

特性描述

TM512AC4是DMX512差分并联协议LED驱动芯片,恒定4通道高精度恒流输出,并带解码转发功能,可通过D0口转换成单线800Kbps数据归0码输出,D0输出数据可直接控制我公司800Kbps速率IC,可转发192个通道数据。TM512AC4解码技术精准解码DMX512信号,可兼容并拓展DMX512协议信号,TM512AC4对传输频率在200Kbps~1000Kbps以内的DMX512信号完全自适应解码,无需进行速率设置,寻址可达4096通道。TM512AC4内置E2PROM,无需外接,同时支持在线写码,芯片提供4个耐压30V可达80毫安的高精度恒流输出通道,并且通过1个外接电阻来设定电流的输出大小。TM512AC4有PWM反极性降频输出功能。它主要为建筑物装饰和舞台灯光效果LED照明系统而设计,某一个芯片的异常完全不影响其他芯片的正常工作,维护简单方便。本产品性能优良,质量可靠。

功能特点

- ▶ 兼容并扩展DMX512(1990)信号协议
- ▶ 控制方式:差分并联,最大支持4096通道寻址
- ▶ 高速DMX512增补算法专利,对传输速率200Kbps~1000Kbps的DMX512信号可完全自适应解码
- ▶ 内置E2PROM, 无需外接E2PROM
- ▶ AB线在线写码,可一次性自动写码,支持先安装后写码方式
- ▶ E2地址码双备份模式,部分E2损坏也不影响地址码读取
- ▶ PWM 选择端可选择反极性降频功能,降频后端口刷新率为500Hz
- ➤ PWM256级灰度控制
- ▶ 画面刷新率3.6KHz以上
- ▶ 内置5V稳压管
- ➤ OUTR/OUTG/OUTB/OUTW输出耐压大于30V
- ➤ OUTR/OUTG/OUTB/OUTW四位恒流輸出通道
- ▶ 外置输出恒流可调电阻,每通道电流范围3~80mA
- ➤ SSOP10封装内置固定18mA恒流输出
- ▶ ±3%通道间电流差异值, ±3%芯片间电流差异值
- ▶ 上电自检亮蓝灯,写码成功后亮白灯,新地址生效不需要重新上电
- 输出通道逐步延时,降低突波电流干扰
- > 工业级设计,性能稳定
- ▶ 封装形式: SOP16、SSOP10

应用领域

点光源,线条灯,洗墙灯,舞台灯光系统,室内外视频墙,装饰照明系统

2

内部结构框图

管脚排列

图2

3

管脚功能

引脚名称	引脚序号	I/0	功能说明
GND	1		电源负极
OUTR/OUTG/OUTB/OUTW	2~5	0	PWM输出端口
REXT	6	I	恒流反馈端,对地接电阻调整输出电流大小
ADRO	7	0	地址写码线输出
DO	8	0	解码转发通道,可控制我公司18系列和19系列IC
TST	9	I	测试脚, 内置下拉
ADRI	10	I	地址写码线输入,内置上拉
AI	11	I	差分信号,正
BI	12	I	差分信号,负
PWM	13	I	输出极性选择,一般悬空,接VDD后输出极性相 反,同时端口刷新频率降为500Hz
NC	14	-	空脚
NC	15	-	空脚
VDD	16		电源正极

SSOP10管脚排列

图3

SSOP10管脚功能

引脚名称	引脚序号	I/0	功能说明
GND	1		电源负极
OUTR/OUTG/OUTB/OUTW	2~5	0	PWM输出端口,固定18mA恒流输出。
ADRO	6	0	地址写码线输出
ADRI	7	I	地址写码线输入,内置上拉
AI	8	I	差分信号,正,内置上拉。
BI	9	I	差分信号,负,内置下拉。
VDD	10		电源正极

