

Machine Learning 12 - Temporal Probability Models

SS 2018

Gunther Heidemann

Temporal probability models

- Modeling uncertainty for temporal processes
- Markov processes
- Temporal inference:
 - Filtering
 - Prediction
 - Smoothing
 - Most likely explanation (Viterbi algorithm)
- Brief overview of dynamic Bayes Networks (DBN)

Textbook:

Stuart Russell, Peter Norvig: Artificial Intelligence, Pearson

UNIVERSITÄT OSNABRÜCK

Time and uncertainty

Aim: Track and predict processes over time

Examples: Diabetes management; motor management

Description of a process:

- Description by discrete states (using discrete time t).
- State at t is specified by a set X_t of unobservable variables (= this is the problem!), e.g.,

$$X_t = \{BloodSugar_t, StomachContents_t\}.$$

The state becomes visible only by a set E_t of observable evidence variables, e.g.,

$$E_t = \{MeasuredBloodSugar_t, FoodEaten_t, PulseRate_t\}.$$

Notation for a span of time:

$$X_{a:b} = X_a, X_{a+1}, \dots, X_{b-1}, X_b.$$

Markov processes

Markov assumption for a process described by variable X_t (discrete time):

 X_t depends only on a *bounded subset* of the variables $X_{0:t-1}$.

First order Markov process: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-1})$

Second order Markov process: $P(X_t \mid X_{0:t-1}) = P(X_t \mid X_{t-2}, X_{t-1})$

First order X_{t-2} X_{t-1} X_t X_{t+1} X_{t+2}

Second order X_{t-2} X_{t-1} X_{t} X_{t+1} X_{t+2}

Markov processes

Real world:

- Assumption of a first order Markov process simplifies modelling,
- but does usually not strictly hold.

Improvements:

- Assume Markov process of higher order.
- Augment knowledge about the state by additional evidence variables.

Example: Moving robot

Augment state description (position, velocity) by battery,

Markov sensor assumption

Markov assumption for sensors:

Sensor output depends only on the current value of the evidence variable observed by the sensor.

$$P(E_t | X_{0:t}, E_{0:t-1}) = P(E_t | X_t)$$

Example: Speedometer

Observed velocity E_t depends only on current velocity X_t , not on past values X_{t-n} .

Counter example: Water gauge for hydroponics.

- Unobservable variable: Height of water X_t
- Observed evidence variable: Measured height E_t
- If X exceeds a maximum height for weeks, algae block the water gauge → no Markov sensor.

Stationary Markov processes

Stationary process:

The world is changing, but the rules underlying both this change and its observation remain the same.

$$\rightarrow$$
 $P(X_t \mid X_{0:t-1}, t) = P(X_t \mid X_{0:t-1}).$

Together with the Markov assumptions for the process and the sensor, all we need to describe the measurements are the

transition model $P(X_t | X_{t-1})$ and the

sensor model (model of observation) $P(E_t \mid X_t)$,

which both remain fixed for all t.

Stationary Markov processes

Example of a stationary state transition model:

- X is water level of hydroponics.
- Add approx. 1I water every week (Gaussian distribution with mean = 1I).

Counter example:

 In summer, the weather becomes hot and the average is increased to 1,2l (rules of the world have changed).

Example for a stationary sensor model:

- Weight measurement using spring:
- X is the weight, E the weight measurement (which may exhibit a systematic but stationary error).

Counter example:

Over time, the spring looses strength.

Problem:

- Stationary first order Markov process with known state transition model $P(X_t \mid X_{t-1})$.
- Markov sensor with known sensor model $P(E_t \mid X_t)$.

Inference:

Several types of inference which are different mixtures of two basic problems:

- Infer a past or the current value of an unobservable state variable
 X from the observable evidence variables.
- Prediction.

The type of inference depends on the times for which the probability distribution of X is inferred from past to current evidence values e.

Let *T* denote the current time ("now"):

1. Filtering: $P(X_T | e_{1:T})$

Infer probability distribution \mathbf{P} of current state X_T from current evidence value \mathbf{e}_T and past evidence values $\mathbf{e}_{1:T-1}$ (but note \mathbf{x}_1 ... \mathbf{x}_{T-1} are unknown).

 $P(X_T | e_{1:T})$ is called a *belief state*. This is the input for the decision process of a rational agent.

2. Prediction: $P(X_{T+K} | e_{1:T}), K > 0$

Predict future value of X_{T+K} from evidence values $e_{1:T}$. Same as filtering, but the future evidence values $e_{T+1:T+K}$ are unknown.

3. Smoothing: $P(X_K | e_{1:T})$, 0 < K < T

Infer the probability distribution of X at the past time K from earlier evidence values $e_{1:K-1}$ and later evidence values $e_{K+1:T}$.

