- **1.2. R:** Através do método da maioria simples, apenas seriam consideradas as votações na 1ª preferência. Assim, A teria 40 votos e B teria 20+15 = 35 votos, pelo que o candidato A seria o vencedor
- **1.3. R**: A: $\frac{40}{75} \approx 53\%$ B: $\frac{20+15}{75} \approx 47\%$ C: $\frac{0}{75} = 0\%$
- **1.4.** Este é um exemplo de uma situação em que se verifica o Paradoxo de Borda. Através do Método de Borda, será eleito o candidato B e com o método da maioria simples, o candidato eleito será o A.
- **2.1. a)** Gato: $4 \times 4 + 2 \times 2 + 2 \times 1 = 22$ pontos

Cão: $3 \times 4 + 4 \times 2 + 1 \times 1 = 21$ pontos

Coelho: $2 \times 4 + 3 \times 2 + 3 \times 1 = 17$ pontos

Porquinho-da-Índia:

 $1 \times 4 + 1 \times 2 + 4 \times 1 = 10$

pontos

R: (A)

b) Basta olhar para a 1ª preferência:

Gato: 4 Cão: 2 Coelho: 0

Porquinho-da-Índia: 1

R: (A)

c) 4 > 2 + 0 + 1 pontos

R: (A)

2.2. Gato: $4 \times 4 + 2 \times 2 = 20$ pontos

Cão: $3 \times 4 + 4 \times 2 = 20$ pontos Coelho: $2 \times 4 + 3 \times 2 = 14$ pontos

Porquinho-da-Índia: $1 \times 4 + 1 \times 2 = 6$ pontos

R: Caso a avó se abstivesse da votação na preferência referida, verificar-se-ia um empate das opções "Gato" e "Cão" com 20 pontos cada.

Pág. 12

3.1. Mateus:
$$\frac{6}{26} \approx 23,08\%$$

Filipa:
$$\frac{6}{26} \approx 23,08\%$$

Manuel:
$$\frac{3}{26} \approx 11,54\%$$

Dinis:
$$\frac{6}{26} \approx 23,08\%$$

Sofia:
$$\frac{2}{26} \approx 7,69\%$$

Constança:
$$\frac{3}{26} \approx 11,54\%$$

1.1. A: $3 \times 40 + 2 \times 20 + 1 \times 15 = 175$ pontos

B: $2 \times 40 + 3 \times 20 + 3 \times 15 = 185$ pontos

O vencedor foi o candidato A com 185 pontos.

C: $1 \times 40 + 1 \times 20 + 2 \times 15 = 90$ pontos

3.2. a) Filipa: $3 \times 2 + 3 \times 6 + 2 \times 8 + 1 \times 10 = 50$ pontos

Dinis: $2 \times 2 + 1 \times 6 + 1 \times 8 + 3 \times 10 = 48$ pontos

Mateus: $1 \times 2 + 2 \times 6 + 3 \times 8 + 2 \times 10 = 58$ pontos

Delegado: Mateus com 58 pontos Subdelegado: Filipa com 50 pontos

b) O 3.º classificado foi o Dinis. Se no exemplo anterior fossem atribuídos 5 pontos (por exemplo) para a 1.ª preferência, 2 para a 2.ª e 1 para a 3.ª, as pontuações totais seriam:

Filipa: $5 \times 2 + 5 \times 6 + 2 \times 8 + 1 \times 10 = 66$ pontos

Dinis: $2 \times 2 + 1 \times 6 + 1 \times 8 + 5 \times 10 = 68$ pontos

Mateus: $1 \times 2 + 2 \times 6 + 5 \times 8 + 2 \times 10 = 74$

Assim, o Dinis seria eleito subdelegado.

O Dinis poderia ser eleito subdelegado caso à primeira preferência fossem atribuídos 5 pontos, mantendo-se 2 pontos para a segunda preferência e 1 ponto para a terceira preferência.

3.3. R:

3.4. R: Filipa: 6 + 2 = 8 pontos

Dinis: 10+0=10 pontos Mateus: 8+0=8 pontos

. **R:** Não. Aplicando o Métod

3.5. R: Não. Aplicando o Método de Borda, o candidato mais pontuado foi o Mateus. Aplicando o sistema maioritário, o candidato mais pontuado seria o Dinis (precisamente o menos pontuado em 3.2.).

4.1. R: Para a vitória da opção "Londres" refletir a vontade da maioria dos alunos, deveria ter registado, no mínimo, 120:2+1=61 votos.

4.2.

a) Seja:

 $x = n.^{\circ}$ de votos na preferência rosa;

 $0.75x = n.^{\circ}$ de votos na preferência azul;

 $1,25x = n.^{\circ}$ de votos na preferência a amarelo;

 $1,6 \times 1,25 x = n.^{\circ}$ de votos na preferência a verde;

120 = n.º total de votos.

$$x + 0.75x + 1.25x + 1.6 \times 1.25x = 120$$

$$\Leftrightarrow$$
 5x = 120 \Leftrightarrow x = $\frac{120}{5}$

⇔ x = 24 votos na preferência a rosa

 $0,75 \times 24 = 18$ votos na preferência a azul;

 $1.25 \times 24 = 20$ votos na preferência a amarelo;

 $1,6 \times 1,25 \times 24 = 48$ votos na preferência a verde

R:

Preferência	N.º de votos
Rosa	24
Azul	18
Amarelo	30
Verde	48

b) Londres: $24 \times 3 + 48 \times 3 + 18 \times 1 + 30 \times 2 = 294$

pts

Roma: $24 \times 2 + 48 \times 1 + 18 \times 3 + 30 \times 1 = 180$ pts Paris: $24 \times 1 + 48 \times 2 + 18 \times 2 + 30 \times 3 = 246$ pts

R: O destino apurado foi Londres com 294 pts.

c) R: Sim, dado que ajudou a evidenciar a preferência pelo destino Londres.

Seja a = pontuação na lista de preferências em falta.

Como A obteve um total de 56 pontos, então:

$$12\times2+9\times a+5\times1=56$$

$$\Leftrightarrow$$
 29 + 9 a = 56

$$\Leftrightarrow$$
 9a = 27

$$\Leftrightarrow a = 3$$

Assim, A ficou na 1.ª posição.

Se M ficasse em 2.º lugar na lista de preferências, então a pontuação total de M e de R seria:

M:
$$12 \times 3 + 9 \times 2 + 5 \times 3 = 69$$

R:
$$12 \times 1 + 9 \times 1 + 5 \times 2 = 31$$

M tem
$$\frac{3}{2}$$
 da pontuação de R, $69 \neq \frac{3}{2} \times 31$.

M em 3.º lugar e R em 2.º lugar:

M:
$$12 \times 3 + 9 \times 1 + 5 \times 3 = 60$$

R:
$$12 \times 1 + 9 \times 2 + 5 \times 2 = 40$$

$$60 = \frac{3}{2} \times 40$$

Logo, M ficou em 3.º lugar e R ficou em 2.º lugar na lista de preferências em falta.

R:

