ეკვივარიანტული არაკომუტაციური სივრცეების უნივერსალური ჰომოლოგიური ინვარიანტი

გიორგი ნადარეიშვილი

თსუ ანდრია რაზმაძის სახელობის მათემატიკის ინსტიტუტის კონფერენცია, მიძღვნილი გიორგი მანჯავიძის 100 და ნოდარ ბერიკაშვილის 95 წლისთავისადმი

თბილისი, 19-23 თებერვალი, 2024

C^* -ალგებრები

 \mathcal{C}^* -ალგებრა არის ბანახის ალგებრა \mathbb{C} -ზე, სადაც მოცემულია ასახვა $x\mapsto x^*$, ისე რომ

- $1. \ x \mapsto x^*$ არის ალგებრის სტრუქტურის შემნაზველი ინვოლუცია (შეუღლება);
- 2. $||xx^*|| = ||x||^2$.

რამოდენიმე მაგალითი

- $ightharpoonup C(X,\mathbb{C})$, უწყვეტი ფუნქციები X კომპაქტურ ჰაუსდორფის სივრცეზე;
- $ightharpoonup C_0(X,\mathbb{C})$ ლოკალურად კომპაქტური X-ისთვის;
- $ightharpoonup B(\mathcal{H})$, შემოსაზღვრული წრფივი ოპერატორები \mathcal{H} კომპლექსურ ჰილბერტის სივრცეზე;
 - ightharpoonup $B(\mathcal{H})$ -ს ქვე- C^* -ალგებრა, მატრიცების ალგებრა $M_n(\mathbb{C})$;
- ფონ ნოიმანის ალგებრები, ჯგუფის/ჯგუფოიდის C^* -ალგებრა, გრაფების C^* -ალგებრები...

არაკომუტაციური ტოპოლოგია

$$\mathfrak{LCHau}^{\mathrm{op}} \xrightarrow[]{\simeq} \mathfrak{ComC}^* \text{-alg}$$

► ლოკალურად კომპაქტური ჰაუსდორფის სივრცეების კატეგორია კომუტაციური *C**-ალგებრების კატეგორიის ეკვივალენტურია (დუალურად).

ტოპოლოგია, $C_0(X)$ ალგებრა, C^* -ალგებრა A proper ასახვა, ჰომეომორფიზმი ზომა, კომპაქტური ღია სიმრავლე ჩაკეტილი სიმრავლე ბმულობა, 2-ად თვლადი ტოპოლოგიური K-თეორია ალგებრა, C^* -ალგებრა A მორფიზმი, იზომორფიზმი დადებითი ფუნქციონალი, ერთეულოვანი იდეალი, ფაქტორ-ალგებრა უპროექციო, სეპარაბელური ოპერატორთა K-თეორია

• ლოკალურად კომპაქტური ჰაუსდორფის X სივრცის ნებისმიერი თვისება, შესაძლებელია ფუნქციათა ალგებრა $C_0(X)$ -ის ენაზე გადაითარგმნოს; ზშირად ეს თვისება ნებისმიერ არაკომუტაციურ C^* -ალგებრისთვისაც ზოგადდება.

KK-თეორია

- როგორც ტოპოლოგიურ სივრცეებს, C*-ალგებრებსაც ჰომოლოგიური ინვარიანტებით ვსწავლობთ.
- C^* -ალგებრებზე, ნებისმიერი "საინტერესო" პომოლოგიის თეორიის ფუნქტორი H კასპაროვის კატეგორიის $\mathfrak{K}\mathfrak{K}$ გავლით ფაქტორდება.

განსაზღვრება

 $\mathrm{Ob}(\mathfrak{KK}) := \{$ სეპარაბელური \mathcal{C}^* -ალგებრები $A,B,\dots\}; \quad \mathrm{Mor}_{\mathfrak{KK}}(A,B) := \mathrm{KK}(A,B).$

როგორ განიმარტება KK(A, B)?

