

## Plan de Descarbonización de Honduras CLIMA+: Sector Energía



MARIA RODEZNO
Estudiante Msc. Sustainable
Resource Management



SAMUEL RODRIGUEZ-WALTON Estudiante de Ing. en Física Industrial



Estudiante de Ing. en Energia

LARISSA SIERRA









GOBIERNO DE LA REPÚBLICA DE HONDURAS \* \* \*

OFICINA PRESIDENCIAL CAMBIO CLIMÁTICO CLIMA PLUS



PANORAMA

PERSPECTIVA DE LA DESCARBONIZACIÓN

SUBSECTORES PARA EL PLAN DE DESC.

PLANES A FUTURO



## PANORAMA ENERGÉTICO EN HONDURAS

#### Marco Regulatorio del Sector Energía



#### Capacidad Total Instalada



## Generación despachada por tecnología



## Energía Total Consumida según energético

#### Leña Diesel Gasolina Electricidad Otros 10 20 30 40 0

Fuente: BEN, 2018

#### Índice de Cobertura Eléctrica por Zona



Fuente: ENEE 2018



#### Capacidad Total Renovable Instalada

#### Energía Renovable



| Capacidad Instalada | MW    |
|---------------------|-------|
| Hidráulica          | 728.9 |
| Biomasa             | 221.3 |
| Eólica              | 235   |
| Fotovoltaica        | 510.8 |
| Geotérmica          | 35    |
| Total               | 1,731 |

Fuente: Boletín Estadístico ENEE, Agosto 2020

#### Generación Anual por Tecnología Renovable



| Año  | Hidroeléctrica | Biomasa    | Eólica     | Fotovoltaica | Geotérmica | Total (MWh)  |
|------|----------------|------------|------------|--------------|------------|--------------|
| 2015 | 2,340,000.00   | 324,800.00 | 664,600.00 | 417,200.00   |            | 3,746,600.00 |
| 2016 | 2,353,632.40   | 575,692.80 | 582,881.80 | 884,554.70   |            | 4,396,761.70 |
| 2017 | 3,088,106.30   | 752,211.60 | 578,086.70 | 923,711.90   | 92,584.60  | 5,434,701.10 |
| 2018 | 3,343,867.70   | 538,835.00 | 928,704.80 | 992,784.80   | 297,068.40 | 6,101,260.70 |
| 2019 | 2,405,217.00   | 456,515.40 | 818,290.00 | 1,115,527.20 | 295,918.10 | 5,091,467.70 |

#### Potencial de Generación Renovable

**Eólico** 

#### Honduras - 50 m Wind Power Solar and Wind Energy Resource Assessment Wind Power Classification Environment Resource Wind Power Wind Speed<sup>8</sup> Programme Density at 50 m at 50 m 5.6 - 6.4 7.0 - 7.5 500 - 600 8.0 - 8.8 U.S. Department of Energy Wind speeds are based on a Weibull k value of 2.0 National Renewable Energy Laboratory

#### **Fotovoltaico**



#### Potencial de Generación Renovable

#### **Geotérmico**

Tabla 1: Estado actual del desarrollo de seis campos geotérmicos

| Campo geotérmico | Potencia<br>estimada (MW) | Etapa          |
|------------------|---------------------------|----------------|
| Platanares       | 35                        | En operación   |
| San Ignacio      | 20                        | Reconocimiento |
| Azacualpa        | 20                        | Factibilidad   |
| Puerto Cortes    | 20                        | Reconocimiento |
| Pavana           | 20                        | Factibilidad   |
| Sambo Creek      | 5                         | Reconocimiento |
| Olivar           | -                         | Reconocimiento |



Fuente: G1Z

# EMISIONES Del Sector



#### **EMISIONES Totales**



- 1. En el 2018 la generación de energía representó el 34.5% de las emisiones de CO2eq del país.
- 2. Las generaciones por combustión de búnker, carbón y diesel representan caso el 100% de las emisiones.
- 3. Las emisiones por biomasa no se contabilizaron.

Fuente: IRENA, 2018



## SUBSECTORES A DESCARBONIZAR

#### **SUBSECTORES**

#### Generación y Matriz Energética

1 Potencial de Energías Renovables.

2. Optimización del Despacho energético



**Expansión de Transmisión** 

#### 3 Cobertura

- Microredes públicas/privadas.
- 2. Acceso de energía en zonas aisladas



5. Uso de Biocombustibles



## PROPUESTAS Y SOLUCIONES

### Expansión de la Red

- I. Modelos y escenarios para la expansión de la red nacional; Modelos nodales con análisis de costos y demanda usando HOMER PRO.
- 2. Inversión de nueva Infraestructura para subestaciones y lineas de transmision.



#### **Uso de Biocombustibles**

l. Incentivar a granjas e industrias el uso de residuos para la generacion de energia.

