ENSTA

Mastère Spécialisé en Architecture des Systèmes d'Information Cours C1-3

Systèmes de Gestion de Bases de Données (SGBD) relationnels

Maude Manouvrier

Partie II : les SGBD vus du coté Administrateur de Bases de Données

- Architecture générale d'un SGBD
- Organisation des données
- Évaluation et optimisation de requêtes
- Gestion de la concurrence / transactions
- Reprise sur pannes

BIBLIOGRAPHIE

Ouvrages de référence utilisés pour le cours :

- R. Ramakrishnan et J. Gehrke, *Database Management Systems*, Second Edition; McGraw-Hill, 2000, disponible à la BU 055.7 RAM
- H. Garcia Molina, J.D. Ullman et J. Widom, *Database System Implementation*, Prentice Hall, 2000, disponible à la BU 005.7 GAR
- H. Garcia Molina, J.D. Ullman et J. Widom, *Database Systems The Complete Book*, Prentice Hall, 2002
- T. Connoly, C. Begg et A. Strachan, *Database Systems A Pratical Approach to Desigh, Implementation and Management*, 1998, disponible à la BU 055.7 CON
- A. Silberschatz, H.F. Korth et S. Sudarshan, *Database System Concepts*, McGraw-Hill, 2002, version de 1996 disponible à la BU 005.7 DAT
- C.J. Date, *An Introduction aux bases de données*, 6ème édition, Thomson publishing, 1998, disponible à la BU 005.7 DAT
- R.A. El Masri et S.B. Navathe, *Fundamentals of Database Systems*, Prentice Hall, disponible à la BU 005.7 ELM
- G. Gardarin, *Bases de Données objet/relationnel*, Eyrolles, 1999, disponible à la BU 005.74 GAR + *Le client serveur*, Eyrolles, 1996004.21 GAR

Chap. I - Architecture d'un SGBD

- Vision des données par le SGBD : un ensemble d'enregistrements mémoire
- Vision des données par le gestionnaire de fichiers : un ensemble de pages mémoire
- Vision des données par le gestionnaire de disque : un ensemble de pages disque
- Rôle du **gestionnaire de buffer** : passage des pages du disque vers la mémoire (et inversement)

Rôle : placer, au moment voulu, une page du disque vers la mémoire et inversement

- Politique de remplacement (ex. LRU)
- Gestion des pages mises à jour
- Partition de la mémoire
- Vérification des droits sur les pages

Chap. I - Architecture

Gestionnaire de buffer

Mémoire

Disque

Page mémoire

libre

Page de données

Page de données modifiées

Chap. I - Architecture

Gestionnaire de buffer

Système de fichiers

Intégration ou non des fonctionnalités du SGF du système d'exploitation :

- ① A chaque relation correspond un fichier
 - ⇒ liaison forte du SGBD et du SGF
- ② Stockage de toute la base de données dans un seul fichier
 - ⇒ le SGF donne accès aux différentes pages
 - ⇒ le SGBD contrôle tout

Les pages doivent être connues du SGBD

Chap. II - Organisation des données

- Stockage des données
 - \rightarrow Conservation
 - \rightarrow Accès
- Structuration des données
- Moyens de manipulation des données

Gestion des fichiers

- Relation : collection de **pages** ou **blocs** disque ou mémoire
- **champ** : séquences d'octets de taille fixe ou variable représentant la valeur d'un attribut de nuplet sur le disque ou en mémoire
- enregistrement : collection de taille fixe ou variable de champs

Identification des enregistrements

©Mauue ivianouviiei - Oniv. rans Daupinne

Placement des enregistrements de taille fixe

Placement des enregistrements de taille variable

Organisation des fichiers

Modèle de coût [RG00]:

- B pages de disque
- R enregistrements par page
- Temps moyen de lecture d'une page : **D**
- Temps moyen d'accès à un enregistrement : C
- Temps de calcul d'une valeur de fonction de hachage : *H*

Organisation des fichiers

Trois organisations de fichier :

- aléatoire (*Heap File*)
- ordonné (Sorted File)
- hachage (Hash File)

Plusieurs opérations:

- Lecture complète du fichier
- Recherche par égalité
- Recherche par intervalle
- Insertion
- Suppression

Fichier de hachage

• Fonction de hachage :

calcule la page où doit être stocké l'enregistrement en fonction de la valeur d'un ou plusieurs de ses champs

- Regroupement de pages d'un fichier de hachage en **buckets** composés de **segments**
- Gestion de pages d'overflow
- Placement des enregistrements par ordre d'arrivée dans le bucket
- Pas de garantie d'adresse unique
- Gestion des collisions

Hachage statique

Gestion des collisions

- Open adressing: Recherche linéaire du premier segment vide
- Unchained overflow: Maintien d'une zone d'overflow
- Chained overflow: Maintien, pour chaque bucket, d'un pointeur vers une zone d'overflow
- *Multiple hashing*: Utilisation d'une deuxième fonction de hachage pour placer les enregistrements dans la zone d'overflow

Insertions: 13 en binaire = 1101

Insertions: 13 en binaire = 1101

Insertions: 13 en binaire = 1101

20 en binaire = 10100 mais bucket A plein

La taille du répertoire est doublée et le bucket A est divisé en 2

Chap. II - Organisation

Hachage extensible (2/2)

Hachage extensible (2/2)

Hachage extensible (2/2)

Autre exemple de hachage extensible (1/4)

Autre exemple de hachage extensible (2/4)

Répertoire de buckets

buckets

Pages d'overflow

Autre exemple de hachage extensible (3/4)

Autre exemple de hachage extensible (3/4)

Autre exemple de hachage extensible (4/4)

Hachage linéaire (1/6)

Hachage linéaire (2/6)

level = 0, N=4

Pour into

Hachage linéaire (2/6)

level = 0, N=4

Pour into

Hachage linéaire (3/6)

Hachage linéaire (3/6)

Hachage linéaire (3/6)

Hachage linéaire (3/6)

Hachage linéaire (3/6)

Hachage linéaire (3/6)

Hachage linéaire (4/6)

Hachage linéaire (5/6)

Hachage linéaire (6/6)

level = 1, N=8 Après la division du *h*₁ Next=0 bucket Next = N-1 \Rightarrow N = N*2 et Next =0

Index (1/4)

• 3 alternatives

- \rightarrow Les **entrées** de **clé de recherche** k sont les enregistrements mêmes
- \rightarrow Les entrées sont des couples (k,rid)
- → Les entrées sont des couples (k,liste_rid)
- Index primaire Clé de recherche = clé primaire de la relation
- Index secondaire
 - → (clé de recherche, valeur(s) de clé primaire)
 - → (clé de recherche, pointeur(s) vers les pages du fichier)
 - ⇒ l'index primaire doit être lu après l'index secondaire

Index (2/4)

• Clustered index

Index (3/4)

• Unclustered index

Index (4/4)

• Index dense / non dense (sparce)

Index basé sur les structures arborescentes : Arbre B+ (1/3)

Pages de la relation et feuilles de l'index

Arbre B+ (2/3)

Exemple d'index secondaire

Arbre B+ (2/3)

Exemple d'index secondaire

Arbre B+ (3/3)

Chap. III - Optimisation de requêtes

- Exécution de requête : séries d'opérations permettant d'extraire des données de la base
- Optimisation de requête : activité permettant de choisir la meilleure stratégie d'exécution d'une requête

Phases d'exécution d'une requête

Exemple

"Quels sont les noms de commerciaux basés dans les filiales de Londres? »

```
SELECT e.Nom
FROM Employe e, Filiale f
WHERE e.#Filiale=f.#Filiale
AND e.Position = 'Commercial'
AND f.Ville='Londres'
```

Employe contient 1000 nuplets, Filiale en contient 50 Il y a 50 commerciaux et 5 filiales à Londres

- Trois requêtes possibles en algèbre relationnelle
- Calcul du coût de chaque requête en terme E/S

Phase 1 : Décomposition

Transformation de la requête SQL en une requête en algèbre relationnelle

- Vérification syntaxique et sémantique de la requête
- Utilisation du catalogue du système
- Représentation de la requête par un arbre d'opérateurs algébriques

Catalogue du système (1/2)

- Appelé également dictionnaire de données
- Contient la description des données de la base
 - **♦** Pour chaque relation :
 - nom de la relation, identificateur du fichier et structure du fichier
 - nom et domaine de chaque attribut
 - nom des index
 - contraintes d'intégrité
 - **♦** Pour chaque index :
 - nom et structure de l'index
 - attribut appartenant à la clé de recherche
 - **♦** Pour chaque vue:
 - nom de la vue
 - définition de la vue

Catalogue du système (2/2)

- Contient également des données statistiques
 - **♦** Cardinalité de chaque relation
 - **♦** Nombre de pages de chaque relation
 - ◆ Nombre de valeurs distinctes de clé de recherche pour chaque index
 - ♦ Hauteur des index de structures arborescente
 - ◆ Valeur minimum et valeur maximum de chaque clé de recherche dans chaque index
- Exemple sous Oracle8 : USER_ALL_TABLES, USER CONSTRAINTS etc.

