Enhancing lifetime of Phase Change Memory by write variation-aware address remapping MTP Phase-II Presentation

Deep Bhuinya (204101021) Supervisor: Prof. Hemangee K. Kapoor

CSE Department, IIT Guwahati

May 19, 2022

- DRAM Drawback
- Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- 2 Non-Volatile Technology
- 3 Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- 2 Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- 2 Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- 2 Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- DRAM Drawback
- Non-Volatile Technology
- Key Challenges
- 4 State-of-the-art Wear Leveling Algorithms
- Proposed Method
- 6 Evaluation
- Conclusion & Future Work

- As much Leakage energy as Dynamic Energy
 - Nearly 40% in a mid-level IBM eServer^a
- No way to scale down DRAM below 22nm^b

^aCharles Lefurgy et al. "Energy Management for Commercial Servers". In: *Computer* (2003).

b"The ITRS report 2009". In: http://www.itrs2.net/(2009).

- As much Leakage energy as Dynamic Energy
 - Nearly 40% in a mid-level IBM eServer
- No way to scale down DRAM below 22nm^b

^aCharles Lefurgy et al. "Energy Management for Commercial Servers". In: *Computer* (2003).

b"The ITRS report 2009". In: http://www.itrs2.net/(2009).

- As much Leakage energy as Dynamic Energy
 - Nearly 40% in a mid-level IBM eServer^a
- No way to scale down DRAM below 22nm^b

^aCharles Lefurgy et al. "Energy Management for Commercial Servers". In: *Computer* (2003).

^b "The ITRS report 2009". In: http://www.itrs2.net/(2009).

- As much Leakage energy as Dynamic Energy
 - Nearly 40% in a mid-level IBM eServer^a
- No way to scale down DRAM below 22nm^b

```
b "The ITRS report 2009". In:
http://www.itrs2.net/(2009).
```

^aCharles Lefurgy et al. "Energy Management for Commercial Servers". In: *Computer* (2003).

- NAND Flash
- STT-RAM
- PCIV

- NAND Flash
- STT-RAM
- PCIV

- NAND Flash
- STT-RAM
- PCIV

- NAND Flash
- STT-RAM
- PCM

Exceptionally low leakage energy

- NAND Flash
- STT-RAM
- PCM

PCM: Among the best

High lifetime (than NAND Flash) Scalability High density

Key Challenges

- ullet Low Lifetime: $(10^6 \sim 10^8)$ vs 10^{16}
- High write energy consumption and longer access time: Due to the nature of Phase Change Material
- Write Disturbance: Heat produced by a write to one PCM cell may alter the value stored in nearby cells

Key Challenges

- ullet Low Lifetime: $(10^6 \sim 10^8)$ vs 10^{16}
- High write energy consumption and longer access time: Due to the nature of Phase Change Material
- Write Disturbance: Heat produced by a write to one PCM cell may alter the value stored in nearby cells

Key Challenges

- ullet Low Lifetime: $(10^6 \sim 10^8)$ vs 10^{16}
- High write energy consumption and longer access time: Due to the nature of Phase Change Material
- Write Disturbance: Heat produced by a write to one PCM cell may alter the value stored in nearby cells

Industry Manufacturing

Intel, STMicroelectronics, Samsung, IBM, Western Digit, Micron. . .

Industry Manufacturing

Intel, STMicroelectronics, Samsung, IBM, Western Digit, Micron. . .

