Algebra di Boole Esercizi risolti

1 Esercizio

Verificare mediante i teoremi fondamentali dell'algebra di Boole o mediante induzione completa se per l'operatore XOR vale la proprietà distributiva:

$$a \oplus (b+c) = (a \oplus b) + (a \oplus c)$$

Soluzione

Procediamo innanzitutto utilizzando i teoremi fondamentali dell'algebra. Esprimento l'XOR mediante operatori AND e OR e quindi, ripetutamente, il Teorema di De Morgan si ha:

$$a \oplus (b+c) = a \cdot (\overline{b+c}) + \overline{a} \cdot (b+c)$$

$$= a \cdot (\overline{b} \cdot \overline{c}) + \overline{a} \cdot (b+c)$$

$$= a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b + \overline{a} \cdot c$$

$$(a \oplus b) + (a \oplus c) = a \cdot \overline{b} + \overline{a} \cdot b + a \cdot \overline{c} + \overline{a} \cdot c$$

$$= a \cdot (\overline{b} + \overline{c}) + \overline{a} \cdot b + \overline{a} \cdot c$$

$$= a \cdot \overline{b} \cdot \overline{c} + \overline{a} \cdot b + \overline{a} \cdot c$$

Se a assume valore 0 le due espressioni coincidono, visto che diventano uguali a b+c. Se a assume valore 1 le due espressioni sono invece diverse in quanto assumono i valori $\overline{b} \cdot \overline{c}$ e $\overline{b} \cdot \overline{c}$ rispettivamente. Le due espressioni non sono quindi equivalenti.

La verifica mediante tabella di verità può essere effettuata come segue:

a	b	С	b+c	$a \oplus (b+c)$	$a \oplus b$	$a \oplus c$	$(a \oplus b) + (a \oplus c)$
0	0	0	0	0	0	0	0
0	0	1	1	1	0	1	1
0	1	0	1	1	1	0	1
0	1	1	1	1	1	1	1
1	0	0	0	1	1	1	1
1	0	1	1	0	1	0	1
1	1	0	1	0	0	1	1
1	1	1	1	0	0	0	0

Le due funzioni (colonne 5 e 8) sono differenti. Quindi le due espressioni non sono equivalenti.

2 Esercizio

Verificare mediante i teoremi fondamentali dell'algebra di Boole o mediante induzione completa che l'espressione logica

$$(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \cdot (b \Rightarrow a))$$

è una tautologia, ovvero è sempre vera. Si osservi che

- $x \Leftrightarrow y$ significa "coimplicazione" ed equivale a $(x \cdot y) + (\overline{x} \cdot \overline{y})$
- $x \Rightarrow y$ significa "implicazione" ed equivale a $\overline{x} + y$.

Soluzione

Si supponga di utilizzare i teoremi dell'algebra booleana; applicando le relazioni fornite si ottiene:

$$(a \Leftrightarrow b) \Leftrightarrow ((a \Rightarrow b) \cdot (b \Rightarrow a)) = (a \cdot b + \overline{a} \cdot \overline{b}) \Leftrightarrow ((\overline{a} + b) \cdot (\overline{b} + a))$$
$$= (a \cdot b + \overline{a} \cdot \overline{b}) \Leftrightarrow (\overline{a} \cdot a + \overline{a} \cdot \overline{b} + b \cdot a + b \cdot \overline{b})$$
$$= (a \cdot b + \overline{a} \cdot \overline{b}) \Leftrightarrow (a \cdot b + \overline{a} \cdot \overline{b})$$

Ponendo $z=(a\cdot b+\overline{a}\cdot\overline{b})$ si ottiene $z\Leftrightarrow z$ che si trasforma in

$$z \Leftrightarrow z = z \cdot z + \overline{z} \cdot \overline{z} = z + \overline{z} = 1$$

Quindi l'espressione iniziale è una tautologia.

3 Esercizio

Ricavare la funzione booleana di forma minima che, dati in ingresso tre bit, determina se il numero di bit uguali a uno è pari.

