CODE: 16EE1004 SET-1

## ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

#### BASIC ELECTRICAL & ELECTRONICS ENGINEERING

(Common to CE & ME branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

### **UNIT-I**

- 1. a Explain the delta-star transformation for a resistive network? 6M
  - b Find the equivalent resistance  $R_{ab}$  for the circuit shown below. All the resistor values are 30  $\Omega$



- 2. a State and explain the Kirchhoff's laws as applied to electrical 6M circuits.
  - b A circuit consists of three resistances of 12, 18 and 36 ohms respectively by joined in parallel and the combination is connected in series with a resistance of 12 ohms. The whole circuit is connected to 60V supply. Calculate current in each branch, total current drawn and power dissipated in each resistor

### **UNIT-II**

- 3. a Explain the working of a DC Generator 7M
  - b Explain characteristics of Shunt Generator.

7M

(OR)

4. a Derive the torque equation of DC motor.

7M 7M

b A 250V, 4-pole, wave-wound series motor has 782 conductors on its armature. It has armature and series field resistance of  $0.75\Omega$ . The motor takes a current of 40A. Find its speed and gross torque developed if it has a flux per pole of 25mWb.

## **UNIT-III**

| 5. | a<br>b | Explain the terms in transformers i) regulation ii) efficiency Explain the S.C Test on a single-phase transformer with suitable diagrams                                                                                                                                                                                                                                     |          |  |  |
|----|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
|    |        | (OR)                                                                                                                                                                                                                                                                                                                                                                         |          |  |  |
| 6. | a<br>b | Explain the operation of 3- $\emptyset$ induction motor A 3- $\emptyset$ induction motor at standstill has a rotor voltage of 120V between the slip rings on open-circuit. The rotor winding is star-connected and has reactance of $1\Omega$ per phase at standstill and a resistance of $0.2\Omega$ per phase. Find the rotor current per phase and power factor at start. |          |  |  |
|    |        | <u>UNIT-IV</u>                                                                                                                                                                                                                                                                                                                                                               |          |  |  |
| 7. | a<br>b | Derive the e.m.f equation of an alternator.  Explain how voltage regulation calculated using synchronous                                                                                                                                                                                                                                                                     | 7M<br>7M |  |  |
|    |        | impedance method. (OR)                                                                                                                                                                                                                                                                                                                                                       |          |  |  |
| 8. | a      | Classify measuring instruments. Explain in detail about the principle of operation of electrical instruments.                                                                                                                                                                                                                                                                | 8M       |  |  |
|    | b      | What are advantages, disadvantages and applications of PMMC instrument.                                                                                                                                                                                                                                                                                                      | 6M       |  |  |
|    |        | <u>UNIT-V</u>                                                                                                                                                                                                                                                                                                                                                                |          |  |  |
| 9. | a      | Explain the construction of PN junction diode                                                                                                                                                                                                                                                                                                                                | 7M       |  |  |
|    | b      | Explain the working of Full wave rectifier ( <b>OR</b> )                                                                                                                                                                                                                                                                                                                     | 7M       |  |  |
| 10 | •      | Draw and explain input and output characteristics of CE configuration.                                                                                                                                                                                                                                                                                                       | 14M      |  |  |

CODE: 16EE1002 SET-1

## ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

#### SWITCHING THEORY AND LOGIC DESIGN

(Electrical and Electronics Engineering)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the Question must be answered at one place

## **UNIT-I**

1. a If A = -57 and B = +38, then represent A and B in 8-bit 2's complement.

Find (i) A + B (ii) A - B using 2's complement method.

- b Perform the following operations using r-1's complement 8 arithmetic:
  - i)  $(+43)_{10} (-53)_{10}$ . ii)  $(+346.56)_{10} (+456.78)_{10}$ .
  - iii)  $(+43)_8 (-53)_8$  iv)  $(+346)_8 (+456)_8$  (**OR**)
- 2. a Solve for X.

i)  $(7287)_{10} = (X)_{16}$  ii)  $(2B.A4)_{16} = (X)_4$  iii)  $(48)_{10} = (120)_X$ 

8

14

- b Convert the following numbers.

