK	GPIO4	13	CAM_SPI_ CLK	GPIO_74	-	DIO-PD, L	支持
CAM_SPI_ DATA0	GPIO5	14	CAM_SPI_ DATA0	GPIO_78	-	DIO-PD, L	支持
CAM_SPI_ DATA1	GPIO6	15	CAM_SPI_ DATA1	GPIO_77	-	DIO-PD, L	支持
CAM_PWDN	GPIO7	16	MCAM_ PWDN	GPIO_81	-	DIO-PD, L	支持
MAIN_DTR	GPIO8	39	MAIN_DTR	GPIO_121	-	DIO-PU, H	支持
MAIN_RI	GPIO9	40	MAIN_RI	GPIO_122	-	DIO-PU, H	支持
MAIN_DCD	GPIO10	48	GPIO_2	MK_IN_1	-	DIO-PD, L	支持

PCM_SYNC	GPIO11	58	PCM_SYNC	GPIO_17	SPI2_CS	DIO-PD, L	支持
PCM_DIN	GPIO12	59	PCM_DIN	GPIO_19	SPI2_ TXD	DIO-PD, L	支持
PCM_DOUT	GPIO13	60	PCM_DOUT	GPIO_18	SPI2_ RXD	DIO-PD, L	支持
PCM_CLK	GPIO14	61	PCM_CLK	GPIO_16	SPI2_ CLK	DIO-PD, L	支持

备注

- 1. 模式 1、模式 2 和模式 3 中的引脚功能需要软件配置后才有效。
- 2. 1) 各符号描述请参考表 4。
- 3. 所有能复用成 GPIO 的引脚均可配置成上拉、下拉和悬空输入模式。

3.4. 工作模式

表 7: 工作模式

模式	功能					
	Idle	软件正常运行。模块注册上网络,能够接收和发送数据。				
正常工作模式	Talk/Data	网络连接正常工作。此模式下,模块功耗取决于网络设置和数据传输速率。				
最少功能模式	不断电情况下,使用 AT+CFUN=0 命令可以将模块设置成最少功能模式。此模式下,射频和(U)SIM 卡不工作。					
飞行模式	AT+CFUN=4 句 不工作。	AT+CFUN=4 命令或 W_DISABLE#引脚可以将模块设置成飞行模式。此模式下射频不工作。				
睡眠模式	此模式下,模块的功耗将会降到非常低,但模块仍然可以接收寻呼、短信、电话和 TCP/UDP 数据。					
关机模式	在此模式下,PMU 停止给基带和射频部分的电源供电,软件停止工作,串口不通。但 VBAT_RF 和 VBAT_BB 引脚仍然通电。					

有关 AT 命令的详细信息,请参考文档 [2]。

3.5. 节能功能

3.5.1. 睡眠模式

在睡眠模式下,EC600S-CN QuecPython 可将功耗降低到最低,以下章节将详细介绍 EC600S-CN QuecPython 进入睡眠模式的方式。

3.5.1.1. 串口应用

当主机和 EC600S-CN QuecPython 模块通过串口连接的时候,可以通过如下步骤使模块进入睡眠模式:

- 通过睡眠和唤醒相关的 API 使能睡眠功能。详细信息请参考文档 [6]。
- 确保表6中所有配置为中断唤醒功能的引脚电平处在非唤醒状态。
- 确保 MAIN_DTR 保持高电平或者悬空。

参考电路如下:

图 3: 串口睡眠应用

- 通过主机拉低 MAIN_DTR 可以唤醒模块。
- 当模块有 URC 需要上报时, MAIN RI 信号将会唤醒主机。MAIN RI 动作细节请参考第3.21章。
- AP_READY 是模块用于检测主机是否被唤醒的引脚(可以配置成高电平检测或者低电平检测)。

3.5.1.2.USB 应用(支持 USB 远程唤醒功能)

如果主机支持 USB 挂起和唤醒以及 USB 远程唤醒功能, 需同时满足如下 4 个条件使模块进入睡眠模式:

- 通过睡眠和唤醒相关的 API 使能睡眠功能。
- 确保表6中所有配置为中断唤醒功能的引脚电平处在非唤醒状态。
- 连接至模块 USB 接口的主机 USB 总线进入挂起状态。
- 确保 MAIN_DTR 保持高电平或悬空。

参考电路如下:

图 4: 带 USB 远程唤醒功能的睡眠应用

- 通过 USB 向模块发送数据将会唤醒模块。
- 当模块有 URC 上报时,模块会通过 USB 总线发送远程唤醒信号以唤醒主机。

3.5.1.3.USB 应用(支持 USB 挂起和唤醒以及 MAIN RI 功能)

如果主机支持 USB 挂起和唤醒但不支持 USB 远程唤醒功能,需要有 MAIN_RI 信号唤醒主机。需同时满足如下 4 个条件使模块进入睡眠模式:

- 通过睡眠和唤醒相关的 API 使能睡眠功能。
- 确保表6中所有配置为中断唤醒功能的引脚电平处在非唤醒状态。
- 连接至模块 USB 接口的主机 USB 总线进入挂起状态。
- 确保 MAIN_DTR 保持高电平或悬空。

参考电路如下:

图 5: 带 MAIN_RI 功能的睡眠应用

- 通过 USB 向模块发送数据将会唤醒模块。
- 当模块有 URC 上报时,MAIN_RI 信号会唤醒主机。

3.5.1.4.USB 应用(不支持 USB 挂起功能)

如果主机不支持 USB 挂起功能,可以通过外部控制电路断开 USB_VBUS 的方式使模块进入睡眠模式:

- 通过睡眠和唤醒相关的 API 使能睡眠功能。详细信息请参考*文档* [6]。
- 确保表6中所有配置为中断唤醒功能的引脚电平处在非唤醒状态。
- 确保 MAIN DTR 保持高电平或悬空。
- 断开 USB_VBUS 供电。

参考电路如下:

图 6: 不支持 USB 挂起功能的睡眠应用

恢复 USB_VBUS 供电即可唤醒模块。

备注

请注意模块和主机所示虚线连接信号的电平应该相互匹配。

3.5.2. 飞行模式

当模块进入飞行模式时,射频功能不可使用,而且所有与射频相关的 AT 命令不可访问。可通过以下方式使模块进入飞行模式:

软件方式:

此模式可以通过发送 AT+CFUN=<fun>命令来设置。<fun>参数可以选择 0、1 或 4。

- AT+CFUN=0: 最少功能模式(关闭射频功能和(U)SIM卡)。
- **AT+CFUN=1:** 全功能模式 (默认)。
- AT+CFUN=4: 关闭射频功能(飞行模式)。

有关 AT 命令的详细信息,请参考文档 [2]。

3.6. 电源设计

3.6.1. 引脚介绍

EC600S-CN QuecPython 的 VBAT 引脚用于连接外部电源,可以分为两个电压域:

- VBAT_RF 引脚用于给模块的射频供电。
- VBAT_BB 引脚用于给模块的基带供电。

表 8: VBAT 和地引脚定义

引脚名	引脚号	描述	最小值	典型值	最大值	单位
VBAT_RF	36、37	模块射频电源	3.4	3.8	4.5	V
VBAT_BB	29	模块基带电源	3.4	3.8	4.5	V
GND	18、30、35、38、 77~92	43~45、47、73、	-	0	-	V

3.6.2. 减少电压跌落

EC600S-CN QuecPython 的供电范围为 3.4~4.5 V,需要确保输入电压不低于 3.4 V。下图是在 2G 网络下突发传输时电压跌落情况,4G 网络下电压跌落比 2G 网络下小。

图 7: 突发传输电源要求

为了减少电压跌落,需要使用低 ESR (ESR = $0.7\,\Omega$) 的 100 μ F 滤波电容。同时建议分别给 VBAT_BB 和 VBAT_RF 预留 3 个具有最佳 ESR 性能的片式多层陶瓷电容(MLCC)(100 nF、10 pF 和 33 pF),且电容靠近 VBAT 引脚放置。外部供电电源连接模块时,VBAT_BB 和 VBAT_RF 需要采用星型走线。VBAT_BB 走线宽度应不小于 1 mm,VBAT_RF 走线宽度应不小于 2 mm。原则上,VBAT 走线越长,线宽越宽。

另外,为了保证电源稳定,建议在电源前端加 V_{RWM} = 4.7 V、低钳位电压和高峰值脉冲电流 lpp 的 TVS 管。参考电路如下:

图 8: 模块供电电路

3.6.3. 供电参考电路

电源设计对模块的性能至关重要。建议选择至少能够提供 3 A 电流能力的电源。若输入电压与模块供电电压之间的电压差不是很大,则建议选择 LDO 作为供电电源。若输入与输出电压之间存在比较大的电压差,则建议使用开关电源转换器。

下图是+5 V 供电电路的参考设计。其典型输出电压为 3.8 V, 负载电流峰值超过 2.0 A。

图 9: 供电电路参考设计

备注

如果模块不支持 GSM 频段(仅支持 LTE 频段),则电源设计提供至少 2 A 电流能力即可。

3.7. 开关机

3.7.1. PWRKEY 引脚开机

表 9: PWRKEY 引脚定义

引脚名	引脚号	描述	直流特性	备注
PWRKEY	74	模块开/关机	$V_{IL}max = 0.5 V$	拉低 PWRKEY 一段规定时间来开 机或者关机

当 EC600S-CN QuecPython 模块处于关机模式,可以通过拉低 PWRKEY 至少 500 ms 使模块开机。推荐使用开集驱动电路来控制 PWRKEY 引脚。在 STATUS 引脚输出高电平之后,可以释放 PWRKEY 引脚。

参考电路如下:

图 10: 开集驱动参考开机电路

另一种控制 PWRKEY 引脚的方式是直接通过一个按钮开关,按钮附近需放置一个 TVS 用于 ESD 保护,参考电路如下:

图 11: 按键开机参考电路

开机时序如下图所示:

图 12: 开机时序图

备注

- 1. 在拉低 PWRKEY 引脚之前,需保证 VBAT 电压稳定。建议从 VBAT 上电到拉低 PWRKEY 引脚之间的时间间隔不少于 30 ms。
- 2. 如果需要上电自动开机功能且不考虑关机,则可以把 PWRKEY 直接下拉到地,下拉电阻建议 4.7 kΩ。

3.7.2. 关机

模块可通过以下方式正常关机:

- 通过 PWRKEY 引脚控制模块关机。
- 发送 AT+QPOWD 命令关机。

3.7.2.1.PWRKEY 引脚关机

模块在开机状态下, 拉低 PWRKEY 引脚至少 650 ms 后释放, 模块将执行关机流程。关机时序见下图:

图 13: 关机时序图

3.7.2.2.AT 命令关机

使用 **AT+QPOWD** 命令来执行模块关机也是一种安全的方式。该命令关机过程等同拉低 PWRKEY 引脚关机过程。有关 AT 命令的详细信息,请参考**文档 [2]**。

备注

- 1. 当模块正常工作时,禁止直接切断模块电源,以避免损坏模块内部的闪存(Flash)。建议先通过 PWRKEY 或者 AT 命令使模块关机后,再断开电源。
- 2. 使用 AT 命令关机时,请确保在关机命令执行后 PWRKEY 一直处于高电平状态;否则模块完成关机后,会自动再次开机。

3.8. 复位功能

RESET_N 引脚可用于模块复位。拉低 RESET_N 引脚至少 300 ms 后可使模块复位。

表 10: RESET_N 引脚定义

引脚名	引脚号	描述	直流特性	备注
RESET_N	75	模块复位	V _{IL} max = 0.5 V	低电平有效。 不用则悬空。

参考电路与 PWRKEY 控制电路类似,客户可使用开集驱动电路或按钮控制 RESET_N 引脚。

图 14: RESET_N 复位开集参考电路

图 15: RESET_N 复位按钮参考电路

复位时序图如下:

图 16: RESET_N 复位时序图

备注

- 1. 建议仅在 **AT+QPOWD** 和 PWRKEY 关机失败时使用复位功能。有关 **AT** 命令的详细信息,请参考**文** 档 [2]。
- 2. 确保 PWRKEY 和 RESET_N 引脚的负载电容不超过 10 nF。

3.9. (U)SIM接口

EC600S-CN QuecPython 模块提供一个(U)SIM 接口,(U)SIM 接口符合 ETSI 和 IMT-2000 规范, 支持 1.8 V 和 3.0 V (U)SIM 卡。

表 11: (U)SIM 接口引脚定义

引脚名	引脚号	I/O	描述	备注
USIM_VDD	8	РО	(U)SIM 卡供电电源	模块自动识别 1.8 V 或 3.0 V (U)SIM 卡。
USIM_RST	7	DO	(U)SIM 卡复位	
USIM_DATA	6	DIO	(U)SIM 卡数据	
USIM_CLK	5	DO	(U)SIM 卡时钟	
USIM_DET	9	DI	(U)SIM 卡插拔检测	1.8 V 电压域,不用则悬空。

8-pin (U)SIM 接口参考电路如下:

图 17: 8-pin (U)SIM 接口参考电路图

如果无需使用(U)SIM 卡检测功能,请保持 USIM_DET 引脚悬空。下图为 6-pin (U)SIM 接口参考电路:

图 18: 6-pin (U)SIM 接口参考电路图

在(U)SIM 接口的电路设计中,为了确保(U)SIM 卡的良好性能和可靠性,在电路设计中建议遵循以下原则:

- (U)SIM 卡座靠近模块摆放,尽量保证(U)SIM 卡信号线布线长度不超过 200 mm。
- (U)SIM 卡信号线布线远离射频线和 VBAT 电源线。
- 请确保 USIM VDD 与 GND 之间的旁路电容容值不大于 1 µF, 且尽可能靠近(U)SIM 卡座放置。
- 为防止 USIM_CLK 信号与 USIM_DATA 信号相互串扰,两者布线不能太靠近,并且在两条走线之间需增加地屏蔽。

- 为确保良好的 ESD 性能,建议在(U)SIM 卡引脚增加 TVS 管,选择的 TVS 管寄生电容不大于 15 pF。 在模块和(U)SIM 卡之间串联 0 Ω 的电阻便于调试。在 USIM_DATA、USIM_CLK 和 USIM_RST 线上并联 33 pF 电容用于滤除 EGSM900 频段干扰。(U)SIM 卡的外围器件应尽量靠近(U)SIM 卡 座摆放。
- 当(U)SIM 卡走线过长,或者有比较近的干扰源的情况下 USIM_DATA 上的上拉电阻有利于增加 (U)SIM 卡的抗干扰能力。建议将上拉电阻靠近(U)SIM 卡座放置。

3.10. USB 接口

EC600S-CN QuecPython 模块的 USB 接口符合 USB 2.0 规范, 支持全速(12 Mbps)和高速(480 Mbps)模式。模块只支持 USB 从模式。该接口可用于 AT 命令传送、数据传输、软件调试和固件升级。

表 12.	USB	接口引	脚定义
10 12:		1% H J	

引脚名	引脚号	I/O	描述	备注
USB_VBUS	28	AI	USB 检测	典型值 5.0 V。 不用则悬空。
USB_DP	26	DIO	USB 差分数据 (+)	要求 90 Ω 差分阻抗。 不用则悬空。
USB_DM	27	DIO	USB 差分数据 (-)	要求 90 Ω 差分阻抗。 不用则悬空。

