

• Agenda

Tolerância a Falhas

- Terminologia
- Falhas
- Dependabilidade
- Modelo de Falhas
- Redundância
- Detecção de Falhas
- Segurança

Terminologia

Falha (Fail)

- Um componente n\u00e3o est\u00e1 de acordo com suas especifica\u00e7\u00f3es
- Exemplo: Programa quebrou
- Erro (Error)
 - Parte de um componente que pode levar a uma falha
 - Exemplo: Erro de programação
- Defeito (Fault)
 - Causa de um erro Programa travado
 - Exemplo: Programador sem atenção.

Lidando com Defeitos

Prevenção de Defeitos:

- Prevenir que falhas ocorram
- Exemplo: N\u00e3o contrate programadores desatentos

Tolerância a Defeitos:

- Construir um componente que possa "esconder" o acontecimento de uma falha
- Exemplo: Construir cada componente por equipes diferentes.

Remoção das Defeitos

- Reduzir a presença ou o número ou a seriedade do defeito
- Exemplo: Livre-se dos programadores desatentos

Previsão de Defeitos

Estimar a presença de atuais defeitos, futuros defeitos e consequências dos defeitos

Falhas

- Falha total em sistemas não distribuídos x falha parcial em sistemas distribuídos
 - Deve-se projetar o SD de modo tal que ele possa se recuperar automaticamente de falhas parciais sem afetar seriamente o desempenho global
 - Em casos de falhas, o sistema distribuído deve continuar a funcionar de maneira aceitável enquanto estiver sendo recuperado
 - Resumindo, o SD deve tolerar falhas e continuar a funcionar, mesmo na presença de falhas em seus componentes

Dependabilidade

- Um componente fornece serviços aos clientes.
- Para fornecer serviços:

Dependabilidade

• Um componente C depende de C1:

 se a correção (correctness) do comportamento de C depende da correção (correctness) do comportamento de C1.

Dependabilidade

- Disponibilidade (Availability)
 - Prontidão para uso
- Confiabilidade (Reliability)
 - Continuidade da prestação de serviço
- Segurança (Safety)
 - Probabilidade muito baixa de catástrofes
- Manutenibilidade (Maintainability)
 - Quão fácil um sistema com falha pode ser reparado

Disponibilidade (Availability)

• Fração média de tempo em que C esteve disponível no intervalo [0, t).

• Existe algum sistema que precise de disponibilidade de 100%? Qual?

Confiabilidade (Reliability)

- Probabilidade condicional de que C tenha funcionado corretamente durante [0, t)
 - dado que C estava funcionando corretamente no tempo T = 0.
- Exemplo??

Segurança (Safety)

- Se um sistema deixar de funcionar corretamente durante um certo tempo,
 - nada de catastrófico acontecerá …?

• Exemplo??

Manutenibilidade (Maintainability)

 Facilidade com que um sistema que falhou possa ser consertado

• Exemplo??

Modelo de Falhas

- Falha por crash
- Falha por omissão
 - Omissão de recebimento
 - Omissão de envio
- Falha de temporização
- Falha na resposta
 - Falha de valor
 - Falha de transição de estado
- Falha arbitrária

Falha por Crash

• O servidor para de funcionar, mas estava funcionando até parar.

Falha por Crash

Cliente não acha o servidor:

- O servidor está fora do ar;
- Soluções:
 - Retornos de variáveis "inválidas": e.g. -1
 - Criação de exceções
 - Perda da transparência

Falha por Omissão

- O servidor n\u00e3o consegue responder a requisi\u00f3\u00f3es que chegam
- Omissão de Recebimento

- O servidor não consegue receber mensagens que chegam.

Requisição

Falha por Omissão

Omissão de envio

O servidor não consegue enviar mensagens

Falha de Temporização

A resposta do servidor se encontra fora do intervalo de tempo

Veremos isso com mais detalhes na aula de sincronização

Falha na resposta

- A resposta do servidor está incorreta
- Falha de valor:
 - O valor da resposta está errado
- Falha de transição de estado
 - O servidor se desvia do fluxo de controle correto

Requisição (3+3)

Resposta (0)

Falha Arbitrária

Geralmente são classificadas como maliciosas

- Omissão de falhas:
 - Um componente falha em uma ação que deveria agir
- Encarregado de falhas
 - Um componente toma uma ação que não deveria tomar
- Ambos os tipos de falhas são intencionais:
 - São tipicamente problemas de segurança (security).

