### 第三章

数据通信基本原理



### 主要内容

- 数据通信基础理论
  - 傅立叶分析
  - ■有限带宽信号
  - 信道的最大数据传输速率
- 数据通信技术
  - 数据通信系统的基本结构
  - 传输和传输方式
  - 数据编码技术
  - 多路复用技术
  - 交换技术



#### 数据通信基础理论

#### ■ 主要内容

研究信号在通信信道上传输时的数学表示及其所受到的 限制

#### • 傅立叶分析

- 在网络通信中,信息是以电磁信号(或简称信号)的形式传输的
- 电磁信号是时间的函数 (时域观)
- 也可以表示成频率的函数(频域观)
- 对于理解数据传输来讲,信号的频域观比时域观更重要

## 数据通信基础理论(续)

#### ■ 时域观

- 从时间函数的角度来看,电磁信号分为模拟信号和数字信号
- 模拟信号的信号强度随着时间平滑变化,或者说信号中没有突变或不连续的地方。
- 数字信号的信号强度在一段时间内保持一个恒定值,然后又变成另外一个恒定值。

#### 频域观

- 基本定义
  - 当一个信号的所有频率成分是某一个频率的整数倍时,该频率被称为基本频率
  - 信号的周期等于基本频率的周期
- 傅立叶分析



### 傅立叶分析

#### • 傅立叶分析

■ 任何一个周期为T的有理周期性函数 g(t) 可分解 为若干项(可能无限多项)正弦和余弦函数之和

g(t) = 
$$\frac{1}{2}$$
 c +  $\sum_{n=1}^{\infty} a_n \sin(2\pi n f t)$  +  $\sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$ 

f = 1/T 基本频率  $a_n$ ,  $b_n$  **n**次谐波项的正弦和余弦振幅值



- 已知 g(t), 求c, a<sub>n</sub>, b<sub>n</sub>
  - ①将等式两边从0到T积分可得c

$$\mathbf{c} = \frac{2}{T} \int_0^T g(t)dt$$

型用sin(2πkft)乘等式两边,并从0到T积分,可得an

$$\mathbf{a}_{\mathsf{n}} = \frac{2}{T} \int_{0}^{T} g(t) \sin(2\pi n f t) dt$$

可用cos(2πkft)乘等式两边,并从 0 到 T 积分,可得 $b_n$ 

$$b_{n} = \frac{2}{T} \int_{0}^{T} g(t) \cos(2\pi n f t) dt$$



■ 对于二进制编码 0 1 1 0 0 0 1 0, 其输出 电压波形为:



$$\mathbf{g(t)} = \begin{cases} 0 & 0 < t \le \frac{T}{8} \\ 1 & \frac{T}{8} < t \le \frac{3T}{8} \\ 0 & \frac{3T}{8} < t \le \frac{6T}{8} \\ 1 & \frac{6T}{8} < t \le \frac{7T}{8} \\ 0 & \frac{7T}{8} < t < T \end{cases}$$



#### • 其傅立叶分析的系数为

- $a_n = \frac{1}{\pi n} [\cos(\pi n/4) \cos(3 \pi n/4) + \cos(6 \pi n/4) \cos(7 \pi n/4)]$
- bn =  $\frac{1}{\pi n}$ [sin(3 $\pi$ n/4) sin ( $\pi$ n/4) + sin(7 $\pi$ n/4) sin(6 $\pi$ n/4)]
- c = 3/8



- 根据傅立叶分析,任何电磁信号可以由若干具有不同振幅、 频率和相位的周期模拟信号(正弦波)组成
- 反过来,只要有足够的具有适当振幅、频率和相位的正弦 波,就可以构造任何一个信号



Fig. 2-1. (a) A binary signal and its root-mean-square Fourier amplitudes. (b)-(e) Successive approximations to the original signal.



