STAT 2131:

Applied Statistical Methods I HW #2

Due Tuesday 11:00am, September 28th

1. You just started working for a company that is interested in looking at how radio advertising affected their sales. The data consist of the amount of sales Y_i in \$100 and the amount of radio advertising time X_i in hours for the *i*th month for i = 1, ..., 24. The following SAS code was run to obtain the output:

proc reg data= Sales; model sales = radio /clb; run;

The REG Procedure Model: MODEL1

Dependent Variable: sales

Number	of	Observations	Read	24
Number	of	Observations	Used	24

		Analysis of Sum of	Variance Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	1952.65488	1952.65488	712.51	<.0001
Error	22	60.29179	2.74054		
Corrected Total	23	2012.94667			
Root MSE		1.65546	R-Square	0.9700	
Dependent	Mean	114.88255	Adj R-Sq	0.9687	
Coeff Var		1.44100			

Parameter Estimates

		Parameter	Standard	t			
Variable	DF	Estimate	Error	Value	Pr > t	95% Confide	nce Limits
Intercept	1	101.57570	0.60225	168.66	<.0001	100.32670	102.82470
Radio	1	1.15806	0.04338	26.69	<.0001	1.06809	1.24804

(a) Write down the assumed model. Clearly state any assumptions and define all notations.

- (b) Assume that the model in part (a) is appropriate. Provide a point estimate and a 95% confidence interval for the change in expected monthly amount of sales if monthly radio advertisement increases by 10 hours.
- (c) Assume that the model in part (a) is appropriate. Provide a point estimate and a 95% confidence interval for the expected amount of sales if the radio advertisement time is zero hours.
- (d) Perform a test to study whether radio advertisement tends to increase the amount of sales. State clearly the hypothesis, the testing statistic, the p-value and your conclusion.
- 2. A Psychiatrist studying the relationship between face memory function and schizophrenia disease collected the following variables for a random sample of 970 subjects: X_1 is the status of disease (1 for schizophrenia, 0 for healthy), X_2 is age in years, X_3 is gender (1 for female and 0 for male), and Y is the face memory score (a larger value means better performance). The data is stored in FACEMEM.xlsx.

Assuming the linear regression model $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$ and normality of the error term, fit the model and answer the following questions. Use $\alpha = 0.05$ in all hypothesis testing.

- (a) What is the estimated face memory score for a 40-year-old healthy male?
- (b) One question of interest is whether schizophrenia people have different face memory compared to healthy people, controlling for age and gender. State the null and alternative hypotheses and conduct the hypothesis test.
- (c) What is the expected change in face memory if age increases by one year? Provide a point estimate and a 95% confidence interval.
- (d) Conduct an F-test for the overall significance of the model.
- (e) Is the model with three predictors significantly better than the model $Y = \beta_0 + \beta_1 X_1 + \epsilon$? Conduct a statistical hypothesis test to answer this question.