Granica, ciągłość funkcji

(Analiza Matematyczna 1, wykład 5)

Granica funkcji w punkcie

Rozpatrujemy funkcję:

$$f: R \to R$$
.

Niech $x = \{x_n\}$ będzie pewnym ciągiem, a $\{f(x_n)\}$ ciągiem wartości funkcji.

Do czego dąży $\{f(x_n)\}$ gdy x zmierza do punktu x_0 lub ∞ , co zapisujemy odpowiednio:

$$\lim_{x \to x_0} f(x), \quad \lim_{x \to \infty} f(x).$$

Czasami oddzielnie rozpatruje się granicę prawostronną ($x_n > x_0$) lub lewostronną ($x_n < x_0$) w punkcie x_0 , a także granice w + lub - ∞ , tj.

$$\lim_{x \to x_0^+} f(x), \quad \lim_{x \to x_0^-} f(x), \quad \lim_{x \to \infty} f(x), \quad \lim_{x \to -\infty} f(x).$$

Przykład

Ciąg
$$a_n = \frac{1}{n}$$
 jest prawostronnie zbieżny do 0 ($\lim_{a_n \to 0^+} a_n = 0$), a ciąg

$$b_n = -\frac{1}{n}$$
 jest lewostronnie zbieżny do 0 ($\lim_{b_n \to 0^-} b_n = 0$),

Przypomnienie.

Ciąg a_1,a_2,\ldots jest *zbieżny* do granicy *a* iff, gdy dla dowolnej liczby ε prawie wszystkie wyrazy ciągu należą do przedziału $(a-\varepsilon,a+\varepsilon)$, formalnie

$$\forall \varepsilon > 0 \ \exists k \in N \ \forall n \ge k, |a_n - a| < \varepsilon$$

Dla dowolnie małego otoczenia punktu a, prawie wszystkie elementy ciągu są mniej niż o ε odległe od granicy a.

Granicę funkcji w punkcie definiujemy podobnie. Będziemy korzystali z dwóch równoważnych definicji:

- Heinego oraz
- Causchy'ego.

Definicja Heinego.

Funkcja f(x) ma w punkcie x_0 granicę równą g, iff, gdy dla dowolnego ciągu $\{x_n\}$ takiego, że, $\lim_{n \to \infty} x_n = x_0$ istnieje granica ciągu $\{f(x_n)\}$ i jest ona równa g, tj.

$$\lim_{x\to x_0} f(x) = g \Leftrightarrow \forall \{x_n\} \lim_{n\to\infty} x_n = x_0 \Rightarrow \lim_{n\to\infty} f(x_n) = g$$

Zapisujemy to następująco:

$$\lim_{x \to x_0} f(x) = g \quad \text{lub } f(x) \to g \text{ gdy } X \to X_0$$

Przykład.

Obliczymy
$$\lim_{x\to 1} \frac{x^3-1}{x-1}$$
.

Funkcja $f(x) = \frac{x^3 - 1}{x - 1}$ jest określona na zbiorze $X = R \setminus \{1\}$.

Bierzemy dowolny ciąg o wyrazach $x_n \in X$ (oczywiście $\forall n \in N, x_n \neq 1$) taki, że $\lim_{n \to \infty} x_n = 1$. Odpowiedni ciąg wartości funkcji f

$$f(x_n) = \frac{x_n^3 - 1}{x_n - 1} = x_n^2 + x_n + 1.$$

Ponieważ $\lim_{n\to\infty} x_n = 1$, więc

$$\lim_{x\to 1} \frac{x^3-1}{x-1}$$
.

Zgodnie więc z definicją Heinego

$$\lim_{x\to 1} \frac{x^3 - 1}{x - 1} = 3.$$

$$f(x) = \frac{|x|-2x}{x}$$
, dziedzina: $X = R \setminus \{0\}$.

Pokażemy, że f(x) nie ma granicy w punkcie 0.

