Лекция 5

Алгоритмы на графах.

Введение в графы и базовые алгоритмы на графах

Анализ и разработка алгоритмов

Содержание

- Прафы и их приложения
- 2 Дерево и лес
- Представления графов
- 4 Графы реального мира
- 5 Поиск в глубину и его приложения
- 6 Поиск в ширину и его приложения

Графы и их приложения

Неориентированным графом называют пару G=(V,E), где $V=\{v_i\}$ — множество вершин (или узлов), и $E=\{e_{ij}\}=\{(v_i,v_j)\}$ — множество пар вершин, называемых ребрами (или связями).

Число вершин обозначают через |V|, а число ребер — через |E|.

Ориентированный граф — это граф, в котором ребра имеют направления (ориентации).

Взвешенный граф — это граф, в котором каждому ребру приписаны $\emph{веса}$.

Простой граф — это граф, в котором возможно только одно ребро между парой вершин. Мультиграф — это обобщение простого графа, при котором в графе возможны несколько ребер между парой вершин.

Графы и их приложения

Полный граф — это граф, в котором все вершины соединены ребром.

Путь (цепь) в графе — это последовательность попарно различных ребер, соединяющих попарно различные вершины. Длиной пути (цепи) называют количество ребер в пути (цепи).

Вершины v_1 и v_2 в графе называются *свя*занными, если существует путь из V_1 в V_2 . В противном случае, эти вершины называются несвязанными.

Связный граф — это граф, в котором любая пара вершин связана. В противном случае граф называют несвязным.

Мы будем обычно рассматривать простые неориентированные (взвешенные или невзвешенные) графы.

Дерево — граф специального вида

Дерево — это неориентированный граф, в котором между любыми двумя вершинами существует ровно один путь.

Демонстрация: Дерево решений, Фрактальное дерево

Лес — граф специального вида

Лес — это неориентированный граф, в котором между любыми двумя вершинами существует не более одного пути или, эквивалентно, это непересекающееся объединение деревьев.

Демонстрация: Классификатор на основе случайного леса

イロト (個) (を見) (達)

Представления графа: матрица и список смежности

Матрица смежности — это матрица, строки и столбцы которой индексируются вершинами и ячейки которой содержат булево значение (0 или 1), указывающее, являются ли соответствующие вершины смежными (для взвешенных графов вместо 1 стоят соответствующие веса). Матрица смежности (как 2D массив) требует $O(|V|^2)$ памяти.

Список смежности — это множество списков с перечнем смежных вершин. Список смежности (как 1D массив списков) требует O(|V|+|E|) памяти.

Для разреженного графа, т.е. графа, в котором большинство пар вершин не связаны ребрами, $|E| \ll |V|^2$, список смежности значительно эффективнее для хранения, чем матрица смежности.

Матрица смежности

	0	1	2	3	4	5	6
0	0	1	1	0	0	0	0
1	1	0	1	1	0	0	0
2	1	1	0	0	1	0	0
3	0	1	0	0	1	0	0
4	0	0	1	1	0	1	0
5	0	0	0	0	1	0	1
6	0	0	0	0	0	1	0

Список смежности

Вершина	Смежные вершины
0	1, 2
1	0, 2, 3
3	0, 1, 4
3	1, 4
4	2, 3, 5
5	4, 6
6	5

Графы (сети) реального мира

Ссылка 1: Stanford Large Network Dataset Collection

Ссылка 2: Network Repository

Data & Network Collections. Find and interactively VISUALIZE and EXPLORE hundreds of network data

🍂 ANIMAL SOCIAL NETWORKS	816	☐ INTERACTION NETWORKS	29	SCIENTIFIC COMPUTING	11
DIOLOGICAL NETWORKS	37	★ INFRASTRUCTURE NETWORKS	8	SOCIAL NETWORKS	77
BRAIN NETWORKS	116	NABELED NETWORKS	104	FACEBOOK NETWORKS	114
COLLABORATION NETWORKS	19	MASSIVE NETWORK DATA	21	TECHNOLOGICAL NETWORKS	12
CHEMINFORMATICS	646	&MISCELLANEOUS NETWORKS	2668	₩EB GRAPHS	33
CITATION NETWORKS	4	POWER NETWORKS	8	O DYNAMIC NETWORKS	115
ECOLOGY NETWORKS	6	PROXIMITY NETWORKS	13		38
\$ ECONOMIC NETWORKS	16	€ GENERATED GRAPHS	221	m BHOSLIB	36
MAIL NETWORKS	6	RECOMMENDATION NETWORKS	36	III DIMACS	78
F GRAPH 500	8	A ROAD NETWORKS	15	◆ DIMACS10	84
HETEROGENEOUS NETWORKS	15	FETWEET NETWORKS	34	■ NON-RELATIONAL ML DATA	211

Поиск в глубину (DFS) и его приложения

Поиск в глубину (Depth-first search, DFS) — это алгоритм обхода графа, который начинает обход с выбранной корневой вершины и идет «вглубь» графа, насколько это возможно, перед обходом из новой вершины.

Применение: поиск связных компонент, поиск циклов в графе и т.д.

Временная сложность: O(|V| + |E|).

Компонента связности графа — максимальный связный подграф графа.

Демонстрация: DFS и поиск связных компонент

Поиск в ширину (BFS) и его приложения

Поиск в ширину (Breadth-first search, BFS) — это алгоритм обхода графа, в котором обход начинается с выбранной корневой вершины и исследуюся все смежные вершины на текущей «глубине», прежде чем перейти к вершинам на следующей «глубине». Этот алгоритм обхода использует стратегию, противоположную DFS.

Применение: поиск кратчайшего пути между вершинами

Временная сложность: O(|V| + |E|).

Демонстрация: BFS

Спасибо за внимание!

11 / 11