BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI INSTRUCTION DIVISION FIRST SEMESTER 2015-2016 Course Handout (Part II)

Date: 03/08/2014

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHE F211

Course Title : Chemical Process Calculations

Instructor-in-charge : SONAL MAZUMDER

Tutorial Instructor : Priya C. Sande & Somesh Mishra

1. Scope & Objective of the Course:

This course introduces a student to the enchanting world of chemical Engineering. It is an endeavor to inculcate systematic problem solving skills in students. Material and energy balances are introduced, explained and worked with. The course deals with industrial problems and finds the solution using material and energy balance equations.

2. Text Book:

Himmelblau, D. M and Riggs, J.B. "Basic Principles and Calculations in Chemical Engineering", PHI, 7th ed., 2009.

3. Reference Book:

Felder, R. M. & R. W. Rousseau, "Elementary Principles of Chemical Processes", John Wiley & Sons, Inc., 3rd ed., 2000.

4. Course Plan:

Lecture No.	Learning Objectives	Topics to be covered	Ref. (Text Book)
1	Introduction to Chemical Engineering	-	-
2	Units and Dimensions; Conversion of units	Units and Dimensions, Operations with units, Conversion of units and conversion factors	1.1, 1.2, 1.3
3	Dimensional consistency in equations; Concept of mole unit	Dimensional consistency, Mole unit,	1.4, 2.1
4	Definitions of density, specific gravity, flow rate, mole and mass fractions, Concentration	Density, specific gravity, mole fraction and mass fraction, concentration	2.2-2.5, 2.7
5	Choosing a Basis, Temperature, Pressure	Temperature and Pressure	3, 4, 5.1, 5.2, 5.3
6-8	Material Balances	Concept, Open Vs Closed, Steady Vs Unsteady state systems, Multi component systems, Systems involving chemical reactions, Problem solving strategy	6.1 to 6.6, 7
9	Material Balance for Single Unit	Material Balance Problems without Chemical Reaction	8
10-11	The Chemical Reaction Equation and Stoichiometry	Stoichiometry and Its Terminology	9.1, 9.2
12-13	Material Balances involving Chemical Reaction	Material Balance Problems with Chemical Reaction	10.1 to 10.3
14	Material balances involving multiple subsystems	Solving material balance problems involving multiple subsystems	11

15-18	Material balances with recycle,	Recycle bypass and purge calculations	12.1 to
	bypass and purge		12.5
19	Calculation procedures for ideal	Ideal gas law calculations, ideal gas mixtures	13.1 to
	gas systems	and partial pressure	13.3
20-22	Vapor pressure and saturation,	Phase diagram, vapor pressure estimation,	16.1,
	calculation of dew point	saturation, condensation, vaporization	16.2, 17.1
			to 17.3
23-24	Definition of relative saturation,	Partial saturation and humidity	18.1, 18.2
	molal saturation, absolute		
	saturation		
25	General energy balances for open	Terminology, Types of Energy	21.1, 21.2
	and closed systems		
26-28	Energy balances for processes	Closed system (steady and unsteady), Open	22
	without chemical reaction	system (steady and unsteady)	
29-30	Calculation of enthalpy changes	Calculation of enthalpy changes	23.1 to
	using heat capacity equations and		23.4
	enthalpy tables, use of steam		
21.22	tables	F	24.1.4.
31-32	Enthalpy balances	Energy balances in the absence of chemical	24.1 to
22.24	Emanary halanga swith abanical	reactions Heat of formation, Heat of Boostion, host of	24.4 25.1 to
33-34	Energy balance with chemical reaction	Heat of formation, Heat of Reaction, heat of combustion	25.1 to 25.4
35-36			
33-30	Solving simultaneous material	Analyzing the degrees of freedom in a	26.1, 26.2
	and energy balances	steady-state process, solving material and	
37	Heats of solution and mixing	energy balances using flow sheeting codes Heat of solution, dissolution and mixing	28.1, 28.2
38-40	Humidity chart and its use in	Terminology, humidity chart	29.1 to
30-40	determining the properties of	Terminology, number y chart	29.1 to
	moist air		29.5
	moist an		

5. Evaluation Scheme:

Components	Duration	Weight age	Date & Time	Remarks
Mid Semester Test	90 min	90 (30%)	7/10 2:00 - 3:30 PM	СВ
Tutorial Test ^{\$}		60 (20%)	-	CB/OB
In-class Assignments ^{\$}		20 (7/%)		
Comprehensive Examination	3 hours	130 (43%)	7/12 FN	CB/OB

^{\$}Tests will be surprise in nature. Best six performances (out of 8) for tutorial and four for in-class assignments will be counted for final grading. No make-up for any tests.

6. Make-up Policy:

Make-up will be granted only for genuine cases with valid justification and prior permission of Instructor-in-charge.

7. Chamber Consultation Hour:

To be announced in the class.

8. Notices:

Notices, if any, concerning the course will be displayed on the Chemical Engineering Department Notice Board, by Email and Intra Bits Portal.