

■ <mark>다원 배치법</mark>(multi-factor design)

- <mark>관심의 요인이 3개 이상인 경우</mark>, 모든 요인의 수준조합에 대해 확률화를 적용하여 실험
- 요인의 수가 늘어나면, 실험횟수가 많아지고 이에 대해 랜덤화가 어려워짐
- 실험전체를 비슷한 관리 상태 하에서 수행하는데 여러 가지 어려움이 따름

 □ 요인에 대한 충분한 기술적 검토를 거쳐 불필요한 요인라고 판단되면

 과감히 요인의 수를 줄임

□ 반복이 없는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- *abc* 개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		A_1	A_2	• • •	A_a
	C_1	Y_{111}	Y_{211}	• • •	Y_{a11}
B_1	:		:	٠.	:
	C_{c}	Y_{11c}	Y_{21c}	• • •	Y_{a1c}
•	:	:	:	:	:
	C_1	Y_{1b1}	Y_{2b1}	• • •	Y_{ab1}
$B_{\!b}$:	•	:	٠.	•
	C_c	Y_{1bc}	Y_{2bc}	• • •	Y_{abc}

○ 모형의 구조식

$$\underbrace{(Y_{ijk})}_{\text{Figh}} = \mu + \underbrace{\alpha_i + \beta_j + \gamma_k}_{\text{Figh}} + \underbrace{(\alpha\beta)_{ij} + (\alpha\gamma)_{ik}}_{\text{Boles 1-figh}} + \underbrace{\varepsilon_{ijk}}_{\text{Boles 1-figh}}$$

- *µ*: 전체평균
- $(\alpha_i, \beta_j, \gamma_k$: 요인의 주효과 $(\alpha_i, \beta_j, \gamma_k) = (\alpha_i, \beta_j, \gamma_k) + (\alpha_i, \beta_i) + (\alpha_i,$
- \circ $arepsilon_{iik}\sim$ iid $N(0,\sigma^2)$ স মুখ্যে মুখ্য মুখ্যে মুখ্য মুখ্য মুখ্যে মুখ্যে মুখ্য মুখ্যে মুখ্য
- \circ 3 요인의 상호작용 $(lphaeta\gamma)_{ijk}$ 는 오차항 $arepsilon_{ijk}$ 에 교락되어 있어 별도로 검정할 수 없음 → 뱃이 되어 빼벙두 없음 (반복이 있는 아닌배시 밥이라면 배비년두 있게 됨)

○ 변동 분해

$$\begin{split} &(Y_{ijk} - \overline{Y}_{...}) = (\overline{Y}_{i..} - \overline{Y}_{...}) + (\overline{Y}_{.j.} - \overline{Y}_{...}) + (\overline{Y}_{..k} - \overline{Y}_{...}) \\ &+ (\overline{Y}_{ij.} - \overline{Y}_{i..} - \overline{Y}_{.j.} + \overline{Y}_{...}) + (\overline{Y}_{i.k} - \overline{Y}_{i..} - \overline{Y}_{..k} + \overline{Y}_{...}) + (\overline{Y}_{.jk} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}) \\ &+ (Y_{ijk} - \overline{Y}_{ij.} - \overline{Y}_{i.k} - \overline{Y}_{.jk} + \overline{Y}_{i..} + \overline{Y}_{.j.} + \overline{Y}_{..k} - \overline{Y}_{...}) \\ &\circ & TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{abc} = \mathbf{I}_{ISK} - \mathbf{I}_{I$$

$$55A = III (Y_{13}.-Y_{...})^{2} = b(\frac{2}{7}(Y_{13}.-Y_{...})^{2})^{2} + 55AB = III (Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2}$$

$$55A = III (Y_{13}.-Y_{...})^{2} = b(\frac{2}{7}(Y_{13}.-Y_{...})^{2})^{2} + 55AB = III (Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2}$$

$$55A = III (Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2}$$

$$55A = III (Y_{13}.-Y_{...})^{2} = cII(Y_{13}.-Y_{...})^{2} = cII(Y_{$$

$$SS(AB) = SSAB - SSA - SSB, SS(AC) = SSAC - SSA - SSC,$$

$$SS(BC) = SSBC - SSB - SSC$$

TLO [

$$\circ SSE = TSS - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

○ 분산분석표

벼이

	민인		ᄭᅲᅩ	게ㅂ입	당판제由	Г	
		Α	a-1	SSA	MSA	MSA/MSE	0
	주효과	В	b-1	SSB	MSB	MSB/MSE	હ
(ab-1) - - (a-17-(b-17		C	c-1	SSC	MSC	MSC/MSE	③
	상호	(AB)	((a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE	4
= (a-1)(b-1)		(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE	ব্ত
	작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE	6
	오ㅊ	}	(a-1)(b-1)(c-1)	SSE	MSE		
	전처		abc-1	TSS			

