### MaxSAT Evaluation 2022

Fahiem Bacchus University of Toronto University of Helsinki University of Helsinki

Matti Järvisalo

**Jeremias Berg** 

Ruben Martins Carnegie Mellon University

Andreas Niskanen University of Helsinki

https://maxsat-evaluations.github.io/

SAT 2022, August 5, 2022

# What is Maximum Satisfiability?

- ► Maximum Satisfiability (MaxSAT):
  - ► Clauses in the formula are either **soft** or **hard**
  - ► Hard clauses: must be satisfied
  - ► Soft clauses: **desirable** to be satisfied
  - Soft clauses may have weights
- ► Goal: Maximize (minimize) the sum of the weights of satisfied (unsatisfied) soft clauses
  - Equivalent to minimizing a linear objective function subject to a set of hard clauses.

# Setup

Same structure as the one used in MaxSAT Evaluations 2017-2021:

- ► Source disclosure requirement:
  - ► Increase the dissemination of solver development
- ► Solver description using IEEE Proceedings style:
  - ▶ Better understanding of the techniques used by each solver
- ▶ Benchmark description using IEEE Proceedings style
  - ▶ Better understanding of the nature of each benchmark
- ▶ Descriptions collected in proceeding, published at MSE website.

# News for this year

- ► Changes in the WCNF input format:
  - ► Removal of the p-line
  - ► Hard clauses marked with "h":
    - lacktriangle Instead of sum of the weights of soft clauses  $+\ 1$
- ► New special track:
  - "Incremental Track" on incremental MaxSAT

# News for this year

- ► Changes in the WCNF input format:
  - ► Removal of the p-line
  - ► Hard clauses marked with "h":
    - lacktriangle Instead of sum of the weights of soft clauses  $+\ 1$
- ► New special track:
  - "Incremental Track" on incremental MaxSAT

# **Evaluation tracks**

#### Evaluation tracks:

- ► Complete:
  - ► Weighted
  - Unweighted
- ► No distinction between industrial and crafted benchmarks
- Incomplete:
  - ► Weighted
  - Unweighted
- ► (New) Incremental

### **Evaluation tracks**

#### Evaluation tracks:

- ► Complete:
  - ► Weighted
  - Unweighted
- ► No distinction between industrial and crafted benchmarks
- ► Incomplete:
  - ► Weighted
  - ► Unweighted
- ► (New) Incremental

### **Evaluation tracks**

#### Evaluation tracks:

- ► Complete:
  - ► Weighted
  - Unweighted
- ► No distinction between industrial and crafted benchmarks
- ► Incomplete:
  - ► Weighted
  - ► Unweighted
- ► (New) Incremental

# **Execution environment**

MSE 2022 was run on the StarExec cluster:

- ▶ https://www.starexec.org/
- ► Intel(R) Xeon(R) CPU E5-2609 0 @ 2.40GHz
- ► 10240 KB Cache, 128 GB Memory
- ► Two solvers per node

#### Execution environment:

- ► Complete:
  - ► Time limit: 3600 seconds
  - ► Memory limit: 32 GB
- ► Incomplete track:
  - ► Two time limits: 60 seconds and 300 seconds
  - ► Memory limit: 32 GB

### **Execution environment**

Incremental track run on a computing cluster at the University of Helsinki, part of the Finnish Computing Competence Infrastructure (FCCI).

- ▶ https://www2.helsinki.fi/en/infrastructures/fcci
- ► Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60GHz
- ► 20 MB Cache, 57 GB Memory

#### Execution environment:

► Time limit: 7200 seconds

► Memory limit: 32 GB

### **Benchmark Selection**

- ► Complete track:
  - As described earlier.
- ► Incomplete track:
  - ► Hard instances of the complete track.
    - Instances that cannot be solved optimally in 300 seconds by any participants of the complete tracks.
- ► Incremental track:
  - ► For each benchmark application, exclude instances which are easy for alternative approaches: solved in < 1 second or via one MaxSAT call.
  - ► Sample 100 instances from this set of instances.

# MSE 2022 benchmarks

#### Complete track:

- ► Unweighted (594 instances)
  - ▶ 46 different domains
- ► Weighted (607 instances)
  - ► 46 different domains

#### Incomplete track:

- ► Unweighted (179 instances)
- ► Weighted (197 instances)

#### Incremental track:

► Five benchmark applications, 100 instances per application

# Complete Track

### **Solvers**

MaxSAT approaches in MSE 2022:

| Solver      | Hitting Set | Unsat-based | Sat-Unsat | Other |
|-------------|-------------|-------------|-----------|-------|
| CASHWMaxSAT |             | <b>√</b>    |           | ILP   |
| Exact       |             | <b>√</b>    |           | PB    |
| MaxCDCL     |             |             |           | B&B   |
| EvalMaxSAT  |             | ✓           |           |       |
| MaxHS       | <b>√</b>    | ✓           | 1         | ILP   |
| UWrMaxSat   |             | ✓           | 1         | ILP   |
| Open-WBO    |             | ✓           |           |       |
| CGSS        |             | ✓           |           |       |

- ► Solvers are using a combination of techniques!
- ► ILP is becoming popular to solve some instances!

### **Solvers**

#### New solvers:

- ► MaxCDCL by Jordi Coll et al.

  Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyá, Djamal Habet, Kun He:

  Combining Clause Learning and Branch and Bound for MaxSAT. CP 2021:

  38:1-38:18
- ► CGSS by Hannes Ihalainen, Jeremias Berg, Matti Järvisalo Hannes Ihalainen, Jeremias Berg, Matti Järvisalo: Refined Core Relaxation for Core-Guided MaxSAT Solving. CP 2021: 28:1-28:19

# Results

Unweighted: 594 instances

| Solver | #Solved | Time (Avg) |
|--------|---------|------------|
|        |         |            |
|        |         |            |
|        |         |            |

Weighted: 607 instances

| Solver | #Solved | Time (Avg) |
|--------|---------|------------|
|        |         |            |
|        |         |            |
|        |         |            |

# Results

Unweighted: 594 instances

| Solver               | #Solved | Time (Avg) |
|----------------------|---------|------------|
| CASHWMaxSAT-CorePlus | 438     | 181.69     |
| CASHWMaxSAT-Plus     | 433     | 184.96     |
| UWrMaxSat-SCIP       | 432     | 308.53     |

Weighted: 607 instances

| Solver | #Solved | Time (Avg) |
|--------|---------|------------|
|        |         |            |
|        |         |            |
|        |         |            |

# Results

**Unweighted**: 594 instances

| Solver               | #Solved | Time (Avg) |
|----------------------|---------|------------|
| CASHWMaxSAT-CorePlus | 438     | 181.69     |
| CASHWMaxSAT-Plus     | 433     | 184.96     |
| UWrMaxSat-SCIP       | 432     | 308.53     |

Weighted: 607 instances

| Solver               | #Solved | Time (Avg) |
|----------------------|---------|------------|
| CASHWMaxSAT-CorePlus | 438     | 304.82     |
| CASHWMaxSAT-Plus     | 435     | 303.16     |
| UWrMaxSat-SCIP       | 427     | 305.70     |

### **Detailed Results**

#### Unweighted



# **Detailed Results**

Weighted



|                | Unweighted |        | Weighted |        |
|----------------|------------|--------|----------|--------|
| Solver         | 800s       | 1 hour | 500s     | 1 hour |
| UWrMaxSat      |            |        |          |        |
| UWrMaxSat+SCIP |            |        |          |        |

- ► SCIP + UWrMaxSat solves more instances than pure UWrMaxSat over 1 hour.
- UWrMaxSat solves more than pure SCIP over shorter period.
- ► ILP solvers can improve the performance of MaxSAT solvers!

|                | Unweighted |        | Wei  | ghted  |
|----------------|------------|--------|------|--------|
| Solver         | 800s       | 1 hour | 500s | 1 hour |
| UWrMaxSat      |            | 407    |      | 407    |
| UWrMaxSat+SCIP |            | 432    |      | 427    |

- ► SCIP + UWrMaxSat solves more instances than pure UWrMaxSat over 1 hour.
- UWrMaxSat solves more than pure SCIP over shorter period.
- ► ILP solvers can improve the performance of MaxSAT solvers!

|                | Unweighted |        | Weighted |        |
|----------------|------------|--------|----------|--------|
| Solver         | 800s       | 1 hour | 500s     | 1 hour |
| UWrMaxSat      | 378        | 407    | 352      | 407    |
| UWrMaxSat+SCIP | 339        | 432    | 297      | 427    |

- ► SCIP + UWrMaxSat solves more instances than pure UWrMaxSat over 1 hour.
- ► UWrMaxSat solves more than pure SCIP over shorter period.
- ► ILP solvers can improve the performance of MaxSAT solvers!

|                | Unweighted |        | Wei  | ghted  |
|----------------|------------|--------|------|--------|
| Solver         | 800s       | 1 hour | 500s | 1 hour |
| UWrMaxSat      | 378        | 407    | 352  | 407    |
| UWrMaxSat+SCIP | 339        | 432    | 297  | 427    |

- ► SCIP + UWrMaxSat solves more instances than pure UWrMaxSat over 1 hour.
- ► UWrMaxSat solves more than pure SCIP over shorter period.
- ► ILP solvers can improve the performance of MaxSAT solvers!

### **SCIP** with other solvers

#### Results

Unweighted: SCIP (800s) + other solver (2800s)

| Solver               | #Solved   |
|----------------------|-----------|
| SCIP + MaxHS         | 430 → 446 |
| SCIP + EvalMaxSAT    | 426 → 439 |
| CASHWMaxSAT-CorePlus | 438       |

Weighted: SCIP (500s) + other solver (3100s)

| Solver               | #Solved   |
|----------------------|-----------|
| SCIP + MaxHS         | 426 → 440 |
| SCIP + WMaxCDCL      | 422 → 440 |
| CASHWMaxSAT-CorePlus | 438       |

Note that CASHWMaxSAT-CorePlus already uses SCIP.

# Incomplete Track

# Ranking for incomplete tracks

- ► Incomplete score: computed by the sum of the ratios between the best solution found by a given solver and the best known solution:
  - ► SCORE(solver, i) =  $\frac{\text{(cost of best known solution for i} + 1)}{\text{(cost of solution for i found by solver} + 1)}$
  - ► For an instance *i* score is 0 if no solution was found by that solver
  - ightharpoonup For each instance the incomplete score is a value in [0,1]
- ► Ranking based on average of all scores.

### **Solvers**

- DT-HyWalk (new)
  - ► Local search and a SAT solver based algorithm (TT-Open-WBO-Inc)
- noSAT-MaxSAT (new)
  - ► Local search without a SAT solver.
- ► NuWLS-c (new)
  - ► Local search and a SAT solver based algorithm (TT-Open-WBO-Inc)
- ► Exact
- ► Loandra
- ► Open-WBO-inc (two variants)\*
- ► TT-Open-WBO-Inc (three variants)

#### Only weighted track

# Incomplete track: Unweighted (60 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| NuWLS-c                      | 0.807       |
| DT-Hywalk                    | 0.773       |
| TT-Open-WBO-inc (g variant)  | 0.769       |
| TT-Open-WBO-inc (is variant) | 0.764       |
| SatLike-c (2021 variant)     | 0.764       |
| TT-Open-WBO-inc (i variant)  | 0.756       |
| Loandra                      | 0.634       |
| noSAT-MaxSAT                 | 0.517       |
| Exact                        | 0.426       |

# Incomplete track: Unweighted (300 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| NuWLS-c                      | 0.895       |
| DT-Hywalk                    | 0.874       |
| TT-Open-WBO-inc (i variant)  | 0.868       |
| TT-Open-WBO-inc (is variant) | 0.866       |
| TT-Open-WBO-inc (g variant)  | 0.864       |
| SatLike-c (2021 variant)     | 0.863       |
| Loandra                      | 0.781       |
| noSAT-MaxSAT                 | 0.596       |
| Exact                        | 0.481       |

# Incomplete track: Weighted (60 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| NuWLS-c                      | 0.759       |
| SatLike-ck (2021 variant)    | 0.750       |
| DT-Hywalk                    | 0.732       |
| TT-Open-WBO-inc (g variant)  | 0.728       |
| TT-Open-WBO-inc (is variant) | 0.726       |
| TT-Open-WBO-inc (i variant)  | 0.720       |
| Loandra                      | 0.693       |
| Open-WBO-inc-comp            | 0.689       |
| Open-WBO-inc-satlike         | 0.654       |
| Exact                        | 0.475       |
| noSAT-MaxSAT                 | 0.442       |

