EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos — Programa «antigo»

Duração da prova: 120 minutos

2000

1.a FASE 2.a CHAMADA

PROVA ESCRITA DE MATEMÁTICA

COTAÇÕES

riiiieii	ra Parte	81	
	Cada resposta certa Cada resposta errada Cada questão não respondida ou anulada	- 3	
	Nota: Um total negativo nesta parte da prova vale 0 (zero) pontos.		
Segun	da Parte	119	
	1	25	
	2.1. 14 2.2. 11 2.3. 14	39	
	3.1	22	
	4. 11 4.2. 11 4.3. 11	33	
ΓΟΤΑL		200	
		v.s.	F.F.
		135	/C/1

CRITÉRIOS DE CLASSIFICAÇÃO

Primeira Parte

Deverão ser anuladas todas as questões com resposta de leitura ambígua (letra confusa, por exemplo) e todas as questões em que o examinando dê mais do que uma resposta.

As respostas certas são as seguintes:

Questões	1	2	3	4	5	6	7	8	9
Versão 1	В	В	D	В	В	D	D	С	Α
Versão 2	D	С	Α	D	В	В	С	В	D

Na tabela seguinte indicam-se os pontos a atribuir, nesta primeira parte, em função do número de respostas certas e do número de respostas erradas.

Resp. erradas Resp. certas	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	9	6	3	0	0	0	0	0	0	
2	18	15	12	9	6	3	0	0		
3	27	24	21	18	15	12	9			
4	36	33	30	27	24	21				
5	45	42	39	36	33					
6	54	51	48	45						
7	63	60	57							
8	72	69								
9	81									

Segunda Parte

Critérios gerais

A cotação a atribuir a cada alínea deverá ser sempre um número inteiro de pontos.

O professor deverá valorizar o raciocínio do examinando em todas as questões.

Algumas questões da prova podem ser correctamente resolvidas por mais do que um processo. Sempre que um examinando utilizar um processo de resolução não contemplado nestes critérios, caberá ao professor corrector adoptar um critério de distribuição da cotação que julgue adequado e utilizá-lo em situações idênticas.

Pode acontecer que um examinando, ao resolver uma questão, não explicite todos os passos previstos nas distribuições apresentadas nestes critérios. Todos os passos não expressos pelo examinando, mas cuja utilização e/ou conhecimento estejam implícitos na resolução da questão, devem receber a cotação indicada.

Erros de contas ocasionais, que não afectem a estrutura ou o grau de dificuldade da questão, não devem ser penalizados em mais de dois pontos.

Nota:

Existem várias formas correctas de escrever o número pedido. Apresentam-se a seguir mais alguns exemplos:

$$^{12}C_6 \times {}^6A_3$$
, $^{12}C_9 \times {}^9A_3$, $^{12}C_9 \times {}^9C_6 \times 3!$

Indicam-se também possíveis respostas **incorrectas** do examinando, com a respectiva cotação a atribuir. Caberá ao corrector fazer as extrapolações necessárias para outras situações.

$$^{12}C_6 \times {}^6C_3$$
7

$$^{12}C_6 \times ^{12}A_3$$
4

$$^{12}C_6 imes ^{12}C_3$$
2

Este exercício pode ser resolvido por, pelo menos, dois processos:

1.º Processo

O espaço de resultados é a colecção de conjuntos $\{a,b,c,d\}$, onde a,b,c e d designam quatro dos doze compartimentos da caixa (os compartimentos onde são colocados os quatro iogurtes, supostos indistinguíveis).

Número de casos possíveis $={}^{12}C_4$

Número de casos favoráveis = 3

Probabilidade pedida
$$= \ \frac{3}{^{12}C_4} = \frac{1}{165}$$

2.º Processo

O espaço de resultados é o conjunto de sequências (a,b,c,d), onde a,b,c e d designam quatro dos doze compartimentos da caixa (os compartimentos onde são colocados os quatro iogurtes, supostos distinguíveis).

