Seminar 12 and 13 - 2024

- **1.** Consider the sequence of independent identically distributed random variables $(X_n)_{n\geq 1}$ such that $X_n \sim Unif[1,3]$ for each $n\geq 1$. Compute the a.s. limit of the sequence which is
- i) the arithmetic mean of $X_1, ..., X_n$, as $n \to \infty$;
- ii) the geometric mean of $X_1, ..., X_n$, as $n \to \infty$;
- iii) the harmonic mean of $X_1, ..., X_n$, as $n \to \infty$.

A: i) the SLLN
$$\implies \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{a.s.} E(X_1) = \int_1^3 \frac{x}{2} dx = 2.$$

ii) the SLLN
$$\implies \sqrt[n]{\prod_{i=1}^n X_i = e^{\frac{1}{n} \sum_{i=1}^n \ln X_i}} \stackrel{a.s.}{\longrightarrow} e^{E(\ln X_1)} = e^{\int_1^3 \frac{\ln x}{2} dx} = \frac{3\sqrt{3}}{e} \approx 1,91.$$

iii) the SLLN
$$\implies \frac{n}{\sum_{i=1}^{n} \frac{1}{X_i}} = \frac{1}{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{X_i}} \xrightarrow{a.s.} \frac{1}{E(\frac{1}{X_1})} = \frac{1}{\int_{1}^{3} \frac{1}{2x} dx} = \frac{2}{\ln 3} \approx 1.82.$$

- **2.** Let $(X_n)_{n\geq 1}$ be a sequence of random variables such that $P(X_n=n^2)=\frac{1}{n}$ and $P(X_n=0)=1-\frac{1}{n}$, for all $n\geq 1$. Prove that:
- **a)** $X_n \stackrel{P}{\longrightarrow} 0$.
- **b)** $(X_n)_{n\geq 1}$ does not converge in mean square.
- A: a) For every $\varepsilon > 0$,

$$\lim_{n \to \infty} P(|X_n| \ge \varepsilon) = \lim_{n \to \infty} P(X_n = n^2) = \lim_{n \to \infty} \frac{1}{n} = 0.$$

- b) We use the proof by contradiction: Assume that $(X_n)_{n\geq 1}$ converges in mean square. Then, by a theorem from the course and a), $X_n \stackrel{L^2}{\longrightarrow} 0$. Since $E|X_n|^2 = \frac{n^4}{n} = n^3 \to \infty$, as $n \to \infty$, we get a contradiction. Hence, $(X_n)_{n\geq 1}$ does not converge in mean square.
- 3. Consider a binary communication channel transmitting codes of n bits each. Assume that the probability of successful transmission of a single bit is $p \in (0,1)$ and that the probability of an error is 1-p. Assume also that the channel is capable of correcting up to m errors, where 0 < m < n. If we assume that the transmission of successive bits is independent, compute the probability of successful code transmission.

A: Let X be the number of number of errors in the code. The event A: "the code is transmitted with all errors corrected" is equivalent with $\{X \leq m\}$. Since $X \sim Bino(n, 1-p)$,

$$P(A) = P(X \le m) = \sum_{k=0}^{m} C_n^k p^{n-k} (1-p)^k.$$

4. The measurement error (in millimeters) of a certain object produced in a factory is a continuous random variable X with the cumulative distribution function $F : \mathbb{R} \to [0, 1]$,

$$F(x) = \begin{cases} 0, & x < -1\\ \frac{1}{4}(2+3x-x^3), & x \in [-1,1]\\ 1, & x > 1. \end{cases}$$

1

Find: $P(-\frac{1}{2} < X < \frac{1}{2})$, $P(X < \frac{1}{2}|X > -\frac{1}{2})$, E(X).

A:
$$P(-\frac{1}{2} < X < \frac{1}{2}) = F(\frac{1}{2}) - F(-\frac{1}{2}) = \frac{27}{32} - \frac{5}{32} = \frac{22}{32} = \frac{11}{16}$$
. $P(X < \frac{1}{2}|X > -\frac{1}{2}) = \frac{P(-\frac{1}{2} < X < \frac{1}{2})}{P(X > -\frac{1}{2})} = \frac{\frac{22}{32}}{1 - \frac{5}{32}} = \frac{22}{27}$. $f(x) = \begin{cases} \frac{3}{4}(1 - x^2), & x \in [-1, 1] \\ 0, & x \notin [-1, 1] \end{cases} \implies E(X) = \int_{-1}^{1} \frac{3}{4}(x - x^3) dx = 0$.