  6

  i) (4037) to base 8 ii) (1435) to base 2 iii) (1203) to
  - i)  $(4037)_{10}$  to base 8 ii)  $(1435)_8$  to base 2 iii)  $(1203)_4$  to decimal

## **UNIT-II**

3. a Given the following Boolean expression:

 $F = x\overline{y}\overline{z} + \overline{x}\overline{y}z + \overline{w}xy + w\overline{x}y + wxy$ 

- i) Obtain the truth table of the function
- ii) Draw the logic diagram using the original Boolean expression.
- iii) Simplify the function to a minimum number of literals using Boolean algebra.
- iv)Obtain the truth table of the function from the simplified expression and show that it is the same as the one in part (i).

Simplify the following Boolean expressions to a minimum 6 4. a number of literals ii)  $(x + y) + (x + \overline{y})$  iii)  $\overline{x}y + x\overline{y} + xy + \overline{x}\overline{y}$ i)  $\bar{x}\bar{y} + xy + \bar{x}y$ b Simplify the following Boolean expression and implement 8 them in i) using only NAND gates ii)using only NOR gates  $A\overline{B} + ABD + AB\overline{D} + \overline{A}\overline{C}\overline{D} + \overline{A}B\overline{C}$ **UNIT-III** 5. a 8 14) using K – Map method and implement the same using only NOR gates. Design a binary to gray code converter circuit? b 6 (OR) Simplify the function F (A,B,C,D) =  $\Sigma$  m (0, 2, 3, 5, 7, 8, 6. a (6+8)10, 11,14, 15) using the following methods: i) Karnaugh map method. ii) Tabulation method. **UNIT-IV** Define a priority encoder and also design a 4 X 2 priority 7. a 6 encoder circuit? Implement a Four bit Adder-subtractor circuit and explain its 8 b operation. (OR) Realize a 4 x 16 decoder using two 3 x 8 decoders. 8. a 6 Design 4-bit Carry look ahead adder and what is its 8 b advantage over carry ripple adder. **UNIT-V** 9. Design up-down Asynchronous counter for 3 bits using JK 8 a flip flops? Draw the circuit for a 4-bit binary ripple counter using T 6 b flip-flops and explain its operation. (OR) Draw and Explain the operation of universal shift register? 8 10. a Explain about JK flip-flop b 6 2 of 2

## **CODE: 16EC1001** ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI

#### (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

#### **ELECTRONIC DEVICES**

(Electronics & Communication Engineering) **Time: 3 Hours** Max Marks: 70 Answer ONE Question from each Unit All Questions Carry Equal Marks All parts of the question must be answered in one place only **UNIT-I** Explain CRT and CRO with neat sketches. 14 1. (OR) With a suitable sketch, derive expression for path of electron 14 2. directed to perpendicular electric and magnetic fields **UNIT-II** Write in detail about Hall effect and its applications 3. a 7 Why hole mobility is less compared to electron? 4 b What is Fermi level in conductors? 3 (OR) a Explain in-trinsic semi conductor 5 4. Explain ex-trinsic semi conductors 9 **UNIT-III** 5. a Explain V-I characteristics of a diode. 5 Write short notes: 9 b i) Varactor diode ii)Tunnel diode diode iii)Photo diode with necessary sketches. (OR) a Derive the expression for transition capacitance of a PN 5 diode. With neat sketches and necessary waveforms explain about 9 the regulation characteristics of Zener diode.

