

ИНСТИТУТ ОТРАСЛЕВЫХ РЫНКОВ И ИНФРАСТРУКТУРЫ

Моделирование спотовых цен на электроэнергию на оптовом рынке в России

Касьянова Ксения

Цели и задачи

Цель:

- разработка модели ценообразования на оптовом рынке электроэнергии (РСВ), учитывающие особенности российского рынка;
- оценка влияния различных экономических политик и решений на цену на электричество и финансовые риски участников рынка электрической энергии.

Гипотеза:

■ построив математическую модель, описывающую цену на электроэнергию как диффузионно-скачкообразный процесс, учитывающую также экономические (фундаментальные) факторы, влияющие на спрос и предложение на рынке электроэнергии, можно будет проследить, как отразится их изменение на финансовые риски этого актива.

Цели и задачи

Задачи:

- выявление факторов влияющих на цены на электричество, особенностей российского рынка;
- выбор подходящей модели, способной учесть неодинаковое влияние факторов на различные компоненты процесса (тренд, сезонность и стохастические компоненты);
- оценивание моделей, сравнение с бенчмарк-моделями (не байесовскими/не стохастическими);
- выбор событий/решений/политик повлиявших на факторы, включенные в модель, сравнение рисков до/после.

Актуальность:

- необходимость верно оценивать финансовые риски возникает у производителей электричества;
- прямая связь с задачей ценообразования производных финансовых инструментов, необходимых для хеджирования рисков.

Анализ предметной отрасли

Авторы, год	Название работы	Результат
Judio Lucia, Eduardo Schwartz (Review of Derivatives Research, 2002)	Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange	Эмпирическая оценка детерминистической сезонной компоненты в одно- и двухфакторной модели цен на электричество.
Álvaro Cartea, Marcelo G. Figueroa (Applied Mathematical Finance, 2005)	Pricing in Electricity Markets: a mean reverting jump diffusion model with seasonality	Применение модели цен на электричество, учитывающую тенденцию возвращения к среднему, скачкообразность и сезонность процесса.
Maciej Kostrzewski, Jadwiga Kostrzewska (Energy Economics, 2019)	Probabilistic Electricity Price Forecasting with Bayesian Stochastic Volatility Models	Прогнозирование спот-цен на электричество с помощью байесовского подхода позволяет учесть неопределенность в распределении коэффициентов параметров, что улучшает прогнозы в сравнении с классическими моделями.

Kostrzewski and Kostrzewska (2019)

Базовая модель описывающая цену на электричество - Модель Мертона (Merton's Jump-Diffusion Model)

- эмпирическое распределение имеет тяжелые хвосты, что не согласуется со стандартной моделью Блэка-Шоулза
- в модель добавляется отдельная компонента, отвечающая за скачкообразность процесса (логнормально распределенные скачки порожденные пуассоновским потоком)

Пусть S_t - цена в момент t.

Риск-нейтральный диффузионно-скачкообразный процесс (jump-diffusion process), описывающий изменение цены на электричество:

$$dS_t/S_t = (r - \lambda \bar{k})dt + \sigma dW_t + kdq_t.$$

где σ - волатильность диффузионной компоненты. Скачки порожденны составным процессом Пуассона q_t с параметром λ , где k - размах случайного скачка, причем:

$$ln(1+k) \sim N(\gamma, \delta^2)$$

Моделирование цен на электричество

где среднее - $\bar{k} = E(k) = e^{\gamma + \delta^2/2} - 1$

При $\lambda=0$ получаем модель Блэка-Шоулза.

Kostrzewski and Kostrzewska (2019)

Цены на электричество зависят от большого числа различных компонент.

Для прогнозирования используется SV модель с экзогенными переменными и дамми-переменными, например, температура, объемы торгов по выходным и понедельникам.

