

WIRBELFELD

Magnetische Feldlinien sind stets in sich geschlossen ⇒ Wirbelfeld

LORENTZ-KRAFT

Bewegte Ladungsträger in einem Magnetfeld:

- Ladungsträger werden abgelenkt
- Kraft wirkt senkrecht zur Bewegungsrichtung
- Kraft wirkt senkrecht zur Magnetfeldrichtung

$$\vec{F} = Q \cdot (\vec{v} \times \vec{B})$$

MAGNETISCHE FELDSTÄRKE H

Magnetische Flussdichte eines stromdurchflossenen Leiters:

$$B = \mu \cdot \frac{I}{2\pi \cdot r}$$

Strom

- $\mu = \mu_0 \mu_r$ Permeabilität
- $\mu_{\rm r}$: relative Permeabilität
- Permeabilität des Vakuums (magn. Feldkonstante):

$$\mu_0 = 4\pi \cdot 10^{-7} \frac{Vs}{Am}$$

Flussdichte ist materialabhängig

 \Rightarrow man definiert die material**un**abhängige magn. Feldstärke H

$$H = \frac{B}{\mu}$$

$$H = \frac{B}{\mu}$$
 mit $[H] = 1 \text{ Vs/m}^2 \cdot \text{Am/Vs} = \text{A/m}$

$$\varepsilon_0 = \frac{1}{\sqrt{\varepsilon_0 \cdot \mu_0}}$$

DURCHFLUTUNG ⁽²⁾

Summe, der durch einen Ring fließenden Ströme

$$\Theta = I_1 + I_2 + \dots$$
 mit $[\Theta] = A$

Beispiel:

$$\Theta = \mathcal{I}_1 - \mathcal{I}_2 - \mathcal{I}_3$$

DURCHFLUTUNGSGESETZ

Verallgemeinerung des Falles für einen stromdurchflossenen Leiter:

$$H = \frac{I}{2\pi \cdot r} \Rightarrow I = 2\pi \cdot r \cdot H$$

Durchflutungsgesetz:

Für einen beliebigen geschlossenen Weg gilt, wenn die Feldstärke konstant über ein Teilstück ist:

Durchflutung = Σ Feldstärke auf Teilstück · Länge des Teilstücks

Allgemeine Form:
$$\Theta = \oint \vec{H} \cdot d\vec{s}$$

Frage: Wozu ist das gut?

MATERIE IM MAGNETFELD

 $B = \mu_0 H$ gilt nur im Vakuum, befindet sich im Raum ein Material, so gilt:

$$\Rightarrow B = \mu H \text{ mit } \mu = \mu_r \mu_0$$
mit:

Permeabilität μ :

Permeabilität des Vakuums 411-10 Am

relative Permeabilität

Man unterscheidet:

- (Silber, Blei) • $\mu_r < 1$ als diamagnetisch
- $\mu_r > 1$ als paramagnetisch (Aluminium, Platin)
- $\mu_r >> 1$ als ferromagnetisch (Eisen, Nickel, Kobalt)

FERROMAGNETISCHE STOFFE

Magnetisierungskurve = Hysteresekurve

• B = f(H) ist nichtlinear

Ummagnetisieren kostet Energie. Je höher die Frequenz, desto höher der Verlust.

H_s: Sättigungsfeldstärke

 B_r : Remanzflussdichte oder Remanenz (verbleibende Flussdichte bei H=0)

 H_c : Koerzitivfeldstärke (bei der das Material wieder entmagnetisiert ist)

FERROMAGNETISCHE STOFFE

Erklärung der Magnetisierungskurve über Elementarmagnete

Ferromagnetische Eigenschaften verschwinden oberhalb der Curie-Temperatur (770°C bei Eisen).

INDUKTIONSGESETZ

Verändert sich ein magnetisches Feld in einer Spule, so wird eine

Spannung induziert.

$$u = N \cdot \frac{d\Phi}{dt}$$

Lenzsche Regel

Ein durch Induktion erzeugter Strom fließt stets so, dass er ein magnetisches Feld erzeugt, das der verursachenden Flussänderung entgegenwirkt.

Frage:

Welcher zeitliche Verlauf der Spannung ergibt sich, wenn man eine Spule in ein räumlich begrenztes Magnetfeld schiebt?

MAGNETISCHES FELD "KOMPAKT"

Magnetische Flussdichte B

Magnetische Feldstärke H

Durchflutungssatz

$$\Theta = \oint \vec{H} \cdot d\vec{s}$$

Magnetischer Fluss Φ

 $\Phi = \beta \cdot A$

$$u = \mathcal{N} \cdot \frac{d\phi}{d+}$$

Induktionsgesetz

Spannung u

$$\Theta = \mathbb{Z} \mathbb{T}$$

Strom i

INDUKTIVITÄT L

Ein Strom durch eine Spule erzeugt ein magnetisches Feld

Frage:

 Wie verhält sich das magnetische Feld in Abhängigkeit des Stromes durch die Spule?

