# Principles of Program Analysis:

# Abstract Interpretation

Transparencies based on Chapter 4 of the book: Flemming Nielson, Hanne Riis Nielson and Chris Hankin: Principles of Program Analysis. Springer Verlag 2005. ©Flemming Nielson & Hanne Riis Nielson & Chris Hankin.

## A Mundane Approach to Semantic Correctness

#### Semantics:

$$p \vdash v_1 \leadsto v_2$$

where  $v_1, v_2 \in V$ .

Program analysis:

$$p \vdash l_1 \triangleright l_2$$

where  $l_1, l_2 \in L$ .

Note: > should be deterministic:

$$f_p(l_1) = l_2.$$

What is the relationship between the semantics and the analysis?

Restrict attention to analyses where properties directly describe sets of values i.e. "first-order" analyses (rather than "second-order" analyses).

# Example: Data Flow Analysis

# Structural Operational Semantics:

Values: V = State

**Transitions:** 

$$S_{\star} \vdash \sigma_1 \leadsto \sigma_2$$

iff

$$\langle S_{\star}, \sigma_1 \rangle \to^* \sigma_2$$

#### Structural Operational | Constant Propagation Analysis:

Properties: 
$$L = \widehat{\text{State}}_{CP} = (\text{Var}_{\star} \to \mathbf{Z}^{\top})_{\perp}$$

**Transitions:** 

$$S_{\star} \vdash \widehat{\sigma}_1 \triangleright \widehat{\sigma}_2$$

iff

$$\widehat{\sigma}_1 = \iota$$

$$\widehat{\sigma}_2 = \bigsqcup \{ \mathsf{CP}_{\bullet}(\ell) \mid \ell \in \mathit{final}(S_{\star}) \}$$

$$(\mathsf{CP}_{\circ}, \mathsf{CP}_{\bullet}) \models \mathsf{CP}^{=}(S_{\star})$$

# Example: Control Flow Analysis

Structural Operational Semantics:

Values: V = Val

Transitions:

$$e_{\star} \vdash v_1 \leadsto v_2$$

iff

$$[] \vdash (e_{\star} \ v_{1}^{\ell_{1}})^{\ell_{2}} \rightarrow^{*} v_{2}^{\ell_{2}}$$

Pure 0-CFA Analysis:

Properties:  $L = \widehat{\text{Env}} \times \widehat{\text{Val}}$ 

Transitions:

$$e_{\star} \vdash (\widehat{\rho}_1, \widehat{v}_1) \triangleright (\widehat{\rho}_2, \widehat{v}_2)$$

iff

$$\widehat{\mathsf{C}}(\ell_1) = \widehat{v}_1 
\widehat{\mathsf{C}}(\ell_2) = \widehat{v}_2 
\widehat{\rho}_1 = \widehat{\rho}_2 = \widehat{\rho} 
(\widehat{\mathsf{C}}, \widehat{\rho}) \models (e_{\star} \ \mathsf{c}^{\ell_1})^{\ell_2}$$

for some place holder constant c

#### Correctness Relations

$$R: V \times L \rightarrow \{true, false\}$$

Idea: v R l means that the value v is described by the property l.

Correctness criterion: R is preserved under computation:

#### Admissible Correctness Relations

$$v R l_1 \wedge l_1 \sqsubseteq l_2 \Rightarrow v R l_2$$
  
 $(\forall l \in L' \subseteq L : v R l) \Rightarrow v R (\Box L') \quad (\{l \mid v R l\} \text{ is a Moore family})$ 

Two consequences:

Assumption:  $(L, \sqsubseteq)$  is a complete lattice.

# Example: Data Flow Analysis

Correctness relation

$$R_{\mathsf{CP}}: \mathbf{State} \times \mathbf{State}_{\mathsf{CP}} \to \{\mathit{true}, \mathit{false}\}\$$

is defined by

$$\sigma R_{\mathsf{CP}} \widehat{\sigma} \text{ iff } \forall x \in \mathsf{FV}(S_{\star}) : (\widehat{\sigma}(x) = \top \lor \sigma(x) = \widehat{\sigma}(x))$$

# Example: Control Flow Analysis

Correctness relation

$$R_{\mathsf{CFA}} : \mathsf{Val} \times (\widehat{\mathsf{Env}} \times \widehat{\mathsf{Val}}) \to \{\mathsf{true}, \mathsf{false}\}$$

is defined by

$$v \; R_{\mathsf{CFA}} \; (\widehat{
ho}, \widehat{v}) \; \; \mathsf{iff} \; \; v \; \mathcal{V} \; (\widehat{
ho}, \widehat{v})$$

where  $\mathcal{V}$  is given by:

$$v \ \mathcal{V} \ (\widehat{\rho}, \widehat{v}) \ \text{iff} \ \begin{cases} true & \text{if } v = c \\ t \in \widehat{v} \land \forall x \in dom(\rho) : \rho(x) \ \mathcal{V} \ (\widehat{\rho}, \widehat{\rho}(x)) & \text{if } v = \text{close } t \ \text{in } \rho \end{cases}$$

# Representation Functions

$$\beta: V \to L$$

Idea:  $\beta$  maps a value to the *best* property describing it.

#### Correctness criterion:



## Equivalence of Correctness Criteria

Given a representation function eta we define a correctness relation  $R_{eta}$  by v  $R_{eta}$  l iff  $\beta(v) \sqsubseteq l$ 

Given a correctness relation R we define a representation function  $\beta_R$  by

$$\beta_{R}(v) = \bigcap \{l \mid v \mid R \mid l\}$$

#### Lemma:

- (i) Given  $\beta: V \to L$ , then the relation  $R_{\beta}: V \times L \to \{true, false\}$  is an admissible correctness relation such that  $\beta_{R_{\beta}} = \beta$ .
- (ii) Given an admissible correctness relation  $R: V \times L \to \{true, false\}$ , then  $\beta_R$  is well-defined and  $R_{\beta_R} = R$ .

# Equivalence of Criteria: R is generated by $\beta$



# Example: Data Flow Analysis

Representation function

$$\beta_{\mathsf{CP}}: \mathbf{State} \to \widehat{\mathbf{State}}_{\mathsf{CP}}$$

is defined by

$$\beta_{\mathsf{CP}}(\sigma) = \lambda x.\sigma(x)$$

 $R_{\sf CP}$  is generated by  $\beta_{\sf CP}$ :

$$\sigma R_{\mathsf{CP}} \widehat{\sigma} \quad \underline{\mathsf{iff}} \quad \beta_{\mathsf{CP}}(\sigma) \sqsubseteq_{\mathsf{CP}} \widehat{\sigma}$$

# Example: Control Flow Analysis

Representation function

$$eta_{\mathsf{CFA}} : \mathbf{Val} \to \widehat{\mathbf{Env}} imes \widehat{\mathbf{Val}}$$

is defined by

$$\beta_{\mathsf{CFA}}(v) = \left\{ \begin{array}{ll} (\lambda x.\emptyset,\emptyset) & \text{if } v = c \\ (\beta_{\mathsf{CFA}}^{E}(\rho),\{t\}) & \text{if } v = \mathsf{close} \ t \ \mathsf{in} \ \rho \end{array} \right.$$

$$\beta_{\mathsf{CFA}}^E(\rho)(x) \; = \; \bigcup \{\widehat{\rho}_y(x) \mid \beta_{\mathsf{CFA}}(\rho(y)) = (\widehat{\rho}_y, \widehat{v}_y) \; \text{and} \; y \in dom(\rho) \}$$
 
$$\bigcup \left\{ \begin{array}{l} \{\widehat{v}_x\} \; \text{if} \; x \in dom(\rho) \; \text{and} \; \beta_{\mathsf{CFA}}(\rho(x)) = (\widehat{\rho}_x, \widehat{v}_x) \\ \emptyset \; \text{otherwise} \end{array} \right.$$

 $R_{\mathsf{CFA}}$  is generated by  $\beta_{\mathsf{CFA}}$ :

$$v \; R_{\mathsf{CFA}} \; (\widehat{\rho}, \widehat{v}) \quad \underline{\mathsf{iff}} \quad \beta_{\mathsf{CFA}}(v) \sqsubseteq_{\mathsf{CFA}} (\widehat{\rho}, \widehat{v})$$

#### A Modest Generalisation

#### Semantics:

$$p \vdash v_1 \longrightarrow v_2$$

where  $v_1 \in V_1, v_2 \in V_2$ 

Program analysis:

$$p \vdash l_1 \triangleright l_2$$

where  $l_1 \in L_1, l_2 \in L_2$ 

logical relation:

$$(p \vdash \cdot \leadsto \cdot) (R_1 \twoheadrightarrow R_2) (p \vdash \cdot \rhd \cdot)$$

