(11)特許出願公開番号

特開平5-49473

(43)公開日 平成5年(1993)3月2日

(51) Int. Cl. 5	識別記号	庁内整理番号	FΙ	技術表示箇所
C12N 5/10				
A61K 35/12		9 1 6 5 - 4 C		* *
35/30	A,A M	9165-4C.		
C12N 15/09				
// C12P 21/02	Н	8 2 1 4 - 4 B		
	•	審	蒼請求 未請求	請求項の数8 (全10頁) 最終頁に続く
(21)出願番号	特願平3-2043	4 3	(71)出願人	000181147
				持田製薬株式会社
(22)出願日	平成3年(1991) 8月14日		東京都新宿区四谷1丁目7番地
			(72)発明者	高 坂 新 一
				東京都杉並区成田西3-12-19
•			(72)発明者	半 田 宏
				東京都世田谷区桜上水1-17-16
•			(72)発明者	植村昭夫
	*		(13)	静岡県沼津市泉町3-30 シテイーパル
			-	泉町103
			(74)代理人	弁理士 渡辺 望稔 (外1名)
			一一八八里八	月柱工 仮尼 主心 (介工石)
	*			

(54) 【発明の名称】ラツト脳ミクログリアセルライン

(57)【要約】

【構成】 本発明は、 a)直径約60±50μmのほぼ球形、 b)無限な継代培養可能、 c)神経細胞の生存、成長、神経突起伸展を促進する新規な因子を産生し、培養上清中に放出する、以上の性質を有するラット脳ミクログリアセルラインであり、ラット脳ミクログリアの遺伝子内に無限増殖化遺伝子を組み込み該ラット脳ミクログリアセルラインを樹立する方法である。さらに、神経細胞の生存、成長、神経突起伸展を促進する新規な神経栄養因子を含むラット脳ミクログリアセルラインの培養上清および細胞ホモジネートである。

【効果】 ラット脳ミクログリアセルラインを大量培養することで、神経細胞の生存、成長、神経突起伸展を促進する新規な神経栄養因子を大量に生産でき、神経細胞の機能障害を伴う脳疾患の治療に有用な物質を得ることができる。

【特許請求の範囲】

【請求項1】 以下の性質を有するラット脳ミクログリアセルライン。

- a)細胞の形態:直径約60±50μmのほぼ球形
- b) 継代培養:無限な継代培養可能
- c)機能的特徴:神経細胞の生存、成長、神経突起伸展 を促進する新規な因子を産生し、培養上清中に放出す る。

【請求項2】 ラット脳ミクログリアの遺伝子内に、無限増殖化遺伝子を組み込むことによって樹立した請求項1に記載のラット脳ミクログリアセルライン。

【請求項3】 前記無限増殖化遺伝子がSV40温度感受性変異株のラージT遺伝子である請求項2に記載のラット脳ミクログリアセルライン。

【請求項4】 微工研菌寄第12426号である請求項1~3のいずれかに記載のラット脳ミクログリアセルラインRBM103。

【請求項5】 微工研菌寄第12427号である請求項1~3のいずれかに記載のラット脳ミクログリアセルラインRBM112。

【請求項6】 微工研菌寄第12428号である請求項1~3のいずれかに記載のラット脳ミクログリアセルラインRBM129。

【請求項7】 請求項1~6のいずれかに記載のラット脳ミクログリアセルラインを樹立するにあたり、組換えDNA技術によってラット脳ミクログリアの遺伝子内に、無限増殖化遺伝子としてSV40のラージT遺伝子を組み込むことを特徴とするラット脳ミクログリアセルラインの樹立方法。

【請求項8】 初代培養ラット脳ミクログリアの培養上 30 清と同様な神経細胞の生存、成長、神経突起伸展を促進する作用を有する新規な因子を含有する請求項1~6のいずれかに記載のラット脳ミクログリアセルラインの培養上清および/または当該セルラインの細胞ホモジネート。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、周産期ラット脳より得られるミクログリアの遺伝子に外来の無限増殖化遺伝子を組み込むことによって得られるラット脳ミクログリア 40 セルライン、そのセルラインの樹立方法、および神経細胞の生存、成長、神経突起伸展を促進する作用(以下神経栄養効果という)を有する前記セルラインの培養上清および/または前記セルラインの細胞ホモジネートに関する。

