1.	Линейное пространство. Определение, аксиомы и их следствия. Примеры.																
	Oпр. 1.1. Векторным (линейным) пространством над полем $\mathbb F$ (напри-			:		балло: балла											
	мер, \mathbb{R} или \mathbb{C}) называется множество L с операциями сложения и умножения на элементы поля \mathbb{F} , обладающими следующими свойствами (аксиомами век-			•	0-6	балло	3 — 0	гвет н	а теој	ретич	нески	й вопр	ос по	Разд	целу І	ĬΙ.	
	торного пространства):			_•	0-4	балла	— оте 	вет на	допо	лнит 	ельнь 	ые воп	росы	по Ра	здел	ıy III.	
	1. Относительно сложения L есть абелева группа;																
	2. $\lambda(a+b) = \lambda a + \lambda b$ для любых $a,b \in L$, $\lambda \in \mathbb{F}$:													+			
	$3. \ (\lambda + \mu)a = \lambda a + \mu a$ для любых $\lambda, \mu \in \mathbb{F}, \ a \in L;$													+			
	4. $(\lambda \mu)a = \lambda(\mu a)$ для любых $\lambda, \mu \in \mathbb{F}, a \in L;$																
	$-$ 5. $1a=a$ для любого $a\in L$.																
	Лемма 1.1. Следствия аксиом векторного пространства (докажите ux!):																
	1. $\lambda 0_L = 0_L$ для любого $\lambda \in \mathbb{F}$ (здесь 0_L — нулевой вектор);																
	2. $\lambda(-a) = \lambda a$ для любых $\lambda \in \mathbb{F}, a \in L;$	+															
	3. $\lambda(a-b)=\lambda a-\lambda b$ для любых $\lambda\in\mathbb{F},a,b\in L;$	+												+			
	4. $0a = 0_L$ для любого $a \in L$ (здесь 0 слева — скаляр, справа — вектор);	-												+			
	$5. \ (-1)a = -a$ для любого $a \in L;$	_												1			
	6. $(\lambda - \mu)a = \lambda a - \mu a$ для любых $\lambda, \mu \in \mathbb{F}, a \in L$.	\perp															
	Пример 1.1. Примеры линейных пространств:																
	(а) Пространство {0}, состоящее только из нулевого вектора;																
	(6) Множество \mathbb{F}^n столбцов высоты n с элементами из \mathbb{F} относительно опера-	+	+	+	+			+									
	ций поэлементного сложения и умножения на числа — арифметическое		-	+				-						+			
	или <i>координатное</i> пространство;	+	-	-	-			+					-	\vdash			
	_ (в) Множество $F(X,\mathbb{F})$ всех функций на множестве X со значениями в поле	:		_													
	Готносительно операций поточечного сложения и умножения на числа;																
	(Γ) Множество $\mathbb C$ с привычными операциями можно рассматривать как век-																
	торное пространство над \mathbb{R} ;																
	 (д) Геометрические векторы со стандартными операциями сложения и умно- жовими на писле; 	_															
	жения на числа; (a) Раучественные укратический метрици М (P) размеруести ту у в стисси	+															
	(e) Вещественные квадратные матрицы $M_{m,n}(\mathbb{R})$ размерности $m \times n$ относительно стандартных операций сложения и умножения на числа;	+			+									+			
	(ж) Вещественные многочлены $\mathbb{R}[x]$ с естественными операциями;	_															
	— (3) Вещественные многочлены степени ровно n с естественными операциями				_												
	не являются векторным пространством.																
	линонное пространовое опроделенној акономо и ил оподелени приморо.																
۷.	Линейная комбинация. Линейная оболочка. Линейная зависимость и незави	исиі	иост	ГЬ.													
	Опр. 2.1. Выражение вида $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$ ($\lambda_i \in \mathbb{F}$) называе																
	нейной комбинацией векторов $a_1, \ldots, a_n \in L$. Скаляры λ_i называк эффициентами линейной комбинации. Говорят, что вектор $b \in L$ л																
	выражается через векторы a_1, \ldots, a_n , если он равен некоторой их л				+									+			
	комбинации.				-			-					-				
	Опр. 2.2. <i>Линейной оболочкой</i> подмножества $S \subseteq L$ называется мн	ioske	CTR	_	-									1			
	всех векторов из L , представимых в виде конечных линейных комбина																
	ментов из S . Она обозначается $\langle S \rangle$. Говорят, что пространство L порож																
	множеством $S,$ если $\langle S \rangle = L$																
	Опр. 2.3. Линейная комбинация $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$ векторов $a_1, \ldots,$	0	=														
	Опр. 2.3. Линейная комойнация $\lambda_1 a_1 + \lambda_2 a_2 + \ldots + \lambda_n a_n$ векторов a_1, \ldots, L , где $\lambda_i \in \mathbb{F}$ называется тривиальной , если $\lambda_1 = \lambda_2 = \ldots = \lambda_n = 0$			\top													
	нетривиальной в противном случае.	,		+				+									
	Опр. 2.4. Векторы $a_1, a_2, \dots, a_n \in L$ называются линейно зависимыми ,	, есл	и	+	+			+					-	+			
	существует их нетривиальная линейная комбинация, равная нулю, и <i>лин</i>			+	+			-			\vdash			+			
	независимыми в противном случае.			+													
3.	Базис линейного пространства. Размерность линейного пространства.			-	-			_					-				
	_	1															
	Опр. 3.1. Система векторов $\{e_1, e_2, \dots, e_n\} \subseteq L$ называется базисом векто																
	— ного пространства L , если каждый вектор $a \in L$ единственным образом выр жается через e_1, e_2, \ldots, e_n . Коэффициенты этого выражения называются коо																
	$\partial u hamamu$ вектора a в данном базисе.																
	Yucis reneamable Sague uneurons mocmpolitants eens ers pastreprocomo (din L																
	mais true to some them one	1	+	+	+		+	+			\vdash		+				
	mocmoticuta ecus ero razileznocius (d'int	- /	+	+	-			-				-	-	+			
		_	-	-				-				_	-	\vdash			
								+					+	+			
		+	+	+	+		-	+			\vdash		-	\vdash			
		_	-	-								_		-			

4.	Линейное подпространство. Определение, примеры.	_
	Oпр. 1.1. Подмножество U векторного пространства L называется $nodnpo$ -	
	странством, если	
	1. U является подгруппой аддитивной группы L ;	<u> </u>
	$2. \ a \in U \Rightarrow \lambda a \in U$ для любого $\lambda \in \mathbb{F}$.	_
	Пример 1.1. Примеры подпространств:	-
	(а) В любом пространстве L есть «тривиальные» подпространства $\{0\}\leqslant L,$ $L\leqslant L;$	
	$(6) \mathbb{R}_n[x] \leqslant \mathbb{R}[x];$	
	(в) В пространстве $F(X,\mathbb{R})$ всех функций на заданном промежутке X числовой прямой множество непрерывных функций является подпространством;	
	(г) Множество векторов, параллельных заданной плоскости, — подпростран- ство в пространстве геометрических векторов;	
	(д) Множество диагональных матриц является подпространством в $M_n(\mathbb{R})$;	
	(е) Линейная оболочка набора векторов является подпространством в изначальном пространстве.	
	(ж) Множество решение однородной СЛАУ $Ax = 0$ над \mathbb{F} является подпространством в соответствующем координатном пространстве;	
5.	Линейное многообразие. Гиперплоскость, Определения, примеры.	
	Опр. 1.2. Пусть $U \leqslant L$, $a \in L$ — фиксированный вектор. Множество векторов вида $x = a + U = \{a + u \mid u \in U\}$ называется <i>линейным многообразием</i> размерности dim U . Говорят, что оно параллельно подпространству U . Одномерное линейное многообразие называется $npsmoŭ$, k -мерное — k -мерной $nnocko$ -	
	$m{cm}$ ью, если $1 < k < \dim V - 1$, $m{zunepn}$ лоскостью — если $k = \dim V - 1$.	L
	Пример 1.2. Примеры линейных многообразий:	
	(а) В пространстве геометрических векторов, исходящих из точки О, прямая	-
	и гиперплоскость $x = a + U - $ это обычные прямая и плоскость, смещённые относительно точки O на вектор a и параллельные прямой или плоскости	
	U, проходящей через точку O ;	_
	(б) Множество многочленов, производная которых равна $3x^2 + 4x$, является линейным многообразием в пространстве $\mathbb{R}_3[x]$. В этом случае $a = x^3 + 2x^2$, $U = \mathbb{R}_0[x] = \mathbb{R}$.	
6.	Изоморфизм линейных пространств.	
	Oпр. 2.1. Векторные пространства U и V над полем $\mathbb F$ называются u зомор ϕ - ным u , если существует такое биективное отображение $\varphi:V \to U$, что	
	$ullet$ $\varphi(a+b)=arphi(a)+arphi(b)$ для любых $a,b\in V;$	
	$ullet$ $\varphi(\lambda a)=\lambda \varphi(a)$ для любых $\lambda\in \mathbb{F}, a\in V.$	
	Само отображение φ называется при этом $\pmb{usomopfusmom}$ пространств.	
	$egin{array}{cccccccccccccccccccccccccccccccccccc$	
	Пример 2.1. Примеры изоморфных пространств:	
	(a) Пространство квадратных матриц $M_n(\mathbb{R})$ изоморфно \mathbb{R}^{n^2} ;	
	(б) Пространство полиномов $\mathbb{R}_n[x]$ степени не выше n изоморфно \mathbb{R}^{n+1} .	
7.	Ранг матрицы. Теорема о базисном миноре.	
	Опр. 3.1. Рангом системы векторов называется размерность её линейной	
	оболочки. <i>Строчным рангом матрицы</i> называется ранг системы её строк. — <i>Столбцовым рангом матрицы</i> называется ранг системы её столбцов.	
	Опр. 3.2. Минорным рангом матрицы называется наибольший порядок	
	отличного от нуля минора матрицы. Сам этот минор называется <i>базисным</i> .	
	Теорема 3.1. (о базисном миноре) Столбцы (строки), пересекающие базисный минор матрицы, линейно независимы. Любой столбец (строка) матрицы является линейной комбинацией базисных.	
	Следствие 3.1.1. Минорный, столбцовый и строчный ранги матрицы совпа-	
	дают, поэтому можно говорить просто о ранге матрицы A . Обозначается он rgA , rkA , $rankA$, $rangA$, $r(A)$.	
	(
	Теорема 3.2. (о ранге матрицы) Ранг матрицы равен максимальному чис- лу её линейно независимых строк (столбцов).	_