Arbre algébrique (1/2)

- Représentation des relations impliquées dans la requête par les nœuds feuille de l'arbre
- Représentation des résultats intermédiaires par des nœuds non feuille
- Représentation du résultat de la requête par la racine de l'arbre
- Ordre des séquences d'opérations : des feuilles vers la racine

Arbre algébrique (2/2)

Phase 2: Optimisation

Equivalences d'expressions (1/3)

- 1) Cascade de sélections : $\sigma_{p \wedge q \wedge r}(R) =$
- 2) Commutativité des sélections : $\sigma_p(\sigma_q(R)) =$
- 3) Séquence de projections : $\Pi_L(\Pi_M(...\Pi_N(R))) =$
- 4) Commutativité des sélections et des projections :

$$\Pi_{A_1 \dots A_n} \sigma_p(R) =$$

- 5) Commutativité des jointures : $R \infty_p S =$
- 6) Commutativité des jointures et des sélections

$$\sigma_{p}(R \infty_{p} S) = \operatorname{et} \sigma_{p}(R * S) =$$

Equivalence d'expressions (2/3)

7) Commutativité des jointures et des projections

$$\Pi_{L_1 \cup L_2}(R \infty_p S) =$$

8) Commutativité des unions et des intersections

$$(R \cup S) = et(R \cap S) =$$

9) Commutativité des unions, intersections, différences et des sélections

$$\sigma_{p}(R \cup S) =$$

$$\sigma_{p}(R \cap S) =$$

$$\sigma_{p}(R - S) =$$

Equivalence d'expressions (3/3)

10) Commutativité des projections et des unions

$$\Pi_{L}(R \cup S) =$$

11) Associativité des jointures

$$(R \infty S) \infty T =$$

12) Associativité des unions et des intersections

$$(R \cup S) \cup T =$$

$$(R \cap S) \cap T =$$

Transformation d'un arbre algébrique

- ① Division des conjonctions de sélections
- ② Ré-ordonnancement des sélections en utilisant les règles 2 et 4
- 3 Application des sélections les plus sélectives en premier
- **Transformation des produits cartésiens en jointure**
- **The la continue de l**
- **©** Déplacement des projections et création de nouvelles projections en utilisant les règles 4 et

```
SELECT Nom
FROM Employe, Equipe, Projet
WHERE Nom_Projet = 'Sirius'
AND #Projet = #Projet_Equipe
AND #Equipe = #Appartenance
AND DaeNais=1973
```

```
∏<sub>Nom</sub>
```

```
SELECT Nom
FROM Employe, Equipe, Projet
WHERE Nom_Projet = 'Sirius'
AND #Projet = #Projet_Equipe
AND #Equipe = #Appartenance
AND DaeNais=1973
```

```
\prod_{\stackrel{}{\blacktriangle} Nom}
```

```
SELECT Nom
FROM Employe, Equipe, Projet
WHERE Nom_Projet = 'Sirius'
AND #Projet = #Projet_Equipe
AND #Equipe = #Appartenance
AND DaeNais=1973
```

Projet

Employe

Equipe

©Maude Manouvrier - Univ. Paris Dauphine

©Maude Manouvrier - Univ. Paris Dauphine

O (#Projet=#Projet_Equipe) Ré-ordonnancement des sélections et application des O(#Equipe=#Appartenance) sélections les plus sélectives en premier O(Nom_Projet='Siruis') O(DateNais=1973) Equipe **Projet Employe**

©Maude Manouvrier - Univ. Paris Dauphine

Statistiques (1/2)

- Pour chaque relation R [CBS98]:
 - ightharpoonup NTuples(R): nombre de nuplets
 - lacktriangle Bfactor(R): nombre de nuplets par bloc
 - ♦ NBlocks(R): nombre de blocs pour la relation NBlocks(R) =
- Pour chaque attribut A de R:
 - lacktriangle NDistinct_A(R): nombre de valeurs distinctes de A
 - lacktriangle $Min_A(R)$ et $Max_A(R)$: valeurs min et max de A
 - lacktriangle $SC_A(R)$: nombre moyen de nuplets satisfaisant un prédicat sur A

Statistiques (2/2)

- $SC_A(R)$ dépend du prédicat
 - -Egalité:
 - -A > c
 - -A < c
 - $-A \in \{c_1, ..., c_n\}$
 - $-A \wedge B$
 - $-A \vee B$
- Pour index I de R sur un attribut A :
 - $lacktriangle NLevels_A(I)$: nombre de niveaux pour I
 - $lacklost NLBlocks_A(I)$: nombre de blocs utilisés pour I

Coût de $\sigma_p(R)$

Stratégies:

- Recherche linéaire (fichier non ordonné sans index)
- Recherche binaire (fichier ordonné sans index)
- Condition d'égalité sur la valeur d'une fonction de hachage
- Condition d'égalité sur la clé primaire
- Condition d'inégalité sur la clé primaire
- Condition d'égalité sur la clé d'un index secondaire clustered
- Condition d'égalité sur la clé d'un index secondaire unclustered
- Condition d'inégalité sur un index secondaire en arbre B+

Coût de $\sigma_p(R)$

```
Fonction de hachage Index clustered
Exemple:
   Employe (NSS, Departement, Salaire, Position ...)
   NTuples(e)=3000
                                          Index unclustered
   BFactor(e)=30
   NDistinct_{D}(e)=500
   NDistinct<sub>P</sub>(e)=10
                         Min_s(e)=1000 Max_s(e)=5000
   NDistinct<sub>s</sub>(e)=500
   NLevels_{D}(I)=2
   NLevels_{s}(I)=2
                          NBlocks_s(I)=50
ONSS = 273...(e)
                                 OSalaire > 2000.(e)
\mathbf{O}Position = Commercial'.(e)
                                \mathbf{O} (Position = 'Cadres') \wedge (Departement = 'R & D')(e)
OD Departement = 'RH'.(e)
```

Coût de $\mathbf{R} \infty_{\mathbf{F}} \mathbf{S}$

Stratégies d'implantations de la jointure :

- Boucles imbriquées (Block nested loop join)
- Boucles imbriquées en utilisant un index

(Indexed nested loop join)

- Tri-fusion (Sort-merge join)
- Hachage (Hash join)

Pour chaque algorithme, possibilité de le faire en multi-passes

Cardinalité de la $\mathbf{R} \propto_{\mathbf{F}} \mathbf{S}$

- $NTuples(R \infty_F S) \leq NTuples(R) * NTuples(S)$
- Lorsque le prédicat est R.A=S.B
 - ♦ Si A est clé de $R: NTuples(R ∞_F S) ≤ NTuples(S)$
 - ♦ Si B est clé de $S: NTuples(R ∞_F S) ≤ NTuples(R)$
 - ♦ Si ni A ni B ne sont clés :

 $NTuples(R \infty_F S) \sim Max(SC_A(R) * NTuples(S), SC_B(S) * NTuples(R))$

Zone mémoire du buffer	
disque	

Les blocs de S sont montés en mémoire autant de fois qu'il y a de blocs pour R

S'il y a NBuffer places en mémoire, on monte les pages de R en mémoire par paquets de (NBuffer -2) pages

Les blocs de S sont montés en mémoire autant de fois qu'il y a de blocs pour R

S'il y a NBuffer places en mémoire, on monte les pages de R en mémoire par paquets de (NBuffer -2) pages

Les blocs de S sont montés en mémoire autant de fois qu'il y a de blocs pour R

S'il y a NBuffer places en mémoire, on monte les pages de R en mémoire par paquets de (NBuffer - 2) pages

