		If of every quadratic lattice one can define the notion of weak Jacobi forms
		associated with this lattice. In 1992 K. Withmüller proved that the spaces of weak Jacobi forms associated with root lattices (except E_8) have the structure of a
		free algebra over the ring of modular forms. However, his proof is very
		complicated and probably contains some gaps. In my talk I plan to introduce
		some constructions that help to solve this problem in case D_8 and obtain
	Weak Jacobi forms for root	generators of the corresponding algebra in an explicit way. The talk will be based
Adler	lattice of type D_8	on joint results with Valery Gritsenko (publication in preparation).
		In this talk, I will describe how to compute slopes of p-adic L-invariants of arbitrary
		weight and level by means of the Greenberg-Stevens formula. The method is
		based on work of Lauder and Vonk on computing the reverse characteristic series
		of the Up-operator on overconvergent modular forms. Using higher derivatives of
		this characteristic series, it is possible to construct a polynomial whose zeros are
	Computing L-invariants via	precisely the L-invariants appearing in the corresponding space of modular forms
		with fixed sign of the Atkin-Lehner involution at p. This is joint work with Gebhard
Anni	formula	Böckle, Peter Mathias Gräf and Alvaro Troya.
		We will present recent results concerning the sup-norm of \$GL_2\$ automorphic
	·	forms over number fields. In particular, we will focus on situations that appear for
	•	forms which are highly ramified at finite places. This will leads naturally to
		interesting questions related to the representation theory of \$GL_2\$ over local
Assing	aspect	fields Let \$/Gamma-PSL(z,\z[i])จ be the Picara group and จากการจ be the three-
		dimensional hyperbolic space. We study the Prime Geodesic Theorem for the
		quotient \$\Gamma \setminus \HH^3\$, called the Picard manifold, obtaining an
		error term of size \$O(X^{3/2+\theta/2+\epsilon})\$, where \$\theta\$ denotes a
	Prime geodesic theorem for	subconvexity exponent for quadratic Dirichlet \$L\$-functions defined over
Balkanova	the Picard manifold	Gaussian integers. This is joint work with Dmitry Frolenkov. in this talk, we investigate the Diophantine equation ֆx-{∠}-кху+ку-{∠}+ıy–υֆ
		for integers \$k\$ and \$I\$ with \$k\$ even and we characterized all solution in the
		case where \$1^2 <k\$.< td=""></k\$.<>
		Similarly, we give a characterization of the positive solutions of the equation
		\$x^{2}-kxy+ky^{2}+2^{r}3^{s}y=0\$ where \$k\equiv2\$ (mod \$3\$) if \$r=0\$, If not,
	A note in Diophantine	\$n, s\$ and \$t\$ are non-negative integers when \$k=2k'+1\$ with \$k'\equiv2\$ (mod
Benseba	Equation	\$3\$).
	Anni Assing Balkanova	Computing L-invariants via the Greenberg-Stevens formula The sup-norm problem for automorphic forms over number fields in the level aspect Prime geodesic theorem for the Picard manifold A note in Diophantine

Andras	Biro	Local average of the hyperbolic circle problem for Fuchsian groups	hyperbolic circle problem is the estimation of the number of elements of the \$\Gamma\$-orbit of \$z\$ in a hyperbolic circle around \$w\$ of radius \$R\$, where \$z\$ and \$w\$ are given points of the upper half plane \$H\$ and \$R\$ is a large number. An estimate with error term \$e^{{2\over 3}R}\$ is known, and this has not been improved for any group. Recently Risager and Petridis proved that in the special case \$\Gamma = PSL(2,{\bf Z})\$ taking \$z=w\$ and averaging over \$z\$ in a certain way the error term can be improved to \$e^{\left({7\over {12}}+\epsilon\right)R}\$. We proved such an improvement for a general \$\Gamma\$, our error term is \$e^{\left({5\over 8}+\epsilon\right)R}\$ (which is better than \$e^{{2\over 3}R}\$ but weaker than the estimate of Risager and Petridis in the case \$\Gamma = PSL(2,{\bf Z})\$). Our main tool is our generalization of the Selberg trace formula proved earlier.
