ФМТ тур 1 TOP SECRET! Сдай задачи после разбора!

1. В треугольнике со сторонами 2 и 2 медиана к третьей стороне равна $\sqrt{2}$.

Вдохновившись мудростью бескрайней Вселенной, найди радиус описанной окружности.

По теореме Пифагора половина основания равна $\sqrt{2}$. Следовательно, центр описанной окружности лежит на середине основания и радиус равен $R=\sqrt{2}$.

2. По секрету скажу тебе, что $a=\sqrt{2\sqrt{3\sqrt{2\sqrt{3\sqrt{\dots}}}}}$

Глубоко проникнув в тайную суть вещей, найди a^6 .

Возведём в четвёртую степень, получим $a^4=2^2\cdot 3a$. Сокращаем a, получаем $a^3=12$ и $a^6=144$.

3. Автобус едет в *Орбиту* со скоростью 360 сантиметров в секунду. Вожатый команды α идёт со скоростью 90 сантиметров в секунду по автобусу к водителю. Со скоростью 5 сантиметров в секунду вожатый ест очень длинный сэндвич, держа его горизонтально. По сэндвичу к безопасному его краю бежит муравей со скоростью 6 сантиметров в секунду.

С какой скоростью муравей приближается к Орбите?

$$360 + 90 - 5 + 6 = 451$$

Верные знаки слагаемых и арифметическая ошибка: 2 балла и снимаем.

Неверный знак хотя бы одного слагаемого: 0 баллов и переход.

4. Для того чтобы полностью вынуть наружу резиновый мяч, плавающий в воде, Тане необходимо приложить силу $F_1=20$ H, а для того чтобы полностью погрузить его в воду — силу $F_2=30$ H.

Найди плотность тела ρ . Плотность воды считай равной $\rho_0=1000~{\rm kr/m}^3$.

Первое равновесие, $F_1 = mg = \rho Vg$.

Второе равновесие, $F_2+mg=F_A=
ho_0 Vg$. Отсюда $F_2+F_1=
ho_0 gF_1/
ho g$ и $ho=
ho_0 F_1/(F_1+F_2)=400$ кг/м 3 .

 Φ MT тур 1 TOP SECRET! Судейский экземпляр обычных столов! За одну итерацию оппонирования можно получить максимум 1 балл. Вольные стрелки приносят команде от 0 до 3 баллов. Штрафы за выход за три минуты при решении своей задачи: от 0 до 30 секунд — 1 балл штрафа, от 30 до 60 секунд — 2 балла штрафа и далее 3 балла штрафа.

1. В треугольнике со сторонами 2 и 2 медиана к третьей стороне равна $\sqrt{2}$.

Вдохновившись мудростью бескрайней Вселенной, найди радиус описанной окружности.

По теореме Пифагора половина основания равна $\sqrt{2}$. Следовательно, центр описанной окружности лежит на середине основания и радиус равен $R=\sqrt{2}$.

2. По секрету скажу тебе, что
$$a=\sqrt{2\sqrt{3\sqrt{2\sqrt{3\sqrt{\dots}}}}}$$

Глубоко проникнув в тайную суть вещей, найди a^6 .

Возведём в четвёртую степень, получим $a^4 = 2^2 \cdot 3a$. Сокращаем a, получаем $a^3 = 12$ и $a^6 = 144$.

3. Автобус едет в *Орбиту* со скоростью 360 сантиметров в секунду. Вожатый команды α идёт со скоростью 90 сантиметров в секунду по автобусу к водителю. Со скоростью 5 сантиметров в секунду вожатый ест очень длинный сэндвич, держа его горизонтально. По сэндвичу к безопасному его краю бежит муравей со скоростью 6 сантиметров в секунду.

С какой скоростью муравей приближается к Орбите?

$$360 + 90 - 5 + 6 = 451$$

Верные знаки слагаемых и арифметическая ошибка: 2 балла и снимаем.

Неверный знак хотя бы одного слагаемого: 0 баллов и переход.

4. Для того чтобы полностью вынуть наружу резиновый мяч, плавающий в воде, Тане необходимо приложить силу $F_1=20$ H, а для того чтобы полностью погрузить его в воду — силу $F_2=30$ H.

Найди плотность тела ρ . Плотность воды считай равной $\rho_0=1000~{\rm kr/m}^3.$

Первое равновесие, $F_1 = mg = \rho Vg$.

Второе равновесие, $F_2+mg=F_A=
ho_0Vg$. Отсюда $F_2+F_1=
ho_0gF_1/
ho g$ и $ho=
ho_0F_1/(F_1+F_2)=400$ кг/м 3 .

ФМТ тур 1

- 1. В треугольнике со сторонами 2 и 2 медиана к третьей стороне равна $\sqrt{2}$. Вдохновившись мудростью бескрайней Вселенной, найди радиус описанной окружности.
- 2. По секрету скажу тебе, что $a=\sqrt{2\sqrt{3\sqrt{2\sqrt{3\sqrt{\dots}}}}}$

Глубоко проникнув в тайную суть вещей, найди a^6 .

3. Автобус едет в *Орбиту* со скоростью 360 сантиметров в секунду. Вожатый команды α идёт со скоростью 90 сантиметров в секунду по автобусу к водителю. Со скоростью 5 сантиметров в секунду вожатый ест очень длинный сэндвич, держа его горизонтально. По сэндвичу к безопасному его краю бежит муравей со скоростью 6 сантиметров в секунду.

С какой скоростью муравей приближается к Орбите?

4. Для того чтобы полностью вынуть наружу резиновый мяч, плавающий в воде, Тане необходимо приложить силу $F_1=20~{
m H}$, а для того чтобы полностью погрузить его в воду — силу $F_2=30~{
m H}$.

Найди плотность тела ρ . Плотность воды считай равной $\rho_0=1000~{\rm kr/m}^3$.

ФМТ тур 1

- 1. В треугольнике со сторонами 2 и 2 медиана к третьей стороне равна $\sqrt{2}$. Вдохновившись мудростью бескрайней Вселенной, найди радиус описанной окружности.
- 2. По секрету скажу тебе, что $a=\sqrt{2\sqrt{3\sqrt{2\sqrt{3\sqrt{\dots}}}}}$

Глубоко проникнув в тайную суть вещей, найди a^6

3. Автобус едет в *Орбиту* со скоростью 360 сантиметров в секунду. Вожатый команды α идёт со скоростью 90 сантиметров в секунду по автобусу к водителю. Со скоростью 5 сантиметров в секунду вожатый ест очень длинный сэндвич, держа его горизонтально. По сэндвичу к безопасному его краю бежит муравей со скоростью 6 сантиметров в секунду.

С какой скоростью муравей приближается к Орбите?

4. Для того чтобы полностью вынуть наружу резиновый мяч, плавающий в воде, Тане необходимо приложить силу $F_1=20~{
m H}$, а для того чтобы полностью погрузить его в воду — силу $F_2=30~{
m H}$.

Найди плотность тела ρ . Плотность воды считай равной $\rho_0 = 1000 \text{ кг/м}^3$.