

♦ Il numero di ossidazione

- In un composto covalente il *numero di ossidazione* di un atomo è "la carica che assumerebbe tale atomo se gli elettroni di legame venissero completamente assegnati all'elemento più elettronegativo".
- In un composto ionico ciascuno ione monoatomico possiede numero di ossidazione pari alla carica dello ione stesso.

Regole per la determinazione dei numeri di ossidazione degli atomi

Per determinare il **numero di ossidazione** di un atomo bisogna conoscere sia la configurazione elettronica esterna dell'atomo sia la formula di struttura del composto in cui l'atomo è presente. Ricordare alcune semplici regole pratiche aiuta:

- a) ogni atomo allo **stato elementare** ha numero di ossidazione pari a **0**;
- b) il numero di ossidazione degli elementi del **gruppo I** nei loro composti è pari a +1;
- c) il numero di ossidazione degli elementi del **gruppo II** nei loro composti è pari a +2;
- d) il numero di ossidazione degli elementi del **gruppo III** nei loro composti è generalmente pari a +3;
- e) il **fluoro** è l'elemento più elettronegativo e nei suoi composti ha sempre numero di ossidazione uguale a **-1**;
- f) l'ossigeno ha generalmente numero di ossidazione uguale a -2, tranne che nei perossidi, in cui è -1, nei superossidi, in cui è -1/2, e con il fluoro, in cui è pari a +2;
- g) l'**idrogeno** ha sempre numero di ossidazione +1, tranne che negli **idruri** (composti idrogeno-metallo), dove il numero di ossidazione è uguale a -1;
- h) la somma algebrica dei numeri di ossidazione di tutti gli atomi in uno ione poliatomico è pari alla carica del composto; essa è zero se il composto è neutro.

Cationi monoatomici

- Il nome dei cationi metallici monoatomici coincide con il nome dell'elemento di provenienza.
- Se un metallo può formare <u>cationicon diversa carica</u> (diverso stato di ossidazione), bisogna specificare la carica dello ione:
 - Nomenclatura IUPAC: la carica viene indicata con un numero romano posto tra parentesi dopo il nome del metallo (**notazione di Stock**).
 - Vecchia Nomenclatura :si aggiunge il suffisso OSO per indicare lo stato di ossidazione più basso e il suffisso ICO per lo stato di ossidazione più alto.

	IUPAC	TRADIZIONALE
Na ⁺	ione sodio	
Ca^{2+}	ione calcio	
Zn^{2+}	ione zinco	
Fe ²⁺	ione ferro (II)	ione ferr <mark>oso</mark>
Fe ³⁺	ione ferro (III)	ione ferr <mark>ico</mark>
Cu+	ione rame (I)	ione rame <mark>oso</mark>
Cu^{2+}	ione rame (II)	ione rame <mark>ico</mark>

Anioni monoatomici

Vengono indicati facendo seguire alla radice

dell'elemento la desinenza uro.

T	_	1
Br-	lone	bromuro
וע		DIUIII

Ione fluoruro F-

S²-Ione solfuro

P3-Ione fosfuro

H ⁻ Ione idruro	C ⁴⁻ Ione carburo	N ³⁻ Ione nitruro	O ²⁻ Ione ossido	F ⁻ Ione fluoruro
		P ³⁻ Ione fosfuro	S ²⁻ Ione solfuro	Cl ⁻ Ione cloruro
				Br⁻ Ione bromuro
				I- Ione ioduro

Eccezioni:

 O^{2-} Ione ossido (non ossigenuro) Ione

 N^{3} nitruro (non azoturo)

♦ Composti inorganici

La **formula** di un composto binario va scritta seguendo un determinato ordine:

- Se il composto è formato da un metallo e un non metallo, si scrive prima il simbolo del metallo. Esempio: il composto formato da litio e iodio si iscrive LiI.
- Se il composto è formato da due non metalli, si scrive prima l'elemento meno elettronegativo

• Se un composto è compatibile con due o più numeri di ossidazione, si aggiunge il prefisso **mono-** (facoltativo), **bi-** oppure **di-**, **tri-**, **tetra-**, **penta-**, **esa-**, **epta-**, **octa-** ecc. a seconda del numero di atomi legati all'elemento.