如需了解更多关于 USB 2.0 规范的信息,请访问 http://www.usb.org/home。

建议客户设计时预留测试点,用于软件调试和固件升级,下图为 USB 接口参考设计:

图 19: USB 接口参考设计

建议在 MCU 与模块间串联一个共模电感 L1 以防止 USB 信号产生 EMI 干扰;同时,建议串联 R1 和 R2 电阻到测试点以便于调试,电阻默认不贴。为了满足 USB 数据线信号完整性要求,L1 & R1 & R2 需要靠近模块放置,且 R1 和 R2 之间靠近放置,连接测试点的桩线尽量短。

在 USB 接口的电路设计中,为了确保 USB 的性能,在电路设计中建议遵循以下原则:

- USB 走线周围需要包地处理,走 90 Ω 的阻抗差分线。
- 不要在晶振、振荡器、磁性装置和射频信号下面走 USB 线,建议走内层差分走线且上下左右立体 包地。
- USB 数据线上的 ESD 器件选型需特别注意,其寄生电容不要超过 2 pF。
- USB 的 ESD 器件尽量靠近 USB 接口放置。

3.11. 串口

EC600S-CN QuecPython 模块提供三个串口: 主串口、调试串口和辅助串口。下面描述了这三个串口的主要特性:

- 主串口支持 9600 bps、19200 bps、38400 bps、57600 bps、115200 bps、230400 bps、460800 bps 和 921600 bps 波特率,默认波特率为 115200 bps。支持 RTS 和 CTS 硬件流控,可用于 AT 命令传送和数据传输。
- 调试串口支持 115200 bps 波特率,用于 Linux 控制和日志输出。
- 辅助串口支持 115200 bps 波特率,用于与外设通信。辅助串口可从 SPI 接口的数据输入接口 (SPI_RXD) 及数据输出接口 (SPI_TXD) 复用;也可从主串口的硬件流控接口 (MAIN_CTS、MAIN_RTS) 复用。

表 13: 主串口引脚定义

引脚名	引脚号	I/O	描述	备注
MAIN_DTR	39	DI	主串口数据终端就绪	
MAIN_RXD	31	DI	主串口接收	
MAIN_TXD	32	DO	主串口发送	-
MAIN_CTS	33	DO	主串口清除发送	1.8 V 电压域。 不用则悬空。
MAIN_RTS	34	DI	主串口请求发送	-
MAIN_DCD	48	DO	主串口输出载波检测	-
MAIN_RI	40	DO	主串口输出振铃提示	-

表 14: 调试串口引脚定义

引脚名	引脚号	I/O	描述	备注
DBG_RXD	72	DI	调试串口接收	1.8 V 电压域。
DBG_TXD	71	DO	调试串口发送	不用则悬空。

EC600S-CN QuecPython 模块的串口电平为 1.8 V。若客户主机系统电平为 3.3 V,则需在模块和主机的串口连接中增加电平转换器,推荐使用 *Texas Instruments* 公司的 TXS0108EPWR。下图为使用电平转换芯片的参考电路设计。

图 20: 电平转换芯片参考电路

更多信息请访问 http://www.ti.com。

另一种电平转换电路如下图所示。如下虚线部分的输入和输出电路设计可参考实线部分,但需注意连接方向。

图 21: 电平转换参考电路

备注

- 1. 电平转换电路不适用于波特率超过 460 kbps 的应用。
- 2. 请务必留意,串口硬件流控 CTS、RTS 引脚采用直连方式,并注意输入输出方向。

3.12. 模拟音频接口

EC600S-CN QuecPython 模块提供了一路模拟音频输入通道,一路模拟音频输出通道。

表 15: 模拟音频接口引脚定义

引脚名	引脚号	I/O	描述	备注
MIC_BIAS	25	РО	麦克风偏置电压	不用则悬空。
MIC_N	23	Al	差分音频输入通道(-)	- 不用则悬空。
MIC_P	24	Al	差分音频输入通道(+)	一个用则态工。
SPK_P	22	AO	差分音频输出通道(+)	可驱动 32 Ω喇叭,功率 37 mW。 — 若输出功率无法满足需求,可用此
SPK_N	21	AO	差分音频输出通道(-)	接口驱动外部功放器件。不用则悬空。

- 音频输入通道用于麦克风输入,麦克风通常选用驻极体麦克风。
- 音频输出通道用于听筒或者扬声器(需外置音频功放)输出,音频输出通道支持输出语音及铃声等功能。

客户可以使用 AT+QMIC 命令来调节麦克风的输入增益,也可以使用 AT+CLVL 命令来调节输出到听筒的音量增益。AT+QSIDET 命令则用以设置侧音增益。有关 AT 命令的详细信息,请参考文档 [2]。

3.12.1. 防止 TDD 噪声及其它噪声

听筒及免提的麦克风建议采用内置射频滤波双电容(如 10 pF 和 33 pF)的驻极体麦克风,从干扰源头滤除射频干扰,会很大程度改善耦合 TDD 噪音。33 pF 电容用于滤除模块工作在 900 MHz 频率时的高频干扰。如果不加该电容,在通话时候有可能会听到 TDD 噪声。同时 10 pF 的电容是用以滤除在 1800 MHz 频率运行时的高频干扰。需要注意的是,由于电容的谐振点在很大程度上取决于电容的材料以及制造工艺,因此选择电容时,需要咨询电容的供应商,选择具有最合适的容值的电容来滤除在 EGSM900/DCS1800 运行时的高频噪声。

GSM 发射时的高频干扰严重程度通常主要取决于客户应用设计。在有些情况下,EGSM900 的 TDD 噪声比较严重,而有些情况下,DCS1800 的 TDD 噪声比较严重。因此客户可以根据测试的结果选贴需要的滤波电容。

PCB 板上的射频滤波电容摆放位置要尽量靠近音频器件或音频接口,走线尽量短,要先经过滤波电容再到其他点。

天线的位置离音频元件和音频走线尽量远,减少辐射干扰,电源走线和音频走线不能平行,电源线尽量远离音频线。

差分音频走线必须遵循差分信号的布线规则。

3.12.2. 麦克风接口电路

麦克风参考电路如下图所示:

图 22: 麦克风通道参考电路

备注

由于麦克风通道对 ESD 较为敏感,建议不要省略麦克风通道的 ESD 防护器件。

3.12.3. 听筒接口与扬声器接口电路

图 23: 听筒输出参考电路

图 24: 音频功放接口(外接功放)输出参考电路

关于差分输入输出音频功放,请访问网址 <u>http://www.ti.com</u>,以获取所需的器件。市场上亦有很多同等性能的音频功放可供选择。

3.13. PCM 和 I2C 接口

EC600S-CN QuecPython 模块提供一个 PCM 接口和一个 I2C 接口。PCM 接口支持以下两种模式:

- 短帧模式:模块可做主设备或者从设备
- 长帧模式:模块只可做主设备

短帧模式下,数据在 PCM_CLK 下降沿采样,上升沿发送。PCM_SYNC 下降沿代表高有效位。PCM 接口支持 8 kHz PCM_SYNC 下 256 kHz、512 kHz、1024 kHz 和 2048 kHz PCM_CLK,以及 16 kHz PCM SYNC 下 4096 kHz PCM CLK。

长帧模式下,数据也在 PCM_CLK 下降沿采样,上升沿发送。但 PCM_SYNC 上升沿代表高有效位。 此模式下,PCM 接口支持 8 kHz、50 %占空比 PCM_SYNC 下 256 kHz、512 kHz、1024 kHz 和 2048 kHz PCM_CLK。

