First name: Last name:

Network evaluation

All documents are allowed, but no communication at all! **Short** and right answers are the best (French or English). No need to debate, nor philosophize. Good luck!

1 OSI model (2 pts)

Give the name and a short overview of the four first layers' objectives (without details):

2 Domain Name System (2 pts)

Theses packets were captured on my laptop just after a ping.

\mathbf{Number}	Source	Destination	Protocol	Comment
1	192.168.0.1	208.67.222.222	DNS	Standard query 0xb559 A imdb.com
2	208.67.222.222	192.168.0.1	DNS	Standard query response 0xb559 A 207.171.166.22 A 72.21.210.29 A 72.21.206.80

Figure 1: DNS query

- What is my IP address?
- What is my DNS server IP address?
- What could be the destination(s) of the *ping*?
- What is the domain name I tried to *ping*?

3 Debug it (5 pts)

Using the output of the following commands, correct the network displayed in fig.2.

\$ping 72.21.206.80

Host Unreachable

\$route -n

φrouce -H		
Destination	Gateway	Genmask
0.0.0.0	192.168.0.3	0.0.0.0
192.168.0.0	0.0.0.0	255.255.255.0

Figure 2: Buggy network

4 Design it (11 pts)

In this question you need to design several subnetworks. Starting from 176.22.0.0, give for each single subnetwork (no schema expected):

- the subnet mask and maximum number of hosts,
- the network IP address,
- the first node IP address,
- the last node IP address,
- the broadcast IP address,
- the CIDR of the "super-network".

Sub-networks to be desgined are:

- a. 10000 machines for the students,
- b. 300 machines for the network services (DNS server, web, NAS...),
- c. 200 machines for the IT administration,
- d. 50 machines for the network lab,
- e. 1000 machines for the teachers and workers.