 $\begin{array}{ccc} \textbf{NO} & \textbf{monossido di azoto} \\ \textbf{NO}_2 & \textbf{diossido di azoto} \\ \textbf{N}_2 \textbf{O} & \textbf{monossido di diazoto} \\ \textbf{N}_2 \textbf{O}_3 & \textbf{triossido di diazoto} \\ \textbf{N}_2 \textbf{O}_4 & \textbf{tetrossido di diazoto} \\ \textbf{N}_2 \textbf{O}_5 & \textbf{pentossido di diazoto} \\ \end{array}$

	IUPAC	n.ox.	nome tradizionale
SO ₂	diossido di zolfo	+4	anidride solforosa
SO ₃	triossido di zolfo	+6	anidride solfor <mark>ica</mark>
FeO	ossido di ferro	+2	ossido ferroso
Fe_2O_3	triossido di diferro	+3	ossido ferr <mark>ico</mark>
	IUPAC	n.ox. cloro	nome tradizionale
CI ₂ O	IUPAC monossido di dicloro		nome tradizionale anidride ipoclorosa
CI ₂ O CI ₂ O ₃		cloro	
_	monossido di dicloro	cloro +1	anidride ipoclorosa

Come dare una sequenza logica?

Allo scopo di dare una sequenza logica alla determinazione dei nomi dei composti inorganici, consideriamo che formalmente tutti i composti possono essere ottenuti dagli elementi per successive reazioni, come indicato nello schema seguente:

 Metallo + Ossigeno
 → Ossido

 Non Metallo + Ossigeno
 → Anidride

 Ossido + Acqua
 → Idrossido

 Anidride + Acqua
 → Acido

 Idrossido + Acido
 → Sale + Acqua

Come è noto dallo studio della struttura atomica tutti gli elementi possono essere raggruppati in 4 grandi categorie:

1.Metalli 2.Non metalli 3.Elementi di transizione 4.Gas Nobili

Ad esclusione dei gas nobili e del Fluoro, tutti gli elementi possono formare composti binari con l'ossigeno.

Tutti i composti formati esclusivamente da un metallo con l'ossigeno prendono il nome di **OSSIDI**.

• Se il metallo presenta un solo possibile stato di ossidazione il composto verrà chiamato *OSSIDO di* seguito dal nome del metallo.

Na₂O Ossido di Sodio CaO Ossido di Calcio K₂O Ossido di Potassio

MgO Ossido di Magnesio Al₂O₃ Ossido di Alluminio ZnO Ossido di Zinco

• Se il metallo presenta due possibili stati di ossidazione, al termine OSSIDO seguirà il nome del metallo a cui viene rimossa la vocale finale e aggiunto il suffisso –OSO, per lo stato di ossidazione più basso, o –ICO, per lo stato di ossidazione più alto.

Ad esempio:

Ferro: stati di ossidazione possibili +2 e +3 FeO stato di ossidazione =+2 Ossido Ferroso Fe₂O₃ stato di ossidazione =+3 Ossido Ferrico

Stagno stati di ossidazione possibili +2 e +4 SnO stato di ossidazione =+2 Ossido Stannoso SnO₂ stato di ossidazione =+4 Ossido Stannico

NB!

esistono casi particolari di composti classificati tra gli ossidi (es: NO Ossido di Azoto).

- **PEROSSIDI**: prendono il nome di PEROSSIDI tutti i composti in cui l'**ossigeno** si presenta **con numero di ossidazione -1** ed è **legato ad un metallo o all'idrogeno**. Il nome di questi composti si ottiene facendo seguire al sostantivo perossido il nome del metallo presente nel composto stesso.
- **ANIDRIDI**: prendono il nome di ANIDRIDI tutti i composti che derivano formalmente dalla reazione di un **non metallo con l'ossigeno**. Il nome delle anidridi, si origina, come per gli ossidi dal nome del metallo che le compone, con qualche differenza.
- Se il non metallo presenta un solo possibile stato di ossidazione, il nome si ottiene facendo seguire al nome anidride il nome del metallo, a cui viene rimossa l'ultima lettera e aggiunto il suffisso –**ICA**.

ESEMPIO: Boro:stato di ossidazione possibile +3

B₂O₃ Anidride Borica

• Se il non metallo possiede due possibili stati di ossidazione, il nome si ottiene facendo seguire al nome anidride il nome del metallo, a cui viene rimossa l'ultima lettera e aggiunto il suffisso –**OSA** per lo stato di ossidazione più basso, e –**ICA** per lo stato di ossidazione più alto.

