MACHINE LEARNING

By Mohamed Aziz Tousli

Input Features Hypothesis Expected Output

About

- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E." Tom Mitchell
- <u>Supervised Learning</u>: We have a data set and already know what our correct output should look like → Relationship between the input and the output (**labled data**)
 - · Regression problems: Output is continuous or almost continuous
 - → Linear regression
 - <u>Classification problems</u>: Output is **discrete**
 - → Logistic regression
- <u>Unsupervised Learning</u>: We have no idea what our results should look like output (**unlabled data**)

Summary: Main topics

Supervised Learning

Linear regression, logistic regression, neural networks, SVMs

Unsupervised Learning

K-means, PCA, Anomaly detection

Special applications/special topics

Recommender systems, large scale machine learning.

Advice on building a machine learning system

 Bias/variance, regularization; deciding what to work on next: evaluation of learning algorithms, learning curves, error analysis, ceiling analysis.

Linear Regression with One Variable

• <u>Training example</u>:

- x⁽ⁱ⁾: input: feature
- y⁽ⁱ⁾: output: label
- <u>Linear regression with one variable</u> = <u>Unvariante linear regression</u> = 1 Output & 1 Input
- Hypothesis function: $\hat{y} = h_{\theta}(x) = \theta_0 + \theta_1 x$ #Map input into output # θ : Weight/Parameter
- <u>Cost function</u> = <u>Squared error function</u> = <u>Mean squared error</u>:
 - $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) y_i)^2$: #Average/Mean of all inputs #\frac{1}{2} for the derivative of \frac{2}{2}
 - J convex quadratic function → One minimum
 - m: number of training examples: training set
- Gradient descent = Least mean squares: $\theta_j = \theta_j \alpha \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$
 - \rightarrow Minimize J and update θ # α : <u>learning rate</u>
 - \rightarrow Small $\alpha \rightarrow$ Slow convergence
 - \rightarrow Big $\alpha \rightarrow$ Divergence

Linear Regression with Multiple Variables

- $x_j^{(i)}$ #Value of feature j in the ith training example
- m #Number of training examples; n #Number of features
- <u>Hypothesis function</u>: $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n = \theta^T x$; $x_0 = 1$

•
$$\rightarrow h_{\theta}(x) = X\theta; X = \begin{pmatrix} x_0^{(1)} & x_1^{(1)} \\ x_0^{(2)} & x_1^{(2)} \\ x_0^{(3)} & x_1^{(3)} \end{pmatrix}; \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}$$

- Cost function: $J(\theta_0, \theta_1, \dots) = \frac{1}{2m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) y^{(i)} \right)^2 = \frac{1}{2m} (X\theta y)^T (X\theta y)$
- <u>Gradient descent</u>: Repeat until convergence:

•
$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
; $\boldsymbol{\theta} = \boldsymbol{\theta} - \frac{\alpha}{m} \boldsymbol{X}^T (\boldsymbol{X} \boldsymbol{\theta} - \boldsymbol{y})$

• **Vectorization**: Matrix operations (vs Loops)

Gradient Descent	Normal Equation
Need to choose α	No need to choose α
Needs many iterations	No need to iterate
O(kn²)	O(n³), need to calculate (X ^T X) ⁻¹
Works well when n is large	Slow if n is very large

Other Notes

- Purpose of feature normalization: Speed up learning
- Feature scaling: $\frac{input\ value}{maximum\ value-minimum\ value} \rightarrow -1 \le x_i \le 1$
- Mean normalization: input value meanvalues $\rightarrow \mu_i' = 0$
- $\rightarrow x_i = \frac{x_i \mu_i}{s_i} \# \mu$: mean; s: range/standard deviation
- <u>Debug gradient descent</u>: Plot J in function of number of iterations: J must be decreasing PS: If J is increasing, decrease α (by multiple of 3)
- Automatic convergence test: Use a threshold ϵ instead of number of iterations
- <u>Polynomial regression</u>: Create other features by squaring actual features
 Change the behavior of the curve of the hypothesis function
- Normal equation: Find optimum without iteration: $\theta = (X^T X)^{-1} X^T y$ If $(X^T X)^{-1}$ is noninvertible \rightarrow Delete features that are linearly dependent PS: No need for featuring scaling here