[0002]

【従来の技術】中高年層に多く見られる疾患である脳血 管障害やアルツハイマー型老年痴呆の治療においては、 ホパンテン酸カルシウム、イデベノンなどの脳代謝賦括 薬や、イフェンプロジル、シンナリジン、ニカルジピン

等の脳循環改善薬が多用されているが、これらの薬物の作用メカニズムについては不明な点が多く、臨床的な治療効果も不十分であり、対症療法的に用いられているのが実状である。これに対して、前記脳疾患の直接原因である神経細胞の虚血による障害や老化による機能低下を回復させることによる本質的治療を目的として、神経成長因子(NGF)などの神経栄養効果を有する因子(神経栄養因子、以下NTFと略称する)を生体より探索・発見し、医薬品として応用する試みが盛んに行なわれて10 いる。

【0003】一方、中枢神経系の主要な構成細胞の1つ であるミクログリアは、1932年、リオーホルテガ (Rio-Hortega) が初めてその存在を報告し て以来、その生理的意義については不明な点が多かった が、近年、脳におけるグリオーシス、免疫反応、損傷の 修復等の過程に何らかの関与をしているとの考えが提出 されて、その機能を調節することが前出の脳疾患の治療 につながるとの考えから注目を集めている。本発明者ら は、ミクログリアが産生するNTFを見いだすため、ミ 20 クログリアの単離、培養方法について研究を重ね、ラッ ト脳からミクログリアを純粋な形で得るための優れた方 法を開発し、さらに、その方法により得られたミクログ リアの培養上清に、神経栄養効果があることを見いだし た (バイオメディカル リサーチ (Biomed. Re s.) 10 (S3), 411-423, 1989). 方、リジイ(Righi)らはマウス脳初代培養細胞に 発ガン遺伝子v-mycまたはv-milを持ったレト ロウイルスMH2を感染させることによってミクログリ アの不死性クローンを得、それが I L-1、 I L-6、 TNF-αを産生していることを報告した(ヨーロピア ン ジャーナル オブイムノロジー (Eur. J. Im munol.) 19, 1413-1418, 198 9)。また、ブラシ(Blasi)らも同様に発癌遺伝 子ャーraf/v-mycを持ったレトロウイルスJ2 をもちいてマウス脳ミクログリアの不死化に成功したと 報告している (ジャーナル オブ ニューロイムノロジ - (J. Neuroimmunol.) 27, 229-237,1990)。しかしながら、上記2種のマウス 脳ミクログリアセルラインでは神経栄養効果の報告はさ

れていない。 【0004】

【発明が解決しようとする課題】脳血管障害やアルツハイマー型老年痴呆など、神経細胞の機能低下による脳疾患の原因療法薬は未だ現われていないのが実状であり、高齢化社会の到来により社会問題化しつつあるこれら疾患の、本質的治療薬の開発が切望されている。本発明者らの最終目的は、神経系の低下した機能を改善する作用を持つ新規なNTFを探索、発見して上記のような治療薬を開発する事であるが、その第一段階として、そのような新規なNTFを産生する培養細胞株を開発し、その

物質を効率的に生産する方法を提供することが本発明の 課題である。

[0005]

【課題を解決するための手段】本発明は、前記課題を解決するために周産期ラット脳より得られるミクログリアの遺伝子内に外来の無限増殖化遺伝子を組み込むことによって得られるラット脳ミクログリアセルライン、そのセルラインの樹立方法、および神経栄養効果を有する前記セルラインの培養上清および/または前記セルラインの細胞ホモジネートを提供するものである。

【0006】すなわち本発明は、以下の性質を有するラット脳ミクログリアセルラインを提供するものである。

- a)細胞の形態:直径約60±50μmのほぼ球形
- b)継代培養:無限な継代培養可能
- c)機能的特徴:神経細胞の生存、成長、神経突起伸展 を促進する新規な因子を産生し、培養上清中に放出す る。

