

MongoDB Administrator Training

MongoDB Administrator Training

Release 3.0

MongoDB, Inc.

June 11, 2015

Contents

Introd	duction	14
1.1 V	Warm Up Introductions Getting to Know You MongoDB Experience 10gen Origin of MongoDB	14 14 14 15 15
1.2 N	MongoDB Overview . Learning Objectives . MongoDB is a Document Database . An Example MongoDB Document . Vertical Scaling . Scaling with MongoDB . Database Landscape . MongoDB Deployment Models .	16 16 16 17 17 18 19
1.3 N	MongoDB Stores Documents Learning Objectives JSON A Simple JSON Object JSON Keys and Values Example Field Values BSON BSON Hello World A More Complex BSON Example Documents, Collections, and Databases The _id Field ObjectIds	19 19 20 20 21 21 22 22 23 23
1.4 \$	Storage Engines . Learning Objectives . What is a Database Storage Engine? . How Storage Engines Affect Performance . Storage Engine Journaling . MongoDB Storage Engines . Specifying a MongoDB Storage Engine . Specifying a Location to Store Data Files .	23 24 24 25 25 25 25

	1.5	Exercis	Power of 2 Sizes Allocation Strategy	26 26 27 27 28 28 28 29 29 30 30
			Installing MongoDB Linux Setup Install on Windows Create a Data Directory on Windows Launch a mongod The MongoDB Data Directory (MMAPv1) The MongoDB Data Directory (WiredTiger) Import Exercise Data Launch a Mongo Shell Explore Databases Exploring Collections	31 31 32 32 33 33 34 35 35
2	CRU	JD	3	36
	2.1	Creatin	Inserts will fail if Example: Inserts will fail if Bulk Inserts Ordered Bulk Insert Example: Ordered Bulk Insert Unordered Bulk Insert Example: Unordered Bulk Insert The Shell is a JavaScript Interpreter Exercise: Creating Data in the Shell Deleting Documents Using remove() Example: Removing Documents Dropping a Collection Example: Dropping a Collection	36 36 37

	Example: Dropping a Database	43
2.2	Reading Documents	43
		43
		44
		44
		44
		45
		45
		45
	, , ,	46
		46
		47
	Projections	47
	Projection: Example (Setup)	
	Projection: Example	47
	,	48
	ı ,	48
		48
		49
		49
	Cursor Methods	50
	Example: Using count()	50
	Example: Using sort()	50
	The skip() Method	51
	The limit () Method	51
	The distinct() Method	51
	Example: Using distinct()	52
2.3		52
	Learning Objectives	52
	Comparison Query Operators	53
	Example: Comparison Operators (Setup)	53
	Example: Comparison Operators	54
	Logical Query Operators	54
		54
	Example: Logical Operators	55
	Element Query Operators	55
	Example: Element Operators	55
	Array Query Operators	56
	Example: Array Operators	56
	Example: \$elemMatch	56
	Example: veletiliviateli	50
2 /	Lab: Finding Documents	57
۷.٦	Exercise: Scores < 65	57
	Exercise: Exams and Quizzes	57
	Exercise: Highest Quiz Score	57
		57
	Exercise: View Count > 1000	
	Exercise: Television or Videos	58
	Exercise: News or Images	58
0.5	Undation Decuments	EO
2.5	Updating Documents	58
	Learning Objectives	58
	The update() Method	59
	Parameters to update()	59

		\$set and \$unset 59
		Example: \$set and \$unset (Setup)
		Example: \$set and \$unset
		Update Operators
		Example: Update Operators
		update() Defaults to one Document
		Updating Multiple Documents
		Example: Multi-Update
		Array Operators
		Example: Array Operators
		The Positional \$ Operator
		Example: The Positional \$ Operator
		Upserts
		Upsert Mechanics
		Example: Upserts
		save() 66
		Example: save() 66
		Be Careful with save ()
		findAndModify()
		findAndModify() Example 67
	2.6	Lab: Updating Documents
		Exercise: Letter Grades
		Exercise: 10 Extra-Credit Points
		Exercise: Updating Array Elements
3	Inde	exes 69
	3.1	Index Fundamentals
		Learning Objectives
		Why Indexes?
		Types of Indexes
		Exercise: Using explain() 70
		Results of explain() 70
		Results of explain() - Continued
		explain() Verbosity Can Be Adjusted
		explain("executionStats")
		explain("executionStats") - Continued
		explain("executionStats") Output
		db. <collection>.explain()</collection>
		Using explain() for Write Operations
		Single-Field Indexes
		Creating an Index
		Listing Indexes
		Listing Indexes
		Indexes and Read/Write Performance
		Index Limitations
		Use Indexes with Care
		Additional Index Options
		Sparse Indexes in MongoDB
		Defining Unique Indexes
		Building Indexes in the Background
		3 3 3 3

	Additional Index Options	
	Sparse Indexes in MongoDB	
	Defining Unique Indexes	
	Building Indexes in the Background	77
3.2	Compound Indexes	
	0 ,	78
		78
		78
		79
		79
		79
	· ·	80
		80
		80
	±	81
	· ·	81
	2	81
		82
		82
		82
		83
		83
		84
	Exercise: Covered Queries	84
0.0	M. 181 - Taile and	0.5
3.3	Multikey Indexes	
	Learning Objectives	
		85
		85
		86
		86
		87
		87
	,	87
		88
		88
	Limitations on Multikey Indexes	88
	Example: Multikey Indexes on Multiple Fields	89
3.4		89
	Learning Objectives	89
	What is a Hashed Index?	89
	Why Hashed Indexes?	90
	Limitations	90
	Floating Point Numbers	90
	Creating a Hashed Index	91
3.5	Geospatial Indexes	91
	Learning Objectives	91
	Introduction to Geospatial Indexes	91
	Easiest to Start with 2 Dimensions	92
	Location Field	92
	Find Nearby Documents	92

	Flat Goospatial Index	93 93
	· · · · · · · · · · · · · · · · · · ·	93 93
		93 94
		94 94
		94 94
		95
	9	95 95
		95 95
		95 96
		96 96
		96 96
		90 97
	1 71 1 7	91 97
	70	91 98
	71 1 7	
		98
	3 9 , ()	98
		99
		99
	Querying 2dsphere Objects	99
0 0		
3.6	TTL Indexes	
	Learning Objectives	
	TTL Index Basics	
	Creating a TTL Index	
	Exercise: Creating a TTL Index	
	Exercise: Check the Collection)1
27	Text Indexes	11
3.7	Learning Objectives	
	What is a Text Index?	
	Creating a Text Index	
	Exercise: Creating a Text Index	
	Creating a Text Index with Weighted Fields	
	Creating a Text Index with Weighted Fields	
	Text Indexes are Similar to Multikey Indexes	
	Exercise: Inserting Texts	
	Querying a Text Index	
	Exercise: Querying a Text Index	
	Exercise: Querying Using Two Words	
	Search for a Phrase	
	Text Search Score)5
2.0	Lahi Building and Evamining Indoves	٦.
3.0	Lab: Building and Examining Indexes	
	Exercise: Avoiding an In-Memory Sort	
	Exercise: Avoiding an In-Memory Sort, 2	
	Exercise: Determine Indexes Needed	
	Exercise: explain("executionStats")10) /
Rep	ica Sets 10)8
/ ·1	Introduction to Replica Sets	าด
4.1	Learning Objectives	
	Ecartiilu Obiectives	1()

	Use Cases for Replication108High Availability (HA)109Disaster Recovery (DR)109Functional Segregation109Large Replica Sets110Replication is Not Designed for Scaling110Replica Sets110Primary Server111Secondaries111Heartbeats111The Oplog112
4.2	Elections in Replica Sets 112 Learning Objectives 112 Members and Votes 112 Calling Elections 113 Selecting a New Primary 113 Priority 113 Optime 114 Connections 114 When will a primary step down? 114 replSetStepDown Behavior 115 Exercise: Elections in Failover Scenarios 115 Scenario A: 3 Data Nodes in 1 DC 115 Scenario B: 3 Data Nodes in 2 DCs 116 Scenario C: 4 Data Nodes in 2 DCs 116 Scenario E: 3 Data Nodes in 3 DCs 117 Scenario F: 5 Data Nodes in 3 DCs 117 Scenario F: 5 Data Nodes in 3 DCs 117
4.3	Replica Set Roles and Configuration118Learning Objectives118Example: A Five-Member Replica Set Configuration118Configuration118Principal Data Center119Data Center 2119What about dc1-3 and dc2-2?119What about dc2-2?119
4.4	The Oplog: Statement Based Replication 120 Learning Objectives 120 Binary Replication 120 Tradeoffs 121 Statement-Based Replication 121 Example 121 Replication Based on the Oplog 122 Create a Replica Set 122 Start the Replica Set 123 Status Check 123 Connect to the Primary 123 Create some Inventory Data 124 Perform an Update 124 View the Oplog 124

	Operations in the Oplog are Idempoter The Oplog Window	 	 	 	 	 		 	125
4.5	Write Concern	 	 	 	 	 		 	126
	Learning Objectives								
	What happens to the write?								
	Answer								
	Balancing Durability with Performance								
	Defining Write Concern								
	Write Concern: { w : 1 }								
	Example: { w : 1 }								
	Write Concern: { w : 2 }								
	Example : { w : 2 }								
	Other Write Concerns								
	Write Concern: { w : "majority'								
	<pre>Example: { w : "majority" } .</pre>								
	Quiz: Which write concern?								
	Further Reading	 	 	 	 	 		 	130
4.6	Read Preference								
	What is Read Preference?								
	Use Cases								
	Not for Scaling								
	Read Preference Modes								
	Tag Sets	 	 	 	 	 		 	132
4 7	E contra Collina de Boolina Col								400
4.7	Exercise: Setting up a Replica Set								
	Overview								
	Create Data Directories								
	Launch Each Member								
	Status								
	Connect to a MongoDB Instance								
	Configure the Replica Set								
	Problems That May Occur When Initia								
	Write to the Primary								
	Read from a Secondary								
	Review the Oplog								
	Changing Replica Set Configuration .								
	Verifying Configuration Change								
	Further Reading	 	 	 	 	 	•	 •	137
Sha	rding								138
5.1	Introduction to Sharding								138
0.1	Learning Objectives								
	Contrast with Replication								
	Sharding is Concerned with Scale								
	Vertical Scaling								
	The Working Set								
	Limitations of Vertical Scaling								
	Sharding Overview								
	A Model that Does Not Scale								
	A Scalable Model								

			Sharding Basics	
			Mongos	
			Config Servers	
			Config Server Hardware Requirements	
			When to Shard	
			Possible Imbalance?	
			Balancing Shards	
			What is a Shard Key?	
			Targeted Query Using Shard Key	
			With a Good Shard Key	
			With a Bad Shard Key	
			Choosing a Shard Key	
			More Specifically	
			Cardinality	
			Non-Monotonic	
			Shards Should be Replica Sets	
			Sharus Should be neplica Sets	F /
	5.2	Palana	ing Shards	10
	5.2	Dalailo		
			Learning Objectives	
			Chunks and the Balancer	
			Chunks in a Newly Sharded Collection	
			Chunk Splits	
			Pre-Splitting Chunks	
			Start of a Balancing Round	
			Balancing is Resource Intensive	
			Chunk Migration Steps	
			Concluding a Balancing Round	υ
	г о	Ola a sal :	Ta wa	- 4
	5.3	Snard	Tags	
			Learning Objectives	
			Tags - Overview	
			Example: DateTime	
			Example: Location	
			Example: Premium Tier	
			Tags - Caveats)2
	_ 4		and Outlier the a Observation Objection	
	5.4	Exercis	se: Setting Up a Sharded Cluster	
			Learning Objectives	
			Our Sharded Cluster	
			Sharded Cluster Configuration	
			Build Our Data Directories	
			Initiate a Replica Set	
			Spin Up a Second Replica Set	
			A Third Replica Set	
			Status Check	
			Launch Config Servers	
			Launch the Mongos Processes	
			Add All Shards	
			Enable Sharding and Shard a Collection	
			Observe What Happens	58
6	Sec	urity	15	59

	6.1	Security
		Learning Objectives
		Overview
		Authentication Options
		Network Exposure Options
		Encryption (SSL)
		Native MongoDB Auth
		Exercise: Create an Admin User, Part 1
		Exercise: Create an Admin User, Part 2
		Using MongoDB Roles
		Exercise: Creating a readWrite User, Part 1
		Exercise: Creating a readWrite User, Part 2
		MongoDB Custom User Roles
_		
7	MMS	& Ops Manager 164
	7.1	NongoDB Management Service (MMS) & Ops Manager
	/.1	Learning Objectives
		MMS and Ops Manager
		Deployment Options
		Architecture
		MMS
		Ops Manager
		MMS and Ops Manager Use Cases
		Creating an MMS Account
	7.2	Automation
		Learning Objectives
		What is Automation?
		How Does Automation Work?
		Automation Agents
		Sample Use Case
		Upgrades Using Automation
		Configuration File
		Automation Goal State
		Demo
		Domo
	7.3	Exercise: Cluster Automation
		Learning Objectives
		MMS Automation Support
		Exercise #1
		Exercise #2
	7.4	Monitoring
		Learning Objectives
		Monitoring in MMS / Ops Manager
		Monitoring Use Cases
		Monitoring Agent
		Agent Security
		Monitoring Demo
		Navigating MMS Charts

7.5 Exercise: Create an Alert 174 Learning Objectives 174 Exercise #1 175 7.6 Backups 175 Methods for Backing Up MongoDB 175 Momer MongoDB Backup Methods 175 MMS / Ops Manager Backups 176 Restoring from MMS / Ops Manager 176 Architecture 176 Architecture / Snapshotting 177 Backup Agent 177 Vhat is the MMS / Ops Manager API? 178 API Documentation 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 179 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 Mongo		Metrics	
Exercise #1	7.5	Exercise: Create an Alert	4
Exercise #1			
Learning Objectives 175 Methods for Backing Up MongoDB 175 Comparing MongoDB Backup Methods 175 MMS / Ops Manager Backups 176 Restoring from MMS / Ops Manager 176 Architecture 176 Snapshotting 177 Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Learning Objectives 179 Using the MMS API 179 Exercise #3 180 Exercise #3 180 Fercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Acrohitecture 181 A		· ,	
Learning Objectives 175 Methods for Backing Up MongoDB 175 Comparing MongoDB Backup Methods 175 MMS / Ops Manager Backups 176 Restoring from MMS / Ops Manager 176 Architecture 176 Snapshotting 177 Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Learning Objectives 179 Using the MMS API 179 Exercise #3 180 Exercise #3 180 Fercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Acrohitecture 181 A	7.6	Backups 179	5
Methods for Backing Up MongoDB 175 Comparing MongoDB Backup Methods 175 MMS / Ops Manager Backups 176 Restoring from MMS / Ops Manager 176 Architecture 176 Snapshotting 177 Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 181 MongoBB Ops Manager 181 Architecture 181 Application Database 182 Backup Daemon Process 183	,		
Comparing MongoDB Backup Methods 175			
MMS / Ops Manager Backups 176 Restoring from MMS / Ops Manager 176 Architecture 176 Snapshotting 177 Backup Agent 177 Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #2 180 Exercise #2 180 Exercise #3 180 Exercise #2 180			
Restoring from MMS / Ops Manager			
Architecture			
Snapshotting 177 Backup Agent 177 Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 </td <td></td> <td></td> <td></td>			
Backup Agent 177 7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Achitecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Ops Manager User Authentication 184 Authenticating Between an Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 18			
7.7 API 177 Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Backup Daemon Process 183 Ops Manager) 183 Learning Objectives 183 Backup Daemon Process 183 Ops Manager Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing			
Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Configuration Management 179 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 Facroise #3 180 Facroise #3 180 Facroise #3 180 Exercise #3 180 Facroise #4 180 Facroise #4 180 Facroise #4 180 Facroise #1 180 Facroise #1 180 Facroise #1 181 A		Backup Agent	/
Learning Objectives 177 What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Configuration Management 179 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 Facroise #3 180 Facroise #3 180 Facroise #3 180 Exercise #3 180 Facroise #4 180 Facroise #4 180 Facroise #4 180 Facroise #1 180 Facroise #1 180 Facroise #1 181 A	7.7	API	7
What is the MMS / Ops Manager API? 178 API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 Exercise #3 180 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Backup Daemon Process 183 Backup Daemon Process 183 Learning Objectives 183 Cops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communicat			
API Documentation 178 Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 Configuration Management 179 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 MongoDB Ops Manager 181 Architecture 181 Architecture 181 Architecture 181 Architecture 181 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Ops Manager User Authentication 184 Authenticating Between an Ops Manager Databases 184 Authenticating Between an Ops Manager Databases 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Sample API Uses Cases 178 Ingest Monitoring Data 178 Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Authentication Gobjectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Exercise #2 185 Ops Manager Groups 185 <td< td=""><td></td><td></td><td></td></td<>			
Ingest Monitoring Data			
Programatically Restore Environments 179 Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Backup Daemon Process 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By			
Configuration Management 179 7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
7.8 Exercise: MMS API 179 Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Learning Objectives 179 Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Autopations 183 Ops Manager 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Using the MMS API 179 Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185	7.8		
Exercise #1 180 Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 T.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Exercise #2 180 Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 T.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Exercise #3 180 7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185		Exercise #1	0
7.9 Architecture (Ops Manager) 180 Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185		Exercise #2	0
Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 To Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185		Exercise #3	0
Learning Objectives 180 MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 To Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185	7 Q	Architecture (One Manager)	Λ
MongoDB Ops Manager 181 Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185	1.5		
Components 181 Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Architecture 181 Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 Backup Daemon Process 183 Cops Manager 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Application Server 182 Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185		·	
Application Database 182 Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Backup Infrastructure 182 Blockstore Database 183 Backup Daemon Process 183 7.10 Security (Ops Manager) 183 Learning Objectives 183 Ops Manager User Authentication 184 Authentication for the Backing Ops Manager Databases 184 Authenticating Between an Ops Manager Agent and Cluster 184 Encrypting Communications 185 Ops Manager Groups 185 User Roles By Group 185			
Blockstore Database			
Backup Daemon Process		· · · · · · · · · · · · · · · · · · ·	
7.10 Security (Ops Manager)			
Learning Objectives183Ops Manager User Authentication184Authentication for the Backing Ops Manager Databases184Authenticating Between an Ops Manager Agent and Cluster184Encrypting Communications185Ops Manager Groups185User Roles By Group185		Backup Daemon Process	3
Learning Objectives183Ops Manager User Authentication184Authentication for the Backing Ops Manager Databases184Authenticating Between an Ops Manager Agent and Cluster184Encrypting Communications185Ops Manager Groups185User Roles By Group185	7.10	Security (Ops Manager)	3
Ops Manager User Authentication184Authentication for the Backing Ops Manager Databases184Authenticating Between an Ops Manager Agent and Cluster184Encrypting Communications185Ops Manager Groups185User Roles By Group185			
Authentication for the Backing Ops Manager Databases			
Authenticating Between an Ops Manager Agent and Cluster			
Encrypting Communications185Ops Manager Groups185User Roles By Group185			
Ops Manager Groups			
User Roles By Group			

	7.11 Exercis	e: Install Ops Manager 186 Learning Objectives 186 Install Ops Manager 186 Install Ops Manager 186 Exercise #1 186 Exercise #2 187 Exercise #3 187 Exercise #4 187 Exercise #5 188				
8	Performand	Performance Troubleshooting 18				
	8.1 Perform	nance Troubleshooting 188 Learning Objectives 188 mongostat and mongotop 188 Exercise: mongostat (setup) 190 Exercise: mongostat (run) 190 Exercise: mongostat (create index) 191 Exercise: mongotop 191 db.currentOp() 192 db.currentOp() 192 db. <collection>.stats() 193 Exercise: Using Collection Stats 193 The Profiler (continued) 194 Exercise: Exploring the Profiler 194 db. serverStatus () 194 Exercise: Using db. serverStatus () 194 Analyzing Profiler Data 195 Performance Improvement Techniques 195 Performance Tips: Write Concern 196 Bulk Operations 196 Exercise: Comparing bulk inserts with mongostat 196 mongostat, bulk inserts with {w: 3} 197 Bulk inserts with {w: 3} 197 Schema Design 198 Shard Key Considerations 198 Indexes and Performance 198</collection>				
9	Backup and	Recovery 200				
	9.1 Backup	and Recovery 200 Disasters Do Happen 200 Human Disasters 201 Terminology: RPO vs. RTO 201 Terminology: DR vs. HA 202 Quiz 202 Backup Options 202 Document Level: mongodump 203 mongodump 203 File System Level 204 Ensure Consistency 204 File System Backups: Pros and Cons 204				

Document Level: mongorestore)5
File System Restores)5
Backup Sharded Cluster)5
Restore Sharded Cluster	26
Tips and Tricks	ე6

1 Introduction

Warm Up (page 14) Activities to get the class started

MongoDB Overview (page 16) MongoDB philosophy and features.

