

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Summer 2014 Examination

Subject & Code: Engg. Maths (17216) Model Answer Page No: 1/31

Sub. Que.	Model Answers	Marks	Total Mark
	Important Instructions to the Examiners:		
	1) The Answers should be examined by key words and not as		
	word-to-word as given in the model answer scheme.		
	2) The model answer and the answer written by candidate may		
	vary but the examiner may try to assess the understanding level of the candidate.		
	3) The language errors such as grammatical, spelling errors		
	should not be given more importance. (Not applicable for		
	subject English and Communication Skills.)		
	4) While assessing figures, examiner may give credit for		
	principal components indicated in the figure. The figures		
	drawn by the candidate and those in the model answer may		
	vary. The examiner may give credit for any equivalent		
	figure drawn.		
	5) Credits may be given step wise for numerical problems. In		
	some cases, the assumed constant values may vary and there		
	may be some difference in the candidate's Answers and the model answer.		
	6) In case of some questions credit may be given by judgment		
	on part of examiner of relevant answer based on candidate's understanding.		
	7) For programming language papers, credit may be given to		
	any other program based on equivalent concept.		
	<u>Quc.</u>	Important Instructions to the Examiners: 1) The Answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.) 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's Answers and the model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to	Important Instructions to the Examiners: 1) The Answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.) 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's Answers and the model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to

Subject & Code: Engg. Maths (17216)

Page No: 2/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1)		Attempt any TEN of the following:		
	a)	If $f(x) = \cos x$, show that $f(3x) = 4f^3(x) - 3f(x)$		
	Ans.	$f(3x) = \cos(3x)$	1/ ₂ 1	
		$=4\cos^3 x - 3\cos x$		
		$=4f^{3}\left(x\right) -3f\left(x\right)$	1/2	2
		OR		
		$LHS = f(3x)$ $= \cos(3x)$	1/2	
		$= 4\cos(3x)$ $= 4\cos^3 x - 3\cos x$	1	
		$RHS = 4f^{3}(x) - 3f(x)$		
		$=4\cos^3 x - 3\cos x$	1/2	
		$\therefore LHS = RHS$	/-	2
	b) Ans.	Express in the form of $a+ib$, $\frac{1+i}{2-i}$, where $a, b \in R$, $i = \sqrt{-1}$ $1+i 1+i 2+i$	1/2	
		$ \frac{1+i}{2-i} = \frac{1+i}{2-i} \times \frac{2+i}{2+i} $ $ = \frac{2+i+2i+i^2}{2^2-i^2} $ $ = \frac{2+3i-1}{4-(-1)} $	1	
		$= \frac{1+3i}{5} or \frac{1}{5} + \frac{3}{5}i$	1/2	2
		OR		
		$\frac{1+i}{2-i} = \frac{1+i}{2-i} \times \frac{2+i}{2+i}$	1/2	
		$=\frac{2+i+2i-1}{2^2-i^2}$	1	
		$=\frac{1+3i}{5} or \frac{1}{5} + \frac{3}{5}i$	1/2	2

Subject & Code: Engg. Maths (17216) **Page No:** 3/31

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.	Widdel Fills Wels	IVIGINS	Marks
1)		OR		
		$Let \ a+ib = \frac{1+i}{2-i}$		
		$\therefore (a+ib)(2-i)=1+i$		
		$\therefore 2a - ai + 2bi - bi^2 = 1 + i$		
		$\therefore 2a - ai + 2bi + b = 1 + i$		
		$\therefore (2a+b)+(-a+2b)i=1+i$	1/2	
		$\therefore 2a+b=1 and -a+2b=1$		
		$\therefore a = \frac{1}{5} \qquad and \qquad b = \frac{3}{5}$	1/2 + 1/2	
		$\therefore \frac{1+i}{2-i} = \frac{1}{5} + \frac{3}{5}i$	1/2	2
		2-1 5 5		
	c)	Evaluate $\lim_{x\to 0} \frac{1}{\sqrt{x+1}-1}$		
		$\lim_{x \to 0} \frac{1}{\sqrt{x+1} - 1} = \frac{1}{\sqrt{0+1} - 1}$	4	
	Ans.		1	
		=∞	1	
		OR		2
		$\lim_{x \to 0} \frac{1}{\sqrt{x+1} - 1} = \lim_{x \to 0} \frac{1}{\sqrt{x+1} - 1} \times \frac{\sqrt{x+1} + 1}{\sqrt{x+1} + 1}$		
		$\begin{vmatrix} x \to 0 \ \sqrt{x} + 1 - 1 \end{vmatrix}$ $x \to 0 \ \sqrt{x} + 1 - 1 \end{vmatrix}$ $\sqrt{x} + 1 + 1$		
		$=\lim_{x\to 0}\frac{\sqrt{x+1}+1}{x}$		
		$=\frac{\sqrt{0+1}+1}{}$	1	
		$=\frac{1}{0}$	1	
		= ∞	1	2
	1)	Evaluate $\lim_{x \to 0} \frac{2^x - 1}{x}$		
	d)	$\lim_{x\to 0} \sin 2x$		
	Ans.	$\lim_{x \to 0} \frac{2^{x} - 1}{\sin 2x} = \lim_{x \to 0} \frac{2^{x} - 1}{x} \times \frac{x}{\sin 2x}$		
		$= \lim_{x \to 0} \frac{2^x - 1}{x} \times \frac{2x}{\sin 2x} \times \frac{1}{2}$	1/2	
		$= \log 2 \times 1 \times \frac{1}{2}$ $= \frac{1}{2} \log 2$	1	
		$=\frac{1}{2}\log 2$	1/2	2

Subject & Code: Engg. Maths (17216) **Page No:** 4/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIAINS	Marks
1)		$\lim_{x \to 0} \frac{2^{x} - 1}{\sin 2x} = \lim_{x \to 0} \frac{\frac{2^{x} - 1}{x}}{\frac{\sin 2x}{x}}$ $= \lim_{x \to 0} \frac{\frac{2^{x} - 1}{\sin 2x}}{\frac{x}{\sin 2x}}$ $= \lim_{x \to 0} \frac{\frac{2^{x} - 1}{x}}{\frac{x}{\sin 2x}}$ $= \lim_{x \to 0} \frac{2^{x} - 1}{\frac{x}{\sin 2x}}$ $= \lim_{x \to 0} \frac{2^{x} - 1}{\sin 2x}$ $= \lim_{x \to 0} \frac{2^{x} - 1}{\sin 2x}$	1/2	
		$= \frac{\log 2}{1 \times 2}$ $= \frac{\log 2}{2}$	1 1/2	2
	e)	If $f(x) = 3x^2 - 5x + 7$, show that $f(-1) = 3f(1)$		
	Ans.	$f(-1) = 3(-1)^{2} - 5(-1) + 7$ $= 15$ $f(1) = 3(1)^{2} - 5(1) + 7$ $= 5$	1/ ₂ 1/ ₂ 1/ ₂	
		f(-1) = 3f(1) Find x and y, if $x(1-i) + y(2+i) + 6 = 0$	1/2	2
	f) Ans.	x(1-i) + y(2+i) + 6 = 0		
	THIS.	$\therefore x - xi + 2y + yi + 6 = 0$ $\therefore (x + 2y + 6) + (-x + y)i = 0$ $\therefore x + 2y + 6 = 0 and -x + y = 0$ $\therefore x = -2$ $y = -2$	1/2 1/2 1/2 1/2 1/2	2
	g)	Evaluate $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$		
	Ans.	$\lim_{x \to 0} \frac{1 - \cos 2x}{x^2} = \lim_{x \to 0} \frac{2\sin^2 x}{x^2}$	1/2	
		$=\lim_{x\to 0}2\bigg(\frac{\sin x}{x}\bigg)^2$	1/2	
		$= 2(1)^2$ $= 2$	1/2	2

