Script 3

Lemma 3.4: If A is a nonempty, finite subset of a continuum C, then A has a first and last point.

We can prove that A has a first and last point through induction.

Suppose our base case n=1, then $A=\{a_1\}$ where A is a set with a single element thus that single element is both the first and last element (according to *definition 3.3*).

Now for the inductive hypothesis, we can assume when n = k, where k is a positive integer. A has a first element a_i and the last point is a_k such that $a_1 < a_k$.

Finally, our inductive step proves our assumption holds for when A contains n=k+1 elements. There are three possible cases :

- 1. $a_{k+1} < a_1 < a_k$
- 2. $a_1 < a_{k+1} < a_k$
- 3. $a_1 < a_k < a_{k+1}$

All these hold true for the inductive step and maintain the existence of the first and last element, therefore any finite subset A of a continuum C, it has a first and last point.

Theorem 3.5: Suppose that A is a set of n distinct points in a continuum C, or, in other words, $A \subset C$ has cardinality n. Then symbols $a_1, ... a_n$ may be assigned to each point of A so that $a_1, a_2, < ... < a_n, \ ie. \ a_i < a_{i+1} \ for \ 1 \le i \le n-1.$

Suppose we have a set X with elements $\{a_1,a_2,<...< a_n\}$. We can essentially assign the elements of set X to the first point in A according to Lemma 3.4 which says that A which is a subset of C has a first and last point. Thus as we move through set X, we can assign and remove element a_1 from set A so that each element in A will be assigned to symbols $a_1,...a_n$ in set X.

Corollary 3.7: Of three distinct points in a continuum, one must be between the two other.

Consider *Theorem 3.5* where we proved each point in a subset of a continuum C to a symbol $a_1,a_2,...,a_n$ in ascending order. In this case, we can order this set $C=\{c_1,c_2,c_3\}$ where $c_1< c_2< c_3$ thus c_2 is between c_1 and c_3 .

Exercise 3.8:

a. We define a relation < on $\mathbb Z$ by m < n if n = m + c for some $c \in \mathbb N$. Show that, $\mathbb Z$, with the ordering <, satisfies *Axion 1-3*.

Let us be reminded of Axioms 1-3.

Axiom 1. A continuum is a nonempty set C.

First, let us identify $\mathbb Z$ as a continuum because it's a nonempty (infinite) set of integers. For example, the set $\mathbb Z$ contains elements such as $\{-1,0,1,2\}$. This means $\mathbb Z$ fulfills *axiom 1*.

Axiom 2. A continuum C has an ordering <

We can identify m and n as distinct points in \mathbb{Z} and c as a positive integer. For $Axiom\ 2$ to prove true, an ordering on the set represented by $\mathbb{Z} \times \mathbb{Z}$ with elements (m,n) written as m < n must satisfy these conditions according to $definition\ 3.1$:

Trichotomy, where for all $m,n\in\mathbb{Z}$ one of the following holds: m< n, m=n, or m>n. Because we defined m< n if n=m+c, then trichotomy is satisfied as one of the above held true. This is also because when n=m+c and $c\in\mathbb{N}$ and $c=n-m, m\neq n$ because c would have to equal 0, and $m\not\geq n$ because c would have to be negative, both of which are not within the set \mathbb{N} thus, m< n is the only case and trichotomy is true in the continuum Z.

Transistivity: where for all $m,n,l\in\mathbb{Z}$, if m< n and n< l then m< l. Let's suppose n=m+a, l=n+b, and l=m+c where $a,b,c\in\mathbb{N}$. From this, we can deduce n>m because a=m-n. We can substitute m+a for n to get l=m+a+b. If a,b are both positive integers more than 0, then l must be greater than m which proves that if n>m and l>n, then l>m. Therefore, the transistivity property is true for an ordering < of continuum \mathbb{Z} .

With both Trichotomy and Transistivty satisfied, we can conclude that the continuum \mathbb{Z} has an ordering <.