Yields better estimate for past states then filtering.

4. Most likely explanation: $arg max_{X_{1:T}} P(X_{1:T} | e_{1:T})$

Infer all $X_{1:T}$ from all evidence values $e_{1:T}$.

Example: Speech recognition.

Inference: Filtering

Given: Transition model $P(X_t \mid X_{t-1})$ and sensor model $P(E_t \mid X_t)$.

Wanted: Probabilities for X_T from $e_{1:T}$ (better than mere estimation of X_T from e_T).

Principle: Recursive state estimation algorithm which starts with an assumption for X_0 and can infer values at t+1 from t.

```
For t = 0, 1, ... T-1:

\mathbf{P}(X_{t+1} \mid e_{1:t+1}) \\
= \mathbf{P}(X_{t+1} \mid e_{1:t}, e_{t+1}) \\
= \alpha \mathbf{P}(e_{t+1} \mid X_{t+1}, e_{1:t}) \mathbf{P}(X_{t+1} \mid e_{1:t}) \qquad \text{(Bayes)} \\
= \alpha \mathbf{P}(e_{t+1} \mid X_{t+1}) \mathbf{P}(X_{t+1} \mid e_{1:t}) \qquad \text{(Markov sensor)} \\
= \alpha \mathbf{P}(e_{t+1} \mid X_{t+1}) \mathbf{\Sigma}_{X_t} \mathbf{P}(X_{t+1} \mid X_t, e_{1:t}) \mathbf{P}(X_t \mid e_{1:t}) \qquad \text{(summing out } X_t) \\
= \alpha \mathbf{P}(e_{t+1} \mid X_{t+1}) \mathbf{\Sigma}_{X_t} \mathbf{P}(X_{t+1} \mid X_t, e_{1:t}) \mathbf{P}(X_t \mid e_{1:t}) \qquad \text{(Markov process)} \\
= \alpha \operatorname{sensor model}_{t+1} \mathbf{\Sigma}_{X_t} \operatorname{transition model}_{t+1,t} \operatorname{probability distribution}_t
```


Structure of recursion:

$$f_{1:t+1} = Forward(f_{1:t}, e_{t+1})$$
 with $f_{1:t} = P(X_t | e_{1:t})$

Requires constant time and memory for each step, independent of t.

Example [RN]:

- Living in a bunker, time steps are days.
- Only your boss is allowed to go outside.
- You can infer whether it is raining (X_t) only from his umbrella.

Transition model:

$$P(X_t | X_{t-1}) = P(Rain_t | Rain_{t-1})$$
 with $P(X_t | X_{t-1} = true) = <0.7,0.3>$ $P(X_t | X_{t-1} = false) = <0.3,0.7>$

Sensor model:

$$\mathbf{P}(E_t \mid X_t) = \mathbf{P}(Umbrella_t \mid Rain_t) \text{ with } \mathbf{P}(E_t \mid X_t = true) = <0.9,0.1>$$

 $\mathbf{P}(E_t \mid X_t = false) = <0.2, 0.8>$

What is the probability for rain $P(X_2)$ on the second day (T=2), if

- Day 1: Umbrella e₁ = true.
- Day 2: Umbrella $e_2 = true$.
- We need an assumption about the probability of rain for day 0:

$$P(X_0) = <0.5, 0.5>$$

Filtering

$$\begin{aligned} \mathbf{P}(X_{t+1}|e_{1:t+1}) &= \alpha \ \mathbf{P}(e_{t+1} \mid X_{t+1}) & \sum_{x_t} \ \mathbf{P}(X_{t+1} \mid x_t) \ \mathbf{P}(x_t \mid e_{1:t}) \\ \mathbf{P}(X_2 \mid e_{1:2}) &= \alpha \ \mathbf{P}(e_2 \mid X_2) & \sum_{x_1} \ \mathbf{P}(X_2 \mid x_1) \ \mathbf{P}(x_1 \mid e_1) \\ &= \alpha \ \mathbf{P}(e_2 \mid X_2) \quad [\ \mathbf{P}(X_2 \mid x_1 = t) \ 0.818 \ + \ \mathbf{P}(X_2 \mid x_1 = t) \ 0.182] \\ &= \alpha < 0.9, \ 0.2 > \ [\ < 0.7, \ 0.3 > \ 0.818 \ + \ < 0.3, \ 0.7 > \ 0.182 \] \\ &= \alpha < 0.9, \ 0.2 > \ < 0.627, \ 0.373 > = \alpha < 0.565, \ 0.075 > \\ &= < 0.883, \ 0.117 > \end{aligned}$$

