PostGIS 3.3 Cheatsheet

New in this release 1 Enhanced in this release 2 aggregate agg window function W Requires GEOS 3.9 or higher $^{g3.9}$ 2.5/3D support 3 SQL-MM mm Supports geography G

PostGIS Geometry/Geography/Box Data Types

box2d The type representing a 2-dimensional bounding box.

box3d The type representing a 3-dimensional bounding box.

geometry The type representing spatial features with planar coordinate systems.

geometry_dump A composite type used to describe the parts of complex geometry.

geography The type representing spatial features with geodetic (ellipsoidal) coordinate systems.

Table Management Functions

AddGeometryColumn^{3d} Adds a geometry column to an existing table.

- 1. table_name, column_name, srid, type, dimension, use_typmod=true
- 2. schema name, table name, column name, srid, type, dimension, use typmod=true
- 3. catalog_name, schema_name, table_name, column_name, srid, type, dimension, use_typmod=true

DropGeometryColumn^{3d} Removes a geometry column from a spatial table.

- 1. table name, column name
- 2. schema name, table name, column name
- 3. catalog name, schema name, table name, column name

DropGeometryTable Drops a table and all its references in geometry columns.

- 1. table name
- 2. schema name, table name
- 3. catalog_name, schema_name, table_name

Find_SRID (a_schema_name, a_table_name, a_geomfield_name) Returns the SRID defined for a geometry column.

- 1. use typmod=true
- 2. relation_oid, use_typmod=true

UpdateGeometrySRID^{3d} Updates the SRID of all features in a geometry column, and the table metadata.

- table_name, column_name, srid
- 2. schema name, table name, column name, srid
- 3. catalog name, schema name, table name, column name, srid

Geometry Constructors

- ST Collect^{3d} Creates a Geometry Collection or Multi* geometry from a set of geometries. 1. q1, q2
- 2. g1_array
- 3. g1field agg
- ST LineFromMultiPoint^{3d} (aMultiPoint) Creates a LineString from a MultiPoint geometry.
- ST MakeEnvelope (xmin, ymin, xmax, ymax, srid=unknown) Creates a rectangular Polygon from minimum and maximum coordinates.
 - 1. geom1, geom2 ST_MakeLine3d Creates a LineString from Point, MultiPoint, or LineString geometries.
 - 2. geoms array
 - 3. geoms agg
- **ST MakePoint**^{3d} Creates a 2D, 3DZ or 4D Point.
- 1. x, y
- 2. x, y, z 3. x, y, z, m
- **ST_MakePointM** (x, y, m) Creates a Point from X, Y and M values.
 - 1. linestring

ST MakePolygon^{3d} Creates a Polygon from a shell and optional list of holes.

- 2. outerlinestring, interiorlinestrings
- **ST Point**mm Creates a Point with X. Y and SRID values.
- 1. x, y
- 2. x, y, srid=unknown
- **ST_PointZ** (x, y, z, srid=unknown) Creates a Point with X, Y, Z and SRID values.
- **ST_PointM** (x, y, m, srid=unknown) Creates a Point with X, Y, M and SRID values.
- ST_PointZM (x, y, z, m, srid=unknown) Creates a Point with X, Y, Z, M and SRID values.
- ST Polygon^{mm 3d} (lineString, srid) Creates a Polygon from a LineString with a specified SRID.
- ST TileEnvelope (tileZoom, tileX, tileY, bounds=SRID=3857;LINESTRING(-20037508.342789 -20037508.342789.20037508.342789 20037508.342789), margin=0.0) Creates a rectangular Polygon in Web Mercator (SRID:3857) using the XYZ tile system.
- ST_HexagonGrid (size, bounds) Returns a set of hexagons and cell indices that completely cover the bounds of the geometry argument.
- ST_Hexagon (size, cell i, cell j, origin) Returns a single hexagon, using the provided edge size and cell coordinate within the hexagon grid space.
- ST_SquareGrid (size, bounds) Returns a set of grid squares and cell indices that completely cover the bounds of the geometry argument. ST_Square (size, cell i, cell j, origin) Returns a single square, using the provided edge size and cell coordinate within the square grid
- ST Letters (letters, font) Returns the input letters rendered as geometry with a default start position at the origin and default text height of 100.