MongoDB Stores Documents (page 19) The structure of data in MongoDB.

Storage Engines (page 23) MongoDB storage engines.

Exercise: Installing MongoDB (page 30) Install mongodb experiment with a few operations.

1.1 Warm Up

Introductions

- Who am I?
- My role at MongoDB
- My background and prior experience

Notes:

Getting to Know You

- Who are you?
- What role do you play in your organization?
- What is your background?
- Do you have prior experience with MongoDB?

MongoDB Experience

- Who has never used MongoDB?
- Who has some experience?
- Who has worked with production MongoDB deployments?
- Who is more of a developer?
- Who is more of operations person?

Notes:

10gen

- MongoDB was initially created in 2008 as part of a hosted application stack.
- The company was originally called 10gen.
- As part of their overarching plan to create the 10gen platform, the company built a database.
- Suddenly everybody said: "I like that! Give me that database!"

Notes:

Origin of MongoDB

- 10gen became a database company.
- In 2013, the company rebranded as MongoDB, Inc.
- The founders have other startups to their credit: DoubleClick, ShopWiki, Gilt.
- The motivation for the database came from observing the following pattern with application development.
 - The user base grows.
 - The associated body of data grows.
 - Eventually the application outgrows the database.
 - Meeting performance requirements becomes difficult.

1.2 MongoDB Overview

Learning Objectives

Upon completing this module students should understand:

- MongoDB vs. relational databases and key/value stores
- · Vertical vs. horizontal scaling
- The role of MongoDB in the development stack
- The structure of documents in MongoDB
- · Array fields
- Embedded documents
- · Fundamentals of BSON

Notes:

MongoDB is a Document Database

Documents are associative arrays like:

- · Python dictionaries
- · Ruby hashes
- PHP arrays
- JSON objects

Notes:

An Example MongoDB Document

A MongoDB document expressed using JSON syntax.

```
"_id" : "/apple-reports-second-quarter-revenue",
"headline" : "Apple Reported Second Quarter Revenue Today",
"date" : ISODate("2015-03-24T22:35:21.908Z"),
"author" : {
    "name" : "Bob Walker",
    "title" : "Lead Business Editor"
},
"copy" : "Apple beat Wall St expectations by reporting ...",
"tags" : [
    "AAPL", "Earnings", "Cupertino"
],
```

```
"comments" : [
    { "name" : "Frank", "comment" : "Great Story" },
    { "name" : "Wendy", "comment" : "When can I buy an Apple Watch?" }
]
}
```

Notes:

Vertical Scaling

Notes:

Scaling with MongoDB

Database Landscape

MongoDB Deployment Models

Notes:

1.3 MongoDB Stores Documents

Learning Objectives

Upon completing this module, students should understand:

- JSON
- BSON basics
- That documents are organized into collections
- ObjectIds
- Padding Factor

JSON

- JavaScript Object Notation
- Objects are associative arrays.
- They are composed of key-value pairs.

Notes:

A Simple JSON Object

```
{
    "firstname" : "Thomas",
    "lastname" : "Smith",
    "age" : 29
}
```

Notes:

JSON Keys and Values

- Keys must be strings.
- Values may be any of the following:
 - string (e.g., "Thomas")
 - number (e.g., 29, 3.7)
 - true / false
 - null
 - array (e.g., [88.5, 91.3, 67.1])
 - object
- More detail at json.org¹.

¹http://json.org/

Example Field Values

```
"headline" : "Apple Reported Second Quarter Revenue Today",
  "date" : ISODate("2015-03-24T22:35:21.908Z"),
  "views" : 1234,
  "author" : {
    "name" : "Bob Walker",
    "title" : "Lead Business Editor"
},
  "tags" : [
    "AAPL",
    23,
    { "name" : "city", "value" : "Cupertino" },
    [ "Electronics", "Computers" ]
}
```

Notes:

BSON

- MongoDB stores data as Binary JSON (BSON).
- MongoDB drivers send and receive data in this format.
- They map BSON to native data structures.
- BSON provides support for all JSON data types and several others.
- BSON was designed to be lightweight, traversable and efficient.
- See bsonspec.org².

²http://bsonspec.org/#/specification

BSON Hello World

Notes:

A More Complex BSON Example

Notes:

Documents, Collections, and Databases

- Documents are stored in collections.
- Collections are contained in a database.
- Example:
 - Database: products
 - Collections: books, movies, music
- Each database-collection combination defines a namespace.
 - products.books
 - products.movies
 - products.music

The _id Field

- All documents must have an _id field.
- The _id is immutable.
- If no _id is specified when a document is inserted, MongoDB will add the _id field.
- MongoDB assigns a unique ObjectId as the value of _id.
- Most drivers will actually create the ObjectId if no _id is specified.
- The _id field is unique to a collection (namespace).

Notes:

ObjectIds

Notes:

1.4 Storage Engines

Learning Objectives

Upon completing this module, students should be familiar with:

- Available storage engines in MongoDB
- MongoDB journaling mechanics
- The default storage engine for MongoDB
- Common storage engine parameters
- The storage engine API

What is a Database Storage Engine?

A database storage engine is the underlying software component that a database management system uses to create, read, update, and delete data from a database.

Notes:

How Storage Engines Affect Performance

- Writing and reading documents
- Concurrency
- Compression algorithms
- Index format and implementation
- · On-disk format

Storage Engine Journaling

- Keep track of all changes made to data files
- Stage writes sequentially before they can be committed to the data files
- Crash recovery, writes from journal can be replayed to data files in the event of a failure

Notes:

MongoDB Storage Engines

With the release of MongoDB 3.0, two storage engine options are available:

- MMAPv1 (default)
- WiredTiger

Notes:

Specifying a MongoDB Storage Engine

 $Use \ the \ \texttt{storageEngine} \ parameter \ to \ specify \ which \ storage \ engine \ MongoDB \ should \ use. \ E.g.,$

mongod --storageEngine wiredTiger

Notes:

Specifying a Location to Store Data Files

ullet Use the dbpath parameter

mongod --dbpath /data/db

- Other files are also stored here. E.g.,
 - mongod.lock file
 - journal
- See the MongoDB docs for a complete list of storage options³.

³http://docs.mongodb.org/manual/reference/program/mongod/#storage-options

Λ	Votes	٠.
Γ	Votes	١.

MMAPv1 Storage Engine

• MMAPv1 is MongoDB's original storage engine and currently the default.

mongod

• This is equivalent to the following command:

mongod --storageEngine mmapv1

- MMAPv1 is based on memory-mapped files, which map data files on disk into virtual memory.
- As of MongoDB 3.0, MMAPv1 supports collection-level concurrency.

Notes:

MMAPv1 Workloads

MMAPv1 excels at workloads where documents do not outgrow their original record size:

- High-volume inserts
- · Read-only workloads
- In-place updates

Notes:

Power of 2 Sizes Allocation Strategy

- MongoDB 3.0 uses power of 2 sizes allocation as the default record allocation strategy for MMAPv1.
- With this strategy, records include the document plus extra space, or padding.
- Each record has a size in bytes that is a power of 2 (e.g. 32, 64, 128, ... 2MB).
- For documents larger than 2MB, allocation is rounded up to the nearest multiple of 2MB.
- This strategy enables MongoDB to efficiently reuse freed records to reduce fragmentation.
- In addition, the added padding gives a document room to grow without requiring a move.
 - Saves the cost of moving a document
 - Results in fewer updates to indexes

Compression in MongoDB

- Compression can significantly reduce the amount of disk space / memory required.
- The tradeoff is that compression requires more CPU.
- MMAPv1 does not support compression.
- · WiredTiger does.

Notes:

WiredTiger Storage Engine

- The WiredTiger storage engine excels at all workloads, especially write-heavy and update-heavy workloads.
- Notable features of the WiredTiger storage engine that do not exist in the MMAPv1 storage engine include:
 - Compression
 - Document-level concurrency
- Specify the use of the WiredTiger storage engine as follows.

mongod --storageEngine wiredTiger

Notes:

WiredTiger Compression Options

- snappy (default): less CPU usage than zlib, less reduction in data size
- zlib: greater CPU usage than snappy, greater reduction in data size
- · no compression

Configuring Compression in WiredTiger

Use the wiredTigerCollectionBlockCompressor parameter. E.g.,

```
mongod --storageEngine wiredTiger
    --wiredTigerCollectionBlockCompressor zlib
```

Notes:

Configuring Memory Usage in WiredTiger

Use the wiredTigerCacheSize parameter to designate the amount of RAM for the WiredTiger storage engine.

- By default, this value is set to the maximum of half of physical RAM or 1GB
- If the database server shares a machine with an application server, it is now easier to designate the amount of RAM the database server can use

Notes:

Journaling in MMAPv1 vs. WiredTiger

- MMAPv1 uses write-ahead journaling to ensure consistency.
- WiredTiger uses a write-ahead transaction log in combination with checkpoints to ensure durability.
- With WiredTiger, the replication process may provide sufficient durability guarantees.

MMMAPv1 Journaling Mechanics

- Journal files in <DATA-DIR>/journal are append only
- 1GB per journal file
- Once MongoDB applies all write operations from a journal file to the database data files, it deletes the journal file (or re-uses it)
- Usually only a few journal files in the <DATA-DIR>/journal directory

MMAPv1 Journaling Mechanics (Continued)

- Data is flushed from the shared view to data files every 60 seconds (configurable)
- The operating system may force a flush at a higher frequency than 60 seconds if the system is low on free memory
- Once a journal file contains only flushed writes, it is no longer needed for recovery and can be deleted or re-used

Notes:

WiredTiger Journaling Mechanics

- WiredTiger will commit a checkpoint to disk every 60 seconds or when there are 2 gigabytes of data to write.
- Between and during checkpoints the data files are always valid.
- The WiredTiger journal persists all data modifications between checkpoints.
- If MongoDB exits between checkpoints, it uses the journal to replay all data modified since the last checkpoint.
- By default, WiredTiger journal is compressed using snappy.

Storage Engine API

MongoDB 3.0 introduced a storage engine API:

- · Abstracted storage engine functionality in the code base
- Easier for MongoDB to develop future storage engines
- Easier for third parties to develop their own MongoDB storage engines

Conclusion

- MongoDB 3.0 introduces pluggable storage engines.
- Current options include:
 - MMAPv1 (default)
 - WiredTiger
- WiredTiger introduces the following to MongoDB:
 - Compression
 - Document-level concurrency
- The storage engine API enables third parties to develop storage engines. Examples include:
 - RocksDB
 - An HDFS storage engine

Notes:

1.5 Exercise: Installing MongoDB

Learning Objectives

Upon completing this exercise students should understand:

- How MongoDB is distributed
- How to install MongoDB
- Configuration steps for setting up a simple MongoDB deployment
- How to run MongoDB
- How to run the Mongo shell

Production Releases

64-bit production releases of MongoDB are available for the following platforms.

- Windows
- OSX
- Linux
- Solaris

Notes:

Installing MongoDB

- Visit http://docs.mongodb.org/manual/installation/. Click on the appropriate link, such as "Install on Windows" or "Install on OS X" and follow the instructions there.
- Versions:
 - Even-numbered builds are production releases, e.g., 2.4.x, 2.6.x.
 - Odd-numbers indicate development releases, e.g., 2.5.x, 2.7.x.

Notes:

Linux Setup

```
PATH=$PATH:<path to mongodb>/bin
sudo mkdir -p /data/db
sudo chmod -R 777 /data/db
```

Install on Windows

- Download and run the .msi Windows installer from mongodb.org/downloads.
- By default, binaries will be placed in the following directory.

```
C:\Program Files\MongoDB\Server\<VERSION>\bin
```

- It is helpful to add the location of the MongoDB binaries to your path.
- To do this, from "System Properties" select "Advanced" then "Environment Variables"

Notes:

Create a Data Directory on Windows

- Ensure there is a directory for your MongoDB data files.
- The default location is \data\db.
- Create a data directory with a command such as the following.

md \data\db

Notes:

Launch a mongod

Explore the mongod command.

```
<path to mongodb>/bin/mongod --help
```

Launch a mongod with the MMAPv1 storage engine:

```
<path to mongodb>/bin/mongod
```

Alternatively, launch with the WiredTiger storage engine.

```
<path to mongodb>/bin/mongod --storageEngine wiredTiger
```

Specify an alternate path for data files using the --dbpath option. (Make sure the directory already exists.) E.g.,

The MongoDB Data Directory (MMAPv1)

ls /data/db

- The mongod.lock file
 - This prevents multiple mongods from using the same data directory simultaneously.
 - Each MongoDB database directory has one .lock.
 - The lock file contains the process id of the mongod that is using the directory.
- Data files
 - The names of the files correspond to available databases.
 - A single database may have multiple files.

Notes:

The MongoDB Data Directory (WiredTiger)

ls /data/db

- The mongod.lock file
 - Used in the same way as MMAPv1.
- Data files
 - Each collection and index stored in its own file.
 - Will fail to start if MMAPv1 files found

Notes:

Import Exercise Data

```
cd usb_drive
unzip sampledata.zip
cd sampledata
mongoimport -d sample -c tweets twitter.json
mongoimport -d sample -c zips zips.json
cd dump
mongorestore -d sample training
```

mongorestore -d sample digg
Note: If there is an error importing data directly from a USB drive, please copy the sampledata.zip file to your local computer first.
Notes:
Launch a Mongo Shell
Open another command shell. Then type the following to start the Mongo shell.
Display available commands.
help
Notes:
Explore Databases
Display available databases.
show dbs
To use a particular database we can type the following.
use <database_name></database_name>
db
Notes:

Exploring Collections

```
show collections
db.<COLLECTION>.help()
db.<COLLECTION>.find()
```

Notes:

Admin Commands

- There are also a number of admin commands at our disposal.
- The following will shut down the mongod we are connected to through the Mongo shell.
- You can also just kill with Ctrl-C in the shell window from which you launched the mongod.

```
db.adminCommand( { shutdown : 1 } )
```

- Confirm that the mongod process has indeed stopped.
- Once you have, please restart it.

2 CRUD

Creating and Deleting Documents (page 36) Inserting documents into collections, deleting documents, and dropping collections.

Reading Documents (page 43) The find() command, query documents, dot notation, and cursors.

Query Operators (page 52) MongoDB query operators including: comparison, logical, element, and array operators.

Lab: Finding Documents (page 57) Exercises for querying documents in MongoDB.

Updating Documents (page 58) Using update () and associated operators to mutate existing documents.

Lab: Updating Documents (page 67) Exercises for updating documents in MongoDB.

2.1 Creating and Deleting Documents

Learning Objectives

Upon completing this module students should understand:

- How to insert documents into MongoDB collections.
- _id fields:
- How to remove documents from a collection
- How to remove a collection from a database
- How to remove a database from a MongoDB deployment

Notes:

Creating New Documents

- Create documents using insert().
- For example:

```
// Specify the collection name
db.<COLLECTION>.insert( { "name" : "Mongo" } )
// For example
db.people.insert( { "name" : "Mongo" } )
```

Example: Inserting a Document

Experiment with the following commands.

```
use sample
db.movies.insert( { "title" : "Jaws" } )
db.movies.find()
```

Notes:

Implicit _id Assignment

- We did not specify an _id in the document we inserted.
- If you do not assign one, MongoDB will create one automatically.
- The value will be of type ObjectId.

Notes:

Example: Assigning _ids

Experiment with the following commands.

```
db.movies.insert( { "_id" : "Jaws", "year" : 1975 } )
db.movies.find()
```

Inserts will fail if...

- There is already a document in the collection with that _id.
- You try to assign an array to the _id.
- The argument is not a well-formed document.

Notes:

Example: Inserts will fail if...

