# Grundlagen der Informationstheorie

### Konzepte und Prinzipien

Digitale AV Technik, MIB 5

#### Was ist Information?

- Information ist die Reduktion von Unsicherheit.
- Claude Shannon definierte Information als eine Größe, die quantifizierbar ist.

#### Was enthält Information?

- Nachrichten enthalten Information.
  - Eine Nachricht kann z.B. ein Text in deutscher Sprache sein.
  - Ein Binärcode enthält nur Nullen und Einsen, diese bilden eine Nachricht.

#### **Formale Definition einer Nachricht**

- Eine Nachricht besteht aus beliebig vielen Zeichen hintereinander. Also zum Beispiel:
  - AABACAABADDA
  - 001110101001
  - Hallo, das ist eine Nachricht.
- Eine Nachricht muss mit einem beliebigen Alphabet codiert werden, um übertragen werden zu können.

#### **Nachrichtentechnik**

- Nachricht: Folge von Zeichen, die von Sender (Quelle) an Empfänger (Senke) übermittelt wird.
- Information: intuitiv: alles was durch eine Nachricht übermittelt wird, Bedeutung der Nachricht
- Informationstheorie nach Shannon: Versuch, den Begriff der Information rein statistisch zu erfassen

#### Was ist ein Bit?

#### Wie viel Information steckt in einem Bit?



[image from 3Blue1Brown]

## Informationsgehalt

Der Informationsgehalt eines Zeichens x mit einer

Auftrittswahrscheinlichkeit P(x) ist definiert als

$$I(x) = \log_a\left(\frac{1}{P(x)}\right) = \log_a(1) - \log_a(P(x)) = -\log_a(P(x))$$

- mit a als Kardinalität des Alphabets
  - also der Anzahl der möglichen Zeichen
  - $\circ$  also a=2 bei binären Codes.

#### Beispiel: Informationsgehalt eines Buchstaben

In deutschen Texten tritt das B mit der Wahrscheinlichkeit 0.016 auf und wir wollen es binär codieren, also

$$I(b) = \log_2(rac{1}{0.016}) pprox 5.97$$
 Bit

Bemerkung:  $\log_b(x) = \log_{10}(x)/\log_{10}(b)$ 

### Maßeinheit des Informationsgehalts: Bit (Binary Digit)

- 1 Bit = Entscheidung zwischen zwei gleich wahrscheinlichen Alternativen
  - z.B. Ja/Nein, 0/1, True/False
- Pseudoeinheit für die Anzahl der Stellen in Binärdarstellung
  - $\circ$  daraus folgt  $P(x)=2^{-x}=rac{1}{2^x}$

#### Beispielrechnung

- Eine 8 Bit Darstellung ermöglicht 256 verschieden Zeichen.
- Bei gleicher Wahrscheinlichkeit tritt jedes Zeichen x mit  $P(x)=2^{-8}=rac{1}{2^8}=rac{1}{256}$  auf.
- Der Informationsgehalt ist daher

$$I(x) = -\log_2(P(x)) = -\log_2(rac{1}{256})$$
  $= -\log_2(rac{1}{2^8}) = \log_2(2^8) = 8$  Bit.

## **Shannons Entropie**

- Entropie (H): Maß für den mittleren Informationsgehalt pro Zeichen einer Nachricht.
- Je höher die Entropie, desto mehr Information trägt eine Nachricht.
  - Achtung: es geht nur um den statistischen Informationsgehalt, nicht um die Bedeutung.

#### Formel der Entropie

$$H(X) = \sum_{i=1}^n P(x_i) I(x_i) = -\sum_{i=1}^n P(x_i) \log_2 P(x_i)$$

- ullet H: die Entropie einer (binären) Nachricht X
- ullet  $P(x_i)$ : Wahrscheinlichkeit des Auftretens des Zeichen  $x_i$

### Beispiel: Entropie einer Nachricht

- Beispiel: Ein Alphabet mit 4 Buchstaben (A, B, C, D) und der Nachricht AABBCDCD
  - gleichverteilte Wahrscheinlichkeit:

$$P(A) = P(B) = P(C) = P(D) = 0.25$$

Entropie:

$$H = -\left(0.25\log_2 0.25 + 0.25\log_2 0.25 + 0.25\log_2 0.25 + 0.25\log_2 0.25\right) = 2 ext{ Bits}$$

 Um diese Nachricht optimal zu codieren, benötigt man 2 Bit pro Zeichen.

### Beispiel 2: Entropie einer ähnlichen Nachricht

- Beispiel: Ein Alphabet mit 4 Buchstaben (A, B, C, D) und der Nachricht AAAABCCD
  - nicht gleich verteilte Wahrscheinlichkeiten:

$$P(A) = 0.5, P(B) = P(D) = 0.125, P(C) = 0.25$$

• Entropie:

$$H = -\left(0.5\log_2 0.5 + 0.125\log_2 0.125 + 0.25\log_2 0.25 + 0.125\log_2 0.125\right) = 1.75 \; \mathrm{Bits}$$

 Um diese Nachricht optimal zu codieren, benötigt man 2 Bit pro Zeichen.