제고하

펴규제고

■ 화학공장의 합성반응공정에서 합성율의 향상

$$(abc-1) - ((a-1)+(b-1)+(c-1)+(a-1)(b-1)+(b-1)(c-1)+(c-1)(a-1))$$

$$= (a-1)(b-1)(c-1)$$

○ 반응압력 : 8, 10, 12 (kg/cm²)

○ 반응시간 : 1.5, 2.0, 2.5 (hr)

○ 반응온도 : 140, 150, 160 (°C)

1 Ho: d1= = da=0 → F (a-1, Ca-1) (c-1)
⊕ Ho: PI= ··· = Pb= 0 → F (b-1, (a-1)(b-1)(c-1))
Ho: η₁= = 1c=0 → + (c-1, (α-1)(b-1)(c-1))
⊕ Ho: (de)(1= = (de) ab = 0 → F ((a+) (b+), (a+) (b-1)((-1))
(Ho: (da) 11= = (da) ac=0 -> + ((a-1)(c-1), (a-1)(b-1)(c-1)
(Ho: (64) 11= ··· = (64) bc=0 → + ((6-1)(c-1), (a-1)(b-1)(c-1)
Hi: Not Ho

		A_1	A_2	A_3						A7L	우시됨				
	C_1	74	61	50							1 = 72+6 = 183	2+49			
B_1	C_2	86	78	70							-189				
	C_3	76	71	60/	A_1	A_2	A_3		A_1	A_2	A_3		B_1	B_2	B_3
	C_1	72	62	49	B_1 236	210	180	C_1	194	178	151	C_1	185	183	155
B_{2}	C_2	91	81	68	B_2 250	220	181	C_2	242	231	207	C_2	234	240	206
	C_3	87	77	64	B_3 169	190	181	C_3	219	211	184	C_3	207	228	179
	C_1	48	55	52	1		BICTE			- ۲۰۰۶ ما			Y.1. = 6		
B_3	C_2	65	72	69			Yn. =		N+181				1.1 0		
	C_3	56	63	60			"	542							
	C_3	56	63	60											

(가무시됨 YIn = 48+65+56

- 6 -

= 169

$$\circ$$
 $CT = 1817^2/27 = 122277.37$

$$TSS = 74^2 + \dots + 60^2 - CT = 3613.6$$

$$SSA = \frac{1}{9}(655^2 + 620^2 + 542^2) - CT = 743.6$$

$$SSB = \frac{1}{9}(626^2 + 651^2 + 540^2) - CT = 753.4$$

$$SSC = \frac{1}{9}(523^2 + 680^2 + 614^2) - CT = 1380.9$$

$$SSAB = \frac{1}{3}(236^2 + \dots + 181^2) - CT = 2148.9$$

$$SSAC = \frac{1}{3}(194^2 + \dots + 184^2) - CT = 2133.6$$

$$SSBC = \frac{1}{3}(185^2 + \dots + 179^2) - CT = 2190.9$$

+ 55C+ 55A + 55(AC) -55A -55B-55C)

= T55- (55(AB)+55(BC)+55(AC)+55A+55B+55C)

$$\circ$$
 $SS(AB) = SSAB - SSA - SSB = 651.9$

$$\circ$$
 $SS(AC) = SSAC - SSA - SSC = 9.1$

$$\circ$$
 $SS(BC) = SSBC - SSB - SSC = 56.6$

$$\circ$$
 $SSE = TSS - (SSAB + SSAC + SSBC - SSA - SSB - SSC) = 18.1$

○ 분산분석표

변인	자유도	제곱합	평균제곱	F
Α	2	743.6	371.8	164.5
В	2	753.4	376.7	166.7
С	2	1380.9	690.4	305.5
(AB)	4	651.9	163.0	72.1
(AC)	4	9.1	2.3	1.0
(BC)	4	56.6	14.2	6.3
오차	8	18.1	2.26	
전체	26	3613.6	-	

는 (0.05, 2,8) = 4.46 과 비교 나 일두가각 역에 들어나으고 Ho기각 각합과가 있다

 + F(0.05, 4, 8) = 3.84과 비교

 나 (서) 는 Ho 기각 X

 라이 5데이 당은 단요가 없으므로

 오시하는데 Pooling APJ!!

