DYNAMIC PROGRAMMING

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

Agenda

Dynamic programming

Approximation algorithms

Bibliography

Dynamic programming

Technique for solving problems with overlapping subproblems

Fibonacci numbers

- F(n) = F(n-1) + F(n-2), for n > 1
- F(0) = 0 e F(1) = 1

Assuming that $n \ge 0$:

Algorithm: int Fib(n)

- if n < 1 then return n;
- else return Fib(n-1) + Fib(n-2);

Dynamic programming¹

Better approach (assuming that $n \ge 0$):

Algorithm: int Fib2(n)

- 1 $F[0], F[1] \leftarrow 0, 1;$
- for $i \leftarrow 2$ to n do
- 3 $F[i] \leftarrow F[i-1] + F[i-2];$
- 4 return F[n];

Dynamic programming

This technique can be seen as a variation of space-for-time trade-off

In some situations, it is even possible to avoid the extra space

■ Fibonacci: store only the last two elements

Approaches for implementing dynamic programming

- Bottom-up: solves all subproblems
- Top-down: solves all required subproblems

Example: coin-row problem

There is a row of n coins whose values are some positive integers $c_1, c_2, ..., c_n$ not necessarily distinct. Goal: pick up the maximum amount of money, but not picking up two adjacent coins

Recurrence relation:

- $F(n) = max\{c_n + F(n-2), F(n-1)\}, \text{ for } n > 1$
- $F(0) = 0 e F(1) = c_1$

Algorithm: int CoinRow(C[1..n])

- 1 $F[0], F[1] \leftarrow 0, C[1];$
- 2 for $i \leftarrow 2$ to n do
- $F[i] \leftarrow max(C[i] + F[i-2], F[i-1]);$
- 4 return F[n];

Example: coin-row problem²

Considering: 5, 1, 2, 10, 6, and 2

	index	0	1	2	3	4	5	6
	С		5	1	2	10	6	2
$F[0] = 0, F[1] = c_1 = 5$	F	0	5					

C 5					
C 3	1 :	1 2	10	6	2
$F[5] = \max\{6 + 7, 15\} = 15$ $F = 0 = 5$	5	5 7	15	15	

	index	0	1	2	3	4	5	6	
	С		5	1	2	10	6	2	
$[6] = \max\{2 + 15, 15\} = 17$	F	0	5	5	7	15	15	17	

 $F[2] = \max\{1 + 0.5\} = 5$

Example: change-making problem

Give change for amount *n* using the minimum number of coins $d_1 < d_2 < ... < d_m$ where $d_1 = 1$ (assuming unlimited coins)

Recurrence relation:

- $F(n) = min_{i:n>d_i} \{F(n-d_i)\} + 1$, para n > 0
- F(0) = 0

Algorithm: int ChangeMaking(D[1..m], n)

```
F[0] \leftarrow 0:
    for i \leftarrow 1 to n do
          temp, i \leftarrow \infty, 1;
         while j \leq m \land i \geq D[j] do
4
               temp \leftarrow min(F[i-D[j]], temp);
5
         j \leftarrow j + 1;
6
         F[i] \leftarrow temp + 1;
7
    return F[n];
```


Example: change-making problem³

Considering: n = 6 and the following denominations 1, 3 e 4

$$F[0] = 0$$

$$F[1] = \min\{F[1-1]\} + 1 = 1$$

$$F[2] = \min\{F[2 - 1]\} + 1 = 2$$

$$F[3] = min\{F[3-1], F[3-3]\} + 1 = 1$$

$$F[4] = \min\{F[4-1], F[4-3], F[4-4]\} + 1 = 1$$

$$F[5] = \min\{F[5-1], F[5-3], F[5-4]\} + 1 = 2$$

$F[6] = \min\{F[6-1],$	F[6 – 3],	F[6 - 4]} +	1 = 2

n	0	1	2	3	4	5	6
F	0						

n	0	1	2	3	4	5	6
F	0	1					

n	0	1	2	3	4	5	6
F	0	1	2				

n	0	1	2	3	4	5	6
F	0	1	2	1			

9/19

Gustavo Carvalho

Example: knapsack (0-1)⁴

Given *n* items of weight w_i and value v_i , where $i = 1 \cdots n$, and a capacity W, find the most valuable subset of items that fits into the knapsack's capacity

