Vezetékes átviteli közegek

Átviteli közegek típusai

- Réz kábelek
 - Csavart érpáras technológia (UTP, FTP, S-FTP)
 - Koaxiális kábelek
 - Soros kábel (Serial)
- > Optikai kábelek

Vezeték mentes technológia (másik előadás)

Réz kábelek jellemzői

A rézkábelben az adatok elektromos impulzusok formájában továbbítódnak.

Az elektromos impulzusok időzítési és feszültségértékei két forrásból származó interferenciára érzékenyek:

Elektromágneses interferencia (EMI) vagy rádiófrekvenciás interferencia (RFI) - Az EMI és RFI jelek torzíthatják és meghamisíthatják a réz alapú adathordozók által továbbított adatjeleket. A jellemző zavarforrások közé tartoznak a rádióhullámok és az elektromágneses eszközök, például a fluoreszkáló lámpák vagy az elektromos motorok.

Áthallás - Áthallás alatt azt értjük, ha egy vezetéken haladó jel elektromos vagy mágneses mezője által keltett zavar átterjed a szomszédos vezetéken található jelre. Telefonvonalakon az áthallás következménye lehet, hogy halljuk egy szomszédos vonalon zajló másik beszélgetés részleteit. Tehát amikor egy vezetéken elektromos áram folyik keresztül, a huzal körül kis méretű, körkörös mágneses mező alakul ki, amely a szomszédos vezetékre is kifejti hatását.

Réz kábel technológia

- Az EMI és az RFI negatív hatásainak ellensúlyozására néhány rézkábel típusban fémes árnyékolást alkalmaznak és előírják a kapcsolat megfelelő földelését.
- Az áthallás (interferencia) negatív hatásainak csökkentése érdekében bizonyos rézkábel fajtákban az ellentétes áramköri érpárokat összesodorják, ezzel tudnak hatékonyan fellépni ellene.

A rézkábel elektromos zajokra való érzékenysége az alábbi tényezők használatával korlátozható:

- Az adott hálózati környezetben leginkább alkalmazható kábel típusának vagy kategóriájának kiválasztása.
- Kábelezési terv készítése az ismert és az előre látható interferencia források elkerülésére.
- A kábelek megfelelő kezelésére és lezárására vonatkozó kábelezési technikák használat

Csavart érpáras technológia

UTP = Unshielded Twisted Pair

Összesen 4 érpárt, azaz 8 vezetéket tartalmaz, melyek mindegyike szigetelt és páronként össze vannak csavarva. Ennek az előbb említett interferencia csökkentő szerepe van. Az erek színkódolva vannak: narancs, narancs-fehér, zöld, zöld-fehér,

kék, kék-fehér, barna, barna-fehér.

Több kategória létezik (CAT)

A kábel átviteli távolsága kategóriátó függően max 30 - 100 méter.

UTP kábelezési szabványok és csatlakozók

A TIA/EIA-568 szabvány az, amely meghatározza a LAN hálózatok kábelezési előírásait, és a leggyakrabban előforduló LAN kábelezési szabványnak számít. Néhány, a szabványban definiált elem a következő:

- Kábeltípusok
- Kábel hosszak
- Csatlakozók
- Kábelvégződés
- Kábeltesztelési módszerek

A rézkábel elektromos jellemzőit a mérnököket egyesítő nemzetközi szervezet, az IEEE határozza meg. Az IEEE az UTP kábeleket a teljesítményük alapján minősíti.

Csavart érpáras technológia

STP = Shielded Twisted Pair

Árnyékolt csavart érpár (STP): Az STP nehezebb és nehezebb gyártani, de nagymértékben javíthatja a jelátviteli sebességet egy adott átviteli sémában.

