Intelligence artificielle (IF06M100)

Examen & Rattrapage

Questions de cours										
Exam 10 2 questions 3 points	Exam 11	Exam 12	Exam 13 3 questions 4 points	Exam 14 3 questions 4 points	Exam 15	Exam 16 3 questions 4 points	Exam 17	Exam 18 ?	Exam 19 3 questions 4 points	Exam 20
Rattrapage	Rattrapage	Rattrapage	Rattrapage	Rattrapage - questions _ points	Rattrapage ?	Rattrapage 2 questions 2 points	Rattrapage 2 questions 2 points	Rattrapage	Rattrapage 2 questions 3 points	Rattrapage - questions _points

1 # Agents Intelligents

Expliquez ce qu'est un environnement <u>épisodique</u>, puis ce qu'est un environnement <u>séquentiel</u>.

Exam 13

Propriétés des environnements de taches..

Episodique vs. Séquentiel

Environnement de tache épisodique

- O L'expérience de l'agent est divisée en épisodes atomiques.
- O A chaque épisode, l'agent reçoit un percept puis exécute une action unique.
- O Il est crucial que l'épisode suivant ne dépende pas des actions effectuées lors des précédents épisode.

> Environnement de tache séquentiel

La décision courante est susceptible d'affecter toutes les décisions futures.

Décrire une architecture générale d'agent avec état et sans état ; expliquer les différences.

Exam 10

Le type d'agent le plus simple est **l'agent reflexe simple**. Les agents de ce type sélectionnent des actions en fonction du percept <u>courant</u> et ignorent le reste de l'historique des percepts.

Agent reflexe avec état - l'agent doit maintenir un <u>état interne</u> qui dépend de l'historique des percepts.

2 # Algorithmes de recherche en lA

Définir ce qu'est une <u>stratégie de recherche</u> dans un espace d'états. Quand dit-on qu'une telle stratégie est <u>complète</u>? <u>optimale</u>?

Exam 13, Exam 19, Rattrapage 17, Rattrapage 19

Une stratégie de recherche est d'définie par l'ordre dans lequel les nœuds sont développés (la façon de choisir le prochain état à développer).

- > La complétude : est-ce que cette stratégie trouve toujours une solution si elle existe ?
- L'optimalité : est-ce que la stratégie trouve toujours la solution la moins coûteuse ?

3 # Algorithmes et recherches heuristiques

Définir ce qu'est une heuristique. Quand dit-on qu'une heuristique est admissible ?

Exam 16, Rattrapage 16

La fonction heuristique : notée $oldsymbol{h}(oldsymbol{n})$

 $m{h}(m{n})$ = cout estimé du chemin le moins couteux de l'etat au nœud $m{n}$ à un état but.

Une heuristique admissible est une heuristique qui <u>ne surestime jamais</u> le cout pour atteindre le but.

6 #Agents logiques

Définir ce qu'est une <u>relation de conséquence</u> en logique propositionnelle.

Exam 14

Relation de conséquence logique entre des énoncés :

L'idée est qu'un énoncé découle logiquement d'un autre.

Notation mathématique : $lpha \models oldsymbol{eta}$ pour signifier que l'énoncé $oldsymbol{lpha}$ a pour conséquence l'énoncé $oldsymbol{eta}$

Définition formelle de la conséquence logique

 $\alpha \vDash \beta$ est vrai si et seulement si, dans tout modèle ou α est vrai, β est également vrai.

Expliquez la signification de chacun des deux symboles suivants : \models et \vdash_i . Quelle est la différence entre ces deux symboles ?

Exam 16, Rattrapage 16

Relation de conséquence logique entre des énoncés :

L'idée est qu'un énoncé découle logiquement d'un autre.

Notation mathématique : $lpha \models oldsymbol{eta}$ pour signifier que l'énoncé $oldsymbol{lpha}$ a pour conséquence l'énoncé $oldsymbol{eta}$

Une inférence logique

Notation formelle : si un algorithme d'inférence i peut dériver α de KB, on écrit : $KB \vdash_{i} \alpha$, ce qui se lit « α est dérivé de KB par i » ou « i dérive α de KB»

Pour comprendre la relation de conséquence et l'inférence, il peut être utile de voir l'ensemble de toutes les conséquences de KB comme une meule de foin et α comme une aiguille. La conséquence est l'aiguille dans la meule, et l'inférence revient à la trouver.

Définir ce qu'est une <u>procédure d'inférence</u> en logique propositionnelle. Quand dit-on qu'une telle procédure est <u>complète</u>? <u>valide</u>?

Exam 13, Exam 14, Exam 19, Rattrapage 19

Une inférence logique

Notation formelle : si un algorithme d'inférence $m{i}$ peut dériver $m{lpha}$ de $m{KB}$, on écrit :

 $\mathit{KB} \hspace{0.2em} dash_{\hspace{0.2em} m{i}} \hspace{0.2em} lpha$, ce qui se lit « lpha est dérivé de KB par i » ou « i dérive lpha de KB »

- On dit d'un algorithme d'inférence qui ne dérive que des énoncés qui sont des conséquences qu'il préserve la validité.
- > Un algorithme d'inférence est **complet** s'il peut dériver n'importe quel énoncé qui est une conséquence.

Ou'est ce qu'une procédure valide et complète?

Exam 16

9 # Introduction à la planification

Définir ce qu'est <u>l'hypothèse du monde clos</u>

Exam 14, Exam 16, Rattrapage 17

Tout ce qui n'est pas explicitement défini comme étant vrai dans un état est considéré comme étant faux.