STIR2 • v1.0

Partitionen

Berechne die Anzahl an Möglichkeiten die Zahlen von 1 bis N in genau K (nicht leere) Teilmengen aufzuteilen (sowas nennt man eine Partition), modulo $10^9 + 7$. Z.B. gibt es für N=3 genau 3 Möglichkeiten die Zahlen in 2 Teilmengen aufzuteilen, nämlich: $(\{1,2\},\{3\})$, $(\{1,3\},\{2\})$ und $(\{2,3\},\{1\})$. Die Reihenfolge ist hierbei also egal, d.h. $(\{3\},(\{1,2\})$ ist dieselbe Aufteilung wie $(\{1,2\},\{3\})$.

Eingabe

N und K. Es gilt: $1 \le K \le N \le 1000$

Ausgabe

Die Anzahl an Möglichkeiten, modulo $10^9 + 7$.

Beispiel

Eingabe	Ausgabe
3 2	3

Eingabe	Ausgabe
4 3	6

Eingabe	Ausgabe
8 3	966

Bonus

Kannst du diese Werte z.B. auch für $n \leq 10^5$ noch effizient berechnen? Unter welchen Voraussetzungen?

Beschränkungen

Zeitlimit: 1 s Speicherlimit: 256 MB