(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005年7月7日 (07.07.2005)

PCT

(10) 国際公開番号 WO 2005/061405 A1

(51) 国際特許分類?:

C03C 27/12,

C08K 3/10, 5/00, C08L 29/14

(21) 国際出願番号:

PCT/JP2004/008576

(22) 国際出願日:

2004年6月11日(11.06.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ: 特願 2003-427446

2003年12月24日(24.12.2003)

- (71) 出願人 (米国を除く全ての指定国について): 三菱マ テリアル株式会社 (MITSUBISHI MATERIALS COR-PORATION) [JP/JP]; 〒100-8117 東京都 千代田区 大 手町一丁目5番1号 Tokyo (JP). 株式会社ジェムコ (JEMCO INC.) [JP/JP]; 〒010-0065 秋田県 秋田市 茨 岛三丁目 1 番 6 号 Akita (JP). 積水化学工業株式会社 (SEKISUI CHEMICAL CO., LTD.) [JP/JP]; ₹530-8565 大阪府大阪市北区西天満2丁目4番4号Osaka (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 萩原 正弘 (HAGI-WARA, Masahiro) [JP/JP]; 〒314-0103 茨城県 鹿島郡 神 栖町東深芝19番1号 株式会社ジェムコ 鹿島工場 内 Ibaraki (JP). 中川 猛 (NAKAGAWA, Takeshi) [JP/JP]; 〒314-0103 茨城県 鹿島郡 神栖町東深芝 1 9 番 1 号 株式会社ジェムコ 鹿島工場内 Ibaraki (JP). 深谷 重一 (FUKATANI, Juichi) [JP/JP]; 〒528-8585 滋賀県 甲賀郡 水口町泉1259積水化学工業株式会社内 Shiga (JP). 吉岡 忠彦 (YOSHIOKA, Tadahiko) [JP/JP]; 〒528-8585

滋賀県 甲賀郡 水口町泉 1 2 5 9 積水化学工業株式 会社内 Shiga (JP). 八田 文吾 (HATTA, Bungo) [JP/JP]; 〒618-8589 大阪府 三島郡 島本町百山 2-1 積水化学 工業株式会社内 Osaka (JP).

- (74) 代理人: 志賀 正武 , 外(SHIGA, Masatake et al.); 〒 104-8453 東京都中央区 八重洲 2 丁目 3 番 1 号 Tokyo
- (81) 指定国 (表示のない限り、全ての種類の国内保護が 可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (表示のない限り、全ての種類の広域保護が可 能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR; GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: TIN-DOPED INDIUM OXIDE MICROPARTICLE DISPERSION, PROCESS FOR PRODUCING THE SAME, IN-TERLAYER FOR LAMINATED GLASS HAVING HEAT-RAY BLOCKING PROPERTY PRODUCED WITH THE DISPER-SION, AND LAMINATED GLASS

(54) 発明の名称: 錫ドープ酸化インジウム微粒子分散液とその製造方法、および眩分散液を用いた熱線遮蔽性を有 する合わせガラス用中間膜、ならびにその合わせガラス

(57) Abstract: A tin-doped indium oxide microparticle dispersion comprising tin-doped indium oxide microparticles, a plasticizer (57) Abstract: A tin-doped indium oxide microparticle dispersion comprising tin-doped indium oxide microparticles, a plasticizer for interlayer, an organic solvent composed mainly of an alcohol and a dispersion stabilizer, which exhibits, as measured under such conditions that the concentration of tin-doped indium oxide microparticles is 0.7 wt.% and the optical path length of glass cell is 1 mm, a visible light transmittance of 80% or higher, a solar transmittance in 300 to 2100 nm wavelength region of 3/4 or less of the visible light transmittance, a haze of 1.0% or below and a reflection yellow index of -20 or greater.

(57) 要約: この発明は、錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤、および分散安定剤を含有し、錫ドープ酸化インジウム微粒子濃度の25元素がたたびがニュナリの25元素がたたびがニュナリの25元素がある。

(57) 要約: この発明は、300nm~2100nmの液 conditions that the concentration of tin-doped indium oxide microparticles is 0.7 wt.% and the optical path length of glass cell is 1

度0.7重量%およびガラスセルの光路長1mmの測定条件下において、可視光透過率が80%以上、300nm~2100nmの波 長領域の日射透過率が可視光透過率の3/4以下、ヘイズが1.0%以下であって、反射イエローインデックスが-20以上 である。

1

明細書

錫ドープ酸化インジウム微粒子分散液とその製造方法、および該分散液を用いた 熱線遮蔽性を有する合わせガラス用中間膜、ならびにその合わせガラス

技術分野

本発明は、合わせガラス用中間膜の製造に用いることができる錫ドープ酸化インジウム微粒子分散液とその分散液の製造方法、および熱線遮蔽性を有する合わせガラス用中間膜とその合わせガラスに関する。

本願は、2003年12月24日に出願された特願2003-427446号に対し優先権を主張し、その内容をここに援用する。

背景技術

一般に、合わせガラスは、少なくとも一対のガラス間に、例えば、可塑剤により可塑化されたポリビニルブチラール樹脂等のポリビニルアセタール樹脂からなる合わせガラス用中間膜(以下、単に中間膜とも云う)を介在させて一体化させた構造を有している。このような構造の合わせガラスは、外部衝撃を受けて破損してもガラスの破片が飛散することが少なく、安全であるために自動車等の車両、航空機、建築物等の窓ガラス等として広く使用されている。

しかし、従来、このような中間膜を用いた合わせガラスは安全性に優れているが遮熱性に劣るという問題点があった。一般に、波長が可視光より長い780mm以上の赤外線は、紫外線と比較するとエネルギー量が約10%程度と小さいが、熱的作用が大きく、いったん物質に吸収されると、熱として放出され温度上昇をもたらすことから、熱線と呼ばれている。この熱線を効果的に遮蔽できる合わせガラスが求められている。例えば、自動車のフロントガラスやサイドガラスから入射する光線のうち、熱的作用の大きな赤外線を遮断できるようにすれば、遮熱性が高まり、自動車内部の温度上昇を抑えることができる。近年の傾向として、自動車等におけるガラス開口部面積が増大しており、合わせガラスの遮熱性を高くし、ガラス開口部に熱線カット機能を付与する必要性が増大している。

遮熱性を高めた合わせガラスとしては、錫ドープ酸化インジウム微粒子(以下、ITO微粒子とも云う)を分散させた可塑剤を透明樹脂に添加し、この透明樹脂からなる中間膜を用いた合わせガラスが知られている(特許文献1:特許3040681号公報)。この合わせガラス用中間膜としては、透明性を損なわないようにITO微粒子の粒径を0.1μm以下に限定し、このITO微粒子をアニオン系界面活性剤と共に可塑剤のフタル酸ジー2ーエチルヘキシルに混合して分散させたITO微粒子分散液を調製し、この分散液をポリビニルブチラール樹脂に練り込んでフィルム化したものなどが開示されている。

また、遮熱性を有する合わせガラス用の中間膜組成物として、I TO微粒子と高級脂肪酸エステル、および可塑剤を含む分散液を樹脂に混合したものが知られている(特許文献2:特開2001-233643号公報)。この中間膜組成物では、ITO微粒子の分散性を高めるために、ポリグリセリン脂肪酸エステルなどの高級脂肪酸エステルを分散液に添加している。

しかし、従来の合わせガラス用中間膜組成物、あるいはこの中間膜組成物に用いるITO微粒子分散液は、透明性の指標であるヘーズが同一でも、角度をつけてみると白濁して透明性が悪いことがある。また、ITO微粒子を可塑剤に分散する際に一般的な分散剤を用いると合わせガラスのガラスと中間膜の界面の接着力の調整が困難であると云う問題があった。また、中間膜の含水率変化によるガラスと中間膜の間の接着力の変動を制御するのも困難になるという問題がある。さらに、ITO微粒子分散液を中間膜用可塑剤で希釈すると、ITO微粒子の分散が崩れて凝集粒子になる、いわゆるソルベントショックの現象を引き起こし、透明性を低下させる原因になるなどの問題があった。

一方、ITO微粒子をポリリン酸エステルおよびアセチルアセトンに分散させた液に可塑剤のトリエチレングリコール-ジ-2-ヘキサノエート(3GO)を添加したもの(特許文献3:特開2002-293583号公報)や、これにさらに2-エチルヘキサン酸を加えたもの(特許文献4:特開2001-302289号公報)が知られている。しかし、これらの組成物は何れもアルコール類が含まれていないので疎水性が高く、このためITO微粒子が液に馴染み難く、ソルベントショックを起こしやすい等の欠点がある。また、中間膜可塑剤の種類による

分散液の特性の変動が大きいという欠点もある。

本発明は、熱線遮蔽性を有するITO微粒子分散液、ないし該分散液を用いた中間膜等について、従来の上記問題を解決したものであって、ヘーズを一定値以下にすると共に、変角光度測定における反射測定値を指標とし、あるいは上記反射測定値と相関を有する反射イエローインデックス(YI)を指標とし、これらの値を一定範囲に制御することによって透明性および熱遮断性に優れたITO微粒子分散液を提供するものであり、また上記ITO微粒子分散液を混合した中間膜、この中間膜を用いた熱線遮蔽性合わせガラスを提供するものである。

さらに本発明は、分散安定剤の組み合わせによって接着力の調整を容易にし、 またITO微粒子の分散性に優れ、かつ中間膜の含水率変化によるガラスと中間 膜界面の接着強度の変動も抑制しやすいという利点を有し、さらにソルベントショックを生じ難いITO微粒子分散液、このITO微粒子分散液を混合した中間 膜、この中間膜を用いた熱線遮蔽性合わせガラスを提供するものである。

発明の開示

本発明は以下の錫ドープ酸化インジウム微粒子分散液とその製造方法に関する。

(1) 錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤、および分散安定剤を含有し、錫ドープ酸化インジウム微粒子濃度 0.7 重量%およびガラスセルの光路長 1 mm の測定条件下において、可視光透過率が80%以上、300 mm~2100 mm の波長領域の日射透過率が可視光透過率の3/4以下、ヘイズが1.0%以下であって、反射イエローインデックスが-20以上である。

この場合、錫ドープ酸化インジウム微粒子の分散性に優れ、角度をつけてみた場合でも高い透明性を有し、またソルベントショックを生じ難く、さらに分散液と樹脂との混合時においても錫ドープ酸化インジウム微粒子の良好な分散状態を維持する錫ドープ酸化インジウム微粒子分散液を得ることができる。この錫ドープ酸化インジウム微粒子分散液は、合わせガラス用中間膜の製造に好適であり、この分散液を用いることによって熱線遮蔽性に優れた合わせガラス用中間膜、ならびにその合わせガラスを得ることができる。

