Limbaje formale, automate și compilatoare

Curs 10-11

Recapitulare

- Analiza sintactică ascendentă
 - Parser ascendent general
- Gramatici LR(k)
 - Definiţie
 - Proprietăți
- Gramatici LR(0)
 - Teorema de caracterizare LR(0)
 - Automatul LR(0)

Parser ascendent general

Automatul LR(0) - Exemplu

 \triangleright S' \rightarrow S, S \rightarrow aSa | bSb | c

Cuprins

- Analiza sintactică LR(0)
- Mulţimile FIRST, FOLLOW
- Gramatici SLR(1)
 - Tabela de parsare SLR(1)
 - Analiza sintactică SLR(1)
- Gramatici LR(1)
- Gramatici LALR(1)

Algoritmul de analiză LR(0)

- Tabela de parsare coincide cu automatul LR(0),
 M.
- Configurație: (σ, u#, π) unde σεt₀T*, uεT*, π εP*.
- Configurația inițială este $(t_0, w#, \varepsilon)$,
- Tranziţiile:
 - Deplasare: $(\sigma t, au\#, \pi) \vdash (\sigma tt', u\#, \pi) dacă g(t, a) = t'$.
 - Reducere: $(\sigma t \sigma' t', u \#, \pi) \vdash (\sigma t t'', u \#, \pi r) dacă A \rightarrow \beta \bullet \in t', r = A \rightarrow \beta, |\sigma' t'| = |\beta| si t'' = g(t, A).$
 - Acceptare: $(t_0t_1, \#, \pi)$ este configurația de acceptare dacă $S' \rightarrow S \bullet \in t1, \pi$ este parsarea acestuia.
 - Eroare: o configuraţie căreia nu i se poate aplica nici o tranziţie

Algoritmul de analiză LR(0)

```
char ps[]= "w#"; //ps este sirul de intrare w
  i = 0; // pozitia in sirul de intrare
 STIVA.push(t0); // se initializeaza stiva cu t0
 while(true) { // se repeta pana la succes sau eroare
   o t = STIVA.top();
   o a = ps[i] // a este simbolul curent din intrare
   • if (q(t, a) \neq \emptyset \{ //deplasare \}
     STIVA.push(g(t, a));
     • i++; //se inainteaza in intrare
     • }
   • else {
   • if (A \rightarrow X_1 X_2 ... X_m \cdot \epsilon t) {
     • if (A == "S"")
        • if (a == ",#") exit( "acceptare");
        • else exit("eroare");

    else // reducere

        • for (i = 1; i \square m; i++) STIVA.pop();
           STIVA.push(q(top(STIVA), A));
      } //endif
   • else exit("eroare");
   • }//endelse
```

Exemplu

 \rightarrow S' \rightarrow S S \rightarrow E\$ E \rightarrow E+T T \rightarrow (E) E \rightarrow T T \rightarrow a 1 $S' \rightarrow \bullet S$ $E \rightarrow T \bullet$ $S' \rightarrow S \bullet$ $S \rightarrow \bullet E\$$ S $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet(E)$ $S \rightarrow E \bullet \$$ $T \rightarrow \bullet a$ $T \rightarrow (\bullet E)$ $\mathsf{E} \to \mathsf{E} {\bullet} {+} \mathsf{T}$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet(E)$ $T \rightarrow \bullet a$ \$ а 5 $T \rightarrow a \bullet$ $S \rightarrow E\$ \bullet$ Ε 8 $T \rightarrow (E \bullet)$ $E \rightarrow E \bullet + T$ $\mathsf{E} \to \mathsf{E}\text{+}{}_{\bullet}\mathsf{T}$ 9 $T \rightarrow \bullet(E)$ $T \rightarrow \bullet a$ $E \rightarrow E+T \bullet$ 10 $T \rightarrow (E) \bullet$

Exemplu

 \rightarrow S' \rightarrow E\$ E \rightarrow E+TT \rightarrow (E) E \rightarrow TT \rightarrow a

Stiva	Intrare	Acţiune	leşire	
0	a+(a+a)\$#	deplasare		
05	+(a+a)\$#	reducere	T → a	
03	+(a+a)\$#	reducere	E → T	
02	+(a+a)\$#	deplasare		
027	(a+a)\$#	deplasare		
0274	a+a)\$#	deplasare		
02745	+a)\$#	reducere	T → a	
02743	+a)\$#	reducere	E → T	
02748	+a)\$#	deplasare		
027487	a)\$#	deplasare		
0274875)\$#	reducere	T → a	
0274879)\$#	reducere	E → E+T	
02748)\$#	deplasare		
02748'10'	\$#	reducere	T → (E)	
0279	\$#	reducere	E → E+T	
02	\$#	deplasare		
026	#	reducere	S → E\$	
01	#	acceptare		

