Uniqueness of Measures

February 14, 2024

Lemma 5.6. A Dynkin system D is a σ -algebra iff it is stable under finite intersections, i.e. $A, B \in D \Rightarrow A \cap B \in D$.

Theorem 5.7 (Dynkin). Assume X is a set, S is a collection of subsets of X closed under finite intersections, that is, if $A, B \in S \Rightarrow A \cap B \in S$. Then $D(S) = \sigma(S)$.

Proof. We clearly have that $D(S) \subset \sigma(S)$. If we can show that D(S) is a σ -algebra, that is, that a Dynkin system generated by a subset $S \subset X$ (where S is \cap -stable) is a σ -algebra, then the inverse conclusion $D(S) \supset \sigma(S)$ follows logically. This is the case because the σ -algebra $\sigma(S)$ is the smallest σ -algebra containing S, and so if D(S) is a σ -algebra it must be a greater or equal (in some sense) than $\sigma(S)$.

Using Lemma 5.6 we only need to show that D(S) is stable under finite intersections, to prove that D(S) is a σ -algebra. Consider:

$$D_A := \{ B \subset X : B \cap A \in D(S) \},$$

for some $A \in D(S)$. Notice that this set is \cap -stable, and so if we can show that $D_A = D(S)$ we must have that (by Lemma 5.6) D(S) is a σ -algebra. Firstly, however, let us show that D_A is a **Dynkin system**.

- 1. \varnothing must be in D_A , since $\varnothing \cap A = \varnothing \in D(S)$.
- 2. Let $B \in D_A$. Then

$$A \cap B^c = A \setminus (A \cap B) = (A^c \cup (A \cap B))^c$$

here $A \cap B$ and A^c must be in D(S). Furthermore, since disjoint unions of set from D(S) are still in D(S), we me must have $A^c \in D_A$.

3. Assume that $(B_n)_{n\in\mathbb{N}}\subset D_A$ is a pairwise disjoint sequence. Then

$$(B_n \cap A)_{n \in \mathbb{N}} \in D(S) \text{ (by def. of } D_A)$$

$$\Rightarrow \bigcup_{n \in \mathbb{N}} (B_n \cap A) = \left(\bigcup_{n \in \mathbb{N}} B_n\right) \cap A \in D(S)$$

$$\Rightarrow \bigcup_{n \in \mathbb{N}} B_n \in D_A.$$

So D_A is indeed a Dynkin system.

We now want to show that D(S) is \cap -stable, we have:

$$S \subset D_A \ \, \forall \ \, A \in S$$

$$\Rightarrow D(S) \subset D_A \ \, \forall \ \, A \in S \ \, (\text{since } D_A \text{ is a Dynkin system})$$

$$\Rightarrow B \cap A \in D(S) \ \, \forall \ \, B \in S, \ \, \forall \ \, A \in D(S) \ \, (\text{by the definition of } D_A)$$

$$\Rightarrow B \in D_A \ \, \forall \ \, B \in S, \ \, \forall A \in D(S)$$

$$\Rightarrow S \subset D_A \ \, \forall \ \, A \in D(S)$$

$$\Rightarrow D(S) \subset D_A \ \, \forall \ \, A \in D(S) \ \, (\text{since } D_A \text{ is a Dynkin system})$$

$$\Rightarrow A \cap B \in D(S) \ \, \forall \ \, A, B \in D(S),$$

and so
$$D(S)$$
 is \cap -stable and then $D(S) \supset \sigma(S) \Rightarrow D(S) = \sigma(S)$.

Theorem 5.8 (uniqueness of measures). Let (X, B) be a measurable space, and $S \subset P(X)$ be the generator of B, i.e. $B = \sigma(S)$. If S satisfies the following conditions:

- 1. S is stable under finite intersections (\cap -stable), i.e. $A, C \in S \Rightarrow A \cap C \in S$.
- 2. There exists an exhausting sequence $(G_n)_{N\in\mathbb{N}}\subset with\ G_N\uparrow X$. Assume also that there are two measures μ,ν satisfying:
- 3. $\mu(A) = \nu(A), \forall A \in S$.
- 4. $\mu(G_n) = \nu(G_n) < \infty$.

Then $\mu = \nu$.

Proof (outline). Define

$$D_n := \{ A \in B : \mu(G_n \cap A) = \nu(G_n \cap A) \ (< \infty) \},$$

and show that it is a Dynkin system. Then, use the fact that S is \cap -stable and Theorem 5.7 to argue that $D(S) = \sigma(S)... \rightarrow ... B = D_n$.