MATH 229: Calculus III for Engineers Takahiro Sakai

Martin Gong / 七海喬介

Jan 8 - ??, 2024

Contents

1	Vec	tor and the Geometry of Space	1
	1.1	3-Dimensional Space	1
		1.1.1 2D Coordinates	1
		1.1.2 3D Coordinates	1
	1.2	Vectors	1
		1.2.1 Vector Operation	2
		1.2.2 Components	2
			2
	1.3	The Dot Products	2
		1.3.1 Law of Cosine	3
			3
			4
	1.4		4
	1.5		6
	1.6		8
			8
			9
	1.7	Vector Functions	
	1.8	Arc Length and Curvature	
	1.0		_
2	Par	tial Derivatives 1	2
	2.1	Functions of Several Variables	2
	2.2	Continuity	2
	2.3	·	2

Chapter 1

Vector and the Geometry of Space

1.1 3-Dimensional Space

1.1.1 2D Coordinates

$$\mathbb{R}^2 = \{ (x, y) \mid x, y \in \mathbb{R} \}$$
 (1.1.1)

1.1.2 3D Coordinates

$$\mathbb{R}^{3} = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}$$
 (1.1.2)

Lemma 1.1.1 (Distance Between 2 Points)

$$|P_1P_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$$
(1.1.3)

Proof. Easily proven by using the Pythagorean Theorem twice.

Lemma 1.1.2 (Spherical Surface)

Given point C(a, b, c) and P(x, y, z) where P is a point on the spherical surface and r is the radius of the sphere.

$$(x-a)^{2} + (y-b)^{2} + (z-c)^{2} = r^{2}$$
(1.1.4)

To define a solid spherical space

$$\sqrt{(x-a)^2 + (y-b)^2 + (z-c)^2} \le r \tag{1.1.5}$$

1.2 Vectors

Definition 1.2.1 (Vector)

Vector is a quantity that has a **magnitude** and a **direction**.

We say that two vectors \vec{u} and \vec{v} are equal if they have the same length and direction.

1.2.1 Vector Operation

Omitted

1.2.2 Components

In \mathbb{R}^2

$$\vec{a} \equiv \langle a_1, a_2 \rangle \tag{1.2.1}$$

In \mathbb{R}^3

$$\begin{cases} \vec{a} & \equiv \langle a_1, a_2, a_3 \rangle \\ \vec{0} & \equiv \langle 0, 0, 0, \rangle \end{cases}$$
 (1.2.2)

Definition 1.2.2

Length of $\vec{a} \equiv \langle a_1, a_2, a_3 \rangle$ is

$$|\vec{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2} \tag{1.2.3}$$

1.2.3 Standard Basis Vectors

$$\begin{cases} \hat{i} &= \langle 1, 0, 0 \rangle \\ \hat{j} &= \langle 0, 1, 0 \rangle \\ \hat{k} &= \langle 0, 0, 1 \rangle \end{cases}$$
 (1.2.4)

1.3 The Dot Products

Definition 1.3.1

$$\vec{a} = \langle a_1, a_2, a_3 \rangle \qquad \vec{b} = \langle b_1, b_2, b_3 \rangle \tag{1.3.1}$$

Then, the dot product is

$$\vec{a} \cdot \vec{b} \equiv a_1 b_1 + a_2 b_2 + a_3 b_3 \tag{1.3.2}$$

Properties

1.
$$\vec{a} \cdot \vec{a} = a_1^2 + a_2^2 + a_3^2 = |\vec{a}|^2$$

$$2. \ \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$$

3.
$$\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$$

4.
$$(c\vec{a}) \cdot \vec{b} = c(\vec{a} \cdot \vec{b})$$

5.
$$\vec{0} \cdot \vec{a} = 0$$

Theorem 1.3.1

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta \tag{1.3.3}$$

$$\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| |\vec{b}|}, 0 \le \theta \le \pi \tag{1.3.4}$$

Lemma 1.3.2 • If $\vec{a} \cdot \vec{b} > 0$ then $\cos \theta > 0 \implies \theta < \frac{\pi}{2}$

- If $\vec{a} \cdot \vec{b} < 0$ then $\cos \theta < 0 \implies \theta > \frac{\pi}{2}$
- If $\vec{a} \cdot \vec{b} = 0$, then $\theta = \frac{\pi}{2}, \vec{a} \perp \vec{b}$

1.3.1 Law of Cosine

$$\left| \vec{a} - \vec{b} \right|^2 = |\vec{a}|^2 + \left| \vec{b} \right|^2 - 2|\vec{a}| \left| \vec{b} \right| \cos \theta$$
 (1.3.5)

Proof.

$$\left| \vec{a} - \vec{b} \right|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$
 (1.3.6)

$$= |\vec{a}|^2 - 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 \tag{1.3.7}$$

$$= |\vec{a}|^2 + |\vec{b}|^2 - 2ab\cos(\theta)$$
 (1.3.8)

1.3.2 Projection

 \vec{a} \vec{b}_p

Figure 1.1: Projection

Add to this.