⇒ Proportionalitätskonstante: Induktivität (L)

Es gilt bei einer Spule mit N Windungen:

$$N \cdot \Phi = L \cdot I$$
 mit $[L] = 1 \text{ Vs/A} = 1 \text{ Henry} = \underline{1 \text{ H}}$

INDUKTIVITÄT DER ZYLINDERSPULE

Aus dem Durchflutungssatz folgt:

N: Windungszahl

I: Strom

l: Länge der Spule

A: Spulenquerschnittsfläche

Wir erhalten aus $H = N \cdot I / l$:

$$(1) B = \mu H = \mu \cdot \mathcal{N} \cdot \mathbb{I} / \mathcal{L}$$

(1)
$$B = \mu H = \mu \cdot N \cdot I / e$$

(2) $\Phi = B \cdot A = \mu \cdot N \cdot I \cdot A / e$

Substitution von *B* in (2) durch (1):

$$(3) \Phi = \mu \cdot N^{2} + 4/e$$

Aus der Definition von L folgt: $\mathcal{N} = \mathcal{L} \cdot \mathcal{T}$

$$(4) L = \mu \cdot N^{2} \Delta / 2$$

$$\Rightarrow L = \mu_0 \mu_r \cdot \nu^2 \cdot \frac{A}{\epsilon}$$

INDUKTIVITÄT DER ZYLINDERSPULE

$$L = N^2 \cdot \mu_0 \frac{A}{\ell}$$

$$L = N^2 \cdot \mu_r \cdot \mu_0 \cdot \frac{A}{1}$$

$$A = \frac{D^2 \cdot \pi}{4}$$

LInduktivität N Windungsanzahl

μ Permeabilitätszahl des Spulenkerns

μ...... Magnetische Feldkonstante

Spulenquerschnitt . Spulenlänge

D Spulendurchmesser

vergleiche:
$$C = \varepsilon_r \varepsilon_0 \frac{A}{d}$$

Hohe Induktivität erfordert:

- A ↑ Abmessung hoch, aber Platzbedarf
- so dicht wie möglich wickeln
- aber: Platzbedarf, Verlustwiderstand

Luft:

Ferrite:

STROM UND SPANNUNG IN DER SPULE

Für eine Spule mit
$$N$$
 –Windungen gilt:
(1) $\sqrt{.} \phi = \angle . \bot$ $\angle \Rightarrow N . \phi = \angle . i$

Das Induktionsgesetz besagt:

$$(2) \qquad \mathcal{U} = \mathcal{V} \cdot \frac{dl}{dt}$$

Substitution von Φ in (2) durch (1):

$$u(t) = L \frac{di(t)}{dt}$$

Interpretation:

- es liegt nur dann eine Spannung an, wenn der Strom sich ändert
- liegt eine konstante Spannung an, so nimmt der Strom stetig zu

ANALOGIE SPULE UND WASSERKREISLAUF

geschwindigkeit (v)

Analogie Spule

• Strom: Strömungsgesdrwindlig Keit des Wasser

· Spannung: Druckunkschied

· Induktivität: Maß für dre Träghei +

REIHENSCHALTUNG VON SPULEN

Durch beide Spulen fließt derselbe Strom.

Aus der Kirchhoffschen Maschenregel folgt:

$$U = U_1 + U_2$$

Mit der Spulengleichung

$$\frac{dl}{dt} = L_1 - \frac{dl}{dt} + L_2 \frac{dl}{dt}$$

$$u = L \cdot \frac{di}{dt}$$

folgt:

$$L_S = L_1 + L_2$$

"Reihenschaltung von Spulen wie bei Widerständen"

PARALLELSCHALTUNG VON SPULEN

Aus der Kirchhoffschen Knotenregel folgt:

$$i = i_1 + i_2$$

Aus
$$i = \frac{1}{L} \cdot \int u \, dt$$
 folgt damit:

$$\Rightarrow \frac{1}{L_P} = \frac{1}{L_1} + \frac{1}{L_2}$$

⇒ "Parallelschaltung von Spulen wie bei Widerständen"

ENERGIE IN DER SPULE

Spannung an Spule:

Leistung:

p(t) =
$$u(t) \cdot i(t)$$

mit:
$$u(t) = L \frac{di(t)}{dt}$$

$$\Rightarrow p(t) = L \cdot \frac{di(t)}{dt} \cdot i(t)$$

$$\Rightarrow W = \int p(t) dt = \int L \cdot \frac{di(t)}{dt} \cdot i(t) dt = \int L \cdot \frac{d}{dt} \left(\frac{1}{2}i(t)^2\right) \cdot dt = \int \frac{d}{dt} \left(\frac{1}{2}L \cdot i(t)^2\right) \cdot dt$$

⇒ In der Spule gespeicherte Energie:

$$W = \frac{1}{2}L \cdot i^2$$

BAUFORMEN VON FERRITSPULEN

offene Spule mit (Schraub-)kern

Schraubkern eindrehbar → L variabel

geschlossene Spule

Feldlinien im Kern geführt → geringe Streuverluste

Schalenkernspule

Feldlinien geführt +
Schraubkern
eindrehbar
→ L variabel

Ringkernspule

sehr geringes Streufeld Entstördrosseln

ANWENDUNGEN

Abb. 1.15 Darstellung verschiedener Anwendungen für die Zylinderspule

Abb. 1.16 Darstellung verschiedener Anwendungen für weitere Spulenarten

WAS SIE MITNEHMEN SOLLEN...

- Begriffe des magnetischen Feldes kennen und verstehen
- Unterschiede zum elektrischen Feld kennen und verstehen
- Definition der magnetischen Größen kennen und anwenden
 - Flussdichte
 - Fluss
 - Feldstärke
 - Durchflutung
 - Permeabilität und Magnetisierungskurve
- Durchflutungsgesetz kennen und anwenden
- Induktionsgesetz kennen und anwenden
- Spulen verstehen und berechnen können
 - Induktivität, Strom und Spannung, Reihen- und Parallelschaltung, Energie
- Transformator, Wirbelstromverluste, Skin- und Halleffekt kennen