The AME2016 atomic mass evaluation (II). Tables, graphs and references

To cite this article: Meng Wang et al 2017 Chinese Phys. C 41 030003

View the article online for updates and enhancements.

Related content

- (II). Tables, graphs and references M. Wang, G. Audi, A.H. Wapstra et al.
- Industry Page
- Industry Page

Recent citations

- First direct search for \$2 \epsilon\$2 and \$ \epsilon\beta^{+}\\$+ decay of 144Sm and \$2 \beta^{-}\\$2- decay of 154Sm

 P. Belli et al
- <u>Mass relations of corresponding mirror nuclei</u> Y. Y. Zong *et al*
- Quenching of gA deduced from the spectrum shape of 113Cd measured with the COBRA experiment Lucas Bodenstein-Dresler et al

The Ame2016 atomic mass evaluation

(II). Tables, graphs and references

Meng Wang (王猛)^{1,2;1)} G. Audi (欧乔治)³ F.G. Kondev⁴ W.J. Huang(黄文嘉)³ S. Naimi⁵ Xing Xu(徐星)¹

¹ Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
² Joint Department for Nuclear Physics, Institute of Modern Physics, CAS and Lanzhou University, Lanzhou 730000, China
³ CSNSM, Univ Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, 91405 Orsay, France

⁴ Argonne National Laboratory, Argonne, IL 60439, USA

Abstract This paper is the second part of the new evaluation of atomic masses, AME2016. Using least-squares adjustments to all evaluated and accepted experimental data, described in Part I, we derive tables with numerical values and graphs to replace those given in AME2012. The first table lists the recommended atomic mass values and their uncertainties. It is followed by a table of the influences of data on primary nuclides, a table of various reaction and decay energies, and finally, a series of graphs of separation and decay energies. The last section of this paper lists all references of the input data used in the AME2016 and the NUBASE2016 evaluations (first paper in this issue).

AMDC: http://amdc.impcas.ac.cn/

Keywords: atomic mass evaluation, atomic mass table, separation and reaction energies, trends from the mass surface

PACS: 21.10.Dr, 21.10.-k **DOI:** 10.1088/1674-1137/41/3/030003

1 Introduction

The description of the AME2016 general procedures and policies are given in Part I of this series of two papers, where the input data used in the evaluation are presented. In this paper, we present tables with numerical values and graphs derived from the evaluation of the input data presented in Part I.

Firstly, we present the table of atomic masses (Table I) expressed as mass excess in keV, together with the binding energy per nucleon, the beta-decay energy and the total atomic mass in mass units.

Secondly, we provide the table of influences for primary nuclides (Table II). For each primary nuclide, we give three main data and their influences on its mass (see the definitions in Part I, Section 5.1, p. 030002-18).

Thirdly, we give a table of values and their uncertainties for the separation and reaction energies for twelve selected combinations of nuclides. This selection, together with the β -decay energies in Table I, provides all differences in masses between any pair of nuclides differing at most by two units in Z and N. A method is indicated in which many more different reaction energy values can

be derived from the present table.

The following series of graphs are then presented: two-neutron separation energies and α -decay energies as a function of neutron number, and two-proton separation energies as a function of proton number. These graphs are considered to be the most illustrative ones for representing the regular trends from the mass surface (TMS) and deriving estimates for unknown masses.

Finally, references of the input data used in the Ame2016 and the Nubase2016 evaluations, the first paper of this issue, are given in Section 6.

2 Atomic mass table

The tables containing the values of atomic masses and other derived quantities given in the present work are similar to those published in the earlier AME editions [1–9]. With few exceptions, experimental data on masses of nuclides refer to "atomic" masses or to masses of singly ionized atoms. In the last case, the ionization energy is generally (much) smaller than the uncertainty of the mass and, for a small number of very precise mass measurements, corrections for the first- and second-

⁵ RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

Received 10 March 2017

^{*} This work has been undertaken with the endorsement of the IUPAP Commission on Symbols, Units, Nomenclature, Atomic Masses and Fundamental Constants (SUNAMCO).

¹⁾ E-mail: wangm@impcas.ac.cn

^{©2017} Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

ionization potentials can be applied without much loss of accuracy. The same is true for the electron mass, M_e ; see Table A in Part I. This is the reason for the decision to present atomic rather than nuclear masses in our evaluations.

In general, the nuclear masses M_N can be calculated from the atomic ones M_A :

$$M_N(A,Z) = M_A(A,Z) - Z \times M_e + B_e(Z). \tag{1}$$

Nowadays, several mass measurements are conducted with fully or almost fully ionized atoms. In such cases, a correction must be made for the total binding energy of all the removed electrons $B_e(Z)$, which can be found in the table of calculated total atomic binding energy of all electrons by Huang et al [10]. Unfortunately, the precision of the calculated $B_e(Z)$ values is not well established, since this quantity (approximately 760 keV for $_{92}$ U) cannot be easily measured. However, we can state with a high confidence that the precision for $_{92}$ U is better compared to that for the best known masses of the uranium isotopes, which is about 1.1 keV. An approximate formula for B_e can be found in the review of Lunney, Pearson and Thibault [11]:

$$B_e(Z) = 14.4381 Z^{2.39} + 1.55468 \times 10^{-6} Z^{5.35} \text{ eV}.$$
 (2)

The atomic masses are given in mass units and the derived quantities in energy units. For the atomic mass unit we use the "unified atomic mass unit", symbol "u", defined as 1/12 of the atomic mass of one 12 C atom in its electronic and nuclear ground states and in its rest coordinate system. In our work, energy values are expressed as electron-volt, using the *maintained* volt V_{90} . For a discussion see Part I, Section 2.

Due to the dramatic increase in the accuracy of mass for some light nuclides, the printing format of the mass table is not adequate for the most precisely known masses, which require many more digits. Table A gives values of mass excesses and atomic masses for 16 nuclides, whose masses are the most precisely known, with an uncertainty below 1 eV_{90} .

Mass excesses expressed in keV, which are of practical use, are also given. Conversion of the uncertainties from μ u to keV can be obtained by:

$$\sigma_{M_{hoV}}^2 = (\sigma_{M_u} \times u)^2 + (M_u \times \sigma_u)^2, \tag{3}$$

where M_u and σ_{M_u} are the mass excess and its uncertainty in μ u, and σ_u is the uncertainty of u expressed in eV₉₀. The second term in Eq. 3 is only important for a very few nuclides.

Table A. The most precisely known masses.

	Mass excess (keV_{90})	Uncertainty (keV ₉₀)	Atomic mass (μu)	Uncertainty (μ u)
1 n	8 071.317 133	$0.000\ 458$	1 008 664.915 823	0.000491
$^{1}\mathrm{H}$	$7\ 288.970\ 613$	$0.000\ 087$	$1\ 007\ 825.032\ 241$	$0.000\ 094$
$^{2}\mathrm{H}$	$13\ 135.721\ 756$	$0.000\ 113$	$2\ 014\ 101.778\ 114$	$0.000\ 122$
$^3\mathrm{H}$	$14\ 949.809\ 935$	$0.000\ 215$	$3\ 016\ 049.281\ 985$	$0.000\ 231$
$^3{\rm He}$	$14\ 931.217\ 929$	$0.000\ 205$	$3\ 016\ 029.322\ 645$	$0.000\ 220$
$^4{ m He}$	$2\ 424.915\ 612$	$0.000\ 059$	$4\ 002\ 603.254\ 130$	$0.000\ 063$
$^{13}\mathrm{C}$	$3\ 125.008\ 881$	$0.000\ 215$	$13\ 003\ 354.835\ 209$	$0.000\ 231$
$^{14}\mathrm{N}$	$2\ 863.416\ 722$	$0.000\ 193$	$14\ 003\ 074.004\ 460$	$0.000\ 207$
$^{15}\mathrm{N}$	101.438709	0.000 601	$15\ 000\ 108.898\ 939$	$0.000\ 645$
^{16}O	$-\ 4\ 737.001\ 351$	$0.000\ 162$	$15\ 994\ 914.619\ 598$	$0.000\ 173$
$^{17}\mathrm{O}$	$-\ 808.763\ 482$	$0.000\ 655$	$16\ 999\ 131.756\ 642$	0.000704
$^{18}\mathrm{O}$	$-\ 782.815\ 600$	0.000706	$17\ 999\ 159.612\ 840$	0.000758
$^{19}\mathrm{F}$	$-\ 1\ 487.444\ 200$	0.000~864	$18\ 998\ 403.162\ 882$	0.000927
$^{28}\mathrm{Si}$	$-\;21\;492.794\;304$	$0.000\ 488$	$27\ 976\ 926.534\ 991$	$0.000\ 524$
$^{29}\mathrm{Si}$	$-\ 21\ 895.078\ 375$	$0.000\ 559$	$28\ 976\ 494.665\ 252$	0.000 600
$^{31}\mathrm{P}$	$-\ 24\ 440.540\ 953$	$0.000\ 674$	$30\ 973\ 761.998\ 625$	0.000724

				<u> </u>	<u> </u>				
	n	Н	D	⁴ He	¹³ C	¹⁴ N	^{15}N	¹⁶ O	²⁸ Si
n	0.241391								
Н	-0.006172	0.008794							
D	0.012177	0.002620	0.014802						
$^4{ m He}$	0.000000	0.000000	0.000000	0.004011					
$^{13}\mathrm{C}$	0.004685	-0.006200	-0.001514	0.000000	0.053148				
^{14}N	-0.001300	0.002355	0.001055	0.000000	0.039083	0.042986			
^{15}N	-0.001181	0.013972	0.012791	0.000000	-0.003234	0.009421	0.416385		
^{16}O	-0.000837	0.002306	0.001470	0.000000	0.011842	0.014288	0.007047	0.030065	
²⁸ Si	- 0.005085	0.009502	0.004416	0.000000	0.041404	0.043532	0.051304	0.024329	0.274560
	n	Н	D	$^3\mathrm{H}$	$^3{ m He}$	¹⁶ O	$^{20}{ m Ne}$	$^{23}\mathrm{Na}$	²⁸ Si
n	0.241391								
Н	-0.006172	0.008794							
D	0.012177	0.002620	0.014802						
$^{3}\mathrm{H}$	0.006005	0.011413	0.017422	0.053335					
$^3{ m He}$	0.006005	0.011413	0.017422	0.048435	0.048435				
¹⁶ O	-0.000837	0.002306	0.001470	0.003776	0.003776	0.030065			

0.052123

0.000001

0.013918

0.006215

0.000004

0.024329

0.052123

0.000001

0.013918

Since Ame 2003, we give in Table I the binding energy per nucleon, which is of educational interest, since it connects to the Aston Curve, displaying the maximum stability around the 'iron-peak' which is of importance in astrophysics. The highest binding energy per nucleon is observed for ⁶²Ni, followed sequentially by ⁵⁸Fe and ⁵⁶Fe.

0.012479

0.000001

0.009502

0.039644

0.000001

0.004416

3 Influences on primary nuclides

 $^{20}\mathrm{Ne}$

 23 Na

 $^{28}\mathrm{Si}$

0.027152

0.000000

0.005085

Table II lists all primary nuclides, together with the main data that contribute to their mass determination (up to the three most important ones) and the influences of these data on their masses. It complements the information given in the main table (Part I, Table I) where the significance (total flux) and the main flux of each datum are displayed. In other words, the flow-of-information matrix **F**, defined in Part I, Section 5.1, is (partly) displayed once along lines and once along columns.

Nuclear reaction and decay energies

The linear combinations involving neighboring nuclides with small differences in atomic number and mass number, and particles such as n, p, d, t, 3 He and α , are important for studies of the trends in the nuclear energy surface and for Q-values of frequently used reactions. In Table III, values for 12 such combinations and their uncertainties are presented.

With the help of the instructions given in the explanation of Table III, values for 28 additional reactions and their uncertainties can be derived (cf. p. 03000399). The derived values will be correct, but in a few cases (when reactions involving light nuclei measured with very high precision) the uncertainties will be slightly larger than those obtained when correlations in the calculation are included.

2.829718

0.000007

0.019401

3.781636

0.000047

0.274560

In cases where any combination of the most precise mass values are involved, the uncertainties can be obtained with the help of the correlation coefficients given in Table B, where the variances and covariances for the most precisely known light nuclei are listed. When calculating uncertainties of mass combinations, one should use the mass values and their uncertainties in μu , and not the mass excesses (in keV). As an example, if one considers the mass difference between ³H and ³He, the mass difference can be easily obtained from the values listed in Table A. However, the corresponding uncertainty cannot be simply determined from the square root of the quadratic sum of the individual uncertainties, which would be:

$$\sqrt{0.231^2 + 0.220^2} = 0.32 \ nu. \tag{4}$$

Since there is a strong correlation between these two nuclides, the uncertainty of the mass difference should be calculated using the correlation information provided in Table B. Thus, its uncertainty can be obtained from the square root of the sum of the variances minus twice the covariance:

$$\sqrt{0.231^2 + 0.220^2 - 2 \cdot 0.048435} = 0.07 \ nu. \tag{5}$$

As a result, the final uncertainty is much smaller when the correlation is taken into account.

The result of the least-squares adjustment of the experimental data that are used to determine atomic masses, as described in Part I, is not represented completely by the atomic mass values given in the Table I and the energy values in Table III. A complete representation would require reproduction of a matrix of correlation coefficients. This matrix contains $\frac{1}{2}N(N+1)$ elements in which N=1207. As for AME2012, we made available at the AMDC website a full list of correlation coefficients for AME2016 [12], of which a very short sample is displayed in Table C.

We have also prepared a table of neutron, proton and deuteron pairing energies, available from the Atomic Mass Data Center (AMDC) [13], defined as:

Table C. Sample of variances and covariances in squared nano atomic mass units. Nuclides coded as AAAZZZi (i=isomeric state), e.g. H=10010, ¹⁶O=160080. Full table is on the AMDC website [12]

nuclide 1 nuclide 2 Variance or Cova 10000 10000 0.24139060 10010 10000 -0.61717354E 30010 30010 0.53335160E- 30020 10000 0.60053621E-	
10010 10000 -0.61717354E 30010 30010 0.53335160E-	rience
30010 30010 0.53335160E-	-02
30020 10000 0.60053621E-	01
	02
30020 10010 0.11413390E-	01
30020 20010 0.17421780E-	01
30020 30010 0.48435162E-	01
2541020 2531020 541761.20	
2541020 2541020 0.10749120E+	-09

$$\begin{split} P_n(A,Z) &= \frac{1}{4}(-1)^{A-Z+1}[S_n(A+1,Z) - 2S_n(A,Z) + S_n(A-1,Z)], \\ P_p(A,Z) &= \frac{1}{4}(-1)^{Z+1}[S_p(A+1,Z+1) - 2S_p(A,Z) + S_p(A-1,Z-1)], \\ P_d(A,Z) &= \frac{1}{4}(-1)^{Z+1}[S_d(A+2,Z+1) - 2S_d(A,Z) + S_d(A-2,Z-1)]. \end{split}$$

 S_n , S_p , and S_d are the neutron, proton and deuteron separation energies, the latter being defined as:

$$S_d(A, Z) = -M(A, Z) + M(A - 2, Z - 1) + M(d) = -Q(\gamma, d).$$

The quantities S_n , and S_p are defined in the Explanation of Table III and $Q(\gamma, d)$ can be calculated as indicated there.

Remark: P_n is also sometimes written as:

$$P_n(A,Z) = \frac{1}{4}(-1)^{A-Z+1}[-M(A+1,Z) + 3M(A,Z) - 3M(A-1,Z) + M(A-2,Z)],$$

displaying thus more clearly the combination of the involved masses. Similar expressions are valid for P_p and P_d .

5 Graphs of trends from the mass surface

All the information contained in the mass table (Table I) and in the nuclear reaction and separation energy table (Table III) can in principle be displayed in plots of the binding energy (or mass) versus Z, N, or A. The atomic mass surface as a function of Z and N splits into four sheets due to the pairing energy, as discussed in Part I, Section 4. These sheets are nearly parallel almost everywhere in this three-dimensional space and have remarkably regular trends, as one may convince oneself by making various cuts (e.g. Z or N or A constant). Any derivative of the binding energies also defines four sheets. In this context, derivative means a specified difference between the masses of two nearby nuclides. For a derivative specified in such a way where the differences are between nuclides in the same mass sheet, the nearly parallelism of these sheets leads to an (almost) unified

surface for the derivative, thus allowing a single display. The derivatives are also smooth and have the advantage of displaying much smaller variations in data. Therefore, in order to illustrate the regular trends in the mass surface, three derivatives of this last type were chosen:

- 1. the two-neutron separation energies versus N, with lines connecting the isotopes of a given element (Figs. 1–9);
- 2. the two-proton separation energies versus Z, with lines connecting the isotones (the same number of neutrons) (Figs. 10–17);
- 3. the α -decay energies versus N, with lines connecting the isotopes of a given element (Figs. 18–26);

These figures supersede the ones published in Ref. [2]. In the previous AME publications, the graphs of the double β -decay energies versus A were also given. Such

drawings were not included in the present publication, but can be easily derived from the data in Table I.

The Trends from the Mass Surface (TMS) can be quite useful for checking the quality of any interpolation or extrapolation (if not too far). When some masses deviate from the regular TMS in a specific mass region, there could be a serious physical cause, like a shell or subshell closure or an onset of deformation. However, if only one mass exhibits an irregular pattern, thus violating the general smooth trends, then one may seriously question the correctness of the related input data (see the discussion in Part I, Section 4, p. 030002-11).

6 List of references

A complete list of references related to the input data used in the AME2016 and the NUBASE2016 evaluations are presented at the end of this paper. The individual references are identified using the CODEN style [14] (see

p. 030003-261). There is only one exception for the Eur. Phys. A journal, where instead of the 'ZAANE' identifier [14], we have used 'EPJAA'.

7 Acknowledgements

This work is supported in part by the National Key Program for S&T Research and Development (Contract No. 2016YFA0400504) and the Major State Basic Research Development Program of China (Contract No. 2013CB834401). The work at ANL was supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. W.J. Huang acknowledges the support from the China Scholarship Council, grant No. 201404910496. S. Naimi acknowledges the support of "RIKEN Pioneering Project Funding" from the Riken project. X. Xu acknowleges the support of "Light of West China Program" of Chinese Academy of Sciences.

References

- 1 G. Audi, M. Wang, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu and B. Pfeiffer, Chin. Phys. C, 36: 1287 (2012)
- 2 M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. Mac-Cormick, X. Xu and B. Pfeiffer, Chin. Phys. C, 36: 1603 (2012)
- 3 A.H. Wapstra, G. Audi and C. Thibault, Nucl. Phys. A, 729: 129 (2003)
- 4 G. Audi, A.H. Wapstra and C. Thibault, Nucl. Phys. A, 729: 337 (2003)
- 5 G. Audi and A.H. Wapstra, Nucl. Phys. A, **595**: 409 (1995)
- 6 G. Audi and A.H. Wapstra, Nucl. Phys. A, **565**: 1 (1993)
- 7 G. Audi and A.H. Wapstra, Nucl. Phys. A, 565: 66 (1993)
- 8 C. Borcea, G. Audi, A.H. Wapstra and P. Favaron, Nucl. Phys.

- A. **565**: 158 (1993)
- G. Audi, A.H. Wapstra and M. Dedieu, Nucl. Phys. A, 565: 193 (1993)
- 10 K.-N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann and H. Mark, At. Data Nucl. Data Tables 18: 243 (1976)
- D. Lunney, J.M. Pearson and C. Thibault, Rev. Mod. Phys. 75: 1021 (2003)
- 12 The full list of correlation coefficients can be dowloaded from: http://amdc.impcas.ac.cn/masstables/Ame2016/
- 13 The AME2016 files in the electronic distribution and complementary documents can be retrieved from the Atomic Mass Data Center (AMDC) through the Web: http://amdc.impcas.ac.cn/
- 14 B. Pritychenko, E. Běták, M.A. Kellett, B. Singh and J. Totans, Nucl. Instrum. Methods Phys. Res. A, 640: 213 (2011)

Table I. The 2016 Atomic mass table

EXPLANATION OF TABLE

N Number of neutrons. N Number of protons. N Mass number N Number N Number of protons.

Elt. Element symbol (for $Z \ge 113$ see Part I, Section 6.8, p. 030002-31).

Orig.

Origin of values for secondary nuclides.

 $zp \ nn$ mass of AZ derived from mass of ${}^{A+z+n}(Z+z)$. Special notations:

IT when z = 0, n = 0; + when z = +1, n = -1; - when z = -1, n = +1; ++ when z = +2, n = -2; -- when z = -2, n = +2; εp when z = -2, n = +1; + α when z = +2, n = +2; α when α when

Mass excess

Mass excess [M(in u)-A], in keV, and its uncertainty (one-standard deviation).

In cases where the furthest-left significant digit in the uncertainty was larger than 3, values and uncertainties were rounded off, but not to more than tens of keV. (Examples: $2345.67 \pm 2.78 \rightarrow 2345.7 \pm 2.8, 2345.67 \pm 4.68 \rightarrow 2346 \pm 5$, but $2346.7 \pm 468.2 \rightarrow 2350 \pm 470$).

in place of decimal point: value and uncertainty derived not from purely experimental data, but at least partly from TMS (see Part I, Section 4, p. 030002-9).

Binding energy per nucleon

Tabulated binding energy per nucleon (in keV):

$$B/A = 1/A[ZM(^{1}H) + NM(^{1}n) - M(A,Z)].$$
 and its uncertainty.

in place of decimal point: see above.

a in place of uncertainty: uncertainty smaller than 0.5 eV.

Beta-decay energy

Direction of decay, value and uncertainty in keV:

for
$$\beta^-$$
: $Q^- = M(A,Z) - M(A,Z+1)$;
for β^+ : $Q^+ = M(A,Z) - M(A,Z-1)$.

For a few odd-odd nuclides near maximum β -stability decaying both β^- and β^+ , the Q^+ values are given as negative Q^- values for the preceding even-even isobar.

* in place of value: not calculable.

in place of decimal point: see above.

a in place of uncertainty: uncertainty smaller than 0.5 eV.

Atomic mass

Atomic mass M and its uncertainty in μu .

in place of decimal point: see above.

Table I. The 2016 Atomic mass table (Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			g energy eon (keV)		Beta-decay e (keV)	energy	Atomic r μu	mass
1 0	0	1	n H		8071.3171 7288.97061	0.0005 0.00009	0.0 0.0	0.0 0.0	$oldsymbol{eta}^-$	782.346 *	0.001	1 008664.9158 1 007825.03224	0.0005 0.00009
1	1	2	Н		13135.72176	0.00011	1112.283	a		*		2 014101.77811	0.00012
2	1	3	Н		14949.80993	0.00022	2827.265	а	eta^-	18.592	a	3 016049.28199	0.00023
1	2		He Li	-pp	14931.21793 28670#	0.00021 2000#	2572.680 -2270#	а 670#	eta^+	* 13740#	2000#	3 016029.32265 3 030780#	0.00022 2150#
3	1	4	Н	-n	24620	100	1720	25	$oldsymbol{eta}^-$	22200	100	4 026430	110
2	2		He	_	2424.91561	0.00006	7073.915	<i>a</i>	ρ $+$	*	210	4 002603.25413	0.00006
1	3		Li	-p	25320	210	1150	50	eta^+	22900	210	4 027190	230
4	1	5	Н	-nn	32890	90	1336	18	β^-	21660	90	5 035310	100
3	2		He	-n	11231	20	5512	4	0.1	*	50	5 012057	21
2	3		Li	-p	11680	50	5266	10	β^+	450	50	5 012540	50
1	4		Be	X	37140#	2000#	20#	400#	eta^+	25460#	2000#	5 039870#	2150#
5	1	6	Н	-3n	41880	250	960	40	β^-	24280	250	6 044960	270
4	2		He		17592.10	0.05	4878.519	0.009	β^-	3505.22	0.05	6 018885.89	0.06
3	3		Li		14086.8789	0.0014	5332.331	а		*		6 015122.8874	0.0015
2	4		Be	_	18375	5	4487.2	0.9	β^+	4288	5	6 019726	6
1	5		В	X	47320#	2000#	-470#	330#	$oldsymbol{eta}^+$	28950#	2000#	6 050800#	2150#
6	1	7	Н	-nn	49140#	1000#	940#	140#	β^-	23060#	1000#	7 052750#	1080#
5	2		He	-n	26073	8	4123.1	1.1	β^-	11166	8	7 027991	8
4	3		Li		14907.105	0.004	5606.439	0.001		*		7 016003.437	0.005
3	4		Be		15769.00	0.07	5371.548	0.010	eta^+	861.89	0.07	7 016928.72	0.08
2	5		В	p4n	27677	25	3559	4	eta^+	11908	25	7 029712	27
6	2	8	Не		31609.68	0.09	3924.520	0.011	β^-	10663.88	0.10	8 033934.39	0.10
5	3		Li		20945.80	0.05	5159.712	0.006	β^-	16004.13	0.06	8 022486.25	0.05
4	4		Be	$-\alpha$	4941.67	0.04	7062.435	0.004	,	*		8 005305.10	0.04
3	5		В		22921.6	1.0	4717.15	0.12	eta^+	17979.9	1.0	8 024607.3	1.1
2	6		C		35064	18	3101.5	2.3	β^+	12143	18	8 037643	20
7	2	9	Не		40940	50	3349	5	β^-	15980	50	9 043950	50
6	3		Li	-3n	24954.90	0.19	5037.768	0.021	β^-	13606.45	0.20	9 026790.19	0.20
5	4		Be		11348.45	0.08	6462.668	0.009	•	*		9 012183.07	0.08
4	5		В	_	12416.5	0.9	6257.07	0.10	eta^+	1068.0	0.9	9 013329.6	1.0
3	6		C	-pp	28911.0	2.1	4337.42	0.24	eta^+	16494.5	2.3	9 031037.2	2.3
8	2	10	Не	-nn	49200	90	2995	9	β^-	16140	90	10 052820	100
7	3		Li	-n	33053	13	4531.4	1.3	$\dot{\beta}^-$	20445	13	10 035483	14
6	4		Be		12607.49	0.08	6497.630	0.008	β^-	556.88	0.08	10 013534.70	0.09
5	5		В		12050.609	0.015	6475.083	0.002		*		10 012936.862	0.016
4	6		C		15698.67	0.07	6032.042	0.007	β^+	3648.06	0.07	10 016853.22	0.08
3	7		N		38800	400	3640	40	$oldsymbol{eta}^+$	23100	400	10 041650	430
8	3	11	Li	x	40728.3	0.6	4155.38	0.06	β^-	20551.1	0.7	11 043723.6	0.7
7	4		Be		20177.17	0.24	5952.540	0.022	β^-	11509.46	0.24	11 021661.08	0.26
6	5		В		8667.707	0.012	6927.732	0.001	,	*		11 009305.167	0.013
5	6		C		10649.40	0.06	6676.456	0.005	eta^+	1981.69	0.06	11 011432.60	0.06
4	7		N	-p	24300	50	5364	4	eta^+	13650	50	11 026090	50
9	3	12	Li	-n	49010	30	3791.6	2.5	$oldsymbol{eta}^-$	23930	30	12 052610	30
8	4		Be		25077.8	1.9	5720.72	0.16	β^-	11708.4	2.3	12 026922.1	2.0
7	5		В		13369.4	1.3	6631.22	0.11	β^-	13369.4	1.3	12 014352.6	1.4
6	6		C		0.0	0.0	7680.144	a	,	*		12 000000.0	0.0
5	7		N		17338.1	1.0	6170.11	0.08	β^+	17338.1	1.0	12 018613.2	1.1
4	8		O	-pp	31915	24	4890.2	2.0	$oldsymbol{eta}^+$	14577	24	12 034262	26

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay e (keV)	nergy	Atomic n μu	nass
10 9 8 7 6	3 4 5 6 7	13	Li Be B C	-nn -n -nn	56980 33659 16561.9 3125.00888 5345.48	70 10 1.0 0.00021 0.27	3508 5241.4 6496.42 7469.849 7238.863	5 0.8 0.08 <i>a</i> 0.021	$eta^- eta^- eta^- eta^- eta^+$	23320 17097 13436.9 *	70 10 1.0	13 061170 13 036135 13 017780.0 13 003354.83521 13 005738.61	80 11 1.1 0.00023 0.29
5	8		0	+3n	23115	10	5811.8	0.7	β^+	17770	10	13 024815	10
10 9 8 7 6 5	4 5 6 7 8 9	14	Be B C N O F	-p	39950 23664 3019.893 2863.41672 8007.781 31960	130 21 0.004 0.00019 0.025 40	4994 6101.6 7520.319 7475.614 7052.278 5285.2	9 1.5 a 0.002 2.9	$eta^- eta^- eta^+ eta^+$	16290 20644 156.476 * 5144.364 23960	130 21 0.004 0.025 40	14 042890 14 025404 14 003241.988 14 003074.00446 14 008596.706 14 034320	140 23 0.004 0.00021 0.027 40
11 10 9 8 7 6 5	4 5 6 7 8 9 10	15	Be B C N O F Ne	-n -n -p -pp	49830 28958 9873.1 101.4387 2855.6 16567 40220	170 21 0.8 0.0006 0.5 14 70	4541 5880.0 7100.17 7699.460 7463.69 6497.5 4869	11 1.4 0.05 a 0.03 0.9 4	$eta^- eta^- eta^- eta^+ eta^+ eta^+ eta^+$	20870 19085 9771.7 * 2754.2 13711 23650	170 21 0.8 0.5 14 70	15 053490 15 031088 15 010599.3 15 000108.8989 15 003065.6 15 017785 15 043170	180 23 0.9 0.0006 0.5 15 70
12 11 10 9 8 7 6	4 5 6 7 8 9 10	16	Be B C N O F Ne	-nn -nn -n —	57450 37113 13694 5683.9 -4737.00135 10680 23987	170 25 4 2.3 0.00016 8 20	4285 5507.3 6922.05 7373.80 7976.206 6963.7 6083.2	10 1.5 0.22 0.14 a 0.5 1.3	$eta^- eta^- eta^- eta^- eta^- eta^+ eta^+$	20330 23418 8010 10420.9 * 15417 13307	170 25 4 2.3 8 22	16 061670 16 039842 16 014701 16 006101.9 15 994914.61960 16 011466 16 025751	180 26 4 2.5 0.00017 9 22
12 11 10 9 8 7 6	5 6 7 8 9 10 11	17	B C N O F Ne Na	x 2p-n +p	43720 21032 7870 -808.7635 1951.70 16500.4 35170	200 17 15 0.0007 0.25 0.4 1000	5270 6558.0 7286.2 7750.728 7542.328 6640.499 5500	12 1.0 0.9 a 0.015 0.021	$eta^- eta^- eta^- eta^+ eta^+ eta^+ eta^+$	22680 13162 8679 * 2760.47 14548.7 18670	200 23 15 0.25 0.4 1000	17 046930 17 022579 17 008449 16 999131.7566 17 002095.24 17 017714.0 17 037760	220 19 16 0.0007 0.27 0.4 1080
13 12 11 10 9 8 7	5 6 7 8 9 10 11	18	B C N O F Ne Na	-n ++ +	51790 24920 13113 -782.8156 873.1 5317.6 25040	200 30 19 0.0007 0.5 0.4	4977 6426.1 7038.6 7767.097 7631.638 7341.257 6202	11 1.7 1.0 a 0.026 0.020 5	$eta^- eta^- eta^- eta^+ eta^+ eta^+ eta^+$	26870 11810 13896 * 1655.9 4444.5 19720	210 40 19 0.5 0.6 90	18 055600 18 026750 18 014078 17 999159.6128 18 000937.3 18 005708.7 18 026880	220 30 20 0.0008 0.5 0.4
14 13 12 11 10 9 8 7	5 6 7 8 9 10 11 12	19	B C N O F Ne Na Mg	x -n p-2n -n +3n	59770 32410 15856 3332.9 -1487.4442 1752.05 12929 31830	530 100 16 2.6 0.0009 0.16 11 50	4720 6118 6948.5 7566.49 7779.018 7567.343 6937.9 5902.0	28 5 0.9 0.14 <i>a</i> 0.008 0.6 2.6	$eta^- eta^- eta^- eta^- eta^+ eta^+ eta^+$	27360 16560 12523 4820.3 * 3239.49 11177 18900	530 100 17 2.6 0.16 11 50	19 064170 19 034800 19 017022 19 003578.0 18 998403.1629 19 001880.90 19 013880 19 034170	560 110 18 2.8 0.0009 0.17 11 50

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex			ng energy		Beta-decay e	nergy	Atomic n	nass
					(keV		per nuc	leon (keV)		(keV)		μu	
15	5	20	В	X	68450#	800#	4450#	40#	β^-	30950#	830#	20 073480#	860#
14	6		C	X	37500	230	5961	12	β^-	15740	240	20 040260	250
13	7		N	X	21770	80	6709	4	β^-	17970	80	20 023370	80
12	8		O	-nn	3796.2	0.9	7568.57	0.04	β^-	3813.6	0.9	20 004075.4	0.9
11	9		F	-n	-17.463	0.030	7720.134	0.002	β^-	7024.467	0.030	19 999981.25	0.03
10	10		Ne		-7041.9305	0.0016	8032.240	a		*		19 992440.1762	0.0017
9	11		Na		6850.6	1.1	7298.50	0.06	$oldsymbol{eta}^+$	13892.5	1.1	20 007354.4	1.2
8	12		Mg	+t	17477.7	1.9	6728.02	0.09	$oldsymbol{eta}^+$	10627.1	2.2	20 018763.1	2.0
16	5	21	В	x	77330#	900#	4200#	40#	β^-	31690#	1080#	21 083020#	970#
15	6		C	X	45640#	600#	5674#	28#	β^-	20410#	610#	21 049000#	640#
14	7		N	X	25230	130	6609	6	β^-	17170	130	21 027090	140
13	8		O	-3n	8062	12	7389.4	0.6	eta^-	8110	12	21 008655	13
12	9		F	-nn	-47.6	1.8	7738.29	0.09	$oldsymbol{eta}^-$	5684.2	1.8	20 999948.9	1.9
11	10		Ne		-5731.78	0.04	7971.713	0.002	0.1	*		20 993846.69	0.04
10	11		Na		-2184.63	0.10	7765.547	0.005	β^+	3547.14	0.09	20 997654.70	0.11
9	12		Mg	X	10903.8	0.8	7105.03	0.04	β^+	13088.5	0.8	21 011705.8	0.8
8	13		Al	X	26990#	600#	6302#	28#	$oldsymbol{eta}^+$	16090#	600#	21 028980#	640#
16	6	22	C	-nn	53610	230	5421	11	β^-	21850	310	22 057550	250
15	7		N	X	31760	210	6379	9	<i>β</i> -	22480	220	22 034100	220
14	8		O	-4n	9280	60	7364.9	2.6	$\dot{\beta}^-$	6490	60	22 009970	60
13	9		F	+	2793	12	7624.3	0.6	$\dot{oldsymbol{eta}}^-$	10818	12	22 002999	13
12	10		Ne		-8024.719	0.018	8080.465	0.001	•	*		21 991385.110	0.019
11	11		Na		-5181.51	0.17	7915.667	0.008	β^+	2843.21	0.17	21 994437.42	0.18
10	12		Mg		-399.9	0.3	7662.761	0.014	β^+	4781.6	0.3	21 999570.7	0.3
9	13		Al	X	18200#	400#	6782#	18#	β^+	18600#	400#	22 019540#	430#
8	14		Si	X	33340#	500#	6058#	23#	$oldsymbol{eta}^+$	15140#	640#	22 035790#	540#
17	6	23	C	x	64170#	1000#	5080#	40#	β^-	27450#	1080#	23 068890#	1070#
16	7		N	X	36720	420	6237	18	eta^-	22100	440	23 039420	450
15	8		O	X	14620	120	7163	5	β^-	11340	130	23 015700	130
14	9		F		3290	30	7622.3	1.4	β^-	8440	30	23 003530	40
13 12	10 11		Ne Na	-n	-5154.05 -9529.8525	0.10 0.0018	7955.256 8111.493	a = 0.005	eta^-	4375.80	0.10	22 994466.90 22 989769.2820	0.11 0.0019
11	12		Mg	_	-5473.51	0.16	7901.115	0.007	β^+	4056.34	0.16	22 994123.94	0.17
10	13		Al		6748.1	0.3	7335.727	0.015	$\dot{\beta}^+$	12221.6	0.4	23 007244.4	0.4
9	14		Si	X	23700#	500#	6565#	22#	β^+	16950#	500#	23 025440#	540#
17	7	24	N	X	46940#	400#	5887#	17#	$oldsymbol{eta}^-$	28440#	430#	24 050390#	430#
16	8		O	X	18500	160	7040	7	β^-	10960	190	24 019860	180
15	9		F	X	7540	100	7464	4	β^-	13500	100	24 008100	100
14	10		Ne	-nn	-5951.6	0.5	7993.325	0.021	eta^-	2466.3	0.5	23 993610.6	0.6
13	11		Na	-n	-8417.901	0.017	8063.488	0.001	eta^-	5515.669	0.021	23 990963.011	0.018
12	12		Mg		-13933.569	0.013	8260.709	0.001		*		23 985041.697	0.014
11	13		Al	ε p	-48.86	0.23	7649.582	0.010	β^+	13884.70	0.23	23 999947.54	0.25
10	14		Si		10745	19	7167.2	0.8	β^+	10794	19	24 011535	21
9	15		P	X	33320#	500#	6194#	21#	eta^+	22570#	500#	24 035770#	540#
18	7	25	N	x	55980#	500#	5613#	20#	$oldsymbol{eta}^-$	28650#	530#	25 060100#	540#
17	8		O	-n	27330	170	6728	7	β^-	15990	190	25 029340	180
16	9		F	X	11330	100	7336	4	β^-	13370	100	25 012170	100
15	10		Ne		-2036	29	7839.8	1.2	β^-	7322	29	24 997810	30
14	11		Na	-nn	-9357.8	1.2	8101.40	0.05	$oldsymbol{eta}^-$	3835.0	1.2	24 989954.0	1.3
13	12		Mg		-13192.78	0.05	8223.502	0.002		*		24 985836.96	0.05
12	13		Al	-	-8915.97	0.06	8021.136	0.003	β^+	4276.81	0.04	24 990428.31	0.07
11	14		Si	+3n	3827	10	7480.1	0.4	β^+	12743	10	25 004109	11
10	15		P	X	19740#	400#	6812#	16#	β^+	15910#	400#	25 021190#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ng energy leon (keV)		Beta-decay (keV)	energy	Atomic m μu	ass
18	8	26	0	-nn	34660	160	6497	6	β^-	16010	200	26 037210	180
17	9		F	X	18650	110	7083	4	β^-	18170	110	26 020020	120
16	10		Ne	X	481	18	7751.9	0.7	β^-	7342	19	26 000516	20
15	11		Na	X	-6861	4	8004.20	0.13	β^-	9354	4	25 992635	4
14	12		Mg		-16214.542	0.030	8333.870	0.001		*		25 982592.97	0.03
13	13		Al		-12210.15	0.07	8149.765	0.003	β^+	4004.39	0.06	25 986891.86	0.07
12	14		Si	_	-7141.02	0.11	7924.708	0.004	$oldsymbol{eta}^+$	5069.14	0.08	25 992333.80	0.12
11	15		P	X	10970#	200#	7198#	8#	β^+	18110#	200#	26 011780#	210#
10	16		S	X	27080#	600#	6548#	23#	$oldsymbol{eta}^+$	16110#	630#	26 029070#	640#
19	8	27	O	X	44670#	500#	6185#	19#	β^-	19220#	630#	27 047960#	540#
18	9		F	X	25450	390	6868	14	β^-	18400	400	27 027320	420
17	10		Ne	X	7050	90	7520	3	β^-	12570	90	27 007570	100
16	11		Na	++	-5518	4	7956.95	0.14	β^-	9069	4	26 994076	4
15 14	12 13		Mg	-n	-14586.61 -17196.86	0.05 0.05	8263.852 8331.553	0.002 0.002	$oldsymbol{eta}^-$	2610.25	0.07	26 984340.63 26 981538.41	0.05 0.05
13	14		Al Si	_	-12384.50	0.03	8124.341	0.002	β^+	4812.36	0.10	26 986704.69	0.03
12	15		P	p4n	-722	26	7663.4	1.0	β^+	11662	26	26 999224	28
11	16		S	р - п —	17030#	400#	6977#	15#	β^+	17750#	400#	27 018280#	430#
20	8	28	0	Х	52080#	700#	5988#	25#	β^-	18340#	800#	28 055910#	750#
19	9	20	F	-n	33740	390	6615	23π 14	β^-	22440	410	28 036220	420
18	10		Ne	X	11300	130	7388	5	β^-	12290	130	28 012130	140
17	11		Na	X	-988	10	7799.3	0.4	β^-	14031	10	27 998939	11
16	12		Mg	+	-15018.8	2.0	8272.41	0.07	β^-	1831.8	2.0	27 983876.6	2.1
15	13		Al	-n	-16850.64	0.08	8309.894	0.003	β^-	4642.15	0.08	27 981910.09	0.08
14	14		Si		-21492.7943	0.0005	8447.744	а	,	*		27 976926.5350	0.0005
13	15		P		-7147.7	1.2	7907.48	0.04	$oldsymbol{eta}^+$	14345.1	1.2	27 992326.6	1.2
12	16		S		4070	160	7479	6	eta^+	11220	160	28 004370	170
11	17		Cl	X	27520#	600#	6614#	21#	eta^+	23440#	620#	28 029540#	640#
20	9	29	F	X	40150	530	6444	18	β^-	21750	550	29 043100	560
19	10		Ne	X	18400	150	7167	5	β^-	15720	150	29 019750	160
18	11		Na		2680	7	7682.15	0.25	β^-	13283	14	29 002877	8
17	12		Mg	X	-10603	11	8113.2	0.4	β^-	7605	11	28 988617	12
16 15	13 14		Al Si	X	-18207.8 -21895.0784	0.3 0.0006	8348.464 8448.635	a = 0.012	β^-	3687.3 *	0.3	28 980453.2 28 976494.6653	0.4 0.0006
14	15		P		-16952.8	0.4	8251.236	0.012	$oldsymbol{eta}^+$	4942.2	0.4	28 981800.4	0.4
13	16		S	+3n	-3160	50	7748.5	1.7	β^+	13800	50	28 996610	50
12	17		Cl	-p	13160	190	7159	7	$oldsymbol{eta}^+$	16320	200	29 014130	200
21	9	30	F	x	48110#	600#	6233#	20#	$oldsymbol{eta}^-$	24830#	650#	30 051650#	640#
20	10		Ne		23280	250	7035	8	eta^-	14810	250	30 024990	270
19	11		Na		8475	5	7501.97	0.16	β^-	17358	6	30 009098	5
18	12		Mg	X	-8884	3	8054.51	0.11	β^-	6981	4	29 990463	4
17	13		Al	X	-15864.8	2.9	8261.13	0.10	$oldsymbol{eta}^-$	8568.1	2.9	29 982968	3
16	14		Si	-n	-24432.960	0.022	8520.654	0.001	ρ $+$	*	0.06	29 973770.137	0.023
15 14	15 16		P S	_	-20200.85 -14059.25	0.07 0.21	8353.506 8122.707	0.002 0.007	$eta^+ eta^+$	4232.11 6141.60	0.06 0.20	29 978313.49 29 984906.77	0.07 0.22
13	17		Cl	_ x	-14039.23 4440#	200#	7480#	7#	β^+	18500#	200#	30 004770#	210#
12	18		Ar	-pp	20930	210	6904	7	$oldsymbol{eta}^+$	16490#	280#	30 022470	220
22	9	31	F	-nn	56140#	550#	6033#	18#	$oldsymbol{eta}^-$	24960#	610#	31 060270#	590#
21	10	31	Ne	1111	31180	270	6813	9	β^-	18940	270	31 033470	290
20	11		Na	x	12246	14	7398.7	0.5	β^-	15368	14	31 013147	15
19	12		Mg	X	-3122	3	7869.19	0.10	β^-	11829	4	30 996648	3
18	13		Al	X	-14950.7	2.2	8225.52	0.07	β^-	7998.3	2.2	30 983949.8	2.4
17	14		Si	-n	-22949.04	0.04	8458.291	0.001	β^-	1491.50	0.04	30 975363.19	0.05
16	15		P		-24440.5410	0.0007	8481.167	a	•	*		30 973761.9986	0.0007
15	16		S		-19042.52	0.23	8281.800	0.007	eta^+	5398.02	0.23	30 979557.01	0.25
14	17		Cl		-7035	3	7869.21	0.11	β^+	12008	3	30 992448	4
13	18		Ar	_	11330#	200#	7252#	6#	$oldsymbol{eta}^+$	18360#	200#	31 012160#	220#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

22 21 20 19 18 17 16	10 11 12 13 14 15	32	Ne Na	x			•	leon (keV)		(keV)		μ u	
21 20 19 18 17	11 12 13 14	32		v									
20 19 18 17	12 13 14		NΙο		37000#	500#	6671#	16#	β^-	18360#	500#	32 039720#	540#
19 18 17	13 14			X	18640	40	7219.9	1.2	$oldsymbol{eta}^-$	19470	40	32 020010	40
18 17	14		Mg	X	-829	3	7803.84	0.10	β^-	10270	8	31 999110	4
17			Al	X	-11099	7	8100.34	0.22	eta^-	12978	7	31 988084	8
	15		Si	X	-24077.69	0.30	8481.468	0.009	$oldsymbol{eta}^-$	227.2	0.3	31 974151.5	0.3
16			P	-n	-24304.87	0.04	8464.120	0.001	$oldsymbol{eta}^-$	1710.66	0.04	31 973907.64	0.04
	16		S		-26015.5336	0.0013	8493.129	а		*		31 972071.1744	0.0014
15	17		Cl		-13334.7	0.6	8072.404	0.018	$oldsymbol{eta}^+$	12680.9	0.6	31 985684.6	0.6
14	18		Ar	X	-2200.4	1.8	7700.01	0.06	eta^+	11134.3	1.9	31 997637.8	1.9
13	19		K	X	21100#	400#	6947#	13#	$m{eta}^+$	23300#	400#	32 022650#	430#
23	10	33	Ne	x	46000#	600#	6440#	18#	eta^-	22220#	750#	33 049380#	640#
22	11		Na	X	23780	450	7090	14	eta^-	18820	450	33 025530	480
21	12		Mg	X	4962.3	2.9	7636.45	0.09	$oldsymbol{eta}^-$	13460	8	33 005327	3
20	13		Al	X	-8497	7	8020.62	0.21	eta^-	12017	7	32 990878	8
19	14		Si	X	-20514.3	0.7	8361.059	0.021	eta^-	5823.0	1.3	32 977977.0	0.8
18	15		P	+	-26337.3	1.1	8513.81	0.03	$oldsymbol{eta}^-$	248.5	1.1	32 971725.7	1.2
17	16		S		-26585.8543	0.0014	8497.630	a		*		32 971458.9099	0.0015
16	17		Cl		-21003.3	0.4	8304.755	0.012	$oldsymbol{eta}^+$	5582.5	0.4	32 977452.0	0.4
15	18		Ar	X	-9384.3	0.4	7928.955	0.012	β^+	11619.0	0.6	32 989925.5	0.4
14	19		K	X	7040#	200#	7407#	6#	$m{eta}^+$	16430#	200#	33 007560#	210#
24	10	34	Ne	-nn	52840#	510#	6287#	15#	β^-	21160#	790#	34 056730#	550#
23	11		Na	X	31680	600	6886	18	eta^-	23360	600	34 034010	640
22	12		Mg	X	8323	29	7550.4	0.8	$oldsymbol{eta}^-$	11324	29	34 008940	30
21	13		Al	X	-3000	3	7860.43	0.09	β^-	16957	14	33 996779	3
20	14		Si	+pp	-19957	14	8336.1	0.4	β^-	4592	14	33 978575	15
19	15		P	X	-24548.7	0.8	8448.185	0.024	β^-	5383.0	0.8	33 973645.9	0.9
18	16		S		-29931.69	0.04	8583.498	0.001	-	*		33 967867.01	0.05
17	17		Cl		-24440.08	0.05	8398.970	0.002	eta^+	5491.60	0.04	33 973762.49	0.05
16	18		Ar		-18378.29	0.08	8197.672	0.002	β^+	6061.79	0.06	33 980270.09	0.08
15	19		K	X	-1220#	200#	7670#	6#	β^+	17160#	200#	33 998690#	210#
14	20		Ca	x	13850#	300#	7204#	9#	$oldsymbol{eta}^+$	15070#	360#	34 014870#	320#
24	11	35	Na	-n	38230#	670#	6733#	19#	β^-	22590#	720#	35 041040#	720#
23	12		Mg	X	15640	270	7356	8	β^-	15860	270	35 016790	290
22	13		Al	X	-224	7	7787.12	0.21	eta^-	14170	40	34 999760	8
21	14		Si	2p-n	-14390	40	8169.6	1.0	β^-	10470	40	34 984550	40
20	15		P	+p	-24857.8	1.9	8446.25	0.05	β^-	3988.4	1.9	34 973314.1	2.0
19	16		S		-28846.21	0.04	8537.850	0.001	β^-	167.322	0.026	34 969032.32	0.04
18	17		Cl		-29013.53	0.04	8520.278	0.001		*		34 968852.69	0.04
17	18		Ar	_	-23047.3	0.7	8327.461	0.019	$oldsymbol{eta}^+$	5966.2	0.7	34 975257.7	0.7
16	19		K	4n	-11172.9	0.5	7965.840	0.015	$oldsymbol{eta}^+$	11874.4	0.9	34 988005.4	0.6
15	20		Ca	X	4790#	200#	7487#	6#	$oldsymbol{eta}^+$	15960#	200#	35 005140#	210#
25	11	36	Na	-n	46300#	680#	6546#	19#	eta^-	25920#	970#	36 049710#	730#
24	12		Mg	X	20380	690	7244	19	eta^-	14430	710	36 021880	740
23	13		Al	X	5950	150	7624	4	β^-	18390	170	36 006390	160
22	14		Si	X	-12440	70	8112.5	2.0	$oldsymbol{eta}^-$	7810	70	35 986650	80
21	15		P	+	-20251	13	8307.9	0.4	β^-	10413	13	35 978260	14
20	16		S		-30664.13	0.19	8575.389	0.005	β^-	-1142.13	0.19	35 967080.70	0.20
19	17		Cl		-29522.01	0.04	8521.931	0.001	β^-	709.53	0.04	35 968306.82	0.04
18	18		Ar		-30231.540	0.027	8519.909	0.001	•	*		35 967545.105	0.029
17	19		K		-17417.1	0.3	8142.219	0.009	$oldsymbol{eta}^+$	12814.5	0.3	35 981302.0	0.4
16	20		Ca	4n	-6450	40	7815.9	1.1	$m{eta}^+$	10970	40	35 993070	40
15	21		Sc	X	15350#	300#	7189#	8#	β^+	21800#	300#	36 016480#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

							*						
N	Z	A	Elt.	Orig.	Mass exc (keV)			ng energy leon (keV)		Beta-decay (keV)		Atomic m μu	ass
26	11	37	Na	-nn	53530#	690#	6392#	19#	β^-	25320#	980#	37 057470#	740#
25	12		Mg	-n	28210	700	7055	19	β^-	18400	720	37 030290	750
24	13		Αl	X	9810	180	7531	5	$m{eta}^-$	16380	210	37 010530	190
23	14		Si	X	-6570	110	7953	3	β^-	12420	120	36 992950	120
22	15		P	p-2n	-19000	40	8267.6	1.0	β^-	7900	40	36 979610	40
21	16		S	-n	-26896.42	0.20	8459.935	0.005	β^-	4865.12	0.20	36 971125.51	0.21
20	17		Cl	-11	-31761.54	0.20	8570.281	0.003	Ρ	*	0.20	36 965902.58	0.06
19	18		Ar		-30947.66		8527.139	0.001	eta^+	813.87	0.20		0.00
				_	-24800.20	0.21					0.20	36 966776.31	
18	19		K	-p		0.09	8339.847	0.003	β^+	6147.47	0.23	36 973375.89	0.10
17	20		Ca	X	-13136.1	0.6	8003.456	0.017	β^+	11664.1	0.6	36 985897.9	0.7
16	21		Sc	X	3520#	300#	7532#	8#	$oldsymbol{eta}^+$	16660#	300#	37 003780#	320#
26	12	38	Mg	X	34070#	500#	6928#	13#	eta^-	17860#	630#	38 036580#	540#
25	13		Al	X	16210	370	7377	10	β^-	20380	390	38 017400	400
24	14		Si	X	-4170	100	7892.8	2.8	β^-	10450	130	37 995520	110
23	15		P	x	-14620	70	8147.3	1.9	β^-	12240	70	37 984300	80
22	16		S	+	-26861	7	8448.78	0.19	β^-	2937	7	37 971163	8
21	17		Cl	-n	-29798.10	0.10	8505.481	0.003	β^-	4916.72	0.22	37 968010.42	0.11
20	18		Ar		-34714.82	0.19	8614.280	0.005	P	*	0.22	37 962732.10	0.21
19	19		K		-28800.75	0.20	8438.058	0.005	β^+	5914.07	0.04	37 969081.12	0.21
18	20		Ca		-22058.50	0.19	8240.043	0.005	β^+	6742.26	0.06	37 976319.23	0.21
17	21		Sc	v	-4250#	200#	7751#	5#	$oldsymbol{eta}^+$	17810#	200#	37 995440#	220#
				X					eta^+				
16	22		Ti	X	10870#	300#	7332#	8#	P	15120#	360#	38 011670#	320#
27	12	39	Mg	-n	42280#	510#	6747#	13#	β^-	21630#	650#	39 045380#	550#
26	13		Al	X	20650#	400#	7281#	10#	β^-	18330#	420#	39 022170#	430#
25	14		Si	X	2320	140	7731	3	β^-	15090	180	39 002490	150
24	15		P	X	-12770	110	8098.0	2.9	β^-	10390	120	38 986290	120
23	16		S	2p-n	-23160	50	8344.3	1.3	β^-	6640	50	38 975130	50
22	17		Cl	-nn	-29800.2	1.7	8494.40	0.04	β^-	3442	5	38 968008.2	1.9
21	18		Ar		-33242	5	8562.60		β^-	565	5	38 964313	5
				+				0.13	ρ	303 *	3		
20	19		K C-		-33807.190	0.005	8557.025	a 0.015	$oldsymbol{eta}^+$		0.6	38 963706.487	0.005
19	20		Ca	2	-27282.7	0.6	8369.670	0.015		6524.5	0.6	38 970710.8	0.6
18	21		Sc	2n-p	-14173	24	8013.5	0.6	β^+	13110	24	38 984785	26
17	22		Ti	X	2200#	200#	7574#	5#	eta^+	16370#	200#	39 002360#	220#
28	12	40	Mg	X	48350#	500#	6628#	13#	β^-	20760#	640#	40 051910#	540#
27	13		Al	X	27590#	400#	7127#	10#	β^-	22160#	530#	40 029620#	430#
26	14		Si	X	5430	350	7662	9	β^-	13540	380	40 005830	370
25	15		P	X	-8110	150	7981	4	β^-	14720	150	39 991290	160
24	16		S		-22838	4	8329.32	0.10	β^-	4720	30	39 975483	4
23	17		Cl	+	-27560	30	8427.8	0.8	β^-	7480	30	39 970420	30
22	18		Ar	-	-35039.8946	0.0022	8595.259	a	$oldsymbol{eta}^-$	-1504.40	0.06	39 962383.1238	0.0024
21	19		K		-33535.49	0.0022	8538.090	0.001	$oldsymbol{eta}^-$	1310.89	0.06	39 963998.17	0.0024
									ρ	1310.69	0.00		
20	20		Ca		-34846.384	0.021	8551.303	0.001	ο±		2.0	39 962590.866	0.022
19	21		Sc	_	-20523.3	2.8	8173.67	0.07	β^+	14323.0	2.8	39 977967	3
18	22		Ti		-8850	160	7862	4	β^+	11670	160	39 990500	170
17	23		V	X	12170#	300#	7317#	7#	$m{eta}^+$	21020#	340#	40 013070#	320#
28	13	41	Al	x	33420#	500#	7008#	12#	eta^-	21300#	750#	41 035880#	540#
27	14		Si	X	12120	550	7509	14	eta^-	17100	570	41 013010	600
26	15		P	X	-4980	120	7906.6	2.9	β^-	14030	120	40 994650	130
25	16		S	X	-19009	4	8229.64	0.10	β^-	8300	70	40 979593	4
24	17		Cl	X	-27310	70	8413.0	1.7	β^-	5760	70	40 970680	70
23	18		Ar	-n	-33067.5	0.3	8534.372	0.008	β^-	2492.0	0.3	40 964500.6	0.4
22	19		K	••	-35559.543	0.004	8576.072	a	۲	*		40 961825.258	0.004
21	20		Ca		-35137.89	0.004	8546.706	0.003	eta^+	421.65	0.14	40 961823.238	0.004
20	21		Sc		-28642.41	0.14	8369.198	0.003	eta^+	6495.48	0.14	40 969251.10	0.13
	22				-28642.41 -15698	28	8034.4					40 983150	30
19			Ti V	X				0.7 5#	$\beta^+_{oldsymbol{eta}^+}$	12945	28		
18	23		V	X	320#	200#	7625#	5#	$oldsymbol{eta}^+$	16020#	200#	41 000340#	220#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

			Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay e (keV)	neigy	Atomic n μu	nass
29	13	42	Al	х	40100#	600#	6874#	14#	β^-	23630#	780#	42 043050#	640#
28	14		Si	X	16470#	500#	7418#	12#	β^-	15460#	590#	42 017680#	540#
27	15		P	X	1010	310	7768	7	β^-	18650	310	42 001080	340
26	16		S	X	-17637.7	2.8	8193.23	0.07	β^-	7190	60	41 981065	3
25	17		Cl	X	-24830	60	8345.9	1.4	β^-	9590	60	41 973340	60
24	18		Ar	X	-34423	6	8555.61	0.14	$\dot{oldsymbol{eta}}^-$	599	6	41 963046	6
23	19		K	-n	-35022.03	0.11	8551.256	0.003	β^-	3525.22	0.18	41 962402.31	0.11
22	20		Ca		-38547.24	0.15	8616.563	0.004	r	*		41 958617.83	0.16
21	21		Sc		-32121.15	0.17	8444.933	0.004	β^+	6426.09	0.10	41 965516.52	0.18
20	22		Ti		-25104.67	0.28	8259.247	0.007	β^+	7016.48	0.22	41 973049.02	0.30
19	23		V	X	-7620#	200#	7824#	5#	β^+	17490#	200#	41 991820#	210#
18	24		Cr	X	6730#	400#	7464#	10#	$oldsymbol{eta}^+$	14350#	450#	42 007230#	430#
30	13	43	Al	x	47020#	800#	6741#	19#	eta^-	23920#	1000#	43 050480#	860#
29	14		Si	X	23100#	600#	7279#	14#	eta^-	18420#	810#	43 024800#	640#
28	15		P	X	4680	550	7690	13	β^-	16880	550	43 005020	600
27	16		S	X	-12195	5	8063.83	0.12	β^-	11960	60	42 986908	5
26	17		Cl	X	-24160	60	8323.9	1.4	β^-	7850	60	42 974060	70
25	18		Ar	X	-32010	5	8488.24	0.12	β^-	4566	5	42 965636	6
24	19		K	-4n	-36575.4	0.4	8576.220	0.010	β^-	1833.4	0.5	42 960734.7	0.4
23	20		Ca		-38408.82	0.23	8600.663	0.005		*		42 958766.43	0.24
22	21		Sc	-p	-36188.1	1.9	8530.82	0.04	eta^+	2220.7	1.9	42 961150.5	2.0
21	22		Ti	-n2p	-29321	7	8352.93	0.17	β^+	6867	7	42 968523	8
20	23		V	X	-17920	40	8069.5	1.0	β^+	11400	40	42 980770	50
19	24		Cr	X	-1970#	400#	7680#	9#	β^+	15950#	400#	42 997890#	430#
30	14	44	Si	x	28510#	600#	7174#	14#	β^-	18060#	780#	44 030610#	640#
29	15		P	X	10450#	500#	7567#	11#	β^-	19660#	500#	44 011220#	540#
28	16		S	X	-9204	5	7996.01	0.12	β^-	11180	140	43 990119	6
27	17		Cl	X	-20380	140	8232	3	β^-	12290	140	43 978120	150
26	18		Ar	X	-32673.3	1.6	8493.84	0.04	β^-	3108.2	1.6	43 964923.8	1.7
25	19		K	X	-35781.5	0.4	8546.701	0.010	eta^-	5687.2	0.5	43 961587.0	0.5
24	20		Ca		-41468.7	0.3	8658.175	0.007		*		43 955481.5	0.3
23	21		Sc	-p	-37816.0	1.8	8557.38	0.04	$oldsymbol{eta}^+$	3652.7	1.8	43 959402.9	1.9
22	22		Ti	$-\alpha$	-37548.6	0.7	8533.520	0.016	β^+	267.4	1.9	43 959690.0	0.8
21	23		V	X	-24120	180	8210	4	$oldsymbol{eta}^+$	13430	180	43 974110	200
20	24		Cr	X	-13360#	300#	7948#	7#	$oldsymbol{eta}^+$	10760#	350#	43 985660#	320#
19	25		Mn	X	7030#	500#	7467#	11#	$oldsymbol{eta}^+$	20390#	580#	44 007550#	540#
31	14	45	Si	X	37490#	700#	6995#	16#	β^-	21890#	860#	45 040250#	750#
30	15		P	X	15600#	500#	7464#	11#	β^-	19590#	1150#	45 016750#	540#
29	16		S	X	-3990	1040	7882	23	β^-	14270	1040	44 995720	1110
28	17		Cl	X	-18260	140	8182	3	β^-	11510	140	44 980390	150
27	18		Ar	X	-29770.8	0.5	8419.952	0.011	β^-	6844.8	0.7	44 968039.7	0.6
26	19		K	X	-36615.6	0.5	8554.674	0.012	β^-	4196.5	0.6	44 960691.5	0.6
25	20		Ca		-40812.2	0.4	8630.545	0.008	eta^-	259.7	0.7	44 956186.3	0.4
24	21		Sc		-41071.9	0.7	8618.931	0.015		*		44 955907.5	0.7
23	22		Ti		-39009.8	0.8	8555.722	0.019	β^+	2062.1	0.5	44 958121.2	0.9
22	23		V		-31886.0	0.9	8380.029	0.019	β^+	7123.82	0.21	44 965769.0	0.9
21	24		Cr	X	-19510	40	8087.7	0.8	β^+	12370	40	44 979050	40
20	25		Mn	X	-5250#	400#	7753#	9#	β^+	14270#	400#	44 994360#	430#
19	26		Fe	-pp	13760#	400#	7313#	9#	$oldsymbol{eta}^+$	19010#	570#	45 014770#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	Α	Elt.	Orig.	Mass exc (keV)			ng energy eleon (keV)		Beta-decay (keV)		Atomic m μu	nass
31	15	46	P	х	22970#	700#	7317#	15#	β^-	22630#	860#	46 024660#	750#
30	16		S	X	340#	500#	7792#	11#	'β-	14200#	540#	46 000370#	540#
29	17		Cl	X	-13860	210	8083	5	β^-	15910	210	45 985120	220
28	18		Ar	X	-29772.9	1.1	8412.419	0.024	β^-	5641.0	1.3	45 968037.4	1.2
27	19		K	X	-35413.9	0.7	8518.042	0.016	β^-	7725.4	2.4	45 961981.6	0.8
26	20		Ca		-43139.4	2.2	8668.98	0.05	β^-	-1378.1	2.3	45 953688.0	2.4
25	21		Sc	-n	-41761.2	0.7	8622.012	0.015	β^-	2366.6	0.7	45 955167.5	0.7
24	22		Ti		-44127.80	0.16	8656.451	0.004	Ρ	*	0.7	45 952626.86	0.18
23	23		V		-37075.35	0.20	8486.130	0.004	β^+	7052.45	0.09	45 960197.97	0.22
22	24		Cr		-29472	11	8303.82	0.25	β^+	7604	11	45 968361	12
21	25		Mn	X	-12570#	400#	7919#	9#	β^+	16900#	400#	45 986510#	430#
20	26		Fe	x	910#	500#	7609#	11#	β^+	13480#	640#	46 000980#	540#
32	15	47	P	x	29710#	800#	7190#	17#	eta^-	22340#	940#	47 031900#	860#
31	16		S	X	7370#	500#	7648#	11#	β^-	17150#	640#	47 007910#	540#
30	17		Cl	X	-9780#	400#	7996#	9#	β^-	15590#	400#	46 989500#	430#
29	18		Ar	X	-25366.3	1.1	8311.404	0.024	eta^-	10345.6	1.8	46 972768.1	1.2
28	19		K	X	-35712.0	1.4	8514.879	0.030	β^-	6632.4	2.6	46 961661.6	1.5
27	20		Ca		-42344.4	2.2	8639.35	0.05	eta^-	1992.2	1.2	46 954541.4	2.4
26	21		Sc		-44336.6	1.9	8665.09	0.04	β^-	600.8	1.9	46 952402.7	2.1
25	22		Ti		-44937.36	0.12	8661.227	0.003		*		46 951757.75	0.12
24	23		V		-42006.62	0.17	8582.225	0.004	$oldsymbol{eta}^+$	2930.75	0.14	46 954904.04	0.18
23	24		Cr		-34563	6	8407.20	0.13	$\dot{oldsymbol{eta}}^+$	7444	6	46 962896	6
22	25		Mn	X	-22570	30	8135.3	0.7	$\dot{oldsymbol{eta}^+}$	12000	30	46 975770	30
21	26		Fe	X	-6870#	500#	7785#	11#	$oldsymbol{eta}^+$	15700#	500#	46 992630#	540#
20	27		Co	X	10370#	600#	7401#	13#	eta^+	17240#	780#	47 011130#	640#
32	16	48	S	X	12760#	600#	7545#	12#	eta^-	17040#	780#	48 013700#	640#
31	17		C1	X	-4280#	500#	7883#	10#	β^-	18000#	590#	47 995410#	540#
30	18		Ar	X	-22280	310	8242	6	eta^-	10000	310	47 976080	330
29	19		K	X	-32284.5	0.8	8434.232	0.016	eta^-	11940.2	0.8	47 965341.2	0.8
28	20		Ca		-44224.63	0.10	8666.686	0.002	eta^-	279	5	47 952522.90	0.10
27	21		Sc		-44504	5	8656.20	0.10	$oldsymbol{eta}^-$	3989	5	47 952223	5
26	22		Ti		-48492.71	0.11	8723.006	0.002		*		47 947940.93	0.12
25	23		V		-44477.7	1.0	8623.061	0.020	β^+	4015.0	1.0	47 952251.2	1.0
24	24		Cr	+nn	-42822	7	8572.27	0.15	$oldsymbol{eta}^+$	1656	7	47 954029	8
23	25		Mn		-29296	7	8274.19	0.14	$oldsymbol{eta}^+$	13526	10	47 968549	7
22	26		Fe	X	-18000#	400#	8023#	8#	β^+	11300#	400#	47 980680#	430#
21	27		Co	X	1500#	500#	7600#	10#	β^+	19500#	640#	48 001610#	540#
20	28		Ni	-pp	16790#	500#	7265#	10#	$m{eta}^+$	15290#	710#	48 018030#	540#
33	16	49	S	-n	21090#	670#	7385#	14#	β^-	20150#	900#	49 022640#	720#
32	17		Cl	X	940#	600#	7781#	12#	β^-	18130#	720#	49 001010#	640#
31	18		Ar	X	-17190#	400#	8135#	8#	β^-	12420#	400#	48 981550#	430#
30	19		K	X	-29611.5	0.8	8372.274	0.016	β^-	11688.3	0.8	48 968210.8	0.9
29	20		Ca	-n	-41299.77	0.20	8594.844	0.004	β^-	5261.5	2.7	48 955662.88	0.22
28	21		Sc		-46561.3	2.7	8686.26	0.06	eta^-	2002.5	2.7	48 950014.4	2.9
27	22		Ti		-48563.79	0.11	8711.157	0.002	~ .	*		48 947864.63	0.12
26	23		V	_	-47961.9	0.8	8682.908	0.017	β^+	601.9	0.8	48 948510.7	0.9
25	24		Cr		-45333.1	2.2	8613.29	0.05	β^+	2628.9	2.4	48 951333.0	2.4
24	25		Mn		-37620.6	2.3	8439.93	0.05	β^+	7712.43	0.23	48 959612.6	2.4
23	26		Fe	X	-24751	24	8161.3	0.5	β^+	12870	24	48 973429	26
22	27		Co	X	-9880#	500#	7842#	10#	β^+	14870#	500#	48 989390#	540#
21	28		Ni	X	8200#	600#	7457#	12#	eta^+	18080#	780#	49 008800#	640#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV)	energy	Atomic m μu	nass
33	17	50	Cl	х	7740#	600#	7651#	12#	β-	21070#	780#	50 008310#	640#
32	18		Ar	X	-13330#	500#	8056#	10#	β^-	12400#	500#	49 985690#	540#
31	19		K	X	-25728	8	8288.58	0.15	β^-	13861	8	49 972380	8
30	20		Ca	X	-39589.2	1.6	8550.16	0.03	β^-	4958	15	49 957499.2	1.7
29	21		Sc	-pn	-44547	15	8633.7	0.3	β^-	6884	15	49 952176	16
28	22		Ti	F	-51431.66	0.12	8755.718	0.002	β^-	-2207.6	0.4	49 944785.84	0.13
27	23		V	+n	-49224.0	0.4	8695.918	0.008	β^-	1038.06	0.30	49 947155.8	0.4
26	24		Cr		-50262.1	0.4	8701.032	0.009	r	*		49 946041.4	0.5
25	25		Mn		-42627.6	0.4	8532.696	0.009	β^+	7634.48	0.07	49 954237.4	0.5
24	26		Fe	X	-34476	8	8354.03	0.17	β^+	8151	8	49 962988	9
23	27		Co	X	-17630#	400#	8001#	8#	β^+	16850#	400#	49 981070#	430#
22	28		Ni	x	-4120#	500#	7716#	10#	$m{eta}^+$	13510#	640#	49 995580#	540#
34	17	51	Cl	x	14290#	700#	7530#	14#	eta^-	20980#	920#	51 015340#	750#
33	18		Ar	X	-6690#	600#	7926#	12#	eta^-	15830#	600#	50 992820#	640#
32	19		K	X	-22516	13	8221.35	0.26	eta^-	13816	13	50 975828	14
31	20		Ca	X	-36332.3	0.5	8476.913	0.010	eta^-	6896	20	50 960995.7	0.6
30	21		Sc	-p2n	-43229	20	8596.8	0.4	eta^-	6504	20	50 953592	21
29	22		Ti	-n	-49732.8	0.5	8708.988	0.010	eta^-	2471.0	0.6	50 946609.6	0.5
28	23		V		-52203.8	0.4	8742.099	0.008		*		50 943956.9	0.4
27	24		Cr		-51451.4	0.4	8712.005	0.008	eta^+	752.45	0.21	50 944764.7	0.4
26	25		Mn		-48243.9	0.5	8633.772	0.010	$oldsymbol{eta}^+$	3207.5	0.3	50 948208.1	0.5
25	26		Fe		-40203	9	8460.76	0.18	$oldsymbol{eta}^+$	8041	9	50 956841	10
24	27		Co	X	-27340	50	8193.3	0.9	eta^+	12860	50	50 970650	50
23	28		Ni	X	-11900#	500#	7875#	10#	eta^+	15440#	500#	50 987230#	540#
34	18	52	Ar	X	-1280#	600#	7825#	12#	β^-	15860#	600#	51 998630#	640#
33	19		K	X	-17140	30	8115.0	0.6	β^-	17130	30	51 981600	40
32	20		Ca	X	-34266.3	0.7	8429.381	0.013	β^-	6180	80	51 963213.6	0.7
31	21		Sc	X	-40440	80	8533.1	1.6	β^-	9030	80	51 956580	90
30	22		Ti	-nn	-49470	7	8691.67	0.14	β^-	1974	7	51 946892	8
29	23		V	-n	-51443.8	0.4	8714.582	0.008	β^-	3975.5	0.5	51 944772.8	0.5
28	24		Cr		-55419.2	0.3	8775.989	0.007		*		51 940505.0	0.4
27	25		Mn		-50707.3	1.8	8670.33	0.04	eta^+	4712.0	1.9	51 945563.5	2.0
26	26		Fe		-48330	5	8609.57	0.10	$m{eta}^+$	2377	5	51 948115	5
25	27		Co	X	-34361	8	8325.89	0.16	eta^+	13969	10	51 963112	9
24	28		Ni	X	-22330#	400#	8079#	8#	eta^+	12030#	400#	51 976030#	430#
23	29		Cu	x	-2280#	600#	7679#	12#	$oldsymbol{eta}^+$	20050#	720#	51 997550#	640#
35	18	53	Ar	x	6790#	700#	7677#	13#	$oldsymbol{eta}^-$	19090#	710#	53 007290#	750#
34	19		K	X	-12300	110	8022.8	2.1	eta^-	17090	120	52 986800	120
33	20		Ca	X	-29390	40	8330.6	0.8	eta^-	9520	100	52 968450	50
32	21		Sc	X	-38910	90	8495.4	1.8	eta^-	7920	140	52 958230	100
31	22		Ti	+	-46830	100	8630.2	1.9	eta^-	5020	100	52 949720	110
30	23		V	+p	-51851	3	8710.13	0.06	eta^-	3436	3	52 944336	3
29	24		Cr		-55287.0	0.3	8760.198	0.007		*		52 940647.0	0.4
28	25		Mn		-54690.1	0.5	8734.175	0.009	β^+	596.9	0.4	52 941287.7	0.5
27	26		Fe		-50947.5	1.7	8648.80	0.03	β^+	3742.6	1.7	52 945305.6	1.8
26	27		Co		-42659.4	1.7	8477.66	0.03	β^+	8288.1	0.4	52 954203.2	1.8
25	28		Ni	X	-29631	25	8217.1	0.5	β^+	13029	25	52 968190	27
24	29		Cu	X	-13270#	500#	7894#	9#	$m{eta}^+$	16360#	500#	52 985750#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay e (keV)	energy	Atomic n μu	nass
35	19	54	K	х	-5000#	600#	7889#	11#	β-	20160#	600#	53 994630#	640#
34	20		Ca	X	-25160	50	8247.5	0.9	β^-	8730	280	53 972990	50
33	21		Sc	X	-33890	270	8395	5	β^-	11730	280	53 963620	290
32	22		Ti	X	-45620	80	8597.4	1.5	β^-	4270	80	53 951020	90
31	23		V	+	-49893	15	8662.04	0.28	β^-	7042	15	53 946437	16
30	24		Cr		-56934.8	0.4	8777.955	0.007	β^-	-1377.1	1.0	53 938878.0	0.4
29	25		Mn	-p	-55557.6	1.1	8737.965	0.020	$m{eta}^-$	696.9	1.1	53 940356.4	1.1
28	26		Fe		-56254.5	0.4	8736.382	0.007		*		53 939608.3	0.4
27	27		Co		-48010.0	0.4	8569.217	0.007	eta^+	8244.55	0.09	53 948459.2	0.4
26	28		Ni	X	-39278	5	8393.03	0.09	eta^+	8732	5	53 957833	5
25	29		Cu	X	-21410#	400#	8048#	7#	β^+	17870#	400#	53 977020#	430#
24	30		Zn	-pp	-6270#	400#	7753#	7#	eta^+	15140#	570#	53 993270#	430#
36	19	55	K	x	710#	700#	7788#	13#	eta^-	19060#	760#	55 000760#	750#
35	20		Ca	X	-18350#	300#	8120#	5#	$oldsymbol{eta}^-$	11810#	540#	54 980300#	320#
34	21		Sc	X	-30160	450	8321	8	β^-	11510	480	54 967620	490
33	22		Ti		-41670	160	8516.0	2.9	eta^-	7480	160	54 955270	170
32	23		V		-49140	100	8637.7	1.7	β^-	5970	100	54 947240	100
31	24		Cr		-55109.7	0.4	8731.924	0.007	eta^-	2602.7	0.4	54 940837.3	0.4
30	25		Mn		-57712.4	0.3	8765.022	0.006	0.1	*	0.40	54 938043.2	0.3
29	26		Fe		-57481.3	0.3	8746.595	0.006	β^+	231.11	0.18	54 938291.3	0.4
28	27		Co		-54029.9	0.4	8669.618	0.008	β^+	3451.4	0.3	54 941996.5	0.5
27	28		Ni	_	-45335.8	0.7	8497.320	0.013	β^+	8694.0	0.6	54 951330.0	0.8
26	29		Cu	X	-31640	160	8234.0	2.8	$^{eta^+}_{eta^+}$	13700 17070#	160	54 966040	170
25	30		Zn	X	-14570#	400#	7909#	7#	P	1/0/0#	430#	54 984360#	430#
37	19	56	K	X	7930#	800#	7664#	14#	$oldsymbol{eta}^-$	21830#	900#	56 008510#	860#
36	20		Ca	X	-13900#	400#	8040#	7#	eta^-	10950#	710#	55 985080#	430#
35	21		Sc	X	-24850	590	8222	10	eta^-	14470	600	55 973320	630
34	22		Ti		-39320	120	8466.1	2.2	eta^-	6830	190	55 957790	130
33	23		V		-46150	180	8574	3	eta^-	9130	180	55 950450	190
32	24		Cr	++	-55285.0	0.6	8723.258	0.011	eta^-	1626.5	0.6	55 940649.1	0.6
31	25		Mn	-n	-56911.5	0.3	8738.333	0.006	eta^-	3695.54	0.21	55 938902.9	0.4
30	26		Fe		-60607.1	0.3	8790.354	0.005	- 1	*		55 934935.6	0.3
29	27		Co		-56040.4	0.5	8694.836	0.009	β^+	4566.7	0.4	55 939838.2	0.5
28	28		Ni		-53907.5	0.4	8642.779	0.008	β^+	2132.9	0.4	55 942127.9	0.5
27	29		Cu	X	-38643	15	8356.23	0.27	β^+	15265	15	55 958515	16
26	30		Zn	X	-25390#	400#	8106#	7#	β^+	13250#	400#	55 972740#	430#
25	31		Ga	X	-3390#	500#	7699#	9#	eta^+	22000#	640#	55 996360#	540#
37	20	57	Ca	x	-6870#	400#	7917#	7#	β^-	14120#	1360#	56 992620#	430#
36	21		Sc	X	-21000	1300	8151	23	β^-	12920	1330	56 977460	1400
35	22		Ti	X	-33920	260	8364	4	β^-	10500	270	56 963590	280
34	23		V	X	-44410	80	8534.8	1.4	β^-	8110	80	56 952320	90
33	24		Cr	X	-52524.7	1.1	8663.394	0.019	β^-	4961.5	1.8	56 943612.4	1.1
32	25		Mn		-57486.3	1.5	8736.713	0.026	eta^-	2695.6	1.5	56 938286.0	1.6
31	26		Fe		-60181.8	0.3	8770.279	0.005	0+	*	0.5	56 935392.1	0.3
30	27		Co		-59345.6	0.5	8741.882	0.009	β^+	836.3	0.5	56 936289.9	0.6
29	28		Ni		-56083.8	0.6	8670.933	0.010	β^+	3261.7	0.6	56 939791.5	0.6
28	29		Cu		-47308.9	0.5	8503.262	0.009	β^+	8774.9	0.4	56 949211.8	0.6
27	30		Zn	X	-32550#	200#	8231#	4# 7#	β^+	14760#	200#	56 965060#	220#
26	31		Ga	X	-15010#	400#	7909#	7#	eta^+	17540#	450#	56 983890#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

		A	Elt.	Orig.	Mass exe (keV			ng energy leon (keV)		Beta-decay (keV)	energy	Atomic m μu	nass
38	20	58	Ca	X	-1920#	500#	7835#	9#	β-	12960#	640#	57 997940#	540#
37	21		Sc	X	-14880#	400#	8045#	7#	$m{eta}^-$	16230#	450#	57 984030#	430#
36	22		Ti	X	-31110#	200#	8311#	3#	β^-	9290#	220#	57 966600#	220#
35	23		V	X	-40400	90	8457.7	1.5	β^-	11590	90	57 956630	100
34	24		Ċr	X	-51991.8	1.5	8643.998	0.026	β^-	3836	3	57 944184.5	1.6
33	25		Mn	X	-55827.6	2.7	8696.64	0.020	β^-	6327.6	2.7	57 940066.6	2.9
32	26		Fe	Α.	-62155.1	0.3	8792.250	0.006	β^-	-2308.0	1.1	57 933273.7	0.4
31	27		Co		-59847.2	1.2	8738.969	0.000	β^-	381.6	1.1	57 935751.4	1.2
30	28		Ni		-60228.7	0.4	8732.059	0.020	ρ	361.0 *	1.1	57 935341.8	0.4
29	29		Cu		-51667.7	0.4	8570.967		β^+	8561.0	0.4	57 944532.4	0.4
			Zn			50	8395.9	0.010	β^+	9370	0.4 50		50
28	30				-42300 -225.40#			0.9				57 954590 57 974730#	
27	31		Ga	X	-23540#	300#	8059#	5#	β^+	18760#	300#	57 974730#	320#
26	32		Ge	X	-7080#	500#	7762#	9#	eta^+	16460#	580#	57 992400#	540#
38	21	59	Sc	x	-10300#	400#	7967#	7#	β^-	15210#	450#	58 988940#	430#
37	22		Ti	X	-25510#	200#	8212#	3#	β^-	12320#	260#	58 972610#	220#
36	23		V	X	-37830	160	8407.6	2.7	β^-	10250	270	58 959390	170
35	24		Cr	X	-48090	220	8568	4	β^-	7440	220	58 948380	230
34	25		Mn	X	-55525.3	2.3	8680.92	0.04	β^-	5139.5	2.4	58 940391.1	2.5
33	26		Fe		-60664.8	0.4	8754.771	0.006	eta^-	1564.9	0.4	58 934873.6	0.4
32	27		Co		-62229.7	0.4	8768.035	0.007		*		58 933193.7	0.4
31	28		Ni		-61156.7	0.4	8736.588	0.006	β^+	1073.00	0.19	58 934345.6	0.4
30	29		Cu		-56358.3	0.5	8642.000	0.009	$oldsymbol{eta}^+$	4798.4	0.4	58 939496.8	0.6
29	30		Zn		-47215.6	0.8	8473.777	0.013	eta^+	9142.8	0.6	58 949312.0	0.8
28	31		Ga	X	-33760#	170#	8232#	3#	β^+	13460#	170#	58 963760#	180#
27	32		Ge	X	-15870#	400#	7916#	7#	eta^+	17890#	430#	58 982960#	430#
39	21	60	Sc	x	-4050#	500#	7865#	8#	$oldsymbol{eta}^-$	18280#	580#	59 995650#	540#
38	22		Ti	X	-22330#	300#	8157#	5#	eta^-	10910#	370#	59 976030#	320#
37	23		V	X	-33240	220	8325	4	eta^-	13430	290	59 964310	240
36	24		Cr	X	-46670	190	8536	3	eta^-	6300	190	59 949900	210
35	25		Mn	X	-52967.9	2.3	8628.14	0.04	eta^-	8445	4	59 943136.6	2.5
34	26		Fe	-nn	-61413	3	8755.85	0.06	eta^-	237	3	59 934070	4
33	27		Co	-n	-61650.3	0.4	8746.766	0.007	eta^-	2822.81	0.21	59 933815.7	0.5
32	28		Ni		-64473.1	0.4	8780.774	0.006		*		59 930785.3	0.4
31	29		Cu	_	-58345.1	1.6	8665.602	0.027	eta^+	6128.0	1.6	59 937363.9	1.7
30	30		Zn		-54174.3	0.6	8583.050	0.009	eta^+	4170.8	1.6	59 941841.5	0.6
29	31		Ga	X	-39590#	200#	8327#	3#	$\dot{oldsymbol{eta}^+}$	14580#	200#	59 957500#	220#
28	32		Ge	X	-27090#	300#	8106#	5#	eta^+	12500#	360#	59 970920#	320#
27	33		As	X	-5470#	400#	7732#	7#	$m{eta}^+$	21620#	500#	59 994130#	430#
40	21	61	Sc	x	930#	600#	7787#	10#	eta^-	17280#	720#	61 001000#	640#
39	22		Ti	X	-16350#	400#	8057#	7#	β^-	14160#	980#	60 982450#	430#
38	23		V	X	-30510	890	8276	15	β^-	11970	900	60 967250	960
37	24		Cr	X	-42480	100	8459.8	1.7	β^-	9270	100	60 954400	110
36	25		Mn	X	-51742.1	2.3	8598.91	0.04	β^-	7178	3	60 944452.5	2.5
35	26		Fe	X	-58920.5	2.6	8703.77	0.04	β^-	3977.6	2.7	60 936746.2	2.8
34	27		Co	p2n	-62898.1	0.8	8756.148	0.014	$m{eta}^-$	1323.8	0.8	60 932476.1	0.9
33	28		Ni	-	-64221.9	0.4	8765.025	0.006	•	*		60 931054.9	0.4
32	29		Cu	p2n	-61984.1	1.0	8715.514	0.016	eta^+	2237.8	1.0	60 933457.4	1.0
31	30		Zn	•	-56349	16	8610.31	0.26	β^+	5635	16	60 939507	17
30	31		Ga		-47130	40	8446.4	0.6	β^+	9210	40	60 949400	40
29	32		Ge	X	-33360#	300#	8208#	5#	β^+	13780#	300#	60 964190#	320#
-	33		As	X	-16900#	300#	7925#	5#	β^+	16460#	420#	60 981860#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay en (keV)	ergy	Atomic m μu	nass
40	22	62	Ti	Х	-12500#	400#	7995#	6#	β-	12980#	500#	61 986580#	430#
39	23		V	X	-25480#	300#	8192#	5#	β^-	15420#	330#	61 972650#	320#
38	24		Cr	X	-40890	150	8428.1	2.4	β^-	7630	150	61 956100	160
37	25		Mn	IT	-48524	7	8538.50	0.11	'β-	10354	7	61 947907	7
36	26		Fe	X	-58878.0	2.8	8692.88	0.05	β-	2546	19	61 936792	3
35	27		Co	+	-61424	19	8721.33	0.30	<i>β</i> -	5322	19	61 934058	20
34	28		Ni		-66746.3	0.4	8794.553	0.007	,	*		61 928344.9	0.5
33	29		Cu	_	-62787.4	0.6	8718.081	0.010	β^+	3958.9	0.5	61 932594.9	0.7
32	30		Zn		-61168.0	0.6	8679.343	0.010	$\dot{oldsymbol{eta}^+}$	1619.5	0.7	61 934333.5	0.7
31	31		Ga		-51986.9	0.6	8518.642	0.010	β^+	9181.1	0.4	61 944189.8	0.7
30	32		Ge	x	-41740#	140#	8341#	2#	β^+	10250#	140#	61 955190#	150#
29	33		As	X	-24320#	300#	8047#	5#	β^+	17420#	330#	61 973890#	320#
41	22	63	Ti	X	-5750#	500#	7889#	8#	eta^-	16140#	640#	62 993830#	540#
40	23		V	X	-21890#	400#	8133#	6#	eta^-	14120#	540#	62 976500#	430#
39	24		Cr	X	-36010	360	8345	6	$oldsymbol{eta}^-$	10880	360	62 961340	380
38	25		Mn	X	-46887	4	8505.10	0.06	$oldsymbol{eta}^-$	8749	6	62 949665	4
37	26		Fe		-55636	4	8631.55	0.07	eta^-	6216	19	62 940273	5
36	27		Co		-61851	19	8717.79	0.29	β^-	3661	19	62 933600	20
35	28		Ni		-65512.8	0.4	8763.493	0.007	$oldsymbol{eta}^-$	66.977	0.015	62 929669.1	0.5
34	29		Cu		-65579.8	0.4	8752.138	0.007		*		62 929597.2	0.5
33	30		Zn		-62213.4	1.6	8686.285	0.025	β^+	3366.4	1.5	62 933211.2	1.7
32	31		Ga	X	-56547.1	1.3	8583.926	0.021	β^+	5666.3	2.0	62 939294.2	1.4
31	32		Ge	X	-46920	40	8418.7	0.6	β^+	9630	40	62 949630	40
30	33		As	X	-33500#	200#	8193#	3#	eta^+	13420#	200#	62 964040#	220#
42	22	64	Ti	X	-1030#	600#	7818#	9#	$oldsymbol{eta}^-$	15300#	720#	63 998900#	640#
41	23		V	X	-16320#	400#	8045#	6#	β^-	17160#	590#	63 982480#	430#
40	24		Cr	X	-33480	440	8301	7	$oldsymbol{eta}^-$	9510	440	63 964060	470
39	25		Mn	X	-42989	4	8437.42	0.06	eta^-	11981	6	63 953849	4
38	26		Fe	X	-54970	5	8612.39	0.08	β^-	4823	21	63 940988	5
37	27		Co	+	-59792	20	8675.5	0.3	eta^-	7307	20	63 935810	21
36	28		Ni		-67098.9	0.5	8777.461	0.007	$oldsymbol{eta}^-$	-1674.38	0.23	63 927966.3	0.5
35	29		Cu		-65424.5	0.4	8739.075	0.007	eta^-	579.5	0.6	63 929763.9	0.5
34	30		Zn		-66004.0	0.6	8735.905	0.010		*		63 929141.8	0.7
33	31		Ga		-58832.8	1.4	8611.631	0.022	β^+	7171.2	1.5	63 936840.4	1.5
32	32		Ge	X	-54315	4	8528.82	0.06	β^+	4517	4	63 941690	4
31	33		As	-р	-39530#	200#	8286#	3#	β^+	14780#	200#	63 957560#	220#
30	34		Se	X	-26700#	500#	8073#	8#	eta^+	12830#	540#	63 971340#	540#
42	23	65	V	X	-11780#	500#	7976#	8#	β^-	16440#	580#	64 987350#	540#
41	24		Cr	X	-28220#	300#	8217#	5#	β^-	12750#	300#	64 969710#	320#
40	25		Mn	X	-40967	4	8400.68	0.06	β^-	10251	6	64 956020	4
39	26		Fe	X	-51218	5	8546.35	0.08	β^-	7967	6	64 945015	5
38	27		Co	X	-59185.2	2.1	8656.88	0.03	β^-	5940.5	2.1	64 936462.1	2.2
37	28		Ni	-n	-65125.7	0.5	8736.240	0.008	eta^-	2138.0	0.7	64 930084.7	0.5
36	29		Cu		-67263.7	0.6	8757.096	0.010	ο±	*	0.4	64 927789.5	0.7
35	30		Zn		-65912.0	0.6	8724.265	0.010	β^+	1351.6	0.4	64 929240.5	0.7
34	31		Ga		-62657.5	0.8	8662.160	0.013	β^+	3254.5	0.7	64 932734.4	0.9
33	32		Ge		-56478.2	2.2	8555.06	0.03	β^+	6179.3	2.3	64 939368.1	2.3
32	33		As	X	-46940 -22020#	80	8396.2	1.3	β^+	9540	80	64 949610	90
31	34		Se	X	-33020#	300#	8170#	5#	$oldsymbol{eta}^+$	13920#	310#	64 964550#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

43 42 41 40 39	23 24 25	66			(keV)	`							
42 41 40	24	66)	per nuc	leon (keV)		(keV)	μ u	
42 41 40			V	х	-5610#	500#	7884#	8#	β-	19110#	640#	65 993980#	540#
41 40	25		Cr	X	-24720#	400#	8161#	6#	β^-	12030#	400#	65 973460#	430#
	23		Mn	X	-36750	11	8331.80	0.17	β^-	13317	12	65 960547	12
39	26		Fe	X	-50068	4	8521.72	0.06	β^-	6341	15	65 946250	4
	27		Co	X	-56409	14	8605.94	0.21	β^-	9598	14	65 939443	15
38	28		Ni	X	-66006.3	1.4	8739.508	0.021	β^-	252.0	1.5	65 929139.3	1.5
37	29		Cu		-66258.3	0.7	8731.472	0.010	β^-	2640.9	0.9	65 928868.8	0.7
36	30		Zn		-68899.2	0.7	8759.632	0.011	,	*		65 926033.7	0.8
35	31		Ga	_	-63723.7	1.1	8669.361	0.017	eta^+	5175.5	0.8	65 931589.8	1.2
34	32		Ge	X	-61607.0	2.4	8625.44	0.04	β^+	2116.6	2.6	65 933862.1	2.6
33	33		As	x	-52025	6	8468.40	0.09	$m{eta}^+$	9582	6	65 944149	6
32	34		Se	X	-41660#	200#	8300#	3#	$m{eta}^+$	10370#	200#	65 955280#	220#
44	23	67	V	x	-650#	600#	7812#	9#	eta^-	18030#	720#	66 999300#	640#
43	24		Cr	X	-18680#	400#	8070#	6#	eta^-	14780#	500#	66 979950#	430#
42	25		Mn	X	-33460#	300#	8279#	4#	eta^-	12150#	400#	66 964080#	320#
41	26		Fe	X	-45610	270	8448	4	eta^-	9710	270	66 951040	290
40	27		Co	X	-55322	6	8581.74	0.10	eta^-	8421	7	66 940610	7
39	28		Ni	X	-63742.7	2.9	8695.75	0.04	eta^-	3577	3	66 931569	3
38	29		Cu		-67319.5	0.9	8737.458	0.013	eta^-	560.8	0.8	66 927729.5	1.0
37	30		Zn		-67880.3	0.8	8734.152	0.011		*		66 927127.5	0.8
36	31		Ga		-66879.0	1.2	8707.531	0.018	eta^+	1001.3	1.1	66 928202.4	1.3
35	32		Ge	-n2p	-62658	5	8632.86	0.07	$oldsymbol{eta}^+$	4221	5	66 932734	5
34	33		As		-56587.2	0.4	8530.568	0.007	$m{eta}^+$	6071	5	66 939251.1	0.5
33	34		Se	X	-46580	70	8369.5	1.0	β^+	10010	70	66 949990	70
32	35		Br	X	-32790#	400#	8152#	6#	eta^+	13790#	410#	66 964800#	430#
44	24	68	Cr	X	-14800#	500#	8013#	7#	eta^-	13580#	640#	67 984110#	540#
43	25		Mn	X	-28380#	400#	8201#	6#	β^-	15110#	540#	67 969530#	430#
42	26		Fe	x	-43490	370	8412	5	β^-	8440	410	67 953310	390
41	27		Co	X	-51930	190	8524.4	2.8	β^-	11530	190	67 944250	200
40	28		Ni	X	-63463.8	3.0	8682.47	0.04	β^-	2103	3	67 931869	3
39	29		Cu	X	-65567.0	1.6	8701.890	0.023	β^-	4440.1	1.8	67 929610.9	1.7
38	30		Zn		-70007.1	0.8	8755.680	0.012	•	*		67 924844.3	0.8
37	31		Ga	_	-67086.0	1.4	8701.218	0.021	eta^+	2921.1	1.2	67 927980.2	1.5
36	32		Ge	X	-66978.8	1.9	8688.136	0.028	β^+	107.2	2.4	67 928095.3	2.0
35	33		As		-58894.5	1.8	8557.745	0.027	eta^+	8084.3	2.6	67 936774.1	2.0
34	34		Se	X	-54189.4	0.5	8477.047	0.007	eta^+	4705.1	1.9	67 941825.2	0.5
33	35		Br	-p	-38790#	260#	8239#	4#	eta^+	15400#	260#	67 958360#	280#
45	24	69	Cr	x	-8580#	500#	7924#	7#	$oldsymbol{eta}^-$	16190#	640#	68 990790#	540#
44	25		Mn	X	-24770#	400#	8147#	6#	$oldsymbol{eta}^-$	14260#	570#	68 973410#	430#
43	26		Fe	X	-39030#	400#	8342#	6#	β^-	11250#	420#	68 958100#	430#
42	27		Co	X	-50280	140	8493.9	2.0	$oldsymbol{eta}^-$	9700	140	68 946020	150
41	28		Ni	X	-59979	4	8623.10	0.05	eta^-	5758	4	68 935610	4
40	29		Cu	X	-65736.2	1.4	8695.204	0.020	$oldsymbol{eta}^-$	2681.6	1.6	68 929429.3	1.5
39	30		Zn	-n	-68417.8	0.8	8722.729	0.012	eta^-	910.0	1.4	68 926550.4	0.9
38	31		Ga		-69327.8	1.2	8724.579	0.017		*		68 925573.5	1.3
37	32		Ge		-67100.7	1.3	8680.963	0.019	β^+	2227.1	0.5	68 927964.5	1.4
36	33		As		-63110	30	8611.8	0.5	β^+	3990	30	68 932250	30
35	34		Se		-56434.7	1.5	8503.707	0.022	β^+	6680	30	68 939414.8	1.6
34	35		Br	-p	-46260	40	8344.9	0.6	β^+	10180	40	68 950340	50
33	36		Kr	X	-32440#	400#	8133#	6#	$oldsymbol{eta}^+$	13830#	400#	68 965180#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ng energy eleon (keV)		Beta-decay (keV)		Atomic m μu	ıass
46	24	70	Cr	x	-4480#	600#	7867#	9#	β^-	15020#	780#	69 995190#	640#
45	25		Mn	X	-19500#	500#	8070#	7#	β^-	17010#	640#	69 979070#	540#
44	26		Fe	X	-36510#	400#	8302#	6#	β^-	10120#	500#	69 960810#	430#
43	27		Co	X	-46630#	300#	8436#	4#	β^-	12580#	300#	69 949940#	320#
42	28		Ni	X	-59213.9	2.1	8604.29	0.03	β^-	3762.5	2.4	69 936431.3	2.3
41	29		Cu	X	-62976.4	1.1	8646.865	0.015	β^-	6588.4	2.2	69 932392.1	1.2
40	30		Zn		-69564.7	1.9	8729.808	0.027	β^-	-654.6	1.6	69 925319.2	2.1
39	31		Ga		-68910.1	1.2	8709.280	0.017	β^-	1651.7	1.5	69 926021.9	1.3
38	32		Ge		-70561.9	0.8	8721.700	0.012		*		69 924248.7	0.9
37	33		As	_	-64340	50	8621.7	0.7	β^+	6220	50	69 930930	50
36	34		Se	X	-61929.9	1.6	8576.033	0.023	β^+	2410	50	69 933515.5	1.7
35	35		Br	X	-51426	15	8414.80	0.21	β^+	10504	15	69 944792	16
34	36		Kr	X	-41100#	200#	8256#	3#	eta^+	10330#	200#	69 955880#	220#
46	25	71	Mn	X	-15570#	500#	8015#	7#	β^-	15860#	640#	70 983290#	540#
45	26		Fe	X	-31430#	400#	8227#	6#	β^-	12940#	610#	70 966260#	430#
44	27		Co	X	-44370	470	8399	7	β^-	11040	470	70 952370	500
43	28		Ni	X	-55406.2	2.2	8543.16	0.03	β^-	7304.9	2.7	70 940519.0	2.4
42	29		Cu	X	-62711.1	1.5	8635.022	0.021	β^-	4618	3	70 932676.8	1.6
41 40	30 31		Zn Ga		-67328.8 -70139.1	2.7 0.8	8689.04 8717.604	0.04 0.011	$oldsymbol{eta}^-$	2810.4	2.8	70 927719.6 70 924702.5	2.8 0.9
39	32		Ge		-70139.1 -69906.5	0.8	8703.309	0.011	eta^+	232.64	0.22	70 924702.3	0.9
38	33		As		-67893	0.8 4	8663.93	0.012	β^+	2013	4	70 924932.3 70 927114	0.9 4
37	34		Se	x	-63146.5	2.8	8586.06	0.04	β^+	4747	5	70 932209	3
36	35		Br	А	-56502	5	8481.46	0.04	β^+	6644	6	70 939342	6
35	36		Kr		-46330	130	8327.1	1.8	β^+	10180	130	70 950270	140
34	37		Rb	X	-32060#	400#	8115#	6#	β^+	14270#	420#	70 965580#	430#
47	25	72	Mn	X	-9900#	600#	7937#	8#	β^-	18530#	780#	71 989370#	640#
46	26		Fe	X	-28430#	500#	8184#	7#	$\dot{oldsymbol{eta}}^-$	11770#	640#	71 969480#	540#
45	27		Co	X	-40200#	400#	8336#	6#	β^-	14030#	400#	71 956840#	430#
44	28		Ni	X	-54226.1	2.2	8520.21	0.03	β^-	5556.9	2.6	71 941785.9	2.4
43	29		Cu	X	-59783.0	1.4	8586.525	0.019	eta^-	8362.5	2.6	71 935820.3	1.5
42	30		Zn	X	-68145.5	2.1	8691.805	0.030	eta^-	442.8	2.3	71 926842.8	2.3
41	31		Ga		-68588.3	0.8	8687.089	0.011	eta^-	3997.6	0.8	71 926367.4	0.9
40	32		Ge		-72585.90	0.08	8731.745	0.001		*		71 922075.83	0.08
39	33		As	_	-68230	4	8660.38	0.06	β^+	4356	4	71 926752	4
38	34		Se	X	-67868.2	2.0	8644.489	0.027	β^+	362	5	71 927140.5	2.1
37	35		Br	X	-59061.7	1.0	8511.312	0.014	β^+	8806.4	2.2	71 936594.6	1.1
36 35	36 37		Kr Rb	X X	-53941 -38330#	8 500#	8429.32 8202#	0.11 7#	$eta^+ eta^+ eta^+$	5121 15610#	8 500#	71 942092 71 958850#	9 540#
47	26	73	Ea	v	-22900#	500#	8106#	7#	ρ-	14520#	640#	72 975420#	540#
46	26 27	13	Fe Co	X	-22900# -37420#	400#	8295#	7# 5#	$eta^- eta^-$	14520#	400#	72 959830#	430#
45	28		Ni	X X	-50108.2	2.4	8457.65	0.03	eta^-	8879	3	72 946206.7	2.6
44	29		Cu	А	-58987.4	1.9	8568.569	0.03	$oldsymbol{eta}^{oldsymbol{eta}}$	6606.0	2.7	72 936674.4	2.1
43	30		Zn	X	-65593.4	1.9	8648.345	0.027	β^-	4105.9	2.5	72 929582.6	2.0
42	31		Ga	X	-69699.3	1.7	8693.873	0.023	β^-	1598.2	1.7	72 925174.7	1.8
41	32		Ge		-71297.52	0.06	8705.049	0.001	۴	*		72 923458.96	0.06
40	33		As		-70953	4	8689.61	0.05	$oldsymbol{eta}^+$	345	4	72 923829	4
39	34		Se		-68227	7	8641.56	0.10	β^+	2725	7	72 926755	8
38	35		Br	X	-63647	7	8568.10	0.10	β^+	4580	10	72 931672	8
37	36		Kr	X	-56552	7	8460.18	0.09	$\dot{oldsymbol{eta}^+}$	7096	10	72 939289	7
36	37		Rb	-p	-46080#	200#	8306#	3#	eta^+	10470#	200#	72 950530#	220#
35	38		Sr	X	-31950#	400#	8102#	5#	$oldsymbol{eta}^+$	14130#	450#	72 965700#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

