# Corrigé du devoir de mathématiques

#### Exercice 1

1. f est une fonction polynôme du troisième degré définie et dérivable sur  $\mathbb{R}$ , avec, pour tout x réel,  $f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 3(x - 1)(x + 1)$ .

On en déduit le tableau de variation de f :

| x     | $-\infty$ |   | -1 |   | 1  |   | $+\infty$ |
|-------|-----------|---|----|---|----|---|-----------|
| f'(x) |           | + | Ф  | _ | Ф  | + |           |
| f     | /         | / | -1 | \ | -5 | / | 1         |

2. T a pour équation : y = f'(0)(x - 0) + f(0) = -3x - 3.

3.



4. Sur [2; 3], la fonction f est dérivable, strictement croissante, avec f(2) = -1 < 0 et f(3) = 15 > 0. On en déduit, d'après le théorème des valeurs intermédiaires, que l'équation f(x) = 0 admet une unique solution  $\alpha$  dans l'intervalle [2; 3].

A l'aide de la calculatrice, on trouve que  $f(2,10) \simeq -0.039$  et  $f(2,11) \simeq 0.06$ , et donc que  $2.10 < \alpha < 2.11$ .

# Exercice 2

1. La fonction f doit vérifier les conditions suivantes :

- f(0) = 0 soit, comme f(0) = d, d = 0.
- f'(0) = 0 soit, comme  $f'(x) = 3ax^2 + 2bx + c$ , donc f'(0) = c, et c = 0. On a alors,  $f(x) = ax^3 + bx^2$ .
- f(5) = 125a + 25b = 2
- f'(5) = 0 soit, comme  $f'(x) = 3ax^2 + 2bx$ , l'équation 75a + 10b = 0

Les deux dernières équations permettent de calculer a et b:  $\begin{cases} 125a + 25b = 2 \\ 75a + 10b = 0 \end{cases} \iff \begin{cases} a = -\frac{4}{125} \\ b = \frac{6}{25} \end{cases}$ 

En résumé, la fonction f s'écrit  $\underline{f(x)} = -\frac{4}{125}x^3 + \frac{6}{25}x^2$ .

2. Le point I, milieu de [OA] a pour coordonnées  $I\left(\frac{5}{2};1\right)$ 

De plus,  $f\left(\frac{5}{2}\right) = -\frac{4}{125}\left(\frac{5}{2}\right)^3 + \frac{6}{25}\left(\frac{5}{2}\right)^2 = -\frac{1}{2} + \frac{3}{2} = 1$ . Ainsi, <u>le point I appartient à  $\mathcal{C}$ .</u>

La pente en I est  $f'(\frac{5}{2})$ , or  $f'(x) = -\frac{12}{125}x^2 + \frac{12}{25}x$ , et donc,

$$f'\left(\frac{5}{2}\right) = -\frac{12}{125}\left(\frac{5}{2}\right)^2 + \frac{12}{25}\left(\frac{5}{2}\right) = -\frac{3}{5} + \frac{6}{5} = \frac{3}{5} \,.$$

La pente en I est donc de  $\frac{3}{5}$ .

### Exercice 3

1. Pour tout  $x \in \mathbb{R} \setminus \{2\}$ ,

$$f'(x) = \frac{(2x+a)(x-2) - (x^2 + ax + b)}{(x-2)^2} = \frac{x^2 - 4x - 2a - b}{(x-2)^2}$$

2. La tangente à  $\mathcal{C}$  au point d'abscisse 3 a pour équation :

$$y = f'(3)(x-3) + f(3) = f'(3)x - 3f'(3) + f(3).$$

On doit donc avoir, pour cette tangente ait pour équation 
$$y = 8$$
, 
$$\begin{cases} f'(3) = 0 \\ -3f'(3) + f(3) = 8 \end{cases}$$
 soit, 
$$\begin{cases} f'(3) = 0 \\ f(3) = 8 \end{cases} \iff \begin{cases} -3 - 2a - b = 0 \\ 9 + 3a + b = 8 \end{cases} \iff \begin{cases} 2a + b = -3 \\ 3a + b = -1 \end{cases} \iff \begin{cases} a = 2 \\ b = -7 \end{cases}$$

