Relazione di laboratorio - Pendolo semplice

Misura del periodo di un pendolo semplice

Federico Cesari

Indice

1	Scopo dell'esperienza	2
2	Strumentazione	2
3	Scelta strumento di misura	2
4	Dipendenza dall'angolo Test Z per g	4 5
5	Dipendenza dalla lunghezza 5.1 Confronto parametri retta	6
6	Dipendenza dalla massa	7
7	Conclusioni	8

1 Scopo dell'esperienza

L'esperienza di laboratorio ha lo scopo di studiare il periodo di un pendolo semplice del quale conosciamo le espressioni del periodo teorico (in condizioni ideali e prive di attrito) al variare della sua lunghezza e dell'angolo di partenza. Verrà quindi misurato il periodo e se ne osserverà la variazione in funzione dell'angolo, della lunghezza e della massa appesa ad esso.

2 Strumentazione

Strumento	Sensibilità		
Cr. Analogico	0.2s		
Cr. Digitale	0.01s		
Fotocellula	0.001s		
Goniometro	1°		
Asta graduata	0.1cm		
Calibro	0.01mm		
Bilancia digitale	1g		

3 Scelta strumento di misura

Al fine di stabilire il migliore strumento di misura per le succesive misurazioni, registro 8 misure del periodo del pendolo prima con un angolo di partenza $\theta = 5^{\circ}$ e poi con $\theta = 30^{\circ}$ utilizzando un cronometro analogico, uno digitale e una fotocellula. Lo strumento che mostrerà discrepanze significative tra il periodo calcolato con $\theta = 5^{\circ}$ e $\theta = 30^{\circ}$ sarà quello utilizzato per i testi successivi. Procedo quindi con le misurazioni dei periodi del pendolo a cui è stata agganciata una sfera di massa $m = (110 \pm 1)g$

sistema valori per C.Analogico.

	C.Analogico	C. Digitale	Fotocellula		C.Analogico	C. Digitale	Fotocellula
	$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$		$T(s) \pm 0.2s$	$T(s) \pm 0.01s$	$T(s) \pm 0.001s$
	1.6	1.63	1.702		1.8	1.65	1.733
$\theta = 5^{\circ}$	1.7	1.65	1.703	$\theta = 30^{\circ}$	1.7	1.67	1.733
	1.5	1.60	1.703		1.6	1.70	1.733
	1.7	1.71	1.703		1.7	1.62	1.733
	1.7	1.71	1.703		1.7	1.70	1.731
	1.7	1.65	1.702		1.8	1.72	1.733
	1.6	1.70	1.703		1.7	1.80	1.733
	1.7	1.70	1.703		1.6	1.69	1.732
$\bar{T}_{5}(s)$	1.65	1.67	1.703	$\bar{T}_{30}(s)$	1.70	1.69	1.715
σ_{T_5}	0.05	0.02	0.000	$\sigma_{T_{30}}$	0.08	0.03	0.0005

Da questi primi set di dati noto subito che la deviazione standard dei periodi misurati dal cronometro digitale è più grande della sensibilità dello strumento, quindi dovrei scegliere la deviazione standard come errore sulla singola misura.

Invece per evidenziare quale dei tre strumenti fornisca periodi significativamente differenti per i due angoli di partenza sottopongo le coppie di periodi medi a un test Z:

Z	$\sigma_{ar{T}_5}$	$\sigma_{ ilde{T}_{30}}$		
$z_{\rm an.}$	0.234	0.234		
$z_{ m dig.}$	0.170	0.132		
$z_{ m fot.}$	22.8	14.2		

Il test mostra che i periodi misurati con i cronometri analogico e digitale con ancgoli di partenza $\vartheta=5^\circ$ e $\vartheta=30^\circ$, risultano essere compatibili con livelli di significatività maggiori dell'80% (specifica bene i valori). Per quanto riguarda i periodi registrati con la fotocellula questi risultano appartenere a popolazioni differenti e posso quindi affermare che lo strumento che fornisce periodi significativamente differenti per i due angoli di partenza sia proprio la fotocellula.

