FACTORES DE CONVERSION

PREFIJOS Y SIMBOLOS DE LA NOTACION CIENTIFICA

PREFIJO	SIMBOLO	NOTACION CIENTIFICA
Tera	Т	10^12
Giga	G	10^9
Mega	М	10^6
Kilo	K	10^3
Deci	d	10^-1
Centi	С	10^-2
Mili	m	10^-3
Micro	μ	10^-6
Nano	n	10^-9
Pico	р	10^-12

Ejemplo 1: si realizamos la notación cient**í**fica de 5.88 x 10¹² millas seria: 5.88 Tmillas.

Ejemplo 2: si realizamos la notación científica de 9.5 x 10-6 m seria:

9.5 µm

LONGITUD	MASA:	VOLUMEN	PRESION
1 m = 100 cm	1 Kg=1000 g	1 L = 1000 ml	1 torr = 1 mmHg
1dm = 10 cm	1lb=453.6 g	$1 \text{ m}^3 = 1000 \text{ L}$	1 atm = 760 mmHg
1 pie = 30.48 cm	1 Ton= 1000 Kg	1 galón = 3.785 L	$1 \text{ atm} = 14.7 \text{ lb/pulg}^2$
1 yarda = 3 pie	1 Ton. Corta	1 galón ingles =	1 atm = 101.325 KPa
1 plg = 2.54 cm	=907.2 Kg	4.5 <mark>4</mark> 6 L	1 bar= 10^5 Pa
1 milla = 1609 m	1 onza = 28.35 g	1 pie ³ =28.32 L	
1 milla náutica =	1 onza troy =31.3		
1852 m	g		
$1^{\circ}A = 10^{-10}$ m	1 @=25 lb		
	1 q.q. = 4 @		
	1 slug = 14.59 Kg		
ENERGIA	AREA	TIEMPO	FUERZA
1 cal = 4.184 J	$1 \text{ ha} = 10000 \text{ m}^2$	1 h = 60 min	$1 \text{ Kg}_{f} = 9.81 \text{ N}$
$1 J = 10^7 erg$	$1ha = 2.47 \ acre$	$1\min = 60 \text{ s}$	1 N = 10 ⁵ dina
1 BTU = 252 cal	$1 \text{ plg}^2 = 6.452 \text{ cm}^2$	1 mes = 30 días	
1eV=1.019*10-19 J		1semana=7 días	

VOLUMENES Y AREAS

Figura	Volumen	Área
	$V = \pi R^2 * H = \frac{\pi}{4} D^2 * H$	$A=2\pi R(H+R)$
	$V = \frac{4}{3}\pi * R^3 = \frac{1}{6}\pi D^3$	$A=4\pi R^2$
	$V = \frac{1}{3}\pi R^2 * H$	$A = \pi R^2 + \pi R * g$
	$V = a^3$	$A = 6 * a^2$

1.-Convertir 25yd en unidades del sistema internacional

Rpta. 22,86m

2.-Convertir 14lb en unidades del sistema internacional

Rpta. 6,35kg

3.-Convertir 350pulg² en unidades del sistema internacional

Rpta. 0,223m²

4.-Convertir 63ft³ en unidades del sistema internacional

Rpta. 1,78m³

5.-Convertir 25kg/cm² en

lb/ft²

Rpta. $5,12x10^4$ lb/ft²

6.Una empresa de lácteos recepciona 2000kg/h de leche entera que contiene elevada materia grasa y se somete a un proceso de normalización, la misma cantidad es alimentada a una desnatadora centrifuga y como productos se obtiene leche normalizada para la venta con un 3% de materia grasa y nata con un 88% de materia grasa. Posteriormente la nata es refrigerada a 5 °C por un tiempo de 24 horas y luego es sometido a un proceso de batido para obtener 150 unidades de ,mantequilla, con un peso neto de 8,82 onzas y un 81%de materia grasa. Calcular:

- a) Cantidad en Kg de nata obtenida del proceso de normalización por una semana de producción.
- b) Calcular la cantidad en toneladas métricas de materia grasa que contiene la leche normalizada por día de recepción de leche(1dia =24h)

Respt.- a)5799,95kg Nata/sem b) 1,415TM/día

7.Un camión cisterna transporta 15000 litros de agua pero existe una pérdida de 0,8 litros por m de recorrido el tramo que dista del rio de donde se recoge el agua es de 5000m si se requiere regar un terreno de 6 hectáreas por día y el requerimiento de agua es de 4 litros por metro cuadrado de terreno ¿Cuántos viajes tendrá que realizar el camión en una semana?

Respt.- 153 viajes

8.En una pensión se consumen 15 garrafas de GLP por mes si una garrafa contiene 10kg de GLP y por instrucciones de un administrador de seguridad, etas garrafas no deben ser calentadas para su consumo total de gas y son devueltas con una masa promedio de 12,2kg (la masa de una garrafa vacía es de 11,5kg 1 \$= 8,05 Bs.)

- a) Cuantas libras de GLP serán consumidos al cabo de un año
- b) Si el costo por garrafa es de 22,5 Bs. Cuanto le significa en dólares al administrador al cabo de un año

Respt.- a)3691,2 libras de GLP b)500,6 dólares