

ATTORNEY DOCKET NUMBER: 2002834-0058 (CIP4 DIV1)

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Bannon, et al.

Huynh, P.

1644

Serial No.:

09/478,668

Mail Stop Appeal Brief - Patents

Commissioner for Patents

Alexandria, VA 22313-1450

Filed:

January 6, 2000

For:

METHODS AND REAGENTS FOR DECREASING CLINICAL REACTIONS

TO ALLERGY

Certificate of Mailing

Examiner:

Art Unit:

I certify that this correspondence is being deposited with the United States Postal Service with sufficient postage as First Class Mail in an envelope addressed to Mail Stop Appeal Brief - Patents, Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450

July **29**2004

Date

Sandy Sliger

P.O. Box 1450

Typed or Printed Name of person signing certificate

Sir:

SECOND AMENDED APPEAL BRIEF UNDER 37 C.F.R. § 1.192

Applicant appeals to the Board of Patent Appeals and Interferences (the "Board") from the Examiner's rejection of claims 37-71. A Notice to this effect was filed pursuant to 37 C.F.R. § 1.191(a) on November 7, 2002. The stamped return postcard that was filed with the Notice was received by Applicant indicating that the Notice was received by the Patent and Trademark Office on November 12, 2002. An original Appeal Brief (the "Original Brief") was filed on June 12, 2003 along with a Petition under 37 C.F.R. § 1.136 for a five (5) month extension of time, from January 12, 2003, up to and including June 12, 2003. That filing also included checks to cover the \$985.00 fee under 37 C.F.R. § 1.17(a)(5) for the Petition and the \$160.00 fee under 37 C.F.R. § 1.17(c) for the Appeal Brief.

A first Notification of Non-Compliance with 37 C.F.R. § 1.192(c) was mailed by the Patent Office on September 23, 2003. Applicant filed a first amended Appeal Brief (the "first Amended Brief") on March 23, 2004 along with a Petition under 37 C.F.R. § 1.136 for a five (5) month extension of time, from October 23, 2003, up to and including March 23, 2004 and a check to cover the \$1005.00 fee under 37 C.F.R. § 1.17(a)(5).

A second Notification of Non-Compliance with 37 C.F.R. § 1.192(c) was mailed by the Patent Office on June 16, 2004. The undersigned held an Interview with Examiners Huynh and Chan on July 27, 2004 to discuss the reasons for this second Notification. Applicant is hereby filing a second amended Appeal Brief (the "second Amended Brief") that corrects the items identified during this Interview. Pursuant to 37 C.F.R. § 1.192(a), this second Amended Brief is

being filed in triplicate. A Petition under 37 C.F.R. § 1.136 for a one (1) month extension of time, from July 16, 2004, up to and including August 16, 2004 is also enclosed with a check to cover the \$55.00 fee under 37 C.F.R. § 1.17(a)(1). Please charge any additional fees (or credit any overpayment), to our Deposit Account 03-1721.

Real Parties in Interest

As a result of assignments by the inventors in parent application U.S. Serial No. 09/141,220 filed August 27, 1998, the real parties in interest in this application are the University of Arkansas ("UArk"), SEER Pharmaceuticals LLC (f/k/a Panacea Pharmaceuticals, LLC), and the Mt. Sinai School of Medicine of the City University of New York ("Mt Sinai"). An assignment from inventors Garry Bannon and Wesley Burks to UArk was recorded in the Patent and Trademark Office on April 23, 1999 at Reel 010065, Frame 0008. An assignment from inventor Howard Sosin to Panacea Pharmaceuticals, LLC was recorded in the Patent and Trademark Office on August 26, 1999 at Reel 010190, Frame 0516. A Certificate of Amendment changing the name of Panacea Pharmaceuticals, LLC to SEER Pharmaceuticals, LLC was filed with the Secretary of State of the State of Delaware on October 25, 2002. An assignment from inventor Hugh Sampson to Mt Sinai was recorded in the Patent and Trademark Office on October 22, 1998 at Reel 009539, Frame 0550.

Related Appeals and Interferences

Appellant has filed Appeal Briefs for co-pending applications U.S. Serial No. 09/455,294 (Original Brief filed October 10, 2003 and Amended Brief filed June 1, 2004); U.S. Serial No. 09/731,375 (Original Brief filed October 10, 2003 and Amended Brief filed June 1, 2004); U.S. Serial No. 09/494,096 (Brief filed July 8, 2004); and U.S. Serial No. 09/141,220 (Brief filed July 8, 2004) addressing some issues that overlap with the issues presented here. No other pending appeals or interferences are known to Appellant, Appellant's legal representative, or Appellant's assignee that will directly affect or be directly affected by the Board's decision in this appeal. Similarly, no other pending appeals or interferences are known that may have a bearing on the Board's decision in this appeal.

Status of Claims

The application was filed with claims 1-36. Claims 1-13 were cancelled in a Preliminary Amendment filed January 6, 2000. Claims 14-36 were the subject of a Restriction Requirement mailed July 31, 2000. Claims 30-36 were cancelled September 29, 2000 in response to the Restriction Requirement. Claims 14-29 were examined in an Office Action mailed June 19, 2001. Claims 14-29 were canceled in an Amendment filed September 19, 2001; claims 37-59 were added. Claims 37-59 were finally rejected in an Office Action mailed December 18, 2001. Claims 37-42, 46-47, 51 and 53 were amended in an Amendment filed June 18, 2002; claims 60-71 were added; and continued examination was requested under 37 C.F.R. § 1.114. Claims 37-71 were rejected in an Office Action mailed September 30, 2002. Thus, claims 37-71 are pending and stand rejected. The rejection of claims 37-71 is hereby appealed.

Status of Amendments

The Original Brief was submitted with a proposed Amendment to the Claims that canceled claims 52 and 54-59 and amended claims 61-62 to correct an issue of antecedent basis. Appellant did not receive an indication as to whether this Amendment had been entered before filing the first Amended Brief. Appellant therefore filed a version of that earlier Amendment with the first Amended Brief that further included an additional amendment to claim 63 (correcting an obvious error in antecedent basis). In an Advisory Action mailed June 16, 2004 the Examiner indicated that this Amendment had been entered. A listing of claims 37-51, 53 and 60-71 that are pending after entrance of the Amendment is provided as **Attachment I**.

Summary of Invention

The present invention is directed to modified protein allergens that have a reduced ability to bind IgE antibodies. The modified protein allergens have amino acid sequences that are substantially identical to those of unmodified protein allergens except that at least one amino acid has been modified in at least one IgE epitope. The modified protein allergens are useful in treating allergies and in particular anaphylactic allergies. The present specification includes data and working examples demonstrating the identification and modification of IgE epitopes from peanut allergens Ara h 1, Ara h 2 and Ara h 3 (see Examples 1-2). *In vitro* (see Examples 3-4) and *in vivo* (see Example 5) experiments that were performed with a modified Ara h 2 protein

are also discussed. The specification also describes other known protein allergens, including a range of food allergens, that can be modified according to the teachings of the invention.

Issues

The issues on appeal are (referring to $\S\S$ 4-18 of Paper 24):

- (1) Are the pending claims invalid for lack of enablement (see § 4)?
- (2) Are the pending claims invalid for lack of written description? Specifically, can the written description requirement ever be satisfied for claims relating to proteins without an explicit recitation in the specification of every sequence encompassed by the claims (see § 5)?
 - (3) Are claims 65-69 invalid for containing new matter (see § 6)?
 - (4) Are claims 37, 60 and 63 indefinite for reciting the term "substantially" (see § 8)?
 - (5) Are claims 37-39, 41-46, 48-51 and 53 anticipated by U.S. Pat. 5,547,669 (see § 10)?
 - (6) Are claims 37, 60-61 and 63-71 anticipated by Burks (1997) (see § 13)?
 - (7) Are claims 37 and 47 obvious in light of U.S. Pat. 5,547,669 and Hoyne (see § 16)?
 - (8) Is claim 37 obvious in light of U.S. Pat. 5,547,669 and Burks (1994) (see § 17)?
- (9) Are claims 60-62 obvious in light of U.S. Pat. 5,547,669 or Burks (1997) each in combination with U.S. Pat. 5,449,669 (see § 18)?

Grouping of Claims

For ease of discussion, Appellant defines the following groups of claims (A)-(C):

- (A) Claims 37-51, 53 and 65-71 as dependent from claim 37 that recite a modified protein allergen.
- (B) Claims 60-62 and 65-71 as dependent from claim 60 that recite a modified <u>food</u> allergen.
- (C) Claims 63-64 and 65-71 as dependent from claim 63 that recite a modified **peanut** allergen.

The claims stand or fall together for issues numbered (1)-(9) above, as indicated below:

- (1) The claims of Group A stand or fall together. The claims of Groups B and C stand or fall together.
- (2) The claims of Group A stand or fall together; the claims of Group B stand or fall together; and the claims of Group C stand or fall together.
 - (3) Claims 65-69 stand or fall together.

- (4) Claims 37, 60 and 63 stand or fall together.
- (5) Claims 37-39, 41-46, 48-51 and 53 stand or fall together.
- (6) Claims 37, 60-61 and 63-71 stand or fall together.
- (7) Claims 37 and 47 stand or fall together.
- (8) Claim 37 stands or falls alone.
- (9) Claims 60-62 stand or fall together.

Argument

ISSUE 1: Claims 37-51, 53 and 60-71 are not Invalid for Lack of Enablement

Claims 37-51, 53 and 60-71 stand rejected for lack of enablement (see § 4 of Paper 24). With respect to this rejection, the claims of Group A stand or fall together; and the claims of Groups B and C stand or fall together. The claims of Groups A, B and C are of different scope since they relate to modified protein allergens, modified food allergens and modified peanut allergens, respectively. By definition, claim groups that cover species of different scope are obtained with differing levels of experimentation. These claim groups must therefore be considered separately and, in principle, would stand or fall separately. However, as noted below, the Examiner has explicitly conceded that the subject matter of Groups B and C is enabled and therefore these groups will stand or fall together for the purposes of this Brief. The Examiner has not made such concessions with respect to the subject matter of Group A, so these claims will stand or fall separately.

In supporting this rejection, the Examiner cites *In re Wands*, 858 F.2d 731 (Fed. Cir. 1988) and states that the disclosure in the specification is insufficient to enable one skilled in the art to practice the broader claimed invention without an undue amount of experimentation. This rejection is respectfully traversed; reconsideration and withdrawal is requested.

The Examiner begins the rejection by listing twenty different embodiments that she concedes **are** enabled by the specification including (see pages 2-4 of Paper 24):

(1) a modified *peanut* protein allergen whose amino acid sequence is identical to that of an unmodified protein allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified protein allergen is reduced as compared with IgE binding to the unmodified protein, [...]. This language parallels <u>claim 63</u> except for the "substantially identical" language that is addressed under Issue # 4 below.

- (2)-(14) the modified *peanut* protein allergen of (1) further including certain limitations found in dependent <u>claims 38-51</u>.
 - (15) the modified *peanut* protein allergen of (1) made by the process of <u>claim 53</u>.
- (16) a modified *food* allergen whose amino acid sequence is identical to that of an unmodified peanut [sic] protein allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified food allergen is reduced as compared with IgE binding to the unmodified protein, [...]. This language parallels <u>claim 60</u> except for the "substantially identical" language that is addressed under Issue # 4 below.
- (17) the modified *food* allergen of (16) wherein the unmodified food allergen is obtained from a source of *legumes*.
- (18) a modified *peanut* allergen whose amino acid sequence is identical to that of an unmodified peanut allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified protein allege [sic] is reduced as compared with IgE binding to the unmodified peanut allergen, [...]. This language again parallels <u>claim 63</u> except for the "substantially identical" language that is addressed under Issue # 4 below.
- (19) the modified *peanut* allergen of (18) wherein the unmodified peanut allergen is selected from the group consisting of Ara h 1, Ara h 2 and Ara h 3. This language parallels **claim 64**.
- (20) the modified peanut allergen of (18) wherein the at least one IgE epitope contains at least one amino acid that residues [sic] that is modified as compared with the unmodified peanut allergen for immunotherapy. This language parallels <u>claims 65-70</u>.

The Examiner has therefore conceded that, other than the term "substantially", the claims of Groups B and C (i.e., claims 60-71 as dependent from claims 60 or 63) are enabled. Appellant addresses the term "substantially" under Issue # 4 below. With respect to this rejection, the claims of Groups B and C therefore stand or fall together.

Appellant respectfully submits that the claims of Group A are also enabled and that these claims stand or fall together for the following reasons. In light of the Examiner's concessions, Appellant notes that the only disputed enablement issue in this case is whether, in light of the teachings of the specification, undue experimentation is required to obtain modified protein allergens other than modified <u>food</u> and <u>peanut</u> allergens. In this context, Appellant and the Examiner agree that Wands is the relevant precedent. The question, therefore, is whether the

experimentation required to obtain the broader claimed modified allergens would be more burdensome or complex, or less likely to result in success, than the experimentation required in *Wands*. If not, the inventors are entitled to allowance of the disputed claims. The answer to this question is obtained by comparison of the experimental procedures in the two cases. We begin by summarizing *Wands*.

In re Wands

In *Wands*, the inventors developed a diagnostic for the Hepatitis B virus. In particular, the inventors identified a particular antibody that bound to a viral protein and could, therefore, be used to determine whether the virus was present. In *Wands*, the claims were broad enough to encompass both the particular antibodies described in the specification <u>and</u> other antibodies having the same or similar characteristics. The broadest claim encompassed any monoclonal, high affinity IgM antibody. "having a binding affinity constant [...] of at least 10⁹ M⁻¹." The specification described work by the inventors that led to the production of four antibodies falling within the scope of the claim. One hybridoma (a cell fusion that produces a single antibody) was deposited with the ATCC. Thus, the specification exemplified, at most, four antibodies that fell within the claim. The claim, however, encompassed all antibodies having the recited characteristics – a potentially infinite number of antibodies.

The Examiner rejected the Wands claim as too broad. He said that the disclosure in the specification was not commensurate in scope with the claim, that "the production of high Affinity IgM [...] antibodies is unpredictable and unreliable, so that it would require undue experimentation for one skilled in the art to make the antibodies." *Id.* at 735.

