

BR 04 / 0205943

PCP / BE 2004 / 000243

REPÚBLICA FEDERATIVA DO BRASIL
Ministério do Desenvolvimento, da Indústria e Comércio Exterior.
Instituto Nacional da Propriedade Industrial
Diretoria de Patentes

CÓPIA OFICIAL

PARA EFEITO DE REIVINDICAÇÃO DE PRIORIDADE

**O documento anexo é a cópia fiel de um
Pedido de Patente de Invenção
Regularmente depositado no Instituto
Nacional da Propriedade Industrial, sob
Número PI 03059839 de 30/12/2003.**

Rio de Janeiro, 14 de Janeiro de 2005.

A handwritten signature in black ink, appearing to read "Oscar Paulo Bueno".
Oscar Paulo Bueno
Chefe do NUCAD
Mat. 449117

BEST AVAILABLE COPY

3016110 013459

DEPÓSITOS DE PATENTES
Protocolo

Número (21)

01

DEPÓSITO

Pedido de Patente ou de
Certificado de Adição

PI0305983-9

Barcode contém o número de pedido, a natureza e data de depósito

depósito / /

Ao Instituto Nacional da Propriedade Industrial:

O requerente solicita a concessão de uma patente na natureza e nas condições abaixo indicadas:

1. Depositante (71):

1.1 Nome: EMPRESA BRASILEIRA DE COMPRESSORES S.A. - EMBRACO

1.2 Qualificação: SOCIEDADE BRASILEIRA 1.3 CGC/CPF: 84.720.630/0001-20

1.4 Endereço completo: RUA RUI BARBOSA, 1020, 89219-901 JOINVILLE - SC, BR-
BRASIL

1.5 Telefone:

FAX:

continua em folha anexa

2. Natureza:

2.1 Invenção

2.1.1. Certificado de Adição

2.2 Modelo de Utilidade

Escreva, obrigatoriamente e por extenso, a Natureza desejada: Patente de Invenção

3. Título da Invenção, do Modelo de Utilidade ou do Certificado de Adição (54):

"SISTEMA DE CONTROLE E DISPARO DE UM TRIAC E MÉTODO DE
CONTROLE DE DISPARO DE UM TRIAC"

continua em folha anexa

4. Pedido de Divisão do pedido nº.

, de

5. Prioridade Interna - O depositante reivindica a seguinte prioridade:

Nº de depósito

Data de Depósito

(66)

6. Prioridade - o depositante reivindica a(s) seguinte(s) prioridade(s):

País ou organização de origem	Número do depósito	Data do depósito

continua em folha anexa

P123872 (sda)

Dannemann, Siemsen, Bigler & Ipanema Moreira, Agente de Propriedade Industrial, matrícula nº 192

Formulário 1.01 - Depósito de Pedido de Patente ou de Certificado de Adição (folha 1/2)

7. **Inventor (72):**
 Assinale aqui se o(s) mesmo(s) requer(em) a não divulgação de seu(s) nome(s)
(art. 6º § 4º da LPI e item 1.1 do Ato Normativo nº 127/97)

7.1 Nome: **RONALDO RIBEIRO DUARTE** 01
CPF: 962.190.849-34

7.2 Qualificação: **brasileira**

7.3 Endereço: **RUA HENRIQUE MIERS, 574, APTO. 05, JOINVILLE 89218-600, SC, BR**

7.4 CEP: 7.5 Telefone:

continua em folha anexa

8. **Declaração na forma do item 3.2 do Ato Normativo nº 127/97:**

continua em folha anexa

9. **Declaração de divulgação anterior não prejudicial (Período de graça):**
(art. 12 da LPI e item 2 do Ato Normativo nº 127/97):

continua em folha anexa

10. **Procurador (74):**
10.1 Nome e CPF/CGC: **DANNEMANN, SIEMSEN, BIGLER & IPANEMA MOREIRA**
33.163.049/0001-14

10.2 Endereço: **Rua Marquês de Olinda, 70**
Rio de Janeiro

10.3 CEP: **22251-040** 10.4 Telefone: **(0xx21) 2553 1811**

11. **Documentos anexados (assinale e indique também o número de folhas):**
(Deverá ser indicado o nº total de somente uma das vias de cada documento)

<input checked="" type="checkbox"/> 11.1 Guia de recolhimento	1 fls.	<input checked="" type="checkbox"/> 11.5 Relatório descritivo	10 fls.
<input type="checkbox"/> 11.2 Procuração	fls.	<input checked="" type="checkbox"/> 11.6 Reivindicações	5 fls.
<input type="checkbox"/> 11.3 Documentos de prioridade	fls.	<input checked="" type="checkbox"/> 11.7 Desenhos	3 fls.
<input type="checkbox"/> 11.4 Doc. de contrato de Trabalho	fls.	<input checked="" type="checkbox"/> 11.8 Resumo	1 fls.
<input type="checkbox"/> 11.9 Outros (especificar):			fls.
<input checked="" type="checkbox"/> 11.10 Total de folhas anexadas:			20 fls.

