Лабораторная работа №2.4.1 Определение теплоты испарения жидкости Мещеряков Всеволод, Б02-001, 23.03.2021

Введение

В этой работе будет измеряться зависимость давления насыщенных паров от температуры, по которой будут определены теплоты испарения с помощью уравнения Клапейрона-Клаузиуса. Будут использоваться: термостат, герметический сосуд с исследуемой жидкостью, микроскоп.

Теоретическая справка

Теплоту парообразования жидкости будем вычислять при помощи следствия из формулы Клапейрона-Клаузиуса (1). В ней P - давление насыщенного пара при температуре T, L - теплота испарения жидкости. Она получена из соображений, что водяной пар можно считать идеальным газом, а объем жидкости много меньше объема пара:

$$L = -R\frac{d\ln(1/P)}{d(1/T)}. (1)$$

Экспериментальная установка

На рисунке 1 представлена схема установки. На ней: А - термостат, В - экспериментальный прибор, С - микроскоп. Экспериментальный прибор представляет собой емкость 12, которая заполнена водой из термостата. В нее погружен прибор 13 с исследуемой жидкостью 14. Перед заполнением жидкостью прибор был откачан, так что в нем над жидкостью находится только её насыщенный пар. Рост давления пара с ростом температуры воды из термостата фиксируется по ртутному манометру 15 с помощью микроскопа 16 и штатива 17.

Недостаток этой установки состоит в том, что термостат показывает температуру воды, а не исследуемой жидкости. Поэтому при изменении

 $M\Phi TH$, 2021

Рис. 1 - Cxeмa ycmaновки

температуры на $1^{\circ}C$ необходимо ждать 1 - 3 минуты, пока температуры выровняются.

Ход работы

Включим термостат и выставим начальную температуру в $20^{\circ}C$. Зафиксируем давление паров. Будем продолжать измерения до $60^{\circ}C$ с шагом в $2^{\circ}C$. Результаты отразим в таблице 1 приложения. По этим данным построим графики в координатах T и P, 1/T и lnP: рисунки 2 и 3 приложения. График рисунка 2 проще анализировать, поэтому воспользуемся им.

Коэффициент наклона из формулы (1):

$$\frac{L}{R} = -\frac{dln1/P}{d(1/T)} \Longrightarrow L = 43.063 \pm 250 \,\text{Дж/кг}$$
 (2)

Так же измерим зависимость расхода от диаметра трубки. Согласно теории, он пропорционален его четвертой степени при турбулентном течении. Результаты отразим в таблице 2 и на рисунке 4 приложения.

 $M\Phi TH$, 2021 2

Приложение

Таблица 1 — 3 aвисимость перепада давления от температуры

T, K	dH, cm	dD, cm	$dP, \Pi a$	$\sigma_{dP}, \Pi a$
293,03	1,77	0,04	2330,2	11,7
295,04	1,93	0,13	2532,3	12,7
296,95	2,14	0,05	2817,1	14,1
299,97	2,63	0,3	3438,7	17,2
302,96	3,07	0,07	4041,5	20,2
305,07	3,47	0,11	4565,1	22,8
307,01	3,85	0,07	5070,1	25,4
309,03	4,31	0,12	5671,8	28,4
311,04	4,86	0,18	6391,2	32,0
313,04	5,18	0,04	6826,9	34,1
315,03	6,06	0,13	7978,5	39,9
317,07	6,6	0,09	8694,5	43,5
319,03	7,45	0,13	9811,5	49,1
321,02	8,11	0,05	10689,7	53,4
323,04	8,85	0,03	11667,4	58,3
325,03	9,94	0,03	13104,8	65,5
327,03	10,4	0,05	13709,5	68,5
329,02	12	0,05	15819,4	79,1
331,04	13,21	0,08	17412,0	87,1
333,02	14,49	0,08	19099,9	95,5

МФТИ, 2021 3

Рис. 2 — График зависимости в координатах $1/T,\ lnP$

Рис. 3 — График зависимости в координатах $T,\,P$

 $M\Phi$ ТИ, 2021 4