NOUVELLE PROTEINE DE FIXATION DU PHOSPHATE, COMPOSITIONS PHARMACEUTIQUES LA CONTENANT ET SES UTILISATIONS

5

La présente invention a pour objet une nouvelle protéine, issue du sérum humain, de fixation du phosphate, des compositions pharmaceutiques la contenant ainsi que ses utilisations, notamment dans le cadre du traitement de l'hyperphosphatémie et des maladies cardiovasculaires ou de l'arthrite.

10

Le phosphate est une molécule très importante impliquée dans de nombreux mécanismes biologiques. On retrouve notamment le phosphate dans les phospholipides, dans le mécanisme de production d'énergie (ATP, ADP), dans les processus de signalisation cellulaire, dans la composition du matériel génétique dans les os (sous forme de phosphate de calcium).

15

L'hyperphosphatémie est une pathologie liée à un excès de phosphate dans l'organisme et provoque notamment une augmentation des risques de maladies cardiovasculaires, en favorisant les processus d'athérosclérose et de calcification des artères (Dorozhkin et Epple, 2002; Amann et al., 2003; Blazheevich et al., 1975). La calcification s'effectuant au niveau des articulations, l'hyperphosphatémie peut aussi provoquer de l'arthrite (pseudo-goutte).

20

Les sels de phosphate de calcium produits dans le sérum lors d'une hyperphosphatémie précipitent dans les tissus mous avec calcification ectopique dans différents tissus: vaisseaux (accidents vasculaires cérébraux ou cardiaques), articulations (pseudo-goutte), cristallin, interstitium rénal (néphrocalcinose), souscutanées (prurit), pulmonaires, pancréatiques.

25

Ainsi, la moitié des décès chez les personnes souffrant d'insuffisance rénale est due à des maladies cardiovasculaires liées à l'hyperphosphatémie. A cet égard, certains chélateurs du phosphate qui complexent le phosphate dans la lumière intestinale sont actuellement utilisés comme médicament. Cependant, tous ces chélateurs ne sont pas physiologiques. De là découlent certaines complications ou restrictions quant à leur usage.

30

Les préparations contenant du magnésium sont limitées par la survenue de troubles digestifs (diarrhée) et sont à proscrire en raison du risque d'hypermagnésémie. De même, la prescription d'hydroxyde d'aluminium, longtemps utilisé du fait de son efficacité, doit être évitée, ou du moins limitée à de très faibles périodes, en raison du

risque d'intoxication aluminique (anémie hypochrome microcytaire, ostéomalacie, myopathie, démence).

La prescription de sels de calcium est le meilleur moyen pour corriger à la fois l'hypocalcémie et l'hyperphosphorémie, permettant d'une part d'augmenter la quantité de calcium absorbée par l'intestin grêle malgré le déficit en calcitriol, et d'autre part de complexer le phosphore dans la lumière intestinale sous forme de phosphate de calcium qui sera éliminé dans les selles. Cependant, l'inconvénient majeur des chélateurs contenant du calcium est d'induire une hypercalcémie, qui, dans certaines séries, a pu être notée chez 20% des malades. Ce risque a conduit à mettre au point d'autres produits capables de limiter l'hyperphosphorémie.

Le médicament actuellement le plus utilisé est le Renagel® (Ramsdell; 1999). Il s'agit d'un polymère cationique, non absorbable capable de chélater le phosphate.

La présente invention a pour but de fournir un nouveau chélateur protéique physiologique se liant au phosphate, ne nécessitant pas l'emploi d'autres ions qui peuvent entraîner des complications et offrant de plus larges perspectives d'utilisation que les chélateurs actuels.

La présente invention concerne une protéine caractérisée en ce qu'elle comprend ou est constituée par :

- la séquence SEQ ID NO: 1,

5

10

15

20

25

30

- ou toute séquence dérivée de la séquence SEQ ID NO: 1, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO:1, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO:1, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 1.

La présente invention concerne une protéine telle que définie ci-dessus, caractérisée en ce qu'elle comprend ou est constituée par :

- la séquence SEQ ID NO : 2 ou la séquence SEQ ID NO : 3,
- ou toute séquence dérivée de la séquence SEQ ID NO : 2 ou SEQ ID NO : 3, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,

ou toute séquence homologue de la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, sous réserve que ladite séquence homologue se lie au phosphate,

- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 2 ou SEQ ID NO : 3.

5

10

15

20

25

30

La séquence SEQ ID NO: 2 correspond à la protéine humaine de fixation du phosphate. Cette nouvelle protéine a été isolée dans le plasma humain et sa structure tridimensionnelle montre qu'elle appartient à la classe des "phosphate binding protein" (protéines de fixation du phosphate: PBP). Elle est également appelée par la suite HPBP (protéine humaine de fixation du phosphate).

La séquence SEQ ID NO: 3 correspond à une protéine homologue de la protéine de séquence SEQ ID NO: 2, présentant un pourcentage d'identité d'environ 90% avec la séquence SEQ ID NO: 2, et ayant les mêmes propriétés de fixation du phosphate que la séquence SEQ ID NO: 2.

La propriété de fixation du phosphate des séquences de l'invention peut être vérifiée par le test suivant de fixation du phosphate par marquage radioactif:

La protéine est fixée sur une membrane de nitrocellulose (dot blot par aspiration). On laisse incuber la membrane dans un tampon radioactif (³²P (10 mCi/ml, <u>Amersham</u>-Biosciences) 2M; Tris 50 mM; pH 8,0)

La membrane est rapidement rincée 2 × 1 min dans un tampon Tris 50 mM, pH 8,0. En exposant un film photographique avec la membrane (environ 45 min) on peut détecter les zones qui fixent le phosphate radioactif (voir Figure 3 ci-après).

La présente invention concerne également une séquence nucléotidique codant pour une protéine telle que définie ci-dessus.

La présente invention concerne également un vecteur recombinant, notamment plasmide, cosmide, phage ou ADN de virus, contenant une séquence nucléotidique telle que définie ci-dessus.

Selon un mode de réalisation avantageux, la présente invention concerne un vecteur recombinant tel que défini ci-dessus, contenant les éléments nécessaires à l'expression dans une cellule hôte des polypeptides codés par la séquence nucléotidique telle que définie ci-dessus, insérée dans ledit vecteur.

WO 2005/042572 PCT/FR2004/002797

5

10

15

20

25

30

La présente invention concerne également une cellule hôte, choisie notamment parmi les bactéries, les virus, les levures, les champignons, les plantes ou les cellules de mammifères, ladite cellule hôte étant transformée, notamment à l'aide d'un vecteur recombinant tel que défini ci-dessus.

La présente invention concerne également une composition pharmaceutique comprenant à titre de substance active une protéine telle que définie ci-dessus, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, en association avec un véhicule pharmaceutiquement acceptable.

La présente invention concerne également une composition pharmaceutique telle que définie ci-dessus, dans laquelle la protéine de l'invention, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, est en association avec un variant de la protéine paraoxonase, ayant une activité d'hydrolyse du paraoxon.

Parmi les variants de la paraoxonase, on peut citer les variants PON1, PON2, PON3, d'origine humaine ou non, tels que SEQ ID NO : 4 (PON1 humaine ; Hassett et al., 1991), SEQ ID NO : 5 (PON2 humaine ; Primo-Parmo et al., 1996), SEQ ID NO : 6 (PON3 humaine ; Reddy et al., 2001), SEQ ID NO : 7 (PON1 de lapin ; Hassett et al., 1991), SEQ ID NO : 8 (PON1 de rat ; Rodrigo et al., 1997), SEQ ID NO : 9 (PON1 de souris ; Sorenson et al., 1995), SEQ ID NO : 10 (PON2 de souris ; Primo-Parmo et al., 1996) et SEQ ID NO : 11 (PON3 de souris ; Primo-Parmo et al., 1996).

La présente invention concerne également l'utilisation d'une protéine telle que définie ci-dessus, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, pour la préparation d'un médicament destiné à la prévention ou au traitement de maladies liées à une hyperphosphatémie, telles que les maladies cardiovasculaires et l'arthrite (pseudogoutte).

Le terme "hyperphosphatémie" désigne un excès de phosphate dans l'organisme. Plus exactement, l'hyperphosphatémie est définie par une augmentation de la concentration plasmatique de phosphate au dessus de 1,44 mmol/l (45 mg/l), ladite quantité étant obtenue par dosage du phosphate total (le dosage par méthode colorimétrique est effectué après un procédé de minéralisation).

Selon un mode de réalisation avantageux, la protéine de l'invention pourra être administrée sous forme intraveineuse pour pouvoir fixer une quantité maximale de phosphate pendant une longue période, de l'ordre de la semaine. En éliminant ultérieurement la protéine, une grande quantité de phosphate sera ainsi éliminée rapidement. Ceci permet d'espacer et diminuer les temps de dialyse.

La présente invention concerne plus particulièrement l'utilisation d'une protéine telle que définie ci-dessus, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, dans le cadre de la prévention ou du traitement des maladies cardiovasculaires.

La présente invention concerne également l'utilisation d'une protéine selon l'invention, notamment de la protéine représentée par la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, en association avec une protéine telle qu'un variant de la protéine paraoxonase, dans le cadre de la prophylaxie ou du traitement des intoxications provoquées par des insecticides ou des agents neurotoxiques, tels que le soman, le VX, le tabun ou le sarin, ou dans le cadre du traitement de l'athérosclérose.

La présente invention concerne également un produit de combinaison comprenant au moins une protéine telle que définie ci-dessus, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, et au moins un variant de la protéine paraoxonase, pour une utilisation simultanée, séparée ou étalée dans le temps destiné à la prophylaxie ou au traitement des intoxications provoquées par des insecticides ou des agents neurotoxiques, tels que le soman, le VX, le tabun ou le sarin.

L'utilisation combinée de la protéine de l'invention, notamment SEQ ID NO : 2, avec un variant de la protéine paraoxonase, permet d'accroître la stabilité de la paraoxonase, notamment dans le cadre de la prophylaxie ou du traitement des intoxications provoquées par des insecticides ou des agents neurotoxiques.

La présente invention concerne également une méthode de dosage de la protéine telle que définie ci-dessus, caractérisée en ce qu'elle comprend les étapes suivantes :

- des anticorps monoclonaux de lapin dirigé contre différents épitopes de la protéine de l'invention (anti-HPB) sont fixés sur une plaque et le sérum humain à analyser contenant ladite protéine (HPB) est déposé sur la plaque susmentionnée,
 - la plaque est rincée et lavée,

5

10

15

20

25

30

- on dépose sur la plaque des anticorps anti-anticorps de lapin (anti-IGrabbitper) marqués avec de la peroxydase durant 30 minutes, afin de former un complexe ternaire entre un anticorps monoclonal de lapin, la protéine selon l'invention et un anticorps anti-anticorps de lapin susmentionnés (anti-HPB – HPB – anti-IGrabbit-per),
 - la plaque est rincée et lavée,
- on fait réagir la peroxydase fixée sur la plaque avec son substrat (kit disponible en commerce, Chemiluminescent Peroxidase Substrate (Sigma)) et la réaction est arrêtée au bout de 30 minutes avec la 3,3',5,5'-tétraméthylbenzidine (TMB, Sigma),

10

15

20

25

30

— la densité optique du produit formé à l'étape précédente est mesurée à 450 nm à l'aide d'un spectrophotomètre, et la comparaison de cette mesure avec une courbe étalon permet de déterminer la concentration de la protéine selon l'invention (HPB) présente dans le sérum.

Ainsi, la méthode de dosage susmentionnée utilise une méthode par immunodosage du type ELISA (Engvall et al., 1971).

D'autres méthodes peuvent être utilisées pour doser la concentration de la protéine de l'invention dans le plasma telles que :

- les méthodes électrophorétiques, ou
- la quantification de son activité.

La présente invention concerne également l'application de la méthode de dosage telle que définie ci-dessus

au diagnostic *in vitro* de maladies liées à une hyperphosphatémie notamment lorsque la quantité de protéine telle que définie ci-dessus, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, dosée selon la méthode telle que définie ci-dessus, est inférieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic *in vitro* de maladies liées à une hypophosphatémie notamment lorsque la quantité de protéine telle que définie ci-dessus, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, dosée selon la méthode telle que définie ci-dessus, est supérieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic in vitro d'une prédisposition d'un individu à de telles pathologies.

Le taux de la protéine selon l'invention est un indicateur de prédisposition à un risque de maladie cardiovasculaire. Ainsi, les personnes ayant un taux faible de ladite protéine auront un taux plus important de phosphate libre qui précipitera avec le calcium du plasma pour former des plaques de phosphate de calcium, ce qui est un facteur aggravant notamment les risques de maladies cardiovasculaires ou d'arthrite.

Un taux anormal de cette protéine est aussi le signe d'une pathologie existante. Par exemple une hyperphosphatémie peut déclencher une production accrue de protéine dans le but de limiter le taux de phosphate. Un taux faible peut être lui aussi révélateur d'un dysfonctionnement.

La présente invention concerne également l'application telle que définie ci-dessus au diagnostic *in vitro* de maladies liées à une hyperphosphatémie telles que les maladies cardiovasculaires, notamment les maladies cardiovasculaires liées à la formation de

plaques d'athéromes, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement d'une des maladies susmentionnées.

La présente invention concerne également l'application telle que définie ci-dessus au diagnostic in vitro de maladies liées à une hypophosphatémie, ou au diagnostic in vitro d'une prédisposition d'un individu au développement de ces maladies.

Parmi les signes cliniques ou physiologiques caractérisant les maladies liées à une hypophosphatémie, on peut citer :

- une déminéralisation des os,

5

10

- les manifestations musculaires de l'hypophosphatémie qui comportent une myopathie proximale affectant le muscle squelettique et une dysphagie et un iléus affectant les muscles lisses,
 - des carences cardiopulmonaires par le manque d'ATP, et
 - une encéphalopathie métabolique.

LEGENDES DES FIGURES

La Figure 1 représente un gel SDS-PAGE des fractions finales dans le cadre de la purification de la paraoxonase humaine et de la protéine de l'invention SEQ ID NO : 2.

La colonne A correspond au marqueur de poids moléculaire et les colonnes B, C et D à trois purifications différentes issues de différentes poches de plasma humain. Elles contiennent toutes les trois la paraoxonase humaine et la protéine de fixation du phosphate.

10

. 15

5

La Figure 2 représente la structure schématique de la protéine de l'invention SEQ ID NO : 2 à laquelle est fixée une molécule de phosphate.

La Figure 3 correspond à un test de fixation du phosphate par la protéine de l'invention SEQ ID NO : 2.

Les colonnes A à F correspondent à différents lots de purification de la protéine de l'invention provenant de différentes poches de plasma humain; la colonne G au lysozyme 1 mg/ml et la colonne H à la β-lacto globuline.

20

25

La Figure 4 représente un gel bidimensionnel d'électrophorèse du mélange de la protéine de l'invention SEQ ID NO : 2 et de la paraoxonase.

La Figure 5 représente les coordonnées moléculaires de la protéine cristallisée de l'invention SEQ ID NO : 2.

PARTIE EXPÉRIMENTALE

Isolation de la protéine

5

10

15

20

25

30

La protéine SEQ ID NO : 2 est obtenue à partir du plasma humain selon le procédé de Gan et al. (1991) suivant :

La protéine SEQ ID NO: 2 est purifiée à partir de poches de plasma congelé (~200 ml) fournies par l'Etablissement de Transfusion Sanguine de Lyon-Beynost. Le caillot de fibrine, formé par l'ajout de 1 M (1% v/v) de CaCl₂ au plasma est séparé du sérum par filtration. Le sérum est alors mélangé à 400 ml de Gel d'affinité (Cibacron 3GA-Agarose, C-1535, Sigma) équilibré avec un tampon A (Tris/HCl 50 mM, CaCl₂ 1mM, NaCl 4M, pH 8). Dans ces conditions, principalement les HDL ("high density lipoprotein": lipoprotéines de haute densité) sont adsorbées. Après 6 à 8 heures d'incubation, les protéines non adsorbées sur le gel sont éliminées par filtration sur fritté de porosité n°2. Ce lavage s'effectue jusqu'à ce que l'on ne détecte plus de protéine dans l'éluat (absorption UV à 280 nm). Le gel est ensuite équilibré avec un tampon B (Tris/HCl 50 mM, CaCl₂ 1mM, pH 8) puis placé en colonne XK 50/30 (Pharmacia). L'élution est réalisée en rajoutant 1g/l de déoxycholate de sodium et 0,1% de triton X-100 au tampon B. Les fractions montrant une activité arylestérase sont injectées sur 50 ml d'un gel échangeur d'anions (DEAE Sepharose Fast Flow, Pharmacia) disposé en colonne XK 26/70 (Pharmacia) et équilibré avec le tampon B et 0,05% de triton X-100. L'élution se fait par gradient de NaCl. Un premier palier est réalisé à 87,5 mM de NaCl afin d'éliminer l'apo A-I, une protéine liée à la paraoxonase, et la majorité des protéines contaminantes. La paraoxonase humaine (PON1) est environ éluée à la concentration de 140 mM de NaCl. Toutes les fractions conservées montrent une activité paraoxonase et arylestérase, ces activités étant vérifiées selon les tests mentionnés plus loin. Les fractions éluées ne sont pas regroupées. Les gels SDS-PAGE des fractions obtenues montrent des bandes comprises entre 38 kDa et 45 kDa (voir Figure 1). Chaque purification n'apporte pas toujours la même distribution de masse apparente. Cette légère hétérogénéité peut s'expliquer par la présence de 2 chaînes glycosylées sur la PON1.

En plus de la PON1 dans ces lots une autre protéine a été isolée par cristallisation, en substituant le triton par le C12-maltoside et en utilisant le sulfate d'ammonium comme agent précipitant. Les cristaux obtenus sont ceux d'une protéine inconnue caractérisée par radiocristallographie et correspondant à la séquence SEQ ID NO : 2 de

10

15 .

20

25

30

l'invention. La cristallisation est actuellement le seul procédé existant pour purifier cette protéine.

L'activité paraoxonase est mesurée dans un tampon Glycine 50 mM/NaOH, CaCl₂ 1 mM, en présence de 1 M NaCl, pH 10,5 et est déterminée au moyen d'un spectrophotomètre à double faisceau (Shimadzu UV 160A) thermostaté à 25°C. La vitesse d'hydrolyse est déterminée d'après la variation d'absorbance à 412 nm, correspondant à la formation de p-nitrophénol libéré par l'hydrolyse de paraoxon, en fonction du temps, $\varepsilon = 18290 \text{ M}^{-1}\text{cm}^{-1}$ (Smolen, 1991).

L'activité arylestérase est mesurée dans un tampon tris 50mM/HCl, $\text{CaCl}_2\ 1\text{mM}$, pH 8 et est déterminée au moyen d'un spectrophotomètre à double faisceau (Shimadzu UV 160A) thermostaté à 25°C . La vitesse d'hydrolyse est déterminée d'après la variation d'absorbance à 270 nm, correspondant à la formation de phénol libéré par l'hydrolyse de phényl acétate, en fonction du temps, $\varepsilon = 1310 \, \text{M}^{-1} \text{cm}^{-1}$ (Smolen, 1991).

Structure

La structure de la protéine cristallisée SEQ ID NO: 2 a été obtenue par cristallographie des rayons X. La structure à 1,9 Å de résolution a été obtenue par la méthode SIRAS (Single Isomorphous Replacement and Anomalous Scattering) (Figure 2).

Les données de diffraction des rayons X ont été collectées sur la ligne BM30 de l'ESRF (Grenoble).

Un dérivé de sel d'atome lourd a été obtenu en trempant un cristal dans une solution contenant des sels d'uranium.

Les images ont été intégrées, mises à l'échelle et combinées avec les programmes XDS2000 (Kabsch, 1993) et la suite CCP4 (COLLABORATIVE COMPUTATIONAL PROJECT, NUMBER 4. 1994. "The CCP4 Suite: Programs for Protein Crystallography". Acta Cryst. D50, 760-763).

Les programmes CNS (BRUNGER, 1998) et SnB (Weeks, 1999) ont été utilisés pour localiser les atomes d'uranium. Le programme SHARP (Copyright © 2001-2002 the Buster Development Group) a été utilisé pour obtenir les phases par la technique SIRAS.

372 acides aminés ont été construits automatiquement dans la carte de densité électronique par le programme ARP/wARP (Perrakis, 1997). Ce premier modèle a ensuite été affiné par le programme CNS.

WO 2005/042572 PCT/FR2004/002797

En raison de la très bonne qualité des cartes de densité électronique, la séquence primaire de la protéine a pu être assignée avec 80% de fiabilité. Une molécule de phosphate a aussi pu être localisée.

La structure obtenue ne correspond pas du tout à la paraoxonase humaine. Le séquençage obtenu en identifiant les acides aminés à partir de la densité électronique indique que ni cette protéine humaine ni son gène n'ont été décrits auparavant. Il s'agit donc d'une nouvelle protéine.

La structure de la protéine de l'invention montre une très forte homologie avec la protéine de fixation du phosphate ("phosphate binding") d'*Escherichia coli*. Cette protéine chez cette bactérie sert à transporter le phosphate à travers le périplasme. On la retrouve chez beaucoup de procaryotes mais chez aucun eucaryote.

La densité électronique a aussi montré qu'une molécule de phosphate était fixée à la nouvelle protéine de l'invention, de la même façon que dans celle d'Escherichia coli.

Ainsi, on peut conclure que la protéine de l'invention caractérisée à partir du plasma humain présente une très forte homologie avec la protéine bactérienne et qu'elle est capable de fixer le phosphate et de le transporter.

Séquençage

5

10

15

20

25

30

Digestion dans le gel

Le mélange paraoxonase-HPBP a été séparé par gel électrophorétique avec SDS-PAGE (sans chauffage). Plusieurs bandes correspondant à HPBP aux alentour de 70 kDa ont été découpées.

La digestion de la protéine contenue dans ces bandes a été effectuée grâce au système automatique de digestion, MassPrep Sation (Waters Manchester, G.B.). Les bandes de gel ont été lavées deux fois avec 50 μl d'une solution à 25 mM de carbonate d'ammonium hydrogéné (NH₄HCO₃) et 50 μl d'acétonitrile. Les cystéines ont été réduites avec 50 μl d'une solution à 10mM de dithiothréitol à 57°C et acylé avec 50 μl de iodocacétamide à 55 mM. Après déshydratation avec l'acétonitrile, la protéine a été digérée enzymatiquement avec 10 μl de trypsine porcine modifiée à 12,5 ng/μl (Promega, Madisson, WI, U.S.A) ou bien avec lys-C de Lysobacter enzymogenes (Roche Applied Science, Penzberg, Germany) dans 25 mM de NH₄HCO₃. La digestion s'est opérée une nuit complète à température ambiante. Les peptides clivés ont été extraits avec une solution à 60% d'acétonitrile et 5% d'acide formique.

PCT/FR2004/002797

Analyse par spectrométrie de masse MALDI-MS et MALDI-MS/MS

5

10

15

20

25

30

Les mesures de masse par MALDI-TOF on été effectuées sur un UltraflexTM TOF/TOF (Bruker, Daltonik GmbH, Brème, Allemagne). Cet instrument a été utilisé avec un potentiel d'accélération maximum de 25 KV dans le mode reflectron. L'échantillon a été préparé avec la préparation standard de la goutte asséchée sur la cible en acier inoxydable en utilisant comme matrice l'acide α-cyano-4-hydroxycinnamique.

La calibration externe du spectre MALDI-MS a été effectuée en utilisant seulement les pics des charges mono isotopiques d'une solution connue de peptides (bradykinine 1-7 (m/z=757,400), angiotensine humaine II (m/z=1046,542), angiotensine humaine I (m/z=1296,685), substance P (m/z=1347,735), bombesine (m/z=1619,822), renine (m/z=1758,933), ACTH 1-17 (m/z=2093,087) et ACTH 18-39 (m/z=2465,199)). Les masses des peptides mono isotopiques ont été automatiquement annotées grâce au programme Flexanalysis 2.0.

Les spectres MS/MS ont été obtenus par l'analyse des ions métastables obtenus par "Laser-Induced Decomposition" (LID) d'un précurseur ioniques sectionné, sans collision additionnelle en phase gazeuse. Le précurseur ionique a été accéléré à 8kV et a été sélectionné grâce à une trappe à ions à sélection temporelle. Les fragments ont été par la suite accélérés à 19 kV dans la cellule LIFT et leurs masses mesurées après leurs passages sur le réflecteur ionique.

Le séquençage de novo de chacun de ces spectres MS/MS a été effectué avec le programme Full DeNovo Sequencing program (Biotools, Bruker Daltonik GmbH, Brème, Allemagne).

NanoLC-MS/MS

L'analyse NanoLC-MS/MS a été effectuée en utilisant un CapLC (Waters, Manchester, G.B.) couplé à un spectromètre de masse "temps de vol" accéléré par un quadripôle hybride orthogonal Q-TOF II ((Micromass, Manchester, G.B.). La séparation par chromatographie en phase inverse à été effectuée avec des capillaires (Pepmap C18, 75 µm i.d., 15 cm de long, LC Packings) sous un flux à 200 nL/min, maintenu constant grâce à une pré-colonne de partage. La calibration a été effectuée en utilisant 2pmol/µl de GFP.

L'acquisition des données de masse a été pilotée par le programme MassLynx (Micromass, Manchester, G.B.) qui bascule automatiquement entre le mode MS et le mode MS/MS.

Les spectres MS/MS générés ont été individuellement séquencés de novo afin d'obtenir la séquence partielle ou complète. Ces interprétations ont été réalisées en utilisant le programme PepSeq (MassLynx, Micromass) et le programme PEAKS Studio (Bioinformatics Solutions, Waterloo, Canada) qui sont capables de traiter complètement un fichier .pkl avec un séquençage de novo automatique sur chaque spectre MS/MS.

10

15

20

5

Fixation du phosphate

La fixation du phosphate par la protéine de l'invention SEQ ID NO : 2 a été mise en évidence selon le test suivant :

On dépose 200 μ l de la protéine de l'invention SEQ ID NO : 2 (colonnes A-F de la Figure 3), ou du lysozyme 1 mg/ml (colonne G) ou de la β lacto-globuline sur nitrocellulose (dot blot par aspiration).

L'ensemble est incubé pendant 2 h 30 dans un mélange comprenant : tris 50 mM ; pH 8,0 ; ³²P (10 mCi/ml) 2 mM.

On effectue ensuite un rinçage 2 fois pendant 1 minute avec du tris 50 mM à pH 8,0, puis on expose l'ensemble à température ambiante pendant 45 minutes.

On constate alors (voir Figure 3) que la protéine de l'invention a fixé le phosphate radioactif (colonnes A à F), alors que les témoins tests ne l'ont pas fixée (colonnes G et H).

25

30

Rôle et utilisation de la protéine SEO ID NO : 2

Pour doser la concentration de cette protéine dans le plasma les méthodes utilisables sont :

- les methodes électrophorétiques,
- la purification de la protéine,
- la quantification de son activité,
- l'immunodosage de la protéine en utilisant des anticorps polyclonaux/monoclonaux dirigé contre la protéine.

Association avec la paraoxonase

Electrophorèse bidimensionnelle

Les protéines purifiées (40 μg) comme dans le protocole décrit précédemment sont mélangées à 100 μL d'une solution contenant 9,8 M d'urée, 4% (v/v) triton X100, 2 mM tributyl phosphine, 0,2 % (v/v) d'ampholine 3-10 (Bio-Lytes 3 -10; Bio-Rad), et 0,001% (m/v) de bleu de bromophénol. Des bandelettes (IPG-Strips; Bio-Rad) de gel de polyacrylamide (T : 4 %; C : 3 %) prêtes à l'emploi sont utilisées. Des ampholines ont été fixées de manière covalente au polyacrylamide de sorte d'avoir un gradient linéaire de pH pré-établi. Le gradient de pH utilisé est entre 3,0 et 10,0.

1. Isoélectrofocation (IEF)

5

10

15

20

25

30

Les bandelettes sont placées en contact avec les échantillons protéiques dans l'appareil Protean IEF Cell (Bio-Rad) et réhydratées activement (50 V constant) pendant 15 heures à 20°C. L'isoélectrofocalisation est ensuite réalisée en 3 étapes à 20°C. Premièrement un faible voltage de 250 V est appliqué pendant 15 minutes ; deuxièmement, une montée en gradient de 250 à 4000 V (ampérage limité par bandelette à 50 μA) est programmée sur 2 h. Troisièmement, le voltage est maintenu constant à 4000 V pendant 4 heures. Après migration, les bandelettes sont conservées à -20 °C.

D'après le protocole de purification précédent, la protéine HPBP de l'invention est co-purifiée avec la paraoxonase humaine (PON)(Fokine et al., 2003). En faisant un gel bidimensionnel avec le protocole ci-dessus, 2 spots ont été identifiés par séquençage N-terminal comme étant respectivement la protéine de l'invention HPBP et la paraoxonase humaine (voir Figure 4). Les deux protéines ont approximativement la même masse moléculaire (environ 40 kDa) et des points isoélectriques distincts, 6.9-8.5 pour HPBP et 4-5 pour la PON1. En tenant compte du fait qu'il a fallu utiliser des conditions drastiques pour réussir à séparer sur gel les 2 protéines (9M d'urée et 4% de triton)et que les 2 protéines qui ont des points isoélectriques très différents restent co-purifiées après le passage dans une colonne échangeuse d'anion (DEAE sepharose), on conclut qu'elles sont associées en formant un complexe.

10

15

20

25

30

RÉFÉRENCES BIBLIOGRAPHIQUES

- Amann K., Tornig J., Kugel B., Gross M.L., Tyralla K., El-Shakmak A., Szabo
 A., Ritz E. (2003) Kidney Int. 63(4): 1296-1301;
- Blazheevich N.V., Spirichev V.B., Pozdniakov A.L. (1975) Kardiologiia. 15(6): 67-71;
- Brunger A.T., Adams P.D., Clore G.M., Delano W.L., Gros P., Grosse-Kunstleve R.W., Jiang J.-S., Kuszewski J., Nilges N., Pannu N.S., Read R.J., Rice L.M., Simonson T. et Warren G.L. (1998) *Acta Cryst.* **D54**: 905-921;
 - Dorozhkin S.V., Epple M. (2002) Angew Chem Int Ed Engl. 41(17): 3130-46;
- Engvall E., Jonsson K., Perlmann P. (1971) Biochim Biophys Acta. (1971) 251:
 427-34;
- Fokine A., Morales R., Contreras-Martel C., Carpentier P., Renault F., Rochu D., Chabriere E. (2003) Acta Crystallogr D. 59, 2083-7;
- Gan, K.N., Smolen, A., Eckerson, H.W. & La Du, B.N. (1991). Drug Metab Dispos. 19, 100-106;
- Hassett, C., Richter, R.J., Humbert, R., Chapline, C., Crabb, J.W., Omiecinski, C.J. et Furlong, C.E. (1991) *Biochemistry* 30(42), 10141-10149;
 - Kabsch W. (1993) J. Appl. Cryst. 26: 795-800;
- Perrakis, A., Sixma, T. K., Wilson, K.S., et Lamzin, V. S. (1997) Acta Cryst.
 D53: 448-455;
- Primo-Parmo, S.L., Sorenson, R.C., Teiber, J. et La Du, B.N. (1996) Genomics
 33(3), 498-507;
 - Ramsdell R. (1999) Anna J. 26(3): 346-7;
- Reddy, S.T., Wadleigh, D.J., Grijalva, V., Ng, C., Hama, S., Gangopadhyay,
 A., Khorsan, R., Shih, D., Lusis, A.J., Navab, M. et Fogelman, A.M. (2001) Arterioscler
 Thromb Vasc Biol 21(4): 542-7;
- Rodrigo, L., Gil, F., Hernandez, A.F., Marina, A., Vazquez, J. et Pla, A. (1997) Biochem. J. 321, 595-601;
- Smolen A, Eckerson HW, Gan KN, Hailat N, La Du BN. (1991) Drug Metab Dispos., 19: 107-112;
- Sorenson, R.C., Primo-Parmo, S.L., Kuo, C.L., Adkins, S., Lockridge, O. et La Du, B.N. (1995) *Proc. Natl. Acad. Sci.* U.S.A. 92(16), 7187-7191;
 - Weeks, C.M. & Miller, R. (1999) J. Appl. Cryst. 32, 120-124.

10

15

20

25

30

REVENDICATIONS

- 1. Protéine caractérisée en ce qu'elle comprend ou est constituée par :
- la séquence SEQ ID NO: 1,
- ou toute séquence dérivée de la séquence SEQ ID NO: 1, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO: 1, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO: 1, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 1.
- 2. Protéine selon la revendication 1, caractérisée en ce qu'elle comprend ou est constituée par :
 - la séquence SEQ ID NO : 2 ou SEQ ID NO : 3,
- ou toute séquence dérivée de la séquence SEQ ID NO : 2 ou SEQ ID NO : 3, notamment par substitution, suppression ou addition d'un ou plusieurs acides aminés, sous réserve que ladite séquence dérivée se lie au phosphate,
- ou toute séquence homologue de la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, ayant de préférence une homologie d'au moins environ 80% avec la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, sous réserve que ladite séquence homologue se lie au phosphate,
- ou tout fragment d'une des séquences définies ci-dessus, sous réserve que ledit fragment se lie au phosphate, notamment tout fragment étant constitué d'au moins environ 20 acides aminés contigus dans la séquence SEQ ID NO : 2 ou SEQ ID NO : 3.
- 3. Séquence nucléotidique codant pour une protéine telle que définie dans la revendication 1 ou 2.
- 4. Vecteur recombinant, notamment plasmide, cosmide, phage ou ADN de virus, contenant une séquence nucléotidique selon la revendication 3.

5. Vecteur recombinant selon la revendication 4, contenant les éléments nécessaires à l'expression dans une cellule hôte des polypeptides codés par une séquence nucléotidique selon la revendication 3, insérés dans ledit vecteur.

5

6. Cellule hôte, choisie notamment parmi les bactéries, les levures, les cellules de champignons, les cellules de plantes ou les cellules de mammifères, ladite cellule hôte étant transformée à l'aide d'un vecteur recombinant selon l'une des revendications 4 ou 5.

10

7. Composition pharmaceutique comprenant à titre de substance active une protéine selon la revendication 1 ou 2, en association avec un véhicule pharmaceutiquement acceptable.

15

8. Composition pharmaceutique selon la revendication 7, comprenant à titre de substance active une protéine représentée par la séquence SEQ ID NO : 2 ou SEQ ID NO : 3.

20

9. Composition pharmaceutique selon la revendication 8, dans laquelle la protéine telle que définie dans la revendication 1 ou 2, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, est en association avec un variant de la protéine paraoxonase, notamment SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 ou SEQ ID NO: 11.

25

30

10. Utilisation d'une protéine selon la revendication 1 ou 2, notamment de la protéine représentée par la séquence SEQ ID NO: 2 ou SEQ ID NO: 3, pour la préparation d'un médicament destiné à la prévention ou au traitement de l'arthrite ou de maladies liées à une hyperphosphatémie, telles que les maladies cardiovasculaires, ou, en association avec un variant de la protéine paraoxonase, notamment SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 ou SEQ ID NO: 11, dans le cadre de la prophylaxie ou du traitement des intoxications provoquées par des insecticides ou des agents neurotoxiques tels que le soman, le VX, le sarin ou le tabun, ou dans le cadre du traitement de l'athérosclérose.

- 11. Produit de combinaison comprenant au moins une protéine selon la revendication 1 ou 2, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, et au moins un variant de la protéine paraoxonase, notamment SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10 ou SEQ ID NO: 11, pour une utilisation simultanée, séparée ou étalée dans le temps destiné à la prophylaxie ou au traitement des intoxications provoquées par des insecticides ou des agents neurotoxiques tels que le soman, le VX, le sarin ou le tabun.
- 12. Méthode de dosage de la protéine selon la revendication 1 ou 2, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, caractérisée en ce qu'elle comprend les étapes suivantes:
- des anticorps monoclonaux de lapin dirigé contre différents épitopes de la protéine selon la revendication 1 ou 2, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, sont fixés sur une plaque et le sérum humain à analyser contenant ladite protéine est déposé sur la plaque susmentionnée,
 - la plaque est rincée et lavée,

10

15

20

25

30

- on dépose sur ladite plaque des anticorps anti-anticorps de lapin marqués avec de la peroxydase durant 30 minutes, afin de former un complexe ternaire entre un anticorps monoclonal de lapin, ladite protéine et un anticorps anti-anticorps de lapin susmentionnés,
 - la plaque est rincée et lavée,
- on fait réagir la peroxydase fixée sur la plaque avec son substrat et la réaction est arrêtée au bout de 30 minutes avec la 3,3',5,5'-tétraméthylbenzidine,
- la densité optique du produit formé à l'étape précédente est mesurée à 450 nm à l'aide d'un spectrophotomètre, et la comparaison de cette mesure avec une courbe étalon permet de déterminer la concentration de la protéine selon la revendication 1 ou 2, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, présente dans le sérum.

13. Application de la méthode de dosage selon la revendication 12

au diagnostic *in vitro* de maladies liées à une hyperphosphatémie notamment lorsque la quantité de protéine selon la revendication 1 ou 2, notamment SEQ ID NO : 2 ou SEQ ID NO : 3, dosée selon la méthode de la revendication 12, est inférieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou

au diagnostic *in vitro* de maladies liées à une hypophosphatémie notamment lorsque la quantité de protéine selon la revendication 1 ou 2, notamment SEQ ID NO: 2 ou SEQ ID NO: 3, dosée selon la méthode de la revendication 12, est supérieure à la quantité de cette protéine normalement présente dans le sang d'un individu sain, ou au diagnostic *in vitro* d'une prédisposition d'un individu à de telles pathologies.

5

10

15

- 14. Application selon la revendication 13 au diagnostic *in vitro* de maladies liées à une hyperphosphatémie telles que les maladies cardiovasculaires, notamment les maladies cardiovasculaires liées à la formation de plaques d'athéromes, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement d'une des maladies susmentionnées.
- 15. Application selon la revendication 14 au diagnostic *in vitro* de maladies liées à une hypophosphatémie, ou au diagnostic *in vitro* d'une prédisposition d'un individu au développement de ces maladies.

FIGURE 1

FIGURE 2

WO 2005/042572 PCT/FR2004/002797 3/46

FIGURE 3

FIGURE 4

MOTA	1	CB	SER .	A 1	24.666	45.653	14.370	1.00 26.15	A
ATOM	2	OG	SER .	A 1	25.258	46.028	13.130	1.00 38.82	A
ATOM	3	C	SER		22.519	45.324	15.622	1.00 20.30	A
ATOM	4	0	SER .	A 1	21.889	46.093	16.367	1.00 18.83	A
MOTA	5	N	SER .	A 1	22.817	47.273	14.074	1.00 22.37	A
MOTA	6	CA	SER .		23.146	45.831	14.317	1.00 22.87	A
ATOM	7	N	ILE .	_	22.676	44.027	15.878	1.00 14.00	A
ATOM	8	CA	ILE .		22.149	43.401	17.092	1.00 13.36	A
ATOM	. 9	CB	ILE .		21.747	41.923	16.828	1.00 14.04	A
ATOM ATOM	10 11	CG2 CG1	ILE .		21.536	41.191	18.155	1.00 9.05	A
ATOM	12	CD1	ILE .		20.458 20.173	41.872 40.501	15.988 15.357	1.00 13.38 1.00 14.27	A A
ATOM	13	C	ÎLE		23.303	43.459	18.083	1.00 12.32	Â
ATOM	14	ō	ILE		24.376	42.890	17.847	1.00 14.26	A
MOTA	15	N	ASP .		23.075	44.122	19.205	1.00 13.19	A
MOTA	16	CA	ASP .		24.134	44.331	20.193	1.00 11.15	Α
ATOM	17	CB	ASP A		24.149	45.830	20.578	1.00 12.52	A
ATOM	18	CG		A 3	24.268	46.744	19.351	1.00 11.70	A
ATOM ATOM	19 20	OD1 OD2	ASP ASP		25.289	46.618	18.642	1.00 11.97	A
ATOM	21.	C		A 3	23.356 23.981	47.569 43.508	19.094 21.456	1.00 13.82 1.00 11.88	A A
ATOM	22	ŏ	ASP		22.947	43.577	22.116	1.00 11.48	Ā
ATOM	23	N	GLY .		25.022	42.763	21.800	1.00 9.46	Ä
MOTA	24	CA	GLY I	A 4	24.973	41.947	23.007	1.00 10.97	A
ATOM	25	Ç	GLY 2		26.303	41.966	23.740	1.00 8.48	Α
MOTA	26	0	GLY A		27.314	42.413	23.200	1.00 9.87	A
ATOM ATOM	27 28	N CA	GLY A		26.296	41.496	24.987	1.00 11.77	A
ATOM	29	C	GLY I		27.511 27.163	41.489 41.000	25.785 27.186	1.00 4.85 1.00 8.06	A A
MOTA	30	ŏ	GLY		26.009	40.610	27.147	1.00 9.13	Ã
ATOM	31	N	GLY 2		28.144	41.021	28.089	1.00 9.80	A
MOTA	32	CA	GLY I		27.898	40.589	29.458	1.00 9.86	Α
MOTA	33	C	GLY A		28.970	39.679	30.014	1.00 7.11	A
ATOM ATOM	34 35	O N	GLY ALA		30.150	40.030	30.000	1.00 8.89	A
ATOM	36	CA	ALA A		28.567 29.509	38.518 37.540	30.525 31.079	1.00 9.08 1.00 8.69	A A
ATOM	37	СB	ALA		28.814	36.168	31.195	1.00 7.94	Â
ATOM	38	С	ALA A		30.811	37.363	30.277	1.00 9.69	A
ATOM	39	0	ALA Z		30.781	37.212	29.050	1.00 7.30	A
ATOM	40	N	THR I		31.941	37.367	30.981	1.00 7.56	A
ATOM ATOM	41 42	CA CB	THR I		33.236 34.402	37.135 37.865	30.338 31.065	1.00 7.21 1.00 8.00	A A
ATOM	43	OG1	THR		34.532	37.344	32.402	1.00 9.83	Ä
ATOM	44	CG2	THR I		34.123	39.388	31.139	1.00 10.68	. A
ATOM	45	Ç	THR I		33.542	35.624	30.340	1.00 5.67	A
ATOM	46	0	THR A		34.355	35.168	29.552	1.00 8.00	A
ATOM ATOM	47 48	N CA	LEU I		32.885	34.842	31.195	1.00 6.65	A
ATOM	49	CB	LEU A		33.190 32.275	33.389 32.649	31.224 32.238	1.00 9.98 1.00 10.55	A A
ATOM	50	ČĞ	LEU A		32.400	31.109	32.271	1.00 11.53	Ä
ATOM	51	CD1	LEU A		32.200	30.566	33.699	1.00 10.77	A
MOTA	52	CD2	LEU A		31.356	30.503	31.300	1.00 6.94	Α
ATOM	53	Ç	LEU A		33.103	32.755	29.817	1.00 10.91	A
ATOM ATOM	54 55	O N	LEU A		33.985 32.051	31.970 33.088	29.421 29.040	1.00 9.67 1.00 6.59	A N
ATOM	56	CD	PRO A		30.763	33.664	29.485	1.00 6.59 1.00 8.09	A A
ATOM	57	CA	PRO A		31.915	32.521	27.686	1.00 7.68	A
MOTA	58	CB	PRO A		30.428	32.218	27.611	1.00 11.73	A
ATOM	59	CG	PRO A		29.845	33.467	28.251	1.00 8.40	A
ATOM	60 61	C	PRO A		32.317	33.504	26.579	1.00 8.72	A
ATOM ATOM	62	O N	PRO A		32.040 33.003	33.263 34.589	25.396 26.928	1.00 9.01 1.00 5.35	A A
ATOM	63	CA	GLU A		33.325	35.565	25.896	1.00 8.04	A
ATOM	64	CB	GLU A		33.978	36.829	26.493	1.00 12.60	A
ATOM	65	CG	GLU A		35.380	36.672	27.001	1.00 21.32	A
ATOM	66	CD	GLU A		35.994	38.013	27.391	1.00 26.61	A
ATOM	67	OE1	GLU A		35.264	38.873	27.920	1.00 30.93	A
ATOM ATOM	68 69	OE2 C	GLU A		·37.203 34.143	38.202 35.066	27.176 24.709	1.00 31.32 1.00 10.00	A A
ATOM	70	ŏ	GLU A		33.866	35.464	23.563	1.00 10.00	A
ATOM	71	Ñ	LYS A		35.134	34.215	24.957	1.00 8.65	A
ATOM	72	CA	LYS A	12	35.935	33.678	23.850	1.00 10.43	A
ATOM	73	CB	LYS A		37.081	32.840	24.374	1.00 11.05	A
ATOM ATOM	74 75	CG CD	LYS A		38.151 39.117	33.646	25.090	1.00 9.26 1.00 17.64	A A
AIUH	,5	CD.	א כיים	. 12	39.117	32.622	25.673	1.00 17.04	A