Corectitudinea parserului LR(0)

- Lema 1, 2 Fie G = (N, T, S, P) o gramatică LR(0), $t_0\sigma$, $t_0\tau$ drumuri în automatul LR(0) etichetate cu φ respectiv γ şi u, v ∈ T*. Atunci, dacă în parserul LR(0) are loc ($t_0\sigma$, uv#, ε) \vdash +($t_0\tau$, v#, π), atunci în G are loc derivarea $\phi_{dr} \Rightarrow_{\pi}$ u şi reciproc.
- **Teoremă** Dacă G este gramatică LR(0) atunci, oricare ar fi cuvântul de intrare w ∈ T*, parserul LR(0) ajunge la configurația de acceptare pentru w, adică (t₀σ, uv#, ε) \vdash +(t₀τ, v#, π) dacă și numai dacă φ_{dr} ⇒_πu

Gramatici SLR(1)

Definiţie

 Fie G o gramatică pentru care automatul LR(0) conţine stări inconsistente (deci G nu este LR(0)). Gramatica G este gramatică SLR(1)dacă oricare ar fi starea t a automatului LR(0) sunt îndeplinite condiţiile:

```
∘ -Dacă A \rightarrow \alpha \bullet, B \rightarrow \beta \bullet \in t atunci FOLLOW(A) \cap FOLLOW(B) = \emptyset;
```

- ∘ -Dacă $A \rightarrow \alpha \bullet$, $B \rightarrow \beta \bullet a \gamma \in t$ atunci $a \notin FOLLOW(A)$.
- Analiza sintactică SLR(1) este similară cu cea LR(0);tabela de analiză sintactică are două componente:
 - -Prima, numită ACŢIUNE, determină dacă parserul va face deplasare respectiv reducere, în funcție de starea ce se află în topul stivei şi de simbolul următor din intrare
 - -Cea de a doua, numită GOTO, determină starea ce se va adăuga în stivă în urma unei reduceri.

Mulţimile FIRST şi FOLLOW

- ▶ FIRST(α) = {a|a ∈ T, α $_{st}$ ⇒* au } ∪ if (α $_{st}$ ⇒* ε) then {ε} else ∅.
- ► FOLLOW(A) = {a|a ∈ T ∪ {ε}, S $_{st}$ ⇒* uAγ, a ∈ FIRST (γ) }

Determinare FIRST

```
▶ 1.for (X \in \Sigma)
    • 2.if (X \epsilon T) FIRST (X) = {X} else FIRST (X) = \emptyset;
 3. for (A→aβ  ∈  P)
    • 4.FIRST(A)=FIRST(A)∪{a};
5.FLAG=true;
6.while(FLAG){
    • 7.FLAG=false;
    • 8.for (A → X<sub>1</sub>X<sub>2</sub>...X<sub>n</sub> € P) {
       • 9.i=1;
       • 10.if((FIRST(X1) ⊈ FIRST(A)){
           • 11.FIRST(A) = FIRST(A) U (FIRST(X1);
           • 12.FLAG=true;
       • 13.}//endif
       • 14.while (i<n&&X<sub>i</sub> st \Rightarrow* \epsilon)
           • 15.if((FIRST(X<sub>i+1</sub>) ⊈ FIRST(A)){
              • 16.FIRST(A) = FIRST(A) \cup FIRST(X<sub>i+1</sub>);
              • 17.FLAG=true; i++;
           }//endif
       }//endwhile
    o }//endfor
   }//endwhile
  for (A \in N)
    • if (A_{st} \Rightarrow * \varepsilon) FIRST (A) = FIRST(A) \cup {\varepsilon};
```

Determinare FIRST

```
Intrare: Gramatica G=(N,T,S,P).
                 Mulțimile FIRST(X), X \in \Sigma.
                 \alpha = X_1 X_2 ... X_n, X_i \in \Sigma, 1 \le i \le n.
  Ieşire: FIRST (\alpha).
▶ 1.FIRST (\alpha) =FIRST (X_1) -{\epsilon}; i=1;
▶ 2.while (i<n && X_i \Rightarrow^+ \epsilon) {
   • 3.FIRST (\alpha) =FIRST (\alpha) \cup (FIRST (X_{i+1}) -{\epsilon});
   • 4.i=i+1;
} }//endwhile
▶ 5.if (i==n && X_n \Rightarrow^+ ε)
   • 6.FIRST (\alpha) =FIRST (\alpha) \cup {\epsilon};
```

