Geometric Group Theory UDGRP Presentation on Ends

Nikhil Nagaria

Today, we are going to formalise the notion of "ends" of a metric space. Roughly, "the number of ends" of a metric space is the number of different infinities, upto a suitable notion of equivalence. We will capture these ways using rays.

Definition. A ray in a metric space (X,d) is a continuous map $\gamma \colon [0,\infty) \to X$.

Definition. A ray γ is *proper* if for any compact subset $K \subseteq X$, the inverse image $\gamma^{-1}(K)$ is compact.

Definition. Suppose γ and γ' are two proper rays in X. We say that γ and γ' converge to the same end iff for every compact set $K \subseteq X$, there is a positive integer N such that $\gamma[N, \infty)$ and $\gamma'[N, \infty)$ lie in the same path component of $X \setminus K$.

The idea is, if in the complement of any compact set, one could still join the two rays with a path, then we say that they converge to the same end. Now, the above defines an equivalence relation on the set of proper rays in X. Denote the equivalence class of γ by $\operatorname{end}(\gamma)$, and the set of equivalence classes by $\operatorname{Ends}(X)$.

For example, \mathbb{R} has two infinities, captured by the ends $[0,\infty)\to\mathbb{R}$ sending $t\mapsto t$ and $t\mapsto -t$. To see this, first note that they are clearly proper. Also, these two rays don't converge to the same end, since removing the compact set [-1,1], we see that the two rays cannot be joined by a path. To see that there are no other ends, let $\gamma\colon [0,\infty)\to\mathbb{R}$ be a proper ray. If $\gamma(t)\to\pm\infty$ as $t\to\infty$, then we are done. (Say if $\gamma(t)\to\infty$ as $t\to\infty$, given a compact set K, pick a real number R>0 such that $K\subseteq (-R,R)$. Then, pick K such that $K\subseteq (-R,R)$. Then, pick K such that for any K such that for any K such that K such that K such that K such that for any K such that for any K such that K such that K such that K such that for any K such that for all K such that K such that K such that K such that for all K such that for all K such that for all K such that K such that K such that K such that for all K such that K such that K such that K such that for all K such that K such that K such that K such that for all K such that K such that K such that K such that for all K such that K

For another example, one can verify that \mathbb{R}^n has only one end for $n \geq 2$, and any proper ray converges to the same end as $(0, \infty) \to \mathbb{R}^n$ sending $t \mapsto (t, 0, \dots, 0)$.

We will now endow $\operatorname{Ends}(X)$ with a topology. First, we need a notion of convergence:

Definition. Let $\operatorname{end}(\gamma_n)$ be a sequence of points in $\operatorname{Ends}(X)$, and $\operatorname{end}(\gamma) \in \operatorname{Ends}(X)$. We say that $\operatorname{end}(\gamma_n)$ converges to $\operatorname{end}(\gamma)$ if for all compact sets K, there is a sequence N_n of integers such that $\gamma_n[N_n,\infty)$ and $\gamma[N_n,\infty)$ lie in the same path component of $X \setminus K$ after a sufficiently large n.

Essentially, a sequence end(γ_n) converges to end(γ) if for any compact set, one can find a large n after which one can find tails of each γ_n in the same path component as a tail of γ_n .

One can easily do a sanity check that the definition above does not depend on the choice of representatives: suppose $\operatorname{end}(\gamma_n) = \operatorname{end}(\gamma_n')$ and $\operatorname{end}(\gamma_n)$ converges to $\operatorname{end}(\gamma)$ and fix a compact set K. One can find N_n s such that $\gamma_n[N_n,\infty)$ and $\gamma[N_n,\infty)$ all lie in the same path component of $X\setminus K$, after a large n. Then, pick integers M_n with $\gamma_n[M_n,\infty)$ and $\gamma'_n[M_n,\infty)$ lie in the same path component of $X\setminus K$. Take $K_n=\max\{M_n,N_n\}$, then $\gamma_n[K_n,\infty)$, $\gamma'_n[K_n,\infty)$ and $\gamma[K_n,\infty)$ all lie in the same path component for large n.

