PROBLEMAS RESUELTOS DE PROCESOS ESTOCÁSTICOS I SEMESTRE 2013-II

POSGRADO EN CIENCIAS MATEMÁTICAS UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

JOSÉ ADRIÁN ORDÓEZ GÓMEZ

Problema 1. Sean $(X_n)_{n\in\mathbb{N}}$ un proceso estocástico con valores reales y $A\subset\mathbb{R}$ un boreliano. Pruebe que si

$$T_0 = 0$$
 y $T_{n+1} = \min\{k > T_n : X_k \in A\}$

entonces T_n es un tiempo de paro para toda n y $T_n \to \infty$ puntualmente conforme $n \to \infty$.

Categorías: Tiempos de paro

P.D. T_n es tiempo de paro.

Demostración

Por inducción.

Caso n=1

Sea $k \in \mathbb{N}$

$${T_1 = k} = {X_0 \notin A, X_1 \notin A, ..., X_k \in A,}$$

Como $\{X_i \notin A\} \in \mathscr{F}_i \ \forall i \in \{1,2,...,k-1\}$, $\{X_k \in A\} \in \mathscr{F}_k \ y \ \mathscr{F}_i \subseteq \mathscr{F}_k$ para todo $i \in \{1,2,...,k-1\}$ ya que \mathscr{F}_n es una filtración $\Rightarrow \{T_1 = k\} \in \mathscr{F}_k \Rightarrow \forall k \in \mathbb{N}$ $\{T_1 = k\} \in \mathscr{F}_k$

Por lo tanto T_1 es un tiempo de paro.

Supongamos caso n=m. T_m es un tiempo de paro, es decir:

 $\{T_m = k\} \in \mathscr{F}_k \ \forall k \in \mathbb{N}.$

P.D Caso n = m + 1

Sea $k \in \mathbb{N}$

$$\{T_{m+1} = k\} = \bigcup_{i=m}^{k-1} \{T_m = i, X_{i+1} \notin A, X_{i+1} \notin A, ..., X_k \in A, \}$$

Por hipotesis de inducción $\{T_m=i\}\in\mathscr{F}_i$ para $i\in\{m,...,k-1\}$. Además $\{X_i\notin A\}\in\mathscr{F}_i\ \forall i\in\{m+1,m+2,...,k-1\},\ \{X_k\in A\}\in\mathscr{F}_k\ y\ \mathscr{F}_i\subseteq\mathscr{F}_k\ \forall i\in\{m,m+1,...,k-1\}$ ya que \mathscr{F}_n es una filtración $\Rightarrow\{T_m=k\}\in\mathscr{F}_m\ \Rightarrow \forall k\in\mathbb{N}\ \{T_m=k\}\in\mathscr{F}_k$.

Por lo tanto T_m es un tiempo de paro.

Por lo tanto T_n es un tiempo de paro para toda $n \in \mathbb{N}$.

Ahora veamos que por la definición del tiempo de paro $T_n \geq n$, ya que para que suceda T_n al menos el proceso tuvo que haber estado n veces en el conjunto A.

$$\Rightarrow \lim_{n\to\infty} T_n \ge \lim_{n\to\infty} n = \infty$$

$$\Rightarrow \lim_{n\to\infty} T_n = \infty.$$

Problema 2 (Lo que siempre tiene una posibilidad razonable de suceder lo hará; (casi seguramente)— y pronto). Suponga que T es un tiempo de paro tal que para algún $N \in \mathbb{N}$ y $\varepsilon > 0$ se tiene que para toda $n \in \mathbb{N}$:

$$\mathbb{P}(T \leq N + n | \mathscr{F}_n) > \varepsilon$$
 casi seguramente

Al verificar la desomposición

$$\mathbb{P}(T > kN) = \mathbb{P}(T > kN, T > (k-1)N),$$

pruebe por inducción que para cada k = 1, 2, ...:

$$\mathbb{P}(T > kN) \le (1 - \varepsilon)^k.$$

Pruebe que $\mathbb{E}(T) < \infty$.

Categorías: Tiempos de paro.

Demostración

Para verificar la descomposición notemos que:

$${T > kN} = {T > kN, T > (k-1)N},$$

Esto es debido a que si el tiempo de paro T no ha sucedido en un tiempo mayor a kN tampoo ha sucedido en un tiempo mayor a (k-1)N.

Por lo tanto $\mathbb{P}(T > kN) = \mathbb{P}(T > kN, T > (k-1)N)$.

Ahora verificaremos la igualdad:

$$\mathbb{P}(T > kN) \le (1 - \varepsilon)^k.$$

Para k = 1 tenemos que:

$$\mathbb{P}(T \leq N | \mathscr{F}_0) > \varepsilon$$

$$\mathbb{P}(T > N | \mathscr{F}_0) \leq 1 - \varepsilon$$

$$\mathbb{E}(\mathbf{1}_{T > N} | \mathscr{F}_0) \leq 1 - \varepsilon$$

$$\mathbb{E}(\mathbb{E}(\mathbf{1}_{T > N} | \mathscr{F}_0)) \leq \mathbb{E}(1 - \varepsilon)$$

$$\mathbb{P}(T > N) \leq 1 - \varepsilon.$$

Ahora supongamos que se cumple para k = n:

$$\mathbb{P}(T > kN) \le (1 - \varepsilon)^k.$$

P.D.
$$\mathbb{P}(T > (k+1)N) \le (1-\varepsilon)^{k+1}$$
.

Utilizando la descomposición tenemos que:

$$\mathbb{P}(T > (k+1)N) = \mathbb{P}(T > (k+1)N, T > kN)$$

$$= \mathbb{E}(\mathbf{1}_{T > (k+1)N} \mathbf{1}_{T > kN})$$

$$= \mathbb{E}(\mathbb{E}(\mathbf{1}_{T > (k+1)N} \mathbf{1}_{T > kN} \mid \mathscr{F}_{Nk}))$$

Ya que $\mathbf{1}_{T>kN}$ es \mathscr{F}_kN -medible:

$$= \mathbb{E} \big(\mathbf{1}_{T > kN} \mathbb{E} \big(\mathbf{1}_{T > (k+1)N} \mid \mathscr{F}_{Nk} \big) \big)$$

Como $\mathbb{P}(T_{(k+1)N} > (k+1)N | \mathscr{F}_{Nk}) > 1 - \varepsilon$:

$$\leq \mathbb{E}(\mathbf{1}_{T>kN}(1-\varepsilon))$$

Utilizando hipotesis de inducción:

$$\leq (1-\varepsilon)^k (1-\varepsilon) = (1-\varepsilon)^{k+1}$$

Por lo tanto $\mathbb{P}(T > kN) \leq (1 - \varepsilon)^k$ para toda $k \in \mathbb{N}$.

P.D. $\mathbb{E}(T) < \infty$

Sabemos que $\mathbb{E}(T) = \sum_{k=1}^{\infty} \mathbb{P}(T \geq k)$. Por lo anterior sabemos que $\mathbb{P}(T > kN) \leq (1-\varepsilon)^k$, entonces para cada $m \in \mathbb{N}$ podemos encontrar un k tal que $Nk \leq m \leq (k+1)N$. De donde $\mathbb{P}(T \geq M) \leq \mathbb{P}(T \geq kN)$ para $Nk \leq m \leq (k+1)N$, entonces $\sum_{m=kN}^{(k+1)N} \mathbb{P}(T \geq m) \leq N\mathbb{P}(T \geq kN)$. Sustituyendo tenemos que:

$$\mathbb{E}(T) = \sum_{m=1}^{\infty} \mathbb{P}(T \ge m) \le N \sum_{k=1}^{\infty} \mathbb{P}(T \ge kN) \le N \sum_{k=1}^{\infty} \le (1 - \varepsilon)^k = N/\epsilon < \infty.$$

Por lo tanto $\mathbb{E}(T) < \infty$.

Problema 3. Tomado de Mathematical Tripos, Part III, Paper 33, 2012, http://www.maths.cam.ac.uk/postgrad/mathiii/pastpapers/

Sean $(X_i, i \in \mathbb{N})$ variables aleatorias independientes con $\mathbb{P}(X_i = \pm 1) = 1/2$. Sean $S_0 = 0$ y $S_n = \sum_{i=1}^n X_i$.

