Trabalho 2 - IA

Grupo: Jaine Conceição, Matheus Santos Almeida e Thomé
Pereira

Definição do Trabalho

VERSÃO 1

VERSÃO 2

VERSÃO 3

Versão 1:

- Agente utilizando expectiminimax;
- 4 jogadores individuais com 7 pedras cada.

Formalização da versão 1

- Estados: GameState(to_move, pedras, pedras_restantes, ponta1, ponta2, moves, utility);
- **Jogadores:** $P = \{0,1,2,3\};$
- Ações: Lista com pedras e respectivas pontas em que essas pedras se encaixam;
- Função de transição: Recebe uma pedra e a ponta em que ela encaixa e o estado atual e retorna um novo estado com essa pedra colocada na mesa;
- **Utilidade:** Se o agente expectiminimax vence, então utilidade é 4, senão utilidade é -1.

Árvore Expectiminimax da versão 1

Implementação 1

Experimentaç<u>ão 1</u>

O - Expectiminimax com eval_O

1 - Expectiminimax com eval_1

• **2** - Expectiminimax com eval_2

```
• 3 - Random
```

```
def eval_0 (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - n
    return -0.9*buchas - 0.2*n + 0.7*delta -
0.4*soma_pedras
```

O - Expectiminimax com eval_0

1 - Expectiminimax com eval_1

2 - Expectiminimax com eval_2

• 3 - Random

O - Expectiminimax com eval_0

1 - Expectiminimax com eval_1

• 2 - Expectiminimax com eval_2

3 - Random

```
def eval_2 (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - n
    movimentos = self.moves(...)
    diversidade = checa_diversidade(...)
    return -0.9*buchas - 0.2*n + 0.7*delta -
    0.4*soma_pedras +0.5*len(movimentos)
    + 0.6*diversidade
```


Versão 2:

- Agente utilizando expectiminimax;
- Partidas em duplas com 4 jogadores e 7
 pedras cada.

Formalização da versão 2

- Estados: GameState(to_move, pedras, pedras_restantes, ponta1, ponta2, moves, utility, num_pedras=(7,7,7,7));
- **Jogadores:** $P = \{0,1,2,3\};$
- Ações: Lista com pedras e respectivas pontas em que essas pedras se encaixam;
- Função de transição: Recebe uma pedra e a ponta em que ela encaixa e o estado atual e retorna um novo estado com essa pedra colocada na mesa;
- **Utilidade:** Se o agente expectiminimax **ou seu parceiro** vence, então utilidade é 4, senão utilidade é -1.

Árvore Expectiminimax da versão 2

Implementação 2

- 0 e 2 com eval_amiga
- 1 e 3 com eval_egoista

```
def eval_egoista (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - n
    return -0.9*buchas - 0.2*n + 0.7*delta -
0.4*soma_pedras
```

- 0 e 2 com eval_amiga
- 1 e 3 com eval_egoista

```
def eval_amiga (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    p = state.num_pedras[(player+2)%4]
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - (n+p)
    return -0.9*buchas - 0.2*n + 0.7*delta -
0.4*soma_pedras - 0.2*p
```


Versão 3:

- Agente utilizando Q-learning;
- 4 jogadores individuais com 7 pedras cada.

Formalização da versão 3

Estados: GameState(pedras, pedras_restantes, pontas);

 Ações: Lista com pedras e respectivas pontas em que essas pedras se encaixam;

• **Recompensa:** R(s,a,s') = ???

Implementação 3

O - Agente Q-learning

1 - Expectiminimax com eval_0

• **2** - Random

3 - Random

```
def eval_0 (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - n
    return -0.9*buchas - 0.2*n + 0.7*delta -
0.4*soma_pedras
```


Obrigado!

Probabilidade

Ponta 1:

numero_pedras_ponta1 / numero_pedras_restantes

Ponta 2:

numero_pedras_ponta2 / numero_pedras_restantes

Pingar/passar:

1 - (numero_movimentos / numero_pedras_restantes)

Função de Avaliação da versão 1

- Levou em consideração as seguintes características:
 - N = Número de pedras do agente
 - M = Número de pedras restantes / 3
 - Buchas = Número de buchas na mão do agente
 - Movimentos = Número de movimentos possíveis do agente naquele estado
 - Soma de pedras = Soma dos pontos das pedras na mão do agente
 - Diversidade = Número de naipes diferentes na mão do agente

Probabilidade

Ponta 1:

numero_pedras_ponta1 / numero_pedras_restantes

Ponta 2:

numero_pedras_ponta2 / numero_pedras_restantes

Pingar/passar:

1 - (numero_movimentos / numero_pedras_restantes)

Funções de Avaliação da versão 2

- N = Número de pedras do agente
- **M** = Número de pedras restantes / 3
- Buchas = Número de buchas na mão do agente
- Soma de pedras = Soma dos pontos das pedras na mão do agente
- **p** = Número de pedras do parceiro
- **Delta** = m (n+p)

```
def eval_0 (self, state, player):
    n = len(state.pedras)
    m = len(state.pedras_restantes)/3
    buchas = self.buchas(state.pedras)
    soma_pedras = self.soma_pedra(state)
    delta = m - n
    return -0.9*buchas - 0.2*n + 0.7*delta -
0.4*soma_pedras
```