MATH 601 (DUE 12/6)

HIDENORI SHINOHARA

Contents

1.	Galois Theory VI			1
2.	Cauchy's Theorem.	Finite <i>p</i> -groups,	The Sylow theorems	1

1. Galois Theory VI

Exercise. (Problem 2) $f(x) = x^6 - 2$ is irreducible over \mathbb{Q} by Eisenstein (p = 2). The roots are

 $\zeta^i \sqrt[6]{2} \mid i = 0, \dots, 5$ where $\zeta = e^{2\pi i/6} = (1 + \sqrt{-3})/2$. The 6 roots plot a hexagon on the \mathbb{C} -plane. $\rho(\zeta^i \sqrt[6]{2}) = \zeta^{i+1}r$ and $r(z) = \overline{z}$ are both automorphisms of the splitting field $\mathbb{Q}(\zeta, \sqrt[6]{2})$ that fix \mathbb{Q} . ρ and r correspond to rotation and reflection of the hexagon, so $\operatorname{Aut}(\mathbb{Q}(\zeta, \sqrt[6]{2})/\mathbb{Q})$ contains D_6 .

Prove that the Galois group is exactly D_6 .

2. Cauchy's Theorem, Finite p-groups, The Sylow theorems

Exercise. (Problem 2) Let a prime number p be given. We will show that any group G of order p^n for some n is solvable by induction on n. When n=1, $G\cong \mathbb{Z}_p$, which is abelian, so it is solvable. Suppose we have shown the proposition for some $n\in\mathbb{N}$, and let G be a group of order p^{n+1} . By Corollary 1 right above this problem statement in the handout, the center H of G is a nontrivial subgroup. Moreover, H is clearly a normal subgroup of G. Thus it makes sense to consider G/H. The order of G/H must be p^m for some $1 \le m \le n-1$. By the inductive hypothesis, G/H is solvable. Since every subgroup of G/H can be realized as the quotient of a subgroup of G by G by

Exercise. (Problem 3) Let m = 3, p = 7. Then |G| = 21 = pm with $p \nmid m$. Let t be the number of Sylow p-subgroups. By the third Sylow theorem, $t \mid m$ and $t \equiv 1 \pmod{p}$. The only number that satisfies this is 1, so every group of order 21 has a unique Sylow 7-subgroup.

Exercise. (Problem 4) Using the same idea as Problem 2 above, we will construct a filtration. Let G be an extension of H by Q. Suppose H and Q are both solvable. Since Q is solvable, there exists a filtration $\{e\} = Q_0 \leq \cdots \leq Q_n = Q$. Let ϕ be an isomorphism from Q to G/H. Then the $\phi(Q_i)$'s form a filtration of G/H and $\phi(Q_i) = G_i/H$ for some subgroup G_i by the same theorems that we used in Problem 2. Moreover, G_i 's form a filtration from H to G. Since H is solvable, there exists a filtration from $\{e\}$ to H. By concatenating them, we obtain a filtration from $\{e\}$ to G, so G is solvable.

Exercise. (Problem 5) By Problem 3, G has a unique group H of order 7. Since conjugation preserves the order of a group, the group must be normal. Then $H \subseteq G$ and $G/H \cong \mathbb{Z}_3$. Any group of prime order is abelian and thus solvable. Therefore, G is an extension of a solvable group \mathbb{Z}_7 by a solvable group \mathbb{Z}_3 , so it must be solvable.