Notes:

Bulk Inserts

- MongoDB 2.6 introduced bulk inserts.
- You may bulk insert using an array of documents.
- The API has two core concepts:
 - Ordered bulk operations
 - Unordered bulk operations
- The main difference is in the way the operations are executed in bulk.

Ordered Bulk Insert

- For ordered inserts MongoDB will stop processing inserts upon encountering an error.
- Meaning that only inserts occurring before an error will complete.
- The default setting for db. <COLLECTION>.insert is an ordered insert.
- See the next exercise for an example.

Notes:

Example: Ordered Bulk Insert

Experiment with the following bulk insert.

Notes:

Unordered Bulk Insert

- Pass { ordered : false } to insert to perform unordered inserts.
- If any given insert fails, MongoDB will still attempt the others.
- The inserts may be executed in a different order from the way in which you specified them.
- The next exercise is very similar to the previous one.
- However, we are using { ordered : false }
- One insert will fail, but all the rest will succeed.

Example: Unordered Bulk Insert

Experiment with the following bulk insert.

Notes:

The Shell is a JavaScript Interpreter

- Sometimes it is convenient to create test data using a little JavaScript.
- The mongo shell is a fully-functional JavaScript interpreter. You may:
 - Define functions
 - Use loops
 - Assign variables
 - Perform inserts

Notes:

Exercise: Creating Data in the Shell

Experiment with the following commands.

```
for (i=1; i<=10000; i++) {
    db.stuff.insert( { "a" : i } )
}
db.stuff.find()</pre>
```

Deleting Documents

You may delete documents from a MongoDB deployment in several ways.

- Use remove () to delete documents matching a specific set of conditions.
- Drop an entire collection.
- · Drop a database.

Notes:

Using remove ()

- Remove documents from a collection using remove ().
- This command has one required parameter, a query document.
- All documents in the collection matching the query document will be removed.
- Pass an empty document to remove all documents.
- Prior to MongoDB 2.6 calling remove () with no parameters would remove all documents.
- Limit remove () to one document using justOne.

Notes:

Example: Removing Documents

Experiment with removing documents. Do a find() after each remove() command below.

Dropping a Collection

- You can drop an entire collection with db. <COLLECTION>.drop()
- The collection and all documents will be deleted.
- It will also remove any metadata associated with that collection.
- Indexes are one type of metadata removed.
- More on meta data later.

Notes:

Example: Dropping a Collection

```
db.colToBeDropped.insert( { a : 1 } )
show collections // Shows the colToBeDropped collection
db.colToBeDropped.drop()
show collections // collection is gone
```

Notes:

Dropping a Database

- You can drop an entire database with db.dropDatabase()
- This drops the database on which the method is called.
- It also deletes the associated data files from disk, freeing disk space.
- Beware that in the mongo shell, this does not change database context.

Example: Dropping a Database

```
use tempDB
db.testcol1.insert( { a : 1 } )
db.testcol2.insert( { a : 1 } )
show dbs // Here they are
show collections // Shows the two collections
db.dropDatabase()
show collections // No collections
show dbs // The db is gone
use sample // take us back to the sample db
```

Notes:

2.2 Reading Documents

Learning Objectives

Upon completing this module students should understand:

- The query-by-example paradigm of MongoDB
- How to query on array elements
- How to query embedded documents using dot notation
- How the mongo shell and drivers use cursors
- Projections
- Cursor methods: .count(), .sort(), .skip(), .limit()

The find() Method

- This is the fundamental method by which we read data from MongoDB.
- We have already used it in its basic form.
- find () returns a cursor that enables us to iterate through all documents matching a query.
- We will discuss cursors later.

Notes:

Query by Example

- To query MongoDB, specify a document containing the key / value pairs you want to match
- You need only specify values for fields you care about.
- Other fields will not be used to exclude documents.
- The result set will include all documents in a collection that match.

Notes:

Example: Querying by Example

Experiment with the following sequence of commands.

Querying Arrays

- In MongoDB you may query array fields.
- Specify a single value you expect to find in that array in desired documents.
- Alternatively, you may specify an entire array in the query document.
- As we will see later, there are also several operators that enhance our ability to query array fields.

Notes:

Example: Querying Arrays

```
db.movies.drop()
db.movies.insert(
   [{ "title" : "Batman", "category" : [ "action", "adventure" ] },
        { "title" : "Godzilla", "category" : [ "action", "adventure", "sci-fi" ] },
        { "title" : "Home Alone", "category" : [ "family", "comedy" ] }
   ])

// Match documents where "category" contains the value specified
db.movies.find( { "category" : "action" } )

// Match documents where "category" equals the value specified
db.movies.find( { "category" : [ "action", "sci-fi" ] } ) // no documents

// only the second document
db.movies.find( { "category" : [ "action", "adventure", "sci-fi" ] } )
```

Notes:

Querying with Dot Notation

- Dot notation is used to query on fields in embedded documents.
- The syntax is:

```
"field1.field2" : value
```

• Put quotes around the field name when using dot notation.

Example: Querying with Dot Notation

```
db.movies.insert(
   [ {
          "title" : "Avatar",
          "box_office" : { "gross" : 760,
                           "budget" : 237,
                           "opening_weekend" : 77
      },
          "title" : "E.T.",
          "box_office" : { "gross" : 349,
                           "budget" : 10.5,
                           "opening_weekend" : 14
                         }
       }
    ] )
db.movies.find( { "box_office" : { "gross" : 760 } } ) // no values
// dot notation
db.movies.find( { "box_office.gross" : 760 } ) // expected value
```

Notes:

Example: Arrays and Dot Notation

Projections

- You may choose to have only certain fields appear in result documents.
- This is called projection.
- You specify a projection by passing a second parameter to find().

Notes:

Projection: Example (Setup)

```
db.movies.insert(
{
    "title": "Forrest Gump",
    "category": [ "drama", "romance"],
    "imdb_rating": 8.8,
    "filming_locations": [
        { "city": "Savannah", "state": "GA", "country": "USA" },
        { "city": "Monument Valley", "state": "UT", "country": "USA" },
        { "city": "Los Anegeles", "state": "CA", "country": "USA" }
    ],
    "box_office": {
        "gross": 557,
        "opening_weekend": 24,
        "budget": 55
    }
})
```

Notes:

Projection: Example

Projection Documents

- Include fields with fieldName: 1.
 - Any field not named will be excluded
 - except _id, which must be explicitly excluded.
- Exclude fields with fieldName: 0.
 - Any field not named will be included.

Notes:

Example: Projections

Notes:

Cursors

- When you use find (), MongoDB returns a cursor.
- A cursor is a pointer to the result set
- You can get iterate through documents in the result using next ().
- By default, the mongo shell will iterate through 20 documents at a time.

Example: Introducing Cursors

Notes:

Example: Cursor Objects in the Mongo Shell

```
// Assigns the cursor returned by find() to a variable x
var x = db.testcol.find()

// Displays the first document in the result set.
x.next()

// True because there are more documents in the result set.
x.hasNext()

// Assigns the next document in the result set to the variable y.
y = x.next()

// Return value is the value of the a field of this document.
y.a

// Displaying a cursor prints the next 20 documents in the result set.
x
```

Cursor Methods

- count (): Returns the number of documents in the result set.
- limit (): Limits the result set to the number of documents specified.
- skip(): Skips the number of documents specified.

Notes:

Example: Using count ()

```
db.testcol.drop()
for (i=1; i<=100; i++) { db.testcol.insert( { a : i } ) }

// all 100
db.testcol.count()

// just 41 docs
db.testcol.count( { a : { $1t : 42 } } )

// Another way of writing the same query
db.testcol.find( { a : { $1t : 42 } } ).count( )</pre>
```

Notes:

Example: Using sort ()

The skip() Method

- Skips the specified number of documents in the result set.
- The returned cursor will begin at the first document beyond the number specified.
- Regardless of the order in which you specify skip () and sort () on a cursor, sort () happens first.

Notes:

The limit() Method

- Limits the number of documents in a result set to the first k.
- Specify k as the argument to limit ()
- Regardless of the order in which you specify limit(), skip(), and sort() on a cursor, sort() happens first.
- Helps reduce resources consumed by queries.

Notes:

The distinct() Method

- Returns all values for a field found in a collection.
- Only works on one field at a time.
- Input is a string (not a document)

Example: Using distinct()

Notes:

2.3 Query Operators

Learning Objectives

Upon completing this module students should understand the following types of MongoDB query operators:

- Comparison operators
- Logical operators
- Element query operators
- · Operators on arrays

Comparison Query Operators

- \$1t: Exists and is less than
- \$1te: Exists and is less than or equal to
- \$gt: Exists and is greater than
- \$gte: Exists and is greater than or equal to
- \$ne: Does not exist or does but is not equal to
- \$in: Exists and is in a set
- \$nin: Does not exist or is not in a set

Notes:

Example: Comparison Operators (Setup)

```
// insert sample data
db.movies.insert( [
   "title" : "Batman",
   "category" : [ "action", "adventure" ],
   "imdb_rating" : 7.6,
    "budget" : 35
  },
    "title" : "Godzilla",
   "category" : [ "action",
   "adventure", "sci-fi" ],
    "imdb_rating" : 6.6
  },
   "title" : "Home Alone",
   "category" : [ "family", "comedy" ],
   "imdb_rating" : 7.4
1)
```

Example: Comparison Operators

```
db.movies.find()
db.movies.find( { "imdb_rating" : { $gte : 7 } } )
db.movies.find( { "category" : { $ne : "family" } } )
db.movies.find( { "title" : { $in : [ "Batman", "Godzilla" ] } } )
db.movies.find( { "title" : { $nin : [ "Batman", "Godzilla" ] } } )
```

Notes:

Logical Query Operators

- \$or: Match either of two or more values
- \$not: Used with other operators
- \$nor: Match neither of two or more values
- \$and: Match both of two or more values
 - This is the default behavior for queries specifying more than one condition.
 - Use \$and if you need to include the same operator more than once in a query.

Notes:

Example: Logical Operators

Example: Logical Operators

Notes:

Element Query Operators

- \$exists: Select documents based on the existence of a particular field.
- \$type: Select documents based on their type.
- See BSON types⁴ for reference on types.

Notes:

Example: Element Operators

```
db.movies.find( { "budget" : { $exists : true } } )

// type 1 is Double
db.movies.find( { "budget" : { $type : 1 } } )

// type 3 is Object (embedded document)
db.movies.find( { "budget" : { $type : 3 } } )
```

⁴http://docs.mongodb.org/manual/reference/bson-types

Array Query Operators

- \$all: Array field must contain all values listed.
- \$size: Array must have a particular size. E.g., \$size : 2 means 2 elements in the array
- \$elemMatch: All conditions must be matched by at least one element in the array

Notes:

Example: Array Operators

```
db.movies.find( { "category" : { $all : [ "sci-fi", "action" ] } } )
db.movies.find( { "category" : { $size : 3 } } )
```

Notes:

Example: \$elemMatch

```
db.movies.insert( {
    "title" : "Raiders of the Lost Ark",
    "filming_locations" : [
     { "city" : "Los Angeles", "state" : "CA", "country" : "USA" },
     { "city" : "Rome", "state" : "Lazio", "country" : "Italy" },
     { "city" : "Florence", "state" : "SC", "country" : "USA" }
    ] } )
// This query is incorrect, it won't return what we want
db.movies.find( {
    "filming_locations.city" : "Florence",
    "filming_locations.country" : "Italy"
 } )
// $elemMatch is needed, now there are no results, this is expected
db.movies.find( {
    "filming_locations" : {
      $elemMatch : {
       "city" : "Florence",
       "country" : "Italy"
       } } )
```

2.4 Lab: Finding Documents

Exercise: Scores < 65
In the sample database, how many documents in the scores collection have a score less than 65?
Notes:
Exercise: Exams and Quizzes
In the sample database, how many documents in the scores collection have the type "exam" or "quiz"?
Notes:
Exercise: Highest Quiz Score
Find the highest quiz score.
Notes:
Exercise: View Count > 1000
In the digg.stories collection, write a query to find all stories where the view count is greater than 1000.
Notes:

Exercise: Television or Videos

Find all digg stories where the topic name is "Television" or the media type is "videos". Skip the first 5 results and limit the result set to 10.

Notes:

Exercise: News or Images

Query for all digg stories whose media type is either "news" or "images" and where the topic name is "Comedy". (For extra practice, construct two queries using different sets of operators to do this.)

Notes:

2.5 Updating Documents

Learning Objectives

Upon completing this module students should understand

- The update() method
- The required parameters for update ()
- Field update operators
- Array update operators
- The concept of an upsert and use cases.
- The findAndModify method

The update () Method

- Mutate documents in MongoDB using update ().
- update() requires two parameters:
 - A query document used to select documents to be updated
 - An update document that specifies how selected documents will change
- update() cannot delete a document.

Notes:

Parameters to update()

- Keep the following in mind regarding the required parameters for update ()
- The query parameter:
 - Use the same syntax as with find().
 - By default only the first document found is updated.
- The update parameter:
 - Take care to simply modify documents if that is what you intend.
 - Replacing documents in their entirety is easy to do by mistake.

Notes:

\$set and \$unset

- Update one or more fields using the \$set operator.
- If the field already exists, using \$set will change its value.
- If the field does not exist, \$set will create it and set it to the new value.
- Any fields you do not specify will not be modified.
- You can remove a field using \$unset.

Example: \$set and \$unset (Setup)

```
db.movies.insert( [
 {
    "title" : "Batman",
    "category" : [ "action", "adventure" ],
    "imdb_rating": 7.6,
   "budget" : 35
  },
   "title" : "Godzilla",
   "category" : [ "action",
   "adventure", "sci-fi" ],
   "imdb_rating" : 6.6
  },
    "title" : "Home Alone",
    "category" : [ "family", "comedy" ],
    "imdb_rating" : 7.4
] )
```

Notes:

Example: \$set and \$unset

Example: Update Array Elements by Index

Notes:

Update Operators

- \$inc: Increment a field's value by the specified amount.
- \$mul: Multiply a field's value by the specified amount.
- \$rename: Rename a field.
- \$set (already discussed)
- \$unset (already discussed)
- \$min: Update only if value is smaller than specified quantity
- \$max: Update only if value is larger than specified quantity
- \$currentDate: Set the value of a field to the current date or timestamp.

Example: Update Operators

```
db.movies.update({ "title" : "Batman" }, { $inc : { "imdb_rating" : 2 } } )
db.movies.update({ "title" : "Home Alone" }, { $inc : { "budget" : 5 } } )
db.movies.update({ "title" : "Batman" }, { $mul : { "imdb_rating" : 4 } } )
db.movies.update({ "title" : "Batman" }, { $rename : { "budget" : "estimated_budget" } } )
db.movies.update({ "title" : "Home Alone" }, { $min : { "budget" : 5 } } )
db.movies.update({ "title" : "Home Alone" }, { $min : { "budget" : 5 } } )
db.movies.update({ "title" : "Home Alone" }, { $currentDate : { "last_updated" : { $type : "timestamp" } } } )
// increment movie mentions by 10
db.movie_mentions.update({ "title" : "E.T." }, { $inc : { "mentions_per_hour.5" : 10 } } )
```

Notes:

update() Defaults to one Document

- By default, update () modifies the first document found that matches the query.
- The default use case is one where there is only one document that fits the query.
- This is to reduce the chances of unintended collection scans for updates.

Notes:

Updating Multiple Documents

- In order to update multiple documents, we use the third (optional) parameter to update ().
- The third parameter is an options document.
- Specify multi: true as one field in this document.
- Bear in mind that without an appropriate index, you may scan every document in the collection.

Example: Multi-Update

Use db.testcol.find() after each of these updates.

Notes:

Array Operators

- \$push: Appends an element to the end of the array.
- \$pushAll: Appends multiple elements to the end of the array.
- \$pop: Removes one element from the end of the array.
- \$pull: Removes all elements in the array that match a specified value.
- \$pullAll: Removes all elements in the array that match any of the specified values.
- \$addToSet: Appends an element to the array if not already present.

Notes:

Example: Array Operators

Notes:

The Positional \$ Operator

- \$⁵ is a positional operator that specifies an element in an array to update.
- It acts as a placeholder for the first element that matches the query document.
- \$ replaces the element in the specified position with the value given.
- Example:

```
db.<COLLECTION>.update(
    { <array> : value ... },
    { <update operator> : { "<array>.$" : value } }
)
```

Notes:

Example: The Positional \$ Operator

Notes:

Upserts

- By default, if no document matches an update query, the update () method does nothing.
- By specifying upsert: true, update () will insert a new document if no matching document exists.
- The db.<COLLECTION>.save() method is syntactic sugar that performs an upsert if the _id is not yet present
- Syntax:

⁵http://docs.mongodb.org/manual/reference/operator/update/postional

Notes:

Upsert Mechanics

- Will update as usual if documents matching the query document exist.
- Will be an upsert if no documents match the query document.
 - MongoDB creates a new document using equality conditions in the query document.
 - Adds an _id if the query did not specify one.
 - Performs an update on the new document.

Notes:

Example: Upserts

save()

- Updates the document if the _id is found, inserts it otherwise
- Syntax:

```
db. < COLLECTION > . save ( document )
```

Notes:

Example: save()

- If the document does not contain an _id field, then the save() method calls the insert() method. During the operation, the mongo shell will create an ObjectId and assign it to the _id field.
- If the document contains an _id field, then the save() method is equivalent to an update with the upsert option set to true and the query predicate on the _id field.

```
// insert
db.movies.save( { "title" : "Beverly Hills Cops", "imdb_rating" : 7.3 })
// update with { upsert: true }
db.movies.save( { "_id" : 1234, "title" : "Spider Man", "imdb_rating" : 7.3 })
```

Notes:

Be Careful with save ()

Be careful that you are not modifying stale data when using save (). For example:

```
db.movies.drop()
db.movies.insert( { "title" : "Jaws", "imdb_rating" : 7.3 } )

db.movies.find( { "title" : "Jaws" } )

// store the complete document in the application
doc = db.movies.findOne( { "title" : "Jaws" } )

db.movies.update( { "title" : "Jaws" }, { $inc: { "imdb_rating" : 2 } } )

db.movies.find()

doc.imdb_rating = 7.4
doc

db.movies.save(doc) // just lost our incrementing of "imdb_rating"
db.movies.find()
```

Notes:

findAndModify()

Modify a document and return either:

- The pre-modification document
- If "new:true" is set, the modified document

Helpful for making changes to a document and reading the document in the state before or after the update occurred.

