

Filip Zieliński

2025

Spis Treści

- 1. Wstęp
- 2. Podstawowe Operacje
- 3. Mnożenie
- 4. Odwrotności

W poniższych rozważaniach skupimy się na macierzach blokowych 2×2 . Wiele wyników da się jednak uogólnić.

Definicja

Rozważmy macierze

 $A \in \mathcal{M}_{n_1 \times m_1}, B \in \mathcal{M}_{n_1 \times m_2}, C \in \mathcal{M}_{n_2 \times m_1}, D \in \mathcal{M}_{n_2 \times m_2}$ nad ustalonym ciałem K. Wtedy, **Macierzą Blokową** (klatkową) $X \in \mathcal{M}_{n_1 + n_2 \times m_1 + m_2}$ złożoną z A, B, C, D definiujemy jako $X = (x_{ij})$, gdzie

$$x_{ij} = \begin{cases} a_{ij} & i \leqslant n_1, & j \leqslant m_1 \\ b_{ij} & i \leqslant n_1, & m_1 < j \leqslant m_1 + m_2 \\ c_{ij} & n_1 < i \leqslant n_1 + n_2, & j \leqslant m_1 \\ d_{ij} & n_1 < i \leqslant n_1 + n_2, & m_1 < j \leqslant m_1 + m_2 \end{cases}$$

Macierze Blokowe

Takie macierze zapisujemy jako

$$X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$

Zauważmy, że macierze można dzielić na bloki na wiele sposobów,

$$X = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ \hline 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

ale zawsze zachodzi colA = colC, colB = colD, rowA = rowB, rowC = rowD

Szczególne Macierze Blokowe

Konwencja

Blok, będący macierzą dowolnych wymiarów wypełnioną samymi zerami oznaczamy jako **0**.

Definicja

Diagonalną (Przekątniową) macierzą blokową nazywamy macierz blokową *D*, jeśli da się ją zapisać jako

$$D = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$

Szczególne Macierze Blokowe

Definicja

Trójkątno-górną macierzą blokową nazywamy macierz blokową *U*, jeśli da się ją zapisać jako

$$U = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$

Definicja

Trójkątno-dolną macierzą blokową nazywamy macierz blokową *L*, jeśli da się ją zapisać jako

$$L = \begin{bmatrix} L_{11} & \mathbf{0} \\ L_{21} & L_{22} \end{bmatrix}$$

Szczególne Macierze Blokowe

Konwencja

W notacji macierzy blokowej $\mathcal I$ może oznaczać macierz jednostkową dowolnego wymiaru.

Uwaga

Macierz jednostkową można zapisać w postaci blokowej jako

$$\mathcal{I} = egin{bmatrix} \mathcal{I} & \mathbf{0} \\ \mathbf{0} & \mathcal{I} \end{bmatrix}$$

Obserwacja

Niech X, Y będą macierzami tych samych wymiarów. Jeżeli X, Y podzielimy na bloki odpowiednio *tych samych wymiarów*, to macierze blokowe można dodawać

$$X = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}, Y = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix}, \quad X + Y = \begin{bmatrix} A_1 + A_2 & B_1 + B_2 \\ C_1 + C_2 & D_1 + D_2 \end{bmatrix}$$

Równie naturalnie, zdefiniowane jest odejmowanie macierzy blokowych jak i mnożenie macierzy przez skalar z ciała.

Transpozycja Macierzy Blokowych

Twierdzenie

Niech $X = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ będzie macierzą blokową. Transpozycja macierzy A jest macierzą blokową, zadaną jako

$$A^T = \begin{bmatrix} A^T & C^T \\ B^T & D^T \end{bmatrix}$$

Mnożenie Macierzy Blokowych

Twierdzenie

Niech, $X\in\mathcal{M}_{n_1+n_2\times m_1+m_2}, Y\in\mathcal{M}_{m_1+m_2\times p_1+p_2}$ będą macierzami nad tym samym ciałem K podzielonymi na bloki w następujący sposób

