Preparatório 14 - Eletrônica

Hiago Riba Guedes RGU:11620104

Professor:Guilherme Garcia

$$\begin{array}{ll} V_{BE} = 0.7V & V_{CE_{max}} = 30V \\ P_{C_{max}} = 16W & I_{C_{max}} = 3A \\ V_{Z} = 10V & P_{Z} = 1W \\ V = 15V \pm 10\% & \end{array}$$

Pelo desenho $V_{CB} = V_{R_s} = 5$ V Logo pelas tensões serem iguais , a corrente será igual

Como V_Z =10 e V_{BE} =0.7 , V_{saida} é a subtração dos dois logo é 9.3 V. Uma vez que entre a base e o emissor de um transistor existe um diodo que faz cair a tensão em 0.7 V.

Como a fonte pode variar de 13.5 V a 16.5 V e a potência no diodo não pode passar de 1 W , calcularemos R_s tomando como medida o valor máximo da fonte.

$$\begin{array}{l} 1~\mathrm{W=}10\times I_z\\ I_{zmax}{=}0.1\mathrm{A}\\ 16.5\text{-}10{=}I_{zmax}\times R_s \end{array}$$

Logo $R_{smin} = 65\Omega$

Quanto maior o Resistor menos se sobrecarrega o diodo.

Calculando ganho do transistor

A corrente do emissor deverá ser de até 500mA.

$$I_E = (\beta + 1) \times I_B$$

 I_B é controlado por R_s

Com o nosso R_s mínimo de 65 Ω , teríamos uma corrente de base maior que

500 mA,
e como $I_E = I_B + I_C$ e a saída é justamente I_E . Então não poderemos usar esse resistor e sim um maior. Pra limitar a base e podemos at
ender a corrente de saída especificada.

Usando-se um resistor de 500Ω

Temos I_B =0.01 A

Jogando na fórmula , o ganho (β) do transistor deverá ser de 49 para atender ao projeto.

Cada R_s resultará em um transistor com ganhos diferentes. Deverá ser mais seguro optar por transistores com ganhos maiores , logo resistores maiores deverão ser colocados.

Com o ganho do transistor calculado podemos calcular R_e que fará com que a tensão fique próxima aos 9V que queremos.

$$I_e = I_B \times (\beta + 1) \\ I_e = 0.01 \times (50) \\ I_e = 0.5A \\ 9 = 0.5 \times R_e \\ R_e = 18\Omega$$