2章 微分の応用

問1)
$$y = f(x)$$
 とする.

(1)
$$f'(x) = 4x + 3$$
 よって
$$f(0) = 1$$

$$f'(0)=3$$

したがって, $x=0$ における接線の方程式は
$$y-f(0)=f'(0)(x-0)$$

$$y-1=3x$$

$$y = 3x + 1$$

(2)
$$f'(x)=\frac{1}{x}$$
 よって
$$f(1)=\log 1=0$$
 $f'(1)=1$ したがって, $x=1$ における接線の方程式は $y-f(1)=f'(1)(x-1)$

$$y - 0 = 1 \cdot (x - 1)$$
$$y = x - 1$$

(3)
$$f'(x) = e^x$$
 よって

$$f(2) = e^2$$
$$f'(2) = e^2$$

したがって,x=2 における接線の方程式は

$$y - f(2) = f'(2)(x - 2)$$
$$y - e^{2} = e^{2}(x - 2)$$
$$y = e^{2}x - 2e^{2} + e^{2}$$
$$y = e^{2}x - e^{2}$$

(4)
$$f'(x) = \cos x$$
 よって

$$f(\pi) = \sin \pi = 0$$

$$f'(\pi) = \cos \pi = -1$$

したがって, $x=\pi$ における接線の方程式は $y-f(\pi)=f'(\pi)(x-\pi)$ $y-0=-1\cdot(x-\pi)$

$$y=-x+\pi$$

問
$$\mathbf{2}$$
 $y = f(x)$ とする.

(1)
$$f'(x) = 3x^2$$

$$f(1) = 1^3 = 1$$

$$f'(1) = 3 \cdot 1^2 = 3$$

したがって , x=1 における法線の方程式は $y-f(1)=-\frac{1}{f'(1)}(x-1)$

$$y - 1 = -\frac{1}{3}(x - 1)$$
$$y = -\frac{1}{3}x + \frac{1}{3} + 1$$

$$y = -\frac{1}{3}x + \frac{4}{3}$$

(2)
$$f'(x) = (x^{-1})' = -x^{-2} = -\frac{1}{x^2}$$

よって
$$f(2) = \frac{1}{2}$$

$$f'(2) = -\frac{1}{2^2} = -\frac{1}{4}$$
 したがって, $x = 2$ における法線の方程式は
$$y - f(2) = -\frac{1}{f'(2)}(x - 2)$$

$$y - \frac{1}{2} = -\frac{1}{-\frac{1}{4}}(x - 2)$$

$$y = 4(x - 2) + \frac{1}{2}$$

$$y = 4x - 8 + \frac{1}{2}$$

$$y = 4x - \frac{15}{2}$$

(3)
$$f'(x)=2x-2$$
 よって
$$f(1)=1^2-2\cdot 1=-1$$

$$f'(1)=2\cdot 1-2=0$$

$$f'(1)=0$$
 なので, $x=1$ における法線の方程式は $x=1$

問3

(1)
$$f'(x)=x^2-x+2$$

$$=(x-1)^2-1+2$$

$$=(x-1)^2+1$$

$$(x-1)^2\geq 0$$
 なので, $(x-1)^2+1>0$ よって,すべての実数 x について, $f'(x)>0$ であるから, $f(x)$ は区間 I で単調に増加する.

(2)
$$f'(x) = \cos x - 1$$
 区間 $(0, 2\pi)$ の x について $-1 \le \cos x < 1$

であるから

$$-2 \le \cos x - 1 < 0$$

すなわち , f'(x) < 0 であるから , f(x) は区間 I で単調に減少す

問4

(1)
$$y' = 2x - 6$$

 $= 2(x - 3)$
 $y' = 0$ とすると, $x = 3$
 $x = 3$ のときの y の値は
 $y = 3^2 - 6 \cdot 3 + 3$
 $= 9 - 18 + 3$
 $= -6$

y の増減表は次のようになる.