- (2)上記(1)の錫ドープ酸化インジウム微粒子分散液であって、反射イエローインデックスが-20以上であることに代えて、あるいは反射イエローインデックスが-20以上であると共に、ガラスセルの光路長1mmの測定条件下において、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が30以下である。
- (3)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、中間 膜用可塑剤が、ジヘキシルアジペート、トリエチレングリコールージー2ーエチ ルヘキサノエート、テトラエチレングリコールージー2ーエチルヘキサノエート、トリエチレングリコールージー2ーエチルブチレート、テトラエチレングリコールージー2ーエチルブチレート、テトラエチレングリコート、およびトリエチレングリコールージーヘプタノエート、およびトリエチレングリコールージーヘプタノエートからなる群より選択される少なくとも1種である。
- (4) 上記(1) に記載する錫ドープ酸化インジウム微粒子分散液であって、アルコール類が、メタノール、エタノール、プロパノール、イソプロパノール、nーブタノール、イソブタノール、secーブタノール、tertーブタノール、ラウリルアルコール、ジアセトンアルコール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、およびトリエチレングリコールからなる群より選択される少なくとも1種である。
- (5)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、分散 安定剤が、窒素、リン、およびカルコゲン系原子群からなる群より選択される少 なくとも1種の原子を有する化合物である。
- (6)上記(5)に記載する錫ドープ酸化インジウム微粒子分散液であって、分散 安定剤が、硫酸エステル系化合物、リン酸エステル系化合物、リシノール酸、ポリリシノール酸、ポリカルボン酸、多価アルコール型界面活性剤、ポリビニルア・ルコール、およびポリビニルブチラールからなる群より選択される少なくとも1 種である。
- (7)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、分散 安定剤が、キレート、無機酸、および有機酸からなる群より選択される少なくと も1種である。

- (8) 上記(1) に記載する錫ドープ酸化インジウム微粒子分散液であって、分散 安定剤として、リン酸エステル系化合物、有機酸、およびキレートの三成分を含む。
- (9)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、IT O微粒子の濃度 0.1~95重量%、中間膜用可塑剤の含有量 1~99.9重量%、アルコール類を主成分とする有機溶剤の含有量 0.02~25重量%、分散安定剤 0.0025~30重量%である。
- (10)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤、および分散安定剤を含有し、錫ドープ酸化インジウム微粒子の濃度が0.1重量%~95重量%であるものを、中間膜用可塑剤、またはアルコール類を主成分とする有機溶剤および/もしくは分散安定剤を含有する中間膜用可塑剤によって希釈してなる。
- (11)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子の濃度が10.0重量%以上であるものを希釈して錫ドープ酸化インジウム微粒子濃度を10.0重量%としたときに、あるいは錫ドープ酸化インジウム微粒子の濃度が40.0重量%以上であるものを希釈して錫ドープ酸化インジウム微粒子濃度を40.0重量%としたときに、錫ドープ酸化インジウム微粒子濃度を40.0重量%としたときに、錫ドープ酸化インジウム微粒子の体積平均粒径が80mm以下であり、累積90%粒径(D90)が160mm以下である。
- (12)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子の一次平均粒径が $0.2~\mu\,\mathrm{m}$ 以下である。
- (13)上記(1)に記載する錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子結晶の格子定数が10.11~10.16Åである。
- (14)上記(1)から上記(13)までの何れかに記載する錫ドープ酸化インジウム 微粒子分散液を製造する方法であって、アルコール類を主成分とする有機溶剤、分散安定剤、錫ドープ酸化インジウム微粒子、および中間膜用可塑剤を混合し、 錫ドープ酸化インジウム微粒子を分散させる。
 - (15)上記(14)に記載する製造方法であって、アルコール類を主成分とする

有機溶剤、分散安定剤、および錫ドープ酸化インジウム微粒子を含有する混合液 を調製し、この混合液と中間膜用可塑剤とを混合して錫ドープ酸化インジウム微 粒子分散液にする。

- (16)上記(15)に記載する製造方法であって、アルコール類を主成分とする 有機溶剤、分散安定剤、および錫ドープ酸化インジウム微粒子を含有する混合液 を調製し、この混合液を中間膜用可塑剤に加えて、またはこの混合液に中間膜用 可塑剤を加えて、錫ドープ酸化インジウム微粒子を分散させる。
- (17)上記(15)に記載する製造方法であって、中間膜用可塑剤として、アルコール類を主成分とする有機溶剤もしくは分散安定剤を含有するものを用いる。

また、本発明は以下の熱線遮蔽性を有する合わせガラス用中間膜、ならびにその合わせガラスに関する。

- (18)上記(1)から上記(13)までの何れかに記載する錫ドープ酸化インジウム 微粒子分散液と樹脂とを混合してなる樹脂組成物によって形成された熱線遮蔽合わせガラス用の中間膜であって、この膜厚 0.76 mm の中間膜を厚さ 2.5 mm のクリアガラスに挟み込んだ測定条件下において、周波数 0.1 MHz~26.5 GHz における電磁波シールド性能が 10dB 以下、ヘイズが 1.0%以下、可視光透過率が70%以上、300~2100 mm の波長領域での日射透過率が可視光透過率の80%以下であって、かつ反射イエローインデックスが 12以上である。
- (19)上記(18)に記載する合わせガラス用中間膜であって、反射イエローインデックスが-12以上であることに代えて、あるいは反射イエローインデックスが-12以上であると共に、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が25以下である。
- (20)上記(18)に記載する合わせガラス用中間膜であって、ポリビニルアセタール樹脂100重量部に対して、中間膜用可塑剤20~60重量部、錫ドープ酸化インジウム微粒子0.1~3重量部を含有する。
- (21)上記(20)に記載する合わせガラス用中間膜であって、ポリビニルアセタール樹脂がポリビニルブチラール樹脂である。
- (22)上記(18)に記載する合わせガラス用中間膜であって、錫ドープ酸化インジウム微粒子分散液と樹脂とを混合してなる樹脂組成物が、さらに接着力調整

剤として、アルカリ金属塩および/またはアルカリ土類金属塩を含む。

- (23) 上記(18) に記載する合わせガラス用中間膜であって、錫ドープ酸化インジウム微粒子は、平均粒径が80 nm 以下であり、かつ、粒径100 nm 以上の粒子の割合が1個 $/\mu$ m²以下であるように分散している。
- (24) 合わせガラスであって、上記(18)から上記(23)までの何れかに記載する合わせガラス用中間膜を用いてなる。
- (25) 上記(24) に記載する合わせガラスであって、周波数 $0.1\,\mathrm{MHz}\sim2.6$. $5\,\mathrm{GHz}$ における電磁波シールド性能が $1.0\,\mathrm{dB}$ 以下、ヘイズが $1.0\,\mathrm{%}$ 以下、可視光透過率が $7.0\,\mathrm{\%}$ 以上、 $3.0\,\mathrm{d}\sim2.1\,\mathrm{d}$ の $1.0\,\mathrm{d}$ の 1.
- (26)上記(25)に記載する合わせガラスであって、反射イエローインデックスが-12以上であることに代えて、あるいは反射イエローインデックスが-12以上であると共に、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が25以下である。

以下、本発明を具体的に説明する。

本発明の錫ドープ酸化インジウム微粒子分散液は、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤(以下、アルコール性溶剤とも云う)、および分散安定剤を含有する錫ドープ酸化インジウム微粒子分散液(以下、ITO微粒子分散液とも云う)であって、錫ドープ酸化インジウム微粒子濃度 0.7 重量%およびガラスセルの光路長 1 mm の測定条件下において、可視光透過率が80%以上、300 nm~2100 nm の波長領域の日射透過率が可視光透過率の3/4以下、ヘイズが1.0%以下、反射イエローインデックスが~20以上である。

また、本発明のITO微粒子分散液は、上記反射イエローインデックスが-2 0以上であることに代えて、あるいは反射イエローインデックスが-20以上で あると共に、変角光度計による反射測定で入射角45度における反射光分布のう ち0度の反射測定値が30以下である。

上記ΙΤΟ微粒子は、一次平均粒子径が 0.2 μm 以下であることが好ましい。

一次平均粒子径が 0.2μ mを超えると、得られる中間膜、ひいては合わせガラスのヘイズが悪化したり、ITO微粒子による可視光線の散乱による白濁が生じたりすることがある。より好ましくは 0.1μ m以下であり、更に好ましくは 0.08μ m以下である。また、上記 ITO微粒子は、その結晶の格子定数が10.11 $A\sim10.16$ Aの範囲内であるものが好ましい。この範囲外であると充分な熱線カット効果が得られないことがある。

上記ITO微粒子を製造する方法は限定されない。例えば、塩化インジウムと 少量の塩化錫の水溶塩を含む水溶液をアルカリとを反応させてインジウムと錫の 水酸化物を共沈させ、この共沈物を原料として酸素を除去した窒素中で加熱焼成 して酸化物に変換させることによってITO微粒子を製造する方法等が挙げられ る。

本発明のITO微粒子分散液において、上記中間膜用可塑剤はITO微粒子を分散させる分散媒としての役割を有する。この中間膜用可塑剤としては、通常ポリビニルアセタール樹脂等に対して使用されるものであれば特に限定されず、中間膜用の可塑剤として一般的に用いられている公知の可塑剤であれば良く、例えば、一塩基酸エステル、多塩基酸エステル等の有機エステル系可塑剤、あるいは有機リン酸系、有機亜リン酸系等のリン酸系可塑剤等を用いることができる。

上記有機エステル系可塑剤のうち、一塩基酸エステルとしては、例えば、トリエチレングリコールと、酪酸、イソ酪酸、カプロン酸、2-エチル酪酸、ヘプタン酸、n-オクチル酸、2-エチルヘキシル酸、ペラルゴン酸(n-ノニル酸)、デシル酸等の有機酸との反応によって得られたグリコール系エステル、あるいはテトラエチレングリコール、トリプロピレングリコールと上記有機酸とのエステル等が挙げられる。また、上記多塩基酸エステルとしては、例えば、アジピン酸、セバチン酸、アゼライン酸等の有機酸と、炭素数4~8の直鎖状または分岐状アルコールとのエステル等が挙げられる。

上記有機エステル系可塑剤の具体例としては、例えば、トリエチレングリコールジー2-エチルプチレート、トリエチレングリコールジー2-エチルヘキソエート、トリエチレングリコールジカプリレート、トリエチレングリコールジーn-オクトエート、トリエチレングリコールジーn-ヘプトエート、テトラエチレ

ングリコールジーn - n -

上記リン酸系可塑剤としては、例えば、トリプトキシエチルホスフェート、イソデシルフェニルホスフェート、トリイソプロピルホスファイト等が挙げられる。

これらの中間膜用可塑剤のなかでも、ジヘキシルアジペート(DHA)、トリエチレングリコールージー2ーエチルヘキサノエート(3GO)、テトラエチレングリコールージー2ーエチルヘキサノエート(4GO)、トリエチレングリコールージー2ーエチルブチレート(3GH)、テトラエチレングリコールージー2ーエチルブチレート(4GH)、テトラエチレングリコールージーへプタノエート(4G7)、およびトリエチレングリコールージーへプタノエート(3G7)からなる群より選択される少なくとも1種は、接着力調整剤として炭素数5または6のカルボン酸の金属塩を含有させることによって、中間膜とガラスとの接着力の経時低下を防止することができ、白化防止と接着力の経時低下防止を両立させることができることから好適である。これらのなかでも、トリエチレングリコールージー2ーエチルプチレート(3GH)、テトラエチレングリコールージー2ーエチルプチレート(3GH)、テトラエチレングリコールージー2ーエチルト(4GO)およびジヘキシルアジペート(DHA)は加水分解を起こし難いことから特に好適である。

本発明は有機溶剤としてアルコール類を主成分とするものを用いる。このアルコール類は限定されない。例えば、メタノール、エタノール、プロパノール、イソプロパノール、nーブタノール、イソブタノール、secーブタノール、tertーブ

