

If you torture the data long enough, it will confess!

- Ronald Coase

Interesting Hypotheses

- Good looking couples are more likely to have girl child(ren)!
- Vegetarians miss fewer flights.
- Women use camera phone more than men.
- Left handed men earn more money!
- Smokers are better sales people.
- Those who whistle at workplace are more efficient.

What is Regression?

• Regression is a tool for finding existence of an association relationship between a dependent variable (Y) and one or more independent variables $(X_1, X_2, ..., X_n)$ in a study.

• The relationship can be linear or non-linear.

Mathematical Vs Statistical Relationship

• Mathematical relationship is an exact relationship.

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X}$$

• Statistical relationship is not an exact relationship.

$$\mathbf{Y} = \beta_0 + \beta_1 \mathbf{X} + \boldsymbol{\epsilon}$$

Nomenclature in Regression

- A dependent variable (response variable) "measures an outcome of a study (also called outcome variable)".
- An independent variable (explanatory variable) "explains changes in a response variable".
- Regression often set values of explanatory variable to see how it affects response variable (predict response variable).

Regression model establishes the existence of an association between two variables, but not causation.

Regression Nomenclature

<u>Dependent Variable</u>	<u>Independent Variable</u>
Explained Variable	Explanatory variable
Regressand	Regressor
Predictand	Predictor
Endogenous Variable	Exogenous Variable
Controlled Variable	Control Variable
Target Variable	Stimulus Variable
Response Variable	

Dependent and Independent Variables

• Terms dependent and independent does not necessarily imply a causal relationship between two variables.

• Regression is **not** designed to capture **causality**.

• Purpose of regression is to predict the value of dependent variable given the value(s) of independent variable(s).

Regression Importance

Why we need Regression?

• Companies would like to know about factors that have significant impact on their Key Performance Indicators (KPI).

• Regression helps to create new hypothesis that may assist the companies to improve their performance.

Where is it used?

- Finance: CAPM, Non-performing assets, probability of default, chance of bankruptcy, credit risk.
- Marketing: Sales, market share, customer satisfaction, customer churn, customer retention, customer life time value.
- Operations: Inventory, productivity, efficiency.
- **HR:** Job satisfaction, attrition.

• How to improve the success probability of a new product?

• What is the impact of food label on purchase decision?

• Which promotion is more effective?

• What is the risk associated with a customer?

• Which customer is likely to default?

• What percentage of loans are likely to result in a loss?

How to identify the most profitable customer?

Types of Regression

Types of Regression

• Simple linear regression

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

• Multiple linear regression

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k + \varepsilon$$

• Nonlinear regression

$$Y = \beta_0 + \frac{1}{\beta_1 + \beta_2 X_1} + X_2^{\beta_3} + \varepsilon$$

Multiple Linear Regression

Multiple linear regression means linear in regression parameters (beta values).

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \varepsilon$$

$$Y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_2^2 \dots + \beta_k x_k + \varepsilon$$

An important task in multiple regression is to estimate the beta values (β_1 , β_2 , β_3 etc...)

Regression Model Development

Regression Model Development

Regression Model Building

Functional Form

• Identify the explanatory variable.

• Specify the nature of relationship between dependent variable and explanatory variables.

Linear Regression Model

Relationship between variables is a linear function.

Dependent (Response)
Variable(e.g., Treatment Cost)

Independent (Explanatory) Variable(e.g., Body weight)

Model Assumptions

Linear Regression Model Assumptions

- The error term, ε_i , follows a normal distribution.
- For different values of X, the variance of ϵ_i is constant (Homoscedasticity).
- There is no Multi-collinearity (no perfect linear relationship among explanatory variables).
- There is no autocorrelation between two ε_i values.

