METODE INTELIGENTE DE REZOLVARE A PROBLEMELOR REALE

Laura Dioşan Tema 1

Facultatea de Matematică și Informatică Universitatea Babeș-Bolyai

Conținut

- Instruire automata (Machine Learning ML)
 - Problematică
 - Proiectarea unui sistem de învăţare automată
 - Tipologie
 - Învăţare supervizată
 - Învăţare nesupervizată
 - Învăţare cu întărire
 - □ Teoria învăţării

De citit:

- S.J. Russell, P. Norvig Artificial Intelligence A Modern Approach → capitolul 18, 19, 20
- www.google.com

Problematică

- □ Date → Inteligență
 - Informal:
 - □ Intrări x → Program → Ieşiri Y
 - Similar:
 - Reprezentarea relației dintre intrări și ieșiri
 - Inferența ieșirilor din intrări
 - Învățarea celui mai bun model care descrie datele
 - Formal:
 - Îmbunătăţirea task-ului T
 - stabilirea scopului (ceea ce trebuie învăţat) funcţiei obiectiv
 şi reprezentarea sa
 - alegerea unui algoritm de învăţare care să realizeze inferenţa (previziunea) scopului pe baza experienţei
 - respectând o metrică de performanţă P
 - evaluarea performanţelor algortimului ales
 - bazându-se pe experienţa E
 - alegerea bazei de experienţă

Problematică

- Se cunosc sau nu ieşirile asociate unor date de antrenament?
 - Învățare supervizată se cunosc
 - Învățare nesupervizată nu se cunosc
 - Învățare semi-supervizată se cunosc parțial
- □ Tipul de ieşiri
 - Valori discrete → Clasificare
 - Valori real → Regresie
 - Grupuri → Clusterizare

Proiectarea unui sistem de învățare automată

- □ Îmbunătăţirea task-ului T
 - stabilirea scopului (ceea ce trebuie învăţat) funcţiei obiectiv – şi reprezentarea sa
 - alegerea unui algoritm de învăţare care să realizeze inferenţa (previziunea) scopului pe baza experienţei
- □ respectând o metrică de performanță P
 - evaluarea performanţelor algortimului ales
- bazându-se pe experienţa E
 - alegerea bazei de experienţă

Proiectare – Alegerea funcției obiectiv

- Care este funcţia care trebuie învăţată?
 - Ex. pt jocul de dame
 - o funcție care
 - alege următoarea mutare
 - evaluează o mutare
 - obiectivul fiind alegerea celei mai bune mutări

Proiectare – Reprezentarea funcției obiectiv

- Diferite reprezentări
 - tablou (tabel)
 - reguli simbolice
 - funcţie numerică
 - funcţii probabilistice
 - ex. jocul de dame
 - Combinaţie liniară a nr. de piese albe, nr. de piese negre, nr. de piese albe compromise la următoarea mutare, nr. de piese negre compromise la următoarea mutare
- Există un compromis între
 - expresivitatea reprezentării şi
 - uşurinţa învăţării
- Calculul funcţiei obiectiv
 - timp polinomial
 - timp non-polinomial

Proiectare – Alegerea unui model de învățare

- Metodologia (procesul) de lucru
 - folosind datele de antrenament
 - induce definirea unor ipoteze care
 - să se potirvească cu datele de antrenament și
 - să generalizeze cât mai bine datele ne-văzute (datele de test)
- □ Principiul de lucru
 - minimizarea unei erori (funcţie de cost loss function)

□ Învăţare supervizată

- □ Învăţare nesupervizată
- □ Învăţare cu întărire

Învățare supervizată

Scop:

 Furnizarea unei ieşiri corecte pentru o nouă intrare

Tip de probleme

- regresie
 - Scop: predicţia output-ului pentru un input nou
 - Output continuu (nr real)
 - Ex.: predicţia preţurilor
- clasificare
 - Scop: clasificarea (etichetarea) unui nou input
 - Output discret (etichetă dintr-o mulţime predefinită)
 - Ex.: detectarea tumorilor maligne

Caracteristic

BD experimentală adnotată (pt. învăţare)

Învățare supervizată – definire

Definire

- Se dă
 - un set de date (exemple, instanțe, cazuri)
 - □ date de antrenament sub forma unor perechi (atribute data;, ieșire;), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire,
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k − nr de clase) → problemă de clasificare
 - un număr real → problemă de regresie
 - date de test
 - sub forma (atribute data_i), i =1,n (n = nr datelor de test).
- Să se determine
 - o funcție (necunoscută) ipoteză care realizează corespondența atribute ieşire pe datele de antrenament
 - ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Alte denumiri