5·1·미M 가격이 안돼서 느는하게 보면? (0·10·4·8)=2·81 미M도기각불가능! 정말유의하지 않다 送失

 \circ 분산분석표상에서 (AC)는 유의수준 $\alpha = 0.10$ 에서 기각시키지 못하기 때문에 오차항에 포함시켜 재작성

					•	
	변인	자유도	제곱합	평균제곱	F	
	Α	2	743.6	371.8	163.8	
	В	2	753.4	376.7	165.7	→ F(0.05,2,127=7.89平出記
	С	2	1380.9	690.4	304.1	/
	(AB)	4	651.9	163.0	71.8)→ F(0.05,4,12)=3.26 みりほ
	(BC)	4	56.6	14.2	6.3	7 7 1 (0.05 14.1/2)= 7.26 EF 8 [E
(AC7हें अनिके -	오차	12	27.2	(2.27)		1
	전체	26	3613.6			85F가유의하으로끝!

○ 분산 분석후 추정

のかりなり

- 일차적으로 분산분석표에 의한 F-검정이 끝나면, 유의하지 않은 상호작용은 오차항에 흡수시켜 다시 F-검정을 실시
- ◆ 주효과만 유의한 경우 → a,b,c 만/k²
 - 각 요인수준에서의 모평균 추정
 - 점추정 : $\hat{\mu}(A_i) = \overline{Y}_i$. 생활에서 M도이 대한 사위도
 - 구간추정 : $\overline{Y}_{i..} \pm t_{\alpha/2}$ $\sqrt{MSE^*}/\sqrt{bc}$ \sqrt{bc} $\sqrt{W(Y_{i..})} = Var(\frac{\frac{1}{5}\sum_{k}Y_{i}y_{k}}{bc}) = \frac{bc\sigma^2}{V^2c^2} = \frac{\sigma^2}{bc}$
 - 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k)=\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{...}$$
 effective number : 충북되는 정보가 사제됨 - 구간추정 : $\overline{Y}_{i..}+\overline{Y}_{.j.}+\overline{Y}_{..k}-2\overline{Y}_{...}\pm t_{\alpha/2,\nu}\sqrt{MSE^*}/\sqrt{n_e}$ (실정적인 number 이미오 미빗다 작품)

$$\frac{1}{n_e} = \frac{1}{bc} + \frac{1}{ac} + \frac{1}{ab} - \frac{2}{abc} \rightarrow n_e = \frac{abc}{a+b+c-2}$$

$$\hat{\mu} (A_1 B_{\bar{0}} C_{k}) = \hat{\mu} + d\hat{1} + \hat{\beta}_{\bar{0}} + \hat{\gamma}_{k}$$

$$= \hat{\mu} + d\hat{1} + \hat{\mu} + \hat{\beta}_{\bar{0}} + \hat{\mu} + \hat{\gamma}_{k} - 2\hat{\mu}$$

$$= \overline{Y_{\bar{1}...}} + \overline{Y_{\bar{1}\bar{0}}} + \overline{Y_{...k}} - 2\overline{Y_{...}}$$

주효과와 일부 상호작용만 유의한 경우

(예) A, B, C, (AC)만 유의하다면,

○ 수준조합에 대한 모평균 추정

- 점추정 :
$$(\hat{\mu}(A_iB_jC_k))=\hat{\mu}+\hat{\alpha_i}+\hat{\beta_j}+\hat{\gamma_k}+(\widehat{\alpha\gamma})_{ik}$$

$$=\hat{\mu}+\hat{\alpha_i}+\hat{\gamma_k}+(\widehat{\alpha\gamma})_{ik}+\hat{\beta_j}=\overline{Y}_{i.k}+\overline{Y}_{.j.}-\overline{Y}_{...}$$

$$-$$
 구간추정 $:\overline{Y}_{i.k}+\overline{Y}_{.j.}-\overline{Y}_{...}\pm t_{lpha/2,
u}\sqrt{\mathit{MSE}^*}/\sqrt{n_e}$

$$-\frac{1}{n_e} = \frac{1}{b} + \frac{1}{ac} - \frac{1}{abc} \rightarrow n_e = \frac{abc}{a\mathbf{c} + b - 1}$$

A=1, b=4, c= 50.739 → 315+4=1941

● 모든 요인이 유의한 경우 → 더에 등을 일게 없는

○ 수준조합에 대한 모평균 추정

- 점추정 :
$$\hat{\mu}(A_iB_jC_k) = \overline{Y}_{i.k} + \overline{Y}_{i.k} + \overline{Y}_{.jk} - \overline{Y}_{i..} - \overline{Y}_{.j.} - \overline{Y}_{..k} + \overline{Y}_{...}$$

