algorithm

5.动态规划b

本节内容

- 4.5 投资问题
- 4.6 背包问题
- 4.7 最长公共子序列
- 4.8 图像压缩
- 4.9 最大子段和

投资问题

- •问题: *m*元钱, *n*项投资,
- $f_i(x)$:将 x 元投入第 i 个项目的效益,求使得总效益最大的投资方案
- 建模:
- 问题的解是向量 $< x_1, x_2, ..., x_n >$,
- x_i 是投给项目i 的钱数, i = 1, 2, ..., n.
- 目标函数 $\max\{f_1(x_1)+f_2(x_2)+...+f_n(x_n)\}$
- 约束条件 $x_1+x_2+...+x_n=m$, $x_i \in \mathbb{N}$

实例

·实例: 5万元钱, 4个项目效益函数如下表所示

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	0	0
1	11	0	2	20
2	12	5	10	21
3	13	10	30	22
4	14	15	32	23
5	15	20	40	24

子问题界定和计算顺序

- 子问题界定: 由参数 k 和 x 界定
- *k*: 考虑对项目1, 2, ..., *k* 的投资
- *x*: 投资总钱数不超过 *x*
- 这两个参数与矩阵链相乘问题的参数有什么区别?
- 原始输入: k=n, x=m
- 子问题计算顺序:
- k = 1, 2, ..., n
- 对于给定的 k, x = 1, 2, ..., m

优化函数的递推方程

- $F_k(x)$: x元钱投给前k个项目最大效益
- 多步判断: 若知道 p元钱 ($p \le x$) 投给前 k–1个项目的最大效 益 $F_{k-1}(p)$, 确定 x 元钱投给前k个项目的方案
- 递推方程和边界条件
- $F_k(x) = \max\{f_k(x_k) + F_{k-1}(x x_k)\}$ k > 1 $0 \le x_k \le x$
- $F_1(x) = f_1(x)$

k=1时实例的计算

x	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
0	0	0	0	0
1	11	0	2	20
2	12	5	10	21
3	13	10	30	22
4	14	15	32	23
5	15	20	40	24

- k =1为初值
- $F_1(1)=11$, $F_1(2)=12$, $F_1(3)=13$, $F_1(4)=14$, $F_1(5)=15$,

k=2时实例计算

• 方案(项目2,其他): (1,0), (0,1) $F_2(1) = \max\{f_1(1), f_2(1)\} = 11$

• 方案: (2,0), (1,1), (0,2) $F_2(2) = \max\{f_2(2), F_1(1) + f_2(1), F_1(2)\} = 12$

• 方案: (3,0), (2,1), (1,2), (0,3) $F_2(3) = \max\{f_2(3), F_1(1) + f_2(2), F_1(2) + f_2(1), F_1(3)\} = 16$

• 类似地计算

$$F_2(4) = 21$$
, $F_2(5) = 26$

x	$f_1(x)$	$f_2(x)$
0	0	0
1	11	0
2	12	5
3	13	10
4	14	15
5	15	20

备忘录和解

x	$F_1(x) x_1(x)$		$F_2(x) x_2(x)$		$F_3(x) x_3(x)$		$F_4(x) x_4(x)$	
1	11	1	11	0	11	0	20	1
2	12	2	12	0	13	1	31	1
3	13	3	16	2	30	3	33	1
4	14	4	21	3	41	3	50	1
5	15	5	26	4	43	4	61	1

$$x_4(5)=1 \Rightarrow x_4=1, x_3(5-1)=x_3(4)$$

$$x_3(4)=3 \Rightarrow x_3=3$$
, $x_2(4-3)=x_2(1)$

$$x_2(1)=0 \Rightarrow x_2=0$$
, $x_1(1-0)=x_1(1)$

$$x_1(1)=1 \Rightarrow x_1=1$$

解: $x_1=1, x_2=0, x_3=3, x_4=1, F_4(5)=61$

时间复杂度分析

• 备忘录表中有m行n列,共计mn项

$$F_k(x) = \max_{0 \le x_k \le x} \{ f_k(x_k) + F_{k-1}(x - x_k) \} \quad k > 1$$

$$F_1(x) = f_1(x)$$

- x_k 有 x + 1 种可能的取值,计算 $F_k(x)$ 项 $(2 \le k \le n, 1 \le x \le m)$ 需要:
- *x*+1次加法
- x 次比较

