NOTE: If you have any questions with any of these solutions, or would like extra problems, please don't hesitate to contact me: hoshino@mscs.dal.ca

2001/2003

SOLUTION TO "HARD FUNCTIONAL ERVATION PROBLEMS"

1. Let x=y=0: $f(0)^2-f(0)=0$, so f(0)=0 or 1. Let x=y=1: $f(1)^2-f(1)=2$, so f(1)=2 or -1.

Let y=1. Then $f(x)f(1)-f(x)=x+1 \Rightarrow f(x)\cdot [f(1)-1]=x+1 \Rightarrow f(x)=\frac{x+1}{f(1)-1}$, for all $x\in \mathbb{R}$. If f(1)=2, then f(x)=x+1, and that is easily verified to satisfy f(x)f(y)-f(xy)=x+y $\forall x,y\in \mathbb{R}$ "for all" But if f(1)=-1, then $f(x)=-\frac{x+1}{2}$, and so $f(0)=-\frac{1}{2}$, which it a contradiction

So we conclude that f(x)=x+1] if the unique volution.

Let y=0. Then f(x) f(0) = f(x) + f(x) = f(x). [f(0)-2]=0 $\forall x$. Now if $f(0) \neq 2$, then f(x)=0 $\forall x$, and this contradicts $f(0) \neq 0$. Thus, we must have f(0)=2.

Let y=1. Then $f(x) \cdot f(1) = f(x+1) + f(x-1)$, or 2f(x+1) - 5f(x) + 2f(x-1) = 0, for each $x \in \mathbb{Z}$. This looks like a recurrence relation! Let f(n) = an. Then for each integer n, $2a_{n+1} - 5a_n + 2a_{n-1} = 0$, with $a_0 = 2$ and $a_1 = \frac{\pi}{2}$. The characteristic equation is $2x^2 - 5x + 2 = 0$, which has notes 2 and $\frac{\pi}{2}$. Hence, $a_n = A \cdot 2^n + B \cdot (\frac{1}{2})^n$ for each n.

Thus, $2=a_0=A+B$ and $\frac{5}{2}=a_1=2A+\frac{1}{2}B$, and solving we get A=B=1. Hence, $f(n)=a_n=2^n+\left(\frac{1}{2}\right)^n$. So the unique solution is $f(x)=2^x+\left(\frac{1}{2}\right)^x$

4. Let f(0) = t. Letting y = 0, we have $f(x+f(0)) = f(x)+0 \Rightarrow f(x+t) = f(x)$. Then flo+fix+t) = flo) + X+t and flo+fix) = flo) + X. Because fix+t)=fix), we have f(f(x+t))=f(f(x)) => f(0)+x+t=f(0)+x => t=0. Hence, f(0)=0. Letting X=0, y=x we have f(f(x))= x for all x & IR.

Suppose f(p) = f(q) = r for some p.g. r with $p \neq q$. Then f(r) = f(f(p)) = p and fir) = fifig) = q, so p=q, a contradiction. Thus for each r, there is at most one value of p for which fip)=r. And if fip)=r, then we have $f(f(p)) = p \Rightarrow f(r) = p$.

Let's prove that p=r. On the contrary, say p≠r. WLOG, suppose p>r.

Consider the graph of fix), from X=0 to X=r, since flo) =0 and fir)=p>r, there exists at least one number c, occer, with f(c)=r, since f it continuous. Note: c +p since c<r and r<p. Then we have f(c) = f(p) = r, $c \neq p$, which it a contradiction from about.

Therefore we require p=r, ie f[p]=p for each pE|R Inote: the range of f it IR). and so we conclude that the only rolution IT HIX=X].

unce for continual, we can't have

5. Let y=1. Then $xf(1)-f(x)=(x+1)f(x) \Rightarrow xf(1)=xf(x)$, for all x. Thus, f(x) = f(1), for all $x \neq 0$. But f(x) = f(1)for all x. so f is a constant function.

Let f(x)=c. Tren xf(y)-yf(x)=xc-yc=(x-y)c=(x-y)f(xy), for all x, y \in IR. Thus, the set of volutions & fix = c, c \in IR.

