

集成电路设计

• 1. 两个重要规律:

摩尔定律(Moore's law):集成电路中元件的数目每18个月翻一番。

MOS晶体管比例缩放特性(MOSFET Scaling):如果MOSFET按比例缩减时电场保持常量,则几乎晶体管所有的其他特性都会改善。

• 2.1 半导体基础知识

固体内部: 键力&能量带

- ✔ 键力: 离子键, 金属键, 共价键
- ✓ 能量带: 导带(Conduction Band), 价带(Valence Band)

• 2.1 半导体基础知识

导电的本质:

- ✔ 有载流子存在;
- ✔ 能带中有载流子运动的空间

绝缘体

SZIOT-SZU

• 2.1 半导体基础知识

半导体中的载流子

电子

共价键中的价电子获得了足够的能量,足以挣脱共价键的束缚,跃迁到导带,成 为自由电子

空穴

在价带中留下的空能级(即失去电子的价键)

本征半导体

非常纯净的单晶半导体

掺杂半导体

在本征半导体(硅/锗)中掺入五价元素(磷、砷或锑)就可以构成 N型半导体

在本征半导体(硅/锗)中掺入三价元素(硼、铝或铟)就可以构成 P型半导体

• 2.1 半导体基础知识

载流子漂移(电流)和扩散(电流)过程保持平衡(相等),形成自建场和自建势

• 2.1 半导体基础知识

本征半导体 $ni = pi=1.5 \times 10^{10}$

掺杂半导体 P型半导体, N型半导体, 施主 (Nd) 以及受主 (Na)

$$N_d^+ \cong N_d$$
 $N_a^- \cong N_a$ $n_0 \cong N_d^+ - N_a^ p_0 \cong N_d^+ - N_a^-$

热平衡态 (Thermal equilibrium)

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$p_0 = n_i e^{(E_i - E_F)/kT}$$

$$\begin{array}{c|c}
n_0 = n_i e^{(E_F - E_i)/kT} \\
p_0 = n_i e^{(E_i - E_F)/kT}
\end{array}$$

$$\begin{array}{c|c}
n_0 \cdot p_0 = n_i^2 \\
\hline
 p_0 \cong N_d^+ \\
\hline
 P_0 \cong N_d^+
\end{array}$$

稳态 (Steady state)

$$n = n_i e^{(F_p - E_i)/kT}$$
 能级
$$p = n_i e^{(E_i - F_p)/kT}$$

$$np = n_i e^{(F_n - F_p)/KT}$$

• 2.1 半导体基础知识

BC间加反向高压

EB 间电压大于 PN 结的自建势电压

B 足够窄, 使得: Wb << L

• 2.1 半导体基础知识

$0 < V_{GS} < V_{T}$

有耗尽层, 但少子数量有限, 可以认为无电流

$$V_T < V_{GS}$$

在P型半导体表层中聚集较多的电子,形成反型层,将漏极和源极沟通。V_{DS} > 0,开始导电。

- (1) **0 < V_{DS} < V_{GS} V_T**: MOS管工作在线性区
- (2) V_{GS}-V_T<V_{DS}: MOS管工作在饱和区

• 2.1 半导体基础知识

	双极型三极管		
结构	NPN型,PNP型	结型耗尽型 N沟道,P沟道 绝缘栅增强型 N沟道 P沟道 绝缘栅耗尽型 N沟道 P沟道	
载流子	多子扩散、少子漂移	多子漂移	
输入量	电流输入	电压输入	
控制	电流控制电流源CCCS(β)	电压控制电流源VCCS(gm)	
噪声	较大	较小	
温度特性	受温度影响较大	较小,并有零温度系数点	
输入电阻	几十到几千欧姆	几兆欧姆以上	
集成工艺	不易大规模集成	适宜大规模和超大规模集成	

• 2.2 模拟集成电路技术

$$R_{in} = \left. \frac{V_{in}}{i_{in}} \right|_{i_{out} \to 0}^{R_L \to \infty}$$

$$GM = \frac{i_{out}}{v_{in}}\Big|_{v_{out}=0}$$

$$R_{out} = \left. \frac{v_{out}}{i_{out}} \right|_{R_s = v_{in} = 0}$$

$$A_{\nu} = \frac{\nu_{out}}{\nu_{in}} \Big|_{R_{r} \to \infty}$$

• 2.2 模拟集成电路技术

线性网络的级联

$$\mathbf{v}_{out} = a_{v2} \cdot \mathbf{v}_{in2} = a_{v2} \cdot \mathbf{v}_{out1} = a_{v2} \cdot \left(a_{v1} \cdot \mathbf{v}_{in1} \cdot \left(\frac{R_{in2}}{R_{out1} + R_{in2}} \right) \right)$$