#### **Entropie intuitiv**

Anzahl der Bits, die notwendig sind, um eine Nachricht in einem (bzgl. der Wortlänge optimalen) Code binär zu codieren.

- hängt von der Auftrittswahrscheinlichkeit der Zeichen ab
  - hier Wahrscheinlichkeit = relative Häufigkeit

### Informationsquelle und Redundanz

- Redundanz: Wiederholung von Information zur Fehlervermeidung.
- Nachrichten enthalten oft mehr Daten, als zur Übertragung nötig sind.
- Redundanz hilft bei der Fehlerkorrektur und Kompression.

#### Folgen der Redundanz

- Eine wiederholte Nachricht ("AAAAA") hat geringe Entropie, weil sie wenig Unsicherheit enthält.
- Nachrichten mit hoher Entropie sind schwerer zu komprimieren.

#### Sender - Empfänger Modell

- Das Modell beschreibt die **Übertragung von Informationen** in einem System.
- Benannt nach Shannon und Weaver, 1948 veröffentlicht in "A Mathematical Theory of Communication" von C.
  Shannon



### **Shannon-Weaver Modell Komponenten**

- Informationsquelle: Erzeugt die Nachricht
- Sender: Kodiert die Nachricht in Signale
- Kanal: Überträgt die Signale (z.B. Kabel, Funk)
- Empfänger: Dekodiert das Signal
- Ziel: Erhält die Nachricht
- Störungen: Fehler oder Rauschen während der Übertragung

### Kanal-Kapazität

• Kanal-Kapazität (C): Maximale Datenmenge, die über einen Kommunikationskanal übertragen werden kann.

### Shannons Kanal-Kapazitätstheorem

Die Kapazität eines Übertragungskanals berechnet sich als  $C=B\log_2\left(1+\frac{S}{N}\right)$ , wobei

- B, die Bandbreite des Kanals ist und
- $\frac{S}{N}$  das Signal-Rausch-Verhältnis (SNR)

### **Bedeutung des Theorems**

- Die Kapazität gibt an, wie viel Information ohne Fehler übertragen werden kann.
- Höheres Signal-Rausch-Verhältnis verbessert die Kapazität.

### Beispiel: Kanal-Kapazität

 Mobilfunknetz: Bandbreite von 10 MHz, Signal-Rausch-Verhältnis von 15.

$$C=10 imes \log_2{(1+15)}pprox 40~ ext{Mbit/s}$$

 Diese maximale Kapazität kann nur erreicht werden, wenn die Fehlerkorrektur optimal funktioniert und das Rauschen minimal ist.

### **Datenkompression**

- **Ziel**: Reduktion der **Datenmenge**, ohne Information zu verlieren.
- Komprimierte Daten haben eine **niedrigere Redundanz**.

#### Verlustfreie Kompression

Alle Daten bleiben vollständig erhalten (z.B. ZIP, PNG).

#### Verlustbehaftete Kompression

Redundante oder unwichtige Daten werden verworfen (z.B. MP3, JPEG).

#### Beispiel

 Eine Nachricht mit hoher Redundanz kann stärker komprimiert werden als eine zufällige Nachricht.

#### Fehlerkorrektur

- In der Praxis gibt es bei der Übertragung oft **Fehler** (z.B. durch Rauschen).
- Fehlerkorrigierende Codes helfen, diese Fehler zu erkennen und zu beheben.

#### Shannons Theorem zur Fehlerkorrektur

 Claude Shannon zeigte, dass es theoretisch möglich ist, eine Nachricht fehlerfrei zu übertragen, wenn die Datenrate unterhalb der Kanal-Kapazität liegt.

#### Grenzen der Fehlerkorrektur:

- Bei hoher Rauschbelastung wird die Übertragung schwieriger.
- Es gibt eine **Grenze**, ab der auch Fehlerkorrekturmethoden nicht mehr helfen können.

## Anwendungen der Informationstheorie

- **Datenübertragung**: Internet, Mobilfunk, Satellitenkommunikation.
- Datenkompression: MP3, JPEG, ZIP.
- **Kryptographie**: Sicherung der Kommunikation durch Verschlüsselung.
- Fehlerkorrektur: DVDs, CDs, moderne Speichertechnologien.

Claude Shannon an der Tafel

## Zusammenfassung der Konzepte

- 1. Information und Entropie: Maß für den Informationsgehalt.
- 2. **Redundanz**: Hilft bei der Fehlervermeidung und Kompression.
- 3. Kanal-Kapazität: Maximale Übertragungsrate ohne Fehler.
- 4. **Datenkompression**: Reduktion der Datenmenge.
- 5. Fehlerkorrektur: Methoden zur fehlerfreien Übertragung.