8.	Ранг	- матрицы. Связь с элементарными преобразование. Ранг суммы и произведения	ма	триц.					
		Следствие 3.2.1. Ранг матрицы не меняется при умножении её на на любую невырожденную матрицу.							_
		Лемма 3.1. Имеют место следующие свойства:							
		1. При элементарных преобразованиях строк (столбцов) матрицы её ранг не меняется;							_
		2. Каждая матрица элементарными преобразованиями строк приводится к ступенчатому виду;							_
		3. Ранг ступенчатой матрицы равен числу ненулевых строк.							_
		Теорема 3.3. (о ранге суммы и произведения матриц) Имеют место							_
		следующие свойства:	-						_
		• $\operatorname{rank}(A+B) \leqslant \operatorname{rank} A + \operatorname{rank} B$;							_
		• $\operatorname{rank}(AB) \leq \min\{\operatorname{rank} A, \operatorname{rank} B\}.$							_
9.	Teop	рема Кронекера-Капелли. Следствия о рангах.							_
		Теорема 1.1. (Кронекера-Капелли) СЛАУ совместна тогда и только тогда, когда ранг её матрицы коэффициентов равен рангу расширенной матрицы.							_
		NtB. Для решения произвольной СЛАУ используется метод Гаусса. Приве-							
		дём матрицу $(A b)$ путём элементарных преобразований к ступенчатому виду							
		$(\widetilde{A} \widetilde{b})$. Ясно, что число ненулевых строк матрицы \widetilde{A} равно $\operatorname{rank} A$, матрицы							
		$(\widetilde{A} \widetilde{b}) - \operatorname{rank}(A b).$ Возможны три случая:							
		• $\operatorname{rank}(A \mid b) = \operatorname{rank} A = n$. Тогда однозначно определяется x_n , потом x_{n-1} и							
		так далее до x_1 , то есть решение единственно — такие системы называются <i>определёнными</i> .							_
		• $\operatorname{rank}(A \mid b) = \operatorname{rank} A + 1$. То есть возникло уравнение $0x_1 + \ldots + 0x_n = c$, —							_
		$c \neq 0$. Это означает, что СЛАУ несовместна ;							_
		• $\operatorname{rank}(A \mid b) = \operatorname{rank} A < n$. В этом случае выберем переменные, коэффициенты при которых образуют базисный минор (эти переменные называются							_
		базисными) и выразим их через оставшиеся переменные (они называют-							_
		ся <i>свободными</i>). Базисные переменные оказываются функциями от сво-							_
		бодных— выражаются как линейные комбинации последних возможно с дополнительным ненулевым свободным членом. В таком случае имеется							-
		более одного решения, а сами системы называются неопределёнными .							_
		Если поле \mathbb{F} бесконечно, то и решений бесконечно много.							-
10.	Одн	нородная СЛАУ. Степень неопределенности однородной СЛАУ. Общее решение.							_
		Опр. 2.1. СЛАУ называется <i>однородной</i> , если столбец свободных членов является нулевым вектором.							_
		NtB. Часто мы будем использовать запись $Ax = 0$, предполагая, что в данном случае в правой части стоит нулевой вектор из \mathbb{F}^k Лемма 2.1. Множество $X = \{x \in \mathbb{F}^n Ax = 0\}$ решений однородной СЛАУ							
		образует линейное подпространство $X \leqslant \mathbb{F}^k$.							_
		Теорема 2.1. (о "степени неопределённости" однородной СЛАУ) Размерность пространства X решений однородной СЛАУ с п неизвестными и матрицей коэффициентов A равна							_
		$\dim X = n - \operatorname{rank} A$							_
		Опр. 2.3. Общим решением однородной СЛАУ называется линейная ком-							_
		бинация векторов ФСР:							_
		$x_0 = \sum_{i=1}^{N-1} \lambda_i e_i, \forall \lambda_i \in \mathbb{F}$							_
11.	-Д. Одн СЛА	$x_0 = \sum_{i=1}^{n-r} \lambda_i e_i, \qquad orall \lambda_i \in \mathbb{F}$ нородная СЛАУ. Пространство решений. Задание линейного подпространства од АУ.	нор	одной					_
		Опр. 2.1. СЛАУ называется <i>однородной</i> , если столбец свободных членов является нулевым вектором.							_
		NtB. Часто мы будем использовать запись $Ax=0$, предполагая, что в данном случае в правой части стоит нулевой вектор из \mathbb{F}^k							
		Лемма 2.1. Множество $X = \{x \in \mathbb{F}^n Ax = 0\}$ решений однородной СЛАУ образует линейное подпространство $X \leq \mathbb{F}^k$.							
		Теорема 2.2. Пусть матрица В состоит из столбцов, образующих базис про-							
		странства решений СЛАУ $Ax=0$. Тогда система $B^Tx=0$ задаёт линейную оболочку строк матрицы A .							
		(nousing to TCP ograp, C/AY nomero							_
		Crouwbro PCP ograp, CNAY nomero zagama unreiroe rogapocaponembo							_
									_
									_
									_

