| 信号与系统                    | 3  |
|--------------------------|----|
| 第一章、连续信号分析               | 4  |
| 1.1、冲激函数                 | 5  |
| 1.1.1、正交函数               | 5  |
| 1.1.2、冲激信号的定义            | 6  |
| 1.1.3、冲激函数的性质            | 8  |
| 1.2 系统                   | 11 |
| 1.2.1、系统的定义              | 11 |
| 1.2.2、系统的分类              | 11 |
| 1.2.3、系统的表示              | 12 |
| 1.2.4、系统的性质              | 14 |
| 1.3、连续信号的表示              | 17 |
| 1.3.2、信号的能量和功率           | 17 |
| 1.4、连续信号的卷积              | 18 |
| 1.4.1、连续信号卷积的定义          | 18 |
| 1.4.2、连续信号卷积的性质          | 19 |
| 1.5、连续信号在系统中的响应          | 23 |
| 1.5.1、冲激响应和阶跃响应          | 23 |
| 1.5.2、自由响应和强迫响应          | 24 |
| 1.5.3、全响应                | 24 |
| 1.6、连续信号的频域分析            | 25 |
| 1.6.1、傅立叶级数的导出           | 25 |
| 1.6.2、傅立叶分析的导出           | 29 |
| 1.6.3、傅立叶变换定义            | 30 |
| 1.6.4、常见信号的傅立叶变换         | 33 |
| 1.6.5、周期信号的傅立叶变换         | 39 |
| 1.6.6、傅立叶变换的性质           | 40 |
| 1.6.7、信 <del>号</del> 的取样 | 47 |

| 1.6.8、对连续信号进行频域分析           | 51 |
|-----------------------------|----|
| 1.7、连续信号的复频域分析              | 52 |
| 1.7.1、拉普拉斯变换                | 52 |
| 1.7.2、单边拉普拉斯变换              | 55 |
| 1.7.3、常见信号的单边拉式变换           | 56 |
| 1.7.4、拉普拉斯变换性质              | 59 |
| 第二章、离散信号分析                  | 65 |
| 2.1 单位序列和单位阶跃响应             | 66 |
| 2.2 离散信号的卷积                 | 67 |
| 2.2.1 卷积和                   | 67 |
| 2.2.2 卷积和的性质                | 68 |
| 2.3 序列的傅立叶分析                | 69 |
| 2.3.1 周期序列的离散傅立叶级数(DFS)     | 69 |
| 2.3.2 非周期序列的离散时间傅立叶变换(DTFT) | 71 |
| 2.4 离散傅立叶变换及其性质             | 73 |
| 2.4.1 离散傅立叶变换 (DFT) 处理有限长序列 | 73 |
| 2.4.2 离散傅立叶变换的性质            | 74 |
| 2.5 Z 变换                    | 80 |
| 2.5.1 Z 变换的产生               | 80 |
| 2.5.2 Z 变换的定义               | 83 |
| 2.5.3 收敛域                   | 84 |

#### 信号与系统

周期

连续正弦函数 
$$A\cos(\omega t + \phi)$$

离散正弦函数 
$$Acos(\Omega_0 n + \phi)$$

离散正弦函数周期 
$$N = \frac{2\pi m}{\Omega_0}$$

离散

阶跃函数 
$$u[n] = \sum_{m=-\infty}^{n} \delta[m]$$
 running sum

冲激函数 
$$\delta[n] = u[n] - u[n-1]$$
 first difference

连续

阶跃函数 
$$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$$
 积分

脉冲函数 
$$\delta(t) = \frac{du(t)}{dt}$$
 一阶导数

# 第一章、连续信号分析

## 1.1、冲激函数

### 1.1.1、正交函数

正交:

如有定义在  $(t_1, t_2)$  区间的两个函数  $\varphi_1(t)$  和  $\varphi_2(t)$ ,若满足

$$\int_{t_1}^{t_2} \varphi_1(t) \varphi_2(2) dt = 0$$

则称  $\varphi_1(t)$  和  $\varphi_2(t)$  在区间  $(t_1, t_2)$  内正交。

#### 正交函数集:

如有 n 个函数  $\varphi_1(t)$ , $\varphi_2(t)$ ,… , $\varphi_n(t)$  构成一个函数集,当这些函数 在区间  $(t_1,t_2)$ 内满足

$$\int_{t_1}^{t_2} \varphi_i(t) \varphi_j(t) dt = 0, \qquad \qquad \exists \ i \neq j$$

$$\int_{t_1}^{t_2} \varphi_i(t)\varphi_j(t)dt = K_i \neq 0, \qquad \exists i = j$$

则称此函数集为在区间  $(t_1, t_2)$  的正交函数集。

在区间  $(t_1, t_2)$  内相互正交的 n 个函数构成正交信号空间。

#### 完备正交函数集:

如果在正交函数集  $\{\varphi_1(t),\varphi_2(t),\dots,\varphi_n(t)\}$  之外,不存在函数  $\phi(t)$   $(0<\int_{t_1}^{t_2}\phi^2(t)dt<\infty)$  满足等式

$$\int_{t_1}^{t_2} \phi(t) \varphi_i(t) dt = 0 \quad (i = 1, 2, ..., n)$$

则称此函数集为完备正交函数集。

### 1.1.2、冲激信号的定义

选择一类性能良好的函数  $\varphi(t)$ , 称为检验函数 (它相当于定义域),

一个广义函数 g(t) 是对检验函数空间中每个函数  $\varphi(t)$  赋予一个数值 N 的映射,

该数与广义函数 g(t) 和检验函数  $\varphi(t)$  有关,记作  $N[g(t), \varphi(t)]$ 。

通常广义函数 g(t) 可写为:

$$\int_{-\infty}^{+\infty} g(t)\varphi(t)dt = N[g(t), \varphi(t)]$$

冲激函数定义:

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{+\infty} \delta(t)dt = 1$$

冲激函数的广义函数定义:

$$\int_{-\infty}^{+\infty} \delta(t)\varphi(t)dt = \varphi(0)$$

单位阶跃函数的广义函数理论定义:

$$\int_{-\infty}^{+\infty} u(t)\varphi(t)dt = \int_{0}^{+\infty} \varphi(t)dt$$

冲激偶:

 $\delta(t)$  的一阶导数  $\delta'(t)$  称为冲激偶。

$$\int_{-\infty}^{+\infty} \delta'(t)dt = 0$$

#### 冲激函数的导数和积分

$$\int_{-\infty}^{+\infty} \delta'(t) \varphi(t) dt = ?$$

#### 利用分部积分:

$$\int_{-\infty}^{+\infty} \delta'(t)\varphi(t)dt = \delta(t)\varphi(t)\big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \delta(t)\varphi'(t)dt$$

$$= -\varphi'(0)$$

$$\int_{-\infty}^{+\infty} \delta''(t)\varphi(t)dt = \delta'(t)\varphi(t)\big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \delta'(t)\varphi'(t)dt$$

$$= 0 - (\delta(t)\varphi'(t)\big|_{-\infty}^{+\infty} - \int_{-\infty}^{+\infty} \delta(t)\varphi''(t)dt)$$

$$= \varphi''(0)$$

$$\int_{-\infty}^{+\infty} \delta^{n}(t)\varphi(t)dt = (-1)^{n}\varphi^{n}(0)$$

### 1.1.3、 冲激函数的性质

#### 1. 与普通函数的乘积

从定义出发推导-->

$$\int_{-\infty}^{+\infty} [\delta(t)x(t)]\varphi(t)dt = \int_{-\infty}^{+\infty} \delta(t)[x(t)\varphi(t)]dt = x(0)\varphi(0)$$
$$\int_{-\infty}^{+\infty} [\delta(t)x(0)]\varphi(t)dt = x(0)\int_{-\infty}^{+\infty} \delta(t)\varphi(t)dt = x(0)\varphi(0)$$
$$\delta(t)x(t) = \delta(t)x(0)$$

所以,

乘积的积分:

$$\int_{-\infty}^{+\infty} x(t)\delta(t)dt = \int_{-\infty}^{+\infty} x(0)\delta(t)dt = x(0)$$

1. 
$$\int_{-\infty}^{+\infty} [x(t)\delta'(t)]\varphi(t)dt = \int_{-\infty}^{+\infty} \delta'(t)[x(t)\varphi(t)]dt = -\int_{-\infty}^{+\infty} \delta(t)[x(t)\varphi(t)]'dt$$
$$= -\int_{-\infty}^{+\infty} \delta(t)[x'(t)\varphi(t) + x(t)\varphi'(t)]dt$$
$$= -x'(0)\varphi(0) - x(0)\varphi'(0)$$

2. 
$$\int_{-\infty}^{+\infty} [x(0)\delta'(t) - x'(0)\delta(t)]\varphi(t)dt = -x(0)\varphi'(0) - x'(0)\varphi(0)$$

1和2广义函数相等,

则: 
$$x(t)\delta'(t) = x(0)\delta'(t) - x'(0)\delta(t)$$

移位性质:

已知: 
$$\int_{-\infty}^{+\infty} x(t)\delta(t)dt = x(0)$$

那么, 
$$\int_{-\infty}^{+\infty} x(t)\delta(t-t_0)dt = ?$$

result:

换元法, 令 
$$x = t - t_0$$
,

则, 
$$\int_{-\infty}^{+\infty} \delta(t - t_0) X(t) dt = \int_{-\infty}^{+\infty} \delta(x) X(x + t_0) dx$$
$$= X(0 + t_0) = X(t_0)$$

一阶:

已知: 
$$\int_{-\infty}^{+\infty} \delta'(t)X(t)dt = (-1)X'(0)$$

那么, 
$$\int_{-\infty}^{+\infty} \delta'(t-t_0)X(t)dt = ?$$

则, 
$$\int_{-\infty}^{+\infty} \delta'(t - t_0) X(t) dt = \int_{-\infty}^{+\infty} \delta'(x) X(x + t_0) dx$$
$$= -X'(t_0)$$

