Distribution and Replication for Feature Selection (FSR 2.2)

Uchechukwu Njoku

2nd DEDS Winter school Aalborg, Denmark 8th March, 2022

Supervisors: Alberto Abelló (UPC), Besim Bilalli (UPC), Gianluca Bontempi (ULB)

Feature selection (FS)

Feature selection is a search problem of detecting the relevant features and discarding the irrelevant and redundant ones with the goal of obtaining a subset of features that accurately describe a given problem with a minimum degradation of performance

Exploring the search space

- Starting point
- Search strategy
 - Exhaustive search
 - Sequential search
 - Population-based search
- Feature subsets evaluation
- Halting criterion

Feature selection classification

Feature selection methods are popularly classified based on their relationship with the learning algorithm

Filter methods

Feature selection Model

- Fast execution time
- Good generalization
- Robust to overfitting
- Possible redundancy
- Model independent
- Non 'optimal' selection

E.g. Gini, ReliefF, MRMR, CFS

Wrapper methods

- Model dependent
- High accuracy
- Captures dependencies
- Poor generalization
- Risk of overfitting
- Computationally intense

E.g: SFS, SBS

Embedded methods

- Model dependent
- Moderate execution time
- Captures dependencies
- Poor generalization

E.g: Tree based algorithms

Objectives

- 1. Study existing feature selection methods to:
 - a. compare the several search algorithms of wrapper feature selection and existing tools
 - b. evaluate their scalability, stability, and impact on performance (e.g., accuracy)
- 2. Propose a novel approach for multi-criteria wrapper feature selection
- 3. Optimize the distribution and parallelism of feature engineering for Big Data
 - a. Analyze the scalability of feature engineering methods
- **4**.Optimize wrapper feature selection methods by adopting frameworks for distribution, parallel computing, load partitioning, and communication methods for **scalable** feature selection

Work done

Objective 1: Study existing feature selection methods to:

- Extensive evaluation of the predictive performance and stability of existing wrapper and filter methods in Python libraries
- Empirical comparison of multi-objective and mono-objective wrapper FS by considering two well-known metrics, accuracy and AUC
- Analysis of the scalability and memory footprint of wrapper methods

Outcome:

- Njoku, Uchechukwu Fortune, et al. "Impact of filter feature selection on classification: an empirical study." Proceedings of the 24rd International Workshop on DOLAP 2022
- Njoku, Uchechukwu Fortune, et al. "Wrapper methods for multi-objective feature selection." 26th International Conference on EDBT 2023

Results

The improvement in accuracy after feature selection is different for binary and multiclass classifications for **filter methods**

Set-up

- 32 datasets (binary and multi-class)
- Four classification algorithms: KNN, NB, DT, SVM
- Six filter methods: Gini, MRMR, Relief, JMI, CMIM, SPEC
- Four wrapper methods: SFS_{KNN}, SFS_{NB}, SFS_{DT}, SFS_{SVM}
- Metrics: Accuracy and AUC

Results

• Wrapper methods show superior results in predictive performance

Method	NB	KNN	\mathbf{DT}	SVM	Average Rank	
SFS	10	9	4	9		
JMI	4	4	8	6	2	
Gini	5	2	6	5	3	
CMIM	3	2	4	5	4	
MRMR	3	3	4	3	5	
Relief	2	1	4	3	6	
SPEC	Û	2	1	2	7	

Method	NB	KNN	NN DT	SVM	Average Rank	
SFS	5	13	7	8		
Gini	7	4	3	1	2	
MRMR	5	4	2	1	3	
Relief	2	5	2	3	2	
JMI	3	3	2	4	5	
CMIM	3	2	2	2	6	
SPEC	2	2	0	1	7	

Accuracy change in binary problems

AUC change in binary problems

Existing implementations

• Less focus on population-based wrapper methods

Tool	Lang.	Exhaustive	Population-based	Sequential	Parallelism
Weka	Java	X	X	✓	Partial
Scikit-Learn(SKL)	Python	X	X	✓	Partial
Rapidminer	Java	✓	✓	✓	Partial
Mlxtend(MLX)	Python	✓	X	✓	Yes
Scikit-Feature(SKF)	Python	X	X	1	No
FeatureSelect	Matlab	X	1	X	No

Feature selection tools and libraries

Results

• Wrapper method are unique for multi-criteria feature selection

0.9

MO

Accuracy

1.0

Current work

Objective 2: Propose a novel approach for multi-criteria wrapper feature selection

Traditionally, multi-criteria feature selection is limited to **two objectives** - number of features and model performance

We propose the use of **more than two objectives** simultaneously for feature selection and demonstrate the advantage and trade-off through an interactive visualization board using **population-based search**

Multi-criteria feature selection

Criteria:

Internal evaluation criteria

- AUC
- Precision
- Accuracy
- Redundáncy
- Number of features

External evaluation criteria

- Relevance
- Shapley function

Outcome:

- Set of near-optimal feature subsets
- Interactive dashboard of results for explainability

Future work

- Feature engineering
 - External stay
 - 3rd April 30th June at Orange
 - Dataset of 200 columns and 2.5 million rows
- Optimization through distribution and parallelism

Timeline

Thanks for your attention Q&A