Axiom 3. A continuum C has no first or last point

This is true, as \mathbb{Z} has no first nor last point. This is because \mathbb{Z} is an infinite set thus there is no $a_1 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}$ where a_i is any element of \mathbb{Z} and $a_1 < a_i$ for all i nor is there any element a_n that represents the last element of \mathbb{Z} because \mathbb{Z} is an infinite set with no first nor last element.

Therefore, $\ensuremath{\mathbb{Z}}$ with the ordering < , satisfies axioms 1-3.

b. Show that, for any $p = \{rac{a}{b}\} \in \mathbb{Q}$, there is some $(a_1,b_1) \in p$ with $0 < b_1$.

Let us first determine if there is some $(a_1,b_1)\in p$. As we have observed in *Exercise 2.6*: $\left[\frac{a}{b}\right]=\left[\frac{a_1}{b_1}\right]=(a,b)\sim(a_1,b_1)$. Thus, we may find an equivalent fraction for any rational number p such that

 $\left[\frac{a}{b}\right]=\left[\frac{a_1}{b_1}\right]$ by dividing both a,b by their greatest common divisor (GCD). We know based on the equivalence relation established in *Exercise 2.2* that $\left[\frac{a}{b}\right]=(a,b)$ and conversely $\left[\frac{a_1}{b_1}\right]=(a_1,b_1)$. Thus since $(a,b)\in p$ and $(a,b)\sim(a_1,b_1)$, then $(a_1,b_1)\in p$. Note that by dividing b by a GCD and because p is a rational number and fractions cannot have 0 in their denominator, b must be a positive integer and thus b>0.

There exists 3 cases for (a_1, b_1) where $b_1 > 0$:

1. $\left\{\frac{a_1}{b_1}\right\}$ is zero:

In this case, a_1 must be 0 such that b_1 must be either positive or negative so $\{rac{a_1}{b_1}\}=0$ and $0 < b_1$.

2. $\left\{\frac{a_1}{b_1}\right\}$ is positive:

In this case, both a_1 and b_1 are positive or both are negative, thus there exists a b_1 such that $b_1>0$

3. $\left\{\frac{a_1}{b_1}\right\}$ is negative:

In this case, either a_1 or b_1 is negative so in the case $a_1<0$ then there is some b_1 can be expressed as $b_1>0$

So for all cases 0, positive, and negative, there exists some $b_1>0$.

c. We define a relation $<_{\mathbb{Q}}$ on \mathbb{Q} as follows. For $p,q\in\mathbb{Q}$, let $(a_1,b_1)\in p$ be such that $0< b_1$, and let $(a_2,b_2)\in q$ be such that $0< b_2$. Then we define $p<_{\mathbb{Q}}q$ if $a_1b_2< a_2b_1$. Show that $<_{\mathbb{Q}}$ is a well-defined relation on \mathbb{Q} .

Suppose $(a,b) \sim (a',b')$ and $(c,d) \sim (c',d')$, and by *part b* we know that b,b',d,d' can all be >0. By definition of the \sim relation in *exercise 2.2* e we know that ab'=a'b and cd'=c'd such that $\left[\frac{a}{b}\right]=\left[\frac{a'}{b'}\right]$ and $\left[\frac{c}{d}\right]=\left[\frac{c'}{d'}\right]$.

We want to show that $[a,b]<_{\mathbb{Q}}[c,d]$ is equivalent to [(a',b')]<[(c',d')]. We can suppose $[(a,b)]<_{\mathbb{Q}}[c,d]$ which means $ad<_{\mathbb{Q}}cd$ so $\left[\frac{a}{b}\right]<_{\mathbb{Q}}\left[\frac{c}{d}\right]$ which results in $\left[\frac{a'}{b'}\right]=\left[\frac{a}{b}\right]<_{\mathbb{Q}}\left[\frac{c}{d}\right]=\left[\frac{c'}{d'}\right]$. From this, we know that $a'd'<_{\mathbb{Q}}b'c'$ so that $[(a'b')]<_{\mathbb{Q}}(c',d')$ such that $<_{\mathbb{Q}}$ is a well defined relation on \$\mathrm{hat}\text{B}\text{Q}.

d. Show that \mathbb{Q} , with the ordering $<_{\mathbb{Q}}$, satisfies *Axioms 1-3*.