推广, 
$$\int_{-\infty}^{+\infty} \delta^n(t-t_0)x(t)dt = (-1)^n x^n(t_0)$$

尺度变换:

$$\int_{-\infty}^{+\infty} \delta(at)\varphi(t)dt = \frac{1}{|a|}\varphi(0)$$

$$\delta(at) = \frac{1}{|a|}\delta(t)$$

$$\delta^{n}(at) = \frac{1}{|a|}\frac{1}{a^{n}}\delta^{n}(t)$$

## 1.2 系统

- 1.2.1、系统的定义
- 1.2.2、系统的分类

### 1.2.3、系统的表示

## 几何形式-框图 代数形式-线性常系数微分方程

$$\sum_{k=0}^{N} a_k \frac{d^k y(t)}{dt^k} = \sum_{k=0}^{M} b_k \frac{d^k x(t)}{dt^k}$$

齐次解:

$$\sum_{k=0}^{N} a_k \frac{d^k t}{dt} = 0$$
 该齐次微分方程的解就是齐次解。

初始松弛:

即对于 
$$t < = t_0$$
, 若输入  $x(t) = 0$ , 都假设  $t < = t_0$ , 输出  $y(t) = 0$ 。

因此,对于  $t > t_0$ 的响应可以用初始条件:

$$y(t_0) = \frac{dy(t_0)}{dt} = \frac{d'y(t_0)}{dt'} = \dots = \frac{d^{N-1}y(t_0)}{dt^{N-1}} = 0$$

来计算。

求齐次解: 
$$\sum_{k=0}^{N} a_k \frac{d^k y_h(t)}{dt^k} = 0$$

猜想解的形式:  $y_h(t) = Ae^{st}$ 

解: 
$$\sum_{k=0}^{N} a_k \frac{d^k y_h(t)}{dt^k} = 0$$

$$\sum_{k=0}^{N} a_k A s^k e^{st} = 0$$

消去
$$Ae^{st}$$
,则:  $\sum_{k=0}^{N} a_k s^k = 0$   $N \operatorname{roots} S_i$  ,  $i = 1,2,3...N$ 

齐次方程可以求得:  $S_1, S_2, S_3, ..., S_N$ 。

但是 $A_1, A_2, A_3, ..., A_N$ 不确定,

所以我们相当于还要再解一个 N 元一次方程,来确定待定系数  $A_k$ 。

所以需要 N 个初始条件

[扩展] 线性常系数差分方程:

$$\sum_{k=0}^{N} a_k y[n-k] = \sum_{k=0}^{M} b_k x[n-k]$$

齐次方程:

$$\sum_{k=0}^{N} a_k y^k [n-k] = 0$$
 齐次方程的解为齐次解。

## **1.2.4**、系统的性质 线性

$$x_{1}(t) - y_{1}(t)$$

$$x_{2}(t) - y_{2}(t)$$

$$ax_{1}(t) + bx_{2}(t) - y_{2}(t) + by_{2}(t)$$

积分电路是线性的。y(t)=ax(t)+b 属于增量线性(不完全线性),平方电路不是线性。

#### 时不变性

假设:输入为 x(t), 输出为 y(t)。

当输出为  $x(t-t_0)$  时,输出为  $y_2(t)$ 。

如果  $y_2(t) = y(t - t_0)$ , 则系统是时不变的。

EX1: y(t) = sin x(t) 时不变。

EX2: y(t) = tx(t) 时变。

### 无记忆系统

$$h[n] = x[n] * R[n]$$
$$= \int_{-\infty}^{+\infty} x[\tau]R[n - \tau]d\tau$$

当前时刻的输入只取决于当前时刻的输出。

所以 当  $\tau == n$  时,R[0] 有值;但是  $\tau != n$  时,R[0] 为 0。该系统为无记忆系统。符合上述条件的函数就是单位冲激函数。

$$x[n] = x[n] * \delta[n]$$
$$x(t) = x(t) * \delta(t)$$

#### 可逆性

$$x * R_1$$
  
 $(x * R_1) * R_2 = x * (R_1 * R_2) = x$   
 $\text{Ell } R_1 * R_2 = \delta(t)$ 

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$
 累加器

$$y[n] = x[n] - x[n-1]$$
 差分方程

累加器的单位脉冲响应: h[n] = u[n]

差分方程的冲激响应:  $h[n] = \delta[n] - \delta[n-1]$ 

卷积 u[n]:

$$y[n] = x[n] * u[n]$$
$$y[n] = \sum_{k=-\infty}^{n} x[k]u[n-k] \quad \text{当 n > k 时, } u[n-k] \text{ 为 1,}$$

于是y[n]就是对x[n]求和。

稳定性

因果性

## 1.3、连续信号的表示

## 1.3.2、信号的能量和功率

信号的能量

$$E\infty \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{+\infty} |x(t)|^2 dt$$

信号的功率

$$P\infty \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$

$$P\infty \triangleq \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2$$

## 1.4、连续信号的卷积

## 1.4.1、连续信号卷积的定义

连续信号:

$$x(t) = \int_{-\infty}^{+\infty} x(\tau)\sigma(t-\tau)d\tau$$

$$y(t) = \int_{-\infty}^{+\infty} x(\tau)h(t-\tau) d\tau$$

扩展: 离散信号:

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k] = x[n] * h[n]$$

### 1.4.2、连续信号卷积的性质

#### 卷积的代数性质

1. 交换律

$$x_1(t) * x_2(t) = x_2(t) * x_1(t)$$

2. 分配律

$$x_1(t) * [x_2(t) + x_3(t)] = x_1(t) * x_2(t) + x_1(t) * x_3(t)$$

3. 结合律

$$[x_1(t) * x_2(t)] * x_3(t) = x_1(t) * [x_2(t) * x_3(t)]$$

#### 函数与冲激函数的卷积

$$x(t) * \delta(t) = ?$$

解: 利用卷积的交换律:  $x(t) * \delta(t) = \delta(t) * x(t)$ 

$$= \int_{-\infty}^{+\infty} \delta(\tau) x(t-\tau) d\tau = x(t)$$

$$x(t) * \delta(t - t_0) = ?$$

解: 
$$x(t) * \delta(t - t_0) = \delta(t - t_0) * x(t)$$

$$= \int_{-\infty}^{+\infty} \delta(\tau - t_0) x(t - \tau) d\tau$$
$$= \int_{-\infty}^{+\infty} \delta(q) x(t - t_0 - q) dq$$

 $= x(t - t_0)$ 

解: 
$$\delta(t - t_1) * \delta(t - t_2) = ?$$

$$\delta(t - t_1) * \delta(t - t_2) = \int_{-\infty}^{+\infty} \delta(\tau - t_1) \delta(t - t_2 - \tau) d\tau$$

$$= \int_{-\infty}^{+\infty} \delta(q) \delta(t - t_2 - t_1 - q) dq$$

$$= \delta(t - t_1 - t_2)$$

$$x(t - t_1) * \delta(t - t_2) = \delta(t - t_2) * x(t - t_1)$$

$$= \int_{-\infty}^{+\infty} \delta(\tau - t_1) x(t - t_2 - \tau) d\tau$$

$$= \int_{-\infty}^{+\infty} \delta(q) x(t - t_1 - t_2 - q) dq$$

$$= x(t - t_1 - t_2)$$

#### 与阶跃函数的卷积

首先: 
$$u^{-1}(t) = \int_{-\infty}^{t} u(q)dq = tu(t)$$

$$u(t) * u(t) = \delta(t) * u^{-1}(t) = u^{-1}(t) = tu(t)$$

$$u(t) * \varphi(t) = \delta(t) * \varphi^{-1}(t) = \varphi^{-1}(t)$$

$$u(t - t_0) * \varphi(t) = \delta(t - t_0) * \varphi^{-1}(t) = \varphi^{-1}(t - t_0)$$

#### 卷积的微分与积分

$$x^{(1)}(t) = \frac{dx(t)}{dt}$$
$$x^{(-1)}(t) = \int_{-\infty}^{t} x(q)dq$$

若, 
$$x(t) = x_1(t) * x_2(t) = x_2(t) * x_1(t)$$
则,  $x^{(1)}(t) = ???$ 

$$x^{(1)}(t) = [x_1(t) * x_2(t)]'$$

$$= \frac{d}{dt} \int_{-\infty}^{+\infty} x_1(\tau) x_2(t - \tau) d\tau$$

$$= \int_{-\infty}^{+\infty} x_1(\tau) \frac{d}{dt} x_2(t - \tau) d\tau$$

$$= x_1(t) * x_2^{(1)}(t)$$
同理,  $x^{(1)}(t) = x_1^{(1)}(t) * x_2(t)$ 

$$x^{(-1)}(t) = ???$$

$$\mathbf{m}: \quad x^{(-1)}(t) = \int_{-\infty}^{t} [x_1(t) * x_2(t)] dq$$

$$= \int_{-\infty}^{t} [\int_{-\infty}^{+\infty} x_1(\tau) x_2(q - \tau) d\tau] dq$$

$$= \int_{-\infty}^{+\infty} x_1(\tau) [\int_{-\infty}^{t} x_2(q - \tau) dq] d\tau$$

$$x_2^{(-1)}(t) = \int_{-\infty}^t x_2(q)dq$$

#### 其他推导:

$$x(t) = x_1(t) * x_2(t) = x_1^{(1)}(t) * x_2^{(-1)}(t)$$

$$x^{(i)}(t) = x_1^{(j)}(t) * x_2^{(i-j)}(t)$$

$$y_{z,s}(t) = x(t) * h(t) = x'(t) * h^{-1}(t) = x^{-1}(t) * h'(t)$$

## 1.5、连续信号在系统中的响应

### 1.5.1、冲激响应和阶跃响应

单位阶跃响应: s[n] 或 s(t) 是当输入为 x[n] = u[n] 或 x(t) = u(t) 的系统输出响应。

阶跃响应:单位阶跃序列与单位脉冲响应的卷积。

$$s[n] = u[n] * h[n]$$

输入为:h[n]

累加器的单位脉冲响应: u[n]

所以 
$$s[n] = \sum_{k=-\infty}^{n} x[k] = \sum_{k=-\infty}^{n} h[k]$$

$$h[n] = s[n] - s[n-1]$$

一个系统的单位阶跃响应: 是它脉冲函数的求和函数。

连续系统中:

$$s(t) = u(t) * h(t)$$

$$s(t) = \int_{-\infty}^{t} h(\tau)d\tau$$

$$h(t) = ds(t)/dt = s'(t)$$

## 1.5.2、自由响应和强迫响应

## 1.5.3、全响应

#### 操作性定义:

$$x(t) * u(t)$$

$$x(t) * u(t) * u_1(t)$$

$$x(t) * u(t) * u_1(t) = x(t)$$

所以:

$$u(t) * u_1(t) = \delta(t)$$

所以: 
$$\int_{-\infty}^t u_1(\tau) d\tau = \delta(t)$$

即, 
$$u_1(t) = \delta'(t)$$

## 1.6、连续信号的频域分析

### 1.6.1、傅立叶级数的导出

$$\phi_k(t) = e^{S_k t}$$

 $S_k$  复数

$$\phi_k[n] = Z_k^{\ n}$$

 $Z_k$ 复数

傅立叶分析:

C-T: 
$$S_k = jw_k$$

$$\phi_k(t) = e^{jw_k t}$$

D-T: 
$$|Z_k| = 1$$

$$\phi_k[n] = e^{j\Omega_k n}$$

$$\phi_k(t) = e^{jw_k t}$$

$$e^{jw_kt} - - > H(w_k)e^{jw_kt}$$

周期信号的傅立叶级数:

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jw_k t} = \sum_{k=-\infty}^{+\infty} a_k e^{jkw_0 t} = \sum_{k=-\infty}^{+\infty} a_k e^{jk(\frac{2\pi}{T})t}$$

#### 傅立叶级数的另一个形式:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} \left[ a_k e^{jw_k t} + a_{-k} e^{-jw_k t} \right]$$

因为: 
$$a_k = A_k e^{j\theta_k} = B_k + jC_k$$

#### 第一种表示方式:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} A_k e^{jw_k t + j\theta_k} + A_{-k} e^{-(jw_k t + j\theta_k)}$$

$$x(t) = a_0 + 2\sum_{k=1}^{+\infty} A_k cos(w_k t + \theta)$$

#### 第二种表示方式:

$$x(t) = a_0 + \sum_{k=1}^{+\infty} \left[ (B_k + jC_k)e^{jw_k t} + (B_k - jC_k)e^{-jw_k t} \right]$$

$$x(t) = a_0 + \sum_{k=1}^{+\infty} \left[ B_k (e^{jw_k t} + e^{-jw_k t}) + jC_k (e^{jw_k t} - e^{-jw_k t}) \right]$$

$$x(t) = a_0 + 2\sum_{k=1}^{+\infty} [A_k cos(w_k t) + jC_k j sin(w_k t)]$$

$$x(t) = a_0 + 2\sum_{k=1}^{+\infty} [A_k cos(w_k t) - C_k sin(w_k t)]$$
 Over

### 确定 $a_k$

$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jw_k t}$$

目标是求  $a_k$ ,所以

$$x(t)e^{-jw_nt} = \sum_{k=-\infty}^{+\infty} a_k e^{jw_kt} e^{-jw_nt}$$

左右求周期 T 内积分:

$$\int_0^T x(t)e^{-jw_nt} = \int_0^T \sum_{-\infty}^{+\infty} a_k e^{jw_kt} e^{-jw_nt} dt$$

$$\int_{0}^{T} x(t)e^{-jw_{n}t}dt = \int_{0}^{T} dt a_{k} + \sum_{k=-\infty}^{+\infty} a_{k} \int_{0}^{T} e^{j(w_{k}-w_{n})t}dt$$

当 k== n 时,
$$a_k \int_0^T dt$$

当 k!= n 时, 
$$\sum_{k=-\infty}^{+\infty} a_k \int_0^T e^{j(w_k-w_n)t} dt$$

$$\int_{0}^{T} e^{j(w_{k} - w_{n})t} dt = \int_{0}^{T} [\cos(w_{k} - w_{n})t + j\sin(w_{k} - w_{n})t] dt$$

正余弦函数一个周期内积分都为 0。

最后: 
$$a_k = \frac{1}{T} \int_0^T x(t)e^{-jw_k t} dt$$

## 非对称性周期性方波

对称性周期性方波

### 1.6.2、傅立叶分析的导出

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-jw_k t} dt$$

设 
$$X(w) = \int_0^{T_0} x(t)e^{-jw_k t}dt$$

则 
$$X(w) = T_0 a_k$$

那么
$$x(t) = \sum_{k=-\infty}^{+\infty} a_k e^{jw_k t} = \frac{1}{T_0} \sum_{k=-\infty}^{+\infty} X(w) e^{jw_k t} = \frac{1}{2\pi} \sum_{k=-\infty}^{+\infty} X(w) e^{jw_k t} w$$

当 T 无穷大时,w 无穷小,则 
$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w)e^{jw_k t} dw$$

#### 复指数信号

$$\rho^{jwt}$$

$$z = e^{jw}$$

#### 欧拉关系

$$e^{ix} = cosx + isinx$$

$$e^{jwt} = cos(wt) + jsin(wt)$$

$$e^{-jwt} = cos(wt) - jsin(wt)$$

$$cos(wt) = \frac{1}{2}(e^{jwt} + e^{-jwt})$$

$$sin(wt) = \frac{1}{2j}(e^{jwt} - e^{-jwt})$$

### 1.6.3、傅立叶变换定义

$$F(w) = \int_{-\infty}^{+\infty} f(t)e^{-jwt} dt = F[f(t)]$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w)e^{jwt} \, dw = F^{-1}[F(w)]$$

#### 信号的能量谱和功率谱

一、能量谱

$$E = \int_{-\infty}^{+\infty} x(t)^2 dt$$

$$E = \int_{-\infty}^{+\infty} x^2(t) dt = \int_{-\infty}^{+\infty} x(t) \left[ \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) e^{jwt} dw \right] dt$$
交换积分次序:
$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) \left[ \int_{-\infty}^{+\infty} x(t) e^{jwt} dt \right] dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) X(-w) dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} |X(w)|^2 dw$$

上述等式为: 帕斯瓦尔方程\能量等式

二、功率谱

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |f(t)|^2 dt$$

#### 信号的幅度谱和相位谱

周期信号

$$f(t) = c_0 + c_1 cos(w_1 t + \varphi_1) + c_2 cos(2w_1 t + \varphi_2)$$

傅立叶级数展开:

$$cos(w_0t+\varphi_0) = \frac{1}{2}[e^{j(w_0t+\varphi_0)+e^{-j(w_0t+\varphi_0)}}] = \frac{1}{2}e^{\varphi_0}[e^{jw_0t}+e^{-jw_0t}]$$

所以

$$f(t) = c_0 + \frac{c_1}{2}e^{jw_1t}e^{j\varphi} + \frac{c_1}{2}e^{-jw_1t}e^{j\varphi} + \frac{c_2}{2}e^{j2w_1t}e^{j\varphi_2} + \frac{c_2}{2}e^{-j2w_1t}e^{j\varphi_2}$$

$$f(t) = \sum_{n = -\infty}^{+\infty} a_n e^{jnw_0 t} e^{j\varphi_n} = \sum_{n = -\infty}^{+\infty} F_n e^{jnw_0 t}$$

由  $w=nw_0$  为横坐标, $|F_n|$  为纵坐标 构成幅度谱 $(|F_n|=|a_n|)$ 

由  $w=nw_0$  为横坐标, $\varphi_n$  为纵坐标 构成相位谱

## 1.6.4、常见信号的傅立叶变换

$$g_{\tau}(t) < --- >$$

$$X(w) = \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-jwt} dt$$

$$= \left[ -\frac{1}{jw} e^{-jwt} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= \frac{e^{jw\frac{\tau}{2}} - e^{-jw\frac{\tau}{2}}}{jw} \qquad sin(\frac{w\tau}{2}) = \frac{e^{j\frac{w\tau}{2}} - e^{-j\frac{w\tau}{2}}}{2j}$$

$$= 2\frac{sin(\frac{w\tau}{2})}{w}$$

$$= \tau \frac{sin(\frac{w\tau}{2})}{\frac{w\tau}{2}}$$

$$= \tau Sa(\frac{w\tau}{2})$$

$$u(t)$$
 <--->
推导: 
$$u(t) = \frac{1}{2} + \frac{1}{2} sgn(t)$$

$$X(w) = \pi \delta(w) + j(-\frac{1}{w})$$

$$e^{-at}u(t)$$
 <--->

推导:

$$X(jw) = T_0 a_k = \int_{-\infty}^{+\infty} x(t) e^{-jw_k t} dt$$
 分析公式
$$= \int_0^{+\infty} e^{-at} e^{-jw_k t} dt = \int_0^{+\infty} e^{-(a+jw_k)t} dt$$

$$= (-\frac{1}{a+jw_k} e^{-(a+jw_k)t})_0^{+\infty}$$

$$= 0 - (-\frac{1}{a+jw_k} e^0)$$

$$= \frac{1}{a+jw_k}$$

#### 双边指数函数

$$e^{-a|t|}, a > 0 < ---> ?$$

傅立叶变换:

$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

$$= \int_{0}^{+\infty} e^{-at}e^{-jwt}dt + \int_{-\infty}^{0} e^{at}e^{-jwt}dt$$

$$= \left(-\frac{1}{jw+a}e^{(-jw-a)t}\right)\Big|_{0}^{+\infty} + \left(\frac{1}{a-jw}e^{(a-jw)t}\right)\Big|_{-\infty}^{0}$$

$$= \frac{1}{jw+a} + \frac{1}{a-jw}$$

$$= \frac{2a}{a^2 - (jw)^2} \qquad j^2 = -1$$

$$= \frac{2a}{a^2 + w^2}$$

#### 冲激函数

$$\delta(t) < ---> ?$$

推导:

$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
$$= \int_{-\infty}^{+\infty} \delta(t)e^{-jwt}dt$$
$$= e^{0} = 1$$

冲激函数的定义: 
$$\int_{-\infty}^{+\infty} \delta(t)\varphi(t)dt = \varphi(0)$$

推广 
$$\delta^n(t) < ----> ?$$
 根据 
$$\int_{-\infty}^{+\infty} \delta^n(t) \varphi(t) dt = (-1)^n \varphi^n(0)$$

$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$
$$= \int_{-\infty}^{+\infty} \delta^n(t)e^{-jwt}dt$$
$$= (-1)^n(-jw)^n e^0$$
$$= (jw)^n$$

# 直流信号

双边指数函数 
$$e^{-|a|t} < ----> \frac{2a}{a^2 + w^2}$$

$$\begin{split} X(w) &= \lim_{a \to 0} \int_{-\infty}^{+\infty} \frac{2a}{a^2 + w^2} dw = \lim_{a \to 0} \int_{-\infty}^{+\infty} \frac{2}{1 + (\frac{w}{a})^2} d(\frac{w}{a}) = \lim_{a \to 0} 2 \arctan(\frac{w}{a}) \big|_{-\infty}^{+\infty} = 2\pi \end{split}$$
 
$$\text{Ffil}, \qquad \qquad 1 < --- > 2\pi \delta(w)$$

#### 正余弦函数的傅立叶变换

余弦函数

$$cos(wt) < ---> ????$$

$$cos(w_0 t) = \frac{1}{2} (e^{jw_0 t} + e^{-jw_0 t})$$

直流信号:  $1 < --- > 2\pi\delta(w)$ 

利用频移性质:  $e^{jw_0t} < --- > 2\pi\delta(w-w_0)$ 

 $e^{-jw_0t} < --- > 2\pi\delta(w + w_0)$ 

所以:  $cos(w_0t) < ---> \pi\delta(w-w_0) + \pi\delta(w+w_0)$ 

正弦函数

$$sin(w_0 t) < ---> ????$$

$$sin(w_0 t) = \frac{1}{2j} (e^{jw_0 t} - e^{-jw_0 t})$$

同理:  $sin(w_0t) < --- > \frac{1}{2j}[2\pi\delta(w-w_0) - 2\pi\delta(w+w_0)]$ 

即 
$$sin(w_0t) < ---> j\pi[\delta(w+w_0)-\delta(w-w_0)]$$

# 1.6.5、周期信号的傅立叶变换

$$\Omega = \frac{2\pi}{T}$$
 是基波角频率,  $F_n$  是傅立叶系数

$$x_T(t) = \sum_{n = -\infty}^{+\infty} F_n e^{jwt} = \sum_{n = -\infty}^{+\infty} F_n e^{jn\Omega t}$$

$$F_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t)e^{-jn\Omega t} dt$$

$$X(w) = 2\pi \sum_{n=-\infty}^{+\infty} F_n \delta(w - n\Omega)$$

# 1.6.6、傅立叶变换的性质

#### 时移性

若 
$$x(t) < --> X(jw)$$
,

则  $x(t-t_0) < -->?$ 
综合公式:  $x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) e^{jw_k t} dw$  根据傅立叶级数推出的
那么,  $x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w) e^{jw_k (t-t_0)} dw$ 

$$x(t-t_0) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} (e^{-jw_k t_0} X(w)) e^{jw_k t} dw$$

$$x(t-t_0) < --> e^{-jw_k t_0} X(jw)$$

#### 共轭性

$$X(w) = Re\{X(w)\} + jIm\{X(w)\}$$
$$= |X(w)| e^{j \triangleleft X(w)}$$

频率: w

- 1. X(w) 与 X(-w) 共轭。
- 2. 实部\幅度 是频率的偶函数。

$$Re\{X(w)\} = Re\{X(-w)\}$$

$$|X(w)| = |X(-w)|$$

3. 虚部\相角 是频率的奇函数。

$$Im\{X(w)\} = -Im\{X(-w)\}$$

$$\triangleleft X(w) = - \triangleleft X(-w)$$

#### Time and frequency scaling

$$x(t) < --- > X(w)$$

$$x(at) < --->$$

傅立叶变换的定义: 
$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jw_kt}dt$$

则, 
$$x(at) < ----> \int_{-\infty}^{+\infty} x(at)e^{-jw_k t}dt$$

使用换元法: 
$$\tau = at$$
。则  $\frac{d\tau}{dt} = a$ ,

注意:  $\exists a > 0$  时,  $t \cup -\infty$  到  $+\infty$ , 那么  $\tau \cup -\infty$  到  $+\infty$ 。

当 a < 0 时, t 从  $-\infty$  从  $+\infty$ , 那么  $\tau$  从  $+\infty$  到  $-\infty$ 。

1. 
$$a > 0$$
时,  $\int_{-\infty}^{+\infty} x(\tau)e^{-jw_k\frac{\tau}{a}}dt = \frac{1}{a}\int_{-\infty}^{+\infty} x(\tau)e^{-j\frac{w_k}{a}\tau}d\tau = \frac{1}{a}X(\frac{w_k}{a})$ 

2. a < 0时:

$$\int_{-\infty}^{+\infty} x(\tau)e^{-jw_k\frac{\tau}{a}}dt = \frac{1}{a}\int_{+\infty}^{-\infty} x(\tau)e^{-j\frac{w_k}{a}\tau}d\tau = -\frac{1}{a}\int_{-\infty}^{+\infty} x(\tau)e^{-j\frac{w_k}{a}\tau}d\tau$$

$$= -\frac{1}{a}X(\frac{w_k}{a})$$

所以:

$$x(at) < --- > \frac{1}{|a|} X(\frac{w_k}{a})$$

#### 对称性

$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jw_k t}dt$$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w)e^{jw_k t} dw$$

综合公式 
$$--> x(w) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(t)e^{jw_k t}dt$$
 
$$x(-w) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(t)e^{-jw_k t}dt$$

所以:

$$2\pi x(-w) < --- > X(t)$$

#### 频移

$$x(t) < --- > X(w)$$
?  $< --- > X(w + w_0)$ 
傅立叶分析:  $X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jw_k t}dt$ 

$$X(w + w_0) = \int_{-\infty}^{+\infty} x(t)e^{-j(w+w_0)t}dt$$

$$X(w + w_0) = \int_{-\infty}^{+\infty} (x(t)e^{-jw_0 t})e^{-jw t}dt$$

所以: 
$$x(t)e^{-jw_0t} < ----> X(w+w_0)$$

#### 时域卷积

若 
$$x_1(t) < --- > X_1(w)$$
 
$$x_2(t) < --- > X_2(w)$$
 则 
$$x_1(t) * x_2(t) < --- > ?$$

巻积: 
$$x_1(t) * x_2(t) = \int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau$$

则  $x_1(t) * x_2(t)$  的傅立叶变换为:

$$X(w) = \int_{-\infty}^{+\infty} [x_1(t) * x_2(t)] e^{-jw_k t} dt$$

$$= \int_{-\infty}^{+\infty} [\int_{-\infty}^{+\infty} x_1(\tau) x_2(t-\tau) d\tau] e^{-jw_k t} dt$$
交换积分次序 
$$= \int_{-\infty}^{+\infty} [\int_{-\infty}^{+\infty} x_2(t-\tau) e^{-jw_k t} dt] x_1(\tau) d\tau$$

内部积分使用时移性质: 
$$= \int_{-\infty}^{+\infty} [X_2(w)e^{-jw_k\tau}]x_1(\tau)d\tau$$
 
$$= X_2(w)\int_{-\infty}^{+\infty} x_1(\tau)e^{-jw_k\tau}d\tau$$
 
$$= X_2(w)X_1(w) = X_1(w)X_2(w)$$

#### 频域卷积

$$x_1(t) < --- > X_1(w)$$
  
 $x_2(t) < --- > X_2(w)$   
?  $< --- > X_1(w) * X_2(w)$ 

卷积定理:

$$X_1(w) * X_2(w) = \int_{-\infty}^{+\infty} X_1(\tau) X_2(w - \tau) d\tau$$

傅立叶逆变换为:

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w)e^{jwt}dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} [X_1(w) * X_2(w)]e^{jwt}dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} [\int_{-\infty}^{+\infty} X_1(\tau)X_2(w - \tau)d\tau]e^{jwt}dw$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} [\int_{-\infty}^{+\infty} X_2(w - \tau)e^{jwt}dw]X_1(\tau)d\tau$$

$$= \frac{1}{2\pi} \int_{-\infty}^{+\infty} [2\pi x_2(t)e^{j\tau t}]X_1(\tau)d\tau$$

$$= x_2(t) \int_{-\infty}^{+\infty} X_1(\tau)e^{j\tau t}d\tau$$

$$= 2\pi x_1(t)x_2(t)$$

### 时域微分

$$x(t) < --- > X(w)$$
  
 $x^{n}(t) < --- > ?$ 

$$x^{(1)}(t) = x^{(1)}(t) * \delta(t) = [x(t) * \delta(t)]'$$
$$= x(t) * \delta^{(1)}(t)$$

使用时域卷积定理: 时域卷积 == 频域相乘

而:

$$\delta^{(1)}(t) < ---> jw$$

所以: 
$$x^{(1)}(t) < ---> jwX(w)$$

推广: 
$$x^{(n)}(t) < ---> (jw)^n X(w)$$

$$x(t) < --- > X(w)$$
  
 $x^{(-1)}(t) < --- > ???$ 

$$x^{(-1)}(t) = x^{(-1)}(t) * \delta(t)$$
$$= x(t) * \delta^{(-1)}(t) = x(t) * u(t)$$