EC600S-CN QuecPython 模块支持 16 位线性编码格式。下面两图分别为短帧模式时序图(PCM_SYNC = 8 kHz、PCM_CLK = 2048 kHz)和长帧模式时序图(PCM_SYNC = 8 kHz、PCM_CLK = 256 kHz)。

图 25: 短帧模式时序图

图 26: 长帧模式时序图

表 16: PCM 和 I2C 接口引脚定义

引脚名	引脚号	I/O	描述	备注
PCM_CLK	61	DIO	PCM 时钟	1.8 V 电压域。 不用则悬空。
PCM_SYNC	58	DIO	PCM 帧同步	1.8 V 电压域。 不用则悬空。
PCM_DIN	59	DI	PCM 数据输入	1.8 V 电压域。 不用则悬空。
PCM_DOUT	60	DO	PCM 数据输出	1.8 V 电压域。 不用则悬空。
I2C_SCL	57	OD	I2C 串行时钟	需外部 1.8 V 上拉。 不用则悬空。
I2C_SDA	56	OD	I2C 串行数据	需外部 1.8 V 上拉。 不用则悬空。

可以通过 AT 命令配置时钟和模式,默认配置为短帧模式,PCM_CLK = 2048 kHz,PCM_SYNC = 8 kHz。详情请参考*文档* [2]中的 AT+QDAI 命令。

下图为带外部 Codec 芯片的 PCM 和 I2C 接口的参考设计:

图 27: PCM 和 I2C 接口电路参考设计

备注

- 1. 建议在 PCM 的信号线上预留 RC(R = 22 Ω 、C = 22 pF)电路,特别是 PCM_CLK 上。
- 2. 模块在与 I2C 接口有关的应用中只能作为主设备。

3.14. SPI 接口

EC600S-CN QuecPython 模块的 SPI 接口, 电压域为 1.8 V, 最高时钟频率 26 MHz。

表 17: SPI 接口引脚定义

引脚名	引脚号	I/O	描述	备注
SPI_CS	4	DO	SPI 片选	
SPI_CLK	1	DO	SPI时钟	- 1.8 V 电压域。
SPI_TXD	3	DO	SPI 数据输出	不用则悬空。
SPI_RXD	2	DI	SPI 数据输入	

下图为 SPI 接口与外设的电路参考设计:

图 28: SPI 接口电路参考设计(模块作为主设备)

图 29: SPI 接口电路参考设计(模块作为从设备)

备注

模块 SPI 接口的电压域为 1.8 V。如果客户的主机系统电平为 3.3 V,则需要在模块与客户主机连接中加电平转换芯片。

3.15. LCD 接口

EC600S-CN QuecPython 模块的 LCD 接口支持最大分辨率为 240×320 的 LCD 显示模块。支持 4 线 1 通道 SPI 数据传输,支持 RGB565 格式输出。

表 18: LCD 接口引脚定义

引脚名	引脚号	I/O	描述	备注
LCD_CS	65	DO	LCD 片选	1.8 V 电压域,不用则悬空。
LCD_TE	62	DI	LCD 帧同步信号	1.8 V 电压域,不用则悬空。
LCD_SPI_CLK	67	DO	LCD SPI 时钟	1.8 V 电压域,不用则悬空。

LCD_SPI_RS	63	DO	LCD 寄存器选择	1.8 V 电压域,不用则悬空。
LCD_SPI_RST	64	DO	LCD SPI 复位	1.8 V 电压域,不用则悬空。
LCD_SPI_DOUT	66	DO	LCD SPI 数据输出	1.8 V 电压域,不用则悬空。

关于 LCD 接口的详细参考设计,请参考文档 [3]。

3.16. 摄像头接口

EC600S-CN QuecPython 模块的摄像头接口最高支持 30W 像素传感器; 支持 1 位或 2 位 SPI 接口。

表 19: 摄像头接口引脚定义

引脚名	引脚号	I/O	描述	备注
CAM_VDD	17	РО	摄像头供电	不用则悬空。
CAM_MCLK	10	DO	摄像头时钟	1.8 V 电压域,不用则悬空。
CAM_SPI_CLK	13	DI	摄像头 SPI 时钟	1.8 V 电压域,不用则悬空。
CAM_SPI_DATA0	14	DI	摄像头 SPI 数据位 0	1.8 V 电压域,不用则悬空。
CAM_SPI_DATA1	15	DI	摄像头 SPI 数据位 1	1.8 V 电压域,不用则悬空。
CAM_I2C_SCL	11	OD	摄像头 I2C 时钟	1.8 V 电压域,不用则悬空。
CAM_I2C_SDA	12	OD	摄像头 I2C 数据	1.8 V 电压域,不用则悬空。
CAM_PWDN	16	DO	摄像头关断	1.8 V 电压域,不用则悬空。
CAM_VDDIO	68	DO	摄像头 I/O 供电	1.8 V 电压域,不用则悬空。

关于摄像头接口的详细参考设计,请参考文档 [3]。

3.17. 按键接口*

EC600S-CN QuecPython 模块提供按键接口,支持5×5矩阵键盘。

表 20: 按键接口引脚定义

引脚名	引脚号	I/O	描述	备注
KP_MKIN[1]	48	DI	矩阵按键输入1	1.8 V 电压域,不用则悬空。
KP_MKOUT[1]	49	DO	矩阵按键输出 1	1.8 V 电压域,不用则悬空。
KP_MKIN[2]	50	DI	矩阵按键输入2	1.8 V 电压域,不用则悬空。
KP_MKOUT[2]	51	DO	矩阵按键输出 2	1.8 V 电压域,不用则悬空。
KP_MKIN[3]	52	DI	矩阵按键输入3	1.8 V 电压域,不用则悬空。
KP_MKOUT[3]	53	DO	矩阵按键输出3	1.8 V 电压域,不用则悬空。
KP_MKIN[4]	54	DI	矩阵按键输入4	1.8 V 电压域,不用则悬空。
KP_MKOUT[4]	55	DO	矩阵按键输出 4	1.8 V 电压域,不用则悬空。
KP_MKIN[5]	57	DI	矩阵按键输入5	1.8 V 电压域,不用则悬空。
KP_MKOUT[5]	56	DO	矩阵按键输出 5	1.8 V 电压域,不用则悬空。

关于按键接口的详细参考设计,请参考文档 [3]。

备注

EC600S-CN QuecPython 矩阵按键功能引脚为复用引脚。

3.18. 网络状态指示

EC600S-CN QuecPython 模块提供两个网络状态指示引脚: NET_MODE 和NET_STATUS/USB_BOOT,主要用于驱动网络状态指示灯。如下两表分别描述了引脚定义和不同网络状态下的逻辑电平变化。

表 21: 网络状态指示引脚定义

引脚名	引脚号	I/O	描述	备注
NET_MODE	52	DO	模块注册网络制式指示	1.8 V 电压域。 不用则悬空。
NET_STATUS/ USB_BOOT	55	DO	模块网络状态指示	1.8 V电压域。 复用引脚,开机成功后作 NET_STATUS功能输出。 正常模式下模块成功开机前 禁止上拉。 建议预留测试点。

表 22: 网络状态指示引脚的工作状态

引脚名	引脚工作状态	所指示的网络状态
NET MODE	高电平	注册 LTE 网络状态
NET_MODE	低电平	其他
NET_STATUS/ USB_BOOT	慢闪(200 ms 高/1800 ms 低)	找网状态
	慢闪(1800 ms 高/200 ms 低)	待机状态
	快闪(125 ms 高/125 ms 低)	数据传输模式
	高电平	通话中

参考电路如下图所示:

图 30: 网络指示参考电路

3.19. STATUS

STATUS 用于指示模块的工作状态。当模块正常开机时,STATUS 会输出高电平。STATUS 引脚定义如下表所示:

表 23: STATUS 引脚定义

引脚名	引脚号	I/O	描述	备注
STATUS	54	DO	运行状态指示	1.8 V 电压域。 不用则悬空。

STATUS 参考电路如下图。

图 31: STATUS 参考电路

3.20. ADC 接口

EC600S-CN QuecPython 模块提供两路模数转换接口。使用 AT+QADC=0 可以读取 ADC 的电压值。有关 AT 命令的详细信息,请参考文档 [2]。

为了让 ADC 电压测量准确度更高, ADC 在布线时需要包地处理。

表 24: ADC 接口引脚定义

引脚名	引脚号	I/O	描述	备注
ADC	19	Al	通用 ADC 接口	不用则悬空。

表 25: ADC 特性

引脚名	最小值	典型值	最大值	单位
ADC 电压范围	0	-	1.3	V
ADC 分辨率	-	-	12	bits

备注

- 1. 模块在 VBAT 不供电的情况下, ADC 接口不能直接连接任何输入电源。
- 2. 若采集电压大于 1.3 V, 建议 ADC 引脚采用电阻分压电路输入电流。

3.21. MAIN_RI 信号

客户可以用 AT+QCFG="risignaltype","physical"命令来配置 MAIN_RI 指示动作。MAIN_RI 的默认指示方式可以通过 AT+QCFG="urc/ri/ring"来配置,详细信息请参考*文档 [2]*。

不管通过哪个端口上报 URC 信息, URC 均会触发 MAIN_RI 的指示动作。

备注

通过 AT+QURCCFG 命令,可将主串口、USB AT 端口或 USB 调制端口配置为 URC 输出串口。默认为 USB AT 端口。

MAIN_RI 作为指示信号可以有多种方式,默认的指示方式如下:

表 26: MAIN_RI 默认指示方式

状态	MAIN_RI 信号
Idle	高电平

URC

新的 URC 返回时 MAIN_RI 会有 120 ms 的低电平

3.22. USB_BOOT 接口

EC600S-CN QuecPython 模块支持 USB_BOOT 功能。在 VDD_EXT 上电前将NET_STATUS/USB_BOOT 引脚上拉至 1.8 V,在开机时模块将进入紧急下载模式。在此模式下,模块可通过 USB 接口进行固件升级。

表 27: USB_BOOT 接口引脚定义

引脚名	引脚号	I/O	描述	备注
NET_STATUS/ USB_BOOT	55	DI	紧急下载模式控制	1.8 V 电压域。 复用引脚,开机成功后作 NET_STATUS 功能输出。 正常模式下模块成功开机 前禁止上拉。 建议预留测试点。

USB_BOOT 接口参考设计和进强制下载模式时序图如下:

图 32: USB_BOOT 接口参考设计电路

图 33: 进入强制下载模式时序

备注

- 1. 在拉低 PWRKEY 引脚之前,需保证 VBAT 电压稳定。建议从 VBAT 上电到拉低 PWRKEY 引脚之间的时间间隔不少于 30 ms。
- 2. 使用 MCU 控制模块进入强制下载模式时按照如上时序图进行控制,在给模块 VBAT 上电前不建议上 拉 NET_STATUS/USB_BOOT 到 1.8 V; 手动强制下载方式按照 **图 32** 所示短接测试点即可。

4 天线接口

EC600S-CN QuecPython 模块设计有一个主天线接口,天线端口阻抗为 50 Ω 。

4.1. 主天线接口

4.1.1. 引脚描述

表 28: 主天线接口引脚定义

引脚名	引脚号	I/O	描述	备注
ANT_MAIN	46	AIO	主天线接口	50 Ω 特性阻抗

4.1.2. 工作频段

表 29: 模块工作频段

3GPP频段	发送	接收	单位
EGSM900	880~915	925~960	MHz
DCS1800	1710~1785	1805~1880	MHz
LTE-FDD B1	1920~1980	2110~2170	MHz
LTE-FDD B3	1710~1785	1805~1880	MHz
LTE-FDD B5	824~849	869~894	MHz
LTE-FDD B8	880~915	925~960	MHz
LTE-TDD B34	2010~2025	2010~2025	MHz
LTE-TDD B38	2570~2620	2570~2620	MHz

LTE-TDD B39	1880~1920	1880~1920	MHz
LTE-TDD B40	2300~2400	2300~2400	MHz
LTE-TDD B41	2535~2675	2535~2675	MHz

4.1.3. 射频参考电路

ANT_MAIN 天线参考电路如下图所示。为获取更佳的射频性能,需预留 π型匹配电路,电容默认不贴。

图 34: 射频参考电路

备注

图中 π型匹配元件 (R1 & C1 & C2) 应尽量靠近天线放置。

4.1.4. 射频信号线 Layout 参考指导

对于用户 PCB 而言,所有的射频信号线的特性阻抗应控制在 50 Ω 。一般情况下,射频信号线的阻抗 由材料的介电常数、走线宽度(W)、对地间隙(S)、以及参考地平面的高度(H)决定。PCB 特性阻抗的 控制通常采用微带线与共面波导两种方式。为了体现设计原则,下面几幅图展示了阻抗线控制为 50 Ω 时微带线以及共面波导的结构设计。

● 微带线完整结构

图 35: 两层 PCB 板微带线结构

● 共面波导完整结构

图 36: 两层 PCB 板共面波导结构

图 37: 四层 PCB 板共面波导结构 (参考地为第三层)

图 38: 四层 PCB 板共面波导结构 (参考地为第四层)

在射频天线接口的电路设计中,为了确保射频信号的良好性能与可靠性,在电路设计中建议遵循以下设计原则:

- 应使用阻抗模拟计算工具对射频信号线进行精确的 50 Ω 阻抗控制。
- 与射频引脚相邻的 GND 引脚不做热焊盘,要与地充分接触。
- 射频引脚到射频连接器之间的距离应尽量短;同时避免直角走线,建议的走线夹角为 135 度。
- 连接器件封装建立时要注意,信号脚离地要保持一定距离。
- 射频信号线参考的地平面应完整;在信号线和参考地周边增加一定量的地孔可以帮助提升射频性能;地孔和信号线之间的距离应至少为2倍线宽(2×W)。
- 射频信号线必须远离干扰源,避免和相邻层任何信号线交叉或平行。

更多关于射频 Layout 的说明,请参考文档 [5]。

4.2. 天线安装

4.2.1. 天线要求

表 30: 天线要求

类型	要求
GSM/LTE	VSWR: ≤2 效率: > 30 % 最大输入功率: 50 W 输入阻抗: 50 Ω 线缆插入损耗: < 1 dB (EGSM900、LTE-FDD B5/B8)

 2.2 ± 0.05

线缆插入损耗: < 1.5 dB (DCS1800、LTE-FDD B1/B3、LTE-TDD B34/B39)

线缆插入损耗: < 2 dB (LTE-TDD B38/B40/B41)

4.2.2. 安装天线时推荐使用的射频连接器

如果使用射频连接器进行天线连接,推荐使用 Hirose 的 U.FL-R-SMT 连接器。

图 39: U.FL-R-SMT 连接器尺寸(单位: 毫米)

可以选择 U.FL-LP 系列的连接线来和 U.FL-R-SMT 配合使用。

	U.FL-LP-040	U.FL-LP-066	U.FL-LP(V)-040	U.FL-LP-062	U.FL-LP-088
Part No.	200		3.4	8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Mated Height	2,5mm Max. (2.4mm Nom.)	2.5mm Max. (2.4mm Nom.)	2.0mm Max. (1.9mm Nom.)	2.4mm Max. (2.3mm Nom.)	2.4mm Max. (2.3mm Nom.)
Applicable cable	Dia, 0.81mm Coaxial cable	Dia. 1.13mm and Dia. 1.32mm Coaxial cable	Dia. 0.81mm Coaxial cable	Dia. 1mm Coaxial cable	Dia. 1.37mm Coaxial cable
Weight (mg)	53.7	59.1	34.8	45.5	71.7
RoHS	***		YES	<i>b</i>)	1.

