1895. Largest Magic Square

Description

A $k \times k$ magic square is a $k \times k$ grid filled with integers such that every row sum, every column sum, and both diagonal sums are **all equal**. The integers in the magic square **do not have to be distinct**. Every $\begin{bmatrix} 1 \times 1 \end{bmatrix}$ grid is trivially a **magic square**.

Given an [m x n] integer [grid], return the size (i.e., the side length [k]) of the largest magic square that can be found within this grid.

Example 1:

7	1	4	5	6
2	5	1	6	4
1	5	4	3	2
1	2	7	3	4

Input: grid = [[7,1,4,5,6],[2,5,1,6,4],[1,5,4,3,2],[1,2,7,3,4]]

Output: 3

Explanation: The largest magic square has a size of 3.

Every row sum, column sum, and diagonal sum of this magic square is equal to 12.

- Row sums: 5+1+6 = 5+4+3 = 2+7+3 = 12
- Column sums: 5+5+2 = 1+4+7 = 6+3+3 = 12
- Diagonal sums: 5+4+3 = 6+4+2 = 12

Example 2:

5	1	3	1
9	3	3	1
1	3	3	8

Input: grid = [[5,1,3,1],[9,3,3,1],[1,3,3,8]]
Output: 2

Constraints:

- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 50
- 1 <= grid[i][j] <= 10 ⁶