UTP-STP kábel csoportosítása árnyékolás szerint

U/UTP Árnyékolatlan kábel

SF/UTP

Harisnya és fólia árnyékolású külső köpeny, árnyékolatlan érpár

F/UTP

Fólia árnyékolású külső köpeny, árnyékolatlan érpár

S/FTP

Harisnya árnyékolású külső köpeny, fólia árnyékolású érpár

U/FTP

Árnyékolatlan külső köpeny, fólia árnyékolású érpár (S fólia)

F/FTP

Fólia árnyékolású külső köpeny és érpár (S fólia)

UTP - FTP kábel kategóriák

- > CAT 1- 2
 - 4 Mbit/s (hang, telefonvonal) két érpár
- **CAT 3**
 - 10 Mbit/s max 100 m (Ethernet) *-topológia
- **CAT 4**
 - 20 Mbit/s max. 100 m (16 Mbit/s Token Ring)
- CAT 5
- 100 Mbit/s max. 100 m (Base100 Ethernet)
- CAT 5e
 maximum átviteli sebessége 1000Mb/s
 Maximális kábel hossza 100m
 Kommunikáció 100MHz-en történik

> **CAT 6**

Maximális átviteli sebessége 55m-ig 10Gb/s 55-100m között pedig 1Gb/s Maximális kébel hossza 100m, Kommunikáció 250MHz-en történik

UTP - FTP kábel kategóriák 2.

CAT 6a:

Maximum átviteli sebessége 10Gb/s Maximális kábel hossza 100m Kommunikáció 500MHz-en történik

CAT 7:

Maximum átviteli sebessége 10Gb/s
Maximális kábel hossza 100m
Kommunikáció 600MHz -1000MHz-en történik

> CAT 8:

Maximum átviteli sebessége 40Gb/s Maximális kábel hossza 30m Kommunikáció 1600-2000MHz-en történik

UTP - FTP kábel csatlakozók

RJ 11 CAT 1, 2 telefon, 4 érintkező:

RJ 12 6 érintkező több vonalas telefonokhoz:

> RJ 45 CAT 5 től 8 érintkező Ethernet
Többféle kialakítás a kategóriáktól függően

UTP - FTP RJ 45 kábel csatlakozó

▶ RJ 45 CAT 5 CAT 6

> RJ 45 CAT 7

- A 10Base-T és 100Base-TX kábelek átvitelkor csak az 1,
 2 (küldésre) és a 3, 6 (fogadásra) szálakat alkalmazzák.
- 1000Base-TX szabványú átvitel esetén mind a 4 érpár részt vesz az adatátvitelben.
- Egy vezetéken maximum 125 Mb/s átviteli sebesség érhető el. A nagy mennyiségű adat átvitelét ráadásul duplex módon valósítják meg.

Bekötés szerint megkülönbözetünk egyenes, illetve kereszt kötésű kábeleket.

Egyenes-Line: leggyakrabban alkalmazott bekötés, melyet eszközök hálózatra csatolására alkalmazunk. Két szabvány van T-568A és T-568B.

Kereszt – Cross kötésű kábel :

Hasonló eszközök összekapcsolására használjuk. Összeköthetünk vele például switch-et switch-el, állomást állomással vagy routert routerrel.

Kereszt – Cross kötés

A keresztkötésű kábelek azonban már elavultnak számítanak, mivel a hálózati kártyák az automatikus közegfüggő interfész fordítás (automatic medium-dependent interface crossover, <u>Auto-MDIX</u>) segítségével automatikusan felismerik a kábel típusát és létrehozzák a kapcsolatot.

Sodrott érpárak bekötése hibák

A kereszt- vagy egyeneskötésű kábelek helytelen használata nem károsítja az eszközt, ilyen esetben viszont nem jön létre az eszközök közötti kapcsolat és adatkommunikációra sem kerül sor. Ez gyakori hibának számít, ezért ha a kapcsolat nem elérhető, a hibaelhárítás első lépéseként az eszközök összeköttetéseinek helyességét kell ellenőrizni.

