Introduction to machine learning

Federica Eduati, Mitko Veta, Cian Scannell

Eindhoven University of Technology Department of Biomedical Engineering

Timeline of AI ascendance in biomedicine

2019 2022 2016 1950 1986 ChatGPT Google Al FDA approvals **DXplain** Turing test Deep learning models Al-powered device for Launched by OpenAI, Software for Turing designed a test based on large language outperform human cancer diagnosis and to uncover whether differential diagnosis deep-learning algorithm models (LLMs) with expert in diagnosing computers are capable using a pseudobroad potential also in retinopathy from for interpretation of probabilistic algorithm. of human intelligence. biomedicine retinal images. brain MRIs. 2022 2007 2017 2020 1971 **IBM Watson** FDA approvals **AlphaFold** FDA approvals **INTERNIST-1** Later used for variety of 91 Al-powered devices Al-assisted analysis of Google DeepMind uses biomedical application: including EchoGo to Scientists developed a MRIs in seconds and Al-Al to predict a protein's detects heart failure biomarkers discovery, ranking algorithm to powered device for 3D structure from its from a single reach diagnosis. drug discovery, amino-acid sequence. operating-room use. differential diagnosis. echocardiogram.

Molecular Biosensing

Application: ML-enhanced sensors for real-time disease monitoring Impact: Immediate feedback for patient management

5

Systems Biology

Application: Modelling biological systems and pathways

Impact: Deeper understanding of life processes

Wearable Tech

Application: Monitoring chronic diseases (e.g., diabetes)

Impact: Real-time health insights for patient management

Drug discovery

Application: Virtual screening for drug candidates

<u>Impact</u>: Faster drug development

Medical Imaging

Application: Cancer detection from CT, MRIs Impact: Early diagnosis with high accuracy

Machine

learning in

Biomedical

Engineering

Personalised Medicine

Application: Tailoring treatments based on patient data

Impact: Optimised therapy with minimal side effects

Signal Processing

Application: Real-time heart disease monitoring (ECG)

Impact: Early warning of cardiac events

Soft Tissue Engineering

Application: ML-driven design of biomaterials for tissue repair Impact: Improved outcomes in tissue regeneration

Protein engineering

Application: Designing proteins using ML for targeted therapies Impact: Innovations in drug development

Healthcare operations

Application: Predicting hospital admissions

Impact: Efficient resource management

Nanomedicine

Application: ML for designing and optimising nanoparticle drug delivery systems

Impact: Targeted treatment with reduced side effects

Topics covered in this course

Week	Lecture	Practical		
1	Machine learning fundamentals	Project 0: Introduction		
2	Linear and logistic regression	Project 1.1:Linear and logistic regression		
3	Regularization for linear models	Project 1.2: Regularization for linear models		
4	Methods for classification	Project 1.3: Application of linear models to a case study		
5	Neural networks, part 1	Project 2.1:Neural networks, part 1		
6	Neural networks, part 2	Project 2.2: Neural networks, part 2		
7	Unsupervised learning	Project 2.3: Application of neural networks to a case study		

Week 1-7 lectures and practicals (all on Wednesday). Week 8 (the week before the exam) has no lecture nor practical.

The course in a nutshell

- Assessment
 - ► 70% written exam
 - 30% practicals

All topics from the lectures are covered in the written exam. Some of the topics (linear models and neural networks) are also covered in the practicals.

- GitHub repository is used for material dissemination
- Canvas is used for communication and submission/grading
- Lecture schedule is in My Timetable and on GitHub (note that the room for the first practical has been changed, both My Timetable and GitHub are already updated).

Study material

- Main guidance: lecture slides and practicals
- Book: "An introduction to statistical learning with applications in python:, G. James, D. Witten, T. Hastie, R. Tibshirani, J. Taylor

Lecture slides and practicals in Github

#	Date	Location	Title	Slides
1	04/Sep	Aud.15	Machine learning fundamentals	intro, lectures
2	11/Sep	Aud.15	Linear and logistic regression	
3	18/Sep	Aud.15	Regularization for linear models	
4	25/Sep	Aud.15	Methods for classification	
5	02/Oct	Aud.15	Neural networks, part 1	
6	09/Oct	Aud.15	Neural networks, part 2	
7	16/Oct	Aud.15	Unsupervised learning	
8	23/Oct	-	No lecture	-
A	31/Oct	Exam		

Practical assignments

#	Date	Location	Title	Exercises
1	04/Sep	~~ Luna 1.050 ~~ Gem-Z 3A.05 *	Project 0: Introduction	practicals
2	11/Sep	Aud. 07	Project 1.1: Linear and logistic regression	
3	18/Sep	He. 0.01	Project 1.2: Regularization for linear models	
4	25/Sep	Aud. 07	Project 1.3: Application of linear models to a case study	
5	02/Oct	Aud. 07	Project 2.1: Neural networks, part 1	
6	09/Oct	Aud. 07	Project 2.1: Neural networks, part 2	
7	16/Oct	Aud. 07	Project 2.1: Application of neural networks to a case study	
8	23/Oct	-	No practical	-

Submission in Canvas

Practicals

- Work in group of up to 5 students
- Distributed as Python notebooks
- Divided in 3 projects
 - Project 0: Introduction
 - Project 1: Linear models
 - Project 1.2: Linear and logistic regression
 - Project 1.2: Regularisation for linear models
 - ► Project 1.3: Application of linear models to a case study
 - Project 2: Neural networks
 - Project 2.1:Neural networks, part 1
 - Project 2.2: Neural networks, part 2
 - ► Project 2.3: Application of neural networks to a case study

Project 1.3 and Project 2.3 will be graded

Practicals

- Deliverables, a zip file with :
 - A single Python notebook that contains the experiments, visualisation of results and answer to the questions
 - Python functions and/or classes (.py files) that you have developed to implement the basic functions, if used in the Python notebook.
- ► The assessment rubric for the practicals can be found in GitHub
- 5 teaching assistants will be present during the practicals
- You are encouraged to use Canvas Discussion to ask general questions

Feedback

Any type of (constructive) feedback you might have during or after the course is very welcome!