Выборный Евгений Викторович email: evybornyi@hse.ru

Математический анализ Тема 1: Действительные числа, функции, последовательности

Москва 2015

Базовые обозначения

Обозначения

Мы будем использовать следующие стандартные математические обозначения:

- \Rightarrow "следует";
- ullet \Leftrightarrow "равносильно" или "справедливо тогда, и только тогда, когда";
- ∀ "для любого";
- ∃ "существует";
- ullet \in "принадлежит" или "является элементом множества";
- \bullet \mathbb{N} множество всех натуральных чисел, то есть

$$\mathbb{N} = \{1, 2, 3, \ldots\};$$

ullet \mathbb{Z} — множество всех **целых** чисел, то есть

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\}.$$

- ullet Если n произвольное целое число $(n\in\mathbb{Z})$, то $n>5\Rightarrow n>3$, но $n>5\Rightarrow n>10$.
- $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} : m > n.$ (Всегда существует натуральное число, большее наперед заданного натурального числа)

Базовые обозначения

Обозначения

Мы будем использовать следующие стандартные математические обозначения:

- \Rightarrow "следует";
- ullet \Leftrightarrow "равносильно" или "справедливо тогда, и только тогда, когда";
- ∀ "для любого";
- ∃ "существует";
- ullet \in "принадлежит" или "является элементом множества";
- \mathbb{N} множество всех **натуральных** чисел, то есть

$$\mathbb{N} = \{1, 2, 3, \ldots\};$$

• ${\Bbb Z}$ — множество всех **целых** чисел, то есть

$$\mathbb{Z} = \{0,1,-1,2,-2,\ldots\}.$$

- ullet Если n произвольное целое число $(n\in\mathbb{Z})$, то $n>5\Rightarrow n>3$, но $n>5\Rightarrow n>10$.
- $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} : m > n.$ (Всегда существует натуральное число, большее наперед заданного натурального числа)

Базовые обозначения

Обозначения

Мы будем использовать следующие стандартные математические обозначения:

- \bullet \Rightarrow "следует";
- ullet \Leftrightarrow "равносильно" или "справедливо тогда, и только тогда, когда";
- ∀ "для любого";
- ∃ "существует";
- ullet \in "принадлежит" или "является элементом множества";
- ullet \mathbb{N} множество всех **натуральных** чисел, то есть

$$\mathbb{N} = \{1, 2, 3, \ldots\};$$

• ${\Bbb Z}$ — множество всех **целых** чисел, то есть

$$\mathbb{Z} = \{0, 1, -1, 2, -2, \ldots\}.$$

- ullet Если n- произвольное целое число $(n\in\mathbb{Z})$, то $n>5\Rightarrow n>3$, но $n>5\Rightarrow n>10$.
- $\forall n \in \mathbb{N} \ \exists m \in \mathbb{N} : m > n.$ (Всегда существует натуральное число, большее наперед заданного натурального числа)

Элементы теории множеств

Множество — совокупность объектов произвольной природы. Например, $M = \{a, b, c, d\}$ — множество из четырех элементов.

$$a \in M$$
, $e \notin M$.

Множество четных чисел: $E = \{ n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} : n = 2k \}.$ Пустое множество \emptyset — множество, не содержащие ни одного элемента.

Определение (подмножество)

Множество A является подмножеством множества B, пишут $A\subset B$, тогда и только тогда, когда любой элемент $a\in A$ принадлежит множеству B:

$$A \subset B \Leftrightarrow (a \in A \Rightarrow a \in B).$$

Элементы теории множеств

Множество — совокупность объектов произвольной природы. Например, $M = \{a, b, c, d\}$ — множество из четырех элементов.

$$a \in M$$
, $e \notin M$.

Множество четных чисел: $E = \{n \in \mathbb{Z} \mid \exists k \in \mathbb{Z} : n = 2k\}.$

Пустое множество \emptyset — множество, не содержащие ни одного элемента.

Определение (подмножество)

Множество A является подмножеством множества B, пишут $A \subset B$, тогда и только тогда, когда любой элемент $a \in A$ принадлежит множеству B:

$$A \subset B \quad \Leftrightarrow \quad (a \in A \Rightarrow a \in B).$$

Натуральный ряд №

Для доказательства утверждений, зависящих от натурального параметра $n\in\mathbb{N}$, часто используется метод математической индукции.

Метод математической индукции

Пусть для утверждения A(n), зависящего от параметра $n\in\mathbb{N}$, верно, что:

- A(n) верно при n = 1;
- ullet для любого $n\in\mathbb{N}$ из того, что справедливо A(n), следует, что справедливо A(n+1).

Тогда A(n) справедливо для любых $n \in \mathbb{N}$.

Пример

$$A(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Доказательство

База индукции (n=1)

$$1 = \frac{1(1+1)}{2}$$

Шаг индукции. Используем A(n) для доказательства A(n+1):

$$1+2+3+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$$

Натуральный ряд $\mathbb N$

Для доказательства утверждений, зависящих от натурального параметра $n\in\mathbb{N}$, часто используется метод математической индукции.

Метод математической индукции

Пусть для утверждения A(n), зависящего от параметра $n\in\mathbb{N}$, верно, что:

- A(n) верно при n = 1;
- ullet для любого $n\in\mathbb{N}$ из того, что справедливо A(n), следует, что справедливо A(n+1).

Тогда A(n) справедливо для любых $n \in \mathbb{N}$.

Пример

$$A(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Доказательство

База индукции (n=1)

$$1 = \frac{1(1+1)}{2}$$
.

Шаг индукции. Используем A(n) для доказательства A(n+1):

$$1+2+3+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$$

Натуральный ряд $\mathbb N$

Для доказательства утверждений, зависящих от натурального параметра $n\in\mathbb{N}$, часто используется метод математической индукции.

Метод математической индукции

Пусть для утверждения A(n), зависящего от параметра $n\in\mathbb{N}$, верно, что:

- A(n) верно при n = 1;
- ullet для любого $n\in\mathbb{N}$ из того, что справедливо A(n), следует, что справедливо A(n+1).

Тогда A(n) справедливо для любых $n \in \mathbb{N}$.

Пример

$$A(n): 1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

Доказательство

База индукции (n = 1):

$$1 = \frac{1(1+1)}{2}.$$

Шаг индукции. Используем A(n) для доказательства A(n+1):

$$1+2+3+\cdots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}.$$

Рациональные числа Q

Определение. Рациональное число

Рациональное число — это число, представляемое обыкновенной дробью $\frac{m}{n}$, где числитель m — целое число, а знаменатель n — натуральное число:

$$\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \right\}.$$

При этом одно число может быть представлено различными дробями. Например:

$$\frac{2}{4}=\frac{1}{2},$$

$$\frac{3}{1}=\frac{9}{3}.$$

Очевидно, целые числа $\mathbb Z$ являются частным случаем рациональных $\mathbb Q$:

$$\mathbb{Z}\subset\mathbb{Q}$$
,

так как $\forall r \in \mathbb{Z}$ имеется представление в виде дроби $r = \frac{r}{1} \in \mathbb{Q}.$

Рациональные числа ℚ

Предложение

Число $\sqrt{2}$ (число, квадрат которого равен 2) не является рациональным.

