调和四边形

定义 1. 对边长度的乘积相等的圆内接四边形, 称为调和四边形。

性质 1. 设四边形 ABCD 为调和四边形,M 为 AC 中点,N 为 BD 中点,则

 $\triangle ANB \leadsto_{\triangle} ADC \leadsto_{\triangle} BNC$, $\triangle AND \leadsto_{\triangle} ABC \leadsto_{\triangle} DNC$, $\triangle AMB \leadsto_{\triangle} DCB \leadsto_{\triangle} DMA$, $\triangle CMB \leadsto_{\triangle} DAB \leadsto_{\triangle} DMC$.

例 1. (2011, 高联 A 卷) 四边形 ABCD 内接于 $\odot O$, M , N 分别为 AC , BD 的中点。若 $\angle BMC = \angle DMC$,求证: $\angle AND = \angle CND$ 。

性质 2. 设 P 为圆 ω 外一点,PA,PC 是 ω 的两条切线,切点分别为 A,C ,过 P 的一条 ω 的割线交 ω 于 B,D 两点,则四边形 ABCD 为调和四边形。

性质 3. 设四边形 ABCD 为内接于圆 ω 的调和四边形,过 A,C 分别作 ω 的切线交于点 P ,则 P,B,D 三点共线。同理,过 B,D 分别作 ω 的切线交于点 Q ,则 Q,A,C 三点共线。

例 2. (2024, 高联预赛广东) AB 为圆 O 的一条弦($AB < \sqrt{3}R$, R 为圆 O 的半径),C 为 优弧 AB 的中点,M 为弦 AB 的中点,点 D, E, N 分别在 BC, CA 和劣弧 AB 上,满足 BD = CE ,且 AD, BE, CN 三线共点于 F 。延长 CN 至 G ,使 GN = FN 。求证: $\angle FMB = \angle GMB$ 。

性质 4. 设四边形 ABCD 为内接于圆 ω 的调和四边形,P 为 ω 上任意一点,则 PA,PC;PB,PD 为调和线束,即 $\frac{\sin\angle APB}{\sin\angle CPB} = \frac{\sin\angle APD}{\sin\angle CPD} \ .$

定义 2. 三角形中线的等角线称为三角形的陪位中线。

性质 5. 设四边形 ABCD 为调和四边形,对角线 AC,BD 交于点 Q,则 DQ 为 $\triangle ACD$ 的陪位中线,BQ 为 $\triangle ABC$ 的陪位中线,CQ 为 $\triangle BCD$ 的陪位中线,AQ 为 $\triangle ABD$ 的陪位中线。

例 3. $\triangle ABC$ 的内切圆 $\odot I$ 分别与边 CA,AB 切于点 E,F, BE,CF 分别与 $\odot I$ 交于点 M,N 。 求证: $MN\cdot EF=3MF\cdot NE$ 。

例 4. O 为锐角 $\triangle ABC$ 的外心,AB < AC ,Q 为 $\angle BAC$ 的外角平分线与 BC 的交点,点 P 在 $\triangle ABC$ 的内部, $\triangle BPA$ \hookrightarrow $\triangle APC$ 。 求证: $\angle QPA + \angle OQB = \frac{\pi}{2}$ 。

例 5. (2013, 亚太数学奥林匹克) PB,PD 为 $\odot O$ 的切线, PCA 为 $\odot O$ 的割线, C 关于 $\odot O$ 的切线分别与 PD,AD 交于点 Q,R 。 AQ 与 $\odot O$ 的另一个交点为 E 。求证: B,E,R 三点共线。

例 6. 在 $\triangle ABC$ 中,M 为 BC 的中点,以 AM 为直径的圆分别与 AC ,AB 交于点 E , 过点 E ,F 作以 AM 为直径的圆的切线,交点为 P 。求证: $PM \perp BC$ 。

例 7. 在 $\triangle ABC$ 中, AB < AC , A 关于点 B 的对称点为 D , CD 的中垂线与 $\triangle ABC$ 的外接 圆 $\bigcirc O$ 交于点 E,F , AE,AF 分别与 BC 交于点 U,V 。求证: B 为 UV 中点。

例 8. 已知 $\triangle ABC$ 内接于 $\bigcirc O$,三条高线 AD ,BE ,CF 交于 H , 过点 B ,C 作 $\bigcirc O$ 的切线交 于点 P , PD 与 EF 交于点 K , M 为 BC 的中点。求证: K ,H ,M 三点共线。

例 9. (2012, 亚太数学奥林匹克) 已知锐角 $\triangle ABC$ 内接于 $\bigcirc O$, H 为垂心,AH 与BC 交 于点 D , M 为边 BC 的中点,延长 MH ,与 $\bigcirc O$ 交于点 E ,延长 ED ,与 $\bigcirc O$ 交于点 F 。 求证;四边形 ABFC 为调和四边形。

例 10. (2011, 哈萨克斯坦) 已知钝角 $\triangle ABC$ 内接于 $\bigcirc O$, $\angle C > \frac{\pi}{2}$, C'为C关于AB 的对称点,AC'与 $\bigcirc O$ 交于点E , BC'与 $\bigcirc O$ 交于点F , M 为AB 的中点,MC'与 $\bigcirc O$ 交于点N (点C'在M与N之间),K为EF 的中点。求证:AB,CN,KC'三线共点。

