20BS1101

UNIT-IV

8. a. Solve $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} - 3y = x^2 \log x$. 8M

b. Apply the method of variation of parameters to solve $\frac{d^2y}{dx^2} + y = x \cos x.$ 7M

(or)

- 9. a. Solve the simultaneous equations, $\frac{dx}{dt} + 5x 2y = t$, $\frac{dy}{dt} + 2x + y = 0$ given that x = y = 0 when t = 0.
 - b. Solve $\frac{d^2y}{dx^2} + y = \sin x$ by the method of undetermined coefficients.

7M

* * *

VR20

201)					
(30)	Reg. No:				

SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

I/IV B.Tech. DEGREE EXAMINATION, JULY, 2021 First Semester

20BS1101 MATRICES AND DIFFERENTIAL CALCULUS

Time: 3hours

Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- 1. a. Define the rank of a quadratic form.
 - b. Define unitary matrix and give one example.
 - c. If -2, 3 and 4 are the eigen values of a given matrix A then what is the value of det A?
 - d. State Lagrange's mean value theorem.
 - e. Write the formula for finding the curvature at any point P(x, y) on the curve y = f(x).
 - f. State the condition for the differential equation M(x, y) dx + N(x, y)dy = 0 to be exact.
 - g. Find the integrating factor for y(1 + xy)dx + x(1 xy)dy = 0.
 - h. Find the complementary function for the differential equation

$$\frac{d^2y}{dx^2} + 4y = \sec 2x$$

- i. Write the general form of Legendre's linear differential equation.
- j. Find Wronskian of e^{2x} and e^{-2x} .

20BS1101

PART-B

 $4 \times 15 = 60 M$

UNIT-I

- 2. a. For what values of λ , the equations $x+y+z=1, \ x+2y+4z=\lambda, \ x+4y+10z=\lambda^2 \ \text{have a}$ solution and solve them completely in each case.
 - b. Find the eigen values and the corresponding eigen vectors of the

matrix
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$
. 7M

- 3. a. Examine the nature of the quadratic form $3x^2 3y^2 5z^2 2xy 6yz 6xz$ by converting into canonical form and specify the matrix of transformation. 8M
 - b. Show that $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ satisfies its characteristic equation and find A^{-1} .

UNIT-II

4. a. Using Maclaurin's series find the expansion of $log_e(1+x)$. 8M

VR20

20BS1101

b. Using Lagrange's mean value theorem, show that $\frac{\pi}{6} + \frac{1}{5\sqrt{3}} < \sin^{-1}\left(\frac{3}{5}\right) < \frac{\pi}{6} + \frac{1}{8}.$ 7M

(or)

- 5. a. Expand the function $f(x, y) = e^x \log(1 + y)$ in terms of x and y up to third degree terms using Taylor's theorem. **8M**
 - b. Show that the function $f(x, y) = x^3 + y^3 63(x + y) + 12xy$ has maximum at (-7, -7) and minimum at (3, 3).

UNIT-III

- 6. a. Solve $y^2dx + (x^2 xy y^2) dy = 0$. **8M**
 - b. Show that the system of rectangular hyperbolas $x^2 y^2 = a^2$ and $xy = c^2$ are mutually orthogonal trajectories. 7M

(or)

7. a. Solve the differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 8x^2e^{2x}\sin 2x$.

8M

b. A body kept in air with temperature 25°C cools from 140°C to 80°C in 20 minutes. Find when the body cools down to 35°C. 7M