12. **Declaro, sob penas da Lei, que todas as informações acima prestadas são completas e verdadeiras**

Rio de Janeiro 30/12/2003

Local e Data

Assinatura e Carimbo

Dannemann, Siemsen, Bigler & Ipanema Moreira

P123872 (sda)

08

Relatório Descritivo da Patente de Invenção para "SISTEMA DE
CONTROLE E DISPARO DE UM *TRIAC* E MÉTODO DE CONTROLE DE
DISPARO DE UM *TRIAC*".

A presente invenção refere-se a um sistema de controle de disparo de um *TRIAC* bem com a um método de controle de disparo de um *TRIAC* acionando uma carga com qualquer fator de potência a partir de um único pulso de curta duração no *gate* do *TRIAC*.

Descrição do estado da técnica

Conforme é sabido do estado da técnica, *TRIACs* são chaves usadas primordialmente para controlar o nível de tensão em uma carga.

Para acionamento de um *TRIAC* é necessário um pulso de corrente fornecido ou drenado do *gate* em relação ao terminal principal 1 durante um intervalo de tempo que permita que a corrente circulante pelos terminais principais do *TRIAC* atinja um valor mínimo, conhecido como corrente de *latch*. Uma vez que a corrente atingiu esse valor, o pulso no *gate* pode ser retirado, e a corrente será conduzida naturalmente até o instante que atinja um valor inferior a corrente de manutenção, conhecida como corrente de *hold*. Se houver corrente drenada ou fornecida ao *gate* no instante que a corrente atinge o valor de *hold*, o *TRIAC* entra novamente em condução e permanecerá nessa condição se o sinal de *gate* for mantido novamente até a corrente entre os terminais principais atingir a corrente de *latch*. O ciclo então pode ser indefinidamente repetido, para manter o *TRIAC* em condução, se a corrente circulante pelo *TRIAC* for monitorada e os pulsos no *gate* forem gerados nos instantes corretos. Além de possibilitar a condução contínua do *TRIAC*, o monitoramento da corrente pelo componente possibilita o disparo adequado quando se deseja ajustar o ângulo de disparo para controlar a tensão ou corrente eficaz na carga.

Existem diversos modos de monitorar a corrente que circula pelos terminais do *TRIAC* para controlar o seu disparo no instante imediatamente anterior a passagem por zero dessa corrente. Um dos modos consiste em monitorar a corrente através de um elemento em série com o *TRIAC*, por exemplo um resistor e, em função da tensão lida nesse resistor, determinar se a corrente está se aproximando do valor zero. Outro modo de

monitorar o zero da corrente consiste em detectar a tensão entre os terminais principais do *TRIAC*, mas nesse caso a detecção de tensão entre os terminais indica que o *TRIAC* já está no estado aberto e, mesmo que ele seja imediatamente disparado, já houve descontinuidade de corrente pelo 5 componente. O método mais eficaz para monitorar corrente pelo *TRIAC* é medindo a tensão no *gate* em relação ao terminal principal 1, que reflete a corrente que circula pelos terminais principais. Tal idéia é descrita nos 10 documentos de patente norte americanos US 5.629.571 e US 5.734.289. Em Roudeski (US 5.629.571) são utilizados dois comparadores, além de 15 diversos outros elementos para controle do circuito, de forma que o circuito não poderia ser implementado diretamente através da utilização de microcontroladores de baixo custo. Ainda, segundo os ensinamentos dessa referência, é previsto o monitoramento da tensão no *gate* do *TRIAC*. Tal documento, no entanto, não revela o controle ajustável dessa grandeza em função da corrente circulante na carga, o que resulta em uma aplicação com faixa limitada de corrente na carga.

Em Khudoshin (US 5.734.289) também são utilizados dois comparadores e a implementação pode ser feita utilizando um microcontrolador, mas, assim como no caso anterior, o circuito não permite 20 que se monitore uma ampla faixa de valores de corrente pelo *TRIAC*, acarretando em falha no comando de *gate* do *TRIAC* ou pulso de longa duração no *gate*.