根据时域卷积定理:

$$x^{(-1)}(t) < ----> X(w)[\pi\delta(w) + \frac{1}{jw}]$$
 
$$\pi X(0)\delta(w) + \frac{1}{jw}X(w)$$

# 频域微分

# 1.6.7、信号的取样

取样脉冲序列: s(t)

取样信号:  $f_s(t) = f(t)s(t)$ 

$$\mathscr{F}[s(t)] = \mathscr{F}[\delta_{Ts}(t)] = \mathscr{F}[\sum_{n=-\infty}^{+\infty} \delta(t - nT_s)]$$

一般周期信号的傅立叶变换: 
$$\mathscr{F}[f_{Ts}(t)] = 2\pi \sum_{n=-\infty}^{+\infty} F_n \delta(w - n\Omega)$$

根据 傅立叶系数的推导:  $F_n = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t) e^{-jn\Omega t} dt$ 

$$\mathscr{F}[f_{Ts}(t)] = 2\pi \sum_{n=-\infty}^{+\infty} \frac{1}{T} \left[ \int_{-\frac{T}{2}}^{\frac{T}{2}} f(t)e^{-jn\Omega t} dt \right] \delta(w - n\Omega)$$

利用冲激函数的积分性质: (此处求得是周期冲激信号的傅立叶变换

$$\mathcal{F}[f_{Ts}(t)] = \frac{2\pi}{T} \sum_{n=-\infty}^{+\infty} \left[ \int_{-\frac{T}{2}}^{\frac{T}{2}} \delta(t) e^{-jn\Omega t} dt \right] \delta(w - n\Omega)$$

$$= w_s \sum_{n=-\infty}^{+\infty} \varphi(0) \delta(w - n\Omega)$$

$$= w_s \sum_{n=-\infty}^{+\infty} \delta(w - n\Omega)$$

 $f_s(t)$  的频谱函数

$$F_{s}(jw) = \frac{1}{2\pi}F(jw) * w_{s} \sum_{n=-\infty}^{+\infty} \delta(w - nw_{s}) = \frac{1}{T_{s}} \sum_{n=-\infty}^{+\infty} F(jw) * \delta(w - nw_{s})$$
$$= \frac{1}{T_{s}} \sum_{n=-\infty}^{+\infty} F[j(w - nw_{s})]$$

#### 矩形脉冲取样:

非周期矩形脉冲 
$$g_{\tau}(t)<---> \tau Sa(\frac{w\tau}{2})$$
 周期信号傅立叶变换  $g_{Ts}(t)<---> 2\pi\sum_{n=-\infty}^{+\infty}F_n\delta(w-n\Omega)$ 

周期矩形脉冲信号: 
$$F_n = \frac{1}{T_s} \int_{-\frac{T}{2}}^{\frac{1}{2}} f(t)e^{-jn\Omega t}dt$$
 
$$= \frac{1}{T_s} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} e^{-jn\Omega t}dt$$
 
$$= \frac{1}{T_s} \left[ \frac{1}{-jn\Omega} e^{-jn\Omega t} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$
 
$$= \frac{\tau}{T_s} Sa(\frac{n\Omega\tau}{2})$$

所以 
$$\mathcal{F}[g_{Ts}(t)] = \frac{2\pi\tau}{T_s} \sum_{n=-\infty}^{+\infty} Sa(\frac{nw_s\tau}{2})\delta(w - nw_s)$$
 
$$\mathcal{F}[f_{Ts}(t)] = \frac{1}{2\pi} \frac{2\pi\tau}{T_s} F(w) * \sum_{n=-\infty}^{+\infty} Sa(\frac{nw_s\tau}{2})\delta(w - nw_s)$$
 
$$= \frac{\tau}{T_s} \sum_{n=-\infty}^{+\infty} Sa(\frac{nw_s\tau}{2}) [F(w) * \delta(w - nw_s)]$$

利用冲激函数卷积性质:  $F(w) * \delta(w - nw_s) = F(w - nw_s)$ 

所以 
$$\mathscr{F}[f_{Ts}(t)] = \frac{\tau}{T_s} \sum_{n=-\infty}^{+\infty} Sa(\frac{nw_s \tau}{2}) F(w - nw_s)$$

#### 时域取样定理

冲激取样 
$$\mathscr{F}[f_{Ts}(t)] = \frac{1}{T_s} \sum_{n=-\infty}^{+\infty} F(w - nw_s)$$



由于我们要还原 f(t), 所以可以选择先求 F(w)。

根据 
$$g_{\tau}(t) < ----> \tau Sa(\frac{w\tau}{2})$$

再由傅立叶变换的对称性质: 
$$\frac{1}{2\pi}\tau Sa(\frac{\tau t}{2}) < ----> g_{\tau}(w)$$

则 
$$Sa(\frac{\tau t}{2}) < ---- > T_s g_{\tau}(t)$$

我们还可以利用时域卷积定理

则: 
$$f(t) = f_{Ts}(t) * Sa(\frac{\tau t}{2})$$

$$f_s(t) = f(t)s(t) = f(t)\sum_{n = -\infty}^{+\infty} \delta(t - nT_s) = \sum_{n = -\infty}^{+\infty} f(nT_s)\delta(t - nT_s)$$

$$f(t) = \sum_{n = -\infty}^{+\infty} f(nT_s)\delta(t - nT_s) * Sa(\frac{w_s t}{2}) = \sum_{n = -\infty}^{+\infty} f(nT_s)Sa[\frac{w_s}{2}(t - nT_s)]$$

$$= \sum_{n=-\infty}^{+\infty} f(nT_s) Sa(\frac{w_s t}{2} - n\pi)$$

#### 时域取样定理

一个频谱在区间  $(-w_m,w_m)$  以外为零的频带有限信号 f(t),可唯一地由其在均匀间隔  $T_s(T_s<\frac{1}{2f_m})$  上的样点值  $f(nT_s)$ 确定。

注意:

- 1. f(t)必须是带限信号,其频谱函数在  $|w| > w_m$ 各处为零。
- 2. 取样频率不能太低,必须满足  $f_s>2f_m$  (即  $w_s>2w_m$ ),或者说取样间隔不能太长,必须满足  $T_s<\frac{1}{2f_m}$ ,否则将会发生混叠。

为什么  $w_s > 2w_m$  呢? 因为周期取样时,频率为  $w_m$  的整数。

奈奎斯特频率: 最低允许取样频率  $f_s = 2f_m$  称为奈奎斯特频率。

奈奎斯特间隔: 最大允许取样间隔  $T_s = \frac{1}{2f_m}$  称为奈奎斯特间隔。

# 1.6.8、对连续信号进行频域分析

$$y(t) = h(t) * f(t)$$
 零状态响应

假设输入:  $f(t) = e^{jwt}$ 

则 
$$y(t) = \int_{-\infty}^{+\infty} h(\tau)e^{jw(t-\tau)}d\tau$$

即 
$$y(t) = e^{jwt} \int_{-\infty}^{+\infty} h(\tau)e^{-jw\tau}d\tau$$
$$= e^{jwt}H(w)$$

根据傅立叶逆变换: 
$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(w)e^{jwt}dw$$

则 
$$y(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} H(w)F(w)e^{jwt}dw$$

得出时域卷积定理: Y(w) = H(w)F(w)

$$H(w) = \frac{Y(w)}{F(w)}$$

# 1.7、连续信号的复频域分析

### 1.7.1、拉普拉斯变换

#### 定义法

回顾傅立叶变换: 傅立叶变换是将信号用基础信号的线形组合来表示。

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(w)e^{jwt}dw$$
 信号分解为复指数信号的线性表示

$$X(w) = \int_{-\infty}^{+\infty} X(t)e^{-jwt}dt$$
 表示复指数信号相关的振幅

复指数信号是线性时不变系统的特征函数。

#### 回顾冲激响应:

冲激响应 R(t) 的傅立叶变换为 H(w)。

根据傅立叶变换的卷积性质和信号的响应的性质,

当输入信号为  $e^{jwt}$  时,它的响应可用  $H(w)e^{jwt}$  表示。(R(t) < --> H(w)) 我们对傅立叶变换进行推广。

当输入信号为 
$$e^{st}$$
 时,它的响应为  $\int_{-\infty}^{+\infty} R(\tau)e^{s(t-\tau)}d\tau = e^{st}\int_{-\infty}^{+\infty} R(\tau)e^{-s\tau}d\tau$ 

$$e^{st} --> R(t) * e^{st} <--> H(s)e^{st}$$

则, 
$$H(s) = \int_{-\infty}^{+\infty} R(\tau)e^{-s\tau}d\tau$$

我们定义: 
$$\mathscr{L}[x(t)] = \int_{-\infty}^{+\infty} x(t)e^{-st}dt$$
 为  $x(t)$  的拉普拉斯变换。

 $s=\sigma+jw$ ,由此我们可以发现: 当  $\sigma=0$  时,x(t) 的傅立叶变换为它的拉普拉斯变换相等。

#### 一个记号上的问题:

以前 
$$x(t) < --> X(w)$$
。为了与拉普拉斯变换相统一。  
现在  $x(t) < --> X(jw)$ 。
$$L(\sigma + jw) = \int_{-\infty}^{+\infty} x(t)e^{-(\sigma + jw)t}dt$$
$$= \int_{-\infty}^{+\infty} [x(t)e^{-\sigma t}]e^{-st}dt$$

我们可以将x(t)的拉普拉斯变换看作x(t)变换后的傅立叶变换。

#### 推论法

频域法分析时: 
$$X(w) = \int_{-\infty}^{+\infty} x(t)e^{-jwt}dt$$

存在局限,因为我们的积分函数必须收敛。

解决的方法是引入衰减因子  $e^{-\sigma t}$ , 使  $t \to \pm \infty$  时,信号幅度趋于 0。

$$\mathbb{D} \mathcal{F}[f(t)e^{-\sigma t}] = \int_{-\infty}^{+\infty} f(t)e^{-(\sigma + jw)t}dt$$