タノール、ラウリルアルコール、ジアセトンアルコール、シクロヘキサノール、エチレングリコール、ジエチレングリコールおよびトリエチレングリコールからなる群より選択される少なくとも1種が好適である。また、上記アルコール類を主成分とする有機溶剤(ie.アルコール性溶剤)がアルコール類以外の成分を少量含有する場合において、含有される成分としては、例えば、メチルエチルケトン、酢酸イソプロピル、乳酸エチル、2-ピロリドン、アセト酢酸エチルなどを用いることができる。

アルコール類を主成分とする有機溶剤は、I T O 微粒子に対して馴染みやすく、かつ中間膜可塑剤との相溶性がよいため、変角光度測定における反射測定値を3 0以下、好ましくは25以下に低減することができる。なお、この変角光度測定の反射測定値は、I T O 微粒子分散液について、入射角45度における反射光分布のうち0度を基準とし、光路長1mmのガラスセルに満たした可塑剤をレファレンスとし、そのレファレンスを差し引いた値である。さらに、上記反射測定値と相関を有する反射イエローインデックスを-20以上に高めることができる。また、ソルベントショックを防止する効果もある。さらに、中間膜可塑剤の種類による分散液特性の変動を抑制する効果もある。

上記分散安定剤としては、例えば、窒素、リン、およびカルコゲン系原子群からなる群より選択される少なくとも1種の原子を有する化合物が好ましい。これらの原子はITO微粒子に対して馴染みやすく、良好な分散効果を得ることができる。このような化合物としては、例えば、(I)カルボン酸塩、スルホン酸塩、硫酸エステル塩、リン酸エステル塩、重合型高分子、重縮合型高分子などの陰イオン界面活性剤、(II) エーテル、エステル、エステルエーテル、含窒素などの非イオン界面活性剤、(III) 第一アミン塩ないし第三アミン塩、第四級アンモニウム塩、ポリエチレンポリアミン誘導体などの陽イオン界面活性剤、(IV)カルボキシベタイン、アミノカルボン酸塩、スルホベタイン、アミノ硫酸エステル、イミダゾリンなどの両性界面活性剤などが挙げられる。なかでも、硫酸エステル系化合物、リン酸エステル系化合物、リシノール酸、ポリリシノール酸、ポリカルボン酸、多価アルコール型界面活性剤、ポリビニルアルコールおよびポリビニルブチラールからなる群より選択される少なくとも1種は特に好適である。

上記リン酸エステル系化合物としては、例えば、ポリオキシエチレンアルキル エーテルリン酸エステル、アルキルエーテルリン酸エステル、ポリオキシエチレ ンアルキルフェニルエーテルリン酸エステルなどが挙げられる。

上記分散安定剤としては、また、キレート、無機酸および有機酸からなる群より選択される少なくとも1種も好適である。上記キレートは限定されず、例えば、エチレンジアミン四酢酸(EDTA)類、 β ジケトン類などを用いることができる。なかでも、上記中間膜用可塑剤や樹脂との相溶性に優れることから β ジケトン類が好ましく、そのなかでもアセチルアセトンが特に好適である。上記 β ジケトン類としては、その他にも例えば、ベンゾイルトリフルオロアセトン、ジピバロイルメタンなどを用いても良い。これらのキレートはI TO微粒子の凝集を防ぎ、変角光度測定における反射測定値を低減し、また上記反射測定値と相関を有する反射イエローインデックスを高めることができる。

上記無機酸は限定されない。例えば塩酸、硝酸などを用いることができる。また、上記有機酸も限定されない。例えば、脂肪族カルボン酸、脂肪族ジカルボン酸、芳香族カルボン酸、芳香族ジカルボン酸などを用いることができる。具体的には、例えば、安息香酸、フタル酸、サリチル酸等が挙げられる。なかでも、炭素数C2~C18の脂肪族カルボン酸が好ましく、炭素数C2~C10の脂肪族カルボン酸がより好ましい。上記炭素数C2~C10の脂肪族カルボン酸としては、例えば、酢酸、プロピオン酸、n-酪酸、2エチル酪酸、n-ヘキサン酸、2エチルヘキサン酸、n-オクタン酸等が挙げられる。これらの無機酸および有機酸は、ITO微粒子の凝集を防ぎ、変角光度測定における反射測定値を低減し、また上記反射測定値と相関を有する反射イエローインデックスを高めることができる。

本発明のITO分散液において、ITO微粒子が高分散して初期の光学的な性能を発揮するためには、分散媒となる中間膜用可塑剤と分散安定剤との組み合わせが極めて重要である。例えば、上記中間膜用可塑剤としてトリエチレングリコールージー2ーエチルへキサノエート(3GO)を用いる場合には、溶剤としてアルコール類を用い、分散安定剤として上記リン酸エステル系化合物、2エチルへキサン酸等の有機酸、およびアセチルアセトン等のキレートの3成分を組み合

わせて用いれば、ITO微粒子を高濃度かつ高い分散性で分散させることができ、変角光度測定による反射測定値を低減し、また上記反射測定値と相関を有する反射イエローインデックスを高めることができる。さらに中間膜用可塑剤で希釈する際のソルベントショックを防止することができる。なお、この場合、アルコール類としては、メタノール、エタノール、イソプロパノール、ジアセトンアルコールなどが好ましい。

なお、ITO微粒子をポリリン酸エステルおよびアセチルアセトンに分散させた液に可塑剤の3GOを添加したものや、さらに2-エチルヘキサン酸を加えたものが知られているが、これらの組成物はアルコール類が含まれていないので疎水性が高く、このためITO微粒子が馴染み難く、ソルベントショックを起こしやすい等の欠点がある。また、中間膜可塑剤の種類による分散液の特性の変動が大きく、制御し難い。

また、上記リン酸エステル系化合物、2エチルへキサン酸等の有機酸、およびアセチルアセトン等のキレートの3成分を併用する分散系は、これによって得られる中間膜とガラス界面の接着力の制御を容易にするという優れた効果もある。合わせガラスにおいて中間膜とガラス界面の接着強度は、低過ぎるとガラスと中間膜の界面において剥離を引き起こし、高過ぎると合わせガラスの耐貫通性を低下させてしまうので、中間膜とガラス界面の接着強度を容易に調整することができる利点は大きい。また、中間膜の含水率変化によるガラスと中間膜界面の接着強度の変動も抑制しやすいという利点もある。

なお、キレート、有機酸、無機酸以外の上記分散安定剤は、有機界面と無機界面間の相互作用を強固にする界面活性剤的な働きを有するため、中間膜とガラスの界面の接着力を強くしてしまう。その結果、アルカリ金属塩および/またはアルカリ土類金属塩等の接着力調整剤だけでは、ガラスと中間膜の接着力を適度に制御することが難しく、とりわけ接着力を低めに制御するのが困難である。しかし、上記3成分を併用する場合には、中間膜とガラス界面の接着力を制御するためのアルカリ金属塩および/またはアルカリ土類金属塩等の接着力調整剤にこれらの成分が配位することによって接着力調整剤の調整力を強化するものと推定され、この結果、上述のように分散安定剤によってガラスと中間膜界面の接着力が

強くなってしまう条件下においても接着力を制御することができる。

本発明のITO微粒子分散液は、ITO微粒子濃度を0.7重量%とし、光路長 1mmのガラスセルを用いて測定したときに、可視光透過率が80%以上、300 nm~2100mmの波長領域の日射透過率が可視光透過率の3/4以下、ヘイズが1.0%以下であって、反射イエローインデックスが-20以上である。あるいは上記測定条件下で変角光度測定による反射測定値が30以下である。

このうちヘイズと反射イエローインデックスおよび変角光度測定による反射測定値は、いずれもITO微粒子のITO微粒子分散液中における分散状態を反映する。また、可視光線透過率と日射透過率との関係はITO微粒子自体の遮熱性能を反映する。この可視光透過率および日射透過率は日本工業規格(JISR3106)によって測定することができる。ヘイズは日本工業規格(JISK7105)に準じた方法により測定することができる。

本発明のITO微粒子分散液において、可視光透過率が80%未満であると、得られる中間膜ひいては合わせガラスの可視光線透過率が劣ることがある。また、300nm~2100nm の波長領域の日射透過率が可視光透過率の3/4を超えると、得られる中間膜ひいては合わせガラスの遮熱性が劣ることがある。

また、本発明のITO微粒子分散液は反射イエローインデックスが-20以上である。この反射イエローインデックスは日本工業規格(JIS K 7103)に示される下記式により算出することができる。ここで、式中のX、Y、Zは標準光Cにおける試験用試料の反射測定による3刺激値を表す。

反射イエローインデックス=100(1.28X-1.06Z)/Y

二次凝集したITO微粒子は可視光短波長の散乱を引き起こし、光源下において、その分散系の白濁を誘発する。これは、ITO微粒子が二次凝集すると粒径が大きくなり、可視光の短波長の散乱を起こすからである。また、凝集体の数が多いとそれに比例し、可視光短波長の反射率も高くなり、白濁度も増す。ここで、ITO微粒子分散液およびITO微粒子を含有する中間膜の可視光短波長の反射率(Z)はその分散系におけるITO微粒子の白濁度に比例すると考えられる。即ち、可視光短波長の反射率(Z)とITO微粒子の二次凝集の度合いは比例し、分散性が悪いと可視光線短波長の反射率(Z)が大きくなると考えられる。一方、同

一のITO濃度では可視光中波長域、可視光長波長域の吸収はほぼ同じであり、X、Yはほぼ同じである。従って、同一のITO濃度では、可視光短波長の反射率(Z)が大きくなるほど反射イエローインデックスの値は小さくなり、白濁度は増加するので、この反射イエローインデックス(YI)を指標としてITO微粒子の分散性を把握することができ、またITO微粒子分散液やITO微粒子を含有する中間膜の透明性を把握することができる。なお、ITO微粒子の濃度が異なるときには、X、Yの値が変化し、反射イエローインデックスの水準が変化するので単純に相対比較はできない。

I TO微粒子分散液のヘイズが 1.0%を超えるか、または反射イエローインデックスが - 20未満であると、I TO微粒子の分散状態が不充分であり、得られる中間膜、ひいては合わせガラスのヘイズ、および反射イエローインデックスが劣る。また、変角光度の反射測定値が 30を上回るものは、角度をつけてみると白濁して透明性が低い。

本発明のITO微粒子分散液は、可視光透過率(Tv)、日射透過率(Ts)、 ヘイズ、反射イエローインデックスないし変角光度計による反射率が上記範囲内 であれば、ITO微粒子の濃度は限定されない。また、中間膜用可塑剤、アルコ ール類を主成分とする有機溶剤、分散安定剤はこの分散液に含まれていればよく、 その含有量は限定されない。

なお、I T O 微粒子の濃度の好ましい範囲は下限が 0.1 重量%であって上限が 95.0 重量%である。上記 I T O 微粒子の濃度がこの範囲外であると、I T O を 均一に分散するのが困難になることがある。この濃度のより好ましい下限は 10 重量%、より好ましい上限は 60 重量%である。

また、概ね中間膜用可塑剤の含有量は1~99.9重量%、アルコール類を主成分とする有機溶剤の含有量は0.02~25重量%、分散安定剤は0.0025~30重量%が適当であり、好ましくは、ITO微粒子の濃度10~60重量%、中間膜用可塑剤の含有量10~85重量%、アルコール類を主成分とする有機溶剤の含有量0.5~10重量%、分散安定剤0.02~20重量%が適当である。

