Причинно-ориентированное снижение размерности для анализа данных нейроинтерфейсов

Владимиров Э.А.

Московский физико-технический институт

Научный руководитель: д. ф.-м. н. В. В. Стрижов

2025

Причинно-следственный анализ в данных высокой размерности

Проблема

- Нелинейные, лагированные во времени зависимости не выявляются корреляцией и линейной регрессией.
- Высокая размерность данных усиливает мультиколлинеарность и усложняет поиск причинно-следственной сявзи

Цель исследования

Найти компактное и интерпретируемое скрытое пространство, в котором обнаруживается причинное воздействие $\mathbf{X} \to \mathbf{Y}$.

Предлагаемая модель CaSCA

Предлагается подход CaSCA – Канонический анализ каузальных подпространств.

CaSCA проецирует данные на два взаимно ортогональных подпространства: \mathbf{x} ахимальное, где лагированное представление \mathbf{X} максимально предсказывает \mathbf{Y} , и **реконструктивное**, которое объясняет остаточную дисперсию сигналов.

Основная идея метода CaSCA

Ключевая мысль:

CaSCA строит общее латентное пространство, где на первом этапе извлекаются низкоразмерные причинные компоненты, а на втором — восстанавливается остальная вариативность данных.

Постановка задачи каузального снижения размерности

Даны два синхронных многомерных временных ряда $\mathbf{X}_t \in \mathbb{R}^{n_x}, \ \mathbf{Y}_t \in \mathbb{R}^{n_y}, \ t=1,\ldots,T.$

Общий энкодер каждой строки

$$\varphi_{\mathsf{enc}} : \mathbb{R}^{n_{\mathsf{x}}} \times \mathbb{R}^{n_{\mathsf{y}}} \to \mathbb{R}^{m}, \quad \psi_{\mathsf{enc}} : \mathbb{R}^{n_{\mathsf{x}}} \times \mathbb{R}^{n_{\mathsf{y}}} \to \mathbb{R}^{m}$$

создаёт скрытые представления

$$\mathbf{P}_t = \varphi_{\mathsf{enc}}(\mathbf{X}_t, \mathbf{Y}_t), \qquad \mathbf{Q}_t = \psi_{\mathsf{enc}}(\mathbf{X}_t, \mathbf{Y}_t).$$

Разбиение скрытого пространства. $m = d_c + d_r$, $\mathbf{P}_t = \left[\mathbf{P}_t^c \,\middle|\, \mathbf{P}_t^r\right], \; \mathbf{Q}_t = \left[\mathbf{Q}_t^c \,\middle|\, \mathbf{Q}_t^r\right], \; \mathbf{P}_t^c, \; \mathbf{Q}_t^c \in \mathbb{R}^{d_c}, \; d_c \ll d_r \ll \min(n_x, n_y).$

Декодеры и реконструкция.

$$\widehat{\mathbf{X}}_t = \varphi_{\mathrm{dec}}(\mathbf{P}_t), \qquad \widehat{\mathbf{Y}}_t = \psi_{\mathrm{dec}}(\mathbf{Q}_t).$$

Постановка задачи каузального снижения размерности

Необходимо построить *низкоразмерное* и *причинно-информативное* латентное пространство, в котором

- причинные компоненты $(\mathbf{P}_t^{\mathrm{c}}, \mathbf{Q}_t^{\mathrm{c}})$ максимально объясняют влияние $\mathbf{X}_{t-\tau} \! \to \! \mathbf{Y}_t;$
- реконструктивные компоненты $(\mathbf{P}_t^{\mathrm{r}}, \mathbf{Q}_t^{\mathrm{r}})$ сохраняют оставшуюся дисперсию сигналов;

Задача моделирования

Найти преобразования $arphi_{\mathsf{enc}}, \psi_{\mathsf{enc}}, arphi_{\mathsf{dec}}, \psi_{\mathsf{dec}}$, минимизируя

$$\mathcal{L} = \lambda_{\mathsf{rec}} \big(\| \mathbf{X}_t - \widehat{\mathbf{X}}_t \|_F + \| \mathbf{Y}_t - \widehat{\mathbf{Y}}_t \|_F \big) + \lambda_{\mathsf{c}} \, \mathcal{L}_{\mathsf{c}} \big(\mathbf{P}_{t-\tau}^{\mathsf{c}}, \mathbf{Q}_t^{\mathsf{c}} \big),$$

- \mathcal{L}_c — критерий причинно-следственной связи (корреляция/ССМ/МІ).

