

# **Multi-domain VPNs**

A practical approach to enable end-to-end services over multiple domains

DENOG7, Darmstadt

Thomas Schmid, schmid@dfn.de

## The research network landscape



#### **GÉANT**



NRENs are in general interconnected via the GÈANT network.

No end-users are connected to GÈANT.



# The NREN challenge



**GÉANT** 

- All NRENs are created unequal
  - Multi-vendor
  - Pure IP
  - IP+MPLS
  - PBB
  - MPLS-TP
  - MEF

Transport technologies

**—** ...

How to offer private e2e services?



# A brief history of private inter-domain connections



- 90s:
  - ATM SVCs, SDH: Not operated by the NRENs
- 00s: NG-SDH, Ethernet, MPLS back-to-back, MPLS-TE tunnel stitching
- 10s: Lambdas, OTN, Ethernet, MPLS ubiquitous

Example: BoD (Bandwidth on Demand)



Complex: Topology databases, PCEs etc. http://services.geant.net/bod/Pages/Home.aspx

Stitching technologies 🕾

# **Example: LHCONE**



- LHCONE: Large Hadron Collider Open Network Environment
- Private Network to distribute data from the large hadron collider at CERN among data centers (↔ LHCOPN mostly for traffic CERN-Tier1 data centers)
- One VRF per domain
- Domains interconnected via normal IP, no labels involved: back-to-back VPNs (→ no support for L2VPNs)
- In some parts separate physical/logical infrastructure reserved for LHCONE traffic

### LHCONE: A global infrastructure for the High Energy Physics (LHC and Belle II) data management





#### Carrier-support-carrier for hierarchical VPNs





- RFC4364 Option 10.c (2006!)
- Means to provide seamless end-to-end MPLS services over multiple domains
- No stitching
- Hierarchical architecture: GÈANT is Carrier-of-Carrier
- No CAPEX
- Supported on almost all router hardware
- → MDVPN: multidomain VPN
- But: no user community
  - No large scale implementation according to vendors

### MDVPN: tLDP-signalling L2 circuit



# Targeted LDP -signaled L2 circuit label exchange



**Multi-domain PE to PE MPLS path** 

### MDVPN: BGP-signalling L2VPN, L3VPN





# Standard deployment





Seite 10

### In short



- GÈANT: Carrier-of-Carrier
  - only sees the /32s of the PEs with labels
  - Transparent to configured VPNs between NRENs
  - MDVPN runs in separate VRF (for monitoring/accounting purposes)
- ASBR-ASBR BGP LU session: distribute Loopback addresses (/32s) of PEs with labels
  - No LDP required here
- VPN route-reflector: distribute BGP routes used e.g. in L3VPNs
  - Signalling: not in the forwarding path Could be anywhere
  - For practical reasons run by GÉANT
- Traffic uses shared infrastructure
  - Logical separation in VRF over VLAN on ASBR
  - Dedicated infrastructures or bandwidth reservation optional
- Easy to extend into regional metronets

### **MDVPN** data plane label operations





#### MDVPN packets labels:

| LDP   | Transport | VPN   | Data |
|-------|-----------|-------|------|
| label | label     | label |      |
| CoC   | Transport | VPN   | Data |
| label | label     | label |      |

### **Operation**



Implement new service: one phone call and then...

```
routerA#conf t
routerA(conf)>interface TengigE1/1
routerA(conf-if)>xconnect <IP of remote PE> 123 encap mpls
```

#### Done ©

- Great tool to easily deploy VPN services
  - Technology transparent for customers
- Support for all kind of VPN technologies
  - •I 2 VPN 🗹
  - •L3 VPN incl. 6VPE ☑
  - •VPLS ☑
    - •Even with autodiscovery ☑
  - •EVPN (currently testing looks good)
  - Multicast: in theory yes
- •Implementation of new services over multiple domains is as easy as in the own domain
- •Monitoring:
  - Signalling plane: routing protocols
  - Forwarding plane: ping-VPN (PEs)



### **VPN-Proxy implementation**



- Solution for NRENs that don't support MPLS in their network
- Implemented with the help of logical routers available in Juniper



