Chapter 6 Wireless Networks

KUROSE ROSS

Computer Networking: A Top Down Approach 6th edition Jim Kurose, Keith Ross Addison-Wesley March 2012

Wireless and Mobile Networks

Background:

- # wireless (mobile) phone subscribers now exceeds # wired phone subscribers (5-to-1)!
- # wireless Internet-connected devices equals # wireline Internet-connected devices
 - laptops, Internet-enabled phones promise anytime untethered Internet access
- two important (but different) challenges
 - wireless: communication over wireless link
 - mobility: handling the mobile user who changes point of attachment to network

Chapter 6 outline

- I. Introduction
- 2. Wireless links, characteristics
 - CDMA
- 3. IEEE 802.11 wireless LANs ("Wi-Fi")
- 4. Cellular and mobility

ad hoc mode

- no base stations
- nodes can only transmit to other nodes within link coverage
- nodes organize themselves into a network: route among themselves

Chapter 6 outline

- I. Introduction
- 2. Wireless links, characteristics
 - CDMA
- 3. IEEE 802.11 wireless LANs ("Wi-Fi")
- 4. Cellular and mobility

Wireless Link Characteristics (I)

important differences from wired link

- decreased signal strength: radio signal attenuates as it propagates through matter (path loss).
 - Hidden terminal problem
- interference from other sources: standardized wireless network frequencies (e.g., 2.4 GHz) shared by other devices (e.g., phone); devices (motors) interfere as well
 - Exposed terminal problem
- multipath propagation: radio signal reflects off objects ground, arriving ad destination at slightly different times

.... make communication across (even a point point porks 6-11 wireless link much more "difficult"

Wireless Link Characteristics (2)

- SINR: signal to interference plus noise ratio
 - larger SINR easier to extract signal from interference and noise (a "good thing")
- SINR versus BER tradeoffs
 - given physical layer: increase power/decrease interference -> increase SINR->decrease BFR
 - given SINR: choose physical layer that meets BER requirement, giving highest thruput
 - SINR may change with mobility: dynamically adapt physical layer (modulation technique, rate)

QAM256 (8 Mbps)

QAM16 (4 Mbps)

BPSK (1 Mbps)

Code Division Multiple Access (CDMA)

- unique "code" assigned to each user; i.e., code set partitioning
 - all users share same frequency, but each user has own "chipping" sequence (i.e., code) to encode data
 - allows multiple users to "coexist" and transmit simultaneously with minimal interference (if codes are "orthogonal")
- encoded signal = (original data) X (chipping sequence)
- decoding: inner-product of encoded signal and chipping sequence

CDMA encode/decode

CDMA: two-sender interference

Characteristics of selected wireless links

Chapter 6 outline

- I. Introduction
- 2. Wireless links, characteristics
 - CDMA
- 3. IEEE 802.11 wireless LANs ("Wi-Fi")
- 4. Cellular and mobility

IEEE 802.11 Wireless LAN

标准	频段	数据速率 华	物理层	优缺点
802.11b	2.4 GHz	最高11 Mb/s	扩频	最高数据率较低,价格最低, 信号传播距离最远,且不易受阻碍
802.11a	5 GHz	最高54 Mb/s	OFDM	最高数据率较高,支持更多用户同时上网,价格最高,信号传播距离较短,且易受阻碍
802.11g	2.4 GHz	最高54 Mb/s	OFDM	最高数据率较高,支持更多用户同时上网,信号传播距离最远,且不易受阻碍,价格比802.11b贵
802.11n	2.4 GHz 5 GHz	最高600 Mb/s		使用多个发射和接收天线以允许更高的数据 传输率,当使用双倍带宽(40 MHz)时速率可 达600 Mb/s

- all use CSMA/CA for multiple access
- all have base-station and ad-hoc network versions

802.11 LAN architecture

BSS 2

- wireless host communicates with base station
 - base station = access point (AP)
- * Basic Service Set (BSS) (aka "cell") in infrastructure mode contains:
 - wireless hosts
 - access point (AP): base station
- ad hoc mode: hosts only

802. I I: Channels, association

- * 802.11b: 2.4GHz-2.485GHz spectrum divided into 11 channels at different frequencies
 - AP admin chooses frequency for AP
 - interference possible: channel can be same as that chosen by neighboring AP!
- host: must associate with an AP
 - scans channels, listening for beacon frames containing AP's name (SSID) and MAC address
 - selects AP to associate with
 - may perform authentication [Chapter 8]
 - will typically run DHCP to get IP address in AP's subnet