Notes:

findAndModify() Example

```
db.worker_queue.findAndModify({
    "query" : { "state" : "unprocessed" },
    "update" : { $set: { "worker_id" : 123, "state" : "processing" } },
})
```

2.6 Lab: Updating Documents

Exercise: Letter Grades

- Using the sample.scores namespace, set the proper "grade" attributes.
- For example, users with scores greater than 90 get an "A".
- Set the grade to "B" for scores falling between 80 and 90 and so on for grades "C", "D", and "F".

Exercise: 10 Extra-Credit Points

- You're being nice, so you decide to add 10 points to every score on every exam where the score is lower than 60.
- How do you do this update?

Notes:

Exercise: Updating Array Elements

Insert a document representing product metrics for a backpack:

Each 0 within the "purchasesPast7Days" field corresponds to a day of the week. The first element is Monday, the second element is Tuesday, etc.).

Write an update statement to increment the number of backpacks sold on Friday by 200.

3 Indexes

Index Fundamentals (page 69) An introduction to MongoDB indexes.

Compound Indexes (page 78) Indexes on two or more fields.

Multikey Indexes (page 85) Indexes on array fields.

Hashed Indexes (page 89) Hashed Indexes.

Geospatial Indexes (page 91) Geospatial indexes: both those on legacy coordinate pairs and those supporting queries that calculate geometries on an earth-like sphere.

TTL Indexes (page 100) Time-To-Live Indexes.

Text Indexes (page 101) Free text indexes on string fields.

Lab: Building and Examining Indexes (page 106) Exercises for indexes in MongoDB.

3.1 Index Fundamentals

Learning Objectives

Upon completing this module students should understand:

- The impact of indexing on read performance
- The impact of indexing on write performance
- How to choose effective indexes
- The utility of specific indexes for particular query patterns

Notes:

Why Indexes?

Types of Indexes

- Single-field indexes
- Compound indexes
- · Multikey indexes
- · Geospatial indexes
- · Text indexes

Notes:

Exercise: Using explain()

Let's explore what MongoDB does for the following query by using explain().

We are projecting only user.name so that the results are easy to read.

Notes:

Results of explain()

With the default explain () verbosity, you will see results similar to the following:

```
"queryPlanner" : {
    "plannerVersion" : 1,
    "namespace" : "twitter.tweets",
    "indexFilterSet" : false,
    "parsedQuery" : {
        "user.followers_count" : {
            "$eq" : 1000
        }
    },
```

Notes:

Results of explain() - Continued

```
"winningPlan" : {
    "stage" : "COLLSCAN",
    "filter" : {
        "user.followers_count" : {
            "$eq" : 1000
        }
     },
     "direction" : "forward"
    },
    "rejectedPlans" : []
},
...
```

Notes:

explain() Verbosity Can Be Adjusted

- default: determines the winning query plan but does not execute query
- executionStats: executes query and gathers statistics
- allPlansExecution: runs all candidate plans to completion and gathers statistics

Notes:

explain("executionStats")

```
> db.tweets.find( { "user.followers_count" : 1000 } )
   .explain("executionStats")
```

Now we have query statistics:

```
"executionStats" : {
  "executionSuccess" : true,
  "nReturned" : 8,
  "executionTimeMillis" : 107,
  "totalKeysExamined" : 0,
  "totalDocsExamined" : 51428,
  "executionStages" : {
```

```
"stage" : "COLLSCAN",

"filter" : {
    "user.followers_count" : {
        "$eq" : 1000
    }
},
```

Notes:

explain("executionStats") - Continued

```
"nReturned" : 8,
  "executionTimeMillisEstimate" : 100,
  "works" : 51430,
  "advanced" : 8,
  "needTime" : 51421,
  "needFetch" : 0,
  "saveState" : 401,
  "restoreState" : 401,
  "isEOF" : 1,
  "invalidates" : 0,
  "direction" : "forward",
  "docsExamined" : 51428
}
...
```

Notes:

explain("executionStats") Output

- nReturned displays the number of documents that match the query.
- totalDocsExamined displays the number of documents the retrieval engine considered during the query.
- totalKeysExamined displays how many documents in an existing index were scanned.
- A totalKeysExamined or totalDocsExamined value much higher than nReturned indicates we need a different index.
- \bullet Given totalDocsExamined, this query will benefit from an index.

Other Operations

In addition to find(), we often want to use explain() to understand how other operations will be handled.

- aggregate
- count
- group
- remove
- update

Notes:

```
db.<COLLECTION>.explain()
```

```
db.<COLLECTION>.explain() returns an ExplainableCollection.
> var explainable = db.tweets.explain()
> explainable.find( { "user.followers_count" : 1000 } )
equivalent to
> db.tweets.explain().find( { "user.followers_count" : 1000 } )
also equivalent to
> db.tweets.find( { "user.followers_count" : 1000 } ).explain()
Notes:
```

Using explain() for Write Operations

Simulate the number of writes that would have occurred and determine the index(es) used:

Single-Field Indexes

- Single-field indexes are based on a single field of the documents in a collection.
- The field may be a top-level field.
- You may also create an index on fields in embedded documents.

Notes:

Creating an Index

The following creates a single-field index on user.followers_count.

```
db.tweets.createIndex( { "user.followers_count" : 1 } )
db.tweets.find( { "user.followers_count" : 1000 } ).explain()
```

explain() indicated there will be a substantial performance improvement in handling this type of query.

Notes:

Listing Indexes

```
db.tweets.getIndexes()
List index keys:
db.tweets.getIndexKeys()
```

Listing Indexes

List indexes for a collection:

```
db.tweets.getIndexes()
```

List index keys:

```
db.tweets.getIndexKeys()
```

Indexes and Read/Write Performance

- Indexes improve read performance for queries that are supported by the index.
- Inserts will be slower when there are indexes that MongoDB must also update.
- The speed of updates may be improved because MongoDB will not need to do a collection scan to find target documents.
- An index is modified any time a document:
 - Is inserted
 - Is deleted
 - Is updated in such a way that its indexed field changes
 - If an update causes a document to move on disk

Notes:

Index Limitations

- You can have up to 64 indexes per collection.
- You should NEVER be anywhere close to that upper bound.
- Write performance will degrade to unusable at somewhere between 20-30.

Notes:

Use Indexes with Care

- Every query should use an index.
- Every index should be used by a query.
- Any write operation that touches an indexed field will require each index to be updated.
- Indexes require RAM.
- Be judicious about the choice of key.

Additional Index Options

- Sparse
- Unique
- · Background

Sparse Indexes in MongoDB

Sparse indexes only contain entries for documents that have the indexed field.

```
db.<COLLECTION>.createIndex(
    field_name : 1 },
    { sparse : true } )
```

Defining Unique Indexes

- Enforce a unique constraint on the index.
- Prevent duplicate values from being inserted into the database.
- No duplicate values may exist prior to defining the index.

```
db.<COLLECTION>.createIndex(
    field_name : 1 },
    { unique : true } )
```

Building Indexes in the Background

- Building indexes in foreground is a blocking operation.
- Background index creation is non-blocking, however, takes longer to build.
- Initially larger, or less compact, than an index built in the foreground.

Additional Index Options

- Sparse
- Unique
- · Background

Sparse Indexes in MongoDB

Sparse indexes only contain entries for documents that have the indexed field.

Notes:

Defining Unique Indexes

- Enforce a unique constraint on the index.
- Prevent duplicate values from being inserted into the database.
- No duplicate values may exist prior to defining the index.

Notes:

Building Indexes in the Background

- Building indexes in foreground is a blocking operation.
- Background index creation is non-blocking, however, takes longer to build.
- Initially larger, or less compact, than an index built in the foreground.

3.2 Compound Indexes

Learning Objectives

Upon completing this module students should understand:

- What a compound index is.
- How compound indexes are created.
- The importance of considering field order when creating compound indexes.
- · How to efficiently handle queries involving some combination of equality matches, ranges, and sorting.
- Some limitations on compound indexes.

Notes:

Introduction to Compound Indexes

- It is common to create indexes based on more than one field.
- These are called compound indexes.
- You may use up to 31 fields in a compound index.
- You may not use hashed index fields.

Notes:

The Order of Fields Matters

Specifically we want to consider how the index will be used for:

```
Equality tests, e.g.,
db.movies.find( { "budget" : 7, "imdb_rating" : 8 })
Range queries, e.g.,
db.movies.find( { "budget" : 10, "imdb_rating" : { $1t : 9 } })
Sorting, e.g.,
db.movies.find( { "budget" : 10, "imdb_rating" : 6 }
).sort( { "imdb_rating" : -1 })
```

Designing Compound Indexes

- Let's look at some guiding principles for building compound indexes.
- These will generally produce a good if not optimal index.
- You can optimize after a little experimentation.
- We will explore this in the context of a running example.

Notes:

Example: A Simple Message Board

Requirements:

- Find all messages in a specified timestamp range.
- Select for whether the messages are anonymous or not.
- Sort by rating from highest to lowest.

Notes:

Load the Data

Start with a Simple Index

```
Start by building an index on { timestamp : 1 }
db.messages.createIndex( { timestamp : 1 },  { name : "myindex" } )
Now let's query for messages with timestamp in the range 2 through 4 inclusive.
db.messages.find( { timestamp : { $gte : 2, $lte : 4 } } ).explain()
Analysis:
```

- Explain plan shows good performance, i.e. totalKeysExamined = n.
- However, this does not satisfy our query.
- Need to query again with {username: "anonymous"} as part of the query.

Notes:

Query Adding username

Notes:

Include username in Our Index

totalKeysExamined > n

timestamp	username
1	"anonymous"
2	"anonymous"
3	"sam"
4	"anonymous"
5	"martha"

Notes:

A Different Compound Index

Drop the index and build a new one with user.

Notes:

totalKeysExamined == n

username	timestamp
"anonymous"	1
"anonymous"	2
"anonymous"	4
"sam"	2
"martha"	5

Let Selectivity Drive Field Order

- Order fields in a compound index from most selective to least selective.
- Usually, this means equality fields before range fields.
- When dealing with multiple equality values, start with the most selective.
- If a common range query is more selective instead (rare), specify the range component first.

Notes:

Adding in the Sort

Finally, let's add the sort and run the query.

- Note that the winningPlan includes a SORT stage.
- This means that MongoDB had to perform a sort in memory.
- In memory sorts for queries that retrieve large numbers of documents can degrade performance significantly.
- This is especially true if they are used frequently.

Notes:

In-Memory Sorts

Let's modify the index again to allow the database to sort for us.

- The explain plan remains unchanged, because the sort field comes after the range fields.
- The index does not store entries in order by rating.
- Note that this requires us to consider a tradeoff.

Notes:

Avoiding an In-Memory Sort

Rebuild the index as follows.

- We no longer have an in-memory sort, but need to examine more keys.
- totalKeysExamined is 3 and and n is 2.
- This is the best we can do in this situation and this is fine.
- However, if totalKeysExamined is much larger than n, this might not be the best index.

Notes:

General Rules of Thumb

- Equality before range
- Equality before sorting
- Sorting before range

Covered Queries

- When a query and projection include only the indexed fields, MongoDB will return results directly from the index.
- There is no need to scan any documents or bring documents into memory.
- These covered queries can be very efficient.

Notes:

Exercise: Covered Queries

```
db.testcol.drop()
for (i=1; i<=20; i++) {
 db.testcol.insert({ "_id" : i, "title" : i, "name" : i,
                      "rating" : i, "budget" : i })
};
db.testcol.createIndex( { "title" : 1, "name" : 1, "rating" : 1 } )
// Not covered because _id is present.
db.testcol.find( { "title" : 3 },
                 { "title" : 1, "name" : 1, "rating" : 1 }
                 ).explain("executionStats")
// Not covered because other fields may exist in matching docs.
db.testcol.find( { "title" : 3 },
                 { "_id" : 0, "budget" : 0 } ).explain("executionStats")
// Covered query!
db.testcol.find( { "title" : 3 },
                 { "_id" : 0, "title" : 1, "name" : 1, "budget" : 1 }
                 ).explain("executionStats")
```

3.3 Multikey Indexes

Learning Objectives

Upon completing this module, students should understand:

- What a multikey index is
- When MongoDB will use a multikey index to satisfy a query
- · How multikey indexes work
- · How multikey indexes handle sorting
- Some limitations on multikey indexes

Notes:

Introduction to Multikey Indexes

- · A multikey index is an index on an array.
- An index entry is created on each value found in the array.
- Multikey indexes can support primitives, documents, or sub-arrays.
- There is nothing special that you need to do to create a multikey index.
- You create them using createIndex() just as you would with an ordinary single-field index.
- If there is an array as a value for an indexed field, the index will be multikey on that field.

Notes:

Example: Array of Numbers

Notes:

Exercise: Array of Documents, Part 1

Create a collection and add an index on the x field:

```
db.blog.drop()
b = [ { "comments" : [
         { "name" : "Bob", "rating" : 1 },
         { "name" : "Frank", "rating" : 5.3 },
         { "name" : "Susan", "rating" : 3 } ] },
      { "comments" : [
         { name : "Megan", "rating" : 1 } ] },
      { "comments" : [
         { "name" : "Luke", "rating" : 1.4 },
         { "name" : "Matt", "rating" : 5 },
         { "name" : "Sue", "rating" : 7 } ] }]
db.blog.insert(b)
db.blog.createIndex( { "comments" : 1 } )
db.blog.createIndex( { "comments.rating" : 1 } )
// for this query
db.blog.find( { "comments.rating" : 5 })
```

Notes:

Exercise: Array of Documents, Part 2

For each of the three queries below:

- How many documents will be returned?
- Will it use our multi-key index? Why or why not?
- If a query will not use the index, which index will it use?

```
db.blog.find( { "comments" : { "name" : "Bob", "rating" : 1 } } )
db.blog.find( { "comments" : { "rating" : 1 } } )
db.blog.find( { "comments.rating" : 1 } )
```

Exercise: Array of Arrays, Part 1

Add some documents and create an index simulating a player in a game moving on an X,Y grid.

Notes:

Exercise: Array of Arrays, Part 2

For each of the queries below:

- How many documents will be returned?
- Does the query use the multi-key index? Why or why not?
- If the query does not use the index, what is an index it could use?

```
db.player.find( { "last_moves" : [ 3, 4 ] } )
db.player.find( { "last_moves" : 3 } )
db.player.find( { "last_moves.1" : [ 4, 5 ] } )
db.player.find( { "last_moves.2" : [ 2, 3 ] } )
```

Notes:

How Multikey Indexes Work

- Each array element is given one entry in the index.
- So an array with 17 elements will have 17 entries one for each element.
- Multikey indexes can take up much more space than standard indexes.

Multikey Indexes and Sorting

- If you sort using a multikey index:
 - A document will appear at the first position where a value would place the document.
 - It will not appear multiple times.
- This applies to array values generally.
- It is not a specific property of multikey indexes.

Notes:

Exercise: Multikey Indexes and Sorting

Notes:

Limitations on Multikey Indexes

- You cannot create a compound index using more than one array-valued field.
- This is because of the combinatorics.
- For a compound index on two array-valued fields you would end up with N * M entries for one document.
- You cannot have a hashed multikey index.
- You cannot have a shard key use a multikey index.
- We discuss shard keys in another module.
- The index on the _id field cannot become a multikey index.

Example: Multikey Indexes on Multiple Fields

```
db.testcol.drop()
db.testcol.createIndex( { x : 1, y : 1 } )

// no problems yet
db.testcol.insert( { _id : 1, x : 1, y : 1 } )

// still OK
db.testcol.insert( { _id : 2, x : [ 1, 2 ], y : 1 } )

// still OK
db.testcol.insert( { _id : 3, x : 1, y : [ 1, 2 ] } )

// Won't work
db.testcol.insert( { _id : 4, x : [ 1, 2 ], y : [ 1, 2 ] } )
```

Notes:

3.4 Hashed Indexes

Learning Objectives

Upon completing this module, students should understand:

- What a hashed index is
- When to use a hashed index

Notes:

What is a Hashed Index?

- Hashed indexes are based on field values like any other index.
- The difference is that the values are hashed and it is the hashed value that is indexed.
- The hashing function collapses sub-documents and computes the hash for the entire value.
- MongoDB can use the hashed index to support equality queries.
- Hashed indexes do not support multi-key indexes, i.e. indexes on array fields.
- Hashed indexes do not support range queries.

Why Hashed Indexes?

- In MongoDB, the primary use for hashed indexes is to support sharding a collection using a hashed shard key.
- · In some cases, the field we would like to use to shard data would make it difficult to scale using sharding.
- Using a hashed shard key to shard a collection ensures an even distribution of data and overcomes this problem.
- See Shard a Collection Using a Hashed Shard Key⁶ for more details.
- We discuss sharding in detail in another module.

Notes:

Limitations

- You may not create compound indexes that have hashed index fields.
- You may not specify a unique constraint on a hashed index.
- You can create both a hashed index and a non-hashed index on the same field.

Notes:

Floating Point Numbers

- MongoDB hashed indexes truncate floating point numbers to 64-bit integers before hashing.
- Do not use a hashed index for floating point numbers that cannot be reliably converted to 64-bit integers.
- MongoDB hashed indexes do not support floating point values larger than 2⁵³.

 $^{^6} http://docs.mongodb.org/manual/tutorial/shard-collection-with-a-hashed-shard-key/$

Creating a Hashed Index

Create a hashed index using an operation that resembles the following. This operation creates a hashed index for the active collection on the a field.

```
db.active.createIndex( { a: "hashed" } )
```

Notes:

3.5 Geospatial Indexes

Learning Objectives

Upon completing this module, students should understand:

- Use cases of geospatial indexes
- The two types of geospatial indexes
- How to create 2d geospatial indexes
- How to query for documents in a region
- How to create 2dsphere indexes
- Types of geoJSON objects
- How to query using 2dsphere indexes

Notes:

Introduction to Geospatial Indexes

We can use geospatial indexes to quickly determine geometric relationships:

- All points within a certain radius of another point
- Whether or not points fall within a polygon
- Whether or not two polygons intersect

Easiest to Start with 2 Dimensions

- Initially, it is easiest to think about geospatial indexes in two dimensions.
- One type of geospatial index in MongoDB is a flat 2d index.
- With a geospatial index we can, for example, search for nearby items.
- This is the type of service that many phone apps provide when, say, searching for a nearby cafe.
- We might have a query location identified by an X in a 2d coordinate system.