x		3	
y'	_	0	+
y	\	-6	1

よって

x>3 のとき 増加

x < 3 のとき 減少

(2)
$$y' = 6x^2 - 18x$$

 $= 6x(x - 3)$
 $y' = 0$ とすると, $x = 0$, 3
 $x = 0$ のときの y の値は
 $y = 12$
 $x = 3$ のときの y の値は
 $y = 2 \cdot 3^3 - 9 \cdot 3^2 + 12$
 $= 54 - 81 + 12$
 $= -15$

y の増減表は次のようになる.

x		0		3	
y'	+	0	_	0	+
y	1	12	`	-15	1

よって

$$x<0, \quad x>3$$
 のとき 増加 $0< x<3$ のとき 減少

(3)
$$y' = 12x^3 + 12x^2 - 24x$$

 $= 12x(x^2 + x - 2)$
 $= 12x(x + 2)(x - 1)$
 $y' = 0$ とすると, $x = -2$, 0 , 1
 $x = 0$ のときの y の値は
 $y = 11$
 $x = -2$ のときの y の値は
 $y = 3 \cdot (-2)^4 + 4 \cdot (-2)^3 - 12 \cdot (-2)^2 + 11$
 $= 48 - 32 - 48 + 11$
 $= -21$

x=1 のときの y の値は $y=3\cdot 1^4+4\cdot 1^3-12\cdot 1^2+11$ =3+4-12+11

=6

y の増減表は次のようになる.

x		-2		0		1	
y'	_	0	+	0	_	0	+
y	`	-21	1	11	`	6	1

よって

$$-2 < x < 0$$
, $x > 1$ のとき 増加 $x < -2$, $0 < x < 1$ のとき 減少

問 5

$$(f(x)-x^2)'=0$$
 より, $f(x)-x^2$ は,定数関数なので, C を定数として
$$f(x)-x^2=C$$
 とおくことができる.これより
$$f(x)=x^2+C$$
 ここで, $f(1)=5$ であるから
$$1^2+C=5$$
,すなわち, $C=5-1=4$ よって, $f(x)=x^2+4$

問6

(1)
$$y' = -3x^2 + 3$$

 $= -3(x^2 - 1)$
 $= -3(x + 1)(x - 1)$
 $y' = 0$ とすると, $x = -1$, 1
 $x = -1$ のときの y の値は
 $y = -(-1)^3 + 3 \cdot (-1) - 1$
 $= 1 - 3 - 1$
 $= -3$
 $x = 1$ のときの y の値は
 $y = -1^3 + 3 \cdot 1 - 1$
 $= -1 + 3 - 1$
 $= 1$

y の増減表は次のようになる.

x		-1		1	
y'	_	0	+	0	_
y	\	-3	1	1	\

よって

極大値
$$1$$
 $(x=1)$ 極小値 -3 $(x=-1)$

(2)
$$y' = 4x^3 - 12x^2 + 8x$$

 $= 4x(x^2 - 3x + 2)$
 $= 4x(x - 1)(x - 2)$
 $y' = 0$ とすると, $x = 0$, 1, 2
 $x = 0$ のときの y の値は
 $y = 0$
 $x = 1$ のときの y の値は
 $y = 1^4 - 4 \cdot 1^3 + 4 \cdot 1^2$
 $= 1 - 4 + 4$
 $= 1$
 $x = 2$ のときの y の値は
 $y = 2^4 - 4 \cdot 2^3 + 4 \cdot 2^2$
 $= 16 - 32 + 16$
 $= 0$

y の増減表は次のようになる.

x		0		1		2	
y'	_	0	+	0	_	0	+
y		0	1	1		0	1

よって

極大値 1 (x=1)