Ad esempio:

Zolfo: stati di ossidazione possibili +4 e +6 SO₂ stato di ossidazione =+4 Anidride Solforosa SO₃ stato di ossidazione =+6 Anidride Solforica

Azoto: stati di ossidazione possibili +3 e +5 N₂O₃ stato di ossidazione =+3 Anidride Nitrosa N₂O₅ stato di ossidazione =+5 Anidride Nitrica

Fosforo: stati di ossidazione possibili +3 e +5 P₂O₃ stato di ossidazione =+3 Anidride Fosforosa P₂O₅ stato di ossidazione =+5 Anidride Fosforica

- il non metallo possiede più stati di ossidazione in corrispondenza dei quali da luogo alla formazione di anidridi. E' questo il caso più complesso per la formazione del nome del composto che si ottiene seguendo le seguenti regole:
- ➤ il composto ottenuto facendo ricorso al più basso stato di ossidazione prende il nome di anidride seguito da un aggettivo formato a partire dal nome del non metallo preceduto dal prefisso **ipo-** e terminante con la desinenza -osa previa eliminazione dell'ultima o.
- ➤ Il composto ottenuto facendo ricorso al primo stato di ossidazione intermedio prende il nome anidride seguito da un aggettivo formato sostituendo la lettera finale o del non metallo con la desinenza –osa
- ➤ il composto ottenuto facendo ricorso al secondo stato di ossidazione intermedio prende il nome di anidride seguito da un aggettivo formato sostituendo la lettera finale o del nome del non metallo con la desinenza –ica
- ➢ il composto ottenuto facendo ricorso al più elevato stato di ossidazione prende il nome di anidride seguito da un aggettivo formato a partire dal nome del non metallo preceduto dal prefisso per- e terminante con la desinenza -ica previa eliminazione dell'ultima o

Ad esempio: cloro stati di ossidazione possibili +1,+3,+5,+7

Cl₂O stato di ossidazione =+1 Anidride Ipoclorosa

Cl₂O₃ stato di ossidazione =+3 Anidride Clorosa

Cl₂O₅ stato di ossidazione =+5 Anidride Clorica

Cl₂O₇ stato di ossidazione =+7 Anidride Perclorica

Idrossidi e Acidi

La formazione degli ossidi e delle anidridi è il primo passo verso la comprensione della nomenclatura di altri composti più complessi che si possono formare dalla reazione di questi composti con l'acqua.

Prendono il nome di IDROSSIDI tutti quei composti che si possono ottenere dalla reazione formale di una molecola di ossido con una o più molecole di acqua.

La nomenclatura degli idrossidi ricalca quella degli ossidi, sostituendo la parola ossido con idrossido.

Esempi:

Na ₂ O+ H ₂ O	\longrightarrow	2 NaOH Idrossido di Sodio
$K_2O + H_2O$	\longrightarrow	2 KOH Idrossido di Potassio
Al ₂ O ₃ + 3H ₂ O	\longrightarrow	2 Al(OH)3 Idrossido di Alluminio
FeO + H ₂ O	\longrightarrow	Fe(OH) ₂ Idrossido Ferroso
Fe ₂ O ₃ + 3H ₂ O	\longrightarrow	2 Fe(OH)₃ Idrossido Ferrico
SnO + H ₂ O	\longrightarrow	Sn(OH) ₂ Idrossido Stannoso
SnO ₂ + 2H ₂ O	$-\!$	Sn(OH) ₄ Idrossido Stannico

Idrossidi e Acidi

Prendono il nome di **OSSIACIDI** tutti quei composti che formalmente possono essere derivati dalla reazione di una molecola di anidride e una molecola di acqua.

La nomenclatura degli ossiacidi si ottiene ricalcando quella delle anidridi, sostituendo la parola anidride con il termine acido e cambiando l'aggettivo seguente coerentemente.

Esempi:

SO ₂ + H ₂ O	\longrightarrow	H ₂ SO ₃ Acido Solforoso
SO ₃ + H ₂ O	\longrightarrow	H ₂ SO ₄ Acido Solforico
$N_2O_3 + H_2O$	\longrightarrow	2HNO ₂ Acido Nitroso
$N_2O_5 + H_2O$	\longrightarrow	2HNO ₃ Acido Nitrico
CI ₂ O + H ₂ O	\longrightarrow	2HCIO Acido Ipocloroso
Cl ₂ O ₃ + H ₂ O	\longrightarrow	2HClO ₂ Acido Cloroso
Cl ₂ O ₅ + H ₂ O	\longrightarrow	2HClO ₃ Acido Clorico
Cl ₂ O ₇ + H ₂ O	\longrightarrow	2HCIO ₄ Acido Perclorico

Idrossidi e Acidi

Prendono il nome di **IDRACIDI** i composti che si ottengono per reazione di alcuni non metalli con l'idrogeno.

