Classification models

MODELING WITH TIDYMODELS IN R

David Svancer
Data Scientist

Predicting product purchases

Classification models predict categorical outcome variables

Predicting product purchases

purchased	total_time	total_visits
yes	800	3
yes	978	7
no	220	4
no	124	5
yes	641	4

Classification algorithms

Goal: Create distinct, non-overlapping regions along set of predictor variable values

Predict the same categorical outcome in each region

Total Website Visits

Classification algorithms

Goal: Create distinct, non-overlapping regions along set of predictor variable values

Predict the same categorical outcome in each region

Logistic Regression

 Popular classification algorithm which creates a *linear* separation between outcome categories

Time on Website vs Total Visits by Purchase Outcome

Total Website Visits

Lead scoring data

leads_df

```
# A tibble: 1,328 x 7
  purchased total_visits total_time pages_per_visit total_clicks lead_source
                                                                             us_location
                   <dbl>
                             <dbl>
                                             <dbl>
                                                         <dbl> <fct>
                                                                              <fct>
  <fct>
                                                            59 direct_traffic west
1 yes
                              1148
                                                            24 direct_traffic west
2 no
                               100
                                              2.67
                       8
                       5
                                              2.5
3 no
                               228
                                                            25 email
                                                                              southeast
                                                            21 organic_search west
4 no
                               481
                                              2.33
                                                            37 direct_traffic west
                               177
5 no
                                                            26 email
                              1273
                                                                             midwest
6 no
                       3
                                                            28 organic_search west
7 no
                               711
                                                            32 direct_traffic southeast
8 no
                       3
                               166
                       3
                                                            23 organic_search west
9 no
                                                            48 organic_search southeast
10 no
                               562
 ... with 1,318 more rows
```

Data resampling

First step in fitting a model

- Create data split object with initial_split()
- Create training and test datasets with training() and testing()

Logistic regression model specification

Model specification in parsnip

- logistic_reg()
 - General interface to logistic regression models in parsnip
 - Common engine is 'glm'
 - Mode is 'classification'

```
logistic_model <- logistic_reg() %>%
  set_engine('glm') %>%
  set_mode('classification')
```

Model fitting

Once model is specified, the fit() function is used for model training

- Pass model object to fit()
- Specify model formula
- Provide training data, data

Predicting outcome categories

The predict() function

- new_data specifies dataset on which to predict new values
- type
 - 'class' provides categorical predictions

Standardized output from predict()

- 1. Returns a tibble
- 2. When type is 'class', returns a factor column named .pred_class

```
# A tibble: 332 x 1
    .pred_class
    <fct>
    1 no
    2 yes
    3 no
    4 no
    5 yes
# ... with 327 more rows
```

Estimated probabilities

Setting type to 'prob' provides estimated probabilities for each outcome category

The predict() function will return a tibble with multiple columns

- One for each category of the outcome variable
- Naming convention is

```
.pred_{outcome_category}
```

Combining results

For model evaluation with the yardstick package, a results tibble will be needed

The outcome variable from the test dataset and prediction tibbles can be combined with bind_cols()

```
leads_results <- leads_test %>%
  select(purchased) %>%
  bind_cols(class_preds, prob_preds)
```

leads_results

```
# A tibble: 332 x 4
  purchased .pred_class .pred_yes .pred_no
                                       <dbl>
   <fct>
             <fct>
                             <dbl>
                                       0.866
1 no
                            0.134
             no
                            0.729
                                       0.271
2 yes
             yes
3 no
                            0.133
                                       0.867
             no
                            0.0916
                                       0.908
4 no
             no
5 yes
                                       0.402
                            0.598
             yes
  ... with 327 more rows
```