With this, we can put a topology on $\operatorname{Ends}(X)$ by declaring those subsets F to be closed, for which whenever there is a sequence $\operatorname{end}(\gamma_n) \in F$ with $\operatorname{end}(\gamma_n) \to \operatorname{end}(\gamma)$, then $\operatorname{end}(\gamma) \in F$.

Thus, $\operatorname{Ends}(\mathbb{R}^n)$ is the point space for $n \geq 2$, and it is not too hard to see that $\operatorname{Ends}(\mathbb{R})$ has the trivial topology. Now, we will go to group theory again, and as usual, one would like to define for a finitely generated group G, the space $\operatorname{Ends}(G)$ as $\operatorname{Ends}(\mathcal{C}(G;X))$ where $\mathcal{C}(G;X)$ is the Cayley graph of G with the generating set X. This has an obvious problem: $\mathcal{C}(G;X)$ depends on X. But one might be able to guess,

Theorem. If X and Y are quasi-isometric, then Ends(X) and Ends(Y) are homeomorphic.

This allows us to define $\operatorname{Ends}(G)$ unambiguously. Now, we can see that $\operatorname{Ends}(\mathbb{Z})$ is homeomorphic to $\operatorname{Ends}(\mathbb{R})$, the trivial topology on two points, and $\operatorname{Ends}(\mathbb{Z}^n)$ is homeomorphic to the point space. For a finite group G, $\operatorname{Ends}(G)$ is empty, since no ray $\gamma \colon [0, \infty) \to \mathcal{C}(G)$ is proper, for the inverse image of the compact set $\mathcal{C}(G)$ is $[0, \infty)$, which is not compact. An interesting example, though a little hard to prove, is that $\operatorname{Ends}(F_2)$ is homeomorphic to the Cantor set, and in particular, F_2 has infinitely many ends.

The above result comes from the general functoriality of Ends for proper geodesic spaces: if X and Y are proper geodesic metric spaces and $f\colon X\to Y$ is a quasi-isometry, then we get a continuous map $f_*\colon \operatorname{Ends}(X)\to\operatorname{Ends}(Y)$ sending $\operatorname{end}(\gamma)\mapsto\operatorname{end}(f_\#(\gamma))$ where $f_\#(\gamma)$ is defined by concatenating geodesic segments $[f(\gamma(n)),f(\gamma(n+1))]$. Showing this stronger statement is quite difficult and an outline of a proof can be found in the book "Metric Spaces of Non-Positive Curvature" by Bridson and Haefliger, pages 145-146.

To summarise this talk, I will now give a big result about determining the number of ends of a group.

Theorem. Let G be a finitely generated group.

- 1. G has 0, 1, 2 or infinitely many ends.
- 2. $\operatorname{Ends}(G)$ is compact, and is either finite or uncountable.
- 3. G has 0 ends iff G is finite.
- 4. G has 2 ends iff G is virtually \mathbb{Z} .
- 5. G has infinitely many ends iff it is either $A *_C B$ where $[A : C] \ge 3$ and $[B : C] \ge 2$, or $A *_C$ where $[A : C] \ge 3$.

The last line needs an explanation on the notation. For groups $A = \langle X_A | R_A \rangle$, $B = \langle X_B | R_B \rangle$, C with embeddings $i_A \colon C \to A$ and $i_B \colon C \to B$, the amalgamated free product $A \ast_C B$ is given by the presentation $\langle X_A, X_B | R_A, R_B, i_A(c)i_B(c)^{-1} \rangle$. For a group $A = \langle X | R \rangle$ with $C \le A$ and an embedding $\phi \colon C \to A$, the HNN extension $A \ast_C$ is given by the presentation $\langle X, t | R, txt^{-1} = \phi(x) \rangle$. More details can be found in any standard text including Bridson-Haefliger.

For applications of this theorem, we can use it to conclude that $\mathbb{Z}_2 * \mathbb{Z}_3$ (in fact, quasi-isometric to F_2) has infinitely many ends. We could also show things like $\mathbb{Z}_2 * \mathbb{Z}_2$ is virtually \mathbb{Z} , since it is quasi-isometric to \mathbb{Z} and hence has 2 ends.

This completes my talk, and I hope you learnt something! I would like to thank Rinkiny Ghatak and Treanungkur Mal for this amazing UDGRP, and giving me the opportunity to present this here. Thank you for attending this talk!