Notes:

Location Field

- A geospatial index is based on a location field within documents in a collection.
- The structure of location values depends on the type of geospatial index.
- We will go into more detail on this in a few minutes.
- We can identify other documents in this collection with Xs in our 2d coordinate system.

Notes:

Find Nearby Documents

- A geospatial index enables us to efficiently query a collection based on geometric relationships between documents and the query.
- For example, we can quickly locate all documents within a certain radius of our query location.
- In this example, we've illustrated a \$near query in a 2d geospatial index.

Flat vs. Spherical Indexes

There are two types of geospatial indexes:

- Flat, made with a 2d index
- Two-dimensional spherical, made with the 2dsphere index
 - Takes into account the curvature of the earth
 - Joins any two points using a geodesic or "great circle arc"
 - Deviates from flat geometry as you get further from the equator, and as your points get further apart

Notes:

Flat Geospatial Index

- This is a Cartesian treatment of coordinate pairs.
- E.g., the index would not reflect the fact that the shortest path from Canada to Siberia is over the North Pole (if units are degrees).
- 2d indexes can be used to describe any flat surface.
- · Recommended if:
 - You have legacy coordinate pairs (MongoDB 2.2 or earlier).
 - You do not plan to use geoJSON objects such as LineStrings or Polygons.
 - You are not going to use points far enough North or South to worry about the Earth's curvature.

Notes:

Spherical Geospatial Index

- Spherical indexes model the curvature of the Earth
- If you want to plot the shortest path from the Klondike to Siberia, this will know to go over the North Pole.
- Spherical indexes use geoJSON objects (Points, LineString, and Polygons)
- Coordinate pairs are converted into geoJSON Points.

Creating a 2d Index

Creating a 2d index:

Possible options key-value pairs:

```
min : <lower bound>max : <upper bound>bits : <bits of precision for geohash>
```

Notes:

Exercise: Creating a 2d Index

Create a 2d index on the collection testcol with:

- A min value of -20
- A max value of 20
- 10 bits of precision
- The field indexed should be xy.

Notes:

Inserting Documents with a 2d Index

There are two accepted formats:

- Legacy coordinate pairs
- Document with the following fields specified:
 - lng (longitude)
 - lat (latitude)

Exercise: Inserting Documents with 2d Fields

- Insert 2 documents into the 'twoD' collection.
- Assign 2d coordinate values to the xy field of each document.
- Longitude values should be -3 and 3 respectively.
- Latitude values should be 0 and 0.4 respectively.

Notes:

Querying Documents Using a 2d Index

- Use \$near to retrieve documents close to a given point.
- Use \$geoWithin to find documents with a shape contained entirely within the query shape.
- Use the following operators to specify a query shape:
 - \$box
 - \$polygon
 - \$center (circle)

Notes:

Example: Find Based on 2d Coords

Write a query to find all documents in the testcol collection that have an xy field value that falls entirely within the circle with center at [-2.5, -0.5] and a radius of 3.

```
db.testcol.find(\{ xy : \{ \$geoWithin : \{ \$center : [ [ -2.5, -0.5 ], 3 ] \} \} \}
```

Creating a 2dsphere Index

You can index one or more 2dsphere fields in an index.

```
db.<COLLECTION>.createIndex( { <location field> : "2dsphere" } )
```

Notes:

The geoJSON Specification

- The geoJSON format encodes location data on the earth.
- The spec is at http://geojson.org/geojson-spec.html
- This spec is incorporated in MongoDB 2dsphere indexes.
- It includes Point, LineString, Polygon, and combinations of these.

Notes:

geoJSON Considerations

- The coordinates of points are given in degrees (latitude then longitude).
- The LineString that joins two points will always be a geodesic.
- Short lines (around a few hundred kilometers or less) will go about where you would expect them to.
- Polygons are made of a closed set of LineStrings.

Simple Types of 2dsphere Objects

Point: A single point on the globe

Notes: LineString: A geodesic line that is defined by its two end Points

Notes:

Polygons

Simple Polygon:

Polygon with One Hole:

Other Types of 2dsphere Objects

- MultiPoint: One or more Points in one document
- MultiLine: One or more LineStrings in one document
- MultiPolygon: One or more Polygons in one document
- GeometryCollection: One or more geoJSON objects in one document

Notes:

Exercise: Inserting geoJSON Objects (1)

Create a coordinate pair for each the following airports. Create one variable per airport.

- LaGuardia (New York): 40.7772° N, 73.8726° W
- JFK (New York): 40.6397° N, 73.7789° W
- Newark (New York): 40.6925° N, 74.1686° W
- Heathrow (London): 52.4775° N, 0.4614° W
- Gatwick (London): 51.1481° N, 0.1903° W
- Stansted (London): 51.8850° N, 0.2350° E
- Luton (London): 51.9000° N, 0.4333° W

Notes:

Exercise: Inserting geoJSON Objects (2)

- Now let's make arrays of these.
- Put all the New York area airports into an array called nyPorts.
- Put all the London area airports into an array called londonPorts.
- Create a third array for flight numbers: "AA4453", "VA3333", "UA2440".

Exercise: Inserting geoJSON Objects (3)

- Create documents for every possible New York to London flight.
- Include a flightNumber field for each flight.

Notes:

Exercise: Creating a 2dsphere Index

- Create two indexes on the collection flights.
- Make the first a compound index on the fields:
 - origin
 - destination
 - flightNumber
- Specify 2dsphere indexes on both origin and destination.
- Specify a simple index on name.
- Make the second index just a 2dsphere index on destination.

Notes:

Querying 2dsphere Objects

\$geoNear: Finds all points, orders them by distance from a position.

\$near: Just like \$geoNear, except in very edge cases; check the docs.

\$geoWithin: Only returns documents with a location completely contained within the query.

\$geoIntersects: Returns documents with their indexed field intersecting any part of the shape in the query.

3.6 TTL Indexes

Learning Objectives

Upon completing this module students should understand:

- How to create a TTL index
- When a TTL indexed document will get deleted
- Limitations of TTL indexes

Notes:

TTL Index Basics

- TTL is short for "Time To Live".
- TTL indexes must be based on a field of type Date (including ISODate) or Timestamp.
- Any Date field older than expireAfterSeconds will get deleted at some point.

Notes:

Creating a TTL Index

Create with:

Exercise: Creating a TTL Index

Let's create a TTL index on the ttl collection that will delete documents older than 30 seconds. Write a script that will insert documents at a rate of one per second.

Notes:

Exercise: Check the Collection

Then, leaving that window open, open up a new terminal and connect to the database with the mongo shell. This will allow us to verify the TTL behavior.

```
// look at the output and wait. After a ramp-up of up to a minute or so,
// count() will be reset to 30 once/minute.
while (true) {
    print(db.sessions.count());
    sleep(100);
}
```

Notes:

3.7 Text Indexes

Learning Objectives

Upon completing this module, students should understand:

- The purpose of a text index
- How to create text indexes
- How to search using text indexes
- · How to rank search results by relevance score

Notes:

What is a Text Index?

- A text index is based on the tokens (words, etc.) used in string fields.
- MongoDB supports text search for a number of languages.
- Text indexes drop language-specific stop words (e.g. in English "the", "an", "a", "and", etc.).
- Text indexes use simple, language-specific suffix stemming (e.g., "running" to "run").

Notes:

Creating a Text Index

You create a text index a little bit differently than you create a standard index.

```
db.<COLLECTION>.createIndex( { <field name> : "text" } )
```

Notes:

Exercise: Creating a Text Index

Create a text index on the "dialog" field of the montyPython collection.

```
db.montyPython.createIndex( { dialog : "text" } )
```

Creating a Text Index with Weighted Fields

- Default weight of 1 per indexed field.
- Weight is relative to other weights in text index.

• Term match in "title" field has 10 times (i.e. 10:1) the impact as a term match in the "author" field.

Creating a Text Index with Weighted Fields

- The default weight is 1 for each indexed field.
- The weight is relative to other weights in a text index.

```
db.<COLLECTION>.createIndex(
    { "title" : "text", "keywords": "text", "author" : "text" },
    { "weights" : {
        "title" : 10,
        "keywords" : 5
}})
```

• Term match in "title" field has 10 times (i.e. 10:1) the impact as a term match in the "author" field.

Notes:

Text Indexes are Similar to Multikey Indexes

- Continuing our example, you can treat the dialog field as a multikey index.
- A multikey index with each of the words in dialog as values.
- You can query the field using the \$text operator.

Exercise: Inserting Texts

Let's add some documents to our montyPython collection.

```
db.montyPython.insert( [
{ _id : 1,
    dialog : "What is the air-speed velocity of an unladen swallow?" },
{ _id : 2,
    dialog : "What do you mean? An African or a European swallow?" },
{ _id : 3,
    dialog : "Huh? I... I don't know that." },
{ _id : 45,
    dialog : "You're using coconuts!" },
{ _id : 55,
    dialog : "What? A swallow carrying a coconut?" } ] )
```

Notes:

Querying a Text Index

Next, let's query the collection. The syntax is:

```
db.<COLLECTION>.find( { $text : { $search : "query terms go here" } } )
```

Notes:

Exercise: Querying a Text Index

Using the text index, find all documents in the montyPython collection with the word "swallow" in it.

```
// Returns 3 documents.
db.montyPython.find( { $text : { $search : "swallow" } } )
```

Exercise: Querying Using Two Words

- Find all documents in the montyPython collection with either the word 'coconut' or 'swallow'.
- By default MongoDB ORs query terms together.
- E.g., if you query on two words, results include documents using either word.

```
// Finds 4 documents, 3 of which contain only one of the two words. db.montyPython.find( { \text{search} : "coconut swallow"} } ) )
```

Notes:

Search for a Phrase

- To match an exact phrase, include search terms in quotes (escaped).
- The following query selects documents containing the phrase "European swallow":

```
db.montyPython.find( { $text: { $search: "\"European swallow\"" } } )
```

Notes:

Text Search Score

- The search algorithm assigns a relevance score to each search result.
- The score is generated by a vector ranking algorithm.
- The documents can be sorted by that score.

3.8 Lab: Building and Examining Indexes

Exercise: What Index Do We Need?

Run the the following Javascript file from the handouts.

```
mongo --shell localhost/performance performance.js
```

In the shell that launches execute the following method

```
performance.init()
```

The method above will build a sample data set in the "sensor_readings" collection. What index is needed for this query?

Notes:

Exercise: Avoiding an In-Memory Sort

What index is needed for the following query to avoid an in-memory sort?

```
db.sensor_readings.find( { active: true } ).sort( { tstamp : -1 } )
```

Notes:

Exercise: Avoiding an In-Memory Sort, 2

What index is needed for the following query to avoid an in-memory sort?

Exercise: Determine Indexes Needed

- In a mongo shell run performance.b(). This will run in an infinite loop printing some output as it runs various statements against the server.
- Now imagine we have detected a performance problem and suspect there is a slow operation running.
- Find the slow operation and terminate it. Every slow operation is assumed to run for 100ms or more.
- In order to do this, open a second window (or tab) and run a second instance of the mongo shell.
- What indexes can we introduce to make the slow queries more efficient? Disregard the index created in the previous exercise.

Notes:

Exercise: explain("executionStats")

Drop all indexes from previous exercises:

```
mongo performance
> db.sensor_readings.dropIndexes()

Create an index for the "active" field:
db.sensor_readings.createIndex({ "active" : 1 } )
```

How many index entries and documents are examined for the following query? How many results are returned?

4 Replica Sets

Introduction to Replica Sets (page 108) An introduction to replication and replica sets.

Elections in Replica Sets (page 112) The process of electing a new primary (automated failover) in replica sets.

Replica Set Roles and Configuration (page 118) Configuring replica set members for common use cases.

The Oplog: Statement Based Replication (page 120) The process of replicating data from one node of a replica set to another.

Write Concern (page 126) Balancing performance and durability of writes.

Read Preference (page 131) Configuring clients to read from specific members of a replica set.

Exercise: Setting up a Replica Set (page 132) Launching members, configuring, and initiating a replica set.

4.1 Introduction to Replica Sets

Learning Objectives

Upon completing this module, students should understand:

- Striking the right balance between cost and redundancy
- The many scenarios replication addresses and why
- · How to avoid downtime and data loss using replication

Notes:

Use Cases for Replication

- · High Availability
- · Disaster Recovery
- Functional Segregation

High Availability (HA)

- Data still available following:
 - Equipment failure (e.g. server, network switch)
 - Datacenter failure
- This is achieved through automatic failover.

Notes:

Disaster Recovery (DR)

- We can duplicate data across:
 - Multiple database servers
 - Storage backends
 - Datacenters
- Can restore data from another node following:
 - Hardware failure
 - Service interruption

Notes:

Functional Segregation

There are opportunities to exploit the topology of a replica set.

- Based on physical location (e.g. rack or datacenter location)
- For analytics, reporting, data discovery, system tasks, etc.
- For backups

Large Replica Sets

Functional segregation can be further exploited by using large replica sets.

- 50 node replica set limit
- Useful for deployments with a large number of data centers or offices
- Read only workloads can position secondaries in data centers around the world (closer to application servers)

Replication is Not Designed for Scaling

- Can be used for scaling reads, but generally not recommended.
- Drawbacks include:
 - Eventual consistency
 - Not scaling writes
 - Potential system overload when secondaries are unavailable
- Consider sharding for scaling reads and writes.

Notes:

Replica Sets

Primary Server

- Clients send writes the primary only.
- MongoDB, Inc. maintains client drivers in many programming languages like Java, C#, Python, Ruby, and PHP.
- MongoDB drivers are replica set aware.

Notes:

Secondaries

- A secondary replicates operations from another node in the replica set.
- Secondaries usually replicate from the primary.
- Secondaries may also replicate from other secondaries. This is called replication chaining.
- A secondary may become primary as a result of a failover scenario.

Notes:

Heartbeats

The Oplog

- The operations log, or oplog, is a special capped collection that is the basis for replication.
- The oplog maintains one entry for each document affected by every write operation.
- Secondaries copy operations from the oplog of their sync source.

Notes:

4.2 Elections in Replica Sets

Learning Objectives

Upon completing this module students should understand:

- That elections enable automated failover in replica sets
- How votes are distributed to members
- What prompts an election
- · How a new primary is selected

Notes:

Members and Votes

Calling Elections

Notes:

Selecting a New Primary

Three factors are important in the selection of a primary:

- Priority
- Optime
- Connections

Notes:

Priority

- The higher its priority, the more likely a member is to become primary.
- The default is 1.
- Servers with a priority of 0 will never become primary.
- Priority values are floating point numbers 0 1000 inclusive.

Optime

- Optime: Operation time, which is the timestamp of the last operation the member applied from the oplog.
- To be elected primary, a member must have the most recent optime.
- Only optimes of visible members are compared.

Notes:

Connections

- Must be able to connect to a majority of the members in the replica set.
- Majority refers to the total number of votes.
- Not the total number of members.

Notes:

When will a primary step down?

- After receiving the replSetStepDown or rs.stepDown() command.
- If a secondary is eligible for election and has a higher priority.
- If it cannot contact a majority of the members of the replica set.

replSetStepDown Behavior

- Primary will attempt to terminate long running operations before stepping down
- Primary will wait for electable secondary to catch up before stepping down
- "secondaryCatchUpPeriodSecs" can be specified to limit the amount of time the primary will wait for a secondary to catch up before the primary steps down

Notes:

Exercise: Elections in Failover Scenarios

- We have learned about electing a primary in replica sets
- Let's look at some scenarios in which failover might be necessary.

Notes:

Scenario A: 3 Data Nodes in 1 DC

Which secondary will become the new primary?

Data Center 1

Secondary Secondary

Scenario B: 3 Data Nodes in 2 DCs

Which member will become primary following this type of network partition?

Notes:

Scenario C: 4 Data Nodes in 2 DCs

What happens following this network partition?

Notes:

Scenario D: 5 Nodes in 2 DCs

The following is similar to Scenario C, but with the addition of an arbiter in Data Center 1. What happens here?

Notes:

Scenario E: 3 Data Nodes in 3 DCs

- What happens here if any one of the nodes/DCs fail?
- What about recovery time?

Notes:

Scenario F: 5 Data Nodes in 3 DCs

What happens here if any one of the nodes/DCs fail? What about recovery time?

4.3 Replica Set Roles and Configuration

Learning Objectives

Upon completing this module students should understand:

- The use of priority to preference certain members or datacenters as primaries.
- · Hidden members.
- The use of hidden secondaries for data analytics and other purposes (when secondary reads are used).
- The use of slaveDelay to protect against operator error.

Notes:

Example: A Five-Member Replica Set Configuration

- For this example application, there are two datacenters.
- We name the hosts accordingly: dc1-1, dc1-2, dc2-1, etc.
 - This is just a clarifying convention for this example.
 - MongoDB does not care about host names except to establish connections.
- The nodes in this replica set have a variety of roles in this application.

Notes:

Configuration

Principal Data Center

```
{ _id : 0, host : "dc1-1.example.net", priority : 5 },
{ _id : 1, host : "dc1-2.example.net", priority : 5 },
```

Notes:

Data Center 2

```
{ _id : 2, host : "dc2-1.example.net:27017" },
```

Notes:

What about dc1-3 and dc2-2?

```
// Both are hidden.
// Clients will not distribute reads to hidden members.
// We use hidden members for dedicated tasks.
{ _id : 3, host : "dc1-3.example.net:27017", hidden : true },
{ _id : 4, host : "dc2-2.example.net:27017", hidden : true,
    slaveDelay: 7200 }
```

Notes:

What about dc2-2?

```
{ _id : 4, host : "dc2-2.example.net:27017", hidden : true,
    slaveDelay : 7200 }
```

4.4 The Oplog: Statement Based Replication

Learning Objectives

Upon completing this module students should understand:

- Binary vs. statement-based replication.
- How the oplog is used to support replication.
- How operations in MongoDB are translated into operations written to the oplog.
- Why oplog operations are idempotent.
- That the oplog is a capped collection and the implications this holds for syncing members.

Notes:

Binary Replication

- MongoDB replication is statement based.
- Contrast that with binary replication.
- With binary replication we would keep track of:
 - The data files
 - The offsets
 - How many bytes were written for each change
- In short, we would keep track of actual bytes and very specific locations.
- We would simply replicate these changes across secondaries.