(1) Sea $T_1 = \min\{n \geq 0 : S_n = 1\}$. Explique por qué T_1 es un tiempo de paro y calcule su esperanza. Demostración Por el ejercicio 1 si definimos a $A = 1, T_1$ concuerda con la definción del ejercicio 1. Por lo tanto T_1 es tiempo de paro.

Para el cálculo de la esperanza notemos que $T_1 \wedge T_{-n}$ es un tiempo de paro tal que $T_1 \wedge T_{-n} \to T_1$. Ademas utilizando el problema de la ruina sabemos que $\mathbb{E}(T_1 \wedge T_{-n}) = n$. Notemos ahora que la sucesion de variables aleatorias $T_1 \wedge T_{-n}$ es monótona, debido a que $T_1 \wedge T_{-n} = \min\{k \geq 1 : S_k = 1 \text{ ó } S_k = -n\}$ y $\{k \geq 1 : S_k = 1 \text{ ó } S_k = -(n+1)\} \subseteq \{k \geq 1 : S_k = 1 \text{ ó } S_k = -n\}$, entonces $T_1 \wedge T_{-n+1} = \min\{k \geq 1 : S_k = 1 \text{ ó } S_k = -(n+1)\} \geq \min\{k \geq 1 : S_k = 1 \text{ ó } S_k = -n\}$ $T_1 \wedge T_{-n}$. Por lo tanto utilizando el teorema de convergencia monótona tenemos que:

$$\mathbb{E}(T_1) = \lim_{n \to \infty} \mathbb{E}(T_1 \wedge T_{-n}) = \lim_{n \to \infty} n = \infty$$

Por lo tanto $\mathbb{E}(T_1) = \infty$

(2) Mediante el inciso anterior, construya una martingala que converge casi seguramente pero no lo hace en L_1 .

La martingala que proponemos es $S_{T_1 \wedge n}$ que converge a S_{T_1} , hay que demostrar que efectivamente es martingala:

- (a) $S_{T_1 \wedge n}$ es adaptada debido a que $S_{T_1 \wedge n} = \sum_{i=1}^n \mathbf{1}_{T \geq i} X_i$, sabemos que X_i son \mathscr{F}_i -medibles y $\mathbf{1}_{T \geq i}$ es \mathscr{F}_{i-1} -medibles para toda $i \in \{1, 2, ..., n\}$. Por lo tanto $S_{T_1 \wedge n}$ es \mathscr{F}_n -medible.
- (b) $S_{T_1 \wedge n} \in L_1$ ya que es la suma finita de variables aleatorias que pertenecen a L_1 .
- (c) La propiedad de martingala:

$$\mathbb{E}(S_{T_1 \wedge n} \mid \mathscr{F}_{n-1}) = \mathbb{E}\left(\sum_{i=1}^{n} \mathbf{1}_{T_1 \geq i} X_i \mid \mathscr{F}_{n-1}\right)$$

$$= \sum_{i=1}^{n} \mathbb{E}(\mathbf{1}_{T_1 \geq i} X_i \mid \mathscr{F}_{n-1})$$

$$= \sum_{i=1}^{n-1} \mathbb{E}(\mathbf{1}_{T_1 \geq i} X_i \mid \mathscr{F}_{n-1}) + \mathbb{E}(\mathbf{1}_{T_1 \geq n} X_n \mid \mathscr{F}_{n-1})$$

$$= \sum_{i=1}^{n-1} \mathbb{E}(\mathbf{1}_{T_1 \geq i} X_i \mid \mathscr{F}_{n-1}) + \mathbb{E}(\mathbf{1}_{T_1 > n-1} X_n \mid \mathscr{F}_{n-1})$$

Como $X_i, \mathbf{1}_{T_1 \geq i}$ son \mathscr{F}_{n-1} -medibles y $\mathbf{1}_{T_1 > n-1}$ es \mathscr{F}_{n-1} -medibles:

$$= \sum_{i=1}^{n-1} \mathbf{1}_{T_1 \ge i} X_i + \mathbf{1}_{T_1 > n-1} \mathbb{E}(X_n \mid \mathscr{F}_{n-1})$$

ya que X_n es independiente de \mathscr{F}_{n-1} :

$$= \sum_{i=1}^{n-1} \mathbf{1}_{T_1 \ge i} X_i + \mathbf{1}_{T_1 > n-1} \mathbb{E}(X_n)$$

$$= \sum_{i=1}^{n-1} \mathbf{1}_{T_1 \ge i} X_i$$

$$= S_{T_1 \land (n-1)}$$

Por lo tanto $\mathbb{E}(S_{T_1 \wedge n} \mid \mathscr{F}_{n-1}) = S_{T_1 \wedge (n-1)}$.

Ahora como $T_1 \wedge n$ es un tiempo de paro acotado y S_n es una martingala por el teorema de muestreo opcional de Doob tenemos que:

$$\mathbb{E}(S_{T_1 \wedge n}) = \mathbb{E}(S_1) = 0.$$

Por otro lado tenemos que $\mathbb{E}(S_{T_1}) = 1$.

Por lo tanto $S_{T_1 \wedge n}$ converge a S_{T_1} pero $\mathbb{E}(S_{T_1 \wedge n})$ no converge a $\mathbb{E}(S_{T_1})$.

(3) Sea M_n la martingala obtenida al detener a -S en T_1 . Utilice la solución al Problema de la Ruina para probar que $\mathbb{P}(\max_n M_n \geq M) = 1/(M+1)$ para todo $M \geq 1$. Concluya que $\mathbb{E}(\max_m M_m) = \infty$ y que por lo tanto $\mathbb{E}(\max_{m \leq n} M_n) \to \infty$ conforme $n \to \infty$. Finalmente, deduzca que no puede haber una desigualdad tipo Doob cuando p = 1.

Demostración

Sea $M \ge 1$ entonces

$$\mathbb{P}(\max_n M_n \ge M) = 1 - \mathbb{P}(\max_n M_n < M)$$

Pero $\{max_n M_n < M\} = \{T_1 < T_{-M}\}:$

$$= 1 - \mathbb{P}(T_1 < T_{-M})$$

Utilizando la solución del problema de la ruina:

$$= 1 - \frac{M}{M+1}$$

= 1/(M+1).

Calculando la esperanza tenemos que:

$$\mathbb{E}\left(\max_{m} M_{m}\right) = \sum_{M=1}^{\infty} \mathbb{P}(\max_{n} M_{n} \ge M) = \sum_{M=1}^{\infty} 1/(M+1) = \infty.$$

Como $\max_{m \leq n} M_n$ es una variable aleatoria monótona que converge $\max_n M_n$ entonces $\lim_{n \to \infty} \mathbb{E}(\max_{m \leq n} M_n) = \mathbb{E}(\max_n M_n) = \infty$.

Finalmente la desigualdad de Doob no se cumple para p=1 ya que como $\mathbb{E}(\max_{m\leq n} M_n) \to \infty$ no podemos encontrar una constante que lo acote por arriba, es decir que no existe C tal que:

$$\mathbb{E}\left(\max_{m\leq n} M_n\right) \leq C\mathbb{E}(M_n).$$

(4) Sea $T=\min\{n\geq 2: S_n=S_{n-2}+2\}$ y U=T-2. ¿Son T y U tiempos de paro? Justifique su respuesta.

T si es un tiempo de paro.

Demostración Por inducción

$${T=2} = {X_1 = 1, X_2 = 1},$$

Como $\{X_1 = 1\} \in \mathscr{F}_1 \subseteq \mathscr{F}_2 \text{ y } \{X_2 = 1\} \in \mathscr{F}_2 \text{ entonces } \{T = 2\} \in \mathscr{F}_2.$ Supongamos que para toda $k \leq n$ se cumple que $\{T = k\} \in \mathscr{F}_k.$ P.D. $\{T = n + 1\} \in \mathscr{F}_{n+1}$ Podemos expresar a $\{T = n + 1\}$ de la siguiente manera:

$${T = n + 1} = \bigcap_{i=k}^{n} ({T \neq i}) \bigcap {X_m = 1, X_{m+1} = 1},$$

Por hipotesis de inducción sabemos que $\{T = k\} \in \mathscr{F}_k$ para toda $k \leq n \Rightarrow \{T \neq i\} \in \mathscr{F}_k \subseteq \mathscr{F}_{n+1}$ para toda $k \leq n$. Además $\{X_m = 1\} \in \mathscr{F}_k \subseteq \mathscr{F}_{n+1}$ y $\{X_{m+1} = 1\} \in \mathscr{F}_{n+1}$.

