1. Exam SS 2013 Distributed Systems

Prof. Dr. Katinka Wolter Benjamin Güldenring Date: July 9, 2013

Name:						Bachelo	: 🗆	Magiste	r 🗆
First Name:						Master	: 🗆	Lehram	t 🗆
Matr.No.:						Diplom			
				ructio					
Please write your	name and	d student	ID num	ber (Mat	rikelnum	mer) on ev	ery pag	e.	
Please write your s will be provided. I						f you need	l additio	nal space,	blank page
Hand in every pa ş	ge at the e	end of the	e exam!						
No aids are allowers witched off and s	_			naterial an	d other p	aper work	. Mob	ile phone	s have to b
Please use only po will not be accepted		t pens, e	.g. ballpe	ens, with	blue or l	olack colo	r. Exam	s written	with penci
The exam duration	n is 90 m i	inutes.							
Please explain all	your ansv	wers and	at least sl	ketch you	r lines of	thought.			
Please have your s	tudent I	D and ph	oto ID re	eady.					
agree with public	cation of	my exam	result an	d student	ID on the	e course w	eb page:	:	
You need 25 of 50	points to	pass.							
With r	ny signat	ure I atte	st to have	e read and	understo	od these in	nstructio	ns.	
			S	Signature					
Problem	1	2	3	4	5	6	7	Σ	
Points	8	6	8	8	8	6	6	50	
Achieved									

Grade: _____

Name:	Matr.No.:	
Problem 1 (Terminology)	(2+2+2+2) = 8 Points	
Please explain the following		
1. What is the difference	between total order and logical order?	
2. What is the difference	between a <i>process</i> and a <i>thread</i> ?	
3. What is <i>virtualisation</i> ?		
4. How does <i>message-orn</i>	ented communication work?	

Problem 2 (Chord) (2+2+2) = 6 Points

Assume a ring created by the Chord protocol, as shown in Figure 1.

Figure 1: Overlay constructed using Chord

1.	Please fill the empty slots in the finger tables	
2.	Explain the lookup of item 14 when starting from node 1.	

3. Assume a node with ID 3 wants to join the network. How do the finger tables change?

Problem 3 (Overlay Tree) (4+4) = 8 Points

The overlay tree in Figure 2 can be used to implement a multicast. The solid links are labelled with the transmission cost of a message. The dashed links connect the overlay. To determine the quality of this application-level

Figure 2: Overlay tree for multicast

tree, analyse only the connection between node A and node D. Please compute and explain

1.	the link stress and	
2.	the stretch of the overlay.	
		l

Problem 4 (Clocks) (2+2+4) = 8 Points

Assume three nodes want to exchange messages for communication. They have the clocks as shown in Figure 3.

Figure 3: Logical Clocks

1	Please ext	alain the	problems	that may	arise and	l how th	ev can	he solved	neino	logical	clocks
ь.	I ICasc CA	Jiaiii uic	problems	uiat iiia y	arise and	i iiow ui	icy can	oc sorveu	using	1021Cai	CIUCKS.

2. Please correct the clocks shown in Figure 3.

3. Please add a message, that happened before m_1 and explain how many options you have to place it.

Name:	: Matr.No.	:	
Problen	em 5 (Leader Election) (4+4) = 8 Points		
	mine the complexity of the Breadth First Algorithm, which we studiorks, as defined below.	ed as leader election in wir	eless
neighbo The ideo	rithm 1 Assume a set of n nodes, strongly connected by a set E of edbours. Nodes exchange information messages in rounds. lea of the algorithm is that it sets up a tree structure and elects the node eral such nodes exist the leader is selected randomly.	-	
	Initially a node with ID u_0 sets itself up as root and sends a message to become child nodes.	o its k neighbours asking the	em to
aı	A node with ID u_i that receives one or more requests to become child arbitrary one and passes the same request on to its other $k-1$ neighborhefirst place.		
3. If	If a node has already committed to a parent, it sends a decline message	back.	
_	If a node receives decline messages from all its neighbours it is a leaf no and ID to its parent node.	ode and sends its parameter v	value
	A node that receives from all its children parameter value and ID selectits parent.	cts the largest and passes it o	on to
	The root node selects the largest parameter and ID and transmits this the tree as the leader.	hrough its children to all nod	les of
• Pl	Please determine the number of messages that must be sent as a function	of n and k . Explain your ans	swer.
• Pl	Please determine the runtime complexity of the algorithm as a function	of n and k . Explain your ans	swer.

