Math 1554

Milan Capoor

Fall 2021

1 Module 1: Linear Equations

1.1 TOPIC 1: Systems of Linear Equations

Linear equation: an equation in the form $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ where a_n and b are real or complex coefficients of the variables x_n

Linear system (system of linear equations): a collection of linear equations involving the same variables

Solution: a list of values $(s_1, s_2, ..., s_n)$ for which substitution into the variables $(x_1, x_2, ..., x_n)$ makes the equations true

- Found where the equations' lines intersect

Solution set: the collection of all solutions to a linear system

Equivalent: characteristic of two linear systems if they have the same solution sets

Consistent system: a linear system which has infinitely many solutions or one solution

- Happens when the lines intersect at a single point or when the lines coincide

Inconsistent system: system with no solutions

- When the lines are parallel

Matrix: the essential information of a linear system can be recorded compactly in a rectangular array Given the system

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

The coefficient matrix

$$\begin{bmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 5 & 0 & -5 \end{bmatrix}$$

encodes the essential information of the system while the augmented matrix is

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

An $m \times n$ matrix is a rectangular array of numbers with m rows and n columns.

1.1.1 Solving a linear system

The basic strategy is to replace one system with an equivalent system that is easier to solve. Three basic operations are used to simplify a linear system:

- 1. (Replacement) Replace one equation by the sum of itself and a multiple of another equation
- 2. (Interchange) Swap two equations
- 3. (Scaling) Multiply all the terms in an equation by a nonzero constant

1.1.2 Example 1: Solve the system given above

$$x_1 - 2x_2 + x_3 = 0$$
$$2x_2 - 8x_3 = 8$$
$$5x_1 - 5x_3 = 10$$

Row Reduction Procedure:

1. Construct the augmented matrix

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

2.
$$R_3 - 5R_1$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 2 & -8 & 8 \\ 0 & 10 & -10 & 10 \end{bmatrix}$$

3.
$$\frac{1}{2}R_2$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 5 & 0 & -5 & 10 \end{bmatrix}$$

4.
$$R_3 - 10R_2$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 30 & -30 \end{bmatrix}$$

5.
$$\frac{1}{30}R_3$$

$$\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

6.
$$R_1 - R_3 and R_2 + 4R_3$$

$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

7. $R_1 + 2R_2$

$$\begin{bmatrix}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & -1
\end{bmatrix}$$

8. Verify the solution (1,0,-1) by substituting it for (x_1,x_2,x_3) in the original system

$$(1) - 2(0) + (-1) = 0$$
$$2(0) - 8(-1) = 8$$
$$5(1) - 5(-1) = 10$$

The equations agree so (1,0,-1) is indeed a solution to the system.

These row operations can be applied to any matrix —not just those that arise as the augmented matrices of a linear system.

Row equivalent: quality of two matrices if there exists a sequence of elementary row operations that transforms one matrix into the other

All row operations are reversible. Hence, If the augmented matrices of two linear systems are row equivalent, then the two systems have the same solution set.

1.1.3 Existence and Uniqueness

A large focus of the course and of the analysis of linear systems generally depends on asking two questions:

- Is the system consistent?
- If a solution exists, is it unique?

These questions can often be answered from the triangular form of the matrix (in Example 1 this was $\begin{bmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & -4 & 4 \\ 0 & 0 & 1 & -1 \end{bmatrix}$) by understanding that $x_3 = -1$ and solving the other equations from there.

If this method creates contradictions, however, such as in the system $\begin{bmatrix} a & b & c & d \\ e & f & g & h \\ 0 & 0 & 0 & 1 \end{bmatrix}$, then the originial system is inconsistent.

1.2 TOPIC 2: Row Reduction and Echelon Forms

Nonzero: any row or column which contains at least one nonzero entry

Leading entry: the leftmost nonzero entry of a row

Row echelon form: a matrix is in row echelon form if it has the following three properties:

- 1. All nonzero rows are above any rows of all zeros
- 2. Each leading entry of a row is in a column to the right of the leading entry of the row above it
- 3. All entries in a column below a leading entry are zeroes

Reduced echelon form: a matrix in row echelon form which satisfies the additional criteria:

- 4. The leading entry in each nonzero row is 1
- 5. Each leading 1 is the only nonzero entry in its column

These are the "triangular" matrices of section 1.1.

Each matrix is row equivalent to one and only one reduced echelon matrix.

If a matrix A is row equivalent to an echelon matrix U, we call U an (reduced) echelon form (REF/RREF) of A

1.2.1 Pivot Positions

Pivot position: a location in a matrix A that corresponds to a leading 1 in the reduced echelon form of A.

Pivot column: a column of A that contains a pivot position

1.2.2 Example 2: Row reduce matrix A below to echelon form and locate its pivot columns.

$$A = \begin{bmatrix} 0 & -3 & -6 & 4 & 9 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 1 & 4 & 5 & -9 & -7 \end{bmatrix}$$

Solution:

1. Interchange R_1 and R_4

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ -1 & -2 & -1 & 3 & 1 \\ -2 & -3 & 0 & 3 & -1 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix}$$

2. $R_2 + R_1$ and $R_3 + 2R_1$

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 5 & 10 & -15 & -15 \\ 0 & -3 & -6 & 4 & 9 \end{bmatrix}$$

3. $R_3 - \frac{5}{2}R_2$ and $R_4 + \frac{3}{2}R_2$

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -5 & 0 \end{bmatrix}$$

4. Interchange R_3 and R_4

$$\begin{bmatrix} 1 & 4 & 5 & -9 & -7 \\ 0 & 2 & 4 & -6 & -6 \\ 0 & 0 & 0 & -5 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Matrix A is thus in echelon form and so columns 1, 2, and 4 are pivot columns.

