Chapitre 8:

Segmentation des réseaux IP en sous-réseaux

Présentation des réseaux Lawrence BENEDICT Janvier 2017

Plan du chapitre

- 8.0 Introduction
- 8.1 Segmenter un réseau IPv4 en sous-réseaux
- 8.2 Les schémas d'adressage
- 8.3 Critères de conception à prendre en compte pour les réseaux IPv6
- 8.4 Résumé

Section 8.1 : Segmentation d'un réseau IPv4 en sous-réseaux

À la fin de cette section, vous saurez :

- Expliquer en quoi la segmentation d'un réseau permet d'améliorer la communication
- Expliquer comment calculer les sous-réseaux IPv4 pour le préfixe /24
- Expliquer comment calculer les sous-réseaux IPv4 pour les préfixes /16 et /8
- À partir d'un ensemble de critères de segmentation, implémenter un schéma d'adressage IPv4
- Expliquer comment créer un schéma d'adressage flexible grâce au masque de sous-réseaux à longueur variable (VLSM).

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Rubrique 8.1.1 : Segmentation du réseau

Domaines de diffusion

Chaque interface de routeur se connecte à un domaine de diffusion, et les diffusions sont uniquement propagées dans leur domaine de diffusion spécifique.

Problèmes liés aux domaines de diffusion importants

- Ralentissement des opérations sur le réseau en raison d'une quantité importante de trafic de diffusion.
- Ralentissement du fonctionnement de l'équipement dans la mesure où chaque périphérique doit accepter et traiter les paquets de diffusion un à un.

Problèmes liés aux domaines de diffusion importants (suite)

- Solution : réduire la taille du réseau en créant de plus petits domaines de diffusion grâce à une technique appelée segmentation.
- Ces espaces réseau plus petits sont appelés des sous-réseaux.

Pourquoi créer des sous-réseaux ?

Les administrateurs réseau peuvent regrouper les périphériques et les services dans des sous-réseaux déterminés par : emplacement.

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Pourquoi créer des sous-réseaux ? (suite)

Les administrateurs réseau peuvent regrouper les périphériques et les services dans des sous-réseaux déterminés par : division.

Pourquoi créer des sous-réseaux ? (suite)

Les administrateurs réseau peuvent regrouper les périphériques et les services dans des sous-réseaux déterminés par : type de périphérique.

Rubrique 8.1.2 : Segmentation d'un réseau IPv4 en sous-réseaux

Limites d'octet

Création de sous-réseaux au niveau de la limite d'octet

Longueur du préfixe	Masque de sous- réseau	Nombre d'hôtes	
/8	255.0.0.0	nnnnnnn . hhhhhhhh . hhhhhhhh . hhhhhhhh	16,777,214
/16	255.255.0.0	nnnnnnn . nnnnnnnn . hhhhhhhh . hhhhhhhh	65,534
/24	255.255.255.0	nnnnnnn . nnnnnnnn . nnnnnnnn . hhhhhhhh	254

Création de sous-réseaux au niveau d'une limite d'octet

Création de sousréseaux 10.x.0.0/16

Adresse des sous-réseaux (256 sous-réseaux possibles)	Plage d'hôtes (65 534 hôtes possibles par sous- réseau)	Diffusion
<u>10.0</u> .0.0/16	<u>10.0</u> .0.1 - <u>10.0</u> .255.254	<u>10.0</u> .255.255
<u>10.1</u> .0.0/16	<u>10.1</u> .0.1 - <u>10.1</u> .255.254	<u>10.1</u> .255.255
<u>10.2</u> .0.0/16	<u>10.2</u> .0.1 - <u>10.2</u> .255.254	<u>10.2</u> .255.255
<u>10.3</u> .0.0/16	<u>10.3</u> .0.1 - <u>10.3</u> .255.254	<u>10.3</u> .255.255
<u>10.4</u> .0.0/16	<u>10.4</u> .0.1 - <u>10.4</u> .255.254	<u>10.4</u> .255.255
<u>10.5</u> .0.0/16	<u>10.5</u> .0.1 - <u>10.5</u> .255.254	<u>10.5</u> .255.255
<u>10.6</u> .0.0/16	<u>10.6</u> .0.1 - <u>10.6</u> .255.254	<u>10.6</u> .255.255
<u>10.7</u> .0.0/16	<u>10.7</u> .0.1 - <u>10.7</u> .255.254	<u>10.7</u> .255.255
<u>10.255</u> .0.0/16	<u>10.255</u> .0.1 - <u>10.255</u> .255.254	10.255.255.255

