1.
$$\int du = u + c$$
2.
$$\int u^{n} du = \frac{u^{n+1}}{n+1} + c, \quad n \neq -1.$$
3.
$$\int \frac{du}{u} = \ln|u| + c.$$
4.
$$\int a^{u} du = \frac{a^{u}}{\ln a} + c, \quad a > 0, a \neq 1.$$
5.
$$\int e^{u} du = e^{u} + c.$$
6.
$$\int \operatorname{sen} u \, du = -\cos u + c.$$
7.
$$\int \cos u \, du = \sin u + c.$$
8.
$$\int \operatorname{tg} u \, du = \ln|\sec u| + c.$$
9.
$$\int \cot u \, du = \ln|\sec u| + c.$$
10.
$$\int \sec u \, du = \ln|\sec u + \operatorname{tg} u| + c.$$
11.
$$\int \csc u \, du = \ln|\csc u - \cot u| + c.$$
12.
$$\int \sec u \, \operatorname{tg} u \, du = \sec u + c.$$
13.
$$\int \csc u \, \cot u \, du = -\csc u + c.$$
14.
$$\int \sec^{2} u \, du = \operatorname{tg} u + c.$$
15.
$$\int \csc^{2} u \, du = -\cot u + c.$$
16.
$$\int \frac{du}{u^{2} + a^{2}} = \frac{1}{a} \operatorname{arc} \operatorname{tg} \frac{u}{a} + c.$$
17.
$$\int \frac{du}{u^{2} - a^{2}} = \frac{1}{2a} \ln \left| \frac{u - a}{u + a} \right| + c, \quad u^{2} > a^{2}.$$
18.
$$\int \frac{du}{\sqrt{u^{2} - a^{2}}} = \ln \left| u + \sqrt{u^{2} + a^{2}} \right| + c.$$
19.
$$\int \frac{du}{u\sqrt{u^{2} - a^{2}}} = \frac{1}{a} \operatorname{arc} \sec \left| \frac{u}{a} \right| + c.$$
20.
$$\int \frac{du}{\sqrt{u^{2} - a^{2}}} = \ln \left| u + \sqrt{u^{2} - a^{2}} \right| + c.$$
21.
$$\int \frac{du}{\sqrt{a^{2} - u^{2}}} = \arcsin \frac{u}{a} + c, \quad u^{2} < a^{2}.$$

Fórmulas de Recorrências		
1. $\int \sin^n au \ du = -\frac{\sin^{n-1} au \cos au}{an} + \left(\frac{n-1}{n}\right) \int \sin^{n-2} au \ du$		
$2. \int \cos^n au du = \frac{\sin au \cos^{n-1} au}{an} + \left(\frac{n-1}{n}\right) \int \cos^{n-2} au du$		
3. $\int tg^n au \ du = \frac{tg^{n-1}au}{a(n-1)} - \int tg^{n-2}au \ du$		
$4. \int \cot g^n au \ du = -\frac{\cot g^{n-1} au}{a(n-1)} - \int \cot g^{n-2} au \ du$		
5. $\int \sec^n au du = \frac{\sec^{n-2} au tg au}{a(n-1)} + \left(\frac{n-2}{n-1}\right) \int \sec^{n-2} au du$		
$6. \int \csc^n au \ du = -\frac{\csc^{n-2} au \cot g \ au}{a(n-1)} + \left(\frac{n-2}{n-1}\right) \int \csc^{n-2} au \ du$		

Artifícios de Cálculo		
$\int e^x dx = e^x + C$		
$\int e^{nx} dx = \frac{1}{n}e^{nx} + C$		
$\int \cos nx dx = \frac{1}{n} sen nx + C$		
$\int \operatorname{sen} nx dx = -\frac{1}{n} \cos nx + C$		
Artifícios de Cálculo		
$sen^2 x + cos^2 x = 1 (impar)$		
$\operatorname{sen}^2 x = \frac{1 - \cos 2x}{2} (par)$		
$\cos^2 x = \frac{1 + \cos 2x}{2} \ (par)$		
$\operatorname{sen} x. \cos x = \frac{1}{2} \operatorname{sen} 2x$		

Integral indefinida	Regra geral	
$\int f(x)dx = f(x) + C$	$\int u^m du = \frac{u^{m+1}}{m+1} + C$	
Substituição	Por partes	
$\int f(x)dx = \int u \ du$	$u.v-\int v\ du$	
Itegração Função Racional Parciais		

		Exemplos:	
и	Logarítmicas	ln(x)	
	Inversas	$tan^{-1}(x)$	
	A lgébricas	$3x^2 + 9x - 7$	
	Trigonométricas	tan(x)	
dv	Exponenciais	e^x	
Obs. Quando tiver trigonométricas e			
exponencial juntas pegar exponencial			