Regression OLS Estimation

Estimation of Parameters

Population Linear Regression Model

Method of Ordinary Least Squares (OLS)

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \hat{\epsilon}_{1}^{2} + \hat{\epsilon}_{2}^{2} + \hat{\epsilon}_{3}^{2} + \dots + \hat{\epsilon}_{n}^{2}$$

Estimation of Parameters in Regression

The least squares function is given by:

$$SSE = \sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} \left(y_{i} - \beta_{0} - \sum_{j=1}^{k} \beta_{j} x_{ij} \right)^{2}$$

The least squares estimates must satisfy:

$$\frac{\partial SSE}{\partial \beta_0} = -2\sum_{i=1}^n \left(y_i - \hat{\beta}_0 - \sum_{j=1}^k \hat{\beta}_j x_{ij} \right) = 0$$

and

$$\frac{\partial SSE}{\partial \beta_{i}} = -2\sum_{i=1}^{n} \left(y_{i} - \hat{\beta}_{0} - \sum_{j=1}^{k} \hat{\beta}_{j} x_{ij} \right) x_{ij} = 0 \ \forall j$$

Coefficient Equations

Prediction Equation:

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

Sample Slope:

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{\sum_{i} x_{i} y_{i} - n x y}{\sum_{i} x_{i}^{2} - n(\bar{x})^{2}}$$

Sample Y-intercept:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Why Least Squares Estimate?

• OLS beta estimates are, "Best Linear Unbiased Estimates (BLUE)", provided the error terms are uncorrelated (no auto regression) and have equal variance (homoscedasticity). That is,

$$E\left[\beta - \hat{\beta}\right] = 0$$

Advantages of OLS Estimates

• They are unbiased estimates.

• They (estimates) have minimum variance.

• They have consistency, as the sample size increases, the estimate, $\hat{\beta}_i$ converges to the true population parameter value, β_i .

Regression Interpret Beta

Interpretation of Regression Coefficients

The interpretation depends on the functional form of the relationship between the response and the explanatory variables.

Coefficients Interpretation

• The intercept, β_0 , is the mean value of the dependent variable Y, when the independent variable X = 0

• The slope, $\beta_{1,}$ is the change in the value of the dependent variable, Y, for unit change in the independent variable X.

Interpretation of the intercept β_0

• The intercept, β_0 , is the mean value of the dependent variable Y, when the independent variable X = 0

• $Y = 129110.79 + 1807.591 \times Body Weight$

Interpretation of the intercept β_1

• The slope, $\beta_{1,}$ is the change in the value of the dependent variable, Y, for unit change in the independent variable X.

• $Y = 129110.79 + 1807.591 \times Body Weight$

Interpretation of β_0 and β_1 in $\ln(Y) = \beta_0 + \beta_1 \ln(X)$

Differentiating the equation with respect to X, we get:

$$\frac{1}{Y}\frac{\partial Y}{\partial X} = \frac{\beta_1}{X} \Longrightarrow \beta_1 = \frac{\partial Y/Y}{\partial X/X}$$

 β_1 is the percentage change Y for percentage change in X.

Regression

Model Validation

Simple Linear Regression

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Variable x and y has *Linear* relationship

Assumption of the world

 $y = \beta_0 + \beta_1 x + \varepsilon,$ *Minimize SSE*

Fitting a model

Is x really related to y?

Is β₁ statistically significant?

Validating the model

Predict y for a given x.

Using a model

Objective Model Validation

Observed value of Y

Predicted Value of Y without the model (without the knowledge of explanatory variables)

Predicted Value of Y with the model (with the knowledge of explanatory variables)

Model Validation

- Use of co-efficient of determination to check the goodness of fit of regression.
- Analysis of Variance (ANOVA) and F test to check the overall fitness of the regression model.
- t-test to validate relationship dependent and individual independent variable.
- Residual analysis to check the model adequacies.

What is coefficient of determination?

- The coefficient of determination (R² square) is a measure of how well the regression line fits the data.
- The value of R² lies between 0 and 1 and is the percentage of variation explained by the regression model.
- R^2 is a rough indicator of the worth of the regression model.
- R^2 is the square of the correlation coefficient r ($R^2 = r^2$).

Variation in Y

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

$$Y_i = \beta_0 + \beta_1 X + \varepsilon_i$$

Variation in Y_i

Systemic Variation

Random Variation

or

Explained Variation

+

+

Unexplained Variation

Variation in Y

$$Y_i - Y_i = Y_i - Y_i + Y_i - Y_i$$
Total variation Explained variation Unexplained variation

$$\sum_{i=1}^{n} (Y_i - Y_i)^2 = \sum_{i=1}^{n} (Y_i - Y_i)^2 + \sum_{i=1}^{n} (Y_i - Y_i)^2$$

$$SST \qquad SSR \qquad SSE$$

• TOTAL SUM OF SQUARES (**SST**):

$$-SST = \Sigma (\mathbf{Y}_i - \overline{\mathbf{Y}})^2$$

- How much error is there in predicting Y without the knowledge of X?
- SUM OF SQUARES ERROR (SSE):

$$-SSE = \sum (\mathbf{Y}_i - \hat{\mathbf{Y}}_i)^2$$

- How much error is there in predicting Y with the knowledge of X?