Les blocs de S sont montés en mémoire autant de fois qu'il y a de blocs pour R

S'il y a NBuffer places en mémoire, on monte les pages de R en mémoire par paquets de (NBuffer -2) pages

Tri-Fusion

① Tri des relations sur l'attribut de jointure

Ex. Tri externe ou tri par séries monotones

2 Equi-jointure des deux relations triées

En parcourant simultanément les deux relations pages par pages

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

Tri externe : 1ère étape

La mémoire contient 3 emplacements

La mémoire contient 3 emplacements

Tri externe

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe : 2ème étape

La mémoire contient 3 emplacements

Tri externe

©Maude Manouvrier - Univ. Paris Dauphine

Fusion

RID	Nom	Heure	Salaire
22	Daniel	7	145KF
28	Jeanne	9	175KF
31	Paul	12	200KF
36	Pierre	6	120KF

SID	Département	Jour
28	R&D	02/02/2001
28	R&D	05/02/2001
31	Compta	03/02/2001
31	Direction	05/02/2001
31	Compta	06/02/2001

67

RID	Nom	Heure	Salaire
22	Daniel	7	145KF
28	Jeanne	9	175KF
31	Paul	12	200KF
36	Pierre	6	120KF

SID	Département	Jour
28	R&D	02/02/2001
28	R&D	05/02/2001
31	Compta	03/02/2001
31	Direction	05/02/2001
31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour

RID	Nom	Heure	Salaire
22	Daniel	7	145KF
28	Jeanne	9	175KF
31	Paul	12	200KF
36	Pierre	6	120KF

SID	Département	Jour
28	R&D	02/02/2001
28	R&D	05/02/2001
31	Compta	03/02/2001
31	Direction	05/02/2001
31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour

RID	Nom	Heure	Salaire		SID	Département	Jour
22	Daniel	7	145KF	T	28	R&D	02/02/2001
28	Jeanne	9	175KF		28	R&D	05/02/2001
31	Paul	12	200KF		31	Compta	03/02/2001
36	Pierre	6	120KF		31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour

RID	Nom	Heure	Salaire		SID	Département	Jour
22	Daniel	7	145KF	T	28	R&D	02/02/2001
28	Jeanne	9	175KF		28	R&D	05/02/2001
31	Paul	12	200KF		31	Compta	03/02/2001
36	Pierre	6	120KF		31	Direction	05/02/2001
			-		31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour

RID	Nom	Heure	Salaire	SID	Département	Jour
2 2	Daniel	7	145KF	28	R&D	02/02/2001
2 8	Jeanne	9	175KF	28	R&D	05/02/2001
31	Paul	12	200KF	31	Compta	03/02/2001
36	Pierre	6	120KF	31	Direction	05/02/2001
				31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour

Fusion

RID	Nom	Heure	Salaire	SID	Département	Jour
2 2	Daniel	7	145KF	28	R&D	02/02/2001
2 8	Jeanne	9	175KF	28	R&D	05/02/2001
31	Paul	12	200KF	31	Compta	03/02/2001
36	Pierre	6	120KF	31	Direction	05/02/2001
				31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001

Fusion

RID	Nom	Heure	Salaire		SID	Département	Jour
2 2	Daniel	7	145KF		28	R&D	02/02/2001
2 8	Jeanne	9	175KF	1	28	R&D	05/02/2001
31	Paul	12	200KF		31	Compta	03/02/2001
36	Pierre	6	120KF		31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001

Fusion

RID	Nom	Heure	Salaire		SID	Département	Jour
22	Daniel	7	145KF		28	R&D	02/02/2001
28	Jeanne	9	175KF	_	28	R&D	05/02/2001
31	Paul	12	200KF		31	Compta	03/02/2001
36	Pierre	6	120KF		31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001

Fusion

RID	Nom	Heure	Salaire		SID	Département	Jour
22	Daniel	7	145KF		28	R&D	02/02/2001
28	Jeanne	9	175KF	_	28	R&D	05/02/2001
31	Paul	12	200KF	T	31	Compta	03/02/2001
36	Pierre	6	120KF		31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001

Fusion

	RID	Nom	Heure	Salaire	SID	Département	Jour
_	2 2	Daniel	7	145KF	28	R&D	02/02/2001
	2 8	Jeanne	9	175KF	28	R&D	05/02/2001
\rightarrow	> 31	Paul	12	200KF	31	Compta	03/02/2001
	36	Pierre	6	120KF	31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001

Fusion

	RID	Nom	Heure	Salaire	SID	Département	Jour
_	22	Daniel	7	145KF	28	R&D	02/02/2001
	28	Jeanne	9	175KF	28	R&D	05/02/2001
\rightarrow	3 1	Paul	12	200KF	31	Compta	03/02/2001
	36	Pierre	6	120KF	31	Direction	05/02/2001
					31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001

Fusion

	RID	Nom	Heure	Salaire		SID	Département	Jour
_	22	Daniel	7	145KF		28	R&D	02/02/2001
\rightarrow	28	Jeanne	9	175KF	\rightarrow	28	R&D	05/02/2001
	3 1	Paul	12	200KF		31	Compta	03/02/2001
	36	Pierre	6	120KF		31	Direction	05/02/2001
					-	31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001
31	Paul	12	200KF	Compta	03/02/2001
	•••		•••	•••	

Fusion

	RID	Nom	Heure	Salaire		SID	Département	Jour
_	2 2	Daniel	7	145KF		28	R&D	02/02/2001
	2 8	Jeanne	9	175KF		28	R&D	05/02/2001
\rightarrow	> 31	Paul	12	200KF		31	Compta	03/02/2001
	36	Pierre	6	120KF	1	31	Direction	05/02/2001
						31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001
31	Paul	12	200KF	Compta	03/02/2001

Fusion

	RID	Nom	Heure	Salaire		SID	Département	Jour
—	2 2	Daniel	7	145KF		28	R&D	02/02/2001
\rightarrow	2 8	Jeanne	9	175KF	-	28	R&D	05/02/2001
\rightarrow	> 31	Paul	12	200KF		31	Compta	03/02/2001
	36	Pierre	6	120KF		31	Direction	05/02/2001
						31	Compta	06/02/2001

RID	Nom	Heure	Salaire	Département	Jour
28	Jeanne	9	175KF	R&D	02/02/2001
28	Jeanne	9	175KF	R&D	05/02/2001
31	Paul	12	200KF	Compta	03/02/2001

Commandes

- VACUUM: Mise à jour des statistiques
- VACUUM ANALYSE VERBOSE : met à jour analyse et affiche le résultat de l'analyse des statistiques
- EXPLAIN : affiche le plan d'exécution d'une requête
- SET ENABLE_SEQSCAN TO OFF: interdit l'utilisation du parcours séquentiel (pour forcer l'utilisation des index)
- CREATE INDEX "Nom_Index" ON Relation USING btree (nom): pour créer un index en précisant son type

Attention à l'écriture des requêtes!!

Temps d'extraction des données : 250 ms (pour un requête donnant le même résultat que précédemment)

Temps d'extraction des données : 280ms

Temps d'extraction des données : 231ms (pour une requête donnant le même résultat)

Utilisation des index : quand un balayage séquentiel est plus coûteux

Temps d'extraction des données : 231ms

Si l'index n'est pas utile pour la requête, il n'est pas utilisé

Temps d'extraction des données : 220ms

Si l'index est utile pour la requête, il est utilisé

Temps d'extraction des données : 230ms

L'utilisation des index dépend du nombre de nuplets potentiellement résultats

Temps d'extraction des données : 231ms

Création d'un index

Le SGBD peut choisir de ne pas utiliser les index

Temps d'extraction des données : 221ms

On peut forcer l'utilisation des index

Temps d'extraction des données : 220ms

Algorithmes de jointure

Temps d'extraction des données : 201ms

Algorithmes de jointure

Temps d'extraction des données: 190ms

Algorithmes de jointure

Temps d'extraction des données : 200ms

Algorithmes de jointure

Temps d'extraction des données : 200ms

Coût de $\pi_A R$

- Élimination des attributs n'apparaissant pas dans la projection
- Élimination des doublons
 - ♦ Par tri
 - ♦ Par hachage

Élimination des doublons par tri

17 nuplets 2 nuplets / bloc 4 pages en mémoire

Étape 1 : Tri des blocs par paquets de 3 en mémoire

Etape 2 : la valeur 1 est la plus petite valeur, on l'écrit dans le résultat et on supprime les doublons

Etape 3 : la valeur 1 est la plus petite valeur, on l'écrit dans le résultat et on supprime les doublons ...

