```
import numpy as np
import pandas as pd
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
%config InlineBackend.figure_format = 'retina'
```

Задача

Сказать будет ли завтра дождь или нет.

Описание датасета

Этот набор данных содержит около 10 лет ежедневных наблюдений за погодой с многочисленных австралийских метеостанций.

RainTomorrow - это целевая переменная для прогнозирования. Это значит - шел ли дождь на следующий день, да или нет? Эта колонка имеет значение "Да", если количество осадков за этот день составило 1 мм или более.

Ссылка на датасет:

Rain in Australia https://www.kaggle.com/jsphyg/weather-dataset-rattle-package

```
df = pd.read csv('Dataset/Data.zip')
In [2]:
           df.head()
              Date Location MinTemp MaxTemp Rainfall Evaporation Sunshine WindGustDir
Out[2]:
             2008-
                      Albury
                                  13.4
                                            22.9
                                                     0.6
                                                                 NaN
                                                                           NaN
                                                                                          W
             12-01
             2008-
                                                                                       WNW
                      Albury
                                  7.4
                                            25.1
                                                     0.0
                                                                 NaN
                                                                           NaN
             12-02
             2008-
                                                                                       WSW
                      Albury
                                  12.9
                                            25.7
                                                     0.0
                                                                 NaN
                                                                           NaN
             12-03
             2008-
                      Albury
                                  9.2
                                            28.0
                                                     0.0
                                                                 NaN
                                                                           NaN
                                                                                         NE
             12-04
             2008-
                                                                                          W
                      Albury
                                 17.5
                                            32.3
                                                     1.0
                                                                 NaN
                                                                           NaN
             12-05
```

5 rows × 23 columns

Название	Описание	
Date	Дата наблюдения	
Location	Общепринятое название местоположения метеостанции	
MinTemp	Минимальная температура в градусах Цельсия	
MaxTemp	Максимальная температура в градусах Цельсия	
Rainfall	Количество осадков, зафиксированных за день в мм	
Evaporation	Так называемое испарение на сковороде класса А (мм) за 24 часа до 9 утра.	

Sunshine	Количество часов солнечного света в день		
WindGustDir	Направление сильнейшего порыва ветра за 24 часа до полуночи		
WindGustSpeed	Скорость (км / ч) самого сильного порыва ветра за 24 часа до полуночи.		
WindDir9am	Направление ветра в 9 утра		
WindDir3pm	Направление ветра в 15:00		
WindSpeed9am	Средняя скорость ветра (км / ч) за 10 минут до 9 часов утра		
WindSpeed3pm	Скорость ветра (км / ч), усредненная за 10 минут до 15:00		
Humidity9am	Влажность (в процентах) в 9 утра		
Humidity3pm	Влажность (в процентах) в 15:00		
Pressure9am	Атмосферное давление (гПа) снижено до среднего уровня моря в 9 утра		
Pressure3pm	Атмосферное давление (гПа) снижено до среднего уровня моря в 15:00		
Cloud9am	Часть неба, закрытая облаками в 9 утра. Он измеряется в октах, которые составляют восьмые доли. Он записывает, сколько		
Cloud3pm	Часть неба, закрытая облаками (в «октах»: восьмые) в 15:00. См. Описание значений в Cload9am		
Temp9am	Температура (градусы С) в 9 утра		
Temp3pm	Температура (градусы С) в 15:00		
RainToday	1, если количество осадков (мм) за 24 часа до 9 утра превышает 1 мм, в противном случае - 0		
RainTomorrow	1, если количество осадков (мм) за 24 часа до 9 утра превышает 1 мм, в противном случае - 0		

In [3]: print(df.info())

<class 'pandas.core.frame.DataFrame'> RangeIndex: 145460 entries, 0 to 145459

Data columns (total 23 columns):

