

Model Optimization and Tuning Phase Template

Date	15 july 2024
Team ID	team-740063
Project Title	Predicting the energy output of wind turbine based on weather condition
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The model optimization and tuning phase in predicting the energy output of wind turbines based on weather conditions is crucial for improving the accuracy and reliability of predictions.and involves refining neural network models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (8 Marks):

Model	Tuned Hyperparameters						
(Multi-layer Perceptron)	activation: Activation function for the hidden layers. solver: Optimization algorithm to use.						

	n_	_estima	itors:	Nur	nber	of	bo	osting	stages to	be run.
_	•			~		•		•		

- ☐ learning_rate: Step size shrinkage.
- □ max_depth: Maximum depth of the individual trees.
- $\hfill \square$ subsample: Fraction of samples used for fitting the individual trees.

Gradient boosting Regressor

```
from sklearn.ensemble import
GradientBoostingRegressor
from sklearn.model_selection import
RandomizedSearchCV

param_dist = {
        'n_estimators': [50, 100, 150],
        'learning_rate': [0.05, 0.1,
0.2],
        'max_depth': [3, 5, 7],
        'subsample': [0.8, 0.9, 1.0]
}

gb = GradientBoostingRegressor(random_state=42)
randomized_search = RandomizedSearchCV(estimator=gb, param_distributions=param_dist,
n_iter=10, cv=3,
scoring='neg_mean_squared_error',
random_state=42)
randomized_search.fit(X_train,
y_train)

print("Best_parameters_found: ",
randomized_search.best_params_)
```

- □ n_estimators: Number of trees in the forest.
- □ max_depth: Maximum depth of the trees.
- ☐ min_samples_split: Minimum number of samples required to split an internal node.
- ☐ min_samples_leaf: Minimum number of samples required to be at a leaf

node

Random Forest

Regressor

```
from sklearn.ensemble import
RandomForestRegressor
from sklearn.model_selection import
GridSearchCV

param_grid = {
    'n_estimators': [50, 100, 150],
    'max_depth': [None, 10, 20],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

rf =
RandomForestRegressor(random_state=4
2)
grid_search =
GridSearchCV(estimator=rf,
param_grid=param_grid, cv=3,
scoring='neg_mean_squared_error')
grid_search.fit(X_train, y_train)

print("Best_parameters_found: ",
grid_search.best_params_)
```


Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	 The Gradient Boosting Regressor was chosen as the final model due to its superior performance in terms of predictive accuracy and robustness during the model optimization phase. It effectively handles non-linearity and complex relationships between weather variables (such as wind speed, temperature, humidity) and wind turbine energy output.
Gradient Boosting regressor	 - Hyperparameter tuning using RandomizedSearchCV revealed optimal settings that minimized mean squared error and generalized well across different cross-validation folds. - Compared to other models tested (such as Random Forest and Neural Network), it consistently demonstrated better performance metrics on both training and validation datasets.