Chap. IV - Gestion de la concurrence

Transaction : action ou série d'actions d'un utilisateur ou d'une application, qui accède(nt) ou modifie(nt) les données de la base

[BEGIN TRANSACTION]

• • •

COMMIT / ROLLBACK

- ◆ Lecture ⇒ Placement des pages en mémoire + Copies éventuelles de valeurs dans les variables de programme
- Ecriture ⇒ Mise à jour des données en mémoire +
 Ecriture des pages sur le disque APRES validation

Propriétés des transactions

• Atomicité: Tout ou rien

Une transaction effectue toutes ses actions ou aucune.

En cas d'annulation, les modifications engagées doivent être défaites.

• Cohérence : Intégrité des données

Passage d'un état cohérent de la base à un autre état cohérent de la base de données

• Isolation : Pas d'interférence entre transactions

Les résultats d'une transaction ne sont visibles par les autres transactions qu'après sa validation

• Durabilité : Journalisation des mises à jour

Les modifications effectuées sont garanties même en cas de panne

Virement = 2 opérations atomiques

Virement bancaire sans transaction

Virement bancaire sans transaction

Virement = 2 opérations atomiques

Que se passe-t-il si le Dépôt échoue?

Virement bancaire sans transaction

Virement = 2 opérations atomiques

Que se passe-t-il si le Dépôt échoue?

Virement bancaire sans transaction

Virement = 2 opérations atomiques

Que se passe-t-il si le Dépôt échoue?

Compte courant = 400 CODEVI = 110

Appelez la banque !!!

Virement bancaire dans une transaction (1/2)

Virement bancaire dans une transaction (1/2)

Virement = 1 transaction de 2 opérations atomiques

Virement bancaire dans une transaction (1/2)

Virement = 1 transaction de 2 opérations atomiques

Virement bancaire dans une transaction (1/2)

Virement = 1 transaction de 2 opérations atomiques

Virement bancaire dans une transaction (1/2)

Virement = 1 transaction de 2 opérations atomiques

Virement bancaire dans une transaction (2/2)

Virement bancaire dans une transaction (2/2)

Virement bancaire dans une transaction (2/2)

Que se passe-t-il si le Dépôt échoue ?

Virement bancaire dans une transaction (2/2)

Que se passe-t-il si le Dépôt échoue ?

Virement bancaire dans une transaction (2/2)

Que se passe-t-il si le Dépôt échoue ?

Virement bancaire dans une transaction (2/2)

Que se passe-t-il si le Dépôt échoue ?

Virement bancaire dans une transaction (2/2)

Que se passe-t-il si le Dépôt échoue ?

Compte courant = 500 CODEVI = 110

Recommencez!

Degrés d'isolation sous SQL2

- **Degré 0**: Une transaction *T* ne modifie pas de **données** salies par d'autres transactions
- **Degré 1 :** Degré 0 + T ne confirme pas ses changements avant la fin de la transaction
- **Degré 2 :** Degré 1 + *T* ne lit pas de données salies par d'autres transactions
- **Degré 3 :** Degré 2 + D'autres transactions ne salissent pas les données lues par *T* avant que *T* ne soit terminée

91

Architecture du système de transactions

Missions du système de transactions

Gérer les transactions, maintenir la cohérence, gérer les pannes

• Gestionnaire de transactions :

- Coordination des actions des différentes transactions
- En communication avec l'ordonnanceur

• Ordonnanceur (scheduler):

- Maintien de la cohérence
- ◆ Gestion des verrous (gestionnaire de verrous)

Gestionnaire de pannes (recovery manager)

Remise de la base de données dans un état cohérent après panne

92

Ordonnancement

• Opération d'une transaction T

- $R_T(i)$: lecture de l'item i par T
- $W_T(i)$: modification de la valeur de l'item i par T
- $Commit_T$: validation de T
- $Abort_T$: annulation de T

Ordonnancement de transactions

Liste d'actions de plusieurs transactions T_1 , ..., T_n telle que chaque opération de T_i apparaisse dans le même ordre dans T_i et dans l'ordonnancement

Ordonnancement séquentiel

Pas d'entrelacement des actions des différentes transactions

Concurrence

Transactions concurrentes

Deux transactions accédant en même temps aux mêmes items

Ordonnancement sérialisable

- ◆ Résultat équivalent au résultat d'un ordonnancement séquentiel
- ◆ Les items voient passer toutes les transactions dans le même ordre

Anomalies dues à l'entrelacement des transactions

- ◆ Pas de conflit si accès simultanés à un même item en lecture par deux transactions différentes
- ◆ Pas de conflit si accès simultanés à deux items différents en lecture ou écriture par deux transactions

Odonnancement sérialisable

```
T_1: Solde A - x; Solde B + x;
T_2: Solde A - y; Solde B + y;
T_3: Solde A - z; Solde B + z;
Exécution séquentielle : T<sub>1</sub> T<sub>2</sub> T<sub>3</sub>
Une exécution sérialisable équivalente à T_1 T_2 T_3:
Solde A - x;
                        L'item A voit passer les transaction
Solde A - y;
                        dans l'ordre T1 T2 T3
Solde B + x:
                        L'item B voit passer les transaction
Solde A - z;
                        dans l'ordre T1 T2 T3
Solde B + y;
Solde B + z;
```

Conflits

- Ecriture Lecture :
 - ◆ Lecture impropre ou parasite (dirty read)
 - Placement momentanée de la base dans un état incohérent
 - Annulation en cascade de transactions
- Lecture Ecriture :
 - ◆ Lecture non reproductible (unrepeatable read)
 - ◆ Incohérence
- Ecriture- Ecriture:

Perte de mises à jour (blind write)

Degrés d'isolation et conflits

ANSI SQL92 définit 3 types d'anomalies d'isolation

Lectures sales ou impropres

Une transaction T1 lit des modifications non validées d'items effectuées par T2.

En cas de annulation de T2, T1 a lu des valeurs invalides

• Lecture non reproductibles

T1 lit un item, T2 modifie ce même item, T1 relit ce item et obtient une valeur différente

Lectures fantômes

T1 lit un ensemble de nuplets, T2 ajoute/supprime des nuplets, T1 relit l'ensemble de nuplets et obtient un ensemble différent comme résultat

97

Degrés d'isolation et conflits

Degré 0

Résolution des pertes de mises à jour

Degré 1

Pas d'annulation en cascade + Degré 0

Degré 2

Pas de lecture impropre + Degré 1

Degré 3

Isolation totale - Mise en attente des transactions en conflit

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A), R_1(B), W_2(A), R_3(A), W_1(B), W_3(A), R_2(B), W_2(B)$$

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A)$$
, $R_1(B)$, $W_2(A)$, $R_3(A)$, $W_1(B)$, $W_3(A)$, $R_2(B)$, $W_2(B)$

 T_1 T_3

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A)$$
, $R_1(B)$, $\underline{W_2(A)}$, $\underline{R_3(A)}$, $W_1(B)$, $W_3(A)$, $R_2(B)$, $W_2(B)$

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A), R_1(B), W_2(A), R_3(A), W_1(B), W_3(A), R_2(B), W_2(B)$$

Si le graphe est sans cycle (tri topologique) alors l'ordonnancement est sérialisable

99

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A), R_1(B), W_2(A), R_3(A), W_1(B), W_3(A), R_2(B), W_2(B)$$

Si le graphe est sans cycle (tri topologique) alors l'ordonnancement est sérialisable

99

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A)$$
, $R_1(B)$, $W_2(A)$, $R_3(A)$, $W_1(B)$, $W_3(A)$, $R_2(B)$, $W_2(B)$

$$T_2$$

$$T_3$$

Pour trouver les conflits potentiels

- Chaque nœud représente une transaction
- Un arc de T_i vers T_j signifie qu'une action de T_i précède et entre en conflit avec une ou plusieurs actions de T_i

$$R_2(A), R_1(B), W_2(A), R_3(A), W_1(B), W_3(A), R_2(B), W_2(B)$$

Verrouillage des données

Gestion des verrous

- $V_T(i)$: Verrouillage de l'item i par la transaction TVerrou partagé $VP_T(i)$ ou exclusif $VX_T(i)$
- $D_T(i)$: Déverrouillage de l'item i par T