#### 有限带宽信号

- 频谱 (spectrum) 是一个信号所包含的频率的范围
  - 图2-1 (e) 中信号的频谱从f到8f
- 信号的绝对带宽等于频谱的宽度
  - 图2-1 (e) 中信号的带宽为8f-f=7f
- 许多信号的带宽是无限的,然而信号的主要能量集中在相对窄的频带内,这个频带被称为有效带宽,或带宽 (bandwidth)
- 信号的信息承载能力与带宽有直接关系,带宽越宽, 信息承载能力越强



- 信号在信道上传输时的特性
  - 对不同傅立叶分量的衰减不同,引起输出失真
  - ■信道有截止频率f<sub>c</sub>, 0~f<sub>c</sub>的振幅衰减较弱,f<sub>c</sub>以上的振幅衰减厉害,这主要由信道的物理特性决定, 0~f<sub>c</sub>是信道的有限带宽
  - 实际使用时,可以接入滤波器,限制用户的带宽
  - 通过信道的谐波次数越多,信号越逼真



- ·波特率 (baud) 和比特率 (bit) 的关系
  - 波特率: 每秒钟信号变化的次数, 也称调制速率
  - 比特率: 每秒钟传送的二进制位数
  - 波特率与比特率的关系取决于信号值与比特位的 关系
    - 例:每个信号值可表示3位、则比特率是波特率的3倍; 每个信号值可表示1位,则比特率和波特率相同



- 对于比特率为 B **bps**的信道,发送**8**位所需的时间为 **8/B**秒,若**8**位为一个周期 T ,则一次谐波的频率是:  $f_1 = B/8 Hz$
- 能通过信道的最高次谐波数目为:  $N = f_c / f_1$ 
  - 音频线路的截止频率为3000Hz N = f<sub>c</sub> / f<sub>1</sub> = 3000/(B/8) = 24000/B



| Bps   | T (msec) | First harmonic (Hz) | # Harmonics sent |
|-------|----------|---------------------|------------------|
| 300   | 26.67    | 37.5                | 80               |
| 600   | 13.33    | 75                  | 40               |
| 1200  | 6.67     | 150                 | 20               |
| 2400  | 3.33     | 300                 | 10               |
| 4800  | 1.67     | 600                 | 5                |
| 9600  | 0.83     | 1200                | 2                |
| 19200 | 0.42     | 2400                | 1                |
| 38400 | 0.21     | 4800                | 0                |

Fig. 2-2. Relation between data rate and harmonics.

■ **结论**: 即使对于完善的信道,有限的带宽限制了数据的传输速率

# 這道的最大数据传输速率

- 1924年, 奈魁斯特(H. Nyquist)推导出无噪 声有限带宽信道的最大数据传输率公式
- 奈魁斯特定理
  - 最大数据传输率 = 2Hlog<sub>2</sub>V (bps)
  - ■任意信号通过一个带宽为 H 的信道,则每秒采样 2H次就能完整地重现该信号、信号电平分为 V 级

### 信道的最大数据传输速率(续)

- **1948**年,香农**(C. Shannon)**把奈魁斯特的工作扩大到信道 受到随机(热)噪声干扰的情况
- 随机噪声出现的大小用信噪比(信号功率S与噪声功率N之比)来衡量,10log<sub>10</sub>S/N,单位:分贝
  - 电话系统的典型信噪比为30db
- 香农定理
  - 带宽为 H 赫兹, 信噪比为S/N的任意信道的最大数据传输率为: Hlog<sub>2</sub>(1 + S/N) (bps)
  - 此式是利用信息论得出的,具有普遍意义
  - 与信号电平级数、采样速度无关
  - 此式仅是上限,难以达到



#### 主要内容

- 数据通信基础理论
  - 傅立叶分析
  - 有限带宽信号
  - 信道的最大数据传输速率
- 数据通信技术
  - 数据通信系统的基本结构
  - 传输和传输方式
  - 数据编码技术
  - 多路复用技术
  - 交换技术