Por lo tanto $\{T = n + 1\} \in \mathscr{F}_{n+1}$.

Por lo tanto T es tiempo de paro.

U no es tiempo de paro ya que $\{U=n\}=\{T-2=n\}=\{T=n+2\}\in \mathscr{F}_{n+2}$ pero $\{T=n+2\}\notin \mathscr{F}_{n+2}.$

(5) Para la variable T que hemos definido, calcule $\mathbb{E}(T)$.

Para calcular la esperanza de T utilizaremos la sugerencia del Williams la cual nos dice que imaginemos a un mono que escribe letras en una maquina de escribir con dos digitos, 1 y - 1, antes de que escriba una letra llega un apostador y apuesta un peso a que la letra que va escribir sera 1, si acierta al apostador le duplican su dinero apostado y apostara toda su ganancia en el siguiente intento a que sera 1, si falla el apostador se retira y pierde todo su dinero y en cada unidad de tiempo llega un apostador nuevo con 1 peso y apuesta a que el mono escribirá 1, el juego termina cuando salen dos veces 1 de manera consecutiva.

Definamos a la variable aleatoria:

 $\mathbb{Z}_m^n = \text{La cantidad de dinero que ha recibido el jugador } n$ al tiempo m

Luego entonces \mathbb{Z}_m^n que da definida de la siguiente manera:

 $Z_m^n = 0$ para m < n.

 $Z_{m+1}^{(n)} = (Z_m^n + 1)2X_{m+1} - 1$ para $m \ge n$

 $(X_i)_{i=1}^{\infty}$ son variables aleatorias Bernoulli $(\frac{1}{2})$ independientes.

Notemos que Z_m^n es martingala respecto a la filtración $\mathscr{F}_m = \sigma(X_1, X_2, X_m)$:

- (a) Z_m^n es \mathscr{F}_m adaptado ya ques es una variable aleatria formada por X_i $i \in \{1,...,m\}$.
- (b) $Z_m^n \in L_1$ ya que $-1 \le Z_m^n \le 3$ ya que 3 es la máxima ganancia que puede tener el jugador y -1 es la minima ganancia del jugador. Por lo tanto $-1 \le \mathbb{E}(Z_m^n) \le 3$.
- (c) Propiedad de martingala:

$$\mathbb{E}(Z_{m+1}^n \mid \mathscr{F}_m) = \mathbb{E}((Z_m^n + 1)2X_{m+1} - 1 \mid \mathscr{F}_m)$$

Como \mathbb{Z}_m^n es \mathscr{F}_m medible:

$$= (Z_m^n + 1)2\mathbb{E}(X_{m+1} \mid \mathscr{F}_m) - 1$$

Como X_{m+1} es independiente de \mathscr{F}_m :

$$= (Z_m^n + 1)2\mathbb{E}(X_{m+1}) - 1$$

= $(Z_m^n + 1) - 1$
= Z_m^n .

Por lo tanto \mathbb{Z}_m^n es martingala.

Luego entonce definimos a la variable aleatoria $Z_m = \sum_{n=1}^m Z_m^n$, esta nueva variable representa el dinero ganado por todos los jugadores hasta el tiempo m. Notemos que Z_m es una martingala:

- (a) Z_m es \mathscr{F}_m medible ya que es la suma de las primeras m martingalas y ellas ya son \mathscr{F}_m medibles.
- (b) $Z_m \in L_1$ ya que es la suma finita de elementos en L_1 -
- (c) La propiedad de marrtingalas se cumple ya que \mathbb{Z}_m^n es martingala para toda m.

Por lo tanto Z_m es martingala.

Con la definición de T construimos a la martingala $Z_{T \wedge n}$. Aplicando el teorema de muestreo opcional de Doob obtenemos que $\mathbb{E}(Z_{T \wedge n}) = \mathbb{E}(Z_1) = 0$. Ademas la martingala esta acotada por $-T \leq < Z_{T \wedge n} < 6$. Nos basta probar que $\mathbb{E}(T) < \infty$, esto se sigue de:

$$\mathbb{E}(T) = \sum_{k=1}^{\infty} \mathbb{P}(T \ge k) < 2\sum_{k=1}^{\infty} \mathbb{P}(T > 2k) \le 2\sum_{k=1}^{n} (1/4)^k < \infty.$$

Por lo tanto $\mathbb{E}(T) < \infty$.

Aplicando el teorema de convergencia dominada obtenemos que $\mathbb{E}(Z_{T \wedge n}) \to \mathbb{E}(Z_T)$. Por lo tanto $\mathbb{E}(Z_T) = 0$.Pero Z_T es el dinero ganado por todos los jugadores al tiempo T, $Z_T = 2^2 - 1 + 2 - 1 - (T - 2)$. Esto es debido a que la ganancia del primer jugador es $2^2 - 1$, la ganancia del segundo jugar en juego es 2 - 1, y han perdido en total T - 2 pesos los demas jugadores.

Por lo tanto $\mathbb{E}(T) = 6$.

Categorías: Tiempos de paro, problema de la ruina

Problema 4 (Extensiones del teorema de paro opcional). Sea $M = (M_n, n \in \mathbb{N})$ una (super)martingala respecto de una filtración ($\mathscr{F}_n, n \in \mathbb{N}$) y sean S y T tiempos de paro.

(1) Pruebe que $S \wedge T$, S + T y $S \vee T$ son tiempos de paro. Demostración Podemos escribir a cada uno de los tiempos de paro de la siguiente manera:

$$\{S \wedge T \le n\} = \{S \le n\} \bigcup \{T \le n\}$$
$$\{S + t = n\} = \bigcup_{i=1}^{n} \{S = n - i\} \bigcap \{T = i\}$$
$$\{S \vee T \le n\} = \{S \le n\} \bigcap \{T \le n\}$$

Utilizando la hipotesis de que S y T son tiempos de paro tenemos el resultado.

(2) Sea

$$\mathscr{F}_T = \{A \in \mathscr{F} : A \cap \{T \leq n\} \in \mathscr{F}_n \text{ para toda } n\}$$

es una σ -álgebra, a la que nos referimos como la σ -álgebra detenida en τ . Comente qué puede fallar si T no es tiempo de paro. Pruebe que T es F_T -medible.

$$\{T \leq k\} \cap \{T \leq n\} = \{T \leq \min\{k, n\}\} \in \mathscr{F}_{n \wedge k} \subseteq \mathscr{F}_n$$

Por lo tanto T es \mathscr{F}_T -medible.

(3) Pruebe que si T es finito, entonces M_T es \mathscr{F}_T -medible.

Sea A un boreliano en \mathbb{R} . Basta mostrar que $\{X_T \in A\} \cap \{T \leq n\} \in \mathscr{F}_n$ para toda $n \in \mathbb{N}$. Tenemos que:

$$\{X_T \in A\} \bigcap \{T \le n\} = \bigcup_{k=1}^n \{X_T \in A\} \bigcap \{T = k\}$$
$$= \bigcup_{k=1}^n \{X_k \in A\} \bigcap \{T = k\}$$

pero sabemos que $\{X_k \in A\} \mid \bigcap \{T = k\} \in \mathscr{F}_k$ para toda $k \in \mathbb{N}$. Por lo tanto X_T es \mathscr{F}_T -medible.

(4) Pruebe que si $S \leq T \leq n$ entonces $\mathscr{F}_S \subset \mathscr{F}_T$. Si además T es acotado entonces $X_S, X_T \in L_1$ y

$$\mathbb{E}(M_T \mid \mathscr{F}_S) \leq M_S.$$

Demostración Sea $A \in \mathscr{F}_S$, entonces $A \cap \{T \leq k\} = A \cap \{S \leq k\} \{T \leq k\}$, ya que $S \leq T \Rightarrow \{T \leq k\} \subseteq \{S \leq k\}$. Como $A \in \mathscr{F}_S$ entonces $A \cap \{S \leq F_k\}$ para todo $k \in \mathbb{N} \Rightarrow A \cap \{T \leq k\} \in \mathscr{F}_k$ para todo $k \in \mathbb{N}$. Por lo tanto $F_S \subseteq F_T$. Como T es acotado aplicando el teorema de muestreo opcional de Doob la $\mathbb{E}(M_T) = \mathbb{E}(M_S) = \mathbb{E}(M_0) < \infty$, ya que M es martingala $M_n \in L_1$. Por lo tanto $M_S, M_T \in L_1$.

