

Sajjad Ranjbar

CLASSICAL MACHINE LEARNING

CLASSICAL MACHINE LEARNING

The volume of data is

enormous

Data is confidential

Dataset

CLASSICAL MACHINE LEARNING

The volume of data is

enormous

A single server must compute all processes

Dataset

Data is confidential

Medical information, banking transactions, etc.

Federated learning is a distributed machine learning approach where multiple devices or entities collaborate to train a shared model without exchanging raw data. This allows for data privacy and security while still enabling collaborative model improvement.

 $\mathbf{W} = \mathbf{F}(\mathbf{W}_1, \mathbf{W}_2, \mathbf{W}_3)$

Step 1	Step 2	Step 3	Step 4
worker-a worker-b worker-c	model-server Model Sync worker-a worker-b worker-c	worker-a worker-b worker-c	worker-a worker-b worker-c
Central server chooses a statistical model to be trained	Central server transmits the initial model to several nodes	Nodes train the model locally with their own data	Central server pools model results and generate one global mode without accessing any data

Even in FL, model weights may provide the original data.

Solution: Encrypt weights before sending to the server.

Challenge: The server must be able to perform aggregation operations on encrypted weights.

HOMOMORPHIC ENCRYPTION

A type of encryption that allows calculations to be performed on encrypted data without the need to decrypt it.

$$Enc(x \bowtie y) = Enc(x) \bowtie Enc(y)$$

Local data Client1 Client2

Client3

 $W = F(Enc(W_1), Enc(W_2), Enc(W_3))$

Real example

id	text	label
1	•••	Suicide
2	•••	Non-suicide

Link

EXAMPLE

Many Classical models have been tested on this dataset. You can see a good example in this <u>notebook</u>. The following methods have been tested on this netbook:

- Naive Bayes (Voting Classifier)
- Random Forest
- Decision Tree
- Gradient Boosting
- XG Boost

FEDERATED LEARNING BASED ON NAIVE BAYES

Naive Bayes

Server

$$W = \frac{1}{20} \sum_{i=1}^{20} w_i$$

Local data

RESULTS

	Classical model	Federated model(20 clients)
Train Accuracy	88.02%	_
Test Accuracy	88.06%	88.53
Precision	0.86	0.89
Recall	0.91	0.88
F1-score	0.88	0.89

Thank you so much