802.11: passive/active scanning

passive scanning:

- (I) beacon frames sent from APs
- (2) association Request frame sent: HI to selected AP
- (3) association Response frame sent from selected AP to HI

active scanning:

- (1) Probe Request frame broadcast from H1
- (2) Probe Response frames sent from APs
- (3) Association Request frame sent: H1 to selected AP
- (4) Association Response frame sent from selected AP to H1

IEEE 802.11: multiple access

- avoid collisions: 2+ nodes transmitting at same time
- * 802.11: CSMA sense before transmitting
 - don't collide with ongoing transmission by other node
- * 802.11: no collision detection!
 - difficult to receive (sense collisions) when transmitting due to weak received signals (fading)
 - can't sense all collisions in any case: hidden terminal, fading
 - goal: avoid collisions: CSMA/C(ollision)A(voidance)

IEEE 802.11 MAC Protocol: CSMA/CA

802.11 sender

1 if sense channel idle for **DIFS** then transmit entire frame (no CD)

2 if sense channel busy then

start random backoff time
timer counts down while channel idle
transmit when timer expires
if no ACK, increase random backoff interval,
repeat 2

802.11 receiver

- if frame received OK

return ACK after **SIFS** (ACK needed due to hidden terminal problem)

Avoiding collisions (more)

- idea: allow sender to "reserve" channel rather than random access of data frames: avoid collisions of long data frames
- sender first transmits small request-to-send (RTS) packets to BS using CSMA
 - RTSs may still collide with each other (but they' re short)
- BS broadcasts clear-to-send CTS in response to RTS
- CTS heard by all nodes
 - sender transmits data frame
 - other stations defer transmissions

avoid data frame collisions completely using small reservation packets!

Collision Avoidance: RTS-CTS exchange

802.11 frame: addressing

of wireless host or AP

transmitting this frame

802.11 frame: addressing

802.11 frame

802.11 frame: more

802.11: mobility within same subnet

- HI remains in same IP subnet: IP address can remain same
- switch: which AP is associated with HI?
 - self-learning (Ch. 5): switch will see frame from HI and "remember" which switch port can be used to reach HI

802. I I: advanced capabilities

Rate adaptation

base station, mobile
 dynamically change
 transmission rate
 (physical layer modulation
 technique) as mobile
 moves, SNR varies

- 1. SNR decreases, BER increase as node moves away from base station
- 2. When BER becomes too high, switch to lower transmission rate but with lower BER

802. I I: advanced capabilities

power management

- node-to-AP: "I am going to sleep until next beacon frame"
 - AP knows not to transmit frames to this node
 - node wakes up before next beacon frame
- beacon frame: contains list of mobiles with APto-mobile frames waiting to be sent
 - node will stay awake if AP-to-mobile frames to be sent; otherwise sleep again until next beacon frame

802.15: personal area network

- less than 10 m diameter
- replacement for cables (mouse, keyboard, headphones)
- ad hoc: no infrastructure
- master/slaves:
 - slaves request permission to send (to master)
 - master grants requests
- * 802.15: evolved from Bluetooth specification
 - 2.4-2.5 GHz radio band
 - up to 721 kbps

- Master device
- S Slave device
- P Parked device (inactive)

Wireless-Summary

Wireless

- wireless links:
 - capacity, distance
 - channel impairments
 - CDMA
- ❖ IEEE 802.11 ("Wi-Fi")
 - CSMA/CA reflects wireless channel characteristics

Chapter 6 outline

- I. Introduction
- 2. Wireless links, characteristics
 - CDMA
- 3. IEEE 802.11 wireless LANs ("Wi-Fi")
- 4. Cellular and mobility

Development of Cellular Network

- **❖** 2*G*(voice)
 - GSM, IS-95
- **❖** 2.5*G*(voice+data)
 - GPRS, EDGE, CDMA-2000(Stage I)
- ❖ 3G(voice+data)
 - UMTS, TD-SCDMA, WCDMA, CDMA-2000
- Beyond 4G(data+voice)
 - LTE, LTE-A, 5G, B5G, 6G...

Mobility via indirect routing

Mobility via direct routing

The End

Wish you **SUCCESS** in the exams!