Koaxiális kábel

A koaxiális kábel - vagy röviden koax - elnevezés a vezeték szerkezetéből származik, mivel két vezető egy közös tengelyen (axis) osztozik. Ahogy az ábrán is látható, a koaxiális kábel az alábbi részekből áll:

- Egy rézvezető, amely az elektronikus jelek továbbítását végzi. (4)
- > A rézvezetőt körülvevő rugalmas műanyag szigetelőréteg. (3)
- A szigetelőanyagot beborító rézfonat vagy fémfólia, amely az áramkör második vezetékeként és a belső vezető árnyékolójaként működik. Ez a második réteg (más néven árnyékolás) a külső elektromágneses interferencia hatását is csökkenti. (2)

A kisebb fizikai sérülések elleni védelem érdekében az egész kábel egy borítással van bevonva.(1)

Koaxiális kábelek és csatlakozók fajtái

Megkülönböztetünk:

- vékony koaxiális (10Base 2)
 A kialakítható maximális szegmenshossza vékony kábelnél ez 200 méter
- vastag koaxiális (10Base 5)
 A kialakítható maximális szegmenshossza vastag kábelnél 500 méter lehet.

A koaxiális kábelhez különböző típusú csatlakozók használhatók. A bajonett Neill—Concelman (BNC), N és F típusú csatlakozók az ábrán láthatók.

Soros kábel

A soros kábelek több féle csatlakozóval kerülnek kialakításra. Napjainkban egyre kevesebbszer használjuk őket hiszen a biztosított sávszélesség alacsony.

Soros interfész DTE vs DCE

A soros interfészen keresztül kommunikáló eszközök két osztályba sorolhatók: DTE és DCE.

A legfontosabb különbség az ilyen típusú eszközök között az, hogy a DCE eszköz (female csatlakozó) szolgáltatja azt az órajelet, így ütemezi a buszon a kommunikációt. A DTE fogadja az órajelet (male csatlakozó).

Az eszközhöz mellékelt dokumentációban fel kell tüntetni, hogy DTE vagy DCE (néhány eszköz rendelkezik jumperrel, amellyel bármelyik módot választhatja). Választhatók álltalában a hubok, routerek, switch-ek

Soros interfész beállítása

A kapcsolat egyik oldalának (DCE) az órajelet kell továbbítania, amely az adatsebességet vezérli, a másik oldalon (DTE) pedig az órajelet fogadja. Órajel beállítás **clock rate** paranccsal

Az R1 itt DCE:

interface Serial0/0/0 ip address 10.0.0.1 255.255.255.252 clock rate 2000000

Az R2 itt DTE:

interface Serial0/0/0 ip address 10.0.0.2 255.255.252

Optikai kábelek

Optikai átviteli közeg

Az optikai hálózatokban használt fény egyfajta sugárzott energia. Minden energiahullámnak fontos jellemzője a hullámhossza.

Az optikai kábelek tulajdonságai

Az optikai szál egy rugalmas, de rendkívül vékony, átlátszó anyagú nagyon tiszta üvegszál, amely nem sokkal vastagabb az emberi hajszálnál. A bitek fényimpulzusként jelennek meg rajta.

Bármely más hálózati közeghez képest nagyobb távolságú és nagyobb sávszélességű adatátvitelt tesz lehetővé.

A réz vezetékekkel ellentétben az optikai kábel kisebb csillapítással képes a jeltovábbításra, valamint teljesen érzéketlen az EMI és az RFI okozta zavarokra.

Az optikai szálakat általában hálózati eszközök összekapcsolására használják.

Működési elv

- Egy digitális jelet először valamilyen technikával fényjellé kell alakítani
- Ezt egy LED vagy lézer dióda belelövi az optikai szálba, amelynek falán teljes visszaverődést szenved el, így eljut a kábel végéhez.
- Ezután egy félvezető fototranzisztor érzékeli, erősíti, majd "rekonstruálja" a bemeneti jelet.