The Federal Circuit reversed the Examiner (and the Board of Appeals). The Court held that the identification and production of other embodiments of the invention could have been achieved without undue experimentation. The Court said that "[a] patent need not disclose that which is well known in the art." *Id.* at 735. The Court held that the generic claims should have been allowed because (1) the starting materials necessary to obtain the generically described (i.e., non-exemplified) antibodies were available to the public, (2) the methods used to generate antibodies and to screen them to determine which fall within the claims were well known in the art, and (3) useful antibodies could therefore be obtained without undue experimentation.

The case turned on the concept of undue experimentation. The Court said that a "considerable amount of experimentation is permissible, if it is merely routine." *Id.* at 737. The

Court then described the experimental procedure that would have been followed by scientists attempting to produce antibodies that were not expressly described in the *Wands* specification but that fell within the generic claims of the *Wands* application:

- 1. "The first step [...] is to immunize an animal." (p. 737)
- 2. "Next the [mouse's] spleen [...] is removed and the lymphocytes [in the spleen] are separated from the other spleen cells." (p. 737)
- 3. "The lymphocytes are mixed with myeloma cells, and the mixture is treated to cause a few of the cells to fuse with each other, thus creating hybridomas." (p. 737)
- 4. "Hybridoma cells that secrete the desired antibodies then must be isolated from the enormous number of other cells in the mixture. This is done through a series of screening procedures [of which] the first step is to separate the hybridoma cells from unfused lymphocytes and myeloma cells." (p. 737)
- 5. "The next step [of the screening procedures] is to isolate and clone hybridomas that make antibodies that bind to the antigen of interest. Single hybridoma cells are placed in separate chambers and are allowed to grow and divide." (p. 737)
- 6. "After there are enough cells in the clone to produce sufficient quantities of antibody to analyze, the antibody is assayed to determine whether it binds to the antigen." (pp. 737-738)
- 7. Antibodies that fall within the claims are selected by determination of their "numerical affinity constant, which must be measured using the [...] laborious Scotchard analysis." (p. 738)
- 8. There is then performed "further screening to select those [antibodies] which have an IgM isotype and have a binding affinity constant of at least 10⁹ M⁻¹." (p. 738)

The Wands inventors used these techniques. Some fusions were unsuccessful and produced no hybridomas; others produced hybridomas that made antibodies to the Hepatitis B surface antigen. Certain of these antibodies were screened. Some of the screened antibodies fell within the claims; others did not.

No undue experimentation in Wands

Despite the fact that a substantial amount of experimentation was required in *Wands* to obtain antibodies which were within the scope of the claims, the Court concluded that the experimentation was not "undue" and that the generic claims of the Wands patent were

adequately enabled. The Court found that "there was a high level of skill in the art [...] and all of the methods needed to practice the invention were well-known." *Id.* at 740. The Court also found that, although the technology involved screening hybridomas to determine which, if any, secreted antibodies with the desired characteristics, "[p]ractitioners of the art [were] prepared to screen negative hybridomas in order to find one that makes the desired antibody." *Id.* at 740. The Court did not quantify the required likelihood of success, but noted that even a success rate as low as 2.8% would not necessarily require a conclusion of undue experimentation. *Id.* at 740.

This case is similar to Wands

As mentioned earlier, and as acknowledged by the Examiner, the present application provides explicit exemplification of modified peanut allergens that fall within the scope of claims. The present application clearly states that its teachings are also applicable to other nonpeanut allergens (e.g., see pages 7-9). The present application clearly sets forth all the steps necessary to identify and prepare suitable modified protein allergens that fall within the scope of the broadest claims, namely using patient sera to identify IgE binding epitopes; modifying a protein allergen sequence to alter identified IgE binding epitopes; and screening modified protein allergens to identify those with reduced binding. It is further undisputed that the sequences of numerous non-peanut protein allergens were known at the time of filing (a number of these are highlighted in the specification, e.g., see pages 7-9; others were known as evidenced by the numerous references and accession numbers that are provided in the "Official list of allergens," maintained by the IUIS Allergen Nomenclature Subcommittee and provided as Attachment II). For some of these protein allergens IgE binding sites were also already known (e.g., see page 8, lines 4-13). In addition, methods of identifying and modifying IgE binding sites were known and further described in the specification (e.g., see Examples 1 and 2). Those skilled in the art were also familiar with the methods that were used by the inventors to screen modified protein allergens for IgG and IgE binding and T-cell stimulation (e.g., see Examples 3 and 4).

At the time the application was filed, the starting materials necessary to obtain modified protein allergens were therefore available and the techniques for performing the necessary steps were well known and routine. Appellant respectfully submits that now that the inventors have demonstrated that the inventive methods *can* successfully be applied to protein allergens (i.e., that it is possible to generate modified protein allergens to which IgE binding is reduced but other characteristics remain unchanged), those skilled in the art would instantly realize that

modified protein allergens derived from other allergens (1) would exist, (2) would operate in the same way to produce the same or similar results and (3) could be obtained using the techniques described in the application or which were well-known (indeed, routine) in the art.

The Examiner has presumably recognized this by conceding that the specification is enabling for *food* allergens in general (see (16) on page 3 of Paper 24). However, there is no particular magic in the sequence of peanut or food allergens that makes these protein allergens more susceptible to the inventive methods; the inventive principles, as discussed in the present application, apply to other protein allergens as well. In fact, quite the opposite might be expected. Peanut proteins are highly allergenic and, like many other food allergens (as distinguished, for example from most pollens and danders) present a significant risk of anaphylaxis to those allergic to them. The inventive demonstration that such anaphylactic proteins can be modified so that IgE binding is reduced as compared with the unmodified allergens provides a strong teaching to those of ordinary skill in the art that other modified allergens with reduced IgE binding can also be made.

Others have prepared modified allergens according to the teachings of the application without undue experimentation

As further evidence that the claimed modified allergens may be obtained without undue experimentation, Appellant has identified a series of references showing that, after the present invention was made, people of ordinary skill in the art followed the steps taught in the present application (i.e., used patient sera to identify IgE binding epitopes, modified the protein sequence to alter identified IgE binding epitopes; and screened modified proteins to identify those with reduced binding) and were able to obtain, without undue experimentation, a variety of modified protein allergens that lie within the scope of the pending claims. More specifically, the following post-art references (already made of record in the Supplemental Response to Final Office Action that was filed September 19, 2002) were identified:

A. Timothy grass pollen allergen

Schramm et al., "Allergen engineering: variants of the Timothy grass pollen allergen Ph1 p 5b with reduced IgE-binding capacity but conserved T cell reactivity", *J. Immunol.*, 162:2406-2414, 1999.

B. English walnut allergen

Robotham et al., "Linear IgE epitope mapping of the English walnut (*Juglans regia7*) major food allergen, Jug r 1", *J. Allergy Clin. Immunol.* 109:143-149, 2002.

C. Latex allergen

Beezhold et al., "Mutational analysis of the IgE epitopes in the latex allergen Hev b 5", J. Allergy Clin. Immunol. 107:1069-1076, 2001.

D. Ryegrass pollen allergen

Swoboda et al., "Mutants of the major ryegrass pollen allergen Lol p 5, with reduced IgE-binding capacity: candidates for grass pollen-specific immunotherapy", *Eur. J. Immunol.* 32:270-280, 2002.

E. Potato allergen

Astwood et al., "Identification and characterization of IgE binding epitopes of patatin, a major food allergen of potato", *J. Allergy Clin. Immunol.* 105:S184 (Abstract 555), 2000.

F. Soybean allergen

Helm et al., "Mutational analysis of the IgE-binding epitopes of P34/Gly m Bd 30K", *J. Allergy Clin. Immunol.* 105:378-384, 2000.

G. Shrimp allergen

Ayuso et al., "Identification and mutational analysis of major epitopes of the shrimp allergen Pen a 1 (Tropomyosin)", J. Allergy Clin. Immunol. 105:S140 (Abstract 423), 2000.

Lehrer et al., "Current understanding of food allergens", Ann. N.Y. Acad. Sci. 964:69-85, 2002.

Appellant respectfully submits that this evidence reinforces the fact that there is no particular magic in the sequence of peanut or food allergens that makes these allergens more susceptible to mutation; the inventive principles, once demonstrated may be readily applied to other protein allergens.

The Examiner's arguments fail to establish a case for lack of enablement

Appellant acknowledges the arguments that have been made by the Examiner (i.e., see pages 7-10 of Paper 4). In particular, the Examiner cites various references that include a discussion of mutated peptides that failed to exhibit reduced IgE binding (Burks et al. and Stanley et al.) or T-cell stimulation (Fasler et al.) as compared to wild-type peptides. The Examiner suggests that these failures highlight the lack of predictability in the preparation of

suitable modified protein allergens. However, the Examiner fails to recognize that even though the possibility exists that the initial modification of IgE binding epitopes may *not* identify suitable modified proteins, as was the case in *Wands* (and also in Burks et al., Stanley et al. and Fasler et al.), practitioners would be prepared to test more than one modification and to screen for useful modified proteins. The present case need only meet the enablement standard that was set in *Wands*. Appellant respectfully submits that the standard has been met, reconsideration and withdrawal of the rejection for lack of enablement is therefore requested.

ISSUE 2: Claims 37-51, 53 and 60-71 are not Invalid for Lack of Written Description

Claims 37-51, 53 and 60-71 stand rejected for lack of written description (see § 5 of Paper 24). With respect to this rejection, the claims of Group A stand or fall together; the claims of Group B stand or fall together; and the claims of Group C stand or fall together. By definition, claim groups that cover species of different scope require a separate written description and/or different levels of written description. Since claim groups A-C cover species of different scope (i.e., modified protein allergens, modified food allergens and modified peanut allergens), these claim groups must be considered separately and stand or fall separately for purposes of this rejection. The written description requirements for claim Groups A-C are discussed separately below.

The written description requirement imposes a duty on patent applicants to notify the public of the scope and content of their inventions. The requirement is satisfied if one skilled in the art would reasonably conclude that the inventors were in possession of the claimed invention at the time the patent application was filed. *Vas-Cath, Inc. v. Mahurkar*, 935 F.2d 1555 (Fed. Cir. 1991). Furthermore, there is a strong presumption that claims submitted with an application are adequately described by the application. *In re Wertheim* 541 F.2d 257 (Fed. Cir. 1993). Claims 37, 40-51 and 53 were present in substantially the same form as claims 14-29 in the application as originally filed. Added claims 60-64 parallel the language of claim 37 and are of narrower scope (i.e., they are simply limited to food or peanut allergens). Added claims 65-70 are dependent claims and recite the limitations found in original claim 14 and the data of Table 6 of the specification as filed (see discussion under Issue # 3 below). Added claim 71 is a dependent claim and recites a limitation found in the section spanning pages 24-25 of the specification as filed. The burden is therefore on the Examiner to overcome the strong presumption of descriptive support with evidence or reasons why persons skilled in the art would

not recognize in the disclosure a description of the invention defined by the claims. The Examiner has not, and cannot meet this burden; the claimed invention is appropriately described in the specification.

Both in her written rejections and in an in-person interview, the Examiner has indicated that, in her view, the written description requirement can never be satisfied for a nucleic acid or protein unless the complete sequence is explicitly set forth in the specification and recited in the claim by way of a SEQ ID NO. The same Examiner is responsible for the prosecution of a large number of related cases; we are unable to move prosecution forward without first resolving the question of whether the written description requirement can ever be satisfied without recitation of a SEQ ID NO. in the claim.

The absurdity of the Examiner's position is readily demonstrated by considering the modified peanut allergens that are exemplified in the specification and encompassed by the claims of Group C, which stand or fall together for the purposes of this rejection.

Claim 63, the only independent claim in Group C, recites:

"A modified peanut allergen whose amino acid sequence is substantially identical to that of an unmodified peanut allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified peanut allergen is reduced as compared with IgE binding to the unmodified peanut allergen, the at least one IgE epitope being one that is recognized when the unmodified peanut allergen is contacted with serum IgE from an individual that is allergic to the unmodified peanut allergen."

The Examiner has rejected this claim on the ground that Appellant is only entitled to claim full length peanut allergens Ara h 1, 2 and 3 that have been modified by substitution with alanine or methionine at those specific locations listed in Tables 4, 5 and 6 (see pages 13-14 of Paper 24). This is clearly not the law nor should it be. The proper legal question is not "did Appellant reduce to practice and explicitly recite every modified peanut allergen that falls within the scope of the claims?" Instead, the question is "would a skilled person recognize that Appellant was in possession of the modified peanut allergens that fall within the scope of the claims?"

The present specification sets forth the complete amino acid sequences of Ara h 1, 2, and 3 (SEQ ID NOs. 2, 4 and 6), and also the nucleotide sequences of genes that encode them (SEQ ID NOs. 1, 3 and 5). The specification further sets out the amino acid sequences of each of 23 IgE epitopes mapped in the Ara h 1 protein (Table 1), the amino acid sequence of each of 10 IgE

epitopes mapped in the Ara h 2 protein (Table 2), and the amino acid sequence of each of 4 epitopes mapped in the Ara h 3 protein (Table 3). The specification further describes particular alanine or methionine substitutions that were introduced into the mapped IgE binding sites, and shows that some of these substitutions result in decreased IgE binding (Tables 4-6). In discussing these data, the specification states (see page 25, lines 11-23):

"The results discussed above for Ara h 1, Ara h 2, and Ara h 3 demonstrate that once an IgE binding site has been identified, it is possible to reduce IgE binding to this site by altering a single amino acid of the epitope. [...] Besides finding that many epitopes contained more than one residue critical for IgE binding, it was also determined that more than one residue type (ala or met) could be substituted at certain positions in an epitope with similar results. This allows for the design of a hypoallergenic protein that would be effective at blunting allergic reactions for a population of peanut sensitive individuals."

Thus, the specification specifically highlights that substitutions at different positions, and with different amino acids, achieved the same results.