Jim	Brown	Congruences for paramodular Saito-Kurokawa lifts and applications	sign -1. It is well known there is a lift of \$\phi\$ to a Siegel modular form \$f_{\phi} \in S_{k}(\Gamma[M])\$ where \$\Gamma[M] \subset \textrm{Sp}_4(\mathbb{Q})\$ is the paramodular group. In this talk we give a congruence result for Hilbert Siegel modular forms that we then specialize to the paramodular setting. We show there is a congruence between \$f_{\phi}\$ and a cuspidal Siegel eigenform with irreducible Galois representation. This congruence provides evidence for the Bloch-Kato conjecture for \$\phi\$ not covered by previous work. This is joint work with Huixi Li.
Kwangho	Choiy	On reducibility of parabolic induction for simply-connected \$p\$-adic groups	The study on reducibility of parabolic induction plays a crucial role in constructing tempered \$L\$-packets of \$p\$-adic groups and establishing the endoscopic classification of automorphic representations. In this talk, we shall focus on simply-connected \$p\$-adic groups \$SL(n), SU(n),\$ and \$Spin(n),\$ and address a combinatorial approach to the study by means of \$R\$-groups. We relate their \$R\$-groups to those of \$GL(n), U(n),\$ and \$GSpin(n),\$ respectively, and discuss a conjectural generalization for an arbitrary simply-connected group. This is based on joint work with D. Goldberg and another with D. Ban and D. Goldberg.

			The exterior the adda notion of a ctorocon limbs product on the space of caspidal
			Jacobi forms to include non-cuspidal forms as well. This is done by examining
			carefully the relation between certain ``growth-killing" invariant differential
			operators on the Siegel upper half space of degree 2 and those on H \times C.
			As applications, we can understand better the growth of Petersson norms of
		Petersson norms of not	Fourier Jacobi coefficients of Klingen Eisenstein series, which in turn has
		necessarily cuspidal Jacobi	applications to finer issues about representation numbers of quadratic forms; and
		modular forms and	as a by-product we also show that any Siegel modular form of degree 2 is
Soumya	Das	applications	determined by its `fundamental' Fourier coefficients.
			We present in this talk some results about the first moment of cubic twists of
			Dirichlet L-functions over the function field $Fq(T)$, when $q \equiv 1 \pmod{3}$. In this case,
			the ground field contains all third roots of 1, and the cubic twists are given by
			Kummer theory. We first explain the history of the problem and the standard
			conjectures for moments of L-functions, and present the previous results, over
		Moments of cubic Dirichlet	number fields and function fields. The case of cubic twists over number fields was
Chantal	David	twists over function fields	considered in previous work, but never for the full family over a field containing
Chantal	David	twists over function fields	In his remarkable thesis, Manjul Bhargava reformulated Gauss' composition law
			for quadratic forms in a beautifully elegant, but elementary setting. He went on to
			generalize his setting to the cases of cubic, quartic, and quintic forms and, in the
			process, discovered a number of additional composition laws, describing a
			mathematical framework that explained them and gave him a way to address and
			resolve other outstanding problems in number theory. In the cubic case, his
			descriptions are complete, but many of the underlying details are omitted. It
			would be interesting to fill these in and provide a more complete dictionary in the
		A proposed addition to	Bhargava setting of the connection between composition of forms and the
Giuliana	Davidoff	Bhargava's thesis	arithmetic of cubic fields
			Doi and Doi-Naganuma lifts, which lift elliptic mopdular forms of integral weight k to
			Hilbert modular forms of parallel weight k on the full Hilbert modular group over a
			real quadratic field of discriminant D. Namely, we extend the lift in two directions:
			1) we extend it to harmonic Maass forms (following Borcherds who previously
			extended it to weakly holomorphic forms) and 2) we allow forms of level d for any
			d dividing D. The functions we obtain are analogues of polar harmonic Maass
			forms on Hilbert modular surfaces. Moreover, as one of our applications, we find
			that the Eisenstein series appearing in Gross's and Zagier's paper on the
			factorization of singular moduli is a lift of an incoherent Eisenstein series of weight
		New variants of the Doi and	one attached to an imaginary quadratic field. This connects the proof by Gross
		Doi-Naganuma lift and	and Zagier of the factorization formula with the one given by Schofer using
Stephan	Ehlen	applications	regularized theta lfits.

			we define certain generalization of Kloosterman sums over GL_n(F), where F is a
			finite field. The analogue of Weil's bound for classical Kloosterman sums holds in
			this setting and it can be proved by an elementary argument (and Weil's bound).
