Þriðja laugardagsæfingin í eðlisfræði 2019-2020

Nafn:

Bekkur:

Fastar

Nafn	Tákn	Gildi
Hraði ljóss í tómarúmi	c	$3.00 \cdot 10^8 \mathrm{ms^{-1}}$
Þyngdarhröðun við yfirborð jarðar	g	$9.82\mathrm{ms^{-2}}$
Frumhleðslan	e	$1,602 \cdot 10^{-19} \mathrm{C}$
Massi rafeindar	m_e	$9.11 \cdot 10^{-31} \mathrm{kg}$
Gasfastinn	R	$8,3145\mathrm{J}\mathrm{mol^{-1}K^{-1}}$
Fasti Coulombs	k_e	$8,988 \cdot 10^9 \mathrm{N}\mathrm{m}^2\mathrm{C}^{-2}$
Rafsvörunarstuðull tómarúms	ϵ_0	$8.85 \cdot 10^{-12} \mathrm{C}^2 \mathrm{s}^2 \mathrm{m}^{-3} \mathrm{kg}^{-1}$
Pyngdarfastinn	G	$6.67 \cdot 10^{-11} \mathrm{m}^3 \mathrm{kg}^{-1} \mathrm{s}^{-2}$
Geisli jarðarinnar	R_{\oplus}	$6.38 \cdot 10^6 \mathrm{m}$
Geisli sólarinnar	R_{\odot}	$6,96 \cdot 10^8 \mathrm{m}$
Massi jarðarinnar	M_{\oplus}	$5.97 \cdot 10^{24} \mathrm{kg}$
Massi sólarinnar	M_{\odot}	$1,99 \cdot 10^{30} \mathrm{kg}$
Stjarnfræðieiningin	AU	$1,50 \cdot 10^{11} \mathrm{m}$

Krossar

 $Hver\ kross\ gildir\ 4\ stig.\ Vinsamlegast\ skráið\ svörin\ ykkar\ við\ tilheyrandi\ krossi\ hér\ fyrir\ neðan:$

K1	K2	K 3	K 4	K 5	K 6	K7	K8	K 9	K10	K11	K12	K13	K14	K15

Krossar (60 stig)

- **K1.** Hreyfiorka hlutar með massa m og hraða v er táknuð með K. Hún er skilgreind þannig að $K = \frac{1}{2}mv^2$. Hverjar eru SI-einingar hreyfiorku?
 - (A) kgm/s (B) kgm/s^2 (C) kgm^2/s^2 (D) kgm^2/s (E) kg^2m^2/s^2
- **K2.** Engisprettan Engilbert stekkur 40 m upp í loftið. Hversu langur tími líður frá því hann stekkur og þar til hann lendur aftur í sömu hæð?
 - (A) 0,62 s (B) 2,3 s (C) 5,7 s (D) 9,2 s (E) 11 s
- **K3.** Kubbur með massa $3.0\,\mathrm{kg}$ rennur úr kyrrstöðu niður brekku með hverfandi núning úr hæðinni $5.0\,\mathrm{m}$. Eftir að kubburinn hefur runnið framhjá punkti P tekur við hrjúft, lárétt yfirborð þar sem núningsstuðullinn milli kubbsins og yfirborðsins er 0,20. Hversu langt rennur kubburinn eftir lárétta yfirborðinu áður en hann stöðvast?

- (A) $0,40\,\mathrm{m}$ (B) $1,0\,\mathrm{m}$ (C) $2,5\,\mathrm{m}$ (D) $10\,\mathrm{m}$ (E) $25\,\mathrm{m}$
- K4. Rauður Ferrari sportsbíll með massa 1560 kg keyrir á hraðanum 135 km/klst. Hann klessir á kyrrstæðan bláan Fiat með massa 499 kg. Bílarnir festast saman við áreksturinn. Hversu mikil hreyfiorka tapast úr kerfinu við áreksturinn?
 - (A) $266 \,\mathrm{kJ}$ (B) $504 \,\mathrm{kJ}$ (C) $732 \,\mathrm{kJ}$ (D) $956 \,\mathrm{kJ}$ (E) $1380 \,\mathrm{kJ}$
- **K5.** Duge brúin nær yfir kínverska fljótið Beipan. Brúin er sú hæsta í heiminum og hefur hæðina $H=565\,\mathrm{m}$ yfir vatnsborðinu. Orðrómur er um að hinn frægi frumkvöðull teygjustökksins, A.J. Hackett (sem hefur massa $m=75\,\mathrm{kg}$), ætli að fara í teygjustökk fram af brúnni og freista þess að snerta vatnsborðið. Gera má ráð fyrir að teygjan sé massalaus og hegði sér líkt og gormur. Hver verður mesta hröðunin, a_{max} , sem Hackett mun finna fyrir ef lengd teygjunnar er $L=120\,\mathrm{m}$?
 - $(A) \quad 9.82\,\mathrm{m/s^2} \quad (B) \quad 15.1\,\mathrm{m/s^2} \quad (C) \quad 19.7\,\mathrm{m/s^2} \quad (D) \quad 24.5\,\mathrm{m/s^2} \quad (E) \quad 44.2\,\mathrm{m/s^2}$
- K6. Kúla rúllar upp skábretti, stoppar og rúllar síðan niður til baka. Allan tímann rúllar hún án þess að renna og engin orka tapast vegna núnings. Í hvaða stefnu verkar núningskrafturinn á kúluna þegar hún rúllar? Stefnur í svarmöguleikunum eru samsíða skábretti.
 - (A) Upp á leiðinni upp og niður á leiðinni niður.
 - (B) Niður á leiðinni upp og upp á leiðinni niður.
 - (C) Það verkar enginn núningskraftur á kúluna.
 - (D) Alltaf upp.
 - (E) Alltaf niður.
- K7. Einsleitri kúlu er sleppt úr kyrrstöðu úr hæð h á skábretti sem hallar um θ gráður miðað við lárétt. Núningsstuðullinn milli skábrettisins og kúlunnar er μ . Hvert af eftirfarandi gröfum sýnir best hreyfiorku boltans, $E_{\rm kinetic}$, sem fall af θ ?

- K8. Fyrsta tímaafleiða stöðu, s, er hraði, $v=\frac{ds}{dt}$ og önnur tímaafleiða hennar er hröðun, $a=\frac{d^2s}{dt^2}$. Hins vegar hefur þriðja tímaafleiða stöðunnar ekki fengið ákveðið nafn, en hér verður hún kölluð rykkur og táknuð með $j=\frac{d^3s}{dt^3}$. Punktmassi sem er upphaflega kyrrstæður fær fastan rykk $j=2,0\,\mathrm{m/s^3}$ í fjórar sekúndur. Hve langt fer hann á þeim tíma?
 - (A) $12 \,\mathrm{m}$ (B) $16 \,\mathrm{m}$ (C) $21 \,\mathrm{m}$ (D) $29 \,\mathrm{m}$ (E) $35 \,\mathrm{m}$
- K9. Gerum ráð fyrir því að jörðin sé fullkomin kúla með jafna massadreifingu. Hugsum okkur að boruð hafi verið göng í gegnum hana miðja. Nú er bolti látinn falla úr kyrrstöðu inn í göngin. Gerum ráð fyrir að í göngunum sé fullkomið lofttæmi og að boltinn rekist ekki í veggi ganganna. Hvað gerist?
 - (A) Boltinn fellur að miðju ganganna og stöðvast þar.
 - (B) Boltinn skýst upp um hinn enda ganganna á ógnarhraða.
 - (C) Boltinn ferðast í fullkominni sveifluhreyfingu milli enda ganganna.
 - (D) Boltinn ferðast í sveifluhreyfingu sem devr smám saman út svo að hann stöðvast í miðjunni.
 - (E) Boltinn ferðast í sveifluhreyfingu með stígandi útslagi.
- **K10.** Tvær plánetur, A og B, eru á hringhreyfingu um stjörnu með massann M. Báðar pláneturnar hafa sama massa m. Pláneta B er tvisvar sinnum lengra frá stjörnunni heldur en pláneta A. Látum L_A tákna hverfiþunga plánetu A og L_B tákna hverfiþunga plánetu B. Hvert er hlutfallið L_B/L_A ?
 - (A) 1 (B) $\sqrt{2}$ (C) 2 (D) $2\sqrt{2}$ (E) 4
- **K11.** Árið 2061 mun halastjarna Halleys sjást með berum augum frá jörðinni. Halastjarnan er á sporbraut um sólina og mun ljúka fjórðu umferð sinni um sólu frá því að Edmond Halley spáði fyrir um komu hennar fyrst, árið 1758. Þegar halastjarnan var síðast í nándarstöðu, árið 1986 mældist hún í fjarlægðinni $r_p = 0.59\,\mathrm{AU}$ frá sólu. Hver er mesta fjarlægðin, r_a , sem að halastjarna Halleys nær frá sólu?
 - (A) 2,8 AU (B) 18 AU (C) 24 AU (D) 35 AU (E) 46 AU
- K12. Kjarval kranakarl var að eignast nýjan, fínan byggingarkrana sem hefur hámarkslyftikraft 19 640 N. Hann fær það verkefni að lyfta holri kúlu með radíus R og fastan massa 2060 kg. Inni í kúlunni er algert tómarúm og við gerum ráð fyrir að kúluskelin sé svo sterk að hún breyti ekki lögun sinni. Hvert er minnsta gildið á R þannig að Kjarval takist að lyfta kúlunni? Gerið ráð fyrir að eðlismassi andrúmsloftsins sé $\rho = 1,23\,\mathrm{kg/m^3}$.
 - (A) 1,78 m (B) 2,27 m (C) 2,89 m (D) 3,17 m (E) Kjarval mun aldrei geta lyft kúlunni.
- **K13.** Gegnheil stálkúla, giftingarhringur og sívalningslaga kerti rúlla án þess að renna niður skábretti úr kyrrstöðu á sama tíma. Hvaða hlutur verður fyrstur niður skábrettið?
 - (A) Stálkúlan.
 - (B) Giftingarhringurinn.
 - (C) Kertið.
 - (D) Hlutirnir koma allir niður á sama tíma.
 - (E) Ekki er hægt að segja til um það.
- **K14.** Staða agnar er gefin með: $x(t) = x_0 \cos(\omega t + \pi/6)$, þar sem $x_0 = 6.0$ m og $\omega = 2.0$ rad/s. Hver er mesti hraði agnarinnar?
 - (A) $3.0 \,\mathrm{m/s}$ (B) $6.0 \,\mathrm{m/s}$ (C) $12 \,\mathrm{m/s}$ (D) $24 \,\mathrm{m/s}$ (E) $36 \,\mathrm{m/s}$
- **K15.** Lítil kúla með massa m er fest á enda stangar af lengd L og með massa 2m. Byssukúlu með massa M er skotið með hraða v_0 hornrétt á stöngina í hæð h. Byssukúlan festist inni í stönginni. Finnið h þannig að stöngin snúist ekki eftir áreksturinn.
 - (A) L (B) $\frac{1}{2}L$ (C) $\frac{1}{3}L$ (D) $\frac{1}{4}L$ (E) Slíkt h er ekki til.