Let f(a) = b for some a and b. Then $f(x - f(a)) = 1 - x - a \Rightarrow$ f(x-b)=1-x-a. Since a and b are finite, we can make f(x) a positive number by letting X be sufficiently small, and make flx negative by letting X be sufficiently large. Smee f 17 continuous, there must exist a value tell for which f(t)=0 smee f attains both positive and negative values. (see diagram).

Letting y=t, we find that f(x)=1-x-t. substituting this not our functional equation, we get 1-(x-fiy))-t=1-x-y=> 1-x+(1-y-t)-t=1-x-y=> t=\frac{1}{2}. Therefore, the only volution is $f(x) = \frac{1}{2} - x$.

f10) # f11).

7. We shall show that f(x) = x+1 is the only solution. First we prove that for all integers n. Letting x=n and y=1, we get $f(n)=f(n)f(1)-f(n+1)+1\Rightarrow f(n+1)=f(n)+1$, with f(1)=2. An easy induction proves that f(x)=x+1 for all $x\in\mathbb{Z}$. Now we prove the result for all rational numbers of the form $\frac{1}{b}$. Let $b\in\mathbb{Z}$. Letting x=b and $y=\frac{1}{b}$, we get $f(b\cdot\frac{1}{b})=f(b)\cdot f(\frac{1}{b})-f(b+\frac{1}{b})+1\Rightarrow (b+1)\cdot f(\frac{1}{b})-f(b+\frac{1}{b})=1$. Also, f(x+1)=f(x)+1 $\forall x\Rightarrow f(b+\frac{1}{b})=f(\frac{1}{b})+b$. From these two equations we get $(b+1)\cdot f(\frac{1}{b})-f(\frac{1}{b})-b=1\Rightarrow f(\frac{1}{b})=1+\frac{1}{b}$. So we have proven the claim for all rational numbers of the form $\frac{1}{b}$, $b\in\mathbb{Z}$.

Now suppose we have proven the claim for all rational numbers of the form $\frac{k}{b}$, where k=1,2,...,t. We shall show that the claim is true for all rational numbers of the form $\frac{t+1}{b}$, where $b\in\mathbb{Z}$. Letting $X=\frac{t}{b}$ and $y=\frac{t}{b}$, we get $f(\frac{t}{b^2})=f(\frac{t}{b})f(\frac{t}{b})+1 \Rightarrow f(\frac{t+1}{b})=\frac{t}{b}+1+1-(\frac{t}{b}+1)$ by the induction hypothesis Thus, $f(\frac{t+1}{b})=\frac{t+1}{b}+1$, as required.

Hence by induction we have proven that $f(\frac{a}{b}) = \frac{a}{b} + 1$ for all rational numbers $\frac{a}{b}$, and so we conclude that f(x) = x + 1, for all $x \in \mathbb{R}$.

8. Let k=0. Then af(n)=af(0)f(n) $\forall n\in\mathbb{Z}$. So either f(x)=0 for all x, or f(0)=1 Let f(1)=a. Then substituting X=n and y=1, we get f(n+1)-aaf(n)+f(n-1)=0 The characteristic equation is $\chi^2-aa\chi+1=0$.

Care 1: $\alpha=1$. Then the only root of the equation is 1. Hence, $f(n)=1^n\cdot(A+Bn)$, for some constants A and B. From f(0)=1 and $f(1)=\alpha=1$, we get A=1, B=0, and so f(n)=1 is the function. Clearly $|f(n)| \leq N$ for all n, if we let N=1.

Case 2: a=-1. Then the only root of the equation is -1. Hence, $f(n)=(-1)^N(A+B^n)$ and from f(0)=1 and f(1)=a=-1, we get A=1 and B=0. So $f(n)=(-1)^N$ is the function. Checking, we see that that function satisfies the given conditions $\frac{Case 3}{a \neq 1}$. Then $X^2=2aX+1=0$ has two distinct roots p and q. Since pa=1 and p and q are distinct, either |p| or $|q_0|$ exceeds 1. Whos, suppose |p| 1 NOW, $f(n)=A\cdot p^n+B\cdot q^n$ for some constants A and B. As $n\to\infty$, we have $|p|^N\to\infty$ and $|q|^N\to0$ (since |p|>1 and $|q_0|<1$). Thus, $f(n)\sim A\cdot p^n$ for sufficiently large n and we can make $|f(n)|\sim |A|\cdot |p|^N$ as large as we want. Jo there is no integer N for which $|f(n)| \leq N$ for all n. Therefore, we have no solutions.

