REGULAR EXPRESSION

Dr. A. Beulah AP/CSE

LEARNING OBJECTIVE

- To construct finite automata for any given pattern and find its equivalent regular expressions
 - To understand what is Regular Expression

INTRODUCTION

- Regular expressions describe regular languages
- ie the language accepted by a finite automata are easily described by regular expression.
- Many programming languages provide regular expression capabilities,
 - Built-in → Perl, JavaScript, Ruby, AWK, Tcl,
 - Standard library →.NET, Java, Python C++
- REs are widely supported in programming languages, text processing programs (particular lexers, lex, yacc), advanced text editors

INTRODUCTION

- Let Σ be a finite set of symbols.
- Let L_1 , L_2 be set of strings in Σ^* .
- The concatenation of L_1 and L_2 denoted by L_1 L_2 is the set of all strings of the form xy, where $x \in L_1$ and $y \in L_2$.
- $L^0 = \{ \epsilon \}$
- $L^i = LL^{i-1}$ for $i \ge 1$.

$$L_1 \cup L_2 = \{x, x \in L, x \in L'\}$$

$$L_1 \cdot L_2 = \{x, x \in L, x \in L'\}$$

$$L_1 \cdot L_2 = \{x, x \in L, x \in L'\}$$

$$L_1 \cdot L_2 = \{x, x \in L, x \in L'\}$$

$$L_1 \cdot L_2 = \{x, x \in L, x \in L'\}$$

INTRODUCTION

Kleene Closure

$$L^* = \bigcup_{i=0}^{\infty} L^i = L^0 U L^1 U L^2 U...$$

Positive Closure

$$L^{+} = \bigcup_{i=1}^{\infty} L^{i} = L^{1} U L^{2} U...$$


```
Let L_1 = \{10, 01\}, L_2 = \{11, 00\}
Then L_1L_2 = \{1011, 1000, 0111, 0100\}
                                  LIULZ = { OD IN IDIOI }
Let L = \{10, 11\}
Then L^* = L_0 \cup L_1 \cup L_2 \cup \ldots
  = \{\epsilon\} \cup \{10, 11\} \cup \{1011, 1010, 1110, 1111\} \cup ....
  = \{ \epsilon, 10, 11, 1011, 1010, 1110, 1111, \ldots \}
```


OPERATORS OF RE

*
$$\rightarrow L_{1}^{*}$$
. $\rightarrow L_{1}^{*}$
 L_{2}^{*}
 L_{1}^{*}
 L_{2}^{*}
 L_{1}^{*}
 L_{2}^{*}

Union

 L_{1}^{*}
 L_{2}^{*}
 L_{3}^{*}
 L_{4}^{*}
 L_{5}^{*}
 $L_{5}^{}$
 L_{5}^{*}
 L_{5}^{*}
 L_{5}^{*}
 L_{5}^{*}
 L_{5}^{*}
 L

DEFINITION OF REGULAR EXPRESSION

- Let Σ be an alphabet. The regular expressions over Σ and the sets that they denote are defined recursively as follows:
- 1. φ is a regular expression and denotes the empty set {}.__
- 2. ε is a regular expression and denotes the set $\{\varepsilon\}$
- 3. For each $a \in \Sigma$, 'a' is a regular expression and denotes the set $\{a\}$.
- 4. If r and s are regular expressions denoting the languages R and S respectively then (r + s), (rs), (r)* are regular expressions that denotes the sets RUS, RS and R* respectively.

PRECEDENCE OF RE OPERATORS

*****→ higher precedence

- $(0/1)^* = \{\epsilon, 0, 1, 00, 01, 10, 11.....\} = (0+1)^*$ (i.e.) all strings of 0 and 1
- $01^* = \{0, 01, 011, 0111, \dots \}$
- $0* = \{\epsilon, 0, 00, 000, \dots\}$
- $1(1)^* = \{1, 11, 111, 1111,) = 1^+$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

• The set of all strings over {0,1} with three consecutive 0's.

• The set of all strings over {0,1} beginning with 00.

• {1, 11, 111,.....}

• The set of all strings over {0, 1} which has atmost two 0's.

IDENTITIES FOR REGULAR EXPRESSIONS

11
$$\phi + R = R$$

12 $\phi R = R\phi = \phi$
13 $\lambda R = R\lambda = R$
14 $\lambda^* = \lambda$
15 $R + R = R$
16 $R^*R^* = R^*$

I7 RR* = R*R
I8
$$(R*)* = R*$$

I9 $\lambda + RR* = R* = \lambda + R*R$
I10 $(PQ)*P = P(QP)*$
I11 $(P+Q)* = (P*Q*)* = (P* + Q*)*$
I12 $(P+Q)R = PR + QR$ and $R(P+Q) = RP + RQ$

ROAD MAP

Basis

THEOREM

For every regular expression r there exists a NFA with ε -transitions that accepts L(r)

- Proof
 - Basis step (Zero operators)

Suppose r is ε , φ or a for some $a \in \Sigma$.

