STAT 401A - Statistical Methods for Research Workers Multiple regression analysis

Jarad Niemi (Dr. J)

Iowa State University

last updated: November 11, 2014

Potato yield

Based on exercise 10.25:

Nitrogen and water are important factors influencing potato production. The yield (t / ha) response of Russet Burbank potatoes to six rates of N fertilization (0-250 kg N / ha) with and without supplemental irrigation was studied at four on farm sites in 1995 in the upper St-John River Valley of New Brunswick, Canada.

Belanger et al., (2000) "Yield Response of Two Potato Cultivars to Supplemental Irrigation and N fertilization

in New Brunswick," American Journal of Potato Research 77:11-21

Build a model that accurately captures the relationship between nitrogen rate and yield in these data.

	yield	${\tt N.rate}$	irrigated	sit	te
1	23.4	0	no	Site	1
2	24.2	0	no	Site	1
3	23.2	0	no	Site	1
4	25.6	0	no	Site	1
5	26.3	50	no	Site	1
6	25.2	50	no	Site	1
7	26.5	50	no	Site	1
8	26.7	50	no	Site	1
9	24.6	100	no	Site	1
10	23.7	100	no	Site	1
11	25.5	100	no	Site	1
12	24.4	100	no	Site	1
13	25.4	150	no	Site	1
14	23.8	150	no	Site	1
15	27.1	150	no	Site	1
16	26.0	150	no	Site	1
17	28.0	200	no	Site	1
18	28.9	200	no	Site	1
19	28.8	200	no	Site	1
20	28.6	200	no	Site	1
21	22.9	250	no	Site	1
22	22.8	250	no	Site	1
23	22.1	250	no	Site	1
24	20.0	250	no	Site	1
25	30.1	0	yes	Site	1

Foreshadowing

Building a model

Section 10.4.7 Informal Tests in Model Fitting:

Tests for hypotheses about regression coefficients – t-tests and extra-sum-of-squares F-tests – are valuable for two purposes: for formally providing evidence regarding questions of interest in a final model and for exploring models by testing potential terms at the exploratory stage.

 H_0 : the β s are zero

 H_1 : at least one of the β s are non-zero

Steps to building the model

Add the following variables in order

- 1. nitrogen rate
- 2. irrigated
- 3. site
- 4. site*irrigated
- 5. rate*site*irrigated
- 6. rate²*site*irrigated

For each new model:

- 1. Show the mathematical model
- 2. Show SAS code to fit the model
- 3. Show a plot to help interpret the model

Simple linear regression model

Consider the simple linear regression model with

- Y_i : yield for observation i
- N_i: nitrogen rate for observation i

$$Y_i \stackrel{ind}{\sim} N(\mu_i, \sigma^2)$$

with

$$\mu_i = \beta_0 + \beta_1 N_i$$

```
DATA potato;
  INFILE 'potato.csv' DSD FIRSTOBS=2;
  INPUT site $ year irrigated $ Nrate meanyield yield;
PROC GLM:
  MODEL yield = Nrate / SOLUTION;
  RUN;
```

		5	Sum of			
Source	DF	Sc	quares	Mean Square	F Value	Pr > F
Model	1	240	. 25400	240.25400	4.29	0.0397
Error	190	10639	. 18913	55.99573		
Corrected Total	191	10879	. 44313			
R-Square	Coeff	Var	Root MS	SE yield Me	an	
0.022083	24.0	6844	7.48303	31.090	62	
			Standard	ı		

Parameter	Estimate	Error	t Value	Pr > t
Intercept	29.45312500	0.95739062	30.76	<.0001
Nrate	0.01310000	0.00632431	2.07	0.0397

Simple linear regression

```
p <- ggplot(d, aes(x=N.rate, y=yield))+
    geom_point(aes(shape=irrigated, color=irrigated))+
    facet_urap("site)
m = lm(yield"N.rate, d)
d2 = data.frame(N.rate = 0:250)
d2$yield = predict(m,d2)
p+geom_line(aes(x=N.rate, y=yield), d2)</pre>
```


Parallel lines model for irrigation

Add irrigation into the model

• Ii: indicator that the observation was irrigated

$$I_i = \left\{ egin{array}{ll} 1 & ext{if observation } i ext{ was irrigated} \\ 0 & ext{if observation } i ext{ was not irrigated} \end{array}
ight.$$

$$\mu_i = \beta_0 + \beta_1 N_i + \beta_2 I_i$$

- If $I_i = 0$, then $\mu_i = \beta_1 N_i + \beta_0$
- If $I_i = 1$, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_2$

```
PROC GLM;
  CLASS irrigated(ref='no');
  MODEL yield = Nrate irrigated / SOLUTION;
  RUN;
```

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	2	5377.99483	2688.99742	92.38	<.0001
Error	189	5501.44829	29.10819		
Corrected Total	191	10879 44313			

R-Square	Coeff Var	Root MSE	yield Mean
0.494326	17.35314	5.395201	31.09062

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
Intercept	24.28020833 B	0.79251407	30.64	<.0001
Nrate	0.01310000	0.00455978	2.87	0.0045
irrigated yes	10.34583333 B	0.77873016	13.29	<.0001
irrigated no	0.00000000 B			

Parallel lines model for irrigation

Additive model for irrigation and site

Add site into the model:

- S1; indicator that the observation was from Site 1
- S2; indicator that the observation was from Site 2
- S3; indicator that the observation was from Site 3

$$Sj_i = \left\{ egin{array}{ll} 1 & \mbox{if observation } i \mbox{ was from Site } j \\ 0 & \mbox{if observation } i \mbox{ was not from Site } j \end{array}
ight.$$

$$\mu_{i} = \beta_{0} + \beta_{1}N_{i} + \beta_{2}I_{i} + \beta_{3}S1_{i} + \beta_{4}S2_{i} + \beta_{5}S3_{i}$$

- If $I_i = 0$ and Site 4, then $\mu_i = \beta_1 N_i + \beta_0$
- If $I_i = 0$ and Site 1, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_3$
- If $I_i = 1$ and Site 4, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_2$
- If $I_i = 1$ and Site 1, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_2 + \beta_3$

```
PROC GLM;
 CLASS site irrigated(ref='no');
 MODEL yield = Nrate irrigated site / SOLUTION;
 RUN;
```

The GLM Procedure

Dependent Variable: yield

			5	Sum of			
Source		DF	Sc	quares	Mean Square	F Value	Pr > F
Model		5	8621	.00088	1724.20018	142.00	<.0001
Error		186	2258	. 44225	12.14216		
Corrected Total		191	10879	.44313			
	R-Square	Coeff	Var	Root M	SE yield M	ean	
	0.792412	11.2	0775	3.4845	61 31.09	062	

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Nrate	1	240.254000	240.254000	19.79	<.0001
irrigated	1	5137 740833	5137 740833	423.13	< .0001

site 3 3243.006042 1081.002014 89.03 <.0001

		Standard		
Parameter	Estimate	Error	t Value	Pr > t
Intercept	21.17083333 B	0.67209922	31.50	<.0001
Nrate	0.01310000	0.00294499	4.45	<.0001
irrigated yes	10.34583333 B	0.50295300	20.57	<.0001
irrigated no	0.00000000 B			
site Site 1	3.89791667 B	0.71128296	5.48	<.0001
site Site 2	9.49375000 B	0.71128296	13.35	<.0001
site Site 3	-0.95416667 B	0.71128296	-1.34	0.1814
site Site 4	0.00000000 B			

Additive model for irrigation

Parallel lines model for each irrigation-site combination

Add the irrigation-site interaction:

$$\mu_{i} = \beta_{0} + \beta_{1}N_{i} + \beta_{2}I_{i} + \beta_{3}S1_{i} + \beta_{4}S2_{i} + \beta_{5}S3_{i} + \beta_{6}S1_{i}I_{i} + \beta_{7}S2_{i}I_{i} + \beta_{8}S3_{i}I_{i}$$

- If $I_i = 0$ and Site 4, then $\mu_i = \beta_1 N_i + \beta_0$
- If $I_i = 0$ and Site 1, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_3$
- If $I_i = 0$ and Site 2, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_4$
- If $I_i = 0$ and Site 3, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_5$
- If $I_i = 1$ and Site 4, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_2$
- If $I_i=1$ and Site 1, then $\mu_i=\beta_1 N_i+\beta_0+\beta_3+\beta_2+\beta_6$
- If $I_i=1$ and Site 2, then $\mu_i=\beta_1N_i+\beta_0+\beta_4+\beta_2+\beta_7$
- If $I_i = 1$ and Site 3, then $\mu_i = \beta_1 N_i + \beta_0 + \beta_5 + \beta_2 + \beta_8$

```
PROC GLM;
  CLASS site irrigated(ref='no');
  MODEL yield = Nrate irrigated|site / SOLUTION;
  RUN;
                                        The GLM Procedure
Dependent Variable: yield
```

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
Model	8	9762.59546	1220.32443	199.96	<.0001
Error	183	1116.84767	6.10299		
Corrected Total	191	10879.44313			

R-Square	Coeff Var	Root MSE	yield Mean
0.897343	7.945879	2.470424	31.09062

Source	DF	Type III SS	Mean Square	F Value	Pr > F
Nrate	1	240.254000	240.254000	39.37	<.0001
site	3	3243.006042	1081.002014	177.13	<.0001
irrigated	1	5137.740833	5137.740833	841.84	<.0001
site*irrigated	3	1141.594583	380.531528	62.35	<.0001

```
PROC GLM;
  CLASS site irrigated(ref='no');
  MODEL yield = Nrate irrigated|site / SOLUTION;
  RUN;
```

Sum of

					Sui	II OT			
Source			DI	7	Squ	ares	Mean Square	F Value	Pr > F
Model			8	3	9762.5	9546	1220.32443	199.96	<.0001
Error			183	3	1116.8	4767	6.10299		
Corrected To	tal		191	L	10879.4	4313			
							Standard		
Parameter					Estimate		Error	t Value	Pr > t
Intercept				23	. 48750000	В	0.56780729	41.37	<.0001
Nrate				0	.01310000		0.00208789	6.27	<.0001
irrigated	yes			5	.71250000	В	0.71314986	8.01	<.0001
irrigated	no			0	.00000000	В			-
site	Site	1		0	.02916667	В	0.71314986	0.04	0.9674
site	Site	2		3	.99166667	В	0.71314986	5.60	<.0001
site	Site	3		-0	.85000000	В	0.71314986	-1.19	0.2348
site	Site	4		0	.00000000	В		•	•
site*irrigate	ed Site	1	yes	7	.73750000	В	1.00854621	7.67	<.0001
site*irrigate	ed Site	1	no	0	.00000000	В			
site*irrigate	ed Site	2	yes	11	.00416667	В	1.00854621	10.91	<.0001
site*irrigate	ed Site	2	no	0	.00000000	В			-
site*irrigate	ed Site	3	yes	-0	. 20833333	В	1.00854621	-0.21	0.8366
site*irrigate	ed Site	3	no	0	.00000000	В			
site*irrigate	ed Site	4	yes	0	.00000000	В			

Parallel lines model for irrigation*site

Independent lines model for each irrigation-site combination

Add the site-irrigation combination interacted with nitrogen rate

$$\mu_{i} = \beta_{0} + \beta_{1}I_{i} + \beta_{2}S1_{i} + \beta_{3}S2_{i} + \beta_{4}S3_{i} + \beta_{5}S1_{i}I_{i} + \beta_{6}S2_{i}I_{i} + \beta_{7}S3_{i}I_{i} + \beta_{8}N_{i} + \beta_{9}N_{i}I_{i} + \beta_{10}N_{i}S1_{i} + \beta_{11}N_{i}S2_{i} + \beta_{12}N_{i}S3_{i} + \beta_{13}N_{i}S1_{i}I_{i} + \beta_{14}N_{i}S2_{i}I_{i} + \beta_{15}N_{i}S3_{i}I_{i}$$

- If $I_i = 0$ and Site 4, then $\mu_i = \beta_0 + \beta_8 N_i$
- If $I_i = 1$ and Site 3, then $\mu_i = \beta_0 + \beta_1 + \beta_4 + \beta_7 + (\beta_8 + \beta_9 + \beta_{12} + \beta_{15})N_i$

```
PROC GLM;
  CLASS site irrigated(ref='no');
  MODEL yield = irrigated|site|Nrate / SOLUTION;
  RUN;
```

Source Model Error Corrected Total	DF 15 176 191	Sum of Squares 10091.35274 788.09038 10879.44313	Mean Square 672.75685 4.47779	F Value 150.24	Pr > F <.0001
R-Sq 0.92			ot MSEyield N 116078		
0.32	7502 0.0	. 2.	110070 31.03	7002	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
irrigated	1	929.263638	929.263638	207.53	<.0001
site	3	1043.558521	347.852840	77.68	<.0001
site*irrigated	3	269.564182	89.854727	20.07	<.0001
Nrate	1	240.254000	240.254000	53.65	<.0001
Nrate*irrigated	1	145.146446	145.146446	32.41	<.0001
Nrate*site	3	71.216679	23.738893	5.30	0.0016
Nrate*site*irrigated	3	112.394161	37.464720	8.37	<.0001

				Standard		
Parameter		Estimate		Error	t Value	Pr > t
Intercept		24.42857143	В 0	.76575242	31.90	<.0001
irrigated	yes	6.62142857	B 1	.08293746	6.11	<.0001
site	Site 1	0.90595238	B 1	.08293746	0.84	0.4040
site	Site 2	4.51309524	B 1	.08293746	4.17	<.0001
site	Site 3	-0.92142857	B 1	.08293746	-0.85	0.3960
site*irrigated	Site 1 yes	1.49285714	B 1	.53150484	0.97	0.3310
site*irrigated	Site 2 yes	7.47380952	B 1	.53150484	4.88	<.0001
site*irrigated	Site 3 yes	-4.25119048	B 1	.53150484	-2.78	0.0061
Nrate		0.00557143	В 0	.00505839	1.10	0.2722
Nrate*irrigated	yes	-0.00727143	В 0	.00715365	-1.02	0.3108
Nrate*site	Site 1	-0.00701429	B 0	.00715365	-0.98	0.3282
Nrate*site	Site 2	-0.00417143	B 0	.00715365	-0.58	0.5606
Nrate*site	Site 3	0.00057143	В 0	.00715365	0.08	0.9364
Nrate*site*irrigated	Site 1 yes	0.04995714	В 0	.01011679	4.94	<.0001
Nrate*site*irrigated	Site 2 yes	0.02824286	B 0	.01011679	2.79	0.0058
Nrate*site*irrigated	Site 3 yes	0.03234286	B 0	.01011679	3.20	0.0016

Independent lines model for each site-irrigated combination

Independent curves model for each irrigation-site combination

Add the site-irrigation combination interacted with nitrogen rate squared:

$$\begin{array}{ll} \mu_{i} = & \beta_{0} + \beta_{1}I_{i} \\ & + \beta_{2}S1_{i} + \beta_{3}S2_{i} + \beta_{4}S3_{i} \\ & + \beta_{5}S1_{i}I_{i} + \beta_{6}S2_{i}I_{i} + \beta_{7}S3_{i}I_{i} \\ & + \beta_{8}N_{i} \\ & + \beta_{9}N_{i}I_{i} \\ & + \beta_{10}N_{i}S1_{i} + \beta_{11}N_{i}S2_{i} + \beta_{12}N_{i}S3_{i} \\ & + \beta_{13}N_{i}S1_{i}I_{i} + \beta_{14}N_{i}S2_{i}I_{i} + \beta_{15}N_{i}S3_{i}I_{i} \\ & + \beta_{16}N_{i}^{2} \\ & + \beta_{17}N_{i}^{2}I_{i} \\ & + \beta_{18}N_{i}^{2}S1_{i} + \beta_{19}N_{i}^{2}S2_{i} + \beta_{20}N_{i}^{2}S3_{i} \\ & + \beta_{21}N_{i}^{2}S1_{i}I_{i} + \beta_{22}N_{i}^{2}S2_{i}I_{i} + \beta_{23}N_{i}^{2}S3_{i}I_{i} \end{array}$$

- If $I_i = 0$ and Site 4, then $\mu_i = \beta_0 + \beta_8 N_i + \beta_{16} N_i^2$
- If $I_i=1$ and Site 3, then $\mu_i=\beta_0+\beta_1+\beta_4+\beta_{12}+(\beta_8+\beta_9+\beta_{12}+\beta_{15})N_i+(\beta_{16}+\beta_{17}+\beta_{20}+\beta_{23})N_i^2$

```
PROC GLM;
  CLASS site irrigated(ref='no');
  MODEL yield = irrigated|site|Nrate irrigated|site|Nrate*Nrate / SOLUTION;
  RUN;
```

