1 Гомоморфизмы группы

Определение 1.1 (Факторгруппа). Рассмотрим группу G и ее нормальную подгруппу H. Пусть G/H — множество смежных классов G по H. Определим в G/H операцию умножения по следующему правилу: $aH \cdot bH = (ab)H$

Теорема 1.1. Определение произведения смежных классов корректно. То есть произведение смежных классов не зависит от выбранных представителей а и b

Доказательство. Пусть $aH, bH \in G/H, \ a_1 = a \cdot h_a \in aH, \ b_1 = b \cdot h_b \in bH$. Докажем, что $abH = a_1b_1H$. Достаточно показать, что $a_1 \cdot b_1 \in abH$.

В самом деле, $a_1 \cdot b_1 = a \cdot h_a \cdot b \cdot h_b = a \cdot b \cdot (b^{-1} \cdot h_a \cdot b) \cdot h_b$. Элемент $h = (b^{-1} \cdot h_a \cdot b)$ лежит в H по свойству нормальности H. Следовательно, $a \cdot b \cdot h \cdot h_b \in abH$.

Теорема 1.2. Если G и H - группа, $h: G \to H$ и h(a*b) = h(a)*h(b), то h - гомоморфизм

Доказательство. h(e) = h(e*e) = h(e)*h(e) h(e) - идемпотент в \mathcal{H} , следовательно h(e) = e

$$h(a^{-1}) = h(a^{-1}) * e = h(a^{-1}) * h(a) * (h(a))^{-1} = h(a^{-1} * a) * (h(a))^{-1} = h(e) * (h(a))^{-1} = e * (h(a))^{-1} = (h(a))^{-1}$$

Определение 1.2 (Порождённая конгруэнтность). Конгруэнтность порождённая h - если $a \equiv b \Leftrightarrow h(a) = h(b)$ - конгруэнтность, то $h[A] = A / \equiv$

Теорема 1.3. Если $h: G \to H$ - гомоморфизм, \equiv - конгруэнтность порожедённая h, то классы эквивалентные e в G являются нормальными подгруппами

Доказательство. Пусть $a,b\in f\Rightarrow ab^{-1}\in f,\ a\equiv e,\ b\equiv e,\ b^{-1}\equiv e^{-1}\equiv e,\ ab^{-1}\equiv ee\equiv e$

$$a\{b \in \mathcal{G} : b \equiv e\} \ni c$$

 $aba^{-1} \in \{b \in \mathcal{G} : b \equiv e\} a \ni c$

$$c = ab = abe = aba^{-1}a$$

$$b \equiv e \quad a \equiv a \quad a^{-1} \equiv a^{-1}$$
$$aba^{-1} \equiv aea^{-1} = e$$
$$aba^{-1} \equiv e$$
$$aba^{-1}a = abe = ab = c$$

"И в обратную сторону". Хотя я в душе не знаю как в эту получилось.

Определение 1.3 (Ядро подгруппы). Ядро подгруппы - множество элементов эквивалентных e. Кег h

Теорема 1.4. G - группа, H - нормальная подгруппа, $a \equiv b \Leftrightarrow a \ u \ b$ принадлежат одному левому классу, то \equiv - конгруэнтность

Доказательство. Пусть $a \equiv b, c \equiv d$, надо доказать

1.
$$ac \equiv bd$$

2.
$$a^{-1} \equiv b^{-1}$$
 (зачем)

1.

$$a, b \in x\mathcal{H}$$
 $a = xh_a, b = xh_b$
 $c, d \in y\mathcal{H}$ $c = yh_c, d = yh_d$

 $ac = xh_a \cdot yh_c, \ h_a y = yh', \ h_a y \in \mathcal{H}y = y\mathcal{H}$

$$ac = xh_ayh_c = xy\underbrace{h'h_c}_{\in\mathcal{H}} \in xy\mathcal{H}$$
 $bd = xh_byh_d = xy\underbrace{h''h_d}_{\in\mathcal{H}} \in xy\mathcal{H}$ эквивалентные

$$h_b y = yh'', h_b y \in \mathcal{H}y = y\mathcal{H}$$

2.

$$h_a$$
 h_b h_a^{-1} h_b^{-1} $\mathcal{H}x^{-1}$ $\mathcal{H}x^{-1}$

$$a^{-1}, b^{-1} \in x^{-1}\mathcal{H}$$

Определение 1.4 (щито). $\mathcal G$ - группа, $\mathcal H$ - нормальная подгруппа, \equiv - отношение конгруэнтности. Тогда $\mathcal G/_{\equiv}=\mathcal G/\mathcal H$

Следствие 1.1. $\mathit{Ecnu}\;h:\mathcal{G}\to\mathcal{H}\;$ - гомоморфизм, тогда $h[\mathcal{G}]=\mathcal{G}\,/_{\mathrm{Ker}\;h}$

Доказательство.
$$h[\mathcal{G}] = \mathcal{G} \mathop{/}_{\textstyle \equiv} = \mathcal{G} \mathop{/}_{\textstyle \operatorname{Ker} h}$$

Пример 1.1.