ATOM	76	CE	LYS A	12	40.293	33.277	26.307	1.00 24.93	A
ATOM	77	NZ	LYS A		41.298	32.237	26.600	1.00 25.96	A
ATOM	78	Č	LYS A		35.079	32.830	22.934	1.00 11.17	A
ATOM ATOM	79 80	O N	LYS A		35.339	32.726	21.736	1.00 8.79	A
ATOM	81	CA	LEU A	13	34.071	32.176	23.498	1.00 7.67	A
ATOM	82	CB	LEU A	13 13	33.189 32.230	31.383	22.669	1.00 10.04	A
ATOM	83	CG	LEU A		31.082	30.549 29.888	23.534 22.769	1.00 8.86 1.00 8.97	A
ATOM	84	CD1	LEU A	13	31.649	28.807	21.805	1.00 8.97 1.00 12.12	A A
ATOM	85	CD2		13	30.101	29.268	23.753	1.00 12.69	Ä
ATOM ATOM	86 87	C	LEU A	13	32.371	32.292	21.750	1.00 9.01	A
ATOM	88	Ŋ	LEU A	13 14	32.293 31.761	32.064	20.536	1.00 10.60	A
ATOM	89	CA	TYR A	14	30.920	33.329 34.195	22.305 21.482	1.00 10.47 1.00 9.03	A
MOTA	90	CB	TYR A	14	30.029	35.087	22.352	1.00 9.03	A A
ATOM	91	CG	TYR A	14	29.091	34.293	23.253	1.00 11.48	Ä
ATOM ATOM	92 93	CD1 CE1	TYR A	14	28.499	33.109	22.806	1.00 12.01	A
ATOM	94	CD2	TYR A	14 14	27.671 28.824	32.341	23.642	1.00 10.45	A
ATOM	95	CE2	TYR A	14	27.998	34.706 33.948	24.564 25.403	1.00 10.30 1.00 10.35	A
MOTA	96	CZ	TYR A	14	27.430	32.766	24.933	1.00 10.35 1.00 B.21	A A
ATOM	97	ОН	TYR A	14	26.628	32.014	25.757	1.00 8.65	A
ATOM ATOM	98 99	C O	TYR A	14	31.715	35.036	20.489	1.00 9.67	A
ATOM	100	Ŋ	LEU A	14 15	31.142 33.021	35.538 35.184	19.515	1.00 8.36	A
MOTA	101	CA	LEU A	15	33.904	35.936	20.738 19.838	1.00 8.53 1.00 9.45	A A
ATOM	102	CB	LEU A	15	35.087	36.564	20.601	1.00 8.09	A
ATOM ATOM	103	CG	LEU A	15	34.742	37.802	21.433	1.00 14.85	A
ATOM	104 105	CD1 CD2	LEU A	15 15	35.932 34.364	38.141	22.306	1.00 16.07	A
ATOM	106	c	LEU A	15	34.467	38.990 35.018	20.510 18.756	1.00 12.61 1.00 16.00	A A
MOTA	107	0	LEU A	15	35.174	35.466	17.859	1.00 16.13	A
ATOM	108	N	THR A	16	34.178	33.729	18.848	1.00 11.70	A
ATOM ATOM	109 110	CA CB	THR A	16 16	34.681 34.523	32.791	17.853	1.00 11.09	Ā
ATOM	111	OG1	THR A	16	35.406	31.334 31.142	18.371 19.484	1.00 11.33 1.00 13.08	A A
ATOM	112	CG2	THR A	16	34.848	30.314	17.291	1.00 11.23	A
ATOM	113	C	THR A	16	33.906	32.997	16.549	1.00 12.10	A
ATOM ATOM	114 115	O N	THR A PRO A	16	32.671	32.996	16.540	1.00 12.20	A
ATOM	116	ČD	PRO A	17 17	34.620 36.085	33.158 33.162	15.420 15.251	1.00 14.18 1.00 14.83	A
ATOM	117	CA	PRO A	17	33.933	33.367	14.137	1.00 14.83	A A
ATOM	118	CB	PRO A	17	35.068	33.292	13.113	1.00 20.97	Ä
ATOM ATOM	119 120	CG	PRO A	17	36.251	33.842	13.890	1.00 21.64	A
ATOM	121	C	PRO A	17 17	32.830 33.027	32.341 31.143	13.854 14.066	1.00 14.42 1.00 14.18	A
ATOM	122	Ň	ASP A	18	31.673	32.836	13.414	1.00 14.18 1.00 15.17	A A
ATOM	123	CA	ASP A	18	30.515	32.020	13.058	1.00 19.19	Ä
ATOM ATOM	124	CB	ASP A	18	30.932	30.829	12.169	1.00 23.04	A
ATOM	125 126	CG	ASP A	18 18	31.649 31.214	31.260 32.238	10.885 10.239	1.00 30.30	A
ATOM	127	OD2		18	32.645	30.599	10.511	1.00 30.86 1.00 39.65	A A
ATOM	128	Ç	ASP A	18	29.657	31.479	14.212	1.00 13.08	Ä
ATOM	129	O.	ASP A	18	28.651	30.833	13.958	1.00 13.28	A
ATOM ATOM	130 131	N CA	VAL A VAL A	19 19	30.041 29.199	31.709 31.221	15.466	1.00 13.07	A
ATOM	132	CB	VAL A	19	29.976	31.225	17.911	1.00 8.94 1.00 9.65	A A
ATOM	133	CG1	VAL A	19	29.014	31.123	19.098	1.00 11.73	A
ATOM	134	CG2		19	30.930	30.026	17.923	1.00 11.99	A
ATOM ATOM	135 136	c o	VAL A	19 19	27.971 26.829	32.126 31.655	16.613	1.00 11.81	A
ATOM	137	N	LEU A	20	28.198	33.434	16.707 16.567	1.00 11.21 1.00 10.93	A A
ATOM	138	CA	LEU A	20	27.077	34.363	16.486	1.00 8.58	Â
ATOM	139	CB	LEU A	20	27.439	35.730	17.084	1.00 13.44	A
ATOM	140	CD1	LEU A	20	27.677	35.767	18.601	1.00 14.24	A
ATOM ATOM	141 142		LEU A	20 20	27.863 26.480	37.222 35.130	19.084 19.315	1.00 13.26 1.00 11.94	A
ATOM	143	C	LEU A	20	26.857	34.470	14.969	1.00 15.21	A A
ATOM	144	0	LEU A	20	27.836	34.550	14.196	1.00 11.72	Ä
ATOM	145	N	THR A	21	25.596	34.455	14.540	1.00 14.05	A
ATOM ATOM	146 147	CA CB	THR A	21 21	25.268 24.006	34.511 33.653	13.114	1.00 12.27	A
ATOM	148	OG1	THR A	21	22.966	34.044	12.865 13.774	1.00 16.46 1.00 13.53	A A
MOTA	149	CG2	THR A	21	24.326	32.173	13.121	1.00 17.80	Ä
ATOM	150	C	THR A	21	25.121	35.937	12.509	1.00 14.67	A
ATOM	151	0	THR A	21	25.452	36.928	13.148	1.00 12.04	A

7/46

MOTA	152	N	ALA A	22	24.663	36.037	11.265	1.00 12.98	A
MOTA	153	CA	ALA A	22	24.523	37.335	10.594		
ATOM	154	CB	ALA A	22	23.913			1.00 12.25	A
ATOM	155	Ċ	ALA A	22	23.749	37.146 38.418	9.208 11.337	1.00 15.06	Ä
MOTA	156	Õ	ALA A	22	22.688	38.174	11.916	1.00 10.99 1.00 15.12	Ą
ATOM	157	Ñ	GLY A	23	24.285	39.636	11.292		A
MOTA	158	CA	GLY A	23	23.631	40.753	11.951	1.00 13.67 1.00 14.86	A
MOTA	159	C	GLY A	23	24.068	41.057	13.371	1.00 14.86 1.00 14.29	A
ATOM	160	Ō	GLY A	23	23.775	42.138	13.894	1.00 14.29	A
MOTA	161	N	PHE A	24	24.760	40.116	14.001	1.00 13.41	A A
MOTA	162	CA	PHE A	24	25.238	40.283	15.363	1.00 14.48	Ä
ATOM	163	CB	PHE A	24	25.424	38.899	16.020	1.00 9.89	, A
ATOM	164	CG	PHE A	24	24.156	38.276	16.527	1.00 12.35	· A
ATOM	165	CD1	PHE A	24	23.225	37.734	15.644	1.00 6.46	Ä
ATOM	166	CD2	PHE A	24	23.888	38.237	17.898	1.00 12.73	A
ATOM	167	CE1	PHE A	24	22.035	37.153	16.125	1.00 11.12	A
ATOM	168	CE2	PHE A	24	22.695	37.662	18.397	1.00 7.42	Α
ATOM	169	CZ	PHE A	24	21.772	37.118	17.502	1.00 11.79	A
MOTA	170	Č	PHE A	24	26.584	41.030	15.444	1.00 14.36	A
ATOM	171	0	PHE A	24	27.569	40.592	14.850	1.00 12.41	A
ATOM	172	N	ALA A	25	26.630	42.141	16.183	1.00 14.60	A
ATOM ATOM	173	CA	ALA A	25	27.881	42.875	16.378	1.00 13.54	A
ATOM	174 175	CB	ALA A	25	27.606	44.233	17.024	1.00 15.19	A
ATOM	176	C O	ALA A ALA A	25 25	28.752	42.031	17.315	1.00 12.48	Ā
ATOM	177	Ŋ	PRO A	26	28.240 30.067	41.155	18.023	1.00 12.61	A
ATOM	178	ĈD	PRO A	26	30.837	42.289 43.202	17.348	1.00 11.27	A
ATOM	179	CA	PRO A	26	30.952	41.507	16.476 18.231	1.00 13.96 1.00 12.70	A
ATOM	180	CB	PRO A	26	32.334	42.117	17.989	1.00 12.70	A A
ATOM	181	ĊĠ	PRO A	26	32.241	42.582	16.519	1.00 19.22	À
MOTA	182	C	PRO A	26	30.536	41.602	19.699	1.00 10.57	Ä
ATOM	183	0	PRO A	26	30.222	42.681	20.192	1.00 10.54	Ä
ATOM	184	N	TYR A	27	30.529	40.456	20.367	1.00 8.04	A
ATOM	185	CA	TYR A	27	30.161	40.345	21.793	1.00 9.13	Ä
ATOM	186	CB	TYR A	27	30.294	38.886	22.231	1.00 8.74	A
ATOM	187	CG	TYR A	27	29.824	38.612	23.648	1.00 5.12	A
MOTA	188	CD1	TYR A	27	28.469	38.512	23.938	1.00 6.81	A
ATOM	189	CE1	TYR A	27	28.024	38.224	25.247	1.00 9.00	A
ATOM	190	CD2	TYR A	27	30.741	38.423	24.682	1.00 5.70	A
ATOM	191	CE2	TYR A	27	30.310	38.131	25.992	1.00 7.78	A
ATOM	192	CZ	TYR A	27	28.948	38.032	26.259	1.00 9.36	A
ATOM ATOM	193 194	C OH	TYR A	27	28.502	37.709	27.532	1.00 8.37	À
ATOM	195	ŏ	TYR A	27 27	31.081	41.207	22.675	1.00 10.49	A
ATOM	196	N	ILE A	28	32.297 30.510	41.207 41.931	22.494	1.00 9.91	A
ATOM	197	CA	ILE A	28	31.324	42.765	23.635 24.517	1.00 8.97 1.00 12.31	A A
ATOM	198	CB	ILE A	28	30.801	44.225	24.521	1.00 13.61	A
ATOM	199	CG2	ILE A	28	31.657	45.098	25.459	1.00 13.01	Ä
MOTA	200	CG1	ILE A	28	30.871	44.793	23.095	1.00 11.91	Ä
ATOM	201	CD1	ILE A	28	30.192	46.146	22.915	1.00 12.92	Ä
ATOM	202	C	ILE A	28	31.333	42.191	25.942	1.00 13.14	A
ATOM	203	0	ILE A	28	30.315	42.189	26.622	1.00 8.79	A
ATOM	204	N	GLY A	29	32.499	41.706	26.373	1.00 13.23	A
ATOM	205	ÇA	GLY A	29	32.630	41.105	27.695	1.00 15.83	A
ATOM	206	C	GLY A	29	32.868	42.127	28.791	1.00 16.10	Α
ATOM	207	0	GLY A	29	33.915	42.794	28.826	1.00 12.27	A
ATOM	208	N	THR A	30	31.900	42.234	29.697	1.00 8.70	A
ATOM	209	CA	THR A	30	31.966	43.200	30.783	1.00 10.71	A
ATOM	210	CB	THR A	30	31.061	44.442	30.473	1.00 11.83	Ā
ATOM	211	CG2		30	29.703 31.607	44.014	30.222	1.00 16.91	A
ATOM ATOM	212 213		THR A	30	31.538	45.235	29.249	1.00 8.83	A
ATOM	214	C	THR A	30 30	31.532	42.640 43.378	32.147 33.135	1.00 11.78 1.00 11.34	A A
ATOM	215	Ŋ	GLY A	31	31.187	41.352	32.210	1.00 10.41	Ä
ATOM	216	CA	GLY A	31	30.729	40.789	33.473	1.00 8.40	Ä
ATOM	217	C	GLY A	31	29.208	40.604	33.467	1.00 9.64	Ä
ATOM	218	ŏ	GLY A	31	28.478	41.396	32.862	1.00 8.01	Â
ATOM	219	N	SER A	32	28.718	39.566	34.138	1.00 7.93	A
ATOM	220	CA	SER A	32	27.274	39.297	34.143	1.00 4.39	Ä
ATOM	221	CB	SER A	32	26.961	37.954	34.832	1.00 2.86	A
MOTA	222	OG	SER A	32	27.538	36.876	34.125	1.00 6.73	A
ATOM	223	Ç	SER A	32	26.440	40.386	34.793	1.00 7.61	A
ATOM	224	0	SER A	32	25.321	40.626	34.354	1.00 9.70	A
ATOM	225	N	GLY A	33	26.984	41.052	35.811	1.00 8.20	A
ATOM	226	CA	GLY A	33	26.256	42.121	36.506	1.00 6.91	A

ATOM	227	C	GLY A	33	25.942	43.235	35.524	1.00 9.16	7
ATOM	228	o	GLY A						A
ATOM	229	Ŋ	LYS A		24.799	43.708	35.429 34.749	1.00 9.95	A
ATOM	230	CA	LYS A		26.943 26.710	43.633 44.681		1.00 10.60	A
ATOM	231	CB	LYS A				33.758	1.00 8.52	A
ATOM	232	CG	LYS A		28.040 28.667	45.240	33.250	1.00 7.07	A
ATOM	233	CD	LYS A		29.957	46.220 46.854	34.250	1.00 12.80	A
ATOM	234	CE	LYS A		30.597	47.768	33.703 34.748	1.00 10.66 1.00 10.90	A
ATOM	235	ΝZ	LYS A		29.700	48.890	35.066	1.00 10.90	A A
ATOM	236	C	LYS A		25.848	44.201	32.601	1.00 23.47	A
ATOM	237	ō	LYS A		25.070	44.977	32.043	1.00 12.54	A
ATOM	238	N	GLY A		25.983	42.928	32.236	1.00 9.69	Ä
ATOM	239	CA	GLY A		25.158	42.386	31.162	1.00 7.50	Ä
MOTA	240	C	GLY A	35	23.677	42.414	31.542	1.00 9.68	Ä
MOTA	241	0	GLY A	. 35	22.831	42.767	30.717	1.00 9.00	A
ATOM	242	N	LYS A		23.340	42.077	32.787	1.00 8.56	A
ATOM	243	CA	LYS A		21.929	42.089	33.173	1.00 7.26	A
ATOM	244	CB	LYS A		21.709	41.393	34.533	1.00 9.15	A
ATOM	245	CG	LYS A		21.954	39.861	34.445	1.00 5.28	A
ATOM ATOM	246	CD	LYS A		21.394	39.069	35.662	1.00 6.85	A
ATOM	247 248	CE NZ	LYS A		21.990	39.576	36.986	1.00 11.53	A
ATOM	249	C	LYS A LYS A		21.397	38.945	38.221	1.00 11.99	Ā
ATOM	250	ŏ	LYS A		21.409 20.311	43.527	33.204	1.00 11.18	A
ATOM	251	Ň	ILE A		22.190	43.787 44.459	32.724	1.00 14.03	Ā
ATOM	252	CA	ILE A		21.752	45.854	33.749 33.766	1.00 9.12 1.00 11.15	A
ATOM	253	CB	ILE A		22.778	46.779	34.462	1.00 10.46	A A
ATOM	254	CG2	ILE A		22.424	48.252	34.197	1.00 11.32	A
ATOM	255	CG1	ILE A		22.774	46.522	35.972	1.00 9.50	Â
ATOM	256	CD1	ILE A	37	24.024	47.029	36.669	1.00 15.62	A
MOTA	257	С	ILE A	37	21.563	46.368	32.325	1.00 11.78	Ä
ATOM	258	0	ILE A	37	20.570	47.017	32.018	1.00 11.36	A
ATOM	259	N	ALA A	38	22.518	46.071	31.452	1.00 9.31	A
ATOM	260	CA	ALA A	38	22.438	46.539	30.063	1.00 10.19	A
ATOM	261	СВ	ALA A	38	23.650	46.016	29.269	1.00 10.93	A
ATOM	262	Č	ALA A	38	21.129	46.102	29.375	1.00 9.69	A
ATOM ATOM	263	O	ALA A	38	20.447	46.899	28.712	1.00 8.41	A
ATOM	264 265	N CA	PHE A	39 39	20.771	44.831	29.541	1.00 8.70	Ā
ATOM	266	CB	PHE A	39	19.566 19.549	44.327 42.787	28.914	1.00 9.40	A
ATOM	267	ČĞ	PHE A	39	18.287	42.214	28.888 28.270	1.00 9.06 1.00 7.16	A
ATOM	268	CD1	PHE A	39	18.223	41.953	26.896	1.00 7.16 1.00 8.56	A A
ATOM	269	CD2	PHE A	39	17.146	42.000	29.051	1.00 8.19	Ä
ATOM	270	CE1	PHE A	39	17.035	41.481	26.306	1.00 9.12	Ä
MOTA	271	CE2	PHE A	39	15.947	41.530	28.479	1.00 9.01	A
ATOM	272	CZ	PHE A	39	15.888	41.269	27.101	1.00 8.28	A
ATOM	273	Č	PHE A	39	18.304	44.790	29.608	1.00 12.15	A
ATOM	274	0	PHE A	39	17.398	45.313	28.972	1.00 10.76	A
ATOM ATOM	275 276	N	LEU A	40	18.246	44.602	30.920	1.00 8.71	A
ATOM	277	CA CB	LEU A	40 40	17.034	44.938	31.678	1.00 8.94	A
ATOM	278	CG	LEU A	40	17.204 17.342	44.513 43.005	33.144 33.400	1.00 7.80	A
ATOM	279		LEU A	40	17.809	42.781	34.887	1.00 10.06 1.00 6.45	A A
ATOM	280		LEU A	40	16.006	42.296	33.132	1.00 12.55	Ä
ATOM	281	C	LEU A	40	16.626	46.403	31.632	1.00 10.63	Â
ATOM	282	0	LEU A	40	15.430	46.730	31.629	1.00 11.89	A
MOTA	283	N	GLU A	41	17.604	47.291	31.586	1.00 10.88	A
ATOM	284	CA	GLU A	41	17.294	48.717	31.551	1.00 9.10	A
ATOM	285	CB	GLU A	41	18.053	49.436	32.669	1.00 13.20	A
ATOM	286	CG	GLU A	41	17.802	48.829	34.036	1.00 11.00	A
ATOM	287	CD	GLU A	41	18.671	49.429	35.131	1.00 22.54	A
ATOM ATOM	288		GLU A	41	18.975	48.713	36.103	1.00 27.36	A
	289 290	OE2	GLU A	41	19.037	50.616	35.043	1.00 22.49	A
ATOM ATOM	291	С 0	GLU A	41 41	17.633 17.505	49.361	30.218	1.00 12.72	A
ATOM	292	N	ASN A	42	18.010	50.576 48.537	30.066 29.238	1.00 13.60	A
ATOM	293	CA	ASN A	42	18.463	49.008	27.923	1.00 11.74 1.00 11.79	A A
ATOM	294	CB	ASN A	42	17.322	49.494	27.022	1.00 11.79	A
ATOM	295	CG	ASN A	42	17.824	49.897	25.642	1.00 16.54	· Ä
ATOM	296		ASN A	42	18.885	49.428	25.189	1.00 15.67	A
MOTA	297		ASN A	42	17.076	50.763	24.960	1.00 14.22	A
MOTA	298	C	ASN A	42	19.486	50.126	28.091	1.00 16.68	A
ATOM	299	0	ASN A	42	19.300	51.260	27.631	1.00 14.27	A
ATOM	300	N	SER A	43	20.578	49.789	28.767	1.00 14.51	Α

FIGURE 5 (suite)

9/46

21.665 50.740 29.001 1.00 14.54 MOTA 301 CA SER A 43 1.00 19.90 MOTA 302 CB SER A 21.920 50.874 30.520 43 ATOM 303 31.162 1.00 26.26 SER A 51.662 13.78 50.327 28.302 1.00 MOTA 304 SER A 43 22.965 1.00 10.60 MOTA 305 SER A 43 49.633 28.891 50.755 27.056 1.00 MOTA 306 TYR A 23.168 44 26.361 1.00 10.86 MOTA 307 CA TYR A 44 24.396 50.401 1.00 CB 24.904 10.54 MOTA 308 TYR A 44 24.330 50.880 309 CG TYR 44 25.414 50.311 24.034 1.00 MOTA Α 26.631 27.625 310 CD1 TYR A 44 50.983 23.857 1.00 MOTA CE1 TYR A 23.011 311 50.469 1.00 10.91 ATOM 44 CD2 CE2 25.217 26.201 49.106 23.357 1.00 10.34 MOTA TYR A 44 312 TYR A 22.517 313 48.587 1.00 11.21 44 ATOM TYR A 27.394 28.357 22.347 21.524 27.026 26.756 27.917 CZ OH 49.267 1.00 14.12 MOTA 314 44 48.725 1.00 11.54 44 MOTA 315 25.650 26.775 c TYR A 44 50.971 1.00 8.02 Α MOTA 316 50.515 1.00 10.36 TYR A MOTA 317 44 25.484 26.657 1.00 8.55 A MOTA 318 И ASN A 45 51.941 28.535 29.337 30.708 1.00 14.36 CA ASN 52.547 MOTA 319 Α 45 26.271 25.707 25.048 Α CB 1.00 ASN A 45 53.811 8.69 MOTA 320 11.69 CG ASN A 53.503 A MOTA 321 45 1.00 30.910 MOTA 322 OD1 ASN A 45 52.488 1.00 13.56 Α 31.655 MOTA 323 ND2 ASN Α 45 25.934 54.411 1.00 14.48 29.388 29.755 27.423 Α MOTA 324 ASN A 45 51.535 1.00 13.91 28.573 26.788 27.462 51.781 A 325 0 ASN A 45 1.00 11.13 MOTA 29.681 MOTA 326 N GLN A 46 50.393 1.00 8.83 CA CB 11.62 MOTA 327 GLN A 46 49.337 30.435 1.00 26.421 25.487 328 GLN A 46 48.390 31.080 1.00 10.13 ATOM MOTA CG GLN A 46 49.076 32.083 1.00 14.66 ATOM 330 CD GLN A 46 26.259 49.792 33.170 1.00 18.72 OE1 GLN A . 46 26.983 49.165 33.937 1.00 18.65 MOTA 331 NE2 GLN A 46 26.133 51.116 33.228 1.00 16.99 MOTA 332 333 GLN A 46 28.408 48.543 29.491 1.00 10.06 MOTA 46 29.275 28.232 ATOM GLN A 47.818 29.956 1.00 10.43 334 335 N PHE Α 47 48.691 28.174 1.00 8.72 MOTA CA PHE A 47 29.055 48.025 27.148 1.00 7.46 MOTA 336 CB PHE A 47 28.191 47.487 25.992 1.00 7.56 MOTA 337 26.366 27.559 1.00 ATOM 338 CG PHE A 47 27.271 46.349 12.11 45.651 45.945 **ATOM** 339 CD1 PHE A 47 27.433 1.00 11.35 CD2 PHE A 47 26.268 25.474 1.00 14.21 MOTA 340 44.567 27.861 1.00 9.31 ATOM 341 CE1 PHE A 47 26.616 1.00 CE2 PHE A 47 25.442 44.859 25.761 9.84 MOTA 342 CZ 25.617 44.167 26.959 1.00 10.19 MOTA 343 PHE A 47 1.00 344 Ĉ 47 30.053 48.988 26.484 12.94 MOTA PHE A 26.022 14.11 MOTA 345 0 PHE A 47 31.109 48.580 1.00 29.677 50.257 26.378 1.00 11.49 MOTA 346 . N GLY A 48 13.51 ATOM 347 CA GLY A 48 30.551 51.222 25.731 1.00 ATOM 348 č GLY A 48 30.027 52.642 25.833 1.00 15.44 52.908 0 GLY A 48 28.999 26.459 1.00 16.60 ATOM 349 THR A 30.722 53.566 25.187 1.00 14.37 350 N 49 ATOM CA CB 25.256 1.00 13.58 THR A 49 30.333 54.967 ATOM 351 31.576 32.234 55.843 25.161 THR A 49 1.00 14.46 MOTA 352 THR A 55.567 49 23.924 1.00 15.00 ATOM 353 OG1 55.524 55.436 56.511 32.558 26.322 1.00 13.17 354 CG2 49 ATOM 29.301 28.716 24.216 24.370 23.162 1.00 14.30 A THR A 49 MOTA 355 С 1.00 12.47 0 MOTA 356 THR A 49 1.00 54.659 55.116 13.09 A 29.062 MOTA 357 N ASN A 50 28.076 22.173 20.785 19.739 1.00 14.85 MOTA 358 CA ASN A 50 1.00 28.324 27.379 15.63 MOTA 359 CB ASN A 50 54.519 55.096 55.883 1.00 18.88 MOTA 360 CG ASN A 50 26.472 27.574 20.059 **ATOM** 361 OD1 ASN A 50 1.00 19.28 18.489 1.00 19.28 MOTA 362 ND2 ASN A 50 54.707 26.669 54.751 53.739 22.615 1.00 14.82 MOTA 363 ASN A 50 22.187 26.099 14.58 364 0 ASN A 50 1.00 ATOM 365 THR A 51 26.097 55.608 23.443 1.00 13.25 ATOM 15.77 24.782 THR A 51 55.377 23.988 1.00 MOTA 366 25.242 24.973 24.595 17.96 CB THR A 56.210 1.00 ATOM 367 57.574 16.18 MOTA 368 OG1 THR A 51 24.937 1.00 369 CG2 THR A 25.506 55.684 26.332 1.00 18.64 MOTA 51 23.581 55.539 23.053 1.00 18.71 370 C THR A ATOM 51 23.512 371 ō THR A 22.440 55.436 1.00 19.68 ATOM 55.795 21.761 1.00 372 THR A 52 23.820 16.82 ATOM N 55.865 19.67 373 CA THR A 52 22.702 20.827 1.00 ATOM 23.017 56.666 52 19.524 1.00 22.55 CB THR A ATOM 374 24.028 56.006 18.744 375 THR 52 1.00 MOTA OG1

ATOM	376	CG2	THR A	52	23.460	EQ 001	10 075	1 00 31 03	_
ATOM	377					58.081	19.875	1.00 21.07	Α
ATOM	377 378	C	THR A	52	22.342	54.428	20.446	1.00 17.92	Α
ATOM	379		THR A	52	21.270	54.175	19.905	1.00 17.96	Α
		N	LYS A	53	23.238	53.488	20.740	1.00 14.41	A
ATOM	380	CA	LYS A	53	22.978	52.080	20.427	1.00 12.53	Α
ATOM	381	CB	LYS A	53	24.292	51.292	20.406	1.00 14.33	A
ATOM	382	CG	LYS A	53	25.207	51.573	19.213	1.00 17.93	A
MOTA	383	CD	LYS A	53	26.478	50.731	19.324	1.00 18.20	A
ATOM	384	CE	LYS A	53	27.477	51.052	18.214	1.00 21.01	A
ATOM ATOM	385	NZ	LYS A	53	26.908	50.784	16.865	1.00 22.67	A
ATOM	386 387	C	LYS A	53	22.045	51.470	21.474	1.00 12.72	Ā
ATOM	388	И	LYS A ASP A	53	22.075	51.869	22.635	1.00 11.93	A
ATOM	389	ČA	ASP A	54 54	21.223 20.298	50.499	21.064	1.00 13.58	Ą
ATOM	390	CB	ASP A	54	18.887	49.826 49.745	21.982 21.380	1.00 10.96	A
ATOM	391	ČĞ	ASP A	54	18.249	51.107	21.380	1.00 12.81	A
ATOM	392	OD1	ASP A	54	18.010	51.529	20.059	1.00 19.07 1.00 17.31	A A
ATOM	393	OD2	ASP A	54	17.997	51.759	22.260	1.00 17.31	A
ATOM	394	Ċ	ASP A	54	20.819	48.416	22.246	1.00 8.44	Â
ATOM	395	Õ	ASP A	54	21.505	47.837	21.407	1.00 14.56	A
ATOM	396	N	VAL A	55	20.485	47.875	23.411	1.00 12.75	Ä
ATOM	397	CA	VAL A	55	20.919	46.541	23.799	1.00 12.22	A
MOTA	398	CB	VAL A	55	21.150	46.486	25.328	1.00 7.89	A
ATOM	399	CG1	VAL A	55	21.596	45.057	25.775	1.00 7.35	A
ATOM	400	CG2	VAL A	55	22.229	47.518	25.707	1.00 6.23	A
ATOM	401	C	VAL A	55	19.840	45.540	23.386	1.00 9.36	A
ATOM	402	0	VAL A	55	18.659	45.768	23.630	1.00 11.95	Α
ATOM	403	Ŋ	HIS A	56	20.258	44.441	22.755	1.00 9.82	A
ATOM	404	CA	HIS A	56	19.323	43.432	22.285	1.00 8.89	A
ATOM	405	CB	HIS A	56	19.552	43.218	20.782	1.00 8.33	A
ATOM	406	CG	HIS A	56	19.455	44.485	19.985	1.00 9.48	A
ATOM	407		HIS A	56	20.414	45.264	19.430	1.00 11.14	A
ATOM ATOM	408 409	ND1 CE1	HIS A	56 56	18.255	45.121	19.738	1.00 13.82	A
ATOM	410		HIS A	56 56	18.483 19.783	46.236	19.064	1.00 12.14	A
ATOM	411	C	HIS A	56	19.389	46.345	18.866	1.00 12.83	A
ATOM	412	ŏ	HIS A	56	18.419	41.331	23.033 23.039	1.00 9.87 1.00 8.84	A A
ATOM	413	Ň	TRP A	57	20.531	41.797	23.649	1.00 10.03	Ä
ATOM	414	CA	TRP A	57	20.618	40.535	24.385	1.00 10.03	A
ATOM	415	CB	TRP A	57	20.753	39.340	23.430	1.00 7.72	Â
ATOM	416	ĊĠ	TRP A	57	22.078	39.288	22.673	1.00 9.96	Ā
ATOM	417	CD2	TRP A	57 .	23.188	38.398	22.935	1.00 8.55	A
ATOM	418	CE2	TRP A	57 .	24.161	38.642	21.945	1.00 7.37	Ä
ATOM	419	CE3	TRP A	57	23.442	37.413	23.914	1.00 9.79	A
ATOM	420	CD1	TRP A	57	22.430	40.021	21.570	1.00 9.43	A
ATOM	421	NEl	TRP A	57	23.685	39.637	21.124	1.00 7.89	A
MOTA	422	CZ2	TRP A	57	25.381	37.936	21.895	1.00 8.66	A
ATOM	423	CZ3	TRP A	57	24.647	36.713	23.862	1.00 7.59	Α
ATOM	424	CH2	TRP A	57	25.605	36.982	22.852	1.00 13.66	A
ATOM	425	0	TRP A	57 52	21.830	40.575 41.481	25.286	1.00 9.35	A
ATOM ATOM	426 427	N	ALA A	57 58	22.648 21.945	39.579	25.179 26.159	1.00 9.06	A
ATOM	428	CA	ALA A	58	23.081	39.523	27.061	1.00 6.35 1.00 8.26	A A
ATOM	429	CB	ALA A	58	22.755	40.280	28.362	1.00 10.03	Ä
MOTA	430	Č	ALA A	58	23.471	38.101	27.407	1.00 7.97	Ä
ATOM	431	ō	ALA A	58	22.638	37.207	27.401	1.00 9.27	A
ATOM	432	N	GLY A	59	24.749	37.908	27.702	1.00 9.58	A
ATOM	433	CA	GLY A	59	25.213	36.608	28.184	1.00 7.09	A
ATOM	434	С	GLY A	59	25.342	36.791	29.695	1.00 9.23	Α
ATOM	435	0	GLY A	59	25.779	37.846	30.159	1.00 10.14	A
ATOM	436	N	SER A	60	24.938	35.801	30.484	1.00 5.73	A
ATOM	437	CA	SER A	60	25.058	35.917	31.938	1.00 5.95	A
ATOM	438	CB	SER A	60	23.815	36.613	32.535	1.00 10.17	A
ATOM	439	OG	SER A	60	23.896	36.707	33.966	1.00 9.12	A
MOTA	440	C	SER A	60	25.161	34.540	32.566	1.00 8.54	A
ATOM	441	O	SER A	60	24.437	33.632	32.146	1.00 9.12	A
MOTA	442	N	ASP A	61	26.067	34.376	33.536	1.00 9.30	A
ATOM	443	CA	ASP A	61 61	26.132	33.124 32.485	34.292 34.381	1.00 8.23	A N
ATOM	444 445	CB CG	ASP A	61 61	27.543 28.600	32.485		1.00 6.13 1.00 13.41	A A
ATOM ATOM	445		ASP A	61	28.869	32.961	33.649 32.449	1.00 13.41 1.00 10.15	A A
ATOM	447		ASP A	61	29.150	34.191	34.281	1.00 10.15	A
ATOM	448	C	ASP A	61	25.597	33.456	35.710	1.00 13.11	A
ATOM	449	ŏ	ASP A	61	25.818	32.716	36.658	1.00 10.77	Ä
ATOM	450	Ň	SER A	62	24.914	34.595	35.833	1.00 7.59	À
ATOM	451	CA	SER A	62	24.213	34.995	37.067	1.00 10.29	A

ATOM	452	СВ	000 3		0				
ATOM	453	OG	SER A		24.522 23.631	36.437 36.832	37.497 38.549	1.00 11.42	A
MOTA	454	č	SER A		22.721	34.944	36.706	1.00 11.94 1.00 10.70	A A
MOTA	455	0	SER A		22.274	35.605	35.745	1.00 9.88	Â
MOTA	456	N	LYS A	63	21.944	34.168	37.449	1.00 8.95	A
ATOM	457	CA	LYS A		20.519	34.089	37.137	1.00 10.67	A
ATOM ATOM	458	CB	LYS A		19.834	32.996	37.959	1.00 16.43	A
ATOM	459 460	CG CD	LYS A		20.046	31.605	37.461	1.00 15.34	Ā
ATOM	461	CE	LYS A		· 19.148 17.702	30.619 30.671	38.201 37.728	1.00 19.94 1.00 16.96	A A
MOTA	462	NZ	LYS A	63	16.903	29.498	38.239	1.00 14.00	À
MOTA	463	С	LYS A	63	19.786	35.392	37.399	1.00 12.40	Ä
ATOM	464	0	LYS A		20.192	36.183	38.257	1.00 10.37	A
ATOM	465	N	LEU A	64	18.699	35.604	36.659	1.00 7.10	A
ATOM ATOM	466 467	CA CB	LEU A	64 64	17.863 16.824	36.778	36.842	1.00 9.01	Ą
ATOM	468	ĊĠ	LEU A	64	17.447	36.871 37.378	35.716 34.405	1.00 6.27 1.00 7.74	A A
ATOM	469	CD1	LEU A	64	16.586	37.016	33.190	1.00 8.96	Ä
ATOM	470	CD2	LEU A	64	17.619	38.883	34.510	1.00 9.78	A
ATOM	471	C	LEU A	64	17.168	36.569	38.197	1.00 10.06	Α.
ATOM ATOM	472 473	O N	LEU A	64	16.712	35.465	38.508	1.00 11.86	A
ATOM	474	CA	THR A	65 65	17.120 16.503	37.614 37.481	39.012 40.334	1.00 6.99 1.00 11.54	A
MOTA	475	CB	THR A	65	17.097	38.472	41.341	1.00 13.33	A A
ATOM	476	OG1	THR A	65	16.736	39.811	40.952	1.00 13.29	Ä
ATOM	477	CG2	THR A	65	18.644	38.331	41.395	1.00 11.42	A
ATOM ATOM	478	Ç	THR A	65	15.009	37.751	40.239	1.00 13.06	A
ATOM	479 480	N N	THR A	65 66	14.530 14.272	38.268 37.374	39.233 41.281	1.00 9.78	A
ATOM	481	CA	ALA A	66	12.831	37.607	41.287	1.00 11.93 1.00 16.82	A A
ATOM	482	CB	ALA A	66	12.231	37.106	42.601	1.00 17.23	Ä
ATOM	483	C	ALA A	66	12.527	39.104	41.105	1.00 14.69	A
MOTA	484	O.	ALA A	66	11.587	39.467	40.409	1.00 12.67	A
ATOM ATOM	485 486	N CA	SER A	67 67	13.322 13.150	39.962 41.417	41.744 41.640	1.00 15.98 1.00 12.48	A
MOTA	487	CB	SER A	67	14.108	42.166	42.579	1.00 12.48 1.00 18.87	A A
MOTA	488	ŌĞ	SER A	67	13.662	42.081	43.921	1.00 28.18	Â
ATOM	489	Ċ	SER A	67	13.403	41.890	40.212	1.00 12.05	A
MOTA	490	O.	SER A	67	12.630	42.671	39.666	1.00 12.31	A
ATOM ATOM	491 492	N CA	GLN A GLN A	68 68	14.495 14.796	41.426 41.803	39.616	1.00 8.93	A
MOTA	493	CB	GLN A	68	16.123	41.176	38.237 37.768	1.00 8.58 1.00 11.33	A A
ATOM	494	CG	GLN A	68	17.343	41.749	38.524	1.00 12.20	Ä
ATOM	495	CD	GLN A	68	18.656	41.026	38.242	1.00 15.53	A
ATOM ATOM	496	OE1		68	18.690	39.815	38.034	1.00 11.56	A
ATOM	497 498	NE2 C	GLN A	68 68	19.743 13.673	41.770 41.385	38.255 37.290	1.00 14.33 1.00 12.61	A A
ATOM	499	ŏ	GLN A	68	13.270	42.158	36.423	1.00 10.84	Ä
ATOM	500	N	LEU A	69	13.163	40.164	37.455	1.00 13.81	A
ATOM	501	CA	LEU A	69	12.093	39.687	36.576	1.00 13.47	A
ATOM ATOM	502 503	CB CG	LEU A	69 69	11.809	38.189	36.829	1.00 13.08	A
ATOM	504	CD1	LEU A	69	12.989 12.772	37.268 35.862	36.496 37.071	1.00 14.83 1.00 16.18	A A
MOTA	505			69	13.140	37.233	34.981	1.00 11.50	Ä
MOTA	506	C	LEU A	69	10.810	40.484	36.778	1.00 13.14	A
ATOM	507	Ō	LEU A	69	10.138	40.860	35.814	1.00 13.07	A
ATOM ATOM	508 509	N CA	ALA A	70 70	10.465 9.227	40.728	38.034	1.00 12.61	A
ATOM	510	CB	ALA A	70	8.951	41.443 41.453	38.328 39.841	1.00 12.01 1.00 13.19	A A
MOTA	511	Č	ALA A	70	9.275	42.852	37.785	1.00 12.44	A
ATOM	512	0	ALA A	70	8.297	43.334	37.240	1.00 16.48	A
MOTA	513	N	THR A	71	10.419	43.512	37.928	1.00 12.49	A
ATOM ATOM	514 515	CA CB	THR A	71 71	10.574 11.914	44.865	37.436	1.00 11.47 1.00 18.09	A
ATOM	516	OG1	THR A	71	11.834	45.463 45.621	37.941 39.370	1.00 18.09 1.00 19.27	A A
ATOM	517	CG2	THR A	71	12.225	46.811	37.267	1.00 13.43	Ä
ATOM	518	Ç	THR A	71	10.501	44.905	35.902	1.00 11.57	A
MOTA	519	0	THR A	71	9.881	45.800	35.337	1.00 15.24	A
ATOM	520	N	TYR A	72	11.116	43.941	35.223	1.00 13.13	A
ATOM ATOM	521 522	CA CB	TYR A	72 72	11.049 11.927	43.941 42.839	33.760 33.174	1.00 12.95 1.00 11.21	A A
ATOM	523	CG	TYR A	72	12.194	43.011	31.682	1.00 12.14	Ä
ATOM	524	CD1	TYR A	72	13.122	43.936	31.224	1.00 11.17	A
ATOM	525		TYR A	72	13.376	44.101	29.841	1.00 11.35	A
ATOM	526	CD2	TYR A	72 72	11.515	42.239	30.736	1.00 14.03	A
MOTA	527	CE2	TYR A	72	11.765	42.378	29.372	1.00 8.40	A

MOTA	528	CZ	TYR	n -	20	10 600	43 303	20 020		
					72	12.689	43.303	28.928	1.00 10.19	A
MOTA	529	ОН	TYR		72	12.949	43.425	27.585	1.00 10.75	A
ATOM	530	C	TYR	A 7	72	9.604	43.705	33.313	1.00 13.42	A
ATOM	531	0	TYR	A 7	72	9.111	44.346	32.394	1.00 14.74	A
ATOM	532	N	ALA		73	8.943	42.763	33.970		
ATOM	533	CA			-				1.00 14.68	A
			ALA		73	7.563	42.423	33.650	1.00 15.37	A
ATOM	534	CB	ALA	A 7	73	7.090	41.293	34.556	1.00 10.74	A
ATOM	535	С	ALA	A 7	73	6.631	43,626	33.791	1.00 14.04	. A
ATOM	536	0	ALA	A 7	73	5.711	43.811	32.992	1.00 13.32	A
ATOM	537	Ñ	ALA		74					
						6.856	44.436	34.815	1.00 16.88	A
ATOM	538	CA	ALA		74	6.006	45.602	35.032	1.00 17.08	A
ATOM	539	CB	ALA	A 7	74	6.082	46.052	36.505	1.00 13.94	A
MOTA	540	С	ALA	A 7	74	6.354	46.768	34.118	1.00 20.94	A
MOTA	541	0	ALA	A 7	74	5.475	47.357	33.476	1.00 17.04	A
ATOM	542	N	ASN		75	7.645	47.061	34.014		
ATOM	543	CA								A
			ASN		75	8.125	48.203	33.241	1.00 17.76	A
ATOM	544	CB			75	9.439	48.712	33.839	1.00 19.52	A
ATOM	545	CG	asn	A 7	75	9.308	49.152	35.289	1.00 24.86	A
ATOM	546	OD1	ASN	A 7	75	10.308	49.485	35.929	1.00 26.13	A
ATOM	547	ND2	ASN	A 7	75	8.084	49.150	35.816	1.00 27.41	Ä
ATOM	548	C	ASN		⁷ 5	8.356	48.070	31.741		
									1.00 18.90	A
ATOM	549	0	ASN		' 5	8.049	48.996	30.986	1.00 16.37	A
ATOM	550	N	LYS		'6	8.910	46.944	31.304	1.00 13.20	A
ATOM	551	CA	LYS	A 7	'6	9.235	46.810	29.888	1.00 14.05	A
ATOM	552	CB	LYS	A 7	6	10.709	46.412	29.730	1.00 11.81	A
ATOM	553	CG	LYS	A 7	6	11.706	47.189	30.561	1.00 15.12	Ä
ATOM	554	CD			6	11.710				
							48.673	30.208	1.00 18.17	Α
ATOM	555	CE			6	12.942	49.342	30.783	1.00 21.75	A
ATOM	556	NZ	LYS	A. 7	6	12.858	50.832	30.665	1.00 23.76	A
ATOM	557	С	LYS	A 7	'6	8.414	45.835	29.064	1.00 14.89	A
ATOM	558	0	LYS .	A 7	6	8.184	46.053	27.874	1.00 15.18	A
ATOM	559	N	GLN		7	7.996	44.746	29.686		
ATOM	560	CA	GLN							A
					27	7.240	43.718	28.978	1.00 15.70	A
ATOM	561	CB	GLN .		7	6.865	42.625	29.964	1.00 14.98	A
ATOM	562	CG	GLN .		7	6.139	41.438	29.381	1.00 18.91	Α
ATOM	563	CD	GLN .	A 7	7	5.848	40.392	30.441	1.00 26.71	A
ATOM	564	OE1	GLN .		7	6.747	39.965	31.167	1.00 25.14	Ä
ATOM	565	NE2	GLN .		· 7					
						4.593	39.968	30.534	1.00 21.79	A
ATOM	566	C	GLN .		'7	5.989	44.205	28.222	1.00 16.81	A
ATOM	567	0	GLN .	A 7	'7	5.718	43.746	27.114	1.00 17.54	A
ATOM	568	N	PRO .	A 7	8	5.216	45.142	28.800	1.00 19.48	A
ATOM	569	CD	PRO .		8	5.255	45.765	30.134	1.00 12.68	A
ATOM	570	CA	PRO .		8	4.023	45.575	28.056		
ATOM	571	CB	PRO		8				1.00 15.54	A
						3.428	46.654	28.958	1.00 19.25	A
ATOM	572	CG	PRO .		8	3.787	46.150	30.342	1.00 17.82	A
ATOM	573	С			8	4.325	46.080	26.646	1.00 20.10	A
MOTA	574	0	PRO .	A 7	8	3.614	45.748	25.692	1.00 18.30	A
MOTA	575	N	GLY .	A 7	9	5.393	46.860	26.512	1.00 15.27	A
ATOM	576	CA	GLY .		9	5.745	47.379	25.210	1.00 17.02	Ä
ATOM	577	Ċ	GLY		9	6.802	46.616	24.427		
ATOM	578									A
		o.			9	6.839	46.731	23.199	1.00 15.38	A
ATOM	579	N			0	7.639	45.830	25.111	1.00 13.75	A
ATOM	580	CA			0	8.723	45.092	24.440	1.00 14.43	A
ATOM	581	CB	TRP 2	8 A	0	10.062	45.359	25.136	1.00 11.39	A
ATOM	582	CG	TRP 2	A. 8	0	10.549	46.780	25.071	1.00 15.13	A
ATOM	583		TRP		Ö	11.672	47.329	25.767	1.00 13.37	Ä
ATOM	584		TRP		ŏ	11.823	48.666			
ATOM								25.332	1.00 13.52	A
	585	CE3	TRP		o_	12.573	46.817	26.716	1.00 12.51	. А
ATOM	586		TRP I			10.068	47.779	24.271	1.00 19.04	A
ATOM	587	NEl	TRP I	A 8	0	10.831	48.919	24.418	1.00 16.58	A
ATOM	588	CZ2	TRP A	8 A	0	12.840	49.502	25.812	1.00 15.28	Α
ATOM	589	CZ3	TRP 2			13.586	47.645	27.197	1.00 13.05	A
ATOM	590	CH2	TRP							
						13.710	48.979	26.739	1.00 16.82	A
ATOM	591	Ç	TRP			8.560	43.580	24.349	1.00 16.83	A
ATOM	592	0	TRP A			9.361	42.909	23.685	1.00 16.92	A
ATOM	593	N	GLY A	A 8	1	7.562	43.031	25.033	1.00 15.56	A
ATOM	594	CA	GLY 2			7.380	41.584	25.001	1.00 11.72	Ä
ATOM	595	C	GLY Z			8.071	40.921	26.186		
									1.00 13.05	A
ATOM	596	Ö.	GLY A			8.856	41.557	26.894	1.00 8.85	A
ATOM	597	N	LYS A			7.784	39.638	26.395	1.00 10.46	A
MOTA	598	CA	LYS A			8.374	38.882	27.499	1.00 11.96	A
ATOM	599	CB	LYS A	8 A	2	7.702	37.506	27.608	1.00 11.82	A
ATOM	600	ĊĠ	LYS A			6.341	37.497	28.315	1.00 12.27	Ä
ATOM	601	CD	LYS A			5.578	36.167	28.137		
									1.00 15.83	A
ATOM	602	CE	LYS A			6.296	34.971	28.782	1.00 21.44	A
ATOM	603	NZ	LYS A	4 8	2	6.571	35.179	30.234	1.00 18.30	A