• Table des verrous : pour chaque item verrouillé

- Mode de verrouillage
- Indicateur de transactions en attente
- ♦ Liste des transactions détenant un verrou ou en attente d'un verrou
 - Nom de la transaction
 - Mode de verrouillage obtenu ou souhaité
 - Indicateur d'attente
 - Lien vers les autres items verrouillés par la transaction

Architecture du gestionnaire de verrous

- Réception de la requête par le 1er module
- Transmission des transactions au 2^{ème} module après insertion des verrous
- Détection des demandes de verrous par le 2^{ème} module
 - Vérification dans la table des verrous
 - ◆ Si demande acceptée, exécution de l'action sur la BD
 - ◆ Si demande rejetée, mise en attente de la transaction
- Après validation ou annulation d'une transaction, libération des verrous par le 1^{er} module informé par le 2^{ème}
- Après libération d'un verrou, transmission du verrou à une transaction en attente par le 2ème module

101

Inter-blocage

• Inter-blocage (*Deadlock*): Attente mutuelle de deux transactions

• Détection par un graphe d'attente

- ♦ Chaque nœud représente une transaction en cours d'exécution
- Un arc de T_i vers T_j signifie que T_i attend un verrou détenu par T_j sur un même item
- ◆ Ajout d'un arc par le gestionnaire de verrous à chaque demande insatisfaite et inversement

Prévention par estampillage

- Association d'une estampille à chaque transaction au début de l'exécution
 Plus la transaction est ancienne, plus la priorité est grande
- Wait-Die : Si T_i a une priorité plus forte que T_j alors T_i attend, sinon T_i est annulée
- Wound-Wait : Si T_i a une priorité plus forte que T_j alors T_j est annulée, sinon T_i attend

VP₁(A), R₁(A), VX₂(B), W₂(B), VP₁(B), VP₃(C), R₃(C), VX₂(C), VX₄(A), VX₃(A)

Table des verrous

103

 \leq

VP₁(A), R₁(A), VX₂(B), W₂(B), VP₁(B), VP₃(C), R₃(C), VX₂(C), VX₄(A), VX₃(A)

Table des verrous

A	$VP(T_1)$	
---	-----------	--

 T_2

$$T_1$$

 T_3

$$T_4$$

 \leq

VP₁(A), R₁(A), VX₂(B), W₂(B), VP₁(B), VP₃(C), R₃(C), VX₂(C), VX₄(A), VX₃(A)

Table des verrous

A	$VP(T_1)$	
В	$VX(T_2)$	

 T_2

 T_1

 T_3

 $\left(T_{4}\right)$

 \leq

 $VP_{1}(A), R_{1}(A), VX_{2}(B), W_{2}(B), \underline{VP_{1}(B)}, VP_{3}(C), R_{3}(C), VX_{2}(C), VX_{4}(A), VX_{3}(A)$

Table des verrous

A	VP (T ₁)	
В	$VX(T_2)$	

 T_2

 T_1

 T_3

 $\left(T_{4}\right)$

 \leq

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

Table des verrous

A	$VP(T_1)$	
В	$VX(T_2)$	

 T_2

 $\left(T_{1}\right)$

 T_3

 T_4

 \leq

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)

 \leq

 $VP_1(A), R_1(A), \underline{VX_2(B)}, W_2(B), \underline{VP_1(B)}, VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)

 \leq

 $VP_1(A), R_1(A), \underline{VX_2(B)}, W_2(B), \underline{VP_1(B)}, VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	

 $VP_1(A), R_1(A), \underline{VX_2(B)}, W_2(B), \underline{VP_1(B)}, VP_3(C), R_3(C), \underline{VX_2(C)}, VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	

 \leq

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	

 \leq

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

Table des verrous

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
C	$VP(T_3)$	$T_2(VX)$

103

Ѯ

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
C	$VP(T_3)$	$T_2(VX)$

 \leq

 $VP_1(A), R_1(A), \underline{VX_2(B)}, W_2(B), \underline{VP_1(B)}, \underline{VP_3(C)}, R_3(C), \underline{VX_2(C)}, \underline{VX_4(A)}, VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
C	$VP(T_3)$	$T_2(VX)$

 \leq

 $VP_1(A), R_1(A), VX_2(B), W_2(B), VP_1(B), VP_3(C), R_3(C), VX_2(C), VX_4(A), VX_3(A)$

A	$VP(T_1)$	
В	$VX(T_2)$	T_1 (VP)
C	$VP(T_3)$	$T_2(VX)$

 \preceq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	$T_2(VX)$

 \preceq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	$T_2(VX)$

 \leq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$
В	$VX(T_2)$	T_1 (VP)
С	$VP(T_3)$	$T_2(VX)$

 \preceq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$
В	$VX(T_2)$	T_1 (VP)
C	$VP(T_3)$	$T_2(VX)$

 \leq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$	T_3 (VX)
В	$VX(T_2)$	T_1 (VP)	
С	$VP(T_3)$	$T_2(VX)$	

 \leq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

A	$VP(T_1)$	$T_4(VX)$	T_3 (VX)
В	$VX(T_2)$	T_1 (VP)	
С	VP (T ₃)	$T_2(VX)$	

 \leq

 $VP_1(A)$, $R_1(A)$, $VX_2(B)$, $W_2(B)$, $VP_1(B)$, $VP_3(C)$, $R_3(C)$, $VX_2(C)$, $VX_4(A)$, $VX_3(A)$

Table des verrous

A	$VP(T_1)$	$T_4(VX)$	T_3 (VX)
В	$VX(T_2)$	T_1 (VP)	
С	$VP(T_3)$	$T_2(VX)$	

 T_2 T_3 T_4 T_4 T_4

Cycle dans le graphe d'attente \Rightarrow détection d'un inter-blocage \Rightarrow Annulation de T₃

Protocole de verrouillage en deux phases (Two-Phases Locking)

- Principe
 - **♦** Phase 1 : Verrouillage des items / Phase ascendante
 - ♦ Phase 2 : Déverrouillage des items / Phase descendante
- Théorème

Un ordonnancement obtenu par le protocole V2P est sérialisable

Inconvénients

Risque d'annulation de transactions en cascade et d'inter-blocages

Protocole V2P strict

Les verrous sont conservés par une transaction jusqu'à la fin

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

 T_1

 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence \Rightarrow ordonnancement non sérialisable

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

Protocole V2P:

 T_1 T_2

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

Protocole V2P:

$$\begin{bmatrix} T_1 & T_2 \\ R_1(x) & \end{bmatrix}$$

105

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

$$\begin{array}{c|c}
T_1 & T_2 \\
VP_1(x) & \\
R_1(x) & \end{array}$$

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

$$\begin{array}{c|c}
T_1 & T_2 \\
VP_1(x) & \\
R_1(x) & \\
R_2(x)
\end{array}$$

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

$$\begin{array}{c|c}
T_1 & T_2 \\
VP_1(x) & \\
R_1(x) & VP_2(x) \\
R_2(x)
\end{array}$$

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

$$\begin{array}{c|c}
T_1 & T_2 \\
VP_1(x) & \\
R_1(x) & VP_2(x) \\
VX_1(x) & R_2(x)
\end{array}$$

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

$$\begin{array}{c|c}
T_1 & T_2 \\
VP_1(x) & \\
R_1(x) & VP_2(x) \\
VX_1(x) & R_2(x)
\end{array}$$

Soit l'ordonnancement : $R_1(x)$, $R_2(x)$, $W_1(x)$, $W_2(x)$

Graphe de précédence :

Cycle dans le graphe de précédence ⇒ ordonnancement non sérialisable

Protocole V2P:

Pour durcir le verrou de T_1 , il faudrait que T_2 n'ait pas de verrou sur x

 \Rightarrow V2P non applicable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence : T_1

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence : T_1

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence : T_1

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence : T_1

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

 T_1 T_2

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

 $\begin{bmatrix} T_1 & T_2 \\ W_1(x) & \end{bmatrix}$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

