Examenul de bacalaureat naţional 2014 Proba E. d) **Fizică**

Filiera teoretică – profilul real, Filiera vocaţională – profilul militar

• Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TENDUCĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul de lucru efectiv este de 3 ore.

D. OPTICA Varianta 10

Se consideră: viteza luminii în vid $c = 3.10^8$ m/s, constanta Planck $h = 6.6.10^{-34}$ J·s.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Un obiect real este plasat între o lentilă convergentă și focarul obiect al acesteia. Imaginea obiectului este: **b.** virtuală c. reală d. micsorată
- 2. Energia cinetică maximă a electronilor extrași prin efect fotoelectric extern depinde de frecvența radiației incidente conform graficului din figura alăturată.

Energia unui foton de frecvență v_1 , din radiația incidentă, este de aproximativ:

a. $0.6 \cdot 10^{-19}$ J

b. $4.3 \cdot 10^{-19}$ J

c. 4.9·10⁻¹⁹ J

d. $9.2 \cdot 10^{-19}$ J (3p)

3. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, frecvența unei radiații electromagnetice având lungimea de undă λ are expresia:

b. $c^{-1} \cdot \lambda$

c. $h \cdot c \cdot \lambda^{-1}$

d. $c \cdot \lambda$

(3p)

4. Unitatea de măsură în S.I. a raportului dintre viteza luminii în vid și indicele de refracție al mediului prin care se propagă lumina este:

c. m

d. m/s

5. Un sistem optic centrat e format din două lentile convergente L_1 și L_2 . Distanța dintre cele două lentile este $d = 60 \,\mathrm{cm}$. Un fascicul de lumină paralel, care intră în sistemul optic întâlnind mai întâi lentila L_1 , este transformat, la ieșirea sa din sistem, tot într-un fascicul paralel, dar cu diametrul de 3 ori mai mic. Distanța focală a lentilei L_1 este:

a. 45 cm

b. 40 cm

c. 20 cm

d. 15 cm

(3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un sistem optic centrat este format prin alipirea a două lentile L_1 și L_2 . Distanța focală a lentilei L_1 este $f_1 = 5$ cm, iar convergența lentilei L_2 are valoarea $C_2 = -5$ m⁻¹. Un object real este plasat la 15 cm în fața lentilei L_1 , perpendicular pe axa optică principală a acesteia. Lentila L_1 se află între obiect și lentila L_2 . Înălţimea obiectului este $y_1 = 15$ mm.

- a. Determinați convergența sistemului de lentile alipite (acolate).
- b. Calculați înălțimea imaginii formate de sistemul celor două lentile.
- c. Realizați un desen în care să evidențiați construcția imaginii obiectului printr-o lentilă subțire echivalentă cu sistemul de lentile.
- **d.** Fără a modifica distanța dintre obiect și lentila L_1 , se îndepărtează lentila L_2 până când distanța dintre cele două lentile devine d = 12,5 cm. Determinați distanța dintre lentila L_2 și imaginea formată de sistemul de lentile.

III. Rezolvaţi următoarea problemă:

O sursă de lumină coerentă S este așezată pe axa de simetrie a unui dispozitiv Young. Sursa emite radiație monocromatică având lungimea de undă $\lambda = 540\,\mathrm{nm}$. Figura de interferență se observă pe un ecran așezat paralel cu planul fantelor, la distanța D=2m de acesta. Distanța dintre cele două fante este $2\ell=1,8$ mm.

- a. Calculați valoarea interfranjei.
- b. Determinați valoarea distanței dintre al doilea minim de interferență situat de o parte a maximului central si maximul de interferentă de ordinul 2 situat de cealaltă parte a maximului central.
- c. Sursa de lumină S se deplasează pe distanța $a = 0.3 \,\mathrm{mm}$, după o direcție paralelă cu planul fantelor. Se observă că franja centrală s-a deplasat în poziția ocupată inițial de franja luminoasă de ordinul 5. Determinați distanța dintre sursa de lumină S și planul fantelor dispozitivului Young.
- d. Sursa de lumină S este adusă în poziția inițială. În fața uneia dintre fante se plasează o lamă subțire, confecționată dintr-un material transparent, de indice de refracție n = 1,5. Se observă că franja centrală se formează exact în aceeași poziție în care s-a format la punctul c. Determinați grosimea lamei.

Probă scrisă la Fizică D. Optică