Laboratório 6

SENSORES E ATUADORES

REALIZADO POR:

RODRIGO COELHO (A50251) TATIANA DAMAYA (A50299)

ESTRUTURA

1. MEDIDOR DE DISTÂNCIAS (SONAR)

Protótipo: void distance(int pinTrig, int pinEcho, int rate=10)

2. IMPRESSORA PARA CONSOLA (SÓ VALORES NUMÉRICOS, FORMATO CSV, UM VALOR POR COLUNA):

Protótipo: void printCSV(int rate=2, float val1, float val2, ...,)

3. RECETOR NUMEROS INTEIROS (PORTA SERIAL)

Protótipo: void receiveInt()

4. TOCAR MELODIA (PIEZO)

Protótipo: void melodia(int duration, int nota1, int nota2, ...);

5. DETETOR TOQUE (BOTÃO)

Protótipo: void toque(int pinBotao)

6. CONTADOR (BOTÃO)

Protótipo: void contador(int pin)

7. GERADOR SINAIS (ONDA SINUSOIDAL (S), OU TRIANGULAR (T), OU QUADRADA(Q))

Protótipo: void gerador(int rate, int período, char tipoOnda)

1. Medidor de distâncias (sonar)

PROTÓTIPO: VOID DISTANCE(INT PINTRIG, INT PINECHO, INT RATE=10)

```
void distance(int pinTrig, int pinEcho, int rate) {
 // Periodo de 1 segundo em micros por o rate desejado
 unsigned int T = 1000000/rate;
 static unsigned long t0 = micros();
 static const int TRIGSTART = 0, TRIGSTOP = 1, ECHOSTART = 2, ECHOSTOP = 3;
 static int state = TRIGSTART;
 switch(state){
   // Lançar o sinal do trigger
    case TRIGSTART:
     digitalWrite(pinTrig, HIGH);
     t0 = micros();
     state = TRIGSTOP;
   break;
    // Parar o sinal do trigger
    case TRIGSTOP:
     if(micros() - t0 > T) {
       digitalWrite(pinTrig, LOW);
       state = ECHOSTART;
    break;
    // Ligar o canal echo
    case ECHOSTART:
     if(digitalRead(pinEcho) == HIGH) {
       t0 = micros();
       state = ECHOSTOP;
   break;
   // Receber o valor do sinal lançado do trigger
    case ECHOSTOP:
     if(digitalRead(pinEcho) == LOW) {
       int d = (micros() - t0)/58.0;
       Serial.println(d);
       state = TRIGSTART;
   break;
                                                             LABORATÓRIO 6
```

2. Impressora para consola (só valores numéricos, formato CSV, um valor por coluna):

2. IMPRESSORA PARA CONSOLA (SÓ VALORES NUMÉRICOS, FORMATO CSV, UM VALOR POR COLUNA):

```
void printCSV(int rate, float val1, float val2) {
 unsigned int T = 1000 / rate;
 static unsigned long t0 = millis();
 static const int WAIT = 0, SEND = 1;
 static int state = WAIT;
 switch (state) {
   // Espera pelo os valores pedidos
   case WAIT:
     if(millis() - t0 > T) {
       state = SEND;
       t0 = millis();
   break;
   // Introduz na consola os valores pedidos
   case SEND:
     Serial.println((String)val1 + "\t" + (String)val2);
     state = WAIT;
   break;
```

04 LABORATÓRIO 6

3. Recetor numeros inteiros (porta serial)

PROTÓTIPO: VOID RECEIVEINT()

```
static int val = 0;
void receiveInt() {
  static const int WAIT = 0, READ = 1;
 static int state = WAIT;
 switch (state) {
  //ESPERAR PELO INPUT NA CONSOLA
 case WAIT:
   if(Serial.available() > 0) {
     state = READ;
 break;
 //ATRIBUIR VALOR DA CONSOLA
 case READ:
 val = Serial.parseInt();
 Serial.println("Escolheu a " + (String)val + "a oitava.");
  state = WAIT;
 break;
```

4. Tocar melodia (piezo)

PROTÓTIPO: VOID MELODIA(INT DURATION, INT NOTA1, INT NOTA2, ...);

```
void melodia(int duration, int nota1, int nota2) {
   unsigned int T = duration;
   static unsigned long t0 = millis();
   static const int NOTA1 = 0, NOTA2 = 1;
   static int state = NOTA1;
   switch (state) {
     // Iniciar o som da nota1
     case NOTA1:
       tone(PIEZO, nota1);
       if(millis() - t0 > T) {
        // Parar o som da nota1
         noTone(PIEZO);
         state = NOTA2;
         t0 = millis();
     break;
     // Iniciar o som da nota2
     case NOTA2:
       tone(PIEZO, nota2);
       if(millis() - t0 > T) {
         // Parar o som da nota2
         noTone(PIEZO);
         state = NOTA1;
         to = millis();
     break;
                                         LABORATÓRIO 6
```