						• -		_	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	89012345678901234567890123444444444445555555555666666666677	CONCECCOON CECCOON CECCOOCON CECCOOCON CECCOON CECOON CECCOON CECOON CECOON CECCOON CECOON CECO	LEUULEE AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	2213333333444444445555555555566666667777778888888888	9.8613 10.6457 12.0955 13.6257 12.0918 13.6210 111.2894 13.7260 13.7326 13.7326 13.7326 13.7326 14.9918 13.7326 14.9918 15.0212 16.2532 17.4508 16.2532 17.3866 17.3866 17.3866 17.3918 18.6212 17.3866 17.3918 18.6213 18.6213 18.6223 18.6326 19.1336 18.223 18.6326 19.1336 18.223 18.233 18.2	8.5.5.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	7.6.3.1648766222331.3.16487662222222222222222222222222222222222	1.00 12.45 1.00 11.99 1.00 10.87 1.00 16.45 1.00 13.98 1.00 13.98 1.00 13.97 1.00 12.95 1.00 12.94 1.00 12.14 1.00 9.04 1.00 15.02 1.00 15.02 1.00 15.02 1.00 15.02 1.00 17.70 1.00 8.79 1.00 18.79 1.00 19.15 1.00 10.66 1.00 9.43 1.00 9.43 1.00 10.66 1.00 11.00 8.91 1.00 10.13 1.00 10.13 1.00 10.13 1.00 10.13 1.00 10.13 1.00 10.13 1.00 10.13 1.00 11.47 1.00 12.36 1.00 12.36 1.00 12.36 1.00 12.36 1.00 12.36 1.00 12.36 1.00 12.36 1.00 12.36 1.00 13.46 1.00 12.36	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ATOM ATOM ATOM	667 668 669	CG2 C O	THR A THR A THR A	91 91 91	30.156 31.116 30.326	26.862 24.140 24.055	33.214 33.686	1.00 11.41 1.00 10.91	A A
MOTA MOTA	671 672	CA CB	SER A SER A	92 · 92	32.972 34.167	23.598 22.642	35.122 35.011	1.00 11.52 1.00 9.75 1.00 12.03	. A A A
ATOM ATOM ATOM ATOM	673 674 675 676	OG O N	SER A SER A VAL A	92 92 92 93	35.213 33.490 33.397 33.980	23.181 24.962 25.974 25.003	34.186 35.601 34.883 36.837	1.00 10.62 1.00 10.73 1.00 8.53 1.00 8.68	A A A
ATOM ATOM ATOM	677 678 679	CA CB	VAL A VAL A VAL A	93 93 93	34.640 34.010 34.896	26.197 26.736 27.906	37.369 38.667 39.215	1.00 7.08 1.00 7.09 1.00 10.40	A A A

MOTA	680	CG2	VAL	A 93	32.592	27.269	38.376	1.00 10.45	A
ATOM	681	C	VAL		36.033	25.643	37.694	1.00 9.49	A
ATOM	682	ŏ	VAL		36.162	24.745	38.527		Ä
MOTA	683	Ň	ALA						
ATOM	684	CA	ALA		37.064	26.148	37.025	1.00 8.00	A
					38.425	25.645	37.236	1.00 8.64	A
ATOM	685	CB	ALA		39.204	25.722	35.921	1.00 7.88	A
ATOM	686	C	ALA		39.197	26.374	38.329	1.00 7.97	A
MOTA	687	O.	ALA .		38.906	27.530	38.625	1.00 8.61	A
MOTA	688	N	ILE		40.210	25.709	38.894	1.00 5.77	Ā
ATOM	689	CA	ILE .		41.016	26.290	39.963	1.00 7.30	Ā
ATOM	690	CB	ILE .		40.870	25.486	41.307	1.00 9.66	Ā
ATOM ATOM	691	CG2		A 95	41.522	26.261	42.465	1.00 6.29	A
	692	CG1 CD1	ILE .		39.401	25.218	41.641	1.00 10.13	A
MOTA	693		ILE .		38.566	26.491	41.909	1.00 13.60	A
ATOM	694	C	ILE .		42.496	26.263	39.572	1.00 8.10	A
ATOM ATOM	695 696	O N	PRO		43.261	25.373	40.001	1.00 10.23	A
ATOM					42.923	27.216	38.742	1.00 6.65	A
ATOM	697 698	CD CA	PRO .		42.133	28.263	38.063	1.00 6.16	A
ATOM	699	CB	PRO .		44.330	27.265	38.326	1.00 7.43	A
ATOM	700	CG	PRO		44.275 43.207	28.107	37.054	1.00 9.06	A
ATOM	701	C	PRO		45.133	29.147 27.938	37.446 39.434	1.00 8.84	A
ATOM	702	ŏ	PRO		44.574	28.645	40.277	1.00 10.94 1.00 8.21	A A
ATOM	703	N	PHE		46.441	27.715	39.447	1.00 9.05	Â
ATOM	704	CA	PHE		47.276	28.302	40.480	1.00 8.97	Ä
MOTA	705	CB	PHE		47.259	27.414	41.732	1.00 10.70	A
ATOM	706	CG		A 97	47.748	26.015	41.477	1.00 9.86	Ä
ATOM	707	CD1		A 97	49.114	25.720	41.524	1.00 10.13	A
ATOM	708	CD2		A 97	46.862	25.010	41.121	1.00 7.97	Ä
ATOM	709	CE1		A 97	49.589	24.436	41.211	1.00 9.97	A
ATOM	710	CE2		A 97	47.326	23.704	40.802	1.00 8.94	A
MOTA	711	CZ		A 97	48.709	23.433	40.852	1.00 7.63	A
ATOM	712	С	PHE .		48.698	28.418	39.949	1.00 9.55	A
ATOM	713	0	PHE		49.054	27.761	38.962	1.00 9.51	A
ATOM	714	N	ARG .		49.498	29.260	40.597	1.00 8.26	Ä
ATOM	715	CA	ARG .	8e A	50.900	29.457	40.205	1.00 11.26	A
MOTA	716	CB	ARG .	A 98	51.149	30.927	39.808	1.00 13.41	A
ATOM	717	CG	ARG .	A 98	52.624	31.218	39.452	1.00 12.41	A
ATOM	718	CD	ARG .	A 98	52.902	32.648	39.002	1.00 15.00	A
MOTA	719	NE	ARG .	A 98	54.350	32.871	38.907	1.00 20.95	A
ATOM	720	CZ	ARG .		55.048	33.714	39.670	1.00 19.61	A
MOTA	721	NH1	ARG		54.454	34.446	40.606	1.00 16.05	A
MOTA	722	NH2	ARG .		56.361	33.824	39.500	1.00 22.95	. A
ATOM	723	C	ARG		51.765	29.079	41.415	1.00 9.82	A
ATOM	724	0	ARG .		51.955	29.881	42.327	1.00 12.72	A
MOTA	725	N	LYS :		52.258	27.838	41.417	1.00 13.72	Ā
ATOM	726	CA	LYS		53.081	27.314	42.510	1.00 14.88	A
MOTA MOTA	727 728	CB CG		A 99	52.179	26.922	43.688	1.00 10.80	A
ATOM	729	CD	LYS	A 99 A 99	52.899	26.401	44.919	1.00 8.32	A
ATOM	730	CE		A 99	53.744 54.525	27.518 27.007	45.557	1.00 10.62	A
ATOM	731	NZ	LYS		55.346	28.125	46.790 47.368	1.00 10.76 1.00 13.56	A A
ATOM	732	Ċ	LYS		53.809	26.095	41.956	1.00 14.43	A
ATOM	733	ŏ	LYS		53.200	25.056	41.701	1.00 15.34	Ä
ATOM	734	N	ALA	100	55.120	26.226	41.769	1.00 12.67	Ä
MOTA	735	CA	ALA A	A 100	55.911	25.143	41.202	1.00 14.53	A
MOTA	736	CB	ALA A	100	57.354	25.629	40.914	1.00 14.12	A
ATOM	737	С		A 100	55.960	23.900	42.072	1.00 14.42	A
ATOM	738	0		A 100	55.929	23.987	43.303	1.00 16.53	A
ATOM	739	N		A 101	56.061	22.751	41.409	1.00 10.16	A
ATOM	740	CA		101	56.133	21.476	42.096	1.00 11.78	A
ATOM	741	Ç	GLY A		55.786	20.360	41.136	1.00 17.78	A
ATOM	742	0		101	54.853	20.479	40.338	1.00 14.78	A
ATOM	743	Ŋ		102	56.543	19.274	41.195	1.00 13.81	A
ATOM	744	CA	GLY A		56.273	18.156	40.313	1.00 20.81	A
ATOM	745	Ç	GLY A		55.051	17.348	40.720	1.00 16.58	A
ATOM	746	0	GLY A		54.498	16.627	39.898	1.00 16.24	A
MOTA	747	N	ASN A		54.624	17.451	41.976	1.00 17.72	A
ATOM	748	CA	ASN A		53.465	16.675	42.434	1.00 16.85	A
ATOM ATOM	749 750	CB CG	ASN A		53.372 54.365	16.694 15.760	43.963	1.00 15.22	A
ATOM ATOM	751	OD1	ASN A		54.365 55.279	15.249	44.615 43.955	1.00 23.02 1.00 19.32	A
ATOM	752	ND2	ASN A		54.205	15.535	45.916	1.00 19.32	A A
ATOM	753	C	ASN A	103	52.145	17.197	41.885	1.00 15.75	A
ATOM	754	ŏ	ASN A		51.991	18.390	41.666	1.00 11.02	Ä
ATOM	755	Ň	ALA A		51.183	16.306	41.693	1.00 16.02	Ä

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	77777777777777777777777777777777777777	CCC ON CCCC ON CCCCOOC ON CCCCCC CON CCCCCC CON CCCCCCC CON CCCCCC CON CCCCCCC CON CCCCCCC CON CCCCCCCC	VAL A 1 ASP A 1 LEU A	044 044 0055 00000000000000000000000000	0849.01980.019900.019900.01990.01990.01990.01990.01990.01990.01990.01990.01990.01990.019900.01990.01990.01990.01990.01990.01990.01990.01990.01990.0199	16.744 15.537 16.5387 17.4286 17.4286 18.5327 18.5327 18.6569 19.7491 18.8659 17.319 18.8659 17.319 17.319 17.319 17.319 17.319 17.319 17.319 17.558 17.558 17.558 17.5944 18.205 18.205 18.206 18.206 18.206 18.207 18.208 18.208 18.208 18.208 19.208	9145177554456294817310097423.1154949404444444444444444444444444444444	1.000 1.000	16.2985.657 15.2670.33335.84477 15.36.34477.03333111.3.2758.4477.0113.3.2758.4477.0113.3.2758.111.3.216.34477.0113.315.5.223.4477.0113.315.5.223.4452.223.4452.223.4452.223.4452.233.42.2333.42.23333.42.2333.42.2333.42.2333.42.2333.42.2333.42.2333.42.2333.42.2333.42.2333.42.233	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	794 795 796 797 798 799 800 801 802 803	CONCACE COCCE	VAL A 1 VAL A 1 LYS A 1	09 09 10 10 10 10 10 10	36.705 36.646 36.995 37.307 37.597 38.038 36.987 37.436 36.482 38.532	20.397 21.622 19.666 20.306 19.237 19.793 20.726 21.170 22.129 21.234	50.228 50.265 51.301 52.593 53.650 55.655 57.033 57.688 52.452	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	8.60 9.21 9.28 7.04 7.60 9.51 7.71 15.09 11.10 8.55	A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM	805 806 807 808 809 810 811	N CA CB CG CD OE1 OE2	GLU A 1: GLU A 1: GLU A 1: GLU A 1: GLU A 1: GLU A 1: GLU A 1:	11 11 11 11 11 11 11	39.530 40.711 41.817 42.582 43.527 44.310 43.477	20.803 21.640 20.836 19.940 18.960 18.296 18.851	51.696 51.495 50.800 51.784 51.098 51.808 49.860	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	8.56 11.39 13.45 15.25 16.99 12.70 13.80	A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	816 817 818 819 820 821 822 823 824 825 826	CB CG CD1 CD2 C O N CA C O CB	LEU A 1 CYS A 1	12 12 12 12 12 13 13	38.127 37.520 38.486 36.183 38.491 38.782 37.598 36.869 37.806 37.806	23.339 24.486 24.835 24.067 24.845 26.036 24.370 25.251 26.040 27.243 24.414	47.728 46.906 45.793 46.307 49.569 50.511 51.407 52.332 52.550 52.215	1.00 1.00 1.00 1.00 1.00 1.00	12.29 13.68 14.87 23.81 11.64 9.35 9.13 10.02 10.42 9.94 7.06	A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM	827 828 829 830 831	SG N CA C	CYS A 11 GLY A 11 GLY A 11 GLY A 11 GLY A 11	.4 .4 .4	34.495 38.815 39.774 40.615 40.974	23.714 25.357 25.979 27.023 28.045	51.225 52.854 53.746 53.048 53.660	1.00 1.00 1.00 1.00	12.97 8.53 8.15 8.58 9.42	A A A A

ATOM	832	N	VAL .	A 115	40.929	26.780	51.773	1.00 8.91	A
MOTA	833	CA		A 115	41.724	27.727	51.001	1.00 11.99	Ä
ATOM	834	CB	VAL .	A 115	42.142	27.154	49.611	1.00 10.97	Ä
ATOM	835	CG1		A 115	42.754	28.274	48.736	1.00 12.08	A
ATOM	836	CG2	VAL .	A 115	43.175	26.034	49.794	1.00 9.96	Â
ATOM	837	С		A 115	40.933	28.999	50.769	1.00 10.50	
MOTA	838	0		A 115	41.450	30.107	50.958	1.00 10.53	A A
MOTA	839	N		A 116	39.672	28.856	50.383	1.00 10.33	A
ATOM	840	CA		A 116	38.885	30.046	50.123	1.00 10.04	A
ATOM	841	CB		A 116	37.891	29.774	49.000	1.00 8.51	Ä
ATOM	842	CG		A 116	38.564	29.656	47.664	1.00 8.77	À
ATOM	843	CD1		A 116	39.041	28.429	47.220	1.00 7.52	Â
ATOM	844	CD2		A 116	38.792	30.791	46.892	1.00 10.79	Â
ATOM	845	CE1		A 116	39.742	28.319	46.019	1.00 11.26	Ä.
ATOM	846	CE2	PHE 2	A 116	39.494	30.708	45.682	1.00 12.98	Ä
MOTA	847	CZ		A 116	39.971	29.463	45.244	1.00 12.19	A
ATOM	848	Ç		A 116	38.236	30.713	51.319	1.00 11.72	A
ATOM	849	0		A 116	37.688	31.802	51.180	1.00 10.01	A
ATOM	850	N		A 117	38.323	30.077	52.493	1.00 7.36	A
ATOM	851	CA		A 117	37.802	30.669	53.722	1.00 12.12	Α
ATOM	852	CB		A 117	37.217	29.605	54.654	1.00 11.41	A
ATOM	853	QG		A 117	38.251	28.827	55.231	1.00 12.73	A
MOTA	854	C		A 117	38.935	31.372	54.474	1.00 12.93	Α
ATOM	855	0		A 117	38.693	32.241	55.316	1.00 9.90	A
ATOM	856	N	GLY A		40.169	30.988	54.174	1.00 14.10	A
ATOM	857	CA	GLY A		41.312	31.576	54.860	1.00 13.07	A
ATOM ATOM	858	C	GLY A		41.850	30.640	55.931	1.00 15.32	A
ATOM	859 860	O N	GLY A		42.935	30.873	56.484	1.00 15.65	A
ATOM	861	ČA	ARG A		41.107	29.575	56.241	1.00 15.32	Ā
ATOM	862	CB	ARG A		41.550 40.503	28.622	57.266	1.00 15.10	A
ATOM	863	ČĞ	ARG A		40.986	27.518	57.485	1.00 17.52	Ā
ATOM	864	CD	ARG A		39.880	26.359 25.325	58.390	1.00 19.04	A
ATOM	865	NE	ARG A		39.338	24.771	58.628 57.377	1.00 17.23	A
ATOM	866	CZ	ARG A		39.828	23.717	56.727	1.00 11.41 1.00 13.77	A
MOTA	867	NH1	ARG A		40.895	23.061	57.188	1.00 13.77	A
ATOM	868		ARG A		39.239	23.317	55.607	1.00 10.56	A A
ATOM	869	C	ARG A		42.896	27.990	56.896	1.00 14.09	A
ATOM	870	Ō	ARG A		43.749	27.784	57.757	1.00 12.49	A
ATOM	871	N	ILE A		43.074	27.672	55.620	1.00 14.25	Ä
ATOM	872	CA	ILE A		44.327	27.088	55.134	1.00 11.87	Ä
ATOM	873	CB	ILE A	120	44.066	25.956	54.113	1.00 13.86	A
ATOM	874	CG2	ILE A	A 120	45.373	25.443	53.529	1.00 12.88	A
ATOM	875	CG1	ILE A		43.349	24.796	54.812	1.00 12.97	A
ATOM	876	CD1	ILE A		42.920	23.638	53.863	1.00 12.93	A
MOTA	877	C	ILE A		45.042	28.241	54.445	1.00 16.50	A
ATOM	878	Ö.	ILE A		44.606	28.704	53.391	1.00 15.43	A
ATOM	879	N	ALA A		46.131	28.706	55.051	1.00 15.30	A
ATOM ATOM	880	CA	ALA A		46.884	29.848	54.529	1.00 14.70	A
ATOM	881 882	CB	ALA A		47.111	30.850	55.640	1.00 21.39	A
ATOM	883	ŏ	ALA A		48.211 48.868	29.482	53.904	1.00 15.45	A
ATOM	884	й	ASN A		48.608	30.329 28.227	53.284	1.00 16.44	A
ATOM	885	CA	ASN A		49.887	27.789	54.056 53.507	1.00 12.07 1.00 12.53	A
ATOM	886	CB	ASN A		50.853	27.467	54.660	1.00 12.53	A
ATOM	887	ČĞ	ASN A		52.279	27.293	54.188	1.00 16.68	A A
ATOM	888		ASN A	122	52.666	26.224	53.725	1.00 18.01	Ä
ATOM	889		ASN A		53.063	28.363	54.279	1.00 14.68	Ä
ATOM	890	С	ASN A		49.681	26.568	52.608	1.00 11.32	A
ATOM	891	0	ASN A		48.809	25.737	52.865	1.00 11.94	A
ATOM	892	N	TRP A	123	50.454	26.499	51.528	1.00 12.38	A
ATOM	893	CA	TRP A		50.365	25.390	50.580	1.00 10.94	A
MOTA	894	CB	TRP P	123	51.330	25.597	49.406	1.00 10.33	A
ATOM	895	CG	TRP A	123	50.761	26.503	48.337	1.00 12.83	A
ATOM	896			123	49.900	26.108	47.261	1.00 10.58	A
MOTA	897		TRP A		49.568	27.279	46.533	1.00 12.26	A
ATOM	898		TRP A		49.381	24.884	46.841	1.00 12.52	A
ATOM	899		TRP A		50.916	27.862	48.227	1.00 15.24	A
ATOM	900		TRP A		50.198	28.334	47.140	1.00 12.70	A
ATOM	901		TRP A		48.732	27.256	45.403	1.00 10.92	A
ATOM ATOM	902 903		TRP A		48.547	24.863	45.710	1.00 16.36	A
ATOM	903		TRP A		48.237 50.661	26.043	45.012	1.00 9.72	A
MOTA	905	0	TRP A		50.284	24.045 23.006	51.213 50.676	1.00 13.55 1.00 13.98	A N
MOTA	906	Ŋ	SER A		51.346	24.054	52.349	1.00 13.98 1.00 13.10	A A
ATOM	907	CA	SER A		51.654	22.801	53.010	1.00 11.36	A
									-

17/46

1.00 11.89 MOTA 908 CB SER A 124 52.670 23.038 54.135 A 55.132 1.00 14.19 909 OG **SER A 124** 52.130 23.884 Α ATOM 910 C SER A 124 50.361 22.161 53.564 1.00 17.25 A MOTA 20.974 53.924 1.00 13.81 **ATOM** 911 **SER A 124** 50.354 A 1.00 13.73 1.00 13.26 49.273 912 N **GLY A 125** 22.937 53.617 Α ATOM 47.999 913 CA **GLY A 125** 22.416 54.117 ATOM 1.00 19.05 1.00 15.82 47.216 21.569 53.101 ATOM 914 **GLY A 125** 125 GLY A 46.116 47.759 915 21.066 53.404 Α ATOM 1.00 11.57 1.00 13.57 51.892 916 Α ILE A 126 21.413 ATOM N 47.111 CA 20.590 50.866 ATOM 917 ILE A 126 A 47.116 1.00 10.65 1.00 10.73 ATOM 918 CB ILE A 126 21.338 49.499 Α CG2 48.369 MOTA 919 ILE Α 126 46.584 20.440 Α MOTA 920 CG1 ILE A 126 46.244 22.598 49.639 1.00 14.04 MOTA 921 CD1 ILE Α 126 46.355 23.571 48.474 1.00 21.47 Α MOTA 922 ILE 126 47.886 19.270 50.794 1.00 14.42 A 19.228 MOTA 923 0 ILE Α 126 49.012 50.299 1.00 12.48 Α 47.287 47.974 ATOM 924 N THR A 127 18.199 51.310 1.00 14.33 Α MOTA 925 CA THR Α 127 16.918 51.341 1.00 15.70 Α MOTA 926 CB THR A 127 47.144 15.848 52.079 1.00 20.78 MOTA 927 OG1 THR A 127 45.978 15.519 51.309 1.00 21.71 Α MOTA 928 CG2 THR A 127 46.719 16.379 53.462 1.00 19.06 ATOM 929 THR A 127 48.389 16.389 49.978 1.00 15.85 47.628 MOTA 930 THR A 127 16.442 49.011 1.00 15.48 ATOM N A 128 49.627 15.907 49.925 1.00 11.25 Α 931 GLY15.348 932 CA **GLY A 128** 50.202 48.719 1.00 13.92 ATOM 1.00 15.93 Α **ATOM** 933 GLY A 128 50.726 16.299 47.655 ATOM 934 **GLY A 128** 51.360 15.837 46.718 1.00 18.28 1.00 13.36 1.00 14.53 ATOM 935 ALA A 129 50.491 17.610 47.788 Α N ALA A 129 MOTA 936 CA 50.929 18.558 46.765 Α CB C ALA A 129 ALA A 129 1.00 13.51 1.00 20.08 937 50.138 19.873 46.886 Α ATOM 938 18.856 46.777 ATOM 52.428 Α ALA A 129 52.954 19.427 939 O 45.811 1.00 13.92 Α MOTA **GLY A 130** 47.863 940 N 18.489 1.00 15.72 ATOM 53.110 A CA C 18.715 941 GLY A 130 54.552 47.931 1.00 18.22 Α MOTA GLY A 130 47.720 17.01 942 54.937 20.167 1.00 ATOM 1.00 16.95 **GLY A 130** 55.944 ATOM 943 0 20.485 47.088 A N ARG A 131 1.00 14.88 A ATOM 944 54.130 21.059 48.274 MOTA 945 CA ARG A 131 54.361 22.500 48.142 1.00 14.67 Α CB 23.102 47.190 MOTA 946 ARG A 131 53.312 1.00 10.65 A MOTA 947 CG ARG A 131 53.506 22.713 45.730 1.00 14.78 A MOTA 948 CD ARG A 131 52.234 22.985 44.895 1.00 13.27 A ARG A 131 MOTA 949 NE 52.479 22.959 43.441 1.00 13.40 A ATOM 950 CZARG A 131 52.670 21.873 42.695 1.00 12.12 A ATOM 951 NH1 ARG A 131 52.880 22.010 41.383 1.00 12.83 A 131 43.233 1.00 13.76 ATOM 952 NH2 ARG 52.656 20.660 A MOTA 953 ARG A 131 54.217 23.171 49.502 1.00 14.12 22.703 ATOM 954 ARG A 131 53.451 50.329 1.00 15.12 ATOM 955 N **SER A 132** 54.948 24.258 49.730 1.00 12.39 956 CA **SER A 132** 54.830 24.987 50.990 1.00 15.94 ATOM 957 CB **SER A 132** 55.817 24.450 52.046 1.00 22.25 MOTA 958 OG **SER A 132** 57.143 24.690 51.644 1.00 25.99 MOTA 959 **SER A 132** 55.070 26.468 50.735 1.00 12.92 MOTA SER A 132 55.695 26.857 49.746 1.00 16.84 ATOM 960 27.300 28.734 ATOM 961 **GLY A 133** 54.570 51.634 1.00 14.33 962 CA **GLY A 133** 54.695 51.442 1.00 14.73 **ATOM** 29.318 **ATOM** 963 **GLY A 133** 53.295 51.394 1.00 14.56 ATOM 964 **GLY A 133** 52.320 28.589 51.183 1.00 12.31 965 PRO A 134 53.162 30.633 51.561 1.00 15.09 MOTA PRO A 134 54.254 31.607 1.00 16.35 ATOM 966 CD 51.743 A 134 51.854 31.291 51.548 MOTA 967 CA PRO 1.00 14.55 CB 52.196 32.760 1.00 20.54 ATOM 968 PRO A 134 51.828 CG A 134 53.623 32.900 21.58 969 PRO 51.266 1.00 MOTA A 134 A 134 970 PRO 50.997 31.143 50.299 1.00 16.29 ATOM C 971 0 PRO 51.509 31.105 49.180 1.00 12.69 ATOM 972 TLE 49.685 31.057 50.527 1.00 13.39 A ATOM N A 135 973 A 135 48.688 30.973 49.454 1.00 13.74 ILE CA ATOM 30.010 49.801 1.00 15.95 974 CB ILE A 135 47.523 ATOM 30.115 46.417 1.00 13.97 48.727 A 135 ATOM 975 CG₂ ILE 48.032 1.00 28.582 49.918 15.73 A MOTA 976 CG1 ILE A 135 46.988 27.607 1.00 15.61 50.453 MOTA 977 CD1 ILE Α 135 32.366 49.353 1.00 13.04 48.077 978 A MOTA ILE 135 50.372 32.983 979 47.757 1.00 15.69 A MOTA \circ ILE Α 135 47.918 32.872 48.136 1.00 11.91 Α MOTA 980 N GLN A 136 47.319 47.958 1.00 11.20 A 34.190 MOTA 981 CA GLN A 136 1.00 48.317 35.145 A 136 47.306 12.71 MOTA 982 CB GLN 983 CG GLN A 136 47.892 36.594 47.337 1.00 19.42 MOTA

ATOM ATOM	984 985	CD OE1		A 136 A 136	48.999 49.620		46.905 45.858		
ATOM ATOM	986 987	NE2 C	GLN	A 136 A 136	49.233 46.105	38.585	47.714	1.00 30.8	4 A
ATOM ATOM	988 989	O N	GLN	A 136	46.254	34.023 33.639	47.053 45.921	1.00 9.5 1.00 9.8	
MOTA	990	CA	VAL .	A 137 A 137	44.911 43.717	34.303 34.161	47.552 46.733	1.00 8.1 1.00 4.9	
ATOM ATOM	991 992	CB CG1	VAL .	A 137 A 137	42.470 41.176	33.907 34.014	47.657	1.00 8.3	6 A
ATOM ATOM	993 994	CG2 C	VAL	A 137	42.589	32.543	46.855 48.294	1.00 5.2 1.00 10.6	
ATOM	995	0	VAL .	A 137 A 137	43.442 43.555	35.380 36.534	45.837 46.284	1.00 9.9 1.00 9.1	
MOTA MOTA	996 997	N CA	VAL Z	A 138 A 138	43.124 42.735	35.114 36.134	44.566	1.00 7.0	1 A
MOTA MOTA	998 999	CB CG1	VAL I	A 138 A 138	43.437	35.976 37.092	42.226	1.00 9.9	1 A
ATOM ATOM	1000	CG2 C	VAL Z	A 138	44.947	36.068	41.301 42.394	1.00 11.7	
MOTA	1002	0	VAL A	A 138 A 138	41.237 40.791	35.914 34.775	43.386 43.196	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
ATOM ATOM	1003 1004	N CA		A 139 A 139	40.452 39.009	36.987 36.871	43.435	1.00 9.8 1.00 9.4	7 A
MOTA MOTA	1005 1006	CB CG	TYR I	A 139 A 139	38.303 38.509	36.902	44.625	1.00 8.2	6 A
ATOM ATOM	1007	CD1 CE1	TYR A	A 139	37.570	38.192 39.211	45.389 45.322	1.00 9.3° 1.00 8.6°	
MOTA	1008	CD2	TYR A	A 139	37.748 39.659	40.424 38.397	46.013 46.177	1.00 9.73 1.00 9.73	
MOTA MOTA	1010 1011	CE2 CZ	TYR A	A 139 A 139	39.853 38.890	39.616 40.623	46.878 46.786	1.00 12.90) A
ATOM ATOM	1012 1013	C OH	TYR A		39.045 38.507	41.829	47.459	1.00 8.2	3 A
ATOM ATOM	1014 1015	0 N	TYR A	A 139	39.246	38.006 38.947	42.381 42.099	1.00 B.45 1.00 B.15	
ATOM	1016	CA	ARG A	A 140	37.259 36.660	37.899 38.903	41.935 41.070	1.00 8.93 1.00 7.43	
ATOM ATOM	1017 1018	CB CG	ARG A		35.514 35.991	38.296 37.317	40.243 39.148	1.00 10.32	2 A
ATOM ATOM	1019 1020	CD NE	ARG A		36.556 35.502	38.103 38.821	37.948	1.00 5.80) A
ATOM ATOM	1021 1022	CZ	ARG A	140	34.659	38.232	37.218 36.376	1.00 7.23 1.00 11.87	7 A
ATOM	1023		ARG A	140	34.748 33.715	36.918 38.952	36.152 35.769	1.00 5.93 1.00 8.31	
ATOM AOTA	1024 1025	0	ARG A		36.129 35.327	40.063 39.896	41.895 42.832	1.00 8.44	l A
ATOM ATOM	1026 1027	N CA	ALA A		36.583 36.198	41.242 42.471	41.523	1.00 8.44	A
ATOM ATOM	1028 1029	CB C	ALA A	141	37.121	43.579	42.206 41.761	1.00 8.99 1.00 12.40	A (
MOTA	1030	0	ALA A	141	34.748 34.091	42.895 43.421	41.975 42.878	1.00 11.15 1.00 9.17	
ATOM ATOM	1031 1032	N CA	GLU A	142	34.258 32.912	42.679 43.110	40.765 40.401	1.00 10.41	
ATOM ATOM	1033 1034	CB CG	GLU A		32.944 32.968	43.735 42.720	38.995 37.800	1.00 11.17	A
MOTA MOTA	1035 1036	CD OE1	GLU A	142	34.319	41.984	37.551	1.00 14.71	A
ATOM	1037	OE2	GLU A	142	35.102 34.582	41.758 41.608	38.492 36.382	1.00 20.26 1.00 15.07	A
ATOM	1038 1039	C	GLU A	142	31.85 <i>4</i> 32.160	42.001 40.827	40.428 40.689	1.00 15.45	
ATOM ATOM	1040 1041	N CA	VAL A		30.604 29.474	42.399 41.461	40.170 40.114	1.00 13.82 1.00 12.65	A
ATOM ATOM	1042 1043	CB CG1	VAL A		28.155 27.052	42.192 41.196	39.792 39.668	1.00 12.26	A
ATOM ATOM	1044 1045	CG2 C	VAL A	143	27.822	43.174	40.870	1.00 17.81	A
ATOM	1046	0	VAL A	143	29.770 29.785	40.456 40.814	38.996 37.811	1.00 12.06 1.00 10.75	
ATOM ATOM	1047 1048	N CA	SER A		29.972 30.352	39.198 38.119	39.388 38.462	1.00 10.21 1.00 6.60	
ATOM ATOM	1049 1050	CB OG	SER A		31.822 32.188	37.764 36.468	38.758 38.328	1.00 8.21 1.00 8.64	A
ATOM ATOM	1051 1052	CO	SER A	144	29.499	36.834	38.512	1.00 7.57	A
ATOM	1053	N	SER A	145	29.166 29.168	36.346 36.303	39.601 37.330	1.00 8.05 1.00 5.34	Α
ATOM ATOM	1054 1055	CA C	GLY A GLY A		28.437 29.335	35.047 33.884	37.226 37.638	1.00 7.72 1.00 7.84	
ATOM ATOM	1056 1057	N O	GLY A THR A		28.873 30.628	32.870 34.001	38.197 37.357	1.00 6.69 1.00 6.57	A
MOTA	1058	CA	THR A	146	31.574	32.953	37.758	1.00 6.39	A
ATOM	1059	СВ	THR A	140	33.012	33.263	37.279	1.00 9.37	A

ATOM ATOM ATOM ATOM ATOM	1060 1061 1062 1063 1064	OG1 CG2 C O N	THR A THR A THR A THR A	146 146 146 147	33.026 33.928 31.569 31.601 31.551	33.463 32.087 32.892 31.802 34.064	35.855 37.613 39.294 39.888 39.930	1.00 1.00 1.00 1.00	8.49 11.25 8.02 8.00 6.33	A A A A
ATOM ATOM ATOM	1065	CA CB	THR A	147	31.483 31.554	34.131 35.591	41.394 41.921	$1.00 \\ 1.00$	8.35 6.29	A A
MOTA	1067 1068	OG1 CG2	THR A	147	32.834 31.373	36.161 35.602	41.624 43.450	1.00	7.92 8.46	A A
ATOM ATOM	1069 1070	C	THR A THR A		30.175 30.172	33.486 32.745	41.885 42.883	1.00	5.86 7.90	A
ATOM ATOM	1071 1072	N CA	GLU A	148	29.059	33.751	41.198	1.00	5.81	A A
ATOM ATOM	1073	CB	GLU A	148	27.786 26.644	33.131 33.653	41.592 40.710	1.00 1.00	5.50 6.06	A A
MOTA	1074 1075	CG CD	GLU A 1	148	25.284 24.076	33.004 33.737	41.058 40.457	1.00	10.99 12.04	A A
ATOM ATOM	1076 1077	OE1 OE2			23.920 23.271	34.966 33.078	40.685	1.00	9.92 13.03	A
ATOM ATOM	1078 1079	C	GLU A	148	27.846	31.591	41.491	1.00	6.20	A A
MOTA	1080	N	LEU A 1	L49	27.419 28.318	30.866 31.077	42.408 40.359	$1.00 \\ 1.00$	7.44 4.66	A A
ATOM ATOM	1081 1082	CA CB	LEU A 1	L49	28.442 29.011	29.616 29.301	40.196 38.807	1.00	6.87 7.74	A A
MOTA MOTA	1083 1084	CG CD1	LEU A 1		28.105 28.878	29.569 29.218	37.591 36.342	1.00	8.75 10.50	A
ATOM ATOM	1085 1086	CD2 C	LEU A 1	L 49	26.804	28.721	37.678	1.00	9.52	A A
MOTA	1087	0	LEU A 1	149	29.376 29.127	28.980 27.865	41.254 41.754	$1.00 \\ 1.00$	7.07 7.65	A A
ATOM ATOM	1088 1089	N CA	PHE A 1		30.473 31.459	29.670 29.183	41.568 42.540	1.00	8.71 7.06	A A
ATOM ATOM	1090 1091	CB CG	PHE A 1		32.752 33.884	30.021 29.551	42.427 43.325	1.00	6.97	Α
ATOM ATOM	1092	CD1	PHE A 1	150	34.313	28.225	43.305		9.24 10.27	A A
ATOM	1093 1094	CD2 CE1		.50	34.557 35.411	30.455 27.803	44.138 44.081		12.03 12.21	A A
ATOM ATOM	1095 1096	CE2 CZ	PHE A 1		35.657 36.083	30.050 28.721	44.920 44.890		11.31 10.56	A A
ATOM ATOM	1097 1098	C	PHE A 1		30.936 31.060	29.217 28.236	43.987 44.709	1.00	7.58	A
ATOM ATOM	1099	N CA	THR A 1	.51	30.350	30.334	44.409	1.00	6.52 7.57	A A
MOTA	1100 1101	CB	THR A 1	.51	29.836 29.548	30.437 31.938	45.770 46.193	1.00	8.97 9.78	A A
ATOM ATOM	1102 1103	OG1 CG2	THR A 1		28.580 30.826	32.526 32.744	45.314 46.152	1.00	8.77 7.96	A A
ATOM ATOM	1104 1105	C	THR A 1		28.588 28.274	29.588 29.245	45.988	1.00	7.22	Α
MOTA	1106	N	ARG A 1	.52	27.873	29.229	47.131 44.916	$\frac{1.00}{1.00}$	7.49 5.13	A A
	1107 1108	CA CB	ARG A 1 ARG A 1	.52	26.715 25.914	28.351 28.189	45.099 43.796	1.00	9.17 9.15	A A
ATOM ATOM	1109 1110	CG CD	ARG A 1		24.606 23.671	27.376 27.529	43.974 42.755		10.79 17.61	A A
MOTA MOTA	1111 1112	NE CZ	ARG A 1 ARG A 1	.52	23.071	28.868 29.662	42.641	1.00	14.93	A
ATOM	1113	NH1	ARG A 1	.52	22.605	30.860	41.577 41.565	1.00	16.78 11.71	A A
ATOM ATOM	1114 1115	NH2 C	ARG A 1	.52	23.885 27.274	29.265 27.007	40.518 45.557	$1.00 \\ 1.00$	11.02 7.79	A A
ATOM ATOM	1116 1117	O N	ARG A 1 PHE A 1		26.671 28.436	26.313 26.639	46.389 45.017	1.00	5.08 6.70	A A
ATOM ATOM	1118 1119	CA CB	PHE A 1 PHE A 1	.53	29.101 30.280	25.395 25.059	45.413	1.00	9.70	A
ATOM	1120	CG	PHE A 1	.53	30.974	23.747	44.812	1.00	7.27 6.93	A A
ATOM ATOM	1121 1122	CD2	PHE A 1	.53	30.451 32.134	22.532 23.738	44.389 45.592	1.00	9.41 9.61	A A
ATOM ATOM	1123 1124	CE1 CE2	PHE A 1 PHE A 1	.53 .53	31.069 32.764	21.315 22.534	44.747 45.959	1.00	11:43 13.90	A A
ATOM ATOM	1125 1126	CZ	PHE A 1 PHE A 1	53	32.229	21.323	45.537	1.00	11.19	A
MOTA	1127	0	PHE A 1	53	29.640 29.455	25.503 24.586	46.842	1.00	8.50 8.41	A A
MOTA	1128 1129	N CA	LEU A 1	54	30.320 30.877	26.599 26.752	47.167 48.521	1.00 1.00	6.84 6.20	A A
ATOM ATOM	1130 1131	CB CG	LEU A 1 LEU A 1		31.672 32.876	28.060 28.250	48.657 47.720	1.00	6.23	A A
ATOM ATOM	1132 1133	CD1	LEU A 1 LEU A 1	54	33.543	29.583	48.020	1.00	9.48	A
ATOM	1134	Ç	LEU A 1	54	33.893 29.762	27.117 26.737	47.886 49.564	1.00	6.15 6.13	A A
ATOM	1135	0	LEU A 1	54	29.912	26.170	50.641	1.00	9.16	A

MOTA MOTA	1136 1137	N CA		A 155	28.652				A
MOTA	1138	CB	ASN	A 155 A 155	27.493 26.406			1.00 6.32 1.00 11.33	A A
MOTA MOTA	1139 1140	CG OD1		A 155 A 155	25.093 24.149	28.294	50.274	1.00 14.59	A
MOTA	1141	ND2	ASN	A 155	25.034	29.062	49.906 51.361	1.00 9.21 1.00 8.23	A A
MOTA MOTA	1142 1143	C		A 155 A 155	26.929 26.465		50.363	1.00 8.76	A
MOTA MOTA	1144	N	ALA .	A 156	26.965	25.203	51.465 49.336	1.00 8.00	A A
MOTA	1145 1146	CA CB	ALA .	A 156 A 156	26.418 26.068	23.867 23.300	49.493 48.119	1,00 7.63	A
ATOM ATOM	1147 1148	C	ALA .	A 156	27.336	22.882	50.222	1.00 8.06 1.00 12.23	A A
MOTA	1149	N	LYS .	A 156 A 157	26.854 28.646	22.037 23.029	50.994 50.015	1.00 9.62 1.00 9.93	A A
ATOM ATOM	1150 1151	CA CB		A 157 A 157	29.623 30.437	22.064	50.537	1.00 10.69	Α
ATOM	1152	CG	LYS	A 157	29.604	21.527 20.877	49.352 48.227	1.00 14.97 1.00 13.56	A A
ATOM ATOM	1153 1154	CD		A 157 A 157	28.855 28.357	19.640 18.784	48.729 47.575	1.00 16.77	A
ATOM ATOM	1155 1156	NZ C	LYS	A 157	27.652	17.546	48.069	1.00 22.67 1.00 21.73	A A
ATOM	1157	0	LYS I	A 157 A 157	30.611 31.215	22.438 21.552	51.638 52.245	1.00 8.73 1.00 11.63	A A
ATOM ATOM	1158 1159	N CA	CYS	A 158 A 158	30.821 31.759	23.725	51.876	1.00 8.12	A
MOTA	1160	С	CYS A	A 158	30.974	24.132 24.252	52.916 54.207	1.00 8.20 1.00 9.14	A A
ATOM ATOM	1161 1162	O CB	CYS I	A 158 A 158	30.648 32.390	25.349 . 25.464	54.661 52.537	1.00 10.53	A
ATOM ATOM	1163 1164	SG	CYS A	A 158	33.331	-25.358	50.982	1.00 10.13 1.00 11.82	A A
MOTA	1165	N CA	THR A	A 159 A 159	30.699 29.856	23.108 23.091	54.822 56.017	1.00 8.92 1.00 6.75	A A
ATOM ATOM	1166 1167	CB OG1	THR A		28.850 29.551	21.933	55.903	1.00 10.13	A
ATOM	1168	CG2	THR A	A 159	28.146	20.690 21.989	55.987 54.527	1.00 12.88 1.00 14.84	A A
ATOM ATOM	1169 1170	C	THR A		30.545 29.878	23.021 22.956	57.361 58.398	1.00 8.62	A
ATOM ATOM	1171 1172	N CA	THR A	160	31.875	23.038	57.358	1.00 8.39	A A
MOTA	1173	CB	THR A	160	32.603 33.194	22.980 21.558	58.612 58.889	1.00 9.53 1.00 8.99	A A
ATOM ATOM	1174 1175	OG1 CG2	THR A		34.011 32.083	21.140	57.788	1.00 12.55	A
ATOM	1176	C	THR A	160	33.727	20.559 24.010	59.114 58.712	1.00 11.60 1.00 10.20	A A
ATOM ATOM	1177 1178	N N	THR A		34.774 33.523	23.739 25.189	59.314 58.121	1.00 8.76 1.00 8.66	A
ATOM ATOM	1179 1180	CA CB	GLN A		34.525	26.260	58.254	1.00 9.46	A A
MOTA	1181	CG	GLN A		34.564 34.956	27.121 26.309	56.989 55.742	1.00 9.58 1.00 7.83	A A
ATOM ATOM	1182 1183	CD OE1	GLN A		36.305 36.429	25.608 24.396	55.936	1.00 10.81	A
ATOM	1184	NE2	GLN A	161	37.306	26.374	55.758 56.313	1.00 12.80 1.00 10.64	A A
ATOM ATOM	1185 1186	CO	GLN A		34.058 32.979	27.096 26.866	59.449 59.960	1.00 8.71 1.00 8.58	A A
ATOM ATOM	1187 1188	N CD	PRO A		34.870	28.047	59.928	1.00 11.51	A
MOTA	1189	CA	PRO A	162	36.316 34.433	28.193 28.869	59.693 61.071	1.00 10.65 1.00 9.23	A A
ATOM ATOM	1190 1191	CB CG	PRO A		35.631 36.786	29.780 28.884	61.326 60.979	1.00 11.89	· A
ATOM ATOM	1192 1193	Ç	PRO A	162	33.171	29.660	60.727	1.00 14.39 1.00 10.67	A A
ATOM	1194	N O	PRO A		32.280 33.112	29.838 30.158	61.567 59.492	1.00 12.32 1.00 8.94	A A
ATOM ATOM	1195 1196	CA C	GLY A		31.943 31.307	30.903	59.040	1.00 11.83	A
MOTA	1197	0	GLY A	163	31.687	30.149 28.989	57.883 57.628	1.00 11.53 1.00 9.27	A A
ATOM ATOM	1198 1199	N CA	THR A		30.359 29.698	30.781 30.140	57.178 56.039	1.00 7.79 1.00 10.06	A
ATOM	1200	CB	THR A	164	28.213	29.775	56.347	1.00 9.77	A A
ATOM ATOM	1201 1202	OG1 CG2	THR A		27.565 28.119	30.914 28.585	56.934 57.328	1.00 12.97 1.00 7.94	A A
MOTA MOTA	1203 1204	CO	THR A	164	29.696 29.786	31.081	54.837	1.00 10.41	A
MOTA	1205	N	PHE A	165	29.571	32.301 30.507	55.001 53.637	1.00 7.96 1.00 7.32	A A
ATOM ATOM	1206 1207	CA CB	PHE A		29.551 30.321	31.275 30.541	52.395 51.299	1.00 9.34 1.00 8.51	Α
MOTA	1208	CG	PHE A	165	31.799	30.451	51.539	1.00 7.69	A A
ATOM ATOM	1209 1210		PHE A		32.659 32.338	31.455 29.338	51.096 52.181	1.00 8.05 1.00 10.52	A
ATOM	1211		PHE A		34.062	31.349	51.288	1.00 6.48	A A