- 구간추정 :
$$\hat{\mu}(A_iB_jC_k)\pm t_{lpha/2,
u}\sqrt{MSE^*}/\sqrt{n_e}$$

$$-n_e = \frac{abc}{ab + ac + bc - a - b - c + 1} \leftarrow \frac{1}{\mathsf{n_e}} = \frac{1}{\mathsf{c}} + \frac{1}{\mathsf{b}} + \frac{1}{\mathsf{a}} - \frac{1}{\mathsf{bc}} - \frac{1}{\mathsf{ac}} - \frac{1}{\mathsf{ab}} + \frac{1}{\mathsf{abc}}$$

· 보 디메이에는 (AC) 상나한 유의상지 않았음!

lacksquare 수준조합 $A_1B_2C_2$ 의 모평균의 점추정값과 95% 신뢰구간

$$\circ \underbrace{\mu(A_1 B_2 C_2)}_{12} = \overline{y}_{12} + \overline{y}_{.22} - \overline{y}_{.2} = \frac{250}{3} + \frac{240}{3} - \frac{651}{9} = 91$$

$$91 \pm t_{0.025, 12} \sqrt{2.27/1.8} = 91 \pm 2.179 \times 1.123 = 91 \pm 2.4 \implies (88.6\%, 93.4\%)$$

$$\circ \frac{1}{n_e} = \frac{1}{3} + \frac{1}{3} - \frac{1}{9} \rightarrow n_e = \underline{1.8}$$

$$\circ \frac{1}{n_e} = \frac{1}{6} + \frac{1}{6} - \frac{1}{66}$$

$$\hat{\mu}(A_1B_3C_k) = \hat{\mu} + \hat{\alpha}_1 + \hat{\mu}_2 + \hat{\alpha}_k + (\hat{\alpha}_{\beta})_{\bar{1}\bar{3}} + (\hat{\mu}_{\alpha})_{\bar{3}k}$$

$$= (\hat{\mu} + \hat{\alpha}_1 + \hat{\mu}_{\bar{3}} + (\hat{\alpha}_{\beta})_{\bar{1}\bar{3}}) + (\hat{\mu} + \hat{\mu}_{\bar{3}} + \hat{\alpha}_{k} + (\hat{\mu}_{\alpha})_{\bar{3}k}) - (\hat{\mu} + \hat{\mu}_{\bar{3}})$$

$$= \overline{Y_{\bar{1}\bar{3}}} + \overline{Y_{\bar{3}k}} - \overline{Y_{\bar{3}k}}.$$

자유도	제곱합	평균제곱	F	
2	743.6	371.8	163.8	
2	753.4	376.7	165.7)→ F(0.05, 2,127 = 7,89과 HIZ
2	1380.9	690.4	304.1	Y
4	651.9	163.0	71.8) → F(0.05,4,12)=3.26 24 812
4	56.6	14.2	6.3	7 7 1 (0.05) 41.12] = 5.26 PF 81E
12	27.2	2.27		4
26	3613.6			오토타가유약하므로끝! - 13 ·
	2 2 2 4 4 12	2 743.6 2 753.4 2 1380.9 4 651.9 4 56.6 12 27.2	2 743.6 371.8 2 753.4 376.7 2 1380.9 690.4 4 651.9 163.0 4 56.6 14.2 12 27.2 2.27	2 743.6 371.8 163.8 2 753.4 376.7 165.7 2 1380.9 690.4 304.1 4 651.9 163.0 71.8 4 56.6 14.2 6.3 12 27.2 2.27

(가위점 ⇒ 생님배시데야댿 아닌배시오 바뀔수있이야됨!

9

Y12 = 48+65+56

□ 반복이 있는 삼원배치법 (고정효과모형)

- \circ 요인 A, B, C가 각각 a, b, c 개의 수준을 가짐
- \circ 반복수가 r일 때 N=abcr개의 모든 수준 조합에 대해 확률화를 적용하여 배치

○ 자료의 구조

		$A_1 \qquad \cdots \qquad A_a$
B_1		$Y_{1111}\cdots Y_{111r} \cdots Y_{a111}\cdots Y_{a11r} \ \vdots \ Y_{11c1}\cdots Y_{11cr} \cdots Y_{a1c1}\cdots Y_{a1cr}$
:	•	: : :
B_b	•	$egin{array}{cccccccccccccccccccccccccccccccccccc$