Tradeoffs

- The good thing is that figuring out where to write, etc. is very efficient.
- But we must have a byte-for-byte match of our data files on the primary and secondaries.
- The problem is that this couples our replica set members in ways that are inflexible.
- Binary replication may also replicate disk corruption.

Notes:

Statement-Based Replication

- Statement-based replication facilitates greater independence among members of a replica set.
- MongoDB stores a statement for every operation in a capped collection called the oplog.
- Secondaries do not simply apply exactly the operation that was issued on the primary.

Notes:

Example

Suppose the following remove is issued and it deletes 100 documents:

```
db.foo.remove({ age : 30 })
```

This will be represented in the oplog with records such as the following:

```
{ "ts" : Timestamp(1407159845, 5), "h" : NumberLong("-704612487691926908"),
   "v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 65 } }
{ "ts" : Timestamp(1407159845, 1), "h" : NumberLong("6014126345225019794"),
   "v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 333 } }
{ "ts" : Timestamp(1407159845, 4), "h" : NumberLong("8178791764238465439"),
   "v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 447 } }
{ "ts" : Timestamp(1407159845, 3), "h" : NumberLong("-1707391001705528381"),
   "v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 1033 } }
{ "ts" : Timestamp(1407159845, 2), "h" : NumberLong("-6814297392442406598"),
   "v" : 2, "op" : "d", "ns" : "bar.foo", "b" : true, "o" : { "_id" : 9971 } }
```

Replication Based on the Oplog

- One statement per document affected by each write: insert, update, or delete.
- Provides a level of abstraction that enables independence among the members of a replica set:
 - With regard to MongoDB version.
 - In terms of how data is stored on disk.
 - Freedom to do maintenance without the need to bring the entire set down.

Notes:

Create a Replica Set

Let's take a look at a concrete example. Launch mongo shell as follows.

```
mongo --nodb
```

Create a replica set by running the following command in the mongo shell.

```
replicaSet = new ReplSetTest( { nodes : 3 } )
```

Notes:

ReplSetTest

- ReplSetTest is useful for experimenting with replica sets as a means of hands-on learning.
- It should never be used in production. Never.
- The command above will create a replica set with three members.
- It does not start the mongods, however.
- You will need to issue additional commands to do that.

Start the Replica Set


```
replicaSet.startSet()
```

Issue the following command to configure replication for these mongods. You will need to issue this while output is flying by in the shell.

```
replicaSet.initiate()
```

Notes:

Status Check

- You should now have three mongods running on ports 31000, 31001, and 31002.
- You will see log statements from all three printing in the current shell.
- To complete the rest of the exercise, open a new shell.

Notes:

Connect to the Primary

Open a new shell, connecting to the primary.

```
mongo --port 31000
```

Create some Inventory Data

Use the store database:

```
use store
```

Add the following inventory:

Notes:

Perform an Update

Issue the following update. We might issue this update after a purchase of three items.

Notes:

View the Oplog

The oplog is a capped collection in the local database of each replica set member:

```
use local
db.oplog.rs.find()
{ "ts" : Timestamp(1406944987, 1), "h" : NumberLong(0), "v" : 2, "op" : "n",
    "ns" : "", "o" : { "msg" : "initiating set" } }
...
{ "ts" : Timestamp(1406945076, 1), "h" : NumberLong("-9144645443320713428"),
    "v" : 2, "op" : "u", "ns" : "store.products", "o2" : { "_id" : 2 },
    "o" : { "$set" : { "inStock" : 19 } } }
{ "ts" : Timestamp(1406945076, 2), "h" : NumberLong("-7873096834441143322"),
    "v" : 2, "op" : "u", "ns" : "store.products", "o2" : { "_id" : 5 },
    "o" : { "$set" : { "inStock" : 49 } } }
```

Operations in the Oplog are Idempotent

- Each operation in the oplog is idempotent.
- Whether applied once or multiple times it produces the same result.
- Necessary if you want to be able to copy data while simultaneously accepting writes.

Notes:

The Oplog Window

- Oplogs are capped collections.
- Capped collections are fixed-size.
- They guarantee preservation of insertion order.
- They support high-throughput operations.
- Like circular buffers, once a collection fills its allocated space:
 - It makes room for new documents.
 - By overwriting the oldest documents in the collection.

Notes:

Sizing the Oplog

- The oplog should be sized to account for latency among members.
- The default size oplog is usually sufficient.
- But you want to make sure that your oplog is large enough:
 - So that the oplog window is large enough to support replication
 - To give you a large enough history for any diagnostics you might wish to run.

4.5 Write Concern

Learning Objectives

Upon completing this module students should understand:

- How and when rollback occurs in MongoDB.
- The tradeoffs between durability and performance.
- Write concern as a means of ensuring durability in MongoDB.
- The different levels of write concern.

Notes:

What happens to the write?

- A write is sent to a primary.
- The primary acknowledges the write to the client.
- The primary then becomes unavailable before a secondary can replicate the write

Notes:

Answer

- Another member might be elected primary.
- It will not have the last write that occurred before the previous primary became unavailable.
- When the previous primary becomes available again:
 - It will note it has writes that were not replicated.
 - It will put these writes into a rollback file.
 - A human will need to determine what to do with this data.
- This is default behavior in MongoDB and can be controlled using write concern.

Balancing Durability with Performance

- The previous scenario is a specific instance of a common distributed systems problem.
- For some applications it might be acceptable for writes to be rolled back.
- Other applications may have varying requirements with regard to durability.
- Tunable write concern:
 - Make critical operations persist to an entire MongoDB deployment.
 - Specify replication to fewer nodes for less important operations.

Notes:

Defining Write Concern

- Clients may define the write concern per write operation, if necessary.
- Standardize on specific levels of write concerns for different classes of writes.
- In the discussion that follows we will look at increasingly strict levels of write concern.

Notes:

Write Concern: { w : 1 }

Example: { w : 1 }

Notes:

Write Concern: { w : 2 }

Notes:

Example: { w : 2 }

Other Write Concerns

- You may specify any integer as the value of the w field for write concern.
- This guarantees that write operations have propagated to the specified number of members.

```
• E.g., { w : 3 }, { w : 4}, etc.
```

Notes:

Write Concern: { w : "majority" }

- Ensures the primary completed the write (in RAM).
- Ensures write operations have propagated to a majority of a replica set's **voting** members.
- Avoids hard coding assumptions about the size of your replica set into your application.
- Using majority trades off performance for durability.
- It is suitable for critical writes and to avoid rollbacks.

Notes:

Quiz: Which write concern?

Suppose you have a replica set with 7 data nodes. Your application has critical inserts for which you do not want rollbacks to happen. Secondaries may be taken down from to time for maintenance, leaving you with a potential 4 server replica set. Which write concern is best suited for these critical inserts?

- { w: 1 }{ w: 2 }{ w: 3 }
- { w:4}
- { w : "majority" }

Notes:

Further Reading

See Write Concern Reference⁷ for more details on write concern configurations, including setting timeouts and identifying specific replica set members that must acknowledge writes (i.e. tag sets⁸).

⁷http://docs.mongodb.org/manual/reference/write-concern

 $^{^{8}} http://docs.mongodb.org/manual/tutorial/configure-replica-set-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/\#replica-set-configuration-tag-sets/#replica-set-configuration-tag-sets/#replica-set-configuration-tag-sets/#replica-set-configuration-tag-sets/#replica-set-configuration-tag-set-con$

4.6 Read Preference

What is Read Preference?

- Read preference allows you to specify the nodes in a replica set to read from.
- Clients only read from the primary by default.
- There are some situations in which a client may want to read from:
 - Any secondary
 - A specific secondary
 - A specific type of secondary
- Only read from a secondary if you can tolerate possibly stale data, as not all writes might have replicated.

Notes:

Use Cases

- Running systems operations without affecting the front-end application.
- Providing local reads for geographically distributed applications.
- Maintaining availability during a failover.

Notes:

Notes:

Not for Scaling

- In general, do *not* read from secondaries to provide extra capacity for reads.
- Sharding⁹ increases read and write capacity by distributing operations across a group of machines.
- Sharding is a better strategy for adding capacity.

9http://docs.mongodb.org/manual/sharding

Read Preference Modes

MongoDB drivers support the following read preferences. Note that hidden nodes will never be read from when connected via the replica set.

- primary: Default. All operations read from the primary.
- primaryPreferred: Read from the primary but if it is unavailable, read from secondary members.
- secondary: All operations read from the secondary members of the replica set.
- secondaryPreferred: Read from secondary members but if no secondaries are available, read from the primary.
- nearest: Read from member of the replica set with the least network latency, regardless of the member's type.

Notes:

Tag Sets

- There is also the option to used tag sets.
- You may tag nodes such that queries that contain the tag will be routed to one of the servers with that tag.
- This can be useful for running reports, say for a particular data center or nodes with different hardware (e.g. hard disks vs SSDs).

For example, in the mongo shell:

```
conf = rs.conf()
conf.members[0].tags = { dc : "east", use : "production" }
conf.members[1].tags = { dc : "east", use : "reporting" }
conf.members[2].tags = { use : "production" }
rs.reconfig(conf)
```

Notes:

4.7 Exercise: Setting up a Replica Set

Overview

- In this exercise we will setup a 3 data node replica set on a single machine.
- In production, each node should be run on a dedicated host:
 - To avoid any potential resource contention
 - To provide isolation against server failure.

Notes:

Create Data Directories

Since we will be running all nodes on a single machine, make sure each has its own data directory.

On Linux or Mac OS, run the following in the terminal to create the 3 directories \sim /data/rs1, \sim /data/rs2, and \sim /data/rs3:

```
mkdir -p ~/data/rs{1,2,3}
```

On Windows, run the following command instead in Command Prompt or PowerShell:

```
md c:\data\rs1 c:\data\rs2 c:\data\rs3
```

Notes:

Launch Each Member

Now start 3 instances of mongod in the foreground so that it is easier to observe and shutdown.

On Linux or Mac OS, run each of the following commands in its own terminal window:

```
mongod --replSet myReplSet --dbpath ~/data/rs1 --port 27017 --oplogSize 200 --smallfiles mongod --replSet myReplSet --dbpath ~/data/rs2 --port 27018 --oplogSize 200 --smallfiles mongod --replSet myReplSet --dbpath ~/data/rs3 --port 27019 --oplogSize 200 --smallfiles
```

On Windows, run each of the following commands in its own Command Prompt or PowerShell window:

```
mongod --replSet myReplSet --dbpath c:\data\rs1 --port 27017 --oplogSize 200 --smallfiles mongod --replSet myReplSet --dbpath c:\data\rs2 --port 27018 --oplogSize 200 --smallfiles mongod --replSet myReplSet --dbpath c:\data\rs3 --port 27019 --oplogSize 200 --smallfiles
```

Status

- At this point, we have 3 mongod instances running.
- They were all launched with the same replSet parameter of "myReplSet".
- Despite this, the members are not aware of each other yet.
- This is fine for now.

Notes:

Connect to a MongoDB Instance

- Connect to the one of the MongoDB instances with the mongo shell.
- To do so run the following command in the terminal, Command Prompt, or PowerShell:

```
mongo // connect to the default port 27017
```

Notes:

Configure the Replica Set

```
rs.initiate()
// wait a few seconds
rs.add ('<HOSTNAME>:27018')
rs.addArb('<HOSTNAME>:27019')

// Keep running rs.status() until there's a primary and 2 secondaries
rs.status()
```

Problems That May Occur When Initializing the Replica Set

- bindIp parameter is incorrectly set
- Replica set configuration may need to be explicitly specified to use a different hostname:

Write to the Primary

While still connected to the primary (port 27017) with mongo shell, insert a simple test document:

```
db.testcol.insert({ a: 1 })
db.testcol.count()
exit // Or Ctrl-d
```

Notes:

Read from a Secondary

Connect to one of the secondaries. E.g.:

```
mongo --port 27018
```

Read from the secondary

```
rs.slaveOk()
db.testcol.find()
```

Review the Oplog

```
use local
db.oplog.rs.find()
```

Notes:

Changing Replica Set Configuration

To change the replica set configuration, first connect to the primary via mongo shell:

```
mongo --port <PRIMARY_PORT> # e.g. 27017
```

Let's raise the priority of one of the secondaries. Assuming it is the 3rd node (e.g. on port 27019):

```
cfg = rs.conf()
cfg["members"][2]["priority"] = 10
rs.reconfig(cfg)
```

Notes:

Verifying Configuration Change

You will see errors like the following, which are expected:

```
2014-10-07T17:01:34.610+0100~DBClientCursor::init~call()~failed\\ 2014-10-07T17:01:34.613+0100~trying~reconnect~to~127.0.0.1:27017~(127.0.0.1)~failed\\ 2014-10-07T17:01:34.617+0100~reconnect~127.0.0.1:27017~(127.0.0.1)~ok~reconnected~to~server~after~rs~command~(which~is~normal)
```

Verify that the replica set configuration is now as expected:

```
rs.conf()
```

The secondary will now become a primary. Check by running:

```
rs.status()
```

Further Reading

- Replica Configuration 10
- Replica States¹¹

¹⁰http://docs.mongodb.org/manual/reference/replica-configuration/ ¹¹http://docs.mongodb.org/manual/reference/replica-states/

5 Sharding

Introduction to Sharding (page 138) An introduction to sharding.

Balancing Shards (page 148) Chunks, the balancer, and their role in a sharded cluster.

Shard Tags (page 151) How tag-based sharding works.

Exercise: Setting Up a Sharded Cluster (page 153) Deploying a sharded cluster.

5.1 Introduction to Sharding

Learning Objectives

Upon completing this module, students should understand:

- What problems sharding solves
- · When sharding is appropriate
- The importance of the shard key and how to choose a good one
- Why sharding increases the need for redundancy

Notes:

Contrast with Replication

- In an earlier module, we discussed Replication.
- This should never be confused with sharding.
- Replication is about high availability and durability.
 - Taking your data and constantly copying it
 - Being ready to have another machine step in to field requests.

Sharding is Concerned with Scale

- What happens when a system is unable to handle the application load?
- It is time to consider scaling.
- There are 2 types of scaling we want to consider:
 - Vertical scaling
 - Horizontal scaling

Notes:

Vertical Scaling

- Adding more RAM, faster disks, etc.
- When is this the solution?
- First, consider a concept called the working set.

Notes:

The Working Set

Limitations of Vertical Scaling

- There is a limit to how much RAM one machine can support.
- There are other bottlenecks such as I/O, disk access and network.
- Cost may limit our ability to scale up.
- There may be requirements to have a large working set that no single machine could possible support.
- This is when it is time to scale horizontally.

Notes:

Sharding Overview

- MongoDB enables you to scale horizontally through sharding.
- Sharding is about adding more capacity to your system.
- MongoDB's sharding solution is designed to perform well on commodity hardware.
- The details of sharding are abstracted away from applications.
- Queries are performed the same way as if sending operations to a single server.
- Connections work the same by default.

Notes:

A Model that Does Not Scale

A Scalable Model

Notes:

Sharding Basics

Sharded Cluster Architecture

Notes:

Mongos

- A mongos is responsible for accepting requests and returning results to an application driver.
- In a sharded cluster, nearly all operations go through a mongos.
- A sharded cluster can have as many mongos routers as required.
- It is typical for each application server to have one mongos.
- Always use more than one mongos to avoid a single point of failure.

Notes:

Config Servers

Config Server Hardware Requirements

- Quality network interfaces
- A small amount of disk space (typically a few GB)
- A small amount of RAM (typically a few GB)
- The larger the sharded cluster, the greater the config server hardware requirements.

Notes:

When to Shard

- If you have more data than one machine can hold on its drives
- If your application is write heavy and you experiencing too much latency.
- If your working set outgrows the memory you can allocate to a single machine.

Possible Imbalance?

- · Depending on how you configure sharding, data can become unbalanced on your sharded cluster.
 - Some shards might receive more inserts than others.
 - Some shards might have documents that grow more than those in other shards.
- This may result in too much load on a single shard.
 - Reads and writes
 - Disk activity
- This would defeat the purpose of sharding.

Notes:

Balancing Shards

- MongoDB divides data into chunks.
- This is bookkeeping metadata.
 - There is nothing in a document that indicates its chunk.
 - The document does not need to be updated if its assigned chunk changes.
- If a chunk grows too large MongoDB will split it into two chunks.
- The MongoDB balancer keeps chunks distributed across shards in equal numbers.
- However, a balanced sharded cluster depends on a good shard key.

Notes:

What is a Shard Key?

- You must define a shard key for a sharded collection.
- Based on one or more fields that every document must contain.
- Is immutable.
- The shard key determines where documents are located in the cluster.
- It is used to route operations to the appropriate shard.
- · For reads and writes

Targeted Query Using Shard Key

Notes:

With a Good Shard Key

You might easily see that:

- Reads hit only 1 or 2 shards per query.
- Writes are distributed across all servers.
- Your disk usage is evenly distributed across shards.
- Things stay this way as you scale.

With a Bad Shard Key

You might see that:

- Your reads hit every shard.
- Your writes are concentrated on one shard.
- Most of your data is on just a few shards.
- Adding more shards to the cluster will not help.

Notes:

Choosing a Shard Key

Generally, you want a shard key:

- That has high cardinality
- That is used in the majority of read queries
- For which the values read and write operations use are randomly distributed
- For which the majority or reads are routed to a particular server

Notes:

More Specifically

- Your shard key should be consistent with your query patterns.
- If reads usually find only one document, you only need good cardinality.
- If reads retrieve many documents:
 - Your shard key supports locality
 - Matching documents will reside on the same shard.

Cardinality

- A good shard key will have high cardinality.
- A relatively small number of documents should have the same shard key.
- Otherwise operations become isolated to the same server.
- Because documents with the same shard key reside on the same shard.
- Adding more servers will not help.
- Hashing will not help.

Notes:

Non-Monotonic

- A good shard key will generate new values non-monotonically.
- Datetimes, counters, and ObjectIds make bad shard keys.
- Monotonic shard keys cause all inserts to happen on the same shard.
- Hashing will solve this problem.
- · However, doing range queries with a hashed shard key will perform a scatter-gather query across the cluster.

Notes:

Shards Should be Replica Sets

- As the number of shards increases, the number of servers in your deployment increases.
- This increases the probability that one server will fail on any given day.
- With redundancy built into each shard you can mitigate this risk.

