UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Aula 10: Redes neurais para textos [1]

Prof. Dennis Giovani Balreira

Conteúdo

- Redes neurais para textos [1]
 - Redes neurais
 - Perceptron
 - Função de ativação
 - Loss function
 - Backpropagation

Onde estamos em PLN?

- Algoritmos tradicionais
 - Predominantes entre o final dos anos 1990 até ~2016
 - BoW features + Aprendizado de Máquina
- Embeddings fixas + Deep Learning
 - Predominates de ~2014 até ~2019
 - Word2vec, Glove, FastText + LSTM
- Embeddings contextuais + Large Language Models
 - Estado da arte em diversas tarefas
 - BERT, GPT, etc.

 Modelos computacionais inspirados na estrutura e funcionamento do cérebro humano, compostos por unidades chamadas neurônios artificiais, organizados em camadas

 Neurônio: unidades básicas que realizam operações matemáticas

- Input: recebe os dados
- Hidden: realizam transformações nos dados
- Output: gera o resultado final da rede
- "Deep learning":
 - Muitas camadas hidden!

- As redes neurais funcionam através de uma sequência de operações em que os dados são processados nas camadas intermediárias (hidden) até chegar na saída (output)
- Cada neurônio é chamado de perceptron
 - Primeira parte soma informações
 - Segunda parte modela de acordo com função f
- Em seguida, a informação é passada para as próximas camadas adiante "para frente" (feedforward)

- Faz parte de técnicas de aprendizado supervisionado*
 - Pode ser feito para classificação ou regressão
 - Existem os dados e seus valores "corretos" (ground truth)
- Com isso, é possível calcular a loss function:
 - Compara a previsão feita pelo modelo com a resposta real (ground truth)
 - Gera um valor de "erro" indicando o quão próximo do real o valor previsto foi

^{*}Algumas abordagens usam redes neurais com com aprendizado não supervisionado ou por reforço

- Após saber o erro (via loss function), é importante "calibrar" a rede para que ela vá aprendendo
 - Isso é feito pelo algoritmo Backpropagation
 - Ideia é "voltar" na rede, ajustando os pesos com base no erro encontrado
- Ciclo de repetição:
 - Feedforward
 - Loss function
 - Backpropagation
- Ciclo para a partir de:
 - Épocas: número de vezes que o ciclo acontece
 - Tolerância: executa até que uma métrica atinja uma diferença determinada

- Modelo de rede neural simples, criado em 1957
- É composto por uma única unidade (neurônio)
 - Cada unidade é multiplicada por pesos

	b	Bias
Entrada	Peso	Saída
x	w	•

$$y = x \cdot w + b$$

O objetivo é achar "valores" bons de w e b para conseguir "representar" bem quaisquer outros pontos que surjam posteriormente

Temperaturas			
°C	°F		
-10	14		
Θ			
20	68		
30			
100	212		

- Modelo de rede neural simples, criado em 1957
- É composto por uma única unidade (neurônio)
 - Cada unidade é multiplicada por pesos

		Bias
Entrada	Peso	Saída
x	w	

y = x	$\cdot w + b$	
w=0.0 b=0.0		

- Modelo de rede neural simples, criado em 1957
- É composto por uma única unidade (neurônio)
 - Cada unidade é multiplicada por pesos

		Bias
Entrada	Peso	Saída
	w	

- Modelo de rede neural simples, criado em 1957
- É composto por uma única unidade (neurônio)
 - Cada unidade é multiplicada por pesos

		Bias
Entrada	Peso	Saída
x	w	

40

Celcius

60

80

100

Perceptron: múltiplas entradas

- Pode ser estendido para suportar múltiplos valores de entrada
 - Cada valor x, representa uma "feature"

Problema de classificação!

Estudou	Conhecimento prévio	Facilidade de aprendizado	Nome	Resultado
0.8	0.5	0.7	Miguel	1
0.3	0.2	0.8	Bruno	0

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$y = \sum_{i=1}^{n} w_i x_i + b$$

Perceptron: múltiplas entradas

- Pode ser estendido para suportar múltiplos valores de entrada
 - Cada valor x, representa uma "feature"

Para o Miguel:

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$y = \sum_{i=1}^{n} w_i x_i + b$$

Problema de classificação!