Pivot: a nonzero number in a pivot position which is used during row reduction to create zeros

1.2.3 The Row Reduction Algorithm

- 1. Begin with the leftmost nonzero column. This is a pivot column. The pivot position is at the top.
- 2. Select a nonzero entry in the pivot column as a pivot. If necessary, interchange rows to move this entry into the pivot position.
- 3. Use row replacement operations to create zeros in all positions below the pivot.
- 4. Cover the row containing the pivot position and all rows above it. Apply steps 1-3 to the remaining submatrix, iterating until there are no more nonzero rows to modify. At this time we have the row echelon form.
- 5. This step is used to find the reduced row echelon form. Beginning with the righmost pivot and working upward and to the left, create zeros above each pivot. If a pivot is not 1, make it 1 via scaling operation.

1.2.4 Solutions of Linear Systems

The row reduction algorithm leads directly to the solution set of a system when the algorithm is applied to the augmented matrix of the system.

Basic variables: the variables of a linear system corresponding to pivot columns in the reduced echelon matrix

Free variables: the other variables in the system

Whenever a system is consistent, the solution set can be described explicitly by solving the reduced system of equations for the basic variables in terms of the free variables.

Each different choice of a free variable determines a (different) solution of the system and every solution of the system is determined by a choice of the free variables.

1.2.5 Example 4: Find the general solution of the linear system whose augmented matrix has been reduced to

$$\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \\ 0 & 0 & 2 & -8 & -1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

Moving from echelon form to reduced echelon form we have:

$$\begin{bmatrix} 1 & 6 & 2 & -5 & -2 & -4 \\ 0 & 0 & 2 & -8 & -1 & 3 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 2 & -5 & 0 & 10 \\ 0 & 0 & 2 & -8 & 0 & 10 \\ 0 & 0 & 0 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 2 & -5 & 0 & 10 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 6 & 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & -4 & 0 & 5 \\ 0 & 0 & 0 & 0 & 1 & 7 \end{bmatrix}$$

Which is equivalent to

$$x_1 + 6x_2 + 3x_4 = 0$$
$$x_3 - 4x_4 = 5$$
$$x_5 = 7$$

Because the pivot columns are 1, 3, and 5, the basic variables are $x_1, x_3, and x_5$, leaving x_2 and x_4 as free variables. Thus

$$\begin{cases} x_1 = -6x_2 - 3x_4 \\ x_2 \text{ is free} \\ x_3 = 5 + 4x_4 \\ x_4 \text{ is free} \\ x_5 = 7 \end{cases}$$

1.2.6 Existence and Uniqueness Questions (Redux)

When a system is in echelon form and contains no equation of the form $0 = b(b \neq 0)$, every nonzero equation contains a basic variable with a nonzero coefficient. Either the basic variables are completely determined (no free variables), signifying a unique solution, or the basic variables can be expressed in terms of one or more free variables, signifying infinitely many solutions. Thus:

A linear system is consistent iff the rightmost column of the augmented matrix is not a pivot column (i.e. there are no rows of the form $\begin{bmatrix} 0 & \dots & 0 & b \end{bmatrix}$).

1.3 TOPIC 3: Vector Equations

Column vector: a matrix with only one column

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

The set of all vectors with two entries is denoted \mathbb{R}^2 ("r-two"), where \mathbb{R} refers to the real number entries of the vector and the exponent 2 indicates that each vector contains two entries.

Vectors in \mathbb{R} are ordered pairs which are equal iff their corresponding entries are equal.

Given two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^2 , their sum is

$$\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$$

while the scalar multiple of a vector is

$$\mathbf{c}\mathbf{u} = \mathbf{c} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} c \cdot u_1 \\ c \cdot u_2 \end{bmatrix}$$

1.3.1 Geometric Descriptions of \mathbb{R}^2

Because each point in the cartesian plane is determined by an ordered pair of numbers, we can identify a geometric point with the column vector $\begin{bmatrix} a \\ b \end{bmatrix}$. So we may regard \mathbb{R}^2 as the set of all points in the plane.

Parellelogram rule for vector addition: If \mathbf{u} and \mathbf{v} in \mathbb{R}^2 are represented as points in the plane, then $\mathbf{u} + \mathbf{v}$ corresponds to the fourth vertex of the parellolgram whose other vertices are \mathbf{u} , $\mathbf{0}$, and \mathbf{v} .

1.3.2 Algebraic Properties of \mathbb{R}^n

For all $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbb{R}^n and all scalars c and d:

1.
$$\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

2.
$$(u + v) + w = u + (v + w)$$

3.
$$u + 0 = 0 + u = u$$

4.
$$\mathbf{u} + (-\mathbf{u}) = -\mathbf{u} + \mathbf{u} = \mathbf{0}$$

5.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

6.
$$(c+d)\mathbf{u} = \mathbf{c}\mathbf{u} + \mathbf{d}\mathbf{u}$$

7.
$$c(d\mathbf{u}) = (\mathbf{cd})\mathbf{u}$$

8.
$$1u = u$$

Linear combination: a composite formed of vectors in \mathbb{R}^n and corresponding scalar weights $(\mathbf{y} = c_1 \mathbf{v_1} + ... + c_p \mathbf{v_p})$

1.3.3 Example 5: Solve
$$x_1\mathbf{a_1} + x_2\mathbf{a_2} = \mathbf{b}$$
 for $\mathbf{a_1} = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}$, $\mathbf{a_2} = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$, and $\mathbf{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix}$.