47 2 46 2 45 2 44 3 43 3 41 3 40 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 43 3 42 3 41 3 40 3		Elt.	Orig.	Mass ex (keV)			ng energy leon (keV)		Beta-decay (keV	05	Atomic m μu	nass
47 2 46 2 45 2 44 3 43 3 41 3 40 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 43 3 41 3 40 3												
46 2 45 2 44 3 43 3 42 3 41 3 40 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	26 74	Fe	X	-19590#	600#	8061#	8#	eta^-	13230#	780#	73 978970#	640#
45 2 44 3 43 3 41 3 40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	27	Co	X	-32820#	500#	8229#	7#	eta^-	15640#	540#	73 964770#	540#
44 3 43 3 41 3 40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 45 3 44 3 42 3 41 3 40 3	28	Ni	X	-48460#	200#	8430#	3#	eta^-	7550#	200#	73 947980#	210#
43 3 42 3 41 3 40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	29	Cu	X	-56006	6	8521.56	0.08	eta^-	9751	7	73 939875	7
42 3 41 3 40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	30	Zn	X	-65756.7	2.5	8642.75	0.03	eta^-	2293	4	73 929407.3	2.7
41 3 40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	31	Ga	X	-68049.6	3.0	8663.17	0.04	eta^-	5372.8	3.0	73 926946	3
40 3 39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	32	Ge		-73422.442	0.013	8725.200	a	β^-	-2562.4	1.7	73 921177.762	0.013
39 3 38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	33	As		-70860.1	1.7	8680.001	0.023	eta^-	1353.1	1.7	73 923928.6	1.8
38 3 37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	34	Se		-72213.201	0.015	8687.715	a		*		73 922475.935	0.016
37 3 36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	35	Br		-65288	6	8583.56	0.08	$oldsymbol{eta}^+$	6925	6	73 929910	6
36 3 49 2 48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	36	Kr		-62331.8	2.0	8533.038	0.027	$oldsymbol{eta}^+$	2956	6	73 933084.0	2.2
49 2 48 2 47 2 46 2 45 3 44 3 43 3 42 3 41 3 40 3	37	Rb		-51916	3	8381.71	0.04	$oldsymbol{eta}^+$	10416	3	73 944266	3
48 2 47 2 46 2 45 3 44 3 42 3 41 3 40 3	38	Sr	X	-40830#	100#	8221#	1#	$oldsymbol{eta}^+$	11090#	100#	73 956170#	110#
47 2 46 2 45 3 44 3 43 3 42 3 41 3 40 3	26 75		x	-13640#	600#	7982#	8#	eta^-	16010#	780#	74 985360#	640#
46 2 45 3 44 3 43 3 42 3 41 3 40 3	27	Co	X	-29650#	500#	8185#	7#	eta^-	14380#	580#	74 968170#	540#
45 3 44 3 43 3 42 3 41 3 40 3	28	Ni	X	-44030#	300#	8366#	4#	eta^-	10440#	300#	74 952730#	320#
44 3 43 3 42 3 41 3 40 3	29	Cu	X	-54471.3	2.3	8495.09	0.03	β^-	8088	3	74 941522.6	2.5
43 3 42 3 41 3 40 3	30	Zn	X	-62558.9	2.0	8592.497	0.026	β^-	5906	3	74 932840.2	2.1
42 3 41 3 40 3	31	Ga	X	-68464.6	2.4	8660.81	0.03	β^-	3392.4	2.4	74 926500.2	2.6
41 3 40 3	32	Ge	-n	-71856.96	0.05	8695.609	0.001	β^-	1177.2	0.9	74 922858.37	0.06
40 3	33	As		-73034.2	0.9	8700.874	0.012	•	*		74 921594.6	0.9
	34	Se		-72169.48	0.07	8678.913	0.001	eta^+	864.7	0.9	74 922522.87	0.08
39 3	35	Br	X	-69107	4	8627.65	0.06	β^+	3062	4	74 925811	5
	36	Kr	X	-64324	8	8553.44	0.11	β^+	4783	9	74 930946	9
38 3	37	Rb	X	-57218.7	1.2	8448.275	0.016	$m{eta}^+$	7105	8	74 938573.2	1.3
37 3	38	Sr	_	-46620	220	8296.5	2.9	$m{eta}^+$	10600	220	74 949950	240
36 3	39	Y	X	-31820#	300#	8089#	4#	$m{eta}^+$	14800#	370#	74 965840#	320#
49 2	27 76	Co	x	-24510#	600#	8116#	8#	β^-	17120#	720#	75 973690#	640#
48 2	28	Ni	X	-41630#	400#	8331#	5#	β^-	9350#	400#	75 955310#	430#
47 2	29	Cu	X	-50976	7	8443.53	0.09	β^-	11327	7	75 945275	7
46 3	30	Zn		-62303.0	1.5	8582.273	0.019	β^-	3993.6	2.4	75 933115.0	1.6
45 3	31	Ga	X	-66296.6	2.0	8624.526	0.026	β^-	6916.2	2.0	75 928827.6	2.1
44 3	32	Ge		-73212.889	0.018	8705.236	a	β^-	-921.5	0.9	75 921402.727	0.019
43 3	33	As	-n	-72291.4	0.9	8682.816	0.012	β^-	2960.6	0.9	75 922392.0	1.0
42 3	34	Se		-75251.950	0.016	8711.477	a		*		75 919213.704	0.017
41 3	35	Br	_	-70289	9	8635.88	0.12	eta^+	4963	9	75 924542	10
40 3	36	Kr		-69014	4	8608.81	0.05	$m{eta}^+$	1275	10	75 925911	4
39 3	37	Rb	X	-60479.1	0.9	8486.215	0.012	$m{eta}^+$	8535	4	75 935073.0	1.0
38 3	38	Sr	X	-54250	30	8393.9	0.5	$oldsymbol{eta}^+$	6230	30	75 941760	40
37 3	39	Y	X	-38480#	300#	8176#	4#	$m{eta}^+$	15770#	300#	75 958690#	320#
	27 77		x	-21020#	600#	8070#	8#	eta^-	15790#	780#	76 977440#	640#
49 2	28	Ni	X	-36800#	500#	8265#	6#	$m{eta}^-$	11820#	520#	76 960490#	540#
48 2	29	Cu	X	-48620#	150#	8408#	2#	$oldsymbol{eta}^-$	10170#	150#	76 947800#	160#
47 3	30	Zn		-58789.2	2.0	8530.003	0.026	β^-	7203	3	76 936887.2	2.1
46 3	31	Ga	X	-65992.3	2.4	8613.39	0.03	$m{eta}^-$	5220.5	2.4	76 929154.3	2.6
45 3	32	Ge	-n	-71212.86	0.05	8671.029	0.001	β^-	2703.5	1.7	76 923549.84	0.06
44 3	22	As		-73916.3	1.7	8695.978	0.022	β^-	683.2	1.7	76 920647.6	1.8
))	Se		-74599.49	0.06	8694.690	0.001	•	*		76 919914.15	0.07
	34	Br	_	-73234.8	2.8	8666.81	0.04	eta^+	1364.7	2.8	76 921379	3
	34	Kr	X	-70169.4	2.0	8616.836	0.025	p '	3065	3	76 924670.0	2.1
	34 35	Kr Rb	X X	-70169.4 -64830.5	2.0 1.3	8537.339	0.023	$eta^+ eta^+$	5339.0	3 2.4	76 924670.0 76 930401.6	2.1 1.4
	34 35 36							$oldsymbol{eta}^+$				
37 4	34 35 36 37	Rb	X	-64830.5	1.3	8537.339	0.017		5339.0	2.4	76 930401.6	1.4

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic m μu	nass
50	28	78	Ni	X	-33890#	600#	8225#	8#	β-	10610#	780#	77 963620#	640#
49	29		Cu	X	-44500	500	8351	6	$\dot{oldsymbol{eta}}^-$	12990	500	77 952230	540
48	30		Zn		-57483.2	1.9	8507.379	0.025	$\dot{\beta}^-$	6222.7	2.7	77 938289.2	2.1
47	31		Ga		-63706.0	1.9	8577.127	0.024	$\dot{oldsymbol{eta}}^-$	8156	4	77 931608.8	2.0
46	32		Ge	-nn	-71862	4	8671.66	0.05	<i>β</i> -	955	10	77 922853	4
45	33		As	+pn	-72817	10	8673.87	0.13	$\dot{\beta}^-$	4209	10	77 921828	11
44	34		Se	•	-77025.94	0.18	8717.806	0.002	$\dot{oldsymbol{eta}}^-$	-3574	4	77 917309.24	0.19
43	35		Br	_	-73452	4	8661.96	0.05	<i>β</i> -	726	4	77 921146	4
42	36		Kr		-74178.3	0.3	8661.238	0.004	•	*		77 920366.3	0.3
41	37		Rb	x	-66935	3	8558.35	0.04	eta^+	7243	3	77 928142	3
40	38		Sr	X	-63174	7	8500.10	0.10	$\dot{oldsymbol{eta}^+}$	3761	8	77 932180	8
39	39		Y	X	-52170#	300#	8349#	4#	β^+	11000#	300#	77 943990#	320#
38	40		Zr	X	-40850#	400#	8194#	5#	$m{eta}^+$	11320#	500#	77 956150#	430#
51	28	79	Ni	X	-27570#	600#	8143#	8#	$oldsymbol{eta}^-$	14170#	670#	78 970400#	640#
50	29		Cu	X	-41740#	300#	8312#	4#	β^-	11690#	300#	78 955190#	320#
49	30		Zn		-53432.3	2.2	8450.582	0.028	$oldsymbol{eta}^-$	9115.4	2.9	78 942638.1	2.4
48	31		Ga		-62547.7	1.9	8556.063	0.024	β^-	6980	40	78 932852.3	2.0
47	32		Ge		-69530	40	8634.5	0.5	eta^-	4110	40	78 925360	40
46	33		As		-73636	5	8676.62	0.07	eta^-	2281	5	78 920948	6
45	34		Se	-n	-75917.46	0.22	8695.592	0.003	β^-	150.6	1.0	78 918499.25	0.24
44	35		Br	+n	-76068.0	1.0	8687.594	0.013		*		78 918337.6	1.1
43	36		Kr	_	-74442	3	8657.11	0.04	$oldsymbol{eta}^+$	1626	3	78 920083	4
42	37		Rb	X	-70803.0	2.1	8601.142	0.027	eta^+	3639	4	78 923989.9	2.3
41	38		Sr	X	-65477	8	8523.82	0.11	eta^+	5326	9	78 929708	9
40	39		Y	X	-57820	80	8417.0	1.0	β^+	7660	80	78 937930	90
39	40		Zr	X	-46770#	300#	8267#	4#	$oldsymbol{eta}^+$	11050#	310#	78 949790#	320#
38	41		Nb	X	-31650#	500#	8066#	6#	$m{eta}^+$	15120#	580#	78 966020#	540#
52	28	80	Ni	X	-22630#	700#	8080#	9#	β^-	13570#	810#	79 975710#	750#
51	29		Cu	X	-36200#	400#	8240#	5#	β^-	15450#	400#	79 961140#	430#
50	30		Zn		-51648.6	2.6	8423.54	0.03	β^-	7575	4	79 944552.9	2.8
49	31		Ga	X	-59223.7	2.9	8508.45	0.04	β^-	10312	4	79 936421	3
48	32		Ge	X	-69535.3	2.1	8627.570	0.026	β^-	2679	4	79 925350.8	2.2
47	33		As	X	-72214	3	8651.28	0.04	β^-	5545	3	79 922475	4
46	34		Se		-77759.5	1.0	8710.813	0.012	β^-	-1870.5	0.3	79 916521.8	1.0
45	35		Br	_	-75889.0	1.0	8677.653	0.013	$oldsymbol{eta}^-$	2004.4	1.2	79 918529.8	1.1
44	36		Kr		-77893.3	0.7	8692.928	0.009	0.1	*		79 916378.0	0.7
43	37		Rb	X	-72175.5	1.9	8611.675	0.023	β^+	5717.9	2.0	79 922516.4	2.0
42	38		Sr	X	-70311	3	8578.60	0.04	β^+	1864	4	79 924518	4
41	39		Y	X	-61148	6	8454.28	0.08	β^+	9163	7	79 934355	7
40 39	40 41		Zr Nb	X X	-54360# -38420#	300# 400#	8360# 8151#	4# 5#	$eta^+ eta^+ eta^+$	6790# 15940#	300# 500#	79 941640# 79 958750#	320# 430#
50	20	01		**		500#	9170#	6 #		1.4790#	500#	90.066270#	540#
52 51	29 30	81	Cu Zn	X	-31420# -46200	500#	8179# 8351.93	6# 0.06	β^-	14780#	500#	80 966270# 80 950403	540#
51				X	-40200 -57628	5	8483.36	0.06	β^-	11428 8664	6	80 938134	5 4
50	31		Ga	X	-57628 -66291.7	3			$eta^- eta^-$	6242	4	80 938134 80 928832.9	
49 49	32		Ge	X	-72533.3	2.1	8580.658	0.025	β^-		3		2.2
48	33		As			2.6	8648.06	0.03		3855.7	2.8	80 922132.3	2.8
47 46	34 35		Se Br		-76389.0 -77977.0	1.0	8685.999 8695.946	0.012 0.012	$oldsymbol{eta}^-$	1588.0	1.4	80 917993.0	1.1
46 45	35 36		Br Kr		-77696.2	1.0		0.012	eta^+	280.9	0.5	80 916288.2 80 916589.7	1.0
45	36		Kr		-77696.2 -75457	1.1	8682.820 8645.51		β^+	280.9	0.5	80 916589.7 80 918994	1.2
44	37		Rb Sr	***		5		0.06			5		5
43	38 39		Sr Y	X	-71528 65713	3	8587.35 8505.90	0.04	$eta^+ eta^+$	3929	6	80 923211	3 6
42 41	39 40		r Zr	X	-65713 -57460	5 90	8303.90 8394.4	0.07 1.2	β^+	5815 8250	6 90	80 929454 80 938310	100
41	40		Zr Nb	X V	-37460 -46360#	90 400#	8394.4 8248#	1.2 5#	β^+	8230 11100#	90 410#	80 938310 80 950230#	430#
39				X					β^+	14610#			
39	42		Mo	X	-31750#	500#	8058#	6#	p '	14010#	640#	80 965920#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

								, 1					
N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy eleon (keV)		Beta-decay (keV	0,	Atomic m μu	ass
53	29	82	Cu	X	-25320#	600#	8103#	7#	β^-	16990#	600#	81 972820#	640#
52	30		Zn	X	-42314	3	8301.12	0.04	β^-	10617	4	81 954574	3
51	31		Ga	X	-52930.7	2.4	8421.049	0.030	β^-	12484	3	81 943176.5	2.6
50	32		Ge	X	-65415.1	2.2	8563.756	0.027	β^-	4690	4	81 929774.0	2.4
49	33		As	X	-70105	4	8611.41	0.05	β^-	7488	4	81 924739	4
48	34		Se		-77593.9	0.5	8693.196	0.006	β^-	-95.2	1.1	81 916699.5	0.5
47	35		Br		-77498.7	1.0	8682.494	0.012	eta^-	3093.1	1.0	81 916801.8	1.0
46	36		Kr		-80591.785	0.005	8710.675	a		*		81 913481.155	0.006
45	37		Rb	IT	-76188	3	8647.43	0.04	β^+	4404	3	81 918209	3
44	38		Sr		-76010	6	8635.72	0.07	β^+	178	7	81 918400	6
43	39		Y	X	-68064	5	8529.28	0.07	β^+	7946	8	81 926930	6
42	40		Zr	X	-63631	11	8465.68	0.14	β^+	4433	12	81 931689	12
41	41		Nb	X	-52090#	300#	8315#	4#	β^+	11540#	300#	81 944080#	320#
40	42		Мо	X	-40370#	400#	8163#	5#	$oldsymbol{eta}^+$	11720#	500#	81 956660#	430#
53	30	83	Zn	X	-36290#	300#	8226#	4#	β^-	12970#	300#	82 961040#	320#
52	31		Ga	X	-49257.1	2.6	8372.57	0.03	β^-	11719	4	82 947120.3	2.8
51	32		Ge	X	-60976.4	2.4	8504.345	0.029	β^-	8693	4	82 934539.1	2.6
50	33		As	X	-69669.3	2.8	8599.65	0.03	β^-	5671	4	82 925207	3
49 48	34 35		Se Br	-n	-75341 -79014	3 4	8658.56 8693.38	0.04 0.05	$eta^- eta^-$	3673 977	5 4	82 919119	3 4
48 47	36		Kr		-79014 -79990.633	0.009	8695.729		ρ	9//	4	82 915175	0.010
46	37		Rb		-79990.633 -79070.6	2.3	8675.218	<i>a</i> 0.028	β^+	920.0	2.3	82 914126.518 82 915114.2	2.5
45	38		Sr		-79070.8 -76798	2.3 7	8638.41	0.028	β^+	2273	6	82 913114.2 82 917554	2.3 7
44	39		Y	X	-70798	19	8573.66	0.08	β^+	4592	20	82 922484	20
43	40		Zr	X	-65912	6	8488.40	0.08	β^+	6294	20	82 929241	7
42	41		Nb	X	-57560	150	8378.3	1.8	β^+	8360	150	82 938210	160
41	42		Mo	X	-46340#	400#	8234#	5#	β^+	11220#	430#	82 950250#	430#
40	43		Tc	X	-31320#	500#	8043#	6#	β^+	15020#	640#	82 966380#	540#
54	30	84	Zn	x	-31930#	400#	8172#	5#	eta^-	12160#	450#	83 965720#	430#
53	31		Ga	X	-44090#	200#	8307#	2#	β^-	14060#	200#	83 952670#	220#
52	32		Ge	X	-58148	3	8465.52	0.04	β-	7705	4	83 937575	3
51	33		As	X	-65854	3	8547.94	0.04	$\dot{\beta}^-$	10094	4	83 929303	3
50	34		Se		-75947.7	2.0	8658.793	0.023	β^-	1835	26	83 918466.8	2.1
49	35		Br		-77783	26	8671.3	0.3	$\dot{oldsymbol{eta}}^-$	4656	26	83 916496	28
48	36		Kr		-82439.335	0.004	8717.446	a	$\dot{\beta}^-$	-2680.4	2.2	83 911497.729	0.004
47	37		Rb		-79759.0	2.2	8676.224	0.026	β^-	890.6	2.3	83 914375.2	2.4
46	38		Sr		-80649.6	1.2	8677.512	0.015		*		83 913419.1	1.3
45	39		Y		-73894	4	8587.78	0.05	$oldsymbol{eta}^+$	6755	4	83 920671	5
44	40		Zr	X	-71422	5	8549.03	0.07	eta^+	2473	7	83 923326	6
43	41		Nb	X	-61219	13	8418.25	0.16	β^+	10203	14	83 934279	14
42	42		Mo	X	-54170#	300#	8325#	4#	β^+	7050#	300#	83 941850#	320#
41	43		Tc	X	-37700#	400#	8120#	5#	β^+	16470#	500#	83 959530#	430#
55	30	85	Zn	x	-25230#	500#	8092#	6#	β^-	14620#	580#	84 972910#	540#
54	31		Ga	X	-39850#	300#	8255#	4#	β^-	13270#	300#	84 957220#	320#
53	32		Ge	X	-53123	4	8401.77	0.04	β^-	10066	5	84 942970	4
52	33		As	X	-63189	3	8510.98	0.04	β^-	9224	4	84 932164	3
51	34		Se	+3p	-72413.6	2.6	8610.30	0.03	β^-	6162	4	84 922260.8	2.8
50	35		Br	+n2p	-78575	3	8673.59	0.04	β^-	2905	4	84 915646	3
49 48	36 37		Kr	+	-81480.3 82167.331	2.0	8698.562	0.024	β^-	687.0 *	2.0	84 912527.3 84 911789.738	2.1 0.005
48 47	37 38		Rb Sr		-82167.331 -81103.3	0.005 2.8	8697.441 8675.72	<i>a</i> 0.03	β^+	1064.1	2.8	84 911789.738 84 912932	3
46	38 39		Sr Y	v	-81103.3 -77842	2.8 19	8628.15	0.03	β^+	3261	2.8 19	84 916433	20
45	40		r Zr	X X	-77842 -73175	6	8564.04	0.22	β^+	4667	20	84 921443	7
43 44	41		Nb	X X	-66280	4	8473.71	0.08	β^+	6896	8	84 928846	4
43	42		Mo	X	-57510	16	8361.33	0.03	β^+	8770	16	84 938261	17
42	43		Tc	X	-45850#	400#	8215#	5#	β^+	11660#	400#	84 950780#	430#
41	44		Ru	X	-30950#	500#	8030#	6#	β^+	14900#	640#	84 966770#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	\boldsymbol{A}	Elt.	Orig.	Mass exc			ng energy		Beta-decay er	nergy	Atomic m	nass
					(keV))	per nuc	eleon (keV)		(keV)		μ u	
55	31	86	Ga	X	-34080#	400#	8186#	5#	β^-	15320#	590#	85 963410#	430#
54	32		Ge	X	-49400	440	8355	5	eta^-	9560	440	85 946970	470
53	33		As	X	-58962	3	8456.72	0.04	β^-	11541	4	85 936702	4
52	34		Se	X	-70503.2	2.5	8581.822	0.029	β^-	5129	4	85 924311.7	2.7
51	35		Br	+pp	-75632	3	8632.37	0.04	β^-	7633	3	85 918805	3
50	36		Kr		-83265.666	0.004	8712.029	a	β^-	-518.67	0.20	85 910610.626	0.004
49	37		Rb	-n	-82746.99	0.20	8696.900	0.002	β^-	1776.10	0.20	85 911167.44	0.21
48	38		Sr		-84523.089	0.005	8708.456	a	•	*		85 909260.726	0.006
47	39		Y	_	-79283	14	8638.43	0.16	β^+	5240	14	85 914886	15
46	40		Zr		-77969	4	8614.05	0.04	$\dot{\beta}^+$	1314	15	85 916297	4
45	41		Nb	X	-69134	5	8502.22	0.06	β^+	8835	7	85 925782	6
44	42		Mo	X	-64110	4	8434.71	0.04	β^+	5024	7	85 931175	4
43	43		Тс	X	-51570#	300#	8280#	3#	β^+	12540#	300#	85 944640#	320#
42	44		Ru	X	-39770#	400#	8133#	5#	β^+	11800#	500#	85 957310#	430#
72			Ku	A	-37110#	400m	0133π	Эп	ρ	11000#	300#	65 751510m	4 50#
56	31	87	Ga	X	-29250#	500#	8129#	6#	β^-	14830#	580#	86 968600#	540#
55	32		Ge	X	-44080#	300#	8290#	3#	β^-	11540#	300#	86 952680#	320#
54	33		As	X	-55617.9	3.0	8413.85	0.03	eta^-	10808	4	86 940292	3
53	34		Se	X	-66426.1	2.2	8529.091	0.026	eta^-	7466	4	86 928688.6	2.4
52	35		Br	2p-n	-73892	3	8605.91	0.04	β^-	6818	3	86 920674	3
51	36		Kr	-n	-80709.52	0.25	8675.283	0.003	eta^-	3888.27	0.25	86 913354.76	0.26
50	37		Rb		-84597.791	0.006	8710.983	a	β^-	282.275	0.006	86 909180.531	0.006
49	38		Sr		-84880.066	0.005	8705.236	a		*		86 908877.496	0.005
48	39		Y	_	-83018.4	1.1	8674.844	0.013	β^+	1861.7	1.1	86 910876.1	1.2
47	40		Zr		-79347	4	8623.65	0.05	$\dot{\beta}^+$	3671	4	86 914817	4
46	41		Nb	X	-73874	7	8551.76	0.08	β^+	5473	8	86 920692	7
45	42		Mo		-66884.8	2.9	8462.42	0.03	β^+	6990	7	86 928196	3
44	43		Тс	X	-57690	4	8347.74	0.05	β^+	9195	5	86 938067	5
43	44		Ru	X	-45520#	400#	8199#	5#	β^+	12170#	400#	86 951130#	430#
			_										
56	32	88	Ge	X	-40140#	400#	8243#	5#	β^-	10580#	450#	87 956910#	430#
55	33		As	X	-50720#	200#	8354#	2#	β^-	13160#	200#	87 945550#	210#
54	34		Se	X	-63884	3	8495.00	0.04	eta^-	6832	5	87 931417	4
53	35		Br	++	-70716	3	8563.75	0.04	eta^-	8975	4	87 924083	3
52	36		Kr	X	-79691.3	2.6	8656.849	0.030	β^-	2917.7	2.6	87 914447.9	2.8
51	37		Rb		-82608.99	0.16	8681.115	0.002	β^-	5312.62	0.16	87 911315.59	0.17
50	38		Sr		-87921.618	0.006	8732.595	a		*		87 905612.256	0.006
49	39		Y	_	-84299.0	1.5	8682.539	0.017	β^+	3622.6	1.5	87 909501.3	1.6
48	40		Zr		-83629	5	8666.03	0.06	β^+	670	6	87 910221	6
47	41		Nb		-76170	60	8572.4	0.7	$\dot{\beta}^+$	7460	60	87 918220	60
46	42		Mo	X	-72687	4	8523.91	0.04	β^+	3490	60	87 921968	4
45	43		Tc	X	-61680	150	8390.0	1.7	$\dot{\beta}^+$	11010	150	87 933780	160
44	44		Ru	X	-54340#	300#	8298#	3#	β^+	7340#	340#	87 941660#	320#
43	45		Rh	X	-36860#	400#	8090#	5#	β^+	17480#	500#	87 960430#	430#
	22	00	_		22520#	400"	04.60#		0-	12050"	5 00"	00.062700#	120 !!
57	32	89	Ge	X	-33730#	400#	8169#	4#	β^-	13070#	500#	88 963790#	430#
56	33		As	X	-46800#	300#	8307#	3#	β^-	12190#	300#	88 949760#	320#
55	34		Se	X	-58992	4	8435.28	0.04	eta^-	9282	5	88 936669	4
54	35		Br	X	-68274	3	8530.78	0.04	β^-	8262	4	88 926705	4
53	36		Kr	X	-76535.8	2.1	8614.815	0.024	eta^-	5177	6	88 917835.5	2.3
52	37		Rb		-81712	5	8664.19	0.06	β^-	4497	5	88 912278	6
51	38		Sr		-86209.02	0.09	8705.922	0.001	$\dot{oldsymbol{eta}}^-$	1499.3	1.6	88 907450.81	0.10
50	39		Y		-87708.4	1.6	8713.978	0.018	•	*		88 905841.2	1.7
49	40		Zr		-84876	3	8673.36	0.03	eta^+	2832.8	2.8	88 908882	3
48	41		Nb		-80625	24	8616.81	0.27	β^+	4250	24	88 913445	25
47	42		Мо	X	-75015	4	8544.98	0.04	β^+	5610	24	88 919468	4
46	43		Tc	X	-67395	4	8450.57	0.04	β^+	7620	5	88 927649	4
45	44		Ru	X	-58260#	300#	8339#	3#	β^+	9140#	300#	88 937460#	320#
44	45		Rh	-p	-45860#	360#	8191#	3π 4#	β^+	12400#	470#	88 950770#	390#
77	73		1311	-Р	- 1 5000π	σοσπ	01/1π	→ 117	ρ	12-τουπ	-7.0π	30 /30110π	370π

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

				0:				, <u>.</u>		D . 1			
N	Z	Α	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic m μu	iass
58	32	90	Ge	X	-29220#	500#	8118#	6#	β^-	12110#	640#	89 968630#	540#
57	33		As	X	-41330#	400#	8244#	4#	β^-	14470#	520#	89 955630#	430#
56	34		Se	X	-55800	330	8396	4	β^-	8200	330	89 940100	350
55	35		Br	X	-64000	3	8478.19	0.04	β^-	10959	4	89 931293	4
54	36		Kr	X	-74959.2	1.9	8591.259	0.021	β^-	4405	7	89 919527.9	2.0
53	37		Rb		-79364	6	8631.51	0.07	β^-	6584	7	89 914799	7
52	38		Sr		-85948.1	2.1	8695.972	0.024	β^-	545.9	1.4	89 907730.9	2.3
51	39		Y		-86494.1	1.6	8693.345	0.018	$oldsymbol{eta}^-$	2278.5	1.6	89 907144.8	1.7
50	40		Zr		-88772.54	0.12	8709.969	0.001	0.+	*		89 904698.76	0.13
49	41		Nb		-82662	3	8633.38	0.04	β^+	6111	3	89 911259	4
48	42		Mo		-80173	3	8597.03	0.04	β^+	2489	3	89 913931	4
47	43		Tc	X	-70724.7	1.0	8483.359	0.011	β^+	9448	4	89 924073.9	1.1
46	44		Ru		-64884	4	8409.77	0.04	β^+	5841	4	89 930344	4
45	45		Rh	X	-51700#	300#	8255#	3#	β^+	13180#	300#	89 944500#	320#
44	46		Pd	X	-39710#	400#	8113#	4#	$oldsymbol{eta}^+$	11990#	500#	89 957370#	430#
58	33	91	As	X	-36900#	400#	8193#	4#	$oldsymbol{eta}^-$	13680#	590#	90 960390#	430#
57	34		Se	X	-50580	430	8335	5	β^-	10530	430	90 945700	470
56	35		Br	-n2p	-61107	4	8441.92	0.04	eta^-	9867	4	90 934399	4
55	36		Kr	X	-70974.0	2.2	8541.751	0.025	$\dot{oldsymbol{eta}}$ –	6771	8	90 923806.3	2.4
54	37		Rb		-77745	8	8607.56	0.09	eta^-	5907	9	90 916537	8
53	38		Sr		-83652	5	8663.87	0.06	eta^-	2699	5	90 910196	6
52	39		Y		-86351.3	1.8	8684.941	0.020	β^-	1544.3	1.8	90 907298.1	2.0
51	40		Zr		-87895.57	0.10	8693.314	0.001		*		90 905640.22	0.11
50	41		Nb		-86638.0	2.9	8670.90	0.03	eta^+	1257.6	2.9	90 906990	3
49	42		Mo		-82209	6	8613.63	0.07	$\dot{oldsymbol{eta}^+}$	4429	7	90 911745	7
48	43		Tc		-75986.6	2.4	8536.655	0.026	β^+	6222	7	90 918425.0	2.5
47	44		Ru		-68239.8	2.2	8442.928	0.024	eta^+	7747	3	90 926741.5	2.4
46	45		Rh	X	-58570#	300#	8328#	3#	eta^+	9670#	300#	90 937120#	320#
45	46		Pd	X	-45930#	400#	8181#	4#	$m{eta}^+$	12640#	500#	90 950690#	430#
59	33	92	As	X	-30980#	500#	8127#	5#	β^-	15740#	640#	91 966740#	540#
58	34		Se	X	-46720#	400#	8290#	4#	β-	9510#	400#	91 949840#	430#
57	35		Br	X	-56233	7	8384.91	0.07	$\dot{oldsymbol{eta}}^-$	12537	7	91 939632	7
56	36		Kr	X	-68769.3	2.7	8512.674	0.029	$\dot{oldsymbol{eta}}^-$	6003	7	91 926173.1	2.9
55	37		Rb		-74772	6	8569.42	0.07	$\dot{oldsymbol{eta}}^-$	8095	6	91 919728	7
54	38		Sr		-82867	3	8648.91	0.04	$\dot{\beta}$	1949	9	91 911038	4
53	39		Y		-84816	9	8661.59	0.10	$\dot{\beta}^-$	3643	9	91 908946	10
52	40		Zr		-88459.03	0.10	8692.678	0.001	$\dot{oldsymbol{eta}}^-$	-2005.7	1.8	91 905035.32	0.11
51	41		Nb		-86453.3	1.8	8662.372	0.019	$\dot{oldsymbol{eta}}^-$	355.3	1.8	91 907188.6	1.9
50	42		Mo		-86808.58	0.16	8657.730	0.002	•	*		91 906807.16	0.17
49	43		Tc		-78926	3	8563.54	0.03	eta^+	7883	3	91 915270	3
48	44		Ru		-74301.2	2.7	8504.773	0.030	β^+	4624	4	91 920234.4	2.9
47	45		Rh	X	-62999	4	8373.42	0.05	β^+	11302	5	91 932368	5
46	46		Pd	X	-54580#	300#	8273#	3#	eta^+	8420#	300#	91 941410#	320#
45	47		Ag	X	-37130#	500#	8075#	5#	eta^+	17450#	580#	91 960140#	540#
59	34	93	Se	x	-40720#	400#	8223#	4#	eta^-	12180#	590#	92 956290#	430#
58	35		Br	X	-52890	430	8346	5	β^-	11250	430	92 943220	460
57	36		Kr	X	-64136.0	2.5	8458.108	0.027	β^-	8484	8	92 931147.2	2.7
56	37		Rb		-72620	8	8540.92	0.08	β^-	7466	9	92 922039	8
55	38		Sr		-80086	8	8612.79	0.08	β^-	4141	12	92 914024	8
54	39		Y		-84227	10	8648.90	0.11	β^-	2895	10	92 909578	11
53	40		Zr		-87122.0	0.5	8671.620	0.005	β^-	90.8	1.5	92 906470.6	0.5
52	41		Nb		-87212.8	1.5	8664.184	0.016	•	*		92 906373.2	1.6
51	42		Mo	-n	-86807.07	0.18	8651.409	0.002	$oldsymbol{eta}^+$	405.8	1.5	92 906808.77	0.19
50	43		Tc	-p	-83606.1	1.0	8608.577	0.011	β^+	3201.0	1.0	92 910245.1	1.1
49	44		Ru	-	-77216.7	2.1	8531.462	0.022	β^+	6389.4	2.3	92 917104.4	2.2
48	45		Rh		-69011.8	2.6	8434.825	0.028	β^+	8205	3	92 925912.8	2.8
47	46		Pd	+p	-59000#	300#	8319#	3#	eta^+	10010#	300#	92 936660#	320#
46	47		Ag	X	-46270#	400#	8173#	4#	eta^+	12730#	500#	92 950330#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV			ng energy eleon (keV)		Beta-decay (keV)		Atomic m μu	iass
60	34	94	Se	Х	-36800#	500#	8180#	5#	β^-	10600#	580#	93 960490#	540#
59	35		Br	X	-47400#	300#	8284#	3#	β^-	13950#	300#	93 949110#	320#
58	36		Kr	x	-61348	12	8424.33	0.13	$\dot{oldsymbol{eta}}^-$	7215	12	93 934140	13
57	37		Rb		-68562.8	2.0	8492.764	0.022	$\dot{\beta}^-$	10282.9	2.6	93 926394.8	2.2
56	38		Sr		-78845.7	1.7	8593.834	0.018	$\dot{\beta}^-$	3506	6	93 915355.6	1.8
55	39		Y		-82351	6	8622.81	0.07	β^-	4918	6	93 911592	7
54	40		Zr		-87269.32	0.16	8666.801	0.002	$\dot{\beta}^-$	-900.3	1.5	93 906312.52	0.18
53	41		Nb		-86369.1	1.5	8648.901	0.016	$\dot{\beta}^-$	2045.0	1.5	93 907279.0	1.6
52	42		Mo		-88414.06	0.14	8662.333	0.002	,	*		93 905083.59	0.15
51	43		Tc	_	-84158	4	8608.74	0.04	β^+	4256	4	93 909652	4
50	44		Ru		-82584	3	8583.66	0.03	β^+	1575	5	93 911343	3
49	45		Rh		-72908	3	8472.40	0.04	β^+	9676	5	93 921730	4
48	46		Pd	X	-66102	4	8391.68	0.05	β^+	6805	5	93 929036	5
47	47		Ag	X	-52410#	400#	8238#	4#	β^+	13690#	400#	93 943740#	430#
46	48		Cd	X	-40140#	500#	8099#	5#	$oldsymbol{eta}^+$	12270#	640#	93 956910#	540#
61	34	95	Se	X	-30460#	500#	8112#	5#	eta^-	13310#	580#	94 967300#	540#
60	35		Br	X	-43770#	300#	8244#	3#	β^-	12390#	300#	94 953010#	320#
59	36		Kr	X	-56159	19	8366.00	0.20	β^-	9733	28	94 939711	20
58	37		Rb		-65891	20	8460.21	0.21	β^-	9228	20	94 929263	22
57	38		Sr		-75120	6	8549.11	0.06	β^-	6089	7	94 919356	6
56	39		Y		-81209	7	8604.97	0.07	β^-	4451	7	94 912819	7
55	40		Zr		-85659.9	0.9	8643.592	0.009	β^-	1126.3	1.0	94 908040.3	0.9
54	41		Nb		-86786.3	0.5	8647.212	0.005	β^-	925.6	0.5	94 906831.1	0.5
53	42		Mo		-87711.86	0.12	8648.720	0.001		*		94 905837.44	0.13
52	43		Tc		-86021	5	8622.69	0.05	eta^+	1691	5	94 907652	5
51	44		Ru		-83458	10	8587.47	0.10	$\dot{oldsymbol{eta}^+}$	2564	11	94 910404	10
50	45		Rh		-78341	4	8525.37	0.04	$oldsymbol{eta}^+$	5117	10	94 915898	4
49	46		Pd	X	-69966	3	8428.98	0.03	β^+	8375	5	94 924889	3
48	47		Ag	X	-59600#	300#	8312#	3#	β^+	10370#	300#	94 936020#	320#
47	48		Cd	X	-46630#	400#	8167#	4#	$oldsymbol{eta}^+$	12970#	500#	94 949940#	430#
61	35	96	Br	x	-38160#	300#	8184#	3#	eta^-	14920#	300#	95 959030#	320#
60	36		Kr	X	-53080	20	8330.85	0.21	eta^-	8275	21	95 943017	22
59	37		Rb		-61354	3	8408.90	0.03	$oldsymbol{eta}^-$	11570	9	95 934133	4
58	38		Sr		-72924	8	8521.26	0.09	$oldsymbol{eta}^-$	5412	10	95 921713	9
57	39		Y		-78336	6	8569.49	0.06	β^-	7103	6	95 915903	7
56	40		Zr		-85438.85	0.11	8635.327	0.001	eta^-	163.97	0.10	95 908277.62	0.12
55	41		Nb		-85602.82	0.15	8628.886	0.002	β^-	3192.06	0.11	95 908101.59	0.16
54	42		Mo		-88794.88	0.12	8653.987	0.001	$oldsymbol{eta}^-$	-2973	5	95 904674.77	0.13
53	43		Tc	_	-85822	5	8614.87	0.05	$oldsymbol{eta}^-$	259	5	95 907867	6
52	44		Ru		-86080.37	0.17	8609.412	0.002		*		95 907588.91	0.18
51	45		Rh	_	-79688	10	8534.67	0.10	β^+	6393	10	95 914452	11
50	46		Pd	X	-76183	4	8490.02	0.04	β^+	3504	11	95 918214	5
49	47		Ag	ε p	-64510	90	8360.3	0.9	eta^+	11670	90	95 930740	100
48	48		Cd	X	-55570#	400#	8259#	4#	β^+	8940#	410#	95 940340#	430#
47	49		In	X	-37890#	500#	8067#	5#	$\dot{oldsymbol{eta}^+}$	17680#	640#	95 959320#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV	0,	Atomic m μu	nass
62	35	97	Br	х	-34060#	400#	8140#	4#	$oldsymbol{eta}^-$	13370#	420#	96 963440#	430#
61	36		Kr	X	-47420	130	8269.9	1.3	β^-	11100	130	96 949090	140
60	37		Rb		-58519.1	1.9	8376.186	0.020	β^-	10062	4	96 937177.1	2.1
59	38		Sr		-68581	3	8471.86	0.03	β^-	7540	8	96 926375	4
58	39		Y	+	-76121	7	8541.52	0.07	β^-	6821	7	96 918280	7
57	40		Zr		-82942.7	0.4	8603.779	0.004	β^-	2663	4	96 910957.4	0.4
56	41		Nb		-85606	4	8623.17	0.04	β^-	1939	4	96 908098	5
55	42		Mo		-87544.69	0.16	8635.092	0.002	r	*	-	96 906016.90	0.18
54	43		Tc		-87224	4	8623.72	0.04	β^+	320	4	96 906361	4
53	44		Ru	-n	-86120.6	2.8	8604.279	0.028	β^+	1104	5	96 907545.8	3.0
52	45		Rh	_	-82600	40	8559.9	0.4	β^+	3520	40	96 911330	40
51	46		Pd	X	-77806	5	8502.43	0.05	β^+	4790	40	96 916472	5
50	47		Ag	_	-70830	110	8422.4	1.1	β^+	6980	110	96 923970	120
49	48		Cd	x	-60450#	300#	8307#	3#	β^+	10370#	320#	96 935100#	320#
48	49		In	X	-47190#	400#	8163#	4#	β^+	13260#	500#	96 949340#	430#
63	35	98	Br	x	-28250#	400#	8080#	4#	$oldsymbol{eta}^-$	16060#	500#	97 969670#	430#
62	36		Kr	X	-44310#	300#	8236#	3#	eta^-	10060#	300#	97 952430#	320#
61	37		Rb		-54369	16	8330.73	0.16	β^-	12054	16	97 941632	17
60	38		Sr		-66423	3	8445.75	0.03	β^-	5872	9	97 928692	3
59	39		Y	p-2n	-72295	8	8497.68	0.08	β^-	8992	12	97 922388	9
58	40		Zr	•	-81287	8	8581.45	0.09	β^-	2238	10	97 912735	9
57	41		Nb	-pn	-83525	5	8596.30	0.05	β^-	4591	5	97 910333	5
56	42		Mo	_	-88115.97	0.17	8635.168	0.002	β^-	-1684	3	97 905403.61	0.19
55	43		Tc		-86432	3	8610.00	0.03	β^-	1793	7	97 907211	4
54	44		Ru		-88225	6	8620.31	0.07	•	*		97 905287	7
53	45		Rh	_	-83175	12	8560.80	0.12	eta^+	5050	10	97 910708	13
52	46		Pd		-81321	5	8533.90	0.05	β^+	1854	13	97 912698	5
51	47		Ag		-73070	30	8441.7	0.3	β^+	8250	30	97 921560	40
50	48		Cd	_	-67640	50	8378.3	0.5	β^+	5430	40	97 927390	60
49	49		In	X	-53900#	300#	8230#	3#	$oldsymbol{eta}^+$	13740#	300#	97 942140#	320#
63	36	99	Kr	X	-38760#	400#	8178#	4#	$oldsymbol{eta}^-$	12360#	400#	98 958390#	430#
62	37		Rb	X	-51121	4	8295.30	0.04	β^-	11400	6	98 945119	4
61	38		Sr		-62521	5	8402.55	0.05	β^-	8128	8	98 932881	5
60	39		Y	X	-70650	7	8476.75	0.07	$oldsymbol{eta}^-$	6971	12	98 924154	7
59	40		Zr		-77621	11	8539.26	0.11	$oldsymbol{eta}^-$	4715	16	98 916671	11
58	41		Nb	+p	-82335	12	8578.99	0.12	eta^-	3635	12	98 911609	13
57	42		Mo		-85970.10	0.23	8607.797	0.002	$oldsymbol{eta}^-$	1357.8	0.9	98 907707.30	0.25
56	43		Tc		-87327.9	0.9	8613.610	0.009	β^-	297.5	0.9	98 906249.7	1.0
55	44		Ru		-87625.4	0.3	8608.712	0.003		*		98 905930.3	0.4
54	45		Rh		-85581	7	8580.16	0.07	$oldsymbol{eta}^+$	2044	7	98 908125	7
53	46		Pd		-82183	5	8537.93	0.05	$m{eta}^+$	3399	8	98 911773	5
52	47		Ag	X	-76712	6	8474.77	0.06	$\dot{oldsymbol{eta}}^+$	5470	8	98 917646	7
51	48		Cd	X	-69931.1	1.6	8398.373	0.016	$\dot{oldsymbol{eta}}^+$	6781	6	98 924925.8	1.7
50	49		In	X	-61380#	300#	8304#	3#	β^+	8560#	300#	98 934110#	320#
49	50		Sn	X	-47940#	500#	8160#	5#	$\dot{oldsymbol{eta}^+}$	13430#	590#	98 948530#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	ass
64	36	100	Kr	X	-35050#	400#	8140#	4#	β-	11200#	400#	99 962370#	430#
63	37	100	Rb	X	-46247	20	8244.32	0.20	$oldsymbol{eta}^-$	13574	21	99 950352	21
62	38		Sr		-59821	7	8372.23	0.07	β^-	7506	13	99 935780	8
61	39		Y	X	-67327	11	8439.48	0.11	β^-	9050	14	99 927721	12
60	40		Zr		-76377	8	8522.15	0.08	β^-	3420	11	99 918005	9
59	41		Nb	IT	-79797	8	8548.53	0.08	β^-	6396	8	99 914334	9
58	42		Mo		-86193.0	0.3	8604.662	0.003	β^-	-172.1	1.4	99 907468.0	0.3
57	43		Тс	-n	-86020.9	1.4	8595.118	0.014	β^-	3206.4	1.4	99 907652.7	1.5
56	44		Ru		-89227.4	0.3	8619.359	0.003	-	*		99 904210.5	0.4
55	45		Rh		-85591	18	8575.17	0.18	β^+	3636	18	99 908114	19
54	46		Pd		-85213	18	8563.57	0.18	β^+	378	25	99 908520	19
53	47		Ag	X	-78138	5	8484.99	0.05	β^+	7075	18	99 916115	5
52	48		Cd		-74194.6	1.7	8437.737	0.017	β^+	3943	5	99 920348.8	1.8
51	49		In		-64310	180	8331.1	1.8	β^+	9880	180	99 930960	200
50	50		Sn	_	-57280	300	8253	3	$m{eta}^+$	7030	240	99 938500	320
65	36	101	Kr	X	-29130#	500#	8081#	5#	$oldsymbol{eta}^-$	13720#	540#	100 968730#	540#
64	37		Rb	+	-42850#	200#	8209#	2#	eta^-	12480#	200#	100 954000#	220#
63	38		Sr	X	-55325	8	8324.74	0.08	$oldsymbol{eta}^-$	9736	11	100 940606	9
62	39		Y	X	-65061	7	8413.39	0.07	$oldsymbol{eta}^-$	8105	11	100 930154	8
61	40		Zr		-73166	8	8485.89	0.08	eta^-	5726	9	100 921453	9
60	41		Nb	X	-78891	4	8534.83	0.04	eta^-	4628	4	100 915306	4
59	42		Mo	-n	-83519.9	0.3	8572.915	0.003	eta^-	2825	24	100 910337.6	0.3
58	43		Tc	+	-86345	24	8593.14	0.24	$oldsymbol{eta}^-$	1614	24	100 907305	26
57	44		Ru		-87958.1	0.4	8601.365	0.004		*		100 905573.1	0.4
56	45		Rh		-87412	6	8588.22	0.06	eta^+	546	6	100 906159	6
55	46		Pd		-85432	5	8560.86	0.05	$oldsymbol{eta}^+$	1980	4	100 908285	5
54	47		Ag	X	-81334	5	8512.55	0.05	$oldsymbol{eta}^+$	4098	7	100 912684	5
53	48		Cd	X	-75836.5	1.5	8450.365	0.015	β^+	5498	5	100 918586.2	1.6
52	49		In	X	-68610#	200#	8371#	2#	β^+	7220#	200#	100 926340#	210#
51	50		Sn	$\varepsilon_{ m p}$	-60310	300	8281.1	3.0	eta^+	8310#	360#	100 935260	320
65	37	102	Rb	X	-37710#	300#	8157#	3#	β^-	14450#	310#	101 959520#	320#
64	38		Sr	X	-52160	70	8291.2	0.7	β^-	9010	70	101 944000	70
63	39		Y	X	-61173	4	8371.92	0.04	β^-	10415	10	101 934328	4
62	40		Zr		-71588	9	8466.35	0.09	β^-	4717	9	101 923147	9
61	41		Nb		-76304.5	2.5	8504.928	0.025	β^-	7262	9	101 918083.7	2.7
60	42		Mo		-83566	8	8568.45	0.08	β^-	1007	12	101 910288	9
59	43		Tc		-84573	9	8570.65	0.09	eta^-	4534	9	101 909207	10
58	44		Ru		-89106.4	0.4	8607.427	0.004	eta^-	-2323	6	101 904340.3	0.4
57	45		Rh	_	-86783	6	8576.98	0.06	eta^-	1120	6	101 906834	7
56	46		Pd		-87903.2	0.6	8580.290	0.005		*		101 905632.1	0.6
55	47		Ag	+	-82247	8	8517.16	0.08	$oldsymbol{eta}^+$	5656	8	101 911705	9
54	48		Cd		-79659.7	1.7	8484.131	0.016	β^+	2587	8	101 914481.8	1.8
53	49		In		-70695	5	8388.57	0.04	β^+	8965	5	101 924106	5
52	50		Sn	_	-64930	100	8324.4	1.0	eta^+	5760	100	101 930290	110
66	37	103	Rb	x	-33610#	400#	8117#	4#	β^-	13810#	450#	102 963920#	430#
65	38		Sr	X	-47420#	200#	8243#	2#	β^-	11040#	200#	102 949090#	210#
64	39		Y	X	-58458	11	8342.64	0.11	$oldsymbol{eta}^-$	9358	15	102 937243	12
63	40		Zr	X	-67815	9	8425.89	0.09	β^-	7213	10	102 927197	10
62	41		Nb	X	-75029	4	8488.33	0.04	β^-	5932	10	102 919453	4
61	42		Mo	X	-80961	9	8538.33	0.09	β^-	3643	13	102 913085	10
60	43		Tc	+p	-84604	10	8566.10	0.10	β^-	2663	10	102 909174	11
59	44		Ru		-87267.2	0.4	8584.365	0.004	$oldsymbol{eta}^-$	764.5	2.3	102 906314.8	0.5
58	45		Rh		-88031.7	2.3	8584.192	0.022		*	_	102 905494.1	2.5
57	46		Pd	-n	-87457.2	0.9	8571.019	0.009	β^+	574.5	2.4	102 906110.8	1.0
56	47		Ag	X	-84803	4	8537.65	0.04	β^+	2654	4	102 908961	4
55	48		Cd		-80651.6	1.8	8489.754	0.018	β^+	4151	4	102 913416.9	1.9
54	49		In		-74633	10	8423.72	0.09	β^+	6019	10	102 919879	10
53	50		Sn	_	-66970	70	8341.8	0.7	β^+	7660	70	102 928100	80
52	51		Sb	X	-56180#	300#	8229#	3#	β^+	10790#	310#	102 939690#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay e (keV)	energy	Atomic m μ u	ass
66	38	104	Sr	Х	-44110#	300#	8210#	3#	β-	9960#	500#	103 952650#	320#
65	39		Y	X	-54060#	400#	8298#	4#	$m{eta}^-$	11660#	400#	103 941960#	430#
64	40		Zr	X	-65724	9	8402.38	0.09	β^-	6095	10	103 929442	10
63	41		Nb	X	-71819.0	2.7	8453.459	0.026	β^-	8531	9	103 922899.1	2.9
62	42		Mo		-80350	9	8527.97	0.09	β^-	2153	24	103 913741	10
61	43		Tc		-82503	25	8541.15	0.24	β^-	5592	25	103 911429	27
60	44		Ru		-88095.7	2.5	8587.399	0.024	β^-	-1136	3	103 905425.4	2.7
59	45		Rh	-n	-86959.3	2.3	8568.949	0.022	β^-	2435.8	2.7	103 906645.3	2.5
58	46		Pd	+n	-89395.1	1.3	8584.848	0.013	P	*	2	103 904030.4	1.4
57	47		Ag	_	-85116	4	8536.18	0.04	eta^+	4279	4	103 908624	5
56	48		Cd		-83968.4	1.7	8517.622	0.016	β^+	1148	5	103 909856.2	1.8
55	49		In	X	-76183	6	8435.24	0.06	β^+	7786	6	103 918215	6
54	50		Sn	Λ	-71627	6	8383.91	0.06	β^+	4556	8	103 923105	6
53	51		Sb	-p	-59170	120	8256.6	1.2	β^+	12450	120	103 936470	130
<i>(</i> 7	20	105	C		20610#	500#	0156#	511	0-	10660#	1.420#	104.050550#	5.40.0
67	38	105	Sr	X	-38610#		8156#	5#	β^-	12660#	1430#	104 958550#	540#
66	39		Y	X	-51270	1340	8269	13	β^-	10190	1340	104 944960	1440
65	40		Zr	X	-61465	12	8358.66	0.12	β^-	8451	13	104 934015	13
64	41		Nb	X	-69916	4	8431.69	0.04	β^-	7422	10	104 924943	4
63	42		Mo		-77337	9	8494.92	0.09	β^-	4950	40	104 916975	10
62	43		Tc		-82290	40	8534.6	0.3	β^-	3640	40	104 911660	40
61	44		Ru		-85934.5	2.5	8561.900	0.024	β^-	1916.8	2.9	104 907745.5	2.7
60	45		Rh		-87851.2	2.5	8572.704	0.024	$oldsymbol{eta}^-$	566.6	2.3	104 905687.8	2.7
59	46		Pd		-88417.9	1.1	8570.650	0.011	0.1	*	-	104 905079.5	1.2
58	47		Ag		-87071	5	8550.37	0.04	β^+	1347	5	104 906526	5
57	48		Cd		-84333.8	1.4	8516.852	0.013	β^+	2737	4	104 909463.9	1.5
56	49		In	X	-79641	10	8464.70	0.10	β^+	4693	10	104 914502	11
55	50		Sn		-73338	4	8397.23	0.04	β^+	6303	11	104 921268	4
54	51		Sb	$+\alpha$	-64015	22	8300.99	0.21	β^+	9323	22	104 931277	23
53	52		Te	$-\alpha$	-52810	300	8186.8	2.9	$m{eta}^+$	11200	300	104 943300	320
68	38	106	Sr	X	-34790#	600#	8119#	6#	$oldsymbol{eta}^-$	11260#	780#	105 962650#	640#
67	39		Y	X	-46050#	500#	8218#	5#	β^-	12500#	660#	105 950560#	540#
66	40		Zr	X	-58550	430	8328	4	β^-	7650	430	105 937140	470
65	41		Nb	X	-66203	4	8393.27	0.04	β^-	9931	10	105 928928	4
64	42		Mo	X	-76135	9	8479.58	0.09	β^-	3642	15	105 918266	10
63	43		Tc	+	-79776	12	8506.56	0.12	eta^-	6547	11	105 914357	13
62	44		Ru		-86323	5	8560.94	0.05	β^-	39.40	0.21	105 907328	6
61	45		Rh		-86363	5	8553.93	0.05	β^-	3545	5	105 907286	6
60	46		Pd		-89907.5	1.1	8579.992	0.010	$m{eta}^-$	-2965.1	2.8	105 903480.3	1.2
59	47		Ag		-86942	3	8544.639	0.028	β^-	189.8	2.8	105 906664	3
58	48		Cd		-87132.1	1.1	8539.048	0.010	•	*		105 906459.8	1.2
57	49		In	_	-80608	12	8470.12	0.12	eta^+	6524	12	105 913464	13
56	50		Sn		-77354	5	8432.04	0.05	β^+	3254	13	105 916957	5
55	51		Sb	X	-66473	7	8322.01	0.07	β^+	10880	9	105 928638	8
54	52		Te	$-\alpha$	-58220	100	8236.8	0.9	β^+	8250	100	105 937500	110

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay (keV		Atomic m μu	ass
69	38	107	Sr	Х	-28900#	700#	8064#	7#	β-	13470#	860#	106 968980#	750#
68	39		Y	X	-42360#	500#	8182#	5#	β^-	12020#	1230#	106 954520#	540#
67	40		Zr	X	-54380	1120	8287	10	$oldsymbol{eta}^-$	9340	1120	106 941620	1210
66	41		Nb	X	-63724	8	8367.09	0.07	eta^-	8828	12	106 931590	9
65	42		Mo	X	-72552	9	8442.28	0.09	β^-	6198	13	106 922113	10
64	43		Tc	X	-78750	9	8492.90	0.08	eta^-	5113	12	106 915458	9
63	44		Ru	-nn	-83863	9	8533.37	0.08	$m{eta}^-$	3001	15	106 909970	9
62	45		Rh	+p	-86864	12	8554.10	0.11	β^-	1509	12	106 906748	13
61	46		Pd		-88372.6	1.2	8560.894	0.011	eta^-	34.0	2.3	106 905128.1	1.3
60	47		Ag		-88406.7	2.4	8553.900	0.022		*		106 905091.5	2.6
59	48		Cd		-86990.3	1.7	8533.351	0.016	β^+	1416.4	2.6	106 906612.1	1.8
58	49		In	_	-83564	11	8494.02	0.10	β^+	3426	11	106 910290	12
57	50		Sn	X	-78512	5	8439.49	0.05	$oldsymbol{eta}^+$	5052	12	106 915714	6
56	51		Sb		-70653	4	8358.73	0.04	β^+	7859	7	106 924151	4
55	52		Te	$-\alpha$	-60540	70	8256.9	0.7	β^+	10110	70	106 935010	80
54	53		Ι	X	-49430#	300#	8146#	3#	eta^+	11110#	310#	106 946940#	320#
69	39	108	Y	X	-37300#	600#	8134#	6#	$oldsymbol{eta}^-$	14060#	720#	107 959960#	640#
68	40		Zr	X	-51350#	400#	8257#	4#	$oldsymbol{eta}^-$	8190#	400#	107 944870#	430#
67	41		Nb	X	-59546	8	8325.66	0.08	$oldsymbol{eta}^-$	11210	12	107 936075	9
66	42		Mo	X	-70756	9	8422.22	0.09	β^-	5167	13	107 924040	10
65	43		Tc	X	-75923	9	8462.82	0.08	β^-	7739	12	107 918494	9
64	44		Ru	-3n	-83661	9	8527.23	0.08	β^-	1370	16	107 910186	9
63	45		Rh	X	-85032	14	8532.67	0.13	β^-	4492	14	107 908715	15
62	46		Pd		-89524.2	1.1	8567.023	0.010	β^-	-1917.4	2.6	107 903891.8	1.2
61	47		Ag	-n	-87606.8	2.4	8542.025	0.022	eta^-	1645.7 *	2.6	107 905950.3	2.6
60	48		Cd		-89252.4	1.1	8550.019	0.010	β^+		9	107 904183.6	1.2 9
59 58	49 50		In Sn		-84120 -82070	9 5	8495.25 8469.03	0.08 0.05	β^+	5133 2050	10	107 909694 107 911894	6
									β^+				
57 56	51 52		Sb Te	X	-72445 -65782	5 5	8372.67 8303.72	0.05 0.05	β^+	9625 6664	8 8	107 922227 107 929380	6 6
55	53		I	0	-03782 -52650	130	8174.9	1.2	β^+	13130	130	107 943480	140
33	33		1	$-\alpha$	-32030	130	01/4.9	1.2		13130	130	107 943460	140
70	39	109	Y	X	-33200#	700#	8096#	6#	β^-	12990#	860#	108 964360#	750#
69	40		Zr	X	-46190#	500#	8208#	5#	β^-	10500#	570#	108 950410#	540#
68	41		Nb	X	-56690	260	8297.1	2.4	β^-	9980	260	108 939140	280
67	42		Mo	X	-66666	11	8381.48	0.10	β^-	7617	15	108 928431	12
66	43		Tc	X	-74283	10	8444.18	0.09	β^-	6456	13	108 920254	10
65	44		Ru	-4n	-80738	9	8496.23	0.08	β^-	4261	10	108 913324	10
64	45		Rh		-84999	4	8528.14	0.04	β^-	2607	4	108 908749	4
63	46		Pd		-87606.5	1.1	8544.882	0.010	$oldsymbol{eta}^-$	1112.9	1.4	108 905950.6	1.2
62	47		Ag		-88719.4	1.3	8547.915	0.012	0.1	*	4.0	108 904755.8	1.4
61	48		Cd		-88504.3	1.5	8538.764	0.014	β^+	215.1	1.8	108 904986.7	1.6
60	49		In		-86490	4	8513.10	0.04	β^+	2015	4	108 907150	4
59	50		Sn		-82630	8	8470.52	0.07	β^+	3859	9	108 911293	9
58	51		Sb		-76251	5	8404.82	0.05	β^+	6379	9	108 918141	6
57	52		Te		-67715	4	8319.33	0.04	β^+	8536	7	108 927305	5
56	53		I	-p	-57672	7	8220.02	0.06	β^+	10043	8	108 938086	7
55	54		Xe	$-\alpha$	-46170	300	8107.3	2.8	$m{eta}^+$	11500	300	108 950430	320

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic m μu	ass
70	40	110	Zr	х	-42890#	600#	8177#	5#	β^-	9420#	1030#	109 953960#	640#
69	41		Nb	X	-52310	840	8255	8	β^-	12230	840	109 943840	900
68	42		Mo	X	-64543	24	8359.35	0.22	β^-	6492	26	109 930711	26
67	43		Tc	X	-71035	9	8411.26	0.09	β^-	9038	13	109 923741	10
66	44		Ru		-80073	9	8486.31	0.08	β^-	2756	19	109 914039	10
65	45		Rh		-82829	18	8504.25	0.16	β^-	5502	18	109 911080	19
64	46		Pd		-88330.9	0.6	8547.162	0.006	β^-	-873.6	1.4	109 905172.9	0.7
63	47		Ag		-87457.3	1.3	8532.108	0.012	eta^-	2890.7	1.3	109 906110.7	1.4
62	48		Cd		-90348.0	0.4	8551.275	0.003		*		109 903007.5	0.4
61	49		In	_	-86470	12	8508.91	0.11	eta^+	3878	12	109 907171	12
60	50		Sn	X	-85842	14	8496.09	0.13	$oldsymbol{eta}^+$	628	18	109 907845	15
59	51		Sb	X	-77450	6	8412.68	0.05	$oldsymbol{eta}^+$	8392	15	109 916854	6
58	52		Te		-72230	7	8358.12	0.06	$oldsymbol{eta}^+$	5220	9	109 922458	7
57	53		I	$-\alpha$	-60460	50	8244.0	0.5	β^+	11770	50	109 935090	50
56	54		Xe	$-\alpha$	-51920	100	8159.3	0.9	eta^+	8540	110	109 944260	110
71	40	111	Zr	X	-37560#	700#	8128#	6#	$oldsymbol{eta}^-$	11320#	760#	110 959680#	750#
70	41		Nb	X	-48880#	300#	8223#	3#	β^-	11060#	300#	110 947530#	320#
69	42		Mo	+	-59940	13	8315.29	0.11	β^-	9085	7	110 935652	14
68	43		Tc	X	-69025	11	8390.09	0.10	eta^-	7761	14	110 925899	11
67	44		Ru	X	-76785	10	8452.96	0.09	β^-	5519	12	110 917568	10
66	45		Rh		-82304	7	8495.63	0.06	eta^-	3681	7	110 911643	7
65	46		Pd	-n	-85985.9	0.7	8521.749	0.007	eta^-	2229.6	1.6	110 907690.3	0.8
64	47		Ag	+	-88215.4	1.5	8534.787	0.013	eta^-	1036.8	1.4	110 905296.8	1.6
63	48		Cd		-89252.2	0.4	8537.079	0.003		*		110 904183.8	0.4
62	49		In		-88392	3	8522.28	0.03	eta^+	860	3	110 905107	4
61	50		Sn	+n	-85939	5	8493.13	0.05	β^+	2453	6	110 907741	6
60	51		Sb	X	-80837	9	8440.12	0.08	β^+	5102	10	110 913218	10
59	52		Te	X	-73587	6	8367.76	0.06	β^+	7249	11	110 921001	7
58	53		I		-64954	5	8282.93	0.04	β^+	8634	8	110 930269	5
57	54		Xe	$-\alpha$	-54400	90	8180.8	0.8	β^+	10560	90	110 941600	90
56	55		Cs	X	-42820#	200#	8069#	2#	$oldsymbol{eta}^+$	11580#	210#	110 954030#	210#
72	40	112	Zr	X	-33810#	700#	8094#	6#	β^-	10460#	760#	111 963700#	750#
71	41		Nb	X	-44270#	300#	8180#	3#	β^-	13190#	360#	111 952470#	320#
70	42		Mo	X	-57460#	200#	8291#	2#	β^-	7800#	200#	111 938310#	210#
69	43		Tc	X	-65259	6	8353.62	0.05	β^-	10372	11	111 929942	6
68	44		Ru	X	-75631	10	8439.24	0.09	β^-	4100	50	111 918807	10
67	45		Rh		-79730	40	8468.9	0.4	β^-	6590	40	111 914400	50
66	46		Pd		-86322	7	8520.72	0.06	β^-	262	7	111 907330	7
65	47		Ag	X	-86583.7	2.4	8516.080	0.022	β^-	3991.1	2.4	111 907048.6	2.6
64	48		Cd		-90574.86	0.25	8544.730	0.002	β^-	-2585	4	111 902763.88	0.2
63	49		In		-87990	4	8514.67	0.04	$oldsymbol{eta}^-$	665 *	4	111 905539	5
62	50		Sn		-88655.06	0.29	8513.618	0.003	0+		10	111 904824.9	0.3
61	51		Sb	X	-81599	18	8443.63	0.16	β^+	7056	18	111 912400	19
60	52		Te	X	-77568	8	8400.65	0.07	β^+	4031	20	111 916728	9
59	53		I	X	-67063	10	8299.88	0.09	β^+	10504	13	111 928005	11
58	54		Xe	$-\alpha$	-60026	8	8230.06	0.07	β^+	7037	13	111 935559	9
57	55		Cs	-p	-46290	90	8100.4	0.8	β^+	13740	90	111 950310	90

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay er (keV)	nergy	Atomic m μu	ass
72	41	113	Nb	X	-40510#	400#	8146#	4#	β^-	11980#	500#	112 956510#	430#
71	42		Mo	X	-52490#	300#	8245#	3#	β^-	10320#	300#	112 943650#	320#
70	43		Tc	X	-62812	3	8329.464	0.030	$\dot{oldsymbol{eta}}^-$	9060	40	112 932569	4
69	44		Ru		-71870	40	8402.7	0.3	β^-	6900	40	112 922850	40
68	45		Rh	X	-78768	7	8456.82	0.06	β^-	4824	10	112 915440	8
67	46		Pd	X	-83591	7	8492.58	0.06	β^-	3436	18	112 910261	7
66	47		Ag	+	-87027	17	8516.07	0.15	$\dot{\beta}^-$	2016	17	112 906573	18
65	48		Cď		-89043.28	0.24	8526.987	0.002	β-	323.83	0.27	112 904408.10	0.26
64	49		In		-89367.12	0.19	8522.929	0.002	,	*		112 904060.45	0.20
63	50		Sn		-88328.1	1.6	8506.811	0.014	eta^+	1039.0	1.6	112 905175.8	1.7
62	51		Sb	_	-84417	17	8465.28	0.15	β^+	3911	17	112 909375	18
61	52		Te	X	-78347	28	8404.64	0.25	$\dot{oldsymbol{eta}^+}$	6070	30	112 915890	30
60	53		I	X	-71120	8	8333.75	0.07	β^+	7228	29	112 923650	9
59	54		Xe		-62204	7	8247.93	0.06	$\dot{oldsymbol{eta}^+}$	8916	11	112 933222	7
58	55		Cs	-p	-51765	9	8148.62	0.08	β^+	10439	11	112 944428	9
57	56		Ba	X	-39780#	300#	8036#	3#	β^+	11980#	300#	112 957290#	320#
									•				
73	41	114	Nb	X	-35390#	500#	8100#	4#	β^-	14420#	590#	113 962010#	540#
72	42		Mo	X	-49810#	300#	8220#	3#	β^-	8790#	530#	113 946530#	320#
71	43		Tc	X	-58600	430	8290	4	β^-	11620	430	113 937090	470
70	44		Ru	X	-70222	4	8385.34	0.03	β^-	5490	70	113 924614	4
69	45		Rh		-75710	70	8426.6	0.6	β^-	7780	70	113 918720	80
68	46		Pd	X	-83491	7	8488.01	0.06	β^-	1440	8	113 910369	7
67	47		Ag	X	-84931	5	8493.78	0.04	β^-	5084	5	113 908823	5
66	48		Cd		-90014.93	0.28	8531.513	0.002	β^-	-1445.1	0.4	113 903364.99	0.30
65	49		In		-88569.8	0.3	8511.973	0.003	β^-	1989.9	0.3	113 904916.4	0.3
64	50		Sn		-90559.723	0.029	8522.566	a		*		113 902780.13	0.03
63	51		Sb		-84497	22	8462.52	0.19	$oldsymbol{eta}^+$	6063	22	113 909289	23
62	52		Te	X	-81889	28	8432.78	0.25	$oldsymbol{eta}^+$	2610	40	113 912090	30
61	53		I	X	-72800#	150#	8346#	1#	$oldsymbol{eta}^+$	9090#	150#	113 921850#	160#
60	54		Xe	X	-67086	11	8289.20	0.10	$m{eta}^+$	5710#	150#	113 927980	12
59	55		Cs	$-\alpha$	-54680	70	8173.5	0.6	β^+	12400	70	113 941300	80
58	56		Ba	$-\alpha$	-45910	100	8089.7	0.9	$oldsymbol{eta}^+$	8780	120	113 950720	110
74	41	115	Nb	x	-31350#	500#	8065#	4#	$oldsymbol{eta}^-$	13400#	640#	114 966340#	540#
73	42		Mo	X	-44750#	400#	8175#	3#	β^-	11570#	890#	114 951960#	430#
72	43		Tc	X	-56320	790	8269	7	β^-	9870	790	114 939540	850
71	44		Ru	X	-66190	90	8347.5	0.8	β^-	8040	90	114 928940	100
70	45		Rh	X	-74230	7	8410.66	0.06	β^-	6197	15	114 920311	8
69	46		Pd		-80426	14	8457.74	0.12	β^-	4556	22	114 913659	15
68	47		Ag		-84983	18	8490.56	0.16	β^-	3102	18	114 908767	20
67	48		Cd		-88084.5	0.7	8510.724	0.006	β^-	1451.9	0.7	114 905437.4	0.7
66	49		In		-89536.346	0.012	8516.546	a	β^-	497.489	0.010	114 903878.774	0.013
65	50		Sn		-90033.835	0.015	8514.069	a		*		114 903344.697	0.016
64	51		Sb	X	-87003	16	8480.91	0.14	$oldsymbol{eta}^+$	3030	16	114 906598	17
63	52		Te	X	-82063	28	8431.15	0.24	β^+	4940	30	114 911900	30
62	53		I	X	-76338	29	8374.56	0.25	β^+	5720	40	114 918050	30
61	54		Xe	X	-68657	12	8300.97	0.11	$\dot{oldsymbol{eta}^+}$	7680	30	114 926294	13
60	55		Cs	X	-59700#	100#	8216#	1#	β^+	8960#	100#	114 935910#	110#
59	56		Ba	X	-49020#	200#	8117#	2#	$oldsymbol{eta}^+$	10680#	230#	114 947380#	220#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

1	N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay (keV)		Atomic m μu	ass
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	74	42	116		Х	-41500#	500#				9960#	580#	115 955450#	540#
71 45 Rh -70740 70 8377.6 0.6 β 9100 70 115 924060 80 69 47 Ag x -82232 7 8449 28 0.006 β 6170 3 115 911587 4 68 48 Cd -88712.48 0.16 8512.350 0.001 β -462.23 0.27 115 901742.32 0.17 66 50 Sn -9152597 0.10 8523.16 0.001 β 3276.22 0.24 115 901742.82 0.10 64 52 Te x -885269 28 8455.69 0.24 β 1553 28 115 901742.82 0.10 62 54 Xe x -73047 13 8336.83 0.11 β 4450 100 115 91581 10 61 55 Cs ca -62040# 100# 8235# # β 17500 115 916410 00	73	43		Tc	X	-51460#	300#	8225#	3#		12610#	300#	115 944760#	320#
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	72	44			X	-64069	4						115 931219	
69 47 Ag x -82543 3 8465.907 0.028 β = dec. 2.33 0.27 115 911387 4 68 48 Cd -8871.24.8 0.16 8512.350 0.001 β = dec. 2.33 0.27 115 9015999 0.24 67 49 In -n -88249.75 0.22 8501.617 0.002 β = 3276.22 0.24 115 901592999 0.24 66 50 Sn -91525.97 0.10 88521.16 0.001 ** ** 115 901742.82 0.10 64 52 Te x -85269 28 8455.69 0.24 β + 1780 100 115 906793 6 62 54 Xe x -73047 13 8336.83 0.11 β + 1780 100 115 906793 6 61 55 Cs ea -620404 100 8235# # # 4450 100 115 996309 10 1104 10		45									9100			
68 48 Cd	70	46		Pd	X	-79832	7		0.06	,	2711		115 914297	8
66 50 Sn 9152597 0.10 82316 0.002 β 3276.22 0.24 115 9052599 0.24 65 51 Sb 86822 5 8475.82 0.04 β 4704 5 115 901742.82 0.10 65 51 Sb 882569 28 8455.69 0.24 β 1553 28 115 908460 30 62 54 Xe x 7.73047 13 8336.83 0.11 β 4450 100 115 916810 100 61 55 Cs ea 6-2040 1009 82258 1 β 115 100 115 912181 14 60 56 Ba x 54580 2000 8164 2 β β 14600 3.00 115 913410 100 115 913410 100 105 91581 14 100 105 91581 14 100 100 115 913410 100 115 913410 100 115 913410 100 115 913410 110 115 91581 14 120	69	47		Ag	X		3	8465.907			6170	3	115 911387	4
66 50 Sn 91525,97 0.10 8523,116 0.001 * * 115 907742.82 0.10 64 52 Te x 85269 28 8455.69 0.24 β† 1704 5 115 908440 30 63 53 1 + -77490 100 83819 0.8 β† 7780 100 115 916810 100 62 34 Xe x -73047 13 8336.83 0.11 β† 4450 100 115 916810 100 60 56 Ba x -54580# 200# 8164# 2# # # 1100# 220# 115 941410# 220# 59 57 La -α -36170# 500# 8107# 3# # β† 13940# 370# 115 95370# 340# 75 42 117 Mo x -36170# 500# 8107# 3# # 7527	68	48		Cd		-88712.48			0.001			0.27		0.17
Solution	67				-n					eta^-		0.24	115 905259.99	0.24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	66	50				-91525.97	0.10	8523.116	0.001				115 901742.82	0.10
63 53 I + -77490 100 8381-9 0.8 β+ 7780 100 115 916810 100 62 54 Xe x -73047 13 8336.83 0.11 β+ 1400 115 91581 14 61 55 Cs ea -62040# 100# 8235# 1# β+ 11000# 100# 115 933400# 110# 60 56 Baa x -54580# 200# 8164# 2# β+ 7400# 220# 115 94410# 220# 75 42 117 Mo x -36170# 500# 8100# 4# β- 12210# 640# 116 96170# 540# 74 43 Tc x -48380# 400# 8197# 3# β- 11110# 590# 116 9460# 116 96170# 540# 72 45 Rh x -68897 9 8359.28 0.08 β-														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					X		28			eta^+		28		30
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					+		100		0.8			100	115 916810	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	62				X	-73047	13				4450	100	115 921581	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	61	55		Cs	ea	-62040#	100#	8235#	1#		11000#	100#		110#
75 42 117 Mo x -36170# 500# 8100# 4# β^- 12210# 640# 116 961170# 540# 74 43 TC x -48380# 400# 8197# 3# β^- 11110# 590# 116 948060# 430# 73 44 Ru x -59490 430 8286 4 β^- 9410 430 116 936140 470 72 45 Rh x -68897 9 8359.28 0.08 β^- 7527 11 116 926036 10 71 46 Pd -76424 7 8416.93 0.06 β^- 5758 15 116 917955 8 70 47 Ag -82182 14 8459.45 0.12 β^- 4236 14 116 911774 15 8 49 In -88943 5 8503.86 0.04 β^- 1455 5 116 907226.0 1.1 68 49 In -88943 5 8503.86 0.04 β^- 1455 5 116 904516 5 6 6 51 Sb -88640 8 8487.90 0.07 β^+ 1758 8 116 904842 9 6 6 52 Te -85095 13 8450.92 0.12 β^+ 3544 13 116 908646 14 6 6 53 1 I -80436 26 840441 0.22 β^+ 4659 29 116 913648 28 6 3 54 Xe x -74185 10 8344.30 0.09 β^- 6251 28 116 920359 11 6 25 5 Cs x -66490 60 8271.9 0.5 β^+ 7690 60 116 938320 270 60 57 La -p -46470# 200# 8087# 2# β^- 1110# β^- 117 93806# 220# 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 117 93830# 220# 117 936587 8 11 850.52 8 843.89 8 845.67 0.07 β^+ 77 148 20 117 93830# 220# 116 93657 8 116 906860 22 70 48 Cd -nn -86487 24 8322.86 0.21 β^+ 1160# 450# 117 93830# 220# 70 48 Cd -nn -86702 20 8487.83 0.07 β^- 1110# 50 11 17 93850# 220# 116 93657 8 117 94 117 94595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.07 β^- 1455 8 117 90595.7 8 116 90557	60	56		Ba	X	-54580#	200#		2#		7460#	220#		
74 43 Tc x -48380# 400# 8197# 3# β - 11110# 590# 116 948060# 430# 72 45 Rh x -59490 430 8286 4 β - 9410 430 116 936100 470 71 46 Pd -76424 7 8416.93 0.06 β - 5758 15 116 917955 8 70 47 Ag -82182 14 8459.45 0.12 β - 5758 15 116 917955 8 69 48 Cd -n -86418.4 1.0 8488.973 0.009 β - 2525 5 116 907926.0 1.1 68 49 In -88943 5 8503.86 0.04 β - 1455 5 116 907954.0 0.5 66 51 Sb -88640 8 8487.90 0.07 β + 1758 8 116 90954.0 0.5	59	57		La	$-\alpha$	-40650#	310#	8037#	3#	eta^+	13940#	370#	115 956370#	340#
73 44 Ru x			117		X								116 961170#	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				Tc	X									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					X									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		45			X					,				
69 48 Cd -n -86418.4 1.0 8488.973 0.009 β^- 2525 5 116 907226.0 1.1 68 49 In -88943 5 8503.86 0.04 β^- 1455 5 116 907226.0 0.5 67 50 Sn -90397.8 0.5 8509.611 0.004 * * 116 902954.0 0.5 66 51 Sb -88640 8 8487.90 0.07 β^+ 1758 8 116 904542 9 65 52 Te -85095 13 8450.92 0.12 β^+ 3544 13 116 908646 14 64 53 I -80436 26 8404.41 0.22 β^+ 4659 29 116 913648 28 63 54 Xe x -74185 10 8344.30 0.09 β^+ 6251 28 116 920359 11 62 55 Cs x -66490 60 8271.9 0.5 β^+ 7690 60 116 928620 70 61 56 Ba ϵp -57460 250 8188.0 2.1 β^+ 9040 260 116 928320 270 60 57 La -p -46470# 200# 8087# 2# β^+ 10990# 320# 116 950110# 220# 75 43 Tc x -43790# 400# 8157# 3# β^- 13470# 450# 117 964970# 540# 74 44 Ru x -57260# 200# 8265# 2# β^- 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 β^- 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8433.889 0.021 β^- 4165 4 117 919066.8 2.7 70 48 Cd -nn -86702 20 8487.83 0.07 β^- 4425 8 117 906357 8 65 53 I x -80971 20 8406.12 0.17 β^+ 366 30 19 117 91595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 4425 8 117 906357 8 65 53 I x x -80971 20 8406.12 0.17 β^+ 3666 52 Te +nn -87697 18 8469.75 0.16 β^+ 3600 19 117 91595.2 3 66 52 Te +nn -87697 18 8460.75 0.16 β^+ 3600 19 117 915552 3 65 55 Cs IT -68409 13 8286 0.09 β^+ 6760 200# 117 913074 21 64 54 54 Ke x x -78079 10 8374.98 0.09 β^+ 2892 22 117 916107 11 65 55 Cs IT -68409 13 828.84 2# β^+ 6600# 200# 117 93360# 210# 65 55 Cs IT -68409 13 828.84 2# β^+ 6600# 200# 117 93360# 210# 65 55 Cs IT -68409 13 828.84 0.01 β^+ 6600# 200# 117 93360# 210#				Pd										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					-n									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$										β^-		5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
62 55 Cs x -66490 60 8271.9 0.5 $β^+$ 7690 60 116 928620 70 61 56 Ba $εp$ -57460 250 8188.0 2.1 $β^+$ 9040 260 116 938320 270 60 57 La -p -46470# 200# 8087# 2# $β^+$ 10990# 320# 116 950110# 220# 76 42 118 Mo x -32630# 500# 8069# 4# $β^-$ 11160# 640# 117 964970# 540# 75 43 Tc x -43790# 400# 8157# 3# $β^-$ 13470# 450# 117 952990# 430# 74 44 Ru x -57260# 200# 8265# 2# $β^-$ 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 $β^-$ 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 $β^-$ 4165 4 117 919066.8 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 $β^-$ 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 $β^-$ 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 ** 117 905854 20 65 53 I x -80971 20 8406.12 0.17 $β^+$ 6726 27 117 91074 21 64 54 Xe x -78079 10 8374.98 0.09 $β^+$ 2892 22 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 $β^+$ 2892 22 117 913074 21 65 56 Ba x -62350# 200# 8228# 2# $β^+$ 6060# 200# 117 933060# 210#														
61 56 Ba εp -57460 250 8188.0 2.1 β^+ 9040 260 116 938320 270 60 57 La -p -46470# 200# 8087# 2# β^+ 10990# 320# 116 950110# 220# 76 42 118 Mo x -32630# 500# 8069# 4# β^- 11160# 640# 117 964970# 540# 75 43 Tc x -43790# 400# 8157# 3# β^- 13470# 450# 117 952990# 430# 74 44 Ru x -57260# 200# 8265# 2# β^- 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 β^- 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 β^- 10501 24 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 β^- 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β^- 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 91606.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 β^+ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 β^+ 300 19 117 905854 20 65 53 I x -80971 20 8406.12 0.17 β^+ 6726 27 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 β^+ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 β^+ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# β^+ 6060# 200# 117 933060# 210#					X									
60 57 La -p -46470# 200# 8087# 2# $β^+$ 10990# 320# 116 950110# 220# 76 42 118 Mo x -32630# 500# 8069# 4# $β^-$ 11160# 640# 117 964970# 540# 75 43 Tc x -43790# 400# 8157# 3# $β^-$ 13470# 450# 117 952990# 430# 74 44 Ru x -57260# 200# 8265# 2# $β^-$ 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 $β^-$ 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 $β^-$ 4165 4 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 $β^-$ 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 $β^-$ 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 $β^-$ 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 91606.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 $β^+$ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 $β^+$ 300 19 117 9055854 20 64 54 Xe x -78079 10 8374.98 0.09 $β^+$ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 $β^+$ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# $β^+$ 6060# 200# 117 933060# 210#										β^+				
76 42 118 Mo x					$\varepsilon_{ m p}$									
75 43 Tc x -43790# 400# 8157# 3# $β^-$ 13470# 450# 117 952990# 430# 74 44 Ru x -57260# 200# 8265# 2# $β^-$ 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 $β^-$ 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 $β^-$ 4165 4 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 $β^-$ 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 $β^-$ 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 $β^-$ 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 $*$ 117 90666.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 $β^+$ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 $β^+$ 300 19 117 905854 20 65 53 I x -80971 20 8406.12 0.17 $β^+$ 6726 27 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 $β^+$ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 $β^+$ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# $β^+$ 6060# 200# 117 933060# 210#	60	57		La	-p	-46470#	200#	8087#	2#	eta^+	10990#	320#	116 950110#	220#
74 44 Ru x -57260# 200# 8265# 2# β - 7630# 200# 117 938530# 220# 73 45 Rh x -64887 24 8322.86 0.21 β - 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 β - 4165 4 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 β - 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β - 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β - 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 901606.6 0.5			118											
73 45 Rh x -64887 24 8322.86 0.21 β^- 10501 24 117 930340 26 72 46 Pd -75388.7 2.5 8405.222 0.021 β^- 4165 4 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 β^- 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β^- 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 901606.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 β^+ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 β^+ 300 19 117 905854 20 65 53 I x -80971 20 8406.12 0.17 β^+ 6726 27 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 β^+ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 β^+ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# β^+ 6060# 200# 117 933060# 210#														
72 46 Pd -75388.7 2.5 8405.222 0.021 β^- 4165 4 117 919066.8 2.7 71 47 Ag x -79553.8 2.5 8433.889 0.021 β^- 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β^- 4425 8 117 906922 21 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 901606.6 0.5 67 51 Sb - -87996 3 8478.915 0.026 β^+ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 β^+ 300 19 117 905854 20 <														
71 47 Ag x -79553.8 2.5 8433.889 0.021 β^- 7148 20 117 914595.5 2.7 70 48 Cd -nn -86702 20 8487.83 0.17 β^- 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β^- 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 910606.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 β^+ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 β^+ 300 19 117 905854 20 65 53 I x -80971 20 8406.12 0.17 β^+ 6726 27 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 β^+ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 β^+ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# β^+ 6060# 200# 117 933060# 210#					X									
70 48 Cd -nn -86702 20 8487.83 0.17 β^- 527 21 117 906922 21 69 49 In -87228 8 8485.67 0.07 β^- 4425 8 117 906357 8 68 50 Sn -91652.9 0.5 8516.533 0.004 * 117 901606.6 0.5 67 51 Sb - 87996 3 8478.915 0.026 β^+ 3656.6 3.0 117 905532 3 66 52 Te +nn -87697 18 8469.75 0.16 β^+ 300 19 117 905854 20 65 53 I x -80971 20 8406.12 0.17 β^+ 6726 27 117 913074 21 64 54 Xe x -78079 10 8374.98 0.09 β^+ 2892 22 117 916179 11 63 55 Cs IT -68409 13 8286.40 0.11 β^+ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# β^+ 6060# 200# 117 933060# 210#														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					X									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					-nn									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										eta^-		8		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					+nn									
63 55 Cs IT -68409 13 8286.40 0.11 β^+ 9670 16 117 926560 14 62 56 Ba x -62350# 200# 8228# 2# β^+ 6060# 200# 117 933060# 210#										β^+				
62 56 Ba x -62350# 200# 8228# 2# β ⁺ 6060# 200# 117 933060# 210#														
·														
61 57 La x -49560# 300# 8113# 3# β + 12790# 360# 117 946800# 320#														
	61	57		La	X	-49560#	300#	8113#	3#	eta^+	12790#	360#	117 946800#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
 76	43	119	Тс	Х	-40370#	500#	8128#	4#	β^-	12190#	590#	118 956660#	540#
75	44		Ru	X	-52560#	300#	8224#	3#	β^-	10260#	300#	118 943570#	320#
74	45		Rh	X	-62823	9	8303.39	0.08	β^-	8585	12	118 932557	10
73	46		Pd	X	-71408	8	8368.96	0.07	β^-	7238	17	118 923340	9
72	47		Ag		-78646	15	8423.21	0.12	'β-	5330	40	118 915570	16
71	48		Cd		-83980	40	8461.4	0.3	β^-	3720	40	118 909850	40
70	49		In		-87699	7	8486.14	0.06	β-	2366	7	118 905851	8
69	50		Sn		-90065.0	0.7	8499.449	0.006	,	*		118 903311.2	0.8
68	51		Sb		-89474	8	8487.91	0.06	β^+	591	8	118 903946	8
67	52		Te	_	-87181	8	8462.07	0.07	$\dot{oldsymbol{eta}^+}$	2293.0	2.0	118 906407	9
66	53		I	X	-83766	28	8426.79	0.23	β^+	3416	29	118 910070	30
65	54		Xe	x	-78794	10	8378.44	0.09	β^+	4971	30	118 915411	11
64	55		Cs	IT	-72305	14	8317.33	0.12	$\dot{\beta}^+$	6489	17	118 922377	15
63	56		Ba	ε p	-64590	200	8245.9	1.7	$\dot{\beta}^+$	7710	200	118 930660	210
62	57		La	x	-54790#	300#	8157#	3#	$\dot{\beta}^+$	9800#	360#	118 941180#	320#
61	58		Ce	X	-43940#	500#	8059#	4#	$m{eta}^+$	10850#	580#	118 952830#	540#
77	43	120	Tc	X	-35520#	500#	8087#	4#	β^-	14490#	640#	119 961870#	540#
76	44		Ru	X	-50010#	400#	8201#	3#	β^-	8800#	450#	119 946310#	430#
75	45		Rh	X	-58820#	200#	8268#	2#	β^-	11470#	200#	119 936860#	210#
74	46		Pd		-70280.1	2.3	8357.085	0.019	β^-	5371	5	119 924551.3	2.5
73	47		Ag	X	-75652	4	8395.33	0.04	β^-	8306	6	119 918785	5
72	48		Cd	X	-83957	4	8458.02	0.03	β^-	1770	40	119 909868	4
71	49		In	+	-85730	40	8466.3	0.3	β^-	5370	40	119 907970	40
70	50		Sn		-91098.4	0.9	8504.492	0.007	eta^-	-2681	7	119 902201.9	1.0
69	51		Sb	_	-88418	7	8475.63	0.06	eta^-	950	8	119 905080	8
68	52		Te		-89368	3	8477.034	0.026		*		119 904060	3
67	53		I	_	-83753	15	8423.72	0.13	β^+	5615	15	119 910087	16
66	54		Xe	X	-82172	12	8404.03	0.10	β^+	1581	19	119 911784	13
65	55		Cs	IT	-73889	10	8328.48	0.08	β^+	8284	15	119 920677	11
64	56		Ba	_	-68890	300	8280.3	2.5	β^+	5000	300	119 926050	320
63	57		La	X	-57570#	300#	8179#	2#	$oldsymbol{eta}^+$	11320#	420#	119 938200#	320#
62	58		Ce	X	-49600#	500#	8107#	4#	$oldsymbol{eta}^+$	7970#	580#	119 946750#	540#
78	43	121	Tc	X	-31780#	500#	8056#	4#	β^-	13270#	640#	120 965880#	540#
77	44		Ru	X	-45050#	400#	8159#	3#	β^-	11200#	740#	120 951640#	430#
76	45		Rh	X	-56250	620	8245	5	β^-	9930	620	120 939610	670
75	46		Pd	X	-66182	3	8320.858	0.028	β^-	8220	13	120 928950	4
74	47		Ag	X	-74403	12	8382.33	0.10	β^-	6671	12	120 920125	13
73	48		Cd	X	-81073.8	1.9	8430.996	0.016	β^-	4762	27	120 912963.7	2.1
72	49		In	+p	-85836	27	8463.89	0.23	β^-	3361	27	120 907851	29
71	50		Sn		-89197.3	1.0	8485.201	0.008	eta^-	403.1	2.7	120 904242.8	1.0
70	51		Sb		-89600.3	2.6	8482.066	0.021	2	*		120 903810.1	2.8
69	52		Te		-88546	26	8466.88	0.21	β^+	1055	26	120 904942	28
68	53		I		-86251	5	8441.46	0.04	β^+	2294	26	120 907405	6
67	54		Xe		-82481	10	8403.83	0.08	β^+	3770	12	120 911453	11
66	55		Cs		-77102	14	8352.91	0.12	β^+	5379	14	120 917227	15
65	56		Ba	_	-70740	140	8293.9	1.2	β^+	6360	140	120 924050	150
64	57		La	X	-62190#	300#	8217#	2#	β^+	8560#	330#	120 933240#	320#
63	58		Ce	X	-52690#	400#	8132#	3#	β^+	9500#	500#	120 943440#	430#
62	59		Pr	-р	-41420#	500#	8032#	4#	$\dot{oldsymbol{eta}}^+$	11270#	640#	120 955530#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay 6 (keV)	energy	Atomic m μu	ass
78	44	122	Ru	X	-42150#	500#	8135#	4#	β^-	9930#	580#	121 954750#	540#
77	45		Rh	X	-52080#	300#	8210#	2#	β^-	12540#	300#	121 944090#	320#
76	46		Pd	X	-64616	20	8305.97	0.16	β^-	6490	40	121 930632	21
75	47		Ag	X	-71110	40	8352.8	0.3	β^-	9510	40	121 923660	40
74	48		Cd		-80612.4	2.3	8424.266	0.019	$\dot{\beta}^-$	2960	50	121 913459.1	2.5
73	49		In	+	-83570	50	8442.1	0.4	$\dot{oldsymbol{eta}}^-$	6370	50	121 910280	50
72	50		Sn		-89941.3	2.4	8487.907	0.020	'β-	-1606	3	121 903444.0	2.6
71	51		Sb		-88335.4	2.6	8468.331	0.021	β^-	1979.1	2.1	121 905168.1	2.8
70	52		Te		-90314.5	1.5	8478.140	0.012	•	*		121 903043.4	1.6
69	53		I	_	-86080	5	8437.02	0.04	eta^+	4234	5	121 907589	6
68	54		Xe	X	-85355	11	8424.66	0.09	β^+	725	12	121 908368	12
67	55		Cs		-78140	30	8359.15	0.28	$\dot{oldsymbol{eta}^+}$	7210	40	121 916110	40
66	56		Ba	x	-74609	28	8323.76	0.23	β^+	3540	40	121 919900	30
65	57		La	X	-64540#	300#	8235#	2#	β^+	10070#	300#	121 930710#	320#
64	58		Ce	x	-57870#	400#	8174#	3#	$\dot{oldsymbol{eta}^+}$	6670#	500#	121 937870#	430#
63	59		Pr	X	-44780#	500#	8060#	4#	$m{eta}^+$	13090#	640#	121 951930#	540#
79	44	123	Ru	x	-37080#	500#	8093#	4#	eta^-	12280#	640#	122 960190#	540#
78	45		Rh	X	-49360#	400#	8186#	3#	β^-	11070#	890#	122 947010#	430#
77	46		Pd	X	-60430	790	8270	6	β^-	9120	790	122 935130	850
76	47		Ag	X	-69550	30	8337.80	0.25	β^-	7870	30	122 925340	30
75	48		Cd		-77414.2	2.7	8395.395	0.022	β^-	6016	20	122 916892.5	2.9
74	49		In		-83430	20	8437.95	0.16	β^-	4386	20	122 910434	21
73	50		Sn		-87816.2	2.4	8467.243	0.020	β^-	1407.9	2.7	122 905725.4	2.6
72	51		Sb		-89224.1	1.5	8472.328	0.012		*		122 904214.0	1.6
71	52		Te		-89172.2	1.5	8465.546	0.012	$oldsymbol{eta}^+$	51.91	0.07	122 904269.7	1.6
70	53		I		-87944	4	8449.20	0.03	β^+	1228	3	122 905589	4
69	54		Xe		-85249	10	8420.93	0.08	$oldsymbol{eta}^+$	2695	10	122 908482	10
68	55		Cs	X	-81044	12	8380.38	0.10	eta^+	4205	15	122 912996	13
67	56		Ba	X	-75655	12	8330.21	0.10	eta^+	5389	17	122 918781	13
66	57		La	X	-68650#	200#	8267#	2#	eta^+	7000#	200#	122 926300#	210#
65	58		Ce	X	-60290#	300#	8193#	2#	β^+	8370#	360#	122 935280#	320#
64	59		Pr	X	-50230#	400#	8104#	3#	eta^+	10060#	500#	122 946080#	430#
80	44	124	Ru	x	-33960#	600#	8068#	5#	eta^-	10930#	720#	123 963540#	640#
79	45		Rh	X	-44890#	400#	8149#	3#	β^-	13500#	500#	123 951810#	430#
78	46		Pd	X	-58390#	300#	8252#	2#	eta^-	7810#	390#	123 937320#	320#
77	47		Ag	X	-66200	250	8308.7	2.0	$oldsymbol{eta}^-$	10500	250	123 928930	270
76	48		Cd		-76701.7	3.0	8387.035	0.024	$oldsymbol{eta}^-$	4170	30	123 917657	3
75	49		In		-80870	30	8414.34	0.25	β^-	7360	30	123 913180	30
74	50		Sn		-88234.2	1.0	8467.421	0.008	β^-	-613.9	1.5	123 905276.7	1.1
73	51		Sb	-n	-87620.2	1.5	8456.160	0.012	$oldsymbol{eta}^-$	2905.07	0.13	123 905935.8	1.6
72	52		Te		-90525.3	1.5	8473.279	0.012	β^-	-3159.6	1.9	123 902817.1	1.6
71	53		I	_	-87365.7	2.4	8441.489	0.019	eta^-	295.7	2.8	123 906209.0	2.6
70	54		Xe		-87661.4	1.8	8437.565	0.014	0.1	*		123 905891.6	1.9
69	55		Cs	X	-81731	8	8383.43	0.07	β^+	5930	8	123 912258	9
68	56		Ba	X	-79090	12	8355.82	0.10	β^+	2642	15	123 915094	13
67	57		La	X	-70260	60	8278.3	0.5	β^+	8830	60	123 924570	60
66	58		Ce	X	-64920#	300#	8229#	2#	β^+	5340#	300#	123 930310#	320#
65	59		Pr Nd	X	-53150# -44530#	400# 500#	8128# 8052#	3# 4#	$eta^+ eta^+$	11770# 8630#	500# 640#	123 942940# 123 952200#	430# 540#
64	60			X									