$$\begin{aligned} \mathbf{P}(X_1 \mid e_1) &= \alpha \ \mathbf{P}(e_1 \mid X_1) \quad \sum_{x_0} \mathbf{P}(X_1 \mid x_0) \ \mathbf{P}(x_0) \\ &= \alpha \ \mathbf{P}(e_1 \mid X_1) \quad [\ \mathbf{P}(X_1 \mid x_0 = t) \ \mathbf{P}(x_0 = t) \ + \ \mathbf{P}(X_1 \mid x_0 = t) \ \mathbf{P}(x_0 = t) \] \\ &= \alpha \ \mathbf{P}(e_1 \mid X_1) \quad [\ < 0.7, \ 0.3 > \ 0.5 \ + \ < 0.3, \ 0.7 > \ 0.5 \] \\ &= \alpha \ \mathbf{P}(e_1 \mid X_1) < 0.5, \ 0.5 > \\ &= \alpha \ < 0.9, \ 0.2 > \ < 0.5, \ 0.5 > = \alpha \ < 0.45, \ 0.1 > = \ < 0.818, \ 0.182 > \end{aligned}$$

Filtering

Prediction

Given: Transition model $P(X_t \mid X_{t-1})$ and sensor model $P(E_t \mid X_t)$.

Wanted: X_{T+K} from $e_{1:T}$.

Idea:

- Filtering up to T
- After T: K further steps without new evidences (we lack $e_{T+1:T+K}$).
- New recursion: $T+k \rightarrow T+k+1$

For k = 0, 1, ... K-1:

$$\begin{aligned} \mathbf{P}(X_{T+k+1} \mid e_{1:T}) &= \sum_{X_{T+k}} \mathbf{P}(X_{T+k+1} \mid X_{T+k}) \; \mathbf{P}(X_{T+k} \mid e_{1:T}) \\ &= \sum_{X_{T+k}} \; transition \; model_{T+k+1,T+k} \; \; distribution_{T+k} \end{aligned}$$

The farther we predict the future without new evidences, the more the distribution is dominated by the transition model.

Smoothing

Given: Transition model $P(X_t | X_{t-1})$ and sensor model $P(E_t | X_t)$.

Wanted: X_K from $e_{1:T}$ with $1 \le K < T$.

Idea: "Forward-Backward-Algorithm":

Filtering from 1 to K and "backward filtering" from T to K.

[RN]

Procedure:

- Split problem into forward- and backward-part.
- Forward filtering: Already known.
- 3. Backward filtering: New.

UNIVERSITÄT OSNABRÜCK

Smoothing

Use evidences $e_{1:K}$ up to K and later ones $e_{K+1:T}$ separately:

$$\mathbf{P}(X_{K} | e_{1:T}) = \mathbf{P}(X_{K} | e_{1:K}, e_{K+1:T})
= \alpha \mathbf{P}(X_{K} | e_{1:K}) \mathbf{P}(e_{K+1:T} | X_{K}, e_{1:K})$$
 (Bayes)
= \alpha \mathbf{P}(X_{K} | e_{1:K}) \mathbf{P}(e_{K+1:T} | X_{K}) (Markov sensor)
= \alpha f_{1:K} b_{K+1:T}

Backward recursion for k = T-1, T-2, ... K+1, K:

$$\begin{split} \mathbf{P}(e_{k+1:T} \mid X_k) &= \sum_{X_{k+1}} \mathbf{P}(e_{k+1:T} \mid X_k, X_{k+1}) & \mathbf{P}(X_{k+1} \mid X_k) \\ &= \sum_{X_{k+1}} \mathbf{P}(e_{k+1:T} \mid X_{k+1}) & \mathbf{P}(X_{k+1} \mid X_k) & \text{(cond. ind.)} \\ &= \sum_{X_{k+1}} \mathbf{P}(e_{k+1}, e_{k+2:T} \mid X_{k+1}) & \mathbf{P}(X_{k+1} \mid X_k) \\ &= \sum_{X_{k+1}} \mathbf{P}(e_{k+1} \mid X_{k+1}) \mathbf{P}(e_{k+2:T} \mid X_{k+1}) \mathbf{P}(X_{k+1} \mid X_k) \end{split}$$

Structure: $b_{k+1:T} = Backward(b_{k+2:T}, e_{k+1:T})$ with $b_{k+1:T} = P(e_{k+1:T} | X_k)$

Smoothing

Rain – umbrella domain as before:

$$P(X_t | X_{t-1} = true) = <0.7, 0.3>$$
 $P(E_t | X_t = true) = <0.9, 0.1>$ $P(X_t | X_{t-1} = false) = <0.3, 0.7>$ $P(E_t | X_t = false) = <0.2, 0.8>$ $P(X_0) = <0.5, 0.5>$; $e_1 = true, e_2 = true.$ $P(X_1 | e_{1.2}) = ?$

In general: $P(X_K \mid e_{1:T}) = \alpha P(X_K \mid e_{1:K}) P(e_{K+1:T} \mid X_K)$, here: T=2, K=1