We shall begin by constructing an augmented matrix and finding its reduced row echelon form:

$$\begin{bmatrix} 1 & 2 & 7 \\ -2 & 5 & 4 \\ -5 & 6 & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 9 & 18 \\ 0 & 16 & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 7 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

So $x_2 = 2$ and $x_1 = 7 - 2x_2 = 3$.

Checking:
$$3 \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix} = \begin{bmatrix} 3+4 \\ -6+10 \\ -15+12 \end{bmatrix} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix} \blacksquare.$$

A vector \mathbf{b} can be generated by a linear combination of $\mathbf{a_1},...,\mathbf{a_n}$ iff there exists a solution to the linear system corresponding to the augmented matrix $\begin{bmatrix} \mathbf{a_1} & \mathbf{a_2} & ... & \mathbf{a_n} & \mathbf{b} \end{bmatrix}$. One of the key ideas in linear algebra is to study the set of all vectors that can be written as a linear combination of a fixed set $\{\mathbf{v_1},...,\mathbf{v_p}\}$ of vectors.

The subset of \mathbb{R}^n spanned by $\mathbf{v_1}, ..., \mathbf{v_p}$: (written $\mathrm{Span}\{\mathbf{v_1}, ..., \mathbf{v_p}\}$) is the collection of all vectors that can be written in the form $c_1\mathbf{v_1}+c_2\mathbf{v_2}+...+c_p\mathbf{v_p}$ with $c_1, ..., c_p$ scalars.

Asking whether a vector is in $Span\{v_1, ..., v_p\}$ amounts to asking whether the linear system with associated augmented matric has a solution.

Note: $\operatorname{Span}\{v_1,...,v_p\}$ contains every scalar multiple of v_1 including 0

1.3.4 Geometric description of $Span\{v\}$

For $\mathbf{v} \in \mathbb{R}^3$, Span $\{\mathbf{v}\}$ is the set of points on the line in \mathbb{R}^3 through \mathbf{v} and $\mathbf{0}$. For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, Span $\{\mathbf{u}, \mathbf{v}\}$ is the plane in \mathbb{R}^3 that contains \mathbf{u}, \mathbf{v} , and $\mathbf{0}$.

1.3.5 Example 6: Span $\{{f a_1},{f a_2}\}$ is a plane through the origin in \mathbb{R}^3 . Is ${f b}$ in that plane?

$$(\mathbf{a_1} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \mathbf{a_2} = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}, \text{ and } \mathbf{b} = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix})$$

This question amounts to asking if the equation $x_1\mathbf{a_1} + x_2\mathbf{a_2} = \mathbf{b}$ has a solution. From row reduction:

$$\begin{bmatrix} 1 & 5 & -3 \\ -2 & -13 & 8 \\ 3 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & -18 & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & -3 \\ 0 & -3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$$

This suggests that 0 = -2 but as this is not possible, the matrix is inconsistent and so the vector equation has no solution. Thus, **b** is not in Span $\{a_1, a_2\}$.

1.4 TOPIC 4: The Matrix Equation

- $\bullet \in : belongs to$
- \mathbb{R}^n : the set of vectors with n real-valued elements
- \bullet $\mathbb{R}^{m \times n}$: the set of real-valued matrices with m as rows and n as columns

Example: The notation $\vec{x} \in \mathbb{R}^5 m$ means that \vec{x} is a vector with five real-valued elements.

1.4.1 Matrix-Vector Product as a Linear Combination

If $A \in \mathbb{R}^{m \times n}$ has columns $\vec{a_1}, ..., \vec{a_n}$, then the matrix vector product $A\vec{x}$ is a linear combination of the columns of A.

$$A\vec{x} = \sum_{n=1}^{n} x_n \vec{a_n}$$

Note that $A\vec{x}$ is in the span of the columns of A.

This means that the solution sets for

$$A\vec{x} = \vec{b}$$

is the same as

$$x_1\vec{a_1} + \dots + x_n\vec{a_n} = \vec{b}$$

which is again equivalent to the set of linear equations with the augmented matrix

$$\begin{bmatrix} \vec{a_1} & \vec{a_2} & \dots & \vec{a_n} & \vec{b_n} \end{bmatrix}$$

1.4.2 Example:

Suppose that
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$
 and $\vec{x} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

1. The following product can be written as a linear combination of vectors:

$$A\vec{x} = 2\begin{pmatrix} 1\\0 \end{pmatrix} + 3\begin{pmatrix} 0\\-3 \end{pmatrix} = \begin{pmatrix} 2\\-9 \end{pmatrix}$$

2. Is $\vec{b} = \binom{2}{9}$ in the span of the columns of A? If $\vec{b} \in Span\{A\}$, then $\vec{b} = c_1\binom{1}{0} + c_2\binom{0}{-3}$. This is true for $\vec{c} = \binom{2}{-3}$ so $\vec{b} \in Span\{A_{col}\}$

The equation $A\vec{x} = \vec{b}$ has a solution iff \vec{b} is a linear combination of the columns of A

1.4.3 Example: For what vectors $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$ does the equation have a solution?