Ahora probaremos la igualdad $\mathbb{E}(M_T \mid \mathscr{F}_S) = M_S$ para el caso en el que M_n es martingala. Como T es acotado notemos que:

$$M_T - M_S = \sum_{i=1}^n \mathbf{1}_{S \le i \le T} (M_i - M_{i-1})$$

Sea $A \in \mathscr{F}_S$:

$$\Rightarrow \mathbb{E}(M_T - M_S \mathbf{1}_A) = \mathbb{E}\left(\sum_{i=1}^n \mathbf{1}_{S < i \le T}(M_i - M_{i-1})\mathbf{1}_A\right)$$

$$= \sum_{i=1}^n \mathbb{E}(\mathbf{1}_{S < i \le T}(M_i - M_{i-1})\mathbf{1}_A)$$

$$= \sum_{i=1}^n \mathbb{E}(\mathbf{1}_{\{S < i\} \cap A}(M_i - M_{i-1})\mathbf{1}_{i \le T})$$

$$= \sum_{i=1}^n \mathbb{E}(\mathbf{1}_{\{S < i\} \cap A}(M_i - M_{i-1})\mathbf{1}_{i \le T})$$

$$= \sum_{i=1}^n \mathbb{E}(\mathbb{E}(\mathbf{1}_{\{S < i\} \cap A}(M_i - M_{i-1})\mathbf{1}_{i \le T})$$

Por definción de F_S sabemos que $\mathbf{1}_{\{S < i\} \cap A}$ es F_{i-1} -medible:

$$= \sum_{i=1}^{n} \mathbb{E} (\mathbf{1}_{\{S < i\} \bigcap A} \mathbf{1}_{i \le T} \mathbb{E} ((M_i - M_{i-1}) \mid F_{i-1}))$$

Como M es martingala $\mathbb{E}((M_i - M_{i-1}) | F_{i-1}) = 0$:

$$= 0$$

Por lo tanto $\mathbb{E}(M_T \mathbf{1}_A) = \mathbb{E}(M_S \mathbf{1}_A)$.

Por lo tanto $\mathbb{E}(M_T \mid \mathscr{F}_S) = M_S$.

(5) Si $X = (X_n, n \in \mathbb{N})$ es un proceso estocástico (\mathscr{F}_n) -adaptado y tal que $X_n \in L_1$ y tal que para cualesquiera tiempos de paro acotados S y T se tiene que $\mathbb{E}(X_S) = \mathbb{E}(X_T)$ entonces X es una martingala. Sugerencia: considere tiempos de paro de la forma $n\mathbf{1}_A + (n+1)\mathbf{1}_{A^c}$ con $A \in \mathscr{F}_n$.

Demostración

Por hipótesis sabemos que X_n es adaptado y $X_n \in L_1$, solo nos basta la probar la propiedad de martingala. Como $\mathbb{E}(X_S) = \mathbb{E}(X_T)$ para cualesquiera tiempos de paro acotados en particular nos tomamos $T = n\mathbf{1}_A + (n+1)\mathbf{1}_{A^c}$ con $A \in \mathscr{F}_n$ y S = n+1 entonces $\mathbb{E}((X_T)) = \mathbb{E}(X_{n+1}) \Rightarrow \mathbb{E}((X_T)) - \mathbb{E}(X_{n+1}) = 0$. Calculando la $\mathbb{E}((X_T))$ tenemos que:

$$\mathbb{E}((X_T)) = \mathbb{E}(X_n \mathbf{1}_A) + \mathbb{E}(X_{n+1} \mathbf{1}_{A^c})$$

$$= \mathbb{E}(X_n \mathbf{1}_A) + \mathbb{E}(X_{n+1}(1 - \mathbf{1}_A))$$

$$= \mathbb{E}(X_n \mathbf{1}_A) + \mathbb{E}(X_{n+1}) - \mathbb{E}(X_{n+1}(\mathbf{1}_A))$$

Sustituyendo en $\mathbb{E}((X_T)) - \mathbb{E}(X_{n+1}) = 0$:

$$0 = \mathbb{E}(X_n \mathbf{1}_A) + \mathbb{E}(X_{n+1}) - \mathbb{E}(X_{n+1}(\mathbf{1}_A)) - \mathbb{E}(X_{n+1})$$

$$\mathbb{E}(X_{n+1}(\mathbf{1}_A)) = \mathbb{E}(X_n \mathbf{1}_A)$$

Por lo tanto $\mathbb{E}(X_{n+1} \mid \mathscr{F}_n) = X_n$.

Por lo tanto X_n es martingala.

(6) Pruebe que el proceso M^T obtenido al detener a M al instante T y dado por $M_n^T = M_{T \wedge n}$ es una martingala respecto de $(\mathscr{F}_{T \wedge n}, n \geq 0)$ pero también respecto de $(\mathscr{F}_n, n \geq 0)$. Sugerencia: basta probar el resultado respecto de (\mathscr{F}_n) y para esto es útil el inciso anterior.

Demostración Para ver que $M_n^T = M_{T \wedge n}$ es martingala respecto a $(\mathscr{F}_{T \wedge n}, n \geq 0)$ tenemos que:

- (a) Ya que $T \wedge n$ es un tiempo de paro acotado, utilizando el inciso (4) obtenemos que $M_{T \wedge n} \in L_1$.
- (b) Como $T \wedge n$ es finito, utilizando el inciso (3) tenemos que $M_{T \wedge n}$ es $\mathscr{F}_{T \wedge n}$ -medible.
- (c) Ya que $T \wedge (n-1) \leq T \wedge n$ y son tiempos de paro acotados, utilizando el inciso (4) obtenemos que $\mathbb{E}(M_{T \wedge n} \mid \mathscr{F}_{T \wedge (n-1)}) = M_{T \wedge (n-1)}$.

Por lo tanto $M_{T \wedge n}$ es una martingala respecto a $F_{T \wedge n}$.

Para ver que $M_n^T = M_{T \wedge n}$ es martingala respecto a $(\mathscr{F}_n, n \geq 0)$ tenemos que:

- (a) Ya que $T \wedge n$ es un tiempo de paro acotado, utilizando el inciso (4) obtenemos que $M_{T \wedge n} \in L_1$.
- (b) $M_{T \wedge n} = \sum_{i=1}^{T} \mathbf{1}_{k=i} M_k$ como M_n es martingala entonces M_i es \mathscr{F}_i -medible, para todo $i \leq n$ tenemos que M_i es \mathscr{F}_n -medible. Ademas $\mathbf{1}_{k=i}$ son F_i medibles, para todo $i \leq n$ tenemos que $\mathbf{1}_{k=i}$ es \mathscr{F}_n -medible. Por lo tanto $M_{T \wedge n}$ es \mathscr{F}_n -medible.
- (c) Si nos tomamos dos tiempos de paro acotados S, U, utilizando el teorema de muestreo opcional de Doob obtenemos que $\mathbb{E}(M_{T \wedge U}) = \mathbb{E}(M_0) = \mathbb{E}(M_{T \wedge S})$.

Por lo tanto utilizando el inciso (5) obtenemos que $M_{T \wedge n}$ es una martingala con respecto a \mathscr{F}_n .

Categorías: Tiempos de paro, Muestreo opcional

Problema 5. Sea $S_n = X_1 + \cdots + X_n$ una caminata aleatoria con saltos $X_i \in \{-1,0,1,\ldots\}$. Sea C_p una variable aleatoria geométrica de parámetro p independiente de S y definimos

$$M_p = -\min_{n \le C_p} S_n.$$

El objetivo del ejercicio es determinar la distribución de M_p .

(A las caminatas aleatorias como S se les ha denominado Skip-free random walks Para aplicaciones de este tipo de procesos. También aparecen en el estudio de Procesos Galton-Watson. Este ejercicio es el resultado básico del estudio de sus extremos, denominado teoría de fluctuaciones.)

(1) Sea

$$q(\lambda) = E(e^{-\lambda X_1}).$$

Pruebe que $g(\lambda) \in (0, \infty)$ y que

$$M_n = e^{-\lambda S_n} g(\lambda)^{-n}, n \ge 0$$

es una martingala.

Primero notemos que $e^{-\lambda X_1} > 0$ entonces $\mathbb{E}(e^{-\lambda X_1}) > 0$. Ademas como $X_1 > -1$ entonces $e^{-\lambda X_1} < e^{\lambda}$. Por lo tanto $\mathbb{E}(e^{-\lambda X_1}) < e^{\lambda}$ entonces $g(\lambda) \in (0, \infty)$. Por las notas sabemos que $M_n = e^{-\lambda S_n} g(\lambda)^{-n}, n \geq 0$ es martingala.

