Web Search and Mining

Ming-Feng Tsai (Victor Tsai)

Dept. of Computer Science National Chengchi University

Language Model for Information Retrieval (IIR 12)

The Notion of Relevance

Recall

- Basic idea
- Compute the odd of O(R=1|Q,D) using Bayes' rule

$$O(R=1|Q,D) = \frac{P(R=1|Q,D)}{P(R=0|Q,D)} = \frac{P(Q,D|R=1)}{P(Q,D|R=0)} \frac{P(R=1)}{P(R=0)} \text{ ignored for ranking D}$$

- Special cases
 - How to define P(Q, D|R)
 - Document "generation": $P(Q, D \mid R) = P(D \mid Q,R) P(Q \mid R)$
 - Query "generation": P(Q, D | R) = P(Q | D,R) P(D | R)

Using language models (LMs) for IR

- LM = language model
- We view the document as a generative model that generates the query.
- What we need to do:
 - Define the generative model of each document
 - Estimate parameters (different parameters for each document's model)
 - Smooth to avoid zeros
 - Apply to each document model to calculate the probability of generating the query
 - Present most likely document(s) to user

Language Model

What is a language model?

We can view a finite state automaton as a deterministic language model.

- Generate: I wish I wish I wish I wish I...
- Our basic model: each document was generated by a different automaton like this except that these automata are probabilistic.

A probabilistic language model

W	$P(w q_1)$	W	$P(w q_1)$
STOP	0.2	toad	0.01
the	0.2	said	0.03 0.02
a	0.1	likes	0.02
frog	0.01	that	0.04

- This is a one-state probabilistic finite-state automaton a unigram language model – and the state emission distribution for its one state q₁. STOP is not a word, but a special symbol indicating that the automaton stops.
- string = frog said that toad likes frog STOP
- P(string) = 0.01 · 0.03 · 0.04 · 0.01 · 0.02 · 0.01 · 0.2 = 0.000000000048

A different language model for each document

language model of d_1			language model of d_2				
W	P(w .)	w	P(w .)	W	P(w .)	w	P(w .)
STOP	.2	toad	.01	STOP	.2	toad	.02
the	.2	said	.03	the	.15	said	.03
a	.1	likes	.02	a	.08	likes	.02
frog	.01	that	.04	frog	.01	that	.05

- string = frog said that toad likes frog STOP
 - $P(string|M_{d1}) = 0.01 \cdot 0.03 \cdot 0.04 \cdot 0.01 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.00000000000048 = 4.8 \cdot 10^{-12}$
 - $P(string|M_{d2}) = 0.01 \cdot 0.03 \cdot 0.05 \cdot 0.02 \cdot 0.02 \cdot 0.01 \cdot 0.2 = 0.0000000000120 = 12 \cdot 10^{-12}$
- P(string $| M_{d1}) < P(string | M_{d2})$
 - Thus, document d2 is "more relevant" to the string than d1 is.

Language Model for IR (1)

Where we are

- In the LM approach to IR, we attempt to model the query generation process.
 - Each document is treated as (the basis for) a language model.
- Then we rank documents by the probability that a query would be observed as a random sample from the a document model.
- That is, we rank according to $P(Q \mid D)$.
- Next: how do we compute P(Q | D)?

How to compute P(q|d)

- Multinomial model
- We will make the same conditional independence assumption as for Naive Bayes.

$$P(q|M_d) = P(\langle t_1, \ldots, t_{|q|} \rangle | M_d) = \prod_{1 \leq k \leq |q|} P(t_k | M_d)$$

(|q|: length of q; t_k : the token occurring at position k in q)