Subject & Code: Engg. Maths (17216) **Page No:** 5/31

Que.	Sub.		3.5.1	Total
No.	Que.	Model Answers	Marks	Marks
1)	h)	If $y = \cos^{-1}(\sin x)$, find $\frac{dy}{dx}$.		
	Ans.	$y = \cos^{-1}\left(\sin x\right)$		
		$\therefore \frac{dy}{dx} = -\frac{1}{\sqrt{1-\sin^2 x}} \cdot \frac{d}{dx} (\sin x)$	1/2	
		$= -\frac{1}{\sqrt{1-\sin^2 x}} \cdot \cos x$	1/2	
		$= -\frac{1}{\sqrt{\cos^2 x}} \cdot \cos x$		
		$=-\frac{1}{\cos x}\cdot\cos x$	1/2	
		=-1	1/2	2
		OR		
		$y = \cos^{-1}\left(\sin x\right)$		
		$=\cos^{-1}\left[\cos\left(\frac{\pi}{2}-x\right)\right]$	1/2	
		$=\frac{\pi}{2}-x$	1/2	
		$\therefore \frac{dy}{dx} = 0 - 1$	1/2	
		= -1	1/2	2
	i)	If $y = e^x \cdot \sin x \cdot \cos x$, find $\frac{dy}{dx}$		
	Ans.	$\therefore \frac{dy}{dx} = e^x \cdot \sin x \cdot \frac{d}{dx} (\cos x) + e^x \cdot \cos x \frac{d}{dx} (\sin x) + \sin x \cdot \cos x \frac{d}{dx} (e^x)$	1	
		$= e^{x} \cdot \sin x \cdot (-\sin x) + e^{x} \cdot \cos x \cdot \cos x + \sin x \cdot \cos x \cdot e^{x}$ $= -e^{x} \cdot \sin^{2} x + e^{x} \cdot \cos^{2} x + e^{x} \cdot \sin x \cdot \cos x$	1	2
		$= e^{x} \cdot \left(-\sin^{2} x + \cos^{2} x + \sin x \cdot \cos x\right)$ $= e^{x} \cdot \left(-\sin^{2} x + \cos^{2} x + \sin x \cdot \cos x\right)$		2
		OR		
		$y = e^x \cdot \sin x \cdot \cos x = \frac{1}{2} \cdot e^x \cdot \sin 2x$		
		$\therefore \frac{dy}{dx} = \frac{1}{2} \left[e^x \cdot \frac{d}{dx} (\sin 2x) + \sin 2x \cdot \frac{d}{dx} (e^x) \right]$	1	
		$= \frac{1}{2} \left[e^x \cdot \cos 2x \cdot 2 + \sin 2x \cdot e^x \right]$	1	2
		$=\frac{1}{2}e^x\cdot (2\cos 2x+\sin 2x)$		4

Page No: 6/31

Subject & Code: Engg. Maths (17216)

Que.	Sub.	Model Answers	Marks	Total
No. 1)	Que.			Marks
-,	j)	Find $\frac{dy}{dx}$, if $y = x^x$		
		$\therefore \log y = x \cdot \log x$	1/2	
		$\therefore \frac{1}{y} \cdot \frac{dy}{dx} = x \cdot \frac{1}{x} + \log x \cdot 1$	1/2+1/2	
		$\therefore \frac{dy}{dx} = y(1 + \log x)$	1/2	2
	k)	Find first two real roots of equation $x^3 - 2x - 5 = 0$ using bisection method.		
	Ans.	$f(x) = x^3 - 2x - 5$ $\therefore f(2) = -1 \qquad(*)$	1/2	
		f(3) = 16 $f(3) = 16$	1/2	
		$\therefore \text{ the root is in } (2, 3)$,-	
		$\therefore x_1 = \frac{2+3}{2} = 2.5$	1/2	
		$\therefore f(2.5) = 5.625$ $\therefore \text{ the root is in } (2, 2.5)$		
		$\therefore x_2 = \frac{2 + 2.5}{2} = 2.25$	1/2	2
		OR		
		$f(x) = x^3 - 2x - 5$		
		$\therefore f(2) = -1$	1/2	
		f(3) = 16	1/2	
		\therefore the root is in $(2, 3)$		
		a b $x = \frac{a+b}{2}$ $f(x)$	1/	
		2 3 2.5 5.625 2 2.5 2.25	1/2	2
				_
		Note (*): In numerical methods problems only , writing directly the exact values of functions, such as here in this example f(2) or f(3), is allowed.		

Subject & Code: Engg. Maths (17216)

Page No: 7/31

0110	Sub.			Total
Que. No.	Que.	Model Answers	Marks	Marks
1)	<i>l</i>)	Find the first iteration by using Jacobi's method for the following system of equations: $5x-y+z=10$, $x+2y=6$, $x+y+5z=-1$		1111111
	Ans.	$5x - y + z = 10$ $x + 2y = 6$ $x + y + 5z = -1$ $\therefore x = \frac{1}{5}(10 + y - z)$ $y = \frac{1}{2}(6 - x)$ $z = \frac{1}{5}(-1 - x - y)$ Start with $x_0 = 0$, $y_0 = 0$, $z_0 = 0$ $\therefore x_1 = 2$ $y_1 = 3$ $z_1 = -0.2$	1	2
2)	a)	Attempt any Four of the following: If $f(x) = \frac{x-4}{4x-1}$, then show that $f[f(x)] = x$.		
	Ans.	$f(x) = \frac{x-4}{4x-1}$ $\therefore f[f(x)] = \frac{f(x)-4}{4f(x)-1}$ $= \frac{\frac{x-4}{4x-1}-4}{4\left(\frac{x-4}{4x-1}\right)-1}$ $= \frac{\frac{x-4-4(4x-1)}{4(x-4)-1(4x-1)}}{\frac{4x-1}{4x-1}}$ $= \frac{x-4-16x+4}{4x-16-4x+1}$ $= \frac{-15x}{-15}$	1 1 1 1/ ₂	4
		$= \frac{15}{-15}$ $= x$	1/2 1/2	4

Subject & Code: Engg. Maths (17216)

Page No: 8/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2)	b)	If $f(x) = \log\left[\frac{1+x}{1-x}\right]$, then show that $f(a) + f(b) = f\left[\frac{a+b}{1+ab}\right]$		
	Ans.	$\therefore f(a) = \log\left[\frac{1+a}{1-a}\right]$		
		$f(b) = \log\left[\frac{1+b}{1-b}\right]$		
		$\therefore LHS = f(a) + f(b)$		
		$= \log \left[\frac{1+a}{1-a} \right] + \log \left[\frac{1+b}{1-b} \right]$	1/2+1/2	
		$= \log \left[\frac{1+a}{1-a} \times \frac{1+b}{1-b} \right]$	1/2	
		$= \log \left[\frac{1 + a + b + ab}{1 - a - b + ab} \right]$	1/2	
		$RHS = f\left[\frac{a+b}{1+ab}\right]$		
		$= \log \left[\frac{1 + \frac{a+b}{1+ab}}{1 - \frac{a+b}{1+ab}} \right]$	1/2	
		$= \log \left[\frac{\frac{1+ab+(a+b)}{1+ab}}{\frac{1+ab-(a+b)}{1+ab}} \right]$	1/2	
		$= \log \left[\frac{1 + ab + a + b}{1 + ab - a - b} \right]$	1/2	
		:. LHS = RHS	1/2	4
	c)	Using Euler's formulae prove that $\cos 2\theta = \cos^2 \theta - \sin^2 \theta$		
	Ans.	$\cos 2\theta = \frac{e^{2i\theta} + e^{-2i\theta}}{2}$	1/2	
		$\cos^2 \theta - \sin^2 \theta = \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^2 - \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^2$	1/2	
		$= \frac{(e^{i\theta})^{2} + 2e^{i\theta}e^{-i\theta} + (e^{-i\theta})^{2}}{4} - \frac{(e^{i\theta})^{2} - 2e^{i\theta}e^{-i\theta} + (e^{-i\theta})^{2}}{-4}$	1	
		$=\frac{e^{2i\theta}+2+e^{-2i\theta}}{4}-\frac{e^{2i\theta}-2+e^{-2i\theta}}{-4}$	1/2	