○ 모형의 구조식

$$Y_{ijkl} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + \varepsilon_{ijkl}$$

- *µ*: 전체평균
- \circ $\alpha_i, \beta_i, \gamma_k$: 요인의 주효과
- \circ $(\alpha\beta)_{ij}$, $(\alpha\gamma)_{ik}$, $(\beta\gamma)_{jk}$: 두 요인의 상호작용
- \circ $(\alpha\beta\gamma)_{ijk}$: 세 요인의 상호작용
- \circ $\varepsilon_{ijk} \sim \text{ iid } N(0,\sigma^2)$

○ 변동 분해

$$\begin{split} (Y_{ijkl} - \overline{Y}_{...}) &= (\overline{Y}_{i...} - \overline{Y}_{...}) + (\overline{Y}_{.j..} - \overline{Y}_{...}) + (\overline{Y}_{.k.} - \overline{Y}_{...}) + (\overline{Y}_{ij..} - \overline{Y}_{i...} - \overline{Y}_{j...} + \overline{Y}_{...}) \\ &+ (\overline{Y}_{i.k.} - \overline{Y}_{i...} - \overline{Y}_{..k.} + \overline{Y}_{...}) + (\overline{Y}_{.jk.} - \overline{Y}_{.j..} - \overline{Y}_{..k.} + \overline{Y}_{...}) \\ &+ (Y_{ijk.} - \overline{Y}_{ij..} - \overline{Y}_{i.k.} - \overline{Y}_{.jk.} + \overline{Y}_{i...} + \overline{Y}_{.j..} + \overline{Y}_{..k.} - \overline{Y}_{...}) + e_{ijkl} \\ & \circ \quad TSS = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{r} Y_{ijkl}^{2} - CT, \quad CT = \frac{Y_{...}^{2}}{N} \\ & \circ \quad SSA = \frac{1}{bcr} \sum_{i=1}^{a} Y_{i...}^{2} - CT, \quad SSB = \frac{1}{acr} \sum_{j=1}^{b} Y_{.j..}^{2} - CT, \\ & SSC = \frac{1}{abr} \sum_{k=1}^{c} Y_{..k.}^{2} - CT \\ & \circ \quad SSAB = \frac{1}{cr} \sum_{i=1}^{a} \sum_{j=1}^{b} Y_{ij..}^{2} - CT, \quad SSAC = \frac{1}{br} \sum_{i=1}^{a} \sum_{k=1}^{c} Y_{i.k.}^{2} - CT, \end{split}$$

$$SSBC = \frac{1}{ar} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{.jk.}^{2} - CT$$

$$\circ SSABC = \frac{1}{r} \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} Y_{ijk}^{2} - CT$$

$$\circ \quad SS(AB) = SSAB - SSA - SSB, \quad SS(AC) = SSAC - SSA - SSC, \\ SS(BC) = SSBC - SSB - SSC$$

$$\circ (SS(ABC) = SSABC - (SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC))$$

$$= SSABC - (SSAB + SSAC + SSBC - SSA - SSB - SSC)$$

$$SSE = TSS - SSABC$$

44ABC- (45A+45B+55(AB) +55A+58C+55(AC) +55B+55C+55(BC)-55A-55B-55C)

○ 분산분석표

	변인		자유도	제곱합	평균제곱	F	7111211427373
		Α	a-1	SSA	MSA	MSA/MSE	•
	주효과	В	b-1	SSB	MSB	MSB/MSE	0
		C	c-1	SSC	MSC	MSC/MSE	0
ab-1-(a-1)		(AB)	(a-1)(b-1)	SS(AB)	MS(AB)	MS(AB)/MSE	4
	상호	(AC)	(a-1)(c-1)	SS(AC)	MS(AC)	MS(AC)/MSE	(
	작용	(BC)	(b-1)(c-1)	SS(BC)	MS(BC)	MS(BC)/MSE	6
		(ABC)	((a-1)(b-1)(c-1)	SS(ABC)	MS(ABC)	MS(ABC)/MSE	0
	오차		(abc(r-1))	SSE	MSE		
	전치	 	abcr-1	TSS			

abc-1- ((a-17(b-17+ (b-17(c-17+ (c-17(a-17)

알메있는게다!

abcr-1 - ((a-17+(b-1)+(c-17+(a-17(b-17+(b-17(c-1)+(r-17(a-17+(a-17(b-17)

$$OHo: d_1 = \cdots = d_n = 0$$
 $\rightarrow F(n-1, abc(r-1))$