$$\begin{bmatrix} 1 & 3 & 4 \\ 2 & 8 & 4 \\ 0 & 1 & -2 \end{bmatrix} \vec{x} = \vec{b}$$

Solution:

$$\begin{bmatrix} 1 & 3 & 4 & b_1 \\ 2 & 8 & 4 & b_2 \\ 0 & 1 & -2 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 2 & -4 & b_2 - 2b_1 \\ 0 & 1 & -2 & b_3 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 4 & b_1 \\ 0 & 2 & -4 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - \frac{1}{2}b_2 + b_1 \end{bmatrix}$$

So

$$\vec{b} = \begin{bmatrix} -\frac{1}{2}b_2 + b_3 \\ b_2 \\ b_3 \end{bmatrix}$$

Essential concept: If A is an $m \times n$ matrix, the following statements are logically equivalent – for a particular A, all are true or all are false:

- For each **b** in \mathbb{R}^m , the equation $A\mathbf{x} = \mathbf{b}$ has a solution.
- Each **b** in \mathbb{R}^m is a linear combination of the columns of A
- The columns of A span \mathbb{R}^m
- A has a pivot position in every row

1.4.4 Summary: Ways of representing Linear Systems

- 1. A list of equations
- 2. An augmented matrix
- 3. A vector equation
- 4. A matrix equation

1.4.5 Matrix-vector products

If A is an $m \times n$ matrix, **u** and **b** are vectors in \mathbb{R}^n , and c is a scalar, then:

- $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$
- $A(c\mathbf{u}) = c(A\mathbf{u})$

Moreover, the product $A\mathbf{x}$ can be easily calculated by taking advantage of the nature of a Matrix-vector product:

$$\begin{bmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} a_1x_1 + a_2x_2 + a_3x_3 \\ a_4x_1 + a_5x_2 + a_6x_3 \\ a_7x_1 + a_8x_2 + a_9x_3 \end{bmatrix}$$

The identity matrix: denoted \mathbf{I} , this $n \times n$ matrix contains 1's on the diagonal and 0's elsewhere, creating the universal property that $\mathbf{I_n} \mathbf{x} = \mathbf{x}$ for every $\mathbf{x} \in \mathbb{R}^n$

1.5 TOPIC 5: Solution sets of Linear Systems

Homogenous: characteristic of linear systems of the form $A\vec{x}=\vec{b},\,\vec{b}=\vec{0}$

Inhomogeneous: systems of the form $A\vec{x} = \vec{b}, \ \vec{b} \neq \vec{0}$

Because homogenous systems always have trivial solutions, the interesting question comes in asking whether they have non-trivial solutions.

 $A\vec{x} = 0$ has a nontrivial solution \iff there is a free variable \iff A has a column with no pivot

1.5.1 Example: Identify the free variables and the solution set for

$$x_1 + 3x_2 + x_3 = 0$$
$$2x_1 - x_2 - 5x_3 = 0$$
$$x_1 - 2x_3 = 0$$

$$\begin{bmatrix} 1 & 3 & 1 & 0 \\ 2 & -1 & -5 & 0 \\ 1 & 0 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & -7 & -7 & 0 \\ 0 & -3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Row 3 has no pivot $(x_3 \text{ is free})$ so there is a non-trivial solution.

$$\begin{cases} x_1 = 2x_3 \\ x_2 = -x_3 \\ x_3 & \text{is free} \end{cases} \implies x_3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

1.5.2 Parametric vector forms

Parametric vector form: a more convenient way of expressing the solutions of a linear system, taking advantage of the geometric interpretation of a linear system. In general, for free variables $x_k, ... x_n$ of $A\vec{x} = 0$, the solutions can all be written as

$$\vec{x} = \sum_{n=k}^{n} x_n \vec{v_n}$$

In other words, solving an equation amounts to finding an explicit description of the solution plane as a set spanned by \mathbf{u} and \mathbf{v} . Thus, the equation from earlier describing the solution set can also be written as

$$\mathbf{x} = s\mathbf{u} + t\mathbf{v} \quad (s, t \in \mathbb{R})$$

emphasising the role of the free variables as arbitrary scalar multiples of the vectors forming a plane.

1.5.3 Example: Describe all solutions of Ax = b

$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$

$$\begin{bmatrix} 3 & 5 & -4 & 7 \\ -3 & -2 & 4 & -1 \\ 6 & 1 & -8 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{4}{3} & -1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Thus $x_1 = -1 + \frac{4}{3}x_3, x_2 = 2$, and x_3 is free. The general form vector is

$$\mathbf{x} = \begin{bmatrix} -1\\2\\0 \end{bmatrix} + x_3 \begin{bmatrix} \frac{4}{3}\\0\\1 \end{bmatrix} \implies \mathbf{x} = \mathbf{p} + x_3 \mathbf{v}$$

By replacing x_3 with a general parameter $t \in \mathbb{R}$, we have a universal solution for nonhomogenous systems:

 $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ is a solution for Ax = b which is parallel to the line of the solution set Ax = 0 because it is a translation of \mathbf{v} by the particular solution \mathbf{p}

1.5.4 Theorem:

Suppose the equation Ax = b is consistent for some given **b** and let **p** be a solution. The solution set of Ax = b is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$ where \mathbf{v}_h is any solution of the homogenous equation Ax = b

1.6 TOPIC 6: Linear Independence

A set of vectors $\vec{v_1}, ..., \vec{v_k} \in \mathbb{R}^n$ are linearly independent if $\sum_{n=1}^k = c_k \vec{v_k} = 0$ has only the trivial solution $(\vec{c} = \vec{0})$. It is linearly dependent otherwise.

