현대대수학

1705645	성제훈 _

현대대수학

todo: abelian Stoup;) - Andonamen; associative . o 1?

DOWNING T.

Section 18. Ring and Fields (1927 71)

Def) A ring (R, +, .) is a nonempty set R with two binary operations t and . Such that

1. (R.+) is an abelian group. Petting

2. is associative on R: $(a \cdot b) \cdot C = a \cdot cb \cdot c$

3. $a \cdot (b+c) = a \cdot b + a \cdot c$ [left distributive]. $a \cdot (b+c)$ PHE CELFERABLE

(a+b)·C = a·c+b·c [right distributive]. for all a.b.c & R

Reall) (G.+) is an abelian gp.

O + 15 an binary operation ie athe G a, b EG

associate i.e. (a+6)+C=a+(b+c) Vaibic &G

3 identity elb ine gee G . ate = eta = a taeG

4 inverse elt :e, J-a & G . 7. a+(-a) = (-a)+a=e base

(B) atb = bta Vaib & G

① 1+3=5 ∈ Z

 $(\mathbb{Z}, +)$ is an abelian group.

2(2+8)+4=2+(3+4)

(3) 2+0=0+2=2

(4) 2+(-2) = (-2)+2=0

Ex) (Z,+,) is a ring, (Z \$ \$)

+, · are binary operations. 2+3EZ, 2.3EZ

() (Z,+): abelian group.

(a) $(a \cdot b) \cdot C = a \cdot (b \cdot c)$ $\theta = a \cdot b \cdot C \in \mathbb{Z} (1 \cdot 3) \cdot 4 = 2 \cdot (3 \cdot 4)$

3 (a+b)·c= a·c+b·c Vaib, CEZ (2+3)·4= 2·4+3·4

) Lat Mcolot! Def) A ring (R, +, ·) is a commutative ring

If a.b = b. a = Va.b & R

 (Z,t,\cdot) is a commutative ring.

 \mathcal{E}_{x}) $(\mathbb{Q},+,\cdot)$, $(\mathbb{R},+,\cdot)$, $(\mathbb{C},+,\cdot)$ -+ comm ring

Pf) 点 E Q , Q キロ か 会場出り

example 18.3) Let IR i ring

define $|M_n(R)| = \begin{cases} \begin{pmatrix} a_{i1} & a_{i2} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & a_{nn} \end{pmatrix} & a_{ij} \in \mathbb{R} \end{cases}$

Ex) Z: Ming

(4,(Z) = { (ab) | a,b,C,d = Z}

(Mn (R) ,+,) is ring

 $\mathbb{D}\left(\mathbb{M}_{2}(\mathbb{Z}),+\right)$ is an obelian gp.

(d ett ; (00)

inverse of (ab) is (a-b)

 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$

위보캠페데 라란 ring 을 matrix ring olz는참다.

Lo 3185H911.

additive identity; 첫센에 대한 함등건.

Ex (8.4) f; $R \rightarrow R$ function,

define by
$$(f+g)(a) = f(a)+g(a)$$

$$f \cdot g = f(x) \cdot g(\alpha)$$

inverse of fcn (s - fcn)

$$(Z_n,+,\cdot)$$
 is a ring (comm ring)

$$E_X$$
) $(M_2(\mathbb{Z}_2), +, \cdot)$ \mathbb{Z}_2

$$\mathsf{M}_{2}(\mathbb{Z}_{2}) = \left\{ \left(\begin{smallmatrix} 0 & 0 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix} \right), \left(\begin{smallmatrix} 0 & 1 \\ 0 & 0 \end{smallmatrix} \right), \cdots, \left(\begin{smallmatrix} 1 & 1 \\ 1 & 1 \end{smallmatrix} \right) \right\}.$$

$$\left(M_2(Z_2), \pm, \cdot \right)$$
 is a hon commutative ring.

$$\begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 9 \\ 1 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$A \cdot B \neq B \cdot A \rightarrow non commutative ring.$$

Thm (8.8) Let (R, t, .) be a ring

(1)
$$0 \cdot \alpha = \alpha \cdot 0 = 0$$

(2)
$$(a \cdot (-b)) = (-a) \cdot b = -(a - b)$$

$$(3) (-a) \cdot (-b) = ab.$$

by the cauclellation property of
$$(R,t)$$
, a $0=6$

(2)
$$a \cdot (-b) + ab = a \cdot (-b + b) = a \cdot 0 = 0$$
 by (1)

$$(-a \cdot (-b) = -ab$$
. Similary $(-a) \cdot b = -ab$.

