Analytical Dynamics Project 1 Newton's Canon Ball Dynamics Simulation

By
Deepak Raina (2019MEZ8497)
Sandeep Kumar (2019MEZ8423)

Outline

- Problem Statement
- Equation of Motion (EoM)
- Conversion to reduced order EoM
- Differential Equation Solver
- Simulation Results
- EoM in Polar form

Problem Statement

 To simulate dynamics of Newton's canon ball and study the effect of velocity and height of canon on the path of canon ball.

Equation of Motion (EoM)

Coupled 2nd order equations:

$$\left| \frac{-GMx}{x^2 + y^2} \left\{ \frac{x \, i + y \, j}{(x^2 + y^2)^{1/2}} \right\} = m\ddot{x} \, i + m\ddot{y} \, j \right|$$

$$\frac{-GMx}{(x^2+y^2)^{3/2}}=\ddot{x}$$

$$\frac{-GMy}{(x^2+y^2)^{3/2}} = \ddot{y}$$

Reduced order EoM

$$\dot{x} = x_1 = \int \ddot{x} dt$$

$$\dot{x}_1 = \ddot{x} = \frac{-GMx}{(x^2 + y^2)^{3/2}}$$

$$\dot{y} = y_1 = \int \ddot{y} dt$$

$$\dot{y}_1 = \ddot{y} = \frac{-GMy}{(x^2 + y^2)^{3/2}}$$

$$x_1 = f(x, y)$$
$$y_1 = f(x, y)$$

Differential Equation Solver

ODE45:

- This function implements a Runge-Kutta method
- Syntax

$$[t,x] = ode45(@f_name, t_span, x_init, options)$$

MATLAB GUI

Simulation Results (v = 7000 m/s)

Simulation Results (v = 7500 m/s)

Simulation Results (v = 8000 m/s)

Simulation Results – Height Variation

Polar Form

$$T = \frac{1}{2}m(\dot{r}^2 + r^2 \dot{\theta}^2)$$

$$V = -\frac{GMm}{r}$$

$$L = T - V$$

Applying Lagrangian equation of motion:

$$m\ddot{r} - mr\dot{\theta}^2 + \frac{GMm}{r^2} = 0 \quad ...(1)$$

$$mr^2\ddot{\theta} + 2mr\dot{r}\dot{\theta} = 0 \quad ...(2)$$

2nd order ODE

$$\ddot{r} = r\dot{\theta}^2 - \frac{GM}{r^2}$$

$$\ddot{ heta} = -rac{2\dot{r}\dot{ heta}}{r}$$

Simulation Results (v = 6900 m/s)

Simulation Results (v = 7200 m/s)

Thank You

27-11-2019