Stream Ciphers

Gianluca Dini
Dept. of Ingegneria dell'Informazione
University of Pisa

Email: gianluca.dini@unipi.it

Last version: 2021-03-02

1

Stream Ciphers

STREAM CIPHERS

March 22 Stream Ciphers

Making OTP practical (1/3)

- Idea: replace the random key stream by a pseudorandom key stream
- · Pseudo Random Generator G is an efficient and deterministic function

$$G: \{0,1\}^s \longrightarrow \{0,1\}^n \mid n >> s$$

Key-stream space

The key stream is computed from a seed

March 22 Stream Ciphers

3

Making OTP practical (2/3)

Encryption: $y = G(k) \oplus x$ Decryption: $x = G(k) \oplus y$

k G G(k) \oplus

• Key k is a small secret (e.g., 100 bits)

X

G is pseudo-random so sndr & rcvr generate the same key stream

March 22

Stream Ciphers

Making OTP practical (3/3)

- Is OTP-modified (stream cipher) still perfect?
 - NO! #keys < #msg => Shannon's theorem violated
 - We need a new definition of security!
- Security will depend on the specific PRG
 - PRG must look random, i.e., indistinguishable from a TRG for a limited adversary
 - It must be computationally unfeasible to distinguish PRNG output from a TRG output
 - A new definition of security is necessary: computational security

March 22 Stream Ciphers

5

Computational security

- Definition
 - A cryptosystem is computationally secure if the best known algorithm for breaking it requires at least t operations
 - Cons
 - What is the best known attack?
 - The best we can do it to design cryptosystem for which it is assumed that they are computationally secure

March 22 Stream Ciphers 6

Computational security

- Cons
 - A. What is the best known attack?
 - B. Even if a lower bound on the complexity of one attack is known, we don't know whether any other, more powerful attacks, are possible
- The best we can do it to design cryptosystem for which it is assumed that they are computationally secure

March 22 Stream Ciphers

7

Why we need predictability

- If PRG is predictable, a stream cipher is not secure!
 - Assume an adversary is able to determine a prefix of x then
 - Then, (s)he can compute a prefix of the key stream
 - If G is predictable, (s)he can compute the rest of the key stream and thus decrypt y

March 22 Stream Ciphers 8

Stream ciphers

STATE OF THE ART AND CASE STUDIES

Stream Ciphers

March 22

9

9

MS-PPTP (Windows NT)

- The correct way to proceed is $K = (K_{cs}, K_{sc})$
- $Z_{cs} = G(K_{cs})$, key stream for encryption client \rightarrow server
- $Z_{sc} = G(K_{sc})$, key stream for encryption server \rightarrow client

March 22 Stream Ciphers 1

11

802.11b WEP | March 22 | Stream Ciphers | March 22 | March 23 | March 24 | March 24 | March 24 | March 25 | March 26 | March 27 |

RC4

- RC4 (1987)
 - Used in HTTPS and WEP
 - Variable seed; output: 1 byte
- Weaknesses
 - Bias
 - Pr[2nd byte = 0] = 2/256 (twice as random)
 - Other bytes are biased too (e.g., 1st,3rd)
 - It is recommended that the first 256 byes are ignored
 - $Pr[00] = 1/256^2 + 1/256^3$
 - Bias starts after several gigabytes but it is still a distinguisher
 - Related keys
- It is recommended not to use RC4 but modern CSPRNG

March 22 Stream Ciphers 1

15

Linear Feedback Shift Register

p_i = feedback coefficient (If p_i == 1, the feedback is active; otherwise it is not)

 $s_m \equiv p_{m-1}s_{m-1} + \dots + p_1s_1 + p_0s_0 \mod 2$

$$\begin{split} s_{m+1} &\equiv p_{m-1} s_m + \dots + p_1 s_2 + p_0 s_1 \bmod 2 \\ s_{i+m} &\equiv \sum_{i=0}^{m-1} p_j \cdot s_{i+j} \bmod 2, s_i, p_j \in \{0,1\}, i = 0, 1, 2, \dots \end{split}$$

March 22 Stream Ciphers

16

LFSR is periodical

- LFSR
 - Degree: 3
- Sequence of states

clk	FF_2	FF_1	$FF_0 = s_i$
0	1	0	0
1	0	1	0
2	1	0	1
3	1	1	0
4	1	1	1
2 3 4 5 6 7	0	1	1
6	0	0	1
7	1	0	0
8	0	1	0

← The initial state (seed)

