

(12) United States Design Patent (10) Patent No.:

Zhang et al.

US D1,089,917 S

(45) **Date of Patent:** ** Aug. 19, 2025

(54) SELF CLEANING DOCKING STATION FOR AUTONOMOUS GUIDED DEEP LEARNING CLEANING APPARATUS

(71) Applicant: Trifo, Inc., Santa Clara, CA (US)

(72) Inventors: **Zhe Zhang**, Sunnyvale, CA (US); Zhongwei Li, Beijing (CN)

Assignee: Trifo, Inc., Santa Clara, CA (US)

Term: 15 Years

(21) Appl. No.: 29/863,047

(22) Filed: Dec. 14, 2022

(51) LOC (15) Cl. 15-05

U.S. Cl. USPC **D32/31**

Field of Classification Search

USPC D13/107, 108, 109, 119; D32/15, 16, 19, D32/20, 21, 23, 25, 31, 39

CPC ... A47L 5/12; A47L 5/22; A47L 5/225; A47L 5/28; A47L 5/30; A47L 7/0052; A47L 9/0009; A47L 11/40; A47L 11/4061; A47L 11/4075; A47L 11/4091; A47L 11/24; A47L 11/4013; A47L 11/4025;

A47L 2201/02; A47L 2201/022; A47L 2201/024 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

10,423,861 B2 D908,992 S *	1/2021	Gao et al. Jang D32/30			
D908,993 S *		Li D32/31			
D924,522 S * D961,177 S *		Jang			
2013/0245937 A1		DiBernardo et al.			
2013/0338525 A1	12/2013				
2015/0234398 A1	8/2015	Harris et al.			
(Continued)					

FOREIGN PATENT DOCUMENTS

CN CN 106725135 A * 5/2017 111714042 A * 9/2020 A47L 11/24 (Continued)

OTHER PUBLICATIONS

Auto-Cleaning Station, posted Apr. 20, 2022 [online], [retrieved May 2, 2024]. Retrieved from internet, https://www.amazon.com/ ECOVACS-Auto-Cleaning-Navigation-Avoidance-Assistant/dp/ B09NPM632Z (Year: 2022).*

(Continued)

Primary Examiner — Leah Macchiarolo Assistant Examiner — Taylor O Mortorff (74) Attorney, Agent, or Firm — Haynes Beffel & Wolfeld LLP; Andrew Dunlap; Paul A. Durdik

CLAIM

The ornamental design for a self cleaning docking station for autonomous guided deep learning cleaning apparatus as shown and described.

DESCRIPTION

FIG. 1 is a top, right perspective view of a self cleaning docking station for autonomous guided deep learning cleaning apparatus showing our new design;

FIG. 2 is a front elevation view thereof:

FIG. 3 is a rear elevation view thereof;

FIG. 4 is a left-side elevation view thereof;

FIG. 5 is a right-side elevation view thereof;

FIG. 6 is a top plan view thereof; and,

FIG. 7 is a bottom plan view thereof.

The invention is shown together with environmental structure in broken lines, the environmental structure forming no part of the claimed design. The broken lines show portions of the self cleaning docking station for autonomous guided deep learning cleaning apparatus that form no part of the claimed design.

1 Claim, 7 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

2016/0166126 A1*	6/2016	Morin A47L 9/281
		15/319
2016/0183752 A1*	6/2016	Morin A47L 9/1625
		15/340.1
2017/0196196 A1		Trottier et al.
2018/0012411 A1		Richey et al.
2018/0075403 A1	3/2018	Mascorro Medina et al.
2018/0289579 A1	10/2018	Agrawal
2018/0317725 A1	11/2018	Lee et al.
2019/0102667 A1	4/2019	Bashkirov et al.
2019/0156944 A1	5/2019	Eriksson et al.
2019/0377349 A1	12/2019	van der Merwe et al.
2020/0156255 A1	5/2020	Soltani Bozchalooi et al.
2022/0287527 A1*	9/2022	Hong A47L 11/4091

FOREIGN PATENT DOCUMENTS

CN	111839375 A	*	10/2020	A47L 11/28
CN	211749328 U	J *	10/2020	
CN	212382573 U	J *	1/2021	
CN	112869673 A	*	6/2021	A47L 11/00
CN	112998605 A	*	6/2021	A47L 11/4005
CN	213309501 U	J *	6/2021	
CN	214073161 U	J *	8/2021	
CN	214073183 U	J *	8/2021	
CN	214414759 U	J *	10/2021	
CN	214804493 L	J *	11/2021	
CN	215191283 U	J *	12/2021	
CN	215457682 U	J *	1/2022	
CN	215650867 L	J *	1/2022	A47L 11/24
CN	215838790 U	J *	2/2022	
$^{\rm CN}$	216020830 U	J *	3/2022	
CN	216569783 U	J *	5/2022	
EP	4202866 A	\1	12/2022	
WO	2015063119 A	11	5/2015	

OTHER PUBLICATIONS

Robot Vacuum with Dustbin, posted Sep. 5, 2022 [online], [retrieved May 2, 2024]. Retrieved from internet, https://www.amazon.com/Station-Self-Cleaning-Pressurized-Detection-Editable/dp/B09NLXGHRQ (Year: 2022).*

U.S. Appl. No. 18/081,669, filed Dec. 14, 2022, US 20230363609 A1, Nov. 16, 2023, Published.