Logistic Regression

- Binary classification problem: Output $y \in \{0 \le \text{negative class } \}$
- Method: Use linear regression and predict > 0.5 as 1 and < 0.5 as 0
 - → Doesn't work well (Classification is not linear)
- <u>Hypothesis function</u> = <u>Sigmoid function</u> = <u>Logistic function</u> = $h_{\theta}(Linear\ function)$

•
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}} = P(y = 1/x; \theta) = 1 - P(y = 0/x; \theta) \in [0,1]$$

- Decision boundary:
 - $h_{\theta}(x) \ge 0.5 \Leftrightarrow \theta^T x > 0 \rightarrow y = 1$
 - $h_{\theta}(x) < 0.5 \Leftrightarrow \theta^T x < 0 \rightarrow y = 0$

- Cost function: $J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} log \left(h_{\theta}(x^{(i)}) \right) + \left(1 y^{(i)} \right) log \left(1 h_{\theta}(x^{(i)}) \right)$
 - $h = g(X\theta); J(\theta) = -\frac{1}{m} \left(-y^T \log(h) \left(1 y^T\right) \log(1 h) \right)$
 - Convex function → Guarantee the existence of the minimum
- Gradient descent: Repeat until convergence:

•
$$\theta_j = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
; $\boldsymbol{\theta} = \boldsymbol{\theta} - \frac{\alpha}{m} \boldsymbol{X}^T (\boldsymbol{g}(\boldsymbol{X}\boldsymbol{\theta}) - \boldsymbol{y})$

- Multiclass classification: One-vs-all: Here, $y \in \{0,1,...,n\}$
 - → Divide problem into n+1 binary classification problems
 - → Choose one class and lump all the others into a single class, repeatedly → Choose highest value

Regularization

- Overfitting (High variance) vs <u>Underfitting</u> (High bias)
 - Overfitting solutions: Reduce features, regularization (reduce parameters)
- New cost function: $J(\theta) = Old J(\theta) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$
 - λ: Regularization parameter
 - Sum starts from 1 because we don't want to penalize θ_0
- New gradient descent: $\theta_j = Old \ \theta_j \alpha \frac{\lambda}{m} \theta_j = \theta_j (1 \alpha \frac{\lambda}{m}) \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) y^{(i)}) x_j^{(i)}$
 - $1 \alpha \frac{\lambda}{m}$ is less than $1 \rightarrow \text{Reduce the value of } \theta_j$ by some amount on every update
- Regularization for normal equation: $\theta = (X^TX + \lambda L)^{-1}X^Ty$; $L = \begin{bmatrix} 0 & 1 & \\ & 1 & \\ & & \ddots & \\ & & & 1 \end{bmatrix}$

L: Number of layers

s_l: Number of units in layer l

K: Number of output units

 $a_i^{(j)}$: Activation of unit i in layer j $\theta^{(j)}$: matrix of weights in layer j (j+1,j) $z^{(j)} = \theta^{(j-1)}a^{(j-1)}; a^{(j)} = g(z^{(j)})$

x_1 x_2 x_3 x_2 x_3 x_4 x_5 x_5

Neural Networks

- Cost function of output layer: $J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{k=1}^{K} \left[y_k^{(i)} \log \left(\left(h_{\Theta}(\mathbf{x}^{(i)}) \right)_k \right) + \left(1 y_k^{(i)} \right) \log \left(1 \left(h_{\Theta}(\mathbf{x}^{(i)}) \right)_k \right) \right] + \frac{\lambda}{2m} \sum_{l=1}^{L-1} \sum_{i=1}^{S_l} \sum_{j=1}^{S_{l+1}} (\Theta_{\mathbf{j},i}^{(l)})^2$
 - Double sum simply adds up the logistic regression costs calculated for each cell in the output layer
 - Triple sum simply adds up the squares of all the individual Θs in the entire network.
- <u>Backpropagation</u> = <u>Gradient Descent</u>:
 - Last layer: $\delta^L = a^{(L)} y \# \delta_j^{(l)}$: error of node j in layer $l \Leftrightarrow derivative$ of cost function
 - Other layers: $\delta^{(l)} = \left(\left(\Theta^{(l)} \right)^T \delta^{(l+1)} \right) * a^{(l)} * \left(1 a^{(l)} \right)$ element-wise
- <u>Gradient checking</u>: To check if backpropagation algorithm is correct (very slow, to be used once)