12.	Неоднородная СЛАУ. Общее решение. Альтернатива Фредгольма.	
	Теорема 3.1. (о структуре решения СЛАУ) Общее решение неоднород-	
	ной СЛАУ вида $Ax=b$ является суммой общего решения однородной x_0 и	_
	произвольного частного решения \widetilde{x} неоднородной:	
	n-r	
	$x = \widetilde{x} + x_0 = \widetilde{x} + \sum_{i=1}^{n-r} \lambda_i e_i, \forall \lambda_i \in \mathbb{F},$	
	ede $Ax_0 = 0$ u $A\widetilde{x} = b$.	-
	Теорема 3.2. (альтернатива Фредгольма) Если в СЛАУ $Ax = b$ число уравнений равно числу неизвестных, то	
	• либо она имеет единственное решение при любых значениях правой ча-	_
	• лиоо она имеет еоинственное решение при люоых значениях правои ча- сти,	
	ullet либо однородная СЛАУ $Ax=0$ обладает ненулевым решение.	
	• Rabo bonopoonan CATAS AL = 0 bonabaeth nengnebam peatenae.	
3. (има подпространств. Нахождение базиса суммы подпространств.	
	Опр. 1.1. Пусть U и W — подпространства векторного пространства V . Мини-	
	мальное подпространство, содержащее оба подпространства U и W , называется	_
	суммой подпространств U и W и обозначается $U+W$. То есть, если $U,W\leqslant U,$	_
	To $U + W = \{u + w \mid v \in U, w \in W\} \leqslant V$.	
	векторов. Всё, что нужно сделать для поиска базиса $U+W,$ — это исключить	
	лишние (линейно выражающиеся через другие) векторы из объединённой си-	
	стемы векторов. Для этого достаточно записать их в матрицу и привести её к ступенчатому виду. Базисом суммы подпространств будут, например, векторы,	_
		+
	Te een rogapoenpoirendo a unem dozne $(x, = (\alpha_{1}, 0)_{12}, \alpha_{13})$ or rogapoenpoirendo lo unem dozne (a_{11}, a_{12}, a_{13}) (a_{12}, a_{13}, a_{13}) (a_{12}, a_{13}, a_{13}) (a_{12}, a_{13}, a_{13})	_
	$\sigma_{12} = (\sigma_{11}, \sigma_{12}, \sigma_{13})$	
	or rognocuporando la unela dazue b. = (b. b. b. b.)	
	ms a+b unelm osizne, esconsonium uz neryeline empor pemerinan no logeez CAAY (on a, a, a, 6)	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-
	renyelluse empor peniermon no sujecy CAAY (01, 01, 2 a, 6)	
	rerycebose empor penierron no Poyecy CAAY (01, 01, 2 01, 3 0) 012, 012, 013, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	,	
14.	lepeceчение подпространств. Нахождение базиса пересечения подпространств.	
	— Опр. 1.2. Пусть U и W — подпространства векторного пространства V . Пересе-	
	чение $U \cap W$ множеств U и W замкнуто относительно операций из V и является	
	подпространством V . Оно называется пересечением подпространств U и W .	
	To есть $U \cap W = \{v \mid v \in U \lor v \in W\} \leqslant V$.	
	NtB. $U \cap W$ — наибольшее подпространство, содержащееся в как U , так и в	
	W.	
	Для определения базиса пересечения подпространств, нужно задать их одно-	_
	родными СЛАУ. Так как любой вектор, принадлежащий пересечению, должен	
	принадлежать каждому из подпространств, то он должен удовлетворять каждой системе. Следовательно, он должен удовлетворять и объединённой СЛАУ.	
	Значит, для нахождения базиса $U \cap W$ нужно найти ФСР этой СЛАУ.	
	Te een vognocupourendo or ween signe $C_1 = (C_{11}, O_{12}, O_{13})$ or vognocupourendo lo ween signe $b_1 = (b_1, b_{12}, b_{13})$ $b_2 = (b_2, b_{21}, b_{22}, b_{23})$	-
	$\mathcal{O}_{1} = \left(\mathcal{O}_{1}, \mathcal{O}_{23}, \mathcal{O}_{23} \right)$	
	or reproductions to well dazue b= (b-6; 6;)	
	$b = (b^n, b^2, b^3)$	
	anb. La, + Baz= yb, +8b,	
		+
		_
	$\int a_{11} a_{21} b_{11} b_{21}$	_
	(a ₁₁ a ₂₁ b ₁₁ b ₂₁) penne no Voyea -> Hotum omornenas (a ₁₂ a ₁₂ b ₁₃ b ₁₃) penne no Voyea -> Hotum omornenas (a ₁₃ a ₂₃ b ₁₃ b ₁₃)	
	Los as he beal Kossasminerande dul	
	(h) (i) (ii) (ii) (iii)	
		-
	and and bis bis bis bear personal no byear -> trotume omasularis (and and bis bis) (and and bi	-
	Theyrennen bernsy (rassy bernopob) a come dozue repecer	
15	Базис, согласованный с подпространством. Формула Грассмана	
13.		+
	Опр. 2.1. Базис пространства V называется согласованным с подпространством U, если U является линейной оболочкой какой-то части базисных векто-	-
	ством U , если U является линеиной оболочкой какой-то части базисных векто- ров пространства V .	_
	pop inportpanotna y .	
	Следствие 2.1.1. (формула Грассмана) Для любых двух конечномерных	
	Следствие 2.1.1. (формула Грассмана) Для любых двух конечномерных подпространств U и W произвольного векторного пространства V верно ра-	
	Следствие 2.1.1. (формула Грассмана) Для любых двух конечномерных	
	Следствие 2.1.1. (формула Грассмана) Для любых двух конечномерных подпространств U и W произвольного векторного пространства V верно ра-	

16.	Прямая сумма. Критерий прямой суммы. Прямое дополнение. Проекциі	и вектора.
	Опр. 3.1. Сумма $U+W$ называется $\pmb{npsmoü}$, если для любого в	вектора $v \in$
	$U+W$ представление $v=u+w$, где $u\in U,w\in W$ единственно. Пр	ямая сумма
	— обозначается $U \oplus W$ или $U + W$.	
	Опр. 3.2. Пусть $U\leqslant V$. Подпространство $W\leqslant V$ называется nps	мым до-
	$oldsymbol{}$ полнением к U в $V,$ если $V=U\oplus W.$	
	Более общо, сумма подпространств $U_1, U_2, \ldots, U_k \leqslant V$ называется	н прямой,
	если каждый вектор $w \in U_1 + U_2 + \ldots + U_k$ имеет единственное предс	
	виде $w = u_1 + u_2 + \ldots + u_k$, где $u_i \in U_i$. Вектор u_i называется проекцие w на подпространство U_i . Заметим, что проекция на подпространст	
	v_i на подпространето v_i . Заметим, что проскции на подпространето не только от него, но и остальных слагаемых разложения.	BO SABRUHI
17	Матрица перехода. Свойства матрицы перехода.	
17.		
	Пусть $e = \{e_1, e_2, \dots, e_n\}$ — некоторый базис в V и $\tilde{e} = \{\tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_n\}$ — другая, в общем случае отличная от первой, система векторов из V . Выразим	V- л.п., (e)=(e,,,,en), (e')=(e',,,,en')-бадисы л.п. V
	векторы системы $\{\widetilde{e}_i\}_{i=1}^n$ через базисные векторы.	
	$\widetilde{e}_1 = c_{11}e_1 + c_{21}e_2 + \ldots + c_{n1}e_n$	$e_i' = S_{4i} e_1 + S_{2i} e_2 + S_{5i} e_3 + + S_{ni} e_n , i = 1,,n$
	$\widetilde{e_2} = c_{12}e_1 + c_{22}e_2 + \ldots + c_{n2}e_n$	(511 S1n) Koopgunamn Beamopab (e') b Sague (e)
	$\widetilde{e}_{2} = c_{12}e_{1} + c_{22}e_{2} + \dots + c_{n2}e_{n}$ \dots $\widetilde{e}_{n} = c_{1n}e_{1} + c_{2n}e_{2} + \dots + c_{nn}e_{n}$	S = $\begin{pmatrix} S_{11} & & S_{1n} \\ \vdots & \ddots & \vdots \\ S_{n_1} & & S_{n_n} \end{pmatrix}$ koopginamn beanofed (e') b dazue (e)
	и составим матрицу $T=(\tau_{ij})$. Подчеркнем, что матрица T получается вы-	
	писыванием координат векторов системы относительно базиса в столбцы. Если	$V \in V$ $V = (v_{1,}, v_{n})$ δ daywe (e) $V = (v_{1,}^{\perp}, v_{n}^{\perp})$ δ daywe (e')
	распространить правило умножения матриц на случай, когда элементами од- ной из них являются векторы (что имеет смысл ввиду операций, определенных	$V = V_1 e_1 + V_2 e_2 + + V_n e_n = V_1^{\dagger} e_1^{\dagger} + V_2^{\dagger} e_2^{\dagger} + + V_n^{\dagger} e_n^{\dagger}$
	в линейном пространстве), то можно записать	
	$(\widetilde{e}_1, \dots, \widetilde{e}_n) = (e_1, \dots, e_n)T \tag{1}$	v = (e)v = (e')v'
	— Опр. 1.1. Невырожденная матрица T называется матрицей перехода от	$V = SV' \begin{cases} V_{\perp} \\ S_{N_1} S_{N_n} \end{cases} / V_{\perp}^{1}$
	базиса $\{e_i\}_{i=1}^n$ к базису $\{\widetilde{e}_i\}_{i=1}^n$.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	NtB 1.1. Для явного указания базисов, между которыми совершается преобра- зование перехода, будем вводить следующее обозначение для матрицы перехода	C6-8a S:
	$T=(e \leadsto \widetilde{e})$	1)] (e),(f),(g) - $\delta ague $; S ; S : S = S : S : S = S : S
	Лемма 1.2. (свойства матрицы перехода)	2)] S - 06pamuua
	1. $(e \leadsto e) = E$;	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2. $(e \leadsto f) = (e \leadsto g)(g \leadsto f);$	
	3. $(e \leadsto f) = (e \leadsto g)(g \leadsto f)$, 3. $(e \leadsto f)$ обратима $u (e \leadsto f)^{-1} = (f \leadsto e)$.	3) V обратишая Ев. инда поридка п монит сиупить S от одного базыса.
18	. Матрица перехода. Изменение координат вектора при преобразовании	и базиса.
	Теорема 2.1. Пусть V — конечномерное векторное прос	
	базисы. Тогда для любого вектора $x \in V$ выполнено $\widetilde{X} = (\widetilde{e}$	$\leadsto e)X$.
	NtB. Обратим внимание: чтобы получить столбец координат	г в новом бази-
	се, нужно слева умножить столбец его координат в старом баз	висе на матрицу,
	обратную к матрице перехода от старого базиса к новому. Ещё	
	ординаты вектора в базисе преобразуются контравариантно.	. Полный смысл
	этого понятия будет раскрыт в следующих темах.	
10	. Матричные группы. Определение, примеры. Подгруппы GL(n): SL(n), D(i	р) и пругие
- 13	Spontagen.	п, г другиз.
	Лемма 3.1. Множество квадратных невырожденных матриц с с	операцией — — — — — — — — — — — — — — — — — — —
	умножения образует некоммутативную группу.	
	Опр. 3.1. Множество невырожденных квадратных матриц n-го	Hondilka e ono
	рацией умножения называется полной линейной группой и	
	$\operatorname{GL}(n)$.	
	NtB 3.1. Любая матрица перехода является элементом этой групп	пы $T \in \mathrm{GL}(n)$
	и, наоборот, любая матрица $A\in \mathrm{GL}(n)$ может быть матрицей пер	рехода между
	какими-то базисами.	
	Опр. 3.2. Специальной линейной группой $\mathrm{SL}(n)$ называется	
	 рая образована подмножеством GL(n) квадратных матриц, опред- рых равен 1. 	елитель кото-
		(CI (v)
	NtB 3.2. Специальная линейная группа является подгруппой	
	Перечислим еще ряд других важных подгрупп полной лине	ейной группы:
	• Диагональная группа $D(n)$ — множество всех диагональн	ных невырожден
	ных матриц n -го порядка.	
	• Треугольная группа T(n) — множество (верхне) треуго	ольных невырож-
	денных матриц <i>n</i> -го порядка.	
	• Унитреугольная группа UT(n) — множество верхнетреу	
	все диагональные элементы которых равны 1. В этом с	емысле, UT(n) яв-
	ляется подгруппой как $T(n)$, так и $SL(n)$.	

