1. (I) Метод обратной функции.

Необходимо найти число $\xi = \varphi(\alpha)$, где $\varphi(\alpha)$ не прерывная монотонная на интервале (0, 1) функция, то есть $0 \le \alpha \le 1$.

Для ξ задана функция плотности распределения f(x), $a \le x \le b$. Необходимо найти функцию распределения F(x) и от неё найти $F^{-1}(\alpha)$, через которую выразить ξ . Так как $\xi = F^{-1}(\alpha)$, то $\alpha = F(x)$, значит $x = \xi$ и, если выразить x из равенства $\alpha = F(x)$, то получим $\xi = x = F^{-1}(\alpha)$.

Таким образом:

- 1. Интегрируем f(x) и получаем F(x).
- 2. Выражаем x через $\alpha = F(x)$.
- 3. Подставляем α в уравнение $x = F^{-1}(\alpha)$ и получаем значение ξ .
 - 2. (I) Как по выборке построить эмпирическую функцию плотности распределения?

Пусть дана выборка Х длиной п. Разделим п на К интервалов.

Пройдём по интервалам и посчитаем число элементов X, попавших в интервалы.

Разделим получившиеся частоты на длину последовательности п.

Полученные значения и есть эмпирическая функция плотности распределения.

3. (I) Как по выборке построить эмпирическую функцию распределения? Эмпирической функцией распределения по построенной выборке $X=(X_1,\,X_2,\,...,\,X_n)$ объёма n, называется случайная функция

 F_n : $R \times \Omega -> [0, 1]$ при каждом у принадлежащем R равна

$$F(y) = \frac{1}{n} \sum_{i=1}^n I(X_i < y)$$
, где $I(X_i < y) = \begin{cases} 1, X_i < y \\ 0, \text{иначе} \end{cases}$ то есть функция I это функция,

которая проверяет, попадает X_i в нужный интервал или нет.

Пример.

Дана выборка
$$X = (0; 2; 1; 2.6; 3.1; 4.6; 1; 4.6; 6; 2.6; 6; 7; 9; 9; 2.6).$$

Упорядочим её (0; 1; 1; 2; 2.6; 2.6; 3.1; 4.6; 4.6; 6; 6; 7; 9; 9).

$$n = 14$$

Используя функцию F(у) получим:

у	1	2	3	4	5	6	7	8	9	10
n	1	3	6	7	9	9	11	12	12	14
n _i /n	0,0714	0,214	0,428	0,5	0,643	0,643	0,785	0,857	0,857	1

Нижняя строка таблицы это высоты на графике функции.

4. (**II**) Методом обратной функции найти моделирующее выражение для случайной величины, заданной плотностью:

a)
$$f_{\xi}(x) = 3 \cdot x^2$$
 при $x \in [0;1];$

$$\int_{0}^{1} 3x^{2} dx = x^{3} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\alpha = \chi^3 \Longrightarrow \chi = \sqrt[3]{\alpha}, \alpha \in [0; 1]$$

б)
$$f_{\xi}(x) = \frac{3}{2} \cdot x^{\frac{1}{2}}$$
 при $x \in [0;1];$

$$\int_{0}^{1} \frac{3}{2} x^{\frac{1}{2}} dx = x^{\frac{3}{2}} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$\alpha = x^{\frac{3}{2}} => x = \sqrt[3]{\alpha^2}, \alpha \in [0; 1]$$

в)
$$f_{\xi}(x) = \frac{\pi}{2} \cdot \cos\left(\frac{\pi}{2} \cdot x\right)$$
 при $x \in [0;1];$

$$\int_{0}^{1} \frac{\pi}{2} \cos\left(\frac{\pi}{2}x\right) dx = \frac{\pi}{2} = u, du = \frac{\pi}{2} dx = \int_{0}^{\frac{\pi}{2}} \cos(u) du = \sin(u) \left[\frac{\pi}{2} = \frac{\pi}{2}\right] dx$$

$$\sin(\frac{\pi}{2}x) \, \frac{1}{0}$$

$$\alpha = \sin\left(\frac{\pi}{2}x\right) = > \frac{\pi}{2}x = 2\pi n + \arcsin(\alpha) \frac{\pi}{2}x = 2\pi n - \arcsin(\alpha) + \pi = >$$

делим на
$$\frac{\pi}{2}$$
 => $\begin{cases} x_1 = \frac{2(2\pi n + \arcsin(\alpha))}{\pi} \\ x_2 = \frac{2(2\pi n - \arcsin(\alpha) + \pi)}{\pi} \end{cases}$ n — любое целое число

$$f_{\xi}(x) = \frac{1}{\ln 2 \cdot (1+x)}$$
 при $x \in [0;1]$.

$$\int_{0}^{1} \frac{1}{\ln 2(1+x)} dx = > \ln 2(1+x) = u, du = \ln 2 dx, \frac{du}{\ln 2} = > \frac{1}{\ln 2} \int_{\ln 2}^{2\ln 2} \frac{1}{u} du = \frac{\ln u}{\ln 2} \left[\frac{2\ln 2}{\ln 2} \right]$$
$$= \frac{\ln(\ln 2(1+x))}{\ln 2} = \frac{\ln(\ln 2 + x \ln 2)}{\ln 2}$$

$$\alpha = \frac{\ln(\ln 2 + x \ln 2)}{\ln 2} = \alpha \ln 2 = \ln(\ln 2 + x \ln 2)) = e^{\alpha \ln 2}$$
$$= \ln 2 + x \ln 2 = \frac{e^{\alpha \ln 2} - \ln 2}{\ln 2} = x$$