•
$$\frac{\partial}{\partial \Theta_{j}} J(\Theta) = \frac{J(\Theta_{1}, \dots, \Theta_{j} + \epsilon, \dots, \Theta_{n}) - J(\Theta_{1}, \dots, \Theta_{j} - \epsilon, \dots, \Theta_{n})}{2\epsilon}; \epsilon = 10^{-4}$$

- Random initialization: $\Theta^{(l)} = 2 \epsilon rand(L_{output}, L_{input} + 1) \epsilon$
 - Initialization to zeros is not good in neural networks

Backpropagation Algorithm

Back propagation Algorithm

Given training set $\{(x^{(1)}, y^{(1)}) \cdots (x^{(m)}, y^{(m)})\}$

• Set $\Delta_{i,j}^{(l)}$:= 0 for all (I,i,j)

For training example t =1 to m:

- Set $a^{(1)} := x^{(t)}$
- Perform forward propagation to compute a^(l) for I=2,3,...,L
- Using $y^{(t)}$, compute $\delta^{(L)} = a^{(L)} y^{(t)}$
- Compute $\delta^{(L-1)}, \delta^{(L-2)}, \dots, \delta^{(2)}$ using $\delta^{(l)} = ((\Theta^{(l)})^T \delta^{(l+1)}) \cdot *a^{(l)} \cdot *(1-a^{(l)})$
- $\Delta_{i,j}^{(l)} := \Delta_{i,j}^{(l)} + a_j^{(l)} \delta_i^{(l+1)}$ or with vectorization, $\Delta^{(l)} := \Delta^{(l)} + \delta^{(l+1)} (a^{(l)})^T$
- $D_{i,j}^{(l)} := \frac{1}{m} \left(\Delta_{i,j}^{(l)} + \lambda \Theta_{i,j}^{(l)} \right)$ If j≠0 NOTE: Typo in lecture slide omits outside parentheses. This version is correct.
- $D_{i,j}^{(l)}:=rac{1}{m}\Delta_{i,j}^{(l)}$ If j=0

Neural Networks (Final)

First, pick a network architecture; choose the layout of your neural network, including how many hidden units in each layer and how many layers total.

- Number of input units = dimension of features $x^{(i)}$
- · Number of output units = number of classes
- Number of hidden units per layer = usually more the better (must balance with cost of computation as it increases with more hidden units)
- Defaults: 1 hidden layer. If more than 1 hidden layer, then the same number of units in every hidden layer.

Training a Neural Network

- 1. Randomly initialize the weights
- 2. Implement forward propagation to get $h_{\theta}(x^{(i)})$
- 3. Implement the cost function
- 4. Implement backpropagation to compute partial derivatives
- 5. Use gradient checking to confirm that your backpropagation works. Then disable gradient checking.
- 6. Use gradient descent or a built-in optimization function to minimize the cost function with the weights in theta.

When we perform forward and back propagation, we loop on every training example:

```
for i = 1:m,
Perform forward propagation and backpropagation using example (x(i),y(i))
```

Evaluating a Hypothesis

• Train set:

- 1. Train set 60%: Learn Θ and minimize $J_{train}(\Theta)$ using the training set
- 2. CV set 20%: Try different hyperparameters using the cross validation set
- 3. Test set 20%: Compute the test set error $J_{test}(\Theta)$
 - We don't use regularization in the CV set (since λ is already fixed in the train set)

• Test set error:

- For linear regression: $J_{test}(\Theta) = \frac{1}{2m_{test}} \sum_{i=1}^{m_{test}} \left(h_{\Theta} \left(x_{test}^{(i)} \right) y_{test}^{(i)} \right)^2$
- For classification/misclassification error: $Test\ Error = \frac{1}{m_{test}} \sum_{i=1}^{m_{test}} err\left(h_{\Theta}\left(x_{test}^{(i)}\right), y_{test}^{(i)}\right)$
 - $err(h_{\Theta}(x), y) = \begin{cases} 1 & \text{if } h_{\Theta}(x) \ge 0.5 \text{ and } y = 0 \text{ or } h_{\Theta}(x) < 0.5 \text{ and } y = 1 \\ 0 & \text{otherwise} \end{cases}$