Z def. Heinego wystarczy pokazać, że istnieję dwa różne ciągi $\{x_n^{'}\}$ i $\{x_n^{''}\}$

(o wyrazach $\neq 0$) zbieżne do 0 takie, że ciągi $\{f(x_n^{'})\}, \{f(x_n^{''})\}$ są zbieżne do różnych granic.

Niech $x_n' = \frac{1}{n}$ oraz $x_n'' = \frac{-1}{n}$. Są one oczywiście zbieżne do 0. Wobec tego

$$\lim_{n \to \infty} f(x_n') = \lim_{n \to \infty} \frac{\frac{1}{n} - 2 \cdot \frac{1}{n}}{\frac{1}{n}} = -1, \text{ a}$$

$$\lim_{n \to \infty} f(x_n'') = \lim_{n \to \infty} \frac{\frac{1}{n} + 2 \cdot \frac{1}{n}}{-\frac{1}{n}} = -3.$$

Jeśli chcemy pokazać, że w jakimś punkcie granica funkcji nie istnieje, to często wygodniej jest zastosować powyższą metodę.

Definicja Causchy'ego.

$$\lim_{x \to x_0} f(x) = g \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0, \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - g| < \varepsilon.$$

Czytając od prawej strony. Chcemy, aby funkcja f(x) różniła się od wartości g najwyżej o ε . Można wskazać otoczenie punktu x_0 , takie, że dla każdego elementu tego otoczenia wartość funkcji należy do przedziału $(g-\varepsilon,g+\varepsilon)$.

Pokażemy z df. granicy Causchye'go, że $\lim_{x\to 1} = \frac{\sqrt{x-1}}{x-1} = \frac{1}{2}$, tj.

 $\forall \varepsilon > 0, \exists \delta > 0$ taka, że z nierówności:

$$0<|x-1|<\delta \Rightarrow \left|\frac{\sqrt{x}-1}{x-1}-\frac{1}{2}\right|<\varepsilon.$$

Zauważmy, że

$$\frac{\sqrt{x}-1}{x-1} = \frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(x-1)(\sqrt{x}+1)} = \frac{x-1}{(x-1)(\sqrt{x}+1)} = \frac{1}{(\sqrt{x}+1)}.$$

Stąd

$$\left|\frac{\sqrt{x}-1}{x-1}-\frac{1}{2}\right|=\left|\frac{x-1}{2(\sqrt{x}+1)^2}\right|\leq \frac{|x-1|}{2}<\varepsilon.$$

Jeżeli więc
$$|x-1| < \delta = 2\varepsilon$$
, to $\left| \frac{\sqrt{x}-1}{x-1} - \frac{1}{2} \right| < \varepsilon$.

$$\lim_{x \to x_0} f(x) = g \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0 : 0 < |x - x_0| < \delta \Rightarrow |f(x) - g| < \varepsilon.$$

w x_0 granica nie istnieje.

W ostatnim przykładzie rozpoczynaliśmy od nierówności postaci $|x-a|<\delta$ i dążyliśmy do uzyskania nierówności $|f(x)-g|<\varepsilon$.

Jeśli chcemy pokazać, że w jakimś punkcie granica funkcji nie istnieje, to często wygodniej jest zastosować inną metodę.

Przykład

Sprawdzimy, że nie istnieje granica $\lim_{x\to 0} \frac{1}{x}$.

Weźmy najpierw ciąg $x_n = \frac{1}{n}$. Granicą tego ciągu jest 0, natomiast

$$\lim_{x_n \to 0} f(x_n) = \lim_{x_n \to 0} \frac{1}{x_n} = \lim_{n \to \infty} n = \infty.$$

Weźmy teraz ciąg $y_n = -\frac{1}{n}$. Granicą tego ciągu jest 0, natomiast

$$\lim_{y_n \to 0} f(y_n) = \lim_{x_n \to 0} \frac{1}{y_n} = \lim_{n \to \infty} -n = -\infty.$$

Otrzymaliśmy dwa różne wyniki dla dwóch różnych ciągów. Stąd – nie istnieje granica funkcji $f(x) = \frac{1}{x}$ w punkcie x = 0.