Soluzione

Siano (i_2, i_1, i_0) i tre bit in ingresso. Sia u l'uscita. u deve essere uguale a 1 quando il numero di ingressi uguali a 1 è pari ovvero è uguale a zero oppure a due. La tabella di verità risultante è la seguente.

i_2	i_1	i_0	u
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Da cui:

$$u = \overline{i_2} \cdot \overline{i_1} \cdot \overline{i_0} + \overline{i_2} \cdot i_1 \cdot i_0 + i_2 \cdot \overline{i_1} \cdot i_0 + i_2 \cdot \underline{i_1} \cdot \overline{i_0}$$

$$= \overline{i_2} \cdot (\overline{i_1} \cdot \overline{i_0} + i_1 \cdot i_0) + i_2 \cdot (\overline{i_1} \cdot i_0 + i_1 \cdot \overline{i_0})$$

$$= \overline{i_2} \cdot (\overline{i_1} \oplus i_0) + i_2 \cdot (i_1 \oplus i_0)$$

$$= \overline{i_2} \oplus (i_1 \oplus i_0)$$

4 Esercizio

Sia $X = (x_3x_2x_1x_0)$ un numero binario puro, per il quale x_3 è il bit di peso maggiore. Si consideri la funzione booleana $f(x_3, x_2, x_1, x_0)$ che è vera se X è un numero primo (assumere 0 sia un numero primo). Si:

- scriva la tabella di verità di f
- \bullet determini l'espressione analitica di f e la si semplifichi mediante l'uso dei teoremi fondamentali
- fornisca una rappresentazione circuitale di f.

Soluzione

La funzione f deve assumere valore 1 quando X è uguale a 1, 2, 3, 5, 7, 11 e 13:

X	x_3	x_2	x_1	x_0	f
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	1 0
5	0	1	0	1	1
6	0	1	1	0	0
1 2 3 4 5 6 7 8	0	1	1	1	
8	1	0	0	0	1 0
9	1	0	0	1	
10	1	0	1	0	0 0 1 0
11	1	0	1	1	1
12	1	1	0	0	0
13	1	1	0	1	
14	1	1	1	0	1 0
15	1	1	1	1	0

Segue che:

$$f = \overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0 + \overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0} + \overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0 + \overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot x_0$$

Ricordando che y = y + y, ovvero ciascun termine può essere ripetuto un numero arbitrario di volte, duplicando il secondo, terzo e quarto termine, si ha:

$$f = (\overline{x_3} \cdot \overline{x_2} \cdot \overline{x_1} \cdot x_0 + \overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0) + (\overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot \overline{x_0} + \overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0) + (\overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot x_0 + \overline{x_3} \cdot x_2 \cdot x_1 \cdot x_0) + (x_3 \cdot \overline{x_2} \cdot x_1 \cdot x_0 + \overline{x_3} \cdot \overline{x_2} \cdot x_1 \cdot x_0) + (x_3 \cdot x_2 \cdot \overline{x_1} \cdot x_0 + \overline{x_3} \cdot x_2 \cdot \overline{x_1} \cdot x_0)$$

Raggruppando i termini comuni all'interno di ciascuna parentesi, e ricordando che $y + \overline{y} = 1$ e che $y \cdot 1 = y$, si ha:

$$f = \overline{x_3} \cdot \overline{x_2} \cdot x_0 + \overline{x_3} \cdot \overline{x_2} \cdot x_1 + \overline{x_3} \cdot x_2 \cdot x_0 + \overline{x_2} \cdot x_1 \cdot x_0 + x_2 \cdot \overline{x_1} \cdot x_0$$

$$= \overline{x_3} \cdot x_0 \cdot (\overline{x_2} + x_2) + \overline{x_3} \cdot \overline{x_2} \cdot x_1 + x_0 \cdot (\overline{x_2} \cdot x_1 + x_2 \cdot \overline{x_1})$$

$$= \overline{x_3} \cdot x_0 + \overline{x_3} \cdot \overline{x_2} \cdot x_1 + x_0 \cdot (x_2 \oplus x_1)$$

$$= \overline{x_3} \cdot \overline{x_2} \cdot x_1 + x_0 \cdot (\overline{x_3} + (x_2 \oplus x_1))$$

Il circuito logico corrispondente è riportato in Figura 1.

Figura 1: Circuito logico per $f(x_3, x_2, x_1, x_0)$.

5 Esercizio

Date le due funzioni booleane f_1 e f_2 :

$$f_1(a, b, c, d) = a \cdot b \cdot \overline{c} + \overline{a} \cdot c \cdot d + \overline{c} \cdot \overline{d}$$

$$f_2(a, b, c, d) = (a + \overline{b} + c) \cdot (\overline{a} + d)$$

Ricavare la tavola di verità della funzione

$$f = f_1 \cdot f_2$$

Soluzione

Tutti i calcoli e i passaggi necessari possono essere effettuati direttamente nella tabella di verità. Essa si presenta come segue.