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

 $\langle r_1
angle$ - подгруппа вращений $\langle r_1
angle \ S_1 \langle r_1
angle$

Таблица умножения (ЧЕГО???)

$$\begin{array}{c|cccc}
 & \langle r_1 \rangle & S_1 \langle r_1 \rangle \\
\hline
 & \langle r_1 \rangle & \langle r_1 \rangle & S_1 \langle r_1 \rangle \\
\hline
 & S_1 \langle r_1 \rangle & S_1 \langle r_1 \rangle & \langle r_1 \rangle
\end{array}$$

Пример 1.2.
$$(\mathbb{R},+)\supseteq (\mathbb{Z},+)$$
 $a+\mathbb{Z}$
 $ba\in \mathbb{Z}$
 $a+\mathbb{Z}=b+\mathbb{Z}$
 $a\in [0,1)$
 $(a+\mathbb{Z})+(b+\mathbb{Z})=(a+b)=(a+b)\mod 1$
 $\mathbb{C}_1=\{z\in \mathbb{C},|z|=1\},\,(\mathbb{C}_1,\cdot)$
 $h(x)=e^{2nix}$
 $x\in \mathbb{R}=e^{2nix}\in \mathbb{C}_1$
 $h(x+y)=e^{2ni(x+y)}=e^{2nix}e^{2niy}=h(x)h(y)$
 $h:(\mathbb{R},+)\to (\mathbb{C},\cdot)$
 $r\in \operatorname{Ker} h\Leftrightarrow r\equiv e$
 $h(r)=h(e)$
 $h(r)=h(0)$
 $e^{2nix}=e^{2nix}=1$
 $e^{2nix}=2n\cdot k, k\in \mathbb{Z}$
 $r\in \mathbb{Z}$
 $\operatorname{Ker} h\in \mathbb{Z}$

Определение 1.5. $\mathcal G$ - группа, A - множество, образующее группу, тогда определяющим соотношением называют равенство вида t(a)=s(a), где t,s - термы, $a\in A$

Пример 1.3. $A = \{a, b\}, a^2 = b^2, a^3b = ba$

Определение 1.6. A - множество элементов, X - множество определяющих соотношений. Группа, порождённая A и X - \mathcal{G} такач, что

- 1. образована при помощи A
- 2. в $\mathcal G$ выполняются все определяющие соотношения из X
- 3. любая группа \mathcal{H} , удовлетворяющая условиям 1 и 2 является гомоморфным множеством \mathcal{G}

Пример 1.4.

$$\mathcal{D}_3 = \{e, r_1, r_2, s_1, s_2, s_3\}$$

$$A = \{r_1, s_1\}, \ \langle A \rangle = \mathcal{D}_3$$

$$\begin{bmatrix} r_1^3 = e \\ r_1 s_1 = s_1 r_1^2 \\ s_1^2 = e \end{bmatrix}$$

 $\bar{\mathcal{H}}$ порожедена A

* - одноместная операция

 \mathcal{H} ?????? ??? слова, состоящие из $r_1, s_1, r_1^{-1}, s_1^{-1}$, пусть в \mathcal{H} выполнены определяющие соотношения X

$$r_1^3 = e$$
 $r_1^{-1} = r_1^2$ $r_1^{-1} = r_1 r_1$ $s_1^2 = e$ $s_1^{-1} = s_1$ $s_1^{-1} = s_1$

$$s_1...s_1r_1...r_1 \\ s_1^nr_1^m \\ s_1^n = s_1^{n \mod 2} \\ r_1^m = r^{m \mod 3}$$

$$\begin{bmatrix} r_1^0 & s_1 r_1^0 \\ r_1^0 & s_1 r_1^0 \\ r_1^0 & s_1 r_1^0 \end{bmatrix}$$

Теорема 1.5. Для любого множества A и множества определяющих соотношений X существует группа, образованная A и X

Доказательство. Пусть $A' = A \cup \{a-1 : a \in A^{\}}$. Нужно проверить три свойства

1. Если M - свободный моноид образованный A'(M - множество слов алфавита A' с конкатенацией), M' - моноид, порождённый A', то M' - гомоморфный образ M. $u,v\in M,$ $u\equiv v\Leftrightarrow h(u)=h(v)$ для любого гомоморфизма $h:M\to \mathcal{G}.$ \mathcal{G} - группа, порождённая A в которой ??? X.