we conclude that the only solutions are f(x) = 1 and $f(x) = (-1)^x$, for all $x \in \mathbb{Z}$

9. f(2)-2f(1)=0 or f(2)-1. Since f(2)=0 and $f(1)\in W$, we have f(1)=0

 $f(m+1)-f(m)-f(1) \ge 0 \Rightarrow f(m+1) \ge f(m)$ for each m. (*)

Now, f(m+3) = f(m) + f(3) + (0 or 1): $f(m+3) \ge f(m) + 1$, with equality iff f(3) = 1.

this works, but is very messy and unelegant. Can you come up with a better proof to show that f(1982)=660?

Now, $f(9999) = |f(9999) - f(9996)| + ... + (f(6) - f(3))| + f(3)| \ge 3332 + f(3) \ge 3333$ so we must have f(3) = 1 and f(m+3) = f(m) + 1 for each m=3,6,...,9996 Thus, $f(3\times) = \times$ for X = 1,2,3,...,3333.

Jince f(1980) = 660 and f(1983) = 661, by (*), f(1982) = 660 or 661.

Suppose f(1982)=661. Then f(1985)=f(1982)+f(3)+f(0)=662 or 663. But f(1986)=662, so we must have f(1985)=662. And also, f(1986)=663 by the same argument.

Thus, $f(3967) = f(1982) + f(1985) + (0 \text{ or } 1) \ge 1323$ and $f(3970) = f(1982) + f(1988) + (0 \text{ or } 1) \ge 1324$.

Then $f(7937) = f(3967) + f(3970) + 10 \text{ or } 1) \ge 2647$, but thus is a contradiction since f(7938) = 2646.

Thus, f(1982) must be 660. A function for which thus is possible is $f(x) = \lfloor \frac{x}{3} \rfloor$. One can easily check that this function satisfies all the desired properties.

10. Suppose there is a kelkt for which f(k)=1. Then letting y=k, we have $f(xf(k))=kf(x) \Rightarrow f(x)=kf(x)$ for all $x \Rightarrow k=1$. (Clearly we can't have f(x)=0 for all x since f(k)=1).

Letting $y = \frac{1}{f(x)}$, we have $f(x \cdot f(\frac{1}{f(x)})) = 1$, and so from above, we must have $x \cdot f(\frac{1}{f(x)}) = 1 \Rightarrow f(\frac{1}{f(x)}) = \frac{1}{X}$. O So f(1) = 1.

Also, f(Kf(y)) = yf(K) => f(f(y)) = y for all y EIR+. -0

From (1) and (2), we get $f(\frac{1}{x}) = f(f(\frac{1}{x})) = \frac{1}{f(x)}$. So $f(x) \cdot f(\frac{1}{x}) = 1$.

7

Now let f(y) = Z. Then f(f(y)) = f(Z), but by (3), f(f(y)) = y. Thus, $f(y) = Z \Rightarrow f(Z) = y$. so f(xy) = f(x, f(Z)) = Zf(x) = f(x)f(y), so f(x) = f(x)f(y).

Let x=y. Then f(xf(x)) = xf(x). So if t=xf(x) for some $x\in R^{\dagger}$, then f(t) = t. Because f(t) multiplicative, $f(t^2) = f(t)$. If $f(t) = t^2$, and by a simple induction, $f(t^n) = [f(t)]^n = t^n$. If f(t), then this will contradict the given information that $\lim_{t \to 0} f(x) = 0$. So f(t) at most 1. First-termore, by (3), we have f(t) = f(t) = t, so by induction f(t) = t. So if f(t) we contradict $\lim_{t \to 0} f(x) = 0$. Thus, we require f(t) and so the only possible value of f(t), for any f(t).

Therefore, xf(x)=1 for all x, and so we must have $f(x)=\frac{1}{x}$.

