3.5 Zustandsänderung von Gasen

Besprechung der thermodynamischen Grundlagen von Ziel: Wärmekraftmaschinen und Wärmepumpen

Zustand von Gasen wird durch

- Druck **b**,
- Temperatur *T*

beschrieben

Zustandsänderungen sind auf vier verschiedene Arten möglich:

- isochor (Volumen konstant)
- isobar (Druck konstant)
- isotherm (Temperatur konstant)

Energieaustausch mit Umgebung

adiabatisch (kein Wärmeaustausch mit Umgebung)

pV-Diagramm

Prinzip der Energieerhaltung bei Zustandsänderungen führt zum...

I. Hauptsatz der Wärmelehre

Bei Zufuhr von Wärme ΔQ kann Gas die innere Energie ΔU erhöhen und mechanische Arbeit ΔW leisten:

$$\Delta Q = \Delta U + \Delta W$$

Vorzeichenkonvention:

 $\Delta Q > 0$: dem Gas zugeführte Wärme

 $\Delta Q < 0$: vom Gas abgegebene Wärme

 $\Delta W < 0$: dem Gas zugeführte mechanische Arbeit

 $\Delta W > 0$: vom Gas abgegebene mechanische Arbeit

Bsp: Gas dehnt sich bei konstantem Druck p aus

⇒ das Gas leistet mechanische Arbeit zur Vergrößerung des Volumens

Arbeit = Kraft · Weg =
$$F \cdot \Delta s = (p \cdot A) \cdot \Delta s = (p \cdot A) \cdot \Delta V/A = p \cdot \Delta V$$

$$\Rightarrow \Delta W = p \cdot \Delta V \Rightarrow W = \int p(V) \cdot dV$$

Vorzeichen lt. Konvention oben 3 Erläuterung der inneren Energie U:

Isochore Zustandsänderung

V sei konstant, während die Wärmemenge ΔQ zugeführt wird,

d.h.:
$$\Delta V = 0 \implies \Delta W = 0 \implies \Delta Q = \Delta U + \Delta W = \Delta U$$

Die zugeführte Wärmemenge ΔQ wird also allein zur Erhöhung der inneren Energie des Gases verwendet

Hierfür gilt:

$$\Delta Q = c_v \cdot m \cdot \Delta T \quad \Rightarrow \quad \Delta U = c_v \cdot m \cdot \Delta T$$

Wichtiges Ergebnis:

Die innere Energie eines idealen Gases wird allein von der Temperatur bestimmt.

 $\Delta Q = Q_{1,2} = c_v \cdot m \cdot (T_2 - T_1) ; \Delta W = 0$

Isobare Zustandsänderung

Wärmemenge ΔQ wird bei konstantem Druck zugeführt

$$\Delta Q = \Delta U + \Delta W$$

$$\Rightarrow = p \cdot \Delta V$$

$$\Rightarrow = c_{v} \cdot m \cdot \Delta T$$

$$\Rightarrow = c_{p} \cdot m \cdot \Delta T$$

$$\implies c_p \cdot m \cdot \Delta T = c_v \cdot m \cdot \Delta T + p \cdot \Delta V$$

$$\iff m \cdot (c_p - c_v) \cdot \Delta T = p \cdot \Delta V$$

bzw.
$$m \cdot (c_p - c_v) \cdot T = p \cdot V$$

Vergleiche mit Zustandsgl.: $m \cdot R_s \cdot T = p \cdot V$

$$\implies R_s = c_p - c_v$$

 $R_s = c_p - c_v$ Mayersche Gleichung

⇒ Volumenänderung

Isotherme Zustandsänderung

Gastemperatur muss während der Zustandsänderung konstant gehalten werden ⇒ Kontakt mit Wärmebad erforderlich

$$\Delta Q = \Delta U + \Delta W$$

$$\triangle \Delta Q = p \cdot \Delta V = \Delta W$$

Weitere Auswertung erfordert Kenntnis p = p(V):

verwende Zustandsgl.: $p \cdot V = m \cdot R_s \cdot T$

Einsetzen:
$$\Delta W = p \cdot \Delta V = (m \cdot R_s \cdot T/V) \cdot \Delta V$$

