À l'aide des opérateurs booléens, écrire l'énoncé de sortie des circuits suivants:

Construire un circuit qui permettrait de :

A	В	R
0	0	1
0	1	1
1	0	0
1	1	1,

b) de calculer R et S à partir des entrées A et l

A	В	S	R
0	0	1	0
0	1	1	1
1	0	0	0
1	1	0	1

a) de calculer R à partir des entrées A et B. $\begin{array}{c|ccc}
A & B & R \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}$ $= \overline{A} \cdot (\overline{B} + A \cdot B) + A \cdot B \\
= \overline{A} \cdot (\overline{B} + B) + A \cdot B \\
= \overline{A} \cdot 1 + A \cdot B \\
= \overline{A} + A \cdot B$

$$S: \overline{A}.\overline{B} + \overline{A}.B \qquad R = \overline{A}.B + A.B$$

$$= \overline{A}.(\overline{B} + B) \qquad = (\overline{A} + A).B$$

$$= \overline{A}.1 = \overline{A} \qquad = 1.B$$

neuter it a partir des				
	A	В	C	R
	0	0	0	0
	0	0	1	1
	0	1	0	1
	0	1	1	0
	1	0	0	0
	1	0	1	1
	1	1	0	0
	1	1	1	0

c) de calculer R à partir des entrées A, B et C. $R = \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} + A \cdot \overline{B} \cdot C$ $= \overline{A} \cdot \overline{B} \cdot C + \overline{A} \cdot \overline{B} \cdot \overline{C}$ $= (\overline{A} + A) \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$ $= 1 \cdot \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C} = \overline{B} \cdot C + \overline{A} \cdot B \cdot \overline{C}$

d) de calculer R à partir des entrées A, B et C.

A	В	C	R
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$R = \overline{A}, \overline{B}, \overline{C} + \overline{A}, \overline{B}, C + A, B, \overline{C} + A, B, C$$

$$= \overline{A}, \overline{B}, (\overline{C} + C) + A, B, (\overline{C} + C)$$

$$= \widehat{A}, \overline{B} + A, B$$

Construisez les circuits permettant de calculer chacune des expressions suivantes.

- a) $R = A \cdot \overline{B} + C$
- **b)** $R = (\overline{A + B}) \cdot C$
- c) $R = A \cdot \overline{B} + \overline{A \cdot B}$
- d) $R = A \cdot (A + \overline{B}) \cdot (A + \overline{C})$
- e) $R = (A \oplus B) + (\overline{A} \oplus C)$
- f) $R = ((A + \overline{B}) \oplus C) + B.C$

Simplifiez les expressions suivantes. Essayez de minimiser le nombre d'opérateurs apparaissant dans votre réponse.

a)
$$A.\overline{B} + \overline{A}.\overline{B}$$

b)
$$(\overline{A+B}).B$$

c)
$$A.\overline{B} + A.B + B$$

d)
$$\overline{A}$$
. \overline{B} . \overline{C} + \overline{A} . \overline{B} . C

e)
$$A.B.\overline{C} + \overline{A}.B.C$$

f)
$$A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.B.C + \overline{A}.\overline{B}.C$$

a)
$$(A + \overline{A}) \cdot \overline{B} = I \cdot \overline{B} = \overline{B}$$

b)
$$(\overline{A} + \overline{B}) \cdot B = (\overline{A} \cdot \overline{B}) \cdot B$$

$$= \overline{A} \cdot \overline{B} \cdot B$$

$$= A \cdot F_{aux}.$$

$$= F_{aux}$$

d)
$$\overline{A}.\overline{B}.\overline{C}+\overline{A}.\overline{B}.C$$

= $\overline{A}.\overline{B}.(\overline{C}+C)$
= $\overline{A}.\overline{B}.\vee$
= $\overline{A}.\overline{B}$

f)
$$A.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + A.B.C + \overline{A}.\overline{B}.C$$

= $(A.\overline{B} + \overline{A}.B).\overline{C} + (A.B + \overline{A}.\overline{B}), C$
= $(A \oplus B).\overline{C} + (\overline{A} \oplus B).C$
= $(A \oplus B).\overline{C} + (\overline{A} \oplus B).C$
= $A \oplus B \oplus C$

Question **≰** 5

Le tableau du demi-additionneur (x + y), illustré ci-dessous, a deux énoncés de sortie.

x	у	S	R
0	0	0	0
0	t	1	0
1	0	1	0
11	1	0	1,

L'énoncé S donne la somme des variables x et y et l'énoncé R donne la retenue de cette somme.

- a) Écrire la somme canonique de chacun de ces énoncés.
- b) Donner le circuit logique simplifié correspondant.

a)
$$S = \overline{x} \cdot y + x \cdot \overline{y} \times \overline{y} \times \overline{y} = x \cdot y \times \overline{y} \times \overline{y} \times \overline{y} = x \cdot y \times \overline{y} \times \overline{y} = x \cdot y \times \overline{y} \times \overline{y} = x \cdot y \times$$