Padding Oracle Attacks on CBCmode Encryption with Secret and Random IVs

Arnold K. L. Yau Kenneth G. Paterson Chris J. Mitchell

22 Feb 2005

Overview

- Introduction
 - ISO standards
 - CBC review
- Attacks on ISO padding methods
- Conclusions

ISO CBC-Mode Standard

- ISO/IEC 10116 standardises modes of operation for block ciphers including CBC mode
- New version of standard under development
- Earlier draft (2nd CD)
 - Refers to padding methods in ISO/IEC 9797-1 and ISO/IEC 10118-1
 - Padding oracle attacks paper by Paterson and Yau presented at CT-RSA 2004

ISO CBC-Mode Standard

- Final Committee Draft (FCD)
 - No padding method specified (due to CT-RSA 2004 paper)
 - Same methods assumed
 - Secret and random IVs recommended
- This paper
 - Attacks on FCD
 - New attack strategy or adaptation of old attacks
- Main findings: ISO padding methods are still weak in presence of padding oracle!

CBC-Mode Encryption

- Data D of length L_D
- Padded to P divided blocks P_1, P_2, \ldots, P_q
- Block size n, key K, IV (= C_0)
- Encryption/decryption defined by

$$C_i = e_K(P_i \oplus C_{i-1})$$

$$P_i = d_K(C_i) \oplus C_{i-1}$$

CBC-Mode Decryption

- Bit flipping
 - Flipping a bit in C_{i-1} causes the corresponding bit in P_i to flip as well

Padding Oracles

- Decrypts in CBC-mode submitted ciphertexts under fixed key K
- Indicates whether padding of plaintext is VALID or INVALID
 - w.r.t. specific padding method
- Padding oracle attacks first proposed by Vaudenay (Eurocrypt 2002)
 - Practical implementation of attack on SSL/TLS by Canvel et al. (Crypto 2003)

Two Models of Secret IVs

- How to ensure both parties share the same IV?
- Model 1
 - ECB encryption or decryption of some V
 - Pre-shared list of value
 - Generalised as IV determining information I sent alongside ciphertext
- Model 2
 - No information sent
 - e.g. synchronised PRNG

ISO/IEC 9797-1 Attack Padding

Method 3

 Left-pad data with a block containing data length in binary, right-pad with as few '0's as necessary to complete a block

- Previous attack from CT-RSA 2004 fails
 - Requires IV manipulation

Attack Overview

- Attack in Model 1
- Target ciphertext $C = C_1 \parallel C_2 \parallel ... \parallel C_q$
 - Target block C_k
- Auxiliary ciphertexts C¹, C², ..., C^m
 - IV determining info I¹, I², ..., I^m
- Phase 1: determines lengths of plaintexts corresponding to auxiliary ciphertexts
- Phase 2: decrypts C_k in segments using length info from Phase 1

- Flip a bit in block C_{q-1} , submit to oracle
- VALID means boundary to right
- INVALID means boundary to left
- Hence find L_D using binary search
 - log₂ n oracle queries

- Apply this to auxiliary ciphertexts C^1 , C^2 , ..., C^m to find lengths
 - Lengths L_1, L_2, \ldots, L_m
 - Lengths mod n: $1 \le F_1 < F_2 < ... < F_m \le n-1$

- Now attempt to decrypt ciphertext block C_k from target ciphertext
- Try all values of R in rightmost $n F_m$ positions
- VALID implies bits are all '0's in corresponding positions (exactly once)

Fix R at these positions, continue with C_{m-1} and so on

- Rightmost n- F_1 bits of P_k equals final value of $R \oplus C_{k-1}$
- value of $R \oplus C_{k-1}$ Average complexity $\sum_{j=1}^{m} 2^{F_{j+1} F_j 1}$
 - Depends on spread of auxiliary ciphertext lengths
 - Byte oriented data, n=64, lengths mod n = 8,16,..,56
 - about 900 queries to extract 56 out of 64 bits

ISO/IEC 9797-1 Attack Summary

Limitations

- Attack does not extract leftmost F₁ ≥ 1 bits of plaintext
- Auxiliary ciphertexts have to be at least 3 blocks in length
- Secret and random IV recommendation in ISO/IEC 10116 FCD does not enhance security greatly against padding oracle attacks

ISO/IEC 10118-1 Padding

- Method 3
 - Choose parameter r ≤ n
 - Encode L_D in r bits (base 2 assumed)
 - Right-pad a single '1' bit, followed by as few '0's as possible to push the encoded L_D to the end of a block

ISO/IEC 10118-1 Attack Overview

- Attacks in (tougher) Model 2
 - Adaptations of CT-RSA 2004 attacks
- First attack: targets arbitrary ciphertext block C_k
 - Construct a valid 3 or 4 block ciphertext having C_k as final block
- Second attack: efficiently decrypts last block of any ciphertext
 - Firstly determines L_D efficiently
 - Secondly decrypts remaining bits in last block efficiently
 - Similar to L_D -finding attack on ISO/IEC 9797-1
 - Details in the paper

ISO/IEC 10118-1 First Attack

- Case r < n, we construct and submit 3 block ciphertexts
- Go through all settings of rightmost r+1 bits of R until oracle returns VALID

ISO/IEC 10118-1 First Attack

- Average case complexity of first attack
 - case r < n: 2^{r-1} oracle queries
 - case r = n: 2^r oracle queries
- Second attack determines plaintext efficiently
- Recovers all n bits of a block (except for first block) many orders faster than exhaustive key search in most cases
- Secret and random IV restrictions do not hinder attack significantly

Conclusions (1)

- Secret and random IVs do not prevent padding oracle attacks
- FCD of standard does not specify any padding methods
 - Dangerous if implementer chooses unsafe methods
- OZ-PAD 10...0 also specified in both ISO/IEC 9797-1 and 10118-1
 - Appears to resist padding oracle attacks
 - We recommend use of OZ-PAD
 - Now adopted in latest version of ISO/IEC 10116 (FDIS)

Conclusions (2)

- Attacks easily prevented by proper use of strong integrity checks when appropriate
 - Feasibility constrained in memory or processing power
 - Careful choice of padding method when MAC is not used

