

Introduction to Reinforcement Learning

Prof. Ph.D. Woo Youn Kim Chemistry, KAIST

Goals-modified

12주	주제	Molecular generative model 2
	목표	Understanding difference between GAN and VAE
	내용	GAN, ARAE
		ARAE: conditional molecular design
13주	주제	Reinforcement learning
	목표	Understanding key principle of deep reinforcement learning
	내용	Bellman equation, Deep Q-learning
14주	주제	No lecture (entrance interview)
	목표	
	내용	

Source

모두를 위한 딥러닝

https://hunkim.github.io/ml/

KAIST EE Jinwoo Shin

http://alinlab.kaist.ac.kr/ee807_2018.html

Types of deep learning

• Supervised Learning: classification or regression

The network makes its guesses, then compare its answers to the known "correct" ones and make adjustments according to its errors.

Unsupervised Learning: clustering

Searching for a hidden pattern in a data set without known answers.

Reinforcement Learning: game, robotics, finance, etc.

A strategy built on observation.

https://www.youtube.com/watch?v=JFJkpVWTQVM

no labeling

Reinforcement learning

- More general than supervised/unsupervised learning
- Learn from interaction w/ environment to achieve a goal

Alphago

ARTICLE

doi:10.1038/nature24270

Mastering the game of Go without human knowledge

David Silver¹*, Julian Schrittwieser¹*, Karen Simonyan¹*, Ioannis Antonoglou¹, Aja Huang¹, Arthur Guez¹, Thomas Hubert¹, Lucas Baker¹, Matthew Lai¹, Adrian Bolton¹, Yutian Chen¹, Timothy Lillicrap¹, Fan Hui¹, Laurent Sifre¹, George van den Driessche¹, Thore Graepel¹ & Demis Hassabis¹

A long-standing goal of artificial intelligence is an algorithm that learns, *tabula rasa*, superhuman proficiency in challenging domains. Recently, AlphaGo became the first program to defeat a world champion in the game of Go. The tree search in AlphaGo evaluated positions and selected moves using deep neural networks. These neural networks were trained by supervised learning from human expert moves, and by reinforcement learning from self-play. Here we introduce an algorithm based solely on reinforcement learning, without human data, guidance or domain knowledge beyond game rules. AlphaGo becomes its own teacher: a neural network is trained to predict AlphaGo's own move selections and also the winner of AlphaGo's games. This neural network improves the strength of the tree search, resulting in higher quality move selection and stronger self-play in the next iteration. Starting *tabula rasa*, our new program AlphaGo Zero achieved superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.

RL in Reality

Contents

Markov Decision Process (MDP)

Q-Learning

Deep Q-Learning (DQL)

Example

Markov Decision Process (MDP)

Markov Decision Process (MDP)

- RL can be formulated by Markov Decision Process (MDP)
 - S: a set of states
 - \mathcal{A} : a set of actions
 - \mathcal{P} : a conditional state transition probability, i.e., $\mathcal{P}(s_t, a_t, s_{t+1}) = \Pr(s_{t+1}|s_t, a_t) = \Pr(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, \dots, s_1, a_1)$
 - \mathcal{R} : a reward function, i.e., $r_t = \mathcal{R}(s_t, a_t)$
 - $\gamma \in [0,1]$: a discount factor
- The agent chooses an action according to policy $\pi(a|s)$

Goal: find optimal policy maximizing total future reward

- actions: UP, DOWN, LEFT, RIGHT, UP
- 25% move UP
- 25% move LEFT
- 25% move RIGHT
- 25% move DOWN
- reward +1 at green
- orange is not allowed

What's the strategy to achieve max reward?