(2) Pruebe que g es log-convexa al aplicar la desigualdad de Hölder. Pruebe que si $P(X_1 = -1) > 0$ (hipótesis que se utilizará desde ahora) entonces $g(\lambda) \to \infty$ conforme $\lambda \to \infty$. Utilice esta información para esbozar la gráfica de g. Defina $f(s) = \inf\{\lambda > 0 : g(\lambda)^{-1} < s\}$. Note que $1/g \circ f = Id$ en (0,1). Pruebe que si $g(\lambda) > 1$, la martingala M es acotada hasta el tiempo de arribo de S a -k dado por

$$T_k = \min\{n \in \mathbb{N} : S_n = -k\}$$

(donde se utiliza la convención inf $\emptyset=\infty$). Aplique el teorema de muestreo opcional de Doob para mostrar que

$$E(s^{T_k}) = e^{-kf(s)}.$$

Justifique MUY bien por qué la fórmula es vlida aun cuando T_k puede tomar el valor ∞ y deduzca que de hecho $\mathbb{P}(T_k = \infty) = 0$.

Para probar que g es log convexa tenemos que:

$$log(g(t\lambda_1 X_1 + (1-t)\lambda_2 X_1)) = log(\mathbb{E}\left(e^{t\lambda_1 X_1 + (1-t)\lambda_2 X_1}\right))$$
$$= log(\mathbb{E}\left(e^{t\lambda_1 X_1} e^{(1-t)\lambda_2 X_1}\right))$$

Aplicando desigualdad de Holder:

$$\leq \log(\mathbb{E}(e^{\lambda_1 X_1})^t \mathbb{E}(e^{(1-t)\lambda_2 X_1})^{1-t})$$

$$= \log(\mathbb{E}(e^{\lambda_1 X_1})^t) + \log(\mathbb{E}(e^{(1-t)\lambda_2 X_1})^{1-t})$$

$$= t\log(\mathbb{E}(e^{\lambda_1 X_1})) + (1-t)\log(\mathbb{E}(e^{(1-t)\lambda_2 X_1}))$$

Por lo tanto g es log convexa.

Si $P(X_1 = -1) > 0$ entonces:

$$g(\lambda) = \mathbb{E}(e^{-\lambda X_1}) = \sum_{k=-1}^{\infty} e^{-\lambda k} \mathbb{P}(X=k) \ge e^{\lambda} \mathbb{P}(X=-1) > 0$$

Tomando limites de ambos lados de la desigualdad se obtiene que $g(\lambda) \to \infty$. Sea $s \in (0,1)$ y supongamos que a=f(s), por definición de infimo a es una cota inferior, entonces para toda n se tiene que: $\frac{1}{s} < g(a+\frac{1}{n})$. Tomando el limite se obtiene que $\frac{1}{s} \le g(a)$. Supongamos que $g(a) < \frac{1}{s}$. Por continuidad de g sabemos que exite una vecindad tal que para todo x en esa vecindad $g(x) > \frac{1}{s}$. Tomamos $x = a - \epsilon/2$ entonces tendriamos que $a \le x = a - \epsilon/2 < a$, lo cual es una contradicción. Por lo tanto 1/s = a. Sea a = f(s) y g(f(s)) = 1/s, esto implica que $\frac{1}{g(f(s))} = s$. Por lo tanto $1/g \circ f = I$.

Si suponemos que $g(\lambda) > 1$, por definición de T_k si $n \leq T_k$ entonces $S_n \geq -k$, ya que S_n solo disminuye en una unidad, entonces $e^{-\lambda S_n} \leq e^{\lambda}k$. Por lo tanto $M_n \leq e^{\lambda k}/g(\lambda) < e^{\lambda k}$.

Si nos fijamos en la martingala $M_{T_k \wedge n}$, notamos que $M_{T_k \wedge n} < e^{\lambda k}$. Por el teorema de convergencia acotada $\mathbb{E}(M_{T_k \wedge n}) \to \mathbb{E}(M_{T_k})$ conforme $n \to \infty$. Por teorema de muestreo opcional de Doob $\mathbb{E}(M_{T_k \wedge n}) = \mathbb{E}(M_1) = 1$, luego entonces $1 = \mathbb{E}(M_{T_k}) = \mathbb{E}\left(e^{-\lambda S_k g(\lambda)^{-T_k}}\right)$. Haciendo el cambio de variable $\lambda = f(s)$ tenemos que :

$$1 = e^{\lambda k} \mathbb{E}(g(\lambda)^{-T_k}) = e^{f(s)k} \mathbb{E}(s^{-T_k}).$$

Por lo tanto $E(s^{T_k}) = e^{-kf(s)}$.

(3) Argumente que

$$P(M_p \ge n) = P(T_n \le C_p) = E((1-p)^{T_n})$$

para demostrar que M_p tiene distribución geométrica de parámetro $1-e^{-f(1-p)}$ Fijemonos que:

$$\begin{split} \{M_p \geq n\} &= \{ \min_{k \leq C_p} S_k \geq n \} \\ &= \{ \min_{k \leq C_p} S_k \leq -n \} \\ &= \{ \min\{ k \in \mathbb{N} : S_k = -n \} \leq C_p \} \\ &= \{ T_n \leq C_p \}. \end{split}$$

Por lo tanto $\mathbb{P}(\{M_p \geq n\}) = \mathbb{P}(\{T_n \leq C_p\})$. Luego entonces:

$$\mathbb{P}(\{T_n \le C_p\}) = \sum_{k=1}^{\infty} \mathbb{P}(T_n \le C_p | T_n = k) \, \mathbb{P}(T_n = k)$$

$$= \sum_{k=1}^{\infty} \mathbb{P}(k \le C_p) \, \mathbb{P}(T_n = k)$$

$$= \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} \mathbb{P}(C_p = k) \, \mathbb{P}(T_n = k)$$

$$= \sum_{k=1}^{\infty} \sum_{j=k}^{\infty} (1 - p)^j p \mathbb{P}(T_n = k)$$

$$= \sum_{k=1}^{\infty} \mathbb{P}(T_n = k) \, p(1/p + (1 - (1 - p)^k))/p$$

$$= \sum_{k=1}^{\infty} \mathbb{P}(T_n = k) \, (1 - p)^k$$

$$= \mathbb{E}((1 - p)^{T_n})$$

Por lo tanto $\mathbb{P}(\{T_n \leq C_p\}) = \mathbb{E}((1-p)^{T_n}).$

Sabemos por el inciso anterior que $\mathbb{E}((1-p)^{T_n}) = e^{-kf(1-p)}$, entonces:

$$\mathbb{P}(\{M_p = n\}) = \mathbb{P}(\{M_p \le n\}) - \mathbb{P}(\{M_p \le n - 1\})$$

$$= 1 - \mathbb{P}(\{M_p \ge n + 1\}) - 1 + \mathbb{P}(\{M_p \ge n\})$$

$$= e^{-nf(1-p)} - e^{-(n+1)f(1-p)}$$

$$= e^{-nf(1-p)}(1 - e^{-f(1-p)}).$$

Por lo tanto M_p tiene una distribución geométrica con parametro $1-e^{-f(1-p)}$.

(4) Tome el lmite conforme $p \to 0$ para mostrar que la variable aleatoria

$$M = -\min_{n > 0} S_n$$

tiene una distribución geométrica de parámetro $1 - e^{-f(1)}$. Interprete esto cuando f(1) = 0.

Categorías: Caminatas aleatorias, muestreo opcional, fluctuaciones.

Ejercicio 1.

- (1) Instale Octave en su computadora
- (2) Échele un ojo a la documentacin
- (3) Ejecute el siguiente código linea por linea:
- (4) Lea las secciones sobre simple examples, ranges, random number generation y comparison operators y escriba su interpretación de lo que hace el código anterior. Nota: está relacionado con uno de los ejemplos del curso.
- (5) Vuelva a correr el código varias veces y escriba sus impresiones sobre lo que está sucediendo.

FIGURE 1. Urna de Poyla

En esta gráfica se muestra la simulación de las urnas de Poyla. Como vimos en clase la proporción de bolas rojas convergen, en esta gráfica se ilustra como la proporción se tiende a estabilizar. Esto se debe al teorema de convergencia de martingalas ya que la martingala es positiva.

