Dépannage 6

Thierry Paré

Section 3.1

Le montant du prêt est égal à la somme des paiements actualisés :

$$L = \sum_{t=1}^{n} K_{j} v^{j}$$

t	K_t	I_t	PR_t	OB_t
0				$L = OB_0$
1	K_1	$OB_0 imes i_1$	$OB_0 - OB_1 = K_1 - I_1$	$OB_0 - PR_1$
n	K_n	$OB_{n-1} \times i_n$	$OB_{n-1} - OB_n = K_n - I_n$	$OB_{n-1} - PR_n$

Il est possible de déterminer les différentes informations d'un tableau d'amortissement sans avoir le développer.

La formule rétrospective

$$OB_t = OB_0(1+i)^t - \sum_{j=1}^t K_j(1+i)^{t-j}$$

La formule prospective

$$OB_t = \sum_{j=1}^{n-t} K_{t+j} v^j$$

Paiements égaux

Nous pouvons développer des formes très intéressantes lorsque les paiements sont égaux $(K_1 = K_2 = ... = K_n)$.

Nous avons:

$$OB_{t} = \sum_{j=1}^{n-t} K_{t+j} v^{j} = K a_{\overline{n-t}|} = \frac{K(1-v^{n-t})}{i}$$

$$I_{t} = OB_{t-1} * i = K(1-v^{n-t+1})$$

$$PR_{t} = K - I_{t} = K - K(1-v^{n-t+1}) = Kv^{n-t+1}$$