Part I: Intro NLP & Task at Hand

Outline

- i. Intro NLP
- ii. Working Data
- iii. Task at Hand
- iv. Quanteda Universe

Part I: Intro NLP & Task at Hand

Intro NLP

Intro NLP What is NLP?

Natural Language Processing (NLP) is a theoretically motivated range of *computational techniques* for analyzing and representing *naturally occurring texts* at one or more *levels of linguistic analysis* for the purpose of achieving *human-like language processing* for a *range of tasks or applications* (Liddy, 2001).

Intro NLP Human-like Language Processing

- How to make human language comprehensible to machines?
 - Numerical **vector** representation
 - Characterization by probabilities

Intro NLP Naturally Occurring Texts

- Basically, any form of human communication
 - Written text
 - Speech
- Different types in different levels of formality
 - News articles
 - Customer reviews
 - Social media posts
 - •
- Different languages

Intro NLP Levels of Linguistic Analysis

- Morphological how are words composed?
- Lexical what do single words mean?
- **Syntactic** what is the grammatical structure of a sentence?
- Semantic what meaning does a sentence convey?
- **Discourse** how do sentences interact to form a text?
- **Pragmatic** what is there between the lines?

Intro NLP Tasks

- High-level tasks
 - Speech recognition
 - Word-sense disambiguation (WSD)
 - Named entity recognition (NER)
 - Relationship extraction
 - Error identification and recovery
 - Automatic summarization
 - Machine translation
 - Topic extraction
 - Sentiment analysis

Intro NLP Tasks

- Low-level tasks
 - Sentence boundary detection
 - Tokenization
 - Part-of-speech (POS) tagging
 - Stemming
 - Lemmatization
 - Shallow parsing
 - •

Intro NLP Computational Techniques

- Available techniques largely depending on the task to solve
 - Standard machine learning techniques for classification tasks

- → E.g., sentiment analysis
- Generative models for unsupervised tasks

- \rightarrow E.g., topic modeling
- Deep learning models for various tasks
 - \rightarrow E.g., translation with RNN
- State of the art: transformer models (BERT, GPT-3)
 - Idea: teach them as much as possible about the language as a whole (pre-training) and fine-tune to specific tasks

Intro NLP Challenges

- Variety of languages
 - Around 7,000 living tongues
 - Many low-resource languages
 - Large differences in grammatical structure, alphabet, scripting systems
- Irregularities
 - Synonyms
 - Homonyms
 - General
 - Cases

Intro NLP Challenges

- Contextual dependencies
 - Ambiguities
 - Domain-specific vocabulary
 - Varying formality
- Complex constructs
 - Humor
 - Irony
 - Sarcasm
 - Colloquialisms

- Individual expression
 - Style
 - Emotion
- Errors
 - Transcription/translation errors
 - Misspelling

Evaluation of NLP tasks

Intro NLP Applications

Part I: Intro NLP & Task at Hand

Working Data

Working Data Generation

All data generated by scraping the web

scraping is legal so long as it does not involve breaking security barriers explicitly in place to guard against such automatic data extraction

- Various sources:
 - https://www.bundestag.de/abgeordnete
 - Individual party websites
 - Twitter API

Working Data Structure

- Required information (on MP level)
 - Name
 - Party
 - Electoral district & associated meta data
 - Twitter username
 - Posted tweets
 - Date
 - Text
 - Number of likes, retweets
 - Number of followers

Working Data Structure

Variable	Туре	Description
last_name	chr	MP's last name
first_name	chr	MP's first name
wahlkreis_name	chr	MP's electoral district
party	factor	MP's political party
bundesland	factor	Federal state of MP's electoral district
unemployment_rate	num	Unemployment rate in MP's electoral district during 2017 election
share_pop_migration	num	Share of migrant population in MP's electoral district during 2017 election
username	chr	MP's username on Twitter
followers_count	num	MP's number of followers on Twitter at scraping time
created_at	date	Time stamp of tweet creation
text	chr	Tweet text
favorite_count	num	Number of likes for tweet at scraping time
retweet_count	num	Number of retweets for tweet at scraping time

Working Data Example

"Merkel-Regierung geht vor Erdogan in die Knie. Auf meine Frage, ob nach Auffassung der Bundesregierung die Ermordung der Armenier 1915/16 ein "Völkermord" war, eiert sie nur rum. Ihr sei die Position des Bundestages dazu "bekannt". Sie selbst hat dazu keine. #erbärmlich #feige https://t.co/bkwSflCJan"

Working Data Particularities

- Twitter idiosyncrasies
 - Extremely short texts
 - Often in response to recent event without explicitly naming it
 - Informal language with tendency to containing spelling mistakes
 - Special tokens: emojis, hashtags
- Political context
 - Specific vocabulary
 - Sometimes rather formal after all (and few emojis)
 - Many solely informative tweets
 - Tendency toward negative sentiment

German language

Part I: Intro NLP & Task at Hand

Task at Hand

Task Analytical Objective

Task Topic Extraction

- **Topic extraction** aka **topic modeling**: finding latent thematic clusters within a collection of texts
- Goal: assign each document a topic probability vector / topic label
- Used for
 - Information retrieval
 - Clustering
 - Supporting upstream tasks

for instance, sentiment analysis

• Unsupervised task: both topics and their number unknown

Task Sentiment Analysis

- Sentiment analysis: identifying and analyzing affective states
- Relevant subtask: polarity detection
- **Goal**: assign each document a polarity label ∈ {positive, negative}
- Used for
 - Customer relationship management
 - Social media analysis

alternative, rule-based approaches exist

• Supervised task: requiring labeled training data (typically)

Task Topic-Specific Sentiment Analysis

• Idea: domain- / topic-dependence of sentiment predictors

e.g., "Sozialleistungen" possibly positively connotated in social security context but negatively connotated in asylum politics