This is equivalent to:

$$P(q|M_d) = \prod_{\substack{\text{distinct term } t \text{ in } q}} P(t|M_d)^{\mathrm{tf}_{t,q}}$$

tf_{t,q}: term frequency (# occurrences) of t in q

Multinomial Distribution

- Multinomial distribution: a generalization of the binomial distribution.
- Then let the random variables X_i : the number of times outcome number i was observed over the n trials.
- $X = (X_1, ..., X_k)$ follows a multinomial distribution with parameters n and p, where $p = (p_1, ..., p_k)$.
- Probability Mass Function

$$f(x_1, ..., x_k; n, p_1, ..., p_k) = \Pr(X_1 = x_1 \text{ and } ... \text{ and } X_k = x_k)$$

$$= \begin{cases} \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}, & \text{when } \sum_{i=1}^k x_i = n \\ 0 & \text{otherwise,} \end{cases}$$

Multinomial Distribution

Example

 In a recent three-way election for a large country, candidate A received 20% of the votes, candidate B received 30% of the votes, and candidate C received 50% of the votes. If six voters are selected randomly, what is the probability that there will be exactly one supporter for candidate A, two supporters for candidate B and three supporters for candidate C in the sample?

$$Pr(A = 1, B = 2, C = 3) = \frac{6!}{1!2!3!}(0.2)^{1}(0.3)^{2}(0.5)^{3} = 0.125$$

Parameter estimation

- Missing piece
 - Where do the parameters $P(t|M_d)$ come from?
- Start with Maximum Likelihood Estimates

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

(|d|: length of d; $tf_{t,d}$: # occurrences of t in d)

Maximum Likelihood Estimation

- Suppose one wishes to determine just how biased an unfair coin is. Call the probability of tossing a HEAD p.
- Suppose the coin is tossed 80 times: i.e., the sample might be something like x1 = H, x2 = T, ..., x80 = T, and the count of the number of HEADS "H" is observed.
- The probability of tossing TAILS is 1 p. Suppose the outcome is 49 HEADS and 31 TAILS, and suppose there are three coins: one which gives HEADS with probability p = 1/3, one which gives HEADS with probability p = 1/2 and another which gives HEADS with probability p = 2/3.
- Using maximum likelihood estimation the coin that has the largest likelihood can be found, given the data that were observed.

Maximum Likelihood Estimation

 By using the probability mass function of the binomial distribution with sample size equal to 80, number successes equal to 49 but different values of p (the "probability of success"), the likelihood function (defined below) takes one of three values:

$$\begin{split} \Pr(\mathbf{H} = 49 \mid p = 1/3) &= \binom{80}{49} (1/3)^{49} (1 - 1/3)^{31} \approx 0.000, \\ \Pr(\mathbf{H} = 49 \mid p = 1/2) &= \binom{80}{49} (1/2)^{49} (1 - 1/2)^{31} \approx 0.012, \\ \Pr(\mathbf{H} = 49 \mid p = 2/3) &= \binom{80}{49} (2/3)^{49} (1 - 2/3)^{31} \approx 0.054. \end{split}$$

• The likelihood is maximized when p = 2/3, and so this is the maximum likelihood estimate for p.

Maximum Likelihood Estimation

• Now suppose that there was only one coin but its p could have been any value $0 \le p \le 1$. The likelihood function to be maximized is

$$L(p) = f_D(H = 49 \mid p) = {80 \choose 49} p^{49} (1-p)^{31},$$

 One way to maximize this function is by differentiating with respect to p and setting to zero:

$$0 = \frac{\partial}{\partial p} \left(\binom{80}{49} p^{49} (1-p)^{31} \right)$$

$$\propto 49 p^{48} (1-p)^{31} - 31 p^{49} (1-p)^{30}$$

$$= p^{48} (1-p)^{30} \left[49(1-p) - 31p \right]$$

$$= p^{48} (1-p)^{30} \left[49 - 80p \right]$$

• Thus the maximum likelihood estimator for p is 49/80.

Parameter estimation

- As always, we have a problem with zeros.
- A single t with P(t|Md) = 0 will make $P(q|M_d) = \prod P(t|M_d)$ zero.
- We would give a single term "veto power".
 - For example, for query [Michael Jackson top hits] a document about "top songs" (but not using the word "hits") would have $P(t|M_d) = 0$. That's bad.
- We need to smooth the estimates to avoid zeros.