- 11. Jorry, I shouldn't have put this on the set: it's a lower problem one just pounds away at it: unfortwately the problem requires very little ingenuity. f(3573) = f(397) + f(9) = f(397) + f(3) + f(3). Since f(x) = 0 whenever $X = 3 \pmod{10}$, we get f(397) = 0.

 Now, 0 = f(10) = f(2) + f(5) and since f(2) and f(5) are non-regative, we have f(2) = f(5) = 0. In particular, f(5) = 0. Thus, f(1985) = f(5) + f(397) = 0
- 12. Let m=n=0. Then $f(f(0))=f(f(0))+f(0)\Rightarrow f(0)=0$. -0Let m=0 Then f(f(n))=f(f(0))+f(n)=f(0)+f(n)=f(n) for each $n\in\mathbb{W}$. Define a "fixed point" to be an integer x such that f(x)=x, i.e. x maps to itself. Then for any integer n, f(n) is a fixed point since f(f(n))=f(n). (In addition there may be other fixed points f(n). For example, f(n) is a fixed point by f(n). Consider the set f(n) of fixed points, and let f(n) be the smallest non-zero fixed points. If no such f(n) exists, then we must have f(n)=0 for all f(n) and f(n) is a trivial solution to the functional equation. (Note: we must have f(n)=0, for if f(n)=0 for some $g\neq 0$, then g is a non-zero fixed point g(n) contradiction).

So appose k does exist. Then f(k)=k. Then letting n=k, we have $f(m+f(k))=f(f(m))+f(k) \Rightarrow f(m+k)=f(m)+k$. By a simple induction, f(g(k))=g(k) for each indeger $g \ge 0$.

Let n be an arbitrary fixed point.

Now we use the Division Algorithm: for this integer n, there exist unique integers q and r, with $0 \le r < k$, such that n = qk + r.

Then for this n, f(n) = f(r+qk) = f(r+f(qk)) = f(f(r)) + f(qk) = f(r) + qkSince N is a fixed point, we have f(n) = n = qk + r. Thus, we have $f(r) + qk = qk + r \Rightarrow f(r) = r$, i.e. r is a fixed point. However, $0 \le r \le k$ and k is the smallest non-zero fixed point. This power that r must be 0. Hence, if n is a fixed point, then n = qk for some q, i.e. the fixed point of f are precitely the multiples of k.

But f(n) is a fixed point for every integer n, so $k \mid f(n)$ for each n. Let $f(1) = a_1 \cdot k$, $f(2) = a_2 \cdot k$, ..., $f(k-1) = a_{k-1} \cdot k$ for some integers $a_1, a_2 ..., a_{k-1}$. Then the most general function satisfying the given conditions is $f(n) = f(gk+r) = gk + f(r) = gk + a_r \cdot k = (g+a_r)k$, where $0 \le r < k$. (Note: $a_0 = 0$).

e.g flo)=0
fl1)=10
fl1)=15
fl3]=0
fl4)=25
fl5)=5
f(L)=15
fl1)=20
fl10)=10
fl11)=20
fl11)=20
fl11)=20
fl11)=35

As an aside: this is extremely abstract, so let me just illustracte with an example. Say 5 is the smallest non-zero fixed point. Then the only fixed points are 0,5,10,15,20..., ie f(0)=0, f(5)=5, f(0)=10, etc. We showed that 5|f(n)| for each n, so let $f(1)=5a_1$, $f(2)=5a_2$, $f(3)=5a_3$, and $f(4)=5a_4$ for any integers a_1,a_2 , a_3 , and a_4 . Let $a_0=0$. Then the function $f(n)=5(q+a_r)$ satisfies the conditions given in the question, where q_0 and r are the unique integers for which $n=q_0+r$, where $0 \le r < k$

To finish the proof, we must verify that this function satisfies the functional equation. Let $m = g_1K + Y_1$ and $n = g_2K + Y_2$, where $0 \le Y_1, Y_2 < K$. Then $f(m + f(n)) = f(g_1K + r + g_2K + a_{r_2}K) = [g_1 + g_2 + a_{r_2}K + a_{r_1}K] = (g_1 + g_2 + a_{r_1} + a_{r_2}K$. And $f(f(m)) + f(n) = f(g_1K + Y_1K) + f(g_2K + Y_2) = g_1K + a_{r_1}K + g_2K + a_{r_2}K = [g_1 + g_2 + a_{r_1} + a_{r_2}K]$. Thus, f(m + f(n)) = f(f(m)) + f(n).

