

Introdução ao Cálculo Diferencial e Integral

Função Logarítmica

Prof. Dani Prestini

Inversas das funções exponenciais

Apesar de as funções exponenciais serem objetos de estudo do Capítulo 11, por meio delas podemos compreender as primeiras ideias das funções logarítmicas.

Uma função exponencial $f(x) = b^x$ tem uma inversa que também é função. Essa inversa é a **função logarítmica de base** b, denotada por $\log_b x$, isto é, se $f(x) = b^x$, com b > 0 e $b \ne 1$, então $f^{-1}(x) = \log_b x$. Veja a Figura 12.1.

Transformação entre a forma logarítmica e a forma exponencial

Se x > 0 e $0 < b \ne 1$, então $y = \log_b(x)$, se, e somente se, $b^y = x$.

EXEMPLO 1 Cálculo de logaritmos

(a)
$$\log_2 8 = 3$$
, porque $2^3 = 8$

(b)
$$\log_3 \sqrt{3} = \frac{1}{2}$$
, porque $3^{1/2} = \sqrt{3}$

(c)
$$\log_5 \frac{1}{25} = -2$$
, porque $5^{-2} = \frac{1}{5^2} = \frac{1}{25}$

(d)
$$\log_4 1 = 0$$
, porque $4^0 = 1$

(e)
$$\log_7 7 = 1$$
, porque $7^1 = 7$

Propriedades básicas de logaritmos

Para x > 0, b > 0, $b \ne 1$ e y como um número real qualquer:

- $\log_b 1 = 0$, porque $b^0 = 1$
- $\log_b b = 1$, porque $b^1 = b$
- $\log_b b^y = y$, porque $b^y = b^y$
- $b^{\log_b x} = x$, porque $\log_b x = \log_b x$

Vale observar que, em geral, nas situações práticas, as bases dos logaritmos são quase sempre maiores do que 1.

EXEMPLO 2 Cálculo de logaritmos

- (a) $\log_2 8 = \log_2 2^3 = 3$
- **(b)** $\log_3 \sqrt{3} = \log_3 3^{1/2} = \frac{1}{2}$
- (c) $6^{\log_6 11} = 11$

Logaritmos com base 10

Quando a base do logaritmo é 10, não precisamos escrever o número, e denotamos a função logarítmica por $f(x) = \log x$. Lembre-se de que essa função é a inversa da função exponencial $f(x) = 10^x$. Assim:

$$y = \log x$$
, se, e somente se, $10^y = x$.

Podemos obter resultados para logaritmos com base 10.

Propriedades básicas para logaritmos com base 10

Sejam x e y números reais, e x é maior do que 0.

- $\log 1 = 0$, porque $10^{\circ} = 1$
- $\log 10 = 1$, porque $10^1 = 10$
- $\log 10^{y} = y$, porque $10^{y} = 10^{y}$
- $10^{\log x} = x$, porque $\log x = \log x$

EXEMPLO 3 Cálculo de logaritmos com base 10

(a)
$$\log 100 = \log_{10} 100 = 2$$
, porque $10^2 = 100$

(b)
$$\log \sqrt[5]{10} = \log 10^{1/5} = \frac{1}{5}$$

(c)
$$\log \frac{1}{1.000} = \log \frac{1}{10^3} = \log 10^{-3} = -3$$

(d)
$$10^{\log 6} = 6$$

EXEMPLO 4 Resolução de equações logarítmicas

Resolva cada equação transformando-a para a forma exponencial.

(a)
$$\log x = 3$$

(a)
$$\log x = 3$$
 (b) $\log_2 x = 5$

- (a) Transformando para a forma exponencial, temos $x = 10^3 = 1.000$.
- **(b)** Transformando para a forma exponencial, temos $x = 2^5 = 32$.

Logaritmos com base e

Logaritmos com base e são chamados **logaritmos naturais**. Muitas vezes utilizamos apenas a notação "ln" para representar o logaritmo natural. Assim, a função logarítmica natural é $f(x) = \log_e x = \ln x$. Essa função é a inversa da função exponencial $f(x) = e^x$. Assim:

$$y = \ln x$$
, se, e somente se, $e^y = x$.