Exemplu

- Fie gramatica:
- S \rightarrow E | B, E \rightarrow ϵ , B \rightarrow a | beginSC end, C \rightarrow ϵ | ; SC
- ▶ FIRST(S) = $\{a, begin, \epsilon\}$ FIRST(E) = $\{\epsilon\}$
- FIRST(B) = {a, begin} FIRST(C) = {;, ε }.
- FIRST(SEC) = $\{a, begin, ;, \epsilon\},\$
- FIRST(SB)= {a, begin},
- ▶ FIRST(;SC)= {;}.

Determinarea FOLLOW

- \triangleright ϵ ϵ FOLLOW(S).
- Dacă A → αBβXγ ∈ P şi β ⇒ + ε, atunci FIRST(X) $\{\epsilon\}$ ⊆ FOLLOW (B).
 - $S \Rightarrow \alpha_1 A \beta_1 \Rightarrow \alpha_1 \alpha B \beta X \gamma \beta_1 \Rightarrow \alpha_1 \alpha B X \gamma \beta_1$ şi atunci rezultă FIRST(X)- $\{\epsilon\} \subseteq FOLLOW$ (B).
- ▶ Dacă A → α B β ∈ P atunci FIRST(β)-{ ϵ } ⊆ FOLLOW (B).
- Dacă A → αBβ ∈ P şi β ⇒ + ε, atunci FOLLOW(A) ⊆ FOLLOW(B).

Determinarea FOLLOW

```
▶ 1. for (A \in \Sigma) FOLLOW (A) = \emptyset;
\triangleright 2.FOLLOW(S) = {\epsilon};
▶ 3.for (A → X_1X_2...X_n) {
▶ 4.i=1;
  o 5.while(i<n){</pre>
     • 6.while (X_i \notin N) + +i;
     • 7.if(i<n){
        • 8. FOLLOW(Xi) = FOLLOW(X_i) \cup
                               (FIRST(X_{i+1}X_{i+2}...X_n) - \{\epsilon\});
        • 9.++i;
     }//endif

  }//endwhile

}//endfor
```

Determinarea FOLLOW

```
▶ 10.FLAG=true;
11.while (FLAG) {
   • 12.FLAG=false;
   • 13. for (A \rightarrow X_1 X_2 ... X_n) {
     • 14.i=n;
     • 15.while (i>0 && X_i \in N) {
        • 16.if (FOLLOW(A) \not\subset FOLLOW(X_i)) {
           • 17. FOLLOW (Xi) = FOLLOW (X;) \cup FOLLOW (A);
           • 18.FLAG=true;
        • 19.}//endif
        • 20.if (X_i \Rightarrow^+ \varepsilon) --i;
        • 21.else continue;
     • 22.}//endwhile
   23.}//endfor
▶ 24.}//endwhile
```

Exemplu

- Fie gramatica:
- S → E | B, E → ε, B → a | begin SC end, C → ε | ; SC
- ▶ FOLLOW(S)=FOLLOW(E)=FOLLOW(B) = $\{\epsilon, ;, end\}$
- FOLLOW(C) = {end}.

Gramatici SLR(1)

Definiţie

 Fie G o gramatică pentru care automatul LR(0) conţine stări inconsistente (deci G nu este LR(0)). Gramatica G este gramatică SLR(1)dacă oricare ar fi starea t a automatului LR(0) sunt îndeplinite condiţiile:

```
∘ -Dacă A \rightarrow \alpha \bullet, B \rightarrow \beta \bullet \in t atunci FOLLOW(A) \cap FOLLOW(B) = \emptyset;
```

- ∘ -Dacă $A \rightarrow \alpha \bullet$, $B \rightarrow \beta \bullet a\gamma \in t$ atunci a \notin FOLLOW(A).
- Analiza sintactică SLR(1) este similară cu cea LR(0);tabela de analiză sintactică are două componente:
 - -Prima, numită ACŢIUNE, determină dacă parserul va face deplasare respectiv reducere, în funcție de starea ce se află în topul stivei şi de simbolul următor din intrare
 - -Cea de a doua, numită GOTO, determină starea ce se va adăuga în stivă în urma unei reduceri.