Clasificare (regresie), învăţare inductivă

Învățare supervizată – exemple

- Recunoaşterea scrisului de mână
- Recunoaşterea imaginilor
- Previziunea vremii
- Detecţia spam-urilor
- Recomandări de produse
- Traduceri automate

Învățare supervizată – proces

Procesul

- 2 paşi:
 - Antrenarea
 - Învăţarea, cu ajutorul unui algoritm, a modelului de clasificare
 - Testarea
 - Testarea modelului folosind date de test noi (unseen data)

Calitatea învățării

- □ o măsură de performanţă a algoritmului → ex. acurateţea
 - Acc = nr de exemple corect clasificate / nr total de exemple
- calculată în:
 - faza de antrenare
 - Ansamblul de date antrenament se împarte în
 - Date de învățare
 - Date de validare
 - Performanţa se apreciază pe sub-ansamblul de validare
 - O singură dată
 - De mai multe ori → validare încrucişată (cross-validation)
 - faza de testare
- probleme
 - Învăţare pe derost (overfitting) → performanţă bună pe datele de antrenament, dar foarte slabă pe datele de test

Metode de evaluare

- Seturi disjuncte de antrenare şi testare
 - pt. date numeroase
 - setul de antrenare
 - poate fiîmpărțit în
 - Date de învătare
 - Date de validare
 - Folosit pentru estimarea parametrilor modelului
 - Cei mai buni parametri obținuți pe validare vor fi folosiți pentru construcția modelului final
- Validare încrucişată cu mai multe (h) sub-seturi ale datelor (de antrenament)
 - separararea datelor de h ori în
 - □ h-1 sub-seturi pentru învăţare
 - 1 sub-set pt validare
 - dimensiunea unui sub-set = dimensiunea setului / h
 - performanţa este dată de media pe cele h rulări
 - h = 5 sau h = 10
 - pt date puţine
- Leave-one-out cross-validation
 - similar validării încrucişate, dar h = nr de date \rightarrow un sub-set conţine un singur exemplu
 - pt. date foarte puţine

Măsuri de performanță

- Măsuri statistice
 - Funcții de scor (acuratețe, precizie, etc.)
 - Funcții de loss (măsoară calitatea modelului învățat)
- Eficienţa
 - În construirea modelului
 - În testarea modelului
- Robusteţea
 - Tratarea zgomotelor şi a valorilor lipsă
- Scalabilitatea
 - Eficienţa gestionării seturilor mari de date
- Interpretabilitatea
 - Modelului de clasificare
- Proprietatea modelului de a fi compact
- Scoruri

Măsuri de performanță

- Măsuri statistice
 - Acurateţea
 - Nr de exemple corect clasificate / nr total de exemple
 - Opusul erorii
 - Calculată pe
 - Setul de validare
 - Setul de test
 - Uneori
 - Analiză de text
 - Detectarea intruşilor într-o reţea
 - Analize financiare

este importantă doar o singură clasă (clasă pozitivă) → restul claselor sunt negative

lăsuri de performanță		Rezultate reale	
	Măsuri statistice	Clasa pozitivă	Clasa(ele) negativă(e)
	Clasa pozitiva	True positiv (TP)	False positiv (FP)
	RezPraciziatsi Rapelul □ Precizia (P) □ Precizia	False negative (FN)	True negative (TN)

- nr. de exemple pozitive corect clasificate / nr. total de exemple clasificate ca pozitive
- probabilitatea ca un exemplu clasificat pozitiv să fie relevant
- TP / (TP + FP)
- Rapelul (R)
 - nr. de exemple pozitive corect clasificate / nr. total de exemple pozitive
 - Probabilitatea ca un exemplu pozitiv să fie identificat corect de către clasificator
 - TP/ (TP +FN)
- Matricea de confuzie
 - Rezultate reale vs. rezultate calculate
- Scorul F1
 - Combină precizia şi rapelul, facilitând compararea a 2 algoritmi
 - Media armonică a preciziei şi rapelului
 - 2PR/(P+R)

Măsuri de performanță

- Măsuri statistice
 - Funcția de loss
 - Diferența între ieșirea dorită (D) și cea calculată (C)
 - □ L_2 norm Quadratic cost (mean squared error) $\Sigma \parallel D C \parallel^2$
 - \Box L₁ norm $\Sigma \mid D C \mid$
 - □ SVM loss (hinge loss, max-margin loss) $\sum_{i} \sum_{j, j \neq yi} \max(C_{j} D_{yi} + \Delta, 0)$
 - Softmax loss Σ [- ln(exp(D)/ $\Sigma_{j, j \neq yi}$ exp(C_j))]
 - Cross-entropy -∑ [D In C + (1 D) In(1 C)] /n