		Kloosterman sums over	Moreover in some cases the general sum can be expressed with classical sums
Márton	Erdélyi	GL_n	over a finite extension of F. The purpose of this talk is to discuss key areas related to the recruitment and
			retention of a diverse population in STEM, with particular emphasis in
			mathematics. The speaker will also present results from psychological experiments
		A discussion on increasing	highlighting environmental obstructions to individual performance in mathematics,
Adriana	Espinosa	diversity in STEM	and the diversification of STEM.
			we use techniques regarding generalized Dirichlet series to obtain formulas for a
			wide class of \$L\$-functions at rational arguments. It is shown that these values
			are related to special functions on the upper half plane which possess similar
		Demonstration identifies of	properties as modular forms. Several formulas of Ramanujan involving values of
1.1	F I .	Ramanujan identities of	\$L\$-functions at integer arguments turn out to be special cases of the main
Johann	Franke	higher degree	theorem.
			various contexts, from the theory of modular forms to the Prime Geodesic
			Theorem. On the one hand, the mean value of \$L_n(1/2)\$ determines the quality
			of the error term in asymptotic formulas for moments of symmetric square L- functions. On the other hand, investigation of the series \$L n(s)\$ at the point 1 is
			ultimately related to the Prime Geodesic Theorem. Using the Kuznetsov trace
			formula, we prove a spectral decomposition for the sums of generalized Dirichlet L-
			series. Among applications are an explicit formula relating norms of prime
			geodesics to moments of symmetric square L-functions and an asymptotic
		Convolution formula for the	expansion for the average of central values of generalized Dirichlet L-series. This
		sums of generalized Dirichlet	is joint work with Olga Balkanova.
Dmitry	Frolenkov	L-series	
			Vector valued modular forms form a graded module over the ring of modular
			forms. I will explain how understanding the structure of the module of vector
			valued modular forms allows one to show that the component functions of vector
			valued modular forms are solutions to certain ordinary differential equations. In
			certain cases, one can use a Hauptmodul and hypergeometric series to solve
			these differential equations. One then obtains the q-series expansions of the
		Vector Valued Modular	vector valued modular forms. This perspective gives a viable approach towards
Richard	Gottesman	Forms on Gamma_0(2)	proving certain cases of the unbounded denominator conjecture.

			in 1927 Folya proved that the Riemann Hypothesis is equivalent to the
			hyperbolicity of Jensen polynomials for Riemann's \$\Xi\$-function. This
			hyperbolicity has only been proved for degrees d=1, 2, 3. We prove the
			hyperbolicity of 100\% of the Jensen polynomials of every degree. We obtain a
		Polya's Program for the	general theorem which models such polynomials by Hermite polynomials. This
		Riemann Hypothesis and	theorem also allows us to prove a conjecture of Chen, Jia, and Wang on the
Michael	Griffin	Related Problems	partition function. This is joint work with Ken Ono, Larry Rolen, and Don Zagier.
			elliptic curves defined over cubic number fields of mixed signature. The points are
			defined as integrals of the corresponding modular form, in a way that resembles
		Modular forms over cubic	Darmon's ATR points for curves over real quadratic fields. I will also present some
		fields and algebraic points in	numerical evidence in support of the conjectured rationality. This is joint work with
Xavier	Guitart	elliptic curves	Marc Masdeu and Haluk Sengun.
			We describe poles and the corresponding residual automorphic representations
		Et (. t t	of Eisenstein series attached to maximal
Manala	Hannan	_	parabolic subgroups whose unipotent radicals admit Jordan algebra structure.
Marcela	Hanzer	Jordan algebras	(joint work with G. Savin)
			an arbitrary Siegel cusp form. If we evaluate it at a particular complex number we
			obtain a linear functional of the vector space of cuspidal Siegel modular forms.
			Such a functional is associated to a particular integral kernel. Such kernel has
			been worked in several cases.
			In this talk we consider the Koecher-Maass series of Siegel cusp forms of degree
			three twisted by certain Eisenstein series of GL_3(Z). This is a multiple variables
		On a Koecher-Maass series	Dirichlet series. We find the corresponding integral kernel and describe some of its
Fernando	Herrera Contreras	of several variables	analytic properties.
			characterizes, for a meromorphic function f on the unit disc, the value of the
			integral of $\log f(z) $ on the unit circle in terms of the zeros and poles of f inside the
			unit disc. An important theorem of Rohrlich establishes a version of Jensen's
			formula for modular functions f with respect to the full modular group PSL_2(Z)
			and expresses the integral of log f(z) over the corresponding modular curve in
			terms of special values of Dedekind's eta function.
