Semestrální práce z předmětu ZIS - 3

Uvažujte lineární t-invariatní deterministický systém druhého řádu popsaný stavovým modelem

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} 0 & 1 \\ -0.2 & -0.3 \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} 0 \\ 0.2 \end{bmatrix} u(t), \tag{1a}$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \mathbf{x}(t),\tag{1b}$$

kde $\mathbf{x}(t) \in \mathbb{R}^2$ je stav, $u(t) \in \mathbb{R}$ je vstup, $\mathbf{y}(t) \in \mathbb{R}^2$ je výstup a $\mathbf{x}(0)$ je neznámá počáteční podmínka. Předpokládejte, že na vstupu systému je sinusový signál $u(t) = 2\sin(0.2t + 0.3)$ a v systému mohou vzniknout následující dvě aditivní chyby:

Chyba akčního členu reprezentovaná maticí $\mathbf{B}_{\mathrm{f}} = [0 \ 0.2]^{\mathrm{T}}$ a signálem

$$f_{\mathbf{u}}(t) = \begin{cases} 0 & t \le 20, \\ 0.2 & 20 < t \le 50, \\ 0 & t > 50. \end{cases}$$

Chyba senzoru druhé složky stavu ${\rm reprezentovan\acute{a}}$ maticí $\mathbf{D}_f = [0 \ 1]^T$ a signálem

$$f_{y}(t) = \begin{cases} 0 & t \le 60, \\ 0.1\sin(0.3t) & 60 < t \le 90, \\ 0 & t > 90. \end{cases}$$

Zpracujte následující body:

- 1. Doplňte lineární stavový model (1) o model obou uvažovaných aditivních chyb a nakreslete blokové schéma.
- 2. Navrhněte generátor reziduí, který je založen na rekonstruktoru stavu a poskytuje reziduální signál $\mathbf{r}(t) \in \mathbb{R}^2$.
- 3. Analyzujte, zda mohou být obě uvažované chyby detekovány a zda je možné provést jejich izolaci na základě reziduálního signálu $\mathbf{r}(t) \in \mathbb{R}^2$ (tj. jednoznačně rozhodnout, o kterou z chyb se jedná).
- 4. Na základě výsledků analýzy provedené v předchozím bodě navrhněte generátor rozhodnutí d(t).
- 5. Simulujte systém s počáteční podmínkou $\mathbf{x}(0) = [-0.1 \ 0.2]^{\mathrm{T}}$ a zadaným vstupním signálem a chybami na časovém horizontu $t \in [0, 100]$. Pro generátor reziduí použijte počáteční podmínku $\hat{\mathbf{x}}(0) = [0 \ 0]^{\mathrm{T}}$. Vykreslete průběh vstupu u(t), stavu $\mathbf{x}(t)$, výstupu $\mathbf{y}(t)$, reziduálního signálu $\mathbf{r}(t)$, chyby akčního členu $f_{\mathbf{u}}(t)$, chyby senzorů $f_{\mathbf{y}}(t)$ a rozhodnutí d(t).