输入/输出等效电路

集成电路系静电敏感器件,在干燥季节或者干燥环境使用容易产生大量静电,静电放电可能会损坏集成电路,天微电子建议采取一切适当的集成电路预防处理措施,不正当的操作焊接,可能会造成 ESD 损坏或者性能下降,芯片无法正常工作。

工作条件

1、极限工作条件

如无特殊说明,在25℃	C下测试,VDD=5V	TM512AC4	单位
参数名称	参数符号	极限值	1 平位
逻辑电源电压	Vdd	+5.5~+6.5	V
输出端口耐压	Vout	30	V
逻辑输入电压	Vi	−0. 5~Vdd+0. 5	V
工作温度	Topt	−45∼ +85	$^{\circ}$
储存温度	Tstg	−55~ +150	$^{\circ}$
抗静电	ESD	8000	V
封装功耗	Pd	600	mW

- (1) 芯片长时间工作在上述极限参数条件下,可能造成器件可靠性降低或永久性损坏,天微电子不建议实际使用时任何一项参数达到或超过这些极限值。
- (2) 所有电压值均相对于系统地测试。

2、推荐工作条件

如无特殊说明	J,在-40℃~+8	5℃下测试,VDD=5V	TM512AC4		单位	
参数名称	参数符号	测试条件	最小值	典型值	最大值	平位
逻辑电源电压	Vdd		2.6	5. 5	6.5	V
高电平输入电压	Vih		0. 7Vdd		Vdd	V
低电平输入电压	Vil		0		0. 3Vdd	V
输出端口耐压	Vout				30	V

芯片参数

1、电气特性

如无特殊说明,在-4	0℃~+85℃下	「测试,VDD=4.5V~5.5V,		TM512AC4		
	GND=0		•	IM312AC4		单位
参数名称	参数符号	测试条件	最小值	典型值	最大值	
低电平输出电流	Iol	Vo =0.4V, DO, ADRO	10	-		mA
高电平输出电流	Ioh	Vo =4V, DO, ADRO	10	_	7	mA
输入电流	Ιi			_	±1	μД
差分输入共模电压	Vcm				12	V
差分输入电流	Iab	VDD=5V		A	28	μД
差分输入临限电压	Vth	0V <vcm<12v< td=""><td>-0. 2</td><td></td><td>0. 2</td><td>V</td></vcm<12v<>	-0. 2		0. 2	V
差分输入迟滞电压		Vcm=0V		70		mV
差分输入阻抗	Rin			270		KΩ
输出管脚电流	Isink	OUTR, OUTG, OUTB, OUTW (REXT 对地电阻 550Ω)	3		80	mA
高电平输入电压	Vih	ADRI	0. 7Vdd	-		V
低电平输入电压	Vil	ADRI	_	_	0. 3Vdd	V
电流偏移量(通道间)	dIout	Vds=1V, Iout=17mA		±1.5	± 3.0	%
电流偏移量(芯片间)	dIout	Vds=1V, Iout=17mA		±3.0	±5.0	%
电压偏移量VS-Vds	%dVds	1V <vds<3v< td=""><td></td><td>± 0.1</td><td>±0.5</td><td>%/V</td></vds<3v<>		± 0.1	±0.5	%/V
电压偏移量VS-Vdd	%dVds	4. 5V <vdd<5. 5v<="" td=""><td></td><td>± 1.0</td><td>± 2.0</td><td>%/V</td></vdd<5.>		± 1.0	± 2.0	%/V
动态电流损耗	IDDdyn	VDD=5V	无负载		4	mA
消耗功率	PD	Ta=25℃			480	mW
热阻值	Rth(j-a)		80	-	150	°C/W

功能说明

1、通信数据协议:

TM512AC4数据接收兼容标准DMX512(1990)协议及拓展DMX512协议,传输速率200Kbps~1000Kbps自适应解码。协议波形如下所示:芯片是AI、BI差分输入的,图中画出的是AI的时序波形,BI与AI相反。