The Examiner is correct that the specification does not explicitly set forth the sequences of all possible disruptions to Ara h 1, Ara h 2, and Ara h 3 IgE sites. However, a skilled person, reading the specification, would understand, indeed would explicitly be told, that the presented substitutions were merely exemplary and others would work as well. A skilled artisan would appreciate that the techniques described in the specification would successfully identify all such substitutions. That is, a skilled person would understand that the inventors were in *possession* of the invention to the full scope of claim 63.

A claim limited to the particular substitutions that the inventors happened to have made prior to filing their patent application is virtually useless. Anybody of ordinary skill in the art could prepare an altered allergen that falls outside the scope of the claim but still embodies the spirit, scope, and teachings of Appellant's contribution. If the legal standard of written description in fact required verbatim recitation of every possible useful sequence, as asserted by the Examiner, patent applicants would be forced to perform useless and wasteful experiments (potentially endlessly) merely to ensure that they could protect their contributions. Such a standard would eviscerate the patent system. The Examiner's rejection of Group C claims for lack of written description should be removed.

The Examiner's rejection of Group B claims for lack of written description should also be removed. Claim 60, the only independent claim in this group, recites:

"A modified food allergen whose amino acid sequence is substantially identical to that of an unmodified food allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified food allergen is reduced as compared with IgE binding to the unmodified food allergen, the at least one IgE epitope being one that is recognized when the unmodified food allergen is contacted with serum IgE from an individual that is allergic to the unmodified food allergen."

Once again, the Examiner is correct that the specification does not explicitly set out the sequence of every modified food allergen that falls within the scope of claim 60. On the other hand, as discussed above, the specification does explicitly set out the sequence of several examples of modified peanut allergens. These modified peanut allergens are described as "exemplary" of the inventive principles. For example, the specification recites that "Peanut allergens (Ara h 1, Ara h 2, and Ara h 3) have been used in the examples to demonstrate alteration of IgE binding sites while retaining binding to IgG and activation of T cells" (page 4, lines 15-17). The specification also points to several other common food allergens (see page 8, lines 1-3: "Examples of common food allergens include proteins from peanuts, milk, grains such as wheat and barley, soybeans, eggs, fish, crustaceans, and mollusks."). Moreover, the specification provides references for food allergens whose IgE epitopes had already been identified (see page 8, lines 4-13). The specification also describes techniques for modifying sequences within IgE sites (see, for example, page 10, lines 3-6 and Examples 2-3), and for identifying those modifications that reduce IgE binding (see, for example, page 4, lines 24-28 and Examples 1-2) in accordance with claim 60.

And, of course, the specification provides evidence that the inventive strategy successfully produced modified peanut allergens with reduced IgE reactivity. The teachings and guidance provided by this success are far-reaching. As discussed above and in the specification, peanut allergy is one of the most potent allergies. Indeed, as noted in the specification (see page 16, lines 4-11):

"Peanut allergy is one of the most common and serious of the immediate hypersensitivity reactions to foods in terms of persistence and severity of reaction. [...] The majority of cases of fatal food-induced anaphylaxis involve ingestion of peanuts [...]."

A person of ordinary skill in the art would immediately understand the exciting implications of the inventive exemplification of reduced-allergenicity peanut allergens: if it works for peanuts, it will work for other food allergens.

The claimed food allergens are all proteins; sensitized individuals are exposed to them all by the same route (i.e., ingestion); they are all readily modified according to the same techniques, and those with reduced allergenicity are identified in the same manner. Reading the present specification, those of ordinary skill in the art will immediately appreciate that modified food allergens with reduced allergenicity, according to the present claims, exist, and can readily be made according to the teachings of the specification. In other words, those of ordinary skill in the art will immediately appreciate that the inventors were *in possession of* the claimed invention. Denial of claims to modified food allergens would deprive the present inventors of protection commensurate in scope with their contribution, and would create silly incentives disruptive to science, the patent process, and commerce. For all of these reasons, the Examiner's rejection of claims in Group B for lack of written description, should be removed.

The rejection for lack of written description should also be removed for the claims of Group A, which stand or fall together for the purposes of this rejection. These claims are broader than those of Groups B and C in that they do not limit the category of protein allergen whose IgE epitopes are modified. Although the claims are broad, there is no failure of written description.

The specification makes clear that the inventive principles are applicable to *any* allergen (see, for example, page 4, lines 2-14; page 7, line 26 to page 9, line 15; and page 29, lines 18-20). The specification also specifically lists a variety of relevant allergens (see, for example, page 8, lines 13-16: "Other allergens include proteins from insects such as flea, tick, mite, fire ant, cockroach, and bee as well as molds, dust, grasses, trees, weeds, and proteins from mammals including horses, dogs, cats, etc."). The specification includes extensive discussion of latex allergens, in particular, and provides references reporting IgE epitopes within these allergens (see, for example, page 8, line 19-page 9, line 15). The specification further recites the specific modifications of claims 38-42 (e.g., see page 4, lines 17-23 and the Examples) and the properties

of claims 43-45 (e.g., see page 4, lines 8-14 and 26-28). The specification also specifically recites relevant subsets of antigens recited in claims 51 and 60-62 (e.g., pages 7-9 and the Examples). Likewise, the specification specifically points to adjuvants having the characteristics recited in claim 47 (e.g., see page 15, lines 19-20) and to recombinantly prepared modified allergens as recited in claims 48-50 (e.g., see page 12 and Example 3). The steps of claim 53 are described on pages 9-10 and in the Examples.

All of this information explicitly set forth in the specification, combined with the potent demonstration of success with the most challenging allergens, clearly put the public on notice that the inventors were in possession of the invention to the full scope of the present claims.

Appellant appreciates that certain court decisions, including *University of California v.* Eli Lilly and Co. have been interpreted to stand for the proposition that, in certain cases, nucleic acid or protein molecules cannot be properly described in a patent specification without explicit recitation of sequence information. However, this is not such a case. First, significant sequence information is provided for this case. Furthermore, a determination of whether the written description requirement is satisfied requires reading the disclosure in light of the knowledge possessed by those skilled in the art at the time that the invention was filed (In re Alton, 76 F3d 1168, 37 USPQ 2d 1578 (Fed. Cir. 1996)). In University of California v. Eli Lilly and Co., the patent applications in issue were filed in 1977 and 1979; the present application was filed 20 years later. A lot happened in the intervening 20 years. Automated sequencing and synthesis technologies were developed; PCR was invented; a variety of techniques for disrupting or otherwise mutagenizing a nucleic acid sequence were standardized. Mechanical application of a "Sequence Listing or bust" rule vitiates the very purpose of the Lily ruling, which was to ensure that the scope of patent claims was commensurate in scope with the contribution. The present specification describes the invention of particular modified protein allergens for a wide variety of allergens; the pending claims are of appropriate scope.

ISSUE 3: Claims 65-69 are not Invalid for Containing New Matter

The Examiner has questioned the support for the recitation in claims 65-69 of a modified protein allergen that comprises at least one IgE epitope with 1-6, 1-5, 1-4, 1-3 or 1-2 modified amino acid residues (see § 6 of Paper 24). With respect to this rejection claims 65-69 stand or fall together.

Appellant respectfully submits that these claims are fully supported by the specification and claims as originally filed. In particular, original claim 14 reads "a modified allergen [...] comprising at least one IgE binding site [...] modified by *at least one* amino acid change [...]." Original claim 14 therefore makes it perfectly clear that the present invention encompasses modified protein allergens with at least one IgE binding site that includes *more than one* modified amino acid residue. The specification as filed further teaches IgE epitopes that include 1, 2, 3, 4, 5 or 6 amino acid residues that, when altered, lead to a reduction in IgE binding (e.g., see epitopes 5, 7, 8, 9, 18 in Table 4 and epitope 4 in Table 6, respectively). The specification and claims as originally filed therefore clearly support the language of pending claims 65-69.

ISSUE 4: Claims 37, 60 and 63 are not Indefinite for Reciting the Term "Substantially"

The Examiner has taken the position that claims 37, 60 and 63 are indefinite under 35 U.S.C. § 112, second paragraph for reciting the term "substantially" without providing a definition of the term in the specification (see § 8 of Paper 24). With respect to this rejection claims 37, 60 and 63 stand or fall together.

Appellant respectfully disagrees with this rejection. The courts have clearly stated that expressions such as "substantially" may be used in patent claims when warranted by the nature of invention, in order to accommodate the minor variations that may be appropriate to secure the invention. *Verve LLC v. Crane Cams*, 311 F.3d 1116 (Fed. Cir. 2002). The nature of the presently claimed invention is such that minor variations from an otherwise "identical amino acid sequence" (e.g., the addition of a single terminal methionine during recombinant synthesis) could be made without losing the benefit of the present invention. One skilled in the art, upon reading the present specification, would readily recognize such trivial variations. No more is required. In fact, as noted in Judge Hand's opinion in *Musher Foundation v. Alba Trading Co.*, 326 U.S. 770 (1945):

'Substantially' is not of itself fatal to a claim [...] indeed, it must always be implied in every claim, even when not introduced, and adds nothing when it is. Were this not true, few patents could be given any protection, for some departures from the precise disclosure are nearly always possible without losing the benefit of the invention.

For all of these reasons, withdrawal of the rejection is earnestly requested.

ISSUE 5: Claims 37-39, 41-46, 48-51 and 53 are not anticipated by U.S. Pat. 5,547,669

The Examiner has rejected claims 37-39, 41-46, 48-51 and 53 under 35 U.S.C. § 102(b) as being anticipated by U.S. Pat. 5,547,669 (see § 10 of Paper 24). This rejection is respectfully traversed; with respect to this rejection claims 37-39, 41-46, 48-51 and 53 stand or fall together.

As discussed in the Response to Office Action filed June 18, 2002, the "recombitope peptides" that are taught by U.S. Pat. 5,547,669 cannot anticipate these claims since they do not satisfy the limitations of every claimed element. In particular, one skilled in the art would immediately recognize that a "recombitope peptide" does *not* have an amino acid sequence that is "substantially identical to that of an unmodified allergen except that at least one amino acid has been modified in at least one IgE epitope."

In general, "recombitope peptides" are peptides that include at least two T-cell epitopes derived from the same or from different protein antigens (e.g., see Abstract). It is presumably undisputed that a "recombitope peptide" that includes T-cell epitopes derived from different protein antigens will necessarily have an amino acid sequence that bears no resemblance whatsoever to the amino acid sequence of either parent antigen. Further, when the T-cell epitopes are from the same protein antigen we are taught that these should be arranged in a noncontiguous configuration, namely:

"an arrangement of amino acids comprising T-cell epitopes [...] which is different than that of an amino acid sequence present in the protein allergen or other protein antigen from which the epitopes [...] are derived." (see lines 3-8, column 7, emphasis added).

and a *nonsequential* order, namely:

"an order different from the order of the amino acids of the native protein allergen or other protein antigen from which the T-cell epitopes [...] are derived [...]." (e.g., see lines 8-14, column 7, emphasis added).

In order to reduce the likelihood of IgE binding, IgE epitopes are preferably excluded from the amino acid sequences of "recombitope peptides":

"Those peptide regions found to bind immunoglobulin E and cause the release of mediators from mast cell or basophils in greater than approximately 10-15% of the allergic sera tested are *preferably not included* in the peptide regions arranged to form recombitope peptides". (e.g., see lines 5-9, column 8, emphasis added)

Again it is presumably undisputed that these "recombitope peptides" will also have an amino acid sequence that bears no resemblance to the amino acid sequence of the parent antigen. As the foregoing sections highlight, U.S. Pat. 5,547,669 teaches methods that involve extracting, rearranging and pasting T-cell epitopes that were originally present in one or more natural protein antigens. IgE epitopes are preferably extracted and removed entirely. The resultant "recombitope peptides" are wholly artificial peptides that bear no resemblance whatsoever to their parent antigen(s). U.S. Pat. 5,547,669 therefore teaches strongly *away* from modified protein allergens whose amino acid sequence is substantially *identical* to that of an unmodified protein allergen *except that* at least one amino acid has been modified in at least one IgE epitope of the unmodified protein allergen, as recited in the present claims. The substitutions, deletions, or additions that are referred to by the Examiner (e.g., lines 1-5, 15-17 and 59-62, column 15) do not remedy these deficiencies, if anything they further differentiate "recombitope peptides" from the claimed invention. U.S. Pat. 5,547,669 does not anticipate or render obvious claims 37-39, 41-46, 48-51 and 53. Withdrawal of the rejection is earnestly requested.

ISSUE 6: Claims 37, 60-61 and 63-71 are not anticipated by Burks (1997)

The Examiner has rejected claims 37, 60-61 and 63-71 under 35 U.S.C. § 102(a) as being anticipated by Burks et al. (*Eur. J. Biochem.* 245:334-339, 1997) (see § 13 of Paper 24). With respect to this rejection claims 37, 60-61 and 63-71 stand or fall together.

Appellant respectfully disagrees with the rejection and notes that the teachings of Burks (1997) were included near *verbatim* in U.S. Serial No. 08/717,933 filed September 23, 1996 (see pp. 133-155 and the Figures referred to therein). The present application properly claims priority to this 1996 filing. Burks (1997) was published after this priority date and cannot therefore be used as prior art under 35 U.S.C. § 102(a). Withdrawal of the rejection is earnestly requested.

ISSUE 7: Claims 37 and 47 are not obvious in light of U.S. Pat. 5,547,669 and Hoyne

The Examiner has rejected claims 37 and 47 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Pat. 5,547,669 in view of Hoyne (*Immunology and Cell Biology* 74:180-186, 1996) (see § 16 of Paper 24). With respect to this rejection claims 37 and 47 stand or fall together. The teachings of U.S. Pat. 5,547,669 and its deficiencies with regards to independent claim 37 have been discussed *supra*. Hoyne is cited solely as teaching certain elements added in

dependent claim 47, specifically certain adjuvants. The Examiner indicates no teaching or suggestion in Hoyne that could overcome the deficiencies of U.S. Pat. 5,547,669. Withdrawal of the rejection is earnestly requested.

