一、概览

利全球领先的用第三方云平台-机智云,打造了基于超低功耗 Nuleo-STM32L073 的物联网应用系统,实现的功能有:

- a) 远程手机 APP 控制 RGB LED 的颜色(红、绿、蓝);
- b) 自带 3 种混合色, 黄色、紫色、粉色, 一键切换所需颜色;
- c) 远程手机 APP 控制直流电机的正反转;
- d) 远程手机 APP 显示温湿度;
- e) 红外传感器障碍物检测;

二、硬件介绍

NUCLEO-L073RZ 是 ST 公司推出的一款针对 STM32L0 系列设计的 Cortex-M0 开发板,支持mbed ,兼容 Arduino,同时还提供 ST Morpho 扩展排针,可连接微控制器的所有周边外设。开发板基于 STM32L073RZT6 设计,开发板还集成了 ST-LINK/V2-1 仿真下载器(但仅对外提供 SWD 接口),免除您另外采购仿真器或下载器的麻烦。并且具备 Arduino 接口,可接入 Arduino 巨大生态系统的各种 Shield 扩展板,让您能够轻松快速增加特殊功能。

机智云是智能硬件时代专为硬件提供后台支持的云服务平台, 服务的内容主要包括了统计分析、数据安全、远程管理、软件升级等。GoKit 是机智云推出的一套智能硬件开发板, GoKit 扩展板采用 Arduino UNO 接口, 板载 ESP8266-12F WiFi 模块、温湿度传感器 DHT11、2 个按键、障碍物红外检测模块、微型直流电机、RGB 5050 全彩 LED。

三、软件系统

开发工具:STM32CubeMX 和 IAR for ARM, IAR 不做介绍,这里介绍下 ST 推广的全新开发工具 STM32CubeMX。

STM32CubeMX 是 ST 意法半导体近几年来大力推荐的 STM32 芯片图形化配置工具, 允许用户使用图形化向导生成 C 初始化代码,可以大大减轻开发工作,时间和费用。STM32CubeMX 覆盖了 STM32 全系列芯片。它具有如下特性:

- ① 直观的选择 MCU 型号,可指定系列、封装、外设数量等条件
- ② 微控制器图形化配置
- ③ 自动处理引脚冲突
- ④ 动态设置时钟树、生成系统时钟配置代码
- ⑤ 可以动态设置外围和中间件模式和初始化

- ⑥ 功耗预测
- ⑦ C 代码工程生成器覆盖了 STM32 微控制器初始化编译软件,如 IAR, KEIL, GCC。
- ⑧ 可以独立使用或者作为 Eclipse 插件使用

机智云智能设备接入原理:

硬件厂商对硬件智能化的第一步是让设备能够联网,GAgent 是机智云提供的一款兼容国内主流 Wi-Fi 模块、移动网络模块的模组系统。硬件厂商只需理解如何与 GAgent 进行通讯即可。GAgent 主要的作用是数据转发,是设备数据、机智云、应用端(APP)的数据交互桥梁。可将 GAgent 移植到 WiFi 模组、GPRS 模组、PC 端等。目前机智云提供由机智云移植的 WiFi 模组对应固件有:汉枫 LPB100、乐鑫 8266、汉枫 LPT120、高通 4004 、RealTek 8711AM 、庆科 3162 等。简单的说就是,WiFi 模块里面烧录了一个叫 GAgent 的固件,然后这个 WiFi 模块对用户的 MCU 就是串口透传了,复杂的协议、交互都给封装了。

四、云端配置

我们在机智云开发者中心 http://dev.gizwits.com/zh-cn/developer/ 创建一个名为 NucleoL073GoKitS的产品并添加数据点,数据点是设备产品的功能的抽象,用于描述产品功能及其参数。创建数据点后,设备与云端通讯的数据格式即可确定,设备、机智云可以相

互识别设备与机智云互联互通的数据。因为我们手机 APP 的功能需求是:

单独控制 RGB LED 的颜色(红、绿、蓝);