## **UNIT-IV**

| 7.  | a   | With a neat diagram explain the various current components in an NPN bipolar junction transistor & hence derive general equation for collector current, $I_C$ ? |    |
|-----|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     | b   | Compare CB, CE and CC amplifiers in view of A <sub>V</sub> , A <sub>I</sub> , R <sub>I</sub> &                                                                  | 7  |
|     |     | $R_{O}$ .                                                                                                                                                       |    |
|     |     | (OR)                                                                                                                                                            |    |
| 8.  |     | Draw the h-parameter model of CE amplifier and derive                                                                                                           | 14 |
|     |     | $A_V, A_I, R_I \& R_O$                                                                                                                                          |    |
|     |     | <u>UNIT-V</u>                                                                                                                                                   |    |
| 9.  | a   | Explain JFET V-I characteristics.                                                                                                                               | 7  |
|     | b   | Give the construction details of JFET and explain its operation.                                                                                                | 7  |
|     |     | (OR)                                                                                                                                                            |    |
| 10. | . a | Explain the working of MOSFET in                                                                                                                                | 8  |
|     |     | i) Enhancement mode ii) Depletion mode.                                                                                                                         |    |
|     |     | Draw the necessary diagrams and graphs.                                                                                                                         |    |
|     | b   | Explain the operation of FET with its characteristics and explain the different regions in transfer characteristics.                                            | 6  |

## CODE: 16CS1002 SET-2

## ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

## DATA STRUCTURES (Common to CSE, IT Branches)

Time: 3 Hours Max Marks: 70

Answer ONE Question from each Unit
All Questions Carry Equal Marks
All parts of the Question must be answered at one place

|     |            | <u>UNIT-I</u>                                                                                                                            |               |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| 1.  | a)         | Define recursion. Write a program to find the factorial of a given positive number                                                       | 7M            |
|     | b)         | using recursion.  Define Data Structure. Explain classification of data structures and operations on data structures.                    | 7M            |
| 2   | - \        | (OR)                                                                                                                                     | 10 <b>N</b> / |
| 2.  | a)         | Differentiate between linear, binary and multiple recursions. Write a recursive algorithm to print GCD of two numbers?                   | 10M           |
|     | b)         | Evaluate the best, average and worst case time complexity of linear search.                                                              | 4M            |
|     |            | <u>UNIT-II</u>                                                                                                                           |               |
| 3.  | a)         | Write an algorithm (or) c program to sort the given set of numbers based on their frequency.                                             | 7M            |
|     |            | Sample Input: [10,20,30,20,10,50,30,40,50,50,20,20]                                                                                      |               |
|     | <b>L</b> ) | Sample Output: [40,10,30,50,20]                                                                                                          | 71.4          |
|     | b)         | Write an algorithm to read a matrix of m rows and n columns with the following operations                                                | 7M            |
|     |            | i) sort the elements of a matrix in row wise                                                                                             |               |
|     |            | ii) print the sorted matrix in row wise.                                                                                                 |               |
| 4   | ,          | $(\mathbf{OR})$                                                                                                                          | 73.4          |
| 4.  | a)         | Write an algorithm for binary search. Write an algorithm for quick sort along with its time complexities?                                | 7M<br>7M      |
|     | b)         | write an algorithm for quick sort along with its time complexities?                                                                      | / IVI         |
|     |            | UNIT-III                                                                                                                                 |               |
| 5.  | a)         | Explain about Queue and its operations. Write the procedure for each operation.                                                          | 10M           |
|     | b)         | Write the functional difference between stack and queue.                                                                                 | 4M            |
| _   |            | (OR)                                                                                                                                     |               |
| 6.  | a)         | State the data structure which is required to check whether an expression contains balanced parenthesis or not? Explain with an example. | 10M           |
|     | b)         | Write an algorithm to check whether a given string is palindrome or not using stack.                                                     | 4M            |
|     |            | <u>UNIT-IV</u>                                                                                                                           |               |
| 7.  | a)         | Write an algorithm to display the node values using single linked list                                                                   | 7M            |
| , . | b)         | Write an algorithm to count number of nodes in a given linked list.                                                                      | 7M            |
|     |            |                                                                                                                                          |               |

A node can be deleted from various positions in a single linked list. Perform the 8. a) 10M following operations with a pictorial representation and explanation. i) delete beginning node of the linked list. ii) delete a node from a specific position. iii) delete the end node of the linked list. How to swap two different nodes in a single linked list without swapping data. b) 4M **UNIT-V** 9. Construct a binary search tree by inserting following nodes in sequence: 7M a) 68, 85, 23, 38, 44, 80, 30, 108, 26, 5, 92, 60. Write in-order, pre-order and post-order traversal of the above generated Binary search tree Write the DFS traversal for the following graph? 7M b) Construct a binary tree from the following traversal orders: 10. a) 7M Preorder: A B C D E F G Inorder: C B D A F E G Define a Graph. Explain various graph representations. 7M

