DCC639: Álgebra Linear Computacional

(Prazo para submissão: 22/08/19 23:55)

Lista de Exercícios 01

Professores: Erickson, Fabricio e Renato

Política da Disciplina: Leita todas as instruções abaixo cuidadosamente antes de começar a resolver a lista, e antes de fazer a submissão.

- As questões podem ser discutidas entre até três alunos (conjuntos disjuntos). Os nomes dos colegas precisam ser incluídos na submissão. Contudo, a escrita das soluções e submissão deve ser feita individualmente.
- A submissão deve ser feita em formato PDF através do Moodle, mesmo que tenham sido resolvidas a mão e escaneadas.
- Todas as soluções devem ser justificadas.
- Todas as fontes de material precisam ser citadas. O código de conduta da UFMG será seguido à risca.

Problema 1: Dê um exemplo onde uma combinação de três vetores não-nulos no \mathbb{R}^4 é o vetor nulo. Escreva então seu exemplo na forma $A\mathbf{x} = \mathbf{0}$. Quais são as formas de A, \mathbf{x} e 0?

Problema 2: Os vetores a_1, a_2, \ldots, a_n estão em um espaço m-dimensional \mathbb{R}^m , e uma combinação $c_1a_1 + \cdots + c_na_n$ é o vetor nulo. Esta afirmação é a nível de vetor.

- (a) Reescreva esta afirmação usando matrizes. Use a matriz $\bf A$ com os $\bf a$'s nas suas colunas e use o vetor coluna $\bf c=(c_1,\ldots,c_n)$.
- (b) Reescreva esta afirmação usando escalares. Use subscritos e a notação sigma (somatório) para adicionar números. O vetor coluna \mathbf{a}_j tem componentes $a_{1j}, a_{2j}, \ldots, a_{mj}$.

Problema 3: As combinações lineares de $\mathbf{v} = (1, 1, 0)$ e $\mathbf{w} = (0, 1, 1)$ geram um plano em \mathbb{R}^3 .

- (a) Encontre um vetor \mathbf{z} que é perpendicular a \mathbf{v} e \mathbf{w} . Então \mathbf{z} é perpendicular a cada vetor $c\mathbf{v} + d\mathbf{w}$ no plano: $(c\mathbf{v} + d\mathbf{w})^{\top}\mathbf{z} = c\mathbf{v}^{\top}\mathbf{z} + d\mathbf{w}^{\top}\mathbf{z} = 0 + 0$.
- (b) Encontre um vetor \mathbf{u} que não está no plano (mas que também não é perpendicular ao plano). Verifique que $\mathbf{u}^{\mathsf{T}}\mathbf{z}\neq0$.

Problema 4: A = CR é uma representação das colunas de A em uma base formada pelas colunas de C com coeficientes em R. Se $A_{ij} = j^2$ é 3 por 3, escreva C e R.

Problema 5: Sejam as matrizes

$$A_1 = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ 2 & 6 & -4 \end{bmatrix} \qquad A_2 = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}.$$

- (a) Encontre as matrizes C_1 e C_2 contendo colunas independentes de A_1 e A_2 .
- (b) Estas colunas formam a base para os espaços colunas de A_1 e A_2 . Quais são as dimensões desses espaços colunas?
- (c) Quais são os postos de A_1 e A_2 ?
- (d) Quantas são as linhas independentes em A_1 e A_2 ?

Problema 6: Para as seguintes matrizes com blocos quadrados, encontre A = CR. Quais os postos?

$$A_1 = \begin{bmatrix} \text{zeros ones} \\ \text{ones ones} \end{bmatrix}_{4 \times 4}$$
 $A_2 = \begin{bmatrix} A_1 \\ A_1 \end{bmatrix}_{8 \times 4}$ $A_3 = \begin{bmatrix} A_1 & A_1 \\ A_1 & A_1 \end{bmatrix}_{8 \times 8}$

1

Problema 7: Seja a matriz

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 4 \\ 1 & 1 & 2 \\ 4 & 3 & -2 \end{bmatrix}.$$

- (a) Calcule a matriz L_1 tal que $L_1A = A_1$, onde A_1 é a matriz A após o primeiro passo da Eliminação de Gauss, isto é, o passo que zera os elementos abaixo de a_{11} .
- (b) Calcule a matriz L_2 tal que $L_2A_1=A_2$, onde A_2 é a matriz A_1 após o segundo passo da Eliminação de Gauss.

(c) Calcule a matriz
$$X = L_2L_1$$
. Qual a relação de X e a matriz $L = \begin{bmatrix} 1 & 0 & 0 \\ 0.33 & 1 & 0 \\ 1.33 & 1 & 1 \end{bmatrix}$?

Problema 8: Suponha que a e b sejam vetores coluna com componentes a_1, \ldots, a_m e b_1, \ldots, b_p . É possível multiplicar a por \mathbf{b}^{\top} (sim ou não)? Qual a forma da resposta $\mathbf{a}\mathbf{b}^{\top}$? Que número se encontra na linha i, coluna j de $\mathbf{a}\mathbf{b}^{\top}$? O que podemos dizer sobre $\mathbf{a}\mathbf{b}^{\top}$?

Problema 9: Para calcular C = AB, onde $A \notin (m,n)$ e $B \notin (n,p)$ usando uma soma de produtos externos (colunas vezes linhas), como é que os laços a seguir devem ser reordenados?

```
For i=1 to m For j=1 to p For k=1 to n C(i,j)=C(i,j)+A(i,k)*A(k,j)
```

Problema 10: Fato: As colunas de AB são combinações das colunas de A. Então o espaço coluna de AB está contido no espaço coluna de A. Dê um exemplo de A e B para os quais AB tem um espaço coluna menor que o de A.