Надо доказать что ≡ является конгруэнтностью

- (a) $a \equiv a$
- (b) $a \equiv b \Rightarrow b \equiv a$
- (c) $a \equiv b, b \equiv c \Rightarrow a \equiv c$

Пусть $a \equiv b, c \equiv d$, то есть h(a) = h(b), h(c) = h(d), тогда, так как h является гомоморфизмом

$$h(ac) = h(a)h(c) = h(b)h(d) = h(bd)$$

следовательно $ac \equiv bd$ и \equiv - конгруэнтность

Пусть группа $F = M /_{\equiv}$, $\widehat{a} \in F$, $a = u_1...u_n$, $b = u_n^{-1}...u_1^{-1}$, $a, b \in M$

$$h(a) = h(u_1)...h(u_n)$$

$$h(b) = h(u_n^{-1})...h(u_1^{-1}) \\$$

$$h(ab) = h(u_1)...h(u_n)h(u_n^{-1})...h(u_1^{-1}) = e$$

$$\widehat{a}\widehat{b} = \widehat{e}$$

F порождается A

2. Доказать $t(\overline{a}) = s(\overline{a}) \in X$

$$h(t(a_1,...,a_n)) = t(h(a_1),...,h(a_n)) = s(h(a_1),...,h(a_n)) = h(s(a_1,...,a_n))$$

$$t(\overline{a}) \equiv s(\overline{a}) \Rightarrow \widehat{t(a)} = widehats(\overline{a}) \Rightarrow t(\widehat{a_1},...,\widehat{a_n}) = s(\widehat{a_1},...,\widehat{a_n})$$

3. Из чего следует?

Пример 1.5. Про пирамиду рубика. Конём.

Пример 1.6. Дана "головоломка"

1	2
3	4

 Π остроить группу $\mathcal G$

а - перестановка двух столбцов

b - перестановка строк

$$a^2 = e, b^2 = e, ab = ba$$

	e	$\mid a \mid$	b	ab
e	e	a	b	ab
\overline{a}	a	e	ab	b
\overline{b}	b	ba	e	a
ab	ab	b	a	e

$$\mathcal{G} = (\{e, a, b, ab\}, \circ)$$

Пример 1.7. Таблица 8х8. Конём.

Пример 1.8. Z = 1, -1

Пример 1.9.

Пример 1.10.

Пример 1.11.

Пример 1.12.

Определение 1.7. Если $X=\emptyset,$ то $M\mathrel{/}{\equiv}$ - свободная группа порождённая A

Следствие 1.2. Любая группа порождённая A - гомоморфный образ свободной группы

Определение 1.8. $\mathcal G$ - группа, $S \neq \emptyset$. Действие группы $\mathcal G$ на S - это отображение $h: S \times \mathcal G \to S$ и

1.
$$h(S, e) = S$$

2.
$$h(h(S, a), b) = h(S, ab)$$

Эти два условия по другому:

1.
$$Se = S$$

2.
$$(Sa)b = S(ab)$$

Пример 1.13. \mathcal{G} действует на себя правыми умножениями

Определение 1.9. Сопряжение - действие группы \mathcal{G} на себя или множество подмножеств $P(\mathcal{G}): h(S,a) = a^{-1}Sa$

Теорема 1.6. Сопряжение - действие

Доказательство. Проверим условия сопряжения

1.
$$e^{-1}Se = eSe = S$$

2.
$$h(h(S, a)b) = h(a^{-1}Sa, b) = b^{-1}a^{-1}Sab = (ab)^{-1}Sab = h(S, ab)$$

 $a^{-1}Aa = A \subset \mathcal{G}$

Теорема 1.7. Любая подгруппа при сопряжении переходит в подгруппу

$$\mathcal{A}$$
оказательство. Пусть A - подгруппа \mathcal{G}

Теорема 1.8. Пусть A - подгруппа, то A неподвижна при всех сопряжениях тогда и только тогда когда A - нормальная подгруппа

Доказательство.
$$\bullet \Rightarrow a^{-1}Aa = a \Rightarrow aa^{-1}Aa = aA \Rightarrow Aa = aA$$

$$\bullet \Leftarrow Aa = aA \Rightarrow a^{-1}Aa = a^{-1}aA \Rightarrow a^{-1}Aa = A$$

Определение 1.10 (Стабилизатор). \mathcal{G} действует на $S, s \in S$. Стабилизатор s - stab $s = \{a \in \mathcal{G}, h(s, a) = s\}$

Теорема 1.9. stab s - noderpynna \mathcal{G}

Доказательство. пусть $b, c \in \operatorname{stab} s$, тогда

Определение 1.11 (Орбита). Пусть G действует на $S, s \in S$. Орбита s - orb $s = \{sa : a \in G\}$

Теорема 1.10. Орбиты - классы эквивалентности

Теорема 1.11. Количество элементов орбиты равняется индексу стабилизатора

Теорема 1.12 (Формула орбит). G действует на множестве S, тогда $|S|=\sum_{op6umu} \frac{\operatorname{ord} G}{\operatorname{ord} q_0}$

Следствие 1.3. Если $\operatorname{ord} G = p^k, \ p$ - $npocmoe, \ mo \ Z \neq \{e\}$