## Gory details



- MTU discovery not working
  - Juniper doesn't signal MTU to Cisco
- Control label distribution between own network and GÉANT
  - Internal: labels for Loopbacks in IGP ↔ BGP towards GÉANT
- E.g. IOS-XR: wtf "ebgp-multihop mpls" required on CRS-1, not on ASR (took the TAC one month)
- IOS-XR needs static hostroute on ASBR interface for conected ASBR address
  - LSPs must always be built on /32s
- Don't change next-hop
- VPLS site-IDs: different formats, no autonegotiation
- Security
  - BGP Signalling standard security mechanisms
  - Limit targeted LDP Sessions: difficult on Cisco → use packet filters on ASBR (not very elegant compared to Juniper: implicit deny)
- Missing filter options for inner labels between domains

### **Attack scenario**



- MDVPNs are all in the same trust domain
- But: internal VPNs are vulnerable too!
  - Unless they're on a separate infrastructure
- Attacker has to:
  - Control a router in an NREN
  - Guess the inner VPN label
  - Guess the IP addresses in the attacked VPN
- Then he can inject packets into the internal VPN
  - Will he ever know it worked?
  - Do the usual hacking stuff
  - Perhaps will even get a response

⇒Takes a large amount of packets!



# **Dealing with attacks**



- Vendors don't support filters for inner labels
  - Also hard to keep track of internal inner label usage
- Therefore try to detect the attack and take appropriate measures
  - E.g. automatic shut down BGP LU peering with NREN
- Analyze netflow data (e.g. on GÉANT ASBR):





- 2015/03/25 10:21:39 ALARM 193.51.178.10:29770 (#49), interface 104, label {16459 0}, threshold reached, 409 unique labels, 13 labels is allowed
- 2015/03/25 10:21:39 ALARM 193.51.178.10:2024 (#17), interface 104, label {16459 0}, threshold reached, 416 unique labels, 13 labels is allowed

### Deployment status and outlook



- •18 NRENs connected
- More than 450 PEs

#### Future development:

- •"last mile problem": crossing the campus network to reach the researchers
  - •NTTL: network-to-the-lab. Small router using downstream label on demand with tunnels.
- Automation
- Integration with other services
  - E.g. Science DMZ
- •EVPN
- •ASBR inner label filter (cooperation with DELL)



# XiFi: A scientist project using MD-VPN for production



16 sites connected in 12 countries

https://www.fi-xifi.eu/federation.html

- Using all types of connection:
  - Direct connection
  - Via VPN-Proxy
  - Private companies not connected to any NREN

http://infographic.lab.fi-ware.org/status



| Node     | Overall | Nova | Neutron | Cinder | Glance | Keystone P. |
|----------|---------|------|---------|--------|--------|-------------|
| PiraeusU |         |      |         |        |        |             |
| Trento   |         |      |         |        |        |             |
| Zurich   |         |      |         |        |        |             |
| Prague   |         |      |         |        |        |             |
| Poznan   |         |      |         |        |        |             |
| Volos    |         |      |         |        |        |             |
| Gent     |         |      |         |        |        |             |

A first scientist project
FIWARE
FIWARE is a project of the
European Public-Private-

FIWARE is a project of the European Public-Private-Partnership on Future Internet (FIPPP) programme





### Future?





DENOG 7 schmid@dfn.de Seite 20

#### The team



Work carried out with support from EU (GN3 project SA3T3)

A small team, very small amount of manpower ... but highly motivated and skilled



- Tomasz Szewczyk (PSNC)
- Thomas Schmid (DFN)
- Magnus Bergroth (NORDUnet)
- Daniel Lete (HEAnet)
- Carlos Friacas (FCCN)
- Jani Myyry (Funet)
- Bojan Jakovljevic (AMRES)
- Miguel Angel Sotos (RedIRIS)
- Niall Donaghy (DANTE)
- Xavier Jeannin (RENATER)
- With the support of
   Brian Bach Mortensen
   (DiEC)



# QUESTIONS?

DENOG 7 schmid@dfn.de Seite 22