Криптография

Лекция 6. Случайные числа в криптографии.

Дмитрий Яхонтов

"Кочерга", 2018

Для чего нужны случайные числа

- Генерация ключей
- Соль
- Одноразовые случайные значения (nonce)
- Протоколы "запрос-ответ" (challenge-response)
- Безопасное удаление данных

Требования к генератору случайных чисел

- Статистические
 - примерно равное число нулей и единиц
 - распределение длин серий 0000... и 1111...
 - отсутствие автокорреляций
 - спектральные тесты
- Непредсказуемость не должно быть простого способа, зная N бит последовательности, предсказать (N+1)-й с вероятностью больше 50%
- Нереверсируемость не должно быть простого способа, зная состояние генератора, вычислить последовательность в предыдущие моменты времени

Общая структура ГСЧ

- Программные
- Аппаратные
 Источник энтропии

источник энтропии обеспечивает недетерминированность (истинную случайность)

- На основе односторонних функций
- На основе алгоритмов шифрования

ГПСП обеспечивает скорость, статистические свойства и криптографическую стойкость

Генератор Блюм-Блюма-Шуба (Blum-Blum-Shub)

$$X_{n+1} = (X_n)^2 \mod M$$

выход — младший бит состояния X_n

- M = p*q, где p и q большие простые числа
- p, q = 3 mod 4 (гарантирует отсутствие запрещенных состояний)
- наибольший общий делитель (p-1, q-1) должен быть малым (увеличивает период генератора)
- начальное состояние X₀ должно быть взаимно-простым с М

Генератор на основе блочного шифра

- Безопасность зависит от стойкости шифра и секретности ключа
- Для n-битного шифра максимальный период генератора 2ⁿ

Программные источники энтропии

Действия пользователя (клавиатура, мышь)

- Внешние события (сеть, дисковые операции)
- Асинхронные таймеры
- "Гонки" в многопоточных программах

Аппаратные источники энтропии

- Оцифровка теплового шума
- Генератор на метастабильных состояниях

• Квантовые источники

Алгоритм Yarrow

• Обновление из медленного пула — энтропия 160 бит

Алгоритм Fortuna

Чем грозит слабая случайность

• 2008 Γ, RFID Mifare Crypto-1

Анализ схемотехники чипа показал, что в нём используется некриптостойкий ГСЧ с константным начальным состоянием. Единственный источник энтропии — время с момента включения. Можно избавиться от случайности в протоколе "запрос-ответ" и повторно использовать однажды перехваченные ответы.

2010 Γ, Sony PlayStation 3

Консоль позволяет запускать только ПО, подписанное цифровой подписью Sony (алгоритм ECDSA). Для всех цифровых подписей использовалось одно и то же "случайное" К. По двум подписям удалось восстановить закрытый ключ.

• 2013 г, аппаратный ГСЧ процессоров Intel

Показана теоретическая возможность создания backdoor'а в аппаратном ГСЧ. Модифицировав процесс легирования микросхемы, можно добиться константного ключа шифрования. Выход генератора проходит все тесты на случайность.

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - lesswrongru.slack.com @android_ruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga_club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