MOTA	1212	CE:	PHE A 165	33.720	29.214	52.385	1.00 6.44	λ.
MOTA	1213	CZ	PHE A 165	34.591	30.221	51.935	1.00 7.86	A
MOTA	1214	C	PHE A 165	28.135	31.467	51.854	1.00 10.39	A
ATOM	1215	Ö	PHE A 165	27.428	30.485	51.648	1.00 10.33	A
ATOM	1216		ALA A 166	27.738	32.712	51.601	1.00 8.80	A
MOTA	1217	CA	ALA A 166	26.424	33.000	51.006		A
ATOM	1218	CB	ALA A 166	25.942	34.397	51.423	1.00 10.97 1.00 10.57	A
MOTA	1219	C	ALA A 166	26.593	32.960	49.483		Ą
ATOM	1220	ō	ALA A 166	27.694	33.182	48.968	1.00 10.58 1.00 7.60	A
ATOM	1221	N	VAL A 167	25.516	32.668	48.766		Ä
ATOM	1222	CA	VAL A 167	25.572	32.658	47.303		A
ATOM	1223	CB	VAL A 167	24.384	31.924	46.686	1.00 7.71	Ą
MOTA	1224	CG1		24.546	31.870	45.159	1.00 7.77 1.00 8.04	A
MOTA	1225	CG2		24.283	30.511	47.265	1.00 10.61	A
MOTA	1226	Ċ	VAL A 167	25.473	34.123	46.875	1.00 10.81	A A
MOTA	1227	0	VAL A 167	24.523	34.816	47.244	1.00 7.79	A
MOTA	1228	N	THR A 168	26.408	34.580	46.048	1.00 8.13	A
MOTA	1229	CA	THR A 168	26.411	35.974	45.653	1.00 6.66	Â
MOTA	1230	CB	THR A 168	27.060	36.810	46.769	1.00 13.46	Ä
MOTA	1231	OG1	THR A 168	27.129	38.188	46.370	1.00 12.35	Ã
MOTA	1232	CG2		28.478	36.311	47.040	1.00 12.28	Ā
ATOM	1233	С	THR A 168	27.228	36.178	44.375	1.00 11.69	Ä
ATOM	1234	0	THR A 168	27.960	35.282	43.947	1.00 11.22	A
MOTA	1235	N	THR A 169	27.106	37.352	43.770	1.00 9.36	A
ATOM	1236	CA	THR A 169	27.888	37.641	42.580	1.00 5.90	A
MOTA	1237	CB	THR A 169	27.074	38.484	41.565	1.00 11.79	A
ATOM	1238	OG1		26.724	39.739	42.169	1.00 9.77	A
ATOM	1239	CG2		25.811	37.747	41.128	1.00 12.13	A
MOTA MOTA	1240 1241	C	THR A 169	29.156	38.450	42.953	1.00 9.03	A
ATOM	1242	O N	THR A 169	30.000	38.712	42.099	1.00 8.64	A
ATOM	1243	CA	VAL A 170 VAL A 170	29.279	38.848	44.224	1.00 11.21	A
MOTA	1244	CB	VAL A 170	30.430	39.641	44.680	1.00 11.07	A
ATOM	1245	CG1		29.944 29.433	41.003	45.248	1.00 8.64	A
ATOM	1246	CG2		28.802	41.863	44.106	1.00 8.12	A
ATOM	1247	Č	VAL A 170	31.158	40.805 38.830	46.208	1.00 14.20	A
ATOM	1248	ŏ	VAL A 170	30.694	38.747	45.741 46.859	1.00 10.94	A
ATOM	1249	N	PHE A 171	32.305	38.247	45.386	1.00 11.12	A
MOTA	1250	CA	PHE A 171	33.003	37.367	46.312	1.00 11.66 1.00 9.52	A
ATOM	1251	CB	PHE A 171	34.279	36.775	45.677		A
ATOM	1252	CG	PHE A 171	34.940	35.686	46.519	1.00 · 8.67 1.00 10.69	A
MOTA	1253		PHE A 171	36.009	35.978	47.358	1.00 10.03	A A
ATOM	1254	CD2		34.457	34.377	46.502	1.00 14.44	Ä
MOTA	1255	CE1		36.593	34.986	48.184	1.00 8.85	Ä
MOTA	1256	CE2		35.024	33.377	47.311	1.00 12.76	Ä
MOTA	1257	CZ	PHE A 171	36.096	33.686	48.158	1.00 12.60	Ä
MOTA	1258	С	PHE A 171	33.353	37.977	47.661	1.00 12.55	A
ATOM	1259	0	PHE A 171	33.292	37.294	48.679	1.00 7.64	A
ATOM	1260	N	ALA A 172	33.704	39.257	47.677	1.00 6.57	A
ATOM	1261	CA	ALA A 172	34.088	39.865	48.946	1.00 9.02	A
ATOM	1262	CB	ALA A 172	34.655	41.279	48.721	1.00 9.26	A
ATOM ATOM	1263	C	ALA A 172	32.948	39.885	49.957	1.00 11.22	A
ATOM	1264 1265	Q	ALA A 172	33.188	40.071	51.155	1.00 10.96	A
MOTA	1266	N CA	ASN A 173 ASN A 173	31.714	39.677	49.493	1.00 8.23	A
ATOM	1267	CB	ASN A 173	30.563	39.651	50.409	1.00 10.55	A
ATOM	1268	CG	ASN A 173	29.361 29.628	40.396	49.822	1.00 11.87	A
ATOM	1269		ASN A 173	30.289	41.862	49.606	1.00 13.88	A
ATOM	1270	ND2	ASN A 173	29.098	42.512 42.398	50.412	1.00 13.36	A
MOTA	1271	C	ASN A 173	30.062	38.245	48.515 50.759	1.00 16.29 1.00 13.21	A A
ATOM	1272	Ō	ASN A 173	29.077	38.109	51.498	1.00 10.89	
ATOM	1273	N	SER A 174	30.716	37.212	50.238	1.00 7.67	A A
MOTA	1274	CA	SER A 174	30.250	35.859	50.468	1.00 9.24	Ä
ATOM	1275	CB	SER A 174	30.869	34.905	49.429	1.00 9.01	Â
ATOM	1276	OG	SER A 174	30.359	33.580	49.598	1.00 8.15	Ä
MOTA	1277	С	SER A 174	30.440	35.250	51.863	1.00 7.73	Â
MOTA	1278	0	SER A 174	29.480	34.822	52.506	1.00 8.54	Ä
MOTA	1279	N	TYR A 175	31.684	35.160	52.303	1.00 6.67	Ä
ATOM	1280	CA	TYR A 175	31.978	34.535	53.599	1.00 6.35	Ä
MOTA	1281	CB	TYR A 175	33.493	34.371	53.735	1.00 7.83	A
MOTA	1282	CG	TYR A 175	33.928	33.429	54.847	1.00 6.19	A
ATOM	1283	CD1	TYR A 175	34.845	33.842	55.825	1.00 9.13	A
ATOM	1284	CE1	TYR A 175	35.315	32.938	56.811	1.00 7.78	A
ATOM	1285	CD2	TYR A 175	33.481	32.102	54.879	1.00 6.63	A
ATOM	1286	CE2	TYR A 175	33.939	31.206	55.856	1.00 9.07	A
MOTA	1287	CZ	TYR A 175	34.859	31.633	56.812	1.00 11.83	A

FIGURE 5 (suite)

ATOM	1288	ОН	TYR A 17	5 35.3	148 2	0.731	57.746	1 00	0 05	
ATOM	1289	Ċ	TYR A 17			5.365	54.761	1.00	8.85	A
ATOM	1290	ō	TYR A 17			6.556			12.71	A
ATOM	1291	Ň	SER A 17				54.806	1.00	7.92	A
ATOM	1292	CA	SER A 17		-	4.727	55.683	1.00	9.13	A
ATOM	1293	CB	SER A 17			5.431	56.828	1.00	9.94	A
ATOM	1294	ÖĞ	SER A 17			4.433	57.737	1.00	11.72	A
ATOM	1295	č	SER A 17			3.426	58.245	1.00	9.80	Ą
ATOM	1296	ŏ	SER A 17			6.247	57.659	1.00	11.68	A
ATOM	1297	N	LEU A 17			7.302 5.787	58.184	1.00	12.94	A
ATOM	1298	CA	LEU A 17			6.559	57.788		10.90	A
MOTA	1299	CB	LEU A 17			5.613	58.561 59.349	1.00	12.59	A
ATOM	1300	CG	LEU A 17			4.649	60.324	1.00	14.55	A
ATOM	1301	CD1	LEU A 17			3.649	60.872	1.00	15.21 18.41	A A
ATOM	1302	CD2				5.452	61.476	1.00	11.73	A
ATOM	1303	C	LEU A 17			7.522	57.692	1.00	13.68	A
ATOM	1304	0	LEU A 17			8.104	58.163	1.00	12.71	Â
ATOM	1305	N	GLY A 17			7.680	56.434	1.00	9.18	Ä
MOTA	1306	CA	GLY A 17			8.585	55.541		12.34	Ä
MOTA	1307	С	GLY A 17			8.098	54.975	1.00	12.74	Ä
ATOM	1308	0	GLY A 17			6.939	55.208	1.00	13.97	A
ATOM	1309	N	LEU A 17	36.4		8.974	54.224	1.00	9.84	A
MOTA	1310	CA	LEU A 17	37.7		8.610	53.621		10.63	A
MOTA	1311	CB	LEU A 17			9.437	52.350	1.00	11.33	A
ATOM	1312	CG	LEU A 17		.89 3	9.202	51.120	1.00	10.67	A
ATOM	1313	CD1	LEU A 17			0.017	49.934	1.00	12.85	A
MOTA	1314	CD2	LEU A 17			7.692	50.787		15.70	A.
ATOM	1315	Ç	LEU A 17			8.779	54.555	1.00	12.52	A
ATOM	1316	O.	LEU A 17			8.319	54.233		13.43	. A
ATOM ATOM	1317 1318	N	SER A 18			9.426	55.702		13.88	A
MOTA	1319	CA	SER A 18			9.635	56.612	1.00	17.84	A
ATOM	1320	CB OG	SER A 18 SER A 18			0.187	57.954		23.37	A
ATOM	1321	C	SER A 18			1.521	57.770		30.75	A
ATOM	1322	ŏ	SER A 18			8.411	56.839	1.00	18.97	A
ATOM	1323	Ŋ	PRO A 18			8.527 7.223	56.856 57.010		16.57	A
ATOM	1324	CD	PRO A 18			6.923	57.219	1.00	17.96 18.24	A A
ATOM	1325	CA	PRO A 18			6.023	57.228	1.00	19.35	A
ATOM	1326	CB	PRO A 18			4.925	57.436		20.22	Â
ATOM	1327	ĊĞ	PRO A 18			5.657	58.063	1.00	20.57	Â
ATOM	1328	Ċ	PRO A 18			5.697	56.063	1.00	24.47	Ä
ATOM	1329	0	PRO A 18			4.943	56.237		26.18	A
ATOM	1330	N	LEU A 18			6.251	54.880	1.00	17.84	A
MOTA	1331	CA	LEU A 18	2 42.4	70 3	6.002	53.688	1.00	21.43	A
ATOM	1332	CB	LEU A 18		15 3	6.019	52.410	1.00	20.15	A
ATOM	1333	CG	LEU A 18			4.780	52.178	1.00	20.14	A
ATOM	1334	CD1	LEU A 18			4.968	50.952	1.00	17.30	A
ATOM	1335	CD2	LEU A 18			3.580	52.004		15.09	A
ATOM	1336	Ç	LEU A 18	_		6.985	53.490		27.88	A
MOTA	1337	o.	LEU A 18			7.909	52.682		31.51	A
MOTA	1338 1339	N	ALA A 18			6.761	54.185		23.49	Ā
ATOM ATOM	1340	CA CB	ALA A 18			7.639	54.073	1.00	26.24	A
ATOM	1341	C	ALA A 18			7.047 7.920	54.860 52.629		22.25	A
ATOM	1342	ŏ	ALA A 18				51.856		20.58 17.37	A A
ATOM	1343	N	GLY A 18				52.278		17.97	A
ATOM	1344 -	CA	GLY A 18			9.603	50.949		17.46	Ä
ATOM	1345	C	GLY A 18				49.755	1.00	12.78	A
ATOM	1346	ŏ	GLY A 18	46.4			48.636		15.39	A
MOTA	1347	N	ALA A 18			8.878	49.956		12.15	Ä
MOTA	1348	CA	ALA A 18				48.811		14.55	A
MOTA	1349	CB	ALA A 18				49.271		14.22	A
ATOM	1350	C	ALA A 18	43.8			47.795		16.74	А
MOTA	1351	0	ALA A 18				48.181	1.00	15.66	A
ATOM	1352	N	VAL A 18		36 3	9.300	46.507	1.00	9.90	A
MOTA	1353	CA	VAL A 18				45.419		11.92	A
ATOM	1354	CB	VAL A 180	45.0	93 3		44.484		14.98	A
MOTA	1355	CG1	VAL A 18				43.229		13.29	Ā
ATOM	1356	CG2	VAL A 180				45.244		19.64	A
ATOM	1357	C	VAL A 180				44.571		11.79	A
MOTA	1358	O	VAL A 180				44.149		11.34	A
ATOM	1359	N	ALA A 18'				44.331		11.06	A
ATOM	1360	CA	ALA A 18'				43.508		10.57	A
ATOM ATOM	1361 1362	CB C	ALA A 18'				44.096 42.079		12.53	A N
ATOM	1362	0	ALA A 18				41.876	1.00		A A
		_					0,0			

ATOM	1364	N	777	3 100					
				A 188	40.543	41.328	41.085	1.00 8.38	Α
MOTA	1365	CA		A 188	40.832	41.672	39.672	1.00 8.09	Α
MOTA	1366	CB	ALA	A 188	41.725	40.609	39.018	1.00 10.94	A
ATOM	1367	С	ALA	A 188	39.515	41.759	38.913	1.00 9.75	A
ATOM	1368	0		A 188	38.510	41.196	39.349		
MOTA	1369	N		A 189	39.543	42.434			Ą
ATOM	1370	CA					37.766	1.00 10.19	A
				A 189	38.355	42.646	36.936	1.00 9.71	A
ATOM	1371	CB		A 189	38.300	44.126	36.487	1.00 14.84	A
MOTA	1372	CG2	ILE	A 189	37.056	44.394	35.606	1.00 12.56	A
MOTA	1373	CG1	ILE	A 189	38.247	45.007	37.720	1.00 13.85	A
MOTA	1374	CD1		A 189	36.964	44.848	38.520		
MOTA	1375	Č		A 189	38.307	41.760			Ą
MOTA	1376	ŏ		A 189			35.705	1.00 11.18	A
ATOM					39.260	41.715	34.930	1.00 12.80	Α
	1377	N		A 190	37.185	41.062	35.518	1.00 12.93	A
ATOM	1378	CA		A 190	37.039	40.181	34.368	1.00 9.66	A.
MOTA	1379	С		A 190	37.836	38.881	34.432	1.00 11.20	A.
ATOM	1380	0	${f GLY}$	A 190	38.763	38.745	35.238	1.00 12.00	A
MOTA	1381	N	SER	A 191	37.494	37.919	33.570	1.00 12.31	Ä
ATOM	1382	CA		A 191	38.216	36.644	33.539	1.00 12.31	
ATOM	1383	CB		A 191	37.530				A
ATOM	1384	og				35.671	32.568	1.00 8.59	A
ATOM				A 191	36.224	35.299	33.026	1.00 10.08	A
	1385	C		A 191	39.678	36.896	33.104	1.00 14.30	A
ATOM	1386	0		A 191	40.612	36.295	33.638	1.00 11.39	A
MOTA	1387	N		A 192	39.880	37.809	32.156	1.00 11.76	A
MOTA	1388	CA		A 192	41.235	38.101	31.704	1.00 14.84	A
MOTA	1389	CB	VAL	A 192	41.273	39.029	30.449	1.00 13.34	Ä
ATOM	1390	CG1		A 192	40.838	38.252	29.213	1.00 24.13	A
MOTA	1391	CG2		A 192	40.396	40.246	30.678	1.00 29.05	
ATOM	1392	C		A 192					Ā
					42.056	38.767	32.804	1.00 11.65	A
ATOM	1393	0		A 192	43.247	38.485	32.940	1.00 14.10	A
ATOM	1394	N		A 193	41.431	39.670	33.559	1.00 12.08	Α
MOTA	1395	CA	GLY	A 193	42.149	40.344	34.626	1.00 12.16	A
MOTA	1396	С	GLY	A 193	42.575	39.354	35.700	1.00 14.30	A
ATOM	1397	0		A 193	43.652	39.486	36.291	1.00 9.20	Ä
MOTA	1398	N		A 194	41.725	38.369	35.976	1.00 9.32	
ATOM	1399	CA		A 194	42.069	37.370			A
ATOM	1400	CB		A 194			36.992	1.00 9.16	Ā
					40.845	36.459	37.341	1.00 7.74	A
ATOM	1401	CG1		A 194	41.309	35.168	38.071	1.00 8.55	A
ATOM	1402	CG2		A 194	39.873	37.247	38.259	1.00 11.33	A
ATOM	1403	С	VAL	A 194	43.256	36.524	36.530	1.00 10.65	A
ATOM	1404	0	VAL	A 194	44.158	36.255	37.318	1.00 10.00	A
ATOM	1405	N	MET	A 195	43.261	36.090	35.265	1.00 9.82	A
MOTA	1406	CA		A 195	44.391	35.306	34.775	1.00 11.27	Ä
MOTA	1407	CB		A 195	44.125	34.727	33.381	1.00 13.33	
ATOM	1408	CG		A 195	43.342	33.449			A
ATOM	1409	SD		A 195			33.381	1.00 16.98	A
					43.794	32.237	34.698	1.00 19.79	A
ATOM	1410	CE		A 195	45.205	31.419	34.043	1.00 16.46	Α
ATOM	1411	Ç		A 195	45.672	36.118	34.719	1.00 12.67	A
MOTA	1412	0		A 195	46.757	35.579	34.948	1.00 15.56	Α
ATOM	1413	N	ALA .	A 196	45.566	37.401	34.385	1.00 11.82	A
MOTA	1414	CA	ALA .	A 196	46.750	38.239	34.346	1.00 15.74	A
ATOM	1415	CB	ALA .	A 196	46.404	39.633	33.833	1.00 14.20	A
ATOM	1416	С	ALA .	A 196	47.331	38.323	35.768	1.00 16.81	Ä
ATOM	1417	Ō		A 196	48.544	38.245	35.945	1.00 15.03	Â
ATOM	1418	N		A 197	46.464	38.468			
ATOM	1419	CA		A 197	46.939	30.400	36.778	1.00 13.86	A
						38.538	38.151	1.00 13.25	A
ATOM	1420	СВ		A 197	45.790	38.865	39.108	1.00 13.70	A
ATOM	1421	C		A 197	47.547	37.203	38.542	1.00 13.49	A
ATOM	1422	0		A 197	48.618	37.159	39.147	1.00 13.32	A
ATOM	1423	N	ASP .	A 198	46.853	36.119	38.202	1.00 12.41	A
ATOM	1424	CA	ASP .	A 198	47.326	34.777	38.547	1.00 16.61	A
ATOM	1425	CB		A 198	46.311	33.719	38.074	1.00 18.96	Ä
ATOM	1426	CG		A 198	46.605	32.327	38.629	1.00 29.19	A
ATOM	1427		ASP		46.440	32.107	39.857		
ATOM	1428		ASP					1.00 32.24	A
					47.004	31.449	37.834	1.00 34.04	A
ATOM	1429	Č		A 198	48.699	34.509	37.928	1.00 17.95	A
ATOM	1430	0		A 198	49.570	33.942	38.585	1.00 18.27	A
ATOM	1431	N		A 199	48.900	34.941	36.684	1.00 16.24	A
ATOM	1432	CA	ASN A	A 199	50.173	34.733	35.980	1.00 17.75	A
ATOM	1433	CB	ASN A	A 199	49.941	34.565	34.478	1.00 19.50	A
ATOM	1434	CG		A 199	49.270	33.263	34.122	1.00 21.16	Ä
ATOM	1435	OD1	ASN A		49.454	32.254	34.786	1.00 29.31	
ATOM	1436		ASN A		48.504	33.275			A
							33.041	1.00 24.39	A
ATOM	1437	C		A 199	51.227	35.832	36.144	1.00 20.64	A
ATOM	1438	0		A 199	52.272	35.762	35.507	1.00 27.47	A
ATOM	1439	N	ASP A	A 200	50.973	36.838	36.970	1.00 19.22	A

ATOM	1440	CA	ASP A 200	5	1.925	37.937	37.148	1.00	20.54	A
ATOM	1441	CB	ASP A 200		1.350	38.985	38.092		22.32	A
MOTA	1442	CG	ASP A 200		2.166	40.271	38.105	1.00	23.11	A
MOTA	1443	OD1	ASP A 200		3.356	40.256	37.713	1.00	21.11	A
MOTA	1444	OD2	ASP A 200		1.612	41.296	38.526	1.00		A
MOTA	1445	С	ASP A 200		3.252	37.431	37.716	1.00		A
MOTA	1446	0	ASP A 200		3.315	36.967	38.855	1.00	19.25	A
MOTA	1447	N	VAL A 201		4.315	37.511	36.922	1.00		A
ATOM	1448	CA	VAL A 201		5.611	37.033	37.390	1.00	24.01	Ä
ATOM	1449	CB	VAL A 201		6.519	36.597	36.216	1.00	23.59	A
MOTA	1450	CG1			5.910	35.377	35.519	1.00		A
ATOM	1451	CG2			6.710	37.754	35.246	1.00		A
MOTA	1452	C	VAL A 201		6.370	38.046	38.222	1.00		A
ATOM	1453	ō	VAL A 201		7.451	37.744	38.715	1.00	30.90	A
ATOM	1454	N	THR A 202		5.817	39.241	38.402	1.00	23.14	Ä
MOTA	1455	CA	THR A 202		6.511	40.251	39.190	1.00	23.53	A
ATOM	1456	CB	THR A 202		6.216	41.664	38.696	1.00	22.33	A
MOTA	1457	OG1			4.846	41.999	38.979	1.00	24.30	A
ATOM	1458	CG2	THR A 202		6.489	41.759	37.210	1.00	25.94	A
ATOM	1459	С	THR A 202		6.171	40.184	40.677	1.00	24.49	A
ATOM	1460	0	THR A 202	5	6.543	41.073	41.444	1.00	25.68	A
ATOM	1461	N	THR A 203	5	5.440	39.147	41.076	1.00	19.97	A
MOTA	1462	CA	THR A 203	5	5.116	38.957	42.484	1.00	20.69	A
ATOM	1463	CB	THR A 203	5	3.608	39.167	42.768	1.00	26.13	A
ATOM	1464	OG1	THR A 203	5	2.825	38.196	42.047	1.00	25.13	A
ATOM	1465	CG2	THR A 203	5	3.202	40.581	42.363	1.00	26.59	A
ATOM	1466	С	THR A 203	5	5.523	37.521	42.834	1.00	17.47	A
ATOM	1467	0	THR A 203		5.771	36.703	41.947	1.00	18.21	A
ATOM	1468	N	ALA A 204		5.624	37.217	44.116	1.00	16.96	, А
MOTA	1469	CA	ALA A 204		6.011	35.867	44.528	1.00	16.26	A
ATOM	1470	CB	ALA A 204		6.175	35.825	46.065	1.00	18.50	A
ATOM	1471	Ç	ALA A 204		4.978	34.832	44.092	1.00	14.92	A
ATOM	1472	0	ALA A 204		3.806	35.157	43.906	1.00	16.09	A
ATOM	1473	N	GLN A 205		5.409	33.582	43.921	1.00	16.21	A
MOTA	1474	CA	GLN A 205		4.483	32.501	43.560	1.00	16.27	A
MOTA	1475	CB	GLN A 205		5.232	31.191	43.316	1.00	15.65	Α
MOTA	1476	CG	GLN A 205		6.103	31.148	42.097	1.00	22.41	A
MOTA	1477	CD	GLN A 205		6.469	29.716	41.717	1.00	29.28	A
MOTA	1478	OE1	GLN A 205		6.446	28.801	42.565	1.00	20.67	A
MOTA	1479	NE2			6.813	29.510	40.442	1.00	25.77	A
ATOM	1480	C	GLN A 205		3.529	32.262	44.728	1.00	14.53	A
MOTA	1481	Ö	GLN A 205		3.783	32.717	45.846	1.00	14.81	Ā
ATOM	1482	N	GLY A 206		2.438	31.540	44.478	1.00	11.64	A
ATOM ATOM	1483 1484	CA C	GLY A 206		1.509	31.236	45.554	1.00	11.46	A
ATOM	1485	ŏ	GLY A 206 GLY A 206		0.042 9.162	31.518	45.284	1.00	11.44	A
MOTA	1486	Ŋ	ARG A 207		9.764	31.067 32.236	46.046	1.00	9.87	A
ATOM	1487	CA	ARG A 207		8.383	32.606	44.199 43.878	1.00	7.71 7.50	A A
ATOM	1488	CB	ARG A 207		8.364	33.763	42.863	1.00	9.66	
ATOM	1489	CG	ARG A 207		8.719	35.114	43.493	1.00	7.35	A A
ATOM	1490	CD	ARG A 207		8.774	36.286	42.497	1.00	6.76	A
MOTA	1491	NE	ARG A 207		9.079	37.532	43.221	1.00	10.86	Ä
MOTA	1492	CZ	ARG A 207		9.156	38.738	42.654	1.00	13.78	A
MOTA	1493	NH1	ARG A 207		8.957	38.881	41.350	1.00	9.77	Â
ATOM	1494	NH2	ARG A 207		9.415	39.811	43.398	1.00	15.04	Ä
ATOM	1495	С	ARG A 207		7.500	31.475	43.389	1.00	11.20	A
MOTA	1496	0	ARG A 207		7.959	30.549	42.713	1.00	12.10	A
MOTA	1497	N	ILE A 208		6.214	31.572	43.721	1.00	8.65	A
MOTA	1498	CA	ILE A 208		5.245	30.557	43.331	1.00	8.62	A
MOTA	1499	CB	ILE A 208		5.073	29.491	44.476	1.00	11.42	A
ATOM	1500	CG2	ILE A 208	4	4.533	30.157	45.766	1.00	8.84	A
ATOM	1501	CG1	ILE A 208		4.158	28.359	43.984		12.09	A
ATOM	1502	CD1	ILE A 208	4	4.207	27.094	44.823	1.00	11.77	A
MOTA	1503	C	ILE A 208	4.	3.924	31.286	43.056	1.00	10.31	A
MOTA	1504	0	ILE A 208	4:	3.664	32.335	43.649	1.00	12.81	A
MOTA	1505	N	THR A 209		3.098	30.776	42.145	1.00	7.78	. A
ATOM	1506	CA	THR A 209		1.825	31.470	41.864	1.00	9.01	A
MOTA	1507	CB	THR A 209		2.055	32.610	40.849	1.00	11.48	· A
MOTA	1508	OG1	THR A 209		0.906	33.455	40.789	1.00	11.18	A
ATOM	1509	CG2	THR A 209		2.310	32.030	39.460	1.00	12.27	A
ATOM	1510	C	THR A 209		0.751	30.534	41.319	1.00	10.48	A
ATOM	1511	0	THR A 209		978	29.326	41.215	1.00	10.85	A
ATOM	1512	N	TYR A 210		9.577	31.087	40.997	1.00	8.58	A
ATOM	1513	CA	TYR A 210		3.476	30.303	40.422	1.00	8.34	Ą
ATOM	1514	CB	TYR A 210		7.244	30.304	41.350	1.00	4.35	À
MOTA	1515	CG	TYR A 210	3	5.685	31.664	41.695	1.00	7.98	A

ATOM	1516	CD1	TVD 3	210	35 65 6				
		CD1			35.656	32.240	40.927	1.00 6.11	A
ATOM	1517	CE1	TYR A	210	35.153	33.509	41.235	1.00 7.73	
ATOM	1518	CD2							A
					37.188	32.386	42.778	1.00 6.57	A
ATOM	1519	CE2	TYR A	210	36.699	33.643	43.086	1.00 5.93	A
ATOM	1520	CZ	TYR A	210	35.687	34.203	42.313		
ATOM	1521	ОН	TYR A					1.00 8.47	A
					35.242	35.475	42.598	1.00 8.24	A
ATOM	1522	С	TYR A	210	38.169	30.983	39.087	1.00 5.52	A
ATOM	1523	0	TYR A	210	38.184	32.222			
ATOM	1524	N	ILE A				39.010	1.00 9.37	A
					37.934	30.201	38.032	1.00 6.28	Α
ATOM	1525	CA	ILE A	211	37.720	30.832	36.735	1.00 7.52	A
ATOM	1526	CB	ILE A	211	39.085	31.384	36.235	1.00 11.97	
ATOM	1527	CG2	ILE A		39.990				A
			TT D A	211		30.231	35.830	1.00 10.21	Α
ATOM	1528	CG1	ILE A		38.902	32.361	35.075	1.00 14.62	Α.
MOTA	1529	CD1	ILE A	211	40.159	33.203	34.806	1.00 15.71	
ATOM	1530	С	ILE A		37.132				A
ATOM	1531					29.936	35.648	1.00 8.22	A
		0	ILE A		37.080	28.703	35.778	1.00 8.13	Α
MOTA	1532	N	SER A	212	36.634	30.590	34.602	1.00 9.06	A
ATOM	1533	CA	SER A	212	36.140	29.913	33.394		
MOTA	1534	CB	SER A					1.00 9.98	A
					35.984	30.934	32.256	1.00 8.45	A
MOTA	1535	OG	SER A		35.637	30.283	31.037	1.00 9.53	Α
ATOM	1536	С	SER A 2	212	37.181	28.904	32.914	1.00 10.00	A
ATOM	1537	0	SER A	212	38.361	29.234			
ATOM	1538	Ň	PRO A				32.812	1.00 7.50	A
					36.761	27.668	32.585	1.00 8.50	Α
ATOM	1539	CD	PRO A		35.436	27.030	32.686	1.00 4.78	A
ATOM	1540	CA	PRO A 2	213	37.781	26.728	32.117	1.00 8.39	A
ATOM	1541	CB	PRO A		37.035				
ATOM	1542					25.392	32.059	1.00 10.29	Α
-		CG	PRO A 2		35.578	25.849	31.743	1.00 9.33	A
MOTA	1543	С	PRO A 2	213	38.360	27.149	30.777	1.00 10.79	A
ATOM	1544	0	PRO A 2	213	39.433	26.698	30.390	1.00 10.83	
ATOM	1545	N	ASP A						Ā
					37.668	28.038	30.074	1.00 5.80	А
MOTA	1546	CA		214	38.164	28.514	28.775	1.00 8.50	A
ATOM	1547	CB	ASP A 2	214	37.033	29.175	27.997	1.00 7.35	A
ATOM	1548	CG	ASP A 2	214	37.248	29.146	26.497		
ATOM	1549	OD1	ASP A						A
					36.479	29.849	25.801	1.00 11.42	A
MOTA	1550	OD2	ASP A 2	214	38.159	28.428	26.007	1.00 10.72	Α
ATOM	1551	С	ASP A 2	214	39.314	29.526	28.935	1.00 12.08	A
ATOM	1552	0	ASP A 2		39.933	29.931			
ATOM							27.943	1.00 13.08	A
	1553	N	PHE A 2		39.572	29.958	30.170	1.00 9.47	Α
ATOM	1554	CA	PHE A 2	215	40.662	30.901	30.459	1.00 9.63	A
MOTA	1555	CB	PHE A 2	215	40.121	32.106	31.233	1.00 12.63	
MOTA	1556	CG	PHE A 2						A
					39.375	33.081	30.402	1.00 9.86	Α
MOTA	1557		PHE A 2		39.957	34.301	30.067	1.00 11.72	A
ATOM	1558	CD2	PHE A 2	215	38.074	32.812	29.986	1.00 11.34	A
ATOM	1559	CEl	PHE A 2	215	39.250	35.250	29.332	1.00 11.89	
ATOM	1560	CE2	PHE A 2		32.250				A
					37.357	33.759	29.245	1.00 6.37	A
MOTA	1561	CZ	PHE A 2		37.949	34.976	28.921	1.00 13.90	A
ATOM	1562	С	PHE A 2	215	41.748	30.286	31.356	1.00 13.88	A
MOTA	1563	0	PHE A 2	215	42.837	30.865	31.480	1.00 12.28	
ATOM	1564	Ň	ALA A 2						A
ATOM					41.463	29.131	31.976	1.00 9.02	A
	1565	CA	ALA A 2		42.404	28.535	32.936	1.00 9.41	A
ATOM	1566	CB	ALA A 2	216	41.705	27.432	33.753	1.00 9.18	A
ATOM	1567	С	ALA A 2	216	43.727	28.007	32.406	1.00 13.18	Ä
ATOM	1568	ŏ	ALA A 2						
	1569				44.679	27.844	33.178	1.00 16.82	A
ATOM		N	ALA A 2		43.790	27.719	31.106	1.00 12.39	A
ATOM	1570	CA	ALA A 2	217	45.031	27.224	30.522	1.00 14.59	A
ATOM	1571	CB	ALA A 2	217	45.094	25.693	30.625	1.00 15.34	A
MOTA	1572	С	ALA A 2		45.136	27.660	29.063		
			717 7 2	22 7				1.00 16.52	A
ATOM	1573	0	ALA A 2		44.128	27.958	28.418	1.00 14.71	A
ATOM	1574	N	PRO A 2		46.358	27.690	28.517	1.00 18.85	A
ATOM	1575	CD	PRO A 2	218	47.657	27.532	29.194	1.00 19.53	A
ATOM	1576	CA	PRO A 2		46.533				
						28.101	27.111	1.00 17.17	A
ATOM	1577	CB	PRO A 2		48.053	28.171	26.952	1.00 22.03	A
ATOM	1578	CG	PRO A 2		48.553	28.433	28.357	1.00 24.10	A
ATOM	1579	С	PRO A 2		45.889	27.162	26.076	1.00 17.95	Ä
ATOM	1580	ŏ	PRO A 2						
					45.490	27.606	24.986	1.00 20.60	Α
MOTA	1581	N	SER A 2		45.804	25.872	26.395	1.00 12.39	A
ATOM	1582	CA	SER A 2	219	45.212	24.883	25.490	1.00 11.61	A
ATOM	1583	CB	SER A 2		46.308	24.053	24.816		
								1.00 17.69	A
MOTA	1584	OG	SER A 2		46.870	23.140	25.749	1.00 17.25	A
ATOM	1585	C	SER A 2	219	44.341	23.942	26.324	1.00 14.52	A
MOTA	1586	0	SER A 2		44.454	23.896	27.559	1.00 15.86	A
ATOM	1587	Ň	LEU A 2						
					43.479	23.180	25.664	1.00 13.85	A
ATOM	1588	CA	LEU A 2		42.614	22.250	26.389	1.00 13.63	A
MOTA	1589	CB	LEU A 2	20	41.705	21.491	25.401	1.00 15.59	A
ATOM	1590	CG	LEU A 2		40.632	22.337	24.707	1.00 16.07	Ä
MOTA	1591		LEU A 2		39.908	21.517	23.646		
			200 A 2	0	33.300	21.31/	23.040	1.00 15.58	A

ATOM	1592	CD2	T IZIT A	220	20 625	22 255	25 752	1 00 16 22	-
ATOM	1593	CDZ	LEU A		39.635	22.855	25.752	1.00 16.33	A
ATOM	1594	ŏ	LEU A		43.401	21.251	27.245	1.00 15.71	A
ATOM	1595	Ŋ			43.034	20.986	28.395	1.00 15.65	A
ATOM	1596	ČA	ALA A		44.481	20.693	26.698	1.00 15.60	A
ATOM	1597		ALA A		45.283	19.714	27.452	1.00 18.03	A
ATOM	1598	CB	ALA A		46.452	19.175	26.604	1.00 17.58	À
ATOM	1599	C	ALA A		45.834	20.298	28.738	1.00 11.01	A
		O	ALA A		46.085	19.573	29.687	1.00 15.45	A
ATOM	1600 1601	N	GLY A		46.038	21.612	28.754	1.00 15.25	Ā
ATOM ATOM	1602	CA	GLY A		46.561	22.267	29.947	1.00 11.71	Ā
ATOM	1603	C	GLY A		45.641	22.101	31.144	1.00 10.72	A
ATOM	1604	Ŋ	GLY A		46.105	22.139	32.280	1.00 14.13	A
ATOM	1605	CA	LEU A		44.340	21.938	30.914	1.00 11.19	A
ATOM	1606	CB	LEU A		43.406 41.946	21.751 21.728	32.033 31.525	1.00 8.14	A
ATOM	1607	CG	LEU A		41.481	23.046	30.874	1.00 9.90 1.00 9.91	A A
ATOM	1608	CD1			40.035	22.918	30.331	1.00 9.85	A
ATOM	1609	CD2	LEU A		41.570	24.153	31.926	1.00 9.05	A
ATOM	1610	C	LEU A		43.720	20.444	32.773	1.00 11.22	, A
ATOM	1611	ŏ	LEU A		43.369	20.297	33.939	1.00 7.21	À
ATOM	1612	N	ASN A		44.389	19.505	32.100	1.00 9.60	Ä
ATOM	1613	CA	ASN A		44.742	18.231	32.727	1.00 10.35	Ä
ATOM	1614	CB	ASN A		44.651	17.078	31.706	1.00 13.70	A
ATOM	1615	CG	ASN A		43.214	16.768	31.301	1.00 15.75	A
ATOM	1616	OD1	ASN A	224	42.347	16.610	32.146	1.00 21.72	A
ATOM	1617	ND2	ASN A	224	42.968	16.666	30.012	1.00 14.86	A
MOTA	1618	С	ASN A	224	46.138	18.239	33.359	1.00 12.93	A
MOTA	1619	0	ASN A	224	46.580	17.226	33.898	1.00 14.86	A
MOTA	1620	N	ASP A		46.833	19.370	33.308	1.00 8.74	A
ATOM	1621	CA	ASP A		48.163	19.437	33.932	1.00 12.69	A
ATOM	1622	CB	ASP A		49.031	20.467	33.199	1.00 11.40	A
ATOM	1623	CG	ASP A		50.402	20.654	33.843	1.00 15.89	А
ATOM	1624		ASP A		50.673	20.076	34.922	1.00 14.10	A
ATOM	1625		ASP A		51.211	21.401	33.261	1.00 16.19	A
ATOM	1626	C	ASP A		47.960	19.844	35.398	1.00 13.53	A
ATOM ATOM	1627 1628	O	ASP A ALA A		47.776	21.016	35.691	1.00 10.79	A
ATOM	1629	N CA			48.035	18.882	36.317	1.00 10.49	A
ATOM	1630	CB	ALA A		47.792	19.178	37.720	1.00 9.18	A
ATOM	1631	C	ALA A		47.424 48.881	17.889 19.939	38.478	1.00 13.20	A
ATOM	1632	ŏ	ALA A		48.773	20.144	38.461 39.678	1.00 12.23 1.00 13.15	A
ATOM	1633	Ň	THR A		49.935	20.347	37.762	1.00 13.13	A . A
ATOM	1634	CA	THR A		50.955	21.148	38.426	1.00 10.50	A
MOTA	1635	CB	THR A		52.405	20.854	37.917	1.00 15.63	Ã
MOTA	1636	OG1	THR A		52.541	21.287	36.561	1.00 13.88	À
MOTA	1637	CG2	THR A		52.718	19.374	38.009	1.00 16.59	A
MOTA	1638	C	THR A	. 227	50.620	22.628	38.154	1.00 9.17	A
ATOM	1639	0	THR A		51.320	23.509	38.626	1.00 10.52	A
MOTA	1640	N	LYS A		49.530	22.876	37.414	1.00 9.27	A
ATOM	1641	CA	LYS A		49.079	24.226	37.069	1.00 12.05	A
MOTA	1642	CB	LYS A		49.378	24.511	35.594	1.00 15.38	A
ATOM	1643	CG	LYS A		50.877	24.607	35.272	1.00 22.71	A
ATOM	1644	CD	LYS A		51.125	24.652	33.758	1.00 20.66	A
ATOM	1645	CE		228	52.613	24.720	33.447	1.00 26.84	A
ATOM ATOM	1646	NZ	LYS A		53.205	25.974	33.986	1.00 37.16	A
ATOM	1647 1648	C O	LYS A		47.576	24.453	37.313	1.00 8.78	A
ATOM	1649	N	LYS A		47.153 46.777	25.574 23.407	37.634	1.00 9.99 1.00 9.98	A
ATOM	1650	CA	VAL A		45.327	23.465	37.100 37.282	1.00 9.98 1.00 6.71	A A
ATOM	1651	CB	VAL A		44.611	23.300	35.939	1.00 8.87	A
ATOM	1652	CG1	VAL A		43.082	23.303	36.150	1.00 10.77	Ä
ATOM	1653	CG2	VAL A		45.019	24.468	34.988	1.00 10.90	Ä
MOTA	1654	Ċ	VAL A		44.913	22.339	38.245	1.00 10.51	Ä
MOTA	1655	ō	VAL A		45.107	21.154	37.967	1.00 8.04	A
MOTA	1656	Ň	ALA A		44.343	22.706	39.383	1.00 10.29	A
MOTA	1657	CA	ALA A		43.985	21.696	40.387	1.00 8.30	A
MOTA	1658	CB	ALA A		43.612	22.380	41.677	1.00 10.71	A
MOTA	1659	C	ALA A		42.900	20.691	40.064	1.00 12.18	A
MOTA	1660	Ó	ALA A	230	41.884	21.020	39.435	1.00 12.58	A
MOTA	1661	N	ARG A		43.120	19.452	40.501	1.00 8.23	A
MOTA	1662	CA	ARG A		42.080	18.436	40.382	1.00 8.98	A
MOTA	1663	CB	ARG A		42.656	17.021	40.495	1.00 11.67	A
MOTA	1664	CG	ARG A		43.433	16.581	39.265	1.00 14.58	A
ATOM	1665	CD	ARG A		44.130	15.244	39.487	1.00 18.76	A
ATOM	1666	NE	ARG A		44.972	14.941	38.336	1.00 19.63	A
MOTA	1667	CZ	ARG A	231	45.931	14.029	38.331	1.00 26.24	A

ATOM	1668	MUI	300						
ATOM	1669	NH1 NH2		A 231 A 231	46.184	13.312	39.426	1.00 22.17	A
ATOM	1670	C		A 231	46.649 41.271	13.848 18.738	37.228 41.632	1.00 31.31 1.00 8.66	A A
ATOM	1671	ō		A 231	41.801	19.332	42.582	1.00 13.24	Ä
ATOM	1672	N		A 232	39.997	18.371	41.640	1.00 9.11	Ä
ATOM	1673	CA		A 232	39.180	18.607	42.822	1.00 11.84	A
ATOM	1674	CB		A 232	38.236	19.820	42.623	1.00 13.64	A
ATOM	1675	OG1		A 232	39.017	21.004	42.384	1.00 17.60	A
ATOM ATOM	1676 1677	CG2 C		A 232 A 232	37.382	20.025	43.883	1.00 14.43	A
ATOM	1678	Ö		A 232	38.357 37.869	17.351 16.747	43.071 42.118	1.00 9.12	A
ATOM	1679	N		A 233	38.240	16.934	44.332	1.00 13.13 1.00 9.55	A A
ATOM	1680	CA		A 233	37.466	15.739	44.636	1.00 13.57	Â
MOTA	1681	С	GLY	A 233	38.197	14.616	45.364	1.00 14.09	A
ATOM	1682	0		A 233	37.634	13.556	45.591	1.00 16.30	A
ATOM	1683	N		A 234	39.460	14.831	45.706	1.00 14.67	' A
ATOM ATOM	1684 1685	CA CB		A 234 A 234	40.226	13.834	46.438	1.00 15.04	A
ATOM	1686	CG		A 234	41.577 42.483	14.442 13.576	46.830 47.688	1.00 13.37 1.00 14.40	A
ATOM	1687	CD		A 234	43.807	14.314	47.968	1.00 14.40 1.00 17.84	A A
ATOM	1688	CE		A 234	43.594	15.567	48.839	1.00 15.78	Ä
MOTA	1689	NZ		A 234	44.766	16.501	48.832	1.00 12.74	A
ATOM	1690	C		A 234	39.450	13.411	47.697	1.00 17.96	Α
ATOM ATOM	1691 1692	O N		A 234 A 235	38.826	14.240	48.369	1.00 13.45	A
ATOM	1693	CA		A 235	39.489 38.785	12.124 11.694	48.031 49.223	1.00 15.80 1.00 15.51	A
ATOM	1694	C.		A 235	38.764	10.191	49.402	1.00 15.51 1.00 19.91	A A
MOTA	1695	ŏ		A 235	39.586	9.472	48.825	1.00 21.77	Â
MOTA	1696	N	SER .	A 236	37.811	9.731	50.204	1.00 21.18	A
ATOM	1697	CA		A 236	37.624	8.311	50.489	1.00 24.63	A
ATOM	1698	CB		A 236	38.018	8.004	51.929	1.00 25.33	A
ATOM ATOM	1699 1700	OG C		A 236 A 236	39.359 36.159	8.397 7.969	52.161	1.00 33.33	A
ATOM	1701	ŏ		A 236	35.282	8.624	50.291 50.855	1.00 26.45 1.00 27.89	A A
MOTA	1702	N		A 237	35.891	6.947	49.488	1.00 22.58	Ä
MOTA	1703	CA	SER	A 237	34.522	6.520	49.238	1.00 23.79	Ä
ATOM	1704	CB		A 237	34.123	6.799	47.786	1.00 25.37	A
ATOM	1705	OG		A 237	34.019	8.197	47.578	1.00 38.24	A
ATOM ATOM	1706 1707	C O		A 237	34.429	5.036	49.514	1.00 21.92	A
ATOM	1708	N		A 237 A 238	35.244 33.423	4.267 4.640	49.009 50.295	1.00 20.25 1.00 25.14	A A
ATOM	1709	CA		A 238	33.233	3.236	50.662	1.00 24.45	Ä
MOTA	1710	CB		A 238	32.716	2.427	49.471	1.00 27.22	Ä
ATOM	1711	OG		A 238	31.371	2.785	49.163	1.00 39.35	A
ATOM	1712	C		A 238	34.559	2.670	51.159	1.00 23.39	A
ATOM ATOM	1713 1714	O N		A 238 A 239	34.961 35.249	1.557 3.468	50.809 51.966	1.00 24.29 1.00 24.50	A
ATOM	1715	CA		A 239	36.519	3.040	52.524	1.00 24.50 1.00 25.11	A A
ATOM	1716	C		A 239	37.705	2.973	51.584	1.00 28.40	Ä
ATOM	1717	0		A 239	38.755	2.452	51.969	1.00 28.03	A
ATOM	1718	N		4 240	37.563	3.495	50.365	1.00 21.59	A
ATOM ATOM	1719 1720	CA		A 240 A 240	38.677 39.082	3.459	49.431	1.00 26.05	A
ATOM	1721	ŏ		A 240	38.218	4.858 5.685	48.984 48.714	1.00 24.32 1.00 23.70	A A
ATOM	1722	Ň		. 241	40.386	5.121	48.920	1.00 21.49	Ä
MOTA	1723	CA	GLY A	A 241	40.873	6.422	48.500	1.00 27.38	A
ATOM	1724	C	GLY A		40.495	6.715	47.058	1.00 28.81	A
ATOM	1725	0	GLY 1		40.585	5.840	46.200	1.00 28.58	A
ATOM ATOM	1726 1727	N CA	ALA A		40.057 39.663	7.939 8.303	46.784	1.00 24.66	A
ATOM	1728	CB	ALA A		38.159	8.527	45.434 45.367	1.00 22.08 1.00 25.95	A A
ATOM	1729	č	ALA A		40.385	9.573	45.043	1.00 22.46	Ä
MOTA	1730	0	ALA A	4 242	40.541	10.472	45.869	1.00 16.67	A
MOTA	1731	N	GLU A		40.813	9.647	43.785	1.00 16.24	A
ATOM	1732	CA	GLU A		41.502	10.830	43.289	1.00 18.78	A
ATOM	1733	CB	GLU A		42.444	10.473	42.132	1.00 23.30	A
ATOM ATOM	1734 1735	CG CD	GLU A		43.643 44.658	9.624 9.584	42.499 41.368	1.00 31.37	. A
ATOM	1736		GLU A		44.234	9.507	40.195	1.00 37.64	A
ATOM	1737		GLU A		45.876	9.628	41.644	1.00 38.39	A
ATOM	1738	C	GLU A		40.469	11.817	42.757	1.00 15.80	A
MOTA	1739	0	GLU A		39.417	11.406	42.285	1.00 17.65	A
MOTA	1740	N	GLY A		40.765	13.111	42.827	1.00 15.34	A
ATOM ATOM	1741 1742	CA C	GLY A		39.832 39.994	14.101 14.161	42.286 40.770	1.00 16.23 1.00 16.48	A A
ATOM	1742	0	GLY A		40.894	13.528	40.770	1.00 16.48	A A
	- · • •	-		17	-0.074	20.020		~ T J /	Α.

MOTA	1744	N	LYS A	245	39.148	14.939	40.096	1 00	14.99	*
ATOM	1745	CA	LYS A		39.186					A
ATOM	1746					15.079	38.632		14.88	A
		CB	LYS A		37.792	14.795	38.060	1.00	13.06	Α
MOTA	1747	ÇG	LYS A	245	37.294	13.363	38.289	1.00	22.95	A
ATOM	1748	CD	LYS A	245	38.174	12.353	37.540		27.44	
MOTA	1749	CE	LYS A		37.596					Ā
						10.939	37.643		27.64	A
ATOM	1750	NZ	LYS A		37.298	10.599	39.063	1.00	36.34	A
MOTA	1751	C	LYS A	245	39.617	16.471	38.165	1.00	13.81	Α
MOTA	1752	0	LYS A	245	39.580	17.431	38.932		10.66	A
ATOM	1753	N	SER A		40.022					
ATOM	1754					16.572	36.902		14.72	A
		CA	SER A		40.405	17.856	36.344	1.00	11.87	Α
MOTA	1755	CB	SER A	246	41.299	17.687	35.104	1.00	12.31	Α
MOTA	1756	OG	SER A	246	40.515	17.215	34.011	1.00	9.67	A
ATOM	1757	С	SER A		39.095	18.500	35.913			
ATOM	1758	ŏ	SER A						10.79	A
	1759				38.076	17.815	35.735		10.08	А
ATOM		N	PRO A		39.114	19.825	35.698	1.00	10.98	А
ATOM	1760	CD	PRO A	247	40.243	20.747	35.947	1.00	7.03	A
MOTA	1761	CA	PRO A	247	37.909	20.545	35.275	1.00	9.29	A
ATOM	1762	CB	PRO A		38.210	21.988	35.692	1.00		
ATOM	1763	ĊĠ	PRO A						7.19	A
					39.737	22.094	35.385	1.00	9.12	A
ATOM	1764	C	PRO A		37.632	20.416	33.765	1.00	9.99	A
ATOM	1765	0	PRO A	247	36.865	21.197	33.222	1.00	11.54	A
ATOM	1766	N	ALA A	248	38.253	19.449	33.083	1.00	9.23	Ä
ATOM	1767	CA	ALA A		37.992	19.278	31.638		12.63	
ATOM	1768	CB	ALA A							A
ATOM					38.832	18.097	31.069		10.35	A
	1769	C	ALA A		36.487	19.021	31.431	1.00	15.07	A
ATOM	1770	0	ALA A		35.838	18.390	32.278	1.00	11.60	A
ATOM	1771	N	ALA A	249	35.935	19.497	30.311	1.00	12.95	Α
ATOM	1772	CA	ALA A	249	34.498	19.332	30.037	1.00	11.90	A
ATOM	1773	CB	ALA A	249	34.141	19.886	28.633		12.61	A
ATOM	1774	C	ALA A		34.037	17.890	30.149		15.30	
ATOM	1775	ŏ	ALA A							A
ATOM					32.953	17.617	30.666	1.00	14.63	A
	1776	N	ALA A		34.845	16.949	29.672		14.76	A
ATOM	1777	CA	ALA A		34.426	15.542	29.769	1.00	18.41	A
ATOM	177B	CB	ALA A	250	35.486	14.623	29.168	1.00	15.53	A
ATOM	1779	С	ALA A	250	34.118	15.102	31.200	1.00	15.76	A
ATOM ·	1780	0	ALA A		33.366	14.154	31.410		14.59	Ä
ATOM	1781	Ň	ASN A		34.677	15.785	32.190			
ATOM	1782	CA						1.00	14.82	A
			ASN A		34.433	15.380	33.575		13.85	A
ATOM	1783	CB	ASN A		35.665	15.696	34.441	1.00	12.26	A
MOTA	1784	CG	ASN A		36.880	14.885	34.022	1.00	14.85	A
MOTA	1785	OD1	ASN A	251	36.755	13.712	33.653	1.00	14.23	A
ATOM	1786	ND2	ASN A	251	38.056	15.487	34.091		13.09	A
ATOM	1787	C	ASN A		33.168	15.968	34.210	1.00	16.10	Ä
ATOM	1788	ŏ	ASN A							
					32.877	15.686	35.357		14.41	Ā
ATOM	1789	Ŋ	SER A		32.431	16.806	33.482	1.00	13.25	A
ATOM	1790	CA	SER A		31.191	17.346	34.039	1.00	10.81	A
ATOM	1791	CB	SER A	252	31.262	18.868	34.209	1.00	22.32	Α
ATOM	1792	OG	SER A	252	31.266	19.536	32.953	1.00	23.58	A
ATOM	1793	С	SER A	252	30.027	16.982	33.101		11.68	A
ATOM	1794	ŏ	SER A		28.862	17.077	33.479		12.18	A
ATOM	1795	Ŋ	SER A							
					30.365	16.501	31.904		11.74	A
ATOM	1796	CA	SER A		29.367	16.138	30.918		10.64	A
ATOM	1797	CB	SER A		30.048	15.572	29.665	1.00	18.81	А
ATOM	1798	OG	SER A		29.052	15.263	28.704		27.87	A
ATOM	1799	C	SER A	253	28.294	15.139	31.382	1.00	15.51	A
ATOM	1800	0	SER A	253	27.112	15.319	31.102		11.29	A
MOTA	1801	N	ALA A		28.692	14.080	32.081		12.85	Ä
ATOM	1802	CA	ALA A		27.700	13.084	32.525		14.75	
										À
ATOM	1803	CB	ALA A		28.423	11.868	33.216		13.94	Ā
ATOM	1804	C	ALA A		26.656	13.667	33.472		14.13	A
ATOM	1805	0	ALA A	254	25.457	13.394	33.342	1.00	14.40	A
ATOM	1806	N	ALA A	255	27.111	14.457	34.441	1.00	11.77	Α
ATOM	1807	CA	ALA A		26.205	15.070	35.401		13.30	Ä
ATOM	1808	CB	ALA A		27.009	15.838	36.460		12.60	Ä
ATOM	1809	_	ALA A		25.223					
		C				16.017	34.698		15.34	A
ATOM	1810	0	ALA A		24.068	16.162	35.113		14.03	Ā
MOTA	1811	N	ILE A		25.684	16.680	33.644		13.10	A
MOTA	1812	CA	ILE A		24.812	17.599	32.920	1.00	14.09	A
MOTA	1813	CB	ILE A	256	25.614	18.445	31.900		11.60	A
ATOM	1814	CG2	ILE A		24.655	19.233	30.987		13.12	A
ATOM	1815	CGI	ILE A		26.577	19.378	32.657	1.00	8.87	Ä
ATOM			ILE A		25.878					
	1816	CD1				20.335	33.703	1.00	6.00	A
MOTA	1817	Č	ILE A		23.716	16.813	32.195		12.88	A
ATOM	1818	0	ILE A		22.569	17.268	32.118		12.14	A
ATOM	1819	N	SER A	257	24.069	15.639	31.678	1.00	12.01	A

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1820 CA 1821 CA 1822 OC 1823 CA 1824 OA 1825 NA 1826 CA 1827 CA 1828 CC 1829 CC 1830 CA 1831 OC	SER A 257 SER A 257 SER A 257 SER A 257 VAL A 258 VAL A 258 VAL A 258 VAL A 258	23.105 23.773 24.331 21.886 20.885 21.949 20.803 21.230 22.055 22.004 20.002 19.056	14.793 13.529 13.802 14.359 13.975 14.417 13.983 13.049 11.887 13.831 15.133 14.907	30.960 30.418 29.157 31.750 31.161 33.070 33.849 34.996 34.443 36.041 34.433	1.00 17.17 1.00 20.37 1.00 27.40 1.00 25.54 1.00 18.37 1.00 22.61 1.00 23.45 1.00 29.85 1.00 29.85 1.00 20.13	A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1832 N 1833 CA 1834 CE 1835 CO 1836 CO 1837 C 1838 O 1839 N 1840 CE	3 VAL A 259 31 VAL A 259 32 VAL A 259 VAL A 259 VAL A 259 PRO A 260 PRO A 260	20.367 19.628 20.345 19.448 21.661 18.257 18.154 17.185 17.178	16.365 17.503 18.816 20.009 18.870 17.470 17.543 17.379 17.349	34.092 34.621 34.655 35.110 33.946 32.719 34.745 36.227 34.204	1.00 17.82 1.00 12.10 1.00 9.61 1.00 9.95 1.00 10.93 1.00 12.34 1.00 12.49 1.00 15.54 1.00 12.14	A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1842 CE 1843 CG 1844 C 1845 O 1846 N 1847 CA 1848 CB 1849 CG 1850 CD	PRO A 260 PRO A 260 PRO A 260 LEU A 261 LEU A 261 LEU A 261 1 LEU A 261 2 LEU A 261	14.992 15.705 15.326 15.719 14.462 13.906 13.190 14.033 13.132 14.860	16.881 17.553 18.629 19.704 18.517 19.697 19.272 18.722 18.724 18.115	35.415 36.556 33.592 34.025 32.583 31.899 30.612 29.470 28.388 28.927	1.00 12.14 1.00 20.90 1.00 13.33 1.00 11.59 1.00 14.89 1.00 14.36 1.00 23.33 1.00 17.91 1.00 21.86	A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1852 C 1853 N 1854 N 1855 CD 1856 CA 1857 CB 1859 C 1860 O 1861 N	PRO A 262 PRO A 262 PRO A 262 PRO A 262 PRO A 262 ALA A 263	12.868 12.313 12.598 13.154 11.576 11.753 12.147 10.239 10.136 9.234	20.354 19.715 21.646 22.620 22.260 23.752 23.764 21.709 21.357 21.605	32.782 33.667 32.570 31.613 33.421 33.137 31.698 32.911 31.743 33.776	1.00 14.14 1.00 13.00 1.00 16.56 1.00 18.10 1.00 16.37 1.00 22.55 1.00 14.68 1.00 14.32 1.00 13.42	A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1862 CA 1863 CB 1864 C 1865 N 1867 CA 1868 CB 1869 C 1870 O 1871 N 1872 CA	ALA A 263 ALA A 263 ALA A 263 ALA A 264 ALA A 264 ALA A 264 ALA A 264 ALA A 264 ALA A 265 ALA A 265	7.943 6.994 7.343 7.480 6.664 6.050 5.248 5.149 4.284 3.370	21.085 20.952 22.011 23.235 21.426 22.206 21.287 23.329 24.461 23.037 24.071	33.344 34.539 32.292 32.377 31.309 30.239 29.308 30.747 30.264 31.721	1.00 16.60 1.00 20.02 1.00 16.04 1.00 14.70 1.00 15.42 1.00 19.88 1.00 15.82 1.00 17.34 1.00 13.78	A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1873 CB 1874 C 1875 O 1876 N 1877 CA 1878 CB 1879 CG 1880 OD 1881 ND2 1882 C	ALA A 265 ALA A 265 ALA A 265 ASN A 266 ASN A 266 ASN A 266 ASN A 266 ASN A 266	2.464 4.057 3.437 5.320 6.987 6.253 5.175 6.856	23.478 25.333 26.398 25.212 26.343 25.895 25.239 25.676 24.200 27.039	32.242 33.363 32.772 32.838 33.175 33.733 34.873 36.028 36.425 36.425 36.592 32.730	1.00 15.17 1.00 15.42 1.00 15.06 1.00 13.78 1.00 13.85 1.00 12.11 1.00 13.94 1.00 23.25 1.00 21.92 1.00 19.37 1.00 12.06	A A A A A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1883 O 1884 N 1885 CA 1886 CB 1887 CG 1888 CD 1889 NE 1890 CZ 1891 NH1	ARG A 267	7.662 6.980 7.933 8.029 8.746 8.892 9.273 9.477 9.782	27.965 26.600 27.162 26.254 24.945 23.924 22.637 21.530 21.543 20.387	33.100 31.483 30.534 29.306 29.675 28.540 29.124 28.439 27.118 29.084	1.00 13.88 1.00 10.11 1.00 12.44 1.00 10.57 1.00 12.04 1.00 9.95 1.00 14.76 1.00 14.94 1.00 16.59 1.00 12.17	A A A A A A A A
ATOM ATOM ATOM	1893 C 1894 O 1895 N	ARG A 267 ARG A 267 GLY A 268	7.785 8.658 6.711	28.629 29.207 29.240	30.168 29.505 30.663	1.00 13.15 1.00 13.32 1.00 11.13	A A A

									_
MOTA	1896	CA	GLY A		6.491	30.653	30.439	1.00 13.	33 A
ATOM	1897	Ç	GLY A		7.212	31.457	31.507	1.00 13.	
ATOM	1898	0	GLY A		7.219	32.679	31.452	1.00 14.	
MOTA	1899	N	ASP A		7.804	30.767	32.486	1.00 11.	
ATOM	1900	CA	ASP A	269	8.554	31.398	33.594	1.00 14.	
ATOM	1901	CB	ASP A	269	8.233	30.665	34.914	1.00 13.	
MOTA	1902	CG	ASP A		8.943	31.263	36.117	1.00 16.	
ATOM	1903	OD1	ASP A		9.767	32.179	35.944	1.00 17.	
ATOM	1904	OD2	ASP A	269	8.667	30.804	37.244	1.00 19.	
ATOM	1905	C	ASP A	269	10.064	31.290	33.303	1.00 10.	
ATOM	1906	0	ASP A		10.616	30.196	33.348	1.00 11.	
ATOM	1907	N	PRO A	270	10.742	32.417	33.010	1.00 11.	
ATOM	1908	CD	PRO A	270	10.217	33.796	32.924	1.00 11.	
MOTA	1909	CA	PRO A	270	12.184	32.394	32.709	1.00 10.	
ATOM	1910	CB	PRO A	270	12.523	33.867	32.491	1.00 11.	
MOTA	1911	CG	PRO A		11.225	34.465	32.026	1.00 13.	
MOTA	1912	С	PRO A	270	13.042	31.786	33.793	1.00 12.	
MOTA	1913	0	PRO A	270	14.097	31.243	33.521	1.00 10.	
MOTA	1914	N	ASN A		12.578	31.870	35.032	1.00 11.	
ATOM	1915	CA	ASN A		13.337	31.332	36.145	1.00 11.	
ATOM	1916	CB	ASN A		12.660	31.729	37.463	1.00 14.	
ATOM	1917	CG	ASN A		13.533	31.434	38.683	1.00 22.	
ATOM	1918	OD1			14.734	31.726	38.696	1.00 16.	89 A
ATOM	1919	ND2	ASN A		12.934	30.854	39.703	1.00 16.	43 A
ATOM	1920	Ç	ASN A		13.545	29.816	36.090	1.00 16.	21 A
ATOM	1921	0	ASN A		14.595	29.319	36.510	1.00 15.	74 A
ATOM	1922	N	VAL A		12.574	29.065	35.575	1.00 10.	21 A
ATOM	1923	CA	VAL A		12.749	27.613	35.547	1.00 11.	32 A
ATOM	1924	CB	VAL A		11.378	26.849	35.440	1.00 13.	38 A
ATOM	1925	CG1	VAL A		10.450	27.297	36.548	1.00 14.	31 A
ATOM	1926	CG2	VAL A		10.759	27.074	34.078	1.00 11.	
ATOM	1927	C	VAL A		13.651	27.086	34.434	1.00 12.	
ATOM	1928	O.	VAL A		14.028	25.907	34.459	1.00 10.	
ATOM	1929	N	TRP A		13.991	27.930	33.461		57 A
ATOM	1930	CA	TRP A		14.862	27.465	32.366		83 A
ATOM ATOM	1931	CB		273	14.741	28.403	31.150		08 A
	1932	CG		273	13.496	28.126	30.364	1.00 10.	
ATOM	1933	CD2	TRP A		13.359	27.161	29.325		80 A
ATOM	1934	CE2	TRP A		12.020	27.228	28.860		21 A
ATOM	1935	CE3		273	14.241	26.240	28.732	1.00 10.	
ATOM ATOM	1936 1937	CD1	TRP A	-	12.271	28.728	30.500		74 A
ATOM	1938	NE1		273	11.375	28.192	29.590	1.00 12.	
ATOM	1939	CZ2 CZ3	TRP A	273	11.545	26.412	27.838	1.00 10.	
ATOM	1940	CH2	TRP A		13.764	25.428	27.700	1.00 10.	
ATOM	1941	C	TRP A		12.427 16.338	25.522	27.267	1.00 14.	
ATOM	1942	ŏ	TRP A		17.119	27.311 26.663	32.755 32.042		26 A
ATOM	1943	Ŋ	THR A		16.736	27.893	33.880		73 A 74 A
ATOM	1944	CA	THR A		18.123	27.769	34.281	1.00 11.	
ATOM	1945	CB	THR A		18.759	29.147	34.542	1.00 11.	
ATOM	1946	OG1	THR A		18.701	29.940	33.334	1.00 16.	
ATOM	1947	CG2	THR A		20.240	28.973	34.959		96 A
MOTA	1948	Ċ	THR A		18.271	26.918	35.535	1.00 10.	
MOTA	1949	0	THR A		18.020	27.378	36.645	1.00 11.	
ATOM	1950	N	PRO A		18.673	25.657	35.373	1.00 11.	
ATOM	1951	CD	PRO A		18.885	24.916	34.119	1.00 13.	
ATOM	1952	CA	PRO A		18.841	24.782	36.543	1.00 11.	
ATOM	1953	CB	PRO A		19.180	23.424	35.921	1.00 15.	
ATOM	1954	CG	PRO A		18.600	23.506	34.528	1.00 15.	
MOTA	1955	C	PRO A	275	20.004	25.253	37.445	1.00 12.	
MOTA	1956	0	PRO A	275	21.007	25.723	36.950	1.00 12.	
MOTA	1957	N	VAL A		19.869	25.148	38.764	1.00 9.	
ATOM	1958	CA	VAL A	276	20.999	25.502	39.615	1.00 10.	A 80
MOTA	1959	CB	VAL A	276	20.738	26.762	40.478	1.00 15.	02 A
MOTA	1960	CG1	VAL A		20.534	27.990	39.568	1.00 16.	57 A
ATOM	1961	CG2	VAL A		19.551	26.543	41.388	1.00 17.	45 A
ATOM	1962	C	VAL A		21.236	24.293	40.500	1.00 12.	
MOTA	1963	0	VAL A		20.315	23.498	40.743	1.00 7.3	
ATOM	1964	N	PHE A		22.472	24.149	40.969	1.00 13.	38 A
MOTA	1965	CA	PHE A		22.848	23.017	41.798	1.00 12.	
MOTA	1966	CB	PHE A		24.231	22.491	41.373	1.00 8.4	
MOTA	1967	CG	PHE A		24.229	21.828	40.017	1.00 8.	
ATOM	1968			277	24.404	22.568	38.858	1.00 9.	
ATOM	1969			277	23.999	20.461	39.909	1.00 8.3	
ATOM	1970		PHE A		24.350	21.934	37.585	1.00 13.4	
MOTA	1971	CE2	PHE A	277	23.938	19.825	38.654	1.00 13.0	62 A

MOTA	1972	CZ	PHE A 277	24.114	20.555	37.499	1.00 8.74	A
MOTA	1973	č	PHE A 277	22.848	23.377	43.272	1.00 12.19	Ä
ATOM	1974	ŏ	PHE A 277	22.892	24.553	43.634	1.00 12.80	A
ATOM	1975	Ň	GLY A 278	22.781	22.356	44.116	1.00 12.01	A
ATOM	1976	CA	GLY A 278	22.767	22.501	45.547	1.00 10.29	A
MOTA	1977	С	GLY A 278	23.113	21.342	46.309	1.00 9.39	A
MOTA	1978	0	GLY A 278	23.379	20.302	45.704	1.00 12.45	A
MOTA	1979	N	ALA A 279	23.087	21.414	47.637	1.00 11.15	Ā
MOTA	1980	CA	ALA A 279	23.436	20.246	48.450	1.00 14.32	A
ATOM	1981	CB	ALA A 279	23.362	20.604	49.930	1.00 16.91	A
MOTA	1982	Č	ALA A 279	22.542	19.029	48.157 48.017	1.00 20.18 1.00 18.69	A A
MOTA	1983 1984	O N	ALA A 279 VAL A 280	23.038 21.238	17.896 19.262	48.040	1.00 14.35	À
MOTA MOTA	1985	CA	VAL A 280	20.302	18.176	47.796	1.00 19.81	Ä
ATOM	1986	CB	VAL A 280	19.500	17.847	49.076	1.00 23.28	Ā
ATOM	1987	CG1	VAL A 280	20.457	17.579	50.225	1.00 23.97	A
ATOM	1988	CG2	VAL A 280	18.603	18.992	49.436	1.00 21.87	A
ATOM	1989	С	VAL A 280	19.311	18.483	46.686	1.00 20.63	Ā
MOTA	1990	0	VAL A 280	19.004	19.635	46.407	1.00 21.63	A
MOTA	1991	N	THR A 281	18.812	17.436	46.055	1.00 20.03	A A
MOTA	1992	CA	THR A 281	17.838	17.599	44.982 44.136	1.00 19.32 1.00 20.70	Ä.
ATOM	1993 1994	CB OG1	THR A 281 THR A 281	17.732 18.989	16.327 16.096	43.493	1.00 24.83	Â.
MOTA MOTA	1995	CG2	THR A 281	16.637	16.473	43.062	1.00 20.23	Ä
MOTA	1996	c	THR A 281	16.500	17.882	45.618	1.00 24.45	A
MOTA	1997	ō	THR A 281	16,073	17.159	46.520	1.00 22.56	A
ATOM	1998	N	GLY A 282	15.854	18.949	45.164	1.00 22.37	A
MOTA	1999	CA	GLY A 282	14.564	19.316	45.706	1.00 26.62	Ā
MOTA	2000	C	GLY A 282	14.183	20.735	45.343	1.00 31.11	A
MOTA	2001	Ö	GLY A 282	15.048	21.603	45.206	1.00 27.54 1.00 32.42	A A
MOTA	2002	N	GLY A 283 GLY A 283	12.883 12.401	20.971 22.301	45.181 44.855	1.00 32.42 1.00 30.56	Â
ATOM	2003 2004	CA C	GLY A 283	13.051	22.950	43.654	1.00 30.47	A
ATOM ATOM	2005	Ö	GLY A 283	13.307	24.154	43.666	1.00 33.57	A
ATOM	2006	Ŋ	GLY A 284	13.298	22.171	42.607	1.00 26.82	A
ATOM	2007	ĊA	GLY A 284	13.925	22.723	41.415	1.00 26.01	A
ATOM	2008	C	GLY A 284	15.450	22.687	41.439	1.00 26.04	Ā
ATOM	2009	0	GLY A 284	16.115	22.822	40.406	1.00 25.82	A
ATOM	2010	N	VAL A 285	16.022	22.521	42.622	1.00 19.46	A A
ATOM	2011	CA	VAL A 285	17.467	22.461 22.894	42.722 44.135	1.00 19.85 1.00 19.90	A
MOTA	2012	CB	VAL A 285 VAL A 285	17.903 19.389	22.673	44.319	1.00 16.38	Ä
MOTA MOTA	2013 2014	CG1 CG2		17.521	24.376	44.360	1.00 20.29	A
ATOM	2015	C	VAL A 285	17.958	21.037	42.428	1.00 18.72	A
ATOM	2016	ŏ	VAL A 285	17.298	20.055	42.794	1.00 18.51	A
ATOM	2017	N	VAL A 286	19.103	20.932	41.755	1.00 14.01	Ą
MOTA	2018	CA	VAL A 286	19.706	19.645	41.423	1.00 16.59	A A
MOTA	2019	CB	VAL A 286	20.200	19.625 18.254	39.964 39.623	1.00 14.25 1.00 19.16	A
MOTA	2020	CG1 CG2		20.729 19.068	19.997	39.036	1.00 20.67	A
ATOM ATOM	2021 2022	CG2	VAL A 286	20.917	19.416	42.325	1.00 17.27	A
ATOM	2023	ŏ	VAL A 286	21.757	20.302	42,484	1.00 13.49	A
ATOM	2024	Ň	ALA A 287	21.041	18.229	42.896	1.00 15.01	A
MOTA	2025	CA	ALA A 287	22.188	18.000	43.778	1.00 17.78	A
ATOM	2026	CB	ALA A 287	22.039	16.649	44.527	1.00 16.62 1.00 12.88	A A
ATOM	2027	C	ALA A 287	23.483	18.011 17.533	42.999 41.854	1.00 12.88 1.00 10.29	A
ATOM	2028	O N	ALA A 287 TYR A 288	23.520 24.538	18.576		1.00 11.08	A
MOTA MOTA	2029 2030	CA	TYR A 288	25.867	18.554	42.979	1.00 8.88	A
ATOM	2031	CB	TYR A 288	26.877	19.297	43.862	1.00 12.41	A
ATOM	2032	ĊĠ	TYR A 288	26.891	20.803	43.649	1.00 9.59	A
ATOM	2033	CD1		26.329	21.677	44.589	1.00 8.82	A
ATOM	2034	CE1		26.320	23.086	44.382	1.00 10.11	A
MOTA	2035	CD2		27.463	21.356	42.491	1.00 10.87	A
MOTA	2036	CE2		27.464	22.744	42.275 43.223	1.00 6.63 1.00 7.60	A A
ATOM	2037	CZ	TYR A 288	26.883 26.842	23.601 24.960	42.960	1.00 7.46	Ã
MOTA	2038	OH C	TYR A 288 TYR A 288	26.263	17.061	42.851	1.00 12.67	A
ATOM ATOM	2039 2040	ŏ	TYR A 288	25.989	16.265	43.750	1.00 10.55	A
ATOM	2040	Ŋ	PRO A 289	26.929	16.672	41.746	1.00 12.61	A
ATOM	2042	ĈD	PRO A 289	27.338	17.560	40.625	1.00 13.50	A
ATOM	2043	CA	PRO A 289	27.346	15.280	41.495	1.00 12.99	A
ATOM	2044	CB	PRO A 289	27.863	15.328	40.051	1.00 15.51	A A
MOTA	2045	CG	PRO A 289	28.424	16.734	39.920	1.00 10.53	A
MOTA	2046	C	PRO A 289	28.366	14.644	42.439 42.835	1.00 17.46	A
ATOM	2047	0	PRO A 289	29.342	15.282	44.033	1.00 13.23	А

FIGURE 5 (suite)

PCT/FR2004/002797

ATOM	2048	M	3 O D 3	200	20.140	33 300	40 700	1 00 16 50	_
ATOM	2048	N CA	ASP A		28.149	13.372	42.782	1.00 16.57	A
MOTA	2050	CB	ASP A		29.092 28.360	12.691	43.652 44.628	1.00 20.97 1.00 25.52	A
MOTA	2051	ĊĠ	ASP A		27.489	11.751 10.723	43.929	1.00 25.52	A A
MOTA	2052		ASP A		26.599	10.723	44.604		A
ATOM	2053	OD2	ASP A		27.693	10.478	42.716		
MOTA	2054	C	ASP A		30.154	11.952	42.824	1.00 39.24	A A
ATOM	2055	ŏ	ASP A		30.154	11.231	43.362	1.00 21.23	A
ATOM	2056	Ň	SER A		30.136	12.152	41.509	1.00 21.11	
ATOM	2057	CA	SER A		31.143	11.538	40.645	1.00 14.24	A A
ATOM	2058	CB	SER A		30.592	10.290	39.925	1.00 16.14	Ã
ATOM	2059	ŌĞ	SER A		29.549	10.625	39.031	1.00 22.17	Ä
ATOM	2060	č	SER A		31.555	12.609	39.643	1.00 14.75	Ā
MOTA	2061	ŏ	SER A		30.842	13.605	39.493	1.00 13.50	A
ATOM	2062	N	GLY A		32.692	12.419	38.971	1.00 13.79	A
ATOM	2063	CA	GLY A		33.181	13.423	38.019	1.00 14.60	A
ATOM	2064	C	GLY A		33.713	14.688	38.707	1.00 11.05	A
ATOM	2065	Ó	GLY A		33.964	14.669	39.909	1.00 14.10	A
MOTA	2066	N	A RYT	293	33.904	15.779	37.955	1.00 10.56	A
ATOM	2067	CA	TYR A	293	34.380	17.049	38.529	1.00 9.23	A
ATOM	2068	CB	TYR A	. 293	34.838	18.014	37.443	1.00 10.30	A
ATOM	2069	CG	TYR A	293	35.535	19.229	38.012	1.00 11.13	A
ATOM	2070	CD1	TYR A	. 293	36.829	19.138	38.526	1.00 7.85	A
ATOM	2071	CE1	TYR A	. 293	37.482	20.269	39.049	1.00 8.64	Α
ATOM	2072	ÇD2	TYR A	293	34.900	20.470	38.038	1.00 11.82	A
MOTA	2073	CE2	TYR A		35.547	21.601	38.554	1.00 11.43	A
ATOM	2074	CZ	TYR A		36.839	21.488	39.052	1.00 8.40	A
ATOM	2075	OH	TYR A	293	37.488	22.625	39.496	1.00 8.49	A
ATOM	2076	C	TYR A		33.183	17.645	39.252	1.00 9.71	A
ATOM	2077	0	TYR A		32.142	17.834	38.657	1.00 12.02	A
ATOM	2078	N	PRO A		33.347	18.021	40.531	1.00 12.25	A
MOTA	2079	CD	PRO A		34.575	17.923	41.350	1.00 12.44	A
MOTA	2080	CA	PRO A		32.229	18.559	41.302	1.00 14.24	A
MOTA	2081	CB	PRO A		32.644	18.263	42.748	1.00 12.15	Ā
ATOM	2082	CG	PRO A		34.132	18.499	42.712	1.00 15.49	A
ATOM	2083	č	PRO A		31.682	19.963	41.133	1.00 13.85	Ā
ATOM	2084	0	PRO A		30.511	20.171	41.429	1.00 11.37	A
MOTA	2085	N	ILE A		32.476	20.907	40.628	1.00 10.88	A
ATOM	2086	CA	ILE A		31.990	22.280	40.510	1.00 9.12	A
ATOM	2087	CB	ILE A		33.062	23.301	40.934	1.00 10.07	A
ATOM	2088	CG2 CG1	ILE A		32.375 33.733	24.666	41.232 42.236	1.00 10.52 1.00 12.06	A A
ATOM ATOM	2089 2090	CD1	ILE A		34.841	22.853 23.801	42.703	1.00 12.06 1.00 12.46	A
ATOM	2091	CDI	ILE A		31.564	22.574	39.087	1.00 12.40	Ä
MOTA	2092	ŏ	ILE A		32.397	22.660	38.182	1.00 10.57	Ä
ATOM	2093	й	LEU A		30.257	22.743	38.902	1.00 10.82	Ã
ATOM	2094	CA	LEU A		29.703	22.951	37.570	1.00 8.61	Â
ATOM	2095	СB	LEU A		29.370	21.578	36.949	1.00 9.63	A
ATOM	2096	ĊĠ	LEU A		28.032	20.884	37.276	1.00 7.75	Ä
ATOM	2097	CD1	LEU A		27.971	19.517	36.572	1.00 11.60	A
ATOM	2098		LEU A		27.852	20.690	38.784	1.00 10.20	A
ATOM	2099	C	LEU A		28.461	23.828	37.612	1.00 7.00	A
ATOM	2100	0	LEU A	296	27.945	24.137	38.690	1.00 11.47	A
ATOM	2101	N	GLY A	. 297	27.988	24.236	36.436	1.00 8.98	A
ATOM	2102	CA	GLY A	. 297	26.812	25.093	36.353	1.00 8.75	A
ATOM	2103	C	GLY A	. 297	26.503	25.452	34.906	1.00 14.03	A
ATOM	2104	0	GLY A		27.128	24.917	33.979	1.00 9.23	A
MOTA	2105	N	PHE A		25.544	26.353	34.700	1.00 7.40	A
MOTA	2106	CA	PHE A		25.177	26.758	33.350	1.00 7.84	A
MOTA	2107	CB	PHE A	298	23.666	26.550	33.105	1.00 6.30	A
MOTA	2108	CG	PHE A		23.249	25.102	32.984	1.00 10.10	Ā
MOTA	2109		PHE A		22.775	24.398	34.094	1.00 9.62	A
ATOM	2110		PHE A		23.356	24.444	31.763	1.00 8.37	A
MOTA	2111		PHE A		22.414	23.038	33.988	1.00 13.84	A
ATOM	2112		PHE A		23.005	23.087	31.630	1.00 7.19	Ā
ATOM	2113	cz	PHE A		22.533	22.379	32.747	1.00 12.00	A
ATOM	2114	C	PHE A		25.469	28.235	33.145	1.00 10.22	A
MOTA	2115	o,	PHE A		25.431	29.007	34.114	1.00 9.27	A
MOTA	2116	N	THR A		25.811	28.615	31.910	1.00 7.04 1.00 8.99	A
ATOM	2117	CA	THR A		25.961	30.029	31.594	1.00 8.99 1.00 12.65	A A
MOTA	2118	CB	THR A		27.319 27.293	30.414 31.818	30.975 30.682	1.00 12.65	A
ATOM	2119	OG1	THR A		27.293	29.617	29.740	1.00 10.87	Ä
ATOM ATOM	2120 2121	CG2	THR A		24.798	30.220	30.616	1.00 12.18	A
ATOM	2121	O	THR A		24.198	29.325	29.810	1.00 9.48	A
ATOM	2123	Ŋ	ASP A		24.482	31.392	30.677	1.00 9.46	A
Alor	£143	44	ALL A	. 300	~=.1/3	41.332	30.077	2.00 0.47	•

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2124 2125 2126 2127 2128 2129 2130 2131	OD2 C O N		300 300 300 300 300 300 300 301	22.930 21.849 22.055 22.141 22.149 22.828 23.690 21.740	31.636 31.816 30.877 29.660 31.341 32.790 33.669 32.765	29.950 31.023 32.193 31.928 33.373 28.975 28.931 28.202	1.00 10.66 1.00 8.23 1.00 14.11 1.00 8.23 1.00 15.65 1.00 10.65 1.00 8.49	A A A A A
ATOM ATOM ATOM ATOM ATOM ATOM	2132 2133 2134 2135 2136 2137		LEU A	301 301 301	21.407 21.121 22.189 21.699 23.456 20.128	33.819 33.226 32.371 31.951 33.151 34.533	27.246 25.850 25.157 23.775 25.057	1.00 10.49 1.00 10.57 1.00 17.61 1.00 16.46 1.00 12.96	A A A
ATOM ATOM ATOM ATOM ATOM	2138 2139 2140 2141 2142	O N CA CB CG2	LEU A ILE A ILE A ILE A ILE A	301 302 302 302	19.179 20.101 18.897 19.146 17.848	33.889 35.855 36.614 37.648 38.429	27.689 28.127 27.564 27.879 29.000 29.261	1.00 7.85 1.00 7.63 1.00 8.91 1.00 7.82 1.00 10.36 1.00 12.51	A A A
ATOM ATOM ATOM ATOM ATOM	2143 2144 2145 2146 2147	CG1 CD1 C O N	ILE A ILE A ILE A ILE A PHE A	302 302 302 302 303	19.588 20.089 18.517 19.320 17.311	36.918 37.867 37.368 38.158 37.120	30.287 31.411 26.602 26.096 26.081	1.00 8.81 1.00 7.82 1.00 9.48 1.00 8.44 1.00 8.80	A A A A
ATOM ATOM ATOM ATOM	2148 2149 2150 2151 2152	CA CB CG CD1 CD2	PHE A PHE A PHE A PHE A	303 303 303 303	16.843 16.751 18.054 19.027 18.316	37.786 36.821 36.583 35.770 37.205	24.854 23.651 22.944 23.500 21.725	1.00 8.37 1.00 7.07 1.00 8.30 1.00 8.48 1.00 7.08	A A A
ATOM ATOM ATOM ATOM ATOM ATOM	2153 2154 2155 2156 2157 2158	CE1 CE2 CZ C O N	PHE A PHE A PHE A PHE A PHE A PHE A	303 303 303 303	20.265 19.559 20.528 15.437 14.797	35.582 37.023 36.210 38.305 38.052 39.002	22.851 21.065 21.637 25.032 26.031 24.014	1.00 7.30 1.00 9.28 1.00 11.64 1.00 9.03 1.00 9.30 1.00 7.56	A A A
ATOM ATOM ATOM ATOM ATOM	2159 2160 2161 2162 2163	CA CB OG C	SER A SER A SER A SER A	304 304 304 304 304	13.566 13.470 12.117 12.707 13.198	39.465 40.870 41.291 38.530 38.018	24.044 23.444 23.498 23.170 22.162	1.00 9.72 1.00 11.08 1.00 10.08 1.00 6.80 1.00 10.90	A A A A
ATOM ATOM ATOM ATOM ATOM ATOM	2164 2165 2166 2167 2168 2169	N CA CB CG CD OE1	GLU A GLU A GLU A GLU A GLU A	305 305 305 305	11.451 10.605 9.268 8.447 7.073 6.767	38.293 37.482 37.125 36.161 35.820 36.154	23.534 22.655 23.316 22.439 22.985 24.147	1.00 8.14 1.00 11.11 1.00 10.66 1.00 11.71 1.00 12.77	A A
ATOM ATOM ATOM ATOM ATOM	2170 2171 2172 2173 2174	OE2 C O N CA	GLU A GLU A GLU A CYS A CYS A	305 305 305 306	6.288 10.305 10.154 10.239 9.889	35.192 38.329 37.800 39.649 40.534	22.228 21.399 20.283 21.574 20.450	1.00 14.12 1.00 16.70 1.00 15.34 1.00 10.74 1.00 11.86 1.00 12.96	A A A A A
ATOM ATOM ATOM ATOM	2175 2176 2177 2178 2179	C O CB SG N	CYS A CYS A TYR A	306 306 306 307	10.859 11.434 8.531 7.188 11.017	41.666 42.270 41.185 40.111 41.956	20.140 21.046 20.726 21.313 18.854	1.00 14.14 1.00 11.98 1.00 11.40 1.00 15.63 1.00 12.82	A A A A
ATOM ATOM ATOM ATOM ATOM ATOM	2180 2181 2182 2183 2184 2185	CA CB CG CD1 CE1 CD2	TYR A TYR A TYR A TYR A TYR A TYR A	307 307 307 307	11.872 13.143 14.066 13.902 14.683 15.035	43.060 42.533 41.850 40.499 39.882 42.579	18.397 17.712 18.703 19.020 20.020 19.401	1.00 10.85 1.00 8.88 1.00 13.96 1.00 13.44 1.00 13.43	A A A A A
ATOM ATOM ATOM ATOM ATOM	2186 2187 2188 2189 2190	CE2 CZ OH C	TYR A TYR A TYR A TYR A TYR A	307 307 307 307 307	15.821 15.637 16.379 11.056 10.318	41.972 40.625 40.019 43.908 43.370	20.410 20.712 21.724 17.424 16.588	1.00 11.99 1.00 12.10 1.00 12.32 1.00 13.04 1.00 11.71	A A A A
ATOM ATOM ATOM ATOM ATOM	2191 2192 2193 2194 2195	N CA CB C	ALA A ALA A ALA A ALA A ALA A	308 308 308 308	11.161 10.420 10.623 10.827 9.990	45.229 46.123 47.583 45.960 46.011	17.546 16.660 17.116 15.176 14.290	1.00 13.47 1.00 19.16 1.00 19.39 1.00 16.58 1.00 15.94	A A A A
ATOM ATOM ATOM ATOM	2196 2197 2198 2199	N CA CB CG	ASN A : ASN A : ASN A : ASN A :	309 309	12.109 12.621 14.084 14.704	45.752 45.602 46.052 46.002	14.919 13.565 13.558 12.183	1.00 16.56 1.00 15.71 1.00 11.74 1.00 20.62	A A A A