Reguły dotyczące działań na granicach funkcji są takie same, jak w wypadku granic ciągów.

Twierdzenie (o granicach właściwych).

$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to a} (f(x) \cdot g(x)) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

o ile istnieją wszystkie granice po prawych stronach i dodatkowo granica w mianowniku jest różna od zera.

Przykład.

Obliczyć
$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^3 + x^2 - x - 1}.$$

$$\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^3 + x^2 - x - 1} = \lim_{x \to 1} \frac{x^2(x - 1) + (x - 1)}{x(x^2 - 1) + (x^2 - 1)} = \lim_{x \to 1} \frac{(x - 1)(x^2 + 1)}{(x - 1)(x + 1)^2} = \lim_{x \to 1} \frac{x^2 + 1}{(x + 1)^2} = \frac{2}{4} = \frac{1}{2}.$$

Twierdzenie (o trzech funkcjach).

Jeżeli funkcje f,g,h są określone na przedziale (a,b) oraz

- 1. $x_0 \in (a,b)$,
- 2. $\forall x \in (a,b), f(x) \leq g(x) \leq h(x),$
- 3. $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = k$, to

$$\lim_{x\to x_0}g(x)=k.$$

Przykład.

Obliczyć:

a)
$$\lim_{x\to 0} x \sin x$$
, b) $\lim_{x\to \infty} \frac{x^2 + \sin x}{x^2 - \cos x}$, c) $\lim_{x\to \infty} \frac{\lfloor x\rfloor}{x+1}$.

$$-|x| \le x sin x \le |x|$$

$$\frac{x^2 - 1}{x^2 + 1} \le \frac{x^2 + sin x}{x^2 + 1} \le \frac{x^2 + 1}{x^2 - 1}$$

$$\frac{x - 1}{x + 1} \le \frac{|x|}{x + 1} \le \frac{x}{x + 1}$$

CIĄGŁOŚĆ FUNKCJI W PUNKCIE

Dla wielu funkcji zachodzi równość

$$\lim_{x\to a} f(x) = f(a).$$

Takie funkcje nazywamy ciągłymi w punkcie a.

Istnieją dwie równoważne definicje.

Definicja Heinego

Funkcja f jest ciągła w punkcie a, wtedy i tylko wtedy, gdy dla każdego ciągu $\{x_n\}$ zbieżnego do a, ciąg $\{f(x_n)\}$ jest zbieżny do f(a)

$$\forall x_n \xrightarrow[n \to \infty]{} a, f(x_n) \xrightarrow[n \to \infty]{} f(a).$$

Definicja Cauchy'ego

Funkcja f jest ciągła w punkcie a, wtedy i tylko wtedy, gdy

$$\forall \varepsilon > 0 \ \exists \delta > 0 : |x - a| < \delta \rightarrow |f(x) - f(a)| < \varepsilon$$
.

Twierdzenie

- (i) Suma, różnica oraz iloczyn funkcji ciągłych w pewnym punkcie jest funkcją ciągłą w tym punkcie.
- (ii) Jeżeli funkcje f(x) i h(x) są ciągłe w punkcie a i $h(a) \neq 0$, to iloraz f(x)/h(x) jest także funkcją ciągłą w tym punkcie.
- (iii) Funkcja stała f(x)=k oraz funkcja tożsamościowa g(x)=x są ciągłe w każdym punkcie $x\in R$

Wniosek

Każdy wielomian $W_{n}(x)$ jest funkcją ciągłą w dowolnym punkcie $x \in R$.

Funkcja wymierna jest ciągła w każdym punkcie swej dziedziny, którą jest zbiór *R* z wyjątkiem pierwiastków wielomianu znajdującego się w mianowniku.