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay (keV)	energy	Atomic ma μu	ass
80	45	125	Rh	х	-42000#	500#	8126#	4#	β-	12120#	640#	124 954910#	540#
79	46		Pd	X	-54120#	400#	8216#	3#	β^-	10400#	590#	124 941900#	430#
78	47		Ag	X	-64520	430	8293	3	β^-	8830	430	124 930740	470
77	48		Cd		-73348.1	2.9	8357.681	0.023	β^-	7129	27	124 921258	3
76	49		In		-80477	27	8408.45	0.22	β^-	5420	27	124 913605	29
75	50		Sn		-85896.4	1.0	8445.550	0.008	β^-	2359.9	2.6	124 907786.4	1.1
74	51		Sb	+	-88256.3	2.6	8458.170	0.021	β^-	766.7	2.1	124 905253.0	2.8
73	52		Te		-89023.0	1.5	8458.045	0.012		*		124 904429.9	1.6
72	53		I	_	-88837.2	1.5	8450.300	0.012	eta^+	185.77	0.06	124 904629.3	1.6
71	54		Xe		-87193.4	1.8	8430.890	0.015	eta^+	1643.8	2.2	124 906394.1	2.0
70	55		Cs		-84088	8	8399.79	0.06	β^+	3105	8	124 909728	8
69	56		Ba		-79669	11	8358.18	0.09	eta^+	4419	13	124 914472	12
68	57		La		-73759	26	8304.64	0.21	β^+	5909	28	124 920816	28
67	58		Ce	X	-66660#	200#	8242#	2#	β^+	7100#	200#	124 928440#	210#
66	59		Pr	X	-57940#	300#	8166#	2#	β^+	8720#	360#	124 937800#	320#
65	60		Nd	X	-47600#	400#	8077#	3#	$m{eta}^+$	10340#	500#	124 948900#	430#
81	45	126	Rh	X	-37300#	500#	8088#	4#	β^-	14560#	640#	125 959960#	540#
80	46		Pd	X	-51860#	400#	8197#	3#	β^-	8820#	450#	125 944330#	430#
79	47		Ag	X	-60680#	200#	8261#	2#	β^-	11580#	200#	125 934860#	220#
78	48		Cd		-72256.8	2.5	8346.747	0.020	β^-	5516	27	125 922429.1	2.7
77	49		In		-77773	27	8384.32	0.21	β^-	8242	27	125 916507	29
76	50		Sn		-86015	10	8443.52	0.08	β^-	380	30	125 907659	11
75	51		Sb	_	-86390	30	8440.31	0.25	β^-	3670	30	125 907250	30
74	52		Te		-90065.3	1.5	8463.248	0.012	β^-	-2154	4	125 903310.9	1.6
73	53		I		-87911	4	8439.94	0.03	eta^-	1236	5	125 905623	4
72	54		Xe		-89147	3	8443.541	0.028	o +		1.1	125 904297	4
71	55		Cs		-84351	10	8399.27	0.08	β^+	4796	11	125 909446	11
70	56		Ba	X	-82670	12	8379.72	0.10	β^+	1681	16	125 911250	13
69	57		La	X	-74970 -70921	90	8312.4 8273.26	0.7	$eta^+ eta^+$	7700	90 90	125 919510	100
68 67	58 59		Ce	X	-70821 -60220#	28 200#	8273.26 8184#	0.22 2#	β^+	4150 10500#	200#	125 923970 125 935240#	30 210#
66	60		Pr Nd	X	-60320# -52990#	300#	8119#	2# 2#	β^+	7330#	200# 360#	125 933240#	320#
65	61		Pm	X X	-39350#	500#	8005#	2# 4#	β^+	13640#	580#	125 957760#	540#
82	45	127	Rh	x	-34030#	600#	8062#	5#	eta^-	13150#	780#	126 963470#	640#
81	46	127	Pd	X	-47180#	500#	8159#	4#	β^-	11260#	540#	126 949350#	540#
80	47		Ag	X	-58440#	200#	8242#	2#	β^-	10310#	200#	126 937260#	220#
79	48		Cd	X	-68747	12	8316.95	0.10	β^-	8149	24	126 926197	13
78	49		In	Λ	-76896	21	8374.95	0.17	β^-	6575	19	126 917449	23
77	50		Sn		-83471	10	8420.56	0.08	β^-	3229	11	126 910390	11
76	51		Sb		-86699	5	8439.82	0.04	β^-	1582	5	126 906924	6
75	52		Te		-88281.7	1.5	8446.118	0.012	$m{eta}^-$	702	4	126 905225.7	1.6
74	53		I		-88984	4	8445.487	0.029	r	*		126 904472	4
73	54		Xe		-88322	4	8434.11	0.03	$oldsymbol{eta}^+$	662.3	2.0	126 905183	4
72	55		Cs		-86240	6	8411.56	0.04	β^+	2081	6	126 907417	6
71	56		Ba		-82818	11	8378.46	0.09	β^+	3422	13	126 911091	12
70	57		La		-77896	26	8333.54	0.20	β^+	4922	28	126 916375	28
69	58		Ce	X	-71979	29	8280.79	0.23	β^+	5920	40	126 922730	30
68	59		Pr	X	-64540#	200#	8216#	2#	β^+	7440#	200#	126 930710#	210#
67	60		Nd	X	-55540#	300#	8139#	2#	$m{eta}^+$	9010#	360#	126 940380#	320#
66	61		Pm	x	-44790#	400#	8048#	3#	β^+	10750#	500#	126 951920#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV		Atomic m μu	ass
82	46	128	Pd	х	-44490#	500#	8138#	4#	β^-	10130#	580#	127 952240#	540#
81	47		Ag	X	-54620#	300#	8211#	2#	β^-	12620#	300#	127 941360#	320#
80	48		Cď		-67242	7	8303.26	0.06	β^-	6900	150	127 927813	8
79	49		In		-74150	150	8351.1	1.2	β^-	9220	150	127 920400	160
78	50		Sn		-83362	18	8416.98	0.14	β^-	1268	14	127 910507	19
77	51		Sb	IT	-84630	19	8420.78	0.15	β^-	4363	19	127 909146	21
76	52		Te		-88993.7	0.9	8448.752	0.007	β^-	-1255	4	127 904461.3	0.9
75	53		I		-87739	4	8432.836	0.028	β^-	2122	4	127 905809	4
74	54		Xe		-89860.3	1.1	8443.298	0.008	,	*		127 903531.0	1.1
73	55		Cs		-85932	5	8406.49	0.04	eta^+	3929	5	127 907749	6
72	56		Ba		-85378	5	8396.06	0.04	β^+	553	8	127 908342	6
71	57		La	X	-78630	50	8337.2	0.4	β^+	6750	50	127 915590	60
70	58		Ce	X	-75534	28	8306.93	0.22	β^+	3090	60	127 918910	30
69	59		Pr	X	-66331	30	8228.91	0.23	β^+	9200	40	127 928790	30
68	60		Nd	X	-60310#	200#	8176#	2#	$\ddot{oldsymbol{eta}}^+$	6020#	200#	127 935250#	210#
67	61		Pm	X	-47790#	300#	8072#	2#	β^+	12530#	360#	127 948700#	320#
66	62		Sm	x	-38670#	500#	7994#	4#	$oldsymbol{eta}^+$	9120#	580#	127 958490#	540#
83	46	129	Pd	X	-37610#	600#	8084#	5#	eta^-	14370#	720#	128 959620#	640#
82	47		Ag	X	-51980#	400#	8189#	3#	β^-	11080#	400#	128 944200#	430#
81	48		Cd	X	-63058	17	8269.03	0.13	β^-	9780	17	128 932304	18
80	49		In		-72837.7	2.7	8338.780	0.021	β^-	7753	17	128 921805.5	2.9
79	50		Sn		-80591	17	8392.82	0.13	β^-	4038	27	128 913482	19
78	51		Sb	+	-84629	21	8418.06	0.16	β^-	2375	21	128 909147	23
77	52		Te		-87004.8	0.9	8430.409	0.007	β^-	1502	3	128 906596.5	0.9
76	53		I		-88507	3	8435.990	0.025	β^-	189	3	128 904984	3
75	54		Xe		-88696.059	0.005	8431.390	а	•	*		128 904780.859	0.006
74	55		Cs		-87499	5	8416.05	0.04	eta^+	1197	5	128 906066	5
73	56		Ba		-85063	11	8391.10	0.08	β^+	2436	11	128 908681	11
72	57		La		-81325	21	8356.05	0.17	β^+	3739	22	128 912694	23
71	58		Ce	X	-76287	28	8310.94	0.22	β^+	5040	40	128 918100	30
70	59		Pr	X	-69774	30	8254.38	0.23	β^+	6510	40	128 925100	30
69	60		Nd	ε p	-62320#	200#	8190#	2#	β^+	7460#	200#	128 933100#	220#
68	61		Pm	X	-52880#	300#	8111#	2#	β^+	9430#	360#	128 943230#	320#
67	62		Sm	X	-42000#	500#	8021#	4#	$m{eta}^+$	10880#	580#	128 954910#	540#
83	47	130	Ag	-nn	-45700#	500#	8140#	4#	β^-	15420#	500#	129 950940#	540#
82	48		Cd	X	-61118	22	8252.59	0.17	β^-	8770	40	129 934388	24
81	49		In	+	-69880	40	8314.00	0.29	β^-	10250	40	129 924980	40
80	50		Sn		-80132.2	1.9	8386.816	0.014	$\dot{oldsymbol{eta}}^-$	2153	14	129 913974.5	2.0
79	51		Sb		-82286	14	8397.36	0.11	β^-	5067	14	129 911663	15
78	52		Te		-87352.949	0.011	8430.324	a	β^-	-417	3	129 906222.747	0.012
77	53		I	-n	-86936	3	8421.100	0.024	$m{eta}^-$	2944	3	129 906670	3
76	54		Xe		-89880.463	0.009	8437.731	a	β^-	-2981	8	129 903509.349	0.010
75	55		Cs		-86900	8	8408.78	0.06	β^-	362	9	129 906709	9
74	56		Ba		-87261.5	2.6	8405.549	0.020	•	*		129 906320.9	2.7
73	57		La	X	-81627	26	8356.19	0.20	$oldsymbol{eta}^+$	5634	26	129 912369	28
72	58		Ce	X	-79423	28	8333.22	0.21	$\overset{oldsymbol{eta}}{oldsymbol{eta}^+}$	2200	40	129 914740	30
71	59		Pr	X	-71180	60	8263.8	0.5	β^+	8250	70	129 923590	70
70	60		Nd	X	-66596	28	8222.51	0.21	β^+	4580	70	129 928510	30
69	61		Pm	X	-55400#	200#	8130#	2#	β^+	11200#	200#	129 940530#	210#
68	62		Sm	X	-47510#	400#	8064#	3#	β^+	7890#	450#	129 949000#	430#
	63		Eu	-p	-33680#	500#	7951#	4#	$\overset{oldsymbol{eta}}{oldsymbol{eta}^+}$	13820#	640#	129 963840#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	ass
84	47	131	Ag	Х	-40380#	500#	8099#	4#	β^-	14840#	510#	130 956650#	540#
83	48		Cd	X	-55220	100	8206.2	0.8	$\dot{\beta}^-$	12810	100	130 940720	110
82	49		In	X	-68025.0	2.7	8297.959	0.021	β^-	9240	5	130 926972.1	2.9
81	50		Sn		-77265	4	8362.517	0.028	β^-	4717	4	130 917053	4
80	51		Sb		-81981.4	2.1	8392.552	0.016	β^-	3229.6	2.1	130 911989.3	2.2
79	52		Te	-n	-85211.01	0.06	8411.233	0.001	β^-	2231.7	0.6	130 908522.21	0.07
78	53		I	+	-87442.7	0.6	8422.297	0.005	β^-	970.8	0.6	130 906126.4	0.6
77	54		Xe		-88413.558	0.009	8423.736	а	r	*		130 905084.136	0.009
76	55		Cs		-88059	5	8415.06	0.04	$oldsymbol{eta}^+$	355	5	130 905465	5
75	56		Ba		-86683.7	2.6	8398.587	0.020	$\dot{oldsymbol{eta}^+}$	1375	5	130 906941.2	2.8
74	57		La	X	-83769	28	8370.37	0.21	β^+	2914	28	130 910070	30
73	58		Ce		-79710	30	8333.40	0.25	β^+	4060	40	130 914430	40
72	59		Pr		-74300	50	8286.1	0.4	β^+	5410	60	130 920230	50
71	60		Nd		-67768	28	8230.30	0.21	β^+	6530	50	130 927248	30
70	61		Pm	X	-59660#	200#	8162#	2#	β^+	8110#	200#	130 935950#	220#
69	62		Sm	X	-50130#	400#	8084#	3#	β^+	9530#	450#	130 946180#	430#
68	63		Eu	-p	-39270#	400#	7995#	3#	$m{eta}^+$	10860#	570#	130 957840#	430#
85	47	132	Ag	X	-33790#	500#	8049#	4#	eta^-	16470#	540#	131 963730#	540#
84	48		Cd	X	-50260#	200#	8168#	1#	β^-	12150#	210#	131 946040#	210#
83	49		In	+	-62410	60	8253.7	0.5	β^-	14140	60	131 933000	60
82	50		Sn		-76546.5	2.0	8354.872	0.015	β^-	3089	3	131 917823.9	2.1
81	51		Sb		-79635.3	2.5	8372.344	0.019	$\dot{oldsymbol{eta}}^-$	5553	4	131 914508.0	2.6
80	52		Te		-85188	3	8408.485	0.026	β^-	515	3	131 908547	4
79	53		I		-85703	4	8406.46	0.03	β^-	3575	4	131 907994	4
78	54		Xe		-89278.962	0.005	8427.622	a	β^-	-2126.3	1.0	131 904155.087	0.006
77	55		Cs		-87152.7	1.0	8405.587	0.008	β^-	1282.3	1.5	131 906437.7	1.1
76	56		Ba		-88435.0	1.1	8409.375	0.008		*		131 905061.1	1.1
75	57		La		-83720	40	8367.76	0.28	$oldsymbol{eta}^+$	4710	40	131 910120	40
74	58		Ce		-82471	20	8352.34	0.15	eta^+	1250	40	131 911464	22
73	59		Pr	X	-75227	29	8291.54	0.22	β^+	7240	40	131 919240	30
72	60		Nd	X	-71426	24	8256.81	0.18	β^+	3800	40	131 923321	26
71	61		Pm	X	-61630#	150#	8177#	1#	β^+	9800#	150#	131 933840#	160#
70	62		Sm	X	-55080#	300#	8121#	2#	$oldsymbol{eta}^+$	6550#	330#	131 940870#	320#
69	63		Eu	X	-42200#	400#	8018#	3#	$oldsymbol{eta}^+$	12880#	500#	131 954700#	430#
85	48	133	Cd	X	-43920#	300#	8119#	2#	eta^-	13540#	360#	132 952850#	320#
84	49		In	X	-57460#	200#	8215#	1#	eta^-	13410#	200#	132 938310#	210#
83	50		Sn		-70873.9	1.9	8310.088	0.014	β^-	8050	4	132 923913.8	2.0
82	51		Sb		-78924	3	8364.729	0.024	eta^-	4014	4	132 915272	3
81	52		Te		-82937.1	2.1	8389.025	0.016	eta^-	2921	7	132 910963.3	2.2
80	53		I	++	-85858	6	8405.11	0.05	β^-	1785	7	132 907827	7
79	54		Xe	+	-87643.6	2.4	8412.647	0.018	β^-	427.4	2.4	132 905910.8	2.6
78	55		Cs		-88070.931	0.008	8409.978	a		*		132 905451.961	0.009
77	56		Ba		-87553.6	1.0	8400.206	0.007	eta^+	517.3	1.0	132 906007.3	1.1
76	57		La	X	-85494	28	8378.84	0.21	β^+	2059	28	132 908220	30
75	58		Ce	X	-82418	16	8349.83	0.12	$oldsymbol{eta}^+$	3080	30	132 911520	18
74	59		Pr	X	-77938	12	8310.26	0.09	$oldsymbol{eta}^+$	4481	21	132 916331	13
73	60		Nd	X	-72330	50	8262.2	0.4	eta^+	5610	50	132 922350	50
72	61		Pm	X	-65410	50	8204.3	0.4	$oldsymbol{eta}^+$	6920	70	132 929780	50
71	62		Sm	X	-57230#	300#	8137#	2#	$oldsymbol{eta}^+$	8180#	300#	132 938560#	320#
70	63		Eu	X	-47240#	300#	8056#	2#	$oldsymbol{eta}^+$	10000#	420#	132 949290#	320#
69	64		Gd	X	-35860#	500#	7964#	4#	eta^+	11380#	580#	132 961500#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ng energy eleon (keV)		Beta-decay er (keV)	nergy	Atomic ma μu	ass
86	48	134	Cd	X	-38920#	400#	8082#	3#	β^-	12740#	500#	133 958220#	430#
85	49		In	X	-51660#	300#	8171#	2#	β^-	14770#	300#	133 944540#	320#
84	50		Sn	X	-66434	3	8275.171	0.024	β^-	7587	4	133 928680	3
83	51		Sb	X	-74020.5	1.7	8325.950	0.013	β^-	8513	3	133 920535.7	1.8
82	52		Te		-82533.7	2.7	8383.643	0.020	eta^-	1510	5	133 911396.4	2.9
81	53		I		-84043	5	8389.07	0.04	eta^-	4082	5	133 909776	5
80	54		Xe		-88125.822	0.009	8413.699	a	eta^-	-1234.667	0.018	133 905393.034	0.010
79	55		Cs		-86891.154	0.016	8398.646	a	eta^-	2058.7	0.3	133 906718.504	0.018
78	56		Ba		-88949.9	0.3	8408.171	0.002		*		133 904508.4	0.3
77	57		La	X	-85219	20	8374.49	0.15	β^+	3731	20	133 908514	21
76	58		Ce	X	-84833	20	8365.77	0.15	$oldsymbol{eta}^+$	386	29	133 908928	22
75	59		Pr	X	-78528	20	8312.88	0.15	$oldsymbol{eta}^+$	6305	29	133 915697	22
74	60		Nd	X	-75646	12	8285.54	0.09	β^+	2882	24	133 918790	13
73	61		Pm	X	-66740	60	8213.2	0.4	β^+	8910	60	133 928350	60
72	62		Sm	X	-61380#	200#	8167#	1#	β^+	5360#	200#	133 934110#	210#
71	63		Eu	X	-49930#	300#	8076#	2#	β^+	11450#	360#	133 946400#	320#
70	64		Gd	X	-41300#	400#	8006#	3#	eta^+	8630#	500#	133 955660#	430#
86	49	135	In	X	-46530#	400#	8132#	3#	β^-	14100#	400#	134 950050#	430#
85	50		Sn	X	-60632	3	8230.687	0.023	β^-	9058	4	134 934909	3
84	51		Sb		-69690.3	2.6	8291.989	0.020	β^-	8038	3	134 925184.4	2.8
83	52		Te		-77728.8	1.7	8345.738	0.013	β^-	6050.4	2.7	134 916554.7	1.8
82	53		I		-83779.1	2.1	8384.760	0.015	β^-	2634	4	134 910059.4	2.2
81	54		Xe		-86413	4	8398.476	0.028	β^-	1168	4	134 907232	4
80	55		Cs		-87581.6	1.0	8401.336	0.007	eta^-	268.9	1.0	134 905977.2	1.1
79	56		Ba		-87850.5	0.3	8397.533	0.002	ρ +		0	134 905688.6	0.3
78 77	57 58		La Ce		-86643 -84616	9 10	8382.80 8361.98	0.07 0.08	$eta^+ eta^+$	1207 2027	9 5	134 906985 134 909161	10 11
76	59		Pr	v	-80936	10	8328.93	0.08	β^+	3680	3 16	134 913112	13
75	60		Nd	X X	-76214	19	8288.15	0.09	β^+	4722	22	134 918181	21
73 74	61		Pm	X	-70214	80	8236.7	0.14	β^+	6160	80	134 924800	80
73	62		Sm	X	-62860	150	8177.6	1.1	$oldsymbol{eta}^+$	7190	170	134 932520	170
72	63		Eu	X	-54150#	200#	8107#	1#	β^+	8710#	250#	134 941870#	210#
71	64		Gd	X	-44390#	400#	8029#	3#	β^+	9760#	450#	134 952350#	430#
70	65		Tb	-p	-32830#	400#	7938#	3#	$oldsymbol{eta}^+$	11570#	570#	134 964760#	430#
87	49	136	In	X	-40510#	400#	8087#	3#	β^-	15390#	500#	135 956510#	430#
86	50		Sn	X	-55900#	300#	8195#	2#	β^-	8610#	300#	135 939990#	320#
85	51		Sb		-64507	6	8252.25	0.04	β^-	9918	6	135 930749	6
84	52		Te		-74425.3	2.3	8319.429	0.017	β^-	5120	14	135 920101.2	2.4
83	53		I		-79545	14	8351.32	0.10	$\dot{\beta}^-$	6884	14	135 914605	15
82	54		Xe		-86429.159	0.007	8396.188	а	β^-	-90.5	1.9	135 907214.476	0.007
81	55		Cs	+	-86338.7	1.9	8389.770	0.014	$\dot{oldsymbol{eta}}^-$	2548.2	1.9	135 907311.6	2.0
80	56		Ba		-88886.9	0.3	8402.755	0.002	β^-	-2850	50	135 904576.0	0.3
79	57		La	X	-86040	50	8376.1	0.4	β^-	470	50	135 907630	60
78	58		Ce		-86508.4	0.4	8373.760	0.003		*		135 907129.4	0.4
77	59		Pr		-81340	11	8330.01	0.08	$oldsymbol{eta}^+$	5168	11	135 912678	12
76	60		Nd	X	-79199	12	8308.51	0.09	eta^+	2141	16	135 914976	13
75	61		Pm	X	-71170	70	8243.7	0.5	$oldsymbol{eta}^+$	8030	70	135 923600	70
74	62		Sm	X	-66811	12	8205.92	0.09	β^+	4360	70	135 928276	13
73	63		Eu	X	-56240#	200#	8122#	1#	β^+	10570#	200#	135 939620#	210#
72	64		Gd	X	-49090#	300#	8064#	2#	β^+	7150#	360#	135 947300#	320#
71	65		Tb	X	-36130#	500#	7963#	4#	eta^+	12960#	580#	135 961210#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay 6 (keV)	energy	Atomic m μu	ass
88	49	137	In	X	-35040#	500#	8047#	4#	β^-	14750#	640#	136 962380#	540#
87	50		Sn	X	-49790#	400#	8149#	3#	β^-	10270#	400#	136 946550#	430#
86	51		Sb	X	-60060	50	8218.5	0.4	β^-	9240	50	136 935520	60
85	52		Te		-69303.8	2.1	8280.235	0.015	β^-	7053	9	136 925599.4	2.3
84	53		I	p-2n	-76356	8	8326.00	0.06	eta^-	6027	8	136 918028	9
83	54		Xe	-n	-82383.40	0.10	8364.286	0.001	$oldsymbol{eta}^-$	4162.2	0.4	136 911557.77	0.11
82	55		Cs	+	-86545.6	0.4	8388.956	0.003	$oldsymbol{eta}^-$	1175.63	0.17	136 907089.5	0.4
81	56		Ba		-87721.2	0.3	8391.827	0.002	0.1	*		136 905827.4	0.3
80	57		La	+	-87140.7	1.7	8381.879	0.012	β^+	580.5	1.6	136 906450.6	1.8
79	58		Ce		-85918.6	0.4	8367.248	0.003	β^+	1222.1	1.6	136 907762.6	0.5
78	59		Pr		-83202	8	8341.71	0.06	β^+	2717	8	136 910679	9
77	60		Nd		-79585 74072	12	8309.59	0.09	β^+	3617	14	136 914562	13
76	61		Pm	X	-74073	13	8263.65	0.10	$eta^+ eta^+$	5512	18	136 920480	14
75 74	62 63		Sm Eu		-68030 -60146	40 4	8213.8 8150.57	0.3 0.03	β^+	6050 7880	40 40	136 926970 136 935431	50 5
73	64		Gd	X X	-51210#	300#	8080#	2#	β^+	8930#	300#	136 945020#	320#
72	65		Tb	X	-40970#	400#	7999#	2# 3#	β^+	10250#	500#	136 956020#	430#
12	03		10	Α	- 1 0770#	400#	1333π	5π	ρ	10230#	300#	130 /30020#	430#
88	50	138	Sn	X	-44860#	500#	8113#	4#	β^-	9360#	1180#	137 951840#	540#
87	51		Sb	X	-54220	1060	8175	8	β^-	11480	1060	137 941790	1140
86	52		Te		-65696	4	8252.578	0.027	$oldsymbol{eta}^-$	6284	7	137 929472	4
85	53		I	X	-71980	6	8292.44	0.04	eta^-	7992	7	137 922726	6
84	54		Xe		-79972.2	2.8	8344.690	0.020	β^-	2915	10	137 914146	3
83	55		Cs		-82887	9	8360.14	0.07	β^-	5375	9	137 911017	10
82	56		Ba		-88261.6	0.3	8393.420	0.002	β^-	-1742	3	137 905247.2	0.3
81	57		La		-86519	3	8375.125	0.023	$oldsymbol{eta}^-$	1052	4	137 907118	3
80	58		Ce		-87571	5	8377.08	0.04	a +		10	137 905989	5
79 79	59		Pr	_	-83134	11	8339.26	0.08	β^+	4437	10	137 910752	12
78 77	60 61		Nd Pm		-82018 -74940	12 28	8325.50 8268.54	0.08 0.20	$eta^+ eta^+$	1116 7078	16 29	137 911950 137 919548	12 30
7 <i>1</i>	62		Sm	v	-74940 -71498	28 12	8208.54 8237.93	0.20	β^+	7078 3440	30	137 923244	13
75	63		Eu	X X	-71498 -61750	28	8161.62	0.09	β^+	9750	30	137 923244	30
73 74	64		Gd	X	-55800#	200#	8113#	1#	β^+	5950#	200#	137 940100#	210#
73	65		Tb	X	-43670#	300#	8019#	2#	β^+	12130#	360#	137 953120#	320#
72	66		Dy	X	-34930#	500#	7950#	2π 4#	β^+	8740#	590#	137 962500#	540#
89	50	139	Sn		-38440#	500#	8066#	4#	$oldsymbol{eta}^-$	11350#	640#	138 958730#	540#
88	51	139	Sb	X	-38440# -49790#	400#	8142#	4# 3#	eta^-	10420#	400#	138 946550#	430#
87	52		Te	X	-49790# -60205	400#	8211.771	0.025	eta^-	8266	400# 5	138 935367	450#
86	53		I	X X	-68471	4	8265.609	0.023	$_{oldsymbol{eta}^{-}}^{oldsymbol{eta}}$	7174	5	138 926493	4
85	54		Xe	X	-75644.6	2.1	8311.590	0.029	β^-	5056	4	138 918792.2	2.3
84	55		Cs	+	-80701	3	8342.338	0.013	β^-	4213	3	138 913364	3
83	56		Ba	'	-84913.8	0.3	8367.017	0.002	β^-	2312.5	2.0	138 908841.3	0.3
82	57		La		-87226.2	2.0	8378.025	0.014	Ρ	*	2.0	138 906358.8	2.2
81	58		Ce		-86948	7	8370.39	0.05	β^+	278	7	138 906658	8
80	59		Pr		-84819	8	8349.45	0.06	β^+	2129.1	3.0	138 908943	8
79	60		Nd		-82014	28	8323.64	0.20	β^+	2805	28	138 911954	30
78	61		Pm		-77500	14	8285.54	0.10	β^+	4513	26	138 916800	15
77	62		Sm	X	-72380	11	8243.08	0.08	$\dot{oldsymbol{eta}^+}$	5120	17	138 922297	12
76	63		Eu	X	-65398	13	8187.22	0.09	β^+	6982	17	138 929792	14
75	64		Gd	X	-57630#	200#	8126#	1#	β^+	7770#	200#	138 938130#	210#
74	65		Tb	X	-48130#	300#	8052#	2#	β^+	9500#	360#	138 948330#	320#
73	66		Dy	X	-37640#	500#	7971#	4#	eta^+	10490#	590#	138 959590#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

											<u> </u>		
N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	nss
89	51	140	Sb	Х	-43940#	600#	8100#	4#	β-	12640#	600#	139 952830#	640#
88	52	140	Te	X	-56580	60	8184.8	0.4	β^-	7030	60	139 939260	70
87	53		I	X	-63606	12	8229.47	0.09	β^-	9380	12	139 931716	13
86	54		Xe	X	-72986.5	2.3	8290.887	0.017	$oldsymbol{eta}^{oldsymbol{eta}}$	4064	9	139 921645.8	2.5
85	55		Cs	A	-77050	8	8314.32	0.06	$oldsymbol{eta}-$	6219	10	139 917283	9
84	56		Ba		-83269	8	8353.16	0.06	$oldsymbol{eta}^{oldsymbol{eta}}-$	1047	8	139 910607	9
83	57		La		-84315.9	2.0	8355.047	0.00	β^-	3760.2	1.7	139 909483.2	2.2
82	58		Ce		-88076.1	1.6	8376.317	0.014	ρ	3700.2 *	1.7	139 905446.4	1.7
81	59		Pr		-84688	6	8346.53	0.011	β^+	3388	6	139 909084	7
80	60		Nd	_	-84259	3	8337.875	0.04	β^+	429	7	139 909544	4
79	61			X	-84239 -78214	24	8289.11	0.023	β^+		24	139 916034	
79 78			Pm	_	-78214 -75456	12	8263.82	0.17	β^+	6045 2758	24 27	139 918995	26 13
	62		Sm	X					β^+				
77	63		Eu	_	-66990	50	8197.7	0.4		8470	50	139 928090	60
76 75	64		Gd	X	-61782	28	8154.97	0.20	β^+	5200	60	139 933670	30
75 74	65		Tb	_	-50480	800	8069	6	β^+	11300	800	139 945810	860
74	66		Dy	X	-42830#	400#	8008#	3#	β^+	7650#	900#	139 954020#	430#
73	67		Но	-p	-29260#	500#	7906#	4#	eta^+	13570#	640#	139 968590#	540#
90	51	141	Sb	X	-39110#	500#	8066#	4#	$oldsymbol{eta}^-$	11380#	640#	140 958010#	540#
89	52		Te	X	-50490#	400#	8141#	3#	eta^-	9440#	400#	140 945800#	430#
88	53		I	X	-59927	16	8202.26	0.11	eta^-	8271	16	140 935666	17
87	54		Xe	X	-68197.3	2.9	8255.364	0.020	eta^-	6280	10	140 926787	3
86	55		Cs		-74478	9	8294.36	0.07	eta^-	5255	10	140 920045	10
85	56		Ba		-79733	5	8326.08	0.04	$oldsymbol{eta}^-$	3199	7	140 914404	6
84	57		La		-82932	4	8343.217	0.030	eta^-	2501	4	140 910969	5
83	58		Ce		-85432.9	1.6	8355.408	0.011	eta^-	582.7	1.2	140 908284.0	1.7
82	59		Pr		-86015.6	1.7	8353.992	0.012		*		140 907658.4	1.8
81	60		Nd	_	-84193	3	8335.515	0.023	eta^+	1823.0	2.8	140 909615	4
80	61		Pm	X	-80523	14	8303.94	0.10	eta^+	3670	14	140 913555	15
79	62		Sm		-75934	9	8265.84	0.06	$m{eta}^+$	4589	16	140 918482	9
78	63		Eu		-69926	13	8217.68	0.09	$m{eta}^+$	6008	14	140 924932	14
77	64		Gd	X	-63224	20	8164.61	0.14	β^+	6701	23	140 932126	21
76	65		Tb	X	-54540	110	8097.5	0.7	$\dot{oldsymbol{eta}^+}$	8680	110	140 941450	110
75	66		Dy	X	-45380#	300#	8027#	2#	$oldsymbol{eta}^+$	9160#	320#	140 951280#	320#
74	67		Но	-p	-34360#	400#	7943#	3#	$oldsymbol{eta}^+$	11020#	500#	140 963110#	430#
90	52	142	Te	X	-46370#	500#	8111#	4#	$oldsymbol{eta}^-$	8400#	630#	141 950220#	540#
89	53		I	x	-54770	370	8165.0	2.6	β^-	10460	370	141 941200	400
88	54		Xe	X	-65229.6	2.7	8233.169	0.019	β^-	5285	8	141 929973.1	2.9
87	55		Cs		-70515	7	8264.88	0.05	β^-	7328	8	141 924300	8
86	56		Ba		-77842	6	8310.97	0.04	$m{eta}^-$	2182	8	141 916433	6
85	57		La		-80024	6	8320.83	0.04	β^-	4509	6	141 914090	7
84	58		Ce		-84533.2	2.5	8347.071	0.018	$oldsymbol{eta}^-$	-745.7	2.5	141 909249.9	2.7
83	59		Pr		-83787.5	1.7	8336.310	0.012	β^-	2162.5	1.4	141 910050.4	1.8
82	60		Nd		-85950.0	1.4	8346.030	0.012	Ρ	*		141 907728.9	1.5
81	61		Pm		-81142	24	8306.66	0.17	$oldsymbol{eta}^+$	4808	24	141 912890	25
80	62		Sm		-78986	3	8285.972	0.022	$oldsymbol{eta}^+$	2156	24	141 915205	3
79	63		Eu	_	-71310	30	8226.43	0.022	β^+	7670	30	141 923440	30
79 78	64		Gd		-66960	28	8190.26	0.21	β^+	4350	40	141 928120	30
				X			8190.26					141 939280	750
77 76	65 66		Tb	_	-56560 50120#	700 730#	8112 8061#	5 5#	$eta^+ eta^+$	10400	700 200#	141 939280 141 946190#	780#
	66 67		Dy	_ v	-50120# 27250#	730#				6440#	200#		
75 74	67 68		Ho Er	X	-37250#	400# 500#	7965# 7804#	3# 4#	$eta^+ eta^+$	12870#	830#	141 960010#	430#
74	68		Er	X	-28030#	500#	7894#	4#	p ·	9220#	640#	141 969910#	540#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
		142	Т-		40290#	500#	0000#	4#	0-	10250#	5.40#	142.05(7(0#	5.40#
91 90	52 53	143	Te I	X X	-40280# -50630#	500# 200#	8068# 8135#	4# 1#	$eta^- eta^-$	10350# 9570#	540# 200#	142 956760# 142 945650#	540# 220#
89	54		Xe	X	-60203	5	8196.88	0.03	β^-	7473	9	142 935370	5
88	55		Cs	A	-67676	8	8243.67	0.05	β^-	6262	10	142 933370	8
87	56		Ba		-73937	7	8281.99	0.05	β^-	4234	10	142 92/347	7
86	57		La		-78172	7	8306.13	0.05	$^{ ho}_{eta^-}$	3435	8	142 916079	8
85	58		Ce		-78172 -81606.7	2.5	8324.678	0.03	β^-	1461.6	1.9	142 910079	2.7
84	59		Pr		-83068.2	1.9	8329.428	0.018	β^-	934.0	1.9	142 912391.0	2.7
83	60		Nd		-83008.2 -84002.2	1.9	8330.488	0.013	р	934.U *	1.4	142 910822.0	1.5
									β^+		2.7		
82	61		Pm		-82960.7	3.0	8317.733	0.021	β^+	1041.6		142 910938	3
81	62		Sm		-79517.2	2.8	8288.182	0.020		3443	4	142 914635	3
80	63		Eu	X	-74241	11	8245.82	0.08	β^+	5276	11	142 920299	12
79	64		Gd	_	-68230	200	8198.3	1.4	β^+	6010	200	142 926750	220
78	65		Tb	X	-60420	50	8138.2	0.4	β^+	7810	210	142 935140	60
77	66		Dy	X	-52169	13	8075.05	0.09	β^+	8250	50	142 943994	14
76	67		Но	X	-42050#	300#	7999#	2#	β^+	10120#	300#	142 954860#	320#
75	68		Er	X	-31260#	400#	7918#	3#	eta^+	10790#	500#	142 966440#	430#
91	53	144	I	x	-45280#	400#	8098#	3#	$oldsymbol{eta}^-$	11590#	400#	143 951390#	430#
90	54		Xe	X	-56872	5	8172.88	0.04	eta^-	6399	21	143 938945	6
89	55		Cs		-63271	20	8211.89	0.14	eta^-	8496	20	143 932075	22
88	56		Ba		-71767	7	8265.45	0.05	eta^-	3083	15	143 922955	8
87	57		La	X	-74850	13	8281.43	0.09	eta^-	5582	13	143 919646	14
86	58		Ce	+	-80431.9	2.9	8314.760	0.020	eta^-	318.6	0.8	143 913653	3
85	59		Pr	+	-80750.5	2.8	8311.540	0.019	eta^-	2997.4	2.4	143 913310.8	3.0
84	60		Nd		-83748.0	1.4	8326.922	0.009	eta^-	-2331.9	2.6	143 910092.9	1.5
83	61		Pm		-81416.1	3.0	8305.296	0.021	eta^-	549.4	2.7	143 912596	3
82	62		Sm		-81965.5	1.6	8303.679	0.011		*		143 912006.4	1.7
81	63		Eu		-75619	11	8254.17	0.07	$oldsymbol{eta}^+$	6346	11	143 918820	12
80	64		Gd	X	-71760	28	8221.94	0.19	$oldsymbol{eta}^+$	3860	30	143 922960	30
79	65		Tb	X	-62368	28	8151.29	0.19	β^+	9390	40	143 933050	30
78	66		Dy	X	-56570	7	8105.59	0.05	$\dot{oldsymbol{eta}^+}$	5798	29	143 939270	8
77	67		Но	X	-44610	8	8017.10	0.06	β^+	11961	11	143 952110	9
76	68		Er	X	-36610#	200#	7956#	1#	β^+	8000#	200#	143 960700#	210#
75	69		Tm	-p	-22260#	400#	7851#	3#	β^+	14350#	450#	143 976100#	430#
92	53	145	I	X	-40940#	500#	8068#	3#	β^-	10550#	500#	144 956050#	540#
91	54	-	Xe	X	-51493	11	8135.09	0.08	β^-	8561	14	144 944720	12
90	55		Cs		-60054	9	8188.73	0.06	β^-	7462	12	144 935529	10
89	56		Ba	X	-67516	8	8234.80	0.06	β^-	5319	15	144 927518	9
88	57		La		-72835	12	8266.09	0.08	β^-	4230	40	144 921808	13
87	58		Ce		-77070	30	8289.88	0.23	β^-	2560	30	144 917270	40
86	59		Pr		-79626	7	8302.13	0.05	β^-	1806	7	144 914518	8
85	60		Nd		-81432.0	1.4	8309.187	0.010	Ρ	*	,	144 912579.2	1.5
84	61		Pm		-81267.5	2.9	8302.657	0.020	$oldsymbol{eta}^+$	164.5	2.5	144 912756	3
83	62		Sm		-80651.3	1.6	8293.013	0.020	β^+	616.2	2.5	144 913417.2	1.7
82	63		Eu		-77992	3	8269.274	0.011	β^+	2659.8	2.7	144 916273	3
81	64		Gd		-72926	20	8228.95	0.021	β^+	5065	20	144 921710	21
80	65		Tb		-66390	110	8178.5	0.14	β^+	6540	110	144 928730	120
79	66		Dy	x	-58243	7	8116.89	0.04	β^+	8150	110	144 937474	7
79 78	67		Но	X	-38243 -49120	7	8048.58	0.04	β^+	9122	10	144 947267	8
77	68		Er	X	-39240#	200#	7975#	1#	β^+	9880#	200#	144 957870#	220#
76	69		Tm		-39240#	200#	7889#	1#	β^+	11660#	280#	144 970390#	210#
70	Už		1 111	-p	-27300π	200π	1002π	1π	P	11000π	200π	177 270320#	∠10#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

92 54 91 55 90 56 89 57 88 58 87 59 86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67	146	Xe Cs Ba La Ce Pr Nd Pm Sm Eu Gd Tb Dy	x x	-47955 -55310.4 -64947 -69050 -75635 -76680 -80925.9 -79454 -80996 -77118	24 2.9 21 30 16 30 1.4 4	8110.41 8155.436 8216.08 8238.83 8278.57 8280.38 8304.092	0.17 0.020 0.14 0.23 0.11 0.24	$eta^- eta^- eta^- eta^- eta^-$	7355 9637 4100 6590	24 21 30 30	145 948518 145 940622 145 930276	26 3 22
90 56 89 57 88 58 87 59 86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67		Cs Ba La Ce Pr Nd Pm Sm Eu Gd	Х	-55310.4 -64947 -69050 -75635 -76680 -80925.9 -79454 -80996	2.9 21 30 16 30 1.4 4	8216.08 8238.83 8278.57 8280.38 8304.092	0.14 0.23 0.11	$egin{array}{c} oldsymbol{eta}^- \ oldsymbol{eta}^- \ oldsymbol{eta}^- \end{array}$	4100	21 30	145 930276	3
89 57 88 58 87 59 86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67		Ba La Ce Pr Nd Pm Sm Eu Gd	+	-69050 -75635 -76680 -80925.9 -79454 -80996	30 16 30 1.4 4	8238.83 8278.57 8280.38 8304.092	0.23 0.11	$eta^- eta^- eta^-$				
88 58 87 59 86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67		Ce Pr Nd Pm Sm Eu Gd Tb	+	-75635 -76680 -80925.9 -79454 -80996	16 30 1.4 4	8278.57 8280.38 8304.092	0.11	β^-	6590	30		
87 59 86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67		Pr Nd Pm Sm Eu Gd Tb	+	-76680 -80925.9 -79454 -80996	30 1.4 4	8280.38 8304.092		' 0			145 925870	40
86 60 85 61 84 62 83 63 82 64 81 65 80 66 79 67		Nd Pm Sm Eu Gd Tb	+	-80925.9 -79454 -80996	1.4 4	8304.092	0.24	β^-	1050	30	145 918802	18
85 61 84 62 83 63 82 64 81 65 80 66 79 67		Pm Sm Eu Gd Tb	+	-79454 -80996	4			$\dot{\beta}^-$	4240	30	145 917680	40
84 62 83 63 82 64 81 65 80 66 79 67		Sm Eu Gd Tb	+	-80996			0.009	'β-	-1472	4	145 913122.5	1.5
83 63 82 64 81 65 80 66 79 67		Eu Gd Tb				8288.654	0.030	β-	1542	3	145 914702	5
82 64 81 65 80 66 79 67		Gd Tb		-77118	3	8293.857	0.021	•	*		145 913047	3
81 65 80 66 79 67		Tb			6	8261.93	0.04	eta^+	3879	6	145 917211	6
80 66 79 67				-76086	4	8249.506	0.028	β^+	1032	7	145 918319	4
79 67		Dy		-67760	40	8187.1	0.3	β^+	8320	40	145 927250	50
				-62555	7	8146.11	0.05	β^+	5210	50	145 932845	7
		Но		-51238	7	8063.24	0.05	β^+	11317	9	145 944994	7
78 68		Er		-44322	7	8010.51	0.05	β^+	6916	9	145 952418	7
77 69		Tm	-p	-31060#	200#	7914#	1#	$m{eta}^+$	13270#	200#	145 966660#	220#
93 54	147	Xe	x	-42360#	200#	8072#	1#	eta^-	9560#	200#	146 954530#	220#
92 55		Cs	X	-51920	8	8131.80	0.06	β^-	8344	21	146 944262	9
91 56		Ba	X	-60264	20	8183.24	0.13	β^-	6414	22	146 935304	21
90 57		La	X	-66678	11	8221.55	0.07	eta^-	5336	14	146 928418	12
89 58		Ce		-72014	9	8252.53	0.06	β^-	3430	16	146 922690	9
88 59		Pr		-75444	16	8270.54	0.11	β^-	2703	16	146 919007	17
87 60		Nd		-78146.7	1.4	8283.603	0.009	β^-	895.5	0.5	146 916106.0	1.5
86 61		Pm		-79042.3	1.4	8284.372	0.010	eta^-	224.09	0.29	146 915144.6	1.5
85 62		Sm		-79266.4	1.4	8280.575	0.009		*		146 914904.1	1.5
84 63		Eu		-77544.8	2.6	8263.541	0.018	$oldsymbol{eta}^+$	1721.6	2.3	146 916752.3	2.8
83 64		Gd		-75356.9	2.0	8243.336	0.013	$oldsymbol{eta}^+$	2187.8	2.5	146 919101.0	2.1
82 65		Tb		-70743	8	8206.62	0.06	eta^+	4614	8	146 924055	9
81 66		Dy	X	-64196	9	8156.77	0.06	β^+	6547	12	146 931083	10
80 67		Но		-55757	5	8094.04	0.03	$oldsymbol{eta}^+$	8439	10	146 940142	5
79 68		Er	X	-46610	40	8026.48	0.26	eta^+	9150	40	146 949960	40
78 69		Tm		-35974	7	7948.82	0.05	eta^+	10630	40	146 961380	7
94 54	148	Xe	x	-38600#	300#	8047#	2#	β^-	8310#	300#	147 958560#	320#
93 55		Cs	X	-46911	13	8097.55	0.09	β^-	10680	60	147 949639	14
92 56		Ba	+	-57590	60	8164.4	0.4	eta^-	5110	60	147 938170	70
91 57		La	X	-62709	19	8193.72	0.13	$oldsymbol{eta}^-$	7690	22	147 932679	21
90 58		Ce		-70398	11	8240.39	0.08	β^-	2137	13	147 924424	12
89 59		Pr		-72535	15	8249.54	0.10	β^-	4873	15	147 922130	16
88 60		Nd		-77408.0	2.1	8277.177	0.014	β^-	-542	6	147 916899.1	2.3
87 61		Pm	+p	-76866	6	8268.23	0.04	$oldsymbol{eta}^-$	2471	6	147 917481	6
86 62		Sm		-79336.3	1.4	8279.633	0.009	0.1	*		147 914829.0	1.5
85 63		Eu		-76299	10	8253.83	0.07	β^+	3037	10	147 918089	11
84 64		Gd		-76269.3	1.6	8248.338	0.011	β^+	30	10	147 918121.5	1.7
83 65		Tb		-70537	12	8204.32	0.08	β^+	5732	13	147 924275	13
82 66		Dy		-67860	9	8180.94	0.06	β^+	2678	10	147 927150	9
81 67		Но	X	-57990	80	8109.0	0.6	β^+	9870	80	147 937740	90
80 68		Er	X	-51479	10	8059.69	0.07	β^+	6510	80	147 944735	11
79 69		Tm	X	-38765	10	7968.50	0.07	β^+	12714	14	147 958384	11 430#
78 70		Yb	X	-30330#	400#	7906#	3#	β^+	8440#	400#	147 967440#	

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	iss
94	55	149	Cs	Х	-43250#	400#	8073#	3#	β-	9870#	590#	148 953570#	430#
93	56	147	Ba	X	-53120	440	8133.8	2.9	eta^-	7100	480	148 942970	470
92	57		La	+	-60220	200	8176.2	1.3	β^-	6450	200	148 935350	210
91	58		Ce	X	-66670	10	8214.23	0.07	β^-	4369	14	148 928427	11
90	59		Pr	X	-71039	10	8238.30	0.07	$oldsymbol{eta}^-$	3336	10	148 923736	11
89	60		Nd	-n	-74375.5	2.1	8255.442	0.014	β^-	1688.8	2.5	148 920154.6	2.3
88	61		Pm	••	-76064.3	2.3	8261.526	0.015	β^-	1071.5	1.9	148 918341.7	2.4
87	62		Sm		-77135.7	1.3	8263.466	0.009	r	*		148 917191.4	1.4
86	63		Eu		-76441	4	8253.554	0.027	eta^+	695	4	148 917937	4
85	64		Gd		-75127	3	8239.484	0.023	β^+	1314	4	148 919348	4
84	65		Tb		-71489	4	8209.815	0.025	β^+	3638	4	148 923254	4
83	66		Dy		-67696	9	8179.11	0.06	β^+	3793	9	148 927325	10
82	67		Ho		-61647	12	8133.26	0.08	β^+	6049	13	148 933820	13
81	68		Er	X	-53742	28	8074.96	0.19	β^+	7900	30	148 942310	30
80	69		Tm	X	-43880#	200#	8004#	1#	$m{eta}^+$	9860#	200#	148 952890#	210#
79	70		Yb	X	-33200#	300#	7927#	2#	$m{eta}^+$	10680#	360#	148 964360#	320#
95	55	150	Cs	X	-38170#	400#	8039#	3#	eta^-	11730#	500#	149 959020#	430#
94	56		Ba	X	-49900#	300#	8112#	2#	β^-	6230#	530#	149 946430#	320#
93	57		La	X	-56130	440	8148.2	2.9	eta^-	8720	440	149 939740	470
92	58		Ce		-64847	12	8201.12	0.08	eta^-	3454	14	149 930384	13
91	59		Pr		-68300	9	8218.93	0.06	eta^-	5379	9	149 926676	10
90	60		Nd		-73679.8	1.3	8249.577	0.009	eta^-	-83	20	149 920901.5	1.4
89	61		Pm	+	-73597	20	8243.81	0.13	$m{eta}^-$	3454	20	149 920990	22
88	62		Sm		-77051.1	1.3	8261.621	0.009	eta^-	-2259	6	149 917282.2	1.4
87	63		Eu		-74792	6	8241.35	0.04	$oldsymbol{eta}^-$	972	4	149 919707	7
86	64		Gd		-75764	6	8242.61	0.04		*		149 918664	7
85	65		Tb		-71106	7	8206.34	0.05	eta^+	4658	8	149 923665	8
84	66		Dy		-69310	4	8189.149	0.029	β^+	1796	8	149 925593	5
83	67		Но		-61946	14	8134.84	0.09	eta^+	7364	14	149 933498	15
82	68		Er		-57831	17	8102.20	0.11	β^+	4115	14	149 937916	18
81	69		Tm	X	-46490#	200#	8021#	1#	$oldsymbol{eta}^+$	11340#	200#	149 950090#	210#
80	70		Yb	X	-38640#	300#	7964#	2#	β^+	7850#	360#	149 958520#	320#
79	71		Lu	-p	-24640#	300#	7865#	2#	$m{eta}^+$	14000#	420#	149 973550#	320#
96	55	151	Cs	X	-34230#	500#	8013#	3#	β^-	10710#	640#	150 963250#	540#
95	56		Ba	X	-44940#	400#	8079#	3#	β^-	8370#	590#	150 951760#	430#
94	57		La	X	-53310	440	8129.0	2.9	β^-	7910	440	150 942770	470
93	58		Ce	X	-61225	18	8176.28	0.12	β^-	5555	21	150 934272	19
92	59		Pr		-66780 -70042.0	12	8207.88	0.08	β^-	4163	12	150 928309	13
91	60		Nd		-70943.0	1.3	8230.272	0.009	β^-	2443	4	150 923839.6	1.4
90	61		Pm		-73386 74576 2	5	8241.27	0.03	β^-	1190	4	150 921217	5
89 88	62		Sm		-74576.3 -74652.9	1.3	8243.971 8239.297	0.008 0.009	eta^-	76.6 *	0.5	150 919939.1	1.4
87	63		Eu Gd		-74032.9 -74189	1.3	8239.297		$oldsymbol{eta}^+$	464.1	20	150 919856.9 150 920355	1.4
86	64 65		Tb		-74189 -71624		8208.873	0.020 0.027	β^+	2565	2.8 4	150 920333	3
85	66		Dy	_~	-71624 -68752	4 3	8208.873	0.027	β^+	2871	5	150 925109	4 4
83 84	67		Dy Но	$-\alpha$	-68752 -63623	8	8184.678	0.022	β^+	5130	9	150 926191	9
83	68		Ho Er	$-\alpha$	-63623 -58266	8 16	8145.55 8104.87	0.05	β^+	5356	18	150 937449	18
82	69		Tm	χ α	-50773	19	8050.06	0.11	β^+	3336 7494	25	150 945493	21
81	70		Yb	$+\alpha$	-30773 -41540	300	7983.8	2.0	β^+	9230	300	150 955400	320
80	71		Lu	εp -p	-30110#	300#	7903.6	2.0	β^+	11430#	430#	150 967680#	320#
30	, 1		ьu	-P	50110π	эооп	170311	211	ρ	11-7.50π	750TI	150 707000#	320m

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

	Z	A	Elt.	Orig.	Mass ex	cess	Bindi	ng energy		Beta-decay	energy	Atomic ma	ass
				Ü	(keV)		leon (keV)		(keV		μ u	
97	55	152	Cs	X	-28930#	500#	7979#	3#	β^-	12780#	640#	151 968940#	540#
96	56		Ba	X	-41710#	400#	8057#	3#	$\dot{\beta}^-$	7580#	500#	151 955220#	430#
95	57		La	X	-49290#	300#	8102#	2#	$\dot{oldsymbol{eta}}^-$	9690#	360#	151 947090#	320#
94	58		Ce	X	-58980#	200#	8161#	1#	β^-	4780#	200#	151 936680#	220#
93	59		Pr	X	-63758	19	8187.10	0.12	eta^-	6390	30	151 931553	20
92	60		Nd		-70149	24	8224.01	0.16	eta^-	1105	19	151 924692	26
91	61		Pm		-71254	26	8226.13	0.17	eta^-	3508	26	151 923505	28
90	62		Sm		-74762.6	1.2	8244.061	0.008	β^-	-1874.3	0.7	151 919739.0	1.3
89	63		Eu		-72888.3	1.3	8226.583	0.009	$oldsymbol{eta}^-$	1818.7	0.7	151 921751.2	1.4
88	64		Gd		-74706.9	1.2	8233.401	0.008	0.1	*		151 919798.8	1.3
87	65		Tb	_	-70720	40	8202.00	0.26	β^+	3990	40	151 924080	40
86	66		Dy	$-\alpha$	-70118	5	8192.92	0.03	β^+	600	40	151 924725	5
85	67		Но		-63605	13	8144.92	0.08	β^+	6513	13	151 931717	13
84	68		Er		-60500	9	8119.35	0.06	β^+	3104	10	151 935050	9
83	69		Tm		-51720	50	8056.4	0.4	β^+	8780	50	151 944480 151 950330	60
82	70		Yb	•	-46270 -22420#	150	8015.4	1.0	$^+_{eta^+}$	5450	140		160
81	71		Lu	X	-33420#	200#	7926#	1#	P	12850#	250#	151 964120#	210#
97	56	153	Ba	X	-36470#	400#	8023#	3#	$oldsymbol{eta}^-$	9590#	500#	152 960850#	430#
96	57		La	X	-46060#	300#	8081#	2#	eta^-	8850#	360#	152 950550#	320#
95	58		Ce	X	-54910#	200#	8134#	1#	$oldsymbol{eta}^-$	6660#	200#	152 941050#	220#
94	59		Pr		-61568	12	8172.04	0.08	eta^-	5762	12	152 933904	13
93	60		Nd		-67330.3	2.7	8204.582	0.018	eta^-	3318	9	152 927717.9	2.9
92	61		Pm		-70648	9	8221.15	0.06	β^-	1912	9	152 924156	10
91	62		Sm	-n	-72559.7	1.2	8228.534	0.008	$oldsymbol{eta}^-$	807.5	0.7	152 922104.0	1.3
90	63		Eu		-73367.2	1.3	8228.699	0.009		*		152 921237.0	1.4
89	64		Gd		-72882.6	1.2	8220.418	0.008	β^+	484.7	0.7	152 921757.4	1.3
88	65		Tb		-71313	4	8205.048	0.026	β^+	1569	4	152 923442	4
87	66		Dy		-69143	4	8185.749	0.026	β^+	2170.4	1.9	152 925772	4
86	67		Но	$-\alpha$	-65012	5	8153.64	0.03	β^+	4131	6	152 930207	5
85	68		Er		-60469	9 12	8118.83	0.06	$eta^+ eta^+$	4543	10	152 935084	10
84 83	69 70		Tm Yb	•	-53973 -47210#		8071.26 8022#	0.08	β^+	6495	13 200#	152 942057 152 949320#	13 210#
82	70			X	-38370	200#	7959.1	1# 1.0	β^+	6770# 8840#	250#	152 949320#	160
81	72		Lu Hf	$+\alpha$	-38370 -27300#	150 300#	7939.1 7882#	2#	β^+	11070#	230# 340#	152 938810	320#
01	12		111	Λ	-27300π	300#	/002π	2π	•	11070#	340#	132 970090#	320π
98	56	154	Ba	X	-32820#	500#	8000#	3#	eta^-	8710#	580#	153 964770#	540#
97	57		La	X	-41530#	300#	8051#	2#	eta^-	10690#	360#	153 955420#	320#
96	58		Ce	X	-52220#	200#	8116#	1#	eta^-	5890#	230#	153 943940#	220#
95	59		Pr	+	-58100	110	8148.9	0.7	β^-	7720	100	153 937620	120
94	60		Nd	+	-65820	50	8193.9	0.3	$oldsymbol{eta}^-$	2687	25	153 929330	60
93	61		Pm	IT	-68510	50	8206.3	0.3	β^-	3940	50	153 926450	50
92	62		Sm		-72455.2	1.5	8226.835	0.009	β^-	-717.1	1.1	153 922216.2	1.6
91	63		Eu		-71738.1	1.3	8217.098	0.009	β^-	1967.8	0.8	153 922986.0	1.4
90	64		Gd		-73706.0	1.2	8224.796	0.008	β^-	-3550	50	153 920873.4	1.3
89	65		Tb	_	-70160	50	8196.67	0.29	$oldsymbol{eta}^-$	240	50	153 924680	50
88	66		Dy		-70394	7	8193.13	0.05	α $+$	*	10	153 924429	8
87	67		Ho	$-\alpha$	-64639 62605	8	8150.68	0.05	β^+	5755	10	153 930607	9
86	68		Er		-62605 54427	5	8132.39	0.03	$eta^+ eta^+$	2034	9	153 932791	5
85 84	69 70		Tm Vb	$-\alpha$	-54427 40032	14 17	8074.21	0.09		8178	15	153 941570	15
84	70 71		Yb	1.00	-49932 30720#	17	8039.94 7969#	0.11	$eta^+ eta^+$	4495	14 200#	153 946396	19
83 82	71 72		Lu Hf	$+\alpha$ x	-39720# -32670#	200# 300#	7969# 7918#	1# 2#	β^+	10220# 7050#	200# 360#	153 957360# 153 964930#	210# 320#
02	12		111	λ	-32070#	300#	1710#	$\angle \pi$	$\boldsymbol{\rho}$	/030 #	300#	133 704730#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV)	energy	Atomic m μu	ass
98	57	155	La	Х	-37930#	400#	8028#	3#	β-	9850#	500#	154 959280#	430#
97	58		Ce	X	-47780#	300#	8087#	2#	β^-	7640#	300#	154 948710#	320#
96	59		Pr		-55415	17	8131.04	0.11	β^-	6868	19	154 940509	18
95	60		Nd		-62284	9	8170.30	0.06	<i>β</i> -	4656	10	154 933136	10
94	61		Pm		-66940	5	8195.30	0.03	$\dot{\beta}$ –	3251	5	154 928137	5
93	62		Sm	-n	-70190.8	1.5	8211.223	0.010	$\dot{\beta}^-$	1627.3	1.2	154 924647.1	1.6
92	63		Eu		-71818.1	1.4	8216.674	0.009	β-	251.8	0.9	154 922900.1	1.5
91	64		Gd		-72069.9	1.2	8213.251	0.008	,	*		154 922629.8	1.3
90	65		Tb	+	-71250	10	8202.91	0.06	β^+	820	10	154 923510	11
89	66		Dy		-69156	10	8184.35	0.06	$\dot{\beta}^+$	2094.5	1.9	154 925758	10
88	67		Ho		-66040	17	8159.20	0.11	β^+	3116	17	154 929104	19
87	68		Er	$-\alpha$	-62209	6	8129.44	0.04	β^+	3830	18	154 933216	7
86	69		Tm	$-\alpha$	-56626	10	8088.38	0.06	β^+	5583	12	154 939210	11
85	70		Yb	$-\alpha$	-50503	17	8043.82	0.11	β^+	6123	19	154 945783	18
84	71		Lu	$+\alpha$	-42545	19	7987.44	0.12	β^+	7958	25	154 954326	21
83	72		Hf	X	-34170#	300#	7928#	2#	β^+	8380#	300#	154 963320#	320#
82	73		Ta	-p	-23930#	300#	7857#	2#	β^+	10240#	420#	154 974310#	320#
99	57	156	La	X	-33050#	400#	7997#	3#	eta^-	11770#	500#	155 964520#	430#
98	58		Ce	x	-44820#	300#	8068#	2#	<i>β</i> -	6750#	360#	155 951880#	320#
97	59		Pr	X	-51570#	200#	8106#	1#	β-	8910#	280#	155 944640#	220#
96	60		Nd	+	-60470	200	8158.1	1.3	$\dot{\beta}^-$	3690	200	155 935080	210
95	61		Pm		-64164	4	8176.705	0.023	β-	5197	9	155 931117	4
94	62		Sm		-69360	9	8205.00	0.05	<i>β</i> -	722	8	155 925539	9
93	63		Eu		-70083	4	8204.617	0.023	<i>β</i> -	2452	3	155 924763	4
92	64		Gd		-72534.9	1.2	8215.322	0.008	β-	-2444	4	155 922130.6	1.3
91	65		Tb		-70091	4	8194.639	0.024	β^-	438	4	155 924754	4
90	66		Dy		-70529.0	1.2	8192.433	0.008	•	*		155 924284.0	1.3
89	67		Ho	_	-65480	60	8155.0	0.4	β^+	5050	60	155 929710	60
88	68		Er		-64212	25	8141.91	0.16	β^+	1270	60	155 931066	26
87	69		Tm		-56835	14	8089.60	0.09	β^+	7377	27	155 938986	15
86	70		Yb		-53266	9	8061.71	0.06	β^+	3569	13	155 942817	10
85	71		Lu	$-\alpha$	-43700	50	7995.4	0.3	β^+	9570	50	155 953090	60
84	72		Hf		-37820	150	7952.7	1.0	$\dot{\beta}^+$	5880	140	155 959400	160
83	73		Ta	-p	-25860#	300#	7871#	2#	$m{eta}^+$	11960#	330#	155 972240#	320#
99	58	157	Ce	x	-39930#	400#	8037#	3#	β^-	8610#	500#	156 957130#	430#
98	59		Pr	X	-48540#	300#	8086#	2#	$\dot{oldsymbol{eta}}^-$	7920#	300#	156 947890#	320#
97	60		Nd		-56462	25	8131.96	0.16	$\dot{\beta}^-$	5835	26	156 939386	27
96	61		Pm		-62297	7	8164.14	0.04	β^-	4381	8	156 933121	8
95	62		Sm		-66678	4	8187.063	0.028	β^-	2781	6	156 928419	5
94	63		Eu		-69459	4	8199.795	0.027	β^-	1365	4	156 925433	5
93	64		Gd		-70823.5	1.2	8203.504	0.008	•	*		156 923967.9	1.3
92	65		Tb		-70763.4	1.2	8198.138	0.008	$oldsymbol{eta}^+$	60.04	0.30	156 924032.3	1.3
91	66		Dy		-69425	5	8184.63	0.03	$\dot{oldsymbol{eta}^+}$	1339	5	156 925470	6
90	67		Но		-66833	23	8163.14	0.15	β^+	2592	24	156 928252	25
89	68		Er		-63414	27	8136.37	0.17	β^+	3420	30	156 931923	28
88	69		Tm	X	-58709	28	8101.43	0.18	β^+	4700	40	156 936970	30
87	70		Yb		-53422	11	8062.77	0.07	β^+	5290	30	156 942649	12
86	71		Lu		-46441	12	8013.32	0.08	$\dot{oldsymbol{eta}^+}$	6981	14	156 950144	13
85	72		Hf	$-\alpha$	-38900#	200#	7960#	1#	β^+	7540#	200#	156 958240#	210#
84	73		Ta	IT	-29590	150	7896.0	1.0	$\dot{oldsymbol{eta}^+}$	9310#	250#	156 968230	160
83	74		W	x	-19470#	400#	7827#	3#	$\dot{\beta}^+$	10120#	430#	156 979100#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

	Z	A	Elt.	Orig.	Mass ex	cess	Bindi	ng energy		Beta-decay	energy	Atomic ma	ass
					(keV)	per nuc	eleon (keV)		(keV		μ u	
100	58	158	Ce	Х	-36660#	400#	8016#	3#	β-	7670#	500#	157 960640#	430#
99	59		Pr	x	-44330#	300#	8060#	2#	β^-	9730#	360#	157 952410#	320#
98	60		Nd	x	-54060#	200#	8116#	1#	β^-	5040#	200#	157 941970#	220#
97	61		Pm		-59089	13	8143.25	0.09	β^-	6161	14	157 936565	14
96	62		Sm		-65250	5	8177.30	0.03	β^-	2005	10	157 929951	5
95	63		Eu		-67255	10	8185.03	0.06	β^-	3434	10	157 927799	11
94	64		Gd		-70689.5	1.2	8201.819	0.008	β^-	-1218.9	1.0	157 924111.6	1.3
93	65		Tb		-69470.7	1.4	8189.153	0.009	'β-	936.7	2.5	157 925420.2	1.5
92	66		Dy		-70407.3	2.4	8190.130	0.015	•	*		157 924414.6	2.5
91	67		Ho	_	-66188	27	8158.47	0.17	eta^+	4220	27	157 928945	29
90	68		Er		-65304	25	8147.93	0.16	β^+	880	40	157 929893	27
89	69		Tm		-58703	25	8101.20	0.16	β^+	6600	30	157 936980	27
88	70		Yb		-56010	8	8079.20	0.05	β^+	2693	26	157 939871	9
87	71		Lu	$-\alpha$	-47212	15	8018.57	0.10	β^+	8798	17	157 949316	16
86	72		Hf		-42102	17	7981.28	0.11	β^+	5110	15	157 954801	19
85	73		Ta	$+\alpha$	-31170#	200#	7907#	1#	β^+	10940#	200#	157 966540#	210#
84	74		W	$-\alpha$	-23630#	300#	7854#	2#	$oldsymbol{eta}^+$	7530#	360#	157 974630#	320#
100	59	159	Pr	X	-41090#	400#	8039#	3#	eta^-	8720#	500#	158 955890#	430#
99	60	137	Nd	X	-49810#	300#	8089#	2#	β^-	6750#	300#	158 946530#	320#
98	61		Pm	A	-56554	10	8126.86	0.06	β^-	5653	12	158 939286	11
97	62		Sm		-62208	6	8157.50	0.04	β^-	3836	7	158 933217	6
96	63		Eu		-66043	4	8176.697	0.027	β^-	2518	4	158 929100	5
95	64		Gd		-68561.4	1.2	8187.614	0.007	β^-	970.9	0.8	158 926396.3	1.3
94	65		Tb		-69532.4	1.3	8188.800	0.008	Ρ	*	0.0	158 925353.9	1.3
93	66		Dy		-69167.1	1.5	8181.583	0.010	$oldsymbol{eta}^+$	365.2	1.2	158 925746.0	1.6
92	67		Но	_	-67330	3	8165.105	0.019	β^+	1837.6	2.7	158 927719	3
91	68		Er	_	-64561	4	8142.773	0.023	β^+	2768.5	2.0	158 930691	4
90	69		Tm	X	-60570	28	8112.75	0.18	β^+	3991	28	158 934980	30
89	70		Yb	X	-55839	18	8078.07	0.11	β^+	4730	30	158 940055	19
88	71		Lu	X	-49710	40	8034.60	0.24	β^+	6130	40	158 946640	40
87	72		Hf	$-\alpha$	-42853	17	7986.56	0.11	β^+	6860	40	158 953996	18
86	73		Ta	IT	-34439	20	7928.73	0.12	β^+	8413	26	158 963028	21
85	74		W	$-\alpha$	-25300#	300#	7866#	2#	β^+	9150#	300#	158 972850#	320#
84	75		Re	IT	-14750#	310#	7795#	2#	$oldsymbol{eta}^+$	10550#	430#	158 984170#	330#
101	59	160	Pr	X	-36520#	400#	8011#	2#	eta^-	10610#	500#	159 960790#	430#
100	60	100	Nd	X	-47130#	300#	8073#	2#	β^-	5870#	360#	159 949400#	320#
99	61		Pm	X	-53000#	200#	8104#	2π 1#	β^-	7230#	200#	159 943100#	220#
98	62		Sm	А	-60235	6	8144.63	0.04	$oldsymbol{eta}^{oldsymbol{eta}}-$	3246	11	159 935335	6
97	63		Eu		-63480	10	8160.02	0.04	β^-	4461	10	159 931851	10
96	64		Gd		-67941.7	1.3	8183.014	0.00	$_{eta^{-}}^{eta^{-}}$	-105.5	1.0	159 927061.5	1.4
95			Tb		-67836.3	1.3	8177.465	0.008	$oldsymbol{eta}^{oldsymbol{eta}}-$	1836.5	1.0	159 927001.3	
93	65 66		Dy		-69672.7	0.8	8184.054	0.008	ρ	1030.3	1.2	159 925203.2	1.4 0.8
93					-66383				eta^+	3290	15		
	67 68		Ho Er	_		15 24	8158.60 8151.72	0.09	β^+		15	159 928735	16 26
92	68		Er		-66064 -60300	24		0.15	β^+	319 5760	29 40	159 929077	26
91	69 70		Tm Vb			30	8110.82 8092.56	0.21		5760	40	159 935260 159 937560	40
90	70 71		Yb	***	-58163 50270	7 60		0.05	$eta^+_{oldsymbol{eta}^+}$	2140	40 60		8
89	71		Lu	X	-50270 45020	60	8038.3 8006.38	0.4	β^+	7890	60	159 946030	60
88	72		Hf	~	-45939 25820	10		0.06	β^+	4330	60	159 950683	10
87	73		Ta	$-\alpha$	-35820	50	7938.3	0.3	β^+	10120	60	159 961540	60
86	74 75		W	~	-29330 16740#	150	7892.8	0.9	β^+	6500	140	159 968520	160
85	75		Re	$-\alpha$	-16740#	300#	7809#	2#	eta^+	12590#	330#	159 982030#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy leon (keV)		Beta-decay er (keV)	nergy	Atomic m μu	ass
99 62 Sm	101	60	161	Nd	х	-42590#	400#	8044#	2#	β^-	7650#	500#	160 954280#	430#
98 63 Eu	100	61		Pm	X	-50240#	300#	8087#	2#	$oldsymbol{eta}^-$	6440#	300#	160 946070#	320#
99 64 Gd -n -65505.8 1.6 8167.191 0.010 β- 1955.8 1.4 109.29676.6 96 Cb Tb -6741.6 1.4 8174.479 0.008 β- 5942 1.3 160.927577.0 95 66 Dy -68055.8 0.8 8173.310 0.005 " 160.927577.0 95 66 Dy -68055.8 0.8 8173.310 0.005 " 160.927579.0 95 66 Dy -68055.8 0.8 8173.310 0.005 " 160.927579.0 95 66 Dy -68055.8 0.8 8173.310 0.005 " 160.927579.0 97 160.9280.0 98 145.86 0.05 β+ 1996 9 160.9280.0 99 160.92760.0 99 170 The x -61899 28 8120.49 0.17 β+ 330.3 29 160.933550 191 70 The x -57839 15 8090.42 0.10 β+ 4060 30 160.937907 190 71 Lu x -52562 28 8052.78 0.17 β+ 5280 30 160.937907 190 71 Lu x -525615 23 8009.12 0.14 β+ 6250 40 160.950279 188 72 Hr -46151 23 8009.12 0.14 β+ 6250 40 160.950279 188 73 Ta +α -38779 24 7957.45 0.15 β+ 7540 30 160.958369 187 74 W -α -30600+ 2004 7702# 1 Hr β+ 8220 200# 160.958369 185 75 Re -20840 150 7836.3 0.9 β+ 9720# 250# 160.977630 185 75 Re -20840 150 7836.3 0.9 β+ 9720# 250# 160.977630 185 75 Re -20840 150 80.26# 2# β- 10860# 300# 161.95020# 300# 100.96200# 2.9 96 3 Eu + -58700 40 810.94 11 β- 4 170.9 200# 160.98290# 400# 100.62 Sm x -54530# 200# 810.9# 1 Hr β- 8160# 360# 161.95020# 3.0 100.62 Sm x -54530# 200# 810.9# 1 Hr β- 8160# 360# 161.95020# 3.0 100.62 Sm x -54530# 200# 810.9# 1 Hr β- 8160# 360# 161.95020# 3.0 100.62 Sm x -54530# 200# 810.9# 1 Hr β- 8160# 360# 161.95020# 3.0 100.62 Sm x -54530# 200# 810.9# 1 Hr β- 8160# 360# 161.95020# 3.0 100.99 97 65 Tb + -65680 40 810.24 40 .22 β- 5580 40 161.93090 197 66 Tb + -65680 40 810.24 40 .22 β- 5580 40 161.93090 197 66 Tb + -65680 40 810.24 40 .22 β- 5580 40 161.93090 197 66 Tb + -65680 40 810.25 60.09 β+ 81500 30 161.93577 40 10.9 171 Lu x -5280 80 8054.6 0.5 β- 2010 40 161.93090 50 161.93090 197 70 Yb x -59826 15 810.25 60.99 β+ 81500 30 161.93577 40 10.9 171 Lu x -5280 80 8054.6 0.5 β- 6590 80 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40 161.93570 40	99	62		Sm		-56672	7	8122.04			5120	12	160 939160	7
95 66 Dy -60858 08 8 8173.310 0.005 $\frac{\beta}{\nu}$ 5942 1.3 160 927577.0 95 66 Dy -60858 08 8 8173.310 0.005 $\frac{\beta}{\nu}$ 160 92699.1 94 67 Ho -67197.3 2.2 8163.119 0.014 β 8 88.8 5 2.2 160 927860.8 93 68 Er +n -65202 9 8145.86 0.05 β 1996 9 160 930003 92 69 Tm x -61899 28 8120.49 0.17 β 3303 29 160 930003 92 69 Tm x -57839 15 809.42 0.10 β 4 4060 30 160 937997 90 71 Lu x -52562 28 8052.78 0.17 β 5280 30 160 934570 88 73 Ta + α 38779 24 7957.45 0.15 β 7 520 30 160 93520 88 73 Ta + α 38779 24 7957.45 0.15 β 7 7540 30 160 958369 87 74 W $-\alpha$ 30560 β 200 β 7902 β 1 β 8 8 7 30 0.9 β 9 7 920 β 160 937907 88 75 Re -20840 150 7836.3 0.9 β 9 792 250 β 160 977630 87 76 Os - α 9980 β 400 β 7764 β 2 β 8 β 10860 β 430 β 160 98290 β 400 β 8026 β 2 β 8 β 10860 β 430 β 160 98290 β 400 β 8026 β 2 β 8 β 10860 β 360 161 977540 β 4 99 63 Eu + -8700 40 8129.44 0.22 β 8 8 8 1730 160 90 161 930900 99 66 Dy -68181.5 0.8 8173.810 0.025 99 66 Tb + -65680 40 8129.44 0.025 99 67 Ho -66042 3 8152.540 0.025 99 68 Tm61478 26 817.59 0.005 90 77 Lu x x -5230 90 77 Lu x x -52500 90 78 90 78 91 79 91 92 93 94 95 96 96 97 97 98 98 98 98 98 98 98 99 99 90	98	63		Eu		-61792	10	8148.98	0.06		3714	11	160 933664	11
95 66 Dy - 68055.8 0.8 8173.10 0.005	97	64		Gd	-n	-65505.8	1.6	8167.191		,	1955.8	1.4		1.7
94 67 Ho	96	65		Tb						eta^-		1.3		1.4
93 68 Er +n -65202 9 8145.86 0.05 β + 1996 9 16093003 192 669 Tm x -61899 2.8 8120.49 0.17 β + 3303 2.9 160930550 191 70 Yb x -57839 15 8090.42 0.10 β + 4060 30 160937907 30 71 Lu x -52562 2.8 8052.78 0.17 β + 5280 30 160937907 30 77 1 Hr -46315 23 8099.12 0.14 β + 6250 40 160950279 88 77 4 W $-\alpha$ -38779 24 7957.45 0.15 β + 7540 30 160958369 87 74 W $-\alpha$ 30560 β 2007 7902 β 18 β + 7540 30 160958369 86 75 Re -20840 150 7836.3 0.9 β + 9720 β + 250 β 16097630 β + 85 76 Os $-\alpha$ -980 β 400 β 7764 β + 2 β 8 β + 10860 β 430 β 16098290 β + 101 60987290 β + 102 60 162 Nd x -39550 β 400 β 8 805 β + 2 β 8 β + 10860 β 430 β 16098290 β 4 101 61 97540 β 8 β + 10860 β 4 30 β 161 935200 β + 101 61 97540 β + 2 β + 10860 β 4 30 β + 1098290 β + 1096 β + 2 β				Dy			0.8							0.8
92 69										eta^+				2.4
99 70 Yb x -57839 15 8090.42 0.10 $\beta + 060$ 30 160 937907 10 1 Lu x 5-5262 28 8052.78 0.17 $\beta + 5280$ 30 160 937907 189 72 Hf -46315 23 8009.12 0.14 $\beta + 6250$ 40 160 950279 188 73 Ta $+\alpha$ -38779 24 7957.45 0.15 $\beta + 7540$ 30 160 958369 187 74 W $-\alpha$ -30560 $\beta + 200$ 7902 $\beta + 100$ 18 $\beta + 6250$ 40 160 96700 $\beta + 200$ 18 $\beta + 6250$ 40 160 96700 $\beta + 200$ 18 $\beta + 6250$ 40 160 977030 160 988369 185 76 Os $-\alpha$ -9980 $\beta + 400$ $\beta + 7764$ $\beta + 2$ $\beta + 9720$ $\beta + 250$ $\beta + 160$ 977630 160 987200 $\beta + 200$ $\beta + 160$ 977630 161 101 61 Pm x -46370 300 $\beta + 2$ $\beta + 2$ $\beta + 10860$ $\beta + 300$ $\beta + 160$ 98290 $\beta + 2$ $\beta + 300$ $\beta + 30$					+n									9
90 71 Lu x -52562 28 8052.78 0.17 β^{\pm} 5280 30 160 943570 89 72 Hf					X									30
89 72 Hf														16
88 73 Ta $+\alpha$ -38779 24 -795745 0.15 β^+ 7540 30 160 958369 87 74 W $-\alpha$ 30560 β^+ 200 β^+ 7902 β^+ 1 β^+ 8220 β^+ 200 β^+ 160 967200 β^+ 286 75 Re -20840 150 7836.3 0.9 β^+ 8220 β^+ 200 β^+ 160 967200 β^+ 285 76 0s $-\alpha$.980 β^+ 400 β^+ 7764 β^+ 2 β^+ 10860 β^+ 430 β^+ 160 98920 β^+ 4101 61 Pm x .46370 β^+ 300 β^+ 8063 β^+ 2 β^+ 8620 β^+ 500 β^+ 161 957540 β^+ 2100 62 Sm x .5430 β^+ 300 β^+ 8063 β^+ 2 β^+ 8620 β^+ 300 β^+ 161 957540 β^+ 29 63 Eu $+$ 58700 40 8129.44 0.22 β^- 5580 40 161 936980 98 64 Gd -nn -64280 4 8159035 0.025 β^- 1400 40 161 936980 97 66 Dy -68181.5 0.8 8173.457 0.005 β^- 2210 3 161 929401 94 68 Er -66334.5 0.8 8152.397 0.005 β^- 2140 3 161 928787.0 93 69 Tm $-$ 661478 26 8117.59 0.16 β^+ 4857 26 161 934001 92 72 Hf $-$ 49169 9 8057.12 0.06 β^+ 4857 26 161 934001 92 77 75 Re $-$ 40 812.26 β^- 75 Re $-$ 22 70 Yb x 5.5820 β^- 810.26 β^- 8160 β^- 80 161 93774 91 71 Lu x 5.2830 80 8054.6 0.5 β^+ 6990 80 161 937274 91 71 Lu x 5.2830 80 8054.6 0.5 β^+ 6990 80 161 937280 87 75 Re $-$ 43200 β^- 75 Re $-$ 43200 β^- 77 88 87 75 Re $-$ 43250 β^- 2000 811.5 0.8 815.533 0.09 β^+ 18500 80 161 937290 90 72 Hf $-$ 49169 9 8027.12 0.006 β^+ 3660 80 161 937290 87 75 Re $-$ 40 8140 β^- 87 88 70 80 80 161 937250 88 71 80 80 80 80 80 80 80 80 80 80 80 80 80					X									30
87 74 W $-\alpha$ 30560# 200# 7902# 1# β^+ 8220# 200# 160 96720# 286 6 75 Re 20840 150 7836.3 0.9 β^+ 9720# 250# 160 977630 185 76 0s $-\alpha$ 3980# 400# 7764# 2# β^+ 10860# 430# 160 98920# 2102 60 162 Nd x 39550# 400# 8064# 2# β^+ 10860# 430# 160 98920# 2101 61 Pm x 46370# 300# 8063# 2# β^- 8160# 360# 161 957540# 29 63 Eu $+$ 55870 40 8129.44 0.22 β^- 8160# 200# 161 93680 98 64 Gd $-$ nn 64280 4 8159.035 0.025 β^- 1400 40 161 930992 96 66 Dy $-$ 68181.5 0.8 8173.457 0.005 β^- 2210 3 161 928787.0 93 69 Tm $-$ 61478 26 8117.59 0.16 β^+ 4857 26 161 934001 99 71 Lu x 52830 80 80546 0.5 β^+ 6990 80 161 93878.0 90 79 75 Re $+\alpha$ 3999 18 7923.8 0.11 β^+ 8500# 360 161 93570# 28 77 8 8 77 8 8 α 4 W $-\alpha$ 33999 18 7923.8 0.11 β^+ 860 β^+ 870 β^+ 810 β^+ 8100 β^+ 870 β^+ 810 β^+														24
86 75 Re -20840 150 7836.3 0.9 β^+ 9720# 250# 160 977630 1 85 76 Os $-\alpha$ -9980# 400# 7764# $2#$ β^+ 10860# 430# 160 98720# 2 102 60 162 Nd x -39550# 400# 8026# $2#$ β^- 6820# 500# 161 957540# 4 101 61 Pm x -46370# 300# 8063# $2#$ β^- 8160# 360# 161 957540# 4 100 62 Sm x -54530# 200# 8109# 1# β^- 4170# 200# 161 941460# 29 99 63 Eu + -58700 40 8129.44 0.22 β^- 2510 40 161 93099 161 93099 297 75 75 75 80 40 161 9334001 30 161 928401 30														26
85 76 Os $-\alpha$ -9980# 400# 7764# 2# β^+ 10860# 430# 160 989290# 24 102 60 162 Nd x -39550# 400# 8026# 2# β^- 6820# 500# 161 957540# 24 101 61 Pm x -46370# 300# 8063# 2# β^- 8160# 360# 161 950220# 3 100 62 Sm x -54530# 200# 8109# 1# β^- 8160# 200# 161 941460# 29 63 Eu + -58700 40 8129.44 0.22 β^- 5580 40 161 936980 98 64 Gd -nn -64280 4 8159.035 0.025 β^- 1400 40 161 930992 99 65 Tb + -65680 40 8162.82 0.22 β^- 5580 40 161 930992 96 66 Dy -68181.5 0.8 8173.457 0.005 β^- 22140 3 161 928804.2 95 67 Ho -66042 3 8155.418 0.020 β^- 293 3 161 929804.2 95 67 Ho -66042 3 8155.418 0.020 β^- 293 3 161 929101 94 68 Er -66334.5 0.8 8152.397 0.005 β^- 2140 3 161 92877.0 93 69 Tm - 61478 26 8117.59 0.16 β^+ 44857 26 161 934001 92 70 Yb x -59826 15 8102.56 0.09 β^+ 1650 30 161 935774 91 71 Lu x -52830 80 8054.6 0.5 β^+ 6990 80 161 943280 90 72 Hff -49169 9 8027.12 0.06 β^+ 3660 80 161 947215 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963300 87 75 Re $+\alpha$ 22500# 200# 7848# 1# β^- 11500# 200# 161 957840# 2# β^- 0.0 β^- 23 3 0.0 β^- 161 95840# 2# β^- 7470# 500# 161 955300 30 162 953506 37 70 Yb x -59726# 300# 8054.6 0.5 β^+ 6990 80 161 947215 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963300 87 75 Re $+\alpha$ 22500# 200# 7848# 1# β^- 11500# 200# 161 957390 96 67 Ho -66381.2 0.8 8155.633 0.025 β^- 1470# 500# 162 953370# 42 101 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 953370# 42 101 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 933360 99 66 7 Ho -66381.2 0.8 8156.563 0.05 β^+ 4830 70 162 933360 39 66 70 66 80 Th -66381.2 0.8 8156.563 0.05 β^+ 4830 70 162 933360 99 66 7 Ho -66381.2 0.8 8156.568 0.005 β^+ 2834 0.019 162 953370# 42 110 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 945550# 30 162 945177 98 65 Tb +p -64596 4 8155.633 0.025 β^- 1430 16 162 92873.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 99 70 71 Lu x 54791 28 8066.68 0.17 β^+ 44510 30 162 945180 99 71 Lu x 54791 28 8066.68 0.17 β^+ 4510 30 162 945180 90 71 Lu x 54791 28					$-\alpha$									210#
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														160
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	85	76		Os	$-\alpha$	-9980#	400#	7/64#	2#	$oldsymbol{eta}^+$	10860#	430#	160 989290#	430#
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			162		X		400#							430#
99 63 Eu + .58700 40 8129,44 0.22 β^- 5580 40 161 936980 98 64 Gd -nn -64280 4 8159.035 0.025 β^- 1400 40 161 930992 97 65 Tb + .65680 40 8162.82 0.22 β^- 2510 40 161 929490 96 66 Dy -68181.5 0.8 8173,457 0.005 β^- -2140 3 161 92804.2 95 67 Ho -66042 3 8155.418 0.020 β^- 293 3 161 929101 94 68 Er -66334.5 0.8 8152.397 0.005 $\frac{*}{*}$ 161 928787.0 93 69 Tm61478 26 8117.59 0.16 β^+ 4857 26 161 934001 92 70 Yb x .59826 15 8102.56 0.09 β^+ 1650 30 161 935774 91 71 Lu x .52830 80 8054.6 0.5 β^+ 6990 80 161 943280 90 72 Hf -49169 9 8027.12 0.06 β^+ 3660 80 161 947215 89 73 Ta $-\alpha$ 39780 50 7964.3 0.3 β^+ 9390 50 161 957290 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963500 87 75 Re $+\alpha$ -22500# 200# 7848# 1# β^+ 11500# 200# 161 935870# 28 67 60 S $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 360# 161 945550# 310 63 Eu $+$ 56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd $-$ 61314 8 8140.30 0.05 β^- 4830 70 162 939360 99 66 Dy -66381.2 0.8 8161.8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb +p -64596 4 8155.633 0.025 β^- 1785 4 162 93550# 96 67 Ho -66378.3 0.8 8156.988 0.005 β^+ 2.834 0.019 162 9253799 96 67 Ho -66381.2 0.8 8161.785 0.005 β^+ 2.834 0.019 162 928736.9 96 67 Ho -66378.3 0.8 8156.988 0.025 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.8 90.23 β^+ 4510 30 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.8 90.23 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.8 90.23 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.8 90.23 β^+ 5530 50 162 947113 90 73 Ta $-\alpha$ -42602 19 7870.86 0.11 β^+ 8910 60 162 972085					X					eta^-				320#
98 64 Gd -nn -64280 4 8159.035 0.025 β^- 1400 40 161 930992 97 65 Tb + -65680 40 8162.82 0.22 β^- 2510 40 161 929490 96 66 Dy -68181.5 0.8 8173.457 0.005 β^- 2140 3 161 926804.2 95 67 Ho -66042 3 8155.418 0.020 β^- 293 3 161 929101 94 68 Er -66334.5 0.8 8152.397 0.005 ** 161 928787.0 93 69 Tm61478 26 8117.59 0.16 β^+ 4857 26 161 934001 92 70 Yb x -59826 15 8102.56 0.09 β^+ 1650 30 161 935774 91 71 Lu x -52830 80 8054.6 0.5 β^+ 6990 80 161 943215 89 73 Ta $-\alpha$ -39780 50 7964.3 0.3 β^+ 9390 50 161 957290 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 957290 88 75 Re + α -22500# 200# 7848# 1# β^+ 11500# 200# 161 975840# 2100 63 Eu + -56480 70 8115.5 0.4 β^- 8066 80 60 Dy -66381.2 0.8 8155.5 0.4 β^- 8066 80 70 162 939360 99 66 Dy -66381.2 0.8 8161.785 0.005 β^+ 1785 4121 5 162 930360 99 67 Ho -66378.3 0.8 8161.785 0.005 β^- 3282 9 162 934177 99 66 Dy -66381.2 0.8 8161.785 0.005 β^+ 2439 3 162 92873.9 96 77 1 Lu x -52830 80 80854 β^+ 3660 80 80 80 80 80 80 80 80 80 80 80 80 80				Sm	X									210#
97 65				Eu	+	-58700	40	8129.44			5580		161 936980	40
96 66 Dy														4
95 67 Ho					+									40
94 68 Er				•										0.8
93 69 Tm $-$ 61478 26 8117.59 0.16 β^+ 4857 26 161 934001 92 70 Yb x -59826 15 8102.56 0.09 β^+ 1650 30 161 935774 91 71 Lu x -52830 80 8054.6 0.5 β^+ 6990 80 161 943280 90 72 Hf -49169 9 8027.12 0.06 β^+ 3660 80 161 947215 89 73 Ta $-\alpha$ -39780 50 7964.3 0.3 β^+ 9390 50 161 957290 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 953500 87 75 Re $+\alpha$ -22500# 200# 7848# 1# β^+ 11500# 200# 161 975840# 28 86 76 Os $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 161 984500# 3 102 61 163 Pm x -43250# 400# 8044# 2# β^- 5770# 310# 162 953570# 4 100 63 Eu $+$ -56480 70 8115.5 0.4 β^- 4830 70 162 935500 99 64 Gd -61314 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb $+$ -64596 4 8155.633 0.025 β^- 3282 9 162 934177 99 66 Dy -66381.2 0.8 8161.785 0.005 β^+ 1283 0.019 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm $-$ 62729 6 8124.98 0.03 β^+ 2430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 936540 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 931418 91 72 Hf -49264 25 802.97 0.15 β^+ 5530 40 162 936340 99 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 935440 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 954550 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085										$oldsymbol{eta}^-$		3		3
92 70 Yb x -59826 15 8102.56 0.09 β^+ 1650 30 161 935774 91 71 Lu x -52830 80 8054.6 0.5 β^+ 6990 80 161 943280 90 72 Hf -49169 9 8027.12 0.06 β^+ 3660 80 161 947215 89 73 Ta $-\alpha$ -39780 50 7964.3 0.3 β^+ 9390 50 161 957290 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963500 87 75 Re $+\alpha$ -22500# 200# 7848# 1# β^+ 11500# 200# 161 975840# 28 6 76 Os $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 161 984500# 3100 63 Eu $+$ -56480 70 8115.5 0.4 β^- 3770# 310# 162 9339360 99 64 Gd β^- 66 Dy β^- 66 Sp β^- 66 Dy β^- 66378.3 0.8 8156.968 0.005 β^+ 1785 4 162 930040 99 66 67 Ho β^- 66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er β^- 66168 5 8144.741 0.028 β^+ 1211 5 162 930040 99 71 Lu x -54791 28 8066.8 0.17 β^+ 4310 16 162 936340 99 73 Ta $-\alpha$ 42530 40 7981.89 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 99 73 Ta $-\alpha$ 42530 40 7981.89 0.23 β^+ 5750 50 162 934177 99 75 Re β^- 779 770 770 770 770 770 770 770 770 770										0.1				0.9
91 71 Lu x -52830 80 8054.6 0.5 β^+ 6990 80 161 943280 90 72 Hff -49169 9 8027.12 0.06 β^+ 3660 80 161 947215 89 73 Ta $-\alpha$ -39780 50 7964.3 0.3 β^+ 9390 50 161 957290 88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963500 87 75 Re $+\alpha$ -22500# 200# 7848# 1# β^+ 11500# 200# 161 975840# 286 76 Os $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 161 984500# 3 102 61 163 Pm x -43250# 400# 8044# 2# β^- 7470# 500# 162 953570# 4 101 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 953570# 3 100 63 Eu + -56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd β^- 61314 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb +p -64596 4 8155.633 0.025 β^- 1785 4 162 930533 99 66 7 Ho -66381.2 0.8 8161.785 0.005 β^- 1785 4 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm - 62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 91 72 Hff -49264 25 8027.97 0.15 β^+ 4510 30 162 941180 91 72 Hff -49264 25 8027.97 0.15 β^+ 5530 40 162 972085 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														28
90 72 Hf														16
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					X									80
88 74 W -33999 18 7923.82 0.11 β^+ 5780 50 161 963500 87 75 Re $+\alpha$ -22500# 200# 7848# 1# β^+ 11500# 200# 161 975840# 286 76 Os $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 161 984500# 3102 61 163 Pm x -43250# 400# 8044# 2# β^- 7470# 500# 162 953570# 4101 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 945550# 3100 63 Eu β^- 56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd β^- 6631.4 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb β^- 66 Dy β^- 66381.2 0.8 8161.785 0.005 β^- 1785 4 162 928736.9 96 67 Ho β^- 66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er β^- 65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm β^- 662729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 947113 90 73 Ta β^- 42530 40 7981.89 0.23 β^+ 6730 50 162 947113 90 73 Ta β^- 42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W β^- 3400 162 972085														10
87 75 Re $+\alpha$ $-22500\#$ 200# 7848# 1# β^+ 11500# 200# 161 975840# 286 76 Os $-\alpha$ -14440# 300# 7793# 2# β^+ 8060# 360# 161 984500# 3 102 61 163 Pm x $-43250\#$ 400# 8044# 2# β^- 7470# 500# 162 953570# 4 101 62 Sm x $-50720\#$ 300# 8085# 2# β^- 5770# 310# 162 945550# 3 100 63 Eu $+$ -56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd -61314 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb $+p$ -64596 4 8155.633 0.025 β^- 1785 4 162 930653 97 66 Dy -66381.2 0.8 8161.785 0.005 * 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm $-$ 62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 947113 90 73 Ta $-\alpha$ 42530 40 7981.89 0.23 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085					$-\alpha$									60
86 76 Os $-\alpha$ -14440# 300# 7793# $2#$ β^+ 8060# 360# 161 984500# 361 102 61 163 Pm x -43250# 400# 8044# $2#$ β^- 7470# 500# 162 953570# 4 101 62 Sm x -50720# 300# 8085# $2#$ β^- 5770# 310# 162 945550# 3 100 63 Eu + -56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd -61314 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb +p -64596 4 8155.633 0.025 β^- 1785 4 162 930653 97 66 Dy -66378.3 0.8 8161.785 0.005 β^+ 2.834 0.019 162 928739.9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>β^+</td> <td></td> <td></td> <td></td> <td>19</td>										β^+				19
102 61 163 Pm x -43250# 400# 8044# 2# β^- 7470# 500# 162 953570# 4 101 62 Sm x -50720# 300# 8085# 2# β^- 5770# 310# 162 945550# 3 100 63 Eu + -56480 70 8115.5 0.4 β^- 4830 70 162 939360 99 64 Gd -61314 8 8140.30 0.05 β^- 3282 9 162 934177 98 65 Tb +p -64596 4 8155.633 0.025 β^- 1785 4 162 930653 97 66 Dy -66381.2 0.8 8161.785 0.005 * 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 941180 91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														210#
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	86	/6		Os	$-\alpha$	-14440#	300#	//93#	∠#	p ·	8060#	360#	161 984500#	320#
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			163											430#
99 64 Gd														320#
98 65 Tb +p -64596 4 8155.633 0.025 β^- 1785 4 162 930653 97 66 Dy -66381.2 0.8 8161.785 0.005 * 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 941180 91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085					+									70
97 66 Dy -66381.2 0.8 8161.785 0.005 * 162 928736.9 96 67 Ho -66378.3 0.8 8156.968 0.005 β^+ 2.834 0.019 162 928739.9 95 68 Er -65168 5 8144.741 0.028 β^+ 1211 5 162 930040 94 69 Tm62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 941180 91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														9
96 67 Ho					+p					eta^-		4		4
95 68 Er				•						0.1				0.8
94 69 Tm $-$ -62729 6 8124.98 0.03 β^+ 2439 3 162 932658 93 70 Yb x -59299 15 8099.14 0.09 β^+ 3430 16 162 936340 92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 941180 91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085										β^+				0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										β^+				5
92 71 Lu x -54791 28 8066.68 0.17 β^+ 4510 30 162 941180 91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														6
91 72 Hf -49264 25 8027.97 0.15 β^+ 5530 40 162 947113 90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														16
90 73 Ta $-\alpha$ -42530 40 7981.89 0.23 β^+ 6730 50 162 954340 89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085					X									30
89 74 W $-\alpha$ -34910 50 7930.3 0.3 β^+ 7630 70 162 962520 88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														27
88 75 Re $+\alpha$ -26002 19 7870.86 0.11 β^+ 8910 60 162 972085														40
														60
8/ /0 US $-\alpha$ -10190# 300# /800# 2# β 9810# 300# 162 982620# 3														20
·	87	/6		Os	$-\alpha$	-16190#	300#	/806#	2#	$oldsymbol{eta}^{\scriptscriptstyle op}$	9810#	300#	162 982620#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	ass
103	61	164	Pm	х	-38870#	400#	8017#	2#	β-	9230#	500#	163 958270#	430#
102	62	104	Sm	X	-48100#	300#	8069#	2#	β^-	5280#	320#	163 948360#	320#
101	63		Eu	+	-53380#	110#	8096#	1#	β^-	6390	50	163 942690#	120#
100	64		Gd	X	-59770#	100#	8130#	1#	β^-	2300#	140#	163 935830#	110#
99	65		Tb	+	-62080	100	8139.8	0.6	β^-	3890	100	163 933360	110
98	66		Dy	•	-65968.0	0.8	8158.714	0.005	β^-	-986.5	1.4	163 929180.5	0.8
97	67		Но		-64981.5	1.5	8147.929	0.009	β^-	961.4	1.4	163 930239.5	1.6
96	68		Er		-65942.9	0.8	8149.020	0.005	r	*		163 929207.4	0.8
95	69		Tm		-61904	24	8119.62	0.15	$oldsymbol{eta}^+$	4039	24	163 933543	26
94	70		Yb	X	-61017	15	8109.45	0.09	β^+	887	29	163 934495	16
93	71		Lu	X	-54642	28	8065.80	0.17	β^+	6380	30	163 941340	30
92	72		Hf		-51819	16	8043.81	0.10	β^+	2820	30	163 944371	17
91	73		Ta	X	-43283	28	7987.00	0.17	β^+	8540	30	163 953530	30
90	74		W		-38236	10	7951.45	0.06	β^+	5047	30	163 958952	10
89	75		Re	$-\alpha$	-27470	50	7881.1	0.3	β^+	10760	60	163 970510	60
88	76		Os		-20420	150	7833.3	0.9	β^+	7050	140	163 978080	160
87	77		Ir	$-\alpha$	-7340#	310#	7749#	2#	β^+	13080#	350#	163 992120#	340#
103	62	165	Sm	x	-43810#	400#	8043#	2#	eta^-	6920#	420#	164 952970#	430#
102	63		Eu	+	-50720#	140#	8080#	1#	eta^-	5730	70	164 945550#	150#
101	64		Gd	+	-56450#	120#	8110#	1#	eta^-	4110	70	164 939400#	130#
100	65		Tb	X	-60570#	100#	8130#	1#	eta^-	3050#	100#	164 934980#	110#
99	66		Dy	-n	-63612.6	0.8	8143.909	0.005	eta^-	1286.4	0.8	164 931709.1	0.8
98	67		Но		-64899.0	1.0	8146.964	0.006		*		164 930328.0	1.1
97	68		Er		-64521.6	1.0	8139.936	0.006	β^+	377.4	1.0	164 930733.2	1.0
96	69		Tm		-62929.6	1.7	8125.546	0.010	β^+	1592.0	1.5	164 932442.3	1.8
95	70		Yb		-60295	27	8104.84	0.16	β^+	2634	27	164 935270	28
94	71		Lu		-56442	27	8076.75	0.16	β^+	3850	40	164 939407	28
93	72		Hf	X	-51636	28	8042.87	0.17	β^+	4810	40	164 944570	30
92	73		Ta		-45848	14	8003.05	0.08	β^+	5790	30	164 950780	15
91	74		W		-38861	25	7955.97	0.15	$oldsymbol{eta}^+$	6987	29	164 958281	27
90	75		Re	$+\alpha$	-30660	24	7901.52	0.14	$oldsymbol{eta}^+$	8200	30	164 967085	25
89	76		Os	$-\alpha$	-21800#	200#	7843#	1#	β^+	8870#	200#	164 976600#	210#
88	77		Ir	IT	-11590#	160#	7776#	1#	$oldsymbol{eta}^+$	10200#	250#	164 987560#	170#
104	62	166	Sm	x	-40730#	400#	8024#	2#	β^-	6480#	540#	165 956280#	430#
103	63		Eu	+	-47210#	360#	8059#	2#	β^-	7320	300	165 949320#	380#
102	64		Gd	X	-54530#	200#	8098#	1#	β^-	3360#	210#	165 941460#	210#
101	65		Tb	+	-57880	70	8113.7	0.4	β^-	4700	70	165 937860	80
100	66		Dy	-n	-62584.8	0.9	8137.280	0.005	β^-	486.5	0.9	165 932812.5	0.9
99	67		Но		-63071.3	1.0	8135.499	0.006	eta^-	1854.7	0.9	165 932290.1	1.1
98	68		Er		-64926.0	1.2	8141.959	0.007	$\alpha +$		10	165 930299.0	1.3
97	69		Tm		-61888	12	8118.95	0.07	β^+	3038	12	165 933560	12
96	70		Yb	+nn	-61596	7	8112.47	0.04	β^+	293	14	165 933874	8
95	71		Lu	X	-56021	30	8074.17	0.18	β^+	5570	30	165 939860	30
94	72		Hf	X	-53859	28	8056.44	0.17	β^+	2160	40	165 942180	30
93	73		Ta	X	-46098	28	8004.97	0.17	β^+	7760	40	165 950510	30
92	74 75		W		-41888	9	7974.90	0.06	β^+	4210	30	165 955031	10
91	75		Re	$-\alpha$	-31890	70	7910.0	0.4	β^+	9990	70	165 965760	80
90	76		Os		-25432	18	7866.34	0.11	β^+	6460	70	165 972698	19
89	77 70		Ir Dt	-p	-13350# 4720#	200#	7789# 7722#	1#	β^+	12080#	200#	165 985660#	210#
88	78		Pt	$-\alpha$	-4730#	300#	7732#	2#	$oldsymbol{eta}^+$	8620#	360#	165 994920#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