Hence, the set of functions variitying the functional equation is: $f(N) = (9+a_r)K, \text{ where } K \text{ is an integer } (\geq 0),$ $a_0=0, \ a_1,a_2...,a_{K-1} \text{ are any non-regative integers}$ and 9 and Y are the unique integers for which N=9K+r, with $0\leq r\leq K$.

13. My mistake again - this is a bad problem for this set, since the solution involves one trick and then It's really straightforward. It's not something you can play with, like the other problems in this set.

Let K be the smallest number for which $|f(x)| \le K$ for each x. K is called the "least upper bound". From the given information, K is at most 1, but could be less.

Suppose on the contrary that |g(y)| > 1, for some y. Take any x with |f(x)| > 0 (such an x must exist because f is not identically zero). Then, $2k \ge |f(x+y)| + |f(x-y)| \ge |f(x+y)| + |f(x-y)|$, by the Triangle Inequality = 2|f(x)||g(y)|.

Thus, $|f(x)| \leq \frac{k}{|g(y)|} < k$, for all x. This proves that $\frac{k}{|g(y)|}$ is an upper bound for |f(x)|, which contradicts the fact that k is the <u>least</u> upper bound Therefore, we must have $|g(y)| \leq 1$ for all y.

when you are writing up your writing up you don't proof, you don't had held to just did in. I just did that to illustrate that example.

14. The first condition implies that P is homogeneous with degree n, i.e., every term in P has degree n. See if you can convoice yourself why this must be two set in P experiment with a special coase to see what's going on: try n=2. Due to the homogeneous of P, $P(x,y)=ax^2+bxy+cy^2$ for some $a,b,c\in R$ this the second condition gives us $a[x+y)^2+(y+z)^2+(z+x)^2]+b[x(y+z)+y(x+z)+z(x+y)]+b[x(y+z)+z(x+y)+z(x+y)+z(x+y)]+b[x(y+z)+y(x+z)+z(x+y)]+b[x(y+z)+z(x+y)+$

Let'r first make over that this P vatisfies the given conditions. Clearly, P is homogeneous with degree n, and P(1,0)=1. So conditions i) and iii) are vatisfied. Let's check ii): $P(y+z,x)+P(z+x,y)+P(x+y,z)=(x+y+z)^{n-1}\cdot[y+z-2x)+(x+z-2y)+(x+y-2z)]=0$. So this P vatisfies the given conditions. Now we have to prove that this is the only polynomial P that vatisfies the given conditions.

Let y=1-x and z=0, then p(x,1-x)=-p(1-x,x)-1. -0. Let z=1-x-y. Then $p(1-x,x)+p(1-y,y)+p(x+y,1-x-y)=0 \Rightarrow [P(1-x,x)-1]+[P(1-y,y)-1]+[P(x+y,1-x-y)+2]=0 \Rightarrow [P(1-x,x)-1]+[P(1-y,y)-1]+[P(1-x-y,x+y)-1+2]=0 by (1) \Rightarrow [P(1-x,x)-1]+[P(1-y,y)-1]=[P(1-x-y,x+y)-1].$

So let f(a) = P(1-a,a) - 1 for each $a \in \mathbb{R}$. Then we have shown that f(x) + f(y) = f(x+y), for each $x,y \in \mathbb{R}$. Since P is continuous, so is f.

By a simple induction, f(mx) = mf(x) for each integer m. Then for any rational number $\frac{1}{b}$, we have $f(b) = b \cdot f(b)$, so $f(b) = \frac{f(1)}{b}$, and so $f(a) = f(b) = a \cdot f(b) = \frac{a}{b} \cdot f(1)$. Hence, $f(t) = t \cdot f(1)$ for each rational number t, and because $f(a) = a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Since $f(a) = a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Since $f(a) = a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Since $f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Since $f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Therefore, $a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Therefore, $a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for all real a. Therefore, $a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for any $a \cdot f(a) = a \cdot f(a) = a \cdot f(a)$ for each induction, $a \cdot f(a) = a \cdot f(a) =$