20. Ma	атричные группы. Ортогональные матрицы и ортогональные группы.						
	Лемма 3.1. Множество квадратных невырожденных матриц с операцией						
	умножения образует некоммутативную группу.						
	Опр. 3.4. Вещественная квадратная матрица C называется <i>ортогональной</i> если $C^T = C^{-1}$, то есть $C^T C = CC^T = E$.	ι, –					
	Опр. 3.5. Множество ортогональных матриц n -ного порядка называется op -						
	тогональной группой и обозначается $O(n)$.						
	Нетрудно заметить, что ортогональные матрицы 2×2 имеют один из следу-	_					
	ющих видов: $\begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$, $\begin{pmatrix} \cos \varphi & \sin \varphi \\ \sin \varphi & -\cos \varphi \end{pmatrix}$, угол можно считать принад-						
	лежащим $[0, 2\pi)$. В первом случае смысл — поворот на угол φ , и сама матрица						
	называется матрицей поворота . Во втором случае происходит композиция	_					
	поворота на угол φ и симметрии относительно e_1 , повернутого на угол φ — можно показать, что это симметрия относительно направления $(\cos \frac{\varphi}{2}, \sin \frac{\varphi}{2})^T$. Опре-						
	делитель любой ортогональной матрицы равен ± 1 . Ортогональная матрица с	_					
	определителем 1 называется <i>специальной ортогональной</i> . Множество таких	_					
	— матриц n -ного порядка обозначается $SO(n)$ и называется специальной орто -	_					
	гональной группой . $SO(2)$ является группой вращений плоскости, $SO(3)$ — группой вращений пространства.	_					
	Опр. 3.6. Евклидовой группой $\mathrm{E}(n)$ называется множество преобразований	i 📙					
	$x \mapsto Ax + b,$	+					
		+					
	где $x,b\in\mathbb{R}^n$ и $A\in\mathrm{O}(n)$ — ортогональная матрица.	+					
1 Me	етод координат. Системы координат.						
	втод координат. Системы координат.	+					
	Опр. 1.1. Метод координат — это подход, позволяющий установить соответ-	_					
	ствие между геометрическими объектами (точками) и алгебраическими объектами (числами), а также описать их свойства и отношения между ними с	+					
	помощью аналитических соотношений.	+					
	Опр. 1.2. Координатная линия — непрерывная линия без самопересечений,	-					
	каждой точке которой ставится в соответствие действительное число.						
	Опр. 1.3. Координатной осью α называют координатную линию, представ-	_					
	ленную ориентированной прямой, имеющей начало отсчета O и снабженную	+					
	масштабом E . При этом любой точке P координатной оси ставится в соответ-	+					
	ствие вещественное число x_P , называемое координатой точки:						
	$P \in \alpha \qquad \leftrightarrow \qquad x_P \in \mathbb{R}$						
	NtB. Координатные оси на плоскости (в пространстве) в совокупности образу-						
	ют систему координат.						
	Oпр. 1.4. Прямолинейной системой координат на плоскости (в простран	I-					
	стве) называется система из двух (трех) разнонаправленных координатных осей						
	имеющих общее начало.						
	Опр. 1.5. Координатной линией уровня на плоскости называется любая						
	прямая, параллельная одной из координатных осей.						
	Опр. 1.6. Координатной поверхностью уровня в пространстве называется						
	любая плоскость, параллельная одной из координатных плоскостей.						
	Опр. 1.7. Прямоугольной системой координат называется такая систе-						
	ма, в которой угол между каждой парой координатных осей является прямым. Если на координатных осях выбран одинаковый масштаб, то такая система на-						
	если на координатных осях выоран одинаковыи масштао, то такая система называется декартовой прямоугольной системой координат.						
	Опр. 1.8. Полярной системой координат называется такая система координат, в которой каждой точке соответствует полярный радиус r — расстояние от на-						
	чала координат (полюса), и полярный угол ϕ , который отсчитывается от луча,						
	выходящего из начала координат (полярная ось), против часовой стрелки.						

2.	Направленные отрезки. Свободные векторы.	
	Опр. 2.1. Направленным отрезком, или связанным вектором, назовем отрезок, однозначным образом определяемый точками, которые назовет началом и концом направленного отрезка.	
	Пример 2.1. Радиус-вектором точки A называется направленный отрезок, проведенный из начала координат в точку A .	
	Oпр. 2.2. Направленные отрезки будем называть коллинеарными, если они лежат на параллельных прямых.	
	Опр. 2.3. Направленные отрезки будем называть компланарными, если они лежат на параллельных плоскостях.	
	Опр. 2.4. Модулем (или длиной) направленного отрезка ${\bf AB}$ будем называть длину отрезка ${\bf AB}$.	
	Опр. 2.5. Отношением эквивалентности \sim на множестве M называется отношение, обладающее свойствами рефлексивности, симметричности, транзитивности.	
	Опр. 2.6. Класс эквивалентности элемента $a \in M$ - это подмножество множества M , в котором все элементы эквивалентны a .	
	Oпр. 2.7. Направленные отрезки будем называть эквивалентными , если они сонаправлены и их модули равны.	
	Опр. 2.8. Свободным вектором, или просто вектором, называется класс эквивалентности направленных отрезков.	
3. 1	Множество векторов. Группа параллельных переносов. Опр. 3.1. Суммой векторов а и b называется вектор с, являющийся классом эквивалентности направленного отрезка AC, начало которого совпадает с началом вектора AB, а конец — с концом вектора BC.	
	Опр. 3.2. Произведением вектора a на скаляр λ называется вектор $\mathbf{b} = \lambda \mathbf{a}$ такой, что	
	(a) $ \mathbf{b} = \lambda \mathbf{a} $ (b) $\lambda > 0 \Rightarrow \mathbf{a} \uparrow \uparrow \mathbf{b}$	
	(B) $\lambda < 0 \Rightarrow \mathbf{a} \uparrow \downarrow \mathbf{b}$	_
	$(r) \lambda = 0 \Rightarrow \mathbf{b} = 0$	_
	Лемма 3.1. Множество свободных векторов с введенными операциями сложения и умножения на скаляр образуют линейное пространство.	
	Опр. 3.3. Параллельным переносом (или трансляцией) $T_{\mathbf{a}}$ точки P называ-	
	ется преобразование, которое сопоставляет ей такую точку P' , что направленный отрезок $\mathbf{PP'}$ по модулю и направлению совпадает с \mathbf{a} , называемым $\mathbf{векто-}$ ром переноса.	
	Лемма 3.2. Множество параллельных переносов образует абелеву группу.	_
4.	Аффинное пространство. Точечный базис. Базис в ДПСК.	_
-	Пусть \mathcal{A} — непустое множество, элементы которого мы будем называть mov - ками, $L(\mathbb{B})$ — линейное пространство над полем \mathbb{K} , а также задано отображение (векторизация)	
	$\Phi: \mathcal{A} imes \mathcal{A} o L$	
	сопоставляющее паре точек (A,B) из \mathcal{A} вектор $\mathbf{AB}=x\in L$.	
	Опр. 4.1. Тройка (A, L, Φ) называется аффинным пространством с ассоциированным линейным пространством L над полем \mathbb{K} , если выполнено:	
	• Для любой точки $A \in \mathcal{A}$ и любого вектора $x \in L$ существует единственная точка $B \in \mathcal{A}$ такая, что $\mathbf{AB} = x \in L$.	
	$ullet$ Lля любых трех точек $A,B,C\in\mathcal{A}$ имеет место равенство (треугольника)	
	$\mathbf{AC} = \mathbf{AB} + \mathbf{BC} \tag{1}$	
	Опр. 4.2. Репером (или точечным базисом) называется совокупность фиксированной точки O (начала координат) и $\{e_i\}_{i=1}^n$ — базиса ассоциированного линейного пространства.	
	NtB. Определим базис в различных пространствах:	
	(а) На прямой линии базисом является любой ненулевой вектор;	
	(б) На плоскости базисом является любая упорядоченная пара неколлинеарных векторов;	
	(в) В трехмерном пространстве базис - упорядоченная тройка любых неком- планарных векторов;	
	${f NtB.}$ Единичные векторы ${f i}, {f j}$ и ${f k}$ осей декартовой прямоугольной системы координат образуют базис пространства. Следовательно радиус-вектор любой точки ${\cal A}$ может быть разложен по базису	
	$\mathbf{r}_A = x_A \mathbf{i} + y_A \mathbf{j} + z_A \mathbf{k},$	

5. Общий подход к рассмотрению прямых и плоскостей.

