Методы оптимизации Семинар 3. Выпуклые множества. Выпуклые функции

Лобанов Александр Владимирович

Московский физико-технический институт Факультет инноваций и высоких технологий

lobanov.av@mipt.ru

15 сентября 2022 г.

Что нового?

Ha github появился файл с домашними заданиями:

Методы Оптимизации мФТИ, ФИВТ

Осень 2022

Домашнее задание № 1

Матрично - векторное дифференцирование

deadline: 23:59 (Московское время), 22 сентября.

- 1. Найти $\nabla f(x)$ и f''(x), если $f(x) = \frac{1}{2} ||Ax b||_2^2$, $x \in \mathbb{R}^n$.
- 2. Найти $\nabla f(x)$ и f''(x), если $f(x) = \frac{1}{p} \|x\|_p^p$, $x \in \mathbb{R}^n \setminus \{0\}$, p порядковый номер по списку группы (см. табл. успеваемости).
- 3. Найти df(X) и $\nabla f(X)$, если $f(X) = ||AX B||_F$, $X \in \mathbb{R}^{k \times n}$.
- 4. Найти df(X) и $\nabla f(X)$, если $f(X) = \text{Tr}(AXBX^{-1})$, $X \in \mathbb{R}^{n \times n}$, $\det(X) \neq 0$.
- Найти аналитическое выражение градиента, гессиана и сравнить с ответами, полученными любой системой автоматической дифференциации (autograd / jax / pytorch / tensorflow) для следующих функций:

$$1) \boxed{f(x) = \frac{1}{2}x^{\mathrm{T}}Ax + b^{\mathrm{T}}x + c} \quad 2) \boxed{f(x) = \frac{1}{2}\|Ax - b\|_2^2} \quad 3) \boxed{f(x) = \ln(1 + \exp(ax)).}$$

Формат сдачи: Файл должен быть отправлен на почту lobanov.av@mipt_ri в формате [лdf] сохданию через LaTCX или через вариант нечати «Сохранить как PDF» из блокнота colab \ jupyter notebook.

Аффинное множество

Множество S называется аффинным, если для любых x_1, x_2 из S прямая, проходящая через них, также лежит в S, т.е.

$$\forall \theta \in \mathbb{R}, \ \forall x_1, x_2 \in S; \ \theta x_1 + (1 - \theta)x_2 \in S$$

Аффинная комбинация

Пусть мы имеем $x_1,x_2,\cdots,x_k\in S$, тогда точка $\theta_1x_1+\theta_2x_2+\cdots+\theta_kx_k$ называется аффинной комбинацией x_1,x_2,\cdots,x_k , если $\sum_{i=1}^k \theta_i=1$.

Аффинная оболочка

$$\mathsf{aff}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1 \right\}$$

Аффинное множество

Множество S называется аффинным, если для любых x_1, x_2 из S прямая, проходящая через них, также лежит в S, т.е.

$$\forall \theta \in \mathbb{R}, \ \forall x_1, x_2 \in S; \ \theta x_1 + (1 - \theta)x_2 \in S$$

Аффинная комбинация

Пусть мы имеем $x_1, x_2, \cdots, x_k \in S$, тогда точка $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ называется аффинной комбинацией x_1, x_2, \cdots, x_k , если $\sum_{i=1}^k \theta_i = 1$.

Аффинная оболочка

$$\mathsf{aff}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1 \right\}$$

Аффинное множество

Множество S называется аффинным, если для любых x_1, x_2 из S прямая, проходящая через них, также лежит в S, т.е.

$$\forall \theta \in \mathbb{R}, \ \forall x_1, x_2 \in S; \ \theta x_1 + (1 - \theta)x_2 \in S$$

Аффинная комбинация

Пусть мы имеем $x_1, x_2, \cdots, x_k \in S$, тогда точка $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ называется аффинной комбинацией x_1, x_2, \cdots, x_k , если $\sum_{i=1}^k \theta_i = 1$.