 $\begin{array}{c|c} T_1 & T_2 \\ VX_1(x) & W_1(x) \end{array}$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

$$\begin{array}{c|cccc} T_1 & T_2 & & & \\ VX_1(x) & W_1(x) & & & & \\ & & VP_2(y) & R_2(y) & \\ VP_1(y) & R_1(y) & & & & \\ & & & R_2(x) & & \end{array}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

$$\begin{array}{c|cccc} T_1 & T_2 & & & \\ VX_1(x) & W_1(x) & & & & \\ & & VP_2(y) & R_2(y) & \\ VP_1(y) & R_1(y) & & & & \\ & & VP_2(x) & R_2(x) & \\ \end{array}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

$$\begin{array}{c|cccc} & T_1 & T_2 \\ VX_1(x) & W_1(x) & & & \\ & & VP_2(y) & R_2(y) \\ VP_1(y) & R_1(y) & & & \\ & & VP_2(x) & R_2(x) \end{array}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

$$\begin{array}{c|cccc} T_1 & T_2 & & & \\ VX_1(x) & W_1(x) & & & & \\ & & & VP_2(y) & R_2(y) & \\ VP_1(y) & R_1(y) & & & & \\ & & VP_2(x) & R_2(x) & \\ \end{array}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

$$\begin{array}{c|cccc} & T_1 & T_2 & T \\ VX_1(x) & W_1(x) & & W \\ & & VP_2(y) & R_2(y) \\ VP_1(y) & R_1(y) & & & \\ & & VP_2(x) & R_2(x) & & \end{array}$$

$$\begin{bmatrix} T_1 \\ W_1(x) \end{bmatrix}$$
 $\begin{bmatrix} T_2 \\ \end{bmatrix}$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_1(y)$, $R_2(x)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict:

Protocole V2P non strict:

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence : T

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

 T_2

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

 T_1 T_2

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

 T_1 T_2

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

$$\begin{bmatrix} T_1 & T_2 \\ W_1(x) & \end{bmatrix}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

$$\begin{array}{c|c} T_1 & T_2 \\ VX_1(x) & W_1(x) \end{array}$$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

107

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

$$\begin{array}{c|cccc} T_1 & T_2 \\ VX_1(x) & W_1(x) \\ & VP_2(y) & R_2(y) \\ & VP_2(x) & R_2(x) \end{array}$$

107

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

$$\begin{array}{c|cccc}
 & T_1 & T_2 \\
VX_1(x) & W_1(x) & & & \\
VP_2(y) & R_2(y) & & & \\
VP_2(x) & R_2(x) & & & \\
\end{array}$$

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

$$\begin{array}{c|cccc} & T_1 & T_2 \\ VX_1(x) & W_1(x) & & & \\ & & VP_2(y) & R_2(y) \\ & & VP_2(x) & R_2(x) \\ VP_1(y) & R_1(y) & & & \end{array}$$

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

 \Rightarrow application V2P impossible

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

 \Rightarrow application V2P impossible

 $V2P \Rightarrow sérialisable$

Soit l'ordonnancement : $W_1(x)$, $R_2(y)$, $R_2(x)$, $R_1(y)$, C_1 , C_2

Graphe de précédence :

Pas de cycle dans le graphe de précédence ⇒ ordonnancement sérialisable

Protocole V2P strict ou non strict:

Opération impossible car pour que $VP_2(x)$ il faudrait $D_1(x)$ or T_1 est en phase ascendante du protocole V2P

⇒ application V2P impossible

V2P ⇒ sérialisable V2P ≤ sérialisable

- Association d'une estampille TS(T) à chaque transaction T
- Association de deux estampilles à chaque item RTS(A) et WTS(A)
- Si T veut lire l'item x
 - ◆ Si TS(T) < WTS(x)
 alors T est annulée et relancée avec une nouvelle estampille
 - Sinon, RTS(x)=Max[TS(T), RTS(x)]
- Si T veut écrire sur l'item $x \rightarrow |$
 - ◆ Si TS(T) < RTS(x)
 alors T est annulée et relancée avec une nouvelle estampille
 - Si TS(T) < WTS(x), alors l'action de T est ignorée (règle de Thomas)
 - Sinon, WTS(x)=TS(T)

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $R_j(x)$...

T _i 100	T _j 125	RTS	X WTS 0	RTS 0	WTS 0

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 100	T _j 125	X WTS 0	RTS	WTS 0
$W_i(x)$				

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $R_j(x)$...

T _i 100	T _j 125	x WTS <mark>0</mark>	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS
$\overline{W_i(x)}$		100		

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $R_j(x)$...

T _i 100	T _j 125	WTS 0	RTS 0	WTS 0
$W_i(x)$		100		
	$R_j(y)$			

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 100	T _j 125	X WTS 0	$\left \begin{array}{c} RTS^{3} \\ 0 \end{array} \right $	WTS
$W_i(x)$		100		
	$R_j(y)$		125	

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 100	T _j 125	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	x WTS 0	RTS	WTS	T_i + ancienne que T_j
$W_i(x)$			100			
	$R_{j}(y)$			125		
$R_i(y)$				•		WTS(y) et la dernière on la plus récente ayant lu y urs T _j

T _i 100	T _j 125	RTS	WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS	T_i + ancienne que T_j
$W_i(x)$			100			
	$R_{j}(y)$			125		
R _i (y)				125		WTS(y) et la dernière on la plus récente ayant lu y ours T _j

T _i 100	T _j 125	RTS	WTS 0	RTS	WTS 0	T_i + ancienne que T_j
$W_i(x)$			100			
	$R_j(y)$			125		
$R_i(y)$				125 ◀		WTS(y) et la dernière on la plus récente ayant lu y urs T _j
	$R_j(x)$					

$ \begin{bmatrix} RTS \\ 0 \end{bmatrix}^{2} $	WTS	RTS 0	WTS	T_i + ancienne que T_j
	100			
		125		
		125 •		WTS(y) et la dernière ion la plus récente ayant lu y ours T _j
			J	$>$ WTS(x) \Rightarrow la dernière etion ayant mis à jour x est plus
		0 0	RTS WTS RTS 0 100 125	RTS WTS RTS WTS 0 0 100 125 125 TS(T_i) transaction est toujoin $TS(T_j)$

T _i 100	T _j 125	RTS	WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS	T_i + ancienne que T_j
$W_i(x)$			100			
	$R_j(y)$			125		
$R_i(y)$				125		>WTS(y) et la dernière tion la plus récente ayant lu y ours T _j
	$R_j(x)$	125			J	$0 > WTS(x) \Rightarrow la dernière$ ction ayant mis à jour x est plus
				1	ancier	nne que $T_j \Rightarrow$ écriture autorisée

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $R_j(x)$...

T _i 99	$\begin{array}{c c} T_j \\ 80 \end{array}$	RTS	X WTS 0	RTS	WTS 0

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 99	T _j 80	x WTS 0	RTS	WTS 0
$W_i(x)$				

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 99	T _j 80	WTS 0	RTS 0	WTS 0
$W_i(x)$		99		

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 99	T _j 80	X WTS 0	RTS 0	WTS 0	r
$W_i(x)$		99			-
	$R_j(y)$				

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 99	T _j 80	X WTS 0	$\begin{bmatrix} RTS^{3} \\ 0 \end{bmatrix}$	WTS 0	
$\overline{W_i(x)}$		99			_
	$R_{j}(y)$		80		

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

		1	X	, T	I	
T _i 99	$\begin{bmatrix} T_{\rm j} \\ 80 \end{bmatrix}$	RTS	WTS	RTS	WTS	T_i + récente que T_j
	00	V	0	U	· ·	<u> </u>
$W_i(x)$			99			
	$R_{j}(y)$			80		
$R_i(y)$						
1 ()						

110

		1	X	, <u>, , , , , , , , , , , , , , , , , , </u>	1	
T_i	T_{i}	RTS	WTS	RTS		T_i + récente que T_i
99	80	0	0	0	0	- Ti + recente que Tj
$W_i(x)$			99			
	$R_j(y)$			80		
$R_i(y)$				99		

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $R_j(x)$...

	<u></u>	1	X	<u> </u>	I	
T_i	T_{j}	RTS	WTS	RTS	WTS	$T_i + r$
99	80	0	0	0	0	_ 1 ' 1
$W_i(x)$			99			
	$R_j(y)$			80		
$R_i(y)$				99		
	$R_j(x)$					
	J					

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $R_i(x)$...