Доказательство

Предположим обратное. Пусть $\sqrt{2}=\frac{m}{n},$ где $\frac{m}{n}-$ несократимая дробь. Тогда

$$2 = \frac{m^2}{n^2}$$

 $m^2 = 2n^2 \Rightarrow m^2$ делится на 2 $\Rightarrow m$ делится на 2.

Следовательно, существует целое число k такое, что m=2k. Тогда

$$2 = \frac{4k^2}{n^2},$$

 $4k^2 = 2n^2 \Rightarrow n^2 = 2k^2 \Rightarrow n^2$ делится на $2 \Rightarrow n$ делится на 2

Получили, что числа n и m оба делятся на 2. Это противоречит тому, что n/m — несократимая дробь.

Рациональные числа ℚ

Предложение

Число $\sqrt{2}$ (число, квадрат которого равен 2) не является рациональным.

Доказательство

Предположим обратное. Пусть $\sqrt{2}=\frac{m}{n},$ где $\frac{m}{n}$ — несократимая дробь. Тогда

$$2=\frac{m^2}{n^2},$$

$$m^2 = 2n^2 \Rightarrow m^2$$
 делится на $2 \Rightarrow m$ делится на 2 .

Следовательно, существует целое число k такое, что m = 2k. Тогда

$$2 = \frac{4k^2}{n^2}$$

$$4k^2 = 2n^2 \Rightarrow n^2 = 2k^2 \Rightarrow n^2$$
 делится на $2 \Rightarrow n$ делится на 2

Получили, что числа n и m оба делятся на 2. Это противоречит тому, что n/m — несократимая дробь.

Рациональные числа ℚ

Предложение

Число $\sqrt{2}$ (число, квадрат которого равен 2) не является рациональным.

Доказательство

Предположим обратное. Пусть $\sqrt{2}=\frac{m}{n},$ где $\frac{m}{n}$ — несократимая дробь. Тогда

$$2=\frac{m^2}{n^2},$$

 $m^2 = 2n^2 \Rightarrow m^2$ делится на $2 \Rightarrow m$ делится на 2.

Следовательно, существует целое число k такое, что m=2k. Тогда

$$2=\frac{4k^2}{n^2},$$

$$4k^2 = 2n^2 \Rightarrow n^2 = 2k^2 \Rightarrow n^2$$
 делится на $2 \Rightarrow n$ делится на 2 .

Получили, что числа n и m оба делятся на 2. Это противоречит тому, что n/m — несократимая дробь.

Действительные числа $\mathbb R$

Рациональных чисел недостаточно для решения простых геометрических задач таких, как нахождение длины диагонали квадрата со стороной 1 (число $\sqrt{2}$) или длины окружности с единичным радиусом (число 2π).

Существует различные подходы к определению понятия вещественного (действительного) числа:

• Дедекиндовы сечения

$$\sqrt{2} = \left\{ q \in \mathbb{Q} \mid q^2 < 2 \right\}.$$

• Теория бесконечных десятичных дробей

$$\sqrt{2} = 1.414213562373095048801688724209698078569671875376\dots$$

• Геометрический подход — действительные числа как точки на прямой

На множестве действительных чисел стандартным образом вводятся арифметические операции $(+,-,\times,/)$, модуль числа, сравнения чисел $(<,>,\leq,\geq)$.

Действительные числа $\mathbb R$

Рациональных чисел недостаточно для решения простых геометрических задач таких, как нахождение длины диагонали квадрата со стороной 1 (число $\sqrt{2}$) или длины окружности с единичным радиусом (число 2π).

Существует различные подходы к определению понятия вещественного (действительного) числа:

• Дедекиндовы сечения

$$\sqrt{2} = \left\{ q \in \mathbb{Q} \mid q^2 < 2 \right\}.$$

• Теория бесконечных десятичных дробей

$$\sqrt{2} = 1.414213562373095048801688724209698078569671875376\dots$$

• Геометрический подход — действительные числа как точки на прямой

На множестве действительных чисел стандартным образом вводятся арифметические операции $(+,-,\times,/)$, модуль числа, сравнения чисел $(<,>,\leq,\geq)$.

Модуль действительного числа

Определение

Модулем (абсолютной величиной) числа x называют неотрицательное число |x| такое, что

$$|x| = \left\{ \begin{array}{cc} x & x \ge 0; \\ -x & x < 0. \end{array} \right.$$

Примеры

$$|-2.5| = 2.5, \quad |10| = 10.$$

Свойства

- $|a+b| \le |a| + |b|,$
- $|a-b| \ge ||a|-|b||,$
- |ab| = |a||b|.

Упражнение

Докажите эти свойства!

Свойство полноты действительных чисел

Важным свойством действительных чисел является свойство полноты.

Свойство полноты \mathbb{R}

Пусть A и B — два непустых множества действительных чисел

$$A \subset \mathbb{R}, \ B \subset \mathbb{R}, \ A \neq \emptyset, \ B \neq \emptyset$$

такие, что

$$\forall a \in A, \ \forall b \in B \quad a \leq b.$$

Тогда существует число $c \in \mathbb{R}$ такое, что

$$\forall a \in A, \ \forall b \in B \quad a \le c \le b.$$

Рациональные числа 🛈 не обладают свойством полноты. Достаточно рассмотреть

$$A = \{ q \in \mathbb{Q} \mid q > 0, \ q^2 < 2 \}, \quad B = \{ q \in \mathbb{Q} \mid q > 0, \ q^2 > 2 \}.$$

Свойство полноты действительных чисел

Важным свойством действительных чисел является свойство полноты.

Свойство полноты \mathbb{R}

Пусть A и B — два непустых множества действительных чисел

$$A \subset \mathbb{R}, \ B \subset \mathbb{R}, \ A \neq \emptyset, \ B \neq \emptyset$$

такие, что

$$\forall a \in A, \ \forall b \in B \quad a \leq b.$$

Тогда существует число $c \in \mathbb{R}$ такое, что

$$\forall a \in A, \ \forall b \in B \quad a \le c \le b.$$

Рациональные числа $\mathbb Q$ не обладают свойством полноты. Достаточно рассмотреть

$$A = \{ q \in \mathbb{Q} \mid q > 0, \ q^2 < 2 \}, \quad B = \{ q \in \mathbb{Q} \mid q > 0, \ q^2 > 2 \}.$$

Множества действительной оси

Мы будем использовать следующие стандартные обозначения для множеств на действительной оси:

- Отрезок $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$
- Конечный интервал $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}.$
- ullet Конечный полуинтервал $(a,b]=\{x\in\mathbb{R}\mid a< x\leq b\}$, или аналогично [a,b).
- Окрестность точки а это произвольный интервал, содержащий точку а:

$$U$$
— окрестность точки $a \Rightarrow \exists \alpha, \ \beta \in \mathbb{R}: \ U = (\alpha, \beta), \ a \in U.$

- δ -окрестность точки a это интервал $O_{\delta}(a)=(a-\delta,a+\delta).$
- Проколотая δ -окрестность точки a это δ -окрестность точки a без самой точки a:

$$\dot{O}_{\delta}(a) = (a - \delta, a) \cup (a, a + \delta).$$

Иногда при обозначении интервалов уместно использовать символ $+\infty$ и $-\infty$. Например:

$$x \in (-\infty, a] \quad \Leftrightarrow \quad x \le a,$$

$$(-\infty, +\infty) = \mathbb{R}$$

Окрестностями $+\infty$ и $-\infty$ называют интервалы вида $(lpha,+\infty)$ и $(-\infty,eta)$ соответственно.