97 70 Yb		Atomic m μu		Beta-decay (keV		ng energy leon (keV)			Mass exe (keV)	Orig.	Elt.	A	Z	N
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0# 430	166 952750#	500#	6800#	β-	2#	8040#	400#	-44010#	X	Eu	167	63	104
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0# 320	166 945450#	360#	5110#		2#	8076#	300#	-50810#	X	Gd		64	103
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0# 210	166 939960#	210#	4000#	$\dot{oldsymbol{eta}}^-$	1#	8102#	200#	-55930#	X	Tb		65	102
99 68 Er -63291.2 1.2 8131.746 0.007 * 166 93205.6 97 70 Yb -62543.6 1.3 8122.585 0.008 β^+ 747.5 1.5 166 93205.6 97 70 Yb -60591 4 8106.205 0.024 β^+ 1953 4 166 93285.6 97 70 Yb -60591 4 8106.205 0.024 β^+ 1953 4 166 93285.6 96 71 Lu x -57500 30 8083.02 0.19 β^+ 3090 30 166 938270 95 72 Hif x -53468 28 8054.18 0.17 β^+ 3090 30 166 938270 94 73 Ta x -48351 28 8018.86 0.17 β^+ 5120 40 166 948090 94 73 Ta x -42098 118 7976.73 0.11 β^+ 6250 30 166 95800 92 75 Re β^+ 34830# 40# 7929# 0# β^+ 7270# 40# 166 962610# 91 76 0s $-\alpha$ -26500 70 7874.0 0.4 β^+ 8330# 80# 166 971550 90 77 Ir β^+ 17072 18 7812.82 0.11 β^+ 8330# 80# 166 971550 10 166 981672 89 78 Pt $-\alpha$ -6610# 300# 7746# 2# β^+ 10460# 300# 166 992900# 105 63 168 Eu x -39740# 500# 8061# 2# β^+ 8430 70 166 981672 103 65 Tb x -52720# 300# 8082# 2# β^- 4360# 5300# 167 9433400# 102 66 Dy +pp -58560 140 8112.5 0.8 β^- 1500 140 167 937130 101 67 Ho $+$ -60060 30 8116.82 0.18 β^- 1500 140 167 937130 101 67 Ho $+$ -60060 30 8116.82 0.18 β^- 2930 30 30 167 935520 100 68 Er -62991.2 1.2 8119.891 0.007 β^+ 4510 0 140 167 937130 101 67 27 Hif x -55361 28 8065.55 0.17 β^+ 4510 0 0 140 167 938740 99 71 Ir $-$ -57707 40 8080.37 0 2.3 β^+ 4510 40 167 938740 99 71 Ir $-$ -57707 40 8080.37 0 2.3 β^+ 4510 40 167 938740 99 71 Ir $-$ -6181.9 1.2 8111.898 0.007 β^+ 4510 40 167 938740 100 68 Er -62991.2 1.2 811.898 0.007 β^+ 4510 40 167 938740 100 66 Er -62991.2 1.2 811.898 0.007 β^+ 4510 40 167 938740 100 67 94050 100 68 Er β^+ 60060 30 816.82 0.18 β^+ 9100 30 167 935570 100 68 Er -62991.2 1.2 811.898 0.007 β^+ 4510 40 167 938740 100 69 Tm -613129 1.7 8114.954 0.010 β^- 269.0 1.9 167 93476.9 95 73 Th α^- 44893 13 799.39 0.08 β^+ 3500 30 167 935570 100 68 Er -62991.2 1.2 811.898 0.007 β^+ 5500 30 167 935570 100 68 Er β^+ 5000 30 806.88 2# β^+ 5000 30 167 935570 100 68 Er β^+ 5000 30 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70	0 60	166 935660	60	2350		0.4	8121.0	60	-59930	+	Dy		66	101
98 69 Tm	9 6	166 933139	5	1011	β^-	0.03	8130.38	5	-62281	p2n	Но		67	100
97 70 Yb	4.1 1	166 932054.1		*		0.007	8131.746	1.2	-63291.2		Er		68	99
96 71 Lu x -57500 30 8083.02 0.19 β^+ 3090 30 166 938270 95 72 Hff x -53468 28 8054.18 0.17 β^+ 4030 40 166 942600 94 73 Ta x -48351 28 8018.86 0.17 β^+ 5120 40 166 948090 93 74 W -42098 18 7976.73 0.11 β^+ 6250 30 166 954806 92 75 Re $+\alpha$ -34830# 40# 7929# 0# β^+ 7270# 40# 166 962610# 91 76 Os $-\alpha$ -26500 70 7874.0 0.4 β^+ 8330# 80# 166 971550 90 77 Ir -17072 18 7812.82 0.11 β^+ 9430 70 166 981672 89 78 Pt $-\alpha$ -6610# 300# 7746# $2^{\#}$ β^+ 10400# 300# 166 992900# 105 63 168 Eu x -39740# 500# 8061# $2^{\#}$ β^+ 10400# 300# 166 992900# 104 64 Gd x -48360# 400# 8061# $2^{\#}$ β^- 4360# 500# 167 948080# 103 65 Tb x -52720# 300# 8082# $2^{\#}$ β^- 4360# 500# 167 943808# 104 66 Dy +pp -58560 140 8112.5 0.8 β^- 1500 140 167 935130 101 67 Hh α + -6060 30 8116.82 0.18 β^- 2930 30 167 935320 99 69 Tm -61312.9 1.7 8114.954 0.010 β^- 269.0 1.9 167 9343749 96 72 Hff x -55361 28 8065.55 0.17 β^+ 4510 40 167 933889.1 97 71 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 94 74 W -44893 13 7993.93 0.08 β^+ 3500 30 167 948050# 99 77 Ir $-\alpha$ -6312.9 180 30 793.93 0.08 β^+ 3500 30 167 9358740 195 77 Ir $-\alpha$ -6312.9 1.2 8112.89 0.007 β^- 1678.3 1.9 167 934376.9 197 71 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 196 77 11 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 196 77 11 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 196 77 11 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 948050 197 77 11 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 948050 197 77 11 $-\alpha$ 1814.954 0.010 β^- 269.0 1.9 167 948700 197 77 11 $-\alpha$ 2 18670 60 7823.9 0.3 β^+ 11330 60 167 96799 197 77 11 $-\alpha$ 3 136 80 13 13 13 13 13 13 13 13 13 13 13 13 13	6.6	166 932856.6	1.5	747.5		0.008	8122.585	1.3	-62543.6		Tm		69	98
95 72 Hf x \times 53468 28 8054.18 0.17 β^+ 4030 40 166 942600 94 73 Ta x -48351 28 8018.86 0.17 β^+ 5120 40 166 948090 93 74 W \times -42098 18 7976.73 0.11 β^+ 6250 30 166 954806 92 75 Re $+\alpha$ -34830# 40# 7929# 0# β^+ 7270# 40# 166 962610# 176 0S $-\alpha$ -26500 70 7874.0 0.4 β^+ 8330# 80# 166 971550 90 77 Ir -17072 18 7812.82 0.11 β^+ 9430 70 166 981672 89 78 Pt $-\alpha$ -6610# 300# 7746# 2# β^+ 10460# 300# 166 992900# 105 63 168 Eu x 39740# 500# 8014# 3# β^- 8620# 640# 167 957340# 104 64 Gd x 48360# 400# 8061# 2# β^- 8620# 640# 167 957340# 102 66 Dy +pp 58560 140 812.5 0.8 β^- 1500 140 167 937130 101 67 Hb $+$ 6060 68 Er $-$ 62991.2 1.2 8129.601 0.007 β^- 1678.3 1.9 167 932376.2 100 68 Er $-$ 62991.2 1.2 8129.601 0.007 β^- 1678.3 1.9 167 9338819 97 71 Lu $-$ 557070 40 8080.37 0.23 β^+ 4510 40 167 938740 99 77 1 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 99 77 1 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 99 77 1 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 94 74 W $-$ 44893 13 7993.93 0.08 β^+ 5800 30 167 948050 103 66 Dy $-$ 71 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 197 77 1 Lu $-$ 57070 40 8080.37 0.23 β^+ 4510 40 167 938740 103 66 Dy $-$ 269 78 Pt $-\alpha$ 11867 06 07 783.93 10 105 69 78 Pt $-\alpha$ 11867 06 07 783.9 0.08 β^+ 5800 30 167 951805 99 73 Ta x 48394 28 8019.43 0.17 β^+ 6970 40 167 948050 19 78 Pt $-\alpha$ 118670 60 7823.9 0.3 β^+ 4510 40 167 938740 10 66 Dy $-$ 187 0.00 167 948050 10 60 Dy $-$ 187 0.00 167 948050 10 0.00 β^- 269 0.0 19 167 9494570 10 0.00 167 949570 1	3 4	166 934953	4	1953			8106.205	4			Yb		70	97
94 73 Ta x -48351 28 8018.86 0.17 β^+ 5120 40 166 948090 93 74 W -42098 18 7976.73 0.11 β^+ 6250 30 166 95806 92 75 Re $+\alpha$ -34830# 40# 7929# 0# β^+ 7270# 40# 166 951805 99 77 Ir -17072 18 7812.82 0.11 β^+ 8330# 80# 166 971550 90 77 Ir -17072 18 7812.82 0.11 β^+ 8330# 80# 166 971550 89 78 Pt $-\alpha$ -6610# 300# 7746# 2# β^+ 10460# 300# 166 992900# 105 63 168 Eu x -39740# 500# 8014# 3# β^- 8620# 640# 167 957340# 104 64 Gd x -48360# 400# 8061# 2# β^- 4360# 500# 167 948080# 103 65 Tb x -52720# 300# 8082# 2# β^- 8620# 640# 167 943080# 102 66 Dy +pp -58560 140 8112.5 0.8 β^- 1500 140 167 9373130 101 67 Ho $+$ -60060 30 8116.82 0.18 β^- 2930 30 167 935520 100 68 Er -62991.2 1.2 8129.601 0.007 β^- 1-678.3 1.9 167 932376.2 99 69 Tm -61312.9 1.7 8114.954 0.010 β^- 269.0 1.9 167 93477.9 98 70 Yb -61581.9 1.2 8118.89 0.007 γ^- 167 933889.1 97 71 Lu γ^- -57070 40 8080.37 0.23 β^+ 4510 40 167 938780 94 74 W -44893 13 7993.93 0.08 β^+ 1530 40 167 938740 167 935876 17 17 17 18 14.954 0.010 γ^- 167 930 167 93570 168 935770 168 935770 175 Re γ^- 172 Hf γ^- 1814.773	0 30	166 938270	30	3090		0.19	8083.02	30	-57500	X	Lu			96
93 74 W 4-2098 18 7976.73 0.11 β^+ 6250 30 166 954806 92 75 Re $+\alpha$ 34830# 40# 7929# 0# β^+ 6250 30 166 954806 91 76 Os $-\alpha$ 226500 70 7874.0 0.4 β^+ 8330# 80# 166 971550 90 77 Ir 1-7072 18 7812.82 0.11 β^+ 9430 70 166 981672 89 78 Pt $-\alpha$ 6610# 300# 7746# 2# β^+ 10460# 300# 166 992900# 105 63 168 Eu x 3-39740# 500# 8014# 3# β^- 8620# 640# 167 957340# 104 64 Gd x 48360# 400# 8061# 2# β^- 4360# 500# 167 948080# 103 65 Tb x 52720# 300# 8082# 2# β^- 3540# 330# 167 943409# 102 66 Dy +pp 58560 140 8112.5 0.8 β^- 1500 140 167 937130 101 67 Ho + 60060 30 8116.82 0.18 β^- 2930 30 167 935376.2 100 68 Er 62991.2 1.2 8129.601 0.007 β^- 1-1678.3 1.9 167 93376.2 100 68 Er 62991.2 1.2 8129.601 0.007 β^- 1-1678.3 1.9 167 93376.2 100 68 Er 62991.2 1.2 8111.898 0.007 γ^- 1 Lu γ^- 557070 40 8080.37 0.23 β^+ 4510 40 167 938740 96 77 1 Lu γ^- 557070 40 8080.37 0.23 β^+ 4510 40 167 938740 96 77 2 Hf x 48394 28 8019.43 0.17 β^+ 6970 40 167 948050 94 74 W 44893 13 7993.93 0.08 β^+ 3500 30 167 951805 93 75 Re $-\alpha^-$ 35700 30 7935.12 0.18 β^+ 9100 30 167 945806 90 78 Pt $-\alpha^-$ 11010 150 7773.6 0.9 β^+ 7660 140 167 938180 102 67 Ho γ^- 15805 30 804.8 12 811.90 0.07 γ^- 3500 30 167 951805 90 78 Pt $-\alpha^-$ 11010 150 7773.6 0.9 β^+ 7660 140 167 938180 102 67 Hb γ^- 15805 3 806.335 0.00 168 943310 102 67 Hb γ^- 15805 3 806.335 0.00 168 943310 102 67 Hb γ^- 168 93655 3 806.335 0.00 168 943310 102 67 Hb γ^- 167 128 810.47 0.00 γ^- 168 93650 30 167 951805 90 78 Pt $-\alpha^-$ 11010 150 7773.6 0.9 β^+ 7660 140 167 988180 102 67 Hb γ^- 168 93656 3 806.335 0.01 γ^- 168 935182 97 70 Yb $-\alpha^-$ 16037.6 1.2 810.500 γ^- 351.4 0.00 γ^- 352.1 1.1 168 934596.4 100 69 Tm $-\alpha^-$ 60377.6 1.2 810.473 0.00 γ^- 37 897.6 1.1 168 934596.4 100 69 Tm $-\alpha^-$ 60377.6 1.2 810.473 0.00 γ^- 37 897.6 1.1 168 934596.4 100 69 Tm $-\alpha^-$ 60377.6 1.2 810.473 0.00 γ^- 37 897.6 1.1 168 935182.0 99 70 Yb $-\alpha^-$ 60377.6 1.2 810.90 0.07 γ^- 352.1 1.1 168 934596.4 100 69 Tm $-\alpha^-$ 60377.6 1.2 810.4532 0.00 γ^-		166 942600			$oldsymbol{eta}^+$					X				95
92 75 Re $+\alpha$.34830# 40# 7929# 0# β^+ 7270# 40# 166 962610# 91 76 Os $-\alpha$.26500 70 7874.0 0.4 β^+ 8330# 80# 166 971550 80 77 Ir -17072 18 7812.82 0.11 β^+ 9430 70 166 981672 89 78 Pt $-\alpha$.6610# 300# 7746# 2# β^+ 10460# 300# 166 992900# 105 63 168 Eu x .39740# 500# 8014# 3# β^- 8620# 640# 167 957340# 104 64 Gd x .48360# 400# 8061# 2# β^- 3600# 500# 167 948080# 103 65 Tb x .52720# 300# 8082# 2# β^- 5840# 500# 167 943080# 102 66 Dy +pp .58560 140 8112.5 0.8 β^- 1500 140 167 937130 101 67 Ho $+$.60060 30 8116.82 0.18 β^- 2930 30 167 935320 100 68 Er .62991.2 1.2 8129.601 0.007 β^- 1-1678.3 1.9 167 932376.2 99 69 Tm .61312.9 1.7 8114.954 0.010 β^- 269.0 1.9 167 933881.0 96 72 Hf x x .55361 28 8065.55 0.17 β^+ 4510 40 167 938840 96 72 Hf x x .55361 28 8065.55 0.17 β^+ 1710 50 167 940570 95 73 Ta x .48394 28 8019.43 0.17 β^+ 1710 50 167 948050 94 74 W .44893 13 7993.93 0.08 β^+ 3500 30 167 951805 93 75 Re $-\alpha$.3350# 30 7773.6 0.9 β^+ 7660 140 167 98180 102 67 Hb $-\alpha$.11010 150 7773.6 0.9 β^+ 7660 140 167 988180 103 66 Dy $+$ 258797 20 8109.77 3.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x .44150# 500# 80343 0.007 β^- 11330 60 167 961870 105 66 Dy $+$ 2588797 20 8109.07 β^+ 11330 60 167 979990 105 66 Dy $+$ 258808 30 30 66 7951805 90 78 Pt $-\alpha$.11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x .44150# 500# 8036# 2# β^- 2126 20 168 936879 101 68 945310 102 67 Hb $+$ 25800 30 8048 1.8 β^- 3000 30 167 961870 103 66 Dy $+$ 25808 30 806.83 0.007 β^+ 807 809 11		166 948090	40	5120		0.17		28		X				94
91 76 Os $-\alpha$											W			
90 77 Ir -17072 18 7812.82 0.11 β^{+} 9430 70 166 981672 89 78 Pt $-\alpha$ -6610# 300# 7746# 2# β^{+} 10460# 300# 166 99290# 166 99290# 105 63 168 Eu x -39740# 500# 8014# 3# β^{-} 8620# 640# 167 957340# 104 64 Gd x -48360# 400# 8061# 2# β^{-} 4360# 500# 167 94880# 103 65 Tb x -52720# 300# 8082# 2# β^{-} 5840# 330# 167 943400# 102 66 Dy +pp -58560 140 8112.5 0.8 β^{-} 1500 140 167 937130 101 67 Ho + -60060 30 8116.82 0.18 β^{-} 2930 30 167 935520 100 68 Er -62991.2 1.2 8129.601 0.007 β^{-} -1678.3 1.9 167 932376.2 99 69 Tm -61312.9 1.7 8114.954 0.010 β^{-} 269.0 1.9 167 9343749 98 70 Yb -61581.9 1.2 8111.898 0.007 * * 167 93389.1 97 71 Lu - 57070 40 8080.37 0.23 β^{+} 4510 40 167 938740 96 72 Hff x -55361 28 8019.43 0.17 β^{+} 1710 50 167 940570 94 74 W -44893 13 7993.93 0.08 β^{+} 3500 30 167 948050 94 74 W -44893 13 7993.93 0.08 β^{+} 3500 30 167 948050 99 78 Pt $-\alpha$ -18670 60 7823.9 0.3 β^{+} 11330 60 167 949850 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^{+} 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 2# β^{-} 5270# 400 494570 106 β^{-} 5270# 400 688 69 79 77 11 β^{-} 110 β^{-} 111 β^{+} 111 β^{-} 111 β^{+} 111 β^{-} 111 β^{-} 112 β^{-} 113 β^{-} 114 β^{-} 115 β^{-} 115 β^{-} 116 β^{-} 116 β^{-} 116 β^{-} 117 β^{-} 117 β^{-} 117 β^{-} 118 β^{-} 119 β^{-} 119 β^{-} 110										$+\alpha$	Re			
89 78 Pt $-\alpha$ $-6610\#$ 300# $7746\#$ $2\#$ β^+ $10460\#$ 300# $166992900\#$ $166992900\#$ 105 63 168 Eu x $-39740\#$ 500# $8014\#$ 3# $\beta^ 8620\#$ $640\#$ $167957340\#$ 104 64 Gd x $-48360\#$ $400\#$ $8061\#$ $2\#$ $\beta^ 4360\#$ $500\#$ $167948080\#$ 103 65 Tb x $-52720\#$ 300# $8082\#$ $2\#$ $\beta^ 5840\#$ 330# $167943400\#$ 102 66 Dy $+pp$ -58560 140 8112.5 0.8 $\beta^ 1500$ 140 167937130 101 67 Ho $+$ -60060 30 8116.82 0.18 β^- 2930 30 16793520 100 68 Er -62991.2 1.2 8129.601 0.007 $\beta^ -1678.3$ 1.9 167932376.2 99 69 Tm -61312.9 1.7 8114.954 0.010 β^- 269.0 1.9 167938740 197417.9 198 190 Yb -61581.9 1.2 111.898 0.007 190 190 190 190 1938740 190										$-\alpha$				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0# 330	166 992900#	300#	10460#	eta^+	2#	7746#	300#	-6610#	$-\alpha$	Pt		78	89
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					β^-							168		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											•			
99 69 Tm										+				
98 70 Yb														
97 71			1.9		β^-									
96 72 Hf x -55361 28 8065.55 0.17 β^+ 1710 50 167 940570 95 73 Ta x -48394 28 8019.43 0.17 β^+ 6970 40 167 948050 94 74 W -44893 13 7993.93 0.08 β^+ 3500 30 167 951805 93 75 Re $-\alpha$ -35790 30 7935.12 0.18 β^+ 9100 30 167 961570 92 76 Os -29995 10 7895.94 0.06 β^+ 5800 30 167 967799 91 77 Ir $-\alpha$ -18670 60 7823.9 0.3 β^+ 11330 60 167 97799 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 5180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 ** 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 β^+ 3368 28 168 941260 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 5509 19 168 958766			40		0.+									
95 73 Ta x -48394 28 8019.43 0.17 β^+ 6970 40 167 948050 94 74 W -44893 13 7993.93 0.08 β^+ 3500 30 167 951805 93 75 Re $-\alpha$ -35790 30 7935.12 0.18 β^+ 9100 30 167 961570 92 76 Os -29995 10 7895.94 0.06 β^+ 5800 30 167 967799 91 77 Ir $-\alpha$ -18670 60 7823.9 0.3 β^+ 11330 60 167 979960 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 6180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy β^+ -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho β^- 105 68 Er β^- 106 80 Er β^- 107 107 108 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm β^- 61275.2 0.8 8114.473 0.005 β^+ 897.6 1.1 168 935182.0 98 71 Lu β^- 108 808.5 3 8086.335 0.019 β^+ 897.6 1.1 168 935182.0 98 71 Lu β^- 2 Hf x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 95 74 W β^- 375 Re β^- 38409 11 7951.40 0.07 β^+ 5370 30 168 951779 94 75 Re β^- 38409 11 7951.40 0.07 β^+ 5370 30 168 951779 94 75 Re β^- 38409 11 7951.40 0.07 β^+ 5370 30 168 951779 94 75 Re β^- 38409 11 7951.40 0.07 β^+ 5509 19 168 958766					β^+									
94 74 W -44893 13 7993.93 0.08 β^+ 3500 30 167 951805 93 75 Re $-\alpha$ -35790 30 7935.12 0.18 β^+ 9100 30 167 961570 92 76 Os -29995 10 7895.94 0.06 β^+ 5800 30 167 967799 91 77 Ir $-\alpha$ -18670 60 7823.9 0.3 β^+ 11330 60 167 979960 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 6180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 ** 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 β^+ 2293 3 168 937644 97 72 Hff x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766														
93 75 Re $-\alpha$ -35790 30 7935.12 0.18 β^+ 9100 30 167 961570 92 76 Os -29995 10 7895.94 0.06 β^+ 5800 30 167 967799 91 77 Ir $-\alpha$ -18670 60 7823.9 0.3 β^+ 11330 60 167 979960 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 6180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 937644 97 72 Hff x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 3368 28 168 941260 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 95876 19 168 958766										X				
92 76 Os										01				
91 77 Ir $-\alpha$ -18670 60 7823.9 0.3 β^+ 11330 60 167 979960 90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 6180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 ** 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 β^+ 897.6 1.1 168 935182.0 96 73 Ta x -50290 28 8030.96 0.17 β^+ 3368 28 168 94709 97 72 Hf x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766										$-\alpha$				
90 78 Pt $-\alpha$ -11010 150 7773.6 0.9 β^+ 7660 140 167 988180 105 64 169 Gd x -44150# 500# 8036# 3# β^- 6180# 590# 168 952600# 104 65 Tb x -50330# 300# 8068# 2# β^- 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 * 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 β^+ 897.6 1.1 168 935182.0 96 73 Ta x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 3368 28 168 946010 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766										01				
104 65 Tb x -50330# 300# 8068# 2# $β^-$ 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 $β^-$ 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 $β^-$ 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 $β^-$ 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 * 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 $β^+$ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 $β^+$ 897.6 1.1 168 9357644 97 72 Hf x -54717 28 8061.78 0.17 $β^+$ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 $β^+$ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 $β^+$ 5370 30 168 951779 94 75 Re $+α$ -38409 11 7951.40 0.07 $β^+$ 6509 19 168 958766														
104 65 Tb x -50330# 300# 8068# 2# $β^-$ 5270# 420# 168 945970# 103 66 Dy + -55600 300 8094.8 1.8 $β^-$ 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 $β^-$ 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 $β^-$ 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 * 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 $β^+$ 897.6 1.1 168 935182.0 98 71 Lu58085 3 8086.335 0.019 $β^+$ 897.6 1.1 168 9357644 97 72 Hf x -54717 28 8061.78 0.17 $β^+$ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 $β^+$ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 $β^+$ 5370 30 168 951779 94 75 Re $+α$ -38409 11 7951.40 0.07 $β^+$ 6509 19 168 958766	.0.11 5.44	160.052600#	500"	6100#		2.11	0026#	500#	44150"		G 1	1.00	6.1	105
103 66 Dy + -55600 300 8094.8 1.8 β^- 3200 300 168 940310 102 67 Ho +p -58797 20 8109.07 0.12 β^- 2126 20 168 936879 101 68 Er -n -60923.1 1.2 8117.019 0.007 β^- 352.1 1.1 168 934596.4 100 69 Tm -61275.2 0.8 8114.473 0.005 * 168 934218.4 99 70 Yb -n -60377.6 1.2 8104.532 0.007 β^+ 897.6 1.1 168 935182.0 98 71 Lu - -58085 3 8086.335 0.019 β^+ 2293 3 168 937644 97 72 Hf x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 4430 40 168 946010 <												169		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$														
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											•			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										_				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.1		ρ					-11				
98 71 Lu $-$ -58085 3 8086.335 0.019 β^+ 2293 3 168 937644 97 72 Hf x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766			1.1		R^{\pm}					n				
97 72 Hf x -54717 28 8061.78 0.17 β^+ 3368 28 168 941260 96 73 Ta x -50290 28 8030.96 0.17 β^+ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766														
96 73 Ta x -50290 28 8030.96 0.17 β^+ 4430 40 168 946010 95 74 W -44918 15 7994.54 0.09 β^+ 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β^+ 6509 19 168 958766														
95 74 W -44918 15 7994.54 0.09 β 5370 30 168 951779 94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β 6509 19 168 958766					$^{ ho}_{ m B^+}$									
94 75 Re $+\alpha$ -38409 11 7951.40 0.07 β ⁺ 6509 19 168 958766										Λ				
										$+\alpha$				
		168 967018	28	7687	β^+	0.07	7901.28	25	-30723	$-\alpha$	Os		76	93
92 77 Ir $+\alpha$ -22094 23 7845.60 0.14 β + 8630 30 168 976281														
91 78 Pt $-\alpha$ -12510# 200# 7784# 1# β + 9580# 200# 168 986570#														
90 79 Au x -1790# 300# 7716# 2# β ⁺ 10720# 360# 168 998080#					β^+									

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
106	64	170	Gd	Х	-41380#	600#	8020#	4#	β-	5340#	720#	169 955580#	640#
105	65		Tb	X	-46720#	400#	8047#	2#	β^-	6940#	450#	169 949840#	430#
104	66		Dy	X	-53660#	200#	8083#	1#	eta^-	2580#	200#	169 942390#	210#
103	67		Но	+	-56240	50	8093.80	0.29	$oldsymbol{eta}^-$	3870	50	169 939630	50
102	68		Er		-60108.7	1.5	8111.959	0.009	β^-	-312.8	1.8	169 935470.7	1.7
101	69		Tm		-59795.9	0.8	8105.517	0.005	eta^-	968.1	0.8	169 935806.5	0.9
100	70		Yb		-60763.919	0.010	8106.609	a	0.1	*		169 934767.246	0.011
99	71		Lu	_	-57306	17	8081.67	0.10	β^+	3458	17	169 938479	18
98	72		Hf	X	-56254	28	8070.88	0.16	β^+	1050	30	169 939610	30
97	73		Ta	X	-50138	28	8030.30	0.16	β^+	6120	40	169 946180	30
96	74		W		-47291	13	8008.95	0.08	β^+	2850	30	169 949231	14
95 94	75 76		Re		-38913	23	7955.07	0.14	β^+	8378	27	169 958225	25
94 93	76 77		Os	O.	-33926 -23360#	10 90#	7921.13 7854#	0.06 1#	$eta^+ eta^+$	4987 10570#	25 90#	169 963579 169 974920#	10 100#
93 92	78		Ir Pt	$-\alpha$	-23300# -16299	18	7808.24	0.11	β^+	7060#	90# 90#	169 974920#	20
92	79		Γι Au	-n	-3750#	200#	7730#	1#	β^+	12550#	200#	169 982302	210#
71	1)		Au	-p	-3730#	20011	1130π	1π	ρ	12330π	200#	107 773710#	210#
106	65	171	Tb	X	-44030#	500#	8031#	3#	$oldsymbol{eta}^-$	6160#	590#	170 952730#	540#
105	66		Dy	X	-50190#	300#	8063#	2#	β^-	4330#	670#	170 946120#	320#
104	67		Но	+	-54520	600	8084	4	β^-	3200	600	170 941470	640
103	68		Er		-57719.0	1.6	8097.746	0.009	β^-	1491.3	1.3	170 938036.1	1.7
102	69		Tm		-59210.3	1.0	8101.893	0.006	eta^-	96.5	1.0	170 936435.1	1.0
101	70		Yb		-59306.810	0.013	8097.882	<i>a</i>	0.1	* 1.470.4	1.0	170 936331.517	0.014
100	71		Lu		-57828.4	1.9	8084.661	0.011	β^+	1478.4	1.9	170 937918.7	2.0
99	72		Hf	X	-55431 51720	29	8066.07	0.17	β^+	2397	29	170 940490	30
98	73		Ta W	X	-51720	28	8039.79	0.16	$eta^+ eta^+$	3710	40	170 944480	30
97 96	74 75		w Re	X	-47086 -41250	28 28	8008.12 7969.41	0.16 0.16	β^+	4630 5840	40 40	170 949450 170 955720	30 30
96 95	76		Os	X	-41230 -34302	28 18	7909.41	0.10	β^+	6950	30	170 953720	30 19
94	77		Ir	$-\alpha$	-26410	40	7873.49	0.10	β^+	7890	40	170 903173	40
93	78		Pt	$-\alpha$	-17470	70	7816.6	0.22	β^+	8940	80	170 971030	80
92	79		Au	-а -р	-7562	21	7754.11	0.12	β^+	9910	80	170 991882	22
91	80		Hg	$-\alpha$	3480#	300#	7685#	2#	β^+	11040#	300#	171 003740#	330#
107	65	172	Tb	X	-39850#	500#	8007#	3#	β^-	8160#	590#	171 957220#	540#
106	66		Dy	X	-48010#	300#	8050#	2#	β^-	3470#	360#	171 948460#	320#
105	67		Но	X	-51480#	200#	8066#	1#	β^-	5000#	200#	171 944730#	210#
104	68		Er		-56484	4	8090.410	0.023	β^-	891	5	171 939362	4
103	69		Tm		-57374	6	8091.04	0.03	eta^-	1881	6	171 938406	6
102	70		Yb		-59255.446	0.014	8097.429	a 0.014	β^+		2.2	171 936386.659	0.015
101 100	71 72		Lu		-56736.0	2.3	8078.232	0.014	β^+	2519.5	2.3	171 939091.4	2.5
			Hf To	X	-56402 51220	24	8071.74	0.14		334	25	171 939450	26
99 98	73 74		Ta W	X	-51330 -49097	28	8037.70	0.16	$eta^+ eta^+$	5070	40 40	171 944900	30 30
98 97	74 75		w Re	X	-49097 -41540	28 40	8020.17 7971.67	0.16 0.23	β^+	2230 7560	50	171 947290 171 955410	40
97 96	76		Os		-37244	13	7942.16	0.23	β^+	4290	40	171 953410	14
96 95	70 77		Ir	$-\alpha$	-37244 -27380	30	7880.26	0.07	β^+	9860	30	171 900017	30
93	78		Pt	-u	-21107	10	7839.25	0.19	β^+	6270	30	171 970010	11
93	79		Au	$-\alpha$	-9320	60	7766.2	0.3	β^+	11790	60	171 990000	60
92	80		Hg	$-\alpha$	-1060	150	7713.6	0.9	β^+	8260	140	171 998860	160
12	00		118	$-\mathbf{u}$	-1000	130	1113.0	0.7	Ρ	0200	170	1/1 //0000	100

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV	0,5	Atomic ma μu	ass
107	66	173	Dy	х	-43940#	400#	8027#	2#	β-	5410#	500#	172 952830#	430#
106	67		Но	X	-49350#	300#	8054#	2#	β^-	4300#	360#	172 947020#	320#
105	68		Er	X	-53650#	200#	8074#	1#	β^-	2600#	200#	172 942400#	210#
104	69		Tm	p2n	-56256	4	8084.463	0.025	β^-	1295	4	172 939607	5
103	70		Yb	F	-57551.225	0.011	8087.427	a	P	*	•	172 938216.215	0.012
102	71		Lu		-56880.9	1.6	8079.030	0.009	β^+	670.3	1.6	172 938935.8	1.7
101	72		Hf	x	-55412	28	8066.02	0.16	β^+	1469	28	172 940510	30
100	73		Ta	X	-52397	28	8044.06	0.16	β^+	3020	40	172 943750	30
99	74		W	X	-48727	28	8018.33	0.16	β^+	3670	40	172 947690	30
98	75		Re	X	-43554	28	7983.91	0.16	β^+	5170	40	172 953240	30
97	76		Os	••	-37438	15	7944.03	0.09	β^+	6120	30	172 959808	16
96	77		Ir		-30268	11	7898.07	0.06	β^+	7170	19	172 967505	12
95	78		Pt	$-\alpha$	-21940	60	7845.4	0.3	β^+	8330	60	172 976440	60
94	79		Au	$+\alpha$	-12832	23	7788.24	0.13	β^+	9110	60	172 986224	24
93	80		Hg	$-\alpha$	-2710#	200#	7725#	1#	β^+	10120#	200#	172 997090#	210#
100									•				
108	66	174	Dy	X	-41370#	500#	8012#	3#	β^-	4320#	590#	173 955590#	540#
107	67		Ho	X	-45690#	300#	8033#	2#	β^-	6260#	420#	173 950950#	320#
106	68		Er	X	-51950#	300#	8064#	2#	β^-	1920#	300#	173 944230#	320#
105	69		Tm	+	-53860	40	8070.64	0.26	β^-	3080	40	173 942170	50
104	70		Yb		-56944.512	0.011	8083.847	a	β^-	-1374.3	1.6	173 938867.548	0.012
103	71		Lu		-55570.2	1.6	8071.453	0.009	eta^-	274.3	2.2	173 940342.9	1.7
102	72		Hf		-55844.5	2.3	8068.533	0.013	0.1	*		173 940048.5	2.4
101	73		Ta	X	-51741	28	8040.45	0.16	β^+	4104	28	173 944450	30
100	74		W	X	-50227	28	8027.26	0.16	β^+	1510	40	173 946080	30
99	75		Re	X	-43673	28	7985.09	0.16	β^+	6550	40	173 953120	30
98	76		Os		-39995	10	7959.46	0.06	β^+	3678	30	173 957063	11
97	77		Ir		-30863	24	7902.48	0.14	β^+	9132	26	173 966867	26
96	78		Pt	$-\alpha$	-25318	10	7866.12	0.06	β^+	5545	26	173 972820	11
95	79		Au	$-\alpha$	-14240#	90#	7798#	1#	β^+	11080#	90#	173 984720#	100#
94	80		Hg	$-\alpha$	-6641	19	7749.78	0.11	eta^+	7590#	90#	173 992871	21
108	67	175	Но	X	-43200#	400#	8019#	2#	eta^-	5450#	570#	174 953620#	430#
107	68		Er	X	-48650#	400#	8045#	2#	β^-	3660#	400#	174 947770#	430#
106	69		Tm	+	-52310	50	8061.77	0.29	β^-	2380	50	174 943840	50
105	70		Yb		-54695.55	0.07	8070.925	0.001	β^-	470.0	1.2	174 941281.91	0.08
104	71		Lu		-55165.6	1.2	8069.140	0.007		*		174 940777.3	1.3
103	72		Hf		-54481.7	2.3	8060.761	0.013	eta^+	683.9	2.0	174 941511.5	2.4
102	73		Ta	X	-52409	28	8044.44	0.16	$oldsymbol{eta}^+$	2073	28	174 943740	30
101	74		W	X	-49633	28	8024.11	0.16	eta^+	2780	40	174 946720	30
100	75		Re	X	-45288	28	7994.82	0.16	eta^+	4340	40	174 951380	30
99	76		Os		-40105	12	7960.73	0.07	β^+	5180	30	174 956945	13
98	77		Ir		-33395	12	7917.91	0.07	eta^+	6711	17	174 964150	13
97	78		Pt		-25713	18	7869.55	0.10	β^+	7681	22	174 972395	20
96	79		Au	$-\alpha$	-17400	40	7817.59	0.22	eta^+	8310	40	174 981320	40
95	80		Hg	$-\alpha$	-7970	70	7759.2	0.4	eta^+	9430	80	174 991440	80
109	67	176	Но	x	-39290#	500#	7997#	3#	eta^-	7340#	640#	175 957820#	540#
108	68		Er	X	-46630#	400#	8034#	2#	β^-	2740#	410#	175 949940#	430#
107	69		Tm	+	-49370	100	8045.1	0.6	eta^-	4120	100	175 947000	110
106	70		Yb		-53491.314	0.015	8064.085	a	$m{eta}^-$	-109.1	1.2	175 942574.709	0.016
105	71		Lu		-53382.2	1.2	8059.020	0.007	β^-	1194.1	0.9	175 942691.8	1.3
104	72		Hf		-54576.3	1.5	8061.359	0.008	,	*		175 941409.9	1.6
103	73		Ta	X	-51370	30	8038.67	0.17	eta^+	3210	30	175 944860	30
102	74		W	X	-50642	28	8030.11	0.16	$m{eta}^+$	720	40	175 945630	30
101	75		Re	X	-45063	28	7993.97	0.16	β^+	5580	40	175 951620	30
100	76		Os	X	-42098	28	7972.68	0.16	β^+	2960	40	175 954810	30
99	77		Ir		-33878	17	7921.53	0.10	β^+	8220	30	175 963630	18
98	78		Pt		-28934	13	7888.99	0.07	β^+	4944	21	175 968938	14
97	79		Au	$-\alpha$	-18520	30	7825.38	0.19	β^+	10410	40	175 980120	40
96	80		Hg		-11785	11	7782.67	0.06	β^+	6740	30	175 987348	12
95	81		Tl	-p	580	80	7708.0	0.4	β^+	12370	80	176 000620	80
,,,				r	- 00				ρ.		- 0		

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV			ng energy leon (keV)		Beta-decay (keV		Atomic ma μu	ass
					(KC V)	, 	per nuc	icon (ke v)		(RC)		μα	
109	68	177	Er	x	-42860#	500#	8013#	3#	β^-	4610#	590#	176 953990#	540#
108	69		Tm	X	-47470#	300#	8035#	2#	β^-	3520#	300#	176 949040#	320#
107	70		Yb	-n	-50986.40	0.22	8049.973	0.001	β^-	1397.4	1.2	176 945263.85	0.24
106	71		Lu		-52383.8	1.2	8053.448	0.007	β^-	496.8	0.8	176 943763.7	1.3
105	72		Hf		-52880.6	1.4	8051.835	0.008	•	*		176 943230.3	1.5
104	73		Ta	_	-51715	3	8040.827	0.019	$oldsymbol{eta}^+$	1166	3	176 944482	4
103	74		W	X	-49702	28	8025.04	0.16	$m{eta}^+$	2013	28	176 946640	30
102	75		Re	X	-46269	28	8001.22	0.16	β^+	3430	40	176 950330	30
101	76		Os	$+\alpha$	-41956	15	7972.44	0.08	eta^+	4310	30	176 954958	16
100	77		Ir	X	-36047	20	7934.63	0.11	eta^+	5909	25	176 961302	21
99	78		Pt		-29370	15	7892.49	0.08	$oldsymbol{eta}^+$	6677	25	176 968470	16
98	79		Au		-21545	10	7843.86	0.06	β^+	7825	18	176 976870	11
97	80		Hg	$-\alpha$	-12780	80	7789.9	0.4	β^+	8760	80	176 986280	80
96	81		Tl	IT	-3341	22	7732.17	0.12	$m{eta}^+$	9440	80	176 996414	23
110	68	178	Er	x	-40260#	600#	7999#	3#	β^-	3860#	720#	177 956780#	640#
109	69		Tm	X	-44120#	400#	8016#	2#	β^-	5580#	400#	177 952640#	430#
108	70		Yb	-nn	-49695	10	8042.84	0.06	β^-	642	10	177 946650	11
107	71		Lu		-50337.8	2.3	8042.054	0.013	$oldsymbol{eta}^-$	2097.5	2.1	177 945960.2	2.4
106	72		Hf		-52435.2	1.4	8049.442	0.008	0.1	*	5 0	177 943708.5	1.5
105	73		Ta	IT	-50600#	50#	8035#	0#	β^+	1840#	50#	177 945680#	60#
104	74		W	_	-50407	15	8029.26	0.09	β^+	190#	50#	177 945886	16
103	75		Re	X	-45653	28	7998.16	0.16	$eta^+ eta^+$	4750	30	177 950990	30
102 101	76 77		Os		-43544 -36252	14 20	7981.91 7936.55	0.08 0.11	β^+	2110 7292	30 24	177 953253 177 961082	15 21
	78		Ir Pt	X	-30232 -31998	10	7936.33	0.11	β^+	4254	22	177 961082	
100 99	78 79		Pt Au		-31998 -22304	10	7908.25 7849.40	0.06	β^+	9694	22 14	177 976056	11 11
99 98	80		Hg	$-\alpha$	-22304 -16316	10	7849.40 7811.36	0.06	β^+	5988	15	177 982484	12
98 97	81		Tl	$-\alpha$ $-\alpha$	-4790#	90#	7742#	1#	β^+	11530#	90#	177 994860#	100#
96	82		Pb	$-\alpha$	3574	24	7690.83	0.13	$oldsymbol{eta}^+$	8370#	90#	178 003837	26
110	69	179	Tm	X	-41600#	500#	8002#	3#	eta^-	4940#	540#	178 955340#	540#
109	70	1//	Yb	X	-46540#	200#	8025#	1#	β^-	2520#	200#	178 950040#	210#
108	71		Lu	••	-49059	5	8035.073	0.029	β^-	1404	5	178 947333	6
107	72		Hf		-50462.9	1.4	8038.546	0.008	Ρ	*	Ü	178 945825.8	1.5
106	73		Ta		-50357.3	1.5	8033.585	0.008	β^+	105.6	0.4	178 945939.2	1.6
105	74		W		-49295	15	8023.28	0.08	β^+	1062	15	178 947080	16
104	75		Re		-46584	25	8003.77	0.14	β^+	2711	27	178 949990	26
103	76		Os		-43019	17	7979.48	0.09	β^+	3565	30	178 953817	18
102	77		Ir		-38082	10	7947.52	0.05	$m{eta}^+$	4938	19	178 959118	10
101	78		Pt		-32268	8	7910.68	0.04	$oldsymbol{eta}^+$	5814	13	178 965359	9
100	79		Au		-24989	12	7865.64	0.07	β^+	7280	14	178 973174	13
99	80		Hg		-16928	27	7816.24	0.15	$m{eta}^+$	8060	30	178 981827	29
98	81		Tl	$-\alpha$	-8270	40	7763.49	0.22	$oldsymbol{eta}^+$	8660	50	178 991120	40
97	82		Pb	$-\alpha$	2050	80	7701.5	0.4	eta^+	10320	80	179 002200	80
111	69	180	Tm	x	-37920#	500#	7982#	3#	$oldsymbol{eta}^-$	6680#	590#	179 959290#	540#
110	70		Yb	X	-44600#	300#	8015#	2#	eta^-	2080#	310#	179 952120#	320#
109	71		Lu	+	-46680	70	8022.0	0.4	eta^-	3100	70	179 949890	80
108	72		Hf		-49779.3	1.4	8034.930	0.008	eta^-	-846.5	2.3	179 946559.7	1.5
107	73		Ta	+n	-48932.9	1.9	8025.881	0.011	eta^-	703.2	2.3	179 947468.4	2.1
106	74		W		-49636.1	1.4	8025.442	0.008	0.1	*	2.4	179 946713.4	1.5
105	75		Re	X	-45837	21	7999.99	0.12	β^+	3799	21	179 950792	23
104	76		Os		-44358	16	7987.43	0.09	β^+	1480	27	179 952380	18
103	77		Ir	X	-37978	22	7947.63	0.12	β^+	6380	27	179 959229	23
102	78		Pt	$+\alpha$	-34436	11	7923.61	0.06	β^+	3542	24	179 963032	12
101	79		Au		-25626	5	7870.318	0.027	β^+	8810	12	179 972490	5
100	80		Hg		-20250	13	7836.11	0.07	β^+	5375	14	179 978260	14
99	81		Tl	$-\alpha$	-9390 1041	60	7771.4	0.3	β^+	10860	60	179 989920	60
98	82		Pb	$-\alpha$	-1941	12	7725.70	0.07	$oldsymbol{eta}^+$	7450	60	179 997916	13

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV	25	Atomic ma μu	ass
112	69	181	Tm	Х	-35170#	600#	7967#	3#	β^-	5920#	670#	180 962240#	640#
111	70		Yb	X	-41090#	300#	7996#	2#	β^-	3710#	320#	180 955890#	320#
110	71		Lu	X	-44800	130	8011.9	0.7	β^-	2610	130	180 951910	140
109	72		Hf	-n	-47402.8	1.4	8022.002	0.008	β^-	1035.5	1.8	180 949111.0	1.5
108	73		Ta		-48438.3	1.4	8023.400	0.008	r	*		180 947999.3	1.5
107	74		W	-n	-48233.8	1.4	8017.948	0.008	eta^+	204.5	1.9	180 948218.9	1.6
106	75		Re	4n	-46517	13	8004.14	0.07	β^+	1716	13	180 950062	13
105	76		Os		-43550	25	7983.43	0.14	β^+	2967	28	180 953247	27
104	77		Ir	$+\alpha$	-39463	5	7956.523	0.029	β^+	4087	26	180 957635	6
103	78		Pt	,	-34382	14	7924.13	0.08	β^+	5082	15	180 963090	15
102	79		Au	$-\alpha$	-27871	20	7883.84	0.11	β^+	6510	24	180 970079	21
101	80		Hg	0.0	-20661	15	7839.68	0.08	β^+	7210	25	180 977819	17
100	81		Tl		-12799	9	7791.92	0.05	β^+	7862	18	180 986260	10
99	82		Pb	$-\alpha$	-3120	80	7734.1	0.4	$oldsymbol{eta}^+$	9680	80	180 996650	80
112	70	182	Yb	X	-38820#	400#	7984#	2#	β^-	3060#	450#	181 958330#	430#
111	71	102	Lu	X	-41880#	200#	7996#	1#	β^-	4170#	200#	181 955040#	210#
110	72		Hf	-nn	-46050	6	8014.84	0.03	β^-	380	6	181 950564	7
109	73		Ta		-46429.9	1.4	8012.628	0.008	β^-	1816.1	1.4	181 950155.4	1.5
108	74		W		-48246.1	0.7	8018.308	0.004	Ρ	*	1	181 948205.7	0.8
107	75		Re	IT	-45450	100	7998.6	0.6	β^+	2800	100	181 951210	110
106	76		Os	**	-44609	22	7989.73	0.12	β^+	840	100	181 952110	23
105	77		Ir		-39052	21	7954.89	0.12	β^+	5560	30	181 958076	23
104	78		Pt		-36168	13	7934.75	0.07	β^+	2883	25	181 961172	14
103	79		Au	$-\alpha$	-28301	20	7887.23	0.11	β^+	7868	24	181 969618	22
102	80		Hg	a	-23577	10	7856.97	0.05	β^+	4724	23	181 974689	11
101	81		Tl	$-\alpha$	-13328	12	7796.36	0.07	β^+	10249	15	181 985692	13
100	82		Pb	$-\alpha$	-6825	12	7756.33	0.07	$oldsymbol{eta}^+$	6503	17	181 992673	13
113	70	183	Yb	X	-35100#	400#	7964#	2#	eta^-	4620#	410#	182 962320#	430#
112	71	100	Lu	X	-39720	80	7984.8	0.4	β^-	3570	90	182 957360	90
111	72		Hf	+	-43280	30	8000.03	0.16	β^-	2010	30	182 953530	30
110	73		Ta	-n	-45292.8	1.4	8006.735	0.008	β^-	1072.8	1.4	182 951376.2	1.5
109	74		W		-46365.6	0.7	8008.322	0.004	Ρ	*	1	182 950224.5	0.8
108	75		Re	_	-45810	8	8001.01	0.04	$oldsymbol{eta}^+$	556	8	182 950821	9
107	76		Os		-43660	50	7985.01	0.27	β^+	2150	50	182 953120	50
106	77		Ir		-40203	24	7961.82	0.13	β^+	3460	50	182 956840	26
105	78		Pt		-35772	16	7933.34	0.08	β^+	4431	29	182 961597	17
104	79		Au		-30191	9	7898.56	0.05	β^+	5581	18	182 967588	10
103	80		Hg		-23805	7	7859.39	0.04	β^+	6387	12	182 974445	8
102	81		Tl		-16587	9	7815.67	0.05	β^+	7217	12	182 982193	10
101	82		Pb	$-\alpha$	-7575	28	7762.15	0.15	$oldsymbol{eta}^+$	9012	30	182 991870	30
114	70	184	Yb	x	-32540#	500#	7951#	3#	eta^-	3870#	590#	183 965070#	540#
113	71	101	Lu	X	-36410#	300#	7967#	2#	β^-	5090#	300#	183 960910#	320#
112	72		Hf	+	-41500	40	7990.72	0.22	β^-	1340	30	183 955450	40
111	73		Ta	+	-42839	26	7993.75	0.14	β^-	2866	26	183 954010	28
110	74		W	·	-45705.4	0.7	8005.077	0.004	β^-	-1486	4	183 950933.3	0.8
109	75		Re		-44220	4	7992.750	0.004	β^-	33	4	183 952528	5
108	76		Os		-44252.5	0.8	7988.677	0.025	۲	*		183 952492.9	0.9
103	77		Ir	x	-39611	28	7959.20	0.003	eta^+	4642	28	183 957480	30
106	78		Pt	Λ	-37334	16	7942.57	0.08	$^{oldsymbol{eta}^+}_{oldsymbol{eta}^+}$	2280	30	183 959920	17
105	79		Au	$-\alpha$	-30319	22	7900.19	0.08	eta^+	7016	27	183 967452	24
103	80		Hg	− u	-26349	10	7874.37	0.12	β^+	3970	24	183 971713	11
104	81		пg Tl		-26349	10	7818.67	0.05	β^+	9466	24 14	183 981875	11
103	82		Pb		-11052	13	7782.73	0.03	β^+	5832	16	183 988136	14
102	83		Bi	$-\alpha$	1060	80	7712.6	0.07	β^+	12110	80	184 001140	80
101	0.5		DI	–α	1000	00	1112.0	U. T	P.	12110	30	104 001140	80

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

								, 1					
N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay er (keV)	nergy	Atomic m. μu	ass
115	70	105	371-		20500#	500#	7020#	24	0-	5200#	500#	194.060400#	5 40#
115	70	185	Yb	X	-28500#	500#	7929#	3#	β^-	5390#	590#	184 969400#	540#
114	71		Lu	X	-33890#	300#	7954#	2#	β^-	4430#	310#	184 963620#	320#
113	72		Hf	X	-38320	60	7974.0	0.3	β^-	3070	70	184 958860	70
112	73		Ta	+	-41394	14	7986.36	0.08	β^-	1994	14	184 955561	15
111	74		W		-43387.8	0.7	7992.907	0.004	$oldsymbol{eta}^-$	431.2	0.7	184 953421.3	0.8
110	75		Re		-43819.0	0.8	7991.009	0.004		*		184 952958.3	0.9
109	76		Os		-42805.9	0.8	7981.304	0.004	β^+	1013.1	0.4	184 954046.0	0.9
108	77		Ir	X	-40336	28	7963.72	0.15	$oldsymbol{eta}^+$	2470	28	184 956700	30
107	78		Pt		-36688	26	7939.78	0.14	eta^+	3650	40	184 960614	28
106	79		Au	X	-31858.1	2.6	7909.440	0.014	eta^+	4830	26	184 965798.9	2.8
105	80		Hg		-26184	14	7874.54	0.07	$oldsymbol{eta}^+$	5674	14	184 971891	15
104	81		T1	IT	-19758	21	7835.57	0.11	β^+	6426	25	184 978789	22
103	82		Pb	$-\alpha$	-11541	16	7786.93	0.09	β^+	8217	26	184 987610	17
102	83		Bi	IT	-2240#	80#	7732#	0#	$oldsymbol{eta}^+$	9310#	80#	184 997600#	90#
115	71	186	Lu	x	-30210#	400#	7935#	2#	eta^-	6210#	400#	185 967570#	430#
114	72		Hf	X	-36420	50	7964.30	0.28	β^-	2180	80	185 960900	60
113	73		Ta	+	-38610	60	7971.8	0.3	β^-	3900	60	185 958550	60
112	74		W		-42508.5	1.2	7988.601	0.007	'β-	-581.4	1.2	185 954365.2	1.3
111	75		Re		-41927.1	0.8	7981.269	0.004	β^-	1072.9	0.8	185 954989.4	0.9
110	76		Os		-42999.9	0.8	7982.831	0.004	-	*		185 953837.7	0.8
109	77		Ir	X	-39172	17	7958.05	0.09	β^+	3828	17	185 957947	18
108	78		Pt	A	-37864	22	7946.81	0.12	β^+	1308	27	185 959351	23
107	79		Au		-31715	21	7909.54	0.12	β^+	6150	30	185 965953	23
106	80				-28539	12	7888.26	0.06	β^+	3176	24	185 969362	13
			Hg						β^+				24
105	81		Tl	X	-19887	22	7837.54	0.12	β^+	8652	25	185 978651	
104	82		Pb	$-\alpha$	-14682	11	7805.35	0.06		5205	25	185 984238	12
103	83		Bi	$-\alpha$	-3146	17	7739.12	0.09	β^+	11536	20	185 996622	18
102	84		Po	$-\alpha$	4101	18	7695.95	0.10	eta^+	7247	25	186 004403	20
116	71	187	Lu	X	-27580#	400#	7922#	2#	β^-	5240#	500#	186 970390#	430#
115	72		Hf	X	-32820#	300#	7946#	2#	β^-	4080#	300#	186 964770#	320#
114	73		Ta	X	-36900	60	7963.21	0.30	β^-	3010	60	186 960390	60
113	74		W	A	-39904.0	1.2	7975.116	0.006	β^-	1312.5	1.1	186 957161.3	1.3
112	75		Re		-41216.5	0.7	7977.951	0.004	β^-	2.467	0.002	186 955752.3	0.8
111	76		Os		-41218.9	0.7	7973.780	0.004	Р	*	0.002	186 955749.6	0.8
110	77		Ir	X	-39549	28	7960.67	0.004	β^+	1670	28	186 957540	30
109	78		Pt	Α.		24	7941.17	0.13	β^+	2860	40	186 960617	26
					-36685		7941.17		β^+				
108	79		Au		-33028	22		0.12	β^+	3657	27	186 964543	24
107	80		Hg		-28118	14	7886.99	0.07		4910	26	186 969814	15
106	81		Tl		-22445	8	7852.46	0.04	β^+	5673	16	186 975905	9
105	82		Pb		-14987	5	7808.400	0.027	β^+	7458	10	186 983911	5
104	83		Bi	$-\alpha$	-6383	10	7758.21	0.05	β^+	8604	11	186 993147	11
103	84		Po	$-\alpha$	2830	30	7704.76	0.17	eta^+	9210	30	187 003040	30
117	71	188	Lu	x	-23790#	500#	7902#	3#	β^-	7090#	590#	187 974460#	540#
116	72		Hf	X	-30880#	300#	7936#	2#	β^-	2730#	300#	187 966850#	320#
115	73		Ta	X	-33610	50	7946.32	0.29	eta^-	5060	60	187 963920	60
114	74		W	+	-38668	3	7969.052	0.016	eta^-	349	3	187 958488	3
113	75		Re	-n	-39016.8	0.7	7966.747	0.004	eta^-	2120.42	0.15	187 958113.7	0.8
112	76		Os		-41137.2	0.7	7973.864	0.004	•	*		187 955837.4	0.8
111	77		Ir		-38345	9	7954.85	0.05	$oldsymbol{eta}^+$	2792	9	187 958835	10
110	78		Pt		-37821	5	7947.902	0.028	β^+	524	9	187 959398	6
109	79		Au	X	-32371.3	2.7	7914.753	0.014	β^+	5450	6	187 965248.0	2.9
108	80		Hg	Α.	-30202	12	7899.05	0.07	β^+	2169	13	187 967577	13
107	81		Tl	X	-22336	30	7853.05	0.16	β^+	7870	30	187 976020	30
106	82		Pb	$-\alpha$	-17815	11	7824.84	0.16	β^+	4520	30	187 980875	11
							7764.19		β^+				
105	83		Bi	$-\alpha$	-7195 -544	11		0.06	β^+	10621	15 23	187 992276	12
104	84		Po	$-\alpha$	-344	20	7724.65	0.11	p.	6650	23	187 999416	21

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy leon (keV)		Beta-decay (keV	25	Atomic ma μu	ass
117	72	189	Hf	Х	-27160#	300#	7917#	2#	β^-	4670#	360#	188 970840#	320#
116	73		Ta	X	-31830#	200#	7938#	1#	β^-	3790#	200#	188 965830#	210#
115	74		W	X	-35620	40	7953.45	0.21	β^-	2360	40	188 961760	40
114	75		Re	+p	-37979	8	7961.81	0.04	β^-	1008	8	188 959228	9
113	76		Os	r	-38986.7	0.7	7963.002	0.004	,	*		188 958146.0	0.7
112	77		Ir		-38450	13	7956.02	0.07	eta^+	537	13	188 958723	14
111	78		Pt		-36469	10	7941.40	0.05	β^+	1980	14	188 960849	11
110	79		Au	X	-33582	20	7921.99	0.11	β^+	2887	22	188 963948	22
109	80		Hg		-29630	30	7896.92	0.17	β^+	3960	40	188 968190	30
108	81		Tl		-24616	8	7866.27	0.04	β^+	5010	30	188 973574	9
107	82		Pb		-17844	14	7826.30	0.07	β^+	6772	16	188 980844	15
106	83		Bi	$-\alpha$	-10065	21	7781.00	0.11	β^+	7779	25	188 989195	22
105	84		Po	$-\alpha$	-1422	22	7731.13	0.12	$m{eta}^+$	8640	30	188 998473	24
118	72	190	Hf	X	-25030#	400#	7907#	2#	$oldsymbol{eta}^-$	3480#	450#	189 973130#	430#
117	73		Ta	X	-28510#	200#	7921#	1#	$oldsymbol{eta}^-$	5870#	200#	189 969390#	210#
116	74		W		-34380	40	7947.57	0.21	β^-	1250	60	189 963090	40
115	75		Re		-35640	70	7950.1	0.4	β^-	3070	70	189 961740	80
114	76		Os		-38707.8	0.6	7962.104	0.003	β^-	-1954.2	1.2	189 958445.5	0.7
113	77		Ir	+n	-36753.5	1.4	7947.701	0.007	$oldsymbol{eta}^-$	552.9 *	1.3	189 960543.4	1.5
112	78		Pt		-37306.5	0.7	7946.493	0.003	0+		4	189 959949.9	0.7
111	79 80		Au	X	-32834	3	7918.834	0.018	$eta^+ eta^+$	4473	4	189 964752	4
110 109	80 81		Hg Tl	1.00	-31371 -24372	16 8	7907.02 7866.06	0.08 0.04	β^+	1463 6999	16 18	189 966322 189 973836	17 9
109	82		Pb	$^{+lpha}_{-lpha}$	-24372 -20417	13	7841.13	0.04	β^+	3955	15	189 978082	13
107	83		Bi	$-\alpha$	-10600	23	7785.34	0.07	β^+	9817	26	189 988621	24
106	84		Po	$-\alpha$	-4564	13	7749.46	0.12	$oldsymbol{eta}^+$	6036	26	189 995101	14
118	73	191	Ta	X	-26490#	300#	7911#	2#	β^-	4680#	300#	190 971560#	320#
117	74		W	X	-31180	40	7931.44	0.22	β^-	3170	40	190 966530	50
116	75		Re	+p	-34350	10	7943.96	0.05	β^-	2045	10	190 963123	11
115	76		Os		-36395.2	0.7	7950.568	0.003	eta^-	313.6	1.1	190 960928.2	0.7
114	77		Ir		-36708.8	1.3	7948.113	0.007		*		190 960591.5	1.4
113	78		Pt		-35698	4	7938.727	0.022	eta^+	1011	4	190 961676	4
112	79		Au		-33798	5	7924.681	0.026	$oldsymbol{eta}^+$	1900	6	190 963716	5
111	80		Hg		-30592	22	7903.80	0.12	β^+	3206	23	190 967158	24
110	81		Tl	$+\alpha$	-26283	7	7877.14	0.04	β^+	4309	23	190 971784	8
109	82		Pb	X	-20230	40	7841.36	0.20	β^+	6050	40	190 978280	40
108	83		Bi		-13239	7	7800.66	0.04	β^+	6990	40	190 985787	8
107	84		Po		-5069	7	7753.79	0.04	β^+	8171	10	190 994558	8
106	85		At	$-\alpha$	3864	16	7702.92	0.08	eta^+	8933	18	191 004148	17
119	73	192	Ta	X	-23060#	400#	7894#	2#	β^-	6590#	450#	191 975240#	430#
118	74 75		W Do	X	-29650# 31500	200#	7924# 7930.2	1#	β^-	1940# 4290	210# 70	191 968170#	210#
117			Re	X	-31590	70		0.4	β^-			191 966090	80
116 115	76 77		Os		-35882.2 -34835.6	2.3 1.3	7948.525 7938.999	0.012 0.007	$eta^- eta^-$	-1046.6 1452.9	2.4 2.3	191 961478.9 191 962602.5	2.5 1.4
113	78		Ir Pt		-36288.5	2.6	7938.999	0.007	ρ	1432.9	2.3	191 961042.7	2.8
113	79		Au	_	-30288.3	16	7920.10	0.013	eta^+	3516	16	191 964818	17
112	80		Hg	X	-32012	16	7912.07	0.08	$oldsymbol{eta}^+$	761	22	191 965634	17
111	81		Tl	X	-25870	30	7876.02	0.16	β^+	6140	40	191 972230	30
110	82		Pb	$-\alpha$	-22556	13	7854.67	0.07	β^+	3320	30	191 975785	14
109	83		Bi	$-\alpha$	-13530	30	7803.61	0.16	β^+	9020	30	191 985470	30
108	84		Po	$-\alpha$	-8071	11	7771.08	0.06	β^+	5460	30	191 991336	12
	85		At	$-\alpha$	2926	28	7709.73	0.15	β^+	11000	30	192 003141	30

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

								, 1					
N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV)		Atomic m. μu	ass
120	73	193	Ta	x	-20870#	400#	7884#	2#	β^-	5420#	450#	192 977600#	430#
119	74	173	W	X	-26290#	200#	7904#	1#	β^-	3950#	200#	192 971780#	210#
118	75		Re	X	-30230	40	7923.94	0.20	β^-	3160	40	192 967550	40
117	76		Os	А	-33394.3	2.3	7936.270	0.20	eta^-	1141.9	2.4	192 964149.8	2.5
116	77		Ir		-34536.2	1.3	7938.133	0.012	ρ	*	2.4	192 962923.8	1.4
	78		Pt		-34479.6	1.3	7933.786	0.007	$oldsymbol{eta}^+$	56.63	0.20	192 962923.8	1.5
115	78 79								β^+		0.30		
114			Au		-33405	9	7924.16	0.04		1075	9	192 964138	9
113	80		Hg		-31062	16	7907.97	0.08	β^+	2343	14	192 966653	17
112	81		Tl	X	-27477	7	7885.34	0.03	β^+	3585	17	192 970502	7
111	82		Pb	X	-22190	50	7853.92	0.26	β^+	5280	50	192 976170	50
110	83		Bi		-15885	8	7817.17	0.04	β^+	6310	50	192 982947	8
109	84		Po	$-\alpha$	-8325	15	7773.95	0.08	β^+	7559	16	192 991062	16
108	85		At	$-\alpha$	-67	22	7727.11	0.11	β^+	8258	26	192 999928	23
107	86		Rn	$-\alpha$	9043	25	7675.85	0.13	eta^+	9110	30	193 009708	27
121	73	194	Ta	x	-17300#	500#	7866#	3#	β^-	7230#	590#	193 981430#	540#
120	74		W	X	-24530#	300#	7899#	2#	eta^-	2710#	360#	193 973670#	320#
119	75		Re	X	-27240#	200#	7909#	1#	eta^-	5200#	200#	193 970760#	210#
118	76		Os	+	-32435.1	2.4	7932.022	0.012	$oldsymbol{eta}^-$	96.6	2.0	193 965179.5	2.6
117	77		Ir	-n	-32531.7	1.3	7928.487	0.007	eta^-	2228.4	1.3	193 965075.8	1.4
116	78		Pt		-34760.1	0.5	7935.941	0.003		*		193 962683.5	0.5
115	79		Au	+3n	-32211.9	2.1	7918.774	0.011	eta^+	2548.1	2.1	193 965419.1	2.3
114	80		Hg	X	-32183.9	2.9	7914.597	0.015	$oldsymbol{eta}^+$	28	4	193 965449	3
113	81		Tl	X	-26937	14	7883.52	0.07	eta^+	5246	14	193 971081	15
112	82		Pb		-24208	17	7865.42	0.09	eta^+	2730	22	193 974012	19
111	83		Bi	$+\alpha$	-16029	6	7819.22	0.03	eta^+	8179	18	193 982792	7
110	84		Po	$-\alpha$	-11005	13	7789.29	0.07	eta^+	5024	14	193 988186	14
109	85		At	$-\alpha$	-720	25	7732.25	0.13	eta^+	10284	28	193 999227	27
108	86		Rn	$-\alpha$	5723	17	7695.00	0.09	eta^+	6440	30	194 006144	18
121	74	195	W	X	-21010#	300#	7882#	2#	$oldsymbol{eta}^-$	4570#	420#	194 977450#	320#
120	75		Re	X	-25580#	300#	7902#	2#	$oldsymbol{eta}^-$	3930#	300#	194 972540#	320#
119	76		Os	X	-29510	60	7917.74	0.29	eta^-	2180	60	194 968320	60
118	77		Ir	-n	-31692.3	1.3	7924.915	0.007	β^-	1101.6	1.3	194 965977.0	1.4
117	78		Pt		-32793.8	0.5	7926.552	0.003		*		194 964794.4	0.5
116	79		Au		-32567.0	1.1	7921.377	0.006	$oldsymbol{eta}^+$	226.8	1.0	194 965037.9	1.2
115	80		Hg		-31013	23	7909.40	0.12	$m{eta}^+$	1554	23	194 966706	25
114	81		Tl		-28155	11	7890.73	0.06	β^+	2858	26	194 969774	12
113	82		Pb		-23708	18	7863.91	0.09	β^+	4448	21	194 974549	19
112	83		Bi		-18026	5	7830.757	0.027	β^+	5682	19	194 980649	6
111	84		Po	$-\alpha$	-11060	40	7791.01	0.19	β^+	6970	40	194 988130	40
110	85		At	$-\alpha$	-3470	10	7748.09	0.05	β^+	7590	40	194 996274	10
109	86		Rn	$-\alpha$	5050	50	7700.38	0.26	$oldsymbol{eta}^+$	8520	50	195 005420	50
122	74	196	W	x	-18880#	400#	7872#	2#	eta^-	3660#	500#	195 979730#	430#
121	75		Re	X	-22540#	300#	7887#	2#	β^-	5740#	300#	195 975800#	320#
120	76		Os	+pp	-28280	40	7912.23	0.20	β^-	1160	60	195 969640	40
119	77		Ir	+	-29440	40	7914.15	0.20	β^-	3210	40	195 968400	40
118	78		Pt		-32644.5	0.5	7926.529	0.003	eta^-	-1505.8	3.0	195 964954.7	0.5
117	79		Au		-31138.7	3.0	7914.855	0.015	$m{eta}^-$	687	3	195 966571	3
116	80		Hg		-31825.9	2.9	7914.369	0.015		*		195 965833	3
115	81		Τĺ	X	-27497	12	7888.29	0.06	eta^+	4329	12	195 970481	13
114	82		Pb		-25348	8	7873.34	0.04	β^+	2148	14	195 972787	8
113	83		Bi	X	-18009	24	7831.90	0.12	β^+	7339	26	195 980667	26
112	84		Po	$-\alpha$	-13473	14	7804.77	0.07	β^+	4536	28	195 985536	15
111	85		At	$-\alpha$	-3910	30	7752.01	0.15	$m{eta}^+$	9560	30	195 995800	30
110	86		Rn	$-\alpha$	1971	14	7717.99	0.07	β^+	5890	30	196 002116	15
						-			-				

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

							`					<u>*</u>	
N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
123	74	197	W	х	-15140#	400#	7854#	2#	β^-	5360#	500#	196 983750#	430#
122	75	177	Re	X	-20500#	300#	7878#	2#	$oldsymbol{eta}^-$	4810#	360#	196 977990#	320#
121	76		Os	X	-25310#	200#	7898#	2# 1#	$oldsymbol{eta}^-$	2960#	200#	196 972830#	210#
120	77		Ir	+p	-28264	20	7909.00	0.10	β^-	2156	20	196 969657	22
119	78		Pt	'P	-30419.7	0.5	7915.971	0.003	β^-	720.0	0.5	196 967343.1	0.6
118	79		Au		-31139.7	0.5	7915.654	0.003	P	*	0.0	196 966570.1	0.6
117	80		Hg		-30540	3	7908.640	0.016	$oldsymbol{eta}^+$	600	3	196 967214	3
116	81		Tl	$+\alpha$	-28342	16	7893.51	0.08	β^+	2199	17	196 969574	18
115	82		Pb	,	-24745	5	7871.282	0.024	β^+	3596	17	196 973435	5
114	83		Bi	$+\alpha$	-19687	8	7841.63	0.04	β^+	5058	10	196 978865	9
113	84		Po	$-\alpha$	-13360	50	7805.53	0.25	β^+	6330	50	196 985660	50
112	85		At		-6355	8	7766.02	0.04	β^+	7000	50	196 993177	9
111	86		Rn	$-\alpha$	1510	16	7722.12	0.08	$^{\prime}\!eta^{+}$	7866	18	197 001621	17
110	87		Fr	$-\alpha$	10250	50	7673.76	0.28	$m{eta}^+$	8740	60	197 011010	60
123	75	198	Re	x	-17140#	400#	7862#	2#	β^-	6700#	450#	197 981600#	430#
122	76	170	Os	X	-23840#	200#	7891#	2# 1#	β^-	1980#	280#	197 974410#	210#
121	77		Ir	X	-25820#	200#	7897#	1#	β^-	4080#	200#	197 972280#	210#
120	78		Pt	Λ	-29904.0	2.1	7914.150	0.011	eta^-	-323.2	2.1	197 967896.7	2.3
119	79		Au		-29580.8	0.5	7908.567	0.003	β^-	1373.5	0.5	197 968243.7	0.6
118	80		Hg		-30954.3	0.5	7911.552	0.003	Р	*	0.5	197 966769.2	0.5
117	81		Tl	X	-27529	8	7890.30	0.002	$oldsymbol{eta}^+$	3426	8	197 970447	8
116	82		Pb	Λ.	-26067	9	7878.97	0.04	eta^+	1461	12	197 970447	9
115	83		Bi	X	-19369	28	7841.19	0.04	eta^+	6698	29	197 972013	30
114	84		Po	Λ	-15473	17	7817.56	0.09	eta^+	3900	30	197 983389	19
113	85		At	X	-6715	6	7769.373	0.030	eta^+	8759	18	197 992792	6
112	86		Rn	$-\alpha$	-1230	13	7737.72	0.030	$oldsymbol{eta}^+$	5484	15	197 998679	14
111	87		Fr	$-\alpha$	9570	30	7679.21	0.16	$oldsymbol{eta}^+$	10800	30	198 010280	30
124	75	199	Re	x	-14860#	400#	7851#	2#	eta^-	5620#	450#	198 984050#	430#
123	76	1))	Os	X	-20480#	200#	7875#	2# 1#	eta^-	3920#	200#	198 978010#	210#
122	77		Ir	p-2n	-24400	40	7891.21	0.21	eta^-	2990	40	198 973810	40
121	78		Pt	-n	-27388.7	2.2	7902.300	0.011	β^-	1705.1	2.1	198 970597.0	2.3
120	79		Au	-11	-29093.7	0.5	7906.937	0.003	$oldsymbol{eta}^-$	452.3	0.6	198 968766.6	0.6
119	80		Hg		-29546.1	0.5	7905.279	0.003	ρ	*	0.0	198 968281.0	0.6
118	81		Tl	X	-28059	28	7893.88	0.14	$oldsymbol{eta}^+$	1487	28	198 969880	30
117	82		Pb	$+\alpha$	-25232	10	7875.74	0.05	β^+	2828	30	198 972913	11
116	83		Bi	1 60	-20798	11	7849.52	0.05	β^+	4434	15	198 977673	11
115	84		Po	$-\alpha$	-15208	18	7817.50	0.09	β^+	5589	21	198 983673	19
114	85		At	c.	-8823	5	7781.488	0.027	β^+	6385	19	198 990528	6
113	86		Rn	$-\alpha$	-1500	40	7740.75	0.19	β^+	7320	40	198 998390	40
112	87		Fr	$-\alpha$	6771	14	7695.26	0.07	$oldsymbol{eta}^+$	8270	40	199 007269	15
124	76	200	Os	x	-18780#	300#	7868#	1#	eta^-	2830#	360#	199 979840#	320#
123	77	200	Ir	X	-21610#	200#	7878#	1#	β^-	4990#	200#	199 976800#	210#
122	78		Pt	-nn	-26599	20	7899.20	0.10	β^-	640	30	199 971445	22
121	79		Au	-1111	-27240	27	7898.49	0.10	β^-	2263	27	199 970757	29
120	80		Hg		-29503.3	0.5	7905.895	0.003	ρ	*	2,	199 968326.9	0.6
119	81		Tl	_	-27047	6	7889.703	0.003	eta^+	2456	6	199 970964	6
118	82		Pb	4n	-26251	11	7881.81	0.025	eta^+	796	12	199 971818	12
117	83		Bi	$+\alpha$	-20231	22	7848.50	0.03	eta^+	5880	25	199 978131	24
116	84		Po	, w	-16942	8	7827.44	0.04	eta^+	3429	24	199 981812	8
115	85		At	$-\alpha$	-8988	24	7783.76	0.12	β^+	7954	26	199 990351	26
114	86		Rn	$-\alpha$	-4005	14	7754.93	0.07	β^+	4983	28	199 995701	15
113	87		Fr	$-\alpha$	6130	30	7700.33	0.07	eta^+	10140	30	200 006580	30
113	07		. 1	u	0130	20	1100.55	0.15	ρ	10170	50	200 000000	50

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

							<u> </u>						
N	Z	Α	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
125	76	201	Os	Х	-15240#	300#	7851#	1#	β-	4660#	360#	200 983640#	320#
124	77	201	Ir	X	-19900#	200#	7871#	1#	β^-	3840#	200#	200 978640#	210#
123	78		Pt	+	-23740	50	7885.83	0.25	β^-	2660	50	200 974510	50
122	79		Au		-26401	3	7895.175	0.016	β^-	1262	3	200 971658	3
121	80		Hg		-27662.5	0.7	7897.560	0.004	Ρ	*	5	200 970303.0	0.8
120	81		Tl		-27181	14	7891.27	0.07	β^+	482	14	200 970820	15
119	82		Pb		-25271	14	7877.88	0.07	β^+	1910	19	200 972870	15
118	83		Bi	$+\alpha$	-21416	15	7854.81	0.08	β^+	3855	20	200 977009	16
117	84		Po	1 00	-16521	5	7826.561	0.025	β^+	4895	16	200 982264	5
116	85		At	$+\alpha$	-10789	8	7794.15	0.04	β^+	5732	10	200 988417	9
115	86		Rn	$-\alpha$	-4070	50	7756.84	0.25	β^+	6720	50	200 995630	50
114	87		Fr	$-\alpha$	3589	9	7714.84	0.05	β^+	7660	50	201 003852	10
113	88		Ra	$-\alpha$	11937	20	7669.41	0.10	$oldsymbol{eta}^+$	8348	22	201 012815	22
126	76	202	Os	X	-13090#	400#	7842#	2#	eta^-	3690#	500#	201 985950#	430#
125	77		Ir	X	-16780#	300#	7856#	1#	$\dot{\beta}^-$	5920#	300#	201 981990#	320#
124	78		Pt	X	-22692	25	7881.56	0.12	$\dot{\beta}^-$	1660	30	201 975639	27
123	79		Au	X	-24353	23	7885.91	0.12	β^-	2992	23	201 973856	25
122	80		Hg		-27345.3	0.7	7896.850	0.003	•	*		201 970643.6	0.8
121	81		Tl		-25980.2	1.6	7886.219	0.008	β^+	1365.1	1.6	201 972109.1	1.7
120	82		Pb		-25941	4	7882.150	0.019	β^+	40	4	201 972152	4
119	83		Bi		-20741	15	7852.54	0.08	β^+	5199	16	201 977733	17
118	84		Po		-17942	9	7834.80	0.04	β^+	2800	18	201 980739	9
117	85		At	$-\alpha$	-10591	28	7794.54	0.14	β^+	7351	29	201 988630	30
116	86		Rn	$-\alpha$	-6275	18	7769.30	0.09	β^+	4320	30	201 993264	19
115	87		Fr	$-\alpha$	3096	7	7719.04	0.03	$oldsymbol{eta}^+$	9371	19	202 003324	8
114	88		Ra	$-\alpha$	9075	15	7685.57	0.07	$m{eta}^+$	5979	17	202 009742	16
127	76	203	Os	x	-7640#	400#	7816#	2#	$oldsymbol{eta}^-$	7050#	570#	202 991800#	430#
126	77		Ir	X	-14690#	400#	7847#	2#	eta^-	4940#	450#	202 984230#	430#
125	78		Pt	X	-19630#	200#	7867#	1#	β^-	3520#	200#	202 978930#	210#
124	79		Au		-23143	3	7880.864	0.015	β^-	2126	3	202 975154	3
123	80		Hg		-25269.3	1.6	7887.482	0.008	$oldsymbol{eta}^-$	492.1	1.2	202 972872.3	1.7
122	81		Tl		-25761.4	1.2	7886.053	0.006		*		202 972344.0	1.3
121	82		Pb		-24787	7	7877.40	0.03	β^+	975	6	202 973391	7
120	83		Bi	$+\alpha$	-21525	13	7857.48	0.06	β^+	3262	14	202 976892	14
119	84		Po	$+\alpha$	-17311	9	7832.86	0.04	β^+	4214	15	202 981416	9
118	85		At		-12163	11	7803.65	0.05	β^+	5148	14	202 986943	11
117	86		Rn	$-\alpha$	-6154	18	7770.19	0.09	β^+	6009	21	202 993394	20
116	87		Fr		876	6	7731.71	0.03	β^+	7030	19	203 000941	7
115	88		Ra	$-\alpha$	8660	40	7689.50	0.19	eta^+	7790	40	203 009300	40
127	77	204	Ir	X	-9690#	400#	7824#	2#	$oldsymbol{eta}^-$	8230#	450#	203 989600#	430#
126	78		Pt	X	-17920#	200#	7860#	1#	β^-	2730#	280#	203 980760#	210#
125	79		Au	+	-20650#	200#	7870#	1#	β^-	4040#	200#	203 977830#	220#
124	80		Hg		-24690.1	0.5	7885.545	0.003	β^-	-344.0	1.2	203 973494.0	0.5
123	81		Tl		-24346.1	1.2	7880.023	0.006	eta^-	763.75	0.18	203 973863.3	1.2
122	82		Pb		-25109.9	1.1	7879.932	0.006	ο	*	0	203 973043.4	1.2
121	83		Bi	$+\alpha$	-20646	9	7854.21	0.05	β^+	4464	9	203 977836	10
120	84		Po	$-\alpha$	-18341	11	7839.08	0.05	β^+	2305	14	203 980310	12
119	85		At		-11875	22	7803.55	0.11	β^+	6466	25	203 987251	24
118	86		Rn		-7970	7	7780.57	0.04	β^+	3905	23	203 991444	8
117	87		Fr	$-\alpha$	607	25	7734.69	0.12	β^+	8578	26	204 000652	26
116	88		Ra	$-\alpha$	6057	15	7704.14	0.07	eta^+	5449	29	204 006502	16

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

											-	<u>, </u>	
N	Z	A	Elt.	Orig.	Mass exe (keV)			ng energy eleon (keV)		Beta-deca (ke		Atomic ma μu	ass
128	77	205	Ir	Х	-5960#	500#	7807#	2#	β-	7010#	590#	204 993600#	540#
127	78	203	Pt	X	-12970#	300#	7837#	1#	β^-	5800#	360#	204 986080#	320#
126	79		Au	X	-18770#	200#	7861#	1#	β^-	3520#	200#	204 979850#	210#
125	80		Hg	A	-22288	4	7874.732	0.018	β^-	1533	4	204 976073	4
123	81		Tl		-23820.9	1.2	7878.394	0.006	Р	*	7	204 974427.2	1.3
123	82		Pb		-23770.2	1.1	7874.331	0.006	β^+	50.6	0.5	204 974481.6	1.2
123	83		Bi		-23770.2	5	7857.316	0.000	β^+	2706	5	204 977386	5
121	84		Po		-17521	10	7836.22	0.023	β^+	3543	11	204 981190	11
120	85		At	$+\alpha$	-17321	15	7810.21	0.03	β^+	4549	18	204 986074	16
119	86		Rn	$\pm a$	-7710	5	7810.21	0.07	β^+	5262	16	204 991723	5
	87				-1310	8	7745.69	0.023	β^+	6400	9	204 998594	8
118	88		Fr	X	-1310 5840	70	7743.09	0.04	β^+	7150	9 70	204 998394 205 006270	80
117			Ra	$-\alpha$					β^+				
116	89		Ac	$-\alpha$	14110	50	7662.85	0.25	P	8270	90	205 015140	50
128	78	206	Pt	X	-9630#	300#	7822#	1#	$oldsymbol{eta}^-$	4580#	420#	205 989660#	320#
127	79		Au	X	-14220#	300#	7840#	1#	$oldsymbol{eta}^-$	6730#	300#	205 984740#	320#
126	80		Hg	$+\alpha$	-20946	20	7869.17	0.10	$oldsymbol{eta}^-$	1308	20	205 977514	22
125	81		Tl		-22253.4	1.3	7871.721	0.006	eta^-	1532.2	0.6	205 976110.0	1.4
124	82		Pb		-23785.6	1.1	7875.362	0.006		*		205 974465.1	1.2
123	83		Bi	_	-20028	8	7853.32	0.04	$oldsymbol{eta}^+$	3757	8	205 978499	8
122	84		Po	$-\alpha$	-18189	4	7840.597	0.019	eta^+	1840	9	205 980474	4
121	85		At		-12430	15	7808.84	0.07	eta^+	5759	16	205 986656	16
120	86		Rn		-9133	9	7789.04	0.04	β^+	3297	17	205 990195	9
119	87		Fr	$-\alpha$	-1242	28	7746.94	0.14	eta^+	7891	29	205 998670	30
118	88		Ra	$-\alpha$	3566	18	7719.80	0.09	$\dot{oldsymbol{eta}^+}$	4810	30	206 003828	19
117	89		Ac	$-\alpha$	13480	50	7667.88	0.25	$oldsymbol{eta}^+$	9910	50	206 014470	50
129	78	207	Pt	x	-4540#	400#	7798#	2#	$oldsymbol{eta}^-$	6270#	500#	206 995130#	430#
128	79		Au	x	-10810#	300#	7825#	1#	<i>β</i> -	5680#	300#	206 988400#	320#
127	80		Hg	X	-16487	30	7848.61	0.14	$\dot{oldsymbol{eta}}^-$	4550	30	206 982300	30
126	81		Tl		-21034	5	7866.797	0.026	β^-	1418	5	206 977419	6
125	82		Pb		-22452.0	1.1	7869.866	0.006	,	*		206 975896.7	1.2
124	83		Bi		-20054.6	2.4	7854.505	0.012	β^+	2397.4	2.1	206 978470.5	2.6
123	84		Po		-17146	7	7836.67	0.03	β^+	2909	7	206 981593	7
122	85		At	$+\alpha$	-13227	12	7813.96	0.06	β^+	3918	14	206 985800	13
121	86		Rn	$+\alpha$	-8635	8	7788.00	0.04	β^+	4593	15	206 990730	9
120	87		Fr	,	-2844	18	7756.25	0.08	β^+	5790	19	206 996946	19
119	88		Ra	$-\alpha$	3540	50	7721.60	0.26	β^+	6390	60	207 003810	60
118	89		Ac	$-\alpha$	11150	50	7681.10	0.24	β^+	7600	70	207 011970	50
130	78	208	Pt	x	-990#	400#	7783#	2#	$oldsymbol{eta}^-$	5110#	500#	207 998940#	430#
129	79	200	Γι Au	X X	-990# -6100#	300#	7783# 7804#	2# 1#	β^-	7160#	300#	207 993450#	320#
							7804# 7834.19						
128	80		Hg	X	-13270 16750 1	30		0.15 0.009	β^-	3480 4998.5	30	207 985760	30
127	81		Tl	$+\alpha$	-16750.1	1.9	7847.183		$oldsymbol{eta}^-$	4990.J *	1.7	207 982018.0	2.0
126	82		Pb	,	-21748.6	1.1	7867.453	0.006	ρ +		2.0	207 976651.9	1.2
125	83		Bi	+n	-18870.2	2.3	7849.853	0.011	β^+	2878.4	2.0	207 979742.0	2.5
124	84		Po	$-\alpha$	-17469.6	1.7	7839.358	0.008	$\beta^+_{\beta^+}$	1400.6	2.4	207 981245.6	1.9
123	85		At	$+\alpha$	-12470	9	7811.56	0.04	β^+	5000	9	207 986613	10
122	86		Rn	$-\alpha$	-9656	11	7794.27	0.05	β^+	2814	14	207 989634	12
121	87		Fr		-2666	12	7756.90	0.06	β^+	6990	16	207 997138	13
120	88		Ra	$-\alpha$	1728	9	7732.02	0.04	β^+	4394	15	208 001855	10
119	89		Ac	$-\alpha$	10750	60	7684.86	0.27	β^+	9030	60	208 011540	60
118	90		Th	$-\alpha$	16680	30	7652.59	0.16	eta^+	5930	70	208 017910	40

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
130	79	209	Au	X	-2540#	400#	7788#	2#	β-	6100#	430#	208 997270#	430#
129	80	207	Hg	X	-8640#	150#	7813#	1#	β^-	5000#	150#	208 990720#	160#
128	81		Tl	$+\alpha$	-13645	6	7833.397	0.029	$m{eta}^-$	3970	6	208 985352	7
127	82		Pb	1 41	-17614.6	1.7	7848.648	0.008	β^-	644.0	1.1	208 981089.9	1.9
126	83		Bi		-18258.7	1.4	7847.987	0.007	,	*		208 980398.5	1.5
125	84		Po	$-\alpha$	-16366.1	1.8	7835.188	0.009	eta^+	1892.6	1.6	208 982430.3	1.9
124	85		At		-12883	5	7814.777	0.024	β^+	3483	5	208 986170	5
123	86		Rn		-8941	10	7792.17	0.05	β^+	3942	11	208 990401	11
122	87		Fr	X	-3770	15	7763.69	0.07	β^+	5171	18	208 995953	16
121	88		Ra	$-\alpha$	1858	6	7733.017	0.027	β^+	5628	16	209 001995	6
120	89		Ac	$-\alpha$	8840	50	7695.85	0.24	β^+	6990	50	209 009490	50
119	90		Th	IT	16370#	140#	7656#	1#	$m{eta}^+$	7520#	150#	209 017570#	150#
131	79	210	Au	x	2330#	400#	7766#	2#	$oldsymbol{eta}^-$	7690#	450#	210 002500#	430#
130	80		Hg	X	-5370#	200#	7799#	1#	β^-	3880#	200#	209 994240#	210#
129	81		Tl	$+\alpha$	-9247	12	7813.59	0.06	eta^-	5482	12	209 990073	12
128	82		Pb		-14728.5	1.4	7835.965	0.007	eta^-	63.5	0.5	209 984188.3	1.6
127	83		Bi		-14792.0	1.4	7832.542	0.006	eta^-	1161.2	0.8	209 984120.2	1.5
126	84		Po		-15953.1	1.1	7834.346	0.005		*		209 982873.6	1.2
125	85		At	$-\alpha$	-11972	8	7811.66	0.04	β^+	3981	8	209 987147	8
124	86		Rn	$-\alpha$	-9605	5	7796.665	0.022	β^+	2367	9	209 989689	5
123	87		Fr		-3333	15	7763.07	0.07	β^+	6272	16	209 996422	16
122	88		Ra	$-\alpha$	443	9	7741.37	0.04	β^+	3776	18	210 000475	10
121	89		Ac	$-\alpha$	8790	60	7697.90	0.27	β^+	8350	60	210 009440	60
120	90		Th	$-\alpha$	14059	19	7669.08	0.09	eta^+	5270	60	210 015093	20
131	80	211	Hg	X	-620#	200#	7778#	1#	β^-	5450#	200#	210 999330#	210#
130	81		Tl	X	-6080	40	7799.79	0.20	β^-	4410	40	210 993480	50
129	82		Pb		-10492.9	2.3	7817.007	0.011	eta^-	1366	5	210 988735.4	2.4
128	83		Bi		-11859	5	7819.774	0.026	eta^-	573	5	210 987269	6
127	84		Po	$-\alpha$	-12432.6	1.3	7818.784	0.006		*		210 986653.1	1.3
126	85		At	$-\alpha$	-11647.3	2.7	7811.354	0.013	$oldsymbol{eta}^+$	785.3	2.5	210 987496.1	2.9
125	86		Rn	$-\alpha$	-8755	7	7793.94	0.03	β^+	2892	7	210 990601	7
124	87		Fr		-4140	12	7768.36	0.06	β^+	4615	14	210 995555	13
123	88		Ra	X	832	8	7741.09	0.04	β^+	4972	14	211 000893	9
122	89		Ac	$-\alpha$	7200	50	7707.19	0.25	β^+	6370	50	211 007730	60
121	90		Th	$-\alpha$	13910	70	7671.7	0.3	β^+	6710	90	211 014930	80
120	91		Pa	X	22080#	100#	7629#	0#	$oldsymbol{eta}^+$	8170#	130#	211 023700#	110#
132	80	212	Hg	X	2760#	300#	7763#	1#	β^-	4310#	360#	212 002960#	320#
131	81		Tl	$+\alpha$	-1550#	200#	7780#	1#	β^-	6000#	200#	211 998340#	220#
130	82		Pb		-7548.8	1.8	7804.319	0.009	β^-	569.1	1.8	211 991896.0	2.0
129	83		Bi		-8118.0	1.9	7803.313	0.009	β^-	2251.5	1.7	211 991285.0	2.0
128	84		Po		-10369.5	1.2	7810.243	0.005	β^-	-1741.3	2.1	211 988867.9	1.2
127	85		At	$-\alpha$	-8628.2	2.4	7798.340	0.011	eta^-	31	4	211 990737.2	2.6
126	86		Rn	$-\alpha$	-8660 2516	3	7794.797	0.015	ρ +		0	211 990704	3
125	87		Fr	01	-3516	9	7766.84	0.04	β^+	5144	9	211 996225	9
124	88 89		Ra	$-\alpha$	-199 7280	11 50	7747.51 7708.55	0.05	$eta^+ eta^+$	3317	14 50	211 999786 212 007810	12
123 122			Ac Th	$-\alpha$	7280		7/08.55 7682.06	0.24	β^+	7480 4830			60
122	90 91		Th Pa	$-lpha \\ -lpha$	12111 21590	10 70	7682.06 7633.6	0.05 0.4	β^+	4830 9480	50 80	212 013001 212 023180	11 80
121	91		га	$-\alpha$	21390	70	1055.0	0.4	\boldsymbol{p}	2400	ο υ	212 023160	00

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-deca		Atomic ma μu	ass
133	80	213	Hg	Х	7670#	300#	7741#	1#	β^-	5880#	300#	213 008230#	320#
132	81		Tl	X	1784	27	7765.43	0.13	β^-	4987	28	213 001915	29
131	82		Pb	$+\alpha$	-3204	7	7785.17	0.03	β^-	2028	8	212 996561	7
130	83		Bi	, 51	-5232	5	7791.021	0.024	β^-	1422	5	212 994384	5
129	84		Po		-6654	3	7794.024	0.014	,	*		212 992857	3
128	85		At	$-\alpha$	-6580	5	7790.003	0.023	eta^+	74	5	212 992937	5
127	86		Rn	$-\alpha$	-5696	3	7782.182	0.016	β^+	884	6	212 993885	4
126	87		Fr		-3553	5	7768.447	0.024	β^+	2143	6	212 996186	5
125	88		Ra		346	10	7746.47	0.05	β^+	3898	11	213 000371	11
124	89		Ac	$-\alpha$	6155	15	7715.53	0.07	β^+	5809	18	213 006607	16
123	90		Th	$-\alpha$	12120	9	7683.85	0.04	β^+	5965	18	213 013011	10
122	91		Pa	$-\alpha$	19660	70	7644.8	0.3	$oldsymbol{eta}^+$	7540	70	213 021110	80
134	80	214	Hg	x	11180#	400#	7727#	2#	$oldsymbol{eta}^-$	4710#	450#	214 012000#	430#
133	81		Tl	X	6470#	200#	7745#	1#	$oldsymbol{eta}^-$	6650#	200#	214 006940#	210#
132	82		Pb		-182.8	2.0	7772.394	0.009	$oldsymbol{eta}^-$	1018	11	213 999803.8	2.1
131	83		Bi		-1201	11	7773.49	0.05	eta^-	3269	11	213 998711	12
130	84		Po		-4470.0	1.4	7785.116	0.007	β^-	-1090	4	213 995201.2	1.6
129	85		At	$-\alpha$	-3380	4	7776.366	0.020	eta^-	940	10	213 996372	5
128	86		Rn	$-\alpha$	-4320	9	7777.10	0.04	0.1	*	4.0	213 995363	10
127	87		Fr	$-\alpha$	-959	9	7757.74	0.04	β^+	3361	13	213 998971	9
126	88		Ra	$-\alpha$	93	5	7749.171	0.025	β^+	1051	10	214 000100	6
125	89		Ac	$-\alpha$	6444	15	7715.84	0.07	β^+	6351	16	214 006918	16
124	90		Th	$-\alpha$	10695	11	7692.32	0.05	β^+	4251	19	214 011481	11
123	91		Pa	$-\alpha$	19490	80	7647.6	0.4	eta^+	8790	80	214 020920	80
135	80	215	Hg	X	16210#	400#	7705#	2#	eta^-	6300#	500#	215 017400#	430#
134	81		Tl	X	9910#	300#	7730#	1#	$oldsymbol{eta}^-$	5570#	300#	215 010640#	320#
133	82		Pb	$+\alpha$	4340	50	7752.74	0.24	$oldsymbol{eta}^-$	2710	50	215 004660	60
132	83		Bi		1629	6	7761.717	0.026	eta^-	2171	6	215 001749	6
131	84		Po		-541.7	2.1	7768.176	0.010	eta^-	714	7	214 999418.5	2.3
130	85		At	$-\alpha$	-1256	7	7767.86	0.03		*		214 998652	7
129	86		Rn	$-\alpha$	-1169	8	7763.81	0.04	β^+	87	10	214 998745	8
128	87		Fr	$-\alpha$	318	7	7753.26	0.03	β^+	1487	10	215 000341	8
127	88		Ra	$-\alpha$	2534	8	7739.32	0.04	β^+	2216	10	215 002720	8
126	89		Ac	$-\alpha$	6031	12	7719.41	0.06	β^+	3497	15	215 006474	13
125	90		Th	$-\alpha$	10922	9	7693.03	0.04	β^+	4891	15	215 011725	9
124 123	91 92		Pa U	$-\alpha$	17860 24920	70 90	7657.1 7620.6	0.3 0.4	$eta^+ eta^+$	6940 7060	70	215 019180 215 026760	80 90
123	92			$-\alpha$	24920	90	7020.0	0.4	,	7000	110	213 020 700	90
136	80	216	Hg	X	19860#	400#	7690#	2#	β^-	5140#	500#	216 021320#	430#
135	81		Tl	X	14720#	300#	7710#	1#	β^-	7240#	360#	216 015800#	320#
134	82		Pb	X	7480#	200#	7740#	1#	β^-	1610#	200#	216 008030#	210#
133	83		Bi	X	5874	11	7743.50	0.05	β^-	4092	11	216 006306	12
132	84		Po	~	1782.4	1.8	7758.819	0.008	β^-	-474 2004	4	216 001913.5	1.9
131 130	85 86		At Pn	$-\alpha$	2257 253	4 6	7753.002 7758.657	0.017 0.028	$oldsymbol{eta}^-$	2004	7	216 002423 216 000271	4 6
129	86 87		Rn Fr	$-lpha \\ -lpha$	255 2971	4	7742.451	0.028	eta^+	2718	7	216 000271	4
129	88		Ra	$-\alpha$ $-\alpha$	3291	9	7737.35	0.019	β^+	320	10	216 003189	9
127	89		Ac	$-\alpha$ $-\alpha$	8144	11	7711.26	0.04	β^+	4853	14	216 003333	12
126	90		Th	$-\alpha$ $-\alpha$	10298	12	7697.66	0.05	β^+	2154	16	216 011056	13
125	91		Pa	$-\alpha$ $-\alpha$	17800	50	7659.31	0.00	β^+	7500	50	216 019110	60
124	92		U	$-\alpha$	23066	28	7631.31	0.23	β^+	5270	60	216 024760	30
			_	•	22000	_0	, 001.01	0.12	۴	5270		210 021700	50