			In this talk I will present a Jensen-Rohrlich type formula for certain family of
			functions defined in the hyperbolic 3-space which are automorphic for the group
		A Jensen-Rohrlich type	PSL_2(O_K) where O_K denotes the ring of integers of an imaginary quadratic
		formula for the hyperbolic 3-	field. This is joint work with Ö. Imamoglu (ETH Zurich), AM. von Pippich (TU
Sebastián	Herrero	space	Darmstadt) and Á. Tóth (Eotvos Lorand Univ.).
Cobactan	111011010	Tobaso	Damidady and the roll (Lottoo Loland Olliv.).

		Quantum Unique Ergodicity in Almost Every Shrinking	a finite volume negatively curved manifold M should behave like random waves as the Laplacian eigenvalue tends to infinity. One manifestation of this conjecture is quantum unique ergodicity on configuration space, which states that the probability measures $ f ^2$ dµ converge weakly to the uniform measure dµ on M. For M = Γ H, these eigenfunctions are Maass forms, and this conjecture is a celebrated theorem of Lindenstrauss and Soundararajan. It is natural to ask whether equidistribution of these measures still occurs in balls centred at fixed points in Γ H whose radii shrink as the Laplacian eigenvalue tends to infinity. We show that if the radius shrinks faster than the Planck scale, equidistribution may fail, and we discuss how to prove (conditional or unconditional) results towards equidistribution for balls shrinking at any scale larger than the Planck scale that
Peter	Humphries	Ball	are centred at almost every point in $\Gamma \setminus H$.
			many nice properties. These include divisibility results and congruences for their
		Canonical bases for spaces	Fourier coefficients, zeros along lines or arcs, and explicit formulas for their
		of weakly holomorphic	generating functions. We discuss recent results in this area, many of which are
Paul	Jenkins	modular forms	
raui	Jenkins	Inodular forms	joint with graduate and undergraduate students. Jointly with Kathiin Bringmann and Antun Milas, we constructed examples of
			higher depth quantum modular forms coming from rank two false theta functions
			appearing in vertex algebra representation theory. The "companions" of the false
		Higher depth quantum	theta functions in the lower half-plane can be realized both as double Eichler
		modular forms and multiple	integrals and as non-holomorphic theta series having values of "double error"
Jonas	Kaszian	Eichler integrals	functions as coefficients.
			develop geometric methods to study the weights of the generators of a graded
			module of vector-valued modular forms of half-integral weight, taking values in a
			complex representation of the metaplectic group. We use these methods to
			compute the "generating weights" for the Weil representation attached to cyclic
		Generating weights of	quadratic module of order twice a prime power. The computation takes a detour
		modules of vector-valued	through classical number theory to make use of some lesser-known facts about
		modular forms for the Weil	the distribution of quadratic residues. Finally, we show that the generating
Gene	Корр	representation	weights approach a simple limiting distribution.
	1	1	Inc. 2000 albertain a surface manning greater area.

		T	
			During the workshop focused on Sarnak's Rigidity Conjecture in January 2017, we have formulated a precise conjecture that, if true, extends
			the converse theorem of Hecke without requiring hypotheses on twists by Dirichlet
			character or an Euler product. The main idea is to linearize the Euler product,
			replacing it with twists by Ramanujan sums. In this talk, I provide our motivation
			and evidence for the conjecture, including results of some special cases and
		A conjectural extension of	under various additional hypotheses. This is a joint work with S. Bettin, J. Bober,
Min	Lee	Hecke's converse theorem	A. Booker, B. Conrey, G. Molteni, T. Oliver, D. Platt and R. Steiner. Abstract: In this article we introduce and investigate new families of polynomials
			Bn(1/2 , x) called error Bernoulli polynomials through generating functions, Appell
			sequences and umbral calculus. We also show that these polynomials are related
Hunduma	Legesse Geleta	Error Bernoulli Polynomial	to the Hermite polynomials.
			we aim at studying automorphic forms or bounded analytic conductor, after
			precisely defining such a notion, in the division quaternion algebra setting. We
			prove the equidistribution of the universal family with respect to an explicit and
		Arithmetical Statistics on	geometrically meaningful measure. It leads to answering the Sato-Tate
Didian	1		conjectures in this case, and contains the counting law of the universal family,
Didier	Lesesvre	Quaternion Algebras	with a power savings error term in the totally definite case. It is well-known that Fourier coefficients of modular forms satisfy many congruence
		Divisibility of Fourier	properties. In this talk, we will look at some weight 4 meromorphic modular forms,
		coefficients of meromorphic	whose n-th Fourier coefficient is divisible by n. This is a joint work with Michalis
Yingkun	Li	modular forms	Neuruer at TU Darmstadt.
