A Suite of Methods Utilizing Tensioned Metastable Fluid Detectors for Active Cargo Interrogation to Interdict Special Nuclear Materials

Alex Hagen⁽¹⁾, Brian C. Archambault⁽²⁾, Anthony Sansone⁽¹⁾, Tom Grimes⁽¹⁾, Rusi P. Taleyarkhan⁽¹⁾

(1) Purdue University, (2) S/A Labs, LLC., * Corresponding Author

February 26, 2016 at MFARL Internal Presentation Lafayette, IN

TMFD Methods for Active Interrogation of Cargo: An Overview

General System Improvements

- ⇒ Design and construct "paddle" (50%)
- ⇒ Design and construct LW-MCTMFD (80%)
- ⇒ Acoustically instrument CTMFDs (60%)
- ⇒ Multiplicity in CTMFD/ATMFD (25%)
- \Rightarrow Develop DFP EATMFD and PZT Filter

Photofission Cargo Interrogation

- \Rightarrow Proof of concept for indirect γ exposure
- \Rightarrow Proof of concept for direct γ exposure
- ⇒ Proof of concept with source/detector shielding/collimation
- ⇒ Design rad-hardness into MCTMFD system

Threshold Energy Neutron Analysis (TENA)

- ⇒ Proof of concept using CTMFDs for TENA
- ⇒ Proof of concept using ATMFDs for TENA
- ⇒ Optimization using density, meniscus, and sensitivity compensation (90%)
- \Rightarrow Characterization of S, M, L, C, CH (70%)

Differential Die Away Analysis (DDAA)

- ⇒ Proof of concept with pulsed DT and DATMED (25%)
- ⇒ Proof of concept with pulsed DT and EATMFD
- ⇒ Temporal simulation for pileup, transient pressure field, and multiplicity

Acoustic Instrumentation of CTMFDs: Motivation and Concept

Motivation

- Cavitation detection time uncertainty is driven by vapor column creation time
- Cavitation detection time uncertainty currently is too high for quick resolution of multiplicity
- ⇒ Piezoelectric means may be preferable when in intense γ environments

Methodology

- ⇒ Piezoelectric device(s) attached to CTMFD bulb provide evidence of shock traces
- ⇒ Filter removes electronic noise and drive frequency
- ⇒ High speed ADC system detects rise in PZT signal

Figure 1: Shock trace using 3 kSps data rate

Acoustic Instrumentation of CTMFDs: System Concepts

Figure 2: Flowchart of integrated system concept

$\operatorname{Sain}(A_V)[]$ PZT Frequency (f)[Hz]UDP WiFi MCU Pwr Filter **Battery**

Figure 3: Flowchart of fast system concept

Beaglebone MCU - Integrated system

$$\Rightarrow f_{data} = 200 \, \mathrm{kSps}$$
, $T_{data} = 5 \, \mu \mathrm{s}$

- $\Rightarrow t_{data\ frame}$ is continuous
- ⇒ Requirements: 1 MCU, 1 battery, 1 power board, 1 filter

Tiva C Delphino MCU - Fast system

$$\Rightarrow f_{data} => 1\, ext{MSps,}\, T_{data} = 1\, \mu ext{s}$$

$$\Rightarrow t_{data\ frame} = 45 \,\mathrm{ms} \,(45 \,\mathrm{kS})$$

⇒ Requirements: 1 MCU, 1 wireless connection board, 1 battery, 1 power board, 1 filter

Acoustic Instrumentation of CTMFDs: Achievements

What have we actually done?

- \Rightarrow Beaglebone MCU taking data at 200 kSps and continuously sending to computer over WiFi
- \Rightarrow Delphino MCU taking data at 1 MSps and sending to computer over USB (Tony)
- ⇒ Filter created with acceptable envelope
- ⇒ Power input filter created for BB MCU
- ⇒ Detection event comparisons using Bertholet tube (Tony)

What do we still need to do?

- ⇒ Integrate BB MCU with power input filter, pzt input filter, and battery
- Design and 3d print "harness" for Integrated system on board
- ⇒ Test BB MCU on LCTMFD
- ⇒ Program Delphino MCU to send data to a WiFi Board

. . .