时间复杂度分析

• 对备忘录中所有的项求和:

• 加法次数
$$\sum_{k=2}^{n} \sum_{x=1}^{m} (x+1) = \frac{1}{2} (n-1) m(m+3)$$

• 比较次数
$$\sum_{k=2}^{n} \sum_{x=1}^{m} x = \frac{1}{2} (n-1) m(m+1)$$

$$W(n)=O(nm^2)$$

背包问题(Knapsack Problem)

- •一个旅行者随身携带一个背包,可以放入背包的物品有n种,每种物品的重量和价值分别为 w_i , v_i
- 如果背包的最大重量限制是 b, 每种物品可以放多个, 怎样选择放入背包的物品以使得背包的价值最大?
- 不妨设上述 w_i, v_i, b 都是正整数
- 实例: n = 4, b = 10 $v_1 = 1$, $v_2 = 3$, $v_3 = 5$, $v_4 = 9$, $w_1 = 2$, $w_2 = 3$, $w_3 = 4$, $w_4 = 7$,

建模

• 解是 $\langle x_1, x_2, ..., x_n \rangle$,其中 x_i 是装入背包的第 i 种物品个数

- 目标函数 $\max \sum_{i=1}^n v_i x_i$
- 约束条件 $\sum_{i=1}^{n} w_i x_i \leq b$, $x_i \in \mathbb{N}$

- 线性规划问题: 由线性条件约束的线性函数取最大或最小的问题
- 整数规划问题: 线性规划问题的变量 x_i 都是非负整数

子问题界定和计算顺序

- 子问题界定: 由参数 k 和 y 界定
 - k: 考虑对物品1, 2, ..., k 的选择
 - y: 背包总重量不超过 y
- 原始输入: k=n, y=b
- 子问题计算顺序:
 - k = 1, 2, ..., n
 - 对于给定的 k, y = 1, 2, ..., b

优化函数的递推方程

- $F_k(y)$: 装前 k 种物品,总重不超过 y,
- 背包达到的最大价值

$$F_{k}(y) = \max\{F_{k-1}(y), F_{k}(y - w_{k}) + v_{k}\}$$

$$F_{0}(y) = 0, \quad 0 \le y \le b, \quad F_{k}(0) = 0, \quad 0 \le k \le n$$

$$F_{1}(y) = \left|\frac{y}{w_{1}}\right| v_{1}, \quad F_{k}(y) = -\infty \quad y < 0$$

• 类似于投资问题,如何写递推方程,这两种写法有什么区别?

$$F_k(y) = \max \{F_{k-1}(y - x_k w_k) + x_k v_k\}$$

标记函数

• $i_k(y)$: 装前 k 种物品, 总重不超 y, 背包达到最大价值时装入物品的最大标号

$$i_k(y) = \begin{cases} i_{k-1}(y) & F_{k-1}(y) > F_k(y - w_k) + v_k \\ k & F_{k-1}(y) \le F_k(y - w_k) + v_k \end{cases}$$

$$i_1(y) = \begin{cases} 0 & y < w_1 \\ 1 & y \ge w_1 \end{cases}$$

实例

- 输入: $v_1 = 1$, $v_2 = 3$, $v_3 = 5$, $v_4 = 9$, $w_1 = 2$, $w_2 = 3$, $w_3 = 4$, $w_4 = 7$, b = 10
- $F_k(y)$ 的计算表如下:

k y	1	2	3	4	5	6	7	8	9	10
1	0	1	1	2	2	3	3	4	4	5
2	0	1	3	3	4	6	6	7	9	9
3	0	1	3	5	5	6	8	10	10	11
4	0	1	3	5	5	6	9	10	10	12

