Warm up!

Let m = 3 be a modulus.

By combining set notation and congruence classes,

- Express the set of all integers, \mathbb{Z} .
- Express the empty set Ø.

• Let m = 3. Then $[0] \cup [1] \cup [2] = \mathbb{Z}$ and $[0] \cap [1] \cap [2] = \emptyset$.

Reminder!

We never defined division for congruence classes.

[a/b] is not recommended!

[a]/[b] is not recommended!

MATH 135: Lecture 26

Dr. Nike Dattani

12 November 2021

- Friday 12 November:
 - Moebius quiz tonight! (covers up to middle of page 121)
- Friday 12 November:
 - Look at WA08 (covers up to end of pg 133) and solutions to WA07
- Reading: Up to end of Chapter 8.
 - Moebius quizzes seem to have covered things out of order
 - Knowing FℓT, CRT and "Splitting mod" can help you on quizzes
- Wednesday 17 November:
 - Submit Written Assignment 8: WA8 (covers up to page 133)

Objectives

FLT: Fermat's Last Theorem

The proposition was first stated as a theorem by Pierre de Fermat around 1637 in the margin of a copy of *Arithmetica*; Fermat added that he had a proof that was too large to fit in the margin. Although other

F & T: Fermat's Little Theorem

Pierre de Fermat first stated the theorem in a letter dated October 18, 1640 to his friend and confidar Frenicle de Bessy as the following [1] \mathbb{R} : p divides $a^{p-1}-1$ whenever p is prime and a is coprime to p.

As usual, Fermat did not prove his assertion, only stating:

Et cette proposition est généralement vraie en toutes progressions et en tous nombres premiers; de quoi je vous envoierois la démonstration, si je n'appréhendois d'être trop long.

(And this proposition is generally true for all progressions and for all prime numbers; the proof of which I would send to you, if I were not afraid that it would be too long.)

- Euler gave the first published proof (1736)
- Leibniz gave the same proof as Euler in an unpublished paper (before 1683)

F & T: Fermat's Little Theorem

Pierre de Fermat first stated the theorem in a letter dated October 18, 1640 to his friend and confidar Frenicle de Bessy as the following [1] \mathbb{R} : p divides $a^{p-1}-1$ whenever p is prime and a is coprime to p.

ax + by = c	This is a linear Diophantine equation.
$w^3 + x^3 = y^3 + z^3$	The smallest nontrivial solution in positive integers is $12^3 + 1^3 = 9^3 + 10^3 = 1729$. It was famously given as an evident property of 1729, a taxicab number (also named Hardy–Ramanujan number) by Ramanujan to Hardy while meeting in 1917. ^[1] There are infinitely many nontrivial solutions. ^[2]
$x^n + y^n = z^n$	For $n=2$ there are infinitely many solutions (x,y,z) : the Pythagorean triples. For larger integer values of n , Fermat's Last Theorem (initially claimed in 1637 by Fermat and proved by Andrew Wiles in $1995^{[3]}$) states there are no positive integer solutions (x,y,z) .

FlT

 $\forall p \in \mathbb{P}$, if $p \nmid a$, then $a^{p-1} \equiv 1 \pmod{p}$

Be careful! p must be prime!

$$2^{4-1} \equiv ? \pmod{4}$$

Be careful! *p <u>must not divide a!</u>*

$$49^{7-1} \equiv ? \pmod{7}$$

FUT

```
\forall p \in \mathbb{P}, if p \nmid a, then a^{p-1} \equiv 1 \pmod{p}

Corollaries
```

 $\forall p \in \mathbb{P}$, if $p \nmid a$, then $a^p \equiv a \pmod{p}$ If $p \nmid a$, multiply both sides of $F \in T$ by a.

If $p \mid a$, $a^p \equiv a \equiv 0 \pmod{p}$

FlT

```
\forall p \in \mathbb{P}, if p \nmid a, then a^{p-1} \equiv 1 \pmod{p}.

Corollaries
```

```
\forall p \in \mathbb{P}, \text{ if } p \nmid a, \text{ then } a^p \equiv a \pmod{p}

\forall p \in \mathbb{P}, \text{ if } [a] \neq [0] \text{ in } \mathbb{Z}_p, [a]^{-1} = [a^{p-2}]
```

Skipped since WA08 and final don't need it

Practice!

Determine all solutions to $x^{61} + 26 x^{41} + 11 x^{25} + 20 \equiv 30 \pmod{3}$.

 $x^3 \equiv x \pmod{3}$, $\forall x \in \mathbb{Z}$ (Corollary to $F \ell T$)

$$x^{3\cdot20+1} + 26 x^{3\cdot13+2} + 11 x^{3\cdot8+1} + 20 \equiv 30 \pmod{3}$$

 $x^{3\cdot20}x + 26 x^{3\cdot13}x^2 + 11 x^{3\cdot8}x + 20 \equiv 30 \pmod{3}$
 $x^{20}x + 26 x^{13}x^2 + 11 x^8x + 20 \equiv 30 \pmod{3}$
 $x^{21} + 26 x^{15} + 11 x^9 + 20 \equiv 30 \pmod{3}$
 $x^7 + 26 x^5 + 11 x + 20 \equiv 30 \pmod{3}$
 $x + 26 x + 11 x + 20 \equiv 30 \pmod{3}$
 $x + 26 x + 20 \equiv 30 \pmod{3}$

Chinese Remainder Theorem

有物不知其数, 三三数之剩二, 五五数之剩三, 七七数之剩二。问物几何?

There's an unknown number **x**, when counted in 3s we have 2 left over, when counted in 5s we have 3 left over, when counted in 7s we have 2 left over, what is the number?

