

MAT255I Análisis Funcional

Sebastián Guerra Profesor: Nikola Kamburov (nikamburov@mat.uc.cl)

Apuntes aún no revisados, por favor no distribuir

Versión: 9 de agosto de 2023

Índice general

1.	Intro al Análisis Funcional		
	1.1.	¿Qué estudia el Análisis Funcional?	3
	1.2.	Motivación	4
	1.3.	Objeto central: espacio de Banach	4
	1.4.	Resultados que vamos a ver	5
	1.5.	Nociones básicas	6
2.	cap	2	12

Intro al Análisis Funcional

1.1. ¿Qué estudia el Análisis Funcional?

Estudia los espacios vectoriales de dimensión infinita y las transformaciones lineales entre ellos.

Definición 1.1.1. Un espacio vectorial V sobre \mathbb{K} campo de escalares tiene dimensión infinita si $\forall n \in \mathbb{N}$ hay n elementos de V que son linealmente independientes sobre \mathbb{K}

Ejemplo: $V = C([0,1], \mathbb{R}) = \text{funciones reales continuas en } [0,1].$ $\{1, x, \dots, x^{n-1}\} \subseteq V$ es linealmente independiente sobre \mathbb{R} .

Demostración.
$$\sum_{k=0}^{n-1} a_k x^k \equiv 0, \ a_k \in \mathbb{R}.$$

Reconocemos que existe la operación $\frac{d}{dx}$ definida en $C^{\infty}([0,1],\mathbb{R})$, funciones suaves, y la operación evaluar en x=0.

Evaluando en $x = 0 \rightarrow a_0 = 0$. Derivamos a los lados.

$$\sum_{k=1}^{n-1} a_k k x^{k-1} \equiv 0$$

y ahora evaluamos en x = 0:

$$a_1 = 0$$

...

Demostración alternativa. Reconocemos que hay un producto interno en $V = C([0,1],\mathbb{R})$

$$\langle f, g \rangle = \int_0^1 f(x)g(x) \, dx$$

$${f_k = \sin(\pi kx)}_{k=1}^n \subseteq V$$

$$\langle \sin(\pi kx), \sin(\pi lx) \rangle = \begin{cases} 0 & k \neq l \\ \frac{1}{2} & k = l \end{cases}$$

$$S = \sum_{k=1}^{n} a_k f_k \equiv 0$$

$$0 = \langle S, f_k \rangle = \left\langle \sum a_k f_k, f_l \right\rangle = a_l \langle f_0, f_l \rangle = \frac{1}{2} a_l$$

$$\implies a_l = 0, \forall l = 1, \dots, n$$

1.2. Motivación

Ejemplo (Ecuación de Poisson):

$$\begin{cases} \Delta u = f & \text{en } \Omega \subseteq \mathbb{R}^n \\ u = 0 & \text{en } \partial \Omega \end{cases}$$

Seba Aañdir dibujo

El problema se reformula así:

$$\begin{cases} D = \Delta : x \to Y \ni f \\ Du = f \end{cases}$$

tiene una solución $u \in X$ para ciertos espacios X, Y apropiados.

El Análaisis Funcional busca construir teoría más general que aplica para todos los problemas que comparten las mismas características topológicas/algebraicas/métricas.

1.3. Objeto central: espacio de Banach

Definición 1.3.1 (Espacio de Banach). $(V, ||\cdot||)$ es un espacio de Banach si es un espacio normado completo (clave para sacar límites).

 $\{\text{Espacios de Hilbert}, (V, \langle \cdot, \cdot \rangle) completos\} \subseteq \{\text{Espacios de Banach}, (V, ||\cdot||)\} \subseteq \{\text{Espacios métricos}, (V, d) control of the substitution of the substitut$

Seba Arreglar

Lógica de inclusiones

1. $\langle \cdot, \cdot \rangle$ induce una norma $||\cdot||$

$$||v|| = \langle v, v \rangle^{1/2}$$

2. $||\cdot||$ induce una métrica $d(\cdot,\cdot)$

$$d(v, w) = ||v - w||$$

1.4. Resultados que vamos a ver

1. Resultados que se parecen a los teoremas que conocemos en la situación de dimensión finita.

Ejemplo: Cada funcional lineal en \mathbb{R} $(l : \mathbb{R}^n \to \mathbb{R})$ se puede representar como $l(v) = v \cdot w$ para algún vector (único) $w \in \mathbb{R}^n$.