追踪解

k y	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	1	1	1	1	1
2	0	1	2	2	2	2	2	2	2	2
3	0	1	2	3	3	3	3	3	3	3
4	0	1	2	3	3	3	4	3	4	4

$$i_4(10)=4 \Rightarrow x_4 \ge 1$$

$$i_4(10 - w_4) = i_4(3) = 2 \Rightarrow x_2 \ge 1, x_4 = 1, x_3 = 0$$

$$i_2(3 - w_2) = i_2(0) = 0 \Rightarrow x_2 = 1, x_1 = 0$$

解 $x_1=0, x_2=1, x_3=0, x_4=1$, 价值12

追踪算法

- 算法 Track Solution
- 输入: $i_k(y)$ 表, k=1,2,...,n, y=1,2,...,b
- 输出: $x_1, x_2, ..., x_n$, n种物品的装入量
- 1. for $k \leftarrow 1$ to n do $x_k \leftarrow 0$
- 2. *y*←*b*, *k*←*n*
- β . $j \leftarrow i_k(y)$
- 4. $x_k \leftarrow 1$
- 5. $y \leftarrow y w_k$
- 6. while $i_k(y)=k$ do
- 7. $y \leftarrow y w_k$
- 8. $x_k \leftarrow x_k + 1$
- 9. if $i_k(y) \neq 0$ then goto 4

时间复杂度 O(nb)

• 根据公式

$$F_k(y) = \max\{F_{k-1}(y), F_k(y-w_k) + v_k\}$$

- 备忘录需计算 nb 项,每项常数时间,计算时间为 O(nb)
- 伪多项式时间算法: 时间为参数 b和 n的多项式, 不是输入规模的多项式
- •参数 b 是整数,表达 b 需要 $\log b$ 位,输入规模是 $\log b$

背包问题的推广

- 物品数受限背包: 第 i 种物品最多用 n_i 个
- 0-1背包问题: $x_i = 0, 1, i = 1, 2, ..., n$
- 多背包问题: m个背包, 背包j 装入最大重量 B_j , $j=1,2,\ldots,m$. 在满足所有背包 重量约束条件下使装入物品价值最大.
- •二维背包问题:每件物品有重量 w_i 和体积 t_i , $i=1,2,\ldots,n$, 背包总重不超过b,体积不超过V,如何选择物品以得到最大价值

子序列

• 设序列 *X*, *Z*,

$$X = \langle x_1, x_2, \dots, x_m \rangle$$

 $Z = \langle z_1, z_2, \dots, z_k \rangle$

- 若存在 X 的元素构成的严格递增序列
- 使得 $z_j = x_j$, j = 1, 2, ..., k
- •则称 Z 是 X 的子序列
- X 与 Y 的公共子序列 $Z: Z \in X$ 和 Y 的子序列

最长公共子序列

•问题:给定序列

$$X = \langle x_1, x_2, \dots, x_m \rangle$$

 $Y = \langle y_1, y_2, \dots, y_n \rangle$

- 求 X 和 Y 的最长公共子序列
- 实例:

• 最长公共子序列: B C B A, 长度4

蛮力算法

- 不妨设 $m \le n$, |X| = m, |Y| = n
- 算法: 依次 检查 X 的每个子序列在 Y 中是否出现
- 时间复杂度:
 - 每个子序列 O(n) 时间
 - *X* 有 2^m 个子序列
- 最坏情况下时间复杂度: O(n 2m)

子问题界定

- •参数 i 和 j 界定子问题
- X 的终止位置是 i, Y 的终止位置是 j
- $X_i = \langle x_1, x_2, ..., x_i \rangle$, $Y_j = \langle y_1, y_2, ..., y_j \rangle$

子问题间的依赖关系

- $i \ni X = \langle x_1, x_2, \dots, x_m \rangle, Y = \langle y_1, y_2, \dots, y_n \rangle,$
- $Z = \langle z_1, z_2, ..., z_k \rangle$ 为X和Y的LCS,那么
 - (1) 若 $x_m = y_n \Rightarrow z_k = x_m = y_n$, 且 Z_{k-1} 是 X_{m-1} 与 Y_{n-1} 的LCS;
 - (2) 若 $x_m \neq y_n$, $z_k \neq x_m \Rightarrow Z \neq X_{m-1} = Y$ 的 LCS;
 - (3) 若 $x_m \neq y_n$, $z_k \neq y_n \Rightarrow Z$ 是 $X = S = Y_{n-1}$ 的 LCS.
- •满足优化原则和子问题重叠性

优化函数的递推方程

- •令 X 与 Y 的子序列
- $X_i = \langle x_1, x_2, \dots, x_i \rangle$, $Y_j = \langle y_1, y_2, \dots, y_j \rangle$
- C[i,j]: X_i 与 Y_j 的 LCS 的长度

标记函数

- 标记函数: B[i, j],值为 \ 、 ←、 ↑
- C[i, j] = C[i-1, j-1] + 1: C[i, j] = C[i, j-1]: \leftarrow
- C[i, j] = C[i-1, j]: \uparrow