Множества действительной оси

Мы будем использовать следующие стандартные обозначения для множеств на действительной оси:

- Отрезок $[a, b] = \{x \in \mathbb{R} \mid a \le x \le b\}.$
- Конечный интервал $(a,b) = \{x \in \mathbb{R} \mid a < x < b\}.$
- ullet Конечный полуинтервал $(a,b]=\{x\in\mathbb{R}\mid a< x\leq b\}$, или аналогично [a,b).
- Окрестность точки а это произвольный интервал, содержащий точку а:

$$U$$
— окрестность точки $a \Rightarrow \exists \alpha, \ \beta \in \mathbb{R}: \ U = (\alpha, \beta), \ a \in U.$

- δ -окрестность точки a это интервал $O_{\delta}(a)=(a-\delta,a+\delta).$
- Проколотая δ -окрестность точки a это δ -окрестность точки a без самой точки a:

$$\dot{O}_{\delta}(a) = (a - \delta, a) \cup (a, a + \delta).$$

Иногда при обозначении интервалов уместно использовать символ $+\infty$ и $-\infty$. Например:

$$x \in (-\infty, a] \Leftrightarrow x \le a,$$

 $(-\infty, +\infty) = \mathbb{R}$

Окрестностями $+\infty$ и $-\infty$ называют интервалы вида $(\alpha,+\infty)$ и $(-\infty,\beta)$ соответственно.

Ограниченные множества

Определение

Множество $A\subset \mathbb{R}$ называется ограниченным сверху (снизу), если существует константа C такая, что $a\leq C$ (соответственно $a\geq C$) для всех $a\in A$.

Такие константы C называются верхними (нижними) гранями множества A.

Множество A называется **ограниченным**, если оно ограниченно как сверху, так и снизу.

- Интервал (1,2) ограниченное множество.
- Множество \mathbb{Z} неограниченно.

Ограниченные множества

Определение

Множество $A\subset\mathbb{R}$ называется ограниченным сверху (снизу), если существует константа C такая, что $a\leq C$ (соответственно $a\geq C$) для всех $a\in A$.

Такие константы C называются верхними (нижними) гранями множества A.

Множество A называется **ограниченным**, если оно ограниченно как сверху, так и снизу.

- Интервал (1,2) ограниченное множество.
- $oldsymbol{0}$ Множество \mathbb{N} ограниченно снизу.
- \bullet Множество \mathbb{Z} неограниченно.

Ограниченные множества

Предложение

Конечное объединение

$$A = A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{j=1}^n A_j$$

ограниченных множеств A_j $(j=1,\ldots,n)$ являются ограниченным.

Доказательство

Поскольку множества A_j $(j=1,\ldots,n)$ является ограниченными, существуют константы c_j :

$$|a| \le c_j \quad \forall a \in A_j \quad (j = 1, \dots, n).$$

Определим $c = \max(c_1, c_2, \ldots, c_n)$. Тогда

$$a \in A = \bigcup_{j=1}^{n} A_{j} \Leftrightarrow \exists j : a \in A_{j} \Rightarrow a \leq c_{j} \Rightarrow a \leq c = \max c_{j}.$$

Таким образом, мы доказали, что

$$\exists c \in \mathbb{R}: \quad a \in A \Rightarrow |a| < c.$$

Для одного ограниченного множества существует много различных верхних и нижних граней. Например, для отрезка [-1,1] числа $10,20,30,\ldots$, очевидно, являются верхними гранями.

Возникает естественный вопрос о нахождении наиболее точной оценки для элементов множества.

Определение

Точной верхней гранью (супремумом) ограниченного сверху множества A называют наименьшую возможную верхнею грань множества A, пишут:

$$z = \sup A = \sup_{a \in A} a$$

Таким образом $z = \sup A$ тогда и только тогда, когда выполнены два условия:

- $oldsymbol{0}$ число z является верхней гранью множества A, то есть $a \leq z$ для всех $a \in A$;
- \bigcirc если c верхняя грань множества A, то $z \le c$.

Для одного ограниченного множества существует много различных верхних и нижних граней. Например, для отрезка [-1,1] числа $10,20,30,\ldots$, очевидно, являются верхними гранями.

Возникает естественный вопрос о нахождении наиболее точной оценки для элементов множества.

Определение

Точной верхней гранью (супремумом) ограниченного сверху множества A называют наименьшую возможную верхнею грань множества A, пишут:

$$z = \sup A = \sup_{a \in A} a$$
.

Таким образом $z = \sup A$ тогда и только тогда, когда выполнены два условия:

- **1** число z является верхней гранью множества A, то есть $a \le z$ для всех $a \in A$;
- \bigcirc если c верхняя грань множества A, то $z \le c$.

Аналогично определяется точная нижняя грань множества.

Определение

Точной нижней гранью (инфинумом) ограниченного снизу множества A называют наибольшую возможную нижнюю грань множества A, пишут:

$$z = \inf A = \inf_{a \in A} a$$
.

Если множество A неограниченно сверху, то пишут

$$\sup A = +\infty$$
.

Если множество A неограниченно снизу, то пишут

$$\inf A = -\infty$$
.

Для пустого множества принемают inf $\emptyset = +\infty$, $\sup \emptyset = -\infty$.

Упражнение

Чему равен $\sup_{|x|<1} x$? Как это строго обосновать?

Предложение

Если $z=\sup A$, где A — ограниченное сверху множество, то

$$\forall \varepsilon > 0 \ \exists a \in A : \quad |z - a| < \varepsilon.$$

Доказательство

Предположим обратное:

$$\exists \varepsilon_0 : \forall a \in A |z-a| \geq \varepsilon_0.$$

Тогда $z-a \geq \varepsilon_0$, следовательно, $a \leq z-\varepsilon_0 < z-\varepsilon_0/2$ для всех $a \in A$.

Таким образом мы показали, что число $z_1=z-arepsilon_0/2$ является верхней гранью множества A, но $z_1< z$, что противоречит определению супремума как наименьшей верхней грани.

Предложение

Если $z=\sup A$, где A — ограниченное сверху множество, то

$$\forall \varepsilon > 0 \,\, \exists a \in A: \quad |z-a| < \varepsilon.$$

Доказательство

Предположим обратное:

$$\exists \varepsilon_0 : \forall a \in A |z-a| \ge \varepsilon_0.$$

Тогда $z-a \geq \varepsilon_0$, следовательно, $a \leq z-\varepsilon_0 < z-\varepsilon_0/2$ для всех $a \in A$.

