器械中有大一类产品是诊断产品,譬如,试剂盒、超声、核磁共振、X 射线等。诊断产品做临床试验主要验证的是诊断准确率,譬如,灵敏度、特异度、阳性预测率、阴性预测率、ROC 曲线下面积等指标。如果一个新的产品要通过做临床试验提交药监局批准上市,需要考虑常见的几种诊断试验设计类型。

根据有无金标准,设计类型可以分为以下四种类型:

(1) 有金标准的单组设计:

此时主要衡量新诊断产品准确率是否达到一定标准。譬如,通过做临床试验验证乳腺超声的灵敏度是否大于 0.85,特异度是否大于 0.8。

		金林		
新诊断产品		有病	无病	
	阳性	а	b	a + b
	阴性	С	d	c + d
		a + c	b+d	a+b+c+d

灵敏度= $\frac{a}{a+c}$

特异度= $\frac{d}{b+d}$

可以采用精确概率法或者近似正态 Z 检验对灵敏度和特异度是否达到目标值进行检验。

(2) 有金标准的两组配对设计:

此时,主要衡量新诊断产品是否优于或者非劣于对照产品。譬如,通过做临床试验验证 3D 乳腺 X 射线的灵敏度和特异度是否优于 2D 乳腺射线。

已经过金标准确诊为疾病的受试者							
	对照产品						
		阳性	阴性				
新诊断产品	阳性	a_1	b_1	$a_1 + b_1$			
	阴性	c_1	d_1	$c_1 + d_1$			
$a_1 + c_1$ $b_1 + d_1$ $a_1 + b_1 + c_1 + d_1$							

新诊断产品的灵敏度= $\frac{a_1+b_1}{a_1+b_1+c_1+d_1}$

对照产品的灵敏度= $\frac{a_1+c_1}{a_1+b_1+c_1+a_1}$

若要比较新诊断产品的灵敏度是否优于对照产品,可以采用 McNemar 检验(想一想为什么?)

$$\chi^2_{McNemar} = \frac{(b_1 - c_1)^2}{b_1 + c_1}$$

已经过金标准确诊为健康的受试者							
	对照产品						
		阳性	阴性				
新诊断产品	阳性	a_2	b_2	$a_2 + b_2$			
	阴性	c_2	d_2	$c_2 + d_2$			
$a_2 + c_2$ $b_2 + d_2$ $a_2 + b_2 + c_2 + d_2$							

新诊断产品的特异度= $\frac{c_2+d_2}{a_2+b_2+c_2+d_2}$

对照产品的特异度= $\frac{b_2+d_2}{a_2+b_2+c_2+d_2}$

若要比较新诊断的特异度是否优于对照产品,可以采用 McNemar 检验:

$$\chi^2_{McNemar} = \frac{(b_2 - c_2)^2}{b_2 + c_2}$$

(3) 有金标准的两组平行对照设计:

此时,主要衡量新诊断产品是否优于或者非劣于对照产品。譬如,通过做临床试验验证 3D 乳腺 X 射线的灵敏度和特异度是否优于 2D 乳腺射线。

		金林		
		有病	无病	
新诊断产品	阳性	a_1	b_1	$a_1 + b_1$
	阴性	c_1	d_1	$c_1 + d_1$
		$a_1 + c_1$	$b_1 + d_1$	$a_1 + b_1 + c_1 + d_1$
对照产品	阳性	a_2	b_2	$a_2 + b_2$
	阴性	c_2	d_2	$c_2 + d_2$
		$a_2 + c_2$	$b_2 + d_2$	$a_2 + b_2 + c_2 + d_2$

新诊断产品的灵敏度= $\frac{a_1}{a_1+c_1}$

对照产品的灵敏度= $\frac{a_2}{a_2+c_2}$

若要比较新诊断产品的灵敏度是否优于对照产品,可以采用卡方检验或者近似正态 Z 检验。

新诊断产品的特异度= $\frac{d_1}{b_1+d_1}$

对照产品的特异度= $\frac{d_2}{b_2+d_2}$

若要比较新诊断的特异度是否优于对照产品,可以采用卡方检验或者近似正态 Z 检验。

(4) 无金标准时的两组配对设计:

对比新诊断产品和对照产品用 PPA 和 NPA 衡量。

		对照		
		阳性	阴性	
新诊断产品	阳性	а	b	a + b
	阴性	С	d	c+d
		a+c	b+d	a+b+c+d

$$PPA = \frac{a}{a+c}$$

$$NPA = \frac{d}{b+d}$$

可以采用 McNemar 检验对新诊断和对照产品的阳性比例/阴性比例是否有差异做检验。

影像类诊断器械一般根据是否采用多阅片人,可以分为以下三种类型(以配对设计为例说明,关于平行对照设计可以思考下采用什么分析方法):