> 2 of 2 \*\*\*

Code: 13BS1002 SET-I

# ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS) I B.Tech II Semester Supplementary Examinations, October / November-2020 ENGINEERING MATHEMATICS-II

(Common to EEE & ECE)

Time: 3 Hours Max Marks: 70

#### **PART-A**

#### ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$ 

- 1. a) If the first approximation  $x_0$  for f(x) = 0 then the next approximation  $x_1$  by Newton-Raphson method is given by.
  - b) If y = a + bx represents a straight line then the normal equations are given by least squares method.
  - c) Relation between  $\nabla$  and  $E^{-1}$ .
  - d) The value of  $\Delta^3(1+x)(1-3x)(1+5x)$  if h=1.
  - e) States that Trapezoidal rule.
  - f) If  $y_0 = 1$ , h = 0.2,  $f(x_0, y_0) = 1$  then by Euler's method, the value of  $y_1$  is given by.
  - g) Laplace transform of unit step function.
  - h)  $L^{-1}\left\{\frac{1}{(s-2)^2+9}\right\}$
  - i) Write the first order partial differential equation by eliminating a,b from z = ax + by + ab.
  - j) The solution of the partial differential equation  $z = px + qy 2\sqrt{pq}$  is given by.

#### PART-B

#### Answer one question from each unit

[5x12=60M]

#### <u>UNIT-I</u>

- 2. a) Using the method of false position, find the root of  $x^3 x 4 = 0$ .
  - b) Find the positive root of the equation  $x e^x \cos x = 0$  by Newton-Raphson method.

(OR)

- 3. a) Find a positive root of the equation  $3x = \cos x + 1$  by Iteration method.
  - b) Fit a second degree parabola of the form  $y = \alpha + bx + cx^2$  to the following data by the method of least squares.

| х | 0 | 1   | 2   | 3   | 4   |
|---|---|-----|-----|-----|-----|
| у | 1 | 1.8 | 1.3 | 2.5 | 6.3 |

#### **UNIT-II**

- 4. a) Find  $sin40^{\circ}$  by Newton forward interpolation, Given that  $sin45^{\circ} = 0.7071$ ,  $sin50^{\circ} = 0.7660$ ,  $sin55^{\circ} = 0.8192$ ,  $sin60^{\circ} = 0.8660$ .
  - b) Using Lagrange's interpolation formula to find y(10) from the following data

 x
 5
 6
 9
 11

 y
 12
 13
 14
 16

(OR)

5. a) Use the Gauss forward interpolation formula to find f(3.3) from the following table.

*x* 1 2 3 4 5 *f(x)* 15.30 15.10 15.00 14.50 14.00

b) Using Simpson's  $\frac{3}{8}$  rule, evaluate  $\int_0^1 \frac{1}{1+x^2} dx$  by dividing the range into 6 equal parts.

#### **UNIT-III**

- 6. a) Using Taylor's series method to find y at the point x = 0.1, given that  $y^1 = x^2 + y^2$ , y(0) = 1.
  - b) Using Modified Euler's method, find the solution of the initial value problem  $y^1 = x y$ , y(0) = 1, at x = 0.1. Take the step length h = 0.1 and carryout three modifications.

(OR)

- 7. a) Find the first four successive approximate solutions at x = 0.5 by Picard's method for the differential equation  $y^1 = x + y, y(0) = 1$ .
  - b) Find the value of y at x = 0.1 by R-K method for the differential equation  $y^1 x^2 y$ , y(0) 1.