Problema 6 (Ejercicios sueltos sobre martingalas).

(1) Sea $(X_n, n \ge 0)$ una sucesión (\mathscr{F}_n) -adaptada. Pruebe que

$$\sum_{k=1}^{n} X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}), \quad n \ge 0$$

es una (\mathscr{F}_n) -martingala.

Demostración.

Denotemos a $M_n = \sum_{k=1}^n X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}), \quad n \geq 0.$

- (a) Como X_k es \mathscr{F}_k -medible para todo $k \leq n$ entonces X_k es \mathscr{F}_n -medible, ya que X es \mathscr{F}_n -adaptada. Tambien sabemos por definición de esperanza condicional que $\mathbb{E}(X_k \mid \mathscr{F}_{k-1})$ es \mathscr{F}_{k-1} -medible, entonces $\mathbb{E}(X_k \mid \mathscr{F}_{k-1})$ es \mathscr{F}_n -medible para todo $k \leq n$. Por lo tanto M_n es \mathscr{F}_n -medible.
- (b) Por hipótesis $X_k \in L_1$ esto tambien nos indica que $\mathbb{E}(X_k \mid \mathscr{F}_{k-1}) \in L_1$, como M_n es suma finita de variables aleatorias en L_1 entonces $M_n \in L_1$.

(c) Propiedad de Martingala:

$$\mathbb{E}(M_n \mid \mathscr{F}_{n-1}) = \mathbb{E}\left(\left.\sum_{k=1}^n X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}) \mid \mathscr{F}_{n-1}\right)\right)$$

$$= \sum_{k=1}^n \mathbb{E}(X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}) \mid \mathscr{F}_{n-1})$$

$$= \sum_{k=1}^n \mathbb{E}(X_k \mid \mathscr{F}_{n-1}) - \mathbb{E}(\mathbb{E}(X_k \mid \mathscr{F}_{k-1}) \mid \mathscr{F}_{n-1})$$

Ya que X_k es \mathscr{F}_{n-1} -medible para todo $k \leq n-1$

$$= \mathbb{E}(X_n \mid \mathscr{F}_{n-1}) + \sum_{k=1}^{n-1} X_k - \sum_{k=1}^n \mathbb{E}(\mathbb{E}(X_k \mid \mathscr{F}_{k-1}) \mid \mathscr{F}_{n-1})$$

Como $\mathbb{E}(X_k \mid \mathscr{F}_{k-1})$ es \mathscr{F}_{n-1} -medible para toda $k \leq n$

$$= \mathbb{E}(X_n \mid \mathscr{F}_{n-1}) + \sum_{k=1}^{n-1} X_k - \sum_{k=1}^n \mathbb{E}(X_k \mid \mathscr{F}_{k-1})$$

$$= \sum_{k=1}^{n-1} X_k - \sum_{k=1}^{n-1} \mathbb{E}(X_k \mid \mathscr{F}_{k-1})$$

$$= M_{n-1}$$

Por lo tanto M_n es martingala.

(2) Descomposición de Doob para submartingalas: Sea Sea $X = (X_n)_{n \in \mathbb{N}}$ una submartingala. Pruebe que X se puede descomponer de manera única como X = M + A donde M es una martingala y A es un proceso previsible con $A_0 = 0$. Sugerencia: Asuma que ya tiene la descomposición y calcule esperanza condicional de X_{n+1} dada X_n .

Como X_n es submartingala podemos utilizar el inciso anterior para construir una martingala que dependa de X_n . A esa la denotaremos como $M_n = \sum_{k=1}^n X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}) + X_0$, al aadirle el X_0 sigue siendo martingala el proceso. Si suponemos que ya conocemos la descomposición tenemos que:

$$X_n = M_n + A_n = \sum_{k=1}^n X_k - \mathbb{E}(X_k \mid \mathscr{F}_{k-1}) + X_0 + A_n$$

Despejando a A_n tenemos que:

$$A_n = \sum_{k=1}^{n} \mathbb{E}(X_k \mid \mathscr{F}_{k-1}) - X_{k-1}$$

Efectivamente A_n es un proceso previsible ya que $\mathbb{E}(X_k \mid \mathscr{F}_{k-1}), X_{k-1}$ son \mathscr{F}_{n-1} -medibles.

Como X_n es sub-martingala entonces $\mathbb{E}(X_k \mid \mathscr{F}_{k-1} \geq X_{k-1})$. Por lo tanto A_n es un proceso positivo. Por lo tanto las A_n son crecientes.

La unicidad se da ya que si existen dos descomposiciones $M_n^1, A_n^1, M_n^2, A_n^2$ y si definimos $Y_n = M_n^1 - M_n^2 = A_n^1 - A_n^2$. Por una parte tenemos que cumple la propiedad de Martingala y por otra parte cumple la propiedad de previsibilidad, es decir:

$$\mathbb{E}(Y_n \mid \mathscr{F}_{n-1}) = Y_{n-1}$$

$$\mathbb{E}(Y_n \mid \mathscr{F}_{n-1}) = Y_n$$

Si restamos las ecuaciones tenemos que:

$$0 = Y_n - Y_{n-1}$$

$$0 = A_n^1 - A_{n-1}^1 - (A_n^2 - A_{n-1}^2)$$

Como $A_0^1 = 0 = A_0^2$ entonces tenemos que:

$$0 = A_1^1 - A_1^2$$
$$A_1^1 = A_1^2$$

Recursivamente $A_n^1 = A_n^2 \Rightarrow Y = 0$:

$$M_n^1 = M_n^2$$

Por lo tanto la descomposición es única.

(3) Sea $S_n = \xi_1 + \cdots + \xi_n$ donde las variables ξ son independientes y ξ_i tiene media cero y varianza finita σ_i^2 . Pruebe que si $\sum_i \sigma_i^2 < \infty$ entonces S_n converge casi seguramente y en L_2 conforme $n \to \infty$. Construya un ejemplo de variables aleatorias ξ_i tales que la serie $\sum_i \xi_i$ sea casi seguramente absolutamente divergente y casi seguramente condicionalmente convergente (considere ejemplos simples!). Explique heurísticamente por qué cree que suceda esto.

Sea $\mathscr{F}_n = \sigma(\xi_1, \dots, \xi_n)$. Hemos visto anteriormente que $(X_n)_{n=1}^{\infty}$ es una martingala respecto a $(\mathscr{F}_n)_{n=1}^{\infty}$. Además por la desigualdad de Cauchy-Schwartz, sabemos que

$$\mathbb{E}(|X_n|) \le \left(\mathbb{E}(X_n^2)\right)^{1/2} = \mathbb{E}\left(\left(\sum_{i=1}^n \xi_i\right)^2\right)^{1/2}$$

y como las variables aleatorias $(\xi_i)_{i-1}^{\infty}$ son independientes y tienen media cero, su segundo momento es igual a su varianza y la varianza de la suma (que corresponde también a su segundo momento) es igual a la suma de las varianzas, por lo que

$$\mathbb{E}(|X_n|) \le \left(\sum_{i=1}^n \operatorname{Var}(\xi_i)\right)^{1/2} \le \left(\sum_{i=1}^\infty \operatorname{Var}(\xi_i)\right)^{1/2} < \infty,$$

por lo que la martingala $(X_i)_{i=1}^{\infty}$ satisface las condiciones del teorema de convergencia casi segura de martingalas y por lo tanto, converge casi seguramente a una variable aleatoria que pertenece a L_1 .