Construcția tabelei de parsare SLR(1)

Intrare:

- Gramatica G = (N, T, S, P) augmentată cu S' → S;
- Automatul M = (Q, Σ , g, t₀, Q);
- Mulţimile FOLLOW(A), A∈V

leşire:

- Tabela de analiză SLR(1) compusă din două părţi:
- ACŢIUNE(t, a), t ∈ Q, a ∈ T ∪ { # },
- GOTO(t, A), $t \in Q$, $A \in N$.

Construcția tabelei de parsare SLR(1)

```
\rightarrow for (t \in Q)
  o for (a ∈ T) ACTIUNE(t, a) = "eroare";
  • for (A \in V) GOTO(t, A) = "eroare";
▶ for(t ∈ Q){
  • for (A \rightarrow \alpha \bullet a\beta \in t)
    ACTIUNE(t,a)="D g(t, a)";//deplasare in g(t, a)
  • for (B \rightarrow \gamma \bullet \in t) { // acceptare sau reducere
    • if (B == 'S') ACTIUNE(t, a) = "acceptare";
    • else
       • for (a \in FOLLOW(B)) ACTIUNE(t,a)="R B\rightarrow \gamma'';
   } // endfor
  • for (A \in N) GOTO(t, A) = q(t, A);
} } //endfor
```

Parsarea SLR(1)

- **Deplasare**: (σ t, au#, π)⊢(σ tt', u#, π) dacă ACTIUNE(t, a)=Dt';
- ▶ Reducere: (σ t σ 't', u#, π) \vdash (σ tt'', u#, π r) ACTIUNE(t, a) = Rp unde p= A \rightarrow β, $|\sigma$ 't'| = $|\beta|$ şi t''= GOTO(t, A);
- Acceptare: $(t_0t, \#, \pi)$ dacă ACTIUNE(t,a) = ``acceptare''; Analizorul se oprește cu acceptarea cuvântului de analizat iar π este parsarea acestuia (șirul de reguli care s-a aplicat, în ordine inversă, în derivarea extrem dreaptă a lui w).
- Eroare: (σ t, au#, π) ⊢ eroare dacă ACTIUNE(t,a) = "eroare"; Analizorul se opreşte cu respingerea cuvântului de analizat.

Parsarea SLR(1)

Intrare:

- Gramatica G = (N, T, S, P) care este SLR(1);
- Tabela de parsare SLR(1) (ACTIUNE, GOTO);
- Cuvântul de intrare w ∈ T*.

leşire:

- Analiza sintactică (parsarea) ascendentă a lui w dacă w ∈ L(G);
- eroare, în caz contrar.
- Se foloseşte stiva St pentru a implementa tranziţiile deplasare/reducere

Parsarea SLR(1)

```
char ps[] = "w#"; //ps este cuvantul de intrare w
  int i = 0; // pozitia curenta in cuvantul de intrare
  St.push(t0); // se initializeaza stiva cu t0
while(true) { // se repeta pana la succes sau eroare
   • t = St.top();
   a = ps[i] // a este simbolul curent din intrare
   if(ACTIUNE(t,a) == "acceptare") exit("acceptare");
   • if(ACTIUNE(t,a) == "Dt""){

    St.push(t");

      • i++; // se inainteaza in w
   }//endif
   • else {
      • if(ACTIUNE(t,a) == "R A \rightarrow X<sub>1</sub>X<sub>2</sub>...X<sub>m</sub>"){
         • for( i = 1; i \le m; i++) St.pop();
         St.push(GOTO(St.top, A));
      } //endif
      else exit("eroare");
   > }//endelse
   }//endwhile
```

Exemplu

▶ 0.S \rightarrow E, 1.E \rightarrow E+T, 2.E \rightarrow T, 3.T \rightarrow T*F, 4.T \rightarrow F, 5.F \rightarrow (E), 6.F \rightarrow a

 $S \rightarrow \bullet E$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet a$

 $\begin{array}{c|c}
1 & \\
S \to E \bullet \\
E \to E \bullet + T
\end{array}$

 $\begin{array}{c|c}
E \to T \bullet \\
T \to T \bullet *F
\end{array}$

 $E \rightarrow E + \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet a$

 $\begin{array}{c}
T \to T^* \bullet F \\
F \to \bullet (E) \\
F \to \bullet a
\end{array}$

