

SECURITY

Protokolle für sichere Kommunikation

June 16, 2023

Marc Stöttinger

Secure communication protocols serve as the fortified gateways that protect the sanctity of our digital interactions.

Whitfield Diffie

MOTIVATION

- → Bisher: Protokolle zur Authentifikation von Personen im Internet
- → Heute: Protokolle zum Aufbau eines sicheren Kommunikationskanals
 - → Start: Alle Nachrichten abhör- und manipulierbar
 - → Ziel: Sicherer (vertraulicher, authentischer und integrer) Kommunikationskanal

GROBABLAUF SICHERE KOMMUNIKATIONSPROTOKOLLE

HERAUSFORDERUNGEN FÜR SICHERE KOMMUNIKATIONSPROTOKOLLE

Herausforderungen für standardisierte, sichere Kommunikationsprotokolle

- → Geräte und Anforderungen im Internet sind sehr heterogen (Leistung, Bandbreite, Plattfrom...)
- → Einzelschritte der Protokolle müssen sicher zusammengeführt werden
- → Einbettung der Protokolle im Netzwerkstack ist komplex

MOTIVATION SICHERE PROTOKOLLE HETEROGENITÄT IM INTERNET

- → Geräte im Internet sind sehr heterogen
 - → Interoperabilität mit alten Systemen muss gewährleistet sein
 - → Unterschiedliche Krypto Verfahren müssen unterstützt werden
 - → Manche Anwendungen erfordern Zertifikats-basierte Authentifikation beider Parteien

MOTIVATION SICHERE PROTOKOLLE SICHERE VERBINDUNG EINZELSCHRITTE

- → Die Einzelschritte müssen sicher zusammengefügt werden
 - → Ansonsten können kleinste Schwachstellen für Angriffe ausgenutzt werden
 - → Beispiel: Mallory liest die Nachrichten von Alice und sendet sie erneut (Replay Angriff)

MOTIVATION SICHERE PROTOKOLLE SICHERE VERBINDUNG EINZELSCHRITTE

- → Komplexe Vorgänge in der Kommunikationstechnik werden in Schichten eingeteilt
 - → OSI Modell
 - → TCP/IP Modell
- → Schichten werden nacheinander ausgeführt und bieten darüberliegenden Schichten bestimmte Dienste an
 - → Transportschicht: Steuerung des Datenflusses
 - → Internetschicht: Adressierung von Paketen
 - → Netzzugriff: Zugriff auf das Netzwerk

- 4. Anwendungsschicht (HTTP. SMPT. SSH....)
- 3. Transportschicht (TCP, UDP, Portnummer, ...)
- 2. Internetschicht (IPv4, IPv6)
- 1. Netzzugriffsschicht (MAC-Adresse, PHY, ...)

Figure: TC/IP Modell

DATENÜBERTRAGUNG IM SCHICHTENMODELL

ABSICHERUNG DER PAKETDATEN

- → Frage: In welcher Schicht soll die Absicherung stattfinden?
 - → Je weiter unten, desto mehr Daten werden abgesichert
 - → Je weiter oben, desto länger bleiben die Daten abgesichert
- → Die sinnvollste Schicht zur Absicherung kann je nach Kontext und Anwendung variieren

VARIANTE DER ABSICHERUNG DER NUTZDATEN

→ Beispiele

- → Chat-Nachrichten oder Dateien absichern
- → Kann vor oder in der Anwendungsschicht geschehen

→ Einsatzzwecke

- → Mögliche Ende-zu-Ende Verschlüsselung (E2E)
- → Der Anwendung wird nicht vertraut (Speicherung in der Cloud)

- → Protokoll- und Metadaten sind lesbar (wer sendet Chatnachricht)
- → Applikationsspezifische Sicherheitsprotokolle nötig bei Absicherung in der Anwendung

VARIANTE DER ABSICHERUNG NUTZ- UND PROTOKOLLDATEN

→ Beispiele

→ Webseiten, E-Mails

→ Einsatzzwecke

→ Sichere Verbindung zwischen Anwendungen inkl. Protokolldaten

- → Port, IP- und MAC Adressen les- und änderbar
- → Eine sichere Verbindung je Anwendung wird benötigt
- → Code im Kontext der gleichen Anwendung hat Zugriff auf die Nutzdaten (z.B. andere Webseiten)

VARIANTE DER ABSICHERUNG PORT- UND IP ADRESSE

→ Beispiele

→ Sicheres Virtual Private Network (VPN)

→ Einsatzzwecke

- → Sichere Verbindung zwischen Rechnern
- → Absicherung Port: Rechner zu Rechner
- → Absicherung IP: Rechner/Netzwerk zu Netzwerk

- → MAC Adressen les- und änderbar
- → Nutz- und Protokolldaten sind am Ziel ungesichert
- → Komplexere Konfiguration

Absicherung Port

Absicherung IP Adresse

VARIANTE DER ABSICHERUNG MAC ADRESSE

→ Beispiele

→ Sicherer Zugang zum Internet (MACSec, WPA2/3, ...)