图4

标号	描述	最小值	典型值	最大值	单位
	比特率	200	500	1000	Kbps
	位时间	5	2	1	μs
S	起始位	5	2	1	μs
D0∼D7	8 位数据	5	2	1	μs
T	2位停止位	10	4	2	μs
1	复位前标记	0		1000000	μs
2	复位信号	88		1000000	μs
3	复位后标记	8		1000000	μs
4	字段 (notel)	55	22	11	μs
5	字段之间的占	0		1000000	μs
6	数据包的长度	1024		1000000	μs
7	复位信号间隔	4096		1000000	μs

Notel:字段共11位,包括0起始位,8位数据位和2位停止位。其中0起始位是低电平,停止位是高电平,数据位中的数据是0,则相应的时间段是低电平;数据是1,则相应的时间段是高电平。0起始位停止位及数据位的位时长须相同。

2、IC接收说明:

- 1. 当AIBI线上出现复位信号时,IC进入接收准备状态。地址计数器清0。
- 2. 数据包中的第1字段是起始字段,其8位数据必须是"0000_0000",该字段不作为显示数据。用于显示的有效字段从第二字段开始,DMX512数据包的第二字段是有效数据的第一字段。IC可自适应的数据传输速率是200Kbps~1000Kbps。
- 3. IC根据其E2中地址确定截取DMX512数据包中对应的字段。如芯片地址为0000_0000_0000则从数据包的第一有效字段开始截取,地址0000_0000_0001从第二有效字段开始截取。芯片使用4字段。
- 4. IC接收数据时,2个复位信号间隔不能小于4ms,即使并联点数极少的情况下,帧频也不能大于250Hz。

3、控制器发送数据注意事项:

- 1. 对于标准DMX512 (1990) 协议来说,假如控制器的一个分端口接512个通道,也就是170个像素点,要达到刷新率是30Hz,那么每帧的时间宽度33. 33ms,传输1bit的时间为4 μ s,则有效数据时间宽度为88+4 μ s*11bit*512=22. 7ms,那么每一帧数据之间的时间间隔为33. 33-22. 7 = 10. 63ms。在这时间间隔内数据线保持高电平,直到下一个复位信号。
- 2. TM512AC4要求控制器每个数据包的复位信号码间隔不能小于4ms,即帧频最高不能高于250Hz,否则可能无法正常显示画面。

4、写码注意事项:

- 1. 写码完成后,收到新地址码的IC驱动白灯常亮,新写入的地址码生效。
- 2. 写码完成后先不要将AB线取下,应用写码器自带的专用测试程序进行测试,以确认写码是否完全正确。
- 3. 写码器AI, BI端口上的地址输入端线在写码完成后应从写码器上拔出,以免写码器失常时误写码。写码线拔出后悬空并用绝缘胶布包裹即可,无需专门接地。

5、差分总线连接注意事项:

- 1. 控制器与IC之间以及IC与IC之间须共地,以防止过高的共模电压击穿IC,可用屏蔽层做共地线可靠连接多个IC节点,并在一点可靠接地,不能双端或多端接地。
- 2. 板上AI线和BI线至IC间串接的保护电阻须一致,并且板上AIBI线从焊盘至IC的走线方式须尽量一致。
- 3. AI、BI总线尽可能采用屏蔽双绞线(尤其在强电和弱电走线槽共用工程,发射塔附近或雷电较多的地区),以减少干扰及雷电冲击。用普通超5类屏蔽双绞线即可,但要注意购买铜线。
- 4. 485总线中485节点要尽量减少与主干之间的距离,一般建议485总线采用手牵手的总线拓扑结构。星型结构会产生反射信号,影响485通信质量。如果在施工过程中必须要求485节点离485总线主干的距离超过30cm以上距离,建议使用485中继器作出一个485总线的分叉。如果施工过程中要求使用星型拓扑结构,应使用485集线器。
- 5. 485总线随着传输距离的延长,会产生回波反射信号,如果485总线的传输距离较长,建议施工时在485通讯结束端处的AI、BI线上并接一个120欧姆的终端匹配电阻。