Here: $P(X_1 | e_{1:2}) = \alpha P(X_1 | e_1) P(e_2 | X_1)$

By filtering: $P(X_1 \mid e_1) = <0.818, 0.182>$

$$P(e_{k+1:T}|X_k) = \sum_{x_{k+1}} P(e_{k+1}|X_{k+1}) P(e_{k+2:T}|X_{k+1}) P(x_{k+1}|X_k)$$

$$\mathbf{P}(e_2 \mid X_1) = \sum_{x_2} P(e_2 \mid x_2) P(e_{3:2} \mid x_2) \mathbf{P}(x_2 \mid X_1) \text{ with } P(e_{3:2} \mid x_2) = 1.$$

$$= 0.9 \cdot 1 \cdot < 0.7, 0.3 > + 0.2 \cdot 1 \cdot < 0.3, 0.7 > = < 0.69, 0.41 >$$

$$P(X_1 \mid e_{1.2}) = \alpha < 0.818, 0.182 > \cdot < 0.69, 0.41 > = < 0.883, 0.117 >$$

Smoothing

Most likely explanation

- Problem: Find the most likely explanation for a sequence of observed events.
- More precisely: Find the most likely sequence of hidden states that would cause the observed sequence of evidences.
- Example: For a boolean variable, for T steps there are 2^T possible sequences of states.
- Naive approach: Compute for each state in separation the probabilities using smoothing.
- But: The most likely sequence ≠ the sequence of most likely states!
- The most likely sequence requires maximizing the joint probability (not the isolated probabilities)!
- Solution: Viterbi algorithm.
- Applications: Cell phones, WLAN, hard disks, speech recognition.

UNIVERSITÄT OSNABRÜCK

Most likely explanation

Most likely path to x_{t+1} = most likely path to x_t plus another step:

$$\max_{x_1 \dots x_t} \mathbf{P}(x_1, \dots, x_t, X_{t+1} \mid e_{1:t+1}) = \alpha \mathbf{P}(e_{t+1} \mid X_{t+1}) \max_{x_t} [\mathbf{P}(X_{t+1} \mid x_t) \max_{x_1 \dots x_{t-1}} \mathbf{P}(x_1, \dots, x_{t-1}, x_t \mid e_{1:t})]$$

Like filtering $(f_{1:t+1} = \alpha P(e_{t+1} | X_{t+1}) \sum_{x_t} P(X_{t+1} | x_t) f_{1:t})$, but:

1. $f_{1:t} = P(X_t \mid e_{1:t})$ is replaced by

$$m_{1:t} = \max_{x_1 \dots x_{t-1}} \mathbf{P}(x_1, \dots, x_{t-1}, X_t \mid e_{1:t}),$$

i.e. $m_{1:t}(i)$ is the probability of the most likely path to state i.

2. Replace sum over x_t by maximizing over x_t (Viterbi algorithm):

$$m_{1:t+1} = P(e_{t+1} | X_{t+1}) \max_{x_t} [P(X_{t+1} | x_t) m_{1:t}]$$

UNIVERSITÄT OSNABRÜCK

Viterbi algorithm

- 1. Compute all $m_{1:t}$ successively. For each state, memorize the best previous state (thick arrows).
- Choose the most likely state for time t.
- 3. Go back to the best previous state and so on.

Hidden Markov Models

- So far: Transition model and sensor model were given by the experiment, no formal description.
- If a Markov process is described by states with a single variable: Hidden-Markov-Modell (HMM)
- Modeling temporal process and its evidences by two random processes:
 - Random process: Markov chain with one hidden variable the transitions of which are desrcibed by probabilities.
 - Random process: A Markov sensor provides evidences of the hidden variable.

Hidden Markov Models

Definition of a HMM:

- Let X_t be a single discrete random variable taking values (states) $\{s_1 ... s_n\}$, and
- E_t its evidence variable with values (possible observations) $\{e_1 \dots e_m\}$. The matrix $T_{ij} = P(X_t = s_j \mid X_{t-1} = s_i)$ describes the probabilities for state transitions.
- The matrix $O_{ij} = P(e_j \mid s_i)$ is the observation matrix of probabilities that the Markov sensor yields observation e_i for state s_i .
- Starting distribution for X_0 .

A HMM is stationary if *T* and *O* do not change over time.