Establishing linear independence is thus equivalent to asking whether the equation $V\vec{c} = 0$ ($V \in \mathbb{R}^k$:= the matrix corresponding to the linear combinations of the vectors) is only true for $\vec{c} = \vec{0}$

Example: For what values of h is the set of vectors linearly independent?

$$\begin{bmatrix} 1 \\ 1 \\ h \end{bmatrix}, \begin{bmatrix} 1 \\ h \\ 1 \end{bmatrix}, \begin{bmatrix} h \\ 1 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & h & 0 \\ 1 & h & 1 & 0 \\ h & 1 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & h & 0 \\ 0 & h - 1 & 1 - h & 0 \\ 0 & 1 - h & 1 - h^2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & h & 0 \\ 0 & h - 1 & 1 - h & 0 \\ 0 & 0 & 2 - h - h^2 & 0 \end{bmatrix}$$

If $2-h-h^2=0$ then we have a free variable and the vectors will be linearly dependent (because there will be more solutions than the trivial case).

Factoring, we get

$$0 = -(h+2)(h-1)$$

so for the vectors to be independent,

$$h \neq \{-2,1\}$$

1.6.1 Linear Independence Theorems

- 1. More Vectors Than Elements For vectors $\vec{v}_1, ..., \vec{v}_k \in \mathbb{R}^n$, if k > n, then $\{\vec{v}_1, ..., \vec{v}_k\}$ is linearly dependent (because not every column of the matrix $A = (\vec{v}_1, ..., \vec{v}_k)$ would be pivotal).
- 2. Set Contains Zero Vector If any one or more of $\vec{v}_1, ..., \vec{v}_k$ is $\vec{0}$, then $\{\vec{v}_1, ..., \vec{v}_k\}$ is linearly dependent (again because there would be non-pivotal columns of the corresponding matrix).
- 3. A set containing only one vector is linearly independent iff \mathbf{v} is not the zero vector
- 4. Sets of two vectors can be determined to be linearly dependent by inspection if one is a multiple of the other.

5. In geometric terms, two vectors are linearly dependent iff they lie on the same lie through the origin.	<u> </u>
20	
20	

1.7 TOPIC 7: Introduction to Linear Transformations

Instead of as a linear combination of variables, matrices can also be viewed as a function from one set of vectors to another. Thus, solving the equation Ax = b amounts to finding all vectors \mathbf{x} in \mathbb{R}^4 that are transformed into the vector \mathbf{b} in \mathbb{R}^2 under the "action" of multiplication by A.

Transformation (function, mapping): a rule that assigns to each vector $\mathbf{x} \in \mathbb{R}^n$ a vector $T(x) \in \mathbb{R}^m$.

Domain: The set \mathbb{R}^n is the domain of T $(T \in \mathbb{R}^n)$

Codomain: The set \mathbb{R}^m is the codomain of T $(T \in \mathbb{R}^n)$

This domain-codomain relationship is expressed in the notation $T: \mathbb{R}^n \to \mathbb{R}^m$

Image: this is the "resultant" vector of the transformation

$$T(x) \in \mathbb{R}^m \text{ for } \mathbf{x} \in \mathbb{R}^n \implies$$

"The vector T(x) is the image of x under the action of T"

Range: The set of all images of T(x) is the range of T. This is equivalent to the Span of the columns of a matrix.

For example, $f(x) = \sin x : \mathbb{R} \to \mathbb{R}$, so the domain is \mathbb{R} , the codomain is \mathbb{R} , and the range is [-1, 1]

A function $T: \mathbb{R}^n \to \mathbb{R}^m$ is linear if

- $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v}) \quad \forall \vec{u}, \vec{v} \in \mathbb{R}^n$
- $\bullet \ T(c\vec{v}) = cT(\vec{v}) \quad \forall \vec{v} \in \mathbb{R}^n, c \in \mathbb{R}$

Principle of superposition:

$$T(c_1\vec{v}_1 + \dots + c_k\vec{v}_k) = c_1T(\vec{v}_1 + \dots + c_kT(\vec{v}_k))$$

Every matrix transformation T_A is linear.

1.7.1 Matrix Transformations

A matrix transformation (a mapping where $\forall \mathbf{x} \in \mathbb{R}^n, T(x) = A\mathbf{x} \quad (A \in \mathbb{R}^{m \times n})$) can be written as $\mathbf{x} \mapsto A\mathbf{x}$

Similarly, every matrix transform is completely determined by what it does to the columns of the $n \times n$ identity matrix.

Geometric interpretations of transforms in \mathbb{R}^2 :

1.
$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 is a reflection through $x_1 = x_2$

2.
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 is a projection onto the x-axis $(\begin{bmatrix} x_1 \\ 0 \end{bmatrix})$

3.
$$A = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$$
 is a scaling by k

Geometric interpretations of transforms in \mathbb{R}^2 :

1.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 is a projection onto the x_1, x_2 -plane $(T(\vec{x}) = \begin{bmatrix} a \\ b \\ 0 \end{bmatrix})$

2.
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 is a reflection through the x_1, x_3 -plane $(T(\vec{x}) = \begin{bmatrix} a \\ -b \\ c \end{bmatrix})$

Standard vectors in \mathbb{R}^n :

$$\vec{e_1} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \vec{e_n} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix}$$