В модели скачки вверх/вниз распределены экспоненциально, с разными параметрами SVDEJX модель:

$$\begin{aligned} y_{t_{i+1}} &=& y_{t_i} + \mu + \psi X_{t_{i+1}} + d_{Sat} D_{Sat,i+1} + d_{Sun} D_{Sun,i+1} + d_{Mon} D_{Mon,i+1} \\ &+ \sqrt{\exp\left(h_{t_i}\right)} \varepsilon_{t_{i+1}}^{(1)} + J_{t_{i+1}}, \\ h_{t_{i+1}} &=& h_{t_i} + \kappa_h \left(\theta_h - h_{t_i}\right) + \sigma_h \left(\rho \varepsilon_{t_{i+1}}^{(1)} + \sqrt{1 - \rho^2} \varepsilon_{t_{i+1}}^{(2)}\right), \\ J_{t_{i+1}} &=& -\xi_{t_{i+1}}^D \cdot \mathbb{I} \left(q_{t_{i+1}} = -1\right) + 0 \cdot \mathbb{I} \left(q_{t_{i+1}} = 0\right) + \xi_{t_{i+1}}^U \cdot \mathbb{I} \left(q_{t_{i+1}} = 1\right), \end{aligned}$$

Рис.:

ho>0, если большим значениям математического ожидания соответствуют большие значения дисперсии С помощью байесовского подхода можно оценить ненаблюдаемые компоненты модели.

Kostrzewski and Kostrzewska (2019)

Данные: Jersey Central Power and Light Company (JCPL) 08/22, 2010 - 01/14, 2012

DI/07)	ARX	SNARX	SIMPLE	LAD	ODA	D.O	B_HPD	
PI(%)	AKA				QRA	B_Q	B_HPD	
Unconditional coverage								
50	69.74	56.51	58.63	56.36	53.55	53.33	53.22	
90	96.13	94.23	94.44	93.64	92.07	90.28	90.72	
Mean (standard deviation) of the PI width								
50	8.63	6.09	6.32	6.73	6.4	5.6	5.52	
	(3.33)	(2.64)	(2.89)	(3.66)	(3.78)	(4.02)	(3.91)	
90	21.28	20.73	25.73	26.2	21.1	16.08	15.79	
	(8.29)	(8.78)	(15.74)	(17.21)	(12.09)	(11.15)	(10.71)	
Median (inter-quartile range) of the PI width								
50	8.66	5.94	5.89	5.79	5.62	4.37	4.29	
	(5.25)	(4.21)	(5.77)	(6.93)	(5.19)	(3.86)	(3.79)	
90	21.34	20.64	23.22	21.87	19.51	12.88	12.70	
	(13.02)	(15.28)	(25.86)	(26.33)	(18.51)	(10.63)	(10.43)	

Рис.:

Lucia and Schwartz (2002)

Модель:

Детерминистческая компонента - сезонность:

$$\ln S_t = g(t) + Y_t$$

Стохастическая компонента - процесс, возвращающий среднее (OU process)

$$dY_t = -\alpha Y_t dt + \sigma(t) dW_t$$

Lucia and Schwartz (2002)

Данные:

Nordic Power Exchange's спот-цены

Figure 1 (a). Daily System Price Time Series (1993–1999). The figure plots the daily system price series (above) as well as its daily changes (below).

Рис.:

Cartea and Figueroa (2005)

Модель:

Детерминистческая компонента - сезонность:

$$\ln S_t = g(t) + Y_t$$

Стохастическая компонента:

$$dY_t = -\alpha Y_t dt + \sigma(t) dW_t + J dq_t$$

J - величина скачка, q - пуассоновский процесс.

Lucia and Schwartz (2002)

Данные:

FTSE100; 2/01/90 - 18/06/04.

Рис.:

Основные экономические модели ценообразования на рынке электричества

- моделирование с учетом фундаментальных факторов (физических/экономических)
- модели типа Курно (в результате цены выше чем в действительности)
- моделирование совокупной функции предложения (необходимо решить систему дифференциальных уравнений, вычислительно затратно, не уделяется внимание резким всплескам)
- моделирование поведения групп агентов (необходимо для выявления сложных зависимостей, применяется совместно с другими моделями, высокие риски моделирования, так как согласование с теоретической моделью и эмпирическими наблюдениями сильно зависит от предпосылок и понимания настоящей структуры рынка)

Специфика рынка электроэнергетики

На равновесие на рынке электричества влияет

- погодные условия (причем при более точном прогнозировании погодных условий можно уменьшить ошибку прогноза цены на электричество)
- уровень ежедневной деловой активности
- доля ВИЭ (зависимых от погодных условий)
- решения принимаемые экономическими агентами (при оптимизации)
- цены на ресурсы
- государственная политика, новости
- другие фундаментальные факторы влияющие на баланс спроса и предложения

