MLT Homework 4

Ana Borovac Jonas Haslbeck Bas Haver

October 4, 2018

Question 1

We have shown that for a finite hypothesis class \mathcal{H} , $VCdim(\mathcal{H}) \leq \lfloor \log(|\mathcal{H}|) \rfloor$. However, this is just an upper bound. The VC-dimension of a class can be much lower than that.

Subquestion 1.1

Find an example of a class \mathcal{H} of functions over the real interval $\mathcal{X} = [0,1]$ such that \mathcal{H} is infinite while $VCdim(\mathcal{H}) = 1$.

Solution

Let's define hypothesis class as:

$$\mathcal{H} = \{h_a : a \in [0,1]\}$$

$$h_a(x) = \begin{cases} 1; & x \ge a \\ 0; & x < a \end{cases}$$

From definition we know $|\mathcal{H}| = \infty$. Now we need to prove that $VCdim(\mathcal{H}) = 1$.

(a) If point is labeled "1".

(b) If point is labeled "0".

Figure 1: Proof that $VCdim(\mathcal{H}) \geq 1$.

- $VCdim(\mathcal{H}) \geq 1$: The proof we can see from the figure ??.
- $VCdim(\mathcal{H}) \leq 1$: From the figure ?? it is seen that hypothesis class \mathcal{H} does not shatter a set of two points (no matter how we position them).

Figure 2: The problem we have when trying to shatter a set of two points.

Subquestion 1.2

Give an example of a finite hypothesis class \mathcal{H} over domain $\mathcal{X} = [0,1]$, where $VCdim(\mathcal{H}) = \lfloor \log_2(|\mathcal{H}|) \rfloor$

Solution

Let's define hypothesis class:

$$\mathcal{H} = \{h_0, h_1\}$$

where $h_0(x) = 0 \ (\forall x)$ and $h_1(x) = 1 \ (\forall x)$. We would like to prove that $VCdim(\mathcal{H}) = \lfloor \log_2(|\mathcal{H}|) \rfloor = \lfloor \log_2(2) \rfloor = 1$.

- $VCdim(\mathcal{H}) \geq 1$: If we want to label a $x \in [0,1]$ as 1, we pick h_1 as hypothesis, otherwise we pick h_0 . So, $VCdim(\mathcal{H}) \geq 1$.
- $VCdim(\mathcal{H}) \leq 1$: Let say that we have a set of two points. If we want to label one of the point with 1 and the other with 0, there does not exist a hypothesis in hypothesis class which can label two points differently.

We can conclude that $VCdim(\mathcal{H}) = 1$.

Question 2

6.8

Solution

Question 3

Let \mathcal{H} be the class of signed intervals, that is, $\mathcal{H} = \{h_{a,b,s} : a \leq b, s \in \{-1,1\}\}$ where

$$h_{a,b,s}(x) = \begin{cases} s & \text{if } x \in [a,b] \\ -s & \text{if } x \notin [a,b] \end{cases}$$

Calculate $VCdim(\mathcal{H})$.

Solution

Claim: $VCdim(\mathcal{H}) = 3$.

• $VCdim(\mathcal{H}) \geq 3$: On figure ?? it is seen that set of three points can be shattered. Furthermore $VCdim(\mathcal{H}) \geq 3$.

Figure 3: Proof that $VCdim(\mathcal{H}) \geq 3$.

• $VCdim(\mathcal{H}) \leq 3$: There does not exist a hypothesis $h \in \mathcal{H}$ that lables the situation on figure ??. From here we can conclude $VCdim(\mathcal{H}) \leq 3$.

Figure 4: Proof that $VCdim(\mathcal{H}) \leq 3$.

Question 4

VC of union: Let $\mathcal{H}_1, \ldots, \mathcal{H}_r$ be hypothesis classes over some fixed domain set \mathcal{X} . Let $d = \max_i VCdim(\mathcal{H}_i)$ and assume for simplicity that $d \geq 3$.

Subquestion 4.1

Prove that

$$VCdim(\bigcup_{i=1}^{r} \mathcal{H}_i) \le 4d \log(2d) + 2 \log(r).$$

Solution