

Apr 29, 2020

SARS-CoV-2 Sequencing on Illumina MiSeq Using ARTIC Protocol: Part 2 - Illumina DNA Flex Protocol V.1

Joel Sevinsky¹, Arian Nassiri², Heather Blankenship³, Erin Young⁴, Kevin Libuit², Kelly Oakeson⁴, Lauren Turner², StaPH-B Consortium⁵

¹Theiagen Consulting LLC, ²Virginia Division of Consolidated Laboratory Services,

³Michigan Department of Health and Human Services, ⁴Utah Public Health Laboratory, ⁵State Public Health Bioinformaticians

In Development dx.doi.org/10.17504/protocols.io.bffyjjpw

Coronavirus Method Development Community | StaPH-B | view 1 more group

ABSTRACT

This protocol is an adaption of several circulating protocols on SARS-CoV-2 sequencing using the ARTIC protocol and the Illumina Nexterra DNA Flex library prep kit. Its purpose is to simplify things for the average state public health laboratory, using equipment and expertise they currently posess, most likely from their funded PulseNet activities.

Feedback and comments appreciated.

STEPS MATERIALS

NAME	CATALOG #	VENDOR
Nextera DNA Flex Library Prep	20018705	Illumina, Inc.

DNA Flex - Before you begin

1

Before You Begin

This protocol is an adaptation of the **Illumina Nextera DNA Flex Library Prep** kit (below). It is laid out specifically for using amplicons from the ARTIC Protocol. The audience is assumed to be public health laboratorians with access to instruments and reagents used for PulseNet WGS.

Four documents are linked below for reference, and can also be found following the reagent link for the Nextera DENA Flex Library Prep. The consumables and equipment document (CED) should be used to make sure you have the appropriate materials before beginning. There are too many consumables to list out individually in this protocol so please use the document and fill out your Lot# and Exp Dates on this document as well. The Nextera DNA Flex Library Prep kit reagents are not listed in the consumables document so they have been added to Table 1 below.

Your lab will most likely have everything already for their PulseNet activities. The exception to this is PhiX which will be listed in the appropriate step.

Nextera DNA Flex Library Prep Reference Guide

Nextera DNA Flex Library Prep Checklist

Nextera DNA Flex Library Prep Consumables and Equipment

Index Adapters Pooling Guide

i protocols.io 1 04/29/2020

by Illumina, Inc.

Catalog #: 20018705

Box #	Reagent	Description	Lot #	Exp. Date
1	SPB	Sample Purification Beads		
1	TSB	Tagment Stop Buffer		
1	TWB	Tagment Wash Buffer		
2	RSB	Resuspension Buffer		
2	TB1	Tagmentation Buffer 1		
2	EPM	Enhanced PCR Mix		
3	BLT	Bead-Linked Transposome		

Table 1: Reagent List from Nextera DNA Flex Library Prep Kit

channel multi-channel pipette.

2	Dilution	Plate	Preparation	Date/Initials:	

you would like each sample to be diluted such that the 30 µl final volulme of sample contains 100 ng to 500 ng of DNA. Less than 100 ng of DNA may cause the sample to be under represented in the pool, and modifications to increase the concentration of that sample are not practical when multiplexing the library prep. Much of this protocol can be achieved using 96 well plates, so having specimens organized in columns allows the use of an 8

Prior to starting your DNA Flex library prep, samples should be diluted into a 96 well plate as described below. Ideally,

- 2.1 [] Label a 96 well dilution plate with the number of columns required.
- 2.2 [] Add enough DNA to reach a total of at least **100 ng** ** and add molecular grade water (CED) to bring the total volume to **30 μl**.

DNA Flex - Tagmentation 40m

3 Tagmentation Date/Initials:______

protocols.io
2
04/29/2020

This step uses the Bead-Linked Transposomes (BLT) to tagment DNA, which is a process that fragments and tags the DNA with adapter sequences.