本発明のITO微粒子分散液は、ITO微粒子濃度が10.0~95.0重量%であるITO微粒子分散液を長期間放置したとき、または上記中間膜用可塑剤を

用いてITO微粒子濃度を40.0重量%に希釈したときに、ITO微粒子の体積平均粒子径が80nm以下であり、累積90%粒径(D90)が160nm以下であることが好ましい。体積平均粒子径が80nmを超えるか、またはD90が160nmを超えると、樹脂と混合して中間膜を製造したときに、中間膜中におけるITO微粒子の平均粒子径が大きくなり、透明性等が劣ることがある。本発明のITO微粒子分散液は、ITO微粒子濃度を10.0重量%に希釈した場合にも、ITO微粒子の体積平均粒子径が80nm以下であり、D90が160nm以下であることがより好ましい。なお、このITO微粒子分散液は、部分的または全体的に固化していても、強い攪拌もしくは振とうによって液性が回復し、体積平均粒子径が80nm以下であって、累積90%粒径(D90)が160nm以下になるものであれば良い。

本発明のITO微粒子分散液を製造する方法としては特に限定されないが、上記アルコールを主成分とする有機溶剤(ie.アルコール性溶剤)、分散安定剤、ITO微粒子および中間膜用可塑剤を混合してITO微粒子を分散させる方法が好適である。本発明はこのようなITO微粒子分散液の製造方法を含む。

本発明のITO微粒子分散液の製造方法において、アルコール性溶剤、分散安定剤、ITO微粒子、および中間膜用可塑剤を混合する具体的な態様としては、これらを同時に混合する場合のほかに、例えば、アルコール性溶剤、分散安定剤、および錫ドープ酸化インジウム微粒子を含有する混合液を予め調製し、この混合液を中間膜用可塑剤に加えることによって錫ドープ酸化インジウム微粒子をこの中間膜用可塑剤に分散させても良く、または、上記混合液に中間膜用可塑剤を加えることによって錫ドープ酸化インジウム微粒子をこの中間膜用可塑剤に分散させても良い。さらに、この中間膜用可塑剤としてはアルコール性溶剤および/または分散安定剤を含有するものを用いても良い。また、アルコール類を主成分とする有機溶剤が所定の濃度になるまで揮発させて分散液の組成比を調整しても良い。

本発明のITO微粒子分散液は、このように予め高濃度のITO微粒子が分散 した混合液を調製し、この混合液を、中間膜用可塑剤、またはアルコール性溶剤 ないし分散安定剤を含有する中間膜用可塑剤によって所定の濃度にまで希釈して もよい。本発明のITO微粒子分散液は、このような希釈によっても、中間膜用 可塑剤、アルコール性溶剤および分散安定剤の種類を適宜に選択することによって、ソルペントショックを引き起こさず、ITO微粒子の体積平均粒子径が80 nm以下であって、累積90%粒径(D90)が160nm以下のITO微粒子分散液を得ることができる。

本発明のITO微粒子分散液の製造方法において、混合・分散に用いる装置は限定されない。例えば、押出機、プラストグラフ、ボールミル、ビーズミル、サンドグラインダー、ニーダー、バンバリーミキサー、カレンダーロールなどを用いることができる。

本発明のITO微粒子分散液と樹脂とを混合した樹脂組成物を用いることによって熱線遮蔽性を有する合わせガラス用中間膜を製造することができる。この合わせガラスはITO微粒子が高分散することから、優れた光学特性と遮熱性とを有することができる。

上記中間膜において、ITO微粒子は平均粒子径が80nm以下であるように分散していることが好ましい。平均粒子径が80nmを超えると、ITO微粒子による可視光線の散乱が顕著になり、得られる中間膜の透明性が損なわれることがある。その結果、合わせガラスとしたときにヘイズが悪化して、例えば、自動車のフロントガラス等で要求されるような高度な透明性が得られなくなる。

さらに、上記中間膜において、ITO微粒子の分散状態は、粒子径100nm以上の粒子の割合が1個 $/\mu$ m²以下であるように分散していることが好ましい。即ち、透過型電子顕微鏡で熱線遮蔽合わせガラス用中間膜を撮影、観察したときに、粒子径100 μ m 以上のITO微粒子が観察されないか、または、観察された場合には1 μ m²の枠内に粒子径100 μ m 以上のITO粒子が1個以外は他に観察されない状態となるよう分散しているものである。このような分散状態の中間膜を用いて合わせガラスを製作したときに、低ヘイズで透明性に優れ、全体に渡って高い遮熱性が得られる。なお、透過型電子顕微鏡による観察は、例えば透過型電子顕微鏡(日立製作所社製 H-7100FA 型等)を用いて、加速電圧100kV で撮影することにより行うことができる。

本発明のITO微粒子分散液を混合する樹脂は限定されない。例えば、合わせガラス用中間膜の透明樹脂として一般に用いられている公知の樹脂であればよい。

WO 2005/061405 PCT/JP2004/008576

17

具体的には、例えば、ポリビニルアセタール樹脂、ポリウレタン樹脂、エチレン - 酢酸ビニル樹脂、アクリル酸若しくはメタクリル酸、またはこれらの誘導体を 構成単位とするアクリル系共重合樹脂、塩化ビニルーエチレンーメタクリル酸グ リシジル共重合樹脂等が挙げられる。なかでもポリビニルアセタール樹脂が好適である。これら樹脂は、公知またはそれに準ずる方法で容易に製造できる。

上記ポリビニルアセタール樹脂としては、ポリビニルアルコールをアルデヒドによりアセタール化して得られるポリビニルアセタール樹脂であれば特に限定されるものではないが、ポリビニルブチラールが特に好適である。上記ポリビニルアルコールは、通常ポリ酢酸ビニルを鹸化することにより得られ、鹸化度80~99.8モル%のポリビニルアルコールが一般的に用いられる。

上記ポリビニルアセタール樹脂の分子量および分子量分布は限定されない。成形性、物性等から原料となるポリビニルアルコール樹脂の重合度の好ましい下限は200、好ましい上限は3000である。この重合度が200未満であると得られる合わせガラスの耐貫通性が低下することがあり、3000を超えると樹脂膜の成形性が悪くなり、しかも樹脂膜の剛性が大きくなり過ぎ、加工性が悪くなることがある。重合度のより好ましい下限は500、より好ましい上限は2000である。

アセタール化に用いるアルデヒドも限定されない。一般に、炭素数が $1\sim10$ のアルデヒドが用いられる。具体的には、例えば、n – ブチルアルデヒド、n – バレルアルデヒド、n – ベキシルアルデヒド、n – オクチルアルデヒド、n – ノニルアルデヒド、n – イキシルアルデヒド、n – オクチルアルデヒド、n – ブルアルデヒド、n – ブルアルデヒド、n – ブリアルデヒド、n – ブリアルデヒド、n – ブリアルデヒド、n – ベキシルアルデヒド、n – ベナシルアルデヒド、n – ベナシルアルデヒドが好ましく、特に好ましくは、炭素数がn 4 のブチルアルデヒドである。

上記ポリビニルアセタールとしては、ブチルアルデヒドでアセタール化された ポリビニルブチラールが好ましい。また、これらのアセタール樹脂は必要な物性 を考慮した上で、適当な組み合わせにてブレンドされていてもよい。更に、アセ タール化時にアルデヒドを組み合わせた共ポリビニルアセタール樹脂も適宜用い ることができる。本発明で用いられる上記ポリビニルアセタール樹脂のアセタール化度の好ましい下限は40%、好ましい上限は85%であり、より好ましい下限は60%、より好ましい上限は75%である。

上記樹脂組成物は、樹脂としてポリビニルアセタール樹脂を用いる場合には、ポリビニルアセタール樹脂100重量部に対して、中間膜用可塑剤20~60重量部、ITO微粒子0.1~3重量部を含有することが好ましい。中間膜用可塑剤の配合量が20重量部未満であると耐貫通性が低下することがあり、60重量部を超えると可塑剤のブリードアウトが生じ、熱線遮蔽合わせガラス用中間膜の透明性や接着性が低下し、得られる合わせガラスの光学歪みが大きくなったりするおそれがある。中間膜用可塑剤の配合量のより好ましい下限は30重量部、より好ましい上限は60重量部である。また、ITO微粒子の配合量が0.1重量部未満であると熱線カット効果が充分に得られないことがあり、3.0重量部を超えると可視光透過率が低下し、ヘイズも大きくなってしまうことがある。

上記樹脂組成物はさらに接着力調整剤を含有することが好ましい。上記接着力調整剤としては特に限定されないが、アルカリ金属塩および/またはアルカリ土類金属塩が好適に用いられる。上記アルカリ金属塩および/またはアルカリ土類金属塩としては特に限定されず、例えば、カリウム、ナトリウム、マグネシウム等の塩が挙げられる。上記塩を構成する酸としては特に限定されず、例えば、オクチル酸、ヘキシル酸、酪酸、酢酸、蟻酸等のカルボン酸の有機酸、または、塩酸、硝酸等の無機酸が挙げられる。

上記アルカリ金属塩および/またはアルカリ土類金属塩のなかでも、炭素数2~16の有機酸のアルカリ金属塩およびアルカリ土類金属塩がより好ましく、さらに炭素数2~16のカルボン酸マグネシウム塩、および炭素数2~16のカルボン酸カリウム塩が好ましい。

上記炭素数2~16の有機酸のカルボン酸マグネシウム塩またはカリウム塩としては特に限定されないが、例えば、酢酸マグネシウム、酢酸カリウム、プロピオン酸マグネシウム、プロピオン酸カリウム、2-エチルブタン酸マグネシウム、2-エチルブタン酸カリウム、2-エチルヘキサン酸カリウム等が好適に用いられる。これらは単独で用いられてもよく、

2種以上が併用されてもよい。

上記アルカリ金属塩および/またはアルカリ土類金属塩の添加量は限定されないが、例えば、上記樹脂がポリビニルアセタール樹脂である場合、好ましい下限はポリビニルアセタール樹脂100重量部に対して0.001重量部、好ましい上限は1.0重量部である。0.001重量部未満であると、高湿度雰囲気下で熱線遮蔽合わせガラス用中間膜周辺部の接着力が低下することがあり、1.0重量部を超えると、接着力が低くなり過ぎるうえに熱線遮蔽合わせガラス用中間膜の透明性が失われることがある。添加量のより好ましい下限は0.01重量部、より好ましい上限は0.2重量部である。

上記樹脂組成物はさらに酸化防止剤が含有することが好ましい。上記酸化防止剤としては特に限定されず、例えば、フェノール系のものとして、2,6-Di-tert-butyl-P-cresol(BHT)(住友化学社製「スミライダーBHT」)、テトラキスー[メチレン-3-(3'-5'-ジーt-ブチルー4'-ヒドロキシフェニル)プロピオネート]メタン〔チバガイギー社製:イルガノックス 1010〕等が挙げられる。これらの酸化防止剤は、単独で用いられてもよく、2種以上を併用してもよい。上記酸化防止剤の添加量は限定されないが、例えば上記樹脂がポリビニルアセタール樹脂からなる場合、ポリビニルアセタール樹脂100重量部に対して好ましい下限は0.01重量部、好ましい上限は5.0重量部である。

上記樹脂組成物はさらに紫外線吸収剤を含有することが好ましい。上記紫外線吸収剤としては特に限定されず、例えば、ベンゾトリアゾール系化合物、ベンゾフェノン系化合物、トリアジン系化合物、および、ベンゾエート系化合物等が挙げられる。