Condiții fundamentale

- Distribuţia datelor de antrenament şi test este aceeaşi
 - În practică, o astfel de condiţie este adesea violată
- Exemplele de antrenament trebuie să fie reprezentative pentru datele de test

Învățare supervizată – tipologie

- După tipul de date de ieşire
 - Real → probleme de regresie
 - Etichete → probleme de clasificare (regresie logistică)
 - Clasificare binară
 - Ieşiri (output-uri) binare \rightarrow nr binar de etichete posibile (k = 2)
 - Ex. diagnostic de cancer malign sau benign
 - Ex. email acceptat sau refuzat (spam)
 - Clasificare multi-clasă
 - Ieşiri multiple \rightarrow nr > 2 de etichete posibile (k > 2)
 - Ex. recunoaşterea cifrei 0, 1, 2,... sau 9
 - Ex. risc de creditare mic, mediu, mare și foarte mare
 - Clasificare multi-etichetă
 - Fiecărei ieşiri îi pot corespunde una sau mai multe etichete
 - Ex. frumos → adjectiv, adverb

Învățare supervizată — tipologie

După forma clasificatorului

Clasificare liniară

- Clasificare ne-liniară
 - se crează o reţea de clasificatori liniari
 - se mapează datele într-un spaţiu nou (mai mare) unde ele devin separabile

Învățare supervizată — tipologie

- După caracteristicile datelor
 - Clasificare pt date perfect separabile
 - Clasificare fără eroare

- Clasificare pt date ne-separabile
 - Clasificare cu o anumită eroare (anumite date sunt plasate eronat în clase)

Învățare supervizată – tipologie

După algoritm

- Bazată doar pe instanţe
 - Foloseşte direct datele, fără a crea un model de separare
 - Ex. algoritmul cel mai apropiat vecin (k-nearest neighbour)
- Discriminative
 - Estimează o separare al datelor
 - Ex. arbori de decizie, reţele neuronale artificiale, maşini cu suport vectorial, algoritmi evolutivi
- Generative
 - Construieşte un model probabilistic
 - Ex. reţele Bayesiene

- Cel mai apropiat vecin
- Arbori de decizie
- Sisteme bazate pe reguli
- Rețele neuronale artificiale
- Maşini cu suport vectorial
- □ Algoritmi evolutivi regresie

clasificare

Problemă de clasificare

- □ Se dă
 - un set de date (exemple, instanţe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_datai, ieşirei), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i =
 - o categorie dintr-o mulţime dată (predefinită) cu k elemente (k nr de clase)
 - □ date de test sub forma (atribute data_i), i =1,n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - ieşirea (clasa) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Problemă de regresie

- Se dă
 - un set de date (exemple, instanţe, cazuri)
 - □ date de antrenament sub forma unor perechi (atribute data, ieșire,), unde
 - i =1,N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i
 - un număr real
 - □ date de test sub forma (atribute_data_i), i =1,n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - Ieşirea (clasa/valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament

Învățare supervizată – algoritmi Cel mai apropiat vecin (k-nearest neighbour)

UNIVERSITATEA BABEŞ-

Facultatea de Matematică și Inf

- Cel mai simplu algoritm de clasificare
- În etapa de antrenament, algoritmul doar citeşte datele de intrare (atributele şi clasa fiecărei instanţe)
- În etapa de testare, pentru o nouă instanță (fără clasă) se caută (printre instanțele de antrenament) cei mai apropiați k vecini şi se preia clasa majoritară a acestor k vecini
- Căutarea vecinilor se bazează pe:
 - distanţa Minkowski (Manhattan, Euclidiană) atribute continue
 - distanţa Hamming, Levensthein analiza textelor
 - alte distanţe (funcţii kernel)

■ Tool-uri

- Sklearn (python)
 - https://scikit-learn.org/stable/modules/neighbors.html
 - https://scikitlearn.org/stable/modules/generated/sklearn.neighbors. KNeighborsClassifier.html
- Weka (java)
 - https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html