ISSUE 8: Claim 37 is not obvious in light of U.S. Pat. 5,547,669 and Burks (1994)

The Examiner has rejected claim 37 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Pat. 5,547,669 in view of Burks (*J. Allergy Clin. Immunol.* 93:743-750, 1994) (see § 17 of Paper 24). The teachings of U.S. Pat. 5,547,669 and its deficiencies with regards to claim 37 have been discussed *supra*. Burks (1994) is a secondary reference that is cited solely as teaching unmodified protein allergens, namely peanut Ara h 1 and Ara h 2, and alleged IgE epitopes of these. For the record, Appellant notes that Burks (1994) does *not* teach IgE epitopes of Ara h 2 and only identifies the existence of three IgE epitopes of Ara h 1 based on an ELISA inhibition assay using monoclonal antibodies – the locations of these three IgE epitopes within the Ara h 1 amino acid sequence are not provided. Besides, even if Burks (1994) had taught the location of any IgE epitope of Ara h 1 and/or Ara h 2, the Examiner has failed to point to any teaching or suggestion in Burks (1994) that could overcome the aforementioned deficiencies of U.S. Pat. 5,547,669. Withdrawal of the rejection is earnestly requested.

ISSUE 9: Claims 60-62 are not obvious in light of U.S. Pat. 5,547,669 or Burks (1997) each in combination with U.S. Pat. 5,449,669

The Examiner has rejected claims 60-62 under 35 U.S.C. § 103(a) as being unpatentable over U.S. Pat. 5,547,669 or Burks (1997) each in view of U.S. Pat. 5,449,669 (see § 18 of Paper 24). With respect to this rejection claims 60-62 stand or fall together. The teachings of U.S. Pat. 5,547,669 and its lackings have been discussed *supra*. As discussed *supra*, Burks (1997) is not available as prior art under 35 U.S.C. § 103(a). U.S. Pat. No. 5,449,669 is cited solely as teaching an unmodified protein allergen, namely shrimp tropomyosin, and its two IgE binding epitopes. The Examiner points to no teaching or suggestion in U.S. Pat. 5,449,669 that could overcome the deficiencies of U.S. Pat. 5,547,669. Withdrawal of the rejection is earnestly requested.

Conclusion

Appellant again concludes with the belief that claims 37-51, 53 and 60-71 are fully supported by the specification as filed and allowable over the art of record. Allowance of these claims is earnestly requested.

Respectfully submitted,

Charles E. Lyon D.Phil.

Limited Recognition Under 37 C.F.R. § 10.9(b)

1

PATENT DEPARTMENT CHOATE, HALL & STEWART Exchange Place 53 State Street Boston, MA 02109

Telephone: (617) 248-5000 Facsimile: (617) 248-4000

Attachment I

to

Second Amended Appeal Brief under 37 C.F.R. § 1.192

Claims Pending

Claims Pending

1-36. (Canceled)

- 37. (Previously presented) A modified protein allergen whose amino acid sequence is substantially identical to that of an unmodified protein allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified protein allergen is reduced as compared with IgE binding to the unmodified protein allergen, the at least one IgE epitope being one that is recognized when the unmodified protein allergen is contacted with serum IgE from an individual that is allergic to the unmodified protein allergen.
- 38. (Previously presented) The modified protein allergen of claim 37 wherein at least one amino acid has been modified in all the IgE epitopes of the unmodified protein allergen.
- 39. (Previously presented) The modified protein allergen of claim 37 wherein the at least one IgE epitope is one that is recognized when the unmodified protein allergen is contacted with a pool of sera IgE taken from a group of at least two individuals that are allergic to the unmodified protein allergen.
- 40. (Previously presented) The modified protein allergen of claim 37 wherein at least one modified amino acid is located in the center of the at least one IgE epitope.
- 41. (Previously presented) The modified protein allergen of claim 37 wherein at least one amino acid in the at least one IgE epitope of the unmodified protein allergen has been modified by substitution.
- 42. (Previously presented) The modified protein allergen of claim 41 wherein at least one hydrophobic amino acid in the at least one IgE epitope of the unmodified protein allergen has been substituted by a neutral or hydrophilic amino acid.

- 43. (Previously presented) The modified protein allergen of claim 37 wherein the modified protein allergen retains the ability to activate T cells.
- 44. (Previously presented) The modified protein allergen of claim 37 wherein the modified protein allergen retains the ability to bind IgG.
- 45. **(Previously presented)** The modified protein allergen of claim 37 wherein the modified protein allergen retains the ability to initiate a Th1-type response.
- 46. (Previously presented) The modified protein allergen of claim 37 wherein the modified protein allergen is a portion of the unmodified protein allergen.
- 47. (Previously presented) A composition comprising the modified protein allergen of claim 37 and an adjuvant selected from the group consisting of IL-12, IL-16, IL-18, IFNγ, and immune stimulatory sequences.
- 48. (Previously presented) The modified protein allergen of claim 37 wherein the modified protein allergen is made in a transgenic plant or animal.
- 49. (Previously presented) The modified protein allergen of claim 37 expressed in a recombinant host selected from the group consisting of plants and animals.
- 50. (Previously presented) The modified protein allergen of claim 37 expressed in a recombinant host selected from the group consisting of bacteria, yeast, fungi, and insect cells.
- (Previously presented) The modified protein allergen of claim 37 wherein the unmodified protein allergen is obtained from a source selected from the group consisting of legumes, milks, grains, eggs, fish, crustaceans, mollusks, insects, molds, dust, grasses, trees, weeds, mammals, and natural latexes.

52. (Canceled)

53. (Previously presented) The modified protein allergen of claim 37 made by the process of:

identifying at least one IgE epitope in an unmodified protein allergen;
preparing at least one modified protein allergen whose amino acid sequence is
substantially identical to that of the unmodified protein allergen except, that at least one
amino acid has been modified in the at least one IgE epitope;

screening for IgE binding to the at least one modified protein allergens by contacting the at least one modified protein allergens with serum IgE taken from at least one individual that is allergic to the unmodified protein allergen; and

selecting a modified protein allergen with decreased binding to IgE as compared to the unmodified protein allergen.

54-59. (Canceled)

- 60. (Previously presented) A modified food allergen whose amino acid sequence is substantially identical to that of an unmodified food allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified food allergen is reduced as compared with IgE binding to the unmodified food allergen, the at least one IgE epitope being one that is recognized when the unmodified food allergen is contacted with serum IgE from an individual that is allergic to the unmodified food allergen.
- 61. (Previously presented) The modified food allergen of claim 60 wherein the unmodified food allergen is obtained from a source selected from the group consisting of legumes, milks, grains, eggs, fish, crustaceans, and mollusks.
- 62. (Previously presented) The modified food allergen of claim 61 wherein the unmodified food allergen is obtained from a source selected from the group consisting of wheat, barley, cow milk, egg, codfish, hazel nut, soybean, and shrimp.

- 63. (Previously presented) A modified peanut allergen whose amino acid sequence is substantially identical to that of an unmodified peanut allergen except that at least one amino acid has been modified in at least one IgE epitope so that IgE binding to the modified peanut allergen is reduced as compared with IgE binding to the unmodified peanut allergen, the at least one IgE epitope being one that is recognized when the unmodified peanut allergen is contacted with serum IgE from an individual that is allergic to the unmodified peanut allergen.
- 64. (Previously presented) The modified peanut allergen of claim 63 wherein the unmodified peanut allergen is selected from the group consisting of Ara h 1, Ara h 2, and Ara h 3.
- 65. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1-6 amino acid residues that are modified as compared with the unmodified allergen.
- 66. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1-5 amino acid residues that are modified as compared with the unmodified allergen.
- 67. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1-4 amino acid residues that are modified as compared with the unmodified allergen.
- 68. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1-3 amino acid residues that are modified as compared with the unmodified allergen.

- 69. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1-2 amino acid residues that are modified as compared with the unmodified allergen.
- 70. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein the at least one IgE epitope contains 1 amino acid residue that is modified as compared with the unmodified allergen.
- 71. (Previously presented) The modified allergen of claim 37, claim 60, or claim 63, wherein binding by serum IgE to the at least one epitope is reduced for the modified allergen to less than about 1% of that observed to the unmodified allergen.

Attachment II

to

Second Amended Appeal Brief under 37 C.F.R. § 1.192

"Official list of allergens" maintained by the IUIS Allergen Nomenclature Subcommittee

printed on June 8, 2003 from ftp://biobase.dk/pub/who-iuis/allergen.list

Official list of allergens
IUIS Allergen Nomenclature Subcommittee
ftp://biobase.dk/pub/who-iuis/allergen.list

2000.03.01 Jorgen Nedergaard Larsen and Henning Lowenstein,
ALK-Abello, Boge Alle 6-8, DK-2970 Horsholm, Denmark
Please report changes, additions or comments to jnlarsen@inet.uni2.dk

Legends: MW determined by reducing SDS-PAGE; asterisk: MW deduced from sequence; C: cDNA seq; P: peptide seq;

Allergen source	Cycatomatic and	MW	quence	Accession #
	original names	kDa d	ata	References
		·		
A. Weed pollens				
Asterales	. 7.1.			
Ambrosia artemisiif		38	C	8,20
(short ragweed)	Amb a 1; antigen E	38	C C	8,21
	Amb a 2; antigen K Amb a 3; Ra3	11	C	22
	Amb a 5; Ra5 Amb a 5; Ra5	5	C	11,23
	Amb a 5; Ra5 Amb a 6; Ra6	10	C	24,25
	Amb a 6; Ra6 Amb a 7; Ra7	12	P	
	Amb a /; Ra/	11	Ċ	
	Allib a :	11	C	27
Ambrosia trifida				
(giant ragweed)	Amb t 5; Ra5G	4.4	C	9,10,28
Artemisia vulgaris				
(mugwort)	Art v 1;	27-29	C	28A
	Art v 2;	35	P	29
Helianthus annuus		2.4		20-
(sunflower)	Hel a 1;	34 15.7	- C	
	Hel a 2; profilin	15.7	C	115210
Mercurialis annua				
	Mer a 1; profilin	14-15	С	Y13271
	· •			
B. Grass pollens				
Poales				
Cynodon dactylon				
(Bermuda grass)	Cyn d 1;	32	С	•
	Cyn d 7;		С	
	Cyn d 12; profilin	14	C	31a,Y08390
Dactylis glomerata				
(orchard grass)	Dac g 1; AgDg1	32	P	32
(Ordinara grabb)	Dac g 2;	11	Ĉ	33,S45354
	Dac g 3;		Ċ	33a, U25343
	Dac g 5;	31	P	34
	j -,			
Holcus lanatus				
(velvet grass)	Hol 1 1;		С	Z27084,Z68893

Lolium perenne				
(rye grass)	Lol p 1; group I	27	С	35,36
	Lol p 2; group II	11	С	37,37a,X73363
	Lol p 3; group III	11	C	38
	Lol p 5; Lol p IX, Lol p Ib		C	34,39
	Lol p 11; trypsin inh. Related	1 16		39a
Phalaris aquatica				
(canary grass)	Pha a 1;		С	40,S80654
(canal) Seaso,				·
Phleum pratense				
(timothy)	Phl p 1;	27	С	X78813
	Phl p 2;		С	41,X75925
	Phl p 4;		P	41A
	Phl p 5; Ag25	32	С	42
	Phl p 6;		С	43,Z27082
	Phl p 12; profilin		С	44,X77583
	Phl p 13; polygalacturonase	55-60	С	AJ238848
Poa pratensis				
(Kentucky blue	Poa p 1; group I	33	P	46
grass)	Poa p 5;	31/34	C	34,47
grass,	roa p 3,	31/31	Ū	31,1,
Sorghum halepense				
(Johnson grass)	Sor h 1;		С	48
C. Tree pollens				
Fagales:				
-				
Alnus glutinosa	Aln g 1:	17	С	S50892
-	Aln g 1;	17	С	S50892
Alnus glutinosa	Aln g 1;	17	С	
Alnus glutinosa (alder)	Bet v 1;	17	С	see iso-list
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin		C C	see iso-list M65179
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin Bet v 3;	17 15	C C	see iso-list M65179 X79267
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4;	17	C C	see iso-list M65179
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase	17 15 8	0 0 0	see iso-list M65179 X79267 X87153/S54819
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue	17 15 8 33.5	0000	see iso-list M65179 X79267 X87153/S54819 AF135127
Alnus glutinosa (alder) Betula verrucosa	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase	17 15 8	0 0 0	see iso-list M65179 X79267 X87153/S54819
Alnus glutinosa (alder) Betula verrucosa (birch)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue	17 15 8 33.5	0000	see iso-list M65179 X79267 X87153/S54819 AF135127
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin	17 15 8 33.5	0000	see iso-list M65179 X79267 X87153/S54819 AF135127
Alnus glutinosa (alder) Betula verrucosa (birch)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue	17 15 8 33.5	C C C C	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1;	17 15 8 33.5 18	C C C C	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue	17 15 8 33.5	C C C C	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1;	17 15 8 33.5 18	C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa (chestnut)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue	17 15 8 33.5 18	C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa (chestnut) Corylus avellana	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue Cas s 5; chitinase	17 15 8 33.5 18	C C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa (chestnut)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue	17 15 8 33.5 18	C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa (chestnut) Corylus avellana (hazel)	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue Cas s 5; chitinase	17 15 8 33.5 18	C C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list
Alnus glutinosa (alder) Betula verrucosa (birch) Carpinus betulus (hornbeam) Castanea sativa (chestnut) Corylus avellana	Bet v 1; Bet v 2; profilin Bet v 3; Bet v 4; Bet v 6; isoflavone reductase homologue Bet v 7; cyclophilin Car b 1; Cas s 1; Bet v 1 homologue Cas s 5; chitinase	17 15 8 33.5 18	C C C C P	see iso-list M65179 X79267 X87153/S54819 AF135127 P81531 see iso-list

Lamiales:

0	1	_	a	~	6	a	e	•
v	_	$\overline{}$	а	·	c	a	c	•

Fraxinus excelsior (ash)	Fra e 1;	20	P	58A
Ligustrum vulgare (privet)	Lig v 1;	20	P	58A
Olea europea (olive)	Ole e 1; Ole e 2; profilin Ole e 3; Ole e 4; Ole e 5; superoxide dismutase Ole e 6; Ole e 7;	16 15-18 9.2 32 16 10 ?	C C P P C P	
Syringa vulgaris (lilac)	Syr v 1;	20	P	58A
Plantaginaceae:				
Plantago lanceolata (English plantain)	Pla l 1;	18	P	P842242
Pinales:				
Cryptomeria japonica (sugi)	Cry j 1; Cry j 2;	41-45	C C	55,56 57, D29772
Cupressus arizonica (cypress)	Cup a 1;	43	С	A1243570
Juniperus ashei (mountain cedar)	Jun a 1; Jun a 3;	43 30	P P	P81294 P81295
Juniperus oxycedrus (prickly juniper)	Jun o 2; calmodulin-like	29	С	AF031471
Juniperus sabinoides (mountain cedar)	Jun s 1;	50	P	58
Juniperus virginiana (eastern red cedar)	Jun v 1;	43	P	P81825
D. Mites Acarus siro (mite)	Aca s 13; fatty acid-bind.prot	.14*	С	AJ006774
Blomia tropicalis (mite)	Blo t 5; Blo t 12; Bt11a Blo t 13; Bt6 fatty acid-bindi	ng prot.	C C	U59102 U27479 U58106

			•	_				
	Dermatophagoides ptero				antina Di	2.5	~	61
	(mite)		_		antigen P1	25	C	
		Der				14	C	62
					trypsin	28/30	C	63
					amylase	60	P	64
		Der	_			14	С	65
		Der	р	6;	chymotrypsin	25	P	66
		Der	p	7;		22-28	C	67
		Der	р	8;	glutathione transfera	se	С	67A
		Der	p	9;	collagenolytic serine	prot.	P	67B
					; tropomyosin	36	C	Y14906
					; apolipophorin like p		С	Epton p.c.
			r					
	Dermatophagoides micro	ceras	3					
	(mite)	Der	m	1;		25	P	68
	Dermatophagoides farin							
	(mite)	Der	f	1 .	;	25	С	69
		Der	f	2	;	14	С	70,71
		Der	£	3	;	30	C	63
		Der	f	10	; tropomyosin		C	72
					; paramyosin	98	С	72a
					; Mag3, apolipophorin		С	D17686
	Euroglyphus maynei							
	(mite)	Eur	m	14	; apolipophorin	177	С	AF149827
	Lepidoglyphus destruct	or						
	(storage mite)	Lep	d	2.0	0101;	15	С	73,74,75
	_	Lep	d	2.0	0102;	15	С	75
E	. Animals							
	Bos domesticus							
	(domestic cattle)	Bos	d	2;	Ag3,lipocalin	20	C	76,L42867
	(see also foods)	Bos	d	4;	alpha-lactalbumin	14.2	C	M18780
		Bos	d	5;	beta-lactoglobulin	18.3	С	X14712
					serum albumin	67	С	M73993
					immunoglobulin	160		77
					caseins	20-30		77
		200	_	٠,				
	Canis familiaris							
	(Canis domesticus)	Can	f	1;		25	C	78,79
	(dog)	Can				27	С	78,79
	(==5,				albumin		С	S72946
			_	• •				
	Equus caballus							
	(domestic horse)	Equ	С	1;	lipocalin	25	С	U70823
	· · · · · · · · · · · · · · · · · · ·				lipocalin	18.5	P	79A, 79B
		-1-	-	•	•			
	Felis domesticus							
	(cat saliva)	Fel	d	1;	cat-1	38	С	15
	-			•				
	Mus musculus							
	(mouse urine)	Mus	m	1;	MUP	19	C	80,81

```
Rattus norvegius
                                                            17
                                                                   C
                                                                         82,83
                          Rat n 1
  (rat urine)
F. Fungi
1. Ascomycota
1.1 Dothidiales
  Alternaria alternata
                                                                   C
                                                                         U82633
                                                            28
                          Alt a 1;
                                                                    C
                          Alt a 2;
                                                            25
                                                                         U87807, U87808
                                                                    C
                          Alt a 3; heat shock prot. 70
                          Alt a 4; prot.disulfidisomerase 57
                                                                    C
                                                                         X84217
                                                                    C
                                                                         X78222, U87806
                          Alt a 6; acid.ribosomal prot P2 11
                                                                    C
                                                                         X78225
                          Alt a 7; YCP4 protein
                                                                    C
                                                                         X78227, P42041
                          Alt a 10; aldehyde dehydrogen.
                                                            53
                          Alt a 11; enolase
                                                                   C
                                                                         U82437
                                                            45
                                                                   C
                                                                         X84216
                          Alt a 12; acid.ribosomal prot P1 11
  Cladosporium herbarum
                                                                         83a, 83b
                          Cla h 1;
                                                            13
                          Cla h 2;
                                                                         83a, 83b
                          Cla h 3; aldehyde dehydrogenase 53
                                                                   C
                                                                         X78228
                                                                   C
                                                                         X78223
                          Cla h 4; acid.ribosomal prot P2 11
                          Cla h 5; YCP4 protein
                                                                    С
                                                                         X78224
                                                            46
                                                                   C
                                                                         X78226
                          Cla h 6; enolase
                                                                   C
                                                                         X85180
                          Cla h 12; acid.ribosomal prot P1 11
1.2 Eurotiales
  Aspergillus flavus
                          Asp fl 13; alkaline serine
                                                                         84
                                               proteinase
                                                           34
  Aspergillus fumigatus
                                                            18
                                                                   C
                                                                         M83781,S39330
                          Asp f 1;
                                                                   C
                                                                         U56938
                                                            37
                          Asp f 2;
                                                                         U20722
                                                            19
                                                                    C
                          Asp f 3; peroxisomal protein
                                                                    C
                                                                         AJ001732
                                                            30
                          Asp f 4;
                                                                    C
                                                                         Z30424
                                                            42
                          Asp f 5; metalloprotease
                                                                    C
                                                                         U53561
                          Asp f 6; Mn superoxide dismutase26.5
                                                                    C
                                                                         AJ223315
                                                            12
                          Asp f 7;
                                                                    C
                                                                         AJ224333
                          Asp f 8; ribosomal protein P2
                                                            11
                                                                   C
                                                                         AJ223327
                                                            34
                          Asp f 9;
                          Asp f 10; aspartic protease
                                                            34
                                                                   C
                                                                         X85092
                                                                         84a
                          Asp f 11; peptidyl-prolyl isom
                                                            24
                                                                         85
                          Asp f 12; heat shock prot. P90
                                                                   C
                          Asp f 13; alkaline serine
                                                                         84b
                                               proteinase
                                                            34
                                                                   C
                                                                         AJ002026
                          Asp f 15;
                                                            16
                          Asp f 16;
                                                            43
                                                                    С
                                                                         g3643813
                                                                         AJ224865
                          Asp f 17;
                          Asp f 18; vacuolar serine
                                               proteinase
                                                                         84c
```

Aspergillus niger				
	Asp n 18; vacuolar serine	105	С	AF108944
	proteinase	34	C	84b
	Asp n ?;	85	С	Z84377
Aspergillus oryzae	Asp o 13; alkaline serine			
	proteinase	34	С	X17561
	Asp o 21; TAKA-amylase A	53	C	D00434,M33218
Penicillium brevicompa	ctum			
	Pen b 13; alkaline serine			
	Proteinase	33		86a
Penicillium citrinum	Pen c 3; peroxisomal membrane			
	protein	18		86b
	Pen c 13; alkaline serine	•		
	proteinase	33		86a
	Pen c 19; heat shock prot. P70	70	С	U64207
Penicillium notatum				
	Pen n 13; alkaline serine			
	proteinase	34		89
	Pen n 18; vacuolar serine	2.0		89
	proteinase	34		09
	Pen n 20; N-acetyl glucosaminidase	68		87
	gracosaminidase	. 00		0,
Penicillium oxalicum				
	Pen o 18; vacuolar serine			
	proteinase	34		89
1.3 Onygenales				
Trichophyton rubrum				90
	Tri r 2;		C C	90
	Tri r 4; serine protease		C	90
Trichophyton tonsurans				
TITCHOPHYCON CONSULAND	Tri t 1;	30	P	91
	Tri t 4; serine protease	83	С	90
	•			
1.4 Saccharomycetales				
Candida albicans		4.0		0.0
	Cand a 1;	40	С	88
Candida boidinii				
Candida boldinii	Cand b 2;	20	С	J04984, J04985
				•
2 Basidiomycota				
- 4				
2.1 Basidiolelastomycete	s			
Malassezia furfur	Mala f 1;			91a
	rata I I,			

	Mala f 2; MF1	21	C	AB011804
	peroxisomal membrane p	rotein		
	Mala f 3; MF2	20	С	AB011805
	peroxisomal membrane p	rotein		
	Mala f 4;	35	С	Takesako,p.c.
	Mala f 5;	18*	С	AJ011955
	Mala f 6; cyclophilin homologue	17*	С	AJ011956
	ara r o, orozopiizani isami argan			
2.2 Basidiomycetes				
Psilocybe cubensis				
151100/20 005000	Psi c 1;			
	Psi c 2; cyclophilin	16		91b
	rsi e z, cyclophilin			
g				
Coprinus comatus			~	7 T1 2222 E
(shaggy cap)	Cop c 1; leucine zipper prot.	11	С	AJ132235
	Cop c 2;			Brander, p.c.
	Cop c 3;			Brander,p.c.
	Cop c 5;			Brander,p.c.
	Cop c 7;			Brander,p.c.
G. Insects				
Aedes aegyptii				
(mosquito)	Aed a 1; apyrase	68	С	L12389
(4,	Aed a 2;	37	C	M33157
Apis mellifera				
	Ami m 1. mheanhalinean A2	16	С	92
(honey bee)	Api m 1; phospholipase A2			
	Api m 2; hyaluronidase	44	C	93
	Api m 4; melittin	3	C	94
	Api m 6;	7-8	P	Kettner,p.c.
Bombus pennsylvanicus				
(bumble bee)	Bom p 1; phospholipase	16	P	95
	Bom p 4; protease		P	95
	-			
Blattella germanica				
(German cockroach)	Bla g 1; Bd90k		С	
(Serman Soonreadin)	Bla g 2; aspartic protease	36	С	96
	Bla g 4; calycin	21	C	97
	Bla g 5; glutathione transf.	22	C	98
		27	C	98
	Bla g 6; troponin C	21	C	70
Periplaneta americana			_	
(American cockroach)	Per a 1; Cr-PII		C	
	Per a 3; Cr-PI	72-78	C	98A
	Per a 7; tropomyosin	37	C	Y14854
Chironomus thummi thum	nmi			
(midges)	Chi t 1-9; hemoglobin	16	С	99
/±4305/	Chi t 1.01; component III	16	Ċ	P02229
	Chi t 1.02; component IV	16	C	P02230
		16	C	P02230
	Chi t 2.0101; component I			
	Chi t 2.0102; component IA	16	C	P02221
	Chi t 3; component II-beta	16	C	P02222
	Chi t 4; component IIIA	16	С	P02231

	Chi t 5; component VI Chi t 6.01; component VIIA Chi t 6.02; component IX Chi t 7; component VIIB Chi t 8; component VIII Chi t 9; component X	16 16 16 16 16	C C C C C C	P02224 P02226 P02223 P02225 P02227 P02228
Dolichovespula maculat (white face hornet)	· -	35 44 23	c c c	100 101 102,103
Dolichovespula arenari (yellow hornet)	a Dol a 5; antigen 5	23	С	104
Polistes annularies (wasp)	Pol a 1; phospholipase A1 Pol a 2; hyaluronidase Pol a 5; antigen 5	35 44 23	P P C	105 105 104
Polistes dominulus (Mediterranean paper w	asp) Pol d 1; Pol d 4; serine protease Pol d 5;	32-34	С	DR Hoffman DR Hoffman P81656
Polistes exclamans (wasp)	Pol e 1; phospholipase Al Pol e 5; antigen 5	34 23	P C	107 104
Polistes fuscatus (wasp)	Pol f 5; antigen 5	23	С	106
Polistes metricus (wasp)	Pol m 5; antigen 5	23	P	106
Vespa crabo (European hornet)	Vesp c 1; phospholipase Vesp c 5.0101; antigen 5 Vesp c 5.0102; antigen 5	34 23 23	P C C	107 106 106
Vespa mandarina (giant asian hornet)	Vesp m 1.01; Vesp m 1.02; Vesp m 5;			DR Hoffman DR Hoffman P81657
Vespula flavopilosa (yellowjacket)	Ves f 5; antigen 5	23	С	106
Vespula germanica (yellowjacket)	Ves g 5; antigen 5	23	С	106
Vespula maculifrons (yellowjacket)	Ves m 1; phospholipase A1 Ves m 2; hyaluronidase Ves m 5; antigen 5	33.5 44 23	C P C	108 109 104

Vespula pennsylvanica (yellowjacket)	Ves p 5;	antigen 5	23	С	106
Vespula squamosa (yellowjacket)	Ves s 5;	antigen 5	23	С	106
Vespula vidua (wasp)	Ves vi 5	;	23	С	106
Vespula vulgaris (yellowjacket)	Ves v 2;	phopholipase A1 hyaluronidase antigen 5	35 44 23	C P C	105A 105A 104
Myrmecia pilosula (Australian jumper ant)Myr p 1; Myr p 2;			C C	X70256 S81785
Solenopsis geminata (tropical fire ant)	Sol g 2; Sol g 4;				DR Hoffman DR Hoffman
Solenopsis invicta (fire ant)	Sol i 2; Sol i 3; Sol i 4;		13 24 13	C C	110,111 110 110
Solenopsis saevissima (brazilian fire ant)	Sol s 2;				DR Hoffman
H. Foods					
Gadus callarias (cod)	Gad c 1;	allergen M	12	С	112,113
Salmo salar (Atlantic salmon)	Sal s 1;	parvalbumin	12	С	X97824 X97825
Bos domesticus					M1 0 11 0 0
(domestic cattle) (milk)		alpha-lactalbumin beta-lactoglobulin	14.2 18.3	C C	M18780 X14712
(see also animals)		serum albumin	67	C	M73993
(bee albo animals)		immunoglobulin	160		77
	Bos d 8;		20-30		77
Gallus domesticus					
(chicken)	Gal d 1;	ovomucoid	28	C	114,115
		ovalbumin	44	C	114,115
		conalbumin (Ag22)	78	C	114,115
		lysozyme serum albumin	14 69	C C	114,115 X60688
Metapenaeus ensis					
(shrimp)	Met e 1;	tropomyosin		С	U08008
Penaeus aztecus (shrimp)	Pen a 1;	tropomyosin	36	P	116