• 2.2 模拟集成电路技术

CMOS 电路模型

截止区:

$$V_{\rm\scriptscriptstyle GS} < V_{\scriptscriptstyle T}$$

线性区:

$$V_{\rm GS} > V_{\rm T}$$

$$V_{\rm DS} < V_{\rm GS} - V_{\rm T}$$

$$I_{DS} = k' \cdot \frac{W}{L} \cdot \left(V_{GS} - V_{T} - \frac{V_{DS}}{2} \right) \cdot V_{DS}$$

$$R_{on} = \frac{V_{DS}}{I_{DS}}$$

饱和区:

$$V_{\rm GS} > V_{\rm T}$$

$$V_{\rm DS} > V_{\rm GS} - V_{\rm T}$$

$$I_{DS} = \frac{k!}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_{T})^{2}$$

$$k' = \mu \cdot C_{ox}$$

$$g_{m} = \frac{\mathrm{d}I_{DS}}{\mathrm{d}V_{GS}} = k' \cdot \frac{W}{L} \cdot (V_{GS} - V_{T})$$

$$= \left(2 \cdot k' \cdot \frac{W}{L} \cdot I_{DS}\right)^{\frac{1}{2}}$$

$$= \frac{2I_{DS}}{V_{T} - V_{T}}$$

• 2.2 模拟集成电路技术

CMOS 电路模型

$$K' = 300 \text{ uA/V}^2$$

$$V_{DD} = 2.5 \text{ V} \quad V_{T} = 0.5 \text{ V}$$

$$C_L = 4 pF$$

时间常数为 0.5 ns

$$W/L = ?$$

• 2.2 模拟集成电路技术

$$GBW = \frac{g_m}{2 \pi C_L}$$

GBW = 100 MHz,
$$C_L = 3 \, pF$$
, K' = 50 uA/V², $L_{min} = 0.5 \, um$ 求: I_{DS} ,L,W以及GBW• C_L/I_{DS}

$$g_m = GBW \cdot 2\pi CL \sim 2 mS$$

 $FOM = GBW \cdot C_L/I_{DS} = 1500 MHz pF/mA$

• 2.2 模拟集成电路技术

运算放大电路

开环差模电压放大倍数 $A_{od} \rightarrow \infty$ 开环差模输入电阻 $r_{id} \rightarrow \infty$ 开环输出电阻 $r_o \rightarrow 0$ 输入偏置电流 $I_+ = I_- = 0$

$$\mathbf{U}_{-} = \mathbf{U}_{+}$$

$$\mathbf{I}_{-}=\mathbf{I}_{+}=\mathbf{0}$$

• 2.2 模拟集成电路技术

运算放大电路

反相电路

同相电路

$$\begin{split} U_{-} &= U_{+} = 0 \;, \quad I_{-} = I_{+} = 0 \\ I_{1} &= \frac{U_{i} - U_{-}}{R_{+}} = \frac{U_{i}}{R_{1}} = I_{f} \\ U_{O} &= -I_{f}R_{f} = -\frac{R_{f}}{R_{1}}U_{i} \end{split}$$

$$\begin{split} U_{-} &= U_{+} = U_{i} \qquad I_{-} = I_{+} = 0 \; ; \\ \\ U_{-} &= \frac{R_{1}}{R_{1} + R_{f}} U_{o} \\ \\ U_{o} &= (\frac{R_{1} + R_{f}}{R_{1}}) U_{-} = (1 + \frac{R_{f}}{R_{1}}) U_{i} \end{split}$$

