Rappels sur les anneaux et les corps.

Préparation à l'Agrégation, ENS de Cachan. Claire RENARD.

Septembre 2012

1 Rappels sur les anneaux.

1.1 Définitions : caractérisations d'anneaux.

A est un anneau commutatif, unitaire, d'unité notée 1.

Définition 1 (Anneau intègre). L'anneau A est **intègre** si pour tous a et $b \in A$ tels que ab = 0, alors a = 0 ou b = 0.

Définition 2 (Anneau noethérien). Un anneau A est noethérien si, de facon équivalente,

- (i) Tout idéal I de A est de type fini.
- (ii) Toute suite croissante d'idéaux de A est stationnaire.
- (iii) Tout ensemble non vide d'idéaux admet un élément maximal pour l'inclusion.

Définition 3 (Anneau principal). Un anneau A est **principal** s'il est intègre et tout idéal est principal (i.e. de la forme (a), où $a \in A$).

Définition 4 (Anneau factoriel). Un anneau A est factoriel si :

- (0) A est intègre.
- (E) Pour tout $a \in A \setminus \{0\}$, il existe $u \in A^{\times}$ et p_1, \ldots, p_r irréductibles tels que $a = up_1 \ldots p_r$.
- (U) La décomposition précédente est unique à permutations près et aux inversibles près.

Définition 5 (Anneau euclidien). Un anneau A est euclidien si

- 1. A est intègre.
- 2. A est muni d'une division euclidienne, i.e. il existe une fonction (appelée stathme) $v: A \setminus \{0\} \to \mathbb{N}$ telle que si a et $b \in A$ avec $b \neq 0$, il existe q et r dans A tels que a = bq + r et (r = 0 ou v(r) < v(b)).

Théorème 6 (Hilbert). Si A est noethérien, alors A[X] est noethérien.

Théorème 7 (Gauss). Si A est factoriel, alors A[X] est factoriel.

Proposition 8. L'anneau A[X] est principal si, et seulement si, A est un corps.

ATTENTION: si A est factoriel, il n'est pas nécessairement noethérien. De même, si A est noethérien, il vérifie la propriété (E), mais pas nécessairement (U) et n'est donc pas nécessairement factoriel.

1.2 Exemples.

- $-\mathbb{Z}$, k[X] où k est un corps, $\mathbb{Z}[i]$ sont euclidiens.
- $-\mathbb{Z}\left[\frac{1+i\sqrt{19}}{2}\right]$ est principal mais pas euclidien.
- $-k[X_n, n \in \mathbb{N}]$ est factoriel mais pas noethérien.
- $-\mathbb{Z}[i\sqrt{5}]$ est intègre, noethérien, mais pas factoriel.
- Si A est un anneau principal qui n'est pas un corps, alors A[X] est factoriel et noethérien, mais n'est pas principal. L'anneau $\mathbb{R}[X,Y]$ est lui aussi factoriel, noethérien, mais pas principal.

1.3 Idéaux et arithmétique.

Si I est un idéal de A, il y a bijection entre les idéaux $J \supseteq I$ et les idéaux de l'anneau quotient A/I.

Définition 9 (Idéal propre). Un idéal I de A est dit propre s'il est distinct de A.

Définition 10 (Idéal premier). Un idéal I de A est **premier** s'il est propre et que l'anneau A/I est intègre.

Autrement dit, I est premier si c'est un idéal propre et pour tous a et $b \in A$, si $ab \in I$, alors $a \in I$ ou $b \in I$.

Définition 11 (Idéal maximal). Un idéal I est dit **maximal** si c'est un idéal propre et maximal pour l'inclusion : si J est un idéal de A contenant I, alors J = I ou J = A.

Autrement dit, l'idéal I est maximal si, et seulement si l'anneau quotient A/I est un corps.

$IDEAL MAXIMAL \Longrightarrow IDEAL PREMIER$

Pour tout $a \in A$, on note (a) l'idéal engendré par a.

Soient a et $b \in A$.

- -a divise b, noté a|b s'il existe $c \in A$ tel que b = ac. De manière équivalente, $a|b \iff (b) \subseteq (a)$.
- a et b sont **premiers entre eux** si pour tout $d \in A$ tel que d|a et d|b, alors $d \in A^{\times}$.
- a et b sont **associés** si a|b et b|a, ce qui équivaut à (a) = (b). Si de plus l'anneau A est intègre, cela revient à dire qu'il existe $u \in A^{\times}$ tel que a = ub.