#	Column	Non-Null Count	Dtype
		145460 11	
0	Date	145460 non-null	object
1	Location	145460 non-null	object
2	MinTemp	143975 non-null	float64
3	MaxTemp	144199 non-null	float64
4	Rainfall	142199 non-null	float64
5	Evaporation	82670 non-null	float64
6	Sunshine	75625 non-null	float64
7	WindGustDir	135134 non-null	object
8	WindGustSpeed	135197 non-null	float64
9	WindDir9am	134894 non-null	object
10	WindDir3pm	141232 non-null	object
11	WindSpeed9am	143693 non-null	float64
12	WindSpeed3pm	142398 non-null	float64
13	Humidity9am	142806 non-null	float64
14	Humidity3pm	140953 non-null	float64
15	Pressure9am	130395 non-null	float64
16	Pressure3pm	130432 non-null	float64
17	Cloud9am	89572 non-null	float64
18	Cloud3pm	86102 non-null	float64
19	Temp9am	143693 non-null	float64
20	Temp3pm	141851 non-null	float64
21	RainToday	142199 non-null	object
22	RainTomorrow	142193 non-null	object
dtyp	es: float64(16)	, object(7)	

dtypes: float64(16), object(7)
memory usage: 25.5+ MB

None

Зависимость между количеством солнечного света за день и выпадением осадков завтра

```
df.pivot table(values=['Sunshine'], index=['RainTomorrow'], aggfunc='mea
In [5]:
                     Sunshine
Out[5]:
```

RainTomorrow

8.546358 No 4.471761 Yes

```
In [6]:
         sns.boxplot(df['RainTomorrow'], df['Sunshine'])
```

Out[6]: <AxesSubplot:xlabel='RainTomorrow', ylabel='Sunshine'>


```
RainTomorrow_y = df[df['RainTomorrow']=='Yes']
In [7]:
        print('mean = ', RainTomorrow_y['Sunshine'].mean())
         print('std = ', RainTomorrow_y['Sunshine'].std())
         RainTomorrow_y['Sunshine'].hist(bins=20, figsize=(5, 5))
```

mean = 4.471761488615419std = 3.359328916222063

Out[7]: <AxesSubplot:>


```
In [8]: RainTomorrow_n = df[df['RainTomorrow']=='No']
    print('mean = ', RainTomorrow_n['Sunshine'].mean())
    print('std = ', RainTomorrow_n['Sunshine'].std())
    RainTomorrow_n['Sunshine'].hist(bins=20,figsize=(5, 5));

mean = 8.54635832927938
    std = 3.3802981958292193

7000
6000
5000
4000
2000
1000
```

Из приведенных выше графиков мы можем сделать вывод о том, что вероятность дождя завтра тем больше, чем меньше солнечных часов. В среднем дождь вероятно будет завтра если сегодня солнечных менее 7ми.

Зависимость между влажностью и выпадением осадков завтра

```
In [10]: sns.boxplot(df['RainTomorrow'], df['Humidity9am'])
```



```
In [13]: sns.boxplot(df['RainTomorrow'], df['Humidity3pm'])
```

Out[13]: <AxesSubplot:xlabel='RainTomorrow', ylabel='Humidity3pm'>

68.800019

Yes

Вероятность дождя завтра больше зависит от влажности в 3 часа дня.

```
In [14]: RainTomorrow_y = df[df['RainTomorrow']=='Yes']
    print('mean = ', RainTomorrow_y['Humidity3pm'].mean())
    print('std = ', RainTomorrow_y['Humidity3pm'].std())
    RainTomorrow_y['Humidity3pm'].hist(bins=20, figsize=(5, 5))

mean = 68.80001940931
    std = 19.037408791330805

Out[14]: <AxesSubplot:>
```



```
RainTomorrow_n = df[df['RainTomorrow']=='No']
```

```
In [15]: print('mean = ', RainTomorrow_n['Humidity3pm'].mean())
    print('std = ', RainTomorrow_n['Humidity3pm'].std())
    RainTomorrow_n['Humidity3pm'].hist(bins=20, figsize=(5, 5));

mean = 46.51062505804774
std = 18.489475795722612
10000
8000
6000
4000
2000
```

С повышением влажности возрастает вероятность выпадения осадков завтра.