CRT

Problem 26, Volume 3 of:

孫子 (Sun Zi) 算經 (Mathematics Manual)

In China, it's called:

孙子定理 (Sun Zi Theorem), or 中国剩余定理 (Chinese Remainder Theorem)

孫子兵法 (Art of War): 430-500 BC

孫子算經: 200-400 AD (~765 years difference!)

CRT

Sun Zi explained how to solve the problem. He noticed:

```
70 \equiv 1 \pmod{3} \equiv 0 \pmod{5} \equiv 0 \pmod{7}

21 \equiv 1 \pmod{5} \equiv 0 \pmod{3} \equiv 0 \pmod{7}

15 \equiv 1 \pmod{7} \equiv 0 \pmod{3} \equiv 0 \pmod{5}
```

- x = 2(70) + 3(21) + 2(15) = 233 solves the problem. Any multiple of 105 (3 x 7 x 5) is divisible by 3, 5, and 7,
- \therefore 233 2(105) = 23 is the smallest positive answer.

CRT

Theorem 16

(Chinese Remainder Theorem (CRT))

For all integers a_1 and a_2 , and positive integers m_1 and m_2 , if $gcd(m_1, m_2) = 1$, then the simultaneous linear congruences

$$n \equiv a_1 \pmod{m_1}$$

 $n \equiv a_2 \pmod{m_2}$

have a unique solution modulo m_1m_2 . Thus, if $n = n_0$ is one particular solution, then the solutions are given by the set of all integers n such that

$$n \equiv n_0 \pmod{m_1 m_2}$$
.

[10]

3. Solve the following system of linear congruences.

$$x \equiv 12 \pmod{20}$$

 $x \equiv 11 \pmod{39}$

```
x = 20n + 12

(20n + 12) \equiv 11 \pmod{39}

20n \equiv -1 \pmod{39}

20n = 39y - 1

1 = 39y - 20n  [now solve the Diophantine eqn]
```

Theorem 17

(Generalized Chinese Remainder Theorem (GCRT))

For all positive integers k and m_1, m_2, \ldots, m_k , and integers a_1, a_2, \ldots, a_k , if $gcd(m_i, m_j) = 1$ for all $i \neq j$, then the simultaneous congruences

```
n \equiv a_1 \pmod{m_1}

n \equiv a_2 \pmod{m_2}

\vdots

n \equiv a_k \pmod{m_k}
```

have a unique solution modulo $m_1m_2\cdots m_k$. Thus, if $n=n_0$ is one particular solution, then the solutions are given by the set of all integers n such that

$$n \equiv n_0 \pmod{m_1 m_2 \dots m_k}$$
.

EXERCISE

Solve the problem posed by Sun Zi that was discussed at the beginning of this section.

Solve the simultaneous congruences

$$n \equiv 2 \pmod{3}$$

$$n \equiv 3 \pmod{5}$$

$$n \equiv 5 \pmod{7}$$
.

Splitting Modulus Theorem (SMT)

Theorem 18

(Splitting Modulus Theorem (SMT))

For all integers a and positive integers m_1 and m_2 , if $gcd(m_1, m_2) = 1$, then the simultaneous congruences

```
n \equiv a \pmod{m_1}
n \equiv a \pmod{m_2}
```

have exactly the same solutions as the single congruence $n \equiv a \pmod{m_1 m_2}$.

"Inverse Chinese Remainder Theorem" (Do not actually call it that on the exam)

Find all integers x such that $x^3 + x^2 \equiv 26 \pmod{35}$.

$$x^3 + x^2 \equiv 26 \equiv 1 \pmod{5}$$

 $x^3 + x^2 \equiv 26 \equiv 5 \pmod{7}$.

0	1	2	3	4
0	1	4	4	1
0	1	3	2	4
0	2	2	1	0
	0 0 0 0	0 1 0 1 0 1 0 2	$\begin{array}{c cccc} 0 & 1 & 2 \\ 0 & 1 & 4 \\ 0 & 1 & 3 \\ 0 & 2 & 2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

$x \pmod{7}$	0	1	2	3	4	5	6
$x^2 \pmod{7}$	0	1	4	2	2	4	1
$x^3 \pmod{7}$	0	1	1	6	1	6	6
$x^3 + x^2 \pmod{7}$	0	2	5	1	3	3	0

$$x \equiv 3 \pmod{5}$$

 $x \equiv 2 \pmod{7}$.

 $x \equiv n_0 \pmod{35}$, where n_0 is one particular solution.

Find all integers x such that $x^3 + x^2 \equiv 26 \pmod{35}$.

$$x \equiv 3 \pmod{5}$$

$$x \equiv 2 \pmod{7}$$
.

 $x \equiv n_0 \pmod{35}$, where n_0 is one particular solution.

To find a suitable value for n_0 , note that $n_0 = 2, 9, 16, 23, 30$ are the choices of integers between 0 and 34 that are congruent to 2 (mod 7). Now we observe that $2 \equiv 2 \pmod{5}$, $9 \equiv 4 \pmod{5}$, $16 \equiv 1 \pmod{5}$, $23 \equiv 3 \pmod{5}$ and $30 \equiv 0 \pmod{5}$, so $n_0 = 23$ is a

$$x \equiv 23 \pmod{35}$$
.

Thank you!

Extra practice:

- ► Is 156723 divisible by 11?
- ► Is $5^9 + 62^{2000} 14$ divisible by 7?
- ▶ What is the remainder when $77^{100}(999) 6^{83}$ is divided by 4?
- ▶ What is the last digit of $5^{32}3^{10} + 9^{22}$?
- Prove that $gcd(2^a-1,2^b-1)\mid 2^{gcd(a,b)}-1$ for all $a,b\in\mathbb{N}$.

without actually carrying out any long division.

The following pages are intentionally left blank, for writing notes from the tablet.