自带3种混合色,黄色、紫色、粉色,保证能一键切换所需颜色;

远程手机 APP 控制直流电机的正反转;

远程手机 APP 显示温湿度传感器 DHT11 采集的温湿度;

红外传感器障碍物检测;

把以上进行抽象, 依次为数值量下发控制、枚举量下发控制、数值量下发控制、数值量上报、布尔值上报。

所以建立如下数据点(这里可以利用官方提供的模板):

创建后的数据点如下:

五、MCU 端编程

在云端创建产品,建立好数据点后,即可自动生成多种方案的工程,还可以下载自动生成的 手机 APP 或者进行在线虚拟调试,机智云为广大开发者提供一系列简便的开发工具:

如利用虚拟设备,在没有搭建硬件设备平台时可模拟设备与云端的交互:

在服务栏目->MCU 开发,我们选择独立 MCU+WiFi 方案:

点击生成代码包即可;

下载生成的工程,解压,其文件组织目录如下:

45f4bb6084594002b6364e5248fe080f_mcu_stm32f103c8x_20161223142829_pms3j6 名称 修改日期 类型 大小 Gizwits 2016/12/23 22:28 文件夹 Hal 2016/12/23 22:28 文件夹 Lib 2016/12/23 22:28 文件夹 Project 2016/12/23 22:28 文件夹 User 文件夹 2016/12/23 22:28 Changelog 2016/11/30 15:09 文本文档 1 KB MCU_STM32F103C8x_API介绍_V0.2 2016/11/30 16:13 Foxit Reader Plus P... 270 KB 注意 Gizwits 文件夹下包含 4 个文件,这些是机智云协议层的,已包含云端创建的数据点信息并留出用户接口:

> 45f4bb6084594002b6364e5248fe080f_mcu_stm32f103c8x_20161223142829_pms3j6 > Gizwits					
名称	修改日期	类型	大小		
gizwits_product	2016/12/23 14:28	C文件	9 KB		
gizwits_product	2016/11/30 10:09	H 文件	4 KB		
gizwits_protocol	2016/12/23 14:28	C文件	51 KB		
gizwits protocol	2016/12/23 14:28	H 文件	23 KB		

另外需要注意 User 目录下的 main.c 文件,这里包含了程序框架。

这个工程(基于 STM32 标准库函数且 IDE 为 Keil for ARM)只是一个框架,但包含了和机智云通信协议层,用户只需要添加自己的驱动代码和业务逻辑,以本例来说就是我们需要实现 RGB LED 的驱动,直流电机的驱动,温湿度传感器的驱动,红外传感器的驱动,以及收到手机 APP 发的指令后干什么,软件逻辑如下:

所以我们只需简单的移植一下,通过此图知道要把任意 MCU 通过 WIFI 模块连上机智云,只需实现 3 个简单的接口函数:串口发送、中断接收 1 字节数据,定时器 1ms 中断。

1	Go	Kit V2.3 Shield		NUC	CLEO-L073RZ	
2 板卡丝印	Arduino UNO标准接口	功能说明	板卡丝印	MCU引脚	功能说明	配置
3 A6		无任何连接	NC			
4 NC	IOREF	无任何连接	IOREF			
RST	RESET	无任何连接	RESET	NRST		
3V3	3.3V	3.3V电源用于板载IC	3.3V		3.3V电源输出	
5V	5V	5V电源用于RGB LED	5V		5V电源输出	
GND	GND		GND			
GND	GND		GND			
NC NC	VIN	无任何连接	VIN			
1 A0	A0	RGB LED电源开关,高电平使能	A0	PA0		通用推免IO
2 A1	A1		A1	PA1		
3 A2	A2		A2	PA4		
4 A3	A3		A3	PB0		
5 A4	A4		A4	PC1		
A5	A5		A5	PC0		
7 SCL	SCL/D15	RGB LED驱动IC的时钟线	SCL/D15	PB8		通用推挽IO
SDA	SDA/D14	RGB LED驱动IC的数据线	SDA/D14	PB9		通用推免IO
NC	AREF	无任何连接	AVDD			
GND	GND		GND			
D13	D13		D13	PA5	用户绿色LD2,高电平点亮	通用推挽IO
D12	D12		D12	PA6		
D11	D11		D11	PA7		
1 D10	D10		D10	PB6		
5 D9	D9		D9	PC7		
6 D8	D8		D8	PA9		