Multiplying a matrix by $\vec{e_i}$ gives column i of A

1.7.2 Standard transform matrices

Counterclockwise rotation by angle θ about (0, 0):

$$T(x) = A\vec{x} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Reflection through x_1 -axis:

$$T(x) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Reflection through x_2 -axis:

$$T(x) = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Reflection through $x_2 = x_1$:

$$T(x) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Reflection through $x_2 = -x_1$

$$T(x) = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$$

Horizontal contraction:

$$T(x) = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}, \quad |k| < 1$$

Horizontal expansion:

$$T(x) = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}, \quad |k| > 1$$

Vertical contraction:

$$T(x) = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}, \quad |k| < 1$$

Vertical expansion:

$$T(x) = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}, \quad |k| > 1$$

Horizontal shear (left):

$$T(x) = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \quad k < 0$$

Horizontal shear (right):

$$T(x) = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}, \quad k > 0$$

Vertical shear (down):

$$T(x) = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}, \quad k < 0$$

Vertical shear (up):

$$T(x) = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix}, k > 0$$

Projection onto the x_1 -axis:

$$T(x) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Projection onto the x_2 -axis:

$$T(x) = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Onto transform: a transform for which $A\vec{x} = \vec{b}$

- This is an existence property, for any $\vec{b} \in \mathbb{R}^m$, $A\vec{x} = \vec{b}$ has a solution
- T is onto iff its standard matrix has a pivot in every row

One-to-one transform: a transform for which there is at most one solution to $A\vec{x} = \vec{b}$

- This uniqueness property does not assert existence for all \vec{b}
- T is one-to-one iff the only solution to $T(\vec{x}) = \vec{0}$ is $\vec{x} = \vec{0}$
- T is one-to-one iff every column of A is pivotal

Onto means that the columns of A span \mathbb{R}^n

One-to-one means that the only solution is the trivial one and A has linearly independent columns

1.7.3 Determining the image of a transform

Example: Suppose T is a transform $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that

$$T(\vec{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix} \quad T(\vec{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$$

As any matrix can be written as a linear combination

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \vec{e}_1 + x_2 \vec{e}_2$$

And since T is a linear transformation

$$T(\vec{x}) = x_1 T(\vec{e}_1) + x_2 T(\vec{e}_2)$$

$$= x_1 \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix} = \begin{bmatrix} 5x_1 - 3x_2 \\ -7x_1 + 8x_2 \\ 2x_1 + 0 \end{bmatrix}$$

1.7.4 Example: Constructing a standard matrix

Define a linear transformation by

$$T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$$

$$A = \begin{bmatrix} T(\vec{e}_1) & T(\vec{e}_2) \end{bmatrix}$$

$$T(e_1) = T(1,0) = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}$$

$$T(e_2) = T(0,1) = \begin{bmatrix} 1 \\ 7 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix}$$

Because there are more columns than rows, it cannot be onto. Because the two columns are not multiples of each other by inspection, the columns are linearly independent so the matrix is one-to-one.

2 Module 2: Matrix Algebra

2.1 TOPIC 1: Matrix Operations

Main diagonal: the diagonal entries $a_{11}, a_{22}, a_{33}, \dots$ of $A = [a_{ij}], A \in \mathbb{R}^{m \times n}$

Diagonal matrix: a square matrix $n \times n$ whose nondiagonal entries are zero (e.g. I_n)

Zero matrix: a matrix whose entries are all zero, written 0

Equal: property of two matrices of the same size with corresponding entries equal

Properties of Matrix addition:

1.
$$A + B = B + A$$

2.
$$(A+B)+C=A+(B+C)$$

3.
$$A + 0 = A$$

$$4. \ r(A+B) = rA + rB$$

5.
$$(r+s)A = rA + sB$$

6.
$$r(sA) = (rs)A$$

If a matrix B multiplies a vector \mathbf{x} , it is a transform $B\mathbf{x}$. If this vector is then multiplied by A, the composite transformed vector is A(Bx). Thus:

$$A(Bx) = (AB)x$$

$$AB = A \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} A\mathbf{b}_1 & A\mathbf{b}_2 & \dots & A\mathbf{b}_p \end{bmatrix}$$

Multiplication of matrices corresponds to composition of linear transformations.

Row column rule for matrix multiplication: If $A \in \mathbb{R}^{m \times n}$ has rows \vec{a}_i , and $B \in \mathbb{R}^{n \times p}$ has columns \vec{b}_j , each element of the product C = AB is the dot product $c_{ij} = \vec{a}_i \cdot \vec{b}_j$

Each column of AB is a linear combination of the columns of A using weights from the corresponding column of B.

The number of columns of A must match the number of rows in B in order for a linear combination such as Ab_1 to be defined.

Properties of Matrix multiplication:

1.
$$A(BC) = (AB)C$$

$$2. \ A(B+C) = AB + AC$$

$$3. (B+C)A = BA + CA$$

4.
$$r(AB) = (rA)B = A(rB)$$

5.
$$I_m A = A = AI_n$$

6. If
$$AB = AC$$
 it is usually NOT true that $B = C$

7. If AB is the zero matrix, you CANNOT conclude that either A= or B=0

If $A \neq 0$ and $\mathbf{x} \in \mathbb{R}^n$, then $A^k \mathbf{x}$ is the result of left-multiplying \mathbf{x} by A repeatedly k times. $(A^0 = I_n)$

Transpose: the transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose columns are the corresponding rows of A.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$$

Transposition properties:

1.
$$(A^T)^T = A$$

2.
$$(A+B)^T = A^T + B^T$$

$$3. \ (rA)^T = rA^T$$

$$4. \ (AB)^T = B^T A^T$$

Hence, the transpose of a product of matrices equals the product of their transposes in the reverse order.

