```
Shengjie Hu
1)
       one '=' means one second.
       5.3 FCFS
       P1======P1P2====P2P3=P3
       5.3 SJF
       P1======P1P3=P3P2====P2
       5.12 FCFS
       P1======P1P2=P2P3==P3P4=P4P5=====P5
       5.12 SJF
       P2=P2P4=P4P3==P3P5=====P5P1=======P1
2/a)
FCFS
cpuRuntime = 1685.424s sumRuntime = 2298.765s
Average waiting time = 678.3916s
Average turnaround time = 1985.4347s
CPU utilization = 73.3187%
Throughput = 0.004350 processes/sec
SJF index = 1
cpuRuntime = 1685.424s sumRuntime = 2051.943s
Average waiting time = 453.3849s
Average turnaround time = 1799.6087s
CPU utilization = 82.138%
Throughput = 0.0048734 processes/sec
SJF index = 0.5
cpuRuntime = 1685.424s sumRuntime = 2052.132s
Average waiting time = 430.5888s
Average turnaround time = 1801.2696s
CPU utilization = 82.1304%
Throughput = 0.0048730 processes/sec
SJF index = 1/3
cpuRuntime = 1685.424s sumRuntime = 2048.232s
Average waiting time = 396.3888s
Average turnaround time = 1821.0266s
CPU utilization = 82.2868%
Throughput = 0.00488226 processes/sec
2/b)
In round-robin algorithm, Optimized situation is that 80 percent of
the CPU bursts should be shorter than the time quantum.
when the quantum is above 80 percent of the CPU bursts, causes the
average waiting time to decrease with decreasing quantum.
```

CS520 Simulation Programming Project

Above 80 percent process can finish their work in one time slice, then be pushed into io queue. They don't need to wait in the waiting queue. when the quantum is shorter than 80 percent of the CPU bursts, causes average waiting time to increase with decreasing quantum. Under this condition, processes cannot finish their current work in one time slice, these processes be pushed into ready queue again and waiting for the CPU. Therefore increase the total waiting time.

2/c)

Theoretically, the quantum should be longer than 80 percent of the CPU burst. So in my program, the quantum which is longer than 80 percent of the CPU burst of ten processes is 65ms. Except the quantum is 5 ms, other conditions whose CPU utilization is between 50 and 90 percent (apart from quantum is 5 ms).

As the graph, when the quantum is above 40 ms, cause the average waiting time to decrease with decreasing quantum. When the quantum is lower than 40 ms, cause average waiting time to increase with decreasing quantum.

Gantt charts :(In the program, CPU bursts are all random. The CPU burst in the graph is average CPU burst time of every process.)

250 150

100

80

60

50

1	quantum(ms)	Waiting time(s)	CPU utilization
2	250	5322.495	80.7457
3	200	4998.751	81.3988
4	150	4752.928	81.8346
5	130	4635.595	81.9714
6	100	4441.832	82.2273
7	90	4352.032	82.2183
8	80	4295.689	82.2146
9	70	4302.874	82.4113
10	60	4211.049	82.6041
11	55	3932.161	82.6791
12	50	4230.280	82.8828
13	45	3914.431	83.0053
14	44	4078.583	82.907
15	43	4005.579	83.0231
16	42	3966.821	83.0954
17	40	4106.355	83.1041
18	38	3959.722	83.1903
19	32	4035.029	83.5955
20	30	3977.197	83.8654
21	25	3964.772	84.3088
22	20	4105.414	85.0694
23	15	4311.378	86.1816
24	10	5041.593	88.6708
25	5	7422.816	94.8812

44

Quantum(ms)

42

38

30

20

10