El ejemplo es el siguiente:

Sea ξ_i una variable aleatoria que toma los valores -1 y 1 con probabilidad 1/2 Definimos la serie $X_n = \sum_{i=1}^n \xi_i/i$, esta serie es casi seguramente absolutamente divergente debido a que.

$$\sum_{i=1}^{\infty} |\xi_i| / i = \sum_{i=1}^{\infty} 1/i = \infty.$$

(4) Sean X y Y dos martingalas (respecto de la misma filtración) y tales que $\mathbb{E}(X_i), \mathbb{E}(Y_i) < \infty$ para toda i. Pruebe la siguiente fórmula de integración por partes:

$$\mathbb{E}(X_n Y_n) - \mathbb{E}(X_0 Y_0) = \sum_{i=1}^n \mathbb{E}((X_i - X_{i-1}) (Y_i - Y_{i-1})).$$

Demostración

$$\begin{split} \sum_{i=1}^{n} \mathbb{E}((X_{i} - X_{i-1}) \, (Y_{i} - Y_{i-1})) &= \sum_{i=1}^{n} \mathbb{E}(X_{i} Y_{i} - X_{i-1} Y_{i} - X_{i} Y_{i-1} + X_{i-1} Y_{i-1}) \\ &= \sum_{i=1}^{n} \mathbb{E}(X_{i} Y_{i}) - \mathbb{E}(X_{i-1} Y_{i}) - \mathbb{E}(X_{i} Y_{i-1}) + \mathbb{E}(X_{i-1} Y_{i-1}) \\ &= \sum_{i=1}^{n} \mathbb{E}(X_{i} Y_{i}) - \mathbb{E}(\mathbb{E}(X_{i-1} Y_{i} \mid \mathscr{F}_{i-1})) \\ &- \mathbb{E}(\mathbb{E}(X_{i} Y_{i-1} \mid \mathscr{F}_{i-1})) + \mathbb{E}(X_{i-1} Y_{i-1}) \end{split}$$

Como X_{i-1}, Y_{i-1} son F_{i-1} -medibles:

$$= \sum_{i=1}^{n} \mathbb{E}(X_i Y_i) - \mathbb{E}(X_{i-1} \mathbb{E}(Y_i \mid \mathscr{F}_{i-1})) - \mathbb{E}(Y_{i-1} \mathbb{E}(X_i \mid \mathscr{F}_{i-1})) + \mathbb{E}(X_{i-1} Y_{i-1})$$

Como X_i, Y_i son martingalas:

$$= \sum_{i=1}^{n} \mathbb{E}(X_{i}Y_{i}) - \mathbb{E}(X_{i-1}Y_{i-1})$$
$$- \mathbb{E}(Y_{i-1}X_{i-1}) + \mathbb{E}(X_{i-1}Y_{i-1})$$
$$= \sum_{i=1}^{n} \mathbb{E}(X_{i}Y_{i}) - \mathbb{E}(X_{i-1}Y_{i-1})$$
$$= \mathbb{E}(X_{n}Y_{n}) - \mathbb{E}(X_{0}Y_{0}).$$

(5) Desigualdad de Azema-Hoeffding

(1)

(a) Muestre que si Y es una variable aleatoria con valores en [-c,c] y media cero entonces, para $\theta \in \mathbb{R}$

$$\mathbb{E}(e^{\theta Y}) \le \cosh(\theta c) \le \exp\left(\frac{1}{2}\theta^2 c^2\right).$$

Como $e^{\theta y}$ es una función convexa tenemos que:

$$e^{\theta y} \le \frac{c-y}{2c}e^{-\theta c} + \frac{c+y}{2c}e^{\theta c} = \frac{e^{\theta c} + e^{-\theta c}}{2} + y(\frac{e^{\theta c} - e^{-\theta c}}{2c})$$

Calculando la esperanza de ambos lados de la desiguadad obtenemos que:

$$\mathbb{E}(e^{\theta Y}) \le \mathbb{E}\left(\frac{e^{\theta c} + e^{-\theta c}}{2} + Y(\frac{e^{\theta c} - e^{-\theta c}}{2c})\right)$$

Como la $\mathbb{E}(Y) = 0$, se sigue el resultado $\mathbb{E}(e^{\theta Y}) \leq \cosh(c)$.

Para la segunda parte de la desigualdad, nos fijamos en la expansion de Taylor de $\cosh{(\theta c)}$:

$$\cosh(\theta c) = \sum_{k=1}^{\infty} \frac{(\theta c)^{2k}}{2k!}$$

$$\leq \sum_{k=1}^{\infty} \frac{(\theta c)^{2k}}{2^k (k!)}$$

$$= e^{\frac{\theta^2 c^2}{2}}.$$

(b) Pruebe que si M es una martingala nula en cero tal que para algunas constantes $(c_n, n \in \mathbb{N})$ se tiene que

$$|M_n - M_{n-1}| \le c_n \quad \forall n$$

entonces, para x > 0

$$\mathbb{P}\left(\max_{k \le n} M_k \ge x\right) \le \exp\left(\frac{x^2}{2\sum_{k=1}^n c_k^2}\right).$$

En esta parte utilizaremos una desigualdad de Doob que viene en las notas y dice que para una sub-martingala M_n se tiene:

$$\lambda \mathbb{P}\left(\max_{1 \le i \le n} M_i^+ > \lambda\right) \le \mathbb{E}(M_n^+)$$

En nuestro caso M_n es martingala por lo que $e^{\theta M_n}$ es una sub-martingala positiva, aplicando la desigualdad de la proposición anterior a esta sub-martingala y tomando $\lambda = e^{\theta x}$ obtenemos que:

$$e^{\theta x} \mathbb{P}\left(\max_{1 \le i \le n} e^{\theta M_i} > e^{\theta x}\right) \le \mathbb{E}\left(e^{\theta M_n}\right)$$

Como $\{\max_{1 \le i \le n} e^{\theta M_i} > e^{\theta x}\} = \{\max_{1 \le i \le n} M_i > x\}$, entonces:

$$\mathbb{P}\left(\max_{1\leq i\leq n} M_i > x\right) \leq e^{-\theta x} \mathbb{E}\left(e^{\theta M_n}\right)$$

Acotando a la martingala M_n la cual es nula en 0:

$$|M_n| = \left| \sum_{i=1}^n M_i - M_{i-1} \right|$$

$$\leq \sum_{i=0}^n |M_i - M_{i-1}|$$

$$\leq \sum_{i=0}^n c_i = c^*$$

Entonces $|M_n|$ es acotada por c^* por lo que podemos aplicar la desigualdad del ejercicio anterior

$$\mathbb{E}(e^{\theta M_n}) \le e^{\frac{1}{2}\theta^2(c^*)^2}$$

Por lo tanto $\mathbb{P}\left(\max_{1\leq i\leq n} M_i > x\right) \leq e^{-\theta x} e^{\frac{1}{2}\theta^2(c^*)^2}$. Tomando a $\theta = \frac{x}{(c^*)^2} > 0$, entonces

$$\mathbb{P}\left(\max_{1 \le i \le n} M_i > x\right) \le exp\left(-\frac{1}{2} \frac{x^2}{(c^*)^2}\right)$$
$$= exp\left(\frac{-x^2}{2\left(\sum_{i=1}^n c_i\right)^2}\right)$$

(2)

Problema 7. Sea $S_n = \sum_{i=1}^n X_i$ donde X_1, X_2, \ldots son iid. Sea

$$\phi(\lambda) = \mathbb{E}(e^{\lambda S_n}) \in (0, \infty].$$

(1) Pruebe que si existen $\lambda_1 < 0 < \lambda_2$ tales que $\phi(\lambda_i) < \infty$ entonces $\phi(\lambda) < \infty$ para toda $\lambda \in [\lambda_1, \lambda_2]$. Sugerencia: escriba $\lambda = a\lambda_1 + (1-a)\lambda_2$ para algún $a \in [0, 1]$ y aplique la desigualdad de Hölder. A partir de ahora se asume la premisa de este inciso.

Sea $\lambda \in [\lambda_1, \lambda_2]$ entonces $\exists a \in [0, 1] \ \lambda = a\lambda_1 + (1 - a)\lambda_2$.

$$\phi(\lambda) = \mathbb{E}(e^{\lambda S_n})$$

$$= \mathbb{E}(e^{(a\lambda_1 + (1-a)\lambda_2)S_n})$$

$$= \mathbb{E}(e^{(a\lambda_1)S_n}e^{(1-a)\lambda_2S_n})$$

Aplicando la desigualdad de Holder:

$$\leq \mathbb{E}\left(e^{(\lambda_1)S_n}\right)^a \mathbb{E}\left(e^{\lambda_2 S_n}\right)^{1-a}$$

Como la $\mathbb{E}(e^{(\lambda_1)S_n})^a$, $\mathbb{E}(e^{\lambda_2S_n})^{1-a} < \infty$ tenemos que $\phi(\lambda) < \infty$ para toda $\lambda \in [\lambda_1, \lambda_2]$.

(2) Pruebe que $\mathbb{E}(|S_n|^k) < \infty$ para toda $k \ge 0$.