8

恒流模块

1、输出恒流设置:

OUTR, OUTG, OUTB, OUTW是恒流输出, 电流最大可达80mA, 不建议将电流设置为更大值应用。恒流电流值由REXT对地接的电阻来决定。电流公式:

Iout = 48/(400 + Rext) (1)

Rext = (48/Iout) - 400 (2)

Rext是跨接在REXT脚和地之间的电阻, Iout是OUTR, OUTG, OUTB, OUTW端口输出的电流。

电流值 (mA)	Rext 阻值(Ω)
18	2266. 67
20	2000
36	933. 33
60	400

IOUT电流与REXT的关系

2、恒流曲线:

TM512AC4恒流特性优异,通道间甚至芯片间的电流差异极小。

- (1)通道间的电流误差小于±3%,而芯片间的电流误差小于±3%。
- (2) 当负载端电压发生变化时,TM512AC4输出电流不受影响,如下图所示。
- (3)如下图TM512AC4输出端口的电流I与加在端口上的电压Vds曲线关系可知,电流I越小,在恒流状态下需要的Vds也越小。

应用信息

1、应用图1: RGBW 4色应用

- 注: 1. 采用A, B线写码方式, 写码时, 写码器/控制器无需与第一个IC的ADRI相连。
 - 2. 注意分压电阻R的选择,以免IC功耗过大。
 - 3. REXT端口必须加电阻到地来设置输出电流,此端口不能悬空。

- 注: 1. 采用A, B线写码方式, 写码时, 写码器/控制器无需与第一个IC的ADRI相连。
 - 2. 注意分压电阻R的选择,以免IC功耗过大。
 - 3. REXT端口必须加电阻到地来设置输出电流,此端口不能悬空。

3、应用图3:外接三极管应用

注: 1. PWM管脚接VDD时,为反极性降频恒压输出,适用于外接NPN三极管基极(B),应用时输出管脚接上拉电阻R1到VDD,上拉电阻R1应根据三极管放大倍数及需要电流选取相应的阻值。当输出电流较大,上拉电阻需要小于5K(基极电流大于1mA)时,应相应降低降压电阻取值并在VDD上并接5V稳压管或其他5V稳压器。

- 2. 图9为4通道反极性应用时的应用图。
- 3. REXT在反极性应用时可以悬空。

10

4、应用图4:外接MOS管应用

注: 1. PWM管脚接VDD时,为反极性降频恒压输出,适用于外接MOS管栅极(G)或大功率恒流驱,应用 时输出管脚接上拉电阻R1到VDD,上拉电阻取值10K以上。

- 2. 图10为4通道反极性应用时的应用图。
- 3. REXT在反极性应用时可以悬空。
- 4. 可选用高速低压MOS管。

5、应用图5: 外接开关式恒流驱动IC

- 注: 1. PWM管脚接VDD时,为反极性降频恒压输出,适用于外接大功率恒流驱动IC.
 - 2. 图13为4通道反极性应用时的应用图。
 - 3. REXT在反极性应用时可以悬空。
 - 4. 恒流驱动IC元器件或操作请参考TM1911规格书。
- 5. 当采用开关式恒流驱动IC时,干扰可能会很大(和功率布线等各种因素都相关),系统会产生噪声和浪涌,为避免写码不过或画面变化不正常等问题的产生,建议如下措施:
 - A、TM1911的VDD引脚和TM512AC4的降压电阻RZ直接相连,接在同一防反接二极管后,为降低浪涌影响,不能出现TM1911的VDD与降压电阻RZ连接在不同的防反接二极管后面。
 - B、线路板上TM1911的VDD脚到TM512AC4降压电阻RZ的走线尽量粗而短(尽可能接近等电位), TM1911的GND脚和TM512AC4的GND脚之间的走线尽量粗而短(尽可能接近等电位)。
 - C、在每个TM1911靠近VDD和GND脚处并一47uF电解电容和一105电容,在靠近TM512AC4降压电阻RZ和GND脚出并一47uF电解电容和一105电容。
 - D、AB线在板上始终保持并行布线,非实在无法过线这种特殊情况下不要在AB线间插入其他元件或走线(即使在特殊情况下也要限制在最短的局部)。否则AB线平衡传输的抗干扰功能会被减弱。
 - E、在特殊情况下,因为PWM脚被干扰,造成控制不正常现象,此时需在TM1911的PWM脚对GND加一电容CDIM,电容大小根据实际情况而定,一般在几十至100PF。
- F、 当干扰过大造成写码不过的情况发生时,可在TM512AC4的ADRI脚与GND之间加一滤波电容 (CPI),以滤除一定干扰,电容大小一般建议在103以内。

