« Si nous sommes maîtres des mots que nous n'avons pas prononcés, nous devenons esclaves de ceux que nous avons laissé échapper. » (Churchill)

Exercice 1 (une norme sur \mathbb{R}^2) Montrer que N((x,y)) = |x| + |x+2y| définit une norme sur \mathbb{R}^2 et représenter sa boule unité fermée.

Exercice 2 Montrer que dans l'evn (E, ||||) on a $\forall (x, y) \in E^2, ||x|| + ||y|| \le 2 \max(||x + y||, ||x - y||)$.

Exercice 3 (une norme sur les polynômes) On pose pour $P \in \mathbb{R}[X] : ||P|| = \sup_{[0,1]} |P - P'|$. Montrez que c'est une norme sur $\mathbb{R}[X]$.

Exercice 4 Notons $E = C([a, b], \mathbb{R})$ et pour f dans $E : N_1(f) = \int_a^b |f|$ et $N_\infty(f) = \sup_{[a, b]} |f|$. Montrer que ce sont deux normes sur E.

Exercice 5 (utilisation de l'homogénéité) Soit N_1 et N_2 deux normes sur un evn E telles que $S^1(0,1) = S^2(0,1)$. Montrer que $N_1 = N_2$.

Exercice 6 (de l'intérêt de dessiner...) Soit E un evn; a et $b \in E$, $\alpha \in \mathbb{K}$ et r et $s \in \mathbb{R}_+^*$. Montrer que :

- 1. $B_f(a,r) \cap B_f(b,s) \neq \emptyset \iff ||a-b|| \leqslant s+r$.
- 2. $B_f(a,r) \subset B_f(b,s) \iff ||a-b|| \leqslant s-r$.
- 3. $B_f(a,r) = B_f(b,s) \iff a = b \text{ et } s = r.$

Exercice 7 (Normes équivalentes) Soit deux normes N et N' sur E. On dit que N' est équivalente à N s'il existe deux réels a, b > 0 tels que : $aN \leq N' \leq bN$.

- 1. Montrer que ceci définit une relation d'équivalence. On dira par la suite N et N' sont équivalentes.
- 2. Montrer que sur \mathbb{R}^2 , N_1 et N_{∞} sont équivalentes.
- 3. Montrer que si deux normes N, N' sont équivalentes alors elles ont les mêmes parties bornées, les mêmes les suites convergentes et que la limite est la même pour N et pour N'.
- 4. On note pour $P = \sum_{k=0}^{n} a_k X^k : N_1(P) = \sum_{k=0}^{n} |a_k|$ et $N_{\infty}(P) = \max_{0 \le k \le n} |a_k|$.
 - (a) Montrer que l'on définit ainsi deux normes sur $\mathbb{R}[X]$.
 - (b) Soit pour tout n dans $\mathbb{N}: P_n = \sum_{k=0}^n Xk$. Préciser $N_1(P_n)$ et $N_\infty(P_n)$. Ces deux normes sont elles équivalentes sur $\mathbb{R}[X]$? Montrer qu'elles sont équivalentes sur $\mathbb{R}_n[X]$.

Exercice 8 Notons $E=C\left([0,1],\mathbb{R}\right)$ et pour f dans $E:N(f)=|f(0)|+\sup_{[0,1]}|f'|$ et $N_{\infty}(f)=\sup_{[0,1]}|f|$. Montrer que $B_f^N(0,1)\subset B_f^{N_{\infty}}(0,1)$. Déterminer f dans $B_f^{N_{\infty}}(0,1)$.

Exercice 9 Soit \mathcal{B} l'ensemble des suites bornées de nombres complexes. Montrer que l'on définit deux normes sur \mathcal{B} en posant : $\forall u = (u_n)_n \in \mathcal{B}, N(u) = \sum_{n=0}^{\infty} \frac{|u_n|}{2^n}, N'(u) = \sum_{n=0}^{\infty} \frac{|u_n|}{n!}$. Montrer aussi que $N' \leq 2N$ et qu'elles ne sont pas équivalentes.

Exercice 10 (parties bornées) Montrer que la réunion et la somme de deux parties bornées est encore bornée.

Exercice 11 Montrer que l'ensemble \mathcal{P} des matrices de $M_n(\mathbb{R})$ dont tous les coefficients sont entre 0 et 1 est fermé, borné et convexe.

Exercice 12 (en passant...) Existe-t-il une norme N sur $M_n(\mathbb{C})(n > 1)$ vérifiant $\forall (A, B) \in M_n(\mathbb{C}), N(AB) = N(A)N(B)$?

Exercice 13 (Deux limites???) On munit $\mathbb{R}[X]$ des normes (?) définies par : si $P = a_0 + a_1 X + ... + a_n X^n, N(P) = |a_0 - a_1 - a_2 - ... - a_n| + |a_1| + |a_2| + ... + |a_n|$ et $N'(P) = \sup_{[0,1/2]} |P|$. Montrer que $X^n \stackrel{N}{\to} -1$ et $X^n \stackrel{N'}{\to} 0$.

Exercice 14 (norme confortable sur les matrices) Soit n > 1.