WO 2005/042572 PCT/FR2004/002797

2200 2201 2202 2203 2204 2205 2206 2207 2208 2209	ND2 C O CA CB C O N	ASN A 309 ASN A 309 ASN A 310 ALA A 310 ALA A 310 ALA A 310 ALA A 310 THR A 311	15.130 14.741 12.493 13.031 11.806 11.583 10.564 12.836 12.907	44.946 47.153 44.142 43.221 43.942 42.584 42.618 40.599 42.546	11.713 11.517 13.066 13.678 11.941 11.430 10.281 10.997 11.128	1.00 17.26 1.00 13.84 1.00 16.39 1.00 11.54 1.00 12.69 1.00 16.06 1.00 16.44 1.00 14.76 1.00 15.90 1.00 13.61	A A A A A A A
2211 2212 2213 2214 2215 2216 2217 2218 2219 2220	CB OG1 CG2 C O CA CB CG CD	THR A 311 GLN A 312	15.949 15.284 17.291 15.813 16.371 15.798 16.545 17.501 17.696	42.927 43.307 42.322 41.407 40.313 42.180 41.717 42.827 43.960 44.997	9.314 8.097 8.977 11.324 11.318 12.409 13.623 14.682 14.682 15.377	1.00 15.47 1.00 18.10 1.00 16.40 1.00 15.00 1.00 12.29 1.00 13.08 1.00 12.35 1.00 10.08 1.00 7.89 1.00 13.93	A A A A A A A A
2222 2223 2224 2225 2226 2227 2228 2229	NE2 C O N CA CB OG1 CG2 C	GLN A 312 GLN A 312 GLN A 312 THR A 313 THR A 313 THR A 313 THR A 313 THR A 313	16.897 18.743 15.768 16.418 14.439 13.670 12.149 11.660 11.398 14.108	45.087 45.799 40.486 39.537 40.507 39.363 39.541 40.660 38.288 38.096	16.311 15.255 14.191 14.639 14.189 14.449 15.197 14.882 13.933	1.00 14.28 1.00 16.18 1.00 11.19 1.00 9.72 1.00 8.88 1.00 13.95 1.00 12.76 1.00 10.80	A A A A A A A A
2232 2233 2234 2235 2236 2237 2238 2239 2240 2241	N C C C C C C C C C C C C C C C C C C C	GLY A 314 GLY A 314 GLY A 315 GLN A 315 GLN A 315 GLN A 315 GLN A 315 GLN A 315 GLN A 315	14.218 14.628 16.060 16.370 16.952 18.360 19.219 19.286 20.014 19.868	38.204 37.067 36.638 35.439 37.280 38.542 39.069 40.385 41.254	12.615 11.810 12.090 12.111 12.291 12.586 12.512 11.071 10.958 11.818	1.00 11.55 1.00 12.96 1.00 10.31 1.00 11.80 1.00 10.98 1.00 12.34 1.00 13.86 1.00 16.05 1.00 15.65	A A A A A A A A A
2242 2243 22445 2246 2247 2248 2249 2251 2251 2252	C N CA CB CG1	GLN A 315 GLN A 315 VAL A 316 VAL A 316 VAL A 316 VAL A 316	18.518 19.385 17.677 17.719 16.803 16.658 17.401 17.232 17.813	36.613 35.743 37.006 36.389 37.131 36.292 38.493 34.929 33.996	13.952 14.136 14.909 16.238 17.251 18.541 17.602 16.092 16.667	1.00 11.33 1.00 12.86 1.00 11.99 1.00 11.29 1.00 12.97 1.00 12.95 1.00 13.11 1.00 12.64	A A A A A A A A
2253 2254 2255 2256 2257 2258 2259 2260 2261 2262	CA CB CCD NE CZ NH1 NH2 C	ARG A 317 ARG A 317	15.672 14.348 13.148 11.823 11.520 10.894 10.470 16.730 16.730	33.364 33.372 33.951 33.964 32.611 31.677 31.934 30.461 32.491 31.320	15.115 14.303 15.076 14.243 13.765 14.480 15.704 13.983 14.434 14.783	1.00 12.87 1.00 14.06 1.00 13.07 1.00 14.93 1.00 14.57 1.00 10.03 1.00 9.62 1.00 13.56 1.00 12.01	A A A A A A A
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274	CA CB CG OD1 ND2 C O N CA CB CG	ASN A 318 ASN A 318 ASN A 318 ASN A 318 ASN A 318 ASN A 318 PHE A 319 PHE A 319 PHE A 319 PHE A 319	18.503 19.123 18.145 17.140 18.438 19.613 20.207 19.904 20.936 21.274 22.105	32.246 33.028 33.249 32.557 34.211 31.841 30.753 32.715 32.376 33.577 33.212	12.796 11.629 10.500 10.402 9.638 13.771 13.658 14.733 15.707 16.584 17.794	1.00 13.18 1.00 11.52 1.00 15.15 1.00 13.70 1.00 17.31 1.00 12.19 1.00 9.01 1.00 10.68 1.00 7.66 1.00 10.09	A A A A A A A A A A A A A A A A A A A
	1220345678901123456789222222222222222222222222222222222222	2201	2201 ND2 ASN A 309 2202 C ASN A 309 2204 N ALA A 310 2205 CA ALA A 310 2206 CB ALA A 310 2207 C ALA A 310 2208 O ALA A 311 2210 CA THR A 311 2211 CB THR A 311 2212 OG1 THR A 311 2212 OG1 THR A 311 2213 CG2 THR A 311 2214 C THR A 311 2215 C THR A 311 2215 C THR A 311 2216 N GLN A 312 2217 CA GLN A 312 2218 CB GLN A 312 2219 CG GLN A 312 2219 CG GLN A 312 2221 OE1 GLN A 312 2222 NE2 GLN A 312 2221 OE1 GLN A 312 2222 NE2 GLN A 312 2223 C GLN A 312 2224 O GLN A 313 2225 CA THR A 313 2227 CB THR A 313 2227 CB THR A 313 2227 CB THR A 313 2228 CG2 THR A 313 2229 CG2 THR A 313 2227 CB GLN A 315 2231 O THR A 313 2228 CG GLN A 315 2231 C GLN A 315 2232 CA GLY A 314 2233 CA GLY A 314 2234 C GLN A 315 2234 C GLN A 315 2235 CA GLN A 315 2244 C GLN A 315 2244 C GLN A 315 2245 N VAL A 316 2247 CB ARG A 317 2256 CD ARG A 317 2255 CA ARG A 317 2255 CA ARG A 317 2255 CA ARG A 317 2256 CD ARG A 317 2257 CA GRA A 317 2258 CA ARG A 317 2258 CA ARG A 317 2259 NH1 ARG A 317 2256 CD ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2259 NH1 ARG A 317 2256 CD ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2259 NH1 ARG A 317 2256 CD ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2259 NH1 ARG A 317 2256 CD ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2256 CD ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2257 CA ARG A 317 2258 CA ARG A 317 2256 CA ARG A 317 2257 CA ARG A 317 2256 CA ARG A 317 2257 CA ARG A 317 2256 CA ARG A 317 2257 CA ARG A 317 2256 CA ARG A 317 2257 CA ARG A 317 2256 CA ARG A 317 2257 CA ARG A 317	2201 ND2 ASN A 309 12.493 2202 C ASN A 309 12.493 2203 N ASN A 309 12.493 2204 N ALA A 310 11.806 2205 CA ALA A 310 11.583 2206 CB ALA A 310 12.836 2207 C ALA A 310 12.907 2209 N THR A 311 13.827 2210 CA THR A 311 15.949 2211 CB THR A 311 15.949 2212 OG1 THR A 311 15.949 2212 OG1 THR A 311 15.881 2213 CG2 THR A 311 15.881 2215 O THR A 311 15.813 2216 CB GLN A 312 16.371 2217 CA GLN A 312 16.477 2218 CB GLN A 312 16.545 2219 CG GLN A 312 17.501 2220 CD GLN A 312 17.501 2220 CD GLN A 312 16.897 2221 NEZ GLN A 312 16.897 2222 NEZ GLN A 312 16.418 2223 C GLN A 312 15.768 2224 O GLN A 312 16.418 2225 N THR A 313 14.439 2226 CA THR A 313 14.439 2227 CB THR A 313 11.660 2237 CB THR A 313 11.660 2230 C THR A 313 11.398 2230 C THR A 313 11.398 2230 C THR A 313 14.419 2228 OG1 THR A 313 14.419 2229 CG2 THR A 315 15.768 2237 CB THR A 313 11.660 2237 CB THR A 313 11.398 2230 C THR A 315 12.149 2228 OG1 THR A 313 11.660 2237 CB THR A 313 11.398 2230 C G THR A 315 12.149 2228 OG1 THR A 315 12.149 2228 OG1 THR A 313 11.3660 2239 CG CTHR A 315 12.149 2240 CD GLN A 315 12.168 2231 C GLN A 315 12.169 2232 C GLN A 316 16.060 2235 O GLY A 314 14.628 2244 O CD GLN A 315 19.868 2244 OCD GLN A 315 19.868 2244 OCD GLN A 315 19.868 2245 CG CA ARG A 317 16.679 2246 CA VAL A 316 17.771 2247 CB VAL A 316 17.771 2248 CG1 VAL A 316 17.771 2248 CG1 VAL A 316 17.771 2249 CG CNA ARG A 317 16.679 2247 CB ARG A 317 16.730 2257 NE ARG A 317 16.679 2258 CA ARG A 317 16.679 2259 NH1 ARG A 317 16.730 2260 O ARG A 317 16.730 2261 C ARG A 317 16.730 2262 O ARG A 317 16.730 2263 O ARG A 317 16.730 2266 CB ASN A 318 18.438 2267 OD1 ASN A 318 18.1438 2266 CG ASN A 318 18.1438 2266 CG ASN A 318 18.1438 2267 OD1 ASN A 318 18.1438 2268 CC ASN A 318 18.1438 2269 C ASN A 318 18.1438 2266 CB ASN A 318 19.613 2271 N PHE A 319 20.936 2272 CA PHE A 319 20.936	2001 ND2 ASN A 309 12.493 44.142 2203 O ASN A 309 13.031 43.221 11.806 43.942 2205 CA ALA A 310 11.806 43.942 2205 CA ALA A 310 11.806 42.618 2206 CB ALA A 310 12.836 41.828 2208 O ALA A 310 12.836 41.828 2208 O ALA A 310 12.907 40.599 2209 N THR A 311 13.827 42.546 2210 CA THR A 311 15.074 41.922 211 CB THR A 311 15.074 41.922 2211 CB THR A 311 15.284 43.307 2213 CG THR A 311 15.284 43.307 2214 C THR A 311 15.284 43.307 2215 O THR A 311 15.284 43.307 2214 C THR A 311 15.284 43.307 2215 O THR A 311 15.284 43.307 2215 O THR A 311 15.284 43.307 2216 C THR A 311 15.949 42.322 2214 C THR A 311 15.813 41.407 2215 O THR A 311 15.949 42.322 2214 C THR A 312 16.477 41.717 98 42.180 2221 OEI GLN A 312 16.477 41.717 41.717 98 42.180 2220 CD GLN A 312 17.506 44.997 45.087	2201 ND2 ASN A 309 12.493 44.142 13.066 2203 O ASN A 309 12.493 44.142 13.066 2203 O ASN A 309 12.493 44.142 13.066 41.2205 CA ALLA A 310 11.806 43.942 11.941 12.2205 CA ALLA A 310 11.806 43.942 11.941 12.2205 CA ALLA A 310 12.806 41.828 10.997 22020 N ALLA A 310 12.806 41.828 10.997 22020 N ALLA A 310 12.806 41.828 10.997 22020 N ALLA A 310 12.807 40.599 11.128 22020 CA THR A 311 15.943 42.927 9.314 2212 CA THR A 311 15.949 42.927 9.314 2212 CB THR A 311 15.949 42.927 9.314 2212 CG THR A 311 15.949 42.927 9.314 2212 CG THR A 311 15.949 42.927 9.314 2212 CG THR A 311 15.949 42.927 13.228 8.977 12.213 CG2 THR A 311 15.813 41.407 11.324 2215 CG THR A 312 15.798 42.180 12.409 2227 CA GLN A 312 16.545 42.827 14.682 2212 CG GLN A 312 16.545 42.827 14.682 2219 CG GLN A 312 16.545 42.927 14.682 2228 CG GLN A 312 17.501 43.950 14.273 2220 CD GLN A 312 17.501 43.950 14.273 2220 CD GLN A 312 17.506 44.997 15.377 2221 CG GLN A 312 17.506 40.486 14.191 2222 NEZ GLN A 312 16.897 45.087 14.682 2223 C GLN A 312 18.743 45.799 15.377 14.682 2223 C GLN A 312 18.743 45.999 15.377 14.682 2223 C GLN A 312 18.743 49.997 15.377 14.682 2223 C GLN A 312 18.743 49.997 15.377 14.682 2225 C GLN A 312 18.743 49.997 15.377 14.682 2226 CA THR A 313 11.660 40.660 15.197 14.189 2222 CG THR A 313 11.998 38.288 14.882 2225 CG THR A 313 11.998 38.288 14.882	2201 ND2 ASN A 309 14.741 47.153 11.517 1.00 13.84 2203 C ASN A 309 13.031 43.221 13.066 1.00 16.39 2204 N ALA A 310 11.806 43.942 11.941 1.00 12.69 2205 CA ALA A 310 11.806 43.942 11.941 1.00 12.69 2206 CB ALA A 310 11.583 42.584 11.430 1.00 16.06 2207 C ALA A 310 11.583 42.584 11.430 1.00 16.06 2208 C ALA A 310 12.836 41.828 10.997 1.00 14.76 2209 C ALA A 310 11.583 42.584 11.430 1.00 16.06 2200 C ALA A 310 11.583 42.584 11.430 1.00 15.90 2210 C ALA A 311 13.587 42.584 10.997 1.00 14.76 2210 C ALA A 311 15.847 42.586 10.485 1.00 15.90 2210 C ALA A 311 15.949 42.592 11.28 1.00 15.90 2210 C ALA A 311 15.949 42.927 9.014 1.00 16.28 2211 C B THR A 311 15.949 42.927 9.014 1.00 16.20 2212 OGI THR A 311 15.949 42.322 89.977 1.00 16.10 2213 C C THR A 311 15.949 42.322 89.977 1.00 16.10 2214 C THR A 311 15.813 41.407 11.324 1.00 15.00 2215 O THR A 311 15.813 41.407 11.324 1.00 15.00 2216 N GLN A 312 16.798 42.180 12.409 1.00 13.08 2217 CA GLN A 312 16.798 42.180 12.409 1.00 13.08 2218 C G GLN A 312 16.797 42.927 11.324 1.00 12.35 2218 C G GLN A 312 16.757 42.927 14.682 1.00 10.08 2221 OCI GLN A 312 16.757 42.927 14.682 1.00 10.08 2222 C G GLN A 312 16.757 42.927 14.682 1.00 10.08 2221 C G GLN A 312 16.759 44.997 15.377 1.00 18.19 2222 C G GLN A 312 15.768 40.999 15.377 1.00 13.98 2221 C G GLN A 312 16.697 44.997 16.377 1.00 13.98 2222 C G GLN A 312 16.698 44.997 16.377 1.00 1.39 2223 C G GLN A 312 16.768 44.997 16.377 1.00 13.99 2224 C G GLN A 312 16.698 44.997 16.377 1.00 13.99 2224 C G GLN A 312 17.501 43.960 14.199 1.00 7.89 2225 N THR A 313 11.998 38.288 14.892 1.00 12.76 2226 N GLN A 312 18.769 18.769 18.799 18.379 1.00 18.99 2227 C G THR A 313 11.998 38.288 14.892 1.00 12.76 2228 C G C THR A 313 11.998 38.288 14.892 1.00 12.76 2230 C G C THR A 313 11.998 38.288 14.892 1.00 12.76 2231 C G GLN A 315 18.600 18.600 18.600 18.995 1.00 18.99 22324 C G GLN A 315 18.600 18.600 18.600 18.995 1.00 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900 18.900

ATOM	2276	CD2	PHE A 319	21.593	33.356	19.087	1.00 10.54	A
ATOM	2277	CE1	PHE A 319	24.102	32.203			
MOTA	2278	CE2				18.738	1.00 12.72	Ā
			PHE A 319	22.333	32.919	20.212	1.00 15.07	A
MOTA	2279	CZ	PHE A 319	23.589	32.338	20.027	1.00 12.59	A
ATOM	2280	C	PHE A 319	20.449	31.222	16.587	1.00 10.27	A
MOTA	2281	0	PHE A 319	21.203	30.282	16.868	1.00 12.47	A
MOTA	2282	N	PHE A 320	19.188	31.275	17.013	1.00 10.21	A
MOTA	2283	CA	PHE A 320	18.649	30.213	17.860	1.00 10.79	A
ATOM	2284	CB	PHE A 320	17.247	30.581	18.363	1.00 9.11	A
ATOM	2285	ĊĠ	PHE A 320	17.246	31.285	19.698	1.00 7.96	Ä
MOTA	2286	CD1		16.762				
MOTA	2287	CD2	PHE A 320	17.723	30.642 32.583	20.833	1.00 9.52	A
ATOM						19.822	1.00 12.60	A
	2288	CE1	PHE A 320	16.750	31.282	22.082	1.00 6.69	A
MOTA	2289	CE2	PHE A 320	17.712	33.244	21.075	1.00 9.45	A
ATOM	2290	CZ	PHE A 320	17.220	32.579	22.209	1.00 8.89	A
ATOM	2291	Ç	PHE A 320	18.598	28.912	17.089	1.00 7.76	A
ATOM	2292	0	PHE A 320	18.856	27.838	17.634	1.00 9.90	A
ATOM	2293	N	THR A 321	18.274	29.013	15.801	1.00 8.04	Α
ATOM	2294	CA	THR A 321	18.199	27.829	14.950	1.00 6.79	A
ATOM	2295	CB	THR A 321	17.687	28.224	13.551	1.00 7.01	A
ATOM	2296	OG1	THR A 321	16.334	28.695	13.691	1.00 11.25	A
ATOM	2297	CG2	THR A 321	17.731	27.032	12.573	1.00 9.32	A
ATOM	2298	С	THR A 321	19.535	27.128	14.872	1.00 11.09	A
ATOM	2299	Ō	THR A 321	19.594	25.896	14.823	1.00 10.46	A
ATOM	2300	N	LYS A 322	20.617	27.904	14.873	1.00 8.41	Ä
ATOM	2301	CA	LYS A 322	21.950	27.319	14.849	1.00 8.00	Ä
ATOM	2302	CB	LYS A 322	22.970	28.329	14.299	1.00 6.38	
ATOM	2303	CG	LYS A 322					A
				24.410	27.805	14.359	1.00 10.15	A
ATOM	2304	CD	LYS A 322	25.396	28.712	13.615	1.00 8.08	A
ATOM	2305	CE	LYS A 322	26.665	27.922	13.317	1.00 11.78	A
ATOM	2306	NZ	LYS A 322	27.577	28.702	12.437	1.00 18.79	А
ATOM	2307	Ç	LYS A 322	22.415	26.857	16.242	1.00 9.52	Α
ATOM	2308	0	LYS A 322	22.864	25.711	16.425	1.00 9.02	A
ATOM	2309	N	HIS A 323	22.289	27.735	17.231	1.00 10.06	Α
ATOM	2310	CA	HIS A 323	22.793	27.420	18.569	1.00 9.00	A
ATOM	2311	CB	HIS A 323	22.710	28.677	19.469	1.00 7.78	A
ATOM	2312	CG	HIS A 323	23.655	28.657	20.637	1.00 9.56	A
ATOM	2313		HIS A 323	23.426	28.762	21.970	1.00 9.53	A
ATOM	2314		HIS A 323	25.028	28.560	20.494	1.00 7.88	Ä
ATOM	2315	CE1	HIS A 323	25.602	28,615	21.683	1.00 9.47	Ä
MOTA	2316	NE2	HIS A 323	24.653	28.736	22.598		
			HIS A 323					A
MOTA	2317	C		22.082	26.230	19.222	1.00 9.52	Ą
ATOM	2318	0	HIS A 323	22.687	25.507	20.019	1.00 8.65	A
ATOM	2319	N	TYR A 324	20.808	26.034	18.877	1.00 9.61	A
ATOM	2320	CA	TYR A 324	20.024	24.911	19.427	1.00 10.38	A
MOTA	2321	CB	TYR A 324	18.767	25.434	20.149	1.00 6.95	A
ATOM	2322	CG	TYR A 324	19.137	26.376	21.277	1.00 7.33	A
ATOM	2323	CD1	TYR A 324	19.195	27.752	21.072	1.00 5.99	Α
ATOM	2324	CE1	TYR A 324	19.656	28.618	22.097	1.00 8.99	Α
ATOM	2325	CD2	TYR A 324	19.533	25.882	22.513	1.00 7.61	A
ATOM	2326	CE2	TYR A 324	19.994	26.731	23.525	1.00 5.98	A
ATOM	2327	CZ	TYR A 324	20.052	28.094	23.303	1.00 7.54	A
ATOM	2328	OH	TYR A 324	20.547	28.926	24.294	1.00 7.56	A
MOTA	2329	C	TYR A 324	19.627	23.893	18.338	1.00 7.02	A
ATOM	2330	Ō	TYR A 324	18.677	23.118	18.498	1.00 10.94	A
ATOM	2331	N	GLY A 325	20.387	23.868	17.254	1.00 7.94	A
ATOM	2332	CA	GLY A 325	20.064	22.938	16.181	1.00 7.51	A
ATOM	2333	C	GLY A 325	20.514	21.493	16.386	1.00 12.01	A
ATOM	2334	ŏ	GLY A 325	21.492	21.227	17.097		
ATOM	2335	й	THR A 326			15.752		A
			THR A 326	19.788	20.564			A
MOTA	2336	CA		20.113	19.132	15.790	1.00 10.25	A
ATOM	2337	CB	THR A 326	19.005	18.311	15.135	1.00 9.46	Ā
ATOM	2338	OG1	THR A 326	17.759	18.707	15.708	1.00 10.73	Ā
ATOM	2339	CG2	THR A 326	19.212	16.788	15.369	1.00 7.67	A
ATOM	2340	C	THR A 326	21.432	18.937	15.038	1.00 9.78	A
ATOM	2341	0	THR A 326	22.278	18.131	15.452	1.00 10.90	Α
ATOM	2342	N	SER A 327	21.614	19.688	13.953	1.00 12.37	Α
ATOM	2343	CA	SER A 327	22.858	19.666	13.176	1.00 11.58	A
ATOM	2344	CB	SER A 327	22.743	18.752	11.935	1.00 14.65	A
ATOM	2345	ŌĞ	SER A 327	21.725	19.192	11.051	1.00 10.13	A
ATOM	2346	č	SER A 327	23.158	21.118	12.764	1.00 10.87	Ä
ATOM	2347	ŏ	SER A 327	22.419	22.031	13.149	1.00 9.05	Â
ATOM	2348	N	ALA A 328	24.228	21.331	12.000	1.00 9.03	A
	2349	CA	ALA A 328	24.637				A
ATOM					22.690	11.567	1.00 10.30	
MOTA	2350	CB	ALA A 328	23.682	23.234	10.518	1.00 12.01	A
MOTA	2351	С	ALA A 328	24.602	23.592	12.790	1.00 11.88	A

ATOM	2352	0	ALA A	328	24.046	24.674	12.742	1.00 13.69	7.
MOTA	2353	N	ASN A						Α
ATOM	2354				25.197	23.140	13.887	1.00 11.26	Α
		CA	ASN A		25.150	23.910	15.123	1.00 10.51	A
ATOM	2355	CB	ASN A	329	24.422	23.083	16.205	1.00 8.81	A
MOTA	2356	CG	ASN A	329	25.132	21,771	16.536		
ATOM	2357	OD1	ASN A					1.00 9.32	A
					26.352	21.717	16.573	1.00 11.49	A
ATOM	2358	ND2	ASN A	329	24.360	20.714	16.792	1.00 10.75	Α
ATOM	2359	C	ASN A	329	26.526	24.402	15.604	1.00 12.21	
ATOM	2360	ō	ASN A			24.302			A
					27.515	24.381	14.849	1.00 9.35	A
ATOM	2361	N	ASP A		26.586	24.863	16.851	1.00 10.38	A
ATOM	2362	CA	ASP A	330	27.837	25.386	17.412	1.00 9.41	A
MOTA	2363	CB	ASP A		27.575	26.677	18.208		
ATOM	2364	ČĞ	ASP A					1.00 10.91	A
					27.239	27.852	17.331	1.00 13.71	Α
MOTA	2365	OD1	ASP A		26.333	28.653	17.720	1.00 14.93	· A
ATOM	2366	OD2	ASP A	330	27.880	27.981	16.261	1.00 10.16	A
ATOM	2367	C	ASP A	330	28.536	24.416	18.346		
ATOM	2368	ō	ASP A					1.00 10.31	A
					29.484	24.809	19.029	1.00 8.29	A
ATOM	2369	N	ASN A		28.111	23.153	18.363	1.00 8.79	A
ATOM	2370	CA	ASN A	331	28.698	22.217	19.311	1.00 10.91	A
ATOM	2371	CB	ASN A		27.942	20.869	19.267		
ATOM	2372	ČĞ						1.00 11.40	Ā
			ASN A		26.579	20.924	19.989	1.00 15.36	Α
ATOM	2373	OD1			25.926	19.893	20.194	1.00 12.09	Α
ATOM	2374	ND2	ASN A	331	26.156	22.115	20.372	1.00 9.71	A
ATOM	2375	С	ASN A		30.220	22.012	19.218		
ATOM									Ā
	2376	0	ASN A		30.877	21.866	20.255	1.00 12.57	A
MOTA	2377	N	ALA A		30.795	22.001	18.012	1.00 10.00	A
ATOM	2378	CA	ALA A	332	32.252	21.842	17.903	1.00 12.41	A
ATOM	2379	CB	ALA A		32.677	21.733			
ATOM	2380						16.445	1.00 12.06	A
		C	ALA A		32.964	23.028	18.548	1.00 8.53	A
MOTA	2381	0	ALA A	332	33.973	22.872	19.247	1.00 11.75	Α
ATOM	2382	N	ALA A	333	32.447	24.216	18.297	1.00 9.64	A
ATOM	2383	CA	ALA A		33.057	25.422	18.858		
ATOM								1.00 10.83	Ā
	2384	CB	ALA A		32.424	26.655	18.223	1.00 9.42	A
ATOM	2385	С	ALA A	333	32.910	25.473	20.379	1.00 10.44	Α
ATOM	2386	0	ALA A	333	33.787	25.982	21.096	1.00 9.81	A
MOTA	2387	N	ILE A		31.787	24.963	20.869		
									A
ATOM	2388	CA	ILE A		31.536	24.919	22.305	1.00 10.34	Α
ATOM	2389	CB	ILE A	334	30.099	24.404	22.567	1.00 7.35	Α
MOTA	2390	CG2	ILE A	334	29.902	24.030	24.056	1.00 4.48	A
MOTA	2391	CG1	ILE A		29.093	25.467	22.091	1.00 8.68	
ATOM	2392	CDI							A
		_	ILE A		27.628	24.953	22.043	1.00 8.29	Α
ATOM	2393	С	ILE A		32.593	24.003	22.946	1.00 9.03	Α
ATOM	2394	0	ILE A	334	33.239	24.352	23.954	1.00 6.82	A
MOTA	2395	N	GLN A		32.805	22.847	22.333	1.00 6.99	
ATOM	2396								A
		CA	GLN A		33.800	21.903	22.831	1.00 8.99	A
MOTA	2397	CB	GLN A	335	33.695	20.589	22.053	1.00 11.58	Α
ATOM	2398	CG	GLN A	335	32.448	19.784	22.446	1.00 21.44	Α
MOTA	2399	CD	GLN A	335	32.279	18.518	21.598	1.00 30.71	A
ATOM	2400	OE1	GLN A						
					33.212	18.083	20.927	1.00 34.68	Ā
MOTA	2401	NE2	GLN A		31.089	17.926	21.638	1.00 37.34	A
MOTA	2402	С	GLN A	335	35.223	22.438	22.774	1.00 12.27	Α
ATOM	2403	0	GLN A	335	36.014	22.219	23.704	1.00 10.25	A
MOTA	2404	N	ALA A		35.547	23.143	21.690		
MOTA									A
	2405	CA	ALA A		36.868	23.726	21.514	1.00 12.71	A
ATOM	2406	CB	ALA A		36.989	24.375	20.091	1.00 9.35	A
ATOM	2407	C	ALA A	336	37.109	24.794	22.591	1.00 11.11	A
ATOM	2408	0	ALA A		38.247	25.134	22.894	1.00 11.00	A
ATOM	2409	N	ASN A						
					36.025	25.310	23.164	1.00 8.06	A
ATOM	2410	CA	ASN A		36.125	26.342	24.185	1.00 9.10	A
ATOM	2411	CB	ASN A	337	35.098	27.440	23.887	1.00 8.86	A
ATOM	2412	CG	ASN A	337	35.621	28.457	22.874	1.00 12.21	A
ATOM	2413		ASN A		36.333	29.417	23.230		
								1.00 12.38	A
ATOM	2414		ASN A		35.301	28.237	21.605	1.00 13.95	A
MOTA	2415	C	ASN A		35.979	25.816	25.622	1.00 9.52	A
ATOM	2416	0	ASN A	337	35.647	26.565	26.534	1.00 7.92	Α
ATOM	2417	N	ALA A		36.242	24.523	25.806	1.00 8.29	Ä
ATOM	2418	CA	ALA A		36.194	23.863	27.117	1.00 8.92	A
ATOM	2419	CB	ALA A		37.188	24.526	28.069	1.00 10.50	A
ATOM	2420	С	ALA A	338	34.825	23.786	27.785	1.00 8.55	A
ATOM	2421	ŏ	ALA A		34.732	23.671	29.000	1.00 10.41	
									A
ATOM	2422	N	PHE A		33.765	23.844	27.002	1.00 7.84	A
ATOM	2423	CA	PHE A		32.410	23.781	27.553	1.00 8.93	A
ATOM	2424	CB	PHE A	339	31.624	25.034	27.120	1.00 7.76	A
ATOM	2425	CG	PHE A		32.258	26.345	27.576	1.00 10.23	Ä
ATOM	2426		PHE A		32.566	26.557	28.923		
								1.00 11.28	A
MOTA	2427	CD2	PHE A	339	32.497	27.369	26.664	1.00 9.75	A

ATOM	2428	CE1	PHE A 339	22 100	27 705	20 260	1 00 11 50	_
ATOM	2429	CE2			27.795	29.360	1.00 11.58	Α
					28.613	27.077	1.00 8.17	А
ATOM	2430	CZ	PHE A 339		28.820	28.437	1.00 8.56	Α
MOTA	2431	C	PHE A 339		22.514	27.151	1.00 9.93	A
ATOM	2432	0	PHE A 339	32.084	21.742	26.279	1.00 9.23	Α
MOTA	2433	N	VAL A 340	30.508	22.304	27.797	1.00 8.19	A
MOTA	2434	CA	VAL A 340	29.669	21.139	27.531	1.00 10.26	A
ATOM	2435	CB	VAL A 340		20.468	28.851	1.00 11.72	Ä
MOTA	2436	CG1			19.269	28.538	1.00 8.46	Â
ATOM	2437	CG2	VAL A 340		19.998	29.679		
ATOM	2438	C	VAL A 340				1.00 8.91	Ā
ATOM	2439	ŏ			21.577	26.742	1.00 6.33	A
ATOM	2440	N			22.433	27.186	1.00 6.81	A
ATOM					21.021	25.547	1.00 6.85	Α
ATOM	2441 2442	CD	PRO A 341		20.162	24.797	1.00 10.26	A
		CA	PRO A 341		21.373	24.736	1.00 9.67	A
ATOM	2443	CB	PRO A 341		20.537	23.468	1.00 11.39	Α
ATOM	2444	CG	PRO A 341		20.386	23.363	1.00 14.97	A
ATOM	2445	C	PRO A 341		20.931	25.497	1.00 10.96	Α
ATOM	2446	0	PRO A 341		20.024	26.342	1.00 10.96	A
ATOM	2447	N	LEU A 342		21.558	25.211	1.00 8.13	A
ATOM	2448	CA	LEU A 342	23.435	21.157	25.870	1.00 10.08	A
ATOM	2449	CB	LEU A 342	22.326	22.194	25.646	1.00 12.81	A
ATOM	2450	CG	LEU A 342	22.558	23.605	26.207	1.00 16.13	Ä
ATOM	2451	CD1	LEU A 342	21.280	24.428	26.007	1.00 10.84	A
MOTA	2452	CD2	LEU A 342		23.542	27.715	1.00 14.00	Ä
MOTA	2453	C	LEU A 342		19.821	25.288	1.00 11.91	Â
MOTA	2454	Ō	LEU A 342	23.142	19.565	24.072	1.00 10.04	Â
MOTA	2455	Ň	PRO A 343		18.937	26.147	1.00 10.04	
ATOM	2456	CD	PRO A 343	22.407	19.074	27.618		A
ATOM	2457	CA	PRO A 343	21.947	17.622	25.721	1.00 8.23	A
ATOM	2458	CB	PRO A 343	21.407			1.00 11.60	A
ATOM	2459	CG	PRO A 343	22.287	17.006	27.021	1.00 11.29	A
ATOM	2460				17.643	28.083	1.00 12.10	Ā
		C	PRO A 343	20.850	17.839	24.688	1.00 11.38	A
ATOM	2461	O.	PRO A 343	20.229	18.896	24.648	1.00 10.75	A
MOTA	2462	N	SER A 344	20.590	16.836	23.861	1.00 9.55	A
MOTA	2463	CA	SER A 344	19.592	16.995	22.801	1.00 8.34	Α
ATOM	2464	CB	SER A 344	19.547	15.741	21.940	1.00 15.39	A
ATOM	2465	QG	SER A 344	19.245	14.625	22.760	1.00 23.25	A
ATOM	2466	C	SER A 344	18.185	17.315	23.281	1.00 8.79	Α
ATOM	2467	0	SER A 344	17.474	18.051	22.615	1.00 11.06	А
ATOM	2468	N	ASN A 345	17.751	16.744	24.410	1.00 11.97	A
ATOM	2469	CA	ASN A 345	16.403	17.061	24.874	1.00 13.51	A
ATOM	2470	CB	ASN A 345	15.962	16.128	26.015	1.00 11.25	A
ATOM	2471	CG	ASN A 345	16.896	16.145	27.206	1.00 19.63	A
ATOM	2472	OD1	ASN A 345	18.105	16.399	27.083	1.00 15.65	A
ATOM	2473	ND2	ASN A 345	16.343	15.822	28.379	1.00 15.03	A
ATOM	2474	С	ASN A 345	16.296	18.532	25.277	1.00 12.03	A
MOTA	2475	ō	ASN A 345	15.236	19.131	25.167	1.00 11.72	Ä
ATOM	2476	Ň	TRP A 346	17.397	19.115	25.739	1.00 10.97	Â
ATOM	2477	CA	TRP A 346	17.397	20.533	26.097	1.00 9.55	A
ATOM	2478	CB	TRP A 346	18.663	20.890	26.881		
ATOM	2479	ČĞ	TRP A 346				1.00 8.50	A
ATOM	2480	CD2	TRP A 346	18.475 17.927	20.695 21.660	28.372	1.00 9.10	A
ATOM	2481	CE2	TRP A 346	17.831		29.285	1.00 10.08	A
ATOM	2482	CE3	TRP A 346		21.036	30.549	1.00 12.11	A
ATOM	2483	CD1	TRP A 346	17.502	22.994	29.149	1.00 9.60	A
				18.694	19.553	29.099	1.00 9.06	Ā
ATOM	2484	NE1	TRP A 346	18.304	19.752	30.411	1.00 9.93	A
ATOM	2485	CZ2	TRP A 346	17.323	21.705	31.682	1.00 9.30	A
ATOM	2486	CZ3	TRP A 346	17.004	23.662	30.261	1.00 10.14	A
ATOM	2487	CH2	TRP A 346	16.917	23.012	31.522	1.00 12.99	A
ATOM	2488	Ç	TRP A 346	17.298	21.390	24.824	1.00 10.69	A
ATOM	2489	0	TRP A 346	16.509	22.333	24.769	1.00 13.16	A
ATOM	2490	N	LYS A 347	18.087	21.074	23.804	1.00 9.34	Α
MOTA	2491	CA	LYS A 347	17.984	21.852	22.557	1.00 8.27	A
ATOM	2492	CB	LYS A 347	18.902	21.287	21.466	1.00 12.86	A
ATOM	2493	CG	LYS A 347	20.416	21.357	21.748	1.00 11.51	A
ATOM	2494	CD	LYS A 347	21.221	21.071	20.440	1.00 14.73	A
ATOM	2495	CE	LYS A 347	22.733	21.317	20.590	1.00 14.12	A
ATOM	2496	NZ	LYS A 347	23.467	20.312	21.462	1.00 10.37	Ä
ATOM	2497	Ċ	LYS A 347	16.549	21.789	22.030	1.00 10.83	Ä
ATOM	2498	ŏ	LYS A 347	15.956	22.814	21.631	1.00 8.78	Ä
ATOM	2499	Ň	ALA A 348	15.987	20.583	21.997	1.00 9.70	A
ATOM	2500	CA	ALA A 348	14.627	20.418	21.472	1.00 9.41	A
ATOM	2501	CB	ALA A 348	14.238	18.928	21.448	1.00 12.04	A
ATOM	2502	C	ALA A 348	13.589	21.224	22.251		
							1.00 10.82	A
ATOM	2503	0	ALA A 348	12.678	21.830	21.657	1.00 9.58	A

ATOM ATOM ATOM	2504 2505 2506	N CA	ALA A 349 ALA A 349	9 12.791	21.261 22.018	23.569 24.392	1.00 9.39 1.00 8.51	A A
ATOM ATOM	2507 2508	CB C	ALA A 349 ALA A 349 ALA A 349	9 12.909	21.750 23.518 24.224	25.891 24.095	1.00 8.51 1.00 10.22	A
ATOM ATOM	2509 2510	N CA	VAL A 350 VAL A 350	0 14.140	24.224 24.002 25.423	24.012 23.930 23.649	1.00 8.91 1.00 12.16 1.00 8.94	· A
ATOM ATOM	2511 2512	CB CG1	VAL A 350	0 15.863	25.794 27.221	23.629	1.00 8.30 1.00 8.00	A A A
ATOM ATOM	2513 2514	CG3	VAL A 350	0 16.439 0 13.709	25.729 25.763	25.075 22.305	1.00 8.81 1.00 10.89	A A
ATOM ATOM ATOM	2515 2516	N O	VAL A 350 ARG A 351	1 13.890	26.787 24.895	22.177 21.313	1.00 11.46 1.00 10.91	A A
ATOM ATOM	2517 2518 2519	CA CB CG	ARG A 351 ARG A 351 ARG A 351	1 13.765	25.144 24.106	20.002 18.988	1.00 11.54 1.00 10.07	A A
ATOM ATOM	2520 2521	CD NE	ARG A 351 ARG A 351	1 15.527	24.167 23.433 22.067	18.647 17.312 17.282	1.00 10.05 1.00 14.16 1.00 17.52	A
MOTA MOTA	2522 2523	CZ NH1	ARG A 351	1 15.577	20.991	17.780 17.708	1.00 17.52 1.00 14.15 1.00 14.19	A A A
MOTA MOTA	2524 2525	NH2 C	ARG A 351	16.775 1 11.750	21.097 25.097	18.338 20.069	1.00 15.54 1.00 13.24	A A
ATOM ATOM ATOM	2526 2527 2528	O N	ARG A 351 ALA A 352	2 11.221	25.925 24.112	19.477 20.786	1.00 10.64 1.00 10.94	A A
ATOM ATOM	2529 2530	CA CB C	ALA A 352 ALA A 352 ALA A 352	9.447	23.942 22.656	20.890	1.00 13.45 1.00 14.54	A A
ATOM ATOM	2531 2532	Ŏ N	ALA A 352 SER A 353	7.875	25.112 25.385 25.802	21.527 21.193 22.454	1.00 14.05 1.00 9.92 1.00 9.51	A A A
MOTA	2533 2534	CA CB	SER A 353 SER A 353	9.024 9.503	26.932 27.088	23.094 24.548	1.00 10.39	A A
ATOM ATOM ATOM	2535 2536 2537	OG C	SER A 353 SER A 353	9.308	26.220 28.245	25.436 22.386	1.00 14.83 1.00 12.07	A A
ATOM ATOM	2538 2539	O N CA	SER A 353 TYR A 354 TYR A 354	10.568	29.033 28.459 29.733	22.178 22.015	1.00 12.33	A A
ATOM ATOM	2540 2541	CB CG	TYR A 354 TYR A 354	12.240	30.188 30.164	21.455 22.159 23.670	1.00 8.65 1.00 11.42 1.00 11.26	A A A
ATOM ATOM	2542 2543	CD1 CE1	TYR A 354 TYR A 354	11.168	31.007 30.955	24.296 25.673	1.00 11.16 1.00 13.86	A A
ATOM ATOM ATOM	2544 2545 2546	CD2 CE2	TYR A 354 TYR A 354	12.608	29.265 29.204	24.455 25.846	1.00 12.94 1.00 13.83	A
ATOM ATOM	2547 2548	CZ OH C	TYR A 354 TYR A 354 TYR A 354	11.496	30.048 29.985 29.882	26.437 27.784 19.951	1.00 15.93 1.00 31.84	A
ATOM ATOM	2549 2550	N	TYR A 354 LEU A 355	11.137 11.097	31.011 28.778	19.456 19.218	1.00 11.12 1.00 11.00 1.00 9.87	A A A
ATOM ATOM	2551 2552	CA CB	LEU A 355 LEU A 355	12.292	28.896 28.069	17.757 17.185	1.00 11.35 1.00 12.01	A A
ATOM ATOM ATOM	2553 2554 2555	CG CD1 CD2	LEU A 355 LEU A 355 LEU A 355	14.731	28.633 27.617	17.424 16.930	1.00 18.77 1.00 13.44	A A
ATOM ATOM	2556 2557	C C	LEU A 355 LEU A 355 LEU A 355	9.848	29.963 28.484 29.208	16.666 17.086 16.231	1.00 19.42 1.00 12.49 1.00 13.91	A A
ATOM ATOM	2558 2559	N CA	THR A 356 THR A 356	9.300 8.036	27.331 26.866	17.458 16.849	1.00 13.88	A A A
ATOM ATOM	2560 2561	CB OG1	THR A 356 THR A 356	8.352	25.759 24.678	17.704 17.794	1.00 19.06 1.00 22.02	A A
ATOM ATOM ATOM	2562 2563 2564	C C C CG2	THR A 356 THR A 356 THR A 356	6.108 7.058 6.609	25.265 28.040	17.077 16.684	1.00 20.44	A A
ATOM ATOM	2565 2566	N CA	ALA A 357 ALA A 357	6.720 5.892	28.642 28.362 29.536	17.658 15.441 15.175	1.00 14.53 1.00 16.53 1.00 15.13	A A A
MOTA MOTA	2567 2568	CB C	ALA A 357 ALA A 357	5.654 4.569	29.669 29.630	13.662 15.918	1.00 17.87 1.00 18.27	A A
ATOM ATOM ATOM	2569 2570	N O	ALA A 357 SER A 358	4.141 3.930	30.714 28.492	16.295 16.127	1.00 19.17 1.00 18.84	A A
ATOM ATOM ATOM	2571 2572 2573	CA CB OG	SER A 358 SER A 358 SER A 358	2.643 1.953 2.853	28.444 27.125 26.049	16.800 16.459 16.654	1.00 22.62 1.00 18.79 1.00 21.93	A A
ATOM ATOM	2574 2575	c o	SER A 358 SER A 358	2.716 1.719	28.607 28.918	18.318 18.949	1.00 21.93 1.00 22.54 1.00 19.82	A A A
ATOM ATOM	2576 2577		ASN A 359 ASN A 359	3.886 3.950	28.410 28.550	18.916 20.358	1.00 20.48 1.00 16.65	A A
ATOM ATOM	2578 2579	CB CG	ASN A 359 ASN A 359	5.249 5.180	27.956 27.718	20.909 22.387	1.00 12.27 1.00 11.80	A A

ATOM	2580	OD1	ASN A 359	4.992	28.652	23.170	1.00 16.11	
MOTA	2581	ND2		5.329	26.451	22.793		A
ATOM	2582						1.00 14.58	A
		Č	ASN A 359	3.844	30.019	20.745	1.00 16.93	А
MOTA	2583	0	ASN A 359	4.550	30.861	20.194	1.00 15.08	A
MOTA	2584	N	ALA A 360	2.972	30.306	21.712	1.00 15.71	A
MOTA	2585	CA	ALA A 360	2.759	31.664	22.208	1.00 18.67	А
MOTA	2586	CB	ALA A 360	1.688	31.651	23.320	1.00 22.67	A
MOTA	2587	C	ALA A 360	4.041	32.309	22.744	1.00 18.59	Ä
MOTA	2588	. õ	ALA A 360	4.138	33.532	22.825		
ATOM	2589	N	LEU A 361				1.00 16.11	A
ATOM	2590	CA	LEU A 361	5.010	31.488	23.144	1.00 14.62	A
ATOM				6.276	32.021	23.653	1.00 11.27	A
	2591	CB	LEU A 361	6.863	31.060	24.685	1.00 15.51	A
ATOM	2592	CG	LEU A 361	6.087	30.788	25.971	1.00 15.37	A
MOTA	2593	CD1		6.713	29.586	26.688	1.00 15.50	A
MOTA	2594	CD2	LEU A 361	6.086	32.030	26.849	1.00 14.07	A
ATOM	2595	C	LEU A 361	7.334	32.219	22.545	1.00 12.87	A
ATOM	2596	0	LEU A 361	8.430	32.716	22.818	1.00 12.41	A
ATOM	2597	N	SER A 362	7.036	31.821	21.314	1.00 9.97	A
MOTA	2598	CA	SER A 362	8.044	31.936	20.257	1.00 10.76	A
MOTA	2599	CB	SER A 362	7.627	31.145	19.011	1.00 15.72	A
MOTA	2600	OG	SER A 362	6.470	31.707	18.416	1.00 18.79	Ä
MOTA	2601	С	SER A 362	8.454	33.338	19.822	1.00 12.29	Ä
ATOM	2602	Ó	SER A 362	7.637	34.258	19.742	1.00 12.85	A
MOTA	2603	N	ILE A 363	9.741	33.457	19.512	1.00 10.84	Ä
ATOM	2604	CA	ILE A 363	10.353	34.698	19.072	1.00 14.99	Â
ATOM	2605	CB	ILE A 363	11.850	34.461	18.777	1.00 13.05	À
ATOM	2606	CG2	ILE A 363	12.483	35.713	18.198	1.00 13.03	
ATOM	2607	CG1	ILE A 363	12.578		20.064		A
ATOM	2608	CD1	ILE A 363	13.960	34.071		1.00 15.60	A
ATOM	2609	_			33.442	19.815	1.00 11.48	A
		C	ILE A 363	9.639	35.206	17.807	1.00 14.29	Ā
ATOM	2610	0	ILE A 363	9.509	34.481	16.830	1.00 12.01	A
ATOM	2611	N	GLY A 364	9.176	36.451	17.848	1.00 15.53	A
ATOM	2612	CA	GLY A 364	8.477	37.034	16.717	1.00 14.88	A
ATOM	2613	Ç	GLY A 364	7.040	36.567	16.514	1.00 19.34	A
MOTA	2614	0	GLY A 364	6.436	36.872	15.487	1.00 19.36	A
ATOM	2615	N	ASP A 365	6.471	35.842	17.474	1.00 15.42	A
ATOM	2616	CA	ASP A 365	5.094	35.360	17.323	1.00 16.08	A
ATOM	2617	CB	ASP A 365	4.625	34.691	18.613	1.00 17.24	A
ATOM	2618	CG	ASP A 365	3.195	34.201	18.516	1.00 22.13	A
ATOM	2619	OD1	ASP A 365	2.992	33.003	18.238	1.00 24.97	A
ATOM	2620	OD2	ASP A 365	2.272	35.025	18.698	1.00 22.46	À
ATOM	2621	C	ASP A 365	4.100	36.490	16.954	1.00 20.12	Ä
ATOM	2622	Õ	ASP A 365	3.979	37.482	17.668	1.00 17.92	A·
ATOM	2623	Ŋ	SER A 366	3.379	36.317	15.848	1.00 17.32	Â
ATOM	2624	CA	SER A 366	2.419	37.319	15.360	1.00 19.32	A
ATOM	2625	CB	SER A 366	1.704	36.787			
ATOM	2626	og	SER A 366	2.640		14.108	1.00 21.13	A
ATOM	2627				36.400	13.125	1.00 29.92	A
		C	SER A 366	1.359	37.814	16.342	1.00 15.84	A
ATOM	2628	O.	SER A 366	1.155	39.010	16.461	1.00 22.39	Ā
ATOM ATOM	2629	N	ALA A 367	0.655	36.920	17.024	1.00 18.40	Ā
	2630	CA	ALA A 367	-0.384	37.363	17.965	1.00 22.33	A
MOTA	2631	CB	ALA A 367	-1.220	36.175	18.431	1.00 19.13	A
ATOM	2632	Ç	ALA A 367	0.182	38.093	19.187	1.00 25.24	A
MOTA	2633	0	ALA A 367	-0.402	39.066	19.682	1.00 26.45	A
ATOM	2634	N	VAL A 368	1.311	37.612	19.692	1.00 24.39	A
MOTA	2635	CA	VAL A 368	1.903	38.229	20.864	1.00 21.43	A
ATOM	2636	CB	VAL A 368	2.729	37.182	21.657	1.00 23.84	Α
ATOM	2637	CG1	VAL A 368	3.447	37.838	22.850	1.00 19.42	A
ATOM	2638	CG2	VAL A 368	1.810	36.094	22.148	1.00 25.28	A
MOTA	2639	С	VAL A 368	2.770	39.447	20.558	1.00 19.50	A
ATOM	2640	0	VAL A 368	2.713	40.440	21.277	1.00 22.77	A
ATOM	2641	N	CYS A 369	3.557	39.396	19.491	1.00 17.47	A
ATOM	2642	CA	CYS A 369	4.448	40.505	19.195	1.00 20.32	Ä
ATOM	2643	C	CYS A 369	3.919	41.648	18.322	1.00 23.64	Ä
ATOM	2644	ŏ	CYS A 369	4.617	42.639	18.120	1.00 26.98	Â
ATOM	2645	СВ	CYS A 369	5.746	39.977	18.581		
ATOM	2646	SG	CYS A 369	6.819			1.00 22.42	A
			GLY A 370		38.961	19.671	1.00 19.53	A
ATOM	2647	N		2.698	41.521	17.812	1.00 25.38	A
ATOM	2648	CA.	GLY A 370	2.154	42.575	16.966	1.00 27.80	Ā
MOTA	2649	Ç	GLY A 370	2.190	43.938	17.627	1.00 21.46	Ā
ATOM	2650	0	GLY A 370	1.631	44.112	18.705	1.00 25.76	A
ATOM	2651	N	GLY A 371	2.872	44.885	16.988	1.00 20.44	A
ATOM	2652	CA	GLY A 371	2.970	46.237	17.516	1.00 23.12	A
ATOM	2653	Ċ	GLY A 371	3.913	46.463	18.695	1.00 26.63	A
ATOM	2654	0	GLY A 371	3.946	47.561	19.263	1.00 23.97	A
ATOM	2655	N	LYS A 372	4.689	45.443	19.057	1.00 23.24	A

