

维稳618和双11:

京东科技数据库海量运维的生态体系建设与实践

演讲人: 高新刚

目录

海量运维概述

海量运维的高可用体系

海量资源管理

海量告警管理

大促备战分享

海量运维的高可用体系

优质的容灾服务质量

RTO<10S 秒级监控 哨兵探测 高效流程快速切换

可靠的切换决策模型

自动识别异常高效监控 极端场景判别 故障自动决策避免误切

平台自动化管理

CMDB上下线一站式配置服务 进度状态、历史查询、主动通知 可插拔模块、系统融合 丰富的API接口 可视化信息统计和管理报表

良好的兼容性和适配性

不同环境:跨IDC、跨ZONE、 跨主机

不同架构:读写分离、延迟同

步、共享存储

不同中间件: SLB、LVS、CDS、

DNS, PROXY

服务自身的可用性保障

容灾服务组件无状态 跨机房部署 配置库双活部署 服务多活无单点问题

丰富的容灾类型

主库容灾、从库容灾 手动切换、自动切换、权重切换 Online switch & offline switch 批量切换、机房容灾 E

F

高可用体系的数据一致性保障

高可用体系的数据一致性保障

类别	主机房从库数量	同城机房从库数量	异地机房从库数量	机房级灾备ACK数量	地域级灾备ACK数 量
半同步强一致	1	1	1	>1	>2
	2	1	1	>2	>3
	3	1	1	>3	>4
	Х	у	Z	>x	>x+y
	1	1	1	>1	>2
分组半	2	2	2	>1	>2
同步	3	2	2	>1	>2
	X	у	Z	>1	>2

- · 从库宕机会影响ack应答,导致业务夯住
- 从库节点越多,ACK应答数量多,影响数据库事务处理能力
- 主库宕机,容灾切换后,ack数量需要手动调整

- · 解决从库宕机,网络抖动对ACK应答数量的影响
- 使用最少的ACK应答数量,实现数据一致性保障
- 避免主库宕机,对容灾切换的影响。
- 需要更多的从库节点

海量资源管理

服务器

机房、机柜

网段、ip

实例

业务线

数据库

- · 资源自动上报
- · 服务器使用状态管理
- · 数据库与应用信息匹配
- 数据库与业务研发匹配
- · 业务访问链路拓扑信息
- ・ 历史信息追溯

- 服务器、实例、库、业务线血缘关系
- · 元数据变更管理
- · 资源使用视图
- · 资源使用率报表
- · API服务

海量告警管理

■ 触发基线

- ·制定各告警基线
- ·告警方式和级别
- ·告警接收人

■ 预测规避

- ·级联效应
- ·调整参数

精确告警

- ·减少无用告警
- ·降低感官疲劳度
- ·节省资源

触发告警

汇总分析

以点推面

调节基线

精确告警

■ 筛选分析

- · 等级划分, 主次分明
- · 单因多果关联性分析

■ 自动调节

- ·自适应阈值调配
- ·自调节时间窗口
- ·调整报告

研发赋能、抓核心链路 监控告警、高可用切换、备份恢复、容量管理、变更管控、应急方案

备战准备

大促

案例复盘

- 备战巡检
- 容量评估
- 优化改造
- 数据归档
- 压力测试
- 切换演练
- 变更管控

- 大促调整
- 监控大屏
- 应急处理

- 事件管理
- 案例分享
- 经验总结

自增主键

单表21亿

全局自增主键

备份

备份作业 有效性检查

定时调度

业务跑批 ETL抽取 信息采集 备份调度

磁盘空间

系统相关 DB相关

热点表

数据量大 拆分不均匀 影子表

容量评估

硬件容量 性能容量

表分区

时间维度的分区时间维度的拆分

Top SQL

SQL 频次 SQL 效率

硬件&机房

磁盘 Raid卡 出口带宽 机柜超电 双电链路 温湿度

连接数

活跃连接数 max_connections

慢查询

SQL 消耗 优化改造

业务梳理

数据库依赖程度 事务读写逻辑 上下游调用逻辑

GCEVOPS.com 全球敏捷运维峰会广州站

Ptmalloc:

- · glibc 实现的内存分配器
- 标准实现
- per thread独享arena
- 提升多线程性能
- 线程结束前不主动回收
- 内存浪费严重

Jemalloc:

- 共享arena
- 线程缓存
- · 进一步提升多线程性能
- 内存主动回收
- 减少内存碎片
- · 灵活api,可审计和回收

- 某系统承载了京东科技业务的流水明细,每日增量5000w+,按日期做的分库分表
- 不定期OOM
- 表数量多\空表较多\开启information_schema采集\定期回收表碎片,内存增速更快
- 加载jemalloc插件后(my_jemalloc.so),内存保持平稳,不持续增长,避免发生oom重启

持续做、模拟多场景、 应急方案优化

连续自助化、业务视角、 管控视角、发现隐患解 决问题

智能压测、营销预估、 服务的服务、监控的监控

Gdevops 全球敏捷运维峰会