14

# Higher-Order Formulation

#### Assume that

- $R_1$  is an admissible correctness relation for  $V_1$  and  $L_1$  that is *generated by* the representation function  $\beta_1: V_1 \to L_1$
- $R_2$  is an admissible correctness relation for  $V_2$  and  $L_2$  that is *generated by* the representation function  $\beta_2: V_2 \to L_2$

Then the relation  $R_1 woheadrightarrow R_2$  is an admissible correctness relation for  $V_1 woheadrightarrow V_2$  and  $L_1 woheadrightarrow L_2$ 

that is generated by the representation function  $\beta_1 \longrightarrow \beta_2$  defined by

$$(\beta_1 \longrightarrow \beta_2)(\sim) = \lambda l_1. \bigsqcup \{\beta_2(v_2) \mid \beta_1(v_1) \sqsubseteq l_1 \land v_1 \leadsto v_2\}$$

# Example:

#### Semantics:

plus 
$$\vdash (z_1, z_2) \longrightarrow z_1 + z_2$$
  
where  $z_1, z_2 \in \mathbf{Z}$ 

#### Program analysis:

plus 
$$\vdash ZZ \triangleright \{z_1 + z_2 \mid (z_1, z_2) \in ZZ\}$$
  
where  $ZZ \subseteq \mathbf{Z} \times \mathbf{Z}$ 

|          | Correctness relations                                                                                                                               | Representation functions                                                                                                           |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| result   | $R_{Z}$                                                                                                                                             | $\beta_{\mathbf{Z}}(z) = \{z\}$                                                                                                    |
| argument | $R_{Z 	imes Z}$                                                                                                                                     | $\beta_{Z\times Z}(z_1, z_2) = \{(z_1, z_2)\}$                                                                                     |
| plus     | $egin{aligned} (	exttt{plus} dash \cdot \leadsto \cdot) \ (R_{Z 	imes Z} & 	o \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | $(\beta_{Z \times Z} \twoheadrightarrow \beta_{Z})(plus \vdash \cdot \leadsto \cdot)$ $\sqsubseteq (plus \vdash \cdot \rhd \cdot)$ |

# Approximation of Fixed Points

Fixed points

Widening

Narrowing

Example: lattice of intervals for Array Bound Analysis

# The complete lattice Interval = (Interval, $\sqsubseteq$ )



### Fixed points

Let  $f: L \to L$  be a *monotone function* on a complete lattice  $L = (L, \sqsubseteq, \sqcup, \sqcap, \bot, \top)$ .

Tarski's Theorem ensures that

$$Ifp(f) = \prod Fix(f) = \prod Red(f) \in Fix(f) \subseteq Red(f)$$
$$gfp(f) = \coprod Fix(f) = \coprod Ext(f) \in Fix(f) \subseteq Ext(f)$$

# Fixed points of f



### Widening Operators

Problem: We cannot guarantee that  $(f^n(\bot))_n$  eventually stabilises nor that its least upper bound necessarily equals lfp(f).

Idea: We replace  $(f^n(\bot))_n$  by a new sequence  $(f^n_{\nabla})_n$  that is known to eventually stabilise and to do so with a value that is a safe (upper) approximation of the least fixed point.

The new sequence is parameterised on the widening operator  $\nabla$ : an upper bound operator satisfying a finiteness condition.

# Upper bound operators

 $\coprod : L \times L \to L$  is an upper bound operator iff

$$l_1 \sqsubseteq l_1 \stackrel{\sqcup}{\sqcup} l_2 \stackrel{\sqcup}{\sqcup} l_2$$

for all  $l_1, l_2 \in L$ .

Let  $(l_n)_n$  be a sequence of elements of L. Define the sequence  $(l_n^{\perp})_n$  by:

$$l_n^{\square} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\square} & \text{if } n > 0 \end{cases}$$

Fact: If  $(l_n)_n$  is a sequence and  $\[ \]$  is an upper bound operator then  $(l_n^{\square})_n$  is an ascending chain; furthermore  $l_n^{\square} \supseteq \bigsqcup \{l_0, l_1, \cdots, l_n\}$  for all n.

### Example:

Let *int* be an arbitrary but fixed element of **Interval**.

An upper bound operator:

$$int_1 \stackrel{int}{\sqsubseteq} int_2 = \begin{cases} int_1 \stackrel{int_2}{\sqsubseteq} int_1 \stackrel{int_1}{\sqsubseteq} int \vee int_2 \stackrel{int_1}{\sqsubseteq} int_1 \\ [-\infty, \infty] \end{cases}$$
 otherwise

Example: 
$$[1,2] \stackrel{[0,2]}{=} [2,3] = [1,3]$$
 and  $[2,3] \stackrel{[0,2]}{=} [1,2] = [-\infty,\infty]$ .

Transformation of: 
$$[0,0],[1,1],[2,2],[3,3],$$
  $[4,4],[5,5],\cdots$ 

If 
$$int = [0, \infty]$$
:  $[0, 0], [0, 1], [0, 2], [0, 3], [0, 4], [0, 5], \cdots$ 

If 
$$int = [0, 2]$$
:  $[0, 0], [0, 1], [0, 2], [0, 3], [-\infty, \infty], [-\infty, \infty], \cdots$ 

## Widening operators

An operator  $\nabla: L \times L \to L$  is a *widening operator* iff

- it is an upper bound operator, and
- for all ascending chains  $(l_n)_n$  the ascending chain  $(l_n^{\nabla})_n$  eventually stabilises.

## Widening operators

Given a monotone function  $f:L\to L$  and a widening operator  $\nabla$  define the sequence  $(f^n_{\nabla})_n$  by

$$f^n_{\nabla} = \left\{ \begin{array}{ll} \bot & \text{if } n = 0 \\ f^{n-1}_{\nabla} & \text{if } n > 0 \ \land \ f(f^{n-1}_{\nabla}) \sqsubseteq f^{n-1}_{\nabla} \\ f^{n-1}_{\nabla} \ \nabla \ f(f^{n-1}_{\nabla}) & \text{otherwise} \end{array} \right.$$

One can show that:

- $\bullet$   $(f^n_{\nabla})_n$  is an ascending chain that eventually stabilises
- it happens when  $f(f^m_{\nabla}) \sqsubseteq f^m_{\nabla}$  for some value of m
- Tarski's Theorem then gives  $f^m_{\nabla} \supseteq lfp(f)$

$$Ifp_{\nabla}(f) = f_{\nabla}^{m}$$

# The widening operator $\nabla$ applied to f



### Example:

Let K be a *finite* set of integers, e.g. the set of integers explicitly mentioned in a given program.

We shall define a widening operator  $\nabla$  based on K.

Idea: 
$$[z_1,z_2]$$
  $\nabla$   $[z_3,z_4]$  is 
$$[ \ \mathsf{LB}(z_1,z_3) \ , \ \mathsf{UB}(z_2,z_4) \ ]$$

where

- LB $(z_1, z_3) \in \{z_1\} \cup K \cup \{-\infty\}$  is the best possible lower bound, and
- $\mathsf{UB}(z_2,z_4)\in\{z_2\}\cup K\cup\{\infty\}$  is the best possible upper bound.

The effect: a change in any of the bounds of the interval  $[z_1, z_2]$  can only take place finitely many times — corresponding to the cardinality of K.

# Example (cont.) — formalisation:

Let  $z_i \in \mathbf{Z}' = \mathbf{Z} \cup \{-\infty, \infty\}$  and write:

$$\mathsf{LB}_{K}(z_{1}, z_{3}) \ = \ \begin{cases} z_{1} & \text{if } z_{1} \leq z_{3} \\ k & \text{if } z_{3} < z_{1} \ \land \ k = \max\{k \in K \mid k \leq z_{3}\} \\ -\infty & \text{if } z_{3} < z_{1} \ \land \ \forall k \in K : z_{3} < k \end{cases}$$

$$\mathsf{UB}_K(z_2, z_4) \ = \ \begin{cases} z_2 & \text{if } z_4 \le z_2 \\ k & \text{if } z_2 < z_4 \ \land \ k = \min\{k \in K \mid z_4 \le k\} \\ \infty & \text{if } z_2 < z_4 \ \land \ \forall k \in K : k < z_4 \end{cases}$$

# Example (cont.):

Consider the ascending chain  $(int_n)_n$ 

$$[0, 1], [0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], \cdots$$

and assume that  $K = \{3, 5\}$ .

Then  $(int_n^{\nabla})_n$  is the chain

$$[0, 1], [0, 3], [0, 3], [0, 5], [0, 5], [0, \infty], [0, \infty], \cdots$$

which eventually stabilises.

# Narrowing Operators

Status: Widening gives us an upper approximation  $f_{\nabla}(f)$  of the least fixed point of f.