Geometry Accessors

- GeometryType^{3d} (geomA) Returns the type of a geometry as text.
- **ST_Boundary**^{mm 3d} (geomA) Returns the boundary of a geometry.
- **ST_BoundingDiagonal**^{3d} (geom, fits=false) Returns the diagonal of a geometry's bounding box.
- ST_CoordDim^{mm 3d} (geomA) Return the coordinate dimension of a geometry.
- ${f ST_Dimension}^{mm}\left(g\right)$ Returns the topological dimension of a geometry.
- ST_Dump^{3d} (g1) Returns a set of geometry_dump rows for the components of a geometry.
- **ST_DumpPoints**^{3d} (geom) Returns a set of geometry_dump rows for the coordinates in a geometry.
- **ST DumpSegments**^{3d} (geom) Returns a set of geometry_dump rows for the segments in a geometry.
- ST_DumpRings^{3d} (a polygon) Returns a set of geometry dump rows for the exterior and interior rings of a Polygon.
- ST_EndPointmm 3d (g) Returns the last point of a LineString or CircularLineString.
- **ST_Envelope**^{mm} (g1) Returns a geometry representing the bounding box of a geometry.
- **ST_ExteriorRing**^{mm 3d} (a_polygon) Returns a LineString representing the exterior ring of a Polygon.
- ST_GeometryN^{mm 3d} (geomA, n) Return an element of a geometry collection.
- ST_GeometryType^{mm 3d} (g1) Returns the SQL-MM type of a geometry as text.
- ST HasArc^{3d} (geomA) Tests if a geometry contains a circular arc
- **ST_InteriorRingN**^{mm 3d} (a polygon, n) Returns the Nth interior ring (hole) of a Polygon.
- **ST_IsClosed**^{mm 3d} (g) Tests if a LineStrings's start and end points are coincident. For a PolyhedralSurface tests if it is closed (volumetric).
- **ST_IsCollection**^{3d} (g) Tests if a geometry is a geometry collection type.
- **ST_IsEmpty**^{mm} (geomA) Tests if a geometry is empty.
- ST IsPolygonCCW ^{3d} (geom) Tests if Polygons have exterior rings oriented counter-clockwise and interior rings oriented clockwise.
- ST_IsPolygonCW ^{3d} (geom) Tests if Polygons have exterior rings oriented clockwise and interior rings oriented counter-clockwise.
- ST_IsRing^{mm} (g) Tests if a LineString is closed and simple.
- **ST_IsSimple**^{mm 3d} (geomA) Tests if a geometry has no points of self-intersection or self-tangency.
- ST_Mmm 3d (a point) Returns the M coordinate of a Point.
- **ST MemSize**^{3d} (geomA) Returns the amount of memory space a geometry takes.
- ST_NDims^{3d} (g1) Returns the coordinate dimension of a geometry.
- **ST_NPoints**^{3d} (g1) Returns the number of points (vertices) in a geometry.
- **ST_NRings**^{3d} (geomA) Returns the number of rings in a polygonal geometry.
- **ST_NumGeometries**^{mm 3d} (geom) Returns the number of elements in a geometry collection.
- **ST_NumInteriorRings**^{mm} (a polygon) Returns the number of interior rings (holes) of a Polygon.
- ST_NumInteriorRing (a_polygon) Returns the number of interior rings (holes) of a Polygon. Aias for ST_NumInteriorRings
- ST_NumPatches^{mm 3d} (g1) Return the number of faces on a Polyhedral Surface. Will return null for non-polyhedral geometries.
- ST_NumPoints^{mm} (g1) Returns the number of points in a LineString or CircularString.
- ST_PatchN^{mm 3d} (geomA, n) Returns the Nth geometry (face) of a PolyhedralSurface.
- ST PointNmm 3d (a linestring, n) Returns the Nth point in the first LineString or circular LineString in a geometry.
- ST Points^{3d} (geom) Returns a MultiPoint containing the coordinates of a geometry.
- ST StartPoint^{mm 3d} (geomA) Returns the first point of a LineString.
 - ${\tt 1.~~g}^{\sf ST_Summary}^{\sf G}$ Returns a text summary of the contents of a geometry.
 - 2. g
- ST Xmm 3d (a point) Returns the X coordinate of a Point.
- ST_Y^{mm 3d} (a_point) Returns the Y coordinate of a Point.
- ST_Z^{mm 3d} (a_point) Returns the Z coordinate of a Point.
- **ST_Zmflag**^{3d} (geomA) Returns a code indicating the ZM coordinate dimension of a geometry.

Geometry Editors

ST_AddPoint^{3d} Add a point to a LineString.

```
    linestring, point
    linestring, point, position = -1
```

ST_CollectionExtract Given a geometry collection, returns a multi-geometry containing only elements of a specified type.

```
    collection
    collection, type
```

- ST CollectionHomogenize (collection) Returns the simplest representation of a geometry collection.
- **ST_CurveToLine**^{mm 3d} (curveGeom, tolerance_type, flags) Converts a geometry containing curves to a linear geometry.
- ST_Scroll^{3d} (linestring, point) Change start point of a closed LineString.
- **ST_FlipCoordinates**^{3d} (geom) Returns a version of a geometry with X and Y axis flipped.
- **ST Force2D**^{3d} (geomA) Force the geometries into a "2-dimensional mode".
- **ST_Force3D**^{3d} (geomA, Zvalue = 0.0) Force the geometries into XYZ mode. This is an alias for ST_Force3DZ.
- **ST Force3DZ**^{3d} (geomA, Zvalue = 0.0) Force the geometries into XYZ mode.
- **ST_Force3DM** (geomA, Mvalue = 0.0) Force the geometries into XYM mode.
- **ST_Force4D**^{3d} (geomA, Zvalue = 0.0, Mvalue = 0.0) Force the geometries into XYZM mode.
- ST_ForcePolygonCCW 3d (geom) Orients all exterior rings counter-clockwise and all interior rings clockwise.
- **ST_ForceCollection**^{3d} (geomA) Convert the geometry into a GEOMETRYCOLLECTION.
- ST_ForcePolygonCW 3d (geom) Orients all exterior rings clockwise and all interior rings counter-clockwise.

```
ST_ForceSFS<sup>3d</sup> Force the geometries to use SFS 1.1 geometry types only.
```

- 2. geomA, version
- **ST_ForceRHR**^{3d} (g) Force the orientation of the vertices in a polygon to follow the Right-Hand-Rule.
- **ST ForceCurve**^{3d} (g) Upcast a geometry into its curved type, if applicable.
- ST_LineToCurve3d (geomANoncircular) Converts a linear geometry to a curved geometry.
- ST_Multi (geom) Return the geometry as a MULTI* geometry.
- **ST Normalize** (geom) Return the geometry in its canonical form.
- ST_QuantizeCoordinates (g, prec_x, prec_y, prec_z, prec_m) Sets least significant bits of coordinates to zero
- **ST_RemovePoint**^{3d} (linestring, offset) Remove a point from a linestring.
- ST_RemoveRepeatedPoints^{3d} (geom, tolerance) Returns a version of a geometry with duplicate points removed.
- ST_Reverse^{3d} (g1) Return the geometry with vertex order reversed.
- **ST_Segmentize**^G Return a modified geometry/geography having no segment longer than the given distance.

```
    geom, max_segment_length
    geog, max_segment_length
```