【0007】さらに、本発明のラット脳ミクログリアセルラインはラット脳ミクログリアの遺伝子内に、無限増殖化遺伝子を組み込むことによって樹立した場合に好適 20である。

【0008】特に、本発明のラット脳ミクログリアセルラインは前記無限増殖化遺伝子がSV40温度感受性変異株のラージT遺伝子である場合に好適である。

【0009】本発明のラット脳ミクログリアセルラインは微工研菌寄第12426号であるRBM103、微工研菌寄第12427号であるRBM112、または、微工研菌寄第12428号であるRBM129である場合に好適である。

【0010】また、本発明はラット脳ミクログリアセル 30 ラインを樹立するにあたり、組換えDNA技術によってラット脳ミクログリアの遺伝子内に、無限増殖化遺伝子としてSV40のラージT遺伝子を組み込むことを特徴とするラット脳ミクログリアセルラインの樹立方法を提供する。

【0011】さらに本発明は、初代培養ラット脳ミクログリアの培養上消と同様な神経細胞の生存、成長、神経突起伸展を促進する作用を有する新規な因子を含有する前記セルラインの培養上清および/または前記セルラインの細胞ホモジネートを提供する。

【0012】以下、本発明を詳細に説明する。

【0013】本発明のラット脳ミクログリアセルラインは以下の様にして得られる。胎生期あるいは新生児のラット脳を摘出し、トリプシン、パパイン、コラゲナーゼなどの酵素で処理することにより細胞を分散させ、1~20%年胎児血清および成長因子などを含有するダルベッコ改変型イーグル培地(DMEM)などの細胞培養用培地にて適当な培養容器に播種して初代培養を行う。3日以上経過した後、培養容器を振とうすることにより浮遊してくるミクログリアを得る。これを新たな培養容器

に接着させ、さらに培養を継続する。

【0014】この細胞に無限増殖化遺伝子をpUC19 などの適当な発現ベクターと結合させ、遺伝子内に導入 することにより恒久的に継代可能なセルラインを得るこ とができる。該無限増殖化遺伝子は例えばSV40のラ ージT遺伝子、特に、SV40温度感受性変異株由来の ラージT遺伝子などを使うことができるが、他のもので も可能である。また、遺伝子が導入された細胞を容易に 選別するためにトランスポソン5などの薬剤耐性遺伝子 を共導入することもできる。細胞に遺伝子を導入する方 法としてはリン酸カルシウム共沈澱法、リポソーム封入 法、電気ショック法、あるいはウイルス感染による方法 などがあるが、他の適当な方法でも可能である。遺伝子 導入操作後は、通常、単一クローン株を得るための操作 が必要である。すなわち、培養を継続、観察し、増殖性 コロニーが形成された時、それを新たな培養容器に継代 する。充分な細胞数が得られた状態で、限界希釈法によ りウェルあたり細胞が1個となるように継代する。その 後分裂、増殖してきた各クローンを取り出し、表面積が 漸増する培養容器を用いて細胞を継代して単一クローン 株として下記の性質を有する本発明のラット脳ミクログ リアセルラインを得ることができる。

- a) 細胞の形態:直径約60±50μmのほぼ球形
- b)継代培養:無限な継代培養可能
- c)機能的特徴:神経細胞の生存・成長・神経突起伸展 を促進する新規な因子を産生し、培養上清中に放出す

さらに、このミクログリアセルラインは下記の性質を有する。

- d)細胞増殖性:通常の細胞培養用培地にて良好に増殖する。世代倍加時間は16±4時間である。
 - e) 保存条件:-80℃で凍結保存可能

【0015】このようにして得られたラット脳ミクログリアセルライン中のRBM103、RBM112およびRBM129と命名したものを、通商産業省工業技術院微生物工業技術研究所に平成3年8月13日にそれぞれ微工研菌寄第12426号(FERM P-12427)、および微工研菌寄第12428号(FERM 40 P-12428)として寄託している。

