ProOfGrids – Workshop – 03.03.2015

Reduction and linearization of MMC models for interaction and system stability studies

Jon Are Suul, Gilbert Bergna Diaz

Outline

- Stability studies of electric power systems
- Introduction to techniques for small-signal stability studies
 - Linearization
 - Use of eigenvalues for assessment of stability and dynamic characteristics
 - Participation factors
 - Eigenvalue parametric sensitivity
- Review of MMC operating characteristics
 - Basics of MMC modelling and control
 - Challenges of small-signal modelling of MMC systems
- Proposed state-space model of three-phase MMC HVDC terminal
 - Required assumptions of control structure and implementation of modulation
 - Main simplified equations and overview of resulting model
 - Model verification by time-domain simulations
 - Eigenvalue analysis of MMC HVDC terminal
- Summary

Stability studies of electric power systems

- General approaches for power system stability analysis
 - Time domain simulations
 - Can include all nonlinearities
 - Applicable for different levels of simplification
 - Suitable for verification of specific transients or operating conditions
 - Requires trial-and-error-based approaches
 - Controller tuning or stability improvement usually based on experience
 - No general tool for system stability analysis is directly applicable
 - Small-signal methods
 - State-space analysis discussed in the following
 - Impedance-based analysis to be presented by M. Amin

Outline

- Stability studies of electric power systems
- Introduction to techniques for small-signal stability studies
 - Linearization
 - Use of eigenvalues for assessment of stability and dynamic characteristics
 - Participation factors
 - Eigenvalue parametric sensitivity
- Review of MMC operating characteristics
 - Basics of MMC modelling and control
 - Challenges of small-signal modelling of MMC systems
- Proposed state-space model of three-phase MMC HVDC terminal
 - Main simplified equations and overview of resulting model
 - Required assumptions of control structure and implementation of modulation
 - Model verification by time-domain simulations
 - Eigenvalue analysis of MMC HVDC terminal
- Summary

State-space modelling of dynamic systems

General expression of system model on state space form

$$\frac{d\mathbf{x}}{dt} = f\left(\mathbf{x}(t), \mathbf{u}(t)\right) \qquad \mathbf{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$$

$$\mathbf{y} = g\left(\mathbf{x}(t), \mathbf{u}(t)\right) \qquad \mathbf{u} = \begin{bmatrix} u_1 & u_2 & \dots & u_m \end{bmatrix}^T$$

$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \dots & y_k \end{bmatrix}^T$$

Typical example

$$\frac{di_{L}}{dt} = \frac{1}{L} \left(-r_{L} \underbrace{i_{L}}_{x_{1}} + \underbrace{v_{converter}}_{f(\mathbf{x}_{2...n}, u_{2...n})} - \underbrace{v_{source}}_{u_{1}} \right) \qquad \underbrace{p_{out}}_{y_{1}} = \underbrace{i_{L}}_{x_{1}} \underbrace{v_{source}}_{u_{1}}$$

$$\underbrace{p_{out}}_{y_1} = \underbrace{i_L \cdot v_{source}}_{x_1} \underbrace{v_{source}}_{u_1}$$

Equilibrium of dynamic systems

- Requirement for state-space stability analysis
 - The system must have a defined equilibrium point for a given input
 - All states must settle to a constant value in steady state

$$f\left(\mathbf{x}_{0},\mathbf{u}_{0}\right) = 0 \quad \longrightarrow \quad \dot{\mathbf{x}} = 0$$

- All state variables have zero derivatives in the equilibrium point
- General methods for stability analysis of dynamic systems cannot be applied if the equilibrium for any of the state variables is a time-dependent trajectory
- Stability analysis cannot be directly applied to electrical systems with sinusoidal voltages and currents
 - Traditional approach for power system analysis: quasi-stationary phasor models
 - Dynamic analysis of balanced three-phase electrical systems: modelling in synchronously rotating dq reference frame

Small signal modelling

- Most physical systems have some degree of nonlinearity
 - Still, stability and response to small-signal perturbations can often be studied by applying linear methods
 - Dynamics around a steady-sate operating point can be expressed by:

$$\mathbf{x} = \mathbf{x}_0 + \Delta \mathbf{x} \qquad \mathbf{u} = \mathbf{u}_0 + \Delta \mathbf{u}$$

- Stability can be studied by analysing the small-signal dynamics
- Linearization by first order Taylor expansion:

$$\frac{d\Delta x_1}{dt} = \frac{df\left(\mathbf{x}, \mathbf{u}\right)}{dx_1} \Delta x_1 + \frac{df\left(\mathbf{x}, \mathbf{u}\right)}{dx_2} \Delta x_2 + \dots + \frac{df\left(\mathbf{x}, \mathbf{u}\right)}{du_1} \Delta u_1 + \frac{df\left(\mathbf{x}, \mathbf{u}\right)}{du_2} \Delta u_2 + \dots$$

• A linearized small-signal system can be expressed on the general form:

$$\Delta \dot{\mathbf{x}} = \mathbf{A} \cdot \Delta \mathbf{x} + \mathbf{B} \cdot \Delta \mathbf{u} \qquad \Delta \mathbf{y} = \mathbf{C} \cdot \Delta \mathbf{x} + \mathbf{D} \cdot \Delta \mathbf{u}$$

Eigenvalues of a dynamic system

 The eigenvalues of a dynamic system are defined as the solution to the characteristic equation

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

- A system with n states will give n eigenvalues as solution
 - Eigenvalues are either single real poles or pairs of complex conjugate poles

$$\lambda_i = \alpha + j\omega$$

- The small-signal stability of the system can be determined from the eigenvalues
 - The system is asymptotically stable if all eigenvalues have negative real values
 - When at least one eigenvalues has a positive real part, the system is unstable
 - If at least one eigenvalues has zero real part, the system is marginally stable and it is not possible to determine the stability of a linearized system from small-signal analysis

Definition of eigenvectors

The eigenvalues of a system satisfy the following equation:

$$\mathbf{A}\mathbf{\Phi}_{i}=\lambda_{i}\mathbf{\Phi}_{i}$$

- Where the column vector Φ_i is the right eigenvector associated with the eigenvalue λ_i
- The corresponding left eigenvector is defined as a row vector by:

$$\mathbf{\Psi}_{i}\mathbf{A}=\lambda_{i}\mathbf{\Psi}_{i}$$

- Any multiple of an eigenvector is also a solution to the equations above
- Usually eigenvectors are scaled so that:

$$\Psi_i \Phi_i = 1$$

Definition of modal matrices

The right and left eigenmatrices and the diagonal eigenvalue matrix are defined by:

$$\mathbf{\Phi} = \begin{bmatrix} \mathbf{\Phi}_1 & \mathbf{\Phi}_2 & \dots & \mathbf{\Phi}_n \end{bmatrix} \qquad \mathbf{\Lambda} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

Thus the following identities can be defined:

$$\mathbf{A}\mathbf{\Phi} = \mathbf{\Phi}\mathbf{\Lambda} \longrightarrow \mathbf{\Phi}^{-1}\mathbf{A}\mathbf{\Phi} = \mathbf{\Lambda}$$

$$\Psi\Phi = I \longrightarrow \Psi A\Phi = \Lambda$$

Dynamic response expressed by eigenvalues

A transformed, decoupled, system on diagonal form can be defined by:

$$\dot{\mathbf{z}} = \Psi \mathbf{A} \mathbf{\Phi} \cdot \mathbf{z} = \mathbf{\Lambda} \cdot \mathbf{z}$$

• Due to the diagonal form, the time response of the mode corresponding to each eigenvalue can be written directly in the time domain as:

$$z_i(t) = z_i(0)e^{\lambda_i t}$$

Transforming the system back into a representation based on the original states:

$$\Delta \mathbf{x}(t) = \mathbf{\Phi} \cdot \mathbf{z}(t)$$

Substituting previous matrix definitions result in:

$$\Delta \mathbf{x}(t) = \sum_{i=1}^{n} \mathbf{\Phi}_{i} \underbrace{\mathbf{\Psi}_{i} \Delta \mathbf{x}(0)}_{z_{i}(0) = c_{i}} \cdot e^{\lambda_{i} \cdot t}$$

Interpretation of eigenvalues

Time response of each state

$$\Delta x_i(t) = \Phi_{i1} c_1 \cdot e^{\lambda_1 \cdot t} + \Phi_{i2} c_2 \cdot e^{\lambda_2 \cdot t} + \dots + \Phi_{in} c_n \cdot e^{\lambda_n \cdot t}$$

$$\lambda_i = \alpha + j\omega$$

Single real pole results in:

$$\lambda_i = \alpha \longrightarrow f(t) = ke^{\alpha t}$$

• Complex conjugate poles result in:

$$\lambda_i = \alpha + j\omega \longrightarrow f(t) = ke^{\alpha t} \sin(\omega t + \varphi)$$