Bias vs Variance

More on Bias vs. Variance

Typical learning curvefor high bias(at fixed model complexity):

• <u>High variance solutions</u>:

- Getting more training examples
- Trying smaller sets of features
- Increasing λ
- Making neural network smaller

• <u>High bias solutions</u>:

- Adding features
- Adding polynomial features
- Decreasing λ
- Making neural network bigger

More on Bias vs. Variance

Typical learning curve for high variance(at fixed model complexity):

Model Selection

- Bias: approximation error (Difference between expected value and optimal value)
 - High Bias = UnderFitting (BU)
 - $J_{train}(\Theta)$ and $J_{CV}(\Theta)$ both will be high and $J_{train}(\Theta) \approx J_{CV}(\Theta)$
- · Variance: estimation error due to finite data
 - High Variance = OverFitting (VO)
 - $J_{train}(\Theta)$ is low and $J_{CV}(\Theta) \gg J_{train}(\Theta)$
- Intuition for the bias-variance trade-off:
 - Complex model → sensitive to data → much affected by changes in X → high variance, low bias.
 - Simple model \rightarrow more rigid \rightarrow does not change as much with changes in X \rightarrow low variance, high bias.
- Regularization effects:
 - Small values of λ allow model to become finely tuned to noise leading to large variance \rightarrow overfitting.
 - Large values of λ pull weight parameters to zero leading to large bias \rightarrow underfitting.
- <u>Model complexity effects</u>:
 - Lower-order polynomials fit poorly consistently **>** low variance, high bias.
 - Higher-order polynomials fit the training data well and the test data poorly **>** high variance, low bias.

Error Metrics for Skewed Classes

- <u>Skewed classes</u>: When we have lot more examples from one class than from the other class.
- Precision/Recall:

PS: We want both recall and precision to be high

Precision/Recall tradeoff:

- Confident prediction \Leftrightarrow Large threshold (1 if > 0,7) \rightarrow High precision, low recall
- Safe prediction \Leftrightarrow Small threshold (1 if > 0,3) \rightarrow Low precision, high recall

$$\Rightarrow$$
 F Score = F1 Score = $2\frac{PR}{P+R}$

PS: Precision/Recall train on the CV set

Support Vector Machine (SVM)

• Purpose: Classification machine learning algorithm

•
$$J(\theta) = C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T x^{(i)}) + (1 - y^{(i)}) cost_0(\theta^T x^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \Theta_j^2$$

- $C = \frac{1}{\lambda}$: Convention of SVMs
- $\frac{1}{m}$ is removed because minimizing f(x) is the same as minimizing $\alpha f(x)$

•
$$h_{\theta}(x) = \begin{cases} 1 & \text{if } \Theta^T x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

- If y=1, we want $\Theta^T x \ge 1$ (not just ≥ 0)
- If y=0, we want $\Theta^T x < -1$ (not just < 0)
- Margin: Distance of the decision boundary to the nearest example
- → Decision boundary is **as far away as possible** from positive and negative examples (large margin)
- C large → margin large. Reduce C for **outlier** examples

PS: Data is linearly separable when a straight line can separate positive and negative examples

n	Small	Intermediate	Large
Small	-	Guassian Kernel	Linear Kernel
Large	Linear Kernel	-	-

Kernels

→ Neural Networks works well, but slower

- <u>Purpose</u>: Make complex, non-linear classifiers using SVMs
- Gaussian kernel: $f_i = similarity(x, l^{(i)}) = e^{-\frac{\left|\left|\left|x-l^{(i)}\right|\right|^2}{2\sigma^2}}$; 1 for landmark
 - $l^{(1)} \rightarrow f_1$
 - $l^{(2)} \rightarrow f_2$ $\rightarrow h_{\Theta}(x) = \Theta_1 f_1 + \Theta_2 f_2 + \cdots$

...