Telecommunications data

telecom_df

cance teu_se	ervice cellular_service	avg_uata_gp a	avg_cart_mins	avg_Intt_min	s intermet service	e contract mont	ns_with_company	monthly_charges
<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<dbl></dbl>	<dbl></dbl>
1 yes	single_line	7.78	497	127	fiber_optic	month_to_month	7	76.4
2 yes	single_line	9.04	336	88	fiber_optic	month_to_month	10	94.9
3 no	single_line	10.3	262	55	fiber_optic	one_year	50	103.
4 yes	multiple_lines	5.08	250	107	digital	one_year	53	60.0
ō no	multiple_lines	8.05	328	122	digital	two_year	50	75.2
5 no	single_line	9.3	326	114	fiber_optic	month_to_month	25	95.7
7 yes	multiple_lines	8.01	525	97	fiber_optic	month_to_month	19	83.6
3 no	multiple_lines	9.4	312	147	fiber_optic	one_year	50	99.4
9 yes	single_line	5.29	417	96	digital	month_to_month	8	49.8
o no	multiple_lines	9.96	340	136	fiber_optic	month_to_month	61	106.

Let's practice!

MODELING WITH TIDYMODELS IN R

Assessing model fit

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Binary classification

Outcome variable with two levels

- Positive class
 - Event of interest to predict
 - "yes" in purchased variable
- Negative class
 - "no"
- In tidymodels outcome variable needs to be a factor
 - First level is positive class
 - Check order with levels()

```
leads_df
```

```
levels(leads_df[['purchased']])
```

```
[1] "yes" "no"
```

Confusion matrix

Matrix with counts of all combinations of actual and predicted outcome values

Correct Predictions

- True Positive (TP)
- True Negative (TN)

Classification Errors

- False Positive (FP)
- False Negative (FN)

Truth

Positive (+) Negative (-)

Predicted

Positive (+)

Negative (-)

TP	FP
FN	TN

Classification metrics with yardstick

Creating confusion matrices and other model fit metrics with yardstick

- Requires a tibble of model results which contain:
 - True outcome values
 - purchased
 - Predicted outcome categories
 - .pred_class
 - Estimated probabilities of each category
 - .pred_yes
 - .pred_no

leads_results

```
# A tibble: 332 x 4
  purchased .pred_class .pred_yes .pred_no
                             <dbl>
                                       <dbl>
  <fct>
             <fct>
                            0.134
                                       0.866
1 no
             no
                            0.729
2 yes
                                       0.271
             yes
                            0.133
                                       0.867
3 no
             no
                            0.0916
                                       0.908
4 no
             no
5 yes
                            0.598
                                       0.402
             yes
6 no
                            0.128
                                       0.872
             no
                            0.112
                                       0.888
7 yes
             no
                                       0.831
                            0.169
8 no
             no
                            0.158
9 no
                                       0.842
             no
10 yes
                            0.520
                                       0.480
             yes
 ... with 322 more rows
```

Confusion matrix with yardstick

The conf_mat() function

- Tibble of model results
- truth column with true outcomes
- estimate column with predicted outcomes

Logistic regression on leads_df

- Correctly classified 252 out of 332 customers (76%)
- 46 false negatives
- 34 false positives

```
Truth
Prediction yes no
yes 74 34
no 46 178
```

Classification accuracy

The accuracy() function

- Takes same arguments as conf_mat()
- Calculates classification accuracy

$$rac{TP+TN}{TP+TN+FP+FN}$$

- yardstick functions always return a tibble
 - .metric type of metric
 - .estimate calculated value

Sensitivity

In many cases *accuracy* is not the best metric

- leads_df data
 - Classifying all as 'no' gives 64% accuracy

Sensitivity

Proportion of all positive cases that were correctly classified

- Of customers who did purchase, what proportion did our model predict correctly?
 - Lower false negatives increase sensitivity

Truth

Positive (+) Negative (-)

TP FP

FN TN

$$\frac{TP}{TP + FN}$$

Positive (+)

Negative (-)

Calculating sensitivity

The sens() function

- Takes same arguments as conf_mat() and accuracy()
- Returns sensitivity calculation in
 .estimate column

```
sens(leads_results,
    truth = purchased,
    estimate = .pred_class)
```

Specificity

Specificity is the proportion of all negative cases that were correctly classified

- Of customers who did not purchase, what proportion did our model predict correctly?
 - Lower false positives increase specificity

1 - Specificity

- Also called the false positive rate (FPR)
- Proportion of false positives among true negatives