Création de sousréseaux 10.x.x.0/24

Adresse des sous-réseaux (65 536 sous-réseaux possibles)	Plage d'hôtes (254 hôtes possibles par sous-réseau)	Diffusion
10.0.0.0/24	<u>10.0.0</u> .1 - <u>10.0.0</u> .254	<u>10.0.0</u> .255
<u>10.0.1</u> .0/24	<u>10.0.1</u> .1 - <u>10.0.1</u> .254	<u>10.0.1</u> .255
10.0.2.0/24	<u>10.0.2</u> .1 - <u>10.0.2</u> .254	<u>10.0.1</u> .255
<u>10.0.255</u> .0/24	<u>10.0.255</u> .1 - <u>10.0.255</u> .254	<u>10.0.255</u> .255
<u>10.1.0</u> .0/24	<u>10.1.0</u> .1 - <u>10.1.0</u> .254	<u>10.1.0</u> .255
<u>10.1.1</u> .0/24	<u>10.1.1</u> .1 - <u>10.1.1</u> .254	<u>1.1.1.0</u> .255
<u>10.1.2</u> .0/24	<u>10.1.2</u> .1 - <u>10.1.2</u> .254	<u>10.1.2.0</u> .255
<u>10.100.0</u> .0/24	<u>10.100.0</u> .1 - <u>10.100.0</u> .254	<u>10.100.0</u> .255
<u>10.255.255</u> .0/24	<u>10.255.255</u> .1 - <u>10.255.255</u> .254	<u>10.255.255</u> .255

Sous-réseaux sans classe

- /25 L'emprunt d'un bit du quatrième octet crée 2 sous-réseaux, chacun prenant en charge 126 hôtes.
- /26 L'emprunt de deux bits crée 4 sous-réseaux, chacun prenant en charge 62 hôtes.
- /27 L'emprunt de trois bits crée 8 sous-réseaux, chacun prenant en charge 30 hôtes.
- /28 L'emprunt de quatre bits crée 16 sous-réseaux, chacun prenant en charge 14 hôtes.
- /29 L'emprunt de cinq bits crée 32 sous-réseaux, chacun prenant en charge 6 hôtes.
- /30 L'emprunt de six bits crée 64 sous-réseaux, chacun prenant en charge 2 hôtes.

Longue ur du préfixe	Masque de sous- réseau	Masque de sous-réseau (binaire) (n = réseau, h = hôte)	Nombre de sous- réseaux	Nombre d'hôtes
/25	255.255.255.128	nnnnnnn . nnnnnnnn . nnnnnnnn . nhhhhhhh 11111111 . 11111111 . 11111111 . 10000000	2	126
/26	255.255.255.192	nnnnnnn . nnnnnnnn . nnnnnnn . nnhhhhhh 11111111 . 11111111 . 11111111 . 11000000	4	62
/27	255.255.255.224	nnnnnnn . nnnnnnnn . nnnnnnn . nnnhhhhh 11111111 . 11111111 . 11111111 . 11100000	8	30
/28	255.255.255.240	nnnnnnn . nnnnnnnn . nnnnnnn . nnnnhhhh 11111111 . 11111111 . 11111111 . 11110000	16	14
/29	255.255.255.248	nnnnnnn . nnnnnnnn . nnnnnnn . nnnnhhh 11111111 . 11111111 . 11111111 . 11111000	32	6
/30	255.255.255.252	nnnnnnn . nnnnnnnn . nnnnnnn . nnnnnnhh 11111111 . 11111111 . 11111111 . 11111100	64	2

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Exemples de sous-réseaux sans classe

Réseau 192.168.1.0/25

Empruntez 1 bit à la partie hôte de l'adresse.