Biblio

https://github.com/rasbt/stat479-machinelearning-fs19/tree/master/02 knn

Învățare supervizată – algoritmi Arbori de decizie

Scop

- Divizarea unei colecţii de articole în seturi mai mici prin aplicarea succesivă a unor reguli de decizie → adresarea mai multor întrebări
 - Fiecare întrebare este formulată în funcţie de răspunsul primit la întrebarea precedentă
- Elementele se caracterizează prin informaţii non-metrice

Definire

- Arborele de decizie
 - Un graf special → arbore orientat bicolor
 - Conţine noduri de 3 tipuri:
 - Noduri de decizie → posibilitățile decidentului (ex. Diversele examinări sau tratamente la care este supus pacientul) şi indică un test pe un atribut al articolului care trebuie clasificat
 - Noduri ale hazardului evenimente aleatoare în afara controlului decidentului (rezultatul examinărilor, efectul terapiilor)
 - Noduri rezultat situaţiile finale cărora li se asociază o utilitate (apreciată aprioric de către un pacient generic) sau o etichetă
 - Nodurile de decizie şi cele ale hazardului alternează pe nivelele arborelui
 - Nodurile rezultat noduri terminale (frunze)
 - Muchiile arborelui (arce orientate) → consecinţele în timp (rezultate) ale decizilor, respectiv ale realizării evenimentelor aleatoare (pot fi însoţite de probabilităţi)
- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului
- Fiecare frunză corespunde unei clase (ieşire de tip discret)

Învățare supervizată – algoritmi Arbori de decizie

■ Tool-uri

- http://webdocs.cs.ualberta.ca/~aixplore/learning/Dec isionTrees/Applet/DecisionTreeApplet.html
- WEKA → J48
- http://id3alg.altervista.org/
- http://www.rulequest.com/Personal/c4.5r8.tar.gz
- https://scikit-learn.org/stable/modules/tree.html

Biblio

- http://www.public.asu.edu/~kirkwood/DAStuff/decisi ontrees/index.html
- <u>https://github.com/rasbt/stat479-machine-learning-fs19/tree/master/06 trees</u>

Clasificare - reamintire

- Clasificare binară pt orice fel de date de intrare (discrete sau continue)
 - Datele pot fi separate de:
 - □ o dreaptă \rightarrow ax + by + c = 0 (dacă m = 2)
 - □ un plan \rightarrow ax + by + cz + d = 0 (dacă m = 3)
 - □ un hiperplan $\sum a_i x_i + b = 0$ (dacă m > 3)
 - Cum găsim modelul de separare (valorile optime pt. a, b, c, d, a; şi forma modelului)?
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi

Învățare supervizată – algoritmi Rețele neuronale artificiale

Învățare supervizată – algoritmi Rețele neuronale artificiale

- Similar unei reţele neuronale biologice
- □ O mulţime de neuroni dispuşi ca într-un graf (un nod → un neuron) pe mai multe straturi (layere)
 - Strat de intrare
 - Conţine m (nr de atribute al unei date) noduri
 - Strat de ieşire
 - Conţine r (nr de ieşiri) noduri
 - Straturi intermediare (ascunse) rol în "complicarea" reţelei
 - Diferite structuri
 - Diferite mărimi

Tools

- Sklearn https://scikit-learn.org/stable/modules/neural networks supervised.html
- WEKA https://www.cs.waikato.ac.nz/ml/weka/
- DL4J https://deeplearning4j.org
- openCV https://opencv.org/
- Keras
 - NN API
 - https://keras.io/
 - + Theano (machine learning library; multi-dim arrays)
 http://www.deeplearning.net/software/theano/
 http://www.iro.umontreal.ca/~lisa/pointeurs/theano-scipy2010.pdf
 - + TensorFlow (numerical computation) https://www.tensorflow.org/
- Pylearn2 <u>http://deeplearning.net/software/pylearn2/</u>
 - ML library
 - + Theano
- Torch http://torch.ch/
 - scientific computing framework
 - Multi-dim array
 - NN
 - GPU
- Caffe
 - deep learning framework
 - Berkley

Învățare supervizată – algoritmi Mașini cu suport vectorial (MSV)

- Dezvoltate de Vapnik în 1970 şi popularizate după 1992
 - Clasificatori liniari care identifică un hiperplan de separare între clasa pozitivă şi cea negativă; au o fundamentare teoretică foarte riguroasă
 - Funcționează foarte bine pentru date de volum mare (ex. analiza textelor, analiza imaginilor)
- Ideea de bază
 - Hiperplanul de decizie care separă cele 2 clase est
 - $\mathbf{w} \cdot \mathbf{x} + b = 0$, unde
 - Date de antrenament de forma $\{(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), ..., (\mathbf{x}_N, y_N)\}$, unde
 - $\mathbf{x}_i = (x_1, x_2, ..., x_m)$ este un vector de intrare într-un spațiu real $X \subseteq R^m$ și
 - y_i este eticheta clasei (valoarea de ieşire), $y_i \in \{1, -1\}$
 - w vector de ponderi / coeficienţi de importanţă
 - Pot exista mai multe hiperplanuri
 - Care este cel mai bun?
 - MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare)
 - Algoritmul SMO (Sequential minimal optimizati