Penaeus indicus (shrimp)	Pen i	1;	tropomyosin	34	С	117
Todarodes pacificus (squid)	Tod p	1;	tropomyosin	38	P	117A
Haliotis Midae (abalone)	Hal m	1		49	-	117B
Apium graveolens (celery)			Bet v 1 homologue profilin	16*	С	Z48967 AF129423
	Api g	-	F	55/58	P	P81943
Brassica juncea (oriental mustard)	Bra j	1;	2S albumin	14	С	118
Brassica rapa (turnip)	Bra r	2;	prohevein-like protein	25	?	P81729
Hordeum vulgare (barley)	Hor v	15;	BMAI-1	15	С	119
Zea mays (maize, corn)	Zea m	14;	: lipid transfer prot.	9	P	P19656
Oryza sativa (rice)	Ory s	1;			С	U31771
Corylus avellana (hazelnut)	Cor a	1.0	0401; Bet v 1 homologue	17	С	AF136945
Malus domestica (apple)			Bet v 1 homologue		С	X83672
			thaumatin homologue lipid transfer protein	9	C C	AJ243427 Pastorello
Pyrus communis						
(pear)	-		Bet v 1 homologue profilin	18 14	C C	AF05730 AF129424
			isoflavone reductase			
			homologue	33.5	С	AF071477
Persea americana (avocado)	Pers a	1;	; endochitinase	32	С	Z78202
Prunus armeniaca	Dru or	1.	; Bet v 1 homologue		С	U93165
(apricot)			; lipid transfer protein	n 9	P	0,3103
Prunus avium	_				a	1166076
(sweet cherry)			Bet v 1 homologue thaumatin homologue		C C	U66076 U32440
			; profilin	15	C	AF129425
Prunus persica (peach)	Pru p	3;]	lipid transfer protein	10	P	P81402

Sinapis alba (yellow mustard)	Sin a 1; 2S albumin	14	С	120
Glycine max	a) 1 0101 WD0	7 5	ъ	101
(soybean)	Gly m 1.0101; HPS	7.5	P	121
	Gly m 1.0102; HPS	7	P	121
	Gly m 2	8	P	A57106
	Gly m 3; profilin	14	С	AJ223982
Arachis hypogaea			~	
(Peanut)	Ara h 1; vicilin	63.5	C	L34402
	Ara h 2; conglutin	17	C	L77197
	Ara h 3; glycinin	60	C	AF093541
	Ara h 4; glycinin	37	C	AF086821
	Ara h 5; profilin	15	С	AF059616
	Ara h 6; conglutin homolog	15	С	AF092846
	Ara h 7; conglutin homolog	15	С	AF091737
Actinidia chinensis (kiwi)	Act c 1; cysteine protease	30	P	P00785
Solanum tuberosum (potato)	Sola t 1; patatin	43	P	P15476
Bertholletia excelsa (Brazil nut)	Ber e 1; 2S albumin	9	С	P04403,M17146
Juglans regia				
(English walnut)	Jug r 1; 2S albumin		С	U66866
,,	Jug r 2; vicilin	44	С	AF066055
	5 .			
Ricinus communis (Castor bean)	Ric c 1; 2S albumin		С	P01089
. Others				
Anisakis simplex				
(nematode)	Ani s 1;	24	P	A59069
	Ani s 2; paramyosin	97	С	AF173004
Ascaris suum				
(worm)	Asc s 1;	10	P	122
Den n				
(red coral)	Den n 1;			Onizuka, p.c.
Hevea brasiliensis				
(rubber)	Hev b 1; elongation factor	58	P	123,124
_ 	Hev b 2; (1,3-glucanase	34/36	C	125
	Hev b 3	24	P	126,127
	Hev b 4; component of	- •	-	•
	microhelix protein complex 10	00/110/115	P	128
	Hev b 5	16	C	U42640
	Hev b 6.01 hevein precursor	20	C	M36986/p02877
	Hev b 6.02 hevein	5	C	M36986/p02877
	1.0. 2 0.02 110.0211	-	-	

I

```
Hev b 7; patatin homologue
                                                         46
                                                                С
                                                                     U80598
                       Hev b 8; profilin
                                                         14
                                                                С
                                                                     Y15042
                                                         51
                                                                C
                                                                     AJ132580/
                       Hev b 9; enolase
                                                                     AJ132581
                                                                     AJ249148
                       Hev b 10; Mn-superoxide dismut. 26
                                                                С
Ctenocephalides felis felis
                       Cte f 1;
(cat flea)
                                                        27
                                                                C
                                                                     AF231352
                       Cte f 2; M1b
Homo sapiens
                       Hom s 1;
                                                         73*
                                                                С
                                                                     Y14314
(human autoallergens)
                                                        10.3*
                                                                С
                                                                     X80909
                       Hom s 2;
                                                                С
                                                                     X89985
                                                        20.1*
                       Hom s 3;
                                                        36*
                                                                С
                                                                     Y17711
                       Hom s 4:
                                                         42.6*
                                                                С
                                                                     P02538
                       Hom s 5;
```

Hev b 6.03 C-terminal fragment 14

С

M36986/p02877

- 1. Marsh, D.G., and L.R. Freidhoff. 1992. ALBE, an allergen database. IUIS, Baltimore, MD, Edition 1.0.
- 2. Marsh, D. G., L. Goodfriend, T. P. King, H. Lowenstein, and T. A. E. Platts-Mills. 1986. Allergen nomenclature. Bull WHO 64:767-770.
- 3. King, T.P., P.S. Norman, and J.T. Cornell. 1964. Isolation and characterization of allergen from ragweed pollen. II. Biochemistry 3:458-468.
- 4. Lowenstein, H. 1980. Timothy pollen allergens. Allergy 35:188-191.
- 5. Aukrust, L. 1980. Purification of allergens in Cladosporium herbarum. Allergy 35:206-207.
- 6. Demerce, M., E. A. Adelberg, A. J. Clark, and P. E. Hartman. 1966. A proposal for a uniform nomenclature in bacterial genetics. Genetics 54:61-75.
- 7. Bodmer, J. G., E. D. Albert, W. F. Bodmer, B. Dupont, H. A. Erlich, B. Mach, S. G. E. Marsh, W. R. Mayr, P. Parham, T. Sasuki, G. M. Th. Schreuder, J. L. Strominger, A. Svejgaard, and P. I. Terasaki. 1991. Nomenclature for factors of the HLA system, 1990. Immunogenetics 33:301-309.
- 8. Griffith, I.J., J. Pollock, D.G. Klapper, B.L. Rogers, and A.K. Nault. 1991. Sequence polymorphism of Amb a I and Amb a II, the major allergens in Ambrosia artemisiifolia (short ragweed). Int. Arch. Allergy Appl. Immunol. 96:296-304.
- 9. Roebber, M., D. G. Klapper, L. Goodfriend, W. B. Bias, S. H. Hsu, and D. G. Marsh. 1985. Immunochemical and genetic studies of Amb t V (Ra5G), an Ra5 homologue from giant ragweed pollen. J. Immunol. 134:3062-3069.
- 10. Metzler, W. J., K. Valentine, M. Roebber, M. Friedrichs, D. G. Marsh, and L. Mueller. 1992. Solution structures of ragweed allergen Amb t V. Biochemistry 31:5117-5127.
- 11. Metzler, W. J., K. Valentine, M. Roebber, D. G. Marsh, and L. Mueller. 1992. Proton resonance assignments and three-dimensional solution structure of the ragweed allergen Amb a V by nuclear magnetic resonance spectroscopy. Biochemistry 31:8697-8705.

- 12. Goodfriend, L., A.M. Choudhury, J. Del Carpio, and T.P. King. 1979. Cytochromes C: New ragweed pollen allergens. Fed. Proc. 38:1415.
- 13. Ekramoddoullah, A. K. M., F. T. Kisil, and A. H. Sehon. 1982. Allergenic cross reactivity of cytochrome c from Kentucky bluegrass and perennial ryegrass pollens. Mol. Immunol. 19:1527-1534.
- 14. Ansari, A. A., E. A. Killoran, and D. G. Marsh. 1987. An investigation of human response to perennial ryegrass (Lolium perenne) pollen cytochrome c (Lol p X). J. Allergy Clin. Immunol. 80:229-235.
- 15. Morgenstern, J.P., I.J. Griffith, A.W. Brauer, B.L. Rogers, J.F. Bond, M.D. Chapman, and M. Kuo. 1991. Amino acid sequence of Fel d I, the major allergen of the domestic cat: protein sequence analysis and cDNA cloning. Proc. Natl. Acad. Sci. USA 88:9690-9694.
- 16. Griffith, I.J., S. Craig, J. Pollock, X. Yu, J.P. Morgenstern, and B.L.Rogers. 1992. Expression and genomic structure of the genes encoding FdI, the major allergen from the domestic cat. Gene 113:263-268.
- 17. Weber, A., L. Marz, and F. Altmann. 1986. Characteristics of the asparagine-linked oligosaccharide from honey-bee venom phospholipase A2. Comp. Biochem. Physiol. 83B:321-324.
- 18. Weber, A., H. Schroder, K. Thalberg, and L. Marz. 1987. Specific interaction of IgE antibodies with a carbohydrate epitope of honey bee venom phospholipase A2. Allergy 42:464-470.
- 19. Stanworth, D. R., K. J. Dorrington, T. E. Hugli, K. Reid, and M. W. Turner. 1990. Nomenclature for synthetic peptides representative of immunoglobulin chain sequences. Bulletin WHO 68:109-111.
- 20. Rafnar, T., I. J. Griffith, M. C. Kuo, J. F. Bond, B. L. Rogers, and D.G. Klapper. 1991. Cloning of Amb a I (Antigen E), the major allergen family of short ragweed pollen. J. Biol. Chem. 266: 1229-1236.
- 21. Rogers, B.L., J.P. Morgenstern, I.J. Griffith, X.B. Yu, C.M. Counsell, A.W. Brauer, T.P. King, R.D. Garman, and M.C. Kuo. 1991. Complete sequence of the allergen Amb a II: recombinant expression and reactivity with T cells from ragweed allergic patients. J. Immunol. 147:2547-2552.
- 22. Klapper, D.G., L. Goodfriend, and J.D. Capra. 1980. Amino acid sequence of ragweed allergen Ra3. Biochemistry 19:5729-5734.
- 23. Ghosh, B., M.P. Perry, T. Rafnar, and D.G. Marsh. 1993. Cloning and expression of immunologically active recombinant Amb a V allergen of short ragweed (Ambrosia artemisiifolia) pollen. J. Immunol. 150:5391-5399.
- 24. Roebber, M., R. Hussain, D. G. Klapper, and D. G. Marsh. 1983. Isolation and properties of a new short ragweed pollen allergen, Ra6. J. Immunol. 131:706-711.
- 25. Lubahn, B., and D.G. Klapper. 1993. Cloning and characterization of ragweed allergen Amb a VI (abst). J. Allergy Clin. Immunol. 91:338.
- 26. Roebber, M., and D.G. Marsh. 1991. Isolation and characterization of allergen Amb a VII from short ragweed pollen. J. Allergy Clin. Immunol. 87:324.

- 27. Rogers, B.L., J. Pollock, D.G. Klapper, and I.J. Griffith. 1993. Cloning, complete sequence, and recombinant expression of a novel allergen from short ragweed pollen (abst). J. Allergy Clin. Immunol. 91:339.
- 28. Goodfriend, L., A.M. Choudhury, D.G. Klapper, K.M. Coulter, G. Dorval, J. DelCarpio, and C.K. Osterland. 1985. Ra5G, a homologue of Ra5 in giant ragweed pollen: isolation, HLA-DR-associated activity and amino acid sequence. Mol. Immunol. 22:899-906.
- 28A. Breitenbach M, pers. comm.
- 29. Nilsen, B. M., K. Sletten, M. O'Neill, B. Smestead Paulsen, and H. van Halbeek. 1991. Structural analysis of the glycoprotein allergen Art v II from pollen of mugwort (Artemesia vulgaris). J. Biol. Chem. 266:2660-2668.
- Jimenez A, Moreno C, Martinez J, Martinez A, Bartolome B, Guerra F, Palacios R 1994. Sensitization to sunflower pollen: only an occupational allergy? Int Arch Allergy Immunol 105:297-307.
- 30. Smith, P.M., Suphioglu, C., Griffith, I.J., Theriault, K., Knox, R.B. and Singh, M.B. 1996.
- Cloning and expression in yeast Pichia pastoris of a biologically active form of Cyn d 1, the major allergen of Bermuda grass pollen. J. Allergy Clin. Immunol. 98:331-343.
- 31. Suphioglu, C., Ferreira, F. and Knox, R.B. 1997. Molecular cloning and immunological characterisation of Cyn d 7, a novel calcium-binding allergen from Bermuda grass pollen. FEBS Lett. 402:167-172.
- 31a. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, and Palacios R. 1997. Cloning and high level expression of Cynodon dactylon (Bermuda grass) pollen profilin (Cynd 12) in Escherichia coli: purification and characterization of the allergen. Clin Exp Allergy 27:1307-1313.
- Mecheri, S., G. Peltre, and B. David. 1985. Purification and characterization of a major allergen from Dactylis glomerata pollen: The Ag Dg 1. Int. Arch. Allergy Appl. Immunol. 78:283-289.
- 33. Roberts, A.M., L.J. Bevan, P.S. Flora, I. Jepson, and M.R. Walker. 1993. Nucleotide sequence of cDNA encoding the Group II allergen of Cocksfoot/Orchard grass (Dactylis glomerata), Dac g II. Allergy 48:615-623.
- 33a. Guerin-Marchand, C., Senechal, H., Bouin, A.P., Leduc-Brodard, V., Taudou, G., Weyer, A., Peltre, G. and David, B. 1996. Cloning, sequencing and immunological characterization of Dac g 3, a major allergen from Dactylis glomerata pollen. Mol. Immunol. 33:797-806.
- 34. Klysner, S., K. Welinder, H. Lowenstein, and F. Matthiesen. 1992. Group V allergens in grass pollen IV. Similarities in amino acid compositions and amino terminal sequences of the group V allergens from Lolium perenne, Poa pratensis and Dactylis glomerata. Clin. Exp. Allergy 22: 491-497.
- 35. Perez, M., G. Y. Ishioka, L. E. Walker, and R. W. Chesnut. 1990. cDNA cloning and immunological characterization of the rye grass allergen Lol p I. J. Biol. Chem. 265:16210-16215.
- 36. Griffith, I. J., P. M. Smith, J. Pollock, P. Theerakulpisut, A. Avjioglu, S. Davies, T. Hough, M. B. Singh, R. J. Simpson, L. D. Ward, and R. B. Knox. 1991. Cloning and sequencing of Lol p I, the major allergenic protein of rye-grass pollen. FEBS Letters 279:210-215.