極小値
$$0 \quad (x = 0, 2)$$

(3)
$$y' = 12x^3 - 18x^2x$$
 $= 6x^2(2x - 3)$ $y' = 0$ とすると, $x = 0$, $\frac{3}{2}$ $x = 0$ のときの y の値は $y = 4$ $x = \frac{3}{2}$ のときの y の値は $y = 3 \cdot \left(\frac{3}{2}\right)^4 - 6 \cdot \left(\frac{3}{2}\right)^3 + 4$ $= \frac{243}{16} - \frac{162}{8} + 4$ $= \frac{243 - 324 + 64}{16} = -\frac{17}{16}$ y の増減表は次のようになる.

x		0		$\frac{3}{2}$	
y'	_	0	_	0	+
y	\	4	\	$-\frac{17}{16}$	1

よって

極大値 なし

極小値
$$-\frac{17}{16}$$
 $\left(x=\frac{3}{2}\right)$

問7

$$y' = 3x^2 - 6x$$

= $3x(x - 2)$
 $y' = 0$ とすると, $x = 0$, 2
 $x = 0$ のときの y の値は
 $y = a$
 $x = 2$ のときの y の値は
 $y = 2^3 - 3 \cdot 2^2 + a$
= $8 - 12 + a$

y の増減表は次のようになる.

= a - 4

x		0		2	
y'	+	0	_	0	+
y	1	a	\	a-4	1

極大値が,
$$a$$
,極小値が, $a-4$ であるから

$$\begin{cases} a>0 & \cdots ① \\ a-4<0 & \cdots ② \end{cases}$$
②より, $a<4$,これと①より $0< a<4$

問8

(1)
$$y' = -3x^2 + 6x$$

 $= -3x(x-2)$
 $y' = 0$ とすると, $x = 0$, 2
 $x = 0$ のときの y の値は
 $y = -2$
 $x = 2$ のときの y の値は
 $y = -2^3 + 3 \cdot 2^2 - 2$
 $= -8 + 12 - 2 = 2$
 $x = 3$ のときの y の値は
 $y = -3^3 + 3 \cdot 3^2 - 2$
 $= -27 + 27 - 2 = -2$

y の増減表は次のようになる.

x	0		2		3
y'	0	+	0	_	
y	-2	1	2	\	-2

よって

最大値 2
$$(x=2)$$
 最小値 -2 $(x=0, 3)$

(2)
$$y' = 2\cos x - 1$$
 $y' = 0$ とすると $\cos x = \frac{1}{2}$ より, $x = \frac{\pi}{3}$, $\frac{5}{3}\pi$ $x = 0$ のときの y の値は $y = 2\sin 0 - 0 = 0$ $x = \frac{\pi}{3}$ のときの y の値は $y = 2\sin\frac{\pi}{3} - \frac{\pi}{3}$ $= \sqrt{3} - \frac{\pi}{3}$ $x = \frac{5}{3}\pi$ のときの y の値は $y = 2\sin\frac{5}{3}\pi - \frac{5}{3}\pi$ $= -\sqrt{3} - \frac{5}{3}\pi$ $= 2\pi$ のときの y の値は $y = 2\sin 2\pi - 2\pi$ $= -2\pi$

x	0		$\frac{\pi}{3}$		$\frac{5}{3}\pi$		2π
y'		+	0	_	0	+	
y	0	1		_		1	-2π

よって

最大値
$$\sqrt{3}-\frac{\pi}{3}$$
 $\left(x=\frac{\pi}{3}\right)$ 最小値 $-\sqrt{3}-\frac{5}{3}\pi$ $\left(x=\frac{5}{3}\pi\right)$

$$y'=e^x+xe^x$$
 $=e^x(1+x)$
 $y'=0$ とすると, $x=-1$
 $x=-2$ のときの y の値は
 $y=-2\cdot e^{-2}$
 $=-\frac{2}{e^2}$
 $x=-1$ のときの y の値は
 $y=-1\cdot e^{-1}$
 $=-\frac{1}{e}$
 $x=0$ のときの y の値は
 $y=0$
 y の増減表は次のようになる.

x	-2		-1		0
y'		_	0	+	
y	$-\frac{2}{a^2}$	_	$-\frac{1}{2}$	1	0

よって

最大値 0
$$(x=0)$$

最小値 $-\frac{1}{e}$ $(x=-1)$

y 軸方向にスケールを拡大してあります.