KK-თეორია როგორც განზოგადებული K-თეორია

ატია-სიგალის გლასიკური სივრცეების ვექტორული კონების K-ჰომოლოგიის განზოგადებით, გაიგივება

$$\operatorname{Mor}_{\mathfrak{K}\mathfrak{K}}(\mathbb{C},B)=\operatorname{KK}(\mathbb{C},A)\cong\operatorname{K}(A)$$

KK-თეორიას K-თეორიის ბუნებრივ განზოგადებად წარმოადგენს.

ამიტომ, ცხადია, KK-თეორიის K-თეორიის გამოთვლაზე დაყვანა გვსურს.

რაღაც შემთხვევებში ეს შესაძლებელია.

უნივერსალური კოეფიციენტების თეორემა (როსენბერგ–სჩოჩეტი 87)

დავუშვათ A <mark>მბად</mark> კლასში მდებარე სეპარაბელური C^* -ალგებრაა. მაშინ ნებისმიერი $B \in \mathrm{KK}$ -სთვის, არსებობს აბელური ჯგუფების შემდეგი მოკლე ზუსტი მიმდევრობა:

$$\operatorname{Ext}_{\mathfrak{Ab}}(\operatorname{K}(\Sigma A),\operatorname{K}(B)) \rightarrowtail \operatorname{KK}(A,B) \twoheadrightarrow \mathfrak{Ab}(\operatorname{K}(A),\operatorname{K}(B)).$$

££ ტრაინგულირებადი კატეგორიაა.

სტაბილური კატეგორია სუსტი ბირთვებით/კობირთვებით.

აბელურ კატეგორიაში, გვაქვს მოკლე ზუსტი მიმდევრობები

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \longrightarrow \exists !$$

££ ტრაინგულირებადი კატეგორიაა.

სტაბილური კატეგორია სუსტი ბირთვებით/კობირთვებით.

ტრიანგულირებად კატეგორიაში, გვაქვს ე.წ. სამკუთხედები

$$A \longrightarrow B \longrightarrow C \longrightarrow \Sigma A$$

$$\downarrow \qquad \qquad \downarrow$$

$$X$$

ჰომოლოგიური ალგებრა

მიზანი

ავაგოთ ჰომოლოგიური ალგებრა ტრიანგულირებად კატეგორიაზე $\mathfrak{T}.$

გზა

სიზუსტე \Longrightarrow პროექციული ობიექტი \Longrightarrow პროექციული რეზოლვენტა \Longrightarrow წარმოებული ფუნქტორები $\Longrightarrow \cdots$

ცზადი ჰომოლოგიური ალგებრის სტრუქტურა \mathfrak{T} -ზე ტრივიალურია.

არა-აბელური \Longrightarrow საჭიროა დამატებითი სტრუქტურა ჰომოლოგიური ალგებრისთვის.

ფარდობითი სიზუსტე

ამოვირჩიოთ ფუნქტორი

$$H \colon \mathfrak{T} \to \mathfrak{A}$$
.

lacktriangle სამკუთხედ $A o B o C o \Sigma A$ ვუწოდოთ H-ზუსტი თუ

$$0 \rightarrow H(A) \rightarrow H(B) \rightarrow H(C) \rightarrow 0$$

მოკლე ზუსტი მიმდევრობაა.

lacktriangle პომოლოგიური ფუნქტორი $F\colon \mathfrak{T} o \mathfrak{B}$ H-ზუსტია თუ ის H-ზუსტი სამკუთხედები მოკლე ზუსტ მიმდევრობებში გადაყავს.

უნივერსალური მიახლოება

H-ზუსტი სტაბილური ჰომოლოგიური ფუნქტორს $U\colon \mathfrak{T} \to \mathfrak{A}_U$ ეწოდება <mark>უნივერსალური</mark> თუ ნებისმიერი სზვა H-ზუსტი ჰომოლოგიური ფუნქტორი G ერთადერთი ზუსტი \overline{G} ფუნქტორის გავლით ფაქტორდება:

"ნამდვილი" ჰომოლოგიური ალგებრა \mathfrak{A}_U და H-ფარდობითი ჰომოლოგიური ალგებრა \mathfrak{T} -ზე U-ზ გამოყენებით იგივდება.