- 37. Ansari, A. A., P. Shenbagamurthi, and D.G. Marsh. 1989. Complete amino acid sequence of a Lolium perenne (perennial rye grass) pollen allergen, Lol p II. J. Biol. Chem. 264:11181-11185.
- 37a. Sidoli, A., Tamborini, E., Giuntini, I., Levi, S., Volonte, G., Paini, C., De Lalla, C., Siccardi, A.G., Baralle, F.E., Galliani, S. and Arosio, P. 1993. Cloning, expression, and immunological characterization of recombinant Lolium perenne allergen Lol p II. J. Biol. Chem. 268:21819-21825.
- 38. Ansari, A. A., P. Shenbagamurthi, and D. G. Marsh. 1989. Complete primary structure of a Lolium perenne (perennial rye grass) pollen allergen, Lol p III: Comparison with known Lol p I and II sequences. Biochemistry 28:8665-8670.
- 39. Singh, M. B., T. Hough, P. Theerakulpisut, A. Avjioglu, S. Davies, P. M. Smith, P. Taylor, R. J. Simpson, L. D. Ward, J. McCluskey, R. Puy, and R.B. Knox. 1991. Isolation of cDNA encoding a newly identified major allergenic protein of rye-grass pollen: Intracellular targeting to the amyloplost. Proc. Natl. Acad. Sci. 88:1384-1388.
- 39a. van Ree R, Hoffman DR, van Dijk W, Brodard V, Mahieu K, Koeleman CA, Grande M, van Leeuwen WA, Aalberse RC. 1995. Lol p XI, a new major grass pollen allergen, is a member of a family of soybean trypsin inhibitor-related proteins. J Allergy Clin Immunol 95:970-978.
- 40. Suphioglu, C. and Singh, M.B. 1995. Cloning, sequencing and expression in Escherichia coli of Pha a 1 and four isoforms of Pha a 5, the major allergens of canary grass pollen. Clin. Exp. Allergy 25:853-865.
- 41. Dolecek, C., Vrtala, S., Laffer, S., Steinberger, P., Kraft, D., Scheiner, O. and Valenta, R. 1993. Molecular characterization of Phl p II, a major timothy grass (Phleum pratense) pollen allergen. FEBS Lett. 335:299-304.
- 41A. Fischer S, Grote M, Fahlbusch B, Muller WD, Kraft D, Valenta R. 1996. Characterization of Phl p 4, a major timothy grass (Phleum pratense) pollen allergen. J Allergy Clin Immunol 98:189-198.
- 42. Matthiesen, F., and H. Lowenstein. 1991. Group V allergens in grass pollens. I. Purification and characterization of the group V allergen from Phleum pratense pollen, Phl p V. Clin. Exp. Allergy 21:297-307.
- Petersen, A., Bufe, A., Schramm, G., Schlaak, M. and Becker, W.M. 1995. Characterization of the allergen group VI in timothy grass pollen (Phl p 6). II. cDNA cloning of Phl p 6 and structural comparison to grass group V. Int. Arch. Allergy Immunol. 108:55-59.
- Valenta, R., Ball, T., Vrtala, S., Duchene, M., Kraft, D. and Scheiner, O. 1994. cDNA cloning and expression of timothy grass (Phleum pratense) pollen profilin in Escherichia coli: comparison with birch pollen profilin. Biochem. Biophys. Res. Commun. 199:106-118.
- 46. Esch, R. E., and D. G. Klapper. 1989. Isolation and characterization of a major cross-reactive grass group I allergenic determinant. Mol. Immunol. 26:557-561.
- Olsen, E., L. Zhang, R. D. Hill, F. T. Kisil, A. H. Sehon, and S. Mohapatra. 1991. Identification and characterization of the Poa p IX group of basic allergens of Kentucky bluegrass pollen. J. Immunol. 147:205-211.

- 48. Avjioglu, A., M. Singh, and R.B. Knox. 1993. Sequence analysis of Sor h I, the group I allergen of Johnson grass pollen and it comparison to rye-grass Lol p I (abst). J. Allergy Clin. Immunol. 91:340.
- 52. Kos T, Hoffmann-Sommergruber K, Ferreira F, Hirschwehr R, Ahorn H, Horak F, Jager S, Sperr W, Kraft D, Scheiner O. 1993. Purification, characterization and N-terminal amino acid sequence of a new major allergen from European chestnut pollen--Cas s 1. Biochem Biophys Res Commun 196:1086-92.
- 54. Ipsen, H., and B.C. Hansen. 1991. The NH2-terminal amino acid sequence of the immunochemically partial identical major allergens of alder (Alnus glutinosa) Aln g I, birch (Betula verrucosa) Bet v I, hornbeam (Carpinus betulus) Car b I and oak (Quercus alba) Que a I pollens. Mol. Immunol. 28:1279-1288.
- 55. Taniai, M., S. Ando, M. Usui, M. Kurimoto, M. Sakaguchi, S. Inouye, and T. Matuhasi. 1988. N-terminal amino acid sequence of a major allergen of Japanese cedar pollen (Cry j I). FEBS Lett. 239:329-332.
- 56. Griffith, I.J., A. Lussier, R. Garman, R. Koury, H. Yeung, and J. Pollock. 1993. The cDNA cloning of Cry j I, the major allergen of Cryptomeria japonica (Japanese cedar) (abst). J. Allergy Clin. Immunol. 91:339.
- 57. Sakaguchi, M., S. Inouye, M. Taniai, S. Ando, M. Usui, and T. Matuhasi. 1990. Identification of the second major allergen of Japanese cedar pollen. Allergy 45:309-312.
- Gross GN, Zimburean JM, Capra JD 1978. Isolation and partial characterization of the allergen in mountain cedar pollen. Scand J Immunol 8:437-41
- Obispo TM, Melero JA, Carpizo JA, Carreira J, Lombardero M 1993. The main allergen of Olea europaea (Ole e I) is also present in other species of the oleaceae family. Clin Exp Allergy 23:311-316.
- 59. Cardaba, B., D. Hernandez, E. Martin, B. de Andres, V. del Pozo, S. Gallardo, J.C. Fernandez, R. Rodriguez, M. Villalba, P. Palomino, A. Basomba, and C. Lahoz. 1993. Antibody response to olive pollen antigens: association between HLA class II genes and IgE response to Ole e I (abst). J. Allergy Clin. Immunol. 91:338.
- 60. Villalba, M., E. Batanero, C. Lopez-Otin, L.M. Sanchez, R.I. Monsalve, M.A. Gonzalez de la Pena, C. Lahoz, and R. Rodriguez. 1993. Amino acid sequence of Ole e I, the major allergen from olive tree pollen (Olea europaea). Europ.J. Biochem. 216:863-869.
- 60A. Asturias JA, Arilla MC, Gomez-Bayon N, Martinez J, Martinez A, Palacios R 1997. Cloning and expression of the panallergen profilin and the major allergen (Ole e 1) from olive tree pollen. J Allergy Clin Immunol 100:365-372.
- 60B. Batanero E, Villalba M, Ledesma A Puente XS, Rodriguez R. 1996. Ole e 3, an olivetree allergen, belongs to a widespread family of pollen proteins. Eur J Biochem 241: 772-778.
- 61. Chua, K. Y., G. A. Stewart, and W. R. Thomas. 1988. Sequence analysisof cDNA encoding for a major house dust mite allergen, Der p I. J. Exp. Med. 167:175-182.
- 62. Chua, K. Y., C. R. Doyle, R. J. Simpson, K. J. Turner, G. A. Stewart, and W. R. Thomas. 1990. Isolation of cDNA coding for the major mite allergen Der p II by IgE plaque immunoassay. Int. Arch. Allergy Appl. Immunol. 91:118-123.

- 63. Smith WA, Thomas WR. 1996. Comparative analysis of the genes encoding group 3 allergens from Dermatophagoides pteronyssinus and Dermatophagoides farinae. Int Arch Allergy Immunol 109: 133-40.
- 64. Lake, F.R., L.D. Ward, R.J. Simpson, P.J. Thompson, and G.A. Stewart. 1991. House dust mite-derived amylase: Allergenicity and physicochemical characterisation. J. Allergy Clin. Immunol. 87:1035-1042.
- 65. Tovey, E. R., M. C. Johnson, A. L. Roche, G. S. Cobon, and B. A. Baldo. 1989. Cloning and sequencing of a cDNA expressing a recombinant house dust mite protein that binds human IgE and corresponds to an important low molecular weight allergen. J. Exp. Med. 170:1457-1462.
- 66. Yasueda, H., T. Shida, T. Ando, S. Sugiyama, and H. Yamakawa. 1991. Allergenic and proteolytic properties of fourth allergens from Dermatophagoides mites. In: "Dust Mite Allergens and Asthma. Report of the 2nd international workshop" A. Todt, Ed., UCB Institute of Allergy, Brussels, Belgium, pp. 63-64.
- 67. Shen, H.-D., K.-Y. Chua, K.-L. Lin, K.-H. Hsieh, and W.R. Thomas. 1993. Molecular cloning of a house dust mite allergen with common antibody binding specificities with multiple components in mite extracts. Clin. Exp. Allergy 23:934-40.
- 67A. O'Neil GM, Donovan GR, Baldo BA. 1994. Cloning and charaterisation of a major allergen of the house dust mite Dermatophagoides pteronyssinus, homologous with glutathione S-transferase. Biochim Biophys Acta, 1219:521-528.
- 67B. King C, Simpson RJ, Moritz RL, Reed GE, Thompson PJ, Stewart GA. 1996. The isolation and characterization of a novel collagenolytic serine protease allergen (Der p 9) from the dust mite Dermatophagoides pteronyssinus. J Allergy Clin Immunol 98:739-47.
- 68. Lind P, Hansen OC, Horn N. 1988. The binding of mouse hybridoma and human IgE antibodies to the major fecal allergen, Der p I of D. pteronyssinus. J. Immunol. 140:4256-4262.
- 69. Dilworth, R. J., K. Y. Chua, and W. R. Thomas. 1991. Sequence analysis of cDNA coding for a mojor house dust allergn Der f I. Clin. Exp. Allergy 21:25-32.
- 70. Nishiyama, C., T. Yunki, T. Takai, Y. Okumura, and H. Okudaira. 1993. Determination of three disulfide bonds in a major house dust mite allergen, Der f II. Int. Arch. Allergy Immunol. 101:159-166.
- 71. Trudinger, M., K. Y. Chua, and W. R. Thomas. 1991. cDNA encoding the major dust mite allergen Der f II. Clin. Exp. Allergy 21:33-38.
- 72. Aki T, Kodama T, Fujikawa A, Miura K, Shigeta S, Wada T, Jyo T, Murooka Y, Oka S, Ono K. 1995. Immunochemical characteristion of recombinant and native tropomyosins as a new allergen from the house dust mite Dermatophagoides farinae. J Allergy Clin Immunol 96:74-83.
- 72a. Tsai L, Sun Y, Chao P, Ng H, Hung M, Hsieh K, Liaw S, Chua K, 1999. Sequence analysis and expression of a cDNA clone encoding a 98-kDa allergen in Dermatophagoides farinae. Clin Exp Allergy 29:1606-1613.
- 73. van Hage-Hamsten, M., T. Bergman, E. Johansson, B. Persson, H. Jornvall, B. Harfast, and S.G.O. Johansson. 1993. N-terminal amino acid sequence of major allergen of the mite lepidoglyphus destructor (abst). J. Allergy Clin. Immunol. 91:353.