Pick any real a and b. If $a+b\neq 0$, we have $P(a,b) = P(a+b)\cdot \frac{a}{a+b}$, $P(a+b)\cdot \frac{b}{a+b} = (a+b)^n$. $P(a+b)\cdot \frac{b}{a+b} = (a+b)^n$. $P(a+b)\cdot (1-3\cdot \frac{b}{a+b}) = (a+b)^{n-1} \cdot (a-a+b)$. And if a+b=0, we must have P(a,b) = 0 because P(a+b) = 0 because

Therefore we have proven that $P(x,y) = (x+y)^{n-1}(x-ay)$ is the only polynomial that satisfres the given conditions for a fixed positive integer n. So the desired set of polynomials is $q(x+y)^k(x-ay)$: k is a non-negative integer q, and this is precisely the set of polynomials that satisfy all three given conditions.

15. First we prove that f11) < f(2) < f(3) < f(4) <

We proceed by induction: we will prove the statement f(n) < f(m) whenever now using induction on n, and this will prove that f(1) < f(2) < f(3) < f(4) < ...

Base Case: n=1 - suppose that f(1) is not the unique minimum element of the set d(f(1), f(2), f(3), ..., d), and that f(m) is a minimum element for some $m \ge 2$. Then f(m) = f(m-1)+1) > f(f(m-1)). Letting f(m-1)=t, we have proven that f(m) > f(t) which contradicts the mammality of f(m). (Note that t=f(m-1) is defined because $m \ge 2$. If m=1, this argument doesn't work). Therefore, the minimum element of the set d(f(1), f(2), ..., d) must be d(f(1), f(2), ..., d) must be d(f(1), f(2), ..., d) and so d(f(1) < f(m)) for all d(f(1), f(2), ..., d) must be d(f(1), f(2), ..., d).

Induction Hypothesis: suppose that f(n) < f(m) whenever NKM for N=1,2,...,k Essentially this means f(1) < f(2) < ... < f(k) and f(k) < f(m) whenever K < vn. Consider the set S=(f(k+1), f(k+2), f(k+3),...-g). Suppose the minimum element of S is f(k+a) for some $a \ge a$. Then if we let f(K+a-1)=l, we have f(K+a) > f(f(k+a-1))=f(l), a contradiction (note: $l \ge f(k)+1 \ge k+1$, so f(l) is in S). Thus the minimum element of S must be f(K+1) and f(K+1) < f(m) whenever K+1 < m. Thus we have proven an claim for N=K+1.

Therefore, we have shown that f(1)< f(2)< f(3)< f(4)<..., i.e. the function is strictly increasing.

Ince $f(1)\geq 1$, we must have $f(n)\geq n$ for each n. Suppose f(t)>t for some t. Then $f(t)\geq t+1$ and because f is strictly increasing, we have $f(t)\geq t+1 \Rightarrow f(f(t))\geq f(t+1)$. But f(t+1)>f(f(t)), and so f(f(t))>f(f(t)), a contradiction. Thus, there is no integer t for which f(t)>t. Therefore, we have proven that f(n)=n, as required.

16. Both f and g are strictly increasing functions. Thus, $f(1) \ge 1 \Rightarrow g(1) = f(f(1)) + 1 \ge f(1) + 1 \ge 2$. Since $g(1) \ge 2$ and 1 appears in either the set F = df(1), f(2), f(3),... $g(3) \ne 0$ or g = dg(1), g(2), g(3),... g(3), we conclude that $1 \in F$. Since $g(3) \ne 0$ is a strictly increasing function, $g(3) \ne 0$.

Suppose there are two consecutive integers $m \in Say m$, $m+1 \in G$ for some m. Then g(t)=m+1 for some t. Then f(f(t))=g(t)-1=m, so letting f(t)=u, we have f(u)=m, which shows that $m \in F$. However F and G are disjoint sets so m cannot be m both sets, so we have established a contradiction. Thus we cannot have two consecutive in G.