(3)
$$(-a) \cdot (-b) = ab$$

$$(-a) \cdot (-b) = -(a \cdot (-b))$$
 by (2) and

$$-(a \cdot (-b)) = -(-(a \cdot b)) \quad \text{by } (2)$$

Then
$$(-\alpha) \cdot (-b) = -(-(\alpha \cdot b)) = \alpha \cdot b$$
.

$$|M_2(\mathbb{Z}_2)| = |6|$$
. identity & TRAI 1:572 Stop.

a map
$$\phi: R \rightarrow R'$$
 is a ring homomorphism

(2)
$$\phi$$
 (a·b) = ϕ (a) ϕ (b) | Hing homo

$$\exists x) \phi : z \rightarrow z'$$

Ex)
$$\phi: \mathbb{Z} \to \mathbb{Z}_S$$
 by $\phi(n) = r$ when $n = sg+r$

$$0 \le r < r$$

Then \$ is a ring homomorphism - + 3 stable)

他 (HIO) (H)(H) (H)(H) (H)(H) (H)(H)(H)

$$f(x)$$
 $\phi: \mathbb{Z} \to \mathbb{Z}$

is a ring homomorphism

$$\phi: \mathbb{Z} \to \mathbb{Z}$$

Sol) $a,b \in \mathbb{Z}$ and let

When $0 \le F_1 < N$, $0 \le F_2 < N$

$$= \phi (m(f_1+f_2) + r_1+r_2) = r_1+r_2$$

$$\phi(\alpha) = \phi(nq_1 + r_1) = r_1$$

$$\phi(b) = \phi(ng_2+r_2) = r_2$$

$$\therefore \phi(a+b) = \phi(a) + \phi(b)$$

$$\phi(a \cdot b) = \phi(n(\xi_1 \xi_2 + \xi_1 r_2 + \xi_2 r_1) + r_1 r_2)$$
= $r_1 \cdot r_2$

$$\phi(a) \cdot \phi(b) = \phi(nq_1 + r_1) \phi(nq_2 + r_2)$$

$$= r_{|} \cdot r_{z}$$

ক্রাক্সণ প্রা!

Let $a,b \in \mathbb{Z}$ and $a = ng_1 + r_1$, $b = ng_2 + r_2$

when Osrich, Osrich

(MP 15/4)

Ø: Z→ Z4

by $\phi(n)=r$, when $\alpha=48+r$ by.

with 0 sr < 4

Ex) let F= fff; R→R?

Then for each a the evaluation map. $\phi_a: F \rightarrow \mathbb{R}$ $\phi_a(f) = f_{(a)} \text{ for } f \in F \text{ is a ring homb}$ Called an evaluation homomorphism.

For example

$$\phi_s: F \to \mathbb{R}$$
 by $\phi_s(f) = f(\sqrt{s})$

f(a) = a + 1 then

$$\phi_{\mathfrak{s}}(f) = \underbrace{\mathfrak{s}_{+}}_{\in \mathbb{R}}$$

$$\phi_{2}(f) = 2 + 1 = 3$$

①,② 妈别如.

