

Photon

A data driven energy market opportunities map

LAPD 2020/21 - Prof. Liliana Ferreira

Eduardo Ribeiro Martim Silva Miguel Pinto Nuno Cardoso

Table of Contents

- 1. Understanding the problem
- 2. Solution: Photon
- 3. Steps and Goals
- 4. Data Sources and Data Models
- 5. Tech Stack
- 6. Requirements
- 7. Prototype
- 8. Architecture
- 9. Development Roadmap

Understanding the problem

- Every day, we learn about emerging technologies and developments that have the **potential to be groundbreaking**. But how do we **detect** the early proof-of-concept, non-obvious opportunities with real growth potential?
- This leads us to the broad topic of **Energy**. It's one of the biggest drivers for global issues like climate change, and when starting new projects and companies, it's important to **make sure the problem is relevant**.
- The process of determining whether a problem is prossiming enough is not trivial. How can we **gather** and **process** the vast amount of data revolving around energy to detect the most promising, emerging and non-obvious problems that need to be solved?

Solution: Photon

Photon is an application capable of:

- Extracting and analyzing energy related data from various sources
- Detecting and identifying real, high growth opportunities within the energy market and industry
- Showcasing that information to the user in an easy to use graph-based visual interface

Steps and Goals

Data Extraction

Development of modules that communicate with external APIs and sources in order to extract relevant, energy-related data.

Knowledge Graph

Parsing and interpretation of the collected data, in order to build knowledge graphs containing energy-related information.

ML Based Prediction

ML based screening and prediction of opportunity growth potential (can be done possibly with NLP and proximity analysis)...

Visual Interface

Creation of a visual interface, that will present the knowledge graph to the user, to have a sound source of insight into the "problem area" of Energy.

Data Sources

Social Media APIs

- → Reddit API
- → Twitter API

Social Media APIs can tap into and extract **public conversations** as a way to understand what's **trending**, **discover insights** and listen to events.

With these APIs, it's possible to gather different metrics data and search for specific topics using **keywords** to analyze related conversations and get popular searches in the platforms.

These 2 social media platforms are specially relevant given their abundance of cutting edge discourse.

Data Sources

News APIs

→ Usearch API

News APIs will have a great importance in data collection. This API aggregates **news from multiple worldwide sources** and utilizes different features to distinguish them.

By using it, it will be possible to retrieve news by keywords, phrases, countries and publishers.

Data Sources Patent APIs

→ LENS.ORG API

This API aggregates data points and provides information from **patents, companies and academic work.** They allow the discovery of people and companies, as well as visualizing **trends and patterns** across the innovation landscape.

It can prove to be very useful to retrieve information regarding already existing companies and projects in interesting sub areas within the Energy industry.

Tech Stack

React

Javascript Library to build the graph-based web interface.

Node.js

Accesses the Neo4J graph-based database in order to extract meaningful data.

Express

NodeJS web application framework.

Neo4J

Leverages the data relationships between different entities.

Requirements

ID	Description	Priority	MVP
US01	As a user, I want to visualize and navigate through the graph, to be aware of the different opportunities.	High	х
US02	As a user, I want to have more information about a specific graph node (energy sub-area), so I can make a further analysis to a specific opportunity or area.	High	х
US03	As a user, I want to see all the attributes of the nodes and their relationships, so I can understand the connections and what makes a certain sub-area promising or not.	High	
US04	As a user, I want to see distinct node sizes, so that I can understand where the best opportunities lie.	Medium	
US05	As a user, I want to have information about the specific articles/posts or have some links to pertinent pages, so I can analyse in first-hand the posts and articles that were extracted for a certain sub-area or topic.	Medium	
US06	As a user, I want to have filtering options based on certain properties, to see only relevant nodes.	Low	

Architecture

Development Roadmap

Thank you!

Questions?