Truth

$\overline{}$		Positive (+)	Negative (-)
licte	Positive (+)	TP	FP
Pred	Negative (-)	FN	TN

$$\frac{TN}{TN + FP}$$

Calculating specificity

The spec() function

- Takes same arguments as sens()
- Returns specificity calculation in .estimate column

```
spec(leads_results,
    truth = purchased,
    estimate = .pred_class)
```

Creating a metric set

User-defined metric sets

- metric_set() function
 - Creates user-defined metric function with selected yardstick metrics
 - Pass yardstick metric function names into metric_set()
 - Use custom function to calculate metrics

```
custom_metrics <-
  metric_set(accuracy, sens, spec)</pre>
```

Many metrics

Binary classification metrics

Wide variety of binary classification metrics

```
o accuracy(), kap(), sens(), spec(),
ppv(), npv(), mcc(), j_index(),
bal_accuracy(),
detection_prevalence(), precision(),
recall(), f_meas()
```

Pass results of conf_mat() to summary()
 to calculate all

https://yardstick.tidymodels.org/reference

```
# A tibble: 13 x 3
   .metric
                        .estimator .estimate
  <chr>
                        <chr>
                                       <dbl>
1 accuracy
                        binary
                                       0.759
2 kap
                        binary
                                       0.466
                                       0.617
3 sens
                        binary
4 spec
                        binary
                                       0.840
                                       0.685
                       binary
5 ppv
                       binary
                                       0.795
6 npv
7 mcc
                        binary
                                       0.468
                       binary
                                       0.456
8 j_index
                        binary
9 bal_accuracy
                                       0.728
10 detection_prevalence binary
                                       0.325
11 precision
                        binary
                                       0.685
12 recall
                        binary
                                       0.617
13 f_meas
                        binary
                                       0.649
```

Let's practice!

MODELING WITH TIDYMODELS IN R

Visualizing model performance

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Plotting the confusion matrix

Heatmap with autoplot()

- Pass confusion matrix object into autoplot()
- Set type to 'heatmap'
- Visualize the most prevalent counts

Mosaic plot

Mosaic with autoplot()

- Set type to 'mosaic'
- Each vertical bar represents 100% of actual outcome value in column
- Visually displays
 - sensitivity

Mosiac plot

Mosaic with autoplot()

- Set type to 'mosaic'
- Each vertical bar represents 100% of actual outcome value in column
- Visually displays
 - sensitivity
 - specificity

Probability thresholds

Default probability threshold in binary classification is 0.5

 If the estimated probability of the positive class is greater than or equal to 0.5, the positive class is predicted

```
leads_results
```

If .pred_yes is greater than or equal to 0.5
then .pred_class is set to 'yes' by the
predict() function in tidymodels

leads_results

```
# A tibble: 332 x 4
   purchased .pred_class .pred_yes .pred_no
   <fct>
                              <dbl>
                                        <dbl>
             <fct>
                                        0.866
1 no
                             0.134
             no
2 yes
                             0.729
                                        0.271
             yes
                                        0.867
3 no
                             0.133
             no
                                        0.908
                             0.0916
4 no
             no
                                        0.402
                             0.598
5 yes
             yes
                             0.128
                                        0.872
6 no
             no
                             0.112
                                        0.888
7 yes
             no
                             0.169
                                        0.831
8 no
             no
9 no
                             0.158
                                        0.842
             no
                             0.520
10 yes
                                        0.480
             yes
  ... with 322 more rows
```

Exploring performance across thresholds

How does a classification model perform across a range of thresholds?