Integrieren:
$$W_{1,2} = m \cdot R_s \cdot T \cdot \int_{V_1}^{V_2} \frac{dV}{V} = m \cdot R_s \cdot T \cdot \ln \frac{V_2}{V_1} = m \cdot R_s \cdot T \cdot \ln \frac{p_1}{p_2}$$

Beachte Vorzeichen: $V_2 > V_1 \Rightarrow$ Gas leistet Arbeit

d.h. $W_{1.2} > 0$

K-H. Kampert; Physik für Bauingenieure; SS2001

Wiederholung vom 10.5.01

Zustandsänderungen von Gasen: isobar, ischor, isotherm, adiabatisch

Alle Prozesse werden durch den

I. Hauptsatz der Wärmelehre beschrieben:

$$\Delta Q = \Delta U + \Delta W$$

mechanische Arbeit: $\Delta W = W_{12} = p \cdot \Delta V \ bzw. \Rightarrow W = \int p(V) \cdot dV$

isochor:
$$\Delta V = 0 \Rightarrow \Delta W = 0 \Rightarrow \Delta U = c_v \cdot m \cdot \Delta T$$

Adiabatische Zustandsänderung

Während der Zustandsänderung wird das Gas thermisch isoliert

$$\Rightarrow \Delta Q = 0$$

$$\Delta Q = 0 = \Delta U + \Delta W$$

$$= c_v \cdot m \cdot \Delta T + W_{12}$$

$$\Leftrightarrow W_{12} = -c_v \cdot m \cdot \Delta T = \int p(V) \cdot dV$$

Auswertung erfordert wieder Zustandsgleichung:

$$p(V) = m \cdot R_s \cdot T/V$$

$$\Rightarrow \int_{V_1}^{V_2} \frac{M \cdot R_s \cdot T}{V} \cdot dV = -c_v \cdot M \cdot dT$$

$$\Rightarrow R_s \cdot \int_{V_1}^{V_2} \frac{dV}{V} = -c_v \cdot \int_{T_1}^{T_2} \frac{dT}{T}$$

$$\Leftrightarrow (c_p - c_v) \cdot \int_{V_1}^{V_2} \frac{dV}{V} = -c_v \cdot \int_{T_1}^{T_2} \frac{dT}{T} \qquad \Rightarrow \qquad (c_p - c_v) \cdot \ln \frac{V_2}{V_1} = -c_v \cdot \ln \frac{T_2}{T_1}$$

Adiabatische Zustandsänderung (2)

$$(c_p - c_v) \cdot \ln \frac{V_2}{V_1} = -c_v \cdot \ln \frac{T_2}{T_1}$$

$$\Leftrightarrow \frac{c_p - c_v}{c_v} \cdot \ln \frac{V_2}{V_1} = + \ln \frac{T_1}{T_2}$$

$$\Leftrightarrow \frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\frac{c_p - c_v}{c_v}} = \left(\frac{V_2}{V_1}\right)^{\frac{c_p}{c_v} - 1}$$

mit

Adiabatenkoeffizient $\kappa = \frac{C_p}{C_p}$

dann

$$\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{\kappa - 1}$$

12 3:

Poissonsche Gleichungen

Mithilfe der Zustandsgleichung können wir auch T in Relation zu p, oder V in Relation zu p bringen:

$$\frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2} = const. \Rightarrow \frac{V_2}{V_1} = \frac{p_1 \cdot T_2}{p_2 \cdot T_1}$$

$$\Rightarrow \frac{T_1}{T_2} = \left(\frac{p_1 \cdot T_2}{p_2 \cdot T_1}\right)^{k-1} = \left(\frac{p_1}{p_2}\right)^{k-1} \cdot \left(\frac{T_2}{T_1}\right)^{k-1} = \left(\frac{T_2}{T_1}\right)^{k-1}$$

$$\left(\frac{p_1}{p_2}\right)^{\kappa-1} = \left(\frac{T_2}{T_1}\right)^{-1-(\kappa-1)} = \left(\frac{T_2}{T_1}\right)^{-\kappa} = \left(\frac{T_1}{T_2}\right)^{\kappa}$$

