

Homework/Programming Assignment #2

Homework/midterm Due: 03/26/2020- 5:00PM

Name/EID:

Email:

Signature (required)

I/We have followed the rules in completing this Assignment.

Name/EID:

Email:

Signature (required)

I/We have followed the rules in completing this Assignment.

Question	Points	Total
HA 1	25	
HA 2	25	
HA 3	25	
HA 4	25	
PA	100	
PA. k (Bonus)	15	
PA. m (Bonus)	30	
Presentation* (Bonus)	20	

Instruction:

- 1. Remember that this is a graded assignment. It is the equivalent of a <u>midterm</u> take-home exam.
- 2. * You should present the results of the PA in the class and receive extra bonus depending on the quality of your presentation!
- 3. **For PA questions**, you need to write a report showing how you derived your equations, describes your approach, test functions, and discusses the results. You should show your test results for each function.
- 3. You are to work alone or in teams of two and are not to discuss the problems with anyone other than the TAs or the instructor.
- 4. It is open book, notes, and web. But you should cite any references you consult.
- 5. Unless I say otherwise in class, it is due before the start of class on the due date mentioned in the P/H Assignment.
- 6. **Sign and append** this score sheet as the first sheet of your assignment.
- 7. Remember to submit your assignment in Canvas.

ASBR HW 2

Jian Chu (jc86537) & Yang Liu (yl34825)

March 2020

Note!!!

All the four questions we wrote the code in HW.m file in Matlab, you can check it by section. Some result are very complex which contain a lot of sin and cos function in the Jacobian, so we do not write all the details here. Please check the code for these details.

Problem 1

The end-effector zero position configuration M is the same, which is $M = \begin{bmatrix} 1 & 0 & 0 & L_1 \\ 0 & 1 & 0 & L_3 + L_4 \\ 0 & 0 & 1 & -L_5 - L_6 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

The screw axes S_i in $\{0\}$ are:

	1	ω_i	q_i	$v_i = -w_i \wedge q_i$
	1	(1, 0, 0)	(0, 0, 0)	(0, 0, 0)
	2	(0, 0, -1)	$(L_1, 0, 0)$	$(0, L_1, 0)$
:	3	(0, 1, 0)	(L_1, L_3, L_2)	$(-L_2, 0, L_1)$
	4	(1, 0, 0)	$(L_1, L_3, 0)$	$(0, 0, L_3)$
	5	(0, 0, 0)	$(L_1, L_3 + L_4, 0)$	(0, 1, 0)
	6	(0, 1, 0)	$(L_1, L_3 + L_4, -L_5)$	$(L_5, 0, L_1)$

 $v_i = -w_i \times q_i$

Therefore,
$$S_{1} = \begin{bmatrix} 1\\0\\0\\0\\0\\0 \end{bmatrix}$$
, $S_{2} = \begin{bmatrix} 0\\0\\-1\\0\\L_{1}\\0 \end{bmatrix}$, $S_{3} = \begin{bmatrix} 0\\1\\0\\-L_{2}\\0\\L_{1} \end{bmatrix}$, $S_{4} = \begin{bmatrix} 1\\0\\0\\0\\0\\L_{3} \end{bmatrix}$, $S_{5} = \begin{bmatrix} 0\\0\\0\\0\\L_{5}\\0\\L_{1} \end{bmatrix}$, $S_{6} = \begin{bmatrix} 0\\1\\0\\L_{5}\\0\\L_{1} \end{bmatrix}$

 $\frac{(-L_1, -L_3 - L_4, L_5 + L_6)}{(0, -L_3 - L_4, L_5 + L_6)}$ $(0, L_5 + L_6, L_3 + L_4)$ (1, 0, 0)(0, 0, -1) $(L_3+L_4,\,0,\,0)$ $\frac{(0, -L_3 - L_4, L_2 + L_5 + L_6)}{(0, -L_4, L_5 + L_6)}$ $(-L_2 \overline{-L_5 - L_6, 0, 0)}$ The screw axes B_i in $\{b\}$ are: (0, 1, 0) $(0, L_5 + L_6, L_4)$ (1, 0, 0) $\frac{(0, 0, L_5 + L_6)}{(0, 0, L_6)}$ (0, 1, 0)(0, 0, 0)(0, 1, 0) $(-L_6, 0, 0)$

Therefore,
$$B_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ L_5 + L_6 \\ L_3 + L_4 \end{bmatrix}, B_2 = \begin{bmatrix} 0 \\ 0 \\ -1 \\ L_3 + L_4 \\ 0 \\ 0 \end{bmatrix}, B_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -L_2 - L_5 - L_6 \\ 0 \\ 0 \end{bmatrix}, B_4 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ L_5 + L_6 \\ L_4 \end{bmatrix}, B_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ -L_6 \end{bmatrix}, B_6 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ -L_6 \\ 0 \\ 0 \end{bmatrix}$$

Problem 2

The end-effector zero position configuration M is the same, which is $M = \begin{bmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\boxed{ \begin{array}{c|ccc} \mathbf{i} & w_i & q_i & v_i = -w_i \times v_i \end{array} }$

The screw axes S_i in $\{0\}$ are:

	1	w_i	q_i	$v_i = -w_i \times v_i$
	1	(0, 0, 1)	(0, 0, -1)	(0, 0, 0)
	2	(0, 0, 0)	(0, 0, 0)	(1, 0, 0)
:	3	(0, 0, 1)	(1, 0, 0)	(0, -1, 0)
Ì	4	(0, -1, 0)	(1, 0, -1)	(-1, 0, -1)
	5	$\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$	(2, 0, -1)	$(0, -\frac{\sqrt{2}}{2}, 0)$

Therefore,
$$S_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, $S_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $S_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ -1 \\ 0 \end{bmatrix}$, $S_4 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ -1 \end{bmatrix}$, $S_5 = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \\ 0 \\ -\frac{\sqrt{2}}{2} \\ 0 \end{bmatrix}$

The screw axes B_i in $\{b\}$ are:

	-	ω_i	41	$\sim i \sim i \sim q_i$
	1	(0, 0, 1)	(-3, 0, -1)	(0, 3, 0)
	2	(0, 0, 0)	(-3, 0, 0)	(1, 0, 0)
:	3	(0, 0, 1)	(-2, 0, 0)	(0, 2, 0)
	4	(0, -1, 0)	(-2, 0, -1)	(-1, 0, 2)
	5	$\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2}\right)$	(-1, 0, -1)	$(0, \sqrt{2}, 0)$

Therefore,
$$B_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 3 \\ 0 \end{bmatrix}$$
, $B_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$, $B_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \end{bmatrix}$, $B_4 = \begin{bmatrix} 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 2 \end{bmatrix}$, $B_5 = \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ 0 \\ \frac{\sqrt{2}}{2} \\ 0 \\ \sqrt{2} \\ 0 \end{bmatrix}$

Problem 3

(a)

	i	w_i	q_{i}	$v_i = -w_i \times q_i$	
	1	(0, 0, 1)	(0, -L, -L)	(-L, 0, 0)	
The screw axes B_i are:	2	(1, 0, 0)	(0, -L, 0)	(0, 0, L)	$, B_i = [w_i, v_i]$
	3	(0, 0, 1)	(0, 0, 0)	(0, 0, 0)	
	4	(0, 0, 0)	(0, 1, 0)	(0, 1, 0)	

The Body Jacobian is given by:

$$J_b(\theta) = [Ad_{e^{-[B_4]\theta_4}e^{-[B_3]\theta_3}e^{-[B_2]\theta_2}}B_1, Ad_{e^{-[B_4]\theta_4}e^{-[B_3]\theta_3}}B_2, Ad_{e^{-[B_4]\theta_4}}B_3, B_4]$$

When
$$\theta = (0, 0, \pi/2, L)$$
, the $J_b = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ -L & 0 & -L & 0 \\ L & 0 & 0 & 1 \\ 0 & L & 0 & 0 \end{bmatrix}$

(b)

The first joint axis is in the direction $w_{s1} = (0,0,1)$. Choosing $q_1 = (0,0,L)$. We get $v_{s1} = -w_{s1} \times q_1 = (0,0,0)$. $S_1 = [0,0,1,0,0,0]^T$ The second joint axis is in the direction $w_{s2} = Rot(z,\theta_1) \cdot [1,0,0]^T = (c_1,s_1,0)$. Choosing $q_2 = (0,0,L)$. We get $v_{s2} = -w_s \times q_2 = (-Ls_1, Lc_1,0)$. $S_2 = [c_1,s_1,0,-Ls_1, Lc_1,0]^T$

The third joint axis is in the direction $w_{s3} = Rot(z, \theta_1) \cdot Rot(x, \theta_2) \cdot [0, 0, 1]^T = (s_1s_2, -c_1s_2, c_2)$. Choosing $q_3 = q_2 + Rot(z, \theta_1) \cdot Rot(x, \theta_2) \cdot [0, L, 0]^T = (-Lc_2s_1, Lc_1s_2, L + Ls_2)$. We get $v_{s3} = -w_{s3} \times q_3 = (Lc_1c_2^2 + (L + Ls_2)c_1s_2, Ls_1c_2^2 + (L + Ls_2)s_1s_2, 0)$. $S_3 = [w_{s3}, v_{s3}]$

The forth joint is prismatic, so $w_{s4} = (0,0,0)$. The direction of the prismatic joint axis is given by $v_{s4} = Rot(z,\theta_1) \cdot Rot(z,\theta_2) \cdot Rot(z,\theta_3) \cdot [0,1,0]^T = [-c_1s_3 - c_2c_3s_1, c_1c_2c_3 - s_1s_3, c_3s_2]^T$. $S_4 = [w_{s4}, v_{s4}]$

Thus, the Space Jocabian is given by:

$$J_s(\theta) = [S_1, S_2, S_3, S_4] = \begin{bmatrix} 0 & c_1 & s_1 s_2 & 0 \\ 0 & s_1 & -c_1 s_2 & 0 \\ 1 & 0 & c_2 & 0 \\ 0 & -L s_1 & L c_1 (s_2 + 1) & -c_1 s_3 - c_2 c_3 s_1 \\ 0 & L c_1 & L s_1 (s_2 + 1) & c_1 c_2 c_3 - s_1 s_3 \\ 0 & 0 & 0 & c_3 s_2 \end{bmatrix}$$

Therefore,
$$\dot{p} = J_s(\theta)\dot{\theta} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & L & -1 \\ 0 & L & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 2 \\ L - 1 \\ L \\ 0 \end{bmatrix}$$

Problem 4

(a)

We use two ways to calculate the Jacobian.

First Method:

The first joint axis is in the direction $w_{s1} = (0,0,1)$. Choosing $q_1 = (0,0,0)$. We get $v_{s1} = -w_{s1} \times q_1 = (0,0,0)$. $S_1 = [0,0,1,0,0,0]^T$

The second joint axis is in the direction $w_{s2} = Rot(z, \theta_1) \cdot [0, 1, 0]^T = (-s_1, c_1, 0)$. Choosing $q_2 = (0, 0, 0)$. We get $v_{s2} = -w_s \times q_2 = (0, 0, 0)$. $S_2 = [-s_1, c_1, 0, 0, 0, 0]^T$

The third joint axis is in the direction $w_{s3} = Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot [-1, 0, 0]^T = (-c_1c_2, -c_2s_1, s_2)$. Choosing $q_3 = (0, 0, 0)$. We get $v_{s3} = -w_{s3} \times q_3 = (0, 0, 0)$. $S_3 = [w_3, v_3]$

The forth joint axis is in the direction $w_{s4} = Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot [-1, 0, 0]^T = (-c_1c_2, -c_2s_1, s_2)$. Choosing $q_4 = Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot [0, L, 0]^T$. We get $v_{s4} = -w_{s4} \times q_4$. $S_4 = [w_4, v_4]$

The fifth joint axis is in the direction $w_{s5} = Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot Rot(x, -\theta_4) \cdot [-1, 0, 0]^T = (-c_1c_2, -c_2s_1, s_2)$. Choosing $q_5 = q_4 + Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot Rot(x, -\theta_4) \cdot [0, L, 0]^T$. We get $v_{s5} = -w_{s5} \times q_5$. $S_5 = [w_5, v_5]$

The sixth joint axis is in the direction $w_{s6} = Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot Rot(x, -\theta_4) \cdot Rot(x, -\theta_5) \cdot [0, 1, 0]^T = (s_5(c_4(s_1s_3 - c_1c_3s_2) + s_4(c_3s_1 + c_1s_2s_3))) - c_5(c_4(c_3s_1 + c_1s_2s_3) - s_4(s_1s_3 - c_1c_3s_2)), c_5(c_4(c_1c_3 - s_1s_3s_2) - s_4(c_1s_3 + c_3s_1s_2))) - s_5(c_4(c_1s_3 + c_3s_1s_2) + s_4(c_1c_3 - s_1s_2s_3)), -s_3s_5c_2).$ Choosing $q_6 = q_5 + Rot(z, \theta_1) \cdot Rot(y, \theta_2) \cdot Rot(x, -\theta_3) \cdot Rot(x, -\theta_4) \cdot Rot(x, -\theta_5) \cdot [0, L, 0]^T$. We get $v_{s6} = -w_{s6} \times q_6$. $S_6 = [w_6, v_6]$

Then the Jacobian should be:

$$J_s(\theta) = [S_1, S_2, S_3, S_4, S_5, S_6]$$

Second Method:

i	w_i	q_i	$v_i = -w_i \times v_i$	
1	(0, 0, 1)	(0, 0, 0)	(0, 0, 0)	
2	(0, 1, 0)	(0, 0, 0)	(0, 0, 0)	
3	(-1, 0, 0)	(0, 0, 0)	(0, 0, 0)	$, s_i = [w_i,$
4	(-1, 0, 0)	(0, L, 0)	(0, 0, L)	
5	(-1, 0, 0)	(0, 2L, 0)	(0, 0, 2L)	
6	(0, 1, 0)	(0, 3L, 0)	(0, 0, 0)	

 v_i

Therefore, the Jacobian:

The screw axes S_i are:

$$J_s(\theta) = [s_1, Ad_{e^{[s_1]\theta_1}}s_2, Ad_{e^{[s_1]\theta_1}e^{[s_2]\theta_2}}s_3, ..., Ad_{e^{[s_1]\theta_1}e^{[s_2]\theta_2}...e^{[s_5]\theta_5}}s_6]$$

(b)

Let $det(J(\theta)) = 0$, we can get $det(J(\theta)) = L^3c_2s_4(s_5 + s_{45}) = 0$. Here, $s_{45} = sin(\theta_4 + \theta_5)$. Therefore, the singularity configurations are:

- 1) L = 0, loss link length
- 2) $cos(\theta_2) = 0, \theta_2 = \pi/2$, the joint 3 and joint 1's axes are collinear, thus, the joint 1 loss the ability to move joint 3's position.
- 3) $sin(\theta_4) = 0, \theta_4 = 0$, the joint 5 and joint 3's revolute joint axes are parallel.

4) $sin(\theta_4 + \theta_5) + sin(\theta_5) = 0$, joint 6's screw axis will always be the y - axis of joint 3, thus, joint 4 loss the ability to move joint 6's position.