01. Impot libraries

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

02. Upload database

```
In [2]:
    from google.colab import drive
    drive.mount('/content/drive')
```

Mounted at /content/drive

```
Read the Dataset
 In [3]:
          mydata = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Churn_Modelling.csv
 In [8]:
          mydata.shape
         (10000, 14)
Out[8]:
 In [6]:
          mydata.head()
Out[6]:
            RowNumber CustomerId Surname CreditScore Geography
                                                              Gender Age Tenure
                                                                                   Balanc
         0
                    1
                         15634602
                                 Hargrave
                                                619
                                                        France
                                                               Female
                                                                       42
                                                                                      0.0
         1
                    2
                                     Hill
                                                608
                        15647311
                                                               Female
                                                                       41
                                                                               1
                                                                                  83807.8
                                                         Spain
         2
                    3
                        15619304
                                     Onio
                                                502
                                                        France
                                                               Female
                                                                                 159660.8
                                                699
                                                                       39
                                                                                      0.0
         3
                    4
                        15701354
                                     Boni
                                                        France
                                                               Female
                    5
                         15737888
                                  Mitchell
                                                850
                                                         Spain
                                                               Female
                                                                       43
                                                                                 125510.8
In [11]:
          mydata.columns
         Out[11]:
               dtype='object')
In [12]:
          mydata.tail()
                                     Surname CreditScore Geography Gender
Out[12]:
```

	ROWINGIIIDEI	Customenu	Surname	Creditacore	Geography	Gender	Age	renure	D
9995	9996	15606229	Obijiaku	771	France	Male	39	5	
9996	9997	15569892	Johnstone	516	France	Male	35	10	57.
9997	9998	15584532	Liu	709	France	Female	36	7	
	9996	9995 9996 9996 9997	9995 9996 15606229 9996 9997 15569892	9995 9996 15606229 Obijiaku 9996 9997 15569892 Johnstone	9995 9996 15606229 Obijiaku 771 9996 9997 15569892 Johnstone 516	9995 9996 15606229 Obijiaku 771 France 9996 9997 15569892 Johnstone 516 France	9995 9996 15606229 Obijiaku 771 France Male 9996 9997 15569892 Johnstone 516 France Male	9995 9996 15606229 Obijiaku 771 France Male 39 9996 9997 15569892 Johnstone 516 France Male 35	9996 9997 15569892 Johnstone 516 France Male 35 10

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Bi
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75
9999	10000	15628319	Walker	792	France	Female	28	4	130
4									•

03. Perform Visualizations

In [99]:

```
sns.boxplot(mydata['CreditScore'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[99]:

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c25826090>

In [102...

Out[102...

```
sns.boxplot(mydata['Balance'])
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c25724310>

In [103...

sns.boxplot(mydata['NumOfProducts'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

 ${\tt Out[103...} \ \ {\tt <matplotlib.axes._subplots.AxesSubplot} \ \ {\tt at 0x7f6c2570ed10} {\tt >}$

In [104...

sns.boxplot(mydata['Tenure'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c25687550>

Out[104...

In [105...

Out[105...

sns.boxplot(mydata['Age'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an expl

FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c255fb190>

https://github.com/IBM-EPBL/IBM-Project-11004-1659251853/blob/main/Assessment/Team leader Sulfa/Assignment 2.ipynb

icit keyword will result in an error or misinterpretation.

In [106...

sns.boxplot(mydata['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[106...

<matplotlib.axes._subplots.AxesSubplot at 0x7f6c255e2450>

In [107...

sns.boxplot(mydata['Exited'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword arg: x. From version 0.12, the only vali d positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

FutureWarning

Out[107...

<matplotlib.axes. subplots.AxesSubplot at 0x7f6c25543890>

In [108... sns.heatmap(mydata.corr(),annot=True)

Out[108... <matplotlib.axes._subplots.AxesSubplot at 0x7f6c25443f10>

In [109... sns.heatmap(mydata.corr(),annot=False)

Out[109... <matplotlib.axes._subplots.AxesSubplot at 0x7f6c25443750>

05. Handling the Missing Values

```
In [16]:
           mydata.duplicated().sum()
Out[16]:
In [17]:
           mydata.isna().sum()
          RowNumber
Out[17]:
          CustomerId
                              0
          Surname
                              0
          CreditScore
                              0
                              0
          Geography
          Gender
                              0
          Age
                              0
          Tenure
                              0
          Balance
                              0
          NumOfProducts
                              0
          HasCrCard
                              0
          IsActiveMember
                              0
          EstimatedSalary
                              0
          Exited
          dtype: int64
In [18]:
           mydata.nunique()
          RowNumber
                              10000
Out[18]:
          CustomerId
                              10000
          Surname
                               2932
          CreditScore
                                460
                                  3
          Geography
                                  2
          Gender
          Age
                                 70
          Tenure
                                 11
          Balance
                               6382
          NumOfProducts
                                  4
          HasCrCard
                                  2
                                  2
          IsActiveMember
          EstimatedSalary
                               9999
```

