

Inhaltsverzeichnis

4	Lineare Algebra	2
4.1	Matrizen und Vektoren	4
4.2	Lineare Gleichungssysteme	25
4.3	Ökonomische Anwendungsbeispiele	50

4 Lineare Algebra

Einleitung:

Die lineare Algebra befasst sich mit der mathematischen Behandlung von Verflechtungen, welche eine Vielzahl von Anwendungen in Volks- und Betriebswirtschaft haben. Sie werden beschrieben durch die mathematischen Konstrukte **Vektoren** und **Matrizen**.

Grundlegende Begriffe:

- Matrizen
- Vektoren
- Lineare Gleichungssysteme

Beispiel für Verflechtungstabelle:

Ein Betrieb bestehe aus 3 produzierenden Sektoren A_1 , A_2 und A_3 , die durch gegenseitige wertmäßige Lieferungen miteinander verbunden sind.

Die Quantitäten der Lieferungen, die von A_i nach A_k $\left(i,k=1,2,3\right)$ gehen, werden mit a_{ik} bezeichnet.

Die für den Käufer K verbleibenden Produktionsmengen von A_1 , A_2 , A_3 werden mit y_1 , y_2 , y_3 bezeichnet.

Lieferung	an A_1	an A_2	an A_3	an K
$vonA_1$	<i>a</i> ₁₁	a ₁₂	a ₁₃	y_1
$\operatorname{von} A_2$	a ₂₁	a ₂₂	a ₂₃	y_2
$\operatorname{von} A_3$	a ₃₁	a ₃₂	a ₃₃	y_3

Rechteckschema wird aufgefasst als eigenständiges mathematisches Objekt, welches als Matrix bezeichnet wird.

4.1 Matrizen und Vektoren

4.1.1 Definitionen

Als Matrix bezeichnet man ein rechteckiges Schema von reellen (oder komplexen) Zahlen, das dargestellt

wird in der Form:
$$A = (a_{ik}) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

Bezeichnungen:

- Das Element a_{ik} heißt **Komponente** und steht in der i ten Zeile (auch: Reihe) und der k ten Spalte; z.B. ist a_{34} das Element in der 3. Zeile und der 4. Spalte.
- Die Anzahl m der Zeilen und die Anzahl n der Spalten kennzeichnet den **Typ der Matrix**: $m \times n$ -Matrix z.B. bei insgesamt 4 Zeilen und 5 Spalten liegt eine 4×5 -Matrix vor.
- Wenn m = n ist, liegt eine quadratische Matrix vor.
- Schreibweise für Matrizen: im allgemeinen Großbuchstaben z.B. A, B, C, etc.
- ACHTUNG: Der Begriff der Matrix bezeichnet nur ein Anordnungsschema von Elementen und enthält keine Rechenvorschrift für die Verknüpfung der Elemente a_{ik} !

Ein Vektor ist eine Matrix, die aus einer einzigen Zeile bzw. Spalte besteht. Es wird unterschieden nach

Zeilenvektor (Matrix mit nur einer Zeile) und Spaltenvektor (Matrix mit nur einer Spalte).

Bezeichnungen:

- Die Elemente eines Vektors heißen ebenfalls Komponenten.
- Schreibweise für Vektoren: im allgemeinen Kleinbuchstaben mit Pfeil darüber: $\vec{a}, \vec{b}, \vec{x}, \vec{y}$
- Vektoren beschreiben Sachverhalte, die durch geordnete Zahlenkolonnen festgelegt sind, z.B.
 - Produktionsvektor (in Stück) bei z.B. 5 hergestellten Produkten: $\vec{x} = \begin{vmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{vmatrix} = \begin{vmatrix} 250 \\ 270 \\ 300 \\ 320 \end{vmatrix}$
 - Preisvektor (in Geldeinheiten/Stück) von z.B. 4 Produkten $\vec{p} = \begin{pmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{pmatrix} = \begin{pmatrix} 25 \\ 35 \\ 70 \\ 90 \end{pmatrix}$

Anmerkung:

Eine $m \times n$ -Matrix besteht demzufolge aus m Zeilenvektoren bzw. n Spaltenvektoren,

z.B.:
$$2 \times 4$$
-Matrix $\begin{pmatrix} 2 & 7 & 1 & 4 \\ 3 & 4 & 2 & 1 \end{pmatrix}$ besteht aus den

2 Zeilenvektoren: (2 7 1 4) und (3 4 2 1) bzw.

4 Spaltenvektoren: $\begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\begin{pmatrix} 7 \\ 4 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ und $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$

Zwei Matrizen $A = (a_{ik})$ und $B = (b_{ik})$ sind **gleich** genau dann, wenn $a_{ik} = b_{ik}$ für alle i, k.

Sie müssen zwangsläufig vom gleichen Typ sein.

Sei $A=(a_{ik})$ eine $m\times n$ -Matrix. Dann ist die **transponierte Matrix** von A, die $n\times m$ -Matrix $B=(b_{ik})$ mit $b_{ik}=a_{ki}$. Schreibweise: $B=A^T$.