Pour l'équation  $\sin 2x = \cos \frac{x}{2}$  une solution consiste à écrire : Exercice 4

$$\sin 2x = \cos \left(\frac{\pi}{2} - 2x\right)$$

(en utilisant la formule :  $\sin x = \cos \left(\frac{\pi}{2} - x\right)$ ).

L'équation se réécrit alors :

$$\cos\left(\frac{\pi}{2} - 2x\right) = \cos\frac{x}{2}$$

d'où:

$$\left\{ \begin{array}{ll} \frac{\pi}{2} - 2x = \frac{x}{2} + 2k\pi & k \in \mathbb{Z} \\ \frac{\pi}{2} - 2x = -\frac{x}{2} + 2k\pi & k \in \mathbb{Z} \end{array} \right. \iff \left\{ \begin{array}{ll} \frac{5}{2}x = \frac{\pi}{2} + 2k\pi & k \in \mathbb{Z} \\ \frac{3}{2}x = \frac{\pi}{2} + 2k\pi & k \in \mathbb{Z} \end{array} \right. \iff \left\{ \begin{array}{ll} x = \frac{\pi}{5} + 4k\frac{\pi}{5} & k \in \mathbb{Z} \\ x = \frac{\pi}{3} + 4k\frac{\pi}{3} & k \in \mathbb{Z} \end{array} \right.$$

## Exercice 5

1.  $P(1) = 2 \times 1^3 - 17 \times 1^2 + 7 \times 1 + 8 = 0$ , et donc 1 est bien une racine de P.

On en déduit que P se factorise selon  $P(x) = (x-1)(ax^2+bx+c) = ax^3+(-a+b)x^2+(-b+c)x-c$ , d'où, en

identifiant les coefficients : 
$$\begin{cases} a=2\\ -a+b=-17\\ -b+c=7\\ -c=8 \end{cases} \iff \begin{cases} a=2\\ b=-15\\ c=-8 \end{cases}$$

Ainsi, le polynôme P se factorise suivant :  $P(x) = (x-1)(2x^2-15x-8)$ .

2. L'équation s'écrit, en utilisant le polynôme P précédent :  $P(\sin x) = 0$ .

On recherche donc les racines de P.

 $P(x) = 0 \iff (x-1)(2x^2-15x-8) = 0. \text{ Le discriminant du trinôme du second degré est } \Delta = (-15)^2-4\times2\times(-8) = 0.$  $289 = 17^2 > 0$ . Ce trinôme admet donc deux racines distinctes :  $x_1 = -\frac{1}{2}$  et  $x_2 = 8$ .

Le polynôme P admet donc 3 racines :  $x_0 = 1$ ,  $x_1 = -\frac{1}{2}$  et  $x_3 = 8$ .

Les solutions de l'équation sont donc les valeurs de x telles que

- $\sin x = x_0 = 1 \iff x = \frac{\pi}{2} + k2\pi$
- $\sin x = x_1 = -\frac{1}{2} = \sin\left(-\frac{\pi}{6}\right) \iff x = -\frac{\pi}{6} + k2\pi \text{ ou } x = \pi \left(-\frac{\pi}{6}\right) + k2\pi = \frac{7\pi}{6} + k2\pi.$   $\sin x = x_3 = 8$ : impossible, car pour tout x,  $\sin x < 1$ .

Les solutions de l'équation sont donc,  $S = \left\{ \frac{\pi}{2} + k2\pi \; ; \; -\frac{\pi}{6} + k2\pi \; ; \; \frac{7\pi}{6} + k2\pi \; ; \; k \in \mathbb{Z} \right\}$