12

6、元器件选值表(非三极管应用)

VCC	24V	12V	5V
$R_{Z(\Omega)}$	2K~2.4K	750~820	82
$R_{I}(\Omega)$	400~500	400~500	
$R_O(\Omega)$	400~500	400~500	
$R_A (\Omega)$	3K∼5K	3K∼5K	3K∼5K
$R_{B}(\Omega)$	3K∼5K	3K∼5K	3K∼5K

7、元器件选值表2(三极管应用,单路电流不超过120mA)

	DC24V	DC12V
R1 (RGBW端口上拉电阻)	2.5K	2.5K
R_{Z} (Ω)	1K	300
VDD是否并稳压器件	需要	需要

(1) 灯串电阻R的取值选择

由于封装的长期功耗建议不能大于480mW,所以应当设置IC功耗小于480mW,随着驱动电流的增大,应该减小芯片通道的输出电压Vout,即:480mW>5. $2V*10mA+Vout*Iout*N(N为通道数量,Vout为通道端口电压,Iout为通道设置电流),当N=4,Iout=30mA时,得Vout<3.5V,又因为Vout=VCC-M*VL-R*Iout(M为单个通道上串联的灯数量,VL为灯的压降),当VCC=24V,VL=2,M=8时,得R>150 <math>\Omega$,此外,为了使得输出恒流还应该让Vout>0.8V,所以R<240 Ω ,为了在功耗符合要求的情况下使芯片具有较好的输出特性,建议R选择适当的中间值。

13

封装示意图: SOP16

Symbol	Dimensions In	Dimensions In Millimeters		In Inches	
Symbol	Min	Max	Min	Max	
A	1.30	1.70	0. 051	0.067	
A1	0.08	0.24	0.003	0.009	
b	0.4	0. 4TYP		0. 016TYP	
С	0. 25	0. 25TYP		0TYP	
D	8. 25	8.85	0. 325	0. 348	
Е	3. 75	4. 15	0. 148	0. 163	
E1	5. 70	6.30	0. 224	0. 248	
е	1.27TYP		0.05	0TYP	
L	0. 45	0.85	0.018	0. 033	
θ	0°	8°	0°	8°	

V1.3

封装示意图: SSOP10

Cymb o 1	Dimensions In	n Millimeters	Dimensions In Inches	
Symbol Symbol	Min	Max	Min	Max
A	-	1.75	_	0.067
A1	0. 1	0. 225	0.004	0.009
A2	1. 30	1.50	0.051	0.059
b	0. 39	0.48	0.015	0.019
С	0. 21	0. 26	0.008	0.01
D	4. 70	5. 10	0. 185	0. 201
E	3. 70	4. 10	0. 146	0. 161
E1	5. 80	6. 20	0. 228	0. 244
e	1. 0 (BSC)		0. 039	(BSC)
L	1. 05 (BSC)		0. 041	(BSC)
θ	0°	8°	0°	8°

All specs and applications shown above subject to change without prior notice.

(以上电路及规格仅供参考,如本公司进行修正,恕不另行通知)