Figure: Intel Optane Memory 16GB PCIe M.2

- Write Reduction
- Wear Leveling
 - Segment Swapping
 - Start-Gap²
 - Security Refresh³

Technology". In: Proceedings of the 36th Annual International Symposium on Computer Architecture. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

- Write Reduction
- Wear Leveling
 - Segment Swapping
 - Start-Gap
 - Security Refresh³

Technology". In: Proceedings of the 36th Annual International Symposium on Computer Architecture. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

- Write Reduction
- Wear Leveling
 - Segment Swapping
 - Start-Gap
 - Security Refresh³

Technology". In: Proceedings of the 36th Annual International Symposium on Computer Architecture. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

- Write Reduction
- Wear Leveling
 - Segment Swapping¹
 - Start-Gap²
 - Security Refresh³

¹Ping Zhou et al. "A Durable and Energy Efficient Main Memory Using Phase Change Memory Technology". In: *Proceedings of the 36th Annual International Symposium on Computer Architecture*. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

- Write Reduction
- Wear Leveling
 - Segment Swapping¹
 - Start-Gap²
 - Security Refresh³

¹Ping Zhou et al. "A Durable and Energy Efficient Main Memory Using Phase Change Memory Technology". In: *Proceedings of the 36th Annual International Symposium on Computer Architecture*. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

- Write Reduction
- Wear Leveling
 - Segment Swapping¹
 - Start-Gap²
 - Security Refresh³

¹Ping Zhou et al. "A Durable and Energy Efficient Main Memory Using Phase Change Memory Technology". In: *Proceedings of the 36th Annual International Symposium on Computer Architecture*. 2009.

²Moinuddin K. Qureshi et al. "Enhancing Lifetime and Security of PCM-Based Main Memory with Start-Gap Wear Leveling". In: *Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture.* 2009.

³Nak Hee Seong, Dong Hyuk Woo, and Hsien-Hsin S. Lee. "Security Refresh: Prevent Malicious Wear-out and Increase Durability for Phase-Change Memory with Dynamically Randomized Address Mapping". In: *Proceedings of the 37th Annual International Symposium on Computer Architecture*. 2010.

Segment Swapping

Start-Gap

Security Refresh

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

- Memory space is divided in banks
- Banks are further divided into segments
- Maintain two sets high and low for every segment
- Initially all addresses are considered as low
- A write counter for each address is maintained
- Whenever the write count of an address reaches ADDTHRSLD, it is moved to high set

A write counter for each bank is maintained

- Whenever the write count of a bank reaches THRSLD, it will go through a complete address mapping round for all of its segments
- For each segment, whatever the high addresses accumulated till that point, mapped to any random low addresses of the same segment
- Once again, all the addresses of that segment will be considered as low
- Write count for all the addresses of that segment will be reset to 0

- A write counter for each bank is maintained
- Whenever the write count of a bank reaches THRSLD, it will go through a complete address mapping round for all of its segments
- For each segment, whatever the high addresses accumulated till that point, mapped to any random low addresses of the same segment
- Once again, all the addresses of that segment will be considered as low
- Write count for all the addresses of that segment will be reset to 0

- A write counter for each bank is maintained
- Whenever the write count of a bank reaches THRSLD, it will go through a complete address mapping round for all of its segments
- For each segment, whatever the high addresses accumulated till that point, mapped to any random low addresses of the same segment
- Once again, all the addresses of that segment will be considered as low
- Write count for all the addresses of that segment will be reset to 0

- A write counter for each bank is maintained
- Whenever the write count of a bank reaches THRSLD, it will go through a complete address mapping round for all of its segments
- For each segment, whatever the high addresses accumulated till that point, mapped to any random low addresses of the same segment
- Once again, all the addresses of that segment will be considered as low
- Write count for all the addresses of that segment will be reset to 0

- A write counter for each bank is maintained
- Whenever the write count of a bank reaches THRSLD, it will go through a complete address mapping round for all of its segments
- For each segment, whatever the high addresses accumulated till that point, mapped to any random low addresses of the same segment
- Once again, all the addresses of that segment will be considered as low
- Write count for all the addresses of that segment will be reset to 0

Address Remapping

(1,5)

1 5 5 1

Address Remapping

(1,5)

Swap(M[2], M[4])

Address Remapping

(1,5)

Swap(M[5], M[10])

Address Remapping

(1,5)

Address Remapping

(1,5)