伪码

```
• 算法 LCS (X, Y, m, n)
1. for i \leftarrow 1 to m do C[i,0] \leftarrow 0
2. for i \leftarrow 1 to n do C[0,i] \leftarrow 0
3. for i \leftarrow 1 to m do
     for j \leftarrow 1 to n do
5.
             if X[i]=Y[j]
6.
             then C[i, j] \leftarrow C[i-1, j-1] + 1
                     B[i,j] \leftarrow " \Gamma "
7.
8.
             else if C[i-1, j] \ge C[i,j-1]
             then C[i, j] \leftarrow C[i-1,j]
9.
                      B[i, j] \leftarrow"\tag{"}"
10.
             else C[i, j] \leftarrow C[i, j-1]
11.
12.
                      B[i, j] \leftarrow " \leftarrow "
```

追踪解

- 算法 Structure Sequence(B, i, j)
- 输入: *B*[*i*, *j*]
- 输出: X与Y的最长公共子序列
- 1. if i=0 or j=0 then return //序列为空
- 2. if $B[i, j] = " \setminus "$
- 3. then 输出X[i]
- 4. Structure Sequence(B, i 1, j 1)
- 5. else if $B[i,j] = "\uparrow"$
- 6. then Structure Sequence (B, i 1, j)
- 7. else Structure Sequence (B, i, j 1)

标记函数的实例

• 输入: X = <A, B, C, B, D, A, B >, Y = <B, D, C, A, B, A >,

	1	2	3	4	5	6
1	<i>B</i> [1,1]=↑	<i>B</i> [1,2]=↑	B[1,3]=↑	B[1,4]=\	<i>B</i> [1,5]=←	B[1,6]=\
2	<i>B</i> [2,1]= [►] \	<i>B</i> [2,2]=←	$B[2,3]=\leftarrow$	<i>B</i> [2,4]=↑	B[2,5]= [►] \	<i>B</i> [2,6]=←
3	<i>B</i> [3,1]=↑	<i>B</i> [3,2]=↑	<i>B</i> [3,3]= [►] \	<i>B</i> [3,4]=←	$B[3,5]=\uparrow$	<i>B</i> [3,6]=↑
4	<i>B</i> [4,1]=↑	B[4,2]=↑	$B[4,3]=\uparrow$	<i>B</i> [4,4]=↑	<i>B</i> [4,5]= [►] \	<i>B</i> [4,6]=←
5	$B[5,1]=\uparrow$	$B[5,2]=\uparrow$	$B[5,3]=\uparrow$	<i>B</i> [5,4]=↑	$B[5,5]=\uparrow$	<i>B</i> [5,6]=↑
6	<i>B</i> [6,1]=↑	<i>B</i> [6,2]=↑	$B[6,3]=\uparrow$	B[6,4]= [™]	<i>B</i> [6,5]=↑	B[6,6]=\\
7	<i>B</i> [7,1]=↑	<i>B</i> [7,2]=↑	$B[7,3]=\uparrow$	<i>B</i> [7,4]=↑	<i>B</i> [7,5]=↑	<i>B</i> [7,6]=↑

解: X[2],X[3], X[4], X[6], 即 B, C, B, A

算法的时空复杂度

- 计算优化函数和标记函数:
 - 赋初值, 为*O*(*m*)+*O*(*n*)
 - 计算优化、标记函数迭代 $\Theta(mn)$ 次,
 - 循环体内常数次运算,时间为 $\Theta(mn)$
- 构造解:
 - 每步缩小X或Y的长度,时间 $\Theta(m+n)$
- 算法时间复杂度: $\Theta(mn)$
- 空间复杂度: Θ(mn)

图像压缩

- •黑白图像存储
- 像素点灰度值: 0~255, 为8位二进制数图像的灰度值序列:

$$\{p_1, p_2, \ldots, p_n\}$$

- • p_i 为第i个像素点灰度值
- •图像存储:每个像素的灰度值占8位,总计空间为8n
- •问题:有没有更好的存储方法?