## Eficiencia Energética

## Mecanismo de Mitigación APLICADO A LA ILUMINACIÓN EFICIENTE EN EL SECTOR PÚBLICO

- Análisis de Barreras
- Plan de acción
- Alineación con la política y regulaciones de desarrollo sectorial y cambio climático
- Análisis de Costo-Beneficio





### COBERTURA ELÉCTRICA



#### **MICRORREDES**

- I. Microrredes para zonas aisladas.
  - Utilizando HOMER PRO y Análisis Multicriterio
  - Identificación de zonas aisladas.
  - Análisis Técnico y financiero de los proyectos.
- 2. Microrredes para autoconsumo.

## Generación y Matriz Energética



Migrar y diversificar la matriz energética de electricidad a través de Energías Renovables



Analisis Tecnico - Economico de potencial de Energía Renovable en Honduras



Incentivar la inversión de proyectos con energía renovable.





Transición energética justa.

## PLANES A FUTURO

## Hidrógeno Verde en la Integración de Energías Renovables



O1- Como combustible de forma directa y como vector energético para almacenamiento de energía.

02- Energía limpia por su obtención mediante energías renovables.

03- Su combustión no genera emisiones contaminantes.

04- Alta eficiencia energética

#### Buenas Prácticas Internacionales

Feasibility Analysis of an Islanded Microgrid in Tohatchi, New Mexico using Homer Pro.

| Design                       | Di      | D2      | D3        | D4      | D5      |
|------------------------------|---------|---------|-----------|---------|---------|
| PV Array [kW]                |         | 46.7    | 48.8      |         | 13.2    |
| Wind [no.s]                  |         |         |           | 7       | 5       |
| Diesel Gen. [kW]             | 34      | 24      | 34        | .34     | 34      |
| Battery [no.4]               |         | 10      | Flow but. | 3       | 3       |
| Converter [kW]               |         | 25.1    | 20.7      | 18.8    | 19.5    |
| Ren. Fraction [%]            | *       | 93,0    | 90.5      | 78.7    | 83.1    |
| Diesel Fuel [liters/yr]      | 39,052  | 2453    | 3459      | 5251    | 4141    |
| NPC [8]                      | 658,092 | 234,219 | 310,362   | 184,253 | 164,048 |
| Internal rate of return [%]  |         | 22.8    | 23.1      | 17.4    | 24.2    |
| LOOB [M/kWh]                 | 0.644   | 0.229   | 0.304     | 0.18    | 0.36    |
| imple payback period [years] |         | 4.6     | 3.96      | 6.5     | 4.5     |



**Microrredes** 

Comparative Evaluation of Rural Electrification Project Plants: a case study in Mexico.



**Expansión** 

Biogás la energía renovable para el desarrollo de granjas porcícolas en el estado de Chiapas



Cuadro 3 Análisis financiero para tamaño de granja propuesto de 500 y 1,000 cerdos

| lel<br>tho <sup>-j</sup> VA | IN TIR   | B/C           |
|-----------------------------|----------|---------------|
| \$6,7                       | 791 14%  | 1.01          |
| \$233,                      | ,644 17% | 1.15          |
|                             | \$233    | \$233,644 17% |

**Uso de Biocombustibles** 

#### Literatura Nacional Orientada a Descarbonización

Prospectiva Energética de Honduras 2017-2038 Fundación Bariloche

Gráfico 4.20. Proyección del costo medio eléctrico contexto Escenario Tendencial





Análisis Técnico Económico de máxima penetración de Energía Eólica y Solar





Optimization of Honduras electricity generation mix for 2018

TABLA 2. MATRIZ DE GENERACIÓN ELÉCTRICA REAL Y OPTIMIZADA

| C-15, 2 - 90 - 710 9      | Real   | Óptima |  |
|---------------------------|--------|--------|--|
| Hidroeléctrico<br>Estatal | 24,35% | 37,02% |  |
| Térmico Búnker            | 28,83% | 27,09% |  |
| Hidroeléctrico<br>Privado | 13,42% | 16,68% |  |
| Fotovoltaico              | 11,55% | 5,77%  |  |
| Geotérmico                | 3,46%  | 4,84%  |  |
| Eólico                    | 10,86% | 4,31%  |  |
| Biomasa                   | 6,49%  | 4,29%  |  |
| Térmico Diésel            | 1,05%  | 0,00%  |  |



#### **ALIANZAS INTERNACIONALES**











独立行政法人産業技術総合研究所

福島再生可能エネルギー研究所 FUKUSHIMA RENEWABLE ENERGY INSTITUTE, AIST (FREA)



**6** Universidades



#### Propuesta de Mesa Sectorial

#### Gobierno







#### **Sociedad Civil**









#### **Empresa Privada**









#### Academia

















GOBIERNO DE LA REPÚBLICA DE HONDURAS



OFICINA PRESIDENCIAL
CAMBIO CLIMÁTICO
CLIMA PLUS