Sea $\lambda \in [\lambda_1, \lambda_2]$, definimos $X_m = \sum_{k=0}^m \frac{|\lambda S_n|^k}{k!}$. Expresando como serie de taylor a $e^{|\lambda S_n|}$ tenemos que:

$$\mathbb{E}\left(e^{|\lambda S_n|}\right) = \mathbb{E}\left(\lim_{m \to \infty} \sum_{k=0}^m \frac{|\lambda S_n|^k}{k!}\right)$$
$$= \mathbb{E}(\lim X_m)$$

Como X_m es una sucesión creciente, ya que los terminos de la suma son positivos, se tiene por el teorema de la convergencia monótona que:

$$= \lim_{m \to \infty} \mathbb{E}(X_m)$$

$$= \sum_{k=0}^{\infty} \frac{|\lambda|^k \mathbb{E}(|S_n|^k)}{k!}$$

Entonces:

(3)

$$\mathbb{E}\left(e^{|\lambda S_n|}\right) = \mathbb{E}\left(e^{\lambda S_n} \mathbf{1}_{\lambda S_n \ge 0}\right) + \mathbb{E}\left(e^{-\lambda S_n} \mathbf{1}_{\{\lambda S_n < 0\}}\right)$$
$$\leq \mathbb{E}\left(e^{\lambda S_n}\right) + \mathbb{E}\left(e^{-\lambda S_n}\right)$$

Por inciso anterior tenemos que:

$$= \phi(\lambda) + \phi(-\lambda) < \infty.$$

Por lo tanto $\sum_{k=0}^{\infty} \frac{|\lambda|^k \mathbb{E}\left(|S_n|^k\right)}{k!} < \infty$. Por lo tanto $\mathbb{E}\left(|S_n|^k\right) < \infty$ para toda $k \in \mathbb{N}$.

(3) Sea $M_t^{\lambda} = e^{\lambda S_t}/\phi(\lambda)$. Argumente que si M^n es el proceso dado por

$$M_t^n = \left. \frac{\partial^n}{\partial \lambda^n} \right|_{\lambda=0} M_t^{\lambda},$$

entonces M^n es una martingala para toda n.

(4) Calcule las primeras 4 martingalas resultantes si $\mathbb{P}(X_i = \pm 1) = 1/2$. Utilícelas para calcular el valor de $\mathbb{E}(T^2)$ donde

$$T = \min \{ n \ge 0 : S_n \in \{-a, b\} \}$$

 $v \, a, b > 0.$

Categorías: Caminatas aleatorias, muestreo opcional, ejemplos de martingalas.

Problema 8. Sea M una (\mathscr{F}_n) -martingala. Pruebe que si T es un tiempo de paro finito entonces $\mathbb{E}(M_T) = \mathbb{E}(M_0)$ bajo cada una de las siguientes condiciones:

(1) M es acotada.

Si M es acotada entonces $|M_n| \leq K$ para toda $n \in \mathbb{N}$ esto implica que $M_{T \wedge n}$ tambien es acotada. Además como $T \wedge n$ es un tiempo de paro acotado por el teorema de muestreo opcional de Doob entonces $\mathbb{E}(M_{T\wedge n}) = \mathbb{E}(M_0)$. Ya que $M_{T\wedge n}$ converge a M_T , aplicande el teorema de convergencia acotada tenemos que $\mathbb{E}(M_{T \wedge n})$ converge a $\mathbb{E}(M_T)$ pero la esperanza de $\mathbb{E}(M_{T \wedge n}) = \mathbb{E}(M_0)$ para toda $n \in \mathbb{N}$. Por lo tanto $\mathbb{E}(M_T) = \mathbb{E}(M_0)$.

(2) T es integrable y la sucesión $(M_n - M_{n-1})$ es acotada. Como la sucesión $(M_n - M_{n-1})$ es acotada entonces $|(M_n - M_{n-1})| \le K$.

$$|(M_{T \wedge n} - M_0)| = \left| \sum_{i=1}^{T \wedge n} (M_i - M_{i-1}) \right| \le \sum_{i=1}^{T \wedge n} |(M_i - M_{i-1})| \le TK.$$

Entonces la sucesión $M_{T \wedge n} - M_0$ dominada por KT. Utilizando el teorema de muestreo opcinal de Doob sabemos que $\mathbb{E}(M_{T \wedge n} - M_0) = 0$ para toda $n \in \mathbb{N}$. Podemos utiliar el teorema e convergencia dominada ya que KT es integrable entonces $\mathbb{E}(M_T - M_0) = 0$. Por lo tanto $\mathbb{E}(M_T) = \mathbb{E}(M_0)$.

(3) $(M_{n \wedge T})$ es uniformemente integrable.

Sabemos que $n \wedge T$ converge a M_T , ademas como $M_{n \wedge T}$ es uniformemente integrable sabemos que M_T es integrable y $\mathbb{E}(M_{n \wedge T})$ converge a $\mathbb{E}(M_T)$. Pero por el teorema de muestreo opcional de Doob como $T \wedge n$ es un tiempo de paro acotado la $\mathbb{E}(M_{T \wedge n}) = \mathbb{E}(M_0)$. Por lo tanto $\mathbb{E}(M_T) = \mathbb{E}(M_0)$.

Categorías: Muestreo opcional.

Problema 9. Sea M una (\mathscr{F}_n) -martingala con saltos acotados. Sean

$$C = \{ \limsup M_n = \liminf M_n \in \mathbb{R} \}$$
 y.

Pruebe que $\mathbb{P}(C \cup D) = 1$. Deduzca que las caminatas aleatorias centradas con saltos acotados oscilan. Sugerencia: Para cada K > 0 defina

$$T = \min \left\{ n \ge 0 : |M_n| \ge K \right\}$$

y aplique el teorema de convergencia de martingalas a M^T .

Sea M una caminata aleatoria no trivial con saltos integrables en $-1, 0, 1, \ldots$ y media cero. Pruebe que $\mathbb{P}(M \text{ converge en } \mathbb{N}) = 0$ y concluya que $\liminf M_n = -\infty$ casi seguramente. (Este resultado permitirá dar una prueba adicional de que un Galton-Watson crítico se extingue). Sugerencia: proceda como en el párrafo anterior y pruebe la integrabilidad uniforme de $M_{T \wedge n}, n \in \mathbb{N}$.

Categorías: Teoremas de convergencia de martingalas

Problema 10. Sean X_1, X_2, \ldots variables aleatorias intercambiables:

$$(X_1,\ldots,X_n)\stackrel{d}{=}(X_{\pi_1},\ldots,X_{\pi_n})$$

para cada permutación σ de $\{1, \ldots, n\}$.

(1) Para \mathscr{G},\mathscr{H} sub σ -álgebras de \mathscr{F} definimos a $\mathscr{G}\vee\mathscr{H}=\sigma(\mathscr{G}\cup\mathscr{H}).$ Sea

$$\mathscr{G}^n = \sigma(f(X_1, \dots, X_n) : f : \mathbb{R}^n \to \mathbb{R} \text{ es simétrica}) \vee \sigma(X_{n+1}, X_{n+2}, \dots).$$

Pruebe que $\mathscr{G}^n, n \geq 1$ es una filtración al revés. Sea \mathscr{G} su intersección.

(2) Para cada $A \in \mathscr{B}_{\mathbb{R}}$, defina a

$$\Xi_n(A) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}_{X_i \in A}.$$

Pruebe que

$$\mathbb{P}(X_1 \in A \mid \mathscr{G}^n) = \Xi_n(A) .$$

¿Por qué puede definir a $\Xi(A) = \lim_{n \to \infty} \Xi_n(A)$?

(3) Al considerar a la martingala

$$\frac{1}{n(n-1)} \sum_{1 \le i < j \le n} \mathbf{1}_{X_i \in A} \mathbf{1}_{X_j \in A},$$

pruebe que $\mathbb{P}(X_1 \in A, X_2 \in A | \mathcal{G}) = \mathbb{P}(X_1 \in A | \mathcal{G}) \mathbb{P}(X_2 \in A | \mathcal{G})$. Extienda la afirmación de independencia condicional anterior a X_1, \dots, X_n .

Cagegorías: Teorema de convergencia de martingalas, teorema de de Finetti.

Ejercicio 2.

- (1) Ejecute y explique la función del siguiente código en Octave. Comente qué teoremas del curso (y del curso de probabilidad) son importantes para interpretar la figura.
- (2) Ejecute y explique la función del siguiente código en Octave. Incluya una gráfica en la que la longitud de la variable k sea mayor a 1000. (Puede modificar el programa...) En la gráfica observara un esbozo de la trayectoria de un proceso de ramificación continuo (en una escala distinta...).