

COMP2432 OPERATING SYSTEMS

Assignment 3 (Tutorial 8)

Author Wang Yuqi **Lecturer** Dr. MOHAMMED Aquil Mirza

Solutions

Solution to Question 1

Solution to Question 1(a) to (c)

```
FIFO (Frame = 3)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 2 2 2 6 6 6 0 0 0 5 5 5 2 2 2 3
 4 4 4 4 3 3 3 2 2 2 1 1 1 6 6 6 4 4 4
   1 1 1 1 5 5 5 4 4 4 3 3 3 0 0 0 1 1
OPTI (Frame = 3)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 0 3 5 6 6 6 6 6 6 6 6 6 2 4 1 3
 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 0 0 0 0
   1 1 2 2 2 2 2 2 2 1 3 5 5 5 5 5 5 5
LRU (Frame = 3)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 2 2 2 6 6 6 0 0 0 5 5 5 2 2 2 3
 4 4 4 4 4 5 5 5 4 4 4 3 3 3 0 0 0 1 1
   1 1 1 3 3 3 2 2 2 1 1 1 6 6 6 4 4 4
FIFO (Frame = 4)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 0 3 3 3 3 3 0 0 0 0 6 6 6 6 1 1
 4 4 4 4 4 5 5 5 5 5 5 1 1 1 1 0 0 0 0 3
   1 1 1 1 1 6 6 6 6 6 3 3 3 3 2 2 2 2
      2 2 2 2 2 4 4 4 4 5 5 5 5 4 4 4
M M M H M M M M H M M M M M M M M M -- Page Faults = 18
```


2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2

(See Next Page)

Solution to Question 1(d)

FIFO (Frame = 3) after insert

```
New Reference String: [0, 4, 3, 1, 4, 2, 3, 5, 6, 2, 4, 0, 1, 3, 5, 6, 0, 2, 4, 1, 3], Page Faults: 18

0 4 3 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3

0 0 0 1 1 1 1 1 6 6 6 6 1 1 1 6 6 6 4 4 4
```

LRU (Frame = 3) after insert

```
New Reference String: [0, 4, 1, 4, 2, 3, 2, 5, 6, 2, 4, 0, 1, 3, 5, 6, 0, 2, 4, 1, 3], Page Faults: 18
```

Answer:

• It is possible for **both LRU and FIFO**.

(See Next Page)

COMP2322 4 2024/2025 Sem 2

Solution to Question 2

```
CHP (Frame = 3, C = 4)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 2 3 3 3 3 4 4 4 4 5 6 6 6 6 1 1
 4 4 4 4 4 6 2 2 2 2 3 3 3 3 2 4 4 4
   1 1 1 1 5 5 5 5 0 1 1 1 1 0 0 0 0 3
Predicted Cycles:
0 0 0 0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2
0 4 4 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4
0 0 1 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1
0 4 0 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
CHP (Frame = 3, C = 6)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 0 0 5 6 2 2 2 2 2 2 6 6 6 6 6 6
 4 4 4 4 4 4 4 4 4 0 0 0 0 0 0 2 4 1 1
   1 1 2 3 3 3 3 3 3 1 3 5 5 5 5 5 5 3
Predicted Cycles:
0 0 0 0 0 0 4 1 4 2 3 5 6 2 4 0 1 3 5 6
0 4 4 4 4 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0
0 0 1 1 1 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2
0 4 0 4 4 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4
0 0 4 0 2 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1
0 4 1 4 0 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
CHP (Frame = 4, C = 4)
0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3
0 0 0 0 0 3 3 3 3 4 4 4 4 5 5 5 5 4 4 4
 4 4 4 4 4 4 6 6 6 6 1 1 1 1 0 0 0 0 3
   1 1 1 1 5 5 5 5 5 0 0 0 0 6 6 6 6 1 1
       2 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2
Predicted Cycles:
```

COMP2322 5 2024/2025 Sem 2

```
0 0 0 0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2
0 4 4 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4
0 0 1 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1
0 4 0 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3

CHP (Frame = 4, C = 6)

0 4 1 4 2 3 5 6 2 4 0 1 3 5 6 0 2 4 1 3

0 0 0 0 0 0 5 6 6 6 6 6 6 5 5 5 5 5 5 3
```