5. Detetor toque (botão)

PROTÓTIPO: VOID TOQUE(INT PINBOTAO)

```
void toque(int pinBotao) {
  int buttonPressed = 0;
  static const int START = 0, STOP = 1;
  static int state = START;
  switch (state) {
    case START:
    buttonPressed = digitalRead(pinBotao);
      if(buttonPressed == LOW) {
        state = STOP;
        Serial.println("STOP");
    break;
    case STOP:
    buttonPressed = digitalRead(pinBotao);
    if(buttonPressed == HIGH) {
      state = START;
      Serial.println("START");
    break;
```

07 LABORATÓRIO 6

6. Contador (botão)

PROTÓTIPO: VOID
CONTADOR(INT PIN

```
// Para que a contagem não seja afetada pela chamada da função
int count = 0;
void contador(int pin) {
    static const int UP = 0, DOWN = 1;
    static int state = UP;
    switch (state) {
    // Quando o botão não é premido
   case UP:
     Serial.println("UP");
     if(digitalRead(pin) == 1) {
       state = DOWN;
     break;
   // Quando o botão é premido
    case DOWN:
     if(digitalRead(pin) == 0) {
       state = UP;
     // Incrementa o valor pelo o tempo que é premido
     count++;
     Serial.println(count);
     break;
                                                    LABORATÓRIO 6
```

7. Gerador sinais (onda sinusoidal (s), ou triangular (t), ou quadrada(q))

PROTÓTIPO: VOID GERADOR(INT RATE, INT PERÍODO, CHAR TIPOONDA)

```
void gerador(int rate, int periodo, char tipo0nda) {
                                           // Opção Sinusoidal
 unsigned int T = 1000 / rate;
 static unsigned long t1 = millis(), t0 = 0 case s:
                                             Serial.println(1.0 * sin(2.0*3.14*millis()));
 static int state;
 static const int q = 0, s = 1, t = 2;
                                           break;
 //ESCOLHER OPÇÃO DO TIPO DE ONDA
                                           // Opção triangular
 if (tipoOnda == 'q') {
                                           case t:
   state = q;
                                             const int ASC = 0, DESC = 1;
 } else if (tipoOnda == 's') {
                                             static int state = ASC;
   state = s;
                                             switch (state) {
 } else if (tipoOnda == 't'){
                                               // Para quando a função está a ascender
   state = t;
                                               case ASC:
                                                 t1 = millis();
 switch (state) {
                                                 amp = (2*(10.0/T)) * (t1-t0);
 // Opção quadrada
                                                 Serial.println(amp);
 case q:
                                                 if(t1 - t0 >= T/2) {
   static const int UPPER = 0, DOWN = 1;
                                                   t0 = t1;
   static int bound = UPPER;
                                                   state = DESC;
   switch (bound) {
   case UPPER:
                                               break;
     Serial.println(10);
                                               // Para quando a função está a descender
     if(t1 - t0 >= T/2) {
                                               case DESC:
         t0 = t1;
                                                 t1 = millis();
         state = DOWN;
                                                 amp = (-2*(10.0/T)) * (t1-t0) + 10;
                                                 Serial.println(amp);
     break;
   case DOWN:
                                                 if(t1 - t0 >= T/2) {
     Serial.println(0);
                                                   t0 = t1;
     if(t1 - t0 >= T) {
                                                   state = ASC;
         t0 = t1;
         state = UPPER;
                                               break;
     break;
                                                                         LABORATÓRIO 6
                                           break:
```


PROJETO ESCOLHIDO

Fazer um piano, através do Arduino, com a opção da escolha de oitava pretendida, pelo utilizador.

Output Serial Monitor ×

Message (Enter to send message to 'Arduino Uno' on '/dev/cu.usbmodem14201')

Escolha a sua oitava:
Escolheu a 5ª oitava.

Dó
Ré
Mi
Ré
Dó

PROJETO ESCOLHIDO

Oitavas e Notas

Cada nota musical não tem apenas uma freqüência, mas um conjunto de freqüências derivado do timbre de cada instrumento. Porém há uma freqüência associada à nota, a freqüência fundamental (ou básica) é o som mais grave de todas componentes de uma nota.