Let us be reminded of Axioms 1-3.

Axiom 1. A continuum is a nonempty set C.

First, let us identify $\mathbb Q$ as a continuum because it's a nonempty (infinite) set of rational numbers (fractions). For example, the set $\mathbb Q$ contains elements such as $\{(\frac{0}{1}),(\frac{1}{1}),(\frac{-1}{1}),(\frac{1}{2})\}$ and so on. This means $\mathbb Q$ fulfills *axiom 1*.

Axiom 2. A continuum C has an ordering <

For Axiom 2 to prove true, an ordering on the set represented by $\mathbb{Q} \times \mathbb{Q}$ with elements p,q written as $p <_{\mathbb{Q}} q$ must satisfy these conditions according to definition 3.1:

Trichotomy: We can identify p and q as distinct points in $\mathbb Q$ where $(a_1,b_1)\in p$ and $(a_2,b_2)\in q$ where for all $p,q\in\mathbb Q$ one of the following holds: $p<_{\mathbb Q}q$, $p=_{\mathbb Q}q$, or $p>_{\mathbb Q}q$. Because we defined $p<_{\mathbb Q}q$ if $a_1b_2< a_2b_1$, then trichotomy is satisfied as one of the above held true.

Transistivity: We can identify p and q as distinct points in $\mathbb Q$ where (a_1,b_1) in p and $(a_2,b_2)\in q$ and define a point $x\in\mathbb Q$ and let $(a_3,b_3)\in x$ be such that $0< b_1,b_2,b_3$ based on $part\ 2$ and let's make x so $q=p+_{\mathbb Q}x$. For all $p,q,x\in\mathbb Q$, if p< q and q< x then p< x. This is equivalent to $\left[\frac{a_1}{b_1}\right]<\left[\frac{a_2}{b_2}\right]<\left[\frac{a_3}{b_3}\right]$, and by substitution we know that $\left[\frac{a_1}{b_1}\right]<\left[\frac{a_3}{b_3}\right]$. Therefore, the transistivity property is true for an ordering $<_{\mathbb Q}$ of continuum $\mathbb Q$.

With both Trichotomy and Transistivty satisfied, we can conclude that the continuum $\mathbb Q$ has an ordering $<_{\mathbb O}$.

Axiom 3. A continuum C has no first or last point

This is true, as $\mathbb Q$ has no first nor last point. This is because $\mathbb Q$ is a dense infinite set thus there is no $a_1 \in \mathbb Q$ and $a_i \in \mathbb Q$ where a_i is any element of $\mathbb Q$ and $a_1 < a_i$ for all i nor is there any element a_n that represents the last element of $\mathbb Q$ because $\mathbb Q$ is an infinite set where between any two distinct rational numbers, there is another rational number. Thus $\mathbb Q$ has no first nor last element.

Therefore, \mathbb{Q} with the ordering $<_{\mathbb{Q}}$, satisfies axioms 1-3.

Theorem 3.11: If x is a point of a continuum C, then there exists a region \underline{ab} such that $x \in \underline{ab}$.

Let us remember Definition 3.9: If $a,b \in C$ and a < b, then the set of points between a and b is called a region, denoted by \underline{ab} .

Theorem 3.13: If p is a limit point of A and $A \subset B$, then p is a limit point of B.

Let us be reminded of Definition 3.12: a limit point is a point p of continuum C in subset A if every region R containing p has nonempty intersection with $A \setminus \{p\}$ which means for every region R with $p \in R$, we have $R \cap (A \setminus \{p\}) \neq \emptyset$.

Since p is a limit point of A, then for all regions R containing $p, R \cap (A \setminus \{p\}) \neq \emptyset$. Let $q \in A$ be an intersection point with $R \cap (A \setminus \{p\}) \neq \emptyset$, and since $A \subset B$, then $q \in B$. Thus, given an R

containing p, there is a $q \in R \cap B \setminus \{p\}$ which means p is a limit point of B.