Învățare supervizată – algoritmi Mașini cu suport vectorial

- Cazuri de date
 - Liniar separabile
 - Separabile
 - Eroarea = 0

- Ne-separabile
 - Se relaxează constrângerile → se permit unele erori
 - C coeficient de penalizare

Învățare supervizată – algoritmi Mașini cu suport vectorial

Cazuri de date

- Non-liniar separabile
 - Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile

- Kernele posibile
 - Clasice
 - Polynomial kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^d$
 - RBF kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\sigma |\mathbf{x}_1 \mathbf{x}_2|^2)$
 - Kernele multiple
 - Liniare: $K(\mathbf{x}_1, \mathbf{x}_2) = \sum w_i K_i$
 - Ne-liniare
 - Fără coeficienți: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + K_2 * exp(K_3)$
 - Cu coeficienţi: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + c_1 * K_2 * exp(c_2 + K_3)$

Învățare supervizată – algoritmi Mașini cu suport vectorial

Probleme

- Doar atribute reale
- Doar clasificare binară
- Background matematic dificil

Tool-uri

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Învățare supervizată – algoritmi

Regresie - reamintim

- Studiul legăturii între variabile
- Se dă
 - un set de date (exemple, instanţe, cazuri)
 - □ date de antrenament sub forma unor perechi (atribute_data, ieşire,), unde
 - i = 1, N (N = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire_i un număr real
 - date de test
 - sub forma ($atribute_data_i$), i = 1, n (n = nr datelor de test)
- Să se determine
 - o funcţie (necunoscută) care realizează corespondenţa atribute ieşire pe datele de antrenament
 - Ieşirea (valoarea) asociată unei date (noi) de test folosind funcţia învăţată pe datele de antrenament
- Cum găsim forma (expresia) funcţiei?
 - Algoritmi evolutivi → Programare genetică

Învățare supervizată – algoritmi Algoritmi evolutivi

Algoritmi

- Inspiraţi din natură (biologie)
- Iterativi
- Bazaţi pe
 - populații de potențiale soluții
 - căutare aleatoare ghidată de
 - Operaţii de selecţie naturală
 - Operaţii de încrucişare şi mutaţie
- Care procesează în paralel mai multe soluţii

Metafora evolutivă

Evoluţie naturală	Rezolvarea problemelor			
Individ	Soluţie potenţială (candidat)			
Populație	Mulţime de soluţii			
Cromozom	Codarea (reprezentarea) unei soluții			
Genă	Parte a reprezentării			
Fitness (măsură de adaptare)	Calitate			
Încrucişare şi mutaţie	Operatori de căutare			
Mediu	Spaţiul de căutare al problemei			

Învățare supervizată – algoritmi Algoritmi evolutivi

```
Initializare populație P(0)
Evaluare P(0)
g := 0; //generaţia
CâtTimp (not condiţie_stop) execută
  Repetă
    Selectează 2 părinţi p1 şi p2 din P(g)
    Încrucişare(p1,p2) =>o1 şi o2
    Mutație(o1) => o1*
    Mutaţie(o2) => o2*
    Evaluare(o1*)
    Evaluare(o2*)
    adăugare o1* și o* în P(g+1)
  Până când P(g+1) este completă
  q := q + 1
Sf CâtTimp
```


Învățare supervizată – algoritmi Algoritmi evolutivi – programare genetică

Tool-uri

- https://github.com/JesseBuesking/TinyGP-Java
- https://github.com/lfarinha/TinyGP
- http://geneticprogramming.com/software/

Referințe

- http://geneticprogramming.com/
- http://www.geneticprogramming.com/GPEM2010article.pdf

Reviste ştiinţifice

https://www.springer.com/journal/10710

Învățare automată

- □ Învăţare supervizată
- □ Învăţare ne-supervizată
- □ Învăţare cu întărire
- □ Teoria învăţării