$$pf)$$
 \bigcirc $\phi_{\alpha}(f+q) = (f+g)(A)$

$$\phi_{\alpha}(f)$$
 ... (α) $\phi_{\alpha}(g) = g(\alpha)$

) 어떠한 실함이 field 양은보여는 과정? Nezuhr었을 때 \mathbb{Z}_n 나라지의 살랑. र विश्वेरणायाच्ये ०२ विश्वेह प्रश्नी p(m) = 0 91 ad Not. Note: kernel of \$, dnoted. Def 18.6) A ring (R,+,.) is a division ring if (R-101,.) is a group 120ker(φ) = {a ∈[R | φ(a) = 0} additive identity. If (R-903,07 is an abelian group. R is called a field (\$11). ker(b) Ex) (Q,+,·) is a field. Ex) \$:Z→Zs $\phi: \mathbb{Z} \to \mathbb{Z}_n$ (Q-903) is an abelian group. $ker(\phi) = 52$ $ker(\phi) = 5n$ 1 is unity. 0.40 inverse of 0.1 is $\frac{1}{0.1}$ Ex) $\phi_a: F \to \mathbb{R}$ ker(\$) = 1 f l f(a) = 03. $(\frac{b}{a} \neq 0 \text{ inverse of } a \text{ is } \frac{a}{b} (b \neq 0))$ Def 18.2) A ring homomorphism \$: IR → IR' is Ex) (Zp,+,·) is a field (finite) ralled an isormorphism dinoted by R = R Zp: (0,1,2, ... P-17. if \$ is 1-1 and onto. Note: $(Z_n, +, \cdot)$ is not a field in general for example $(\mathbb{Z}_4,+,\cdot)$ is not a field. 一個川山社 門祖. Def) A multiplicative Inverse of an element a sol) $\mathbb{Z}_4 = \{0, 1, 2, 37, 2 \cdot \square = 1?\} \rightarrow \mathbb{Z}_4$ is not field in a ring R with unity 1 is an elt at such that \star A ring (F,+,.) field (F-103,.) abelian group. $V V_{-1} = V_{-1} V = J$ Ex) (Q, +, .) field (infinite) Ex) (Zp, +, ·) (p: prime) field (finite) Dof) Let R be a ring with unity l Anelt ueR is a unit if it has a Ex) $(\mathbb{Z}_{p,+,\cdot})$ is field. multi Inverse in R Show (Zp-402, .) is an abelian g.p. Ex) (Q,+,·) unit; $2^{-1} = \frac{1}{2} \rightarrow 2 \cdot \frac{1}{2} = \frac{1}{2} \cdot 2 = 1$ \bigcirc is a binary operation $a.b \in \mathbb{Z}_p$ for $a.b \in \mathbb{Z}_p$. 2) · is an associative Ex) Im (7,+,.) units of Z = {1,-17 || dinote 3 identity elt. $Z^{X} = \{1, -1\}$. A) inverse elt

B a-b = b·a.