Beispiel: transponierte Matrizen

a)
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \end{pmatrix}$$
 3×4 -Matrix $\Rightarrow B = A^T = \begin{pmatrix} 1 & 5 & 9 \\ 2 & 6 & 10 \\ 3 & 7 & 11 \\ 4 & 8 & 12 \end{pmatrix}$ 4×3 -Matrix

b)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \Rightarrow A^{T} = \begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix}$$

Bei quadratischen Matrizen (m = n) entspricht das Transponieren einer Spiegelung an der Hauptdiagonalen.

4.1.2 Quadratische Matrizen

Eine quadratische Matrix heißt **Diagonalmatrix**, wenn gilt: $a_{ik} = 0$ für alle $i \neq k$

Beispiel:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

Eine Diagonalmatrix heißt **Einheitsmatrix**, falls
$$a_{ik} = \begin{cases} 0 & \text{für } i \neq k \\ 1 & \text{für } i = k \end{cases}$$
 also: $E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

Anmerkung:

- ullet Der Großbuchstaben E wird ausschließlich für die Einheitsmatrix verwendet
- Vektoren, die aus genau einer Eins ansonsten aus Nullen bestehen heißen **Einheitsvektoren**, z.B. $\vec{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

Eine quadratische Matrix heißt **Dreiecksmatrix**, wenn alle Elemente ober- oder unterhalb der Hauptdiagonalen verschwinden.

Beispiel:

$$\begin{pmatrix} 2 & 1 & -3 & 0 \\ 0 & 3 & 0 & 5 \\ 0 & 0 & 7 & 4 \\ 0 & 0 & 0 & -2 \end{pmatrix} \text{ obere Dreiecksmatrix }$$

$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 3 & 0 \\ 3 & 4 & 7 \end{pmatrix}$$
 untere Dreiecksmatrix

4.1.3 Addition (Subtraktion) von Matrizen

Es seien $A=(a_{ik})$ und $B=(b_{ik})$ $m\times n$ -Matrix, also vom gleichen Typ. Die Addition bzw. Subtraktion der Matrizen erfolgt elementweise:

$$C = A \pm B \text{ mit } c_{ik} = a_{ik} \pm b_{ik} \text{ für alle } i = 1,...m; k = 1,...n$$

Beispiel:

$$\begin{pmatrix} -3 & 12 & 5 & -1 \\ 8 & 0 & 6 & 10 \end{pmatrix} + \begin{pmatrix} 3 & -4 & 2 & 5 \\ 12 & -12 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 0 & 8 & 7 & 4 \\ 20 & -12 & 10 & 16 \end{pmatrix}$$

Anmerkung:

Bzgl. der Addition/Subtraktion gelten:

• das Kommutativgesetz: A + B = B + A

• das Assoziativgesetz: A + (B + C) = (A + B) + C

4.1.4 Multiplikation mit einem Skalar

Eine Matrix $A = (a_{ik})$ wird mit einem Skalar λ multipliziert, indem man jedes Matrixelement a_{ik} mit dem

Skalar λ multipliziert: $\lambda \cdot A = \lambda \cdot (a_{ik}) = (\lambda \cdot a_{ik})$ für alle i = 1, ...m; k = 1, ...m

Beispiel:

$$3 \cdot \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 0 & -3 & 12 \end{pmatrix}$$

Anmerkung:

Alle Rechenregeln gelten entsprechend für Vektoren.

Beispiele:

a)
$$4 \cdot (2 \ 3 \ -1) = (8 \ 12 \ -4)$$

$$\begin{array}{ccc} \text{b)} & 3 \cdot \begin{pmatrix} 2 \\ 5 \\ -1 \end{pmatrix} = \begin{pmatrix} 6 \\ 15 \\ -3 \end{pmatrix}$$

c)
$$(2 \ 3 \ -1) + (3 \ 1 \ 2) = (5 \ 4 \ 1)$$

$$\text{d)} \quad \begin{pmatrix} 2\\4\\-5 \end{pmatrix} + \begin{pmatrix} -1\\2\\6 \end{pmatrix} = \begin{pmatrix} 1\\6\\1 \end{pmatrix}$$

4.1.5 Linearkombination von Vektoren

Aus n Vektoren $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ gleichen Typs und n Zahlen c_1, c_2, \dots, c_n kann der neue Vektor

$$\vec{x} = c_1 \cdot \vec{a}_1 + c_2 \cdot \vec{a}_2 + \ldots + c_n \cdot \vec{a}_n = \sum_{i=1}^n c_i \cdot \vec{a}_i \text{ gebildet werden.}$$

Er wird **Linearkombination** der Vektoren $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n$ genannt.

Anmerkung:

Im 3-dimensionalen Raum ist jeder Vektor als Linearkombination der Einheitsvektoren

$$\vec{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \ \vec{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \text{ und } \vec{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \text{ darstellbar.}$$

Beispiel:

$$\vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \text{ ist Linearkombination der Einheitsvektoren: } \vec{x} = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 2\vec{e}_1 + \vec{e}_2 + 3\vec{e}_3 = 2\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 3\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

4.1.6 Skalarprodukt zweier Vektoren

Beispiel:

Ein Unternehmen produziert 5 verschiedene Güter. Die wöchentlichen Produktionseinheiten werden beschrieben durch den **Produktionsvektor** $\vec{x}^T = (x_1 \ x_2 \ x_3 \ x_4 \ x_5) = (10\ 15\ 7\ 4\ 3)$ in ME.

