MATH 1410 - Tutorial #9 Solutions

1. Let
$$A = \begin{bmatrix} 1 & -1 & 4 \\ -2 & 3 & -5 \\ 1 & 1 & 9 \end{bmatrix}$$
.

(a) Compute A^{-1} .

We form the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$ and proceed to RREF, as follows:

$$\begin{bmatrix}
1 & -1 & 4 & 1 & 0 & 0 \\
-2 & 3 & -5 & -1 & 0 \\
1 & 1 & 9 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{R_2 + 2R_1 \to R_2}
\xrightarrow{R_3 - R_1 \to R_3}
\begin{bmatrix}
1 & -1 & 4 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & 2 & 5 & -1 & 0 & 1
\end{bmatrix}$$

$$\xrightarrow{R_3 - 2R_2 \to R_3}
\begin{bmatrix}
1 & -1 & 4 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & 0 & -1 & -5 & -2 & 1
\end{bmatrix}$$

$$\xrightarrow{-R_3 \to R_3}
\begin{bmatrix}
1 & -1 & 4 & 1 & 0 & 0 \\
0 & 1 & 3 & 2 & 1 & 0 \\
0 & 0 & -1 & -5 & -2 & 1
\end{bmatrix}$$

$$\xrightarrow{R_1 \to 4R_3 \to R_1}
\xrightarrow{R_2 \to 3R_3 \to R_2}
\begin{bmatrix}
1 & -1 & 0 & -19 & -8 & 4 \\
0 & 1 & 0 & -13 & -5 & 3 \\
0 & 0 & 1 & 5 & 2 & -1
\end{bmatrix}$$

$$\xrightarrow{R_1 + R_2 \to R_1}
\xrightarrow{R_1 + R_2 \to R_1}
\begin{bmatrix}
1 & 0 & 0 & -32 & -13 & 7 \\
0 & 1 & 0 & -13 & -5 & 3 \\
0 & 0 & 1 & 5 & 2 & -1
\end{bmatrix}$$

Since we now have identity matrix on the left, we can conclude that $A^{-1} = \begin{bmatrix} -32 & -13 & 7 \\ -13 & -5 & 3 \\ 5 & 2 & -1 \end{bmatrix}$.

(b) Solve for
$$X$$
, if $AX + \begin{bmatrix} 2 & -3 \\ -1 & -5 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & -3 \\ -2 & 1 \end{bmatrix}$
Since $AX = \begin{bmatrix} 1 & 0 \\ 4 & -3 \\ -2 & 1 \end{bmatrix} - \begin{bmatrix} 2 & -3 \\ -1 & -5 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 3 \\ 5 & 2 \\ -6 & -1 \end{bmatrix}$, we can multiply by A^{-1} (as determined above) to get

$$X = \begin{bmatrix} -32 & -13 & 7 \\ -13 & -5 & 3 \\ 5 & 2 & -1 \end{bmatrix} \begin{bmatrix} -1 & 3 \\ 5 & 2 \\ -6 & -1 \end{bmatrix} = \begin{bmatrix} -75 & -129 \\ -30 & -52 \\ 11 & 20 \end{bmatrix}.$$

2. For each equation given below, explain why A is invertible, and determine an expression (in terms of A) for A^{-1} .

Hint: Recall that A is invertible provided there exists a matrix B such that AB = I, in which case $B = A^{-1}$.

(a) $A^5 = I$

Since $A(A^4) = A^5 = I$, we can conclude that A is invertible, and $A^{-1} = A^4$.

(b) $A^4 = 9I$

We have $\frac{1}{9}A^4 = I$, so $A\left(\frac{1}{9}A^3\right) = \frac{1}{9}A(A^3) = \frac{1}{9}A^4 = I$. Therefore, A is invertible, and $A^{-1} = \frac{1}{9}A^3$.

(c) $A^2 - 5A + 6I = 0$

Notice that $6I = 5A - A^2$, so

$$I = \frac{1}{6}(5A - A^2) = \frac{5}{6}A - \frac{1}{6}A^2 = (\frac{5}{6}I - \frac{1}{6}A)A.$$

Thus, A is invertible, and $A^{-1} = \frac{5}{6}I - \frac{1}{6}A$.