图 40: U.FL-LP 连接线系列

下图为连接线和连接器安装尺寸:

图 41: 安装尺寸(单位:毫米)

详情请参考 <u>http://www.hirose.com</u>。

5 可靠性、射频特性和电气性能

5.1. 绝对最大值

下表为模块部分引脚电压或电流的最大耐受值。

表 31: 绝对最大值

参数	最小值	最大值	单位
VBAT_RF	-0.3	6	V
VBAT_BB	-0.3	6	V
USB_VBUS	-0.3	5.5	V
VBAT_BB 最大电流	0	0.8	A
VBAT_RF 最大电流	0	1.8	A
数字接口电压	-0.3	2.3	V

5.2. 电源额定值

表 32: 模块电源额定值

参数	描述	条件	最小值	典型值	最大值	单位
\/D	VBAT_BB 和 VBAT_RF	实际输入电压必须在该范围之内	3.4	3.8	4.5	V
VBAT	VBAT ————————————————————————————————————	EGSM900 最大发射功率等级时	-	-	400	mV
I _{VBAT}	峰值电流(每个 发射时隙下)	EGSM900 最大发射功率等级时	-	1.8	2.0	Α

USB_VBUS	USB 检测	3.	.0	5.0	5.25	V

5.3. 工作和存储温度

表 33: 工作和存储温度

参数	最小值	典型值	最大值	单位
正常工作温度 1)	-35	+25	+75	°C
扩展工作温度 2)	-40	-	+85	°C
存储温度	-40	-	+90	°C

备注

- 1. 1) 表示当模块在此温度范围内工作时,模块的相关性能满足 3GPP 标准要求。
- 2. ²⁾ 表示当模块在此温度范围内工作时,模块仍能保持正常工作状态,具备语音、短信、数据传输等功能;不会出现不可恢复的故障;射频频谱、网络基本不受影响,仅个别指标如输出功率等参数的值可能会超出 3GPP 标准的范围。当温度返回至正常工作温度范围时,模块的各项指标仍符合 3GPP 标准。

5.4. 耗流

表 34: 模块耗流

条件	典型值	单位
模块关机	12	μΑ
AT+CFUN=0 (USB 断开)	0.65	mA
AT+CFUN=4 (USB 断开)	0.75	mA
EGSM900 @ DRX = 2 (USB 断开)	1.7	mA
EGSM900 @ DRX = 5 (USB 断开)	1.2	mA
	模块关机 AT+CFUN=0 (USB 断开) AT+CFUN=4 (USB 断开) EGSM900 @ DRX = 2 (USB 断开)	模块关机 12 AT+CFUN=0 (USB 断开) 0.65 AT+CFUN=4 (USB 断开) 0.75 EGSM900 @ DRX = 2 (USB 断开) 1.7

	EGSM900 @ DRX = 9 (USB 断开)	1.0	mA
	DCS1800 @ DRX = 2 (USB 断开)	1.7	mA
	DCS1800 @ DRX = 5 (USB 断开)	1.2	mA
	DCS1800 @ DRX = 9 (USB 断开)	1.1	mA
	LTE-FDD @ PF = 32 (USB 断开)	1.8	mA
	LTE-FDD @ PF = 64 (USB 断开)	1.3	mA
	LTE-FDD @ PF = 128 (USB 断开)	1.0	mA
	LTE-FDD @ PF = 256 (USB 断开)	0.9	mA
	LTE-TDD @ PF = 32 (USB 断开)	1.9	mA
	LTE-TDD @ PF = 64 (USB 断开)	1.3	mA
	LTE-TDD @ PF = 128 (USB 断开)	1.0	mA
	LTE-TDD @ PF = 256 (USB 断开)	0.9	mA
	EGSM900 @ DRX = 5 (USB 断开)	15.5	mA
	EGSM900 @ DRX = 5 (USB 连接)	26.5	mA
₽ 27 I# _L	LTE-FDD @ PF = 64 (USB 断开)	15.6	mA
空闲模式	LTE-FDD @ PF = 64 (USB 连接)	26.7	mA
	LTE-TDD @ PF = 64 (USB 断开)	15.7	mA
	LTE-TDD @ PF = 64 (USB 连接)	26.7	mA
	EGSM900 4DL/1UL	263.9	mA
	EGSM900 3DL/2UL	464.5	mA
	EGSM900 2DL/3UL	604.7	mA
GPRS 数据传送	EGSM900 1DL/4UL	642.3	mA
	DCS1800 4DL/1UL	209.1	mA
	DCS1800 3DL/2UL	357.1	mA
	DCS1800 2DL/3UL	443.9	mA

	DCS1800 1DL/4UL	479.1	mA
	EGSM900 4DL/1UL PCL = 8	180.4	mA
	EGSM900 3DL/2UL PCL = 8	314.8	mA
	EGSM900 2DL/3UL PCL = 8	438.8	mA
FDOE 粉提供注	EGSM900 1DL/4UL PCL = 8	552.4	mA
EDGE 数据传送	DCS1800 4DL/1UL PCL = 2	152.7	mA
	DCS1800 3DL/2UL PCL = 2	256.5	mA
	DCS1800 2DL/3UL PCL = 2	350.1	mA
	DCS1800 1DL/4UL PCL = 2	432.7	mA
	LTE-FDD B1	525.3	mA
	LTE-FDD B3	504.9	mA
	LTE-FDD B5	488.7	mA
	LTE-FDD B8	545.3	mA
LTE 数据传送	LTE-TDD B34	185.3	mA
	LTE-TDD B38	214.3	mA
	LTE-TDD B39	178.8	mA
	LTE-TDD B40	237.7	mA
	LTE-TDD B41	216.1	mA
	EGSM900 PCL = 5	257.4	mA
	DCS1800 PCL = 0	199.9	mA

5.5. 射频发射功率

表 35: 射频发射功率

频段	发射功率最大值	发射功率最小值	单位
EGSM900	33 dBm ±2 dB	5 dBm ±5 dB	dBm
DCS1800	30 dBm ±2 dB	0 dBm ±5 dB	dBm
EGSM900 (8-PSK)	27 dBm ±3 dB	5 dBm ±5 dB	dBm
DCS1800 (8-PSK)	26 dBm ±3 dB	0 dBm ±5 dB	dBm
LTE-FDD B1/B3/B5/B8	23 dBm ±2 dB	< -39 dBm	dBm
LTE-TDD B34/B38/B39/B40/B41	23 dBm ±2 dB	< -39 dBm	dBm

备注

在 GPRS 网络 4 时隙发送模式下,最大输出功率减小 4.0 dB。该设计符合 3GPP TS51.010-1 中**第 13.16 章**所述的 GSM 规范。

5.6. 射频接收灵敏度

表 36: 模块射频接收灵敏度

频段		3GPP		
观 权	主集	分集	主集 + 分集	(主集 + 分集)
EGSM900	-110.0 dBm	NA	NA	-102 dBm
DCS1800	-109.0 dBm	NA	NA	-102 dBm
LTE-FDD B1 (10 MHz)	-98.5 dBm	NA	NA	-96.3 dBm
LTE-FDD B3 (10 MHz)	-98.5 dBm	NA	NA	-93.3 dBm
LTE-FDD B5 (10 MHz)	-99.5 dBm	NA	NA	-94.3 dBm