Die entsprechenden **Verkaufspreise** p_1, p_2, p_3, p_4, p_5 werden zusammengefasst zum

Preisvektor
$$\vec{p} = \begin{pmatrix} 5 \\ 8 \\ 9 \\ 11,5 \\ 12 \end{pmatrix}$$
 in $\frac{\epsilon}{\text{ME}}$.

Der wöchentliche **Umsatz** des Unternehmens ist dann

$$U = x_1 \cdot p_1 + x_2 \cdot p_2 + x_3 \cdot p_3 + x_4 \cdot p_4 + x_5 \cdot p_5$$

= 10 \cdot 5 + 15 \cdot 8 + 7 \cdot 9 + 4 \cdot 11, 5 + 3 \cdot 12
= 315 \in \tag{

Abkürzende Schreibweise:

$$U = \vec{x}^T \cdot \vec{p}$$

Anmerkung:

Zur Unterscheidung schreiben wir Zeilenvektoren \vec{x}^T als transponierte von Spaltenvektoren \vec{x} .

Gegeben sei ein Zeilenvektor $\vec{a}^T = (a_1 \ a_2 \dots a_n)$ und ein Spaltenvektor $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$.

Unter dem **Skalarprodukt** von \vec{a}^T und \vec{b} versteht man die reelle Zahl (Skalar)

$$\vec{a}^T \cdot \vec{b} = (a_1 \ a_2 \dots a_n) \cdot \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = a_1 \cdot b_1 + a_2 \cdot b_2 + \dots + a_n \cdot b_n = \sum_{i=1}^n a_i \cdot b_i$$

Anmerkungen:

 $\bullet \qquad \text{Bildet man } \vec{b}^T \cdot \vec{a} = (b_1 \ b_2 \dots b_n) \cdot \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \text{, so ergibt sich ebenfalls } b_1 \cdot a_1 + b_2 \cdot a_2 + \dots + b_n \cdot a_n = \sum_{i=1}^n a_i \cdot b_i \text{ ,}$

d.h. es gilt: $\vec{a}^T \cdot \vec{b} = \vec{b}^T \cdot \vec{a}$ (Achtung: bei Matrizen nicht)

• Oft wird auch (unter Verzicht auf die formale Strenge) das Skalarprodukt von 2 Vektoren gebildet durch $\vec{a} \cdot \vec{b}$ (Achtung: bei Matrizen nicht).

4.1.7 Multiplikation zweier Matrizen

Einführendes Beispiel: Materialverflechtungsmatrizen

Ein Betrieb stellt aus 4 Rohstoffen R_1, R_2, R_3, R_4 über 3 Zwischenprodukte Z_1, Z_2, Z_3 zwei Produkte P_1, P_2 her. Von dem Rohstoff R_i (i=1,2,3,4) werden a_{ij} ME für die Produktion einer Mengeneinheit des Zwischenproduktes Z_j (j=1,2,3) benötigt, von dem Zwischenprodukt Z_j (j=1,2,3) werden b_{jk} ME für die Herstellung von einer Mengeneinheit des Produktes P_k (k=1,2) benötigt. Die Materialverflechtungsmatrizen $A=V_{RZ}$ und $B=V_{ZP}$ seien durch folgende Tabellen gegeben.

A:

$V_{\scriptscriptstyle RZ}$	Z_1	Z_2	Z_3
R_1	14	0	3
R_2	6	1	7
R_3	3	2	0
R_4	2	1	10

B :

V_{ZP}	P_1	P_2
Z_1	6	3
Z_2	0	2
Z_3	11	7

Verflechtung:

Deutung:

- ullet Der Betrieb benötigt z.B. um 1~ME des Produktes $P_{\!_1}$ herzustellen 6~ME des Zwischenproduktes $Z_{\!_1}$ und 11~ME des Zwischenproduktes $Z_{\!_3}$
- Für 1 ME des Produktes P_1 werden $14 \cdot 6 + 3 \cdot 11 = 117$ ME des Rohstoffes R_1 benötigt.

C:

$V_{\it RP}$	$P_{_{1}}$	P_2
R_1	$14 \cdot 6 + 0 \cdot 0 + 3 \cdot 11 = 117$	$14 \cdot 3 + 0 \cdot 2 + 3 \cdot 7 = 63$
R_2	$6 \cdot 6 + 1 \cdot 0 + 7 \cdot 11 = 113$	$6 \cdot 3 + 1 \cdot 2 + 7 \cdot 7 = 69$
R_3	$3 \cdot 6 + 2 \cdot 0 + 0 \cdot 11 = 18$	$3 \cdot 3 + 2 \cdot 2 + 0 \cdot 7 = 13$
R_4	$2 \cdot 6 + 1 \cdot 0 + 10 \cdot 11 = 122$	$2 \cdot 3 + 1 \cdot 2 + 10 \cdot 7 = 78$

Man erkennt: c_{11} ist das Skalarprodukt des 1. Zeilenvektors von A mit dem 1. Spaltenvektor von B; c_{12} ist das Skalarprodukt des 1. Zeilenvektors von A mit dem 2. Spaltenvektor von B, etc.

