PTC3213 - ELETROMAGNETISMO - 2024

1o. Exercício Computacional

Data máxima para entrega: 13 de outubro de 2024

Determine, utilizando o método das diferenças finitas¹ (bidimensional), a função potencial elétrico na região entre os eletrodos condutores perfeitos (hachurados) da estrutura representada na Fig. 1 ao lado. Para tanto, utilize o *script* PTC3213_EC1_Codigo.m fornecido na página do curso no *e-Disciplinas da USP*. Trata-se de um *script Octave* incompleto, que deverá ser devidamente preenchido de modo a se obter as grandezas e gráficos solicitados. O ambiente de programação a ser utilizado é o *GNU Octave*, que deve ser também baixado e instalado.

Fig. 1 Geometria do problema.

<u>Atenção!</u> Não utilize MATLAB. Caso contrário, você terá de fazer alterações complexas, além daquelas solicitadas, pois algumas funções utilizadas no código fornecido não são 100% intercambiáveis entre os programas. O código também não roda no OctaveOnline, pois excede o tempo máximo de processamento suportado por ele.

Este trabalho deverá ser realizado em grupos de no máximo **3** alunos (todos de uma mesma turma de PTC3213). O *número USP do primeiro aluno do grupo, em ordem alfabética*, deverá ser o utilizado para a escolha dos parâmetros do problema.

Os valores das dimensões mostradas na Fig. 1, assim como as propriedades físicas do problema, estão indicados na tabela abaixo e deverão ser escolhidos de acordo com os 3 últimos algarismos do número USP mencionado, sendo que nusp**U** é o *último* algarismo, nusp**P** o penúltimo e nusp**A** o antepenúltimo.

O valor da dimensão h é determinado por uma única fórmula, válida para todos os alunos: h=(b-d)/2. A profundidade é de **1,0 m**, a mesma para todos.

a (cm)		b (cm)		c (cm)		d (cm)		g (cm)		ε _r		σ (mS/m)		σ _{dual} (mS/m)	
nusp U		nusp P		nusp U		nusp P		nusp A		nusp U		nusp P		nusp A	
0,1,2	10	0,1,2	5	0,1,2	3	0,1,2	<i>b</i> –4	0,1,2	2	0,1,2	2	0,1,2	2,5	0,1,2	3,0
3,4,5,6	11	3,4,5,6	6	3,4,5,6	4	3,4,5,6	b-3	3,4,5,6	3	3,4,5,6	2,5	3,4,5,6	3,0	3,4,5,6	3,5
7,8,9	12	7,8,9	7	7,8,9	5	7,8,9	b-2	7,8,9	4	7,8,9	3	7,8,9	3,5	7,8,9	4,0

¹ Vide livro texto do curso: "Eletromagnetismo" cap. 4.6

_

O potencial do eletrodo interno deverá ser suposto igual a **100 V** e o do externo, igual a **0 V**. Após determinar os potenciais, os alunos deverão traçar as curvas equipotenciais (espaçadas de **10 V**) e as linhas de corrente, de forma a dividir a figura em quadrados curvilíneos (*Dica: utilize o valor numérico obtido para a resistência para determinar quantos tubos de corrente devem ser traçados*). Os valores da resistência e da capacitância entre os eletrodos deverão também ser determinados <u>numericamente</u> (<u>NÃO</u> USE OS QUADRADOS CURVILÍNEOS PARA ESSE FIM!).

<u>Nota:</u> Os valores numéricos deverão apresentar erro inferior a 1% para serem considerados corretos!

Os dados de saída do programa deverão ser os seguintes:

- a) (1,5) o valor da resistência R entre os eletrodos (em Ω);
- b) (1,5) o valor da capacitância C entre os eletrodos (em pF);
- c) (1,5) o valor mínimo (negativo de maior módulo) da densidade superficial de carga sobre os eletrodos (em nC/m²);
- d) (1,5) o número de tubos de corrente do problema original;
- e) (2,0) o mapa de quadrados curvilíneos (usar arquivo *.png gerado pelo programa; <u>não capturar</u> <u>a figura gerada na tela!!!</u>);
- f) (1,0) o valor da resistência R' (em Ω) entre as placas condutoras perfeitas A e B da Fig. 2 abaixo, obtida <u>por dualidade</u> a partir de R, também para 1 metro de profundidade da estrutura;
- g) (1,0) documento no formato PDF contendo ao final a listagem do programa preenchida, com marcações destacadas em amarelo. O nome do arquivo PDF deve ser modificado para **EC1_2024_grupo_nusp_AlunoA.pdf** (trocar os campos em cinza pelos dados correspondentes ex.: **EC1_2024_**xZ_1234578_JamesMaxwell.pdf). O documento deve obedecer ao Modelo do Google Docs disponível no eDisciplinasUSP. Siga as instruções dadas ali.

A submissão do trabalho deverá ser feita por apenas um membro do grupo, através de uma tarefa do *Moodle*: **EC1**. Os dados numéricos deverão ser preenchidos nos campos apropriados do documento, conforme o Modelo fornecido, e os arquivos referentes aos itens (e) e (g), anexados nos campos indicados ali.

Fig. 2 Geometria do problema dual ao da Fig. 1.