

Introduction to

AiiDA

Ignacio Martin Alliati, Myrta Grüning Atomistic Simulation Centre Queen's University Belfast

> PHY90563 18 March 2022

- > Introduction
- ➤ T1 calculation management
- ➤ T2 workflows
- > T3 data provenance
- > T4 WorkChains
- ➤ Outlook real use cases

- > Introduction
- ➤ T1 calculation management
- ➤ T2 workflows
- > T3 data provenance
- > T4 WorkChains
- ➤ Outlook real use cases

- > Introduction
- ➤ T1 calculation management
- \succ T2 workflows
- > T3 data provenance
- > T4 WorkChains
- ➤ Outlook real use cases

- > Introduction
- ➤ T1 calculation management
- \geq T2 workflows
- ➤ T3 data provenance
- > T4 WorkChains
- ➤ Outlook real use cases

- > Introduction
- ➤ T1 calculation management
- > T2 workflows
- ➤ T3 data provenance
- > T4 WorkChains
- ➤ Outlook real use cases

Introduction

Introduction - What is AiiDA?

Introduction - What is AiiDA?

Plugins

Everything is a Node

Example – one calculation

Basic benefits of AiiDA

1. Calculation management —— Tutorial 1

2. Workflows —— Tutorial 2

3. Data provenance ──── Tutorial 3

scf

Write input file

Write submission script

Copy files and PP to cluster

Login and submit job

Check status

Parse the output

Perform arithmetic operations

scf

Write input file

Write submission script

Copy files and PP to cluster

Login and submit job

Check status

Parse the output

Perform arithmetic operations

- Single python script
 - AiiDA executes all steps automatically

scf

Write input file

Write submission script

Copy files and PP to cluster

Login and submit job

Check status

Parse the output

Perform arithmetic operations

- Single python script
 - AiiDA executes all steps automatically

Think of hundreds of calculations!

Think of automation!

2. Workflows

2. Workflows

2. Workflows

Tutorials

- Calculate energy
 - of given structure (scf)
 - of ground state structure (vc-relax)

- Calculate energy
 - of given structure (scf)
 - of ground state structure (vc-relax)
- > Print difference in meV

- Calculate energy
 - of given structure (scf)
 - of ground state structure (vc-relax)
- > Print difference in meV

Tutorial 1 – bash

> See files provided

Tutorial 1 – bash

- > See files provided
- > Common errors/shortcomings
 - Writing QE input files
 - Parsing QE output files
 - Interfacing with python

Tutorial 1 – AiiDA

> See file provided

Tutorial 1 – AiiDA

- > See file provided
- > AiiDA can
 - Write QE input files
 - ➤ Parse QE output files
 - Perform operations in Python

> Converge the vacuum of graphene

> Converge the vacuum of graphene

> Converge the vacuum of graphene

> Workflow

> Converge the vacuum of graphene

- > Workflow
 - 1. Function to stretch structure

Tutorial 2 - workflow

> Converge the vacuum of graphene

- > Workflow
 - 1. Function to stretch structure
 - 2. Function to create builder

Tutorial 2 - workflow

> Converge the vacuum of graphene

> Workflow

- 1. Function to stretch structure
- 2. Function to create builder
- 3. Function to call 1 and 2 in a loop

Tutorial 2 - workflow

> Converge the vacuum of graphene

> Workflow

- 1. Function to stretch structure
- 2. Function to create builder
- 3. Function to call 1 and 2 in a loop
- 4. Plot results

Tutorial 3 – data provenance

➤ What about the **provenance**?

Tutorial 3 – data provenance

➤ What about the **provenance**?

- Decorate python functions as
 - Calcfunctions (calculation node)
 - WorkFunctions (workflow node)

Tutorial 3 – data provenance

➤ What about the **provenance**?

- Decorate python functions as
 - Calcfunctions (calculation node)
 - WorkFunctions (workflow node)

Tutorial 4 - WorkChains

➤ WorkFunctions run blockingly

Tutorial 4 - WorkChains

- ➤ WorkFunctions run blockingly
- ➤ WorkChains
 - > Can be **submitted**
 - > Can use To Context

Conclusions & outlook

1. Automatic calculation management

1. Automatic calculation management

2. Workflows (no provenance)

- 1. Automatic calculation management
- 2. Workflows (no provenance)
- 3. WorkFunctions (with provenance)

- 1. Automatic calculation management
- 2. Workflows (no provenance)
- 3. WorkFunctions (with provenance)
- 4. WorkChains (submit)

Outlook – Aiida plugins & tools

> Existing plugins for mainstream codes Aiida plugin registry

Outlook – Aiida plugins & tools

- > Existing plugins for mainstream codes Aiida plugin registry
- > Existing WorkChains for common uses
 - PwBandsWorkChain

Outlook – Aiida plugins & tools

- > Existing plugins for mainstream codes Aiida plugin registry
- > Existing WorkChains for common uses
 - PwBandsWorkChain
- > Restapi

> Reproducibility

- > Reproducibility
 - > E.g., change the pseudopotentials

- > Reproducibility
 - > E.g., change the pseudopotentials
 - Open-data publications

- > Reproducibility
 - > E.g., change the pseudopotentials
 - Open-data publications
- High-throughput studies
 - > Find the same property in thousands of materials

Computational discovery of materials

Outlook – want to use AiiDA?

- Complete these tutorials
- > Complete official tutorials <u>www.aiida.net</u>
- > Read official documentation www.aiida.net
- > Find the plugin of your code
 - Use its WorkChains
 - Write new WorkChains

Thank you