Es sei $A = (a_{ij})$ eine $m \times l$ -Matrix und $B = (b_{jk})$ eine $l \times n$ -Matrix. Die **Matrixmultiplikation** der Matrizen

A und B ergibt als Produkt die $m \times n$ -Matrix $C = (c_{ik})$ mit $c_{ik} = \sum_{j=1}^{l} a_{ij} \cdot b_{jk}$ für alle i = 1, ...m; k = 1, ...n.

Schreibweise: $C = A \cdot B$ (oder auch C = AB)

Anmerkungen:

- Das Matrixelement c_{ik} des Matrizenproduktes $A \cdot B$ ist das Skalarprodukt des i ten Zeilenvektors von A mit dem k ten Spaltenvektor von B.
- Das Produkt $C = A \cdot B$ existiert nur, wenn die Anzahl der Spalten von A mit der Anzahl der Zeilen von B übereinstimmt.
- Ist A eine $m \times n$ -Matrix und B eine $n \times m$ -Matrix, so existiert sowohl das Produkt $A \cdot B$ (Typ $m \times m$) als auch das Produkt $B \cdot A$ (Typ $n \times n$), die im allgemeinen nicht gleich sind.

Rechenregeln:

Assoziativgesetz: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Distributivgesetz: $A \cdot (B+C) = A \cdot B + A \cdot C$

 $(A+B)\cdot C = A\cdot C + B\cdot C$

für das Transponieren gilt: $(A^T)^T = A$

 $(\lambda A)^T = \lambda A^T$

 $(A+B)^T = A^T + B^T$

 $(A \cdot B)^T = B^T \cdot A^T$

für Matrizengleichungen: $A \cdot E = A = E \cdot A \implies \lambda A = \lambda E \cdot A = A \cdot \lambda E$

ACHTUNG: Das Matrizenprodukt ist i.a. **nicht kommutativ**: $A \cdot B \neq B \cdot A$

Anordnungsschema von Falk zur Berechnung des Matrizenproduktes $C = A \cdot B$

$$C = A \cdot B$$

$$A \text{ vom Typ m} \times l$$

$$B \text{ vom Typ l} \times n$$

$$C = A \cdot B \text{ vom Typ m} \times n$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1l} \\ a_{21} & a_{22} & \cdots & a_{2l} \\ \vdots & \vdots & \cdots & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{il} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{ml} \end{pmatrix}$$

$$\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1k} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2k} & \cdots & c_{2n} \\ \vdots & \vdots & \cdots & \vdots & \cdots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mk} & \cdots & c_{mn} \end{pmatrix} = C$$

Beispiele:

<mark>(4.1)</mark>

V16

Beispiel: Fortsetzung des Einführungsbeispiels

Ein Kunde bestellt vom Produkt P_1 die Menge $p_1=2$ und vom Produkt P_2 die Menge $p_2=3$. Welche Rohstoffmengen werden für die Produktion dieser Produktmengen verbraucht?

(4.2)

4.2 Lineare Gleichungssysteme

4.2.1 Einleitung

Lineare Gleichungssysteme (LGS) sind für die Betriebs- und Volkswirtschaft von überragender Bedeutung. Sie treten z.B. bei Fragen der Materialverflechtung, bei der innerbetrieblichen Leistungsverrechnung und bei Input-Output-Analysen auf.

Die allgemeine Form eines LGS lautet (m Gleichungen mit n Unbekannten):

$$\begin{aligned} &a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + + a_{1n}x_n = b_1 \\ &a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + + a_{2n}x_n = b_2 \\ &\vdots &\vdots &\vdots &\vdots \\ &a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + + a_{mn}x_n = b_m \end{aligned}$$
 In Kurzschreibweise: $A \cdot \vec{x} = \vec{b}$

Koeffizientenmatrix:
$$A = (a_{ik}) = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$
, Lösungsvektor: $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$, Zielvektor: $\vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$

Gesucht sind die n Unbekannten $x_1, x_2, ..., x_n$ bzw. der Lösungsvektor \vec{x} , der jede der m Gleichungen erfüllen.

Anmerkungen:

- Linear bedeutet, dass die Unbekannten x_i nur in der 1. Potenz auftreten.
- Obiges Gleichungssystem heißt <u>homogen</u>, wenn $\vec{b} = \vec{0}$ ist, d.h. wenn <u>alle</u> b_i (i = 1, 2, ..., m) verschwinden. Das Gleichungssystem heißt <u>inhomogen</u>, wenn wenigstens ein $b_i \neq 0$ ist.
- Ein homogenes System $A \cdot \vec{x} = \vec{0}$ besitzt stets die triviale Lösung $\vec{x} = \vec{0}$
- Falls ein \vec{x} existiert, dass das Gleichungssystem löst, dann heißt das LGS "konsistent", sonst "inkonsistent".
- Für m = n liegt der wichtigste Spezialfall eines quadratischen linearen Gleichungssystems vor (die Koeffizientenmatrix ist quadratisch).

Satz: Ein lineares Gleichungssystem hat entweder

- genau eine Lösung
- unendlich viele Lösungen oder
- keine Lösung.