 σ^2 can be modified to affect the **drop-off** of the feature f_i

Feature scaling must be performed before using Gaussian kernel

Similarity functions must satisfy "Mercer's Theorem" (Convergence of SVM)

- Cost function: $J(\theta) = C \sum_{i=1}^{m} y^{(i)} cost_1(\theta^T \boldsymbol{f}^{(i)}) + (1 y^{(i)}) cost_0(\theta^T \boldsymbol{f}^{(i)}) + \frac{1}{2} \sum_{j=1}^{n} \Theta_j^2$
- About hyper parameters:
 - C large \rightarrow High variance, low bias
 - C small → Low variance, high bias
 - σ^2 large \rightarrow Features f_i vary more smoothly \rightarrow High bias, low variance
 - o^2 small \rightarrow Features f_i vary less smoothly \rightarrow Low bias, high variance
- PS: No kernel «Linear kernel» → Standard linear classifier
- PS: Multiclass classification → One-vs-all method

Clustering

- Purpose: Unsupervised learning
- <u>K-means algorithm</u>: Automatically group data into coherent subsets
 - 1. Random initialization of K cluster centroids
 - 2. Cluster assignment: assign all examples into groups based on which cluster centroid is <u>closest</u> to $c^{(i)} = argmin_k \left| \left| x^{(i)} \mu_k \right| \right|^2 \#Each\ c^{(i)}$ contains the index of the centroid that has minimal distance to $x^{(i)}$

PS: Square root is to minimize more sharply and less computation

3. **Move centroid**: compute the <u>averages</u> for all the points inside each of the groups, then move the cluster centroid points to those averages

$$\mu_k = \frac{1}{n} (x^{(k_1)} + \dots + x^{(k_n)})$$
 where each of $x^{(k_1)}, \dots, x^{(k_n)}$ are the training examples assigned to group μ_k

PS: if μ_k has <u>0 points</u> assigned to it \rightarrow <u>Re-initialize</u> or <u>eliminate</u>

4. Re-run (2) and (3) until we have found our clusters Stop when new iterations do not affect the clusters $c^{(i)}$ =index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned μ_k =cluster centroid k $\mu_{c^{(i)}}$ =cluster centroid of cluster to which example $x^{(i)}$ has been assigned

Cost function = Distortion of training examples: $J(c^{(i)}, ..., c^{(m)}, \mu_1, ..., \mu_k) = \frac{1}{m} \sum_{i=1}^{m} \left| |x^{(i)} - \mu_{c^{(i)}}| \right|^2$

Cluster assignment: Minimize J with $c^{(1)},...,c^{(m)}$ (holding $\mu_1,...,\mu_k$ fixed)

Move centroid: Minimize J with $\mu_1,...,\mu_k$

PS: J always decrease unless stuck at a bad local optimum

- Random initialization: Randomly pick K training examples and set $\mu_1,...,\mu_k$ equal to them PS: K-means can get stuck in local optima \rightarrow Run the algorithm on different random initializations
- Choosing the Number of Clusters:
 - The elbow method: Plot J(K). Choose K at the point where J starts to flatten out (although the curve is very gradual)
 - Downstream purpose: Choose K that proves to be the most useful for some goal you're trying to achieve

Principal Component Analysis (PCA)

- <u>Purpose</u>: Dimensionality reduction \rightarrow Speed up supervised learning algorithm
 - **<u>Data Compression</u>**: Reduce the dimension of our features if we have a lot of redundant data
 - → Make a new single line of two highly correlated features
 - → Reduce computer memory and speed up learning algorithm.
 - PS: We are reducing our features rather than our number of examples (m fixed, n decreases)
 - Visualization: Reduce the dimension to 3 or less in order to plot it
 - →Need to find new features, that can effectively **summarize** all the other features
- <u>Principle</u>: Given two features, we want to find a single line that describes both features at once. We then map our old features onto this new line to get a new single feature.
 - →Reduce from n-dimension to k-dimension: Find k vectors onto which to project the data so as to minimize the projection error
- <u>Linear regression vs PCA</u>:
 - In linear regression, we minimize the **squared error** from every point to our predictor line. These are vertical distances.
 - In PCA, we minimize the **shortest distance**, or shortest *orthogonal* distances, to our data points.