 $\left| \vec{b} \right| \tag{1.3.9}$

Example 1.3.1

$$\vec{u} = \langle 1, 1, 2 \rangle \qquad \vec{v} = \langle -2, 3, 1 \rangle \tag{1.3.10}$$

Find projection of \vec{u} onto \vec{v}

Solution:

$$\operatorname{comp}_{\vec{c}}\vec{u} = \vec{u} \cdot \frac{\vec{v}}{|\vec{v}|} \tag{1.3.11}$$

$$=\frac{-2+3+2}{\sqrt{14}}=\frac{3}{\sqrt{14}}\tag{1.3.12}$$

$$\operatorname{proj}_{\vec{v}}\vec{u} = (\operatorname{comp}_{\vec{v}}\vec{u})\frac{\vec{v}}{|\vec{v}|} = \frac{3}{\sqrt{14}} \cdot \frac{\vec{v}}{\sqrt{v}} = \frac{3}{14}\vec{v}$$
 (1.3.13)

1.3.3 Work

Move an an object from P to Q with a force \vec{F} forming an angle θ with the displacement vector \vec{D} .

$$Work \equiv Force \times Dist \tag{1.3.14}$$

$$W = \left(|\vec{F}| \cos \theta \right) |\vec{D}| \tag{1.3.15}$$

$$= \left| \vec{F} \right| \left| \vec{D} \right| \cos \theta \tag{1.3.16}$$

$$= \vec{F} \cdot \vec{D} \tag{1.3.17}$$

$$\implies W = \vec{F} \cdot \vec{D} \tag{1.3.18}$$

Example 1.3.2

Move a particle from P(2,1,0)[m] to Q(4,6,2) with a force $\vec{F}=\langle 3,4,5\langle [N].$ What is the work done by \vec{F} ?

Solution:

$$W = \vec{F} \cdot \vec{PQ} \tag{1.3.19}$$

$$= \langle 3, 4, 5 \rangle \cdot \langle 2, 5, 2 \rangle \tag{1.3.20}$$

$$= 36 \,\mathrm{N}\,\mathrm{m}$$
 (1.3.21)

1.4 The Cross Product

Definition 1.4.1

Given the vectors

$$\vec{a} = \langle a_1, a_2, a_3 \rangle, \vec{b} = \langle b_1, b_2, b_3 \rangle \tag{1.4.1}$$

The cross product is defined as

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \langle a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1 \rangle$$
 (1.4.2)

Properties of the Dot Product

- 1. $(\vec{a} \times \vec{b}) \perp \vec{a} \& \vec{b}$ and the direction follows the right-hand rule.
- 2. $\left| \vec{a} \times \vec{b} \right| = \left| \vec{a} \right| \left| \vec{b} \right| \sin \theta, 0 \le \theta \le \pi$
- 3. $|\vec{a} \times \vec{b}|$ = the area of the parallelogram formed by the two vectors.
- 4. If $\vec{a} \parallel \vec{b}$, then $\vec{a} \times \vec{b} = \vec{0}$
- 5. Cross product of basis vectors

$$\begin{cases} \hat{i} \times \hat{j} &= \hat{k} \\ \hat{j} \times \hat{k} &= \hat{i} \\ \hat{k} \times \hat{i} &= \hat{j} \end{cases}$$
 (1.4.3)

- 6. The cross product is not commutative
- 7. The cross product is not associative

Example 1.4.1

$$\begin{cases} \hat{i} \times (\hat{i} \times \hat{j}) &= \hat{i} \times \hat{k} = -\hat{j} \\ (\hat{i} \times \hat{i}) \times \hat{j} &= \vec{0} \times \hat{j} = \vec{0} \end{cases}$$
(1.4.4)

8. You can find the normal vector to a plane by applying the cross product to two non-parallel vectors on that plane.

Example 1.4.2

Given points

$$P(1,4,6), Q(-2,5,1), R(1,-1,1)$$

that lie on a plane

- a) Find the vector normal to the plane
- b) Find the area of $\triangle PQR$

Solution:

TBA

Definition 1.4.2 (Triple Products)

$$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b}) \tag{1.4.5}$$

Eq. (1.4.5) shows the scalar triple product. This is also the volume of the parallelepiped.

