ALGORITHM ANALYSIS

CSE 122 ~ Algorithms & Data Structures

TERMINOLOGY ~ SEQUENCES AND SUMMATION

- → Sequence: A sequence is a function from a subset of the integers (usually either the set {0,1,2,...} or {1,2,3,...} to a set S.
 - Use notation a to denote a sequence
 - $f(n) = a_n$
 - $f(n) = a_m, a_{m+1}, a_{m+2}n, ..., a_n$
 - **term:** each individual element (Read "a sub k")
 - k is called a subscript or index. (k ∈ Z)

- ⇒ $a_n = 1/n$ • $a_1, a_2, a_3, ..., a_n = 1/1, 1/2, 1/3, ..., 1/n$ ⇒ Whet are the five terms of the
- → What are the first five terms of the following:
 - $A_k = k/(k+1)$, k = 1, 2, 3, ..., n
 - $B_i = i-1/i, i = 2, 3, 4, ..., n$

- ⇒ $a_n = 1/n$ • $a_1, a_2, a_3, ..., a_n = 1/1, 1/2, 1/3, ..., 1/n$
- → What are the first five terms of the following:
 - $A_k = k/(k+1)$, k = 1, 2, 3, ..., n
 - $B_i = i-1/i$, i = 2, 3, 4, ..., n
 - Both generate 1/2, 2/3, 3/4, 4/5, 5/6

 \rightarrow What does $c_j = (-1)^j$, j > 0 generate?

- ⇒ What does $c_j = (-1)^j$, j > 0 generate? • -1, 1, -1, 1, ..., $(-1)^j$
- \rightarrow Find the formula a_k for the sequence:
 - · 1, -1/4, 1/9, -1/16, 1/25, -1/36, ...

- → What does $c_j = (-1)^j$, j > 0 generate? • -1, 1, -1, 1, ..., $(-1)^j$
- \rightarrow Find the formula a_{k} for the sequence:
 - 1, -1/4, 1/9, -1/16, 1/25, -1/36, ...
 - Answer: $a_k = (-1)^{k+1}/k^2$, for all $\forall k, k \ge 1, k \in Z^+$

```
→ In CS, for loops are sequences
for (int i = 1; i < 101; i++)
a[i] = 1/i;</pre>
```

 \rightarrow Exercise: Write $a_n = (-1)^n$ as a for loop.

→ Exercise: Write a_n = (-1)ⁿ as a for loop.

for (int i = 1; i < n; i++)
 a[i] = pow((-1), i);</pre>

- → In CS, these sequences are called *strings*
 - Example: bit string ~ a sequence of zero or more bits
 - Length ~ number of terms in the string
 - Empty string ~ a string that has no terms

Notation due Lagrange to describe the sum of terms of a_m , a_{m+1} , ..., a_n from the sequence $\{a_n\}$:

$$\sum_{i=m}^{n} a_i = a_m + a_{m+1} + \dots + a_n$$

 \rightarrow i is called the **index of summation** and the index runs through the lower limit m to the upper limit n. n>=m

- \rightarrow Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, $a_5 = 2$
- → Find the following sums:

$$\sum_{i=1}^{5} a_i$$

$$\sum_{i=2}^{2} a_i$$

$$\sum_{i=1}^{n} a_{2i}$$

- \rightarrow Let $a_1 = -2$, $a_2 = -1$, $a_3 = 0$, $a_4 = 1$, $a_5 = 2$
- → Find the following sums:

$$\sum_{i=1}^{5} a_i \qquad \qquad \sum_{i=2}^{2} a_i \qquad \qquad \sum_{i=1}^{2} a_2$$

→ Another example uses the index as part of the formula:

$$\sum_{k=1}^{5} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2$$

→ How do you write the terms of the sum:

$$\sum_{k=0}^{5} \frac{k+1}{n+k}$$

→ How do you write the terms of the sum:

$$\sum_{k=0}^{5} \frac{k+1}{n+k} = \frac{1}{n} + \frac{2}{n+1} + \frac{3}{n+2} + \dots + \frac{n+1}{2n}$$

PROPERTIES OF SUMMATIONS

$$\sum_{k=m}^{n} a_k + \sum_{k=m}^{n} b_k = \sum_{k=m}^{n} (a_k + b_k)$$

$$c \cdot \sum_{k=m}^{n} a_k = \sum_{k=m}^{n} c \cdot a_k$$

- → A geometric progression is a sequence of the form
 - + a, ar, ar², ar³, ..., ar^k
 - Examples:

$$2^{0} + 2^{1} + 2^{2} + \dots + 2^{n} = \sum_{k=0}^{n} 2^{k}$$

$$3^0 + 3^1 + 3^2 + \dots + 3^n = \sum_{k=0}^{n} 3^k$$

→ Let's find a formula for the sum of the terms of a geometric progression:

$$S = \sum_{j=0}^{n} ar^{j}$$

 \rightarrow Multiply both sides by r and manipulate sum

$$rS = r \sum_{j=0}^{n} ar^{j}$$

$$= \sum_{j=0}^{n} ar^{j+1}$$

$$= \sum_{k=1}^{n+1} ar^{k}, \text{ where } k = j+1$$

- → Why? Have to replace the upper and lower limits
 - k = j + 1, when j = 0, k = 0 + 1 = 1, and when j = n, k = n + 1
 - Also have to replace the term in the summation j + 1

→ Complete and Solve for s

$$= \sum_{k=0}^{n} ar^{k} + (ar^{n+1} - a)$$

$$= S + (ar^{n+1} - a)$$
Now solve for S

$$S = \frac{ar^{n+1} - a}{r - 1}$$

GEOMETRIC SEQUENCE EXAMPLE

 \rightarrow What does $2^0 + 2^1 + 2^2 + ... + 2^n$ equal? • Apply the formula

GEOMETRIC SEQUENCE EXAMPLE

- → What does $2^0 + 2^1 + 2^2 + ... + 2^n$ equal?
 - Apply the formula
 - a = 1, r = 2, so $S = \frac{2^{n-1}-1}{2-1} = 2^{n+1} 1$

 \rightarrow Transform the index when i = k + 1

$$\sum_{k=0}^{5} k(k-1) =$$

 \rightarrow Transform the index when i = k + 1

$$\sum_{k=0}^{5} k(k-1) = \sum_{i=1}^{6} (i-1)(i-2)$$

 \rightarrow Transform the index when j = i - 1

$$\sum_{i=1}^{n+1} \frac{(i-1)^2}{i \cdot n} =$$

 \rightarrow Transform the index when j = i - 1

$$\sum_{i=1}^{n+1} \frac{(i-1)^2}{i \cdot n} = \sum_{j=0}^{n} \frac{j^2}{(j+1) \cdot n}$$

→ Write as a single summation:

$$3 \cdot \sum_{k=1}^{n} (2k - 3) + \sum_{k=1}^{n} (4 - 5k) =$$

→ Write as a single summation:

$$3 \cdot \sum_{k=1}^{n} (2k-3) + \sum_{k=1}^{n} (4-5k) = \sum_{k=1}^{n} (k-5)$$

MONDAY IS A HOLIDAY

- → I won't be here
- → Neither should you