Relations between & operations on sets

Methods: Logic, Part 1c

Michael Franke

Content covered

- relations between sets:
 - (proper) subset (proper) superset
- operations on sets:
 - power set
 - logical operations:
 - intersection
 - union
 - difference
 - complement

Subsets

For any two sets *X* and *Y*, *X* is a **subset** of *Y* if all elements of *X* are also elements of *Y*.

If *X* is a subset of *Y*, we write: $X \subseteq Y$.

Subsets

For any two sets *X* and *Y*, *X* is a **subset** of *Y* if all elements of *X* are also elements of *Y*.

If *X* is a subset of *Y*, we write: $X \subseteq Y$.

Example 1: $A \subseteq B$

Subsets

For any two sets *X* and *Y*, *X* is a **subset** of *Y* if all elements of *X* are also elements of *Y*.

If *X* is a subset of *Y*, we write: $X \subseteq Y$.

If *X* is not a subset of *Y*, we write: $X \not\subseteq Y$.

Example 2: $C \not\subseteq B$

For any two sets X and Y, X is a **proper subset** of Y if all elements of X are also elements of Y and there is at least one element $y \in Y$ such that $y \notin Y$.

If *X* is a proper subset of *Y*, we write: $X \subset Y$.

For any two sets X and Y, X is a **proper subset** of Y if all elements of X are also elements of Y and there is at least one element $y \in Y$ such that $y \notin Y$.

If *X* is a proper subset of *Y*, we write: $X \subset Y$.

Example 3: $A \subset B$

For any two sets X and Y, X is a **proper subset** of Y if all elements of X are also elements of Y and there is at least one element $y \in Y$ such that $y \notin Y$.

If *X* is a proper subset of *Y*, we write: $X \subset Y$.

For any two sets X and Y, X is a **proper subset** of Y if all elements of X are also elements of Y and there is at least one element $y \in Y$ such that $y \notin Y$.

If *X* is a proper subset of *Y*, we write: $X \subset Y$.

Example 4: $B \not\subset B$ (but $B \subseteq B$)

Superset and proper supersets

If *X* is a (proper) subset of *Y*, then *Y* is a **(proper) superset** of *X*. If *Y* is a superset of *X*, we write: $X \subseteq Y$ or $Y \supseteq X$.

Power set

The **power set** $\mathcal{P}(X)$ of X is the set of all subsets of X:

$$\mathcal{P}(X) = \{ Y \mid Y \subseteq X \}$$

Example 5:

$$X = \{a, b\}$$

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Logical operations on sets

$$X \cap Y = \{z \mid z \in X \text{ and } z \in Y\}$$

$$X \cup Y = \{z \mid z \in X \text{ or } z \in Y\}$$

$$X \setminus Y = \{z \mid z \in X \text{ and } z \notin Y\}$$

$$\overline{X} = \{z \in U \mid z \notin X\}$$

[intersection]
[union]
[difference]
[complement]

Example: Intersection

Example 6: $B \cap C = \{a, b, ..., g\}$

Example: Union

Example 7: $B \cup C = \{a, b, ..., g, h\}$

Example: Difference

Example 8: $C \setminus B = \{h\}$ and $B \setminus C = \emptyset$

Example: Complement

Example 9: $\overline{B} = \{h, i, j\}$ and $\overline{C} = \{i, j\}$

