Método de Hill

José Galaviz

Introducción

- Lester S. Hill, Hunter College New York.
- 1929, American Mathematical Monthly.
- Cryptography in al algebraic alphabet.
- La unidad de cifrado ya no es el caracter, sino parejas de ellos (o más).
- Patentó una máquina para automatizar el cifrado (de sextetos).
- Extendió el trabajo en 1931: Concerning Certain Linear Transformation Apparatus of Cryptography.

Codificación

- Cada letra del alfabeto inglés de 26 letras es mapeada en un número entre el 0 y el 25.
- Las operaciones se llevarán a cabo módulo 26.
- Cada pareja de letras es considerada como un vector de dos entradas con los códigos de cada una: ('d', 'e') = (3, 4).

Idea

El digrama (p_p, p_2) es cifrado como:

$$\begin{pmatrix} c_1 \\ c_2 \end{pmatrix} = \begin{pmatrix} m_{1,1} & m_{1,2} \\ m_{2,1} & m_{2,2} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \pmod{26}$$

Ejemplo

La pareja (c, o) = (2, 14) se cifra como (W,E) = (22, 4) usando la matriz [9, 4; 5, 7]:

$$\begin{pmatrix} 9 & 4 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 2 \\ 14 \end{pmatrix} = \begin{pmatrix} 22 \\ 4 \end{pmatrix} \pmod{26}.$$

Descifrar

$$M = \left(egin{array}{cc} m_{1,1} & m_{1,2} \ m_{2,1} & m_{2,2} \end{array}
ight),$$

La matriz inversa es:

$$M^{-1} = rac{1}{|M|} \left(egin{array}{cc} m_{2,2} & -m_{1,2} \ -m_{2,1} & m_{1,1} \end{array}
ight) \pmod{26}.$$

En nuestro ejemplo: [5, 12; 15, 25].

Además...

- No toda matriz tiene inverso en el sistema.
- Se requiere que su determinante tenga inverso en los enteros modulares que se estén usando (26 en nuestro caso).
- Por ejemplo [2, 12; 1, 14] tiene determinante 2 y no tiene inverso módulo 26.
- Sólo si el determinante es primo relativo con el módulo.
- Hay matrices que son su propio inversa: [2, 3; 25, 24].
- Claro, si uno posee la matriz de cifrado, puede obtener la de descifrado fácilmente.
- ¿Cuál es la clave del sistema?
- ¿Es simétrico o asimétrico?

Criptoanálisis

 Si se están utilizando n-gramas y, por tanto, matrices de n x n, basta con tener n² parejas de texto-criptotexto para definir un sistema de ecuaciones que entrega matriz de cifrado (Pág. 125 de las notas de criptología).

Recordar

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Α	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
-1	-2	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12	-13	-14	-15	-16	-17	-18	-19	-20	-21	-22	-23	-24	-25	0
25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	26

Ejemplo

Imaginemos que capturamos un criptograma y sabemos como empieza...

u	n	a	d	е	С	е	n	a	n	0	r	t	е
20	13	0	3	4	2	4	13	0	13	14	17	19	4
24	9	12	21	18	8	10	7	0	13	12	7	5	19
Y	J	М	V	S	I	K	Н	А	N	М	Н	F	Т
t	r	е	s	С	i	е	n	t	0	s	s	u	r
19	17	4	18	2	8	4	13	19	14	18	18	20	17
5	6	4	16	24	14	10	7	19	11	0	8	18	23
F	G	E	Q	Y	0	K	Н	Т	L	А	I	S	Х

Ecuaciones

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 13 \end{pmatrix} = \begin{pmatrix} 0 \\ 13 \end{pmatrix}$$

$$13b = 0$$

$$13d = 13$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 \\ 8 \end{pmatrix} = \begin{pmatrix} 18 \\ 18 \end{pmatrix}$$

$$8b = 18$$

$$8d = 18$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 12 \\ 21 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 5 \\ 6 \end{pmatrix} = \begin{pmatrix} 19 \\ 17 \end{pmatrix}$$

$$\begin{array}{c} 12a + 21b = 0 \\ 12c + 21d = 3 \end{array}$$

$$5a+6b=19$$

 $5c+6d=17$

b y d

26*k	13b=0	8b=18	b1	b2	13d=13	8d=18	d1	d2
0	0	18	0	2.25	13	18	1	2.25
26	26	44	2	5.5	39	44	3	5.5
52	52	70	4	8.75	65	70	5	8.75
78	78	96	6	12	91	96	7	12
104	104	122	8	15.25	117	122	9	15.25
130	130	148	10	18.5	143	148	11	18.5
156	156	174	12	21.75	169	174	13	21.75
182	182	200	14	25	195	200	15	25
208	208	226	16		221	226	17	
234	234	252	18		247	252	19	
260	260	278	20		273	278	21	
286	286	304	22		299	304	23	
312	312	330	24		325	330	25	
338	338	356	26		351	356		

Simplificando

$$\begin{array}{lll} 12a + 21b = 0 & 12a + 18 = 0 & 12a = -18 = 8 \\ 12c + 21d = 3 & 12c + 5 = 3 & 12c = -2 = 24 \end{array}$$

$$5a + 6b = 19$$
 $5a + 20 = 19$ $5a = -1 = 25$ $5c + 6d = 17$ $5c = -3 = 23$

Finalmente

26*k	12a=8	a1	12c=24	c1	5a=25	a2	5c=23	c2
0	8	0.67	24	2	25	5	23	4.6
26	34	2.83	50	4.17	51	10.2	49	9.8
52	60	5	76	6.33	77	15.4	75	15
78	86	7.17	102	8.50	103	20.6	101	20.2
104	112	9.33	128	10.67	129	25.8	127	25.4
130	138	11.5	154	12.83	155		153	
156	164	13.67	180	15	181		179	
182	190	15.83	206	17.17	207		205	
208	216	18	232	19.33	233		231	
234	242	20.17	258	21.50	259		257	
260	268	22.33	284	23.67	285		283	
286	294	24.5	310	25.83	311		309	

La inversa (descifrar)

$$\begin{pmatrix} 5 & 12 \\ 15 & 25 \end{pmatrix}$$