Número de casos possíveis $={}^{12}A_4$

Número de casos favoráveis = $3 \times 4!$

Probabilidade pedida
$$=\frac{3\times4!}{^{12}A_4}=\frac{1}{165}$$

2.3	14
$\lim_{x \to 1^+} f(x) = +\infty$ e/ou $\lim_{x \to 1^-} f(x) = -\infty$ (ver nota 1)	3
Concluir que a recta de equação $x=1$ é assimptota vertical do gráfico de f	2
$\lim_{x \to +\infty} f(x) = +\infty$ (ver nota 2)	2
Concluir que não existe assimptota horizontal do gráfico de f , quando $x \to +\infty$	2
$\lim_{x \to -\infty} f(x) = 0$ (ver nota 3)	3
Concluir que a recta de equação $y=0$ é assimptota horizontal do gráfico de f , quando $x\to -\infty$	2
Notas:	
1. O examinando só tem de indicar o valor de um dos limites; no entanto	, se
determinar ambos os limites e se enganar num deles, deverá ser cot	tado
com 2 dos 3 pontos.	
2. O examinando pode determinar $\lim_{x \to +\infty} \frac{f(x)}{x}$, em vez de $\lim_{x \to +\infty} f(x)$	(x),
e, verificando que o limite é $+\infty$, concluir, correctamente, que não ex	iste
assimptota horizontal do gráfico de f , quando $x o + \infty$	
3. O examinando pode:	
• começar por determinar $m = \lim_{x \to -\infty} \frac{f(x)}{x}$	
ullet concluir que $m=0$	
• determinar, em seguida, $b = \lim_{x \to -\infty} [f(x) - m x] = \lim_{x \to -\infty} f(x)$	
Se o examinando optar por este processo, os 3 pontos previstos par	ао
cálculo de $\lim_{x \to -\infty} f(x)$ devem ser distribuídos de acordo com o segui	inte
critério:	
$m = \lim_{x \to -\infty} \frac{f(x)}{x} = 0 \dots$	
$b = \lim_{x \to -\infty} f(x) = 0 \dots$	1 V.S.F.F
	135/C/

Este exercício pode ser resolvido por, pelo menos, dois processos:

1.º Processo

Para x > 1, tem-se:

$$\ln\left(\frac{e^x}{x-1}\right) = x$$

$$\Leftrightarrow \ln(e^x) - \ln(x - 1) = x \dots 3$$

$$\Leftrightarrow x - \ln(x - 1) = x \dots 3$$

$$\Leftrightarrow \ln(x-1) = 0$$

2.º Processo

Para x > 1, tem-se:

$$\ln\left(\frac{e^x}{x-1}\right) = x$$

$$\Leftrightarrow \frac{e^x}{x-1} = e^x \qquad ...$$

$$\Leftrightarrow x-1=1$$
4

Nota:

Se, qualquer que seja o processo utilizado, o examinando não referir que as equivalências são válidas apenas para x>1, ou não verificar que 2 é, efectivamente, solução da equação, deverá ser penalizado em 2 pontos.

- 2. Se o examinando não escrever esta equação, mas, na sua resposta, existir evidência de que ele procura graficamente a solução da mesma, estes 3 pontos deverão ser-lhe atribuídos.
- 3. O examinando deve explicar como procedeu, referindo algo que evidencie a utilização da calculadora na procura do valor pedido. Tal pode ser feito reproduzindo ou descrevendo o rectângulo de visualização da calculadora.

A cotação máxima a atribuir deverá ter em conta o grau de precisão do valor obtido, de acordo com o seguinte critério:

Valor obtido correcto (229°)	11
Valor obtido igual a 228°	
Valor obtido igual a 227° ou a 230°	
Outros valores inteiros	0

Se o examinando, utilizando este processo (gráfico), indicar apenas a outra solução (131°), deverá ser cotado, no máximo, em 3 dos 11 pontos previstos para a conclusão.

Se o examinando indicar as duas soluções da referida equação, 131° e 229° , e não referir que apenas a segunda corresponde à posição do satélite indicada no enunciado, deverá ser cotado, no máximo, em 6 dos 11 pontos previstos para a conclusão.

4. Caso o examinando não apresente o resultado final arredondado às unidades, deverá ter a cotação máxima de 13 pontos.

V.S.F.F.

Nesse caso, o examinando deve explicar como procedeu, referindo algo que evidencie a utilização da calculadora na procura do valor pedido. Tal pode ser feito reproduzindo ou descrevendo o rectângulo de visualização da calculadora.

A cotação máxima a atribuir deverá ter em conta o grau de precisão do valor obtido, de acordo com o seguinte critério:

Valor obtido correcto (2031)	11
Valor obtido igual a 2030	9
Valor obtido igual a 2029 ou a 2032	6
Outros valores inteiros	0

Caso o examinando não apresente o resultado final arredondado às unidades, deverá ter a cotação máxima de 10 pontos.

Este exercício pode ser resolvido por, pelo menos, dois processos:

1.º Processo

Equacionar o problema
$$\left(\frac{7820}{1+0.07\cos x} = 8200\right)$$
3

2.º Processo

Notas:

1. Se o examinando indicar apenas a outra solução da equação $\cos(x)=-0.662$, no intervalo $[0^\circ,360^\circ]$, que é 131° , deverá ser cotado em 2 dos 8 pontos previstos para a conclusão.