La valeur du bit emprunté est 0 pour l'adresse Net 0.

Les nouveaux sous-réseaux ont le MÊME masque de sous-réseau.

Masque 255. 255. 1 000 0000

Exemples de sous-réseaux sans classe (suite)

Adresses décimales à point

© 2013 Cisco et/ou ses filiales. Tous droits réservés

Créer 2 sous-réseaux

Topologie de sous-réseaux /25

Plage d'adresses du sous-réseau 192.168.1.0/25

Plage d'adresses du sous-réseau 192.168.1.128/25

Adress	e réseau				
192.	168.	1.	0	000 0000	= 192.168.1.0
Premiè	re adress	e d'hôte			_
192.	168.	1.	0	000 0001	= 192.168.1.1
Dernièr	e adresse	d'hôte			
192.	168.	1.	0	111 1110	= 192.168.1.126
Adress	e de diffu	sion			
		1.	0	111 1111	= 192.168.1.127
		_,			

Adress	e réseau				_
192.	168.	1.	1	000 0000	= 192.168.1.128
Premiè	re adress	e d'hôte			
192.	168.	1.	1	000 0001	= 192.168.1.129
Dernièr	e adresse	e d'hôte			
192.	168.	1.	1	111 1110	= 192.168.1.254
Adress	e de diffu	sion			_
192.	168.	1.	1	111 1111	= 192.168.1.255

Configurer les interfaces Gigabit de R1


```
R1(config) #interface gigabitethernet 0/0
R1(config-if) #ip address 192.168.1.1 255.255.255.128
R1(config-if) #exit
R1(config) #interface gigabitethernet 0/1
R1(config-if) #ip address 192.168.1.129 255.255.255.128
```

Attribuer une adresse IP d'hôte valide

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Les formules de calcul des sous-réseaux

2[^]n

Pour calculer le nombre de sous-réseaux

192 . 168 . 1 .

nnnnnnn.nnnnnn.nnnnnn.hhhhhhh

Emprunt de 1 bit : 2^1 = 2 Emprunt de 2 bits : 2^2 = 4 Emprunt de 3 bits : 2^3 = 8 Emprunt de 4 bits : 2^4 = 16 Emprunt de 5 bits : 2^5 = 32 Emprunt de 6 bits : 2^6 = 64

Formules de calcul des sous-réseaux (suite)

Pour calculer le nombre d'hôtes

n= le nombre de bits restants dans le champ d'hôte

2^7 = 128 hôtes par sous-réseau 2^7 - 2 = 126 hôtes valides par sous-réseau

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Créer 4 sous-réseaux

Topologie de sous-réseaux /26

Emprunt de 2 bits

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Plage d'adresses du sous-réseau 192.168.1.0/26

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Plages d'adresses réseaux 0 - 2

	Réseau	192.	168.	1.	00	00	0000	192.168.1.0
Note	Premier	192.	168.	1.	00	00	0001	192.168.1.1
Net 0	Dernier	192.	168.	1.	00	11	1110	192.168.1.62
	Diffusion	192.	168.	1.	00	11	1111	192.168.1.63
Net 1	Réseau	192.	168.	1.	01	00	0000	192.168.1.64
	Premier	192.	168.	1.	01	00	0001	192.168.1.65
Net i	Demier	192.	168.	1.	01	11	1110	192.168.1.126
	Diffusion	192.	168.	1.	01	11	1111	192.168.1.127
	Réseau	192.	168.	1.	10	00	0000	192.168.1.128
N-+ O	Premier	192.	168.	1.	10	00	0001	192.168.1.129
Net 2	Dernier	192.	168.	1.	10	11	1110	192.168.1.190
	Diffusion	192.	168.	1.	10	11	1111	192.168.1.191