ATOM	2656	CA	LYS A 372	5.612	45.537	20.197	1.00 21.66	
MOTA	2657	CB	LYS A 372					A
				5.141	44.605	21.296	1.00 19.20	A
MOTA	2658	CG	LYS A 372	3.715	44.856	21.675	1.00 25.31	Α
ATOM	2659	CD	LYS A 372	3.278	43.936	22.769	1.00 24.34	A
ATOM	2660	CE	LYS A 372					
				1.884	44.315	23.208	1.00 29.63	A
ATOM	2661	NZ	LYS A 372	1.426	43.423	24.285	1.00 25.95	А
ATOM	2662	C	LYS A 372	7.037	45.167	19.855	1.00 18.74	A
ATOM	2663	0	LYS A 372					
				7.337	44.799	18.721	1.00 17.43	A
ATOM	2664	N	GLY A 373	7.917	45.247	20.852	1.00 15.44	A
ATOM	2665	CA	GLY A 373	9.297	44.876	20.616	1.00 12.87	A
ATOM	2666	C	GLY A 373	10.366	45.876	21.015		
ATOM							1.00 17.42	A
	2667	0	GLY A 373	10.168	47.106	20.965	1.00 13.70	A
MOTA	2668	N	ARG A 374	11.517	45.342	21.419	1.00 14.49	A
ATOM	2669	CA	ARG A 374	12.639	46.187	21.792	1.00 13.29	A
ATOM	2670	CB	ARG A 374	13.786	45.339			
ATOM						22.333	1.00 15.72	A
	2671	CG	ARG A 374	13.456	44.710	23.692	1.00 18.10	A
ATOM	2672	CD	ARG A 374	14.668	44.080	24.332	1.00 20.11	A
ATOM	2673	NE	ARG A 374	15.729	45.034	24.665	1.00 13.47	A
ATOM	2674	CZ	ARG A 374	16.143	45.296			
						25.899	1.00 13.50	A
ATOM	2675	NH1	ARG A 374	15.564	44.694	26.928	1.00 11.14	A
ATOM	2676	NH2	ARG A 374	17.206	46.082	26.100	1.00 9.65	A
ATOM	2677	С	ARG A 374	13.097	46.989	20.563	1.00 14.09	A
ATOM	2678	ŏ	ARG A 374	13.008	46.517	19.411		
ATOM	2679	Ŋ					1.00 13.90	A
			PRO A 375	13.575	48.225	20.797	1.00 13.52	A
ATOM	2680	CD	PRO A 375	13.680	48.834	22.133	1.00 12.37	A
ATOM	2681	CA	PRO A 375	14.051	49.137	19.753	1.00 15.51	A
ATOM	2682	CB	PRO A 375	14.304	50.445	20.516		
ATOM	2683	CG	PRO A 375				1.00 18.56	A
				14.669	49.958	21.903	1.00 16.56	A
ATOM	2684	С	PRO A 375	15.282	48.622	19.017	1.00 16.94	A
ATOM	2685	0	PRO A 375	16.130	47.953	19.605	1.00 16.29	A
ATOM	2686	N	GLU A 376	15.384	48.956	17.733	1.00 14.83	
ATOM	2687	CA						A
			GLU A 376	16.501	48.480	16.928	1.00 14.54	A
ATOM	2688	CB	GLU A 376	16.191	48.638	15.429	1.00 20.94	Α
ATOM	2689	CG	GLU A 376	15.989	50.054	14.930	1.00 25.93	A
ATOM	2690	CD	GLU A 376	15.840	50.093	13.408	1.00 28.12	Ä
ATOM	2691	OE1	GLU A 376	16.852	50.265	12.693	1.00 27.73	A
ATOM	2692	OE2	GLU A 376	14.706	49.921	12.926	1.00 22.85	A
ATOM	2693	С	GLU A 376	17.818	49.144	17.258	1.00 15.46	A
ATOM	2694	0	GLU A 376	17.779	50.308	17.715	1.00 20.34	
ATOM	2695	OXT						A
			GLU A 376	18.870	48.501	17.040	1.00 17.16	A
ATOM	2696	OH2	WAT S1500	35.620	33.372	34.950	1.00 7.74	S
ATOM	2697	OH2	WAT S1501	26.719	26.585	54.115	1.00 13.35	S
ATOM	2698	OH2	WAT S1502	32.910	38.720	42.612	1.00 11.02	s
ATOM	2699	OH2	WAT S1503					3
				25.842	40.990	19.393	1.00 10.30	s
ATOM	2700	OH2	WAT S1504	47.855	24.508	32.439	1.00 11.64	S
ATOM	2701	OH2	WAT S1505	37.575	38.877	30.460	1.00 13.25	s
ATOM	2702	OH2	WAT S1506	43.970	19.166	36.360	1.00 11.89	S
ATOM	2703	OH2	WAT S1507	51.431	26.280	38.870	1.00 11.08	š
ATOM	2704							
		OH2	WAT S1508	21.180	34.238	33.496	1.00 10.94	S
ATOM	2705	OH2	WAT S1509	34.016	23.145	55.150	1.00 7.21	· S
ATOM	2706	OH2	WAT S1510	34.137	35.767	50.996	1.00 14.32	, S
ATOM	2707	OH2	WAT S1511	29.833	31.064	61.815	1.00 12.62	ŝ
ATOM	2708	OH2						
				36.421	34.348	51.750	1.00 8.81	S
ATOM	2709	OH2	WAT S1513	24.593	22.841	22.601	1.00 14.49	S
MOTA	2710	OH2	WAT S1514	33.875	20.919	53.336	1.00 15.73	s
ATOM	2711	OH2	WAT S1515	55.590	18.894	44.228	1.00 20.22	s
MOTA	2712	OH2	WAT S1516	25.163	24.507	19.298	1.00 7.32	s
ATOM	2713	OHO	WAT S1517	29.287	27.565	53.584		S
								2
ATOM	2714			27.630	35.157	54.573	1.00 11.84	S
ATOM	2715		WAT S1519	34.308	40.814	45.314	1.00 9.91	S
ATOM	2716		WAT S1520	24.097	26.340	47.444	1.00 12.35	S
ATOM	2717		WAT S1521					č
				26.289	17.353	26.191	1.00 14.15	s s
ATOM	2718		WAT S1522	31.025	26.248	57.309	1.00 9.97	S
MOTA	2719	OH2	WAT S1523	16.012	33.323	36.822	1.00 10.61	s
ATOM	2720		WAT S1524	35.079	31.981	26.882	1.00 7.27	Ś
ATOM	2721		WAT S1525	48.948	16.302		1.00 22.32	2
						35.666		5
ATOM	2722		WAT S1526	23.036	32.247	50.228	1.00 12.80	នននន
ATOM	2723	OH2	WAT S1527	41.445	42.204	48.819	1.00 16.71	S
ATOM	2724		WAT S1528	30.777	34.835	16.827	1.00 12.96	š
ATOM	2725		WAT S1529	9.482				3
					33.895	27.983	1.00 10.22	S
ATOM	2726		WAT S1530	10.107	31.646	29.501	1.00 12.12	S
MOTA	2727	OH2	WAT S1531	37.836	31.446	58.127	1.00 18.63	S
ATOM	2728		WAT S1532	23.419	29.528	35.937	1.00 10.10	S
MOTA	2729		WAT S1533	36.234	16.727	51.505	1.00 9.28	ŝ
								5
ATOM .	2730		WAT S1534	5.728	38.503	24.985	1.00 13.33	S
ATOM	2731	OH2	WAT S1535	29.914	14.295	35.432	1.00 16.41	S

2732 2733 2734 2735 2736 2737 OH2 WAT S1536 OH2 WAT S1537 ATOM 31.310 1.00 9.93 38.281 18.695 ATOM 44.863 16.606 36.022 1.00 15.09 ATOM OH2 WAT S1538 40.186 22.869 38.700 1.00 9.90 MOTA 37.549 OH2 WAT S1539 20.501 28.090 1.00 13.36 ATOM OH2 WAT S1540 12.913 31.829 29.436 1.00 WAT S1541 ATOM OH2 30.589 15.671 37.530 1.00 MOTA 2738 OH2 WAT S1542 23.885 35.406 43.402 1.00 18.37 MOTA 2739 OH2 WAT S1543 8.663 34.010 25.289 1.00 13.37 33.757 57.944 7.715 41.885 13.484 MOTA 2740 OH2 WAT S1544 46.444 1.00 12.24 27.923 17.540 MOTA 2741 OH2 WAT S1545 19.477 1.00 11.68 ATOM 2742 OH2 WAT S1546 33.345 1.00 19.22 51.552 27.270 MOTA 2743 OH2 WAT S1547 13.602 1.00 25.84 S WAT S1548 26.074 MOTA 2744 OH2 40.675 1.00 10.51 27.270 27.760 37.046 37.573 40.930 4.472 26.302 43.771 20.816 S1549 MOTA 2745 OH2 WAT 1.00 13.46 S 27.914 20.741 35.565 2746 WAT S1550 MOTA OH2 14.34 1.00 S WAT S1550 WAT S1551 WAT S1552 WAT S1553 WAT S1554 MOTA 2747 OH2 33.819 23.07 17.08 1.00 2748 MOTA OH2 14.067 1.00 ATOM 2749 29.061 32.912 32.567 28.375 OH2 1.00 18.41 ATOM 2750 OH2 1.00 10.00 ATOM 2751 S1555 16.934 36.030 OH2 WAT 14.165 29.555 45.737 1.00 13.06 S WAT S1556 WAT S1557 WAT S1558 2752 ATOM OH2 43.029 7.32 1.00 S 2753 2754 36.451 31.931 23.622 37.298 49.603 37.001 ATOM OH2 34.819 1.00 11.33 17.255 26.926 OH₂ ATOM 1.00 39.16 S WAT 51559 2755 ATOM OH2 1.00 11.87 WAT S1559 WAT S1560 WAT S1561 WAT S1562 WAT S1563 WAT S1564 WAT S1566 WAT S1566 WAT S1566 2756 2757 ATOM OH2 31.327 13.311 33.059 1.00 12.47 s 44.899 44.879 41.787 36.741 MOTA OH2 1.00 23.25 2758 35.365 50.011 ATOM OH₂ 50.334 1.00 9.60 ATOM 2759 OH2 20.827 18.100 1.00 15.06 2760 MOTA 24.374 38.304 OH2 31.041 1.00 12.38 2761 2762 ATOM 42.003 35.751 26.114 40.722 OH2 11.411 1.00 14.55 MOTA OH2 21.341 1.00 12.16 2763 2764 MOTA 10.175 47.181 39.888 33.704 OH2 31.393 1.00 37.76 WAT S1568 WAT S1569 WAT S1570 MOTA OH2 26.945 1.00 12.30 2765 2766 36.919 15.706 MOTA OH2 42.028 43.488 1.00 25.46 MOTA OH2 24.724 31.053 1.00 12.46 2767 2768 2769 2770 2771 2772 MOTA OH2 WAT S1571 10.314 39.156 33.480 1.00 10.32 MOTA WAT S1572 OH2 51.433 20.485 50.130 1.00 15.09 MOTA 30.656 53.758 51.790 28.375 WAT S1573 OH2 43.925 1.00 17.28 MOTA OH2 WAT S1574 23.091 1.00 12.50 ATOM OH2 WAT S1575 34.977 41.183 53.019 1.00 15.31 MOTA OH2 WAT S1576 29.766 26.781 12.309 1.00 18.82 2773 2774 36.561 15.728 MOTA OH2 WAT S1577 9.190 30.593 1.00 11.25 MOTA OH2 **WAT S1578** 36.599 48.666 1.00 21.18 MOTA 2775 OH2 WAT S1579 37.724 34.865 54.143 1.00 11.62 MOTA 2776 OH2 TAW S1580 21.457 35.713 12.303 1.00 13.24 MOTA 2777 OH2 WAT S1581 27.734 31.073 59.797 1.00 14.78 51.536 1.00 ATOM 2778 OH2 WAT S1582 35.554 40.163 14.52 S ATOM 2779 OH2 WAT S1583 29.933 42.651 53.057 1.00 14.55 9.469 **ATOM** 2780 OH2 WAT S1584 23.677 25.125 1.00 12.14 S ATOM 2781 OH2 WAT S1585 29.372 11.334 17.80 1.00 56.481 9.572 38.435 2782 WAT 22.975 ATOM OH2 S1586 1.00 29.16 S 40.421 42.224 37.848 ATOM 2783 WAT S1587 1.00 OH2 14.99 S 20.542 13.90 15.10 MOTA 2784 OH2 WAT S1588 40.862 1.00 S 39.841 28.636 **ATOM** 2785 OH2 TAW S1589 1.00 9.567 6.391 41.492 22.505 27.720 37.216 30.199 48.835 20.894 28.556 46.441 1.00 **ATOM** 2786 OH2 WAT S1590 19.52 S 55.469 52.952 ATOM 2787 OH2 WAT S1591 16.40 1.00 MOTA 2788 OH2 WAT S1592 24.23 15.40 S MOTA 2789 WAT 20.204 OH2 S1593 1.00 S 41.499 1.00 19.68 MOTA 2790 OH2 WAT S1594 30.864 S WAT S1595 15.034 **ATOM** 2791 OH2 1.00 11.19 S 2792 ATOM OH2 WAT S1596 25.139 35.730 30.964 53.858 1.00 21.47 2793 WAT OH2 S1597 20.698 **ATOM** 18.767 15.15 17.67 1.00 S 23.797 26.514 2794 2795 WAT WAT S1598 S1599 44.994 28.802 **ATOM** OH2 20.666 1.00 ATOM 58.069 OH2 17.28 1.00 TAW TAW 16.767 30.159 47.104 33.756 22.319 60.797 MOTA 2796 OH2 S1600 1.00 11.98 S MOTA 2797 OH2 S1601 1.00 9.19 27.997 2798 OH2 WAT S1602 36.005 MOTA 48.106 1.00 14.93 21.552 18.008 2799 WAT 40.650 24.407 MOTA OH2 S1603 1.00 17.12 22.968 16.621 1.00 **ATOM** 2800 OH2 WAT S1604 17.449 17.85 **ATOM** 2801 OH2 WAT S1605 15.788 18.605 1.00 25.68 1.00 **ATOM** 2802 OH2 WAT S1606 7.206 32.992 16.005 14.53 57.149 MOTA 2803 OH2 WAT S1607 24.564 47.629 1.00 18.35 **ATOM** 2804 OH2 TAW S1608 24.205 26.840 10.350 1.00 23.21 2805 WAT S1609 33.745 22.604 **ATOM** OH2 31.364 1.00 14.24 WAT \$1610 21.687 28.608 49.750 1.00 MOTA 2806 OH₂ 41.13 25.572 18.289 MOTA 2807 OH2 WAT S1611 18.085 1.00 18.47

ATOM OH2 WAT S1612 2808 29.378 1.00 18.53 22.049 15.378 MOTA 2809 OH2 WAT S1613 47.580 23.216 17.180 46.156 1.00 18.00 MOTA 2810 OH₂ TAW S1614 43.309 37.644 1.00 MOTA 2811 OH2 WAT 22.669 S1615 24.274 48.564 1.00 24.15 MOTA 2812 OH2 WAT S1616 0.336 31.433 18.582 1.00 27.87 MOTA 2813 OH2 WAT S1617 45.294 51.773 33.053 1.00 13.88 ATOM 2814 44.363 24.023 OH2 WAT S1618 26.868 22.624 1.00 23.01 ATOM 2815 OH2 WAT S1619 16.291 14.532 1.00 14.28 MOTA 2816 OH2 WAT S1620 S1621 25.803 10.423 16.259 28.626 1.00 18.77 ATOM 2817 OH2 WAT 51.944 32.078 1.00 36.29 WAT 51622 ATOM 2818 OH2 26.115 58.809 27.014 1.00 15.64 WAT \$1623 MOTA 2819 OH2 22.672 1.344 28.356 1.00 26.37 2820 MOTA **WAT S1624** OH2 26.639 58.198 21.115 1.00 25.02 2821 MOTA OH2 26.622 15.027 57.187 WAT S1625 32.997 55.284 1.00 16.24 ATOM 2822 OH2 WAT S1626 52.473 26.183 1.00 21.76 ATOM 2823 WAT S1627 OH2 25.783 44.900 1.00 20.20 WAT S1628 ATOM 2824 OH2 44.922 43.322 47.514 1.00 18.96 32.001 30.741 ATOM 2825 OH2 WAT S1629 38.779 53.199 17.42 1.00 S ATOM 2826 OH2 WAT S1630 52.390 22.108 1.00 18.11 OH2 WAT S1631 OH2 WAT S1632 ATOM 2827 19.15 14.999 39.258 44.162 1.00 S ATOM 2828 44.210 20.606 55.552 1.00 17.79 ATOM 2829 OH2 WAT S1633 21.471 43.377 19.05 12.416 1.00 S MOTA 2830 OH2 WAT S1634 13.869 15.823 31.777 1.00 25.21 55.173 52.050 45.841 42.473 19.351 19.222 31.000 MOTA 2831 OH2 WAT S1635 52.620 30.612 30.08 1.00 S MOTA 2832 OH2 WAT S1636 26.556 19.486 1.00 29.07 ATOM 2833 OH2 WAT S1637 21.965 25.980 1.00 19.07 S ATOM 2834 OH2 WAT S1638 51.617 9.81 33.897 1.00 ATOM 2835 OH2 WAT S1639 11.552 20.655 16.68 1.00 S 30.899 45.201 48.342 MOTA 2836 OH2 WAT S1640 1.00 26.19 ATOM 2837 OH2 WAT S1641 31.709 1.00 18.10 S 23.676 25.577 22.818 46.479 MOTA 2838 OH2 WAT S1642 25.327 17.219 1.00 14.28 MOTA 2839 OH2 WAT S1643 1.00 20.91 18.005 52.881 5.848 18.283 16.705 42.562 MOTA 2840 OH2 TAW S1644 19.152 1.00 24.14 MOTA 2841 OH2 WAT S1645 50.095 1.00 20.16 37.856 34.565 ATOM 2842 OH2 TAW S1646 1.00 19.01 14.659 MOTA 2843 OH2 WAT S1647 43.582 1.00 28.17 s 22.374 MOTA 2844 OH2 20.886 TAW S1648 1.00 18.81 27.030 MOTA 2845 OH2 WAT S1649 48.989 1.00 23.87 MOTA 2846 OH2 TAW S1650 2.521 47.157 34.228 1.00 30.10 44.220 27.919 3.523 ATOM 2847 OH2 WAT S1651 43.064 40.109 1.00 29.97 ATOM 2848 OH2 TAW S1652 24.353 12.179 1.00 16.62 42.077 MOTA 2849 OH2 WAT S1653 26.249 37.672 1.00 22.83 s 20.380 57.034 49.668 51.259 44.291 28.423 MOTA 2850 OH2 WAT S1654 1.00 17.30 MOTA 2851 WAT S1655 OH2 45.056 30.455 1.00 27.44 **ATOM** 2852 OH2 WAT S1656 24.467 1.00 22.73 S1657 ATOM 2853 OH2 TAW 45.586 13.409 1.00 34.23 9.456 52.331 23.136 23.665 40.535 46.776 MOTA 2854 OH2 WAT S1658 36.163 57.905 1.00 24.71 MOTA 2855 OH2 WAT S1659 1.00 18.92 MOTA 2856 OH2 WAT S1660 43.381 13.806 56.268 1.00 30.03 ATOM 2857 OH2 WAT S1661 43.159 1.00 30.72 ATOM WAT S1662 2858 OH2 53.981 41.765 30.491 26.570 17.318 48.223 28.744 1.00 13.32 ATOM WAT S1663 2859 OH2 1.00 27.76 MOTA 2860 OH2 WAT S1664 40.737 13.225 1.00 24.67 53.732 **ATOM** 2861 S1665 OH2 WAT 44.990 8.674 1.00 28.84 **ATOM** 2862 OH2 WAT S1666 49.013 41.254 37.426 39.651 1.00 28.00 MOTA 2863 OH2 WAT S1667 44.805 30.933 1.00 16.56 MOTA 2864 S1668 43.625 14.317 OH2 WAT 18.020 54.500 1.00 24.62 ATOM 2865 OH2 WAT S1669 25.699 46.118 1.00 34.64 ATOM 2866 OH2 WAT OH2 WAT 3.256 10.555 29.06 S1670 42.913 32.109 1.00 ATOM 2867 \$1671 49.763 20.725 1.00 28.19 ATOM 2868 OH2 \mathbf{WAT} S1672 10.096 51.223 27.611 1.00 ATOM OH2 WAT 40.49 2869 S1673 14.363 23.946 36.209 1.00 MOTA WAT 2870 OH2 S1674 25.126 59.432 22.831 1.00 22.37 ATOM 2871 OH2 WAT S1675 36.093 4.004 46.425 1.00 41.05 S 43.906 51.801 43.107 **ATOM** 2872 OH2 WAT S1676 58.346 33.177 1.00 32.25 ATOM 2873 OH2 WAT S1677 48.932 35.192 1.00 26.68 ATOM 2874 OH2 WAT S1678 58.902 19.301 1.00 25.48 50.822 MOTA 2875 OH2 WAT S1679 44.340 42.085 1.00 28.00 34.016 55.706 21.778 MOTA 2876 OH2 WAT S1680 50.480 38.266 1.00 31.92 22.68 ATOM 2877 OH2 WAT 32.259 20.178 1.00 S1681 MOTA 2878 OH₂ WAT S1682 5.907 48.823 1.00 41.37 36.205 27.682 ATOM 2879 1.00 41.24 OH2 WAT S1683 50.286 29.738 S **ATOM** 2880 OH2 WAT S1684 48.359 24.392 1.00 21.59 S 16.491 39.366 **ATOM** 2881 OH2 WAT S1685 28.819 25.944 1.00 22.91 S 27.814 MOTA 2882 OH2 WAT S1686 53.598 1.00 22.13 S 56.182 MOTA 2883 OH2 WAT S1687 23.282 29.647 1.00 21.73

MOTA	2884	OH	WA'	T 51688	11	.176	E1 400					
MOTA	2885	OH	WA			.333	51.488		245		39.40	s
ATOM	2886	OH2				.528	13.893		470	1.00		S
ATOM	2887	OH2					35.966		442	1.00		S
ATOM	2888	OH2				.485	18.098		189	1.00		S
ATOM	2889	OH2			49	.461	42.346		415	1.00		s
ATOM	2890	OH2				.986	51.318			1.00		S
ATOM	2891	OH2				.805	30.330			1.00		S S S
ATOM	2892	OH2				.688	17.949			1.00		S
ATOM	2893	OH2				.481	44.192			1.00		S
ATOM	2894	OH2				.497	25.163			1.00	22.75	s
ATOM	2895	OH2				.997	8.895			1.00	35.83	S
ATOM	2896	OH2		S1700		.429	41.271			1.00		S
ATOM	2897	OH2		S1700 S1701		.264	39.356				12.79	<i>ចាង ចា </i>
ATOM	2898	OH2		S1701		.070	23.977			1.00	38.68	S
ATOM	2899	OH2				.383	29.372		706	1.00		S
ATOM	2900	OH2		S1703 S1704		. 044	14.511			1.00		S
ATOM	2901	OH2				. 559	26.271			1.00		S
ATOM	2902	OH2				.114	45.757			1.00		S
ATOM	2903	OH2		S1707	40	.248	22.113	20.		1.00		S
ATOM	2904	OH2				.194	41.869			1.00	17.46	S
ATOM	2905	OH2				.847	20.546	20.4		1.00	18.73	s
ATOM	2906	OH2		S1703		.821	29.280	41.0		1.00	24.06	S
ATOM	2907	OH2				.294	42.193	52.8		1.00	19.46	S
ATOM	2908	OH2				.821	42.347	51.		1.00		S
ATOM	2909	OH2		S1712		.156	40.106	48.0		1.00		S
ATOM	2910	OH2		S1713		.103	24.718	47.6		1.00		S
MOTA	2911	OH2	WAT	S1713		.148	33.741	56.3		1.00		S
ATOM	2912	OH2	MAT	S1716		.973	45.993	36.2		1.00		S
ATOM	2913			S1717		.529	44.714	35.6		1.00	11.98	S
ATOM	2914	OH2		S1718		.781	35.753	22.0		1.00	28.14	S
ATOM	2915	OH2		S1719		.031	37.190	34.2		1.00	30.97	S
ATOM	2916	OH2		S1719		.994 .544	16.311	25.7		1.00	28.93	S
ATOM	2917	OH2	WAT			.265	49.140	34.6		1.00	19.62	SSS
ATOM	2918	OH2		S1722			37.832	42.6		1.00		S
ATOM	2919	OH2	WAT			.246	42.739	13.9		1.00		S
ATOM	2920	OH2		S1724		.901 .124	14.013	46.5		1.00		S
ATOM	2921	OH2		S1725		.808	17.124	56.3				S
ATOM	2922	OH2	WAT			.361	39.927	37.8			30.10	S
ATOM	2923	OH2	WAT			.665	20.811	20.4		1.00	24.61	s
ATOM	2924	OH2	WAT			473	17.537	21.3			22.27	s
ATOM	2925	OH2	WAT			205	29.684	48.7			33.94	S
ATOM	2926	OH2	WAT			982	29.580 12.144	11.3		1.00		S
MOTA	2927	OH2	WAT			247		36.6			22.16	S
ATOM	2928	OH2	WAT			593	31.885 14.821	18.3		1.00	37.56	S
ATOM	2929	OH2	WAT			174	27.052	28.9 34.3		1.00	29.82	S
ATOM	2930	OH2	WAT			909	11.924	47.2		1.00	22.10	s s
ATOM	2931	OH2	WAT	S1735		887	40.436	52.8		1.00	27.93	3
ATOM	2932	OH2	WAT	S1736		213	19.454	10.9			28.22 22.64	5
ATOM	2933	OH2	WAT	S1737		114	42.884	34.1		1.00	28.42	SSS
ATOM	2934	OH2	WAT	S1738	22.	945	32.302	53.0		1.00	25.85	3
ATOM	2935	OH2	WAT	S1739		089	15.172	28.4			31.20	S
ATOM	2936	OH2	WAT	S1740		610	43.601	46.6		1.00	36.15	S
ATOM	2937	OH2	WAT	S1741	16.	327	45.853	37.1			17.39	s
ATOM	2938	OH2	WAT	S1742		363	25.260	59.3		1.00	29.21	S
ATOM	2939	OH2	WAT	S1743		641	36.731	14.6		1.00	26.83	Š
ATOM	2940			S1744	10.	864	46.250	10.5			23.96	š
MOTA	2941			S1745		170	48.399	28.3			27.45	S
ATOM	2942			S1746	32.	054	14.892	42.0			24.32	s
ATOM	2943			S1747		724	28.782	21.0			34.32	s
ATOM	2944			S1748		123	15.697	52.1			27.97	S
ATOM	2945	OH2	WAT	S1749		354	43.166	56.1			29.49	s
MOTA	2946	OH2	WAT	S1750		037	37.891	13.7			33.67	Š
ATOM	2947	OH2	WAT	S1751		086	26.646	30.7			30.84	· S
MOTA	2948			S1752		931	38.592	10.4			25.71	Š
MOTA	2949	OH2	WAT	S1753		655	29.886	60.9			19.64	s
MOTA	2950			S1754		145	13.376	23.3			34.23	S
MOTA	2951	OH2		S1755		748	12.372	45.3			18.99	S
MOTA	2952			S1756		658	10.868	33.1			39.56	S
MOTA	2953			S1757		322	35.265	39.7			31.55	S
MOTA	2954	OH2	WAT	S1758		341	22.537	45.3			16.36	9
MOTA	2955	OH2	WAT	S1759		420	34.820	36.9			32.92	S
MOTA	2956	OH2	TAW	S1760		502	28.596	14.8	54		21.37	S
MOTA	2957			S1761	39.		22.929	17.4	41		35.60	Š
MOTA	2958		WAT	S1762	20.		52.812	17.2	78	1.00		Š
MOTA	2959	OH2	TAW	S1763	34.		11.735	35.1		1.00		ŝ
									-		• - •	

WO 2005/042572 PCT/FR2004/002797

MOTA	2960	OH2	ሬ አ ጥ	S1764	51.66	e 24	121	47.365	1 00	35.34	s
ATOM	2961						.131				
		OH2	WAT	S1765	-2.01		.180	15.830		28.16	s
ATOM	2962	OH2	WAT		15.48		.721	37.060	1.00	29.26	S
MOTA	2963	OH2		S1767	40.63	0 14	.716	31.062	1.00		S
ATOM	2964	OH2		S176B	23.69	98 61	.256	21.533	1.00	16.86	S
MOTA	2965	OH2	WAT	S1769	24.78	1 28	.532	54.977	1.00	16.20	S
MOTA	2966	OH2	WAT	S1770	26.85		. 257	10.061	1.00	30.41	S
ATOM	2967	OH2			43.72		.405	46.878		29.13	s
ATOM	2968	OH2	WAT	S1772	25.83		.362	54.027	1.00	21.97	š
ATOM	2969										3
		OH2		S1773	33.37		.686	32.566	1.00		S
ATOM	2970	OH2		S1774	27.26		817	13.545		22.02	s
MOTA	2971	OH2		S1775	47.92		.806	31.477	1.00	33.49	S
ATOM	2972	OH2		S1776	8.23	88 88	.202	37.592	1.00	26.28	s
MOTA	2973	OH2	WAT	S1777	21.09	0 51	.641	25.222	1.00	18.54	s
ATOM	2974	OH2	WAT	S1778	6.26		.069	32.873	1.00	22.17	S
ATOM	2975	OH2		S1779	23.23		.347	16.745	1.00		S
ATOM	2976	OH2		S1780	22.13		.856	40.656		21.00	š
ATOM	2977	OH2		S1781	20.85		.405	9.637	1.00	23.13	Š
ATOM	2978	OH2		S1782				26.047			3
					21.47		.999		1.00		S
ATOM	2979	OH2		S1783	34.91		.212	15.190		31.71	s
ATOM	2980	OH2		S1784	45.21		.993	42.137	1.00		S
MOTA	2981	OH2		S1785	38.12		.805	40.034	1.00	17.57	S
MOTA	2982			S1786	30.96		.798	21.332		32.31	S
MOTA	2983	OH2		S1787	33.22		.319	25.705	1.00	29.22	S
ATOM	2984	OH2	WAT	S1788	40.14		.662	28.253	1.00	33.93	S
ATOM	2985			S1789	6.55		.590	37.281		28.90	S
ATOM	2986			S1790	43.42		.935	45.155	1.00	34.35	š
ATOM	2987			S1791	3.26		.201	14.705	1.00	33.11	Š
ATOM	2988			S1792	20.14		.998	31.047	1.00	26.99	5
ATOM	2989			S1793	34.12			21.180			S
							.842		1.00	24.49	8
MOTA	2990	OH2		S1794	49.92		.274	53.829	1.00		S
ATOM	2991			S1795	14.81		.617	9.739		35.94	Š
MOTA	2992	OH2		S1796	45.58		.539	53.753		35.01	S
ATOM	2993	OH2	wat	S1797	33.24	5 52	.433	24.002	1.00	34.85	s
MOTA	2994	OH2	TAW	S1798	43.01	.0 24	.276	22.909	1.00	21.38	S
ATOM	2995	OH2	WAT	S1799	19.76	9 14	.826	46.718	1.00	30.67	S
MOTA	2996	OH2	WAT	S1800	29.81		.873	43.458	1.00	28.85	S
ATOM	2997	OH2		S1801	7.02		.438	24.718		30.13	š
ATOM	2998			S1802	7.45		.723	16.836	1.00	34.86	Š
ATOM	2999	OH2		S1803	13.06		.532	16.899	1.00		s
ATOM	3000			S1804							S
					31.53		.528	46.115		21.48	٥
ATOM	3001			S1805	1.21		.199	23.409	1.00	33.03	s
ATOM	3002	OH2		S1806	12.35		.958	40.836	1.00	34.82	s
ATOM	3003	OH2		S1807	33.16		. 928	54.755		33.81	S
MOTA	3004	OH2		S1808	4.46		. 285	27.482	1.00	36.79	Š
MOTA	3005	OH2	TAW	S1809	60.70	2 26	.732	42.684	1.00	35.13	
MOTA	3006	OH2	WAT	S1810	22.79	9 31	. 560	57.795	1.00	32.80	S
ATOM	3007	OH2	WAT	S1811	16.63	0 35	.862	8.507	1.00	29.92	s
ATOM	3008	OH2		S1812	58.21		.487	40.540		33.76	s
ATOM	3009	OH2		S1813	31.56		.525	26.426		39.01	š
ATOM	3010	OH2		S1814	38.88		.614	20.120	1.00	33.89	š
ATOM	3011	OH2		S1815	58.15		.777	37.822		35.73	Š
											S
ATOM	3012			S1816	34.38		.783	47.649	1.00	37.28	5
ATOM	3013			S1817	3.43		.153	36.372		30.78	S
ATOM	3014		WAT	S1818	47.39		.444	43.290		30.32	S
MOTA	3015	OH2		S1819	24.64		.829	44.044		32.65	S
ATOM	3016	OH2	WAT	S1820	35.99	0 42	. 985	32.322	1.00	29.66	s
ATOM	3017	OH2	WAT	S1821	26.91	4 40	.212	9.947	1.00	33.58	S
MOTA	3018	OH2	TAW	S1822	40.29		. 386	23.361		44.10	S
ATOM	3019	OH2		S1823	42.91		.163	27.417		33.23	S S
ATOM	3020	OH2		S1824	14.32		.428	8.032		35.73	Š
ATOM	3021	OH2		S1825	33.32		.000	45.385		29.78	Š
ATOM	3022			S1826	55.68		.168	38.449		30.81	2
											S
ATOM	3023	OH2		S1827	18.51		. 706	9.695		34.33	5
MOTA	3024	OH2	WAT		19.45		. 788	22.809		42.02	S
ATOM	3025	OH2		S1829	46.68		. 005	20.816		31.17	S
MOTA	3026	OH2		S1830	50.77		. 327	54.666		44.04	S
MOTA	3027	OH2		S1831	5.24		.614	40.262		40.69	S
ATOM	3028	OH2	WAT	S1832	45.15	1 43	.041	33.919	1.00	28.47	S
ATOM	3029	OH2		S1833	26.38		.949	41.104		33.70	S
ATOM '	3030			S1834	36.10		.756	17.653		32.43	S
ATOM	3031	OH2		S1835	40.58		. 298	41.894		32.97	Š
MOTA	3032	OH2		S1836	22.94		.196	16.985		39.88	č
											ន ន ន ន
MOTA	3033	OH2		S1837	53.96		. 450	37.442		39.29	ž
ATOM	3034	OH2		S1838	16.31		. 973	42.179		32.94	S
MOTA	3035	OHZ	WAT	S1839	14.51	48 د	.940	39.307	1.00	29.97	S

ATOM	3036	OH2	MAT.	S1840	31.652	6.945	51.493	1.00 27.66	c
ATOM	3037	OH2	WAT						S
ATOM	3038	OH2			41.996	11.677	38.039	1.00 37.88	S
ATOM			WAT		7.510	48.642	19.668	1.00 35.11	s
	3039	OH2		S1843	42.467	3.493	49.912	1.00 33.41	S
ATOM	3040	OH2		S1844	59.776	22.501	42.412	1.00 44.37	S
ATOM	3041	OH2	WAT	S1845	7.867	44.473	12.687	1.00 34.20	S
ATOM	3042	OH2	TAW	S1846	15.405	45.353	39.658	1.00 38.08	s
ATOM	3043	OH2	WAT	S1847	13.585	15.183	28.501	1.00 36.58	s
MOTA	3044	OH2		S1848	48.442	41.492	47.985	1.00 26.95	š
ATOM	3045	OH2		S1849	50.374	40.886	46.017	1.00 34.93	Š
ATOM	3046	OH2		S1850	44.568	8.030			3
ATOM	3047		WAT				45.822	1.00 42.34	S
		OH2			48.705	28.443	22.632	1.00 34.87	s
ATOM	3048	OH2		S1852	38.217	33.408	18.268	1.00 40.91	S
ATOM	3049	OH2		S1853	26.698	47.866	16.749	1.00 26.87	S
ATOM	3050	OH2		S1854	36.624	40.405	57.361	1.00 30.57	S
MOTA	3051	OH2	WAT	S1855	44.243	22.209	21.682	1.00 25.97	s
ATOM	3052	OH2	WAT	S1856	50.807	22.291	30.826	1.00 30.01	S
ATOM	3053	OH2	WAT	S1857	2.113	19.175	16.420	1.00 39.64	s s
ATOM	3054	OH2		S1858	35.799	20.261	25.717	1.00 29.95	Š
ATOM	3055	OH2		S1859	10.845	51.013	18.474	1.00 29.30	š
ATOM	3056	OH2		S1860	13.036				3
ATOM						16.982	18.603	1.00 35.56	s
	3057	OH2	WAT		48.755	33.466	53.529	1.00 32.19	s
ATOM	3058	OH2		S1862	28.542	12.640	28.777	1.00 32.37	s
MOTA	3059	OH2		S1863	15.582	33.781	40.294	1.00 31.38	S
MOTA	3060	OH2		S1864	15.389	51.736	31.264	1.00 35.97	s s
MOTA	3061	OH2		S1865	59.586	24.576	44.154	1.00 38.45	S
ATOM	3062	OH2		S1866	33.931	18.197	52.470	1.00 31.45	S
ATOM	3063	OH2	WAT	S1867	33.400	24.810	14.487	1.00 31.43	š
MOTA	3064	OH2		S1868	2.939	39.474	28.464	1.00 42.13	Š
ATOM	3065	OH2		S1869	52.149	36.661	45.439	1.00 34.90	š
ATOM	3066	OH2		S1870	45.901	34.119	54.146	1.00 28.55	s.
ATOM	3067	OH2		S1871	21.485	29.372	44.666		3
ATOM	3068	OH2		S1872					S
					10.455	19.175	23.705	1.00 36.18	. S
MOTA	3069	OH2		S1873	29.820	54.141	17.625	1.00 37.56	. S
MOTA	3070	OH2		S1874	36.824	12.036	41.616	1.00 36.62	s
MOTA	3071	OH2		S1875	35.575	29.695	13.582	1.00 31.58	S
ATOM	3072	OH2	WAT	S1876	47.689	26.645	56.483	1.00 29.75	S
ATOM	3073	OH2	WAT	S1877	25.923	24.021	7.877	1.00 35.32	S
ATOM	3074	OH2	WAT	S1878	35.914	42.663	19.444	1.00 38.13	š
ATOM	3075	OH2		S1879	53.553	27.199	37.462	1.00 34.02	ŝ
ATOM	3076	OH2		S1880	31.012	18.989	51.960	1.00 32.14	š
ATOM	3077	OH2		S1881	5.543	24.207	39.126	1.00 33.92	S
ATOM	3078			S1882	12.515				3
						49.450	14.280	1.00 38.32	S
ATOM	3079			S1883	19.621	34.441	42.264	1.00 32.10	S
ATOM	3080	OH2		S1884	0.567	34.443	15.606	1.00 41.76	S
ATOM	3081			S1885	19.842	21.597	48.228	1.00 38.20	S
ATOM	3082	OH2		S1886	17.245	44.489	41.443	1.00 36.34	S
ATOM	3083			S1887	31.241	17.703	18.315	1.00 43.85	S
MOTA	3084	OH2	WAT	S1888	47.120	35.974	31.511	1.00 44.95	S
ATOM	3085	OH2	WAT	S1889	16.721	12.447	25.646	1.00 42.81	S
MOTA	3086	OH2	WAT	S1890	17.002	21.309	47.530	1.00 35.74	Š
MOTA	3087	OH2	WAT	S1891	11.124	36.224	11.415	1.00 28.23	S
MOTA	3088			S1892	31.476	35.439	12.666	1.00 29.98	š
ATOM	3089			S1893	20.313	44.798	8.239	1.00 38.49	s
ATOM	3090			S1894	49.492	37.692	31.490	1.00 36.49	S
ATOM	3091			S1895	11.168	48.631		1.00 35.00	_
ATOM	3092	OH2		S1896			11.775		S
			MWI	01000	8.149	35.174	12.830	1.00 43.18	S
MOTA	3093	OH2	WAI	S1897	42.985	36.028	29.277	1.00 37.84	S
MOTA	3094	OH2		S1898	15.722	26.088	38.269	1.00 40.56	s
MOTA	3095	OH2		51899	9.466	42.584	43.325	1.00 38.58	s
MOTA	3096	OH2		S1900	55.683	27.859	55.011	1.00 40.16	s
ATOM	3097	OH2	WAT	S1901	16.412	44.824	6.088	1.00 35.00	s
MOTA	3098	OH2	WAT	S1902	30.819	20.863	13.376	1.00 36.12	S
MOTA	3099		WAT	S1903	20.083	45.050	40.249	1.00 46.55	S
MOTA	3100			S1904	55.216	16.767	37.256	1.00 32.34	š
ATOM	3101			S1905	17.194	15.633	31.289	1.00 41.92	Š
ATOM	3102			S1906	55.468	39.305	45.956	1.00 33.48	Š
ATOM	3103	OH2		S1907	34.073		22.880		S
				S1907		59.171		1.00 29.68	5
ATOM	3104	OH2			11.696	23.487	37.533	1.00 44.83	S
MOTA	3105	OH 2		S1909	37.193	57.700	24.645	1.00 29.20	S
MOTA	3106	OH2		S1910	4.958	20.071	12.971	1.00 38.75	S
MOTA	3107	OH2		S1911	28.212	15.651	46.090	1.00 44.28	S
MOTA	3108	OH2		S1912	25.791	17.881	50.101	1.00 44.07	S
MOTA	3109	OH2		S1913	44.830	16.225	28.015	1.00 37.34	s
MOTA	3110	OH2		S1914	45.538	25.603	58.524	1.00 31.60	Š
MOTA	3111			S1915	31.849	53.832	20.135	1.00 44.08	Š
	-								_