Таким образом мы показали, что число $z_1=z-\varepsilon_0/2$ является верхней гранью множества A, но $z_1< z$, что противоречит определению супремума как наименьшей верхней грани.

Предложение

Если $z = \sup A$, где A — ограниченное сверху множество, то

$$\forall \varepsilon > 0 \,\, \exists a \in A: \quad |z-a| < \varepsilon.$$

Доказательство

Предположим обратное:

$$\exists \varepsilon_0 : \forall a \in A | |z - a| \ge \varepsilon_0.$$

Тогда $z-a \geq \varepsilon_0$, следовательно, $a \leq z-\varepsilon_0 < z-\varepsilon_0/2$ для всех $a \in A$.

Таким образом мы показали, что число $z_1=z-arepsilon_0/2$ является верхней гранью множества A, но $z_1< z$, что противоречит определению супремума как наименьшей верхней грани.

Предложение

Если $z=\sup A$, где A — ограниченное сверху множество, то

$$\forall \varepsilon > 0 \,\, \exists a \in A: \quad |z-a| < \varepsilon.$$

Доказательство

Предположим обратное:

$$\exists \varepsilon_0 : \forall a \in A | |z - a| \ge \varepsilon_0.$$

Тогда $z-a \geq \varepsilon_0$, следовательно, $a \leq z-\varepsilon_0 < z-\varepsilon_0/2$ для всех $a \in A$.

Таким образом мы показали, что число $z_1=z-arepsilon_0/2$ является верхней гранью множества A, но $z_1< z$, что противоречит определению супремума как наименьшей верхней грани.

Теорема Больцано

Теорема Больцано

Пусть $A \neq \emptyset$ — ограниченное сверху множество. Тогда

- **①** Существует $z \in \mathbb{R}$: $z = \sup A$.
- $oldsymbol{eta}$ Величина $z=\sup A$ определена однозначно.

Доказательство (Существование)

Рассмотрим множество B всевозможных верхних граней множества A. Тогда $B
eq \emptyset,$ поскольку множество A ограничено сверху по предположению теоремы, а также

$$\forall a \in A, \ \forall b \in B \quad a \leq b$$

по определению верхней грани. Применяя свойство (аксиому) полноты действительных чисел, получаем, что

$$\exists c \in \mathbb{R}: \forall a \in A, \forall b \in B \ a \leq c \leq b.$$

Следовательно, $c=\sup A$ как наименьшая из возможных верхних граней.

Теорема Больцано

Теорема Больцано

Пусть $A \neq \emptyset$ — ограниченное сверху множество. Тогда

- $lacksymbol{0}$ Существует $z \in \mathbb{R}$: $z = \sup A$.
- $oldsymbol{eta}$ Величина $z=\sup A$ определена однозначно.

Доказательство (Существование)

Рассмотрим множество B всевозможных верхних граней множества A. Тогда $B \neq \emptyset$, поскольку множество A ограничено сверху по предположению теоремы, а также

$$\forall a \in A, \ \forall b \in B \quad a \leq b$$

по определению верхней грани. Применяя свойство (аксиому) полноты действительных чисел, получаем, что

$$\exists c \in \mathbb{R}: \quad \forall a \in A, \ \forall b \in B \quad a \leq c \leq b.$$

Следовательно, $c = \sup A$ как наименьшая из возможных верхних граней.

Теорема Больцано

Доказательство (Единственность)

Предположим обратное. Пусть

$$\exists z_1 \neq z_2 : z_1 = \sup A, z_2 = \sup A.$$

Тогда либо $z_1 < z_2$, либо $z_2 < z_1$, что сразу противоречит тому, что $\sup A$ — это наименьшая из возможных верхних граней.

Замечание

Утверждение о существовании супремума для любого ограниченного сверху множества можно считать другой формулировкой аксиомы полноты действительных чисел.

Упражнения

- Докажите свойство полноты действительных чисел, используя теорему Больцано.
- Сформулируйте и докажите аналогичное утверждение для инфинума.

Функция. Определение

Определение (Отображение)

Отображение (функция, преобразование) $f:A\to B$ — это правило, по которому каждому элементу a множества A ставится в соответствие некоторый элемент b множества B.

Множество A называют областью определения.

Множество B называют областью значений.

Если элементу $a \in A$ ставится в соответствие элемент $b \in B$, то элемент b называют образом элемента a и пишут b = f(a).

Пример

Отображение $u:\mathbb{Z} o \mathbb{N}$ такое, что $\forall n \in \mathbb{Z} \quad u(n) = n^2.$

Определение (Прообраз)

Прообраз (полный прообраз) элемента $b \in B$ при отображении $f: A \to B$ — это множество $f^{-1}(b) \subset A$ всех элементов $a \in A$, которые переходят в b при отображении f:

$$f^{-1}(b) = \{ a \in A \mid f(a) = b \}.$$

Для заданного примера $u(n) = n^2$:

$$u^{-1}(4) = \{-2, 2\}, \quad u^{-1}(5) = \emptyset.$$

Сложная функция. Обратная функция

Определение. Суперпозиция отображений (сложная функция)

Пусть задано два отображения $f:A\to B$ и $g:B\to C$. Тогда суперпозиция отображений f и g — это отображение $w:A\to C$, действующие по правилу:

$$\forall a \in A \quad w(a) = g(f(a)) = (g \circ f)(a).$$

Определение. Обратное отображение

Два отображения f:A o B и g:B o A называют взаимно обратными, если

$$\forall a \in A \quad g(f(a)) = a \quad \text{if} \quad \forall b \in B \quad f(g(b)) = b.$$

Примеры обратных функций

- $y = x^2$ и $x = \sqrt{y}$ для x > 0;
- y = 1/x и x = 1/y для $x \neq 0$;
- $y = \sin(x)$ и $x = \arcsin(y)$ для $x \in [-\pi/2, \pi/2]$.

Сложная функция. Обратная функция

Определение. Суперпозиция отображений (сложная функция)

Пусть задано два отображения $f:A\to B$ и $g:B\to C$. Тогда суперпозиция отображений f и g — это отображение $w:A\to C$, действующие по правилу:

$$\forall a \in A \quad w(a) = g(f(a)) = (g \circ f)(a).$$

Определение. Обратное отображение

Два отображения f:A o B и g:B o A называют взаимно обратными, если

$$\forall a \in A \quad g(f(a)) = a \quad \text{ if } \quad \forall b \in B \quad f(g(b)) = b.$$

Примеры обратных функций

- $y = x^2$ и $x = \sqrt{y}$ для $x \ge 0$;
- y = 1/x и x = 1/y для $x \neq 0$;
- $y = \sin(x)$ и $x = \arcsin(y)$ для $x \in [-\pi/2, \pi/2]$.