Configurer les interfaces avec des adresses /26


```
R1 (config) #interface gigabitethernet 0/0
R1 (config-if) #ip address 192.168.1.1 255.255.255.192
R1 (config-if) #exit
R1 (config) #interface gigabitethernet 0/1
R1 (config-if) #ip address 192.168.1.65 255.255.255.192
R1 (config-if) #exit
R1 (config) #interface serial 0/0/0
R1 (config-if) #ip address 192.168.1.129 255.255.255.192
```

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Rubrique 8.1.3 : Création de sous-réseaux avec les préfixes /16 et /8

Création de sous-réseaux avec le préfixe /16

Longueur du préfixe	Masque de sous- réseau	Adresse réseau (n = réseau, h = hôte)	Nombre de sous- réseaux	Nombre d'hôtes
/17	255.255.128.0	nnnnnnn.nnnnnnnn.nhhhhhhh.hhhhhhh 11111111.11111111.1000000.00000000	2	32 564
/18	255.255.192.0	nnnnnnn.nnnnnnnn.nnhhhhhh.hhhhhhhh 11111111.11111111.11000000.00000000	4	16 282
/19	255.255.224.0	nnnnnnn.nnnnnnnn.nnhhhhh.hhhhhhh 11111111.11111111.11100000.00000000	8	8 190
/20	255.255.240.0	nnnnnnn.nnnnnnnn.nnnhhhh.hhhhhhh 11111111.11111111.11110000.00000000	16	4 094
/21	255.255.248.0	nnnnnnn.nnnnnnn.nnnnhhh.hhhhhhh 11111111.11111111.11111000.00000000	32	2 046
/22	255.255.252.0	nnnnnnn.nnnnnnn.nnnnnhh.hhhhhhh 11111111.11111111.11111100.00000000	64	1 022
/23	255.255.254.0	nnnnnnn.nnnnnnn.nnnnnh.hhhhhhh 11111111.11111111.11111110.00000000	128	510
/24	255.255.255.0	nnnnnnn.nnnnnnnn.nnnnnnn.hhhhhhh 11111111.11111111.11111111.00000000	256	254
/25	255.255.255.128	nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh 11111111.11111111.111111111.10000000	512	126
/26	255.255.255.192	nnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh 11111111.11111111.111111111.11000000	1 024	62

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Création de 100 sous-réseaux avec le réseau /16

172 . 16 . 0 . 0

nnnnnnn.nnnnnnn.hhhhhhhh.hhhhhhh

```
Emprunt de 1 bit : 2^1 = 2
 Emprunt de 2 bits : 2^2 = 4
 Emprunt de 3 bits : 2^3 = 8
 Emprunt de 4 bits : 2<sup>4</sup> = 16 ←
 Emprunt de 5 bits : 2^5 = 32
                       2<sup>6</sup> = 64 <del></del>
 Emprunt de 6 bits :
 Emprunt de 7 bits :
                        2<sup>7</sup> = 128 <
 Emprunt de 8 bits :
                        2<sup>8</sup> = 256 <
 Emprunt de 9 bits :
                        2<sup>9</sup> = 512 <del></del>
Emprunt de 10 bits : 2^10 = 1 024 -
Emprunt de 11 bits : 2^11 = 2 048 -
Emprunt de 12 bits : 2<sup>12</sup> = 4 096 ←
Emprunt de 13 bits : 2^13 = 8 192 -
Emprunt de 14 bits : 2^14 = 16 384 -
```

Création de 100 sous-réseaux avec le réseau /16 (suite)

Sous-réseaux /23 ainsi créés

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Calculer le nombre d'hôtes

Nombre d'hôtes = 2^n (où n = nombre de bits d'hôte restants)

2⁹ = 512 hôtes par sous-réseau 2⁹ - 2 = 510 hôtes valides par sous-réseau

Plage d'adresses du sous-réseau 172.16.0.0/23

Adresse réseau

172.	16.	00	00	00	00.	0000	0000	= 172.16.0.0/23
------	-----	----	----	----	-----	------	------	-----------------