Lemma: 3.15: If \underline{ab} is a region in a continuum C, then, ext $\underline{ab}=\{x\in C|x< a\}\cup\{x\in C|b< x\}$

Consider Definition 3.14: If \underline{ab} is a region of continuum C, then $C \setminus (\{a\} \cup \underline{ab} \cup \{b\})$. is called the exterior of \underline{ab} denoted by ext \underline{ab} .

We want to show ext $\underline{ab} = \{x \in C | x < a\} \cup \{x \in C | b < x\}$. We know that:

if
$$x \nleq a$$
, then $x \geq a$ if $x \ngeq b$, then $x \leq b$

We can formulate the equation:

$$\begin{split} &C\backslash(\{a\}\cup\underline{ab}\cup\{b\})=C\backslash(\{a\}\cup\{a< x< b\}\cup\{b\}).\\ &C\backslash(\{a\}\cup\{a< x< b\}\cup\{b\})=C\backslash(\{a\le x\le b\}).\\ &C\backslash(\{a\le x\le b\})=\{x\in C|x< a\}\cup\{x\in C|x> b\}. \text{ Thus } C\backslash(\{a\}\cup\underline{ab}\cup\{b\})=\underline{ab}=\{x\in C|x< a\}\cup\{x\in C|b< x\}. \end{split}$$

Lemma 3.16: No point in the exterior of a region is a limit point of that region. No point of a region is a limit point of the exterior of that region.

Let us be reminded of Definition 3.12: a limit point is a point p of continuum C in subset A if every region R containing p has nonempty intersection with $A \setminus \{p\}$ which means for every region R with $p \in R$, we have $R \cap (A \setminus \{p\}) \neq \emptyset$.

Proof by contradiction:

Consider the set $E=ext\ \underline{ab}$ where $E\cap R\neq\emptyset$ which is proven by *lemma 3.15*. Assume $e\in E$ where e is a limit point of \underline{ab} , and a and b are in the continuum C. There are two possible cases.

e < a is a possibility where a' is an element such that a' < e < a because the continuum has no first or last point and by *theorem 3.11* that states the point e in the continuum exists in a region $\underline{a'a}$. If we create a region $\underline{a'a}$ then it contains p, but $\underline{a'a} \cap (\underline{ab} \setminus \{p\}) = \emptyset$. This contradicts our assumption by stating that p cannot be a limit point of \underline{ab} .

Or e > b such that there is a b' where b < e < b' which is possible because the continuum has no first or last point and by *theorem 3.11*. If we create a region $\underline{bb'}$ then it contains p, but $bb' \cap (\underline{ab} \setminus \{p\}) = \emptyset$ which is also contradictory.

Because $\underline{a'a} \cap \underline{ab} \backslash e = \emptyset$ or $\underline{bb'} \cap \underline{ab} \backslash e = \emptyset$ and since $e \in R$, then a < e < b and a' < a which means that $\underline{ab} \cap \underline{a'a} \backslash \{e\} = \emptyset$. And because b < b' then $\underline{ab} \cap \underline{bb'} \backslash \{e\} = \emptyset$ and $\underline{ab} \cap E \backslash \{e\} = \emptyset$ which contradicts our assumption of e being a limit point. This contradicts our assumption, saying that e cannot be a limit point of $ext\underline{ab}$ if it is a point on \underline{ab} .

Theorem 3.17: If two regions have a point x in common, their intersection is the region containing x.

Let $x \in \underline{ab}$ and $x \in \underline{cd}$, which means $a,b,c,d \in C$ and a < b and c < d. We can infer that a < x and x < b and c < x and x < d. By the definition of a region, we know that a < b and c < d, and by trichotomy, we know that a < x < d and c < x < b. If $x \in \underline{ab} \cap \underline{cd}$, then x is in a region, R that is between the least value (whether a or c) and the greatest value b or d

Be aware of our four cases that results from this:

- 1. a < c < b < d, intersection of regions is \underline{cb}
- 2. a < c < d < c, intersection of regions is \underline{cd}
- 3. c < a < b < d, intersection of regions is <u>ab</u>
- 4. c < a < d < b, intersection of regions is \underline{ad}

Because all of the resulting intersections contain x, then $x \in (\underline{ab} \cap \underline{cd})$.