Сложная функция. Обратная функция

Определение. Суперпозиция отображений (сложная функция)

Пусть задано два отображения $f:A\to B$ и $g:B\to C$. Тогда суперпозиция отображений f и g — это отображение $w:A\to C$, действующие по правилу:

$$\forall a \in A \quad w(a) = g(f(a)) = (g \circ f)(a).$$

Определение. Обратное отображение

Два отображения f:A o B и g:B o A называют взаимно обратными, если

$$\forall a \in A \quad g(f(a)) = a \quad \text{u} \quad \forall b \in B \quad f(g(b)) = b.$$

Примеры обратных функций

- $y = x^2$ и $x = \sqrt{y}$ для $x \ge 0$;
- y = 1/x и x = 1/y для $x \neq 0$;
- $y = \sin(x)$ и $x = \arcsin(y)$ для $x \in [-\pi/2, \pi/2]$.

Биективное отображение

Определение. Взаимно однозначное соответствие (биекция)

Отображение f:A o B называется биективным, если для каждого элемента $b\in B$ существует единственный элемент $a\in A$ такой, что f(a)=b.

Предложение. Условия существования обратной функции

Для отображения f существует обратное отображение тогда и только тогда, когда отображение f биективно.

Доказательство проведите самостоятельно.

Препятствия для существования обратного отображения

Отображение f — не инъективно , а отображение g — не сюръективно.

График функции

Определение. График функции

Графиком функции f:A o B называется множество всех пар (a,b), где $a\in A$ и b=f(a).

Для числовых функций графики удобно изображать на плоскости (x,y).

Пример

График функции $y=x^2$ и обратной функции \sqrt{x} :

График обратной функции получается при отражении графика функции относительно прямой v=x.

График функции

Определение. График функции

Графиком функции f:A o B называется множество всех пар (a,b), где $a\in A$ и b=f(a).

Для числовых функций графики удобно изображать на плоскости (x,y).

Пример

График функции $y=x^2$ и обратной функции \sqrt{x} :

График обратной функции получается при отражении графика функции относительно прямой y=x.

График функции

Определение. График функции

Графиком функции f:A o B называется множество всех пар (a,b), где $a\in A$ и b=f(a).

Для числовых функций графики удобно изображать на плоскости (x,y).

Пример

График функции $y=x^2$ и обратной функции \sqrt{x} :

График обратной функции получается при отражении графика функции относительно прямой y=x.

Последовательности

Определение. Последовательность

Числовой последовательностью называют произвольную функция a из $\mathbb N$ в $\mathbb R$.

Часто вместо a(n) пишут a_n .

Последовательность может быть задана в виде явной формулы для общего члена последовательности $a_n = \dots$

Возможно также задание с помощью неявной (например, рекурсивной) формулы или просто при помощи некоторого корректного описания.

Примеры

- $a_n = 1/n$;
- ullet $a_0=3$, $a_1=3.1$, $a_2=3.14$ и так далее, где a_n десятичные приближения к числу π ;
- \bullet $F_1 = 1$, $F_2 = 1$, $F_{n+2} = F_n + F_{n+1}$ числа Фибоначчи.

Последовательности

Определение. Последовательность

Числовой последовательностью называют произвольную функция a из $\mathbb N$ в $\mathbb R$.

Часто вместо a(n) пишут a_n .

Последовательность может быть задана в виде явной формулы для общего члена последовательности $a_n=\dots$

Возможно также задание с помощью неявной (например, рекурсивной) формулы или просто при помощи некоторого корректного описания.

Примеры

- $a_n = 1/n$;
- ullet $a_0=3,\ a_1=3.1,\ a_2=3.14$ и так далее, где a_n десятичные приближения к числу π ;
- \bullet $F_1 = 1$, $F_2 = 1$, $F_{n+2} = F_n + F_{n+1}$ числа Фибоначчи.

Предел последовательности

Определение. Предел последовательности

Число a называют **пределом последовательности** a_n , если для любого наперед заданного числа $\varepsilon>0$ все члены последовательности a_n , начиная с некоторого номера N, лежат в ε -окрестности точки a:

$$\forall \varepsilon > 0 \ \exists N = N(\varepsilon) : \ \forall n \geq N \quad |a_n - a| < \varepsilon.$$

Записывают это так: $\lim_{n \to +\infty} a_n = a$ или $a_n \to a$.

Предел последовательности

Определение

Аналогично вводятся понятия бесконечного предела. Разделяют три случая:

Определение

- Последовательность a_n называется **сходящейся**, если у нее существует конечный предел.
- Последовательность a_n называется **бесконечно малой**, если $a_n \to 0$.
- Последовательность a_n называется **бесконечно большой**, если $a_n \to \infty$.

Упражнения

Приведите примеры последовательностей, отвечающих данным определениям.

Предел последовательности

Примеры

① Последовательность $a_n = 1/n$:

$$\lim_{n\to+\infty}\frac{1}{n}=0.$$

Действительно, для любого $\varepsilon > 0$ возьмем N, равное целой части $\varepsilon^{-1} + 1$. Тогда

$$n \geq N \quad \Rightarrow \quad n > \frac{1}{\varepsilon} \quad \Rightarrow \quad |a_n| < \varepsilon,$$

что и требовалось показать.

② Последовательность $b_n = n^2$:

$$\lim_{n\to+\infty}n^2=+\infty.$$

Доказательство:

$$\forall A > 0 \ \exists N = [\sqrt{A} + 1]: \quad n \ge N \ \Rightarrow \ b_n = n^2 \ge N^2 > A.$$

3 Последовательность $c_n = (-1)^n$:

$$\stackrel{\text{d}}{=} \lim_{n \to +\infty} c_n$$

Единственность предела

Теорема

Предел сходящейся последовательности определен однозначно.

Доказательство

Предположим обратное. Пусть a_n — сходящаяся последовательность, числа s_1 и $s_2 \neq s_1$ — ее пределы. Тогда возьмем $\varepsilon = |s_2 - s_1|/2$. По определению предела получаем:

$$a_n \to s_1 \quad \Rightarrow \quad \exists \, N_1: \ \forall n \geq N_1 \quad |a_n - s_1| < \varepsilon,$$

$$a_n \to s_2 \quad \Rightarrow \quad \exists N_2 : \ \forall n \ge N_2 \quad |a_n - s_2| < \varepsilon.$$

Если $N = \max(N_1, N_2)$, то

$$|s_1 - s_2| = |(s_1 - a_N) + (a_N - s_2)| \le |a_N - s_1| + |a_N - s_2| < 2\varepsilon = |s_2 - s_1|.$$

Получили противоречие вида $|s_1 - s_2| < |s_1 - s_2|$.

Замечание

Предел вида $a_n \to \pm \infty$ также определен однозначно. Например, последовательность не может одновременно иметь конечный предел и стремиться к $+\infty$.

Арифметические свойства предела

Теорема

Пусть $a_n o a$ и $b_n o b$ — сходящиеся последовательности. Тогда

- $lacksymbol{0} \lim_{n o +\infty} (c_1 a_n + c_2 b_n) = c_1 a + c_2 b;$ (Свойство линейности)
- $\lim_{n\to+\infty}a_nb_n=ab;$
- ullet Если b
 eq 0, то $\lim_{n o +\infty} a_n/b_n = a/b$.

