Essentials of MOSFETs

Unit 2: Essential Physics of the MOSFET

Lecture 2.6: Unit 2 Recap

Mark Lundstrom

Iundstro@purdue.edu
Electrical and Computer Engineering
Purdue University
West Lafayette, Indiana USA

Unit 2

- 2.1 Energy Band Review
- 2.2 Energy Band View of the MOSFET
- 2.3 MOSFET IV Theory
- 2.4 The Square Law MOSFET
- 2.5 The Virtual Source Model

Review of energy band diagrams

Draw the band diagram

Read the band diagram

$$V(x) \propto -E_C(x)$$

$$V(x) \propto -E_C(x)$$

 $\mathcal{E} \propto dE_C(x)/dx$

$$\log n(x) \propto E_F - E_i(x)$$

$$\log p(x) \propto E_i(x) - E_F$$

$$\rho(x) \propto (p - n + N_D - N_A)$$

How transistors work

DIBL

transfer characteristics:

Understanding DIBL with an e-band diagram

MOSFET IV: Low V_{DS} (linear region)

$$I_D = W |Q_n(x)| \langle \upsilon_x(x) \rangle$$

$$Q_n = -C_{ox} \left(V_{GS} - V_T \right)$$

$$\langle \upsilon_x \rangle = -\mu_n \mathcal{E}_x$$

$$\mathcal{E}_{x} = -V_{DS}/L$$

$$I_D = \frac{W}{L} \mu_n C_{ox} \left(V_{GS} - V_T \right) V_{DS}$$

MOSFET IV: High V_{DS} (beyond pinch-off)

$$Q_n(0) = -C_{ox}(V_{GS} - V_T)$$

$$\langle \upsilon_x(0)\rangle = -\mu_n \mathcal{E}_x(0)$$

$$\mathcal{E}_{x}(0) \approx -V(x_{pinch})/L = -(V_{GS} - V_{T})/L$$

$$I_D = \frac{W}{2L} \mu_n C_{ox} \left(V_{GS} - V_T \right)^2$$

Complete IV characteristic

$$V_{GS} > V_{T}$$

$$V_{DS} < V_{GS} - V_{T}$$

$$I_{D} = +\mu_{n} C_{ox} \frac{W}{L} \left[(V_{GS} - V_{T}) V_{DS} - \frac{V_{DS}^{2}}{2} \right]$$

$$V_{GS} > V_{T}$$

$$V_{DS} > V_{GS} - V_{T}$$

$$I_{D} = +\mu_{n} C_{ox} \frac{W}{2L} (V_{GS} - V_{T})^{2}$$

MOSFET IV: High V_{DS} (velocity saturation)

$$I_D = W |Q_n(x)| \langle v_y(x) \rangle$$

$$Q_n = -C_{ox} \left(V_{GS} - V_T \right)$$

$$\langle \upsilon_x \rangle = \upsilon_{sat}$$

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

$$I_D = WC_{ox} \, \upsilon_{sat} \left(V_{GS} - V_T \right)$$

Velocity overshoot

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

From two-piece to continuous model

We have developed a 2-piece approximation to the MOSFET IV characteristic.

Lundstrom: 2018

Simple (Level 0) VS model

Lundstrom: 2018

$$1) \quad I_D/W = \left| Q_n \left(V'_{GS} \right) \right| \left\langle \upsilon \left(V'_{DS} \right) \right\rangle$$

2)
$$Q_n(V'_{GS}) = -C_{ox}(V'_{GS} - V_T)$$
 $(V'_{GS} > V_T)$
 $V_T = V_{T0} - \delta V'_{DS}$

3)
$$\langle \upsilon(V'_{DS}) \rangle = F_{SAT}(V'_{DS})\upsilon_{sat}$$

4)
$$F_{SAT}(V'_{DS}) = \frac{V'_{DS}/V_{DSAT}}{\left[1 + (V'_{DS}/V_{DSAT})^{\beta}\right]^{1/\beta}}$$

$$V_{DSAT} = \frac{v_{sat}L}{\mu_n}$$

There are only 8 devicespecific parameters in this model:

$$C_{ox}, V_{T0}, \delta, \upsilon_{sat}, \mu_n, L$$

 $R_{SD} = R_S + R_D$

$$+ \beta$$

A Simple Semiempirical Short-Channel MOSFET Current–Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters

Ali Khakifirooz, Member, IEEE, Osama M. Nayfeh, Member, IEEE, and Dimitri Antoniadis. Fellow. IEEE

The MIT VS Model

In this course, we will show that the mobility and high-field saturation velocity should be re-interpreted:

$$\dfrac{1}{\mu_n}
ightharpoonup \dfrac{1}{\mu_{app}}$$
 "apparent mobility" $v_{sat}
ightharpoonup v_{inj}$ "injection velocity"

We will show that these two parameters have clear, well-defined physical interpretations.

Unit 3

Before we discuss carrier transport in nanoscale MOSFETs (e.g. mobility and saturation velocity), we will examine the important topic of **MOS electrostatics**.

MOS electrostatics describe the influence of the terminal voltages on the energy barrier between the source and drain.

Properly designed MOSFETs have "electrostatic integrity":

$$Q_n(x=0) \approx -C_{ox}(V_{GS} - V_T) \quad \text{C/cm}^2$$