Stability Control Theory, Lecture 2

by Sergei Savin

Spring 2025

CONTENT

- Critical point (node)
- Stability
- Asymptotic stability
- Stability vs Asymptotic stability
- LTI and autonomous LTI
- Stability of autonomous LTI
- Read more

CRITICAL POINT (NODE)

Consider the following ODE:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t) \tag{1}$$

Let \mathbf{x}_0 be such a state that:

$$\mathbf{f}(\mathbf{x}_0, t) = 0 \tag{2}$$

Then such state \mathbf{x}_0 is called a *node* or a *critical point*.

STABILITY

Node \mathbf{x}_0 is called *stable* iff for any constant δ there exists constant ε such that:

$$||\mathbf{x}(0) - \mathbf{x}_0|| < \delta \longrightarrow ||\mathbf{x}(t) - \mathbf{x}_0|| < \varepsilon$$
 (3)

Think of it as "for any initial point that lies at most δ away from \mathbf{x}_0 , the rest of the trajectory $\mathbf{x}(t)$ will be at most ε away from \mathbf{x}_0 ".

Equivalently we can say "the solutions starting from δ -sized ball do not diverge".

Asymptotic stability

Node \mathbf{x}_0 is called *asymptotically stable* iff for any constant δ it is true that:

$$||\mathbf{x}(0) - \mathbf{x}_0|| < \delta \longrightarrow \lim_{t \to \infty} \mathbf{x}(t) = \mathbf{x}_0$$
 (4)

Think of it as "for any initial point that lies at most δ away from \mathbf{x}_0 , the trajectory $\mathbf{x}(t)$ will asymptotically approach the point \mathbf{x}_0 ".

Equivalently we can say "the solutions starting from δ -sized ball converge to the node".

STABILITY VS ASYMPTOTIC STABILITY

Example

Consider dynamical system $\dot{x} = 0$, and solution x = 7. This solution is stable, but not asymptotically stable (a solution corresponding to $x(0) = 7 + \delta$ does not diverge, but does not converge to x = 7 either).

Example

Consider dynamical system $\dot{x} = -x$, and solution x = 0. This solution is stable and asymptotically stable (all solutions converge to x = 0).

Example

Consider dynamical system $\dot{x} = x$, and solution x = 0. This solution is unstable (all other solutions diverge from x = 0).

LINEAR SYSTEMS

Consider the following linear ODE:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} \tag{5}$$

This is called a *linear time-invariant system (LTI)*, indicating that **A** and **B** are constant.

Removing the input we find an even simpler equation:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{6}$$

This LTI is an *autonomous system*, since its evolution depends only on the state of the system.

Real eigenvalues

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{D}\mathbf{x} \tag{7}$$

where $\mathbf{D} = \operatorname{diag}(d_1, ..., d_n)$ is a diagonal matrix. This is the same as a system of independent equations:

$$\begin{cases} \dot{x}_1 = d_1 x_1 \\ \dots \\ \dot{x}_n = d_n x_n \end{cases}$$
 (8)

Each of these equations has an exact solution $x_i = C_i e^{d_i t}$. It diverges from 0 if $d_i > 0$, it does not diverge if $d_i \le 0$ and it converges to 0 if $d_i < 0$.

Real eigenvalues

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{9}$$

where **A** can be decomposed via eigen-decomposition as $\mathbf{A} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}$, where **D** is a diagonal matrix.

$$\dot{\mathbf{x}} = \mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{x} \tag{10}$$

Multiplying it by \mathbf{V}^{-1} we get: $\mathbf{V}^{-1}\dot{\mathbf{x}} = \mathbf{V}^{-1}\mathbf{V}\mathbf{D}\mathbf{V}^{-1}\mathbf{x}$. Defining $\mathbf{z} = \mathbf{V}^{-1}\mathbf{x}$ we transform the equation: $\dot{\mathbf{z}} = \mathbf{D}\mathbf{z}$.

Since elements of \mathbf{D} are real, we can clearly see, that iff they are all negative will the system be asymptotically stable. If they are non-positive, the system is stable. And those elements are eigenvalues of \mathbf{A} .

UPPER TRIANGULAR MATRICES

Eigenvalues of upper triangular matrices

Eigenvalues of upper triangular matrices are the diagonal elements of these matrices.

Examples of upper triangular matrices are:

$$\begin{bmatrix} 1 & 5 & -2 \\ 0 & 3 & 1 \\ 0 & 0 & -2 \end{bmatrix}, \begin{bmatrix} -2 & 0 & 8 \\ 0 & -2 & 8 \\ 0 & 0 & 7 \end{bmatrix}, \begin{bmatrix} 4 & 1 \\ 0 & 3 \end{bmatrix}$$
(11)

UPPER TRIANGULAR MATRICES

Consider autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{M}\mathbf{x} \tag{12}$$

where **M** is an upper triangular matrices with negative eigenvalues $m_{1,1}, \ldots m_{n,n}$.

The last equation is $\dot{x}_n = m_{n,n} x_n$, and since $m_{n,n} < 0$ we can observe that $\lim_{t \to \infty} x_n(t) = 0$.