Доказательство

Поскольку $a_n o a$ и $b_n o b$ получаем, что

$$\forall \varepsilon' > 0 \ \exists N_1 : \ \forall n \geq N_1 \quad |a_n - a| < \varepsilon',$$

$$\forall \varepsilon' > 0 \ \exists \textit{N}_2: \ \forall \textit{n} \geq \textit{N}_2 \quad |\textit{b}_\textit{n} - \textit{b}| < \varepsilon'.$$

Тогда при $n>N=\max(N_1,N_2)$

$$|(c_1a_n+c_2b_n)-(c_1a+c_2b)|\leq |c_1||a_n-a|+|c_2||b_n-b|<(|c_1|+|c_2|)\varepsilon'.$$

Следовательно, выбирая $\varepsilon' = \varepsilon/(|c_1| + |c_2|)$, получим

$$\forall \varepsilon > 0 \ \exists N: \ \forall n \geq N \quad |(c_1 a_n + c_2 b_n) - (c_1 a + c_2 b)| < \varepsilon,$$

что и требовалось доказать.

Арифметические свойства предела. Неопределенности

Определение

Говорят, что для последовательности u_n имеет место неопределенность вида

- ullet " $\infty-\infty$ " если $u_n=a_n-b_n$, где $a_n\to\infty$ и $b_n\to\infty$;
- \circ " $\infty \times 0$ " если $u_n = a_n b_n$, где $a_n \to \infty$ и $b_n \to 0$;
- $lacksymbol{\circ}$ " $\dfrac{\infty}{\infty}$ " если $u_n=\dfrac{a_n}{b_n}$, где $a_n o\infty$ и $b_n o\infty$.

Упражнение

Приведите примеры для каждого случая такие, что

- u_n сходится;
- ② *u_n* является бесконечно малой или бесконечно большой;
- предел u_n не существует.

Арифметические свойства предела. Пример

Рассмотрим последовательность

$$r_n = \frac{2n^2 + 2n + 7}{n^2 + 1}.$$

Это неопределенность вида " $\frac{\infty}{\infty}$ ". Разделим числитель и знаменатель на n^2 :

$$r_n = \frac{2 + 2/n + 7/n^2}{1 + 1/n^2}.$$

Рассмотрим последовательности, отвечающие числителю и знаменателю соответственно:

$$a_n = 2 + 2/n + 7/n^2$$
, $b_n = 1 + 1/n^2$.

Учитывая свойство линейности предела и то, что 1/n и $1/n^2$ стремятся к 0, получаем, что

$$a_n \rightarrow 2$$
, $b_n \rightarrow 1$.

Поскольку предел последовательности b_n (знаменателя для r_n) не равен 0, получаем, что

$$\lim_{n\to+\infty} r_n = \lim_{n\to+\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to+\infty} a_n}{\lim_{n\to+\infty} b_n} = \frac{2}{1} = 2.$$

Таким образом,

$$\lim_{n \to \infty} \frac{2n^2 + 2n + 7}{n^2 + 1} = 2.$$

Переход к пределу в неравенствах

Теорема

Пусть $a_n o a$ и $b_n o b$ — сходящиеся последовательности, и

$$a_n \leq b_n$$
,

для всех n, начиная с некоторого номера M. Тогда

Доказательство

Предположим обратное. Пусть a>b. Тогда, выбирая arepsilon=(a-b)/2, получаем, что

$$\exists N: \ \forall n \geq N \qquad |a_n - a| < \varepsilon, \quad |b_n - b| < \varepsilon.$$

Следовательно, если n > N, то

$$a_n > a - \varepsilon = a - \frac{a-b}{2} = \frac{a+b}{2},$$

$$b_n < b + \varepsilon = b + \frac{a-b}{2} = \frac{a+b}{2}$$
.

Получили, что $a_n>b_n$ при n>N. Это противоречит тому, что $a_n\leq b_n$, при n>M.

Лемма "о двух милиционерах"

Лемма

Пусть a_n и c_n — сходящиеся последовательности:

$$\lim_{n\to+\infty}a_n=\lim_{n\to+\infty}c_n=L,$$

и справедливо неравенство:

$$a_n \leq b_n \leq c_n$$
.

Тогда последовательность b_n также является сходящейся и

$$\lim_{n\to\infty}b_n=L.$$

Пример

Рассмотрим последовательность

$$s_n=\frac{\sin(n)}{n}$$
.

Последовательность $s_n o 0$, поскольку справедливо неравенство:

$$-\frac{1}{n} \le \frac{\sin(n)}{n} \le \frac{1}{n}.$$

Сравнение бесконечно больших последовательностей

Предложение

Пусть $a_n \to +\infty$. Если $b_n \geq a_n$, то $\lim b_n = +\infty$.

Пример

Рассмотрим последовательность

$$u_n=\frac{a^n}{n}, \quad a>1.$$

Покажем, что величина a^n растет очень быстро. Неравенство

$$a^n \ge 1 + n(a-1) + \frac{n(n-1)}{2}(a-1)^2$$

можно доказать по индукции (докажите!). Следовательно,

$$\frac{a^n}{n} \ge \frac{1}{n} + a - 1 + \frac{1}{2}(n-1)(a-1)^2 \ge \frac{(a-1)^2}{2}(n-1) \to +\infty$$

Таким образом,

$$\lim_{n\to+\infty}\frac{a^n}{n}=+\infty\qquad (a>1).$$

Монотонные последовательности

Определение. Монотонные последовательности

Числовая последовательность называется возрастающей (неубывающей), если $a_{n+1} > a_n$ (соответственно, $a_{n+1} \ge a_n$) для всех $n \in \mathbb{N}$.

Числовая последовательность называется убывающей (невозрастающей), если $a_{n+1} < a_n$ (соответственно, $a_{n+1} \le a_n$) для всех $n \in \mathbb{N}$.

Такие последовательности называют монотонными.

Определение. Ограниченные последовательности

Числовая последовательность называется ограниченной сверху (снизу), если $\exists c \in \mathbb{R}$ такая, что $a_n < c$ (соответственно, $a_n > c$) для всех $n \in \mathbb{N}$.

Числовая последовательность называется **ограниченной**, если она ограничена как сверху, так и снизу, то есть

$$\exists c \in \mathbb{R} : |a_n| < c \quad \forall n \in \mathbb{N}.$$

Упражнение

Докажите, что любая сходящаяся последовательность ограничена.

Монотонные последовательности

Определение. Монотонные последовательности

Числовая последовательность называется возрастающей (неубывающей), если $a_{n+1}>a_n$ (соответственно, $a_{n+1}\geq a_n$) для всех $n\in\mathbb{N}$.

Числовая последовательность называется убывающей (невозрастающей), если $a_{n+1} < a_n$ (соответственно, $a_{n+1} \le a_n$) для всех $n \in \mathbb{N}$.

Такие последовательности называют монотонными.

Определение. Ограниченные последовательности

Числовая последовательность называется ограниченной сверху (снизу), если $\exists c \in \mathbb{R}$ такая, что $a_n < c$ (соответственно, $a_n > c$) для всех $n \in \mathbb{N}$.