- **ST SetPoint**^{3d} (linestring, zerobasedposition, point) Replace point of a linestring with a given point.
- ST ShiftLongitude^{3d} (geom) Shifts the longitude coordinates of a geometry between -180..180 and 0..360.
- **ST_WrapX**^{3d} (geom, wrap, move) Wrap a geometry around an X value.
- **ST_SnapToGrid**^{3d} Snap all points of the input geometry to a regular grid.

```
    geomA, originX, originY, sizeX, sizeY
    geomA, sizeX, sizeY
    geomA, size
    geomA, pointOrigin, sizeX, sizeY, sizeZ, sizeM
```

- ST_Snap (input, reference, tolerance) Snap segments and vertices of input geometry to vertices of a reference geometry.
- **ST_SwapOrdinates**^{3d} (geom, ords) Returns a version of the given geometry with given ordinate values swapped.

Geometry Validation

- **ST_IsValid**^{mm} Tests if a geometry is well-formed in 2D. 1. g
- 2. g, flags
- ST_lsValidDetail (geom, flags) Returns a valid_detail row stating if a geometry is valid or if not a reason and a location.
 - **ST_IsValidReason** Returns text stating if a geometry is valid, or a reason for invalidity.

 - 2. geomA, flags
 - **ST_MakeValid**^{3d} Attempts to make an invalid geometry valid without losing vertices. 1. input
 - 2. input, params

Spatial Reference System Functions

- ST_SetSRID (geom, srid) Set the SRID on a geometry.
- ST_SRID^{mm} (g1) Returns the spatial reference identifier for a geometry.
- ST_Transform^{mm} Return a new geometry with coordinates transformed to a different spatial reference system.
 - 1. g1, srid
 - 2. geom, to_proj

 - 3. geom, from_proj, to_proj
 4. geom, from_proj, to_srid

Geometry Input

- **ST_BdPolyFromText** (WKT, srid) Construct a Polygon given an arbitrary collection of closed linestrings as a MultiLineString Well-Known text representation.
- **ST_BdMPolyFromText** (WKT, srid) Construct a MultiPolygon given an arbitrary collection of closed linestrings as a MultiLineString text representation Well-Known text representation.
- ST_GeogFromText^G (EWKT) Return a specified geography value from Well-Known Text representation or extended (WKT).
- **ST_GeographyFromText**^G (EWKT) Return a specified geography value from Well-Known Text representation or extended (WKT).
- **ST_GeomCollFromText**^{mm} Makes a collection Geometry from collection WKT with the given SRID. If SRID is not given, it defaults to 0.
 - 1. WKT, srid
 - 2. WKT
- **ST_GeomFromEWKT**^{3d} (EWKT) Return a specified ST_Geometry value from Extended Well-Known Text representation (EWKT).
- ST_GeomFromMARC21¹ (marcxml) Takes MARC21/XML geographic data as input and returns a PostGIS geometry object.
- **ST_GeometryFromText**^{mm} Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText
 - 1. WKT
 - 2. WKT, srid
- ST_GeomFromText^{mm} Return a specified ST Geometry value from Well-Known Text representation (WKT).
 - 1. WKT
 - 2. WKT, srid
- ST_LineFromText^{mm} Makes a Geometry from WKT representation with the given SRID. If SRID is not given, it defaults to 0.
 - 1. WKT
 - 2. WKT, srid
 - 1. WKT, srid **ST_MLineFromText**mm Return a specified ST_MultiLineString value from WKT representation.
 - 2. WKT
- ST MPointFromText^{mm} Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
 - 1. WKT, srid
 - 2. WKT
- ST_MPolyFromTextmm Makes a MultiPolygon Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
 - 1. WKT, srid
 - 2. WKT
- ST_PointFromText^{mm} Makes a point Geometry from WKT with the given SRID. If SRID is not given, it defaults to unknown.
 - 1. WKT
 - 2. WKT, srid
- ST_PolygonFromText^{mm} Makes a Geometry from WKT with the given SRID. If SRID is not given, it defaults to 0.
 - 1. WKT
 - 2. WKT, srid
- **ST_WKTToSQL**^{mm} (WKT) Return a specified ST_Geometry value from Well-Known Text representation (WKT). This is an alias name for ST_GeomFromText
- **ST_GeogFromWKB**^G (wkb) Creates a geography instance from a Well-Known Binary geometry representation (WKB) or extended Well Known Binary (EWKB).
- **ST_GeomFromEWKB**^{3d} (EWKB) Return a specified ST_Geometry value from Extended Well-Known Binary representation (EWKB).
- **ST_GeomFromWKB**^{mm} Creates a geometry instance from a Well-Known Binary geometry representation (WKB) and optional SRID.
 - 1. geom
 - 2. geom, srid

```
ST_LineFromWKB<sup>mm</sup> Makes a LINESTRING from WKB with the given SRID
   1. WKB
   2. WKB, srid
                   ST_LinestringFromWKB<sup>mm</sup>
                                                Makes a geometry from WKB with the given SRID.
   1. WKB
   2. WKB, srid
                    ST PointFromWKB<sup>mm 3d</sup>
                                               Makes a geometry from WKB with the given SRID
   1. geom
   2. geom, srid
ST_WKBToSQL<sup>mm</sup> (WKB) Return a specified ST Geometry value from Well-Known Binary representation (WKB). This is
an alias name for ST GeomFromWKB that takes no srid
ST Box2dFromGeoHash (geohash, precision=full precision of geohash) Return a BOX2D from a GeoHash string.
ST_GeomFromGeoHash (geohash, precision=full precision of geohash) Return a geometry from a GeoHash string.
ST_GeomFromGML<sup>3d</sup> Takes as input GML representation of geometry and outputs a PostGIS geometry object
   1. geomgml
   2. geomgml, srid
ST GeomFromGeoJSON<sup>3d</sup>
                            Takes as input a geoison representation of a geometry and outputs a PostGIS geometry object
   1. geomjson
   2. geomjson
   3. geomjson
ST_GeomFromKML<sup>3d</sup> (geomkml) Takes as input KML representation of geometry and outputs a PostGIS geometry object
ST GeomFromTWKB (twkb) Creates a geometry instance from a TWKB ("Tiny Well-Known Binary") geometry
representation.
ST_GMLToSQLmm
                    Return a specified ST_Geometry value from GML representation. This is an alias name for
                        ST GeomFromGML
   1. geomgml
   2. geomgml, srid
ST LineFromEncodedPolyline (polyline, precision=5) Creates a LineString from an Encoded Polyline.
ST_PointFromGeoHash (geohash, precision=full precision of geohash) Return a point from a GeoHash string.
ST_FromFlatGeobufToTable (schemaname, tablename, FlatGeobuf input data) Creates a table based on the structure of
FlatGeobuf data.
```

