流程

- 1 训练集数据准备
- 2 开始训练
- 3 测试集数据准备
- 4 验证测试集

1 训练集数据准备

1 创建目录结构如下

mlkl

alphak10

- 2 把好曲线放入 good 文件夹, 把坏曲线放入 bad 文件夹
- 3 执行脚本文件 生成训练集数据和 csv.py

```
19 DATA = 'mlkl'
20 NUM = '1'
21 NUM_dimension = 1024
22 SIGMA = 1
23 randomSeed = 42
```

超参数		
DATA	目前支持2种数据	训练集是 mlkl 就写入 mlkl
	mlkl	训练集是 alphak10 就写入
	alphak10	alphak10
NUM	训练集第一版本就 NUM=1,	目前不需要修改
	如果训练集有第二种版本就	
	NUM=2, 训练集还有第三种	
	版本就 NUM=3。	
NUM_dimension	是一条曲线有多少个数据	目前不需要修改
	点,原始数据有时候是 500	
	个点,有时候是 1000 个点,	
	那就统一插值到 1024 个点。	
SIGMA	高斯平滑的超参数设置,选	目前不需要需改
	为 1 是比较好的,可以平滑	
	曲线去掉部分噪声。	
randomSeed	5 折交叉验证划分数据集的	目前不需要需改
	超参数,默认使用 42	

4 训练集结构

执行 生成训练集数据和 csv.py 脚本文件之后,在 D:\1DeepSIFA\data\mlkl\train\v1 目录文件下就会生成如下结构的文件,4 个文件夹和一个 csv 文件。

2 开始训练

1 把 DeepSIFA 文件放到这个目录下

2 DeepSIFA 包含文件如下

3 如果要训练的话,执行 train.py 文件就可以

dB	
data_dir 设置为	'D:/1DeepSIFA/data/mlkl/train/v1/归一化插值后 npz_1024_高斯平滑 1'
train_csv_dir设置为	'D:/1DeepSIFA/data/mlkl/train/v1/5 折交叉验证_42/train_fold{}_多标签.csv'.format(fold)
val_csv_dir 设置为	'D:/1DeepSIFA/data/mlkl/train/v1/5 折交叉验证_42/val_fold{}_多标签.csv'.format(fold)

3 测试集数据准备

1 创建目录

- 2 把好曲线放入 good 文件夹, 把坏曲线放入 bad 文件夹
- 3 执行脚本文件 生成测试集数据和 csv.py

超参数		
DATA	目前支持2种数据	训练集是 mlkl 就写入 mlkl
	mlkl	训练集是 alphak10 就写入
	alphak10	alphak10
NUM	训练集第一版本就 NUM=1,	目前不需要修改
	如果训练集有第二种版本就	
	NUM=2, 训练集还有第三种	
	版本就 NUM=3。	
NUM_dimension	是一条曲线有多少个数据	目前不需要修改
	点,原始数据有时候是 500	
	个点,有时候是 1000 个点,	
	那就统一插值到 1024 个点。	
SIGMA	高斯平滑的超参数设置,选	目前不需要需改
	为 1 是比较好的,可以平滑	
	曲线去掉部分噪声。	

4 测试集结构

执行 生成测试集数据和 csv.py 脚本文件之后, 在 D:\1DeepSIFA\data\mlkl\test\v1 目录文件下就会生成如下结构的文件, 3 个文件夹和一个 csv 文件。

4 验证测试集

1 把 DeepSIFA 文件放到这个目录下

2 DeepSIFA 包含文件如下

3 如果要验证测试集的话,执行 eval_test.py 文件就可以

data_dir 设置为	'D:/1DeepSIFA/data/mlkl/test/v1/归一化插值后 npz_1024_高斯平滑 1'
val_csv_dir 设置为	'D:/1DeepSIFA/data/mlkl/test/v1/337.csv'.format(fold)