			,
			John Millson developed a theory of holomorphic modular forms, both homological
			and cohomological, for the Lie groups O(p,q) and U(p,q), related through
			Poincare duality. In this talk, I shall discuss the case of U(2,1), and following from
			the work of Funke-Millson on SO(2,2), use this (relatively) down-to-earth example
		Kudla Millaan Thata Cariaa	to show how one can relate the behaviour of the cohomological theta series at
Dob	Little	Kudla Millson Theta Series	the Borel-Serre boundary components to the behaviour of the homological
Rob	Little	for U(2,1)	special cycles. In particular, we may write the We study weight 2 modular forms associated to quadratic forms of negative
		Traces of Singular Moduli	discriminant and relate them to traces of singular moduli of Niebur-Poincaré
		and Regularized Inner	series. This allows us to compute regularized inner products of these functions,
Steffen	Löbrich	Products	which are given by traces of singular moduli of Green's functions. we discuss asymptotics for the number of lattice points in a ball of radius \$R\$
			around the origin, and lying on the one-sheeted hyperboloid \$x_1^2 + \cdots +
			$x_k^2 = x_{d+1}^2 + h$ \$. These should be thought of as analogies to the Gauss
<u>_</u>		Counting Lattice Points on	circle problem. We describe ideas and techniques from shifted convolution sums
David	Lowry-Duda	Spheres and Hyperboloids	and modular forms and further ideas in progress.

		-	Triol an elliptic curve Liover Q, the distribution of the number of points on Limbu pi
			has been well-studied over the last few decades. A relatively recent study is that
			of extremal primes for a given elliptic curve E. These are the primes p of good
			reduction for which the number of points on E mod p is either maximal or minimal.
			For the curve with CM, an asymptotic for the number of extremal primes was
			determined by James and Pollack. In this talk, I will discuss recent progress in the
		Extramal primas for alliptic	,
A :4	N 4 = 1:1 -	Extremal primes for elliptic	non-CM case. This is joint work with C. David, A. Gafni, N. Prabhu, and C.
Amita	Malik	curves	Turnage-Butterbaugh. As a generalization of namionic maass forms, we consider polynamionic maass
			forms characterized by the repeating action of the ξ-operator. In this talk, we show
			that the traces of CM values and cycle integrals of polyharmonic Maass forms of
		Traces of CM values and	weight 0 appear as the Fourier coefficients of polyharmonic Maass forms of
		cycle integrals of	weight 1/2 and 3/2. This is an extension of Zagier and Duke-Imamoglu-Toth's
Toshiki	Matsusaka	polyharmonic Maass forms	famous works.
TOSTIKI	Matsusaka	polynamionic maass forms	We determine \$\Gamma\$-integrals for irreducible rational \$GL m\$-
			representations. For \$m=2\$ our result is exhaustive, and we cover some general
		Vector valued \$\Gamma\$-	families. As an application, we define Sturm'S operator for vector valued
Kathrin	Maurischat	integrals	symplectic modular forms.
Radiiiii	Madricoriat	Certain identities among	Symplosiis modular forms.
Jaban	Meher	eigenforms	For \$m=2\$ our result is exhaustive, and we cover some general families.
		Eisenstein series for Jacobi	As an application, we define Sturm'S operator for vector valued symplectic
Andreea	Mocanu	forms of lattice index	modular forms.
			We prove Zagier duality between canonical bases for pairs of spaces of weakly
		The Arithmetic of Modular	holomorphic modular forms, and examine the properties of bivariate generating
Grant	Molnar	Grids	functions for these bases.
			we give congruences modulo powers of 2 for the Fourier coefficients of certain
			level 2 modular functions with poles only at 0, answering a question posed by
			Andersen and Jenkins. The congruences involve a modulus that depends on the
		Congruences for Fourier	binary expansion of the modular form's order of vanishing at \$\infty\$. We also
		Coefficients of Modular	demonstrate congruences for Fourier coefficients of some level 4 modular
Eric	Moss	Functions of Levels 2 and 4	functions.