PCA Algorithm

- Compute **covariance matrix**: $\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x^{(i)}) (x^{(i)})^T$; $n \times n$ matrix
- Compute **eigenvectors** of covariance matrix Σ
- Take the first k columns of the matrix and compute z: $z^{(i)} = U_{reduce}^T$, $x^{(i)}$; $k \times 1$ vector

PS1: We can only get approximations of our original data

PS2: U_{reduce} is Unitary Matrix (Orthogonal Matrix)

Choosing the Number of Principal Components:

- Calculate the average squared projection error: $A = \frac{1}{m} \sum_{i=1}^{m} \left| \left| x^{(i)} x_{approx}^{(i)} \right| \right|^2$ Calculate the total variation in the data: $B = \frac{1}{m} \sum_{i=1}^{m} \left| \left| x^{(i)} \right| \right|^2$
- Choose k to be the smallest value such that: $\frac{A}{B} \le 0.01$

 \rightarrow 99% of the variance is retained

- PS1: PCA is applied only on the training set and not on the cross-validation or test sets
- PS2: Don't use PCA to prevent overfitting

Anomaly Detection

- "Model" $p(x) \rightarrow probability that x_{test}$ is anomalous $\rightarrow Use a threshold <math>\epsilon$
 - If anomaly detector flags too many anomalous examples \rightarrow Decrease ϵ
- "Model" $p(x) \rightarrow probability that <math>x_{test}$ is anomalous \rightarrow Use a **threshold** ϵ
- Gaussian distribution: Probability of distribution of x Gaussian $\Leftrightarrow x \sim N(\mu, \sigma^2)$

$$> p(x; \mu, \sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

- $ightharpoonup \underline{\text{Mean}}$: Center of the curve: $\mu = \frac{1}{m} \sum_{i=1}^{m} x^{(i)}$
- ightharpoonup Standard deviation: Width of the curve: $\sigma^2 = \frac{1}{m} \sum_{i=1}^m (x^{(i)} \mu)^2$
- Independence assumption: $p(x) = \prod_{j=1}^{n} p(x_j; \mu_j, \sigma_i^2)$
- Algorithm: Compute μ and $\sigma^2 \rightarrow$ Compute $p(x) \rightarrow$ Anomaly if $p(x) < \epsilon$
- <u>Data set:</u>
 - Non-anomalous: 60/20/20 → train/CV/test
 - Anomalous: $50/50 \rightarrow CV/test$

PS: CV to choose the threshold ϵ

Multivariate Gaussian distribution: $p(x; \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} e^{-\frac{(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}}$

• Transformations on features: $\log(x)$, $\log(x+c)$, \sqrt{x} , $\sqrt[3]{x} \rightarrow \text{Do not have bell-shaped curve}$

Anomaly Detection	Supervised Learning
Small number of positive examples and large number of negative examples	Large number of both positive and negative examples
Different "types" of anomalies and it is hard for the algorithm to learn from positive examples what the anomalies look like	Enough positive examples for the algorithm to get a sense of what new positives examples look like

Recommender Systems

- Example: We are trying to recommend movies to customers
- Notations:
 - $n_u = number of users$
 - $n_m = number of movies$
 - r(i,j) = 1 if user j has rated movie i
 - y(i,j) = rating given by user j to movie I
 - x_1 = romance rate in a movie
 - x_2 = action rate in a movie
 - $\Theta^{(j)}$ = parameter vector for user j
 - $x^{(i)}$ = feature vector for movie i
 - $m^{(j)}$ = number of movies rated by user j
 - For user j, movie i, predicted rating: $(\boldsymbol{\theta}^{(j)})^T (x^{(i)})$ (Linear regression)
- Learn parameter θ : $\min_{\theta^{(1)},\dots,\theta^{(n_u)}} = \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i:r(i,j)=1} \left(\left(\boldsymbol{\theta}^{(j)} \right)^T \left(\boldsymbol{x}^{(i)} \right) \boldsymbol{y}^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\boldsymbol{\theta}^{(j)} \right)^2$ Choose i such that r(i,j) = 1Eleminate the constant $\frac{1}{m}$
- Lean feature x: $\min_{x^{(1)},...,x^{(n_m)}} = \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} \left(\left(\boldsymbol{\theta}^{(j)} \right)^T \left(x^{(i)} \right) y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$ \rightarrow It is difficult to find features such as "romance rate" and "action rate in a movie **Randomly guess** the values for θ to guess the features repeatedly
- Collaborative filtering: $J(x, \theta) = \frac{1}{2} \sum_{(i,j):r(i,j)=1} \left(\left(\boldsymbol{\theta}^{(j)} \right)^T \left(\boldsymbol{x}^{(i)} \right) \boldsymbol{y}^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} \left(\boldsymbol{\theta}^{(j)} \right)^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^{n_m} \left(\boldsymbol{x}_k^{(i)} \right)^2$ Initialization of x's and $\boldsymbol{\theta}$'s to small values
- PS: For new users, we use mean normalization → New user won't rank all the movies 0