Dæmi 1: Gormkenndur árekstur (Forkeppni 2018) [20 stig]

Kubbur með massa m_1 er festur í jafnvægisstöðu við gorm með gormstuðul k_1 . Gormurinn er síðan þjappaður saman um lengdina d. Kubburinn er þar losaður frá gorminum og síðan er honum sleppt. Hann rennur þá eftir núningslausa fletinum sem hann hvílir á þar til hann rekst á kyrrstæðan kubb með massa m_2 sem er festur við gorm með gormstuðul k_2 . Kubbarnir festast saman við áreksturinn.

- (a) Finnið mesta útslag gormsins eftir áreksturinn sem fall af m_1, m_2, k_1, k_2 og d.
- ${\bf (b)}\,$ Finnið hreyfiorkuna sem tapast við áreksturinn.

Dæmi 2: Bohr-líkanið [20 stig]

Árið 1913 setti danski eðlisfræðingurinn Niels Bohr fram líkan af vetnisatóminu. Líkanið byggir á eftirfarandi þremur frumsendum:

- (1) Rafeindin er á hringhreyfingu um róteindina. Hinsvegar eru aðeins nokkrir tilteknir brautargeislar, r_n , leyfilegir fyrir rafeindina.
- (2) Brautargeislarnir ákvarðast af því að hverfiþungi rafeindarinnar er skammtaður, það er

$$L_n = mv_n r_n = n\hbar, \qquad n \in \mathbb{Z}_+$$

þar sem $\hbar=1{,}05\cdot10^{-34}\,\mathrm{m^2kg/s}$ er fasti sem nefnist smækkaður Plancksstuðull (eða há-slá).

- (3) Orka rafeindarinnar getur aðeins breyst við það að hún stekkur á milli leyfilegra brautargeisla. Við það geislar eða gleypir rafeindin út ljósi með orku $\Delta E = \hbar \omega = 2\pi \hbar f$ þar sem f er tíðni ljósins.
- (a) Sýnið að brautargeisla rafeindarinnar, r_n , megi rita á forminu:

$$r_n = an^2$$

þar sem a er fasti sem nefnist Bohr-geislinn. Ákvarðið Bohr-geislann sem fall af fasta Coulombs, k, hleðslu rafeindar, e, massa rafeindar, m_e , \hbar og n. Gefið einnig tölulegt gildi Bohr-geislans.

(b) Látum E_n tákna heildarorku rafeindarinnar þegar hún er á n-ta brautargeisla. Sýnið að til sé fasti E_1 (sem þannig að rita megi

$$E_n = -\frac{E_1}{n^2}.$$

(c) Látum rafeindina vera í orkuástandi n > 1. Nú fellur rafeindin niður í orkuástand m < n og geislar því ljósi frá sér með bylgjulengd λ . Ákvarðið fasta R þannig að bylgjulengd ljósins njóti jöfnunnar:

$$\frac{1}{\lambda} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$

Fastinn R nefnist Rydberg-fastinn.

(d) Ef hverfiþungi jarðarinnar væri skammtaður á braut hennar um sólina þá mætti finna n þannig að um hverfiþunga jarðarinnar, L_E , myndi gilda að $L_E = n\hbar$. Ákvarðið bylgjulengd þyngdarbylgjunnar sem jörðin myndi geisla frá sér við það að fara niður á skammtabraut númer n-1.