Subject & Code: Engg. Maths (17216) **Page No:** 9/31

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.			Marks
- ,		$= \frac{e^{2i\theta} + 2 + e^{-2i\theta}}{4} + \frac{e^{2i\theta} - 2 + e^{-2i\theta}}{4}$ $= \frac{e^{2i\theta} + 2 + e^{-2i\theta} + e^{2i\theta} - 2 + e^{-2i\theta}}{4}$		
		= 4	1/2	
		$=\frac{2e^{2i\theta}+2e^{-2i\theta}}{4}$	1/2	
		$=\frac{e^{2i\theta}+e^{-2i\theta}}{2}$		
		$= \cos 2\theta$	1/2	4
	d)	Simplify using DeMoivre's theorem:		
		$\frac{\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{2}}{\left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{2}}$		
		$ \frac{1}{(\cos 4\theta + i\sin 4\theta)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}} $		
	Ans.	$\frac{\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{2}}{\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-5\times\frac{2}{5}}\left(\cos\theta + i\sin\theta\right)^{\frac{2}{7}\times2}}{\left(\cos\theta + i\sin\theta\right)^{4\times\frac{1}{4}}\left(\cos\theta + i\sin\theta\right)^{-\frac{2}{3}\times3}}$	1/2+1/2+ 1/2+1/2	
		$= \frac{(\cos\theta + i\sin\theta)^{-4}(\cos\theta + i\sin\theta)^{-3}}{(\cos\theta + i\sin\theta)^{-2}(\cos\theta + i\sin\theta)^{-2}}$ $= \frac{(\cos\theta + i\sin\theta)^{-2}(\cos\theta + i\sin\theta)^{-2}}{(\cos\theta + i\sin\theta)^{-1}(\cos\theta + i\sin\theta)^{-2}}$	1	
		$= (\cos\theta + i\sin\theta) (\cos\theta + i\sin\theta)$ $= (\cos\theta + i\sin\theta)^{-2 + \frac{4}{7} - 1 + 2}$		
		$=(\cos\theta+i\sin\theta)^{-\frac{3}{7}}$	1/2	
		$=\cos\frac{3}{7}\theta - i\sin\frac{3}{7}\theta$	1/2	4
		OR		
		$\left(\cos 5\theta - i\sin 5\theta\right)^{\frac{2}{5}} = \left(\cos \theta + i\sin \theta\right)^{-5\times\frac{2}{5}} = \left(\cos \theta + i\sin \theta\right)^{-2}$	1/2	
		$\left[\left(\cos\frac{2}{7}\theta + i\sin\frac{2}{7}\theta\right)^2 = \left(\cos\theta + i\sin\theta\right)^{\frac{2}{7}\times2} = \left(\cos\theta + i\sin\theta\right)^{\frac{4}{7}}\right]$	1/2	
		$\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} = \left(\cos \theta + i\sin \theta\right)^{4\times \frac{1}{4}} = \left(\cos \theta + i\sin \theta\right)^{1}$	1/2	
		$\left[\left(\cos\frac{2}{3}\theta - i\sin\frac{2}{3}\theta\right)^3 = \left(\cos\theta + i\sin\theta\right)^{-\frac{2}{3}\times3} = \left(\cos\theta + i\sin\theta\right)^{-2}\right]$	1/2	

Subject & Code: Engg. Maths (17216) **Page No:** 10/31

Que.	Sub.	Model Answers	Marks	Total
No. 2)	Que.			Marks
		$\frac{(\cos 5\theta - i\sin 5\theta)^{\frac{2}{5}} \left(\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta\right)^{2}}{\cos \frac{2}{7}\theta + i\sin \frac{2}{7}\theta}$		
		$\left(\cos 4\theta + i\sin 4\theta\right)^{\frac{1}{4}} \left(\cos \frac{2}{3}\theta - i\sin \frac{2}{3}\theta\right)^{3}$		
		$= \frac{\left(\cos\theta + i\sin\theta\right)^{-2} \left(\cos\theta + i\sin\theta\right)^{\frac{4}{7}}}{\left(\cos\theta + i\sin\theta\right)^{1} \left(\cos\theta + i\sin\theta\right)^{-2}}$	1	
		$= (\cos\theta + i\sin\theta)^{-2 + \frac{4}{7} - 1 + 2}$		
		$=(\cos\theta+i\sin\theta)^{-\frac{3}{7}}$	1/2	
		$=\cos\frac{3}{7}\theta - i\sin\frac{3}{7}\theta$	1/2	4
	e)	Find the cube roots of unity.		
	Ans.	Let $z = 1 = 1 + 0i$ $a = 1, b = 0$		
		$\therefore r = \sqrt{1^2 + 0^2} = 1$	1/2	
		$\theta = \tan^{-1}\left(\frac{0}{1}\right) = 0$	1/2	
		$\therefore z = 1 = r(\cos\theta + i\sin\theta)$ $= \cos 0 + i\sin 0$	1/2	
		$= \cos 2\pi k + i \sin 2\pi k$	1/2	
		$1^{1/3} = \left[\cos 2\pi k + i \sin 2\pi k\right]^{1/3}$		
		$= \cos\left(\frac{2\pi k}{3}\right) + i\sin\left(\frac{2\pi k}{3}\right)$	1/2	
		For $k = 0$, $1^{1/3} = \cos(0) + i\sin(0)$ = $1 + 0 = 1$	1/2	
		For $k = 1$, $1^{1/3} = \cos\left(\frac{2\pi}{3}\right) + i\sin\left(\frac{2\pi}{3}\right)$		
		$= -\frac{1}{2} + \frac{\sqrt{3}}{2}i$	1/2	
		For $k = 2$, $1^{1/3} = \cos\left(\frac{4\pi}{3}\right) + i\sin\left(\frac{4\pi}{3}\right)$		
		$=-\frac{1}{2}-\frac{\sqrt{3}}{2}i$	1/2	4

Subject & Code: Engg. Maths (17216) **Page No:** 11/31

Que. Sub. Model Answers 2) f) Simplify $1+i^{100}+i^{10}+i^{50}$ Ans. $1+i^{100}+i^{10}+i^{50}$ $=1+\left(i^4\right)^{25}+\left(i^2\right)^5+\left(i^2\right)^{25}$	Marks 1 1	Marks
f) Simplify $1+i^{100}+i^{10}+i^{50}$ Ans. $1+i^{100}+i^{10}+i^{50}$		
$=1+(i^4)^{25}+(i^2)^5+(i^2)^{25}$		
	1	
$=1+(1)^{25}+(-1)^5+(-1)^{25}$		
=1+1-1-1	1	
	1	4
OR		1
$i^{100} = (i^4)^{25} = (1)^{25} = 1$	1	
$i^{10} = (i^2)^5 = (-1)^5 = -1$	1	
$i^{50} = (i^2)^{25} = (-1)^{25} = -1$	1	
$\therefore 1 + i^{100} + i^{10} + i^{50} = 1 + 1 - 1 - 1$		4
= 0	1	
3) Attempt any Four of the followings:		
a) If $f(x) = ax^2 + bx + 3$ and $f(1) = 4$, $f(2) = 11$, find 'a' and 'b	·.	
Ans. $ f(x) = ax^2 + bx + 3 $		
$\therefore f(1) = a(1)^2 + b(1) + 3$		
=a+b+3	1	
$f(2) = a(2)^2 + b(2) + 3$		
=4a+2b+3	1	
But $f(1) = 4$, $f(2) = 11$		
$\therefore a+b+3=4$		
4a + 2b + 3 = 11	1/2	
$\therefore a+b=1$	1/2	
$4a + 2b = 8$ $\therefore a = 3$	1/.	
$\begin{vmatrix} a - 3 \\ b = -2 \end{vmatrix}$	1/2 1/2	4
OR		

Subject & Code: Engg. Maths (17216)