La loro nomenclatura deriva dal nome del non metallo a cui viene sostituita la lettera finale con la desinenza –**IDRICO.**

Ad esempio:
HF Acido Fluoridrico
HCI Acido Cloridrico
HBr Acido Bromidrico
HI Acido Iodidrico
H₂S Acido Solfidrico

Ioni degli Acidi

Come si vedrà nel seguito del corso, gli acidi possono perdere uno o più idrogenioni (ioni H_3O^+ o H^+), dando luogo alla formazione di anioni aventi una o più cariche negative. La nomenclatura di questi anioni si ottiene a partire dal nome dell'acido sostituendo la desinenza $-\mathbf{OSO}$ con la desinenza $-\mathbf{ITO}$, la desinenza $-\mathbf{ICO}$ con $-\mathbf{ATO}$ e $-\mathbf{IDRICO}$ con $-\mathbf{URO}$.

Esempi:

HNO₃ Acido Nitrico NO₃

H₂SO₄ Acido Solforico SO₄²

H₂SO₃ Acido Solforoso SO₃²

HCI Acido Cloridrico Cl

HCIO₄ Acido Perclorico ClO₄

Ione Nitrato
Ione Solfato

Ione Solfito

Ione Cloruro

Ione Perclorato

Ioni dei Metalli

Anche i metalli possono dar luogo alla formazione di ioni in conseguenza della perdita di uno o più elettroni. In questo caso il nome del corrispondente ione (catione) si ottiene esattamente come nel caso degli ossidi.

Esempi:

Ca Calcio Ca²⁺ Ione Calcio Fe(II) Ferro Fe²⁺ Ione Ferroso Fe(III) Ferro Fe³⁺ Ione Ferrico Al Alluminio Al³⁺ Ione Alluminio Sn(II) Stagno Sn²⁺ Ione Stannoso Sn(IV) Stagno Sn⁴⁺ Ione Stannico

Sali

Formalmente tutti i sali possono essere ottenuti dalla reazione di un acido con un idrossido, portando alla formazione di un sale e molecole di acqua. Sebbene questa reazione non sia sempre possibile, ci permette di ottenere facilmente la formula del sale e di formarne il nome con semplicità. Il nome di un sale di ottiene unendo il nome dello ione metallico con il nome dell'anione dell'acido che lo compongono.

Na₂SO₄ Solfato di Sodio

NaCl Cloruro di Sodio

FeSO₄ Solfato Ferroso

Fe₂(SO₄)₃ Solfato Ferrico

Al₂(SO₄)₃ Solfato di Alluminio

Mg(ClO₄)₂ Perclorato di magnesio

Sali acidi e Sali basici

Talvolta accade che non tutti gli atomi di idrogeno di un acido vengano completamente salificati nella formazione di un sale. Quello che si ottiene in questo caso viene definito un SALE ACIDO. La nomenclatura di questi composti deve naturalmente indicare la natura del sale e il numero di idrogenioni che non sono stati sostituiti.

Stabilito il nome del sale secondo le regole precedentemente descritte, si interpone un termine che specifichi il numero di idrogenioni non utilizzati (quindi ancora presenti nel sale) tra il termine derivante dall'acido e il termine derivante dall'idrossido.

Un idrogenione libero: Monoacido

Due idrogenioni liberi: Biacido Tre idrogenioni liberi: Triacido

Esempi:

H₂CO₃ Acido Carbonico

Na₂CO₃ Carbonato di Sodio

NaHCO₃ Carbonato Monoacido di Sodio (Bicarbonato di Sodio)

H₂SO₄ Acido Solforico

K₂SO₄ Solfato di Potassio

KHSO₄ Solfato Monoacido di Potassio (Bisolfato di Potassio)

Idruri

Si definiscono IDRURI tutti i composti formati tra un metallo e l'idrogeno. La nomenclatura di tali composti si ottiene facendo seguire al nome idruro il nome del metallo da cui deriva.

Esempi:

Sodio: NaH Idruro di Sodio

Litio LiH Idruro di Litio

Alluminio e Litio : LiAlH4 Idruro di Litio e Alluminio

ESERCIZI

8) Tenendo presente la regola dell'ottetto e la posizione degli elementi nella tavola periodica, prevedere la carica più probabile degli ioni formati dai seguenti elementi: Mg, Rb, Ni.