Beispiele:

1)
$$g1: x_1 + x_2 = -1$$

 $g2: 2x_1 - 3x_2 = 3$

LGS hat genau eine Lösung: $x_1 = 0$; $x_2 = -1$

2)
$$g1: x_1 - x_2 = 1$$

 $g2: 2x_1 - 2x_2 = 2$

LGS hat unendlich viele Lösungen, alle Punkte $x_2 = f(x_1)$ liegen auf der Geraden

3)
$$g1: x_1 - 2x_2 = 3$$

$$g2: x_1 - 2x_2 = 4$$

LGS ist durch keine x_1, x_2 lösbar,

Geraden verlaufen parallel zueinander

4.2.2 Gaußscher Algorithmus (Eliminationsverfahren)

Durch Äquivalenzumformungen wird das Gleichungssystem $A \cdot \vec{x} = \vec{b}$ in ein gestaffeltes System $A^* \cdot \vec{x} = \vec{b}^*$ umwandelt, d.h. die Koeffizientenmatrix wird in oberer Dreiecksform gebracht

$$a_{11}^*x_1 + a_{12}^*x_2 + a_{13}^*x_3 + \dots + a_{1n}^*x_n = b_1^*$$

$$0 a_{22}^*x_2 + a_{23}^*x_3 + \dots + a_{2n}^*x_n = b_2^*$$

$$0 0 a_{33}^*x_3 + \dots + a_{3n}^*x_n = b_3^*$$

$$\vdots \vdots \vdots \vdots$$

$$0 0 0 \dots a_{nn}^*x_n = b_n^*$$

Die letzte Gleichung liefert: $x_n = \frac{c_n^*}{a_{nn}^*}$, die vorletzte Gleichung liefert x_{n-1} , etc.

Äquivalente Umformungen eines Gleichungssystems:

- 1) Zwei Gleichungen dürfen miteinander vertauscht werden.
- 2) Jede Gleichung darf mit einer von Null verschiedenen Zahl multipliziert werden.
- 3) Zu jeder Gleichung darf ein beliebiges Vielfaches einer anderen Gleichung addiert werden.

Beispiele:

1)
$$-x_1 + 8x_2 + 3x_3 = 2$$
$$+2x_1 + 4x_2 - x_3 = 1$$
$$-2x_1 + x_2 + 2x_3 = -1$$

<mark>(4.3)</mark>

X 1	X ₂	Х3	b _i	
-1	8	3	2	
2	4	-1	1	+2z ₁
-2	1	2	-1	$-2z_{1}$

-1	8	3	2	
0	20	5	5	
0	-15	-4	-5	$+\frac{3}{4}z_2$

-1	8	3	2	
0	20	5	5	
0	0	$-\frac{1}{4}$	$-\frac{5}{4}$	

2)
$$x_1 + 2x_2 + x_3 = 3$$
$$x_1 - x_2 - x_3 = 1$$
$$3x_1 + 3x_2 + x_3 = 8$$

(4.4)

X ₁	X ₂	Х3	b _i	
1	2	1	3	
1	-1	-1	1	$-z_1$
3	3	1	8	$-3z_{1}$

1	2	1	3	
0	-3	-2	-2	
0	-3	-2	-1	$-z_{2}$

1	2	1	3	
0	-3	-2	-2	
0	0	0	1	

3)
$$-x_1 + x_2 + x_3 = 0$$
$$4x_1 - x_2 - 2x_3 = 0$$
$$-x_1 + 4x_2 + 3x_3 = 0$$

<mark>(4.5)</mark>

X ₁	X ₂	Х3	b _i	
-1	1	1	0	
4	-1	-2	0	$+4z_{1}$
-1	4	3	0	$-z_{1}$
-1	1	1	0	
0	3	2	0	
0	3	2	0	$-z_{2}$
-1	1	1	0	
0	3	2	0	

0

0

0

0

4)
$$x_2 + 2x_3 - 5x_4 = 0$$
$$4x_1 + x_2 + 4x_3 - 5x_4 = 10$$
$$2x_1 + x_2 + 3x_3 - 5x_4 = 5$$
$$2x_1 + 4x_2 + 9x_3 - 20x_4 = 5$$

<mark>(4.6)</mark>

X ₁	X ₂	Х3	X 4	b _i	
0	1	2	-5	0	z_4
4	1	4	-5	10	z_3
2	1	3	-5	5	z_1
2	4	9	-20	5	z_2

X 1	Х2	Х3	X 4	b _i				
2	1	3	-5	5				
2	4	9	-20	5	$-z_1$			
4	1	4	-5	10	$\begin{array}{c} -z_1 \\ -2z_1 \end{array}$			
0	1	2	-5	0				
2	1	3	-5	5				
0	3	6	-15	0				
0	-1	-2	5	0	$+\frac{1}{3}z_2$			
0	1	2	-5	0	$-\frac{1}{3}z_{2}$			
2	1	3	-5	5				
0	3	6	-15	0				
0	0	0	0	0				
0	0	0	0	0				

Anmerkungen:

Wählt man in einem mehrdeutig lösbaren System für sämtliche <u>Nichtbasisvariablen</u> den Wert <u>Null</u> (also für alle freien Parameter $\lambda = 0 = \mu$) so nennt man diese spezielle Lösung des LGS eine **Basislösung**.