Предположения.

- Аттрактор допускает задержанное вложение при умеренном шуме.
- Вся значимая причинная информация содержится в d_c -мерном подпространстве.
- Задержка au заранее известна.

Критерии качества модели снижения размерности

1. Устранение мультиколлинеарности

Максимальный Variance Inflation Factor (VIF)
$$\max_{j} \frac{1}{1-R_{j}^{2}}$$

Condition Number
$$\max(\varkappa(\mathbf{P}_t^\mathsf{T}\mathbf{P}_t), \varkappa(\mathbf{Q}_t^\mathsf{T}\mathbf{Q}_t)) = \frac{\sigma_{\max}}{\sigma_{\min}}$$

Чем меньше — тем более устойчивы линейные модели в скрытом пространстве

2. Точность реконструкции сигналов

$$\mathsf{RMSE}_X = \sqrt{rac{1}{T} \sum_t \lVert \widehat{\mathbf{X}}_t - \mathbf{X}_t \rVert^2} \; ext{(аналогично для } \mathbf{Y} ext{)}$$

Explained Variance Ratio — доля дисперсии, восстановленная декодером

3. Прогностическая полезность причинных эмбеддингов

- (i) модель Y_t по собственным лагам $\mathbf{Y}_{t- au}$
- (ii) модель Y_t по \mathbf{Y}_t и исходным \mathbf{X}_t
- (iii) модель Y_t по \mathbf{Y}_t и причинным эмбеддингам \mathbf{P}_t^c $\Delta Score = Perf(модель (iii)) max{Perf((i)), Perf((ii))}$
 - ▶ Perf снижение RMSE / рост R^2 или F1 (для классификации)

Алгоритм CaSCA

CaSCA: причинно-ориентированное снижение размерности

Require: Временные ряды $\mathbf{X}_t \in \mathbb{R}^{T \times n_x}, \ \mathbf{Y}_t \in \mathbb{R}^{T \times n_y}$, лаги \mathcal{T} , размерности d_c, d_{hid}

Ensure: Каузальные проекции $\mathbf{P}_t^c, \mathbf{Q}_t^c$, реконструктивные проекции $\mathbf{P}_t^r, \mathbf{Q}_t^r$ Шаг 1. Автовыбор лага

- 1: for $au \in \mathcal{T}$ do
- 2: $\rho(\tau) \leftarrow \operatorname{corr}(\operatorname{CCA}_1(\mathbf{X}_{t-\tau}, \mathbf{Y}_t))$
- 3: end for
- 4: $\tau^* \leftarrow \arg\max_{\tau} \rho(\tau)$ Шаг 2. Канонический блок (каузальный)
- 5: $\left[\mathbf{W}_{x}^{c}, \mathbf{W}_{y}^{c}\right] \leftarrow \mathsf{CCA}\left(\mathbf{X}_{t-\tau^{\star}}, \mathbf{Y}_{t}, d_{c}\right)$
- 6: $\mathbf{P}_{t}^{c} \leftarrow \mathbf{X}_{t} \mathbf{W}_{x}^{c}, \mathbf{Q}_{t}^{c} \leftarrow \mathbf{Y}_{t} \mathbf{W}_{y}^{c}$
 - Шаг 3. Дефляция остатка
- 7: $\mathbf{X}_{\mathsf{res}} \leftarrow \mathbf{X}_t \mathbf{P}_t^{\mathsf{c}} \mathbf{W}_x^{\mathsf{c} \mathsf{T}}$, $\mathbf{Y}_{\mathsf{res}} \leftarrow \mathbf{Y}_t \mathbf{Q}_t^{\mathsf{c}} \mathbf{W}_y^{\mathsf{c} \mathsf{T}}$ Шаг 4. *PCA-блок (реконструктивный)*
- 8: $\mathbf{W}_{x}^{\mathrm{r}} \leftarrow \mathsf{PCA}(\mathbf{X}_{\mathsf{res}}, d_{r}), \ \mathbf{W}_{y}^{\mathrm{r}} \leftarrow \mathsf{PCA}(\mathbf{Y}_{\mathsf{res}}, d_{r})$
- 9: $\mathbf{P}_{t}^{\mathrm{r}} \leftarrow \mathbf{X}_{\mathsf{res}} \mathbf{W}_{x}^{\mathrm{r}}$, $\mathbf{Q}_{t}^{\mathrm{r}} \leftarrow \mathbf{Y}_{\mathsf{res}} \mathbf{W}_{y}^{\mathrm{r}}$