- 74. Varela J, Ventas P, Carreira J, Barbas JA, Gimenez-Gallego G, Polo F. Primary structure of Lep d I, the main Lepidoglyphus destructor allergen. Eur J Biochem 225:93-98, 1994.
- 75. Schmidt M, van der Ploeg I, Olsson S, van Hage Hamsten M. The complete cDNA encoding the Lepidoglyphus destructor major allergen Lep d 1. FEBS Lett 370:11-14, 1995.
- 76. Rautiainen J, Rytkonen M, Pelkonen J, Pentikainen J, Perola O, Virtanen T, Zeiler T, Mantyjarvi R. BDA20, a major bovine dander allergen characterized at the sequence level is Bos d 2. Submitted.
- 77. Gjesing B, Lowenstein H. Immunochemistry of food antigens. Ann Allergy 53:602, 1984.
- 78. de Groot, H., K.G.H. Goei, P. van Swieten, and R.C. Aalberse. 1991. Affinity purification of a major and a minor allergen from dog extract: Serologic activity of affiity-purified Can f I and Can f I-depleted extract. J. Allergy Clin. Immunol. 87:1056-1065.
- 79. Konieczny, A. Personal communication; Immunologic Pharmaceutical Corp.
- 79A. Bulone, V. 1998. Separation of horse dander allergen proteins by two-dimensional electrophoresis. Molecular characterisation and identification of Equ c 2.0101 and Equ c 2.0102 as lipocalin proteins. Eur J Biochem 253:202-211.
- 79B. Swiss-Prot acc. P81216, P81217.
- 80. McDonald, B., M. C. Kuo, J. L. Ohman, and L. J. Rosenwasser. 1988. A 29 amino acid peptide derived from rat alpha 2 euglobulin triggers murine allergen specific human T cells (abst). J. Allergy Clin. Immunol. 83:251.
- 81. Clarke, A. J., P. M. Cissold, R. A. Shawi, P. Beattie, and J. Bishop. 1984. Structure of mouse urinary protein genes: differential splicing configurations in the 3'-non-coding region. EMBO J 3:1045-1052.
- 82. Longbottom, J. L. 1983. Chracterization of allergens from the urines of experimental animals. McMillan Press, London, pp. 525-529.
- 83. Laperche, Y., K. R. Lynch, K. P. Dolans, and P. Feigelsen. 1983. Tissue-specific control of alpha 2u globulin gene expression: constitutive synthesis in submaxillary gland. Cell 32:453-460.
- 83A. Aukrust L, Borch SM. 1979. Partial purification and characterization of two Cladosporium herbarum allergens. Int Arch Allergy Appl Immunol 60:68-79.
- 83B. Sward-Nordmo M, Paulsen BS, Wold JK. 1988. The glycoprotein allergen Ag-54 (Cla h II) from Cladosporium herbarum. Structural studies of the carbohydrate moiety. Int Arch Allergy Appl Immunol 85:288-294.
- 84. Shen, et al. J. Allergy Clin. Immunol. 103:S157, 1999.
- 84A. Crameri R. Epidemiology and molecular basis of the involvement of Aspergillus fumigatus in allergic diseases. Contrib. Microbiol. Vol. 2, Karger, Basel (in press).
- 84B. Shen, et al. (manuscript submitted), 1999

- 84C. Shen HD, Ling WL, Tan MF, Wang SR, Chou H, Han SIH. Vacuolar serine proteinase: A major allergen of Aspergillus fumigatus. 10th International Congress of Immunology, Abstract, 1998.
- 85. Kumar, A., L.V. Reddy, A. Sochanik, and V.P. Kurup. 1993. Isolation and characterization of a recombinant heat shock protein of Aspergillus fumigatus. J. Allergy Clin. Immunol. 91:1024-1030.
- 86A. Shen HD, Lin WL, Tsai JJ, Liaw SF, Han SH. 1996. Allergenic components in three different species of Penicillium: crossreactivity among major allergens. Clin Exp Allergy 26:444-451.
- 86B. Shen, et al. Abstract; The XVIII Congress of the European Academy of Allergology and Clinical Immunology, Brussels, Belgium, 3-7 July 1999.
- 87. Shen HD, Liaw SF, Lin WL, Ro LH, Yang HL, Han SH. 1995. Molecular cloning of cDNA coding for the 68 kDa allergen of Penicillium notatum using MoAbs. Clin Exp Allergy 25:350-356.
- 88. Shen, H.D., K.B. Choo, H.H. Lee, J.C. Hsieh, and S.H. Han. 1991. The 40 kd allergen of Candida albicans is an alcohol dehydrogenease: molecular cloning and immunological analysis using monoclonal antibodies. Clin. Exp. Allergy 21:675-681.
- 89. Shen, et al. Clin. Exp. Allergy (in press), 1999.
- 90. Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA.1998. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem 273:29489-96.
- 91. Deuell, B., L.K. Arruda, M.L. Hayden, M.D. Chapman and T.A.E. Platts-Mills. 1991. Trichophyton tonsurans Allergen I. J. Immunol. 147:96-101.
- 91A. Schmidt M, Zargari A, Holt P, Lindbom L, Hellman U, Whitley P, van der Ploeg I, Harfast B, Scheynius A. 1997. The complete cDNA sequence and expression of the first major allergenic protein of Malassezia furfur, Mal f 1. Eur J Biochem 246:181-185.
- 91B. Horner WE, Reese G, Lehrer SB. 1995. Identification of the allergen Psi c 2 from the basidiomycete Psilocybe cubensis as a fungal cyclophilin. Int Arch Allergy Immunol 107:298-300.
- 92. Kuchler, K., M. Gmachl, M. J. Sippl, and G. Kreil. 1989. Analysis of the cDNA for phospholipase A2 from honey bee venom glands: The deduced amino acid sequence reveals homology to the corresponding vertebrate enzymes. Eur. J. Biochem. 184:249-254.
- 93. Gmachl, M., and G. Kreil. 1993. Bee venom hyaluronidase is homologous to a membrane protein of mammalian sperm. Proc. Natl. Acad. Sci. USA 90:3569-3573.
- 94. Habermann, E. 1972. Bee and wasp venoms. Science 177:314-322.
- 95. Jacobson, R.S., and D.R. Hoffman. 1993. Characterization of bumblebee venom allergens (abst). J. Allergy Clin. Immunol. 91:187.
- 96. Arruda LK, Vailes LD, Mann BJ, Shannon J, Fox JW, Vedvick TS, Hayden ML, Chapman MD. Molecular cloning of a major cockroach (Blattella germanica) allergen, Bla g 2. Sequence homology to the aspartic proteases. J Biol Chem 270:19563-19568, 1995.

- 97. Arruda LK, Vailes LD, Hayden ML, Benjamin DC, Chapman MD. Cloning of cockroach allergen, Bla g 4, identifies ligand binding proteins (or calycins) as a cause of IgE antibody responses. J Biol Chem 270:31196-31201, 1995.
- 98. Arruda LK, Vailes LD, Benjamin DC, Chapman MD. Molecular cloning of German Cockroach (Blattella germanica) allergens. Int Arch Allergy Immunol 107:295-297, 1995.
- 98A. Wu CH, Lee MF, Liao SC. 1995. Isolation and preliminary characterization of cDNA encoding American cockroach allergens. J Allergy Clin Immunol 96: 352-9.
- 99. Mazur, G., X. Baur, and V. Liebers. 1990. Hypersensitivity to hemoglobins of the Diptera family Chironomidae: Structural and functional studies of their immunogenic/allergenic sites. Monog. Allergy 28:121-137.
- 100. Soldatova, L., L. Kochoumian, and T.P. King. 1993. Sequence similarity of a hornet (D. maculata) venom allergen phospholipase A1 with mammalian lipases. FEBS Letters 320:145-149.
- 101. Lu, G., L. Kochoumian and T.P. King. Whiteface hornet venom allergen hyaluronidase: cloning and its sequence similarity with other proteins (abst.). 1994. J. Allergy Clin. Immunol. 93:224.
- 102. Fang, K. S. F., M. Vitale, P. Fehlner, and T. P. King. 1988. cDNA cloning and primary structure of a white-faced hornet venom allergen, antigen 5. Proc. Natl. Acad. Sci., USA 85:895-899.
- 103. King, T. P., D. C. Moran, D. F. Wang, L. Kochoumian, and B.T. Chait. 1990. Structural studies of a hornet venom allergen antigen 5, Dol m V and its sequence similarity with other proteins. Prot. Seq. Data Anal. 3:263-266.
- 104. Lu, G., M. Villalba, M.R. Coscia, D.R. Hoffman, and T.P. King. 1993. Sequence analysis and antigen cross reactivity of a venom allergen antigen 5 from hornets, wasps and yellowjackets. J. Immunol. 150: 2823-2830.
- 105. King, T. P. and Lu, G. 1997. Unpublished data.
- 105A. King TP, Lu G, Gonzalez M, Qian N and Soldatova L. 1996. Yellow jacket venom allergens, hyaluronidase and phospholipase: sequence similarity and antigenic cross-reactivity with their hornet and wasp homologs and possible implications for clinical allergy. J. Allergy Clin. Immunol. 98:588-600.
- 106. Hoffman, D.R. 1993. Allergens in hymenoptera venom XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. J. Allergy Clin. Immunol. 92:707-716.
- 107. Hoffman, D.R. 1992. Unpublished data.
- 108. Hoffman, D. R. 1993. The complete amino acid sequence of a yellowjacket venom phospholipase (abst). J. Allergy Clin. Immunol. 91:187.
- Jacobson, R.S., D.R. Hoffman, and D.M. Kemeny. 1992. The cross-reactivity between bee and vespid hyaluronidases has a structural basis (abst). J. Allergy Clin. Immunol. 89:292.
- 110. Hoffman, D.R. 1993. Allergens in Hymenoptera venom XXIV: The amino acid sequences of imported fire ant venom allergens Sol i II, Sol i III, and Sol i IV. J. Allergy Clin. Immunol. 91:71-78.

- 111. Schmidt, M., R.B. Walker, D.R. Hoffman, and T.J. McConnell. 1993. Nucleotide sequence of cDNA encoding the fire ant venom protein Sol i II. FEBS Letters 319:138-140.
- 112. Elsayed S, Bennich H. The primary structure of Allergen M from cod. Scand J Immunol 3:683-686, 1974.
- 113. Elsayed S, Aas K, Sletten K, Johansson SGO. Tryptic cleavage of a homogeneous cod fish allergen and isolation of two active polypeptide fragments. Immunochemistry 9:647-661, 1972.
- 114. Hoffman, D. R. 1983. Immunochemical identification of the allergens in egg white. J. Allergy Clin. Immunol. 71:481-486.
- 115. Langeland, T. 1983. A clinical and immunological study of allergy to hen's egg white. IV. specific IgE antibodies to individual allergens in hen's egg white related to clinical and immunolgical parameters in egg-allergic patients. Allergy 38:493-500.
- 116. Daul, C.B., M. Slattery, J.E. Morgan, and S.B. Lehrer. 1993. Common crustacea allergens: identification of B cell epitopes with the shrimp specific monoclonal antibodies. In: "Molecular Biology and Immunology of Allergens" (D. Kraft and A. Sehon, eds.). CRC Press, Boca Raton. pp. 291-293.
- 117. K.N. Shanti, B.M. Martin, S. Nagpal, D.D. Metcalfe, P.V. Subba Rao. 1993. Identification of tropomyosin as the major shrimp allergen and characterization of its IqE-binding epitopes. J. Immunol. 151:5354-5363.
- 117A. M. Miyazawa, H. Fukamachi, Y. Inagaki, G. Reese, C.B. Daul, S.B. Lehrer, S. Inouye, M. Sakaguchi. 1996. Identification of the first major allergen of a squid (Todarodes pacificus). J. Allergy Clin. Immunol. 98:948-953.
- 117B A. Lopata et al. 1997. Characteristics of hypersensitivity reactions and identification of a uniques 49 kDa IgE binding protein (Hal-m-1) in Abalone (Haliotis midae). J.Allergy Clin. Immunol. Submitted
- 118. Monsalve, R.I., M.A. Gonzalez de la Pena, L. Menendez-Arias, C. Lopez-Otin, M. Villalba, and R. Rodriguez. 1993. Characterization of a new mustard allergen, Bra j IE. Detection of an allergenic epitope. Biochem. J. 293:625-632.
- 119. Mena, M., R. Sanchez-Monge, L. Gomez, G. Salcedo, and P. Carbonero. 1992. A major barley allergen associated with baker's asthma disease is a glycosylated monomeric inhibitor of insect alpha-amylase: cDNA cloning and chromosomal location of the gene. Plant Molec. Biol. 20:451-458.
- 120. Menendez-Arias, L., I. Moneo, J. Dominguez, and R. Rodriguez. 1988. Primary structure of the major allergen of yellow mustard (Sinapis alba L.) seed, Sin a I. Eur. J. Biochem. 177:159-166.
- 121. Gonzalez R, Varela J, Carreira J, Polo F. Soybean hydrophobic protein and soybean hull allergy. Lancet 346:48-49, 1995.
- 122. Christie, J. F., B. Dunbar, I. Davidson, and M. W. Kennedy. 1990. N-terminal amino acid sequence identity between a major allergen of Ascaris lumbricoides and Ascaris suum and MHC-restricted IgE responses to it. Immunology 69:596-602.

- 123. Czuppon AB, Chen Z, Rennert S, Engelke T, Meyer HE, Heber M, Baur X. The rubber elongation factor of rubber trees (Hevea brasiliensis) is the major allergen in latex. J Allergy Clin Immunol 92:690-697, 1993.
- 124. Attanayaka DPSTG, Kekwick RGO, Franklin FCH. 1991. Molecular cloning and nucleotide sequencing of the rubber elongation factor gene from hevea brasiliensis. Plant Mol Biol 16:1079-1081.
- 125. Chye ML, Cheung KY. 1995. (1,3-glucanase is highly expressed in Laticifers of Hevea brasiliensis. Plant Mol Biol 26:397-402.
- 126. Alenius H, Palosuo T, Kelly K, Kurup V, Reunala T, Makinen-Kiljunen S, Turjanmaa K Fink J. 1993. IgE reactivity to 14-kD and 27-kD natural rubber proteins in Latex-allergic children with Spina bifida and other congenital anomalies. Int Arch Allergy Immunol 102:61-66.
- 127. Yeang HY, Cheong KF, Sunderasan E, Hamzah S, Chew NP, Hamid S, Hamilton RG, Cardosa MJ. 1996. The 14.6 kD (REF, Hev b 1) and 24 kD (Hev b 3) rubber particle proteins are recognized by IgE from Spina Bifida patients with Latex allergy. J Allerg Clin Immunol in press.
- 128. Sunderasan E, Hamzah S, Hamid S, Ward MA, Yeang HY, Cardosa MJ. 1995. Latex B-serum (-1,3-glucanase (Hev b 2) and a component of the microhelix (Hev b 4) are major Latex allergens. J nat Rubb Res 10:82-99.

Official list of allergens
IUIS Allergen Nomenclature Subcommittee

1

MW Sequence Accesion # or

Allergen source

Systematic and original names

kDa data References

2000.03.01 Jørgen Nedergaard Larsen and Henning Løwenstein, ALK-Abelló, Bøge Allé 6-8, DK-2970 Hørsholm, Denmark ftp://biobase.dk/pub/who-iuis/allergen.list

Official list of allergens
IUIS Allergen Nomenclature Subcommittee

17

References