4.2.3 Gaußscher Algorithmus (vollständiges Eliminationsverfahren)

Ziel: Überführen der Koeffizientenmatrix in Diagonalform (statt in oberer Dreiecksform):

durch Äquivalenzumformungen wird das Gleichungssystem $A \cdot \vec{x} = \vec{b}$ in die Form $E \cdot \vec{x} = \vec{b}^*$ umgewandelt;

(Verfahren heißt auch "vollständige Elimination" und ist wichtig für Simplexverfahren, siehe 2. Semester).

Vorteil: Variablenwerte direkt ablesbar: $\vec{x} = \vec{b}^*$

Beispiel:

<mark>(4.7)</mark>

1)
$$x_1 + 3x_2 + 4x_3 = 8$$

 $2x_1 + 9x_2 + 14x_3 = 25$
 $5x_1 + 12x_2 + 18x_3 = 39$

X ₁	X 2	X 3	b _i	
1	3	4	8	
2	9	14	25	-2 <i>z</i> ₁
5	12	18	39	
1	3	4	8	$-z_2$
0	3	6	9	
0	-3	-2	-1	+z2
1	0	-2	-1	
0	3	6	9	÷3
0	0	4	8	÷4
1	0	-2	-1	+2z ₃
0	1	2	3	$-2z_{3}$
0	0	1	2	

X ₁	X ₂	Х3	b _i	
1	0	0	3	
0	1	0	-1	
0	0	1	2	

4.2.4 Lösbarkeit linearer Gleichungssysteme

Einleitungsbeispiel:

X 1	X ₂	Х3	X 4	b _i
1	0	2	1	2
0	1	-3	2	-5
0	0	0	0	0
0	0	0	0	0

Neben
$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
 und $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$ sind keine weiteren Einheitsvektoren erzeugbar, also gibt es unendlich viele Lösungen.

Fazit: Der Gaußscher Algorithmus liefert Aussagen über die Lösbarkeit LGS

Ein auf die Höchstzahl k verschiedener Einheitsvektoren umgeformtes LGS $A \cdot \vec{x} = \vec{b}$ heißt **kanonisch**.

Jedes kanonische System lässt sich (durch Zeilen- oder Spaltenvertauschungen) auf die folgende Form bringen:

x_1	x_2	•••	x_k	x_{k+1}		x_n	b_i
1	0		0				b_1
0	1		:				b_2
:	÷		:		R		:
0	0	•••	1				b_k
0	0	•••	0	0		0	b_{k+1}
÷	÷		÷	÷		÷	:
0	0		0	0		0	b_m

Es gibt *k* Einheitsvektoren

R=Restmatrix (k Zeilen, n-k Spalten)

Lösbarkeitsaussagen:

Lösbarkeit von LGS hängt ab von den gegebenen konkreten Zahlenwerten zu $b_{k+1}, b_{k+2}, \dots, b_m$.

- Fall 1: sämtliche Werte $b_{k+1}, b_{k+2}, \dots, b_m$ sind gleich Null \to LGS ist konsistent alle Nullzeilen können ersatzlos gestrichen werden, danach wird unterschieden
 - a) Anzahl der Gleichungen = Anzahl der Variablen (also k = n):
 - → es gibt genau eine Lösung
 - b) Anzahl der Gleichungen < Anzahl der Variablen (also k < n):
 - \rightarrow es gibt **unendlich viele Lösungen** mit $x_{k+1}, x_{k+2}, \dots, x_n$ als freie Parameter.
- Fall 2: mindestens einer der Werte $b_{k+1}, b_{k+2}, \dots, b_m$ ist von Null verschieden
 - → LGS hat **keine Lösung**

Beispiel:

X ₁	X ₂	Х3	X 4	b _i
1	0	0	0	4
0	1	0	0	3
0	0	0	0	0

Eindeutig lösbar

X ₁	X ₂	Х3	X 4	b _i
1	0	0	2	4
0	1	4	7	3
0	0	0	0	0

Mehrdeutig lösbar

X 1	X2	Х3	X 4	b _i
1	0	0	2	4
0	1	4	7	3
0	0	0	0	9

Nicht lösbar

Zusammenfassung (Lösbarkeit von LGS):

Das LGS $A \cdot \vec{x} = \vec{b}$ (bestehend aus m Gleichungen und n Variablen) ist

- 1.a) **eindeutig lösbar**, wenn nach Streichen aller im Verlauf des Lösungsverfahren (Gaußscher Algorithmus) auftretenden Nullzeilen schließlich ein widerspruchsfreies kanonisches System aus n Gleichungen mit n Variablen erzeugt werden kann (also k = n);
- 1.b) **mehrdeutig lösbar** (unendlich vielen Lösungen), wenn nach Streichen aller Nullzeilen schließlich ein widerspruchsfreies kanonisches System mit weniger Gleichungen als Variablen übrigbleibt (also k < n);
- 2.) **nicht lösbar**, wenn im Verlauf der elementaren Zeilenoperationen eine Nullzeile (z.B. l-te Zeile) mit nichtverschwindendem Zielwert (rechte Seite) auftritt (also $b_l \neq 0$).

