Homework final

Due date: 2019.05.08, 5 pm.

Please bring it to the instructor's office (Red House Building 18, Room 101).

Problem 1. Consider the scattering between a Dirac fermion with mass m and a massless real scalar in the theory described by the Lagrangian

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}\partial_{\mu} - m)\psi + \frac{1}{2}\partial_{\mu}\phi\partial^{\mu}\phi - ig\phi\bar{\psi}\gamma^{5}\psi.$$

1) Derive the tree-level $i\mathcal{M}_{fi}$ for this process. Please show all your steps, pretending that you don't know the Feynman rules. You can do either fermion + scalar \rightarrow fermion + scalar, or, anti-fermion + scalar \rightarrow anti-fermion + scalar. [15 points]

2) From the above $i\mathcal{M}_{fi}$, compute the unpolarized cross section for this scattering in the center of mass frame. Please give your results in terms of the Mandelstam variable s, mass and coupling. [10 points]

3) Give the leading result for the above cross section in the ultra-relativistic limit (i.e., $s \gg m^2$) and non-relativistic limit (i.e., $s \to m^2$). [5 points]

Problem 2. For the same Lagrangian as in problem 1, but adding a mass term for the real scalar field, $-\frac{1}{2}M^2\phi^2$, where M > 2m, calculate the two-body decay rate at tree-level, scalar \rightarrow fermion + anti-fermion, in the rest frame of the decaying particle. You can start your calculation from $i\mathcal{M}_{fi}$, without re-deriving the Feynman rules. [10 points]