- → Combine topic extraction (1) and sentiment analysis (2)
- Implementation
 - R: word embeddings per topic
 - BERT: aspect-based sentiment analysis

underlying assumption: one aspect per document

ML Pipeline Analytical Sequence (R)

Labeling Scraping Data cleaning **Extraction of Twitter tokens** Extraction of lexical features Extraction of dictionary features **Extraction of POS tags** Extraction of unigrams **Sentiment analysis** Word embeddings Topic modeling Dynamic features

ML Pipeline Static vs Dynamic Features

- Fundamental principle in machine learning: dichotomy between **training and test sphere**
 - → Avoid **bias** in performance estimation

- **Static** features
 - Solely determined on single-observation level
 - E.g., POS tags
- **Dynamic** features
 - Affected by surrounding observations
 - E.g., topic labels

may be computed before training

must be computed during training

Part I: Intro NLP & Task at Hand

Quanteda Universe

Quanteda Universe Package

- Benoit et al. (2018)
- Convenient text handling in R
 - Designated classes for textual data (with easy conversion to and from data.frame & friends)
 - **User-friendly** syntax
 - Fast computation
 - Compatibility with spacyr package (Benoit et al., 2020)
 - → Wrapper for Python's popular spaCy package used for, i.a., **POS tagging**

tutorials for getting started on https://tutorials.quanteda.io/

```
[Word = smallest entity of text \rightarrow words]

[Sentence = sequence of w words \rightarrow sentences]

[Paragraph = sequence of s sentences \rightarrow not relevant]

[Document = sequence of p paragraphs \rightarrow tweets]
```

• corpus

- Most basic class to handle text data
- Collection of documents + document-level variables → tweets + meta data

lower-level corpora, e.g., as collections of paragraphs, also possible

tokens

- Representing documents as a collection of tokens
 - → tokens per tweet + meta data
- Token: sequence of characters grouped together as a useful semantic unit
 - → Single words, n-grams, ...
- During tokenization, we will often
 - Remove punctuation
 - Remove stopwords
 - Omit cases (e.g., lowercase everything)
 - Perform stemming / lemmatization

text normalization — to be continued

• Goal: representation of texts by tokens that co-occur across documents

	doc_id	text	author	nationality
-				
	2	Politics have no relation to morals. Politics is too serious a matter to be left to the politicians. In politics stupidity is not a handicap.	Niccolo Machiavelli Charles de Gaulle Napoleon Bonaparte	Italian French French


```
Corpus consisting of 3 documents and 2 docvars.

1:
"Politics have no relation to morals."

2:
"Politics is too serious a matter to be left to the politicia..."

3:
"In politics stupidity is not a handicap."
```



```
Tokens consisting of 3 documents and 2 docvars.

1:
[1] "Politics" "relation" "morals"

2:
[1] "Politics" "serious" "matter" "left" "politicians"

3:
[1] "politics" "stupidity" "handicap"
```

- dfm
 - Document-feature matrix
 - Token count per document → word occurrence per tweet + meta data
 - Methods
 - Weighting schemes, such as tf-idf
 - Counting matches with a list of words
 - Extracting **top** features
 - Performing dictionary look-ups

- fcm
 - Feature co-occurrence matrix
 - Tokens co-occurrence count across corpus \rightarrow co-occurrence across tweets

Feature co-occurrence matrix of: 9 by 9 features.										
features										
features	politics	relation	morals	serious	matter	left	politicians	stupidity	handicap	
politics	0	1	1	1	1	1	1	1	1	
relation	0	0	1	0	0	0	0	0	0	
morals	0	0	0	0	0	0	0	0	0	
serious	0	0	0	0	1	1	1	0	0	
matter	0	0	0	0	0	1	1	0	0	
left	0	0	0	0	0	0	1	0	0	
politicians	5 0	0	0	0	0	0	0	0	0	
stupidity	0	0	0	0	0	0	0	0	1	
handicap	0	0	0	0	0	0	0	0	0	

- dictionary
 - Essentially, named list
 - Specifying dimensions with associated items
 - Look-up on document level → dictionary item count per tweet

```
Dictionary object with 2 key entries.
- [political]:
- politics, politicians
- [critical]:
- morals, stupidity, handicap
```



```
Document-feature matrix of: 3 documents, 2 features (16.7% sparse) and 2 docvars. features docs political critical

1 1 1
2 2 0
3 1 2
```

Quanteda Universe Scope

 Purpose of quanteda: handling text corpora and performing basic analysis of their components

Within scope

- Organizing text documents
- Tokenization
- Descriptive analyses

Out of scope

 Higher-level text analysis, such as topic modeling or sentiment analysis pre-processing with
quanteda

downstream analyses with other tools

Part I: Intro NLP & Task at Hand

Literature and References

Eisenstein, J. (2019): Introduction to Natural Language Processing, MIT Press.

Liddy, E.D. (2001): Natural Language Processing, *in*: Encyclopedia of Library and Information Science, 2nd ed., NY. Marcel Decker, Inc.

Nadkarni, P. M., Ohno-Machado, L., and Chapman W. (2011): Natural Language Processing: An Introduction. *Journal of the American Medical Informatics Association 18(5)*, 544–551, https://doi.org/10.1136/amiajnl-2011-000464.

Vayansky, I., and Kumar S.A.P. (2020): A Review of Ttopic Modeling Methods. *Information Systems*, doi: https://doi.org/10.1016/j.is.2020.101582.

Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., and Matsuo, A. (2018): quanteda: An R package for the Quantitative Analysis of Textual Data. *Journal of Open Source Software 3(30)*, 774, https://doi.org/10.21105/joss.00774.