Première adresse d'hôte

172.	16.	00	00	00	00.	0000	0001	= 172.16.0.1/23
------	-----	----	----	----	-----	------	------	-----------------

Dernière adresse d'hôte

```
172. 16. 00 00 00 01. 1111 1110 = 172.16.1.254/23
```

Adresse de diffusion

172. 16. 00 00 00 0 1. 1111 1111 = 172.16.1.255/23

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Création de 1 000 sous-réseaux avec le réseau /8

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Document public de Cisco

Création de 1 000 sous-réseaux avec le réseau /8 (suite)

Calculer les hôtes

2¹⁴ = 16 384 hôtes par sous-réseau 2¹⁴ - 2 = 16 382 hôtes valides par sous-réseau

Plage d'adresses du sous-réseau 10.0.0.0/18

réseau						
00 00	00 00.	0000	0000.	0000	0000	= 10.0.0.0/18
adress	e d'hôte					
00 00	00 00.	0000	0000.	0000	0001	= 10.0.0.1/18
adresse	e d'hôte					
00 00	00 00.	0011	1111.	1111	1110	= 10.0.63.254/18
مام مائلات						
ae amu	SION					
00 00	00 00.	0011	1111.	1111	1111	= 10.0.63.255/18
)	adress adress adress adress dediffu	0 00 00 00. adresse d'hôte 0 00 00 00. adresse d'hôte 0 00 00 00. de diffusion	0 00 00 00. 0000 adresse d'hôte 0 00 00 00. 0000 adresse d'hôte 0 00 00 00. 0011 de diffusion	0 00 00 00. 0000 0000. adresse d'hôte 0 00 00 00. 0000 0000. adresse d'hôte 0 00 00 00. 0011 1111.	0 00 00 00. 0000 0000. 0000 adresse d'hôte 0 00 00 00. 0000 0000. 0000 adresse d'hôte 0 00 00 00. 0011 1111. 1111 de diffusion	0 00 00 00. 0000 0000. 0000 0000 adresse d'hôte 0 00 00 00. 0000 0000. 0000 0001 adresse d'hôte 0 00 00 00. 0011 1111. 1111 1110 de diffusion

© 2013 Cisco et/ou ses filiales. Tous droits réservés. Document public de Cisco

Rubrique 8.1.4 : Segmentation du réseau pour répondre à ses besoins

Segmenter le réseau en sous-réseaux en fonction des besoins des hôtes

Deux considérations sont à prendre en compte lors de la planification de sous-réseaux :

- Le nombre d'adresses d'hôte nécessaires pour chaque réseau.
- Le nombre de sous-réseaux nécessaires.

Longue ur du préfixe	Masque de sous- réseau	Masque de sous-réseau (binaire) (n = réseau, h = hôte)	Nombre de sous- réseaux	Nombre d'hôtes
/25	255.255.255.128	nnnnnnn . nnnnnnnn . nnnnnnnn . nhhhhhhh 11111111 . 11111111 . 11111111 . 10000000	2	126
/26	255.255.255.192	nnnnnnn . nnnnnnnn . nnnnnnnn . nnhhhhhh 11111111 . 11111111 . 11111111 . 11000000	4	62
/27	255.255.255.224	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnhhhhh 11111111 . 11111111 . 11111111 . 11100000	8	30
/28	255.255.255.240	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnnhhhh 11111111 . 11111111 . 11111111 . 11110000	16	14
/29	255.255.255.248	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnnnhhh 11111111 . 11111111 . 11111111 . 11111000	32	6
/30	255.255.255.252	nnnnnnn . nnnnnnnn . nnnnnnnn . nnnnnnhh 11111111 . 11111111 . 11111111 . 11111100	64	2

Plus les bits empruntés pour créer des sous-réseaux sont nombreux, moins il y a de bits d'hôte disponibles.