Рассмотрим линейное пространство \mathbb{R}^n при n=2 в случае плоскости и n=3 в объемном геометрическом пространстве, а также зафиксируем подпространство $L\leqslant\mathbb{R}^n$. Напомним, что линейным многообразием M называлось подмножество линейного пространства, полученное путем "сдвига" какого-то линейного подпространства на вектор \mathbf{r}_0 .

$$M = \mathbf{r}_0 + L \quad \Leftrightarrow \quad \forall \mathbf{r} \in M \quad \exists \mathbf{s} \in L : \quad \mathbf{r} = \mathbf{r}_0 + \mathbf{s}$$

Опр. 2.1. Линейное подпространство L, по которому строится линейное многообразие M, называют направляющим подпространством.

В зависимости от соотношения между размерностью n геометрического пространства и размерностью $k=\dim L$ линейного подпространства $L\leqslant \mathbb{R}^n$ мы получаем различные примеры линейных многообразий в геометрических пространствах.

Возможны случаи:

• n=2, k=1: M — радиус-векторы, концы которых лежат на прямой в плоскости. При этом

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{s},$$
 (1)

где ${\bf r}_0$ — радиус-вектор **опорной** точки этой прямой, а ${\bf s}$ — ненулевой вектор из направляющего подпространства, который также называют **направляющим вектором**.

• $n=3,\ k=1$: M — радиус-векторы, концы которых лежат на прямой в пространстве. При этом также как и в предыдущем случае

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{s}.\tag{2}$$

• $n=3,\ k=2$: M — радиус-векторы, концы которых лежат на плоскости в пространстве. При этом

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{a} + \beta \mathbf{b},$$
 (3)

где ${\bf r}_0$ — радиус-вектор **опорной** точки этой плоскости, а ${\bf a}$ и ${\bf b}$ — линейно независимые (неколлинеарные) векторы в пространстве, линейная оболочка которых образует линейное подпространство L.

6. Векторные уравнения прямых и плоскостей.

• $n=2,\,k=1$: M — радиус-векторы, концы которых лежат на прямой в плоскости. При этом

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{s},\tag{1}$$

где ${\bf r}_0$ — радиус-вектор **опорной** точки этой прямой, а ${\bf s}$ — ненулевой вектор из направляющего подпространства, который также называют **направляющим вектором**.

• $n=3,\ k=1$: M — радиус-векторы, концы которых лежат на прямой в пространстве. При этом также как и в предыдущем случае

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{s}.\tag{2}$$

• $n=3,\ k=2$: M — радиус-векторы, концы которых лежат на плоскости в пространстве. При этом

$$\mathbf{r} = \mathbf{r}_0 + \alpha \mathbf{a} + \beta \mathbf{b},$$
 (3)

где \mathbf{r}_0 — радиус-вектор **опорной** точки этой плоскости, а **а** и **b** — линейно независимые (неколлинеарные) векторы в пространстве, линейная оболочка которых образует линейное подпространство L.

Из векторного параметрического уравнения прямой (на плоскости или в пространстве) можно получить также векторное уравнение прямой, проходящей через две точки

$$\mathbf{r} = \mathbf{r_0} - t(\mathbf{r}_1 - \mathbf{r}_0),$$

где ${f r}_1-{f r}_0={f s}$ определяет направляющий вектор прямой.

Oпр. 3.2. Нормальным векторным уравнением прямой на плоскости называют уравнение вида

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{n}) = 0$$
 \Leftrightarrow $(\mathbf{r}, \mathbf{n}) = (\mathbf{r}_0, \mathbf{n}) = -C$

где ${\bf n}$ — вектор нормали к прямой, а C — некоторая константа.

Bern nopu ypolon, mock.

$$(\mathbf{r} - \mathbf{r}_0, [\mathbf{a} \times \mathbf{b}]) = (\mathbf{r} - \mathbf{r}_0, \mathbf{a}, \mathbf{b}) = 0$$
(10)

Действительно, для точки, принадлежащей плоскости, выражение ${\bf r}-{\bf r}_0$ также определяет вектор, лежащий в ней, а значит он будет компланарным в системе с парой векторов ${\bf a}$ и ${\bf b}$.

7. Взаимное расположение прямы	х, плоскостей и прямых относительно	плоскостей.		
Прямые в пространстве				
	стве заданы векторными параметрическ	ими урав-		
нениями	$\mathbf{r} = \mathbf{r}_1 + t_1 \mathbf{s}_1$	(4)		
	$\mathbf{r} = \mathbf{r}_2 + t_2 \mathbf{s}_2$	(4)		
Возможно несколько случ	аев:			
(а) Прямые параллельны		4-1		
,	$\mathbf{s}_1 \parallel \mathbf{s}_2 \qquad \Leftrightarrow \qquad \mathbf{s}_1 = \lambda \mathbf{s}_2$	(5)		
(б) Прямые совпадают	$\mathbf{s}_1 \parallel \mathbf{s}_2 \parallel (\mathbf{r}_2 - \mathbf{r}_1)$	(6)		
(в) Прямые пересекаются	51 52 (12 - 11)			
(B) Hyasine nepecekatorea	(/			
	$\begin{cases} (\mathbf{r}_2 - \mathbf{r}_1, \mathbf{s}_1, \mathbf{s}_2) = 0 \\ \mathbf{s}_1 \neq \lambda \mathbf{s}_2 \end{cases}$	(7)		
(г) Прямые скрещиваются	•			
(г) Прямые скрещиваются	$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{s}_1, \mathbf{s}_2) \neq 0$	(8)		
86. Взаимное расп	оложение плоскостей в прос	гранстве		
	_	-		
векторными уравнениями	векторными параметрическими (или в	юрмальными)		
	$+\beta_1 \mathbf{b}_1$ $(\mathbf{r}, \mathbf{n}_1) = (\mathbf{r}_1, \mathbf{n}_1) = -D_1$			
	$+\beta_2 \mathbf{b}_2$ $(\mathbf{r}, \mathbf{n}_2) = (\mathbf{r}_2, \mathbf{n}_2) = -D_2$			
Возможно несколько слу	учаев:			
(а) Параллельность плост	костей			
	$\mathbf{n}_1 \parallel \mathbf{n}_2 \qquad \Leftrightarrow \qquad \mathbf{n}_1 = \lambda \mathbf{n}_2$	(12)		
(б) Совпадение плоскосте	й			
$\begin{cases} \mathbf{n}_1 = \lambda \mathbf{n}_2 \\ D = \lambda D \end{cases}$	или $(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_1, \mathbf{b}_1) = (\mathbf{r}_1 - \mathbf{r}_2, \mathbf{a}_2, \mathbf{b}_1)$	$\mathbf{o}_2) = 0 \qquad (13)$		
$D_1 = \lambda D_2$				
(в) Пересечение плоскост				
n _{1 7}	$ \neq \lambda \mathbf{n}_2$ или $[\mathbf{n}_1 \times \mathbf{n}_2] = \mathbf{s} \neq 0$	(14)		
(г) Ортогональность пло	скостей			
	$(\mathbf{n}_1,\mathbf{n}_2)=0$	(15)		
§7. Взаимное рас	сположение прямой и плоскост пространстве	ги в		
Пусть плоскость задана в странстве— векторным пар.	екторным нормальным уравнением, а пря	-одп в квм		
	$(\mathbf{r},\mathbf{n})=(\mathbf{r}_1,\mathbf{n})=-D$	-		
	$\mathbf{r} = \mathbf{r}_2 + t \cdot \mathbf{s}$	(16)		
Возможно несколько слу	чаев:			
(а) Прямая и плоскость па	араллельны	-		
	$(\mathbf{s}, \mathbf{n}) = 0$	(17)		
(б) Прямая принадлежит	плоскости (частный случай параллельно	сти)		
	$(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{n}) = 0$	(18)		
(в) Прямая пересекает пло	ОСКОСТЬ	_		
(,, 1	$(\mathbf{s}, \mathbf{n}) \neq 0$	(19)		
Причем точка пересече	ения может быть определена через парам	_		
		_		
	$t = rac{(\mathbf{r}_1 - \mathbf{r}_2, \mathbf{n})}{(\mathbf{s}, \mathbf{n})}$	(20)		
(г) Прямая ортогональна	плоскости (частный случай пересечения)			
	$\mathbf{s} \parallel \mathbf{n} \qquad \Leftrightarrow \qquad \mathbf{s} = \lambda \mathbf{n}$	(21)		