Perceptron: múltiplas entradas

- Pode ser estendido para suportar múltiplos valores de entrada
 - Cada valor x, representa uma "feature"

Para o Bruno:

$$y = w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$y = \sum_{i=1}^{n} w_i x_i + b$$

Problema de classificação!

Função de ativação

- São aplicadas às somas ponderadas das entradas em cada neurônio
 - Funções de ativação devem ser não-lineares (geram "curvas")

Funções de ativação:

- Step function
- Sigmoid
- ReLU
- Softmax

$$f(z) = \max(0,z)$$

$$f(z) = egin{cases} 1 & ext{se } z \geq 0 \ 0 & ext{se } z < 0 \end{cases}$$

$$f(z)=rac{1}{1+e^{-z}}$$

$$f(z_i) = rac{e^{z_i}}{\sum_j e^{z_j}}$$

Função de ativação

- Funções de ativação:
 - Sigmoid

$$f(z)=rac{1}{1+e^{-z}}$$

- São aplicadas às somas ponderadas das entradas em cada neurônio
 - Funções de ativação devem ser não-lineares (geram "curvas")

1	Estudou Conhecimento prévio		Facilidade de aprendizado	Nome	Resultado
	0.8	0.5	0.7	Miguel	1
	0.3	0.2	0.8	Bruno	Θ

Para o Bruno:

$$x = [0.3, 0.2, 0.8]$$

$$Z = (0.6)(0.3) + (0.3)(0.2) + (0.5)(0.8) - 0.4$$

$$z = 0.18 + 0.06 + 0.4 - 0.4 = 0.24$$

w2 = 0.3

w3 = 0.5

$$\hat{y}_{Bruno} = rac{1}{1 + e^{-0.24}} pprox 0.560$$

Loss function

- Loss functions (regressão):
 - MAE (L1) (Mean Absolute Error)
 - MSE (Mean Squared Error)

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

- Função que mede o erro entre a saída prevista por um modelo e o valor real esperado
- O objetivo do processo é minimizar a loss function
- Processo
 - Detectar erro
 - Modelar erro
 - Aprender

Y	Ý	$Y - \hat{Y}$	MAE
-0.3	0.2	-0.5	0.5
-0.2	-0.8	0.6	0.6
5.1	4.4	0.7	0.7
50	35	15	15

$$MAE = \frac{1}{4}(0.5 + 0.6 + 0.7 + 15)$$

 $MAE = \frac{1}{4}(16.8) = 4.2$

Loss function

Loss functions (classificação):

- Binary Cross Entropy Loss

Na verdade é In (natural)

- Cross Entropy Loss

 Função que mede o erro entre a saída prevista por um modelo e o valor real esperado

$$ext{Loss} = -[y \cdot \log(\hat{y}) + (1-y) \cdot \log(1-\hat{y})]$$

O objetivo do processo é minimizar a loss function

y é o **rótulo real** (0 ou 1),

 \hat{y} é a **previsão do modelo** (probabilidade entre 0 e 1).

- Processo
 - Detectar erro
 - Modelar erro
 - Aprender

Estudou Conhecimento prévio		Facilidade de aprendizado	Nome	Resultado
0.8	0.5	0.7	Miguel	1
0.3	0.2	0.8	Bruno	0

$$\hat{y}_{Bruno} = rac{1}{1+e^{-0.24}}pprox 0.560$$
 Função de ativação

Quanto mais perto da classe errada, muito maior é a perda!

$$\operatorname{Loss}_{Bruno} = -[0 \cdot \log(0.560) + 1 \cdot \log(1 - 0.560)] = -\log(0.440) \approx 0.820$$

Backpropagation

- Principal algoritmo para treinar redes neurais
 - Ajusta os pesos para minimizar o erro entre a previsão e o valor real
 - Usa gradiente descendente para calcular os gradientes dos pesos em relação à perda

Gradiente descendente

 Principal algoritmo de otimização para minimizar funções de perda ajustando os parâmetros do modelo (pesos e bias)

Peso anterior

$$w_{t+1} = w_t - lpha \cdot
abla L(w_t)$$
 Peso novo Gradiente da função de perda L em relação aos pesos w no passo t