En la situación de dimensión ∞ , se tiene el Teorema de Representación de Riesz:

Teorema 1.4.1 (Representación de Riesz). Sea (V, \langle, \rangle) un espacio de Hilbert $y \mid V \rightarrow \mathbb{R}$ un funcional lineal continuo . Entonces existe un único $w \in V$, tal que

$$l(v) = \langle v, w \rangle$$

2. Resultados son muy diferentes de la situación en dimensión finita. contraintuitivos .

Ejemplo: $\overline{B_1(0)} \subseteq \mathbb{R}^n$ es compacta (Heine-Borel). En dim $V = \infty$, este teorema es falso.

Proposición 1.4.2. Sea V un espacio de Banach y sea $B = \{v \in V : ||v|| \le 1\}$. B es compacto en $V \iff \dim V < \infty$

Ejemplo: En particular, la bola unitaria cerrada en

$$B \subseteq L^p([0,1]), p \in (1,\infty)$$

no es compacta.

⇒ motiva la definición de topologías débiles.

1.5. Nociones básicas

Definición 1.5.1 (Espacios métricos). Un espacio métrico (X,d) y $d: X \times X \to [0,\infty)$ la métrica que satisface:

- 1. $d(x,y) = 0 \iff x = y$
- 2. (simetría) d(x,y) = d(y,x)
- 3. (Designaldad triangular) $d(x,y) \le d(x,z) + d(z,y)$

Definición 1.5.2. Sea V un espacio vectorial (sobre \mathbb{R} o \mathbb{C}). Una norma en V es una función $||\cdot||:V\to [0,\infty)$ que satsiface:

- 1. $||v|| = 0 \iff v = 0$
- $2. ||\lambda v|| = |\lambda| \cdot ||v||$
- 3. (Designaldad triangular) $||v + w|| \le ||v|| + ||w||$

Una función $||\cdot||:V\to [0,\infty)$ que satisface solo 2. y 3. se llama semi-norma .

Una espacio vectorial V con una norma se llama Espacio normado $(V, ||\cdot||)$.

Proposición 1.5.1. $(V, ||\cdot||)$ define un espacio métrico con métrica d(v, w) := ||v-w||.

Ejemplo: $V = \mathbb{R}^n$, \mathbb{C}^n tiene la estructura de espacio normado:

$$|x|_2 := \left(\sum_{k=1}^n |x_k|^2\right)^{1/2}, \quad x = (x_1, \dots, x_n)$$

■ En \mathbb{R}^2 , $|(x_1, x_2)| := |x_1|$ define una semi-norma:

$$|(x_1, x_2)| = 0 \iff x_1 = 0, x_2 \in \mathbb{R}$$

• $|x|_{\infty} = \max_{k=1,\dots,n} \{x_k\}$ es una norma.

$$|x|_p := \left(\sum_{k=1}^n |x_k|^p\right)^{1/p}, \quad p \in [1, \infty)$$

Seba Añadir dibujos de norma infinito y norma 1

Proposición 1.5.2. En \mathbb{R}^n y \mathbb{C}^n todas normas son equivalentes: si $||\cdot||\cdot||_1$, $||\cdot||_2$ son 2 normas, existe c>0 tal que

$$\frac{1}{c}||v||_2 \le ||v||_1 \le c||v||_2, \quad \forall v \in V$$

Definición 1.5.3. Sea X un espacio métrico. Definimos

$$C_{\infty}(X) := \{ f : X \to \mathbb{C} \text{ continuas y acotadas} \}$$

Ejemplo: $C_{\infty}([0,1]) = C([0,1])$ (funciones continuas)

Proposición 1.5.3. $||f||_{\infty} := \sup_{x \in X} |f(x)|$ define una norma en $C_{\infty}(X)$.

 $Demostraci\'on. \qquad 1. \ ||f||_{\infty} = 0 \iff f(x) = 0 \ quad \forall x \in X.$

2.

$$||\lambda f||_{\infty} = \sup_{x} |\lambda f(x)|$$
$$= \sup_{x} |\lambda| \cdot |f(x)|$$
$$= |\lambda| ||f||_{\infty}$$

3.

$$|f_1(x) + f_2(x)| \le |f_1(x)| + |f_2(x)|$$

 $\le ||f_1||_{\infty} + ||f_2||_{\infty}$

Convergencia en $||\cdot||_{\infty}$

$$f_n \to f$$
, en $C_\infty(X)$

 \sin

$$||f_n - f||_{\infty} \xrightarrow[n \to \infty]{0}$$

$$\iff \forall \varepsilon > 0 \exists N \in \mathbb{N} \text{ tal que}$$

$$||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N$$

Seba arreglar/poner align

Ejemplo: $\mathbb{K} = \mathbb{R} \circ \mathbb{C}$.

