

ACKNOWLEDGEMENT

Mere words never suffice in expressing my feeling of gratitude to my supervisor **Asst. Prof. Mrs. Pooja Choudhary**, Department of ECE, SKIT, Jaipur, for her valuable guidance, patience and encouragement throughout study. She has not only given me a lot of important comments during our project, but also taught some precious things out of the academic field. She has given her immersive support in completing my project successfully.

We are extremely grateful to **Prof. Dr. S. K Bhatnagar**, Head, Department Of ECE, SKIT, Jaipur for providing the adequate means and support to pursue this work.

Also, giving acknowledgement to other faculty members.

Last but not least, we sincerely express our deepest appreciation to our family for their wholehearted support and the encouragement to take up this course.

Anshul Vanawat

Archika Singh

Khushal Sharma

Kritima Gupta

Laveena Agarwal

CERTIFICATE

This is to certify that the project entitled "Remote controlling of home appliances like light, fan, TV using mobile phone" submitted by Anshul Vanawat, Archika Singh, Khushal Sharma, Kritima Gupta, Laveena Agarwal towards the partial fulfilment of the requirement of the degree of Bachelors of Technology (B.Tech.) in Electronics and Communication Engineering of Swami Keshvanand Institute of Technology, Management & Gramothan, Jaipur, is a record of the bona-fide work carried out by reached to a level required for being accepted for the examination.

Mrs. Pooja Choudhary

Asst. Professor

Department of ECE

CONTENTS

Acknowledgement	i
Certificate	ii
List of tables	vi
List of figures	vii
Chapter 1: Introduction	1
1.1 Project Title	1
1.2 Background	1
1.3 About	1
1.4 End Product	4
1.5 End Product Specifications	5
1.6 Objective of Project	5
1.7 About IOT	9
Chapter 2: Requirements	12
2.1 Operational Block Diagram	12
2.2 Major Components	13
2.2.1 Arduino AT Mega 2560	13
2.2.1.1 Technical Specification	14
2.2.1.2 Programming	15
2.2.1.3 Warnings	15
2.2.1.4 Power	15
2.2.1.5 Memory	16
2.2.1.6 Communications	18
2.2.1.7 Physical Characteristics and Shield Compatibility	18
2.2.2 Ethernet Shield	19
2.2.3 SPDT Relay Module	20

2	2.2.4 Web Server	21
		•
Chap	oter 3: Design	23
3.1	Box Designing	23
3.2	Design of Circuit	24
3.3	Design for Testability	25
3.4	Design for Manufacturability	25
3.5	PCB Design	25
3.6	Human Engineering	26
3.7	Data Sheet	26
Chap	oter 4 Implementation	33
4.1:	Hardware implementation	33
2	4.1.1Raspberry Pi verses Arduino	33
4.2	Software implementation	35
4	4.2.1XAMPP	35
4	4.2.2Apache	35
4	4.2.3 PHP	35
4	4.2.4 Arduino IDE	35
4	4.2.5 Android	36
4	4.2.6 Android studio	36
4.3	Connectivity	36
	4.3.1 Wi-Fi versus Bluetooth	37
	4.3.2 Server	41
Chap	ter 5 User guide	42
5.1	From Arduino-side	42
5.2	Router-side	43
5.3	Android side	44

Chapter 6 Conclusion and Future work	51
6.1 Conclusion	51
6.2 Limitations and future work	51
References	53

LIST OF TABLES

1.	Specification of End Product	4
2.	List of team members	5
3.	Activity Bar Chart	8
4.	Arduino Specifications	9
5.	Arduino Datasheet	12
6.	Comparison between Arduino and Raspberry Pi	13
7.	Comparison between Bluetooth and Wi Fi	40

LIST OF FIGURES

1.	Internet of Things	12
2.	Connection of Things Through Internet	17
3.	Operational Block Diagram	19
4.	Operation of SPDT Relay	19
5.	Casing	20
6.	Circuit Diagram	22
7.	PCB Layout	23
8.	Arduino Mega 2560	25
9.	Arduino - Ethernet Shield Connection	26
10.	Router Connection	26
11.	Screenshot of App Login page	27
12.	Screenshot of App Room Selection Page	30
13.	Screenshot of App User Information page	36
14.	Screenshot of App Appliance Selection Page	37
15.	Screenshot of App Appliance Status page	38
16.	Screenshot of App About the Application Page	39
17.	Screenshot of App User Logout Page	39

ABSTRACT

Home automation has been a feature of science fiction writing for many years, but has only become practical since the early 20th Century following the widespread introduction of electricity into the home, and the rapid advancement of information technology. Home automation refers to the application of computer and information technology for control of home appliances easily. It is a automation of the home, housework or household activity. The concept of the "Internet of Things" has tied in closely with the popularization of home automation. Through the integration of information technologies with the home environment, systems and appliances are able to communicate in an integrated manner which results in convenience, energy efficiency, and safety benefits. As we are using Arduino 2560. It is a popular open source single-board microcontroller, descendant of the open-source Wiring platform, designed to make the process of using electronics in multidisciplinary projects more accessible. The objective of this project is to remote control the home appliances by using android mobile app. Appliances like light, fan, TV can be controlled by just pushing a button on the app. The user will send instructions through internet using the designed app. The project presents mobile application and Home appliances as a FRONT END whereas an online server, website, database, Arduino mega 2560 with Ethernet and relay system as a BACK END. Website acts as an interface between mobile application and database. Database stores the details about the appliances and their states (ON/OFF). Mobile Application connects to the server and fetches the details stored in database and displays to the user. User interacts with the application and changes the states according to the use, which is reflected in the database. Arduino, with the help of Ethernet shield, connects to the online server database and fetches the data about the appliances. This data is the converted into instruction and sent to the relay which in turn switch OFF or ON accordingly. The range of the project is AROUND THE GLOBE where ever you can get internet connection on your phone. This project will not only help in saving power but also enable handicapped people to operate appliances at their own.