Note: when factoring an expression such as $5A - A^2$, we must be careful. First instinct suggests that we can write $5A - A^2 = A(5 - A)$, but the expression 5 - A is undefined: we cannot subtract a matrix from a number. The correct factorization is $5A - A^2 = A(5I - A)$. Adding the identity matrix ensures that everything is defined, and does not affect the product: A(5I) = 5(AI) = 5A.

3. Show that the matrix $A = \begin{bmatrix} -3 & -3 \\ 10 & 8 \end{bmatrix}$ satisfies the equation $A^2 - 5A + 6I = 0$. Using your result from problem 2(c), determine A^{-1} .

We find $A^2 = \begin{bmatrix} -3 & -3 \\ 10 & 8 \end{bmatrix} \begin{bmatrix} -3 & -3 \\ 10 & 8 \end{bmatrix} = \begin{bmatrix} -21 & -15 \\ 50 & 34 \end{bmatrix}$, so

$$A^{2} - 5A + 6I = \begin{bmatrix} -21 & -15 \\ 50 & 34 \end{bmatrix} + \begin{bmatrix} 15 & 15 \\ -50 & -40 \end{bmatrix} + \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

as required. It follows from 2(c) that

$$A^{-1} = \frac{5}{6}I - \frac{1}{6}A = \begin{bmatrix} 5/6 & 0\\ 0 & 5/6 \end{bmatrix} + \begin{bmatrix} 1/2 & 1/2\\ -5/3 & 4/3 \end{bmatrix} = \begin{bmatrix} 4/3 & 1/2\\ -5/3 & -1/2 \end{bmatrix}.$$

- 4. For each problem below, assume T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .
 - (a) Given vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$ such that $T(\vec{u}) = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$ and $T(\vec{v}) = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$, determine the value of $T(4\vec{u} 3\vec{v})$.

$$T(4\vec{u} - 3\vec{v}) = 4T(\vec{u}) - 3T(\vec{v}) = 4\begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix} - 3\begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 15 \\ -10 \\ 1 \end{bmatrix}.$$

(b) Determine the matrix of T, if $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\0\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\-1\\2\end{bmatrix}$.

It is a general fact (see Theorem 35 on p. 266 of the textbook) that the if A is the matrix of T, then the columns of A are given by the values of T on the standard unit vectors. In this case, $T\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ gives the first column, and $T\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ the second, so

$$A = [T] = \begin{bmatrix} 1 & 4 \\ -2 & -1 \\ 0 & 2 \end{bmatrix}.$$

(c) For fun: find the matrix of the transformation T in part(a), if $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Hint: First determine how to write $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in terms of \vec{u} and \vec{v} .

First, notice that $\begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{3}\vec{u} - \frac{1}{3}\vec{v}$, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{1}{3}\vec{u} + \frac{2}{3}\vec{v}$. Thus,

$$T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = T(\frac{1}{3}\vec{u} - \frac{1}{3}\vec{v}) = \frac{1}{3} \begin{bmatrix} 3\\-1\\4 \end{bmatrix} - \frac{1}{3} \begin{bmatrix} -1\\2\\5 \end{bmatrix} = \begin{bmatrix} 4/3\\-1\\-1/3 \end{bmatrix},$$

and

$$T\left(\begin{bmatrix} 0\\1 \end{bmatrix}\right)T(\frac{1}{3}\vec{u} + \frac{2}{3}\vec{v}) = \frac{1}{3}\begin{bmatrix} 3\\-1\\4 \end{bmatrix} + \frac{2}{3}\begin{bmatrix} -1\\2\\5 \end{bmatrix} = \begin{bmatrix} 1/3\\1\\14/3 \end{bmatrix},$$

so $[T] = \begin{bmatrix} 4/3 & 1/3 \\ -1 & 1 \\ -1/3 & 14/3 \end{bmatrix}$. (Feel free to confirm the values of $T(\vec{u})$ and $T(\vec{v})$ using this matrix.)