Învățare nesupervizată

- Scop
 - Găsirea unui model sau a unei structuri utile a datelor
- Tip de probleme
 - Identificara unor grupuri (clusteri)
 - Analiza genelor
 - Procesarea imaginilor
 - Analiza reţelelor sociale
 - Segmentarea pieţei
 - Analiza datelor astronomice
 - Clusteri de calculatoare
 - Reducerea dimensiunii
 - Identificarea unor cauze (explicaţii) ale datelor
 - Modelarea densității datelor
- Caracteristic
 - Datele nu sunt adnotate (etichetate)

Împărţirea unor exemple neetichetate în submulţimi disjuncte (clusteri) astfel încât:

- exemplele din acelaşi cluster sunt foarte similare
- exemplele din clusteri diferiţi sunt foarte diferite

Definire

- □ Se dă
 - un set de date (exemple, instanțe, cazuri)
 - Date de antrenament
 - Sub forma atribute_data_i, unde
 - i = 1, N (N = nr datelor de antrenament)
 - $atribute_data_i = (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăților) unei date$
 - Date de test
 - Sub forma (atribute_data;), i =1,n (n = nr datelor de test)
- Se determină
 - o funcție (necunoscută) care realizează gruparea datelor de antrenament în mai multe clase
 - Nr de clase poate fi pre-definit (k) sau necunoscut
 - Datele dintr-o clasă sunt asemănătoare
 - clasa asociată unei date (noi) de test folosind gruparea învăţată pe datele de antrenament

Alte denumiri

Clustering

□ Supervizată vs. Ne-supervizată

- □ Distanțe între 2 elemente p și q ϵ R^m
 - Euclideana

Manhattan

$$d(\mathbf{p},\mathbf{q}) = \sum_{j=1,2,...,m} |p_j - q_j|$$

- Mahalanobis
 - $\qquad \qquad d(\boldsymbol{p},\boldsymbol{q}) = sqrt(\boldsymbol{p}-\boldsymbol{q})S^{-1}(\boldsymbol{p}-\boldsymbol{q})),$
 - unde S este matricea de variație și covariație $(S = E[(\mathbf{p}-E[\mathbf{p}])(\mathbf{q}-E[\mathbf{q}])])$
- Produsul intern

$$d(\boldsymbol{p},\boldsymbol{q}) = \sum_{i=1,2,...,m} p_i q_i$$

Cosine

$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1,2,...,m} p_i q_i / (sqrt(\sum_{i=1,2,...,m} p_i^2) * sqrt(\sum_{i=1,2,...,m} q_i^2))$$

- Hamming
 - numărul de diferențe între p și q
- Levenshtein
 - numărul minim de operații necesare pentru a-l transforma pe **p** în **q**
- □ Distanță vs. Similaritate
 - Distanţa → min
 - Similaritatea → max

- Gruparea genelor
- Studii de piaţă pentru gruparea clienţilor (segmentarea pieţei)
- news.google.com

Procesul

- 2 paşi:
 - Antrenarea
 - Învăţarea (determinarea), cu ajutorul unui algoritm, a clusterilor existenţi
 - Testarea
 - Plasarea unei noi date într-unul din clusterii identificaţi în etapa de antrenament

Calitatea învățării (validarea clusterizării):

- Criterii interne
 - Similaritate ridicată în interiorul unui cluster şi similaritate redusă între clusteri
- Criteri externe
 - Folosirea unor benchmark-uri formate din date pre-grupate

Măsuri de performanță

- Criterii interne
 - Distanţa în interiorul clusterului
 - Distanţa între clusteri
 - Indexul Davies-Bouldin
 - Indexul Dunn
- Criteri externe
 - Compararea cu date cunoscute în practică este imposibil
 - Precizia
 - Rapelul
 - F-measure

- După modul de formare al clusterilor
 - C. ierarhic
 - C. ne-ierarhic (partiţional)
 - C. bazat pe densitatea datelor
 - C. bazat pe un grid

După modul de formare al clusterilor

- Ierarhic
 - se crează un arbore taxonomic (dendogramă)
 - crearea clusterilor (recursiv)
 - nu se cunoaşte k (nr de clusteri)
 - □ aglomerativ (de jos în sus) → clusteri mici spre clusteri mari
 - □ diviziv (de sus în jos) → clusteri mari spre clusteri mici
 - Ex. Clustering ierarhic aglomerativ

