CS 1511 Homework 2 1511

January 15, 2019

1 Question 1

a. $E_{TM} = \{\langle M \rangle | M \text{ is a } TM \text{ and } L(M) = \emptyset \}$ Assume there exists a function S that maps E_{TM} from $HALT_{TM}$ Construct function S that is a mapping reducible function from $HALT_{TM}$ as follows:

- S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
 - 1. Construct TM P as follows:
 - P = "On input x:
 - 1. Run M on input w
 - 2. If M halts on input w, accept Otherwise, reject
 - 2. Output $\langle P \rangle$

Assume that $\langle M, w \rangle$ exists within $HALT_{TM}$, so M halts on input w. Since M halts on input w, $L(P) = \Sigma^*$. Thus, $\langle P \rangle$ does not exist within E_{TM} . This will be the output of $S\langle M, w \rangle$. Assume that $\langle M, w \rangle$ doesn't exist within $HALT_{TM}$, so M doesn't halt on input w. Since M doesn't halt on input w, $L(P) = \emptyset$. Thus, $\langle P \rangle$ exists within E_{TM} . This will be the output of $S\langle M, w \rangle$.

Thus, E_{TM} is reducible from $HALT_{TM}$ and undecideable.

b. $ALL_{TM} = \{ \langle M \rangle | M \text{ is a } TM \text{ and } L(M) = \emptyset \}$ Assume there exists a function S that maps ALL_{TM} from $HALT_{TM}$ Construct function S that is a mapping reducible function from $HALT_{TM}$ as follows:

- S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
 - 1. Construct TM P as follows:

P = "On input x:

- 1. Run M on input w
- 2. If M halts on input w, reject Otherwise, accept
- 2. Output $\langle P \rangle$

Assume that $\langle M, w \rangle$ exists within $HALT_{TM}$, so M halts on input w. Since M halts on input w, $L(P) = \emptyset$. Thus, $\langle P \rangle$ does not exist within ALL_{TM} . This will be the output of $S\langle M, w \rangle$. Assume that $\langle M, w \rangle$ doesn't exist within $HALT_{TM}$, so M doesn't halt on input w. Since M doesn't halt on input w, $L(P) = \Sigma^*$. Thus, $\langle P \rangle$ exists within ALL_{TM} . This will be the output of $S\langle M, w \rangle$.

Thus, ALL_{TM} is reducible from $HALT_{TM}$ and undecideable.

- **c.** $BIN_{TM} = \{\langle M \rangle | M \text{ is a } TM \text{ and } L(M) = \emptyset \}$ Assume there exists a function S that maps BIN_{TM} from $HALT_{TM}$ Construct function S that is a mapping reducible function from $HALT_{TM}$ as follows:
- S = "On input $\langle M, w \rangle$ where M is a TM and w is a string:
 - 1. Construct TM P as follows:

P = "On input x:

- 1. Run M on input w
- 2. If M halts on input w, reject

Otherwise, accept

2. Output $\langle P \rangle$

Assume that $\langle M, w \rangle$ exists within $HALT_{TM}$, so M halts on input w. Since M halts on input w, L(P) = \emptyset . Thus, $\langle P \rangle$ does not exist within ALL_{TM} . This will be the output of S $\langle M, w \rangle$. Assume that $\langle M, w \rangle$ doesn't exist within $HALT_{TM}$, so M doesn't halt

on input w. Since M doesn't halt on input w, L(P) = Σ^* . Thus, $\langle P \rangle$ exists within ALL_{TM} . This will be the output of $S\langle M, w \rangle$.

Thus, ALL_{TM} is reducible from $HALT_{TM}$ and undecideable.

2 Question 2

Answer: