Corrigé de l'épreuve de Mathématiques du BTS OL 2010

Ce corrigé n'a pas de valeur officielle et n'est donné qu'à titre informatif par Acuité, sous la responsabilité de son auteur.

EXERCICE 1

A.Ajustement affine

1°

$t = \ln(\frac{x}{100})$	-0,916	-0,693	-0,511	-0,357	-0,223	-0,105	0
У	66	50	37	26	16	8	0

 2°

Une équation de la droite de régression de y en t, obtenue par la méthode des moindres carrés est :

$$y = -72t + 0$$
 soit $y = -72t$

3°

Comme
$$t = \ln(\frac{x}{100})$$
, $y = -72\ln(\frac{x}{100})$ soit $y = -72\ln(0.01x)$

B.Etude de fonctions et calcul intégral

1°

On détermine la fonction f' dérivée de la fonction f sur I:

$$f'(x) = -72 \times \frac{0.01}{0.01x}$$

$$f'(x) = -\frac{72}{x}$$

Sur I, $x \ge 40$ donc f'(x) < 0 sur I.

La fonction f est donc décroissante sur I.

On détermine la fonction g' dérivée de la fonction g sur I:

$$g'(x) = 72 \times \frac{0,1}{0,1x-3}$$

$$g'(x) = \frac{7,2}{0.1x - 3}$$

Sur I, $x \ge 40$ donc $0.1x - 3 \ge 1$ donc g'(x) > 0 sur I.

La fonction g est croissante sur I.

 2°

Sur I,

 $x \ge 40$

 $0.1x \ge 4$

 $0.1x - 3 \ge 1$

 $ln(0,1x - 3) \ge 0$

 $72\ln(0,1x-3) \ge 0$

 $g(x) \ge 0$

Sur I,

 $x \le 100$

 $0.01x \le 1$

 $\ln(0,01x) \le 0$

 $-72\ln(0,01x) \ge 0$

 $f(x) \ge 0$

Pour tout x de I, $f(x) \ge 0$ et $g(x) \ge 0$

3°

a)

On résout f(x) = g(x)

$$\begin{aligned} -72\ln(0,01x) &= 72\ln(0,1x-3) \\ -\ln(0,01x) &= \ln(0,1x-3) \\ \ln(0,01x) + \ln(0,1x-3) &= 0 \\ \ln[0,01x(0,1x-3)] &= 0 \\ 0,01x(0,1x-3) &= 1 \\ 0,001x^2 - 0,03x - 1 &= 0 \end{aligned}$$

$$\Delta = (-0.03)^2 - 4 \times 0.001 \times (-1) = 0.0049$$

$$x_1 = \frac{-(-0.03) - \sqrt{0.0049}}{2 \times 0.001} = -20 \text{ et } x_2 = \frac{-(-0.03) + \sqrt{0.0049}}{2 \times 0.001} = 50$$

Sur I, l'équation a pour solution unique x = 50

b)

Voir Annexe.

On vérifie bien que le point d'intersection des courbes représentatives des fonctions f et g a pour abscisse x = 50.

4°

a)

Voir annexe.

Il s'agit de l'aire comprise entre la courbe représentative de la fonction f, l'axe des abscisses et les droites verticales d'équations x = 50 et x = 100.

b)

On vérifie que F'(x) = f(x)

$$F'(x) = 72[1 - \ln(0.01x)] + 72x(-\frac{0.01}{0.01x})$$
$$F'(x) = 72 - 72\ln(0.01x) - 72$$

$$1 (x) = 72 - 72 \operatorname{Im}(0,01x) - 7$$

$$F'(x) = -72\ln(0.01x)$$

$$F'(x) = f(x)$$

La fonction F est bien une primitive de la fonction f sur I.

c)

$$A = \int_{50}^{100} f(x) dx$$

$$A = F(100) - F(50)$$

$$A = 72 \times 100[1 - \ln(0.01 \times 100)] - 72 \times 50[1 - \ln(0.01 \times 50)]$$

$$A = 7200 - 3600(1 - \ln 0.5)$$

$$A = 7200 - 3600 + 3600 \ln 0,5$$

$$A = 3600 + 3600 \ln 0.5$$
 u.a. ou $A = 3600(1 + \ln 0.5)$ u.a. ou $A = 3600(1 - \ln 2)$ u.a.

 $A \approx 1105$ u.a.

C.Application de la partie B

1°

Le prix d'équilibre est le prix pour lequel f(x) = g(x)

Le prix d'équilibre est d'environ 50 euros. (d'après B.3°)

 2°

$$f(50) = -72 \ln(0.01 \times 50) \approx 50$$

La demande correspondant au prix d'équilibre est d'environ cinquante milliers d'unités.

D.Etudes de suites

1°

Pour tout entier naturel n on a:

$$\begin{cases} D_{n+1}=\frac{1}{2}D_n+20\\\\ D_n=-p_n+100\\\\ \text{La 2}^{\text{\`e}me} \text{ \'equation donne} \end{cases} \qquad D_{n+1}=-p_{n+1}+100$$

Dans la $1^{\grave{\mathsf{e}}\mathsf{r}\mathsf{e}}$ équation on remplace D_{n+1} et D_n par leur expression et on obtient :

$$-p_{n+1} + 100 = \frac{1}{2}(-p_n + 100) + 20$$

$$-p_{n+1} + 100 = -\frac{1}{2}p_n + 50 + 20$$

$$-p_{n+1} = -\frac{1}{2}p_n - 30$$

$$p_{n+1} = \frac{1}{2}p_n + 30$$

 2°

a)

Comme
$$u_n = p_n - 60$$
 on a $u_{n+1} = p_{n+1} - 60$
Donc $u_{n+1} = \frac{1}{2} p_n + 30 - 60$ (car $p_{n+1} = \frac{1}{2} p_n + 30$)
 $u_{n+1} = \frac{1}{2} p_n - 30$
 $u_{n+1} = \frac{1}{2} (u_n + 60) - 30$ (car $p_n = u_n + 60$)
 $u_{n+1} = \frac{1}{2} u_n + 30 - 30$
 $u_{n+1} = \frac{1}{2} u_n$

La suite (u_n) est bien une suite géométrique (de premier terme $u_o = p_o - 60 = 50 - 60 = -10$ et) de raison $q = \frac{1}{2}$

b)

Comme, la suite (u_n) est une suite géométrique de premier terme $u_o = -10$ et de raison $q = \frac{1}{2}$

$$u_n = u_0 \times q^n$$

$$u_n = -10 \times (\frac{1}{2})^n$$

$$u_n = \frac{-10}{2^n}$$

Comme
$$p_n = u_n + 60$$
, $p_n = \frac{-10}{2^n} + 60$

c)

$$\lim_{n \to +\infty} p_n = 60 \text{ car } \lim_{n \to +\infty} \frac{-10}{2^n} = 0$$

La limite de la suite (p_n) est donc p = 60

EXERCICE 2

A.Loi normale

1°

La variable aléatoire V suit la loi normale de moyenne $\mu = 250$ et d'écart type $\sigma = 4$

$$P(245 \le V \le 255) = 2P(V \le 255) - 1 = 2\Pi(\frac{255 - 250}{4}) - 1 = 2\Pi(1, 25) - 1 = 2 \times 0,8944 - 1 = 0,79$$

La probabilité que le volume de produit contenu dans le flacon prélevé soit compris entre 245 et 255 millilitres est d'environ 0,79.

20

La variable aléatoire V suit la loi normale de moyenne $\mu = 250$ et d'écart type σ inconnu

$$P(245 \le V \le 255) = 0.95$$

$$2\Pi(\frac{255-250}{\sigma})-1=0.95$$

$$2\Pi(\frac{5}{\sigma}) = 1,95$$

$$\Pi(\frac{5}{\sigma}) = 0.975$$

par lecture inverse de la table de la loi normale centrée réduit, on a

$$\frac{5}{\sigma} = 1,96$$

$$\sigma = \frac{5}{1.96}$$

$$\sigma = 2,55$$

La variable aléatoire V suit la loi normale de moyenne $\mu = 250$ et d'écart type $\sigma = 2,55$

B. Probabilités conditionnelles, loi binomiale et loi de Poisson

1°

Réponse d : $P(C \cap \overline{A}) = P(C) \times P(\overline{A} / C) = 0.95 \times 0.04$

 2°

Réponse c : $P(X = 1) = C_{50}^{1} \times 0.04^{1} \times 0.96^{49} = 0.271$

3°

Réponse c:

$$P(X \ge 2) = 1 - P(X < 2) = 1 - [P(X = 0) + P(X = 1)] = 1 - C_{50}^{0} \times 0.04^{0} \times 0.96^{50} - C_{50}^{1} \times 0.04^{1} \times 0.96^{49} = 0.60$$

4°

Réponse c : la variable aléatoire Y suit la loi de Poisson de paramètre $\lambda = np = 50 \times 0.04 = 2$

$$P(Y \le 4) = P(Y = 0) + P(Y = 1) + P(Y = 2) + P(Y = 3) + P(Y = 4)$$

$$P(Y \le 4) = 0.135 + 0.271 + 0.271 + 0.180 + 0.090 = 0.947$$

C.Test d'hypothèse

1°

La règle de décision de ce test est la suivante :

l'hypothèse H₀ est conservée au seuil de risque de 5 % si la moyenne de l'échantillon est supérieure à 249,2 ml,

si la moyenne n'est pas supérieure à 249,2 ml, dans ce cas, on rejette H₀ et on accepte H₁.

 2°

Le volume moyen de liquide de l'échantillon est 249,4 ml supérieure à 249,2 ml.

On ne peut pas conclure qu'au seuil de signification de $5\,\%$ le volume moyen des flacons livrés est inférieur à $250\,\mathrm{ml}$.

ANNEXE À COMPLÉTER PUIS À RENDRE AVEC LA COPIE

EXERCICE I Questions B. 3° b) et B. 4° a).