Teopeтические свойства модели CaSCA

Теорема Владимирова (2025, ортогональность и блочная дисперсия)

Пусть после центрирования данные приведены к единичной ковариации $\Sigma_{XX} = I_p, \ \Sigma_{YY} = I_q.$ Тогда проекции $\mathbf{P}^c_t, \mathbf{P}^r_t$ и ортогональные веса $\mathbf{W}^c_x, \mathbf{W}^r_x$ модели обладают следующими свойствами:

- 1. **Ортогональность весов:** $W_x^{\mathrm{c} \top} W_x^{\mathrm{r}} = \mathbf{0}_{d_c \times d_r}$ и аналогично для Y-блока.
- 2. **Разложение ковариации:** $I_p = \mathbf{W}_x^{\mathrm{c}} \Sigma_{pp}^{\mathrm{cc}} \mathbf{W}_x^{\mathrm{c}\top} + \mathbf{W}_x^{\mathrm{r}} \Sigma_{pp}^{\mathrm{r}r} \mathbf{W}_x^{\mathrm{r}\top}$ (кросс-блочные элементы обнуляются).
- 3. **Независимость латентных координат:** $\mathbf{P}_t^{\mathrm{c}\top}\mathbf{P}_t^{\mathrm{r}}=\mathbf{0}_{d_c\times d_r}$, т.е. причинные и реконструктивные факторы некоррелированы.

Интерпретация.

Причинные оси \mathbf{W}^{c} изолируют подпространство, достаточное для прогноза \mathbf{Y}_{t} по $\mathbf{X}_{t- au}$.

Реконструктивные оси W^{r} содержат остаточную дисперсию, не мешая оценке причинных связей.

Блочное разложение дисперсии упрощает прикладные модели: \mathbf{P}_t^c используется в регрессии/классификации, \mathbf{P}_t^r — в реконструкции и фильтрации шума.

Переход в траекторное пространство

Вместо исходных наблюдений $\mathbf{X}_t, \mathbf{Y}_t$ строим их отложенные векторы и применяем **CaSCA** уже к этим псевдонаблюдениям. Это раскрывает внутреннюю динамику системы и улучшает выявление причинных связей.

Require: временные ряды $\{\mathbf{X}_t\}_{t=1}^T, \{\mathbf{Y}_t\}_{t=1}^T$, лаговое окно E, au

Шаг 1. Построение траекторий

1:
$$\mathbf{X}_{t}^{(\text{traj})} = \left[\mathbf{X}_{t}, \mathbf{X}_{t-\tau}, \dots, \mathbf{X}_{t-(E-1)\tau}\right]$$

2: Аналогично $\mathbf{Y}_t^{(\mathrm{traj})}$

Шаг 2. Применение CaSCA

3:
$$(\mathbf{P}^c, \mathbf{P}^r, \mathbf{Q}^c, \mathbf{Q}^r) \leftarrow \mathsf{CaSCA}(\mathbf{X}^{(\mathrm{traj})}, \mathbf{Y}^{(\mathrm{traj})})$$