【0016】このようにして得られたセルラインは、導入した遺伝子産物に対する抗体を用い、免疫染色法あるいはウエスタンプロット法などにより、当該遺伝子産物が発現されていることが確められる。また、ミクログリアのマーカーであるED-1などに対する抗体を用いた免疫染色法などにより、当該セルラインがミクログリアであることが確認できる。実際にこれらの検討を行った結果を以下に示す。

【0017】図1は、実施例1で示されている抗ラージ T抗原抗体を用いて、当該セルラインホモジネートをウ エスタンブロット法により染色した結果である。このよ うに、ミクログリアに外来性に導入した遺伝子の発現産 物であるラージT抗原が当該セルラインにおいて発現し ているのが確認できる。

【0018】表1には、中枢神経系細胞のマーカー蛋白 の抗体による免疫染色性、レクチン結合性、酵素活性、

ラテックスピーズ貪食能などの種々の細胞特性につい て、本発明のラット脳ミクログリアセルラインをラット 脳より得た初代培養ミクログリアおよび初代培養アスト ログリアと詳細に比較した結果を示す。

[0019]

表

•	本発明	初代培養	初代培養
項 目	セルライン''	ミクログリア	アストログリア''
———————— 免疫染色性''			
E D - 1	有り	. 有り -	無し
ニューロフィラメン	ント 無し	無し	無し
GFAP	無し	無し	有り
МВР	無し	無し	無し
ガラクトセレブロ	ノド 無し	無し	無し
B4イソレクチン結合	合性" 有り	有り	無し
非特異的エステラー+	ヹ活性'' 高い	高い	低い
貪食能''	高い	高い	低い
無限増殖能	有り	無し	無し

GFAP グリア線維性蛋白質 ミエリン塩基性蛋白質 MBP

- 1) 実施例1により調製したミクログリアセルライン、 RBM103、RBM112、およびRBM129 2) ナカジマ(Nakajima)らの方法による(バー イオメディカル リサーチ (Biomed. Res.) <u>10</u> (S3), 411-423, 1989)
- (ジャーナル オプセル バイオロジー (J. Cel 1. Biol.) <u>85</u>, 890-902, 1980) 【0020】表1に示されるように、初代培養で得たミ クログリアと本発明のラット脳ミクログリアセルライン の細胞特性は、本発明セルラインが無限増殖能を有する ことを除いてよく一致していた。従って本発明のラット 脳ミクログリアセルラインは初代培養のミクログリアの 細胞特性を保持したまま無限増殖能が付与されたセルラ インであると考えられる。

【0021】本発明のラット脳ミクログリアセルライン は、10%牛胎児血清を添加したDMEMなどで恒久的 に継代培養が可能である。細胞が培養容器内で密集状態 になったときは、例えばトリプシンなどを用いて細胞を 培養容器から一旦離脱させ、新たな培養容器で繰り返し 継代、培養することができる。また、本発明のラット脳 ミクログリアセルラインは、血清あるいは血清を含む培 地などに5~20%となるようにジメチルスルホキシド のような保存剤を添加した溶媒に懸濁し凍結させ、液体 窒素中などで保存できる。さらに凍結保存状態から例え ば温湯につけて融解し、再び継代培養することもでき

る。

【0022】上記セルラインの培養に用いる血清として は、牛胎児血清のほか、牛準胎児血清、仔牛血清、ラッ ト血清、馬血清などを用い、培地としては、最小必須培 地 (MEM)、DMEM、F12、RPMI1640な 3) マッカーシー(McCarthy)らの方法による 30 ´どを用いることができる。また、必要に応じて、インシ ュリン、トランスフェリン、プトレッシン、セレンなど の成長因子や、ゲンタマイシン、カナマイシンなどの抗 菌剤を培地に添加すると良い。

> 【0023】本発明の細胞培養上清および細胞ホモジネ - トは、本発明のラット脳ミクログリアセルラインを培 養することによって得られる。すなわち、本発明のラッ ト脳ミクログリアセルラインを一定期間培養した後、無 血清の培地により数回洗浄し、同じ無血清の培地で12 ~24時間培養し、さらに細胞を遠心分離で除くことに より、培養用血清に含まれる成長因子などの挟雑物を除 外した形で細胞培養上清を得る。また、上記細胞を適当 な緩衝液で数回洗浄後、ワーリングブレンダー、超音波 破砕機等で破砕することにより細胞ホモジネートを得