• 2.2 模拟集成电路技术

运算放大电路

$$u_0 = [1+(R_1+R_2)/R_W](u_1-u_2)$$

CMRR1 - CMRR2

- 2.2 模拟集成电路技术
 - 电路的复频域分析——波特图

$$H(s) = \frac{Y(s)}{X(s)} = K \frac{\prod_{i=1}^{m} (s - z_i)}{\prod_{j=1}^{n} (s - p_j)} = K' \frac{\prod_{i=1}^{m} (1 - \frac{s}{z_i})}{\prod_{j=1}^{n} (1 - \frac{s}{p_j})}$$

$$|20 \lg |H(j\omega)| = 20 \lg |K'| + \sum_{i=1}^{m} 20 \lg |1 - \frac{j\omega}{z_i}| - \sum_{j=1}^{n} 20 \lg |1 - \frac{j\omega}{p_j}| + \frac{I(S)}{z_i}| + \frac{I(S)}{$$

$$\phi(\omega) = \frac{0^{\circ}}{-180^{\circ}} + \sum_{i=1}^{m} \arctan\left(\frac{-\omega}{z_i}\right) - \sum_{j=1}^{n} \arctan\left(\frac{-\omega}{p_j}\right)$$

$$\begin{array}{cccc}
i & R \\
+ & u & - & R \rightarrow R \\
& & C \rightarrow 1/CS \\
I(S) & Z & L \rightarrow LS
\end{array}$$

U(S)

$$KCL \quad \Sigma i = 0 \\ KVL \quad \Sigma u = 0$$

$$\Sigma I(S) = 0 \\ \Sigma U(S) = 0$$

SZIOT-SZU

- 2.2 模拟集成电路技术
 - 电路的复频域分析——波特图

- 2.2 模拟集成电路技术
 - 电路的复频域分析——波特图

$$H(s) = \frac{2 \times 10^2 s(s+2)}{(s+1)(s+20)}$$

$$20 \times \frac{s\left(1+\frac{s}{2}\right)}{\left(1+s\right)\left(1+\frac{s}{20}\right)}$$

常数项: K' = 20

两个实零点: 0, -2

两个负实极点: -1, -20

- 2.2 模拟集成电路技术
 - 电路的复频域分析——波特图

$$K' \frac{s^2}{\left(1 + \frac{s}{10}\right) \left(1 + \frac{s}{10^2}\right) \left(1 + \frac{s}{10^5}\right)}$$

$$H_0 \left|_{\omega = 10^2} = 20 \lg \left| K' \right| + 40 \lg 10^2 - 20 \lg \frac{10^2}{10} = 40 \text{dB} \Rightarrow K' = \frac{1}{10}$$

• 3. 数字集成电路技术

组合逻辑

- 1. 组合逻辑电路的分析电路 =〉真值表
- 2. 组合逻辑电路的设计 功能 =〉电路
 - (1) 确定I/O
 - (2) 列真值表
 - (3) 求最简表达式
 - (4) 用基本门电路实现

输入/输出表达式描述为

$$y_{1} = F_{1}(x_{1}, x_{2}, ..., x_{m})$$

$$y_{2} = F_{2}(x_{1}, x_{2}, ..., x_{m})$$

$$\checkmark ...$$

$$y_{n} = F_{n}(x_{1}, x_{2}, ..., x_{m})$$

- 1.表达式
 - 1)标准与或表达式

$$F(A, B, C,) = \sum mi = \sum m(i) = \sum (i)$$

2)标准或与表达式

$$F(A, B, C,) = \prod Mi = \prod M(i) = \prod (i)$$

- 2.真值表
- 3.卡诺图
- 4.逻辑图

SZIOT-SZU

• 3. 数字集成电路技术

组合逻辑

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

标准与或表达式:

$$F(A,B,C) = \overline{A}\overline{B}C + \overline{A}B\overline{C} + A\overline{B}C + ABC$$

$$= m_1 + m_2 + m_4 + m_7$$

$$= \sum_{1}^{\infty} m(1,2,4,7)$$

$$= \sum_{1}^{\infty} (1,2,4,7)$$

A	В	С	F
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

标准或与表达式:

$$F(A,B,C) = (A+B+\overline{C})(A+\overline{B}+C)$$

$$(\overline{A}+B+C)(\overline{A}+\overline{B}+C)$$

$$= M_1 + M_2 + M_4 + M_7$$

$$= \prod M(1,2,4,7)$$

$$= \prod (1,2,4,7)$$

SZIOT-SZU

• 3. 数字集成电路技术

时序逻辑

- 1)特性方程组:输出、驱动(激励)、状态
- 2)特性表:输入、现态 → 次态
- 3)驱动表: 电路输入、现态、次态 → 触发器 输入
- 4)状态转换图: 图形表示状态的转换及条件
- 5)时序图:时钟、输入、状态的时间对应