O princípio de funcionamento dos circuitos consiste em 25 comparar a tensão medida no *gate* do *TRIAC* em relação ao terminal principal 1, que reflete diretamente a corrente conduzida pelo *TRIAC*, com valores de tensão pré-fixados, que podem ser chamados de valor limite de tensão limite+ e limite-. Se a tensão medida no *gate* estiver entre os valores limite+ e limite- há a geração de sinal para o *gate* do *TRIAC*. Para comparar 30 a tensão medida no *gate* com dois valores diferentes, os circuitos fazem uso de dois comparadores analógicos. A figura 3 representa a curva de tensão no *gate* equivalente ao instante de passagem por zero de duas correntes chamadas I_1 e I_2 , bem como o valor positivo da tensão de comparação,

10 chamado de limite+. A mesma curva se repete simetricamente durante a subida da corrente, passando, nesse caso, pelo limite-.

10

5 Quando a tensão no *TRIAC* atinge, durante a descida da corrente, o valor limite+, o que é representado pelo instante t_1 quando a tensão do *gate* é equivalente a uma corrente I_1 e no instante t_2 quando a tensão do *gate* é equivalente a uma outra corrente I_2 , o circuito gera um ou mais pulsos no *gate* do *TRIAC*. Como pode ser observado na figura 3, quanto maior o valor da corrente, menor será o tempo entre a detecção pelo comparador e a passagem por zero.

10 O inconveniente dos diferentes tempos de detecção está no fato de que as unidades de controle necessitam de um tempo mínimo para análise do sinal medido e atuação da etapa de potência, para acionamento do *gate* do *TRIAC* e se o tempo for muito curto, a unidade de processamento não poderá realizar as tarefas de acionamento no instante correto. Por outro lado, se o tempo for muito longo, a unidade de controle deverá gerar um sinal de largura proporcionalmente grande para acionamento do *TRIAC*.

15 Assim, para sanar tal problema, seria possível fixar valores superiores ou inferiores para limite+ e limite- de acordo com a corrente esperada para o *TRIAC*, mas qualquer variação dessa corrente para fora dos limites pré-estabelecidos acarretará nos problemas descritos acima. Logo, percebe-se que os circuitos propostos nos documentos de patente US 5.629.571 e US 5.734.289 possuem o inconveniente de permitirem a operação somente com valores restritos e previamente definidos de corrente.

20 **25 Objetivos e breve descrição da invenção**

A presente invenção tem como objetivo um circuito para controle e disparo de um *TRIAC*, utilizando somente um pulso de curta duração durante a passagem por zero da corrente circulante pelos terminais principais desse *TRIAC*. São características do circuito:

30

- A possibilidade de implementação utilizando uma unidade de controle simples e de baixo custo;
- A utilização de somente um comparador analógico para implementação do circuito;

11

- A utilização de um conversor digital para analógico D/A muito simples;

- Controle adequado do *TRIAC* para qualquer valor de corrente de carga e fator de potência da carga.

5 Assim, de modo a atingir os objetivos da presente invenção, o sistema deve detectar, através da unidade de controle, a transição de nível da saída do comparador para então acionar o *TRIAC*. O comparador recebe sinais de tensão do *gate* do *TRIAC* e tensão de um conversor D/A, sendo que esse último é controlado pela unidade de controle e que a transição de nível da saída do comparador ocorre durante as transições da corrente conduzida pelo *TRIAC* do estado negativo para o positivo e vice-versa (o que pode ser também medido a partir da tensão no *gate*), momento em que se deve gerar um pulso no *gate G* do *TRIAC* com duração tal que permita que a corrente atinja o valor de *latch*.

10 15 Desta forma, a unidade de controle irá comandar o conversor D/A para a comutar entre um limite de tensão positivo *limite+* para um limite negativo *limite-* e vice-versa a cada transição recebida pelo comparador CP₁, podendo-se fazer uso de um único comparador em lugar do par de comparadores utilizados no estado da técnica e ainda assim gerar dois 20 níveis de tensão *limite+* e *limite-*.

25 Adicionalmente, segundo os ensinamentos da presente invenção, de modo a sanar o problema descrito anteriormente relacionado a diferentes valores de corrente, varia-se o valor *limite+* e *limite-* de maneira proporcional ao valor da corrente circulante na carga, de modo que o tempo entre a detecção dos limites e a passagem por zero da corrente ocorra num tempo fixo, adequado para acionamento correto do *TRIAC*.

Tal ajuste do nível do *limite+* e *limite-*, pode ser feito a partir de um cálculo, estabelecendo:

$$Limite \pm = k \times I_c$$

30 onde *k* é uma constante de proporcionalidade que deve ser previamente determinada e ajustada em função das características do circuito; e *Ic* é a corrente circulante na carga.

Uma outra forma de se fazer o ajuste do valor do limite+ e limite-, é através de uma tabela de valores preestabelecidos armazenados na central de controle 44 da unidade de controle 4, onde se entra com um valor da corrente medida na carga e se estabelece o valor limite+ e limite- que se 5 deve adotar para a situação do momento.