$$X = \begin{bmatrix} A_1 & B_1 \\ C_1 & D_1 \end{bmatrix}, \quad Y = \begin{bmatrix} A_2 & B_2 \\ C_2 & D_2 \end{bmatrix},$$

gdzie $colA_1 = colC_1 = rowA_2 = rowB_2$ oraz $colB_1 = colD_1 = rowC_2 = rowD_2$. Wtedv

$$M = XY = \begin{bmatrix} A_1A_2 + B_1C_2 & A_1B_2 + B_1D_2 \\ C_1A_2 + D_1C_2 & C_1B_2 + D_1D_2 \end{bmatrix}$$

Macierze blokowo-diagonalne

Twierdzenie

Niech
$$D = \begin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$
 będzie kwadratową macierzą

blokowo-diagonalną, gdzie D_1, D_2 są blokami kwadratowymi. Macierz D jest nieosobliwa wtedy i tylko wtedy gdy macierze D_1 oraz D_2 są nieosobliwe oraz D^{-1} zadane jest wzorem

$$D^{-1} = \begin{bmatrix} D_1^{-1} & \mathbf{0} \\ \mathbf{0} & D_2^{-1} \end{bmatrix}$$

Macierze blokowo-diagonalne

Twierdzenie

Niech
$$D = egin{bmatrix} D_1 & \mathbf{0} \\ \mathbf{0} & D_2 \end{bmatrix}$$
 będzie kwadratową macierzą

blokowo-diagonalną, gdzie D_1, D_2 są blokami kwadratowymi. Macierz D jest nieosobliwa wtedy i tylko wtedy gdy macierze D_1 oraz D_2 są nieosobliwe oraz D^{-1} zadane jest wzorem

$$D^{-1} = \begin{bmatrix} D_1^{-1} & \mathbf{0} \\ \mathbf{0} & D_2^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej sprawdzić z definicji macierzy odwrotnej. Wkw na istnienie wynika z analizy liczby liniowo niezależnych wierszy lub macierzy.

Twierdzenie

Niech
$$U = \begin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną górną, gdzie U_{11} , U_{22} są blokami kwadratowymi. Macierz U jest nieosobliwa wtedy i tylko wtedy gdy macierze U_{11} oraz U_{22} są nieosobliwe oraz U^{-1} zadane jest wzorem

$$U^{-1} = \begin{bmatrix} U_{11}^{-1} & -U_{11}^{-1}U_{12}U_{22}^{-1} \\ \mathbf{0} & U_{22}^{-1} \end{bmatrix}$$

Twierdzenie

Niech
$$U = egin{bmatrix} U_{11} & U_{12} \\ \mathbf{0} & U_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną górną, gdzie U_{11} , U_{22} są blokami kwadratowymi. Macierz U jest nieosobliwa wtedy i tylko wtedy gdy macierze U_{11} oraz U_{22} są nieosobliwe oraz U^{-1} zadane jest wzorem

$$U^{-1} = \begin{bmatrix} U_{11}^{-1} & -U_{11}^{-1}U_{12}U_{22}^{-1} \\ \mathbf{0} & U_{22}^{-1} \end{bmatrix}$$

Dowód.

Wzór można wyprowadzić z metody Gaussa, natomiast wkw wynika z analizy liczby liniowo niezależnych kolumn i wierszy.

Twierdzenie

Niech
$$L = \begin{bmatrix} L_{11} & \mathbf{0} \\ 21 & L_{22} \end{bmatrix}$$
 będzie kwadratową macierzą blokową

trójkątną dolną, gdzie U_{11}, U_{22} są blokami kwadratowymi. Macierz L jest nieosobliwa wtedy i tylko wtedy gdy macierze L_{11} oraz L_{22} są nieosobliwe oraz L^{-1} zadane jest wzorem

$$L^{-1} = \begin{bmatrix} L_{11}^{-1} & \mathbf{0} \\ -L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1} \end{bmatrix}$$