* ①②③⑤〉 外時計學之 ◆生音時計時到十

;s ;t

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Thm) $(0,b) = 1$, then $\exists st \in \mathbb{Z} \cdot \exists \cdot \exists st \in \mathbb{Z} \cdot \exists \cdot \exists st \in \mathbb{Z} \cdot \exists st \in \mathbb{Z}$		
$\begin{array}{c} \text{act bt } \equiv \\ \text{Ex} \rangle & (4, \Pi) = \exists \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Recall from the number theory.	Ex2) find 8-1
$ \begin{array}{c} \text{ac+bt} \equiv \\ \text{Ex} \ \ (4, \Pi) = \ \exists \ s, t \ $	$ \begin{array}{c} \text{as +bt } \equiv \\ \text{Ex} \ \ (4,1) = \ \exists \ s, \epsilon \ \uparrow + \ 4c + 1t = \\ \text{A} \ p : prime . \\ \text{Let} \ m \leftarrow Z_p = 16 \ \uparrow \text{then} \\ \text{(m,p)} = \ \exists \ \text{(b)} \text{ the thm}) \\ \text{J} \ s, t \rightarrow ms + pt \equiv \ (\text{med } p) \ \\ \text{Then } \ \text{ms} \equiv \ \text{then } \ \text{m}^{-1} \equiv s \ \text{(med } 13) \ . \\ \text{Ex} \ (Z_p, +, \cdot) \ \text{is a field} \ \\ \text{Ex} \ (Z_p, +, \cdot) \ \text{is a field} \ \\ \text{Sol} \ (3, s) = \ \text{word} \ \text{then} \ \text{m}^{-1} \equiv s \ \text{(med } 13) \ . \\ \text{Sol} \ (13, s) = \ \text{word} \ \text{then} \ \text{sol} \ \text{(13, s)} \rightarrow (3, s) \rightarrow (3, s) \rightarrow (1, s) \rightarrow (1, s) = \\ \text{If } \ \frac{3}{3} \ \frac{3}{2} \ \frac{3}{$	Thm) (a,b)=1, then 3 St EZ. +	50() (3,8) =
Ex) $(4, 7) = \exists s, t \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Ex) $(4, 0) = 1 \exists s, t \exists s, t \exists t \exists s, t \exists t $		[3s+8t=]
Let $m \leftarrow Z_p - \{0\}$ then $ (m,p) = \exists \text{ (by the thm)} $ $ \exists s,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \text{Then } ms = \text{ then } m^{-1} \equiv S, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ ms + pt = } \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ (mod p)}, $ $ \exists x,t \to \infty \text{ (mod p)}, $ $ \exists x,t \to \infty $	Let $m \leftarrow Z_P - \{0\}$ then	<u> </u>	
Let $m \leftarrow Zp - 101$ then $ (m,p) = \exists \text{ (by the thm)} $ 0 $0 + 10 + 10 + 10 + 10 + 10 + 10 + 10$	Let $m \leftarrow Zp - 10$? then	p:prime.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Then $ms \equiv $ then $m^{-1} \equiv S_{//}$ Ex) $(Z_p, +, \cdot)$ is a field. $Z_{1s} = 90, (1.2, 3,, 2 \}$. Find 5^{-1} ? (multi inverse of 5 in Z_{1s}). Sol $(3.5) = $ wowt to find $S.t \cdot 3$. $(3.5) \rightarrow (3.5) \rightarrow (3.2) \rightarrow (1.2) \rightarrow (1.0) = $ $2 = \frac{13}{3} = \frac{1}{3} = \frac{1}{2} = \frac{1}{$	Then $ms \equiv \text{ then } m^{-1} \equiv S_{,i}$ Ex) $(Z_{P}, +, \cdot)$ is a field. $Z_{13} = \{ 0, (1, 2, 3,, 2 \},$ Find 5^{-1} ? (multi inverse of 5 in Z_{13}). sol $(3, 5) = \text{ wowt to find } S \cdot t \cdot +$ $ 3, s + s t \equiv \text{ (mod } 12)$ $ 3, s t + s \equiv \text{ (mod } 12)$ $ 3, s t + $	(m,p)= 3 (by the thm)	0 여기는 칼심으성 .
Then $ms \equiv $ then $m^{-1} \equiv S_{//}$ $Z_{1} = \int_{1}^{\infty} (m + 1) $	Then $ms \equiv $ then $m^{-1} \equiv S$, $S^{-1} = S \pmod{13}$. Ex) $(\mathbb{Z}_p, +, \cdot)$ is a field. $\mathbb{Z}_{13} = \{0 : (1:2, 3,, 2\}\}$. Find 5^{-1} ? (multi inverse of 5 in \mathbb{Z}_{13}). solve $(13.5) = $ wowth to find $S.t$		13(-3) +8(5) =
$Z_{13} = \{ 0, 1, 2, 3,, 2 \}.$ Find 5 ⁻¹ ? (multi inverse of 5 in Z_{13}). sol) $(2.5) = $ wowt to find $S.t$	$Z_{13} = \{0,(1,2,3,, 2\}\}.$ $\text{Find } 5^{-1}? \text{ (multi inverse of 5 in } Z_{13}).$ $\text{sol) } (3.5 = \text{ want to find } 5.t \cdot 2).$ $ 3.5 + 5t = \text{ (mod } (2)).$ $(3.5 \rightarrow 3.5) \rightarrow (3.5) \rightarrow (3.2) \rightarrow (1.2) \rightarrow (1.0) = $ $ 3.5 + 5t = 3.5 + 3t = $	Then $ms \equiv $ then $m^{-1} \equiv S_{1/2}$	8-1 = 5 (mod 13)
