Problemas em equipe 02

Estudantes: Eduardo Eiji Goto, Gustavo Hammerschmidt, João Vitor Andrioli.

Parte 1 – Variáveis aleatórias discretas

- 1) Uma variável aleatória discreta tem a distribuição de probabilidade dada por: $p_X(x) = K/x$, para x = 1, 3, 5 e 7.
 - a) Calcule o valor de K.

$$K/1 + K/3 + k/5 + k/7 = 1$$

$$(mmc: 3, 5, 7 = 105)$$

$$K * 105 + K * 105/3 + K * 105/5 + K * 105/7 = 105$$

$$176 * K = 105$$

$$K = 105/176 = 0.59659...$$

b) Apresentar a tabela que define $p_X(x)$.

x	$p_X(x)$	Px(X)
1	K/1	0.59659
3	K/3	0.19886
5	K/5	0.11931
7	K/7	0.08522

c) Calcular E[X].

$$E[X] = 1 * 0.59659 + 3 * 0.19886 + 5 * 0.11931 + 7 * 0.08522$$

$$E[X] = 2.38626$$

Parte 2 – Distribuições Geométrica e Poisson

1) A probabilidade de sucesso de um experimento é de 0,3 e ele deve ser realizado até que o resultado com sucesso seja alcançado. Qual a probabilidade que o experimento tenha que se realizar mais de 3 vezes?

Colocar como resposta os comandos do scypy e o valor do resultado.

2) Um departamento de qualidade realiza testes em hard disk selecionados aleatoriamente. A política definida é parar o processo de fabricação para calibração se um inspetor encontrar mais do que quatro defeitos em um disco. Qual é a probabilidade de o processo de fabricação ser interrompido se o número médio de defeitos é dois, e os defeitos são distribuídos segundo a distribuição de Poisson? Colocar como resposta os comandos do scypy e o valor do resultado.

=======PYTHON from scipy.stats import poisson	1
print(1-poisson.cdf(4, 2))	
OUTPUT: 0.052653017343711084	

Parte 3 – Simulação vetorial

2.1 O arquivo "SimVet1.ipynb" contém o código Python para Jupyter Notebook para a simulação interativa e vetorial do problema do dado simulado na aula anterior. Preencher tabela seguinte com os tempos de simulação para os seguintes números de simulação.

Simulação interativa							
Número de	100	1000	10000	100000			
simulações							
Tempo de	0.0087	0.0419	0.3236	3.3562			
execução							

Simulação vetorial							
Número de	100	1000	10000	10000			
simulações							
Tempo de	0.0006	0.0005	0.0042	0.0130			
execução							

Qual dos dois métodos é mais eficiente?

O vetorial, pois gera uma matriz com todos os dados primeiramente para, então, realizar os procedimentos lógicos.

2.2 O arquivo "SimVet1.ipynb" contém o código Python para Jupyter Notebook para a simulação interativa do problema da moeda apresentado na aula anterior. Contém também dicas e instruções para o algoritmo vetorial. Programar o algoritmo vetorial e copiar o código aqui. Caso não consiga finalizar, na próxima aula haverá tempo para finalizar.

======Função Vetorial

```
# Passo 3 Passo 3
# Contar quantas vezes a primeira cara saiu em um lançamento de
número de ordem par e dividir pela quantidade de simulações.
return np.sum(x % 2 == 0)/n
```

======= Output Interativo

```
for n in [100,1000,10000,100000]:
    t1 = time.perf_counter()
    probS = Moeda(n)
    t2 = time.perf_counter()
    print(str(n) + '-'*40)
    print('Probabilidade simulada: {:.4f}'.format(probS))
    print('Probabilidade teórica: {:.4f}'.format(1/3))
    print('Tempo de simulação: {:.4f}'.format(t2-t1))
```

======= Output Vetorial

```
for n in [100,1000,10000,100000]:

t1 = time.perf_counter()
probS = MoedaV(n)

t2 = time.perf_counter()
print(str(n) + '-'*40)
print('Probabilidade simulada: {:.4f}'.format(probS))
print('Probabilidade teórica: {:.4f}'.format(1/3))
print('Tempo de simulação: {:.4f}'.format(t2-t1))
```

```
100------Probabilidade simulada: 0.4300
Probabilidade teórica: 0.3333
Tempo de simulação: 0.0006
```

Probabilidade simulada: 0.2940 Probabilidade teórica: 0.3333

Tempo de simulação: 0.0005

Probabilidade simulada: 0.3383 Probabilidade teórica: 0.3333 Tempo de simulação: 0.0042

100000-----

Probabilidade simulada: 0.3305 Probabilidade teórica: 0.3333 Tempo de simulação: 0.0130