ST_FromFlatGeobuf (Table reference, FlatGeobuf input data) Reads FlatGeobuf data.

```
Geometry Output
ST_AsEWKT<sup>G 3d</sup>
                 Return the Well-Known Text (WKT) representation of the geometry with SRID meta data.
   1. g1
   2. q1, maxdecimaldigits=15
   3. g1
   4. gl, maxdecimaldigits=15
ST AsText<sup>mm G</sup> Return the Well-Known Text (WKT) representation of the geometry/geography without SRID
   2. gl, maxdecimaldigits = 15
   3. g1
   4. gl, maxdecimaldigits = 15
ST_AsBinary<sup>mm G 3d</sup> Return the OGC/ISO Well-Known Binary (WKB) representation of the geometry/geography
                       without SRID meta data.
   1. g1
   2. gl, NDR or XDR
   3. g1
   4. gl, NDR or XDR
ST ASEWKB<sup>3d</sup> Return the Extended Well-Known Binary (EWKB) representation of the geometry with SRID meta
   1. g1
   2. g1, NDR or XDR
ST AsHEXEWKB<sup>3d</sup>
                    Returns a Geometry in HEXEWKB format (as text) using either little-endian (NDR) or big-endian
   (XDR) encoding.
   2. g1
ST_AsEncodedPolyline (geom, precision=5) Returns an Encoded Polyline from a LineString geometry.
                                ST_AsFlatGeobuf Return a FlatGeobuf representation of a set of rows.
   1. row agg
   2. row, index
   3. row, index, geom name
                        ST AsGeobuf Return a Geobuf representation of a set of rows.
   1. row agg
   2. row, geom name
ST_AsGeoJSON<sup>G 3d</sup> Return a geometry as a GeoJSON element.
   1. feature, geomcolumnname, maxdecimaldigits=9, pretty bool=false
   2. geom, maxdecimaldigits=9, options=8
   3. geog, maxdecimaldigits=9, options=0
ST AsGML<sup>mm G 3d</sup> Return the geometry as a GML version 2 or 3 element.
   1. geom, maxdecimaldigits=15, options=0
   2. geog, maxdecimaldigits=15, options=0, nprefix=null, id=null
   3. version, geom, maxdecimal
digits=15, options=0, nprefix=null, id=null \,
   4. version, geog, maxdecimaldigits=15, options=0, nprefix=null, id=null
   1. geom, maxdecimaldigits=15, nprefix=NULL ST_AsKML<sup>G 3d</sup> Return the geometry as a KML element.
   2. geog, maxdecimaldigits=15, nprefix=NULL
ST_AsLatLonText (pt, format=") Return the Degrees, Minutes, Seconds representation of the given point.
ST AsMARC21<sup>1</sup> (geom, format='hdddmmss') Returns geometry as a MARC21/XML record with a geographic datafield
(034).
ST_AsMVTGeom (geom, bounds, extent=4096, buffer=256, clip geom=true) Transforms a geometry into the
coordinate space of a MVT tile.
ST_AsMVT Aggregate function returning a MVT representation of a set of rows.
   1. row agg
   2. row, name
   3. row, name, extent
```

4. row, name, extent, geom name

5. row, name, extent, geom name, feature id name

```
1. geom, rel=0, maxdecimaldigits=15 ST_AsSVG<sup>G</sup> Returns SVG path data for a geometry.
   2. geog, rel=0, maxdecimaldigits=15
ST_ASTWKB Returns the geometry as TWKB, aka "Tiny Well-Known Binary"
   1. gl, decimaldigits xy=0, decimaldigits z=0, decimaldigits m=0,
      include sizes=false, include bounding boxes=false
   2. geometries, unique ids, decimaldigits xy=0, decimaldigits z=0, decimaldigits m=0
      include sizes=false, include bounding boxes=false
```

ST_AsX3D^{3d} (g1, maxdecimaldigits=15, options=0) Returns a Geometry in X3D xml node element format: ISO-IEC-19776-1.2-X3DEncodings-XML

ST_GeoHash (geom, maxchars=full_precision_of_point) Return a GeoHash representation of the geometry.

