

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE INGENIERÍA

DEPARTAMENTO DE CIENCIAS DE LA COMPUTACIÓN

Curso: Matemáticas discretas

AYUDANTES: FRANCISCA CAPRILE, CATALINA ORTEGA, MATÍAS FERNÁNDEZ E

Ignacio Vergara

Ayudantía 7

29 de septiembre de 2023

 $2^{\rm o}$ semestre 2023 - Profesores G. Diéguez - S. Bugedo - N. Alvarado
- B. Barías

Resumen

Relación Binaria

Una relación binaria es un conjunto de pares ordenados que establece una conexión o asociación entre elementos de dos conjuntos distintos.

R es una relación binaria entre A y B si $R \subseteq A \times B$.

Propiedades de una Relación Binaria

Refleja

Una relación R es refleja si para todo elemento x en el conjunto, el par (x, x) está en R.

$$\forall x \in A, (x, x) \in R$$

Irrefleja

Una relación R es irrefleja si ningún par (x, x) está en R para cualquier x en el conjunto.

$$\forall x \in A, (x, x) \notin R$$

Simétrica

Una relación R es simétrica si para cada par (x, y) en R, también está presente el par (y, x).

$$\forall x, y \in A, (x, y) \in R \to (y, x) \in R$$

Antisimétrica

Una relación R es antisimétrica si para cualquier par (x,y) en R, si $x \neq y$, entonces el par (y,x) no está en R.

$$\forall x, y \in A, (x, y) \in R \land x \neq y \rightarrow (y, x) \notin R$$

Transitiva

Una relación R es transitiva si para cada par (x, y) y (y, z) en R, el par (x, z) también está en R.

$$\forall x, y, z \in A, (x, y) \in R \land (y, z) \in R \rightarrow (x, z) \in R$$

Conexidad

Una relación R es conexa si para cada par de elementos x,y podemos encontar a (x, y) en R, o a (y, x) en R.

$$\forall x, y \in A, (x, y) \in R \lor (y, x) \in R$$

Relación de Equivalencia

Una relación de equivalencia es una relación binaria que cumple reflexividad, simetría y transitividad.

A la relación se le denota como $x \sim y$.

Orden Parcial

Una relación R sobre un conjunto A es un orden parcial si es refleja, antisimétrica y transitiva.

A la relación se le denota como $x \leq y$. Y diremos que el par (A, \leq) es un **orden parcial**.

Orden Total

Una relación \leq sobre un conjunto A es un orden total si es una relación de orden parcial y además es conexa.

Elemento mínimo y máximo

Sean (A, \preceq) un orden parcial, $S \subseteq A$ y $x \in A$. Diremos que:

- 1. x es una **cota inferior** de S si para todo $y \in S$ se cumple que $x \leq y$.
- 2. x es un **elemento minimal** de S si $x \in S$ y para todo $y \in S$ se cumple que $y \leq x \Rightarrow y = x$.
- 3. x es un **mínimo** en S si $x \in S$ y es cota inferior de S.

Análogamente, se definen los conceptos de cota superior, elemento maximal y máximo.

Sea (A, \preceq) un orden parcial, y sean $S \subseteq A, x \in A$.

Infimo y supremo

Sea (A, \preceq) un orden parcial y $S \subseteq A$. Diremos que s es un ínfimo de S si es una cota inferior, y para cualquier otra cota inferior s' se tiene que $s' \preceq s$. Es decir, el ínfimo es la mayor cota inferior. Análogamente se define el supremo de un conjunto.

Ejercicio 1 | Relación de equivalencia

Muestre que la relación en \mathbb{R}^2 , $(a,b)\sim(x,y)$ si y solo si

$$|\langle (a,b),(x,y)\rangle|=\|(a,b)\|\|(x,y)\|$$

es una relación de equivalencia.

Nota: $\langle (a,b),(x,y)\rangle$ corresponde al producto punto de (a,b) y (x,y) en \mathbb{R}^2 y ||(a,b)|| corresponde a la norma euclideana de (a,b) en \mathbb{R}^2 .

Solución: Debemos verificar cada propiedad de una relación de equivalencia,

• Refleja: Tomando el producto punto de (a, b) consigo mismo, obtenemos que

$$|\langle (a,b),(a,b)\rangle| = |a^2 + b^2| = a^2 + b^2$$

Además,

$$||(a,b)|| = \sqrt{a^2 + b^2}$$

por lo tanto,

$$|\langle (a,b),(a,b)\rangle| = |a^2 + b^2| = a^2 + b^2 = (\sqrt{a^2 + b^2})^2 = ||(a,b)|| ||(a,b)||$$

obteniendo así que, $|\langle (a,b), (a,b) \rangle| = ||(a,b)|| ||(a,b)||$, i.e, $(a,b) \sim (a,b)$.