Числовая последовательность называется **ограниченной**, если она ограничена как сверху, так и снизу, то есть

$$\exists c \in \mathbb{R} : |a_n| < c \quad \forall n \in \mathbb{N}.$$

Упражнение

Докажите, что любая сходящаяся последовательность ограничена.

Монотонные последовательности

Определение. Монотонные последовательности

Числовая последовательность называется возрастающей (неубывающей), если $a_{n+1}>a_n$ (соответственно, $a_{n+1}\geq a_n$) для всех $n\in\mathbb{N}$.

Числовая последовательность называется убывающей (невозрастающей), если $a_{n+1} < a_n$ (соответственно, $a_{n+1} \le a_n$) для всех $n \in \mathbb{N}$.

Такие последовательности называют монотонными.

Определение. Ограниченные последовательности

Числовая последовательность называется ограниченной сверху (снизу), если $\exists c \in \mathbb{R}$ такая, что $a_n < c$ (соответственно, $a_n > c$) для всех $n \in \mathbb{N}$.

Числовая последовательность называется **ограниченной**, если она ограничена как сверху, так и снизу, то есть

$$\exists c \in \mathbb{R} : |a_n| < c \quad \forall n \in \mathbb{N}.$$

Упражнение

Докажите, что любая сходящаяся последовательность ограничена.

Теорема о пределе монотонной последовательности

Теорема Вейерштрасса

Монотонная ограниченная последовательность сходится.

Доказательство

Пусть a_n — монотонная ограниченная последовательность. Для определенности предположим, что a_n не убывает. Поскольку последовательность a_n ограничена сверху, то (т. Больцано) существует

$$z=\sup_{n>1}a_n=\sup A<+\infty,$$

где $A = \{a_n, \ n \in \mathbb{N}\}$ — множество всех значений последовательности a_n .

По свойству супремума

$$\forall \varepsilon > 0 \ \exists a \in A : \quad |z - a| < \varepsilon.$$

Поскольку

$$a\in A$$
 \Leftrightarrow $\exists N: a=a_N$ и $a_n\geq a_N,$ при $n\geq N,$

получаем, что

$$|z-a_n|=z-a_n\leq z-a_N<\varepsilon.$$

Таким образом,

$$\lim_{n\to+\infty}a_n=\sup_{n\geq 1}a_n.$$

Пример вычисления предела

Пример

Рассмотрим последовательность $a_n = \frac{2^n}{n!}$. Проверим на монотонность:

$$\frac{a_{n+1}}{a_n} = \frac{2^{n+1}}{(n+1)!} \frac{n!}{2^n} = \frac{2}{n+1} \le 1 \quad \Rightarrow \quad a_{n+1} \le a_n.$$

Последовательность убывает (при n>1) и ограничена снизу $(a_n\geq 0)$, следовательно, она сходится:

$$\lim_{n\to+\infty}a_n=x.$$

Перейдем в равенстве

$$a_{n+1}=a_n\frac{2}{n+1}$$

к пределу при $n \to +\infty$:

$$\lim_{n\to+\infty} a_{n+1} = \lim_{n\to+\infty} \left(a_n \frac{2}{n+1} \right) \quad \Rightarrow \quad x = \lim_{n\to+\infty} a_n \cdot \lim_{n\to+\infty} \frac{2}{n+1} = x \cdot 0 = 0.$$

Получили, что $2^{n}/n! \to 0$.

Пример вычисления предела

Пример

Рассмотрим последовательность

$$\sqrt{2},\ \sqrt{2+\sqrt{2}},\ \sqrt{2+\sqrt{2+\sqrt{2}}},\dots$$

или

$$a_1 = \sqrt{2}, \quad a_{n+1} = \sqrt{2 + a_n}.$$

Последовательность ограничена:

$$0 \leq a_n \leq 2$$
,

и монотонно возрастает:

$$a_{n+1}-a_n=\sqrt{2+a_n}-a_n=rac{2+a_n-a_n^2}{\sqrt{2+a_n}+a_n}=rac{(2-a_n)(1+a_n)}{\sqrt{2+a_n}+a_n}\geq 0.$$

Следовательно, последовательность является сходящейся $a_n \to z$. Переходя к пределу в равенстве $a_{n+1} = \sqrt{2 + a_n}$, получаем, что

$$z=\sqrt{2+z}\quad \Rightarrow \quad z^2-z-2=0,\ z\geq 0\quad \Rightarrow \quad z=2.$$

Бином Ньютона. Биномиальные коэффициенты

Бином Ньютона

$$(a+b)^n = a^n + na^{n-1}b + \dots + nab^{n-1} + b^n = \sum_{k=0}^n C_n^k a^{n-k} b^k,$$

где C_n^k — число сочетаний из n по k (биномиальный коэффициент):

$$C_n^k = {n \choose k} = \frac{n!}{k!(n-k)!}.$$

Свойства биномиальных коэффициентов

• Симметрия:

$$C_n^k = C_n^{n-k}$$
.

2 Разложение для 2^n :

$$2^n = (1+1)^n = C_n^0 + \cdots + C_n^n$$
.

Треугольник Паскаля:

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k.$$

Число е

Определение

Числом е называют предел последовательности:

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
. $(n \to +\infty)$

Предложение (корректность определения)

Последовательность ал является сходящейся.

Упражнения

- ullet Докажите, что последовательность a_n возрастает (используйте бином Ньютона).
- Докажите, что последовательность а_п ограничена. Указание:

$$a_n \le 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=0}^n \frac{1}{2^k} \le 3.$$

ullet Докажите, что последовательность $(1+1/n)^{n+1}$ убывает и

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$

Число е

Определение

Числом е называют предел последовательности:

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
. $(n \to +\infty)$

Предложение (корректность определения)

Последовательность a_n является сходящейся.

Упражнения

- ullet Докажите, что последовательность a_n возрастает (используйте бином Ньютона).
- **2** Докажите, что последовательность a_n ограничена. Указание:

$$a_n \le 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=0}^n \frac{1}{2^k} \le 3.$$

ullet Докажите, что последовательность $(1+1/n)^{n+1}$ убывает и

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}$$
.

Число е

Определение

Числом е называют предел последовательности:

$$a_n = \left(1 + \frac{1}{n}\right)^n$$
. $(n \to +\infty)$

Предложение (корректность определения)

Последовательность a_n является сходящейся.

Упражнения

- **4** Докажите, что последовательность a_n возрастает (используйте бином Ньютона).
- **②** Докажите, что последовательность a_n ограничена. Указание:

$$a_n \le 2 + \sum_{k=2}^n \frac{1}{k!} \le 2 + \sum_{k=0}^n \frac{1}{2^k} \le 3.$$

ullet Докажите, что последовательность $(1+1/n)^{n+1}$ убывает и

$$\left(1+\frac{1}{n}\right)^n < e < \left(1+\frac{1}{n}\right)^{n+1}.$$

Верхний и нижний предел

Пусть a_n — ограниченная последовательность. Рассмотрим

$$i_n = \inf_{k \ge n} a_k, \qquad s_n = \sup_{k \ge n} a_k.$$

Последовательности i_n и s_n монотонны и ограниченны, следовательно, они являются сходящимися.

