1 Frame 29 – The Exponential Function

1.1 Definition

We define the **exponential function** e^z by writing

$$e^z = e^x e^{iy}$$

and we apply Euler's formula to get

$$e^z = e^x(\cos y + i\sin y)$$

Note that, when y = 0, e^z reduces to e^x .

Although we typically understand that $e^{1/n}$ would be the set of nth roots of e, here, we only use the real, positive root $\sqrt[n]{e}$.

1.2 Familar properties

First, in calculus, we know that

$$e^{x_1}e^{x_2} = e^{x_1 + x_2}$$

It is easy to verify that this holds true for complex numbers:

$$e^{z_1}e^{z_2} = e^{z_1 + z_2}$$

This also allows us to write

$$\frac{e^{z_1}}{e^{z_2}} = e^{z_1 - z_2}$$

and, as a specific case,

$$\frac{1}{e^z} = e^{-z}$$

We showed earlier that e^z is differentiable everywhere in the complex plane, and that

$$\frac{d}{dz}e^z = e^z$$

We also know that e^z is never zero. This comes from the pair

$$|e^z| = e^x$$
 and $\arg(e^z) = y + 2n\pi$

and since e^x is never zero, neither is e^z .

1.3 Unfamiliar properties

Since we can write

$$e^{z+2\pi i} = e^z e^{2\pi i} = e^z$$

the exponential function is periodic with an imaginary period of $2\pi i$.

It is also possible for the complex exponential function to be negative. For an example, we know that Euler's identity states

$$e^{i\pi} = -1$$

In fact, e^z can be any given non-zero complex number.

Example: suppose we want solutions to the equation

$$e^z = 1 + i$$

The right side can be rewritten as

$$e^x e^{iy} = \sqrt{2}e^{i\pi/4}$$

and equating the parts of this equation gives

$$x = \ln \sqrt{2} = \frac{1}{2} \ln 2$$
 and $y = \left(2n + \frac{1}{4}\right)\pi$

so

$$z = \frac{1}{2}\ln 2 + \left(2n + \frac{1}{4}\right)\pi i$$

2 Frame 30 – The Logarithmic Function

2.1 Motivation

We said in the previous section that e^z can take on any non-zero complex value. To help us solve the equation

$$e^w = z$$

we will define a logarithmic function, such that

$$e^{\log z} = z \quad (z \neq 0)$$

We can solve for w by writing the two complex numbers in the form

$$z = re^{i\theta}$$

$$w = u + iv$$

Substituting these into the original equation gives

$$e^u e^{iv} = r e^{i\theta}$$

so we get

$$w = \log z = \ln r + i(\theta + 2n\pi)$$

Note that this is a multi-valued function.

Example: if $z=-1-i\sqrt{3}$, then r=2 and $\theta=-2\pi/3$, so

$$\log(-1 - i\sqrt{3}) = \ln 2 + \left(n - \frac{1}{3}\right) 2\pi i$$

2.2 Precise definition

A more precise definition of the multi-valued logarithmic function is

$$\log z = \ln|z| + i\arg z$$

The **principal value** of $\log z$ is obtained by using the single-valued principal argument instead:

$$\text{Log } z = \ln|z| + i\theta$$

Note that

$$\log z = \text{Log}\,z + i2n\pi$$

2.3 Notes

The principal logarithmic function Log z reduces to the usual logarithm from calculus when z is positive and real – if z=r, then

$$\log r = \ln r$$

However, we are now able to find the logarithm of negative real numbers, which we were unable to do in calculus.

Example: the logarithm of -1 is

$$\log(-1) = \ln 1 + (1+2n)i\pi = (2n+1)i\pi$$

and

$$Log(-1) = i\pi$$

3 Frame 31 – Branches & Derivatives of Logarithms

3.1 Limiting a logarithm's domain

We saw in the previous section that the multi-valued logarithm function of a complex number $z=re^{i\theta}$ can be written as

$$\log z = \ln r + i\theta$$

where θ can have any of the values

$$\theta = \operatorname{Arg}(z) + 2n\pi$$

We can make the logarithmic function single-valued by restricting the value of θ to $\alpha < \theta < \alpha + 2\pi$ for any real value of θ . Then, the function is single-valued and is continuous everywhere in the domain of the function (ie: r > 0 and $\theta \in (\alpha, \alpha + 2\pi)$). Note that we cannot include in the ray $\theta = \alpha$ – the function would not be continuous here.

In this limited domain, the components of the log function also satisfy the polar Cauchy-Riemann equations

$$ru_r = 1 = v_\theta; \quad u_\theta = 0 = -rv_r$$

so the logarithmic function is analytic in this domain, with the derivative

$$\frac{d}{dz}\log z = e^{-i\theta}(u_r + iv_r) = \frac{1}{re^{i\theta}} = \frac{1}{z}$$

In particular, we can set $\alpha = -\pi$ and write

$$\frac{d}{dz}\operatorname{Log} z = \frac{1}{z} \quad (|z| > 0, -\pi < \operatorname{Arg} z < \pi)$$

Note that not all of the identities from calculus carry over to the complex plane.

Example: using the principal branch,

$$Log(i^3) = Log(-i) = -i\frac{\pi}{2}$$

but

$$3\log(i) = 3\left(i\frac{\pi}{2}\right) = i\frac{3\pi}{2}$$

so

$$Log(i^3) \neq 3 Log(i)$$

3.2 Branches

A **branch** of a multi-valued function f is any single-valued, analytic function F such that F(z) is one of the values of f at each point within the domain of F. For instance, our limited-domain logarithm is a branch of the multi-valued log function. The principal logarithm function

$$\operatorname{Log} z = \ln r + i\theta \quad (|z| > 0, -\pi < \operatorname{Arg} z < \pi)$$

is known as the principal branch.

A branch cut is a line/curve that is used to define a branch F of a multi-valued function f. Any point on the branch cut is a singular point of F. Any point that is common to all branch cuts of f is called a branch point. For example, the logarithmic function has a branch point at z=0 and a branch cut on the ray $\theta=\alpha$. In particular, the ray $\theta=\pi$ is the branch cut for the principal logarithmic function.

4 Frame 32 – Logarithm Identities

We said earlier that arguments, which are multi-valued functions, can be compared in a special way – since each function is really a set of values, the sets will contain the same values. Specifically,

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)$$

Now, we know that $|z_1z_2| = |z_1||z_2|$, and from our knowledge of real-valued logarithms,

$$\ln|z_1 z_2| = \ln|z_1| + \ln|z_2|$$

Putting together these two statements, we see that

$$\log(z_1 z_2) = \log z_1 + \log z_2$$

which is to be understood as *set equality*, and does not necessarily apply to the principal values. In a similar manner,

$$\log\left(\frac{z_1}{z_2}\right) = \log z_1 - \log z_2$$

Two more properties will be useful in the next section. If z is any non-zero complex number, then

$$z^n = e^{n \log z}$$

for all values of $\log z$. When n=1, this reduces to the familiar

$$z = e^{\log z}$$

Also, for any non-zero z, it is true that

$$z^{1/n} = e^{\frac{1}{n}\log z}$$

where both sides have n distinct values. To show this, we can write out the right side as

$$e^{\frac{1}{n}\log z} = e^{\frac{1}{n}\ln r + \frac{i(\theta + 2k\pi)}{n}} = \sqrt[n]{r}e^{i(\theta/n + 2k\pi/n)}$$

which has n distinct values, for k = 0, 1, ..., n - 1.