Observation:  $f(Ifp_{\nabla}(f)) \sqsubseteq Ifp_{\nabla}(f)$  so the approximation can be improved by considering the iterative sequence  $(f^n(Ifp_{\nabla}(f)))_n$ .

It will satisfy  $f^n(Ifp_{\nabla}(f)) \supseteq Ifp(f)$  for all n so we can stop at an arbitrary point.

The notion of narrowing is *one way* of encapsulating a termination criterion for the sequence.

# Narrowing

An operator  $\triangle: L \times L \to L$  is a *narrowing operator* iff

- $l_2 \sqsubseteq l_1 \Rightarrow l_2 \sqsubseteq (l_1 \triangle l_2) \sqsubseteq l_1$  for all  $l_1, l_2 \in L$ , and
- for all descending chains  $(l_n)_n$  the sequence  $(l_n^{\triangle})_n$  eventually stabilises.

Recall: The sequence  $(l_n^{\Delta})_n$  is defined by:

$$l_n^{\Delta} = \begin{cases} l_n & \text{if } n = 0\\ l_{n-1}^{\Delta} \Delta l_n & \text{if } n > 0 \end{cases}$$

# Narrowing

We construct the sequence  $([f]_{\wedge}^n)_n$ 

$$[f]_{\Delta}^{n} = \begin{cases} Ifp_{\nabla}(f) & \text{if } n = 0\\ [f]_{\Delta}^{n-1} \Delta f([f]_{\Delta}^{n-1}) & \text{if } n > 0 \end{cases}$$

One can show that:

- $([f]_{\Delta}^{n})_{n}$  is a descending chain where all elements satisfy  $f(f) \sqsubseteq [f]_{\Delta}^{n}$
- the chain eventually stabilises so  $[f]_{\Delta}^{m'} = [f]_{\Delta}^{m'+1}$  for some value m'

$$Ifp_{\nabla}^{\triangle}(f) = [f]_{\triangle}^{m'}$$

# The narrowing operator $\triangle$ applied to f



## Example:

The complete lattice (**Interval**,  $\sqsubseteq$ ) has two kinds of infinite descending chains:

- ullet those with elements of the form  $[-\infty,z]$ ,  $z\in {f Z}$
- ullet those with elements of the form  $[z,\infty]$ ,  $z\in {f Z}$

Idea: Given some fixed non-negative number N the narrowing operator  $\Delta_N$  will force an infinite descending chain

$$[z_1,\infty],[z_2,\infty],[z_3,\infty],\cdots$$

(where  $z_1 < z_2 < z_3 < \cdots$ ) to stabilise when  $z_i > N$ 

Similarly, for a descending chain with elements of the form  $[-\infty, z_i]$  the narrowing operator will force it to stabilise when  $z_i < -N$ 

# Example (cont.) — formalisation:

Define  $\Delta = \Delta_N$  by

$$int_1 \triangle int_2 = \left\{ egin{array}{ll} \bot & ext{if } int_1 = \bot \lor int_2 = \bot \\ [z_1,z_2] & ext{otherwise} \end{array} \right.$$

where

$$z_1 = \begin{cases} \inf(int_1) & \text{if } N < \inf(int_2) \land \sup(int_2) = \infty \\ \inf(int_2) & \text{otherwise} \end{cases}$$

$$z_2 = \begin{cases} \sup(int_1) & \text{if } \inf(int_2) = -\infty \land \sup(int_2) < -N \\ \sup(int_2) & \text{otherwise} \end{cases}$$

# Example (cont.):

Consider the infinite descending chain  $([n,\infty])_n$ 

$$[0,\infty], [1,\infty], [2,\infty], [3,\infty], [4,\infty], [5,\infty], \cdots$$

and assume that N=3.

Then the narrowing operator  $\Delta_N$  will give the sequence  $([n,\infty]^{\Delta})_n$ 

$$[0,\infty],[1,\infty],[2,\infty],[3,\infty],[3,\infty],[3,\infty],\cdots$$

#### **Galois Connections**

- Galois connections and adjunctions
- Extraction functions
- Galois insertions
- Reduction operators

#### Galois connections

$$L \stackrel{\gamma}{\stackrel{}{\overset{}{\smile}}} M$$

 $\alpha$ : abstraction function

 $\gamma$ : concretisation function

is a Galois connection if and only if

 $\alpha$  and  $\gamma$  are monotone functions

that satisfy

$$\gamma \circ \alpha \supseteq \lambda l.l$$

$$\alpha \circ \gamma \sqsubseteq \lambda m.m$$

#### Galois connections



$$\gamma \circ \alpha \supseteq \lambda l.l$$

$$\alpha \circ \gamma \sqsubseteq \lambda m.m$$

#### Example:

Galois connection

$$(\mathcal{P}(\mathbf{Z}), \boldsymbol{\alpha}_{\mathbf{ZI}}, \gamma_{\mathbf{ZI}}, \mathbf{Interval})$$

with concretisation function

$$\gamma_{\mathbf{ZI}}(int) = \{z \in \mathbf{Z} \mid \inf(int) \le z \le \sup(int)\}$$

and abstraction function

$$\alpha_{\mathbf{ZI}}(Z) = \begin{cases} \bot & \text{if } Z = \emptyset \\ [\inf'(Z), \sup'(Z)] & \text{otherwise} \end{cases}$$

Examples:

$$\gamma_{ZI}([0,3]) = \{0,1,2,3\} 
\gamma_{ZI}([0,\infty]) = \{z \in \mathbb{Z} \mid z \ge 0\} 
\alpha_{ZI}(\{0,1,3\}) = [0,3] 
\alpha_{ZI}(\{2*z \mid z > 0\}) = [2,\infty]$$

## Adjunctions

$$L \xrightarrow{\gamma} M$$

is an adjunction if and only if

 $\alpha:L\to M$  and  $\gamma:M\to L$  are total functions

that satisfy

$$\alpha(l) \sqsubseteq m \qquad \underline{\mathsf{iff}} \qquad l \sqsubseteq \gamma(m)$$

for all  $l \in L$  and  $m \in M$ .

**Proposition:**  $(\alpha, \gamma)$  is an adjunction iff it is a Galois connection.

## Galois connections from representation functions

A representation function  $\beta: V \to L$  gives rise to a Galois connection

$$(\mathcal{P}(V), \boldsymbol{\alpha}, \gamma, L)$$

where

$$\alpha(V') = \bigsqcup \{ \beta(v) \mid v \in V' \}$$

$$\gamma(l) = \{v \in V \mid \beta(v) \sqsubseteq l\}$$

for  $V' \subseteq V$  and  $l \in L$ .

This indeed defines an adjunction:

$$\begin{array}{ccc}
\alpha(V') \sqsubseteq l & \Leftrightarrow & \sqcup \{\beta(v) \mid v \in V'\} \sqsubseteq l \\
& \Leftrightarrow & \forall v \in V' : \beta(v) \sqsubseteq l \\
& \Leftrightarrow & V' \subseteq \gamma(l)
\end{array}$$

#### Galois connections from extraction functions

An extraction function

$$\eta: V \to D$$

maps the values of V to their best descriptions in D.

It gives rise to a representation function  $\beta_{\eta}: V \to \mathcal{P}(D)$  (corresponding to  $L = (\mathcal{P}(D), \subseteq)$ ) defined by

$$\beta_{\eta}(v) = \{\eta(v)\}$$

The associated Galois connection is

$$(\mathcal{P}(V), \boldsymbol{\alpha_{\eta}}, \gamma_{\eta}, \mathcal{P}(D))$$

where

$$\alpha_{\eta}(V') = \bigcup \{\beta_{\eta}(v) \mid v \in V'\} \qquad = \{\eta(v) \mid v \in V'\}$$

$$\gamma_{\eta}(D') = \{v \in V \mid \beta_{\eta}(v) \subseteq D'\} = \{v \mid \eta(v) \in D'\}$$

#### Example:

Extraction function

$$sign: \mathbf{Z} \rightarrow Sign$$

specified by

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$

Galois connection

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

with

$$\alpha_{\operatorname{sign}}(Z) = \{\operatorname{sign}(z) \mid z \in Z\}$$

$$\gamma_{\operatorname{sign}}(S) = \{z \in \mathbf{Z} \mid \operatorname{sign}(z) \in S\}$$



#### Properties of Galois Connections

**Lemma:** If  $(L, \alpha, \gamma, M)$  is a Galois connection then:

- $\alpha$  uniquely determines  $\gamma$  by  $\gamma(m) = \bigsqcup\{l \mid \alpha(l) \sqsubseteq m\}$
- $\gamma$  uniquely determines  $\alpha$  by  $\alpha(l) = \bigcap \{m \mid l \sqsubseteq \gamma(m)\}$
- ullet  $\alpha$  is completely additive and  $\gamma$  is completely multiplicative

In particular  $\alpha(\bot) = \bot$  and  $\gamma(\top) = \top$ .