T _i 99	$\begin{bmatrix} T_j \\ 80 \end{bmatrix}$	RTS	X WTS 0	RTS	WTS	T_i + récente que T_j
$W_i(x)$			99			
	$R_{j}(y)$			80		
$R_i(y)$				99		
					То	urait du lira la valour de
	$R_{i}(x)$	-			J	urait du lire la valeur de rant que T _i , plus récente
						t modifié la valeur de x

110

 \Rightarrow annulation de T_i

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 100	T _j 125	RTS	X WTS 0	RTS 0	WTS 0

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 100	T _j 125	x WTS <mark>0</mark>	$\begin{bmatrix} RTS^3 \\ 0 \end{bmatrix}$	WTS 0
$R_i(x)$				

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 100	T _j 125		x WTS <mark>0</mark>	$\begin{bmatrix} RTS^3 \\ 0 \end{bmatrix}$	WTS 0
$R_i(x)$		100			

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 100	T _j 125		x WTS 0	RTS 0	WTS
$R_i(x)$		100			
	$R_{j}(y)$				

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 100	T _j 125		X WTS 0	$\begin{bmatrix} RTS^3 \\ 0 \end{bmatrix}$	WTS 0
$R_i(x)$		100			
	$R_{j}(y)$			125	

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

$\frac{\text{WTS}}{0}$
_

T _i 100	T _j 125	RTS	WTS 0	RTS	WTS	T_i + ancienne que T_j
$R_i(x)$		100				
	$R_{j}(y)$			125		
R _i (y)				•		$FWTS(y) \Rightarrow$ la dernière ion la plus récente ayant lu y ours T_j

T _i 100	T _j 125	RTS	WTS 0	RTS	WTS	T_i + ancienne que T_j
$R_i(x)$		100				
	$R_{j}(y)$			125		
R _i (y)				125 ◀		WTS(y) \Rightarrow la dernière on la plus récente ayant lu y urs T_j

T _i 100	T _j 125	RTS	WTS 0	RTS	WTS	T_i + ancienne que T_j
$R_i(x)$		100				
	$R_{j}(y)$			125		
$R_i(y)$				125 -		$PWTS(y) \Rightarrow$ la dernière ion la plus récente ayant lu y ours T_i
	$W_{j}(x)$					

T _i 100	T _j 125	RTS	WTS 0	$\begin{bmatrix} RTS^3 \\ 0 \end{bmatrix}$	WTS	T_i + ancienne que T_j
$R_i(x)$		100				
	$R_{j}(y)$			125		
$R_i(y)$				125 ◀		$f(WTS(y)) \Rightarrow$ la dernière on la plus récente ayant lu y ours T_j
	$W_{j}(x)$		•		transacti	$PRTS(x) \Rightarrow la dernière$ on ayant lu x est plus e que $T_j \Rightarrow$ écriture autorisée

T _i 100	T _j 125	RTS	WTS 0	RTS	WTS	T_i + ancienne que T_j
$R_i(x)$		100				
	$R_j(y)$			125		
$R_i(y)$				125 ◀		WTS(y) \Rightarrow la dernière on la plus récente ayant lu y urs T_j
	$W_{j}(x)$		125 \blacktriangleleft		transactio	$RTS(x) \Rightarrow la dernière$ on ayant lu x est plus que $T_j \Rightarrow$ écriture autorisée

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	T _j 80	RTS	WTS 0	RTS ³	WTS 0

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	$\begin{array}{c c} T_j \\ 80 \end{array}$	x WTS <mark>0</mark>	RTS	WTS 0
$R_i(x)$				

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	T _j 80		X WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS
$R_i(x)$		99			

Soit l'ordonnancement : ... $R_i(x)$, $R_j(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	$\begin{bmatrix} T_j \\ 80 \end{bmatrix}$	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	X WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS 0
$R_i(x)$		99			
	$R_{j}(y)$				

Soit l'ordonnancement : ... $R_i(x)$, $R_j(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	$\begin{array}{c c} T_j \\ 80 \end{array}$		X WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS 0
$R_i(x)$		99			
	$R_{j}(y)$			80	

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T.			X	<u> </u>	1	
T_{i}	$ T_j $	RTS	WTS	RTS	WTS	$T_i +$
99	80	0	0	0	0	- 1 '
$R_i(x)$		99				
	$R_j(y)$			80		
$R_i(y)$						

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

_	. —	1	X	·	I	
T_{i}	$ T_j $	RTS	WTS	RTS	WTS	$T_i + récer$
99	80	0	0	0	0	_1
$R_i(x)$		99				
	$R_{j}(y)$			80		
$R_i(y)$				99		

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	$\begin{bmatrix} T_{\rm j} \\ 80 \end{bmatrix}$	RTS	X WTS 0	RTS 0	WTS 0
$R_i(x)$		99			
	$R_j(y)$			80	
$R_i(y)$				99	
	$W_j(x)$				

Soit l'ordonnancement : ... $R_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	T _j 80	$\left \begin{array}{c} RTS \\ 0 \end{array} \right $	WTS	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS 0	T_i + récente que T_j
$R_i(x)$		99				
	$R_{j}(y)$			80		
$R_i(y)$				99		
	W(x)				J	aurait dû modifier la leur de x avant que T _i ,
	l (1)					is récente, ne la lise \Rightarrow

annulation de T_i

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	$\begin{bmatrix} T_j \\ 80 \end{bmatrix}$	RTS	X WTS 0	RTS	WTS 0

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_i(x)$...

T _i 99	T _j 80	X WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS
$\overline{W_i(x)}$				

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	T _j 80	WTS 0	RTS	WTS
$\overline{W_i(x)}$		99		

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	$\begin{array}{c c} T_j \\ 80 \end{array}$	x WTS <mark>0</mark>	RTS 0	WTS 0
$W_i(x)$		99		
	$R_{j}(y)$			

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $W_j(x)$...

T _j 80	RTS 0	WTS 0	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS
		99		
$R_j(y)$			80	
	80	$\begin{array}{c c} T_j & RTS \\ 80 & 0 \end{array}$	$\begin{array}{c c} T_j & RTS & WTS \\ 80 & 0 & 0 \\ \hline & 99 \\ \hline \end{array}$	80 0 0 0

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	$\begin{array}{c c} T_j \\ 80 \end{array}$	RTS	WTS 0	RTS	WTS
$W_i(x)$			99		
	$R_{j}(y)$			80	
$R_i(y)$					

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_j(x)$...

			X	<u> </u>	I	
T _i 99	$egin{array}{c} T_{ m j} \\ 80 \end{array}$	RTS	WTS 0	RTS	$\frac{\text{WTS}}{0}$	Γ
$\overline{W_i(x)}$			99			_
	$R_j(y)$			80		
$R_i(y)$				99		

Soit l'ordonnancement : ... $W_i(x)$, $R_i(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	T _j 80	RTS	WTS 0	RTS	WTS
$W_i(x)$			99		
	$R_j(y)$			80	
$R_i(y)$				99	
	$W_j(x)$				

e que T _j
fier la que T _i ,
a modifie
estampilles MàJ de T _i
cée par celle homas)

Soit l'ordonnancement : ... $W_i(x)$, $R_j(y)$, $R_i(y)$, $W_j(x)$...

