HERMITIAN IDENTITIES

SCOTT O. WILSON

We list the identities that hold on a complex manifold with compatible metric. Identity (7) is proved in [Dem86] using a local argument, and it is stated there that the idea was implicit in [Gri66]. The remaining identities follow from algebraic manipulations, and all appear in [Dem86], except for identity (1) which is clear, and identities (4) and (8), which are used to prove a generalized hard Lefschetz duality below.

Let L be the Lefschetz operator, $\Lambda=L^*,\ \lambda=[\partial,L],\ \bar{\lambda}=[\bar{\partial},L],\ \tau=[\Lambda,\lambda]$, $\bar{\tau}=[\Lambda,\bar{\lambda}],$ and $\Delta_{\delta}=[\delta,\delta^*]$ for any operator δ . Then

(1)
$$\bar{\partial}^2 = 0 \qquad \bar{\lambda}^2 = 0 \qquad [\bar{\lambda}, \lambda] = 0$$
$$\partial^2 = 0 \qquad [\bar{\partial}, \bar{\lambda}] = 0 \qquad [\bar{\partial}, \lambda] = 0$$
$$[\bar{\partial}, \partial] = 0 \qquad [\bar{\lambda}, \partial] + [\bar{\partial}, \lambda] = 0 \qquad \lambda^2 = 0,$$

as well as the adjoint of these equations. Additional adjoint or conjugate equations may (or may not) be omitted.

$$[\Lambda, \tau] = -2i\bar{\tau}^* \qquad [L, \bar{\tau}] = 3\bar{\lambda} \qquad [\Lambda, \lambda] = \tau \qquad [L, \lambda] = 0$$

$$[\Lambda, \bar{\tau}] = 2i\tau^* \qquad [L, \tau] = 3\lambda \qquad [\Lambda, \bar{\lambda}] = \bar{\tau} \qquad [L, \bar{\lambda}] = 0$$

$$[L, \tau^*] = -2i\bar{\tau} \qquad [\Lambda, \bar{\tau}^*] = -3\bar{\lambda}^* \qquad [L, \lambda^*] = -\tau^* \qquad [\Lambda, \lambda^*] = 0$$

$$[L, \bar{\tau}^*] = 2i\tau \qquad [\Lambda, \tau^*] = -3\lambda^* \qquad [L, \bar{\lambda}^*] = -\bar{\tau}^* \qquad [\Lambda, \bar{\lambda}^*] = 0.$$

$$[\bar{\lambda}, \tau] = -[\bar{\tau}, \lambda] \qquad [\tau, \tau] = 2i[\lambda, \bar{\tau}^*] \qquad 2[\bar{\tau}^*, \tau] = 3[\bar{\lambda}^*, \lambda]$$

$$[\bar{\tau}, \bar{\tau}] = -2i[\bar{\lambda}, \tau^*]$$

$$[\bar{\lambda}^*, \tau^*] = -[\bar{\tau}^*, \lambda^*] \qquad [\tau^*, \tau^*] = -2i[\lambda^*, \bar{\tau}] \qquad 2[\bar{\tau}, \tau^*] = 3[\bar{\lambda}, \lambda^*]$$

$$[\lambda^*, \bar{\tau}^*] = -[\tau^*, \bar{\lambda}^*] \qquad [\bar{\tau}^*, \bar{\tau}^*] = 2i[\bar{\lambda}^*, \tau]$$

$$[L, \Delta_{\tau} + 3\Delta_{\lambda}] = -2i[\tau, \bar{\tau}] \qquad [\Lambda, \Delta_{\tau} + 3\Delta_{\lambda}] = 2i[\tau^*, \bar{\tau}^*]$$

$$[L, \Delta_{\bar{\tau}} + 3\Delta_{\bar{\lambda}}] = 2i[\tau, \bar{\tau}] \qquad [\Lambda, \Delta_{\bar{\tau}} + 3\Delta_{\bar{\lambda}}] = -2i[\tau^*, \bar{\tau}^*]$$

$$[L, \Delta_{\tau} + \Delta_{\bar{\tau}} + 3\Delta_{\bar{\lambda}} + 3\Delta_{\lambda}] = 0 \qquad [\Lambda, \Delta_{\tau} + \Delta_{\bar{\tau}} + 3\Delta_{\bar{\lambda}} + 3\Delta_{\lambda}] = 0$$

(5)
$$\begin{aligned} [\partial, \bar{\tau}^*] &= -[\partial, \bar{\partial}^*] = [\tau, \bar{\partial}^*] \\ [\bar{\partial}, \tau^*] &= -[\bar{\partial}, \partial^*] = [\bar{\tau}, \partial^*] \end{aligned}$$

$$[\partial, \tau] = -i[\bar{\partial}^* + \bar{\tau}^*, \lambda]$$

$$[\bar{\partial}, \bar{\tau}] = i[\partial^* + \tau^*, \bar{\lambda}]$$

$$[\partial^*, \tau^*] = i[\bar{\partial} + \bar{\tau}, \lambda^*]$$

$$[\bar{\partial}^*, \bar{\tau}^*] = -i[\partial + \tau, \bar{\lambda}^*]$$

(7)
$$\begin{split} [\Lambda, \bar{\partial}] &= -i(\partial^* + \tau^*) \\ [\Lambda, \partial] &= i(\bar{\partial}^* + \bar{\tau}^*) \\ [L, \bar{\partial}^*] &= -i(\partial + \tau) \\ [L, \partial^*] &= i(\bar{\partial} + \bar{\tau}), \end{split}$$

(8)
$$\begin{split} [\Lambda, \Delta_{\partial}] &= [\partial, \lambda^*] + i[\partial^*, \bar{\tau}^*] \\ [\Lambda, \Delta_{\bar{\partial}}] &= [\bar{\partial}, \bar{\lambda}^*] - i[\bar{\partial}^*, \tau^*] \\ [L, \Delta_{\partial}] &= -[\partial^*, \lambda] + i[\partial, \bar{\tau}] \\ [L, \Delta_{\bar{\partial}}] &= -[\bar{\partial}^*, \bar{\lambda}] - i[\bar{\partial}, \tau]. \end{split}$$

(9)
$$\Delta_{\partial} + [\partial, \tau^*] = \Delta_{\bar{\partial}} + [\bar{\partial}, \bar{\tau}^*]$$

$$\Delta_{\partial} + [\partial^*, \tau] = \Delta_{\bar{\partial}} + [\bar{\partial}^*, \bar{\tau}]$$

$$\Delta_{d} = \Delta_{\partial} + \Delta_{\bar{\partial}} - [\partial, \bar{\tau}^*] - [\bar{\partial}, \tau^*]$$

$$\Delta_{\bar{\partial}} + \Delta_{\lambda} = \Delta_{\partial + \tau} + [\Lambda, [\Lambda, \frac{i}{2} \partial \bar{\partial} \omega]]$$

The following subspaces of d-harmonic forms,

$$\operatorname{Ker} \left(\Delta_{\bar{\partial}} + \Delta_{\partial} + \Delta_{\bar{\tau}} + \Delta_{\tau} + \Delta_{\bar{\lambda}} + \Delta_{\lambda} \right) \cap \mathcal{A}^{p,q},$$

satisfy Hodge, Serre, and conjugation dualities, since the operator is real and self adjoint. By identities (4) and (8), it follows that there is an induced finite dimensional representation of $\mathfrak{sl}(2)$ on the direct sum of these (p,q)-spaces, and so hard Lefschetz duality holds. See [Wil19] for details and applications.

REFERENCES

- [Dem86] Jean-Pierre Demailly. Sur l'identité de Bochner-Kodaira-Nakano en géométrie hermitienne. In Séminaire d'analyse P. Lelong-P. Dolbeault-H. Skoda, années 1983/1984, volume 1198 of Lecture Notes in Math., pages 88–97. Springer, Berlin, 1986.
- [Gri66] Phillip A. Griffiths. The extension problem in complex analysis. II. Embeddings with positive normal bundle. Amer. J. Math., 88:366–446, 1966.
- [Wil19] S.O. Wilson. Harmonic symmetries for hermitian manifolds. Preprint arxiv:1906.02952, 2019.

[,]	L	Λ	Н	ð	$\bar{\partial}$	∂^*	$\bar{\partial}^*$	λ	$ar{\lambda}$	λ^*	$\bar{\lambda}^*$	τ	$\bar{ au}$	τ^*	$\bar{ au}^*$
deg	(1, 1)	(-1, -1)	(0,0)	(1,0)	(0, 1)	(-1,0)	(0, -1)	(2, 1)	(1, 2)	(-2, -1)	(-1, -2)	(1,0)	(0, 1)	(-1,0)	(0, -1)
ord	0	2	1	1	1	2	2	0	0	3	3	1	1	2	2
L	0	Н	-2L	$-\lambda$	$-\bar{\lambda}$	$i(\bar{\partial} + \bar{\tau})$	$-i(\partial + \tau)$	0	0	$-\tau^*$	$-\bar{\tau}^*$	3λ	$3\bar{\lambda}$	$-2i\bar{\tau}$	$2i\tau$
Λ	-H	0	2Λ	$i(\bar{\partial}^* + \bar{\tau}^*)$	$-i(\partial^* + \tau^*)$	λ^*	$\bar{\lambda}^*$	τ	$\bar{ au}$	0	0	$-2i\bar{\tau}^*$	$2i\tau^*$	$-3\lambda^*$	$-3\bar{\lambda}^*$
Н	2L	-2Λ	0	ð	ā	$-\partial^*$	$-\bar{\partial}^*$	3λ	$3\bar{\lambda}$	$-3\lambda^*$	$-3\bar{\lambda}^*$	τ	$\bar{ au}$	$-\tau^*$	$-\bar{\tau}^*$
∂	λ	$-i(\bar{\partial}^* + \bar{\tau}^*)$	$-\partial$	0	0	Δ_{∂}	(5)	0	$\partial \bar{\partial} \omega$	(8)	(6)	(6)	(8)	(9)	(5)
$\bar{\partial}$	$\bar{\lambda}$	$i(\partial^* + \tau^*)$	$-\bar{\partial}$	0	0	(5)	$\Delta_{ar{\partial}}$	$\bar{\partial}\partial\omega$	0	(6)	(8)	(8)	(6)	(5)	(9)
∂^*	$-i(\bar{\partial} + \bar{\tau})$	$-\lambda^*$	∂^*	Δ_{∂}	(5)	0	0	(8)	(6)	0	$(\partial \bar{\partial} \omega)^*$	(9)	(5)	(6)	(8)
$\bar{\partial}^*$	$i(\partial + \tau)$	$-\bar{\lambda}^*$	$\bar{\partial}^*$	(5)	$\Delta_{ar{\partial}}$	0	0	(6)	(8)	$(\bar{\partial}\partial\omega)^*$	0	(5)	(9)	(8)	(6)
λ	0	$-\tau$	-3λ	0	$\partial \bar{\partial} \omega$	(8)	(6)	0	0	Δ_{λ}	$\frac{2}{3}[\bar{\tau}^*, \tau]$	0	$-[ar{\lambda}, au]$	$-[L, \Delta_{\lambda}]$	$[\tau, \tau]/2i$
$\bar{\lambda}$	0	$-\bar{\tau}$	$-3\bar{\lambda}$	$\bar{\partial}\partial\omega$	0	(6)	(8)	0	0	$\frac{2}{3}[\tau^*, \bar{\tau}]$	$\Delta_{ar{\lambda}}$	$-[\bar{\tau},\lambda]$	0	$i[\bar{\tau},\bar{\tau}]/2$	$-[L,\Delta_{ar{\lambda}}]$
λ^*	τ^*	0	$3\lambda^*$	(8)	(6)	0	$(\bar{\partial}\partial\omega)^*$	Δ_{λ}	$\frac{2}{3}[\tau^*, \bar{\tau}]$	0	0	$[\Lambda, \Delta_{\lambda}]$	$i[\tau^*, \tau^*]/2$	0	$-[\bar{\lambda}^*, \tau^*]$
$ar{\lambda}^*$	$\bar{ au}^*$	0	$3\bar{\lambda}^*$	(6)	(8)	$(\partial \bar{\partial} \omega)^*$	0	$\frac{2}{3}[\bar{\tau}^*, \tau]$	$\Delta_{ar{\lambda}}$	0	0	$[\bar{\tau}^*, \bar{\tau}^*]/2i$	$[\Lambda,\Delta_{ar{\lambda}}]$	$-[\bar{\tau}^*, \lambda^*]$	0
τ	-3λ	$2i\bar{\tau}^*$	$-\tau$	(6)	(8)	(9)	(5)	0	$-[ar{ au},\lambda]$	$[\Lambda, \Delta_{\lambda}]$	$[\bar{\tau}^*, \bar{\tau}^*]/2i$	$2i[\lambda, \bar{\tau}^*]$	$\frac{i}{2}[L, \Delta_{\tau} + 3\Delta_{\lambda}]$	$\Delta_{ au}$	$3[\bar{\lambda}^*, \lambda]/2$
$\bar{ au}$	$-3\bar{\lambda}$	$-2i\tau^*$	$-\bar{\tau}$	(8)	(6)	(5)	(9)	$-[ar{\lambda}, au]$	0	$i[\tau^*, \tau^*]/2$	$[\Lambda,\Delta_{ar{\lambda}}]$	$\frac{i}{2}[L, \Delta_{\tau} + 3\Delta_{\lambda}]$	$-2i[\bar{\lambda}, \tau^*]$	$3[\lambda^*, \bar{\lambda}]/2$	$\Delta_{ar{ au}}$
τ^*	$2i\bar{\tau}$	$3\lambda^*$	τ*	(9)	(5)	(6)	(8)	$-[L, \Delta_{\lambda}]$	$i[ar{ au},ar{ au}]/2$	0	$-[\bar{\tau}^*, \lambda^*]$	Δ_{τ}	$3[\lambda^*, \bar{\lambda}]/2$	$-2i[\lambda^*, \bar{\tau}]$	$\frac{i}{2}[\Lambda, \Delta_{\tau} + 3\Delta_{\lambda}]$
$\bar{ au}^*$	$-2i\tau$	$3\bar{\lambda}^*$	$\bar{\tau}^*$	(5)	(9)	(8)	(6)	$[\tau, \tau]/2i$	$-[L,\Delta_{\bar{\lambda}}]$	$-[\bar{\lambda}^*, \tau*]$	0	$3[\bar{\lambda}^*, \lambda]/2$	$\Delta_{ar{ au}}$	$\frac{i}{2}[\Lambda, \Delta_{\tau} + 3\Delta_{\lambda}]$	$2i[\bar{\lambda}^*, \tau]$

The graded Lie algebra of differential operators on a Hermitian manifold

(compiled by Scott O. Wilson)