Зафиксируем декартову прямоугольную систему координат, в которой обо-
${f r} = (x,y)$ ${f r}_0 = (x_0,y_0)$ ${f s} = (s_x,s_y)$ ${f n} = (A,B)$
Тогда можно получить следующие уравнения прямой на плоскости, выраженные как аналитические соотношения между координатами:
(а) Координатные параметрические уравнения прямой на плоскости
$\int x = x_0 + t \cdot s_x$
$\begin{cases} x = x_0 + t \cdot s_x \\ y = y_0 + t \cdot s_y \end{cases}$
как следствие векторного параметрического уравнения прямой.
(б) Каноническое уравнение прямой на плоскости
$x-x_0$ $y-y_0$
$\frac{x-x_0}{s_x} = \frac{y-y_0}{s_y},$
которое может быть получено из системы координатных параметрических уравнений прямой на плоскости.
(в) Уравнения прямой, проходящей через две точки
$\begin{cases} x = x_0 + t(x_1 - x_0) \\ y = y_0 + t(y_1 - y_0) \end{cases} \Leftrightarrow \frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0},$
полученные из векторного уравнения прямой, проходящей через две точ-
ки, а также канонического уравнения прямой на плоскости, если положить
направляющий вектор как $\mathbf{s} = (s_x, s_y) = (x_1 - x_0, y_1 - y_0).$
(г) Общее уравнение прямой на плоскости
Ax + By + C = 0
и нормальное уравнение прямой на плоскости, проходящей через точку
$A(x - x_0) + B(y - y_0) = 0$
Оба уравнения могут быть получены из векторного нормального уравнения прямой на плоскости
$(\mathbf{r}, \mathbf{n}) = (\mathbf{r}_0, \mathbf{n}) = -C$
(д) Уравнение прямой с угловым коэффициентом
$y - y_0 = k(x - x_0) \qquad \Leftrightarrow \qquad y = kx + b,$
где $k=s_y/s_x$ — угловой коэффициент, а $b=y_0-kx_0$.
(e) Уравнение в отрезках на осях
$\frac{x}{a} + \frac{y}{b} = 1,$
где $a = -C/A$ и $b = -C/B$ в обозначениях общего уравнения прямой на плоскости.
(ж) Уравнение с прицельным параметром
$x \cdot \cos \alpha + y \cdot \cos \beta = p,$
где $\cos \alpha = \frac{A}{ \mathbf{n} }$, $\cos \beta = \frac{B}{ \mathbf{n} }$ - направляющие косинусы прямой, а $p = (\mathbf{r_0}, \frac{\mathbf{n}}{ \mathbf{n_0} })$ — прицельный параметр прямой.

8. Прямая на плоскости: координатные уравнения.

Зафиксируем декартову прямоугольную систему координат, в которой обо-

В зависимости от способа задания плоскости в пространстве необходимы следующие объекты:

- (a) $\mathbf{n} = (A, B, C)$: вектор нормали к плоскости;
- (б) $\mathbf{a} = (a_x, a_y, a_z), \mathbf{b} = (b_x, b_y, b_z)$: пара неколлинеарных векторов, принадлежащих плоскости;
- (в) $\mathbf{r}_{0,1,2} = (x_{0,1,2}, y_{0,1,2}, z_{0,1,2})$: радиус-векторы опорных точек плоскости.

Использование этих объектов в различных комбинациях позволяет описать несколько способов задания плоскости в пространстве при помощи аналитических соотношений на координаты точек плоскости:

(а) Параметрические уравнения плоскости в пространстве:

$$\begin{cases} x = x_0 + \alpha a_x + \beta b_x \\ y = y_0 + \alpha a_y + \beta b_y \\ z = z_0 + \alpha a_z + \beta b_z \end{cases}$$
 (1)

(б) Уравнение, полученное из условия компланарности:

$$(\mathbf{r} - \mathbf{r}_0, \mathbf{a}, \mathbf{b}) = 0 \qquad \Leftrightarrow \qquad \begin{vmatrix} x - x_0 & y - y_0 & z - z_0 \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = 0 \tag{2}$$

(в) Общее уравнения плоскости в пространстве

$$Ax + By + Cy + D = 0 (3)$$

и нормальное уравнение плоскости в пространстве

$$A(x - x_0) + B(y - y_0) + C(z - z_0) = 0$$
(4)

Оба уравнения, как и в случае прямой на плоскости, могут быть получены из векторного нормального уравнения плоскости в пространстве

$$(\mathbf{r}, \mathbf{n}) = (\mathbf{r}_0, \mathbf{n}) = -D$$

(г) Уравнение плоскости в отрезках:

$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1,\tag{5}$$

где $a=-D/A,\,b=-D/B$ и c=-D/C в обозначениях общего уравнения плоскости в пространстве.

(д) Уравнение плоскости с прицельным параметром

$$x \cdot \cos \alpha + y \cdot \cos \beta + z \cdot \cos \gamma = p \tag{6}$$

где $\cos \alpha, \, \cos \beta$ и $\cos \gamma$ — направляющие косинусы, имеющие тот же смысл, что и в уравнении прямой на плоскости, а p — прицельный параметр.

10. Прямая в пространстве: координатные уравнения.

(а) Параметрические уравнения прямой в пространстве

$$\mathbf{r} = \mathbf{r}_0 + t \cdot \mathbf{s} \qquad \Leftrightarrow \qquad \begin{cases} x = x_0 + t s_x \\ y = y_0 + t s_y \\ z = z_0 + t s_z \end{cases}$$
 (7)

где $\mathbf{r}_0=(x_0,y_0,z_0)$ — опорная точка прямой, а $\mathbf{s}=(s_x,s_y,s_z)$ — ее направляющий вектор.

(б) Каноническое уравнение прямой в пространстве

$$\frac{x - x_0}{s_x} = \frac{y - y_0}{s_y} = \frac{z - z_0}{s_z} \tag{8}$$

(в) Уравнение прямой, проходящей через две точки

$$\frac{x - x_0}{x_1 - x_0} = \frac{y - y_0}{y_1 - y_0} = \frac{z - z_0}{z_1 - z_0} \tag{9}$$

(г) Прямая как пересечение плоскостей

$$\begin{cases}
A_1x + B_1y + C_1z + D_1 = 0 \\
A_2x + B_2y + C_2z + D_2 = 0
\end{cases}$$
(10)

(б) c = a: отрезок.

$$c = a \Rightarrow |F_1 F_2| = r_1 + r_2 = 2c, \quad \varepsilon = 1$$
 (11)

Опр. 2.4. Параметрическими уравнениями эллипса называют

$$\begin{cases} x = a \cos t \\ y = b \cos t \end{cases} \tag{12}$$

Опр. 2.5. Уравнением касательной к эллипсу называют уравнение вида

$$\frac{xx_0}{a^2} + \frac{yy_0}{b^2} = 1\tag{13}$$

Опр. 2.6. Директрисами эллипса называются прямые, параллельные малой оси эллипса и проходящие от нее на расстоянии a/ε .

Свойства эллипса

(a) Директориальное свойство эллипса. Эллипс — множество точек, для которых отношение расстояния $r_{1,2}$ до фокуса и расстояния $d_{1,2}$ до соответствующей директрисы постоянно и равно эксцентриситету ε :

$$\frac{r_1}{d_1} = \frac{r_2}{d_2} = \varepsilon \tag{14}$$

- (б) Оптическое свойство эллипса. Фокальные радиусы произвольной точки M_0 эллипса составляют равные углы с касательной к эллипсу в этой точке.
- (в) Свойства симметрии эллипса. Для всякой точки M(x,y), принадлежащей эллипсу E, справедливо
 - (a) $M_1(-x,y) \in E$ осевая симметрия относительно Oy
 - (б) $M_1(x, -y) \in E$ осевая симметрия относительно Ox
 - (в) $M_1(-x,-y) \in E$ центральная симметрия относительно начала координат O

13. Гипербола. Определения, связанные понятия. Каноническое уравнения. Свойства гиперболы.

§3. Гипербола

Опр. 3.1. Гиперболой называется геометрическое место точек плоскости таких, что модуль разности расстояний от этих точек до двух фиксированных точек плоскости (фокусов) остается постоянным.

В силу того, что определение гиперболы до крайней степени похоже на определение эллипса, вид уравнений и свойств будут очень похожи. Поэтому для описания гиперболы ограничимся тезисным описанием.

(а) Каноническое уравнение гиперболы

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, b^2 = c^2 - a^2, (16)$$

где a и b - вещественная и мнимая ось соответственно.

