

LISTENER ACOUSTIC PERSONALISATION (LAP) CHALLENGE

Task-1

HRTF Normalization for Merging Different HRTF Datasets

Jiale Zhao, Dingding Yao, Zelin Qiu, Chengzhong Wang, and Junfeng Li 2024-08-29

Table of Contents

1 Introduction

Target of the Task-1, Motivation of the proposed method

02 Method

Flowchart of the proposed method, Design of the loss function

ExperimentsProprocessing Notes

Preprocessing, Network training

Results

Evaluation of the Stage-1 and Stage-2

Future work

Issues of the proposed method, Future work

Differences between HRTF datasets

- > Measurement setup
- > Postprocessing
- > ..

Fig. 8 & Fig. 9 in Li S et al. (2020)

Data-driven HRTF modeling

- ➤ SONICOM, HUTUBS,
- ➤ Single dataset → limited performance
- > Merging datasets

Task-1

HRTF Normalization for Merging Different HRTF Datasets

Li S, Peissig J. Measurement of head-related transfer functions: A review[J]. Applied Sciences, 2020, 10(14): 5014.

Task-1 Constraints

Stage-1

- Evaluation with thresholds over different localization metrics computed using an auditory model (*Barumerli et al.*, 2023)
- Differences in localization metrics must be below the threshold for at least 64 of 80 harmonized HRTF datasets (i.e. 80%).

• Stage-2

➤ The evaluation employs a classifier (*Pauwels and Picinali, 2023*) to test to what extent different collections can be distinguished from each other after harmonization, affirming the removal of measurement setup-induced biases.

Maintain Localization Performance

Eliminate Dataset Characteristics

- Barumerli R, Majdak P, Geronazzo M, et al. A Bayesian model for human directional localization of broadband static sound sources [J]. Acta Acustica, 2023, 7: 12.
- Pauwels J, Picinali L. On the relevance of the differences between HRTF measurement setups for machine learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.

Dataset Characteristics

Dataset	Sample Rate	Duration Radius		Positions	Method	Subjects	
3D3A	96 kHz	21.3 ms	0.76 m	648	measured	10	
CHEDAR	48 kHz	10 ms	2 m	2522	simulated	10	
HUTUBS	44.1 kHz	5.8 ms	1.47 m	440	measured	10	
RIEC	48 kHz	10.7 ms	1.5 m	865	measured	10	
SADIE II	96 kHz	5.3 ms	1.2 m	2114	measured	10	
SCUT	96 kHz	5.3 ms	1 m	864	measured	10	
SONICOM	96 kHz	5.3 ms	1.7 m	828	measured	10	
Widespread	48 kHz	10 ms	1 m	2522	simulated	10	

Dataset Characteristics

Contour maps of HRTF spectra on the sagittal plane

Method

Maintain Localization Performance

Reduce Classification Accuracy

- Barumerli R, Majdak P, Geronazzo M, et al. A Bayesian model for human directional localization of broadband static sound sources[J]. Acta Acustica, 2023, 7: 12.
- Pauwels J, Picinali L. On the relevance of the differences between HRTF measurement setups for machine learning[C]//ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
- Platt J. Sequential minimal optimization: A fast algorithm for training support vector machines[J]. 1998.

Method

Flowchart

Method

Localization Loss Function

$$Loss = Loss_{ILD} + \alpha Loss_{gammatone} + \beta Loss_{class}$$

$$\alpha \text{ is 1 and } \beta \text{ is 0.01}$$

$$Loss_{ILD} = (\sqrt{\frac{\sum_{i=1}^{N} HRIR_{i}^{2}}{N}} - \sqrt{\frac{\sum_{i=1}^{N} \widehat{HRIR}_{i}^{2}}{N}})^{2} \quad Loss_{gammatone} = (\mathcal{F}(HRIR) - \mathcal{F}(\widehat{HRIR}))^{2} \quad Loss_{class} = \sum_{i=1}^{8} \sum_{j=1}^{i} \left\| c_{i} - c_{j} \right\|^{2}$$

HRIR is binaural N is the number of samples

$$Loss_{gammatone} = (\mathcal{F}(HRIR) - \mathcal{F}(\widehat{HRIR}))^{2}$$

 $\mathcal{F} \rightarrow$ Auditory Model in Stage 1

$$Loss_{class} = \sum_{i=1}^{8} \sum_{j=1}^{l} ||c_i - c_j||^2$$

c is class center

Maintain Localization Performance

Eliminate Dataset Characteristics

Experiments

Preprocessing

- \rightarrow HRIR Resampling: {44100, 48000, 96000} Hz \rightarrow 48000 Hz, with 512 samples
- > ITD estimator: interaural cross-correlation (IACC)

Network Training

- > Three blocks: Fully Connected Layer, Batch Normalization, and ReLU activation in each block
- > Input & Output: 512x2 samples
- > One model for one sampling position: 126 models in total
- > Training time: 600 epochs, Nvidia A40 \rightarrow 2 hours and 40 minutes

Results

• Stage-1: Localization Performance

	Lateral Accuracy [deg.]	Polar Accuracy [deg.]	Lateral RMS error [deg.]	Polar RMS error [deg.]	Quadrant error	Polar gain [1/deg.]
Threshold	5.86	12.67	20.71	5.90	34.56%	0.33
Proposed	0.64	3.45	15.13	2.60	17.54%	0.08

Pass Rate: 76/80=95%

• Stage-2: Classification Accuracy

1	2	3	4	5	6	7	8	9	10
28.75%	23.13%	24.38%	25.63%	25.00%	27.50%	25.00%	28.75%	25.63%	25.63%

10 validation runs

Mean: 25.94%

Future Work

Perceptual Performance

- ☐ The perceptual evaluation of normalized HRTFs
- A perceptually similar localization loss function

Ideal loss function:

1. Input: Target position, Binaural HRTFs Output: Localization Error

2. Input: Binaural HRTFs Output: Timbre Error

Validation of the Normalized HRTF Dataset

- A further investigation whether existing HRTF modeling methods demonstrate improved performance with merged datasets.
- By comparing the performance across small datasets, large datasets, and merged datasets, the effectiveness of the normalization method could be better confirmed...

LISTENER ACOUSTIC PERSONALISATION (LAP) CHALLENGE

Thank you

zhaojiale@hccl.ioa.ac.cn

Code: https://github.com/IOA3Daudio/LAP-Task-1

Jiale Zhao, Dingding Yao, Zelin Qiu, Chengzhong Wang, and Junfeng Li

2024-08-29

