Матричные вычисления

По лекциям Максима Рахубы

Содержание

1	Ок	ypce	2
2	Осн	сновы матричного анализа	
	2.1	Векторные нормы	2
		2.1.1 Разреженность в L1-норме	2
		2.1.2 Скалярное произведение	3
		2.1.3 Унитарная инвариантность L2-нормы	3
	2.2	Матричные нормы	3
	2.3	Разложение Шура	4
	2.4	Нормальные матрицы	5
3	Мал	поранговое приближение матриц	5
	3.1	Разделение переменных и скелетное разложение	5
	3.2	SVD	6
	3.3	Ортопроектор	7
	3.4	Простейший рандомизированный алгоритм	8

1 О курсе

Большую часть сказанного можно найти в вики.

Правда, кроме указанных на вики источников, было упомянуто ещё два:

- Gilbert (неразборчиво) Matrix Methods in Data Science (скорее всего, Gilbert Strang Matrix Methods in Data Analysis, Signal Processing, and Machine Learning)
- 2. Ivan Oseledets @ github. Скорее всего, имеются в виду репозитории с названиями nla20XX.

2 Основы матричного анализа

2.1 Векторные нормы

Определение 2.1. Векторная норма — функция $f: \mathbb{F}^n \to \mathbb{R}$ такая, что:

- $f(x) \geqslant 0$; $f(x) = 0 \Leftrightarrow x = 0$;
- $f(\alpha x) = |\alpha| f(x)$;
- $f(x+y) \leqslant f(x) + f(y)$.

Обозначается ||x||.

Примеры:

• L_1 -норма (Единичная окружность — ромб, TODO: нарисовать):

$$||x||_1 = \sum_{i=1}^n |x_i|$$

• L_2 -норма (Единичная окружность — окружность):

$$||x||_2 = \sqrt{\sum_{i=1}^n |x_i|^2} = \sqrt{x^*x}$$

А-норма:

$$||x||_A = \sqrt{x^*Ax}, \quad A = A^*, \quad \forall x \neq 0 : x^*Ax > 0$$

• L_{∞} -норма (Единичная окружность — квадрат):

$$||x||_{\infty} = \max_{1 \leqslant i \leqslant n} |x_i|$$

• L_p -норма:

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}, \quad p \geqslant 1.$$

2.1.1 Разреженность в L1-норме

$$Ax = b, \quad A \in \mathbb{R}^{m \times n}, \quad m < n$$

Минимизируем x по L_2 - и L_1 -норме, в случае L_1 получим **разреженное** решение (с большим кол-вом нулей) (TODO: нарисовать).

2.1.2 Скалярное произведение

Определение 2.2. Скалярное произведение $(x, y) = x^*y$.

Теорема 2.1. (Неравенство Коши-Буняковского-Шварца).

$$|(x,y)| \leqslant ||x|| \cdot ||y||.$$

Теорема 2.2. (Неравенство Гёльдера).

$$|(x,y)| \leqslant \|x\|_p \cdot \|y\|_q \quad \Leftarrow \quad \begin{cases} p,q \geqslant 1; \\ \frac{1}{p} + \frac{1}{q} = 1. \end{cases}$$

2.1.3 Унитарная инвариантность L2-нормы

Определение 2.3. Унитарная матрица $U - U \in \mathbb{C}^{n \times n}$:

$$U^{-1} = U^* \quad (\Leftrightarrow I = U^*U = UU^*)$$

Утверждение 2.1. Если U — унитарная матрица, то $\|Ux\|_2 = \|x\|_2$.

Доказательство.

$$\|Ux\|_2 = \sqrt{(Ux)^*Ux} = \sqrt{x^*U^*Ux} = \sqrt{x^*x} = \|x\|_2 \,.$$

2.2 Матричные нормы

Определение 2.4. Норма $\|\cdot\|$ называется матричной, если

- 1. $\|\cdot\|$ векторная норма на пространстве матриц;
- 2. $||AB|| \le ||A|| \cdot ||B||$ (субмультипликативность).