#### Lemma:

- If  $\alpha:L\to M$  is completely additive then there exists (an upper adjoint)  $\gamma:M\to L$  such that  $(L,\alpha,\gamma,M)$  is a Galois connection.
- If  $\gamma: M \to L$  is completely multiplicative then there exists (a lower adjoint)  $\alpha: L \to M$  such that  $(L, \alpha, \gamma, M)$  is a Galois connection.

Fact: If  $(L, \alpha, \gamma, M)$  is a Galois connection then

•  $\alpha \circ \gamma \circ \alpha = \alpha$  and  $\gamma \circ \alpha \circ \gamma = \gamma$ 

#### Example:

Define  $\gamma_{\text{IS}}: \mathcal{P}(\text{Sign}) \to \text{Interval}$  by:

$$\gamma_{\text{IS}}(\{-,0,+\}) = [-\infty,\infty]$$
  $\gamma_{\text{IS}}(\{-,0\}) = [-\infty,0]$ 
 $\gamma_{\text{IS}}(\{-,+\}) = [-\infty,\infty]$   $\gamma_{\text{IS}}(\{0,+\}) = [0,\infty]$ 
 $\gamma_{\text{IS}}(\{-,0\}) = [0,\infty]$ 
 $\gamma_{\text{IS}}(\{-,0\}) = [0,\infty]$ 
 $\gamma_{\text{IS}}(\{0,+\}) = [0,0]$ 
 $\gamma_{\text{IS}}(\{-,0\}) = [0,\infty]$ 
 $\gamma_{\text{IS}}(\{0,+\}) = [0,\infty]$ 
 $\gamma_{\text{IS}}(\{0,+\}) = [0,\infty]$ 

Does there exist an abstraction function

$$lpha_{\mathsf{IS}}: \mathsf{Interval} o \mathcal{P}(\mathsf{Sign})$$

such that (Interval,  $\alpha_{IS}$ ,  $\gamma_{IS}$ ,  $\mathcal{P}(Sign)$ ) is a Galois connection?

# Example (cont.):

Is  $\gamma_{IS}$  completely multiplicative?

- if yes: then there exists a Galois connection
- if no: then there cannot exist a Galois connection

**Lemma**: If L and M are complete lattices and M is finite then  $\gamma: M \to L$  is completely multiplicative if and only if the following hold:

- $\gamma: M \to L$  is monotone,
- $\gamma(\top) = \top$ , and
- $\gamma(m_1 \sqcap m_2) = \gamma(m_1) \sqcap \gamma(m_2)$  whenever  $m_1 \not\sqsubseteq m_2 \land m_2 \not\sqsubseteq m_1$

We calculate

$$\gamma_{\text{IS}}(\{-,0\} \cap \{-,+\}) = \gamma_{\text{IS}}(\{-\}) = [-\infty,-1]$$

$$\gamma_{\text{IS}}(\{-,0\}) \sqcap \gamma_{\text{IS}}(\{-,+\}) = [-\infty,0] \sqcap [-\infty,\infty] = [-\infty,0]$$

showing that there is no Galois connection involving  $\gamma_{IS}$ .

## Galois Connections are the Right Concept

We use the mundane approach to correctness to demonstrate this for:

- Admissible correctness relations
- Representation functions

## The mundane approach: correctness relations

#### Assume

- $R: V \times L \rightarrow \{true, false\}$  is an admissible correctness relation
- $(L, \alpha, \gamma, M)$  is a Galois connection

Then  $S: V \times M \rightarrow \{\textit{true}, \textit{false}\}\$  defined by

$$v S m \qquad \underline{\mathsf{iff}} \qquad v R (\gamma(m))$$

is an admissible correctness relation between V and M



# The mundane approach: representation functions

#### Assume

- $R: V \times L \rightarrow \{true, false\}$  is generated by  $\beta: V \rightarrow L$
- $(L, \alpha, \gamma, M)$  is a Galois connection

Then  $S: V \times M \rightarrow \{\mathit{true}, \mathit{false}\}$  defined by

$$v S m \qquad \underline{iff} \qquad v R (\gamma(m))$$

is generated by  $\alpha \circ \beta : V \to M$ 



#### **Galois Insertions**



Monotone functions satisfying:  $\gamma \circ \alpha \supseteq \lambda l.l$   $\alpha \circ \gamma = \lambda m.m$ 

# Example (1):

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

where  $sign : \mathbf{Z} \rightarrow Sign$  is specified by:

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$



Is it a Galois insertion?

## Example (2):

$$(\mathcal{P}(\mathbf{Z}), \textcolor{red}{\alpha_{\mathsf{signparity}}}, \textcolor{red}{\gamma_{\mathsf{signparity}}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Parity}))$$
 where  $\mathbf{Sign} = \{-, 0, +\}$  and  $\mathbf{Parity} = \{\mathsf{odd}, \mathsf{even}\}$  and  $\mathbf{signparity}: \mathbf{Z} \to \mathbf{Sign} \times \mathbf{Parity}:$  
$$\mathsf{signparity}(z) = \left\{ \begin{array}{l} (\mathsf{sign}(z), \mathsf{odd}) & \mathsf{if} \ z \ \mathsf{is} \ \mathsf{odd} \\ (\mathsf{sign}(z), \mathsf{even}) & \mathsf{if} \ z \ \mathsf{is} \ \mathsf{even} \end{array} \right.$$

Is it a Galois insertion?

#### Properties of Galois Insertions

**Lemma:** For a Galois connection  $(L, \alpha, \gamma, M)$  the following claims are equivalent:

- (i)  $(L, \alpha, \gamma, M)$  is a Galois insertion;
- (ii)  $\alpha$  is surjective:  $\forall m \in M : \exists l \in L : \alpha(l) = m$ ;
- (iii)  $\gamma$  is injective:  $\forall m_1, m_2 \in M : \gamma(m_1) = \gamma(m_2) \Rightarrow m_1 = m_2$ ; and
- (iv)  $\gamma$  is an order-similarity:  $\forall m_1, m_2 \in M : \gamma(m_1) \sqsubseteq \gamma(m_2) \Leftrightarrow m_1 \sqsubseteq m_2$ .

Corollary: A Galois connection specified by an extraction function  $\eta$ :  $V \to D$  is a Galois insertion if and only if  $\eta$  is surjective.

# Example (1) reconsidered:

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

$$\operatorname{sign}(z) = \begin{cases} - & \text{if } z < 0 \\ 0 & \text{if } z = 0 \\ + & \text{if } z > 0 \end{cases}$$

is a Galois insertion because sign is surjective.

# Example (2) reconsidered:

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\text{signparity}}, \gamma_{\text{signparity}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Parity}))$$

$$signparity(z) = \begin{cases} (sign(z), odd) & \text{if } z \text{ is odd} \\ (sign(z), even) & \text{if } z \text{ is even} \end{cases}$$

is not a Galois insertion because signparity is not surjective.

#### Reduction Operators

Given a Galois connection  $(L, \alpha, \gamma, M)$  it is always possible to obtain a Galois insertion by enforcing that the concretisation function  $\gamma$  is injective.

Idea: remove the superfluous elements from M using a  $reduction\ oper-$ ator

$$\varsigma: M \to M$$

defined from the Galois connection.

**Proposition:** Let  $(L, \alpha, \gamma, M)$  be a Galois connection and define the reduction operator  $\varsigma: M \to M$  by

$$\varsigma(m) = \bigcap \{m' \mid \gamma(m) = \gamma(m')\}$$

Then  $\varsigma[M] = (\{\varsigma(m) \mid m \in M\}, \sqsubseteq_M)$  is a complete lattice and  $(L, \alpha, \gamma, \varsigma[M])$  is a Galois insertion.

# The reduction operator $\varsigma: M \to M$



#### Reduction operators from extraction functions

Assume that the Galois connection  $(\mathcal{P}(V), \alpha_{\eta}, \gamma_{\eta}, \mathcal{P}(D))$  is given by an extraction function  $\eta: V \to D$ .

