MAT 524: Functions of a Real Variable II Homework VI

Nolan R. H. Gagnon

[Problem One]:

Problem Statement

Let H be a Hilbert space. For $y \in H$, define $T_y \in H^*$ by

$$T_y(x) = \langle x, y \rangle$$
.

Prove that $||T_y|| = ||y||$. Explain why it follows that the map $\phi: H \longrightarrow H^*$ defined by $y \mapsto T_y$ is one-to-one.

Solution

Let $y \in H$ and let $S = \{M : |T_y(x)| \le M \|x\|$ for all $x \in H\}$. Note that $\|y\| \in S$, by the Cauchy-Schwarz inequality. Thus, to show that $\|y\| = \inf S = \|T_y\|$, we simply need to show that $\|y\|$ is a lower bound for S. Suppose otherwise. Then there exists $M \in S$ such that $M < \|y\|$ and $\|T_y(x)\| = \|\langle x, y \rangle\| \le M \|x\|$ for all $x \in H$. But $\|\langle y, y \rangle\| = \|y\|^2 > M \|y\|$. This contradicts the fact that $M \in S$. Thus, $\|y\| = \inf S = \|T_y\|$.

To show that ϕ is one-to-one, let $y, z \in H$ and suppose $\phi(y) = \phi(z)$. Then for all $x \in H$, we have $\langle x, y \rangle = \langle x, z \rangle$. In particular, $\langle y - z, y \rangle = \langle y - z, z \rangle$, or

$$0 = \langle y - z, y \rangle - \langle y - z, z \rangle \tag{1}$$

$$= \langle y - z, y \rangle + \overline{(-1)} \langle y - z, z \rangle \tag{2}$$

$$= \langle y - z, y \rangle + \langle y - z, -z \rangle \tag{3}$$

$$= \langle y - z, y - z \rangle. \tag{4}$$

But this implies that y-z=0, i.e., y=z. Therefore, ϕ is one-to-one.

