Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Computação

Disciplina: Inteligência Artificial Professor: Reginaldo Santos

- [4.0 pontos] Implemente uma versão do algoritmo *Stochastic Hill Climbing*, em uma linguagem de programação de sua escolha, para resolver o **problema das oito rainhas**. Faça os itens requisitados abaixo:
 - a) Descreva a função objetivo utilizada na modelagem do problema.
 - b) Descreva a codificação utilizada para a solução candidata.
 - c) Descreva a(s) heurística(s) e o(s) critério(s) de parada utilizados pelo algoritmo.
 - d) Execute <u>50 vezes</u> o algoritmo e calcule: média e desvio padrão do número mínimo de iterações necessário para parar o algoritmo; média e desvio padrão do tempo de execução do algoritmo.
 - e) Construa dois gráficos:
 - 1) plotar a curva com número mínimo de iterações de cada execução.
 - 2) plotar a curva com o tempo de execução do algoritmo de cada execução.
 - f) Mostre, pelo menos, duas soluções distintas encontradas pelo algoritmo.
 - g) Comente e mostre o código fonte do algoritmo desenvolvido.
- 2) [6.0 pontos] Desenvolva um algoritmo genético, em uma linguagem de programação de sua escolha, para resolver o problema das oito rainhas descrito na questão anterior. Utilize obrigatoriamente a codificação binária para representar um indivíduo. Os parâmetros desse algoritmo genético devem ser:
 - Tamanho da população: 20.
 - Seleção dos pais: escolhida pelo(a) projetista.
 - Cruzamento: escolhido pelo(a) projetista.
 - Taxa de cruzamento: 80%.
 - Mutação: escolhida pelo(a) projetista.
 - Taxa de mutação: 3%.
 - Seleção de sobreviventes: elitista (os melhores indivíduos sempre sobrevivem).
 - Critérios de parada:
 - Número máximo de gerações alcançado: 1000.
 - Se a solução ótima for encontrada.

Universidade Federal do Pará Instituto de Ciências Exatas e Naturais Faculdade de Computação

Disciplina: Inteligência Artificial Professor: Reginaldo Santos

Faça os itens requisitados abaixo:

- a) Descreva a função objetivo utilizada na modelagem do problema.
- b) Apresente a escolha e explique o funcionamento dos operadores que foram utilizados: seleção dos pais, cruzamento e mutação.
- c) Execute <u>50 vezes</u> o algoritmo e apresente, em forma de tabela (vide exemplo abaixo), a melhor solução encontrada em cada execução, o valor da função objetivo desta solução encontrada, o tempo de execução e o número da geração em que o algoritmo parou.
- d) Calcular a média e o desvio padrão do valor da função objetivo do melhor indivíduo, do tempo de execução e o número da geração em que o algoritmo parou (três últimas colunas da tabela).
- e) Mostre, pelo menos, duas soluções distintas encontradas pelo algoritmo.
- f) Comente e mostre o código fonte do algoritmo desenvolvido.

Tabela exemplo

Exec.	Melhor solução	f(melhor solução)	Tempo de execução	Número da geração em que o algoritmo parou
1	[0 0 0, 0 0 1, 0 1 0, 0 1 1, 1 0 0, 1 0 1, 1 1 0, 1 1 1]	Valor de fitness do melhor resultado	Inserir tempo em milissegundos	754
•••	•••	•••	•••	•••
50	•••	•••	•••	

Média e desvio padrão dos melhores fitness: <avg fitness>±<std fitness>

Média e desvio padrão dos tempos de execução: <avg tempo>±<std tempo>

Média e desvio padrão dos números de geração: <avg gen>±<std gen>