0,**2** gleichsetzen:

$$\Rightarrow \frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\kappa}$$

$$\Rightarrow \frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\kappa}$$

Aus Gl & findet man unmittelbar:

$$\frac{p_1}{p_2} = \frac{V_2^{\kappa}}{V_1^{\kappa}} \iff p_1 \cdot V_1^{\kappa} = p_2 \cdot V_2^{\kappa} = \boxed{p \cdot V^{\kappa} = const}$$

Poissonsches Gesetz

(Gleichung der Adiabaten des idealen Gases)

Bsp: Dieselmotor

Berechnen Sie die Temperaturerhöhung der angesaugten Luft in einem Dieselmotor. Es handelt sich hierbei näherungsweise um eine adiabatische Kompression von Luft $(T_1 = 25^{\circ}\text{C}, p_1 = 1 \text{ bar}, \kappa=1,4)$ von 1 bar auf 38 bar.

Gleichung @ liefert Relation zwischen T und p: $\frac{T_1}{T_2} = \left(\frac{p_1}{p_2}\right)^{\frac{\kappa}{\kappa}} \iff \frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\kappa}{\kappa}}$

$$\Rightarrow T_2 = T_1 \cdot \left(\frac{p_2}{p_1}\right)^{\frac{\kappa - 1}{\kappa}} = 298 \text{ K} \cdot \left(\frac{38}{1}\right)^{\frac{1.4 - 1}{1.4}} \approx 843 \text{ K} = 570 \text{ °C}$$

Welche mechanische Arbeit wird hierbei an dem Gas geleistet?

Volumenarbeit bei adiabatischer Kompression

$$W_{12} = \int p \cdot dV = -\Delta Q$$

$$= -c_v \cdot m \cdot \Delta T < 0 \text{ ; am Gas wird}$$

$$= + c_v \cdot m \cdot (T_1 - T_2) < 0$$

$$= const$$

$$= const$$

$$= const$$

$$= const$$

$$T_1 = const$$

$$T_1 = const$$

$$T_1 = const$$

$$T_1 = \frac{p_1 \cdot V_1}{T_1} = \frac{p_2 \cdot V_2}{T_2} = const. \Rightarrow T_2 = \frac{p_2 \cdot V_2}{p_1 \cdot V_1} \cdot T_1$$

$$W_{1,2} = m \cdot c_{v} \left(T_{1} - \frac{p_{2}V_{2}}{p_{1}V_{1}} T_{1} \right) = m \cdot c_{v} \cdot T_{1} \left(\frac{p_{1}V_{1} - p_{2}V_{2}}{p_{1}V_{1}} \right) = \frac{m \cdot c_{v} \cdot T_{1}}{p_{1}V_{1}} \left(p_{1}V_{1} - p_{2}V_{2} \right)$$

Benutze $p_1V_1 = m \cdot R_s \cdot T_1 = m \cdot (c_p - c_v) \cdot T_1$

$$\Rightarrow W_{1,2} = \frac{\cancel{m} \cdot c_{\nu} \cdot \cancel{T_1}}{\cancel{m} \cdot (c_p - c_{\nu}) \cdot \cancel{T_1}} (p_1 V_1 - p_2 V_2) = \frac{1}{\kappa - 1} (p_1 V_1 - p_2 V_2)$$

Ш

Polytrope Zustandsänderungen

Praxis: weder isotherme noch adiabatische Zustandsänderungen leicht realisierbar (es gibt weder eine ideale Kopplung mit einem Wärmebad noch eine ideale Isolation)

Vergleicht man beide Prozesse:

isotherm, z.B:
$$\frac{p_1}{p_2} = \frac{V_2}{V_1}$$
 adiabatisch: $\frac{p_1}{p_2} = \left(\frac{V_2}{V_1}\right)^{\kappa}$

Isotherm entspricht adiabatisch für $\kappa=1$

Führe daher zur Beschreibung von Mischformen den Polytropenkoeffizienten n ein, mit $1 < n < \kappa$

$$\Rightarrow p \cdot V^n = const$$

 $\Rightarrow p \cdot V^n = const$ Gleichung der Polytrope eines idealen Gases

Bsp: Entspannung von Druckluft

Entspanne I kg Druckluft (κ = I.4) von p_1 = I0 bar auf p_2 = I bar.

