

# Damian Kobyliński

Analiza zużycia wybranego elementu w oparciu o metodę zubożania cech oraz rekordów

# **Zadanie Projektowe**

Opiekun pracy:

Marek Bolanowski

Rzeszów, 2023

# Spis treści

| 1. Wprowadzenie                              | 5  |
|----------------------------------------------|----|
| 2. Przedstawienie projektu                   | 6  |
| 2.1. Biblioteki                              | 6  |
| 2.2. Baza danych                             | 6  |
| 2.3. Mapa koleracji pomiędzy cechami         | 9  |
| 2.4. Podział na grupę trenigową oraz testową | 10 |
| 2.5. Funkcje obliczania Fscore               | 10 |
| 2.6. Model sieci uczącej                     | 11 |
| 2.7. Trenowanie sieci                        | 12 |
| 2.8. Prezentacja danych szczegółowych        | 12 |
| 2.9. Dokładność trenowanego modelu           | 16 |
| 2.10. Prezentacja wyników i wnioski          | 16 |
| 3. Podsumowanie                              | 18 |
| Załączniki                                   | 19 |
| Literatura                                   | 20 |

### 1. Wprowadzenie

W pozniższym sprawozdaniu projektowym chciałbym opisać zadanie projektowe oparte na analize zurzycia wybranego elementu w oparciu o metodę zuborzania cech jak i ilosci rekordów badanego elementu. Jako baza danych do analizy wykorzystałem dane z Instytucji Energii Naturalnej na 14-stu bateriach NMC-LCO 18650 z pojemnością 2.8 Ah. Baterie zostały przetestowane na 1000 cyklach w temperaturze 25°C.

Projekt wykonany głównie w celu zaznajomienia z podstawowymi funkcjami języka programowania Pythona. Dodatkowo zostały wykorzystane dodatkowe biblioteki:

- Pandas biblioteka do manipulacji i analizy danych,
- Numpy biblioteka do manipulacji i analizy danych,
- Seaborn biblioteka pozwalajaca zwizualizować informacje o danej bazie danych,
- Matplotlib biblioteka służąca do rysowania wykresów i wizualizacji danych,
- Sklearn biblioteka zawierająca pakiety funkcji do uczenia maszynowego,
- Tensorflow biblioteka służąca do obliczeń numerycznych i tworzenia modeli uczenia maszynowego,
- Keras wysokopoziomowa biblioteka uczenia maszynowego,

# 2. Przedstawienie projektu

W tym rozdziale opisany został cały szkielet projektu.

#### 2.1. Biblioteki

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix,accuracy_score, roc_curve

import tensorflow as tf
from tensorflow import keras
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers.core import Dense, Activation, Dropout, Embedding
from keras import backend as K
from sklearn.metrics import fl_score
```

Zdjęcie 1: Przedstawienie wykorzystanych bibliotek

### 2.2. Baza danych

Wykorzystana baza danych:

```
battery_dataset = pd.read_csv("Battery_RUL.csv",sep=",",header=None)
df = battery_dataset.iloc[1:]
columns = ['Cycle_Index','dischargeTime','Decrement 3.6-3.4V (s)','Max. Voltage Dischar. (V)','Min. Voltage Charg. (
df.columns = columns
X = df.drop(['RUL','Cycle_Index','Change'],axis=1)
Y = df['Change']
X = X.astype(float)
Y = Y.astype(float)
Y = pd.DataFrame(Y)
```

Zdjęcie 2: Przedstawienie bazy danych

W przedstawionym powyżej kodzie, wyczytywany jest plik typu CSV. Tworzona jest kopia tego pliku z usunięciem pierwszego wiersza w którym zawarte są nazwy kolumn – je umieszczamy ręcznię. Następnie dzielona jest baza danych na kolumny z zawartymi cechami jak i z kolumnami labelów.

W trakcie zubażania zarówno kolumn z cechami, jak i ilości rekordów, zmienia się ilość danych.

Zubażanie co 2 kolumne z cechami

```
X_2drop = df.drop(['RUL','Cycle_Index','Change','dischargeTime','Max. Voltage Dischar. (V)','Time at 4.15V (s)','Cha
X_2drop = X_2drop.astype(float)
X_train_2drop,X_test_2drop,Y_train_2drop,Y_test_2drop = train_test_split(X_2drop,Y, test_size=0.30)
```

Zubażanie do jednej kolumny z cechami

```
X_1 = df.drop(['RUL','Cycle_Index','Change','Decrement 3.6-3.4V (s)','Max. Voltage Dischar. (V)','Min. Voltage Charg
X_1 = X_1.astype(float)
X_train_1,X_test_1,Y_train_1,Y_test_1 = train_test_split(X_1,Y, test_size=0.30)
last_number_of_nodes = len(X_train_1)
```

• Zubożanie co o połowe liczby rekordów w bazie przez usunięcię co 2 rekordu

```
by_2rows_drop = []
for i in range(1,len(X)):
    if i%2 == 0:
        by_2rows_drop.append(Y.loc[[i-1]])
Y_2 = by_2rows_drop[0]
for i in range(1,len(by_2rows_drop)):
        Y_2 = pd.concat([Y_2,by_2rows_drop[i]])
Y_2= pd.DataFrame(Y_2)

feature_by_2rows_drop = []
for i in range(1,len(X)):
    if i%2 == 0:
        feature_by_2rows_drop.append(X.loc[[i-1]])
X_2 = feature_by_2rows_drop[0]
for i in range(1,len(feature_by_2rows_drop)):
        X_2 = pd.concat([X_2,feature_by_2rows_drop[i]])
```

Zubożanie do 1/3 liczby rekordów w bazie przez pozostawienie co 3 rekordu

```
by_3rows_drop = []
for i in range(1,len(X)):
    if i%3 == 0:
        by_3rows_drop.append(Y.loc[[i-1]])
Y_3 = by_3rows_drop[0]
for i in range(1,len(by_3rows_drop)):
        Y_3 = pd.concat([Y_3,by_3rows_drop[i]])
Y_3= pd.DataFrame(Y_3)

feature_by_3rows_drop = []
for i in range(1,len(X)):
    if i%3 == 0:
```

feature\_by\_3rows\_drop.append(X.loc[[i-1]])

X\_3 = pd.concat([X\_3,feature\_by\_3rows\_drop[i]])

X\_3 = feature\_by\_3rows\_drop[0]
for i in range(1,len(feature\_by\_3rows\_drop)):

|       | Cycle_Index | dischargeTime | Decrement 3.6-3.4V (s) | Max. Voltage<br>Dischar. (V) | Min. Voltage<br>Charg. (V) | Time at 4.15V (s) | Time constant<br>current (s) | Charging<br>time (s) | RUL  | Change |
|-------|-------------|---------------|------------------------|------------------------------|----------------------------|-------------------|------------------------------|----------------------|------|--------|
| 1     | . 1         | 2595.3        | 1151.4885              | 3.67                         | 3.211                      | 5460.001          | 6755.01                      | 10777.82             | 1112 | 1      |
| 2     | 2           | 7408.64       | 1172.5125              | 4.246                        | 3.22                       | 5508.992          | 6762.02                      | 10500.35             | 1111 | 1      |
| 3     | 3           | 7393.76       | 1112.99199999999       | 4.249                        | 3.224                      | 5508.993          | 6762.02                      | 10420.38             | 1110 | 1      |
| 4     | 4           | 7385.5        | 1080.32066666667       | 4.25                         | 3.225                      | 5502.016          | 6762.02                      | 10322.81             | 1109 | 1      |
| 5     | 6           | 65022.75      | 29813.487              | 4.29                         | 3.398                      | 5480.99200000001  | 53213.54                     | 56699.65             | 1107 | 0      |
|       |             |               |                        |                              |                            |                   |                              |                      |      |        |
| 15060 | 1108        | 770.44        | 179.52380952239        | 3.773                        | 3.742                      | 922.775000000372  | 1412.38                      | 6678.88              | 4    | 1      |
| 15061 | 1109        | 771.12        | 179.52380952239        | 3.773                        | 3.744                      | 915.512000000104  | 1412.31                      | 6670.38              | 3    | 1      |
| 15062 | 1110        | 769.12        | 179.357142856345       | 3.773                        | 3.742                      | 915.512999998406  | 1412.31                      | 6637.12              | 2    | 1      |
| 15063 | 1111        | 773.88        | 162.374666666612       | 3.763                        | 3.839                      | 539.375           | 1148                         | 7660.62              | 1    | 1      |
| 15064 | 1112        | 677537.27     | 142740.640000001       | 4.206                        | 3.305                      | 49680.0040000007  | 599830.14                    | 599830.14            | 0    | 1      |

Zdjęcie 3: Cała baza danych

|       | dischargeTime | Decrement 3.6-3.4V (s) | Max. Voltage Dischar. (V) | Min. Voltage Charg. (V) | Time at 4.15V (s) | Time constant current (s) | Charging time (s) |
|-------|---------------|------------------------|---------------------------|-------------------------|-------------------|---------------------------|-------------------|
| 1     | 2595.30       | 1151.488500            | 3.670                     | 3.211                   | 5460.001          | 6755.01                   | 10777.82          |
| 2     | 7408.64       | 1172.512500            | 4.246                     | 3.220                   | 5508.992          | 6762.02                   | 10500.35          |
| 3     | 7393.76       | 1112.992000            | 4.249                     | 3.224                   | 5508.993          | 6762.02                   | 10420.38          |
| 4     | 7385.50       | 1080.320667            | 4.250                     | 3.225                   | 5502.016          | 6762.02                   | 10322.81          |
| 5     | 65022.75      | 29813.487000           | 4.290                     | 3.398                   | 5480.992          | 53213.54                  | 56699.65          |
|       |               |                        |                           |                         |                   |                           |                   |
| 15060 | 770.44        | 179.523810             | 3.773                     | 3.742                   | 922.775           | 1412.38                   | 6678.88           |
| 15061 | 771.12        | 179.523810             | 3.773                     | 3.744                   | 915.512           | 1412.31                   | 6670.38           |
| 15062 | 769.12        | 179.357143             | 3.773                     | 3.742                   | 915.513           | 1412.31                   | 6637.12           |
| 15063 | 773.88        | 162.374667             | 3.763                     | 3.839                   | 539.375           | 1148.00                   | 7660.62           |
| 15064 | 677537.27     | 142740.640000          | 4.206                     | 3.305                   | 49680.004         | 599830.14                 | 599830.14         |

Zdjęcie 4: Kolumny cech

|       | Change |
|-------|--------|
| 1     | 1.0    |
| 2     | 1.0    |
| 3     | 1.0    |
| 4     | 1.0    |
| 5     | 0.0    |
|       |        |
| 15060 | 1.0    |
| 15061 | 1.0    |
| 15062 | 1.0    |
| 15063 | 1.0    |
| 15064 | 1.0    |

Zdjęcie 5: Kolumna labeli

# 2.3. Mapa koleracji pomiędzy cechami

Przedstawienie korelacji pomiędzy poszczególnymi kolumnami cech, wykorzystanie do tego funkcji zawartych w bibliotece seaborn.

```
plt.figure(figsize = (15,8))
sns.heatmap(X.corr(),annot=True, cbar=False, cmap='Blues', fmt='.2f')
```

Zdjęcie 6: Kod przedstawiający mapę korelacji tabeli z kolumnami cech



Zdjęcie 7: Mapa korelacji cech

#### 2.4. Podział na grupę trenigową oraz testową

Grupa testowa to 30% rekordów całej bazy danych.

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size=0.30)
last_number_of_nodes = len(X_train)
Y_train = pd.DataFrame(Y_train)
```

Zdjęcie 8: Podział na grupę treningową oraz testową

#### 2.5. Funkcje obliczania Fscore

Funkcje pozwalające na obliczenie i uwzględnienie metryki fscore w trenowanym modelu uczenia maszynowego.

```
def recall_m(y_true, y_pred):
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
    recall = true_positives / (possible_positives + K.epsilon())
    return recall

def precision_m(y_true, y_pred):
    true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
    predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
    precision = true_positives / (predicted_positives + K.epsilon())
    return precision

def f1_m(y_true, y_pred):
    precision = precision_m(y_true, y_pred)
    recall = recall_m(y_true, y_pred)
    return 2*((precision*recall)/(precision+recall+K.epsilon()))
```

Zdjęcie 9: Funkcje pozwalające na obliczenie metryki FScore

#### 2.6. Model sieci uczącej

Prezentowany model posiada 6 warstw aktywacyjnych – 5 typu "relu", 1 "softmax". Pierwsza warstwa posiada w zależności od ilości kolumn z cechami, taką ilość wejść, natomiast posiada taką samą ilość wyjść wynikowych. Model optymalizacji został wybrany "Adam" oraz oprócz metryki Fscore, obliczana jest dokładność modelu uczącego.

Zdjęcie 10: Model sieci uczącej z informacji o jej kompilacji

Zdjęcie 11: Model sieci uczącej, zbioru danych zubażałych o co 2 kolumne

Zdjęcie 12: Model sieci uczącej, zbioru danych zubożałych do 1 wartościowej kolumny

#### 2.7. Trenowanie sieci

Trenowanie sieci odbywa się w 2 epokach.

```
history = model.fit(X_train,Y_train, epochs = 2,batch_size=10)
```

Zdjęcie 13: Trenowanie modelu sieci

#### 2.8. Prezentacja danych szczegółowych

Prezentacja danych do każdej iteracji zubożania danych ( do każdej zmiany ilości kolumn z cechami).

```
plt.plot(history.history['accuracy'])
plt.title('Accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['data'], loc='upper right')
plt.show()
plt.plot(history.history['f1_m'])
plt.ylabel('f1')
plt.xlabel('epoch')
plt.legend(['data'], loc='upper right')
plt.title('F1score')
plt.show()
predictions = model.predict(X_test_1)
predictions = predictions[:,0]
predictions = np.where(predictions > 0.5, 1, 0)
false_positive_rate, recall, thresholds = roc_curve(Y_test_1, predictions)
roc_auc = auc(false_positive_rate, recall)
print("AUC: " + str(roc_auc))
```

Zdjęcie 14: Prezentacja danych szczegółowych



Zdjęcie 15: Wykresy szczegółowe wyniku modelu sieci uczącej dla kolumn z zawartymi wszystkimi cechami



142/142 [============ - 0s 3ms/step AUC: 0.48030073924731187

Zdjęcie 16: Wykresy szczegółowe wyniku modelu sieci uczącej dla co drugiej kolumny cech



Zdjęcie 17: Wykresy szczegółowe wyniku modelu sieci uczącej dla jednej kolumny z cechami

### 2.9. Dokładność trenowanego modelu

```
X_accuracy_all = np.mean(history.history['accuracy'])

X_accuracy_by2 = np.mean(history.history['accuracy'])

X_accuracy_datacut3_disTime=np.mean(history.history['accuracy'])
```

Do powyższych wartości średnich metryki dokładności modelu, utworzony jest wykres przedstawiający ogólny wynik wszystkich iteracji zubażania danych z których możemy wysnuć wnioski odnośnie ile kolumn cech oraz danych potrzebujemy minimalnie, aby stwierdzić, że dana bateria może być jeszcze do użytku.

#### 2.10. Prezentacja wyników i wnioski

```
axis_X = ['all','by2','disTime']

allY = [X_accuracy_all, X_accuracy_by2, X_accuracy_disTime]

allY_2 = [X_accuracy_datacut2_all, X_accuracy_datacut2_by2, X_accuracy_datacut2_disTime]

allY_3 = [X_accuracy_datacut3_all, X_accuracy_datacut3_by2, X_accuracy_datacut3_disTime]

plt.plot(axis_X, allY, marker='o', linestyle='-', color='r', label='allData')
plt.plot(axis_X, allY_2, marker='o', linestyle='-', color='b', label='Data by 2')
plt.plot(axis_X, allY_3, marker='o', linestyle='-', color='g', label='Data by 3')
plt.xlabel('feature')
plt.ylabel('accurance')
plt.title('compare')
plt.legend()
plt.show()
```

Powyższy kod pozwala wykonać dany wykres:



W przedstawionym powyżej wykresie widać, że najlepszą dokładność w proporcji do ilości danych widać gdy kolumny z cechami zostały zredukowane co 2 jak i ilość rekordów została zredukowana co druga.

# 3. Podsumowanie

Przedstawiony powyżej projekt zawierał podstawowe zapoznanie z ekstracją oraz działaniem nad danymi w języku Python, jak i zawierał w sobię część wiedzy teorytycznej jak i praktycznej uczenia maszynowego. Dalszy rozwój i praca nad projektem może skutkować uwzględnienie jej jako pracę inżynierską, a jej wyniki byłyby możliwe do wykorzystania w życiu codziennym np. w magazynach.

# Załączniki

Praca umieszczona została na platformie GitHub wraz z plikiem HTML prezentujący cały kod projektu wykonany na jupyter-notebook.

# Literatura

- [1] https://bolanowski.v.prz.edu.pl/download/word-template-2.html
- [2] <a href="https://stackoverflow.com/">https://stackoverflow.com/</a> rozwiązywanie problemów technicznych
- [3] https://towardsdatascience.com/building-our-first-neural-network-in-keras-bdc8abbc17f5