Pattern Recognition and Gene Analysis

Manu Madhavan

Lecture 13

Recap

- Gene Expression
- Microarray technology

Manu Madhavan 15CSE335 Lecture 13 2/15

Outline

- Pattern Recognition
- Patterns in gene/protein sequences
- Representation: Regular Expression
- ML, ANN, HMM methods

Manu Madhavan 15CSE335 Lecture 13 3/15

Pattern Recognition in Bioinformatics

- Only about 5% of the genome contains useful patterns of nucleotides, or genes, that code for proteins.
- The initiation of translation or transcription process is determined by the presence of specific patterns of DNA or RNA, or motifs.
- Research on detecting specific patterns of DNA sequences such as genes, protein coding regions, promoters, etc., leads to uncover functional aspects of cells.
- Comparative genomics focus on comparisons across the genomes to find conserved patterns over the evolution, which possess some functional significance.

- Literal match: re.find('GAATT')
- Character set: 'CC[GA][TC]GG'

Table 7-2. Character sets in regular expressions

Pattern	Matches
[ACTG]	One DNA base character
[A-Za-z_]	One underscore or letter
[^0-9]	Any character except a digit
[-+/*^]	Any of $+$, $-$, $/$, $*$, * , * does not negate the others because it is not the first character in the set
[0-9\t]	A tab or a digit
•	Any character

Manu Madhavan 15CSE335 Lecture 13 5/15

Table 7-3. Character classes in regular expressions

Character	Matches
\d	Any digit
\ D	Any nondigit
\s	Any whitespace character
\ S	Any nonwhitespace character
\w	Any character considered part of a word
\W	Any character not considered part of a word

Table 7-4. Boundaries in regular expressions

Character	Matches
٨	The start of a line or the beginning of the pattern
\$	The end of a line or the end of the pattern
\A	The start of the pattern only
\Z	The end of the pattern only
\b	The boundary between a word and nonword character or vice versa
\B	Anywhere except the boundary between a word and nonword character or vice versa

Manu Madhavan 15CSE335 Lecture 13 7/1

Table 7-6. Repetition characters in regular expressions

Character	Matches
?	Zero or one repetitions of the preceding regular expression
*	Zero or more repetitions of the preceding regular expression
+	One or more repetitions of the preceding regular expression
{n}	Exactly \boldsymbol{n} repetitions of the preceding regular expression
$\{m,n\}$	Between m and n (inclusive) repetitions of the preceding regular expression

Table 7-7. Repetition characters in regular expressions

Pattern	Matches
CC[TCAG]{2}GG	CC, followed by any two DNA bases, followed by GG
(TA){3,8}	Between three and eight repetitions of TA, inclusive
[GC]*	Zero or more Gs and Cs (in any combination)
A+	One or more As
AT?AA	AAA or ATAA only

• Write a regular expression for ORF pattern

Manu Madhavan 15CSE335 Lecture 13 9/15

Write a regular expression for ORF pattern

Manu Madhavan 15CSE335 Lecture 13 10 / 15

Example: PROSITE

- RE-Regular Expression
- The standard IUPAC one-letter code is used for amino acids
- Each element is separated by '-'
- Symbol 'x' is sued for a position where any amino acid is accepted
- More than one accepted amino acid: listed between '

• To specify not acceptable: use { and }

Manu Madhavan 15CSE335 Lecture 13 11/15

Probabilisitc Patterns

 Identifying most prominent consensus sequence (by identifying the patterns at each position)

Manu Madhavan 15CSE335 Lecture 13 12 / 15

Pattern characterisation and classification

- The first is to use the sequence pattern to identify structural, and consequently functional features that are common to a set of proteins
- variations are possible
- Especially for new patterns of unknown structure and function, that the conservation is a result of chance and has no biological.significance
- p-score statistics
- how well a particular pattern is diagnostic of membership in a specific sequence family
 - Specificity: $\frac{TN}{TN+FP}$
 - Sensitivity: $\frac{TP}{TP+FN}$
 - Positive Predict Value (PPV): $\frac{TP}{TP+FP}$

Manu Madhavan 15CSE335 Lecture 13 13 / 15

Pattern Discovery

- The first task is to understand and decide on the type of patterns that the process will result in.
- For example, we may be interested, say, in only repeating patterns, in which identical, or similar residues repeat at regular fixed intervals along the sequence.
- Measure the fitness of the pattern
- Methods: Classification and clustering

Manu Madhavan 15CSE335 Lecture 13 14 / 15

ANN Based pattern Discovery

• Use an ensemble of neural networks to identify the different patterns

 Manu Madhavan
 15CSE335
 Lecture 13
 15 / 15

HMM Based pattern Discovery

- For pattern identification
- Profile-HMM

Manu Madhavan 15CSE335 Lecture 13 16 / 15