Antiformularium Statistiek

Bert De Saffel

Inhoudsopgave

1	Kansrekenen	2
	1.1 Formularium	2
	1.2 Niet op formularium	2
2	Beschrijvende Statistiek	4
3	Verdelingsfuncties van een populatie	5
	3.1 Formularium	5
	3.2 Niet op formularium	5
4	Discrete verdelingen	7
	Discrete verdelingen 4.1 Formularium	7
	4.2 Niet op formularium	
5	Continue verdelingen	9
	5.1 Formularium	9
	5.2 Niet op formularium	C

Kansrekenen

1.1 Formularium

Geen

1.2 Niet op formularium

• De optellingswet

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $\bullet\,$ De vermenigvuldigingswet

$$P(A \cap B) = P(B)P(A|B) = P(A)P(B|A)$$

• Het complement

$$P(\overline{A}) = 1 - P(A)$$

• Indien A en B onafhankelijk zijn:

$$P(A \cup B) = P(A) + P(B)$$
 en $P(A \cap B) = P(A) \cdot P(B)$

• Testen ofdat twee gebeurtenissen onafhankelijk zijn:

$$P(A|B) = P(A)$$
 of $P(B|A) = P(B)$

• De wetten van Morgan

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$
 en $\overline{A \cup B} = \overline{A} \cap \overline{B}$

 $P(A \cap \overline{B}) = P(A) - P(A \cap B)$

• Optellingswet voor 3 gebeurtenissen A, B en C

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$
$$-P(A \cap B) - P(A \cap C) - P(B \cap C)$$
$$+P(A \cap B \cap C)$$

• Vermenigvuldigingswet voor 3 gebeurtenissen A, B en C

$$P(A \cap B \cap C) = P(A) \cdot P(B|A) \cdot P(C|(A \cap B))$$

• Permutatie

$$P_n = n!$$
 en $P_0 = 0! = 1$

• Combinatie

$$C_n^p = \binom{n}{p} = \frac{n!}{p!(n-p)!}$$

• Regel van Bayes (Zie pagina 10 in cursus voor uitleg)

$$P(A_j|B) = \frac{P(A_j)P(B|A_j)}{\sum_{i=1}^{n} P(A_i)P(B|A_i)}$$

Hoofdstuk 2 Beschrijvende Statistiek

4

Verdelingsfuncties van een populatie

In dit hoofdstuk heeft alles met een sommatieteken betrekking tot een discrete populatie en alles met een integraal tot een continue populatie.

3.1 Formularium

Geen

3.2 Niet op formularium

• Kansfunctie (= dichtheidsfunctie) (p25) De som van alle kansen is steeds 1

$$\sum_{i=1}^{k} f(x_i) = 1 \quad \text{en} \quad \int_{-\infty}^{+\infty} f(x) \, dx = 1$$

• Cumulatieve distributiefunctie (= verdelingsfunctie) (p25)

$$P(x \le t) = \sum_{x_i \le t} f(x_i)$$
 en $P(x \le t) = \int_{-\infty}^{t} f(x) dx$

• De verwachte waarde van een functie

$$E[g(x)] = \sum_{i=1}^{k} g(x_i) f(x_i) \qquad \text{en} \qquad E[g(x)] = \int_{-\infty}^{+\infty} g(x) f(x) \ dx$$

• Het gemiddelde

$$\mu = E[x] = \sum_{i=1}^{k} x f(x_i)$$
 en $\mu = E[x] = \int_{-\infty}^{+\infty} x f(x) dx$

• De variantie

$$\sigma^{2} = V[x] = E[(x - \mu)^{2}] = \sum_{i=1}^{k} (x_{i} - \mu)^{2} f(x_{i})$$
$$\sigma^{2} = V[x] = E[(x - \mu)^{2}] = \int_{-\infty}^{+\infty} (x - \mu)^{2} f(x) dx$$

• De momentenfunctie

$$M(t) = E[e^{tx}]$$

zodat

$$M(t) = \sum_{i=1}^{k} e^{tx_i} f(x_i) \quad \text{en} \quad M(t) = \int_{-\infty}^{+\infty} e^{tx} f(x) dx$$
$$\frac{d^k M(t)}{dt^k} = E[x^k e^{tx}]$$

• De ongelijkheid van Chebychev

$$P(|x - \mu| \ge k\sigma) \le \frac{1}{k^2} \Leftrightarrow P(|x - \mu| < k\sigma) \ge 1 - \frac{1}{k^2}$$

Discrete verdelingen

4.1 Formularium

- Uniform discrete verdeling: $\mu = \frac{n+1}{2}$ en $\sigma^2 = \frac{n^2-1}{12}$
- Bernouilli verdeling: $\mu = p$ en $\sigma^2 = p(1-p)$
- Binomiale verdeling: $\mu = np$ en $\sigma^2 = np(1-p)$
- Geometrische verdeling: $\mu = \frac{1}{p}$ en $\sigma^2 = \frac{1-p}{p^2}$
- Poisson verdeling: $\mu = \lambda, \sigma^2 = \lambda, f(i+1) = f(i) \cdot \frac{\lambda}{i+1}$
- Als x binomiaal verdeeld met parameters n en p en p klein, dan nadert deze verdeling naar de Poisson verdeling (praktisch $n \ge 50$ en $p \le 0.1$)

4.2 Niet op formularium

• Uniform discrete verdeling

$$f(i) = P(x = x_i) = \frac{1}{n}$$

• Bernouilli verdeling

$$f(i) = P(x = i) = p^{i}(1 - p)^{1-i}$$

• De binomiale verdeling

$$f(i) = P(x = i) = C_n^i p^i (1 - p)^{n-1}$$

Recursierelatie:

$$f(i+1) = f(i) \cdot \frac{p}{(1-p)} \cdot \frac{(n-i)}{(i+1)}$$

Momentenfunctie:

$$M(t) = (1 - p + pe^t)^n$$

• De geometrische verdeling

$$f(i) = P(x = i) = p(1 - p)^{i-1}$$

• De hypergeometrsiche verdelingen

$$f(i) = P(x=i) = \frac{C_M^i C_{N-M}^{n-i}}{C_N^n}$$

$$\mu = \frac{nM}{N} \quad \text{en} \quad \sigma^2 = \frac{N-n}{N-1} n \frac{M}{N} \left(1 - \frac{M}{N}\right)$$

• De poisson verdeling

$$f(i) = P(x = i) = \frac{e^{-\lambda}\lambda^i}{i!}$$

Continue verdelingen

5.1 Formularium

- Uniform continue verdeling: $\mu = \frac{1}{2}(a+b)$ en $\sigma^2 = \frac{1}{12}(b-a)^2$
- Exponentiële verdeling: $\mu = \vartheta$ en $\sigma^2 = \vartheta^2$
- Normale verdeling: $N(\mu, \sigma)$: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}voorx \in R$
- Als x binomiaal verdeeld met parameters n en p, dan nadert deze verdeling naar de normale verdeling (praktisch: $np \geq 5$ en $n(1-p) \geq 5$)
- Als x poisson verdeeld met parameter λ , dan nadert deze verdeling naar de normale verdeling als λ voldoende groot is. (praktisch: $\lambda \geq 15$)

5.2 Niet op formularium

• Uniform continue verdeling:

$$f(x) = \frac{1}{b-a}, \forall x \in [a, b]$$

• Exponentiële verdeling

$$f(x) = \frac{1}{\vartheta} e^{-\frac{x}{\vartheta}}$$
 met $x \ge 0$ en $\vartheta > 0$