Algebra II (Curso 2024-2025) Doble Grado Matemáticas - Informática

Relación 1

Grupos: generalidades y ejemplos

Ejercicio 1. Describir explícitamente la tabla de multiplicar de los grupos \mathbb{Z}_n^{\times} para $n=4,\ n=6$ y n=8, donde por \mathbb{Z}_n^{\times} denotamos al grupo de las unidades del anillo \mathbb{Z}_n .

Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos \mathbb{Z}_p^{\times} para $p=2,\ p=3,\ p=5$ y p=7.

Ejercicio 3. Calcular el inverso de 7 en los grupos \mathbb{Z}_{11}^{\times} y \mathbb{Z}_{37}^{\times} .

Ejercicio 4. Describir explícitamente los grupos μ_n (de raíces *n*-ésimas de la unidad) para n = 3, n = 4 y n = 8, dando su tabla de multiplicar.

Ejercicio 5. En el conjunto $\mathbb{Q}^{\times} := \{q \in \mathbb{Q} | q \neq 0\}$ de los números racionales no nulos, se considera la operación de división, dada por $(x,y) \mapsto \frac{x}{y} = xy^{-1}$. ¿Nos da esta operación una estructura de grupo en \mathbb{Q}^{\times} ?

Ejercicio 6. Sea G un grupo en el que $x^2 = 1$ para todo $x \in G$. Demostrar que el grupo G es abeliano.

Ejercicio 7. Sea G un grupo. Demostrar que son equivalentes:

- 1. G es abeliano.
- 2. $\forall x, y \in G$ se verifica que $(xy)^2 = x^2y^2$.
- 3. $\forall x, y \in G$ se verifica que $(xy)^{-1} = x^{-1}y^{-1}$.

Ejercicio 8. Demostrar que si en un grupo $G, x, y \in G$ verifican que xy = yx entonces, para todo $n \ge 1$, se tiene que $(xy)^n = x^n y^n$.

Ejercicio 9. Si $a, b \in \mathbb{R}$, $a \neq 0$, demostrar que el conjunto de las aplicaciones $f : \mathbb{R} \to \mathbb{R}$, tales que f(x) = ax + b, es un grupo con la composición como ley de composición.

Ejercicio 10. (1) Demostrar que $|GL_2(\mathbb{Z}_2)| = 6$, describiendo explícitamente todos los elementos que forman esta grupo.

(2) Sea
$$\alpha = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 y $\beta = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Demostrar que
$$GL_2(\mathbb{Z}_2) = \{1, \alpha, \alpha^2, \beta, \alpha\beta, \alpha^2\beta\}.$$

(3) Escribir, utilizando la representación anterior, la tabla de multiplicar de $GL_2(\mathbb{Z}_2)$.

Ejercicio 11. Dar las tablas de grupo para los grupos D_3 , D_4 , D_5 y D_6 .

Ejercicio 12. Demostrar que el conjunto de rotaciones respecto al origen del plano euclídeo junto con el conjunto de simetrías respecto a las rectas que pasan por el origen, es un grupo.

Ejercicio 13. Sea G un grupo y sean $a,b \in G$ tales que $ba = ab^k$, $a^n = 1 = b^m$ con n,m > 0.

- 1. Demostrar que para todo $i = 0, \dots, m-1$ se verifica $b^i a = ab^{ik}$.
- 2. Demostrar que para todo $j = 0, \dots, n-1$ se verifica $ba^j = a^j b^{k^j}$.
- 3. Demostrar que para todo $i=0,\cdots,m-1$ y todo $j=0,\cdots,n-1$ se verifica $b^ia^j=a^jb^{ik^j}$.
- 4. Demostrar que todo elemento de $\langle a,b \rangle$ puede escribirse como a^rb^s con $0 \le r < n, \ 0 \le s < m.$

Ejercicio 14. Sean $s_1, s_2 \in S_7$ las permutaciones dadas por

$$s_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 6 & 2 & 1 & 4 & 3 \end{pmatrix}, \qquad s_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 1 & 7 & 6 \end{pmatrix}$$

Calcular los productos s_1s_2 , s_2s_1 y $(s_2)^2$, y su representación como producto de ciclos disjuntos.

