

Universidad Don Bosco

Departamento de Ciencias Básicas

Ciclo 02 – 2021

Semana 14

Electricidad y Magnetismo

UNIDAD VI: INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS CA.

6.1 Ley de inducción de Faraday y ley de Lenz.

- 6.1.1 Experimentos de Faraday y Henry.
- 6.1.2 Enunciado de la ley de Faraday.
- 6.1.3 Enunciado de la ley de Lenz.

6.2 Fems de movimiento.

- 6.2.1 En barra conductora.
- 6.2.2 En circuitos de área variable.

a) Un imán fijo NO induce una

Todas estas acciones inducen una corriente en la bobina. ¿Qué tienen en común?*

* Provocan que cambie el campo magnético a través de la bobina.

El elemento común en todos estos experimentos es el flujo magnético variable φ_B

Flujo Magnético.

Flujo magnético a través de un elemento del área \overrightarrow{dA} :

$$d\Phi_B = \vec{B} \cdot d\vec{A} = B_{\perp} dA = B dA \cos \phi$$

$$\Phi_B = \int \vec{B} \cdot d\vec{A} = \int B \, dA \cos \phi$$

$$\Phi_B = \vec{B} \cdot \vec{A} = BA \cos \phi$$

Campo magnético uniforme en un área plana.

Ley de Faraday.

La fem inducida en un circuito cerrado es igual al negativo de la razón de cambio en el tiempo del flujo magnético a través del circuito

$$\mathcal{E} = -\frac{d\Phi_B}{dt}$$

- La dirección de la fem inducida depende de si el flujo aumenta o disminuye. Si el flujo es constante, no hay fem inducida.
- Si una bobina construida de N espiras, con la misma área y φ_B es el flujo magnético a través de una espira, se induce una fem en todas las espiras.

$$\mathbf{\mathcal{E}} = -N \frac{d\Phi_B}{dt}$$

Ley de Lenz.

La dirección de cualquier efecto de la inducción magnética es la que se opone a la causa del efecto.

Una fem puede ser inducida en el circuito de varias formas:

- ✓ La magnitud de B cambia con el tiempo.
- ✓ El área encerrada por la espira cambia con el tiempo.
- El ángulo existente entre B y la normal a la espira puede cambiar con el tiempo.
- Cualquier combinación puede presentarse de lo anterior.

FEM en Movimiento.

 Fem de movimiento: es la fem inducida en un conductor en movimiento a través de un campo magnético constante.

CUIDADO: Se mantiene una diferencia de potencial entre los extremos del conductor siempre que éste <u>se</u> siga moviendo a través del campo magnético uniforme

FEM en Movimiento: Varilla Conductora.

$$\varepsilon_{ind} = \Delta V = Blv$$

Si se invierte la dirección del movimiento, también se invierte la polaridad de la diferencia de potencial

FEM en Movimiento: Barra Giratoria.

$$d\mathbf{\mathcal{E}} = Bv dr$$

$$\varepsilon_{ind} = \Delta V = \frac{B\omega l^2}{2}$$

Si se invierte la dirección del movimiento, también se invierte la polaridad de la diferencia de potencial

FEM en circuitos de área variable.

$$\mathcal{E}_{ind} = Blv$$

$$I = \frac{Blv}{R}$$

$$F_{aplicada} = \frac{B^2 l^2 v}{R}$$

$$P_R = \frac{B^2 l^2 v^2}{R}$$
ENERGIA DISIPADA POR EL RESISTOR