EPC 7 - Estatística Aplicada

João Gabriel Santos Custodio, nº 08

Atividade 1: Fazer um gráfico de controle para média, desvio padrão e range, usando 500 primeiras amostras de x1 para n =5 e para n=20.

```
% Caminho para os arquivos
FILE_path_1 = 'dados_epc7_x1_corr.txt';
FILE_path_2 = 'dados_epc7_x2_corr.txt';
% importação dos dados
dados1 = readmatrix(FILE_path_1);
dados2 = readmatrix(FILE_path_2);
n_id = 8; % Número na chamada
% Segmentação dos dados para somente a coluna 8
x1 = dados1(:, n_id);
% 500 primeiras amostras
x2 = dados2(:, n_id);
figure
plot(1:1:1000,x1)
hold on
plot(1:1:1000,x2)
title("Dados do EPC7")
legend("x1","x2")
xlabel("Amostra")
```



```
n = 5;
m = 500/n;
% 500 primeiras amostras
x1_1_500 = x1(1:500);
% cria uma matriz de dimensão mxn
matrix_m_n = zeros(m,n);
% cria um vetor de dimensão mx1
vetor_x_barra = zeros(m,1);
% cria um vetor mx1
vetor_r = zeros(m,1);
% cria um vetor mx1
vetor_s = zeros(m,1);
% Loop responsável por iterar dentro do vetor contendo as primeiras 500
% amostras
for i = 1:1:m
    % Vetor n que percorre as amostras de n em n por loop
    % ex: i = 1, vet_n = (1:5); i=2 vet_n = (6:10)...
    vetor_n = x1_1_500(n*i-(n-1):n*i);
    x_barra = mean(vetor_n);
    r = max(vetor_n) - min(vetor_n);
    s = std(vetor_n);
   vetor_x_barra(i) = x_barra;
   vetor_r(i) = r;
   vetor_s(i) = s;
```

```
matrix_m_n(i,:) = vetor_n;
end
```

Cálculo das "m" médias:

```
x1_barrra_barra = mean(vetor_x_barra) %

x1_barrra_barra = 17.0062

r_barra = max(vetor_r) - min(vetor_r)

r_barra = 6.8780

s_barra = std(vetor_s)

s_barra = 0.6003

controlchart(matrix_m_n,'charttype',{'xbar' 's' 'r'})
```


A seguir, temos uma função que reitera o cálculo feito anteriormente, em conjunto com a tabela de coeficientes presente no livro, para construir os gráficos de controle estatístico. Isso é realizado por meio das equações que estabelecem os valores de UCL, CL e LCL.

x_barra:

$$UCL = \overline{\overline{x}} + 3\frac{\overline{s}}{c_4\sqrt{n}} \qquad CL = \overline{\overline{x}} \qquad LCL = \overline{s} - 3\frac{\overline{s}}{c_4\sqrt{n}}$$

S:

$$UCL = \bar{s} + 3\frac{\bar{s}}{c_4}\sqrt{1 - c_4^2}$$
 $CL = \bar{s}$ $LCL = \bar{s} - 3\frac{\bar{s}}{c_4}\sqrt{1 - c_4^2}$

R:

$$UCL = D_4 \bar{r}$$
 $CL = \bar{r}$ $LCL = D_3 \bar{r}$

E também a tabela de coeficientes:

Table X Factors for Constructing Variables Control Charts

n*	Factor for Control Limits						
	X Chart			R Chart		S Chart	
	A_1	A_2	d_2	D_3	D_4	C4	n
2	3.760	1.880	1.128	0	3.267	0.7979	2
3	2.394	1.023	1.693	0	2.575	0.8862	3
4	1.880	.729	2.059	0	2.282	0.9213	4
5	1.596	.577	2.326	0	2.115	0.9400	5
6	1.410	.483	2.534	0	2.004	0.9515	6
7	1.277	.419	2.704	.076	1.924	0.9594	7
8	1.175	.373	2.847	.136	1.864	0.9650	8
9	1.094	.337	2.970	.184	1.816	0.9693	9
10	1.028	.308	3.078	.223	1.777	0.9727	10
11	.973	.285	3.173	.256	1.744	0.9754	11
12	.925	.266	3.258	.284	1.716	0.9776	12
13	.884	.249	3.336	.308	1.692	0.9794	13
14	.848	.235	3.407	.329	1.671	0.9810	14
15	.816	.223	3.472	.348	1.652	0.9823	15
16	.788	.212	3.532	.364	1.636	0.9835	16
17	.762	.203	3.588	.379	1.621	0.9845	17
18	.738	.194	3.640	.392	1.608	0.9854	18
19	.717	.187	3.689	.404	1.596	0.9862	19
20	.697	.180	3.735	.414	1.586	0.9869	20
21	.679	.173	3.778	.425	1.575	0.9876	21
22	.662	.167	3.819	.434	1.566	0.9882	22
23	.647	.162	3.858	.443	1.557	0.9887	23
24	.632	.157	3.895	.452	1.548	0.9892	24
25	.619	.153	3.931	.459	1.541	0.9896	25

```
controlchart(matrix_m_n, 'charttype', {'xbar' 's' 'r'})
```


A seguir, repete-se os procedimentos para n=20:

```
n = 20;
m = 500/n;
% 500 primeiras amostras
x1_1_500 = x1(1:500);
% cria uma matriz de dimensão mxn
matrix_m_n = zeros(m,n);
% cria um vetor de dimensão mx1
vetor_x_barra = zeros(m,1);
% cria um vetor mx1
vetor_r = zeros(m,1);
% cria um vetor mx1
vetor s = zeros(m,1);
% Loop responsável por iterar dentro do vetor contendo as primeiras 500
% amostras
for i = 1:1:m
    % Vetor n que percorre as amostras de n em n por loop
    % ex: i = 1, vet_n = (1:5); i=2 vet_n = (6:10)...
    vetor_n = x1_1_500(n*i-(n-1):n*i);
    x barra = mean(vetor n);
```

```
r = max(vetor_n) - min(vetor_n);
s = std(vetor_n);
vetor_x_barra(i) = x_barra;
vetor_r(i) = r;
vetor_s(i) = s;
matrix_m_n(i,:) = vetor_n;
end

x1_barrra_barra = mean(vetor_x_barra) %
```

```
x1_barrra_barra = 17.0062
```

```
r_barra = max(vetor_r) - min(vetor_r)
```

 $r_barra = 5.3867$

```
s_barra = std(vetor_s)
```

 $s_barra = 0.3235$

```
controlchart(matrix_m_n, 'charttype', { 'xbar' 's' 'r'})
```


A partir dos gráficos, fica evidente que para um processo que visa-se verificação de qualidade estatística, tende-se a ter um melhor aproveitamente quando opta-se por uma menor quantidade de amostras por subgrupo, pois o aumento do numero de amostras há uma tendencia de mascarar um subgrupo que fique fora do contole estatísco.

Atividade 2) Escolher n para otimizar o desempenho das métricas recall e TD dos gráficos de controle para média, desvio padrão e range.

valoresn = 1×8 2 4 5 10 20 25 50 100