- actions: UP, DOWN, LEFT, RIGHT, UP
- 25% move UP
- 25% move LEFT
- 25% move RIGHT
- 25% move DOWN
- reward +1 at green
- orange is not allowed
- set of states S, set of actions A, initial state S₀, transition model P(s,a,s')
 ex) P([1,1], right, [1,2]) = 0.25
- reward function r(s): r([4,4]) = +1
- policy: mapping from S to A: π(s,a)
- KΔIST

Goal: maximize cumulative reward in the long run

- actions: UP, DOWN, LEFT, RIGHT, UP
- 25% move UP
- 25% move LEFT
- 25% move RIGHT
- 25% move DOWN
- reward +1 at green
- orange is not allowed

- actions: UP, DOWN, LEFT, RIGHT, UP
- 25% move UP
- 25% move LEFT
- 25% move RIGHT
- 25% move DOWN
- reward +1 at green
- orange is not allowed

- additive rewards
 - \checkmark V(s₀, s₁, ...) = r(s₀) + r(s₁) + r(s₂) + ...
 - ✓ infinite value for continuing tasks

- discounted rewards
 - \checkmark V(s₀, s₁, ...) = r(s₀) + γ *r(s₁) + γ ²*r(s₂) + ...
 - ✓ value bounded if rewards bounded
 - ✓ prefer larger immediate rewards

Value functions

- Value functions of a state under a policy $\pi(a|s)$
 - State-value function: expected return when starting in s and following π

$$v_{\pi}(s) = \mathbb{E}_{a_1, \dots \sim \pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | s_1 = s \right]$$

• Action-value function: expected return when starting in s, performing a, and following π

$$q_{\pi}(s, a) = \mathbb{E}_{a_2, \dots \sim \pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} r_t | s_1 = s, a_1 = a \right]$$

Bellman equation

Recursion formula by value iteration algorithm

$$q_{\pi}(s,a) = R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} v_{\pi}(s')$$
 $v_{\pi}(s) = \sum_{a} \pi(s,a) q_{\pi}(s,a)$

$$q_{\pi}(s,a) = R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} \sum_{a} \pi(s,a) q_{\pi}(s,a) \qquad v_{\pi}(s) = \sum_{a} \pi(s,a) \left[R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} v_{\pi}(s) \right]$$

Bellman (expectation) equation

Optimal value function

Optimal value functions:

$$v_*(s) = \max_{\pi} v_{\pi}(s), \ q_*(s, a) = \max_{\pi} q_{\pi}(s, a)$$

The optimal policy can be derived from them

$$\pi_*(s) = \arg\max_a q_*(s, a)$$

to achieve our goal: find optimal policy maximizing total future reward

Bellman's optimality equation

Recursion formula by value iteration algorithm

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s')$$
 $v_*(s) = \max_a q_{\pi}(s,a)$

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a \left(\max_a q_*(s,a) \right) \quad v_*(s) = \max_a \left(R_s^a + \gamma \sum_{s'} P_{ss'}^a v_*(s) \right)$$

Types of RL

- Value-based vs. policy-based algorithms
 - Value-based learns value functions, and then derive policy → Q-learning
 - Policy-based optimizes policy directly from the objective, i.e., $\mathbb{E}\left[\sum_{t=1}^{\infty}\gamma^{t-1}r_{t}\right]$
 - → Policy gradient method

Q-learning

Initialize q(s,a)

$$q_*(s,a) = R_s^a + \gamma \sum_{s'} P_{ss'}^a (\max_a q_*(s,a))$$

		\ 0 <i>/</i>	0
0 > 0	0 >< 0	0 >< 0	
0	0	0 \	0
0	O _	\ 0	0 0
0 >< 0	0 >< 0	0 >< 0	0 >< 0
0	0 \	0 \	0
0		\ 0 <i>/</i>	
0 >< 0	0 >< 0	0 >< 0	0 >< 0
0	0 \	_ 0 \	0
0			
0 >< 0	$\mid 0> < 0 \mid$	0 >< 0	0 >< 0
0	_ 0 \	0 \	0

Q-learning algorithm

- Q-learning algorithm repeats 1-3 until convergence
 - 1. Choose an action from the current state s
 - 2. Observe a reward *R*, a new state s'
 - 3. Update

How to choose the action a?