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
136	81	217	Tl	Х	18310#	400#	7695#	2#	$oldsymbol{eta}^-$	6070#	500#	217 019660#	430#
135	82		Pb	X	12240#	300#	7719#	1#	β^-	3510#	300#	217 013140#	320#
134	83		Bi	X	8730	18	7731.85	0.08	β^-	2846	19	217 009372	19
133	84		Po	$+\alpha$	5884	7	7741.36	0.03	β^-	1489	8	217 006316	7
132	85		At	,	4395	5	7744.616	0.023	β^-	736	6	217 004718	5
131	86		Rn	$-\alpha$	3659	4	7744.403	0.019	-	*		217 003928	5
130	87		Fr	$-\alpha$	4315	7	7737.77	0.03	$oldsymbol{eta}^+$	656	8	217 004632	7
129	88		Ra	$-\alpha$	5890	7	7726.91	0.03	β^+	1575	10	217 006323	8
128	89		Ac	$-\alpha$	8704	11	7710.34	0.05	β^+	2814	13	217 009344	12
127	90		Th	$-\alpha$	12206	11	7690.59	0.05	β^+	3502	16	217 013103	11
126	91		Pa	$-\alpha$	17068	16	7664.58	0.07	β^+	4863	19	217 018324	17
125	92		U	$-\alpha$	22970#	70#	7634#	0#	$m{eta}^+$	5910#	70#	217 024660#	80#
137	81	218	Tl	x	23180#	400#	7674#	2#	eta^-	7730#	500#	218 024890#	430#
136	82		Pb	X	15450#	300#	7706#	1#	β^-	2240#	300#	218 016590#	320#
135	83		Bi	X	13216	27	7712.83	0.12	β^-	4859	27	218 014188	29
134	84		Po		8356.9	2.0	7731.528	0.009	β^-	259	12	218 008971.5	2.1
133	85		At	$-\alpha$	8098	12	7729.13	0.05	β^-	2881	12	218 008694	12
132	86		Rn		5217.3	2.3	7738.752	0.011	β^-	-1842	5	218 005601.1	2.5
131	87		Fr	$-\alpha$	7059	5	7726.715	0.022	β^-	408	12	218 007578	5
130	88		Ra	$-\alpha$	6651	11	7725.00	0.05		*		218 007140	12
129	89		Ac	$-\alpha$	10840	50	7702.18	0.23	eta^+	4190	50	218 011640	50
128	90		Th	$-\alpha$	12367	11	7691.60	0.05	eta^+	1520	50	218 013276	11
127	91		Pa	$-\alpha$	18684	18	7659.04	0.08	eta^+	6317	21	218 020058	20
126	92		U	$-\alpha$	21895	14	7640.72	0.06	eta^+	3211	23	218 023505	15
137	82	219	Pb	X	20280#	400#	7686#	2#	$oldsymbol{eta}^-$	4000#	450#	219 021770#	430#
136	83		Bi	X	16280#	200#	7700#	1#	$oldsymbol{eta}^-$	3600#	200#	219 017480#	210#
135	84		Po	X	12681	16	7713.33	0.07	$oldsymbol{eta}^-$	2285	16	219 013614	17
134	85		At		10396	3	7720.196	0.015	$oldsymbol{eta}^-$	1566.7	2.9	219 011161	3
133	86		Rn		8829.4	2.1	7723.777	0.010	eta^-	212	7	219 009478.8	2.3
132	87		Fr	$-\alpha$	8618	7	7721.17	0.03	0.1	*		219 009252	8
131	88		Ra	$-\alpha$	9394	8	7714.05	0.04	β^+	777	11	219 010085	9
130	89		Ac	$-\alpha$	11570	50	7700.55	0.23	β^+	2180	50	219 012420	50
129	90		Th	$-\alpha$	14470	50	7683.73	0.23	β^+	2900	70	219 015540	50
128	91		Pa	$-\alpha$	18540	50	7661.57	0.24	β^+	4070	70	219 019900	60
127 126	92 93		U Np	$-lpha \\ -lpha$	23290 29460	50 90	7636.33 7604.6	0.23 0.4	$eta^+ eta^+$	4750 6170	70 100	219 025000 219 031620	50 90
138	82	220	Pb	v	23670#	400#	7672#	2#	$oldsymbol{eta}^-$	2850#	500#	220 025410#	430#
137	82 83	220	Ро Ві	X X	20820#	300#	7672#	2# 1#	$oldsymbol{eta}^{oldsymbol{eta}}-$	2830# 5560#	300#	220 023410#	320#
136	84		Po		15263	18	7703.22	0.08	$oldsymbol{eta}^{oldsymbol{eta}}-$	888	23	220 022330#	19
135			Po At	X V	13263	18 14	7703.22	0.08	$^{ ho}_{eta^-}$	888 3764	23 14		
134	85 86		At Rn	X	10612.1	1.8	7703.70	0.008	$^{oldsymbol{eta}}_{oldsymbol{eta}^-}$	-870	4	220 015433 220 011392.5	15 1.9
133	87		Fr	_~	11482	1.8 4	7717.234	0.008	$^{oldsymbol{eta}}_{oldsymbol{eta}^-}$	1212	9	220 011392.3	4
133	88		Ra	$-lpha \\ -lpha$	10270	8	7709.742	0.018	ρ	1212	2	220 012327	9
131	89		Ac	$-\alpha$ $-\alpha$	13744	6	7692.351	0.04	eta^+	3473	10	220 011026	7
130	90		Th	$-\alpha$ $-\alpha$	14669	22	7684.59	0.028	β^+	925	23	220 014734	24
129	91		Pa	$-\alpha$	20220#	50#	7656#	0.10	β^+	5550#	60#	220 021710#	60#
128	92		U	$-\alpha$	22930#	100#	7640#	0#	β^+	2720#	110#	220 021710#	110#
127	93		Np	$-\alpha$	30310#	200#	7603#	1#	β^+	7380#	220#	220 032540#	210#
14/	73		тър	Λ	30310#	200π	/003π	1π	ρ	1300 11	220π	220 0323 4 0#	210#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

							`	, .			•		
N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
120	02	221	ъ.		24100#	200#	766011	1.11	0-	4220#	200#	221 025970#	220#
138	83	221	Bi	X	24100#	300#	7668#	1# 0.09	β^-	4320#	300#	221 025870#	320#
137	84		Po	X	19774	20	7684.48		β^-	2991	24	221 021228	21
136	85		At	X	16783	14	7694.47	0.06	β^-	2311	15 7	221 018017	15
135	86		Rn	$+\alpha$	14471	6	7701.393	0.026	β^-	1194		221 015536 221 014254	6
134	87		Fr		13277	5	7703.256	0.022	eta^-	313	6		5
133	88		Ra	$-\alpha$	12964	5	7701.135	0.021	$oldsymbol{eta}^+$		50	221 013917	5
132 131	89 90		Ac Th	$-\alpha$	14520 16940	50 8	7690.54 7676.06	0.23 0.04	β^+	1560 2420	50 50	221 015590 221 018186	50 9
130	91		Pa	$-\alpha$ $-\alpha$	20380	50	7656.97	0.04	β^+	3440	50	221 018180	60
129	92		U	$-\alpha$ $-\alpha$	24520	50	7634.68	0.23	β^+	4140	70	221 026320	50
129	93		Np	-α x	29850#	200#	7607#	0.23 1#	β^+	5330#	210#	221 032050#	220#
120	93		мр	A	29030 11	200π	/00/π	Ιπ	Р	3330π	210π	221 032030#	220π
139	83	222	Bi	X	28730#	300#	7649#	1#	β^-	6240#	300#	222 030840#	320#
138	84		Po	X	22490	40	7674.00	0.18	β^-	1530	40	222 024140	40
137	85		At	X	20953	16	7677.39	0.07	β^-	4581	16	222 022494	17
136	86		Rn		16372.2	1.9	7694.497	0.009	β^-	-6	8	222 017576.3	2.1
135	87		Fr	X	16378	7	7690.95	0.03	eta^-	2058	9	222 017583	8
134	88		Ra		14320	4	7696.692	0.020	0.1	*	_	222 015373	5
133	89		Ac	$-\alpha$	16621	5	7682.802	0.023	β^+	2301	7	222 017844	6
132	90		Th	$-\alpha$	17203	12	7676.66	0.06	β^+	582	13	222 018468	13
131	91		Pa	$-\alpha$	22160#	70#	7651#	0#	β^+	4950#	70#	222 023780#	80#
130	92		U	$-\alpha$	24270	50	7637.76	0.23	β^+	2120#	90#	222 026060	60
129	93		Np	X	31020#	200#	7604#	1#	$oldsymbol{eta}^+$	6750#	200#	222 033300#	210#
140	83	223	Bi	X	32140#	400#	7636#	2#	eta^-	5060#	450#	223 034500#	430#
139	84		Po	X	27080#	200#	7655#	1#	eta^-	3650#	200#	223 029070#	210#
138	85		At	X	23428	14	7668.05	0.06	eta^-	3038	16	223 025151	15
137	86		Rn		20390	8	7678.17	0.04	eta^-	2007	8	223 021889	8
136	87		Fr		18382.4	1.9	7683.664	0.009	eta^-	1149.1	0.8	223 019734.3	2.1
135	88		Ra		17233.3	2.1	7685.309	0.009		*		223 018500.7	2.2
134	89		Ac	$-\alpha$	17826	7	7679.14	0.03	eta^+	593	7	223 019137	8
133	90		Th	$-\alpha$	19386	9	7668.64	0.04	$oldsymbol{eta}^+$	1560	12	223 020812	10
132	91		Pa	$-\alpha$	22320	70	7652.0	0.3	β^+	2930	70	223 023960	80
131	92		U	$-\alpha$	25840	70	7632.7	0.3	β^+	3520	100	223 027740	80
130	93		Np	X	30600#	200#	7608#	1#	eta^+	4760#	210#	223 032850#	210#
141	83	224	Bi	x	36830#	400#	7617#	2#	$oldsymbol{eta}^-$	6920#	450#	224 039540#	430#
140	84		Po	X	29910#	200#	7644#	1#	$oldsymbol{eta}^-$	2200#	200#	224 032110#	210#
139	85		At	X	27711	22	7650.73	0.10	eta^-	5266	24	224 029749	24
138	86		Rn		22445	10	7670.75	0.04	eta^-	696	15	224 024096	11
137	87		Fr	X	21749	11	7670.37	0.05	eta^-	2923	11	224 023348	12
136	88		Ra		18825.9	1.8	7679.922	0.008	$oldsymbol{eta}^-$	-1408	4	224 020210.5	1.9
135	89		Ac	$-\alpha$	20234	4	7670.143	0.018	eta^-	240	11	224 021722	4
134	90		Th	$-\alpha$	19994	10	7667.72	0.05		*		224 021464	11
133	91		Pa	$-\alpha$	23862	8	7646.96	0.03	β^+	3869	13	224 025617	8
132	92		U	$-\alpha$	25722	23	7635.16	0.10	β^+	1860	24	224 027614	25
131	93		Np	X	31880#	200#	7604#	1#	eta^+	6150#	200#	224 034220#	210#
141	84	225	Po	x	34530#	300#	7626#	1#	$oldsymbol{eta}^-$	4140#	420#	225 037070#	320#
140	85		At	X	30400#	300#	7641#	1#	eta^-	3860#	300#	225 032630#	320#
139	86		Rn		26534	11	7654.36	0.05	$oldsymbol{eta}^-$	2714	16	225 028486	12
138	87		Fr		23821	12	7662.94	0.05	$oldsymbol{eta}^-$	1828	12	225 025572	13
137	88		Ra		21993.1	2.6	7667.586	0.012	eta^-	356	5	225 023610.6	2.8
136	89		Ac		21637	5	7665.690	0.021		*		225 023229	5
135	90		Th	$-\alpha$	22310	5	7659.222	0.023	$oldsymbol{eta}^+$	673	7	225 023951	5
134	91		Pa	$-\alpha$	24340	70	7646.7	0.3	β^+	2030	70	225 026130	80
133	92		U	$-\alpha$	27380	11	7629.74	0.05	β^+	3040	70	225 029394	12
132	93		Np	$-\alpha$	31590	70	7607.6	0.3	$m{eta}^+$	4210	70	225 033910	80

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
142	84	226	Po	Х	37550#	400#	7614#	2#	β^-	2930#	500#	226 040310#	430#
141	85		At	X	34610#	300#	7624#	1#	β^-	5870#	300#	226 037160#	320#
140	86		Rn	A	28747	10	7646.41	0.05	β^-	1227	12	226 030861	11
139	87		Fr		27521	6	7648.376	0.028	β^-	3853	7	226 029545	7
138	88		Ra		23667.8	1.9	7661.962	0.009	β^-	-641	3	226 025408.5	2.1
137	89		Ac		24309	3	7655.662	0.014	β^-	1112	5	226 026097	3
136	90		Th		23198	4	7657.119	0.020	Р	*	3	226 024904	5
135	91		Pa	$-\alpha$	26033	11	7641.11	0.05	β^+	2836	12	226 027948	12
134	92		U	$-\alpha$	27329	13	7631.92	0.06	β^+	1296	17	226 029339	14
133	93		Np	$-\alpha$	32780#	90#	7604#	0#	β^+	5450#	90#	226 035190#	100#
143	84	227	Po	x	42280#	400#	7596#	2#	eta^-	4800#	500#	227 045390#	430#
143	85	221	At	X	37480#	300#	7613#	2π 1#	β^-	4600#	300#	227 040240#	320#
141	86		Rn	Α.	32886	14	7630.05	0.06	$_{eta^{-}}^{eta}$	3203	15	227 035304	15
140	87		Fr		29682	6	7640.715	0.026	$_{eta^{-}}^{eta}$	2505	6	227 033304	6
139	88		Ra		27177.7	2.0	7648.303	0.020	$oldsymbol{eta}^{oldsymbol{eta}}-$	1328.1	2.3	227 031803	2.1
139	89		Ac	-n	25849.6	1.9	7650.707	0.009	eta^-	44.8	0.8	227 029170.3	2.1
137	90		Th		25804.8	2.1	7647.458	0.008	ρ	*	0.8	227 027730.7	2.1
136	90 91		Pa	01	26831	7	7639.49	0.009	eta^+	1026	7	227 027702.6	8
135	92		ra U	$-\alpha$ $-\alpha$	29045	10	7626.29	0.03	β^+	2214	12	227 028804	10
133	93		Np	$-\alpha$ $-\alpha$	32560	70	7620.29	0.04	β^+	3520	70	227 031182	80
134	93 94		Pu		36770#	100#	7585#	0.3	β^+	4210#	120#	227 034400	110#
133	94		Pu	X	30770#	100#	1363#	0#	p.	4210#	120#	227 039470#	110#
143	85	228	At	X	41680#	400#	7597#	2#	β^-	6440#	400#	228 044750#	430#
142	86		Rn		35243	18	7621.64	0.08	eta^-	1859	19	228 037835	19
141	87		Fr		33384	7	7626.368	0.030	β^-	4444	7	228 035839	7
140	88		Ra	$+\alpha$	28940.3	2.0	7642.428	0.009	eta^-	45.5	0.6	228 031068.7	2.1
139	89		Ac	_	28894.7	2.1	7639.196	0.009	eta^-	2123.7	2.6	228 031019.8	2.2
138	90		Th		26771.0	1.8	7645.080	0.008		*		228 028739.8	1.9
137	91		Pa	$-\alpha$	28924	4	7632.207	0.019	$oldsymbol{eta}^+$	2153	4	228 031051	5
136	92		U	$-\alpha$	29222	14	7627.47	0.06	β^+	299	15	228 031371	15
135	93		Np	$-\alpha$	33600	50	7604.85	0.22	$oldsymbol{eta}^+$	4370	50	228 036070	50
134	94		Pu	$-\alpha$	36087	29	7590.49	0.13	eta^+	2490	60	228 038740	30
144	85	229	At	x	44820#	400#	7585#	2#	$oldsymbol{eta}^-$	5460#	400#	229 048120#	430#
143	86		Rn	X	39362	13	7605.62	0.06	β^-	3694	14	229 042257	14
142	87		Fr		35668	5	7618.337	0.022	eta^-	3106	16	229 038291	5
141	88		Ra	X	32562	15	7628.49	0.07	β^-	1872	20	229 034957	17
140	89		Ac	X	30690	12	7633.24	0.05	β^-	1104	12	229 032947	13
139	90		Th		29585.6	2.4	7634.650	0.011		*		229 031761.4	2.6
138	91		Pa		29897	3	7629.874	0.014	eta^+	311	4	229 032096	4
137	92		U	$-\alpha$	31211	6	7620.721	0.026	β^+	1314	7	229 033506	6
136	93		Np	$-\alpha$	33780	90	7606.1	0.4	β^+	2570	90	229 036260	90
135	94		Pu	$-\alpha$	37400	50	7586.88	0.22	β^+	3620	100	229 040150	50
134	95		Am	$-\alpha$	42150	90	7562.7	0.4	$oldsymbol{eta}^+$	4750	100	229 045250	90
144	86	230	Rn	x	42050#	200#	7596#	1#	eta^-	2560#	200#	230 045140#	210#
143	87		Fr		39487	7	7603.704	0.028	β^-	4970	12	230 042391	7
142	88		Ra	X	34516	10	7621.91	0.04	β^-	678	19	230 037055	11
141	89		Ac	X	33838	16	7621.46	0.07	β^-	2976	16	230 036327	17
140	90		Th		30862.6	1.2	7630.996	0.005	$oldsymbol{eta}^-$	-1311.0	2.8	230 033132.4	1.3
139	91		Pa		32174	3	7621.895	0.013	$\dot{oldsymbol{eta}}^-$	559	5	230 034540	3
138	92		U	$-\alpha$	31615	5	7620.922	0.020	•	*		230 033940	5
137	93		Np	$-\alpha$	35240	50	7601.78	0.22	$oldsymbol{eta}^+$	3620	50	230 037830	60
136	94		Pu	$-\alpha$	36934	15	7590.99	0.06	$oldsymbol{eta}^+$	1700	50	230 039651	16
135	95		Am	$-\alpha$	42930#	130#	7562#	1#	β^+	6000#	130#	230 046090#	140#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-deca		Atomic ma μu	ass
145	86	231	Rn	Х	46450#	300#	7579#	1#	β-	4370#	300#	231 049870#	320#
144	87	201	Fr	X	42081	8	7594.50	0.03	β^-	3864	14	231 045175	8
143	88		Ra	••	38216	11	7607.84	0.05	β^-	2454	17	231 041027	12
142	89		Ac	X	35763	13	7615.08	0.06	β^-	1947	13	231 038393	14
141	90		Th		33815.9	1.2	7620.118	0.005	β^-	391.5	1.5	231 036302.9	1.3
140	91		Pa		33424.4	1.8	7618.426	0.008	r	*		231 035882.6	1.9
139	92		U	$-\alpha$	33806.0	2.7	7613.387	0.012	β^+	381.6	2.0	231 036292.3	2.9
138	93		Np	$-\alpha$	35620	50	7602.13	0.22	β^+	1820	50	231 038240	50
137	94		Pu	$-\alpha$	38309	23	7587.12	0.10	β^+	2680	60	231 041126	24
136	95		Am	X	42410#	300#	7566#	1#	β^+	4100#	300#	231 045530#	320#
135	96		Cm	X	47270#	300#	7542#	1#	$oldsymbol{eta}^+$	4860#	420#	231 050750#	320#
145	87	232	Fr	x	46073	14	7579.35	0.06	eta^-	5576	17	232 049461	15
144	88		Ra		40497	9	7600.01	0.04	β^-	1343	16	232 043475	10
143	89		Ac	X	39154	13	7602.42	0.06	β^-	3708	13	232 042034	14
142	90		Th		35446.8	1.4	7615.033	0.006	β^-	-500	8	232 038053.7	1.5
141	91		Pa	+	35947	8	7609.51	0.03	β^-	1337	7	232 038590	8
140	92		U		34609.5	1.8	7611.897	0.008		*		232 037154.9	1.9
139	93		Np	_	37360#	100#	7597#	0#	β^+	2750#	100#	232 040110#	110#
138	94		Pu	$-\alpha$	38363	18	7588.97	0.08	β^+	1000#	100#	232 041185	19
137	95		Am	X	43340#	300#	7564#	1#	β^+	4980#	300#	232 046530#	320#
136	96		Cm	$-\alpha$	46310#	200#	7548#	1#	eta^+	2970#	360#	232 049720#	220#
146	87	233	Fr	X	48920	20	7569.24	0.08	β^-	4586	21	233 052518	21
145	88		Ra		44334	9	7585.56	0.04	β^-	3026	16	233 047595	9
144	89		Ac	X	41308	13	7595.19	0.06	β^-	2576	13	233 044346	14
143	90		Th		38731.7	1.4	7602.893	0.006	β^-	1242.2	1.1	233 041580.2	1.5
142	91 92		Pa U		37489.5 36919.2	1.3 2.3	7604.866 7603.956	0.006 0.010	$oldsymbol{eta}^-$	570.3 *	2.0	233 040246.6	1.4 2.4
141 140	92			O.	37950	50	7596.18	0.010	eta^+	1030	50	233 039634.4	50
139	93 94		Np Pu	$-lpha \\ -lpha$	40050	50	7583.80	0.22	β^+	2100	70	233 040740 233 043000	50
138	95		Am	$-\alpha$	43260#	100#	7567#	0.22	β^+	3210#	110#	233 046450#	110#
137	96		Cm	$-\alpha$	47290	70	7546.0	0.3	β^+	4030#	120#	233 050770	80
136	97		Bk	$-\alpha$	52860#	220#	7519#	1#	$oldsymbol{eta}^+$	5570#	240#	233 056750#	240#
146	88	234	Ra	X	46931	8	7576.54	0.04	eta^-	2089	16	234 050382	9
145	89		Ac	X	44841	14	7582.13	0.06	$\dot{\beta}$	4228	14	234 048139	15
144	90		Th	$+\alpha$	40613.0	2.6	7596.855	0.011	β^-	274	3	234 043599.9	2.8
143	91		Pa	IT	40339	4	7594.683	0.017	β^-	2194	4	234 043306	4
142	92		U		38145.0	1.1	7600.715	0.005		*		234 040950.4	1.2
141	93		Np	_	39955	8	7589.64	0.04	$oldsymbol{eta}^+$	1810	8	234 042893	9
140	94		Pu	$-\alpha$	40350	7	7584.605	0.029	eta^+	395	11	234 043317	7
139	95		Am	$-\alpha$	44460#	160#	7564#	1#	$oldsymbol{eta}^+$	4110#	160#	234 047730#	170#
138	96		Cm	$-\alpha$	46725	17	7550.68	0.07	$oldsymbol{eta}^+$	2260#	160#	234 050161	19
137	97		Bk	$-\alpha$	53460#	140#	7519#	1#	$oldsymbol{eta}^+$	6730#	140#	234 057390#	150#
147	88	235	Ra	x	51130#	300#	7561#	1#	β^-	3770#	300#	235 054890#	320#
146	89		Ac	X	47357	14	7573.50	0.06	β^-	3339	19	235 050840	15
145	90		Th	X	44018	13	7584.39	0.06	β^-	1729	19	235 047255	14
144	91		Pa	X	42289	14	7588.41	0.06	eta^-	1370	14	235 045399	15
143	92		U		40918.8	1.1	7590.914	0.005	α $+$	*	0.0	235 043928.2	1.2
142	93		Np		41043.1	1.4	7587.056	0.006	β^+	124.3	0.9	235 044061.6	1.5
141	94		Pu	$-\alpha$	42182	21	7578.88 7565.15	0.09	β^+	1139	20	235 045285	22
140 139	95 06		Am	$-\alpha$	44630	50 200#	7565.15 7547#	0.22	$^+_{eta^+}$	2440	60 210#	235 047910	60 220#
139	96 97		Cm Bk	$-\alpha$	48030# 52700#	200# 400#	7547# 7524#	1# 2#	β^+	3410# 4670#	210# 450#	235 051570# 235 056580#	220# 430#
136	91		DK	X	J2/00#	400#	134#	∠π	$\boldsymbol{\rho}$	40/0#	450#	433 U3U38U#	430#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	Α	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV		Atomic ma μu	ass
147	89	236	Ac	X	51220	40	7559.24	0.16	β-	4970	40	236 054990	40
146	90	200	Th	X	46255	14	7576.97	0.06	β^-	921	20	236 049657	15
145	91		Pa	X	45334	14	7577.56	0.06	β^-	2889	14	236 048668	15
144	92		U	Α	42444.6	1.1	7586.484	0.005	β^-	-930	50	236 045566.2	1.2
143	93		Np	IT	43380	50	7579.21	0.21	β^-	480	50	236 046570	50
142	94		Pu		42901.6	1.8	7577.918	0.008	Ρ	*	50	236 046056.8	1.9
141	95		Am	$-\alpha$	46040#	110#	7561#	0#	$oldsymbol{eta}^+$	3140#	110#	236 049430#	120#
140	96		Cm	$-\alpha$	47855	18	7550.30	0.08	β^+	1810#	110#	236 051375	20
139	97		Bk	X	53540#	400#	7523#	2#	$oldsymbol{eta}^+$	5690#	400#	236 057480#	430#
148	89	237	Ac	x	54020#	400#	7550#	2#	eta^-	4070#	400#	237 057990#	430#
147	90		Th	X	49955	16	7563.44	0.07	β^-	2427	21	237 053629	17
146	91		Pa	X	47528	13	7570.38	0.06	β^-	2137	13	237 051023	14
145	92		U		45390.2	1.2	7576.102	0.005	β^-	518.5	0.5	237 048728.4	1.3
144	93		Np		44871.7	1.1	7574.989	0.005		*		237 048171.7	1.2
143	94		Pu		45091.7	1.7	7570.759	0.007	$oldsymbol{eta}^+$	220.1	1.3	237 048408.0	1.8
142	95		Am	$-\alpha$	46570#	60#	7561#	0#	eta^+	1480#	60#	237 050000#	60#
141	96		Cm	$-\alpha$	49250	70	7546.62	0.30	eta^+	2680#	90#	237 052870	80
140	97		Bk	$-\alpha$	53190#	220#	7527#	1#	β^+	3940#	240#	237 057100#	240#
139	98		Cf	$-\alpha$	57940	90	7503.3	0.4	$oldsymbol{eta}^+$	4750#	240#	237 062200	90
148	90	238	Th	$+\alpha$	52530#	280#	7555#	1#	$oldsymbol{eta}^-$	1630#	280#	238 056390#	300#
147	91		Pa	X	50894	16	7558.34	0.07	$oldsymbol{eta}^-$	3586	16	238 054637	17
146	92		U		47307.8	1.5	7570.125	0.006	β^-	-146.9	1.2	238 050787.0	1.6
145	93		Np	-n	47454.7	1.1	7566.221	0.005	$oldsymbol{eta}^-$	1291.4	0.5	238 050944.7	1.2
144	94		Pu		46163.2	1.1	7568.360	0.005	0.1	*		238 049558.3	1.2
143	95		Am	$-\alpha$	48420	50	7555.58	0.21	β^+	2260	50	238 051980	50
142	96		Cm	$-\alpha$	49445	12	7548.00	0.05	β^+	1020	50	238 053082	13
141 140	97 98		Bk Cf	$-\alpha$	54220# 57280#	260# 300#	7525# 7509#	1# 1#	$eta^+ eta^+$	4770# 3060#	260# 390#	238 058200# 238 061490#	270# 320#
140	90	239	Th	**	56450#	400#	7541#	2#	β-	2110#	450#	220.060600#	430#
149 148	90 91	239	Pa	X	53340#	200#	7550#	2# 1#	$eta^{oldsymbol{eta}}$	3110# 2770#	200#	239 060600# 239 057260#	430# 210#
148	91		Pa U	X	50572.7	1.5		0.006	$oldsymbol{eta}^{oldsymbol{eta}}-$	1261.7	1.5		1.6
146	92		Np	-n	49311.1	1.3	7558.561 7560.567	0.005	$^{ ho}_{oldsymbol{eta}^-}$	722.8	0.9	239 054292.0 239 052937.6	1.6
145	93 94		Pu		48588.3	1.1	7560.307	0.005	ρ	/22.0 *	0.9	239 052937.0	1.4
144	95		Am	$-\alpha$	49390.4	2.0	7553.688	0.003	β^+	802.1	1.7	239 053022.8	2.1
143	96		Cm	$-\alpha$	51150	50	7543.06	0.23	β^+	1760	50	239 054910	60
142	97		Bk	$-\alpha$	54250#	210#	7527#	1#	β^+	3100#	210#	239 058240#	220#
141	98		Cf	$-\alpha$	58270#	210#	7507#	1#	β^+	4020#	290#	239 062550#	220#
140	99		Es	X	63560#	300#	7481#	1#	$oldsymbol{eta}^+$	5290#	360#	239 068230#	320#
149	91	240	Pa	x	56910#	200#	7538#	1#	eta^-	4190#	200#	240 061100#	220#
148	92		U		52715.5	2.6	7551.770	0.011	β^-	399	17	240 056592.4	2.7
147	93		Np		52316	17	7550.17	0.07	$\dot{\beta}$	2191	17	240 056164	18
146	94		Pu		50125.4	1.1	7556.042	0.005	•	*		240 053811.8	1.2
145	95		Am	+n	51510	14	7547.01	0.06	eta^+	1385	14	240 055298	15
144	96		Cm		51724.3	1.9	7542.861	0.008	β^+	214	14	240 055528.3	2.0
143	97		Bk	_	55660#	150#	7523#	1#	β^+	3940#	150#	240 059760#	160#
142	98		Cf	$-\alpha$	57991	19	7510.23	0.08	β^+	2330#	150#	240 062256	20
141	99		Es	X	64200#	400#	7481#	2#	eta^+	6210#	400#	240 068920#	430#
150	91	241	Pa	X	59640#	300#	7528#	1#	eta^-	3440#	360#	241 064030#	320#
149	92		U	X	56200#	200#	7539#	1#	$oldsymbol{eta}^-$	1940#	210#	241 060330#	210#
148	93		Np	+	54260	70	7544.27	0.29	$oldsymbol{eta}^-$	1310	70	241 058250	80
147	94		Pu		52955.2	1.1	7546.439	0.005	eta^-	20.78	0.17	241 056849.7	1.2
146	95		Am		52934.4	1.1	7543.278	0.005		*		241 056827.4	1.2
145	96		Cm		53701.8	1.6	7536.848	0.007	β^+	767.4	1.2	241 057651.3	1.7
144	97		Bk	_	56030#	200#	7524#	1#	β^+	2330#	200#	241 060150#	220#
143	98		Cf	$-\alpha$	59330#	170#	7507#	1#	β^+	3300#	260#	241 063690#	180#
142	99		Es	$-\alpha$	63860#	230#	7485#	1#	β^+	4540#	280#	241 068560#	240#
141	100		Fm	X	69130#	300#	7460#	1#	$oldsymbol{eta}^+$	5260#	370#	241 074210#	320#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-deca (ke	, ,,	Atomic ma μu	ass
150	92	242	U	$+\alpha$	58620#	200#	7532#	1#	β^-	1200#	280#	242 062930#	220#
149	93		Np	+	57420	200	7533.4	0.8	β^-	2700	200	242 061640	210
148	94		Pu		54716.9	1.2	7541.327	0.005	β^-	-751.1	0.7	242 058741.0	1.3
147	95		Am	-n	55468.1	1.1	7534.991	0.005	β^-	664.3	0.4	242 059547.4	1.2
146	96		Cm		54803.8	1.1	7534.503	0.005	,	*		242 058834.3	1.2
145	97		Bk	_	57730#	200#	7519#	1#	eta^+	2930#	200#	242 061980#	220#
144	98		Cf	$-\alpha$	59387	13	7509.10	0.05	$m{eta}^+$	1650#	200#	242 063755	14
143	99		Es	$-\alpha$	64800#	260#	7483#	1#	$oldsymbol{eta}^+$	5410#	260#	242 069570#	280#
142	100		Fm	X	68400#	400#	7465#	2#	β^+	3600#	480#	242 073430#	430#
151	92	243	U	x	62360#	300#	7518#	1#	eta^-	2480#	300#	243 066950#	320#
150	93		Np	IT	59880#	30#	7525#	0#	β^-	2120#	30#	243 064280#	30#
149	94		Pu		57754.6	2.5	7531.008	0.010	$oldsymbol{eta}^-$	579.6	2.6	243 062002.1	2.7
148	95		Am		57175.0	1.4	7530.173	0.006	0.+	*		243 061379.9	1.5
147	96		Cm	$-\alpha$	57182.0	1.5	7526.925	0.006	β^+	7.0	1.6	243 061387.4	1.6
146	97		Bk	$-\alpha$	58690	5	7517.501	0.019	β^+	1508	5	243 063006	5
145	98 99		Cf	$-\alpha$	60990#	110#	7505#	0#	β^+	2300#	110#	243 065480#	120#
144 143	100		Es Fm	$-\alpha$ $-\alpha$	64750# 69390#	210# 220#	7486# 7464#	1# 1#	$eta^+ eta^+$	3760# 4640#	240# 300#	243 069510# 243 074490#	220# 230#
151	93	244	Np	v	63200#	300#	7514#	1#	β-	3400#	300#	244 067850#	320#
150	93 94	244	Pu	X	59806.0	2.3	7514#	0.010	β^-	-73.2	2.7	244 064204.4	2.5
149	95		Am	+	59879.2	1.5	7524.813	0.016	β^-	1427.3	1.0	244 064283.0	1.6
148	96		Cm	$-\alpha$	58451.9	1.1	7523.952	0.005	ρ	*	1.0	244 062750.7	1.0
147	97		Bk	$-\alpha$	60714	14	7511.47	0.06	eta^+	2262	14	244 065179	15
146	98		Cf	c.	61478.2	2.6	7505.136	0.011	β^+	764	15	244 065999.5	2.8
145	99		Es	$-\alpha$	66030#	180#	7483#	1#	β^+	4550#	180#	244 070880#	200#
144	100		Fm	$-\alpha$	68970#	200#	7468#	1#	$oldsymbol{eta}^+$	2940#	270#	244 074040#	220#
152	93	245	Np	x	65890#	300#	7505#	1#	eta^-	2710#	300#	245 070740#	320#
151	94		Pu	-n	63178	14	7513.28	0.06	β^-	1278	14	245 067825	15
150	95		Am	$+\alpha$	61900.5	1.9	7515.303	0.008	eta^-	895.9	1.5	245 066452.9	2.0
149	96		Cm		61004.6	1.1	7515.767	0.005		*		245 065491.1	1.2
148	97		Bk	$-\alpha$	61813.8	1.8	7509.270	0.007	$oldsymbol{eta}^+$	809.3	1.5	245 066359.9	1.9
147	98		Cf		63385.2	2.4	7499.663	0.010	$oldsymbol{eta}^+$	1571.4	2.6	245 068046.8	2.6
146	99		Es	$-\alpha$	66370#	200#	7484#	1#	β^+	2980#	200#	245 071250#	220#
145	100		Fm	$-\alpha$	70190#	200#	7466#	1#	β^+	3820#	280#	245 075350#	210#
144	101		Md	$-\alpha$	75270#	310#	7442#	1#	$oldsymbol{eta}^+$	5090#	360#	245 080810#	330#
152	94	246	Pu		65395	15	7506.54	0.06	$oldsymbol{eta}^-$	401#	14#	246 070204	16
151	95		Am	IT	64994#	18#	7505#	0#	eta^-	2377#	18#	246 069774#	19#
150	96		Cm		62617.0	1.5	7511.471	0.006	0.1	*		246 067222.1	1.6
149	97		Bk	_	63970	60	7502.80	0.24	β^+	1350	60	246 068670	60
148	98		Cf		64090.3	1.5	7499.121	0.006	β^+	120	60	246 068803.8	1.6
147	99		Es	$-\alpha$	67900#	220#	7480#	1#	β^+	3810#	220#	246 072890#	240#
146 145	100 101		Fm Md	$-\alpha$ $-\alpha$	70189 76120#	15 260#	7467.97 7441#	0.06 1#	$eta^+ eta^+$	2290# 5930#	220# 260#	246 075351 246 081710#	16 280#
		2.47							•				
153	94	247	Pu	X	69110#	200#	7494#	1#	β^-	1950#	220#	247 074190#	210#
152	95		Am	+	67150#	100#	7499#	0#	β^-	1620#	100#	247 072090#	110#
151	96 07		Cm	~	65533	4	7501.931	0.015	eta^-	44 *	6	247 070353	4
150	97 08		Bk Cf	$-\alpha$	65490 66104	5 15	7498.940 7493.29	0.021	ρ +		16	247 070306 247 070965	6 16
149 148	98 99		Cf Es	$+\alpha$	66104 68578	15 19	7493.29	0.06 0.08	$^{eta^+}_{eta^+}$	614 2474	16 25	247 070963	16 21
148	100		Es Fm	$+\alpha \\ +\alpha$	68578 71670#	19 120#	7480.10 7464#	0.08	β^+	2474 3090#	25 120#	247 073622 247 076940#	120#
146	101		Md	$-\alpha$	75940#	210#	7404# 7444#	1#	β^+	4260#	240#	247 070940#	220#
170	101		1410	u	, 57- τ 0π	210π	, 1771	111	Ρ	120011	2 TO11	27/ 001 <i>32</i> 0#	22011

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass ex (keV			ng energy eleon (keV)		Beta-decay (keV	0,	Atomic ma μu	ass
153	95	248	Am	+	70560#	200#	7487#	1#	β^-	3170#	200#	248 075750#	220#
152	96	2.0	Cm	·	67392.8	2.4	7496.728	0.010	β^-	-690#	70#	248 072349.1	2.5
151	97		Bk	IT	68080#	70#	7491#	0#	β^-	840#	70#	248 073090#	80#
150	98		Cf	$-\alpha$	67238	5	7491.043	0.021	P	*	,	248 072183	5
149	99		Es	$-\alpha$	70300#	50#	7476#	0#	$oldsymbol{eta}^+$	3060#	50#	248 075470#	60#
148	100		Fm		71898	8	7465.94	0.03	β^+	1600#	50#	248 077186	9
147	101		Md	$-\alpha$	77150#	240#	7442#	1#	β^+	5250#	240#	248 082820#	260#
146	102		No	$-\alpha$	80620#	220#	7424#	1#	$oldsymbol{eta}^+$	3470#	330#	248 086550#	240#
154	95	249	Am	x	73100#	300#	7479#	1#	eta^-	2350#	300#	249 078480#	320#
153	96		Cm	-n	70750.7	2.4	7485.550	0.010	β^-	904.3	2.6	249 075954.0	2.5
152	97		Bk	+	69846.4	1.2	7486.040	0.005	β^-	123.6	0.4	249 074983.2	1.3
151	98		Cf		69722.8	1.2	7483.394	0.005	•	*		249 074850.5	1.3
150	99		Es	$-\alpha$	71180#	30#	7474#	0#	β^+	1450#	30#	249 076410#	30#
149	100		Fm		73519	6	7461.864	0.025	β^+	2340#	30#	249 078926	7
148	101		Md	$-\alpha$	77230#	200#	7444#	1#	β^+	3710#	200#	249 082910#	220#
147	102		No	$-\alpha$	81780#	280#	7422#	1#	$oldsymbol{eta}^+$	4550#	340#	249 087800#	300#
154	96	250	Cm	-nn	72990	10	7478.94	0.04	$oldsymbol{eta}^-$	40	11	250 078358	11
153	97		Bk	$+\alpha$	72950	4	7475.967	0.015	β^-	1780	3	250 078315	4
152	98		Cf	$-\alpha$	71170.4	1.5	7479.956	0.006		*		250 076404.6	1.7
151	99		Es	_	73230#	100#	7469#	0#	eta^+	2060#	100#	250 078610#	110#
150	100		Fm		74072	8	7462.09	0.03	eta^+	850#	100#	250 079520	8
149	101		Md	$-\alpha$	78630#	300#	7441#	1#	eta^+	4560#	300#	250 084410#	320#
148	102		No	$-\alpha$	81560#	200#	7426#	1#	eta^+	2930#	360#	250 087560#	220#
155	96	251	Cm	+	76648	23	7466.72	0.09	$oldsymbol{eta}^-$	1420	20	251 082285	24
154	97		Bk	+	75228	11	7469.26	0.04	$oldsymbol{eta}^-$	1093	10	251 080761	12
153	98		Cf	$-\alpha$	74135	4	7470.500	0.016		*		251 079587	4
152	99		Es	$-\alpha$	74512	6	7465.881	0.024	β^+	377	7	251 079992	6
151	100		Fm	$+\alpha$	75954	15	7457.02	0.06	β^+	1442	16	251 081540	16
150	101		Md	$+\alpha$	78967	19	7441.90	0.08	β^+	3013	24	251 084774	20
149	102		No	IT	82850#	110#	7423#	0#	β^+	3880#	120#	251 088940#	120#
148	103		Lr	X	87730#	300#	7401#	1#	eta^+	4880#	320#	251 094180#	320#
156	96	252	Cm	X	79060#	300#	7460#	1#	β^-	520#	360#	252 084870#	320#
155	97		Bk	+	78540#	200#	7459#	1#	β^-	2500#	200#	252 084310#	220#
154	98		Cf	$-\alpha$	76034.6	2.4	7465.347	0.009	β^-	-1260	50	252 081626.5	2.5
153	99		Es	_	77290	50	7457.24	0.20	eta^-	480 *	50	252 082980	50
152 151	100		Fm	-lphaIT	76816 80510#	5 130#	7456.038	0.022 1#	$oldsymbol{eta}^+$	3700#	130#	252 082465	6
	101		Md	11			7438#	0.04	β^+	2360#		252 086430#	140#
150 149	102 103		No Lr	$-\alpha$	82871 88740#	9 240#	7425.80 7399#	1#	β^+	5870#	130# 240#	252 088966 252 095260#	10 260#
156	97	253	Bk	$-\alpha$	80930#	360#	7451#	1#	$oldsymbol{eta}^-$	1630#	360#	253 086880#	390#
155	98	200	Cf	$-\alpha$	79302	4	7454.829	0.017	β^-	291	4	253 085134	5
154	99		Es	$-\alpha$	79010.5	1.2	7452.887	0.005	Ρ	*	-	253 084821.3	1.3
153	100		Fm	$-\alpha$	79345.7	2.9	7448.470	0.012	$oldsymbol{eta}^+$	335.2	2.7	253 085181	3
152	101		Md	$-\alpha$	81170#	30#	7438#	0#	β^+	1830#	30#	253 087140#	30#
151	102		No	O.	84359	7	7422.471	0.027	β^+	3190#	30#	253 090563	7
150	103		Lr	$-\alpha$	88580#	200#	7403#	1#	β^+	4220#	200#	253 095090#	220#
149	104		Rf	$-\alpha$	93560#	410#	7380#	2#	$oldsymbol{eta}^+$	4980#	460#	253 100440#	440#
157	97	254	Bk	x	84390#	300#	7440#	1#	eta^-	3050#	300#	254 090600#	320#
156	98		Cf	$-\alpha$	81341	11	7449.23	0.05	β^-	-649	12	254 087324	12
155	99		Es	$-\alpha$	81991	4	7443.589	0.016	β^-	1088	3	254 088021	4
154	100		Fm	$-\alpha$	80902.8	2.4	7444.792	0.010	•	*		254 086852.7	2.6
153	101		Md	_	83450#	100#	7432#	0#	$oldsymbol{eta}^+$	2550#	100#	254 089590#	110#
152	102		No		84723	10	7423.59	0.04	β^+	1270#	100#	254 090954	10
151	103		Lr	$-\alpha$	89870#	300#	7400#	1#	$\dot{oldsymbol{eta}^+}$	5150#	300#	254 096480#	320#
150	104		Rf	$-\alpha$	93200#	280#	7384#	1#	$oldsymbol{eta}^+$	3330#	410#	254 100050#	300#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV			ng energy Eleon (keV)		Beta-deca		Atomic m μu	ass
157	98	255	Cf	+	84810#	200#	7438#	1#	β^-	720#	200#	255 091050#	220#
156	99	233	Es	$-\alpha$	84089	11	7437.82	0.04	β^-	290	10	255 090274	12
155	100		Fm	$-\alpha$	83800	4	7435.888	0.04	Р	270 *	10	255 089963	5
154	101		Md	$-\alpha$	84843	7	7428.729	0.026	β^+	1043	8	255 091083	7
153	102		No	X	86807	15	7417.96	0.06	β^+	1964	16	255 093191	16
152	103		Lr	X	89947	18	7402.58	0.07	β^+	3140	23	255 096562	19
151	103		Rf	$-\alpha$	94330#	120#	7382#	0.07	β^+	4380#	120#	255 101270#	120#
150	105		Db	$-\alpha$	99590#	360#	7359#	1#	β^+	5260#	380#	255 106920#	390#
158	98	256	Cf	$-\alpha$	87040#	310#	7432#	1#	eta^-	-150#	330#	256 093440#	340#
157	99		Es	+	87190#	100#	7428#	0#	$\dot{oldsymbol{eta}}^-$	1700#	100#	256 093600#	110#
156	100		Fm	$-\alpha$	85487	6	7431.780	0.022	•	*		256 091774	6
155	101		Md	IT	87460#	120#	7421#	0#	eta^+	1970#	120#	256 093890#	130#
154	102		No	$-\alpha$	87822	8	7416.55	0.03	$\dot{\beta}^+$	370#	120#	256 094281	8
153	103		Lr	x	91750	80	7398.2	0.3	$\dot{\beta}^+$	3920	80	256 098490	90
152	104		Rf	$-\alpha$	94222	18	7385.43	0.07	$\dot{\beta}^+$	2480	80	256 101152	19
151	105		Db	$-\alpha$	100500#	240#	7358#	1#	$m{eta}^+$	6280#	240#	256 107890#	260#
158	99	257	Es	$-\alpha$	89400#	410#	7422#	2#	β^-	810#	410#	257 095980#	440#
157	100		Fm	$-\alpha$	88590	4	7422.194	0.017		*		257 095105	5
156	101		Md	$-\alpha$	88993.1	1.6	7417.582	0.006	$oldsymbol{eta}^+$	403	5	257 095538.0	1.7
155	102		No	$-\alpha$	90247	7	7409.657	0.026	eta^+	1254	7	257 096884	7
154	103		Lr	$-\alpha$	92670#	40#	7397#	0#	eta^+	2420#	50#	257 099480#	50#
153	104		Rf	$-\alpha$	95866	11	7381.70	0.04	eta^+	3200#	50#	257 102917	12
152	105		Db	$-\alpha$	100210#	200#	7362#	1#	$oldsymbol{eta}^+$	4340#	200#	257 107580#	220#
159	99	258	Es	x	92700#	400#	7412#	2#	$oldsymbol{eta}^-$	2280#	450#	258 099520#	430#
158	100		Fm	$-\alpha$	90430#	200#	7418#	1#	eta^-	-1260#	200#	258 097080#	220#
157	101		Md	$-\alpha$	91687	4	7409.675	0.017	eta^-	210#	100#	258 098430	5
156	102		No	$-\alpha$	91480#	100#	7407#	0#		*		258 098210#	110#
155	103		Lr	$-\alpha$	94780#	100#	7392#	0#	β^+	3300#	140#	258 101750#	110#
154	104		Rf	$-\alpha$	96340	30	7382.54	0.12	$oldsymbol{eta}^+$	1560#	110#	258 103430	30
153	105		Db	$-\alpha$	101800#	310#	7358#	1#	eta^+	5460#	310#	258 109280#	330#
152	106		Sg	$-\alpha$	105240#	410#	7342#	2#	$oldsymbol{eta}^+$	3450#	510#	258 112980#	440#
159	100	259	Fm	$-\alpha$	93700#	280#	7407#	1#	$oldsymbol{eta}^-$	80#	350#	259 100600#	300#
158	101		Md	$-\alpha$	93620#	200#	7405#	1#		*		259 100510#	220#
157	102		No	$-\alpha$	94079	7	7399.974	0.025	β^+	450#	200#	259 100998	7
156	103		Lr	$-\alpha$	95850#	70#	7390#	0#	β^+	1770#	70#	259 102900#	80#
155	104		Rf	$-\alpha$	98360#	70#	7377#	0#	β^+	2510#	100#	259 105600#	80#
154	105		Db	$-\alpha$	101990	50	7360.36	0.20	β^+	3630#	90#	259 109490	60
153	106		Sg	$-\alpha$	106520#	120#	7340#	0#	$oldsymbol{eta}^+$	4530#	130#	259 114350#	120#
160	100	260	Fm	$-\alpha$	95770#	440#	7402#	2#	eta^-	-790#	540#	260 102810#	470#
159	101		Md	$-\alpha$	96550#	320#	7396#	1#	β^-	940#	370#	260 103650#	340#
158	102		No	$-\alpha$	95610#	200#	7397#	1#		*		260 102640#	220#
157	103		Lr	$-\alpha$	98280#	120#	7383#	0#	β^+	2670#	240#	260 105500#	130#
156	104		Rf	$-\alpha$	99150#	200#	7377#	1#	β^+	870#	240#	260 106440#	220#
155	105		Db	$-\alpha$	103670#	90#	7357#	0#	$\dot{oldsymbol{eta}^+}$	4530#	220#	260 111300#	100#
154	106		Sg	$-\alpha$	106548	21	7342.56	0.08	$oldsymbol{eta}^+$	2880#	100#	260 114384	22
153	107		Bh	$-\alpha$	113320#	250#	7313#	1#	$oldsymbol{eta}^+$	6780#	250#	260 121660#	260#
160	101	261	Md	$-\alpha$	98580#	510#	7391#	2#	eta^-	120#	550#	261 105830#	550#
159	102		No	$-\alpha$	98460#	200#	7388#	1#		*		261 105700#	220#
158	103		Lr	$-\alpha$	99560#	200#	7381#	1#	$oldsymbol{eta}^+$	1100#	280#	261 106880#	220#
157	104		Rf	$-\alpha$	101320	50	7371.38	0.19	β^+	1760#	210#	261 108770	50
156	105		Db	$-\alpha$	104310#	110#	7357#	0#	$oldsymbol{eta}^+$	2990#	120#	261 111980#	120#
155	106		Sg	$-\alpha$	108005	18	7339.77	0.07	β^+	3700#	110#	261 115948	20
154	107		Bh	$-\alpha$	113130#	210#	7317#	1#	$oldsymbol{eta}^+$	5130#	210#	261 121450#	220#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ling energy scleon (keV)		Beta-decay (keV		Atomic m. μu	ass
161	101	262	Md	$-\alpha$	101630#	500#	7382#	2#	β-	1530#	620#	262 109100#	540#
160	102	202	No	$-\alpha$	100100#	360#	7385#	1#	Ρ	*	02011	262 107460#	390#
159	103		Lr	$-\alpha$	102100#	200#	7374#	1#	β^+	2000#	410#	262 109610#	220#
158	103		Rf	$-\alpha$	102390#	220#	7370#	1#	β^+	290#	300#	262 109920#	240#
157	105		Db	$-\alpha$	102390#	140#	7370#	1#	β^+	3860#	270#	262 114070#	150#
156	105				108370	40	7332π 7341.19	0.14	β^+	2110#			40
155	107		Sg Bh	$-\alpha$ $-\alpha$	114540#	310#	7315#	0.14 1#	β^+	6180#	150# 310#	262 116340 262 122970#	330#
161	102	263	No	$-\alpha$	103130#	490#	7376#	2#		*		263 110710#	530#
160	103	203	Lr	$-\alpha$	103730#	280#	7371#	1#	β^+	600#	570#	263 111360#	300#
159	103		Rf	$-\alpha$	103750#	150#	7364#	1#	β^+	1030#	320#	263 111360#	160#
158	105		Db		104700#	170#	7352#	1#	β^+	2360#	230#	263 114990#	180#
				$-\alpha$			7332# 7337#						
157	106		Sg	$-\alpha$	110190#	100#		0#	β^+	3080#	190#	263 118290#	100#
156	107		Bh	$-\alpha$	114500#	310#	7318#	1#	β^+	4310#	320#	263 122920#	330#
155	108		Hs	$-\alpha$	119680#	130#	7295#	0#	eta^+	5180#	330#	263 128480#	130#
162	102	264	No	$-\alpha$	105010#	590#	7371#	2#	β^-	-1370#	730#	264 112730#	630#
161	103		Lr	$-\alpha$	106380#	440#	7363#	2#	$oldsymbol{eta}^-$	300#	570#	264 114200#	470#
160	104		Rf	$-\alpha$	106080#	360#	7361#	1#	0.1		420.0	264 113880#	390#
159	105		Db	$-\alpha$	109360#	240#	7346#	1#	β^+	3290#	430#	264 117410#	250#
158	106		Sg	$-\alpha$	110780#	280#	7338#	1#	β^+	1420#	370#	264 118930#	300#
157	107		Bh	$-\alpha$	116060#	180#	7315#	1#	β^+	5280#	330#	264 124590#	190#
156	108		Hs	$-\alpha$	119563	29	7298.38	0.11	$oldsymbol{eta}^+$	3510#	180#	264 128360	30
162	103	265	Lr	$-\alpha$	108230#	550#	7359#	2#		*		265 116190#	590#
161	104		Rf	$-\alpha$	108690#	360#	7354#	1#	eta^+	460#	660#	265 116680#	390#
160	105		Db	$-\alpha$	110480#	220#	7344#	1#	eta^+	1790#	420#	265 118610#	240#
159	106		Sg	$-\alpha$	112790#	120#	7333#	0#	eta^+	2310#	260#	265 121090#	130#
158	107		Bh	$-\alpha$	116420#	230#	7316#	1#	eta^+	3620#	260#	265 124980#	250#
157	108		Hs	$-\alpha$	120900	24	7296.25	0.09	β^+	4490#	240#	265 129792	26
156	109		Mt	$-\alpha$	126680#	450#	7271#	2#	$oldsymbol{eta}^+$	5780#	450#	265 136000#	480#
163	103	266	Lr	$-\alpha$	111620#	580#	7349#	2#	β^-	1550#	750#	266 119830#	630#
162	104		Rf	$-\alpha$	110080#	470#	7352#	2#		*		266 118170#	500#
161	105		Db	$-\alpha$	112740#	280#	7339#	1#	β^+	2660#	550#	266 121030#	300#
160	106		Sg	$-\alpha$	113620#	250#	7332#	1#	β^+	880#	370#	266 121970#	260#
159	107		Bh	$-\alpha$	118100#	160#	7313#	1#	β^+	4490#	290#	266 126790#	180#
158	108		Hs	$-\alpha$	121140	40	7298.27	0.15	$\dot{\beta}^+$	3030#	170#	266 130050	40
157	109		Mt	$-\alpha$	127960#	310#	7270#	1#	$m{eta}^+$	6830#	310#	266 137370#	330#
163	104	267	Rf	$-\alpha$	113440#	580#	7342#	2#		*		267 121790#	620#
162	105		Db	$-\alpha$	114070#	410#	7336#	2#	β^+	630#	710#	267 122460#	440#
161	106		Sg	$-\alpha$	115810#	260#	7327#	1#	$\dot{oldsymbol{eta}^+}$	1730#	490#	267 124320#	280#
160	107		Bh	$-\alpha$	118770#	260#	7313#	1#	$\dot{oldsymbol{eta}^+}$	2960#	370#	267 127500#	280#
159	108		Hs	$-\alpha$	122650#	100#	7295#	0#	$\dot{\beta}^+$	3890#	280#	267 131670#	100#
158	109		Mt	$-\alpha$	127790#	500#	7273#	2#	$\dot{oldsymbol{eta}^+}$	5140#	510#	267 137190#	540#
157	110		Ds	$-\alpha$	133880#	140#	7248#	1#	$m{eta}^+$	6090#	520#	267 143730#	150#
164	104	268	Rf	$-\alpha$	115480#	660#	7337#	2#	β^-	-1590#	850#	268 123970#	710#
163	105		Db	$-\alpha$	117060#	530#	7328#	2#	β^-	260#	710#	268 125670#	570#
162	106		Sg	$-\alpha$	116800#	470#	7326#	2#	,	*		268 125390#	500#
161	107		Bh	$-\alpha$	120810#	380#	7308#	1#	β^+	4010#	610#	268 129690#	410#
160	108		Hs	$-\alpha$	122830#	280#	7298#	1#	β^+	2020#	480#	268 131860#	300#
159	109		Mt	$-\alpha$	129150#	230#	7271#	1#	β^+	6320#	370#	268 138650#	250#
158	110		Ds	$-\alpha$	133650#	300#	7252#	1#	β^+	4500#	380#	268 143480#	320#
164	105	269	Db	$-\alpha$	119150#	620#	7323#	2#		*		269 127910#	670#
163	106		Sg	$-\alpha$	119760#	360#	7318#	1#	$oldsymbol{eta}^+$	610#	720#	269 128570#	390#
162	107		Bh	$-\alpha$	121480#	370#	7310#	1#	β^+	1720#	520#	269 130410#	400#
161	108		Hs	$-\alpha$	124560#	120#	7294#	0#	β^+	3090#	390#	269 133730#	130#
160	109		Mt	$-\alpha$	129370#	460#	7273#	2#	β^+	4810#	480#	269 138880#	500#
159	110		Ds	$-\alpha$	134830	30	7250.15	0.12	β^+	5470#	460#	269 144750	30
139	110		DS	$-\alpha$	124030	50	1230.13	0.12	P	J+70#	τυυπ	207 1 14 /30	50

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exc (keV)			ling energy scleon (keV)		Beta-deca		Atomic ma μu	ass
165	105	270	Db	$-\alpha$	122310#	620#	7314#	2#	β^-	820#	830#	270 131300#	660#
164	106	270	Sg	$-\alpha$	121490#	560#	7314#	2#	Ρ	*	05011	270 130430#	600#
163	107		Bh	$-\alpha$	124230#	290#	7301#	1#	$oldsymbol{eta}^+$	2740#	630#	270 133360#	310#
162	108		Hs	$-\alpha$	125110#	250#	7295#	1#	β^+	890#	380#	270 134310#	270#
161	109		Mt	$-\alpha$	130710#	170#	7271#	1#	β^+	5600#	300#	270 140320#	180#
160	110		Ds	$-\alpha$	134680	50	7253.77	0.18	β^+	3970#	180#	270 144580	50
165	106	271	Sg	$-\alpha$	124760#	590#	7305#	2#		*		271 133930#	630#
164	107		Bh	$-\alpha$	125920#	420#	7298#	2#	β^+	1160#	720#	271 135180#	450#
163	108		Hs	$-\alpha$	127740#	280#	7288#	1#	β^+	1820#	500#	271 137140#	300#
162	109		Mt	$-\alpha$	131100#	330#	7273#	1#	$\dot{oldsymbol{eta}^+}$	3360#	430#	271 140740#	350#
161	110		Ds	$-\alpha$	135950#	100#	7252#	0#	eta^+	4850#	340#	271 145950#	100#
166	106	272	Sg	$-\alpha$	126580#	730#	7301#	3#		*		272 135890#	780#
165	107		Bh	$-\alpha$	128790#	530#	7290#	2#	eta^+	2210#	900#	272 138260#	570#
164	108		Hs	$-\alpha$	129010#	510#	7286#	2#	β^+	220#	740#	272 138490#	550#
163	109		Mt	$-\alpha$	133580#	490#	7267#	2#	eta^+	4580#	700#	272 143410#	520#
162	110		Ds	$-\alpha$	136020#	410#	7255#	2#	β^+	2430#	640#	272 146020#	440#
161	111		Rg	$-\alpha$	142770#	230#	7227#	1#	β^+	6760#	470#	272 153270#	250#
167	106	273	Sg	X	130020#	500#	7291#	2#		*		273 139580#	540#
166	107		Bh	$-\alpha$	130630#	690#	7286#	3#	eta^+	620#	860#	273 140240#	740#
165	108		Hs	$-\alpha$	131890#	370#	7279#	1#	β^+	1260#	780#	273 141590#	390#
164	109		Mt	$-\alpha$	134710#	420#	7265#	2#	eta^+	2820#	560#	273 144620#	460#
163	110		Ds	$-\alpha$	138360#	130#	7249#	0#	β^+	3640#	450#	273 148530#	140#
162	111		Rg	$-\alpha$	142700#	530#	7231#	2#	eta^+	4340#	540#	273 153190#	570#
167	107	274	Bh	$-\alpha$	133680#	620#	7278#	2#	β^-	200#	860#	274 143510#	660#
166	108		Hs	$-\alpha$	133490#	590#	7276#	2#		*		274 143300#	640#
165	109		Mt	$-\alpha$	137250#	350#	7259#	1#	β^+	3760#	690#	274 147340#	380#
164	110		Ds	$-\alpha$	139200#	390#	7249#	1#	β^+	1950#	530#	274 149430#	420#
163	111		Rg	$-\alpha$	144610#	180#	7227#	1#	$m{eta}^+$	5420#	430#	274 155250#	190#
168	107	275	Bh	x	135690#	600#	7273#	2#		*		275 145670#	640#
167	108		Hs	$-\alpha$	136620#	590#	7267#	2#	β^+	930#	840#	275 146670#	630#
166	109		Mt	$-\alpha$	138830#	420#	7256#	2#	β^+	2210#	720#	275 149040#	450#
165	110		Ds	$-\alpha$	141570#	410#	7244#	1#	β^+	2740#	590#	275 151980#	440#
164	111		Rg	$-\alpha$	145300#	520#	7227#	2#	$oldsymbol{eta}^+$	3730#	660#	275 155980#	560#
168	108	276	Hs	$-\alpha$	138290#	750#	7264#	3#		*		276 148460#	810#
167	109		Mt	$-\alpha$	141320#	530#	7250#	2#	β^+	3030#	920#	276 151710#	570#
166	110		Ds	$-\alpha$	142540#	550#	7243#	2#	β^+	1230#	760#	276 153020#	590#
165	111		Rg	$-\alpha$	147490#	630#	7222#	2#	β^+	4950#	830#	276 158330#	680#
164	112		Cn	X	150350#	600#	7209#	2#	eta^+	2870#	870#	276 161410#	640#
169	108	277	Hs	$-\alpha$	141490#	540#	7255#	2#		*		277 151900#	580#
168	109		Mt	$-\alpha$	142970#	700#	7247#	3#	β^+	1480#	880#	277 153480#	750#
167	110		Ds	$-\alpha$	145140#	380#	7237#	1#	eta^+	2170#	800#	277 155820#	410#
166	111		Rg	$-\alpha$	148340#	520#	7222#	2#	eta^+	3200#	650#	277 159250#	560#
165	112		Cn	$-\alpha$	152400#	140#	7205#	1#	eta^+	4070#	540#	277 163610#	150#
169	109	278	Mt	$-\alpha$	145740#	620#	7240#	2#		*		278 156450#	670#
168	110		Ds	$-\alpha$	146380#	630#	7235#	2#	β^+	650#	880#	278 157150#	670#
167	111		Rg	$-\alpha$	150520#	360#	7218#	1#	β^+	4140#	720#	278 161590#	380#
166	112		Cn	$-\alpha$	152930#	440#	7206#	2#	β^+	2420#	570#	278 164180#	470#
165	113		Ed	$-\alpha$	158890#	180#	7182#	1#	$oldsymbol{eta}^+$	5960#	480#	278 170570#	200#
170	109	279	Mt	$-\alpha$	147500#	670#	7237#	2#		*		279 158340#	720#
169	110		Ds	$-\alpha$	149130#	600#	7228#	2#	β^+	1630#	900#	279 160090#	640#
168	111		Rg	$-\alpha$	151780#	420#	7216#	2#	β^+	2650#	730#	279 162940#	450#
167	112		Cn	$-\alpha$	155030#	460#	7202#	2#	β^+	3260#	620#	279 166430#	490#
166	113		Ed	X	159240#	700#	7184#	3#	$oldsymbol{eta}^+$	4210#	840#	279 170950#	750#

Table I. The 2012 Atomic mass table (continued, Explanation of Table on p. 030003-6)

N	Z	A	Elt.	Orig.	Mass exe (keV)			nding energy nucleon (keV)		Beta-deca		Atomic ma μu	ass
170	110	280	Ds	$-\alpha$	150520#	780#	7226#	3#		*		280 161590#	840#
169	111	200	Rg	$-\alpha$	153890#	530#	7212#	2#	eta^+	3370#	940#	280 165200#	570#
168	112		Cn	$-\alpha$	155700#	580#	7202#	2#	β^+	1810#	790#	280 167150#	630#
167	113		Ed	x	161140#	400#	7180#	1#	β^+	5440#	710#	280 177190#	430#
			_										
171	110	281	Ds	$-\alpha$	153430#	580#	7219#	2#		*		281 164720#	620#
170	111		Rg	$-\alpha$	155300#	810#	7210#	3#	β^+	1870#	990#	281 166720#	870#
169	112		Cn	$-\alpha$	158020#	390#	7197#	1#	β^+	2720#	890#	281 169640#	420#
168	113		Ed	X	161810#	300#	7181#	1#	eta^+	3790#	490#	281 173710#	320#
171	111	282	Rg	$-\alpha$	157800#	650#	7204#	2#		*		282 169410#	700#
170	112		Cn	$-\alpha$	158980#	660#	7197#	2#	$oldsymbol{eta}^+$	1180#	930#	282 170670#	700#
169	113		Ed	$-\alpha$	163730#	360#	7177#	1#	$oldsymbol{eta}^+$	4750#	750#	282 175770#	390#
172	111	283	Rg	$-\alpha$	159280#	700#	7202#	2#		*		283 171000#	750#
171	112	203	Cn	$-\alpha$	161490#	610#	7191#	2#	β^+	2210#	930#	283 173360#	650#
170	113		Ed	$-\alpha$	164710#	440#	7177#	2#	β^+	3220#	750#	283 176820#	470#
1,0	110		24	0.0	101/1011		, , , , , ,		P		700	200 170020	.,
172	112	284	Cn	$-\alpha$	162550#	810#	7190#	3#		*		284 174500#	870#
171	113		Ed	$-\alpha$	166590#	530#	7173#	2#	$oldsymbol{eta}^+$	4050#	970#	284 178840#	570#
170	114		Fl	$-\alpha$	168920#	660#	7162#	2#	eta^+	2330#	850#	284 181340#	700#
173	112	285	Cn	$-\alpha$	165170#	580#	7184#	2#		*		285 177320#	620#
172	113		Ed	$-\alpha$	167730#	810#	7173#	3#	β^+	2560#	1000#	285 180070#	870#
171	114		Fl	$-\alpha$	171000#	390#	7158#	1#	β^+	3270#	900#	285 183580#	420#
173	113	286	Ed	04	170010#	660#	7168#	2#		*		286 182520#	700#
173	113	280	Fl	$-lpha \ -lpha$	170010#	660#	7159#	2# 2#	β^+	1760#	930#	286 184410#	710#
									,				
174	113	287	Ed	$-\alpha$	171250#	730#	7167#	3#		*		287 183840#	780#
173	114		Fl	$-\alpha$	174070#	610#	7154#	2#	β^+	2830#	950#	287 186880#	660#
172	115		Ef	$-\alpha$	177900#	440#	7138#	2#	eta^+	3820#	750#	287 190980#	470#
174	114	288	Fl	$-\alpha$	175040#	810#	7154#	3#		*		288 187920#	870#
173	115		Ef	$-\alpha$	179770#	540#	7135#	2#	$oldsymbol{eta}^+$	4730#	970#	288 192990#	580#
175	114	289	Fl	$-\alpha$	177560#	580#	7148#	2#		*		289 190620#	630#
174	115	20)	Ef	$-\alpha$	180670#	810#	7135#	3#	$oldsymbol{eta}^+$	3100#	1000#	289 193950#	870#
173	116		Lv	$-\alpha$	184530#	490#	7119#	2#	$oldsymbol{eta}^+$	3860#	950#	289 198100#	530#
175	115	200	EC		102000#	66011	7120#	2"		*		200 10/250#	710
175	115	290	Ef	$-\alpha$	182890#	660#	7130#	2#	$oldsymbol{eta}^+$		020#	290 196350#	710#
174	116		Lv	$-\alpha$	185200#	660#	7120#	2#	p ·	2300#	930#	290 198820#	710#
176	115	291	Ef	$-\alpha$	183990#	780#	7130#	3#		*		291 197520#	840#
175	116		Lv	$-\alpha$	187390#	610#	7116#	2#	eta^+	3400#	1000#	291 201170#	660#
174	117		Eh	$-\alpha$	191800#	590#	7098#	2#	$oldsymbol{eta}^+$	4410#	850#	291 205910#	640#
176	116	292	Lv	$-\alpha$	188240#	810#	7116#	3#		*		292 202090#	870#
175	117		Eh	$-\alpha$	193580#	670#	7095#	2#	$oldsymbol{eta}^+$	5330#	1050#	292 207810#	720#
177	116	293	Lv	~	190670#	590#	7111#	2#		*		293 204690#	630#
176	117	493	Eh	$-lpha \\ -lpha$	194390#	390# 810#	7095#	2# 3#	eta^+	3720#	1000#	293 204690#	870#
175	117		Ei Ei	$-\alpha$ $-\alpha$	194390#	700#	7093# 7077#	2#	β^+	3720# 4490#	1070#	293 208080#	750#
4==	4	•			402	,,,	= 0	2"	•				
177	117	294	Eh	$-\alpha$	196520#	660#	7092#	2#	ο±	*	0.46"	294 210970#	710#
176	118		Ei	$-\alpha$	199460#	660#	7079#	2#	$oldsymbol{eta}^+$	2940#	940#	294 214130#	710#
177	118	295	Ei	$-\alpha$	201510#	640#	7075#	2#		*		295 216330#	690#

Table II. Influences on primary nuclides

EXPLANATION OF TABLE

This table gives for each of the 1207 primary nuclides the up to three most important contributing data and their *influences* $(\times 100)$ on its mass, as given by the flow-of-information matrix.

Nuclide	Nuclidic name (primaries only)								
Influence	Influence ($\times 100$) brought to the determination of the mass of the nuclide, by the piece of data represented by the equation in following column								
Equation	K^m , Cs^m , Cs^n , In nuclear reactions: In^p , Tl^q : $\varepsilon =$ electron capture, higher isomers, see NUBASE.	In mass-doublet equation: $H = {}^{1}H$, $N = {}^{14}N$, $D = {}^{2}H$, $O = {}^{16}O$, $C = {}^{12}C$, U = absolute mass-doublet.	In mass-triplet equation: Rb ^x , Rb ^y : different mixtures of isomers or contaminants.						

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
$0\pi^+$	100.0	π^+				
$0\pi^-$	99.6	$\pi^+(2\beta^+)\pi^-$				
1 n	100.0	$^{1}\mathrm{H}(\mathrm{n},\gamma)^{2}\mathrm{H}$				
¹ H	43.8	$H_{12}-C$	24.4	H_2-D	16.5	$C_2 H_4 - {}^{28}Si$
^{2}H	78.0	D_6-C	7.8	H_2-D	3.2	$C D_3 - {}^{18}O$
^{3}H	100.0	$^{3}\mathrm{H}-^{3}\mathrm{He}$				
³ He	100.0	³ He–H D				
⁴ He	100.0	4 He $_3$ -C				
⁶ He	100.0	6 He $-^{7}$ Li _{.857}				
⁶ Li	100.0	6 Li ₂ -C				
⁷ Li	99.8	7 Li $-$ H $_{7}$	0.1	7 Li $(n,\gamma)^{8}$ Li	0.1	8 He $-^{7}$ Li _{1.143}
$^{7}\mathrm{Li}^{i}$	61.0	9 Be(p, 3 He) 7 Li i	39.0	$^{6}\mathrm{Li}(\mathrm{n},\gamma)^{7}\mathrm{Li}^{i}$		
⁷ Be	100.0	7 Li(p,n) 7 Be				
⁸ He	74.9	$^{8}\text{He}-^{7}\text{Li}_{1.143}$	25.1	8 He $-^{6}$ Li _{1.333}		
⁸ Li	78.7	7 Li $(n,\gamma)^{8}$ Li	21.3	$^{8}\text{Li}-^{6}\text{Li}_{1.333}$		
8 Be j	57.1	10 Be(p,t) 8 Be ^{j}	42.9	$^{6}\text{Li}(d,\gamma)^{8}\text{Be}^{j}$		
^{8}B	100.0	6 Li(3 He,n) 8 B				
⁸ C	62.5	$^{12}\text{C}(\alpha,^{8}\text{He})^{8}\text{C}$	37.5	⁸ C-u		
⁹ He	56.2	9 He(γ ,n) 8 He	43.8	$^{9}\text{Be}(\pi^{-},\pi^{+})^{9}\text{He}$		
⁹ Be	67.1	$^{9}\text{Be}-^{7}\text{Li}_{1.286}$	32.9	9 Be(n, γ) 10 Be		
¹⁰ Be	55.6	9 Be(n, γ) 10 Be	44.4	10 Be $-^{7}$ Li _{1.429}		
$^{10}{ m B}$	100.0	$^{10}B-u$				
10 C	67.2	$^{10}C - ^{10}B$	32.8	$^{10}B(p,n)^{10}C$		
¹¹ Be	83.1	11 Be $-^{6}$ Li _{1.833}	16.9	$^{11}\text{Be}-^{7}\text{Li}_{1.571}$		
¹¹ B	100.0	¹¹ B-u		11071		
11 B i	79.1	$^{9}\text{Be}(^{3}\text{He,p})^{11}\text{B}^{i}$	20.9	$^{7}\mathrm{Li}(\alpha,\gamma)^{11}\mathrm{B}^{i}$		
¹¹ C	100.0	$^{11}C^{-14}N_{.786}$		(),		
$^{11}C^i$	50.0	$^{11}\text{B}(^{3}\text{He,t})^{11}\text{C}^{i}$	50.0	9 Be(3 He,n) 11 C i		
¹² Be	79.4	¹² Be-C	20.6	10 Be(t,p) 12 Be		
^{12}B	89.1	$^{14}C(d,\alpha)^{12}B$	10.9	$^{11}B(d,p)^{12}B$		
$^{12}\mathrm{B}^i$	86.3	$^{14}\text{C}(p, ^{3}\text{He})^{12}\text{B}^{i}$	13.7	$^{9}\mathrm{Be}(^{7}\mathrm{Li},\alpha)^{12}\mathrm{B}^{i}$		
$^{12}C^i$	69.2	$^{11}B(d,n)^{12}C^{i}$	30.8	$^{10}\text{B}(^{3}\text{He,p})^{12}\text{C}^{i}$		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹² N	100.0	$^{14}N(p,t)^{12}N$				
¹³ C	78.6	$^{13}\text{C H}-^{14}\text{N}$	20.8	$^{13}\text{C}_2\text{ H}_2 - ^{28}\text{Si}$	0.5	$^{13}C D_3 - ^{19}F$
¹³ N	100.0	$^{12}\mathrm{C}(\mathrm{p},\gamma)^{13}\mathrm{N}$		2 2		3
^{14}B	100.0	$^{14}\text{C}(^{7}\text{Li}, ^{7}\text{Be})^{14}\text{B}$				
¹⁴ C	80.0	$^{14}C\ H_2 - N\ D$	20.0	$C D_2 - {}^{14}C H_2$		
¹⁴ N	81.3	N_2 -C O	15.5	$^{13}C\ H-^{14}N$	1.2	86 Kr $-N_6$
¹⁴ O	100.0	$^{14}O-^{14}N$				
^{15}B	88.4	$^{18}O(^{48}Ca,^{51}V)^{15}B$	11.6	$^{16}\mathrm{B}(\gamma,\mathrm{n})^{15}\mathrm{B}$		
¹⁵ N	60.9	$CDH^{-15}N$	26.2	$^{15}N_2 - ^{28}Si H_2$	13.0	$C H_3 - ^{15}N$
¹⁵ O	70.3	$^{15}N(p,n)^{15}O$	29.7	$^{14}N(p,\gamma)^{15}O$		
¹⁶ B	83.2	$^{16}\mathrm{B}(\gamma,\mathrm{n})^{15}\mathrm{B}$	16.8	$^{14}\text{C}(^{14}\text{C},^{12}\text{N})^{16}\text{B}$		
¹⁶ O	92.8	C_4-O_3	3.5	$O_2 - {}^{31}PH$	1.4	$^{32}S-O_2$
$^{16}\mathrm{O}^i$	54.4	$^{14}N(^{3}He,p)^{16}O^{i}$	45.6	$^{15}\mathrm{N}(\mathrm{p},\gamma)^{16}\mathrm{O}^i$		
$^{16}\mathrm{O}^{j}$	77.0	14 N(d, γ) 16 O ^{j}	23.0	$^{14}\text{C}(^{3}\text{He,n})^{16}\text{O}^{j}$		
¹⁷ O	81.7	$^{17}\text{O}_2 - ^{28}\text{Si D}_3$	18.3	$^{17}O-^{16}OH$		
¹⁷ F	100.0	$^{16}O(p,\gamma)^{17}F$				
¹⁷ Ne	100.0	17 Ne $-^{22}$ Ne _{.773}		10		
¹⁸ O	84.1	$CD_3 - {}^{18}O$	15.9	$C_3 - {}^{18}O_2$		
¹⁸ F	59.6	$^{17}O(p,\gamma)^{18}F$	40.4	$^{18}O(p,n)^{18}F$		
¹⁸ Ne	99.9	18 Ne $-^{22}$ Ne _{.818}	0.1	$^{22}\mathrm{Mg}^{i}(\alpha)^{18}\mathrm{Ne}$		
¹⁸ Na	69.7	18 Na(p) 17 Ne	30.3	¹⁸ Na-u		
¹⁹ F	84.5	$^{13}\text{C D}_3 - ^{19}\text{F}$	15.5	28 Si H ₃ -C 19 F		
¹⁹ Na	77.1	24 Mg(3 He, 8 Li) 19 Na	22.9	19 Na(p) 18 Ne		
²⁰ Ne	60.5	$^{20}\text{Ne}_2 - ^{40}\text{Ar}$	39.5	$C D_4 - {}^{20}Ne$		
²⁰ Na	100.0	20 Ne(3 He,t) 20 Na $-^{36}$ Ar() 36 K				
²¹ Ne	100.0	20 Ne(n, γ) 21 Ne				
²¹ Na	100.0	21 Na $^{-21}$ Ne		46m, 22. r		16 22
²² Ne	98.9	²² Ne-u	0.5	$^{46}\text{Ti} - ^{22}\text{Ne}_{2.091}$	0.3	$^{46}V - ^{22}Ne_{2.091}$
²² Na	30.8	22 Na $^{-22}$ Ne	17.8	22 Na $^{-23}$ Na $_{.957}$	16.6	22 Na $^{-39}$ K.564
²² Mg	40.9	$^{22}\text{Mg} - ^{39}\text{K}_{.564}$	38.0	22 Mg $^{-22}$ Na	21.1	22 Mg $^{-22}$ Ne
$^{22}\mathrm{Mg}^i$ $^{23}\mathrm{F}$	60.1	22 Mg ⁱ (α) ¹⁸ Ne	22.8	$^{22}\text{Mg}^{i}(2p)^{20}\text{Ne}$	17.1	$^{22}\text{Mg}^i(p)^{21}\text{Na}$
²³ F ²³ Na	86.3	$^{23}F-u$	13.7	22 Ne(18 O, 17 F) 23 F		
²⁴ Mg	100.0	²³ Na-u	1.0	243.6 ()253.6	0.1	²² Na- ²⁴ Mg _{.917}
²⁵ Ne	98.1	24 Mg $-$ H ₂₄	1.9	$^{24}{ m Mg}({ m n},\gamma)^{25}{ m Mg}$ $^{26}{ m Mg}(^7{ m Li},^8{ m B})^{25}{ m Ne}$	0.1	22Na-21Mg _{.917}
²⁵ Mg	57.8	25 Ne-u 25 Mg(n, γ) 26 Mg	42.2	24M=("L1,"B)="Ne	11.2	25 N J = (= 4) 26 A 1
²⁵ Al	45.7 100.0	$^{25}\text{Al}-^{25}\text{Mg}$	43.1	24 Mg(n, γ) 25 Mg	11.2	25 Mg(p, γ) 26 Al
$^{25}\text{Al}^i$	84.7	$^{25}\text{Al}^i(\text{IT})^{25}\text{Al}$	15.3	27 Al(p,t) 25 Al ⁱ		
²⁶ Mg	84.7 88.9	26M ₂ H	8.9	25 Mg(n, γ) 26 Mg	0.0	$^{26}\text{Al}-^{26}\text{Mg}$
²⁶ Al	64.1	26 Mg $-$ H $_{26}$ 25 Mg(p, γ) 26 Al	15.0	$^{26}\text{Al}-^{26}\text{Mg}$	0.9 14.9	$^{26}\text{Al}^m(\text{IT})^{26}\text{Al}$
$^{26}\text{Al}^m$	84.5	$^{26}\text{Al}^m(\text{IT})^{26}\text{Al}$	15.5	$^{26}\text{Al}^m - ^{26}\text{Mg}$	14.9	Al (II) Al
²⁷ Al	88.5	$^{27}\text{Al}-^{23}\text{Na}_{1.174}$	11.4	$AI - Mg$ $^{27}Al(p,\gamma)^{28}Si$		
$^{27}\mathrm{Si}^i$	78.7	18 Si(3 He, α) 27 Si ⁱ	21.3	29 Si(p,t) 27 Si ⁱ		
²⁸ Si	37.9	$C_2 H_4 - {}^{28}Si$	34.3	$^{13}\text{C}_2 \text{ H}_2 - ^{28}\text{Si}$	17.2	$^{31}P-^{28}Si~H_{3}$
²⁸ P	100.0	$^{28}\text{Si}(^{3}\text{He,t})^{28}\text{P}-^{36}\text{Ar}()^{36}\text{K}$	J + .J	C ₂ 11 ₂ - 31	1/.4	1 — 31113
²⁹ Na	63.3	$^{29}\text{Na}-^{39}\text{K}_{.744}$	36.7	29 Na $-$ u		
²⁹ Si	100.0	²⁹ Si ⁻²⁸ Si H	50.1	11a u		
²⁹ P	59.4	²⁹ P ⁴⁰ Ar-u	40.2	28 Si $(p,\gamma)^{29}$ P	0.4	$^{29}P^{i}(IT)^{29}P$
$^{29}P^i$	75.8	$^{29}P^{i}(IT)^{29}P$	24.2	$^{28}\mathrm{Si}(\mathrm{p},\gamma)^{29}\mathrm{P}^i$	5.1	1 (11) 1
³⁰ Ne	72.5	³⁰ Ne-u	27.5	30 Ne(n, γ) 31 Ne		
³⁰ Na	82.1	30 Na $-O_{1.876}$	17.9	30 Na $-^{39}$ K _{.769}		
³¹ Ne	67.3	30 Ne(n, γ) 31 Ne	32.7	³¹ Ne-u		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
³¹ P	60.7	O ₂ - ³¹ P H	39.3	³¹ P- ²⁸ Si H ₃		
^{31}S	96.9	$^{31}S - ^{31}P$	3.1	$^{32}\text{Cl}(p)^{31}\text{S}$		
^{32}S	51.7	$^{32}S-C_2D_4$	48.3	$^{32}S-O_{2}$		
³² Cl	76.3	$^{32}\text{Cl(p)}^{\bar{3}1}\text{S}$	23.7	$^{32}S(^{3}He,t)^{32}Cl-^{36}Ar()^{36}K$		
^{33}S	100.0	$^{33}S - ^{32}SH$				
³³ Cl	79.9	32 S(p, γ) 33 Cl	20.1	$^{33}\text{Cl}^i(\text{IT})^{33}\text{Cl}$		
$^{33}\text{Cl}^i$	63.1	$^{33}\text{Cl}^i(\text{IT})^{33}\text{Cl}$	36.9	32 S(p, γ) 33 Cl ⁱ		
^{34}S	46.4	34 S(n, γ) 35 S	23.7	33 S(n, γ) 34 S	18.0	$^{34}\text{Cl}-^{34}\text{S}$
³⁴ Cl	48.4	33 S(p, γ) 34 Cl	31.0	$^{34}\text{Cl} - ^{34}\text{S}$	18.4	$^{34}\text{Cl}^m(\text{IT})^{34}\text{Cl}$
$^{34}\text{Cl}^m$	65.1	$^{34}\text{Cl}^m(\text{IT})^{34}\text{Cl}$	30.7	$^{34}\text{Cl}^m - ^{34}\text{S}$	4.2	$^{34}\text{Cl}^m - ^{34}\text{Ar}$
³⁴ Ar	52.0	$^{34}Ar - ^{34}Cl$	35.1	$^{34}\text{Cl}^m - ^{34}\text{Ar}$	12.9	$^{34}S - ^{34}Ar$
^{35}S	71.4	$^{35}S(\beta^{-})^{35}C1$	28.6	34 S(n, γ) 35 S		
³⁵ Cl	55.8	C_3 $-$ ³⁵ Cl H	19.5	$^{35}S(\beta^{-})^{35}C1$	15.3	$C_5 H_{10} - {}^{35}Cl_2$
^{36}S	63.6	36 S(p, γ) 37 Cl	36.4	36 S(p,n) 36 Cl		
³⁶ Cl	99.1	35 Cl $(n,\gamma)^{36}$ Cl	0.9	$^{36}S(p,n)^{36}Cl$		
³⁶ Ar	100.0	³⁶ Ar–u				
^{36}K	92.8	$^{36}K - ^{39}K_{.923}$	7.2	$^{32}S(^{3}He,t)^{32}Cl - ^{36}Ar()^{36}K$		
³⁷ Cl	85.2	$C_3 H_6 O_2 - {}^{37}Cl_2$	9.2	$C_5 H_{12} - {}^{35}Cl {}^{37}Cl$	1.8	36 S(p, γ) 37 Cl
³⁸ Ar	32.0	$^{38}Ar - ^{39}K_{974}$	27.4	38 K m - 38 Ar	23.5	$^{38}K - ^{38}Ar$
^{38}K	26.5	$^{38}K - ^{38}Ar$	26.1	$^{38}K^{m}-^{38}K$	24.6	$^{38}\text{Ca} - ^{38}\text{K}$
$^{38}K^m$	44.5	$^{38}K^{m}-^{38}Ar$	34.0	$^{38}K^{m}-^{38}K$	21.5	$^{38}K^{m}-^{38}Ca$
³⁸ Ca	48.4	38 Ca $-$ H ₆ O ₂	20.5	$^{38}\text{Ca}-^{38}\text{K}$	15.8	$^{38}K^{m}-^{38}Ca$
³⁹ K	99.8	$^{39}K - ^{40}Ar$	0.1	39 K(n, γ) 40 K	0.1	$^{48}\text{Ca} - ^{39}\text{K}_{1.231}$
³⁹ Ca	100.0	39 Ca 19 F $-^{39}$ K _{1.487}				
40 S	79.3	$^{40}S^{-40}Ar$	20.7	$^{40}S - ^{41}K_{.976}$		
⁴⁰ Ar	46.2	$C_3 H_4 - ^{40}Ar$	32.9	$C_2 D_8 - {}^{40}Ar$	13.5	$^{20}\text{Ne}_2 - ^{40}\text{Ar}$
⁴⁰ K	60.9	39 K(n, γ) 40 K	39.1	40 K(n, γ) 41 K		
⁴⁰ Ca	98.9	40 Ca $-$ H $_{40}$	1.1	$^{48}\text{Ca} - ^{40}\text{Ca}_{1.200}$		
⁴¹ K	99.9	$^{41}{ m K}{}^{-40}{ m Ar}{ m H}$	0.1	40 K(n, γ) 41 K		
⁴¹ Ca	99.6	40 Ca(n, γ) 41 Ca	0.4	41 Ca(n, γ) 42 Ca		
⁴¹ Sc	79.2	40 Ca(p, γ) 41 Sc	20.8	$^{41}\mathrm{Sc}^{r}(\mathrm{IT})^{41}\mathrm{Sc}$		
$^{41}\mathrm{Sc}^r$	72.4	$^{41}\mathrm{Sc}^{r}(\mathrm{IT})^{41}\mathrm{Sc}$	27.6	41 Ca(p, γ) 42 Sc r - 40 Ca() 41 Sc r		
⁴² Ca	90.3	41 Ca(n, γ) 42 Ca	3.4	42 Sc $^{-42}$ Ca	2.9	42 Sc m - 42 Ca
⁴² Sc	49.6	42 Sc r (IT) 42 Sc	18.9	42 Sc $^{-42}$ Ca	16.5	42 Sc m (IT) 42 Sc
$^{42}\mathrm{Sc}^m$	76.3	42 Sc m (IT) 42 Sc	21.8	$^{42}\mathrm{Sc}^m - ^{42}\mathrm{Ca}$	2.0	$^{42}\text{Ti}-^{42}\text{Scm}$
$^{42}\mathrm{Sc}^r$	66.0	41 Ca(p, γ) 42 Sc r - 40 Ca() 41 Sc r	34.0	42 Sc r (IT) 42 Sc		
⁴² Ti	48.8	^{42}Ti $-^{42}\text{Sc}$	38.5	$^{42}\text{Ti}-^{42}\text{Sc}^m$	12.7	$^{42}\text{Ti}-^{42}\text{Ca}$
⁴³ Ca	98.8	42 Ca(n, γ) 43 Ca	1.1	43 Ca(n, γ) 44 Ca		
43 Ca ⁱ	76.8	44 Ca(p,d) 43 Ca ⁱ	23.2	$^{41}\text{K}(^{3}\text{He,p})^{43}\text{Ca}^{i}$		
$^{43}\mathrm{Sc}^{i}$	83.3	$^{43}\text{Ca}(^{\bar{3}}\text{He,t})^{43}\text{Sc}^{i}$	16.7	$^{42}\text{Ca}(^{3}\text{He,d})^{43}\text{Sc}^{i}$		
$^{43}V^{i}$	88.8	$^{43}V^{i}(2p)^{41}Sc$	11.2	$^{43}V^{i}(p)^{42}Ti$		
⁴⁴ Ca	97.5	43 Ca(n, γ) 44 Ca	2.3	44 Ca(n, γ) 45 Ca	0.2	⁴⁴ Ca(³ He,t) ⁴⁴ Sci
$^{44}\mathrm{Sc}^{i}$	75.6	44 Ca(3 He,t) 44 Sc i	24.4	43 Ca(3 He,d) 44 Sc i		
⁴⁵ Ca	97.0	44 Ca(n, γ) 45 Ca	3.0	45 Ca(β^-) 45 Sc		
⁴⁵ Sc	87.9	45 Sc $(p,\gamma)^{46}$ Ti	11.0	45 Ca(β^-) 45 Sc	1.1	45 Sc(3 He,t) 45 Tii
⁴⁵ Ti	100.0	45 Sc(p,n) 45 Ti		45		
⁴⁵ Ti ⁱ	60.3	45 Sc($^{\bar{3}}$ He,t) 45 Ti i	39.7	46 Ti(p,d) 45 Ti ^{i}		
45 V	100.0	$^{45}V - ^{45}Ti$		46 0 46 1		
⁴⁶ Ca	90.4	46 Ca(n, γ) 47 Ca	9.6	$^{46}\text{Ca}(^{3}\text{He,t})^{46}\text{Sc}^{i}$		
$^{46}\mathrm{Sc}^{i}$	62.6	46 Ca(3 He,t) 46 Sc i	37.4	48 Ti(p, 3 He) 46 Sc i		
⁴⁶ Ti	33.1	$^{46}\text{Ti}(p,\gamma)^{47}\text{V}$	33.1	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{47}\text{Ti}()^{47}\text{V}$	25.2	$^{46}\text{Ti}(d,p)^{47}\text{Ti}-^{48}\text{Ti}()^{49}\text{Ti}$
^{46}V	100.0	$^{46}V_{-}^{-46}T_{1}$	13.8	$^{46}V - ^{22}Ne_{2.091}$	0.1	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{48}\text{Ti}()^{48}\text{Vxi}$

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
⁴⁶ Cr	67.2	⁴⁶ Cr-u	32.8	³² S(¹⁶ O,2n) ⁴⁶ Cr		
⁴⁷ Ca	90.5	47 Ca(β^{-}) 47 Sc	9.5	46 Ca(n, γ) 47 Ca		
⁴⁷ Sc	93.0	$^{47}\text{Sc}(\beta^{-})^{47}\text{Ti}$	7.0	$^{47}\text{Ca}(\beta^{-})^{47}\text{Sc}$		
⁴⁷ Ti	90.7	$^{47}\mathrm{Ti}(\mathrm{n},\gamma)^{48}\mathrm{Ti}$	3.5	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{47}\text{Ti}()^{47}\text{V}$	3.4	46 Ti(d,p) 47 Ti $-^{48}$ Ti() 49 Ti
^{47}V	61.0	$^{46}\mathrm{Ti}(\mathrm{p},\gamma)^{47}\mathrm{V}$	39.0	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{47}\text{Ti}()^{47}\text{V}$		
⁴⁷ Cr	56.7	⁴⁷ Cr–u	24.8	48 Mn ⁱ (p) 47 Cr	18.5	50 Cr(3 He, 6 He) 47 Cr
⁴⁸ Ca	23.0	⁴⁸ Ti- ⁴⁸ Ca	22.1	$^{48}\text{Ca} - ^{\bar{4}1}\text{K}_{1.171}$	22.1	$^{48}\text{Ca} - ^{39}\text{K}_{1.231}$
⁴⁸ Sc	50.0	48 Ca(p,n) 48 Sc	50.0	48 Sc(β^{-}) 48 Ti		
⁴⁸ Ti	64.8	$^{48}\text{Ti} - ^{48}\text{Ca}$	26.1	$^{48}\text{Ti}-\text{N}\ ^{18}\text{O}\ \text{O}$	8.3	$^{47}\mathrm{Ti}(\mathrm{n},\gamma)^{48}\mathrm{Ti}$
^{48}V	89.6	$^{48}V^{i}(IT)^{48}V$	10.4	$^{48}{ m V}(eta^+)^{48}{ m Ti}$		
$^{48}V^{i}$	99.5	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{48}\text{Ti}()^{48}\text{V}^{i}$	0.5	$^{48}V^{i}(IT)^{48}V$		
⁴⁸ Mn	55.5	48 Mn $-$ u	44.5	$^{48}\mathrm{Mn}^{i}(\mathrm{IT})^{48}\mathrm{Mn}$		
$^{48}\mathrm{Mn}^i$	55.1	48 Mn ⁱ (IT) 48 Mn	44.9	48 Mn ⁱ (p) 47 Cr		
⁴⁹ Sc	70.9	48 Ca(p, γ) 49 Sc	29.1	$^{49}\text{Sc}(\beta^{-})^{49}\text{Ti}$		
⁴⁹ Ti	100.0	$^{48}\text{Ti}(n,\gamma)^{49}\text{Ti}$				
⁴⁹ Cr	100.0	50 Cr(d,t) 49 Cr				
⁴⁹ Mn	100.0	49 Mn $-^{49}$ Cr				
⁵⁰ Ti	100.0	$^{49}\mathrm{Ti}(\mathrm{n},\gamma)^{50}\mathrm{Ti}$				
$50V^{i}$	100.0	$^{46}\text{Ti}(^{3}\text{He,t})^{46}\text{V} - ^{50}\text{Ti}()^{50}\text{V}^{i}$				
⁵⁰ Cr	86.8	50 Cr(n, γ) 51 Cr	13.1	50 Cr(p, γ) 51 Mn	0.1	50 Cr(3 He, 6 He) 47 Cr
50Mn	52.0	50 Mn $-^{50}$ Cr	36.5	$^{50}{\rm Mn}^{m}{-}^{50}{\rm Mn}$	11.5	50 Cr(3 He,t) 50 Mn $-^{54}$ Fe() 54 Co
50 Mn m	81.2	50 Mn m - 50 Cr	18.8	$^{50}{\rm Mn}^m - ^{50}{\rm Mn}$		
^{51}V	53.6	$^{51}V - ^{39}K_{1.308}$	39.4	$^{51}V(p,n)^{51}Cr$	7.0	$^{51}Cr-^{51}V$
⁵¹ Cr	43.2	$^{51}\text{Cr}-^{39}\text{K}_{1.308}$	39.1	$^{51}V(p,n)^{51}Cr$	10.8	50 Cr(n, γ) 51 Cr
⁵¹ Mn	81.5	50 Cr(p, γ) 51 Mn	18.5	54 Fe(p, α) 51 Mn		
⁵¹ Fe	64.3	⁵¹ Fe-u	35.7	54 Fe(3 He, 6 He) 51 Fe		
⁵² Cr	57.7	$^{52}\text{Cr}-^{39}\text{K}_{1.333}$	33.2	52 Cr(n, γ) 53 Cr	9.0	52 Cr(p, γ) 53 Mn
52Mn	96.9	54 Fe(d, α) 52 Mn	3.1	52 Fe(β^+) 52 Mn		
⁵² Fe	61.4	52 Fe(β^+) 52 Mn	38.6	53 Co m (p) 52 Fe		
⁵³ Cr	62.0	52 Cr(n, γ) 53 Cr	38.0	53 Cr(n, γ) 54 Cr		
⁵³ Mn	76.6	52 Cr(p, γ) 53 Mn	23.4	56 Fe(p, α) 53 Mn		
⁵³ Fe	97.6	54 Fe(d,t) 53 Fe	1.4	$^{53}\text{Co}^{m} - ^{53}\text{Fe}$	1.0	53 Co $-^{53}$ Fe
⁵³ Co	93.2	53 Co $-^{53}$ Fe	6.8	$^{53}\text{Co}^{m} - ^{53}\text{Co}$		
53 Co m	57.7	53 Co m - 53 Fe	39.1	$^{53}\text{Co}^{m} - ^{53}\text{Co}$	3.2	53 Co m (p) 52 Fe
⁵⁴ Cr	58.3	53 Cr(n, γ) 54 Cr	41.7	54 Cr(p, γ) 55 Mn	0.1	⁵⁴ Cr(³ He,t) ⁵⁴ Mni
$^{54}\mathrm{Mn}^i$	51.3	52 Cr(3 He,p) 54 Mn i	48.7	54 Cr(3 He,t) 54 Mn i		
⁵⁴ Fe	71.4	54 Fe(n, γ) 55 Fe	18.4	54 Fe(p, γ) 55 Co	9.1	54 Fe(p, α) 51 Mn
⁵⁴ Co	46.9	54 Co $-^{54}$ Fe	29.7	54 Co m - 54 Co	23.5	50 Cr(3 He,t) 50 Mn- 54 Fe() 54 Co
$^{54}\mathrm{Co}^m$	80.8	54 Co ^{m} - 54 Fe	19.2	54 Co m - 54 Co		
⁵⁵ Ti	52.2	$^{55}\text{Ti}(\beta^{-})^{55}\text{V}$	47.8	⁵⁵ Ti-u		
55 _V	90.4	$^{55}V(\beta^{-})^{55}Cr$	9.6	$^{55}\text{Ti}(\beta^{-})^{55}\text{V}$		
⁵⁵ Cr	100.0	54 Cr(n, γ) 55 Cr		•		
⁵⁵ Mn	44.1	55 Mn(p, γ) 56 Fe	21.3	54 Cr(p, γ) 55 Mn	15.0	55 Mn $-^{85}$ Rb _{.647}
⁵⁵ Fe	81.8	55 Fe(ε) 55 Mn	18.2	54 Fe(n, γ) 55 Fe		/
⁵⁵ Co	55.3	54 Fe(p, γ) 55 Co	33.0	$^{56}\text{Ni}-^{55}\text{Co}_{1.018}$	11.6	58 Ni(p, α) 55 Co
⁵⁶ Ti	90.2	⁵⁶ Ti-u	9.8	$^{56}\text{Ti}(\beta^{-})^{56}\text{V}$		-
^{56}V	75.0	$^{56}V-u$	25.0	$^{56}\text{Ti}(\beta^{-})^{56}\text{V}$		
⁵⁶ Fe	42.1	55 Mn(p, γ) 56 Fe	27.3	56 Fe $-^{85}$ Rb _{.659}	15.8	56 Fe(n, γ) 57 Fe
⁵⁶ Co	50.8	⁵⁶ Co- ⁵⁸ Ni _{.966}	49.2	56 Ni $^{-56}$ Co		• • • •
⁵⁶ Ni	39.7	$^{56}\text{Ni}-^{56}\text{Fe}$	27.1	⁵⁶ Ni- ⁵⁵ Co _{1 018}	17.8	56 Ni $^{-56}$ Co
⁵⁷ Mn	49.3	57 Mn $-^{85}$ Rb _{.671}	33.3	$^{57}\text{Mn} - ^{39}\text{K}_{1.462}$	17.4	55 Mn(t,p) 57 Mn
⁵⁷ Fe	83.2	56 Fe(n, γ) 57 Fe	10.3	57 Fe(n, γ) 58 Fe	5.3	⁵⁷ Fe- ⁵⁸ Ni _{.983}

