Fock spaces (what did that physicist just say?)

February 29, 2008

Fock spaces came from spin chains, which are made up of sites b_1, b_2, \ldots, b_k , with particles with spin at each site. $B = \{\text{spins}\} = \{v_1, \ldots, v_k\}$. Let $V = \mathbb{C}\text{-span}B$. So $\mathbb{C}\text{-span}\{\text{sites with spins}\} = V^{\otimes k}$. In other words, the spins are the basis for the vector space V, and the sites are the tensor factors in $V^{\otimes k}$. Bosonic stuff lives in $S^k(V)$, and Fermionic stuff lives in $\wedge^k(V)$.

The game in physics is to find eigenstates (eigenvectors) and energies (eigenvalues) of the Hamiltonian H (linear transformations of $V^{\otimes k} = \mathcal{H}$ of choice). But really, there are so many particles in any situation that $V^{\otimes \infty}$ (the Fock space), $S^{\infty}(V)$ (the Bosonic Fock Space), and $\wedge^{\infty}(V)$ (the Fermionic Fock Space) are the primary objects. Usually H is somehow imbedded in a larger algebra of operators (linear combinations of gauge symmetries - for example, if my linear transformation of choice is the Casimir, then my gauge symmetries would either be the enveloping algebra, or the center-there-of. This is how stuff like Hecke algebras, BMW stuff, etc. comes into the picture).

Of special note are the cases where \wedge^{∞} is a module for the affine Lie algebra of the Virisoro algebra (this is *conformal field theory*). In many cases, $\wedge^{\infty}(V) = L(\wedge_0)$, where \wedge_0 is the fundamental weight of extra node in the affine Dynkin diagram.