A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 3EQ

Bookmark

Show all steps: (

ON

Problem

As a provisional definition, let us call a finite abelian group "decomposable" if there are elements $a_1, ..., a_n \in G$ such that:

(DI) For every $x \in G$, there are integers $k_1, ..., k_n$ such that $x = a_1^{k_1} a_2^{k_2} ... a_n^{k_n}$ (D₂)

If there are integers $l_1, ..., l_n$ such that

$$a_1^{l_1}a_2^{l_2}\cdots a_n^{l_n}=e^{\text{then }}a_1^{l_1}=a_2^{l_2}=\cdots=a_n^{l_n}=e^{-\frac{l_n}{n}}$$

If (D_1) and (D_2) hold, we will write $G = [a_1, a_2, ..., a_n]$. Assume this in parts 1 and 2.

Explain why we may assume that $G/H = [Hb_1, ..., Hb_n]$ for some $b_1, ..., b_n \in G$.

By Exercise O, we may assume that for each i = 1, ..., n, ord $(b_i) = (Hb_i)$. We will show that $G = [a, b_1, ..., b_n]$.

Step-by-step solution

Step 1 of 3

Assume that G is a finite abelian group, and order of each element in G is some power of prime p. Let a is the highest possible order element in G and $H = \langle a \rangle$.

Objective is to explain the reason that for some $b_1, ..., b_n \in G$, the

$$G/H = [Hb_1, ..., Hb_n]$$

From the result of lifting elements from cosets, one may assume that for each i = 1, ..., n, $\operatorname{ord}(b_i) = \operatorname{ord}(Hb_i)$. So, it is sufficient to show that $G = [a, b_1, ..., b_n]$.

Comment

Step 2 of 3

Task is to show prove that *G* has a basis and by induction hypothesis every *p*-group smaller than

G has a basis.

By the inductive hypothesis choose a basis for quotient group $\ G/H$ as

$$G/H = [Hb_1, ..., Hb_m].$$

If G is abelian and $a \in G$ such that for any $g \in G$, $|\langle g \rangle| ||\langle a \rangle|$. Then for any $x \in G$ there exists y such that Hx = Hy and $\operatorname{ord}(y) = \operatorname{ord}(Hy)$ where $H = \langle a \rangle$.

So from here one may assume that every b_i is chosen so that $\operatorname{ord}(b_i) = \operatorname{ord}(Hb_i)$.

Comment

Step 3 of 3

Since $[Hb_i]$ is a basis of G/H, one have $Hx = H(b_{ij}^{k_{ij}})$ for some product of b_i 's. Therefore, $x = a^{k_0}(b_{ij}^{k_{ij}})$. Since the product of b_i 's is unique the power of a and is fully determined. So, the entire product is unique. Thus, $[a, b_1, ..., b_n]$ is a basis of G.

Comment