$$l^p(\mathbb{K}) := \{ \{a_k\}_{k=1}^n \subseteq \mathbb{K} : ||a||_p < \infty \}$$

 $\iff |f_n(x) - f(x)| < \varepsilon, \quad \forall x \in X$

donde

$$||a||_p := \begin{cases} \left(\sum_{k=1}^{\infty} |a_k|^p\right)^{1/p} & p \in [1, \infty) \\ \sup_{k \in \mathbb{N}} |a_k| & p = \infty \end{cases}$$

Sea (X, \mathcal{B}, σ) un espacio de medida.

$$L^p(x,\sigma):=\{f:X\to \mathbb{K}\, \text{σ-medibles, tales que}||f||_{L^p}<\infty\}$$

donde

$$||f||_{L^p} := \left(\int |f|^p \, d\sigma\right)^{1/p}$$

$$||f||_{L^{\infty}} := \operatorname{ess\,sup}_{x} |f|$$

Ejemplo: $X=[0,1],\,\sigma=$ medida de Lebesgue. En C([0,1]) definimos

$$||f||_{\infty} = \sup |f(x)|$$

$$||f||_{L^1} = \int |f(x)| \, dx$$

Estas 2 normas no son equivalentes

Definición 1.5.4. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si es completo con respecto a la métrica inducida.

Ejemplo: \mathbb{R}^n , \mathbb{C}^n son espacios de Banach (con respecto a cualquier norma) $L^p(x, \mathcal{B}, \sigma)$ es un espacio de Banach (cuando $(X, \mathcal{B}, \sigma)escompleto)$.

Proposición 1.5.4. $C_{\infty}(X)$ es un espacio de Banach.

Demostración. $\{f_n\} \subseteq V = C_{\infty}(X)$ de Cauchy.

- 1. Adivinar el límite f.
- 2. Probar la convergencia:

$$||f_n - f|| \to 0$$

3. f está en el espacio.

 $\forall \varepsilon > 0 \exists N = N(\varepsilon) \text{ tal que}$

$$||f_n - f_m||_{\infty} \le \varepsilon, \quad \forall n, m \ge N$$

Para todo $x \in X$ fijo, tenemos entonces

$$|f_n(x) - f_m(x)| \le ||f_n - f_m||_{\infty} \le \varepsilon$$

Esto es $\{f_n(x)\}_n$ es Cauchy en \mathbb{C} .

$$\implies f(x) := \lim_{n \to \infty} f_n(x)$$
 existe

$$|f_n(x)-f_m(x)|=\lim_{m\to\infty}|f_n(x)-f_m(x)|$$

$$\leq \varepsilon\quad\forall n\geq N(\varepsilon) \text{ independiente de }x\in X$$

$$\implies ||f_n - f||_{\infty} < \varepsilon, \quad \forall n \ge N(\varepsilon)$$

Esto es $f_n \to f$ uniformemente sobre X.

 $\implies f$ es continua sobre X.

¿Por qué f es acotada?

Considere $\varepsilon = 1$

$$\implies ||f_n - f_{\bar{N}}||_{\infty} \le 1$$

cuando $n \ge \bar{N} := N(1)$.

$$||f_n||_{\infty} \le ||f_{\bar{N}}||_{\infty} + ||f_n - f_{\bar{N}}||_{\infty}$$

 $\le ||f_{\bar{N}}||_{\infty} + 1$

$$\implies f(x) = \lim_{n \to \infty} f_n(x)$$
 es acotada

Definición 1.5.5. Sea $(V, ||\cdot||)$ un espacio normado. $v_n \in V, n \in \mathbb{N}$. $\sum_{n=1}^{\infty} v_n$ es sumable si

$$S_m = \sum_{n=1}^m v_n$$

converge.

 $\sum_{n} v_n$ es absolutamente sumable si

$$\sum_{n=1}^{\infty} ||v_n||$$

converge.

Proposición 1.5.5. Si $\sum_{n=1}^{\infty} v_n$ es absolutamente sumable, entonces, $\{S_m\}$ es Cauchy

Teorema 1.5.6. Un espacio normado $(V, ||\cdot||)$ es un espacio de Banach si y solo si toda serie absolutamente sumable es sumable.

Demostración. Próxima semana.

Capítulo 2
${ m cap} 2$