Spatial Relationships

- ST 3DIntersects^{mm 3d} (geomA, geomB) Tests if two geometries spatially intersect in 3D only for points, linestrings, polygons, polyhedral surface (area).
- ST_Contains^{mm} (geomA, geomB) Tests if no points of B lie in the exterior of A, and A and B have at least one interior point in common.
- ST ContainsProperly (geomA, geomB) Tests if B intersects the interior of A but not the boundary or exterior.

```
1. geomA, geomB ST_CoveredBy G Tests if no point in A is outside B
```

2. geogA, geogB

```
ST_Covers<sup>G</sup> Tests if no point in B is outside A
1. geomA, geomB
```

2. geogpolyA, geogpointB

- ST_Crosses^{mm} (g1, g2) Tests if two geometries have some, but not all, interior points in common.
- **ST_Disjoint**^{mm} (A, B) Tests if two geometries are disjoint (they have no point in common).
- ST_Equals^{mm} (A, B) Tests if two geometries include the same set of points.
- **ST Intersects**^{mm G} Tests if two geometries intersect (they have at least one point in common).

```
1. geomA, geomB
2. geogA, geogB
```

- ST LineCrossingDirection (linestringA, linestringB) Returns a number indicating the crossing behavior of two LineStrings.
- ST OrderingEqualsmm (A, B) Tests if two geometries represent the same geometry and have points in the same directional order.
- ST_Overlaps^{mm} (A, B) Tests if two geometries intersect and have the same dimension, but are not completely contained by each other.
- ST Relatemm Tests if two geometries have a topological relationship matching an Intersection Matrix pattern, or computes their Intersection Matrix

```
1. geomA, geomB, intersectionMatrixPattern
2. geomA, geomB
```

3. geomA, geomB, boundaryNodeRule

- ST RelateMatch (intersectionMatrix, intersectionMatrixPattern) Tests if a DE-9IM Intersection Matrix matches an Intersection Matrix pattern
- ST_Touches^{mm} (A, B) Tests if two geometries have at least one point in common, but their interiors do not intersect
- ST Withinmm (A, B) Tests if no points of A lie in the exterior of B, and A and B have at least one interior point in common.
- ST_3DDWithinmm 3d (g1, g2, distance of srid) Tests if two 3D geometries are within a given 3D distance
- ST 3DDFullyWithin^{3d} (g1, g2, distance) Tests if two 3D geometries are entirely within a given 3D distance
- ST DFullyWithin (g1, g2, distance) Tests if two geometries are entirely within a given distance
- **ST DWithin**^G Tests if two geometries are within a given distance

```
1. g1, g2, distance of srid
2. gg1, gg2, distance meters, use spheroid = true
```

ST_PointInsideCircle (a point, center x, center y, radius) Tests if a point geometry is inside a circle defined by a center and radius.

Operators

- 1. A, B**&&**G Returns TRUE if A's 2D bounding box intersects B's 2D bounding box.
- 2. A, B
- &&(geometry,box2df) (A, B) Returns TRUE if a geometry's (cached) 2D bounding box intersects a 2D float precision bounding box (BOX2DF).
- &&(box2df,geometry) (A, B) Returns TRUE if a 2D float precision bounding box (BOX2DF) intersects a geometry's (cached) 2D bounding box.
- &&(box2df,box2df) (A, B) Returns TRUE if two 2D float precision bounding boxes (BOX2DF) intersect each other.
- &&&^{3d} (A, B) Returns TRUE if A's n-D bounding box intersects B's n-D bounding box.
- &&&(geometry,gidx)^{3d} (A, B) Returns TRUE if a geometry's (cached) n-D bounding box intersects a n-D float precision bounding box (GIDX).
- &&&(gidx,geometry)^{3d} (A, B) Returns TRUE if a n-D float precision bounding box (GIDX) intersects a geometry's (cached) n-D bounding box.
- &&&(gidx,gidx)^{3d} (A, B) Returns TRUE if two n-D float precision bounding boxes (GIDX) intersect each other.
- &< (A, B) Returns TRUE if A's bounding box overlaps or is to the left of B's.
- &<| (A, B) Returns TRUE if A's bounding box overlaps or is below B's.
- **&>** (A, B) Returns TRUE if A' bounding box overlaps or is to the right of B's.
- << (A, B) Returns TRUE if A's bounding box is strictly to the left of B's.
- << I (A, B) Returns TRUE if A's bounding box is strictly below B's.
- =G Returns TRUE if the coordinates and coordinate order geometry/geography A are the same as the coordinates and coordinate order of geometry/geography B.
 - 1. A. B
 - 2. A, B
- >> (A, B) Returns TRUE if A's bounding box is strictly to the right of B's.
- @ (A, B) Returns TRUE if A's bounding box is contained by B's.
- @(geometry,box2df) (A, B) Returns TRUE if a geometry's 2D bounding box is contained into a 2D float precision bounding box (BOX2DF).
- @(box2df,geometry) (A, B) Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into a geometry's 2D bounding box.
- @(box2df,box2df) (A, B) Returns TRUE if a 2D float precision bounding box (BOX2DF) is contained into another 2D float precision bounding box.
- |&> (A, B) Returns TRUE if A's bounding box overlaps or is above B's.
- I>> (A, B) Returns TRUE if A's bounding box is strictly above B's.
- ~ (A, B) Returns TRUE if A's bounding box contains B's.
- ~(geometry,box2df) (A, B) Returns TRUE if a geometry's 2D bonding box contains a 2D float precision bounding box (GIDX).
- ~(box2df,geometry) (A, B) Returns TRUE if a 2D float precision bounding box (BOX2DF) contains a geometry's 2D bonding box.
- ~(box2df,box2df) (A, B) Returns TRUE if a 2D float precision bounding box (BOX2DF) contains another 2D float precision bounding box (BOX2DF).
- ~= (A, B) Returns TRUE if A's bounding box is the same as B's.
 - 1. A, B <->G Returns the 2D distance between A and B.
 - 2. A, B
- |=| (A, B) Returns the distance between A and B trajectories at their closest point of approach.
- <#> (A, B) Returns the 2D distance between A and B bounding boxes.
- Returns the n-D distance between the centroids of A and B bounding boxes. <<->> (A, B)
- </#>> (A, B) Returns the n-D distance between A and B bounding boxes.