Hidden Markov Models

With the

transition matrix $T_{ij} = P(X_t = j \mid X_{t-1} = i)$ and the

observation matrix $(O_t)_{ii} = P(e_t | X_t = i)$

we can simplify, e.g., smoothing using matrix notation:

$$f_{1:t+1} = \alpha O_{t+1} T^{\mathsf{T}} f_{1:t}$$

in place of

$$P(X_{t+1} \mid e_{1:t+1}) = \alpha P(e_{t+1} \mid X_{t+1}) \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t})$$

and

$$b_{k+1:t} = TO_{k+1} b_{k+2:t}$$

in place of

$$P(e_{k+1:T} \mid X_k) = \sum_{X_{k+1}} P(e_{k+1} \mid X_{k+1}) P(e_{k+2:T} \mid X_{k+1}) P(X_{k+1} \mid X_k).$$

Kalman filtering

- So far: No continuous variables.
- Kalman filtering provides a model for systems with continuous variables, in particular, time dependent variables.
- Example: Trajectory tracking. Position and its temporal derivative (velocity) are considered random variables.

A bird is flying through a forest. Try to predict its trajectory though it is partially hidden behind trees.

- Other examples: Planets, robots, ecosystems, markets, fusion GPS – inertial sensors.
- Bayes network for linear dynamical system with position X_t and position measurement E_t:

with

Kalman filtering

Example: 1D trajectory

- Observe X-coordinate
- Observation at intervals Δt.
- Assumption: Velocity is approximately constant.

Simple trajectory prediction: $X_{t+\Delta t} = X_t + X \Delta t$.

To account for measurement errors and non-constant velocity we assume an error with Gaussian distribution:

$$P(X_{t+\Delta t} = X_{t+\Delta t} \mid X_t = X_t, \ \mathring{X}_t = \mathring{X}_t) = N(X_t + \mathring{X}\Delta t, \ \sigma, \ X_{t+\Delta t})$$

$$N(X_0, \ \sigma, \ X) = \alpha \exp(-\frac{1}{2} (X - X_0)^2 / \sigma).$$

Kalman filtering: Adapting the Gaussians

Assumptions:

- Gaussian a-priori distribution
- Linear Gaussian transition model
- Linear Gaussian observation model.

Prediction:

If $P(X_t \mid e_{1:t})$ has a Gaussian distribution, then the predicted distribution is also Gaussian:

$$P(X_{t+1} | e_{1:t}) = \int_{X_t} P(X_{t+1} | x_t) P(x_t | e_{1:t}) dx_t$$

With $P(X_{t+1} \mid e_{1:t})$ also we also have a Gaussian for

$$P(X_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | X_{t+1}) P(X_{t+1} | e_{1:t}).$$

Hence, $P(X_t | e_{1:t})$ is a multivariate Gaussian $N(\mu_t, \Sigma_t)$ for all t with mean μ and covariance matrix Σ .

Kalman filtering: Interpretation

- $P(X_t \mid e_{1:t})$ is (and stays!) Gaussian. Its parameters (mean, covariance) change over time.
- Thus $P(X_t \mid e_{1:t})$ can be described with the same number of parameters for all times t.
- As the Gaussian may become arbitrarily broad, the usable information on X may become very small, but ...
- ... at least, this small amount of usable information is still encoded in the same number of parameters.
- For the general case (non-linear, non-Gaussian) this does not hold: In general, the effort for the description of the posterior grows over time!

Kalman filtering: 1D random walk

- Gaussian random walk along X-axis, X_t is the random variable.
- Prior distribution (initial position measured with limited accuracy):

$$P(x_0) = N(\mu_0, \sigma_0, x_0).$$

Transition model (walk along random path):

$$P(x_{t+1} \mid x_t) = N(x_t, \sigma_x, x_{t+1}).$$

Observation model (position measurement with limited accuracy):

$$P(e_t \mid x_t) = N(e_t, \sigma_e, x_t)$$

First observation: e₁

$$P(x_1 \mid e_1) = N(\mu_1, \sigma_1, x_1) \quad \text{with} \quad \mu_1 = \frac{(\sigma_0^2 + \sigma_x^2)e_1 + \sigma_e^2 \mu_0}{\sigma_0^2 + \sigma_x^2 + \sigma_e^2}, \quad \sigma_1^2 = \frac{(\sigma_0^2 + \sigma_x^2)\sigma_e^2}{\sigma_0^2 + \sigma_x^2 + \sigma_e^2}$$

• In general: $\mu_{t+1} = \frac{(\sigma_t^2 + \sigma_x^2)e_{t+1} + \sigma_e^2 \mu_t}{\sigma_t^2 + \sigma_x^2 + \sigma_e^2}$, $\sigma_{t+1}^2 = \frac{(\sigma_t^2 + \sigma_x^2)\sigma_e^2}{\sigma_t^2 + \sigma_x^2 + \sigma_e^2}$

Kalman filtering: 1D random walk

Initial distribution:

$$\mu_0 = 0$$
, $\sigma_0 = 1$

Transition cause by noise with

$$\sigma_x = 2$$
.

Sensor noise:

$$\sigma_e = 1$$
.