1. Matched-Pair design

不考虑阅片人之间的经验差异,用 1 个阅片人(实际中,往往采用两个阅片人+一个裁决者阅片;当两个阅片人判断结果不一致时,裁决者来判断结果是阳性还是阴性)采用新诊断产品和对照产品分别判断影像结果。如下图,阅片人对多个受试者分别采用新诊断产品(treatment)和对照产品(control)产生影像结果并进行判断。统计方法采用 McNemar 检验或 GEE 模型。

2. Clustered Matched-Pair design

不考虑阅片人之间的经验差异,用 1 个阅片人采用新诊断产品和对照产品分别判断影像结果,但是考虑到 cluster 结构,譬如,乳腺 X 射线判断乳腺结果时考虑到左右乳房的相关性,此时采用 clustered Matched pair 设计。统计分析方法采用 clustered McNemar 检验或 GEE 模型。

3. Multiple reader multiple case design 考虑阅片人之间的经验差异,用多个(例如,5个阅片人)阅片人采用新诊断产品和对照产品分别判断影像结果。如下图,多个阅片人对多个受试者分别采用新诊断产品(treatment)和对照产品(control)产生影像结果并进行判断。统计方法采用 MRMC 混合效应模型或者 GEE 模型。

根据试验目的选好试验设计类型后,接下来重要的一步是计算样本量,那么对于有金标准的两组配对设计,样本量怎么计算呢?

诊断试验中有金标准的配对设计主要衡量新诊断产品的诊断准确率(灵敏度,特异度、ROC 曲线下面积)是否优于或者非劣于对照产品。譬如,通过做临床试验验证 3D 乳腺 X 射线的灵敏度和特异度是否优于 2D 乳腺射线。关于配对设计,需要考虑在产品之间诊断结果的相关性,然后计算样本量;如果不通过相关性来计算样本量,也可以通过四格表中的 a, b, c, d 来计算样本量。下面介绍下常见的几种样本量计算方法,并且对比这几种方法在相关性从 0 到 1 变化时的表现。配对设计中,我们对疾病受试者总数和健康受试者总数分别计算。本文以疾病受试者样本量为例,介绍常见的配对设计样本量计算方法。

已经过金标准确诊为疾病的受试者						
	对照产品					
		阳性	阴性			
新诊断产品	阳性	a_1	b_1	$a_1 + b_1$		
	阴性	c_1	d_1	$c_1 + d_1$		
$a_1 + c_1$ $b_1 + d_1$ $a_1 + b_1 + c_1 + d_1$						

已经过金标准确诊为疾病的受试者							
	对照产品 Y0						
		阳性	阴性				
新诊断产品 Y1	阳性	p ₁₁	p ₁₀	p_1			
	阴性	p ₀₁	p ₀₀	$1 - p_1$			
p_0 $1-p_0$ 1							

其中,

$$n = a_1 + b_1 + c_1 + d_1$$

$$p_{11} = \frac{a_1}{n}$$

$$p_{10} = \frac{b_1}{n}$$

$$p_{01} = \frac{c_1}{n}$$

$$p_{00} = \frac{d_1}{n}$$

新产品的灵敏度=
$$p_1 = \frac{a_1 + b_1}{n}$$

对照产品的灵敏度=
$$p_0 = \frac{a_1 + c_1}{n}$$

新诊断产品和对照产品之间的相关性大小:

$$cov(Y_1, Y_0) = \frac{p_1 + p_0 - 2p_1p_0 - p_{10} - p_{01}}{2} = p_{11} - p_1p_0$$

$$var(Y_1) = p_1(1 - p_1)$$

$$var(Y_0) = p_0(1 - p_0)$$

$$\rho = \frac{cov(Y_1, Y_0)}{\sqrt{(var(Y_1)var(Y_0)}} = \frac{p_1 + p_0 - 2p_1p_0 - p_{10} - p_{01}}{2\sqrt{(p_1(1 - p_1)p_0(1 - p_0))}} = \frac{p_{11} - p_1p_0}{\sqrt{(p_1(1 - p_1)p_0(1 - p_0))}}$$

关于cov(Y₁, Y₀)的具体推导参见(Conner 1987, appendix)。

Miettinen 样本量公式 (Miettinen 1968):

$$\frac{\left[Z_{1-\alpha/2}\sqrt{p_{01}+p_{10}}+Z_{1-\beta}\sqrt{p_{01}+p_{10}-\frac{(p_1-p_0)^2(3+p_{01}+p_{10})}{4(p_{01}+p_{10})}}\right]^2}{(p_1-p_0)^2}$$

Conner 样本量公式 (Conner 1987):

$$\frac{\left[Z_{1-\alpha/2}\sqrt{p_{01}+p_{10}}+Z_{1-\beta}\sqrt{p_{01}+p_{10}-(p_{1}-p_{0})^{2}}\right]^{2}}{(p_{1}-p_{0})^{2}}$$