### 数据通信技术

- 主要内容
  - 研究数据在通信信道上的各种传输方式及其所采用的技术
- 数据通信系统的基本结构





### 数据通信技术





### 传输和传输方式

- 数字传输/模拟传输
- 并行传输/串行传输
- 点到点传输/点到多点传输
- 单工、半双工和全双工传输
- 同步传输/异步传输

# 通到点传输/点到多点传输

#### • 连接方式

- 为适应不同的需要,通信线路采用不同的连接方式
- 点到点传输



■ 点到多点传输





- 从信息传送方向和时间的关系角度研究
  - 单工传输:信息只能单向传输, 监视信号可回送)
  - 半双工传输:信息可以双向传输,但在某一时刻只能单向传输。
  - 全双工传输:信息可以同时双向传输





### 同步传输/异步传输

#### ■ 同步方式

- ■目的:接收方必须知道每一位信号的开始及其持续时间,以便正确的采样接收
- 以字符传输(字符为基本传输单位)为例,在基于字符的信息传送中,可以采用异步传输,也可以采用同步传输

# 步传输/异步传输 (续)

#### ■ 异步传输 (以字符传输为例)

- 信息传送以字符为单位
- 每个字符由发送方异步产生,有随机性
- 字符一般采用5,6,7或8位二进制编码
- 需要辅助位,每个字符可能需要用10位或11位才能传送,例如:
  - 起始位,**1**位
  - 字符编码,7位
  - 奇偶校验位,1位
  - 终止位, 1~2位

#### ■ 特点

- 传输效率低
- 主要用于字符终端与计算机之间的通信

# 步传输/异步传输(续)



# 遗的步传输/异步传输(续)

- 同步传输(以字符传输为例)
  - 信息传送以报文为单位
  - 传输开始时,以同步字符使收发双方同步
  - 从传输信息中抽取同步信息,修正同步,保证正确采样
  - 特点
    - 可以不间断地传输信息,传输效率较高
    - 字符间减少了辅助信息
    - 传输的信息中不能有同步字符出现,需要透明传输处理

| SYN SYN 信 息 | SYN SYN |
|-------------|---------|
|-------------|---------|

# 

- 基于位的传输, 一般采用同步传输
  - 信息以二进制位流为单位传送
  - 传输过程中收发双方以位为单位同步
  - 传输的开始和结束由特定的八位二进制位同步
  - 特点:传输效率高

标记 二进制位流 标记

■ 基于帧的传输呢?



#### 数据编码技术

- 数据表示
  - 模拟数据 (Analog Data), 连续值
  - 数字数据 (Digital Data), 离散值
- 数据传输方式
  - 以信号作为载体
  - 模拟信号 (Analog Signals)
  - 数字信号 (Digital Signals)



#### 信号发送方式

模拟信号发送(模拟信道 模拟数据(声音) 模拟信号 电话系统 调制解调器 ■ 数字数据(二进制脉冲) ~ +模拟信号 **MODEM** 数字信号发送(数字信道) 编码解码器 ■ 模拟数据 +数字信号 CODEC 数字 ■ 数字数据(二进制脉冲) + +数字信号 编码解码器

数字信号发送的优点是: 价格便宜, 对噪声不敏感;

是: 易受衰减, 频率越高, 衰减越厉害



#### 数据编码技术

- 研究数据在信号传输过程中如何进行编码(变换)
- 数字数据的数字传输(基带传输)
  - 基带: 基本频带, 指传输变换前所占用的频带, 是原始 信号所固有的频带
  - 基带传输: 在传输时直接使用基带信号
  - 基带传输是一种最简单最基本的传输方式,一般用低电平表示"0",高电平表示"1"
  - 适用范围: 低速和高速的各种情况
  - 限制:因基带信号所带的频率成分很宽,所以对传输线有一定的要求



