Greek characters

Name	Symbol	Typical use(s)
alpha	α	angle, constant
beta	β	angle, constant
gamma	γ	angle, constant
delta	δ	limit definition
epsilon	ϵ or ε	limit definition
theta	θ or ϑ	angle
pi	π or π	circular constant
phi	ϕ or φ	angle, constant

Named sets

empty set	Ø
real numbers	\mathbf{R}
ordered pairs	${f R}^2$

integers	\mathbf{Z}
positive integers	$\mathbf{Z}_{>0}$
positive reals	$\mathbf{R}_{>0}$

Set symbols

Meaning	Symbol
is a member	€
subset	C
intersection	

Meaning	Symbol
union	U
complement	$superscript^{C}$
set minus	\

Logic symbols

Meaning	Symbol
negation	_
and	\wedge
or	V
implies	\implies

Meaning	Symbol
equivalent	=
iff	\iff
for all	\forall
there exists	∃

Arithmetic properties

$$\begin{split} (\forall a,b \in \mathbf{R})(a+b=b+a) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a+(b+c)=(a+b)+c) & \text{commutivity} \\ (\forall a,b \in \mathbf{R})(ab=ba) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(bc)=(ab)c) & \text{commutivity} \\ (\forall a,b,c \in \mathbf{R})(a(b+c)=ab+ac) & \text{distributive} \end{split}$$

Distance & Midpoint

The distance between the points (x_1, y_1) and (x_2, y_2) is

$$\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
.

The midpoint is the point

$$\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right).$$

Exponents

For a, b > 0 and m, n real:

$$a^{0} = 1,$$
 $0^{a} = 0$
 $1^{a} = 1,$ $a^{n}a^{m} = a^{n+m}$
 $a^{n}/a^{m} = a^{n-m},$ $(a^{n})^{m} = a^{n \cdot m}$
 $a^{-m} = 1/a^{m},$ $(a/b)^{m} = a^{m}/b^{m}$

Solution of Equations

Algebraic

$$[ab = 0] \equiv [a = 0 \text{ or } b = 0]$$

$$[a^2 = b^2] \equiv [a = b \text{ or } a = -b]$$

$$[\frac{a}{b} = 0] \equiv [a = 0 \text{ and } b \neq 0]$$

$$[\frac{a}{b} = \frac{c}{d}] \equiv [ad = bc \text{ and } b \neq 0 \text{ and } d \neq 0]$$

$$[|a| = |b|] \equiv [a = b \text{ or } a = -b]$$

$$[\sqrt{a} = b] \equiv [a = b^2 \text{ and } b \geq 0]$$

For $a \neq 0$,

$$\left[ax^{2} + bx + c = 0\right] \equiv \left[x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}\right]$$

Exponential

$$[\ln(a) = 0] \equiv [a = 1]$$

$$[\text{euler}^a = 1] \equiv [a = 0]$$

$$[\ln(a) = b] \equiv [a = \text{euler}^b]$$

$$[\ln(a) = b] \equiv [a = \text{euler}^b]$$

Parabolas & Lines

The vertex of the parabola $ax^2 + bx + c = y$ is

$$\left(x = -\frac{b}{2a}, y = c - \frac{b^2}{4a}\right).$$

An equation of the line that contains the points $(x = x_1, y = y_1), (x = x_2, y = y_2)$ is

$$y - y_1 = \left(\frac{y_2 - y_1}{x_2 - x_1}\right)(x - x_1).$$

The number $\frac{y_2 - y_1}{x_2 - x_1}$ is the slope.

Radicals

$$\sqrt[n]{a} = a^{1/n}$$

$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b} \quad \text{(provided } a, b \ge 0\text{)}$$

$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[m]{a}$$

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

$$\sqrt[n]{a^n} = \begin{cases} a & n \text{ odd} \\ |a| & n \text{ even} \end{cases}$$

Identities

$$\begin{split} a(b+c) &= ab + ac \\ &((a+b))(c+d) = ac + ad + bc + bd \\ &\frac{ab+ac}{a} = b+c \quad \text{(provided } a \neq 0\text{)} \\ &\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{ad}{bc} \quad \text{(provided } b, d \neq 0\text{)} \\ &\sqrt{ab} = \sqrt{a}\sqrt{b} \quad \text{(provided } a \geq 0, b \geq 0\text{)} \\ &\ln(ab) = \ln(a) + \ln(b) \quad \text{(provided } a \geq 0, b \geq 0\text{)} \end{split}$$

Function notation

dom(F)	domain of function F
range(F)	range of function F

Domains, Ranges, and Zeros

Function	Domain	Range	Zeros
\ln, \log	$(0,\infty)$	$(-\infty,\infty)$	1
exp	$(-\infty,\infty)$	$(0,\infty)$	Ø
abs	$(-\infty,\infty)$	$(0,\infty)$	0
	$(0,\infty)$	$(0,\infty)$	0
3/	$(-\infty,\infty)$	$(-\infty,\infty)$	0
floor	(-5,5)	\mathbf{Z}	[0,1)
ceiling	$(-\infty,\infty)$	\mathbf{Z}	[-1,0]

Graphs

Graph of natural logarithm

Graph of natural exponential