【0024】このように得られた培養上清や、細胞ホモ ジネートより、塩析、陰イオンあるいは陽イオン交換ク ロマトグラフィー、アフィニティークロマトグラフィ ー、吸着クロマトグラフィーおよびゲル濾過クロマトグ ラフィーなどの操作を組み合わせることにより、神経栄 養効果の本体であるNTFを精製、取得することもでき

2.0

る。

【0025】本発明の細胞培養上清または細胞ホモジネ - トから得られたNTFの遺伝子をクローニングし、そ れをプローブとしてヒトの c D N A ライブラリーをスク リーニングし、ヒトでの当該因子に相当する物質を得る こともできる。また、本発明の培養上清または細胞ホモ ジネートのNTFの抗体を作製し、この抗体に反応する ヒト由来のNTFを、ヒトでの同一因子に相当する物質 として得ることもできる。

【0026】本発明の培養上清は、後に実施例3で説明 するように、顕著な神経栄養効果を示す。すなわち、本 発明のラット脳ミクログリアセルラインのRBM12 9、RBM103またはRBM112の培養上清を、ラ ット脳大脳皮質神経細胞の培養液に10ないし50% (v / v) となるように加え、数日間培養することによ り、対照試料に対して1.5~10倍の生細胞数を示 す。上記培養系に、既知の種々の成長因子を十分な濃度 加え、数日間培養しても、本発明の細胞培養上清の神経 栄養効果に匹敵する効果を示さない。また神経突起の伸 展も本発明の培養上清の添加によってのみ促進される。 従って、本培養上清中に含まれているNTFはこれら既 存の成長因子とは異なる、新規な物質である。

【0027】本発明の細胞培養上清は、神経細胞の成 長、生存を促進することから、本発明の細胞培養上清中 のNTFを有効成分として含有する医薬組成物は、脳血 管障害やアルツハイマー型老年痴呆など神経細胞の機能 障害による脳疾患の治療薬として有効に利用できる。 [0028]

【実施例】以下、本発明の実施例を挙げて本発明を具体 的に説明するが、本発明はこれに限るものではない。

【0029】 (実施例1) 不死化ミクログリアセルライ ンの樹立

新生児ラット脳より大脳皮質を摘出し、0.25%トリ プシン溶液とともに10分間インキュベートし、ピペッ トで撹拌することにより細胞を分散させ、10%牛胎児 血清含有DMEMにて2回洗浄した後、同じ培地に再懸 濁して37℃、10%CO,で初代培養を行った。5日 後、培養容器を静かに振とうする事により浮遊してくる 細胞を新たな培養容器に播いて数時間培養することによ り接着性細胞を得た。

【0030】以下、図2により説明する。SV40温度 感受性変異株である ts100 (ジャーナル オブ バ イロロジー (J. Virol.) <u>15</u>, 1297-13 01,1975) より抽出精製したDNAを制限酵素E coRIとPvullにより消化した。SV40初期遺 伝子領域を含むDNA断片を、発現ベクターpBR32 2のEcoRI-PvulIサイトに挿入し、pBR3 22 tsTを作製した。pBR322 tsTをグルツマ ン(GIutzman)らの方法(プロシーディングス

オブ ナショナルアカデミー オブ サイエンシーズ 50

オブ ザ ユナイテッド ステイト オブ アメリカ (Proc. Natl. Acad. Sci. USA) 7 7. 3898-3902. 1980) に従い、複製開始 部位欠損変異体 p B R 3 2 2 O D t s T を作製した。 これをEcoRI、Pvullで消化後、Xbalリン カーを結合し閉環させ、SVODtsTを作製した。そ の後、Xbalで消化し、SV40初期遺伝子領域を含 む断片を発現ベクターpUC19に挿入し、pUC. S VODtsTを作製した。次いで、pUC. SVODt s Tを常法により大腸菌を宿主として増幅し、プラスミ ドDNAを調製した。なお、使用した制限酵素は宝酒造

