省选模拟试题

ExfJoe

March 6, 2017

竞赛时长: 240min

试题名称	摆棋子	旅行路线	流浪者
可执行文件名	chessman	route	rover
输入文件名	chessman.in	route.in	rover.in
输出文件名	chessman.out	route.out	rover.out
时间限制	1s	2s	2.5s
空间限制	256M	256M	256M
测试点数目	10	10	10
测试点分数	10	10	10
是否有 SPJ	否	否	否
是否有部分分	否	否	否
题目类型	传统	传统	传统

- 认真独立完成试题,不与他人交流讨论
- 最终评测在 Win10 下使用 Lemon, 默认栈空间限制为 8M, 不开启 O2 优化
- 试题按英文名称字典序排序

摆棋子

题目描述

A 君准备在一个 $n \times m$ 的棋盘上摆棋子,他会将棋子摆在棋盘里的格子上,一个格子上最多只能摆一个棋子,一开始所有的格子上都没有棋子。

现在 A 君想知道,他至少要摆多少个棋子,才能让每一行满足该行上的棋子数量 $\geq X_i$; 让每一列满足该列上的棋子数量 $\geq Y_i$.

特别地,由于这个棋盘非常老旧,所以有的格子已经损坏无法摆上棋子。

现在请你帮帮 A 君,告诉他最少需要摆多少个棋子。

输入格式

第一行 n, m, K 分别表示行数、列数、损坏的格子数。

第二行 n 个整数 X_i 表示每一行的限制。

第三行 m 个整数 Y_i 表示每一列的限制。

接下来 K 行每行两个整数 (u_i, v_i) 表示一个损坏的格子。

输出格式

若可以满足要求则输出一行一个整数表示答案。

否则输出"No Solution"(不含引号)。

样例

	Input	
4 4 4	•	
1 1 1 1		
0 1 0 3		
1 4		
2 2		
3 3		
4 3		
Output		

0utput _____

约定

30% 的数据: $n, m \le 10$

100% 的数据: $1 \le n, m \le 100, 0 \le K \le nm$

旅行路线

题目描述

A 君准备在 Z 国进行一次旅行。 Z 国中有 n 个城市,城市从 1 到 n 进行编号,其中 1 号城市为 Z 国首都。 Z 国的旅行交通网由 n-1 条单向道路构成,并且从任何一个城市出发都可以通过旅行网到达首都。

一条旅行交通网中的旅行路线,可以用路线上所经过的城市来描述,如 $\{v_1, v_2, \cdots, v_m\}$,它表示一条经过了 m 个城市的旅行路线,且城市 v_i 到城市 v_{i+1} 有一条单向道路相连。

若两个城市所连接的道路数量相同,则 A 君会认为这两座城市是相似的。

对于两条路线 $\{u_1, u_2, \dots, u_p\}$ 与 $\{v_1, v_2, \dots, v_q\}$,若 p = q 且 $\forall 1 \leq i \leq p$,城市 u_i 与 v_i 是相似的,则 A 君认为这两条旅行路线也是相似的。

现在 A 君想知道共有多少种不同的旅行路线,相似的若干条旅行路线只算做一种。

输入格式

第一行一个整数 n 表示 Z 国城市个数。

接下来 n-1 行每行两个整数 x,y,表示一条从 x 到 y 的单向道路。

输出格式

仅一行一个整数表示答案。

样例 1

	Input
3	•
2 1	
3 1	
	Output
3	

约定

20% 的数据: $n \le 100$

另有 40% 的数据:每个城市所连接的道路不超过 20条

100% 的数据: $1 \le n \le 10^5$

流浪者

题目描述

有一位流浪者正在一个 $n \times m$ 的网格图上流浪。初始时流浪者拥有 S 点体力值。

流浪者会从 (1,1) 走向 (n,m),并且他只会向下走 $((x,y) \to (x+1,y))$ 或是往右走 $((x,y) \to (x,y+1))$,在所有可行的路线中他会随机选择一条。

网格图中还有 K 个障碍点。若流浪者当前体力值为 s,则他经过一个障碍点后体力值会变为 $\left[\frac{s}{2}\right]$. 现在请你求出,流浪者到达 (n,m) 时他体力值的期望是多少。

若答案为 $\frac{a}{b}$, 则你输出 $\frac{a}{b}$ 在模 $10^9 + 7$ 意义下的值即可。

输入格式

第一行四个整数 n, m, K, S,意义见题目描述。

接下来 K 行每行两个整数 x_i, y_i 表示一个障碍点,保证一个障碍点不会出现多次。起点与终点可能也会是障碍点。

输出格式

仅一行一个整数表示答案。

样例 1

	Input	
3 3 2 11		
2 1		
2 3		
	Output	
333333342		

样例 1 解释

共有6种合法路径,这里不一一列出。

$$\frac{1}{6} \times (6+6+11+3+6+6) = \frac{19}{3}$$

样例 2

	Input	
1 6 2 15	-	
1 1		
1 5		
Output		
4	Suspas	

约定

30% 的数据: $n, m \le 10$ 50% 的数据: $n, m \le 1000$

100% 的数据: $1 \le n, m \le 10^5$, $0 \le K \le \min(nm, 2000)$, $1 \le S \le 10^6$