### 数据编码技术 (续)

- 常用的几种编码方式
  - 不归零制码 (NRZ: Non-Return to Zero)
    - 原理: 用两种不同的电平分别表示二进制信息 "0"和 "1", 低电平表示 "0", 高电平表示 "1"
    - 缺点・
      - 难以分辨一位的结束和另一位的开始
      - 发送方和接收方必须有时钟同步
      - · 若信号中"0"或"1"连续出现。信号直流分量将累加
    - 结论:容易产生传播错误





### 数据编码技术 (续)

- 曼彻斯特码 (Manchester) , 也称相位编码
  - 原理:每一位中间都有一个跳变,从低跳到高表示"0",从高跳到低表示"1"
  - 优点:克服了NRZ码的不足。每位中间的跳变即可作为数据,又可作为时钟,能够自同步
- 差分曼彻斯特码 (Differential Manchester)
  - 原理:每一位中间都有一个跳变,每位开始时有跳变表示"0",无跳变表示"1"。位中间跳变表示时钟,位前跳变表示数据
  - 优点: 时钟、数据分离, 便于提取





#### 数据编码技术 (续)

- 逢 "1"变化的NRZ码
  - 原理: 在每位开始时,逢"1"电平跳变,逢"0"电平不跳变
- 逢 "0"变化的NRZ码
  - ■原理:在每位开始时,逢 "**0**"电平跳变,逢 "**1**"电平不跳变





### 数字数据的模拟传输

- 数字数据的模拟传输, 也称频带传输
  - ■指在一定频率范围内的线路上,进行载波传输。 用基带信号对载波进行调制,使其变为适合于线路传送的信号
  - 调制 (Modulation): 用基带脉冲对载波信号的 某些参量进行控制,使这些参量随基带脉冲变化
  - ■解调(Demodulation):调制的反变换
  - 调制解调器MODEM (modulation-demodulation)



Modem: RS-232接口用来连接电脑, RJ-11用来 连接电话线

















# 数字数据的模拟传输 (续)

- 根据载波 Asin(ωt + φ)的三个特性。幅度、频率、相位,产生常用的三种调制技术:
  - 幅移键控法 (调幅) Amplitude-shift keying (ASK)
    - 幅移就是把频率、相位作为常量,而把振幅作为变量,即:

$$\begin{cases} \omega(t) = \omega_0 \\ \varphi(t) = \varphi_0 \\ A(t) = A_1, A_2, \dots A_N \end{cases}$$

A(t) 取不同的值表示不同的信息码。例如: A(t) 取A<sub>1</sub>, A<sub>2</sub>, A<sub>1</sub>
表示 "0", A<sub>2</sub>表示 "1"

# 数字数据的模拟传输 (续)

- 频移键控法 (调频) Frequency-shift keying (FSK)
  - 频移就是把振幅、相位作为常量,而把频率作为变量,即:

$$\begin{cases} A(t) = A0 \\ \varphi(t) = \varphi 0 \end{cases}$$
$$\omega(t) = \omega_1, \omega_2, \dots \omega_N$$

•  $\omega$ (t) 取不同的值表示不同的信息码。例如:  $\omega$ (t) 取 $\omega$ <sub>1</sub>,  $\omega$ <sub>2</sub>,  $\omega$ <sub>1</sub>表示 "0",  $\omega$ <sub>2</sub>表示 "1"

# 数字数据的模拟传输 (续)

- 相移键控法(调相) Phase-shift keying (PSK)
  - 相移就是把振幅、频率作为常量,而把相位作为变量,即:

$$\begin{cases} A(t) = A0\\ \omega(t) = \omega 0 \end{cases}$$

•  $\varphi(t)$  取不同的值表示不同的信息码。例如:  $\varphi(t)$  取 $\varphi_1$ ,  $\varphi_2$ ,  $\varphi_3$ ,  $\varphi_4$ ,  $\varphi_5$ ,  $\varphi_5$ ,  $\varphi_5$ ,  $\varphi_5$ ,  $\varphi_5$ ,  $\varphi_6$ ,  $\varphi_7$ ,  $\varphi_8$ ,  $\varphi_9$ ,