Page No: 12/31

Que.	Sub.	λπ 1 1 A	N.f. 1	Total
No.	Que.	Model Answers	Marks	Marks
3)		C(1) A		
		f(1) = 4		
		$\therefore a(1)^2 + b(1) + 3 = 4$	1	
		$\therefore a+b+3=4$	1/	
		$\therefore a+b=1 \qquad \qquad(i)$	1/2	
		f(2)=11		
		$a(2)^2 + b(2) + 3 = 11$		
		$\therefore 4a + 2b + 3 = 11$	1	
		$\therefore 4a + 2b = 8 \qquad \qquad(ii)$	1/2	
		\therefore by (i) and (ii) ,	, -	
		a=3	1/2	
		b = -2	1/2	4
	b)	If $f(x) = \sin x$, $g(x) = \cos x$, prove that		
		i) $f(x+y) = f(x)g(y) + g(x)f(y)$		
		ii) $g(m-n) = g(m)g(n) + f(m)f(n)$		
		II) g(m-n) - g(m)g(n) + J(m)J(n)		
	Ans.	$f(x) = \sin x, g(x) = \cos x$		
		$i) f(x+y) = \sin(x+y)$	1/2	
		$= \sin x \cos y + \cos x \sin y$	1/2	
		= f(x)g(y) + g(x)f(y)	1	
		$ii)g(m-n) = \cos(m-n)$	1/2	
		$= \cos m \cos n + \sin m \sin n$	1/2	
		= g(m)g(n) + f(m)f(n)	1	4
	c)	Evaluate $\lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan x}$		
		$x \to \frac{\pi}{4}$ $1 - \tan x$		
	Ana	$\lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan x} = \lim_{x \to \frac{\pi}{4}} \frac{(\sin x - \cos x)(\sin x + \cos x)}{1 - \frac{\sin x}{1 - \frac{\sin x}{1 - \frac{\sin x}{1 - \cos x}}}$	1	
	Ans.	$\begin{array}{ccc} & & & & & \\ \xrightarrow{x \to \frac{\pi}{4}} & & 1 - \tan x & & & \xrightarrow{x \to \frac{\pi}{4}} & & & 1 - \frac{\sin x}{x} \end{array}$	1	
		$(\sin x - \cos x)(\sin x + \cos x)$		
		$= \lim_{x \to \frac{\pi}{4}} \frac{(\sin x - \cos x)(\sin x + \cos x)}{\cos x - \sin x}$		
		$x \rightarrow \frac{1}{4}$ $\cos x$		

Subject & Code: Engg. Maths (17216)

Page No: 13/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3)	Que.	$= \lim_{x \to \frac{\pi}{4}} \frac{(\sin x - \cos x)(\sin x + \cos x)}{-(\sin x - \cos x)} \times \cos x$		TVICTIO
		$= \lim_{x \to \frac{\pi}{4}} \frac{\sin x + \cos x}{-1} \times \cos x$	1	
		$=\frac{\sin\frac{\pi}{4} + \cos\frac{\pi}{4}}{-1} \times \cos\frac{\pi}{4}$	1	
		=-1 $=-1$	1	4
		$\lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan x} = \lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan x} \times \frac{1 + \tan x}{1 + \tan x}$		
		$= \lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan^2 x} \times (1 + \tan x)$		
		$= \lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \frac{\sin^2 x}{\cos^2 x}} \times (1 + \tan x)$		
		$= \lim_{x \to \frac{\pi}{4}} \frac{-\left(\cos^2 x - \sin^2 x\right)}{\cos^2 x - \sin^2 x} \times (1 + \tan x)$	1	
		$= -\lim_{x \to \frac{\pi}{4}} \cos^2 x \left(1 + \tan x\right)$	1	
		$=-\cos^2\frac{\pi}{4}\left(1+\tan\frac{\pi}{4}\right)$	1	
		=-1	1	4
		$ \begin{array}{ccc} & \text{OR} \\ \sin^2 x - \cos^2 x & -\cos^2 x \end{array} $		
		$\lim_{x \to \frac{\pi}{4}} \frac{\sin^2 x - \cos^2 x}{1 - \tan x} = \lim_{x \to \frac{\pi}{4}} \frac{-\cos 2x}{1 - \tan x}$		
		$= -\lim_{x \to \frac{\pi}{4}} \frac{1 - \tan^2 x}{1 - \tan x}$		
		$= -\lim_{x \to \frac{\pi}{4}} \frac{(1 - \tan x)(1 + \tan x)}{1 - \tan x} \times \frac{1}{1 + \tan^2 x}$	1	
		$= -\lim_{x \to \frac{\pi}{4}} (1 + \tan x) \times \frac{1}{1 + \tan^2 x}$	1	
		$= -\left(1 + \tan\frac{\pi}{4}\right) \times \frac{1}{1 + \tan^2\frac{\pi}{4}}$	1	
		=-1	1	4

Subject & Code: Engg. Maths (17216) **Page No:** 14/31

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3)	d)	Evaluate $\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right]$		
	Ans.	$\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right] = \lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right] \times \frac{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$	1/2	
		$= \lim_{x \to \infty} x \times \frac{(x^2 + 1) - (x^2 - 1)}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$		
		$= \lim_{x \to \infty} x \times \frac{x^2 + 1 - x^2 + 1}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$		
		$= \lim_{x \to \infty} \frac{2x}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$ $2x$	1	
		$= \lim_{x \to \infty} \frac{\overline{x}}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}}$	1/2	
		$= \lim_{x \to \infty} \frac{x}{\sqrt{1 + \frac{1}{x^2}} + \sqrt{1 - \frac{1}{x^2}}}$	1	
		$= \frac{2}{\sqrt{1+0} + \sqrt{1-0}}$ = 1	1/ ₂ 1/ ₂	4
		OR		
		$Put x = \frac{1}{t} \qquad \therefore t \to 0$		
		$\lim_{x \to \infty} x \left[\sqrt{x^2 + 1} - \sqrt{x^2 - 1} \right] = \lim_{t \to 0} \frac{1}{t} \left[\sqrt{\frac{1}{t^2} + 1} - \sqrt{\frac{1}{t^2} - 1} \right]$		
		$= \lim_{t \to 0} \frac{1}{t} \left[\sqrt{\frac{1+t^2}{t^2}} - \sqrt{\frac{1-t^2}{t^2}} \right]$		
		$= \lim_{t \to 0} \frac{1}{t} \left[\frac{\sqrt{1+t^2}}{t} - \frac{\sqrt{1-t^2}}{t} \right]$		
		$= \lim_{t \to 0} \frac{\sqrt{1 + t^2} - \sqrt{1 - t^2}}{t^2}$	1	
		$= \lim_{t \to 0} \frac{\sqrt{1+t^2} - \sqrt{1-t^2}}{t^2} \times \frac{\sqrt{1+t^2} + \sqrt{1-t^2}}{\sqrt{1+t^2} + \sqrt{1-t^2}}$	1/2	
		$= \lim_{t \to 0} \frac{(1+t^2) - (1-t^2)}{t^2} \times \frac{1}{\sqrt{1+t^2} + \sqrt{1-t^2}}$		

Subject & Code: Engg. Maths (17216)

Page No: 15/31

Que.	Sub.	Model Answers	Marks	Total
No. 3)	Que.			Marks
σ,		$= \lim_{t \to 0} \frac{2t^2}{t^2} \times \frac{1}{\sqrt{1+t^2} + \sqrt{1-t^2}}$	1/2	
		$= \lim_{t \to 0} \frac{2}{\sqrt{1 + t^2} + \sqrt{1 - t^2}}$	1	
		$= \frac{2}{\sqrt{1+0} + \sqrt{1-0}}$ = 1	1/ ₂ 1/ ₂	4
	e)	Evaluate $\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^3 - 64}$		
	Ans.	$\lim_{x \to 4} \frac{x^2 - 7x + 12}{x^3 - 64} = \lim_{x \to 4} \frac{(x - 4)(x - 3)}{(x - 4)(x^2 + 4x + 16)}$	1	
		$= \lim_{x \to 4} \frac{x - 3}{x^2 + 4x + 16}$	1	
		$=\frac{4-3}{(4)^2+4(4)+16}$	1	
		$=\frac{1}{48}$	1	4
	f)	Evaluate $\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{\sin^2 x}$		
	Ans.	$\lim_{x \to 0} \frac{a^x + a^{-x} - 2}{\sin^2 x} = \lim_{x \to 0} \frac{a^x + \frac{1}{a^x} - 2}{\sin^2 x}$		
		$= \lim_{x \to 0} \frac{\left(a^x\right)^2 + 1 - 2a^x}{\sin^2 x}$		
		$= \lim_{x \to 0} \frac{\left(a^x - 1\right)^2}{x^2} \times \frac{x^2}{\sin^2 x} \times \frac{1}{a^x}$	1	
		$= \lim_{x \to 0} \left(\frac{a^x - 1}{x} \right)^2 \times \left(\frac{x}{\sin x} \right)^2 \times \frac{1}{a^x}$	1	
		$= (\log a)^2 \times 1 \times \frac{1}{a^0}$	1	
		$= (\log a)^2$	1	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Page No: 16/31

Subject & Code: Engg. Maths (17216)