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c} \tag{1.4.6}$$

Eq. (1.4.6) shows the vector triple product.

Lemma 1.4.1

If \vec{a}, \vec{b} , and \vec{c} are on the same plane (coplanar), then $\vec{a} \cdot (\vec{b} \times \vec{c}) = 0$

1.5 Lines and Planes

Definition 1.5.1 (Line)

We define a line with a direction vector $\vec{v} = \langle a, b, c \rangle$

$$\vec{r} = \vec{v}_0 + t\vec{v} \tag{1.5.1}$$

Parametric Form

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$
 (1.5.2)

Symmetric Form

$$t = \frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c} \tag{1.5.3}$$

Notice how the symmetric form does not require parameters, it tells the relationship between the coordinates.

Example 1.5.1

Intersection problem

Definition 1.5.2 (Plane)

Given a point $P_0 \equiv \vec{r_0}$ and another point $P \equiv \vec{r}$ on the plane, along with the normal vector $\hat{n} = \langle a, b, c \rangle$.

Now, we see that $\vec{r} - \vec{r}_0$ is always on the plane, so that it follows that

$$\hat{n} \cdot (\vec{r} - \vec{r}_0) = 0 \tag{1.5.4}$$

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0 (1.5.5)$$

$$ax + by + cx = d \tag{1.5.6}$$

where $d = ax_0 + by_0 + cz_0$

Example 1.5.2

Given A(2,0,3), B(0,-4,6), C(-3,6,0), on a plane, find the equation of the plane.

Solution:

We find that

$$\overrightarrow{AB} \times \overrightarrow{AC} = -8\langle 2, 3, 4 \rangle \tag{1.5.7}$$

We take any point and compute d

$$d = 2 \cdot 2 + 0 \cdot 3 + 3 \cdot 4 = 16 \tag{1.5.8}$$

so the equation is

$$2x + 3y + 4z = 16\tag{1.5.9}$$

What if we want to sketch the plane?

We simply find the x, y, z-intersection of the plane, label them on a skeleton, then connect they for a triangle.

Example 1.5.3

Given two planes

$$\begin{cases} x + y + z &= 1 \\ x - 2y + 3z &= 1 \end{cases}$$
 (1.5.10)

- a) Find the angle between the two planes
- b) Find the equation of the intersecting line

Solution:

a) We have the normal vectors

$$\begin{cases} \hat{n}_1 &= \langle 1, 1, 1 \rangle \\ \hat{n}_2 &= \langle 1, -2, 3 \rangle \end{cases}$$
 (1.5.11)

We simply find the angle between them using the dot product.

$$\arccos\left(\frac{\vec{a}\cdot\vec{b}}{ab}\right) = \arccos\left(\frac{2}{\sqrt{42}}\right)$$
 (1.5.12)

b) We need the direction vector and a point on the line.

We can find a point on the line by defining either x, y, or z for the two equations and solve for the other variables. (e.g. A point here on the line is P(1,0,0))

For the direction vector, we can cross the normal vectors $\vec{n_1} \times \vec{n_2}$ to find the vector.

Definition 1.5.3 (Distance Between a Point and a Plane)

Given some point P and a random point A on the plane, we can have some vector \overrightarrow{AP} , which, if we project onto the normal vector \hat{n} of the plane, will give us the component of the vector \overrightarrow{AP} parallel to the normal vector.

$$d = \left| \overrightarrow{AP} \middle| |\cos \theta| = \left| \overrightarrow{AP} \cdot \hat{n} \middle| \right| \tag{1.5.13}$$

where θ is the angle between the \overrightarrow{AP} and \hat{n}

Example 1.5.4

We want to find the distance between two paralle planes.

Solution:

Simply find a vector that "connects" the two planes, let that vector be \vec{v} . Then, calculate $|\vec{v} \cdot \hat{n}|$ where \hat{n} is the normal vector of the plane.

1.6 Cylinders and Quadric Surfaces

1.6.1 Cylinders

The perimeter of different cross sections of a cylinder are called **traces**, and the lines parallel to the cylindrical axis are called ???.