U.S. Appl. No. 18/081,672, filed Dec. 14, 2022, US 20230363610 A1, Nov. 16, 2023, Published.

U.S. Appl. No. 18/079,875, filed Dec. 13, 2022, US 20230196737 A1, Jun. 22, 2023, Published.

Zhang et al., ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices, dated Dec. 7, 2017, 9 pages. Lin et al., Network in Network, in Proc. of ICLR, 2014.

Sifre, Rigid-motion Scattering for Image Classification, Ph.D. thesis, 2014.

Sifre et al., Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination, in Proc. of CVPR, 2013.

Chollet, Xception: Deep Learning with Depthwise Separable Convolutions, in Proc. of CVPR, 2017. 8 pages.

He et al., Deep Residual Learning for Image Recognition, in Proc. of CVPR, 2016.

Xie et al., Aggregated Residual Transformations for Deep Neural Networks, in Proc. of CVPR, 2017.

Howard et al., Mobilenets: Efficient Convolutional Neural Networks for Mobile Vision Applications, 2017.

Sandler et al., MobileNetV2: Inverted Residuals and Linear Bottlenecks, 2018.

Qin et al., FD-MobileNet: Improved MobileNet with a Fast Downsampling Strategy, 2018.

Oord et al., Wavenet: A Generative Model for Raw Audio, dated Sep. 19, 2016, 15 pages.

Arik et al., Deep Voice: Real-time Neural Text-to-Speech, dated 2017, 17 pages.

Yu et al., Multi-Scale Context Aggregation by Dilated Convolutions, ICLR 2016, dated Apr. 30, 2016, 13 pages.

He et al., Deep Residual Learning for Image Recognition, 2015.

Srivastava et al., Highway Networks, dated 2015, 6 pages. Huang et al., Densely Connected Convolutional Networks, dated Aug. 17, 2017, 9 pages.

Szegedy et al., Going Deeper with Convolutions, dated 2014, 12 pages.

Ioffe et al., Batch Normalization Accelerating Deep Network Training by Reducing Internal Covariate Shift, dated 2015, 11 pages.

Piqueras, Autoregressive Model Based on a Deep Convolutional Neural Network for Audio Generation, Tampere University of Technology, dated 2016, 58 pages.

Wu, Introduction to Convolutional Neural Networks, Nanjing University, dated 2017, 31 pages.

Goodfellow et al., Chapter 9—Convolutional Networks, Deep Learning, MIT Press, dated 2016, 41 pages.

Gu et al., Recent Advances in Convolutional Neural Networks, dated Jan. 5, 2017, 37 pages.

Srivastava, Dropout A Simple Way to Prevent Neural Networks from Overfitting, 2014, 30 pages.

Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes

Part 1, Spring 2015, Stanford University, 11 pages. Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes

Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes Part 2, Spring 2015, Stanford University, 11 pages.

Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes Part 3, Spring 2015, Stanford University, 14 pages.

Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes Part 4, Spring 2015, Stanford University, 12 pages.

Chaubard et al., CS224D: Deep Learning for NLP, Lecture Notes Part 5, Stanford University, Spring 2015, 6 pages.

EP 22216758.7 Extended European Search Report dated May 6, 2023, 13 pages.

Sun Hao et al.: "Semantic mapping and semantics-boosted navigation with path creation on a mobile robot," 2017 IEEE International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), IEEE, Nov. 19, 2017, pp. 207-212.

Sun Hao et al.: "Scene Recognition and Object Detection in a Unified Convolutional Neural Network on a Mobile Manipulator," 2018 IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 21, 2018, pp. 1-5.

Song Shuran et al.: "Sun RGB-D: A RBG-D scene understanding benchmark suite," 2018 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 7, 2015, pp. 567-576.

Jiao Jichao et al.: "A Post-Recitification Approach of Depth Images of Kinect v2 for 3D Reconstruction of Indoor Scenes," ISPRS International Journal of Geo-Information, vol. 6, No. 11, Nov. 13, 2017, p. 349.

^{*} cited by examiner

FIG. 1

FIG. 2

FIG. 3

FIG. 4

FIG. 5

FIG. 6

FIG. 7