Find 5-1? (multi inverse of 5 in $\mathbb{Z}_{(3)}$). sol) (13.5) = wont to find $s.t$	Find 5^{-1} ? (multi inverse of 5 in $\mathbb{Z}_{(2)}$). sol) (13.5) = wowt to find $5.t \cdot 7$. 3 \(5 \) = (mod (3)) (\$\) = 0 5 \) +o find \((13.5) \) = (1.2) \(\) = (1.2) \(\) = 6 \) +o find \((13.5) \) = 7 \)	Ex) $(\mathbb{Z}_p,+,\cdot)$ is a field.	유클리드 토제병 세2표 각성병.
Find $5 \stackrel{?}{?}$ (multi inverse of $5 \stackrel{?}{?}$ (M $2 \stackrel{?}{?}$). Sol) (13.5) = Wowt to find $5 \cdot t \cdot t \cdot t$ $ \begin{array}{cccccccccccccccccccccccccccccccccc$	Find 5 ? (multi inverse of 5 in $\mathbb{Z}_{(3)}$). $ sol) (13.5) = \text{ wont to find } S.t \cdot + \cdot \\ 3.5 + 5t = \text{ (mod } 13) \\ (=0) \\ to find (12.5)_{GCD}, $ $ (13.5) \rightarrow (3.5) \rightarrow (3.2) \rightarrow (1.2) \rightarrow (1.0) = \\ \frac{1}{3} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{3}{2$	Z ₁₃ = 90,1,2,3,, 123.	
$ 3s+st= (mod 13) $ $(=0)$ $to find (3,5)_{ocp},$ $(3,5) \rightarrow (3,5) \rightarrow (3,2) \rightarrow ((1,2) \rightarrow (1,0) = $ $\begin{vmatrix} 2 & & & & & & & & & &$	$ 3 + 5 + 5 + 5 \pmod{13}$ $ 3 + 5 + 5 \pmod{13}$ $ 5 + 5 + 5 \pmod{13}$ $ 5 + 5 + 5 \pmod{13}$ $ 5 + 5 + 5 \pmod{13}$ $ 5 + 5 + 5 + 5 \pmod{13}$ $ 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 +$	Find 5^{-1} ? (multi inverse of 5 in $\mathbb{Z}_{(3)}$).	1 3 8 0 1 a _i 1 1 1 2.
$\begin{array}{c} \begin{array}{ccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	sol)(13.5)= wont to find s.t. >	5 3 1 1 Si 1 8 1-100
to find $(13,5)_{GCD}$, $(13.5) \rightarrow (3,5) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,0) = $ $\begin{vmatrix} 2 & 13 & 5 & & & & & & \\ & 10 & 3 & 2 & 2 & & & \\ & & 2 & 2 & & & & \\ & & 2 & 2 & & & \\ & & & 2 & 2 & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	to find $(2,5)_{GCD}$, $(3.5) \rightarrow (3.5) \rightarrow (3.2) \rightarrow (1.2) \rightarrow (1.0) = $ $\begin{vmatrix} 2 & 13 & 5 & & & & & & \\ & 10 & 3 & & & & \\ & & 2 & 2 & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $		2 2 1 ti 0 (
$(3.5) \rightarrow (3,5) \rightarrow (3,2) \rightarrow (1,2) \rightarrow (1,0) = $ $\begin{vmatrix} 2 & 3 & 5 & & & & & & & & & & & & & & & & &$	$(3.5) \rightarrow (3.5) \rightarrow (3.2) \rightarrow (1.2) \rightarrow (1.0) = $ $\begin{vmatrix} 2 & 13 & 5 & & & & & & & & & & & & & & & & &$		7 5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
to find S.t. $\frac{2}{0}$ $\frac{2}{5i}$ $\frac{2}{0}$	to find s.t. $\frac{2}{3}$ $\frac{2}{5}$	2 13 5 1	进步; Zn 에서 575?
to find S.t. $\frac{2}{9}$ $\frac{2}{5i}$ $\frac{3}{2}$ $\frac{2}{5}$	to find s.t. $\frac{2}{3}$ $\frac{2}{5}$	$\left \begin{array}{c c} 1 & 3 \\ \hline 3 & 2 \end{array} \right _2$	3 19 5 2
to find $S t $	to find s.t. $\frac{2}{0}$ $\frac{2}{5i}$ $\frac{1}{0}$ $\frac{2}{1}$ $\frac{2}{5}$	$\left \frac{2}{4} \right $	(5 4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	S (10) (1-1 2 t 0 1 -2 3 -5 (m, 5) = $3 \cdot 2 + 5 \cdot (-5) = $ $mod \ln 20$		$\frac{1}{0}$ s_i 0 1 -2 $:$ s_i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		tia 0 1 ~3 7 :t
$3 \cdot 2 + 5(-5) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $	$3 \cdot 2 + t(-3) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $ $ 10 \cdot (-2) + 5 \cdot (0) = $		
mod 10 °C)	mod 10 °C)	t 0 1 -2 3 -5	(Iu) 2) =
		13.2+5(-5)=1	· · · · · · · · · · · · · · · · · · ·
		:. 5-1 = -5 = 8 (mod (3)	

