

Ejercicio 4.2

[71.14] Modelos y Optimización I Curso 4 $2 \hbox{C 2021}$

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

1. Resolver por método Simplex y graficar

$$-2X_1 + X_2 \le 2$$
$$X_1 - X_2 \le 2$$
$$X_1 + X_2 \le 5$$

$$Z = 10X_1 + 3X_2 \rightarrow max$$

Figura 1: En rosa la región factible, en naranja el funcional

• Convierto en igualdades las ecuaciones agregando las variables slack.

$$-2X_1 + X_2 + X_3 = 2$$
$$X_1 - X_2 + X_4 = 2$$
$$X_1 + X_2 + X_5 = 5$$

- La tabla inicial es:
- Estamos en el 0 $(X_1 = X_2 = 0)$, ambas variables están fuera de la base. La primera solución factible es (0,0,2,2,5).

Ck	Xk	Bk	A1	A2	A3	A4	A5
0	Х3	2	-2	1	1	0	0
0	X4	2	1	-1	0	1	0
0	X5	5	1	1	0	0	1
Z = 0			???	???	0	0	0

• Veo si es óptima calculando los $Z_j - Cj$ de las variables que no están en la base (pueden ser distintos de cero).

$$X_1)Z_1 = C_3a_{13} + C_4a_{14} + C_5a_{15} = 0 \cdot (-2) + 0 \cdot 1 + 0 \cdot 1 = 0$$

$$C_1 = 10$$

$$Z_1 - C_1 = -10$$

$$X_2)Z_2 = C_3a_{23} + C_4a_{24} + C_5a_{25} = 0 \cdot 1 + 0 \cdot (-1) + 0 \cdot 1 = 0$$

$$C_2 = 3$$

$$Z_2 - C_2 = -3$$

- Como ambos son negativos y tenemos un funcional de máximo, cualquier variable que ingrese a la base mejora la solución. Elijo X_1 .
- Se calcula θ :

Ck	Xk	Bk	A1	A2	A3	A4	A5	θ
0	Х3	2	-2	1	1	0	0	-
0	X4	2	1	-1	0	1	0	2
0	X5	5	1	1	0	0	1	5
Z = 0			-10	-3	0	0	0	

- \blacksquare No se calcula el θ si el a es cero o negativo.
- Sale de la base X_4 por ser el de menor θ .
- \blacksquare El funcional aumenta en $-(Z_j-C_j)\cdot\theta\to 10\cdot 2=20$
- \blacksquare El elemento pivote es 1 (intersección de la fila de X_4 con la columna A_1)
- Se divide la fila del pivote por el valor del pivote. (no cambia por ser 1)
- Completar la columna del pivote con ceros.
- \blacksquare Aplicar la regla del pivote para el resto de los valores. $(a_{ij}^{'}=a_{ij}-\frac{a_{ie}a_{kj}}{a_{ke}})$

Ck	Xk	Bk	A1	A2	A3	A4	A5
0	Х3	6	0	-1	1	1	0
10	X1	2	1	-1	0	1	0
0	X5	3	0	2	0	1	1

• Se calcula devuelta para ver si es óptima.

$$X_1)Z_1 = C_3a_{13} + C_1a_{11} + C_5a_{15} = 0 + 10 \cdot 1 + 0 = 10$$

$$C_1 = 10$$

$$Z_1 - C_1 = 0$$

$$X_2)Z_2 = C_3a_{23} + C_1a_{21} + C_5a_{25} = 0 + 10 \cdot (-1) + 0 = -10$$

$$C_2 = 3$$

$$Z_2 - C_2 = -13$$

 \bullet Dio negativo Z_2 , no estamos en el óptimo. Ingresa a la base X_2 .

Ck	Xk	Bk	A1	A2	A3	A4	A5	θ
0	Х3	6	0	-1	1	1	0	-
10	X1	2	1	-1	0	1	0	-
0	X5	3	0	2	0	1	1	$\frac{3}{2}$
7	Z = 20		0	-13	0	10	0	

- Sale de la base X_5 por ser el de menor θ .
- \blacksquare El funcional aumenta en $-(Z_j-C_j)\cdot\theta\to 13\cdot\frac{3}{2}=19, 5(Z=39,5)$
- \blacksquare El elemento pivote es 2 (intersección de la fila de X_5 con la columna $A_2)$
- Se divide la fila del pivote por el valor del pivote. (no cambia por ser 1)
- Completar la columna del pivote con ceros.
- \blacksquare Aplicar la regla del pivote para el resto de los valores. $(a_{ij}^{'}=a_{ij}-\frac{a_{ie}a_{kj}}{a_{ke}})$

Ck	Xk	Bk	A1	A2	A3	A4	A5
0	X3	$\frac{15}{2}$	0	0	1	$\frac{3}{2}$	$\frac{1}{2}$
10	X1	$\frac{7}{2}$	1	0	0	$\frac{3}{2}$	$\frac{1}{2}$
3	X2	$\frac{3}{2}$	0	1	0	$\frac{1}{2}$	$\frac{1}{2}$

• Se calcula devuelta para ver si es óptima.

$$\begin{split} X_1)Z_1 &= C_3a_{13} + C_1a_{11} + C_2a_{12} = 0 + 10 + 0 = 10 \\ C_1 &= 10 \\ Z_1 - C_1 &= 0 \\ X_2)Z_2 &= C_3a_{23} + C_1a_{21} + C_2a_{22} = 0 + 0 + 3 = 3 \\ C_2 &= 3 \\ Z_2 - C_2 &= 0 \\ X_3)Z_3 &= 0 \\ C_3 &= 0 \\ X_4)Z_4 &= 16, 5 \\ C_4 &= 0 \\ Z_4 - C_4 &= 16, 5 \\ X_5)Z_5 &= C_3a_{53} + C_1a_{51} + C_2a_{52} = 0 + 5 + \frac{3}{2} = 6, 5 \\ C_5 &= 0 \\ Z_5 - C_5 &= 6, 5 \end{split}$$

■ Todos los Zj-Cj son mayores o iguales a cero, se encontró el óptimo con Z=39,5 en $X_1=3,5$ y $X_2=1,5$. Este coincide con la resolución gráfica.

Figura 2: A es el punto inicial de la primera iteración, B el de la segunda, C el de la tercera.