Then the equivalent NFA's are:

INDUCTION CASE I

- $r = r_1 + r_2$
- $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, \{f_1\}) L(M_1) = L(r_1)$
- $M_2 = (Q_2, \Sigma_2, \delta_2, q_2\{f_2\}) L(M_2) = L(r_2).$
- Assume Q_1 and Q_2 are disjoint.
- Let q_0 , f_0 be a new initial and final state respectively.

CASE I

• M = $(Q_1 \cup Q_2 \cup \{q_0, f_0\}, \sum_1 \cup \sum_2, \delta, q_0, \{f_0\})$ where δ is defined by

$$\delta(q_0,\varepsilon) = \{q_1, q_2\}$$

$$\delta(q, a) = \delta_1(q, a)$$
 if $q \in Q_1 - \{f_1\}, a \in \Sigma_1 \cup \{\epsilon\}$

$$\delta(q,a) = \delta_2(q,a)$$
 if $q \in Q_2 - \{f_2\}, a \in \Sigma_2 \cup \{\epsilon\}$

$$\delta_1(f_1,\varepsilon) = \delta_2(f_2,\varepsilon) = \{f_0\}$$

CASE II

- $r = r_1 . r_2$
- $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, \{f_1\}) L(M_1) = L(r_1)$
- $M_2 = (Q_2, \Sigma_2, \delta_2, q_2\{f_2\}) L(M_2) = L(r_2)$
- M = $(Q_1 \cup Q_2, \sum_1 \cup \sum_2, \delta, \{q_1\}, \{f_2\})$, where δ is given by:

$$\delta(q,a) = \delta_1(q,a)$$
 for q in $Q_1 - \{f_1\}$ and a in $\sum_1 \cup \{\epsilon\}$

$$\delta(f_1, \varepsilon) = \{q_2\}$$

$$\delta(q,a) = \delta_2(q,a)$$
 for q in Q_2 and a in $\Sigma_2 \cup \{\epsilon\}$

CASE II

- $L(M) = \{xy \mid x \text{ is in } L(M_1) \text{ and } y \text{ is in } L(M_2)\}$
- $L(M) = L(M_1) \cdot L(M_2)$.

CASE III

- $r = r_1^*$
- $M_1 = (Q_1, \Sigma_1, \delta_1, q_1, \{f_1\}) L(M_1) = r_1$
- M = $(Q_1 \cup \{q_0, f_0\}, \sum_1, \delta, q_0, \{f_0\})$, where δ is given by:

$$\delta(q_0, \varepsilon) = \delta(f_1, \varepsilon) = \{q_1, f_0\}$$

 $\delta(q, a) = \delta_1(q, a)$ for q in $Q_1 - \{f_1\}$ and a in $\sum_1 U\{\epsilon\}$

ROAD MAP

CONVERSION OF E-NFA TO DFA

1. Find the ε -CLOSURE of the state q_0 from the constructed ε -NFA (i.e) from state q_0 , ε transition to other states are identified as well as ε transitions from other states are also identified and combined as one set (new state).

CONVERSION OF E-NFA TO DFA

- 2. Perform the following steps until there are no more new states as been constructed.
 - i. Find the transition of the given regular expression symbols over ∑
 from the new state (i.e) move (new state, symbol)
 - ii. Find the ε-CLOSURE of move (new state, symbol).

(a/b)*abb

Mou(C, a)

• 0(0/1)*1

SUMMARY

- Definition of RE
- Precedence, identities, properties of RE.
- Thomson's construction to convert RE to NFA and then to DFA

TEST YOUR KNOWLEDGE

 Which of the following does not represents the given language?

```
Language: {0,01}
```

- a) 0+01
- b) {0} U {01}
- c) {0} U {0}{1}
- d) {0} ^ {01}

TEST YOUR KNOWLEDGE

- Regular Expression R and the language it describes can be represented as:
 - a) R, R(L)
 - b) L(R), R(L)
 - c) R, L(R)
 - d) All of the mentioned

LEARNING OUTCOME

On successful completion of this topic, the student will be able to:

• Understand the concepts of RE (K3)

REFERENCE

 Hopcroft J.E., Motwani R. and Ullman J.D, "Introduction to Automata Theory, Languages and Computations", Second Edition, Pearson Education, 2008