社製のものを用いた。

8

[0031] COPUC. SVODtsT 10μgと カナニ (Cannani) ら (Proc. Natl. A cad. Sci. USA 79, 5166-5170, 1982)により示されている別に調製したpSV2N eo 5μgを混合し、リン酸カルシウム法に基づく遺 伝子導入試薬(セル フェクト トランスフェクション +yh (Cell Phect Transfect ion Kit):ファルマシア社製)を用い、上記の 通り得たミクログリア細胞に添加し、37℃、10%℃ 〇, で培養した。6時間後、培地を交換しさらに48時 間培養した。次にG418 400μg/mlを添加し 培養を継続した。2週間後、G418抵抗性のコロニー が観察されたので単離し、G418 200 µg/ml を含む培地で維持培養した。増殖してきた細胞をトリプ シン処理により剥離して新しい培地に懸濁し、96ウェ ループレートにウェルあたり1個の細胞が入るように播 種した。光学顕微鏡下に1個の細胞のみが入っているウ エルを確認し、培養を継続した。増殖してきたモノクロ 3.0 ーナルな細胞は多数あったが、そのうち3種について、 ガラスカバースリップ上にホルマリン固定し、ミクログ リアのマーカーであるED-1に対する抗体を用いて免 疫染色を施したところ、陽性であった。また、細胞ホモ ジネートを調製し、ドデシル硫酸ナトリウム (SDS) ーポリアクリルアミドゲル電気泳動 (PAGE) を行 い、ニトロセルロース膜上に転写後、抗ラージT抗体を 用いてウェスタンブロット解析を行った。結果を図1に 示す。図1中のAはポジティブコントロールであるco s-7、Bは初代培養ミクログリア、Cはラット脳ミク ログリアセルラインであるRBM129である。RBM 129細胞ホモジネートでは、SDS-PAGE上、ポ ジティブコントロールであるcos-7同様、分子量約 94キロダルトンの位置に単一のバンドが認められ、導 入した遺伝子の産物であるラージT蛋白質の発現が確か められた。また、これらの細胞を30回継代培養しても その増殖能は衰えなかった。これらの細胞をそれぞれ、 ラット脳ミクログリアセルラインRBM103、RBM

【0032】これらのラット脳ミクログリアセルライン

112およびRBM129と命名した。

1.0

R B M 1 0 3、 R B M 1 1 2 および R B M 1 2 9 の細胞生物学的および機能的性質を挙げると、以下の通りとなる。

【0033】 RBM103 (微工研菌寄第12426号)

- a)細胞の形態:直径約55±40μmのほぼ球形
- d)細胞増殖性:通常の細胞培養用培地にて良好に増殖する。世代倍加時間は15±3時間である。
- e) 染色体数:表2の通り

【0034】RBM112(微工研菌寄第12427号)

- a) 細胞の形態:直径約65±50μmのほぼ球形
- d)細胞増殖性:通常の細胞培養用培地にて良好に増殖する。世代倍加時間は16±4時間である。
- e) 染色体数:表2の通り

【0035】RBM129(微工研菌寄第12428号)

- a)細胞の形態:直径約60±50μmのほぼ球形
- d) 細胞増殖性:通常の細胞培養用培地にて良好に増殖する。世代倍加時間は17±3時間である。
- e) 染色体数:表2の通り

【0036】さらに、上記3種のラット脳ミクログリアセルラインは以下に示す通りの共通な性質を有する。

- b)継代培養:無限な継代培養可能
-) c)機能的特徴:神経細胞の生存、成長、神経突起伸展 を促進する新規な因子を産生し、培養上清中に放出す。
 - e) 保有条件:-80℃で凍結保存可能 【0037】