First observation:

 $e_1 = 2.5$.

- Prediction $P(x_1)$ is more flat than $P(x_0)$ due to the noisy transition.
- $\begin{array}{ccc}
 0 & 0.3 \\
 0 & 0.2 \\
 2 & 0 \\
 0.1 & 0 \\
 0.0 & 0.0
 \end{array}$

0.45

• The mean μ_1 of $P(x_1 | e_1)$ is smaller than 2.5, because the prediction $P(x_1)$ is accounted for.

Kalman filtering: General case

Vector \overrightarrow{x} of \overrightarrow{n} random variables.

Vector of n observation values: \overrightarrow{e} .

Transition model: $P(\vec{x}_{t+1} \mid \vec{x}_t) = N(F\vec{x}_t, \Sigma_x, \vec{x}_{t+1})$

Observation model: $P(\vec{e}_t \mid \vec{x}_t) = N(H\vec{x}_t, \Sigma_e, \vec{e}_t)$

F: n x n - matrix of the linear transition model

H: $n \times n$ - matrix of the linear observation model

 Σ_{x} : $n \times n$ - covariance matrix of the transition noise

 Σ_e : $n \times n$ - covariance matrix of the observation noise

Gaussian with *n* variables:

$$N(\vec{\mu}, \Sigma, \vec{x}) = \alpha \exp(-\frac{1}{2}(\vec{x} - \vec{\mu})^{T} \Sigma^{-1}(\vec{x} - \vec{\mu}))$$

Kalman filtering: General case

Updating rule:

$$\vec{\mu}_{t+1} = \vec{F} \vec{\mu}_t + \vec{K}_{t+1} (\vec{e}_{t+1} - \vec{H} \vec{F} \vec{\mu}_t)$$

$$\Sigma_{t+1} = (1 - K_{t+1}) L$$

with

$$L = F \Sigma_t F^{\mathsf{T}} + \Sigma_{\mathsf{x}}$$

$$K_{t+1} = L H^{\mathsf{T}} (H L H^{\mathsf{T}} + \Sigma_{e})^{-1}$$

K is the Kalman-Gain matrix.

Interpretation:

 \vec{F}_{μ_t} : Predicted $\vec{\mu}$

(according to linear model)

 $H F \overrightarrow{\mu}_t$: Predicted observation

 e_{t+1} – $HF\vec{\mu}_t$: Difference between prediction and observation

Confidence we have in the observation, used as a weight for comparison with the linear prediction

 Σ_t and K_t are independent of the observed sequence and can thus be computed offline.

2D tracking: Filtering

2D tracking: Smoothing

Kalman filtering: Limits

Simple Kalman filtering is not applicable if the transition model is nonlinear.

Extension:

- Non-linearities can be treated by assuming local linearity in an environment of $x_t = \mu_t$.
- But this will fail if the system has a non-linearity at $x_t = \mu_t$. Example: Bird is flying towards a tree.
- Solution: Switching-Kalman-Filter
 - Applies several filters in parallel
 - Special case of DBNs.

Dynamic Bayesian networks

So far: Static Bayes networks for modeling dependencies without time:

[RN]

HMMs are a special case of of dynamic Bayesian networks (DBN) with just one variable.

Kalman filters are a special case with Gaussian distributions.

A general DBN is a temporal probability model with

- an arbitrary number of random variables X_t, and
- evidence variables E_t
- for each time step.

Dynamic Bayesian networks

Example:

Robot with

- state variables position X_t , speed V_t , and battery power Battery;
- evidence variables measured position Z_t and BMeter_t.
- for t=0 and t=1.

UNIVERSITÄT OSNABRÜCK

DBNs and HMMs

- Every HMM is a DBN with just one variable.
- Every DBN with discrete variables can be represented as a HMM:
 - Combine all variables of the DBN to a single HMM-Variable.
 - The HMM-variable has one value for each combination of the variables of the DBN.
 - Problem: Combinatorial explosion.
- DBN are much better suited than HMMs as they employ "factorized" states with an exponentially smaller number of parameters.

Example: 20 boolean state variables with 3 parents each. Parameters:

DBN 20 x 2³ = 160,

HMM 2²⁰ x 2²⁰.

Inference in dynamic Bayesian networks

Naive method:

- Unroll DBN (represent each time step explicitly).
- Apply Algorithm for static Bayes nets.

Problem: Memory and computational effort O(t).

[RN]

Alternative: Roll up filtering

Add step t+1, then sum out the variables of step t.

Only possible (for realistic size) with approximation methods such as particle filtering.