在双边拉普拉斯变换中:

$$F_b(s) = \int_{-\infty}^{+\infty} f(t)e^{-st}dt$$
 双边  $F_b(s)$ ,单边  $F(s)$ 

即,默认  $s = \sigma + jw$ 。发现自变量为复数,所以又称复频域分析。

$$(ds = jdw)$$

逆变换推导:

$$f(t)e^{-\sigma t} = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\sigma + jw)e^{jwt}dt$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(\sigma + jw) e^{(\sigma + jw)t} dw$$

替换为复频域

$$f(t) = \frac{1}{2\pi} \int_{\sigma - j\infty}^{\sigma + j\infty} F(s)e^{st} \frac{ds}{j}$$
$$= \frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{st} ds$$

# 1.7.2、单边拉普拉斯变换

$$F(s) = \mathcal{L}[f(t)] = \int_{0^{-}}^{+\infty} f(t)e^{-st}dt$$

$$f(t) = \mathcal{L}^{-1}[f(t)] = \frac{1}{2\pi j} \int_{\sigma - j\infty}^{\sigma + j\infty} f(t)e^{st}ds, \ t > 0$$

$$= 0, \quad t < 0$$

积分下限取 $0^-$ ,是考虑到之后会使用的奇异函数。

收敛域:

Re[s]: s的收敛域。

例如:  $Re[s] = \sigma > \tau$ 

### 1.7.3、常见信号的单边拉式变换

#### 求复指数函数的单边拉普拉斯变换

$$f(t) = e^{s_0 t} u(t)$$

根据拉普拉斯变换定义:

$$\mathcal{L}[f(t)] = \int_{0^{-}}^{+\infty} e^{s_0 t} e^{-st} dt = \int_{0^{-}}^{+\infty} e^{-(s-s_0)t} dt, \quad Re[s] > Re[s_0]$$
$$= \frac{1}{s - s_0}, \quad Re[s] > Re[s_0]$$

当  $s_0 = \pm a_0$ ,  $a_0$  为实数时,

$$e^{a_0t}u(t) < ---> \frac{1}{s-a_0}, Re[s] > a_0$$

$$e^{-a_0 t}u(t) < ---> \frac{1}{s+a_0}, Re[s] > -a_0$$

当  $s_0 = \pm j\beta$  时,

$$e^{j\beta}u(t) < ---> \frac{1}{s-j\beta}, Re[s] > 0$$

$$e^{-j\beta}u(t) < --- > \frac{1}{s+i\beta}, Re[s] > 0$$

当  $s_0 = 0$  时,

$$u(t) < --- > \frac{1}{s}, Re[s] > 0$$

#### 求t的象函数

$$f(t) = tu(t)$$

$$F(t) = \int_{0^{-}}^{+\infty} f(t)e^{-st}dt$$

$$= \int_{0^{-}}^{+\infty} te^{-st}dt = \int_{0^{-}}^{+\infty} t[-\frac{1}{s}e^{-st}]'dt$$

$$= [-\frac{1}{s}te^{-st}]|_{0^{-}}^{+\infty} - \int_{0^{-}}^{+\infty} (-\frac{1}{s}e^{-st})dt$$

$$= \frac{1}{s} \int_{0^{-}}^{+\infty} e^{-st}dt$$

$$= \frac{1}{s^{2}}, Re[s] > 0$$

# 求 $cos(w_0t)$ 的单边拉式变换

$$f(t) = cos(w_0 t) = \frac{1}{2} (e^{jw_0 t} + e^{-jw_0 t})$$

根据复指数信号的单边拉式变换:

即,
$$e^{\pm j\beta t} < ----> \frac{1}{s\mp j\beta}, Re[s] > 0$$

所以: $cos(w_0t) < ----> \frac{1}{2}(\frac{1}{s-jw_0} + \frac{1}{s+jw_0}), Re[s] > 0$ 
 $cos(w_0t) < ----> \frac{s}{s^2+w_0^2}, Re[s] > 0$ 

# 求 $sin(w_0t)$ 的单边拉式变换

$$f(t) = \sin(w_0 t)u(t) = \frac{1}{2j} (e^{jw_0 t} - e^{-jw_0 t})u(t)$$

根据复指数信号的单边拉式变换:

$$\begin{split} e^{\pm jw_0t} < ----> \frac{1}{s \mp jw_0}, Re[s] > 0 \\ & \text{ } \\ & \text{$$

$$\mathbb{E}, \quad sin(w_0t) < --- > \frac{w_0}{s^2 + w_0^2}, Re[s] > 0$$

### 1.7.4、拉普拉斯变换性质

#### 一、线性

$$f_1(t) < --- > F_1(s), Re[s] > \sigma_1$$
  
 $f_2(t) < --- > F_2(s), Re[s] > \sigma_2$ 

$$a_1f_1(t) + a_2f_2(t) < --- > a_1F_1(s) + a_2F_2(s), Re[s] > \max(\sigma_1, \sigma_2)$$

#### 二、尺度变换

$$f(t) < ---> F(s), Re[s] > \sigma_0$$
  
 $f(at) < ---> ???$ 

根据单边拉式变换定义:

$$\mathscr{L}[f(at)] = \int_{0^{-}}^{+\infty} f(at)e^{-st}dt$$

换元法: q = at, 则 dq = adt。

$$a>0$$
 时, $\mathscr{L}[f(at)]=\int_{0^{-}}^{+\infty}f(q)e^{-srac{q}{a}}rac{1}{a}dq$  
$$=rac{1}{a}\int_{0^{-}}^{+\infty}f(q)e^{-rac{s}{a}q}dq=rac{1}{a}F(rac{s}{a}),Re[s]>a\sigma_{0}$$
  $a<0$  时, $\mathscr{L}[f(at)]=-\int_{0^{-}}^{+\infty}f(q)e^{-rac{s}{a}q}rac{1}{a}dq$  
$$=-rac{1}{a}F(rac{s}{a})$$
 但是函数不收敛

#### 三、时移性质

$$f(t) < --- > F(s)$$

$$f(t - t_0)u(t - t_0) < --- > ??? (t_0 > 0)$$

为什么要 乘  $u(t-t_0)$ , 画图可获得答案。

乘 u(t),则原函数的形状会变化,生成了新函数,不能叫做时移。

况且,原函数本身就是f(t)u(t),而不是f(t)。

为什么  $t_0 > 0$ ,原因同上。

根据单边拉式变换定义:

$$\mathscr{L}[f(t-t_0)u(t-t_0)] = \int_{t_0^{-1}}^{+\infty} f(t-t_0)e^{-st}dt$$

使用换元法:  $q = t - t_0$ , 则 dq = dt。

$$\mathscr{L}[f(t-t_0)u(t-t_0)] = \int_{t_0^{-1}}^{+\infty} f(q)e^{-s(q+t_0)}dq$$

那么问题来了 
$$\int_{t_0^-}^{+\infty} f(q)e^{-s(q+t_0)}dq == \int_{0^-}^{+\infty} f(q)e^{-s(q+t_0)}dq$$
 吗?

答案是相等,因为 q 的定义就是 $(t_0, + \infty)$ 。

所以时移后的单边拉式变换为:  $e^{-st_0}F(s)$ 

#### 四、复频移性质

$$f(t) < --- > F(s), Re[s] > \sigma_0$$
  
??? < --- >  $F(s \pm s_0)$ 

根据单边拉普拉斯逆变换定义:

$$F(s) = \int_{0^{-}}^{+\infty} f(t)e^{-st}dt, Re[s] > \sigma_0$$

$$F(s - s_a) = \int_{0^{-}}^{+\infty} f(t)e^{-(s - s_a)t}dt$$

$$= \int_{0^{-}}^{+\infty} f(t)e^{s_a t}e^{-st}dt, Re[s] > \sigma_0 + \sigma_a$$

#### 五、时域微分性质

$$f(t) < ---> F(s), Re[s] > \sigma_0$$
 
$$\mathcal{L}[f^{(1)}(t)] = \int_{0^-}^{+\infty} \frac{df(t)}{dt} e^{-st} dt = \int_{0^-}^{+\infty} e^{-st} df(t)$$

分部积分:

$$\mathcal{L}[f^{(1)}(t)] = \int_{0^{-}}^{+\infty} e^{-st} df(t) = [e^{-st}f(t)]_{0^{-}}^{+\infty} - \int_{0^{-}}^{+\infty} [-se^{-st}f(t)]dt$$

$$= -f(0^{-}) + sF(s) = sF(s) - f(0^{-})$$

$$\mathcal{L}[f^{(2)}(t)] = s\mathcal{L}[f^{(1)}(t)] - f^{(1)}(0^{-}) = s[sF(s) - f(0^{-})] - f^{(1)}(0^{-})$$

$$= s^{2}F(s) - sf(0^{-}) - f^{(1)}(0^{-})$$

#### 六、时域积分定理

$$f(t) < --- > F(s)$$
 
$$f^{(-1)}(t) < --- > ???$$
 
$$(f^{(-1)}(t) = \int_{-\infty}^{t} f(x)dx$$

根据拉普拉斯变换的定义:

$$F(s) = \int_{0^{-}}^{+\infty} f(t)e^{-st}dt$$

$$\mathcal{L}[f^{(-1)}(t)] = \int_{0^{-}}^{+\infty} f^{(-1)}(t)e^{-st}dt$$

$$= \int_{0^{-}}^{+\infty} \left[ \int_{-\infty}^{t} f(x)dx \right]e^{-st}dt$$

如果 f(t) 是因果信号,则:

$$\mathscr{L}[f^{(-1)}(t)] = \int_{0^{-}}^{+\infty} \left[ \int_{0^{-}}^{t} f(x)dx \right] e^{-st} dt$$