Os objetivos da presente invenção são alcançados através de um sistema de controle e disparo de um *TRIAC*, o *TRIAC* compreendendo um *gate*, o *TRIAC* sendo conectado a uma carga, o *gate* sendo eletricamente conectado a uma unidade de potência que aciona o *TRIAC* 10 para seletivamente aplicar uma tensão de rede à carga e permitindo a circulação de uma corrente elétrica na carga, o sistema compreendendo uma unidade de detecção de tensão de *gate*, uma unidade de potência e uma unidade de controle, a unidade de detecção de tensão sendo eletricamente conectada com a unidade de controle, a unidade de controle 15 estabelecendo um valor de limite de tensão (limite+, limite-) de *gate*, e gerando um pulso no *gate* do *TRIAC* para mantê-lo em condução, o pulso no *gate* sendo gerado a partir de uma comparação entre o valor de limite de tensão (limite+, limite-) estabelecido pela unidade de controle e uma tensão medida no *gate* a partir da unidade de detecção de tensão de *gate*. A 20 unidade de controle ainda medindo a corrente elétrica e ajustando o valor de limite de tensão (limite+, limite-) de maneira proporcional ao valor de corrente medido.

Ainda, segundo os ensinamentos da presente invenção, os objetivos almejados são alcançados através de um método de controle de 25 disparo de um *TRIAC*, o *TRIAC* compreendendo um *gate* e sendo eletricamente conectado a uma tensão de rede, o *TRIAC* sendo seletivamente acionado a partir de um pulso no *gate* para aplicar a tensão de rede a uma carga permitindo a circulação de uma corrente, um comparador sendo associado ao *gate* do *TRIAC*, o método compreendendo etapas de 30 aplicar um pulso no *gate* quando o valor de limite de tensão (limite+, limite-) no *gate* for detectado, o pulso sendo gerado a partir de uma transição no comparador, o comparador comparando o valor de limite de tensão (limite+, limite-) no *gate* e uma tensão medida no *gate*, comutar uma entrada do

comparador entre um limite de tensão positivo (limite+) para um limite negativo (limite-) e vice-versa a cada transição recebida pelo comparador. O método ainda compreendendo etapas de, antes de aplicar o pulso no *gate*, medir a corrente circulante na carga, e ajustar o nível do valor limite de tensão no *gate* (limite+,limite-) de maneira proporcional ao nível da corrente.

Ainda, segundo os ensinamentos da presente invenção, os objetivos acima são alcançados através de um método de controle de disparo de um *TRIAC*, o *TRIAC* compreendendo um *gate* e sendo eletricamente conectado a uma tensão de rede, o *TRIAC* sendo seletivamente acionado a partir de um pulso no *gate* para aplicar a tensão de rede a uma carga, permitindo a circulação de uma corrente, o método compreendendo etapas de: aplicar um pulso no *gate* quando o valor da corrente atingir um valor mínimo, o pulso no *gate* sendo gerado num tempo de medição previamente estabelecido, o tempo de medição ocorrendo antes da passagem por zero do nível da corrente, medir a corrente circulante na carga, e ajustar o nível do valor limite de tensão (limite+,limite-) do *gate* de maneira proporcional ao nível da corrente.

Descrição resumida dos desenhos

A presente invenção será, a seguir, mais detalhadamente descrita com base nas figuras descritas abaixo:

Figura 1 – Um diagrama elétrico do sistema objeto da presente invenção;

Figura 2 – Um diagrama das formas de onda relacionadas à operação do sistema.

Figura 3 – Um diagrama das formas de onda ilustrando tensão de *gate* por tempo, em função de correntes variadas, nos sistemas conhecidos do estado da técnica; e

Figura 4 – Um diagrama das formas de onda ilustrando tensão de *gate* por tempo, em função de correntes variadas, aplicando-se os ensinamentos da presente invenção tendo se um ajuste de referências variáveis de limite para acionar o *gate*.

Descrição detalhada das figuras

De acordo com a figura 1, pode ser observado que o sistema de controle e disparo de *TRIAC* objeto da presente invenção compreende essencialmente uma unidade de detecção de tensão 1 de *gate G*, uma unidade de detecção de passagem por zero da tensão da rede de alimentação 2, um sensor de corrente 5, uma unidade de potência 3 e uma unidade de controle 4. O sensor de corrente 5 pode ser concretizado a partir de um resistor de baixa resistência em série com a carga, ou ainda um sensor de efeito Hall.