2.2 TOPIC 2: The Inverse of a Matrix

Invertible: a square matric is invertible if there is a matrix $C \in \mathbb{R}^{n \times n}$ such that

$$CA = I$$
 and $AC = I$

Here, C is the unique inverse of A often denoted A^{-1}

Singular matrix: a noninvertible matrix

Nonsingular matrix: an invertible matrix

2.2.1 Finding the inverse

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

If $ad - bc \neq 0$, then A is invertible and

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Determinant: $\det A = ad - bc$. If $\det A = 0$, A is not invertible.

If A is an invertible $n \times n$ matrix, then for each \vec{b} in \mathbb{R}^n , the equation $Ax = \vec{b}$ has the unique solution $\vec{x} = A^{-1}\vec{b}$

While the equation above can used to solve an equation Ax = b, row reduction of $[A \ \mathbf{b}]$ is almost always faster.

Properties of invertible matrices:

- 1. $(A^-1) 1 = A$
- 2. $(AB)^{-1} = B^{-1}A^{-1}$
- 3. $(A^T)^{-1} = (A^{-1})^T$

Elementary matrix: a matric that is obtained by performing a single elementary row operation on an identity matrix.

If an elementary row operation is performed on an $m \times n$ matrix A, the resulting matrix can be written as EA, where the $m \times m$ matrix E is created by performing the same row operation on I_m .

Every elementary matrix is invertible and square where the inverse of E is the elementary matrix that trasforms E back into I.

An $n \times n$ matrix is invertible iff A is row equivalent to I_n , in which case any sequence of elemenary row operations which maps $A \mapsto I_n$ also transforms $I_n \mapsto A^{-1}$

A has an inverse iff for all $\vec{b} \in \mathbb{R}^n$, Ax = b has a unique solution

2.2.2 To find A^{-1} :

Row reduce the augmented matrix $\begin{bmatrix} A & I \end{bmatrix}$ If A is row equivalent to I, then $\begin{bmatrix} A & I \end{bmatrix}$ is row equivalent to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$

Example: Find the inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$

Solution:

$$\begin{bmatrix} A & I \end{bmatrix} = \begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & -\frac{9}{2} & 7 & -\frac{3}{2} \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix}$$

Since $A \sim I$, A is invertible and

$$A^{-1} = \begin{bmatrix} -\frac{9}{2} & 7 & -\frac{3}{2} \\ -2 & 4 & -1 \\ \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix}$$

Row reduction of $\begin{bmatrix} A & I \end{bmatrix}$ to $\begin{bmatrix} I & A^{-1} \end{bmatrix}$ can be viewed as the simultaneous solution of the n systems

$$A\mathbf{x} = \mathbf{e_1}, \quad A\mathbf{x} = \mathbf{e_2}, \quad ..., \quad A\mathbf{x} = \mathbf{e_n}$$

2.3 TOPIC 3: Characterisations of Invertible Matrices

Invertible matrix theorem: for a given square matrix A, the following are all true or all false:

- 1. A is an invertible matrix
- 2. A is row equivalent to I_n
- 3. A has n pivot positions
- 4. The equation Ax = 0 has only the trivial solution
- 5. The columns of A form a linearly independent set
- 6. The linear transformation $x \mapsto Ax$ is one-to-one
- 7. The equation Ax = b has at least one solution for each $\mathbf{b} \in \mathbb{R}^n$
- 8. The columns of A span \mathbb{R}^n
- 9. The linear transformation $x \mapsto Ax$ maps \mathbb{R}^n onto \mathbb{R}^n
- 10. There is an $n \times n$ matrix C such that CA = I
- 11. There is an $n \times n$ matrix D such that AD = I
- 12. A^T is an invertible matrix

If A and B are two square matrices and AB = I, then both A and B are invertible with $B = A^{-1}$ and B^{-1}

Invertible linear transformation: a transform is invertible if there exists a function $S: \mathbb{R}^n \to \mathbb{R}^n$ such that

$$S(T(x)) = x \quad \forall x \in \mathbb{R}^n \tag{1}$$

$$T(S(x)) = x \quad \forall x \in \mathbb{R}^n$$
 (2)

(3)

If such S exists, it is unique and must be a linear transform. This transform is invertible iff its standard matrix A is nonsingular. In that case, $S(x) = A^{-1}x$ is the unique function satisfying (1) and (2).

Ill-conditioned matrix: an invertible matrix that can become singular if some of its entries are changed just slightly. This becomes dangerous if roundoff error makes a nonsingular matrix appear invertible.

2.4 TOPIC 4: Partitioned Matrices

Partitioned matrix: a matrix whose entries are meant to be considered differently than a list of column vectors based on the system it represents. For example, the matrix

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -2 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

can also be the 2×3 partitioned matrix

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix}$$

whose entries are the blocks (submatrices)

$$A_{11} = \begin{bmatrix} 3 & 0 & -1 \\ -5 & 2 & 4 \end{bmatrix}, \qquad A_{12} = \begin{bmatrix} 5 & 9 \\ 0 & -3 \end{bmatrix}, \qquad A_{13} = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$$

$$A_{21} = \begin{bmatrix} -8 & -6 & 3 \end{bmatrix}, \qquad A_{22} = \begin{bmatrix} 1 & 7 \end{bmatrix}, \qquad A_{23} = \begin{bmatrix} -4 \end{bmatrix}$$

Assuming the blocks of two partitioned matrices are the same size, addition between them is defined as the block-by-block sum of corresponding partitions. Similarly, multiplication by a scalar is performed piecewise.