Funkcje wymierne:

•
$$f(x) = \frac{x^3}{x+1}$$
, jest ciągła dla $x \in R \setminus \{-1\}$

•
$$f(x) = \frac{x}{x^3 - 1}$$
, jest ciągła dla $x \in R \setminus \{1\}$

•
$$f(x) = \frac{2x^3 - x + 7}{x^2 - x - 2}$$
, jest ciągła dla $x \in R \setminus \{-1, 2\}$

Funkcje trygonometryczne:

- $\sin x i \cos x$, są ciągłe dla każdego $x \in R$
- ctgx jest ciągły w zbiorze R\ $\{x_k : x_k = k\pi\}$
- tgx jest ciągły w zbiorze R $\{x_k : x_k = \frac{\pi}{2} + k\pi\}$

Definicja

Funkcja f(x) jest prawostronnie ciągła w punkcie x₀, jeżeli

$$\lim_{x\to x_0+} f(x) = f(x_0)$$

gdzie $x \to x_0^+$ oznacza, że x dąży do x_0 z prawej strony.

Funkcja f(x) jest lewostronnie ciągła w punkcie x_0 , jeżeli $\lim_{x\to x_0^-} f(x) = f(x_0)$.

gdzie $x \to x_0^-$ oznacza, że x dąży do x_0 z lewej strony.

Funkcja
$$f(x) = \begin{cases} \operatorname{sgn} x & dla & x \neq 0 \\ 1 & dla & x = 0 \end{cases}$$

jest prawostronnie ciągła w punkcie $x_o = 0$, ponieważ

$$\lim_{x \to 0+} f(x) = \lim_{x \to 0+} 1 = 1 = f(0)$$

natomiast nie jest w tym punkcie lewostronnie ciągła, ponieważ

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (-1) = -1 \neq f(0)$$

Jeżeli funkcja f(x) jest ciągła w punkcie x_0 , to jest w tym punkcie lewoi prawostronnie ciągła, a także na odwrót.

Definicja

Funkcja f(x) jest ciągła w przedziale domkniętym [a;b], jeżeli spełnia następujące warunki:

- jest ciągła w przedziale (a;b)
- prawostronnie ciągła w punkcie a,
- lewostronnie ciągła w punkcie b.

Przykład

Funkcja
$$f(x) = \begin{cases} \operatorname{sgn} x & dla & x \neq 0 \\ 1 & dla & x = 0 \end{cases}$$

jest ciągła w przedziale $[0,+\infty)$.

Jeżeli funkcja f(x)nie jest ciągła w punkcie x_0 , to x_0 nazywamy *punktem* nieciągłości tej funkcji.

WŁAŚCIWOŚCI FUNKCJI CIĄGŁYCH

Twierdzenie (o ciągłości funkcji odwrotnej)

Funkcja odwrotna do funkcji ciągłej i rosnącej (malejącej) jest ciągła i rosnąca (malejąca).

Przykład

- Funkcja $a^x(0 < a < 1)$ jest ciągła i malejąca, a więc funkcja $\log_a x$, odwrotna do niej, jest także ciągła i malejąca.
- Funkcja $\sin x$ jest w dziedzinie $[-\frac{\pi}{2}, \frac{\pi}{2}]$ ciągła i rosnąca, a zatem funkcja $\arcsin x$ odwrotna do niej, jest także ciągła i rosnąca.

Twierdzenie (o ciągłości funkcji złożonej)

Jeżeli funkcja f(x) jest ciągła w punkcie x_0 i funkcja h(u) jest ciągła w punkcie $u_0 = f(x_0)$, to funkcja złożona h[f(x)] jest ciągła w punkcie x_0 .

Funkcja złożona $\sin(\cos x)$ jest ciągła w każdym punkcie.

