

Sistemas Digitais (SD)

Minimização de Funções Booleanas

Aula Anterior

Na aula anterior:

- ▶ Funções lógicas:
 - Circuitos com portas NAND (revisão);
 - Circuitos com portas NOR (revisão);
- ▶ Representações normalizadas:
 - Soma de produtos;
 - Mintermos;
 - Produto de somas;
 - Maxtermos;
- ► Funções incompletamente especificadas.

Planeamento

SEMANA	TEÓRICA 1	TEÓRICA 2	PROBLEMAS/LABORATÓRIO
17/Fev a 21/Fev	Introdução	Sistemas de Numeração	
24/Fev a 28/Fev	CARNAVAL	Álgebra de Boole	P0
02/Mar a 06/Mar	Elementos de Tecnologia	Funções Lógicas	VHDL
9/Mar a 13/Mar	Minimização de Funções	Minimização de Funções	LO
16/Mar a 20/Mar	Def. Circuito Combinatório; Análise Temporal	Circuitos Combinatórios	P1
23/Mar a 27/Mar	Circuitos Combinatórios	Circuitos Combinatórios	L1
30/Mar a 03/Abr	Circuitos Sequenciais: Latches	Circuitos Sequenciais: Flip-Flops	P2
06/Abr a 10/Abr	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA	FÉRIAS DA PÁSCOA
13/Abr a 17/Abr	Caracterização Temporal	Registos	L2
20/Abr a 24/Abr	Contadores	Circuitos Sequenciais Síncronos	P3
27/Abr a 01/Mai	Síntese de Circuitos Sequenciais Síncronos	Síntese de Circuitos Sequenciais Síncronos	L3
04/Mai a 08/Mai	Exercícios Tes	Memórias ste 1	P4
11/Mai a 15/Mai	Máq. Estado Microprogramadas: Circuito de Dados e Circuito de Controlo	Máq. Estado Microprogramadas: Microprograma	L4
18/Mai a 22/Mai	Circuitos de Controlo, Transferência e Processamento de Dados de um Processador	Lógica Programável	P5
25/Mai a 29/Mai	P6	P6	L5

3

Sumário

Tema da aula de hoje:

- Minimização algébrica
- Minimização de Karnaugh:
 - Representação de funções de n variáveis:
 - Quadros de 3 e 4 variáveis;
 - Quadros de n variáveis;
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - Implicantes e implicados;
 - o Implicantes e implicados primos;
 - Implicantes e implicados primos essenciais.

Bibliografia:

- M. Mano, C. Kime: Secções 2.4 e 2.5
- G. Arroz, J. Monteiro, A. Oliveira: Secção 2.3

SIMPLIFICAÇÃO ALGÉBRICA PELO TEOREMA DA ADJACÊNCIA

▶ Um termo com n literais tem n adjacentes possíveis

Exemplo:

x_3	\mathbf{x}_2	\mathbf{x}_1	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

m₀ tem 3 adjacentes possíveis, mas neste exemplo apenas m₁ também vale 1.

$$m_0 = \overline{x}_3.\overline{x}_2.\overline{x}_1 \qquad \overbrace{\overline{x}_3.\overline{x}_2.\overline{x}_1} = m_1$$

$$\overline{x}_3.\overline{x}_2.\overline{x}_1 = m_2$$

$$x_3.\overline{x}_2.\overline{x}_1 = m_4$$

m₀ apenas pode ser simplificado com m₁.

$$m_0 + m_1 = \overline{x}_3 \cdot \overline{x}_2 \cdot (x_1 + \overline{x}_1) = \overline{x}_3 \cdot \overline{x}_2$$

SIMPLIFICAÇÃO ALGÉBRICA PELO TEOREMA DA ADJACÊNCIA

Exemplo:

	Adjacentes	Obs.
m_0	m_1	m_0 só pode ser simplificado com m_1
\mathbf{m}_1	m_0, m_3, m_5	m_1 pode ser simplificado com m_0 ou com m_3 ou com m_5
m_3	\mathbf{m}_1 , \mathbf{m}_7	m_3 pode ser simplificado com m_1 ou com m_7
m_5	\mathbf{m}_1 , \mathbf{m}_7	m_5 pode ser simplificado com m_1 ou com m_7
m ₇	m_3, m_5	m_7 pode ser simplificado com m_3 ou com m_5

SIMPLIFICAÇÃO ALGÉBRICA PELO TEOREMA DA ADJACÊNCIA

Exemplo:

$$f = (m_0 + m_1) \leftarrow \text{essencial} + (m_3 + m_7) + (m_1 + m_5)$$

$$\begin{aligned} f &= \overline{x}_3 \cdot \overline{x}_2 \\ &+ x_2 \cdot x_1 \\ &+ \overline{x}_2 \cdot x_1 \end{aligned} \quad adjacentes$$

$$f = \overline{x}_3 \cdot \overline{x}_2 + x_1$$

RE-ORDENAÇÃO DA TABELA

Exemplo:

Os termos em linhas consecutivas diferem apenas de 1 bit – **código de Gray**

Deste modo, grande parte dos termos adjacentes ficam representados em linhas contíguas, o que facilita a identificação de adjacências.

(Não é habitualmente usada, porque se preferem os quadros a 2 dimensões → ver a seguir...)

QUADRO DE KARNAUGH

▶ Reordenação da tabela da verdade em 2 dimensões.

Exemplo:

	\mathbf{x}_3	\mathbf{x}_2	\mathbf{x}_1	f
m_0	0	0	0	1
m_1	0	0	1	1
m_3	0	1	1	1
m_2	0	1	0	0
m_6	1	1	0	0
m_7	1	1	1	1
m_5	1	0	1	1
m_4	1	0	0	0

Maurice Karnaugh 4/Out/1924,NY

Os termos adjacentes ficam representados em linhas/colunas contíguas.

QUADRO DE KARNAUGH

Os termos adjacentes ficam representados em linhas/colunas contíguas.

Exemplo:

	r.		$\mathbf{x}_2 \mathbf{x}_1$	1 00	01	11	10	
$x_3 x_2 x_1$	f		X ₃	0		3	2	
$m_0 \ 0 \ 0 \ 0$	1	\rightarrow	0	1	1	1	0	Termos Adja
$m_1 \ 0 \ 0 \ 1$	1	,	1	⁴ O	⁵ 1	⁷ 1	6 0	>
$m_3 \ 0 \ 1 \ 1$	1							$x_2 x_1$
$m_2 \ 0 \ 1 \ 0$	0							0 1 /
$m_6 \ 1 \ 1 \ 0$	0							
$m_7 \ 1 \ 1 \ 1$	1		X_2	x ₁ 00	01	1 1 ²	1 10	1 0
$m_5 \ 1 \ 0 \ 1$	1		0	1	1	1	0	Termos Ad
$m_4 1 0 0$	0		1	0	1	1	0	16IIIIOS AC

■ IDENTIFICAÇÃO DOS TERMOS NO QUADRO DE KARNAUGH

▶ Exemplos:

O termo é 1 quando: $x_3=0$; e $x_2=0$; e $(x_1=0 \text{ ou } x_1=1)$

ou seja:
$$\overline{x_3} \cdot \overline{x_2} \cdot (\overline{x_1} + x_1) \rightarrow \overline{x_3} \cdot \overline{x_2}$$

simplificados

O termo é 1 quando: $(x_3=0 \text{ ou } x_3=1)$; e $(x_2=0 \text{ ou } x_2=1)$; e $x_1=1$

ou seja:
$$\left((\overline{x_3} + x_3) \cdot (\overline{x_2} + x_2)\right) \cdot x_1 \to x_1$$

simplificados

■ REPRESENTAÇÃO DE FUNÇÕES – Q. DE KARNAUGH

Quadros de 3 Variáveis

► Exemplo:

$$f(X,Y,Z) = \Sigma m(0,3,5,6)$$

YZ X	00	01	11	10
0	1	0	1	0
1	0	1	0	1

■ REPRESENTAÇÃO DE FUNÇÕES – Q. DE KARNAUGH (cont.)