Soit $p \in A$. p est dit **irréductible** si

- 1. $p \neq 0$ et $p \notin A^{\times}$
- 2. si p = ab, alors $a \in A^{\times}$ ou $b \in A^{\times}$.

Autrement dit, les seuls diviseurs de p sont les éléments inversibles et les associés de p.

 $p \in A \setminus \{0\}$ est dit **premier** si (p) l'est.

Lorsque A est intègre, on a :

ELEMENT PREMIER \Longrightarrow ELEMENT IRREDUCTIBLE

Proposition 12. Soit A un anneau intègre vérifiant la propriété (E) (par exemple noethérien et intègre). Alors les assertions suivantes sont équivalentes :

- 1. A vérifie la propriété (U) (et donc A est factoriel).
- 2. Lemme d'Euclide : pour tout p irréductible, si p|ab, alors p|a ou p|b.
- 3. p est irréductible si, et seulement si p est premier.
- 4. Théorème de Gauss : si a|bc et a est premier avec b, alors a|c.

2 Rappels sur les corps.

Définition 13 (Extension de corps.). Soit k un corps. Une extension de k est (K,i) où K est un corps et $i: k \to K$ est un morphisme d'anneaux unitaires.

Remarque 14. Comme k est un corps, le morphisme i est injectif.

Le morphisme i est donc souvent sous-entendu, et on considère que k est inclus dans K, noté K

$$(K:k)$$
 ou $\begin{vmatrix} K \\ k \end{vmatrix}$.

Le corps K est naturellement muni d'une structure de k-espace vectoriel (puisque si $\lambda \in k$ et $x \in K$, $\lambda . x = \lambda x \in K$).

Définition 15 (Degré d'une extension.). Lorsque $\dim_k(K)$ est finie, l'extension est dite **finie**. La dimension $\dim_k(K)$ est notée [K:k] et appelée **degré de l'extension**.

Théorème 16 (De la base télescopique.). Le degré d'une extension est multiplicatif. Autrement dit, si (L:K), (K:k) et (L:k) sont trois extensions avec (L:k) finie, alors les deux autres extensions sont aussi finies et [L:k] = [L:K][K:k].

Si (K:k) est une extension et $\alpha \in K$, on note $k[\alpha] := \{P(\alpha), P \in k[X]\}$. C'est le sous-anneau de K engendré par k et α .

ATTENTION : En général, $k[\alpha]$ et k[X] ne sont pas isomorphes, voir la suite!

Si $E \subset K$, on note k(E) le plus petit sous-corps de K contenant k et E.

Définition 17. L'extension (K:k) est dite monogène s'il existe $\alpha \in K$ tel que $K=k(\alpha)$.

Si $\alpha \in K$, on a $k[\alpha] \subseteq k(\alpha) = \{P(\alpha)/Q(\alpha), P, Q \in k[X], Q(\alpha) \neq 0\}.$

Soit $\phi: k[X] \to k[\alpha]$ le morphisme d'anneaux défini par $\phi(1) = 1$ et $\phi(X) = \alpha$. Par définition, ϕ est surjectif.

Proposition 18. Soit (K : k) une extension de corps et $\alpha \in K$. Les propriétés suivantes sont équivalentes.

- (i) Le morphisme ϕ n'est pas injectif. Autrement dit, il existe un polynôme $P \in k[X]$ non nul et tel que $P(\alpha) = 0$.
- (ii) L'anneau $k[\alpha]$ est un k-espace vectoriel de dimension finie.
- (iii) L'anneau $k[\alpha]$ est un corps.
- $-(iv) k[\alpha] = k(\alpha).$

Définition 19. Si $\alpha \in K$ vérifie une des assertions de la proposition précédente, α est dit **algébrique** sur k. Sinon, il est **transcendant**.

Lorsque α est transcendant, ϕ est un isomorphisme entre $k[\alpha]$ et k[X].

