71117408_梅洛瑜

1.4:

a)
$$f(k) = \varepsilon(k+2)$$

b)
$$f(k) = \varepsilon(k-3)$$

c)
$$f(k) = \varepsilon(-k+2)$$

d)
$$f(k) = (-1)^k \varepsilon(k)$$

1.5:

- (1) 序列为周期序列, T=0.3
- (2) 对于 k=1,不存在周期 T 使 $f_3(1) = f_3(1+mT)(m=0,\pm 1,\pm 2...)$
- (3) $\cos t$ 周期 $T_1=2\pi$, $\sin(\pi t)$ 周期 $T_2=2$, $\frac{T_1}{T_2}=\pi$ 不为有理数,故 f5 不具有周期性

1.6:

1.10:

$$\begin{split} \frac{d^2}{dt^2} [\cos t + \sin 2t] \varepsilon(t) &= \frac{d}{dt} \{ [-\sin t + 2\cos(2t)] \varepsilon(t) + [\cos t + \sin 2t] \sigma(t) \} \\ &= \frac{d}{dt} \{ [-\sin t + 2\cos(2t)] \varepsilon(t) + \sigma(t) \} \\ &= [-\cos t - 4\sin(2t)] \varepsilon(t) + [-\sin t + 2\cos(2t)] \sigma(t) + \sigma^2(t) \\ &= [-\cos t - 4\sin(2t)] \varepsilon(t) + 2\sigma(t) + \sigma^2(t) \end{split}$$

(2)

$$\begin{split} (1+t)\frac{d}{dt}[e^{-t}\delta(t)] &= (1+t)*[-e^{-t}\delta(t) + e^{-t}\delta'(t)] \\ &= (1+t)*[-\delta(t) + \delta(t) + \delta'(t))] \\ &= (1+t)*\delta'(t) = \delta'(t) + \delta(t) \end{split}$$
 Tips:
$$\begin{cases} e^{-at}\delta'(t) = \delta'(t) + a\delta(t) \\ t\delta'(t) = -\delta(t) \end{cases}$$

(3)

$$\diamondsuit f(t) = \frac{\sin(\pi t)}{t}, \quad \text{if } \int_{-\infty}^{\infty} \frac{\sin(\pi t)}{t} \delta(t) \, dt = \int_{-\infty}^{\infty} f(t) \delta(t) \, dt = f(0) = 1$$

(4)

$$\int_{-\infty}^{\infty} e^{-2t} \left[\delta(t) + \delta'^{(t)} \right] dt = \int_{-\infty}^{\infty} e^{-2t} \delta'^{(t)} dt + \int_{-\infty}^{\infty} e^{-2t} \delta(t) dt = 2 + 1 = 3$$

(5)

$$\int_{-\infty}^{\infty} \left[t^2 + \sin\left(\frac{\pi}{4}t\right) \delta(t+2) \right] dt = \left[t^2 + \sin\left(\frac{\pi}{4}t\right) \right] \Big|_{t=-2} = 3$$

(7)

$$\int_{-\infty}^{\infty} (t^3 + 2t^2 - 2t + 1)\delta'^{(t-1)} dt = [t^3 + 2t^2 - 2t + 1]'|_{t=1} = 5$$

1.23:

(1)
$$\begin{cases} y_{zs}(t) = \int_0^t \sin x f(x) \, dx & \text{故} y(t) = y_{zi}(t) + y_{zs}(t)$$
满足可分解性
$$y_{zi}(t) = e^{-t} x(0) & \text{同时,} \\ e^{-t} [x_1(0) + x_2(0)] = e^{-t} x_1(0) + e^{-t} x_2(0), \text{满足零输入线性} \\ \int_0^t \sin x [f_1(x) + f_2(x)] \, dx = \int_0^t \sin x f_1(x) dx + \int_0^t \sin x \, f_2(x) dx, \text{满足零状$$
 态线性 故系统为线性的

1.25:

(3)

 $af_1(t)\cos(2\pi t)+bf_2(t)\cos(2\pi t)=af_1(t)\cos(2\pi t)+bf_2(t)\cos(2\pi t)$ 系统满足齐次性与可加性

$$y_{zs}(t-t_d) \neq f(t-t_1)\cos(2\pi t)$$
 时变 $t<0,\ f(t)=0,\ y_{zs}(t)=f(t)\cos(2\pi t)=0$ 因果 $|f(t)|<\infty,\ |y_{zs}(t)|=|f(t)\cos(2\pi t)|<\infty$ 稳定 故为线性时变因果稳定系统

1.32

由 LT1 系统为线性时不变因果稳定系统 by_(t) = $\varepsilon(t) - \varepsilon(t-1) - \varepsilon(t-2) + \varepsilon(t-3) = f(t) - f(t-1) - f(t-2) + f(t-3)$