Example of eigenvalue analysis

- From paper published at PEMC 2014
 - Results presented at Workshop in February 2014
- Voltage source converter with inductor in dc-link
 - State space model with 17 states
 - Nonlinear system but the small-signal dynamics are accurately captured by a linearized model
 - Poorly damped oscillations in dc voltage and currents
 - Corresponding complex conjugate pair of eigenvalues

$\lambda_1 = -500$	$\lambda_9 = -475$
$\lambda_2 = -50$	$\lambda_{10,11} = -13.3 \pm 214$
$\lambda_{3,4} = -4436 \pm 21$	$\lambda_{12,13} = -12.4 \pm 37,6$
$\lambda_{5,6} = -274 \pm 3048$	$\lambda_{14,15} = -20 \pm 0.80$
$\lambda_{7,8} = -307 \pm 2397$	$\lambda_{16,17} = -11.2 \pm 0.10$

Participation factors

The participation factor matrix is defined as:

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \dots & \dots & \dots & \dots \end{bmatrix} = \begin{bmatrix} \phi_{11} \Psi_{11} & \phi_{12} \Psi_{21} & \dots & \phi_{1n} \Psi_{n1} \\ \phi_{21} \Psi_{12} & \phi_{22} \Psi_{22} & \dots & \phi_{2n} \Psi_{n2} \\ \dots & \dots & \dots & \dots \\ \phi_{n1} \Psi_{1n} & \phi_{n2} \Psi_{2n} & \dots & \phi_{nn} \Psi_{nn} \end{bmatrix}$$

- Participation factor: $p_{ki} = \Phi_{ki} \Psi_{ik}$
 - A measure of the relative participation of state *k* in the mode *i* and vice versa
- Can be used to identify what states are mainly contributing to a poorly damped mode
 - Will indicate what states it can be suitable to act on with damping controllers
- Suitable approach for identifying properties of large complex systems

Example of participation factor analysis

- The same system as used for eigenvalue example
- Participation factor analysis for the poorly damped mode
- Only two states participating in the mode
 - Capacitor voltage v_{dc}
 - DC inductor current i_{dc}
- Damping of the oscillations can be implemented by using either of the two state variables as feedback signal

Eigenvalue parametric sensitivity

 The parametric sensitivity expresses the derivative of an eigenvalue with respect to a specific parameter

$$\alpha_{i,k} = \frac{d\lambda_i}{d\rho_k} = \frac{\mathbf{\Phi}_i^T \frac{\partial \mathbf{A}}{\partial \rho_k} \mathbf{\Psi}_i}{\mathbf{\Phi}_i^T \mathbf{\Psi}_i}$$

- Considering *k* changeable parameter, the eigenvalue parametric sensitivities defines an n by k matrix with complex elements
 - The real part of the elements express how much an eigenvalue moves along the real axis for a change of the corresponding parameter
 - The imaginary part of the elements express how much the eigenvalue moves in the imaginary axis for a change of the corresponding parameter
- Suitable tool for identifying what parameters can be most effectively used to improve the dynamic response of a system

Example of parametric sensitivity analysis

- The same example as in previous slides
- Parametric sensitivity analysis for the identified poorly damped mode
 - Gain of damping term is the most suitable way to damp the oscillation
 - The sensitivity to the damping term gives the tangent to the pole trajectory

Applications of eigenvalue analysis for power systems

- Suitable for analyzing small-signal stability and dynamics in large and complex systems
 - Impacts of parameter variations on dynamic characteristics can be easily studied
 - Oscillation modes and stability problems that are difficult to interpret and prevent by experience-based and manual approaches can be identified and analyzed
 - Tools for linear system analysis can be applied to prevent instability and improve dynamic performance
 - Participation factor analysis can be used to identify the states involved in particular oscillation modes
 - Can be used to design damping controllers
 - Parameter sensitivity analysis can be used to identify most suitable controller gains to modify for improving dynamic response
 - Optimization methods can be applied to ensure small-signal stability and improve the dynamic response of a system
- Long application history for rotor angle stability analysis in large power systems
 - Not many systematic application studies for power electronic systems

