In the Claims:

1	1. [currently amended] A method of mobile device control comprising:
2	moving a surrogate under wireless control by a user;
3	during the moving, detecting unsuitable degradation of wireless
4	communications of the wireless control; and
5	in response to the detecting and while the surrogate is still receiving the
6	wireless communications, autonomously moving the surrogate to provide suitable
7	wireless communications of the wireless control;
8	wherein the detecting comprises comparing a performance parameter
9	associated with the wireless communications with a threshold.
1	2. [original] The method as claimed in claim 1 additionally comprising:
2	autonomously moving the surrogate along a previously determined route.
1	3. [previously presented] The method as claimed in claim 1 wherein:
2	autonomously moving the surrogate to provide suitable wireless
3	communications of the wireless control occurs after passage of a period of time
4	following the detecting of the degradation; and
5	the method further comprises after the detecting of the unsuitable
6	degradation, the surrogate loitering near a location where the unsuitable degradation
7	was detected during the passage of the period of time.
1	4-5. [canceled].
1	6. [previously presented] The method as claimed in claim 1 wherein:
2	autonomously moving the surrogate uses logged information of forward
3	movement using at least one of dead reckoning, odometry, directional
4	measurement, differential wheel rotation, or a combination thereof; and
5	autonomously moving the surrogate uses waypoints back along a forward
6	movement path for backtracking movement.

1	7. [currently amended] A method of mobile telepresencing comprising:
2	moving a surrogate under real-time wireless control by a user;
3	autonomously moving the surrogate to an area with adequate wireless
4	coverage to regain wireless control when the wireless control is lost for a period of
5	time; and
6	while the surrogate is autonomously moving, activating a human perceptible
7	indicator which is perceptible to humans in the presence of the surrogate; and
8	prior to autonomously moving the surrogate, determining that the loss of the
9	wireless control has persisted for the period of time.
1	8. [canceled].
1	9. [currently amended] The method as claimed in claim 7 wherein:
2	losing wireless control includes degradation of the control to a threshold
3	level;
4	autonomously moving the surrogate to regain wireless control occurs after
5	[[a]] the period of time.
_	
1	10. [previously presented] The method as claimed in claim 7 wherein:
2	autonomously moving the surrogate includes:
3	backtracking while measuring distance and avoiding collisions by the
4	surrogate;
5	stopping the surrogate for an obstacle; and
6	resuming backtracking after removal of the obstacle.
1	11. [canceled].
1	12. [currently amended] The method as claimed in claim 7 wherein:
2	the autonomously moving the surrogate to backtrack uses logged information
3	of forward movement using at least one of dead reckoning, odometry, directional
4	measurement, differential wheel rotation, or a combination thereof;
5	the autonomously moving the surrogate to backtrack uses a slower speed
6	than forward speed; and

PDNO. 200315363-1 S/N: 10/789,669 Amendment E

7 the autonomously moving the surrogate uses waypoints back along a 8 forward movement path for backtracking movement considering the slower speed 9 of backtracking. 1 13. [currently amended] A mobile device control system comprising: 2 a surrogate movable under wireless control by a user; and 3 a computer/transceiver system on the surrogate for moving the surrogate to 4 regain wireless control independently of the wireless control after passage of a non-5 zero amount of time following a loss of the wireless control; 6 wherein the computer/transceiver system is configured to move the 7 surrogate after the computer/transceiver system has determined that the loss has 8 persisted for the non-zero amount of time. 1 14. [canceled]. 1 15. [currently amended] The system as claimed in claim 13 wherein: 2 the computer/transceiver system is configured to autonomously move for 3 autonomously moving the surrogate to regain wireless control occurs after the 4 surrogate remains stationary for the non-zero amount of time. 1 16. [original] The system as claimed in claim 13 wherein: 2 the computer/transceiver system for autonomously moving the surrogate 3 includes measuring distance and avoiding collisions by the surrogate. 1 17. [canceled]. 1 18. [previously presented] The system as claimed in claim 13 wherein: 2 the computer/transceiver system uses logged information of forward 3 movement using at least one of dead reckoning, odometry, directional measurement, differential wheel rotation, or a combination thereof; and 4 5 the computer/transceiver system calculates waypoints back along a forward 6 movement path for backtracking movement.