T _i 99	T _j 80	$\begin{bmatrix} RTS \\ 0 \end{bmatrix}$	WTS 0	RTS	WTS	T _i + récente que T _j
$\overline{W_i(x)}$			99			
$R_i(y)$	$R_j(y)$			80 99	vale plus ⇒ s	urait dû modifier la fur de x avant que T _i , récente, ne la modifie i l'ordre des estampilles
	$W_j(x)$	-			— aura	t été suivi, la MàJ de T _j it été remplacée par celle T _i (règles de Thomas)

 \Rightarrow L'opération $W_j(x)$ est ignorée, et T_j n'est pas annulée

T_{i}	$T_{\mathbf{j}}$	T_k	T _n	A
150	200	175	252	RTS=0 WTS=0
R _i (A)				RTS=150 WTS=0
$W_i(A)$				RTS=150 WTS=150
	$R_{j}(A)$			RTS=200 WTS=150
	$W_{j}(A)$			RTS=200 WTS=200
		$R_k(A)$	4	
		Abort		
			$R_n(A)$	RTS=252 WTS=200

T_k n'a pas le droit de lire un item modifié par une transaction plus récente

Estampillage multiversion

T_{i}	$T_{\mathbf{j}}$	T_k	T _n	$\mathbf{A_0}$	A ₁₅₀	A ₂₀₀
150	200	175	252			
R _i (A)				Lue		
$W_i(A)$					Crée	
	$R_{j}(A)$				Lue	
	$ \begin{array}{c c} R_{j}(A) \\ W_{j}(A) \end{array} $					Crée
		$R_k(A)$			Lµe	
		Abort				
			$R_n(A)$			Lue

T_k lit une ancienne version de l'item

Verrouillage hiérarchique

- Hiérarchie : relation, page, nuplet
- Intention d'obtenir un verrou partagé (IP) ou exclusif (IX)
- Protocole garantissant la sérialisation et évitant les interblocages

	IP	IX	VP	VX
IP	OUI	OUI	OUI	OUI
IX	OUI	OUI	NON	NON
VP	OUI	NON	OUI	NON
VX	NON	NON	NON	NON

Matrice de compatibilité des verrous et des intentions de verrous

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

117

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

11′

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

117

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

11′

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

11′

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

11′

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

- Les niveaux hauts de l'arbre servent pour les recherches
- Pour les modifications : verrouillage exclusif d'un nœud s'il risque d'être touché par la mise à jour

Transactions et SQL2

- Une transaction commence dès la 1ère requête ou tout de suite après un *COMMIT* ou un *ROLLBACK*
- Propriétés READ ONLY ou READ WRITE
- Degrés d'isolation

Degré	Lecture impropre	Lecture non reproductible	Références fantômes
READ UNCOMMITTED	OUI	OUI	OUI
READ COMMITTED	NON	OUI	OUI
REPEATABLE READ	NON	NON	OUI
SERIALIZABLE	NON	NON	NON

• SET TRANSACTION ISOLATION LEVEL SERIALIZABLE READ ONLY

Pour le niveau d'isolation par défaut : READ COMMITTED

Transaction 1	Transaction 2
+O DECINI WORK	DECIN WORK
t0 BEGIN WORK t1 UPDATE row 34	BEGIN WORK
t2	UPDATE row 34 (mis en attente)
t3	
t4 ROLLBACK WORK	
t5	UPDATE row 34
t6	COMMIT/ROLLBACK WORK

Pour le niveau d'isolation par défaut : READ COMMITTED

		Transaction 1	Transaction 2
		BEGIN WORK	BEGIN WORK
		UPDATE row 34	
	t2	•••	UPDATE row 34 (mis en attente)
	t3		
	t4	COMMIT WORK	
	t5		UPDATE row 34 (Ré-exécute la condition de recherche)
•	t6		COMMIT/ROLLBACK WORK

Pour le niveau d'isolation : SERIALIZABLE

		Transaction 1	Transaction 2
	+0	BEGIN WORK	BEGIN WORK
		UPDATE row 34	DEGLIN WORK
	t2		 SELECT row 34 (→ état t0)
	t3	•••	SEECTION 34 (> etat to)
		 COMMITT/ROLLBACK WORK	
		COMMENT ROLLDACK VYORK	SELECT row 34 (→ état t4)
	t5 t6		
♥ _	ເວ		COMMITT/ROLLBACK WORK

Pour le niveau d'isolation : SERIALIZABLE

		Transaction normale	Transaction sérializable
	t1 t2	BEGIN WORK UPDATE row 34 	BEGIN WORK UPDATE row 34 (mis en attente)
	t3 t4	 COMMIT WORK	
•	t5	COMMETT WORK	Auto-ROLLBACK WORK

Chap. V - Reprise après panne

- Types de panne dans les SGBD
- Journaux des mises à jour
- Validation des transactions
- Procédures de reprise
- Algorithme ARIES

Pannes

- Fonctions du gestionnaire de pannes
 - Atomicité
 - Durabilité
- Différents types de panne [Gar99]
 - Panne d'action
 - Panne de transaction
 - Panne du système
 - Panne de la mémoire secondaire

Exemple

Journaux

• Journal ou log

Historique des modifications effectuées sur la base

- Journal des images avant (rollback segment)
 - Valeurs des pages avant modifications
 - Pour défaire (undo) les mises à jour d'une transaction
- Journal des images après (redo log)
 - Valeurs des pages après modifications
 - Pour refaire (redo) les mises à jour d'une transaction
- Points de reprise

Processus de journalisation

Mémoire

Gestion du journal

- Ecriture des pages du journal dans un buffer en mémoire
- Sauvegarde du journal lorsque le *buffer* est plein
- Sauvegarde du journal lorsqu'il y a validation d'une transaction ou d'un groupe de transactions
- Ecriture du journal sur le disque avant l'écriture des pages de données modifiées
- Structures des enregistrements
 - Numéro de transaction
 - Type d'enregistrement (start, update, commit, abort ...)
 - Adresse de la page modifiée
 - Image avant
 - Image après

Modification immédiate

Etapes

- Insertion d'un enregistrement de début de transaction dans le journal
- A chaque opération d'écriture, insertion d'un enregistrement de modification dans le journal
- Une fois les enregistrements de modifications inscrits dans le journal, modification des pages de données du *buffer*
- Report des mises à jour sur le disque quand le *buffer* est plein ou quand la transaction valide
- Insertion d'un enregistrement de validation dans le journal
- Opérations *undo* et *redo*
- Lecture du journal en sens inverse pour annuler une transaction

Modification différée

• Etapes

- Insertion d'un enregistrement de début de transaction dans le journal
- A chaque opération d'écriture, insertion d'un enregistrement de modification dans le journal
- Insertion d'un enregistrement de validation dans le journal
- Après la validation de la transaction, mise à jour des pages du buffer en fonction du contenu du journal
- Pas d'opérations *undo*
- Opération *redo*

Procédures de reprise

• Objectif

Reconstruire, à partir du journal et éventuellement de sauvegarde, un état proche de l'état cohérent de la base avant la panne, en perdant le minimum de travail

Reprise à chaud

Perte de la mémoire mais pas de la mémoire secondaire

- · No Undo, Redo
- Undo, Redo
- · Undo, No Redo

Reprise à froid

Perte de tout ou partie de la mémoire secondaire

Algorithme ARIES (1/2)

Algorithm for Recovery and Isolation Exploiting Semantics (IBM DB2)

- Structure des enregistrements
 - LSN (Log Sequence Number)
 - Type
 - PrevLSN
 - PageID
 - UndoNxtLSN
 - Data
- Table des transactions : transactions actives ou validées
- Tables des pages sales

Algorithme ARIES (2/2)

- Journalisation avant écriture (Write Ahead Loging WAL)
- Validation après écriture (Write Before Commit)
- Validation à deux phases
- Enregistrement de compensation (Compensation Log Record)
- Algorithme à trois étapes
 - ① Analyse
 - ② Reconstruction avant
 - **3** Reconstruction après

Oracle

- Index en arbre B+
- Gestion des pannes
 - Journal Avant et Journal Après
 - Ecriture des journaux sur le disque à chaque validation de transaction
 - Possibilité de différer l'écriture des journaux et des pages mémoire pour les groupes de transactions courtes
- Utilisation des boucles imbriquées et du tri-fusion
- Verrouillage nuplet
- Dans le cas réparti
 - Validation à deux phases
 - Réplication asynchrone et synchrone

DB₂

- Index en arbre B+
- Gestion des pannes
 - Journal Avant
 - Journal Après
 - Blocage des validations
- Utilisation des boucles imbriquées et du tri-fusion
- Verrouillage nuplet-table escaladant
- Dans le cas réparti
 - Validation à deux phases
 - Réplication asynchrone

Sybase

- Index en arbre B*
- Gestion des pannes
 - Journalisation des intentions d'écriture
 - Blocage des écritures
- Utilisation des boucles imbriquées avec ou sans index
- Verrouillage page-table escaladant
- Dans le cas réparti
 - Validation à deux phases
 - Réplication asynchrone

CA-OpenIngres

- Index en arbre B, ISAM et table de hachage
- Gestion des pannes
 - Journal avant et journal après
 - Blocage des écritures
- Utilisation des boucles imbriquées, tri fusion et hachage
- Verrouillage en deux phases table ou page
- Dans le cas réparti
 - Validation à deux phases
 - Réplication asynchrone et synchrone