4.2.5 Berechnung der Inversen Matrix (Gauß-Jordan-Verfahren)

<u>Bisher:</u> Um die Lösung \vec{x} für das LGS $A \cdot \vec{x} = \vec{b}$ zu bestimmen, wurde mit Gauß-Algorithmus $(A \mid \vec{b})$ im Tableau umgeformt zu $(E \mid \vec{x})$. Um die Lösung \vec{x}_2 für das LGS: $A \cdot \vec{x}_2 = \vec{b}_2$ mit derselben Koeffizientenmatrix A, aber verschiedenem \vec{b}_2 zu berechnen, muss erneut $(A \mid \vec{b}_2)$ im Tableau umgeformt werden zu $(E \mid \vec{x}_2)$, wobei die Umformungsschritte, die A zu E umformen, gleich bleiben.

Besser: Umformungsbefehle, die A zu E umformen, dadurch "speichern", dass sie simultan auf die Einheitsmatrix angewendet werden, satt auf den Vektor \vec{b} .

$$\begin{pmatrix} A \mid E \end{pmatrix}$$

$$\downarrow$$

$$\left(E \mid A^{-1}\right)$$
 Die neu entstandene Matrix ist die inverse Matrix A^{-1} .

Die **inverse Matrix** A^{-1} , die zu der quadratischen Matrix A gehört, ist eine quadratischen Matrix, die die

Bedingung $A^{-1} \cdot A = E = A \cdot A^{-1}$ erfüllt. A^{-1} heißt auch "reziproke Matrix" oder "Kehrmatrix".

Wendet man diese Matrix A^{-1} auf den Vektor \vec{b} an, so erhält man die zugehörige Lösung als: $\vec{x} = A^{-1} \cdot \vec{b}$

Gauß-Jordan-Verfahren:

Das Gauß-Jordan-Verfahren dient zur Berechnung der inversen Matrix A^{-1} zu einer regulären Matrix A:

1. Es wird die $n \times n$ -Matrix A um die n-reihige Einheitsmatrix E erweitert:

$$(A \mid E) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} \begin{vmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 \end{vmatrix}$$

2. Diese erweiterte Matrix wird mit Hilfe elementarer Zeilenumformungen so modifiziert, dass am ursprünglichen Platz der Matrix A die Einheitsmatrix E entsteht. Die gesuchte Inverse Matrix A^{-1} befindet sich dann auf dem ursprünglichen Platz der Einheitsmatrix E.

Anmerkung:

Die inverse Matrix A^{-1} kann mit Gauß- oder dem Pivot-Umformungen (später: 2. Semester) bestimmt werden.

Beispiel:
$$A = \begin{pmatrix} 1 & 5 & 3 \\ 3 & 4 & 2 \\ 0 & 1 & 0 \end{pmatrix} \Rightarrow (A|E) = \begin{pmatrix} 1 & 5 & 3 & 1 & 0 & 0 \\ 3 & 4 & 2 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

<mark>(4.8)</mark>

	0	0	1	3	5	1
-3z ₁	0	1	0	2	4	3
	1	0	0	0	1	0
	0	0	1	3	5	1
z_2 mit z_3	0	1	-3	-7	-11	0
tauschen	1	0	0	0	1	0
-5z ₂	0	0	1	3	5	1
	1	0	0	0	1	0
+11z2	0	1	-3	-7	-11	0

1	0	3	1	0	-5	
0	1	0	0	0	1	
0	0	-7	-3	1	11	$\cdot \left(-\frac{1}{7}\right)$
						_
1	0	3	1	0	-5	$-3z_{3}$
0	1	0	0	0	1	
0	0	1	<u>3</u> 7	$-\frac{1}{7}$	$-\frac{11}{7}$	
						_
1	0	0	$-\frac{2}{7}$	<u>3</u> 7	$-\frac{2}{7}$	
0	1	0	0	0	1	
	_	_	3	1	11	

Rechenregeln:
$$\left(A^{-1}\right)^{-1} = A$$

$$\left(A \cdot B\right)^{-1} = B^{-1} \cdot A^{-1}$$

$$\left(A^{-1}\right)^{T} = \left(A^{T}\right)^{-1}$$

4.3 Ökonomische Anwendungsbeispiele

4.3.1 Teilbedarfsrechnung, Stücklistenauflösung (Matrix-Vektor-Rechnung oder LGS)

Gozintograph: graphische Darstellung von Verflechtungen zwischen Vor-, Zwischen- und Endprodukten, etc. Ablesbar ist der direkte Bedarf.