上記ペンゾフェノン系化合物は特に限定されず、例えば、オクタベンゾン〔チバガイギー社製:Chimassorb81〕等が挙げられる。また、上記トリアジン系化合物としては特に限定されず、例えば、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(へキシル)オキシ]-フェノール〔チバガイギー社製:Tinuvin1577FF〕等が挙げられる。さらに、上記ペンゾエート系化合物としては特に限定されず、例えば、<math>2,4-ジ-tert-ブチルフェニル-3,5-ジ-tert-ブチル-4-ヒドロキシベンゾエート〔チバガイギー社製:Tinuvin120〕等が挙げられる。

上記紫外線吸収剤の添加量は限定されないが、例えば、上記樹脂がポリビニルアセタール樹脂である場合、添加量の好ましい下限はポリビニルアセタール樹脂 100重量部に対して0.01重量部、上限は5.0重量部である。0.01重量部未満であると、紫外線吸収の効果がほとんど得られない。5.0重量部を超えると、樹脂の耐候劣化を引き起こすことがある。より好ましい下限は0.05重量部、上限は1.0重量部である。

上記樹脂組成物からなる合わせガラス用中間膜は、更に必要に応じて、光安定剤、界面活性剤、難燃剤、帯電防止剤、耐湿剤、着色剤、熱線反射剤、熱線吸収剤等の添加剤を含有してもよい。なお、上記樹脂組成物中に含まれる分散安定剤は全量が本発明のITO微粒子分散液に由来するものであってもよいが、不充分な場合には別に添加してもよい。この場合の分散安定剤としては、上述のものと同様のものを用いることができる。

本発明の上記合わせガラス用中間膜を製造する方法は特に限定されず、例えば、本発明のITO樹脂分散液を、これを最終的なITO微粒子の濃度が所期の範囲になるように、上記樹脂、および必要に応じて配合する中間膜用可塑剤および/または添加剤に加えて混合して樹脂組成物とし、押し出し法、カレンダー法、プレス法等の通常の製膜法によってシート状に製膜する方法等が挙げられる。なかでも、2軸同方向による押し出し法が好ましく、ヘイズを更に良化させることができる。このようにして作製した合わせガラス用中間膜を用いて、優れた熱線遮蔽性を有する合わせガラスを製造することができる。なお、合わせガラスの製造方法は従来公知の方法でよい。

本発明の上記合わせガラス用中間膜は、通常、積層したガラスの間に挟み込まれた状態で用いられる。ガラスとしては、例えば、高熱線吸収ガラス、クリアガラス、グリーンガラスなどが用いられる。なお、高熱線吸収ガラスとは、可視光透過率が75%以上であって900~1300mmの全波長領域において透過率が65%以下である熱線吸収ガラスを云う。

本発明の上記中間膜ないし合わせガラスは、膜厚 $0.76 \,\mathrm{mm}$ の中間膜を厚さ $2.5 \,\mathrm{mm}$ のクリアガラスに挟み込んだ測定条件下において、周波数 $0.1 \,\mathrm{MHz} \sim 26.5 \,\mathrm{GHz}$ における電磁波シールド性能が $10 \,\mathrm{dB以T}$ 、ヘイズが $1.0 \,\mathrm{%UT}$ 、可視光透過率が $70 \,\mathrm{%UL}$ 、 $300 \,\mathrm{w} \, 2100 \,\mathrm{nm}$ の波長領域での日射透過率が可視光透過率の $80 \,\mathrm{%UT}$ であって、反射イエローインデックスが $-12 \,\mathrm{UL}$ であり、好ましくは $-10 \,\mathrm{UL}$ 、より好ましくは $-8 \,\mathrm{UL}$ の熱線遮蔽性を有するものである。

電磁波シールド性能は測定周波数の電磁波が上記中間膜ないし合わせガラスを 透過する際にどの程度減衰するかを表す指標になる。この電磁波シールド性能が 10dB以下であると、この合わせガラスを自動車のフロントガラス等に用いた 場合、車内でも問題なく近年の移動通信機器等を使用することができる。

本発明の上記中間膜ないし合わせガラスのヘイズは1.0%以下である。1.0%を超えると、中間膜ないし合わせガラスの透明性が実用上不充分となる。

本発明の上記中間膜ないし合わせガラスにおいて、可視光透過率は70%以上である。70%未満であると、中間膜ないし合わせガラスの透明性が実用上不充分となり、車両用フロントガラスの法規制に合格することができず、良好な視認性を妨げることになる。

本発明の上記中間膜ないし合わせガラスは、波長領域300~2100mでの日射透過率が可視光透過率の80%以下である。可視光透過率の80%を超えると、中間膜ないし合わせガラスの遮熱性が実用上不充分となる。

本発明の上記中間膜ないし合わせガラスは、反射イエローインデックスが-12以上であり、好ましくは-10以上、より好ましくは-8以上である。これは、ITO微粒子による可視光の散乱が低く、白濁が少ないことを意味する。なお、反射イエローインデックスは、同一濃度・同一分散状態の場合、ITO微粒子分

散体の光路長や分散媒体、ガラス材質等に依存する。ITO微粒子分散液の反射 イエローインデックスは、光路長1mmのガラスセルを用い、上記分散媒での測定 条件下では-20以上であるが、合わせガラスとしたときは、それより光路長が 短く、また媒体に上記ポリビニルアセタール樹脂が含有されている。従って、合 わせガラスの反射イエローインデックスは-12以上が適当である。

さらに、本発明の上記中間膜ないし合わせガラスは、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が25以下であり、好ましくは20以下、より好ましくは15以下である。これは、ITO微粒子の二次凝集による可視光の散乱が少なく、白濁が少ないことを意味する。反射測定値が25を超えると白濁が多くなり、得られる合わせガラスの透明性が実用上不十分となる。なお、この変角光度測定の反射測定値は、上記中間膜ないし合わせガラスについて、入射角45度における反射光分布のうち0度を基準とし、クリアガラス2枚をITO微粒子が分散されていない中間膜でラミネートした合わせガラスの反射測定値をレファレンスとし、そのレファレンスを差し引いた値である。

発明を実施するための最良の形態

以下に実施例を掲げて本発明を更に詳しく説明する。なお、本発明はこれらの 実施例に限定されない。また、測定方法ないし評価方法はそれぞれ以下の方法に よって行った。

(A) ITO微粒子の一次平均粒径

比表面積(BET)の測定値から次式より算出した。このようにして比表面積から求めた平均粒径は透過式電子顕微鏡から直接観察した粒径とほぼ一致することが確認されている。BET法による比表面積は、マイクロトラック社製のベータソープ自動表面積計 4200 型を用いて測定した。

 $a(\mu m) = 6/(\rho \times B)$ [a:平均粒径、 ρ :真比重、B:比表面積 (m^2/g)] (B) I T O 微粒子の結晶格子定数

格子定数は、モノクロメーター付き自動 X線回折装置MO3 Xを使用して、高 純度シリコン単結晶 (99.9999%) で補正し、面指数(hkl)に対するピークから面 間隔を算出し、最小自乗法により求めた。

(C) ITO微粒子分散液のTvおよびTs

光路長 1 mm のガラスセルに入れた評価用 I T O 微粒子分散液 (0.7 重量%) を用い、自記分光光度計 (日立製作所社製 U-4000) によって300~2100 nm の透過率を測定し、日本工業規格 (JIS R 3106) に従って、380~780 nm の可視光透過率 (Tv) および300~2100 nm の日射透過率 (Ts) を求めた。

(D) ITO微粒子分散液の反射イエローインデックス

上記(C)と同様の分散液と測定セル、および自記分光光度計を用いて380~780nmの反射率を測定し、日本工業規格(JISK 7103)に準拠して反射イエローインデックスを算出した。

(E) ITO微粒子分散液のヘイズ

上記(C)と同様の分散液と測定セルを用い、積分式濁度計(東京電色社製)により、日本工業規格(JIS K 7105)に準拠してヘイズを測定した。

(F) ITO微粒子分散液の変角光度測定

上記(C)と同様の分散液と測定セルを用い、自動変角光度計(村上色彩社製GP-200)によって、光源にハロゲンランプを使用し、入射角45度における反射光分布を測定した。受光範囲は-90度~90度であり、その反射光分布のうち0度を基準として求めた。ITO微粒子を含有しない可塑剤を光路長1mmのガラスセルに封入し、0度での値を求め、この値を反射測定値のレファレンスとした。上記分散液を同様に測定し、測定数値からレファレンスを差し引いた値を反射測定値とした。なお、その他測定条件については下記条件で測定した。

光源強度:12V、50W、 測定種類:反射測定、

受光器:光電子増倍管、 試料あおり角:2.5度、

受光器条件:SENSITIVITY ADJ: 9 9 9、 HIGH VOLT ADJ: 9 9 9

(G) ITO微粒子分散液中のITO微粒子の粒径

日機装製マイクロトラックUPA粒度分析計を用い、ITO微粒子の濃度が10重量%になるよう調整したITO微粒子分散液について、液中のITO微粒子の粒度分布測定を行った。

(H) 合わせガラスのTvおよびTs

自記分光光度計(日立製作所社製 U-4000)を用い、合わせガラスの300~2100mの透過率を測定し、日本工業規格(JIS R 3106「板ガラス類の透過率・反射率・放射率・日射熱取得率の試験方法」)に従って、380~780mmの可視光透過率(Tv)、および300~2100mmの日射透過率(Ts)を求めた。

(I) 合わせガラスの反射イエローインデックス

自記分光光度計(日立製作所社製 U-4000)を用いて、380~780mの反射率を測定し、日本工業規格(JIS K 7103)に準拠して反射イエローインデックスを算出した。

(J) 合わせガラスのヘイズ

合わせガラスについて、積分式濁度計(東京電色社製)を用い、日本工業規格 (JIS K7105) に準拠してヘイズを測定した。

(K) 合わせガラスの電磁波シールド性($\Delta d B$)

KEC法測定(近傍界の電磁波シールド効果測定)によって、0.1~1 0 MHz の範囲の反射損失値(dB)を、通常の板厚2.5 mm のフロートガラス単板と比較し、上記周波数での差の最小・最大値を記載した。また、2~26.5 GHz の範囲の反射損失値(dB)は、送信受信用の1対のアンテナ間にサンプル600 mm 角を立て、電波信号発生装置からの電波をスペクトルアナライザーで受信し、そのサンプルの電磁波シールド性を評価した(遠方界の電磁波測定法)。

(L) 中間膜および合わせガラスの変角光度測定

自動変角光度計(村上色彩社製 GP-200)を用い、光源にハロゲンランプを使用し、入射角45度における反射光分布を測定した。受光範囲は-90度~90度であり、その反射光分布のうち0度を基準として求めた。ITO微粒子を含有しない中間膜を2枚のクリアガラスにて圧着した合わせガラスを測定し、0度での値を求め、この値を反射測定値のレファレンスとした。評価用合わせガラスの測定を行い、測定数値からレファレンスを差し引いた値を反射測定値とした。なお、その他測定条件については下記条件で測定した。

光源強度:12V、50W、 測定種類:反射測定、

受光器:光電子増倍管、 試料あおり角:2.5度、

受光器条件: SENSITIVITY ADJ: 999、 HIGH VOLT ADJ: 999

(M) 中間膜中の I TO微粒子の分布状態

ミクロトームを用いて中間膜の超薄片を作製し、この超薄片を透過型電子顕微鏡(TEM、日立製作所社製 H-7100FA型)を用いて、 $3 \mu m \times 4 \mu m$ の範囲を $\times 20000$ のの倍の倍率に拡大して撮影した。得られた像を目視にて観察して、上記範囲中にある全 I T O微粒子の粒子径を測定し、体積換算平均により平均粒子径を求めた。このとき、I T O微粒子の粒子径は、微粒子の最も長い径を採った。更に、上記撮影範囲中に存在する粒子径 100 m 以上の微粒子数を求め、撮影面積 $12 \mu m^2$ で除することにより、 $1 \mu m^2$ 当たりの粒子径 100 m 以上の微粒子数を算出した。