• SUM OF SQUARES REGRESSION (SSR):

SSR = $\Sigma (\hat{Y}_i - \bar{Y})^2$ (Amount of variation explained by the model).

Mathematically,
$$SST = SSR + SSE$$

Coefficient of determination

Coefficient of determination is the ratio sum of squares due to regression to the total sum of squares.

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

SUMMARY OUTPUT

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Regression Statistics					
Multiple R	0.351				
R Square	0.123				
Adjusted R Square	0.120	(
Standard Error	111886.046				
Observations	247.000				

ANOVA

	df	SS	MS	F	Significance F
Regression	1.000	4.30902E+11	4.30902E+11	34.4212328	1.4321E-08
Residual	245.000	3.06703E+12	12518487400		
Total	246.000	3.49793E+12			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		129110.795	13564.94009	9.517977506	1.76841E-18	102392.0146	155829.5747	102392.0146	155829.5747
	49.2	1807.591	308.0966635	5.866961121	1.4321E-08	1200.735021	2414.447272	1200.735021	2414.447272

Spurious Regression

One of the major problems with coefficient of determination is that two sets of data without any relationship can have a very high coefficient of determination value.

The data shows the number of Facebook users (in millions) and the number of people who died of Helium poisoning in UK between 2004 and 2012

<u>Year</u>	Number of Facebook users in millions	Number of people who died of Helium Poisoning
2004	1	2
2005	6	2
2006	12	2
2007	58	2
2008	145	11
2009	360	21
2010	608	31
2011	845	40
2012	1056	51

SUMMARY OUTPUT

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Regression Statistics

Multiple R 0.996442

R Square 0.992896

Standard

Error 1.69286

Observations 9

ANOVA

					Significance	
	$\underline{\mathcal{D}} f$	SS	MS	F	F	
Regression	1	2803.94	2803.94	978.4229	8.82E-09	
Residual	7	20.06042	2.865775			
Total	8	2824				
		Standard				Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	95%
Intercept	1.996718	0.76169	2.62143	0.034338	0.195607	3.79783
FB	0.046596	0.00149	31.27975	8.82E-09	0.043074	0.050119

Regression

Standard Error

Standard Error of Estimate

• Standard error is the estimate of the standard deviation of the regression errors.

• Standard error of estimate, S_e, measures the variability or scatter of the observed values around the regression line.

$$S_e = \sqrt{\frac{\sum \left(Y_i - \hat{Y}_i\right)^2}{n - 2}}$$

Interpreting the Standard Error of Estimate

• A smaller standard error of estimate indicates better fit.

• The larger the standard error of estimate, the greater the scattering of points around the regression line.

• If $S_e = 0$, then we can expect a perfect fit.

SUMMARY OUTPUT

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB

Regression Statistics							
Multiple R	0.351						
R Square	0.123						
Adjusted R Square	0.120						
Standard Error	111886.046						
Observations	247.000						

ANOVA

	df	SS	MS	F	Significance F
Regression	1.000	4.30902E+11	4.30902E+11	34.4212328	1.4321E-08
Residual	245.000	3.06703E+12	12518487400		
Total	246.000	3.49793E+12			

		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	Lower 95.0%	Upper 95.0%
Intercept		129110.795	13564.94009	9.517977506	1.76841E-18	102392.0146	155829.5747	102392.0146	155829.5747
	49.2	1807.591	308.0966635	5.866961121	1.4321E-08	1200.735021	2414.447272	1200.735021	2414.447272

Standard Error of Estimate for Regression Coefficients

Standard error of estimate for regression coefficient measures the amount of sampling error in a regression coefficient.

Standard error of β_0 and β_1

Standard error of β_0 and β_1 is given by:

$$S(\beta_0) = \frac{S_e \times \sqrt{\sum x^2}}{\sqrt{nSS_x}}$$

$$S(\beta_1) = \frac{S_e}{\sqrt{SS_x}}$$

$$SS_x = \sum_{i} (X_i - \overline{X})^2$$