LTE-FDD B8 (10 MHz)	-99.0 dBm	NA	NA	-93.3 dBm
LTE-TDD B34 (10 MHz)	-98.5 dBm	NA	NA	-96.3 dBm
LTE-TDD B38 (10 MHz)	-98.0 dBm	NA	NA	-96.3 dBm
LTE-TDD B39 (10 MHz)	-99.0 dBm	NA	NA	-96.3 dBm
LTE-TDD B40 (10 MHz)	-97.5 dBm	NA	NA	-96.3 dBm
LTE-TDD B41 (10 MHz)	-98.0 dBm	NA	NA	-94.3 dBm

5.7. 静电防护

在模块应用中,由于人体静电、微电子间带电摩擦等产生的静电,通过各种途径放电给模块,可能会对模块造成一定的损坏,因此 ESD 防护应该受到重视。在研发、生产组装和测试等过程中,尤其在产品设计中,均应采取 ESD 防护措施。例如,在电路设计的接口处以及易受静电放电损伤或影响的点,应增加防静电保护;生产中应佩戴防静电手套等。

下表为模块引脚的 ESD 耐受电压情况。

表 37: ESD 性能参数(温度: 25 ℃,湿度: 45 %)

测试接口	接触放电	空气放电	单位
VBAT、GND	±5	±10	kV
天线接口	±5	±10	kV
其他接口	±0.5	±1	kV

5.8. 散热设计

为确保模块拥有更好的性能,建议客户在 PCB 设计时增加散热设计。参考散热措施如下:

- PCB 摆件时将模块远离发热源,如 ARM 处理器、音频功放、电源等大功率器件;
- 确保 PCB 贴模块区域地的完整性,尽可能的打地孔到背面,通孔更好;背面建议不要放置器件, 并做阻焊层开窗,以便于在需要时增加散热片,确保更好的散热性能;
- 模块贴片在 PCB 上时需保证地焊盘的良好接触;
- 根据应用需求,可在模块正面或 PCB 上贴有模块区域的背面增加散热片,亦可两面均增加散热片;
- 建议散热片表面尽量多开槽以增加散热面积;散热片和模块/PCB 中间请使用高导热率的导热硅胶 垫进行黏合。

如下为两种散热参考设计示意图:

图 42: 散热设计示例(散热片在模块正面)

图 43: 散热设计示例(散热片在 PCB 背面)

备注

模块内部基带芯片最高温度保持在 95 ℃ 以下时,性能最佳。当芯片最高温度达到或超过 95 ℃ 时,模块仍能正常工作,但接收会受到影响,可能会出现丢包现象;当芯片最高温度达到或超过 105 ℃ 时,模块将会停止发送数据;待温度降至 100 ℃ 以下时会重新进行正常发送数据。因此,应尽可能增加散热设计,以最大限度地保证模块基带芯片最高温度在 95 ℃ 以下。

6 机械尺寸

本章节描述了模块的机械尺寸, 所有的尺寸单位为毫米 (mm); 所有未标注公差为±0.05 mm。

6.1. 模块机械尺寸

图 44: 模块尺寸 (俯视图及侧视图)

图 45: 模块尺寸图 (底视图)

备注

移远通信 EC600S-CN QuecPython 模块的平整度符合《JEITA ED-7306》标准要求。

6.2. 推荐封装

图 46: 推荐封装 (俯视图)

备注

为方便后续焊接维修,建议模块与 PCB 板上其他元器件之间距离至少为 3 mm。

6.3. 模块俯视图和底视图

图 47: 模块俯视图和底视图

备注

上图仅供参考,实际的产品外观和标签信息,请参照移远通信的模块实物。

7 存储和生产

7.1. 存储

EC600S-CN QuecPython 模块以真空密封袋的形式出货。模块的湿度敏感等级为 3 (MSL 3), 其存储需遵循如下条件:

- 1. 推荐存储条件: 温度 23 ±5 °C, 且相对湿度为 35~60 %。
- 2. 在推荐存储条件下,模块可在真空密封袋中存放 12 个月。
- 3. 在温度为 23 ±5 ℃、相对湿度低于 60 %的车间条件下,模块拆封后的车间寿命为 168 小时 ¹⁾。在此条件下,可直接对模块进行回流生产或其他高温操作。否则,需要将模块存储于相对湿度小于 10 %的环境中(例如,防潮柜)以保持模块的干燥。
- 4. 若模块处于如下条件,需要对模块进行预烘烤处理以防止模块吸湿受潮再高温焊接后出现的 PCB 起泡、裂痕和分层:
 - 存储温湿度不符合推荐存储条件;
 - 模块拆封后未能根据以上第3条完成生产或存放;
 - 真空包装漏气、物料散装;
 - 模块返修前。
- 5. 模块的烘烤处理:
 - 需要在 120 ±5 °C 条件下高温烘烤 8 小时;
 - 二次烘烤的模块须在烘烤后 24 小时内完成焊接,否则仍需在干燥箱内保存。

备注

- 1. 1) 在相对湿度较低的车间环境符合《IPC/JEDEC J-STD-033》规范时适用。
- 2. 为预防和减少模块因受潮导致的起泡、分层等焊接不良的发生,应严格进行管控,不建议拆开真空包装后长时间暴露在车间中,不确定车间温湿度环境是否满足条件,或相对湿度大于 60 %的情况下, 建议在拆封后 24 小时内完成焊接。请勿提前大量拆包。
- 3. 模块的包装无法承受高温烘烤。因此在模块烘烤之前,请移除模块包装并放置在耐高温器具上。如果只需要短时间的烘烤,请参考《IPC/JEDEC J-STD-033》规范。

7.2. 生产焊接

用印刷刮板在网板上印刷锡膏,使锡膏通过网板开口漏印到 PCB 上,印刷刮板力度需调整合适。为保证模块印膏质量,EC600S-CN QuecPython 模块焊盘部分对应的钢网厚度推荐为 0.15~0.18 mm。详细信息请参考文档 [6]。

推荐的回流焊温度为 238~246 ℃,最高不能超过 246 ℃。为避免模块因反复受热而损坏,强烈推荐客户在完成 PCB 板第一面的回流焊之后再贴模块。推荐的炉温曲线图(无铅 SMT 回流焊)和相关参数如下图表所示:

图 48: 推荐的回流焊温度曲线

表 38: 推荐的炉温测试控制要求

项目	推荐值
吸热区(Soak Zone)	
最大升温斜率	1~3 °C/s
恒温时间(A和B之间的时间: 150~200℃期间)	70~120 s
回流焊区(Reflow Zone)	
最大升温斜率	2~3 °C/s

回流时间(D: 超过 220°C 的期间)	45~70 s
最高温度	238~246 °C
冷却降温斜率	-1.5 ~ -3 °C/s
回流次数	
最大回流次数	1次

备注

- 1. 在生产焊接或者其他可能直接接触移远通信模块的过程中,不得使用任何有机溶剂(如酒精,异丙醇, 丙酮,三氯乙烯等)擦拭模块屏蔽罩;否则可能会造成屏蔽罩生锈。
- 2. 移远通信洋白铜镭雕屏蔽罩可满足: 12 小时中性盐雾测试后,镭雕信息清晰可辨识,二维码可扫描 (可能会有白色锈蚀)。
- 3. 如需对模块进行喷涂,请确保所用喷涂材料不会与模块屏蔽罩或 PCB 发生化学反应,同时确保喷涂材料不会流入模块内部。

7.3. 包装

模块采用卷带包装,并用真空密封袋将其封装。每个载带包含 250 个模块,卷盘直径为 330 毫米。具体规格如下:

图 49: 载带尺寸(单位:毫米)

图 50: 卷盘尺寸(单位:毫米)

图 51: 卷带方向

8 附录 A 参考文档及术语缩写

表 39:参考文档

序号	文档名称	备注
[1]	Quectel_LTE_OPEN_EVB_User_Guide	LTE OPEN EVB 用户指导
[2]	EC200x&EG912Y&EC600S_Series_ AT_Commands_Manual	适用于 EC200S 系列、EC200T 系列、 EG912Y 系列和 EC600S-CN QuecPython 模块的 AT 命令手册
[3]	Quectel_EC600S-CN_QuecPython_ 参考设计手册	EC600S-CN QuecPython 参考设计手册
[4]	Quectel_EC600S-CN_QuecPython_ 低功耗开发应用指导	EC600S-CN QuecPython 低功耗开发应用 指导
[5]	Quectel_射频 LAYOUT_应用指导	射频 LAYOUT 应用指导
[6]	Quectel_模块 SMT 应用指导	移远通信模块贴片应用指导

表 40: 术语缩写

术语	英文全称	中文全称
ADC	Analog-to-Digital Converter	模数转换器
AMR	Adaptive Multi-Rate	自适应多速率
bps	Bit(s) Per Second	比特/秒
СНАР	Challenge-Handshake Authentication Protocol	挑战握手认证协议
CS	Coding Scheme	编码方案
CTS	Clear to Send	清除发送
DCXO	Digitally Controlled Crystal Oscillator	数字控制石英晶体振荡器
DL	Downlink	下行链路

DTR	Data Terminal Ready	数据终端就绪
DFOTA	Differential Firmware Over-the-Air	无线差分固件升级
EFR	Enhanced Full Rate	增强型全速率
EGSM	Enhanced GSM	增强型 GSM
ESD	Electrostatic Discharge	静电释放
ESR	Equivalent Series Resistance	等效串联电阻
ETSI	European Telecommunications Standards Institute	欧洲电信标准化协会
FDD	Frequency Division Duplex	频分双工
FR	Full Rate	全速率
FTP	File Transfer Protocol	文件传输协议
FTPS	FTP over SSL	对常用的文件传输协议(FTP)添加 传输层安全(TLS)和安全套接层 (SSL)加密协议支持的扩展协议
GMSK	Gaussian Filtered Minimum Shift Keying	高斯滤波最小频移键控
GSM	Global System for Mobile Communications	全球移动通讯系统
GPIO	General-Purpose Input/Output	通用型输入输出
HR	Half Rate	半速率
HTTP	Hypertext Transfer Protocol	超文本传输协议
HTTPS	Hypertext Transfer Protocol Secure	超文本传输安全协议
LTE	Long-Term Evolution	长期演进
LCC	Leadless Chip Carriers	无针脚芯片封装
LGA	Land Grid Array	栅格阵列封装
ME	Mobile Equipment	移动设备
MMS	Multimedia Messaging Service	彩信
MQTT	Message Queuing Telemetry Transport	消息队列遥测传输
MSL	Moisture Sensitivity Levels	湿气敏感性等级

NITZ	Network Identity and Time Zone	网络标识和时区
NTP	Network Time Protocol	网络时间协议
PA	Power Amplifier	功率放大器
PAP	Password Authentication Protocol	密码验证协议
PCB	Printed Circuit Board	印制电路板
PCM	Pulse Code Modulation	脉冲编码调制
PDU	Protocol Data Unit	协议数据单元
PF	Paging Frame	寻呼帧
PPP	Point-to-Point Protocol	点到点协议
PSK	Phase Shift Keying	相移键控
PING	Packet Internet Groper	因特网包探索器
QPSK	Quadrature Phase Shift Keying	正交相移键控
RF	Radio Frequency	射频
RTS	Require To Send	发送请求
SMS	Short Message Service	短信
SMTP	Simple Mail Transfer Protocol	简单邮件传输协议
SMTPS	Simple Mail Transfer Protocol Secure	简单邮件传输协议的安全协议
SSL	Secure Sockets Layer	安全套接层
TCP	Transmission Control Protocol	传输控制协议
тсхо	Temperature Compensate X'tal (crystal) Oscillator	温度补偿型石英晶体谐振器
TDD	Time Division Duplex	时分双工
UART	Universal Asynchronous Receiver/Transmitter	通用异步收发传输器
UDP	User Datagram Protocol	用户数据报协议
UL	Uplink	上行链路
URC	Unsolicited Result Code	非请求结果码

(U)SIM	(Universal) Subscriber Identity Module	(全球) 用户识别卡
Vmax	Maximum Voltage Value	电平最大值
Vnom	Normal Voltage Value	电平典型值
Vmin	Minimum Voltage Value	电平最小值
V _{IH} max	Maximum Input High Level Voltage Value	输入高电平最大值
V _{IH} min	Minimum Input High Level Voltage Value	输入高电平最小值
V _{IL} max	Maximum Input Low Level Voltage Value	输入低电平最大值
V _{IL} min	Minimum Input Low Level Voltage Value	输入低电平最小值
V _{OH} min	Minimum Output High Level Voltage Value	输出高电平最小值
V _{OL} max	Maximum Output Low Level Voltage Value	输出低电平最大值
VSWR	Voltage Standing Wave Ratio	电压驻波比

9 附录 B GPRS 编码方案

表 41: 不同编码方案描述

方案	CS-1	CS-2	CS-3	CS-4
码速	1/2	2/3	3/4	1
USF	3	3	3	3
Pre-coded USF	3	6	6	12
Radio Block excl.USF and BCS	181	268	312	428
BCS	40	16	16	16
Tail	4	4	4	-
编码比特(Coded Bits)	456	588	676	456
打孔比特(Punctured Bits)	0	132	220	-
数据速率(kb/s)	9.05	13.4	15.6	21.4

10 附录 C GPRS 多时隙

GPRS 规范定义了 29 类 GPRS 多时隙模式,以供移动台使用。多时隙类定义了上行和下行的最大速率。表述为 3 + 1 或者 2 + 2: 第一个数字表示下行时隙数目,第二个数字表示上行时隙数目。活跃时隙表示 GPRS 设备上行、下行通信时可以同时使用的总时隙数。

不同等级的多时隙分配节选表如下表所示:

表 42: 不同等级的多时隙分配表

多时隙等级	下行时隙	上行时隙	活跃时隙
1	1	1	2
2	2	1	3
3	2	2	3
4	3	1	4
5	2	2	4
6	3	2	4
7	3	3	4
8	4	1	5
9	3	2	5
10	4	2	5
11	4	3	5
12	4	4	5

11 附录 D EDGE 调制和编码方案

表 43: EDGE 调制和编码方案

编码方案	调制	编码族	1个时隙	2个时隙	4个时隙
MCS-1	GMSK	С	8.80 kbps	17.60 kbps	35.20 kbps
MCS-2	GMSK	В	11.2 kbps	22.4 kbps	44.8 kbps
MCS-3	GMSK	A	14.8 kbps	29.6 kbps	59.2 kbps
MCS-4	GMSK	С	17.6 kbps	35.2 kbps	70.4 kbps
MCS-5	8-PSK	В	22.4 kbps	44.8 kbps	89.6 kbps
MCS-6	8-PSK	A	29.6 kbps	59.2 kbps	118.4 kbps
MCS-7	8-PSK	В	44.8 kbps	89.6 kbps	179.2 kbps
MCS-8	8-PSK	A	54.4 kbps	108.8 kbps	217.6 kbps
MCS-9	8-PSK	A	59.2 kbps	118.4 kbps	236.8 kbps