Large Datasets

- Large dataset > Good algorithm → Computational problems
- <u>Large scale machine learning</u>: Datasets can approach m = 100,000,000. Gradient descent will make a summation over m
- Stochastic gradient descent:
 - 1. Randomly shuffle dataset
 - 2. Repeat { for i=1,...,m: { $\theta_j = \theta_j \alpha(h_\theta(x^{(i)}) y^{(i)}).x_i^{(i)}$ (for j = 0,...,n) } }
 - → Modify parameters after each training example

PS: Doesn't reach the global minimum. 1 epoch will be sufficient. Faster if m is large

- Repeat { i=1,11,...,99; $\theta_j = \theta_j \alpha \frac{1}{10} \sum_{k=i}^{i+9} cost \ (for \ j = 0,...,n) }$
- Batch: Vectorization / Mini-batch: Vectorization + Speed / Stochastic: Speed
- Tip: Plot cost averaged over the last 1000 iterations
- Average over more examples → Smaller plot
- \circ Smaller $\alpha \rightarrow$ Avoid divergence
- o Add rate decay to guarantee convergence of stochastic gradient descent

Online Learning

- →Continuous stream of data
- $p(y = 1/x; \theta)$ #Learn probability \rightarrow Optimize price \rightarrow Choose our service
- Repeat forever { Get (x[user, price],y[=0 they chose, =1 they didn't]) $\rightarrow \theta_j = \theta_j \alpha(h_{\theta}(x) y)x_i$; (j = 0, ..., n) }
- PS: Learn and discard it → Can adapt to change user preface
- <u>Map reduce & data parallelism</u>: Parallelize the computations
 - →Split data into p parts; p number of machines
 - \rightarrow Each machine has $\frac{1}{p}$ to calculate

$$\theta_j = \theta_j - \alpha \frac{1}{n} (machine1 + machine2 + \cdots)$$

 \rightarrow Speed learning slightly less than $\times p$ times

PS: If we have summation of big numbers, we use map reduce There are also multi-core machines

Optical Character Recognition

- →Extract text from images
- Steps in pipeline:
 - 1. **Text detection** → Sliding window detection with step stride / size
 - 1. White region that may contain text
 - 2. Expansion operator: Turn nearby pixels to white
 - 3. Choose the white ones that has dimensions of a text
 - 2. Character segmentation
 - → 1D sliding window for character segmentation
 - → Detect gaps and make lines to split between two
 - 3. Character classification

Artificial Data Synthesis

→Generate new images from scratch (not real data)

PS: Distortions should be representing the type of noise in the data

PS: Do not add random meaningless noise to the data

Tip: Make sure you have a low bias classifier

Question: "How much work to get 10x as much data as we currently have?"

<u>Techniques</u>:

- 1. Artificial data synthesis: Make distortions and modifications on data
- 2. Collect/label data by yourself \rightarrow Calculate number of hours needed?
- 3. Crowd source: Hire people to label data for you (Eg. Amazon Mechanical Turk)

Ceiling Analysis

- →Estimate the importance of each composition in the pipeline
 - 1. Check accuracy of the whole system
 - 2. Check accuracy of the system by giving it perfect next component labels
 - 3. ...
 - 4. Check the difference between the different accuracies and choose the biggest ones