Chapter 9: Gaseous State

Nov 16, 2022

Chemistry Department, Cypress College

Class Announcements

Lab

- Experiment 18 Boyle's Law
- Submit the lab reports and homework assignments
- Reminder Need 70% of laborator points to pass the course

Lecture

- Finish up Ch 8 and begin Ch 9
- Go over homework 11 (EC for students who present)
- Quiz and Homework assignment released Fri, Nov 18th at 3pm

Outline

Defining Gas Pressure

Gas Laws: Relationship P, V, and T

Smokey the Bear: Hot Air Balloon

Q: How do air balloons float in the air?

Defining Pressure

$$P = \frac{F}{A} \tag{1}$$

where P is the pressure (N/m^2) , F is the force (Newton or N) acting on the area, and A is the surface area (m^2)

Common Units: Psi, Torr, Pa, atm, mm Hg, and lb/in²

Measuring Pressure

Common Pressure Units Conversion

Common Units: Psi, Torr, atm, mm Hg, and lb/in²

1atm = 760mm Hg

1atm = 101, 325Pa

 $1atm = 14.7lb/in^2$

Practice: Unit Conversion

Convert the following units:

- a) 845 Torr to atm
- b) 1.73 atm to Pa
- c) 32.1 lb/in^2 to atm

Outline

Defining Gas Pressure

Gas Laws: Relationship P, V, and T

Defn: Standard Temperature and Pressure

Standard Temperature and Pressure (STP): the gas is at a given 0° C, 1 atm, and 22.414 L/mol

Boyle's Law

For a given mole of gas, the pressure and volume are inversely proportional.

$$PV = constant$$
 (2)

$$P_1 V_1 = P_2 V_2 \tag{3}$$

Boyle's Law

Graphing Boyle's Law

Practice: Boyle's Law

A balloon contains 510mL of helium when filled at 1.00atm. What would be the volume of the balloon if it were subjected to 2.50 atm of pressure?

Charles' Law

For a given mole of gas, the volume and temperature are directly proportional

$$\frac{V}{T} = \text{constant}$$
 (4)

$$\frac{V}{T} = \text{constant}$$

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
(5)

Charles' Law

Graphing Charles' Law

Practice: Charles' Law

If a sample of chlorine gas occupies 50.0mL at $100.0^{\circ}C$, what is its volume at $25.0^{\circ}C$ at constant pressure?

Gay-Lussac's Law of Combining Volumes

In a reaction, the volume ratio of gas matches the mole ratio of the chemical equation

$$2~H_2(g)+O_2(g)\rightarrow 2~H_2O(g)$$

Avogadro's Hypothesis

At constant temperature and pressure, the volume and moles of gas are directly proportional

$$\frac{V}{n} = \text{constant} \tag{6}$$

$$\frac{V_1}{N} = \frac{V_2}{N} \tag{7}$$

$$\frac{V_1}{n_1} = \frac{V_2}{n_2} \tag{7}$$

Practice: Volume and Moles of Gas

If a 10.0L balloon contains 0.80 mol of a gas, what wil be the volume of a balloon that contains 0.20 mol of the gas if temperature and pressure remain constant?