分部积分: 
$$[uv]' = u'v + uv'$$

$$\int [uv]' = \int u'v + \int uv'$$

设 
$$u = \int_{0^{-}}^{t} f(x)dx$$
,  $dv = e^{-st}dt$ 

则 
$$u' = f(t)dt, v = -\frac{1}{s}e^{-st}$$

那么,
$$\mathscr{L}[f^{(-1)}(t)] = uv|_{0^{-}}^{+\infty} - \int vdu$$
$$= \frac{1}{s}f^{(-1)}(0^{-}) - (-\frac{1}{s}F(s)) = \frac{1}{s}f^{(-1)}(0^{-}) + \frac{1}{s}F(s)$$

#### 七、卷积定理

因果函数:

$$f_1(t) < ----> F_1(s), Re[s] > \sigma_1$$
 
$$f_2(t) < ----> F_2(s), Re[s] > \sigma_2$$
 则 
$$f_1(t) * f_2(t) < ----> ???$$

根据卷积定理:

$$f_1(t) * f_2(t) = \int_{0^-}^{+\infty} f_1(\tau) u(\tau) f_2(t - \tau) u(t - \tau) d\tau$$
$$= \int_{0^-}^{+\infty} f_1(\tau) f_2(t - \tau) u(t - \tau) d\tau$$

根据单边拉式变换定义:

$$\mathcal{L}[f_1(t) * f_2(t)] = \int_{0^{-}}^{+\infty} \left[ \int_{0^{-}}^{+\infty} f_1(\tau) f_2(t - \tau) u(t - \tau) d\tau \right] e^{-st} dt$$

$$= \int_{0^{-}}^{+\infty} f_1(\tau) \left[ \int_{0^{-}}^{+\infty} f_2(t - \tau) u(t - \tau) e^{-st} dt \right] d\tau$$

$$= \int_{0^{-}}^{+\infty} f_1(\tau) F_2(s) e^{-s\tau} d\tau$$

$$= F_2(s) F_1(s)$$

#### 八、复频域卷积定理

$$f_1(t) < --- > F_1(s), Re[s] > \sigma_1$$
  
 $f_2(t) < --- > F_2(s), Re[s] > \sigma_2$   
??? < --- >  $F_1(s) * F_2(s)$ 

单边拉普拉斯逆变换:

$$f(t) = \frac{1}{2\pi j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s)e^{st}ds$$

则,

$$f(t) = \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} \left[ \int_{c-j\infty}^{c+j\infty} F_1(\tau) F_2(s-\tau) d\tau \right] e^{st} ds$$

变换积分顺序:

$$\begin{split} &= \int_{c-j\infty}^{c+j\infty} \left[ \frac{1}{2\pi j} \int_{c-j\infty}^{c+j\infty} F_2(s-\tau) e^{st} ds \right] F_1(\tau) d\tau \\ &= \int_{c-j\infty}^{c+j\infty} f_2(t) e^{s\tau} F_1(\tau) d\tau = f_2(t) \int_{c-j\infty}^{c+j\infty} F_1(\tau) e^{s\tau} d\tau \end{split}$$

则,

$$f(t)\frac{1}{2\pi j} = f_1(t)f_2(t)$$

即:

$$2\pi j f_1(t) f_2(t) < ---> F_1(s) * F_2(s), Re[s] > \sigma_1 + \sigma_2, \sigma_1 < c < Re[s] - \sigma_2$$

# 第二章、离散信号分析

离散信号的时域变换:

# 2.1 单位序列和单位阶跃响应

单位序列:  $f(k)\delta(k-i) = f(i)\delta(k-i)$ 

单位阶跃函数:  $u(k) = \sum_{j=0}^{+\infty} \delta(k-j)$ 

# 2.2 离散信号的卷积

# 2.2.1 卷积和

$$f(k) = \sum_{i=-\infty}^{+\infty} f(i)\delta(k-i)$$

系统的单位序列响应为 h(k)。

那么系统对 $f(i)\delta(k-i)$ 的响应为f(i)h(k-i)。

则 
$$y_{zs}(k) = \sum_{i=-\infty}^{+\infty} f(i)h(k-i)$$

卷积和定义:

$$f(k) = f_1(k) * f_2(k) = \sum_{i=-\infty}^{+\infty} f_1(i) f_2(k-i)$$

# 2.2.2 卷积和的性质

交换律:

$$f_1(k) * f_2(k) = f_2(k) * f_1(k)$$

分配律:

$$f_1(k) * [f_2(k) + f_3(k)] = f_1(k) * f_2(k) + f_1(k) * f_3(k)$$

结合律:

$$f_1(k) * [f_2(k) * f_3(k)] = [f_1(k) * f_2(k)] * f_3(k)$$

# 2.3 序列的傅立叶分析

周期序列

$$f_N(k) = f_N(k + lN)$$
, $l$  为任意整数

# 2.3.1 周期序列的离散傅立叶级数(DFS)

$$f_N(k) = \sum_{n=0}^{N-1} C_n e^{jn\Omega k} = \sum_{n=0}^{N-1} C_n e^{jn\frac{2\pi}{N}k}$$

那么  $C_n$  如何求呢?

参考连续周期信号傅立叶级数的求法:

$$f_{N}(k) = \sum_{n=0}^{N-1} C_{n} e^{jn\Omega k}$$

$$f_{N}(k)e^{-jm\Omega k} = e^{-jm\Omega k} \sum_{n=0}^{N-1} C_{n} e^{jn\Omega k}$$

$$\sum_{k=0}^{N-1} f_{N}(k)e^{-jm\Omega k} = \sum_{k=0}^{N-1} e^{-jm\Omega k} \sum_{n=0}^{N-1} C_{n} e^{jn\Omega k}$$

$$\sum_{k=0}^{N-1} f_{N}(k)e^{-jm\Omega k} = \sum_{n=0}^{N-1} C_{n} \sum_{k=0}^{N-1} e^{j(n-m)\Omega k}$$

当 n = = m 时,

$$\sum_{k=0}^{N-1} f_N(k) e^{-jm\Omega k} = C_m N$$

即, 
$$C_m = \frac{1}{N} \sum_{k=0}^{N-1} f_N(k) e^{-jm\Omega k}$$

$$C_n = \frac{1}{N} \sum_{k=0}^{N-1} f_N(k) e^{-jn\Omega k} = \frac{1}{N} F_N(k)$$

 $F_N(k)$  称为离散傅立叶系数

则, 
$$f_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} F_N(k) e^{jn\Omega k}$$
 周期序列离散傅立叶级数

其中: 
$$F_N(k) = \sum_{k=0}^{N-1} f_N(k) e^{-jn\Omega k}$$

### 表示方式

离散傅立叶系数:

$$DFS[f_N(k)] = F_N(n) = \sum_{k=0}^{N-1} f_N(k)W^{nk}$$

离散傅立叶变换展开式:

$$IDFS[F_N(k)] = f_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} F_N(n) W^{-nk}$$

# 2.3.2 非周期序列的离散时间傅立叶变换(DTFT)

周期离散信号傅立叶级数:

$$f_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} F_N(n) e^{jn\Omega k}$$

傅立叶系数:

$$F_N(n) = \sum_{k=0}^{N-1} f_N(k)e^{-jn\Omega k}$$

当  $N->\infty$ 时,此时周期不再为 (0,N),而是  $(-\infty,+\infty)$ 。

$$F(n) = \sum_{n = -\infty}^{+\infty} f(k)e^{-jn\Omega k}$$

我们取自变量为  $e^{-jn\Omega}$ ,即为  $e^{-j\theta}$   $(N->\infty)$ 

那么:

$$F(e^{j\theta}) = \sum_{n=-\infty}^{+\infty} f(k)e^{-j\theta k} = |F(e^{j\theta})|e^{j\varphi(\theta)}$$

 $|F(e^{j\theta})|$  称为幅频特性, $e^{j\varphi(\theta)}$  称为相频特性

当 
$$n - > n \frac{2\pi}{N}$$
 时, 周期也从  $N - > 2\pi$ 。 即  $\theta$  周期  $(-\pi, \pi)$ 。

#### 求离散傅立叶逆变换:

$$f_N(k) = \frac{1}{N} \sum_{n=0}^{N-1} F_N(n) e^{jn\Omega k}$$
 离散傅立叶级数

$$N->\infty$$
 时,

$$f(k) = \frac{d\theta}{2\pi} \int_{-\pi}^{\pi} F(n)e^{j\theta k}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} F(n)e^{j\theta k}d\theta$$

# 2.4 离散傅立叶变换及其性质

# 2.4.1 离散傅立叶变换 (DFT) 处理有限长序列

有限长序列的长度为 N,

则 f(k) 的离散傅立叶变换和其逆变换的定义分别为:

$$F(n) = DFT[f(k)] = \sum_{k=0}^{N-1} f(k)e^{-j\frac{2\pi}{N}kn} = \sum_{k=0}^{N-1} f(k)W^{kn} \cdot (0 \le n \le N-1)$$

$$f(k) = IDFT[F(n)] = \frac{1}{N} \sum_{n=0}^{N-1} F(n) e^{j\frac{2\pi}{N}kn} = \frac{1}{N} \sum_{n=0}^{N-1} F(n) W^{-kn} . (0 \le k \le N-1)$$