Measurement Functions

- **ST Area**^{mm G} Returns the area of a polygonal geometry. 1. q1
- 2. geog, use spheroid=true
- 1. origin, target ST_Azimuth^G Returns the north-based azimuth of a line between two points.
- 2. origin, target
- ST Angle Returns the angle between two vectors defined by 3 or 4 points, or 2 lines.
 - 1. point1, point2, point3, point4 2. line1, line2
- ST_ClosestPoint (geom1, geom2) Returns the 2D point on g1 that is closest to g2. This is the first point of the shortest line from one geometry to the other.
- ST 3DClosestPoint^{3d} (g1, g2) Returns the 3D point on g1 that is closest to g2. This is the first point of the 3D shortest line.
- ST Distance^{mm G} Returns the distance between two geometry or geography values.

```
1. q1, q2
2. geog1, geog2, use spheroid=true
```

- ST_3DDistance^{mm 3d} (g1, g2) Returns the 3D cartesian minimum distance (based on spatial ref) between two geometries in projected units.
- ST DistanceSphere (geomlonlatA, geomlonlatB, radius=6371008) Returns minimum distance in meters between two lon/lat geometries using a spherical earth model.
- ST DistanceSpheroid (geomlonlatA, geomlonlatB, measurement spheroid=WGS84) Returns the minimum distance between two lon/lat geometries using a spheroidal earth model.
- ST_FrechetDistance (g1, g2, densifyFrac = -1) Returns the Fréchet distance between two geometries.
- ST_HausdorffDistance Returns the Hausdorff distance between two geometries.

```
1. q1, q2
2. gl, g2, densifyFrac
```

- ST Length^{mm G} Returns the 2D length of a linear geometry. 1. a 2dlinestring 2. geog, use spheroid=true
- ST Length2D (a 2dlinestring) Returns the 2D length of a linear geometry. Alias for ST Length
- ST 3DLength^{mm 3d} (a 3dlinestring) Returns the 3D length of a linear geometry.
- ST LengthSpheroid^{3d} (a geometry, a spheroid) Returns the 2D or 3D length/perimeter of a lon/lat geometry on a spheroid.
- ST_LongestLine (g1, g2) Returns the 2D longest line between two geometries.
- ST 3DLongestLine^{3d} (q1, q2) Returns the 3D longest line between two geometries
- ST_MaxDistance (g1, g2) Returns the 2D largest distance between two geometries in projected units.
- ST_3DMaxDistance^{3d} (g1, g2) Returns the 3D cartesian maximum distance (based on spatial ref) between two geometries in projected units.
- ST_MinimumClearance (g) Returns the minimum clearance of a geometry, a measure of a geometry's robustness.
- ST MinimumClearanceLine (g) Returns the two-point LineString spanning a geometry's minimum clearance.
- **ST Perimeter** Returns the length of the boundary of a polygonal geometry or geography.

```
2. geog, use spheroid=true
```

- ST_Perimeter2D (geomA) Returns the 2D perimeter of a polygonal geometry. Alias for ST_Perimeter.
- ST 3DPerimeter^{mm 3d} (geomA) Returns the 3D perimeter of a polygonal geometry.
- ST_Project^G (g1, distance, azimuth) Returns a point projected from a start point by a distance and bearing (azimuth).
- ST ShortestLine (geom1, geom2) Returns the 2D shortest line between two geometries
- ST 3DShortestLine^{3d} (g1, g2) Returns the 3D shortest line between two geometries

Overlay Functions

- ST_ClipByBox2D (geom, box) Computes the portion of a geometry falling within a rectangle.
- ST Difference^{mm g3.9 3d} (geomA, geomB, gridSize = -1) Computes a geometry representing the part of geometry A that does not intersect geometry B.
- $\textbf{ST_Intersection}^{mm~G~g3.9~3d} \quad \text{Computes a geometry representing the shared portion of geometries A and}$
 - B.

 1. geomA, geomB, gridSize = -1
 - 2. geogA, geogB
- ST MemUnion^{3d} (geomfield) Aggregate function which unions geometries in a memory-efficent but slower way
- **ST_Node**^{3d} (geom) Nodes a collection of lines.
- ST_Split (input, blade) Returns a collection of geometries created by splitting a geometry by another
- **ST_Subdivide**^{g3.9} (geom, max_vertices=256, gridSize = -1) Computes a rectilinear subdivision of a geometry.
- **ST_SymDifference**^{mm g3.9 3d} (geomA, geomB, gridSize = -1) Computes a geometry representing the portions of geometries A and B that do not intersect.
- **ST_UnaryUnion**^{93.9 3d} (geom, gridSize = -1) Computes the union of the components of a single geometry.
- ST_Union^{mm g3.9 3d} Computes a geometry representing the point-set union of the input geometries.
 - 1. g1, g2
 - 2. g1, g2, gridSize 3. g1_array

 - 4. glfield ^{agg}
 - 5. glfield, gridSize $^{\rm agg}$

Geometry Processing

ST Buffer^{mm G} Computes a geometry covering all points within a given distance from a geometry.

```
    g1, radius_of_buffer, buffer_style_parameters = ''
    g1, radius_of_buffer, num_seg_quarter_circle
    g1, radius_of_buffer, buffer_style_parameters
    g1, radius_of_buffer, num_seg_quarter_circle
```

ST_BuildArea (geom) Creates a polygonal geometry formed by the linework of a geometry.

```
ST_Centroid ^{mm} G Returns the geometric center of a geometry. 2. g1, use spheroid=true
```