0 0 0 0 0 0 5 6 6 6 6 6 5 5 5 5 5 5 3 4 4 4 4 4 4 4 4 0 0 0 0 0 0 2 4 4 4 1 1 1 1 1 2 2 2 2 2 2 6 6 6 6 6 6

M M M H M M M M H M M M M H M M M M -- Page Faults = 17

Predicted Cycles:

(See Next Page)

Solution to Question 3

Solution to 3(a)

No, there does not exist any safe sequences. After the allocation for request P_0 , the remaining resources are (1111)-(1011)=(0100). Afterwards, no process can be satisfied.

Figure 1: The Wait-For Graph for Question 3

Solution to 3(b)

If x (the last two bits) is $(00)_2$; then the processes are: P_0 , P_4 This is **possible**:

- The increased (+1) needs of P_0 is (3534)
- The increased (+1) needs of P_4 is (2112)
- Both are satisfied by the path $P_2 o P_3 o P_0 o P_5 o P_4 o P_1$
- I.e., the highlighted path in Figure 1

If x (the last two bits) is $(01)_2$; then the processes are P_1 , P_5 This is **possible**:

- The increased (+1) needs of P_1 is (3413)
- The increased (+1) needs of P_5 is (2422)
- Both also satisfied by the path $P_2 \to P_3 \to P_0 \to P_5 \to P_4 \to P_1$
- I.e., the highlighted path in Figure 1

If x (the last two bits) is $(10)_2$; then the processes are P_2 This is **impossible**:

- The increased (+1) needs of P_2 is (2121)
- None of the P_2 edges in the graph satisfies "start node < 2121"
 - ▶ both (1121) and (1111) less than (2121)

If x (the last two bits) is $(11)_2$; then the processes are P_3 This is **impossible**:

- The increased (+1) needs of P_3 is (3113)
- None of the P_3 edges in the graph satisfies "start node < 3113"
 - ▶ both (2123) and (2113) less than (3113)

Note: we increase the values of the *need* by 1 for all types instead of a single type as specified in the question, because the specific type under-reported is corrupted. So the operating system has to consider the worst case where any type of resource can be under-reported. Enumerating each type of resource is equivalent to increasing the need of all types of resources by 1 and checking if the system is still in a safe state.

Answer:

- The processes are P_0, P_1, P_4, P_5
- Thus, X (the process number) can be 0, 1, 4, or 5

Solution to 3(c)

Consider Y = A. This is **impossible**:

- If P_2 need increase from $(1010) \rightarrow (2010)$

Then, none of the edges in the graph satisfies "start node < 2010"
both (1111) and (1121) less than (2010)

Consider Y = B. This is **possible**:

- Because no matter which process is under-reported
- Path $P_2 \to P_3 \to P_0 \to P_5 \to P_4 \to P_1$ is always a safe sequence
- I.e., the highlighted path in Figure 1

Consider Y = C. This is **possible**:

- Because no matter which process is under-reported
- Path $P_2 \to P_3 \to P_0 \to P_5 \to P_4 \to P_1$ is always a safe sequence
- I.e., the highlighted path in Figure 1

Consider Y = D. This is **possible**:

- Because no matter which process is under-reported
- Path $P_2 \to P_3 \to P_0 \to P_5 \to P_4 \to P_1$ is always a safe sequence
- I.e., the highlighted path in Figure 1

(See Next Page)

Solution to Question 4

Solution to Question 4(a)-(c)

Figure 2: Memory allocation after each insertion based on *First-Fit* algorithm

Best-Fit Algo

Figure 3: Memory allocation after each insertion based on Best-Fit algorithm

Worst-Fit Algo

Figure 4: Memory allocation after each insertion based on Worst-Fit algorithm

Solution to Question 4(d)

Allocation	Logical	Physical address for P1	Physical address for P2
of P2	Address		
FF	(0, 44)	3055	1400
BF	(1, 231)	2132	3377
WF	(2, 82)	5760	6303
FF	(3, 199)	2631	1713
BF	(4, 56)	4490	2191
WF	(5, 304)	1315	5525
FF	(6, 135)	Invalid	2567