

$$\tilde{E}(\chi) = \sum_{X=0}^{n} \chi \begin{pmatrix} n \\ \chi \end{pmatrix}_{p} \chi (1-p)^{n-\chi}$$

$$= \sum_{X=1}^{n} \chi \frac{n!}{\chi!(n-\chi)!} p^{\chi}(1-p)^{n-\chi}$$

$$= \sum_{X=1}^{n} \chi \frac{n!}{\chi!(n-\chi)!} p^{\chi}(1-p)^{n-\chi}$$

$$= np \sum_{X=1}^{m} \binom{m}{\chi}_{r-1} p^{\chi}(1-p)^{m-\chi} = \sum_{X=0}^{n-1} \binom{n-1}{\gamma}_{r} p^{\chi}(1-p)^{n-\chi-1}$$

$$= np \sum_{X=0}^{m} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi) = Bin (m_{1}p)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{r} = p(\chi)$$

$$= np \sum_{X=0}^{n} \binom{m}{\chi}_{r} p^{\chi}(1-p)^{m-\chi}_{$$

psible

proof

 $\chi \sim Geometric$ (.2) = 0.8 x-1 = 0.2 SUPP [x] = N (how many times +ill we succeed)

X	p(x)	F(x)	X		1	ž
1 1 13	,200	,200	16	.007	.572	Mills D.
2	.160	.360	17	,006	.978	
3	.128	.488	18	5	.983	
4	.102	.590	19	4	.987	
5	.082	.612	20	3	.990	(69 0 7 16)
P	.066	. 733	21	2	.992	
7	.052	1.790	22	5,51	.994	186, 10 =
ġ	.042	. 832	23	1	.995	
9	.034	.866	24	1	.996	
16	.027	. 893	25	1	,997	*114.1 mar
11	.021	-914	26	- 1	,998	
12	.017	.971	27	į	,aaq	
13	.014	.945				
14	.011	.956				
15	0009	.965				