Ejercicio 15. Dadas las permutaciones

$$p_1 = (132859)(263), \quad p_2 = (136)(253)(19285),$$

hallar la descomposición de la permutación producto p_1p_2 como producto de ciclos disjuntos.

Ejercicio 16. Sean s_1, s_2, p_1 y p_2 las permutaciones dadas en los ejercicios anteriores.

- 1. Descomponer la permutación $s_1s_2s_1s_2$ como producto de ciclos disjuntos.
- 2. Expresar matricialmente la permutación $p_3 = p_2 p_1 p_2$ y obtener su descomposición como ciclos disjuntos.

3. Descomponer la permutación s_2p_2 como producto de ciclos disjuntos y expresarla matricialmente

Nota: Aquí tratamos a S_7 como un subgrupo de S_9 , donde consideramos cada permutación del conjunto $\{1, 2, 3, 4, 5, 6, 7\}$ como una permutación del conjunto $\{1, \ldots, 9\}$ que deja fijos a los elementos 8 y 9.

Ejercicio 17. Sean s_1 , s_2 , p_1 y p_2 las permutaciones dadas en los ejercicios anteriores.

- 1. Calcular el orden de la permutación producto s_1s_2 . ¿Coincide dicho orden con el producto de los órdenes de s_1 y s_2 ?
- 2. Calcular el orden de $s_1(s_2)^{-1}(s_1)^{-1}$.
- 3. Calcular la permutación $(s_1)^{-1}$, y expresarla como producto de ciclos disjuntos.
- 4. Calcular la permutación $(p_1)^{-1}$ y expresarla matricialmente.
- 5. Calcular la permutación $p_2(s_2)^2(p_1)^{-1}$. ¿Cuál es su orden?

Ejercicio 18. Sean s_1 , s_2 , p_1 y p_2 las permutaciones dadas anteriormente. Sean también $s_3=(2\,4\,6)$, $s_4=(1\,2\,7)(2\,4\,6\,1)(5\,3)$. ¿Cuál es la paridad de las permutaciones s_1 , $s_4p_1p_2$ y p_2s_3 ?

Ejercicio 19. En el grupo S_3 , se consideran las permutaciones $\sigma = (1\,2\,3)$ y $\tau = (1\,2)$.

1. Demostrar que

$$S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}. \tag{0.1}$$

- 2. Reescribir la tabla de multiplicar de S_3 empleando la anterior expresión de los elementos de S_3 .
- 3. Probar que

$$\sigma^3 = 1, \tau^2 = 1, \tau \sigma = \sigma^2 \tau. \tag{0.2}$$

4. Observar que es posible escribir toda la tabla de multiplicar de S_3 usando simplemente la descripción (0.1) y las relaciones (0.2).

Ejercicio 20. Describir los diferentes ciclos del grupo S_4 . Expresar todos los elementos de S_4 como producto de ciclos disjuntos.

Ejercicio 21. Demostrar que el conjunto de transposiciones

$$\{(1,2),(2,3),\ldots,(n-1,n)\}$$

genera al grupo simétrico S_n .

Ejercicio 22. Demostrar que el conjunto $\{(1, 2, ..., n), (1, 2)\}$ general al grupo simétrico S_n .

Ejercicio 23. Demostrar que para cualquier permutación $\alpha \in S_n$ se verifica que $s(\alpha) = s(\alpha^{-1})$, donde s denota la **signatura**, o paridad, de una permutación.

Ejercicio 24. Demostrar que si $(x_1x_2\cdots x_r)\in S_n$ es un ciclo de longitud r, entonces

$$s(x_1x_2\cdots x_r) = (-1)^{r-1}.$$

Ejercicio 25. Encontrar un isomorfismo $\mu_2 \cong \mathbb{Z}_3^{\times}$.

Ejercicio 26. 1. Demostrar que la aplicación

$$1 \mapsto 1, -1 \mapsto 4, i \mapsto 2, -i \mapsto 3,$$

da un isomorfismo entre el grupo μ_4 de las raíces cuárticas de la unidad y el grupo \mathbb{Z}_5^{\times} de las unidades en \mathbb{Z}_5 .

2. Encontrar otro isomorfismo entre estos dos grupos que sea distinto del anterior.

Ejercicio 27. Encontrar un isomorfismo $\mu_2 \times \mu_2 \cong \mathbb{Z}_8^{\times}$.

Ejercicio 28. Demostrar, haciendo uso de las representaciones conocidas, que $D_3 \cong S_3 \cong GL_2(\mathbb{Z}_2)$.

Ejercicio 29. Sea K un cuerpo y considérese la operación binaria

$$\otimes: K \times K \to K \ a \otimes b = a + b - ab$$
.

Demostrar que $(K - \{1\}, \otimes)$ es un grupo isomorfo al grupo multiplicativo K^* .

Ejercicio 30. 1. Probar que si $f: G \cong G'$ es un isomorfismo de grupos, entonces o(a) = o(f(a)), para todo elemento $a \in G$.

2. Listar los órdenes de los diferentes elementos del grupo Q_2 y del grupo D_4 y concluir que D_4 y Q_2 no son isomorfos.

Ejercicio 31. Calcular el orden de:

- 1. la permutación $\sigma = (1 \ 8 \ 10 \ 4)(2 \ 8)(5 \ 1 \ 4 \ 8) \in S_{15}$.
- 2. cada elemento del grupo \mathbb{Z}_{11}^{\times} .

Ejercicio 32. Demostrar que un grupo generado por dos elementos distintos de orden dos, que conmutan entre sí, consiste del 1, de esos elementos y de su producto y es isomorfo al grupo de Klein.

Ejercicio 33. Sea G un grupo y sean $a, b \in G$.

- 1. Demostrar que $o(b) = o(aba^{-1})$ (un elemento y su conjugado tienen el mismo orden).
- 2. Demostrar que o(ba) = o(ab)

Ejercicio 34. Sea G un grupo y sean $a, b \in G$, $a \neq 1 \neq b$, tales que $a^2 = 1$ y $ab^2 = b^3a$. Demostrar que o(a) = 2 y que o(b) = 5.

Ejercicio 35. Sea $f: G \to H$ un homomorfismo de grupos. Demostrar:

- 1. $f(x^n) = f(x)^n \ \forall n \in \mathbb{Z}$.
- 2. Si f es un isomorfismo entonces G y H tienen el mismo número de elementos de orden n ¿es cierto el resultado si f es sólo un homomorfismo?
- 3. Si f es un isomorfismo entonces G es abeliano $\Leftrightarrow H$ es abeliano.

Ejercicio 36. 1. Demostrar que los grupos multiplicativos \mathbb{R}^* (de los reales no nulos) y \mathbb{C}^* (de los complejos no nulos) no son isomorfos.

2. Demostrar que los grupos aditivos \mathbb{Z} y \mathbb{Q} no son isomorfos.

Ejercicio 37. Sea G un grupo. Demostrar:

- 1. G es abeliano \Leftrightarrow la aplicación $f:G\to G$ dada por $f(x)=x^{-1}$ es un homomorfismo de grupos.
- 2. G es abeliano \Leftrightarrow la aplicación $f: G \to G$ dada por $f(x) = x^2$ es un homomorfismo de grupos.

Ejercicio 38. Si G es un grupo cíclico demostrar que cualquier homomorfismo de grupos $f: G \to H$ está determinado por la imagen del generador.

Ejercicio 39. Demostrar que no existe ningún cuerpo K tal que sus grupos aditivo (K, +) y $(K^*, .)$ sean isomorfos.