

Data Analytics with Hive

11.07.2021

Ronak Kumar 8740799

Introduction

Apache Hive is a data warehouse management tool for processing structured data stored in Hadoop. Hive provides a query language HiveQL (similar to SQL) that enables querying HDFS data easily for beginners and prevents the user's need to write MapReduce programs. It is usually used by analysts and non-programmers to efficiently extract Big Data stored in the HDFS where normal processing tools like Excel fail.

The purpose of this assignment is to provide data driven advice to the stakeholders, that will enable them to make a sound investment decision using the cars.csv dataset on Kaggle. The dataset has the classified records for several Eastern European countries over several years. This has been chosen since the veracity of the dataset was established before.

Data Cleaning

The dataset roughly involves 3.5 million rows and contains 16 columns which are mentioned below:-

- maker
- model
- mileage
- manufacture_year
- engine_displacement
- engine_power
- body_type
- color_slug
- stk_year
- transmission
- door count
- seat count
- fuel type
- date created
- date_last_seen
- price_eur

For analysis purposes, most of the columns weren't relevant as they either contain a lot of NULL values or wouldn't help in providing data driven advice to the stakeholders.

Columns like door_count, seat_cound, fuel_type, transmission, color_slug, stk_year, body_type, engine_power and engine_displacement shouldn't affect the sales of the car and so weren't taken into consideration. About 94% of the records in the color_slug field were NULL's.

After completely researching the dataset, the columns chosen were <u>maker</u>, <u>model</u>, <u>mileage</u>, <u>manufacture year</u>, <u>date created</u>, <u>date last seen</u>, <u>price eur</u>. The dataset was converted into multiple tables for efficiently answering our business question. The below diagram showcases the additional tables being created along with the fields in each table:-

Table	Fields
cars_clean	maker, model, mileage, manufacture_year, date_created, date_last_seen, price_eur
cars_with_days_listed	maker, model, date_created, date_last_seen, days_listed
cars_with_age	maker, model, manufacture_year, date_last_seen, age
cars_with_mileage	maker, model, mileage, range
cars_sold	maker, model
cars_sold_price	maker, model, price_eur, range, days_listed

Firstly, the dataset was cleaned and converted to cars_clean table by allowing only those records which had maker, model and a manufacture_year. This reduced the dataset size to about 2.4 million records.

The field days_listed was calculated by taking the difference of column date_last_seen and date_created indicating how many days the car was listed in the agency.

The field age was computed by taking the YEAR(date_last_seen) and subtracting manufacture_year from it. This resulted in cars_with_age table showing the age of the car when it was sold.

Based on initial analysis and sample queries mentioned, a mileage of about 250000 was considered as a sweet spot. About 2 million records out of 2.4 million had mileage less than 250000, hence the table cars_with_mileage was constructed. The range was computed by performing int(mileage/25000) which was helpful in the analysis process later and in grouping cars within a particular mileage range.

From the analysis process mentioned in the later sections, it was found that cars usually get sold max in 60 days of listing. So, the cars_sold table was created by taking the value of days_listed column <= 60.

Finally, cars_sold_price was created to identify for which price, the majority of cars sold. This was helpful later in the analysis process. The range represents int(price_eur/1000.00) to allow grouping of cars within a particular price range.

Queries Used

CREATE TABLE IF NOT EXISTS cars_clean as select maker, model, mileage, manufacture_year, date_created, date_last_seen, price_eur from cars where maker != " and model != " and manufacture_year != ";

CREATE TABLE IF NOT EXISTS cars_with_days_listed as select maker, model, date_created, date_last_seen, datediff(to_date(date_last_seen), to_date(date_created)) as days_listed from cars_clean;

CREATE TABLE IF NOT EXISTS cars_with_age as select maker, model, manufacture_year, date_last_seen, year(date_last_seen) - manufacture_year as age from cars_clean where manufacture_year is not null;

CREATE TABLE IF NOT EXISTS cars_with_mileage as select maker, model, mileage, int(mileage/25000) as range from cars_clean where mileage is not null and mileage <= 250000;

CREATE TABLE IF NOT EXISTS cars_sold as select maker, model from cars_with_days_listed where days_listed <= 60;

CREATE TABLE IF NOT EXISTS cars_sold_price as select maker, model, price_eur, int(price_eur/1000.00) as range, datediff(to_date(date_last_seen), to_date(date_created) as days_listed from cars_clean where datediff(to_date(date_last_seen), to_date(date_created)) <= 60;

Output

Data Analysis

Based upon the tables created above, various DML commands like SELECT were tested to develop inferences on the dataset.

