Detection of bone fractures

Applied machine learning project

Introduction

One of the most important problems in orthopedics is undiagnosed or misdiagnosed bone fractures. Our model predicts whether there is a fracture present in a x-ray photo, and provides a bounding box to locate the fracture. This could be used as a tool for surgeons to speed up the examination and to improve accuracy.

Table of contents

01

Preprocessing

How we split train/test/validate,

04

Professionality

We gathered feedback from orthopedic surgeons on our model 02

Our models

The models we used and our hyperparameter tuning

05

Front-end

The extras we implemented fto boost our grade

03

Performance and results

Overfitting, metrics and comparison to baseline

06

Conclusion

We discuss the insights we gained related to the project

Preprocessing

Little work

Our dataset

The Bone Fracture
Detection dataset already
divided data in
test/train/validate

The ratio was: 3631 train / 348 / 169 test

87,5% train / 8,4 val / 4,1% test

Preprocessing

Our model, YOLOv11, could use any type of image, regardless of their format

Augmentation

We augmented the data images to be flipped horizontally and vertically, rotated and darken or lighten the value within a range.

Our models

Baseline model

Sliding-window CNN

final model

YOLOv11

final model

YoloU11

- Developed by Ultralytics
- Computer vision tasks
- User friendly
- Oriented Bounding Box
- Confidence score

final model

Hyperparameter tuning, regularization

- Built-in method
- Train and validate on different hyperparameters
- E.g. Initial learning rate and Weight decay
- 10 times for 50 epochs -> Time consuming

Performance

Metrics

- IoU metric
- If selecting whole screen is better than bounding box prediction

Overfitting

Test data

Training data

Professionality

Readme

Clear instructions

Dependency management Installation

Expert feedback

To ensure that our model has novelty and can be professionally employed, we designed a questionnaire and asked orthopedic surgeons to evaluate our model

Their feedback

False positives/ false negatives

Systematic errors

Obvious fractures are detected, difficult/ subtle fractures not

Bounding box

Location and size accurate

misunderstandings
Bad/ not enough data

Low quality/ not centered on place of interest

Their feedback

Should be improved

Screening tool

For young/ inexperienced doctors (in ER)

Front-end

To boost our grade, we created a front end for the model. This ensures that the model is user-friendly for doctors that aren't familiar with the back-end

Conclusion

Insights gained

- 1. Understanding the process of developing a ML model
- 2. Importance of experts
- 3. Relevance of such a tool

future improvements

- 1. Data
- 2. Reduce overfitting