Optikai vezeték felépítése

Fényvezető szál

Fényvezető kábel

Felépítés

Az optikai kábelek anyagai

- Leggyakrabban szilícium-dioxidból készül (ritkábban fluórüvegből)
- A műanyag optikai szálak csillapítása magas (akár 1 db/m)
- Az előállítás az elmúlt 10 évben hatalmas fejlődésen ment keresztül
- Tisztább vezetőt, és rétegek közti simább átmeneteket tudunk létrehozni

Az optikai kábelek típusai

Az optikai kábelek nagyjából három csoportba sorolhatók:

- Multimódusú kábel (Multimode Fiber, MMF)
- Gradiens indexű, multimódusú (GIF)
- Egymódusú kábel (Single-mode fiber, SMF)

Multimódusú optikai szálak (Multimode Fiber)

- A fény a magban egyenes vonalban terjed a szál mentén a mag/héj határfelületről visszaverődve.
- Az érkezés szögétől függően, több különböző módusban terjedhet a fény a magban. Mintegy 4000 módus lehetséges.
- Nagy magátmérő 100 μm és az alig nagyobb héjátmérő ami 140 μm
- Helyi hálózatokban népszerű, mivel alacsony költségű
- LED-ekkel üzemel.
- Akár 10 Gb/s adatátviteli sebességet is elérhető
- A maximáliskábelhosszon 550 méter.

Folytonosan változó indexű multimódusú optikai szálak (GIF)

Folytonosan változó indexű optikai szál (gradedindex fiber) esetében, a mag fénytörésmutatója folyamatosan csökken a tengely és a héj között. Ezt több rétegű burkolással érik el, ami azt eredményezi, hogy a fénysugarak simán elhajlanak ahogy közelítenek a külső héjhoz, a hirtelen visszaverődés helyett..

 A kisebb magátmérő és a gradiens index miatt márcsak néhány 100 módus található

- -Mag/héj átmérője 50/125 µm,
 de gyártják 62,5/125 µm méretben is.
- Átviteli tulajdonságai sokkal jobbak az előzőnél, rövidtávú összeköttetésekre alkalmazzák.

Graded-Index Multimode Fiber

Egymódusú optikai szálak Single-mode fiber, (SMF)

- Egymódusú szálakban annyira lecsökkentették a mag átmérőjét, hogy a fény a hullám efektus alapján csak egyetlen egy módus tud kialakulni,
- Jobb átviteli tulajdonságokkal rendelkezik.
- A mag átmérője 9-10μm a köpeny marad 125 μm.
- Nagy távolságú összeköttetéseknél alkalmazzák, akár 500km-re is .
- Fényforrás lézer dióda.

Single-Mode Fiber

Az optikai kábelek típusai

Típus Szín Adatátviteli sebesség

Multimódusú

OM1 Narancs 100Mbps/2km 1Gbps/275m

OM2 Narancs 100Mbps/2km 1Gbps/550m

OM3 Vízkék 100Mbps/2km 1Gbps/550m

OM4 Lila 200Mbps/2km 1Gbps/1km

10Gbps/33m

10Gbps/82m

10Gbps/300m

10Gbps/550m

40Gbps/100m 100Gbps/100m 40Gbps/15m 100Gbps/150m

Egymódusú

OS1/OS2 Citromsárga 100-400Gbps/160km

Optikai szálak átviteli paraméterei

- Csillapítás a (dB). Az amplitúdónak (intenzitásnak) csökkenése.
 - Látható, hogy magas hőmérsékleten (70°C fölött) illetve alacsony hőmérsékleten (-20°C alatt) megnövekszik a szál fajlagos csillapítása.
 - PI. légvezetékek esetén a téli nagy hidegek hatására megnő a csillapítás, ezért a tervezésnél nagyobb maximális csillapítás értékkel kell számolni.
- > **Diszperzió**. Szó szerint szóródást jelent.
 - Optikában a fényvezető szálakban terjedő elemi fénymomentumok futásidő különbségéből eredő jeltorzulást, időbeni szóródását értjük alatta.
 - A gyakorlatban ez a jel kiszélesedéséhez, ellaposodásához vezet.

Optikai szálak diszperzió

- A multimódusú szálaknál a különböző módusok különböző szögben érkeznek a szálba és más útvonalakon haladnak, amelyeknek hosszai különbözők.
- Mivel a fény mindenütt azonos sebességű, a futási idő különbözni fog.
- A szál végén a különböző utakat megtevő módusok összegződnek, a visszanyert jel impulzus szélessége nagyobb, intenzitása pedig kisebb lesz.