5.2 Balancing Shards

Learning Objectives

Upon completing this module students should understand:

- · Chunks and the balancer
- The status of chunks in a newly sharded collection
- · How chunk splits automatically occur
- · Advantages of pre-splitting chunks
- · How the balancer Works

Notes:

Chunks and the Balancer

- Chunks are groups of documents.
- The shard key determines which chunk a document will be contained in.
- Chunks can be split when they grow too large.
- The balancer decides where chunks go.
- It handles migrations of chunks from one server to another.

Notes:

Chunks in a Newly Sharded Collection

- The range of a chunk is defined by the shard key values of the documents the chunk contains.
- When a collection is sharded it starts with just one chunk.
- The first chunk for a collection will have the range:

```
\{ \$minKey : 1 \} to \{ \$maxKey : 1 \}
```

• All shard key values from the smallest possible to the largest fall in this chunk's range

Chunk Splits

Notes:

Pre-Splitting Chunks

- You may pre-split data before loading data into a sharded cluster.
- Pre-splitting is useful if:
 - You plan to do a large data import early on
 - You expect a heavy initial server load and want to ensure writes are distributed.

Notes:

Start of a Balancing Round

- A balancing round may be initiated by any mongos in the cluster.
- This happens when the difference in the number of chunks between two shards becomes to large.
- Specifically, the difference between the shard with the most chunks and the shard with the fewest.
- A balancing round starts when the imbalance reaches:
 - 2 when the cluster has < 20 chunks
 - 4 when the cluster has 20-79 chunks
 - 8 when the cluster has 80+ chunks

Balancing is Resource Intensive

- Chunk migration requires copying all the data in the chunk from one shard to another.
- MonogDB can migrate only a single chunk at a time.
- MongoDB creates splits only after an insert operation.
- For these reasons, it is possible to define a balancing window to ensure the balancer will only run during scheduled times.

Notes:

Chunk Migration Steps

- 1. The balancer process sends the moveChunk command to the source shard.
- 2. The source shard continues to process reads/writes for that chunk during the migration.
- 3. The destination shard requests documents in the chunk and begins receiving copies.
- 4. After receiving all documents, the destination shard receives any changes to the chunk.
- 5. Then the destination shard tells the config db that it has the chunk.
- 6. The destination shard will now handle all reads/writes.
- 7. The source shard deletes its copy of the chunk.

Notes:

Concluding a Balancing Round

- Each chunk will move:
 - From the shard with the most chunks
 - To the shard with the fewest
- A balancing round ends when all shards differ by at most one chunk.

5.3 Shard Tags

Learning Objectives

Upon completing this module students should understand:

- The purpose for shard tags
- Advantages of using shard tags
- Potential drawbacks of shard tags

Notes:

Tags - Overview

- Shard tags allow you to "tie" data to one or more shards.
- A shard tag describes a range of shard key values.
- If a chunk is in the shard tag range, it will live on a shard with that tag.

Notes:

Example: DateTime

- Documents older than one year need to be kept, but are rarely used.
- You tag those ranges as "LTS" for Long Term Storage.
- Tag specific shards to hold LTS documents.
- These shards can be on cheaper, slower machines.
- Invest in high-performance servers for more frequently accessed data.

Example: Location

- You are required to keep certain data in its home country.
- You include the country in the shard tag.
- Maintain data centers within each country that house the appropriate shards.
- Meets the country requirement but allows all servers to be part of the same system.

Notes:

Example: Premium Tier

- You have customers who want to pay for a "premium" tier.
- The shard key permits you to distinguish one customer's documents from all others.
- Tag the document ranges for each customer so that their documents will be located on shards of the appropriate tier.
- Shards tagged as premium tier run on high performance servers.
- Other shards run on commodity hardware.
- See Manage Shard Tags¹²

Notes:

Tags - Caveats

- Because tagged chunks will only be on certain servers, if you tag more than those servers can handle, you'll have a problem.
 - You're not only worrying about your overall server load, you're worrying about server load for each of your tags.
- Your chunks will evenly distribute themselves across the available chunks. You cannot control things more fine grained than your tags.

 $^{^{12}} http://docs.mongodb.org/manual/tutorial/administer-shard-tags/\\$

5.4 Exercise: Setting Up a Sharded Cluster

Learning Objectives

Upon completing this module students should understand:

- How to set up a sharded cluster including:
 - Replica Sets as Shards
 - Config Servers
 - Mongos processes
- How to enable sharding for a database
- · How to shard a collection
- How to determine where data will go

Notes:

Our Sharded Cluster

- In this exercise, we will set up a cluster with 3 shards.
- Each shard will be a replica set with 3 members (including one arbiter).
- We will insert some data and see where it goes.

Notes:

Sharded Cluster Configuration

- Three shards:
 - 1. A replica set on ports 27107, 27108, 27109
 - 2. A replica set on ports 27117, 27118, 27119
 - 3. A replica set on ports 27127, 27128, 27129
- Three config servers on ports 27217, 27218, 27219
- Two mongos servers at ports 27017 and 27018

Build Our Data Directories

On Linux or MacOS, run the following in the terminal to create the data directories we'll need.

```
mkdir -p ~/data/cluster/config/{c0,c1,c2}
mkdir -p ~/data/cluster/shard0/{m0,m1,arb}
mkdir -p ~/data/cluster/shard1/{m0,m1,arb}
mkdir -p ~/data/cluster/shard2/{m0,m1,arb}
mkdir -p ~/data/cluster/{s0,s1}
```

On Windows, run the following commands instead:

```
\label{lem:md:c:data} $$ c:\data\cluster\config\c1 c:\data\cluster\config\c2 $$ md c:\data\cluster\shard0\m0 c:\data\cluster\shard0\m1 c:\data\cluster\shard0\arb $$ md c:\data\cluster\shard1\m1 c:\data\cluster\shard1\arb $$ md c:\data\cluster\shard2\m1 c:\data\cluster\shard2\arb $$ md c:\data\cluster\s0 c:\data\cluster\s1 $$
```

Notes:

Initiate a Replica Set

```
mongod --replSet shard0 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard0/m0 \
       --logpath ~/data/cluster/shard0/m0/mongod.log \
       --fork --port 27107
mongod --replSet shard0 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard0/m1 \
       --logpath ~/data/cluster/shard0/m1/mongod.log \
       --fork --port 27108
mongod --replSet shard0 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard0/arb \
       --logpath ~/data/cluster/shard0/arb/mongod.log \
       --fork --port 27109
mongo --port 27107 --eval "\
   rs.initiate(); sleep(3000);
   rs.add ('<HOSTNAME>:27108');\
   rs.addArb('<HOSTNAME>:27109')"
```

Spin Up a Second Replica Set

```
mongod --replSet shard1 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard1/m0 \
       --logpath ~/data/cluster/shard1/m0/mongod.log \
       --fork --port 27117
mongod --replSet shard1 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard1/m1 \
       --logpath ~/data/cluster/shard1/m1/mongod.log \
       --fork --port 27118
mongod --replSet shard1 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard1/arb \
       --logpath ~/data/cluster/shard1/arb/mongod.log \
       --fork --port 27119
mongo --port 27117 --eval "\
   rs.initiate(); sleep(3000);\
    rs.add ('<HOSTNAME>:27118');\
   rs.addArb('<HOSTNAME>:27119')"
```

Notes:

A Third Replica Set

```
mongod --replSet shard2 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard2/m0 \
       --logpath ~/data/cluster/shard2/m0/mongod.log \
       --fork --port 27127
mongod --replSet shard2 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard2/m1 \
       --logpath ~/data/cluster/shard2/m1/mongod.log \
       --fork --port 27128
mongod --replSet shard2 --smallfiles --nojournal --noprealloc \
       --dbpath ~/data/cluster/shard2/arb \
       --logpath ~/data/cluster/shard2/arb/mongod.log \
       --fork --port 27129
mongo --port 27127 --eval "\
   rs.initiate(); sleep(3000); \
    rs.add ('<HOSTNAME>:27128');\
    rs.addArb('<HOSTNAME>:27129')"
```

Status Check

- Now we have three replica sets running.
- We have one for each shard.
- They do not know about each other yet.
- To make them a sharded cluster we will:
 - Build our config databases
 - Launch our mongos processes
 - Add each shard to the cluster
- To benefit from this configuration we also need to:
 - Enable sharding for a database
 - Shard at least one collection within that database

Notes:

Launch Config Servers

Launch the Mongos Processes

Now our mongos's. We need to tell them about our config servers.

Notes:

Add All Shards

```
echo 'sh.addShard( "shard0/localhost:27107" ); \
    sh.addShard("shard1/localhost:27117" ); \
    sh.addShard( "shard2/localhost:27127" ); sh.status()' | mongo
```

Note: Instead of doing this through a bash (or other) shell command, you may prefer to launch a mongo shell and issue each command individually.

Notes:

Enable Sharding and Shard a Collection

Enable sharding for the test database, shard a collection, and insert some documents.

Observe What Happens

a	1.1				1 11	1 0	. 1	
Connect to	either	mongos	11¢1no 9	mongo	chell	and to	reamently	/ icclie.
Connect to	CILITOI	mongos	using a	mongo	SHOTI	and n	cquenti	issuc.

sh.status()

6 Security

Security (page 159) An overview of security options for MongoDB.

6.1 Security

Learning Objectives

Upon completing this module students should understand:

- Security options for MongoDB
- Basics of native auth for MongoDB
- User roles in MongoDB
- How to manage user roles in MongoDB

Notes:

Overview

Authentication Options

- Chanllenge/response authentication using SCRAM-SHA-1 (username & password)
- x.509 Authentication (using x.509 Certificates)
- Kerberos (through an Enterprise subscription)
- LDAP

Notes:

Authorization via MongoDB

- Each user has a set of potential roles
 - read, readWrite, dbAdmin, etc.
- Each role applies to one database
 - A single user can have roles on each database
 - Some roles apply to all databases
 - You can also create custom roles.

Notes:

Network Exposure Options

- bindIp limits the ip addresses the server listens on.
- Using a non-standard port can provide a layer of obscurity.
- MongoDB should still be run only in a trusted environment.

Encryption (SSL)

- MongoDB can be configured at build time to run with SSL.
- To get it, build from the source code with –ssl.
- Alternatively, use MongoDB Enterprise.
- Allows you to use public key encryption.
- You can also validate with x.509 certificates.

Notes:

Native MongoDB Auth

- Uses SCRAM-SHA-1 for challenge/response
- Sometimes called MongoDB-CR
- Start a mongod instance with --auth to enable this feature
- You can initially login using localhost
 - Called the "localhost exception".
 - Stops working when you create a user.

Notes:

Exercise: Create an Admin User, Part 1

- Launch a mongo shell.
- Create a user with the role, userAdminAnyDatabase
- Use name "roland" and password "12345".
- Enable this user to login on the admin database.

Exercise: Create an Admin User, Part 2

- Launch a mongo shell without logging in.
- Attempt to create a user.
- Exit the shell.
- Log in again as roland.
- Ensure that you can create a user.

Notes:

Using MongoDB Roles

- Each user logs in on *one* database.
- The user inputs their password on login.
 - Use the -u flag for username.
 - Use the -p flag to enter the password.
- userAdmins may create other users
- But they cannot read/write without other roles.

Notes:

Exercise: Creating a readWrite User, Part 1

- Create a user named vespa.
- Give *vespa* readWrite access on the *test* and *druidia* databases.
- Create this user so that the login database is *druidia*.

MongoDB Custom User Roles You can create custom user roles in MongoDB. You do this by modifying the system.roles collection. You can also inherit privileges from other roles into a given role. You won't remember how to do this, so if you need it, consult the docs¹³. Notes:

Exercise: Creating a readWrite User, Part 2

Log in with the user you just created.

¹³http://docs.mongodb.org/manual/core/security-introduction/

7 MMS & Ops Manager

MongoDB Management Service (MMS) & Ops Manager (page 164) Learn about what MMS offers

Automation (page 167) MMS Automation

Exercise: Cluster Automation (page 170) Set up a cluster with MMS Automation

Monitoring (page 171) Monitor a cluster with MMS

Exercise: Create an Alert (page 174) Create an alert on MMS

Backups (page 175) Use MMS to create and administer backups

API (page 177) Using the MMS API

Exercise: MMS API (page 179) MMS API exercise

Architecture (Ops Manager) (page 180) Ops Manager

Security (Ops Manager) (page 183) Ops Manager Security

Exercise: Install Ops Manager (page 186) Install Ops Manager

7.1 MongoDB Management Service (MMS) & Ops Manager

Learning Objectives

Upon completing this module students should understand:

- Features of the MongoDB Management Service (MMS) & Ops Manager
- Available deployment options
- The components of MMS & Ops Manager
- MMS demo

Notes:

MMS and Ops Manager

All services for managing a MongoDB cluster or group of clusters:

- Monitoring
- Automation
- Backups

Deployment Options

• MMS: Hosted, http://mms.mongodb.com

• Ops Manager: On-premises

Notes:

Architecture

MMS

- Manage MongoDB instances anywhere with a connection to MMS
- Option to provision servers via AWS integration

Ops Manager

On-premises MMS, with additional features for:

- Alerting (SNMP)
- Deployment configuration (e.g. backup redundancy across internal data centers)
- Global control of multiple MongoDB clusters

Notes:

MMS and Ops Manager Use Cases

- Manage a 1000 node cluster (monitoring, backups, automation)
- Manage a personal project (3 node replica set on AWS, using MMS)
- Manage 40 deployments (with each deployment having different requirements)

Notes:

Creating an MMS Account

Free account at mms.mongodb.com

7.2 Automation

Learning Objectives

Upon completing this module students should understand:

- Use cases for MMS / Ops Manager Automation
- The MMS / Ops Manager Automation internal workflow

Notes:

What is Automation?

Fully managed MongoDB deployment on your own servers:

- · Automated provisioning
- Dynamically add capacity (e.g. add more shards or replica set nodes)
- Upgrades
- Admin tasks (e.g. change the size of the oplog)

Notes:

How Does Automation Work?

- Automation agent installed on each server in cluster
- Administrator creates design goal for system (through MMS / Ops Manager interface)
- · Automation agents periodically check with MMS / Ops Manager to get new design instructions
- · Agents create and follow a plan for implementing cluster design
- Minutes later, cluster design is complete, cluster is in goal state

Automation Agents

Machines in Data Center

Notes:

Sample Use Case

Administrator wants to create a 100 shard cluster, with each shard comprised of a 3 node replica set:

- Administrator installs automation agent on 300 servers
- Cluster design is created in MMS / Ops Manager, then deployed to agents
- Agents execute instructions until 100 shard cluster is complete (usually several minutes)

Upgrades Using Automation

- Upgrades without automation can be a manually intensive process (e.g. 300 servers)
- · A lot of edge cases when scripting (e.g. 1 shard has problems, or one replica set is a mixed version)
- One click upgrade with MMS / Ops Manager Automation for the entire cluster

Notes:

Automation: Behind the Scenes

- Agents ping MMS / Ops Manager for new instructions
- Agents compare their local configuration file with the latest version from MMS / Ops Manager
- Configuration file in json
- All communications over SSL

```
{
    "groupId": "55120365d3e4b0cac8d8a52a737",
    "state": "PUBLISHED",
    "version": 4,
    "cluster": { ...
```

Notes:

Configuration File

When version number of configuration file on MMS / Ops Manager is greater than local version, agent begins making a plan to implement changes:

Notes:
Automation Goal State
Automation agent is considered to be in goal state after all cluster changes (related to the individual agent) have been implemented.
Notes:
Demo
Notes:
7.3 Exercise: Cluster Automation
Learning Objectives
Upon completing this exercise students should understand:
How to deploy, dynamically resize, and upgrade a cluster with MMS Automation
Notes:
MMS Automation Support
Windows machines are not supported at this time.
Notes:

Exercise #1

Using your personal computer, create a cluster using MMS automation with the following topology:

- 3 shards
- Each shard is a 3 node replica set (2 data bearing nodes, 1 arbiter)
- Version 2.6.8 of MongoDB
- To conserve space on your local machine, set "smallfiles" = true and "oplogSize" = 10

Exercise #2

Modify the cluster topology from Exercise #1 to the following:

- 4 shards (add one shard)
- Version 3.0.1 of MongoDB (upgrade from 2.6.8 -> 3.0.1)

Notes:

7.4 Monitoring

Learning Objectives

Upon completing this module students should understand:

- MMS / Ops Manager monitoring fundamentals
- How to set up alerts in MMS / Ops Manager

Monitoring in MMS / Ops Manager

- Identify cluster performance issues
- Identify individual nodes in cluster with performance issues
- Visualize performance through graphs and overlays
- Configure and set alerts

Notes:

Monitoring Use Cases

- Alert on performance issues, to catch them before they turn into an outage
- Diagnose performance problems
- Historical performance analysis
- · Monitor cluster health
- Capacity planning and scaling requirements

Notes:

Monitoring Agent

- Requests metrics from each host in the cluster
- Sends those metrics to MMS / Ops Manager server
- Must be able to contact every host in the cluster (agent can live in a private network)
- Must have access to contact MMS / Ops Manager website with metrics from hosts

Agent Configuration

•	Can	use	HTTP	proxy

- Can gather hardware statistics via munin-node
- Agent can optionally gather database statistics, and record slow queries (sampled)

Notes:

Agent Security

- SSL certificate for SSL clusters
- LDAP/Kerberos supported
- Agent must have "clusterMonitor" role on each host

Notes:

Monitoring Demo

Visit mms.mongodb.com

Notes:

Navigating MMS Charts

- Add charts to view by clicking the name of the chart at the bottom of the host's page
- "i" icon next to each chart title can be clicked to learn what the chart means
- Holding down the left mouse button and dragging on top of the chart will let you zoom in

Metrics

- Minute-level metrics for 48 hours
- Hourly metrics for about 3 months
- Daily metrics for the life of the cluster

Notes:

Alerts

- Every chart can be alerted on
- Changes to the state of the cluster can trigger alerts (e.g. a failover)
- Alerts can be sent to email, SMS, HipChat, or PagerDuty

Notes:

7.5 Exercise: Create an Alert

Learning Objectives

Upon completing this exercise students should understand:

• How to create an alert in MMS

Exercise #1

Create an alert through MMS for any node within your cluster that is down.

