$PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Solve (i) $x^2p - y^2q - (x - y)z$ (ii) $p^2 + q^2 = z$.

- b. Solve the equation $\left(D^2 + 4DD' 5D'^2\right)z = xy + \sin(2x + 3y)$.
- 29. a. Find the Fourier series expansion of period 2 for the function $f(x) = \begin{cases} \pi x & \text{in } 0 \le x \le 1 \\ \pi (2 - x) & \text{in } 1 \le x \le 2 \end{cases}$. Deduce the sum $\sum_{n=1,3}^{\infty} \frac{1}{n^2}.$

b. Find the Fourier series upto the second harmonic from the data.

X	0	$\pi/3$	$2\pi/3$	π	$4\pi/3$	$5\pi/3$	2π
y	0.8	0.6	0.4	0.7	0.9	1.1	0.8

30. a. The ends of an uniform string of length 21 are fixed. The initial displacement is y(x,0) = kx(2l-x), 0 < x < 2l while the initial velocity is zero. Find the displacement at any distance x from the end x = 0 at any time t.

- b. Find the solution of the equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial r^2}$ that satisfies the condition u(0,t) = 0 and u(l,t) = 0 for $t \ge 0$ and $u(x,0) = \begin{cases} x, & \text{for } 0 < x < \frac{l}{2} \\ l - x & \text{for } \frac{l}{2} < x < l \end{cases}$.
- 31. a. Find the Fourier transform of f(x) if $f(x) = \begin{cases} 1-|x|, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ and hence prove that $\int_{0}^{\infty} \frac{\sin^4 x}{x^4} dx = \frac{\pi}{3}.$

(OR)

- b. Show that $e^{-x^2/2}$ is self-reciprocal under Fourier transform by finding the Fourier transform of $e^{-a^2x^2}$, a > 0.
- 32. a. Find (i) $Z\left(2^n\cos\frac{n\pi}{2}\right)$ (ii) $Z^{-1}\left(\frac{z(z+1)}{(z-1)^3}\right)$ using the method of residues.

b. Solve using Z-transform $y_{n+2} - 3y_{n+1} - 10y_n = 0$, given that $y_0 = y_1 = 0$.

B.Tech. DEGREE EXAMINATION, MAY 2019

(For the candidates admitted during the academic year 2015 - 2016 to 2017-2018)

1st to 7th Semester 15MA201 - TRANSFORMS AND BOUNDARY VALUE PROBLEMS

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Ouestions

- 1. The partial differential equation formed by eliminating the arbitrary function 'f' from
 - (A) qx + py = 0

(B) qx = py

(C) qx = p

- (D) py = q
- 2. The complete integral of $z = px + qy + \sqrt{1 + p^2 + q^2}$ is

 (A) z = ax by(B) z = ax + by(C) $z = ax + by + \sqrt{1 + a^2 + b^2}$ (D) $z = ax + by \sqrt{1 + a^2 + b^2}$

- 3. General solution of $\left(D^2 + 4DD' 5D'\right)^2 z = 0$
- (A) $z = f_1(y-5x) + f_2(y+x)$ (B) $z = f_1(y+5x) + f_2(y+x)$ (C) $z = f_1(y-5x) + f_2(y-x)$ (D) $z = f_1(y) + f_2(y-x)$
- 4. The particular integral of $(D^2 + 2DD' + D^{2}) = e^{x-y}$ is
 - (A) e^{x-y}

- (B) $\frac{x^2}{2}e^{x-y}$ (D) $\frac{x^2}{2}e^{x+y}$
- 5. If f(x) = |x| in $(-\pi, \pi)$ then the constant term a_0 of the Fourier series is
 - (A) 2π

(B) 0

(C) $\pi/2$

- (D) π
- 6. If $f(x) = |\sin x|$ then its period is
 - (A) π

(B) 2π

(C) 0

- (D) $\pi/2$
- 7. The root mean square value of f(x) = x in $-1 \le x \le 1$ is
 - (A) 1

(B) 0

(C) 1 $\sqrt{3}$

(D) -1

8. Half-Range sine series for f(x) in $(0,\pi)$ is

(A)
$$\sum_{n=1}^{\infty} b_n \sin nx$$

 $\sum a_n \cos nx$

(C)
$$\frac{a_0}{2} + \sum_{1}^{\infty} a_n \cos nx$$

9. In wave equation $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$, a^2 stands for

(A) $\frac{m}{T}$

(C) Tm

(D) T^m

10. The steady state solution of $u_t = \alpha^2 u_{rr}$ is

(A) $u = c_1 x$

(B) $u = c_1 + c_2 t$

(C) $u = c_1 x + c_2$

(D) u = zero

11. Classify $u_{xx} + 2u_{xy} + u_{yy} = 0$

(A) Parabolic

(B) Elliptic

(C) Hyperbolic

(D) Geodesic

12. The number of initial and boundary conditions to solve $\frac{\partial^2 y}{\partial t^2}$

(A) Three

(B) Two

(C) Four

(D) One

13. If $F\{f(x)\} = F(s)$, then $F\{f(ax)\} =$

(B) aF(s)

(D) F(as)

14. The Fourier sine transform of $e^{-ax}(a>0)$ is

15. $F^{-1}[F(s)G(s)] =$

(A) f(x)g(x)

(B) f(x) * g(x)

(C) f(x) + g(x)

(D) f(x) - g(x)

16. If $F\{f(x)\} = F(s)$ then $\int |f(x)|^2 dx =$

(A)

(B)

(C) z(z+1)

(D) z+1

18. $Z na^n$ (A)

(B)

(C)

(D)

20. Poles of f(z) = -

(A) z = 1, 2

(C) z=1,-2

(D) z = -1, 2

 $PART - B (5 \times 4 = 20 Marks)$ Answer ANY FIVE Questions

- 21. Form a partial differential equation by eliminating arbitrary constants a, b, from $(x-a)^2 + (y-b)^2 = z^2 \cot^2 \alpha$.
- 22. Find half-range sine series of f(x) = a in (0,l).
- 23. Write down the three mathematically possible solutions of one dimensional heat flow equation.
- 24. Find the Fourier transform of f(x) defined as $f(x) = \begin{cases} 1 & \text{for } |x| < a \\ 0 & \text{for } |x| > a \end{cases}$
- 25. Find the Z-transform of $\frac{1}{n(n-1)}$.
- 26. Solve the equation pq + p + q = 0.
- $\sin x$ when 0 < x < a27. Find the Fourier sine transform of f(x) defined as f(x) =when x > a