Corollary 3.18: If n regions $R_1,...,R_n$ have a point x in common, then their intersection $R_1 \cup ... \cap R_n$ is a region containing x.

Proof by induction: If a region R, $R_n \ x$, then the intersection R

Base case (n=1), R_1 contains x because it is the only region and has intersection with itself.

Inductive hypothesis, we assume n=k, so if $R_1...R_k$ all contains x, then $R_1\cap R_k$ contains x.

Inductive step, we can show it holds for (n=k+1). Let $K=R_1\cap R_n\cap R_n$ based on our hypothesis. We know that K is a region containing x. Thus $R_1\cap R_2$, $R_k\cap R_{k+1}=K\cap R_{k+1}$. The intersection of 2 regions containing x because R_{k+1} contains x. By *theorem 3.17 *, we have $K\cap R_{k+1}$ is a region containing x.

Theorem 3.19: Let A, B be subsets of a continuum C. Then p is a limit point of $A \cup B$ if, and only if, p is a limit point of at least one of A or B.

We can prove this this by contradiction. Let us assume that there exists a p which is a limit point of $A \cup B$ but not a limit point of either A nor B. This means for p to be a limit point, then for every region R containing p with $p \in R$, $R \cap (A \cup B \setminus \{p\}) \neq \emptyset$. Going right to left, if p is a limit point of A or B, then $A \subset A \cup B$, $B \subset A \cup B$. By theorem 3.13 if a point is a limit point of a set then it is also a limit point of its parent sets.

Corollary 3.20: Let $A_1,...,A_n$ be n subsets of a continuum C. Then p is a limit point of $A_1\cup\cdots\cup A_n$ if, and only if, p is a limit point of at least one of the sets A_k .

Let us be reminded of theorem 3.19: Let A, B be subsets of a continuum C. Then p is a limit point of $A \cup B$ if, and only if, p is a limit point of at least one of A or B. Now, let's solve this with mathematical induction:

Base case (n=1): We can prove that p is a limit point for a single set A_1 if and only if p is a limit point of A_1 which is inherently true.

Inductive hypothesis (n=k): We assume that the statement is true when n=k such that for any subsets $A_1,A_2,...,A_k$ of a continuum C, p is a limit point of $A_1\cup A_2,...,\cup A_k$ if and only if p is a limit point of at least one of the sets A_i .

Inductive step (n = k + 1):

To prove that our hypothesis holds for (n=k+1), we must show that for subsets $A_1, A_2, ..., A_{k+1}$ of continuum C, p is a limit point of $A_1 \cup A_2, ..., \cup A_{k+1}$ if and only if p is a limit point of at least one of the sets A_i .

Let's first consider the forward direction, where p is a limit point of $A_1 \cup A_2, ..., \cup A_{k+1}$. By the inductive hypothesis, we know that if p is a limit point of the union of the first k sets $A_1, A_2, ..., A_k$, then it must be a limit point of at least one of them.

Now, we check the reverse direction. If p is a limit point of at least one of the sets A_i , we want to show that it is indeed a limit point of $A_1 \cup A_2, ..., \cup A_{k+1}$.

Consider the case where p is a limit point of A_k+1 . By *Theorem 3.19*, we can state that the limit point of a set is also a limit point of the union between that set and another. Thus, if p is a limit point of A_{k+1} , it is also a limit point of the union $A_1 \cup A_2, ..., \cup A_k \cup A_{k+1}$.

We have now proven both directions of the statement, ensuring that p is a limit point of $A_1 \cup A_2, ..., \cup A_{k+1}$ if and only if p is a limit point of at least one of the sets A_i .

Theorem 3.21: If p and q are distinct points of a continuum C, then there exist disjoint regions R and S containing p and q, respectively.

Let's make p and q arbitary points in C and p < q. Also, let's assume $p' \in C$ where p' < p and $q' \in C$ where q' < q. Now let's examine the possible cases:

1. At least 1 point between p and q:
 Let c be the point between p and q forming two regions $R = \underline{cp'}$ and $S = \underline{q'c}$. They must be disjoint because they both have c as one of their limits (but does not include it) and include p and q respectively.