表 2

	1		-			· · · · · · · · · · · · · · · · · · ·
染色体数	RBM103 1)		RBM112 2)		RBM129 3)	
	細胞数	割合(%)	細胞数	割合(%)	細胞数	割合(%)
3 8	0	0	1	1. 7	0	0
4 2	1	1. 5	0	0	0.	0
58	0	0	1	1. 7	0	0
6 1	1.	1. 5	2	3. 4	1	1. 3
6 2	3	4. 5	4	6. 9	0	0
63	. 2	3. 0	. 2	3.4	3	3. 9
64	4	6. 1	1	1. 7	2	2. 6
6 5	6	9. 1	6	10.3	5.	6. 5
66	1 1	16.7	2 1	36. 2	1 0	13.0
6 7	1,9	28.8	2	3.4	13	16.9
6 8	7	10.6	8	13.8	27	35.1
6 9	5	7. 6	5	8.6	10.	13.0
7 0	1	1. 5	1	1. 7	5	6.5
7 2	2	3. 0	2	3. 4	1	1. 3
7 8	0	0	1	1. 7	0	. 0
103	1	1. 5	0-	0	0	0
120	0	0	1	1. 7	0	0
122	1	1. 5	0	0.	0	0
134	1	1. 5	Ö	0	0	0
2 1.6	. 1	1. 5	0	0 -	0	0

1)66ケの細胞を調べたデータ

3) 7 7 ケの細胞を調べたデータ

【0038】 (実施例2) 培養上清の取得 実施例1にて得られたラット脳ミクログリアセルライン RBM103、RBM112およびRBM129を、各 々10%牛胎児血清含有DMEM培地8m1を用いて7 5 cm'の培養用フラスコに播種し、37℃、5%CO で培養した。5日後、この細胞を無血清のDMEM培

2) 5 8 ケの細胞を調べたデータ

地にて数回洗浄した後、無血清の同じ培地でさらに24時間培養し、細胞数約10個とした。次いで細胞成分を遠心分離で除くことにより、本発明の細胞培養上清約8mlを得た。

【0039】 (実施例3) 培養上清の神経栄養効果 吉田らの方法 (ニューロサイエンス レターズ (Neu

1 2

roscienceLetters), 66, 181, 1986)に従い、胎生16~18日齢のラット脳の大脳皮質より神経細胞を単離して、1%牛胎児血清および成長因子などを含むMEM培地に懸濁し、予めポリリジンをコーティングした培養プレートに10°個/m1/ウェルにて、37℃、5%CO,で培養した。24時間後に実施例2で取得した本発明のラット脳ミクログリアセルラインRBM103、RBM112およびRBM129の培養上清を神経細胞の培養液に10あるいは50%(v/v)の割合で加え、5日間培養した後に位相差10類微鏡を用いて神経突起の状態を観察し、生細胞数をMTT法(モスマン(Mosmann T),ジャーナルオブイムノロジカルメソッズ(J. 1mmuno

1. Methods), 65, 55-63, 1983)にて測定した。結果を表3に示す。実験の結果、本発明のラット脳ミクログリアセルライン、RBM129、RBM103、またはRBM112の培養上清は、対照の平均を100として、それぞれ表3に示す生細胞数を示した。同時に検討した既知の種々の成長因子は、各々の作用発現に十分な濃度を添加したにもかかわらず、本発明の培養上清の効果に匹敵する効果を示す因子はなかった。また神経突起の伸展も本発明の培養上清の添加によってのみ促進されていた。従って、本培養上清中に含まれているNTFはこれら既存の成長因子とは異なる、新規な物質であることが示された。

[0040]

表 3

サンプル(用量)	生細胞数	(対照の平均を100とした)
対照		1 0 0 ± 2
RBM129の培養上消(10%	(v/v))	1 9 3 ± 2
(50%	(v/v))	$3\ 3\ 9\ \pm\ 1\ 0$
R B M 1 0 3 の培養上清 (5 0 %	(v/v))	298 ± 9
RBM112の培養上清(50%	(v/v))	$3 \ 1 \ 5 \pm 1 \ 1$
NGF (100ng/ml)		103± 4
EGF (100ng/mi)		$1 \ 0 \ 3 \pm 1$
PDGF (100ng/ml)		$1 \ 0 \ 2 \pm 1$
TGFα (100ng/ml)		103± 2
TGFB (100ng/ml)		9.5 ± 1.4
IGF = I (100ng/ml)		99± 1
bFGF (100ng/m1)	-	109 ± 3
TNF (100ng/ml).		100 ± 6
I F N α (1 0 U / m 1)		120 ± 5
IL-1 (10U/m1)	: .	1 0 8 ± 5
1 L - 6 (1 0 U/m 1)	. , .	1 1 3 ± 1