80

100

Зависимость между облачностью и выпадением осадков завтра

60

```
In [16]: df.pivot_table(values=['Cloud9am'], index=['RainTomorrow'], aggfunc='mean
```

Out[16]: Cloud9am

RainTomorrow

No 3.932282

20

40

Yes 6.099990

```
In [17]: sns.boxplot(df['RainTomorrow'], df['Cloud9am'])
```

Out[17]: <AxesSubplot:xlabel='RainTomorrow', ylabel='Cloud9am'>


```
In [18]: df.pivot_table(values=['Cloud3pm'], index=['RainTomorrow'], aggfunc='mean
```

```
Out[18]: RainTomorrow
```

No 3.921896 Yes 6.360065

In [19]: sns.boxplot(df['RainTomorrow'], df['Cloud3pm'])

Out[19]: <AxesSubplot:xlabel='RainTomorrow', ylabel='Cloud3pm'>

In [20]: sns.countplot(x='Cloud9am', hue='RainTomorrow', data=df);

In [21]: sns.countplot(x='Cloud3pm', hue='RainTomorrow', data=df);

Вероятность выпадения осадков возрастает с показателем облачности. В последнем графике видно, что если значение Cloud3pm = 8, то вероятность дождя завтра больше чем его отсутсвия.

Зависимость между количеством осадков сегоня и выпадением осадков завтра Находим среднее значение количества осадков

```
In [22]: df['Rainfall'].mean()
Out[22]: 2.360918149917032
In [23]: Rainfall_more_mean = df[df['Rainfall'] >= 2.35326]
len(Rainfall_more_mean)
Out[23]: 24575
```

Находим сколько процентов RainTomorrow = Yes при Rainfall больше либо равному среднему значению


```
Rainfall less mean = df[df['Rainfall'] < 2.35326]</pre>
In [26]:
          len(Rainfall less mean)
Out[26]: 117624
          print(int(round(Rainfall less mean[Rainfall less mean['RainTomorrow'] ==
In [27]:
                                      ].RainToday.count() / len(Rainfall less mean)
         16 %
          Rainfall more 5 = df[df['Rainfall'] >= 5]
In [28]:
          len(Rainfall more 5)
Out[28]: 16561
          print(int(round(Rainfall more 5[Rainfall more 5['RainTomorrow'] == 'Yes'
In [29]:
                                      ].RainToday.count() / len(Rainfall more 5) *
         54 %
         Rainfall more 10 = df[df['Rainfall'] >= 10]
In [30]:
          len(Rainfall more 10)
Out[30]: 9455
In [31]: print(int(round(Rainfall_more_10[Rainfall_more_10['RainTomorrow'] == 'Ye
                                      ].RainToday.count() / len(Rainfall more 10) *
          58 %
         Rainfall more 50 = df[df['Rainfall'] >= 50]
In [32]:
          len(Rainfall more 50)
Out[32]: 808
In [33]: print(int(round(Rainfall_more_50[Rainfall_more_50['RainTomorrow'] == 'Ye
                                      ].RainToday.count() / len(Rainfall_more_50) *
         73 %
In [34]: Rainfall_more_100 = df[df['Rainfall'] >= 100]
          len(Rainfall_more_100)
Out[34]: 151
In [35]: print(int(round(Rainfall_more_100[Rainfall more 100['RainTomorrow'] == ''
                                      ].RainToday.count() / len(Rainfall more 100)
         74 %
         С увеличением количества выпавших осадков увеличевается и вероятность дождя
         завтра, однако при заначении Rainfall > 50 увеличивается не значительно.
          sns.countplot(x='RainToday', hue='RainTomorrow', data=df);
In [36]:
```


Если сегодня не было дождя, то велика вероятность, что его не будет завтра. Если же дождь сегодня был, то вероятность выпадения осадков завтра примерно равна(вероятность того, что дождя завтра не будет немного больше).

Уберём столбцы Date, Location, WindGustSpeed , WindSpeed9am, WindSpeed3pm, WindGustDir, WindDir9am, WindDir3pm - не имеют сильного влияния на RainTomorrow. Во многих столбцах присутствуют пропущенные значения, заменим их самым часто встречающимся значением. Также в столбцах RainToday и RainTomorrow заменим No на 0, Yes на 1.

```
In [40]: plt.figure(figsize=(10, 10))
    sns.heatmap(df1.corr());
```


In []: