Дискретна математика

Основни понятия в дискретната математика:

Логика

СофтУни

Преподавателски екип

Софтуерен университет

https://softuni.bg

Съдържание

1. Логика

- основни понятия
- синтаксис
- основни закони
- 2. Решаване на задачи

Имате въпроси?

sli.do

#math-fund

Логика

Основни понятия и закони в съждителната логика

Какво е съждение?

- Повествователно изречение, което може да се определи като истина или лъжа
 - Всяко истинно съждение се означава с Т
 - Всяко неистинно съждение се означава с F
- Примери:
 - Стара Загора е град в България.
 - Седем е просто число.
 - Испания е остров.
 - Делфинът не е бозайник.

Таблици на истинност

- Елементарните съждения се разглеждат като двоични константи: {T, F}
- Съждителните връзки се представят чрез таблици на истинност.
- Таблицата на истинност съдържа логическите стойности на формулата при всяка нейна интерпретация.
- Броят на редовете в таблицата на истинност е равен на: 2^{броят на елементарните съждения}

Отрицание на съждение (~)

 Отрицанието на съждението р е истина, тогава и само тогава, когато ~р е лъжа.

- Отрицанието на съждението р е лъжа, тогава и само тогава, когато ~р е истина.
- Пример:
 - р: Навън вали дъжд.
 - ~р: Навън не вали дъжд.

р	~p
F	Т
Т	F

Конюнкция на две съждения (^)

 Конюнкцията на две съждения (р и q) е съждение, което е истина тогава и само тогава, когато и двете съждения едновременно са истина.

Ако дори едно от съжденията е лъжа, конюнкцията им също е лъжа.

• Пример:

р: Числото 10 се дели на 2. (Т)

q: Числото 10 се дели на 7. (F)

р ^ q: Числото 10 се дели на 2 и на 7. (F)

p	q	p^q
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

Дизюнкция на две съждения (v)

Дизюнкцията на две съждения (р и q) е съждение, което е истина, ако поне едно от двете съждения е истина.

Пример:

р: Числото 10 е просто. (F)

q: Числото 10 е четно. (Т)

■ р v q: Числото 10 е просто или четно. (T)

p	q	pvq
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Импликация на две съждения (->)

 Импликацията р -> q е съждение, което винаги е истина, но е лъжа само, когато условието р е

истина, а следствието q е лъжа.

Пример:

р: През пролетта вали. (Т)

q: През лятото има добра реколта. (Т)

p	q	b -> d
F	F	T
F	Т	Т
Т	F	F
Т	Т	Т
	F F T	F F T F

 р -> q: Ако през пролетта вали, то през лятото има добра реколта. (Т)

Импликация на две съждения (->)

- Ако е дадена импликацията на две съждения р и q (р -> q)
 - Конверсия (обратно тръврдение) е: q -> p
 - Инверсия (противоположно трърдение) е: ~p -> ~q
 - Контрапозиция e: ~q -> ~p
- Конверсията и инверсията са логически еквивалентни
- Импликацията и контрапозицията са логически еквивалентни

Еквивалентност на две съждения (<->)

 Еквивалентността на две съждения (р и q) е съждение, което е истина, тогава и само тогава,

когато р и q имат еднакви стойности.

Пример:

	p:	Числото	11 ce	дели	1 на 3.	(F)
--	----	---------	-------	------	---------	------------

q: Числото 11 се дели на 7. (F)

þ	q	p <-> q
F	F	Т
F	Т	F
Т	F	F
Т	Т	Т

 p <-> q: Числото се дели на 3 тогава и само тогава, когато 11 се дели на 7.

Класификация на формули

- Всяка формула може да бъде класифицирана като:
 - Тавтоголия истина при всички възможни интерпретации
 - Противоречива лъжа при всички възможни интерпретации
 - Неутрална съществува поне една интерпретация, при която е истина и поне една интерпретация, при която е лъжа

Закони в съждителната логика

• Комутативност:

 $A \vee B = B \vee A$

• Асоциативност:

 $(A \lor B) \lor C = A \lor (B \lor C)$

• Закони на Де Морган:

$$\sim$$
 (A ^ B) = (\sim A) v (\sim B)

$$^{\sim}(A \vee B) = (^{\sim}A) \wedge (^{\sim}B)$$

• Дистрибутивност:

$$\blacksquare$$
 A ^ (B v C) = (A ^ B) v (A ^ C)

$$A \vee (B \wedge C) = (A \vee B) \wedge (A \vee C)$$

Закони в съждителната логика (2)

Свойства на константите:

$$\blacksquare$$
 AVF=A AVT=T A^F=F A^T=A

$$A \vee T = T$$

$$A \wedge F = F$$

$$A \wedge T = A$$

• Закони на поглъщането:

$$(A \lor B) \land A = A$$

• Закон за противоречието:

$$\blacksquare$$
 A \land ($^{\sim}$ A) = F

Закони за еквивалентността

- A <-> B = ~A <-> ~B
- \blacksquare A <-> B = (A -> B) ^ (B -> A)
- A <-> B = (A ^ B) v (~A ^ ~B)

Приоритет на съждителните връзки

 Спазва се следният приоритет на съждителните връзки:

- 2. Конюнкция (^)
- 3. Дизюнкция (v)
- Импликация (->)
- Еквивалентност (<->)

Какво научихме днес?

Логика

- основни понятия
- синтаксис
- основни закони

Въпроси?

Kids

Лиценз

- Този курс (презентации, примери, демонстрационен код, упражнения, домашни, видео и други активи) представлява защитено авторско съдържание
- Нерегламентирано копиране, разпространение или използване е незаконно
- © СофтУни https://softuni.org
- © Софтуерен университет https://softuni.bg

Обучения в Софтуерен университет (СофтУни)

- Софтуерен университет качествено образование, професия и работа за софтуерни инженери
 - softuni.bg
- Фондация "Софтуерен университет"
 - softuni.foundation
- Софтуерен университет @ Facebook
 - facebook.com/SoftwareUniversity
- Дискусионни форуми на СофтУни
 - forum.softuni.bg