图像变位压缩的概念

• 变位压缩存储:将 $\{p_1, p_2, ..., p_n\}$ 分成m段 $S_1, S_2, ..., S_m$

- 同一段的像素占用位数相同
- 第 t 段有 l[t]个像素,每个占用 b[t]位
- •段头:记录l[t](8位)和b[t](3位)需要11位
- 总位数为

$$b[1] \cdot l[1] + b[2] \cdot l[2] + \dots + b[m] \cdot l[m] + 11m$$

图像压缩问题

- 约束条件: 第 t 段像素个数 l[t] ≤256
- 第 *t* 段占用空间: *b*[*t*]×*l*[*t*] + 11

$$b[t] = \left\lceil \log(\max_{p_k \in S_t} p_k + 1) \right\rceil \le 8$$

•问题:给定像素序列 $\{p_1, p_2, ..., p_n\}$,确定最优分段,即

$$\min_{T}\{\sum (b[t]\times l[t]+11)\},\$$

$$T = \{S_1, S_2, ..., S_m\}$$
 为分段

实例

- 灰度值序列
- $P = \{10,12,15,255,1,2,1,1,2,2,1,1\}$
- 分法1: S_1 ={10, 12, 15}, S_2 ={255}, S_3 ={1, 2, 1, 1, 2, 2, 1, 1}
- 分法2: $S_1 = \{10,12,15,255,1,2,1,1,2,2,1,1\}$
- 分法3: 分成12组, 每组一个数
- 存储空间
- 分法1: $11\times 3+4\times 3+8\times 1+2\times 8=69$
- 分法2: 11×1+8×12 =107
- 分法3: 11×12+4×3+8×1+1×5+2×3=163

子问题界定与计算顺序

- •子问题前边界为1,后边界为 i
- 对应像素序列为 $< p_1, p_2, ..., p_i >$
- 优化函数值S[i]为最优分段存贮位数
- 计算顺序
- i = 1
- *i* = 2
- •
- i = n

算法设计

• 递推方程:设S[i]是{ $p_1, p_2, ..., p_i$ } 的最 优分段需要的存储位数, S_m 是最后分段

$$S[i] = \min_{1 \le j \le \min\{i, 256\}} \{S[i-j] + j \times b[i-j+1,i] \} + 11$$

$$b[i-j+1,i] = \left\lceil \log(\max_{p_k \in S_m} p_k + 1) \right\rceil \leq 8$$

$$p_1$$
 p_2 ... p_{i-j} p_{i-j+1} ... p_i $S[i-j]$ 个位 j 个灰度 $j \times b[i-j+1,i]$ 位

伪码

```
Compress (P,n)
    Lmax \leftarrow 256; header \leftarrow 11; S[0] \leftarrow 0
    for i \leftarrow 1 to n do
     b[i] \leftarrow length(P[i])
5.
   bmax \leftarrow b[i]
   S[i] \leftarrow S[i-1] + bmax
   l[i] \leftarrow 1
7.
8.
        for j \leftarrow 2 to min\{i, Lmax\} do
9.
           if bmax < b[i-j+1]
10.
           then bmax \leftarrow b[i \rightarrow +1]
           if S[i] > S[i-j] + j *bmax
11.
12.
           then S[i] \leftarrow S[i-j] + j *bmax
13.
               l[i] \leftarrow j
      S[i] \leftarrow S[i] + header
14.
```

计算过程

- $P = \langle 10, 12, 15, 255, 1, 2 \rangle$
- S[1]=15, S[2]=19, S[3]=23, S[4]=42, S[5]=50
- l[1]=1, l[2]=2, l[3]=3, l[4]=2, l[5]=1

10	12	15	255	1	2
S[5]=50			$1 \times 2 + 11 63$		
10	12	15	255	1	2
$S[4]=42 2\times 2+11$					
10	12	15	255	1	2
S[3]=	23		$3 \times 8 + 11$ 58		
10	12	15	255	1	2
S[2]=19			$4\times8+11$ 62		
10	12	15	255	1	2
<i>S</i> [1]=15			$5\times8+11$ 66		
10	12	15	255	1	2
$6\times8+11$					

追踪解

```
算法 Traceback (n, l)
```

输入:数组 1

输出:数组 C

- 1. $j \leftarrow 1$ // j 为正在追踪的段数
- 2. while $n \neq 0$ do
- 3. $C[j] \leftarrow l[n]$
- 4. $n \leftarrow n l[n]$
- $5. \quad j \leftarrow j + 1$

C[j]: 从后向前追踪的第 j 段的长度时间复杂度: O(n)