Todo: 19,3 pf OHN SHEDI.

★ 간성증IO 사용 ㅋ NP 특 증명.

Ex) Z19, 5-1=7

((9, 5) =)

19.(-1) + 5.4 =

mod 19 = 0.

t -1 = 4

Fx) Z 23

23 · 2 + 9 · (-5) = 1

mod 23 = 0, $q^{-1} = -5 = 17$.

Section 19. Integral Domains.

Def 19.2) If a and b are two non zero elts

영인사에 of a ring R such that a.b=0, then 대한캠니.

and b are zero divisors for divisions of zero).

(a,b +0 a,b=0 e) est a,b= zero divisions 와社다.)

Ex) In Z = [0,1,2,3,4,5] (Z,+,) ring.

위의 정의에따라 Z,-103 에서 성각칸리-

(1, 2, 3, 4, 5). 1 1 1 2eto divicions 3-4 =0

5.170, 5.1 70 5.370 J-470 1.1 40 1.2 40 ...

: 1245% non zero divicor

Thm 19.3) In the ring Zn, if and ony if: 型路性公生.

생성 등명 P→ 옷 를 바로 함명

M is a zero divisor iff (m,n)≠[

ex) (1,6) = 1, (5,6) = 1, $(2,6) \neq 1$, $(3,6) \neq 1$.

PF) (\Leftarrow) Let $m \in \mathbb{Z}_n$, $m \neq 0$ and $(m,n) \neq 1$, and

 $(m,n) = d > 1 + \text{then } \frac{m(\frac{\pi}{d}) = (\frac{m}{d})^n = 0}{\text{or sign}}$ $(ex: (4,6) = 2) \quad \text{so } m(\frac{\pi}{d}) = 0 \quad \text{and } \frac{\pi}{d} \neq 0$

Thus m is a zero divisor.

Not a zero divisor; $a \cdot b = 0 \implies a = 0 \text{ or } b = 0$

Suppose (m, m) = | If $s \in \mathbb{Z}_n$

m·s = 0, then n ms (n devides ms). mszt nel HHbolzt Since (m, n) = | n | S

so that S=0 in Zn

Recall) From the number theory. Thm) $n \mid ms$ and (m.s) = 1 = 1 $n \mid s$

ex) 4 | 3 8 (4,2)= = 4 |8-

In \mathbb{Z}_n $(m,n) \neq | \iff m$ is a zero divisor.

(m,n)=| m is a unit.

