Тема II: Многочлены

§ 2. Рациональные дроби

М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Поле частных области целостности

Пусть D – область с 1 (не обязательно OOP). Хотим расширить D до поля.

Построение схоже с построением поля рациональных чисел $\mathbb Q$ из кольца $\mathbb Z.$

Итак, пусть $M:=\{(a,b)\in D\times D\mid b\neq 0\}.$ Определим на M отношение \equiv :

$$(a,b) \equiv (c,d) \iff ad = bc.$$

Проверим, что ≡ – отношение эквивалентности.

Pефлексивность очевидна: $(a,b)\equiv (a,b)$, ибо ab=ba.

Симметричность очевидна: ad=bc равносильно cb=da, т.е. $(a,b)\equiv(c,d)$ равносильно $(c,d)\equiv(a,b)$.

 ${\it T}$ ранзитивность. Пусть $(a,b)\equiv (c,d)\equiv (e,f)$, т.е. ad=bc и cf=de.

Умножив 1-е равенство на f, а 2-е на b, получим adf=bcf и bcf=bde.

Отсюда adf=bde; на $d\neq 0$ можно сократить, так как D – область.

Итак,
$$af=be$$
, т.е. $(a,b)\equiv (e,f)$.

Классы эквивалентности \equiv будем называть *дробями*.

Дробь, содержащую пару $(a,b)\in M$, обозначаем $\frac{a}{b}$.

Имеем $\frac{a}{b}=\frac{c}{d}\Longleftrightarrow ad=bc.$ В частности, $\frac{a}{b}=\frac{ac}{bc}$ при любом $c\neq 0.$

Множество всех дробей обозначим через F. Оно и станет искомым полем.

Поле частных области целостности (2)

Определим на F операции + и \cdot и проверим аксиомы поля.

Определим сложение правилом

$$\frac{a}{b} + \frac{c}{d} := \frac{ad + bc}{bd},$$

а умножение - правилом

$$\frac{a}{b} \cdot \frac{c}{d} := \frac{ac}{bd}.$$

Необходимо удостовериться, что эти определения *корректны*, т.е. что если $\frac{a}{b} = \frac{a_1}{b_1}$ и $\frac{c}{d} = \frac{c_1}{d_1}$, то $\frac{a}{b} + \frac{c}{d} = \frac{a_1}{b_1} + \frac{c_1}{d_1}$ и $\frac{a}{b} \cdot \frac{c}{d} = \frac{a_1}{b_1} \cdot \frac{c_1}{d_1}$. Это легко.

Роль нуля в F играет дробь $\frac{0}{1}$ (или любая равная ей дробь $\frac{0}{b}$ с $b \neq 0$):

$$\frac{a}{b} + \frac{0}{1} = \frac{a \cdot 1 + b \cdot 0}{b \cdot 1} = \frac{a}{b}.$$

Роль единицы в F играет дробь $\frac{1}{1}$ (или любая равная ей дробь $\frac{b}{b}$ с $b \neq 0$):

$$\frac{a}{b} \cdot \frac{1}{1} = \frac{a \cdot 1}{b \cdot 1} = \frac{a}{b}.$$

Поле частных области целостности (3)

Противоположной к дроби
$$\frac{a}{b}$$
 будет дробь $\frac{-a}{b}$: $\frac{a}{b} + \frac{-a}{b} = \frac{ab - ba}{bb} = \frac{0}{bb}$. При $a \neq 0$ обратной к дроби $\frac{a}{b}$ будет дробь $\frac{b}{a}$: $\frac{a}{b} \cdot \frac{b}{a} = \frac{ab}{ba} = \frac{ab}{ab}$.

Все остальные аксиомы поля устанавливаются прямыми вычислениями.

Итак, F – поле. Область D отождествим с подкольцом в F, состоящим из всех дробей вида $\frac{a}{1}.$ Поле F называется *полем частных* области D.

Важные частные случаи этой конструкции:

- ullet поле рациональных чисел $\mathbb Q$ есть поле частных кольца $\mathbb Z$;
- поле рациональных функций F(x) есть поле частных кольца многочленов F[x].

Рациональные функции над $\mathbb R$, т.е. дроби вида $\dfrac{f(x)}{g(x)}$, где f(x) и $g(x) \neq 0$ – многочлены с действительными коэффициентами, играют важную роль в курсе математического анализа, в частности, в теории интегрирования.

Правильные и простейшие дроби

Определение

Рациональная дробь $\frac{f}{g}$ называется *правильной*, если $\deg f < \deg g$ и $f \neq 0$.

Замечание

Любая рациональная дробь является либо многочленом, либо суммой многочлена и правильной дроби.

