List semester.

Plese write your Roll. No. immediately

First term Examination(B. Tech)

September 2017	
Sub. Code:ETMA-101 Sub. Name:Applied Mat	Marks:
Note: Attempt Q. No. 1 and two more Questions	
1.(a) State Leibnitz's test for convergence with an example.	(3)
1. (b) Find n th derivative of the following function: $y = x^4 / ((x-1)(x-2))$	(3)
1.(c) Find the radius of curvature at the point $\left(\frac{1}{4}, \frac{1}{4}\right)$ of the curve : $y^2 = 4a\%$	(2)
Find Taylor series expansion of the function $f(x) = x^3 + 3x^2 + 15x - 10$ in power of $(x - 1)$.	(2)-
2.(a) If $Un = \frac{d^n}{dx^n}$ (x ⁿ log x), prove that $U_n = (n-1)! + n U_{n-1}$ (n = 1, 2,).	
Hence deduce that Un=n! [logx + 1 + $\frac{1}{2}$ + $\frac{1}{3}$ ++ $\frac{1}{n}$] (n = 1, 2,).	(5),
2.(b) Test the nature of the series $\frac{1x^3}{2.3} + \frac{1.3x^5}{2.4.5} + \frac{1.3.5x^7}{2.4.6.7} + \dots$	(5)
3. (a) Using the expansion of tan (x+h) , compute tan 46° correct to 4 significant figures.	(5)
3.(b) Find all the asymptotes of the curve : $x^3+x^2y-xy^2-y^3+x^2-y^2=2$	(5)
4.(a) Trace the curve $x^3 + y^3 = 3axy$, (a>0)	(5)
OR If $U_n = \int_0^{\pi/2} x^n \sin x dx$ and $n > 1$, show that $U_n + n(n-1) U_{n-2} = n \left(\frac{1}{2}\pi\right)^{n-1}$	
4.(b) In the cycloid x=a (θ +sin θ), y=a(1-cos θ) prove that ρ = 4a cos $\frac{1}{2}\theta$	(5)

	END TERM EXAMINATION	
Paper Cod	FIRST SEMESTER [B.TECH] DECEMBER 20 Sele: ETMA-101 Subject: App	17 plied Mathematics-I
Time: 3 H	(Batch 2013 Onwards)	Maximum Marks: 75
Note: Att	tempt any five questions including Q no.1 wi	nich is compulsory.
	Select one question from each unit	
Q1 (a) A	assuming the possibility of expansion prove that	(2.5)
06. T	$\sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{\sqrt{2}} \left[1 + \theta - \frac{\theta^2}{2!} - \frac{\theta^3}{3!} + \dots\right]$	(2.5)
(6) 1	lest for the convergence of the series $\sum_{n=0}^{\infty} \frac{n^2 + 2^n}{2^n n^2} $	
destr	and the asymptotes of the curve $y^{3}-2xy^{2}-x^{2}y+2x^{3}+2x^{2}-3xy+x-2y+1=0$	(2.5)
(d) S	Show that $\int_{0}^{1} (x \log x)^{3} dx = \frac{-3}{128}$.	(2.5)
	Evaluate $\int_{0}^{\infty} (1-x^{1/n})^{m-1} dx \qquad .$	(2.5)
(1) \$1	how that the matrix $A = \frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is a unitar	y matrix (2.5)
	est whether the vectors (1, 1, 1, 3), (1, 2, 3, 4) nearly dependent or not. If dependent, find the	4) and (Z, J, T,)
(h) S	Solve $(x^4e^x - 2mxy^2)dx + 2mx^2ydy = 0$	(2.5)
(i) S1	how that $\frac{d}{dx} \{J_n^2(x)\} = \frac{x}{2n} \{J_{n-1}^2(x) - J_{n+1}^2(x)\} $	(2.5)
الله	and the rank of the matrix $\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$ by reducing	acing it in its normal
	[-3 , 2]	(2.5)
fo	orm.	
	UNIT-I	
	that	(6)
Q2 (a) If	$y = x^x \log x$ prove that	
(i)	$y_{n+1} = \frac{n!}{x}$ (ii) $y_n = ny_{n-1} + (n-1)!$	
(b) Te	est the convergence of the series $\sum_{1}^{\infty} \left(1 + \frac{1}{\sqrt{n}}\right)$	(6.5)
Q3 (a) Y	se Maclaurin's theorem to show that $\sqrt{1+x+2x^2} = 1 + \frac{x}{2} + \frac{7}{8}x^2 - \frac{7}{16}x^3 + \dots$	(6)
	$\sqrt{1+x+2x}$ 1 2 8 16	solute convergence.

(b) Test the following series for convergence and absolute convergence.
$$1 - \frac{3}{2} + \frac{5}{4} - \frac{7}{8} + \frac{9}{16} \dots$$
(6.5)
P.T.O.

UNIT-II

Q4 (a) If $I_n = \int_0^{\pi} \sin^{2n} x \, dx$, show that

$$I_n = \left(1 - \frac{1}{2n}\right) I_{n-1} - \frac{1}{n \cdot 2^{n+1}}$$

(b) Find the radius of curvature at any point on the curve (6.5) $x = a\cos^3 t$, $y = a\sin^3 t$.

(6)

(6) Trace the curve $a^2x^2 = y^3(2a - y)$. Prove that the length of an arc of the curve $y^2 = x \left(1 - \frac{x}{3}\right)^2$ from the origin (6.5)to the point (x, y) is given by $l^2 = y^2 + \frac{4}{3}x^2$.

UNIT-III

Q67 (a) Find the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by reducing it to echelon

(6) (b) Find the modal matrix of $A = \begin{bmatrix} 4 & 2 & -2 \\ -5 & 3 & 2 \\ -2 & 4 & 1 \end{bmatrix}$ and diagonalize it. (6.5)

(a) Use Caley-Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & -1 \end{bmatrix}$ to find A^{-1} . (6) Q7

(b) Investigate whether the set of equations (6.5)2x - y - z = 2x+2y+z=2

4x - 7y - 5z = 2

is consistent or not; if consistent, solve it.

UNIT-IV

Jay Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = x \sin x$. (6)

Solve $\frac{d^2y}{dx^2} + y = -\cot x$ by the method of variation of parameters. (6.5)

(a) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} - y = \frac{x^3}{1 + x^2}$ Q9 (6)

(b) Prove that $\int_{1}^{1} (x^2 - 1) P_{n+1} P'_{n} dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$ (6.5)
