CMSC 141 Automata and Language Theory Regular Languages

Mark Froilan B. Tandoc

September 3, 2014

Regular Expression Examples

Regular Language RegEx \rightarrow {w|w contains a sin-0*10* gle 1} $\rightarrow \{w|w \text{ contains }$ (0+1)*1(0+1)*least one 1} $\rightarrow \{w|w \text{ begins and }$ 0(0+1)*0+1(0+1)*1ends with the same +1+0symbol} $\rightarrow \{w|w \text{ has }$ even ((0+1)(0+1))*

length}

Regular Expression

- Like DFA and NFA, regular expressions can describe regular languages.
- Therefore, regular expressions can be converted into an equivalent DFA or NFA.

Converting RegEx to ε NFA

First, the constants or the basic cases:

Regular Expression Operations

Let r, s be arbitrary regular expressions with NFAs M_r and M_s . The ε NFA for alternation (r+s):

Regular Expression Operations

Let r, s be arbitrary regular expressions with NFAs M_r and M_s . The ε NFA for **concatenation (rs)**:

Regular Expression Operations

Let r be an arbitrary regular expression with NFA M_r . The ε NFA for **Kleene star** (r^*):

Example conversion of regex to εNFA

Example conversion of regex to εNFA

(ab+b)*

Example conversion of regex to εNFA

(ab+b)*

Minimal NFA for (ab+b)*

Describing Regular Languages

```
Regular Expression (regex)

\Downarrow

Nondeterministic Finite Automata with \varepsilonmoves

(\varepsilon \text{NFA})

\Downarrow

Nondeterministic Finite Automata (NFA)

\Downarrow

Deterministic Finite Automata (DFA)
```

Equivalence of all

To show that they are all essentially equivalent, we need to have DFA to regex conversion.

Using the state-elimination method

Using the state-elimination method

First step is to add new "super-state" (s) and (f), with ε -moves from (s) to the original start state, and from the original final states to (f)

Using the state-elimination method

First step is to add new "super-state" (s) and (f), with ε -moves from (s) to the original start state, and from the original final states to (f)

Using the state-elimination method

Using the state-elimination method

Using the state-elimination method

Using the state-elimination method

Exercise

- Does the sequence in which we eliminate states affect the resulting regular expression?
- Try finding a regular expression for the following DFA

References

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org