ATOM 3149 OS6 PLA P1002 -3.702 31.417 13.545 1.00 38.28 P ATOM 3150 C15 PLA P1002 -2.360 29.762 15.366 1.00 37.51 P ATOM 3151 C14 PLA P1002 -1.339 29.023 14.693 1.00 32.35 P ATOM 3152 C16 PLA P1002 -3.324 29.136 16.198 1.00 32.13 P ATOM 3153 C10 PLA P1002 -3.324 29.136 16.198 1.00 32.57 P ATOM 3154 C11 PLA P1002 -2.159 26.968 15.824 1.00 27.55 P ATOM 3155 C13 PLA P1002 -1.219 27.623 14.849 1.00 32.76 P ATOM 3155 C13 PLA P1002 -0.300 26.897 14.135 1.00 26.73 P ATOM 3157 C12 PLA P1002 -2.103 25.533 16.170 1.00 29.76 P ATOM 3158 O2 PLA P1002 -1.093 24.861 15.620 1.00 19.01 P ATOM 3159 C9 PLA P1002 -4.076 27.177 17.503 1.00 28.28 P ATOM 3160 C8 PLA P1002 -4.076 27.177 17.503 1.00 28.28 P ATOM 3161 S1 PLA P1002 -4.072 25.777 17.756 1.00 30.57 P ATOM 3162 OS3 PLA P1002 -6.417 25.925 19.382 1.00 26.32 P ATOM 3163 OS2 PLA P1002 -6.417 25.925 19.382 1.00 26.32 P ATOM 3166 N2 PLA P1002 -3.886 25.328 0.444 1.00 39.20 P ATOM 3166 N2 PLA P1002 -3.056 24.884 17.116 1.00 30.01 P ATOM 3166 N2 PLA P1002 -2.942 23.547 17.510 1.00 30.83 P ATOM 3166 N2 PLA P1002 -2.942 23.547 17.510 1.00 30.83 P ATOM 3166 N2 PLA P1002 -2.109 21.347 17.777 1.00 33.57 P ATOM 3167 N1 PLA P1002 -2.942 23.547 17.510 1.00 30.83 P ATOM 3167 N1 PLA P1002 -2.942 23.547 17.510 1.00 30.83 P ATOM 3167 N1 PLA P1002 -2.942 23.547 17.510 1.00 30.83 P ATOM 3167 N1 PLA P1002 -2.109 21.347 17.777 1.00 33.57 P ATOM 3169 C1 PLA P1002 -2.109 21.347 17.777 1.00 33.57 P ATOM 3169 C1 PLA P1002 -2.109 21.347 17.777 1.00 33.57 P ATOM 3170 C3 PLA P1002 -2.109 21.347 17.777 1.00 32.270 P ATOM 3171 C1 PLA P1002 -3.056 24.884 17.116 1.00 26.51 P ATOM 3173 C5 PLA P1002 -3.056 27.178 18.965 1.00 32.70 P ATOM 3174 C6 PLA P1002 -3.056 33.378 16.364 1.00 26.71 P ATOM 3179 O3 PO4 11000 31.378 36.578 34.442 1.00 7.30 I ATOM 3179 O3 PO4 11000 31.378 36.578 34.442 1.00 7.30 I ATOM 3179 O3 PO4 11000 32.276 37.583 33.795 1.00 6.24 I ATOM 3180 U U I1100 44.450 22.112 14.500 0.00 99.4 I ATOM 3181 U U I1100 0.273 22.910 15.547 1.00 30.28 I ATOM 3181 U U I1101 44.500 22.292 24.635 12.979 0.0	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3113 3114 3115 3116 3117 31120 31223 31225 31227 31227 31228 31227 31228 31233 31334 31336 31336 31344 31445 31446 31446 31446 31446 31446 31448	OH2 OH2 OH2 OH2 OH2 OS5 OS5 C114 C10 C113 O3 2 C29 C14 C10 C113 C12 C14 C15 C14 C16 C17 C17 C17 C17 C17 C17 C17 C17 C17 C17	WATT WATT WATA PLAA PLAA PLAA PLAA PLAA PLAA PLAA P	S1918 S1919 P1001	55.62899547.1113 8.78391.158899.1058899.66289954.0134.7159.06689.0134.7159.06689.0134.066.005.005.005.005.005.005.005.005.005	32.375 24.357 10.496 227.496 227.536 227.536 227.536 227.536 225.126 225.588 225.588 225.588 221.136 221.136 221.136 221.136 221.136 221.136 221.136 231.226 231.227 231.227 231.227 231.227 231.227 231.238 231.23	47.730 16.4390 10.62567 12.1999 12.08984 12.1999 12.4379 12.6437 12.4372 14.42967 14.7011 15.66065 16.6259 16.6259 16.6259 16.6259 16.6259 16.6259 16.6269 17.6296	1.00 41.6 1.00 42.3 1.00 36.9 1.00 35.3 1.00 33.5 1.00 41.0 1.00 23.3 1.00 23.3 1.00 25.2 1.00 21.4 1.00 24.0 1.00 21.9 1.00 31.5 1.00 31.5 1.00 31.5 1.00 39.1 1.00 29.9 1.00 29.9 1.00 29.9 1.00 29.9 1.00 27.7 1.00 29.9 1.00 27.7 1.00 27.7 1.00 27.7 1.00 28.9	\$\$\$\$PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP
	ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	3148 3149 31551 31552 31553 31556 31557 31563 31662 31663 31665 31667 31669 31772 31773 31776 31777 31778 31778 31780 3181	OS5 OS56 C15 C116 C113 OC12 C9 C9 C113 OC12 C13 OC12 C13 OC12 C13 OC12 C13 OC12 OC13 OC14 C13 OC14 OC15 OC15 OC15 OC15 OC15 OC15 OC15 OC15	PLA PLA PLA PLA PLA PLA PLA PLA PLA PLA	P1002 P1000 P1000	-3.293 -3.702 -2.360 -1.339 -3.324 -3.227 -2.159 -0.300 -2.103 -1.0976 -4.937 -6.41937 -6.4886 -3.0566 -2.942 -1.1254 -2.175 -3.137 -4.110 31.378 30.121 32.276 31.043 30.273	32.318 31.417 29.7023 29.136 27.770 26.697 25.533 24.817 25.777 25.928 24.884 23.540 21.347 220.283 24.884 23.540 21.347 220.283 24.884 23.540 21.347 22.347 23.	16.225 13.545 14.549 16.534 16.5824 14.15.603 17.7765 19.3844 117.7765 19.3844 18.1600 17.1762 17.1767 18.765 17.7762	1.00 36.7 1.00 38.2 1.00 37.5 1.00 32.3 1.00 32.5 1.00 27.5 1.00 29.7 1.00 19.0 1.00 28.2 1.00 30.5 1.00 30.5 1.00 30.5 1.00 35.4 1.00 30.8 1.00 30.8 1.00 30.8 1.00 32.7 1.00 32.7 1.00 30.8 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.7 1.00 32.9 1.00 32.7 1.00 32.7 1.00 32.7 1.00 30.2	0815375636187920313175013920074598

LISTE DE SEQUENCES

- <110> CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE HENRI POINCARE DE NANCY
- <120> NOUVELLE PROTEINE DE LIAISON AU PHOSPHATE, COMPOSITIONS PHARMACEUTIQUES LA CONTENANT ET SES UTILISATIONS
- <130> WOB 03 BU CNR HPBP
- <150> FR 03/12729
- <151> 2004-10-30
- <160> 11
- <170> PatentIn version 3.1
- <210> 1
- <211> 376
- <212> PRT
- <213> Homo sapiens
- <220>
- <221> MISC_FEATURE
- <222> (1)..(1)
- <223> D ou S
- <220>
- <221> MISC_FEATURE
- <222> (3)..(3) <223> N ou D
- <220>
- <221> MISC_FEATURE
- <222> (11)..(11) <223> Q ou E
- <220>
- <221> MISC_FEATURE <222> (30)..(30) <223> V ou T

- <220>
- <221> MISC_FEATURE <222> (43)..(43) <223> K ou S

- <220>
- <221> MISC_FEATURE <222> (50)..(50) <223> D ou N

- <220>
- <221> MISC_FEATURE
- <222> (54)..(54) <223> N ou D
- <220>
- <221> MISC_FEATURE

WO 2005/042572 PCT/FR2004/002797 2/16

```
<222> (67)..(67)
<223> T ou S
<220>
<221> MISC_FEATURE
<222> (68)..(68)
<223> E ou Q
<220>
<221> MISC_FEATURE
<222> (75)..(75)
<223> D ou N
<220>
<221> MISC_FEATURE
<222> (77)..(77)
<223> E ou Q
<220>
<221> MISC_FEATURE
<222> (85)..(85)
<223> Q ou E
<220>
<221> MISC_FEATURE
<222> (102)..(102)
<223> A ou G
<220>
<221> MISC_FEATURE
<222> (122)..(122)
<223> D ou N
<220>
<221> MISC_FEATURE
<222> (143)..(143)
<223> S ou V
<220>
<221> MISC FEATURE
<222> (219)..(219)
<223> T ou S
<220>
<221> MISC_FEATURE
<222> (224)..(224)
<223> D ou N
<220>
<221> MISC_FEATURE
<222> (252)..(252)
<223> V ou S
<220>
<221> MISC_FEATURE
<222> (266)..(266)
<223> D ou N
Xaa Ile Xaa Gly Gly Gly Ala Thr Leu Pro Xaa Lys Leu Tyr Leu Thr
                      5
1
                                                  10
```

Pro Asp Val Leu Thr Ala Gly Phe Ala Pro Tyr Ile Gly Xaa Gly Ser

Gly Lys Gly Lys Ile Ala Phe Leu Glu Asn Xaa Tyr Asn Gln Phe Gly

Thr Xaa Thr Thr Lys Xaa Val His Trp Ala Gly Ser Asp Ser Lys Leu 50 60

Thr Ala Xaa Xaa Leu Ala Thr Tyr Ala Ala Xaa Lys Xaa Pro Gly Trp 65 70 75 80

Gly Lys Leu Ile Xaa Val Pro Ser Val Ala Thr Ser Val Ala Ile Pro 85 90 95

Phe Arg Lys Ala Gly Xaa Asn Ala Val Asp Leu Ser Val Lys Glu Leu 100 105 110

Cys Gly Val Phe Ser Gly Arg Ile Ala Xaa Trp Ser Gly Ile Thr Gly 115 120 125

Ala Gly Arg Ser Gly Pro Ile Gln Val Val Tyr Arg Ala Glu Xaa Ser 130 135 140

Gly Thr Thr Glu Leu Phe Thr Arg Phe Leu Asn Ala Lys Cys Thr Thr 145 150 155 160

Gln Pro Gly Thr Phe Ala Val Thr Thr Val Phe Ala Asn Ser Tyr Ser 165 170 175

Leu Gly Leu Ser Pro Leu Ala Gly Ala Val Ala Ala Ile Gly Ser Val 180 185 190

Gly Val Met Ala Ala Asp Asn Asp Val Thr Thr Ala Gln Gly Arg Ile 195 . 200 205

Thr Tyr Ile Ser Pro Asp Phe Ala Ala Pro Xaa Leu Ala Gly Leu Xaa 210 215 220

Asp Ala Thr Lys Val Ala Arg Thr Gly Lys Gly Ser Ser Ser Gly Gly 225 230 235 240

Gly Ala Glu Gly Lys Ser Pro Ala Ala Ala Asn Xaa Ser Ala Ala Ile 245 250 255

Ser Val Val Pro Leu Pro Ala Ala Ala Xaa Arg Gly Asp Pro Asn Val 260 265 270

Trp Thr Pro Val Phe Gly Ala Val Thr Gly Gly Gly Val Val Ala Tyr 275 280 285

Pro Asp Ser Gly Tyr Pro Ile Leu Gly Phe Thr Asp Leu Ile Phe Ser 290 295 300

Glu Cys Tyr Ala Asn Ala Thr Gln Thr Gly Gln Val Arg Asn Phe Phe 305 310 315 320

Thr Lys His Tyr Gly Thr Ser Ala Asn Asp Asn Ala Ala Ile Gln Ala 325 330 335

Asn Ala Phe Val Pro Leu Pro Ser Asn Trp Lys Ala Ala Val Arg Ala 340 345 350

Ser Tyr Leu Thr Ala Ser Asn Ala Leu Ser Ile Gly Asp Ser Ala Val 355 360 365

Cys Gly Gly Lys Gly Arg Pro Glu 370 375

<210> 2

<211> 376

<212> PRT

<213> Homo sapiens

<400> 2

Asp Ile Asn Gly Gly Gly Ala Thr Leu Pro Gln Lys Leu Tyr Leu Thr 1 5 10 15

Pro Asp Val Leu Thr Ala Gly Phe Ala Pro Tyr Ile Gly Val Gly Ser 20 25 30

Gly Lys Gly Lys Ile Ala Phe Leu Glu Asn Lys Tyr Asn Gln Phe Gly 35 40 45

Thr Asp Thr Thr Lys Asn Val His Trp Ala Gly Ser Asp Ser Lys Leu 50 55 60

Thr Ala Thr Glu Leu Ala Thr Tyr Ala Ala Asp Lys Glu Pro Gly Trp 65 70 75 80

Gly Lys Leu Ile Gln Val Pro Ser Val Ala Thr Ser Val Ala Ile Pro 85 90 95

Phe Arg Lys Ala Gly Ala Asn Ala Val Asp Leu Ser Val Lys Glu Leu 100 105 110

Cys Gly Val Phe Ser Gly Arg Ile Ala Asp Trp Ser Gly Ile Thr Gly 115 120 125

Ala Gly Arg Ser Gly Pro Ile Gln Val Val Tyr Arg Ala Glu Ser Ser 130 135 140

Gly Thr Thr Glu Leu Phe Thr Arg Phe Leu Asn Ala Lys Cys Thr Thr 145 150 155 160

Gln Pro Gly Thr Phe Ala Val Thr Thr Val Phe Ala Asn Ser Tyr Ser 165 170 175

Leu Gly Leu Ser Pro Leu Ala Gly Ala Val Ala Ala Ile Gly Ser Val 180 185 190

Gly Val Met Ala Ala Asp Asn Asp Val Thr Thr Ala Gln Gly Arg Ile 195 200 205

Thr Tyr Ile Ser Pro Asp Phe Ala Ala Pro Thr Leu Ala Gly Leu Asp 210 215 220

Asp Ala Thr Lys Val Ala Arg Thr Gly Lys Gly Ser Ser Ser Gly Gly 225 230 235 240

Gly Ala Glu Gly Lys Ser Pro Ala Ala Ala Asn Val Ser Ala Ala Ile 245 250 255

Ser Val Val Pro Leu Pro Ala Ala Ala Asp Arg Gly Asp Pro Asn Val 260 265 270

Trp Thr Pro Val Phe Gly Ala Val Thr Gly Gly Gly Val Val Ala Tyr 275 280 285

Pro Asp Ser Gly Tyr Pro Ile Leu Gly Phe Thr Asp Leu Ile Phe Ser 290 295 300

Glu Cys Tyr Ala Asn Ala Thr Gln Thr Gly Gln Val Arg Asn Phe Phe 305 310 315 320

Thr Lys His Tyr Gly Thr Ser Ala Asn Asp Asn Ala Ala Ile Gln Ala 325 330 335

Asn Ala Phe Val Pro Leu Pro Ser Asn Trp Lys Ala Ala Val Arg Ala 340 345 350

Ser Tyr Leu Thr Ala Ser Asn Ala Leu Ser Ile Gly Asp Ser Ala Val 355 360 365

Cys Gly Gly Lys Gly Arg Pro Glu 370 375

<210> 3

<211> 376

<212> PRT

<213> Homo sapiens

<400> 3

Ser Ile Asp Gly Gly Gly Ala Thr Leu Pro Glu Lys Leu Tyr Leu Thr 1 5 10 15

Pro Asp Val Leu Thr Ala Gly Phe Ala Pro Tyr Ile Gly Thr Gly Ser 20 25 30

Gly Lys Gly Lys Ile Ala Phe Leu Glu Asn Ser Tyr Asn Gln Phe Gly 35 40 45

Thr Asn Thr Thr Lys Asp Val His Trp Ala Gly Ser Asp Ser Lys Leu 50 55 60

Thr Ala Ser Gln Leu Ala Thr Tyr Ala Ala Asn Lys Gln Pro Gly Trp 65 70 75 80

Gly Lys Leu Ile Glu Val Pro Ser Val Ala Thr Ser Val Ala Ile Pro 85 90 95

Phe Arg Lys Ala Gly Gly Asn Ala Val Asp Leu Ser Val Lys Glu Leu 100 105 110

Cys Gly Val Phe Ser Gly Arg Ile Ala Asn Trp Ser Gly Ile Thr Gly

Ala Gly Arg Ser Gly Pro Ile Gln Val Val Tyr Arg Ala Glu Val Ser 130 135 140 Gly Thr Thr Glu Leu Phe Thr Arg Phe Leu Asn Ala Lys Cys Thr Thr 145 150 155 160

Gln Pro Gly Thr Phe Ala Val Thr Thr Val Phe Ala Asn Ser Tyr Ser 165 170 175

Leu Gly Leu Ser Pro Leu Ala Gly Ala Val Ala Ala Ile Gly Ser Val 180 185 190

Gly Val Met Ala Ala Asp Asn Asp Val Thr Thr Ala Gln Gly Arg Ile 195 200 205

Thr Tyr Ile Ser Pro Asp Phe Ala Ala Pro Ser Leu Ala Gly Leu Asn 210 215 220

Asp Ala Thr Lys Val Ala Arg Thr Gly Lys Gly Ser Ser Ser Gly Gly 225 230 235 240

Gly Ala Glu Gly Lys Ser Pro Ala Ala Ala Asn Ser Ser Ala Ala Ile 245 250 255

Ser Val Val Pro Leu Pro Ala Ala Ala Asn Arg Gly Asp Pro Asn Val 260 265 270

Trp Thr Pro Val Phe Gly Ala Val Thr Gly Gly Gly Val Val Ala Tyr 275 280 285

Pro Asp Ser Gly Tyr Pro Ile Leu Gly Phe Thr Asp Leu Ile Phe Ser 290 295 300

Glu Cys Tyr Ala Asn Ala Thr Gln Thr Gly Gln Val Arg Asn Phe Phe 305 310 315 320

Thr Lys His Tyr Gly Thr Ser Ala Asn Asp Asn Ala Ala Ile Gln Ala 325 330 335

Asn Ala Phe Val Pro Leu Pro Ser Asn Trp Lys Ala Ala Val Arg Ala 340 345 350

Ser Tyr Leu Thr Ala Ser Asn Ala Leu Ser Ile Gly Asp Ser Ala Val 355 360 365

Cys Gly Gly Lys Gly Arg Pro Glu 370 375

<210> 4

<211> 355

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Lys Leu Ile Ala Leu Thr Leu Leu Gly Met Gly Leu Ala Leu 1 5 10 15

Phe Arg Asn His Gln Ser Ser Tyr Gln Thr Arg Leu Asn Ala Leu Arg
20 25 30

Glu Val Gln Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Ile 35 40 45 Glu Thr Gly Ser Glu Asp Met Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60

Ile Ser Ser Gly Leu Lys Tyr Pro Gly Ile Lys Ser Phe Asn Pro Asn 65 70 75 80

Ser Pro Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Glu Asp Pro Thr 85 90 95

Val Leu Glu Leu Gly Ile Thr Gly Ser Lys Phe Asp Val Ser Ser Phe 100 105 110

Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Ala Met Tyr 115 120 125

Leu Leu Val Val Asn His Pro Asp Ala Lys Ser Thr Val Glu Leu Phe 130 135 140

Lys Phe Gln Glu Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160

His Lys Leu Leu Pro Asn Leu Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175

His Phe Tyr Gly Thr Asn Asp His Tyr Phe Leu Asp Pro Tyr Leu Gln 180 185 190

Ser Trp Glu Met Tyr Leu Gly Leu Ala Trp Ser Tyr Val Val Tyr Tyr 195 200 205

Ser Pro Ser Glu Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220

Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240

Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255

Thr Pro Leu Lys Ser Leu Asp Phe Asn Thr Leu Val Asp Asn Ile Ser 260 265 270

Val Asp Pro Glu Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285

Met Lys Ile Phe Phe Tyr Asp Ser Glu Asn Pro Pro Ala Ser Glu Val 290 295 300

Leu Arg Ile Gln Asn Ile Leu Thr Glu Glu Pro Lys Val Thr Gln Val 305 310 315 320

Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ser Val

Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350

Cys Glu Leu 355 WO 2005/042572 PCT/FR2004/002797

<210> 5

<211> 354

<212> PRT

<213> Homo sapiens

<400> 5

Met Gly Ala Trp Val Gly Cys Gly Leu Ala Gly Asp Arg Ala Gly Phe 1 5 10 15

Leu Gly Glu Arg Leu Leu Ala Leu Arg Asn Arg Leu Lys Ala Ser Arg 20 25 30

Glu Val Glu Ser Val Asp Leu Pro His Cys His Leu Ile Lys Gly Ile 35 40 45

Glu Ala Gly Ser Glu Asp Ile Asp Ile Leu Pro Asn Gly Leu Ala Phe 50 60

Phe Ser Val Gly Leu Lys Phe Pro Gly Leu His Ser Phe Ala Pro Asp 65 70 75 80

Lys Pro Gly Gly Ile Leu Met Met Asp Leu Lys Glu Glu Lys Pro Arg 85 90 95

Ala Arg Glu Leu Arg Ile Ser Arg Gly Phe Asp Leu Ala Ser Phe Asn 100 105 110

Pro His Gly Ile Ser Thr Phe Ile Asp Asp Asp Thr Val Tyr Leu 115 120 125

Phe Val Val Asn His Pro Glu Phe Lys Asn Thr Val Glu Ile Phe Lys 130 135 140

Phe Glu Glu Ala Glu Asn Ser Leu Leu His Leu Lys Thr Val Lys His 145 . 150 . 155 . 160

Glu Leu Leu Pro Ser Val Asn Asp Ile Thr Ala Val Gly Pro Ala His 165 170 175

Phe Tyr Ala Thr Asn Asp His Tyr Phe Ser Asp Pro Phe Leu Lys Tyr 180 185 190

Leu Glu Thr Tyr Leu Asn Leu His Trp Ala Asn Val Val Tyr Tyr Ser 195 200 205

Pro Asn Glu Val Lys Val Val Ala Glu Gly Phe Asp Ser Ala Asn Gly 210 215 220

Ile Asn Ile Ser Pro Asp Asp Lys Tyr Ile Tyr Val Ala Asp Ile Leu 225 230 235 240

Ala His Glu Ile His Val Leu Glu Lys His Thr Asn Met Asn Leu Thr 245 250 255

Gln Leu Lys Val Leu Glu Leu Asp Thr Leu Val Asp Asn Leu Ser Ile 260 265 270

Asp Pro Ser Ser Gly Asp Ile Trp Val Gly Cys His Pro Asn Gly Gln 275 280 285

Lys Leu Phe Val Tyr Asp Pro Asn Asn Pro Pro Ser Ser Glu Val Leu 290 295 300

Arg Ile Gln Asn Ile Leu Cys Glu Lys Pro Thr Val Thr Thr Val Tyr 305 310 315 320

Ala Asn Asn Gly Ser Val Leu Gln Gly Ser Ser Val Ala Ser Val Tyr 325 330 335

Asp Gly Lys Leu Leu Ile Gly Thr Leu Tyr His Arg Ala Leu Tyr Cys 340 345 350

Glu Leu

<210> 6

<211> 354

<212> PRT

<213> Homo sapiens

<400> 6

Met Gly Lys Leu Val Ala Leu Val Leu Gly Val Gly Leu Ser Leu
1 5 10 15

Val Gly Glu Met Phe Leu Ala Phe Arg Glu Arg Val Asn Ala Ser Arg 20 25 30

Glu Val Glu Pro Val Glu Pro Glu Asn Cys His Leu Ile Glu Glu Leu 35 40 45

Glu Ser Gly Ser Glu Asp Ile Asp Ile Leu Pro Ser Gly Leu Ala Phe 50 55 60

Ile Ser Ser Gly Leu Lys Tyr Pro Gly Met Pro Asn Phe Ala Pro Asp 65 70 75 80

Glu Pro Gly Lys Ile Phe Leu Met Asp Leu Asn Glu Gln Asn Pro Arg 85 · 90 95

Ala Gln Ala Leu Glu Ile Ser Gly Gly Phe Asp Lys Glu Leu Phe Asn 100 105 110

Pro His Gly Ile Ser Ile Phe Ile Asp Lys Asp Asn Thr Val Tyr Leu 115 120 125

Tyr Val Val Asn His Pro His Met Lys Ser Thr Val Glu Ile Phe Lys 130 135 140

Phe Glu Glu Gln Gln Arg Ser Leu Val Tyr Leu Lys Thr Ile Lys His 145 150 155 160

Glu Leu Leu Lys Ser Val Asn Asp Ile Val Val Leu Gly Pro Glu Gln 165 170 175

Phe Tyr Ala Thr Arg Asp His Tyr Phe Thr Asn Ser Leu Leu Ser Phe 180 185 190

Phe Glu Met Ile Leu Asp Leu Arg Trp Thr Tyr Val Leu Phe Tyr Ser 195 200 205 Pro Arg Glu Val Lys Val Val Ala Lys Gly Phe Cys Ser Ala Asn Gly 210 215 220

Ile Thr Val Ser Ala Asp Gln Lys Tyr Val Tyr Val Ala Asp Val Ala 225 230 235 240

Ala Lys Asn Ile His Ile Met Glu Lys His Asp Asn Trp Asp Leu Thr 245 250 255

Gln Leu Lys Val Ile Gln Leu Gly Thr Leu Val Asp Asn Leu Thr Val 260 265 270

Asp Pro Ala Thr Gly Asp Ile Leu Ala Gly Cys His Pro Asn Pro Met 275 280 285

Lys Leu Leu Asn Tyr Asn Pro Glu Asp Pro Pro Gly Ser Glu Val Leu 290 295 300

Arg Ile Gln Asn Val Leu Ser Glu Lys Pro Arg Val Ser Thr Val Tyr 305 310 315 320

Ala Asn Asn Gly Ser Val Leu Gln Gly Thr Ser Val Ala Ser Val Tyr 325 330 335

His Gly Lys Ile Leu Ile Gly Thr Val Phe His Lys Thr Leu Tyr Cys

340 345 350

Glu Leu

<210> 7

<211> 359

<212> PRT

<213> Oryctolagus cuniculus

<400> 7

Met Ala Lys Leu Thr Ala Leu Thr Leu Leu Gly Leu Gly Leu Ala Leu
1 5 10 15

Phe Asp Gly Gln Lys Ser Ser Phe Gln Thr Arg Phe Asn Val His Arg 20 25 30

Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Ile

Asp Asn Gly Ser Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Ala Phe 50 60

Ile Ser Ala Gly Leu Lys Tyr Pro Gly Ile Met Ser Phe Asp Pro Asp 65 70 75 80

Lys Pro Gly Lys Ile Leu Leu Met Asp Leu Asn Glu Lys Asp Pro Val 85 90 95

Val Leu Glu Leu Ser Ile Thr Gly Ser Thr Phe Asp Leu Ser Ser Phe 100 105 110

Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Ile Val Tyr 115 120 125

Leu Met Val Val Asn His Pro Asp Ser Lys Ser Thr Val Glu Leu Phe 130 135 140

Lys Phe Gln Glu Lys Glu Lys Ser Leu Leu His Leu Lys Thr Ile Arg 145 150 155 160

His Lys Leu Leu Pro Ser Val Asn Asp Ile Val Ala Val Gly Pro Glu 165 170 175

His Phe Tyr Ala Thr Asn Asp His Tyr Phe Ile Asp Pro Tyr Leu Lys 180 185 190

Ser Trp Glu Met His Leu Gly Leu Ala Trp Ser Phe Val Thr Tyr Tyr 195 200 205

Ser Pro Asn Asp Val Arg Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220

Gly Ile Asn Ile Ser Pro Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240

Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255

Thr Pro Leu Lys Ser Leu Asp Phe Asn Thr Leu Val Asp Asn Ile Ser 260 265 270

Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285

Met Arg Ile Phe Tyr Tyr Asp Pro Lys Asn Pro Pro Ala Ser Glu Val 290 295 300

Leu Arg Ile Gln Asp Ile Leu Ser Lys Glu Pro Lys Val Thr Val Ala 305 310 315 320

Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Ser Thr Val Ala Ala Val 325 330 335

Tyr Lys Gly Lys Met Leu Val Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350

Cys Glu Leu Ser Gln Ala Asn 355

<210> 8

<211> 355

<212> PRT

<213> Rattus rattus

<100> 8

Met Ala Lys Leu Gly Leu Thr Leu Val Gly Leu Val Leu Ala Leu 1 5 10 15

Tyr Lys Asn His Arg Ser Ser Tyr Gln Thr Arg Leu Asn Ala Phe Arg 20 25 30

Glu Val Thr Pro Val Asp Leu Pro Asn Cys Thr Leu Val Lys Gly Ile 35 40 45

WO 2005/042572 PCT/FR2004/002797 12/16

G1u	Ala 50	Gly	Ala	Glu	Asp	Leu 55	Glu	Ile	Leu	Pro	Asn 60	Gly	Leu	Thr	Phe
Phe 65	Ser	Thr	Phe	Leu	Lys 70	Tyr	Pro	Gly	Ile	Lys 75	Ser	Phe	Asp	Pro	Ser 80
Lys	Pro	Gly	Lys	Ile 85	Leu	Leu	Met	Asp	Leu 90	Asn	Glu	Lys	Glu	Pro 95	Ala
Val	Ser	Glu	Leu 100	Ala	Ile	Met	Gly	Asn 105	Thr	Leu	Asp	Met	Ser 110	Ser	Phe
Asn	Pro	His 115	Gly	Ile	Ser	Thr	Phe 120	Ile	Asp	Glu	Asp	Asn 125	Thr	Val	Tyr
Leu	Leu 130	Val	Val	Ser	His	Pro 135	Asp	Ser	Ser	Ser	Thr 140	Val	Glu	Val	Phe
Lys 145	Phe	Gln	Glu	Glu	Glu 150	Arg	Ser	Leu	Leu	His 155	Leu	Lys	Thr	Ile	Thr 160
His	Glu	Leu	Leu	Pro 165	Ser	Ile	Asn	Asp	Ile 170	Ala	Ala	Val	Gly	Pro 175	Glu
Ser	Phe	Tyr	Ala 180	Thr	Asn	Asp	His	Tyr 185	Phe	Ala	Asp	Pro	Tyr 190	Leu	Arg
Ser	Trp	Glu 195	Met	Tyr	Leu	Gly	Leu 200	Ser	Trp	Ser	Asn	Val 205	Val	Tyr	Tyr
Ser	Pro 210	Asp	Lys	Val	Arg	Val 215	Val	Ala	Asp	Gly	Phe 220	Asp	Phe	Ala	Asn
Gly 225	Ile	Gly	Ile	Ser	Leu 230	Asp	Gly	Lys	Tyr	Val 235	Tyr	Ile	Ala	Glu	Leu 240
Leu	Ala	His	Lys	Ile 245	His	Val	Tyr	Glu	Lys 250	His	Ala	Asn	Trp	Thr 255	Leu
Thr	Pro	Leu	Lys 260	Val	Leu	Ser	Phe	Asp 265	Thr	Leu	Val	Asp	Asn 270	Ile	Ser
Val	Asp	Pro 275	Val	Thr	Gly	Asp	Leu 280	Trp	Val	Gly	Cys	His 285	Pro	Asn	Gly
Met	Arg 290	Ile	Phe	Phe	Tyr	Asp 295	Ser	Glu	Asn	Pro	Pro 300	Gly	Ser	Glu	Val
Leu 305	Arg	Ile	Gln	Ser	Ile 310	Leu	Ser	Glu	Asp	Pro 315	Lys	Val	Thr	Val	Val 320
Tyr	Ala	Glu	Asn	Gly 325	Thr	Val	Leu	Gln	Gly 330	Thr	Thr	Val	Ala	Ala 335	Val
Tyr	Lys	Gly	Lys 340	Leu	Leu	Ile	Gly	Thr 345	Val	Phe	His	Arg	Ala 350	Leu	Cys
Cys	Tyr	Leu													

Cys Tyr Leu 355 WO 2005/042572 PCT/FR2004/002797

<210> 9

<211> 355

<212> PRT

<213> Mus musculus

<400> 9

Met Ala Lys Leu Leu Ala Leu Thr Leu Val Gly Leu Val Leu Ala Leu

1 10 15

Tyr Lys Asn His Arg Ser Ser Tyr Gln Thr Arg Leu Asn Ala Phe Arg 20 25 30

Glu Val Thr Pro Val Glu Leu Pro Asn Cys Asn Leu Val Lys Gly Ile 35 40 45

Glu Thr Gly Ala Glu Asp Leu Glu Ile Leu Pro Asn Gly Leu Thr Phe 50 55 60

Phe Ser Thr Gly Leu Lys Tyr Pro Gly Ile Lys Ser Phe Asp Pro Ser 65 70 75 80

Lys Pro Gly Lys Ile Leu Leu Met Asp Leu Asn Lys Lys Glu Pro Ala 85 90 95

Val Ser Glu Leu Glu Ile Ile Gly Asn Thr Leu Asp Ile Ser Ser Phe
100 105 110

Asn Pro His Gly Ile Ser Thr Phe Thr Asp Glu Asp Asn Thr Val Tyr 115 120 125

Leu Leu Val Val Asn His Pro Asp Ser Ser Ser Thr Val Glu Val Phe 130 135 140

Lys Phe Gln Glu Glu Glu Arg Ser Leu Leu His Leu Lys Thr Ile Thr 145 150 155 160

His Glu Leu Pro Ser Ile Asn Asp Ile Ala Ala Ile Gly Pro Glu 165 170 175

Ser Phe Tyr Ala Thr Asn Asp His Tyr Phe Ala Asp Pro Tyr Leu Arg 180 185 190

Ser Trp Glu Met Tyr Leu Gly Leu Ser Trp Ser Asn Val Val Tyr Tyr 195 200 205

Ser Pro Asp Lys Val Gln Val Val Ala Glu Gly Phe Asp Phe Ala Asn 210 215 220

Gly Ile Gly Ile Ser Leu Asp Gly Lys Tyr Val Tyr Ile Ala Glu Leu 225 230 235 240

Leu Ala His Lys Ile His Val Tyr Glu Lys His Ala Asn Trp Thr Leu 245 250 255

Thr Pro Leu Lys Val Leu Asn Phe Asp Thr Leu Val Asp Asn Ile Ser 260 265 270

Val Asp Pro Val Thr Gly Asp Leu Trp Val Gly Cys His Pro Asn Gly 275 280 285

t Ave The Dhe Dhe Mary Acre Ale Cha Acre

Met Arg Ile Phe Phe Tyr Asp Ala Glu Asn Pro Pro Gly Ser Glu Val 290 295 300

Leu Arg Ile Gln Asn Ile Leu Ser Glu Asp Pro Lys Ile Thr Val Val 305 310 315 320

Tyr Ala Glu Asn Gly Thr Val Leu Gln Gly Thr Thr Val Ala Ser Val 325 330 335

Tyr Lys Gly Lys Leu Leu Ile Gly Thr Val Phe His Lys Ala Leu Tyr 340 345 350

Cys Asp Leu 355

<210> 10

<211> 354

<212> PRT

<213> Mus musculus

<400> 10

Met Gly Arg Met Val Ala Leu Gly Phe Ala Gly His Arg Val Ala Leu 1 5 10 15

Leu Gly Glu Arg Phe Leu Ala Leu Ser Ser Arg Leu Lys Gly Ser Arg
20 25 30

Glu Val Glu Ser Val Asp Leu Pro Asn Cys His Leu Ile Lys Gly Ile $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Thr Gly Ala Glu Asp Ile Asp Ile Leu Pro Asn Gly Leu Ala Phe 50 55 60

Phe Ser Val Gly Leu Lys Phe Pro Gly Leu His Ser Phe Ala Pro Asp 65 70 75 80

Lys Pro Gly Gly Ile Leu Met Met Asp Leu Asp Glu Arg Pro Pro Ser 85 90 95

Leu Glu Glu Leu Arg Val Ser Trp Gly Phe Asp Leu Ala Ser Phe Asn 100 105 110

Pro His Gly Ile Ser Thr Phe Ile Asp Asp Asp Thr Val Tyr Leu 115 120 125

Phe Val Val Asn His Pro Gln Phe Ser Asn Thr Val Glu Ile Phe Lys 130 135 140

Phe Gln Glu Ala Glu Asn Ser Leu Leu His Leu Lys Thr Ile Lys His 145 150 155 160

Glu Leu Leu Pro Ser Val Asn Asp Ile Ile Ala Val Gly Pro Ala His 165 170 175

Phe Tyr Ala Thr Asn Asp His Tyr Phe Ser Asp Pro Phe Leu Lys Tyr 180 185 190

Leu Glu Thr Tyr Leu Asn Leu His Trp Ala Asn Val Val Tyr Tyr Ser 195 200 205 Pro Glu Glu Val Lys Leu Val Ala Glu Gly Phe Asp Ser Ala Asn Gly 210 215 220

210 215 220

Ile Asn Ile Ser Pro Asp Lys Lys Tyr Val Tyr Val Ala Asp Ile Leu

Ala His Glu Ile His Val Leu Glu Lys Gln Pro Asn Met Asn Leu Thr

Gln Leu Lys Val Leu Gln Leu Gly Thr Leu Val Asp Asn Leu Ser Ile 260 265 270

Asp Pro Ser Ser Gly Asp Ile Trp Val Gly Cys His Pro Asn Gly Gln 275 280 285

Arg Leu Phe Val Tyr His Pro Asn His Pro Pro Thr Ser Glu Val Leu 290 295 300

Arg Ile Gln Asn Ile Leu Ser Glu Lys Pro Ser Val Thr Thr Val Tyr 305 310 315 320

Ile Asn Asn Gly Ser Val Leu Gln Gly Ser Ser Val Ala Thr Ile Tyr 325 330 335

Asp Arg Lys Leu Leu Val Gly Thr Leu Tyr Gln Lys Ala Leu Tyr Cys 340 345 350

Glu Leu

<210> 11

<211> 354

<212> PRT

<213> Mus musculus

<400> 11

Met Gly Lys Leu Val Ala Leu Thr Leu Leu Gly Ala Cys Leu Ala Leu 1 5 10 15

Ile Gly Glu Arg Leu Leu Asn Phe Arg Glu Arg Val Ser Thr Thr Arg
20 25 30

Glu Ile Lys Ala Thr Glu Pro Gln Asn Cys His Leu Ile Glu Gly Leu . 35 40 45

Glu Asn Gly Ser Glu Asp Ile Asp Ile Leu Pro Ser Gly Leu Ala Phe

Ile Ser Thr Gly Leu Lys Tyr Pro Gly Met Pro Ala Phe Ala Pro Asp 65 70 75 80

Lys Pro Gly Arg Ile Phe Leu Met Asp Leu Asn Glu Gln Asn Pro Glu 85 90 . 95

Ala Gln Ala Leu Glu Ile Ser Gly Gly Leu Asp Gln Glu Ser Leu Asn 100 105 110

Pro His Gly Ile Ser Thr Phe Ile Asp Lys Asp Asn Thr Ala Tyr Leu 115 120 125

WO 2005/042572 PCT/FR2004/002797 16/16

								- `							
Tyr	Val 130	Val	Asn	His	Pro	Asn 135	Met	Asp	Ser	Thr	Val 140	Glu	Ile	Phe	Lys
Phe 145	Glu	Glu	Gln	Gln	Arg 150	Ser	Leu	Ile	His	Leu 155	Lys	Thr	Leu	Lys	His 160
Glu	Leu	Leu	Lys	Ser 165	Val	Asn	Asp	Ile	Val 170	Val	Leu	Gly	Pro	Glu 175	Gln
Phe	Tyr	Ala	Thr 180	Arg	Asp	His	Tyr	Phe 185	Thr	Ser	Tyr	Phe	Leu 190	Val	Leu
Leu	Glu	Met 195	Ile	Leu	Asp	Pro	His 200	Trp	Thr	Ser	Val	Val 205	Phe	Tyr	Ser
Pro	Lys 210	Glu	Val	Lys	Val	Val 215	Ala	Gln	Gly	Phe	Ser 220	Ser	Ala	Asn	Gly
Ile 225	Thr	Val	Ser	Leu	Asp 230	Gln	Lys	Phe	Val	Tyr 235	Val	Ala	Asp	Val	Thr 240
Ala	Lys	Asn	Ile	His 245	Ile	Met	Lys	Lys	His 250	Asp	Asn	Trp	Asp	Leu 255	Thr
Pro	Val	Lys	Val 260	Ile	Gln	Leu	Gly	Thr 265	Leu	Val	Asp	Asn	Leu 270	Thr	Val
Asp	Pro	Ala 275	Thr	Gly	Asp	Ile	Leu 280	Ala	Gly	Суѕ	His	Pro 285	Asn	Pro	Met
Lys	Leu 290	Leu	Ile	Tyr	Asn	Pro 295	Glu	Asp	Pro	Pro	Gly 300	Ser	Glu	Val	Leu
Arg 305	Ile	Gln	Asp	Ser	Leu 310	Ser	Asp	Lys	Pro	Arg 315	Val	Ser	Thr	Leu	Tyr 320
Ala	Asn	Asn	Gly	Ser 325	Val	Leu	Gln	Gly	Ser 330	Thr	Val	Ala	Ser	Val 335	Tyr
His	Lys	Arg	Met 340	Leu	Ile	Gly	Thr	Ile 345	Phe	His	Lys	Ala	Leu 350	Tyr	Cys

Asp Leu

' ' ational Application No

	INTERNATIONAL SEARCH REP	OKI	/FR2004	4/002797
A. CLASSI IPC 7	FICATION OF SUBJECT MATTER C07K14/47			
According to	o International Patent Classification (IPC) or to both national class	sification and IPC		
	SEARCHED			
	ocumentation searched (classification system followed by classific CO7K	ication symbols)		
Documentat	tion searched other than minimum documentation to the extent th	nat such documents are incl	uded in the fields se	earched
	ata base consulted during the international search (name of data ternal, Sequence Search, BIOSIS, E	·		
C. DOCUMI	ENTS CONSIDERED TO BE RELEVANT			
Category °	Citation of document, with indication, where appropriate, of the	e relevant passages		Relevant to daim No.
X	US 2003/158115 A1 (LIESKE JOHN 21 August 2003 (2003-08-21) abstract example 6 SEQ ID No 16	C ET AL)		1-9
X	DATABASE UNIPROT 'Online! EBI; 10 October 2003 (2003-10-1) XP002275669 Database accession no. P35482 the whole document	10), -/		1-9
X Funi	her documents are listed in the continuation of box C.	X Patent family	members are listed i	n annex.
"A" docume consider in filling of the docume which citation other in the country of the citation of the citati	ent defining the general state of the art which is not defend to be of particular relevance document but published on or after the international date and which may throw doubts on priority claim(s) or is cited to establish the publication date of another in or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or means ent published prior to the international filing date but than the priority date claimed	cited to understar invention "X" document of partic cannot be considerable involve an invention of partic cannot be considerable cannot be considerable document is comments, such comments, such comment in the art.	and not in conflict with and the principle or the cutar relevance; the cered novel or cannot we step when the do cutar relevance; the cered to involve an interest with one or mobination being obvious the control of the control of the cered to involve an interest to involve an involve an interest to involve an involve an involve an involve an	the application but serve underlying the claimed invention be considered to current is taken alone claimed invention wentive step when the ore other such docuus to a person skilled
	3 March 2005	01/04/2		
Name and r	mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Keller,	, Y	

3

INTERNATIONAL SEARCH REPORT

----- stional Application No . _ . /FR2004/002797

ategory °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
	Ondroit of document, with indication, where appropriate, of the relevant passages	
	KAWASAKI K. ET AL.: "Mineralized tissue	
	and vertebrate evolution: The secretory	
	calcium-binding phosphoprotein gene	
	cluster"	
ì	P.N.A.S.	
	vol. 100, no. 7, 1 April 2003 (2003-04-01), pages 4060-4065, XP002275668	
	1 April 2003 (2003-04-01), pages	
	4060-4065, XP002275668	
	the whole document	
ŀ		
i		
Ì		
i	•	
Ì		
		<u> </u>
ł		
		1
1		
ł		1
İ		
ŀ		
ŀ		
i		
1		
ļ		
İ		1
ŀ		[
		l l

Information on patent family members

***** ntional Application No

/FR2004/002797

D-A						2004/002/9/
Patent document cited in search report		Publication date		Patent family member(s)		Publication date
US 2003158115	A1	21-08-2003	US	6482934	B1	19-11-2002
		•				
				•		
•						
			•			
						•

RAPPORT DE RECHERCHE INTERNATIONALE

-nde Internationale No -/FR2004/002797

A. CLASSE	MENT	DEL	'OBJET	DE	LA	DEMANDE
CIB 7	CO	7K1	4/47	,		

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB

B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 7 CO7K

Documentation consultée autre que la document à lion minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

EPO-Internal, Sequence Search, BIOSIS, EMBASE, PAJ, WPI Data

Catégorie °	Identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
x	US 2003/158115 A1 (LIESKE JOHN C ET AL) 21 août 2003 (2003-08-21) abrégé exemple 6 SEQ ID No 16	1-9
X	DATABASE UNIPROT 'Online! EBI; 10 octobre 2003 (2003-10-10), XP002275669 Database accession no. P35482 le document en entier	1-9
;	-/	

χ Voir la suite du cadre C pour la fin de la liste des documents	X Les documents de familles de brevets sont indiqués en annexe
 'A' document définissant l'état général de la technique, non considéré comme particulièrement pertinent 'E' document antérieur, mais publié à la date de dépôt international ou après cette date 'L' document pouvant jeter un doute sur une revendication de priorité ou cité pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée) 'O' document se référant à une divulgation orale, à un usage, à une exposition ou tous autres moyens 'P' document publié avant la date de dépôt internationat, mais 	T' document ultérieur publié après la date de dépôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention X' document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément Y' document particulièrement pertinent; l'inven tion revendiquée ne peut être considérée comme impliquant une activité inventive lorsque le document est associé à un ou plusieurs autres documents de même nature, cette combinalson étant évidente pour une personne du métier &' document qui fait partie de la même famille de brevets
Date à laquelle la recherche internationale a été effectivement achevée 23 mars 2005	Date d'expédition du présent rapport de recherche internationale 01/04/2005
Nom et adresse postale de l'administration chargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Fonctionnaire autorisé Keller, Y

RAPPORT DE RECHERCHE INTERNATIONALE

Camande Internationale No

.../FR2004/002797

Catégorie °	identification des documents cités, avec, le cas échéant, l'indication des passages pertinents	no. des revendications visées
-areania .	recommended des décemients cités, avec, le cas échéant, i indication des passages pertinents	no. des revendications visées
A	KAWASAKI K. ET AL.: "Mineralized tissue	
	and vertebrate evolution: The secretory	
	calcium-binding phosphoprotein gene cluster"	
	P.N.A.S,	
	vol. 100, no. 7,	
	vol. 100, no. 7, 1 avril 2003 (2003-04-01), pages 4060-4065, XP002275668	
	4060-4065, XP002275668	
	le document en entier	
		i
	·	
į		
		1

3

IMPLOINE OF INFORMATION IN I FINIT HOME

Renseignements rei iux membres de familles de brevets ande Internationale No

.../FR2004/002797 Membre(s) de la famille de brevet(s) Document brevet cité Date de

Date de publication au rapport de recherche publication US 2003158115 A1 21-08-2003 US 6482934 B1 19-11-2002

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:	
BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
GRAY SCALE DOCUMENTS	
LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.