- **ST_ChaikinSmoothing** (geom, nlterations = 1, preserveEndPoints = false) Returns a smoothed version of a geometry, using the Chaikin algorithm
- **ST_ConcaveHull**² (param_geom, param_pctconvex, param_allow_holes = false) Computes a possibly concave geometry that encloses all input geometry vertices
- ST ConvexHull^{mm 3d} (geomA) Computes the convex hull of a geometry.
- **ST_DelaunayTriangles**^{3d} (g1, tolerance, flags) Returns the Delaunay triangulation of the vertices of a geometry.
- ST_FilterByM (geom, min, max = null, returnM = false) Removes vertices based on their M value
- **ST_GeneratePoints** Generates random points contained in a Polygon or MultiPolygon.

```
    g, npoints
    g, npoints, seed
```

- **ST_GeometricMedian** ^{3d} (geom, tolerance = NULL, max_iter = 10000, fail_if_not_converged = false) Returns the geometric median of a MultiPoint.
- **ST_LineMerge**² Return the lines formed by sewing together a MultiLineString.

```
    amultilinestring
    amultilinestring, directed
```

- **ST_MaximumInscribedCircle**^{g3.9} (geom) Computes the largest circle contained within a geometry.
- **ST_MinimumBoundingCircle** (geomA, num_segs_per_qt_circ=48) Returns the smallest circle polygon that contains a geometry.
- **ST_MinimumBoundingRadius** (geom) Returns the center point and radius of the smallest circle that contains a geometry.
- ST_OrientedEnvelope (geom) Returns a minimum-area rectangle containing a geometry.
- **ST_OffsetCurve** (line, signed_distance, style_parameters=") Returns an offset line at a given distance and side from an input line.
- ST_PointOnSurface^{mm 3d} (g1) Computes a point guaranteed to lie in a polygon, or on a geometry.
- ST Polygonize Computes a collection of polygons formed from the linework of a set of geometries.

```
    geomfield <sup>agg</sup>
    geom_array
```

- **ST_ReducePrecision**^{g3.9} (g, gridsize) Returns a valid geometry with points rounded to a grid tolerance.
- **ST_SharedPaths** (lineal1, lineal2) Returns a collection containing paths shared by the two input linestrings/multilinestrings.
- **ST Simplify** Returns a simplified version of a geometry, using the Douglas-Peucker algorithm.

```
    geomA, tolerance
    geomA, tolerance, preserveCollapsed
```

- **ST_SimplifyPreserveTopology** (geomA, tolerance) Returns a simplified and valid version of a geometry, using the Douglas-Peucker algorithm.
- **ST_SimplifyPolygonHull**¹ (param_geom, vertex_fraction, is_outer = true) Computes a simplifed topology-preserving outer or inner hull of a polygonal geometry.
- **ST_SimplifyVW** (geomA, tolerance) Returns a simplified version of a geometry, using the Visvalingam-Whyatt algorithm
- **ST_SetEffectiveArea** (geomA, threshold = 0, set_area = 1) Sets the effective area for each vertex, using the Visvalingam-Whyatt algorithm.

- **ST_TriangulatePolygon**¹ (geom) Computes the constrained Delaunay triangulation of polygons
- **ST_VoronoiLines** (g1, tolerance, extend_to) Returns the boundaries of the Voronoi diagram of the vertices of a geometry.
- **ST_VoronoiPolygons** (g1, tolerance, extend_to) Returns the cells of the Voronoi diagram of the vertices of a geometry.

Affine Transformations

ST_Affine^{3d} Apply a 3D affine transformation to a geometry.

```
1. geomA, a, b, c, d, e, f, g, h, i, xoff, yoff, zoff
```

2. geomA, a, b, d, e, xoff, yoff

ST_Rotate^{3d} Rotates a geometry about an origin point.

```
    geomA, rotRadians
    geomA, rotRadians, x0, y0
    geomA, rotRadians, pointOrigin
```

ST_RotateX^{3d} (geomA, rotRadians) Rotates a geometry about the X axis.

ST_RotateY^{3d} (geomA, rotRadians) Rotates a geometry about the Y axis.

ST_RotateZ^{3d} (geomA, rotRadians) Rotates a geometry about the Z axis.

ST_Scale^{3d} Scales a geometry by given factors.

```
    geomA, XFactor, YFactor, ZFactor
    geomA, XFactor, YFactor
    geom, factor
    geom, factor, origin
```

ST_Translate^{3d} Translates a geometry by given offsets.

```
    g1, deltax, deltay
    g1, deltax, deltay, deltaz
```

ST_TransScale^{3d} (geomA, deltaX, deltaY, XFactor, YFactor) Translates and scales a geometry by given offsets and factors.

Clustering Functions

- **ST_ClusterDBSCAN** (geom, eps, minpoints) Window function that returns a cluster id for each input geometry using the DBSCAN algorithm.
- **ST_ClusterIntersecting** (g) Aggregate function that clusters the input geometries into connected sets
- **ST_ClusterKMeans** (geom, number_of_clusters, max_radius) Window function that returns a cluster id for each input geometry using the K-means algorithm.
- **ST_ClusterWithin** (g, distance) Aggregate function that clusters the input geometries by separation distance.

Bounding Box Functions

Box2D (geom) Returns a BOX2D representing the 2D extent of a geometry.

Box3D^{3d} (geom) Returns a BOX3D representing the 3D extent of a geometry.

ST EstimatedExtent Returns the estimated extent of a spatial table.