a b c d	$\overline{a} \ \overline{b} \ \overline{c} \ \overline{d}$	$a \cdot b \cdot \overline{c}$	$\overline{a} \cdot c \cdot d$	$\overline{c} \cdot \overline{d}$	$a + \overline{b} + c$	$\overline{a} + d$	f_1	f_2	f
0 0 0 0	1111	0	0	1	1	1	1	1	1
0 0 0 1	1110	0	0	0	1	1	0	1	0
0 0 1 0	1 1 0 1	0	0	0	1	1	0	1	0
0 0 1 1	1100	0	1	0	1	1	1	1	1
0 1 0 0	1011	0	0	1	0	1	1	0	0
0 1 0 1	1010	0	0	0	0	1	0	0	0
0 1 1 0	1001	0	0	0	1	1	0	1	0
0 1 1 1	1000	0	1	0	1	1	1	1	1
1000	0 1 1 1	0	0	1	1	0	1	0	0
1001	0 1 1 0	0	0	0	1	1	0	1	0
1010	0 1 0 1	0	0	0	1	0	0	0	0
1011	0100	0	0	0	1	1	0	1	0
1 1 0 0	0 0 1 1	1	0	1	1	0	1	0	0
1 1 0 1	0010	1	0	0	1	1	1	1	1
1 1 1 0	0001	0	0	0	1	0	0	0	0
1 1 1 1	0000	0	0	0	1	1	0	1	0

6 Esercizio

Un circuito logico dispone di un ingresso I costituito da 4 bit $I = (i_3 i_2 i_1 i_0)$ (con i_3 bit più significativo) e di una uscita U costituita da 2 bit $U = (u_1 u_0)$ (con u_1 bit più significativo). Il valore dell'ingresso I si considera corretto quando solo uno dei suoi bit è uguale a 1. In tale caso l'uscita U indica, in binario puro, quale tra i bit di ingresso risulta essere uguale a 1 (ovvero se $i_2 = 1$, U deve indicare in binario puro il valore 2, se $i_3 = 1$ il valore 3, etc.). In caso contrario U è uguale a zero. Si riporti la tabella di verità del circuito e si forniscano le equazioni booleane di U. Si rappresenti inoltre il dispositivo circuitalmente.

Soluzione

i_3	i_2	i_1	i_0	u_1	u_0
0	0	0	0	0	0
0	0	0	1	0	0
	0	1	0	0	1
0	0	1	1	0	0
0	1	0	0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	0
0	1	0	1	0	0
0	1	1	0	0	0
0	1	1	1	0	0
0 0 0 0 0 0 1 1 1	0	0	0	0 0 1 0 0 0	1
1	0	0	1	0	0
1	0	1	0	0	0
1	0	1	1	0	0
1	1	0	0	0	0
1	1	0	1	0 0 0	0
1	1	1	0	0	0
1	1	1	1	0	0

$$\begin{array}{rcl} u_1 & = & \overline{i_3} \cdot \underline{i_2} \cdot \overline{i_1} \cdot \overline{i_0} + \underline{i_3} \cdot \overline{i_2} \cdot \overline{i_1} \cdot \overline{i_0} \\ u_0 & = & \overline{i_3} \cdot \overline{i_2} \cdot \underline{i_1} \cdot \overline{i_0} + \underline{i_3} \cdot \overline{i_2} \cdot \overline{i_1} \cdot \overline{i_0} \end{array}$$

Da cui segue la rappresentazione circuitale di Figura 2.

7 Esercizio

Dati due numeri binari di n bit la loro distanza di Hamming è definita come segue. Si considerano n coppie di bit costituite ciacuna dai bit dei due numeri aventi lo stesso peso. La distanza di Hamming è uguale al numero di coppie per cui il valore dei due bit differisce.

Si considerino, ad esempio, i due numeri binari di 8 bit, 00110001 e 00111000. La loro la distanza di Hamming è uguale a 2 in quanto differiscono per i bit di posizione 2^3 e 2^0 . Analogamente i numeri 000000000 e 11111111 hanno distanza di Hamming uguale a 8 e i numeri 011111111 e 111111111 distanza uguale a 1.

Si scriva la tavola di verità di una funzione logica in grado di calcolare la distanza di Hamming tra due numeri di 2 bit espressi in binario puro.

La funzione $U = f(a_1, a_0, b_1, b_0)$ ha come ingressi i due numeri $A = (a_1 a_0)$ e $B = (b_1 b_0)$ e restituisce un risultato su 2 bit $U = (u_1 u_0)$.

Figura 2: Circuito logico per le uscite u_1 e u_0 .