Paddle C/CH-CTMFD System: Motivation and Concept

Motivation

- \Rightarrow Achievement of $2.5 \, cps/ng$
- ⇒ Competition against "Paddle" from Symmetrica (R)

Methodology

- \Rightarrow Five 65 cc/100 cc "C"/"CH"-CTMFDs
- ⇒ Stacked with cap closure hose across for continuous pressure
- \Rightarrow DC motor able to spin to 60 rps (10 bar)
- ⇒ Triple bearing assembly for alignment
- ⇒ Precision Balancing Inc. for balancing
- ⇒ XBee or BB MCU for data transmission

Paddle C/CH-CTMFD System: Accomplishments

- \Rightarrow Machining out to machine shop
- \Rightarrow Glassblowing out to Superior Scientific Glass
- ⇒ Power supply identified (48 V, 10 A) - to be purchased
- \Rightarrow Instrumentation possible through BB MCU or XBee
- ⇒ Estimated delivery 3 5 weeks

Figure 4: Design of Column C-CTMFD Revision 0

Lightweighting of M-CTMFD: Status of the Project

Figure 5: Design of Lightweight M-CTMFD Revision 2

- ⇒ Continuous current needed measured (<3 A for 4 bar)
- ⇒ Power supply purchased able to run 2 systems (Brian)
- ⇒ Plate, Bearing and shaft out to machine shop
- ⇒ Shortened base received this week
- ⇒ Estimated delivery 1 2 weeks

Threshold Energy Neutron Analysis: Concept

Figure 6: Threshold Energy Fission Discrimination

Threshold Energy Neutron Analysis: Accomplishments

Table 1: Accomplishments with different TMFD Detectors at using TENA to discriminate fission neutrons

Name	Sensitive Volume	No Temperature Compensation	Density/Meniscus Compensated	Full Compensation
		r_{η}	r_{η}	r_{η}
M(s)-CTMFD	3 cc	17		
M-CTMFD	$15 \mathrm{cc}$	132	$< 1.7 \times 10^4$	Planned for 3/16
L-CTMFD	$40 \mathrm{cc}$	$> 1 \times 10^4$	$< 2.5 \times 10^4$	Planned for 4/16
C-CTMFD	$65\mathrm{cc}$	538	Planned for 3/16	Planned for 4/16
CH-CTMFD	$100\mathrm{cc}$	-	Planned for 3/16	Planned for 4/16
EATMFD	$170\mathrm{cc}$	< 1		
Acetone				
TEATMFD	$\sim 200\mathrm{cc}$	Planned for 9/16		
DFP				
DATMFD	$35\mathrm{cc}$	Planned for 9/16		
Acetone				

Threshold Energy Neutron Analysis: Temperature Compensation (1/2)

- ⇒ Currently adjust density using correlation shown at right
- → Adjust meniscus using experimental values for meniscus at different temperatures (linear)
- \Rightarrow Apparent "plateau" of threshold pressure at $> 25^{\rm o}{\rm C}$

Figure 7: Currently used density correlation to adjust density and meniscus

Figure 8: Analysis of waiting times at varying temperatures

Figure 9: Evaporation rate of DFP with different constant temperatures

Figure 10: Calculated Δh_{vap} from Claussius-Clapyron equation and experimental or Antoine values for boiling temperature and vapor pressure

- $\Rightarrow \Delta h_{vap}$ correlations from several sources shown to left
- \Rightarrow No large change in values around 25°C
- ⇒ Other parameter must be the reason for threshold "plateau"

Threshold Energy Neutron Analysis: Proposed Plan (2/16 - 5/16)

- \Rightarrow Determine threshold pressure at $22^{\rm o}{\rm C}$
- \Rightarrow Adjust data for average instead of centerline negative pressure
- \Rightarrow Develop $p_{neg, stp \ equivalent}$ relation
- ⇒ Validate TENA with this in M-CTMFD
- ⇒ Continue to characterize C-, CH- CTMFDs

Interdiction of SNM with photofission:

- \Rightarrow TMFDs are γ blind
- \Rightarrow Much γ interrogation infrastructure is already in place
- \Rightarrow Suffers background from 2 H and 13 C

Figure 11: Uranium (γ, n) and (γ, f) cross sections at < 7 MeV

Figure 12: Results from preliminary test with CLINAC

Interdiction of SNM with photofission: Proposed Plan (5/16 - 7/16)

- \Rightarrow Return to CLINAC for experiment (5/16 6/16) with
 - \rightarrow PF0
 - \rightarrow PFPE
 - \rightarrow Floor shielding
 - $\rightarrow \, \text{Detector shielding} \,$
 - \rightarrow Use of broken fission detector for HEU source
- ⇒ Perform MCNP6 assessments of photoneutron production rates in ANSI standard cargo

Differential Die Away Analysis: Introduction

Figure 13: Differential die away analysis schematic

- Develop TEATMFD for use with DFP
- Develop filter for "directionality" in TEATMFD with DFP
- Perform temporal pressure analysis in TEATMFD with COMSOL
- ⇒ Pulse DT generator while TEATMFD is sensitive
- ⇒ Run DD generator continuously while TEATMFD is sensitive and time-veto cavitations after detection