独立两样本率比较的样本量公式(药监局-医疗器械临床试验设计指导原则):

$$\frac{(Z_{1-\alpha/2} + Z_{1-\beta})^2 [p_1(1-p_1) + p_0(1-p_0)]}{(p_1 - p_0)^2}$$

GEE (logit function)样本量公式(Zhang 2014):

$$\frac{(Z_{1-\alpha/2}+Z_{1-\beta})^2[p_1(1-p_1)+p_0(1-p_0)-2\rho\sqrt{p_0(1-p_0)p_1(1-p_1)}]}{[p_0(1-p_0)p_1(1-p_1)](\log\frac{p_1}{(1-p_1)}-\log\frac{p_0}{(1-p_0)})^2}$$

GEE (identity function) 样本量公式 (Liu 1997):

$$\frac{(Z_{1-\alpha/2}+Z_{1-\beta})^2[p_1(1-p_1)+p_0(1-p_0)-2\rho\sqrt{p_0(1-p_0)p_1(1-p_1)}]}{(p_1-p_0)^2}$$

GLMM (Generalized linear mixed model)样本量计算公式(Dang 2008):

$$N = \frac{VAR(\widehat{\beta})(Z_{\alpha/2} - Z_{1-\Delta})^2}{b^2}$$

$$VAR(\widehat{\beta}) = \left(\sum_{N_0} \frac{n_i}{1 + (n_i - 1)\rho_0^* \sigma_0^2} + \sum_{N_1} \frac{n_i}{1 + (n_i - 1)\rho_1^* \sigma_1^2}\right)^{-1} \left[\frac{1}{\pi \rho_0 (1 - p_0)} + \frac{1}{(1 - \pi)p_1 (1 - p_1)}\right].$$

表 1 相关系数对样本量的配对率比较的样本量影响

一类错误/	p_1	p_0	p ₁₀	p ₀₁	ρ	Miettinen	Conner	GEE	独立两样本
二类错误								(Identity/logit)	
0.05 / 0.2	0.9	0.8	0.1	0	0.667	56	77	71 / 75	197
			0.11	0.01	0.583	77	92	87 / 92	197
			0.12	0.02	0.5	96	108	103 / 108	197
			0.13	0.03	0.417	114	124	118 / 125	197
			0.14	0.04	0.333	131	139	134 / 141	197
			0.15	0.05	0.250	148	155	150 / 158	197
			0.16	0.06	0.1667	164	171	165 / 175	197
			0.17	0.07	0.083	181	186	181 / 191	197
			0.18	0.08	0	197	202	197 / 208	197
			0.19	0.09	-0.083	213	218	212 / 224	197
			0.2	0.1	-0.167	229	234	228 / 241	197

通过该表可以发现:

- Conner 方法算得的样本量大于 Miettinen 方法算得的样本量
- Conner 方法算得的样本量跟 GEE (logit)方法算得的样本量接近。
- 当相关性低于 0.5 时, GEE (identity)方法算得的样本量跟 Miettine 方法 算得的样本量接近。

- GEE (logit)方法算得的样本量大于 GEE (identity)算得的样本量
- 当相关性大于 0.1 时,独立两样本方法算得的样本量最大。但是,当相关性小于 0.1 尤其是小于 0 时,独立两样本方法并不保守,算得的样本量小于其他几种方法。

到底选择哪个样本量公式,以下提供几点建议:

- 在试验设计阶段,通过模拟比较或者理论方法比较选择合适的分析方法, 譬如到底是选择 GEE 模型、还是 GLMM 模型还是 McNemar 检验,可 以在设计阶段通过模拟或者理论比较来选择。然后根据选定的方法选择 相应的样本量估计方法。譬如,如果选择 GEE(identity)分析方法,那么 就选择对应的样本量估计方法;如果选择 McNemar 分析方法,那么选择 对应的比较保守的 Conner 方法。
- 根据以往数据来估计相关性的大小,在相关性大于 0 的时候,选择保守的独立两样本方法估计样本量也是可以的。

参考文献:

- 1. Miettinen OS. The matched pairs design in the case of all-or-none responses. Biometrics. 1968;24 (2): 339–352.
- 2. Connor RJ. Sample size for testing differences in proportions for the paired-sample design. Biometrics. 1987; 43 (1): 207–211.
- 3. Zhang S, Cao J, Ahn C. A GEE approach to determine sample size for pre- and post-intervention experiments with dropout. Computational Statistics and Data Analysis. 2014; 69: 114–121.
- 4. Liu G, Liang KY. Sample size calculations for studies with correlated observations. Biometrics. 1997; 53: 937–947.
- 5. Dang TY, Mazumdar S, Houck PR. Sample Size and Power Calculations Based on Generalized Linear Mixed Models with Correlated Binary Outcomes. Computer methods programs biomedicine. 2008; 91(2): 122-127.
- 6. 医疗器械临床试验设计指导原则

