

UTILIZING GLOTTAL SOURCE PULSE LIBRARY FOR GENERATING IMPROVED EXCITATION SIGNAL FOR HMM-BASED SPEECH SYNTHESIS

Tuomo Raitio¹, Antti Suni², Hannu Pulakka¹, Martti Vainio², and Paavo Alku¹

¹Department of Signal Processing and Acoustics, Aalto University

²Department of Speech Sciences, University of Helsinki

ICASSP 2011

Contents

- I. Background
- II. Human speech production
- III. Speech synthesis system
- IV. Results and samples

I. Background

- The ultimate goal of text-to-speech (TTS) is to generate natural sounding expression from arbitrary text
- Two major TTS trends:

Unit selection

- Based on concatenating prerecorded acoustical units
- ☐ Yields (almost) natural quality
- Poor adaptability to speaking styles, speaker characteristics and emotions

Statistical

- Based on modeling speech parameters with Hidden Markov Models (HMMs)
- Better adaptability to speaking styles, speaker characteristics and emotions

Problem: Current HMM-based synthesizers suffer from degraded naturalness in speech quality

Our approach:

- Speech is decomposed into the glottal source signal and the vocal tract transfer function
- 2. Glottal source is further decomposed into several parameters and a glottal pulse library
- 3. Parameters are modeled in HMMs.
- 4. In synthesis, source signal is reconstructed from the selected glottal pulses and the filtered with the vocal tract filter to create speech

II. Speech Production Mechanism

Glottal Source

Vibrating vocal folds.

Speech pressure waveform (upper panel) and estimated glottal excitation (lower panel).

Glottal Source

Glottal inverse filtering estimates the glottal flow and the vocal tract filter from a speech signal

III. Speech Synthesis System

Speech Parameterization

Pulse Library

Consists of hundreds or thousands of glottal flow pulses (and the corresponding voice source parameters)

Windowed glottal volume velocity pulse derivatives from the pulse library of a male speaker

Synthesis

Synthesis

In synthesis stage, excitation signal is generated by selecting the best matching pulse from the library according to the source features

Pulses are modified by scaling the magnitude and then overlap-added

White noise is used as unvoiced excitation

Finally, excitation is filtered with the vocal tract filter to generate speech

Synthesis

IV. Results and Samples

Previously, we have used only one glottal pulse per utterance.

Results of the listening test [2] comparing our synthesis method to the most widely used high-quality vocoder STRAIGHT.

Single pulse technique

Samples:

English	Male	Female

Blizzard Challenge		
English		
Mandarin		

Pulse library technique

Spectrograms (0–8000 Hz) of the word "vähän" (little). Note the improved modeling of A) diplophony B) voiced fricatives C) high frequencies.

Pulse library vs. single pulse technique

Pulse library method is slightly preferred over the single pulse technique and is more similar to the original speaker

Pulse library technique

Pulse library (ICASSP'11)	1pulse	pulselib
Finnish		
Finnish		
English		
English		

Summary

New physiologically motivated high-quality speech synthesizer
Allows for better reproduction and control over the speech aracteristics
Pulse library generates more natural excitation and is preferred over

References

- [1] P. Alku, "Glottal wave analysis with pitch synchronous iterative adaptive inverse filtering," *Speech Communication, vol. 11, no.* 2–3, pp. 109–118, 1992.
- [2] T. Raitio, A. Suni, J. Yamagishi, H. Pulakka, J. Nurminen, M. Vainio, and P. Alku, "HMM-based speech synthesis utilizing glottal inverse filtering," *IEEE Trans. on Audio, Speech, and Lang. Proc., vol. 19, no. 1, pp. 153–165, Jan. 2011.*

Thank you!