Example 1.6.1

$$x = z^2 \tag{1.6.1}$$

This is a parabolic cylinder; we see a parabolic curve on the xz-plane.

Example 1.6.2

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\tag{1.6.2}$$

This is a cylindrical surface with intersect a and b on x and y respectively.

1.6.2 Quadric Surface

Remark

Spherical surfaces are a type of quadric surface.

Example 1.6.3 (Ellipsoid)

$$x^2 + \frac{y^2}{9} + \frac{z^2}{4} = 1 \tag{1.6.3}$$

Solution:

Let z = k some constant.

Then,

$$x^2 + \frac{y^2}{9} = 1 - \frac{k^2}{4} \tag{1.6.4}$$

We observe that only $-2 \le k \le 2$ do we see a surface. So the z intersects are -2 and 2. Now we can solve for $x|_{y=0}$ and $y|_{x=0}$ and we find $\pm 1, \pm 3$

We can keep finding the range by turning the equation into the form $c_1x_1^2 + c_2x_2^2 = c_3$.

When x = k we get

$$\frac{y^2}{9} + \frac{z^2}{4} = 1 - k^2 \tag{1.6.5}$$

When y = k we get

$$x^2 + \frac{z^2}{4} = 1 - \frac{y^2}{9} \tag{1.6.6}$$

This is called an ellipsoid.

Example 1.6.4 (Elliptic Parabola)

$$z = 4x^2 + y^2 (1.6.7)$$

Solution:

We notice that this surface only exists when $z \geq 0$.

Then, we can just sketch traces and connect.

Let z = k

$$4x^2 + y^2 = k ag{1.6.8}$$

We see an ellipse cross section that grows as k increases.

Let x = 0 or y = 0

We see a parabolic cross section.

This is an elliptic parabola.

Example 1.6.5 (Hyperbolic Parabola)

$$z = y^2 - x^2 (1.6.9)$$

Example 1.6.6 (Elliptic Cone)

$$\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2} \tag{1.6.10}$$

1.7 Vector Functions

Definition 1.7.1 (Vector Function)

$$\vec{r}(t) = \langle f(t), g(t), h(t) \rangle = f(t)\hat{i} + g(t)\hat{j} + h(t)\hat{k}$$
 (1.7.1)

Example 1.7.1

The vector function of a line.

$$\vec{r}_0 + \vec{v}t = \langle x_0 + at, y_0 + bt, z_0 + ct \rangle$$
 (1.7.2)

Definition 1.7.2 (Derivative of Vector Functions)

$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} \equiv \vec{r}'(t) = \lim_{h \to 0} \frac{\vec{r}(t+h)\vec{r}(t)}{h} = \langle f'(t), g'(t), h'(t) \rangle \tag{1.7.3}$$

Definition 1.7.3 (Rules of Differentiation)

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[a\vec{u}(t) + b\vec{v}(t) \right] = a\vec{u}'(t) + b\vec{v}'(t) \tag{1.7.4}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[f(t)\vec{u}(t) \right] = f'(t)\vec{u}(t) + f(t)\vec{u}'(t) \tag{1.7.5}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\vec{u}(t) \cdot \vec{v}(t) \right] = \vec{u}'(t) \cdot \vec{v}(t) + \vec{u}(t) \cdot \vec{v}'(t) \tag{1.7.6}$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\vec{u}(t) \times \vec{v}(t) \right] = \vec{u}'(t) \times \vec{v}(t) + \vec{u}(t) \times \vec{v}'(t) \tag{1.7.7}$$

1.8 Arc Length and Curvature

Chapter 2

Partial Derivatives

2.1 Functions of Several Variables

Definition 2.1.1 (Function of 2 Variables)

$$z = f(x, y) \tag{2.1.1}$$

Where z is the dependent variable and x, y are independent variables.

Defines a point (x, y, f(x, y)) in \mathbb{R}^3

We have the domain of f in \mathbb{R}^2 and its range in \mathbb{R}

2.2 Continuity

Skipped

2.3 Partial Derivatives

$$\frac{\mathrm{d}}{\mathrm{d}x}f(x,y) \implies \frac{\partial f}{\partial x} \equiv f_x(x,y)$$
 (2.3.1)

We simply hold all other variables as constant and derive with respect to x.

Definition 2.3.1 (Partial Derivative)

$$\frac{\partial f}{\partial x} \equiv f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h} \tag{2.3.2}$$