2 Palindrome [Type X], 10 points

Prove or disprove: There is a prime number that divides (with no remainder) every homogeneous digit sequence of size 3.

Further Information: A prime number is a natural number greater than 1 that is not a product of two smaller natural numbers. A homogeneous digit sequence of size k is a number with k digits where all the digits are the same.

Solutions: I want to prove the statement
O A homogeneous digit sequence n of size 3 can be represented as:
$n = 111d$ where d is an integer and $0 \le d \le 9$
2) We can factor 111 to the product of two frime numbers:
111 = 3 x 37
3 $n = (3 \times 37)$ d cd EZ , $0 \le d \le 9$) -> This shows that every homogeneous
3) n=(3×37) d cdfZ,0≤d≤9) -> This shows that every homogeneous digit sequence of size 3 ci.e., 111d) is divisible by both 3 and 37, regardless
of the digit of
(4) Sine both 3 and 37 are brime numbers this demonstrates that given homogeneous
digit sequence of size 3 is divisible by the prime number 3 and 37.
Thus, I have proved the stadement that there is a prime number c3 or 37) that
4 Sine both 3 and 37 are prime numbers, this demonstrates that every homogeneous digit sequence of size 3 is divisible by the prime number 3 and 37. Thus, I have proved the statement that there is a prime number (3 or 37) that divides every homogeneous digit sequence of 3

3 Prime [Type X], 10 points

Prove or disprove: There exists a prime number such that the sum of its digits is 44.

Solutions: I want to disprove the statement using contradiction let's assume there exists a prime number p such that the sum of its digits equals to 44.

A key property of number is that the sum of the digits of any number modulo 9 is congruent to the number itself modulo 9.

Thus, if p is a prime number, and the sum of the digits of p is the we have: $p = 44 \pmod{9}$

Now calculate 44 mod 9:

44 = 9 = 4 remainder 8

So:

44 = 8 (mod 9)

Therefore, P=8 cmod 9)

If a number $p \equiv 8 \pmod{9}$, it means that p leaves a remainder of 8 when divided by 9. Thus, we can write $p = 9 \times 18$ for some integer 16. However, any number of the form 9×18 is divisible by 3 because $9 \times 18 = 0 + 8 = 8 \pmod{3}$, and:

9K+8=2 cmod 3)

So p = 2 cmod 3)

But the only prime numbers that are divisible by 3 are 3 itself. Since

the number & must be greater than 3 checause its digits sum to
44), p cannot be divisible by 3.
Thus, p cannot be a parme number.
Conclusion: Since assuming that a prime number with a digit sum
of 44 leads to a contradiction, we conclude that there exists a
prime number such that the sum of its digits is 44 is false.

4 Comparing Asymptotic Complexities [Type Y], 20 points

Prove or disprove: $n^{7/2} = O(2^{\sqrt{n}})$. If you must use the definition of O() notation, i.e., find appropriate constants, for your argument.

Solutions: I want to prove the statement.

A function f(n) is said to be Ocgan) if there exists positive constants and no such that:

fcn) & C.g(n) for all n7/no

In this case, we want to determine whether there exists anstants C and N_0 such that: $N^{7/2} \leq C \cdot 2^{\sqrt{N}} \text{ for all } N \approx N_0.$

1 Comparing the growth rates of the two functions:

n712 grows polynomially with respect to n

2th grows exponentially in terms of In, which is faster than any polynomial function as $n-7\infty$

Thus, intuitively, it seems likely now grows slower than 2 th.

2 Taking logarithms of both functions

logen7/2) < logec-2/m)

This simplifies to:

= logn ≤ logc + In log 2

For large n, we can japane the torm logc, so we neal to check if:

= logn = In log2

As n > 0, In log 2 grows much faster than I logn. This indicates that arentually, for come enough n, the inequality I cogn = In log 2 will had.

Sine $\frac{1}{2}\log n \leq \ln \log 2$ for sufficiently large n , it follows that: $n^{7/2} \leq C \cdot 2^{\sqrt{n}}$ for some one-tout C and sufficiently large n	
N7/2 < C. 2 For some onstant C and sufficiently large n	
Therefore, $n^{7/2} = 0(2^{10})$ is true.	

