Projection onto a subspace

We can also project a vector \boldsymbol{b} onto a subspace (for instance, a plane); in this case we are looking for the closest vector to \boldsymbol{b} in the subspace.

It is convenient to write the subspace as the span of the vectors a_1, a_2, \ldots, a_n , and let A denote the matrix with a_i as its *columns*. So the subspace is just col(A).

We define the projection onto the subspace as a vector $\boldsymbol{p}=A\boldsymbol{x}$, such that the distance $\|\boldsymbol{b}-A\boldsymbol{x}\|$ is minimized.

Projection onto a subspace – formula

Since b - Ax is perpendicular to every column of A:

$$A^{T}(\boldsymbol{b} - A\boldsymbol{x}) = \boldsymbol{0} \Rightarrow A^{T}A\boldsymbol{x} = A^{T}\boldsymbol{b}.$$

If A^TA is invertible, then

$$\boldsymbol{p} = A\boldsymbol{x} = \underbrace{A(A^TA)^{-1}A^T}_{\boldsymbol{p}} \boldsymbol{b} = P\boldsymbol{b}.$$

If A has only 1 column, then the projection matrix P simplifies to the expression on Slide 11.

Regression

Regression is a technique used to determine a relationship between independent and dependent variables in data set.

For example, suppose we have independent variables x_1 and x_2 , and dependent variable y. We suspect that there is a relationship of the form $y=c_0+c_1x_1+c_2x_2$, and we wish to find c_i .

Suppose our data consists of the measurements (x_{i1}, x_{i2}, y_i) for i = 1, 2, ..., n. In matrix form, the proposed relationship can be written as the equation

$$\underbrace{\begin{bmatrix} 1 & x_{11} & x_{12} \\ 1 & x_{21} & x_{22} \\ \vdots & \vdots & \vdots \\ 1 & x_{n1} & x_{n2} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} c_0 \\ c_1 \\ c_2 \end{bmatrix}}_{x} = \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}}_{b}$$

Projection

Usually, there is no solution to the equation Ax = b, because

- The proposed relationship may not be exact,
- There are probably measurement errors.

So the best we can do is to find an x such that the distance $\|b - Ax\|$ is minimized. This is precisely the same as projecting b onto the column space of A!

From Cohort 12, we know that $\mathbf{x} = (A^T A)^{-1} A^T \mathbf{b}$.

For different branches of a company, let y= sales revenues in \$millions, $x_1=$ number of sales people, and $x_2=$ sales expenditures in \$millions.

x_1	x_2	y
31	1.85	4.20
46	2.80	7.28
40	2.20	5.60
49	2.85	8.12
38	1.80	5.46
49	2.80	7.42
31	1.85	3.36
38	2.30	5.88
33	1.60	4.62
42	2.15	5.88

We suspect $y = c_0 + c_1x_1 + c_2x_2$. Estimate the values of c_i .

We form

$$A = \begin{bmatrix} 1 & 31 & 1.85 \\ 1 & 46 & 2.80 \\ 1 & 40 & 2.20 \\ 1 & 49 & 2.85 \\ 1 & 38 & 1.80 \\ 1 & 49 & 2.80 \\ 1 & 31 & 1.85 \\ 1 & 38 & 2.30 \\ 1 & 33 & 1.60 \\ 1 & 42 & 2.15 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 4.20 \\ 7.28 \\ 5.60 \\ 8.12 \\ 5.46 \\ 7.42 \\ 3.36 \\ 5.88 \\ 4.62 \\ 5.88 \end{bmatrix},$$

then compute

$$x = (A^T A)^{-1} A^T b \approx \begin{bmatrix} -2.61 \\ 0.192 \\ 0.341 \end{bmatrix}.$$

So $y \approx -2.61 + 0.192x_1 + 0.341x_2$.

General case

More precisely, this technique is called *least square regression*:

- Suspect a relationship $y = c_0 + c_1 x_1 + \cdots + c_m x_m$.
- Store the y (dependent variable) measurements into a column vector, \boldsymbol{b} .
- Let A be an $n \times (m+1)$ matrix. Fill in the first column of A with 1's.
- Store the x_1 measurements, in the correct order, into the second column of A, the x_2 measurements into the third column of A, etc.
- Compute $\boldsymbol{x}=(A^TA)^{-1}A^T\boldsymbol{b}$. Then the components of \boldsymbol{x} are the best approximations to c_0,c_1,\ldots,c_m .

This is exactly what *Excel*'s Add Trendline function does!

Example: data for female life expectancy in the US (y) vs year (x) is shown below:

x	y
1920	54.6
1930	61.6
1940	65.2
1950	71.1
1960	73.1
1970	74.7
1980	77.5
1990	78.8
2000	79.7
2010	81.1

We can try different models:

Model 1:
$$y = c_0 + c_1 x$$
.

Just take $x_1 = x$. See MATLAB, and compare with *Excel*.

Model 2:
$$y = c_0 + c_1 x + c_2 x^2$$
.

Here we take $x_1 = x$, $x_2 = x^2$. See MATLAB.

There are many other possible models. One possibility is $y=\alpha x^{\beta}$, which we can transform into a linear equation by taking the log of both sides:

$$\underbrace{\log(y)}_{'y'} = \underbrace{\log(\alpha)}_{c_0} + \underbrace{\beta}_{c_1} \underbrace{\log(x)}_{x_1}.$$