Monte Carlo Tree Search

Cameron Browne

Computational Creativity Group Imperial College London March 2012

Outline

- I. Introduction
- II. Algorithm
- III. Pros and Cons
- IV. Variations
- V. Enhancements
- VI. Demo

I. Introduction

- What is MCTS?
- Game search before MCTS
- The Go revolution (2006)
- Context

Cameron Browne, 2010

What is MCTS?

- Monte Carlo = random simulation
- MCTS = running random simulations and building a search tree from the results
- Markovian Decision Problem (MDP)
 - Sequences of decisions
 - Any problem phrased as {state, action} pairs

But can be powerful

Baier & Drake (2010)

Game Search Before MCTS

Traditional Game Search

- Minimax, alpha beta pruning, etc.
- Works well if:
 - Good heuristic function
 - Modest branching factor
- Chess
 - Deep Blue (Grandmaster level)
 - Shredder (Master level on iPhone)

Cameron Browne, 2010

State of the Art

DIFFICULTY OF VARIOUS GAMES FOR COMPUTERS

HARD

Traditional
search methods
insufficient for
Go, Arimaa,
Poker, StarCraft

http://www.xkcd.com/1002/

The Trouble with Go

- Go is hard!
- 19x19 board
- High move and state complexity:
 - Checkers b.f. ~10

1020

- Chess b.f. ~40

1047

- Go

b.f. ~275

10171

- No good heuristic function
 - Must play games out
- Studied for decades
 - No strong AI expected for decades to come

Cameron Browne, 2010

The Go Revolution

MoGo (Gelly et al, 2006)

- Challenged human amateurs
- Used MCTS

Computer Go Now

- 9x9 Go: Professional level
- 19x19 Go: Strong amateur level
- Best Als all use MCTS

MCTS in Other Games

World Champion Als

Go (2006-current)
 General Game Playing (2007-current)
 Hex (2008-current)
 etc...

Unofficial World Champions

- Havannah
 Arimaa
 Morpion Solitaire
 etc...
- Chess is the exception

Cameron Browne, 2010

Applications

Computer Go

MoGo Fuego CrazyStone Leela Many Faces of Go SteenVreter Zen

Realtime Games

Ms-PacMan Real Time Strategy (RTS) Games Tron Dead End

Nondeterministic Games

Poker Magic:The Gathering Backgammon

Bridge

Solitaire (Puzzle) Games

Sudoku Kakuro Crosswords Morpion Solitaire SameGame Bubble Breaker

Connection Games

Hex Y Havannah Renkula Lines of Action

Combinatorial Games

Amazons
Arimaa
Khet
Shogi
Mancala
Kriegspiel
Clobber
Othello
Blokus
Focus
Connect Four
Sum of Switches

Multiplayer Games

Settlers of Catan

General Game Playing

CadiaPlayer Ary Centurio

NON-GAME DOMAINS

Combinatorial Optimisation

Security
Mixed Integer Programming
Travelling Salesman Problem
Physics Simulations
Function Approximation

Constraint Satisfaction

Scheduling

Printer Scheduling Production Management Bus Regulation

Sample-Based Planning

Large State Spaces Feature Selection

Procedural Content Generation

Language Game Design Art

Context

- 1928: Von Neumann proposed minimax tree search
- 1940s: Monte Carlo methods formalised
- 2006: Remi Coulom proposed "Monte Carlo tree search"
- What took so long?

Cameron Browne, 2010

Research Interest

- 250+ research papers since 2006
 - Around one per week(!)
- 80+ variations and enhancements already suggested
 - Comparable to entire history of traditional tree search
- Foundations still being laid
 - Many open questions
 - Hot research topic in Al

II. Algorithm

- Operation
- Walkthrough
- Code

Cameron Browne, 2010

Operation

Summary

 Run a number of simulations and build up a search tree according to the results

Assume

• Two-player, zero-sum game (general case)

I = win

0 = draw

-1 = loss

Policies

Tree Policy

- Above the tree boundary
- Intelligent action selection

on OMCTS Tree Border N Oy O(dofoult)

Default policy

- Below the tree boundary
- Random action selection (default)

Finnsson & Bjornsson (2008)

Cameron Browne, 2010

Four Basic Steps

Browne et al (2012)

Each node is a state.

Each iteration adds a node.

Each edge is an action leading to the next state.