- 1. Montrer que si on note pour $A \in M_n(\mathbb{C})$: $N(A) = n \max_{1 \leq i,j \leq n} |a_{i,j}|$ on définit une norme N sur $M_n(\mathbb{C})$ qui vérifie $\forall (A,B) \in M_n(\mathbb{C})^2, N(AB) \leq N(A)N(B)$.
- 2. Montrer alors que si $A_k \to A$ et $B_k \to B$ alors $A_k B_k \to AB$ dans $M_n(\mathbb{K})$.*
- 3. Soit $A \in M_n(\mathbb{K})$ telle que $A^k \to P$. Montrer que P est une matrice de projection (ie $P^2 = P$).
- 4. Soit $(A_k)_k$ une suite de matrices inversibles convergeant vers A, telle que $(A_k^{-1})_k$ converge vers B. Montrer que A est inversible d'inverse B. Si $A_k = \frac{1}{2^k}I_n$, la suite $(A_k^{-1})_k$ est-elle convergente?
- 5. Etudier la convergence de la suite $(A^n)_n$ avec $A = \frac{1}{2} \begin{pmatrix} -1 & -2 \\ 3 & 4 \end{pmatrix}$.

Exercice 15 On munit $E = C([0,1], \mathbb{R})$ des normes $||f||_1 = \int_0^1 |f|$ et $||f||_{\infty}(f) = \sup_{[0,1]} |f|$. Enfin on note $A = \{f_n : x \mapsto nx^n, n \in \mathbb{N}\}$. A est-elle bornée pour $||f||_1$? Pour $||f||_{\infty}$?

Exercice 16 Montrer que $A = \{(x_1, \dots, x_p) \in \mathbb{R}^p, \forall i \neq j, x_i \neq x_j\}$ est un ouvert de \mathbb{R}^p .

Exercice 17 (amusant) Soit A dans $M_n(\mathbb{Z})$, on suppose que la suite $(A^k)_k$ converge vers la matrice nulle. Montrer que A est nilpotente. Ce résultat subsiste-t-il si A n'est plus supposée à coefficients entiers relatifs?

Exercice 18 Soit pour n dans \mathbb{N}^* : $A_n = \begin{pmatrix} 1/n & 1 \\ 0 & 0 \end{pmatrix}$ et $B_n = \begin{pmatrix} 1/n & 0 \\ 0 & 0 \end{pmatrix}$, montrer que A_n et B_n sont semblables, qu'elles convergent respectivement vers A et B à préciser. A et B sont-elles semblables?

Exercice 19 Soit $\mathcal{P} = \{M \in M_n(\mathbb{R}), M^2 = M\}$. Montrer que \mathcal{P} est un fermé de $M_n(\mathbb{R})$. En étudiant les matrices de la forme $\begin{pmatrix} 1 & a \\ 0 & 0 \end{pmatrix}$ montrer que \mathcal{P} n'est pas borné.

Exercice 20 (encore du dessin...) On note pour n dans \mathbb{N}^* et λ dans \mathbb{R}^*_+ :

$$B_n = \left\{ (x, y) \in \mathbb{R}^2, \left(x - \frac{1}{n} \right)^2 + \left(y - \frac{1}{n} \right)^2 \leqslant \frac{\lambda}{n^2} \right\}$$

- 1. Déterminer une condition nécessaire sur λ pour avoir : $\forall n > 0, B_{n+1} \subset B_n$
- 2. Déterminer pour quelles valeurs de λ l'ensemble $B=\bigcup_{n\in\mathbb{N}^*}B_n$ est fermé.

Exercice 21 Soit F un sev de E:

- 1. Montrer que si F admet un point intérieur alors F = E.
- 2. Montrer que \overline{F} est encore un sev de E.

Exercice 22 Soit deux parties A et B d'un evn, montrer que :

- 1. Si A est ouvert, A + B est ouvert.
- 2. On se place dans \mathbb{R}^2 . Soit $A = \{(x,0), x \in \mathbb{R}\}$ et $B = \{(x,y) \in \mathbb{R}^2; xy = 1\}$. Déterminez A + B. La somme de deux fermés est-elle fermée?
- *. On peut aussi le faire à la main, faites-le!

Exercice 23 (classique matriciel non trivial...)

- 1. Soit $A \in M_n(\mathbb{R})$. Montrer que $x \in \mathbb{R} \mapsto \det(A xI_n)$ est une fonction polynômiale dont on précisera le degré.
- 2. En déduire qu'il existe une suite de matrices inversibles qui converge vers A. On dit que $GL_n(\mathbb{R})$ est dense dans $M_n(\mathbb{R})$.
- 3. $GL_n(\mathbb{R})$ est-il un ouvert? Un fermé de $M_n(\mathbb{R})$?

Exercice 24 (polynôme à deux variables) Soit P une fonction polynôme à deux variables. On suppose qu'il existe un ouvert Ω de \mathbb{R}^2 sur lequel P s'annule.

- 1. Montrer que Ω contient un sous-ensemble de la forme $I \times J$ avec I, J deux intervalles de $\mathbb R$ non réduits à un point. En déduire que P est identiquement nulle.
- 2. Donner un exemple de polynôme à deux variables non nul ayant une infinité de racines.