Due Thursday, May 17 by 5:00 pm

For problems #1-4, prove or disprove the statement.

- 1. Let R be a relation on A with Dom(R) = A. If R is symmetric and transitive, then R is also reflexive.
- 2. Let R be a relation that is antisymmetric. Then R is not symmetric.
- 3. Let R be a relation that is asymmetric. Then R is antisymmetric.
- 4. Let (A, \prec) be a poset where \prec is a **linear (total)** order. Then any maximal element of (A, \prec) must be a maximum.
- 5. Let U be a nonempty universal set. As discussed in class, $(\mathcal{P}(U), \subseteq)$ is a partially ordered set. Suppose as well that $\mathcal{B} \subseteq \mathcal{P}(U)$, that is, \mathcal{B} is a set containing some (but not necessarily all) subsets of U.
 - (a) Give an example demonstrating why \subseteq is not a total order on $\mathcal{P}(U)$.
 - (b) Give an example demonstrating why \mathcal{B} might not have a maximum element.
 - (c) Prove that $\bigcup_{B \in \mathcal{B}} B$ is an upper bound on \mathcal{B} .
 - (d) Prove that $\bigcap_{B \in \mathcal{B}} B$ is a lower bound on \mathcal{B} .
 - (e) Prove that $\bigcup_{B \in \mathcal{B}} B$ and $\bigcap_{B \in \mathcal{B}} B$ are in fact the least upper bound and greatest lower bound, respectively, on \mathcal{B} .

Hint: Parts (c)-(e) require using element chasing arguments. The proofs should not be too long, but be careful with notation!

For problems # 6 - 8, determine whether the specified function is

- i) one-to-one
- ii) onto the specified set B.
- 6. $g: \mathbb{R} \setminus \{1\} \to \mathbb{R} \setminus \{1\}, g(x) = \frac{x}{x-1}$ (Graphing is not an acceptable proof).
- 7. $\mathcal{I}: F \to \mathbb{R}, \mathcal{I}(f) = \int_{-1}^{1} f(x) dx$, where F is the set of all functions with a finite integral on [-1, 1].
- 8. $\varphi : \mathbb{N} \to \mathbb{N}$, where $\varphi(n)$ is the sum of the divisors of n. So for example $\varphi(6) = 1 + 2 + 3 + 6 = 12$, $\varphi(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$, etc.
- 9. Bonus: [up to 10 additional points]. Let (A, \prec_A) and (B, \prec_B) be posets.
 - (a) Prove that the lexicographic ordering \prec_L (defined on p. 99 of the text) is a partial ordering of $A \times B$.
 - (b) Prove that if \prec_A and \prec_B are total orderings, then \prec_L is also a total ordering.

Note: While solutions will be provided to all of these problems, not all problems may be fully graded.