Специфика рынка электроэнергетики

- невозможность хранения => проблема обязательства энергоустановки (unit commitment)
- ▶ проблема с ограничениями ЛЭП (проблема решается единым оператором), возможность перенапряжения сети (в таком случае локальные цены отличаются от общеустановленных по системе)
- цены на электричество определяются на РСВ, т.е. отсутствует непрерывность торговли, решения на все сутки принимаются на основании одного и того же информационного множества
- невозможность перераспределить волатильность цен по производственной цепочке
- ▶ цены имеют три уровня циклических колебаний: ежедневная, недельная, годовая (с резкими всплесками в январе)
- причины энергетических кризисов: изменения налогообложения, рыночные манипуляции, устаревшая инфраструктура, провалы рынка, национализация, излишняя зарегулированность, перебои с поставками топлива, резкое изменение климата, доставка электричества дешевле стоимости производства

Специфика рынка электроэнергетики

- невозможность хранения => проблема обязательства энергоустановки (unit commitment), учитывается при моделировании цены фьючерсного контракта (так как невозможно открыть короткую позицию).
- проблема с ограничениями ЛЭП (проблема решается единым оператором), возможность перенапряжения сети (в таком случае локальные цены отличаются от общеустановленных по системе)
- цены на электричество определяются на РСВ, т.е. отсутствует непрерывность торговли, решения на все сутки принимаются на основании одного и того же информационного множества
- невозможность перераспределить волатильность цен по производственной цепочке
- цены имеют три уровня циклических колебаний: ежедневная, недельная, годовая (с резкими всплесками в январе)
- причины энергетических кризисов: изменения налогообложения, рыночные манипуляции, устаревшая инфраструктура, провалы рынка, национализация, излишняя зарегулированность, перебои с поставками топлива, резкое изменение климата, доставка электричества дешевле стоимости производства

Специфика российского рынка

Тариф для конечного потребителя на электроэнергию и мощность форми-руется на основе пяти составляющих:

- цена электроэнергии (цена покупки электроэнергии на оптовом рынке или у розничного генератора);
- цена мощности (цена покупки мощно-сти энергосбытовой компанией на оптовом рынке или у розничного генератора);
- цена передачи по сети с дифференци-ацией по уровню напряжения: тарифы ФСК на передачу по магистральным сетям, тарифы МРСК на передачу по сетям среднего напряжения и тарифТСО на передачу по сетям низкого напряжения;
- инфраструктурные платежи: плата за услуги СО ЕЭС, АТС, ЦФР.
 Размер платы регулируется ФАС Россиии Ассоциацией «НП Совет рынка»;
- сбытовая надбавка.

Специфика российского рынка

- Высокая степень изношенности основных фондов
- Перекрестное субсидирование
- ▶ Проблема неплатежей (на конец октября 2017 года на оптовом рынке задолженность соста-вила 65,2 млрд руб., а на розничном 243 млрд руб)
- ▶ Вынужденная генерация (ТЭЦ неэффективны на рынке электроэнергии, мощности, работающие в режиме вы-нужденной генерации, оплачиваются по существенно более высокой цене, чем рыночная)
- Высокие потери тепла
- Завершение ДПМ и ДПМ ВИЭ

Специфика российского рынка

Классификация рынков электроэнергии и мощности России

		Тип рынка				
		Оптовы	й рынок	Розничный рынок		
	ра Электрознергия	Рынок на сутки вперед	Балансирующий рынок	Рынок нерегулируемых цен		
þa		Рынок регулируемых договоров	Рынок свободных договоров	Рынок регулируемых цен		
Тип товара	1	Рынок регулируемых договоров	Договоры о предоставлении мощности (ДПМ)	Рынок нерегулируемых цен		
	Мощность	Рынок свободных договоров	Конкурентный отбор мощности			
		Реализация в статусе вынужденного гене ратора		Рынок регулируемых цен		

Рис.:

Данные

Данные по ценам на электричество за каждый час, начиная с 1.08.2013 по двум ценовым зонам:

- ▶ Объем полного планового потребления, МВт.ч
- ▶ Индекс равновесных цен на покупку электроэнергии, руб./МВт.ч.
- Объем покупки по регулируемым договорам, МВт.ч
- Объем покупки на РСВ, МВт.ч
- ▶ Объем продажи в обеспечение РД, МВт.ч

Источник: АТС

Данные

Рис.: Ценовые зоны

Данные

Рис.: Почасовые цены в первой и второй ценовых зонах