A unidade de detecção de tensão 1, compreende um divisor resistivo formado pelos resistores R_1 e R_2 e que são associados ao *gate G* do *TRIAC* TR na entrada do resistor R_1 e associadas à uma das entradas do comparador CP_1 , que está associado entre os resistores R_1 e R_2 . Um conversor digital para analógico (D/A) é interligado à outra entrada do comparador CP_1 e a uma central de controle 44. A central de controle 44 pode ser implementada através de componentes discretos mas preferivelmente se faz uso de um microprocessador ou um microcontrolador, podendo-se optar por usar uma central de controle 44 que já tenha o comparador CP_1 interno à mesma.

A unidade de detecção de passagem por zero da tensão da rede de alimentação 2, compreende diodos de proteção D_1 , D_2 , associados a uma fonte de tensão contínua V_{CC} e através dos quais é alimentada a tensão de rede V_{AC} passando por um resistor R_4 . A unidade de detecção de passagem por zero da tensão da rede de alimentação 2 recebe também um comando para ligar o sistema, estando ambos associados à central de controle 44.

A unidade de potência 3, compreende uma chave de potência 33 que é interligada entre a central de controle 4 e o *gate G* do *TRIAC* TR através de um resistor R_3 , enquanto que a unidade de controle 4, compreende a central de controle 44 e o conversor D/A. Opcionalmente, a chave de potência 33 pode ser interna à central de controle 44. A unidade potência 3 pode compreender existência de semicondutores capazes de fornecer e/ou drenar corrente suficiente para acionar o triac.

15

A unidade de controle 4 recebe sinais da passagem por zero da tensão da rede de alimentação V_{AC} , através da conexão de uma entrada digital da central de controle 44 por meio do resistor R_4 e dos diodos de proteção D_1 , D_2 , e recebe também sinais do comparador associado ao *gate* 5 G do *TRIAC* TR e um sinal de comando para ligar o circuito. Como saída, a central de controle 44 pode comandar unidade de potência 3 através da chave de potência 33 para acionar o *gate* G do *TRIAC* TR e pode definir ainda 10 um valor de tensão em uma das entradas do comparador CP_1 , por exemplo, a entrada não-inversora, através do conversor D/A. O conversor D/A usado, 15 pode ser de baixa resolução, já que a entrada na porta não-inversora do comparador CP_1 pode ser operada com alguns níveis de tensão (que irão, por exemplo, ajustar os valores limite de tensão), podendo-se optar por usar 20 um conversor D/A externo ou interno à central de controle 44.

Operacionalmente o sistema, após receber o comando de liga 15 na central de controle 44, aguarda uma passagem por zero da tensão da rede V_{AC} detectado pela central de controle 44 através do resistor R_4 . A detecção é feita durante uma transição da tensão da rede V_{AC} do estado negativo para positivo, por exemplo, momento em que se deve gerar um pulso no *gate* G do *TRIAC* TR com duração tal que permita que a corrente 20 atinja o valor de *latch*. Simultaneamente a unidade de controle 44 determina que a saída do conversor D/A seja igual a um valor $(\text{limite}+)/2$, caso $R_1=R_2$ e aguarda que a saída do comparador CP_1 vá para o nível alto. Conforme já descrito, o valor $\text{limite}+$ e $\text{limite}-$ é tal que quando a tensão no *gate* G atingir esse valor, a corrente i_C na carga seja superior a corrente de *hold* do *TRIAC*. 25 No instante que a saída do comparador CP_1 for para o nível alto, a unidade de controle 4, através da unidade de potência 3, gera um novo pulso no *gate* G do *TRIAC* TR, já que a corrente i_C se aproxima de zero. O pulso gerado deve ter duração suficiente para garantir que a corrente i_C atinja novamente 30 o valor de *latch*. Após o pulso, a unidade de controle 4 determina na saída do conversor D/A um valor igual a $(\text{limite}-)/2$ e aguarda até que a saída do comparador vá, desta vez, para o nível baixo, gerando um novo pulso no *gate* G do *TRIAC* TR. O ciclo então pode ser repetido enquanto houver comando para ligar o circuito. O controle do conversor D/A é feito a partir de

um sinal digital gerado pela central de controle 44 e essa, por sua vez, estabelece um valor de tensão de ajuste iguais aos limite de tensão limite+ e limite-.

A adaptabilidade do sistema a uma ampla faixa de valores de corrente pelo TRIAC TR é garantida através da leitura da corrente i_c circulante, que permite que a central de controle 44 corrija o valor limite- e limite+ em função dessa corrente lida. Tal solução também possibilita o uso de um único comparador CP_1 já que se faz uso de dois valores limite de tensão (limite+, limite-) de gate G.

A partir da figura 4, é possível acompanhar o resultado da correção da tensão aplicada ao comparador CP_1 através do conversor D/A em função da corrente i_c , resultando em um tempo fixo ou tempo de medição t_M entre a detecção do valor de tensão de gate (limite+, limite-) que agora é variável e a passagem por zero, sendo suficiente para atuação da unidade de controle 44 e para permitir uma largura pequena do pulso aplicado ao gate G do TRIAC TR.