Que.	Sub.	26.114	3.6.1	Total
No.	Que.	Model Answers	Marks	Marks
4)		Attempt any Four of the followings:		
	a)	If u and v are differential functions of x and $y = \frac{u}{v}$, prove that		
		$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$		
	Ans.	Let δx be infinitesimal increment in x and δy , δu , δv		
		be corresponding infinitesimal increments in y, u, v.		
		$\therefore y + \delta y = \frac{u + \delta u}{v + \delta v}$ $\therefore \delta y = \frac{u + \delta u}{v + \delta v} - y$	1	
		$\therefore \delta y = \frac{u + \delta u}{v + \delta v} - y$		
		$=\frac{u+\delta u}{v+\delta v}-\frac{u}{v}$		
		$=\frac{uv+v\delta u-uv-u\delta v}{v^2+v\delta v}$		
		$=\frac{v\delta u - u\delta v}{v^2 + v\delta v}$	1	
		$\therefore \frac{\delta y}{\delta x} = \frac{1}{\delta x} \left(\frac{v \delta u - u \delta v}{v^2 + v \delta v} \right) = \frac{v \frac{\delta u}{\delta x} - u \frac{\delta v}{\delta x}}{v^2 + v \delta v}$		
		$\therefore \lim_{\delta_{x} \to 0} \frac{\delta_{y}}{\delta_{x}} = \lim_{\delta_{x} \to 0} \left[\frac{v \frac{\delta u}{\delta_{x}} - u \frac{\delta v}{\delta_{x}}}{v^{2} + v \delta v} \right]$	1	
		$\therefore \lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{v \lim_{\delta x \to 0} \frac{\delta u}{\delta x} - u \lim_{\delta x \to 0} \frac{\delta v}{\delta x}}{\lim_{\delta x \to 0} \left(v^2 + v \delta v\right)}$		
		$\therefore \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \qquad (\text{As } \delta x \to 0, \ \delta v \to 0)$	1	4
	b)	If $y = \sin^{-1}(3x - 4x^3)$, find $\frac{dy}{dx}$.		
	Ans.	$Put \ x = \sin \theta$		
		$\therefore y = \sin^{-1}\left(3x - 4x^3\right)$		
		$=\sin^{-1}\left(3\sin\theta-4\sin^3\theta\right)$		
		$=\sin^{-1}(\sin 3\theta)$	1	

Subject & Code: Engg. Maths (17216) **Page No:** 17/31

Que.	Sub.	25.11.	3.5.1	Total
No.	Que.	Model Answers	Marks	Marks
4)		$= 3\theta$ $= 3\sin^{-1} x$	1 1	
		$\frac{dy}{dx} = 3 \cdot \frac{1}{\sqrt{1 - x^2}}$	1	4
		VI A		
		\mathbf{OR} $y = \sin^{-1}\left(3x - 4x^3\right)$		
		$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(3x - 4x^3\right)^2}} \times \frac{d}{dx} \left(3x - 4x^3\right)$	1	
		$= \frac{1}{\sqrt{1 - \left(3x - 4x^3\right)^2}} \times \left(3 - 12x^2\right)$	1	
		$= \frac{1}{\sqrt{1 - \left(9x^2 - 24x^4 + 16x^6\right)}} \times \left(3 - 12x^2\right)$		
		$= \frac{1}{\sqrt{1 - 9x^2 + 24x^4 - 16x^6}} \times (3 - 12x^2)$		
		$= \frac{1}{\sqrt{(1-x^2)(1-8x^2+16x^4)}} \times 3(1-4x^2)$		
		$= \frac{1}{\sqrt{(1-x^2)(1-4x^2)^2}} \times 3(1-4x^2)$		
		$= \frac{1}{(1-4x^2)\sqrt{1-x^2}} \times 3(1-4x^2)$	1	
		$\therefore \frac{dy}{dx} = 3 \cdot \frac{1}{\sqrt{1 - x^2}}$	1	4
	c)	Find $\frac{dy}{dx}$, if $13x^2 + 2x^2y + y^3 = 1$.		
	Ans.	$13x^2 + 2x^2y + y^3 = 1$		
		$\therefore 26x + 2\left(x^2\frac{dy}{dx} + y \cdot 2x\right) + 3y^2\frac{dy}{dx} = 0$	1	
		$\therefore 26x + 2x^2 \frac{dy}{dx} + 4xy + 3y^2 \frac{dy}{dx} = 0$	1	
		$\therefore 26x + 4xy + \left(2x^2 + 3y^2\right)\frac{dy}{dx} = 0$	1	
		$\therefore \frac{dy}{dx} = -\frac{26x + 4xy}{2x^2 + 3y^2}$	1	4

Subject & Code: Engg. Maths (17216) **Page No:** 18/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4)	Que.	OB		Warks
		OR		
		$13x^2 + 2x^2y + y^3 = 1$		
		$\therefore 26x + 2\left(x^2\frac{dy}{dx} + y \cdot 2x\right) + 3y^2\frac{dy}{dx} = 0$	1	
		$\therefore 26x + 2x^2 \frac{dy}{dx} + 4xy + 3y^2 \frac{dy}{dx} = 0$	1	
		$\therefore \left(2x^2 + 3y^2\right) \frac{dy}{dx} = -26x - 4xy$	1	
		$\therefore \frac{dy}{dx} = \frac{-26x - 4xy}{2x^2 + 3y^2}$	1	4
	d)	Find the derivative of $(x)\sin^{-1}x$		
	Ans.	Let $y = (x)\sin^{-1} x$		
		$\therefore \frac{dy}{dx} = x \cdot \frac{d}{dx} \left(\sin^{-1} x \right) + \sin^{-1} x \cdot \frac{d}{dx} (x)$	1	
		$= x \cdot \frac{1}{\sqrt{1 - x^2}} + \sin^{-1} x \cdot 1$	1+1	
		$=\frac{x}{\sqrt{1-x^2}} + \sin^{-1} x$	1	4
	e)	Using first principle find the derivative of $f(x) = a^x$		
	Ans.	$f(x) = a^x$		
		$\therefore f(x+h) = a^{x+h}$		
		$\therefore \frac{dy}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$		
		$=\lim_{h\to 0}\frac{a^{x+h}-a^x}{h}$	1	
		$=\lim_{h\to 0}\frac{a^x\left(a^h-1\right)}{h}$	1	
		$=\lim_{h\to 0}a^x\left(\frac{a^h-1}{h}\right)$	1	
		$=a^x \log a$	1	4

Subject & Code: Engg. Maths (17216) **Page No:** 19/31

Que.	Sub.	N. 1.1.A	3.6 1	Total
No.	Que.	Model Answers	Marks	Marks
4)	f)	Find $\frac{dy}{dx}$, if $y = \log(x + \sqrt{x^2 + a^2})$		
	Ans.	$\therefore \frac{dy}{dx} = \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \frac{d}{dx} \left(x + \sqrt{x^2 + a^2} \right)$	1	
		$= \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + a^2}} \cdot \frac{d}{dx} (x^2 + a^2) \right)$	1	
		$= \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left(1 + \frac{1}{2\sqrt{x^2 + a^2}} \cdot 2x\right)$	1/2	
		$=\frac{1}{x+\sqrt{x^2+a^2}}\cdot\left(1+\frac{x}{\sqrt{x^2+a^2}}\right)$		
		$=\frac{1}{\cancel{x}+\sqrt{x^2+a^2}}\cdot\left(\frac{\cancel{\sqrt{x^2+a^2}+x}}{\sqrt{x^2+a^2}}\right)$	1/2	
		$=\frac{1}{\sqrt{x^2+a^2}}$	1	4
5)		Attempt any Four of the followings:		
	a)	Evaluate $\lim_{x \to 1} \frac{\sin \pi x}{x - 1}$		
	Ans.	$Put x-1=t$ $\therefore as x \to 1, t \to 0$		
		$\therefore \lim_{x \to 1} \frac{\sin \pi x}{x - 1} = \lim_{t \to 0} \frac{\sin \pi (1 + t)}{t}$	1	
		$=\lim_{t\to 0}\frac{\sin\left(\pi+\pi t\right)}{t}$		
		$=\lim_{t\to 0}\frac{-\sin \pi t}{t}$ $\sin \pi t$	1	
		$= -\lim_{t \to 0} \frac{\sin \pi t}{\pi t} \times \pi$ $= -1 \times \pi$	1 1/2	
		$=-\pi$	1/2	4