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
⁵⁷ Co	33.1	60 Ni(p, α) 57 Co	28.5	⁵⁶ Fe(p,γ) ⁵⁷ Co	28.3	⁵⁸ Fe(p,γ) ⁵⁹ Co- ⁵⁶ Fe() ⁵⁷ Co
⁵⁷ Ni	50.1	$^{57}\text{Ni}-^{58}\text{Ni}_{.983}$	49.9	⁵⁷ Cu- ⁵⁷ Ni		11(4,1)
⁵⁷ Cu	47.9	$^{57}\text{Cu}-^{56}\text{Ni}_{1.018}$	28.5	⁵⁷ Cu- ⁵⁷ Fe	23.6	⁵⁷ Cu- ⁵⁷ Ni
⁵⁸ Fe	82.4	57 Fe(n, γ) 58 Fe	13.4	58 Fe(n, γ) 59 Fe	4.2	58 Fe(p, γ) 59 Co $-^{56}$ Fe() 57 Co
⁵⁸ Co	60.9	59 Co(d,t) 58 Co	25.1	60 Ni(d, α) 58 Co	14.0	57 Fe(p, γ) 58 Co
⁵⁸ Ni	28.3	57 Fe $-^{58}$ Ni _{.983}	27.7	58 Ni $(n,\gamma)^{59}$ Ni	25.7	⁵⁶ Fe- ⁵⁸ Ni _{.966}
⁵⁸ Cu	90.2	⁵⁸ Cu- ⁵⁸ Ni	9.8	59 Zn $^{-58}$ Cu _{1.017}	2017	10 111.900
⁵⁹ Fe	85.5	58 Fe(n, γ) 59 Fe	14.5	59 Fe $-^{85}$ Rb _{.694}		
⁵⁹ Co	90.4	⁵⁹ Co(p,n) ⁵⁹ Ni	8.5	58 Fe(p, γ) 59 Co $-^{56}$ Fe() 57 Co	1.1	59 Co(d,t) 58 Co
⁵⁹ Ni	71.8	58 Ni $(n,\gamma)^{59}$ Ni	24.1	59 Ni $(n,\gamma)^{60}$ Ni	4.1	$^{59}\text{Co}(p,n)^{59}\text{Ni}$
⁵⁹ Cu	62.5	58 Ni $(p,\gamma)^{59}$ Cu	30.3	60 Zn $^{-59}$ Cu _{1.017}	7.2	59 Zn $-^{59}$ Cu
⁵⁹ Zn	73.3	$^{59}Zn-^{59}Cu$	26.7	59 Zn $^{-58}$ Cu _{1.017}	7.2	Zn Cu
⁶⁰ Ni	75.3	59 Ni $(n,\gamma)^{60}$ Ni	20.5	60 Ni(n, γ) 61 Ni	4.0	60 Ni(p, α) 57 Co
$^{60}\mathrm{Cu}^i$	73.5	60 Ni(3 He,t) 60 Cu ⁱ	26.5	58 Ni(3 He,p) 60 Cu i		11(p,or)
⁶⁰ Zn	65.0	60 Zn $^{-58}$ Ni _{1.034}	35.0	60 Zn $^{-59}$ Cu _{1.017}		
⁶¹ Ni	79.2	60 Ni $(n,\gamma)^{61}$ Ni	20.8	61 Ni $(n,\gamma)^{62}$ Ni		
⁶¹ Zn	95.4	64 Zn(3 He, 6 He) 61 Zn	4.6	61 Ga(β^+) 61 Zn		
⁶¹ Ga	52.2	61 Ga(β^+) 61 Zn	47.8	61 Ga $-$ u		
⁶² Ni	66.9	61 Ni $(n,\gamma)^{62}$ Ni	15.9	62 Ni(p, γ) 63 Cu	13.9	62 Ni $(n,\gamma)^{63}$ Ni
62 Zn	67.7	62 Zn $^{-62}$ Ni	32.3	62 Ga $-^{62}$ Zn	10.5	1 (1(11))
⁶² Ga	51.7	⁶² Ga- ⁶² Ni	48.3	$^{62}Ga-^{62}Zn$		
⁶³ Fe	57.3	63 Fe $-^{39}$ K _{1.615}	21.3	63 Fe-H C ₂ F ₂	21.3	63 Fe $-$ C 32 S F
⁶³ Co	86.2	64 Ni(t, α) 63 Co	13.8	$^{63}\text{Co}(\beta^{-})^{63}\text{Ni}$		
⁶³ Ni	55.3	63 Ni(β^{-}) 63 Cu	33.6	62 Ni $(n,\gamma)^{63}$ Ni	11.1	63 Ni $(n,\gamma)^{64}$ Ni
⁶³ Cu	43.1	63 Ni(β^{-}) 63 Cu	37.8	62 Ni(p, γ) 63 Cu	9.7	63 Cu(n, γ) 64 Cu
63 Zn	72.7	64 Zn(d,t) 63 Zn	27.3	63 Cu(p,n) 63 Zn	, , ,	2.5(2.5,1)
$^{64}\text{Co}^m$	86.8	$H C_2 F_2 - {}^{64}Co^m_{.984}$	13.2	$^{64}\text{Co}^{m} - ^{32}\text{S O}_{2}$		
⁶⁴ Ni	86.7	63 Ni $(n,\gamma)^{64}$ Ni	13.3	$^{64}\text{Ni}-^{85}\text{Rb}_{.753}$		
⁶⁴ Cu	89.8	63 Cu(n, γ) 64 Cu	10.2	64 Cu(β^-) 64 Zn		
⁶⁴ Zn	43.6	64 Zn(n, γ) 65 Zn	32.0	64 Cu(β^-) 64 Zn	17.1	64 Zn(p, γ) 65 Ga
⁶⁴ Ga	37.6	64 Ga $-^{85}$ Rb _{.753}	32.7	$C_5 H_2 - {}^{64}Ga_{.969}$	13.1	64 Ga $^{-64}$ Zn
64 Ga i	83.2	64 Ga ⁱ (IT) 64 Ga	16.8	64 Zn(3 He,t) 64 Ga i		
⁶⁵ Cu	45.6	65 Cu(p,n) 65 Zn	33.8	65 Cu $^{-85}$ Rb _{.765}	10.4	65 Cu(p, α) 62 Ni
⁶⁵ Zn	54.6	64 Zn(n, γ) 65 Zn	45.4	65 Cu(p,n) 65 Zn		
⁶⁵ Ga	66.0	64 Zn(p, γ) 65 Ga	34.0	65 Ga $-^{85}$ Rb _{.765}		
⁶⁵ Ge	56.7	$C_5 H_2 - {}^{65}Ge_{.939}$	29.2	65 Ge O H $-^{85}$ Rb _{.965}	14.0	65 Ge H $-^{85}$ Rb _{.776}
⁶⁶ Cu	89.8	65 Cu(n, γ) 66 Cu	10.2	⁶⁶ Cu- ⁸⁵ Rb _{.776}	1	36 11 116.776
⁶⁶ Zn	65.9	66 Zn(p, α) 63 Cu	34.1	66 Zn(n, γ) 67 Zn		
⁶⁷ Cu	54.5	$^{67}\text{Cu} - ^{85}\text{Rb}_{.788}$	45.5	$^{67}\mathrm{Cu}(\beta^-)^{67}\mathrm{Zn}$		
⁶⁷ Zn	63.7	66 Zn(n, γ) 67 Zn	23.4	$^{67}\mathrm{Cu}(\beta^-)^{67}\mathrm{Zn}$	11.6	67 Zn(p,n) 67 Ga
⁶⁷ Ga	54.6	67 Zn(p,n) 67 Ga	45.4	70 Ge(p, α) 67 Ga		4, / - "
⁶⁷ As	77.4	$^{67}\text{As}-^{85}\text{Rb}_{.788}$	22.6	67 As O $-^{85}$ Rb _{.976}		
⁶⁸ Zn	98.6	67 Zn(n, γ) 68 Zn	1.4	70 Zn 35 Cl $-^{68}$ Zn 37 Cl		
68 As	87.5	68 As-C ₅ H ₈	12.5	$C F_3 - {}^{68}As_{1.015}$		
⁶⁹ Ga	64.5	69 Ga $-^{85}$ Rb _{.812}	35.4	69 Ga(n, γ) 70 Ga		
⁶⁹ Ge	100.0	⁶⁹ Ga(p,n) ⁶⁹ Ge		× 7•7		
⁶⁹ As	81.8	69 As(β^{+}) 69 Ge	18.2	69 Se(β^{+}) 69 As		
⁶⁹ Se	100.0	$C F_3 - {}^{69}Se$		V		
⁷⁰ Zn	87.6	70 Zn(p,n) 70 Ga	9.0	⁷⁰ Zn ³⁵ Cl- ⁶⁸ Zn ³⁷ Cl	3.4	70 Zn(d,p) 71 Zn
⁷⁰ Ga	64.1	69 Ga(n, γ) 70 Ga	31.4	70 Ga $^{-85}$ Rb _{.824}	4.5	70 Zn(p,n) 70 Ga
⁷⁰ Ge	85.4	70 Ge(n, γ) 71 Ge	14.6	70 Ge(p, α) 67 Ga		4, , ==
⁷¹ Zn	93.2	71 Zn ^m (IT) 71 Zn	6.8	70 Zn(d,p) 71 Zn		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
71 Zn ^{m}	94.7	71 Zn m - 85 Rb.835	5.3	$^{71}\mathrm{Zn}^m(\mathrm{IT})^{71}\mathrm{Zn}$		
⁷¹ Ga	53.3	71 Ga $-^{85}$ Rb _{.835}	33.1	71 Ga(n, γ) 72 Ga	13.5	71 Ge $(\varepsilon)^{71}$ Ga
⁷¹ Ge	85.6	$^{71}\mathrm{Ge}(\varepsilon)^{71}\mathrm{Ga}$	14.4	70 Ge(n, γ) 71 Ge		
71 Br	100.0	71 Br H ₂ -C ₄ H ₉ O				
$^{71}\mathrm{Kr}$	83.8	⁷¹ Kr–u	16.2	71 Kr $(\varepsilon)^{71}$ Br		
⁷² Ga	65.7	71 Ga(n, γ) 72 Ga	34.3	⁷² Ga ⁻⁸⁵ Rb _{.847}		
⁷² Ge	100.0	72 Ge(n, γ) 73 Ge				
⁷³ Cu	75.4	73 Cu $-^{72}$ Ge _{1.014}	24.6	73 Cu $-^{85}$ Rb _{.859}		
⁷³ Ge	100.0	73 Ge(n, γ) 74 Ge				
73 As	92.8	72 Ge(3 He,d) 73 As	7.2	73 Se(β^{+}) 73 As		
⁷³ Se	52.5	73 Se $-^{85}$ Rb _{.859}	47.5	73 Se(β^{+}) 73 As		
⁷⁴ Ge	100.0	74 Ge $-^{84}$ Kr		,		
74 As	82.1	74 As(β^{+}) 74 Ge	17.9	74 As(β^{-}) 74 Se		
⁷⁴ Se	100.0	74 Se $-^{74}$ Ge		•		
$^{74}\mathrm{Br}$	84.9	74 Br 27 Al $-^{85}$ Rb _{1.188}	15.1	74 Se(p,n) 74 Br		
⁷⁴ Kr	93.3	74 Kr $-^{85}$ Rb _{.871}	6.7	74 Rb(β^+) 74 Kr		
⁷⁴ Rb	82.8	74 Rb $-^{85}$ Rb $_{.871}$	17.2	74 Rb(β^+) 74 Kr		
^{75}As	85.3	75 As(p,n) 75 Se	14.7	78 Se(p, α) 75 As		
⁷⁵ Se	99.9	74 Se(n, γ) 75 Se	0.1	75 As(p,n) 75 Se		
⁷⁶ Zn	61.1	76 Zn $-^{85}$ Rb _{.894}	38.9	76 Zn $^{-88}$ Rb _{.864}		
⁷⁶ Ge	100.0	76 Ge $-^{76}$ Se		.001		
⁷⁶ Se	100.0	76 Se $-^{84}$ Kr				
$^{76}\mathrm{Kr}$	84.0	76 Kr $-^{85}$ Rb $_{894}$	16.0	80 Kr(α , 6 He) 78 Kr- 78 Kr() 76 Kr		
^{77}Zn	77.9	$^{77}Zn-^{85}Rb_{.906}$	22.1	$^{77}Zn - ^{88}Rb_{.875}$		
⁷⁷ As	32.4	80 Se(p, α) 77 As	31.8	76 Ge(3 He,d) 77 As	17.9	77 As(β^{-}) 77 Se
⁷⁷ Se	99.4	76 Se(n, γ) 77 Se	0.5	77 Se(n, γ) 78 Se		,
78 Zn	51.6	78 Zn $-^{88}$ Rb _{.886}	48.4	78 Zn $^{-85}$ Rb _{.918}		
⁷⁸ Ga	61.7	78 Ga $-^{85}$ Rb _{.918}	38.3	78 Ga $-^{88}$ Rb $_{.886}$		
⁷⁸ Se	95.3	77 Se(n, γ) 78 Se	3.5	$^{78}{\rm Kr}{-}^{78}{\rm Se}$	0.5	80 Se(p,t) 78 Se
$^{78}\mathrm{Kr}$	88.8	$^{78}{\rm Kr}{-}^{78}{\rm Se}$	10.9	$^{78}{\rm Kr}{-}^{86}{\rm Kr}_{907}$	0.3	80 Kr(α , 6 He) 78 Kr- 78 Kr() 76 Kr
⁷⁹ Zn	67.7	79 Zn $-^{88}$ Rb $_{898}$	32.3	79 Zn $-^{85}$ Rb _{.929}		
⁷⁹ Ga	100.0	79 Ga $-^{88}$ Rb _{.898}		.,		
⁷⁹ Ge	86.2	$^{79}{\rm Ga}(\beta^-)^{79}{\rm Ge}$	13.8	79 Ge(β^{-}) 79 As		
79 As	99.8	80 Se(d, 3 He) 79 As	0.2	79 Ge(β^{-}) 79 As		
80 Zn	85.6	80 Zn $-^{85}$ Rb _{.941}	14.4	80 Zn $^{-88}$ Rb _{.909}		
80 Se	37.0	82 Se 35 Cl $-^{80}$ Se 37 Cl	26.0	80 Se(n, γ) 81 Se	20.5	80 Se(p,t) 78 Se
⁸⁰ Kr	45.5	80 Kr $-^{86}$ Kr $_{.930}$	19.1	80 Kr $-^{85}$ Rb _{.941}	7.9	81 Se $-^{80}$ Kr _{1.013}
81 As	73.8	81 As $-^{88}$ Rb $_{.920}$	26.2	82 Se(d, 3 He) 81 As		1.013
⁸¹ Se	71.3	80 Se(n, γ) 81 Se	17.8	81 Se $-^{80}$ Kr _{1.013}	10.9	82 Se(p,d) 81 Se
81 Br	94.3	81 Br $(n,\gamma)^{82}$ Br	5.1	81 Kr(ε) 81 Br	0.6	$^{87}\text{Rb}(^{3}\text{He,t})^{87}\text{Sr} - ^{81}\text{Br}()^{81}\text{Kr}$
⁸¹ Kr	83.7	81 Kr(ε) 81 Br	9.3	87 Rb(3 He,t) 87 Sr- 81 Br() 81 Kr	7.0	80 Kr(d,p) 81 Kr
⁸¹ Rb	76.1	$^{81}\text{Rb} - ^{85}\text{Rb}_{.953}$	23.9	80 Kr(3 He,d) 81 Rb		
⁸² Se	92.8	82 Se $-^{82}$ Kr	4.1	82 Se 35 Cl $-^{80}$ Se 37 Cl	1.1	82 Se(p,d) 81 Se
82 Br	94.4	82 Br(β^{-}) 82 Kr	5.6	81 Br(n, γ) 82 Br		•
82 Kr	75.4	82 Kr $-^{84}$ Kr $_{976}$	24.6	82 Kr $^{-86}$ Kr $_{.953}$		
⁸² Sr	64.7	82 Sr $-^{85}$ Rb $_{.965}$	35.3	84 Sr(p,t) 82 Sr		
83 Br	54.4	83 Br(β^{-}) 83 Kr	45.6	82 Se(3 He,d) 83 Br		
83 Kr	100.0	83 Kr $-^{84}$ Kr $_{988}$				
⁸³ Rb	100.0	83 Rb $-^{85}$ Rb $_{976}$				
⁸³ Sr	58.7	83 Sr $-^{83}$ Rb	41.3	83 Sr(β^+) 83 Rb		
⁸⁴ Se	99.9	⁸⁴ Se- ⁸⁸ Rb _{.955}	0.1	$^{84}\text{Se}(\beta^{-})^{84}\text{Br}$		
84 Br	73.6	$^{84}\text{Br}(\beta^{-})^{84}\text{Kr}$	26.4	$^{84}\text{Se}(\beta^{-})^{84}\text{Br}$		
		4- /		A		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
⁸⁴ Kr	21.2	⁸⁴ Kr-N ₆	19.7	86 Kr $-^{84}$ Kr $_{1.024}$	14.6	⁸⁶ Kr- ⁸⁴ Kr
⁸⁴ Rb	72.7	84 Rb(β^{+}) 84 Kr	27.3	$^{84}\text{Rb}(\beta^{-})^{84}\text{Sr}$		
⁸⁴ Sr	88.8	84 Sr $^{-85}$ Rb 988	6.8	84 Rb(β^{-}) 84 Sr	2.1	84 Sr(d,p) 85 Sr
84Y	81.8	$^{84}\text{Y O} - ^{97}\text{Mo}_{1.031}$	18.2	$^{84}Y(\beta^{+})^{84}Sr$		•
⁸⁵ Rb	65.9	86 Kr $-^{85}$ Rb	34.1	85 Rb $-^{84}$ Kr		
⁸⁵ Sr	87.9	85 Rb(3 He,t) 85 Sr	12.1	84 Sr(d,p) 85 Sr		
⁸⁶ Kr	27.0	86 Kr $-N_6$	15.5	129 Xe ₂ $-^{86}$ Kr ₃	12.0	$C_2 O_4 - ^{86}Kr$
⁸⁶ Sr	53.5	86 Sr $-^{84}$ Kr $_{1.024}$	46.5	86 Sr $-^{86}$ Kr		
86 Zr	69.2	86 Zr $-^{85}$ Rb _{1.012}	30.8	86 Zr O $-^{98}$ Mo _{1.041}		
⁸⁷ Rb	81.3	87 Rb $-^{86}$ Kr	18.4	87Rb-C6 H ₁₄	0.1	90 Zr $-^{87}$ Rb _{1.034}
⁸⁷ Sr	58.9	87 Sr $-^{86}$ Kr $_{1.012}$	41.1	87 Sr $-^{84}$ Kr _{1.036}		
⁸⁷ Zr	73.2	87 Zr O $^{-97}$ Mo _{1.062}	26.8	90 Zr(3 He, 6 He) 87 Zr		
⁸⁷ Mo	53.3	87 Mo $-^{85}$ Rb _{1.024}	46.7	$^{87}\text{Mo}_{1.069}$ – $^{67}\text{H}_{9}$		
⁸⁸ Rb	99.0	87 Rb(n, γ) 88 Rb	0.2	$^{76}{\rm Zn} - ^{88}{\rm Rb}_{864}$	0.1	$^{94}{ m Rb}-^{88}{ m Rb}_{1.068}$
⁸⁸ Sr	58.3	88 Sr $-^{86}$ Kr $_{1.023}$	41.7	88 Sr $-^{84}$ Kr _{1.048}		
⁸⁸ Zr	70.6	88 Zr O $^{-98}$ Mo _{1.061}	29.2	90 Zr(p,t) 88 Zr	0.2	$^{88}{ m Nb}(eta^+)^{88}{ m Zr}$
⁸⁸ Nb	65.5	88 Nb O $^{-98}$ Mo $_{1.061}$	34.5	$^{88}{ m Nb}({eta}^{+})^{88}{ m Zr}$		
⁸⁹ Rb	56.8	89 Rb(β^{-}) 89 Sr	41.9	$^{89}\text{Rb} - ^{85}\text{Rb}_{1.047}$	1.3	91 Rb $-^{93}$ Rb $_{.489}$ 89 Rb $_{.511}$
⁸⁹ Sr	100.0	88 Sr $(n,\gamma)^{89}$ Sr				
89Y	63.2	89 Y(n, γ) 90 Y	16.2	88 Sr(p, γ) 89 Y	16.2	89 Y(p, γ) 90 Zr
89 Zr	80.9	89 Zr(β^{+}) 89 Y	18.8	90 Zr(d,t) 89 Zr	0.3	$^{89}{\rm Nb}(\beta^+)^{89}{\rm Zr}$
⁸⁹ Nb	77.7	89 Nb $-u$	22.3	89 Nb(β^{+}) 89 Zr		
⁹⁰ Rb	59.8	90 Rb $-^{85}$ Rb $_{1.059}$	40.2	90 Rb(β^{-}) 90 Sr		
90Sr	97.3	$^{90}{\rm Sr}(\beta^{-})^{90}{\rm Y}$	2.7	$^{90}{ m Rb}({eta}^{-})^{90}{ m Sr}$		
⁹⁰ Y	61.8	$^{90}Y(\beta^{-})^{90}Zr$	36.7	89 Y $(n,\gamma)^{90}$ Y	1.5	90 Sr(β^{-}) 90 Y
90 Zr	62.4	90 Zr $^{-87}$ Rb _{1.034}	30.2	⁹⁰ Zr–u	7.2	90 Zr(n, γ) 91 Zr
⁹⁰ Nb	68.7	$^{90}{ m Nb}(eta^{+})^{90}{ m Zr}$	31.3	90 Mo(β^+) 90 Nb		
⁹⁰ Mo	62.6	90 Mo $-$ C $_{7}$ H $_{6}$	37.4	$^{90}{ m Mo}(eta^+)^{90}{ m Nb}$		
⁹⁰ Ru	85.9	90 Ru $-^{85}$ Rb _{1.059}	14.1	⁹⁰ Ru _{1.033} -C ₇ H ₉		
⁹¹ Rb	70.1	$^{91}\text{Rb} - ^{85}\text{Rb}_{1.071}$	18.4	91 Rb(β^-) 91 Sr	11.5	91 Rb $-^{93}$ Rb $_{.489}$ 89 Rb $_{.511}$
⁹¹ Sr	81.0	$^{91}\text{Sr}(\beta^{-})^{91}\text{Y}$	11.1	92 Rb(β^- n) 91 Sr	8.0	91 Rb(β^-) 91 Sr
91 Y	98.2	91 Y(β^{-}) 91 Zr	1.8	$^{91}\text{Sr}(\dot{\beta}^{-})^{91}\text{Y}$		21
⁹¹ Zr	39.4	91 Zr(n, γ) 92 Zr	34.8	91 Zr $-^{87}$ Rb _{1.046}	20.2	⁹¹ Zr-u
⁹¹ Nb	97.7	91 Zr(p,n) 91 Nb	2.3	91 Mo(β^+) 91 Nb		
⁹¹ Mo	65.1	⁹¹ Mo–C ₇ H ₇	23.5	92 Mo(p,d) 91 Mo	11.4	$^{91}\text{Mo}(\beta^{+})^{91}\text{Nb}$
⁹¹ Tc	44.7	91Tc-C ₇ H ₇	33.2	$^{91}\text{Tc} - ^{94}\text{Mo}_{.968}$	22.1	91 Tc $-^{85}$ Rb _{1.071}
91Ru	37.4	⁹¹ Ru-C ₇ H ₇	36.9	91 Ru $-^{85}$ Rb _{1.071}	25.7	91 Ru $^{-94}$ Mo $_{.968}$
⁹² Rb	53.3	$^{92}\text{Rb} - ^{85}\text{Rb}_{1.082}$	31.7	92 Rb(β^-) 92 Sr	14.5	92 Rb(β^- n) 91 Sr
⁹² Sr	89.7	92 Sr $-^{85}$ Rb $_{1.082}$	7.3	92 Rb(β^-) 92 Sr	3.0	92 Sr(β^-) 92 Y
⁹² Y	57.8	$^{92}\text{Y}(\beta^{-})^{92}\text{Zr}$	28.8	$^{92}\text{Sr}(\beta^{-})^{92}\text{Y}$	13.3	94 Zr(d, α) 92 Y
⁹² Zr	37.2	92 Zr $-$ u	35.4	91 Zr(n, γ) 92 Zr	27.3	$^{92}Zr - ^{87}Rb_{1.057}$
⁹² Nb	72.7	92 Zr(p,n) 92 Nb	27.3	93 Nb $(\gamma,n)^{92}$ Nb		
⁹² Mo	87.2	$^{92}\text{Mo} - ^{87}\text{Rb}_{1.057}$	12.8	⁹² Mo-u		
⁹² Tc	60.0	$^{92}\text{Tc}-^{85}\text{Rb}_{1.082}$	40.0	⁹² Tc _{.989} -C ₇ H ₇		
⁹² Ru	72.3	92 Ru $-^{85}$ Rb _{1.082}	27.7	92 Ru _{1.011} -C ₇ H ₉		01 . 02 . 02
⁹³ Rb	70.7	$^{93}\text{Rb} - ^{85}\text{Rb}_{1.094}$	26.5	$^{93}\text{Rb}(\beta^{-})^{93}\text{Sr}$	2.5	91 Rb $-^{93}$ Rb $_{.489}$ 89 Rb $_{.511}$
⁹³ Sr	65.8	93 Sr $-^{85}$ Rb _{1.094}	23.7	93 Rb(β^{-}) 93 Sr	10.5	93 Sr(β^{-}) 93 Y
93Y	76.3	93 Y $(\beta^{-})^{93}$ Zr	23.7	$^{93}\text{Sr}(\beta^{-})^{93}\text{Y}$		
⁹³ Zr	97.6	92 Zr(n, γ) 93 Zr	2.4	93 Zr(β^{-}) 93 Nb		02 02
⁹³ Nb	52.7	93 Zr(β^{-}) 93 Nb	30.7	93 Nb(n, γ) 94 Nb	16.6	93 Nb(γ ,n) 92 Nb
⁹³ Ru	73.4	93Ru-C ₇ H ₉	26.6	93 Ru $-^{85}$ Rb _{1.094}		
93 Rh	55.1	93 Rh $-$ C $_{7}$ H $_{9}$	44.9	$^{93}\text{Rh} - ^{85}\text{Rb}_{1.094}$		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
⁹⁴ Rb	70.2	⁹⁴ Rb- ⁸⁵ Rb _{1.106}	29.6	⁹⁴ Rb- ⁸⁸ Rb _{1.068}	0.3	⁹⁴ Rb- ⁹⁵ Rb _{.660} ⁹² Rb _{.341}
⁹⁴ Sr	98.3	$^{94}Sr-^{85}Rb_{1.106}$	1.7	$^{94}\text{Sr}(\beta^{-})^{94}\text{Y}$.000 .511
⁹⁴ Y	50.2	$^{94}Y(\beta^{-})^{94}Zr$	39.6	94 Sr(β^{-}) 94 Y	10.2	96 Zr(d, α) 94 Y
94 Zr	77.2	⁹⁴ Zr–u	22.5	94 Zr $^{-87}$ Rb _{1.080}	0.3	94 Zr(n, γ) 95 Zr
⁹⁴ Nb	69.2	93 Nb(n, γ) 94 Nb	30.8	94 Nb(β^{-}) 94 Mo		
⁹⁴ Mo	67.9	94 Mo(n, γ) 95 Mo	18.7	94 Mo $-^{87}$ Rb _{1.080}	13.0	94 Mo $-$ u
⁹⁴ Ru	56.2	94 Ru $-^{85}$ Rb _{1 106}	43.8	94 Ru $-$ C $_{7}$ H $_{10}$		
⁹⁴ Rh	62.2	$^{94}\text{Rh} - ^{85}\text{Rb}_{1.106}$	37.8	$^{94}\text{Rh}-\text{C}_7~\text{H}_{10}$		
95 Rb	51.4	95 Rb(β^{-}) 95 Sr	25.5	95 Rb $^{-96}$ Rb $_{742}$ 92 Rb $_{258}$	12.7	$^{94}\text{Rb} - ^{95}\text{Rb}_{.660} ^{92}\text{Rb}_{.341}$
⁹⁵ Sr	38.9	95 Sr $^{-85}$ Rb _{1.118}	38.9	95 Sr $-^{97}$ Zr $_{.979}$	20.1	$^{95}{\rm Sr}(\beta^-)^{95}{\rm Y}$
⁹⁵ Y	56.2	$^{95}Y(\beta^{-})^{95}Zr$	32.3	$^{95}\text{Sr}(\beta^{-})^{95}\text{Y}$	11.5	96 Zr(t, α) 95 Y
⁹⁵ Zr	91.4	94 Zr(n, γ) 95 Zr	8.2	$^{95}{ m Zr}(eta^-)^{95}{ m Nb}$	0.4	$^{95}Y(\beta^{-})^{95}Zr$
⁹⁵ Nb	97.4	$^{95}{\rm Nb}(\beta^{-})^{95}{\rm Mo}$	2.6	$^{95}{\rm Zr}(\beta^-)^{95}{\rm Nb}$		
⁹⁵ Mo	66.5	95 Mo(n, γ) 96 Mo	21.1	94 Mo(n, γ) 95 Mo	12.2	⁹⁵ Mo-u
⁹⁵ Tc	97.4	$^{95}{\rm Tc}(\beta^+)^{95}{\rm Mo}$	2.6	95 Ru(β^+) 95 Tc		
⁹⁵ Ru	90.3	96 Ru(p,d) 95 Ru	9.7	95 Ru(β^{+}) 95 Tc		
⁹⁵ Rh	85.9	$^{95}Rh - ^{85}Rb_{1.118}$	14.1	95 Rh _{.989} $-$ C ₇ H ₁₀		
⁹⁶ Rb	99.7	96 Rb $-^{88}$ Rb _{1.091}	0.3	$^{95}\text{Rb} - ^{96}\text{Rb}_{.742} ^{92}\text{Rb}_{.258}$		
⁹⁶ Sr	82.6	$^{96}Sr - ^{97}Zr_{990}$	17.4	$^{96}{\rm Sr}(\beta^-)^{96}{\rm Y}$		
⁹⁶ Y	92.0	$^{96}Y - ^{97}Zr_{990}$	8.0	$^{96}{\rm Sr}(\beta^{-})^{96}{\rm Y}$		
⁹⁶ Zr	52.2	⁹⁶ Zr-u	29.3	$^{96}Zr^{-96}Mo$	13.0	96 Zr $-^{87}$ Rb _{1.103}
⁹⁶ Nb	62.8	$^{96}Zr-^{96}Nb$	37.2	$^{96}{ m Nb}-^{96}{ m Mo}$		11105
⁹⁶ Mo	46.1	$^{96}Zr-^{96}Mo$	29.8	95 Mo(n, γ) 96 Mo	15.4	96 Mo(n, γ) 97 Mo
⁹⁶ Ru	100.0	96 Ru $-^{96}$ Mo		•		
97Rb	87.0	$^{97}\text{Rb} - ^{85}\text{Rb}_{1.141}$	13.0	$^{97}\text{Rb} - ^{88}\text{Rb}_{1.102}$		
⁹⁷ Sr	86.8	$^{97}Sr-^{85}Rb_{1.141}$	13.2	$^{97}Sr - ^{97}Zr$		
⁹⁷ Zr	98.8	96 Zr(n, γ) 97 Zr	0.2	$^{97}{ m Zr}(eta^-)^{97}{ m Nb}$	0.2	99 Sr $-^{97}$ Zr _{1.021}
⁹⁷ Nb	50.1	$^{97}{\rm Nb}(\beta^{-})^{97}{\rm Mo}$	49.9	$^{97}Zr(\beta^{-})^{97}Nb$		
⁹⁷ Mo	43.8	$^{96}{ m Mo(n, \gamma)}^{97}{ m Mo}$	24.1	⁹⁷ Mo-u	20.5	$^{97}\text{Mo}-^{87}\text{Rb}_{1.115}$
⁹⁷ Tc	52.9	96 Mo(3 He,d) 97 Tc	47.1	97 Mo(p,n) 97 Tc		
⁹⁸ Rb	70.9	⁹⁸ Rb-u	29.1	$^{98}\text{Rb} - ^{85}\text{Rb}_{1.152}$		
⁹⁸ Sr	88.0	$^{98}Sr - ^{85}Rb_{1,153}$	12.0	$^{98}\text{Sr}-^{97}\text{Zr}_{1.010}$		
98 Zr	82.1	$^{98}Zr-^{97}Zr_{1.010}$	17.9	96 Zr(t,p) 98 Zr		
⁹⁸ Mo	86.9	$^{97}\mathrm{Mo}(\mathrm{n},\gamma)^{98}\mathrm{Mo}$	12.4	⁹⁸ Mo-u	0.6	$^{98}{\rm Mo}({\rm n},\gamma)^{99}{\rm Mo}$
⁹⁸ Tc	57.2	$^{99}\text{Tc}(p,d)^{98}\text{Tc}$	29.2	$97 \text{Mo}(^{3}\text{He,d})^{98}\text{Tc}$	11.4	98 Mo(p,n) 98 Tc
⁹⁸ Ru	91.6	$C_7 H_{14} - {}^{98}Ru$	8.4	$^{98}\mathrm{Tc}(\beta^-)^{98}\mathrm{Ru}$		• •
⁹⁸ Pd	99.6	$^{98}\text{Pd} - ^{85}\text{Rb}_{1.153}$	0.4	98 Ag(β^{+}) 98 Pd		
98Ag	78.0	98 Ag $^{-85}$ Rb _{1 153}	22.0	98 Ag(β^{+}) 98 Pd		
⁹⁹ Sr	52.9	$^{99}Sr - ^{85}Rb_{1.165}$	47.1	$^{99}Sr - ^{97}Zr_{1.021}$		
⁹⁹ Zr	64.8	$^{99}Zr-^{97}Zr_{1.021}$	35.2	⁹⁹ Zr-u		
⁹⁹ Mo	98.9	98 Mo(n, γ) 99 Mo	1.1	$^{99}\mathrm{Mo}(eta^-)^{99}\mathrm{Tc}$		
⁹⁹ Tc	78.2	$^{99}{\rm Mo}(\beta^{-})^{99}{\rm Tc}$	20.0	$^{99}{\rm Tc}(\beta^-)^{99}{\rm Ru}$	1.8	$^{99}\text{Tc}(p,d)^{98}\text{Tc}$
⁹⁹ Ru	97.6	99 Ru(n, γ) 100 Ru	2.4	$^{99}\text{Tc}(\beta^-)^{99}\text{Ru}$		
⁹⁹ Rh	89.5	99 Rh(β^{+}) 99 Ru	10.5	$^{99}\mathrm{Pd}(\beta^+)^{99}\mathrm{Rh}$		
⁹⁹ Pd	94.5	$^{99}\text{Pd} - ^{96}\text{Mo}_{1.031}$	5.5	$^{99}{\rm Pd}(\beta^+)^{99}{\rm Rh}$		
¹⁰⁰ Sr	59.0	100 Sr $^{-97}$ Zr _{1 031}	41.0	100 Sr $-^{85}$ Rb _{1 176}		
100 Zr	76.4	100 Zr $^{-97}$ Zr _{1.031}	23.6	100 Zr $-$ u		
¹⁰⁰ Mo	65.5	100 Mo $-$ u	32.3	100 Mo $-^{87}$ Rb _{1.149}	2.2	$^{100}{ m Mo}{-}^{100}{ m Ru}$
100 R11	97.1	$^{100}{ m Mo}{-}^{100}{ m Ru}$	2.4	⁹⁹ Ru(n,γ) ¹⁰⁰ Ru	0.5	100 Ru(n, γ) 101 Ru
¹⁰⁰ Rh	82.1	$^{100}{ m Rh}(eta^+)^{100}{ m Ru}$	17.9	100 Rh $-$ u		* • • •
¹⁰⁰ Pd	54.0	102 Pd(p,t) 100 Pd	46.0	96 Ru(16 O, 12 C) 100 Pd		
¹⁰⁰ Cd	100.0	$^{100}\text{Cd} - ^{85}\text{Rb}_{1.176}$		•		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁰⁰ In	63.0	100 In(β^+) 100 Cd	37.0	¹⁰⁰ In-u		
$^{101}{ m Zr}$	80.0	101 Zr $^{-97}$ Zr $_{1.041}$	20.0	101 Zr $-$ u		
101 Ru	99.3	100 Ru(n, γ) 101 Ru	0.7	101 Ru(n, γ) 102 Ru		
101 Rh	88.4	$^{101}\text{Pd}(\beta^+)^{101}\text{Rh}$	11.6	103 Rh(p,t) 101 Rh		
¹⁰¹ Pd	93.2	$^{101}\text{Pd} - ^{96}\text{Mo}_{1.052}$	6.8	$^{101}\text{Pd}(\beta^+)^{101}\text{Rh}$		
$^{102}\mathrm{Zr}$	92.0	102 Zr $^{-97}$ Zr _{1 052}	8.0	102 Zr(β^-) 102 Nb m		
¹⁰² Nb	99.4	102 Nb $-^{97}$ Zr _{1.052}	0.6	$^{102}\text{Nb}^{m} - ^{102}\text{Nb}$		
$^{102}\mathrm{Nb}^{m}$	94.2	$^{102}\text{Nb}^m - ^{102}\text{Nb}$	5.8	$^{102}{ m Zr}(eta^-)^{102}{ m Nb}^m$		
¹⁰² Mo	82.7	102 Mo $^{-97}$ Zr _{1.052}	17.3	100 Mo(t,p) 102 Mo		
¹⁰² Тс	79.0	104 Ru(d, α) 102 Tc	21.0	100 Mo(3 He,p) 102 Tc		
¹⁰² Ru	99.3	101 Ru(n, γ) 102 Ru	0.7	102 Ru $(n,\gamma)^{103}$ Ru		
102 Pd	100.0	$^{102}\text{Pd} - ^{102}\text{Ru}$				
¹⁰² Cd	88.2	$^{102}\text{Cd} - ^{85}\text{Rb}_{1.200}$	11.8	$^{102}\text{Cd} - ^{96}\text{Mo}_{1.063}$		
¹⁰² In	85.7	102 In $-^{96}$ Mo _{1.063}	14.3	$^{102}In - ^{85}Rb_{1,200}$		
¹⁰³ Ru	99.2	102 Ru(n, γ) 103 Ru	0.8	104 Ru(d,t) 103 Ru $-^{148}$ Gd() 147 Gd	0.1	103 Ru(β^{-}) 103 Rh
103 Rh	98.4	103 Ru(β^{-}) 103 Rh	1.6	103 Rh(p,t) 101 Rh		
¹⁰³ Cd	85.7	$^{103}\text{Cd} - ^{85}\text{Rb}_{1.212}$	14.0	$^{103}\text{Cd} - ^{96}\text{Mo}_{1.073}$	0.4	103 In(β^+) 103 Cd
¹⁰³ In	88.2	103 In $-^{85}$ Rb _{1 212}	11.8	103 In(β^+) 103 Cd		•
¹⁰⁴ Mo	97.2	104 Mo 97 Zr _{1.072}	2.8	$^{104}\text{Mo}(\beta^{-})^{104}\text{Tc}$		
¹⁰⁴ Тс	70.2	104 Mo(β^-) 104 Tc	29.8	$^{104}\text{Tc}(\dot{\beta}^{-})^{104}\text{Ru}$		
104 Ru	57.7	104 Ru(d,t) 103 Ru $-^{148}$ Gd() 147 Gd	30.9	104 Ru(n, γ) 105 Ru	10.0	$C_8 H_8 - ^{104}Ru$
¹⁰⁴ Cd	89.3	$^{104}\text{Cd} - ^{85}\text{Rb}_{1.224}$	10.7	$^{104}\text{Cd} - ^{96}\text{Mo}_{1.083}$		
¹⁰⁴ Sn	92.9	$^{104}\text{Sn} - ^{87}\text{Rb}_{1.105}$	7.1	$^{108}\text{Te}(\alpha)^{104}\text{Sn}$		
105 Mo	98.4	$^{105}\text{Mo} - ^{97}\text{Zr}_{1.082}$	1.6	105 Mo(β^-) 105 Tc		
$105 T_{\rm C}$	59.0	$^{105}\text{Mo}(\beta^{-})^{105}\text{Tc}$	41.0	$^{105}\text{Tc}(\beta^{-})^{105}\text{Ru}$		
¹⁰⁵ Ru	69.1	104 Ru(n, γ) 105 Ru	25.4	105 Ru(β^-) 105 Rh	5.1	106 Ru $^{-105}$ Ru $_{1.010}$
105 Rh	74.6	105 Rh(β^{-}) 105 Pd	25.4	105 Ru(β^{-}) 105 Rh		
¹⁰⁵ Pd	96.0	$^{105}\mathrm{Pd}(\mathrm{n},\gamma)^{106}\mathrm{Pd}$	3.9	105 Rh $(\beta^{-})^{105}$ Pd	0.2	$^{105}\text{Pd}(^{3}\text{He,d})^{106}\text{Ag}$
^{105}Ag	91.1	$^{105}\text{Cd}(\beta^+)^{105}\text{Ag}$	8.9	107 Ag(p,t) 105 Ag		
105Cd	99.2	$^{105}\text{Cd} - ^{85}\text{Rb}_{1.235}$	0.8	$^{105}\text{Cd}(\beta^+)^{105}\text{Ag}$		
¹⁰⁵ Sn	58.0	105 Sn $-^{87}$ Rb _{1.207}	36.1	$^{105}\text{Sn} - ^{85}\text{Rb}_{1.235}$	6.0	$^{109}{\rm Te}(\alpha)^{105}{\rm Sn}$
¹⁰⁶ Ru	63.3	106 Ru(β^{-}) 106 Rh	36.7	106 Ru $^{-105}$ Ru $_{1.010}$		
106 Rh	63.3	106 Rh(β^{-}) 106 Pd	36.7	106 Ru(β^{-}) 106 Rh		
106Pd	69.9	$^{106}\text{Cd} - ^{106}\text{Pd}$	20.2	¹⁰⁶ Pd-u	5.2	106 Pd $(n,\gamma)^{107}$ Pd
^{106}Ag	81.0	106 Ag $(\varepsilon)^{106}$ Pd	12.3	$^{105}\text{Pd}(^{3}\text{He,d})^{106}\text{Ag}$	6.6	107 Ag(p,d) 106 Ag
¹⁰⁶ Cd	43.3	$^{106}\text{Cd} - ^{85}\text{Rb}_{1.247}$	29.9	$^{106}\text{Cd} - ^{106}\text{Pd}$	26.8	106 Cd $-u$
106 Sn	51.7	$^{106}\text{Sn} - ^{87}\text{Rb}_{1.218}$	39.5	106 Sn $-^{85}$ Rb _{1.247}	8.8	$^{110}\mathrm{Te}(\alpha)^{106}\mathrm{Sn}$
$107 \mathbf{p_d}$	93.7	106 Pd(n, γ) 107 Pd	6.3	$^{107}\text{Pd}(\beta^-)^{107}\text{Ag}$		
107 A o	53.3	$^{107}\text{Pd}(\beta^-)^{107}\text{Ag}$	29.7	$^{107}\text{Cd}(\beta^+)^{107}\text{Ag}$	10.9	$C_8 H_{11} - ^{107} Ag$
10/Cd	88.5	$^{107}\text{Cd} - ^{85}\text{Rb}_{1.250}$	11.5	$^{107}\text{Cd}(\beta^+)^{107}\text{Ag}$		
107 Sb	58.9	$^{107}\text{Sb} - ^{87}\text{Rb}_{1.230}$	21.1	$^{107}\text{Sb} - ^{133}\text{Cs}$ 805	20.0	111 I(α) 107 Sb
108 Pd	40.8	$^{108}\text{Pd} - ^{108}\text{Cd}$	40.0	108 Pd $-u$	19.1	$^{108}\text{Pd}(n,\gamma)^{109}\text{Pd}$
¹⁰⁸ Cd	45.7	$^{108}\text{Pd} - ^{108}\text{Cd}$	27.5	$^{108}\text{Cd} - ^{85}\text{Rb}_{1.271}$	25.1	¹⁰⁸ Cd-u
¹⁰⁸ In	88.6	108 In(β^{+}) 108 Cd	11.4	108 Sn(β^{+}) 108 In		
108Sn	95.9	$^{108}\text{Sn} - ^{87}\text{Rb}_{1.241}$	4.1	108 Sn(β^{+}) 108 In		
¹⁰⁸ Te	93.7	$^{108}\text{Te}-^{87}\text{Rb}_{1.241}$	6.3	$^{108}\text{Te}(\alpha)^{104}\text{Sn}$		
$^{109}\mathrm{Rh}$	64.3	110 Pd(d, 3 He) 109 Rh	35.7	$^{109}\text{Rh} - ^{120}\text{Sn}_{.908}$		
109 p d	80.6	$^{108}\text{Pd}(n,\gamma)^{109}\text{Pd}$	19.4	$^{109}\text{Pd}(\beta^-)^{109}\text{Ag}$		
109 Ag	56.6	109 Ag(n, γ) 110 Ag	29.8	$^{109}\text{Pd}(\beta^-)^{109}\text{Ag}$	13.7	$^{109}\mathrm{Cd}(\varepsilon)^{109}\mathrm{Ag}$
109 C d	75.3	$^{109}\text{Cd} - ^{85}\text{Rb}_{1.282}$	21.5	$^{109}\mathrm{Cd}(\varepsilon)^{109}\mathrm{Ag}$	3.1	109 In(β^{+}) 109 Cd
¹⁰⁹ In	70.0	$^{108}\text{Cd}(^{3}\text{He,d})^{109}\text{In} - ^{110}\text{Cd}()^{111}\text{In}$	30.0	109 In(β^+) 109 Cd		• •
¹⁰⁹ Sn	77.9	112 Sn(3 He, 6 He) 109 Sn	22.1	109 Sb $(\beta^+)^{109}$ Sn		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁰⁹ Sb	91.8	¹⁰⁹ Sb- ⁸⁷ Rb _{1.253}	8.2	$^{109}{ m Sb}(eta^+)^{109}{ m Sn}$		
¹⁰⁹ Те	54.0	$^{109}\text{Te}-^{87}\text{Rb}_{1.253}$	32.1	$^{109}\text{Te}-^{133}\text{Cs}_{.820}$	7.4	$^{109}{\rm Te}(\alpha)^{105}{\rm Sn}$
110 Ru	97.2	110 Ru $^{-105}$ Ru $_{1.048}$	2.8	110 Ru(β^{-}) 110 Rh		
110 Rh	87.7	110 Rh(β^{-}) 110 Pd	12.3	110 Ru(β^{-}) 110 Rh		
110 Pd	71.4	$^{110}\text{Pd} - ^{110}\text{Cd}$	28.0	110 Pd $-u$	0.5	110 Pd(d, 3 He) 109 Rh
¹¹⁰ Ag	56.7	110 Ag(β^{-}) 110 Cd	43.3	109 Ag(n, γ) 110 Ag		
¹¹⁰ Cd	77.2	$^{110}\mathrm{Cd}(\mathrm{n},\gamma)^{111}\mathrm{Cd}$	12.0	110 Cd $-u$	8.6	$^{110}\text{Pd}-^{110}\text{Cd}$
¹¹⁰ Te	84.0	110 Te $-^{133}$ Cs _{.827}	16.0	110 Te(α) 106 Sn		
¹¹¹ Cd	80.7	111 Cd(n, γ) 112 Cd	19.3	$^{110}\text{Cd}(n,\gamma)^{111}\text{Cd}$		112 111 115 112
¹¹¹ In	69.0	113 In(p,t) 111 In $-^{112}$ Cd() 110 Cd	19.3	$^{108}\text{Cd}(^{3}\text{He,d})^{109}\text{In} - ^{110}\text{Cd}()^{111}\text{In}$	11.7	113 In(p,t) 111 In $^{-115}$ In() 113 In
1111I	70.0	$^{111}I - ^{87}Rb_{1.276}$	30.0	$^{111}_{112}I(\alpha)^{107}_{122}Sb$		112
¹¹² Rh	65.7	$^{112}\text{Rh}(\beta^{-})^{112}\text{Pd}$	18.5	$^{112}\text{Rh} - ^{120}\text{Sn}_{.933}$	15.8	¹¹² Rh-u
¹¹² Pd	88.8	¹¹² Pd ⁻¹²⁰ Sn _{.933}	10.7	110 Pd $(t,p)^{112}$ Pd	0.5	$^{112}\text{Rh}(\beta^-)^{112}\text{Pd}$
¹¹² Cd	48.4	113 In $^{-112}$ Cd _{1.009}	35.2	$^{113}\text{Cd} - ^{112}\text{Cd}_{1.009}$	8.3	111 Cd $(n,\gamma)^{112}$ Cd
¹¹² In	50.0	$^{112}\text{Cd}(p,n)^{112}\text{In}$	50.0	112 In(β^-) 112 Sn		112 112 -
¹¹² Sn	97.2	$^{112}\text{Sn} - ^{112}\text{Cd}$	2.1	112 Sn $^{-120}$ Sn $_{.933}$	0.7	112 Sn $(n,\gamma)^{113}$ Sn
¹¹³ Ru	80.6	113 Ru $^{-105}$ Ru $_{1.076}$	19.4	113 Ru – u		112 114
¹¹³ Cd	59.5	¹¹³ Cd- ¹¹⁵ In _{.983}	29.7	$^{113}\text{Cd} - ^{112}\text{Cd}_{1.009}$	5.4	113 Cd $(n,\gamma)^{114}$ Cd
¹¹³ In	77.1	$^{113}\text{In} - ^{115}\text{In}_{.983}$	16.6	^{113}In - $^{112}\text{Cd}_{1.009}$	6.2	113 In(n, γ) 114 In
¹¹³ Sn ¹¹³ Xe	69.3	$\frac{112}{113}$ Sn $(n,\gamma)^{113}$ Sn	16.7	$^{113}\text{Sn}(\beta^+)^{113}\text{In}$	14.1	114 Sn(d,t) 113 Sn
114Rh	82.2	113 Xe $^{-133}$ Cs _{.850}	17.8	113 Xe(α) 109 Te		
	59.0	$^{114}\text{Rh} - ^{120}\text{Sn}_{.950}$	41.0	¹¹⁴ Rh-u ¹¹⁶ Cd ³⁵ Cl- ¹¹⁴ Cd ³⁷ Cl		
¹¹⁴ Cd ¹¹⁴ In	92.9	$^{113}\text{Cd}(n,\gamma)^{114}\text{Cd}$	7.1			
114Sn	81.9	113 In(n, γ) 114 In	18.1	$^{114}\text{In}(\beta^-)^{114}\text{Sn}$		
114Sb	99.9	114 Sn(n, γ) 115 Sn 114 Sb-u	0.1 38.9	114 In(β^-) 114 Sn 114 Sn(p,n) 114 Sb		
¹¹⁵ Pd	61.1 93.6	¹¹⁵ Pd- ¹²⁰ Sn _{.958}	58.9 6.4	115pd(8-)115 A ~		
115 Ag	66.8	115 Ag $^{-133}$ Cs _{.865}	20.9	115 Pd(β^-) 115 Ag 115 Ag(β^-) 115 Cd	12.4	$^{115}\text{Pd}(\beta^{-})^{115}\text{Ag}$
115Cd	100.0	$^{114}\text{Cd}(d,p)^{115}\text{Cd}$	20.9	$Ag(p^{-})$ Cu	12.4	Fd(p) Ag
¹¹⁵ In	100.0	$^{115}In-^{129}Xe$				
¹¹⁵ Sn	100.0	$^{115}In^{-115}Sn$				
¹¹⁶ Rh	62.8	$^{116}\text{Rh} - ^{120}\text{Sn}_{.967}$	37.2	¹¹⁶ Rh-u		
¹¹⁶ Cd	97.8	$^{116}\text{Cd}-^{116}\text{Sn}$	2.2	¹¹⁶ Cd ³⁵ Cl- ¹¹⁴ Cd ³⁷ Cl		
¹¹⁶ Sn	99.1	115 Sn $(n,\gamma)^{116}$ Sn	0.8	116Cd-116Sn	0.1	116 Sn(n, γ) 117 Sn
¹¹⁶ Sb	75.2	$^{116}\text{Sn}(p,n)^{116}\text{Sb}$	24.8	$^{115}\text{Sn}(^{3}\text{He,d})^{116}\text{Sb} - ^{120}\text{Sn}()^{121}\text{Sb}$	0.1	$\operatorname{Sil}(\Pi, \gamma) = \operatorname{Sil}(\Pi, \gamma)$
117 Pd	95.8	$^{117}\text{Pd}-^{120}\text{Sn}_{.975}$	4.2	$^{117}\text{Pd}(\beta^-)^{117}\text{Ag}$		
117 A o	82.9	117 Ag $^{-133}$ Cs _{.880}	17.1	$^{117}\text{Pd}(\beta^{-})^{117}\text{Ag}$		
117/In	94.3	$^{117}\text{In}(\beta^-)^{117}\text{Sn}$	5.7	120 Sn(t, α) 119 In $^{-118}$ Sn() 117 In		
¹¹⁷ Sn	96.8	116 Sn $(n,\gamma)^{117}$ Sn	3.1	$^{117}\mathrm{Sn}(\mathrm{n},\gamma)^{118}\mathrm{Sn}$		
¹¹⁷ Sb	71.2	116 Sn(3 He,d) 117 Sb	17.8	$^{117}\text{Sn}(p,n)^{117}\text{Sb}$	11.0	$^{117}\text{Te}(\beta^+)^{117}\text{Sb}$
¹¹⁷ Te	50.7	$^{117}\text{Te}(\beta^+)^{117}\text{Sb}$	46.4	117Te-u	2.9	$^{117}\text{I}(\beta^+)^{117}\text{Te}$
^{117}I	87.9	$^{117}I-u$	12.1	117 I(β^+) 117 Te		<i>y</i> ,
118 Pd	61.3	$^{118}\text{Pd} - ^{120}\text{Sn}_{983}$	38.7	¹¹⁸ Pd- ¹²⁹ Xe _{.915}		
¹¹⁸ In	100.0	119 Sn(t, α) 118 In $^{-118}$ Sn() 117 In		.,		
¹¹⁸ Sn	96.7	117 Sn $(n,\gamma)^{118}$ Sn	3.3	118 Sn $(n,\gamma)^{119}$ Sn		
¹¹⁹ Ag	97.3	119 Ag $^{-133}$ Cs _{.895}	2.7	119 Ag(β^-) 119 Cd		
119 C d	78.0	119 Ag(β^{-}) 119 Cd	22.0	$^{119}\text{Cd}(\beta^-)^{119}\text{In}$		
¹¹⁹ In	86.2	120 Sn(t, α) 119 In $-^{118}$ Sn() 117 In	13.1	120 Sn(d, 3 He) 119 In	0.6	$^{119}\text{Cd}(\beta^-)^{119}\text{In}$
¹¹⁹ Sn	92.5	118 Sn(n, γ) 119 Sn	7.3	120 Sn(d,t) 119 Sn	0.1	$^{119}\mathrm{Sb}(\varepsilon)^{119}\mathrm{Sn}$
¹¹⁹ Sb	59.1	118 Sn(3 He,d) 119 Sb	40.9	119 Sb $(\varepsilon)^{119}$ Sn		
^{120}Pd	68.8	$^{120}\text{Pd} - ^{120}\text{Sn}$	31.2	$^{120}\text{Pd} - ^{129}\text{Xe}_{.930}$		
¹²⁰ Sn	21.7	112 Sn $^{-120}$ Sn $_{.933}$	21.2	$^{115}\text{Sn} - ^{120}\text{Sn}_{.958}$	18.6	129 Xe $-^{120}$ Sn _{1.075}

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹²⁰ Te	80.2	¹²² Te(p,t) ¹²⁰ Te- ¹³² Ba() ¹³⁰ Ba	19.6	¹²² Te(p,t) ¹²⁰ Te- ¹⁴⁴ Sm() ¹⁴² Sm	0.2	¹²⁰ Te(³ He,d) ¹²¹ I
¹²¹ Sn	96.7	120 Sn $(n,\gamma)^{121}$ Sn	3.3	122 Sn(d,t) 121 Sn		- (, - ,
¹²¹ Sb	95.1	121 Sb $(n, \gamma)^{122}$ Sb	4.8	115 Sn(3 He,d) 116 Sb $-^{120}$ Sn() 121 Sb	0.1	$^{121}\text{Te}(\beta^+)^{121}\text{Sb}$
¹²¹ Te	73.6	$^{121}\text{Te}(\beta^+)^{121}\text{Sb}$	26.4	121 I(β^+) 121 Te		φ,
¹²¹ I	99.2	$^{120}\text{Te}(^{3}\text{He,d})^{121}\text{I}$	0.8	$^{121}\text{I}(\beta^+)^{121}\text{Te}$		
¹²¹ Xe	85.0	121 Xe $-^{133}$ Cs _{.910}	15.0	121 Cs(β^+) 121 Xe		
¹²¹ Cs	46.0	$^{121}\text{Cs}(\beta^+)^{121}\text{Xe}$	37.7	$^{121}\text{Cs} - ^{133}\text{Cs}$ 910	16.3	121 Cs $-u$
¹²² Cd	72.4	¹²² Cd ⁻¹³⁰ Xe _{.938}	27.6	$^{122}\text{Cd} - ^{133}\text{Cs}_{.917}$		
¹²² Sn	56.8	122 Sn(d,t) 121 Sn	43.2	122 Sn(n, γ) 123 Sn		
¹²² Sb	67.2	$^{122}{ m Sb}(eta^-)^{122}{ m Te}$	27.8	123 Sb $(\gamma,n)^{122}$ Sb	4.9	121 Sb $(n,\gamma)^{122}$ Sb
¹²² Te	98.3	$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$	1.1	122 Sb(β^{-}) 122 Te	0.6	$^{122}\text{Te}(^{3}\text{He,d})^{123}\text{I}$
¹²² Cs	56.8	$^{122}\text{Cs} - ^{133}\text{Cs}$ 917	43.2	¹²² Cs-u		
123Cd	99.6	$^{123}\text{Cd} - ^{130}\text{Xe}_{.946}$	0.4	$^{123}\mathrm{Cd}(\beta^{-})^{123}\mathrm{In}$		
¹²³ In	43.4	$^{123}\text{In}(\beta^-)^{123}\text{Sn}$	31.9	$^{123}\text{Cd}(\beta^{-})^{123}\text{In}$	24.7	124 Sn(d, 3 He) 123 In
¹²³ Sn	50.5	122 Sn $(n,\gamma)^{123}$ Sn	38.5	124 Sn(d,t) 123 Sn	10.7	$^{123}\text{Sn}(\beta^{-})^{123}\text{Sb}$
¹²³ Sb	96.0	$^{123}\text{Te} - ^{123}\text{Sb}$	3.5	$^{123}\text{Sn}(\beta^{-})^{123}\text{Sb}$	0.5	123 Sb $(\gamma,n)^{122}$ Sb
¹²³ Te	94.4	$^{123}\text{Te}(n,\gamma)^{124}\text{Te}$	3.9	$^{123}\text{Te} - ^{123}\text{Sb}$	1.7	$^{122}\text{Te}(n,\gamma)^{123}\text{Te}$
123 T	96.2	$^{122}\text{Te}(^{3}\text{He,d})^{123}\text{I}$	3.8	123 Xe(β^+) 123 I		(),
¹²³ Xe	62.0	123 Xe $^{-133}$ Cs 925	38.0	123 Xe(β^{+}) 123 I		
¹²⁴ Cd	89.4	$^{124}\text{Cd} - ^{130}\text{Xe}_{.954}$	10.3	$^{124}\text{Cd} - ^{133}\text{Cs}_{.932}$	0.2	$^{124}\text{Cd}(\beta^-)^{124}\text{In}$
¹²⁴ In	61.1	$^{124}\text{Cd}(\beta^-)^{124}\text{In}$	38.9	$^{124}\text{In}(\beta^{-})^{124}\text{Sn}$		
¹²⁴ Sn	37.2	$^{124}\text{Sn} - ^{13}\text{C} ^{37}\text{Cl}_3$	26.9	$^{124}\text{Sn} - ^{129}\text{Xe}_{.961}$	20.3	124 Sn $^{-120}$ Sn $_{1.033}$
¹²⁴ Te	40.7	$^{124}\text{Sn}-^{124}\text{Te}$	26.1	$^{124}\text{Te} - ^{13}\text{C} ^{37}\text{Cl}_3$	16.8	$^{124}\text{Te}(n,\gamma)^{125}\text{Te}$
¹²⁴ Xe	58.9	124 Xe $^{-54}$ Fe 35 Cl ₂	23.7	124 Xe $^{-13}$ C 37 Cl ₃	16.3	124 Xe $-^{124}$ Te
¹²⁵ Cd	99.8	$^{125}\text{Cd} - ^{130}\text{Xe}_{.962}$	0.2	$^{125}\mathrm{Cd}(\beta^{-})^{125}\mathrm{In}$		
¹²⁵ In	81.0	$^{125}\text{In}(\beta^-)^{125}\text{Sn}$	19.0	$^{125}\text{Cd}(\beta^{-})^{125}\text{In}$		
¹²⁵ Sn	100.0	124 Sn(n, γ) 125 Sn		•		
¹²⁵ Te	83.1	$^{124}\text{Te}(n,\gamma)^{125}\text{Te}$	16.9	$^{125}\text{Te}(n,\gamma)^{126}\text{Te}$		
¹²⁵ Xe	98.8	124 Xe(n, γ) 125 Xe	1.2	125 Cs $(\beta^+)^{125}$ Xe		
¹²⁵ Cs	70.5	$^{125}\text{Cs} - ^{133}\text{Cs}_{.940}$	29.5	125 Cs $(\beta^+)^{125}$ Xe		
125 B a	97.9	125 Ba $-^{133}$ Cs 940	2.1	$^{125}\text{La}(\beta^+)^{125}\text{Ba}$		
¹²⁵ La	86.5	¹²⁵ La-u	13.5	$^{125}\text{La}(\beta^+)^{125}\text{Ba}$		
¹²⁶ Cd	64.9	$^{126}\text{Cd} - ^{130}\text{Xe}_{.969}$	34.9	$^{126}\text{Cd} - ^{133}\text{Cs}_{.947}$	0.2	$^{126}\text{Cd}(\beta^-)^{126}\text{In}$
¹²⁶ In	55.7	$^{126}\text{Cd}(\beta^-)^{126}\text{In}$	44.3	$^{126}\text{In}(\beta^{-})^{126}\text{Sn}$		
¹²⁶ Sn	96.1	124 Sn(t,p) 126 Sn	3.9	$^{126}\text{In}(\beta^{-})^{126}\text{Sn}$		
¹²⁶ Te	83.1	$^{125}\text{Te}(n,\gamma)^{126}\text{Te}$	12.3	$^{128}\text{Te}^{35}\text{Cl} - ^{126}\text{Te}^{37}\text{Cl}$	2.5	$^{126}{ m I}(eta^+)^{126}{ m Te}$
126 _I	51.5	$^{126}\mathrm{I}(\beta^{+})^{126}\mathrm{Te}$	48.5	$^{127}I(\gamma,n)^{126}I$		4- /
¹²⁶ Xe	97.8	126 Xe $^{-134}$ Xe $_{.940}$	2.2	$^{126}\text{Cs}(\beta^+)^{126}\text{Xe}$		
¹²⁶ Cs	73.8	$^{126}\text{Cs} - ^{133}\text{Cs}{947}$	26.2	$^{126}\text{Cs}(\beta^+)^{126}\text{Xe}$		
$^{127}Cd^m$	60.9	$^{127}\text{Cd}^m - ^{133}\text{Cs}_{.955}$	37.6	$^{127}\text{Cd}^m - ^{130}\text{Xe}_{.977}$	1.4	$^{127}\text{Cd}^m(\beta^-)^{127}\text{In}$
¹²⁷ In	88.9	$^{127}\text{In}(\beta^-)^{127}\text{Sn}$	11.1	$^{127}\mathrm{Cd}^m(\beta^-)^{127}\mathrm{In}$		- (-)
¹²⁷ Sn	81.0	127 Sn 34 S $-^{133}$ Cs _{1.211}	16.8	$^{127}\text{Sn}(\beta^{-})^{127}\text{Sb}$	2.3	$^{127}\text{In}(\beta^{-})^{127}\text{Sn}$
¹²⁷ Sb	96.2	$^{127}\text{Sb}(\beta^-)^{127}\text{Te}$	3.8	$^{127}\text{Sn}(\beta^-)^{127}\text{Sb}$		()-)
¹²⁷ Te	97.9	$^{126}\text{Te}(n,\gamma)^{127}\text{Te}$	1.8	$^{127}\text{Te}(\beta^-)^{127}\text{I}$	0.3	$^{127}{ m Sb}(eta^-)^{127}{ m Te}$
^{127}I	35.0	$^{127}I(\gamma,n)^{126}I$	23.8	$^{127}\text{Te}(\beta^{-})^{127}\text{I}$	21.2	$C_{10} H_7 - ^{127}I$
¹²⁷ Xe	91.1	127 Xe $(\varepsilon)^{127}$ I	8.9	$^{127}\text{Cs}(\beta^+)^{127}\text{Xe}$	-	- 10/
¹²⁷ Cs	81.7	$^{127}\text{Cs} - ^{133}\text{Cs}_{.955}$	18.3	$^{127}\text{Cs}(\beta^+)^{127}\text{Xe}$		
127 Ra	97.7	$^{127}\text{Ba} - ^{133}\text{Cs}_{.955}$	2.3	$^{127}\text{La}(\beta^+)^{127}\text{Ba}$		
^{127}La	86.6	127La-u	13.4	$^{127}\text{La}(\beta^+)^{127}\text{Ba}$		
¹²⁸ Cd	50.0	¹²⁸ Cd- ¹³³ Cs _{.962}	50.0	¹²⁸ Cd ⁻¹³⁰ Xe _{.985}		
¹²⁸ In	72.0	$^{128}\text{In}(\beta^-)^{128}\text{Sn}$	28.0	$^{128}\text{Cd}(\beta^-)^{128}\text{In}$		
	14.0	128 Sn-u	20.0			

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

		Table II. Influences on primary n	uchues	Continued, Explanation of Table	e on pag	36 030003-74)
Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹²⁸ Sb ^m	54.9	$^{128}{ m Sb}^m(eta^-)^{128}{ m Te}$	45.1	$^{128}\mathrm{Sn}(\beta^{-})^{128}\mathrm{Sb}^{m}$		
¹²⁸ Te	73.8	130 Te 35 Cl $^{-128}$ Te 37 Cl	20.7	$^{128}\text{Te} - ^{128}\text{Xe}$	3.7	128 Te 35 Cl $^{-126}$ Te 37 Cl
128_{I}	86.9	$^{127}\mathrm{I}(\mathrm{n},\gamma)^{128}\mathrm{I}$	13.1	$^{128}I(\beta^{-})^{128}Xe$		
¹²⁸ Xe	56.1	$^{128}\text{Te} - ^{128}\text{Xe}$	42.3	$C_{10} H_8 - {}^{128}Xe$	0.9	$^{128}I(\beta^-)^{128}Xe$
¹²⁸ Cs	79.8	128 Cs $(\beta^+)^{128}$ Xe	20.2	$^{128}\text{Cs} - ^{133}\text{Cs}_{962}$		•
¹²⁸ Ba	78.1	130 Ba(p,t) 128 Ba $^{-144}$ Sm() 142 Sm	21.9	$^{128}\text{Ba} - ^{133}\text{Cs}_{.962}$		
¹²⁹ In	99.4	$^{129}In^{-130}Xe_{.992}$	0.6	$^{129}\text{In}(\beta^-)^{129}\text{Sn}$		
$^{129}\mathrm{In}^m$	99.4	$^{129}\text{In}^m - ^{130}\text{Xe}_{.992}$	0.6	$^{129}\text{In}^{m}(\beta^{-})^{129}\text{Sn}$		
¹²⁹ Sn	43.7	129 In(β^-) 129 Sn	35.8	¹²⁹ Sn-u	20.5	$^{129} \text{In}^m (\beta^-)^{129} \text{Sn}$
¹²⁹ Te	98.2	$^{128}\text{Te}(n,\gamma)^{129}\text{Te}$	1.8	$^{129}\text{Te}(\beta^-)^{129}\text{I}$		
¹²⁹ I	59.9	$^{129}\text{Te}(\beta^{-})^{129}\text{I}$	40.1	$^{129}I(\beta^{-})^{129}Xe$		120
¹²⁹ Xe	28.3	132 Xe $^{-129}$ Xe	15.1	$C_{10} H_{10} - {}^{129}Xe$	14.1	129 Xe ₂ $-^{86}$ Kr ₃
¹²⁹ Cs	83.0	$^{129}\text{Cs}(\beta^+)^{129}\text{Xe}$	12.2	$^{129}\text{Cs} - ^{133}\text{Cs}_{970}$	4.8	129 Ba(β^{+}) 129 Cs
¹²⁹ Ba	48.3	130 Ba(d,t) 129 Ba	45.3	129 Ba(β^+) 129 Cs	6.4	$^{129}\text{La}(\beta^+)^{129}\text{Ba}$
¹²⁹ La	58.4	¹²⁹ La-u	41.6	$^{129}\text{La}(\beta^+)^{129}\text{Ba}$		120 2 120
¹³⁰ Sn	73.3	130 Sn $^{-130}$ Xe	26.6	130 Sn $^{-133}$ Cs.977	0.2	130 Sn(β^{-}) 130 Sb
¹³⁰ Sb	90.0	130 Sn(β^-) 130 Sb	10.0	$^{130}\text{Sb}(\beta^-)^{130}\text{Te}$		
¹³⁰ Te	77.5	$^{130}\text{Te} - ^{129}\text{Xe}$	22.5	$^{130}\text{Te} - ^{130}\text{Xe}$	10.5	130 - 130 -
¹³⁰ Xe ¹³⁰ Cs	49.5	130 Xe $^{-129}$ Xe	38.0	132 Xe $^{-130}$ Xe	12.5	$^{130}\text{Te} - ^{130}\text{Xe}$
130Cs 130Ba	47.6	¹³⁰ Cs- ¹³³ Cs. ₉₇₇	34.9	130 Cs(β^+) 130 Xe	17.5	¹²⁹ Xe(³ He,d) ¹³⁰ Cs
¹³⁰ Ba ¹³¹ Sn	65.0	¹³⁰ Ba- ⁸⁵ Rb _{1.529}	18.0	$^{122}\text{Te}(p,t)^{120}\text{Te} - ^{132}\text{Ba}()^{130}\text{Ba}$	10.3	130 Ba(p,t) 128 Ba $^{-144}$ Sm() 142 Sm
¹³¹ Sb	80.9	131 Sn 34 S $^{-133}$ Cs $_{1.241}$ 131 Sb $^{-130}$ Xe $_{1.008}$	19.1	131 Sn(β^-) 131 Sb		
¹³¹ Xe	94.6	131 Xe $^{-129}$ Xe $_{1.016}$	5.4	131 Sn(β^-) 131 Sb 131 Xe $^{-132}$ Xe,992		
¹³¹ Cs	62.0	$^{131}\text{Cs}(\varepsilon)^{131}\text{Xe}$	38.0		116	$^{131}\text{Cs} - ^{133}\text{Cs}_{.985}$
¹³¹ Ba	60.5 94.7	130 Ba(n, γ) 131 Ba	25.0 5.3	131 Ba(β^+) 131 Cs 131 Ba(β^+) 131 Cs	14.6	CS_35CS _{.985}
¹³¹ Ce	94.7 95.7	131 Ce $-u$	4.3	$^{131}\text{Pr}(\beta^+)^{131}\text{Ce}$		
¹³¹ Pr	81.2	131Pr-u	9.5	$^{131}\text{Nd}(\beta^+)^{131}\text{Pr}$	9.3	131 Pr(β^+) 131 Ce
¹³¹ Nd	97.0	131 Nd—u	3.0	$^{131}\text{Nd}(\beta^+)^{131}\text{Pr}$	9.3	$\Pi(p)$ Ce
¹³² Sn	61.1	$^{132}\text{Sn} - ^{133}\text{Cs}_{.992}$	38.9	$^{132}\text{Sn} - ^{132}\text{Xe}$		
¹³² Sb	83.4	$^{132}\text{Sb}-^{130}\text{Xe}_{1.015}$	16.6	$^{132}\text{Sb} - ^{133}\text{Cs}_{.992}$		
¹³² Te	75.8	$^{132}\text{Te} - ^{130}\text{Xe}_{1.015}$	24.2	$^{132}\text{Te}(\beta^-)^{132}\text{I}$		
132 _I	51.6	$^{132}\text{Te}(\beta^{-})^{132}\text{I}$	48.4	$^{132}I(\beta^{-})^{132}Xe$		
¹³² Xe	33.3	132 Xe- C_{10} H_{10}	19.5	132 Xe $^{-129}$ Xe	15.3	132 Xe $-$ C $_3$ O $_6$
132Cc	73.2	$^{132}\text{Cs} - ^{133}\text{Cs}_{.992}$	26.8	133 Cs $(\gamma,n)^{132}$ Cs		23 26
132 Ba	98.3	132 Ba $(n,\gamma)^{133}$ Ba	1.7	122 Te(p,t) 120 Te $-^{132}$ Ba() 130 Ba		
¹³² La	66.1	$^{132}\text{La}(\beta^+)^{132}\text{Ba}$	33.9	¹³² La-u		
¹³² Ce	53.5	¹³² Ce-u	46.5	132 Ce O $^{-142}$ Sm $_{1.042}$		
¹³³ Sn	72.5	$^{133}\text{Sn} - ^{134}\text{Xe}_{993}$	27.5	133 Sn $^{-133}$ Cs		
¹³³ Sb	70.5	133 Sb $^{-130}$ Xe _{1 023}	18.3	133 Sb $(\beta^{-})^{133}$ Te	11.3	$^{133}\text{Sb} - ^{136}\text{Xe}_{.978}$
¹³³ Te	93.0	$^{133}\text{Te} - ^{130}\text{Xe}_{1.023}$	7.0	133 Sb(β^-) 133 Te		
¹³³ Cs	45.2	$^{133}\text{Cs} - ^{132}\text{Xe}$	44.0	133 Cs $-^{129}$ Xe	10.8	133 Cs-C ₃ O ₆
¹³³ Ba	98.5	133 Ba $(\varepsilon)^{133}$ Cs	1.5	132 Ba(n, γ) 133 Ba		
¹³⁴ Te	71.0	$^{134}\text{Te} - ^{130}\text{Xe}_{1.031}$	20.6	$^{134}\text{Te} - ^{136}\text{Xe}_{.985}$	8.5	$^{134}\text{Te}(\beta^-)^{134}\text{I}$
¹³⁴ I	58.8	$^{134}I - ^{133}Cs_{1.008}$	41.2	$^{134}\text{Te}(\beta^-)^{134}\text{I}$		
¹³⁴ Xe	100.0	134 Xe $^{-132}$ Xe $_{1.015}$				
134Cs	99.9	133 Cs(n, γ) 134 Cs	0.1	$^{134}\text{Cs}(\beta^-)^{134}\text{Ba}$		
¹³⁴ Ba	57.7	$^{134}\text{Cs}(\beta^-)^{134}\text{Ba}$	42.3	134 Ba $(n, \gamma)^{135}$ Ba		
135 Sh	83.6	$^{135}\text{Sb} - ^{130}\text{Xe}_{1.038}$	16.4	135 Sb $-^{133}$ Cs _{1.015}		
¹³⁵ Te	59.4	$^{135}\text{Te} - ^{133}\text{Cs}_{1.015}$	40.6	$^{135}\text{Te} - ^{130}\text{Xe}_{1.038}$		
¹³⁵ I	92.5	^{135}I – $^{133}Cs_{1.015}$	7.5	$^{135}I(\beta^-)^{135}Xe$		
¹³⁵ Xe	65.9	135 Xe(β^-) 135 Cs	34.1	$^{135}I(\beta^{-})^{135}Xe$		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹³⁵ Cs	98.4	134 Cs(n, γ) 135 Cs	1.6	135 Xe(β^-) 135 Cs		
¹³⁵ Ba	54.9	134 Ba $(n,\gamma)^{135}$ Ba	45.1	135 Ba $(n,\gamma)^{136}$ Ba		
¹³⁵ La	88.9	$^{135}\text{La}(\beta^+)^{135}\text{Ba}$	11.1	$^{135}\text{Ce}(\beta^+)^{135}\text{La}$		
¹³⁵ Ce	86.5	$^{135}\text{Ce}(\beta^+)^{135}\text{La}$	13.5	¹³⁵ Ce-u		
¹³⁶ Sb	84.7	$^{136}\text{Sb} - ^{130}\text{Xe}_{1.046}$	15.3	$^{136}\text{Sb} - ^{133}\text{Cs}_{1.023}$		
¹³⁶ Te	62.4	$^{136}\text{Te} - ^{130}\text{Xe}_{1.046}$	24.0	$^{136}\text{Te} - ^{136}\text{Xe}$	13.0	$^{136}\text{Te} - ^{133}\text{Cs}_{1.023}$
136 _I	50.3	$^{136}I(\beta^-)^{136}Xe$	49.7	$^{136}\text{Te}(\beta^-)^{136}\text{I}$		1.023
¹³⁶ Xe	81.6	136 Xe $^{-13}$ C ₃ O ₆	18.3	136 Xe $^{-28}$ Si ₄ D ₁₂		
¹³⁶ Ba	54.5	135 Ba $(n,\gamma)^{136}$ Ba	44.8	136 Xe $^{-136}$ Ba	0.6	136 Ba $(n, \gamma)^{137}$ Ba
¹³⁶ Ce	99.9	$^{136}\text{Ce} - ^{136}\text{Ba}$	0.1	$^{136}\text{Ce}(n,\gamma)^{137}\text{Ce}$	0.0	24(11,7) 24
¹³⁶ Pr	67.2	$^{136}\text{Pr} - ^{133}\text{Cs}_{1.023}$	32.8	136 Pr(β^+) 136 Ce		
137Te	69.8	$^{137}\text{Te} - ^{130}\text{Xe}_{1.054}$	30.2	$^{137}\text{Te} - ^{133}\text{Cs}_{1.030}$		
¹³⁷ Ba	99.4	136 Ba $(n,\gamma)^{137}$ Ba	0.6	137 Ba $(n,\gamma)^{138}$ Ba		
137 C e	99.9	$^{136}\text{Ce}(n,\gamma)^{137}\text{Ce}$	0.1	137 Pr(β^{+}) 137 Ce		
¹³⁷ Pr	66.1	$^{137}\Pr(\beta^+)^{137}$ Ce	33.9	$^{137}\text{Pr}-^{133}\text{Cs}_{1.030}$		
¹³⁷ Nd	81.0	$^{137}\text{Nd} - ^{133}\text{Cs}_{1.030}$	17.6	137 Nd-u	1.4	$^{137}\text{Pm}^{m}(\beta^{+})^{137}\text{Nd}$
$^{137}\mathrm{Pm}^{m}$	69.9	$^{137}\text{Pm}^{m}(\beta^{+})^{137}\text{Nd}$	30.1	$^{137}{\rm Sm}(\beta^+)^{137}{\rm Pm}^m$	1.1	π (ρ) πα
¹³⁷ Sm	43.5	137 Sm $-u$	34.0	$^{137}\text{Sm} - ^{133}\text{Cs}_{1.030}$	22.4	$^{137}\text{Sm}(\beta^+)^{137}\text{Pmm}$
¹³⁸ Te	74.8	$^{138}\text{Te} - ^{130}\text{Xe}_{1.062}$	25.2	$^{138}\text{Te}-^{133}\text{Cs}_{1.038}$	22	σιι(ρ') Τιιιιι
¹³⁸ Xe	74.0	138 Xe $-^{133}$ Cs _{1.038}	26.0	138 Xe $^{-136}$ Xe $_{1.015}$		
138Cs	50.7	$^{138}\text{Cs}(\beta^-)^{138}\text{Ba}$	49.3	$^{138}\text{Cs} - ^{133}\text{Cs}_{1.038}$		
138 B ₂	99.4	137 Ba $(n,\gamma)^{138}$ Ba	0.6	138 Ba $(n,\gamma)^{139}$ Ba		
¹³⁸ La	94.2	$^{138}\text{La}(d,p)^{139}\text{La}$	5.8	$^{138}\text{La}(\beta^{-})^{138}\text{Ce}$		
¹³⁸ Ce	82.4	$^{138}\text{La}(\beta^{-})^{138}\text{Ce}$	15.6	138 Ce(t,p) 140 Ce	2.1	$^{138}\text{Pr}^{m}(\beta^{+})^{138}\text{Ce}$
$^{138}Pr^{m}$	64.8	$^{138}\text{Pr}^{m}(\beta^{+})^{138}\text{Ce}$	35.2	138 Pr m -u		11 (p)
¹³⁸ Nd	96.4	$^{138}\text{Nd} - ^{133}\text{Cs}_{1.038}$	3.6	$^{138}\text{Pm}(\beta^+)^{138}\text{Nd}$		
¹³⁸ Pm	72.4	¹³⁸ Pm-u	27.6	138 Pm(β^{+}) 138 Nd		
¹³⁹ Ba	99.4	138 Ba $(n,\gamma)^{139}$ Ba	0.6	139 Ba(β^-) 139 La		
¹³⁹ La	57.4	139 La(n, γ) 140 La	40.9	$^{139}\text{Ba}(\beta^{-})^{139}\text{La}$	1.6	138 La(d,p) 139 La
¹³⁹ Се	98.5	$^{139}\text{Ce}(\varepsilon)^{139}\text{La}$	1.5	139 Pr(β^+) 139 Ce	-10	(-, _F)
¹³⁹ Pr	98.3	$^{139}\text{Pr}(\beta^+)^{139}\text{Ce}$	1.7	$^{139}\text{Nd}(\beta^+)^{139}\text{Pr}$		
139Nd	70.3	139 Pm(β^{+}) 139 Nd	29.7	139 Nd(β^+) 139 Pr		
139 Pm	94.6	$^{139}\text{Pm} - ^{133}\text{Cs}_{1.045}$	5.4	$^{139}\text{Pm}(\beta^+)^{139}\text{Nd}$		
140Cs	79.1	$^{140}\text{Cs} - ^{133}\text{Cs}_{1.053}$	20.9	$^{140}\text{Cs}(\beta^{-})^{140}\text{Ba}$		
140 Ba	37.5	140 Ba(β^-) 140 La	37.0	$^{140}\text{Ba} - ^{133}\text{Cs}_{1.053}$	19.1	$^{140}\text{Cs}(\beta^{-})^{140}\text{Ba}$
¹⁴⁰ La	55.9	$^{140}\text{La}(\beta^{-})^{140}\text{Ce}$	42.6	139 La(n, γ) 140 La	1.5	140 Ba(β^{-}) 140 La
¹⁴⁰ Ce	40.3	$^{140}\text{Ce O} - ^{133}\text{Cs}_{1.173}$	35.4	$^{140}\text{Ce}(n,\gamma)^{141}\text{Ce}$	18.7	$^{140}\text{La}(\beta^{-})^{140}\text{Ce}$
$^{140}\mathrm{Pm}^{m}$	77.9	$^{140}\text{Pm}^m - ^{133}\text{Cs}_{1.053}$	22.1	140 Pm m -u	10.,	Σ(ρ') σσ
141Cs	38.1	$^{141}\text{Cs} - ^{133}\text{Cs}_{1.060}$	33.1	$^{141}\text{Cs}(\beta^{-})^{141}\text{Ba}$	20.1	$^{141}\text{Cs} - ^{136}\text{Xe}_{1.037}$
¹⁴¹ Ba	58.0	¹⁴¹ Ba-u	27.2	$^{141}\text{Ba} - ^{133}\text{Cs}_{1.060}$	8.1	$^{141}\text{Cs}(\beta^-)^{141}\text{Ba}$
¹⁴¹ La	95.9	$^{141}\text{La}(\beta^-)^{141}\text{Ce}$	4.1	$^{141}\text{Ba}(\beta^-)^{141}\text{La}$	0.1	CS(p') 2
¹⁴¹ Ce	64.5	$^{140}\text{Ce}(n,\gamma)^{141}\text{Ce}$	34.9	$^{141}\text{Ce}(\beta^-)^{141}\text{Pr}$	0.6	$^{141}\text{La}(\beta^{-})^{141}\text{Ce}$
¹⁴¹ Pr	52.4	141 Pr $(n,\gamma)^{142}$ Pr	47.6	$^{141}\text{Ce}(\beta^{-})^{141}\text{Pr}$	0.0	Σ(ρ') σσ
¹⁴¹ Sm	49.8	144 Sm(3 He, 6 He) 141 Sm	42.9	141 Sm $-^{133}$ Cs _{1.060}	7.3	$^{141}\text{Eu}(\beta^+)^{141}\text{Sm}$
¹⁴¹ Eu	81.8	$^{141}\text{Eu} - ^{133}\text{Cs}_{1.060}$	18.2	$^{141}\text{Eu}(\beta^+)^{141}\text{Sm}$	7.0	24(p) 5111
¹⁴² Cs	47.6	$^{142}\text{Cs} - ^{136}\text{Xe}_{1.044}$	33.4	$^{142}\text{Cs} - ^{133}\text{Cs}_{1.068}$	18.8	$^{142}\text{Cs}(\beta^{-})^{142}\text{Ba}$
¹⁴² Ba	48.8	¹⁴² Ba-u	33.7	$^{142}\text{Ba} - ^{133}\text{Cs}_{1.068}$	12.2	$^{142}\text{Cs}(\beta^{-})^{142}\text{Ba}$
¹⁴² La	94.0	$^{142}\text{La}(\beta^-)^{142}\text{Ce}$	6.0	$^{142}\text{Ba}(\beta^-)^{142}\text{La}$		ευ(p) Σ α
¹⁴² Ce	78.9	$^{142}\text{Ce}(n,\gamma)^{143}\text{Ce}$	20.2	140 Ce(t,p) 142 Ce	0.9	142 La(β^-) 142 Ce
¹⁴² Pr	52.4	$^{142}\text{Pr}(\beta^-)^{142}\text{Nd}$	47.6	141 Pr $(n,\gamma)^{142}$ Pr	0.7	Lm(p) (c)
¹⁴² Nd	79.1	142 Nd(n, γ) 143 Nd	20.0	$^{142}\text{Pr}(\beta^{-})^{142}\text{Nd}$	0.7	$^{146}\mathrm{Sm}(\alpha)^{142}\mathrm{Nd}$
¹⁴² Pm	17.1	142 Pm $-u$	20.0	$^{142}\text{Sm}(\beta^+)^{142}\text{Pm}$	0.7	Sin(w) 11u

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁴² Sm	78.7	122 Te(p,t) 120 Te $^{-144}$ Sm() 142 Sm	10.7	¹³⁰ Ba(p,t) ¹²⁸ Ba- ¹⁴⁴ Sm() ¹⁴² Sm	2.9	$^{160}\mathrm{Yb} - ^{142}\mathrm{Sm}_{1.127}$
¹⁴³ Cs	91.5	$^{143}\text{Cs} - ^{133}\text{Cs}_{1.075}$	8.5	$^{143}\text{Cs}(\beta^{-})^{143}\text{Ba}$		
¹⁴³ Ba	72.8	¹⁴³ Ba-u	20.5	143 Ba $^{-133}$ Cs _{1.075}	6.6	143 Cs $(\beta^{-})^{143}$ Ba
¹⁴³ La	81.8	¹⁴³ La-u	18.2	143 La(β^-) 143 Ce		
¹⁴³ Ce	77.2	$^{143}\text{Ce}(\beta^-)^{143}\text{Pr}$	21.1	142 Ce(n, γ) 143 Ce	1.8	$^{143}\text{La}(\beta^-)^{143}\text{Ce}$
¹⁴³ Pr	90.1	143 Pr(β^-) 143 Nd	9.9	$^{143}\text{Ce}(\beta^-)^{143}\text{Pr}$		142
¹⁴³ Nd	38.3	143 Nd(n, γ) 144 Nd	22.1	$^{147}\mathrm{Sm}(\alpha)^{143}\mathrm{Nd}$	20.8	142 Nd(n, γ) 143 Nd
¹⁴³ Pm	49.3	¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm- ¹⁴² Nd() ¹⁴³ Pm	28.6	$^{142}\text{Nd}(^{3}\text{He,d})^{143}\text{Pm}$	22.2	147 Eu(α) 143 Pm
¹⁴³ Sm	100.0	144 Sm(p,d) 143 Sm $^{-148}$ Gd() 147 Gd		144 ~ . 0 144 ~		144 - 145 - 142 -
¹⁴⁴ Cs	42.9	$^{144}\text{Cs} - ^{133}\text{Cs}_{1.083}$	37.5	$^{144}\text{Cs}(\beta^-)^{144}\text{Ba}$	19.6	¹⁴⁴ Cs- ¹⁴⁵ Cs _{.662} ¹⁴² Cs _{.338}
¹⁴⁴ Ba	70.9	144Ba-u	26.1	¹⁴⁴ Ba ⁻ ¹³³ Cs _{1.083}	3.0	$^{144}\text{Cs}(\beta^-)^{144}\text{Ba}$
¹⁴⁴ Nd	61.2	143 Nd(n, γ) 144 Nd	26.1	$^{148}\text{Sm}(\alpha)^{144}\text{Nd}$	6.5	144 Nd(n, γ) 145 Nd
¹⁴⁴ Pm	57.5	¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm- ¹⁴³ Nd() ¹⁴⁴ Pm	41.8	¹⁴³ Nd(³ He,d) ¹⁴⁴ Pm- ¹⁴² Nd() ¹⁴³ Pm		148 Eu(α) 144 Pm
¹⁴⁴ Sm	85.4	¹⁴⁴ Sm ⁻¹⁴⁴ Nd	6.8	144 Sm $(n,\gamma)^{145}$ Sm	3.6	148 Gd(α) 144 Sm
¹⁴⁴ Eu	46.4	144 Eu $^{-133}$ Cs _{1.083}	38.7	144 Eu(β^{+}) 144 Sm	14.9	¹⁴⁴ Eu-u
¹⁴⁵ Cs	98.6	145 Cs $^{-133}$ Cs $_{1.090}$	1.4			
¹⁴⁵ La	98.1	¹⁴⁵ La-u	1.9	145 La(β^-) 145 Ce		145
¹⁴⁵ Ce	66.9	$^{145}\text{Ce}(\beta^-)^{145}\text{Pr}$	17.5	$^{145}\text{La}(\beta^-)^{145}\text{Ce}$		¹⁴⁵ Ce-u
¹⁴⁵ Pr	49.5	145 Pr(β^-) 145 Nd	49.5	¹⁴⁶ Nd(d, ³ He) ¹⁴⁵ Pr	1.0	$^{145}\text{Ce}(\beta^-)^{145}\text{Pr}$
¹⁴⁵ Nd	89.0	144 Nd(n, γ) 145 Nd	11.0	145 Nd(n, γ) 146 Nd		144 2 145
¹⁴⁵ Pm	41.1	$^{145}\mathrm{Sm}(\varepsilon)^{145}\mathrm{Pm}$	33.5	¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm- ¹⁴³ Nd() ¹⁴⁴ Pm	25.4	¹⁴⁴ Nd(³ He,d) ¹⁴⁵ Pm
¹⁴⁵ Sm	92.4	144 Sm $(n,\gamma)^{145}$ Sm	2.9	149 Gd(α) 145 Sm	2.6	$^{145}\mathrm{Sm}(\varepsilon)^{145}\mathrm{Pm}$
¹⁴⁵ Eu	91.0	144 Sm(3 He,d) 145 Eu	9.0	149 Tb $(\alpha)^{145}$ Eu		
¹⁴⁵ Gd	99.5	¹⁴⁵ Gd-u	0.5	145 Tb(β^+) 145 Gd		
¹⁴⁵ Tb	80.6	145 Tb(β^+) 145 Gd	19.4			
¹⁴⁶ Ba	89.3	¹⁴⁶ Ba-u	10.7	146 Ba(β^{-}) 146 La		116
¹⁴⁶ La	45.4	146 Ba(β^-) 146 La	37.0	146 La(β^-) 146 Ce	17.6	¹⁴⁶ La-u
¹⁴⁶ Ce	90.0	¹⁴⁶ Ce-u	5.8	146 La(β^-) 146 Ce	4.2	$^{146}\text{Ce}(\beta^-)^{146}\text{Pr}$
¹⁴⁶ Pr	75.8	$^{146}\text{Ce}(\beta^-)^{146}\text{Pr}$	24.2	146 Pr(β^-) 146 Nd		140 25 146 25
¹⁴⁶ Nd	88.4	145 Nd(n, γ) 146 Nd	10.1	146 Nd(n, γ) 147 Nd	1.5	¹⁴⁸ Nd ³⁵ Cl- ¹⁴⁶ Nd ³⁷ Cl
¹⁴⁶ Sm	46.1	146 Sm $(\alpha)^{142}$ Nd	30.4	146 Sm(3 He, α) 145 Sm	12.3	148 Sm(p,t) 146 Sm
¹⁴⁶ Eu	45.9	146 Eu(β^+) 146 Sm	24.1	¹⁴⁴ Sm(³ He,p) ¹⁴⁶ Eu	18.6	
¹⁴⁶ Gd	88.8	$^{148}\text{Gd}(p,t)^{146}\text{Gd}-^{65}\text{Cu}()^{63}\text{Cu}$	7.0		4.0	$^{147}\text{Tb}(p)^{146}\text{Gd}$
¹⁴⁶ Tb	80.0	$^{146}\text{Tb}(\beta^+)^{146}\text{Gd}$	20.0	146 Dy $(\beta^+)^{146}$ Tb		
¹⁴⁶ Dy	99.6	146 Dy $^{-85}$ Rb _{1.718}	0.4	146 Dy $(\beta^+)^{146}$ Tb		
¹⁴⁶ Ho	50.0	$^{146}\text{Ho} - ^{133}\text{Cs}_{1.098}$		$^{146}\text{Ho} - ^{85}\text{Rb}_{1.718}$		
¹⁴⁶ Er		146 Er $^{-85}$ Rb _{1.718}	38.8	147 Tm(p) 146 Er		
¹⁴⁷ Ce	92.1	¹⁴⁷ Ce-u	7.9	$^{147}\text{Ce}(\hat{\beta}^-)^{147}\text{Pr}$		
¹⁴⁷ Pr	52.4	$^{147}\text{Ce}(\beta^-)^{147}\text{Pr}$	47.6	147 Pr(β^-) 147 Nd		140
¹⁴⁷ Nd	89.3	146 Nd(n, γ) 147 Nd	10.1	$^{147}\text{Nd}(\beta^-)^{147}\text{Pm}$	0.5	148 Nd(d,t) 147 Nd
¹⁴⁷ Pm	86.9	147 Pm(β^-) 147 Sm	13.1	147 Nd(β^-) 147 Pm		
¹⁴⁷ Sm	50.6	147 Sm $(n,\gamma)^{148}$ Sm	27.7	147 Sm(α) 143 Nd	14.2	¹⁴⁹ Sm ³⁵ Cl- ¹⁴⁷ Sm ³⁷ Cl
¹⁴⁷ Eu		147 Eu(β^+) 147 Sm	18.8	$^{147}\text{Gd}(\beta^+)^{147}\text{Eu}$	14.4	$^{147}\text{Eu}(\alpha)^{143}\text{Pm}$
¹⁴⁷ Gd	86.2	148 Gd(p,d) 147 Gd $^{-148}$ Sm() 147 Sm	6.6	147 Gd(β^+) 147 Eu	6.2	104 Ru(d,t) 103 Ru $^{-148}$ Gd() 147 Gd
¹⁴⁷ Tb	52.5	$^{147}\text{Tb} - ^{133}\text{Cs}_{1.105}$	28.5	147 Tb(β^+) 147 Gd	19.0	$^{147}\text{Tb}(p)^{146}\text{Gd}$
¹⁴⁷ Ho	52.6	¹⁴⁷ Ho ⁻⁸⁵ Rb _{1.729}	47.4	$^{147}\text{Ho} - ^{133}\text{Cs}_{1.105}$		
¹⁴⁷ Tm	55.5	147 Tm(p) 146 Er	44.5	$^{147}\text{Tm} - ^{85}\text{Rb}_{1.729}$		
¹⁴⁸ Ce	85.5	¹⁴⁸ Ce-u	14.5	$^{148}\text{Ce}(\beta^-)^{148}\text{Pr}$		
¹⁴⁸ Pr	66.0	$^{148}\text{Ce}(\beta^-)^{148}\text{Pr}$	34.0			140 25 144 27
¹⁴⁸ Nd	60.7	¹⁴⁸ Nd ³⁵ Cl ⁻¹⁴⁶ Nd ³⁷ Cl	16.7	¹⁴⁸ Nd(d,t) ¹⁴⁷ Nd	11.3	¹⁴⁸ Nd ³⁵ Cl ₂ – ¹⁴⁴ Nd ³⁷ Cl ₂
¹⁴⁸ Sm	33.0	147 Sm $(n,\gamma)^{148}$ Sm	26.4		25.9	148 Sm(α) 144 Nd
¹⁴⁸ Eu	51.4	$^{148}\text{Eu} - ^{133}\text{Cs}_{1.113}$	38.3	148 Eu $^{-142}$ Sm $_{1.042}$	10.4	148 Eu(α) 144 Pm

