ACH2002 – Introdução à Ciência da Computação 2 – Tarefa 1/2011 Prof. Fábio Nakano.

Introdução:

Um colega seu pegou esta prova do ano passado, resolveu (com tempo cronometrado) e pediu para você corrigir.

Objetivos:

corrigir, comentar os erros, atribuir nota e propor uma solução correta.

Observações:

Tarefa individual;

Seia rigoroso:

Faça todos os comentários que julgar necessários.

Entrega: 14.10.2011 no início da aula.

Formatos permitidos:

Papel (se manuscrito);

CoL (se totalmente eletrônico)

1-) **(1,5pt)** Escreva o código recursivo que calcula a raiz quadrada de n. Ele deve implementar a sequência

$$x_{i+1} = \frac{1}{2}(x_i + \frac{n}{x_i})$$
 e calcular novos termos enquanto $\varepsilon = |x_{i+1} - x_i| > EPS$.

Sugestão: o método recebe X_i como parâmetro, calcula X_{i+1} e ε e age de acordo com o necessário. (Apenas números positivos serão passados ao método).

```
import java.lang.Math.*;
class Raiz {
       public static final double EPS=1e-10;
       public static double raizrec (double x0, double n) {
               // este é o método:
               double proxx= 0.5*(x+(n/x));
               double raiz:
               while (Math.abs(proxx-x)<EPS) {</pre>
```

```
raiz= raizrec (proxx, n);
       return raiz:
public static double raiz (double n) {
       return raizrec (1, n);
public static void main (String[] args) {
       System.out.println (raiz (1.44));
```

}

}

2-) Dado o código abaixo, obtenha a recorrência que descreve sua complexidade de tempo (1pt) e explique a que corresponde cada um de seus termos (1pt). Note que o algoritmo é de ordenação por inserção!!

```
class InsertionSort {
        int[] Array;
        void ordena (int IElemento) { // o fim é o final do array mm.
                System.out.println (IElemento);
                if (IElemento<(Array.length-1)) {</pre>
                         ordena (IElemento+1);
                         insere (IElemento);
        /** Insere o elemento de índice IElemento na posicao "certa"
            do array ordenado. */
        void insere (int IElemento) {
                int Elemento=Array[IElemento];
                int i=IElemento;
                while ((i<(Array.length-1))&&(Elemento>Array[i+1])) {
                         Array[i-1]=Array[i];
                Array[i]=Elemento;
        /** Métodos auxiliares fornecidos por completude. */
        InsertionSort (int[] Arr) {
                 for (int i=0;i<Array.length;i++)</pre>
                         System.out.print (Array[i] + " ");
                System.out.println ();
        public static void main (String[] args) {
                int[] Arr={98, 56, 33, -4, -98, 100, 7};
                InsertionSort IS=new InsertionSort (Arr);
                IS.ordena(0):
                IS.imprime();
```

T(n)=(n-1)*(n) pois insere tem um loop que percorre o array

inteiro e ordena se chama n vezes.

3-) Dada a recorrência
$$T(n) = \begin{cases} k \operatorname{para} n = 1 \\ 2*T(\frac{n}{3}) + k \operatorname{para} n > 1 \end{cases}$$
, **prove por indução** $a = 2, b = 3, f(n) = 20*n + 5$

que a fórmula fechada que a descreve é $T(n)=(2^{\log_3(n)+1}-1)k$. (base 0) 0, 0, 0, 0, 00

0,3pt, passo 1,2pt)

Obs.: a=2, b=3, f(n)=k
base n=1
$$T(1)=(2^{\log(1)+1}-1)*k$$

 $T(1)=(2^1-1)*k=1$

paso n+1

$$T(n+1) = (2^{\log(n+1)+1} - 1) * k = (2^{\log(n)+1+1} - 1) * k$$

 $(2*2^{\log(n+1)} - 1) * k = (2^{\log(2*n)+1} - 1) * k$ cqd.

4-) Dadas f(n) e g(n) abaixo, demonstre que $f(n) \in O(g(n))$. No ítem b, use o conceito de dominância – não use a definição usando limites.

a-) **(1,0pt)**
$$f(n)=n*(\log(n)+sen(n)); g(n)=n^2$$
 outro a fim de cumprir seu objetivo **(1pt)**. Você described in $(n*(\log(n)+sen(n)))=\lim_{x\to\infty}(\frac{n*(\log(n)+sen(n))}{n^2})=\lim_{x\to\infty}(\frac{n*(k*1/n+\cos(n))+(\log(n)+sen(n))}{2*n})=(O(n^2))$. **Demonstre** qual dos dois é melhor **(0,5pt)**.

b-) (1,0pt) $f(n)=500*n^2+10000$; $g(n)=2^n$ use dominância!!

 $500*n^2+10000 \le c*2^n$ para algum valor de c e n0. Sabemos que uma função polinomial sempre cresce mais do que uma quadrática e portanto a desigualdade acima é obviamente verdadeira.

5-) (1,5pt) A recorrência
$$T(n) = \begin{cases} k \ para \ n = 1 \\ 2*T(\frac{n}{3}) + 20*n + 5 \ para \ n > 1 \end{cases}$$
 descreve a

complexidade de tempo de um algoritmo. Use o teorema mestre para demonstrar a que classe de complexidade o algoritmo pertence.

$$a=2, b=3, f(n)=20*n+5$$

Caso 2: ?
$$20*n+5\in\Theta(n^{\log_3 2})$$
 ? Não
Caso 1:? $20*n+5\in O(n^{\log_3 2-\epsilon})$? Não
Caso 3:? $20*n+5\in\Omega(n^{\log_3 2+\epsilon})$? Não pois para $\epsilon=1$

20*n+5=n e $n < n^{\log_3 2+1}$, ou seja, f(n) não é ômega-grande.

Portanto a complexidade de tempo deve ser exponencial pois não se enquadra em nenhum caso do Teorema Mestre.

6-) (1.5pt) A sequência de operações nas questões 1 a 5 apresentam uma forma de criar e analisar algoritmos. Explique como cada passo se conecta ao outro a fim de cumprir seu objetivo (1pt). Você deseja resolver um problema e tem dois algoritmos para isso. Um com complexidade O(log(n)) e outro

As recorrências são extraídas a partir de algoritmos de divisão e conquista a fim de obter a complexidade de tempo, que comparamos a fim de saber qual algoritmo é melhor. Em ordem crescente de classe de complexidade temos:

 $O(c) \in O(\log(n)) \in O(n) \in O(n * \log(n)) \in O(n^c) \in O(2^n)$ considerando a relação acima, o algoritmo com complexidade de tempo O(log(n)) é melhor que o com complexidade $O(n^2)$.