Then the reduction operator  $\varsigma_{\eta}$  is given by

$$\varsigma_{\eta}(D') = D' \cap \eta[V]$$

where  $\eta[V] = \{d \in D \mid \exists v \in V : \eta(v) = d\}.$ 

Since  $\varsigma_{\eta}[\mathcal{P}(D)]$  is isomorphic to  $\mathcal{P}(\eta[V])$  the resulting Galois insertion is isomorphic to

$$(\mathcal{P}(V), \boldsymbol{\alpha_{\eta}}, \boldsymbol{\gamma_{\eta}}, \mathcal{P}(\boldsymbol{\eta}[V]))$$

# Systematic Design of Galois Connections

The "functional composition" (or "sequential composition") of two Galois connections is also a Galois connection:

$$L_0 \stackrel{\gamma_1}{\longrightarrow} L_1 \stackrel{\gamma_2}{\longrightarrow} L_2 \stackrel{\gamma_3}{\longrightarrow} \cdots \stackrel{\gamma_k}{\longrightarrow} L_k$$

A catalogue of techniques for combining Galois connections:

- independent attribute method
   relational method

direct product

direct tensor product

reduced product

reduced tensor product

total function space

monotone function space

# Running Example: Array Bound Analysis

Approximation of the difference in magnitude between two numbers (typically the index and the bound):

- ullet a Galois connection for approximating pairs  $(z_1,z_2)$  of integers by their difference  $|z_1|-|z_2|$
- a Galois connection for approximating integers using a finite lattice  $\{<-1,-1,0,+1,>+1\}$
- a Galois connection for their functional composition

## Example: Difference in Magnitude

$$(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \frac{\alpha_{\mathsf{diff}}, \gamma_{\mathsf{diff}}, \mathcal{P}(\mathbf{Z}))$$

where the extraction function diff :  $\mathbf{Z} \times \mathbf{Z} \to \mathbf{Z}$  calculates the difference in magnitude:

$$diff(z_1, z_2) = |z_1| - |z_2|$$

The abstraction and concretisation functions are

$$\alpha_{\text{diff}}(ZZ) = \{|z_1| - |z_2| \mid (z_1, z_2) \in ZZ\}$$

$$\gamma_{\text{diff}}(Z) = \{(z_1, z_2) \mid |z_1| - |z_2| \in Z\}$$

for  $ZZ \subseteq \mathbf{Z} \times \mathbf{Z}$  and  $Z \subseteq \mathbf{Z}$ .

#### Example: Finite Approximation

$$(\mathcal{P}(\mathbf{Z}), \underline{\alpha}_{\mathsf{range}}, \underline{\gamma}_{\mathsf{range}}, \mathcal{P}(\mathsf{Range}))$$

where Range =  $\{<-1, -1, 0, +1, >+1\}$ 

and the extraction function range :  $\mathbf{Z} \to \textbf{Range}$  is

range(z) = 
$$\begin{cases} <-1 & \text{if } z < -1 \\ -1 & \text{if } z = -1 \\ 0 & \text{if } z = 0 \\ +1 & \text{if } z = 1 \\ >+1 & \text{if } z > 1 \end{cases}$$

The abstraction and concretisation functions are

$$\alpha_{\text{range}}(Z) = \{\text{range}(z) \mid z \in Z\}$$

$$\gamma_{\text{range}}(R) = \{z \mid \text{range}(z) \in R\}$$

for  $Z \subseteq \mathbf{Z}$  and  $R \subseteq \mathbf{Range}$ .

## Example: Functional Composition

$$(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \boldsymbol{\alpha}_{\mathsf{R}}, \boldsymbol{\gamma}_{\mathsf{R}}, \mathcal{P}(\mathsf{Range}))$$

where

$$\alpha_{\rm R} = \alpha_{\rm range} \circ \alpha_{\rm diff}$$
 $\gamma_{\rm R} = \gamma_{\rm diff} \circ \gamma_{\rm range}$ 

The explicit formulae for the abstraction and concretisation functions

$$\alpha_{R}(ZZ) = \{ \operatorname{range}(|z_{1}| - |z_{2}|) \mid (z_{1}, z_{2}) \in ZZ \}$$

$$\gamma_{R}(R) = \{ (z_{1}, z_{2}) \mid \operatorname{range}(|z_{1}| - |z_{2}|) \in R \}$$

correspond to the extraction function range o diff.

## Approximation of Pairs

#### Independent Attribute Method

Let  $(L_1, \alpha_1, \gamma_1, M_1)$  and  $(L_2, \alpha_2, \gamma_2, M_2)$  be Galois connections.

The independent attribute method gives a Galois connection

$$(L_1 \times L_2, \boldsymbol{\alpha}, \gamma, M_1 \times M_2)$$

where

$$\alpha(l_1, l_2) = (\alpha_1(l_1), \alpha_2(l_2))$$

$$\gamma(m_1, m_2) = (\gamma_1(m_1), \gamma_2(m_2))$$

## Example: Detection of Signs Analysis

Given

$$(\mathcal{P}(\mathbf{Z}), \frac{\alpha_{\mathsf{sign}}, \gamma_{\mathsf{sign}}, \mathcal{P}(\mathbf{Sign}))$$

using the extraction function sign.

The independent attribute method gives

$$(\mathcal{P}(\mathbf{Z}) \times \mathcal{P}(\mathbf{Z}), \alpha_{SS}, \gamma_{SS}, \mathcal{P}(\mathbf{Sign}) \times \mathcal{P}(\mathbf{Sign}))$$

where

$$\alpha_{SS}(Z_1, Z_2) = (\{\operatorname{sign}(z) \mid z \in Z_1\}, \{\operatorname{sign}(z) \mid z \in Z_2\})$$

$$\gamma_{SS}(S_1, S_2) = (\{z \mid \operatorname{sign}(z) \in S_1\}, \{z \mid \operatorname{sign}(z) \in S_2\})$$

## Motivating the Relational Method

The independent attribute method often leads to imprecision!

Semantics: The expression (x,-x) may have a value in

$$\{(z,-z)\mid z\in\mathbf{Z}\}$$

Analysis: When we use  $\mathcal{P}(\mathbf{Z}) \times \mathcal{P}(\mathbf{Z})$  to represent sets of pairs of integers we cannot do better than representing  $\{(z, -z) \mid z \in \mathbf{Z}\}$  by

$$(\mathbf{Z},\mathbf{Z})$$

Hence the best property describing it will be

$$\alpha_{SS}(\mathbf{Z}, \mathbf{Z}) = (\{-, 0, +\}, \{-, 0, +\})$$

#### Relational Method

Let  $(\mathcal{P}(V_1), \alpha_1, \gamma_1, \mathcal{P}(D_1))$  and  $(\mathcal{P}(V_2), \alpha_2, \gamma_2, \mathcal{P}(D_2))$  be Galois connections.

The relational method will give rise to the Galois connection

$$(\mathcal{P}(V_1 \times V_2), \boldsymbol{\alpha}, \gamma, \mathcal{P}(D_1 \times D_2))$$

where

$$\alpha(VV) = \bigcup \{\alpha_{1}(\{v_{1}\}) \times \alpha_{2}(\{v_{2}\}) \mid (v_{1}, v_{2}) \in VV\} 
\gamma(DD) = \{(v_{1}, v_{2}) \mid \alpha_{1}(\{v_{1}\}) \times \alpha_{2}(\{v_{2}\}) \subseteq DD\}$$

Generalisation to arbitrary complete lattices: use tensor products.

#### Relational Method from Extraction Functions

Assume that the Galois connections  $(\mathcal{P}(V_i), \alpha_i, \gamma_i, \mathcal{P}(D_i))$  are given by extraction functions  $\eta_i: V_i \to D_i$  as in

$$\alpha_i(V_i') = \{\eta_i(v_i) \mid v_i \in V_i'\}$$

$$\gamma_i(D_i') = \{v_i \mid \eta_i(v_i) \in D_i'\}$$

Then the Galois connection  $(\mathcal{P}(V_1 \times V_2), \alpha, \gamma, \mathcal{P}(D_1 \times D_2))$  has

$$\alpha(VV) = \{ (\eta_1(v_1), \eta_2(v_2)) \mid (v_1, v_2) \in VV \} 
\gamma(DD) = \{ (v_1, v_2) \mid (\eta_1(v_1), \eta_2(v_2)) \in DD \}$$

which also can be obtained directly from the extraction function  $\eta: V_1 \times V_2 \to D_1 \times D_2$  defined by

$$\eta(v_1, v_2) = (\eta_1(v_1), \eta_2(v_2))$$

## Example: Detection of Signs Analysis

Using the relational method we get a Galois connection

$$(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \frac{\alpha_{SS'}}{\gamma_{SS'}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Sign}))$$

where

$$\alpha_{SS'}(ZZ) = \{(sign(z_1), sign(z_2)) \mid (z_1, z_2) \in ZZ\}$$

$$\gamma_{SS'}(SS) = \{(z_1, z_2) \mid (sign(z_1), sign(z_2)) \in SS\}$$

corresponding to an extraction function twosigns :  $\mathbf{Z}\times\mathbf{Z}\to\mathbf{Sign}\times\mathbf{Sign}$  defined by

$$twosigns(z_1, z_2) = (sign(z_1), sign(z_2))$$

## Advantages of the Relational Method

Semantics: The expression (x,-x) may have a value in

$$\{(z, -z) \mid z \in \mathbf{Z}\}$$

In the present setting  $\{(z,-z) \mid z \in \mathbf{Z}\}$  is an element of  $\mathcal{P}(\mathbf{Z} \times \mathbf{Z})$ .