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁴⁸ Gd	96.4	$^{148}\mathrm{Gd}(\alpha)^{144}\mathrm{Sm}$	2.4	¹⁴⁸ Gd(p,d) ¹⁴⁷ Gd- ¹⁴⁸ Sm() ¹⁴⁷ Sm	0.9	¹⁴⁸ Gd(p,t) ¹⁴⁶ Gd- ⁶⁵ Cu() ⁶³ Cu
¹⁴⁸ Tb	85.7	148 Dy(β^{+}) 148 Tb	9.7	$^{148}\text{Tb}(\beta^+)^{148}\text{Gd}$	4.7	152 Ho(α) 148 Tb
148 Dv	79.0	148 Dy $^{-133}$ Cs _{1.113}	14.5	152 Er(α) 148 Dy	6.4	$^{148}{ m Dy}(eta^+)^{148}{ m Tb}$
¹⁴⁹ Pm	86.7	149 Pm(β^{-}) 149 Sm	13.3	148 Nd(3 He,d) 149 Pm		
¹⁴⁹ Sm	79.1	$^{149}{\rm Sm}({\rm n},\gamma)^{150}{\rm Sm}$	10.0	148 Sm $(n,\gamma)^{149}$ Sm	9.5	149 Sm 35 Cl $^{-147}$ Sm 37 Cl
¹⁴⁹ Eu	56.1	151 Eu(p,t) 149 Eu	29.8	$^{149}\mathrm{Gd}(\varepsilon)^{149}\mathrm{Eu}$	14.1	$^{149}\mathrm{Eu}(\varepsilon)^{149}\mathrm{Sm}$
^{149}Gd	52.9	$^{149} \text{Gd}(\alpha)^{145} \text{Sm}$	21.1	153 Dy $(\alpha)^{149}$ Gd	17.8	$^{149}\mathrm{Gd}(\varepsilon)^{149}\mathrm{Eu}$
149Th	85.8	$^{149}\mathrm{Tb}(\alpha)^{145}\mathrm{Eu}$	10.5	$^{149}\text{Tb}(\beta^+)^{149}\text{Gd}$	3.7	149 Dy $(\beta^+)^{149}$ Tb
149 Dv	46.0	149 Dy(β^+) 149 Tb	36.1	149 Dy $^{-142}$ Sm _{1.049}	15.3	$^{149}\text{Ho}(\beta^+)^{149}\text{Dy}$
¹⁴⁹ Ho	53.4	$^{153}\text{Tm}(\alpha)^{149}\text{Ho}$	32.3	$^{149}\text{Ho}(\beta^+)^{149}\text{Dy}$	14.3	¹⁴⁹ Ho–u
¹⁵⁰ Ce	91.9	¹⁵⁰ Ce−u	8.1	150 Ce(β^-) 150 Pr		
150 Pr	83.4	¹⁵⁰ Pr-u	12.0	150 Pr $(\beta^{-})^{150}$ Nd	4.6	150 Ce(β^-) 150 Pr
150 Nd	99.5	150 Nd $-^{150}$ Sm	0.2	150 Nd(n, γ) 151 Nd	0.2	150 Pr(β^{-}) 150 Nd
150 Sm	61.7	150 Sm $(n,\gamma)^{151}$ Sm	16.1	149 Sm(n, γ) 150 Sm	14.1	¹⁵⁰ Sm ³⁵ Cl- ¹⁴⁸ Sm ³⁷ Cl
¹⁵⁰ Eu	53.4	150 Eu(β^{-}) 150 Gd	46.6	151 Eu(p,d) 150 Eu		
^{150}Gd	39.4	$^{150}\mathrm{Gd}(\alpha)^{146}\mathrm{Sm}$	37.6	150 Eu $(\beta^-)^{150}$ Gd	11.7	$^{150}\text{Tb}(\beta^+)^{150}\text{Gd}$
¹⁵⁰ Tb	80.5	$^{150}\mathrm{Tb}(\alpha)^{146}\mathrm{Eu}$	19.5	$^{150}{ m Tb}(eta^+)^{150}{ m Gd}$		()
$^{150}{ m Tb}^{m}$	89.2	150 Tb m -u	10.8	$^{154}\text{Ho}^{m}(\alpha)^{150}\text{Tb}^{m}$		
150 Dv	92.0	150 Dy(α) 146 Gd	6.2	$^{154}\text{Er}(\alpha)^{150}\text{Dy}$	1.9	$^{150}\mathrm{Ho}(\varepsilon)^{150}\mathrm{Dy}$
¹⁵⁰ Ho	53.2	$^{150}\text{Ho}-^{133}\text{Cs}_{1.128}$	26.8	150 Ho $(\varepsilon)^{150}$ Dy	20.0	150 Er(β^+) 150 Ho
¹⁵⁰ Er	62.1	150 Er(β^+) 150 Ho	37.9	¹⁵⁰ Er–u	20.0	$\mathbf{n}(\mathbf{p})$ in
¹⁵¹ Pr	76.5	151 Pr $-u$	23.5	$^{151}\text{Pr}(\beta^-)^{151}\text{Nd}$		
¹⁵¹ Nd	99.8	150 Nd(n, γ) 151 Nd	0.2	$^{151}\text{Pr}(\beta^{-})^{151}\text{Nd}$		
¹⁵¹ Pm	80.0	150 Nd(3 He,d) 151 Pm	20.0	$^{151}\text{Pm}(\beta^{-})^{151}\text{Sm}$		
¹⁵¹ Sm	40.8	151 Sm $(n,\gamma)^{152}$ Sm	37.8	150 Sm(n, γ) 151 Sm	21.4	151 Sm(β^-) 151 Eu
¹⁵¹ Eu	58.9	$^{151}\text{Sm}(\beta^{-})^{151}\text{Eu}$	39.1	151 Eu (n,γ) 152 Eu	0.8	$^{151}\mathrm{Gd}(\varepsilon)^{151}\mathrm{Eu}$
151Gd	85.0	$^{151}\mathrm{Gd}(\varepsilon)^{151}\mathrm{Eu}$	15.0	$^{151}\text{Tb}(\beta^+)^{151}\text{Gd}$	0.6	Gu(E) Eu
¹⁵¹ Tb	51.5	$^{151}\text{Tb}(\beta^+)^{151}\text{Gd}$	48.5	$^{151}\text{Tb}(\alpha)^{147}\text{Eu}$		
¹⁵² Nd	66.4	150 Nd(t,p) 152 Nd	33.6	$^{150}\text{Nd}(\beta^-)^{152}\text{Pm}$		
152Pm	51.4	$^{152}\text{Nd}(\beta^-)^{152}\text{Pm}$	48.6	$^{152}\text{Pm}(\beta^{-})^{152}\text{Sm}$		
152Sm		$^{152}Gd-^{152}Sm$		151 Sm(n a) 152 Sm	6.2	152E ₁₁ (B+)152E ₁₁₁
¹⁵² Eu	71.9		17.0	151 Sm $(n,\gamma)^{152}$ Sm 152 S	6.3	152 Eu(β^+) 152 Sm 152 Eu(n, γ) 153 Eu
152Gd	60.4	151 Eu(n, γ) 152 Eu	26.5	152 Eu(β^+) 152 Sm 152 Gd- 152 Sm	13.1	$Eu(n,\gamma)$ Eu
¹⁵² Ho	73.6	152 Gd(n, γ) 153 Gd	26.4			
¹⁵² Ho ¹⁵² Er	95.3	$^{152}\text{Ho}(\alpha)^{148}\text{Tb}$	4.7	$^{156}\text{Tm}(\alpha)^{152}\text{Ho}$		
152Er 152Tm	85.0	152 Er(α) 148 Dy	15.0	156 Yb $(\alpha)^{152}$ Er		
152 Yb	100.0	152Tm-u				
153 Pr	100.0	152 Yb(β^+) 152 Tm	10.0	153p 8617	10.0	153D 8017
153 Pr 153 Nd	79.7	153Pr-u	10.2	153 Pr $^{-86}$ Kr _{1.779}	10.2	153 Pr $-^{80}$ Kr _{1.913}
153Nd	35.9	¹⁵³ Nd- ⁸⁰ Kr _{1.913}	32.2	¹⁵³ Nd-u	31.0	153Nd-86Kr _{1.779}
¹⁵³ Pm	33.4	154 Sm(d, 3 He) 153 Pm	17.9	¹⁵³ Pm-u	17.9	153 Pm $-^{86}$ Kr _{1.779}
¹⁵³ Eu	86.5	152 Eu(n, γ) 153 Eu	13.5	153 Eu(n, γ) 154 Eu		153 (2 1-) 153
¹⁵³ Gd	74.0	153 Gd(n, γ) 154 Gd	25.4	152 Gd(n, γ) 153 Gd	0.5	$^{153}\text{Tb}(\beta^+)^{153}\text{Gd}$
¹⁵³ Tb	58.6	153 Tb(β^+) 153 Gd	41.4	153 Dy $(\beta^+)^{153}$ Tb		
¹⁵³ Dy	52.1	153 Dy $(\beta^+)^{153}$ Tb	47.9	153 Dy(α) 149 Gd		
¹⁵³ Er	97.3	153 Er(α) 149 Dy	2.7	157 Yb(α) 153 Er		
153 Tm	53.8	157 Lu ^m (α) ¹⁵³ Tm	46.2	153 Tm(α) 149 Ho		154 2 152
¹⁵⁴ Sm	78.5	¹⁵⁴ Sm ³⁵ Cl- ¹⁵² Sm ³⁷ Cl	20.8	154 Sm $^{-154}$ Gd	0.6	¹⁵⁴ Sm(d, ³ He) ¹⁵⁵ Pm
¹⁵⁴ Eu	85.2	153 Eu(n, γ) 154 Eu	11.9	154 Eu(β^-) 154 Gd	2.1	154 Eu $(n,\gamma)^{155}$ Eu
¹⁵⁴ Gd	72.6	154 Gd(n, γ) 155 Gd	24.4	153 Gd(n, γ) 154 Gd	2.4	154 Eu(β^-) 154 Gd
¹⁵⁴ Dy	81.5	154 Dy(α) 150 Gd	17.7	154 Dy $^{-133}$ Cs $_{1.158}$	0.8	$^{154}\text{Ho}^{m}(\beta^{+})^{154}\text{Dy}$
¹⁵⁴ Ho ^m	88.9	$^{154}\text{Ho}^{m}(\alpha)^{150}\text{Tb}^{m}$	11.1	$^{154}\text{Ho}^{m}(\beta^{+})^{154}\text{Dy}$		
¹⁵⁴ Er	91.6	154 Er(α) 150 Dy	8.4	158 Yb(α) 154 Er		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁵⁴ Yb	100.0	$^{154}{ m Yb}(\alpha)^{150}{ m Er}$				
¹⁵⁵ Pr	35.5	¹⁵⁵ Pr—u	33.3	155 Pr $-^{86}$ Kr _{1.802}	31.2	155 Pr $-^{80}$ Kr _{1.938}
¹⁵⁵ Nd	33.4	¹⁵⁵ Nd-u	33.4	155 Nd $-^{86}$ Kr _{1 802}	33.2	155 Nd $-^{80}$ Kr _{1 938}
¹⁵⁵ Pm	33.7	155 Pm $-^{80}$ Kr _{1.938}	33.1	¹⁵⁵ Pm-u	33.1	155 Pm $-^{86}$ Kr _{1.802}
¹⁵⁵ Eu	97.7	154 Eu(n, γ) 155 Eu	2.3	158 Gd(t, α) 157 Eu $^{-156}$ Gd() 155 Eu		1.002
^{155}Gd	58.6	155 Gd(n, γ) 156 Gd	26.8	154 Gd(n, γ) 155 Gd	10.7	155 Gd O $-$ C $_{15}$
155 Dy	92.1	156 Dy(d,t) 155 Dy	7.9	155 Ho(β^{+}) 155 Dy		10
¹⁵⁵ Ho	60.9	155 Ho(β^+) 155 Dy	39.1	¹⁵⁵ Ho−u		
¹⁵⁶ Pm	35.2	156 Pm $^{-80}$ Kr _{1.950}	32.9	156 Pm $-^{86}$ Kr _{1.814}	31.9	¹⁵⁶ Pm-u
¹⁵⁶ Sm	88.5	156 Sm(β^-) 156 Eu	11.5	154 Sm(t,p) 156 Sm		
¹⁵⁶ Eu	70.1	154 Eu(t,p) 156 Eu	28.2	156 Eu(β^-) 156 Gd	1.7	156 Sm $(\beta^{-})^{156}$ Eu
^{156}Gd	56.6	156 Gd(n, γ) 157 Gd	41.2	155 Gd(n, γ) 156 Gd	8.1	¹⁵⁶ Dy ⁻¹⁵⁶ Gd
¹⁵⁶ Tb	100.0	155 Gd(α ,t) 156 Tb $-^{158}$ Gd() 159 Tb				•
156 Dv	91.9	156 Dy $^{-156}$ Gd	7.1	156 Dy $-^{133}$ Cs _{1.173}	0.9	156 Dy(d,p) 157 Dy
¹⁵⁶ Er	77.7	¹⁵⁶ Er-u	22.3	156 Tm(β^+) 156 Er		
¹⁵⁶ Tm	93.8	$^{156}\text{Tm}(\alpha)^{152}\text{Ho}$	6.2	156 Tm(β^+) 156 Er		
¹⁵⁶ Yb	82.9	156 Yb(α) 152 Er	17.1	$^{160}{\rm Hf}(\alpha)^{156}{\rm Yb}$		
¹⁵⁶ Hf	100.0	156 Hf(α) 152 Yb				
¹⁵⁷ Nd	33.8	157 Nd $-^{86}$ Kr _{1 826}	33.8	157 Nd $-^{80}$ Kr _{1.963}	32.4	¹⁵⁷ Nd-u
157Pm	33.5	¹⁵⁷ Pm-u	33.5	157 Pm $-^{86}$ Kr _{1.826}	33.1	$^{157}\text{Pm} - ^{80}\text{Kr}_{1.963}$
¹⁵⁷ Sm	34.2	157 Sm $-^{80}$ Kr _{1.963}	32.9	¹⁵⁷ Sm-u	32.9	157 Sm $-^{86}$ Kr $_{1.826}$
¹⁵⁷ Eu	67.0	158 Gd(t, α) 157 Eu $^{-156}$ Gd() 155 Eu	33.0	160 Gd(t, α) 159 Eu $^{-158}$ Gd() 157 Eu		1.020
$^{157}\mathrm{Gd}$	42.1	156 Gd(n, γ) 157 Gd	41.5	157 Gd $(n,\gamma)^{158}$ Gd	10.1	¹⁵⁹ Tb ³⁵ Cl- ¹⁵⁷ Gd ³⁷ Cl
157 Tb	92.9	157 Tb $(\varepsilon)^{157}$ Gd	7.1	156 Gd(α ,t) 157 Tb $-^{158}$ Gd() 159 Tb		
$157 D_{V}$	51.6	156 Dy(d,p) 157 Dy	47.5	158 Dy(d,t) 157 Dy	0.8	$^{157}\text{Ho}(\beta^+)^{157}\text{Dy}$
¹⁵⁷ Ho	70.5	¹⁵⁷ Ho–u	21.8	157 Ho(β^+) 157 Dy	7.7	157 Er $(\beta^+)^{157}$ Ho
¹⁵⁷ Er	90.0	¹⁵⁷ Er-u	10.0	$^{157}{ m Er}(\hat{m{\beta}}^+)^{157}{ m Ho}$		•
157Yh	96.2	157 Yb(α) 153 Er	3.8	161 Hf(α) 157 Yb		
¹⁵⁷ Lu	82.5	157 Lu m (IT) 157 Lu	17.5	157 Lu $-$ u		
$^{157}L11^{m}$	45.5	157 Lu ^{m} (α) 153 Tm	37.4	161 Ta $^{m}(\alpha)^{157}$ Lu m	17.1	157 Lu m (IT) 157 Lu
¹⁵⁸ Pm	33.4	¹⁵⁸ Pm-u	33.4	158 Pm $-^{86}$ Kr _{1.837}	33.3	158 Pm $^{-80}$ Kr _{1.975}
¹⁵⁸ Sm	32.4	158 Sm $-^{80}$ Kr _{1.975}	31.2	158 Sm $-^{86}$ Kr _{1.837}	30.6	158 Sm $-$ u
¹⁵⁸ Eu	41.9	158 Sm(β^-) 158 Eu	19.4	¹⁵⁸ Eu-u	19.4	158 Eu $-^{86}$ Kr _{1.837}
^{158}Gd	58.1	157 Gd(n, γ) 158 Gd	15.0	160 Gd 35 Cl $-^{158}$ Gd 37 Cl	11.6	160 Gd(α ,t) 161 Tb $-^{158}$ Gd() 159 Tb
¹⁵⁸ Tb	39.5	157 Gd(α ,t) 158 Tb $-^{158}$ Gd() 159 Tb	39.4	159 Tb(d,t) 158 Tb $-^{164}$ Dy() 163 Dy	17.5	$^{158}\text{Gd}(d,t)^{157}\text{Gd} - ^{159}\text{Tb}()^{158}\text{Tb}$
¹⁵⁸ Dy	63.7	160 Dy(p,t) 158 Dy	17.5	¹⁶⁰ Dy ³⁵ Cl- ¹⁵⁸ Dy ³⁷ Cl	13.7	$^{158}\text{Tb}(\beta^-)^{158}\text{Dy}$
138Fr	81.4	¹⁵⁸ Er-u	18.6	$^{158}\mathrm{Tm}(\beta^+)^{158}\mathrm{Er}$		
¹⁵⁸ Tm	81.4	158 Tm $-$ u	18.6	158 Tm(β^{+}) 158 Er		
¹⁵⁸ Yb	71.3	$^{158}{ m Yb}(\alpha)^{154}{ m Er}$	14.4	$^{158}\text{Yb} - ^{142}\text{Sm}_{1.113}$	14.3	$^{162}{\rm Hf}(\alpha)^{158}{\rm Yb}$
¹⁵⁸ Hf	100.0	158 Hf(α) 154 Yb				
¹⁵⁹ Pm	35.8	¹⁵⁹ Pm-u	32.2	159 Pm $-^{86}$ Kr _{1.849}	32.0	159 Pm $-^{80}$ Kr $_{1.988}$
¹⁵⁹ Sm	33.5	¹⁵⁹ Sm-u	33.5	159 Sm $-^{86}$ Kr _{1 849}	32.9	159 Sm $-^{80}$ Kr _{1.988}
¹⁵⁹ Eu	35.8	160 Gd(t, α) 159 Eu $-^{158}$ Gd() 157 Eu	21.6	¹⁵⁹ Eu-u	21.6	$^{159}\text{Eu} - ^{86}\text{Kr}_{1.849}$
¹⁵⁹ Gd	90.7	158 Gd(n, γ) 159 Gd	9.3	$^{159}\text{Gd}(\beta^-)^{159}\text{Tb}$		
¹⁵⁹ Tb	21.6	161 Dy 35 Cl $-^{159}$ Tb 37 Cl	18.2	159 Tb 35 Cl $-^{157}$ Gd 37 Cl	17.5	$^{159}\mathrm{Dy}(\varepsilon)^{159}\mathrm{Tb}$
159 Dv	62.3	159 Dy $(\varepsilon)^{159}$ Tb	37.7	161 Dy(p,t) 159 Dy		
¹⁶⁰ Sm	33.5	160 Sm $-$ u	33.5	160 Sm $-^{86}$ Kr _{1 860}	32.9	160 Sm $-^{80}$ Kr $_{2.000}$
¹⁶⁰ Eu	36.0	¹⁶⁰ Eu−u	32.1	160 Eu $-^{86}$ Kr _{1.860}	31.9	160 Eu $-^{80}$ Kr _{2.000}
160 Gd	35.4	160 Gd 35 Cl $-^{158}$ Gd 37 Cl	35.2	$^{160}\text{Gd} - ^{160}\text{Dy}$	27.5	160 Gd(α ,t) 161 Tb $-^{158}$ Gd() 159 Tb
160 Th	90.1	$^{159}{ m Tb}({ m n},\gamma)^{160}{ m Tb}$	9.9	$^{160}{ m Tb}({ m n},\gamma)^{161}{ m Tb}$		
160 Dv	94.1	160 Dy(n, γ) 161 Dy	5.3	$^{160}\text{Gd} - ^{160}\text{Dy}$	0.5	160 Dy(p,t) 158 Dy
¹⁶⁰ Er	94.8	160 Er $-u$	5.2	$^{160}{ m Tm}(eta^+)^{160}{ m Er}$		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁶⁰ Tm	88.9	¹⁶⁰ Tm-u	11.1	160 Tm $(\beta^+)^{160}$ Er		
¹⁶⁰ Yb	85.4	160 Yb $-^{133}$ Cs _{1.203}	14.6	160 Yb $-^{142}$ Sm _{1.127}		
$^{160}\mathrm{Hf}$	81.8	$^{160}{\rm Hf}(\alpha)^{156}{\rm Yb}$	18.2	$^{164}{ m W}(lpha)^{160}{ m Hf}$		
$^{160}\mathrm{W}$	100.0	$^{160}\mathrm{W}(lpha)^{156}\mathrm{Hf}$				
¹⁶¹ Sm	36.6	161 Sm $-^{80}$ Kr _{2.013}	31.7	¹⁶¹ Sm-u	31.7	161 Sm $-^{86}$ Kr _{1.872}
¹⁶¹ Eu	34.5	¹⁶¹ Eu-u	34.3	161 Eu $^{-80}$ Kr _{2.013}	31.2	161 Eu $^{-86}$ Kr _{1.872}
¹⁶¹ Tb	74.2	160 Tb $(n,\gamma)^{161}$ Tb	25.8	160 Gd(α ,t) 161 Tb $-^{158}$ Gd() 159 Tb		161 25 150 27
¹⁶¹ Dy	88.0	161 Dy(n, γ) 162 Dy	5.8	160 Dy $(n,\gamma)^{161}$ Dy	3.4	161 Dy 35 Cl $^{-159}$ Tb 37 Cl
¹⁶¹ Ho	100.0	160 Dy(3 He,d) 161 Ho $^{-164}$ Dy() 165 Ho		1/1157		1/5
¹⁶¹ Hf	65.1	¹⁶¹ Hf-u	19.4	161 Hf(α) 157 Yb	15.5	165 W(α) 161 Hf
161 Ta ^m	56.4	161 Ta ^{m} (α) 157 Lu m	43.6	$^{165}\text{Re}^{m}(\alpha)^{161}\text{Ta}^{m}$		
¹⁶¹ Re	79.2	¹⁶¹ Re(p) ¹⁶⁰ W	20.9	$^{161}\text{Re}^m(\text{IT})^{161}\text{Re}$		
161 Re ^m	78.1	$^{161}\text{Re}^{m}(\text{IT})^{161}\text{Re}$	21.8	$^{165}\text{Ir}^{m}(\alpha)^{161}\text{Re}^{m}$		
¹⁶² Dy	100.0	162 Dy(n, γ) 163 Dy	12.0	161 Dy $(n,\gamma)^{162}$ Dy		
¹⁶² Ho	100.0	161 Dy(3 He,d) 162 Ho $^{-164}$ Dy() 165 Ho	0.1	162 - (1) 163 -		
¹⁶² Er ¹⁶² Hf	99.9	$^{162}\text{Er} - ^{162}\text{Dy}$	0.1	162 Er(d,p) 163 Er		
$^{162}\mathrm{Hf}$ $^{162}\mathrm{W}$	80.9	162 Hf(α) 158 Yb	19.1	166 W(α) 162 Hf		
¹⁶² W	100.0	162 W(α) 158 Hf 163 Gd $^{-86}$ Kr _{1.895}	22.0	163 G J	21.7	163 C. L. 80 K
¹⁶³ Dy	36.4	163 D. O. G.	32.0	¹⁶³ Gd-u	31.7	$^{163}\text{Gd} - ^{80}\text{Kr}_{2.038}$
¹⁶³ Ho	40.5	163 Dy O-C ₁₅ 163 Ho(ε) 163 Dy	30.8	163 Ho(ε) 163 Dy	15.8	163 Dy(n, γ) 164 Dy 163 Ho $^{-163}$ Dy
¹⁶³ Er	38.6		31.9	¹⁶³ Ho O–C ₁₅ ¹⁶⁴ Er(d,t) ¹⁶³ Er	17.0	$^{162}\text{Er}(d,p)^{163}\text{Er}$
¹⁶³ Hf	58.2	163 Er(β^+) 163 Ho 163 Hf $-$ u	20.9 21.4	$^{167}\text{W}(\alpha)^{163}\text{Hf}$	20.9	Er(d,p) Er
¹⁶⁴ Dy	78.6 83.7	163 Dy(n, γ) 164 Dy	12.6	162 Dy(3 He,d) 163 Ho $^{-164}$ Dy() 165 Ho	3.1	158 Gd(α ,t) 159 Tb $-^{164}$ Dy() 165 Ho
¹⁶⁴ Ho	67.1	163 Dy(3 He,d) 164 Ho $-^{164}$ Dy() 165 Ho	32.9	$^{165}\text{Ho}(\gamma, n)^{164}\text{Ho}$	3.1	$Gd(\alpha,t) = Dy(t) = Ho$
164Er	100.0	$^{164}\text{Er}-^{164}\text{Dy}$	2.6	164 Er(n, γ) 165 Er		
164Tm	76.2	164Tm—u	23.8	$^{164}\text{Tm}(\beta^+)^{164}\text{Er}$		
¹⁶⁴ Hf	68.0	$^{168}W(\alpha)^{164}Hf$	32.0	¹⁶⁴ Hf–u		
$^{164}\mathrm{W}$	81.2	$^{164}W(\alpha)^{160}Hf$	18.8	$^{168}\mathrm{Os}(\alpha)^{164}\mathrm{W}$		
164Os	80.0	164 Os $(\alpha)^{160}$ W	20.0	165 Ir m (p) 164 Os		
¹⁶⁵ Ho	55.6	162 Dy(3 He,d) 163 Ho $^{-164}$ Dy() 165 Ho	23.4	$^{165}\text{Ho}(n,\gamma)^{166}\text{Ho}$	11 4	169 Tm 35 Cl ₂ $-^{165}$ Ho 37 Cl ₂
¹⁶⁵ Er	93.7	$^{164}\text{Er}(\text{n},\gamma)^{165}\text{Er}$	6.3	165 Tm(β^+) 165 Er	11	
¹⁶⁵ Tm	52.8	165 Tm(β^+) 165 Er	47.2	164 Er(α ,t) 165 Tm $-^{168}$ Er() 169 Tm		
¹⁶⁵ Yb	90.2	165 Yb—u	9.8	165 Lu(β^+) 165 Yb		
¹⁶⁵ Lu	90.2	165 Lu $-$ u	9.8	165 Lu(β^+) 165 Yb		
¹⁶⁵ Ta	75.4	$^{169}\text{Re}^{m}(\alpha)^{165}\text{Ta}$	24.6	¹⁶⁵ Ta-u		
¹⁶⁵ W	79.9	$^{165}W-u$	20.1	$^{165}W(\alpha)^{161}Hf$		
165 Re m	55.1	$^{165}\mathrm{Re}^m(\alpha)^{161}\mathrm{Ta}^m$	44.9	169 Ir $^m(\alpha)^{165}$ Re m		
$^{165} { m Ir}^{m}$	51.6	$^{165}\text{Ir}^{m}(p)^{164}\text{Os}$	48.4	165 Ir $^m(\alpha)^{161}$ Re m		
¹⁶⁶ Ho	76.5	165 Ho(n, γ) 166 Ho	23.4	$^{166}\text{Ho}(\beta^{-})^{166}\text{Er}$		
¹⁶⁶ Er	54.4	$^{166}\text{Ho}(\beta^{-})^{166}\text{Er}$	46.2	166 Er(n, γ) 167 Er		
^{166}W	77.8	$^{166}{ m W}(lpha)^{162}{ m Hf}$	11.5	$^{166}W-u$	10.7	$^{170}{\rm Os}(\alpha)^{166}{\rm W}$
¹⁶⁶ Os	100.0	$^{166}\mathrm{Os}(\alpha)^{162}\mathrm{W}$				
¹⁶⁷ Er	53.1	166 Er $(n,\gamma)^{167}$ Er	32.3	167 Er $(n,\gamma)^{168}$ Er	14.6	¹⁶⁹ Tm ³⁵ Cl- ¹⁶⁷ Er ³⁷ Cl
¹⁶⁷ Tm	99.2	166 Er(α ,t) 167 Tm $-^{168}$ Er() 169 Tm	0.8	167 Yb(β^+) 167 Tm		
¹⁶⁷ Yb	89.3	$^{167}{ m Yb}(eta^+)^{167}{ m Tm}$	10.7	168 Yb(d,t) 167 Yb		
^{167}W	89.8	$^{171}\mathrm{Os}(\alpha)^{167}\mathrm{W}$	10.2	167 W(α) 163 Hf		
¹⁶⁷ Ir	76.6	167 Ir(p) 166 Os	23.4	167 Ir m (IT) 167 Ir		
$^{167} {\rm Ir}^m$	70.3	167 Ir m (IT) 167 Ir	29.7	171 Au ^m (α) ¹⁶⁷ Ir ^m		161
¹⁶⁸ Er	67.4	167 Er(n, γ) 168 Er	16.7	170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm	11.5	164 Er(α ,t) 165 Tm $-^{168}$ Er() 169 Tm
¹⁶⁸ Tm	100.0	167 Er(α ,t) 168 Tm $-^{168}$ Er() 169 Tm		169 167		
¹⁶⁸ Yb	99.3	$^{168}\text{Yb} - ^{168}\text{Er}$	0.7	168 Yb(d,t) 167 Yb		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation	
¹⁶⁸ W	58.5	$^{172}{ m Os}(lpha)^{168}{ m W}$	22.6	¹⁶⁸ W-u	18.9	$^{168}{ m W}(lpha)^{164}{ m Hf}$	
168Os	80.0	$^{168}\mathrm{Os}(\alpha)^{164}\mathrm{W}$	20.0	172 Pt(α) 168 Os			
¹⁶⁹ Tm	79.5	169 Tm $(n,\gamma)^{170}$ Tm	7.6	170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm 5		169 Tm 35 Cl ₂ $-^{165}$ Ho 37 Cl ₂	
$^{169}{ m W}$	69.5	173 Os $(\alpha)^{169}$ W	30.5	$^{169}W-u$			
169 Re ^{m}	76.3	$^{173}\mathrm{Ir}(\alpha)^{169}\mathrm{Re}^m$	23.7	$^{169}\text{Re}^{m}(\alpha)^{165}\text{Ta}$			
$^{169}\mathrm{Ir}^m$	53.7	169 Ir $^m(\alpha)^{165}$ Re m	46.3	173 Au $^m(\alpha)^{169}$ Ir m			
$^{170}\mathrm{Fr}$	53.1	170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm	36.3	170 Er(n, γ) 171 Er	8.9	170 Er 35 Cl $^{-168}$ Er 37 Cl	
¹⁷⁰ Tm	80.2	$^{170}\text{Tm}(\beta^{-})^{170}\text{Yb}$	19.8	$^{169}\text{Tm}(n,\gamma)^{170}\text{Tm}$			
$^{170}\mathbf{Yh}$	52.6	170 Yb $-^{129}$ Xe _{1.318}	47.4	$^{170}\text{Yb} - ^{132}\text{Xe}_{1.288}$			
^{170}W	77.7	$^{174}Os(\alpha)^{170}W$	22.3	$^{170}W-u$			
¹⁷⁰ Re	80.3	¹⁷⁰ Re-u	19.7	$^{174} Ir(\alpha)^{170} Re$			
^{170}Os	88.5	170 Os $(\alpha)^{166}$ W	11.5	¹⁷⁰ Os-u			
¹⁷⁰ Pt	84.4	170 Pt(α) 166 Os	15.6	171 Au m (p) 170 Pt			
¹⁷¹ Er	61.8	170 Er(n, γ) 171 Er	38.2	171 Er(β^{-}) 171 Tm			
¹⁷¹ Tm	94.4	$^{171}\text{Tm}(\beta^{-})^{171}\text{Yb}$	4.3	170 Er(α ,t) 171 Tm $-^{168}$ Er() 169 Tm	1.2	$^{171}{ m Er}(m{\beta}^-)^{171}{ m Tm}$	
¹⁷¹ Yh	100.0	171 Yb $-^{129}$ Xe _{1.326}					
¹⁷¹ Lu	61.5	170 Yb(α ,t) 171 Lu $^{-174}$ Yb() 175 Lu	38.5	171 Lu(β^+) 171 Yb			
^{171}Os	81.4	¹⁷¹ Os-u	9.6	$^{171}\text{Os}(\alpha)^{167}\text{W}$	9.0	175 Pt(α) 171 Os	
171 Au m	61.0	171 Au m (p) 170 Pt	39.0	171 Au $^m(\alpha)^{167}$ Ir m			
¹⁷² Er	87.1	170 Er(t,p) 172 Er	12.9	172 Er(β^-) 172 Tm			
¹⁷² Tm	69.7	172 Er(β^-) 172 Tm	30.3	$^{172}\text{Tm}(\beta^{-})^{172}\text{Yb}$			
$^{172}\mathbf{Yb}$	100.0	172 Yb $-^{132}$ Xe _{1.303}					
$^{172}L_{11}$	100.0	171 Yb(α ,t) 172 Lu $^{-174}$ Yb() 175 Lu					
¹⁷² Re	54.4	176 Ir(α) 172 Re	45.6	¹⁷² Re-u			
^{172}Os	65.8	176 Pt(α) 172 Os	34.2	$^{172}\text{Os}(\alpha)^{168}\text{W}$			
¹⁷² Pt	77.2	172 Pt(α) 168 Os	22.8	176 Hg(α) 172 Pt			
173 Yb	55.8	$^{173}\text{Yb} - ^{129}\text{Xe}_{1.341}$	44.2	$^{173}\text{Yb} - ^{132}\text{Xe}_{1.311}$			
¹⁷³ Lu	100.0	172 Yb(α ,t) 173 Lu $^{-174}$ Yb() 175 Lu					
^{173}Os	43.9	177 Pt(α) 173 Os	28.7	¹⁷³ Os-u	27.4	$^{173}{\rm Os}(\alpha)^{169}{\rm W}$	
¹⁷³ Ir	86.4	177 Au(α) 173 Ir	13.6	173 Ir(α) 169 Re ^{m}			
173 Au ^m	52.2	173 Au $^m(\alpha)^{169}$ Ir m	47.8	$^{177}\mathrm{Tl}^m(\alpha)^{173}\mathrm{Au}^m$			
¹⁷⁴ Yb	68.3	$^{174}\text{Yb} - ^{129}\text{Xe}_{1.349}$	31.7	$^{174}\text{Yb} - ^{132}\text{Xe}_{1.318}$			
¹⁷⁴ Lu	100.0	173 Yb(α ,t) 174 Lu $^{-174}$ Yb() 175 Lu					
¹⁷⁴ Hf	74.2	176 Hf 35 Cl $^{-174}$ Hf 37 Cl	13.8	174 Hf(n, γ) 175 Hf	11.9	176 Hf(p,t) 174 Hf	
¹⁷⁴ Os	74.7	178 Pt(α) 174 Os	13.5	$^{174}Os-u$	11.9	$^{174}{\rm Os}(\alpha)^{170}{\rm W}$	
¹⁷⁴ Ir	77.3	174 Ir(α) 170 Re	22.7	178 Au $(\alpha)^{174}$ Ir			
¹⁷⁵ Yh	99.9	174 Yb $(n,\gamma)^{175}$ Yb	0.1	$^{175}{ m Yb}(eta^-)^{175}{ m Lu}$			
¹⁷⁵ Lu	54.2	175 Yb(β^-) 175 Lu	20.9	175 Lu(n, γ) 176 Lu	13.7	¹⁷⁵ Lu ³⁵ Cl- ¹⁷³ Yb ³⁷ Cl	
175Hf	85.7	174 Hf(n, γ) 175 Hf	14.3	177 Hf(p,t) 175 Hf			
¹⁷⁵ Os	82.2	179 Pt(α) 175 Os	17.8	175 Os $-u$			
¹⁷⁵ Ir	80.4	179 Au $(\alpha)^{175}$ Ir	19.6	175 Ir $-$ u			
¹⁷⁵ Pt	90.6	175 Pt(α) 171 Os	9.4	179 Hg(α) 175 Pt			
¹⁷⁶ Yb	73.0	$^{176}\text{Yb} - ^{129}\text{Xe}_{1.364}$	27.0	$^{176}\text{Yb} - ^{132}\text{Xe}_{1.333}$			
¹⁷⁶ Lu	78.9	175 Lu(n, γ) 176 Lu	11.4	¹⁷⁶ Lu ³⁷ Cl- ¹⁴³ Nd ³⁵ Cl ₂	7.7	176 Lu(n, γ) 177 Lu	
¹⁷⁶ Hf	74.5	176 Lu(β^-) 176 Hf	23.3	180 W(α) 176 Hf	1.9	176 Hf 35 Cl $^{-174}$ Hf 37 Cl	
176 _{Ir}	59.3	180 Au(α) 176 Ir	35.9	¹⁷⁶ Ir-u	4.8	176 Ir(α) 172 Re	
¹⁷⁶ Pt	66.4	180 Hg(α) 176 Pt	33.6	176 Pt(α) 172 Os			
¹⁷⁶ Hg	71.9	176 Hg(α) 172 Pt	28.1	$^{177}\text{Tl}^m(p)^{176}\text{Hg}$			
¹⁷⁷ Lu	91.5	176 Lu(n, γ) 177 Lu	8.4	177 Lu(β^-) 177 Hf	0.1	179 Hf(t, α) 178 Lu $^{-178}$ Hf() 177 L	
¹⁷⁷ Hf	69.9	177 Lu(β^-) 177 Hf	28.7	177 Hf(n, γ) 178 Hf	1.4	177 Hf(p,t) 175 Hf	
177 Pt	55.3	177 Pt(α) 173 Os	28.8	¹⁷⁷ Pt—u	16.0	181 Hg(α) 177 Pt	
¹⁷⁷ Au	87.9	$^{181}\text{Tl}(\alpha)^{177}\text{Au}$	12.1	177 Au(α) 173 Ir			

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
$^{177}\mathrm{Tl}^m$	62.3	¹⁷⁷ Tl ^m (p) ¹⁷⁶ Hg	37.7	$^{177}\mathrm{Tl}^m(\alpha)^{173}\mathrm{Au}^m$		
¹⁷⁸ Lu	89.4	179 Hf(t, α) 178 Lu $^{-178}$ Hf() 177 Lu	10.6	$^{178}\text{Lu}^m(\text{IT})^{178}\text{Lu}$		
$^{178}\mathrm{Lu}^m$	65.7	¹⁷⁸ Lu ^m (IT) ¹⁷⁸ Lu	34.3	176 Lu(t,p) 178 Lu ^m		
$^{178}{ m Hf}$	70.5	177 Hf(n, γ) 178 Hf	29.5	178 Hf(n, γ) 179 Hf		
^{178}Os	76.2	182 Pt(α) 178 Os	23.8	¹⁷⁸ Os-u		
¹⁷⁸ Pt	62.4	182 Hg(α) 178 Pt	24.5	178 Pt(α) 174 Os	13.1	¹⁷⁸ Pt-u
178 Au	96.9	$^{178}\text{Au} - ^{133}\text{Cs}_{1.338}$	3.1	178 Au(α) 174 Ir	1011	10 0
¹⁷⁹ Lu	100.0	180 Hf(t, α) 179 Lu $^{-178}$ Hf() 177 Lu		()		
¹⁷⁹ Hf	70.3	178 Hf(n, γ) 179 Hf	15.9	$^{179}{ m Hf}({ m n},\gamma)^{180}{ m Hf}$	7.0	¹⁸¹ Ta ³⁵ Cl- ¹⁷⁹ Hf ³⁷ Cl
¹⁷⁹ Ta	92.7	179 Ta $(\varepsilon)^{179}$ Hf	7.3	181 Ta(p,t) 179 Ta		
^{179}W	93.5	180 W(d,t) 179 W	6.5	179 Re(β^+) 179 W		
179 Re	77.7	179 Re $-$ u	22.3	179 Re(β^+) 179 W		
179Os	65.1	183 Pt(α) 179 Os	34.9	¹⁷⁹ Os-11		
¹⁷⁹ Ir	87.8	183 Au(α) 179 Ir	12.2	¹⁷⁹ Ir–u		
179 P t	92.8	$^{183} \text{Hg}(\alpha)^{179} \text{Pt}$	7.2	179 Pt(α) 175 Os		
179 A11	66.6	$^{183}\mathrm{Tl}^{m}(\alpha)^{179}\mathrm{Au}$	16.9	179 Au(α) 175 Ir	16.4	¹⁷⁹ Au-u
¹⁷⁹ Hø	74.1	$^{179}\text{Hg} - ^{208}\text{Pb}_{.861}$	25.9	179 Hg(α) 175 Pt		
¹⁸⁰ Hf	83.5	179 Hf(n, γ) 180 Hf	16.5	$^{180}W - ^{180}Hf$		
$^{180}\mathbf{W}$	81.8	$^{180}W - ^{180}Hf$	18.2	180 W(α) 176 Hf	0.1	$^{180}W(d,t)^{179}W$
^{180}Os	65.6	184 Pt(α) 180 Os	34.4	¹⁸⁰ Os-u	0.11	· · (a,t)
180 Au	94.0	180 Au $-^{133}$ Cs _{1.353}	4.0	$^{184}\text{Tl}(\alpha)^{180}\text{Au}$	2.0	180 Au $(\alpha)^{176}$ Ir
¹⁸⁰ Hg	38.0	180 Hg $^{-208}$ Pb $_{.865}$	32.8	180 Hg(α) 176 Pt	29.2	$^{184}\text{Pb}(\alpha)^{180}\text{Hg}$
¹⁸¹ Ta	25.5	181 Ta $(n,\gamma)^{182}$ Ta	21.9	181 Ta O $-^{202}$ Tl _{.975}	21.6	¹⁸³ W ³⁵ Cl- ¹⁸¹ Ta ³⁷ Cl
¹⁸¹ Os	64.0	181 Os $-$ u	36.0	185 Pt(α) 181 Os	21.0	,, 61 14 61
¹⁸¹ Pt	52.0	$^{185} \text{Hg}(\alpha)^{181} \text{Pt}$	48.0	181 Pt $-u$		
¹⁸¹ Hg	83.0	181 Hg(α) 177 Pt	17.0	¹⁸¹ Hg- ²⁰⁸ Pb _{.870}		
¹⁸¹ Tl	79.0	¹⁸¹ Tl- ¹³³ Cs _{1.361}	12.2	$^{185}\text{Bi}^{m}(\alpha)^{181}\text{Tl}$	8.8	$^{181}\mathrm{Tl}(\alpha)^{177}\mathrm{Au}$
¹⁸² Ta	74.4	181 Ta $(n,\gamma)^{182}$ Ta	25.6	$^{182}\text{Ta}(\beta^{-})^{182}\text{W}$		()
^{182}W	100.0	$^{182}W(n,\gamma)^{183}W$	4.0	$^{182}\text{Ta}(\beta^{-})^{182}\text{W}$		
^{182}Os	60.6	$^{182}Os-u$	39.4	186 Pt(α) 182 Os		
¹⁸² Ir	56.3	¹⁸² Ir-u	43.7	186 Au(α) 182 Ir		
182 P t	56.8	$^{186}\mathrm{Hg}(\alpha)^{182}\mathrm{Pt}$	22.0	182 Pt $-u$	21.2	182 Pt(α) 178 Os
¹⁸² Hg	55.3	¹⁸² Hg- ²⁰⁸ Pb _{.875}	32.4	$^{182}{\rm Hg}(\alpha)^{178}{\rm Pt}$	12.3	¹⁸² Hg-u
^{183}W	72.0	183 W(n, γ) 184 W	15.4	183 W O-C ₂ 35 Cl ₅	11.2	199 Hg $^{-183}$ W O
183Os	76.7	183Os—u	23.3	183 Ir(β^+) 183 Os	11.2	115 110
¹⁸³ Ir	76.2	¹⁸³ Ir-u	19.3	187 Au(α) 183 Ir	4.5	183 Ir(β^+) 183 Os
¹⁸³ Pt	30.5	$^{187}{ m Hg}(\alpha)^{183}{ m Pt}$	27.9	183 Pt(α) 179 Os	27.2	183 Pt $-u$
¹⁸³ Au	77.4	$^{187}\text{Tl}^{m}(\alpha)^{183}\text{Au}$	11.4	¹⁸³ Au-u	11.2	183 Au(α) 179 Ir
¹⁸³ Hø	62.6	$^{187}\text{Pb}(\alpha)^{183}\text{Hg}$	31.8	¹⁸³ Hg- ²⁰⁸ Pb _{.880}	5.6	183 Hg(α) 179 Pt
¹⁸³ Tl	82.9	$^{183}\text{Tl} - ^{133}\text{Cs}_{1.376}$	17.1	$^{183}\text{Tl}^{m}(\text{IT})^{183}\text{Tl}$	2.0	115(0)
$^{183}\mathrm{Tl}^m$	82.9	$^{183}\text{Tl}^m(\text{IT})^{183}\text{Tl}$	17.1	$^{183}\text{Tl}^{m}(\alpha)^{179}\text{Au}$		
^{184}W	28.0	$^{184}W-u$	26.8	183 W(n, γ) 184 W	15.4	$^{184}Os-^{184}W$
¹⁸⁴ Re	100.0	185 Re(d,t) 184 Re $^{-187}$ Re() 186 Re	20.0	· · (···, /)	1011	
¹⁸⁴ Os	44.3	184 Os $(n,\gamma)^{185}$ Os	31.0	$^{184}Os-^{184}W$	24.3	$^{184}Os-u$
¹⁸⁴ Pt	40.3	188 Hg(α) 184 Pt	31.1	¹⁸⁴ Pt-u	28.6	184 Pt(α) 180 Os
¹⁸⁴ Hg	38.9	184Hg-u	32.1	¹⁸⁴ Hg- ²⁰⁸ Pb _{.885}	29.0	¹⁸⁴ Hg- ²⁰⁴ Pb _{.902}
184Tl	78.5	$^{184}\text{Tl}(\alpha)^{180}\text{Au}$	21.5	$^{184}\text{Tl} - ^{133}\text{Cs}_{1.383}$	27.0	1.5 10.902
¹⁸⁴ Pb	69.5	184 Pb(α) 180 Hg	30.5	$^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$		
$^{185}\mathrm{W}$	84.7	$^{184}W(n,\gamma)^{185}W$	15.3	$^{185}W(\beta^{-})^{185}Re$		
185 R e	38.8	185 Os $(\varepsilon)^{185}$ Re	28.5	$^{185}W(\beta^{-})^{185}Re$	27.2	185 Re(n, γ) 186 Re
185Os	51.0	184 Os(n, γ) 185 Os	49.0	185 Os $(\varepsilon)^{185}$ Re	21.2	KC(II, /) KC
	21.0	US(11,7) US	+ フ.∪	¹⁸⁵ Pt-u		

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁸⁵ Hg	45.3	$^{185}\mathrm{Hg}(\alpha)^{181}\mathrm{Pt}$	25.5	¹⁸⁵ Hg- ²⁰⁸ Pb _{.889}	15.2	189 Pb(α) 185 Hg
$^{185}{ m Bi}^{m}$	63.5	$^{185}\mathrm{Bi}^m(\alpha)^{181}\mathrm{Tl}$	36.5	$^{185}\text{Bi}^{m}(p)^{184}\text{Pb}$		8
^{186}W	54.6	$^{186}W(n,\gamma)^{187}W$	34.7	186 W(p,t) 184 W $-^{184}$ W() 182 W	10.7	¹⁸⁶ W ³⁵ Cl- ¹⁸⁴ W ³⁷ Cl
¹⁸⁶ Re	71.7	185 Re(n, γ) 186 Re	28.3	186 Re(β^{-}) 186 Os		
¹⁸⁶ Os	39.5	186 Os $(n, \gamma)^{187}$ Os	39.5	$^{186}\text{Os} - ^{190}\text{Pt}_{.979}$	21.0	186 Re(β^{-}) 186 Os
186 p t	60.6	¹⁸⁶ Pt—u	39.4	186 Pt(α) 182 Os		,
¹⁸⁶ Au	56.3	¹⁸⁶ Au-u	43.7	186 Au(α) 182 Ir		
¹⁸⁶ Hσ	56.2	186 Hg $-^{204}$ Pb $_{.912}$	26.4	186 Hg(α) 182 Pt	17.4	186 Hg $-$ u
187W	54.6	$^{187}W(\beta^{-})^{187}Re$	45.4	186 W(n, γ) 187 W		_
187 R e	88.7	187 Re(β^{-}) 187 Os	8.3	$^{187}W(\beta^{-})^{187}Re$	4.0	¹⁸⁷ Re ³⁵ Cl- ¹⁸⁵ Re ³⁷ Cl
¹⁸⁷ Os	57.5	187 Os(n, γ) 188 Os	30.3	186 Os $(n,\gamma)^{187}$ Os	12.7	187 Re(β^{-}) 187 Os
¹⁸⁷ Pt	74.1	187 Pt $-u$	25.9	187 Au(β^{+}) 187 Pt		• •
¹⁸⁷ Au	63.7	187 Au $-$ u	20.9	187 Au(β^{+}) 187 Pt	15.4	187 Au(α) 183 Ir
¹⁸⁷ Hg	55.5	187 Hg $-^{208}$ Pb $_{.899}$	18.5	187 Hg(α) 183 Pt	17.2	¹⁸⁷ Hg—u
187 Hg ^m	51.0	$^{187}\text{Hg}^m(\text{IT})^{187}\text{Hg}$	49.0	$^{187}\mathrm{Hg}^m(\alpha)^{183}\mathrm{Pt}$		
¹⁸⁷ Tl	69.2	$^{191}\text{Bi}(\alpha)^{187}\text{Tl}$	30.8	$^{187}\text{Tl}^{m}(\text{IT})^{187}\text{Tl}$		
$^{187}T1^{m}$	72.2	$^{191}\text{Bi}(\alpha)^{187}\text{Tl}^{m}$	13.9	$^{187}\text{Tl}^m(\text{IT})^{187}\text{Tl}$	13.9	$^{187}\mathrm{Tl}^m(\alpha)^{183}\mathrm{Au}$
¹⁸⁷ Pb	85.9	$^{187}\text{Pb} - ^{133}\text{Cs}_{1.406}$	14.1	187 Pb $(\alpha)^{183}$ Hg		. ,
$^{187}{\rm Pb}^{m}$	60.7	$^{187}\text{Pb}^{m}(\text{IT})^{187}\text{Pb}$	39.3	$^{191}\text{Po}(\alpha)^{187}\text{Pb}^{m}$		
188Os	59.1	188 Os $(n, \gamma)^{189}$ Os	40.8	$^{187}{\rm Os}({\rm n},\gamma)^{188}{\rm Os}$	0.1	188 Ir(β^+) 188 Os
¹⁸⁸ Ir	68.1	188 Pt $(\varepsilon)^{188}$ Ir	31.9	$^{188} \text{Ir}(\beta^+)^{188} \text{Os}$		•
¹⁸⁸ Pt	64.7	188 Pt(α) 184 Os	27.9	190 Pt(p,t) 188 Pt	7.4	188 Pt $(\varepsilon)^{188}$ Ir
¹⁸⁸ Hg	62.4	$^{188}\text{Hg}-^{208}\text{Pb}_{.904}$	19.3	¹⁸⁸ Hg-u	18.3	188 Hg(α) 184 Pt
¹⁸⁹ Os	78.9	189 Os $(n,\gamma)^{190}$ Os	21.1	$^{188}{\rm Os}({\rm n},\gamma)^{189}{\rm Os}$		
¹⁸⁹ Ir	69.7	191 Ir(p,t) 189 Ir	30.3	189 Pt(β^{+}) 189 Ir		
¹⁸⁹ Pt	83.8	190 Pt(p,d) 189 Pt	16.2	189 Pt $(\beta^+)^{189}$ Ir		
¹⁸⁹ Hg	65.0	¹⁸⁹ Hg-u	35.0	189 Hg m (IT) 189 Hg		
189 H $_{0}^{m}$	92.0	$^{189}\text{Hg}^m - ^{208}\text{Pb}_{.909}$	8.0	189 Hg m (IT) 189 Hg		
¹⁸⁹ Tl	70.3	$^{193}{\rm Bi}(\alpha)^{189}{\rm Tl}$	29.7	$^{193}\text{Bi}^{m}(\alpha)^{189}\text{Tl}$		
¹⁸⁹ Pb	67.2	189 Pb $(\alpha)^{185}$ Hg	19.7	¹⁸⁹ Pb-u	13.1	$^{189}\text{Pb}^{m}(\text{IT})^{189}\text{Pb}$
$^{189}{\rm Ph}^{m}$	75.3	$^{189}\text{Pb}^{m}(\text{IT})^{189}\text{Pb}$	24.7	$^{189}\text{Pb}^{m}(\alpha)^{185}\text{Hg}$, ,
^{190}W	93.9	¹⁹⁰ W-u	6.1	190 W(β^{-}) 190 Re		
190 Re	76.3	$^{190}W(\beta^{-})^{190}Re$	23.7	190 Re $(\beta^{-})^{190}$ Os		
¹⁹⁰ Os	51.6	$^{190}Os-^{194}Pt$ 979	29.5	$^{190}Os - ^{190}Pt$	18.3	$^{189}{\rm Os}({\rm n},\gamma)^{190}{\rm Os}$
¹⁹⁰ Pt	53.4	¹⁹⁰ Pt- ¹⁹⁴ Pt _{.979}	32.6	$^{190}Os-^{190}Pt$	13.7	$^{186}\text{Os} - ^{190}\text{Pt}_{.979}$
¹⁹⁰ Но	72.6	$^{190}{\rm Hg}-^{208}{\rm Pb}_{.913}$	27.4	$^{194}\text{Pb}(\alpha)^{190}\text{Hg}$		
191 Oc	99.4	190 Os $(n,\gamma)^{191}$ Os	0.6	$^{191}\text{Os}(\beta^-)^{191}\text{Ir}$		
¹⁹¹ Ir	89.8	$^{191}\mathrm{Os}(\beta^{-})^{191}\mathrm{Ir}$	8.4	191 Ir $(n,\gamma)^{192}$ Ir	1.6	193 Ir(t, α) 192 Os $^{-191}$ Ir() 190 Os
¹⁹¹ Pt	74.1	192 Pt(p,d) 191 Pt $-^{194}$ Pt() 193 Pt	25.9	¹⁹² Pt(p,d) ¹⁹¹ Pt		
¹⁹¹ Au	99.6	191 Au $-^{133}$ Cs _{1,436}	0.4	191 Hg(β^+) 191 Au		
¹⁹¹ Hg	67.9	¹⁹¹ Hg- ²⁰⁸ Pb 018	22.0	¹⁹¹ Hg-u	10.1	$^{191}{\rm Hg}(\beta^+)^{191}{\rm Au}$
¹⁹¹ Bi	87.4	$^{191}\text{Bi} - ^{133}\text{Cs}_{1.436}$	10.6	$^{191}\mathrm{Bi}(\alpha)^{187}\mathrm{Tl}^m$	2.0	$^{191}\text{Bi}(\alpha)^{187}\text{Tl}$
¹⁹¹ Po	93.9	$^{191}\text{Po}(\alpha)^{187}\text{Pb}$	6.1	191 Po $(\alpha)^{187}$ Pb m		,
192Oc	50.6	192 Os(p,t) 190 Os	30.7	193 Ir(t, α) 192 Os $^{-191}$ Ir() 190 Os	18.6	$^{192}\mathrm{Os}(\mathrm{n},\gamma)^{193}\mathrm{Os}$
¹⁹² Ir	91.5	191 Ir(n, γ) 192 Ir	6.0	192 Ir(n, γ) 193 Ir	2.5	$^{192} Ir(\beta^-)^{192} Pt$
¹⁹² Pt	87.2	$^{192} Ir(\beta^{-})^{192} Pt$	12.8	192 Pt(p,t) 190 Pt	3.0	192 Pt(p,d) 191 Pt $-^{194}$ Pt() 193 Pt
193Os	81.2	$^{192}Os(n,\gamma)^{193}Os$	18.8	$^{193}\text{Os}(\beta^{-})^{193}\text{Ir}$		4//
¹⁹³ Ir	93.7	192 Ir(n, γ) 193 Ir	4.3	$^{193}\text{Os}(\beta^{-})^{193}\text{Ir}$	3.4	193 Pt $(\varepsilon)^{193}$ Ir
¹⁹³ Pt	96.4	193 Pt $(\varepsilon)^{193}$ Ir	3.6	192 Pt(p,d) 191 Pt $^{-194}$ Pt() 193 Pt		. ,
¹⁹³ Au	92.5	197 Au(α , 8 He) 193 Au	7.5	193 Hg(β^+) 193 Au		
¹⁹³ Hg	67.1	193 Hg(β^+) 193 Au	32.9	¹⁹³ Hg- ²⁰⁸ Pb _{.928}		
¹⁹³ Bi	62.0	$^{193}\text{Bi} - ^{133}\text{Cs}_{1.451}$	21.9	$^{193}\text{Bi}(\alpha)^{189}\text{Tl}$	16.1	197 At $(\alpha)^{193}$ Bi

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
¹⁹³ Bi ^m	64.1	$^{193}\mathrm{Bi}^m(\alpha)^{189}\mathrm{Tl}$	35.9	197 At $^m(\alpha)^{193}$ Bi m		
¹⁹⁴ Pt	63.2	¹⁹⁴ Pt-u	26.6	194 Pt $(n,\gamma)^{195}$ Pt	5.3	190 Os $^{-194}$ Pt $_{.979}$
¹⁹⁴ Pb	60.4	198 Po(α) 194 Pb	39.6	194 Pb $(\alpha)^{190}$ Hg		
195 P t	72.2	194 Pt $(n,\gamma)^{195}$ Pt	27.8	195 Pt $(n,\gamma)^{196}$ Pt		
¹⁹⁵ Au	100.0	195 Au $(\varepsilon)^{195}$ Pt				
¹⁹⁵ Hg	78.6	195 Hg $-^{208}$ Pb $_{.938}$	21.4	195 Hg(β^+) 195 Au		
¹⁹⁵ Tl	56.4	$^{199}\mathrm{Bi}^m(\alpha)^{195}\mathrm{Tl}$	21.9	¹⁹⁵ Tl-u	21.7	$^{195}\text{Tl} - ^{133}\text{Cs}_{1.466}$
¹⁹⁵ Pb	59.1	¹⁹⁵ Pb-u	40.9	$^{195}\text{Pb}^{m}(\text{IT})^{195}\text{Pb}$		
¹⁹⁵ Pb ^m	59.0	¹⁹⁵ Pb ^m (IT) ¹⁹⁵ Pb	41.0	$^{199}\text{Po}^{m}(\alpha)^{195}\text{Pb}^{m}$		
¹⁹⁵ Bi	89.5	195 Bi $-^{133}$ Cs _{1.466}	10.5	199 At(α) 195 Bi		100 - 100
¹⁹⁶ Pt	70.9	195 Pt $(n,\gamma)^{196}$ Pt	28.9	196 Pt $(n, \gamma)^{197}$ Pt	0.3	196 Au(β^+) 196 Pt
¹⁹⁶ Au	51.7	197 Au(γ ,n) 196 Au	30.7	196 Au(β^-) 196 Hg	17.6	196 Au(β^+) 196 Pt
¹⁹⁶ Hg	57.0	¹⁹⁸ Hg ³⁵ Cl ⁻¹⁹⁶ Hg ³⁷ Cl	30.1	196 Au(β^-) 196 Hg	12.9	196 Hg(n, γ) 197 Hg
¹⁹⁶ Pb	78.7	200 Po(α) 196 Pb	21.3	¹⁹⁶ Pb ⁻²⁰⁸ Pb ₋₉₄₂		109 . 107
¹⁹⁷ Pt	65.2	196 Pt(n, γ) 197 Pt	34.1	197 Pt(β^-) 197 Au	0.7	198 Pt(p,d) 197 Pt
¹⁹⁷ Au	62.8	197 Au $(n,\gamma)^{198}$ Au	35.9	197 Pt(β^-) 197 Au	0.8	$^{198}\text{Pt}-^{197}\text{Au}_{1.005}$
¹⁹⁷ Hg	84.1	196 Hg(n, γ) 197 Hg	15.9	199 Hg(p,t) 197 Hg		
¹⁹⁷ Pb	73.9	¹⁹⁷ Pb ^m (IT) ¹⁹⁷ Pb	26.1	$^{201}\text{Po}(\alpha)^{197}\text{Pb}$		
¹⁹⁷ Pb ^m	73.9	$^{197}\text{Pb}^{m} - ^{133}\text{Cs}_{1.481}$	26.1	$^{197}\text{Pb}^{m}(\text{IT})^{197}\text{Pb}$		
¹⁹⁷ At	81.6	$^{197}\text{At}(\alpha)^{193}\text{Bi}$	18.4	¹⁹⁷ At- ¹³³ Cs _{1.481}		
¹⁹⁷ At ^m ¹⁹⁸ Pt	58.2	$^{197}\text{At}^{m}(\alpha)^{193}\text{Bi}^{m}$	41.8	$^{197}\text{At}^m - ^{133}\text{Cs}_{1.481}$		
¹⁹⁸ Au	53.5	$^{198}\text{Pt} - ^{197}\text{Au}_{1.005}$	46.5	198 Pt(p,d) 197 Pt	10.4	198 4 7 199 4
¹⁹⁸ Hg	44.1	198 Au(β^-) 198 Hg	36.5	197 Au(n, γ) 198 Au	19.4	¹⁹⁸ Au(n,γ) ¹⁹⁹ Au ²⁰⁰ Hg ³⁵ Cl- ¹⁹⁸ Hg ³⁷ Cl
¹⁹⁸ Pb	67.1	198 Hg $-$ u 202 Po(α) 198 Pb	21.7	198 Au(β^{-}) 198 Hg 198 Pb $^{-208}$ Pb $_{.952}$	10.8	200 Hg 33 Cl=136 Hg 37 Cl
¹⁹⁸ Po	73.8	¹⁹⁸ Po ⁻²⁰⁸ Pb _{.952}	26.2	$^{198}\text{Po}(\alpha)^{194}\text{Pb}$		
¹⁹⁹ Au	60.5	198 Au(n, γ) 199 Au	39.5	199 Au(β^-) 199 Hg		
199Hg	80.4 35.3	199 Hg- C_2 35 Cl ₅	19.6 33.8	199 Hg(n, γ) 200 Hg	17.9	199 Au(β^-) 199 Hg
199 B i	38.7	$^{19}-C_2$ 203 At(α) 199 Bi	33.6	$^{199}\text{Bi}^{m}(\text{IT})^{199}\text{Bi}$	27.7	Au(<i>β</i>) ng 199Bi—u
$^{199}\mathrm{Bi}^m$	63.9	$^{199}\text{Bi}^{m}(\text{IT})^{199}\text{Bi}$	36.1	$^{199}\text{Bi}^{m}(\alpha)^{195}\text{Tl}$	21.1	Bi-u
¹⁹⁹ Po ^m	58.8	$^{199}\text{Po}^{m}(\alpha)^{195}\text{Pb}^{m}$	41.2	$^{203}\text{Rn}^{m}(\alpha)^{199}\text{Po}^{m}$		
¹⁹⁹ At	89.0	199 At(α) 195 Bi	11.0	203 Fr(α) ¹⁹⁹ At		
²⁰⁰ Au	71.2	200 Au-u	28.8	200 Au(β^{-}) 200 Hg		
$^{200}\mathrm{Au}^m$	72.6	200 Au m -u	27.4	200 Au $^{m}(\beta^{-})^{200}$ Hg		
$200 H_{\odot}$	64.5	199 Hg(n, γ) 200 Hg	16.9	²⁰⁰ Hg ³⁵ Cl ⁻¹⁹⁸ Hg ³⁷ Cl	12.4	204 Hg 35 Cl ₂ $-^{200}$ Hg 37 Cl ₂
200_{Po}	79.7	204 Rn(α) 200 Po	20.3	200 Po(α) 196 Pb	12	
201 Δ 11	100.0	202 Hg(d, 3 He) 201 Au $-^{206}$ Pb() 205 Tl	20.3	10(00) 10		
²⁰¹ Hg	59.4	201 Hg(n, γ) 202 Hg	39.2	201 Hg 35 Cl $^{-199}$ Hg 37 Cl	1.4	203 Tl 35 Cl $-^{201}$ Hg 37 Cl
²⁰¹ Tl	88.9	$^{203}\text{Tl}(p,t)^{201}\text{Tl}$	11.1	$^{201}{ m Pb}(eta^+)^{201}{ m Tl}$		55 55 55
²⁰¹ Pb	89.7	205 Po $(\alpha)^{201}$ Pb	10.3	$^{201}\text{Pb}(\beta^+)^{201}\text{Tl}$		
²⁰¹ Po	71.4	$^{201}\text{Po}(\alpha)^{197}\text{Pb}$	28.6	205 Rn(α) 201 Po		
²⁰² Hg	37.5	201 Hg(n, γ) 202 Hg	28.3	²⁰² Hg ³⁵ Cl- ²⁰⁰ Hg ³⁷ Cl	25.7	204 Hg 35 Cl $^{-202}$ Hg 37 Cl
$^{202}T1$	47.5	$^{202}\text{Tl} - ^{203}\text{Tl}_{.005}$	30.8	181 Ta O $^{-202}$ Tl ₉₇₅	21.7	$^{202}\text{Tl} - ^{133}\text{Cs}_{1.519}$
²⁰² Pb	85.8	$^{202}\text{Pb} - ^{133}\text{Cs}_{1.519}$	14.2	204 Pb(p,t) 202 Pb		1.017
202 Bi	69.6	206 At(α) 202 Bi	30.4	202 Bi $-$ u		
$202 P_{0}$	74.5	206 Rn(α) 202 Po	25.5	202 Po(α) 198 Pb		
203 Δ 11	100.0	204 Hg(d, 3 He) 203 Au $-^{206}$ Pb() 205 Tl				
²⁰³ Hø	85.2	203 Hg(β^-) 203 Tl	10.2	204 Hg(d,t) 203 Hg	4.6	202 Hg(d,p) 203 Hg $-^{204}$ Hg() 205 Hg
²⁰³ Tl	65.5	$^{203}\text{Tl}(n,\gamma)^{204}\text{Tl}$	15.3	$^{202}\text{Tl} - ^{203}\text{Tl}_{.995}$	8.4	203 Tl 35 Cl $-^{201}$ Hg 37 Cl
²⁰³ Ph	52.1	204 Pb(p,d) 203 Pb	37.5	207 Po(α) 203 Pb	10.4	203 Pb $(\varepsilon)^{203}$ Tl
²⁰³ At	61.2	203 At(α) ¹⁹⁹ Bi 203 Rn ^{m} (α) ¹⁹⁹ Po ^{m}	20.6	203 At $^{-208}$ Pb.976 203 Rn m $^{-208}$ Pb.976	14.3	203 At $-u$
203 Rn m						

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
²⁰³ Fr	84.5	203 Fr(α) 199 At	15.5	²⁰³ Fr- ¹³³ Cs _{1.526}		
²⁰⁴ Но	79.2	²⁰⁴ Hg-u	10.8	²⁰⁴ Hg ³⁵ Cl ₂ – ²⁰⁰ Hg ³⁷ Cl ₂	9.4	²⁰⁴ Hg ³⁵ Cl- ²⁰² Hg ³⁷ C
²⁰⁴ Tl	68.0	$^{204}\text{Tl}(\beta^{-})^{204}\text{Pb}$	28.3	$\frac{11g}{203}\text{Tl}(n,\gamma)^{204}\text{Tl}$	3.7	$^{205}\text{Tl}(d,t)^{204}\text{Tl}$
²⁰⁴ Ph	69.5	$^{204}\text{Pb}(n,\gamma)^{205}\text{Pb}$	29.1	$^{204}\text{Tl}(\beta^{-})^{204}\text{Pb}$	1.1	204 Pb(p,t) 202 Pb
²⁰⁴ At	81.2	204 At-u	18.8	208 Fr(α) 204 At		10(p,t) 10
²⁰⁴ Rn	80.6	204 Rn $^{-208}$ Pb $_{.981}$	19.4	204 Rn(α) 200 Po		
²⁰⁵ Hg	52.5	204 Hg(d,p) 205 Hg	47.5	202 Hg(d,p) 203 Hg $^{-204}$ Hg() 205 Hg		
²⁰⁵ Tl	60.2	$^{205}\text{Tl}(d,t)^{204}\text{Tl}$	14.9	²⁰⁵ Tl ³⁵ Cl- ²⁰³ Tl ³⁷ Cl	12.2	$^{205}\text{Tl}(^{3}\text{He,d})^{206}\text{Pb}$
²⁰⁵ Pb	69.3	$^{205}\text{Pb}(n,\gamma)^{206}\text{Pb}$	29.4	$^{204}\text{Pb}(n,\gamma)^{205}\text{Pb}$	1.3	$^{205}{ m Bi}(eta^+)^{205}{ m Pb}$
²⁰⁵ Bi	50.9	$^{205}{\rm Bi}(\beta^+)^{205}{\rm Pb}$	49.1	209 At(α) 205 Bi		(p)
$^{205}P_{0}$	75.5	209 Rn(α) 205 Po	19.3	²⁰⁵ Po-u	5.2	205 Po(α) 201 Pb
²⁰⁵ Rn	68.5	205 Rn(α) 201 Po	31.5	²⁰⁵ Rn- ²⁰⁸ Pb. ₉₈₆	0.2	10(00)
²⁰⁶ Tl	83.7	$^{205}\text{Tl}(n,\gamma)^{206}\text{Tl}$	16.3	$^{210}\text{Bi}(\alpha)^{206}\text{Tl}$		
²⁰⁶ Pb	53.8	²⁰⁶ Pb ³⁵ Cl ₂ - ²⁰² Hg ³⁷ Cl ₂	30.4	$^{205}\text{Pb}(n,\gamma)^{206}\text{Pb}$	13.2	206 Pb $(n,\gamma)^{207}$ Pb
206 At	42.8	210 Fr(α) 206 At	29.0	²⁰⁶ At-u	28.1	206 At(α) 202 Bi
²⁰⁶ Rn	37.8	206 Rn $^{-133}$ Cs _{1.549}	37.4	²⁰⁶ Rn- ²⁰⁸ Pb _{.990}	24.8	206 Rn(α) 202 Po
²⁰⁷ Tl	44.9	$^{207}\text{Tl}(\beta^{-})^{207}\text{Pb}$	42.4	$^{211}\text{Bi}(\alpha)^{207}\text{Tl}$	12.8	$^{205}\text{Tl}(t,p)^{207}\text{Tl}$
²⁰⁷ Ph	86.6	$^{206}\text{Pb}(n,\gamma)^{207}\text{Pb}$	12.7	$^{207}\text{Pb}(n,\gamma)^{208}\text{Pb}$	0.7	$^{207}\text{Tl}(\beta^{-})^{207}\text{Pb}$
²⁰⁷ Bi	97.4	209 Bi(p,t) 207 Bi	2.6	$^{207}\text{Po}(\beta^+)^{207}\text{Bi}$	0.7	π(ρ) το
$207P_{0}$	58.8	207 Po(α) 203 Pb	41.2	$^{207}\text{Po}(\beta^+)^{207}\text{Bi}$		
²⁰⁷ Fr	88.3	207 Fr $^{-133}$ Cs _{1.556}	11.7	207 Fr(α) 203 At		
²⁰⁸ Ph	87.3	$^{207}\text{Pb}(n,\gamma)^{208}\text{Pb}$	9.0	$^{212}\text{Po}(\alpha)^{208}\text{Pb}$	1.1	205 Rn $-^{208}$ Pb $_{.986}$
²⁰⁸ Fr	95.5	208 Fr $^{-133}$ Cs _{1.564}	4.5	208 Fr(α) 204 At	1.1	10.960
²⁰⁹ Ph	86.9	$^{209}\text{Pb}(\beta^{-})^{209}\text{Bi}$	11.1	208 Pb(d,p) 209 Pb	2.0	213 Po(α) 209 Pb
²⁰⁹ Bi	85.8	$^{209}\text{Bi}(n,\gamma)^{210}\text{Bi}$	9.6	209 Bi $(\alpha)^{205}$ Tl	4.3	$^{209}\text{Pb}(\beta^{-})^{209}\text{Bi}$
209 At	53.1	213 Fr(α) 209 At	46.9	209 At(α) 205 Bi		10(p) 21
²⁰⁹ Rn	76.2	213 Ra(α) 209 Rn	23.8	209 Rn(α) 205 Po		
²¹⁰ Pb	97.5	$^{210}\text{Pb}(\beta^{-})^{210}\text{Bi}$	2.5	$^{214}\text{Po}(\alpha)^{210}\text{Pb}$		
²¹⁰ Bi	50.3	$^{210}\text{Bi}(\beta^{-})^{210}\text{Po}$	33.5	$^{210}\mathrm{Bi}(\alpha)^{206}\mathrm{Tl}$	14.1	$^{209}{ m Bi}({ m n},\gamma)^{210}{ m Bi}$
²¹⁰ Po	98.1	210 Po(α) 206 Pb	1.9	210 Bi(β^-) 210 Po		()1)
²¹⁰ Fr	54.3	210 Fr(α) 206 At	45.7	²¹⁰ Fr ⁻²²⁶ Ra _{.929}		
²¹¹ Pb	95.8	215 Po(α) 211 Pb	4.2	$^{211}\text{Pb}(\beta^{-})^{211}\text{Bi}$		
²¹¹ Bi	57.5	$^{211}\mathrm{Bi}(\alpha)^{207}\mathrm{Tl}$	42.5	$^{211}\text{Pb}(\beta^{-})^{211}\text{Bi}$		
²¹¹ Fr	73.6	211 Fr $^{-133}$ Cs _{1.586}	26.4	211 Fr $^{-226}$ Ra.934		
²¹² Pb	67.1	216 Po(α) 212 Pb	32.9	$^{212}\text{Pb}(\beta^{-})^{212}\text{Bi}$		
²¹² Bi	66.3	$^{212}\text{Bi}(\beta^{-})^{212}\text{Po}$	33.7	212 Pb $(\beta^{-})^{212}$ Bi		
$^{212}P_{0}$	90.9	212 Po(α) 208 Pb	9.1	212 Bi $(\beta^{-})^{212}$ Po		
²¹² Fr	88.7	212 Fr $^{-133}$ Cs _{1.594}	11.3	$^{212}\text{Fr} - ^{226}\text{Ra}_{.938}$		
²¹³ Bi	76.7	217 At $(\alpha)^{213}$ Bi	23.3	$^{213}\text{Bi}(\beta^{-})^{213}\text{Po}$		
²¹³ Po	93.2	213 Po(α) 209 Pb	6.8	$^{213}\text{Bi}(\beta^{-})^{213}\text{Po}$		
²¹³ Fr	54.5	213 Fr $^{-133}$ Cs _{1.602}	45.5	213 Fr(α) 209 At		
²¹³ Ra	77.2	213 Ra $^{-133}$ Cs _{1.602}	22.8	213 Ra $(\alpha)^{209}$ Rn		
²¹⁴ Pb	99.4	218 Po(α) 214 Pb	0.6	214 Pb $(\beta^{-})^{214}$ Bi		
²¹⁴ Bi	68.9	$^{214}\text{Bi}(\beta^{-})^{214}\text{Po}$	31.1	214 Pb $(\beta^{-})^{214}$ Bi		
²¹⁴ Po	97.4	214 Po(α) 210 Pb	2.2	218 Rn(α) 214 Po	0.3	$^{214}\text{Bi}(\beta^{-})^{214}\text{Po}$
²¹⁵ Bi	85.8	219 At(α) 215 Bi	14.2	$^{215}\text{Bi}-^{133}\text{Cs}_{1.617}$		•
²¹⁵ Po	96.3	219 Rn(α) 215 Po	3.7	$^{215}\text{Po}(\alpha)^{211}\text{Pb}$		
²¹⁶ Po	68.9	220 Rn(α) 216 Po	31.1	216 Po(α) 212 Pb		
²¹⁷ At	77.7	221 Fr $(\alpha)^{217}$ At	22.3	217 At $(\alpha)^{213}$ Bi		
²¹⁸ Po	99.4	222 Rn(α) 218 Po	0.6	$^{218}\text{Po}(\alpha)^{214}\text{Pb}$		
²¹⁸ Rn	93.5	218 Rn(α) 214 Po	6.5	222 Ra(α) 218 Rn		
²¹⁹ At	78.7	223 Fr(α) 219 At	17.1	$^{219}\text{At}-^{133}\text{Cs}_{1.647}$	4.2	219 At(α) 215 Bi

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
²¹⁹ Rn	96.4	223 Ra $(\alpha)^{219}$ Rn	3.6	219 Rn(α) 215 Po		
²²⁰ Rn	68.9	224 Ra(α) 220 Rn	31.1	220 Rn(α) ²¹⁶ Po		
²²¹ Fr	79.1	$^{225}\text{Ac}(\alpha)^{221}\text{Fr}$	20.9	221 Fr(α) 217 At		
²²² Rn	99.4	226 Ra $(\alpha)^{222}$ Rn	0.6	222 Rn(α) 218 Po		
²²² Ra	62.4	222 Ra(α) 218 Rn	37.6	226 Th $(\alpha)^{222}$ Ra		
223 Rn	58.3	223 Rn $-^{133}$ Cs _{1.677}	41.7	²²³ Rn-u		
²²³ Fr	93.6	227 Ac(α) 223 Fr	6.4	223 Fr(α) 219 At		
223 Ra	96.4	227 Th(α) 223 Ra	3.6	223 Ra(α) 219 Rn		
²²⁴ Rn	56.6	²²⁴ Rn-u	43.4	$^{224}Rn - ^{133}Cs_{1.684}$		
²²⁴ Ra	69.1	228 Th $(\alpha)^{224}$ Ra	30.9	224 Ra(α) 220 Rn		
²²⁵ Rn	73.0	²²⁵ Rn-u	27.0	$^{225}Rn - ^{133}Cs_{1.692}$		
$^{225}\mathrm{Fr}$	84.2	²²⁵ Fr-u	15.8	225 Fr(β^-) 225 Ra		
²²⁵ Ra	94.8	229 Th $(\alpha)^{225}$ Ra	4.6	225 Ra $(\beta^{-})^{225}$ Ac	0.6	225 Fr $(\beta^{-})^{225}$ Ra
²²⁵ Ac	60.1	229 Pa(α) 225 Ac	20.5	225 Ra(β^{-}) 225 Ac	19.4	225 Ac(α) 221 Fr
^{226}Rn	56.2	²²⁶ Rn-u	43.8	$^{226}\text{Rn} - ^{133}\text{Cs}_{1.699}$		()
226 Fr	73.5	$^{226}\text{Fr}-^{133}\text{Cs}_{1.699}$	26.5	²²⁶ Fr-u		
²²⁶ Ra	98.2	230 Th(α) 226 Ra	0.6	226 Ra(α) 222 Rn	0.4	²¹¹ Fr- ²²⁶ Ra _{.934}
²²⁶ Ac	87.1	230 Pa(α) 226 Ac	12.9	$^{226}\text{Ac}(\beta^-)^{226}\text{Th}$		934
226 Th	61.1	$^{226}\mathrm{Th}(\alpha)^{222}\mathrm{Ra}$	38.9	$^{226}\text{Ac}(\beta^{-})^{226}\text{Th}$		
227 Rn	63.4	$^{227}Rn - ^{133}Cs_{1.707}$	36.6	227 Rn $-u$		
²²⁷ Fr	79.5	227 Fr $^{-133}$ Cs $_{1.707}$	20.5	²²⁷ Fr-u		
²²⁷ Ac	90.7	231 Pa(α) 227 Ac	6.4	227 Ac(α) 223 Fr	3.0	$^{227}{ m Ac}(eta^-)^{227}{ m Th}$
227 Th	96.4	$^{227}\mathrm{Ac}(\beta^-)^{227}\mathrm{Th}$	3.6	$^{227}\text{Th}(\alpha)^{223}\text{Ra}$		4
²²⁸ Rn	62.5	$^{228}\text{Rn} - ^{133}\text{Cs}_{1.714}$	37.5	²²⁸ Rn–u		
²²⁸ Fr	79.6	228 Fr $^{-133}$ Cs _{1.714}	20.4	²²⁸ Fr-u		
228 Th	68.6	230 Th(p,t) 228 Th $^{-232}$ Th() 230 Th	30.6	228 Th $(\alpha)^{224}$ Ra	0.8	$^{232}{\rm U}(\alpha)^{228}{\rm Th}$
²²⁹ Fr	70.4	229 Fr $^{-133}$ Cs _{1.722}	16.8	229 Fr $^{-238}$ U.962	12.8	²²⁹ Fr–u
$^{229}{ m Th}$	70.1	233 U(α) 229 Th	25.5	230 Th(d,t) 229 Th	4.3	229 Th $(\alpha)^{225}$ Ra
²²⁹ Pa	87.4	231 Pa(p,t) 229 Pa	12.6	229 Pa $(\alpha)^{225}$ Ac		()
230 Fr	87.7	230 Fr $^{-133}$ Cs _{1.729}	12.3	²³⁰ Fr-u		
230Th	39.0	234 U(α) 230 Th	32.4	230 Th(p,t) 228 Th $-^{232}$ Th() 230 Th	24.9	230 Th $(n, \gamma)^{231}$ Th
230 Pa	87.8	230 Pa $(\varepsilon)^{230}$ Th	12.2	230 Pa(α) 226 Ac		() ()
²³¹ Ra	66.2	²³¹ Ra–u	33.8	231 Ra $^{-133}$ Cs _{1.737}		
231 Th	73.2	230 Th $(n,\gamma)^{231}$ Th	20.8	235 U(α) 231 Th	6.0	231 Th $(\beta^{-})^{231}$ Pa
²³¹ Pa	47.3	$^{231}\text{Th}(\beta^{-})^{231}\text{Pa}$	42.2	235 Np(α) 231 Pa	7.7	231 Pa $(\alpha)^{227}$ Ac
²³² Ra	57.1	232 Ra $^{-133}$ Cs _{1.744}	42.9	²³² Ra-u		. ,
²³² Th	83.0	236 U(α) 232 Th	11.5	$C_{24} H_{16} - {}^{232}Th {}^{37}Cl {}^{35}Cl$	8.3	232 Th $(n, \gamma)^{233}$ Th
232U	99.2	$^{232}\text{U}(\alpha)^{228}\text{Th}$	0.8	236 Pu(α) 232 U		· · · · · ·
²³³ Ra	70.5	233 Ra $^{-133}$ Cs _{1.752}	29.5	²³³ Ra–u		
233 Th	91.6	232 Th $(n,\gamma)^{233}$ Th	8.4	$^{233}\text{Th}(\beta^{-})^{233}\text{Pa}$		
²³³ Pa	90.1	237 Np(α) 233 Pa	5.6	233 Th $(\beta^{-})^{233}$ Pa	4.3	233 Pa $(\beta^{-})^{233}$ U
233 T I	51.3	233 Pa(β^-) 233 U	23.3	233 U(α) 229 Th	14.6	237 Pu(α) 233 U
^{234}U	62.8	234 U(n, γ) 235 U	20.6	238 Pu $(\alpha)^{234}$ U	16.3	$^{234}{\rm U}(\alpha)^{230}{\rm Th}$
235U	41.2	239 Pu $(\alpha)^{235}$ U	30.5	235 U(n, γ) 236 U	18.5	$^{234}\mathrm{U}(\mathrm{n},\gamma)^{235}\mathrm{U}$
^{235}Np	88.0	235 Np(ε) 235 U	12.0	235 Np(α) 231 Pa		· · · · ·
^{236}U	76.9	240 Pu(α) 236 U	23.2	235 U(n, γ) 236 U	1.1	236 U $(n,\gamma)^{237}$ U
$236 \mathbf{p_{11}}$	99.2	236 Pu(α) 232 U	0.8	240 Cm(α) 236 Pu		- (97)
237 _{T T}	84.3	$^{236}U(n,\gamma)^{237}U$	15.7	241 Pu $(\alpha)^{237}$ U		
²³⁷ Np	99.0	241 Am(α) 237 Np	1.0	237 Np(α) ²³³ Pa		
²³ /Pu	94.2	$^{241}\text{Cm}(\alpha)^{237}\text{Pu}$	5.8	237 Pu(α) 233 U		
^{238}U	77.9	242 Pu(α) 238 U	21.0	$C_{24} H_{20} - {}^{238}U^{35}Cl_2$	1.2	229 Fr $-^{238}$ U.962
²³⁸ Pu	69.1	238 Pu(α) 234 U	30.6	238 Pu(n, γ) 239 Pu	0.3	242 Cm(α) 238 Pu

Table II. Influences on primary nuclides (continued, Explanation of Table on page 030003-74)

Nuclide	Infl.	Equation	Infl.	Equation	Infl.	Equation
²³⁹ Np	67.2	$^{239}{\rm Np}(\beta^-)^{239}{\rm Pu}$	32.8	243 Am $(\alpha)^{239}$ Np		
²³⁹ P 11	46.2	239 Pu(n, γ) 240 Pu	27.1	239 Pu(α) 235 U	19.4	239 Np(β^{-}) 239 Pu
240 _{1 I}	99.1	244 Pu(α) 240 U	0.9	$^{240}\text{U}(\beta^{-})^{240}\text{Np}^{m}$		10
$^{240}{ m Np}$	67.9	$^{240}\text{Np}^{m}(\text{IT})^{240}\text{Np}$	32.1	$^{240}\text{Np}(\beta^{-})^{240}\text{Pu}$		
$^{240}{\rm Np}^{m}$	42.7	$^{240}\text{Np}^{m}(\beta^{-})^{240}\text{Pu}$	42.2	$^{240}\text{U}(\beta^-)^{240}\text{Np}^m$	15.2	$^{240}\text{Np}^{m}(\text{IT})^{240}\text{Np}$
²⁴⁰ Pu	60.8	240 Pu $(n,\gamma)^{241}$ Pu	25.9	239 Pu(n, γ) 240 Pu	13.3	240 Pu(α) 236 U
²⁴⁰ Cm	99.1	240 Cm(α) 236 Pu	0.9	$^{244}\mathrm{Cf}(\alpha)^{240}\mathrm{Cm}$		(,)
²⁴¹ Pu	39.2	240 Pu(n, γ) 241 Pu	28.3	245 Cm(α) 241 Pu	18.4	241 Pu(β^{-}) 241 Am
²⁴¹ Am	80.9	241 Pu(β^{-}) 241 Am	17.6	²⁴¹ Am O-C ₂₂	0.7	241 Am(α) 237 Np
²⁴¹ Cm	94.1	241 Cm $(\varepsilon)^{241}$ Am	4.7	241 Cm(α) 237 Pu	1.2	$^{245}\mathrm{Cf}(\alpha)^{241}\mathrm{Cm}$
²⁴² Pu	80.8	241 Pu(n, γ) 242 Pu	13.9	242 Pu $(\alpha)^{238}$ U	4.4	242 Pu(n, γ) 243 Pu
²⁴² Cm	99.7	242 Cm(α) 238 Pu	0.3	246 Cf(α) 242 Cm		(),
²⁴³ Pu	59.0	242 Pu(n, γ) 243 Pu	19.1	244 Pu(d,t) 243 Pu	11.4	243 Pu(β^{-}) 243 Am
²⁴³ Am	53.8	243 Am(α) 239 Np	43.9	²⁴³ Am O-C ₂₂	2.3	243 Pu(β^{-}) 243 Am
²⁴⁴ Pu	78.1	²⁴⁴ Pu O-C ₂₂	15.3	244 Pu(d,t) 243 Pu	5.3	248 Cm(α) 244 Pu
²⁴⁴ Cf	98.3	244 Cf(α) 240 Cm	1.7	248 Fm(α) 244 Cf		. ,
²⁴⁵ Cm	67.6	245 Cm(α) 241 Pu	32.4	$^{249}Cf(\alpha)^{245}Cm$		
²⁴⁵ Cf	97.2	$^{245}\mathrm{Cf}(\alpha)^{241}\mathrm{Cm}$	2.8	249 Fm(α) 245 Cf		
²⁴⁶ Pu	55.3	244 Pu(t,p) 246 Pu	44.7	246 Pu(β^{-}) 246 Am ^m		
$^{246}\mathrm{Am}^m$	55.7	$^{246}\text{Am}^{m}(\beta^{-})^{246}\text{Cm}$	44.3	246 Pu(β^{-}) 246 Am ^{m}		
²⁴⁶ Cm	98.1	246 Cm(α) 242 Pu	1.7	246 Cm(d,p) 247 Cm	0.2	$^{246}\text{Am}^{m}(\beta^{-})^{246}\text{Cm}$
246 C f	99.4	$^{246}\mathrm{Cf}(\alpha)^{242}\mathrm{Cm}$	0.6	250 Fm $(\alpha)^{246}$ Cf		, ,
²⁴⁷ Cm	60.2	247 Cm(α) 243 Pu	20.6	246 Cm(d,p) 247 Cm	19.2	248 Cm(d,t) 247 Cm
²⁴⁸ Cm	94.6	248 Cm(α) 244 Pu	5.4	248 Cm(d,t) 247 Cm		. , ,
²⁴⁸ Fm	76.8	248 Fm(α) 244 Cf	23.2	252 No(α) 248 Fm		
²⁴⁹ Cf	63.4	249 Cf(α) 245 Cm	36.6	249 Cf O $-$ C ₂₂		
²⁴⁹ Fm	76.9	249 Fm(α) 245 Cf	23.1	253 No(α) 249 Fm		
²⁵⁰ Fm	79.6	250 Fm(α) 246 Cf	20.4	254 No(α) 250 Fm		
²⁵² No	69.3	252 No(α) 248 Fm	30.7	252 No $^{-133}$ Cs _{1 895}		
253 No	67.4	253 No(α) 249 Fm	32.6	$^{253}\text{No}-^{133}\text{Cs}_{1.902}$		
²⁵⁴ No	58.0	254 No(α) 250 Fm	42.0	254 No $^{-133}$ Cs _{1.910}		

Table III. Nuclear-reaction and separation energies

EXPLANATION OF TABLE

We present, for all nuclides for which such data can be derived, separation energies (in keV) of particles (or groups of particles) and nuclear-reaction energies obtained as the following combinations of atomic masses (see accompanying diagram):

$Q(\beta^-)$	=	M(A,Z) - M(A,Z+1) (in Part I)	(a)
$Q(2\beta^{-})$	=	M(A,Z)-M(A,Z+2)	(b)
$Q(4\beta^-)$	=	M(A,Z) - M(A,Z+4)	(c)
$Q(\beta^- n)$	=	M(A,Z) - M(A-1,Z+1) - n	(d)
S(n)	=	-M(A,Z)+M(A-1,Z)+n	(e)
S(p)	=	$-M(A,Z)+M(A-1,Z-1)+{}^{1}H$	(f)
$Q(\varepsilon p)$	=	$M(A,Z) - M(A-1,Z-2) - {}^{1}H$	(g)
S(2n)	=	-M(A,Z)+M(A-2,Z)+2n	(h)
$Q(d,\alpha)$	=	$M(A,Z) - M(A-2,Z-1) - {}^{2}H - {}^{4}He$	(i)
S(2p)	=	$-M(A,Z)+M(A-2,Z-2)+2^{1}H$	(j)
$Q(\mathbf{p}, \boldsymbol{\alpha})$	=	$M(A,Z) - M(A-3,Z-1) - {}^{4}\text{He+p}$	(k)
$Q(n,\alpha)$	=	$M(A,Z) - M(A-3,Z-2) - {}^{4}\text{He+n}$	(1)
$Q(\alpha)$	=	$M(A,Z) - M(A-4,Z-2) - {}^{4}\text{He}$	(m)

A Mass number.

Elt. Element symbol (for $Z \ge 113$ see Part I, Section 6.8, p. 030002-31).

Z Atomic number.

2224.57 0.04 2224.57 \pm 0.04 keV. The uncertainties are derived from the adjusted masses and the correlation matrix. For the most precise very light nuclides the precisions are often better than 5 eV and could not be given conveniently in this table. In Table B, the correlation matrix for these nuclides allows easy derivation.

- * in place of value: not calculable from the present input data.
- # in place of decimal point: values and uncertainties estimated from TMS (see Part I, Section 4, p. 030002-9).
- a in place of uncertainty: uncertainty smaller than 5 eV.

