Computer Graphics -- Haar Transform and Compression

Junjie Cao @ DLUT Spring 2016

http://jjcao.github.io/ComputerGraphics/

Haar Wavelet Transform

- Simplest; hand calculation suffice
- A prototype for studying more sophisticated wavelets

Images are comprised of pixels represented by numbers

64	2	3	61	60	б	7	57
9	55	54	12	13	51	50	16
17	47	46	20	21	43	42	24
40	26	27	37	36	30	31	33
32	34	35	29	28	38	39	25
41	23	22	44	45	19	18	48
49	15	14	52	53	11	10	56
8	58	59	5	4	62	63	1

Averaging and Differencing

- Use a process called averaging and differencing to develop a new matrix representing the same image in a more concise manner.
- Eliminate some of unnecessary information, and arrive at an approximation of our original image

2. Averaging and Differencing (1/3)

• 8X8 matrix, process involve three steps (2³=8)

2. Averaging and Differencing (2/3)

ex. (4 + 6)/2 = 54 - 5 = -1

2. Averaging and Differencing (3/3)

• ex.
$$(5 + 7)/2 = 6$$

5 - 6 = -1

3. Image Representation (1/6)

Use the averaging and differencing process

3. Image Representation (2/6)

```
first row
    [64 2 3 61 60 6 7 57]
Step1 [33 32 33 32 31 -29 27 -25]
Step2 [32.5 32.5 0.5 0.5 31 -29 27 -25]
Step3 [32.5 0 0.5 0.5 31 -29 27 -25]
```

3. Image Representation (3/6)

rows the results

$$\begin{bmatrix} 32.5 & 0 & 0.5 & 0.5 & 31 & -29 & 27 & -25 \\ 32.5 & 0 & -0.5 & -0.5 & -23 & 21 & -19 & 17 \\ 32.5 & 0 & -0.5 & -0.5 & -15 & 13 & -11 & 9 \\ 32.5 & 0 & 0.5 & 0.5 & 7 & -5 & 3 & -1 \\ 32.5 & 0 & 0.5 & 0.5 & -1 & 3 & -5 & 7 \\ 32.5 & 0 & -0.5 & -0.5 & 9 & -11 & 13 & -15 \\ 32.5 & 0 & -0.5 & -0.5 & 17 & -19 & 21 & -23 \\ 32.5 & 0 & 0.5 & 0.5 & -25 & 27 & -29 & 31 \end{bmatrix}$$

detail coefficients

3. Image Representation (4/6)

columns the results

32.5	0	0.5	0.5	31	-29	27	-25
32.5	0	-0.5	-0.5	-23	21	-19	17
32.5	0	-0.5	-0.5	-15	13	-11	9
32.5	0	0.5	0.5	7	-5	3	-1
32.5	0	0.5	0.5	-1	3	-5	7
32.5	0	-0.5	-0.5	9	-11	13	-15
32.5	0	-0.5	-0.5	17	-19	21	-23
32.5	0	0.5	0.5	-25	27	-29	31

	•						
32.5	0	0		0	0	0	0
0	0	0	0	0	0	0	0
0	0	0			-4	4	-4
0	0	0	0	4	-4	4	-4
0	0	0.5	0.5	27	-25	23	-21
0	0	5	5	-11	9	-7	5
0	0	0.5	0.5	-5	7	-9	11
0	0	5	5	21	-23	25	-27

3. Image Representation (5/6)

- Apply averaging & differencing to entire matrix: by row, by column
- choose some number (δ) and set equal to zero

32.5	0	0	0	0	0	0	0]
0	0	0	0	0	0	0	0
0	0	0	0	4	-4	4	-4
0	0	0	0	4	-4	4	-4
0	0	0.5	0.5	27	-25	23	-21
0	0	5	5	-11	9	-7	5
0	0	0.5	0.5	-5	7	-9	11
0	0	5	5	21	-23	25	-27

$$\delta = 5$$

3. Image Representation (6/6)

apply the inverse of the averaging the differencing operations

$$A = \begin{bmatrix} 64 & 2 & 3 & 61 & 60 & 6 & 7 & 57 \\ 9 & 55 & 54 & 12 & 13 & 51 & 50 & 16 \\ 17 & 47 & 49 & 20 & 21 & 43 & 42 & 24 \\ 40 & 26 & 27 & 37 & 36 & 30 & 31 & 33 \\ 32 & 34 & 35 & 29 & 28 & 38 & 39 & 25 \\ 41 & 23 & 22 & 44 & 45 & 19 & 18 & 48 \\ 49 & 15 & 14 & 52 & 53 & 11 & 10 & 56 \\ 8 & 58 & 59 & 5 & 4 & 62 & 63 & 1 \end{bmatrix}$$

59.5	5.5	7.5	57.5	55.5	9.5	11.5	53.5
5.5	59.5	57.5	7.5	9.5	55.5	53.5	11.5
21.5	43.5	41.5	23.5	25.5	39.5	32.5	32.5
43.5	21.5	23.5	41.5	39.5	25.5	32.5	32.5
32.5	32.5	39.5	25.5	23.5	41.5	21.5	43.5
32.5	32.5	25.5	39.5	41.5	23.5	43.5	21.5
53.5	11.5	9.5	55.5	57.5	7.5	5.5	59.5
11.5	53.5	55.5	9.5	7.5	<i>5</i> 7. <i>5</i>	59.5	5.5

Decompressed Image

4. Using Linear Algebra (1/3)

Step1

4. Using Linear Algebra (2/3)

• <u>Step2</u>

Step3

$$A_{2} = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & 0 & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{3} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

4. Using Linear Algebra (3/3)

$$W = A_1 A_2 A_3 = \begin{bmatrix} \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & 0 & \frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{8} & \frac{1}{8} & \frac{1}{4} & 0 & -\frac{1}{2} & 0 & 0 & 0 \\ \frac{1}{8} & \frac{1}{8} & -\frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 & 0 \\ \frac{1}{8} & \frac{1}{8} & -\frac{1}{4} & 0 & 0 & -\frac{1}{2} & 0 & 0 \\ \frac{1}{8} & -\frac{1}{8} & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} & 0 \\ \frac{1}{8} & -\frac{1}{8} & 0 & \frac{1}{4} & 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{8} & -\frac{1}{8} & 0 & -\frac{1}{4} & 0 & 0 & 0 & 0 & \frac{1}{2} \\ \frac{1}{8} & -\frac{1}{8} & 0 & -\frac{1}{4} & 0 & 0 & 0 & 0 & -\frac{1}{2} \end{bmatrix}$$

$$T = W^T A W$$

$$(W^T)^{-1} A W^{-1} = A$$

$$A : Original Matrix W : Transforming Matrix T : Compressed Matrix$$

One step of averaging and differencing

Detail Coefficients

Haar Transform

5. Image Compressions

- Figure 3a.
- Original Image
- Figure 3b.
- 65,536 entries
- 631 non-zero entries
- CompressionRatio 103:1

- Figure 3c.
- 65,536 entries
- 1,411 non-zero entries
- CompressionRatio 46:1

Implementation

•