I. Selection

Tree Descent

- Start at root (R)
- Select most urgent child at each step
- Apply chosen actions
- Stop at tree boundary (terminal state or unexpanded node)

Upper Confidence Bounds

$$\text{UCB1} = \overline{X}_j + C\sqrt{\frac{2\ln n}{n_j}}$$

- X_j is estimated reward of choice j
- n is number of times parent has been tried
- n_j is number of times choice j has been tried
- Logarithmic regret (estimated loss due to suboptimal choices)

Exploitation vs Exploration

• Exploitation

- Emphasises reward
- Focusses search

$$\text{UCB1} = \overline{X}_j + C \sqrt{\frac{2 \ln n}{n_j}}$$

• Exploration

- Encourages exploration of less-tried nodes
- Reduces effect of unlucky playouts
- Exploration term C balances exploration vs exploitation

Cameron Browne, 2010

Confidence Bounds

• Confidence in the reward's accuracy

• More visits = tighter bound

Most Urgent

- Most urgent node has the highest UCB
- Not highest reward
- Not widest spread

Cameron Browne, 2010

2. Expansion

- a) If unexplored child ⇒ expand
 Random order reduces bias
- b) If terminal state ⇒ return

3. Simulation

- Play game to conclusion
- Default policy = random playouts

```
while (game not over)
{
  select action a at random
  apply a
}
```

- Return result:
 - -Win = I
 - Draw = 0
 - -Loss = -I

Cameron Browne, 2010

4. Backpropagation

- Update selected nodes with result:
 - Add/subtract result value to node
 - Increment node visit count

- For two-player, zero sum games
 - Win for P_1 is a loss for P_2
 - Negate value with each ply: I, -I, I, -I, I, -I, ...
 - Opponent model

Game-Theoretic Values

- Terminal nodes with known results
 - Handle as per minimax search
- Resolve known values up the tree
 - Convergence to true minimax tree
 - Prune superfluous branches

Code

- Java classes
- Pseudocode

Cameron Browne, 2010

Node Class

```
class Node
{
   int    action;
   int    visits; // number of times visited
   float    reward; // accumulated reward value
   Node    parent; // null if root
   List<Node> children;

   void update(int value); // update node and backpropagate to parent
   void addChild(Node child); // add child node
}
```

Game Class

Cameron Browne, 2010

MCTS Pseudocode

Algorithm 1 General MCTS approach.

```
function MCTSSEARCH(s_0)
create root node v_0 with state s_0
while within computational budget do
v_l \leftarrow \text{TREEPOLICY}(v_0)
\Delta \leftarrow \text{DEFAULTPOLICY}(s(v_l))
BACKUP(v_l, \Delta)
return a(\text{BESTCHILD}(v_0))
```

Computational Budget

I. Real time: for human/tournament play

2. CPU time: for experiments

3. Iterations: for theoretical comparisons

MCTS and UCT

- MCTS is the general class of algorithms
- UCT is a specific embodiment of MCTS
- UCT = Upper Confidence Bounds for Trees
- UCT = MCTS + UCB

Cameron Browne, 2010

UCT Pseudocode

```
Algorithm 2 The UCT algorithm.
                                                                       function EXPAND(v)
                                                                           choose a \in \text{untried} actions from A(s(v))
  function UCTSEARCH(s_0)
                                                                           add a new child v' to v
      create root node v_0 with state s_0
                                                                               with s(v') = f(s(v), a)
      while within computational budget do
                                                                               and a(v') = a
          v_l \leftarrow \mathsf{TREEPolicy}(v_0)
                                                                           return v'
          \Delta \leftarrow \text{DEFAULTPOLICY}(s(v_l))
          \mathrm{BACKUP}(v_l, \Delta)
                                                                       function BESTCHILD(v, c)
      return a(BESTCHILD(v_0, 0))
                                                                           \mathbf{return} \ \mathop{\arg\max}_{v' \in \mathsf{children of} \ v} \frac{Q(v')}{N(v')} + c \sqrt{\frac{2 \ln N(v)}{N(v')}}
  function TREEPOLICY(v)
      while v is nonterminal do
          if v not fully expanded then
                                                                       function DefaultPolicy(s)
              return EXPAND(v)
                                                                           while s is non-terminal do
                                                                               choose a \in A(s) uniformly at random
              v \leftarrow \text{BESTCHILD}(v, Cp)
                                                                               s \leftarrow f(s, a)
      return v
                                                                           return reward for state s
                                                                       function BACKUP(v, \Delta)
                                                                           while v is not null do
                                                                               N(v) \leftarrow N(v) + 1
```

 $Q(v) \leftarrow Q(v) + \Delta(v, p)$ $v \leftarrow \text{parent of } v$

UCT for Two Players

Efficient backup for two-player, zero-sum games

Algorithm 3 UCT backup for two players.

function BACKUPNEGAMAX (v, Δ) while v is not null do $N(v) \leftarrow N(v) + 1$ $Q(v) \leftarrow Q(v) + \Delta$ $\Delta \leftarrow -\Delta$ $v \leftarrow \text{parent of } v$

Cameron Browne, 2010

III. Pros and Cons

Pro

- Aheuristic
- Asymmetric
- Anytime
- Convergence
- Simple

Con

- Weak
- Memory intensive
- Diminishing returns

Aheuristic

No Specific Domain Knowledge

- Available actions for a given state (legal moves)
- Whether a given state is terminal (game over)

No Heuristics

- Intelligent moves with no strategic or tactical knowledge(!)
- Ideal for General Game Players (GGPs)
- Robust to delayed rewards, e.g. Go

Cameron Browne, 2010

Asymmetric

Asymmetric

- Growth focusses on more promising areas
- No fixed ply tree expands to fit search space
- Can go deeper than traditional game search