UNIVERSITÄT OSNABRÜCK

Summary

- Temporal probability models represent a domain using random variables for hidden states and observable evidences.
- Three assumptions
 - Markov process,
 - Markov sensor,
 - Stationary domain.
- Several types of inference: Filtering, prediction, smoothing, most likely explanation (Viterbi algorithm).
- HMMs model a Markov process using a single variable.
- Kalman filtering employs an arbitrary number of state variables but only Gaussian distribution.
- DBNs have an arbritrary number of variables and arbitrary distributions, but exact inference is infeasible due to computational effort. Particle filtering is a good approximation for filtering.

Speech Recognition

Speech recognition

- Speech recognition is an important application of temporal probability models.
- Recognize a sequence of words from a (raw) speech signal.
- Speech understanding:
 - Interpret sequence of words.
 - Find relation to other data, e.g., other sensors or a knowledge base.
- Speech signals are highly variable, ambiguous, noisy etc.
- Speech signals can not be classified after the simple scheme signal → features → classifier → symbols.
- Rather, simultaneous recognition on different levels of abstraction is required.

Speech recognition as probabilistic inference

Task:

What is the most likely word sequence given a signal?

→ Choose *Words* such that P(*Words* | *signal*) is maximized.

Bayes rule:

 $P(Words \mid signal) = \alpha P(signal \mid Words) P(Words).$

Thus the problem is decomposed into an acoustic model and a language model.

Words are the hidden state sequence, signal is the observation (evidence) sequence.

Phones and Phonemes

- For classification, a small number of different entities and large number of training samples of each is required.
- English has about 700000 words,
- consisting of 10000 syllables,
- but these consist of only 40-50 phones (speech sounds).

UNIVERSITÄT

Phones and Phonemes

- Phones are formed by the articulators (lips, teeth, tongue, vocal cords, air flow).
- Phones are closer to the signal than words.
 - → Acoustic model = pronounciation model + phone model
- Phonemes are the smallest units that have an effect on meaning (they do not carry meaning in isolation).
- Phonemes are combined to the smalles meaningful units:
 Morphemes.
- Phonemes ≠ Characters
- Allophones are different speech sounds representing the same phoneme.
- Phonemes abstract phones to a representational level between signal and words.

Phones and Phonemes

DARPA-alphabet for American English (ARPAbet)

[iy]	b <u>ea</u> t	[b]	<u>b</u> et	[p]	pet
[ih]	b <u>i</u> t	[ch]	$\underline{\mathrm{Ch}}$ et	[r]	$f{r}$ at
[ey]	b <u>e</u> t	[d]	${ m \underline{d}}$ ebt	[s]	<u>s</u> et
[ao]	bought	[hh]	${f h}$ at	[th]	${ m { t th}}$ ick
[ow]	b <u>oa</u> t	[hv]	${f \underline{h}}$ igh	[dh]	${ m \underline{th}}$ at
[er]	B <u>er</u> t	[1]	<u>l</u> et	[w]	$\underline{\mathbf{w}}$ et
[ix]	ros <u>e</u> s	[ng]	$si\mathbf{ng}$	[en]	butt $\underline{\mathbf{on}}$
:	:	:	:	:	ŧ

[RN]

E.g. "ceiling": [s iy l ich ng] / [s iy l ix ng] / [s iy l en]

Speech sounds

- Signal: Displacement of microphone membrane as a function of time.
- Representation: 8-16 kHz sampling, 8-12 bit quantization.
- Signal is processed in overlapping frames of 30 ms.
- Data reduction: Each frame is represented by features.
- Features: E.g., peaks of the power spectrum.

UNIVERSITÄT

Frames and features

- Overlap of frames 50%-75%.
- Features are, e.g., the distribution of energy over different frequencies, or change rates.
- Note energy distribution underlies uncertainty relation.
- Features may correlate with the activities of the articulators.

UNIVERSITÄT

Phone models

- Frame features are vectors of high dimensionality, leaving still many options to encode a phone.
- P(Features | Phone) represents the frame features.
- Better and more compact representation by, e.g.,
 - natural numbers obtained from clustering, or
 - parameters of a Gaussian mixture model

Phone models

Clustering can be used to form groups of frequent features, natural numbers denote the groups (centers):

Gaussian mixtures describe *P*(*Features* | *Phone*) better than clusters.

Phone models

- Phones exhibit inner structure.
- This structure can be modeled effectively a three state phone model:
 - Each phone consists of Onset, Mid, End.
 - Example: [t] has silent Onset, explosive Mid, hissing End.
 - Thus P(Features | Phone) is replaced by P(Features | Phone, Phase).

UNIVERSITÄT

Phone models

- Problem: Phones sound different, depending on neighboring speech sounds.
- These coarticulation effects come about because the articulators can not switch between positions instantaneously.
- Model for coarticulation: Triphone context
 - Each of *n* speech sounds is now represented by *n*² speech sounds which depend on both neighboring speech sounds.
 - Example: [t] in "star" is represented by [t(s,aa)].
- Combining the three state model with the triphone model makes representation grow from n to n^3 , but this is worth the expense.

