CHIEN-CHIN HUANG

(347)221-2653
□ huang@cs.nyu.edu
□ news.cs.nyu.edu/~fegin github.com/fegin

Education

2013-Present Ph.D, Computer Science, New York University.

- Advisor: Dr. Jinyang Li

- Research Topic: Distributed Systems, especially in Distributed Programming Frameworks.

2005–2007 M.S., Computer Science, National Tsing Hua University.

- Advisor: Dr. Jeng-Kuen Lee

- Thesis Topic: Microkernel Design and Dual-core Supports for PAC VLIW DSP Processors.

2001–2005 B.S., Computer Science, National Tsing Hua University.

Research Interests

Distributed computing, file system, embedded software and algorithm design.

Publications

Get More With Less: Near Real-Time Image Clustering on Mobile Phones.

Jorge Ortiz, Chien-Chin Huang, Supriyo Chakraborty. Technical Report, 2015

Spartan: A Distributed Array Framework with Smart Tiling.

Chien-Chin Huang, Qi Chen, Zhaoguo Wang, Russell Power, Jorge Ortiz, Jinyang Li, Zhen Xiao. $\overline{USENIX\ Annual\ Technical\ Conference}$, July 2015

Garbage Collection for Multiversion Index in Flash-based Embedded Databases.

Po-Chun Huang, Yuan-Hao Chang, Kam-Yiu Lam, Jian-Tao Wang, Chien-Chin Huang.

ACM Transactions on Design Automation of Electronic Systems, June 2014

Enhancing Microkernel Performance on VLIW DSP Processors via Multiset Context Switch.

Brian K. Hsieh, Yung-Chia Lin, Chien-Chin Huang, and Jenq Kuen Lee. Journal of Signal Processing Systems, Vol. 51.

Research Projects

2014-present Spartan: Distributed Array Programming Framework.

Spartan is a distributed array framework which provides several data-flow high-level operators to help users to implement distributed array programs. The 'key' for these operators is 'extent' which is a data structure representing the shape and location of the 'value', a 'tile' (sub-array). Spartan also contains more than 50 Numpy-like built-in APIs which implemented by the high-level operators.

2012-2013 MVBT Flash: Multi-Version B-Tree Database for Flash Device.

The project is to build a database based on multi-version b-tree on Flash devices. The major challenge of the idea is the out-place update property of Flash devices. Whenever a leaf has been updated, it will trigger all its ascendents to be updated and results in huge amount of outdated/invalid pages. A efficient garbage collection has been proposed to solve the issue.

Honors, Awards and Grants

- 2015 ATC'15 Student Travel Grant.
- 2014 OSDI'14 Student Travel Grant.
- 2007 1st Place, Best Thesis Award, Institute of Information Computing Machinery, Taiwan.
- 2006 1st Place, Embedded System Design Contest, Ministry of Education, Taiwan.
- 2006 Selective Preference, SiliconAward, Embedded Software Group, MXIC Inc..
- 2004 7th Place, ACM International Collegiate Programming Contest (ICPC), Kaohsiung Station.

Professional Experience

- 2015 Summer Research Intern, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
- 2013-Present Research Assistant, New York University, New York, NY, USA.
 - 2012–2013 Research Assistant, Institute of Information Science, Academia Sinica, Taipei, Taiwan.
 - 2008–2012 Senior Software Engineer, MediaTek Inc., Hsinchu, Taiwan.

 $2005-2007 \quad \textbf{Graduate Research Assistant}, \ \textit{National Tsing Hua University}, \ \textit{Hsinchu}, \ \textit{Taiwan}.$