Доказательство. Рассмотрим произвольную рациональную дробь $\frac{f}{g}$

Если многочлен f делится на многочлен g, т.е. f=gh для некоторого многочлена h, то $\frac{f}{g}=h$. В противном случае поделим f на g с остатком:

f=qg+r, где $\deg r<\deg g$ и r
eq 0. Тогда $\dfrac{f}{g}=q+\dfrac{r}{g}$, причем дробь $\dfrac{r}{g}$ правильная.

Рациональная дробь $\frac{f}{g}$ называется *простейшей*, если существуют многочлен p, неприводимый над полем F, и натуральное число n такие, что $g=p^n$ и $\deg f < \deg p$.

Теорема о рациональных дробях

Примеры простейших дробей из $\mathbb{R}(x)$: $\frac{1}{x+1}$, $\frac{2x}{x^2+1}$, $\frac{3x+2}{(x^2+x+1)^3}$.

А вот дроби $\frac{2x}{x^2-1}$, $\frac{3x^2+2}{(x^2+x+1)^3}$ правильные, но не простейшие (объясните, почему).

Теорема о рациональных дробях

Любая правильная дробь из F(x), где F – произвольное поле, может быть представлена в виде суммы простейших дробей с разными знаменателями. Это представление единственно с точностью до порядка слагаемых.

Так, для дробей из примеров выше

$$\frac{2x}{x^2 - 1} = \frac{1}{x + 1} + \frac{1}{x - 1},$$

$$\frac{3x^2 + 2}{(x^2 + x + 1)^3} = \frac{3}{(x^2 + x + 1)^2} - \frac{3x + 1}{(x^2 + x + 1)^3}.$$

Теорема о рациональных дробях (2)

Доказательство. Существование. Доказательство разобьем на два шага. На первом шаге докажем, что правильная дробь может быть представлена как сумма правильных дробей, у каждой из которых знаменатель есть степень неприводимого многочлена. На втором шаге докажем, что правильная дробь, знаменатель которой – степень неприводимого многочлена, представима как сумма простейших дробей.

Итак, пусть $\frac{f}{g}$ — правильная дробь. Разложим ее знаменатель g в произведение неприводимых многочленов: $g=p_1^{k_1}p_2^{k_2}\cdots p_n^{k_n}$.

 \square 1. Докажем индукцией по n, что

$$\frac{f}{g} = \frac{f_1}{p_1^{k_1}} + \frac{f_2}{p_2^{k_2}} + \dots + \frac{f_n}{p_n^{k_n}} \tag{1}$$

для некоторых многочленов f_1, f_2, \ldots, f_n таких, что $\deg f_i < \deg p_i^{k_i}$ для всех $i=1,2,\ldots,n$.

База индукции очевидна: если n=1, то равенство (1) выполнено при $f_1=f$.

Теорема о рациональных дробях (3)

Шаг индукции. Пусть n>1. Положим $g_1=p_1^{k_1}$ и $g_2=p_2^{k_2}\cdots p_n^{k_n}$. Многочлены g_1 и g_2 взаимно просты. По свойству взаимно простых многочленов существуют многочлены u и v такие, что $ug_1+vg_2=1$. Следовательно, $f=fug_1+fvg_2$. Разделим fu на g_2 с остатком: $fu=qg_2+r$, где $\deg r<\deg g_2$. Имеем: $f=fug_1+fvg_2=(qg_2+r)g_1+fvg_2=rg_1+(qg_1+fv)g_2$, откуда $f-rg_1=(qg_1+fv)g_2$. (2)

Положим $f_1:=qg_1+fv$ и $f_2:=r.$ Тогда $f=f_2g_1+f_1g_2$, откуда $\frac{f}{q}=\frac{f_1g_2+f_2g_1}{q_1q_2}=\frac{f_1}{q_1}+\frac{f_2}{q_2}.$

По предположению индукции правильная дробь $\frac{f_2}{g_2}$ представима как сумма правильных дробей, у которых знаменатели суть степени неприводимых многочленов. Чтобы завершить шаг 1, осталось проверить, что дробь и $\frac{f_1}{g_1}$ является правильной, т.е. что $\deg f_1 < \deg g_1$. Последнее неравенство равносильно неравенству $\deg f_1 + \deg g_2 < \deg g_1 + \deg g_2$. Но $\deg f_1 + \deg g_2 = \deg(f_1g_2) = \deg(gg_1+fv)g_2 \stackrel{(2)}{=} \deg(f-rg_1) \leqslant \max\{\deg f, \deg(rg_1)\}$.

Теорема о рациональных дробях (4)

Итак, для завершения шага 1 достаточно установить, что $\deg f < \deg g_1 + \deg g_2$ и $\deg(rg_1) < \deg g_1 + \deg g_2$. Оба этих неравенства проверяются легко: $\deg f < \deg g = \deg(g_1g_2) = \deg g_1 + \deg g_2$ и $\deg(rg_1) = \deg r + \deg g_1 < \deg g_2 + \deg g_1$.

