Decision Tree - Titanic DataBase

Vinicius Capozzi

Nesse arquivo, veremos um exemplo de como uma decision tree(árvore de desição) consegue identificar padrões com base nas observações da base de treino e assim classificar quais pessoas sobreviveram ou não.

Vamos trabalhar com a base titanic, que contém as seguintes variáveis e características:

```
load("C:/Users/Vinicius/Desktop/MBA/Outros Modelos de Machine Learning/.RData")
titanic %>% head
```

```
##
     Survived Pclass
                                  Age SibSp Parch
                        Sex
                                                     Fare Embarked
                       male 22.00000
## 1
           N
                                                0 7.2500
                                                                  S
                                          1
            Y
                                                                  C
## 2
                   1 female 38.00000
                                                0 71.2833
                                                                  S
## 3
            Y
                   3 female 26.00000
                                          0
                                                0 7.9250
                                                                  S
## 4
                   1 female 35.00000
                                          1
                                                0 53.1000
## 5
                       male 35.00000
                                                0 8.0500
                                                                  S
            N
                   3
                                          0
## 6
                       male 29.69912
                                                0 8.4583
                                                                  Q
```

titanic %>% str

```
## 'data.frame':
                    891 obs. of 8 variables:
   $ Survived: Factor w/ 2 levels "N", "Y": 1 2 2 2 1 1 1 1 2 2 ...
   $ Pclass : int 3 1 3 1 3 3 1 3 3 2 ...
              : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
##
   $ Sex
##
   $ Age
              : num
                    22 38 26 35 35 ...
                    1 1 0 1 0 0 0 3 0 1 ...
   $ SibSp
              : int
                     0 0 0 0 0 0 0 1 2 0 ...
   $ Parch
              : int
   $ Fare
              : num 7.25 71.28 7.92 53.1 8.05 ...
   $ Embarked: Factor w/ 3 levels "C", "Q", "S": 3 1 3 3 3 2 3 3 3 1 ...
```

Com a função summary, vemos algumas estatíscas descritivas da nossa base de dados que podem nos ajudar a entender melhor como as observações estão distribuídas.

```
summary(titanic)
```

```
Survived
                 Pclass
                                 Sex
                                                               SibSp
                                                Age
   N:549
                    :1.000
                                                 : 0.42
                                                                  :0.000
             Min.
                             female:314
                                          Min.
                                                           Min.
   Y:342
             1st Qu.:2.000
                             male :577
                                          1st Qu.:22.00
                                                           1st Qu.:0.000
             Median :3.000
                                          Median :29.70
                                                           Median : 0.000
##
##
             Mean :2.309
                                          Mean
                                                 :29.70
                                                           Mean
                                                                  :0.523
```

##	3rd Qu	.:3.000	3rd Qu.:35.00	3rd Qu.:1.000
##	Max.	:3.000	Max. :80.00	Max. :8.000
##	Parch	Fare	Embarked	
##	Min. :0.0000	Min. : 0.00	C:168	
##	1st Qu.:0.0000	1st Qu.: 7.91	Q: 77	
##	Median :0.0000	Median : 14.45	S:646	
##	Mean :0.3816	Mean : 32.20		
##	3rd Qu.:0.0000	3rd Qu.: 31.00		
##	Max ·6 0000	Max ·512 33		

Em seguida, plotaremos alguns gráficos que irão nos dar uma visão melhor sobre as variáveis da nossa base de dados. As variáveis que achei mais interessante destacar foram Sexo, Idade e o número da Classe do passageiro.

titanic\$Age

Histograma da Classe

Com a análise exploratória realizada, podemos começar a trabalhar com a construção de algoritmo. Primeiramente, separamos a base de dados em teste e treino para que possamos ver se o nosso modelo está conseguindo classificar corretamente as observações. Depois geramos a variável "arvore" que irá conter a nossa árvore de decisão. Com base no primeiro argumento que passamos na função, no caso se a pessoa é uma sobrevivente ou não, o algoritmo irá testar qual das outras variáveis melhor se relaciona com o fato da pessoa ter sobrevivido, como o sexo, a idade, a classe.

Depois, plotamos a árvore par ver o resultado que ela apresentou.


```
p_treino = stats::predict(arvore, treino)
c_treino = base::factor(ifelse(p_treino[,2]>.5, "Y", "N"))
p_teste = stats::predict(arvore, teste)
c_teste = base::factor(ifelse(p_teste[,2]>.5, "Y", "N"))

tab <- table(c_treino, treino$Survived)
acc <- (tab[1,1]+tab[2,2])/nrow(treino)
sprintf('Acurácia na base de treino: %s ', percent(acc))</pre>
```

[1] "Acurácia na base de treino: 85% "

```
tab <- table(c_teste, teste$Survived)
acc <- (tab[1,1]+tab[2,2])/nrow(teste)
sprintf('Acuracia na base de teste: %s ', percent(acc))</pre>
```

[1] "Acurácia na base de teste: 83% "

Com o modelo criado, podemos verificar a acurácia (pnúmero de acertos / número de tentativas) que o modelo possui de diversas maneiras. Iremos assumir que se a observação foi classificada com uma chance maior de 50% de sobreviver a pessoa será um sobrevivente, e caso seja menor de 50% a pessoa não será um sobrevivente.

```
prob = predict(arvore, titanic)
class = prob[,2]>.5
tab <- table(class, titanic$Survived)</pre>
tab
##
## class
            N Y
    FALSE 519 107
     TRUE 30 235
df <- as.data.frame(prob)</pre>
survived <- filter(df, Y>0.5)
not_survived <- filter(df, Y<0.5)</pre>
acc \leftarrow (tab[1,1] + tab[2,2]) / sum(tab)
print(paste0('0 modelo apresentou ', nrow(survived) ,' sobreviventes'))
## [1] "O modelo apresentou 265 sobreviventes"
print(paste0('0 modelo apresentou ', nrow(not_survived) ,' não sobreviventes'))
## [1] "O modelo apresentou 626 não sobreviventes"
print(paste0('A acurácia foi de:', acc))
## [1] "A acurácia foi de:0.846240179573513"
```

Também vemos no histograma abaixo a quantidade de acertos representados pela barra "true" e a quantidade de erros representada pela barra "false"

```
df5 <- as.data.frame(p_teste)
comp <- data.frame(df5)
comp['verif'] <- teste$Survived
comp$Y[comp$Y >= 0.5] <- 'Y'
comp$Y[comp$Y <= 0.5] <- 'N'
comp['acertos'] <- comp$Y == comp$verif
graf6 <- plot_ly(x=comp$acertos, type = 'histogram') %>% layout(title = 'Acurácia do Modelo')
graf6
```

Acurácia do Modelo

Desse modo, concluimos a construção do algoritmo que é capaz de classificar futuras observações, nós dando a probabilidade de sobrevivência de determinado indivíduo com base nas suas características.