→ Einsatzzwecke

- → Sichere Verbindung zum Router bzw. nächsten Hop
- → Absicherung des lokalen Netzwerkes

- → Schlüssel müssen auf Geräte verteilt werden, damit sie Zugang zum Netzwerk erhalten
- → Kommunikation nur abgesichert bis zum Internetzugang

ÜBERSICHT ABSICHERUNG DER PAKETDATEN

→ Welche Paketdaten sollen abgesichert werden?

Abgesicherte Daten	Einsatzzweck	Limitierungen	Protokolle
Nutzdaten	Sichere Ende-zu-Ende (E2E) Kom- munikation für Anwendung (z.B. eMail oder WhatsApp)	Protokolldaten lesbar (HTTP GET/- POST), Anwendungsspezifisch	Signal
+ Protokolldaten (z.B. HTTP)	Sichere Verbindung zu einer Anwendung (z.B. Webserver)	Eine sichere Verbindung pro Dienst wird benötigt (z.B. Unternehmens-IT)	Transport Layer Security (TLS)
+ Port und IP	Sichere Verbindung zu einem Host/Netzwerk (z.B. VPN)	Komplexe Netzwerkadministration, Absicherung geht nicht bis zu Anwendung	Internet Protocol Security (IPSec)
+ MAC Adressen	Absicherung des lokalen Netzwerkes (z.B. im Fahrzeug)	Komplexe Netzwerkadministration aufgrund vorher verteilter Schlüssel	WPA2/3, MACsec (MAC Security)

TRANSPORT LAYER SECURITY (TLS - 1/2)

- → TLS ist das meist genutzte Protokoll für sichere Kommunikation im Internet
 - → Früher bekannt als Security Socket Layer (SSL)
- → Browser über HTTPs
- → eMail Clients über SMTP/IMAP/POP3
 - → Früher bekannt als Security Socket Layer (SSL)
- → TLS speichert **Zustandsinformationen** in **Sitzungen**, von denen mehrere gleichzeitig aktiv sein können (z.B. eine Sitzung pro Webseite)

Standard	Nutzungs- zeitraum	Unterstützende Webseiten (Dez22)
SSL1.0	1994 - ?	-
SSL2.0	1995 - 2011	0,2%
SSL3.0	1996 - 2015	2,1%
TLS1.0	1999 - 2021	343,0%
TLS1.1	2006 - 2021	37,0%
TLS1.2	2008+	99,9%
TLS1.3	2018+	58,9%

TRANSPORT LAYER SECURITY (TLS - 2/2)

- → TLS liegt zwischen Anwendungs- und Transportschicht und besteht aus fünf verschiedenen Protokollen
 - 1. Change Cipher Spec (CCS): Aushandlung der genutzten Krypto Verfahren
 - Alert Protocol: Fehlerbehandlung und Verbindungsabbruch
 - 3. **Handshake**: Aushandlung der Sitzungsinformationen und des Sitzungsschlüssels
 - 4. **Application**: Transparente Kommunikation mit Anwendung
 - 5. **Record Layer**: Teilt Daten in Fragmente und sorgt für deren Absicherung

TLS - RECORD LAYER PROTOKOLL

→ Das Record Layer Protokoll fragmentiert Anwendungsdaten transparent und nutzt symmetrische Kryptographie, um die Sicherheit der Daten zu gewährleisten

Der TLS Record enthält:

- → Typ des überliegenden Protokolls (CCS, Alert, Handshake, Applikation)
- → TLS Versionsinformationen
- → Länge der Nutzdaten

TLS - HANDSHAKE PROTOKOLL

- → Pro Sitzung müssen verschiedene Informationen ausgehandelt werden
 - → Verwendete kryptographische Verfahren
 - → Wer muss sich authentifizieren? (Keiner, nur Server, Alice und Server)
 - → Symmetrischer Schlüssel für Record Layer Protokoll (sog. Sitzungsschlüssel)
- → Kryptographische Verfahren werden mittels der Cipher Suite ausgehandelt
 - → Beispiel: TLS_DHE_RSA_WITH_AES_128_GCM_SHA256
- → Eine Cipher-Suite definiert
 - → Schlüsselaustausch (Diffie-Hellman mit Schlüssellöschung sog. DH Ephemera)
 - → Authentifizierung (RSA Signaturen)
 - → Verschlüsselung (AES-128 GCM)
 - → Hashfunktion (SHA256)

HANDSHAKE PROTOKOLL TLS1.2 RSA SIGNATUR UND DH SCHLÜSSELAUSTAUSCH

DISKUSSION IN KLEINEN GRUPPEN

Sicherheit von TLS

- → Wie wird verhindert, dass ein Angreifer die Nachrichten einer alten Sitzung einspielt, um einen Replay-Angriff durchzuführen?
- → Wieso muss der Server Schlüssel *B* signiert werden?
- \rightarrow Wieso kann ein Angreifer den Sitzungsschlüssel K nicht berechnen?