Smoothing

- Key intuition: A non-occurring term
- Notation: M_c : the collection model; cf_t : the number of occurrences of t in the collection; $T = \sum_t \operatorname{cf}_t$: the total number of tokens in the collection.
- We will use $\hat{P}(t|M_c)$ to "smooth" P(t|d) away from zero.

$$\hat{P}(t|M_d) = \frac{\operatorname{tf}_{t,d}}{|d|}$$

Mixture model

- $P(t|d) = \lambda P(t|Md) + (1 \lambda)P(t|Mc)$
- Mixes the probability from the document with the general collection frequency of the word.
- High value of λ: "conjunctive-like" search tends to retrieve documents containing all query words.
- Low value of λ: more disjunctive, suitable for long queries
- Correctly setting λ is very important for good performance.

Mixture model: Summary

$$P(q|d) \propto \prod_{1 \leq k \leq |q|} (\lambda P(t_k|M_d) + (1-\lambda)P(t_k|M_c))$$

- What we model: The user has a document in mind and generates the query from this document.
- The equation represents the probability that the document that the user had in mind was in fact this one.

Example

- Collection: d₁ and d₂
- d₁: Jackson was one of the most talented entertainers of all time
- d₂: Michael Jackson anointed himself King of Pop
- Query q: Michael Jackson

- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(0/11 + 1/18)/2] \cdot [(1/11 + 2/18)/2] \approx 0.003$
- $P(q|d_2) = [(1/7 + 1/18)/2] \cdot [(1/7 + 2/18)/2] \approx 0.013$
- Ranking: $d_2 > d_1$

Exercise: Compute ranking

- Collection: d_1 and d_2
- d₁: Xerox reports a profit but revenue is down
- d₂: Lucene narrows quarter loss but decreases further revenue
- Query q: revenue down

- Use mixture model with $\lambda = 1/2$
- $P(q|d_1) = [(1/8 + 2/16)/2] \cdot [(1/8 + 1/16)/2] = 1/8 \cdot 3/32 = 3/256$
- $P(q|d_2) = [(1/8 + 2/16)/2] \cdot [(0/8 + 1/16)/2] = 1/8 \cdot 1/32 = 1/256$
- Ranking: $d_1 > d_2$

Language Model for IR (2)

Text Generation with Unigram LM

Estimation of Unigram LM

A "text mining paper" (total #words=100)

Language Models for Retrieval

(Ponte & Croft 98)

Ranking Docs by Query Likelihood

Retrieval as Language Model Estimation

$$\log p(q|d) = \sum_{i} \log p(w_i|d)$$

Document language model

- Document ranking based on query likelihood
- Retrieval problem ≈ Estimation of p(w_i | d)
- Smoothing is an important issue, and that distinguishes different approaches

How to Estimate p(w|d)?

- Simplest solution: Maximum Likelihood Estimator
 - P(w|d) = relative frequency of word w in d
 - What if a word doesn't appear in the text? P(w|d)=0
- If we want to assign non-zero probabilities to such words, we'll have to discount the probabilities of observed words
- This is what "smoothing" is about ...

Language Model Smoothing (Illustration)

A General Smoothing Scheme

- All smoothing methods try to
 - Discount the probability of words seen in a doc
 - Re-allocate the extra probability so that unseen words will have a non-zero probability
- Most use a reference model (collection language model) to discriminate unseen words

$$p(w \mid d) = \begin{cases} p_{seen}(w \mid d) & \text{if } w \text{ is seen in } d \\ \alpha_d p(w \mid C) & \text{otherwise} \end{cases}$$
Collection language model

Derivation of the Query Likelihood Retrieval Formula

Discounted ML estimate

$$p(w \mid d) = \begin{cases} p_{Seen}(w \mid d) & \textit{if } w \textit{ is seen in } d \\ \alpha_d \, p(w \mid C) & \textit{otherwise} \end{cases}$$

$$\alpha_d = \frac{1 - \sum_{\text{w is seen}} p_{Seen}(w \mid d)}{\sum_{\text{w is unseen}} p(w \mid C)}$$
 Reference language model

Derivation of the Query Likelihood Retrieval Formula

Retrieval Formula using the general smoothing scheme

Key rewriting step Similar rewriting are very common when using LMs for IR

Smoothing & TF-IDF Weighting

 Plug in the general smoothing scheme to the query likelihood retrieval formula, we obtain

• Smoothing with $p(w|C) \approx \text{TF-IDF} + \text{length norm}$.