NGF	神経成長因子	bFGF	塩基性線維芽細胞成長因子
EGF ·	上皮細胞成長因子	TNF	腫瘍壊死因子
PDGF	血小板由来增殖因子	$INF\alpha$	インターフェロンアルファ
T G F a	腫瘍増殖因子アルファ	I L - 1	インターロイキン-1
ΤGFβ	腫瘍増殖因子ベータ	I L - 6	インターロイキンー6
IGF-I	インシュリン様成長因子		

[0041]

【発明の効果】本発明のラット脳ミクログリアセルラインは、無限増殖性を有するため、試験管内で大量に培養することができ、NTFを多量に取得するのに極めて適している。さらにこのラット脳ミクログリアセルラインは、ラット由来であるため、既存のマウス由来ミクログリアセルラインとは異なった、新規のNTFを提供することができる。

【0042】本発明のラット脳ミクログリアセルラインはミクログリアの生理機能を有しているため、ミクログ 50

リアの基礎的機能の研究およびその機能を調節する物質 の探索などに幅広く利用することができる。

【0043】また、本発明のラット脳ミクログリアセルラインは、SV40温度感受性変異株由来の無限増殖化遺伝子を導入しており、培養液の温度を調節することにより増殖性が調節できるため、NTFの産生に適している。

【0044】さらに温度変化により、あるいはリポポリサッカライド、IFN-γなどの刺激剤やレチノイン酸などの分化誘導剤などの各種薬剤によって処理すること

13

により、NTFの産生増大が期待され、また細胞分化の研究資料として用いることもできる。

【0045】本発明の培養上清および/または細胞ホモジネートは、神経細胞の生存、成長を直接促進し、神経細胞の機能を賦活する作用を有するため、神経細胞の機能が虚血により低下している脳血管障害やそれによる後遺症、神経細胞の老化により発症すると考えられているアルツハイマー型老年痴呆など、神経細胞の機能障害を伴う脳疾患の治療に有効に用いることができる。

【0046】NTFの持つ、神経細胞の成長、生存の促進作用は、上記脳疾患の直接的な原因である神経細胞の機能低下そのものを回復させるため、いままでこのような疾患に用いられてきた脳代謝賦活剤や脳循環改善剤などのような対症療法剤と異なり、本質的な治療剤として医療に貢献することができる。

【0047】本発明は、ラットの脳から得られるNTF

を含む培養上清および/または細胞ホモジネートに関するものであるが、同様の物質がヒトの脳にも存在することが容易に想定されるため、そのような物質を遺伝子工学などの手法により取得、同定する研究においても、本発明は有用である。

【0048】本発明の培養上清および/または細胞ホモジネートは非常に重要な生理活性を有するため、必要に応じて医学、理学上の基礎的な研究に使用するための試薬としても有効に利用することができる。

0 【図面の簡単な説明】

【図1】 抗ラージT抗原抗体を用いて、当該セルライン ホモジネートをウエスタンブロット法により染色した結 果を示す図である。

【図2】ミクログリア不死化プラスミドの作製手順を示す図である。

【図1】

分子量 (キロダルトン) A B C

180 -

116 -

84 —

58 -

A:COS-7 (ポジティブコントロール)

B:初代培養ミクログリア

C: RBM129

【図2】

フロントページの続き

(51) lnt. Cl. s	識別記号	庁内整理番号	FΙ	• •	技術表示箇所
(C12N 5/10				-	
C12R 1:91)		·*		*-	
(C12N 15/09 ·					
C12R 1:91)		-	*		-
(C12P 21/02					
C12R 1:91)					•
		7 2 3 6 – 4 B	C12N 5/00	В	
		8 8 2 8 - 4 B	15/00	- A	• .