■ Simétrica:

Supongamos $(a,b) \sim (x,y)$. Luego, tenemos por demostrar que, $(x,y) \sim (a,b)$. Por hipótesis tenemos que,

$$|\langle (a,b),(x,y)\rangle| = ||(a,b)|| ||(x,y)||$$

Luego,

$$|ax + by| = (\sqrt{a^2 + b^2})(\sqrt{x^2 + y^2})$$

Por conmutatividad de la multiplicación en \mathbb{R} .

$$|ax + by| = (\sqrt{x^2 + y^2})(\sqrt{a^2 + b^2})$$

$$|xa + yb| = (\sqrt{x^2 + y^2})(\sqrt{a^2 + b^2})$$

obteniendo así que,

$$|\langle (x,y), (a,b)\rangle| = ||(x,y)|| ||(a,b)||$$

■ Transitiva:

Sean $\tilde{x}, \tilde{y}, \tilde{z} \in \mathbb{R}^2$ tales que, $\tilde{x} = (x_1, x_2), \ \tilde{y} = (y_1, y_2)$ y $\tilde{z} = (z_1, z_2)$. Luego, por hipótesis tenemos que,

$$|\langle \tilde{x}, \tilde{y} \rangle| = ||\tilde{x}|| ||\tilde{y}||$$

$$|\langle \tilde{y}, \tilde{z} \rangle| = ||\tilde{y}|| ||\tilde{z}||$$

y tenemos que demostrar, $|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}||$ Por definición del producto punto en \mathbb{R}^2 , tenemos que,

$$|\langle \tilde{x}, \tilde{y} \rangle| = ||\tilde{x}|| ||\tilde{y}|| |\cos(\theta_1)| \cos(\theta_1)|$$
 el ángulo entre \tilde{x}, \tilde{y}

$$|\langle \tilde{y}, \tilde{z} \rangle| = ||\tilde{y}|| ||\tilde{z}|| |\cos(\theta_2)| \cos \theta_2$$
 el ángulo entre \tilde{y}, \tilde{z}

Por lo tanto, se tienen los siguientes casos,

• $\theta_1=\theta_2=0$. Luego, el ángulo entre \tilde{x} y $\tilde{z},$ θ_3 también vale 0. Por lo cual,

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}|| |\cos(\theta_3)|$$

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}||$$

Entonces, $\tilde{x} \sim \tilde{z}$

• $\theta_1=\theta_2=\pi$. Luego, el ángulo entre \tilde{x} y $\tilde{z},$ θ_3 vale 0 necesariamente. Por lo cual,

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}|| |\cos(\theta_3)|$$

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}||$$

Entonces, $\tilde{x} \sim \tilde{z}$

• $\theta_1 = 0, \theta_2 = \pi$ (análogo a $\theta_1 = \pi, \theta_2 = 0$). Luego, necesariamente $\theta_3 = \pi$. Por lo cual,

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}|| |\cos(\theta_3)|$$

$$|\langle \tilde{x}, \tilde{z} \rangle| = ||\tilde{x}|| ||\tilde{z}||$$

Entonces, $\tilde{x} \sim \tilde{z}$

Por lo anterior, se cumple que $\tilde{x} \sim \tilde{z}$. Obteniendo así que la relación es de equivalencia.

Ejercicio 2 | (I2-2019)

Diremos que una relacion R sobre un conjunto A es circular si

$$\forall x \forall y \forall z (xRy \land yRz \rightarrow zRx)$$

Demuestre que R es una relación de equivalencia si y sólo si es refleja y circular.

Solución

 (\Longrightarrow) Sea R una relación de equivalencia. Dado que R es refleja, solo debemos mostrar que es circular. Sean $(a,b)\in R$ y $(b,c)\in R$. Como R es transitiva obtenemos que $(a,c)\in R$. Luego, como R es simétrica se tiene que $(c,a)\in R$. Finalmente, como a, b y c son arbitrarios, concluimos que R es circular.

(⇐) Sea R una relación refleja y circular. Mostraremos que es simétrica y transitiva.

- Simetría: Sea $(a,b) \in R$. Como R es refleja sabemos que $(b,b) \in R$. Además, como es circular obtenemos que $(b,a) \in R$. Por lo tanto, podemos concluir que R es simétrica.
- Transitividad: Sea $(a,b) \in R$ y $(b,c) \in R$. Como R es circular obtenemos que $(c,a) \in R$. Luego, dado que R es simétrica tenemos que $(a,c) \in R$. Finalmente, como a, b, c son arbitrarios concluimos que R es transitiva.

Ejercicio 3 | Ordenes parciales

Sea A un conjunto no vacío cualquiera. Considere el conjunto:

$$R = \{R \subseteq A \times A\}$$

En otras palabras, R es el conjunto de todas las relaciones binarias en A. Ahora considere la siguiente relación $\preceq \subseteq R \times R$: para todo $A, B \in R$, se tiene que $A \preceq B$ si, y solo si, existe $T \in R$ tal que $A \circ T = B$.

- 1. ¿Es (R, \preceq) un orden parcial? Demuestre su afirmación.
- 2. ¿Es \leq una relación conexa? Demuestre su afirmación.