Taxa de aprendizagem (learning rate)

Gradiente descendente

 Principal algoritmo de otimização para minimizar funções de perda ajustando os parâmetros do modelo (pesos e bias)

$$w_{t+1} = w_t - \bigcirc \nabla L(w_t)$$

Taxa de aprendizagem (learning rate)

Gradiente descendente: derivada

 Principal algoritmo de otimização para minimizar funções de perda ajustando os parâmetros do modelo (pesos e bias)

$$w_{t+1} = w_t - lpha \cdot
abla L(w_t)$$

Derivada do erro com relação ao peso mede quanto o erro varia conforme o peso muda (inclinação em determinado ponto)

Gradiente descendente: regra da cadeia

 Principal algoritmo de otimização para minimizar funções de perda ajustando os parâmetros do modelo (pesos e bias)

$$w_{t+1} = w_t - lpha \cdot
abla L(w_t)$$

Regra da cadeia: permite calcular a derivada de funções compostas (funções que dependem de outras funções)

$$f(g(x)) \;\;\; rac{df}{dx} = rac{df}{dg} \cdot rac{dg}{dx}$$

Função de ativação sigmoide:

$$\sigma(z)=rac{1}{1+e^{-z}}$$

Tarefa de regressão!

Função de ativação sigmoide: $\sigma(z)=rac{1}{1+e^{-z}}$ Saída esperada: y= 0.01 $^{\perp}$

0.10

Função de ativação sigmoide: $\sigma(z)=rac{1}{1+e^{-z}}$

$$\sigma(z)=rac{1}{1+e^{-z}}$$

Saída esperada: y= 0.01

1. Inicialização dos pesos e biases (aleatório)

f(0.05*0.15 + 0.10*0.25 + 0.35) = f(0.3775) ~ 0.5933

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward

Função **f** de ativação sigmoide: $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$f(0.05*0.15 + 0.10*0.25 + 0.35) = f(0.3775)$$

~ 0.5933

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward

$$\mathbf{f}(0.05^*0.20 + 0.10^*0.30 + 0.35) = \mathbf{f}(0.392)$$

$$\sim 0.5968$$

Função **f** de ativação sigmoide: $\sigma(z) = \frac{1}{1+e^{-z}}$

Função **f** de ativação sigmoide: $\sigma(z) = \frac{1}{1+e^{-z}}$

Função **f** de ativação sigmoide: $\sigma(z) = rac{1}{1+e^{-z}}$

Função **f** de ativação sigmoide: $\sigma(z) = rac{1}{1+e^{-z}}$

Saída esperada: y= 0.01

Objetivo é calcular:

$$\frac{\partial \mathcal{L}}{\partial w_{11}^{(2)}}$$

$$\frac{\partial \mathcal{L}}{\partial w_{21}^{(2)}}$$

$$rac{\partial \mathcal{L}}{\partial b^{(2)}}$$

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward
- 3. Cálculo do erro (loss) MSE:
- 4. Backpropagation

$$egin{align} rac{\partial L}{\partial z^{(2)}} &= rac{\partial L}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial z^{(2)}} \ rac{\partial L}{\partial \hat{y}} &= \hat{y} - y \ rac{\partial \hat{y}}{\partial z^{(2)}} &= \hat{y} \cdot (1 - \hat{y}) \ \end{pmatrix}$$

Função **f** de ativação sigmoide: $\sigma(z) = rac{1}{1+e^{-z}}$

Saída esperada: y= 0.01

Objetivo é calcular:

$$\frac{\partial \mathcal{L}}{\partial w_{11}^{(2)}}$$

$$\frac{\partial \mathcal{L}}{\partial w_{21}^{(2)}}$$

$$rac{\partial \mathcal{L}}{\partial b^{(2)}}$$

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward
- 3. Cálculo do erro (loss) MSE:
- 4. Backpropagation

$$\left|rac{\partial \mathcal{L}}{\partial w_{11}^{(2)}}
ight|=rac{\partial L}{\partial z^{(2)}}\!\cdot a_1^{(1)}$$

$$egin{align} rac{\partial L}{\partial z^{(2)}} &= rac{\partial L}{\partial \hat{y}} \cdot rac{\partial y}{\partial z^{(2)}} \ rac{\partial L}{\partial \hat{y}} &= \hat{y} - y \ rac{\partial \hat{y}}{\partial z^{(2)}} &= \hat{y} \cdot (1 - \hat{y}) \ \end{pmatrix}$$