Az optikai kábelek típusai

Singlemode multimode transponder:

Az optikai kábelek csatlakozói SC Subscriber connecto

Az egyik legelterjedtebb push-pull rendszerű csatlakozó. Ipari és lakossági felhasználásra egyaránt alkalmas. Érintkezőhüvely (ferrule) mérete 2,5mm. Négyzetes vagy szabványos csatlakozónak is nevezik.. Egy- és többmódusú kábelek esetében egyaránt

használják ezt a típust.

Az optikai kábelek csatlakozói

ST | BFOC Straight Tipor Bayonet Fiber Optic Connector

Az egyik legkorábban használt csatlakozótípus. A csatlakozót felés lecsavarható (twist-on/twist-off) bajonettzáras módszerrel lehet biztonságosan rögzíteni.

Az optikai kábelek csatlakozói

LC szimplex és duplex Lucent Connector or Little Connector

Szintén elterjedt csatlakozó típus. LC csatlakozók az SC csatlakozó kisebb változatai. A megfelelő csatlakozást reteszes kialakításával biztosítja. Kis mérete miatt előszeretettel használják a nagy szálsűrűségű helyeken. Érintkezőhüvely mérete: 1,25mm.:

Optikai csatlakozók

A csatlakozók továbbá lehetnek simplex (**SX**) vagy duplex (**DX**) kialakításúak is. A DX típust általában ott használjuk, ahol szálanként egy irányú az átvitel, illetve nagyon fontos, hogy a két szál még véletlenül se cserélődjön fel (pl. TX/RX).

A csatlakozások esetében, mivel fizikai kontaktusról beszélünk, itt mindig tökéletesen tiszta felület szükséges.

Nagy optikai teljesítmények esetében egy szennyezett felület a csatlakozó beégését okozhatja.

Sávszélesség-maximálás az optikai kábelen

A hullámhossz-osztásos multiplexálást (Wavelength Division Multiplexing, WDM) alkalmazva, az egy szál által elbírt sávszélesség a Tbit/s-os tartományt is elérheti.

Ennek módja, hogy egy szálban több hullámhosszú (színű) fényt is továbbítanak. A **WDM** multiplexereket és demultiplexereket arra használják, hogy a kapcsolat minden végénél a különböző hullámhosszakat keverjék és szétválasszák.

A **CWDM** egyik alkalmazása az egy szálon történő két irányú kommunikáció.

A **DWDM** (Dense Wavelength Division Multiplexing), azaz a sűrű hullámhossz osztásos multiplexálás esetén általában több mint 8 fényablakot alkalmaznak adó és vevő oldalon. 16, 40 és 80 ablakos rendszerek az általánosan elterjedtek.

UTP és optikai kábelek összehasonlítása

Felhasználás tényezői	UTP kábel	Optikai kábel
Támogatott sávszélesség	10 Mb/s - 10 Gb/s	10 Mb/s - 100 Gb/s
Hatótávolság	Viszonylag kicsi (1 - 100 méter)	Viszonylag nagy (1 - 100 000 méter)
EMI és RFI elleni védettség	Alacsony	Magas (teljesen védett)
Elektromos veszélyekkel szembeni védettség	Alacsony	Magas (teljesen védett)
Vezetékek és csatlakozók költségei	Legalacsonyabb	Legmagasabb
Telepítéshez szükséges ismeretek	Legalacsonyabb	Legmagasabb
Biztonsági óvintézkedések	Legalacsonyabb	Legmagasabb

VESZÉLY

FIGYELEM!:

A egymódusú optikai szálakban **továbbított lézerjelek** hullámhossza a látható tartományon kívülre esik. A lézer fénye elég erős ahhoz, hogy maradandó károsodást okozzon az emberi szemben.

- **Soha** nem szabad olyan optikai szál végébe nézni, amelynek másik vége működő készülékhez csatlakozik.
- **Soha** nem szabad hálózati kártya, kapcsoló vagy forgalomirányító adóportjába nézni.
- Az optikai szálak végén mindig védősapkát kell tartani, illetve a kapcsoló vagy forgalomirányító optikai portjához csatlakoztatva kell hagyni őket. Mindig legyünk óvatosak!