Subject & Code: Engg. Maths (17216)

Page No: 20/31

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5)	Que.			IVIGINO
-,	b)	Evaluate $\lim_{x\to 0} \frac{x}{\sqrt{9-x+x^2}-3}$		
	Ans.	$\therefore \lim_{x \to 0} \frac{x}{\sqrt{9 - x + x^2} - 3} = \lim_{x \to 0} \frac{x}{\sqrt{9 - x + x^2} - 3} \times \frac{\sqrt{9 - x + x^2} + 3}{\sqrt{9 - x + x^2} + 3}$	1/2	
		$= \lim_{x \to 0} \frac{x}{9 - x + x^2 - 9} \times \left(\sqrt{9 - x + x^2} + 3\right)$	1/2	
		$= \lim_{x \to 0} \frac{x}{x^2 - x} \times \left(\sqrt{9 - x + x^2} + 3 \right)$	1	
		$= \lim_{x \to 0} \frac{x}{x(x-1)} \times \left(\sqrt{9-x+x^2} + 3\right)$		
		$= \lim_{x \to 0} \frac{1}{x - 1} \times \left(\sqrt{9 - x + x^2} + 3 \right)$	1	
		$=\frac{1}{0-1}\times\left(\sqrt{9-0+0}+3\right)$	1/2	4
		=-6	1/2	
	c)	Using bisection method find the approximate root of $x^2 + x - 3 = 0$ (carry out three iterations).		
	Ans.	$x^2 + x - 3 = 0$		
		$f(x) = x^2 + x - 3$		
		$\therefore f(1) = -1$	1/2	
		f(2) = 3	1/2	
		\therefore the root is in $(1, 2)$.	1/2	
		$\therefore x_1 = \frac{1+2}{2} = 1.5$	1/2	
		_	1/2	
		$\therefore f(1.5) = 0.75$ $\therefore \text{ the root is in } (1.15)$		
		$\therefore \text{ the root is in } (1, 1.5).$		
		$\therefore x_2 = \frac{1+1.5}{2} = 1.25$	1/2	
		f(1.25) = -0.188	1/2	
		\therefore the root is in $(1.25, 1.5)$.		
		$\therefore x_3 = \frac{1.25 + 1.5}{2} = 1.375$	1/2	4
		OR		

Subject & Code: Engg. Maths (17216) **Page No:** 21/31

Que.	Sub.	Model Answers	Marks	Total
No. 5)	Que.	$x^2 + x - 3 = 0$		Marks
		$f(x) = x^2 + x - 3$		
		f(x) = x + x + 3 $f(1) = -1$	1/2	
		f(2) = 3		
		$\therefore \text{ the root is in } (1, 2).$	1/2	
		(1, 2).	1/2	
		a b $x = \frac{a+b}{2}$ $f(x)$		
		1 2 1.5 0.75	1	
		1 1.5 1.25 -0.188	$\begin{vmatrix} 1 \\ 1 \end{vmatrix}$	
		1.25 1.5 1.375	1/2	4
	d)	Using Newton-Raphson method find approximate value of		
		$\sqrt[3]{100}$ (perform three iterations).		
	Ans.	Let $x = \sqrt[3]{100}$		
		$\therefore x^3 - 100 = 0$		
		$\therefore f(x) = x^3 - 100$		
		$\therefore f'(x) = 3x^2$	1/2	
		$\therefore f(4) = -36$	1/2	
		f(5) = 25	1/2	
		$x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 100}{3x^2} \qquad(*)$	1	
		$=\frac{x(3x^2)-(x^3-100)}{3x^2}$		
		$=\frac{2x^3+100}{3x^2} \qquad(**)$		
		Start with $x_0 = 5$,	1/2	
		$x_1 = 4.667$ $x_2 = 4.642$	1/2	
		$x_2 = 4.642$ $x_3 = 4.642$		
		33 110.12	1/2	4
		Note i) If the problem is solved by taking $f(x) = x - \sqrt[3]{100}$, no		
		marks to be given since to find various values of $f(x)$ for		
		different values of x , it is required to use the value of		
		$\sqrt[3]{100}$ and it is not permissible in this example as here		
		given task is to find its approximate value.		

Subject & Code: Engg. Maths (17216) **Page No:** 22/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		IVIGINS	Marks
5)		Note ii) Once the formula (*) is formed, writing the direct values of x_i 's is permissible, as we allow it in case of		
		Table Format for either bisection method or regula-falsi		
		method.		
		Note iii) To calculate directly the values of x_i 's, students may use the formula (*) instead of formulating the reduced form (**) of (*). This is also considerable. No marks to be		
		deducted.		
		$ \begin{array}{c} \mathbf{OR} \\ \cdot f(x) = x^3 100 \end{array} $		
		$\therefore f(x) = x^3 - 100$ $\therefore f'(x) = 3x^2$	1/2	
		$\therefore f(4) = -36$	/2	
		f(5) = 25	1/ ₂ 1/ ₂	
		$\therefore \text{ the root is in } (4, 5).$	1/2	
		\therefore start with $x_0 = 5$		
		$\therefore x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$		
		$=5-\frac{f(5)}{f'(5)}$		
		$=5-\frac{25}{75}$		
		= 4.667	1	
		$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$		
		$=4.667 - \frac{f(4.667)}{f'(4.667)}$		
		$=4.667 - \frac{1.651}{65.343}$		
		= 4.642	1	
		$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$		
		$=4.642 - \frac{f(4.642)}{f'(4.642)}$		
		$=4.642 - \frac{0.027}{64.644}$		
		= 4.642	1/2	4

Subject & Code: Engg. Maths (17216)

Page No: 23/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
5)	e)	Using regula-falsi method find approximate root of equation $x^3 + 2x^2 - 8 = 0$ (take three iterations).		
	Ans.	$x^3 + 2x^2 - 8 = 0$		
		$f(x) = x^3 + 2x^2 - 8$		
		$\therefore f(1) = -5$	1/2	
		f(2) = 8	1/2	
		$\therefore \text{ the root is in } (1, 2).$	1/2	
			1/2	
		$\therefore x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{1(8) - 2(-5)}{8 - (-5)} = 1.385$	/2	
		f(1.385) = -1.507	1/2	
		$\therefore \text{ the root is in } (1.385, 2).$		
		$\therefore x_2 = 1.482$	1/2	
		$\therefore f(1.482) = -0.352$	1/2	
		$\therefore \text{ the root is in } (1.482, 2).$		
		$\therefore x_3 = 1.504$	1/2	4
				_
		OR		
		$x^3 + 2x^2 - 8 = 0$		
		$f(x) = x^3 + 2x^2 - 8$		
		$\therefore f(1) = -5$	1/2	
		f(1) = -5 $f(2) = 8$	1/2	
		$\therefore \text{ the root is in } (1, 2).$	1/2	
		a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(x)}$ $f(x)$		
		a b $f(a)$ $f(b)$ $x = \frac{af(b)-f(a)}{f(b)-f(a)}$ $f(x)$		
		1 2 -5 8 1.385 -1.507	1	
		1.385 2 -1.507 8 1.482 -0.352	1	4
		1.482 2 -0.352 8 1.504	1/2	4
	f)	Find the real root of the equation $x \cdot e^x = 3$ using false position method (two iterations only).		
	Ans.	$x = a^x = 2$		
		$x \cdot e^x = 3$ $\therefore f(x) = x \cdot e^x - 3$		
		$\therefore f(x) = x \cdot e^{x} - 3$		

