This problem set covers material from Weeks 6-7, dates 3/28 - 4/04. Unless otherwise noted, all problems are taken from the textbook. Problems can be found at the end of the corresponding chapter.

Instructions: Write or type complete solutions to the following problems and submit answers to the corresponding Canvas assignment. Your solutions should be neatly-written, show all work and computations, include figures or graphs where appropriate, and include some written explanation of your method or process (enough that I can understand your reasoning without having to guess or make assumptions). A general rubric for homework problems appears on the final page of this assignment.

Friday 3/28

1. (Change-of-Variables Formula) Suppose X is a random variable with support S_X and CDF $F_X(x)$, and let Y = g(X). If g is increasing (and hence, invertible) on S_X , then the CDF $H_Y(y)$ of Y is given by

$$H_Y(y) = F_X(g^{-1}(y))$$
 (1)

Moreover, if X is a continuous random variable with PDF $f_X(x)$, then the PDF $h_Y(y)$ of Y is

$$h_Y(y) = \frac{f_X(g^{-1}(y))}{g'(g^{-1}(y))}, \qquad S_Y = \{g(x) : x \in S_X\}$$
 (2)

- (a) Prove the change-of-variables formula above. Note: there are two statements to prove: one about the CDF (1) and one about the PDF (2).

 Hint: Use the chain-rule from calculus, along with the formula for the derivative of an inverse function.
- (b) Use the Change-of-Variable formula from part (a), along with u-substitution from calculus, to prove LOTUS for continuous random variables (at least in the case when g is an increasing function):

$$E[g(X)] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

where X is a continuous random variable with density $f_X(x)$.

- 2. 5.4
- 3. 5.13

Monday 3/31

- 4. 5.22
- 5. 5.23

Wednesday 4/02

6. (adaption of Blitzstein 5.46): Let T be the lifetime of a person (how long that person lives), with CDF $F_T(t)$ and PDF $f_T(t)$ for t > 0. The hazard function of T is defined by:

$$h_T(t) = \frac{f_T(t)}{1 - F_T(t)}.$$

In common language, the hazard is the probability of the event (i.e. death) occurring during any given instant t. We will derive the hazard function of T.

- (a) Find the conditional CDF of T given that the person has survived to at least time t_0 . That is, find $P(T \le t|T > t_0)$ for $0 < t_0 \le t$.
- (b) Using your conditional CDF from (a), find the conditional PDF of T given that the person has survived to at least time t_0 . How does this relate to the hazard function? Briefly explain why this makes sense/give an interpretation to the hazard function.
- (c) Show that an $\text{Exp}(\lambda)$ random variable has a constant hazard function.

Friday 4/04

TBD

General rubric

Points	Criteria
5	The solution is correct and well-written. The author leaves no
	doubt as to why the solution is valid.
4.5	The solution is well-written, and is correct except for some minor
	arithmetic or calculation mistake.
4	The solution is technically correct, but author has omitted some key
	justification for why the solution is valid. Alternatively, the solution
	is well-written, but is missing a small, but essential component.
3	The solution is well-written, but either overlooks a significant com-
	ponent of the problem or makes a significant mistake. Alternatively,
	in a multi-part problem, a majority of the solutions are correct and
	well-written, but one part is missing or is significantly incorrect.
2	The solution is either correct but not adequately written, or it is
	adequately written but overlooks a significant component of the
1	problem or makes a significant mistake.
1	The solution is rudimentary, but contains some relevant ideas. Al-
	ternatively, the solution briefly indicates the correct answer, but
	provides no further justification.
0	Either the solution is missing entirely, or the author makes no non- trivial progress toward a solution (i.e. just writes the statement of
	the problem and/or restates given information).
	the problem and/or restates given information).
Notes:	For problems with multiple parts, the score represents a holistic
110068.	review of the entire problem. Additionally, half-points may be used
	if the solution falls between two point values above.
Notes:	For problems with code, well-written means only having lines of
1,000.	code that are necessary to solving the problem, as well as presenting
	the solution for the reader to easily see. It might also be worth
	adding comments to your code.
	G. C.