(б) Гипербола имеет две компоненты связности (ветви)

$$|r_1 - r_2| = 2a > 0, \Longrightarrow \begin{bmatrix} r_1 > r_2 \\ r_2 > r_1 \end{bmatrix}$$
 (17)

(в) Частные случаи

(a)
$$a=0$$
: ось Oy
$$a=0 \iff \varepsilon=\infty$$
 (18)

(б) a = c: два луча на Ox, исходящие из точек фокуса

$$a = c \iff \varepsilon = 1$$
 (19)

- (г) Симметрии. Также наблюдаются осевые и центральная симметрии
- (д) Параметрические уравнения гиперболы. Определяются схожим образом, но не через тригонометрические синус и косинус, а гиперболические

$$\begin{cases}
 x = a \operatorname{ch} t \\
 y = b \operatorname{sh} t
\end{cases} \tag{20}$$

	'					- 1			1			<i>i</i> 1	1	1	1					1	- 1	- 1	- 1	- 1	1	1										
	_	(e)) У	рав	нен	ие	кас	ате	льн	юй	КГ	ипе	ербо	оле												-								+		
	_											-	xx_0		$\frac{yy_0}{b^2}$		1							(21)	_										-
	_												a^2	_	b^2	_	1							(21)	_										
	_	(ж) Д	[ире	кті	оись	ыг	ипе	рбо	лы.	. Aı	нал	оги	чно) ли	тек	трі	ıcan	м эл	лли	пса	- пт	ямн	ыe.	па-									\dashv		
		(и а		-1		,		_										
	_												a		r_1		r_2							,	20)											
											<i>x</i> =	= ±	ε ,		$\overline{d_1}$	= ;	$\overline{d_2}$	= ε						(22)											
		(0)) (Ф													M													
		(3																			точ в то				ep-											
	_ ,	ı																			1				ı	. –										
	O)nr	o. 3	.2.	Ad	им	пто	ото	йн	еог	тан	нче	енне	ой 1	кри	вой	на	зыв	ает	ся і	икці	ая	лин	ия	га-											
		_									_				_						сяк															
	T	очк	ка к	рин	зой	yxc	ди	г на	а бе	ско	неч	нос	сть.													_										
	. т	eo	рем	иа	3.1	. B	κα	нон	ниче	еск	ой (cucı	тел	ие 1	коор	эдин	нат	ac	им	nmc	тал	ми	eune	ербо	лы	_										
	c.	луэ	нсаг	n	рял	ње								ı												_								_		
	_											y	<i>j</i> =	$\pm \frac{b}{a}$	\dot{x}									(2	23)	-								_		_
																																		_		_
- 14	 ₋ . Па	apa(бол	a. O	пре	 дел	ени	Я, СЕ	вяза	ннь	ые г	юня	тия	ı. Ka	нон	иче	CKO	e yp	авн	ени	я. Св	ойс	гва г	пара	бол	Ы.								-		_
				0	πn	4	1	Пa	naf	์ วัดแ	เกษั	на,	SPID	ает	eg 1	reox	иет	nuu	eck	ne i	мест	О Т	THE		OCK	ости	та_									-
					_				_									_								фоку								\dashv		_
																				сово					`			-								-
					П	уст	ьф	оку	ус н	axc	одит	гся	вт	чго	ce F	r(p)	(2, 0))), a	ди	трек	три	ca c	пре	едел	яет	ся ур	ab-	-								
				Н	ени																							-								
															x	=	$-\frac{p}{2}$										(24)									
					(a)	Ka	нов	ниче	еско	oe v	лаг	внен	ние	паі	рабо	элы	I																			
					()						r			,																						
																y^2	= 2	2px,	,								(25)									
						где	p .	- ф	ока.	ЛЬН	ный	пај	рам	етр	, оі	тре,	дел	яем	ый	как	pac	ссто	яни	е от	фо	куса	до									
						диј	рек	три	ісы.																											
					(б)	Ур	авн	ени	ие к	aca	тел	ьно	ой к	с па	раб	оле	В	гочі	ке ((x, y))													_		_
															yy	₀ =	p(s)	r +	x_0								(26)							_		_
															00				,								,	-						_		_
					(B)																					йто										
								ста оль		ет	ран	зны	e y	ГЛЬ	1 С	фон	калі	ьны	IM J	раді	1 усо	мт	очк	и Л	10 и	со	сью							\dashv		_
					(r)					им	еет	OCE	PRVI	60 C1	имм	ern	ию	ОТТ	HOCI	ител	ьно	oci	ı O	r·										+		
					(1)		Pac	,0110	~ 1	*****																										-
											-	M(z)	x, y) ∈	P		\Leftrightarrow		M	(x, \cdot)	-y)	$\in F$	•				(27)	-								
																																				_
																							_	_	_	-			-					_		
																																		_		_
																																		_		_
																																		_		_
																																		\dashv		_
																							+	+	+									+		
	\vdash																																	+		
																																		+		-
																																		+		
																																		\exists		
														1											1		- 1		1	1	1		 r I		- 1	

Теорема 1.1. Уравнение вида								
$\rho = \frac{p}{1 - \varepsilon \cos \phi},$			_					
$p - \frac{1}{1 - \varepsilon \cos \phi}$,			_					
= где p — фокальный параметр, $ ho$ — полярный радиус,			л, -					
описывает эллипс, гиперболу и параболу в зависимост	и от параметро	006:	_					
• Эллипс			_					
$\varepsilon \in [0,1) \qquad p = a - \varepsilon c$			_					
• Парабола								
$\varepsilon = 1$ $p = 2c$			_					
• Гипербола			_					
$arepsilon \in [0,1) \qquad p = \pm (arepsilon c - a)$			_					
A holps?								
Доказательство. Начнем доказательство с эллипса. Поместим полюс системы координат в (левый) фокус F_1 . Тогда полярный ра-								
диус произвольной точки будет совпадать с первым фокальным радиусом	- Посто пост	(d. 240=	G F11			11011111	000	muones
$ {f r}_1 = ho$	После раскрытиз _ гиперболы:	и модул	-					ьующим веткам
Из уравнения эллипса, а также связи между координатами получаем	_		$\rho = \frac{1}{1}$	$-\varepsilon \cos \frac{1}{2}$	$\frac{e}{\phi} = \frac{1}{1 - e}$	$\frac{p}{\varepsilon \cos \phi}$,	
$r_1 + r_2 = 2a,$ $r_1 = \rho,$ $r_2 = a - \varepsilon x,$ $x + c = \rho \cos \phi$	- где знак "+" соо		ует лево	ой ветке	парабо	лы $p=$	$a - \varepsilon c$, a "-	" соответствует
Соберем воедино	_ правой $p = \varepsilon c - \epsilon$	a.						
$\rho + a - \varepsilon(\rho\cos\phi - c) = 2a \qquad \Rightarrow \qquad (1 - \varepsilon\cos\phi)\rho = a - \varepsilon c$	 Парабола. Вновь разместим 	м полюе	в фока	ce Tor	ла			
Откуда следует утверждение теоремы.							p	1
$\rho = \frac{a - \varepsilon c}{1 - \varepsilon \cos \phi} = \frac{p}{1 - \varepsilon \cos \phi}$			$r = \rho$,	a =	$\frac{1}{2} + x$	<i>x</i> –	$\frac{p}{2} = \rho \cos \theta$	ϕ
	из которых полу –	учаем		$\rho = -$	$\frac{p}{-\cos\phi}$,		
Гипербола. Выберем в качестве полюса также левый фокус. Воспользуемся соотношениями:	_ где эксцентрисит	τer ε = 1	1, что з	-	<i>σσσ</i> φ		тво теорем	ы. 🗆
$ r_1 - r_2 = 2a,$ $r_1 = \rho,$ $r_2 = \varepsilon x - a,$ $x + c = \rho \cos \phi$							+ + +	
16. Уравнение кривых 2-го порядка через эксцентриситет.								
Получим общее уравнение кривых в декартовых координатах. Для этого рассмотрим параллельный перенос канонической с								
динат $Ox'y'$ эллипса в его левую вершину. Соответствующее прес новую систему координат Oxy будет иметь вид	образование в							
	+							
$\begin{cases} x = x' + a \\ y = y' \end{cases}$	_							
Тогда уравнение преобразуется следующим образом								
$\frac{x'^2}{a^2} + \frac{y'^2}{b^2} = 1$								
$\frac{(x-a)^2}{a^2} + \frac{y^2}{b^2} = 1$								
$\frac{y^2}{b^2} = 1 - \frac{(x-a)^2}{a^2}$	_							
$y^2 = 2\frac{b^2}{a}x - \frac{b^2}{a^2}x^2$	_							
Вводя обозначения								
	+							
b^2 b^2 $a^2 - c^2$								
$\frac{b^2}{a} = p \qquad \frac{b^2}{a^2} = \frac{a^2 - c^2}{a^2} = 1 - \varepsilon^2$								
получим окончательно								
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги								
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$	ты. Вспомним,							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гипербол	ты. Вспомним,							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гипербол что для параболы мы полагали $\varepsilon=1$. Тогда становится очеви, уравнение описывает все три кривые. При фиксированном p и изменяющемся $\varepsilon\in[0,+\infty)$ мы по	пы. Вспомним, дным, что это							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гипербол что для параболы мы полагали $\varepsilon=1.$ Тогда становится очеви, уравнение описывает все три кривые. При фиксированном p и изменяющемся $\varepsilon\in[0,+\infty)$ мы по получаем	пы. Вспомним, дным, что это							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гипербол что для параболы мы полагали $\varepsilon=1$. Тогда становится очеви, уравнение описывает все три кривые. При фиксированном p и изменяющемся $\varepsilon\in[0,+\infty)$ мы по получаем • $\varepsilon=0$ — окружность	пы. Вспомним, дным, что это							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гиперболуто для параболы мы полагали $\varepsilon=1$. Тогда становится очеви, уравнение описывает все три кривые. При фиксированном p и изменяющемся $\varepsilon\in[0,+\infty)$ мы по получаем $\bullet \ \varepsilon=0 \ - \ \text{окружность}$ $\bullet \ \varepsilon\in(0,1) \ - \ \text{эллипс}$	пы. Вспомним, дным, что это							
получим окончательно $y^2 = 2px - (1-\varepsilon^2)x^2$ Аналогичное уравнение по своей форме получается и для ги разместить новую систему координат в правой вершине гипербол что для параболы мы полагали $\varepsilon=1$. Тогда становится очеви, уравнение описывает все три кривые. При фиксированном p и изменяющемся $\varepsilon\in[0,+\infty)$ мы по получаем • $\varepsilon=0$ — окружность	пы. Вспомним, дным, что это							