Subject & Code: Engg. Maths (17216) **Page No:** 24/31

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	1120 1101 1 1110 11 020	1,101110	Marks
5)		$\therefore f(1) = -0.282$	1/2	
		f(2) = 11.778	1/2	
		$\therefore \text{ the root is in } (1, 2).$		
		` '		
		$\therefore x_1 = \frac{af(b) - bf(a)}{f(b) - f(a)} = \frac{1(11.778) - 2(-0.282)}{11.778 - (-0.282)} = 1.023$	1½	
		$\therefore f(1.023) = -0.154$		
		\therefore the root is in $(1.023, 2)$.		
		$\therefore x_2 = 1.036$	1½	4
		OR		
		$x \cdot e^x = 3$		
		$\therefore f(x) = x \cdot e^x - 3$		
		$\therefore f(1) = -0.282$	1/ ₂ 1/ ₂	
		f(2) = 11.778	/2	
		\therefore the root is in $(1, 2)$.		
		a b $f(a)$ $f(b)$ $x = \frac{af(b) - bf(a)}{f(b) - f(a)}$ $f(x)$		
		1 2 -0.282 11.778 1.023 -0.154	1 ½	
		1.023 2 -0.154 11.778 1.036	1 ½	4
		Note for Numerical Problems: For practical purpose, generally the values of fractional numbers are truncated up to 3 decimal points by the method of rounded-off. Thus the solution is taken up to 3 decimal points only. If answer is truncated more than 3 decimal points, the final answer may vary for last decimal point. Due to the use of advance calculators, such as modern scientific non-programmable calculators, 1/3 is actually 0.333333333333333333333333333333333333		

Subject & Code: Engg. Maths (17216) **Page No:** 25/31

Sub. One	Model Answers	Marks	Total Mark
Que.	Attempt any Four of the followings:		IVIAIR
a)	Differentiate $\cos^{-1}(2x^2-1)$ w. r. t. $\sin^{-1}(2x\sqrt{1-x^2})$.		
Ans.	$Let u = \cos^{-1}\left(2x^2 - 1\right)$	1	
		1	
	•		
	$\therefore v = \sin^{-1}(\sin u) = u$	1	
	$\therefore u = v$		_
	av	1	4
	OR		
	$Let u = \cos^{-1}\left(2x^2 - 1\right)$		
	$\therefore \frac{du}{dx} = \frac{-1}{\sqrt{1 - \left(2x^2 - 1\right)^2}} \cdot \frac{d}{dx} \left(2x^2 - 1\right)$	1/2	
	$=\frac{-4x}{\sqrt{4x^2-4x^4}}$	1/2	
		1/2	
	VI 3	72	
	$Let v = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$		
	$\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1 - \left(2x\sqrt{1 - x^2}\right)^2}} \cdot \frac{d}{dx} \left(2x\sqrt{1 - x^2}\right)$	1/2	
	$= \frac{1}{\sqrt{1-\left\lceil 4x^2\left(1-x^2\right)\right\rceil}} \cdot \left(2x \cdot \frac{1}{2\sqrt{1-x^2}} \cdot (-2x) + \sqrt{1-x^2} \cdot 2\right)$		
	$= \frac{1}{\sqrt{1 - 4x^2 + 4x^4}} \cdot \left(\frac{-2x^2}{\sqrt{1 - x^2}} + 2\sqrt{1 - x^2} \right)$		
	$= \frac{1}{\sqrt{(1-2x^2)^2}} \cdot \left(\frac{-2x^2+2(1-x^2)}{\sqrt{1-x^2}}\right)$		
	Que.	Attempt any Four of the followings: a) Differentiate $\cos^{-1}(2x^2 - 1)$ w. r. t. $\sin^{-1}(2x\sqrt{1 - x^2})$. Ans. Let $u = \cos^{-1}(2x^2 - 1)$ $\therefore \cos u = 2x^2 - 1$ $\therefore \sin u = \sqrt{1 - \cos^2 u} = \sqrt{1 - (2x^2 - 1)^2} = \sqrt{-4x^4 + 4x^2} = 2x\sqrt{1 - x^2}$ Let $v = \sin^{-1}(2x\sqrt{1 - x^2})$ $\therefore v = \sin^{-1}(\sin u) = u$ $\therefore u = v$ $\therefore \frac{du}{dv} = 1$ OR Let $u = \cos^{-1}(2x^2 - 1)$ $\therefore \frac{du}{dx} = \frac{-1}{\sqrt{1 - (2x^2 - 1)^2}} \cdot \frac{d}{dx}(2x^2 - 1)$ $= \frac{-4x}{2x\sqrt{1 - x^2}}$ $= \frac{-2}{\sqrt{1 - x^2}}$ Let $v = \sin^{-1}(2x\sqrt{1 - x^2})$ $\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1 - (2x\sqrt{1 - x^2})^2}} \cdot \frac{d}{dx}(2x\sqrt{1 - x^2})$ $= \frac{1}{\sqrt{1 - [4x^2 + 4x^4]}} \cdot \left(\frac{-2x^2}{\sqrt{1 - x^2}} + 2\sqrt{1 - x^2}\right)$ $= \frac{1}{\sqrt{1 - 4x^2 + 4x^4}} \cdot \left(\frac{-2x^2}{\sqrt{1 - x^2}} + 2\sqrt{1 - x^2}\right)$	Que. Model Answers Marks Attempt any Four of the followings: a) Differentiate $\cos^{-1}(2x^2 - 1)$ w. r. t. $\sin^{-1}(2x\sqrt{1 - x^2})$. Ans. Let $u = \cos^{-1}(2x^2 - 1)$ $\therefore \cos u = 2x^2 - 1$ $\therefore \sin u = \sqrt{1 - \cos^2 u} = \sqrt{1 - (2x^2 - 1)^2} = \sqrt{-4x^4 + 4x^2} = 2x\sqrt{1 - x^2}$ 1 Let $v = \sin^{-1}(2x\sqrt{1 - x^2})$ $\therefore v = \sin^{-1}(\sin u) = u$ $\therefore u = v$ $\therefore \frac{du}{dv} = 1$ OR Let $u = \cos^{-1}(2x^2 - 1)$ $\therefore \frac{du}{dx} = \frac{-1}{\sqrt{1 - (2x^2 - 1)^2}} \cdot \frac{d}{dx}(2x^2 - 1)$ $= \frac{-4x}{\sqrt{4x^2 - 4x^4}}$ $= \frac{-4x}{2x\sqrt{1 - x^2}}$ $= \frac{-2}{\sqrt{1 - x^2}}$ Let $v = \sin^{-1}(2x\sqrt{1 - x^2})$ $\therefore \frac{dv}{dx} = \frac{1}{\sqrt{1 - (2x\sqrt{1 - x^2})^2}} \cdot \frac{d}{dx}(2x\sqrt{1 - x^2})$ $= \frac{1}{\sqrt{1 - (4x^2(1 - x^2))^2}} \cdot (2x \cdot \frac{1}{2\sqrt{1 - x^2}} \cdot (-2x) + \sqrt{1 - x^2} \cdot 2)$ $= \frac{1}{\sqrt{1 - 4x^2 + 4x^2}} \cdot (\frac{-2x^2}{\sqrt{1 - x^2}} + 2\sqrt{1 - x^2})$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

Page No: 26/31

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject & Code: Engg. Maths (17216)

Que. Sub. Total **Model Answers** Marks No. Que. Marks 6) $=\frac{2(1-2x^2)}{(1-2x^2)\sqrt{1-x^2}}$ $=\frac{2}{\sqrt{1-r^2}}$ 1 $\therefore \frac{du}{dv} = \frac{\frac{-2}{\sqrt{1-x^2}}}{\frac{1}{2}} = -1$ 1 OR Let $u = \cos^{-1}(2x^2 - 1)$ Put $x = \cos \theta$ $\therefore u = \cos^{-1}(2\cos^2\theta - 1) = \cos^{-1}(\cos 2\theta) = 2\theta$ $1/_{2}$ $= 2 \cos^{-1} x$ $\therefore \frac{du}{d\theta} = \frac{-2}{\sqrt{1-x^2}}$ 1 Let $v = \sin^{-1}\left(2x\sqrt{1-x^2}\right)$ Put $x = \sin \theta$ (or also $x = \cos \theta$) $\therefore v = \sin^{-1} \left(2 \sin \theta \sqrt{1 - \sin^2 \theta} \right)$ $=\sin^{-1}\left(2\sin\theta\sqrt{\cos^2\theta}\right)$ $=\sin^{-1}(2\sin\theta\cos\theta)$ $=\sin^{-1}(\sin 2\theta)$ $\frac{1}{2}$ $= 2\sin^{-1} x \qquad (or \ also \ v = 2\cos^{-1} x)$ $\therefore \frac{dv}{d\theta} = \frac{2}{\sqrt{1 - x^2}} \qquad \left(\text{or also } \frac{dv}{d\theta} = \frac{-2}{\sqrt{1 - x^2}} \right)$ 1 $\therefore \frac{du}{dv} = \frac{du/d\theta}{dv/d\theta} = \frac{\frac{-2}{\sqrt{1-x^2}}}{2} = -1 \qquad \left(or \ also \ \frac{du}{dv} = 1\right)$ 1