Segmentation du réseau en sousréseaux en fonction de ses besoins

Sous-réseaux basés sur la structure de l'entreprise

Réseau d'entreprise

Exemple de besoin du réseau

Réseau d'entreprise

Exemple de besoin du réseau (suite)

Réseaux 7 à 13 non illustrés

```
14 10101100.00010000.000000 11.10 000000 172.16.3.128/26
15 10101100.00010000.000000 11.11 000000 172.16.3.192/26
```

4 bits empruntés à la partie hôte pour créer des sous-réseaux

Exemple de besoin du réseau (suite)

172.16.0.0/22

Rubrique 8.1.5 : Avantages des masques de sous-réseaux à longueur variable

La segmentation traditionnelle en sousréseaux n'est pas efficace

La segmentation traditionnelle en sous-réseaux entraîne un gaspillage d'adresses (suite)

Adresses inutilisées sur les sous-réseaux WAN

Masques de sous-réseau de longueur variable

Sous-réseaux de tailles variables

Un sous-réseau a été à nouveau divisé pour créer 8 sous-réseaux plus petits de 4 hôtes chacun

VLSM de base

Schéma de sous réseaux avec VLSM

Segmentation d'un sousréseau

Le VLSM dans la pratique

Topologie du réseau : sous-réseaux VLSM


```
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ip address 192.168.20.1 255.255.255.224
R1(config-if) # exit
R1(config) # interface serial 0/0/0
R1(config-if) # ip address 192.168.20.225 255.255.252
R1(config-if) # end
R1#
```

Le VLSM dans la pratique (suite)

Topologie du réseau : sous-réseaux VLSM


```
R2(config) # interface gigabitethernet 0/0
R2(config-if) # ip address 192.168.20.33 255.255.255.224
R2(config-if) # exit
R2(config) # interface serial 0/0/0
R2(config-if) # ip address 192.168.20.226 255.255.252
R2(config-if) # exit
R2(config) # interface serial 0/0/1
R2(config) # interface serial 0/0/1
R2(config) # ip address 192.168.20.229 255.255.252
R2(config-if) # end
R2#
```

Le VLSM dans la pratique (suite)

Topologie du réseau : sous-réseaux VLSM


```
R3(config) # interface gigabitethernet 0/0
R3(config-if) # ip address 192.168.20.65 255.255.224
R3(config-if) # exit
R3(config) # interface serial 0/0/0
R3(config-if) # ip address 192.168.20.230 255.255.252
R3(config-if) # exit
R3(config) # interface serial 0/0/1
R3(config) # interface serial 0/0/1
R3(config) # ip address 192.168.20.233 255.255.252
R3(config-if) # end
R3#
```

Le VLSM dans la pratique (suite)

Topologie du réseau : sous-réseaux VLSM


```
R4(config) # interface gigabitethernet 0/0
R4(config-if) # ip address 192.168.20.97 255.255.255.224
R4(config-if) # exit
R4(config) # interface serial 0/0/0
R4(config-if) # ip address 192.168.20.234 255.255.252
R4(config-if) # end
R4#
```

Diagramme VLSM

Segmentation en sous-réseaux VLSM de 192.168.20.0/24

Segmentation en sous-reseaux vesivi de 132.100.20.0/24				
	Réseau /27	Hôtes		
Bât. A	.0	.130		
Bât. B	.32	.3362		
Bât. C	.64	.6594		
Bât. D	.96	.97126		
Capacités	.128	.129158		
Capacités	.160	.161190		
Capacités	.192	.193222		
	.224	.225254		
	Y	¥		
	Réseau /30	Hôtes		

	Réseau /30	Hôtes
WAN R1-R2	.224	.225226
WAN R2-R3	.228	.229230
WAN R3-R4	.232	.233234
Capacités	.236	.237238
Capacités	.240	.241242
Capacités	.244	.245246
Capacités	.248	.249250
Capacités	.252	.253254

Section 8.2 : Schémas d'adressage

À la fin de cette section, vous saurez :

Implémenter un schéma d'adressage VSLM

Rubrique 8.2.1 : Conception structurée

Planification de l'adressage réseau

Planifier l'attribution des adresses IP

La planification nécessite la prise de décisions concernant chaque sous-réseau, notamment leur taille, le nombre d'hôtes par sous-réseau et l'attribution des adresses d'hôte.

