KATEDRA ELEKTRONIKI

LABORATORIUM PODSTAW ELEKTRONIKI

OGNIWO FOTOWOLTAICZNE

Wyznaczenie zależności napięcia wyjściowego fotoogniwa od natężenia oświetlenia $U = f(\Phi)$.

Wyznaczenia zależności mocy oddawanej przez fotoogniwo od oporności obciążenia $P = f(R_{\rm obc})$.

Rys. 2 Charakterystyka prądowo-napięciowa ogniwa fotowoltaicznego

Zadanie do wykonania:

1. Wyznaczenie zależności napięcia wyjściowego fotoogniwa od natężenia oświetlenia

$$U = f(\Phi)$$
.

Φ	Φ_1	Ф2	Φ_3	Φ_4	Φ_5	Φ_6	Φ_7	Φ_8	Φ_9	Φ_{10}	Φ_{11}	Φ_{12}
Odległość	20	30	40	50	60	70	80	90	100	110	120	130
żarówki od												
fotoogniwa[cm]												
Napięcie												
wyjściowe												
fotoogniwa												
U[V]												

2. Określić punkt pracy fotoogniwa, w którym moc oddawana do obciążenia będzie maksymalna.

Pomiary dokonać przy różnym natężeniu oświetlenia a wyniki zapisać w poniższej tabeli.

Tabela 1. Dla oświetlenia Φ_1 (odległość żarówki od fotoogniwa =.....cm)

	 	 1 '	(J	 	 - 0	 		
R [Ω]									·
U[V]									
I[mA]									
P[W]									

Tabela 2. Dla oświetlenia Φ_2 (odległość żarówki od fotoogniwa =.....cm)

R [Ω]								
U[V]								
I[mA]								
P[W]								

Na podstawie pomiarów wykreślić charakterystykę P=f(R).

W sprawozdaniu:

- 1) opisać funkcjonowanie fotodiody i fotoogniwa
- 2) określić sprawność układu. Wyjaśnić wpływ temperatury na sprawność układu
- 3) opisać, z jakich materiałów wykonuje się fotoogniwa
- 4) wyjaśnić, w jaki sposób można magazynować energię w akumulatorze jeżeli napięcie z fotoogniwa jest mniejsze od napięcia ładowania akumulatora

Wielkości mocy padającej na powierzchnię przy różnych stanach pogody

Baterie słoneczne zasilające aparaturę stacji Budowa modułu fotowoltaicznego

Charakterystyka prądowo napięciowa fotoogniwa

Charakterystyki prądowo-napięciowe fotoogniwa dla różnych wartości oświetlenia i moce oddawane do obciążenia

Ch-ki prądowe i napięciowe

Budowa fotoogniwa

Alternatywne źródła energii. Systemy hybrydowe.

Systemy hybrydowe są kombinacją systemu fotowoltaicznego z innym systemem konwersji energii na energię elektryczną(rys.1). Znajdują w nich zastosowanie generatory spalinowe, turbiny wiatrowe lub wodne.

Rys. 1. Schemat systemu hybrydowego z podłączeniem stałoproądowym.