Multimedia Cloud Computing and Machine Learning

Lecturer: Min-Chun Hu 胡敏君

Homework 4 : Neural Network

Deadline: 12/17 pm 10:00

1. Implement two neural networks with (a) wide hidden layer (25%) and (b) deep hidden layer (25%) to classify the digits in MNIST dataset. In the report, you have to show the accuracy and loss curve of the testing data for each model.

The details of the wide model: (# of parameters: 203530)

Wide ModelNeuronsActivationInput Layer784-Hidden Layer256ReLUOutput Layer10Softmax

The details of the deep model: (# of parameters: 203170)

Deep Model	Neurons	Activation
Input Layer	784	-
Hidden Layer 1	204	ReLU
Hidden Layer 2	202	ReLU
Output Layer	10	Softmax

MNIST utility tools:

https://gist.github.com/jerrywiston/05eaf6978e9e25393372b7ce0d2c2934

■ Batch Gradient Descent

■ Stochastic Gradient Descent

■ Mini-Batch Gradient Descent

Cross entropy :
$$E = -\sum_{i}^{nclass} t_i \log(y_i)$$

BP for Sigmoid activation + Cross entropy loss

$$y_{i} = \frac{1}{1 + e^{-s_{i}}} \qquad \frac{\partial E}{\partial y_{i}} = \frac{-t_{i}}{y_{i}} + \frac{1 - t_{i}}{1 - y_{i}}, \qquad \frac{\partial y_{i}}{\partial s_{i}} = y_{i}(1 - y_{i})$$

$$s_{i} = \sum_{j=1}^{n} h_{j}w_{ji}. \qquad = \frac{y_{i} - t_{i}}{y_{i}(1 - y_{i})}, \qquad \frac{\partial s_{i}}{\partial w_{ji}} = h_{j}$$

BP for Softmax activation + Cross entropy loss

$$y_i = \frac{e^{s_i}}{\sum_{c}^{nclass} e^{s_c}} \qquad s_i = \sum_{j=1}^{nclass} h_j w_{ji}. \qquad \frac{\partial E}{\partial s_i} = y_i - t_i$$

Reference: https://www.ics.uci.edu/~pjsadows/notes.pdf

- 2. Implement an autoencoder (AE) to learn the representation of the MNIST datasets.
- (a) Show the results of the AE-based dimension reduction such as HW3-A. (25%)
- (b) Visualize the reconstruction results and the filters. (25%)
- (c) Apply denoise and dropout mechanism, and visualize the reconstruction results and the filters. (10%, Bonus)

The details of the autoencoder:

	Neurons	Activation
Input Layer	784	-
Hidden Layer	128	ReLU
Output Layer	784	Sigmoid

Autoencoder

■ Visualization example

Reconstruction Results

Filters (dAE + dropout)