最大子段和

问题: 给定n个数(可以为负数)的序列

$$(a_1, a_2, \ldots, a_n)$$

求

$$\max\{0, \max_{1 \le i \le j \le n} \sum_{k=i}^{j} a_k\}$$

实例

$$(-2, 11, -4, 13, -5, -2)$$

解: 最大子段和为 $a_2+a_3+a_4=20$

算法

算法1:对所有的(i,j)对,顺序求和 $a_i + ... + a_j$ 并比较出最大

的和

算法2:分治策略,将数组分成左右两半,分别计算左边的最

大和、右边的最大和、跨边界的最大和,然后比较其中最大者

算法3: 动态规划

算法1

- 算法 Enumerate
- 输入: 数组 A[1..n], 输出: sum, first, last
- 1. $sum \leftarrow 0$
- 2. for $i \leftarrow 1$ to n do
- 3. for $j \leftarrow i$ to n do
- 4. $thissum \leftarrow 0$
- 5. for $k \leftarrow i$ to j do
- 6. $thissum \leftarrow thissum + A[k]$
- 7. if thissum > sum
- 8. then $sum \leftarrow thissum$
- 9. $first \leftarrow i$
- 10. $last \leftarrow j$

算法2分治策略

- 将序列分成左右两半,中间分点center
- 递归计算左段最大子段和 leftsum
- 递归计算右段最大子段和 rightsum
- center 到 a_1 的最大和 $S_1, k=center$
- center +1 到 a_n 的最大和 S_2
- max { *leftsum*, *rightsum*, S_1+S_2 }

伪码

- 算 法 MaxSubSum (A, left, right)
- 输入: 数组 A, left, right (左,右边界)
- · 输出: 最大子段和sum及子段边界
- 1. if |*A*|=1 then 输出元素(值为负输出0)
- 2. $center \leftarrow \lfloor (left + right)/2 \rfloor$
- 3. $leftsum \leftarrow MaxSubSum(A, left,center)$
- 4. $righsum \leftarrow MaxSubSum(A, center+1, right)$
- 5. $S_1 \leftarrow A_1[center]$ //从center向左
- 6. $S_2 \leftarrow A_2[center+1]$ //从center+1向右
- 7. $sum \leftarrow S_1 + S_2$
- 8. if leftsum>sum then $sum \leftarrow leftsum$
- 9. if rightsum>sum then sum←rightsum

时间复杂度

• 计算 $M_k = center$ 开始到 a_1 方向的最大和,每次加1个元素, 得到

$$A[k],$$
 $A[k]+A[k-1],$
 $A[k]+A[k-1]+A[k-2],$

••• ,

$$A[k]+...+A[1]$$

• 比较上述的最大和,时间为O(n),右半边也是O(n)

$$T(n) = 2T(n/2) + O(n)$$
$$T(c) = O(1)$$
$$T(n) = O(n \log n)$$

算法3: 动态规划

- •子问题界定:前边界为1,后边界i,
- C[i] 是 A[1...i]中必须包含元素 A[i] 的向前连续延伸的最大子段和

$$C[i] = \max_{1 \leq k \leq i} \left\{ \sum_{j=k}^{i} A[j] \right\}$$

优化函数的递推方程

• 递推方程:

$$C[i] = \max_{i=2,...,n} \{C[i-1] + A[i], A[i]\}$$
 $C[1] = A[1]$ 若 $A[1] > 0$
 $C[1] = 0$ 否则

• 解: OPT(A) = $\max_{1 \le i \le n} \{C[i]\}$

伪码

- 算法 MaxSum (A, n)
- 输入: 数组A
- ·输出:最大子段和sum,子段最后位置c
- 1. $sum \leftarrow 0$
- $2. b \leftarrow 0$
- 3. for $i \leftarrow 1$ to n do
- 4. if b > 0
- 5. then $b \leftarrow b + A[i]$
- 6. else $b \leftarrow A[i]$
- 7. if b > sum
- 8. then $sum \leftarrow b$
- 9. $c \leftarrow i$
- 10. return sum, c
- •时间复杂度: O(n), 空间复杂度: O(n)

小结

•动态归划算法:

- •子问题界定
- •列优化函数的递推方程和边界条件
- •(不一定是原问题的优化函数)
- •自底向上计算,设计备忘录(表格)如何根据动态规划的解找原问题的解