Beispiel: 2 Rohstoffe R_1, R_2 ;

3 Zwischenprodukte Z_1, Z_2, Z_3 ;

2 Endprodukte P_1, P_2

(4.9)

r ₁	r ₂	Z ₁	Z ₂	Z ₃	p ₁	p ₂	bi	
1	0	-2	-3	-4	-2	0	0	+2z ₆
0	1	-3	-7	-2	0	0	0	
0	0	1	0	0	-5	-5	0	$+5z_{6} + 5z_{7}$
0	0	0	1	0	-4	-3	0	$+4z_6 + 3z_7$
0	0	0	0	1	0	-10	0	+10z ₇
0	0	0	0	0	1	0	100	
0	0	0	0	0	0	1	150	

r ₁	r ₂	Z ₁	Z ₂	Z ₃	p ₁	p ₂	b _i	
1	0	-2	-3	-4	0	0	200	$+2z_3 + 3z_4 + 4z_5$
0	1	-3	-7	-2	0	0	0	$+3z_3 + 7z_4 + 2z_5$
0	0	1	0	0	0	0	1250	
0	0	0	1	0	0	0	850	
0	0	0	0	1	0	0	1500	
0	0	0	0	0	1	0	100	
0	0	0	0	0	0	1	150	
1	0	0	0	0	0	0	11250	
0	1	0	0	0	0	0	12700	
0	0	1	0	0	0	0	1250	
0	0	0	1	0	0	0	850	
0	0	0	0	1	0	0	1500	
0	0	0	0	0	1	0	100	
0	0	0	0	0	0	1	150	

4.3.2 Innerbetrieblicher Selbstverbrauch (Leontief-Modell)

Beispiel:

Ein Unternehmen stellt 3 Produkte A, B, C mit den Produktionsmengen $\vec{p} = \begin{pmatrix} p_A & p_B & p_C \end{pmatrix}^T$ her. Bei der Produktion wird ein Teil der hergestellten Einheiten selbst verbraucht, so dass an den Kunden nur die Verkaufsmengen $\vec{v} = \begin{pmatrix} v_A & v_B & v_C \end{pmatrix}^T$ abgegeben werden können. Die intern selbst verbrauchten Einheiten werden für eine bestimmte Produktionsmenge in folgender Verteilungstabelle (= Verteilungsmatrix V) dargestellt:

			Empfänger					
	Abteilung	ung A B C Verkaufsmengen \vec{v}		Produktions- mengen \vec{p}				
	A	20	50	10	120	200		
Lieferant	В	5	10	20	65	100		
	С	10	4 0	50	200	300		

Werden die Produktionsmengen aufgrund veränderter Nachfrage angepasst, so bleibt das Verhältnis von selbstverbrauchten Einheiten zur Produktionsmenge für jedes Produkt gleich. Diese Verhältnisse werden in der **Selbstverbrauchsmatrix** S (auch Technologiematrix) dargestellt:

(4.10)

Die möglichen Verkaufsmengen \vec{v} berechnen sich nun aus der gegebenen Produktionsmenge \vec{p} nach:

$$\vec{v} = \vec{p} - S \cdot \vec{p} = (E - S) \cdot \vec{p} = L \cdot \vec{p}$$
, wobei L die sogenannte **Leontief-Matrix** ist.

Wird eine bestimmte Verkaufsmenge gefordert, so lässt sich die notwendige Produktionsmenge bestimmen zu:

$$\vec{p} = L^{-1} \cdot \vec{v}$$
, wobei L^{-1} die sogenannte **Leontief-Inverse** ist

4.3.3 Innerbetriebliche Leistungsverrechnung

Ziel: Wechselseitiger Leistungsaustausch zwischen betriebsinternen Abteilungen (Kostenstellen), z.B. Heizung, Strom, Werkstatt, etc., deren exakte kostenmäßige Erfassung ist nötig zur

- Selbstkostenermittlung
- Preiskalkulation
- Kostenvergleich zwischen Eigenfertigung und Fremdbezug

Beispiel:

Ein Unternehmen besteht aus einem Hauptbetrieb und 3 Hilfsbetrieben (Strom, Heizung, Werkstatt). Die Hilfsbetriebe geben Leistung an den Hauptbetrieb ab, verbrauchen einen Teil aber selbst bzw. wechselseitig.

Primäre Kosten: entstehen den Hilfsbetrieben unmittelbar bei der Erstellung der Gesamtleistung

(z.B. Löhne)

Sekundäre Kosten: Kosten der innerbetrieblichen Leistung

(≜ empfangene Leistungsmenge multipliziert mit dem Verrechnungspreis)

Wert der produzierten Leistung: Primäre Kosten + Sekundäre Kosten

 $x_1, x_2, x_3 \triangleq \text{Verrechnungspreis für Heizung, Strom und Werkstatt}$

Tabelle der Leistungsbeziehungen:

		Empfänger					
	Hilfsbe- trieb	Heizung	Strom	Werk- statt	Haupt- betrieb	Gesamt- Leistung	primäre Kosten (€)
Liefe- rant	Heizung (kWh)	0	400	2.000	50.000	52.400	4.140
	Strom (kWh)	500	1.000	5.000	20.000	26.500	3.060
	Werkstatt (Std.)	20	40	10	200	270	11.800

Gesucht: Verrechnungspreise $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ für Heizung, Strom und Werkstatt für den Hauptbetrieb.

(4.11)

 $\left(L\cdot P\right)^T\cdot \vec{x}=\vec{k}_{prim}$ lösen mit Gauß-Verfahren:

X ₁	X ₂	Х3	b _i
52400	-500	-20	4140
-400	25500	-40	3060
-2000	-5000	260	11800

(11)

('')

 1
 0
 0
 0,10

 0
 1
 0
 0,20

 0
 0
 1
 50

 $x_1 = 0.10$ €/kWh $x_2 = 0.20$ €/kWh

 $x_3 = 50 \text{ } \text{€/h}$