			I will talk about Fourier expansions of modular forms at arbitrary cusps. After
			mentioning some applications of these expansions I will explain how to compute
			them. Three algorithms for the computation of Fourier expansions have appeared
			recently and one of them is joint work with Martin Dickson. In the second half of
			· ·
			the talk I will talk about joint work with François Brunault, where we calculate the
<u></u>			number fields generated by Fourier expansions at cusps as explicit cyclotomic
Michael	Neururer	Fourier expansions at cusps	extensions of the field generated by the coefficients at the cusp infinity.

			In my paper, I am introducing a more focused algebraic aspect of the
			automorphic form theory particularly in the field of representation. Further, I
		An Algebraic approach of	leverage a deeper and strong understanding of representations series,
Giresse Djomo	Okaso	automorphic forms	isomorphism, automorphism, and group representation.
			of half-integral weight to the space of modular forms of integral weight. A. Selberg
			in his unpublished work found explicitly this correspondence (the first Shimura
			map S1) for the class of forms which are products of a Hecke eigenform of level
			one and a Jacobi theta function.
			Later, B. Cipra generalized the work of Selberg to the case where Jacobi theta
			functions are replaced by the theta functions associated to Dirichlet charater of
			prime power moduli, and the level one Hecke eigenforms are replaced by
			newforms of arbitrary level. D. Hansen and Y. Naqvi generalized Cipra's work (on
			the image of a class of modular forms under the first Shimura map S1) to cover
			theta functions associated to Dirichlet characters of arbitrary moduli. In this paper,
March IZ	D I .	· ·	we show that the earlier results can be modified to get
Manish Kumar	Pandey	weight	similar results for the t-th Shimura lifts St, for any positive square-free integers t.
			forms of weight 2, and the homology of modular curves. They have been the
			object of extensive investigations by many mathematicians including Birch, Manin, and Cremona.
			Mazur, Rubin, and Stein have recently formulated a series of conjectures about
			statistical properties of modular symbols in order to understand central values of
			twists of elliptic curve L-functions. Two of these conjectures relate to the
			asymptotic growth of the first and second moments of the modular symbols. In
			joint work with Morten S. Risager we prove these on average using analytic
			properties of Eisenstein series twisted with modular symbols. We also prove
		Arithmetic Statistics of	another conjecture predicting the Gaussian distribution of normalised modular
Yiannis	Petridis	Modular Symbols	symbols ordered according to the size of the denominator of the cusps.
			A basic but difficult question in the analytic theory of automorphic forms is: given
			a reductive group G and a representation r of its L-group, how many automorphic
		The Weyl law for algebraic	representations of bounded analytic conductor are there? In this talk I will present
lan	Petrow	tori	an answer to this question in the case that G is a torus over a number field.

Angelo	Rendina	Kurokawa-Mizumoto congruences and degree 8 L values	has a factor of the large prime 691 in its denominator. This prime is also a factor of the 12th Bernoulli number, and is the modulo of congruence between the Hecke eigenvalues of the weight 12 Eisenstein series and the Delta cusp form itself: this is in accordance with a special case of the Bloch-Kato conjecture. In a joint paper with N. Dummigan and B. Heim, we show that the same phenomenon occurs when considering the spinor L-function associated to the tensor product of an elliptic cusp form and a Siegel cusp form, where the latter is congruent to a Saito-Kurokawa lift modulo a large prime dividing the algebraic part of the L-function associated to the corresponding pre-lift. In this talk, we relate the special value at a non positive integer \$\underline{\textbf{N}}=(-N_{1},, -N_{n})\$
			obtained by meromorphic continuation of the multiple zeta function
			\begin{equation*}
			Z(\underline{s})= \sum_{\underline{m} \in
			\mathbb{N}^{*n}}\prod_{i=1}^{n}{\nfac{1}{(m_{1}+\dots +m_{i})}^{s_{i}}}}
			\end{equation*}
			to special values of the function
			\begin{equation*}
			$Y(\underline\{s\}) = \int_{\{1, +\in\}}^{n} \int_{\{1, +\in\}}^{n} \left(x_{1} + \cdot \right) ds$
			+x_{i})^{s_{i}}} d\underline{x}.