(N)中間膜の接着性

中間膜のガラスに対する接着性をパンメル値で評価した。パンメル値が大きいほどガラスとの接着力が大きく、小さいと接着力は小さい。試験方法は次のとおりである。まず合わせガラスを−18±0.6℃の温度に16時間放置して調整し、これを頭部が0.45kgのハンマーで打ってガラスの粒径が6mm以下になるまで粉砕し、ガラスが部分剥離した後の膜の露出度をあらかじめグレード付けした限度見本で判定し、その結果を表3に従ってパンメル値として表した。中間膜の合わせガラスに対する接着力は、パンメル値が3~6になるように調整されることが好ましい。

実施例

実施例1

[I T O 微粒子分散液の調製]

ITO微粒子(一次平均粒径 20nm、結晶格子定数 10.12Å) 10重量部、分散剤としてポリオキシエチレンアルキルエーテルリン酸エステル化合物1重量部、2-エチルヘキサン酸2重量部、アセチルアセトン3重量部および有機溶剤としてエタノール4重量部、トリエチレングリコールージー2-ヘキサノエート(3GO)80重量部を混合、分散してITO微粒子分散液を調製した。この組成を表1に示した。このITO微粒子分散液をITO微粒子濃度が0.7重量%になるようにトリエチレングリコールージー2-ヘキサノエート(3GO)で希釈して、

評価用 I T O 微粒子分散液とした。この I T O 濃度 0.7 重量%の分散液について、可視光透過率(Tv)、日射透過率(Ts)、ヘイズ、反射イエローインデックス、変角光度測定による反射測定値を表 2 に示した。また、 I T O 濃度 1 0 重量%の分散液について、 I T O 粒子の体積平均粒子径および累積 9 0 %粒径を表 2 に示した (試料 No 1 a)。

また、I T O 微粒子の混合量を 3 4.5 重量部とし、ポリオキシエチレンアルキルエーテルリン酸エステル化合物、2-エチルヘキサン酸、アセチルアセトン、エタノール、3 G O を各々表1に示す量とし、これらを混合して I T O 微粒子分散液とし、さらにこれを3 G O で希釈して I T O 濃度 0.7 重量%の分散液、および I T O 濃度 1 0 重量%の分散液を調製した。これらの分散液について上記試料No 1 a と同様に上記物性を測定し、この結果を表 2 に示した(試料 No 1 b)。

さらに、ITO微粒子の混合量を25重量部とし、表1に示す量のポリオキシエチレンアルキルエーテルリン酸エステル化合物、2-エチルヘキサン酸、アセチルアセトン、エタノール、3GOを混合してITO微粒子分散液とし、これを3GOで希釈してITO濃度0.7重量%の分散液、およびITO濃度10重量%の分散液を調製した。これらの分散液について上記試料No1aと同様に物性を測定し、この結果を表2に示した(試料No1c)。

[ポリビニルブチラールの合成]

純水2890gに、平均重合度1700、鹸化度99.2モル%のポリビニルアルコール275gを加えて加熱溶解した。この溶解液を15℃に温度調節し、濃度35重量%の塩酸201gとnープチルアルデヒド157gとを加え、15℃を保持して反応物を析出させた。次いで、反応系を60℃で3時間保持して反応を完了させた後、過剰の水で洗浄して未反応のnープチルアルデヒドを洗い流し、塩酸触媒を汎用な中和剤である水酸化ナトリウム水溶液で中和し、更に、過剰の水で2時間水洗後、乾燥して、白色粉末状のポリビニルプチラール樹脂を得た。このポリビニルブチラール樹脂の平均プチラール化度は68.5モル%であった。

[熱線遮蔽合わせガラス用中間膜の製造]

ポリビニルブチラール樹脂100重量部に対して、表1に示すITO微粒子分散液(ITO濃度10重量%、試料No1a)2.8重量部を加え、このITO微粒子

濃度が 0.2 重量%になるように 3 GOを加えて希釈し、さらに、マグネシウム含有量が 6 0 ppm となるよう 2 - エチル酪酸マグネシウムおよび酢酸マグネシウムの混合物を添加し、これをミキシングロールで充分に混練した後、プレス成形機を用いて 1 5 0 ∞ で 3 0 分間プレス成形し、平均膜厚 0 0 0 0 0 可可能度を調製した。

〔合わせガラスの製造〕

上記中間膜を、その両端から透明な 2 枚のフロートガラス(30cm×30cm×厚さ 2.5mm)で挟み込み、これをゴムバック内に入れ、2660 Pa の真空度で 20 分間脱気した後、脱気したままオーブンに移し、更に 90 C で 30 分間保持しつつ真空プレスした。このようにして予備圧着された合わせガラスをオートクレーブ中で 135 C、圧力 118 N/cm² の条件で 20 分間圧着を行い、合わせガラスを得た。この合わせガラスについて、物性を測定した。この結果を表 2 に示した(試料 No1a)。

表1に示すITO微粒子分散液(ITO 濃度34.5 重量%、試料No1b)を用い、これをポリビニルブチラール樹脂に混合し、試料No1aと同量のマグネシウムを加え、ITO微粒子濃度0.7重量%、0.2重量%の中間膜(膜厚0.76mm)を調製した。この中間膜を用い、試料No1aと同様にして合わせガラスを調製した。この合わせガラスについて、物性を測定した。この結果を表2に示した(試料No1b)。

実施例2

ITO微粒子として表1に示す一次粒径と格子定数のものを用い、表1に示す 三成分の分散安定剤、およびアルコール類を用い、各成分を表1に示す使用量と した他は実施例1と同様にして、ITO微粒子分散液を製造した。この分散液の 成分を表1に示した。この分散液を用い、表2に示すITO濃度になるように表 1に記載の中間膜用可塑剤で希釈して中間膜を製造し、この中間膜を用いて合わ せガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測 定して評価を行った。この結果を表2に示した(試料 No 2~No 9)。

実施例3

中間膜用可塑剤として表 1 に示す化合物を用い、 各成分を表 1 に示す使用量と

した他は実施例1と同様にして、ITO微粒子分散液を製造した。この分散液の成分を表1に示した。この分散液を用い、表2に示すITO濃度になるように表1に記載の中間膜用可塑剤で希釈して中間膜を製造し、この中間膜を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表2に示した(試料 No10~No12)。

〔試験例〕

ITO微粒子、中間膜用可塑剤、分散安定剤、およびアルコール類について表 1に示すものを用い、表 1の使用量に従って ITO微粒子分散液を製造した。この分散液を用い、表 2に示す ITO濃度になるように表 1に記載の中間膜用可塑剤で希釈して中間膜を製造し、この中間膜を用いて合わせガラスを製造した。この ITO微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表 2に示した(試料 No13~No14)。

比較例

格子定数がやや大きいITO微粒子を用い、中間膜用可塑剤、分散安定剤、およびアルコール類について表1に示すものを用い、表1の使用量に従ってITO微粒子分散液を製造した。またITO微粒子、中間膜用可塑剤、分散安定剤、およびアルコール類について表1に示すものを用い、表1の使用量に従ってITO微粒子分散液を製造した。この分散液を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表2に示した(試料 No15~No18)。

分散安定剤およびアルコール類を用いず、中間膜用可塑剤のみを用い、実施例 1 と同様にして I T O 微粒子分散液を製造した。この分散液の成分を表 1 に示した。さらに、この分散液を用いて合わせガラスを製造した。この I T O 微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表 2 に示した (試料 No 19)。

アルコール類を用いずに、分散安定剤として硫酸エステルまたはn-酪酸の1種類を用いた他は実施例1と同様にしてITO微粒子分散液を製造した。この分散液の成分を表1に示した。この分散液を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定した。この結果を表2に示

した (試料 No20~No21)。

表1の試料 No 1 a、No 2、No 12 の成分からアルコール類を除いた成分を用いた他は実施例1と同様にしてITO分散液を調製し、この分散液を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定した。この結果を表2に示した(試料 No 22、No . 23、No 24)。

分散安定剤を用いずに、可塑剤とアルコール類を用い、実施例1と同様にして ITO微粒子分散液を製造した。この分散液の成分を表1に示した。さらに、この分散液を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表2に示した(試料 No25)。

実施例1と同様のITO微粒子と中間膜用可塑剤と共に、表1に示すようにアニオン系界面活性剤または高級脂肪酸エステルを用い、実施例1と同様にしてITO微粒子分散液を製造した。この分散液の成分を表1に示した。さらに、この分散液を用いて合わせガラスを製造した。このITO微粒子分散液と合わせガラスについて物性を測定して評価を行った。この結果を表2に示した(試料 No26、No27)。

表1および表2に示すように、本発明の実施例(No 1~No12)のITO微粒子分散液および合わせガラスは、比較試料(No16~No21、No25~No27)に比較して、可視光透過率(Tv)が高く、またヘイズが低く、反射イエローインデックスの絶対値が小さい。さらに、本発明の実施例(No 1~No12)の合わせガラスは、比較試料(No16~No21、No25~No27)に比較して、変角光度測定値、体積平均粒子径、100m超粒子数が何れも大幅に低い。また、パンメル値は何れも4であり好ましい範囲に調整されている。

分散安定剤のn-酪酸を含まない試験例 No13 は、分散安定剤のアセチルアセトンを含まない試験例 No14 と共に、可視光透過率、日射透過率、ヘイズ、反射イエローインデックス、変角光度の反射測定値、パンメル値は何れも良好である。

一方、I T O 微粒子の格子定数がやや大きい比較試料 No15 は可視光透過率に対する日射透過率が本発明の範囲を外れる。また、比較試料 (No16~No21、No25~No27) は I T O 微粒子分散液のヘイズが 1.0% よりも高く、反射イエローインデックスが -20 よりもかなり低く、変角光度の反射測定値が 40 以上である。ま

た、合わせガラス用中間膜のヘイズが 1.0% よりも高く、反射イエローインデックスが $-15\sim-18$ の水準であり、変角光度の反射測定値が $29\sim66$ の水準であり、何れも本発明の範囲を外れている。

比較試料 No22~No24 は、I T O 微粒子分散液のヘイズは 1.0% よりも高く、反射イエローインデックスが -20 よりも低く、変角光度の反射測定値が 50 以上である。また、合わせガラス用中間膜のヘイズは、No22 と No23 は 1.0% 以下であるが、No24 は 1.0% よりも高く、反射イエローインデックスが -14 ~ -180 水準であり、変角光度の反射測定値が 38 ~ 66 の水準であり、何れも本発明の範囲を大きく外れている。

表1

	C H	4	13.8	10	7	ເລ	9	4.98	9	0.5	5	8	4	. 4	4	9	ဖ	9	9	9	· C	· 1	l			1	ı	1	9	1	ı	
7/13-10類	種類	16/-18	14-141	1/6I	11-141	小がいゲール	シアセトンアルコール	19/-18	イグロゾール	シアセトンアルコール	11-184	シアセトンアルコール	14/-1	11-/\$I	19/-Ir	4/プロペノール	4.77年4	かがいール	インコンノール	イワールノール	// / / / / / / / / / / / / / / / / / /	4/ / / / L					,	1	イソプログノール	l	ı	
	operate the second	6	55	7.5	-	9	8	900	2	က	2	7	6	8	8	_د	ı	6	65	6	, ,	9		1	1	က	-	က	l		垂	
分散安定和3	種類	アセチルアセドン	アセチルアセドン	アセチルアセドン	アセチルアセドン	アセチルアセドン	ヘンジイルトリフルオロアセドン	アヤチルアセドン	ヘンパイルトリフルオロアセドン	ヘンパイルトリアルオロアセドン	ヘンパイルトリフルオロアセドン	ヘンジイルドフルオロアセドン	アセチルアセドン	アセチルアセドン	アセチルアセトン	アセチルアセトン	1	7441,741	アヤキルアかい	THE PHIL.	JETIM EL	returery		1	1	アセチルアセドン	アセチルアセドン	アセチルアセトン	1		アーナン系界面活件剤・3重量部	
-	qe	2	-		1~	-	, «	3 8	2	, -		•	-	7	2	1	67	6	7	, ,	2	1	1	1	3	2	2	2	ı			. 1
分散安定剤2	種類	プーエチバルキが、砂	がなける	海がサイル	9-T4L系统	\$ ++V	EXT.	17 ER 14.0	の「エエル人士・通	クーTギロ東部等	- The Black	の一大十十八日	9-TキIIヘキザン酸	9-TキIIヘキサ/政	2-Iチルムキザン酸		100 miles	11 BUDS	IT BREEK	T-BREEZ ATATA	7-8-8	•	1	1	n-配数	2-エチルヘキザン酸	2-1升/配数	アエチルイナン酸		立知的は終エステル・ク重量%	いたが、コーコの報告が	ノダン取りードートアンナング・プロ田町
	oğe	-	- 2	, z	3 4	, "	-	* Š	5 6	٠ ا	3 6	,,	1-	- -		-	, ,	٠,	7 0	7	,	,	1	2	_	1	5	-		発表する	T. T.	1//
企业化市园	神器	115.E&T 7=11.	15-Met 7 = 1.	NIVER AL	17.18477-0	17. HATT-11	いまかっこ	ルン酸エイエル	を開発してする	TAXBET = 0	WIESZ-7117	4, 14, 14, 14, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	11. FRT 7 = 11.	IN TRATOLI	1)/BETA11	12世紀-7718 日本後171-18	は一大学を		部級L人Tル	位成工人エル	1	3	_	硫酸工スデル	_	い敵ステル	小一个	小子的工工工	-	1805年	- 1	- 1
一一一一		1 8	3 2	5 E	8 8	3 8	3 5	2 }	5 5	3 5	3 5	8 2	1 8	8 8	8 8	8 6	2 6	2 5	9 5	9	20	8	8	88	87	ब्र	63	2	2	5 8	00	←:30 單電部
中間暗田司郷教	開業	¥ 2	3 8	200	25 6	3 8	25	99	3	25 8	3 8	250	25	5	3 5	5 5	3	200	300	99	330	330	3G0	360	360	360	330	SHO.	5 6	250	200	10段担十:30厘回部
	E)	B 5	2 5	G 1	3 8	3 8	3 3	8	2 3	€ ;	2 8	3 8	3 5	2 5	2 9	2	2 9	2	2	위	2	10	10	10	9	2	2	3 5	2 5	2 9	2	Ĕ
対は家く上	本のでは	名下定数	20.12	10.12	10.12	10.14	10.15	10.14	10.11	10.14	10.16	10.14	10.15	10.12	20.12	10.12	10.12	10.12	10.18	10.16	10.12	10.12	10.12	10.12	10.12	1012	10.14	10.17	71017	20.02	10.12	10.12
) L	A A A A A A A A A A A A A A A A A A A	벺	2 2	2	8	ន	8	2	e	5	8	용 :	S (2	2	2 2	2	2	R	82	210	20	20	82	20	8	2	3 4	3 8	3 8	2 2	2	8
	ŝ	1	. B	<u></u>	٥	7	8	4	2	٥	-	∞	<u>ه</u>	2	=	2	2	=	2	9	17	28	69	ຂ	2	3	3 8	3 2	₹ 8	ន	97	22

(注) 一次粒径は一次平均粒子径 (nm)、格子定数はA、脂肪酸エステルはが リゲ (地)/脂肪酸1ステイト、量は重量%

表2-1

	400 #20 1814	() 世	\perp	4	4	4	4	4	4	4	4	4	4	4	- -	4	4	4	4	9	တ												
	4	が子巻		9	0	0	0	0	-	-	0	0	0	٥	> ,	-	-	0	0	0	0												
	District to	种原型和		22	9	20	0/	09	78	02	88	સ્ટ	38	y	8	R	8	SS.	33	8	8												
鹽	į	2000年	1	==	3.6	12	3.7	12	21	38	3.6	5	42	! !	3	98	2	7	5.	 E.													
合わせガラス用中間膜	i	E	=	4.0	-7.3	-39	-7.5	42	-7.9	-7.5	13.	4.9	-74		P	-7.5	7	-3.9	-4.5	-5.5	-5.6												
合わせが		展開が	TIMEZ	3	ဗ	3	က	က	8	3	8	က	8	, (3	3	3	3	3	ဗ	3												
		<u> </u>	R	0.4	9.0	4.0	9.0	4.0	80	0.7	90	0.0	90	3	0.5	0.8	0.4	0.4	0.5	0.5	0.5												
		Ts 70	ş	9'.9	56.5	9.79	56.9	67.6	622	es es	56.5	67.5	19	2.	623	23	9.99	9.99	65.7	682	68.1												
		خ ≤ر	8	87.2	832	872	832	87.9	998	83.5	835	874	620	8	0 <u>.</u> 8	83.5	87.3	87.3	87.0	87.1	870												
		0#	過及	0.2	7.0	0.2	7.0	6	6	10	6	3	5	3	07	0.7	07	07	07	02	3												
报7	9 X	8	ᇤ	75		72	75	76	152	74	78	2	į	>	80	130	82	200	8	8	ñ												
4000年904	10年度	体積粒径	E.	43		\$	84	AA	5	A)	200	3 8	3 8	2	42	09	45	4	84	20	2												
黎		区时间	問問	4.6		4.7	50	3 2	20	3 6	3 2	3 2	2 3	5.3	4.9	4.7	4.8	5.1	4.8	49	62												
要	5. 60	反射	۶	اھ 1		-8.	181	100	102	3 7	-75	3,5	31	-11.3	8.6-	-15.3	-8.5	-8.1	-89	-11.5	Ş												
II W	0. 7重量%	0.7重量%	0.7重量%液	. 7重量%	. 7重量%	. 7重量%?	. 7重量%	. 7重量%;	. 7重量%	1.7重量%	7重量%	. 7重量%?	.7重量%汲	.χ	-	90		0.4	2	3 8	2 6	9 8	2 4	3 2	C)	9.0	0.5	90	0.4	04	0.5	92	
				ī	ጽ	645		64.5	SAE	3 2	E 8	200	000	3 8	000	66.4	64.3	65.6	64.5	645	640	65.5											
		≥	%	919		91.9	5	<u>5</u>	7.18	720	91.0	31.5	91./	91.6	91.0	905	918	010	915	8 6	3												
		ź	į	-	:	1b	1	2 6	7 0	٦ ،	₽ L	0	٥	7	∞	6	9	: =	2	i 5	2												

表 2 - 2

		がなれ		4	4	က	က	က	8	က	4	4	4	က	∞	8	μЩ)
		100rm 100rm	超十数	0	7	3	3	4	2	4	2	2	4	က	2	2	を (値)
		存置地径	E	48	210	105	105	125	90	120	06	06	130	110	8	8	電磁遮蔽性は(AdB)、100m 超粒子数は(個/ μm)
整		反射道		53	53.6	39.6	62.5	929	39.5	59.6	380	39.0	662	20.0	29.5	31.1	(AB), 1
やわせがし ス 田中間膜		函	۶	-3.6	-172	-17.1	-17.0	-18.1	-158	-17.6	-14.5	-15.1	-18.5	-17.1	-15.4	-15.6	施被性は
会かれた		電磁波	世間相	3	ဗ	3	က	က	က	က	က	က	က	3	3	3	
		~\\ <u>X</u>	8	0.4	1.5	1.4	1.4	1.7	12	1.5	0.7	80	1.8	1.4	1.2	12	体積粒径は体積平均粒子径、
		Ţ	%	70.5	48.8	530	52.5	49.5	622	512	67.0	672	522	52.7	51.8	512	粒径は体
		≥	%	87.3	76.0	78.5	78.1	76.4	86.2	0.77	86.4	87.1	782	782	80.5	80.0	
		ITO	温度	07	0.2	0.2	0.2	0.2	07	07	07	07	07	07	0.2	07	よる測定
	%液	060	mu.	74	280	202	200	88	170	290	170	170	270	210	165	170	使測定に
	10重量%液	体預粒径	E	41	180	100	8	140	85	130	83	85	120	100	8	8	反射測定値は変角光度測定による測定値、
分散液		反射測	四四四	4.9	689	40.5	724	822	53.4	73.5	502	525	728	49.4	39.7	426	ス、反射圏
FO数對比	6液	反射	۶	6.7-	-30.8	-26.0	-260	-326	-240	-30.5	-225	-230	900	-26.5	-23.5	-23.8	
F	0. 7重量%液	٠,۲	8	0.4	1.5	21	21	32	12	28	12		25	22	1.2	12	反射 / 1は反射イエローインデック
		Ts	8	69.2	49.8	540	537	506	60.5	528	638	63.5	53.5	53.8	57.8	57.4	は反射
		₽	8	91.9	80.1	820	8 8	ê	88	<u>=</u>) 6	8	823	81.8	843	88	٦.
		:	Ś	5	9	=	: ≃	: =	2	7	; ƙ	1 8	24	25	26	2	

表3

中間膜露出度(%)	100	90	85	60	40	20	10	5	2以下
パンメル値	0	-1	2	3 ·	4	5	6	7	8

産業上の利用の可能性

本発明の錫ドープ酸化インジウム微粒子分散液によれば、錫ドープ酸化インジウム微粒子の分散性に優れ、角度をつけてみた場合でも高い透明性を有し、またソルベントショックを生じ難く、さらに分散液と樹脂との混合時においても錫ドープ酸化インジウム微粒子の良好な分散状態を維持することができる。この錫ドープ酸化インジウム微粒子分散液は、合わせガラス用中間膜の製造に好適であり、この分散液を用いることによって熱線遮蔽性に優れた合わせガラス用中間膜、ならびにその合わせガラスを得ることができる。

35

請求の範囲

- 1. 錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤、および分散安定剤を含有し、錫ドープ酸化インジウム微粒子濃度 0.7 重量%およびガラスセルの光路長 1 mm の測定条件下において、可視光透過率が80%以上、300 mm~210 mm の波長領域の日射透過率が可視光透過率の3/4以下、ヘイズが1.0%以下であって、反射イエローインデックスが-20以上である。
- 2. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、反射イエローインデックスが-20以上であることに代えて、あるいは反射イエローインデックスが-20以上であると共に、ガラスセルの光路長1mmの測定条件下において、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が30以下である。
- 3. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、中間膜用可塑剤が、ジヘキシルアジペート、トリエチレングリコールージー2ーエチルヘキサノエート、テトラエチレングリコールージー2ーエチルヘキサノエート、トリエチレングリコールージー2ーエチルブチレート、テトラエチレングリコールージー2ーエチルブチレート、テトラエチレングリコールージーへプタノエート、およびトリエチレングリコールージーへプタノエートからなる群より選択される少なくとも1種である。
- 4. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、アルコール類が、メタノール、エタノール、プロパノール、イソプロパノール、nープタノール、イソブタノール、secーブタノール、tertーブタノール、ラウリルアルコール、ジアセトンアルコール、シクロヘキサノール、エチレングリコール、ジエチレングリコール、およびトリエチレングリコールからなる群より選択される少なくとも1種である。

