

2 A particle of mass m and energy E is trapped in a

Prob. # 6 1D box of length 2a. The walls of the box (at ± a)

\$\frac{4}{506}\$ Final may be represented by δ-fens of strength C, i.e.

(Dec. 1993) the potential is V(x) = C[δ(x+a) + δ(x-a)]. Estimate the diffetime of

the potential is V(x) = C[S(x+a) + S(x-a)]. Estimate the lifetime of the particle in the box, i.e. how long before it penetrates one of the barriers and gets out?

③ A QM System in State $\Psi(x)$ at time t=0 is subjected for t>0 to an interaction H which generates two discrete eigenstates ϕ_n with eigenences E_n , such that $E_z-E_r=\hbar\Omega\neq 0$. The energy spectrum of H is therefore discrete, with values

 $W_n = |\int \phi_n^*(x) \psi(x) dx|^2, \quad n = | \{2.$

Assume $\geq W_n = 1$ for convenience. Calculate the probability P(t) for finding the original State $\Psi(x)$ at times t>0. What is the oscillation period between points of maximum probability?

Note: Problem @ is on the next page.

4	Start from the definition of the S-matrix in the form
	$\psi_{\alpha}(x',t') = \sum_{\beta} S_{\beta\alpha} \phi_{\beta}(x',t'),$

which describes the evolution of a free particle state $\phi_{\alpha}(x,t)$ in the distant past to the state $V_{\alpha}(x',t')$ in the distant future. Suppose the ϕ_{β} are orthonormal, and that the total interaction is at all times Hermitian. Then the normalization and orthogonality of the V_{α} must be time-independent. Use this fact to show that the S-matrix is unitary, i.e.

$$S^{\dagger}S = 1$$
, on $(S^{\dagger}S)_{ij} = \sum_{\beta} S^{\dagger}_{i\beta} S_{\beta j} = \sum_{\beta} S^{*}_{\beta i} S_{\beta j} = S_{ij}$

1. The bound state energies En are found from the Bohr-Sommerfeld rule:

$$\rightarrow \int_{0}^{b} \sqrt{2m \left[E_{n}-V(x)\right]} dx = \left(n+\frac{1}{2}\right)\pi t.$$

(2)

When $n \to large$, En and n become quasi-continuous functions (e.g. $\Delta n/n \to 0$, for unit steps), so we differentiate (1) by $\frac{\partial}{\partial n}$ to

get... $\int_{a}^{b} \frac{1}{2} \left(2m \left[E_{n} - V(x) \right] \right)^{-\frac{1}{2}} \cdot 2m \left(\frac{\partial E_{n}}{\partial n} \right) dx \simeq \pi t , \text{ for } n \rightarrow \text{large };$

$$\frac{\partial r_{\parallel}}{\partial n} = \frac{1}{n} \left(\frac{\partial E_{n}}{\partial n} \right) \int_{a}^{b} \frac{dx}{b_{n}(x)} \approx \pi t , \quad \psi_{n}(x) = \sqrt{2m[E_{n} - V(x)]}.$$

pr(x) is the momentum of m in level En.

2. The natural period of the (quasi-oscillatory) motion of m in level En is $T_n = 2 \int_a^b dx / v_n(x)$, with $v_n(x) = m'^s$ velocity. Set $v_n(x) = \beta_n(x)/m$, and $\beta_n(x) = \gamma_n(x)/m$, where $\beta_n(x) = \gamma_n(x)/$

$$\rightarrow \frac{2\pi}{\omega_n} = 2 \int_a^b \frac{dx}{p_n(x)/m} , \quad \frac{m}{2} \int_a^b \frac{dx}{p_n(x)} = \frac{\pi}{\omega_n} . \quad (3)$$

3. Using Eq. (3) in Eq. (2), we obtain.

$$\rightarrow \left(\frac{\partial E_n}{\partial n}\right) \cdot \frac{\pi}{\omega_n} \simeq \pi \hbar \quad , \quad \text{or} \quad \frac{\partial E_n}{\partial n} \simeq \hbar \omega_n \; . \tag{4}$$

Then, to a first approximation (and for n + large), the spacing between adjacent levels, Dn = 1 around energy En, is given by

$$\Delta E_n \simeq (\partial E_n / \partial n) \Delta n^2 \simeq \hbar \omega_n$$
, (5)

where the frequency we is defined in Eq. (3). It must be large knough here (i.e. terms of O(1/n) > negligible) to justify the derivatives take in Eq. (2). The result of Eq. (5) certainly does not work for the low-n states.

6 [45 pts]. Lifetime for a particle trapped in a semi-permeable box.

1. The decay rate for trapping is: $\Gamma = (\frac{1}{\tau/2})T$, where τ is the natural period of m's motion inside the box, and T is the transmission coefficient at one of the walls. The required lifetime is : $\Delta t = 1/\Gamma$. Since m is free inside the box, we can write: T = 2. (2a)/v, where

m's velocity v=12E/m. So: 1/2 = 12ma2/E, and the trapping lifetime is:

$$\rightarrow \Delta t = \frac{\tau}{2}/T = \sqrt{\frac{2ma^2}{E}}/T.$$

If the wall transmission coefficient T > 0, Dt > 00 and m remains forever trapped in the box. BUT, as we show below, T is finite for a S-fen wall.

2. Find T for a 8- for wall, with potential V = C 8(x). If m is incident at energy E, with momentum to k= 12mE, wavefons are:

We want T=1B12. Impose the continuity conditions (see prob=@ for II) ...

I.
$$\psi$$
 continuous $\otimes x = 0$: $1+A=B$.
II. ψ' discontinuous $\otimes x = 0$: $\psi'_2(0+) - \psi'_1(0-) = \frac{2mC}{\hbar^2} \psi(0)$,
i.e. ψ' ik $[B-(1-A)] = (\frac{2mC}{\hbar^2})B$, ψ'' $1-A = (1-\frac{2mC}{ik\hbar^2})B$.

Add (3) \$ (4) to eliminate A. Get: B=1/[1+i(mC/t2k)]. Then, using (thk)2 = 2mE, we find the transmission everficient ...

→
$$T = |B|^2 = 1/[1+(mc^2/2t^2E)]$$
. (5)

Put T of Eq. (5) to find the required trapping lifetime ...