Page No: 27/31

Que.	Sub.	Madal Angress	Maulia	Total
No.	Que.	Model Answers	Marks	Marks
6)	b)	If $y = \sin 5x - 3\cos 5x$, prove that $\frac{d^2y}{dx^2} + 25y = 0$.		
	Ans.	$y = \sin 5x - 3\cos 5x$		
		$\therefore \frac{dy}{dx} = \cos 5x \cdot 5 + 3\sin 5x \cdot 5$		
		$=5\cos 5x + 15\sin 5x$	1	
		$\therefore \frac{d^2 y}{dx^2} = -25\sin 5x + 75\cos 5x$	1	
		$=-25(\sin 5x - 3\cos 5x)$		
		=-25y	1	
		$\therefore \frac{d^2y}{dx^2} + 25y = 0$	1	4
		OR		_
		$y = \sin 5x - 3\cos 5x$		
		$\therefore \frac{dy}{dx} = 5\cos 5x + 15\sin 5x$	1	
		$\therefore \frac{d^2y}{dx^2} = -25\sin 5x + 75\cos 5x$	1	
		$\therefore \frac{d^2y}{dx^2} + 25y = -25\sin 5x + 75\cos 5x + 25(\sin 5x - 3\cos 5x)$	1	
		$= -25\sin 5x + 75\cos 5x + 25\sin 5x - 75\cos 5x$ $= 0$	1	4
	c)	Solve the following equations by Jacobi's method, performing three iterations only: $20x+y-2z=17$, $3x+20y-z=-18$, $2x-3y+20z=25$		
	Ans.	20x + y - 2z = 17		
		3x + 20y - z = -18		
		2x - 3y + 20z = 25		
		$\therefore x = \frac{1}{20} (17 - y + 2z)$		
		$y = \frac{1}{20} (-18 - 3x + z)$ $z = \frac{1}{20} (25 - 2x + 3y)$	1	
		$z = \frac{1}{20} (25 - 2x + 3y)$		

Subject & Code: Engg. Maths (17216) **Page No:** 28/31

Que. No.	Sub.	Model Answers	Marks	Total Marks
6)	Que.			Warks
-,		Starting with $x_0 = 0 = y_0 = z_0$		
		$x_1 = 0.85$		
		$y_1 = -0.9$	1	
		$z_1 = 1.25$	1	
		$x_2 = 1.02$		
		$y_2 = -0.965$	1	
		$z_2 = 1.03$		
		$x_3 = 1.001$		
		$y_3 = -1.002$	1	4
		$z_3 = 1.003$		
	d)	Solve the following equations by Gauss-Seidal method, taking three iterations only:		
		15 $x+2y+z=18$, $2x+20y-3z=19$, $3x-6y+25z=22$		
	Ans.	$\therefore x = \frac{1}{15} (18 - 2y - z)$ $y = \frac{1}{20} (19 - 2x + 3z)$ $z = \frac{1}{25} (22 - 3x + 6y)$		
		15 (15 25 27)		
		$y = \frac{1}{20}(19 - 2x + 3z)$	1	
		1 (22 2 3)	1	
		$z = \frac{1}{25}(22 - 3x + 6y)$		
		Starting with $x_0 = 0 = y_0 = z_0$		
		$x_1 = 1.2$		
		$y_1 = 0.83$	1	
		$z_1 = 0.935$		
		$x_2 = 1.027$	1	
		$y_2 = 0.988$	1	
		$z_2 = 0.994$		
		$x_3 = 1.002$		
		$y_3 = 0.999$	1	
		$z_3 = 0.999$		4
			1	4

Subject & Code: Engg. Maths (17216) **Page No:** 29/31

Sub.			Total
Que.	Model Answers	Marks	Marks
e)	Solve the following equations by Gauss elimination method: $x+2y+3z=14$, $3x+y+2z=11$, $2x+3y+z=11$		
Ans.	x+2y+3z=14 $3x + y + 2z = 11$ $2x+3y+z=11$ $3x+6y+9z=42$ $6x+2y+4z=22$		
	3x + y + 2z = 11 $=$ $5y + 7z = 31$ and $6x + 9y + 3z = 33$ $=$ $-7y + z = -11$ $5y + 7z = 31$	1	
	-49y+7z = -77 $+$	1 1 1	4
	$ \begin{array}{r} $	1	
	$\frac{7x+5z=22}{-18x=-18}$ $\therefore x=1$ $z=3$ $y=2$ OR $x+2y+3z=14$ $3x+y+2z=11$	1 1 1	4
	Que. e)	Que. Solve the following equations by Gauss elimination method: $x+2y+3z=14$, $3x+y+2z=11$, $2x+3y+z=11$ Ans. $x+2y+3z=14$ $3x+y+2z=11$ $2x+3y+z=11$ $3x+6y+9z=42$ $6x+2y+4z=22$ $3x+y+2z=11$ $6x+9y+3z=33$ $$ $-7y+z=-11$ $5y+7z=31$ $-49y+7z=-77$ $++$ $54y=108$ $\therefore y=2$ $z=3$ $x=1$ OR $x+2y+3z=14$ $3x+y+2z=11$ $2x+3y+z=11$ $x+2y+3z=14$ $6x+2y+4z=22$ $$ $-5x-z=-8$ $-5x-2=-8$ $-25x-5z=-40$ $-7x+5z=22$ $-18x=-18$ $\therefore x=1$ $z=3$ $y=2$ OR	Que. Model Answers Marks e) Solve the following equations by Gauss elimination method: $x+2y+3z=14$, $3x+y+2z=11$, $2x+3y+z=11$ Ans. $x+2y+3z=14$ $3x+6y+9z=42$ $3x+y+2z=11$ $2x+3y+z=11$ $3x+6y+9z=42$ $3x+y+2z=11$ $$

Page No: 30/31

Subject & Code: Engg. Maths (17216)

Que.	Sub.	Model Answers	Marks	Total
No.	Que.	Wiodel Aliswers	IVIAIKS	Marks
6)		2x+4y+6z = 28 9x+3y+6z = 33 and 3x+y+2z=11 4x+6y+2z=22 and	1	
		-7x + y = -5 -x - 5y = -11		
		-35x + 5y = -25		
		-x-5y=-11		
		-36x = -36		
		$\therefore x = 1$ $y = 2$ $z = 3$	1 1 1	4
		Note: In the method I, first x is eliminated and then z is eliminated to find the value of y first. Whereas in the method II, first y is eliminated and then z is eliminated to find the value of x first. Similarly in the method III, first z is eliminated and then y is eliminated to find the value of x first. These are just illustrations to get desire solution. But student may follow another order of solution just on this line of solution i. e., to say in the method I, student may first eliminate x and then y to find the value of z first, appropriate marks to be given as per above scheme of marking.		
	f)	With the following system of equations: $5x-y=9$, $x-5y+z=-4$, $y-5z=6$ set up the Gauss-Seidal iterations scheme for solution. Iterate two times, using initial approximations as $x_0 = 1.5$, $y_0 = 0.5$, $z_0 = -0.5$		
	Ans.	5x - y = 9 $5x - y + 0z = 9x - 5y + z = -4$ OR $x - 5y + z = -4y - 5z = 6$ $0x + y - 5z = 6$		
		Note : Student may use any one of these system for further solution.		

Page No: 31/31

Subject & Code: Engg. Maths (17216)

Que.	Sub.	Model Answers	Marks	Total
No	Que.	Model Answers $ \therefore x = \frac{1}{5}(9+y) $ $ y = \frac{1}{-5}(-4-x-z) $ $ z = \frac{1}{-5}(6-y) $ Starting with $x_0 = 1.5$, $y_0 = 0.5$, $z_0 = -0.5$ $ x_1 = 1.9 $ $ y_1 = 1.08 $ $ z_1 = -0.984 $ $ x_2 = 2.016 $ $ y_2 = 1.006 $ $ z_2 = -0.999 $	Marks 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Mark:
		Important Note In the solution of the question paper, wherever possible all the possible alternative methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, FIRST SEE whether the method falls within the scope of the curriculum, and THEN ONLY give appropriate marks in accordance with the scheme of marking.		