Préparation de l'adressage d'un réseau

Critères principaux à prendre en compte lors de la planification de l'attribution des adresses

Attribution d'adresses à des périphériques

Plages d'adresses IP

Réseau : 192.168.1.0/24				
Utilisation	Premier	Dernier		
Périphériques hôtes	.1	.229		
Serveurs	.230	.239		
Imprimantes	.240	.249		
Périphériques intermédiaires	.250	.253		
Passerelle (interface LAN du routeur)	.254			

Section 8.3 : Critères de conception à prendre en compte pour les réseaux IPv6

À la fin de cette section, vous saurez :

 Expliquer comment implémenter l'attribution d'adresses IPv6 dans un réseau d'entreprise

Rubrique 8.3.1 : Segmentation d'un réseau IPv6 en sous-réseaux

Adresse de monodiffusion globale IPv6

L'adresse de monodiffusion globale IPv6 se compose en principe d'un préfixe de routage global /48, d'un ID de sous-réseau 16 bits et d'un ID d'interface 64 bits.

Structure d'une adresse de monodiffusion globale IPv6

Segmenter le réseau en sous-réseaux à l'aide d'ID de sous-réseau

Bloc d'adresses : 2001:0DB8:ACAD::/48

Incrémenter l'ID de sous-réseau pour créer 65 536 sousréseaux 2001:0DB8:ACAD:0000::/64 2001:0DB8:ACAD:0001::/64 2001:0DB8:ACAD:0002::/64 2001:0DB8:ACAD:0003::/64 2001:0DB8:ACAD:0004::/64 2001:0DB8:ACAD:0005::/64 2001:0DB8:ACAD:0006::/64 2001:0DB8:ACAD:0007::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64 2001:0DB8:ACAD:0008::/64

Sous-réseaux 13 à 65 534 non illustrés

2001:0DB8:ACAD:FFFF::/64

Attribution de sous-réseaux IPv6

Exemple de topologie

Attribution de sous-réseaux IPv6 (suite)

Sous-réseaux IPv6

Bloc d'adresses : 2001:0DB8:ACAD::/48

5 sous-réseaux attribués parmi 65 536 sousréseaux disponibles

```
- 2001:0DB8:ACAD:0000::/64

2001:0DB8:ACAD:0001::/64

2001:0DB8:ACAD:0002::/64

2001:0DB8:ACAD:0003::/64

2001:0DB8:ACAD:0004::/64

2001:0DB8:ACAD:0005::/64

2001:0DB8:ACAD:0006::/64

2001:0DB8:ACAD:0007::/64

2001:0DB8:ACAD:0008::/64
```

© 2013 Cisco et/ou ses filiales. Tous droits réservés.

Attribution de sous-réseaux IPv6 (suite)

Attribution de sous-réseaux IPv6

Attribution de sous-réseaux IPv6 (suite)

Configuration des adresses IPv6


```
R1(config) # interface gigabitethernet 0/0
R1(config-if) # ipv6 address 2001:db8:acad:1::1/64
R1(config-if) # exit
R1(config) # interface gigabitethernet 0/1
R1(config-if) # ipv6 address 2001:db8:acad:2::1/64
R1(config-if) # exit
R1(config) # interface serial 0/0/0
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # ipv6 address 2001:db8:acad:3::1/64
R1(config-if) # end
R1#
```

Section 8.4 : Résumé

Objectifs du chapitre :

- Mettre en œuvre un schéma d'adressage IPv4 pour permettre la connectivité de bout en bout dans un réseau de PME
- Selon un ensemble de critères, implémenter un schéma d'adressage VLSM pour fournir une connectivité aux utilisateurs finaux d'un réseau de PME
- Détailler les facteurs à prendre en considération pour la mise en œuvre d'IPv6 dans un réseau d'entreprise

Merci.

CISCO Cisco Networking Academy
Mind Wide Open