Cameron Browne, 2010

Anytime

- Can stop algorithm anytime to get search result
- Returns immediately
- Continuous board position estimates (not discrete)
 - Better comparison between games

Convergence

- Converges to minimax solution
 - Perfect solution given infinite time
 - Good solution given sufficient time... but when is that?
- Smoothly handles fluctuations in node estimates

Cameron Browne, 2010

Simple

- Easy to code and debug
- Simon Lucas' one-page Java implementation
- www.mcts.ai

Weak

- For simple problems can work extremely well
- For complex problems can be weak unless enhanced
- Generally need to add domain knowledge to work at high level

Cameron Browne, 2010

Memory Intensive

- Entire tree must be kept in memory
- But can prune or reuse subtree for subsequent moves

Diminishing Returns

- Twice the playouts \neq twice the strength!
- 10x playouts $\rightarrow 2x$ strength

Fuego vs GnuGo

Cameron Browne, 2010

IV. Variations

Flat UCB

UCT

BAST

Multi-agent MCTS

Ensemble UCT

Real-time MCTS

Nondeterministic MCTS

Recursive Approaches

Reflexive MC

Nested MC

NRPA

Meta-MCTS

HGSTS

Learning in MCTS

TDL

 $TDMC(\lambda)$

BAAL

Single-Player MCTS

Multi-player MCTS

Coalition Reduction

FUSE

Determinization

HOP

Sparse UCT

ISUCT

Multiple MCTS

UCT+

ΜСαβ

MCCFR

Modelling

Simultaneous Moves

Sample-Based Planners

FSSS

TAG

RRTs UNLEO

UCTSAT

ρUCT **MRW**

MHSP

Useful Variations

UCT

- Upper Confidence Bounds for Trees (UCT)
- Most important variation, has many variations itself
- Used in 90% of MCTS applications

Flat MC and Flat UCB

- Random simulation without tree structure
- Good for sanity tests

Cameron Browne, 2010

Opponent Model

Gomoku (5-in-a-row)

- Black to play
- Flat MC prefers losing move b
- Why?

Reason

- Flat MC fails to capture opponent model
- UCT correctly chooses a

V. Enhancements

- Basic MCTS algorithm is a starting point
 - Usually needs enhancement to perform well

Domain Specific

- Good results
- Only works for current domain

Domain Independent

Generalise to all problems

Cameron Browne, 2010

Domain Knowledge

Tree Policy

Prune implausible moves

Default Policy

- "Heavy" playouts
- More realistic results → more reliable node estimates
- Typically known move patterns, e.g. cut moves in Go

Known Enhancements

Bandit-Based

UCBI-Tuned Bayesian UCT EXP3

HOOT

Selection

FPU

Decisive Moves

Move Groups

Transpositions

Progressive Bias
Opening Books

MCPG

Search Seeding

Parameter Tuning

History Heuristic Progressive History **AMAF**

Permutation α-AMAF

Some-First

Cutoff RAVE

Killer RAVE

RAVE-max

PoolRAVE

Game-Theoretic

MCTS-Solver MC-PNS

Score Bounded MCTS

Pruning

Absolute Relative

Domain Knowledge

Simulation

Rule-Based Contextual

Fill the Board

History Heuristics

Evaluation Balancing

Last Good Reply

Patterns

Backpropagation

Weighting

Score Bonus

Decay

Transposition Tables

Learning

MAST PAST FAST

Parallelisation

Leaf Root

Tree

UCT-Treesplit

Threading

Synchronisation

Considerations

Consistency

Parameterisation

Comparing

Enhancements

Cameron Browne, 2010

Learning Types

Online Learning

- During play
- e.g. History heuristics, AMAF

Offline Learning

- Before play
- e.g. Opening books, patterns, position values, etc.

History Heuristic

- Keep tally of all moves over all playouts
- Use tally to bias new node values
- Linearly interpolate between historical and MCTS estimates
- Domain independent

Cameron Browne, 2010

AMAF

All Moves As First (AMAF)

- Treat each move in playout as next move
- Multiple node updates per iteration
- Rapid Action Value Estimate (RAVE)
- Used in all strong Go players
- May not work for all games, e.g. Othello
- Domain independent

VI. Demo

Hex

• Add a piece per turn

• Exactly one player must win

Cameron Browne, 2010

Domain Knowledge

Complementary Goals

- Random fill → test for win once
- Guaranteed result

Domain Knowledge

- Bridge pattern
- Heavy playouts → repair bridge intrusions
- Slower but smarter playouts (usual trade-off)

5x5 Puzzle

Problem

- Black to move
- *x* or *y*?

• **Solution:** *x* wins, *y* loses

Cameron Browne, 2010

Demo

<u>Search</u>	<u>Result</u>	
Random	5.5%	
Flat MC	0%	
UCT	100%	(~600,000 iters)
UCT _{bridges}	100%	(~10,000 iters)

- Flat MC is worse than random!
- UCT works but UCT with domain knowledge is better

Conclusion

- MCTS has revolutionised computer Go (and other games)
- Application to many domains (not just games)
- Basic algorithm can be weak, but many enhancements
- Hot research topic in Al