Analysis: The best "relational" property describing it is

$$\alpha_{SS'}(\{(z,-z) \mid z \in \mathbf{Z}\}) = \{(-,+),(0,0),(+,-)\}$$

whereas the best "independent attribute" property was

$$\alpha_{SS}(\mathbf{Z}, \mathbf{Z}) = (\{-, 0, +\}, \{-, 0, +\})$$

#### **Function Spaces**

#### **Total Function Space**

Let  $(L, \alpha, \gamma, M)$  be a Galois connection and let S be a set.

The Galois connection for the total function space

$$(S \to L, \alpha', \gamma', S \to M)$$

is defined by

$$\alpha'(f) = \alpha \circ f \qquad \gamma'(g) = \gamma \circ g$$

Do we need to assume that S is non-empty?

#### Monotone Function Space

 $\alpha(f) = \alpha_2 \circ f \circ \gamma_1$ 

Let  $(L_1, \alpha_1, \gamma_1, M_1)$  and  $(L_2, \alpha_2, \gamma_2, M_2)$  be Galois connections.

The Galois connection for the *monotone function space* 

$$(L_1 \rightarrow L_2, \alpha, \gamma, M_1 \rightarrow M_2)$$

is defined by

 $\gamma(g) = \gamma_2 \circ g \circ \alpha_1$ 

### Performing Analyses Simultaneously

#### Direct Product

Let  $(L, \alpha_1, \gamma_1, M_1)$  and  $(L, \alpha_2, \gamma_2, M_2)$  be Galois connections.

The direct product is the Galois connection

$$(L, \alpha, \gamma, M_1 \times M_2)$$

defined by

$$\alpha(l) = (\alpha_1(l), \alpha_2(l))$$

$$\gamma(m_1, m_2) = \gamma_1(m_1) \sqcap \gamma_2(m_2)$$

#### Example:

Combining the detection of signs analysis for pairs of integers with the analysis of difference in magnitude.

We get the Galois connection

$$(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathsf{SSR}}, \gamma_{\mathsf{SSR}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Sign}) \times \mathcal{P}(\mathsf{Range}))$$

where

$$\alpha_{\mathsf{SSR}}(ZZ) \ = \ \left( \left\{ (\mathsf{sign}(z_1), \mathsf{sign}(z_2)) \mid (z_1, z_2) \in ZZ \right\}, \\ \left\{ \mathsf{range}(|z_1| - |z_2|) \mid (z_1, z_2) \in ZZ \right\} \right)$$

$$\gamma_{\mathsf{SSR}}(SS, R) \ = \ \left\{ (z_1, z_2) \mid (\mathsf{sign}(z_1), \mathsf{sign}(z_2)) \in SS \right\}$$

$$\cap \ \left\{ (z_1, z_2) \mid \mathsf{range}(|z_1| - |z_2|) \in R \right\}$$

### Motivating the Direct Tensor Product

The expression (x, 3\*x) may have a value in

$$\{(z,3*z)\mid z\in\mathbf{Z}\}$$

which is described by

$$\alpha_{\mathsf{SSR}}(\{(z, 3*z) \mid z \in \mathbf{Z}\}) = (\{(-, -), (0, 0), (+, +)\}, \{0, < -1\})$$

#### But

- any pair described by (0,0) will have a difference in magnitude described by 0
- any pair described by (-,-) or (+,+) will have a difference in magnitude described by <-1</li>

and the analysis cannot express this.

#### Direct Tensor Product

Let  $(\mathcal{P}(V), \alpha_1, \gamma_1, \mathcal{P}(D_1))$  and  $(\mathcal{P}(V), \alpha_2, \gamma_2, \mathcal{P}(D_2))$  be Galois connections.

The direct tensor product is the Galois connection

$$(\mathcal{P}(V), \boldsymbol{\alpha}, \gamma, \mathcal{P}(D_1 \times D_2))$$

defined by

$$\alpha(V') = \bigcup \{\alpha_1(\{v\}) \times \alpha_2(\{v\}) \mid v \in V'\}$$

$$\gamma(DD) = \{v \mid \alpha_1(\{v\}) \times \alpha_2(\{v\}) \subseteq DD\}$$

#### Direct Tensor Product from Extraction Functions

Assume that the Galois connections  $(\mathcal{P}(V), \alpha_i, \gamma_i, \mathcal{P}(D_i))$  are given by extraction functions  $\eta_i : V \to D_i$  as in

$$\alpha_{i}(V') = \{\eta_{i}(v) \mid v \in V'\}$$

$$\gamma_{i}(D'_{i}) = \{v \mid \eta_{i}(v) \in D'_{i}\}$$

The Galois connection  $(\mathcal{P}(V), \alpha, \gamma, \mathcal{P}(D_1 \times D_2))$  has

$$\alpha(V') = \{(\eta_1(v), \eta_2(v)) \mid v \in V'\} 
\gamma(DD) = \{v \mid (\eta_1(v), \eta_2(v)) \in DD\}$$

corresponding to the extraction function  $\eta: V \to D_1 \times D_2$  defined by

$$\eta(v) = (\eta_1(v), \eta_2(v))$$

#### Example:

Using the direct tensor product to combine the detection of signs analysis for pairs of integers with the analysis of difference in magnitude.

$$(\mathcal{P}(\mathbf{Z} \times \mathbf{Z}), \alpha_{\mathsf{SSR'}}, \gamma_{\mathsf{SSR'}}, \mathcal{P}(\mathbf{Sign} \times \mathbf{Sign} \times \mathsf{Range}))$$

is given by

$$\begin{array}{ll} \alpha_{\mathsf{SSR'}}(ZZ) &=& \{(\mathsf{sign}(z_1),\mathsf{sign}(z_2),\mathsf{range}(|z_1|-|z_2|)) \mid (z_1,z_2) \in ZZ\} \\ \gamma_{\mathsf{SSR'}}(SSR) &=& \{(z_1,z_2) \mid (\mathsf{sign}(z_1),\mathsf{sign}(z_2),\mathsf{range}(|z_1|-|z_2|)) \in SSR\} \end{array}$$

corresponding to twosignsrange :  $\mathbf{Z}\times\mathbf{Z}\to\mathbf{Sign}\times\mathbf{Sign}\times\mathbf{Range}$  given by

twosignsrange(
$$z_1, z_2$$
) = (sign( $z_1$ ), sign( $z_2$ ), range( $|z_1| - |z_2|$ ))

### Advantages of the Direct Tensor Product

The expression (x,3\*x) may have a value in  $\{(z,3*z) \mid z \in \mathbf{Z}\}$  which in the direct tensor product can be described by

$$\alpha_{\mathsf{SSR}'}(\{(z, 3*z) \mid z \in \mathbf{Z}\}) = \{(-, -, <-1), (0, 0, 0), (+, +, <-1)\}$$

compared to the direct product that gave

$$\alpha_{\mathsf{SSR}}(\{(z, 3*z) \mid z \in \mathbf{Z}\}) = (\{(-, -), (0, 0), (+, +)\}, \{0, < -1\})$$

Note that the Galois connection is *not* a Galois insertion because

$$\gamma_{\mathsf{SSR'}}(\emptyset) = \emptyset = \gamma_{\mathsf{SSR'}}(\{(0,0,\mathsf{\leftarrow}1)\})$$

so  $\gamma_{SSR'}$  is not injective and hence we do not have a Galois insertion.

#### From Direct to Reduced

#### Reduced Product

Let  $(L, \alpha_1, \gamma_1, M_1)$  and  $(L, \alpha_2, \gamma_2, M_2)$  be Galois connections.

The reduced product is the Galois insertion

$$(L, \alpha, \gamma, \varsigma[M_1 \times M_2])$$

defined by

$$\alpha(l) = (\alpha_1(l), \alpha_2(l))$$

$$\gamma(m_1, m_2) = \gamma_1(m_1) \sqcap \gamma_2(m_2)$$

$$\varsigma(m_1, m_2) = \left[ \left\{ (m'_1, m'_2) \mid \gamma_1(m_1) \sqcap \gamma_2(m_2) = \gamma_1(m'_1) \sqcap \gamma_2(m'_2) \right\} \right]$$

#### Reduced Tensor Product

Let  $(\mathcal{P}(V), \alpha_1, \gamma_1, \mathcal{P}(D_1))$  and  $(\mathcal{P}(V), \alpha_2, \gamma_2, \mathcal{P}(D_2))$  be Galois connection.