2. No points between p and q

There are two regions $q \in \underline{pp'}$ and $p \in \underline{qq'}$, and because there are no points between p and q, then the regions are disjoint as they contain no similar elements in their regions.

Corollary 3.22. A subset of a continuum C consisting of one point has no limit points.

Let us be reminded of the definition of a limit point: Let A be a subset of a continuum C. A point p of C is called a limit point of A if every region R containing p has nonempty intersection with $A \setminus \{p\}$. This means for every region R with $p \in R$, we have $R \cap (A \setminus \{p\}) \neq \emptyset$.

Let us prove by contradiction:

Assume that a subset A of continuum C consists of one point, $x \in A$ and has a limit point p which is not necessarily in A. We have 2 cases:

- 1. x = p
 - If A only has x which is a limit point, we can check that $R \cap (\{x\} \setminus \{p\}) = R \cap \emptyset = \emptyset$ thus p is not a limit point of A.
- 2. $x \neq p$

If x and p are distinct points in C, then by theorem 3.21 there exists disjoint regions A and R containing x and p respectively such that p is not a limit point of A.

2a.
$$p>x$$

Let a and b be two points such that x < a < p < b and $R = \underline{bc}$ so $p \in R$, so $(R \cap$

 $A)\backslash\{x\}
eq\emptyset$. But because R does not contain x, it contains no points in set A thus $R\cap A=\emptyset$ which disproves our previous statement.

2b.
$$p < x$$

Let c and d be distinct points such that $c and the region <math>R = \underline{cd}$ such that $p \in R$. Based off of this, we know that $(R \cap A) \setminus \{x\} \neq \emptyset$, but because R does not contain point x, it has no elements in its intersection with set A such that $R \cap A = \emptyset$. Thus our previous statement is false and we have a contradiction.

Theorem 3.23: A finite subset \boldsymbol{A} of a continuum \boldsymbol{C} has no limit points.

A finite subset will contain a region R that is between two points surrounding any point such that the intersection between R and A will be the empty set. Let $A=A_1\cup A_n$ where they are all subsets of C consisting of one point. Based on *Corollary 3.20:* for p to be limit point of the union of sets, it must be a limit point of at least one of the sets. From this, we can see that p cannot be a limit point of any sets $A_1...A_n$ because they consist only of one element which means none of the sets can have a limit point by *Corollary 3.22*.

Corollary 3.24: If A is a finite subset of a continuum C and $x \in A$, then there exists a region R , containing x, such that $A \cap R = \{x\}$.

Order A by theorem 3.5 and let $A=\{a_1...a_n\}$ where some $a_k=x$. Let $A'=\{a_1...a_{k-1}\}$ and let $A''=\{a_{k+1}...a_n\}$. Because $a_{k-1}< x< a_{k+1}$, let the region $R=\underline{a_{k-1}a_{k+1}}$ which contains x and no other points in A. If x is a_1 then the region will be $R=\underline{({\rm element\ of\ C} < a_1)a_2}$ and if x is the last element then the region will be $R=a_n({\rm element\ of\ C} > a_n)$. Thus $A\cap R=\{x\}$.

Theorem 3.25: If p is a limit point of A and R is a region containing p, then the set $R\cap A$ is infinite.

For every R where $p \in R$, $R \cap A$ is infinite.

By contradiction we can prove $A\cap R$ is finite.

$$S_0 = A \cap R$$

 $S_1 = \{x \in S_0, x < p\}, x_L$ is last point of S_1

If $S_1=\emptyset$, then the region $\underline{ax_L}$ that contains p is $\underline{ax_L}\cap A\backslash\{p\}=\emptyset$ so p is not a limit point.

 $S_2 = \{x \in S_0, x > p\}x_F$ is first point of S_2

If $S_2=\emptyset$ then the region x_Lb such that $x_Lb\cap Aackslash\{p\}=empty$ so p is not a limit point.

Therefore the region $\underline{x_Lx_F}$ contains p, and $\underline{x_Lx_F}\cap A\backslash\{p\}=\emptyset$, so p is not a limit point of A.