3.1 [] Prepare tagmenation Master Mix using Calculation 1:

Reagent	Volume (uL)	*
		(#samples +2)
BLT**	10.0	
TB1**	10.0	

Calculation 1: Tagmentation Master Mix

**NOTE: Vortex BLT prior to using. Both reagents should be at room temperature before
using.

- 3.2 [] Vortex master mix, and then add 20 µl to each sample well. Pipette each 10 times to mix.
- 3.3 [] Cover and seal the plate with Microseal 'B' (CED).
- 3.4 [] Place the plate in the thermal cycler and run the TAG Program below: 55°C

Step	Temp	Time
Tagmentation	55°C	15 min
Hold	10°C	Hold

TAG Program: Thermal cycler should be set for 50 uL volume and lid set to 105°C.

DNA Flex	k - Post Tag	mentation Clean-up 45m	
4 F	Post Tagmer	ntation Clean-up Date/Initials:	45m
		s the tagmentation and washes the adapter-tagged DNA on the BLT before PCR amplification. All ld be at 8 Room temperature	
	4.1	[] Check TSB for precipitates, and then add 10 µl to each tagmentation reaction (sample we Slowly pipette to mix 10 times to resuspend the beads.	ell).
	4.2	[] Seal the plate with Microseal 'B' (CED), place on the preprogrammed thermal cycler, and run th PTC Program.	е
m protoco	ls io		

04/29/2020

Step	Temp	Time
Tagemntation Stop	37°C	15 min
Cool	10°C	Hold

PTC Program: Thermal cycler should be set for 60 uL volume and lid set to 105°C.

	4.3	[] Place plate on magnet $© 00:03:00$ or until	clear.	
	4.4	[] Remove and discard supernatant.		
	4.5	[] Remove from magnet, and add □100 μl T	WB . Pipette to mix**.	
		**NOTE: A deliberately slow pipetting tec avoid incorrect volume aspiration and incorrect volume aspiration.	hnique minimizes the potential of TWB foaming to complete mixing.	
	4.6	[] Place back on magnet © 00:03:00 or until	clear. Remove and discard supernatant.	
	1	[] Repeat TWB washes described above 2 more in magnet after second wash.	e times. Wait to discard supernatant and lea	ve
NΔ FI	ex- Amplify Ta	gmented DNA 45m		
5	Amplify Tagm		4	ōm
	adapters, Index	ies the tagmented DNA using a limited-cycle PCR 2 (i5) adapters, and sequences required for sequences repaired for sequences repaired for sequences repaired for low plexity pooling have the appropriate colo	encing cluster generation. To confirm the	
	5.1	[] Prepare PCR master mix using Calculation	2:	
		Reagent	Volume (uL)	* (#samples +2)
		EPM	20.0	

Calculation 2: PCR Master Mix

5.2 [] Vortex and quick spin master mix.

20.0

- 5.3 [] Remove and discard **TWB** from samples. Remove from magnet, and immediately add \Box 40 μ I PCR master mix, pipette to mix.
- 5.4 [] Add 10 μl indices**, and then pipette to mix.

**NOTE: Use the same index strategy that you use for PusleNet organisms. If you are unfamiliar with the PulseNet protocol, see Index Adapters Pooling Guide for guidance on the indexing. A separate Appendix will be created discussing pooling best practices.

5.5 [] Seal the plate with **Microseal 'B'** (CED), place on the thermal cycler, and run the **BLT PCR Program** on the thermal cycler.

Step	Temp	Time	Cycles
Elute	68°C	03:00	1
Denature	98°C	03:00	1
Denature	98°C	00:45	5**
Anneal	62°C	00:30	5**
Extend	68°C	02:00	5**
Extend	68°C	01:00	1
Hold	10°C	Hold	1

BLT PCR Program: Volume should be set for 50 uL and the lid temperature set to 105°C.

**NOTE: This is a 5 cycle PCR reaction designed for the majority of samples in 96 well plate sequencing. If your samples started with less than 100 ng of DNA, or eventually failed for low coverage in your pool, refer to page 10 of the Nextera DNA Flex Library Prep Reference Guide for guidelines on how to increase the number of cycles for low input samples.