← The sequence of states is *periodical*

March 22

Stream Ciphers

17

17

LFSR - Properties

- Properties
 - Seed = initial state of the register
 - All 0's state must be avoided
 - Degree = number of storage units
 - Degree = 8
 - Periodic
- Maximum-length LSFR
 - Theorem
 - The maximum sequence length generated by an LFSR of degree m is 2^m-1
 - Maximum-length LSFR can be easily found

March 22

Stream Ciphers

18

LFSR – example #1

- · LFSR with maximum output sequence
 - Degree m = 4
 - Coefficients: $p_3 = 0$, $p_2 = 0$, $p_1 = 1$, $p_0 = 0$
 - Period = $2^m 1 = 15$

March 22

Stream Ciphers

19

19

LFSR – example #2

- LFSR with non-maximum output sequence
 - Degree m = 4
 - Coefficients: $p_3 = 1$, $p_2 = 1$, $p_1 = 1$, $p_0 = 1$
 - Period = 5

March 22

Stream Ciphers

20

LFSRs are not good for crypto

- Pros:
 - LFSRs have good statistical properties
- Cons
 - Periodical
 - Linear

March 22

Stream Ciphers

21

21

LFSRs are not good for crypto

- Known-Plaintext attack against LFSR
 - 1. Given 2m pairs (pt, ct), the adversary determines a prefix of the sequence s_i
 - 2. Then, the adversary determines *feedback coefficients* by solving a system of m linear equations in m unknowns
 - 3. Finally, the adversary can "build" the LFSR and produce the entire sequence

March 22

Stream Ciphers

22

LSFRs are not good for crypto

- Have LSFRs to be thrown away?
 - Use a non-linear combination of several LFSRs to build strong cryptosystems
 - E.g., use AND
 - E.g.: Trivium (2003)

March 22

Stream Ciphers

23

23

State of the art

- Software-oriented
 - RC4 and SEAL
 - Very well-investigated; secure
- Hardware-oriented
 - LFSR-based
 - Many have been broken
 - GSM A5/1 and A5/2
 - A5/1 used to be secret but was reverse-engineered
 - A5/2 has serious flaws
 - Neither of them is recommended nowadays
 - A5/3 (KASUMI) is used but it is a block cipher

March 22

Stream Ciphers

24

State of the art

- eSTREAM Project
 - ECRYPT NoE
 - Call for stream ciphers; 34 candidates
 - Profile 1. Stream ciphers for software applications with high throughput requirements
 - HC-128, Rabbit, Salsa20/12, SOSEMANUK
 - Profile 2. Stream ciphers for hardware applications with restricted resources
 - Grain v1, MICKEY v2, Trivium

March 22 Stream Ciphers

25

eSTREAM performance

- RC4 126 Mb/s ^(*)
- Salsa 20/12 643 Mb/s
- Sosemanuk 727 Mb/s
- (*) AMD Opteron 2.2. GHz (Linux)

March 22 Stream Ciphers 26

Stream Ciphers

CONTENT SCRAMBLING SYSTEM (CSS)

March 22 Stream Ciphers 27

27

Content Scrambling System

+ mod 256

- Seed (key)
 - initial states of the LFSRs 5 bytes (80 bit)
- Each round
 - 8 CLK cycles
 - Each LFSR produces8 bits
 - LFSR's outputs are added mod 256^(*) so producing the key stream
 - (*) neglect carry bit for simplicity

March 22 Stream Ciphers 28

1||seed|₃₋₅

17-bit LFSR

25-bit LFSR

Content Scrambling System

- Easy to break in 2¹⁷ steps (<< 2⁴⁰)
- Known-plaintext attack
 - A prefix | 1-20 of the (cleartext) movie is known => a prefix of the keystream | 1-20 can be computed
 - E.g., 20 initial bytes in mpeg
- For details
 - https://www.cs.cmu.edu/~dst/DeCSS/Kesden/

March 22

Stream Ciphers

29

29

Content Scrambling System

- · Attack algorithm
 - For all possible initial setting of LFSR-17 (2¹⁷)
 - 1. Run LFSR-17 to get 20 bytes of output
 - 2. Subtract LFSR-17 $|_{1-20}$ from keystream $|_{1-20}$ and obtain a candidate output of LFSR-25 $|_{1-20}$
 - 3. Check whether LFSR-25 $|_{1-20}$ is consistent with LSFR-25
 - a. If it is consistent then we have found correct initial setting of both and the algorithm is finished!
 - b. Otherwise, go to 1 and test the next LFSR-17 initial setting
 - Using key, generate entire CSS output
 - Complexity
 - At most, the attack need to try all the possible initial setting of LFSR-17 (2¹⁷)

March 22

Stream Ciphers

30