Phone HMM for [m]:

To each of the three states of the Phone HMM belong output probabilities for the features (e.g., cluster numbers):

Onset:	Mid:	End:	
C1: 0.5	C3: 0.2	C4: 0.1	
C2: 0.2	C4: 0.7	C6: 0.5	
C3: 0.3	C5: 0.1	C7: 0.4	[RN]

UNIVERSITÄT OSNABRÜCK

Word pronounciation models

A word is represented by a probability distribution over a phone sequence. This sequence is represented by a HMM:


```
P([towmeytow] | "tomato") = P([towmaatow] | "tomato") = 0.1

P([tahmeytow] | "tomato") = P([tahmaatow] | "tomato") = 0.4
```

- The structure of the HMM is created manually.
- Transition probabilities are estimated from data.

A word model consists of the phone models and the pronounciation model.

Word model for *Tomato*:

State of a word HMM = phone + phone state, e.g., the word HMM of *Tomato* has a state $[m]_{Mid}$.

Recognition of isolated words

Phone models + word models fix $P(e_{1:t} | Word)$ for isolated words. where $e_{1:t}$ are the observed features.

Recognizing a word means maximizing

$$P(Word \mid e_{1:t}) = \alpha P(e_{1:t} \mid Word) P(Word),$$

where the prior P(Word) is just obtained from the word frequencies.

 $P(e_{1:t} | Word)$ is computed recursively by

$$P(X_{t+1}, e_{1:t+1}) = Forward(P(X_t, e_{1:t}), e_{t+1})$$

and
$$P(e_{1:t} | Word) = \sum_{x_t} P(x_t, e_{1:t}).$$

Recognition of isolated words (e.g. for dictation) reaches 95-99% accuracy (with training on a particular person).

Recognition of continuous speech

Recognition of continuous speech **#** recognition of sequence of isolated words, because

- adjacent words are strongly correlated,
- the most likely sequence of words ≠ the sequence of most likely words,
- segmentation of words is difficult, because there are few gaps between words which become visible on the signal level (only on the high level of human speech processing),
- there is cross-word coarticulation, e.g., "next thing".

Recognition of continuous speech manage 60-80% accuracy.

Language model

A language model specifies the a priori probability of each sequence of words using the chain rule:

$$P(W_1...W_n) = \prod_{i=1}^n P(W_i \mid W_1...W_{i-1}).$$

Most factors are hard to estimate.

Bigram model as an approximation:

$$P(w_i | w_1 ... w_{i-1}) \approx P(w_i | w_{i-1}),$$

i.e., first order Markov assumption.

Training: Count all word pairs in a large text corpus.

More complex models such as Trigrams

$$P(w_i | w_1...w_{i-1}) \approx P(w_i | w_{i-1}, w_{i-2}),$$

or grammars lead to some improvement.

Recognition of word sequences: Combined HMM

- Combine word model and Bigram language model to an HMM.
- States of the combined HMM are specified by word, phone and phone state.
- Example: [m]^{Tomato}_{Mid}.
- Transitions:
 - Phone state phone state (within a phone),
 - Phone phone (within a word),
 - Word final state word initial state (between words).
- Representational effort:
 The combined HMM for W words with an average of L three state phones has 3LW states.

Recognition of word sequences: Combined HMM

- Most likely phone sequence is found by Viterbi algorithm
 - this fixes also the word sequence and
 - solves the segmentation problem.
- But: The word sequence obtained from the most likely phone sequence is not necessarily the most likely word sequence ...
- ... because probability of a word sequence = sum of probabilities of all corresponding state sequences.
- Solution: A*-decoder to find the most likely word sequence with moderate computational effort (Jelinek 1969).

DBNs for speech recognition

- Further variables for gender, accent, speed are easy to add.
- Better performance than HMMs.

Summary

- Speech recognition has been formulated as probabilistic inference since 70ies.
- Evidence = speech signal
- Hidden variables = phone and word sequences
- Context effects such as coarticulation are handled by augmenting the states.
- Highly successful approach.

Image sources

[M] Online material available at www.cs.cmu.edu/~tom/mlbook.html for the textbook: Tom M. Mitchell: Machine Learning, McGraw-Hill

[RN] Stuart Russell, Peter Norvig: Artificial Intelligence, Pearson

[H] Gunther Heidemann, 2012.

- p-norm unit circles
- Optimization based clustering
- K-Means
- Conceptual clustering
- Hebbian Learning:
 - Hebb rule
 - Anti-Hebb rule
- Eigenfaces
- Principal curves and SOM

- MLP
 - Parameters
 - Comparison to RBF
- RBF
 - Parameters
- SOM
- Q-Learning: Probabilistic choice of actions