**Fig. 2-18.** (a) A binary signal. (b) Amplitude modulation. (c) Frequency modulation. (d) Phase modulation.



## 模拟数据的数字传输

- 解决模拟数据数字化问题,也称为脉冲代码 调制PCM (Pulse Code Modulation)
- 根据Nyquist原理进行采样
- 常用的PCM技术
  - 将模拟信号振幅分成多级 (2n) , 每一级用 n 位表示
  - 例如: 贝尔系统的 T1 载波将模拟信号分成128 级, 每次采样用7位二进制数表示

# 模拟数据的数字传输(续)

## ■ 差分脉冲代码调制

■ 原理: 不是将振幅值数字化, 而是根据前后两个 采样值的差进行编码, 输出二进制数字

### ■δ调制

- ■原理:根据每个采样值与前一个值之间的差来决定输出二进制"1"或"0"
- ■缺点:编码速度跟不上变化太快的信号



Fig. 2-27. Delta modulation.



Fig. 2-17. The use of both analog and digital transmission for a computer to computer call. Conversion is done by the modems and codecs.



## 多路复用技术

- 由于一条传输线路的能力远远超过传输一个用户信号所需的能力,为了提高线路利用率,经常让多个信号同时共用一条物理线路
- 常用的有三种方法
  - 时分复用 TDM (Time Division Multiplexing)
    - T1载波,分成 24 个信道
  - 频分复用 FDM (Frequency Division Multiplexing)
  - 波分复用 WDM (Wavelength Division Multiplexing)



## 时分复用 TDM



Fig. 2-26. The T1 carrier (1.544 Mbps).



## 频分复用 FDM



**Fig. 2-24.** Frequency division multiplexing. (a) The original bandwidths. (b) The bandwidths raised in frequency. (c) The multiplexed channel.



## 波分复用 WDM



Fig. 2-25. Wavelength division multiplexing.



## 交换技术

通信网络可以根据其结点交换信息的方式进行分类







## 交换技术 (续)

- 在多结点通信网络中,为有效利用通信设备和线路,一般希望动态地设定通信双方间的线路。
- 动态地接通、断开、切换通信线路,称为 "交换"
- 交换方式分类:
  - 电路交换
  - 报文交换,存储转发方式
  - 分组交换(包交换),存储转发方式

# 路交换 (circuit switching)

#### ■ 原理

- 直接利用可切换的物理通信线路,连接通信双方
- 三个阶段
  - 建立电路、传输数据、拆除电路



- 在发送数据前,必须建立起点到点的物理通路
- 建立物理通路时间较长,数据传送延迟较短
- 例
  - 电话网(1875 )
  - ISDN (Integrated Services Digital Networks)





## 电路交换 (续)

■ 电路交换网络中的结点 (交换机) 工作方式





## 电路交换 (续)

### ■ 复用/解复用

- 一般采用时分复用
- 时间被分为帧(frame),帧被分为时槽(slot)
- 时槽在帧内的相对位置决定这个槽所传输数据所属的会话
- 发送方和接收方间需要同步
- 非永久会话需要动态绑定时槽到一个会话



# 援文交换 (message switching)

### ■原理

- ■信息以报文(逻辑上完整的信息段)为单位进行 存储转发
- ■特点
  - 线路利用率高
  - 要求中间结点 (网络通信设备) 缓冲大
  - 延迟时间长

# 通短换 (packet switching)

#### ■ 原理

- 分组:比报文还小的信息段,可定长,也可变长
- 信息以分组为单位进行存储转发。源结点把报文分为分组,在中间结点存储转发、目的结点把分组合成报文

#### 特点

- 每个分组头包括源地址和目的地址,独立进行路由选择
- 网络结点设备中不预先分配资源
- 线路利用率高
- 易于重传,可靠性高
- 易于开始新的传输,让紧急信息优先通过
- 开销增加

#### ■ 分组交换分为

- 数据报 (datagram) 分组交换
- 虚电路 (virtual circuit) 分组交换



分组交换网中的结点(交换机/路由器)工作 方式





## ■ 复用/解复用

- 采用统计复用,按需分配信道资源
- 来自任意会话的数据可以立即发送,不需要等待 时槽
- 用附加的分组头来区分数据





Fig. 2-34. (a) Circuit switching. (b) Packet switching.