Exploit vs Exploration

Exploit vs Exploration: ε-greedy

```
\epsilon = 0.1 if rand(1) < \epsilon : a = {\rm random} else: a = {\rm arg\,max}_a \ q(s,a)
```


Exploit vs Exploration: decaying ε-greedy

```
for i = 0, 1000  \varepsilon = 0.1 / (i+1)  if rand(1) < \varepsilon :  a = \text{random}  else:  a = \arg\max_a q(s,a)
```


Exploit vs Exploration: random noise

for i = 0, 1000
$$a = \arg\max_{a} \left(q(s, a) + \operatorname{random}(1) / (i+1) \right)$$

Compared to ε-greedy, this method is likely to take an action with larger values because of q(s,a)

Q-learning algorithm

- Q-learning algorithm repeats 1-3 until convergence
 - 1. Choose an action from the current state s

using exploit vs explore algorithm

- 2. Observe a reward *R*, a new state s'
- 3. Update

$$q_{i+1}(s,a) \leftarrow q_i(s,a) + \alpha \left[R_s^a + \max_{a'} q_{i+1}(s',a') - q_i(s,a) \right]$$

$$\uparrow$$
learning rate

Incrementally update the q function

Convergence

 Q-learning updates the q-value incrementally to satisfy the Bellman equation for the optimal action-value function

$$q_*(s,a) = \mathbf{E}_{s' \sim Pr(\cdot|s,a)} \left[R_s^a + \gamma \max_a q_*(s,a) \right]$$

• In principle, it is known that q or v converge to their optimal values by the value iteration algorithm

$$\lim_{i\to\infty}q_i(s,a)\to q_*(s,a)$$

Limitation

 Q-learning is known to be unstable or even to diverge when using nonlinear function approximators such as neural networks because even small updates to may significantly change.

1. Correlations between samples

2. Non-stationary targets

$$\begin{split} & \min_{\theta} \sum_{t=0}^{T} [\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \theta))]^2 \\ & \hat{Y} = \hat{Q}(s_t, a_t | \theta) \qquad Y = r_t + \gamma \max_{a'} \hat{Q}_{\theta}(s_{t+1}, a' | \theta) \\ & \text{target q} \qquad \text{pred. q} \end{split}$$

→ Solution: deep Q-learning

Deep Q-Network (DQN)

LETTER

Human-level control through dee learning

Volodymyr Mnih¹*, Koray Kavukcuoglu¹*, David Silver¹*, Andrei A. Rusu¹, Joel Ver Martin Riedmiller¹, Andreas K. Fidjeland¹, Georg Ostrovski¹, Stig Petersen¹, Charles Helen King¹, Dharshan Kumaran¹, Daan Wierstra¹, Shane Legg¹ & Demis Hassabis¹

The theory of reinforcement learning provides a normative account¹, deeply rooted in psychological² and neuroscientific³ perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted

agent is to select act reward. More forma approximate the op

$$Q^*(s,a) = \max_{\pi}$$

Playing game

Solution

- 1. Deep Q-network
- 2. Capture and replay
 - Correlations between samples
- 3. Separate networks: create a target network
 - Non-stationary targets

Deep Q-network

Non-linear parameterization of q function with deep neural network (replace Q table)

$$q(s,a;\theta) \simeq q_*(s,a)$$

• The update rule for heta

$$\theta \leftarrow \theta + \alpha \left[r + \gamma \max_{a'} q(s', a'; \theta) - q(s, a; \theta) \right] \nabla_{\theta} q(s, a; \theta)$$

Deep Q-network using CNN

Experience replay buffer

- use previous samples stored in buffer D
- smoothing data distribution
- remove sequential correlation

s_1, a_1, r_2, s_2			
s_2, a_2, r_3, s_3			
s_3, a_3, r_4, s_4			
$s_t, a_t, r_{t+1}, s_{t+1}$			

random sample & Replay

Experience replay buffer

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For
$$t = 1$$
,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Separate networks

$$\min_{\theta} \sum_{t=0}^{T} [\hat{Q}(s_t, a_t | \theta) - (r_t + \gamma \max_{a'} \hat{Q}(s_{t+1}, a' | \bar{\theta}))]^2$$