 $7 \rightarrow F \bullet$

5 F → a•

 $\begin{array}{c|c}
F \to (E \bullet) \\
E \to E \bullet + T
\end{array}$

 $F \rightarrow (\bullet E)$ $E \rightarrow \bullet E + T$ $E \rightarrow \bullet T$ $T \rightarrow \bullet T * F$ $T \rightarrow \bullet F$ $F \rightarrow \bullet (E)$ $F \rightarrow \bullet a$

10 T → T*F•

11 F → (E)•

Tabela de tranziție a automatului LR(0)

g	a	+	*	()	Е	T	F
0	5			4		1	2	3
1		6						
2			7					
3								
4	5			4		8	2	3
5								
6	5			4			9	3
7	5			4				10
8					11			
9			7					
10								
11								

Tabela de analiză SLR(1)

	ACŢIUNE					GOTO			
STARE	a	+	*	()	#	Е	Т	F
0	D5			D4			1	2	3
1		D6				accepta			
2		R2	D 7		R2	R2			
3		R4	R4		R4	R4			
4	D5			D4			8	2	3
5		R6	R6		R6	R6			
6	D5			D4				9	3
7	D5			D4					10
8		D6			D11				
9		R1	D 7		R1	R1			
10		R3	R3		R3	R3			
11		R5	R5		R5	R5			

Test SLR(1)

- G nu este LR(0) stările 1, 2, 9 conţin conflict de deplasare/reducere
- ▶ FOLLOW(S)={#}, FOLLOW(E)={#,+,)}
- Gramatica este SLR(1) pentru că:
 - în starea 1: + ∉ FOLLOW(S);
 - în starea 2: * ∉ FOLLOW(E);
 - în starea 9: * ∉ FOLLOW(E).

Stiva	Intrare	Actiune	lesire	
0	a*(a+a)#	deplasare		
05	*(a+a)#	reducere	6.F → a	
03	*(a+a)#	reducere	4.T → F	
02	*(a+a)#	deplasare		
027	(a+a)#	deplasare		
0274	a+a)#	deplasare		
02745	+a)#	reducere	6.F → a	
02743	+a)#	reducere	4.T → F	
02742	+a)#	reducere	2.E → T	
02748	+a)#	deplasare		

Stiva	Intrare	Actiune	lesire	
027486	a)#	deplasare		
0274865)#	reducere	6.F → a	
0274863)#	reducere	4.T → F	
0274869)#	reducere	1.E → E+T	
02748)#	deplasare		
02748(11)	#	reducere	5.F →(E)	
027(10)	#	reducere	3.T → T*F	
02	#	reducere	2.E → T	
01	#	acceptare		

Gramatici LR(1)

Definiţie

• Fie G = (V, T, S, P) o gramatică redusă. Un articol LR(1) pentru gramatica G este o pereche (A $\rightarrow \alpha \cdot \beta$, a), unde A $\rightarrow \alpha \beta$ este un articol LR(0), iar a \in FOLLOW(A) (se pune # în loc de ϵ).

Definiţie

- Articolul (A \rightarrow β 1 β 2, a) este valid pentru prefixul viabil $\alpha\beta$ 1 dacă are loc derivarea
 - S dr \Rightarrow * α Au $\Rightarrow \alpha\beta1\beta2u$
 - iar a = 1:u (a = # dacă $u = \varepsilon$).

Teorema

ο O gramatică G = (V, T, S, P) este gramatică LR(1) dacă şi numai dacă oricare ar fi prefixul viabil φ, nu există două articole distincte, valide pentru φ, de forma(A → α • , a), (B → β • γ, b) unde a ∈ FIRST(γb).

Gramatici LR(1)

- Nu există conflict deplasare/reducere. Un astfel de conflict înseamnă două articole ($A \rightarrow \alpha \bullet$, a) şi ($B \rightarrow \beta \bullet a\beta$ ', b) valide pentru același prefix.
- Nu există conflict reducere/reducere. Un astfel de conflict înseamnă două articole complete($A \rightarrow \alpha \bullet$, a) şi ($B \rightarrow \beta \bullet$, a) valide pentru același prefix
- Pentru a verifica dacă o gramatică este LR(1) se construiește automatul LR(1) în mod asemănător ca la LR(0):
 - Automatul are ca stări mulțimi de articole LR(1)
 - Tranziţiile se fac cu simboluri ce apar după punct
 - Închiderea unei mulțimi de articole se bazează pe faptul că dacă articolul ($B \to \beta \bullet A\beta$ ', b) este valid pentru un prefix viabil \Box atunci toate articolele de forma ($A \to \bullet \alpha$, a)unde a \in FIRTS(α a) sunt valide pentru același prefix.