Примеры:

• Норма Фробениуса:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{trace(A^*A)}.$$

• Операторные нормы. Если $\|\cdot\|_*$, $\|\cdot\|_{**}$ — векторные нормы, то соответствующей им операторной нормой будет

$$||A||_{*,**} = \sup_{x \neq 0} \frac{||Ax||_{*}}{||x||_{**}} = \sup_{||y||_{*}} ||Ay||_{*}.$$

• Например, операторной нормой, соответствующей L_2 -норме, является

$$||A||_2 = \sqrt{\lambda_{max}(A^*A)} = \sigma_1(A).$$

Утверждение 2.2. Для любой матрицы A и для любых унитарных матриц U, V верно

$$\begin{aligned} \|UAV\|_F &= \|A\|_F \\ \|UAV\|_2 &= \|A\|_2 \end{aligned}$$

Доказательство. Для $\|\cdot\|_2$:

$$\|UAV\|_2 = \sup_{x \neq 0} \frac{\|UAVx\|_2}{\|x\|_2} = \sup_{x \neq 0} \frac{\left\|U^*(UAVx)\right\|_2}{\|Vx\|_2}$$

Заменим Vx на y. В силу обратимости V это будет равно

$$\sup_{y \neq 0} \frac{\|Ay\|_2}{\|y\|_2} = \|A\|_2.$$

2.3 Разложение Шура

Собственное разложение (существует не всегда):

$$A = S\Lambda S^{-1}, \quad \Lambda = diag(\lambda_1, \dots, \lambda_n)$$

Жорданова форма (всегда существует, но неустойчива при вычислениях):

$$A = PJP^{-1}$$

Для вычислений используют разложение Шура.

Теорема 2.3. (О разложении Шура)

Для всякой $A \in \mathbb{C}^{n \times n}$ существуют такие унитарная U и верхнетреугольная T, что $A = UTU^*$.

Доказательство. Индукцией по размерности A.

База.
$$n = 1$$
: $U = I$, $T = A$.

Переход.
$$(n-1) \rightarrow n$$
.

Т.к. \mathbb{C} алгебраически замкнуто, у характеристического многочлена A есть хотя бы один корень, т.е. у A есть хотя бы одно собственное значение λ_1 , т.е. всегда найдётся хотя бы один ненулевой собственный вектор v_1 единичной длины.

Дополним v_1 до ортонормированного базиса v_1, \ldots, v_n и положим $U_1 = (v_1 | \ldots | v_n)$. v_1 — собственный вектор, так что $Av_1 = \lambda_1 v_1$. Тогда, в силу ортогональности v_i и v_j ,

$$v_i^* A v_1 = \begin{cases} \lambda, & i = 1; \\ 0, & i \neq 1. \end{cases}$$

Поумножаем пару матриц:

$$U_1^*AU_1 = \begin{pmatrix} v_1^* \\ \vdots \\ v_n^* \end{pmatrix} \cdot \begin{pmatrix} Av_1 & \dots & Av_n \end{pmatrix} = \begin{pmatrix} \lambda & v_1^*Av_2 & \dots \\ 0 & & & \\ \vdots & A_1 & & \\ 0 & & & \end{pmatrix}$$

По индукции разложим A_1 как $V_1T_1V_1^*$. Запишем $U_1^*AU_1$ с помощью блочного умножения:

$$\begin{pmatrix} 1 & 0 \\ 0 & V_1 \end{pmatrix} \cdot \begin{pmatrix} \lambda & \dots \\ 0 & T_1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & V_1^* \end{pmatrix}$$

В силу обратимости V_1^* мы можем так сделать (иначе вектора-строки для . . . над T_1 могло бы и не существовать).