Every C steps reset

 $\hat{Q} = Q$

input s,a

output target. q value

input s,a

output pred. q value

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For
$$t = 1$$
,T do

With probability ε select a random action a_t

otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set
$$y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Every C steps reset $\hat{Q} = Q$

End For

End For

Result

Non-linear parameterization of q function with deep neural network

$$q(s,a;\theta) \simeq q_*(s,a)$$

Example

NEURAL ARCHITECTURE SEARCH WITH REINFORCEMENT LEARNING

Barret Zoph* Quoc V. Le Google Brain {barretzoph,qvl}@google.com

https://arxiv.org/abs/1611.01578

ABSTRACT

Neural networks are powerful and flexible models that work well for many difficult learning tasks in image, speech and natural language understanding. Despite their success, neural networks are still hard to design. In this paper, we use a recurrent network to generate the model descriptions of neural networks and train this RNN with reinforcement learning to maximize the expected accuracy of the generated architectures on a validation set. On the CIFAR-10 dataset, our method,

An overview of Neural Architecture Search

Compute gradient of p and scale it by R to update the controller

Model	Depth	Parameters	Error rate (%)
Network in Network (Lin et al., 2013)	-	-	8.81
All-CNN (Springenberg et al., 2014)	-	-	7.25
Deeply Supervised Net (Lee et al., 2015)	-	-	7.97
Highway Network (Srivastava et al., 2015)	-	-	7.72
Scalable Bayesian Optimization (Snoek et al., 2015)	-	-	6.37
FractalNet (Larsson et al., 2016)	21	38.6M	5.22
with Dropout/Drop-path	21	38.6M	4.60
ResNet (He et al., 2016a)	110	1.7M	6.61
ResNet (reported by Huang et al. (2016c))	110	1.7M	6.41
ResNet with Stochastic Depth (Huang et al., 2016c)	110	1.7M	5.23
	1202	10.2M	4.91
Wide ResNet (Zagoruyko & Komodakis, 2016)	16	11.0M	4.81
	28	36.5M	4.17
ResNet (pre-activation) (He et al., 2016b)	164	1.7M	5.46
	1001	10.2M	4.62
DenseNet $(L = 40, k = 12)$ Huang et al. (2016a)	40	1.0M	5.24
DenseNet($L = 100, k = 12$) Huang et al. (2016a)	100	7.0M	4.10
DenseNet $(L = 100, k = 24)$ Huang et al. (2016a)	100	27.2M	3.74
DenseNet-BC ($L = 100, k = 40$) Huang et al. (2016b)	190	25.6M	3.46
Neural Architecture Search v1 no stride or pooling	15	4.2M	5.50
Neural Architecture Search v2 predicting strides	20	2.5M	6.01
Neural Architecture Search v3 max pooling	39	7.1M	4.47
Neural Architecture Search v3 max pooling + more filters	39	37.4M	3.65

Summary

Markov decision process

$$q_{\pi}(s,a) = R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} \sum_{a} \pi(s,a) q_{\pi}(s,a) \qquad v_{\pi}(s) = \sum_{a} \pi(s,a) \left[R_{s}^{a} + \gamma \sum_{s'} P_{ss'}^{a} v_{\pi}(s) \right]$$

Bellman (expectation) equation

Non-linear parameterization of q function with deep neural network (replace Q table)

$$q(s,a;\theta) \simeq q_*(s,a)$$

New terms

- Markov Decision Process (MDP)
- Q-learning
- State value function
- Action value function
- Bellman equation
- Bellman's optimal equation
- Exploit vs Explore
- ε-greedy
- Policy gradient method
- Deep Q-Learning (DQN)
- Q-network
- Experience replay