Определение

Верхним пределом последовательности a_n называют

$$\overline{\lim}_{n\to+\infty} a_n = \lim_{n\to+\infty} \sup_{k>n} a_k.$$

Нижним пределом последовательности ап называют

$$\underline{\lim}_{n\to+\infty} a_n = \lim_{n\to+\infty} \inf_{k\geq n} a_k.$$

Упражнение

- Докажите, что нижний предел нестрого меньше верхнего предела.
- Докажите, что последовательность сходится тогда и только тогда, когда ее верхний и нижний пределы конечны и совпадают.

Верхний и нижний предел

Пусть a_n — ограниченная последовательность. Рассмотрим

$$i_n = \inf_{k \ge n} a_k, \qquad s_n = \sup_{k \ge n} a_k.$$

Последовательности i_n и s_n монотонны и ограниченны, следовательно, они являются сходящимися.

Определение

Верхним пределом последовательности a_n называют

$$\overline{\lim}_{n\to+\infty} a_n = \lim_{n\to+\infty} \sup_{k>n} a_k.$$

Нижним пределом последовательности ап называют

$$\underline{\lim}_{n\to+\infty} a_n = \lim_{n\to+\infty} \inf_{k>n} a_k.$$

Упражнение

- Докажите, что нижний предел нестрого меньше верхнего предела.
- Докажите, что последовательность сходится тогда и только тогда, когда ее верхний и нижний пределы конечны и совпадают.

Критерий Коши

Определение

Последовательность x_n называют **фундаментальной** (последовательностью Коши), если

$$\forall \varepsilon > 0 \,\, \exists N: \,\, \forall n \geq N \,\, \text{u} \,\, m \geq N \quad |x_n - x_m| < \varepsilon.$$

Теорема. Критерий сходимости последовательностей

Последовательность a_n является сходящейся тогда и только тогда, когда она является последовательностью Коши.

Упражнения

- Докажите, что сходящаяся последовательность фундаментальна.
- ② Докажите, что фундаментальная последовательность ограничена.
- Докажите, что верхний и нижний предел фундаментальной последовательности совпадают. Указание:

$$|x_n - x_m| < \varepsilon \quad \Rightarrow \quad |\sup_{k > n} x_k - \inf_{k \ge n} x_k| < \varepsilon$$

Критерий Коши

Определение

Последовательность x_n называют **фундаментальной** (последовательностью Коши), если

$$\forall \varepsilon > 0 \ \exists N: \ \forall n \geq N \ \text{u} \ m \geq N \quad |x_n - x_m| < \varepsilon.$$

Теорема. Критерий сходимости последовательностей

Последовательность a_n является сходящейся тогда и только тогда, когда она является последовательностью Коши.

Упражнения

- Докажите, что сходящаяся последовательность фундаментальна.
- ② Докажите, что фундаментальная последовательность ограничена
- Докажите, что верхний и нижний предел фундаментальной последовательности совпадают. Указание:

$$|x_n - x_m| < \varepsilon \quad \Rightarrow \quad |\sup_{k \ge n} x_k - \inf_{k \ge n} x_k| < \varepsilon$$

Критерий Коши

Определение

Последовательность x_n называют **фундаментальной** (последовательностью Коши), если

$$\forall \varepsilon > 0 \,\, \exists N: \,\, \forall n \geq N \,\, \text{u} \,\, m \geq N \quad |x_n - x_m| < \varepsilon.$$

Теорема. Критерий сходимости последовательностей

Последовательность a_n является сходящейся тогда и только тогда, когда она является последовательностью Коши.

Упражнения

- Докажите, что сходящаяся последовательность фундаментальна.
- 2 Докажите, что фундаментальная последовательность ограничена.
- Докажите, что верхний и нижний предел фундаментальной последовательности совпадают. Указание:

$$|x_n - x_m| < \varepsilon \quad \Rightarrow \quad |\sup_{k > n} x_k - \inf_{k \ge n} x_k| < \varepsilon$$

Подпоследовательность

Определение (Подпоследовательность)

Последовательность b_k называют **подпоследовательностью** последовательности a_n , если

$$b_k = a_{n_k}, \ (k = 1, 2, \ldots),$$

где n_k возрастающая последовательность натуральных чисел:

$$n_1 < n_2 < \ldots < n_k < n_{k+1} < \ldots$$

Определение (Частичный предел)

Частичными пределами последовательности a_n называют пределы ее подпоследовательностей.

Свойства

- В любой окрестности частичного предела лежит бесконечно много членов последовательности. Верно и обратное: если в любой окрестности точки лежит бесконечно много членов последовательности, то эта точка — частичный предел последовательности.
- Сходящаяся последовательность имеет единственный частичный предел, который равен ее пределу.

Подпоследовательность

Теорема

Верхний (нижний) предел последовательности являются супремумом (инфинумом) множества всех частичных пределов последовательности.

Доказательство

Для начала докажем, что для заданной последовательности существует подпоследовательность сходящаяся к ее верхнему пределу, то есть верхний предел является одним из частичных пределов последовательности. Пусть

$$a = \overline{\lim}_{n \to +\infty} a_n \quad \Leftrightarrow \quad \forall \varepsilon' > 0 \,\, \exists N: \,\, \forall n \geq N \quad |a - \sup_{k \geq n} a_k| < \varepsilon'$$

По свойству супремума:

$$s_n = \sup_{k \geq n} a_k \quad \Leftrightarrow \quad \forall \varepsilon' \; \exists m_n \geq n : \quad |s_n - a_{m_n}| < \varepsilon'.$$

Следовательно, взяв $\varepsilon=\varepsilon'/2$ получаем, что

$$|a - a_{m_n}| \le |a - s_n| + |s_n - a_{m_n}| < 2\varepsilon' = \varepsilon$$
 $(\forall n \ge N)$

Подпоследовательность

Теорема

Верхний (нижний) предел последовательности являются супремумом (инфинумом) множества всех частичных пределов последовательности.

Доказательство (Продолжение)

Мы доказали, что верхний предел является одним из частичных пределов последовательности. Остается доказать, что любой другой частичный предел не превосходит верхнего предела.

Пусть L — частичный предел последовательности a_n : $a_{r_n} \to L$ $(n \to +\infty)$. Последовательность $s_{r_n} = \sup_{k \ge r_n} a_k$ является подпоследовательностью сходящейся последовательности $s_n = \sup_{k \ge n} a_k$, следовательно,

$$\sup_{k>r_n}a_k\to a=\varlimsup_{n\to+\infty}a_n\quad (n\to+\infty).$$

Переходя к пределу (при $n o +\infty$) в неравенстве

$$a_{r_n} \leq \sup_{k > r_n} a_k \quad \Rightarrow \quad L \leq a,$$

получаем необходимую оценку.

Свойства частичных пределов

Свойства

- Все частичные пределы последовательности лежат между верхним и нижним пределом последовательности.
- Если для ограниченной последовательности верхний и нижний предел совпадают, то последовательность сходится.
- Любая ограниченная последовательность имеет сходящуюся подпоследовательность, то есть непустое множество частичных пределов. (Лемма Больцано-Вейерштрасса)