17. Приведение общего уравнения кривых 2-го порядка к каноническому виду: поворот.

Общее уравнение кривых 2-го порядка

$$Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$$

обязательно содержит в себе все частные случаи, но также может содержать дополнительную информацию. Рассмотрим свойства данного уравнения.

- Квадратичное слагаемое $Ax^2 + 2Bxy + Cy^2$. Наличие этого слагаемого, говорит о том, что уравнение описывает кривую 2-го порядка. Более того, сравнивая это уравнение с каноническими, можно заметить, что слагаемое, содержащее xy может возникнуть только при повороте канонической системы координат (в силу наличия перекрестного умножения).
- Линейное слагаемое Dx + Ey сигнализирует о возможном наличии параллельного переноса канонической системы координат. Это становится очевидным, если применить преобразование трансляции к любому из канонических уравнений.

Рассмотрим один из возможных алгоритмов приведения кривой к каноническому виду. Очевидно, что в канонических системах координат отсутствует слагаемое вида 2Bxy, а значит избавление от него точно позволит нам сделать шаг в сторону канонического уравнения.

Рассмотрим поворот плоскости на неизвестный угол θ

$$\begin{cases} x = x' \cos \theta - y' \sin \theta \\ y = x' \sin \theta + y' \cos \theta, \end{cases}$$

полагая, что x' и y' — координаты точек кривой в новой системе координат.

Подставим это преобразование в общее уравнение кривой 2-го порядка:

$$A(x'^2\cos^2\theta - 2x'y'\cos\theta\sin\theta + y'^2\sin^2\theta) +$$

$$+2B(x'^2\cos\theta\sin\theta + x'y'(\cos^2\theta - \sin^2\theta) - y'^2\cos\theta\sin\theta) +$$

$$+C(x'^2\sin^2\theta + 2x'y'\cos\theta\sin\theta + y'^2\cos^2\theta) +$$

$$+D(x'\cos\theta - y'\sin\theta) + E(x'\sin\theta + y'\cos\theta) + F = 0$$

Выберем угол θ такой, что коэффициент перед x'y' станет равным нулю. Попробуем выяснить, что это за угол:

$$-2A\cos\theta\sin\theta + 2B(\cos^2\theta - \sin^2\theta) + 2C\cos\theta\sin\theta = 0$$
$$2B\cos2\theta = (A - C)\sin2\theta$$
$$\tan^2\theta = \frac{2B}{A - C}$$

Таким образом мы нашли значение угла, при котором слагаемое с x'y' обращается в ноль.

Завершая преобразование с уже найденным углом θ получим уравнение вида

$$A'x'^2 + C'y'^2 + D'x' + E'y' + F = 0$$

 Приведение общего уравнения кривых 2-го порядка к каноническому виду: выделение полного квадрата.

Общее уравнение кривых 2-го порядка

$$Ax^2 + 2Bxy + Cy^2 + Dx + Ey + F = 0$$

обязательно содержит в себе все частные случаи, но также может содержать дополнительную информацию. Рассмотрим свойства данного уравнения.

- Квадратичное слагаемое $Ax^2 + 2Bxy + Cy^2$. Наличие этого слагаемого, говорит о том, что уравнение описывает кривую 2-го порядка. Более того, сравнивая это уравнение с каноническими, можно заметить, что слагаемое, содержащее xy может возникнуть только при повороте канонической системы координат (в силу наличия перекрестного умножения).
- Линейное слагаемое Dx + Ey сигнализирует о возможном наличии параллельного переноса канонической системы координат. Это становится очевидным, если применить преобразование трансляции к любому из канонических уравнений.

Завершая преобразование с уже найденным углом θ получим уравнение вида

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0$$

Второй способ использует выделение полного квадрат. Сгруппируем слагаемые следующим образом

$$A'\left(x^2 + \frac{D'}{A'}x\right) + C'\left(y^2 + \frac{E'}{C'}y\right) + F = 0$$

$$A' \left(x + \frac{D'}{2A'} \right)^2 - \frac{D'^2}{4A'} + C' \left(y + \frac{E'}{2C'} \right)^2 - \frac{E'^2}{4C'} + F = 0$$

5

Вводя обозначения

$$x_0 = -\frac{D'}{2A'}$$
 $y_0 = -\frac{E'}{2C'}$ $F' = F - \frac{D'^2}{4A'} - \frac{E'^2}{4C'}$

получим уравнение кривой в канонической системе координат:

$$A'(x - x_0)^2 + C'(y - y_0)^2 + F' = 0$$

или

$$A'\xi^2 + C'\eta^2 + F' = 0$$

19. Классификация кривых 2-го порядка: эллиптический тип.

Для удобства переобозначим все буквы следующим образом

$$Ax^2 + By^2 + C = 0$$

Основываясь на коэффициентах $A,\,B$ и $C,\,$ разделим уравнения на три группы:

(a) Уравнения эллиптического типа. К уравнениям этого типа отнесем такие, в которых A и B имеют одинаковый знак

В зависимости от коэффициента С получим несколько случаев

 \bullet Пусть Cимеет отличный от A и Bзнак. Тогда уравнение можно переписать как

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Полученное уравнение описывает вещественный эллипс.

 \bullet Пусть C имеет одинаковый с A и B знак. Тогда

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$$

Полученное уравнение описывает **мнимый эллипс**. Данное уравнение описывает пустое множество точек на декартовой плоскости.

 \bullet Пусть C=0. Тогда

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 0$$

В таком случае имеется **пара пересекающихся мнимых прямых**. В вещественной плоскости этому типу уравнения удовлетворяет только одна единственная точка (0,0).

20. Классификация кривых 2-го порядка: гиперболический тип.

Для удобства переобозначим все буквы следующим образом

$$Ax^2 + By^2 + C = 0$$

Основываясь на коэффициентах $A,\,B$ и $C,\,$ разделим уравнения на три группы:

- (б) Уравнения гиперболического типа. К этому типу уравнений относят такие, что AB<0 коэффициенты имеют разный знак. Не теряя общности можем положить, что A>0. В силу того, что знак C не влияет на сам тип кривой, можно выделить два случая:
 - $C \neq 0$. В таком случае, уравнение дает **гиперболу** (при C < 0) или **двойственную ей гиперболу** (C > 0):

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad \qquad \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$$

• C = 0. В таком случае

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

уравнение описывает две пересекающиеся прямые.

- 21. Классификация кривых 2-го порядка: параболический тип.
 - (в) Уравнения параболического типа. Рассмотрим вырожденный случай такой, что какой-то odun из коэффициентов A или B равен нулю. Не теряя общности и здесь можем положить, например, коэффициент B равным нулю. Тогда уравнение

$$A'x'^{2} + C'y'^{2} + D'x' + E'y' + F = 0$$

параллельным переносом можно привести к виду

$$Sy^2 + Px + Q = 0$$

которое также представляет несколько типов:

• Пусть $P \neq 0$. Знакомый нам случай **параболы**:

$$y^2 = 2px$$

• Пусть P=0, а $SQ\leqslant 0$. Иными словами, что S и Q имеют разный знак или же Q=0. В таком случае уравнение описывает параллельные (совпадающие при Q=0) прямые

$$y^2 = a^2$$

• Пусть P=0, а PQ>0. Тогда уравнение примет вид

$$y^2 + a^2 = 0$$

и уравнение будет описывать пустое множество на вещественной плоскости, но, вообще говоря, **мнимые параллельные прямые.**