Föreläsning 15 i ADK

Algoritmkonstruktion: geometriska algoritmer

Stefan Nilsson

KTH

Grundläggande beräkningsgeometri

Det är enkelt att

- Bestämma avstånd mellan två punkter
- Bestämma vinkeln mellan två vektorer
- Avgöra ifall två linjer skär varandra

I tid $\mathcal{O}(n)$ kan man:

• Avgöra ifall en punkt ligger inuti eller utanför en *n*-sidig polygon.

Konvexa höljet

Det konvexa höljet till en punktmängd i \mathbb{R}^2 är den minsta konvexa polygon som omsluter alla punkterna i mängden:

I många problem inom beräkningsgeometrin beräknas konvexa höljen.

Graham-scan

```
function Graham(P[1..n] = \{(x_i, y_i)\})
Gör så att y_1 \leq y_i för i \geq 1
Sortera P[2..n] i växande ordning på polär vinkel mot P[1]
S \leftarrow \text{EmptyStack}()
PUSH(P[1], S)
PUSH(P[2], S)
PUSH(P[3], S)
for i \leftarrow 4 to n do
    while följden NextToTop(S) - Top(S) - P[i] svänger åt höger do
     Pop(S)
    PUSH(P[i], S)
return S
```

Tidskomplexitet:

- Sorteringen tar $\mathcal{O}(n \log n)$ tid
- Varje punkt pushas exakt en gång och poppas högst en gång $\Rightarrow \Theta(n)$
- Totalt O(n log n)