

Ficha de Trabalho 12

Matemática A

12.º Ano de Escolaridade • Turma: B + C + H

Aula de Apoio

abril de 2023

Números complexos - Funções trigonométricas, exponenciais, logarítmicas,

reais, de variável real

- 1. Seja $\mathbb{C},$ o conjunto dos números complexos e sejam $z_1=2-2i^{17}$ e $z_2=e^{i\frac{\pi}{6}},$ dois números complexos
 - ${\bf 1.1.}$ Representa o número complexo z_1 na forma trigonométrica
 - 1.2. Representa o número complexo $\frac{z_2^3}{z_1}$ na forma trigonométrica e na forma algébrica
 - **1.3.** Resolve, em \mathbb{C} , a equação $z^4 + z_1 = 0$, e faz a interpretação geométrica das soluções

Apresenta as soluções na forma trigonométrica

1.4. Resolve, em \mathbb{C} , a equação $\overline{z}z^3 = i\overline{z_2}$

Apresenta as soluções na forma trigonométrica

2. Seja \mathbb{C} , o conjunto dos números complexos e seja z_1 um número complexo

Sabe-se que o afixo P_1 do número complexo z_1 tem parte real negativa e coeficiente da parte imaginária positiva

Diz, justificando, em que quadrante se situa o afixo P_2 do número complexo iz_1

3. Considera a função h, real, de variável real, definida analiticamente por $h(x) = -2\sin(2x + \pi)$

Na Figura 1 encontra-se representada parte do gráfico da função h e um triângulo [OAB]

Sabe-se que:

- O e A são pontos de interseção do gráfico com o eixo Ox
- $\bullet\;B$ é ponto do gráfico onde a função atinge o valor máximo

Numa das opções está o valor exato da área do triângulo [OAB]

Em qual delas?

(B)
$$\frac{\pi}{4}$$

(C)
$$\frac{\pi}{2}$$

(D)
$$\frac{3\pi}{2}$$

 $Figura\ 1$

4. Na Figura 2 estão representados:

- parte do gráfico da função f, real, de variável real, de domínio \mathbb{R} , definida por $f(x) = 2^{-x+1}$
- \bullet um triângulo isósceles [OPQ]

Sabe-se que:

- ullet O é a origem do referencial
- \bullet Q pertence ao eixo das abcissas

Figura 2

Considera que o ponto P pertence ao gráfico da função f e se desloca no primeiro quadrante

O ponto Q acompanha o movimento do ponto P, deslocando-se ao longo do eixo das abcissas de tal modo que \overline{PO} permanece sempre igual a \overline{PQ}

Seja A a função, de domínio \mathbb{R}^+ , que faz corresponder, à abcissa x do ponto P a área do triângulo [OPQ]

Resolve os itens seguintes, recorrendo exclusivamente a métodos analíticos

- **4.1.** Mostra que, para cada $x \in \mathbb{R}^+$, se tem $A(x) = \frac{x}{2x-1}$
- **4.2.** Determina os valores de x que satisfazem a condição $f(x) > \frac{1}{8^{-x}}$ Apresenta o resultado na forma de intervalo de números reais
- 5. Seja f uma função real, de variável real, de domínio \mathbb{R}^+

Sabe-se que
$$\lim_{x \to +\infty} \frac{f(x) + \ln x}{5x} = 1$$

Qual das equações seguintes pode definir uma assintota do gráfico da função f?

$$(A) \ y = \frac{1}{5}x$$

(B)
$$y = 5x$$

(B)
$$y = 5x$$
 (C) $y = \frac{2}{5}x$

(D)
$$y = -5x$$

6. Considera, para um certo número real k, a função h, real, de variável real, de domínio \mathbb{R} , definida por $h(x) = ke^x$

O teorema de Bolzano-Cauchy garante que a função h interseta a bissetriz dos quadrantes pares num ponto de abcissa pertencente ao intervalo [0, 1[

A qual dos intervalos seguintes pode pertencer k?

(A)
$$\left]-e, -\frac{1}{e}\right[$$
 (B) $\left]-\frac{1}{e}, 0\right[$ (C) $\left]0, \frac{1}{e}\right[$ (D) $\left]\frac{1}{e}, 1\right[$

(B)
$$\left| -\frac{1}{e}, 0 \right|$$

(C)
$$\left]0, \frac{1}{e}\right|$$

(D)
$$\left| \frac{1}{e}, 1 \right|$$

7. Calcula
$$\lim_{x\to 0^+} \frac{x^2+x}{\sqrt{1-\cos(2x)}}$$