如上图根据 Nucleo-STM32L073 和机智云 Gokit V2.3 扩展板原理图,确定了引脚分配。这里由于板载 ST-LINK 虚拟串口和 Arduino UNO 接口的串口有冲突,需要对 Nucleo 做点手术:

我们先用 STM32CubeMX 生成 STM32FL073RZ 的基于 HAL 库函数的 IAR 工程,配置详细方法参见附件 STM32CubeMX 生成配置报表 PDF

这里需要指出的是堆栈 Heap 和 Stack 的设置,需要修改大一些,另外工程文件夹名为 GokitShield_Nucleo64_STM32L073RZ:

再把云端生成工程的 GizWits 目录拷贝到 IAR 工程中,移植硬件驱动即可。

到此完成了**机智云协议层**的拷贝,下面拷贝**硬件驱动层**:

我们在机智云官网下载微信宠物屋源码:

解压,找到 Hal 文件夹,如下图,里面包含了外设驱动源码,但是这些是基于 STD 库函数且 MCU 是 STM32F103C8T6:

> gokit_mcu_stm32_V03010101_2016120118 > Hal

名称	修改日期	类型
Hal_infrared	2016/12/23 22:37	文件夹
Hal_key	2016/12/23 22:37	文件夹
Hal_led	2016/12/23 22:37	文件夹
hal_motor	2016/12/23 22:37	文件夹
Hal_rgb_led	2016/12/23 22:37	文件夹
hal_temp_hum	2016/12/23 22:37	文件夹
Hal_Usart	2016/12/23 22:37	文件夹
Hal_Watchdog	2016/12/23 22:37	文件夹

而我们 STM32CubeMX 软件生成的是基于 HAL 库函数且 MCU 是 STM32L073RZ,所以需要修改这些硬件驱动,移植这里就不介绍了,大家下载附件查看即可,我这里把这些驱动文件.c 和.h 放在一个文件夹 Hal:

> GokitShield_Nucleo64_STM32L073RZ > Hal					
名称	修改日期	类型	大小		
hal_infrared	2016/12/24 18:05	C文件	1 K B		
Hal_infrared	2016/12/24 18:05	H文件	1 KB		
hal_key	2016/12/24 20:21	C文件	8 KB		
hal_key	2016/12/24 18:02	H文件	2 KB		
hal_motor	2016/11/7 14:21	C文件	2 KB		
Hal_motor	2016/12/24 18:02	H文件	1 KB		
hal_rgb_led	2016/9/26 8:42	C文件	3 KB		
Hal_rgb_led	2016/12/24 18:01	H文件	1 KB		
hal_temp_hum	2016/12/24 18:34	C文件	6 KB		
Hal_temp_hum	2016/12/24 18:14	H文件	1 KB		

如下图 IAR 工程, 红框是机智云协议层, 蓝框是硬件驱动层。

需要修改的 3 个接口和需要添加的用户逻辑位于 gizwits_product.c,前文提到的三个接口函数是定时器 1ms 中断,串口发送和中断接收如下:

其它细节不再赘述,代码修改移植细节请参考社区系列教程:

http://club.gizwits.com/thread-3914-1-1.html

总结:本文介绍了使用机智云自助开发平台快速创建智能产品的过 程,并给出了移植机智云微信宠物屋 SDK 到 Nucleo-STM32L073

的过程。利用机智云强大的代码生成工具,我们只需简单的把用户 代码填充到机智云为我们搭建的框架即可。

附演示视频链接: http://player.youku.com/player.php/sid/XMTg4NzQ3MjM0MA==/v.swf

完整工程源码,资料请戳: http://club.gizwits.com/thread-4467-1-1.html