Let f(n)=k. Then g(n)=f(f(n))+1=f(k)+1. In the set 61/2,3...,f(k)+19, there are exactly n terms thout belong to the set 6 because g(1) < g(2) < ... < g(n) and g(n)=f(k)+1. Now let's look at the elements of d(1,2,3,...,f(k)+1) that are in F. There are exactly K such elements, because I=f(1) < f(2) < ... < f(k) and $f(k)+1 \notin F$, since that term F(n) = f(n)

So we have proven that f(n)=k implies that f(k)=n+k-1 and f(k+1)=n+k+1. The rest is just bury work. Since f(1)=1, we have f(2)=3 (by letting n=k=1), and then we keep going:

$$f(3)=4$$
 (Letting $n=2, k=3$); $f(22)=30$; $f(148)=239$
 $f(4)=6$ ($n=2, k=3$); $f(35)=56$; $f(240)=148+239+1=388$.
 $f(6)=9$ ($n=4, k=6$); $f(56)=90$; $f(91)=147$; etc.

Therefore, [1240]=388].

17. f(1, y) = f(0, f(1, y-1)) = f(1, y-1) + 1. Letting g(y) = f(1, y), we have g(y) = g(y-1) + 1 and an easy induction proves that g(n) = g(0) + N = f(1, 0) + n = f(0, 1) + n = n + 2. So f(1, y) = y + 2. f(2, y) = f(1, f(2, y-1)) = f(2, y-1) + 2 from above. Then solving by the same method we get f(2, y) = 2y + 3 since f(2, 0) = f(1, 1) = 1 + 2 = 3. f(3, y) = f(2, f(3, y-1)) = 2 + f(3, y-1) + 3. Let h(y) = f(3, y) + 3. Then we have $h(y) - 3 = 2 \cdot [h(y-1) - 3] + 3 \Rightarrow h(y) = 2 \cdot h(y-1)$, where h(0) = 3 + f(3, 0) = 3 + f(2, 1) = 3 + 5 = 8. So $h(y) = 2^{y+3}$ (once again, easy induction), and so $f(3, y) = 2^{y+3} - 3$. Finally, f(4, y) = f(3, f(4, y-1)). Let f(y) = f(4, y) + 3. Then we have $f(y) = 2^{x(y-1)}$, with $f(0) = f(4, 0) + 3 = f(3, 1) + 3 = 2^4 - 3 + 3 = 2^4 = 2^2$. Let f(0) = f(0) = f(0), $f(0) = f(0) = 2^{x(0)} = 2^{x($

this is one of the hardest line questions. I have ever seen! You might want to read that solution a few times!

Let f(1) = k, for some integer kell. Letting m = 1, we have $f(n^2k) = (f(n))^2 - 0$, and letting n = 1, we have $f(f(m)) = mk^2 - 0$.

By (1), we have $(f(kx))^2 = f(kx)^2k) = f(k^3x^2)$, for each $x \in \mathbb{N}$.

By (2), we have $f(f(kx)^2) = kx^2 \cdot k^2 = k^3x^2$, so $f(k^3x^2) = f(f(kx^2)) = f(f(kx^2)) = f(1)^2 \cdot f(f(kx^2)) = f(kx^2) \cdot (f(1))^2 = K^2 \cdot f(kx^2) = K^2 \cdot f(x^2 + f(1)) = K^2 \cdot (f(x))^2$. Therefore, we have shown that $[f(kx)]^2 = K^2 \cdot f(kx^2) = f(kx) = k \cdot f(x) \cdot (f(kx))^2$. Since $f(kx) = k \cdot f(kx) \cdot (f(kx)) \cdot$

Hence, if the claim holds for n=p-1, it holds for n=p+1. Since the result holds for h=1 and h=2, it holds for all positive integers h.

from here, the problem into that bad (well, certainly not as hard as the beginning). To on a hard as the beginning 10 on a contest, you can answer the problem [1996] ≥ 120. evit of gress that for the case K=1, and get fligger) > 120. evit of gress that for the case K=1, and get fligger you howevery you'd gress that for the case K≥1, but intuitively you you'll get It's not a complete problem by the right answer. And makes.

