SUBSTITUTION WORKSHEET

MATH 3 / FALL 2012

1.
$$\frac{1}{7}e^{7x} + C$$
 [$u = 7x$]

2.
$$2\sin(x/2) + C$$
 [$u = x/2$]

3.
$$\frac{1}{2}e^{x^2} + C$$
 [$u = x^2$]

4.
$$\frac{1}{3}(1-x^2)^{3/2} + C$$
 [$u = 1 - x^2$]

5.
$$\frac{1}{2}(\ln x)^2 + C$$
 [$u = \ln x$]

6.
$$\frac{1}{2}\ln(1+x^2) + C$$
 [$u = 1 + x^2$]

7.
$$\frac{1}{8}\cos^4(2x) + C$$
 [$u = \cos(2x)$]

8.
$$\ln(1+e^x) + C$$
 [$u = 1 + e^x$]

9.
$$\frac{1}{6}\sec^2(3x) + C$$
 [$u = \sec(3x)$ or $u = \tan(3x)$]

10.
$$\frac{1}{8}(x^2+5x)^8+C$$
 [$u=x^2+5x$]

11.
$$-\frac{1}{11}(3-x)^{11} + C$$
 [$u = 3-x$]

12.
$$\frac{14}{3}(7x+9)^{3/2} + C$$
 [$u = 7x + 9$]

13.
$$\frac{1}{4}(1+x^6)^{2/3} + C$$
 [$u = 1+x^6$]

14.
$$\frac{1}{5}e^{5x+2} + C$$
 [$u = 5x + 2$]

15.
$$-\cos(\ln x) + C$$
 [$u = \ln x$]

16.
$$3\ln(\ln x) + \ln x + C$$
 [$u = \ln x$]

17.
$$\frac{1}{5}e^{-\cos(5x)} + C$$
 $[u = \cos(5x)]$

18.
$$\frac{1}{7}(x-1)^7 + \frac{2}{3}(x-1)^6 + C$$
 [$u = x - 1$]

19.
$$\frac{8}{3}(4-x)^{3/2} - \frac{2}{5}(4-x)^{5/2} + C$$
 [$u = 4-x$]

20.
$$x - \frac{7}{2} \ln|2x - 3| + C$$
 [$u = 2x - 3$]

21.
$$\frac{1}{2}x^2 + 6x + 8\ln|x+2| + C$$
 [$u = 2x - 3$]

22.
$$C + \frac{18}{5} \ln x + \frac{3}{10} (\ln x)^2 - \frac{4}{15} (\ln x)^3 - \frac{1}{20} (\ln x)^4$$
 [$u = \ln x$]

23.
$$\frac{4}{5}(4-\sqrt{x})^{5/2} - \frac{16}{3}(4-\sqrt{x})^{3/2} + C \quad [u=4-\sqrt{x}]$$

24.
$$\frac{1}{5}\ln|\sec(5x)| + C$$
 [Use $\tan(5x) = \sin(5x)/\cos(5x)$; $u = \cos(5x)$]

25.
$$\frac{1}{3}\cos^3(x) - \cos(x) + C$$
 [Use $\sin^2(x) = 1 - \cos^2(x)$; $u = \cos(x)$]

26.
$$\frac{2}{3}(5 + \tan(x))^{3/2} + C$$
 [$u = 5 + \tan(x)$]]

27.
$$\frac{1}{2}(\ln\sin(x))^2 + C$$
 [$u = \ln\sin(x)$]

28.
$$\sin(e^x) + C \quad [u = e^x]$$

29.
$$\frac{1}{5}\sec^5(x) + C$$
 [$u = \sec(x)$]

30.
$$\ln \sqrt{x^2 - 10x + 9} + C$$
 $[u = x^2 - 10x + 9]$