- Unique probability thresholds in the

 .pred_yes
 column of the test dataset
 - Calculate specificity and sensitivity for each

threshold	specificity	sensitivity
0	0	1
0.11	0.01	0.98
0.15	0.05	0.97
•••	•••	•••
0.84	0.89	0.08
0.87	0.94	0.02
0.91	0.99	0
1	1	0

Visualizing performance across thresholds

Receiver operating characteristic (ROC) curve

 Used to visualize performance across probability thresholds

 Sensitivity vs. (1 - specificity) across unique thresholds in test set results

Visualizing performance across thresholds

Receiver operating characteristic (ROC) curve

 Used to visualize performance across probability thresholds

- Sensitivity vs (1 specificity) across unique thresholds in test set results
 - Proportion correct among actual positives vs. proportion incorrect among actual negatives

ROC curves

Optimal performance is at the point (0, 1)

 Ideally, a classification model produces points close to left upper edge across all thresholds

ROC curves

Optimal performance is at the point (0, 1)

 Ideally, a classification model produces points close to left upper edge across all thresholds

Poor performance

- Sensitivity and (1 specificity) are equal across all thresholds
 - Corresponds to a classification model that predicts outcomes based on the result of randomly flipping a fair coin

Summarizing the ROC curve

The area under the ROC curve (ROC AUC) captures the ROC curve information of a classification model in a single number

Useful interpretation as a letter grade of classification performance

- A [0.9, 1]
- B [0.8, 0.9)
- C [0.7, 0.8)
- D [0.6, 0.7)
- F [0.5, 0.6)

Calculating performance across thresholds

```
The roc_curve() function
```

- Takes a results tibble as the first argument
- truth column with true outcome categories
- Column with estimated probabilities for the positive class

```
.pred_yes in leads_results tibble
```

 Returns a tibble with specificity and sensitivity for all unique thresholds in .pred_yes

```
leads_results %>%
  roc_curve(truth = purchased, .pred_yes)
```

```
# A tibble: 331 x 3
  .threshold specificity sensitivity
                             <dbl>
       <dbl>
                  <dbl>
      -Inf
      0.0871
      0.0888
                0.00472
                0.00943
      0.0893
      0.0896
                0.0142
      0.0902
                0.0142
                             0.992
      0.0916 0.0142
                             0.983
      0.0944
                0.0189
                             0.983
 ... with 323 more rows
```

Plotting the ROC curve

Passing the results of roc_curve() to the autoplot() function returns an ROC curve plot

```
leads_results %>%
  roc_curve(truth = purchased, .pred_yes) %>%
  autoplot()
```


Calculating ROC AUC

The roc_auc() function from yardstick will calculate the ROC AUC

- Tibble of model results
- truth column
- Column with estimated probabilities for the positive class

Let's practice!

MODELING WITH TIDYMODELS IN R

Automating the modeling workflow

MODELING WITH TIDYMODELS IN R

David SvancerData Scientist

Streamlining the workflow

The last_fit() function

- Also accepts classification models
- Speeds up the modeling process
- Fits the model to the training data and produces predictions on the test dataset

Similar to using fit(), the first steps include:

- Creating a data split object with rsample
- Specifying a model with parsnip

Fitting the model and collecting metrics

The last_fit() function

- parsnip model object
- Model formula
- Data split object

The collect_metrics() function calculates metrics using the test dataset

Accuracy and ROC AUC by default

Collecting predictions

```
collect_predictions()
```

- Creates a tibble with all necessary columns for yardstick functions
- Actual and predicted outcomes with the test data
- Estimated probability columns for all outcome categories

```
last_fit_results <- logistic_last_fit %>%
  collect_predictions()
```

```
last_fit_results
```

```
# A tibble: 332 x 6
                  .pred_yes .pred_no .row .pred_class purchased
  id
                   <dbl>
                             <dbl> <int>
  <chr>
                                            <fct>
                                                       <fct>
1 train/test split 0.134
                             0.866
                                              no
                                                        no
2 train/test split 0.729
                             0.271
                                              yes
                                                        yes
3 train/test split 0.133
                             0.867
                                                        no
4 train/test split 0.0916
                             0.908
                                      22
                                              no
                                                        no
5 train/test split 0.598
                             0.402
                                      24
                                              yes
                                                        yes
# ... with 327 more rows
```

Custom metric sets

```
The metric_set() function
```

- accuracy(), sens(), and spec()
 - Require truth and estimate arguments
- roc_auc()
 - Requires truth and column of estimated probabilities

```
The custom_metrics() function will need all three, with .pred_yes as the last argument
```

Let's practice!

MODELING WITH TIDYMODELS IN R