The equation # n-1 is $\dot{x}_{n-1} = m_{n-1,n-1}x_{n-1} + m_{n-1,n}x_n$, and since $m_{n-1,n-1} < 0$ and $\lim_{t \to \infty} x_n(t) = 0$ we can observe that $\lim_{t \to \infty} x_{n-1}(t) = 0$.

This can be repeated for all equations, proving asymptotic stability for the system.

Complex eigenvalues, 2-dimensional case (1)

Let us consider the following system:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{13}$$

The eigenvalues of the system are $\alpha \pm i\beta$. We denote $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{x}$.

We start by claiming that the system will be stable iff the $\dot{\mathbf{x}}^{\top}\mathbf{x} < 0$. Indeed, vector $\dot{\mathbf{x}}$ can always be decomposed into two components, $\dot{\mathbf{x}}_{||}$ parallel to \mathbf{x} , and $\dot{\mathbf{x}}_{\perp}$ perpendicular to \mathbf{x} . By definition $\dot{\mathbf{x}}_{\perp}^{\top}\mathbf{x} = 0$, and is responsible for the change in orientation of \mathbf{x} . The value of $\dot{\mathbf{x}}_{||}$ is responsible for the change in the length of \mathbf{x} ; the length would shrink iff $\dot{\mathbf{x}}_{||}$ is of opposite direction to \mathbf{x} , giving negative value of the dot product $\dot{\mathbf{x}}^{\top}\mathbf{x}$.

Complex eigenvalues, 2-dimensional case (2)

Let us compute $\dot{\mathbf{x}}^{\top}\mathbf{x}$:

$$\dot{\mathbf{x}}^{\top}\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (14)

$$\dot{\mathbf{x}}^{\top}\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} \alpha x_1 - \beta x_2 \\ \beta x_1 + \alpha x_2 \end{bmatrix}$$
 (15)

$$\dot{\mathbf{x}}^{\mathsf{T}}\mathbf{x} = \alpha(x_1^2 + x_2^2) \tag{16}$$

The product $\dot{\mathbf{x}}^{\top}\mathbf{x} < 0$ is negative iff $\alpha < 0$.

Definition

As long as the real parts of the eigenvalues of the system are strictly negative, the system is asymptotically stable. If the real parts of the eigenvalues of the system are zero, the system is marginally stable.

Complex eigenvalues, 2-dimensional case (3)

Vector field of
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} \alpha & -\beta \\ \beta & \alpha \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 is shown below:

General case (1)

Given $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, where \mathbf{A} can be decomposed via eigen-decomposition as $\mathbf{A} = \mathbf{U}\mathbf{C}\mathbf{U}^{-1}$, where \mathbf{C} is a complex-valued diagonal matrix and \mathbf{U} is a complex-valued inevitable matrix.

$$\dot{\mathbf{x}} = \mathbf{U}\mathbf{C}\mathbf{U}^{-1}\mathbf{x} \tag{17}$$

We multiply both sides by U^{-1} , then define $z = U^{-1}x$ to arrive at:

$$\dot{\mathbf{z}} = \mathbf{C}\mathbf{z} \tag{18}$$

which falls into a set of independent equations, with complex coefficients c_j :

$$\dot{z}_j = c_j z_j \tag{19}$$

General case (2)

Expanding $c_j = \alpha + i\beta$, and $z_j = u + iv$ (we dismiss subscripts for clarity), we find that $\dot{z}_j = c_j z_j$ can be expanded as:

$$\dot{u} + i\dot{v} = \dot{z}_j = c_j z_j = (\alpha + i\beta)(u + iv) \tag{20}$$

$$\dot{u} + i\dot{v} = \alpha u + i\beta u + i\alpha v - \beta v \tag{21}$$

As we can see, $\dot{z}_j = c_j z_j$ is asymptotically stable iff $\operatorname{Re}(c_j) < 0$, and marginally stable if $\alpha = \operatorname{Re}(c_j) = 0$. Same is true for $\dot{\mathbf{z}} = \mathbf{C}\mathbf{z}$ and hence, for $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$, as \mathbf{U} is invertible.

Consider an autonomous LTI:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} \tag{23}$$

Definition

Eq. (23) is stable iff real parts of eigenvalues of **A** are non-positive.

Definition

Eq. (23) is asymptotically stable iff real parts of eigenvalues of **A** are negative.

Illustration

Here is an illustration of *phase portraits* of two-dimensional LTIs with different types of stability:

Figure 1: phase portraits for different types of stability

Credit: staff.uz.zgora.pl/wpaszke/materialy/spc/Lec13.pdf

READ/WATCH MORE

- Control Systems Design, by Julio H. Braslavsky staff.uz.zgora.pl/wpaszke/materialy/spc/Lec13.pdf
- Stability and Eigenvalues, Steve Brunton youtu.be/h7nJ6ZL4Lf0
- MAE509 (LMIs in Control): Lecture 4, part A Stability and Eigenvalues youtu.be/8zYOJbpiT38

Lecture slides are available via Github:

github.com/SergeiSa/Control-Theory-2025

