Working of ADABOOST with Example.

(our les

ılır				•	_	
	Chest	Blocked	. Patriel	1 ~	t	
	Pain	Arperies	weigh	t bisea	Disease	
	Yes	400	205	Yes	\downarrow	
f	11/0	Yes	180	Yes.	Ļ	
-	412	No	210	Yes	-	
-	Yes	Yes	167	/ Yes /		
\vdash	N O	448	156	NO		
├	NO	403	125	No		
1	Yes	NO	168	NO		
_	Yes	Yes	172	No .		
1						

Slep 1'. Assign weight to Every Cample = $\frac{1}{\text{Total Noof Comple}} = \frac{1}{8}$

* (Initially Equal Weighte are arrighed to each sample)

	/	\checkmark		V			_		_
•	Chest	Blocked	-	Patren		Hear		Samp	
	Pain	Arteries		weight	t	Dia	ave	neigi	t
	Yes.	70		205		Yes	·]	1/8	_
J	100.	408		180		Yes:	_	1/8	-/
.	418	No	7	210	1,	Yes	+	1/4	1
.	Yes.	Yes	T	167	ľ	48)	Ľ	18_	Ļ
,	N O	448	Γ	156		NO		/8	
/ -	ND	40		125		No Y	_	18	
1-	405.	NI		16 %		NO		18	_
1	405	Yes		17 <i>a</i>	ا	NO .	'	/8	-
4								4	

= 0.48 *5/x + 0.44 * 3/8

= 0.4665 40.47

$$g_{ini}(P,\omega > 176)$$

$$= 1 - ((3/3)^{2})$$

$$= 0$$

$$g_{ini}(P,\omega > 176) = 4 48$$

$$(P,\omega > 176) = 1 - (4/5)^{2} + (4/5)^{2}$$

$$= 0.32$$

$$g_{ini} = 0.3$$

$$g_{ini} = 0.3$$

$$g_{ini}(weigh)$$

* The smallest gini Index 10 is 02 for weight feature So first Stumpt will be weight > 176 sup 3 > To calculate Amount of lay of weight > 176 [feature]

Amount of say = 1 ln (1 - Total Everor)

Total lunor. For a ctamp the sum of weight accordated with incorrectly clausfied cample.

there only one Sample is Incorrectly claverfied.

- Total Evenor = 18

Amy of Jay =
$$\frac{1}{a} \ln \left(\frac{1 - (18)}{(18)} \right) = \frac{0.97}{(High)}$$

Note: If Amt of Say is less then the stemp is not doing good job

* Now we have -> first stump (weight > 176)
> And of say.

Now Instially levery lample had Equal weight >

Now Before Second Stump we must morbly weighte of Comples

* Weights of Correctly Classified Complex => must be decrease

11 11 Incorrectly Classified lample >> must be increase

[50 that west stump will focus more on Incorrectly Identified Complex].

New Sample weight (correctly clauentied = Sample * E

Sample) weight

(of d)

New Sample weight (Incorrectly Unwified = Sample * E

Sample) weight

(of d)

	,	./	V			\downarrow	
	Chest Pain	Blocked	Patrent weight	Heart Discare	Sample	I (SMAD) UE. I	Normalize Sample weight 10.05/0.68 = 0.07 = 1
6 J	Y18,	700 408	205	Yes:	1/8 1/8	0.05	007
	1NO. 418.	No Yes	210	40. 40)	1/8_	0.05	0.33 /0.68 = 0.49

Ye No 210 Ye YE 0.06 0.07 165 No YE 0.05 0.07 0.08

* Now we have New Normalized Cample Weights

- * The Incorrectly closesfied Cample has Higher New Sample weight -> which means stump 2 will focus more on 9t.
- * The Correctly classified Sample has Comparatively 1010ller Sample weight

> which means stump2 will towns less on it.

- + Cimilarly we can have Many such Stumps
- * This is how Adaboust Creates and Uses Stumps.

+ Let us the how forest of stumps made by Adaboust does U aesification >.

- 1) het us consider a test comple
- @ we will pau the let Cample though each stomp
- 6) het there be few thomps that Clausties Sample as the thought broad broad and few thomps clausties Sample as No (Do not have heart disease).

Has Not Head Dicease

= Amil of Say = 0.41

". The Test Complets classified as Yes (Mas Heart Disease).

Summary of Adabast

- (Assign Sample weight (Initial Equal)
- (reale Stump for Each feature.
- 103) Use gin's Index to Identify first Stump.
 - (9) For first stump.
 (1) Calculate Total Engror
 (2) And of Say.

(Calculate Total Everor

- @ And of Say.
- the sample weighte for each sample For Incorrectly = updated - old x e weight weight For Greeky = Updated = old * e Amtoflay
 Classified weight weight
 - Now Spenty updated weight few Each Sample & Normalize the weight to generate New Cample weight
- (7) Identify New Stomp bound on New Sample Weight Repeat slep 3 to 7
 - (8) For Unesticution (Teeting).

8.1 > Dun the lest Sample through all the Stumps.

8.2 > Colonlate And of Cay for comple classifying Yes LNO

8:3 > classify the let sample boned on largest sum of Amount of Say