- După modul de formare al clusterilor
 - Ne-ierarhic
 - □ Partiţional → se determină o împărţire a datelor → toţi clusterii deodată
 - Optimizează o funcție obiectiv definită
 - Local doar pe anumite atribute
 - Global pe toate atributele

care poate fi

- Pătratul erorii suma patratelor distanţelor între date şi centroizii clusterilor → min
 - Ex. K-means
- Bazată pe grafuri
 - Ex. Clusterizare bazată pe arborele minim de acoperire
- Bazată pe modele probabilistice
 - Ex. Identificarea distribuţiei datelor → Maximizarea aşteptărilor
- Bazată pe cel mai apropiat vecin
- □ Necesită fixarea apriori a lui k → fixarea clusterilor iniţiali
 - Algoritmii se rulează de mai multe ori cu diferiţi parametri şi se alege versiunea cea mai eficientă
- Ex. K-means, ACO

După modul de formare al clusterilor

- bazat pe densitatea datelor
 - Densitatea şi conectivitatea datelor
 - Formarea clusterilor de bazează pe densitatea datelor întro anumită regiune
 - Formarea clusterilor de bazează pe conectivitatea datelor dintr-o anumită regiune
 - Funcţia de densitate a datelor
 - Se încearcă modelarea legii de distribuţie a datelor
 - Avantaj:
 - Modelarea unor clusteri de orice formă

După modul de formare al clusterilor

- Bazat pe un grid
 - Nu e chiar o metodă nouă de lucru
 - Poate fi ierarhic, partiţional sau bazat pe densitate
 - Pp. segmentarea spaţiului de date în zone regulate
 - Obiectele se plasează pe un grid multi-dimensional
 - Ex. ACO

- După modul de lucru al algoritmului
 - Aglomerativ
 - 1. Fiecare instanță formează inițial un cluster
 - 2. Se calculează distanțele între oricare 2 clusteri
 - 3. Se reunesc cei mai apropiaţi 2 clusteri
 - 4. Se repetă paşii 2 şi 3 până se ajunge la un singur cluster sau la un alt criteriu de stop
 - Diviziv
 - 1. Se stabileşte numărul de clusteri (k)
 - 2. Se iniţializează centrii fiecărui cluster
 - 3. Se determină o împărţire a datelor
 - 4. Se recalculează centrii clusterilor
 - 5. Se reptă pasul 3 și 4 până partiționarea nu se mai schimbă (algoritmul a convers)
- După atributele considerate
 - Monotetic atributele se consideră pe rând
 - Politetic atributele se consideră simultan

- După tipul de apartenenţă al datelor la clusteri
 - Clustering exact (hard clustering)
 - lacktriangle Asociază fiecarei intrări $oldsymbol{x_i}$ o etichetă (clasă) c_i
 - Clustering fuzzy
 - □ Asociază fiecarei intrări x_i un grad (probabilitate) de apartenență f_{ij} la o anumită clasă $c_j \rightarrow$ o instanță x_i poate aparține mai multor clusteri

Învățare ne-supervizată - clustering – algoritmi

- Clustering ierarhic aglomerativ
- K-means
- Modele probabilistice
- Cel mai apropiat vecin
- Fuzzy
- Reţele neuronale artificiale
- Algoritmi evolutivi
- ACO

Învățare ne-supervizată

- Clustering
- Reducerea dimensiunii datelor
 - Liniară
 - Ne-liniară manifold learning
- Detecția anomaliilor

Învățare nesupervizată

Instrumente

- Python https://scikit-learn.org/stable/unsupervised learning.html
- Weka https://www.cs.waikato.ac.nz/~ml/weka/book.ht ml#Contents
- Orange https://orange.biolab.si/widget-catalog/

Învățare automată

- □ Învăţare supervizată
- □ Învăţare ne-supervizată
- □ Învăţare cu întărire
- □ Teoria învăţării

Învățare cu întărire

Scop

- Învăţarea, de-a lungul unei perioade, a unui mod de acţiune (comportament) care să maximizeze recompensele (câştigurile) pe termen lung
- "make good sequences of decisions"
- □ Tip de probleme
 - Ex. Dresarea unui câine (good and bad dog)
- Caracteristic
 - Interacţiunea cu mediul (acţiuni → recompense)
 - Secvenţă de decizii

Învățare cu întărire – definire

Exemplu: plecând din căsuţa roşie să se găsească un drum până la căsuţa verde

- Agentul învață prin interacțiunea cu mediul și prin observarea rezultatelor obținute din aceste interacțiuni
 - Este vorba de "cauză şi efect" -- modul în care oamenii îşi formează cunoaşterea aupra mediului pe parcursul vieţii
 - Acţiunile pot afecta şi recompensele ulterioare, nu numai pe cele imediate (efect întârziat)