> Exited dtype: int64

```
In [19]:
```

mydata.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 10000 entries, 0 to 9999 Data columns (total 14 columns):

2

Column Non-Null Count Dtype # -----0 RowNumber 10000 non-null int64 1 CustomerId 10000 non-null int64 10000 non-null object 2 Surname 3 CreditScore 10000 non-null int64 4 Geography 10000 non-null object 5 Gender 10000 non-null object 6 Age 10000 non-null int64 7 Tenure 10000 non-null int64 8 Balance 10000 non-null float64 10000 non-null int64 9 NumOfProducts 10 HasCrCard 10000 non-null int64 10000 non-null int64 11 IsActiveMember 12 EstimatedSalary 10000 non-null float64 10000 non-null int64 13 Exited

dtypes: float64(2), int64(9), object(3)

memory usage: 1.1+ MB

In [25]:

mydata.drop(columns=['Gender', 'HasCrCard', 'IsActiveMember', 'Exited']).describe()

Out[25]:		RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	Nι
	count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	
	mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.889288	
	std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	
	min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	
	25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	
	50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	
	75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	
	max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	

In [26]:

qnt=mydata.drop(columns=['Gender','Tenure','HasCrCard','IsActiveMember'])

06. Find Outliers

In [110...

qnt=mydata.drop(columns=['Gender','Tenure','HasCrCard','IsActiveMember','NumOfPro qnt

Out[110		CreditScore	Age	Balance	EstimatedSalary
	0.25	584.0	32.0	0.0000	51002.1100
	0.85	705.0	47.0	140895.0965	170322.3935

```
In [111..
           Q1=qnt.iloc[0]
           Q4=qnt.iloc[1]
In [112...
           iqr=Q4-Q1
           iqr
          CreditScore
                                  121.0000
Out[112...
          Age
                                    15.0000
          Balance
                               140895.0965
          EstimatedSalary
                               119320.2835
          dtype: float64
In [113...
           upper=qnt.iloc[1]+2.5*iqr
           upper
          CreditScore
                                 1007.50000
Out[113...
          Age
                                    84.50000
          Balance
                               493132.83775
          EstimatedSalary
                               468623.10225
          dtype: float64
In [114...
           lower=qnt.iloc[0]-2.5*iqr
           lower
          CreditScore
                                  281.50000
Out[114...
                                    -5.50000
          Age
                              -352237.74125
          Balance
          EstimatedSalary
                              -247298.59875
          dtype: float64
          Replace Outliers
In [115...
           mydata['CreditScore']= np.where(mydata['CreditScore']>756,650.5288,mydata['Credit
           mydata['Age']= np.where(mydata['Age']>62, 38.9218,mydata['Age'])
          07. Categorical Columns and Performing Encoding
In [132...
           mydata['Gender'].replace({'Male': 1, 'Female':0}, inplace=True)
           mydata.head(8)
Out[132...
             CreditScore Gender Age Tenure
                                                 Balance
                                                         NumOfProducts HasCrCard IsActiveMember
          0
                619.0000
                                 42.0
                                            2
                                                    0.00
                                                                       1
                                                                                  1
                                                                                                  1
                               0
          1
                608.0000
                                 41.0
                                            1
                                                83807.86
                                                                       1
                                                                                  0
                                                                                                  1
          2
                502.0000
                               0
                                 42.0
                                            8
                                               159660.80
                                                                       3
                                                                                  1
                                                                                                  0
          3
                                                                       2
                699.0000
                               0
                                  39.0
                                            1
                                                    0.00
                                                                                  0
                                                                                                  0
          4
                650.5288
                                 43.0
                                               125510.82
                                                                       1
                                                                                  1
                                                                                                  1
                               0
          5
                645.0000
                               1
                                  44.0
                                               113755.78
                                                                       2
                                                                                  1
                                                                                                  0
          6
                650.5288
                                  50.0
                                                    0.00
                                                                       2
                                                                                  1
                                                                                                  1
          7
                376.0000
                                  29.0
                                                                       4
                                                                                  1
                                                                                                  0
                               0
                                               115046.74
```

