Connecting Towns

Gandalf is travelling from **Rohan** to **Rivendell** to meet Frodo but there is no direct route from **Rohan** (T_1) to **Rivendell** (T_n) .

But there are towns $T_2, T_3, T_4...T_{n-1}$ such that there are N_1 routes from Town T_1 to T_2 , and in general, N_i routes from T_i to T_{i+1} for i=1 to n-1 and 0 routes for any other T_i to T_i for $j \neq i+1$

Find the total number of routes Gandalf can take to reach Rivendell from Rohan.

Note

Gandalf has to pass all the towns T_i for i=1 to n-1 in numerical order to reach T_n . For each T_i , T_{i+1} there are only N_i distinct routes Gandalf can take.

Input Format

The first line contains an integer T, T test-cases follow.

Each test-case has 2 lines. The first line contains an integer N (the number of towns).

The second line contains N - 1 space separated integers where the i^{th} integer denotes the number of routes, N_i , from the town T_i to T_{i+1}

Output Format

Total number of routes from T_1 to T_n modulo 1234567 http://en.wikipedia.org/wiki/Modular_arithmetic

Constraints

 $1 \le T \le 1000$ $2 \le N \le 100$ $1 \le N_i \le 1000$

Sample Input

2 3 1 3 4 2 2 2

Sample Output

3 8

Explanation

Case 1: 1 route from T_1 to T_2 , 3 routes from T_2 to T_3 , hence only 3 routes.

Case 2: There are 2 routes from each city to the next, at each city, Gandalf has 2 choices to make, hence 2 * 2 * 2 = 8.