Twierdzenie (o wprowadzeniu granicy do argumentu funkcji ciągłej)

Jeżeli istnieje granica właściwa $\lim_{x \to x_0} f(x) = g$ i funkcja h(u) jest ciągła w

punkcie $u_0 = g$, to

$$\lim_{x \to x_0} h[f(x)] = h\left(\lim_{x \to x_0} f(x)\right) = h(g)$$

Przykład

$$\lim_{x \to 0} e^{\frac{\sin x}{x}} = e^{\lim_{x \to 0} \frac{\sin x}{x}} = e^{1} = e$$

$$\lim_{x \to 0^{-}} e^{\frac{\sin x}{|x|}} = e^{\lim_{x \to 0^{-}} \frac{\sin x}{|x|}} = e^{-1} = \frac{1}{e}$$

$$\lim_{x \to +\infty} \cos\left(\frac{\pi}{2} + \frac{1}{x}\right) = \cos\left[\lim_{x \to +\infty} \left(\frac{\pi}{2} + \frac{1}{x}\right)\right] = \cos\frac{\pi}{2} = 0$$

odpowiednio, z ciągłości funkcji e^x i $\cos x$.

Twierdzenie (o lokalnym zachowaniu znaku)

Jeżeli funkcja f(x) jest ciągła w punkcie x_0 oraz

$$f(x_0) > 0$$
 albo $f(x_0) < 0$,

to istnieje takie otoczenie Q punktu x_0 , (przedział otwarty zawierający x_0) że dla każdego $x \in Q$ spełniona jest nierówność

$$f(x) > 0$$
 albo odpowiednio $f(x) < 0$.

Funkcja $f(x) = \sin x$ jest ciągła w punkcie

$$x_0 = \frac{\pi}{4} i \sin \frac{\pi}{4} = \frac{\sqrt{2}}{2} > 0$$

Istnieje więc takie otoczenie Q, w którym funkcja $\sin x$ zachowuje znak, tzn. $\sin x > 0$.

Twierdzenie (o wartościach pośrednich)

Funkcja ciągła f(x) przyjmuje w przedziale (a;b) każdą wartość pośrednią między f(a) i f(b).

Sprawdzić, czy funkcja $f(x) = \frac{2}{\pi}x - \sin x$

ma w przedziale $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ miejsce zerowe.

Funkcja $f(x) = \frac{2}{\pi} x - \sin x$ jest ciągła w przedziale $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$, przy czym

$$f\left(\frac{\pi}{4}\right) = \frac{1}{2} - \frac{\sqrt{2}}{2} < 0, \quad f\left(\frac{3\pi}{4}\right) = \frac{3}{2} - \frac{\sqrt{2}}{2} > 0$$

a zatem
$$f\left(\frac{\pi}{4}\right) < 0 < f\left(\frac{3\pi}{4}\right)$$
.

Istnieje więc w przedziale $\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$ taki punkt c, że f(c)=0.

Oczywiście $c = \frac{\pi}{2}$.

Twierdzenie (Darboux)

Jeżeli funkcja f(x) jest ciągła w przedziale [a,b], a ponadto

$$f(a) \cdot f(b) < 0$$
,

to istnieje taki punkt $c \in (a,b)$, że f(c)=0.

Sprawdzić czy funkcja $f(x) = e^{2x^2 + x} - \frac{2}{x}$ ma miejsce zerowe w przedziale $\left\langle \frac{1}{2}, 1 \right\rangle$.

Funkcja

$$f(x) = e^{2x^2 + x} - \frac{2}{x}$$

jest ciągła w przedziale $\left\langle rac{1}{2}, 1
ight
angle$

Ponieważ

$$f\left(\frac{1}{2}\right) = e - 4 < 0,$$
 $f\left(1\right) = e^3 - 2 > 0$

więc

$$f\left(\frac{1}{2}\right) \cdot f(1) < 0$$

istnieje zatem w przedziale $\left(\frac{1}{2};1\right)$ taki punkt c, że

$$e^{2c^2+c} - \frac{2}{c} = 0$$

Równanie

$$e^{2x^2+x} - \frac{2}{x} = 0$$

ma więc w przedziale $\left(\frac{1}{2};1\right)$ co najmniej jeden pierwiastek.

ASYMPTOTY (pionowa, pozioma, ukośna)

Prosta x=c jest asymptotą pionową lewostronną funkcji y=f(x) iff, gdy granica lewostronna funkcji f(x) w punkcie c jest niewłaściwa, tj.

$$\lim_{x\to c^{-}} f(x) = \pm \infty.$$

Przykład.

Niech
$$f(x) = \ln \frac{1}{1-x}$$
.

Ponieważ $\lim_{x\to 1^-} \ln \frac{1}{1-x} = +\infty$, więc x=1 jest asymptotą pionową lewostronną.

Prosta x = c jest asymptotą pionową prawostronną funkcji y = f(x) iff, gdy

$$\lim_{x \to \infty} f(x) = \pm \infty.$$

Prosta x=c jest asymptotą pionową obustronną funkcji y=f(x) iff, gdy $\lim_{x\to c^-} f(x) = \pm \infty \text{ oraz } \lim_{x\to c^+} f(x) = \pm \infty$

Przykład.

$$f(x) = \frac{x}{x-2}.$$

$$\lim_{x \to 2^{-}} \frac{x}{x - 2} = -\infty$$
 oraz $\lim_{x \to 2^{+}} \frac{x}{x - 2} = +\infty$,

więc prosta x = 2 jest obustronną asymptotą pionową.

Definicja.

Prosta y = mx + k jest asymptotą ukośną lewostronną (poziomą, gdy m = 0) funkcji f(x) iff, gdy

$$m = \lim_{x \to -\infty} \frac{f(x)}{x}$$
 oraz $k = \lim_{x \to -\infty} (f(x) - mx)$.

Podobnie definiujemy parametry asymptoty ukośnej prawostronnej

$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$
 oraz $k = \lim_{x \to +\infty} (f(x) - mx)$.

Wykres funkcji $f(x) = \frac{2x^3}{x^2 + 1}$ ma asymptotę ukośną obustronną y = 2x,

ponieważ:

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} \frac{2x^2}{x^2 + 1} = 2 \quad \text{oraz} \quad \lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{2x^2}{x^2 + 1} = 2, \text{ a ponadto}$$

$$\lim_{x \to -\infty} (f(x) - 2x) = \lim_{x \to -\infty} (\frac{2x^3}{x^2 + 1} - 2x) = \lim_{x \to -\infty} \frac{-2x}{x^2 + 1} = 0.$$

Podobnie

$$\lim_{x \to +\infty} (f(x) - 2x) = \lim_{x \to +\infty} (\frac{2x^3}{x^2 + 1} - 2x) = \lim_{x \to +\infty} \frac{-2x}{x^2 + 1} = 0.$$

Przykład

Zbadać asymptoty funkcji
$$f(x) = \frac{x^3}{2(x-1)^2}$$
.

- Wykres funkcji ma asymptotę pionową o równaniu x=1
- Asymptoty ukośne i poziome:

$$\lim_{x \to -\infty} \frac{f(x)}{x} = \frac{1}{2} = \lim_{x \to +\infty} \frac{f(x)}{x} \implies m = \frac{1}{2}$$

$$\lim_{x \to -\infty} \left[\frac{x^3}{2(x-1)^2} - \frac{1}{2}x \right] = 1 = \lim_{x \to +\infty} \left[\frac{x^3}{2(x-1)^2} - \frac{1}{2}x \right] \implies k = 1$$

Wykres funkcji posiada asymptotę ukośną obustronną o równaniu $y = \frac{1}{2}x + 1$ Analiza Matematyczna 1, Wykład 5