سلسلة تمارين حول الدوال الناطقة

$$g(x) = x^3 + 3x^2 + 2$$
 نعتبر الدالة g المعرفة على $\mathbb R$ كما يلي: (I

$$-4;-3]$$
 بيّن أنّ المعادلة $g(x)=0$ تقبل حلّا وحيدًا $lpha$ في المجال .

$$-\frac{n+1}{10} < \alpha < -\frac{n}{10}$$
 عيّن العدد الطبيعي n بحيث يكون ج

د) عيّن إشارة
$$g(x)$$
 حسب قيم x .

د) عيّن إشارة
$$g(x)$$
 حسب قيم x . (2) عيّن أنّ: $\alpha^3 = -3\alpha^2 - 2$.

$$f(x)=rac{x^3-1}{x^2+2x+1}$$
 بنعتبر الدالة f المعرفة على $\mathbb{R}-\{-1\}$ بناير الدالة المعرفة على (II

المنحنى الممثل للدالة
$$f$$
 في معلم متعامد ومتجانس $\left(C_f
ight)$.

. ثم فسّر بيانيًا النتيجة.
$$f$$
 عنن نهاية الدالة عند f عنن نهاية الدالة عند (ا

$$\lim_{x \to +\infty} f(x)$$
 وَ $\lim_{x \to -\infty} f(x)$ أحسب (ب

$$\mathbb{R}-\{-1\}$$
 أحسب $f'(x)$ ،ثم بيّن أنه من أجل كل x من $f'(x)$

$$f'(x) = \frac{g(x)}{(x+1)^3}$$

$$f$$
 شكّل جدول تغيرات الدالة f .

$$(x+1)^3$$
ب) شكّل جدول تغيرات الدالة f . $f(\alpha)=\frac{-3}{\alpha+1}$ بيّن أن $f(\alpha)=\frac{-3}{\alpha+1}$ ثم استنتج حصرًا للعدد (3)

ين أنّ:
$$(C_f)$$
 ثم إستنتج معادلة للمستقيم (Δ) المقارب المائل للمنحنى $\lim_{x \to \pm \infty} \left[f(x) - x \right] = -2$. (4

$$(\Delta)$$
 بالنسبة إلى (C_f) بالنسبة الى

بيّن أنّ للمنحني
$$(C_f)$$
 مماسًا (T) موازيًا للمستقيم (Δ) عند نقطة يُطلب تعيين إحداثياها.

أنشئ
$$(C_f)$$
 ، (T) والمستقيمات المقاربة.

عيّن قيم الوسيط الحقيقي
$$m$$
 حتى تقبل المعادلة: $\frac{8}{2}$

ي الإشارة.
$$(m+2)(x+1)^2 - 3x - 1 = 0$$
 حلّين مختلفين في الإشارة.

$$g(x)=x^3-3x-4$$
 نعتبر الدالة g المعرفة على $\mathbb R$ كما يلي: $g(x)=x^3-3x-4$

$$2 \leq \alpha \leq 2.25$$
 بيّن أنّ المعادلة $g(x) = 0$ تقبل حلّا وحيدًا α حيث α

$$x$$
عيّن إشارة $g(x)$ حسب قيم $g(x)$

$$f(x) = \frac{x^3 + x^2 + 1}{x^2 - 1}$$
 بـ: $\mathbb{R} - \{-1; 1\}$ بنعتبر الدالة f المعرفة على (II

المنحنى الممثل للدالة
$$f$$
 في معلم متعامد ومتجانس $\left(C_f
ight)$.

اً أحسب نهايات الدالة
$$f$$
 عند حدود مجموعة التعريف.

برهن أنه من أجل كل عدد حقيقي
$$x$$
 من $\mathbb{R} - \{-1; 1\}$ لدينا:

$$f'(x) = \frac{x g(x)}{(x^2 - 1)^2}$$

أدرس تغيرات الدالة
$$f$$
 وشكل جدول تغيراتها.

$$-\infty$$
 برهن أن المستقيم (Δ) ذو المعادلة $y=x+1$ مستقيم مقارب مائل لـ (C_f) بجوار (Δ)

$$(\Delta)$$
 و (C_f) أدرس الوضع النسبي بين أ

$$f(\alpha)$$
بیّن أن: $f(\alpha) = 1 + \frac{3\alpha + 6}{\alpha^2 - 1}$ ثم استنتج حصرًا لـ (6)

$$\alpha^{-1}$$
. -1.5 $\leq \alpha' \leq -1.25$ بيّن أن المعادلة $f(x)=0$ تقبل حلا وحيدا α' حيث (7

$$(\Delta)$$
 و (C_f) أرسم (C_f) و

$$.k(x) = rac{1}{f(x)}$$
 با $\mathbb{R} - \{\alpha'\}$ دالة معرفة على k (9

. أدرس تغيرات الدالة
$$k$$
 ثم أرسم منحناها البياني.