Définition 20 (Polynôme minimal.). Si α est algébrique, il existe un unique polynôme unitaire μ_{α} de k[X] tel que le noyau de ϕ soit engendré par μ_{α} : $\ker(\phi) = (\mu_{\alpha})$. C'est le **polynôme minimal** de α .

Par définition, $k[\alpha] \simeq k[X]/(\mu_{\alpha})$, et $[k[\alpha]:k] = \deg(\mu_{\alpha})$.

Remarque 21. Si $k[\alpha]$ est un corps, alors l'idéal engendré par μ_{α} est maximal, et donc μ_{α} est irréductible sur k[X].

Définition 22 (Corps de rupture.). Soit $P \in k[X]$ irréductible. Une extension (K : k) de k est un corps de rupture pour P si $K = k(\alpha)$ avec $P(\alpha) = 0$.

Existence du corps de rupture et unicité à isomorphisme près : $K \simeq k[X]/(P)$.

Définition 23 (Corps de décomposition.). Soit $P \in k[X]$ non nécessairement irréductible. Une extension (K:k) de k est un corps de décomposition pour P si :

- 1. Dans K[X], le polynôme P est un produit de facteurs de dégré 1 ("P a toutes ses racines dans K").
- 2. L'extension de corps (K : k) est minimale pour cette propriété.

Existence du corps de décomposition et unicité à isomorphisme près. On le note $Dec_k(P)$.

3 Quelques critères d'irréductibilité de polynômes.

Soit A un anneau factoriel et K son corps des fractions.

Définition 24. Si $P \in A[X]$ est un polynôme, le **contenu** de P, noté c(P), est un pgcd des coefficients de P. Autrement dit, si $P = a_n X^n + \ldots + a_1 X + a_0$, $c(P) = \operatorname{pgcd}(a_n, \ldots, a_0)$ (défini aux inversibles près).

Si le contenu de P est inversible, P est dit **primitif**.

Proposition 25. Les polynômes de A[X] irréductibles sont :

- 1. Les constantes $p \in A$ irréductibles dans A.
- 2. Les polynômes de degré au moins un primitifs et irréductibles dans K[X].

D'où : il suffit d'étudier l'irréductibilité des polynômes de K[X], où K est un corps.

Question: Soit $P \in K[X]$. Est-il irréductible?

3.1 Identification.

On écrit P=QR où Q est R sont deux polynômes de K[X]. Montrer que Q ou R est un polynôme constant.

Par exemple, si le degré de P est 2 ou 3, et que P n'a pas de racine dans K, P est irréductible. La condition reste nécessaire mais n'est plus suffisante lorsque deg $(P) \ge 4$.

3.2 Critère d'Eisenstein.

Proposition 26 (Criètre d'Eisenstein.). Soit $P = a_n X^n + \ldots + a_1 X + a_0 \in A[X]$ primitif. Supposons qu'il existe un élément irréductible $p \in A$ tel que

- 1. p ne divise pas a_n .
- 2. Pour tout $i = 0, \ldots, n-1, p$ divise a_i .
- 3. p^2 ne divise pas a_0 .

Alors P est irréductible dans K[X], et donc aussi dans A[X] puisqu'il est primitif.

3.3 Réduction.

Théorème 27. Soit $P = a_n X^n + \ldots + a_1 X + a_0 \in A[X]$ primitif.

Supposons qu'il existe un idéal premier I de A tel que :

- 1. L'image de a_n par la projection canonique $A \to A/I$ est non nulle.
- 2. L'image de P dans A/I[X] est irréductible dans (A/I)[X] ou Frac(A/I)[X].

Alors P est irréductible dans K[X] et donc dans A[X].

3.4 Utilisation d'extension(s) de corps.

Proposition 28. Soit d le degré de P. Le polynôme P est irréductible dans K[X] si, et seulement si pour toute extension L de K avec $[L:K] \leq d/2$, P n'a aucun racine dans L.

Y penser notamment lorsque l'on est dans un corps fini!

Proposition 29. Soit $P \in k[X]$ un polynôme irréductible de degré n et K une extension de k de degré m premier avec n. Alors P est encore irréductible dans K[X].

C'est évidemment faux si l'on ne suppose plus n et m premiers entre eux!!!

Un dernier critère (auquel on ne pense pas forcément) : montrer que P est le polynôme minimal d'un certain élément α dans une extension du corps K.