The reduced tensor product is the Galois insertion

$$(\mathcal{P}(V), \boldsymbol{\alpha}, \boldsymbol{\gamma}, \boldsymbol{\varsigma}[\mathcal{P}(D_1 \times D_2)])$$

defined by

$$\alpha(V') = \bigcup \{\alpha_1(\{v\}) \times \alpha_2(\{v\}) \mid v \in V'\} 
\gamma(DD) = \{v \mid \alpha_1(\{v\}) \times \alpha_2(\{v\}) \subseteq DD\} 
\varsigma(DD) = \bigcap \{DD' \mid \gamma(DD) = \gamma(DD')\}$$

#### Example: Array Bounds Analysis

The superfluous elements of  $\mathcal{P}(\mathbf{Sign} \times \mathbf{Sign} \times \mathbf{Range})$  will be removed when we use a reduced tensor product:

The reduction operator  $\varsigma_{SSR'}$  amounts to

$$\varsigma_{SSR'}(SSR) = \bigcap \{SSR' \mid \gamma_{SSR'}(SSR) = \gamma_{SSR'}(SSR')\}$$

where SSR,  $SSR' \subseteq Sign \times Sign \times Range$ .

The singleton sets constructed from the following 16 elements

$$(-,0,<-1), (-,0,-1), (-,0,0),$$
  
 $(0,-,0), (0,-,+1), (0,-,>+1),$   
 $(0,0,<-1), (0,0,-1), (0,0,+1), (0,0,>+1),$   
 $(0,+,0), (0,+,+1), (0,+,>+1),$   
 $(+,0,<-1), (+,0,-1), (+,0,0)$ 

will be mapped to the empty set (as they are useless).

## Example (cont.): Array Bounds Analysis

The remaining 29 elements of  $\mathbf{Sign} \times \mathbf{Sign} \times \mathbf{Range}$  are

$$(-,-,<-1), (-,-,-1), (-,-,0), (-,-,+1), (-,-,>+1),$$
 $(-,0,+1), (-,0,>+1),$ 
 $(-,+,<-1), (-,+,-1), (-,+,0), (-,+,+1), (-,+,>+1),$ 
 $(0,-,<-1), (0,-,-1), (0,0,0), (0,+,<-1), (0,+,-1),$ 
 $(+,-,<-1), (+,-,-1), (+,-,0), (+,-,+1), (+,-,>+1),$ 
 $(+,0,+1), (+,0,>+1),$ 
 $(+,+,<-1), (+,+,-1), (+,+,0), (+,+,+1), (+,+,>+1)$ 

and they describe disjoint subsets of  $\mathbf{Z} \times \mathbf{Z}$ .

Any collection of properties can be descibed in 4 bytes.

#### Summary

The Array Bound Analysis has been designed from three simple Galois connections specified by extraction functions:

- (i) an analysis approximating integers by their sign,
- (ii) an analysis approximating pairs of integers by their difference in magnitude, and
- (iii) an analysis approximating integers by their closeness to 0, 1 and -1.

These analyses have been combined using:

- (iv) the relational product of analysis (i) with itself,
- (v) the functional composition of analyses (ii) and (iii), and
- (vi) the reduced tensor product of analyses (iv) and (v).

#### Induced Operations

Given: Galois connections  $(L_i, \alpha_i, \gamma_i, M_i)$  so that  $M_i$  is more approximate than (i.e. is coarser than)  $L_i$ .

Aim: Replace an existing analysis over  $L_i$  with an analysis making use of the coarser structure of  $M_i$ .

#### Methods:

- Inducing along the abstraction function: move the computations from  $L_i$  to  $M_i$ .
- Application to Data Flow Analysis.
- Inducing along the concretisation function: move a widening from  $M_i$  to  $L_i$ .

### Inducing along the Abstraction Function

Given Galois connections  $(L_i, \alpha_i, \gamma_i, M_i)$  so that  $M_i$  is more approximate than  $L_i$ .

Replace an existing analysis  $f_p: L_1 \to L_2$  with a new and more approximate analysis  $g_p: M_1 \to M_2$ : take  $g_p = \alpha_2 \circ f_p \circ \gamma_1$ .



The analysis  $\alpha_2 \circ f_p \circ \gamma_1$  is *induced* from  $f_p$  and the Galois connections.

#### Example:

A very precise analysis for plus based on  $\mathcal{P}(\mathbf{Z})$  and  $\mathcal{P}(\mathbf{Z} \times \mathbf{Z})$ :

$$f_{\text{plus}}(ZZ) = \{z_1 + z_2 \mid (z_1, z_2) \in ZZ\}$$

Two Galois connections

$$(\mathcal{P}(\mathbf{Z}), oldsymbol{lpha_{ ext{sign}}}, \gamma_{ ext{sign}}, \mathcal{P}(\mathbf{Sign}))$$
 $(\mathcal{P}(\mathbf{Z} imes \mathbf{Z}), oldsymbol{lpha_{ ext{Sign}}}, \gamma_{ ext{Sign}}, \mathcal{P}(\mathbf{Sign} imes \mathbf{Sign}))$ 

An approximate analysis for plus based on  $\mathcal{P}(\mathbf{Sign})$  and  $\mathcal{P}(\mathbf{Sign} \times \mathbf{Sign})$ :

$$g_{\text{plus}} = \alpha_{\text{sign}} \circ f_{\text{plus}} \circ \gamma_{\text{SS'}}$$

### Example (cont.):

We calculate

```
\begin{split} g_{\mathsf{plus}}(SS) &= \alpha_{\mathsf{sign}}(f_{\mathsf{plus}}(\gamma_{\mathsf{SS'}}(SS))) \\ &= \alpha_{\mathsf{sign}}(f_{\mathsf{plus}}(\{(z_1, z_2) \in \mathbf{Z} \times \mathbf{Z} \mid (\mathsf{sign}(z_1), \mathsf{sign}(z_2)) \in SS\})) \\ &= \alpha_{\mathsf{sign}}(\{z_1 + z_2 \mid z_1, z_2 \in \mathbf{Z}, (\mathsf{sign}(z_1), \mathsf{sign}(z_2)) \in SS\}) \\ &= \{\mathsf{sign}(z_1 + z_2) \mid z_1, z_2 \in \mathbf{Z}, (\mathsf{sign}(z_1), \mathsf{sign}(z_2)) \in SS\} \\ &= \bigcup \{s_1 \oplus s_2 \mid (s_1, s_2) \in SS\} \end{split}
```

where  $\oplus$ :  $\mathbf{Sign} \times \mathbf{Sign} \to \mathcal{P}(\mathbf{Sign})$  is the "addition" operator on signs (so e.g.  $+ \oplus + = \{+\}$  and  $+ \oplus - = \{-, 0, +\}$ ).

# The Mundane Correctness of $f_p$ carries over to $g_p$

The correctness relation  $R_i$  for  $V_i$  and  $L_i$ :

$$R_i: V_i \times L_i \rightarrow \{true, false\}$$
 is generated by  $\beta_i: V_i \rightarrow L_i$ 

Correctness of  $f_p$  means

$$(p \vdash \cdot \leadsto \cdot) (R_1 \twoheadrightarrow R_2) f_p$$

(with  $R_1 \rightarrow R_2$  being generated by  $\beta_1 \rightarrow \beta_2$ ).

The correctness relation  $S_i$  for  $V_i$  and  $M_i$ :

$$S_i: V_i \times M_i \to \{true, false\}$$
 is generated by  $\alpha_i \circ \beta_i: V_i \to M_i$ 

One can prove that

$$(p \vdash \cdot \rightsquigarrow \cdot) (R_1 \twoheadrightarrow R_2) f_p \land \alpha_2 \circ f_p \circ \gamma_1 \sqsubseteq g_p$$

$$\Rightarrow (p \vdash \cdot \rightsquigarrow \cdot) (S_1 \twoheadrightarrow S_2) g_p$$

with  $S_1 woheadrightarrow S_2$  being generated by  $(\alpha_1 \circ \beta_1) woheadrightarrow (\alpha_2 \circ \beta_2)$ .

### Fixed Points in the Induced Analysis

Let  $f_p = lfp(F)$  for a monotone function  $F: (L_1 \to L_2) \to (L_1 \to L_2)$ .

The Galois connections  $(L_i, \alpha_i, \gamma_i, M_i)$  give rise to a Galois connection  $(L_1 \to L_2, \alpha, \gamma, M_1 \to M_2)$ .

Take  $g_p = \mathit{lfp}(G)$  where  $G: (M_1 \to M_2) \to (M_1 \to M_2)$  is an "upper approximation" to F: we demand that  $\alpha \circ F \circ \gamma \sqsubseteq G$ .