5. A random number generator returns the value Y according to the distribution given by $\begin{pmatrix} -2 & -1 & 0 & 1 \\ \frac{3}{12} & \frac{2}{12} & \frac{1}{12} & \frac{4}{12} \end{pmatrix}$. Find the mean value and the standard deviation of the generator.

A:
$$E(Y) = \frac{-6-2+4}{10} = -\frac{4}{10} = -\frac{2}{5}$$
, $E(Y^2) = \frac{12+2+4}{10} = \frac{18}{10} = \frac{9}{5}$, $\sigma = \sqrt{\frac{9}{5} - \frac{4}{25}} = \frac{\sqrt{41}}{5}$.

- **6.** A random value X is generated according to the density function $f_X: \mathbb{R} \to \mathbb{R}, f(x) = \frac{1}{2}e^{-|x|}$, for all $x \in \mathbb{R}$. Compute:
- a) the cumulative distribution function of X;
- b) the cumulative distribution function of the random value X^2 ;
- c) $P(X^2 \ge 1)$;
- d) the mean value and the variance of λ

A: a)
$$F_X(x) = \begin{cases} \frac{1}{2} \int_{-\infty}^x e^t dt, & x < 0 \\ \frac{1}{2} \int_{-\infty}^0 e^{-t} dt + \frac{1}{2} \int_0^x e^{-t} dt, & x \ge 0 \end{cases} = \begin{cases} \frac{e^x}{2}, & x < 0 \\ \frac{1}{2} + \frac{1 - e^{-x}}{2}, & x \ge 0 \end{cases} = \begin{cases} \frac{e^x}{2}, & x < 0 \\ 1 - \frac{e^{-x}}{2}, & x \ge 0 \end{cases}$$

b) $F_{X^2}(x) = P(X^2 \le x) = \begin{cases} 0, & x < 0 \\ F(\sqrt{x}) - F(-\sqrt{x}), & x \ge 0 \end{cases} = \begin{cases} 0, & x < 0 \\ 1 - \frac{e^{-\sqrt{x}}}{2} - \frac{e^{-\sqrt{x}}}{2}, & x \ge 0 \end{cases} = \begin{cases} 0, & x < 0 \\ 1 - e^{-\sqrt{x}}, & x \ge 0 \end{cases}$

c) $P(X^2 \ge 1) = 1 - F_{X^2}(1) = \frac{1}{e}$. d) $E(X) = \frac{1}{2} \int_{-\infty}^{\infty} x e^{-|x|} dx = 0$ (we integrate an odd function on a symmetric interval) $V(X) = E(X^2) - E^2(X) - \frac{1}{2} \int_{-\infty}^{\infty} x^2 e^{-|x|} dx = \int_{-\infty}^{\infty} x^2 e^{-x} dx - x^2 e^{-x}$

Then, if
$$Y = X^2$$
, $E(Y) = \int_0^\infty y \frac{e^{-\sqrt{y}}}{2\sqrt{y}} dy \stackrel{y=x^2}{=} \int_0^\infty x^2 e^{-x} dx = 2$.

7. For each $n \in \mathbb{N}$, $n \ge 2$, consider

$$X_n \sim \begin{pmatrix} -1 & 1\\ \frac{1}{n} & 1 - \frac{1}{n} \end{pmatrix}$$

such that $(X_n)_{n\geq 2}$ is a sequence of pairwise independent random variables.

- (a) Does $(X_n)_{n\geq 2}$ obey the weak law of large numbers?
- (b) Compute $\lim_{n\to\infty} V\left(\frac{1}{2}(X_{n-1}+X_n)\right)$.

$$V(X_n) = E(X_n^2) - (E(X_n))^2 = 1 - (1 - \frac{2}{n})^2 = \frac{4}{n} - \frac{4}{n^2} \le 4$$

 $V(X_n) = E(X_n^2) - (E(X_n))^2 = 1 - \left(1 - \frac{2}{n}\right)^2 = \frac{4}{n} - \frac{4}{n^2} \le 4.$ $(X_n)_{n \ge 2}$ is a sequence of pairwise independent random variables, we use Theorem 36 from the lecture to deduce that $(X_n)_{n\geq 2}$ obeys the weak law of large numbers.

(b) By the independence property $\Rightarrow V\left(\frac{1}{2}(X_{n-1} + X_n)\right) = \frac{1}{4}(V(X_{n-1}) + V(X_n)) = \frac{1}{n-1} - \frac{1}{(n-1)^2} + \frac{1}{n} - \frac{1}{n^2}$. Therefore, $\lim_{n\to\infty} V\left(\frac{1}{2}(X_{n-1}+X_n)\right)=0.$