Partitioned matrices can be multiplied by the usual row-column rule as if the block entires were scalars, provided that for a product AB, the column partition of A matches the row partition of B.

Conformable: property of two matrices that are partitioned the same way

Block diagonal matrix: a paritioned matrix with zero blocks off the main diagonals - such a matrix is invertible iff each block on the diagonal is invertible

Paritioned matrices are especially useful in numerical slutions of especially large systems where partitioning can make more efficient use of system resources

2.5 TOPIC 5: MATRIX FACTORISATIONS

Factorization: an equation that expresses a matrix A as a product of two or more matrices.

Whereas multiplication was a synthesis of data, factorisation is an analysis.

2.5.1 LU Factorisation

This is a more efficient process for solving the system

$$Ax = b_1$$
, $Ax = b_2$, ..., $Ax = b_p$

The method:

- 1. Assume A is an $m \times n$ matrix that can be row reduced to echelon form without row interchanges
- 2. A can be written in the form A = LU where L is an $m \times n$ lower triangular matrix with 1's on the diagonal and U is an $m \times n$ echelon form of A

$$A = LU = \begin{bmatrix} 1 & 0 & 0 & 0 \\ * & 1 & 0 & 0 \\ * & * & 1 & 0 \\ * & * & * & 1 \end{bmatrix} \begin{bmatrix} \blacksquare & * & * & * & * \\ 0 & \blacksquare & * & * & * \\ 0 & 0 & 0 & \blacksquare & * \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- 3. When A = LU, Ax = b can be written as L(Ux) = b
- 4. We can then find x by solving the pair of equations

$$Ly = b$$
$$Ux = y$$

5. First solve for y, then for x. Because L and U are triangular, both equations are easy to solve.

Example: Given

$$A = \begin{bmatrix} 3 & -7 & -2 & 2 \\ -3 & 5 & 1 & 0 \\ 6 & -4 & - & -5 \\ -9 & 5 & -5 & 12 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & -5 & 1 & 1 \\ -3 & 8 & 3 & 1 \end{bmatrix} \begin{bmatrix} 3 & -7 & -2 & 2 \\ 0 & -2 & -1 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix} = LU$$

use this LU factorisation to solve Ax = b, where $b = \begin{bmatrix} -9\\5\\7\\11 \end{bmatrix}$

Solution:

$$\begin{bmatrix} L & b \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ -1 & 1 & 0 & 0 & 5 \\ 2 & -5 & 1 & 1 & 7 \\ -3 & 8 & 3 & 1 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & -9 \\ 0 & 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 0 & 5 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} I & y \end{bmatrix}$$

Then,

$$\begin{bmatrix} U & y \end{bmatrix} = \begin{bmatrix} 3 & -7 & -2 & 2 & -9 \\ 0 & -2 & -1 & 2 & -4 \\ 0 & 0 & -1 & -1 & 5 \\ 0 & 0 & 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & -6 \\ 0 & 0 & 0 & 1 & -1 \end{bmatrix}$$

In this method, finding x requires 28 arithmetic operations. Meanwhile, row reduction of $\begin{bmatrix} A & b \end{bmatrix}$ to $\begin{bmatrix} I & x \end{bmatrix}$ takes 62 operations.

2.5.2 An LU factorisation algorithm

Suppose A can be reduced to an echelon form U using only row replacements that add a multiple of one row to another row *below it*. In this case, there exist unit lower triangular elementary matrices such that

$$E_p...E_1A = U$$

Then

$$A = (E_p ... E_1)^{-1} U = LU$$

where

$$L = (E_p...E_1)^{-1}$$

It can be shown that the row operations which reduce A to U also reduce L to I, because $E_p...E_1L = (E_p...E_1)(E_p...E_1)^{-1} = I$

In summary:

- 1. Reduce A to an echelon form U by a sequence of row replacement operations, if possible.
- 2. Place entries in L such that the same sequence of row operations reduces L to I.

Example: Find an LU factorization of

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix}$$

Solution: Since A has four rows, L should be 4×4 . The first column of L is the first column of A divided by the top pivot entry

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & & 1 & 0 \\ -3 & & & 1 \end{bmatrix}$$

Next row reduce A to its echelon form U:

$$A = \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ -4 & -5 & 3 & -8 & 1 \\ 2 & -5 & -4 & 1 & 8 \\ -6 & 0 & 7 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & -9 & -3 & -4 & 10 \\ 0 & 12 & 4 & 12 & -5 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 4 & 7 \end{bmatrix} \sim \begin{bmatrix} 2 & 4 & -1 & 5 & -2 \\ 0 & 3 & 1 & 2 & -3 \\ 0 & 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 0 & 5 \end{bmatrix} = U$$

The columns eliminated in each step of the row reduction process divided by the pivot form L:

$$\begin{bmatrix} 2 \\ -4 & 3 \\ 2 & -9 & 2 \\ -6 & 12 & 4 & 5 \end{bmatrix} \implies L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -2 & 1 & 0 & 0 \\ 1 & -3 & 1 & 0 \\ -3 & 4 & 2 & 1 \end{bmatrix}$$

2.6 TOPIC 6: The Leontief Input-Output Model