Queries

select days_listed, count(*) as cnt from cars_with_days_listed group by days_listed order by days_listed;

The query returns days_listed and count of records for particular days_listed value and sorts the results in ascending order. So, the output of this query has days_listed from 0 -> 180 and the corresponding count. A line chart was created in Excel based upon the results got

From the chart, it can be seen that from Day 0 to Day 60, the number of cars being sold decreased which is obvious since more recent the car ad is, higher is the probability of getting it sold. Although, from Day 61, the number of cars rose rapidly which can be interpreted that unsold cars were again listed on the agency. Also, Day 40 had the least number of cars being sold.

Therefore from the above analysis, we consider that 60 days was a good time to sell a car.

Output

select maker, count(*) as csg_count from cars_sold group by maker order by csg_count desc limit 25;

The query returns the top 25 car makers and number of cars they sold (i.e in less than 60 days). A column chart was created in Excel based upon the results got

From the chart, it can be seen Skoda significantly tops the list with the biggest market share in the cars industry. Porsche stands last which can be understood since it manufactures luxurious cars only. These results can be compared with another query mentioned below

select maker, count(*) as cwdl_count from cars_with_days_listed group by maker order by cwdl_count desc limit 25;

The query returns the top 25 car makers and the number of cars they advertised. A column chart was created in Excel based upon the results got

From the previous chart and this, Skoda was still the most advertised car and was also actually sold well. However, Volkswagen was also advertised a lot, however the car brand wasn't able to sell as many cars. On the contrary, for Mercedes-Benz, even though the cars were being advertised less but its sales were good compared with other brands.

Outputs

select maker, model, count(*) as csg_count from cars_sold group by maker, model order by csg_count desc limit 10;

The query returns the top 10 popular cars being sold. A pie chart was created in Excel based upon the results got

From the chart, it can be seen that cars from Skoda like Octavia, Fabia were sold the most followed by Ford's Focus and so on.

Output

select range, count(range) from cars_with_mileage group by range;

The query returns the range and the number of cars that fall into it. Range was calculated previously by calculating int(mileage/25000). A line chart was created in Excel based upon the results obtained. Ex:- If the mileage of the car is 70000, then range would be 2.

From the chart, it can be seen that cars with mileage less than 25000 or range 0 significantly had higher chances of selling with about 6.35 lakh selling in this case. After crossing the 25000 mark, the number of cars being sold reduced to just 2 lakh which remains almost even until range = 6. Then, it dropped until the mileage reached the threshold value of 250000.

select range, count(*) from cars_sold_price group by range;

The query returns the range of price and the number of cars being sold. Range here is calculated by calculating int(price_eur/1000.00).

However, since the price_eur column had few values which were impossible, another query was run to find the price values of most cars being sold. The threshold value for car price was set as 5000 * 1000.00 = 5 million dollars.

Output

select range, count(*) as cnt from cars_sold_price group by range having range <= 5000 order by cnt desc limit 10:

A scatter plot was created in Excel based upon the results obtained.

It was clear that the majority of the cars that were sold were in the price range of \$[1000, 2000). So, it can be considered that cars within this price range should be preferred.

Output

The column manufacture_year has values like years 327, 486, 1500 etc which was impossible as a car can't be that much old. Therefore, the below query was run to identify how many cars had age <= 25.

select count(*) from cars_with_age where age <= 25;</pre>

The query resulted in a value of 2.13 million which means the majority of the cars in the dataset were less than 25 years old. Hence, we can consider that to be on the agency, the car should not be more than 25 years old.

Output

Suggestions for the stakeholders

- Most popular cars having good selling/advertisement ratio comes from makers like Skoda, Ford, Audi, Mercedes Benz, Volkswagen
- Car age matters and shouldn't be more than 25 years old
- Preferably, newer cars with mileage less than 25000 typically sell way faster than older cars
- Normally, cars should be sold within 60 days of its listing period
- Top cars that sell are Skoda Octavia/Fabia, Ford Focus, Opel Astra etc.
- Car price should be greater than equal to 1000\$ and less than 2000\$ for its better demand in the market.

Conclusion

To recapitulate, the dataset of 16 columns and 4 million records was filtered down to about 7 columns and 2.4 million records after taking into account the important columns like maker, model and manufacture_year. Some attributes like days_listed, age, mileage, price_eur played a significant role and after analyzing the additional tables, the above mentioned inferences were suggested which would help answer the business question.