The simply-typed λ -calculus

Julio Mariño

Theory of Programming Languages

MASTER IN FORMAL METHODS FOR SOFTWARE ENGINEERING
Universidad (Politécnica | Complutense | Autónoma) de Madrid

November 22, 2021

the simply-typed λ -calculus

Russell enriched set theory with a *type system* to escape from the paradox, only allowing well-founded sets. Church thinks something similar could eliminate paradoxes from the λ -calculus, forbidding self-application in terms like $\lambda x.x.x$, and keeping the intuition that λ -abstractions denote functions.

Types may be atomic (a, b, c...) or functional $(\sigma \to \tau)$, where σ and τ are types).

Church's approach

Only well typed terms are allowed into the system, i.e. syntax of λ -terms is modified so that only typed expressions exist:

$$x_a, x_{a \to b}, \lambda x_a, x_a, \lambda x_b, \lambda x_b, \lambda x_{a \to b}, \lambda x_a, \lambda y_b, \lambda x_a$$

 $\lambda x_a, \lambda y_a, x_a, \lambda f_{a \to b \to c}, \lambda x_a, \lambda y_b, f_{a \to b \to c}, x_a, y_b$

Curry's approach

Syntax is free, as before, but there is a type assignment theory, so that some term may have several typings, or no possible typing.

$$\frac{x : \tau \quad e : \tau'}{(\lambda x. e) : \tau \to \tau'}$$

$$\frac{e : \tau' \to \tau \quad e' : \tau'}{(e, e') : \tau}$$

Julio Mariño (UPM)

λ -calculi with simple types

church or curry - which flavour do you prefer?

 In the Church term system variables are typed, so there are infinitely many versions of identity:

$$\lambda x_a.x_a, \lambda x_{a\rightarrow b}.x_{a\rightarrow b}...$$

- ... and no term for ω , Ω , Y, etc.
- We can save some ink by just annotating variables in abstractions, when terms are closed:

$$\lambda x : a.x, \lambda x : (a \rightarrow b).x...$$

which makes it similar to programming languages with explicit static typing, e.g. Java.

- Curry, on the other hand, thinks that forbidding the terms with self-application terms and the proliferation of identities is an unnecessary complication.
- In Curry's type assignment system, there is a single λ -term for identity (with infinitely many type assignments) and ω , Ω and Y are still valid terms with no type assignment.

${\sf TA}_{\lambda}$ basic notions

Definition (type assignment)

A type assignment is any expression $M: \tau$ where M (the subject) is a λ -term and τ is a simple type (the predicate).

Definition (type context)

A type context Γ is a finite assignment of types to variables $x_1 : \tau_1, \ldots, x_n : \tau_n$. The assignment is *consistent* if no variable is assigned different types.

Definition (type judgements)

A TA $_{\lambda}$ formula, or judgement is a triple (Γ, M, τ) usually written

$$\Gamma \vdash M : \tau$$

and read "under the assumptions Γ the term M can be assigned the type τ ".

Infinite axioms:

$$x : \tau \vdash x : \tau$$
 (VAR)

• Two deduction rules:

$$\frac{\Gamma \cup x : \tau \vdash M : \tau'}{\Gamma \vdash \lambda x.M : \tau \to \tau'} \text{ ABS}$$

$$\frac{\Gamma \vdash M : \tau \to \tau' \qquad \Gamma' \vdash M' : \tau}{\Gamma \cup \Gamma' \vdash MM' : \tau'} \text{ APP}$$

- This presentation requires one structural rule: context strengthening.
- $\Gamma \cup \Gamma'$ must be consistent. Inductively, this ensures that all the contexts assumed in TA_{λ} proofs are consistent.

TA_λ in natural deduction style

$$\mathbf{0} \vdash \lambda x.x : a \rightarrow a$$

$$\frac{[x:a] \qquad [x:a]}{\lambda x.x:a \to a}$$

 $2 \lambda x. \lambda y. x: a \to b \to a$

assumptions must be consistent!

subject reduction

- The type discipline should not only forbid the *problematic* terms (ω , Ω , Y), but also any other term that reduces to them.
- There must be some connection between type assignment and reduction.

Theorem (subject reduction)

If
$$\Gamma \vdash P : \tau$$
 and $P \leadsto_{\beta n}^* Q$, then

$$\Gamma \vdash Q : \tau$$

• So, reduction preserves types, and it is not possible that a typable term reduces to the problematic terms above.

normalization properties of typed terms

- We have just seen that no typable term reduces to a term with self-application.
- Is this also true for all the divergent terms?

Weak Normalization Theorem

Every TA_{λ} -typable term has a β and a $\beta\eta$ normal form

Strong Normalization Theorem

Every $\beta\eta$ -reduction starting in a TA $_{\lambda}$ -typable term is finite

8 / 10

principal types

- All the types that can be assigned to a term are instances of a principal (most general) type.
- This is more or less obvious taking into account that the typing proofs for a term in TA_{λ} only differ in the assumptions.
- From a deduction system to constraint-based type inference:

$$\frac{\Gamma \cup x : \tau_1 \vdash M : \tau_2 \quad \Gamma \vdash \tau_3 = \tau_1 \to \tau_2}{\Gamma \vdash \lambda x.M : \tau_3} \text{ ABS}$$

$$\frac{\Gamma \vdash M : \tau_1 \quad \Gamma \vdash M' : \tau_2 \quad \Gamma \vdash \tau_1 = \tau_2 \to \tau_3}{\Gamma \vdash MM' : \tau_3} \text{ APP}$$

• In a proof tree type variables corresponding to *different* variables must be different.

the principal type reconstruction algorithm

• Example: $(\lambda x.x)(\lambda x.x)$

$$\frac{x:\tau_1}{\lambda x.x:\tau_3} \frac{x:\tau_2}{\lambda x.x:\tau_4}$$
$$\frac{(\lambda x.x)(\lambda x.x):\tau_5}{(\lambda x.x)(\lambda x.x):\tau_5}$$

• It generates the following system of type equations:

$$\tau_3 = \tau_4 \to \tau_5$$

$$\tau_3 = \tau_1 \to \tau_1$$

$$\tau_4 = \tau_2 \to \tau_2$$

• The system is solvable if it admits a most general unifier (mgu):