Assim, quanto maior for a corrente i_c , detectada pelo sensor de corrente 5, maiores serão as magnitudes dos valores dos limites positivos e negativos de tensão do gate (limite+ e limite-) e, inversamente, quanto menor for a corrente i_c , menores serão esses valores, garantindo a geração de pulsos com a largura exata para disparo do TRIAC TR. Em qualquer situação, pode-se gerar um pulso no gate G com largura pequena, já que isso será feito sempre a partir do tempo de medição t_M que deve ser previamente estabelecido para garantir que o pulso gerado no gate G tenha a eficácia desejada, devendo sempre ocorrer antes da passagem por zero do nível da corrente i_c .

Além do disparo contínuo do TRIAC TR, mantendo a tensão da rede V_{AC} inteiramente sobre a carga, é possível, ainda, que a tensão V_{AC} seja regulada para um valor de tensão na carga a partir do atraso na geração dos pulsos no gate G do TRIAC TR, independente do fator de potência dessa carga, já que a corrente que circula pelo TRIAC TR é que está sendo monitorada.

17

Especificamente no que refere-se ao método de controle, para se controlar o *TRIAC TR*, deve-se proceder com as etapas de aplicar um pulso no gate G quando o valor de limite de tensão (limite+, limite-) no gate G for detectado, o pulso sendo gerado a partir de uma transição no comparador CP₁, o comparador CP₁ comparando o valor de limite de tensão (limite+, limite-) no gate G e uma tensão medida no gate G, e comutar uma entrada do comparador CP₁ entre um limite de tensão positivo (limite+) para um limite negativo (limite-) e vice-versa a cada transição recebida pelo comparador CP₁.

10 Adicionalmente, é prevista uma etapa de ajuste dos valores limites de tensão no gate limite+, limite-, que é realizada aplicando-se a equação $Limite\pm = k \times I_c$ a partir da central de controle 44, sendo que a etapa de medição da corrente I_c é realizada constantemente.

15 Uma outra forma de realizar a etapa de ajustar o valor do limite+ e limite-, é através de uma tabela de valores preestabelecidos armazenados na central de controle 44 da unidade de controle 4, onde se entra com um valor da corrente medida na carga e se estabelece o valor limite+ e limite- que se deve adotar para a situação do momento.

20 Tendo sido descrito um exemplo de concretização preferido, deve ser entendido que o escopo da presente invenção abrange outras possíveis variações, sendo limitado tão somente pelo teor das reivindicações apensas, aí incluídos os possíveis equivalentes.

REIVINDICAÇÕES

18

1. Sistema de controle e disparo de um *TRIAC* (TR), o *TRIAC* compreendendo um *gate* (G), o *TRIAC* (TR) sendo conectado a uma carga, o *gate* (G) sendo eletricamente conectado a uma unidade de potência 3 que 5 aciona o *TRIAC* (TR) para seletivamente aplicar uma tensão de rede (V_{AC}) à carga e permitindo a circulação de uma corrente elétrica (i_c) na carga, o sistema sendo caracterizado pelo fato de que compreende:

unidade de detecção de tensão de *gate* (1),

uma unidade de detecção de passagem por zero da tensão da

10 rede de alimentação (2),

uma unidade de potência (3) e

uma unidade de controle (4),

a unidade de detecção de tensão (1) sendo eletricamente conectada com a unidade de controle (4),

15 a unidade de controle (4) estabelecendo um valor de limite de tensão (limite+, limite-) de *gate* (G), e gerando um pulso no *gate* (G) do *TRIAC* (TR) para mantê-lo em condução,

o pulso no *gate* (G) sendo gerado a partir de uma comparação entre o valor de limite de tensão (limite+, limite-) estabelecido pela unidade 20 de controle (4) e uma tensão medida no *gate* (G) a partir da unidade de detecção de tensão de *gate* (1).

2. Sistema de acordo com a reivindicação 1, caracterizado pelo fato de que a unidade de controle (4) mede a corrente elétrica (i_c) e ajusta o valor limite de tensão (limite+, limite-) de maneira proporcional ao valor de 25 corrente (i_c) medido.

3. Sistema de controle de acordo com a reivindicação 2, caracterizado pelo fato de que a unidade de controle (4) gera o pulso no *gate* (G) do *TRIAC* (TR) num tempo de medição (t_M) previamente estabelecido, o tempo de medição (t_M) ocorrendo antes da passagem por zero do nível da 30 corrente (i_c).