Therefore, $K^n f(X^{n+1}) = (f(X))^{n+1}$ for each integer N. Now let's show that K | f(X)|. Let p be a prime divisor of K. Jay P^a is the highest power of p dividing K and P^b is the highest power of p dividing f(X). Then $P^{n+nb} | f(X)^{n+1} = K^n f(X^{n+1})$, so $(n+1)b \ge an \Rightarrow a \le b(1+\frac{1}{n})$. Since this is the for all integers n, we must have $a \le b$. This is true for all prime divisors of K, and so we conclude that K | f(X)| for each $X \in N$. Hence, we can let $g(X) = \frac{f(X)}{K}$, and then $g: N \to N$. Firstnermore, $f(n^2 f(m)) = f(n^2 k g(m)) = K f(n^2 g(m)) = K^2 g(n^2 g(m))$, and $m(f(n))^2 = mK^2 (g(n))$. Since $f(n^2 f(m)) = m(f(n))^2$, we get $K^2 g(n^2 g(m)) = m K^2 (g(n))^2 \Rightarrow g(n^2 g(m)) = m (g(n))$. So if K > 1, then g is a function satisfying the given conditions, but g(X) < f(X) for all $X \in N$. In particular, g(1998) < f(1998). So to achieve the

minimum value for f(1998), we want K=1. Thus, $\underline{f(1)=1}$. \leftarrow we did set this work Thus, from (1) and (2), we get $f(n^2) = (f(n))^2$ and f(f(n)) = n, for all $n \in \mathbb{N}$ so $f(xy)^2 = f(x^2y^2) = f(x^2f(f(y^2))) = f(y^2)f(x)^2 = f(y)^2f(x)^2 \Rightarrow \underline{f(xy)} = f(x)\underline{f(y)}$ since f(x), f(y), f(xy) > 0. Hence, f(x) a multiplicative function.

Let p be a prime. Suppose f(p)=mn for some $m,n\geq 2$. Then, f(m)f(n)=f(mn)=f(f(p))=p, so either f(m)=1 or f(n)=1. WLOG, say f(n)=1. Then n=f(f(n))=f(1)=1, so n=1, contradiction. Thus, f(p) muit be prime. So f(p)=q for some prime q, and f(q)=f(f(p))=p.

Let P_1, P_2, P_3, \ldots represent the primes and so $f(P_i) = g_i$ for some g_i (for each i). Because f is multiplicative, if $m = P_1^{a_1}P_2^{a_2} \cdots P_K^{a_K}$, then we have $f(m) = f(P_1^{a_1} \cdots P_K^{a_K}) = f(P_1^{a_1}) \cdots f(P_K^{a_K}) = f(P_1^{a_1}) \cdots f(P_K^{a_K}) = g_{a_1}^{a_1}g_{a_2} \cdots g_{a_K}^{a_K}$. So the most general function that call satisfy the given conditions if a function $f: M \to IN$ that is multiplicative, with $f(p) = q_i$ iff $f(g) = p_i$ (where p_i, q_i are prime). Let's check that such a function does indeed satisfy the given conditions: let $m = p_1^{a_1}P_2^{a_2} \cdots P_K^{a_i}$ and $n = q_i^{b_1}g_2^{b_2} \cdots g_K^{b_K}$ (some of the ai's and bi's may be $0 \to \infty$ are just ordering the prime factors of m and m so they match up - see example on left). We have $f(n^2f(m)) = f(q_1^{2b_1}q_2^{2b_2} \cdots q_K^{2b_K} - f(P_1^{a_1} \cdots P_K^{a_K})) = f(q_1^{2b_1+a_1} \cdots q_K^{2b_K+a_K}) = P_1^{2b_1+a_1} \cdots P_1^{2b_K+a_K} = (P_1^{a_1} \cdots P_K^{a_K})[P_1^{b_1} \cdots P_K^{b_K})]^2 = m \cdot (f(n))^2$, as required.

Now $f(1998) = f(2 \cdot 3^3 \cdot 37) = f(2) \cdot [f(3)]^3 \cdot f(37)$. To minimize f(1998), the best we can do if f(3) = 2 (so f(2) must be 3), and f(37) = 5 (so f(5) must be 37). Thus, we conclude that the minimum value of f(1998) if $3 \times 2^3 \times 5 = 120$.

eg. $m=2^{5}-1^{17}$ $m=3^{19}$ with f(2)=11 f(3)=5Then we have f(3)=5

n=11°.19°. 310.