Получаем, что

$$T = \begin{pmatrix} \lambda & \dots \\ 0 & T_1 \end{pmatrix};$$

$$U = U_1 \cdot \begin{pmatrix} 1 & 0 \\ 0 & V_1 \end{pmatrix}.$$

Действительно, T верхнетреугольная по построению, а U унитарна как произведение двух унитарных матриц. \Box

2.4 Нормальные матрицы

Определение 2.5. Матрица A называется нормальной, если $A^*A = AA^*$.

Утверждение 2.3. Матрица диагонализуема в унитарном базисе тогда и только тогда, когда она является нормальной.

Доказательство. .

• (*⇒*):

$$A^*A = U\Lambda^*U^*U\Lambda U^* = U\Lambda^*\Lambda U^* = U\Lambda\Lambda^*U^* = AA^*.$$

• (\Leftarrow): Разложение Шура для A: UTU^* .

$$A^*A = AA^* \Rightarrow T^*T = TT^*$$
.

Оставшаяся часть доказательства (←) будет в качестве упражнения в ДЗ.

3 Малоранговое приближение матриц

3.1 Разделение переменных и скелетное разложение

Определение 3.1. Функция с разделенными переменными — такая функция $f: X \times Y \to Z$, что существуют u, v такие, что f(x, y) = u(x)v(y).

Для приближения функций используют сумму функций с разделенными переменными:

$$f(x,y) \approx \sum_{i=1}^{r} u_i(x)v_i(y)$$

Например, разложения в ряд Тейлора и в ряд Фурье:

$$f(x,y) \approx \sum_{i,j=0}^{p} c_{ij} x^{i} y^{j}$$

$$(x,y) \approx \sum_{i,j=0}^{r} c_{ij} \sin \pi i y \quad ((x,y) \in (0, 1))$$

$$f(x,y) \approx \sum_{i,j=1}^{r} c_{ij} \sin \pi i x \sin \pi j y \quad ((x,y) \in (0,1)^{2})$$

Как это относится к матричным вычислениям? Возьмём матрицу $A \in \mathbb{R}^{m \times n}$. a_{ij} — функция дискретных переменных i, j.

Если $a_{ij} = u_i v_j$, то $A = u v^T$ (обратное тоже верно).

Раз все строки (столбцы) матрицы коллинеарны, $rkA\leqslant 1$.

Примеры: $a_{ij} = \sin i \cos j$, $a_{ij} = i$.

Определение 3.2. Скелетное разложение, rank decomposition — разложение $A=UV^T$ такое, что новая размерность U,V минимальна.

Замечания:

- 1. Storage: mn Vs. (m+n)r
- 2. Разложение единственно с точностью до умножения на обратимую матрицу:

$$UV^T = (US)(S^{-1}V^T)$$

Утверждения:

- 1. $A = UV^T \Rightarrow rk(A) \leqslant r$;
- 2. $rk(A) = r \Rightarrow \exists U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{r \times n} : A = UV^T$.

Доказательство. .

- 1. очев
- 2. очев

3.2 **SVD**

Теорема 3.1. Пусть $A \in \mathbb{C}^{m \times n}$, rk(A) = r, тогда найдутся унитарные $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ и $\sigma_1 \geqslant \ldots \geqslant \sigma_r > 0$ — сингулярные числа, что

$$A = U\Sigma V^*$$
.

где Σ — диагональная матрица $c \sigma_1, \ldots, \sigma_r$ на диагонали.

Доказательство. Заметим, что $A^*A \geqslant 0$ и $(A^*A)^* = A^*A$. Из этого следует, что

$$\exists V : V^*A^*AV = diag(\sigma_1^2, \dots, \sigma_n^2), \quad \sigma_1 \geqslant \dots \geqslant \sigma_n \geqslant 0.$$
 (1)

Рассмотрим $V_r = [v_1, \dots, v_r]$ и $\Sigma_r = diag(\sigma_1, \dots, \sigma_r)$, где $\sigma_{r+1} = 0$ (r пока неизвестно).

$$V_r^* A^* A V_r = \Sigma_r^2;$$
$$\left(\Sigma_r^{-1} V_r^* A^*\right) \left(A V_r \Sigma_r^{-1}\right) = I$$

Получается, что $Av_i = \sigma_i u_i$ при $i \in [1, r]$.