5 Time Complexity Analysis [Type Y], 10 points

Give the best possible asymptotic lower bound in terms of n for the following code block. Explain your answer in detail.

```
c = 1
i = n
while(i > 0){
    i = i/2
    c = c + 1
    j = 1
    while(j < c){
        j = j*2
        k = c
        while(k > j){
        k = k/4
    }
}
```

```
while(i > 0){
    i = i/2
    c = c + 1
    j = 1
```

The outer loop runs as long as 7 70, and in each iteration, i is halved (i) = i 12).

- \mathbb{O} Initially, i=n, so the number of Herations of this loop is determined by how many times we can divide n by 2 until it becomes o.
- @ This gives us log_cn) Honotions, which corresponds to Oclogn)

Middle Loop (Loop 2):

In each Horation of Loop 1, the middle loop runs as long as if <<, where c is incremented by 1 in each Horation

Vot the Loop 1

The value of j starts at 1 and is multiplied by 2 in each iteration, meaning this loop runs logarithmically with respect to C. Specifically, it runs O(logc) times.

② Since c increases linearly with the number of iterations of Loop 1, and reaches values up to around Oclogn), the middle bop takes Ocloga(gn) iterations on each pass of the Loop 1.

while(k	>	j){
k =	k/	4

Inner Loop (Loop 3):

The innermost loop runs while K < j. Initially, K = C, and in each iteration, K is divided by $4 \in K = K/4$.

① The number of iterations defends on how many times K can be divided by 4 before it reaches or exceeds j.

- 2) On each pass of the Loop 2, j is exponentially growing, and K starts at C and is divided by 4.
- 3 The number of iterations of this loop is O(log4(j/c)) which simplifies to O(logj) in worst case.

Overall Time Comperity:

Loop 1: O(logn)

Log 2: 0 (69 c/69 ns)

Loop 3: 0 (log 1) -> 0(log c) -> 0(log c log n)

Total Time Conflexity:

Oclogn·clogclogn))2)

The best possible asymptotic lower bound is $\Omega(\log n)$, because the outer loop will always run at least logn times.

Thus, the time complexity can be expressed as O(logn. clogclogn)22), with a lower bound of Icogn)

6 Find a Recurrence Relation [Type Y], 24 points

Define Δ_b^n , where 1 < b < n, is the number of ways we can watch n movies with (b-1) coffee breaks in between.

For example, $\Delta_2^3 = 3$ because for a set $S = \{\text{'trap'}, \text{'twisters'}, \text{'watchers'}\}\$ there are three options as follows: $\{\text{'trap'}} \oplus \{\text{'twisters''watchers'}\}\$, $\{\text{'trap''twisters'}} \oplus \{\text{'watchers''trap'}\}\$. Similarly, $\Delta_2^4 = 7$ and $\Delta_3^4 = 6$.

Write down a recurrence relation for $_{\mathbb{A}}\Delta_{b}^{n}$, give a justification for the recurrence, and prove by induction that $_{\mathbb{A}}\Delta_{b}^{n} \leq n^{b}b^{n}$.

Solutions:

Recurrence relation for
$$\Delta_b^n = \sum_{i=1}^{n-b+1} \Delta_{b-1}^{n-i}$$

Justification for the recurrence:

O I need to allocate at least 1 movie to each of the b blocks

② The 1st block can take anywhore from 1 to n-b+1 movies. After determining the size of the first block, the problem reduces to finding the number of ways to split the remaining n-i movies into b-1 blocks, which is exactly the definition of Δ_b^{n-i}

Proof by induction:

Want to prove $\Delta_b^n \leq n^b \cdot b^n$

Base case: For N=1 and b=1, those is only one way to watch I movie with no coffee breaks. So, $\Delta i = 1$, and clearly $1 \le i' \cdot i' = 1$

Inductive Step: Now consider 1. From the recurrence relation, we have:

$$\Delta_b^n = \sum_{\bar{i}=l}^{n-b+l} \Delta_{b-l}^{n-\bar{i}}$$

Using the inductive hypothesis for each $\Delta b = i$, we get:

Thus, the entire sum can be bounded as:

$$\Delta_b^n \leq \sum_{i=1}^{n-b+1} (n-i)^{b-1} \cdot (b-1)^{n-i}$$

		n further.		_				
	multiplicati	vely and the	Jo ≤ ni factorial	torms	Since ensuve a	the sum an upper	bound of	ng grow n ^b ·b ⁿ .
This complete	es the s	inductive	proof.					