Sum of

Source	DF	Squ	ares	Mean	Square	F Value	Pr > F
Model	23	10521.1	0013	45	7.43914	214.46	<.0001
Error	168	358.3	4300		2.13299		
Corrected Total	191	10879.4	4313				
R-Square	Coef	f Var	Root	MSE	vield Me	ean	
0.967062	4.6	97485	1.46	0477	31.090	062	
Source	DF	Type II	I SS	Mean	Square	F Value	Pr > F
irrigated	1	5137.74	0833	5137	.740833	2408.70	<.0001
site	3	3243.00	6042	1081	.002014	506.80	<.0001
site*irrigated	3	1141.59	4583	380	.531528	178.40	<.0001
Nrate	1	240.25	4000	240	.254000	112.64	<.0001
Nrate*irrigated	1	145.14	6446	145	.146446	68.05	<.0001
Nrate*site	3	71.21	6679	23	.738893	11.13	<.0001
Nrate*site*irrigated	3	112.39	4161	37	.464720	17.56	<.0001
Nrate*Nrate	1	298.93	3393	298	.933393	140.15	<.0001
Nrate*Nrate*irrigate	1	29.50	0952	29	.500952	13.83	0.0003
Nrate*Nrate*site	3	73.21	5565	24	.405188	11.44	<.0001
Nrat*Nrat*site*irrig	3	28.09	7470	9	.365823	4.39	0.0053

					Standard		
Parameter			Estimate		Error	t Value	Pr > t
Intercept			23.98660714	В	0.66183500	36.24	<.0001
irrigated	yes		6.99642857	В	0.93597603	7.48	<.0001
site	Site	1	-0.14017857	В	0.93597603	-0.15	0.8811
site	Site :	2	4.17232143	В	0.93597603	4.46	<.0001
site	Site 3	3	-2.34107143	В	0.93597603	-2.50	0.0133
site*irrigated	Site	1 yes	-0.49821429	В	1.32366999	-0.38	0.7071
site*irrigated	Site :	2 yes	4.76696429	В	1.32366999	3.60	0.0004
site*irrigated	Site 3	3 yes	-5.24375000	В	1.32366999	-3.96	0.0001
Nrate			0.01883036	В	0.01245082	1.51	0.1323
Nrate*irrigated	yes		-0.01852143	В	0.01760812	-1.05	0.2944
Nrate*site	Site	1	0.02436964	В	0.01760812	1.38	0.1682
Nrate*site	Site :	2	0.00605179	В	0.01760812	0.34	0.7315
Nrate*site	Site 3	3	0.04316071	В	0.01760812	2.45	0.0153
Nrate*site*irrigated	Site	1 yes	0.10968929	В	0.02490164	4.40	<.0001
Nrate*site*irrigated	Site :	2 yes	0.10944821	В	0.02490164	4.40	<.0001
Nrate*site*irrigated	Site :	3 yes	0.06211964	В	0.02490164	2.49	0.0136
Nrate*Nrate			-0.00005304	В	0.00004781	-1.11	0.2688
Nrate*Nrate*irrigate	yes		0.00004500	В	0.00006761	0.67	0.5066
	a			_			
Nrate*Nrate*site	Site	_	-0.00012554	_	0.00006761	-1.86	0.0651
Nrate*Nrate*site	Site :	_	-0.00004089	_	0.00006761	-0.60	0.5461
Nrate*Nrate*site	Site	3	-0.00017036	В	0.00006761	-2.52	0.0127
N	a		0 0000000		0.00000504	0.50	0.0404
Nrat*Nrat*site*irrig			-0.00023893		0.00009561	-2.50	0.0134
Nrat*Nrat*site*irrig		•	-0.00032482		0.00009561	-3.40	0.0008
Nrat*Nrat*site*irrig	Site	s yes	-0.00011911	В	0.00009561	-1.25	0.2146

Independent curves model for each site-irrigated combination

Summary

Demonstrated model construction at the exploratory stage using informal tests to help construct the model.