VITMO

Автоматизация отслеживания состояния дорожного покрытия при помощи мобильных устройств водителей

Выполнил: Кулаков Никита Васильевич Руководитель: Логинов Иван Павлович

Проблема

Несвоевременное проведение дорожных работ в 1.5 — 3 раза увеличивает расходы на содержание.

Плохое состояние дорог увеличивает:

- вероятность и серьезность ДТП;
- издержки на содержание транспортных средств;
- время вождения.

Для проведения проверок дорог, как правило, нанимается бригада.

- 1. Необходимость наличия специализированных средств для сбора данных и диагностики.
- 2. Значительные затраты на подготовку, транспортировку, сбор данных.

Цели и задачи

Цель: обеспечение частичного отказа от использования специализированной аппаратуры, предназначенной для сбора данных, благодаря ее замене на датчики мобильных устройств и увеличению объема собираемых данных.

Задачи:

- 1. Анализ предметной области и состояния работ.
- 2. Разработка программной архитектуры.
- 3. Программная реализация средства анализа состояния дорожного покрытия.
- 4. Сбор данных и обработка для получения результатов.
- 5. Анализ результатов и принятых решений.

Альтернативы

Таблица 1 – Сравнительный анализ альтернатив

	«Автострада»	RoadAl	«Дороги России»		
серверная нагрузка	Низкая	Высокая	Средняя		
алгоритмы	-	CV (Компьютерное зрение)	Математические алгоритмы		
детализация	Низкая	Высокая	Средняя		
автономность	Нет	Да	Да		
мобильная нагрузка	Низкая	Средняя	Высокая		
ограничения	_	Необходимость фиксации устройства, хорошей погоды и освещенности	-		

Архитектура системы

Мобильное приложение: основные экраны //ТМО

Мобильное приложение: обработка событий ИТМО

Сервис прогнозирования: фаза обработки

Список признаков (features):

- 32 частоты акселерометра*;
- 32 частоты гироскопа*;
- макс. магнитуда акселерометра;
- макс. магнитуда гироскопа;
- скорость.

^{*} получено через дискретное преобразование Фурье

Тестирование системы

Конфигурация сервера:

- операционная система Ubuntu 22.04.4 LTS x86_64;
- CPU 2 ядра 2.6GHz;
- оперативная память 4 GB.

Сервисы:

- по одному экземпляру;
- подняты в Docker.

Таблица 2 – Данные тестирования

Taomina Laminio Laomina Laminio					
Величина	Значение				
Кол-во сообщений	4200				
Размер буфера (с.)	30				
Время отправки (с.)	45				
Кол-во результатов	34000				

Нагрузочное тестирования проводилось при помощи разработанного сервиса, имитирующего работу мобильных приложений на предварительно сохраненных реальных данных.

Тестирование алгоритмов

R2 — Коэффициент детерминации

MSE — Среднеквадратическая ошибка

МАЕ — Средняя абсолютная ошибка

RMSE — Корень среднеквадратической ошибки

Таблица 3 – Характеристики регрессии и время исполнения

	R2	Explained variance	MSE	MAE	RMSE	Время исполнения (c)
1. =0.42, без предобработки	-0.34	0	0.173	0.347	0.416	45
2. =0.42	-0.34	0	0.173	0.347	0.416	105
3. CART, без скорости	0.67	0.67	0.044	0.142	0.210	113
4. Random Forest, без скорости	0.67	0.67	0.042	0.147	0.206	236
5. XGBoost, без скорости	0.70	0.70	0.039	0.131	0.198	150
6. XGBoost	0.89	0.89	0.014	0.065	0.119	150

Результаты на обучающих данных **ИТМО**

Работа в реальных условиях

Достигнутые результаты

- 1. Выполнен анализ предметной области и существующих аналогов.
- 2. Разработана архитектура и реализованы компоненты системы (мобильное приложение, сервисы прогнозирования, обработки результатов и пользовательских запросов) с учетом возможных сценариев использования.
- 3. Получен датасет и обучены алгоритмы машинного обучения.
- 4. Произведен сравнительный анализ алгоритмов прогнозирования и нагрузочное тестирование (разработан сервис, имитирующий работу нескольких мобильных приложений).
- 5. Протестирована работа системы в реальных сценариях использования.

Дальнейшее развитие

Мобильное приложение:

• внедрение в качестве модуля в картографические сервисы.

Сервис прогнозирования:

- улучшение алгоритмов предобработки и прогнозирования;
- проекционирование координат на дорогу;
- добавление новых характеристик прогнозов.

Сервис пользовательских запросов:

• кеширование запросов.

Прочее:

• агрегация результатов.

Спасибо за внимание!

ITSMOre than a UNIVERSITY

https://github.com/zubrailx/road-condition-monitoring