4. Sistema de acordo com a reivindicação 2, caracterizado pelo fato de que a unidade de controle (4) obtém o valor da corrente (i_c) a partir de um sensor de corrente (5).

5. Sistema de acordo com a reivindicação 2, caracterizado pelo fato de que o ajuste do valor limite (limite+, limite-) é feito a partir da equação: $Limite \pm = k \times Ic$, onde k é uma constante de proporcionalidade previamente determinada.

5 6. Sistema de acordo com a reivindicação 2, caracterizado pelo fato de que o ajuste do valor limite (limite+, limite-) é feito a partir de uma tabela de valores preestabelecidos e armazenados na unidade de controle (4).

10 7. Sistema de acordo com a reivindicação 1, caracterizado pelo fato de que a unidade de detecção de tensão (1) no gate (G) compreende um comparador (CP₁) eletricamente conectado ao gate (G) do TRIAC (TR) e a um conversor D/A, o comparador (CP₁) recebendo o sinal da tensão no gate (G) do TRIAC (TR) e um sinal gerado pelo conversor D/A, o conversor D/A recebendo um sinal digital gerado pela central de controle (44), o sinal gerado pela central de controle (44) estabelecendo um valor de tensão de ajuste, o valor de tensão de ajuste sendo igual aos valores limite (limite+,limite-).

20 8. Sistema de acordo com a reivindicação 7, caracterizado pelo fato de que compreende uma unidade de potência (3), a unidade de potência (3) sendo associada à unidade de controle e gerando um pulso de tensão no gate do TRIAC (TR) a partir do comando da central de controle (44).

25 9. Sistema de acordo com a reivindicação 8, caracterizado pelo fato de que a unidade controle (4) compreende um conversor digital para analógico (D/A), o conversor digital para analógico gerando o valor de tensão de ajuste.

10. Sistema de acordo com a reivindicação 8, caracterizado pelo fato de que o pulso no TRIAC (TR) é gerado quando a central de controle (44) detectar uma transição de nível da saída do comparador (CP₁).

30 11. Sistema de acordo com a reivindicação 8, caracterizado pelo fato de que a central de controle (44) comanda o conversor digital para analógico (D/A) a comutar entre um limite de tensão positivo (limite+) para um limite negativo (limite-) e vice-versa a cada transição recebida pelo comparador (CP₁).

12. Sistema de acordo com a reivindicação 8, caracterizado pelo fato de que a tensão do *gate* (G) do *TRIAC* (TR) é aplicada ao comparador (CP₁) através de um divisor resistivo (R₁,R₂).

13. Sistema de acordo com a reivindicação 12, caracterizado pelo fato de que o divisor resistivo (R₁,R₂) é formado por resistores de mesmo valor.

14. Sistema de acordo com a reivindicação 7, caracterizado pelo fato de que o conversor analógico para digital (D/A) é interno à central de controle (44).

10 15. Sistema de acordo com a reivindicação 7, caracterizado pelo fato do comparador (CP₁) ser interno à central de controle (44).

16. Sistema de acordo com a reivindicação 7, caracterizado pelo fato de que a unidade de controle de potência (3) é uma chave interna da central de controle (44).

15 17. Método de controle de disparo de um *TRIAC* (TR), o *TRIAC* compreendendo um *gate* (G) e sendo eletricamente conectado a uma tensão de rede (V_{AC}),

20 o *TRIAC* (TR) sendo seletivamente acionado a partir de um pulso no *gate* (G) para aplicar a tensão de rede (V_{AC}) a uma carga permitindo a circulação de uma corrente (i_c),

um comparador (CP₁) sendo associado ao *gate* (G) do *TRIAC* (TR),

o método sendo caracterizado pelo fato de que compreende etapas de:

25 aplicar um pulso no *gate* (G) quando o valor de limite de tensão (limite+, limite-) no *gate* (G) for detectado, o pulso sendo gerado a partir de uma transição no comparador (CP₁), o comparador (CP₁) comparando o valor de limite de tensão (limite+, limite-) no *gate* (G) e uma tensão medida no *gate* (G),

30 comutar uma entrada do comparador (CP₁) entre um limite de tensão positivo (limite+) para um limite negativo (limite-) e vice-versa a cada transição recebida pelo comparador (CP₁).

18. Método de acordo com a reivindicação 17, caracterizado pelo fato de que antes da etapa de aplicar o pulso no *gate* (G), são previstas etapas de medir a corrente (*i_c*) circulante na carga, e ajustar o nível do valor limite de tensão no *gate* (limite+, limite-) de maneira proporcional ao nível da corrente (*i_c*).

19. Método de acordo com a reivindicação 18, caracterizado pelo fato de que na etapa de ajuste do valor limite de tensão (limite+, limite-), aplica-se a equação: $Limite\pm = k \times Ic$, onde *k* é uma constante de proporcionalidade.