Аффинная оболочка

$$\mathsf{aff}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1 \right\}$$

Аффинное множество

Множество S называется аффинным, если для любых x_1, x_2 из S прямая, проходящая через них, также лежит в S, т.е.

$$\forall \theta \in \mathbb{R}, \ \forall x_1, x_2 \in S; \ \theta x_1 + (1 - \theta)x_2 \in S$$

Аффинная комбинация

Пусть мы имеем $x_1, x_2, \cdots, x_k \in S$, тогда точка $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ называется аффинной комбинацией x_1, x_2, \cdots, x_k , если $\sum_{i=1}^k \theta_i = 1$.

Аффинная оболочка

$$\mathsf{aff}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1 \right\}$$

Выпуклое множество

Множество S называется выпуклым, если для любых x_1, x_2 из S отрезок между ними также лежит в S, т.е.

$$\forall \theta \in [0,1], \ \forall x_1, x_2 \in S; \ \theta x_1 + (1-\theta)x_2 \in S$$

Выпуклое множество

Множество S называется выпуклым, если для любых x_1,x_2 из S отрезок между ними также лежит в S, т.е.

$$\forall \theta \in [0, 1], \ \forall x_1, x_2 \in S; \ \theta x_1 + (1 - \theta)x_2 \in S$$

Выпуклая комбинация

Пусть мы имеем $x_1, x_2, \cdots, x_k \in S$, тогда точка $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ называется выпуклой комбинацией x_1, x_2, \cdots, x_k , если $\sum_{i=1}^k \theta_i = 1, \theta_i \geq 0$.

Выпуклая комбинация

Пусть мы имеем $x_1, x_2, \cdots, x_k \in S$, тогда точка $\theta_1 x_1 + \theta_2 x_2 + \cdots + \theta_k x_k$ называется выпуклой комбинацией x_1, x_2, \cdots, x_k , если $\sum_{i=1}^k \theta_i = 1, \theta_i \geq 0$.

Выпуклая оболочка

Множество всех выпуклых комбинаций точек множества S называется выпуклой оболочкой множества S:

$$\operatorname{conv}(S) = \left\{ \sum_{i=1}^k \theta_i x_i \mid x_i \in S, \sum_{i=1}^k \theta_i = 1 \right\}$$

- ullet Множество ${f conv}(S)$ это наименьшее выпуклое множество, содержащее S.
- Множество S выпукло тогда и только тогда, когда $S = \mathbf{conv}(S)$.

Как доказать, что множество выпукло?

По определению

$$\forall x_1, x_2 \in S, \ 0 \le \theta \le 1 \to \theta x_1 + (1 - \theta)x_2 \in S$$

7 / 15

Как доказать, что множество выпукло?

По определению

$$\forall x_1, x_2 \in S, \ 0 \le \theta \le 1 \to \theta x_1 + (1 - \theta)x_2 \in S$$

Через операции, сохраняющие выпуклость:

• Линейная комбинация выпуклых множеств — выпуклое множество: Пусть есть 2 выпуклых множества S_x, S_y , тогда множество S — выпукло:

$$S = \{s | s = c_1 x + c_2 y, x \in S_x, y \in S_y, c_1, c_2 \in \mathbb{R}\}\$$

- Пересечение любого числа выпуклых множеств выпуклое множество;
- Образ аффинного отображения выпуклого множества выпуклое множество

 Показать, что множество выпукло тогда и только тогда, когда его пересечение с любой прямой выпукло.

- Показать, что множество выпукло тогда и только тогда, когда его пересечение с любой прямой выпукло.
- ② Доказать, что шар в \mathbb{R}^n (т.е. следующее множество $S = \{x \mid \|x x_c\| \le r\}$) выпуклое множество.

Выпуклая функция

Выпуклая функция

Функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, называется выпуклой на S, если

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

для всех $x_1,x_2\in S$ и $0\leq \lambda \leq 1.$

Выпуклая функция

Выпуклая функция

Функция f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, называется выпуклой на S, если

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

для всех $x_1, x_2 \in S$ и $0 \le \lambda \le 1$.