Fig. 2-35. Timing of events in (a) circuit switching, (b) message switching, (c) packet switching.



- 数据报分组交换
  - 每个分组均带有网络地址 (源、目的),可走不同的路径
  - 例: IP networks



### ■ 虚电路分组交换

- 电路交换和分组交换的结合
  - 数据以分组形式传输
  - 来自同一流的分组通过一个预先建立的路径(虚电路)传输
  - 确保分组的顺序
  - 但是来自不同虚电路的分组可能会交错在一起
- 分三个阶段
  - 建立:发带有全称网络地址的呼叫分组,建立虚电路
  - 传输:沿建立好的虚电路传输数据;
  - 拆除:拆除虚电路。
- 注意:分组头不需要包含完整的地址信息
- 例: ATM networks



Fig. 2-43. The dotted line shows a virtual circuit. It is simply defined by table entries inside the switches.



- 电路交换与分组交换的比较
  - → 分组交换相比电路交换的最大优势是可以实现统 计复用,有效的利用带宽
    - •峰值带宽和平均带宽的比例:话音3:1,数据15:1
  - 但是分组交换需要处理拥塞, 因此:
    - ■需要复杂的路由器
    - 难以保证端到端服务质量(延迟和带宽的保证)
  - 实际应用中,这两种方式可以结合在一起
    - IP over SONET, IP over Frame Relay



| Item                               | Circuit-switched | Packet-switched |
|------------------------------------|------------------|-----------------|
| Dedicated "copper" path            | Yes              | No              |
| Bandwidth available                | Fixed            | Dynamic         |
| Potentially wasted bandwidth       | Yes              | No              |
| Store-and-forward transmission     | No               | Yes             |
| Each packet follows the same route | Yes              | No              |
| Call setup                         | Required         | Not needed      |
| When can congestion occur          | At setup time    | On every packet |
| Charging                           | Per minute       | Per packet      |

Fig. 2-36. A comparison of circuit-switched and packet-switched networks.



## 不同交换技术的比较

- 电路交换适用于实时信息和模拟信号传送, 在线路带宽比较低的情况下使用比较经济
- 报文交换适用于线路带宽比较高的情况,可 靠灵活,但延迟大
- 分组交换缩短了延迟,也能满足一般的实时信息传送。在高带宽的通信中更为经济、合理、可靠。是目前公认较(最)好的一种交换技术



## 交换结构

- 交换结构 (switch fabric)
  - erossbar 交换
  - 空分交換
  - ■时分交换



## crossbar 交換



**Fig. 2-38.** (a) A crossbar switch with no connections. (b) A crossbar switch with three connections set up: 0 with 4, 1 with 7, and 2 with 6.



# 空分交换



Fig. 2-39. Two space division switches with different parameters.



## 时分交换



Fig. 2-40. A time division switch.



## 总结

### ■ 数据通信基础理论

- 信号,信号的时域观和频域观,傅立叶分析
- ■有限带宽信号
- 奈魁斯特定律、香农定律和信道的最大数据传输速率

### ■ 数据通信技术

- 数据通信系统的基本结构
- 传输和传输方式
- 数据编码技术
- 多路复用技术



## 总结 (续)

- 交换技术
  - 电路交换
  - 报文交换
  - 分组交换
    - 数据报分组交换
    - 虚电路分组交换
  - 交换结构
- 思考:查阅资料,总结电路交换与分组 交换的区别