Podemos obter resultados para logaritmos com base e.

Propriedades básicas para logaritmos com base e (logaritmos naturais)

Sejam x e y números reais, e x é maior do que 0.

- $\ln 1 = 0$, porque $e^0 = 1$
- $\ln e = 1$, porque $e^1 = e$
- In $e^y = y$, porque $e^y = e^y$
- $e^{\ln x} = x$, porque $\ln x = \ln x$

EXEMPLO 5 Cálculo de logaritmos com base e

(a)
$$\ln \sqrt{e} = \log_e \sqrt{e} = \frac{1}{2}$$
, porque $e^{1/2} = \sqrt{e}$

(b)
$$\ln e^5 = \log_e e^5 = 5$$

(c)
$$e^{\ln 4} = 4$$

Propriedades dos logaritmos

As propriedades são utilizadas nas resoluções de equações logarítmicas e de problemas.

Propriedades dos logaritmos

Sejam b, R e S números reais positivos com $b \neq 1$ e c como um número real qualquer.

Regra do produto: $\log_b(RS) = \log_b R + \log_b S$

Regra do quociente: $\log_b \frac{R}{S} = \log_b R - \log_b S$

Regra da potência: $\log_b R^c = c \log_b R$

EXEMPLO 6 Demonstração da regra do produto para logaritmos

Prove que $\log_b(RS) = \log_b R + \log_b S$.

SOLUÇÃO

Sejam $x = \log_b R$ e $y = \log_b S$. As respectivas expressões com potenciação são $b^x = R$ e $b^y = S$. Portanto:

$$RS = b^{x} \cdot b^{y}$$

$$= b^{x+y}$$

$$\log_{b} (RS) = x + y$$

$$= \log_{b} R + \log_{b} S$$

EXEMPLO 7 Expansão do logaritmo de um produto

Supondo que x e y são positivos, use as propriedades de logaritmos para escrever log $(8xy^4)$ como uma soma de logaritmos ou múltiplo de logaritmos.

$$\log (8xy^4) = \log 8 + \log x + \log y^4$$

$$= \log 2^3 + \log x + \log y^4$$

$$= 3 \log 2 + \log x + 4 \log y$$

EXEMPLO 8 Expansão do logaritmo de um quociente

Supondo que x é positivo, use as propriedades de logaritmos para escrever $\ln \frac{\sqrt{x^2+5}}{x}$ como uma soma ou uma diferença de logaritmos, ou mesmo como um múltiplo de logaritmos.

$$\ln \frac{\sqrt{x^2 + 5}}{x} = \ln \frac{(x^2 + 5)^{1/2}}{x}$$
$$= \ln (x^2 + 5)^{1/2} - \ln x$$
$$= \frac{1}{2} \ln (x^2 + 5) - \ln x$$

EXEMPLO 9 Notação de logaritmo

Supondo que x e y são positivos, escreva ln $x^5 - 2 \cdot \ln(xy)$ como um único logaritmo.

$$\ln x^{5} - 2 \ln (xy) = \ln x^{5} - \ln (xy)^{2}$$

$$= \ln x^{5} - \ln (x^{2}y^{2})$$

$$= \ln \frac{x^{5}}{x^{2}y^{2}}$$

$$= \ln \frac{x^{3}}{y^{2}}$$

Mudança de Base

Fórmula de mudança de base para logaritmos

Para números reais positivos a, b e x, com $a \ne 1$ e $b \ne 1$, temos:

$$\log_b x = \frac{\log_a x}{\log_a b}.$$

EXEMPLO 10 Desenvolvimento do logaritmo por meio da mudança de base

(a)
$$\log_3 16 = \frac{\ln 16}{\ln 3} = 2,523... \approx 2,52$$

(b)
$$\log_6 10 = \frac{\log 10}{\log 6} = \frac{1}{\log 6} = 1,285... \approx 1,29$$

(c)
$$\log_{1/2} 2 = \frac{\ln 2}{\ln \left(\frac{1}{2}\right)} = \frac{\ln 2}{\ln 1 - \ln 2} = \frac{\ln 2}{-\ln 2} = -1$$

Gráfico de função logarítmica

Vamos listar agora as propriedades da função logarítmica natural $f(x) = \ln x$.