4 Dipendenza dall'angolo

La prima parte dell'esperienza consiste nel verificare la dipendenza di T, periodo del pendolo a cui è stata attaccata una sferetta di legno di massa $m = (10 \pm 1)g$, da ϑ , angolo di partenza. Per prima cosa si procede alla misurazoine della lunghezza del pendolo. Attraverso l'asta graduata misuro prima la distanza da terra alla cima del pendolo (L_C) e poi la distanza da terra al centro della sfera appesa $(L_F)^1$.

Cima	Fondo		
$L_C(\text{cm}) \pm 0.1\text{cm}$	$L_F(\text{cm}) \pm 0.1\text{cm}$		
89.0	16.8		

Ricavo quindi la lunghezza del pendolo:

$$l = L_C + L_F = (72.2 \pm 0.2) \text{cm.}^2$$

A questo punto prendo tre misurazioni del periodo del pendolo, partendo da un angolo di partenza di 5°. Continuo a prendere le misure ogni avanzando di 5° fino ad arrivare a 30°.

	5 °	10°	15°	20 °	25 °	30 °
	$T(s) \pm 0.001s$					
	1.703	1.706	1.710	1.715	1.723	1.730
	1.702	1.706	1.710	1.715	1.723	1.731
	1.701	1.706	1.710	1.715	1.723	1.731
$\bar{\mathbf{T}}(\mathbf{s})$	1.702	1.706	1.710	1.715	1.723	1.731

Figure 1: $T(\sin(\theta/2)^2)$

 $^{^1}$ Avrei potuto misurare il diametro della sfera con il calibro e aggiungere il raggio della sfera successivamente invece che includerlo nelle misura di cima e fondo, tuttavia la sensibilità dell'asta e il fatto che questa non fosse perfettamente perpendicolare ha reso gli errori di L_C e L_F troppo grossolani rendendo così inutile la maggiore cura nella misura del raggio.

²Propago l'errore linearmente ((0.1 + 0.1) cm = 0.2cm) perché essendo solo due misure (per di più effettuate con un asta graduata imperfetta) rischio di sottostimare l'errore sommandolo in quadratura

Periodo in funzione di ϑ (parabolico)

Figure 2: Rappresentazione grafica dei dati sperimentali con errori ridotti.

Calcolo il valore di g:

$$T_0 = 2\pi \sqrt{\frac{l}{g}}$$
 \rightarrow $T_0^2 = 4\pi^2 \frac{l}{g}$
$$g = \frac{4l\pi^2}{T_0^2}$$

poiché sappiamo che

$$T = T_0 + \frac{T_0}{4}y \qquad \rightarrow \qquad y = 4\frac{T - T_0}{T_0} \qquad \rightarrow \qquad y = 4\frac{T}{T_0} - 4$$

$$b = \frac{4}{T_0} \qquad \rightarrow \qquad T_0 = \frac{4}{b}$$

Quindi

$$\mathbf{g} = \frac{\mathbf{l}\pi^2}{4}\mathbf{b}^2$$

Calcolo l'errore associato a g:

$$\sigma_g = \sqrt{\left(\frac{\partial g}{\partial l}\right)^2 \sigma_l^2 + \left(\frac{\partial g}{\partial b}\right)^2 \sigma_b^2}$$

$$\sigma_g = \sqrt{\left(\frac{b^2 \pi^2}{4}\right)^2 \sigma_l^2 + \left(\frac{l b \pi^2}{2}\right)^2 \sigma_b^2}$$

Test Z per g

Ottengo $g = \dots$ Scelgo livello di significatività = 0.05.

5 Dipendenza dalla lunghezza

Figure 3: Rappresentazione grafica dei dati sperimentali con errori.

5.1 Confronto parametri retta

6 Dipendenza dalla massa

7 Conclusioni