1	19. [currently amended] A mobile telepresencing system comprising:
2	a surrogate movable under wireless control by a user; and
3	a computer/transceiver system configured to determine for determining when
4	the wireless control is lost and responsive to the determining, autonomously move
5	moving the surrogate to an area not currently receiving adequate coverage of the
6	wireless control, but in which the surrogate previously experienced adequate
7	coverage of the wireless control, and wait in the area until to regain adequate
8	coverage of the wireless control is regained.
1	20. [currently amended] The system as claimed in claim 19 wherein
2	additionally comprising:
3	the computer/transceiver system is configured to for autonomously moving
4	move the surrogate along at least one of a previously determined route, a distance,
5	a destination, a direction, or a combination thereof.
1	21. [currently amended] The system as claimed in claim 19 wherein:
2	the computer/transceiver system is configured to determine for
3	determining degradation of the wireless control to a threshold level; and
4	the computer/transceiver system for autonomously moving <u>is</u>
5	configured to autonomously move the surrogate to regain wireless control occurs
6	after a period of time.
1	22. [currently amended] The system as claimed in claim 19 wherein:
2	the computer/transceiver system for autonomously moving the surrogate
3	includes:
4	backtracking means for measuring distance and avoiding collisions by
5	the surrogate during backtracking;
6	stopping means for stopping the surrogate for an obstacle; and
7	means for resuming backtracking after removal of the obstacle.
1	23. [canceled].

1 24. [previously presented] The system as claimed in claim 19 wherein:

the computer/transceiver system uses logged information of forward movement using at least one of dead reckoning, odometry, directional measurement, differential wheel rotation, or a combination thereof for backtracking;

the computer/transceiver system provides a slower speed than forward speed for backtracking by the surrogate; and

the computer/transceiver system uses waypoints back along a forward movement path for backtracking movement considering the slower speed of backtracking.

25. [canceled]

2

3

4

5 6

7

8

9

1

3

4

5

- 1 26. [currently amended] The method as claimed in <u>claim 1</u> claim 25 wherein:
 - the detecting comprises determining that a current non-zero data rate at which the surrogate is successfully transmitting data via the wireless communications is less than a desired data rate.
- 1 27. [currently amended] The method as claimed in claim 26 further 2 comprising:
- prior to the detecting, wirelessly transmitting a video signal at or above the desired data rate from the surrogate to the user.
- 1 28. [currently amended] The method as claimed in claim 10 further 2 comprising:
- prior to the resuming of the backtracking, the surrogate sensing removal of the obstacle; and
- 5 wherein the resuming is responsive to the sensing.
- 1 29. [currently amended] The method as claimed in <u>claim 1</u> <u>claim 25</u>
 2 wherein the detecting comprises determining that a current transmission delay
 3 associated with packets received by the surrogate is greater than an acceptable
 4 transmission delay.

- 1 30. [currently amended] The system of claim 13 wherein 2 computer/transceiver system is configured to detect the loss of the wireless control 3 and to configure the surrogate to remain stationary near the location for the non-4 zero amount of time following the loss of the wireless control near a location at 5 which the loss of the wireless control was detected.
 - [previously presented] The method of claim 7 wherein the surrogate 31. comprises the human perceptible indicator.

1

2

1

5

- 32. [currently amended] The system of claim 13 wherein the 2 computer/transceiver system is configured to detect the loss of the wireless control, 3 to configure the surrogate to loiter for the non-zero amount of time following the 4 loss of the wireless control near a location at which the loss of the wireless control was detected, and to monitor for return of the wireless control during the non-zero 6 amount of time.
- 1 33. [previously presented] The system of claim 19 wherein the 2 computer/transceiver system is configured to loiter in the area for the wireless 3 control to return.
- 1 34. [previously presented] The method of claim 10 wherein the resuming 2 backtracking comprises automatically without user intervention resuming 3 backtracking.
- 1 [previously presented] The system of claim 22 wherein the means for 35. 2 resuming backtracking after removal of the obstacle comprises means for 3 automatically without user intervention resuming backtracking after removal of the 4 obstacle.
- 1 36. [new] The method of claim 7 wherein the period of time is at least 2 two seconds.

37. [new] The system of claim 13 wherein the computer/transceiver system is configured to determine that a first non-zero data rate at which the surrogate is successfully transmitting data via the wireless control at a first moment in time is less than a desired data rate and as a result of the determining, move the surrogate so that the surrogate transmits data via the wireless control at a second non-zero data rate that is greater than or equal to the desired data rate at a second moment in time after the first moment in time.