
Exercício 1: Descreva o domínio das funções:

a)
$$z = \sqrt{x + y - 4}$$

b)
$$z = \sqrt{y - 1 - x^2}$$

c)
$$Z = \frac{5 \ln (x+y)}{\sqrt{4-x^2-y^2}}$$

Exercício 2: Considere a superfície S, união de S_1 com S_2 , onde S_1 tem equação $x^2 + y^2 = 4$, com $0 \le z \le 2$, e S_2 é o gráfico da função $z = \sqrt{x^2 + y^2}$ definida no conjunto D, onde $D = \{(x,y) \in R \mid 4 \le x^2 + y^2 \le 25\}$.

- a) Esboce a superfície S_1 .
- b) Esboce a superfície S_2 .
- c) Esboce a superfície S.

Exercício 3: Dada a função $f(x,y) = \frac{1}{x^2 + y^2}$, pede-se:

- a) As parametrizações das curvas de interseção $z=\frac{1}{4}$, z=4 e z=9 .
- b) Um esboço do gráfico da função.

Exercício 4: Faça um esboço do gráfico da função:

$$f(x,y) = \begin{cases} 7 - \sqrt{x^2 + y^2}, & 0 \le x^2 + y^2 \le 16\\ \sqrt{25 - x^2 - y^2}, & 16 \le x^2 + y^2 \le 25 \end{cases}$$

Exercício 5: Faça um esboço do gráfico da função:

$$f(x,y) = \begin{cases} 7 - x^2 - y^2, & x^2 + y^2 \le 4\\ 4, & x^2 + y^2 > 4 \end{cases}$$

Exercício 6: Diga se os limites existem, justificando:

a)
$$\lim_{(x,y)\to(0,0)} \frac{e^x + e^y}{\cos(x) + \sin(y)}$$

b)
$$\lim_{(x,y,z)\to(0,-1,0)} \frac{y^3+xz^2}{x^2+y^2+z^2}$$

c)
$$\lim_{(x,y)\to(0,0)} \frac{x^2+y}{x^2+y^2}$$

d)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2+3y^2+7z^2}{9x^2+5y^2+2z^2}$$

e)
$$\lim_{(x,y,z)\to(0,0,0)} \frac{7x^2y^2z^2}{15x^6+2y^6-6z^6}$$

f)
$$\lim_{(x,y)\to(0,0)} \frac{15x^7y^5}{2x^2+2y^2}$$

g)
$$\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$$

h)
$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2+y^2}$$

i)
$$\lim_{(x,y)\to(1,3)} \frac{6(x-1)^7(y-3)^5}{5(x-1)^2+5(y-3)^2}$$