Patent claims

5

- 1. A method for decontaminating a clean-room (1; 101), in which the clean-room (1; 101) is supplied with gaseous H_2O_2 and H_2O_2 still present in the clean-room (1; 101) is chemically broken down without catalyst at a later timepoint by supplying at least one gaseous agent which reacts with the H_2O_2 .
- 10 2. The method as claimed in claim 1, characterized in that H_2O_2 residues in a product situated in the clean-room (1; 101) are subsequently broken down on the product in a targeted manner.
- 15 3. The method as claimed in claim 1 or 2, characterized in that the at least one gaseous agent is metered in such a manner that after the chemical breakdown of the H_2O_2 at most 1 ppm of H_2O_2 still remains in the clean-room.
- 20 4. The method as claimed in one of claims 1 to 3, characterized in that the at least one gaseous agent comprises ammonia.
- 5. The method as claimed in claim 4, characterized in that the ammonia is metered as a function of the H_2O_2 in such a manner that the excess of ammonia is at most 500 ppm.
- 6. The method as claimed in one of claims 1 to 5, characterized in that the at least one gaseous agent 30 comprises hydrazine.
 - 7. The method as claimed in one of claims 1 to 6,

characterized in that the at least one gaseous agent comprises ozone.

- 8. A system for decontaminating a clean-room (1; 101) having an H_2O_2 supply device (2; 102) for supplying the clean-room (1; 101) with H_2O_2 , characterized in that it comprises an H_2O_2 breakdown device (10; 111-115) for effecting a chemical breakdown of H_2O_2 without catalyst in the clean-room (1; 101), which comprises means for introducing at least one gaseous agent into the clean-room (1; 101).
- 9. The system as claimed in claim 8, characterized in that the means for introducing at least one gaseous agent are constructed to introduce ammonia, hydrazine or ozone into the clean-room (1; 101).
- 10. The system as claimed in claim 8 or 9, characterized in that the means for introducing at least one gaseous agent 20 into the clean-room (1; 101) have a supply vessel (11) filled with gaseous agent, or a generator (111) for generating gaseous agent, a gas line (13; 113 from the supply vessel (11) or generator (111) to the clean-room (1; 101) and a valve (12, 112) for regulating the amount of the gaseous agent flowing through the gas line (13; 113).
 - 11. The system as claimed in one of claims 8 to 10, characterized in that it has a sensor for measuring the concentration of the gaseous agent (4; 104) in the clean-room (1; 101), the measured values of which serve to control the H_2O_2 breakdown device (10; 111-115).

30

- 12. The system as claimed in one of claims 8 to 11, characterized in that it has a sensor for measuring the $\rm H_2O_2$ concentration (5; 105) in the clean-room (1; 101), the measured values of which serve to control the $\rm H_2O_2$ breakdown device (10; 111-115).
- 13. The system as claimed in one of claims 8 to 12, characterized in that the H_2O_2 breakdown device has means for generating UV light in the clean-room (1; 101).
- 10 14. The system as claimed in one of claims 8 to 13, characterized in that the H_2O_2 breakdown device (111-115) and the H_2O_2 supply device (102) are integrated into a periphery (103) of the clean-room (101).
- 15 15. An H_2O_2 breakdown device (10; 111-115) for a system for decontaminating a clean-room (1; 101) according to one of claims 8 to 14.