mod 2 cohomology of EM spaces (Serve)
(Thm) H'(K(Z/21)2/)= Z/2 [Sqi Sqir(u)]
where $\rightarrow u$ is a generator of $H^n(K(\mathbb{Z}_n), \mathbb{Z}/2) = \mathbb{Z}/2$ $\rightarrow i_1 - i_2 - \cdots - i_r < n$ Sonly $\mathbb{T}_n = \mathbb{Z}/2$
Why care?
COHOMOLOGY OPERATIONS
-Unstable: Hn(X; G) bx Hn+B(X;H) natural in X
Nat (Hn (-, G), Hn+8 (-, H) = Nat ([-, K(C,n)], Hn+8 (-, +
Nat (Hn (-, G), Hn+8 (-, H) ~ Nat ([-, K(C,n)], Hn+8 (-, +) coh. ope. Nat desg ~ Hn+8 (K(G,n), H)
lim (> Hn+8+1 (K(G,n+1), H) -> Hn+4 (K(G,n),H) ->
- Stable: Hn(X; G) bn Hn+8(X, H) commuting w/suspension lim (> Hn+8+1(K(G,n+1), H) -> Hn+4(K(G,n),H) -> ? Frev dentitle HN+46(K(G,N),H), N> q

Dell An iterated Steenrod square is a composite solite
Squi o o Squr =: Sq ¹ .; Sq ¹ Sq ² Sq ¹
This is admissible if in 2 2in 593592 x
The excess of an admissible SqI is the number
$e(I) = i_1 - i_2 - \dots - i_r Sq^5 F_e^2 Sq' \rightarrow e(I) = 2$
$= (i_1 - 2i_2) + (i_2 - 2i_3) + \dots + (i_{r-1} - 2i_r) + i_r \ge 0$
We can understand the statement of the theorem: etrocosgo
Thm HO(K(Z/2, N, Z/2) = Z/2[Sq ^I (u)] _Z/2(Huronicz)
where (u is a gonorator of Hn(k(Z/2,n), Z/2)
SqJ(u) . I ranges over admissible sequences EHimmir +n (KIDAM) with e(I) <n< td=""></n<>
EHIMMIC WITH e(I) <n< td=""></n<>
2) TRANSGRESSION IN THE SEPRE S.S.

A Bibration F >> B;

Hn(B) -> Hn(F)

The transgression will be a portally defined map

C E Hn(F) -> Hn(B)/~

defined through the Serre spectral sequence
of the Bibration.

Suppose that E2= HP(B)& HB(F)

HM(F) We turn the page by taking cohomology EP,B = Ker d/im d H3(F) H2(F) H(H) H'(B) H2(B) H3(B) H4 P As we turn the pages, we occasionally reach the Hall N=0

Ey so This is the transgre

To the y-to the x-axis.

This is the transgre

The y-to the x-axis.

This is the transgreence of the transgr "last" differential from (This is the transgression.) We want to understand the domain/codomain of T: - DOMAIN: there is no image in Kord/ind, so to turn

the page is to take kernels. XEEz is transgressive if d3 x= ...=dn-x=0.

- CODOMAIN: everything is in the Kernel in Kerdlind, so to turn Le the page is to take a quotient HM(B)/imd.

(Lef) The image of a transgressive XEHMF) is any yEZ(X).

+ Hn+1(B)/Dimd.

A C: { + on sq ressive} elanaris}

Fact IB x transgresses to y, then sixing

Sq. i(x) is transgressive

it transgresses to Sq. i(y).

(this is true for any stable operation)

3) BOREL'S THM & H'(K(Z/2,n), Z/2)

De A simple system of generators for a graded algebra is a list x_1, x_2, \dots ob generators s.t.

- each xi is homogeneous

. He products x_{i1} * x_{i2} * ... * x_{ir} , i1 < ... (ir form a basis

a, naz, aznaznasjetc.

e.g. $\Lambda[a_1,...,a_n] \rightarrow \{a_1,...,a_n\}$ is a simple system of generators $\{x_1x_1^2,x_1^4,...\}$ "

K[y11...12,] > { yi,yi,yi,...}

Jhm (Borel Let F->X->B be a libration s.t.	6
- E2 = HP(B) & HB(F) 0.9. TI, 18/=0	
$\times = 1$	
-H'(F; Z/2)=0 -H'(F; Z/2) has a simple of transgressive gonerators (xi) Suppose that the xi transgress to yi.	
Suppose that the xi transgress to yi.	
Then H*(B; Z/2) = Z/2[y1,y2,).	
—11——	
(Cor) H*(K(Z/2,2))= Z/2[u, Sqllal, Sq2. Sqllal, Sq2. Sqllal,]
PR fibration K(Z/2,1) -> Port >> K(Z/2,2)	
RPO ~ HO(RPO, ZA)=ZA[X)	
Claimi the simple system x, x2 fix x is transgrossive.	
y, Sq'(g), Sq' Sq' (y),	
H2(K(Z/2,2)) Borel -3 Z/2 [y 59/14) 152 59/14)	ان]
=7/2	

$$\mathbb{C}^{p_{\infty}}: \mathbb{K}(\mathbb{Z}^{1}) \longrightarrow \mathbb{K}(\mathbb{Z}^{1})$$

