Project update

Outline

- Introduction
- Process flow of the overall system
- Retrieving the mappings
 - UMLS
 - BioPortal
 - o SNOMED CT mapping tool
- Retrieving UMC publications
 - Querying PubMed

Introduction

Goal: build an evaluation measure that shows how well the research output of Dutch UMCs match their different patient groups.

- Publications are indexed with MeSH terms (with a vast subset that describes diseases)
- Patient diagnoses are labeled with ICD10 codes

How?: Get mappings between MeSH and ICD10 that represent the same disease

Where?: Find several communities that have created mappings between medical vocabularies.

UMLS

BioPortal

SNOMED CT

Process Flow of the Overall System(1/2)

Process Flow of the Overall System(2/2)

UMLS (1/3)

UMLS includes Metathesaurus software:

 A large biomedical thesaurus that organizes terms from several sources by concept, meaning and links similar names for the same concept.

A frame structure of 4 levels:

- 1. Concept Unique Identifier (CUI) ——Meaning
- 2. Lexical Unique Identifier (LUI) **Lexical Variants**
- 3. String Unique Identifier (SUI)
 - Atom Unique Identifier (AUI) Building Blocks

Further variations

UMLS (2/3)

Atoms in one concept have the same meaning. Hence, ICD10 and MeSH terms are part of the same concept can be considered as a mapping.

For the current project, all the mappings can be found in a single file of Metathesaurus: MRCONSO.RRF

CUI	AUI	LAT	SAB	CODE	STR	
C0000727	A8183940	DUT	MSHDUT	D000006	Bulk, acute	
C0000727	A0017734	ENG	MSH	D000006	Abdomen, Acute	
C0000727	A0639289	ENG	ICD10	R10.0	Abdomen, Acute	

3

UMLS (3/3)

Results:

- Found 1782 CUIs that contain both MeSH and ICD10.
- Found **2116** unique MeSH-ICD10 pairs.
- Added Dutch translation wherever it was present.
- Note: There are restrictions of publishing ICD10 and translations of any source General terms + additional restrictions in category 12.3 (https://uts.nlm.nih.gov/help/license/licensecategoryhelp.html)

BioPortal

BioPortal is a repository of biomedical ontologies that can be accessed through Web Services.

- It offers a REST api in order to access its resources. An API KEY is required!
- BioPortal creates the mappings through several methods:
 - Using UMLS
 - Using NCBO loom algorithm
 - OBO mappings
- Retrieval methods:
 - Method 1: Immediate mappings between ICD10 and MeSH (22 out of 2119)
 - Method 2: Mappings between MeSH <-> ICD10CM <-> ICD10 (779 out of 2538)
 - Method 3: Mappings between MeSH <-> SNOMED <-> ICD10 (On progress)

SNOMED CT

Mappings between SNOMED CT to ICD10CM

"The purpose of the SNOMED CT to ICD-10-CM map is to support semi-automated generation of ICD-10-CM codes from clinical data encoded in SNOMED CT for reimbursement and statistical purposes."

- I-MAGIC: Algorithm that implements real-time mapping between SNOMEDCT and ICD10CM
- **Demo page:** https://imagic.nlm.nih.gov/imagic/code/map
- All mappings are in a file that can be accessed with the UMLS or SNOMED License.
- Link of release: https://www.nlm.nih.gov/research/umls/mapping_projects/snomedct_to_icd10cm.html
- Fllename: der2_iisssccRefset_ExtendedMapSnapshot_INT_YYYYMMDD.txt which is in the Snapshot\Refset\Map directory.
- On progress

Retrieving UMC publications

NCBI offers several public programmatic APIs to allow access to various Databases.

The most useful API is the **Entrez Programming Utilities** (E-Utilities):

- Allow access to all Entrez databases (PubMed,PMC, Gene etc.)
- Eight programs that are in the form of fixed URLs.
- Documentation: https://www.ncbi.nlm.nih.gov/books/NBK25501/

Using Entrez, one can access Pubmed, then ask to retrieve publications according to some search criteria and get back results (possibly indexed with MeSH terms).

Querying PubMed

Querying PubMed can be performed programmatically with E-Utilities, by defining a typical PubMed query (as in the PubMed site).

Current filters of interest:

1. MeSH Categories

- "Diseases Category"[Mesh]
- "Health Care Category"[Mesh]
- "Psychiatry and Psychology Category" [Mesh]

2. Date Ranges

YYYY/DD/MM:YYYY/DD/MM[Publication Date]

3. Authors' Affiliation

- Authors with a certain affiliation can be searched with the [ad] filter
 - e.g: For Leiden: (Leiden[ad] AND ("university medical center"[ad] OR "university medical centre"[ad] OR "academic hospital"[ad] OR mc[ad] OR LUMC[ad]))

Querying PubMed

The 3 filters can formulate a single query by conjuncting them:

Query := MeSHCategories AND DateFilters AND Affiliation

Two F-utilities tools are used:

1. **Esearch:** returns a list of PMIDS that satisfy certain filter criteria (query).

2. **Efetch:** returns detailed information of publications in given PMID list.

Querying PubMed Esearch as an ajax request

Return a JSON object of PMIDS.

Querying PubMed Efetch as an ajax request

```
return $.ajax({
    url: inttps://cors-anywhere.herokuapp.com/ittp://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi',
    data: {
        //api_key: pubmedkey,
        db: 'pubmed',
        usehistory: 'y',
        webenv: response.esearchresult.webenv,
        query_key: response.esearchresult.querykey
        retmax: 10000
    }
}
Response is the JSON object with
    PMIDs.
```

 Return an XML file with PMID information (title, DOI, Publication Date, authors, MeSH, keywords etc.)

Querying PubMed

Things to concern:

- An API-KEY is not necessary, but it makes the querying process faster.
- The current implementation is coded with JavaScript, which is a bad practice. Back-end implementations should be developed.
- E-utilities limit the results to a maximum of 10000. An iteration process of getting the next results is necessary.