Three Smoothing Methods

(Zhai & Lafferty 01)

Simplified Jelinek-Mercer: Shrink uniformly toward p(w|C)

$$p(w|d) = (1 - \lambda)p_{ml}(w|d) + \lambda p(w|C)$$

Dirichlet prior (Bayesian): Assume pseudo counts μ p(w C)

$$p(w|d) = \frac{c(w,d) + \mu p(w|C)}{|d| + \mu} = \frac{|d|}{|d| + \mu} p_{ml}(w|d) + \frac{\mu}{|d| + \mu} p(w|C)$$

Absolute discounting: Subtract a constant δ

$$p(w|d) = \frac{\max(c(w,d) - \delta, 0) + \delta|d|_{u}p(w|C)}{|d|}$$

Two-stage Smoothing

Stage-1

- -Explain unseen words
- -Dirichlet prior(Bayesian)

Stage-2

- -Explain noise in query
- -2-component mixture

$$P(w|d) = (1-\lambda) - \frac{c(w,d) + \mu p(w|C)}{|d| + \mu} + \lambda p(w|U)$$

$$User background model$$

 λ and μ can be automatically set through statistical estimation

Discussions

Vector space (tf-idf) vs. LM

		precision	significant?	
Rec.	tf-idf	LM	%chg	
0.0	0.7439	0.7590	+2.0	
0.1	0.4521	0.4910	+8.6	
0.2	0.3514	0.4045	+15.1	*
0.4	0.2093	0.2572	+22.9	*
0.6	0.1024	0.1405	+37.1	*
0.8	0.0160	0.0432	+169.6	*
1.0	0.0028	0.0050	+76.9	
11-point average	0.1868	0.2233	+19.6	*

• The language modeling approach always does better in these experiments but note that where the approach shows significant gains is at higher levels of recall.

LMs vs. Vector Space Model (1)

- LMs have some things in common with vector space models.
 - Term Frequency (TF) is directed in the models.
 - But it is not scaled in LMs.
 - Probabilities are inherently "length-normalized".
 - Cosine normalization does something similar for vector space.
 - Mixing document and collection frequencies has an effect similar to Inverse Document Frequency (IDF).
 - Terms rare in the general collection, but common in some documents will have a greater influence on the ranking.

LMs vs. Vector Space Model (2)

- LMs vs. Vector Space Model: differences
 - LMs: based on probability theory
 - Vector space: based on similarity, a geometric/ linear algebra notion
 - Collection frequency vs. document frequency
 - Details of term frequency, length normalization etc.

Language models for IR: Assumptions

- Simplifying assumption: Queries and documents are objects of same type. Not true!
 - There are other LMs for IR that do not make this assumption.
 - The vector space model makes the same assumption.
- Simplifying assumption: Terms are conditionally independent. Not true!
 - Again, vector space model (and Naive Bayes) makes the same assumption.
- Cleaner statement of assumptions than vector space
 - Thus, better theoretical foundation than vector space

LMs vs. Naive Bayes

- Different smoothing methods
 - Mixture Model vs. Add-One
- We classify the query in LMs; we classify documents in text classification.
 - Each document is a class in LMs vs. classes are human-defined in text classification
 - The formal model is the same: multinomial model.

Resources

- Chapter 12 of IIR
- Resources
 - Ponte and Croft's 1998 SIGIR paper (one of the first on LMs in IR)
 - Zhai and Lafferty's 2001 SIGIR paper (the most important related paper in IR)
 - <u>Lemur Toolkit</u> (good support for LMs in IR)

Probabilistic Computing

Navia Systems www.naviasystems.com

http://www.youtube.com/watch?v=huIP_zhDTM

Probabilistic Programming

https://www.youtube.com/watch?v=8j2S7BRRWus