Total No. of Questions: 6 Total No. of Printed Pages:3

•••

as

(a) 1±GH=0 (b) GH

Faculty of Engineering End Sem (Even) Examination May-2018 EE2CO09 Control Systems

Programme: Diploma Branch/Specialisation: EE

(c) G/1±GH (d) None of these

P.T.O.

Duration: 3 Hrs. Maximum Marks: 60

	_	estions are compulsory. Internated of the desired o	al choices, if any, are indicated. Answers of only a, b, c or d.	Q.1
Q.1	i.	In a signal flow graph, nodes (a) Circles (b) Squares	are represented by small (c) Arrows (d) Pointers	1
	ii.	system?	g is not an advantage of an open loop	1
		(a) Simplicity in construction(b) Easy maintenance	& design	
iii.		(c) Rare problems of stability		
	iii.	calibration from time to time of transfer function to zero, which among d?	1	
		(a) Poles	(b) Zeros(d) None of these	
	iv.	Which point on root locus spoles?	specifies the meeting or collision of two	1
		(a) Centroid(c) Stability point	(b) Break away point(d) Anti-break point	
	V.	Root locus specifies the move the gain of system	ement of closed loop poles especially when	1
		(a) Remains constant		
	vi.	(c) Gives zero feedback The characteristics equation	of a closed loop control system is given	1

	V11.	State space analysis is applicable even if the initial conditions are	1
		(a) Zero (b) Non-zero (c) Equal (d) Not equal	
	viii.	What is the value of steady state error in closed loop control systems?	1
		(a) Zero (b) Unity (c) Infinity (d) Unpredictable	
	ix.	With regard to the filtering capacity the lead compensator and lag	1
		compensator are respectively:	
		(a) Low pass and high pass filter	
		(b) High pass and low pass filter	
		(c) Both high pass filter	
		(d) Both low pass filters	
	х.	A lag compensator is basically a	1
		(a) High pass filter (b) Band pass filter	
		(c) Low pass filter (d) Band elimination filter	
Q.2 i.	i.	Define signal flow graph.	2
	ii.	Compare and contrast open loop and closed loop control systems.	3
	iii.	Derive the expression for closed loop transfer function.	5
OR	iv.	Discuss the working of a stepper model and derive a suitable mathematical model for it.	5
Q.3	i.	What is steady-state error?	2
	ii.	Define delay time, rise time and peak time.	3
	iii.	Explain the second order time domain specifications of a control System.	5
OR	iv.	Find the time domain specifications for the system given as: $C(s)/R(s) = (s^2 + 2s + 3)/(s^2 + 5s + 9)$	5
Q.4	i.	Check the stability of the system whose characteristic equation is given by $s^4+2s^3+6s^2+4s+1=0$	3
	ii.	Explain the Routh Hurwitz criteria for determining the stability of a system.	7
OR	iii.	Consider a unity feedback control system with the following transfer	7
		function $G(s) = \frac{K}{s(s^2+4s+8)}$ plot the root loci for the system.	

Q.5	i.	Define state variable, state vector and state space.	3
	ii.	Define Eigen values and Eigen vectors.	7
OR	iii.	Explain controllability and observability with the help of block diagram.	7
Q.6	i.	Write short notes on different type compensations.	3
	ii.	Write the effect of phase lead network. Explain limitations of phase lead network.	7
OR	iii.	Write short note on phase lag network. Draw the bode plot for phase lag network.	7

Marking Scheme

Q.1	i	In a signal flow graph, nodes are represented by small (a) Circles	_	1
ii iii iv v	ii	Which among the following is not an advantage of ar system?	n open loop	1
	iii	(d) Requirement of system recalibration from time to timeBy equating the denominator of transfer function to zero, very the following will be obtained?(a) Poles	which among	1
	iv	Which point on root locus specifies the meeting or coll poles?	ision of two	1
	v	(b) Break away point Root locus specifies the movement of closed loop poles esp the gain of system	ecially when	1
	vi	(b) Exhibit variationsThe characteristics equation of a closed loop control system is given as		
	vii	(a) 1±GH=0 State space analysis is applicable even if the initial conditions are (b) Non-zero		
	viii	What is the value of steady state error in closed loop contro (a) Zero	l systems?	1
ix x	ix	With regard to the filtering capacity the lead compensate compensator are respectively: (b) High pass and low pass filter	or and lag	1
	X	A lag compensator is basically a (c) Low pass filter		1
Q.2	i. ii.	Definition of signal flow graph. Compare open loop and closed loop control systems.		2 3
	iii.	Each point of 0.5 mark Expression for closed loop transfer function. Block diagram	ark * 6) 3 marks 2 marks	5
OR	iv.	Working of a stepper model Mathematical model for it.	2 marks 3 marks	5

Q.3	i. ii.	Steady-state error Delay time, rise time and peak time.		2 3
		Each point of 1 mark	(1 mark * 3)	
	iii.	Second order time domain specifications of a contr	•	5
OR	iv.	Find the time domain specifications for the	•	5
		$C(s)/R(s) = (s^2 + 2s + 3) / (s^2 + 5s + 9)$		
		Each specification point of 1 mark	(1 mark * 5)	
Q.4	i.	Stability of the system	1 mark	3
		Characteristic equation is given by $s^4+2s^3+6s^2+4s+$	-1=0	
			2 marks	
	ii.	Routh Hurwitz criteria for determining the stability	of a system.	7
OR	iii.	Consider a unity feedback control system with the	e following transfer	7
		function $G(s) = \frac{K}{s(s^2+4s+8)}$	3 marks	
		Plot the root loci for the system	4 marks	
0.5		Define atota variable atota vactor and atota anona		2
Q.5	i.	Define state variable, state vector and state space.	(1 moult * 2)	3
	ii.	Each point of 1 mark	(1 mark * 3) 3 marks	7
	11.	Define eigen values	4 marks	1
OR	iii.	Eigen vectors. Controllability	2 marks	7
OK	1111.	Observability	2 marks	,
		Block diagram.	3 marks	
		DIOCK diagram.	3 marks	
Q.6	i.	Write short notes on different type compensations.		3
		Each point of 1 mark	(1 mark * 3)	
	ii.	Effect	3 marks	7
		Phase lead network.	2 marks	
		Phase lead network. Limitations of phase lead network	2 marks 2 marks	
OR	iii.			7
OR	iii.	Limitations of phase lead network	2 marks	7