Freqüências fundamentais das notas musicais (Hz)

(112)							
Oitava	Dó	Ré	Mi	Fá	Sol	Lá	Si
Zero	16 ,351	18 ,354	20 ,601	21 ,827	24, 499	27 ,500	30, 362
Um	32 ,703	36 ,708	41 ,203	43 ,654	48, 999	55 ,000	60 ,725
Dois	65 ,406	73 ,416	82, 407	87 ,307	97 ,999	110 ,00	121 ,45
Três	130 ,81	146 ,83	164 ,81	174 ,61	196 ,00	220 ,00	242 ,90
Quatro	261 ,63	293 ,66	329 ,63	349 ,23	391 ,99	440 ,00	485 ,80
Cinco	523 ,25	587 ,33	659 ,26	698 ,46	783 ,99	880 ,00	971 ,60
Seis	1046 ,5	1174 ,7	1318 ,5	1396 ,9	1568 ,0	1760,0	1943 ,2
Sete	2093 ,0	2349 ,3	2637 ,0	2793 ,8	3136 ,0	3520 ,0	3886,4
Oito	4186 ,0	4698 ,6	5274 ,0	5587 ,7	6271 ,9	7040,0	7772, 8
Nove	8372,0	9397 ,3	10548,0	11175 ,0	12544 ,0	14080,0	15546 ,0

PROJETO ESCOLHIDO

ESTRUTURA

1. RECETOR NUMEROS INTEIROS (PORTA SERIAL)

Protótipo: void receiveInt()

2. DETETOR TOQUE (BOTÃO)

Protótipo: void toque(int pinBotao)

3. PIANO

Protótipo: void piano()

1. Recetor numeros inteiros (porta serial)

PROTÓTIPO: VOID RECEIVEINT()

```
int val = 0;
void receiveInt() {
  static const int WAIT = 0, READ = 1;
  static int state = WAIT;
  switch (state) {
  // Enquanto espera por um valor da consola
  case WAIT:
    if (Serial.available() > 0) {
      state = READ;
    break;
  // Ler o valor da consola
  case READ:
    val = Serial.parseInt();
    Serial.println(val);
    state = WAIT;
    break;
```

2. Detetor toque (botão)

PROTÓTIPO: VOID TOQUE N (INT PINBOTAO)

```
void toque1(int pinBotao, int nota) {
  int buttonPressed = 0;
  static const int WAIT = 0, PLAY = 1;
  static int state = WAIT;
  switch (state) {
   case WAIT:
   buttonPressed = digitalRead(pinBotao);
      if(buttonPressed == LOW) {
        state = PLAY;
   break;
   case PLAY:
   buttonPressed = digitalRead(pinBotao);
   tone(PIEZO, nota);
   if(buttonPressed == HIGH) {
     Serial.println("Dó");
     state = WAIT;
     noTone(PIEZO);
   break;
                                        LABORATÓRIO 6
```

3. piano()

PIANC

```
// Circuito combinado
receiveInt();
switch (val) {
  case 1:
    toque1(BTN1, 32);
    toque2(BTN2, 36);
    toque3(BTN3, 41);
    toque4(BTN4, 43);
    toque5(BTN5, 48);
    toque6(BTN6, 55);
    toque7(BTN7, 60);
  break:
  case 2:
    toque1(BTN1, 65);
    toque2(BTN2, 73);
    toque3(BTN3, 82);
   toque4(BTN4, 87);
    toque5(BTN5, 97);
    toque6(BTN6, 110);
    toque7(BTN7, 121);
  break;
```

```
case 3:
  toque1(BTN1, 130);
  toque2(BTN2, 146);
  toque3(BTN3, 164);
  toque4(BTN4, 174);
  toque5(BTN5, 196);
  toque6(BTN6, 220);
  toque7(BTN7, 242);
break;
case 4:
  toque1(BTN1, 261);
  toque2(BTN2, 293);
  toque3(BTN3, 329);
  toque4(BTN4, 349);
  toque5(BTN5, 391);
  toque6(BTN6, 440);
  toque7(BTN7, 485);
break;
```

```
case 5:
  toque1(BTN1, 523);
  toque2(BTN2, 587);
  toque3(BTN3, 659);
  toque4(BTN4, 698);
  toque5(BTN5, 783);
  toque6(BTN6, 880);
  toque7(BTN7, 971);
break;
case 6:
  toque1(BTN1, 1046);
  toque2(BTN2, 1174);
  toque3(BTN3, 1318);
  toque4(BTN4, 1396);
  toque5(BTN5, 1568);
  toque6(BTN6, 1760);
  toque7(BTN7, 1943);
break;
```

```
case 7:
  toque1(BTN1, 2093);
  toque2(BTN2, 2349);
  toque3(BTN3, 2637);
  toque4(BTN4, 2793);
  toque5(BTN5, 3136);
  toque6(BTN6, 3520);
  toque7(BTN7, 3886);
break:
case 8:
  toque1(BTN1, 4186);
  toque2(BTN2, 4698);
  toque3(BTN3, 5274);
  toque4(BTN4, 5587);
  toque5(BTN5, 6271);
  toque6(BTN6, 7040);
  toque7(BTN7, 7772);
break;
case 9:
  toque1(BTN1, 8372);
  toque2(BTN2, 9397);
  toque3(BTN3, 10548);
  toque4(BTN4, 11175);
  toque5(BTN5, 12544);
  toque6(BTN6, 14080);
  toque7(BTN7, 15546);
break;
```