Redundância

- Duplicação de componentes (hardware ou software)
- Técnica para mascarar falhas
 - Redundância de informação
 - Bits extras são adicionados para permitir recuperação de bits deteriorados.
 - Redundância de tempo
 - Uma ação é realizada e, então, se for preciso, ela é executada novamente. Ex: Transações podem ser repetidas, caso tenham sido abortadas
 - Redundância física
 - Componentes físicos duplicados podem ser usados.

Detecção de Falhas

 Como podemos detectar de forma confiável que um processo realmente travou?

Modo Genérico:

- Cada processo é equipado com um módulo de detecção de falhas
- Um processo P sonda outro processo Q para uma reação
- Se Q reage:
 - Q é considerado vivo (por P)
- Se Q n\u00e3o reagir com t unidades de tempo:
 - suspeita-se que Q tenha travado

Detecção de Falhas

Implementação

- Se P não recebeu "pulsação" de Q dentro do tempo t: P suspeita de Q.
- Se Q posteriormente enviar uma mensagem (que é recebida por P):
 - P deixa de suspeitar Q
 - P aumenta o valor de timeout t

Nota: se Q falhou, P continuará suspeitando de Q.

- A mensagem do cliente para o servidor foi perdida;
- A mensagem do servidor para o cliente foi perdida;
- O servidor sai do ar após receber uma solicitação;
- O cliente sai do ar após ter enviado uma solicitação.

- A mensagem do cliente para o servidor foi perdida:
 - Limite de tempo de espera (timeout);
 - Reenvio em kernel;
 - Retorno de erro, após diversas tentativas.

- O servidor sai do ar após receber uma solicitação:
 - Espera e reenvia / ache novo servidor;
 - Desiste e comunique falha.
- As falhas até o momento não são distinguíveis para um Cliente.

- O cliente sai do ar após ter enviado uma solicitação:
 - Processamento órfão;
 - Gasto de tempo do servidor;
 - Soluções:
 - Reencarnação;
 - Extermínio;
 - Expiração (quantum T).

Extermínio:

- Eliminar todos os órfãos
- Problema: encadeamento de falhas (servidor pode ter sido cliente em uma RPC)

Reencarnação:

- Dividir o tempo em "épocas"
- Nova chamada → nova época
- Falha na rede → impossível encontrar o órfão → facilmente detectado depois (necessita nova época)

Expiração:

- Tempo máximo para servidor executar serviço
- Problema: mensurar o quantum

STUCKONTHIS

Segurança

Segurança em Sistemas Distribuído

- A segurança em sistemas distribuídos é um aspecto importante no projeto e implementação deste tipo de sistema.
- Ocorre que os vários componentes de hardware e software precisam se comunicar e colaborar entre si sendo que existem diversos tipos de ameaça a segurança destes sistemas.
- Devemos considerar que a segurança sempre envolve o fator humano e o fator tecnológico que inclui hardware e software.
 - Como sempre, o fator humano é o elo fraco da corrente que pode ser quebrado mais facilmente.

Segurança em Sistemas Distribuído

- A segurança em um sistema, de uma maneira geral, está relacionada a:
 - Confidencialidade
 - Integridade
 - Autenticidade
 - Disponibilidade
 - Não repúdio

Principais ameaças à Segurança

Interceptação

Captura de mensagens trocadas entre usuários e serviços em um sistema distribuído

Interrupção

Tornar um serviço indisponível temporariamente ou permanentemente

Modificação

- Alteração de informações ou configurações em um componente de um sistema distribuído

Fabricação

 Uso de identidade, ticket ou certificado digital falso para acesso ou realização de alguma atividade não autorizada

Mecanismos de Segurança

- Os principais mecanismos de segurança que suportam sistemas distribuídos são:
 - Encriptação
 - Uso de criptografia para troca de mensagens e armazenamento de informações sensíveis
 - Autenticação
 - Para acesso a um recurso
 - Autorização
 - Para executar ações em um recurso
 - Auditoria
 - Registro de atividades realizadas em logs.

Exercícios

Exercício

- Projete um sistema distribuído sobre:
 - Sistema de aluguel de carros
 - Sistema de venda de passagens
- E indique onde estaria a tolerância a falhas e a segurança do sistema.

Agradecimentos

Prof. Bruno lizuka pelos slides.

Obrigado!
Bom Dia!
Boa Tarde!
Boa Noite!