A при $i \in [r+1, n]$ — $Av_i = 0$.

Достраиваем U_r до унитарной U:

$$AV = U \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix} \quad \Rightarrow \quad U^*AV = \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix}.$$

Из этого, в частности, следует, что r = rk(A).

Замечание:

1. u_i — левые сингулярные векторы;

 v_i — правые сингулярные векторы;

 $\sigma_{r+1} = \cdots = \sigma_{\min(m,n)} = 0$ — нулевые сингулярные числа.

- 2. Сингулярные числа определены однозначно.
- 3. Сингулярные векторы определяются однозначно с точностью до множителя C: |C| = 1 при $\sigma_1 > \cdots > \sigma_r > 0$.

4.

$$Im(A) = \langle u_1, \dots, u_r \rangle;$$

 $Ker(A) = \langle v_{r+1}, \dots, v_n \rangle.$

5. SVD \rightarrow скелетное разложение:

$$A = U\Sigma V^* = \hat{U}V^*.$$

Переход в другую сторону будет на семинаре.

Теорема 3.2. (Эккорта-Янга-Мирского).

Пусть k < rk(A) и $A_k = U_k \Sigma_k V_k^*$, тогда

$$\min_{rk(B) \le k} ||A - B|| = ||A - A_k||$$

для любой унитарно инвариантной нормы $\|\cdot\|$, причем $\|A-A_k\|_2=\sigma_{k+1}$, $\|A-A_k\|_F=\sqrt{\sum_{i=k+1}^r\sigma_i^2}$.

Определение 3.3. Нормы Шаттена:

$$||A||_{p,Shatten} = \left(\sum_{i=1}^r \sigma_i^p\right)^{1/p}, \quad 1 \leqslant p \leqslant \infty$$

Нормы Шаттена унитарно инвариантны! Примеры:

- 1. $\|\cdot\|_{2,Shatten} = \|\cdot\|_F$;
- $2. \ \|\cdot\|_{\infty,Shatten} = \|\cdot\|_2;$
- 3. $\left\|\cdot\right\|_{1,Shatten}=\left\|\cdot\right\|_*$ ядерная (nuclear) норма.

3.3 Ортопроектор

Определение 3.4. P — ортопроектор на L, если

- 1. Im(P) = L
- 2. $P^2 = P$
- 3. $P^* = P$

Утверждение 3.1.

$$\forall x \in \mathbb{C}^n : Px \perp (I - P)x$$

Доказательство.

$$(Px, (I - P)x) = (x, P^*(I - P)x) = (x, P(I - P)x) = (x, 0) = 0.$$

Утверждение 3.2. Если $U \in \mathbb{C}^{n \times k}$, $U^*U = I_k$, то UU^* — ортопроектор на $\langle u_1, \dots, u_k \rangle$. Ортопроекторы, связанные с SVD.

$$A = U\Sigma V^*, U = [U_r|\hat{U_r}], V = [V_r|\hat{V_r}]$$

 $U_rU_r^*$ — ортопроектор на Im(A). $\hat{V}_r\hat{V}_r^*$ — ортопроектор на Ker(A).

Простейший рандомизированный алгоритм

Хотим найти $Q \in \mathbb{R}^{m \times r}$ с ортогональными столбцами такую, что для $A \in \mathbb{R}^{m \times n}$

$$A \approx QQ^T A$$
 (если $r = rk(A), Q = U_r$, то точное равенство).

Если мы нашли Q, то

$$Q(Q^T A) = Q(W \Sigma V^T) = U \Sigma V^T$$
 — SVD.

Как выбрать Q?

- 1. $\Omega = [\omega_1, \dots, \omega_r]$ случайная матрица;
- 2. $Y = A \cdot \Omega$;
- 3. Ортогонализация столбцов Y. Например, с помощью Грамма-Шмидта. (= QR-разложение)