10 20. Método de acordo com a reivindicação 18, caracterizado pelo fato de que na etapa de ajuste do valor limite de tensão (limite+, limite-), é prevista uma etapa de leitura a uma tabela de valores preestabelecidos.

15 21. Método de acordo com a reivindicação 18, caracterizado pelo fato de que o pulso de tensão no *gate* (G) tem duração suficiente para que uma corrente circulante no *TRIAC* (TR) atinja um valor de *latch*.

22. Método de acordo com a reivindicação 21, caracterizado pelo fato de que o primeiro pulso do *gate* (G) é comandado a partir de uma medida de passagem por zero da tensão de rede (*V_{AC}*).

20 23. Método de controle de disparo de um *TRIAC* (TR), o *TRIAC* compreendendo um *gate* (G) e sendo eletricamente conectado a uma tensão de rede (*V_{AC}*),

o *TRIAC* (TR) sendo seletivamente acionado a partir de um pulso no *gate* (G) para aplicar a tensão de rede (*V_{AC}*) a uma carga, permitindo a circulação de uma corrente (*i_c*),

25 24. o método sendo caracterizado pelo fato de que compreende etapas de:

aplicar um pulso no *gate* (G) quando o valor da corrente (*i_c*) atingir um valor mínimo estabelecendo um valor de limite de tensão (limite+, limite-) no *gate* (G) para gerar o pulso no *gate* (G) do *TRIAC* (TR) para mantê-lo em condução, o pulso no *gate* (G) sendo gerado num tempo de medição (*t_M*) previamente estabelecido, o tempo de medição (*t_M*) ocorrendo antes da passagem por zero do nível da corrente (*i_c*),

medir a corrente (*i_c*) circulante na carga, e

ajustar o nível do valor limite de tensão (limite+,limite-) no *gate* (G) de maneira proporcional ao nível da corrente (i_C). 3.2

24. Método de acordo com a reivindicação 23, caracterizado pelo fato de que a corrente (i_C) é medida continuamente.

5 25. Método de acordo com a reivindicação 24, caracterizado pelo fato de que na etapa de aplicação do pulso no *gate* (G) do *TRIAC* (TR1), é previsto regular o nível da tensão na carga a partir do atraso na geração dos pulsos no *gate* (G).

1/3

2

Fig. 1

2/3

26

Fig. 2

3/3

Fig. 3

Fig. 4

RESUMO

Patente de Invenção: "**SISTEMA DE CONTROLE E DISPARO DE UM TRIAC E MÉTODO DE CONTROLE DE DISPARO DE UM TRIAC**".

36

A presente invenção refere-se a um sistema de controle de disparo de um *TRIAC* bem com a um método de controle de disparo de um *TRIAC* acionando uma carga com qualquer fator de potência a partir de um único pulso de curta duração no *gate* do *TRIAC*. Para que se possa fazer uso de um único comparador (CP_1) e ainda possa operar sem limitação no nível de corrente (i_c), é previsto um sistema de controle e disparo de um *TRIAC* (TR), o *TRIAC* compreendendo um *gate* (G), o *TRIAC* (TR) sendo conectado a uma carga, o *gate* (G) sendo eletricamente conectado a uma unidade de controle (4) que aciona o *TRIAC* (TR) para seletivamente aplicar uma tensão de rede (V_{AC}) à carga e permitindo a circulação de uma corrente elétrica (i_c) na carga, o sistema compreendendo unidade de detecção de tensão de *gate* (1), uma unidade de controle (4), a unidade de detecção de tensão de *gate* (1) sendo eletricamente conectada com a unidade de controle (4), a unidade de controle (4) estabelecendo um valor de limite de tensão ($limite_+$, $limite_-$) de *gate* (G), e gerando um pulso no *gate* (G) do *TRIAC* (TR) para mantê-lo em condução, o pulso no *gate* (G) sendo gerado a partir de uma comparação entre o valor de limite de tensão ($limite_+$, $limite_-$) estabelecido pela unidade de controle (4) e uma tensão medida no *gate* (G) a partir da unidade de detecção de tensão de *gate* (1), a unidade de controle (4) medindo a corrente elétrica (i_c) e ajustando o valor limite de tensão ($limite_+$, $limite_-$) de maneira proporcional ao valor de corrente (i_c) medido. É também previsto um método de controle de disparo de um *TRIAC* (4) para acionar o sistema objeto da presente invenção.

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/BR04/000243

International filing date: 15 December 2004 (15.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: BR
Number: PI 0305983-9
Filing date: 30 December 2003 (30.12.2003)

Date of receipt at the International Bureau: 03 February 2005 (03.02.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record.**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER: _____**

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.