Примеры выпуклых функций

- $f(x) = \frac{1}{2}\langle x, Ax \rangle + \langle b, x \rangle + c, \ x \in \mathbb{R}^n, A \in \mathbb{S}^n$
- $f(x) = x^p, p > 1, x \in \mathbb{R}_+$
- $f(x) = ||x||^p$, $p > 1, x \in \mathbb{R}$
- $f(x) = e^{cx}, c \in \mathbb{R}, x \in \mathbb{R}$
- $f(x) = -\ln x$, $x \in \mathbb{R}_{++}$
- $f(x) = x \ln x$, $x \in \mathbb{R}_{++}$

Как определить выпуклость функций?

Надграфик (Epigraph)

Для функции f(x), определенной на $S\subseteq \mathbb{R}^n$, следующее множество:

epi
$$f = \{[x, \mu] \in S \times \mathbb{R} : f(x) \leq \mu\} \subset \mathbb{R}^{n+1}$$

называется надграфиком (epigraph) функции f(x).

Как определить выпуклость функций?

Надграфик (Epigraph)

Для функции f(x), определенной на $S\subseteq\mathbb{R}^n$, следующее множество:

epi
$$f = \{[x, \mu] \in S \times \mathbb{R} : f(x) \leq \mu\} \subset \mathbb{R}^{n+1}$$

называется надграфиком (epigraph) функции f(x).

Множество подуровней (множество Лебега)

Для функции f(x), определенной на $S\subseteq\mathbb{R}^n$, следующее множество:

$$\mathcal{L}_{\beta} = \{ x \in S : f(x) \le \beta \}$$

называется множеством подуровней функции f(x).

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x)$$

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^T(x)(y - x)$$

Дифференциальный критерий второго порядка

Дважды дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x\in \mathsf{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq 0$$

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^T(x)(y - x)$$

Дифференциальный критерий второго порядка

Дважды дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x\in \mathrm{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq 0$$

Связь с надграфиком. Функция является выпуклой тогда и только тогда, когда ее надграфик является выпуклым множеством.

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^T(x)(y - x)$$

Дифференциальный критерий второго порядка

Дважды дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, является выпуклой тогда и только тогда, когда $\forall x\in \mathrm{int}(S)\neq\emptyset$:

$$\nabla^2 f(x) \succeq 0$$

Связь с надграфиком. Функция является выпуклой тогда и только тогда, когда ее надграфик является выпуклым множеством.

Связь со множеством подуровней. Если f(x) является выпуклой функцией, определенной на выпуклом множестве $S\subseteq \mathbb{R}^n$, тогда для любого β множество подуровней $\mathcal L$ является выпуклом.

Сильно выпуклая функция

Сильно выпуклая функция

Функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, называется μ -сильно выпуклой на S, если:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \frac{\mu}{2}\lambda(1 - \lambda)\|x_1 - x_2\|^2$$

для всех $x_1, x_2 \in S$ и $0 \le \lambda \le 1$ для некоторой $\mu > 0$.

Сильно выпуклая функция

Сильно выпуклая функция

Функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, называется μ -сильно выпуклой на S, если:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \frac{\mu}{2}\lambda(1 - \lambda)\|x_1 - x_2\|^2$$

для всех $x_1, x_2 \in S$ и $0 \le \lambda \le 1$ для некоторой $\mu > 0$.

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq \mathbb{R}^n$, является μ -сильно выпуклой тогда и только тогда, когда $\forall x,y\in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x) + \frac{\mu}{2} ||y - x||^{2}$$

Сильно выпуклая функция

Сильно выпуклая функция

Функция f(x), определенная на выпуклом множестве $S \subseteq \mathbb{R}^n$, называется μ -сильно выпуклой на S, если:

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2) - \frac{\mu}{2}\lambda(1 - \lambda)\|x_1 - x_2\|^2$$

для всех $x_1, x_2 \in S$ и $0 \le \lambda \le 1$ для некоторой $\mu > 0$.

Дифференциальный критерий первого порядка

Дифференцируемая функция f(x), определенная на выпуклом множестве $S\subseteq\mathbb{R}^n$, является μ -сильно выпуклой тогда и только тогда, когда $\forall x, y \in S$:

$$f(y) \ge f(x) + \nabla f^{T}(x)(y - x) + \frac{\mu}{2} ||y - x||^{2}$$

Дифференциальный критерий второго порядка

Дважды дифференцируемая функция f(x), определенная на выпуклом множестве $S \subseteq \mathbb{R}^n$, является μ -сильно выпуклой тогда и только тогда, когда $\forall x \in \mathsf{int}(S) \neq \emptyset$: $|\nabla^2 f(x) \succ \mu I|$

Итересные факты

 \bullet f(x) называется (строго) вогнутой, если функция -f(x) является (строго) выпуклой.