$$f(x) = |m-1|$$
 ناقش بيانيا وحسب قيم الوسيط m حلول المعادلة: (10

- $g(x) = x^3 x^2 + 3x + 1$ نعتبر الدالة g المعرفة على \mathbb{R} كما يلى: [1] نعتبر الدالة والمعرفة على المعرفة ع
 - 1) أدرس تغيرات الدالة g.
 - . [-1;0] بيّن أن المعادلة g(x)=0 تقبل حلًا وحيدًا α في المجال (2
 - 10^{-2} أعط حصرًا لـ α سعته (3
 - x عين إشارة g(x) عين إشارة (4
 - $\alpha^2 = -3 \frac{4}{\alpha 1}$ بیّن أن: (5
- . $\left(O;\vec{i};\vec{j}\right)$ المنحنى الممثل للدالة f في معلم متعامد ومتجانس و المثل الدالة f المنحنى الممثل الدالة المعرفة على \mathbb{R} با بنعتبر الدالة المعرفة على الممثل بنعتبر الممثل بنعتبر الدالة المعرفة على الممثل بنعتبر الدالة المعرفة على الممثل بنعتبر الدالة المعرفة على الممثل بنعتبر الدالة المعرفة الممثل ا
 - $f'(x) = \frac{(x+1)g(x)}{(x^2+1)^2} : \mathbb{R}$ بيّن أنه من أجل كل x من x من x من (1

 - . f أُدرس تغيرات الدالة f . f . $f(\alpha) = \alpha \frac{2}{\alpha^2 + 1}$. بيّن أن
 - . α استنتج حصرًا للعدد $f(\alpha)$ باستعمال العدد
 - $x \in \mathbb{R}$ عيّن الأعداد a و b بحيث من أجل كل (3 $f(x) = ax + b + \frac{cx + d}{x^2 + 1}$
 - ا. بيّن أنّ للمنحنى (C_f) مستقيمًا مقاربًا مائلا (Δ) يطلب تعيين معادلة له .
 - (Δ) بالنسبة إلى المستقيم ((C_f)) بالنسبة بالمستقيم
 - $f''(x) = \frac{4(-3x^2+1)}{(x^2+1)^3} : \mathbb{R}$ من أجل كل x من أجل كل تحقق أنه من أجل كل (4
 - بيّن أن للمنحني (C_f) نقطتي انعطاف يُطلب تعيين إحداثياتهما. riangle
 - . 0 الممثل للدالة f عند النقطة التي فاصلتها (C_f) الممثل للدالة التي فاصلتها (T_f) الممثل للدالة f
 - \triangle ماذا تستنتج بالنسبة للمماس (T) والمستقيم (Δ) ؟
 - أنشئ (C_f) أنشئ (C_f) أنشئ أنشئ أنشئ أو المستقيمات المقاربة.
 - . $m(x^2+1)+2=0$ ناقش بيانيا حسب قيم الوسيط الحقيقي m عدد واشارة حلول المعادلة: (7
 - $g(x)=x^3-3x-4$ نعتبر الدالة g المعرفة على $\mathbb R$ كما يلي: (I
 - $\lim_{x \to -\infty} g(x)$ و $\lim_{x \to +\infty} g(x)$ أحسب (1
 - أدرس اتجاه تغير الدالة g ثم شكّل جدول تغيراتها.
 - .2 < α < 2.5 بيّن أنّ المعادلة g(x)=0 تقبل حلًا وحيدًا (3
 - x عين إشارة g(x) عين إشارة (4
- . $\left(O;\vec{i},\vec{j}\right)$ نعتبر الدالة f المعرفة على $\mathbb{R}-\{0\}$ بيا $\mathbb{R}-\{0\}$ بيا المناف والمتجانس والمتعامد والمتجانس والمتعامد والمتجانس (II) المنحنى المثل للدالة ألم المتعامد والمتجانس والمتعامد والمتجانس والمتعامد والمتعامد
 - $f(x) = x + \frac{3}{x} + \frac{2}{x^2} : \mathbb{R} \{0\}$ تحقق بأنه من أجل كل x من (1) (1)
 - ب) أحسب: $\lim_{x \to 0} f(x)$ ، $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to +\infty} f(x)$: ب) أحسب
 - $f'(x) = \frac{g(x)}{x^3} : \mathbb{R} \{0\}$ من $f'(x) = \frac{g(x)}{x^3} : \mathbb{R} \{0\}$ من أجل كل $f'(x) = \frac{g(x)}{x^3} : \mathbb{R} \{0\}$
 - ب) استنتج اتجاه تغير الدالة f ثم شكّل جدول تغيراتها.
 - f(lpha) بيّن أن: $f(lpha)=rac{6}{lpha}+rac{6}{lpha^2}$ واستنتج حصرًا للعدد
 - . عين النقطة من (C_f) التي يكون فيها المماس (T) فيها موازيًا للمستقيم ذو المعادلة y=x ثم أكتب معادلة لهذا المماس.
 - ا) بيّن أن المنحنى (C_f) يقبل مستقيمًا مقاربا مائلا (Δ) يُطلب تعيينه. (4
 - (Δ) و (C_f) و (Δ) و (Δ)
 - (C_f) و (Δ) ، (T) و (C_f)
 - $-mx^2+3x+2\over r^2=0$ ناقش بيانيًا وحسب قيم الوسيط m عدد حلول المعادلة: (5