- 5. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、分散安定剤が、窒素、リン、およびカルコゲン系原子群からなる群より選択される少なくとも1種の原子を有する化合物である。
- 6. 請求項5に記載の錫ドープ酸化インジウム微粒子分散液であって、分散安定剤が、硫酸エステル系化合物、リン酸エステル系化合物、リシノール酸、ポリリシノール酸、ポリカルボン酸、多価アルコール型界面活性剤、ポリビニルアルコール、およびポリビニルブチラールからなる群より選択される少なくとも1種である。
- 7. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、分散安定剤が、キレート、無機酸、および有機酸からなる群より選択される少なくとも1種である。
- 8. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、分散安定剤として、リン酸エステル系化合物、有機酸、およびキレートの三成分を含む。
- 9. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子の濃度0.1~95重量%、中間膜用可塑剤の含有量1~99.9重量%、アルコール類を主成分とする有機溶剤の含有量0.02~25重量%、分散安定剤0.0025~30重量%である。
- 10.請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子、中間膜用可塑剤、アルコール類を主成分とする有機溶剤、および分散安定剤を含有し、錫ドープ酸化インジウム微粒子の濃度が0.1重量%~95重量%であるものを、中間膜用可塑剤、またはアルコール類を主成分とする有機溶剤および/もしくは分散安定剤を含有する中間膜用可塑剤によって希釈してなる。

- 11.請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子の濃度が10.0重量%以上であるものを希釈して錫ドープ酸化インジウム微粒子濃度を10.0重量%としたときに、あるいは錫ドープ酸化インジウム微粒子の濃度が40.0重量%以上であるものを希釈して錫ドープ酸化インジウム微粒子濃度を40.0重量%としたときに、錫ドープ酸化インジウム微粒子濃度を40.0重量%としたときに、錫ドープ酸化インジウム微粒子の体積平均粒径が80nm以下であり、累積90%粒径(D90)が160nm以下である。
- 12. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子の一次平均粒径が0.2 μm以下である。
- 13. 請求項1に記載の錫ドープ酸化インジウム微粒子分散液であって、錫ドープ酸化インジウム微粒子結晶の格子定数が10.11~10.16 Åである。
- 14.請求項1に記載する錫ドープ酸化インジウム微粒子分散液を製造する方法であって、アルコール類を主成分とする有機溶剤、分散安定剤、錫ドープ酸化インジウム微粒子、および中間膜用可塑剤を混合し、錫ドープ酸化インジウム微粒子を分散させる。
- 15. 請求項14に記載の錫ドープ酸化インジウム微粒子分散液の製造方法であって、アルコール類を主成分とする有機溶剤、分散安定剤、および錫ドープ酸化インジウム微粒子を含有する混合液を調製し、この混合液と中間膜用可塑剤とを混合して錫ドープ酸化インジウム微粒子分散液にする。
- 16. 請求項15に記載の錫ドープ酸化インジウム微粒子分散液の製造方法であって、アルコール類を主成分とする有機溶剤、分散安定剤、および錫ドープ酸化インジウム微粒子を含有する混合液を調製し、この混合液を中間膜用可塑剤に加えて、またはこの混合液に中間膜用可塑剤を加えて、錫ドープ酸化インジウム微

粒子を分散させる。

- 17. 請求項15に記載の錫ドープ酸化インジウム微粒子分散液の製造方法であって、中間膜用可塑剤として、アルコール類を主成分とする有機溶剤もしくは分散安定剤を含有するものを用いる。
- 18. 請求項1に記載する錫ドープ酸化インジウム微粒子分散液と樹脂とを混合してなる樹脂組成物によって形成された熱線遮蔽合わせガラス用の中間膜であって、この膜厚0.76mmの中間膜を厚さ2.5mmのクリアガラスに挟み込んだ測定条件下において、周波数0.1MHz~26.5GHzにおける電磁波シールド性能が10dB以下、ヘイズが1.0%以下、可視光透過率が70%以上、300~2100mmの波長領域での日射透過率が可視光透過率の80%以下であって、かつ反射イエローインデックスが-12以上である。
- 19. 請求項18に記載の合わせガラス用中間膜であって、反射イエローインデックスが-12以上であることに代えて、あるいは反射イエローインデックスが-12以上であると共に、変角光度計による反射測定で入射角45度における反射光分布のうち0の反射測定値が25以下である。
- 20. 請求項18に記載の合わせガラス用中間膜であって、ポリビニルアセタール樹脂100重量部に対して、中間膜用可塑剤20~60重量部、錫ドープ酸化インジウム微粒子0.1~3重量部を含有する。
- 21. 請求項20に記載の合わせガラス用中間膜であって、ポリビニルアセタール樹脂がポリビニルブチラール樹脂である。
- 22. 請求項18に記載の合わせガラス用中間膜であって、錫ドープ酸化インジウム微粒子分散液と樹脂とを混合してなる樹脂組成物が、さらに接着力調整剤として、アルカリ金属塩および/またはアルカリ土類金属塩を含む。

- 23. 請求項18に記載の合わせガラス用中間膜であって、錫ドープ酸化インジウム微粒子は、平均粒径が80m以下であり、かつ、粒径100m以上の粒子の割合が1個 $/\mu$ m²以下であるように分散している。
- 24. 合わせガラスであって、請求項18に記載する合わせガラス用中間膜を用いてなる。
- 25. 請求項24に記載する合わせガラスであって、周波数0.1 MHz~26.5 GHz における電磁波シールド性能が10dB以下、ヘイズが1.0%以下、可視光透過率が70%以上、300~2100nmの波長領域での日射透過率が可視光透過率の80%以下であって、かつ反射イエローインデックスが-12以上である熱線 遮蔽性を有する。
- 26. 請求項25に記載する合わせガラスであって、反射イエローインデックスが-12以上であることに代えて、あるいは反射イエローインデックスが-12以上であると共に、変角光度計による反射測定で入射角45度における反射光分布のうち0度の反射測定値が25以下である。

INTERNATIONAL SEARCH REPORT

International application No.

		PCT/JP2	004/008576
A. CLASSIFIC Int.Cl ⁷	ATION OF SUBJECT MATTER C03C27/12, C08K3/10, 5/00, C08	BL29/14	
According to Inte	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SEA	ARCHED		
Minimum docum Int.C1 ⁷	entation searched (classification system followed by clas C03C27/12, C08K3/00-13/08, C08	ssification symbols) 8L1/00-101/14	
Jitsuvo	earched other than minimum documentation to the exten Shinan Koho 1922–1996 Jit tsuyo Shinan Koho 1971–2004 Tor	t that such documents are included in the suyo Shinan Toroku Koho oku Jitsuyo Shinan Koho	fields searched 1996-2004 1994-2004
Electronic data b	ase consulted during the international search (name of da	ata base and, where practicable, search te	rms used)
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	<u> </u>	Relevant to claim No.
Y	JP 2002-293583 A (Sekisui Che 09 October, 2002 (09.10.02), Claims; Par. Nos. [0016], [003 [0031], [0038], [0040], [0047 (Family: none)	20] to [0029],	1-26
Y	JP 2001-302289 A (Sekisui Che 31 October, 2001 (31.10.01), Claims; Par. Nos. [0023], [00 [0034] to [0040], [0043] to [[0073], [0075], [0076], [0091 & WO 01/25162 Al Full text	27] to [0031], 0048], [0052],	1-26,
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.	I
* Special cate "A" document of to be of par "E" earlier appl filing date "L" document of cited to est special reas "O" document r "P" document p	egories of cited documents: defining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international which may throw doubts on priority claim(s) or which is tablish the publication date of another citation or other ican (as specified) eferring to an oral disclosure, use, exhibition or other means oublished prior to the international filing date but later than date claimed	"T" later document published after the int date and not in conflict with the applic the principle or theory underlying the "X" document of particular relevance; the considered novel or cannot be consistently when the document is taken alone "Y" document of particular relevance; the considered to involve an inventive combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent	ation but cited to understand invention claimed invention cannot be detected to involve an inventive claimed invention cannot be claimed invention cannot be step when the document is a documents, such combination e art family
	al completion of the international search y, 2004 (09.07.04)	Date of mailing of the international sea 03 August, 2004 (0	rch report 3 . 08 . 04)
	ng address of the ISA/ ese Patent Office	Authorized officer	
Facsimile No. Form PCT/ISA/2	10 (second sheet) (January 2004)	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP2004/008576

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	JP 2001-233643 A (Asahi Glass Co., Ltd.), 28 August, 2001 (28.08.01), Par. No. [0024] & WO 01/42158 A1 Page 7, line 17 to page 8, line 10	1-12,14-26
Υ .	WO 01/44132 A1 (Asahi Glass Co., Ltd.), 21 June, 2001 (21.06.01), Page 11, line 12 to page 12, line 3 & US 2003/21994 A1 Par. No. [0034]	1-12,14-26
Y	JP 7-70482 A (Mitsubishi Materials Corp.), 14 March, 1995 (14.03.95), Par. Nos. [0022], [0029], [0033] & JP 7-70445 A & US 5518810 A Column 4, line 60 to column 5, line 3; column 7, lines 9 to 14	13
	·	

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl' C03C 27/12, C08K 3/10, 5/00, C08L 29/14

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl7 C03C 27/12, C08K 3/00-13/08, C08L 1/00-101/14

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1922-1996年

日本国公開実用新案公報

1971-2004年

日本国実用新案登録公報

1996-2004年

日本国登録実用新案公報

1994-2004年

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

C. 関連する	らと認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	JP 2002-293583 A (積水化学工業株式会社) 2002.10.09,特許請求の範囲,【0016】,【002 0】-【0029】,【0031】,【0038】,【004 0】,【0047】段落(ファミリーなし)	1-26
Y	JP 2001-302289 A (積水化学工業株式会社) 2001.10.31,特許請求の範囲,【0023】,【002 7】-【0031】,【0034】-【0040】,【0043】 -【0048】,【0052】,【0073】,【0075】, 【0076】,【0091】段落	1-26

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

C(続き).	関連すると認められる文献		pro-
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するとき	は、その関連する箇所の表示	関連する 請求の範囲の番号
	& WO 01/25162 A1, 全		
Y	JP 2001-233643 A(旭硝 2001. 08. 28, 【0024】段 & WO 01/42158 A1, 第 0行	落	$1-12, \\ 14-26$
Y	WO 01/44132 A1 (旭硝子株 2001. 06. 21, 第11頁第12 & US 2003/21994 A1	行-第12頁第3行	$\begin{vmatrix} 1-12, \\ 14-26 \end{vmatrix}$
Y	JP 7-70482 A(三菱マテリア 1995.03.14,【0022】, 3】段落 & JP 7-70445 A & US 5518810 A,第4欄 第7欄第9行-第14行	[0029], [003	13