Função **f** de ativação sigmoide: $\sigma(z)=rac{1}{1+e^{-z}}$

Saída esperada: y= 0.01

Objetivo é calcular:

$$\frac{\partial \mathcal{L}}{\partial w_{11}^{(2)}}$$

$$\frac{\partial \mathcal{L}}{\partial w_{21}^{(2)}}$$

$$rac{\partial \mathcal{L}}{\partial b^{(2)}}$$

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward
- 3. Cálculo do erro (loss) MSE:

4. Backpropagation

$$oxed{rac{\partial \mathcal{L}}{\partial w_{11}^{(2)}}} = oxed{rac{\partial L}{\partial z^{(2)}}} \cdot a_1^{(1)}$$

$$egin{align} rac{\partial L}{\partial z^{(2)}} &= rac{\partial L}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial z^{(2)}} \ rac{\partial L}{\partial \hat{y}} &= \hat{y} - y \ rac{\partial \hat{y}}{\partial z^{(2)}} &= \hat{y} \cdot (1 - \hat{y}) \ \end{pmatrix}$$

- 1. Inicialização dos pesos e biases (aleatório)
- 2. Feedforward
- 3. Cálculo do erro (loss) MSE:
- 4. Backpropagation

$$egin{aligned} rac{\partial L}{\partial z^{(2)}} &= rac{\partial L}{\partial \hat{y}} \cdot rac{\partial \hat{y}}{\partial z^{(2)}} = 0.7414 \cdot 0.1860 pprox 0.1378 \ ext{Regra da cadeia} \end{aligned} \ rac{\partial L}{\partial \hat{y}} &= \hat{y} - \hat{y} = 0.7514 - 0.01 = 0.7414 \ rac{\partial \hat{y}}{\partial z^{(2)}} &= \hat{y} \cdot (1 - \hat{y}) = 0.7514 \cdot (1 - 0.7514) pprox 0.1860 \end{aligned}$$

Função **f** de ativação sigmoide:
$$\sigma(z) = \frac{1}{1+e^{-z}}$$

Função **f** de ativação sigmoide:
$$\sigma(z)=rac{1}{1+e^{-z}}$$

Função
$${f f}$$
 de ativação sigmoide: $\sigma(z)={1\over 1+e^{-z}}$ Os pesos continuam sendo ajustados por backpropagation até o início da rede!

até o início da rede!

Função de ativação sigmoide: $\sigma(z)=rac{1}{1+e^{-z}}$ Saída esperada: y= 0.25 $^{-\epsilon}$

0.4088

0.30

Agora o processo deve ser repetido para todos os dados disponíveis (mas os pesos/biases são mantidos!)

Resumo - Treinamento

- Repetir até atingir critério de parada:
 - Para cada instância (x,y) no dataset
 - Submeter x na rede e propagar as ativações (forward pass)
 - Computar o erro da saída (diferença entre predição e y)
 - Retropropagar os erros (backpropagation)
 - Ajustar os parâmetros (gradiente descendente)

Referências

- Curso Redes Neurais Artificiais do canal Canal Machine Learning para humanos do Youtube:
 - https://www.youtube.com/watch?v=ebToEXQFCo4&list
 =PLQH6T1jnlb5J7vugBAauJsFU8Qqvuf-4X
- Material do Prof. Joel (disponível no Moodle)
- A step-by-step backpropagation example:
 - https://mattmazur.com/2015/03/17/a-step-by-step-back propagation-example/

Próximas aulas

- Aula teórica:
 - o Redes neurais para textos [2]

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL Instituto de Informática Departamento de Informática Aplicada

Obrigado pela atenção! Dúvidas?

Prof. Dennis Giovani Balreira (Material adaptado do Prof. Joel Carbonera e Canal Machine Learning para humanos)

INF01221 - Tópicos Especiais em Computação XXXVI: Processamento de Linguagem Natural