Domínio: $]0, +\infty[$.

Imagem: IR.

É contínua em $]0, +\infty[$.

É crescente em]0, +∞[.

Não é simétrica.

Não é limitada inferior ou superiormente.

Não tem extremos locais.

Não tem assíntotas horizontais.

Assíntota vertical é em x = 0.

Comportamento no extremo do domínio: lim $\ln x = +\infty$.

Gráfico de função logarítmica

Gráfico de função logarítmica

$$[-1, 5]$$
 por $[-2, 2]$

EXEMPLO 11 Transformação dos gráficos de funções logarítmicas

Descreva como transformar o gráfico de $y = \ln x$ ou $y = \log x$ em um gráfico das funções apresentadas a seguir.

(a)
$$g(x) = \ln(x+2)$$

(c)
$$g(x) = 3 \log x$$

(b)
$$h(x) = \ln(3 - x)$$

(d)
$$h(x) = 1 + \log x$$

EXEMPLO 11 Transformação dos gráficos de funções logarítmicas

Descreva como transformar o gráfico de $y = \ln x$ ou $y = \log x$ em um gráfico das funções apresentadas a seguir.

(a)
$$g(x) = \ln(x+2)$$

(c)
$$g(x) = 3 \log x$$

(b)
$$h(x) = \ln(3 - x)$$

(d)
$$h(x) = 1 + \log x$$

Resolução de equações exponenciais

Propriedades

Para qualquer função exponencial $f(x) = b^x$:

• Se $b^{\mu} = b^{\nu}$, então $\mu = \nu$.

Para qualquer função logarítmica $f(x) = \log_b x$:

• Se $\log_b u = \log_b v$, então u = v.

Resolução de equações exponenciais

EXEMPLO 13 Resolução algébrica de uma equação exponencial

Resolva
$$20\left(\frac{1}{2}\right)^{x/3} = 5$$
.

$$\left(\frac{1}{a}\right)^{\frac{\pi}{3}} = \frac{5}{2a}$$

$$\left(\frac{1}{a}\right)^{\frac{\pi}{3}} = \frac{1}{4}$$

$$\left(\frac{1}{a}\right)^{\frac{\pi}{3}} = \frac{1}{2^2}$$

$$\left(\frac{1}{a}\right)^{\frac{\pi}{3}} = \frac{1}{2^2}$$

Resolução de equações logarítmicas

EXEMPLO 14 Resolução de uma equação logarítmica

Resolva $\log x^2 = 2$.

$$n^{2} = 10^{2}$$
 $n^{2} = 100$
 $n = \pm \sqrt{100}$
 $n = \pm 10$

$$log n^2 = log 10^2$$
 $n^2 = 10^2$
 $n^2 = 100$
 $n = \pm 10$

EXEMPLO 15 Comparação das intensidades de terremotos

Com relação ao terremoto de 1999, em Atenas, na Grécia ($R_2 = 5.9$), o quanto mais forte foi o terremoto de 2001, em Gujarat, na Índia ($R_1 = 7.9$)?

$$R = \log \frac{\alpha}{\tau} + \beta$$

$$R_1 = \log \frac{\alpha_1}{\tau} + \beta = \frac{1}{4}$$

$$R_2 = \log \frac{\alpha_2}{\tau} + \beta = \frac{5}{4}$$

$$R_1 - R_2 = \log \frac{\alpha_1}{\tau} + \beta = -\left(\log \frac{\alpha_2}{\tau} + \beta\right) = \frac{1}{4} \cdot 9 - \frac{5}{4} \cdot 9$$

$$\log \frac{\alpha_1}{\tau} - \log \frac{\alpha_2}{\tau} = 2 \implies \log \frac{\alpha_1}{\tau} = 2 \implies \log \frac{\alpha_1}{\tau} = 2$$

Exercícios

1) Livro Texto: páginas 172 à 177

Obrigado