ამიტომ, H-ჰომოლოგიური გამოთვლები \mathfrak{T} -ში \mathfrak{A}_U -ზე კლასიკურ ჰომოლოგიურ გამოთვლებზე დაიყვანება.

გამოყენება

- სხვადასხვა яя კატეგორიები ⇒ სხვადასხვა რელევანტური ჰომოლოგიური მიახლოებები.
- lacktriangle ბევრი "ჰომოლოგიური ბუნების" გამოთვლა შეიძლება ${\mathfrak A}_U$ -ში ჩატარდეს.

არაუმეტეს თვლადი ქვეკატეგორიისთვის $\mathcal{C}\subseteq\mathfrak{T}$ იონედას ფუნქტორი

$$\mathfrak{T} \xrightarrow{Y} \operatorname{Funct}(\mathcal{C}^{\operatorname{op}}, \operatorname{Ab})_{\operatorname{countable}} = \operatorname{Mod}(\mathcal{C}), \qquad A \mapsto (\mathfrak{T}(C, A))_{c \in \mathcal{C}}$$

არის უნივერსალური Y-ზუსტი ჰომოლოგიური ფუნქტორი.

მიზანი

სწორად ამოვარჩიოთ და გამოვთვალოთ ქვეკატეგორია $\mathcal{C}.$

გამოყენების მაგალითი

განვიზილოთ კლაინის 4-ჯგუფის

$$V = \mathbb{Z}/2 \times \mathbb{Z}/2 = \{a, b \mid a^2 = b^2 = (ab)^2 = 1\}$$

ავტომორფიზმებით მოქმედებები C^* -ალგებრებზე.

კლასიკური შემთხვევის ანალოგიურად, გვაქვს უნივერსალურ კასპაროვის კატეგორია $\mathfrak{K}\mathfrak{K}^V$.

რელევანტური ქვეკატეგორია \mathcal{C} , V-ს ქვეჯგუფების ყველა პროექციული წარმოდგენებითაა ინდექსირებული.

მაიერი-ნ. 2024

მაიერი-ნ. 2024

აქ ${\mathcal C}$ მეკისეულ მიმართებებს აკმაყოფილებს.

თუ დამატებითად განვიხილავთ, 2-ზე ლოკალიზებულ კატეგორიას $\mathfrak{K}\mathfrak{K}_{1/2}^V$

განსაზღვრება

$$\mathrm{Ob}(\mathfrak{K}\mathfrak{K}_{1/2}^V):=\{$$
სეპარაბელური C^* -ალგებრები $A,B,\dots\};$ $\mathrm{Mor}_{\mathfrak{K}\mathfrak{K}_{1/2}^V}(A,B):=\mathrm{KK}(A,B)^V\otimes \mathbb{Z}[1/2].$

მაშინ, ლოკალიზებული $\mathcal{C}\otimes\mathbb{Z}[1/2]$ მიიღებს შემდეგ სახეს:

მეიერი-ნ. 2024

მაიერი-ნ. 2024

 $\mathcal{C}\otimes \mathbb{Z}[1/2]$ მატრიცათა რგოლების პირდაპირი ნამრავლია, ამიტომ მისი ჰომოლოგიური განზომილება ერთის ტოლია. შესაბამისად ჭეშმარიტია:

უნივერსალური კოეფიციენტების თეორემა

დავუშვათ A და B 2-ზე გაყოფადი V- C^* -ალგებრებია. დავუშვათ ასევე A პირველი ტიპის ალგებრაა. მაშინ გვაქვს შემდეგი $\mathbb{Z}/2$ -გრადუირებული აბელური ჯგუფების მოკლე ზუსტი მიმდევრობა

$$0 \to \mathsf{Ext}^1_{\mathcal{C}^V_{1/2}}(Y_{*-1}(A),Y_*(B)) \to \mathrm{KK}^V_*(A,B) \to \mathsf{Hom}_{\mathcal{C}^V_{1/2}}(Y_*(A),Y_*(B)) \to 0.$$

დიდი მადლობა!