Name:	Matr.No.:	
Problem 6 (Commit Protocols) (3+3)	= 6 Points	
1. Please explain the 2-phase-commit	t protocol	
2. How does the Paxos protocol diffe	er from 2PC?	
•		

Name:	Matr.No.:	
Duahlam 7 (DaanSim) (6 Daints)		
Problem 7 (PeerSim) (6 Points)		
Consider the following distributed network:	d algorithm that calculates the global average over all nodes in a	ın overlay
• Each node is assigned a value	e.	
• At regular intervals each nod (R in the following).	le (S in the following) sends its value to one randomly chosen neig	hbor node
- When R receives the va	alue of S , it first calculates the average of it's value with the one o	of S ,
\boldsymbol{R} then sends the difference	ence of its value with the average back to S	
– and R sets it's value to	the average afterwards.	
• When any node receives a di	ifference, it adds it to it's value.	
Unless otherwise noted we assume	that messages are never lost and ignore any rounding errors that n	nay occur.
in figure 4. Messages are imp	hm as Peersim simulation by filling out the boxes in the source coplemented by the class AverageMessage. The sender property messages sent form S to R and shall be null for messages sent to	depicts S
2. Consider the configuration fi	ile in figure 5. What do you expect as the final result of the experir	ment?
3. Now assume that messages of ment. If not, give a counterest	can get lost. Does the algorithm still work? If so, present an infor xample.	rmal argu-

```
1 public class AverageDiff extends SingleValueHolder
 2
                     implements CDProtocol, EDProtocol
 3
   {
 4
            public void nextCycle( Node node, int pid ) {
 5
                     Node peern = ... //randomly selected neighbor node
 6
                     ((Transport) node.getProtocol(FastConfig.getTransport(pid))).
 7
 8
                                      node,
 9
                                      peern,
10
                                      new AverageMessage(
                                                                              ),
11
                                      pid);
12
            }
13
            public void processEvent( Node node, int pid, Object event ) {
14
15
                     AverageMessage aem = (AverageMessage)event;
16
                     if(aem.sender != null)
17
18
19
20
21
22
23
24
25
                       diff =
26
27
                       value =
28
                       ((Transport) node.getProtocol(FastConfig.getTransport(pid))).
29
                             send (node,
30
                             aem.sender,
31
                             new AverageMessage(
32
                             pid);
33
34
                     else
35
                       value =
36
37
38
39 class AverageMessage
40 {
            final double val;
41
            final Node sender;
42
43
            public AverageMessage( double val, Node sender ) {
44
                     this.val = val;
45
                     this.sender = sender;
46
47 }
```

Figure 4: Peersim source code for problem 7

```
1 SIZE 100 # network size
 2 CYCLES 1000
 3 CYCLE SIZE*10000
 4 MINDELAY 10
 5 MAXDELAY 80
 6
 7 network.size SIZE
8 simulation.endtime CYCLE*CYCLES
 9 simulation.logtime CYCLE
10
11 ################ protocols =============
12
13 protocol.link peersim.core.IdleProtocol
14
15 protocol.avg AverageDiff
16 protocol.avg.linkable link
17 protocol.avg.step CYCLE
18 protocol.avg.transport urt
19
20 protocol.urt UniformRandomTransport
21 protocol.urt.mindelay (CYCLE*MINDELAY)/100
22 protocol.urt.maxdelay (CYCLE*MAXDELAY)/100
2.3
24 ################ initialization ===============
25
26 init.rndlink WireKOut
27 init.rndlink.k 10
28 init.rndlink.protocol link
29
30 init.vals LinearDistribution
31 init.vals.protocol avg
32 init.vals.max SIZE
33 init.vals.min 1
34
35 init.sch CDScheduler
36 init.sch.protocol avg
37 init.sch.randstart
38
39 ############# control =====================
40 # outputs min, max, n, sum/n, variance, countmin, countmax
41 control.0 SingleValueObserver
42 control.O.protocol avg
43 control.O.step CYCLE
```

Figure 5: Peersim config file for problem 7