Dropping Unwanted Columns

```
In [144...
           mydata =mydata.drop(columns=['Age'])
           mydata.head()
Out[144...
             Gender
                      Tenure
                                Balance
                                         NumOfProducts
                                                         HasCrCard IsActiveMember
                                                                                     EstimatedSalary Ex
           0
                   0
                           2
                                   0.00
                                                      1
                                                                  1
                                                                                  1
                                                                                           101348.88
           1
                   0
                               83807.86
                                                      1
                           1
                                                                  0
                                                                                  1
                                                                                           112542.58
           2
                   0
                              159660.80
                                                      3
                                                                  1
                                                                                  0
                                                                                           113931.57
                           8
           3
                                   0.00
                                                      2
                                                                  0
                                                                                  0
                                                                                            93826.63
                           1
                   0
                           2 125510.82
                                                                                            79084.10
           4
                                                      1
                                                                  1
                                                                                  1
          08. Split Data Into Dependent and Independent Variables
In [78]:
            a=mydata.iloc[:,:-2]
           a.head()
              CreditScore Gender Age Tenure
                                                  Balance NumOfProducts HasCrCard IsActiveMember
Out[78]:
           0
                619.0000
                                  42.0
                                                     0.00
                               0
                                             2
                                                                        1
                                                                                    1
                                                                                                    1
           1
                608.0000
                                  41.0
                                             1
                                                 83807.86
                                                                        1
                                                                                   0
                                                                                                    1
                502.0000
                                                159660.80
           2
                               0
                                  42.0
                                             8
                                                                        3
                                                                                   1
                                                                                                    0
           3
                699.0000
                                  39.0
                                                     0.00
                                                                        2
                                                                                   0
                                             1
                                                                                                    0
                650.5288
                               0 43.0
                                             2
                                                125510.82
                                                                        1
                                                                                    1
                                                                                                    1
In [83]:
           b=mydata.iloc[:,-2]
In [84]:
           b.head()
                101348.88
Out[84]:
                112542.58
                113931.57
           2
          3
                 93826.63
                 79084.10
          Name: EstimatedSalary, dtype: float64
          09. Scale The Independent Variables
In [85]:
           from sklearn.preprocessing import StandardScaler
In [86]:
            cls=StandardScaler()
           a=cls.fit_transform(a)
In [130...
```

```
Out[130... array([[-0.13284832, -1.09598752, 0.48205148, ..., -0.91158349, 0.64609167, 0.97024255],

[-0.28182929, -1.09598752, 0.36638802, ..., -0.91158349, -1.54776799, 0.97024255],

[-1.71746409, -1.09598752, 0.48205148, ..., 2.52705662, 0.64609167, -1.03067011],

...,

[ 1.08608688, -1.09598752, -0.21192932, ..., -0.91158349, -1.54776799, 0.97024255],

[ 0.29416906, 0.91241915, 0.48205148, ..., 0.80773656, 0.64609167, -1.03067011],

[ 0.29416906, -1.09598752, -1.13723705, ..., -0.91158349, 0.64609167, -1.03067011]])
```

10.Split Data Into Training and Testing

```
In [88]:
          from sklearn.model selection import train test split
In [92]:
          a_train,a_test,b_train,b_test= train_test_split(a,b,test_size=0.4,random_state=0)
In [93]:
          a_train.shape
         (6000, 8)
Out[93]:
In [94]:
          a_test.shape
         (4000, 8)
Out[94]:
In [95]:
          a train
         array([[-0.67459731, 0.91241915, 0.59771495, ..., -0.91158349,
Out[95]:
                  0.64609167, 0.97024255],
                [ 0.31409458, -1.09598752, 0.25072455, ..., -0.91158349, 
                  0.64609167, 0.97024255],
                [0.31409458, 0.91241915, -0.09626585, ..., 0.80773656,
                  0.64609167, -1.03067011],
                . . . ,
                [1.47885489, 0.91241915, -0.32759278, ..., 0.80773656,
                  0.64609167, -1.03067011],
                [-0.52561634, -1.09598752, 0.01939762, ..., 0.80773656,
                  0.64609167, 0.97024255],
                [-0.07867343, -1.09598752, 1.17603229, ..., -0.91158349,
                  0.64609167, -1.03067011]])
In [96]:
          a_test
         array([[-0.43081026, -1.09598752, -0.32759278, ..., -0.91158349,
Out[96]:
                  0.64609167, 0.97024255],
                [-1.43304588, -1.09598752, 0.25072455, ..., -0.91158349,
                  0.64609167, -1.03067011],
                [1.04545571, -1.09598752, 0.48205148, ..., -0.91158349,
                  0.64609167, 0.97024255],
                [1.58720469, -1.09598752, -1.59989092, ..., -0.91158349,
                 -1.54776799, 0.97024255],
                [0.84229984, 0.91241915, 0.01939762, ..., 0.80773656,
                 -1.54776799, -1.03067011],
```

```
[-1.39241471, 0.91241915, -0.90591012, ..., 0.80773656, -1.54776799, -1.03067011]])
```

```
In [131...
          b_train
         7809
               198402.37
Out[131...
         5279
               124550.88
         3279
                  68789.93
         8984
                  42669.37
         8466
                  83343.73
         9225
                 162961.79
         4859
                 107753.07
                 181429.87
         3264
         9845
                 148750.16
         2732
                 118855.26
         Name: EstimatedSalary, Length: 6000, dtype: float64
In [98]:
          b_test
         9394
               192852.67
Out[98]:
         898
                128702.10
         2398
                  75732.25
         5906
                  89368.59
         2343
                 135662.17
         4758
                  48545.10
         9914
               180844.81
         7067
                  94105.00
         4578
                  44653.50
         4202
                 100995.68
         Name: EstimatedSalary, Length: 4000, dtype: float64
 In [ ]:
```