After the alert has been created, stop a node within your cluster to verify the alert.

7.6 Backups

Learning Objectives

Upon completing this module students should understand:

- How MMS / Ops Manager Backups work
- Advantages to MMS / Ops Manager Backups

Notes:

Methods for Backing Up MongoDB

- mongodump
- File system backups
- MMS / Ops Manager Backups

Notes:

Comparing MongoDB Backup Methods

Considerations	Mongodump	File System	MMS Backup (Cloud)	Ops Manager (On-prem MMS)
Initial	Medium	High	Low	High
Complexity				
Replica Set PIT	Yes**	Yes**	Yes	Yes
Sharded	No	Yes**	Yes	Yes
Snapshot				
Restore Time	Slow	Fast	Medium	Medium

^{**}Requires advanced scripting

MMS / Ops Manager Backups

- Based off oplogs (even for the config servers)
- Point-in-time recovery for replica sets, snapshots for sharded clusters
- Oplog on config server for sharded cluster backup
- Ability to exclude collections, databases (such as logs)
- Retention rules can be defined

Notes:

Restoring from MMS / Ops Manager

- Specify which backup to restore
- SCP push or HTTPS pull (one time use link) for data files

Notes:

Architecture

Snapshotting

- Local copy of every replica set stored by MMS / Ops Manager
- Oplog entries applied on top of local copy
- Local copy is used for snapshotting
- Very little impact to the cluster (equivalent to adding another secondary)

Notes:

Backup Agent

- Backup agent (can be managed by Automation agent)
- Backup agent sends oplog entries to MMS / Ops Manager service to be apply on local copy

Notes:

7.7 API

Learning Objectives

Upon completing this module students should understand:

- Overview of the MMS / Ops Manager API
- Sample use cases for the MMS / Ops Manager API

What is the MMS / Ops Manager API?

Allows users to	programmatical	ly:
-----------------	----------------	-----

- Access monitoring data
- Backup functionality (request backups, change snapshot schedules, etc.)
- Automation cluster configuration (modify, view)

Notes:

API Documentation

Sample API Uses Cases

- Ingest MMS / Ops Manager monitoring data
- Programmatically restore environments
- Configuration management

Notes:

Ingest Monitoring Data

The monitoring API can be used to ingest monitoring data into another system, such as Nagios, HP OpenView, or your own internal dashboard

Programatically Re	estore Envi	ronments
--------------------	-------------	----------

Use the backup API to programmatically restore an integration or testing environment based on the last production snapshot.
Notes:
Configuration Management
Use the automation API to integrate with existing configuration management tools (such as Chef or Puppet) to automate creating and maintaining environments.
Notes:
7.8 Exercise: MMS API
Learning Objectives
Upon completing this exercise students should understand:
• Have a basic understanding of working with the MMS API (or Ops Manager if the student chooses)
Notes:
Using the MMS API
If Ops Manager is installed, it may be used in place of MMS for this exercise.
Notes:

Exercise #1

Navigate the MMS interface to perform the following:

- · Generate an API key
- Add your personal machine to the API whitelist

Notes:

Exercise #2

Modify and run the following curl command to return alerts for your MMS group:

```
curl -u "username:apiKey" --digest -i
"https://mms.mongodb.com/api/public/v1.0/groups/<GROUP-ID>/alerts"
```

Notes:

Exercise #3

How would you find metrics for a given host within your MMS account? Create an outline for the API calls needed.

Notes:

7.9 Architecture (Ops Manager)

Learning Objectives

Upon completing this module students should understand:

- Ops Manager overview
- Ops Manager components
- Considerations for sizing an Ops Manager environment

MongoDB Ops Manager

- On-premises version of MMS
- Everything stays within private network

Notes:

Components

- Application server(s): web interface
- Ops Manager application database: monitoring metrics, automation configuration, etc.
- Backup infrastructure: cluster backups and restores

Notes:

Architecture

Notes:
Application Server
• 15GB RAM, 50GB of disk space are required
• Equivalent to a m3.xlarge AWS instance
Notes:
Application Database
All monitoring metrics, automation configurations, etc. stored here
Replica set, however, a standalone MongoDB node can also be used
Notes:
Backup Infrastructure
Blockstore database
• Backup daemon process (manages applying oplog entries, creating snapshots, etc.)
Notes:

Blockstore Database

- Replica set, a standalone MongoDB node can also be used
- Must be sized carefully
- All snapshots are stored here
- Block level de-duping, the same block isn't stored twice (significantly reduces database size for deployment with low/moderate writes)

Notes:

Backup Daemon Process

- The "workhorse" of the backup infrastructure
- Creates a local copy of the database it is backing up (references "HEAD" database)
- Requires 2-3X data space (of the database it is backing up)
- Can run multiple daemons, pointing to multiple blockstores (for large clusters)

Notes:

7.10 Security (Ops Manager)

Learning Objectives

Upon completing this module students should understand:

- Ops Manager security overview
- Security and authentication options for Ops Manager

Ops Manager User Authentication

• Two-Factor authentication can be enabled (uses Google Authenticator)
LDAP authentication option
Notes:

Authentication for the Backing Ops Manager Databases

Ops Manager application database and blockstore database:

- MongoDB-CR (SCRAM-SHA1)
- LDAP
- Kerberos

Notes:

Authenticating Between an Ops Manager Agent and Cluster

- LDAP
- MongoDB-CR
- Kerberos (Linux only)

Encrypting Communications

- All communications can be encrypted over SSL
- However, currently, if you are using Automation to manage a cluster, that cluster cannot use SSL or advanced auth.

Ops Manager Groups

- Users can belong to many different groups
- Users have different levels of access per group

Notes:

User Roles By Group

- Read Only
- User Admin
- Monitoring Admin
- Backup Admin
- Automation Admin
- Owner

Notes:

Global User Roles

- · Global Read Only
- Global User Admin
- Global Monitoring Admin
- Global Backup Admin
- Global Automation Admin
- Global Owner

7.11 Exercise: Install Ops Manager

Learning Objectives

U	pon	comp	oleting	this	exercise	students	should	understand	:

- The components needed for Ops Manager
- How to successfully install Ops Mananger

Notes:

Install Ops Manager

A Linux machine with at least 15GB of RAM is required

Notes:

Install Ops Manager

We will follow an outline of the installation instructions here:

https://docs.opsmanager.mongodb.com/current/tutorial/install-basic-deployment/

Notes:

Exercise #1

Prepare your environment for running all Ops Manager components: Monitoring, Automation, and Backups

- Set up a 3 node replica set for the Ops Manager application database (2 data bearing nodes, 1 arbiter)
- Set up a 3 node replica set for Ops Manager backups (2 data bearing nodes, 1 arbiter)
- Verify both replica sets have been installed and configured correctly

Exercise #2

Install the Ops Manager application

- Ops Manager application requires a license for commercial use
- Download the Ops manager application (after completing form): http://www.mongodb.com/download
- Installation instructions (from above): docs.opsmanager.mongodb.com
- Verify Ops Manager is running successfully

Notes:

Exercise #3

Install the Ops Manager Backup Daemon

- The Ops Manager backup daemon is required for using Ops Manager for backups
- Download and install the backup daemon (using the link from the past exercise)
- Verify the installation was successful by looking at the logs in: <install_dir>/logs

Notes:

Exercise #4

Verify the Ops Manager installation was successful:

https://docs.opsmanager.mongodb.com/current/tutorial/test-new-deployment/

Exercise #5

Use Ops Manager to backup a test cluster:

- Create a 1 node replica set via Ops Manager automation
- Add sample data to the replica set:

```
> for (var i=0; i<10000; i++) { db.blog.insert( { "name" : i } )}
WriteResult({ "nInserted" : 1 })
> db.blog.count()
10000
```

- Use Ops Manager to backup the test cluster
- Perform a restore via Ops Manager of the test cluster

8 Performance Troubleshooting

Performance Troubleshooting (page 189) An introduction to reporting and diagnostic tools for MongoDB.

8.1 Performance Troubleshooting

Learning Objectives

Upon completing this module students should understand basic performance troubleshooting techniques and tools including:

- mongostat
- mongotop
- db.setProfilingLevel()
- db.currentOp()
- db.<COLLECTION>.stats()
- db.serverStatus()

Notes:

mongostat and mongotop

- mongostat samples a server every second.
 - See current ops, pagefaults, network traffic, etc.
 - Does not give a view into historic performance; use MMS for that.
- mongotop looks at the time spent on reads/writes in each collection.

Exercise: mongostat (setup)

In one window, perform the following commands.

```
db.testcol.drop()
for (i=1; i<=10000; i++) {
    arr = [];
    for (j=1; j<=1000; j++) {
        doc = { _id: (1000 * (i-1) + j), a: i, b: j, c: (1000 * (i-1)+ j) };
        arr.push(doc)
    };
    db.testcol.insert(arr);
    var x = db.testcol.find( { b : 255 } );
    x.next();
    var x = db.testcol.find( { _id : 1000 * (i-1) + 255 } );
    x.next();
    var x = "asdf";
    db.testcol.update( { a : i, b : 255 }, { $set : { d : x.pad(1000) } });
    print(i)
}</pre>
```

Notes:

Exercise: mongostat (run)

- In another window/tab, run mongostat.
- You will see:
 - Inserts
 - Queries
 - Updates

Exercise: mongostat (create index)

• In a third window, create an index when you see things slowing down:

```
db.testcol.createIndex( { a : 1, b : 1 } )
```

- Look at mongostat.
- Notice that things are going significantly faster.
- Then, let's drop that and build another index.

```
db.testcol.dropIndexes()
db.testcol.createIndex( { b : 1, a : 1 } )
```

Notes:

Exercise: mongotop

Perform the following then, in another window, run mongotop.

```
db.testcol.drop()
for (i=1; i<=10000; i++) {
    arr = [];
    for (j=1; j<=1000; j++) {
        doc = {_id: (1000*(i-1)+j), a: i, b: j, c: (1000*(i-1)+j)};
        arr.push(doc)
    };
    db.testcol.insert(arr);
    var x = db.testcol.find( {b: 255} ); x.next();
    var x = db.testcol.find( {_id: 1000*(i-1)+255} ); x.next();
    var x = "asdf";
    db.testcol.update( {a: i, b: 255}, {$set: {d: x.pad(1000)}});
    print(i)
}</pre>
```

db.currentOp()

- currentOp is a tool that asks what the db is doing at the moment.
- currentOp is useful for finding long-running processes.
- Fields of interest:
 - microsecs_running
 - **–** ор
 - query
 - lock
 - waitingForLock

Notes:

Exercise: db.currentOp()

Do the following then, connect with a separate shell, and repeatedly run db.currentOp().

```
db.testcol.drop()
for (i=1; i<=10000; i++) {
    arr = [];
    for (j=1; j<=1000; j++) {
        doc = {_id: (1000*(i-1)+j), a: i, b: j, c: (1000*(i-1)+j)};
        arr.push(doc)
    };
    db.testcol.insert(arr);
    var x = db.testcol.find( {b: 255} ); x.next();
    var x = db.testcol.find( {_id: 1000*(i-1)+255 }); x.next();
    var x = "asdf";
    db.testcol.update( {a: i, b: 255}, {$set: {d: x.pad(1000)}});
    print(i)
}</pre>
```

db.<COLLECTION>.stats()

- Used to view the current stats for a collection.
- Everything is in bytes; use the multiplier parameter to view in KB, MB, etc
- You can also use db.stats() to do this at scope of the entire database

Notes:

Exercise: Using Collection Stats

Look at the output of the following:

```
db.testcol.drop()
db.testcol.insert( { a : 1 } )
db.testcol.stats()
var x = "asdf"
db.testcol2.insert( { a : x.pad(10000000) } )
db.testcol2.stats()
db.stats()
```

Notes:

The Profiler

- Off by default.
- To reset, db.setProfilerLevel(0)
- At setting 1, it captures "slow" queries.
- You may define what "slow" is.
- Default is 100ms: db.setProfilerLevel(1)
- E.g., to capture 20 ms: db.setProfilerLevel(1, 20)

The Profiler (continued)

- If the profiler level is 2, it captures all queries.
 - This will severely impact performance.
 - Turns all reads into writes.
- Always turn the profiler off when done (set level to 0)
- Creates db.system.profile collection

Notes:

Exercise: Exploring the Profiler

Perform the following, then look in your db.system.profile.

```
db.setProfilingLevel(0)
db.testcol.drop()
db.system.profile.drop()
db.setProfilingLevel(2)
db.testcol.insert( { a : 1 } )
db.testcol.find()
var x = "asdf"
db.testcol.insert( { a : x.pad(10000000) } ) // ~10 MB
db.setProfilingLevel(0)
db.system.profile.find().pretty()
```

Notes:

db.serverStatus()

- Takes a snapshot of server status.
- By taking diffs, you can see system trends.
- Most of the data that MMS gets is from here.

Exercise: Using db.serverStatus()

• Open up two windows. In the first, type:

```
db.testcol.drop()
var x = "asdf"
for (i=0; i<=10000000; i++) {
    db.testcol.insert( { a : x.pad(100000) } )
}</pre>
```

• In the second window, type periodically:

```
var x = db.serverStatus(); x.metrics.document
```

Notes:

Analyzing Profiler Data

- Enable the profiler at default settings.
- Run for 5 seconds.
- Slow operations are captured.
- The issue is there is not a proper index on the message field.
- Allow class to discover this as the data is examined.
- You will see how fast documents are getting inserted.
- It will be slow b/c the documents are big.

Notes:

Performance Improvement Techniques

- Appropriate write concerns
- · Bulk operations
- · Good schema design
- · Good Shard Key choice
- Good indexes

Performance Tips: Write Concern

- Increasing the write concern increases data safety.
- This will have an impact on performance, however.
- This is especially true when there are network issues.

Notes:

Bulk Operations

- Using bulk operations can improve performance, especially when using write concern greater than 1.
- These enable the server to bulk write and bulk acknowledge.
- Can be done with both inserts and updates.

Notes:

Exercise: Comparing bulk inserts with mongostat

Let's spin up a 3-member replica set:

mongostat, bulk inserts with {w: 1}

Perform the following, with writeConcern: 1 and no bulk inserts:

Run mongostat and see how fast that happens.

Notes:

Bulk inserts with {w: 3}

Increase the write concern to 3 (safer but slower):

Again, run mongostat.

mongostat, bulk inserts with {w: 3}

- Finally, let's use bulk inserts to our advantage:
- Note that writeConcern is still { w: 3 }

Notes:

Schema Design

- The structure of documents affects performance.
- Optimize for your application's read/write patterns.
- We want as few requests to the database as possible to perform a given application task.
- See the data modeling section for more information.

Notes:

Shard Key Considerations

- Choose a shard key that distributes load across your cluster.
- Create a shard key such that only a small number of documents will have the same value.
- Create a shard key that has a high degree of randomness.
- Your shard key should enable a mongos to target a single shard for a given query.

Indexes and Performance

- Reads and writes that don't use an index will cripple performance.
- In compound indexes, order matters:
 - Sort on a field that comes before any range used in the index.
 - You can't skip fields; they must be used in order.
 - Revisit the indexing section for more detail.

9 Backup and Recovery

Backup and Recovery (page 200) An overview of file system backup procedures.

9.1 Backup and Recovery

Disasters Do Happen

Human Disasters

Notes:

Terminology: RPO vs. RTO

- Recovery Point Objective (RPO): How much data can you afford to lose?
- Recovery Time Objective (RTO): How long can you afford to be off-line?

Terminology: DR vs. HA

- Disaster Recovery (DR)
- High Availability (HA)
- Distinct business requirements
- Technical solutions may converge

Notes:

Quiz

- Q: What's the hardest thing about backups?
- A: Restoring them!
- Regularly test that restoration works!

Notes:

Backup Options

- Document Level
 - Logical
 - mongodump, mongorestore
- File system level
 - Physical
 - Copy files
 - Volume/disk snapshots

Document Level: mongodump

- Dumps collection to BSON files
- Mirrors your structure
- Can be run live or in offline mode
- Does not include indexes (rebuilt during restore)
- --dbpath for direct file access
- --oplog to record oplog while backing up
- --query/filter selective dump

Notes:

mongodump

```
$ mongodump --help
Export MongoDB data to BSON files.
options:
 --help
                        produce help message
 -v [ --verbose ]
                       be more verbose (include multiple times for
                        more verbosity e.g. -vvvvv)
 --version
                        print the program's version and exit
 -h [ --host ] arg mongo host to connect to ( /s1,s2 for --port arg
                        server port. Can also use --host hostname
  --port arg
 -u [ --username ] arg username
 -p [ --password ] arg password
  --dbpath arg
                         directly access mongod database files in path
 -d [ --db ] arg database to use
 -c [ --collection ] arg collection to use (some commands)
 -o [ --out ] arg (=dump)output directory or "-" for stdout
 -q [ --query ] arg
                         json query
  --oplog
                         Use oplog for point-in-time snapshotting
```

File System Level

- Must use journaling!
- Copy /data/db files
- Or snapshot volume (e.g., LVM, SAN, EBS)
- Seriously, always use journaling!

Notes:

Ensure Consistency

Flush RAM to disk and stop accepting writes:

- db.fsyncLock()
- Copy/Snapshot
- db.fsyncUnlock()

Notes:

File System Backups: Pros and Cons

- Entire database
- Backup files will be large
- Fastest way to create a backup
- Fastest way to restore a backup

Document Level: mongorestore

- mongorestore
- --oplogReplay replay oplog to point-in-time

Notes:

File System Restores

- All database files
- Selected databases or collections
- Replay Oplog

Notes:

Backup Sharded Cluster

- 1. Stop Balancer (and wait) or no balancing window
- 2. Stop one config server (data R/O)
- 3. Backup Data (shards, config)
- 4. Restart config server
- 5. Resume Balancer

Restore Sharded Cluster

- 1. Dissimilar # shards to restore to
- 2. Different shard keys?
- 3. Selective restores
- 4. Consolidate shards
- 5. Changing addresses of config/shards

Notes:

Tips and Tricks

- mongodump/mongorestore
 - --oplog[Replay]
 - --objcheck/--repair
 - --dbpath
 - --query/--filter
- bsondump
 - inspect data at console
- LVM snapshot time/space tradeoff
 - Multi-EBS (RAID) backup
 - clean up snapshots