DNA Flex - Clean-up	Libraries 50m	
6 Clean-up Lib	praries Date/Initials:	50m
This step uses	double-sided bead purification procedure to purify the amplified libraries.	
6.1	[] Centrifuge plate at $\textcircled{3}280 \times g$, Room temperature 00:01:00 , and then place on magnet $\textcircled{0}0:05:00$ or until clear	for
6.2	[] Transfer $\Box 45~\mu l$ of supernatant to clean wells of a new midi plate (CED), and then remove fr magnet	om

protocols.io
5
04/29/2020

6.3	[] Vortex and invert SPB.
6.4	[] Add □81 µI of SPB** to samples, pipette 10
	**NOTE: Since we are using this kit on small amplicons from the ARTIC Protocol, we will follow the DNA Flex instructions for small amplicon clean up, not standard DNA input.
	times to mix.
6.5	[] Seal (CED) plate and incubate for at least $© 00:05:00$.
6.6	[] Prepare fresh [M]80 % volume EtOH using the following calculation:
	□0.4 ml * (#samples+1) = mL volume Et0H
	■0.1 ml * (#samples+1) =mL volume molecular grade water
	Add those two volumes together for [M]80 % volume EtOH.
6.7	[] Place on magnet for ③ 00:05:00 or until clear. Remove and discard supernatant.
6.8	[] Perform two © 00:00:30 washes with 200 µl [M]80 % volume EtOH. Remove and discard supernatant after each wash. After second wash make sure to remove residual EtOH with 20 uL pipette. Perform this step on the magnetic stand without disturngin the beads.
6.9	[] Air dry beads approx. © 00:05:00 and then remove plate from magnet
5.10	[] Vortex RSB and add $\ \ \ \ \ \ \ \ \ \ \ \ \ $
5.11	[] Place plate on magnet for \circlearrowleft 00:02:00 . Transfer \blacksquare 30 μ l supernatant to new wells.
5.12	[] Library is now ready for quantification.
	SAFE STOPPING POINT

i protocols.io 6 04/29/2020

If you are stopping, seal the plate with Microseal 'B' adhesive or Microseal 'F' foil seal, and store at

-25°C to -15°C for up to 30 days.

DNA Flex - Qubit Quantification

- 7 Qubit Quantification Date/Initials:_____
 - 7.1 [] Prepare Qubit working solution using Calculation 5. Label assay tubes for samples and standards.

Reagent	Volume (uL)	*(#rxns+2std+2)	Lot#	Exp. Date
Qubit Reagent	1.0			
Qubit Buffer	199.0			
Total	200.0			

Calculation 5: Qubit Working Solution

	7.2	[] Combine
	7.3	[] Combine $\ \Box 198 \ \mu I$ Qubit working solution + $\ \Box 2 \ \mu I$ extracted DNA into labeled tubes
	7.4	[] Vortex all tubes for 2-3 sec and incubate at $ \& $ Room temperature for minimum of $ @ $ 00:02:00 $. $ Read tubes within $ @ $ 01:00:00
	7.5	[] Record sample results.
DNA Flex - Den	natura	tion of Pooled Library
8 Denatu	ıratior	of Pooled Library Date/Initials:
This sec	tion de	monstrates how to generate a pooled library for V3 reagents on the MiSeq.
	8.1	[] Centrifuge plate at 3280 x g, Room temperature 00:01:00
	8.2	[] Make [M]4 Nanomolar (nM) pool using Calculation 6

(iii) protocols.io 7 04/29/2020

Pool conc. (Qubit value, ng/μl)	
Molarity (nM) = (Pool conc. x 1000) / 528	
Volume of pool to dilute (μ I) = (4 x 50) / Molarity	
Volume of RSB to dilute (μl)= (50 – Pool to dilute)	

Calculation 6: 4nM Pool

- 8.3 [] Add \Box 400 μ l molecular grade H₂0 to the \Box 100 μ l 1.0 N NaOH aliquot for 0.2 N NaOH
- 8.4 [] Combine $\Box 5~\mu I$ 0.2 N NaOH and $\Box 5~\mu I$ pooled DNA in a $\Box 1.5~m I$ tube. Incubate $\odot~00:05:00$ at &~Room~temperature

Final Library Conc (pM)	8	10	12	14	15	16	18	20
Pooled Library (uL)	400.0	500.0	600.0	700.0	750.0	800.0	900.0	1000.0
HT1 (uL)	600.0	500.0	400.0	300.0	250.0	200.0	100.0	0.0

Table 2: Pooled Library Dilution - Calculation for 4 nM pooled library/20 pM denatured pooled library