HANDSHAKE PROTOKOLL TLS1.2

HANDSHAKE PROTOKOLL TLS1.3

Compass

TLS1.3 VS. TLS1.2

Hauptunterschied zwischen TLS1.3 [RFC8446] und TLS 1.2 [RFC5246]:

- → Unsichere veraltete Verfahren wurden rausgenommen
 - → Die Cipher Suite wurde auf fünf Sets reduziert
 - → Kein statischer Schlüsselaustausch erlaubt
 - → Schlüsselaustauschverfahren nur noch mit (EC)DHE, PSK-only und PSK mit (EC)DHE
- → Verschlüsselung der Kommunikation nach Handshake Nachricht ServerHello
- $\,\rightarrow\,$ Kryptographische Verfahren basieren auf Elliptischen Kurven und gehören zum Basisset
- → Reduktion des Handshake-Protokolls zum schnelleren Aufbau des gesicherten Kommunikationskanals

SICHERHEITSPROBLEME BEI TLS

- → Viele bekannte Angriffe gegen alte TLS / SSL Versionen
 - → Bleichenbacher (≤SSL3.0): Angriffe auf RSA Padding Verfahren [Bleichenbacher]
 - → Beast (≤TLS1.2): Angriff auf Cipher-Block-Chaining (CBC) Initialisierungsvektor [BEAST]
 - → Poodle (≤TLS1.0): Angriff auf Padding Verfahren in CBC [POODLE]
- → Häufiger Angriffsvektor Downgrade: Angreifer bringt Opfer und Server dazu, eine alte TLS Version oder anfällige Cipher-Suite zu nutzen [Logjam]
 - → Gegenmaßnahme: Abschalten alter TLS Versionen und Cipher-Suites
- → Implementierungsfehler in TLS Bibliotheken
 - → Heartbleed: Softwarefehler, der Auslesen zufälliger Bereiche im RAM ermöglichte [HB]

INTERNET PROTOCOL SECURITY (IPSEC)

- → IPSec ist eine Familie von Protokollen, zur sicheren Kommunikation, die auf der Internetschicht arbeiten
 - → Internet Key Exchange (IKE): Protokoll zum Schlüsselaustausch und Überprüfung der Authentizität der Endgeräte
 - → Authentication Header (AH): Authentizität und Integrität der Kommunikation
 - → Encapsulation Security Payload (ESP): Vertraulichkeit, Authentizität und Integrität der Kommunikation

INTERNET PROTOCOL SECURITY (IPSEC)

- → IPSec unterstützt zwei verschiedene Modi
 - → **Transportmodus**: Sichere Verbindung zweier Geräte
 - → Tunnelmodus: Sichere Verbindung in Netzwerke (Virtual Private Network VPN)
- → AH und ESP unterscheiden sich je nachdem, ob sie für den Transport- oder Tunnelmodus eingesetzt werden

ESP IM TUNNELMODUS ARCHITEKTUR

ESP im Tunnelmodus verschlüsselt die Ziel IP und den Payload und leitet das Paket an das Ziel Gateway weiter

ESP IM TRANSPORT- UND TUNNELMODUS

MEDIA ACCESS CONTROL SECURITY (MACSEC)

- → MACSec ist in IEEE 802.AE standardisiert zur sicheren Kommunikation, die auf der Netzzugriffsschicht arbeitet
 - → MACSec basiert auf einem Standard Ethernet Frame und wird um zwei Felder erweitert
 - → MACsec Security Tag (SecTAG): Kontrollfeld mit Konfigurationsinformationen
 - → Integrity Check Value (ICV): Authenzitättoken 16 Byte
 - → Der MACSec Frame kann mit AES-GCM gesichert werden und somit verschlüsselt und authentisch sein
 - → Schlüssel für die Absicherungen können statisch vorab geteilt werden (PSK) oder über einen Schlüsselserver mit Authentisierungsprotokollen (EAP) via IEEE 802.1X

MACSEC MODUS

MACSec hat zwei Betriebsmodi, welche sich auf die Nutzung von VLANs auswirken.

MACSEC PAKETSTRUKTUR

ZUSAMMENFASSUNG

- → Herausforderungen für Protokolle zur sicheren Kommunikation
- ightarrow Einsatzzwecke und Limitierungen bei der Absicherung in verschiedenen TCP/IP Schichten
- → Sichere Kommunikationsprotokolle der verschiedenen TCP/IP Schichten
- → Grobe Funktionsweise von TLS, um einen sicheren Kommunikationskanal zu etablieren
- → IPSec Protokollfamilie sowie den Tunnel- und Transportmodus
- → Konzept hinter dem IPSec Tunnelmodus
- → Konzept hinter MACSec