(4)
$$y'=1-\frac{1}{2\sqrt{x}}$$

$$=\frac{2\sqrt{x}-1}{2\sqrt{x}}$$

$$y'=0$$
 とすると , $2\sqrt{x}-1=0$ より , $x=\frac{1}{4}$ $x=0$ のときの y の値は $y=0$ $x=\frac{1}{4}$ のときの y の値は

$$y = \frac{1}{4} - \sqrt{\frac{1}{4}}$$
 $= \frac{1}{4} - \frac{1}{2} = -\frac{1}{4}$
 $x = 4$ のときの y の値は
 $y = 4 - \sqrt{4}$
 $= 4 - 2 = 2$

y の増減表は次のようになる.

x	0		$\frac{1}{4}$		4
y'		_	0	+	
y	0	\	$-\frac{1}{4}$	1	2

よって

最大値
$$2$$
 $(x=4)$ 最小値 $-\frac{1}{4}$ $\left(x=\frac{1}{4}\right)$

問 9

図のように点を定める.

(1) $\mathrm{OM} = |x-a|$ であるから , $\mathrm{BM} = l$ とおくと , $\triangle \mathrm{OBM}$ において三平方の定理より

$$l^2 + |x - a|^2 = a^2$$

よって
 $l^2 = a^2 - (x - a)^2$
 $= \{a + (x - a)\}\{a - (x - a)\}$
 $= x(2a - x)$
 $= 2ax - x^2$

$$l>0$$
 であるから, $l=\sqrt{2ax-x^2}$ BC $=2l=2\sqrt{2ax-x^2}$ となるので $S=rac{1}{2}\cdot 2\sqrt{2ax-x^2}\cdot x$ $=x\sqrt{2ax-x^2}$

また,x>0, $2ax-x^2>0$ より,x の変域は $\mathbf{0}< x< \mathbf{2}a$

$$(2) S' = \sqrt{2ax - x^2} + x \cdot \frac{1}{2\sqrt{2ax - x^2}} \cdot (2a - 2x)$$

$$= \frac{2(2ax - x^2) + x(2a - 2x)}{2\sqrt{2ax - x^2}}$$

$$= \frac{-4x^2 + 6ax}{2\sqrt{2ax - x^2}}$$

$$= \frac{-x(2x - 3a)}{\sqrt{2ax - x^2}}$$

$$S'=0$$
 とすると , $x=\frac{3}{2}a$ $x=\frac{3}{2}a$ のときの S の値は
$$S=\frac{3}{2}a\sqrt{2a\cdot\frac{3}{2}a-\left(\frac{3}{2}a\right)^2}$$
 $=\frac{3}{2}a\sqrt{3a^2-\frac{9}{4}a^2}$ $=\frac{3}{2}a\sqrt{\frac{3}{4}a^2}$ $=\frac{3}{2}a\cdot\frac{\sqrt{3}}{2}|a|=\frac{3\sqrt{3}}{4}a^2$ $(a>0$ より) S の増減表は次のようになる .

x	0		$\frac{3}{2}a$		2a
S'		+	0	_	
S		1	$\frac{3\sqrt{3}}{4}a^2$	\	

よって , $x=rac{3}{2}a$ のとき , S は最大となる .

また ,このとき , $\triangle {
m ABC}$ は正三角形となり ,S の最大値は $\frac{3\sqrt{3}}{^4}a^2$

〔別解〕

 $S=\sqrt{2ax^3-x^4}$ であるから , $f(x)=2ax^3-x^4$ とおくと , f(x) が最大となるとき,S も最大となるので,0 < x < 2a におけ る f(x) の最大値を求める.

$$f'(x) = -6ax^2 - 4x^3 = -2x^2(2x - 3a)$$
 $f'(x) = 0$ とすると , $x = \frac{3}{2}a$ $x = \frac{3}{2}a$ のときの $f(x)$ の値は $f\left(\frac{3}{2}a\right) = 2a \cdot \left(\frac{3}{2}a\right)^3 - \left(\frac{3}{2}a\right)^4$ $= \frac{27}{4}a^4 - \frac{81}{16}a^4$ $= \frac{27}{16}a^4$

f(x) の増減表は次のようになる.

x	0		$\frac{3}{2}a$		2a
f'(x)		+	0	_	
f(x)		1	$\frac{27}{16}a^4$	\	

よって , $x=rac{3}{2}a$ のとき , f(x) が最大となる .

また,このとき, $\triangle {
m ABC}$ は正三角形となり,S の最大値は, $\sqrt{\frac{27}{16}a^4} = \frac{3\sqrt{3}}{4}a^2$

問 10

(1)
$$y = \tan x - x$$
 とおく .
$$y' = \frac{1}{\cos^2 x} - 1$$
$$= \frac{1 - \cos^2 x}{\cos^2 x}$$
$$= \frac{\sin^2 x}{\cos^2 x} = \tan^2 x$$
$$y' = 0$$
 とすると , $x = 0$
$$x = 0$$
のときの y の値は
$$y = \tan 0 - 0 = 0$$
また , $0 \le x < \frac{\pi}{2}$ において , $y' \ge 0$

y の増減表は次のようになる.

x	0		$\frac{\pi}{2}$
y'	0	+	
y	0	1	

よって,
$$0 \le x < \frac{\pi}{2}$$
 のとき, $x=0$ で,最小値 0 をとるから $y=\tan x - x \ge 0$ すなわち, $\tan x \ge x$ $\left(0 \le x < \frac{\pi}{2}\right)$

$$(2)$$
 $y=x-1-\log x$ とおく . $y'=1-\frac{1}{x}$ $=\frac{x-1}{x}$ $y'=0$ とすると , $x=1$ $x=1$ のときの y の値は $y=1-1-\log 1=0$ y の増減表は次のようになる .

x	0		1	
y'		_	0	+
y		`	0	1

よって, x>0 のとき, x=1 で最小値0 をとるから $y = x - 1 - \log x \ge 0$ すなわち , $\log x \le x - 1$ (x > 0)

[問 11]

 $rac{0}{0}$ の不定形である .

与式 =
$$\lim_{x \to 1} \frac{(x^5 + x^3 - 2)'}{(x^4 + x^2 - 2)'}$$

= $\lim_{x \to 1} \frac{5x^4 + 3x^2}{4x^3 + 2x}$
= $\frac{5 \cdot 1^4 + 3 \cdot 1^2}{4 \cdot 1^3 + 2 \cdot 1}$
= $\frac{8}{6} = \frac{4}{3}$

〔別解〕

(2) の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(e^x - \cos x)'}{x'}$$
= $\lim_{x \to 0} \frac{e^x + \sin x}{1}$
= $e^0 + \sin 0 = 1$

(3) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\sin 3x)'}{(\sin x)'}$$

= $\lim_{x \to 0} \frac{3\cos 3x}{\cos x}$
= $\frac{3}{1}$ = 3

〔別解〕

与式 =
$$\lim_{x \to 0} 3 \cdot \frac{\sin 3x}{3x} \cdot \frac{x}{\sin x}$$

= $3 \cdot 1 \cdot 1 = 3$

問 12

(1) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(x^4 - 4x + 3)'}{(x^3 - 3x + 2)'}$$
= $\lim_{x \to 1} \frac{4x^3 - 4}{3x^2 - 3}$ (まだ $\frac{0}{0}$)
= $\lim_{x \to 1} \frac{(4x^3 - 4)'}{(3x^2 - 3)'}$
= $\lim_{x \to 1} \frac{12x^2}{6x}$
= $\lim_{x \to 1} 2x = 2 \cdot 1 = 2$

〔別解〕

与武 =
$$\lim_{x \to 1} \frac{(x-1)(x^3 + x^2 + x - 3)}{(x-1)(x^2 + x - 2)}$$

$$= \lim_{x \to 1} \frac{x^3 + x^2 + x - 3}{x^2 + x - 2}$$

$$= \lim_{x \to 1} \frac{(x-1)(x^2 + 2x + 3)}{(x-1)(x+2)}$$

$$= \lim_{x \to 1} \frac{x^2 + 2x + 3}{x + 2}$$

$$= \frac{1^2 + 2 \cdot 1 + 3}{1 + 2}$$

$$= \frac{6}{3} = \mathbf{2}$$

(2) $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\sin x - x)'}{(x^3)'}$$

$$= \lim_{x \to 0} \frac{\cos x - 1}{3x^2} \qquad (まだ \quad \frac{0}{0})$$

$$= \lim_{x \to 0} \frac{(\cos x - 1)'}{(3x^2)'}$$

$$= \lim_{x \to 0} \frac{-\sin x}{6x}$$

$$= \lim_{x \to 0} \left(-\frac{1}{6} \cdot \frac{\sin x}{x}\right)$$

$$= -\frac{1}{6} \cdot 1 = -\frac{1}{6}$$

問13

(1) $\frac{\infty}{-\infty}$ の不定形である.

与式 =
$$\lim_{x \to \infty} \frac{(2x^2 - 2x + 3)'}{(-x^2 + 3x - 1)'}$$
= $\lim_{x \to \infty} \frac{4x - 2}{-2x + 3}$ (まだ $\frac{\infty}{-\infty}$)
= $\lim_{x \to \infty} \frac{(4x - 2)'}{(-2x + 3)'}$
= $\lim_{x \to \infty} \frac{4}{-2}$
= -2

〔別解〕

与式 =
$$\lim_{x \to \infty} \frac{2 - \frac{2}{x} + \frac{3}{x^2}}{-1 + \frac{3}{x} - \frac{1}{x^2}}$$

$$= \frac{2 - 0 + 0}{-1 + 0 - 0} = -2$$

(2) 与式を , $\lim_{x \to \infty} rac{ an^{-1} \, x - rac{\pi}{2}}{rac{1}{x}}$ と変形すれば , $rac{0}{0}$ の不定形である .

与式 =
$$\lim_{x \to \infty} \frac{\left(\tan^{-1} x - \frac{\pi}{2}\right)'}{\left(\frac{1}{x}\right)'}$$

$$= \lim_{x \to \infty} \frac{\frac{1}{1+x^2}}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \left(-\frac{x^2}{1+x^2}\right)$$

$$= \lim_{x \to \infty} \left(-\frac{1}{\frac{1}{x^2}+1}\right)$$

$$= -\frac{1}{0+1} = -1$$

問 14

(1) 与式 =
$$\lim_{x \to \infty} \frac{(x^2)'}{(e^{2x})'}$$

$$= \lim_{x \to \infty} \frac{2x}{2e^{2x}}$$

$$= \lim_{x \to \infty} \frac{x}{e^{2x}}$$

$$= \lim_{x \to \infty} \frac{x'}{(e^{2x})'}$$

$$= \lim_{x \to \infty} \frac{1}{2e^{2x}} = \mathbf{0}$$

x		0		1	
y'	_	0	+	0	_
y	\	0	1	$\frac{1}{e^2}$	\

えって 極大値 $\dfrac{1}{e^2}$ (x=1)極小値 0 (x=0)

 $\lim_{x \to -\infty} rac{x^2}{e^{2x}}$ を求める.x=-t とおくと, $x \to -\infty$ のとき, $t \to \infty$ であるから

$$\lim_{x \to -\infty} \frac{x^2}{e^{2x}} = \lim_{t \to \infty} \frac{(-t)^2}{e^{-2t}}$$
$$= \lim_{t \to \infty} t^2 \cdot e^{2t} = \infty$$

また,(1)より,x軸は漸近線となる.

y 軸方向にスケールを拡大してあります.