Ex) $\mathbb{Z}_{12} = 90, 0, 2, 3, 0, 5, 6, 9, 8, 9, 10, 119,$

fight whit: { 1,5,7,11?

2010-divisors; (2,3,4,6,8,9,10?

Ex) Z2 = {0,11,2,3,4 ---, 22,237.

unit: 51,5,7,11,13,11,19,233 zero-divisor: {2,3,4,6,8,9,10,12,14,15,16

18, 20,21 -223

덧셈HPT한 C·L은 정말. 우리는 율성에

대간 뜻 보라 . Thm) cancellation laws hold in a ring R Corollary) If p is a prime, then iff R has no zero divisor, Zp has no zero divisors. Pf1 (=)) suppose a.b=0 ~~ a=0 or b=0. Zc = 50,1,2,3,47. If $a \neq 0$, then $a \cdot b = a \cdot 0$. implies b=0 by the cancellation laws. Note) The concellation laws hold in IR (a.b=a.o) -e punchline of this pf if a.b = a.c with a = 0 + xb = xc Similary, b to implies a=0 implies b=C and b.a=c.a thus, R has no zero divisor. (<=) Suppose R has no zero divisor, with a = p implies b=c In Z = 90,1,2,3,4,53. and suppose ab = ac. with a to Then ab-ac = a(b-c) = 0 to punch line of this pt. 2.3=4.3.7 2=4. In general. Ring cribit's cancellation laws it stell . since a =0 and since R has no zero divisor, (张旭川(). Recall from the group theory, we must have b-c=0 so that b=c In a group (6,*) concellations laws always hold. similary ba = (a with $a \neq 0$ then b = C. Group only C. Col Mysty -Lo grupal elt & De CANO ENTRE ARI. TING ONLY ENTRY STYLES STYLES STYLES STYLES AND X Def 19.6) An Integral domain is a commutative ring with unity I and containing no zero divisors. E_X) $(Z,+,\cdot)$ is an ID. $(Z_{n}, +, \cdot)$ $m \neq 0$ $n \in \mathbb{Z}$ E_X) (Z_6 , +, ·) not an ID. (m,n) = | -> m is a zero divisor. (m,n) = | - m is a unit Ex) $(\mathbb{Z}_{p},+,\cdot)$ is an ID Note) In is not an ID, in general (not prome state ID) EXA. 1) R, S be two ID. but RXS is not an ID RXS = ((ris) | rerise S } (+,0) (0,5) ← RXS but $(r,0) \cdot (o,s) = (0,0)$

unity: BRAMATE id $M_{2}(\mathbb{Z}_{1}) = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$ unit; elt has an inverse -EXI9.8) (M2(Z2),+,0) a: unit and ab=0. atrab) = ata b = 1.b=0. $|M_2(Z_2)| = |f|$. $(M_2(\mathbb{Z}_2),+,\cdot)$ non comm ring. : b=0. $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \text{non here · nonzero = 2ero .} \\ \text{... not an TD}$ Thm) Every finite ID is a field. Field, ID BF Ring oft_> pf1 King Ex) (Zp,+,.) is a finite ID so that a field-Thm 19.9) Every field is an ID. 型の1时、一円とおは× pf) Let a, b \in f and ab = 0 $w/a \neq 0$ w b = 0. Then $a^{-1}(ab) = a^{-1} \cdot 0 = 0$. — punchline of this pf. But $0 = \alpha^{-1}(ab) = (A - a)b = (b - b)$ thus b = 0. Similary, ab=0 w/ b=0, then a=0. .. Every field is an ID. Note) Field Z Counter ex) (Z, f, \cdot) is an ID but not a field \cdot Ring 1 commutative Ring with Unity. Field (Unity & HAARE ex) M2(Z, O (1) ex; Zp ⊕ ex : Z₆ VISIONA KIND STE GREALS <u> प्राप्तिताः</u> (३) स्थि जात्राह् आपद्यः प्रज्यः Box commutative ring albal ring with unity of Ib= orust.

@=1 ex { }

Todo: Diagram ONO ONIN 73HW).