Recurrence relation:

■
$$F(i,j) = max\{F(i-1,j), v_i + F(i-1,j-w_i)\}$$
, if $j - w_i \ge 0$

■
$$F(i,j) = F(i-1,j)$$
, if $j - w_i < 0$

■
$$F(0,j) = 0$$
, for $j \ge 0$, $F(i,0) = 0$, for $i \ge 0$

	0	$j-w_i$	j	W
0	0	0	0	0
$i-1$ $w_i, v_i i$	0	$F(i-1, j-w_i)$	F(i – 1, j) F(i, j)	
n	0			goal

Example: knapsack (0-1) – bottom-up⁵

				cap	acity	j	
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$v_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$v_2 = 1, v_2 = 10$	2	0	10	12	22	22	22
$v_3 = 3, v_3 = 20$	3	0	10	12	22	30	32
$v_4 = 2, \ v_4 = 15$	4	0	10	15	25	30	37

Algorithm: int Knapsack(n,W,w[1..n],v[1..n],F[0..n,0..W])

```
for i \leftarrow 0 to n do
    for i \leftarrow 0 to W do
         if i = 0 \lor j = 0 then F[i][j] \leftarrow 0;
         else if w[i] < i then
           F[i][j] \leftarrow max(F[i-1][j], v[i] + F[i-1][j-w[i]]);
         else F[i][j] \leftarrow F[i-1][j];
```

return F[n][W];

Example: knapsack (0-1) – top-down $| 0,i/i,0=0, i,j=-1^6$

		1		cap	acity	j	
	i	0	1	2	3	4	5
	0	0	0	0	0	0	0
$w_1 = 2, v_1 = 12$	1	0	0	12	12	12	12
$w_2 = 1, v_2 = 10$	2	0	_	12	22	_	22
$w_3 = 3, v_3 = 20$	3	0	_	_	22	_	32
$w_4 = 2, v_4 = 15$	4	0	_	_	_	_	37

Algorithm: int MFKnapsack(i,j,w[1..n],v[1..n],F[0..n,0..W])

```
if F[i,j] < 0 then
    if j < w[i] then value \leftarrow MFKnapsack(i-1, j, w, v, F);
    else
        value \leftarrow max(MFKnapsack(i-1, j, w, v, F),
                         v[i] + MFKnapsack(i-1, j-w[i], w, v, F);
    F[i, j] \leftarrow value;
```

return F[i,j];

Agenda

Dynamic programming

2 Approximation algorithms

3 Bibliography

Approximation algorithms

Sometimes it is even harder to find a solution

■ NP-Complete ⊂ NP-hard

Alternative: "solve" the problem using approximation algorithms

■ The solution does not need to be optimal, but only acceptable

Examples: greed approximation for TSP

- Nearest-neighbour algorithm
- MST-based algorithm

TSP: nearest-neighbour algorithm⁷

Initial node: a

$$s_a = a - b - c - d - a$$
, cost = 10

Optimal solution

$$s^* = a - b - d - c - a$$
, cost = 8

Accuracy ration: $r(s_a) = \frac{10}{9} = 1,25$

Changing the weight of (a, d) to w:

$$r(s_a) = \frac{4+w}{8}$$

TSP: MST-based algorithm8

In general terms:

- Construct an MST
- Perform a walk around the MST (recording the order of nodes visited)
- Eliminate all repeated occurrences except the initial node (making shortcuts in a walk)

Agenda

Approximation algorithms

Bibliography

Bibliography

Chapter 9 (pp. 283–296) Chapter 12 (pp. 441–457) Anany Levitin.

Introduction to the Design and Analysis of Algorithms. 3rd edition, Pearson, 2011.

Chapter 16 (pp. 509-513) Clifford Shaffer.

Data Structures and Algorithm Analysis. Dover, 2013.

4 D F 4 D F 4 D F 4 D

DYNAMIC PROGRAMMING

Gustavo Carvalho (ghpc@cin.ufpe.br)

Universidade Federal de Pernambuco Centro de Informática, 50740-560, Brazil