Address Remapping

(1,5), (2,4), (5,10) (1,5), (2,4), (5,10), (7,2)(1,5), (2,4), (5,10), (7,2), (7,5) (1,5)(1,5), (2,4)5 (5) 10 5 10 Swap(M[2], M[4]) 2 27 10 7.5 Swap(M[5], M[10]) 10 5.7 Swap(M[7], M[2])

(1,5), (2,4), (5,10), (7,2), (7,5)

Swap(M[7], M[5])

Address Translation

Address Translation

(1,5), (2,4), (5,10), (7,2), (7,5)

Table: System Parameters

Components	Parameters				
Processor	ALPHA				
L1 Cache	Private, 32 kB SRAM split I/D caches, 2-way associative, 64 B block				
L2 Cache	Private, 512 kB SRAM, 64 B block, 8-way associative				
Main Memory	PCM: 4 GB, Memory Controller: FRFCFS				
Memory Latency	PCM:: Row hit (read miss, write miss) = 40 (120, 150) ns				
	DRAM:: Row hit (miss) = 40 (80) ns				

- Gem5 full system simulator + NVMain to generate the memory traces
- In-house simulator for better flexibility
- Benchmarks: SPEC2006

- Gem5 full system simulator + NVMain to generate the memory traces
- In-house simulator for better flexibility
- Benchmarks: SPEC2006

- Gem5 full system simulator + NVMain to generate the memory traces
- In-house simulator for better flexibility
- Benchmarks: SPEC2006

Lifetime Improvement

Formula 1

$$LI = \frac{maximumWriteCount_{base}}{maximumWriteCount_{proposed}}$$

Lifetime Improvement

Formula 1

$$LI = \frac{\textit{maximumWriteCount}_{\textit{base}}}{\textit{maximumWriteCount}_{\textit{proposed}}}$$

Formula 2

$$LI = rac{AvgWrite_{base} * (1 + IntraV_{base})}{AvgWrite_{proposed} * (1 + IntraV_{proposed})}$$

IntraV is the coefficient of variation of writes in a bank

$$IntraV = \frac{\sqrt{\frac{\sum_{i=0}^{N} (AvgWrite - W_i)^2}{N-1}}}{AvgWrite}$$

and, AvgWrite is the average number of writes in a bank

Lifetime Improvement

Total Energy Consumption

- Read, Write: 0.2*nJ/bit*, 1*nJ/bit*
- $\bullet \ \frac{\textit{E}_{SR}-\textit{E}_{Base}}{\textit{E}_{Base}}*100\%, \frac{\textit{E}_{Proposed}-\textit{E}_{Base}}{\textit{E}_{Base}}*100\%$

Total Energy Consumption

Table: Total number of reads and writes

	bzip2	mcf	leslie3d	sjeng	calculix	milc	soplex
Baseline	355489	454235	113789	185170	2476284	82421	3967
Proposed	434893	536667	140429	228490	2994624	101621	4439
SR	11725985	14986843	3751037	6099794	81709308	2703861	118655

 $\frac{\textit{OverheadWrite}}{\textit{TotalWrite}}*100\%$

Sensitivity Analysis of ADDTHRSLD

- Lifetime improves till 8
- Lower the ADDTHRSLD, higher the swap overhead
- We choose 8

DRAM Drawback

- Introduced Non-volatile memories, PCM: Best candidate to replace DRAN
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addressess
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
- Based on the write counts of addresses
 - Only between high and low addressess
 - A delicated the first and the delicated the
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
- Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

- DRAM Drawback
- Introduced Non-volatile memories, PCM: Best candidate to replace DRAM
- State-of-the-art wear leveling algorithms
- Write variation-aware address remapping
 - Based on the write counts of addresses
 - Only between high and low addresses
 - Achieved 1.65 times better lifetime than SR with just 10.21% write overhead
- MLC PCM
 - Increased device capacity
 - Decreased Cell Endurance

Thank You!

Open to questions now