Die Anfangstemperatur T sei 20°C. Wie groß ist die Temperatur nach dem Vorgang, wenn dieser (a) adiabatisch und (b) polytrop (n = 1.2) abläuft?

= 293 K·
$$\left(\frac{1}{10}\right)^{\frac{1.4-1}{14}}$$
 = 152 K = -121 °C
= 293 K· $\left(\frac{1}{10}\right)^{\frac{1.2-1}{12}}$ = 200 K = -73 °C

Wie groß ist die mechanische Arbeit in beiden Fällen ($c_v = 718 \text{ J/(kg \cdot \text{K})}$)?

adiabatisch:
$$W_{12} = m \cdot c_V (T_1 - T_2) = 718 \frac{\mathrm{J}}{\mathrm{K}} \times (293 - 152) \mathrm{K} = 101 \mathrm{kJ}$$

polytrop:
$$W_{12} = m \cdot c_V \cdot \frac{\kappa - 1}{n - 1} (T_1 - T_2) = 718 \frac{J}{K} \cdot \frac{0.4}{0.2} \cdot (293 - 200) K = 132 \, kJ$$

(Erklärung: die zusätzlichen 31 kJ werden der Umgebung als Wärme entzogen, daher kein "Gewinn" gegenüber dem adiabatischen Fall!)

K-H. Kampert ; Physik für Bauingenieure ; SS2001

Übersicht

Zustands- änderung	Bedingung	p, V-Diagramm	thermische Zustandsgrößen	erster Hauptsatz	Wärme	Volumen- änderungsarbeit
isotherm	dT = 0	P \	pV = konstant	dQ + dW = 0	dQ = -dW	$dW = -\rho dV$
	T = konstant		Boyle-Mariotte	$Q_{12} + W_{12} = 0$	$Q_{12} = nR_mT \ln \frac{V_2}{V_1}$	$W_{12} = nR_{\rm m}T \ln \frac{V_1}{V_2}$
isochor	dV=0 V=konstant	P	$\frac{p}{T}$ = konstant Charles	$dU = dQ$ $U_2 - U_1 = Q_{12}$	$dQ = n C_{mv} dT$ $Q_{12} = n C_{mv} (T_2 - T_1)$ $= m C_v (T_2 - T_1)$	$dW = 0$ $W_{12} = 0$
isobar	dp = 0	P	$\frac{V}{\tau}$ = konstant	dU = dQ + dW	$dQ = nC_{mp}dT$	$dW = -\rho dV$
	$\rho = \text{konstant}$	V	Gay-Lussac	$U_2 - U_1 = Q_{12} + W_{12}$	$Q_{12} = nC_{mp} (T_2 - T_1)$ = $m c_p (T_2 - T_1)$	$W_{12}=p(V_1-V_2)$
isentrop	dS = 0	PALL	p V ^κ = konstant	dU = dW	dQ = 0	$dW = n C_{mv} dT$
=adiabatisch	dQ = 0 S = konstant	V	$T V^{\kappa-1} = \text{konstant}$ $p^{1-\kappa} T^{\kappa} = \text{konstant}$	$U_2 - U_1 = W_{12}$	$Q_{12} = 0$	$W_{12} = n C_{mv} (T_2 - T_1)$ $= \frac{p_2 V_2 - p_1 V_1}{\kappa - 1}$
polytrop		PII	$p V^{v} = \text{konstant}$	dU = dQ + dW	dQ = dU - dW	$dW = -\rho dV$
		i \	$TV^{\nu-1} = \text{konstant}$	$U_2 - U_1 =$	$Q_{12} = n R_{\rm m} (T_2 - T_1)$	$W_{12} = \frac{nH_{\rm m}}{v-1} (T_2 - T_1)$
		V	$p^{1-\nu}T^{\nu} = \text{konstant}$	$Q_{12} + W_{12}$	$\left(\frac{1}{\kappa-1} - \frac{1}{\nu-1}\right)$	$= \frac{p_2 V_2 - p_1 V_1}{v - 1}$