Quiz 5

1

A metal bar slide over a pair of conducting rails in a uniform magnetic field $\mathbf{B} = \mathbf{a}_z B_0$ with a constant velocity \mathbf{u} , as shown in Fig 1.

- a) Determine the open-circuit voltage V_0 that appears across terminals 1 and 2. Hint: You can use $V_0 = \oint_C (\mathbf{u} \times \mathbf{B}) \cdot d\mathbf{l}$
- b) Assuming that a resistance R is connected between the terminals, find the electric power dissipated in R.
- c) Show that this electric power is equal to the mechanical power required to move the sliding bar with a velocity \boldsymbol{u} . Neglect the electric resistance of the metal bar and of the conducting rails. Neglect also the mechanical friction at the contact points. Hint: You can use the formula for mechanical power required to move the sliding bar $P_m = \boldsymbol{F} \cdot \boldsymbol{u}$

Figure 1: Figure for question 1

2

Source-free means that $\rho=0, \boldsymbol{J}=0, \sigma=0,$ under which the time-harmonic Maxwell's equations become:

$$\nabla \times \mathbf{E} = -j\omega \mu \mathbf{H},$$

$$\nabla \times \mathbf{H} = j\omega \epsilon \mathbf{E},$$

$$\nabla \cdot \mathbf{E} = 0,$$

$$\nabla \cdot \mathbf{H} = 0.$$

, where j is the imaginary number. Show that if (E, H) are solutions of source-free Maxwell's equations in a simple medium characterized by ϵ and μ , then so also are (E', H'), where

$$m{E'} = \eta m{H}$$
 $m{H'} = -rac{m{E}}{\eta}$

In the above equations, $\eta = \sqrt{\mu/\epsilon}$ is called the **intrinsic impedance** of the medium.