Procedura de închidere LR(1)

```
flag= true;
while(flag) {
   • flag= false;
   ∘ for ( (A \rightarrow \alpha \bullet B\beta, a) ∈ I) {
     • for B \rightarrow Y \in P)
        • for ( b \in FIRST(\betaa)) {
          • if (B \rightarrow \bullet Y, b) \notin I)  {
             • I = IU\{(B \rightarrow \bullet \gamma, b)\};
            flag= true;
          }//endif
        }//endforb
     }//endforB
     }//endforA
}//endwhile
  return I;
```

Automatul LR(1)

```
▶ t0 = închidere((S' \rightarrow \bulletS,#));T={t<sub>0</sub>};marcat(t<sub>0</sub>)=false;
\blacktriangleright while (\exists ters. !marcat(t)) { // marcat(t) = false
   • for (X \in \Sigma) {
   \bullet t' = \Phi;
      • for (A \rightarrow \alpha \bullet X\beta, a) \in t
          • t' = t' \cup \{ (B \rightarrow \alpha X \bullet \beta , a) \mid (B B \rightarrow \alpha \bullet X \beta, a) \in t \};
          • if (t' \neq \Phi) {
            • t' = închidere( t' );
            • if( t'T) {
               T= T U{ t' };
               marcat( t' ) = false;
            }//endif
            • q(t, X) = t';
          } //endif
     } //endfor
   o marcat( t ) = true;
      endwhile
```

Automatul LR(1)

Teorema

- Automatul M construit în algoritmul 2 este determinist şi L(M) coincide cu mulţimea prefixelor viabile ale lui G. Mai mult, pentru orice prefix viabil γ , g(t₀, γ) reprezintă mulţimea articolelor LR(1) valide pentru γ .
- Automatul LR(1) pentru o gramatică G, se foloseşte pentru a verifica dacă G este LR(1)
 - Conflict reducere/reducere: Dacă în T există o stare ce conține articole de forma ($A \rightarrow \alpha \bullet$, a), ($B \rightarrow \beta \bullet$, a) atunci gramatica nu este LR(1);
 - Conflict deplasare/reducere: Dacă în Texistă o stare ce conține articole de forma ($A \rightarrow \alpha \bullet$, a) și ($B \rightarrow \beta_1 \bullet a\beta_2$, b), atunci G nu este LR(1).
 - O gramatică este LR(1) dacă orice stare t ∈Teste liberă de conflicte

Exemplu

 $ightharpoonup S \square L = R | R, L \square^* R | a, R \square L$

 $(S' \rightarrow \bullet S, \#)$ $(S \rightarrow \bullet L=R, \#)$ $(S \rightarrow \bullet R, \#)$ $(L \to \bullet *R, \{=,\#\})$ $(L \rightarrow \bullet a, \{=,\#\})$ $(R \rightarrow \bullet L, \#)$

6 $(S \rightarrow L=\bullet R, \#)$ $(R \rightarrow \bullet L, \#)$ $(L \rightarrow \bullet *R, \#)$ $(L \rightarrow \bullet a, \#)$

8

 $(S' \rightarrow S \bullet, \#)$ $(S \rightarrow L \bullet = R, \#)$ $(R \to L \bullet, \#)$ $(L \rightarrow *R \bullet, \{=,\#\})$

 $(R \rightarrow L \bullet, \{=,\#\})$ 12

 $(L \rightarrow a \bullet, \#)$

3 $(S \rightarrow R \bullet, \#)$

5 $(L \rightarrow a \bullet, \{=,\#\})$

9 $(S \rightarrow L=Re, \#)$

10 $(R \to L^{\bullet}, \#)$

13 $(L \rightarrow *R \bullet, \#)$ $(L \to * \bullet R, \{=, \#\})$ $(R \rightarrow \bullet L, \{=, \#\})$ $(L \to \bullet *R, \{=, \#\})$ $(L \rightarrow \bullet a, \{=, \#\})$

11 $(L \rightarrow * \bullet R, \#)$ $(R \rightarrow \bullet L, \#)$ $(L \rightarrow \bullet *R, \#)$ $(L \rightarrow \bullet a, \#)$

Tabela de tranziție

g	a	II	*	S	L	R
0	5		4	1	2	3
1						
2		6				
3						
4	5		4		8	7
5						
6	12		11		10	9
7						
8						
9						
10						
11	12		11		10	13
12						
13						