# Incomplete track: Weighted (300 seconds)

| Solver                       | Score (avg) |
|------------------------------|-------------|
| NuWLS-c                      | 0.846       |
| Loandra                      | 0.814       |
| Loandra (2021 variant)       | 0.806       |
| DT-Hywalk                    | 0.798       |
| TT-Open-WBO-inc (i variant)  | 0.791       |
| TT-Open-WBO-inc (g variant)  | 0.777       |
| TT-Open-WBO-inc (is variant) | 0.776       |
| Open-WBO-inc-comp            | 0.774       |
| Open-WBO-inc-satlike         | 0.750       |
| Exact                        | 0.541       |
| noSAT-MaxSAT                 | 0.512       |

### **Observations**

- ▶ Improvements to last year in both weighted and unweighted solvers.
- ► Hybrid solvers combining many different algorithms seem most effective.
- ► Size of benchmarks poses increasingly severe challenges.
  - ► For some solvers, even reading some benchmarks within 60s was challenging

# Incremental Track

# Incremental track: Overview

- ► Various problem domains call for procedures where a sequence of related optimization problems is solved
  - ▶ adding or removing constraints, modifying objective function
- ► Incremental solving: avoid computation from scratch, reuse information from previous calls
- ► MaxSAT solving techniques can be adapted to incremental settings
  - nontrivial from both theoretical and practical perspectives
- New experimental track: motivate and support the development of incremental MaxSAT solvers and applications
  - ► facilitated by IPAMIR: generic API for incremental MaxSAT solving, built on IPASIR (API for incremental SAT)

# Incremental track: Submissions

- ▶ 5 benchmark submissions:
  - ► Bi-objective Boolean optimization: adding hard clauses
  - ► MLIC-SeeSaw: adding hard clauses + assumptions
  - Extension enforcement in abstract argumentation: adding hard clauses
  - ► Learning boosted decision trees via AdaBoost: changing weights of soft literals
  - ► Proof obligations in bit-level PDR: assumptions
- ▶ 3 solver submissions:
  - ► EvalMaxSAT: core-guided
  - ► iMaxHS: implicit hitting set based
  - ► UWrMaxSat (2 versions): core-guided (+ ILP)

# Incremental track: Results

On each benchmark application, **rank** of solver determined by **number of solved instances** (out of 100). Ties are broken by cumulative CPU time.

# Incremental track: Results

On each benchmark application, **rank** of solver determined by **number of solved instances** (out of 100). Ties are broken by cumulative CPU time.

| Solver         | rank (number of solved instances) |        |               |               |        |
|----------------|-----------------------------------|--------|---------------|---------------|--------|
|                | BiOptSat                          | SeeSaw | ExtEnf        | AdaBoost      | PDR    |
| EvalMaxSAT     | 4 (28)                            | 1 (19) | 2 (40)        | 4 (16)        | 1 (44) |
| iMaxHS         | 3 (45)                            | 2 (18) | <b>1</b> (48) | <b>1</b> (23) | 3 (36) |
| UWrMaxSat      | <b>1</b> (50)                     | 3 (6)  | 3 (38)        | 2 (17)        | 2 (38) |
| UWrMaxSat+SCIP | 2 (50)                            | N/A    | 4 (37)        | 3 (17)        | 4 (31) |

# Incremental track: Observations

- Solver performance application-dependent
  - ► EvalMaxSAT, iMaxHS, and UWrMaxSat ranked first on some benchmark, all solvers ranked second on some benchmark
- Some benchmarks extremely hard to solve: under a fifth of instances solved, no matter which solver chosen
- Adaptive benchmarks: the sequence of IPAMIR calls depends on the results of previous solve calls
  - ► How to clearly rank solvers in this case?
- ► Initially all solvers had bugs on some benchmarks: testing is tedious as no concrete applications were available
  - ▶ New benchmark applications will serve as a basis for testing solvers
  - ► Unit tests and fuzzers for IPAMIR?

Hoping for more incremental solvers and benchmark applications next year!

# Webpages

#### MaxSAT Evaluation 2022 webpage

https://maxsat-evaluations.github.io/2022/

- Detailed results for each instance
- Description of the solvers and benchmarks
- Source code of the solvers
- ► Benchmarks and log files.

#### MaxSAT Lib

http://www.cs.toronto.edu/maxsat-lib/

- ► Collection of all MaxSat instances submitted to the Evaluation.
- ► Best known costs of benchmarks.

### **Thanks**

Thanks to everyone that contributed solvers and benchmarks! Without you this evaluation would not be possible!

Thanks to StarExec for allowing us to use their cluster:



Thanks to FCCI for supporting the incremental track with computational and data storage resources:

https://www2.helsinki.fi/en/infrastructures/fcci