Twierdzenie

Niech
$$L=\begin{bmatrix}L_{11} & \mathbf{0}\\ 21 & L_{22}\end{bmatrix}$$
 będzie kwadratową macierzą blokową trójkątną dolną, gdzie U_{11},U_{22} są blokami kwadratowymi. Macierz

trójkątną dolną, gdzie U_{11}, U_{22} są blokami kwadratowymi. Macierz L jest nieosobliwa wtedy i tylko wtedy gdy macierze L_{11} oraz L_{22} są nieosobliwe oraz L^{-1} zadane jest wzorem

$$L^{-1} = \begin{bmatrix} L_{11}^{-1} & \mathbf{0} \\ -L_{22}^{-1}L_{21}L_{11}^{-1} & L_{22}^{-1} \end{bmatrix}$$

Dowód.

Wzór można wyprowadzić z metody Gaussa, natomiast wkw wynika z analizy liczby liniowo niezależnych kolumn i wierszy.

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Definicja

Jeżeli D jest nieosobliwe, **Dopełnienie Schura** macierzy M względem D defniujemy jako $M/D = A - BD^{-1}C$

Definicja

Jeżeli A jest nieosobliwe, **Dopełnienie Schura** macierzy M względem A defniujemy jako $M/A = D - CA^{-1}B$

Odwrotności

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Twierdzenie

Niech A będzie nieosobliwe. Wtedy M^{-1} istnieje wtedy i tylko wtedy gdy M/A jest odwracalne oraz zachodzi wzór

$$M^{-1} = \begin{bmatrix} A^{-1} + A^{-1}B(M/A)^{-1}CA^{-1} & -A^{-1}B(M/A)^{-1} \\ -(M/A)^{-1}CA^{-1} & (M/A)^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej wyprowadzić z metody Gaussa.

Odwrotności

Niech $M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ będzie kwadratową macierzą blokową, gdzie A, D są kwadratowymi blokami.

Twierdzenie

Niech D będzie nieosobliwe. Wtedy M^{-1} istnieje wtedy i tylko wtedy gdy M/D jest odwracalne oraz zachodzi wzór

$$M^{-1} = \begin{bmatrix} (M/D)^{-1} & -(M/D)^{-1}BD^{-1} \\ -D^{-1}C(M/D)^{-1} & D^{-1} + D^{-1}C(M/D)^{-1}BD^{-1} \end{bmatrix}$$

Dowód.

Wzór najprościej wyprowadzić z metody Gaussa.

Odwrotności

Konwencja

Oznaczmy przez $\mathcal J$ macierz kwadratową dowolnego rozmiaru, która ma 1 na odwrotnej przekątnej, a pozostałe elementy są równe 0. Zauważmy, że można zapisać taką macierz w postaci blokowej jako

$$\mathcal{J} = \begin{bmatrix} \mathbf{0} & \mathcal{J} \\ \mathcal{J} & \mathbf{0} \end{bmatrix}$$

Odwrotności

Obserwacja

Niech
$$M = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$$
 będzie kwadratową macierzą blokową, której bloki B,C są blokami kwadratowymi. Zauważmy, że macierz $M\mathcal{J} = \begin{bmatrix} B\mathcal{J} & A\mathcal{J} \\ D\mathcal{J} & C\mathcal{J} \end{bmatrix}$ jest macierzą kwadratową o blokach kwadratowych na głównej przekątnej, zatem można policzyć jej

Obserwacja

Macierz odwrotną do macierzy blokowej *M* posiadającej bloki kwadratowe na przekątnej odwrotnej, możemy wyliczyć z zależności

odwrotność przy pomocy wspomnianych wcześniej twierdzeń.

$$M^{-1} = \mathcal{J}\mathcal{J}^{-1}M^{-1} = \mathcal{J}(M\mathcal{J})^{-1}$$

Odwrotności

- 1. Inverses and Determinants of $n \times n$ matrices, Müge Saadetoğlu, Şakir Mehmet Dinsev, 2023
- 2. Block Matrix Formulas, John A. Gubner, 2024