发现这里我们并没有代入上一节的非周期信号的离散傅立叶变换,

因为非周期信号的离散傅立叶变换是连续的。

而我们要使用计算机进行操作。

所以将离散周期信号的傅立叶级数  $f_N(k)$ 的频率函数  $F_N(n)$  的主值序列定义为 f(k) 的傅立叶变换。

# 2.4.2 离散傅立叶变换的性质

$$f(k) < ---> F(n)$$

$$F(n) = DFT[f(k)]$$

$$f(k) = IDFT[F(n)]$$

### 一、线形

若

$$f_1(k) < ---> F_1(n)$$

$$f_2(k) < ---> F_2(n)$$

则:

$$a_1 f_1(k) + a_2 f_2(k) < ---> a_1 F_1(n) + a_2 F_2(n)$$

### 二、对称性

$$f(k) < --- > F(n)$$

$$F(k) < ---> ???$$

根据定义:

$$F(n) = \sum_{k=0}^{N-1} f(k)e^{-jn\Omega k}$$

$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} F(n)e^{jn\Omega k}$$

$$f(-k) = \frac{1}{N} \sum_{n=0}^{N-1} F(n)e^{-jn\Omega k}$$

变量替换

$$f(-n) = \frac{1}{N} \sum_{k=0}^{N-1} F(k)e^{-jn\Omega k}$$

即

$$F(k) < --- > Nf(-n)$$

### 三、时移性质

若

$$f(k) < --- > F(n)$$
 
$$f(k-m)_N G_N(k) < --- > ???$$

圆周位移: 
$$f(k-m)_N G_N(k)$$
 
$$f(k-m)_N \text{ 是 有限长序列} f(k) \text{ 的周期序列} f(k-m)_N \text{ o}$$
 
$$G_N(k) = \varepsilon(k) - \varepsilon(k-N)$$
 
$$DFT[f_N(k-m)G_N(k)] = \sum_{k=0}^{N-1} f_N(k-m)e^{-j\frac{2\pi}{N}kn}$$

利用NB的换元法:

$$\Leftrightarrow i = k - m$$

則, 
$$= \sum_{i=-m}^{N-m-1} f_N(i) e^{-j\frac{2\pi}{N}(i+m)n}$$
 
$$= e^{-j\frac{2\pi}{N}mn} \sum_{i=-m}^{N-m-1} f_N(i) e^{-j\frac{2\pi}{N}in}$$

由于 $f_N(i)$  和  $e^{-j\frac{2\pi}{N}in}$  都是周期为 N 的函数。

所以:

$$\sum_{i=-m}^{N-m-1} f_N(i) e^{-j\frac{2\pi}{N}in} = \sum_{i=0}^{N} f_N(i) e^{-j\frac{2\pi}{N}in} = F(n)$$

即

$$DFT[f_N(k-m)]G_N(k) = e^{-j\frac{2\pi}{N}mn}F(n) = W^{mn}F(n)$$

### 四、频移性质

若

$$f(k) < ---> F(n)$$
  
??? < --->  $F_N(n-l)G_N(n)$ 

根据离散信号的傅立叶逆变换:

$$\begin{split} IDFT[F_N(n-l)G_N(n)] &= \frac{1}{N} \sum_{n=0}^{N-1} [F_N(n-l)G_N(n)] e^{j\frac{2\pi}{N}kn} \\ &= \frac{1}{N} \sum_{n=0}^{N-1} F_N(n-l) e^{-j\frac{2\pi}{N}kn} \end{split}$$

设i = n - l,

則: 
$$= \frac{1}{N} \sum_{i=-l}^{N-l-1} F_N(i) e^{-j\frac{2\pi}{N}(i+l)k}$$
 
$$= e^{-j\frac{2\pi}{N}lk} \frac{1}{N} \sum_{i=-l}^{N-l-1} F_N(i) e^{-j\frac{2\pi}{N}ik}$$
 
$$= f(k) e^{-j\frac{2\pi}{N}lk}$$

### 五、时域循环卷积

若有限长序列  $f_1(k)$  和  $f_2(k)$  的长度分别为 N 和 M, 那么

$$f_1(k) * f_2(k) = ???$$

线形卷积:

$$f_1(k) * f_2(k) = \sum_{m = -\infty}^{+\infty} f_1(m) f_2(k - m) = \sum_{m = -\infty}^{+\infty} f_2(m) f_1(k - m)$$

圆周卷积:

$$f(k) = f_1(k) \circledast f_2(k) = \sum_{m = -\infty}^{+\infty} f_1(m) f_2((k - m))_N G_N(k)$$

根据离散傅立叶变换:

$$F(n) = DFT[f(k)] = \sum_{k=0}^{N-1} f(k)e^{-j\frac{2\pi}{N}nk}$$

$$= \sum_{k=0}^{N-1} \left[\sum_{m=0}^{N-1} f_1(m)f_2((k-m))_N G_N(k)\right]e^{-j\frac{2\pi}{N}nk}$$

$$= \sum_{m=-\infty}^{+\infty} f_1(m)\left[\sum_{k=0}^{N-1} f_2((k-m))G_N(k)e^{-j\frac{2\pi}{N}nk}\right]$$

根据离散信号的时移定理:

$$= \sum_{m=0}^{N-1} f_1(m) [e^{-j\frac{2\pi}{N}km} F_2(n)]$$
$$= F_1(n) F_2(n)$$

#### 六、频域循环卷积

$$f_1(k) < ---> F_1(n)$$
  
 $f_2(k) < ---> F_2(n)$   
 $??? < ---> F_1(n) \circledast F_2(n)$ 

循环卷积:

$$F_1(n) \circledast F_2(n) = \sum_{m=-\infty}^{+\infty} F_1(m) F_2((k-m))_N G_N(k)$$

$$IDFT[F_1(n) \circledast F_2(n)] = \frac{1}{N} \sum_{n=0}^{N-1} [\sum_{m=0}^{N-1} F_1(m) F_2((k-m))_N] e^{-j\frac{2\pi}{N}kn}$$

应用频移定理:

$$= f_2(k) \sum_{m=0}^{m-1} F_1(m) e^{-j\frac{2\pi}{N}mk}$$
$$= Nf_1(k)f_2(k)$$

# 2.5 Z 变换

利用周期冲激信号对连续信号进行取样后,可以得到离散时间信号。

## 2.5.1 Z 变换的产生

### 定义法:

American

根据离散时间傅立叶变换定义:

即: 
$$F(\Omega) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\Omega n}$$

$$x[n] = \frac{1}{2\pi} \int_{2\pi} F(\Omega) e^{j\Omega n} d\Omega$$

则  $z^n$  的零状态响应为  $z^n * R[n]$ 。 (R[n] 为系统的脉冲响应

即 
$$z^n - - > \sum_{k = -\infty}^{+\infty} R[k] z^{n-k}$$

$$z^n - - > z^n \sum_{k = -\infty}^{+\infty} R[k] z^{-k}$$

则 
$$H(z) = \sum_{k=-\infty}^{+\infty} R[k]z^{-k}$$
 ( $z = re^{j\Omega}$ 

即 
$$z^n --> H(z)z^n$$

我们将 
$$H(z) = \sum_{n=-\infty}^{+\infty} R[n]z^{-n}$$
 定义为  $H[n]$  的  $z$  变换。

H[z] 即 系统脉冲响应的 z 变换。

$$F(\Omega) = \sum_{n = -\infty}^{+\infty} x[n]e^{-j\Omega n}$$

$$F(z) = \sum_{n=\infty}^{+\infty} x[n]z^{-n}$$

可以发现, 当  $z = e^{j\Omega}$  时, z 变换还原到傅立叶变换。

#### 根据定义,我们可以发现:

一个离散系统,如果他的脉冲响应是 R[n],那么当输入信号为 x[n] 时。

我们如果要求此刻的零输入响应,

可以在时域上通过: x[n]\*R[n]来求得。但是需要求卷积。

在有了z变换之后,我们可以先求得响应的z变换,然后求逆获得零状态响应。

肯定 z 变换有比较简单的性质可以便于我们求解,所以才有了 z 变换,具体性质请跳到 <<z 变换的性质>>这一小节来了解。

### 从拉普拉斯变换到 Z 变换(推论法):

利用冲激序列  $\delta_T(t)$  对连续时间信号 f(t) 取样时。

取样信号 
$$f_s(t) = f(t)\delta_T(t) = f(t)\sum_{k=-\infty}^{+\infty} \delta(t-kT) = \sum_{k=-\infty}^{+\infty} f(kT)\delta(t-kT)$$

$$\mathscr{L}_b[\delta(t)] = \int_{-\infty}^{+\infty} f(t)e^{-st}dt = \int_{-\infty}^{+\infty} \delta(t)e^{-st}dt$$

根据冲激函数的性质:  $\delta(t)f(t) = f(0)\delta(t)$ 

所以  $\mathcal{L}_b[\delta(t)] = 1$ 

利用拉普拉斯变换的时移性质:

$$\mathcal{L}_{b}[\delta(t-kT)] = e^{-skT} \mathcal{L}_{b}[\delta(t)] = e^{-skT}$$

则  $f_s(t)$  的双边拉普拉斯变换为:

令  $z = e^{sT}$ ,则 z 为复变量。

同时将(1)式表示为 
$$z$$
 的函数:  $F(z) = \sum_{k=-\infty}^{+\infty} f(kT)z^{-k} - - - - - - - (2)$ 

上式称为 f(kT) 的双边 z 变换。

比较(1)式和(2)式:

可以得到在  $z = e^{sT}$ 时, $f_s(t)$  的双边拉普拉斯变换等于 f(kT) 的双边 z 变换。

同时, 
$$z = e^{sT}$$
,  $s = \frac{1}{T}lnz$ 

# 2.5.2 Z 变换的定义

如果有离散序列  $f(k)(k = 0, \pm 1, \pm 2,...)$ , z 为复变量,则函数

$$F(z) = \sum_{k=-\infty}^{+\infty} f(k)z^{-k}$$

称为f(k)的**双边**z**变换**。

如果求和只是在k的非负值域进行,即

$$F(z) = \sum_{k=0}^{\infty} f(k)z^{-k}$$

称为序列 f(k) 的**单边** z **变换**。

将f(k) 的 z 变换简记为  $\mathcal{Z}[f(k)]$ ,象函数 F(z) 的逆 z 变换简记为  $\mathcal{Z}^{-1}[F(z)]$ 。 f(k) 与 F(z) 的关系简记为:

$$f(k) < --- > F(z)$$

# 2.5.3 收敛域

因为z是z的幂级数,显然仅当该幂级数收敛,z变换存在。

即,当满足 
$$\sum_{k=-\infty}^{\infty} |f(k)z^{-k}| < \infty \quad \text{时,} z$$
 变换收敛。

反之不收敛。该式是f(k)的 z 变换存在的充要条件。

键入文本