Итересные факты

- ullet f(x) называется (строго) вогнутой, если функция -f(x) является (строго) выпуклой.
- Неравенство Йенсена для выпуклой функции:

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

для $\alpha_i \geq 0$; $\sum_{i=1}^n \alpha_i = 1$.

Для случая бесконечной размерности:

$$f\left(\int_{S} xp(x)dx\right) \le \int_{S} f(x)p(x)dx$$

если интеграл существует и $p(x) \geq 0$, $\int_S p(x) dx = 1$.

Итересные факты

- ullet f(x) называется (строго) вогнутой, если функция -f(x) является (строго) выпуклой.
- Неравенство Йенсена для выпуклой функции:

$$f\left(\sum_{i=1}^{n} \alpha_i x_i\right) \le \sum_{i=1}^{n} \alpha_i f(x_i)$$

для $\alpha_i \geq 0$; $\sum_{i=1}^n \alpha_i = 1$.

Для случая бесконечной размерности:

$$f\left(\int_{S} xp(x)dx\right) \le \int_{S} f(x)p(x)dx$$

если интеграл существует и $p(x) \geq 0$, $\int_S p(x) dx = 1$.

• Если функция f(x) и множество S выпуклы, то любой локальный минимум $x^* = \operatorname*{argmin} f(x)$ будет глобальным. Сильная выпуклость гарантирует единственность решения.

lacktriangledown Показать, что $f(x) = \|x\|$ является выпуклой функцией в $\mathbb{R}^n.$

- lacktriangledown Показать, что $f(x) = \|x\|$ является выпуклой функцией в \mathbb{R}^n .
- ② Показать, что $f(x) = c^T x + b$ является выпулой и вогнутой функцией.

- lacktriangledown Показать, что $f(x) = \|x\|$ является выпуклой функцией в \mathbb{R}^n .
- ② Показать, что $f(x) = c^T x + b$ является выпулой и вогнутой функцией.
- lacksquare Показать, что $f(x) = x^T A x$, где $A \succeq 0$ выпукла в \mathbb{R}^n .

Домашнее задание

deadline: 23:59 (Московское время), 29 сентября.

- **①** Проверить на выпуклость множество $\{x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
- ② Доказать, что множество квадратных симметричных положительно определенных матриц выпукло.
- ullet Показать, что гиперболическое множество $\left\{x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \geq 1 \right\}$ выпукло. *Подсказка:* если $a,b \geq 1$ и $0 \leq \theta \leq 1$, тогда $a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b$.

15 сентября 2022 г.

Домашнее задание

deadline: 23:59 (Московское время), 29 сентября.

- **①** Проверить на выпуклость множество $\{x \in \mathbb{R}^n \mid \alpha \leq a^T x \leq \beta\}$.
- **②** Доказать, что множество квадратных симметричных положительно определенных матриц выпукло.
- ullet Показать, что гиперболическое множество $\left\{x \in \mathbb{R}^n_+ \mid \prod_{i=1}^n x_i \geq 1 \right\}$ выпукло. *Подсказка:* если $a,b \geq 1$ и $0 \leq \theta \leq 1$, тогда $a^{\theta}b^{1-\theta} \leq \theta a + (1-\theta)b$.
- **③** Показать, что f(x) является выпуклой функцией, используя критерии первого и второго порядка, если $f(x) = \sum_{i=1}^n x_i^4$.
- **⑤** Найти значения a,b,c, где $f(x,y,z)=x^2+2axy+by^2+cz^2$ является выпуклой, строго выпуклой и сильно выпуклой.
- Доказать, что добавление $\lambda \|x\|_2^2$ к любой выпуклой функции g(x) обеспечивает сильную выпуклость результирующей функции $f(x) = g(x) + \lambda \|x\|_2^2$. Найдите константу сильной выпулости μ .