Шаг 3. Восстановление сигналов

4:
$$\widehat{\mathbf{X}}_t = \overline{\mathbf{X}} + \mathbf{P}_{\underline{t}}^c W_x^{c^{\mathsf{T}}} + \mathbf{P}_t^r W_x^{r^{\mathsf{T}}}$$

5: аналогично \mathbf{Y}_t

Переход в траекторное пространство

Преимущество: вложение Таккенса отображает исходные временные ряды в траекторное пространство, где нелинейные и запаздывающие взаимодействия становятся линейно отделимыми. В этом пространстве CaSCA извлекает ортогональные причинные координаты даже при больших лагах.

Переход в Риманово пространство

Мотивация

- EEG-сигналы многоканальны, шумны и содержат коррелированные компоненты.
- Ковариационные матрицы каналов естественно живут на многообразии SPD(n).
- Проекция в касательное пространство = «локальная евклидизация»: работает линейная CaSCA.

Пошаговый алгоритм

- 1. **XdawnCovariance.** Из N каналов формируем $n \ll N$ пространственных паттернов $\Sigma_t \in \mathsf{SPD}(n)$ внутри окна Δt .
- 2. Log-Tangent.

$$\mathbf{C}_t = \log \! \left(\mathbf{\Sigma}_\star^{-1/2} \, \mathbf{\Sigma}_t \, \mathbf{\Sigma}_\star^{-1/2}
ight) \; \in \; T_{\mathbf{\Sigma}_\star} \, \mathsf{SPD}(\mathit{n}),$$
 где $\mathbf{\Sigma}_\star$ — геометрическое среднее.

Ключевая идея

Ковариации EEG являются точками на кривой SPD-многообразия; перевод в касательное пространство делает их «плоскими», после чего CaSCA отделяет динамически-причинные направления от

Итоговые преимущества

реконструктивного шума.

Устойчивость к масштабированию и к артефактам отдельных электродов.

Геометрически корректная обработка SPD-данных.

Улучшенная предсказательная точность 11/14

Вычислительный эксперимент: описание данных

Данные EEG-IMU

У 25 участников были записаны показания EEG, IMU, MRT во время игры в настольный теннис. С каждым участником было сыграно 4 сессии, длительность каждой из них составляет 7-10 минут.

Human Player

Block 1		Block 2		Block 3		Block 4	
Machine Rally	Cooperative	Machine Serve	Competitive	Cooperative	Machine Serve	Competitive	Machine Rally
2:30 2:30 2:30	7:30						
15	min —						

Данные двух IMU устройств

Показания акселерометра и гироскопа со смартфона и планшета, записанные во время 10 минутной ходьбы.

Вычислительный эксперимент: сравнение CaSCA в исходном и траекторном пространствах

		CaSCA	CaSCA traj.
kNN	Expl.var.ratio	-3.4%	-2.1%
	RMSE	-0.11	-0.08
Linear	Expl.var.ratio	-3.3%	+0.3%
	RMSE	-0.07	0.01
Grad.Boosting	Expl.var.ratio	-0.7%	-0.1%
	RMSE	-0.026	-0.006

Выносится на защиту

- 1. Предложен причинный метод снижения размерности, выделяющий отдельное латентное подпространство для причинных компонент и обеспечивающий точную реконструкцию сигналов.
- 2. Доказано ортогональное разложение выборочной ковариации и строгая разделимость вариации на «причинный» и «реконструктивный» блоки в ортогональном пространстве состояний.
- 3. Разработаны модификации метода в траекторном, римановом и глубоком обучающих пространствах, а такжее регуляризатор ССМ, вводящий динамическое ограничение Сугихары через дифференцируемый штраф.
- 4. Сформулирован комплекс метрических показателей (мультиколлинеарность, е, улучшение качества прогноза) для объективного сравнения методов причинного анализа. е
- 5. Проведены тесты на двух наборах данных (два IMU-датчика и EEG-IMU.