Învățare cu întărire – definire

Învăţarea unui anumit comportament în vederea realizării unei sarcini → execuţia unei acţiuni → primeşte un feedback (cât de bine a acţionat pentru îndeplinirea sarcinii) → execuţia unei noi acţiuni

Învățare cu întărire

- Se primeşte o recompensă (întărire pozitivă) dacă sarcina a fost bine îndeplinită
- □ Se primeşte o pedeapsă (întărire negativă) dacă sarcina nu a fost bine îndeplinită

Definire

- Se dau
 - Stări ale mediului
 - Acţiuni posibile de executat
 - Semnale de întărire (scalare) recompense sau pedepse
- Se determină
 - O succesiune de acţiuni care să maximizeze măsura de întărire (recompensa)

Alte denumiri

- Reinforcement learning
- Învăţare împrospătată

Învățare cu întărire – definire

	Plani- ficare	Învățar e super- vizată	Învățare nesuper- vizată	Învățare cu întărire
Optimizare	X			X
Învățare din experiență (adnotată sau nu)		X	X	X
Genralizare	X	X	X	X
Consecințe ulterioare/întârziate	X			X
Explorare				X

Învățare cu întărire – exemple

- Robotică
 - Controlul membrelor
 - Controlul posturii
 - Preluarea mingii în fotbalul cu roboţii
- Cercetări operaţionale
 - Stabilirea preţurilor
 - Rutare
 - Planificarea task-urilor

Învățare cu întărire

Instrumente

- Open AI GYM https://gym.openai.com/
- PyTorch
- DeepMind Lab

Referințe

- David Silver: https://deepmind.com/learning-resources/-introduction-reinforcement-learning-david-silver
- Sutton and Burton's book http://www.incompleteideas.net/book/RLbook20 20.pdf

Învățare automată

Instrumente generale

- Weka https://www.cs.waikato.ac.nz/ml/weka/
- Scikit-Learn http://scikit-learn.org/stable/
- Pattern https://www.clips.uantwerpen.be/pattern
- Rapid Miner https://rapidminer.com/
- Orange https://orange.biolab.si/

Reviste

- Machine Learning https://www.springer.com/journal/10994
- IEEE Transactions on Neural Networks and Learning Systems https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5962385
- Pattern Recognition https://www.journals.elsevier.com/pattern-recognition
-

Instrumente – analiză comparativă

	R-Programming	RapidMiner	Weka	Orange	Scikit	Shogun	Mlib
Open source	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Language based	R Language	Java	Java	Python, C++, Qt	Python library	Java/Python library	Java/Python library
Partitioning of dataset into training sets	Yes(limited partitioning methods)	Yes	Yes	Yes	Yes	Not mentioned	Not mentioned
Parameter optimization of machine learning methods	Not automatic	Yes	Not automatic	Not automatic	Not automatic	Not automatic	Not automatic
Model validation using cross-validation	Yes(but limited error measurement methods)	Yes	Yes(but cannot save model so you have to rebuild it for future experiments)	Yes(but cannot save model so you have to rebuild it for future experiments)	Yes	Yes	Not mentioned
Data visualization and analysis	Yes (also graphics visualization)	Yes	Yes	Yes	Data visualization for SOM , Cross-validated prediction	No	No
Intuitive GUI	Not very intuitive (a lot of graphics and statistics computations)	Not very intuitive (took a while to understand the flow)	Yes(easiest GUI to learn and use)	Yes	No GUI	No Gui	No Gui
Installation	Hard	Easy	Easy	Hard	Easy (command-line)	Easy (integration of jars)	Easy
Numerical Programming	Based on powerful array language			Needs external packages (e.g. numpy)	Yes, similar with numpy	Not mentioned	Not mentioned
Illegal Workflow	Not mentioned	Suggests quick fixes	Not mentioned	Does not compute	Not mentioned	Not mentioned	Not mentioned
Machine Learning Methods	Less specialized in data mining, focus on statistical calculations	Includes also algorithms from Weka	The most powerful and complete	Based mostly on data vizualization (clustering, SOM, DT);	Supervised, unsupervised methods	Clustering, regression, ANN	Regression, clustering, colaborative filtering
Input Files	Connectivity to DB, exports data to excel format	Handles DBs, csv	Worst connectivity to excel spreadsheet	Handles excel and cvs files	Python based for handling files	Java handling files	
Tutorials & Documentation	Light Documentation	Manual and tutorials	Help menu	Complete tutorials for different machine learning algorithms	Lot of tutorials	Poor documentation	Poor documentation