Quadros de 4 Variáveis:

A mesma função pode ter representações diferentes, <u>mas equivalentes</u>, num Quadro de Karnaugh, pela simples alteração da localização das variáveis

		f(W,X	(,Y,Z)				f(W,X	(,Y,Z)	
YZ WX	00	01	11	10	WX YZ	00	01	11	10
00	m_0	m ₁	m_3	m_2	00	m_0	m_4	m ₁₂	m ₈
01	m ₄	m ₅	m ₇	m_6	01	m ₁	$m_{\scriptscriptstyle{5}}$	m ₁₃	m ₉
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m_3	m ₇	m ₁₅	m ₁₁
10	m ₈	m ₉	m ₁₁	m ₁₀	10	m_2	m ₆	m ₁₄	m ₁₀

■ REPRESENTAÇÃO DE FUNÇÕES – Q. DE KARNAUGH (cont.)

Quadros de N Variáveis

Um Quadro de Karnaugh de N variáveis é obtido pela duplicação de quadro de N-1 variáveis, devendo ser acrescentada a N-ésima variável e o correspondente eixo de simetria de modo a manter a representação das variáveis de forma reflectida.

XYZ V W	2 000	001	011	010	110	111	101	100
								m ₄
01	m ₈	m_9	m ₁₁	m ₁₀	m ₁₄	m ₁₅	m ₁₃	m ₁₂
11	m ₂₄	m ₂₅	m ₂₇	m ₂₆	m ₃₀	m ₃₁	m ₂₉	m ₂₈
10	m ₁₆	m ₁₇	m ₁₉	m ₁₈	m ₂₂	m ₂₃	m ₂₁	m ₂₀

AGRUPAMENTO DE MINTERMOS E MAXTERMOS

▶ Eixos de Simetria:

2 quadrados dizem-se adjacentes em termos lógicos quando apenas uma variável lógica altera o seu valor na representação desses quadrados.

Num quadro de N variáveis, para cada quadrado existem sempre N outros adjacentes

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de produto diz-se um implicante da função sse essa função assume 1 para todos os mintermos que o constituem.

Exemplos:

Agrupamentos de 2ⁿ quadrados correspondem à eliminação de n literais

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Exemplos da representação de Maxtermos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de soma diz-se um implicado da função sse essa função assume 0 para todos os maxtermos que o constituem.

Exemplos:

Agrupamentos de 2ⁿ quadrados correspondem à eliminação de n literais

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

▶ Um termo de produto diz-se um implicante primo se a remoção de um qualquer literal, desse termo de produto, resulta num termo de produto que não é um implicante da função.

Exemplos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

► Um termo de soma diz-se um implicado primo se a remoção de um qualquer literal, desse termo de soma, resulta num termo de soma que não é um implicado da função.

Exemplos:

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

Um implicante primo de uma função diz-se implicante primo essencial se contém pelo menos um mintermo não contido em nenhum outro implicante primo.

Exemplos:

Implicantes Primos

Implicantes
Primos Essenciais

Implicantes Primos

Implicantes Primos Essenciais

CD AB	00	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	1

AGRUPAMENTO DE MINTERMOS E MAXTERMOS (cont.)

Um implicado primo de uma função diz-se implicado primo essencial se contém pelo menos um maxtermo não contido em nenhum outro implicado primo.

Exemplos:

Implicados Primos

Implicados Primos

Implicados Primos Essenciais

CD AB	00	01	11	10
00	1	1	0	0
01	0	1	1	0
11	0	0	1	1
10	0	0	0	1

Próxima Aula

Próxima Aula

Tema da Próxima Aula:

- Minimização de Karnaugh:
 - Agrupamentos de uns e zeros:
 - Eixos de simetria;
 - Implicantes e implicados;
 - Implicantes e implicados primos;
 - o Implicantes e implicados primos essenciais.
 - Método de minimização de karnaugh:
 - Algoritmo de minimização;
 - Forma normal/mínima dijuntiva;
 - Forma normal/mínima conjuntiva;
 - Funções incompletamente especificadas.

Agradecimentos

Algumas páginas desta apresentação resultam da compilação de várias contribuições produzidas por:

- Nuno Roma
- Guilherme Arroz
- Horácio Neto
- Nuno Horta
- Pedro Tomás