Se o examinando indicar as duas soluções da referida equação, 131° e 229° , e não referir que apenas a segunda corresponde à posição do satélite indicada no enunciado, deverá ser cotado em 4 dos 8 pontos previstos para a conclusão.

Critérios específicos

1.1	11
Substituir x por 180° (ver notas 1 e 2)	5
$\cos 180^{\circ} = -1$	1
Distância do satélite (no apogeu) ao centro da Terra	2
Distância pedida (ver nota 3)	3

Notas:

- 1. Apesar de, no enunciado, se explicitar que se considera o grau como unidade de medida do ângulo x, não deve ser penalizada a eventual substituição de x por π (radianos), na fórmula que relaciona as variáveis x e d.
- 2. Pode acontecer que o examinando não se aperceba da seguinte evidência geométrica: o satélite está no apogeu se e só se $x=180^{\circ}$.

Nesse caso, o examinando poderá começar por derivar a função definida pela expressão $\frac{7820}{1+0.07\cos x}$, para então concluir que é para $x=\pi$ (radianos) que a função é máxima.

A derivação da função deve ser valorizada em 3 pontos.

A conclusão de que a função é máxima para $x=\pi$ (radianos) deve receber mais 2 pontos, perfazendo, assim, a cotação prevista para a substituição de x por 180° (5 pontos).

3. O examinando poderá, com recurso à calculadora gráfica, determinar o valor pedido (determinando graficamente o máximo de $\frac{7820}{1+0.07\cos x}$ e subtraindo 6378 ao valor obtido, ou determinando directamente o máximo de $\frac{7820}{1+0.07\cos x}$ - 6378).

	C Se	lualquer que seja o processo utilizado pelo examinando, as cotações devem er atribuídas de acordo com o seguinte critério:
	Ε	scrita da fracção (ver notas 1, 2, 3, 4 e 5)10
	S	implificação da fracção1
		otas: O examinando pode começar por indicar o número de casos possíveis e o número de casos favoráveis e só depois escrever a fracção. No entanto, se não o fizer, isto é, se escrever directamente a fracção, não deverá ser penalizado.
	2.	Indicam-se a seguir possíveis respostas do examinando, no que respeita à escrita da fracção, com a respectiva cotação a atribuir.
		$rac{3}{^{12}C_4}$ ou $rac{3 imes 4!}{^{12}A_4}$ (fracção correcta)10
		$\frac{3\times4!}{^{12}C_4}$ 6
		$\frac{3}{^{12}A_4}$ 6
		Outras fracções com denominador ${}^{12}C_4$ ou ${}^{12}A_4$ 4
	3.	Se o examinando indicar o número de casos possíveis e o número de casos favoráveis, mas não escrever a fracção, deverá ser atribuído à sua resposta menos 1 ponto do que nas situações atrás referidas.
	4.	Se o examinando indicar apenas o número de casos possíveis, $^{12}C_4$ ou $^{12}A_4$, deverão ser atribuídos 3 pontos à sua resposta.
	5.	Se o examinando indicar apenas o número de casos favoráveis, 3 ou $3\times 4!$, deverão ser atribuídos 3 pontos à sua resposta.
4.1.		
		e exercício pode ser resolvido por, pelo menos, dois processos:
	Ref Jus	Processo $\overrightarrow{TS}.\overrightarrow{TR}=0 \qquad$

2.º Processo

\overrightarrow{TS}	= (6,0,0)	4
\overrightarrow{TR}	=(0,a,b)	 4
\overrightarrow{TS}	$\overrightarrow{TR} = 0$	3

4.2. ______ 11

Este exercício pode ser resolvido por, pelo menos, dois processos:

1.º Processo

Escrever uma equação do plano PQS (por exemplo, $x=0$)	J
Escrever o sistema $ \ x=6 \ \land \ x+y+z=5$.2
Obter um sistema equivalente, com base no qual se possa escrever	
imediatamente uma equação vectorial da recta (por exemplo,	
$x = 6 \land \frac{y}{1} = \frac{z+1}{-1}$)	. 3
Escrever uma equação vectorial da recta	3

2.º Processo

Escrever uma equação do plano $\ PQS$ (por exemplo, $\ x=6$)3
Escrever o sistema $ \ x=6 \ \land \ x+y+z=5$ 2
Obter as coordenadas de dois pontos da recta2
Obter as coordenadas de um vector com a direcção da recta2
Escrever uma equação vectorial da recta2

2
.2
. 1
2
4