- 1. schema_name, table_name, geocolumn_name, parent_only
- 2. schema name, table name, geocolumn name
- 3. table name, geocolumn name
- **ST_Expand** Returns a bounding box expanded from another bounding box or a geometry.
 - 1. geom, units to expand
 - 2. geom, dx, dy, dz=0, dm=0
 - 3. box, units_to_expand
 - 4. box, dx, dy
 - 5. box, units to expand
 - 6. box, dx, dy, dz=0
- ST_Extent (geomfield) Aggregate function that returns the bounding box of geometries.
- **ST_3DExtent**^{3d} (geomfield) Aggregate function that returns the 3D bounding box of geometries.
- **ST_MakeBox2D** (pointLowLeft, pointUpRight) Creates a BOX2D defined by two 2D point geometries.
- **ST_3DMakeBox** (point3DLowLeftBottom, point3DUpRightTop) Creates a BOX3D defined by two 3D point geometries.
- **ST_XMax**^{3d} (aGeomorBox2DorBox3D) Returns the X maxima of a 2D or 3D bounding box or a geometry.
- **ST_XMin**^{3d} (aGeomorBox2DorBox3D) Returns the X minima of a 2D or 3D bounding box or a geometry.
- **ST_YMax**^{3d} (aGeomorBox2DorBox3D) Returns the Y maxima of a 2D or 3D bounding box or a geometry.
- **ST_YMin**^{3d} (aGeomorBox2DorBox3D) Returns the Y minima of a 2D or 3D bounding box or a geometry.
- ${\bf ST_ZMax}^{3d}$ (aGeomorBox2DorBox3D) Returns the Z maxima of a 2D or 3D bounding box or a geometry.
- **ST_ZMin**^{3d} (aGeomorBox2DorBox3D) Returns the Z minima of a 2D or 3D bounding box or a geometry.

Linear Referencing

- **ST_LineInterpolatePoint**^{3d} (a_linestring, a_fraction) Returns a point interpolated along a line at a fractional location.
- **ST_3DLineInterpolatePoint**^{3d} (a_linestring, a_fraction) Returns a point interpolated along a 3D line at a fractional location.
- **ST_LineInterpolatePoints**^{3d} (a_linestring, a_fraction, repeat) Returns points interpolated along a line at a fractional interval.
- **ST_LineLocatePoint** (a_linestring, a_point) Returns the fractional location of the closest point on a line to a point.
- **ST_LineSubstring**^{3d} (a_linestring, startfraction, endfraction) Returns the part of a line between two fractional locations.
- **ST_LocateAlong**^{mm} (geom_with_measure, measure, offset = 0) Returns the point(s) on a geometry that match a measure value.
- ${\bf ST_LocateBetween^{mm}}$ (geom, measure_start, measure_end, offset = 0) Returns the portions of a geometry that match a measure range.
- $ST_LocateBetweenElevations^{3d}$ (geom, elevation_start, elevation_end) Returns the portions of a geometry that lie in an elevation (Z) range.
- **ST_InterpolatePoint**^{3d} (linear_geom_with_measure, point) Returns the interpolated measure of a geometry closest to a point.
- **ST_AddMeasure**^{3d} (geom_mline, measure_start, measure_end) Interpolates measures along a linear geometry.

Trajectory Functions

ST_IsValidTrajectory^{3d} (line) Tests if the geometry is a valid trajectory.

ST_ClosestPointOfApproach^{3d} (track1, track2) Returns a measure at the closest point of approach of two trajectories.

ST_DistanceCPA^{3d} (track1, track2) Returns the distance between the closest point of approach of two trajectories.

ST_CPAWithin^{3d} (track1, track2, dist) Tests if the closest point of approach of two trajectories is within the specified distance.

Long Transaction Support

AddAuth (auth token) Adds an authorization token to be used in the current transaction.

CheckAuth Creates a trigger on a table to prevent/allow updates and deletes of rows based on authorization token.

```
    a_schema_name, a_table_name, a_key_column_name
    a table name, a key column name
```

DisableLongTransactions () Disables long transaction support.

EnableLongTransactions () Enables long transaction support.

LockRow Sets lock/authorization for a row in a table.

```
    a_schema_name, a_table_name, a_row_key, an_auth_token,
expire_dt
```

2. a_table_name, a_row_key, an_auth_token, expire_dt

3. a table name, a row key, an auth token

UnlockRows (auth token) Removes all locks held by an authorization token.

Version Functions

PostGIS_Extensions_Upgrade () Packages and upgrades PostGIS extensions (e.g. postgis raster, postgis topology, postgis sfcgal) to latest available version.

PostGIS_Full_Version () Reports full PostGIS version and build configuration infos.

PostGIS_GEOS_Version () Returns the version number of the GEOS library.

PostGIS_Liblwgeom_Version () Returns the version number of the liblwgeom library. This should match the version of PostGIS.

PostGIS_LibXML_Version () Returns the version number of the libxml2 library.

PostGIS Lib Build Date () Returns build date of the PostGIS library.

PostGIS_Lib_Version () Returns the version number of the PostGIS library.

PostGIS_PROJ_Version () Returns the version number of the PROJ4 library.

PostGIS_Wagyu_Version () Returns the version number of the internal Wagyu library.

PostGIS Scripts Build Date () Returns build date of the PostGIS scripts.

PostGIS_Scripts_Installed () Returns version of the PostGIS scripts installed in this database.

PostGIS_Scripts_Released () Returns the version number of the postgis.sql script released with the installed PostGIS lib.

PostGIS Version () Returns PostGIS version number and compile-time options.

Grand Unified Custom Variables (GUCs)

postgis.backend The backend to service a function where GEOS and SFCGAL overlap. Options: geos or sfcgal. Defaults to geos.

postgis.gdal_datapath A configuration option to assign the value of GDAL's GDAL_DATA option. If not set, the environmentally set GDAL_DATA variable is used.

postgis.gdal_enabled_drivers A configuration option to set the enabled GDAL drivers in the PostGIS environment. Affects the GDAL configuration variable GDAL SKIP.

postgis.gdal_config_options A string configuration to set options used when working with an out-db raster.

Troubleshooting Functions	
PostGIS_AddBBox (geomA)	Add bounding box to the geometry.
PostGIS_DropBBox (geomA)	Drop the bounding box cache from the geometry.
PostGIS_HasBBox (geomA) FALSE otherwise.	Returns TRUE if the bbox of this geometry is cached,