Шаг 2. Докажем индукцией по k, что каждая правильная дробь вида $\frac{f}{p^k}$, где p — неприводимый многочлен, равна сумме простейших дробей. Если k=1, то $\frac{f}{p}$ — уже простейшая дробь, и все доказано.

Пусть k>1. Разделим f на p с остатком: f=qp+r, где $\deg r<\deg p$, а $\deg qp=\deg f<\deg p^k$, откуда $\deg q<\deg p^{k-1}$. Тогда

$$\frac{f}{p^k} = \frac{qp+r}{p^k} = \frac{q}{p^{k-1}} + \frac{r}{p^k}.$$

Дробь $\frac{r}{p^k}$ либо равна 0 (если r=0), либо простейшая, а дробь $\frac{q}{p^{k-1}}$ правильная и равна сумме простейших дробей по предположению индукции.

Теорема о рациональных дробях (5)

Единственность. Предположим, что некоторая правильная дробь двумя разными способами представлена в виде суммы простейших дробей с разными знаменателями:

$$\frac{a_1}{p_1^{k_1}} + \dots + \frac{a_m}{p_m^{k_m}} = \frac{b_1}{q_1^{\ell_1}} + \dots + \frac{b_n}{q_n^{\ell_n}}.$$

Перенеся все слагаемые в левую часть равенства и выполнив сложение дробей с одинаковыми знаменателями, получим равенство вида

$$\frac{s_1}{t_1} + \dots + \frac{s_r}{t_r} = 0,$$

где все слагаемые являются простейшими дробями с разными знаменателями. Заметим, что r>1 (простейшая дробь не равна 0 по определению). Пусть $t_1=p^k$ для некоторого неприводимого многочлена p. Будем считать, что слагаемые пронумерованы так, что для каждого $i=2,\ldots,r$ либо $t_i=p^\ell$, где $\ell < k$, либо t_i — степень неприводимого многочлена, отличного от p. Обозначим через Q наименьший общий знаменатель всех слагаемых второго типа, т.е. слагаемых, знаменатели которых — степени неприводимых многочленов, отличных от p. По свойствам неприводимых многочленов Q и p взаимно просты.

Теорема о рациональных дробях (6)

Умножим обе части равенства $\frac{s_1}{p^k}+\frac{s_2}{t_2}+\cdots+\frac{s_r}{t_r}=0$ на $p^{k-1}Q$. Получим равенство вида $\frac{s_1Q}{p}+R=0$, где R — некоторый многочлен. Отсюда $s_1Q=-pR$. Таким образом, многочлен p делит s_1Q . Напомним, что p и Q взаимно просты. По свойствам взаимно простых многочленов отсюда вытекает, что p делит s_1 . Но это невозможно, так как дробь $\frac{s_1}{p^k}$ является простейшей, и потому $\deg s_1 < \deg p$.

Утверждение об единственности важно потому, что оно позволяет находить разложение правильной дроби в сумму простейших с помощью метода неопределенных коэффициентов. Если известно представление знаменателя правильной дроби $\frac{f}{g}$ в виде произведения неприводимых множителей, то можно предсказать вид простейших дробей, которые могут появиться в разложении дроби $\frac{f}{g}$, записать это разложение с неопределенными коэффициентами, а потом найти эти коэффициенты, приведя дроби в разложению к общему знаменателю g и приравняв числитель получившейся дроби к f.

Пример

Разложим в сумму простейших правильную дробь $\frac{3x^2+2}{x^4-1}\in\mathbb{R}(x).$ $x^4-1=(x-1)(x+1)(x^2+1)$ – представление знаменателя в виде произведения неприводимых множителей над $\mathbb{R}.$ Отсюда

$$\frac{3x^2 + 2}{x^4 - 1} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{Cx + D}{x^2 + 1} =$$

$$= \frac{A(x + 1)(x^2 + 1) + B(x - 1)(x^2 + 1) + (Cx + D)(x^2 - 1)}{x^4 - 1}.$$

Итак, $3x^2+2=A(x+1)(x^2+1)+B(x-1)(x^2+1)+(Cx+D)(x^2-1).$ Подставляя x=1, находим 5=4A, т.е. $A=\frac{5}{4}.$ Аналогично, подставляя x=-1, находим 5=-4B, т.е. $B=-\frac{5}{4}.$ Приравнивая коэффициенты при x^3 , имеем 0=A+B+C, откуда C=0. Наконец, приравнивая свободные члены, имеем 2=A-B-D, откуда $D=\frac{1}{2}.$ Окончательно,

$$\frac{3x^2+2}{x^4-1} = \frac{5}{4(x-1)} - \frac{5}{4(x+1)} + \frac{1}{2(x^2+1)}.$$