Econ C103: Game Theory and Networks Module I (Game Theory): Lecture 8

Instructor: Matt Leister

Fall 2019, UC Berkeley

Readings:

- Osborne (2004) Example 233.3
- Osborne and Rubinstein (1994) Section 6.5.2

The Centipede Game

Figure: The Centipede Game

- $N = \{i, j\},$
- $S_i = S_j = \{(C,C,C), (C,C,S), (C,S,S), (S,S,C), (S,C,C), (C,S,C), (S,C,S)\},\$

The Centipede Game

Figure: The Centipede Game

- $N = \{i, j\},$
- $S_i = S_j = \{(C,C,C), (C,C,S), (C,S,S), (S,S,C), (S,C,C), (C,S,C), (S,C,S)\},\$
- $SPNE = \{((S,S,S),(S,S,S))\},$

The Centipede Game

Figure: The Centipede Game

- $N = \{i, j\},$
- $S_i = S_j = \{(C,C,C), (C,C,S), (C,S,S), (S,S,C), (S,C,C), (C,S,C), (S,C,S)\},\$
- $SPNE = \{((S,S,S),(S,S,S))\},$
- $PNE = \{((S,X,X'),(S,Y,Y')) : X,X',Y,Y' \in \{S,C\}\}.$

The Centipede Game in the laboratory

(McKelvey and Palfrey 1992) Subjects played the Centipede Game 10 times, each time with a different opponent.

Figure: Distribution of terminal nodes

Subjects were "learning" to play the game, and moved toward SPNE.
 But what game?...

The Centipede Game with "other regarding preferences"

Figure: The Centipede Game

• $\sigma \in [0,1]$ measures *i*'s regard for *j*'s payoff...

The Centipede Game with "other regarding preferences"

The Centipede Game with "other regarding preferences"

Figure: The Centipede Game

- $\sigma_t^k \in [0, 1]$ measures k's regarding for -k, k = i, j, in outcome z_t .
- $\{\sigma_t^k\}$ can "rationalize" any observed behavior: for any outcome z, there is some $\{\sigma_t^k\}$ such that z is a PNE.

- Two firms i and j compete by producing quantities $q_i \ge 0$ and $q_j \ge 0$, resp., under price function $P(q_i, q_j) = a b(q_i + q_j)$, a, b > 0. Marginal cost of production is c > 0.
- Timing: firm i sets q_i (first stage), then firm j sets q_j (second stage).
- Second stage: Take history where i set q_i in the first stage. Firm j maximizes profit given q_i :

$$\max_{q_j}(a-b(q_i+q_j))-cq_j.$$

• Solving for q_j gives firm j's best response:

$$q_j^*(q_i) = \left\{ egin{array}{ll} rac{a-bq_i-c}{2b} & ext{if } rac{a-c}{b} > q_i \ 0 & ext{otherwise} \end{array}
ight..$$

• First stage: firm i chooses q_i^* taking $q_i^*(q_i)$ as given...

Figure: Stackelberg Duopoly: best response of second mover

Figure: Stackelberg Duopoly: first mover's problem

• First-mover *i* chooses q_i^* to maximize profit, given $q_i^*(q_i)$:

$$\max_{q_i}(a-b(q_i+q_j^*(q_i)))q_i-cq_i.$$

• Firm i's first-order condition becomes:

$$\frac{d}{dq_{i}}\pi_{i}(q_{i}, q_{j}^{*}(q_{i})) = \frac{\partial}{\partial q_{i}}\left(\left(a - b\left(q_{i} + \frac{a - bq_{i} - c}{2b}\right)\right) - c\right)q_{i}$$

$$= a - 2q_{i}b - \underbrace{\frac{a - 2q_{i}b - c}{2}}_{\text{affect of } q_{i} \text{ on } q_{j}^{*}} - c = 0$$

$$\Leftrightarrow q_{i}^{*} = \frac{a - c}{2b} \Leftrightarrow q_{j}^{*}(q_{i}^{*}) = \frac{a - c}{4b}.$$

- Recall PNE in Cournot Duopoly: $q_i^* = q_i^* = \frac{a-c}{3b}$.
- ullet Stackelberg Duopoly: first-mover firm i commits to larger production.

• Firm k = i, j profit in Cournot Duopoly:

$$\pi_k(q_i^*, q_j^*) = \left(a - b\left(\frac{a - c}{3b} + \frac{a - c}{3b}\right)\right) \frac{a - c}{3b} - c\frac{a - c}{3b} = \frac{(a - c)^2}{9b}.$$

First-mover profit in Stackelberg Duopoly:

$$\pi_i(q_i^*, q_j^*) = \left(a - b\left(\frac{a - c}{2b} + \frac{a - c}{4b}\right)\right) \frac{a - c}{2b} - c\frac{a - c}{2b} = \frac{(a - c)^2}{8b}.$$

Second-mover profit in Stackelberg Duopoly:

$$\pi_j(q_i^*, q_j^*) = \left(a - b\left(\frac{a - c}{2b} + \frac{a - c}{4b}\right)\right) \frac{a - c}{4b} - c\frac{a - c}{4b} = \frac{(a - c)^2}{16b}.$$

• Firm *i* has a "first-mover" advantage in Stackelberg Duopoly.

Stackelberg and the Centipede Game

Figure: The Centipede Game

- Let *i* commit to strategy in S_i , then *j* chooses strategy in S_j .
- $BR_j(s_i) =$ "stop before i's first stop, otherwise continue".
- SPNE outcome: i commits to (C, C, C), j chooses (C, C, S), players realize payoffs (3.2, 12.8).
 - \Rightarrow Both *i* and *j* advantaged from *i*'s commitment!

Stackelberg and Matching Pennies

- Let i commit to strategy in A_i , then j chooses strategy in A_j .
- $SPNE = \{(T, (R, L)), (B, (R, L))\}.$ Respective SPNE outcomes: (T, R) and (B, L). \Rightarrow Player j has "second-mover" advantage in Stackelberg game.

First/second-mover advantage in Stackelberg games

Exercise: work through the Stackelberg versions of other 2×2 games.

- If commitment implies a PNE of the simultaneous game is selected (among multiple PNE), then there's a first-mover advantage.
 Second-mover may also be advantaged (e.g., Coordination Game) or disadvantaged (e.g., Battle of the Sexes, Hawk-Dove).
- If there is a unique PNE in the simultaneous game, then the first mover is never disadvantaged (e.g., Cournot), but both players can be indifferent (e.g., Prisoner's Dilemma).
- If there are (non-degenerate) MNE, then there may be a first-mover disadvantage (e.g., Matching Pennies), but not always (e.g., Coordination Game).