Soluzione

a_1	a_0	b_1	b_0	u_1	u_0
0	0	0	0	0	0
0	0	0	1	0	1
0	0	1	0	0	1
0	0	1	1	1	0
0	1	0	0	0	1
0	1	0	1	0	0
0	1	1	0	1	0
0	1	1	1	0	1
1	0	0	0	0	1
1	0	0	1	1	0
1	0	1	0	0	0
1	0	1	1	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1	1	1	0	0	1
1	1	1	1	0	0

$$\begin{array}{rcl} u_1 & = & \overline{a_1} \cdot \overline{a_0} \cdot b_1 \cdot b_0 + \overline{a_1} \cdot a_0 \cdot b_1 \cdot \overline{b_0} + a_1 \cdot \overline{a_0} \cdot \overline{b_1} \cdot \underline{b_0} + a_1 \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} \\ u_0 & = & \overline{a_1} \cdot \overline{a_0} \cdot \overline{b_1} \cdot \underline{b_0} + \overline{a_1} \cdot \overline{a_0} \cdot b_1 \cdot \overline{b_0} + \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + \overline{a_1} \cdot a_0 \cdot b_1 \cdot \underline{b_0} + \\ & & a_1 \cdot \overline{a_0} \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot \overline{a_0} \cdot b_1 \cdot b_0 + a_1 \cdot a_0 \cdot \overline{b_1} \cdot b_0 + a_1 \cdot a_0 \cdot b_1 \cdot \overline{b_0} \end{array}$$

8 Esercizio

Siano A e B due numeri nella rappresentazione in complemento a due su 2 bit, rispettivamente $A = (a_1 a_0)$ e $B = (b_1 b_0)$. Rappresentare mediante tabella di verità ed espressioni booleane le funzioni:

- $f_1(a_1, a_0, b_1, b_0)$ che è vera se |A| < |B|
- $f_2(a_1, a_0, b_1, b_0)$ che è vera se |A| = |B|
- $f_3(a_1, a_0, b_1, b_0)$ che è vera se |A| > |B|.

Soluzione

La tabella di verità che occorre costruire ha 4 ingressi e 2 uscite. Per comodità e possibile indicarvi i valori decimali di A e B e i relativi valori assoluti. Da essi è immediato ricavare i valori delle uscite.

a_1	a_0	b_1	b_0	A	В	A	B	A > B	A = B	A < B
								f_3	f_2	f_1
0	0	0	0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	1	0	0	1
0	0	1	0	0	-2	0	2	0	0	1
0	0	1	1	0	-1	0	1	0	0	1
0	1	0	0	1	0	1	0	1	0	0
0	1	0	1	1	1	1	1	0	1	0
0	1	1	0	1	-2	1	2	0	0	1
0	1	1	1	1	-1	1	1	0	1	0
1	0	0	0	-2	0	2	0	1	0	0
1	0	0	1	-2	1	2	1	1	0	0
1	0	1	0	-2	-2	2	2	0	1	0
1	0	1	1	-2	-1	2	1	1	0	0
1	1	0	0	-1	0	1	0	1	0	0
1	1	0	1	-1	1	1	1	0	1	0
1	1	1	0	-1	-2	1	2	0	0	1
1	1	1	1	-1	-1	1	1	0	1	0

$$\begin{array}{rcl} f_3 & = & \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot \overline{a_0} \cdot \overline{b_1} \cdot \overline{b_0} + a_1 \cdot \overline{a_0} \cdot \overline{b_1} \cdot b_0 + a_1 \cdot \overline{a_0} \cdot b_1 \cdot b_0 + a_1 \cdot a_0 \cdot \overline{b_1} \cdot \overline{b_0} \\ f_2 & = & \overline{a_1} \cdot \overline{a_0} \cdot \overline{b_1} \cdot \overline{b_0} + \overline{a_1} \cdot a_0 \cdot \overline{b_1} \cdot b_0 + \overline{a_1} \cdot a_0 \cdot b_1 \cdot b_0 + \\ & & a_1 \cdot \overline{a_0} \cdot b_1 \cdot \overline{b_0} + a_1 \cdot a_0 \cdot \overline{b_1} \cdot b_0 + a_1 \cdot a_0 \cdot b_1 \cdot b_0 \\ f_1 & = & \overline{a_1} \cdot \overline{a_0} \cdot \overline{b_1} \cdot b_0 + \overline{a_1} \cdot \overline{a_0} \cdot b_1 \cdot \overline{b_0} + \overline{a_1} \cdot \overline{a_0} \cdot b_1 \cdot \overline{b_0} + \overline{a_1} \cdot \overline{a_0} \cdot b_1 \cdot \overline{b_0} + a_1 \cdot a_0 \cdot b_1 \cdot \overline{b_0} \end{array}$$