• 3. 数字集成电路技术

时序逻辑

分析

(1) 根据逻辑图写方程组

输出: $Y_i = f_i(X_1, X_2, ..., X_m, Q_1, Q_2, ..., Q_r), i=1,...,k$

激励: $W_i = g_i(X_1, X_2, ..., X_m, Q_1, Q_2, ..., Q_r), i=1,...,p$

(2)结合触发器特性方程,写出各个触发器的状态方程。

状态: Qn+1i= hi(Wn1,Wn2,...,Wnp,Qn1,Qn2,...,Qnr),

 $i=1,\ldots,r$

(**3**) 写出状态表(特性表) **输入、现态 → 次态**

(4) 画状态图、时序图。

设计

- (1) 功能 =) 状态
- (2) 状态化简
- (3) 触发器数目,状态分配 => 状态转换图
- (4) 触发器选型,确定驱动表驱动表: 电路输入、现态、次态 → 触发器 输入
- (5) 驱动表 =〉卡诺图 =〉触发器驱动方程 卡诺图: 电路输入、现态 → 触发器 输入
- (6)检查能否自启动。如不能自启动则进行修改。
- (7) 画逻辑图并实现电路。

• 3. 数字集成电路技术

CMOS静态逻辑电路

• 3. 数字集成电路技术

CMOS静态逻辑电路

$$OUT = D + A \cdot (B + C)$$

Α	В	С	D	OUT
0	0	0	0	1
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	0
1//	1	0	0	0
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

SZIOT-SZU

• 4. 工艺和封装测试

主要工艺技术:

- ✓ 硅晶片的生产 (Wafer production);
- ✓ 硅晶片的清洗 (Wafer cleaning);
- ✓ 氧化层的生成 (Oxidation);
- ✓ 光刻 (Lithography);
- ✓ 粒子注入 (Ion implantation);
- ✓ 蚀刻 (Etching);
- ✓ 沉积 (Deposition)。

各个工艺技术的目的。

基本 CMOS 工艺流程

- ✔ 构造电路各个元件所需的有源区域;
- ✓ 构造栅极;
- ✓ 构造漏/源极;
- ✓ 构造各个元件互连所需的接触;
- ✔ 以多层金属实现电路中元件的互连;
- ✓ 表面钝化处理。

• 4. 工艺和封装测试

氧化(Oxidation)

干氧化:

- ✓ 速度慢,易于控制;
- ✓ 密度更高,更纯净;
- ✓ 用于需精确控制厚度的 地方。

湿氧化:

- ✓ 速度快;
- ✔ 密度低于干氧化法
- ✓ 用于形成掩模等需要厚氧 化层的地方。

作用:

用于 FET 器件中

分立元件

• 4. 工艺和封装测试

光刻技术 (Lithography)

用光 "印刷"电路, 把电路结构"翻译"到 Wafer

上光刻胶

高分辨率,一致性不好,费用高

Resist Resist Resist Oxide Oxide Silicon Substrate

负光刻胶

分辨率不高,一致性好

4. 工艺和封装测试

粒子注入 (Ion implantation)

以杂质粒子流轰炸衬底表面,形成所需的有源区域。

退火 (Anneal)

修复受损 的晶格

SZIOT-SZU

• 4. 工艺和封装测试

蚀刻 (Etching)

- 1. 从硅晶片表面有选择的清除掉不需要的物质,把光 蚀刻后的"图案"转换为所需的不同层次;
- 2. 完全的清除掉一整层;
- 3. 清洁晶片。

基本方法:

湿的化学方法蚀刻;

Plasma (干) 蚀刻。

各向同性 各向同性,所有的湿蚀刻以 及一些 plasma 蚀刻

各向异性 具有很高的方向性,可以形成直角以及垂直的结构。仅 plasma 蚀刻

• 4. 工艺和封装测试

Front End Processing:

制造流程,从纯硅晶片到钝化处理

- Back End Processing:
- 测试与封装
- ✓工艺参数测试 (Parametric wafer level)*
- ✓芯片测试 (Sort Testing, wafer level)*
- ✓组装 (Packaging)
- ✓最终测试 (packaged chip level)*
- ✓封装与运输

半导体器件封装已经成为将芯片功能传送到系统功能的瓶颈

• 4. 工艺和封装测试

封装步骤

- 1. 裸片切割(Die Separation, Dicing) 晶圆级测试(Chip Probing)
 2. 裸片邦定(Die Attachment, Bonding)
 3. 引线连接(Lead Attachment)
 4. 塑封(Final Sealing, Encapsulation) 芯片级测试
- 5. 装调/盒 (Trim and Form)