Solución

a)

La solución consiste en notar que no se cumple la antisimetría en este caso. Esto se demostrará con un contraejemplo. Un posible contraejemplo es tomar $A = \{a, b\}$ con $a \neq b$ y basta notar que:

$$\{(a,b)\} \preceq \{(a,a)\}$$
ya que $\{(a,b)\} \circ \{(b,a)\} = \{(a,a)\}$ y

$$\{(a,a)\} \preceq \{(a,b)\}$$
ya que $\{(a,a)\} \circ \{(a,b)\} = \{(a,b)\}$

De esta forma, tomando $R = \{(a,b)\}$ y $S = \{(a,a)\}$ se tiene que $R \leq S$ y $S \leq R$, pero $R \neq S$. Por lo tanto, no se cumple la antisimetría y (R, \leq) no sería un orden parcial.

b)

La solución consiste en notar que la relación no es conexa. Esto se uede demostrar con un contraejemplo. Por ejemplo, tomando $A = \{a, b\}$ con $a \neq b$ basta notar que:

$$\{(a,a)\} \npreceq \{(b,b)\}$$
, ya que para toda $T \in R$ se cumple que $\{(a,a)\} \circ T \neq \{(b,b)\}$ y

$$\{(b,b)\} \npreceq \{(a,a)\}, \text{ ya que para toda } T \in R \text{ se cumple que } \{(b,b)\} \circ T \neq \{(a,a)\}.$$

De esta forma, tomando $R = \{(a, a)\}$ y $S = \{(b, b)\}$ se tiene que $R \npreceq S$ y $S \npreceq R$, y (R, \preceq) no es conexa.

Ejercicio 4 | Elemento mínimo

Encuentre los elementos mínimos de los siguientes conjuntos ordenados:

- 1. (S_1, \leq_1) , donde S_1 es el conjunto de números naturales, y $a \leq_1 b$ si a es menor o igual que b.
- 2. (S_2, \leq_2) , donde S_2 es el conjunto de pares ordenados de números naturales, y $(a, b) \leq_3 (c, d)$ si a es menor o igual que c y b es menor o igual que d.
- 3. (S_3, \leq_3) , donde S_3 es el conjunto de los números enteros positivos, y $a \leq_3 b$ si a es divisor de b.
- 4. (S_4, \preceq_4) , donde S_4 es el conjunto de pares ordenados de números enteros positivos, y $(a, b) \preceq_4 (c, d)$ si a divide a c y b divide a d.

Solución

- 1. 0
- 2. (0,0)
- 3. 1
- 4. (1,1)

Ejercicio 5 | Máximo y mínimo

Se define el MEX (Minimum Excluded Value) de un conjunto S en un orden total (X, \preceq) como el menor elemento en X que no pertenece a S. Formalmente, el MEX de S se define como:

$$MEX(S) = \min\{a \in X \mid a \notin S\}$$

1. Demuestra que el MEX de la unión de dos conjuntos A y B es 'mayor o igual' al máximo entre el MEX de A y el MEX de B. Es decir, demuestra que:

$$\max(\text{MEX}(A), \text{MEX}(B)) \leq \max(A \cup B)$$

Y dé un ejemplo donde $máx(MEX(A), MEX(B)) \neq MEX(A \cup B)$.

2. Demuestra que el MEX de la intersección de dos conjuntos A y B es menor o igual al mínimo entre el MEX de A y el MEX de B. En otras palabras, demuestra que:

$$\min(\text{MEX}(A), \text{MEX}(B)) = \text{MEX}(A \cap B)$$

Solución

1. Sea el MEX de A es m_A y el MEX de B es m_B .

El MEX de $A \cup B$ no puede ser menor que m_A ni menor que m_B ya que si lo fuera existiría un elemento menor a m_A y a m_B que no pertenece a $A \cup B$ y por ende tampoco pertenece a A. Y esto haría que m_A no fuese el MEX de A.

Así, tenemos lo pedido.

$$\max(\text{MEX}(A), \text{MEX}(B)) \leq \text{MEX}(A \cup B)$$

Un ejemplo puede ser dado el orden parcial $(\mathbb{N}, \leq_{\mathbb{N}})$, $A = \{1, 3, 4\}$ y $B = \{1, 2, 5\}$. Acá MEX(A) = 2, MEX(B) = 3 y $\text{MEX}(A \cup B) = 6$.

2. Primero notemos que m_A y m_B no están en $A \cap B$. Sin pérdida de generalidad $m_A = min(m_A, m_B)$ es un candidato a ser el MEX de la intersección.

Supongamos que existe otro elemento m' en X tal que $m' \leq m_A$, $m' \neq m_A$ y $m' \notin A \cap B$, o sea otro posible mejor MEX para $A \cap B$ que m_A .

De $m' \notin A \cap B$, tendremos que $m' \notin A$ o $m' \notin B$ pero que $m' \preceq m_A$ hace necesariamente que $m' \in A$, así $m' \notin B$. Pero por transitividad tendremos que como $m' \preceq m_A$ y $m_A \preceq m_B$ entonces $m' \preceq m_B$.

Así hemos encontrado otro MEX para B, pero esto es contradictorio ya que m_B era el único MEX.

Finalmente probamos que:

$$\min(\text{MEX}(A), \text{MEX}(B)) = \text{MEX}(A \cap B)$$