Scrivere la configurazione elettronica degli ioni e specificare a quale gruppo e periodo appartengano tali elementi.

Mg metallo alcalino terroso 1s²2s²2p⁶3s² Rb metallo alcalino [Kr] Ni metallo di transizione [Ar] 3d8 4s2

9) Completare la seguente tabella.

Simbolo dell'isotopo	Numero atomico	numero di massa	numero di protoni	numero di neutroni
¹⁵ N				
³⁹ K				
$^{3}\mathrm{H}$				
32 S				

26

Simbolo dell'isotopo	Numero atomico	numero di massa	numero di protoni	numero di neutroni
¹⁵ N	7	15	7	8
³⁹ K	19	39	19	20
^{3}H	1	3	1	2
^{32}S	16	32	16	16

10)Dare una semplice spiegazione della differenza tra il raggio ionico del cloro e quello del potassio, pari rispettivamente a 1,8 Å e 1,38 Å.

Suggerimento: sia K⁺ che Cl⁻ hanno 18 elettroni

Entrambi hanno una configurazione elettronica esterna $3s^23p^6$, ma il K⁺ ha 19 protoni (il Cl ne ha 17), e quindi i suoi elettroni risentono di una maggiore attrazione nucleare, dando luogo ad un minore raggio ionico del K⁺ rispetto al Cl⁻.

12) Per il titanio esistono le due forme ioniche Ti³⁺ e Ti⁴⁺. Quale delle due è la più favorita? Dare una spiegazione.

La configurazione più stabile è quella del Ti⁴⁺: gas nobile precedente (Ar).

13) Perché l'energia di seconda ionizzazione del litio è maggiore di quello del berillio?

Mentre entrambi gli elettroni del berillio appartengono al II livello (1s² 2s²) e quindi sono facili da strappare, il II elettrone del litio (1s² 2s¹) appartiene al I livello (orbitale interno).

14) In un atomo, tra un elettrone di un orbitale **2**p e uno di un orbitale 3d, quale è soggetto alla maggiore carica nucleare effettiva (Z^*) ?

L'orbitale 2p è soggetto alla maggiore carica nucleare effettiva, essendo più interno e quindi il suo elettrone sarà meno schermato.

🔷 Atomi - numeri quantici - molecole - moli numero di Avogadro

15) Indicare lo ione avente raggio maggiore fra le seguenti coppie e motivare le scelte:

$$Na^+/K^+$$

$$Na^+/Mg^{2+}$$

• stessa struttura elettronica esterna, ma diverso numero quantico principale:

$$K^+ > Na^+$$
 $Cl^- > F^-$

• isoelettronici; <u>maggiore quello con numero atomico più</u> <u>piccolo</u> → nel caso dei cationi, Mg ha 2 protoni extra quindi gli elettroni rimasti risentono di > Z* e l'atomo «si contrae»; nel caso degli anioni, S acquisisce 2 elettroni e quindi gli orbitali si espandono, portando a > raggio ionico

$$Na^{+} > Mg^{2+}$$

 $S^{2-} > Cl^{-}$

🔷 Atomi - numeri quantici - molecole - moli numero di Avogadro

17) Mettete in ordine di dimensione i seguenti ioni, motivando l'ordine scelto: Cl⁻, Mg²⁺, Ca²⁺.

$$C1^- > Ca^{2+} > Mg^{2+}$$

Gli ioni Cl⁻ e Ca²⁺ hanno lo stesso numero di elettroni (18) ma Ca²⁺ ha un nucleo di carica positiva maggiore e quindi sarà più piccolo.

D'altra parte Ca²⁺ è più grande di Mg²⁺ perché scendendo lungo un gruppo le dimensioni degli atomi (e di conseguenza dei rispettivi ioni, a parità di configurazione elettronica esterna) aumentano.

18) Per l'elemento ₂₆A stabilire il numero di elettroni e di protoni che lo compongono e, (senza utilizzare la Tavola Periodica) scrivere la configurazione elettronica dell'elemento. Determinare il gruppo e il periodo a cui appartiene (ora controllate la TP).

Fare la stessa cosa per gli elementi ₃₄A e ₃₇A. Quale tra i due ha carattere metallico e perché? $26A : 1s^2 2s^2 2p^6 3 s^2 3p^6 4s^2 3d^6$ (IV periodo, VIII gruppo).

₂₆**A** è pertanto il Ferro (Fe)

34A è il Selenio (Se) e 37A è il Rubidio (Rb).

Rb è un metallo.