Then for all  $m \in M_1 \to M_2$ :

$$G(m) \sqsubseteq m \Rightarrow F(\gamma(m)) \sqsubseteq \gamma(m)$$

and  $Ifp(F) \sqsubseteq \gamma(Ifp(G))$  and  $\alpha(Ifp(F)) \sqsubseteq Ifp(G)$ 

### Application to Data Flow Analysis

A generalised Monotone Framework consists of:

- the property space: a complete lattice  $L = (L, \sqsubseteq)$ ;
- ullet the set  $\mathcal F$  of monotone functions from L to L.

An instance A of a generalised Monotone Framework consists of:

- a finite flow,  $F \subseteq \mathbf{Lab} \times \mathbf{Lab}$ ;
- ullet a finite set of extremal labels,  $E\subseteq \mathbf{Lab}$ ;
- ullet an extremal value,  $\iota \in L$ ; and
- ullet a mapping  $f_{\cdot}$  from the labels Lab of F and E to monotone transfer functions from L to L.

# Application to Data Flow Analysis

Let  $(L, \alpha, \gamma, M)$  be a Galois connection.

Consider an instance  ${\sf B}$  of the generalised Monotone Framework M that satisfies

- the mapping g from the labels Lab of F and E to monotone transfer functions of  $M \to M$  satisfies  $g_{\ell} \supseteq \alpha \circ f_{\ell} \circ \gamma$  for all  $\ell$ ; and
- the extremal value j satisfies  $\gamma(j) = \iota$ ;

and otherwise B is as A.

One can show that a solution to the B-constraints gives rise to a solution to the A-constraints:

$$(B_{\circ}, B_{\bullet}) \models B^{\square}$$
 implies  $(\gamma \circ B_{\circ}, \gamma \circ B_{\bullet}) \models A^{\square}$ 

### The Mundane Approach to Semantic Correctness

Here  $F = flow(S_{\star})$  and  $E = \{init(S_{\star})\}.$ 

Correctness of every solution to  $A^{\square}$  amounts to:

Assume  $(A_{\circ}, A_{\bullet}) \models A^{\square}$  and  $\langle S_{\star}, \sigma_1 \rangle \rightarrow^* \sigma_2$ .

Then  $\beta(\sigma_1) \sqsubseteq \iota$  implies  $\beta(\sigma_2) \sqsubseteq \sqcup \{A_{\bullet}(\ell) \mid \ell \in final(S_{\star})\}.$ 

where  $\beta$ : State  $\rightarrow L$ .

One can then prove the correctness result for B:

Assume  $(B_{\circ}, B_{\bullet}) \models B^{\square}$  and  $\langle S_{\star}, \sigma_1 \rangle \to^* \sigma_2$ .

Then  $(\alpha \circ \beta)(\sigma_1) \sqsubseteq j$  implies  $(\alpha \circ \beta)(\sigma_2) \sqsubseteq \bigsqcup \{B_{\bullet}(\ell) \mid \ell \in final(S_{\star})\}.$ 

## Sets of States Analysis

Generalised Monotone Framework over  $(\mathcal{P}(State), \subseteq)$ . Instance SS for  $S_{\star}$ :

- the flow F is  $flow(S_{\star})$ ;
- the set E of extremal labels is  $\{init(S_{\star})\}$ ;
- ullet the extremal value  $\iota$  is State; and
- the transfer functions are given by  $f^{SS}$ :

$$[x := a]^{\ell} \quad f_{\ell}^{SS}(\Sigma) = \{\sigma[x \mapsto \mathcal{A}[\![a]\!]\sigma] \mid \sigma \in \Sigma\}$$
 
$$[\operatorname{skip}]^{\ell} \quad f_{\ell}^{SS}(\Sigma) = \Sigma$$
 
$$[b]^{\ell} \quad f_{\ell}^{SS}(\Sigma) = \Sigma$$

where  $\Sigma \subseteq State$ .

Correctness: Assume  $(SS_{\circ}, SS_{\bullet}) \models SS^{\supseteq}$  and  $\langle S_{\star}, \sigma_{1} \rangle \rightarrow^{*} \sigma_{2}$ . Then  $\sigma_{1} \in State$  implies  $\sigma_{2} \in \bigcup \{SS_{\bullet}(\ell) \mid \ell \in final(S_{\star})\}$ .

### Constant Propagation Analysis

Generalised Monotone Framework over  $\widehat{\mathbf{State}}_{\mathsf{CP}} = ((\mathbf{Var} \to \mathbf{Z}^{\top})_{\perp}, \sqsubseteq).$ Instance  $\widehat{\mathsf{CP}}$  for  $S_{\star}$ :

- the flow F is  $flow(S_{\star})$ ;
- the set E of extremal labels is  $\{init(S_{\star})\}$ ;
- the extremal value  $\iota$  is  $\lambda x. \top$ ; and
- the transfer functions are given by the mapping  $f_{\cdot}^{CP}$ :

$$[x := a]^{\ell} : f_{\ell}^{\mathsf{CP}}(\widehat{\sigma}) = \begin{cases} \bot & \text{if } \widehat{\sigma} = \bot \\ \widehat{\sigma}[x \mapsto \mathcal{A}_{\mathsf{CP}}[\![a]\!]\widehat{\sigma}] \end{cases} \text{ otherwise }$$
 
$$[\mathsf{skip}]^{\ell} : f_{\ell}^{\mathsf{CP}}(\widehat{\sigma}) = \widehat{\sigma}$$
 
$$[b]^{\ell} : f_{\ell}^{\mathsf{CP}}(\widehat{\sigma}) = \widehat{\sigma}$$

#### **Galois Connection**

The representation function  $\beta_{\sf CP}$ : State  $\to$  State $_{\sf CP}$  is defined by  $\beta_{\sf CP}(\sigma) = \sigma$ 

This gives rise to a Galois connection

$$(\mathcal{P}(\mathrm{State}), \underline{\alpha_{\mathsf{CP}}}, \underline{\gamma_{\mathsf{CP}}}, \widehat{\mathrm{State}_{\mathsf{CP}}})$$

where  $\alpha_{\mathsf{CP}}(\Sigma) = \bigsqcup \{\beta_{\mathsf{CP}}(\sigma) \mid \sigma \in \Sigma\}$  and  $\gamma_{\mathsf{CP}}(\widehat{\sigma}) = \{\sigma \mid \beta_{\mathsf{CP}}(\sigma) \sqsubseteq \widehat{\sigma}\}.$ 

One can show that for all labels  $\ell$ 

$$f_{\ell}^{\mathsf{CP}} \supseteq \alpha_{\mathsf{CP}} \circ f_{\ell}^{\mathsf{SS}} \circ \gamma_{\mathsf{CP}}$$
 as well as  $\gamma_{\mathsf{CP}}(\lambda x. \top) = \mathbf{State}$ 

It follows that CP is an upper approximation to the analysis induced from SS and the Galois connection; therefore it is correct.

### Inducing along the Concretisation Function

Given an upper bound operator

$$\nabla_M: M \times M \to M$$

and a Galois connection  $(L, \alpha, \gamma, M)$ .

Define an upper bound operator

$$\nabla_L: L \times L \to L$$

by

$$l_1 \nabla_L l_2 = \gamma(\alpha(l_1) \nabla_M \alpha(l_2))$$

It defines a widening operator if one of the following conditions holds:

- (i) M satisfies the Ascending Chain Condition, or
- (ii)  $(L, \alpha, \gamma, M)$  is a Galois insertion and  $\nabla_M : M \times M \to M$  is a widening.

## Precision of the Induced Widening Operator

**Lemma:** Let  $(L, \alpha, \gamma, M)$  be a Galois insertion such that  $\gamma(\bot_M) = \bot_L$  and let  $\nabla_M : M \times M \to M$  be a widening operator.

Then the widening operator  $\nabla_L : L \times L \to L$  defined by

$$l_1 \nabla_L l_2 = \gamma(\alpha(l_1) \nabla_M \alpha(l_2))$$

satisfies

$$Ifp_{\nabla_L}(f) = \gamma(Ifp_{\nabla_M}(\alpha \circ f \circ \gamma))$$

for all monotone functions  $f: L \to L$ .

## Precision of the Induced Widening Operator

Corollary: Let M be of finite height, let  $(L, \alpha, \gamma, M)$  be a Galois insertion (such that  $\gamma(\bot_M) = \bot_L$ ), and let  $\nabla_M$  equal the least upper bound operator  $\sqcup_M$ .

Then the above lemma shows that  $Ifp_{\nabla_L}(f) = \gamma(Ifp(\alpha \circ f \circ \gamma)).$ 

This means that  $Ifp_{\nabla_L}(f)$  equals the result we would have obtained if we decided to work with  $\alpha \circ f \circ \gamma : M \to M$  instead of the given  $f : L \to L$ ; furthermore the number of iterations needed turn out to be the same. However, for all other operations the increased precision of L is available.