			\end{equation*}
		The multiple zeta values at	
Boualem	Sadaoui	the non positive integers	for this, we use Raabe's formula and the Bernoulli numbers.
			an explicit pullback formula that gives an integral representation for the twisted
			standard L-function for a holomorphic vector-valued Siegel cusp form of degree n
			and arbitrary level. In contrast to all previously proved pullback formulas in this
			situation, our formula involves only scalar-valued functions despite being
		Integral representation and	applicable to L-functions of vector-valued Siegel cusp forms. Further, by
		critical L-values for the	specializing our integral representation to the case n=2, we prove an algebraicity
		standard L-function of a	result for the critical L-values in that case (generalizing previously proved critical-
Abhishek	Saha	Siegel modular form	value results for the full level case).

Markus Anup Kumar	Schwagenscheidt Singh	Borcherds lifts of harmonic Maass forms Representations of a positive integer by octonary quadratic forms.	1 • 1
Saurabh Kumar	Singh	Weyl bound for \$p\$-power twist of GL(2) L-functions	\$\Gamma_0(N)\$ with \$N\$ square-free. Let \$p\$ be a prime and let \$\chi\$ be a primitive character of modulus \$p^{3r}\$. We shall prove the Weyl-type subconex bound \begin{align*} L \left(\frac{1}{2} + it, f \otimes \chi \right) \ll_{f, t, \epsilon} p^{r + \epsilon}, \end{align*} where \$\epsilon > 0\$ is any positive real number.
Lejla	Smajlovic	On singular invariants for certain genus one arithmetic groups	generators x_N and y_N of the holomorphic function field associated to certain genus one arithmetic groups, by which we mean the arithmetic and algebraic nature of the numbers x_N (z) and y_N (z) for any CM point z in the upper half plane.
Fredrik	Stromberg	Computational aspects of spectral theory for non-congruence subgroups.	The spectral theory for congruence subgroups of the modular group is fairly well understood since Selberg and the development of the Selberg trace formula. In particular it is known that congruence subgroups have an infinite number of discrete eigenvalues (corresponding to Maass cusp forms) and there is extensive support towards Selberg's conjecture that there are no small eigenvalues for congruence subgroups. In contrast to this setting, much less is known for noncongruence subgroups of the modular group even though these groups are clearly arithmetic. In fact, it can be shown that under certain circumstances small eigenvalues must exist. And even the existence of infinitely many "new" discrete eigenvalues is not known for these groups. The main obstacle for developing the spectral theory further in this setting that there is in general no explicit formula for the scattering determinant. In this talk I will discuss computational methods and results for computing scattering determinants for non-congruence subgroups and in particular how this can be used together with a version of Weyl's law to provide (heuristic) certification of computed eigenvalues.

			Assuming a deep but standard conjecture in the Langiands programme, we prove
			Fermat's Last Theorem over \$\mathbb Q(i)\$. Under the same assumption, we
			also prove that, for all prime exponents \$p \geq 5\$, the Fermat's equation
		On Fermat's equation over	\$a^p+b^p+c^p=0\$ does not have non-trivial solutions over \$\mathbb Q(\sqrt{-2})\$
George	Turcas	quadratic imaginary fields	and \$\mathbb Q(\sqrt{-7})\$. arxiv.org/abs/1710.10163
			Given two distinct unitary cuspidal automorphic representations for GL(n)/\Q, we
			denote S to be the set of primes at which the associated Hecke eigenvalues
		A refinement of strong	differ. Under the assumption that the adjoint lifts are automorphic and furthermore
Nahid	Walji	multiplicity one	cuspidal, we obtain a lower bound on the lower Dirichlet density of S.
			An even lattice or signature (z,n) is called z-reflective in it admits a non-constant
			holomorphic modular form whose divisor is contained in the (-2)-Heegner divisor.
			In this talk I prove the new classification result that there is no 2-reflective lattice
		Non-existence of reflective	when \$n\geq 15\$ and \$n\neq 19\$ except the even unimodular lattices of
Haowu	Wang	modular forms	signature (2,18) and (2,26).
		Heegner Divisors on Toroidal	Borcherds proved, using his theta lift, that the Heegner divisors on (open)
		Compactifications of	orthogonal Shimura varieties behave like the coefficients of a modular form. We
		Orthogonal Shimura	examine suitable extensions of these divisors to toroidal compactifications of such
Shaul	Zemel	Varieties	Shimura varieties, for which such a modularity result continues to hold.