#### UNIT-IV

- 8. a) Find the Laplace transform of  $t \int_0^t \frac{e^{-t} \sin t}{t} dt$ 
  - b) Find the inverse Laplace transform of  $\frac{5s+3}{(s-1)(s^2+2s+5)}$

(OR)

- 9. a) Find the value of  $\int_0^\infty e^{-t} (\frac{\cos at \cos bt}{t}) dt$  by Laplace transform technique.
  - b) Solve by the method of Laplace transforms, the equation  $y^{111} + 2y^{11} y^1 2y = 0$ ,

$$y(0) = y^{1}(0) = 0, y^{11}(0) = 6$$

#### **UNIT-V**

- 10. a) Form the Partial differential equation by eliminating the arbitrary functions f and g from the relation z = yf(x) + xg(y).
  - b) Solve  $p \tan x + q \tan y \tan z$ .

(OR)

- 11. a) Solve  $x(y^2 + z)p y(x^2 + z)q = z(x^2 y^2)$ .
  - b) Solve  $2xz_x 3yz_y = 0$  by the method of separation of variables.

SET-2 **CODE: 13EE1002** 

#### ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech II Semester Supplementary Examinations, October / November-2020

#### BESIC ELECTRICAL AND ELECTRONICS ENGINEERING (Common to CE & ME)

Time: 3 Hours Max Marks: 70

#### **PART-A**

#### ANSWER ALL QUESTIONS

 $[1 \times 10 = 10 \text{ M}]$ 

- 1. a) Define Ohms law.
  - b) Define electric potential.
  - c) Write down the torque equation of a D.C motor.
  - d) List out the types of D.C. motors.
  - e) What do you mean by ideal transformer?
  - f) Define slip.
  - g) What are the requirements of indicating instruments?
  - h) What are the different types of PMMI instruments?
  - i) Define ripple factor.
  - Draw the energy band diagram of a PN junction diode. i)

#### **PART-B**

#### Answer one question from each unit

[5x12=60M]

6M

#### **UNIT-I**

- 2. a) With the help of a suitable example, state and explain Kirchhoff's 6M laws.
  - b) Derive the star delta transformation of a resistive network.

(OR) Determine the resistance between XY for the circuit shown on Fig.1 3. 12M



Fig. 1

1 of 2

**UNIT-II** 

- 4. a) State the different types of DC generators along with a neat sketch and 6M state the applications of each type of DC generator.
  - b) Determine the value of torque in kg-m developed by the armature of a 6M 6 pole; wave wound motor having 492 conductors, 30mWb flux per pole when the total armature current is 40A.

#### (OR)

5. a) Draw a neat sketch and explain about 3 point starter.

7M

b) A 440V D.C shunt generator has  $R_a = 0.25\Omega$  and  $R_{sh} = 220\Omega$  while 5M delivering a load current of 50A, it has a terminal voltage of 440V. Determine the generated EMF and power developed.

#### **UNIT-III**

- 6. a) Explain the procedure of OC and SC tests on a single phase 8M transformer with a neat sketch.
  - b) A 3 phase, 50Hz, 8 pole alternator has a star connected winding with 4M 120 slots and 8 conductors per slot. The flux per pole is 0.05Wb. Determine the phase and line voltages. Assume the winding to be full pitch.

#### (OR)

- 7. a) Explain the synchronous impedance method for calculating the 7M regulation of a 3 phase alternator.
  - b) A 12 pole, 3 phase alternator is coupled to an engine running at 500 5M r.p.m. It supplies an induction motor which has full load speed of 1440 r.p.m. Find the % slip and the number of poles of the motor. (Assume the necessary data required).

#### **UNIT-IV**

- 8. a) Derive the equation for deflection in spring controlled PMMC 6M instrument.
  - b) Derive the torque equation of Moving Iron instrument.

6M

### (OR)

- 9. a) How is the current range of a PMMC instrument extended with the 6M help of shunts?
  - b) A 2mA meter with an internal resistance of  $100\Omega$  is to be converted to 6M 0-150 mA ammeter. Calculate the value of shunt resistance required.

### <u>UNIT-V</u>

10. Draw the circuit diagram of a full wave rectifier. Explain the 12M operation of the circuit with relevant waveforms.

#### (OR)

11. a) Give the constructional details of SCR?

6M

b) Define (i) Holding current (ii) Latching current (iii) forward 6M breakdown voltage (iv) reverse breakdown voltage.