Other reaction energies can be derived from the given data with the help of the following relations:

```
Q(\gamma,p)
            = - S(p)
            = - S(n)
Q(\gamma,n)
Q(\gamma,2p)
            = - S(2p)
Q(\gamma,pn)
                   Q(d,\alpha) –
                                     26071.0939 \pm 0.0005
            =
                    Q(d,\alpha) –
                                     23846.5279 \pm 0.0002
Q(\gamma,d)
Q(\gamma,2n)
            = - S(2n)
                    Q(\mathbf{p}, \boldsymbol{\alpha}) –
                                     19813.8649 \pm 0.0003
Q(\gamma,t)
            =
Q(\gamma,^3\text{He}) =
                   Q(\mathbf{n}, \boldsymbol{\alpha}) –
                                     20577.6194 \pm 0.0005
Q(\gamma, \alpha)
                    Q(\alpha)
                    Q(\beta^-) –
Q(p,n)
                                        782.3465 \pm 0.0005
Q(p,2p)
            = - S(p)
Q(p,pn)
            = - S(n)
Q(p,d)
            = - S(n)
                                      2224.5660 \pm 0.0004
                    Q(\beta^- n) –
                                       782.3465 \pm 0.0005
Q(p,2n)
                                      8481.7949 \pm 0.0009
            = - S(2n)
                              +
Q(p,t)
Q(p,^3He)
                    Q(d,\alpha)
                                     18353.0535 \pm 0.0003
Q(n,2p)
                    Q(\varepsilon p)
                                        782.3465 \pm 0.0005
Q(n,np)
            = - S(p)
Q(n,d)
            = - S(p)
                                      2224.5660 \pm 0.0004
Q(n,2n)
            = - S(n)
                                     17589.2989 \pm 0.0005
Q(n,t)
                    Q(d,\alpha) –
Q(n,^{3}He) = - S(2p)
                                      7718.0404 \pm 0.0005
                   0
                                      2224.5660 \pm 0.0004
Q(d,pn)
            = - S(n)
Q(d,t)
                                      6257.2290 \pm 0.0005
                              +
Q(d,^3He) = - S(p)
                                      5493.4744 \pm 0.0001
Q(^{3}\text{He,t}) =
                   Q(\beta^-)
                                         18.5920 \pm 0.0001
Q(^{3}\text{He},\alpha) = -S(n)
                              +
                                     20577.6194 \pm 0.0005
            = - S(p)
                                     19813.8649 \pm 0.0003
Q(t,\alpha)
                              +
```

Table III. Nuclear-reaction and separation energies (Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	n)	S(p))	Q(4)	3-)	Q(d,	α)	Q(p, 0)	α)	Q(n, 0)	α)
			0.0	0.0										
1	n H	0	0.0 *	0.0	* 0.0	0.0	*		*		*		*	
2	Н	1	2224.57	a	2224.57	a	*		23846.53	a	*		*	
3		1	6257.23	a	*		*		17589.30	a	19813.86	a	*	
	He Li	2	*		5493.47 *	а	*		18353.05	а	*		20577.62	а
4	Н	1	-1600	100	*		*		*		21410	100	*	
	He Li	2	20577.62 11420#	a 2010#	19813.86 -3100	a 210	*		0.0	0.0	0.0 *	0.0	0.0 23680	0.0 210
5	Н	1	-200	130	*	100	*		*	20	*	20	*	
	He Li	2	-735 21720	20 220	20680 1960	100 50	*		6992	20 50	2960	20	* 4190	50
	Be	4	*	220	-1900 -4530#	2010#	*		7460 19180#	2830#	*		4190 *	30
6	Н	1	-910	270	*		-5440#	2020#	*		*		*	
	He	2	1710	20	22590	90	*		3680	100	7506.34	0.05	*	
	Li	3	5660	50	4433	20	*		22372.77	<i>a</i>	4019.72	<i>a</i>	4783.47	a
	Be B	4 5	26840#	2000#	590 -2890#	50 2830#	*		3760	210	-5430# *	2000#	9090 24300#	5 2830#
7	Н	1	810#	1040#	*	2.50	21460#	1000#	*	20	*	100	*	
	He	2	-410	8	23090	250	*		3890	90	6320	100	* 4070	100
	Li Be	3 4	7251.09 10677	0.01 5	9973.96 5606.85	0.05 0.07	*		14387 14800	20 50	17346.24 -4690	a 210	-4070 18990.48	100 0.07
	В	5	27720#	2000#	-2013	26	*		1250#	2000#	*	210	8000	210
8	Не	2	2535	8	24810#	1000#	-3455	18	440	250	3580	90	*	00
	Li	3	2032.62	0.05 0.08	12416 17254.40	8 0.04	*		14064.51	0.07 0.04	14579	20	$-6300 \\ -643$	90 20
	Be B	4 5	18898.64 12826	25	17234.40	1.0	*		1565.60 15257	6	-1870 -9350#	50 2000#	-643 16890	50 50
	C	6	*	23	-100	30	*		-1550#	2000#	*	2000π	3570#	2000#
9	Не	2	-1250	50	*		12020	50	2510#	1010#	3920	260	*	
	Li	3	4062.22 1664.54	0.19	13943.75	0.21	*		9593	8	12226.86	0.19	-11270	250
	Be B	4 5	18576.4	0.08 1.3	16886.32 -185.8	0.09 0.9	*		7152.15 7358.3	0.08 0.9	2125.63 -1094	0.08 6	-597.24 3976.0	0.09 0.9
	C	6	14225	18	1299.6	2.4	*		11945	25	-13550#	2000#	16182	6
10	Не	2	-190	100	*	50	33500	90	*	10	4930#	1010#	*	1000"
	Li Be	3	-26	13	15170 19636.39	50 0.20	-5750	400	12154 2372.49	13	11844 2564.44	15	-10440# -7819	1000# 8
	В	4 5	6812.28 8437.2	0.05 0.9	6586.81	0.20	*		17819.74	0.09 0.04	1145.67	0.08 0.07	-7819 2789.91	0.02
	C	6	21283.6	2.1	4006.8	0.9	*		3487.9	1.0	-7114	25	5576.07	0.10
	N	7	*		-2600	400	*		14450	400	*		16770	400
11	Li Be	3	396 501.64	13 0.25	15760 20164	90 13	16420	50	10500 5933.1	50 0.3	13982.6 4095.42	0.6 0.24	* -5786.11	0.25
	В	5	11454.22	0.23	11228.75	0.08	*		8030.06	0.08	8590.09	0.24	-6631.70	0.23
	C	6	13120.59	0.02	8690.18	0.06	*		8943.7	0.08	-7408.1	1.0	11354.13	0.03
	N	7	22570	400	-1320	50	*		6100	50	-5900	50	7030	50
12	Li	3	-210	30	*	2.0	31670	30	10520	100	12940	60	*	50
	Be B	4 5	3170.7 3369.6	1.9	22939.5 14096.7	2.0 1.3	-6837	24	2736 11472.7	13 1.3	4986.9 6885.0	1.9 1.3	-10210 -5939.1	50 1.3
	С	6	3309.0 18720.71	1.3 0.06	15956.68	0.01	*		-1339.80	0.02	-7552.4	0.9	-5939.1 -5702.05	0.08
	N	7	15040	50	600.3	1.0	*		12350.2	1.0	-6708.8	2.4	10568.0	1.3
	O	8	*	-	-320	50	*		3830	400	*		8650	24

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$:)	$Q(2\beta$	-)	$Q(arepsilon_{]}$	p)	$Q(oldsymbol{eta}^-$	⁻ n)
1	n H	0	*		*		*		*		*		*	
2	Н	1	*		*		*		*		*		*	
3	Н	1	8481.79	a	*		*		-13720#	2000#	*		*	
	He Li	2	*		7718.04 -6800#	a 2000#	*		*		* 8240#	2000#	*	
4	H He	1 2	4660 *	100	*		* 0.0	0.0	-700 *	230	*		1620 -34310#	100 2000#
	Li	3	*		2390	210	*		*		3080	210	*	
5	H He	1 2	-1800 19843	90 20	*		* 735	20	21210 -25910#	100 2000#	*		22400 -22160	90 210
	Li Be	3 4	33130#	2000#	17850 -7630#	50 2000#	1960	50	*		-20230 27430#	110 2000#	*	
6	Н		-1110	270 0.05	*		*		27790 -783	250	*		22570 -2160	250 50
	He Li Be	2 3	975.45 27380	210	* 25110 -1372	100 5	-1473.76	a	-33230 #	5 2000#	* -26090 -145	90 21	-31120 #	2000#
	В	4 5	*		-7420#	2010#	*		*		28350#	2000#	*	
7	H He	1 2	-100# 1301	1000# 21	*		*		34230# 10304	1000# 8	*		23470# 3915	1000# 8
	Li Be	3 4	12910 37510#	50 2000#	32560 10040	90 20	-2467.62 -1587.13	a 0.07	-12769 *	25	$-34260 \\ -9112.07$		-11539 -39620#	5 2000#
0	В	5	*	0.10	-1420	60	-3420#	2000#	*	0.10	6301	25	*	0.00
8	He Li Be	2 3 4	2125.05 9283.71 29576	0.10 0.05 5	* 35510 27228.37	250 0.06	* -6100 91.84	100	26668.01 -1975.8 -30123	0.10 1.0 18	* -35480# -28420	1000# 8	8631.26 -2894.51 -30806	0.09 0.09 25
	B C	5	40540#	2000#	5743.3 -2111	1.0 19	-4830 *	210	-30123 * *	10	725.5 12006	1.0 18	*	23
0	Не	2	1280	50	*	19	*		29590	50	*	16	11920	50
	Li Be	3	6094.84 20563.18	0.19 0.10	38760# 29303	1000# 8	-10360 -2308	90 20	12538.4 -17562.5	0.9 2.1	* -27550.20	0.12	11941.91 -19644.4	0.19 1.0
	B C	5	31403	25	17068.6 1436.0	0.9 2.1	-1690 -10650#	50 2000#	* *	2.1	-15818.3 16680.3	0.12 0.9 2.1	-19044.4 -30719 *	18
10	He Li	2 3	-1440 4036	90 13	*		* -11250	250	36590 21002	90 13	*		16170 13633	90 13
	Be	4	8476.82	0.09	33580.13	0.12	-7409.52	0.10	-3091.18	0.11	-35620		-7880.3	0.9
	B C	5 6	27013.6 35508	1.0 18	23473.14 3820.94			5	-26750 *	400	-20193.26 -2938.75	0.10	-24931.7 *	2.1
	N	7	*		-1300	400	-10950#	2040#	*		19090	400	*	
11	Be	3 4	369.3 7313.92	0.6 0.25	* 35340	50	-10830# -8321	1000# 8	32060.5 9527.77		* -36310	90	20049.4 55.24	0.6 0.24
	B C	5 6	19891.4 34404.2	0.9 2.1	30865.14 15277.00	0.19 0.10	-8664.31 -7544.52	0.01 0.09	-15640 *	50	-31674 -9247.06	13 0.10	-15102.28 -36220	0.07 400
	N	7	*		2690	50	-5800	50	*		4960	50	*	
12	Li Be	3 4	190 3672.4	30 1.9	* 38700	90	* -8956.8	1.9	35640 25077.8	30 1.9	*		20760 8338.7	30 1.9
	B C	5 6	14823.8 31841.31	1.3 0.07	34261 27185.43	13 0.08	-10001.3 -7366.59	1.3	-3968.7 -31915	1.7 24	-34647.8 -27466.14		-5351.3 -32370	1.3 50
	N O	7	37600	400	9290.5 -1638	1.0 24	-8008.4 -5570	1.4	*	-	1381.4 13976	1.0	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p))	$Q(4\beta$	-)	Q(d,	α)	Q(p, a)	χ)	Q(n, 0)	α)
13	Li	3	100	80	*		51640	70	*		12650	120	*	
	Be	4	-510	10	22640	30	10544	14	3642	10	5471	16	-9890	90
	В	5	4878.8	1.7	15804.8	2.2	*		7095.6	1.0	8818.5	1.0	-10844	13
	C	6	4946.31	a	17533.4	1.3	*		5168.11	0.01	-4061.55	0.02	-3836.08	0.08
	N	7	20063.9	1.0	1943.49	0.27	*		5406.89	0.28	-5489.14	0.28	-1058.73	0.27
	О	8	16870	26	1512	10	*		9520	50	-10820	400	13063	10
14	Be	4	1780	130	24320	150	31950	130	1660	140	4090	130	*	
	В	5	970	21	17284	24	-8300	50	9297	21	8351	21	-11418	21
	C	6	8176.43	a	20831.0	1.0	*		361.3	1.3	-783.76	0.01	-11510.87	0.24
	N	7	10553.38	0.27	7550.56	<i>a</i>	*		13574.22	a	-2921.92	0.06	-157.89	0.01
	O	8	23179	10	4626.67	0.27	*		1380.5	1.0	-11430	50	3004.79	0.06
	F	9	*		-1560	40	*		10760	50	*		13310	60
15	Be	4	-1800	100	*	120	46970	170	3560	180	5680	170	*	40
	В	5	2777	30	18290	130	12391	25 70	6010	23	8745	21	-14400	40 2.1
	C N	6 7	1218.1	0.8	21080 10207.42	21	-30340	70	4022.0	1.3	1367.8 4965.49	1.5 a	-9558.2	1.3
	O	8	10833.30 13223.5	<i>a</i> 0.5	7296.8	<i>a</i> 0.5	*		7687.24 8220.9	<i>a</i> 0.6	-9618.4	<i>a</i> 1.1	-7621.6 8502.0	0.5
	F	9	23470	40	-1270	14	*		4162	17	-9018.4 -10484	28	4875	14
	Ne	10	23470 *	40	-960	80	*		*	1 /	-10464 *	20	13950	70
	110	10			-700	80	*		7		Ψ.		13730	70
16	Be	4	450	140	*		62180	170	*		5330	180	*	
	В	5	-83	15	20000	170	26432	26	7870	130	8317	27	-14220	70
	C	6	4250	4	22553	21	-10293	21	741	22	1996	4	-14319	11
	N	7	2488.8	2.3	11478.2	2.4	*		13374.8	2.3	7423.0	2.3	-5231.6	2.5
	O	8	15663.9	0.5	12127.41	a	*		3110.39	a	-5218.43	0.27	-2215.61	a
	F	9	13958	16	-536	8	*		13383	8	-7571	13	10981	8
	Ne	10	24300	70	-131	25	*		2730	50	*		6518	23
17	В	5	1470	210	21020	260	41760	200	4600	260	8630	240	*	
	C	6	734	18	23370	30	4531	17	2784	27	2232	27	-13280	130
	N	7	5885	15	13113	15	-27300	1000	8708	15	9714	15	-10147	26
	O	8	4143.08	а	13781.6	2.3	*		9800.60	а	1191.87	a	1817.74	a
	F	9	16800	8	600.27	0.25	*		9806.9	0.5	-1192.02	0.25	4734.69	0.25
	Ne Na	10 11	15558	20	1469 -3900	8 1000	*		10645 5670	14 1000	-10600 *	40	14139.1 8860	0.4 1000
18	В	5	-5	5	*	210	50920	200	5060	260	6830	260	*	150
	C	6	4180	30	26090	210	19600	30	-1480	40	830	40	-19260	170
	N	7	2828	24	15208	25	-11920	100	10130	19	8104	19	-10199	28
	O F	8	8045.37	<i>a</i>	15942	15	*		4244.1	2.3	3979.80		-5009.6	0.8
	-	-	9149.9	0.5	5607.1	0.5	*		16320.9	0.5	2881.6		6418.1	0.5
	Ne Na	10 11	19254.2 18210	0.5 1010	3923.1 -1250	0.4 90	*		5348 11760	8 100	-6385 -10310	14 120	8108.4 14120	0.6 90
10	D						(12(2	520						
19	В	5	90 590	560	* 26670	220	61260	530	* 500	220	7190	550	* 10200	100
	C N	6	580 5328	90 25	26670 16350	230	30660 2927	100	-590 5535	230	170 7026	100	-19390 15610	190
	N	7				30		19 50		24 15		17	-15610	30
	O F	8 9	3955.6 10431.9	2.6 0.5	17069 7993.60	19	-28500	30	6174 10032.13	15	2513 8113.61	3	-4715 -1524.9	4 2.3
	г Ne	10	11636.9	0.5	6410.0	<i>a</i> 0.5	*		10032.13	<i>a</i> 0.30	-4064	<i>a</i> 8	-1324.9 12135.45	0.16
			11030.9	0.4	0+10.0	0.5	*		10511.13	0.50	-4004	o	141.7.7.4.7	0.10
	Na	11	20180	90	-323	11	*		7140	11	-6193	23	7896	13

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha)$)	$Q(2\beta$	i-)	$Q(arepsilon_{ m I}$	p)	$Q(eta^-$	n)
13	Li Be B C N	3 4 5 6 7 8	-110 2661 8248.4 23667.02 35100 *	70 10 1.0 0.06 50	* 38744.2 31630.10 17900.17 2112	1.2 0.24 0.27 10	* -9700 -10817.9 -10648.36 -9495.9 -8220	50 1.0 0.08 0.9 10	40420 30534 11216.5 -19990 *	70 10 1.0 10	* -39740 -29241.7 -15312.9 15826	30 1.9 1.3 10	23830 12218 8490.6 -22284.4 -34640 *	70 10 1.0 1.0 24
14	Be B C N O F	4 5 6 7 8 9	1270 5848 13122.74 30617.3 40049	130 21 <i>a</i> 1.0 24	* 39920 36635.8 25083.9 6570.16 -50	40 1.9 1.3	-11670 -11814 -12012.51 -11612.11 -10115.81 -9260	160 25 0.08 0.02 0.07 400	36930 20800 -4987.89 -29100 *	130 21 0.03 40	* -40610 -37928 -20987.5 -2406.20 19330	70 10 1.0 0.03 40	15320 12467 -10396.91 -28323 *	130 21 0.27 10
15	Be B C N O F	4 5 6 7 8 9 10	-20 3746 9394.5 21386.68 36402 *	170 21 0.8 0.27 10	* 42600 38364 31038.4 14847.3 3357 -2520	70 10 1.0 0.5 14 70	* -14195 -12728.9 -10991.18 -10218.7 -10160 *		39950 28857 7017.5 -16465 -37360 *	170 21 0.9 14 70	* -37370 -30851 -7453.3 6414 24920	130 21 0.5 14 70	18090 17867 -1061.6 -15977.66 -37180 *	170 21 0.8 0.03 40
16	Be B C N O F Ne	4 5 6 7 8 9 10	-1350 2690 5468 13322.1 28887.42 37430 *	100 30 4 2.3 0.03 40	* 40840 32558 22334.83 6761 -1401	130 21 <i>a</i> 8 20	* -14320 -13809 -10110.4 -7161.92 -9083 -10350	40 4 2.7 <i>a</i> 8 30	43750 31429 18431 -4996 -28724 *	170 25 4 9 20	* -43420 -30563 -21899.1 3290 13842	170 21 0.8 8 20	20420 19168 5521 -5243.0 -29375 -37610	170 25 4 2.4 14 70
17	B C N O F Ne Na	5 6 7 8 9 10 11	1380 4984 8374 19807.0 30758 39860 *	210 17 15 0.5 14 70	* 43370 35666 25259.8 12727.68 933.1 -4030	170 26 0.8 0.25 0.6 1000	-15690 -15052 -11117 -6358.69 -5818.7 -9040	220 20 15 <i>a</i> 0.4 10	35850 21841 5918 -17309.2 -33220 *	200 17 15 0.4 1000	* -43700 -36531 -21792 -11021.2 13948.5 17200	170 29 4 2.3 0.4 1000	21950 7277 4536 -19560 -30106 *	200 18 15 8 20
18	B C N O F Ne Na	5 6 7 8 9 10 11	1460 4920 8713 12188.45 25950 34812 *	210 30 19 <i>a</i> 8 20	* 47110 38580 29055 19388.7 4523.3 220	170 30 4 2.3 0.4 90	* -17460 -12975 -6227.62 -4415.2 -5115.1 -9350	140 28 a 0.5 0.4 100	38680 25700 12240 -6100.4 -24160 *	210 30 19 0.4 90	* -37890 -29104 -14286 -1162.6 15800	200 17 15 0.4 90	22690 8980 5851 -10805.83 -23698.7 -37930 *	200 30 19 0.25 0.6 1000
19	B C N O F Ne Na Mg	5 6 7 8 9 10 11 12	90 4760 8156 12001.0 19581.78 30891.0 38390 *	560 100 22 2.6 0.25 0.4 1000	* 42440 32277 23935 12017.13 3600 -750	200 18 15 0.16 11 50	* -19840 -15527 -8965.2 -4013.80 -3528.5 -6062 -10810	190 27 2.8 a 0.5 18 80	43910 29080 17344 1580.8 -14417 -30080 *	530 100 16 2.6 11 50	* -43230 -28880 -21890 -4754.10 4767 19220	200 30 19 0.16 11 50	26780 11230 8568 -5611.6 -14876.4 -31360 *	530 100 16 2.7 0.4 90

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p	o)	$Q(4\beta$	-)	Q(d,	α)	Q(p, q)	α)	$Q(n, \alpha)$	α)
20	В	5	-610#	960#	*		68470#	800#	*		*		*	
	C	6	2980	250	29560	570	44550	230	-3580	310	-1350	310	*	
	N	7	2160	80	17940	130	14920	80	7560	80	5600	80	-16300	220
	O	8	7608.0	2.8	19349	16	-13681.5	2.1	1394	19	790	15	-11589	17
	F	9	6601.34	0.03	10639.3	2.6	*		11476.16	0.03	5655.35	0.03	-2241	15
	Ne	10	16865.30	0.16	12843.46	а	*		2795.8	0.5	-4129.58	0.25	-586.77	a
	Na	11	14150	11	2190.4	1.1	*		12243.8	1.2	-4785.8	1.2	10545.3	1.1
	Mg	12	22420	50	2741	11	*		3150	90	-12830	1000	6623.6	1.9
21	В	5	-810#	1200#	*		77380#	900#	*		*		*	
	C	6	-70#	640#	30100#	1000#	51380#	600#	-3420#	800#	-1290 #	630#	*	
	N	7	4610	160	19560	270	27420	130	3530	170	5180	140	-20910	240
	O	8	3805	12	20990	80	-2842	12	2917	20	-187	22	-11210	30
	F	9	8101.5	1.8	11132.7	2.0	-27040 #	600#	7330	3	5599.3	1.8	-7514	19
	Ne	10	6761.16	0.04	13003.28	0.05	*		6466.47	0.04	-1740.8	0.5	697.44	0.04
	Na	11	17106.6	1.1	2431.67	0.10	*		6774.12	0.19	-2638.2	0.4	2588.7	0.5
	Mg	12	14645.2	2.0	3235.7	1.3	*		8685	11	-9270	90	11232.6	0.8
	Al	13	*		-2220#	600#	*		5870#	600#	*		7600#	600#
22	C	6	100#	640#	31010#	930#	61640	230	-4130#	830#	-1290	570	*	
	N	7	1540	250	21170#	630#	36950	210	4970	310	4220	230	-22360	560
	O	8	6850	60	23240	150	9680	60	-1770	100	-1710	60	-17480	110
	F	9	5230	13	12558	17	-15410 #	400#	9708	12	4325	13	-7417	21
	Ne	10	10364.26	0.04	15266.1	1.8	-41360 #	500#	2703.55	0.03	-1673.22	0.02	-5711.2	2.6
	Na	11	11068.20	0.20	6738.71	0.18	*		12571.23	0.17	-2069.51	0.23	1952.33	0.17
	Mg	12	19375.1	0.8	5504.3	0.3	*		3460.3	1.2	-8465	11	3494.4	0.4
	Al	13	16860#	720#	-10#	400#	*		11440#	400#	-8760#	400#	10920#	400#
	Si	14	*		940#	780#	*		*		*		7160#	510#
23	C	6	-2490#	1020#	*		69330#	1000#	-2450#	1340#	590#	1280#	*	
	N	7	3120	470	24180	480	46250	420	1790#	730#	4080	480	-26080 #	900#
	O	8	2730	130	24430	240	20090	120	100	180	-2280	150	-17240	260
	F	9	7580	40	13290	70	-3460	30	5930	40	4350	30	-12830	90
	Ne	10	5200.65	0.10	15236	12	-28850 #	500#	5604.4	1.8	-272.53	0.11	-3303.8	0.9
	Na	11	12419.66	0.17	8794.11	0.02	*		6912.73	0.04	2376.13	a	-3865.99	0.03
	Mg	12	13144.9	0.4	7580.97	0.23	*		7421.92	0.19	-7460.1	1.1	7214.82	0.16
	Al	13	19530#	400#	141.0	0.5	*		6555.0	0.8	-5865.6	1.9	5543.9	1.2
	Si	14	17710#	710#	1790#	640#	*		7420#	780#	*		11870#	500#
24	N	7	-2150#	580#	24520#	1070#	55360#	400#	4040#	460#	6160#	720#	-24750#	990#
	O	8	4190	200	25510	450	32430	160	-2550	270	-1870	210	-21500#	620#
	F	9	3810	100	14370	160	7590	100	8970	110	4350	100	-12040	170
	Ne	10	8868.9	0.5	16530	30	-16697	19	1966	12	-1040.0	1.9	-8367	12
	Na	11	6959.37	0.02	10552.82	0.11	-41740#	500#	10317.62	0.02	2177.93	0.04	-2723.9	1.8
	Mg	12	16531.37	0.16	11692.69	0.01	*		1958.75	0.17	-6884.88	0.10	-2555.39	0.04
	Al	13	14868.3	0.4	1864.32	0.28	*		11061.9	0.4	-6088.7	0.8	7782.17	0.25
	Si	14	21020#	500#	3292	19 710#	*		3260#	400#	-11380#	600#	5488	19
	P	15	*		-2330#	710#	*		10690#	710#	*		11980#	780#
25	N	7	-970#	640#	*	420"	65340#	500#	2520#	1120#	7240#	550#	*	200
	O	8	-757	8	26900#	430#	40520	170	1320	450	430	270	-20640	280
	F	9	4280	140	14460	190	20250	100	7420	160	6920	110	-14780	230
	Ne No	10	4155	29	16870	100	-5860 20100#	30 400#	5390 6507.0	40	40 2521 0	30	-5670 6505	60
	Na Ma	11	9011.2	1.2	10695.1	1.3	-29100#	400#	6507.0	1.2	3531.0	1.2	-6505	12
	Mg	12	7330.53	0.05	12063.85	0.05	*		7047.88	0.05	-3147.22	0.18	478.34	0.05
	Al	13	16938.43	0.24	2271.38	0.07	*		7268.34	0.17	-3652.0 0510#	0.3	1911.94	0.18
	Si P	14 15	14989	22 640#	3413 -1700#	10 400#	*		7790 6750#	10 640#	-9510# -8740#	400# 640#	9874 7180#	10 570#
	Г	13	21650#	640#	-1/00#	400#	*		0730#	640#	-0/40#	640#	/100#	570#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2 ₁	p)	$Q(\alpha$)	$Q(2\beta$	-)	$Q(arepsilon_{ m I}$	p)	$Q(oldsymbol{eta}^-$	n)
20	B C N O F Ne Na Mg	5 6 7 8 9 10 11 12	-520# 3560 7490 11563.6 17033.2 28502.2 34330 *	830# 230 80 0.9 0.5 0.4	* 44600 35700 27709 20837.06 8600.5 2417.9	220 30 19 <i>a</i> 1.2 1.9	* -22370 -17770 -12323 -8126.3 -4729.84 -6255 -8934	280 80 4 2.3 <i>a</i> 8 21	46680# 33710 21780 10838.1 -6868.1 -24519.6 *	800# 230 80 0.9 1.1 1.9	* -45290 -35910 -23163 -17663.8 1049.1 8436.7	530 100 16 2.6 1.1 1.9	27970# 13580 10360 -2787.7 -9840.83 -28043 -33050 *	810# 230 80 0.9 0.16 11 50
21	C N O F Ne Na	5 6 7 8 9 10 11 12 13	-1420# 2910# 6770 11413 14702.8 23626.46 31257 37070 *	1040# 600# 140 12 1.8 0.16 11 50	* 49120 38930 30482 23642.6 15275.13 5426.1 520#	540 100 17 2.6 0.10 0.8 600#	* -20910 -15395 -10343 -7347.93 -6561.25 -8021.5 -10610#	240 21 15 0.04 0.27 0.8 1170#	52100# 37580# 25280 13794 2137.0 -16635.6 -29180#	910# 600# 130 12 1.8 0.8 600#	* -50510# -36730 -29100 -16816.9 -9456.14 10656.8 12850#	810# 230 80 0.9 0.10 0.8 600#	31760# 15810# 13360 8 -1077.0 -20653.7 -27733.6 *	930# 600# 130 12 1.8 1.1
22	C N O F Ne Na Mg Al Si	6 7 8 9 10 11 12 13 14	35 6140 10660 13332 17125.42 28174.7 34020.3 *	20 220 60 12 0.02 1.1 1.9	* 51260# 42800 33550 26398.8 19741.99 7935.9 3230# -1280#	830# 240 80 0.9 0.17 0.3 400# 500#	* -22450 -18060 -12745 -9666.82 -8479.5 -8142.5 -9260# *	290 60 22 0.02 0.5 0.5 410#	44330 28970 17310 7975 -7624.8 -23380# -33740# *	240 210 60 12 0.3 400# 500#	* -52850# -43650# -29730 -23376 -12422.9 -1957.1 13100# 15150#	920# 600# 130 12 1.8 0.3 400# 500#	20310 15630 1260 454 -13911.40 -24156.7 -35460# *	270 210 60 12 0.10 0.8 600#
23	C N O F Ne Na Mg Al Si	6 7 8 9 10 11 12 13 14	-2390# 4650 9580 12810 15564.91 23487.86 32520.0 36390# *	1160# 440 120 30 0.11 0.10 0.8 600#	* 55190# 45600# 36520 27794 24060.2 14319.68 5645.2 1790#	990# 610# 140 12 1.8 0.16 0.4 500#	* -25470 -20220 -15000 -10911.8 -10467.32 -9650.48 -8606 -10560#	670 160 40 2.6 a 0.23 11 510#	49550# 33440 19780 12820 319.46 -16277.9 -29170# *	1000# 420 120 30 0.19 0.3 500#	* -46280 -35770 -21730 -19612 -4737.76 4640.6 16810#	260 210 60 12 0.16 0.4 500#	24340# 19370 3760 3240 -8043.85 -17201.2 -31750# -34660#	1020# 420 120 30 0.20 0.3 400# 500#
24	N O F Ne Na Mg Al Si P	7 8 9 10 11 12 13 14 15	970# 6930 11390 14069.6 19379.02 29676.3 34390# 38740# *	450# 170 100 0.5 0.17 0.3 400# 500#	* 49690 38800 29810 25789 20486.79 9445.30 3433 -540#	280 230 60 12 0.02 0.29 19 640#	-23940# -21430 -16650 -12172.7 -10825.35 -9316.55 -9324.4 -9157	900# 280 130 1.0 0.03 0.01 1.1 20	39390# 24450 15960 7981.9 -8369.04 -24679 -33370# *		* -52960# -36460 -27860 -18990 -16068.49 2192.02 8930 19280#		24250# 7140 4630 -4493.1 -11015.71 -28753.0 -31820# *	420# 170 100 0.5 0.16 0.3 500#
25	N O F Ne Na Mg Al Si P	7 8 9 10 11 12 13 14 15	-3120# 3430 8090 13024 15970.6 23861.90 31806.7 36010# *	660# 210 100 29 1.2 0.17 0.4 500#	* 51420# 39960 31230 27220 22616.68 13964.06 5277 1590#	1010# 430 130 30 0.11 0.06 10 400#	-23770# -20740# -16320 -12520 -11735.1 -9885.92 -9156.26 -9501 -9680#		44650# 29360 20690 11157 -441.8 -17020 -28650# *	510# 170 100 29 1.2 10 400#	* -42890# -27820 -24190 -14530.1 -7787.04 10472 12500#	410# 170 100 0.5 0.07 10 400#	29410# 11710 9210 -1689 -3495.6 -21215.23 -27732 -37560# *	530# 190 100 29 1.2 0.24 19 500#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta)$	-)	Q(d, d)	α)	Q(p, a)	<i>t</i>)	$Q(n, \alpha)$	α)
26	O F Ne	8 9 10	739 760 5550	10 150 30	28610# 15970 18140	530# 200 100	50880 30860 7622	160 110 18	-1570# 10860 3650	430# 200 100	2800 8890 2060	450 160 40	-23860# -12430 -8490	1010# 440 120
	Na	11	5574	4	12114	29	-17830#	200#	9802	4	3157	4	-4500	30
	Mg	12	11093.08	0.04	14145.7	1.2	-43290 #	600#	2914.16	0.03	-1820.63	0.03	-5414.09	0.11
	Al Si	13 14	11365.49 19040	0.07 10	6306.34 5514.01	0.06 0.11	*		12434.22 3618.66	0.07 0.26	-1872.58 -9025.0	0.17 0.4	2966.10 3978.90	0.07 0.19
	Si P	15	19040 16840#	450#	3314.01 140#	200#	*		10940#	200#	-9025.0 -7860#	0.4 540#	3978.90 9870#	200#
	S	16	*		-50#	720#	*		4470#	780#	*	2.0	9030#	780#
27	0	8	-1940#	530#	*	420	59260#	500#	-600#	710#	2600#	640#	*	5.60#
	F Ne	10	1270 1500	410 90	16500 18890	420 140	42650 19440	390 90	8830 6430	420 130	11810 4370	420 130	-15840# -5800	560# 190
	Na	11	6728	5	13288	19	-4795	27	7229	29	5298	4	-7420	100
	Mg	12	6443.39	0.04	15015	4	-31610 #	400#	5482.0	1.2	-1304.66	0.05	-2988.6	0.5
	Al	13	13058.03 13314.80	0.08	8271.29	0.06	*		6706.73	0.07	1600.76	0.05	-3132.56	0.05
	Si P	14 15	19770#	0.15 200#	7463.32 870	0.13 26	*		7242.28 6161	0.13 28	-7471.58 -6600	0.26 30	7195.47 4973	0.11 26
	S	16	18120#	720#	1230#	450#	*		8000#	570#	-11430#	640#	11930#	400#
28	O	8	660#	860#	*		67100#	700#	*		960#	860#	*	
	F Ne	9 10	-220 3820	50 160	18220# 21440	640# 410	50590 32790	390 130	9790 3360	430 170	11280 4830	430 160	-16600# -10380	640# 210
	Na	11	3542	11	15330	90	6159	10	9241	21	5910	30	-6680	100
	Mg	12	8503.6	2.0	16790	4	-19090	160	2553	4	-797.0	2.3	−7337	29
	Al	13	7725.10	0.06	9553.00	0.09	-44370 #	600#	10074.70	0.08	1206.19	0.09	-1846.4	1.2
	Si	14	17179.61	0.11	11584.90	0.05	*		1428.16	0.07	-7712.76	0.06	-2653.61	0.05
	P	15	14497	26	2052.2	1.2	*		10704.1	1.2	-6111	10	7414.6	1.2
	S Cl	16 17	21030#	430#	2490 -3200#	160 720#	*		3810# 11150#	250# 840#	-10800# *	430#	5890 13420#	160 720#
29	F	9	1660	660	19220#	870#	58360	530	6190#	730#	10350	550	*	
	Ne	10	970	200	22630	420	40290	150	3660	420	4610	190	-10610	220
	Na M~	11 12	4403 3655	13 12	15910 16903	130 15	19633 -7450	7 50	6340 5626	90 12	7063 1122	20 12	-10320	110 22
	Mg Al	13	9428.4	0.4	10477.9	2.0	-7430 -31370	190	7089.7	0.3	2870.8	0.3	-5438 -5701	4
	Si	14	8473.60	a	12333.40	0.08	*	1,0	6012.59	0.05	-4820.87	0.07	-34.13	0.03
	P	15	17876.4	1.2	2749.0	0.4	*		6142.5	0.4	-4947.8	0.4	903.7	0.4
	S	16	15300	170	3300	50	*		8280	60	-9270#	200#	9630	50
	Cl	17	22430#	630#	-1800	100	*		6850#	440#	-9050#	630#	7840#	270#
30	F Ne	9 10	110# 3190	800# 290	* 24160	580	63980# 47710	600# 250	6740# 250	920# 470	8310# 2690	780# 460	* -15740#	560#
	Na	11	2277	9	17210	150	28676	5	7890	130	6290	90	-11330	390
	Mg	12	6352	12	18853	8	5175	3	2815	11	1498	5	-10290	90
	Al	13	5728.4	2.9	12551	12	-20310#	200#	9865	4	3585.8	2.9	-4701	5
	Si P	14 15	10609.20 11319.3	0.02 0.4	13514.2 5594.75	0.3 0.07	-45360 *	210	3128.49 12002.75	0.08 0.07	-2372.04 -2952.30	0.05 0.13	-4199.95 2642.41	0.05 0.08
	S	16	18970	50	4395.4	0.07	*		3799.3	1.2	-2932.30 -8473	26	3971.65	0.03
	Cl	17	16790#	270#	-310#	200#	*		11080#	250#	-7720#	450#	10810#	200#
	Ar	18	*		-480	160	*		4130#	630#	*		9550#	450#
31	F Ne	9	40#	810#	*	650#	71090# 54130	550#	* 1740	590	8930# 2300	890# 470	* 15250#	750#
	Ne Na	10 11	170 4300	130 15	24220# 18320	250	36687	270 14	1740 4560	150	5810	470 130	-15250# -15850	750# 390
	Mg	12	2310	5	18886	6	15920	3	4909	8	2730	11	-8780	130
	Al	13	7157	4	13356	4	-7916	4	6363	12	4932	3	-8316	10
	Si	14	6587.39	0.04	14373.2	2.9	-34270 #	200#	5969.5	0.3	-1234.34	0.09	-2283.8	2.0
	P	15	12311.00	0.07	7296.55	0.02	*		8165.34	<i>a</i>	1916.31	<i>a</i>	-1943.49	0.08
	S Cl	16 17	13054.6 19550#	0.3 200#	6130.64 264	0.24 3	*		8621.1 6830	0.4 50	-7030.7 -6240	1.2 160	8096.67 5760	0.23 4
	Ar	18	17680#	290#	410#	280#	*		8870#	280#	-11330#	630#	12900#	260#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	1)	S(2 ₁))	$Q(\alpha$	2)	$Q(2\beta$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
26	O F Ne Na Mg Al Si P S	8 9 10 11 12 13 14 15 16	-18 5040 9710 14586 18423.61 28303.92 34029 38490# *	5 150 18 4 0.03 0.24 19 540#	* 42870# 32600 28980 24840.8 18370.19 7785.39 3560# —1760#	420# 170 100 0.5 0.07 0.11 200# 600#	-21380 -15540 -11230 -12079 -10614.74 -9453.56 -9166.0 -9650# -8690#	280 240 60 13 0.03 0.18 0.3 450# 780#	34180 25510 16696 5349 -9073.53 -23180# -34220# *	170 110 18 4 0.11 200# 600#	* -44620# -34140 -25480 -21468 -10141.3 -1237.20 12600# 15960#	520# 170 100 29 1.2 0.10 200# 600#	15260 12610 1768 -1739 -15369.88 -24109 -34950# *	190 110 18 4 0.06 10 400#
27	O F Ne Na Mg Al Si P S	8 9 10 11 12 13 14 15 16	-1200# 2030 7060 12303 17536.46 24423.52 32354 36600# *	530# 400 100 4 0.06 0.08 10 400#	* 45110# 34860 31430 27129 22417.0 13769.66 6384 1380#	640# 190 100 29 1.2 0.12 26 400#	-21930# -13700 -10000 -11230 -11857.48 -10091.92 -9335.91 -9895 -9100#	1120# 570 150 30 0.12 0.05 0.19 26 640#	37620# 30970 21640 11679 -2202.11 -16474 -29410#	510# 390 90 4 0.12 26 400#	* -34900 -31460 -22357 -17625 -3458.93 4199 16880#	190 110 18 4 0.11 26 400#	17950# 16900 5840 2625 -10447.78 -18127.16 -31430# -35870#	510# 390 90 4 0.08 0.12 200# 600#
28	O F Ne Na Mg Al Si P S Cl	8 9 10 11 12 13 14 15 16 17	-1280# 1050 5320 10270 14946.9 20783.13 30494.41 34260# 39150# *	720# 410 130 11 2.0 0.10 0.11 200# 620#	* 37940 34220 30078 24568 19856.19 9515.5 3360 —1970#	210 110 19 4 0.03 1.2 160 630#	* -15620# -9630 -10960 -11492.1 -10857.66 -9984.14 -9523.8 -9100 -8230#	560# 210 100 2.1 0.08 0.01 1.2 160 780#	40780# 34730 26320 15862 6473.9 -9702.9 -25570 -34660#	710# 390 130 10 2.0 1.2 160 600#	* -40660# -33730 -29360 -18622 -14195.15 2760.2 9170 20950#	520# 390 90 4 0.05 1.2 160 600#	18560# 18620 8750 5527 -5893.3 -12537.46 -28842 -32250# *	800# 400 130 10 2.0 0.11 26 400#
29	F Ne Na Mg Al Si P S Cl	9 10 11 12 13 14 15 16 17	1440 4790 7945 12159 17153.5 25653.21 32373 36330# *	650 170 8 11 0.3 0.11 26 400#	* 40850# 37350 32230 27268 21886.41 14333.9 5350 690	520# 390 90 4 0.05 0.4 50	-18260# -11350 -11080 -10990 -11274.9 -11127.21 -10461.8 -9410 -9000#	730# 220 100 30 1.2 0.05 0.4 50 440#	37470 29000 20888 11292 -1254.9 -18740 -30120 *	530 150 7 11 0.5 50 190	* -40970# -38350 -29190 -24508 -14165.2 -7391.2 11050 13020	710# 390 130 10 2.0 0.4 50	20780 11320 9628 -1824 -4786.3 -22818.7 -29100 -38740#	540 150 8 11 0.3 1.2 160 600#
30		9 10 11 12 13 14 15 16 17 18	1770# 4160 6680 10008 15156.8 19082.80 29195.7 34280 39220#	710# 280 11 4 2.9 0.02 1.2 160 630#	* 43380# 39840 34760 29454 23992.1 17928.15 7144.40 2990# -2280	740# 390 130 11 2.0 0.10 0.21 200# 130	* -13810 -12600 -11790 -11429 -10643.33 -10415.62 -9343.15 -8960# -8570#	300 110 19 5 0.04 0.09 0.23 280# 630#	39640# 32160 24340 15549 4336.0 -10373.71 -24640# -34990	600# 250 6 3 2.9 0.21 200# 210	* -38960 -34570 -25834 -21119 -9282.1 546.85 14110# 16800	530 150 8 11 0.4 0.21 200# 210	21640# 12530 11006 1253 -2041.1 -15551.4 -25120 -35290 *	620# 250 12 3 2.9 0.4 50
31	F Ne Na Mg Al Si P S Cl	9 10 11 12 13 14 15 16 17	150# 3360 6577 8662 12885.6 17196.59 23630.3 32030 36340 *	150# 310 16 12 2.3 0.04 0.4 50	* 42480 36100 32209 26924 20810.7 11725.39 4660 100#	530 150 8 11 0.3 0.23 3 210#	* -15910# -15630 -12600 -11858 -10787.34 -9668.60 -9082.94 -8737 -8130#	570# 390 90 4 0.07 0.05 0.25 27 450#	43900# 34300 27197 19827 9489.8 -3906.51 -17406 -30370# *	550# 270 14 3 2.2 0.23 3 200#	* -43160# -33690 -30714 -21354 -15864.7 -1898.54 5877 18100#	600# 250 5 3 2.9 0.23 3 200#	24790# 14640 13059 4671 1410.9 -10819.50 -18452.60 -31560# -36040	600# 270 14 4 2.2 0.07 0.21 200# 210

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	,α)	Q(p, a)	α)	$Q(\mathbf{n}, a)$	χ)
32	Ne	10	2250#	570#	26430#	740#	61080#	500#	-400#	780#	1710#	730#	*	
	Na	11	1680	40	19830	270	42950	40	6070	260	5100	150	-15860	530
	Mg	12	5778	4	20364	14	25187	3	1407	6	1355	8	-13580	150
	Al	13	4220	8	15266	8	2235	7	8495	8	4368	13	-8133	10
	Si	14	9200.0	0.3	16416.0	2.3	-21877.3	1.8	2498.0	2.9	-1005.9	0.5	-7828	11
	P	15	7935.65	0.04	8644.81	0.06	-45400#	400#	10838.89	0.05	2454.26	0.04	-450.7	0.3
	S	16	15044.33	0.23	8863.96	a	*		4896.13	0.07	-4198.6	0.4	1525.95	a
	Cl	17	14371	3	1581.1	0.5	*		11435.4	0.6	-5310	50	9264.6	0.7
	Ar	18	21600#	200#	2455	4	*		4070#	200#	-10500	190	6600	50
	K	19	*		-2480#	450#	*		10880#	450#	*		13580#	440#
33	Ne	10	-930#	780#	*	60011	66510#	600#	570#	810#	2750#	840#	*	750"
	Na	11	2930	450	20510#	680#	50120	450	3310	520	5360	520	-18690#	750#
	Mg	12	2280	4	20970	40	31548.2	2.9	3427	14	1352	6	-12670	250
	Al	13	5469	10	14957	8	12506	7	5336	8	5250	8	-11326	8 4
	Si P	14 15	4508.0 10103.8	0.8 1.1	16704 9548.6	7 1.1	-11130.0 -33380#	0.8 200#	5147.2 7322.5	2.3 1.1	214.6 2959.7	3.0	-5984 -4826	3
	S	16	8641.64	a	9569.95	0.04	-3336U# *	200#	8565.49	a	-1520.95	1.1 0.07	-4626 3493.51	0.02
	Cl	17	15740.0	0.7	2276.8	0.04			8750.0	0.5	-1320.93 -2080.0	0.07	4843.9	0.02
	Ar	18	15255.3	1.8	3338.6	0.4	*		8361	3	-2080.0 -8960#	200#	10321.4	0.4
	K	19	22130#	450#	-1950#	200#	*		6430#	280#	-9030#	280#	8250#	280#
34	Ne	10	1230#	790#	*		72800#	510#	*		1560#	750#	*	
	Na	11	170	750	21610#	850#	56230	600	5390#	780#	5360	660	-18820#	810#
	Mg	12	4710	29	22750	450	38255	29	390	50	940	30	-17210	270
	Al	13	2574	8	15252	4	21440	3	8539	4	4986	4	-9600	14
	Si	14	7514	14	18748	16	-1579	14	1853	16	-142	14	-11188	14
	P	15	6282.7	1.4	11323.3	1.1	-23330 #	200#	10239.8	0.9	3264.4	0.8	-3951.6	2.4
	S	16	11417.15	0.04	10883.3	1.1	-43780 #	300#	5083.99	0.06	-627.09	0.04	-1336.25	0.06
	Cl	17	11508.1	0.4	5143.20	0.05	*		12286.26	0.05	-533.50	0.23	5646.86	0.05
	Ar	18	17065.3	0.4	4663.9	0.4	*		5667.2	0.6	-6480	3	6310.64	0.24
	K	19	16330#	280#	-880 #	200#	*		11690#	200#	-7680 #	280#	11460#	200#
	Ca	20	*		480#	360#	*		3460#	500#	*		8170#	360#
35	Na	11	1520#	300#	21900#	840#	63090#	670#	2950#	900#	6100#	840#	*	
	Mg	12	750	270	23330	660	44490	270	2570	520	1860	270	-15710#	570#
	Al	13	5295	8	15836	30	28790	7	5525	8	5469	8	-13220	40
	Si	14	2510	40	18680	40	8660	40	4820	40	1570	40	-7920	40
	P	15	8380.4	2.0	12190	14	-13684.9	1.9	6367.3	2.0	4083.9	1.9	-8112	7
	S	16	6985.84	0.04	11586.5	0.8	-33630#	200#	8201.9	1.1	322.72	0.06	877.9	0.3
	Cl	17	12644.76	0.05	6370.81	0.04	*		8283.13	0.04	1866.06	0.04	937.75	0.05
	Ar K	18 19	12740.3	0.7	5896.2	0.7	*		8666.9	0.8	-4848.6	0.9	8614.7	0.7
	Ca	20	18020# 17140#	200# 360#	83.6 1280#	0.5 280#	*		8922.2 8460#	0.7 280#	-4108.5 -11450#	1.8 450#	7808.2 12640#	0.8 200#
36	Na	11	0#	100#	*		66550#	680#	4170#	850#	5170#	900#	*	
50	Mg	12	3330	740	25140#	960#	51040	690	-590	910	1460	820	-19970#	910#
	Al	13	1900	150	16980	310	35470	150	8340	150	5850	150	-19970π -12180	470
	Si	14	6120	80	19500	70	17800	70	1270	70	930	70	-12750	70
	P	15	3465	13	13150	40	-2834	13	10417	19	5127	13	-6107	15
	S	16	9889.24	0.19	13095.3	1.9	-24210	40	4595.4	0.8	537.3	1.1	-4503.4	0.7
	Cl	17	8579.79	0.01	7964.77	0.03	-44870#	300#	11120.49	0.04	1927.90	0.04	2461.7	1.1
	Ar	18	15255.6	0.7	8506.98	0.04	*		4919.35	0.06	-4364.1	0.4	2000.72	0.03
	K	19	14315.5	0.6	1658.8	0.8	*		11672.0	0.3	-3168.7	0.5	9232.7	0.5
	Ca	20	19310#	200#	2570	40	*		5480#	200#	-8630#	200#	8580	40
	Sc	21	*		-3270 #	360#	*		12210#	420#	*		13960#	360#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	$S(2\mathfrak{p}$))	$Q(\alpha$)	$Q(2\beta)$	-)	Q(arepsilonp)	$Q(\beta^-$	n)
32	Ne Na Mg Al Si P S Cl Ar K	10 11 12 13 14 15 16 17 18 19	2420# 5980 8088 11377 15787.36 20246.65 28098.91 33920# 39270 *	560# 40 5 8 0.30 0.08 0.21 200# 210	* 44050# 38690 34152 29772 23018.0 16160.51 7711.8 2719.0 -2080#	600# 250 9 3 2.9 0.02 0.6 1.8 450#	-17510# -17530 -14550 -12536 -11483.8 -9879.14 -6947.65 -8611.9 -8700 -8840#	860# 390 130 13 2.0 0.09 <i>a</i> 1.3 160 720#	37830# 29740 23249 13206 1937.85 -10970.2 -23815.2 -34430# *	500# 40 3 7 0.30 0.6 1.8 400#	* -44790# -39300 -30634 -28245 -16643.1 -10355.47 3816.9 9553.2 20840#	550# 270 16 3 2.2 0.04 0.6 1.8 400#	16680# 13690 6050 3778 -7708.46 -13333.67 -27052 -32730# *	500# 40 4 7 0.30 0.23 3 200#
33	Ne Na Mg Al Si P S Cl Ar K	10 11 12 13 14 15 16 17 18 19	1330# 4610 8058 9689 13707.9 18039.4 23685.96 30111 36850# *	650# 450 4 7 0.7 1.1 0.23 3 200#	* 46940# 40800 35321 31970 25964.6 18214.76 11140.7 4919.7 500#	710# 270 16 3 2.5 0.04 0.4 0.5 200#	* -18790 -15860 -13602 -12336 -10554.5 -7115.69 -6475.4 -8650 -8550#	690 150 10 11 1.1 a 0.5 50 270#	41040# 32280 25476.6 17840 6071.5 -5334.0 -17201.6 -28050# *	600# 450 3.0 7 0.7 1.2 0.4 200#	* -39330# -34430 -26974 -22527 -9797.14 -3987.4 9342.3 13090#	500# 40 3 7 0.30 0.4 0.4 200#	19290# 16540 7990 7509 -4280.8 -8393.1 -21322.5 -26874.3 -38550#	600# 450 8 7 0.7 1.1 0.6 1.8 400#
34	Ne Na Mg Al Si P S Cl Ar K	10 11 12 13 14 15 16 17 18 19 20	300# 3100 6990 8044 12022 16386.5 20058.79 27248.0 32320.6 38460#	100# 600 29 8 14 0.8 0.04 0.6 1.8 450#	* 43250# 36220 33706 28027 20431.9 14713.15 6940.70 2460# -1470#	500# 40 14 7 0.3 0.06 0.08 200# 300#	* -18860# -17380 -13900 -13498 -11108.8 -7923.64 -6664.14 -6743.95 -8090# -9510#	850# 250 6 15 3.0 0.05 0.08 0.22 280# 360#	44520# 34680 28280 21548 9975 -108.6 -11553.40 -23220# -32230# *	510# 600 30 3 14 0.8 0.07 200# 300#	* -44960# -34070 -32208 -23340 -16706.3 -5391.7 918.59 12490# 15950#	600# 450 14 7 0.7 1.1 0.08 200# 300#	20990# 18650 8749 9443 -1691 -6034.2 -16999.7 -23127.1 -33490# *	680# 600 30 3 14 0.8 0.4 0.4 200#
35	Na Mg Al Si P S Cl Ar K	11 12 13 14 15 16 17 18 19 20	1690# 5470 7869 10020 14663.1 18402.99 24152.8 29805.6 34360# *	810# 270 10 40 2.2 0.04 0.4 0.8 200#	* 44940# 38580 33930 30938 22909.8 17254.1 11039.4 4747.5 410#	650# 450 40 7 0.7 1.1 0.7 0.6 200#	-20340# -17970 -14895 -13690 -12332.0 -8322.09 -6997.90 -6429.7 -6563 -8960#	870# 380 16 40 2.9 0.06 0.04 0.7 3 280#	38460# 30030 24634 14450 4155.7 -5798.9 -17840.6 -27840# *	670# 270 8 40 1.9 0.7 0.5 200#	* -44490# -39190 -30000 -29146 -16178 -11753.8 -404.6 5978.2 15880#	580# 600 50 4 14 0.8 0.7 0.5 200#	21840# 10570 11662 2090 -2997.4 -12477.44 -18706.56 -29900# -33100#	670# 270 16 40 1.9 0.05 0.08 200# 300#
36	Na Mg Al Si P S Cl Ar K Ca Sc	11 12 13 14 15 16 17 18 19 20 21	1520# 4090 7190 8620 11845 16875.08 21224.56 27995.88 32340# 36450#	320# 690 150 70 13 0.19 0.05 0.08 200# 300#	* 47040# 40310 35340 31829 25285 19551.2 14877.80 7554.9 2650 —1990#	860# 620 80 13 14 0.8 0.05 0.3 40 360#	* -19040# -15110 -14030 -11577 -9011.4 -7642.05 -6640.92 -6507.3 -6680 -8170#	850# 150 70 15 0.4 0.05 0.03 0.6 40 500#	40350# 32820 26200 18230 9271 -432.59 -12104.9 -23780 -32770# *	690# 690 150 70 13 0.19 0.3 40 300#	* -39570# -35360 -27316 -23560 -11953.2 -8674.30 4307.5 9310 19240#	690# 280 15 40 1.9 0.05 0.3 40 300#	22590# 12530 12270 4350 524 -9721.92 -14546.0 -27130.0 -30280#	730# 690 150 70 13 0.19 0.7 0.5 200#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	Q(4β	-)	Q(d, d)	α)	Q(p, q)	α)	Q(n, a)	α)
37	Na	11	840#	180#	*		72530#	690#	*		5560#	860#	*	
	Mg	12	240	110	25380#	970#	55110	700	690#	970#	1400	920	-18980#	870#
	Al	13	4210	230	17860	710	41570	180	4880	320	6350	180	-16220	630
	Si	14	2210	130	19810	190	24380	110	4360	110	1290	110	-9250	120
	P	15	6820	40	13850	80	5800	40	6110	50	5820	40	-10350	40
	S	16	4303.60	0.06	13934	13	-13760.4	0.7	8672.2	1.9	2516.3	0.8	-1293	14
	Cl	17	10310.85	0.06	8386.38	0.19	-35280 #	300#	7795.47	0.07	3034.20	0.07	-1566.4	0.8
	Ar	18	8787.44	0.21	8714.63	0.21	*		8776.67	0.21	-1643.53	0.21	4630.42	0.21
	K	19	15454.5	0.4	1857.63	0.09	*		8957.9	0.7	-1557.85	0.12	5286.28	0.11
	Ca	20	14760	40	3008.0	0.7	*		8747.6	0.8	-7050#	200#	10888.6	0.6
	Sc	21	19900#	420#	-2680#	300#	*		9440#	360#	-5470#	420#	10390#	360#
38	Mg	12	2210#	860#	26750#	850#	60940#	500#	-1520#	840#	710#	840#	*	770"
	Al	13	1670	420	19290	790	46010	370	6540	790	5430	460	-16380#	770#
	Si	14	5670	150	21270	210	30540	100	590	180	920	110	-14160	290
	P	15	3700	80	15340	130	14180	70	8530	100	4630	80	-8750	70
	S	16	8036	7 0.08	15150	40	-4803	7	4101	15 0.20	2861	7	-6820	40
	Cl	17	6107.88		10190.66	0.21	-25550# 45500#	200#	11576.83		3912.16	0.11	706.1	1.9
	Ar	18	11838.47	0.28	10242.25	0.20	-45580#	300#	5517.99	0.20	-837.24	0.20	-222.21	0.20
	K	19 20	12071.87 16993.8	0.22 0.7	5142.06	0.28 0.22	*		12141.59 6069.4	0.20 0.4	-889.4	0.7	5859.17 6635.2	0.20 0.7
	Ca Sc		15840#	360#	4547.27	200#	*		12910#	200#	-6021.6 -4170#	0.5 280#	12570#	200#
	Ti	21 22	13640#	300#	-1600# -60#	420#	*		6230#	420#	-41/0# *	280#	11730#	200# 360#
					-00#	420#	*						11/30#	300#
39	Mg	12	-130#	100#	*		65440#	520#	-550#	860#	840#	850#	*	
	Al	13	3630#	550#	20710#	640#	50450#	400#	3150#	810#	5130#	800#	-20010 #	790#
	Si	14	1580	170	21180	400	35560	140	3220	230	1230	200	-12410	700
	P	15	6220	130	15890	150	21030	110	4510	160	4530	130	-13080	190
	S	16	4370	50	15830	90	4120	50	6540	60	1950	50	-5080	90
	Cl	17	8073.4	1.7	10228	7	-15627	24	7807.0	1.7	5728.0	1.7	-3903	13
	Ar	18	6599	5	10733	5	-35440#	200#	9230	5	1144	5	3068	5
	K	19	13077.75	0.20	6381.34	0.19	*		7851.28	0.21	1288.41	0.03	1361.22	0.04
	Ca	20	13295.5	0.6	5770.9 -597	0.6	*		8228.3	0.6	-5001.6	0.7	8595.2	0.6
	Sc Ti	21 22	18000#	200#		24	*		9674 9390#	24	-2860 8200#	50	8891	24
		22	16740#	360#	840#	280#	*		9390#	360#	-8290#	360#	14300#	200#
40	Mg	12	2000#	720#	*		71190#	500#	*		-320#	850#	*	
	Al	13	1130#	570#	21970#	650#	55150#	400#	4230#	640#	4240#	810#	-20300 #	800#
	Si	14	4960	370	22510#	530#	40470	350	-70	510	480	390	-17140	780
	P	15	3410	190	17720	200	25420	150	6770	190	3320	190	-12280	240
	S	16	7750	50	17350	110	12009	4	2490	70	1020	40	-10620	110
	Cl	17	5830	30	11680	60	-7030	30	10010	30	4200	30	-2920	50
	Ar	18	9869	5	12528.7	1.7	-26190	160	5469.01	0.10	1585.70	0.05	-2497.08	0.20
	K	19	7799.62	0.06	7582	5	-45710#	300#	11890.14	0.20	2276.23	0.21	3872.45	0.08
	Ca	20	15635.0	0.6	8328.17	0.02	*		4665.18	0.20	-5182.13	0.10	1747.68	0.21
	Sc	21	14422	24	529.6	2.9	*		12246.0	2.8	-2523.2	2.9	9923.3	2.8
	Ti	22	19120#	260#	1970	160	*		6110#	260#	-7510#	340#	9930	160
	V	23	*		-2680#	360#	*		12010#	420#	*		14300#	420#
41	Al	13	2240#	640#	22220#	710#	60730#	510#	1860#	720#	4210#	710#	*	750"
	Si	14	1380	650	22760#	680#	45190	550	2180#	680#	770	670	-16310#	750#
	P	15	4940	200	17700	370	30580	120	3410	180	4050	160	-15540	390
	S	16	4242	6	18180	150	16129	4	4480	110	480	70 70	-9190	100
	Cl	17	7820	80	11760	70	1340	70	6570	80	4420	70	-7040	100
	Ar	18	6098.9	0.3	12800	30	-17370	28	7443.5	1.8	1594.7	0.4	-560	7
	K C-	19	10095.37	0.06	7808.62	a 0.15	-35880#	200#	8393	5	4019.33	0.20	-115.04	0.10
	Ca	20	8362.82	0.14	8891.37	0.15	*		9380.11	0.14	-1473.08	0.24	5223.33	0.24
	Sc T:	21	16190.4	2.8	1085.00	0.08	*		9351.1	0.6	-1719.86	0.21	5804.74	0.21
	Ti	22	14920	160	2463	28	*		9190	40	-6580# 5600#	200#	12007	28
	V	23	19920#	360#	-1880 #	260#	*		8830#	280#	-5690#	360#	10220#	280#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2p	o)	$Q(\alpha$)	$Q(2\beta)$	-)	Q(arepsilonp)	$Q(eta^-$	n)
37	Na Mg Al Si P S Cl Ar K Ca Sc	11 12 13 14 15 16 17 18 19 20 21	840# 3570 6110 8320 10280 14192.84 18890.64 24043.0 29769.9 34070#	150# 750 180 120 40 0.20 0.06 0.7 0.5 200#	* 43000# 36790 33350 27080 21481.7 16679.40 10364.61 4666.7 -120#	690# 290 40 40 1.9 0.21 0.10 0.9 300#	* -20210# -16400 -13960 -12920 -8807.0 -7849.1 -6786.73 -6221.8 -6176.7 -5950#	920# 480 110 40 0.7 1.1 0.21 0.4 0.8 360#	43720# 34780 28810 20320 12770 4051.25 -6961.34 -17811.6 -28320# *	710# 710 180 110 40 0.28 0.11 0.7 300#	* -43780# -34240 -32240 -21750 -18799 -7572.50 -2567.16 9806.5 13650#	700# 700 150 70 13 0.27 0.10 0.6 300#	25080# 14190 14170 5610 3600 -5445.73 -9601.32 -21601.9 -26420 -36560#	970# 710 190 110 40 0.20 0.06 0.4 40 300#
38	Mg Al Si P S Cl Ar K Ca Sc Ti	12 13 14 15 16 17 18 19 20 21 22	2450# 5880 7880 10510 12340 16418.73 20625.92 27526.3 31750 35740#	850# 400 130 70 7 0.10 0.20 0.4 40 360#	* 44670# 39130 35150 29000 24125 18628.63 13856.69 6404.90 1410# -2740#	770# 700 170 70 13 0.27 0.20 0.20 200# 300#	-21190# -17900 -14920 -14050 -9329 -7674.3 -7208.05 -6785.59 -6105.12 -5450# -5410#	720# 710 110 70 16 0.8 0.20 0.21 280# 420#	38240# 30830 22690 15180 7854 -997.35 -12656.32 -24550# -32930# *	510# 380 110 70 7 0.22 0.06 200# 300#	* -44610# -39670 -31720 -27580 -18090 -15107.37 -4328.19 1600.19 13260# 16720#	780# 710 190 110 40 0.28 0.20 0.28 200# 300#	16190# 14710 6750 4200 -3171 -6921.76 -17985.94 -23736.0 -33650# *	530# 390 110 70 7 0.22 0.22 0.7 300#
39	Mg Al Si P S Cl Ar K Ca Sc Ti	12 13 14 15 16 17 18 19 20 21 22	2080# 5300# 7250 9920 12410 14181.3 18437 25149.63 30289.3 33840# *	870# 440# 180 120 50 1.7 5 0.09 0.9 300#	* 47460# 40470 37160 31170 25380 20924 16623.59 10913.0 3950 -760#	800# 710 210 120 40 5 0.05 0.6 24 200#	* -20010# -15740 -14980 -11200 -7367.3 -6821 -7218.58 -6660.3 -5425 -5010#	780# 300 110 60 2.5 5 0.04 0.9 24 280#	39960# 33430# 25480 17030 10080 4007.0 -5959 -19634 -29480# *	530# 420# 140 110 50 1.7 5 24 200#	* -39040# -36270 -26280 -22470 -13670 -11298.06 143.1 7339 16970#	520# 390 120 70 9 0.10 0.6 24 200#	17990# 16750# 8870 6020 -1440 -3156.7 -12513 -19820.01 -31110# -33110#	640# 410# 150 110 50 1.7 5 0.19 200# 300#
40	Mg Al Si P S Cl Ar K Ca Sc Ti V	12 13 14 15 16 17 18 19 20 21 22 23	1870# 4760# 6540 9640 12119 13900 16467.71 20877.37 28930.52 32420# 35860# *	710# 550# 360 170 8 30 0.19 0.20 0.20 200# 340#	* 43220# 38900 33250 27510 22757 18315.33 14709.50 6300.5 1370 -1840#	610# 400 100 80 7 0.11 0.20 2.8 160 360#	* -21140# -17380 -16490 -12830 -9730 -6800.68 -6438.40 -7039.76 -5531.2 -4820 -5610#	790# 770 210 70 30 0.19 0.07 0.03 2.8 160 420#	42920# 35700# 28270 19440 12202 5980 -193.51 -13012.2 -26000 -32690# *	610# 430# 350 160 4 30 0.02 2.8 160 300#	* -44140# -36050# -32450 -22070 -19170 -11024.3 -8893 5994.9 11140 19050#	620# 430# 140 120 50 1.7 5 2.8 160 300#	19630# 17200# 10130 6980 -1109 -2390 -9304.02 -14324.1 -28745 -30800#	640# 420# 360 160 4 30 a 0.6 24 200#
41	Al Si P S Cl Ar K Ca Sc Ti V	13 14 15 16 17 18 19 20 21 22 23	3370# 6340 8350 11990 13650 15968 17894.99 23997.8 30612 34040#	640# 570 160 50 70 5 0.01 0.6 24 200#	* 44730# 40210# 35910 29110 24480 20337.3 16474 9413.16 2993 90#	760# 420# 140 130 50 1.7 5 0.08 28 200#	-22540# -18520 -17210 -14860 -10740 -8596.0 -6222.92 -6615.14 -6267.13 -4986 -5630#	850# 890 220 110 80 0.4 0.05 0.25 0.13 28 360#	38400# 31130 22330 14059 8250 2070.4 -6917.13 -19440 -28960# *	510# 550 140 4 70 0.4 0.08 28 200#	* -43520# -39860# -31730 -26480 -17519 -15290 -7386.97 -2395.89 11860 13560#	750# 420# 350 170 4 30 0.14 0.10 28 200#	19920# 12160 9790 480 -340 -7603.3 -8784.48 -22685.9 -27860 -35940#	610# 580 120 30 70 0.4 0.02 2.8 160 300#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(1	n)	S(p	o)	Q(4β	-)	Q(d	,α)	Q(p,	α)	Q(n, 0)	α)
										-	~47	· 		
42	Al	13	1390#	780#	*		64930#	600#	2460#	780#	2690#	790#	*	
	Si	14	3720#	750#	24240#	710#	50890#	500#	-410#	640#	680#	640#	-20160#	720#
	P	15	2080	340	18400	640	36030	310	6290	470	3550	340	-13990#	510#
	S	16	6700	5	19950	120	20909.5	2.8	1190	150	0	110	-14310	140
	Cl	17	5600	90	13110	60	7290 -9318	60	8720	60	3190	80	-6410	130
	Ar	18	9426	6	14400	70		6	3850	30	242	6	-5610	50
	K	19	7533.80	0.11	9243.5	0.4	-27400# -45280#	200#	10728.67	0.11	3084	5	424.6 341	1.7 5
	Ca Sc	20 21	11480.67 11550.06	0.06 0.16	10276.67 4272.23	0.15 0.10	-43280# *	400#	5699.05 13436.04	0.16 0.17	124.00 25.6	0.15 0.6	7332.44	0.17
	Ti	22	17478	28	3751.23	0.10	*		6129.5	2.8	-6068	24	7332.44 7824.4	0.17
	V	23	16010#	280#	-790#	200#	*		11940#	2.6 250#	-0008 -4960#	280#	12200#	200#
	Cr	24	*	200#	-790# 880#	450#	*		5270#	500#	-4900# *	200#	10180#	450#
43	Al	13	1150#	1000#	*		71180#	800#	*		3530#	940#	*	
	Si	14	1440#	780#	24290#	850#	55110#	600#	390#	780#	380#	720#	-19600#	780#
	P	15	4400	640	19080#	750#	41260	550	3270	780	4110	650	-17260 #	680#
	S	16	2629	6	20490	310	26213	5	3500	120	780	150	-11980	350
	Cl	17	7400	90	13810	60	12030	60	5560	60	3540	60	-10400	170
	Ar	18	5658	8	14470	60	-2689	9	6010	70	410	30	-3526	7
	K	19	9624.7	0.4	9442	6	-18660	40	7202.9	0.5	3328.6	0.4	-3370	30
	Ca	20	7932.89	0.17	10675.77	0.25	-36440#	400#	7861.53	0.23	-9.28	0.23	2277.47	0.23
	Sc	21	12138.3	1.9	4929.8	1.9	*		9660.6	1.9	3522.3	1.9	2993.8	1.9
	Ti	22	12288	7	4489	7	*		10032	7	-3934	8	11172	7
	V	23	18370#	200#	100	40	*		8490	50	-4200	170	8250	40
	Cr	24	16770#	570#	1640#	450#	*		8420#	450#	-9280#	500#	12530#	430#
44	Si	14	2660#	840#	25800#	1000#	61190#	600#	-880 #	850#	-40#	780#	*	
	P	15	2300#	750#	19940#	780#	46230#	500#	4690#	710#	3200#	750#	-17320 #	710#
	S	16	5080	7	21170	550	32264	5	500	310	640	120	-15680	550
	Cl	17	4300	150	15480	140	17430	140	7960	140	3490	140	-9760	180
	Ar	18	8735	6	15800	60	4875.3	1.7	2870	60	-500	70	-8018	4
	K	19	7277.4	0.6	11061	5	-11670	180	9352	6	2150.1	0.5	-2830	70
	Ca	20	11131.17	0.23	12182.3	0.5	-28110#	300#	4264.2	0.3	-1045.1	0.3	-2754.8	0.5
	Sc	21	9699.2	2.6	6696.1	1.7	-44850 #	500#	11442.1	1.7	2186.0	1.8	3390.0	1.8
	Ti	22	16299	7	8649.4	2.0	*		5283.4	0.7	-4042.1	0.7	3235.7	0.7
	V	23	14270	190	2080	180	*		11700	180	-3550	180	10170	180
	Cr	24	19460#	500#	2730#	300#	*		4970#	360#	-8820 #	360#	7980#	300#
	Mn	25	*		-1710#	640#	*		11010#	640#	*		12360#	540#
45	Si	14	-910#	920#	*		67260#	700#	1180#	1060#	2250#	920#	*	
	P	15	2920#	710#	20200#	780#	52220#	500#	3210#	780#	3990#	710#	-18850 #	780#
	S	16	2860	1040	21730#	1150#	36820	1040	2040	1170	-140	1080	-14810#	1150#
	Cl	17	5950	190	16350	140	22810	140	4640	140	4240	140	-13630	340
	Ar	18	5168.9	1.7	16680	140	9239.0	1.0	5100	60	-70	60	-6486.6	2.8
	K	19	8905.5	0.7	11231.4	1.7	-4729.6	1.0	6105	5	2671	6	-6140	60
	Ca	20	7414.82	0.17	12319.7	0.6	-21300	40	6474.0	0.5	-926.1	0.4	-743	6
	Sc	21	11327.2	1.9	6892.2	0.7	-35820#	400#	8047.7	0.7	2339.4	0.7	-403.5	0.7
	Ti	22	9532.6	1.1	8482.8	1.9	-52770#	400#	7889.1	2.0	-2024.6	0.9	5183.8	0.9
	V	23	15840	180	1626.4	1.1	*		8146	7	-1917.3	0.9	5881.5	0.9
	Cr	24	14230#	300#	2690	190	*		9110	60	-7030#	200#	11240	40
	Mn	25	20350#	640#	-820#	500#	*		7430#	570#	-7120#	570#	8020#	450#
	Fe	26	*		560#	640#	*		*		*		12680#	570#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\boldsymbol{A}	Elt.	Z	S(2	n)	S(2 ₁	p)	$Q(\alpha$	<u>:</u>)	$Q(2\beta$	i-)	$Q(arepsilon_{ m J}$	p)	$Q(eta^-$	n)
42	Al Si	13 14	3630# 5100#	720# 610#	* 46460#	710#	* -20030#	710#	39090# 34110#	680# 500#	*		19910# 13380#	820# 510#
	P	15	7020	350	41160#	510#	-17630	490	25840	320	-39700#	590#	11950	310
	S	16	10943	5	37650	350	-15890	100	16785	6	-37050	550	1600	70
	Cl	17	13420	70	31300	160	-12640	90	10190	60	-27140	130	160	60
	Ar	18	15525	6	26163	7	-9986	9	4125	6	-22703	7	-6934	6
	K	19	17629.17	0.12	22040	30	-7648.84	0.14	-2900.87	0.20	-15000	70	-7955.45	0.17
	Ca	20	19843.49	0.15	18085.29	0.15	-6257.34	0.25	-13442.57	0.24	-12768.7	0.4	-17976.15	0.16
	Sc	21	27740.5	2.8	13163.60	0.18	-5745.31	0.26	-24500#	200#	-3850.58	0.17	-24495	28
	Ti	22	32400	160	4836.23	0.28	-5471.1	0.3	-31840#	400#	2744.25	0.24	-33500#	200#
	V	23	35930#	360#	1670#	200#	-5800#	280#	*		13730#	200#	*	
	Cr	24	*		-1000#	430#	-6560#	500#	*		15140#	400#	*	
43	Al	13	2540#	940#	*		*		42340#	970#	*		22480#	940#
	Si	14	5160#	810#	*	750"	-21600#	790#	35300#	600#	*	02011	14020#	670#
	P	15	6480	570	43320#	750#	-18400#	680#	28840	560	-42710# 25050#	820#	14250 4560	550
	S Cl	16 17	9330 12990	6 90	38890 33760	550 140	-16940 -13810	140 130	19814 12420	7 60	-35950# -32460	500#	4560 2190	60 60
	Ar	18	15085	5	27579	7	-13810 -11270	50	6399	5	-32460 -21661	320 6	-5059	5
	K	19	17158.5	0.4	23850	70	-9200.1	1.8	-387.3	1.9	-21001 -19030	60	-6099.5	0.4
	Ca	20	19413.57	0.18	19919.3	0.4	-7592	5	-9088	7	-19030 -11275	6	-0099.3 -14358.99	0.4
	Sc	21	23688.3	1.9	15206.5	1.9	-4805.8	1.9	-18270	40	-8455.0	1.9	-19154.7	1.9
	Ti	22	29766	29	8761	7	-4463	7	-27350#	400#	1937	7	-29770#	200#
	V	23	34380#	210#	3850	40	-6170	50	*		6920	40	-32720#	400#
	Cr	24	*		850#	400#	-6600#	450#	*		15850#	400#	*	
44	Si	14	4100#	780#	*		-22260#	780#	37720#	600#	*		15760#	810#
	P	15	6700#	590#	44230#	780#	-19560#	640#	30840#	520#	-43860#	940#	14580#	500#
	S	16	7709	6	40250#	500#	-17060	350	23469	5	-39590 #	600#	6880	60
	Cl	17	11700	150	35970	340	-14700	210	15400	140	-32350	570	3550	140
	Ar	18	14393	6	29613	3	-12260	4	8795.4	1.6	-27767	5	-4169.2	1.6
	K	19	16902.1	0.4	25530	60	-10650	30	2034.5	1.8	-18910	60	-5444.0	0.5
	Ca	20	19064.06	0.29	21624	6	-8853.7	0.3	-3920.1	0.8	-16748	5	-13351.9	1.9
	Sc	21	21837.5	1.8	17371.9	1.8	-6705.4	1.8	-13700	180	-8529.6	1.8	-16566	7
	Ti V	22 23	28586.5 32640#	0.8 270#	13579.3 6570	0.7 180	-5127.1 -6020	0.7 180	-24190# -31150#	300# 530#	-6428.7	0.7 180	-27700 -30220#	40 440#
	v Cr	24	36230#	500#	2830#	300#	-6020 -6940#	340#	-31130# *	330#	4780 8670#	300#	-30220# *	440#
	Mn	25	*	300#	-70#	540#	-7570#	580#	*		17660#	500#	*	
45	c:	1.4	1750#	920#			al.		41480#	1250#	al.		18970#	860#
43	51 P	14 15	1750# 5220#	920# 750#	* 46000#	940#	* -20250#	710#	33860#	1250# 520#	*		16730#	500#
	S	16	7940	1040	41670#	1200#	-20230π -18530	1170	25780	1040	_39790#	1200#	8320	1040
	Cl		10250	150	37520	570	-15710	180	18350	140	-36000#	520#	6340	140
	Ar		13904	5	32153	5	-13187	4	11041.4	0.6	-27856	5	-2060.6	0.7
	K	19	16182.9	0.7	27030	60	-11730	70	4456.3	0.9	-23520	140	-3218.3	0.6
	Ca	20	18545.99	0.29	23380	5	-10169.6	0.5	-1802.3	0.9	-15427.9	1.6	-11067.5	1.8
	Sc	21	21026.4	2.0	19074.4	0.8	-7937.3	0.7	-9185.9	0.6	-12579.4	0.8	-11594.6	1.0
	Ti	22	25831	7	15179.0	0.9	-6296.9	0.9	-19500	40	-4830.1	0.9	-22960	180
	V	23	30110	40	10275.9	2.1	-5668.5	0.9	-26640 #	400#	-1359.0	2.0	-26600#	300#
	Cr	24	33690#	400#	4770	40	-6240	50	-33280 #	400#	10740	40	-34620 #	500#
	Mn	25	*		1910#	400#	-8000 #	450#	*		11580#	440#	*	
	Fe	26	*		-1154	16	*		*		19830#	500#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

<i>A</i>	Elt.	Z	S(1	1)	S(p	o)	$Q(4\beta)$	-)	Q(d	,α)	Q(p,	α)	Q(n, 0)	α)
46	P	15	700#	860#	21810#	990#	58380#	700#	5170#	920#	4730#	920#	-18400#	1060#
	S	16	3740#	1150#	22550#	710#	43480#	500#	600#	710#	520#	750#	-17120#	780#
	Cl	17	3670	250	17160	1060	27900	210	6060	210	3200	210	-12890	590
	Ar	18	8073.4	1.2	18800	140	14354.9	1.1	1320	140	-750	60	-11931	5
	K	19	6869.6	0.9	12932.1	0.9	1661.4	0.8	7970.1	1.7	1460	5	-5610	60
	Ca	20	10398.5	2.3	13812.7	2.3	-13668	12	3352.9	2.3	-1699.9	2.3	-5483	6
	Sc	21	8760.64	0.10	8238.0	0.8	-29190# 45040#	400#	10418.3	0.7	1511.7	0.7	460.6	0.8
	Ti V	22 23	13189.3 13260.7	0.8 0.9	10344.9 5354.5	0.7 0.8	-45040# *	500#	4399.0 11184.0	1.8 0.7	-3075.6 -2890	1.9 7	-72.58 4759.2	0.28 1.9
	v Cr	23	18030	40	4875	11	*		5360	180	-2890 -6690	40	4739.2 5496	1.9
	Mn	25	15390#	570#	340#	400#	*		11500#	500#	-5740#	570#	10990#	400#
	Fe	26	20920#	640#	1130#	640#	*		4590#	710#	-3740# *	370#	8530#	640#
47	P	15	1330#	1060#	*		65420#	800#	2930#	1060#	6060#	1000#	*	
	S	16	1040#	710#	22890#	860#	49710#	500#	2480#	710#	1780#	710#	-15500 #	780#
	Cl	17	3990#	450#	17410#	640#	34560#	400#	4920#	1110#	4290#	400#	-14580 #	640#
	Ar	18	3664.7	1.6	18800	210	19571.0	1.1	3610	140	-120	140	-10516	5
	K	19	8369.4	1.6	13228.0	1.8	6294.6	1.4	4769.6	1.5	1825.3	2.1	-9680	140
	Ca	20	7276.37	0.27	14219.5	2.3	-7782	6	4982.0	2.3	-1698.9	2.3	-4024.8	2.7
	Sc	21	10646.7	2.0	8486.2	1.2	-21770	30	7186.4	2.0	1996.1	2.0	-2908.7	2.0
	Ti	22	8880.88	0.13	10465.1	0.7	-38070#	500#	6845.3	0.7	-2257.3	1.8	2177.7	0.3
	V	23	13002.58	0.11	5167.79	0.07	-52380 #	600#	7714.0	0.8	406.0	0.7	1455.8	1.8
	Cr	24	13162	13	4776	6	*		8034	6	-5580	180	8632	6
	Mn	25	18070#	400#	380	30	*		7660	50	-4340#	300#	7200	180
	Fe	26	15850#	710#	1590#	640#	*		9090#	640#	-9040#	710#	12140#	580#
	Co	27	*		-2170#	780#	*		7320#	720#	*		8990#	780#
48	S	16	2680#	780#	24240#	1000#	56990#	600#	500#	920#	2030#	780#	-19080#	920#
	Cl	17	2570#	640#	18940#	710#	40220#	500#	6090#	710#	4570#	1150#	-14230 #	710#
	Ar	18	4990	310	19790#	500#	26210	310	2290	370	850	340	-12650	1080
	K	19	4643.8	1.6	14207.1	1.4	12193.2	1.2	8199.3	1.4	2350.4	0.9	-8380	140
	Ca	20	9951.5	2.2	15801.6	1.4	-1403	7	1900.1	0.7	-2744.9	0.5	-8807.4	0.5
	Sc	21	8239	5	9448	5	-15208	9	9346	5	1172	5	-2242	5
	Ti	22	11626.66	0.04	11445.1	1.9	-30490#	400#	3979.3	0.7	-2556.8	0.7	-2034.1	0.4
	V	23	10542.4	1.0	6829.3	1.0	-45980#	500#	10360.9	1.0	-603.8	1.3	2240.6	1.2
	Cr	24	16331	9	8104	7	-59620#	500#	4964	7	-6072	7	1834	7
	Mn	25 26	14800	30 640#	2023 2720#	6	*		10886 5280#	13 570#	-4920 7800#	40 570#	8236 7160#	7 400#
	Fe Co	27	19200# 16940#	780#	-1080#	400# 710#	*		11300#	710#	-7890# -7400#	570# 640#	12400#	400# 640#
	Ni	28	*	780#	-1080# 870#	780#	*		*	/10#	- /400# *	040#	8680#	640#
49	S	16	-260#	300#	*		62390#	670#	2090#	1040#	2990#	970#	*	
	Cl	17	2850#	780#	19110#	850#	47500#	600#	4280#	780#	5460#	780#	-16380#	920#
	Ar	18	2980#	500#	20200#	640#	31370#	400#	3300#	570#	1530#	450#	-11880 #	640#
	K	19	5398.3	1.1	14620	310	18350.4	1.2	6465.7	1.4	5025.5	1.4	-10110	210
	Ca	20	5146.45	0.18	16304.3	0.8	4033.3	2.3	5123.0	1.4	-1021.8	0.8	-5880.4	1.1
	Sc	21	10129	6	9625.6	2.7	-8941	4	6494	3	1442	4	-5500.9	2.8
	Ti	22	8142.40	0.03	11349	5	-23813	24	6483.6	1.9	-1938.5	0.7	222.0	2.2
	V	23	11555.6	1.3	6758.2	0.8	-38080 #	500#	7686.2	0.8	1029.9	0.8	-554.3	1.1
	Cr	24	10582	8	8144.3	2.4	-53530#	600#	7384.4	2.2	-3393.7	2.3	4441.1	2.2
	Mn	25	16396	7	2088	8	*		7653	6	-3285	12	5101.1	2.3
	Fe	26	14820#	400#	2743	25	*		8530	40	-7320#	400#	10367	27
	Co	27	19450#	710#	-830#	640#	*		7700#	710#	-5930#	710#	8340#	640#
	Ni	28	16670#	780#	590#	780#	*		8540#	850#	*		12940#	780#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$:)	$Q(2\beta)$	-)	$Q(arepsilon_{ m J}$	p)	$Q(eta^-$	n)
46		15	3620#	860#	*	790"	-19560#	920#	36830#	730#	*	0.6011	18890#	1250#
	S	16	6600#	500#	42750#	780#	-18560# 17200	710#	30110#	500#	-44440# 26750#	860#	10530#	520#
	Cl Ar	17 18	9620 13242.3	250 1.9	38890# 35147	540# 5	-17290 -14560	380	21550 13366.4	210 2.5	-36750# -33070	540# 1040	7840 -1228.6	210 1.2
	K	19	15775.1	0.8	29610	140	-14300 -13010	60	6347.3	1.0	-33070 -24440	140	-1228.0 -2673.1	0.8
	Ca	20	17813.3	2.3	25044.0	2.7	-13010 -11142	6	988.4	2.2	-20657.5	2.3	-10138.8	2.3
	Sc	21	20087.9	1.9	20557.7	0.8	-9164.1	0.7	-4685.9	0.7	-12434.6	0.9	-10822.7	0.5
	Ti	22	22721.9	0.7	17237.1	0.4	-8005.47	0.22	-14656	11	-10604.6	0.4	-20313.1	0.9
	V	23	29100	180	13837.3	1.8	-7379.11	0.26	-24510#	400#	-3292.4	0.7	-25630	40
	Cr	24	32250#	300#	6501	11	-6792	11	-30380 #	500#	2249	11	-32290 #	400#
	Mn	25	35740#	640#	3030#	440#	-7380 #	450#	*		12030#	400#	-34400 #	570#
	Fe	26	*		310#	580#	-8250#	640#	*		13140#	500#	*	
47	P	15	2030#	940#	*		-19740#	1130#	39490#	890#	*		21300#	940#
	S	16	4780#	1150#	44700#	860#	-18160#	780#	32740#	500#	*	010#	13160#	540#
	Cl	17	7660#	420#	39960#	640#	-16880#	680#	25930#	400#	-40040# 22000#	810#	11920# 1976.3	400#
	Ar K	18 19	11738.2 15239.0	1.2 1.5	35950 32030	1040 140	-15596 -13980	5 60	16978.1 8624.6	2.5 2.4	-33000# -29140	500# 210	-643.9	1.3 2.6
	Ca	20	17674.9	2.3	27151.6	2.3	-13980 -12760	6	2592.9	2.4	-29140 -19860.5	2.5	-043.9 -8654.5	2.3
	Sc	21	19407.3	2.0	22298.9	2.0	-12700 -10186.1	2.0	-2330.0	1.9	-16211.6	2.1	-8034.3 -8280.1	1.9
	Ti	22	22070.2	0.8	18703.1	0.4	-8953.46	0.25	-10375	6	-9087.0	2.2	-15933.33	0.18
	V	23	26263.2	0.9	15512.7	0.7	-8243.4	1.9	-19440	30	-7534.4	0.7	-20606	11
	Cr	24	31190	40	10131	6	-7666	9	-27690#	500#	2276	6	-30060#	400#
	Mn	25	33460#	400#	5260	30	-7070	50	-32940#	600#	7220	30	-31550#	500#
	Fe	26	36770#	640#	1930#	500#	-7330#	640#	*		15310#	500#	*	
	Co	27	*		-1040#	720#	*		*		15650#	720#	*	
48	S	16	3720#	780#	*		-18180#	840#	35040#	670#	*		14470#	720#
	Cl	17	6560#	540#	41830#	860#	-17160#	710#	28000#	500#	-41280#	940#	13020#	500#
	Ar	18	8650	310	37200#	590#	-15500	310 140	21940	310 5	-36940# 20700#	590#	5360	310
	K Ca	19 20	13013.2 17227.9	1.1 2.2	33000 29029.6	210 1.1	-14320 -13976.3	1.6	12219 4268.08	0.08	-29790# -26147.3	400# 1.1	1988.6 -7959.4	2.4 1.9
	Sc	21	18885	5	23668	5	-13970.3 -11147	5	-26	5	-20147.3 -16081	5	-7638	5
	Ti	22	20507.54	0.14	19931.3	2.2	-9448.9	0.3	-5671	7	-13437.3	2.2	-14557.41	0.14
	V	23	23545.0	1.0	17294.4	1.2	-9086.6	2.0	-15181	7	-7430.1	2.2	-17986	6
	Cr	24	29493	14	13272	7	-7698	7	-24820#	400#	-5174	7	-28330	30
	Mn	25	32870#	400#	6799	7	-7600	180	-30800 #	500#	5421	7	-30500#	500#
	Fe	26	35050#	640#	3110#	400#	-7070 #	500#	-34790 #	640#	9270#	400#	-36440 #	720#
	Co	27	*		510#	640#	-7960#	710#	*		16780#	500#	*	
	Ni	28	*		-1310	40	*		*		16370#	710#	*	
49	S	16	2420#	830#	*	4000	-18820#	970#	38280#	780#	*		17300#	830#
	Cl	17	5420#	720#	43350#	1000#	-17090#	780#	30550#	600#	*	720"	15150#	670#
	Ar v	18	7970# 10042.1	400#	39140#	640#	-15630#	1110#	24110# 16949.8	400#	-37240# 32620#	720# 500#	7020#	400#
	K Ca	19 20	10042.1 15098.0	1.6 2.2	34410# 30511.4	400# 1.1	-13770 -13953.9	140 0.6	7264.02	2.8 0.19	-32620# -26310	500# 310	6541.8 -4867	0.8 5
	Sc	21	18367	3	25427	3	-13933.9 -12370.5	2.7	1400.7	2.8	-20510 -21565.8	2.8	-4807 -6139.9	2.7
	Ti	22	19769.06	0.05	20797.3	2.2	-12370.5 -10176.5	0.4	-3230.7	2.2	-21505.8 -11628.13	0.08	-0139.9 -12157.4	1.0
	V	23	22097.9	0.8	18203.3	2.1	-9315.0	1.1	-10341.3	2.4	-1023.13 -10747	5	-13211	7
	Ċr	24	26913	6	14973.6	2.2	-8748.1	2.4	-20582	24	-4129.3	2.2	-24108	7
	Mn	25	31200	30	10192.0	2.3	-8159.5	2.4	-27740#	500#	-431.9	2.5	-27690#	400#
	Fe	26	34020#	500#	4766	25	-7660	40	-32950#	600#	10782	25	-34320#	500#
	Co	27	36390#	780#	1890#	500#	-7060 #	640#	*		12130#	500#	-34750 #	710#
	Ni	28	*		-490#	780#	-7990#	720#	*		18910#	720#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p, q)	α)	$Q(n, \mathbf{c})$	α)
50	Cl	17	1270#	850#	20640#	900#	52290#	600#	5690#	850#	5230#	780#	-16320#	1000#
	Ar	18	4210#	640#	21560#	780#	38100#	500#	1660#	710#	1310#	640#	-15050#	710#
	K	19	4188	8	15830#	400#	23496	8	7260	310	4503	8	-10300#	400#
	Ca Sc	20 21	6360.8 6057	1.6 15	17266.7 10537	1.8 15	10672.8 -1920	1.6 15	3406.1 10388	1.8 15	986.8 2661	2.1 15	-8576.5 -3189	1.9
	Ti	22	10939.19	0.04	12159.4	2.7	-1920 -16955	8	3783	5	-2231.0	1.9	-3189 -3440.8	15 2.2
	V	23	9333.4	0.04	7949.2	0.4	-10933 -31590#	400#	9979.5	0.4	-2231.0 577.4	0.4	-3440.8 759.0	2.2
	v Cr	24	13000.3	2.2	9589.1	0.4	-31390# -46140#	500#	4926.4	1.1	-3391.4	0.4	321.7	0.5
	Mn	25	13078.3	2.2	4583.5	2.2	-40140# *	300π	10905	7	-3391.4 -3201	6	5025.4	0.5
	Fe	26	17797	26	4145	9	*		5531	11	-7050	30	5733	10
	Co	27	15820#	640#	170#	400#	*		11080#	570#	-5900#	640#	10580#	400#
	Ni	28	20390#	780#	1530#	710#	*		5090#	710#	-9630#	780#	8400#	710#
51	Cl	17	1520#	920#	*		57520#	700#	3910#	970#	6390#	920#	*	
	Ar	18	1430#	780#	21720#	850#	43040#	600#	3080#	850#	2450#	780#	-13810#	850#
	K	19	4860	15	16480#	500#	29688	13	5380#	400#	4630	310	-12590#	500#
	Ca Sc	20 21	4814.4 6753	1.7	17893 10928	8	15119.1	0.7	3990.0 8782	1.0	816.2	0.9	$-8400 \\ -5298$	310 20
	Ti	22	6372.5	25 0.5	10928	20 15	5015 -9530	20 9	7539.2	20 2.7	5860 -365	20 5	-3298 138.2	0.5
	V	23	11051.15	0.08	8061.2	0.4	-9330 -24860	50	7070.8	0.4	-363 1152.9	0.4	-2054	5
	C r	24	9260.64	0.08	9516.35	0.4	-24800 -39550#	500#	7221.3	0.4	-2109.6	1.1	2687.7	0.4
	Mn	25	13687.60	0.30	5270.78	0.29	*	30011	7800.0	2.2	-558	7	1880.2	1.1
	Fe	26	13797	12	4864	9	*		8129	9	-6042	11	8266	12
	Co	27	17780#	400#	150	50	*		8120	50	-4480#	400#	7600	50
	Ni	28	15850#	710#	1560#	640#	*		8690#	710#	-8540#	710#	11750#	640#
52	Ar	18	2660#	850#	22860#	920#	48190#	600#	1690#	850#	2640#	850#	-16730#	900#
	K	19	2690	40	17740#	600#	34310	30	6900#	500#	4920#	400#	-12430#	600#
	Ca Sc	20 21	6005.3 5290	0.8 80	19039 11400	13 80	21153.0	0.8 80	2172 9860	8	209.3	1.0 80	-11430# -5190	400#
	Ti	22	7808	7	13530	21	10260 1139	9	5788	80 17	5720 1955	8	-3190 -2524	80 7
	V	23	7311.24	0.13	8999.9	0.7	-17083	8	10698.7	0.4	1933	0.4	763.9	2.7
	Cr	24	12039.2	0.13	10504.4	0.7	-33090#	400#	4515.6	0.5	-2593.3	0.9	-1209.1	0.4
	Mn	25	10534.7	1.9	6544.9	1.9	-48430#	600#	10265.6	1.9	-510.2	2.9	2901.0	2.0
	Fe	26	16199	10	7375	5	*		5008	5	-5846	6	2649	6
	Co	27	15090	50	1447	12	*		10826	12	-4746	26	8906	9
	Ni	28	18500#	640#	2280#	400#	*		6010#	570#	-7590#	640#	8070#	400#
	Cu	29	*		-2330#	780#	*		12550#	780#	-5620#	850#	13250#	780#
53	Ar	18	0#	920#	*	C10"	53620#	710#	3210#	990#	3920#	920#	*	(10"
	K	19	3230	120	18310#	610#	39560	110	5110#	610#	5900#	510#	-14390#	610#
	Ca	20	3190	40	19540	60	25900	40	3840	50	1200	40	-10410#	500#
	Sc	21	6530 5430	120	11930	90	15780	90	8140	90	5550	90	-7530	90 100
	Ti V	22 23	5430 8479	100	13680 9670	130 8	4120 -9192	100 4	7110 8593	100	2580 4445	100	-1600 -1657	100 15
	v Cr	24	7939.07	0.14	11132.2	0.5	-9192 -25656	25	7627.6	0.5	-1198.9	0.5	1791.1	0.4
	Mn	25	12054.1	1.9	6559.8	0.3	-23030 -41420#	500#	7472.1	0.6	436.0	0.6	180.3	0.4
	Fe	26	10688	5	7529.2	2.4	*	20011	8007.2	1.7	-3455.9	1.7	4960.9	1.7
	Co	27	16370	9	1618	5	*		8254	9	-3319	9	5614.6	1.8
	Ni	28	15370#	400#	2559	27	*		8420	50	-7140#	400#	10492	27
	Cu	29	19060#	780#	-1770 #	640#	*		9340#	710#	-4290 #	710#	10010#	640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2:	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta^{-1})$	-)	Q(arepsilonp))	$Q(\beta^-$	n)
50	Cl Ar	17 18	4120# 7190#	780# 590#	* 40670#	780#	-17660# -16100#	920# 710#	33470# 26260#	600# 500#	* -41710#	830#	16860# 8210#	720# 500#
	K	19	9586	8	36030#	500#	-14290	210	18820	17	-33960#	600#	7501	8
	Ca	20	11507.2	1.6	31890	310	-12241.2	1.9	11842.4	1.6	-29690#	400#	-1099	3
	Sc	21	16186	16	26841	15	-11558	15	4677	15	-22225	15	-4055	15
	Ti	22	19081.59	0.05	21784.97	0.09	-10717.2	2.2	-1169.6	0.5	-17420.87	0.20	-11541.0	0.8
	V	23	20889.0	1.1	19298	5	-9887.7	0.8	-6596.4	0.3	-9951.7	2.7	-11962.3	2.2
	Cr	24	23583	7	16347.3	0.4	-8559.2	0.5	-15786 25000#	8	-8987.3	0.5	-20712.8	2.2
	Mn	25	29474	7 400#	12727.8 6232	1.1 11	-7977.2	0.5 14	-25000# -30360#	400# 500#	-1954.6 3568	0.9	-25948 -32670#	24 500#
	Fe Co	26 27	32620# 35270#	400# 640#	2910#	400#	-7430 -7490#	570#		300#	12700#	9 400#	-32070# -33900#	720#
	Ni	28	37060#	710#	700#	640#	7490# 7460#	710#	*		13340#	500#	-33900# *	720#
51	Cl	17	2790#	920#	*		-17850#	1060#	36810#	700#	*		19550#	860#
	Ar	18	5640#	720#	42360#	900#	-16490 #	780#	29640#	600#	*		10970#	600#
	K	19	9047	13	38030#	600#	-15160#	400#	20712	24	-37550#	600#	9002	13
	Ca	20	11175.2	0.6	33720#	400#	-13390.9	1.2	13400.5	0.7	-30290 #	500#	144	15
	Sc	21	12810	20	28195	20	-9942	20	8975	20	-24790	21	132	20
	Ti	22	17311.7	0.5	23011.0	0.5	-9813.3	2.3	1718.6	0.6	-17432.6	1.7	-8580.1	0.6
	V	23	20384.5	0.9	20220.5	2.7	-10292.2	2.0	-3960.0	0.4	-14945	15	-10013.09	0.29
	Cr	24	22261.0	2.2	17465.5	0.4	-8938.9	0.4	-11249	9	-7308.7	0.4	-16895.12	0.21
	Mn	25	26765.9	2.2	14859.9	1.0	-8662.2	0.5	-20900	50	-6308.8	0.4	-21839	8
	Fe Co	26 27	31594 33600#	26 500#	9447 4300	9 50	-8065 -7200	11 60	-28300# *	500#	2771 8000	9 50	-30640# -31290#	400# 500#
	Ni	28	36240#	780#	1730#	500#	-7200 -7460#	710#	*		15290#	500#	-31290# *	300#
						200						200		
52	Ar	18	4090#	780#	*		-16470 #	850#	32990#	600#	*		13170#	600#
	K	19	7550	30	39460#	600#	-15280#	500#	23310	90	-38720#	700#	11120	30
	Ca	20	10819.7	1.7	35520#	500#	-14410	310	15204	7	-34870#	600#	891	20
	Sc	21	12040	80	29290	80	-10580	80	11000	80	-25220	80	1220	80 7
	Ti V	22 23	14181 18362.39	7 0.15	24459 21474	7 15	-7670 -9365	7 5	5949 -736.5	7 1.9	-20426 -15504	7 20	-5337 -8063.69	0.25
	v Cr	23	21299.8	0.13	18565.5	0.4	-9363 -9351.4	0.4	-730.3 -7089	5	-13304 -12975.4	0.6	-8005.09 -15246.7	0.23
	Mn	25	24222.3	1.9	16061.2	1.9	-9551.4 -8654.5	2.1	-16346	9	-12973.4 -5792.4	1.9	-13246.7 -18576	9
	Fe	26	29997	10	12646	5	-7933	9	-26000#	400#	-4168	5	-29060	50
	Co	27	32870#	400#	6311	8	-7490	11	-32080#	600#	6594	8	-30530#	500#
	Ni	28	34350#	640#	2430#	400#	-6750#	570#	*	000	10580#	400#	*	200
	Cu	29	*		-770#	720#	-6210#	780#	*		17770#	600#	*	
53	Ar	18	2660#	920#	*		-16730#	970#	36180#	700#	*		15860#	700#
	K	19	5920	110	41160#	710#	-15660#	610#	26610	150	*		13900	110
	Ca	20	9200	40	37280#	600#	-14620 #	400#	17440	110	-35400#	600#	2980	90
	Sc	21	11820	100	30970	90	-11720	90	12940	90	-29060	100	2490	90
	Ti	22	13240	100	25080	100	-7960	100	8460	100	-19850	100	-3460	100
	V	23	15790	3	23200	20	-7715	4	2839	3	-18700	80	-4503	3
	Cr	24	19978.2	0.5	20132.1	0.6	-9148.1	0.4	-4339.5	1.7	-13106	7	-12651.0	1.9
	Mn	25	22588.9	0.7	17064.2	0.6	-9153.1	0.9	-12030.7	1.7	-10535.3	0.6	-14431	5
	Fe	26	26888	9 50	14074.1 8993.5	1.7	-8039.4	2.8	-21317 -29390#	25 500#	-2817.3	1.7	-24658 -28400#	9 400#
	Co Ni	27 28	31460 33870#	50 500#	8993.3 4006	1.8 27	-7463.7 -7310	2.8 30		500#	758.9 11411	2.4 26	-28400# -35420#	400# 600#
	Cu	29	33870# *	300 11	510#	500#	-7310 -5820#	710#	*		13800#	500#	-55420# *	000#
	Cu	2)	Ψ.		310#	ЭООП	-3620π	/ 10#	Ť		13000#	ЭООП	T	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(t	1)	S(p))	$Q(4\beta$	-)	Q(d	,α)	Q(p,	α)	Q(n, 0)	α)
54	K	19	780#	610#	19080#	920#	44890#	600#	6990#	850#	6550#	850#	-13650#	920#
	Ca	20	3840	70	20150	120	31770	50	2690	60	2220	50	-12820 #	600#
	Sc	21	3060	290	11790	280	21670	270	11090	270	7310	270	-5730	270
	Ti V	22 23	6860	130	14000	130	10630	80	5530	120	2470	80	-3640	80 25
	v Cr	23 24	6113 9719.08	15 0.12	10350 12373	100	-1883 -17656	15 5	10287 5219.8	17 0.5	4704 133.1	15 0.5	-1018 -1555.5	0.6
	Mn	25	8938.8	1.1	7559.6	3 1.0	-17030 $-34150#$	3 400#	10572.4	1.0	757.8	1.1	-1333.3 2292.6	1.1
	Fe	26	13378.3	1.1	8853.4	0.5	-34130# -49980#	400#	5163.6	1.8	-3146.6	0.6	843.3	0.5
	Co	27	13421.8	1.7	4351.4	1.6	-49900π *	400π	11031	5	-2943	9	5880.3	0.6
	Ni	28	17719	26	3908	5	*		5793	10	-7070	50	6571	10
	Cu	29	16210#	640#	-930#	400#	*		11630#	570#	-4650#	640#	11580#	400#
	Zn	30	*	01011	290#	640#	*		6720#	720#	*	0.1011	11270#	640#
55	K	19	2360#	920#	*	· · ·	49850#	710#	4630#	990#	6850#	920#	*	
	Ca	20	1260#	300#	20640#	670#	36760#	300#	4660#	320#	3650#	300#	-11420#	670#
	Sc T:	21	4340	530	12290	460	27550	450	9940	460	8970	450	-7380	460
	Ti V	22 23	4120 7320	180 100	15070 10810	320 130	15810 4890	160 100	7950 8400	190 140	3640 5190	180 100	-1760 -3050	160 130
	Cr	24	6246.26	0.19	12506	150	-9773.9	0.8	7452	3	1198.1	0.6	-3030 7	7
	Mn	25	10226.1	1.1	8066.6	0.3	-26080	160	8285.4	0.3	2570.9	0.3	-622.2	0.5
	Fe	26	9298.12	0.19	9212.6	1.1	-42910#	400#	7919.6	0.5	-1910.0	1.8	3584.3	0.4
	Co	27	14091.2	0.3	5064.35	0.30	*		7628.5	1.6	-835	5	2323.8	1.8
	Ni	28	14129	5	4614.9	0.7	*		8034.4	1.8	-6111	8	8641	5
	Cu	29	18300#	430#	-350	160	*		8710	160	-4440#	430#	8370	160
	Zn	30	16370#	570#	450#	570#	*		9410#	640#	-7430#	720#	13410#	570#
56	K	19	850#	1060#	*		54080#	820#	*		6000#	1060#	*	
	Ca	20	3620#	500#	21900#	810#	41390#	400#	1820#	720#	3260#	420#	-15040 #	810#
	Sc	21	2760	740	13790#	660#	32060	590	11020	590	9400	590	-6910	600
	Ti	22	5720	200	16450	470	21290	120	5280	300	4450	150	-4290	130
	V	23	5080	200	11780	240	9890	180	10180	200	5540	200	-1600	200
	Cr	24 25	8246.6 7270.44	0.6	13430 9090.8	100 0.4	-1377.5 -18269	0.6 15	5319 10734.0	15 0.3	1430 3239.5	3 0.3	-2810 586	100
	Mn Fe	26	11197.10	0.13 0.23	10183.64	0.4	-18209 -35220#	400#	5661.4	1.1	-1052.9	0.3	326.3	3 0.3
	Co	27	10081.8	0.23	5848.1	0.10	-52650#	500#	10924.9	0.5	-228.8	1.7	4296.1	0.6
	Ni	28	16643.0	0.7	7166.6	0.3	-32030π *	300#	4813.2	0.3	-6384.1	1.7	2686.4	1.7
	Cu	29	15080	160	596	15	*		11346	16	-4148	29	9663	15
	Zn	30	18890#	570#	1040#	430#	*		6730#	570#	-7260#	640#	9890#	400#
	Ga	31	*		-3890#	640#	*		13590#	640#	*		15530#	710#
57	Ca	20	1050#	570#	22090#	900#	45650#	400#	3130#	810#	2990#	720#	*	1.426"
	Sc	21	4210	1430	14390#	1360#	36490	1300	8070#	1340#	9030	1300	-10350#	1430#
	Ti	22	2670	280	16350	640	26270	260	6950	520	4840	370	-3110	260
	V	23	6330	190	12380	150	14930	80	7970	180	6070	120	-4880	280
	Cr Mn	24 25	5311.0 8646.0	1.2 1.5	13660 9490.2	180 1.6	3559.1 -10177.4	1.2 1.6	7330 8334.3	100 1.6	2233 4312.6	15 1.5	-1260 -1947	80 15
	Fe	26	7646.07	0.04	10559.27	0.21	-10177.4 $-27630#$	200#	8241.38	0.16	239.8	1.1	2399.3	0.3
	Co	27	11376.5	0.6	6027.5	0.21	-27030# -44340#	400#	8846.5	0.10	1773.0	0.5	1858.5	1.1
	Ni	28	10247.6	0.5	7332.4	0.6	*	.5011	8656.9	0.6	-3209.8	0.6	5817.1	0.6
	Cu	29	16737	15	690.3	0.4	*		8737.8	0.8	-3167	5	6347.5	0.5
	Zn	30	15230#	450#	1200#	200#	*		9800#	250#	-6280 #	450#	12380#	200#
	Ga	31	19690#	640#	-3090 #	570#	*		10270#	570#	-3870 #	570#	12050#	570#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

54 K 19 40100k 6000k * 0 -15170fk 850fk 28890k 660fk 324k 700e 5670 116310k 600fk Ca 20 70400 50 34840e 600e -14260k 500e 20460 100 -324k 700e 5670 110 Sc 21 9590 280 31330 270 -10590 270 10600 270 -28880 290 4870 290 T 22 12290 80 25930 80 -8460 80 11310 80 -2757 15 C 27 2058 16 18 7-8725 0.4 -6803 0.4 -17390 100 -103160 0.4 -180 19 16606 1.4 19 16606 1.4 1.4 19 16606 1.4 1.4 1.6 1.2 1.2 1.6 1.2 1.2 1.2 1.2 1.2 1	A	Elt.	Z	S(2	dn)	S(2	p)	$Q(\alpha$	(1)	$Q(2\beta$	-)	$Q(arepsilon_{ m l}$	p)	$Q(eta^-$	n)
The color of the	54						600#						700#		
Cr 24 14592 15 24030 80 -7771 21 5664 15 -18280 100 -2677 15															
Cr 24 17658.16 O.18 22043 77 -7928.0 O.4 -7680.3 O.4 -17390 100 -10316.0 O.4			22	12290	80	25930	80	-8460	80	11310	80	-23520	90	-1840	
Name															
Fe 26 24067 5 15413.2 0.4 -8417.3 0.5 -16976 5 -8256.5 0.4 -21666.4 1.7 Co 27 29792 8 11880.6 1.8 -7807.3 0.5 -26000 400# 400# 4380 5 -34080# 500# Cu 29 35270# 720# 1630# 400# -6210# 570# * 13950# 400# * * Tu 20 35270# 720# 1630# 400# -6210# 570# * 116070# 400# * * Tu 20 35270# 720# 1630# 400# -6210# 570# * * 13950# 400# * * Tu 20 35270# 720# 1630# 400# -64010# 570# * * 16070# 400# * * Tu 21 10980 70 100 2480 70 -7760 160 13440 160 -2380# 750# 7390 460 Tu 22 10980 100 26860 170 -7760 160 13440 160 -2380# 170 150 160 Tu 22 10980 100 26860 170 -7760 160 13440 160 -2380# 170 150 160 Tu 22 10980 100 24820 130 -7801.8 0.6 2371.6 0.4 -16780 80 -7623.4 1.0 Tu 23 13440 100 24820 130 -7801.8 0.6 2371.6 0.4 -16780 80 -7623.4 1.0 Tu 25 19164.9 0.4 20439 3 -7933.5 0.3 -5110.8 15 -9592.23 0.2 Fe 26 22676.4 1.6 16772.2 0.4 -8454.8 0.5 -12145.5 0.7 -7835.5 0.4 -1754.266 0.21 Tu 27 27513.1 1.7 1391.7 0.5 -8210.9 0.6 -2390 160 -5761.2 1.1 -2283 5.8 Tu 28 31848 25 8966.3 1.7 -7558 9 -30770# 400# 3629.7 0.6 -32000# 400# Tu 22 9840 150 28740 130 -7480 120 15900 120 -2820# 320# 1750 150 Tu 22 29840 150 28740 130 -7480 120 15900 120 -2820# 320# 1750 150 Tu 22 29840 150 28740 130 -7480 120 15900 120 -2820# 320# 1750 150 Tu 22 29840 150 28740 130 -7480 120 15900 120 -2820# 320# 1750 150 Tu 22 29840 150 28740 130 -7480 120 15900 120 -2820# 320# 1750 150 Tu 22 29840 150 28740 130 -7480 120 15900 120 -2820# 190# 880 180 T															
Co 27 29792 8 11880.6 1.8 -7807.3 0.5 -26600P 400P -608.8 0.5 -26450 25 Ni 28 33090P 400P 5256 7 -7227 10 -33010P 400P 4380 5 -34080P 500P Zn 30 ** -1480 20 -4580P 640P ** 13960P 400P 4.0* ** To 20 35270P 720P 1630P 400P -6210P 570P ** 16070P 400P 4.0* ** To 20 5110P 300P 39720P 760P -14090P 670P 23320P 3040 ** 17800P 770P 410P Sc 21 7400 460 32440 470 -10070 450 18990 460 -32450P 750P 7390 460 Ti 22 10980 190 2680 170 -1760 160 13440 160 -23800 170 150 160 V 23 13440 100 24820 130 -8340 100 8870 100 -22540 290 -280 100 Tr 24 15965.35 0.22 22680 100 -7801.8 0.6 2371.6 0.4 -16780 80 -7623.4 1.0 Fe 26 22676.4 1.6 16772.2 0.4 -8454.8 0.5 -21455.5 0.7 -7835.5 0.4 -7542.66 0.2 Ni 28 31848 25 8966.3 1.7 -7558 9 -30770P 400P 3629.7 0.6 -32000P 400P Cu 29 34510P 520P 3550 160 -6720 160 ** 17420P 400P ** 430P Cu 29 34510P 520P 3550 160 -6720 160 ** 17420P 400P ** 430P Cu 20 3480P 400P ** -15040P 720P 25420P 420P ** 1810P 860P Cu 20 3480P 400P ** -15040P 720P 25420P 420P ** 1810P 860P Cu 20 3330P 400P 510 120 180 2380P 180 180 2380P 180 180 Cu 23 3340P 400P ** -15040P 720P 25420P 420P ** 1810P 860P 180 Cu 23 3410P 500P 3440P 400P -5100P 500P 500P 5320P 350P 350P															
No. 128 33090 1400 1526 7 -7227 10 -33010 13960 14960 14960 14960 14960 14960 14960 14960 14960 1400 1															
Ca 29 35270# 720# 1630# 400# -6210# 570# * 13960# 400# * *															
Start Star											400#				300#
Ca					720#										
Sc	55							-16010#		30870#	830#	*		17800#	
Ti															
V 23 13440 100 24820 130 −8340 100 8570 100 −22540 290 −280 100 Cr 24 15965.35 0.22 22860 100 −7801.8 0.6 2371.6 0.4 −16780 80 −7623.4 1.0 Fe 26 22676.4 1.6 16772.2 0.4 −8454.8 0.5 −12145.5 0.7 −7835.5 0.4 −17542.66 0.21 Ni 28 31848 25 8966.3 1.7 −7558 9 −3070# 400# 3629.7 0.6 −32000# 400# Cu 29 34510# 520# 3550 160 −6720 160 * 9090 160 −3240# 400# Cu 29 34510# 500# 400# + * 17420# 400# * 18210# 80# Cu 20 4880# 400# * * * <td></td>															
Cr 24 15965.35 0.22 22860 100 −7801.8 0.6 2371.6 0.4 −16780 80 −7623.4 1.0 Fe 26 22676.4 1.6 16772.2 0.4 −8454.8 0.5 −12145.5 0.7 −7835.5 0.4 −17542.66 0.21 Co 27 27513.1 1.7 13917.7 0.5 −8210.9 0.6 −22390 160 −5761.2 1.1 −22823 5 Ni 28 31848 25 8966.3 1.7 −7558 9 −30770# 400# 3629.7 0.6 −32000# 400# Cu 29 34510# 1000# * * * * 32700# 640# * 900# * 18210# 80# 56 K 19 3210# 1000# * * * * 32700# 240# * * 1820# * * 1820# *															
Mn 25 191649 0.4 20439 3 -7933.5 0.5 -3682.5 0.3 -15108 15 -9529.23 0.25 Fe 26 22676.4 1.6 16772.2 0.4 -8454.8 0.5 -12145.5 0.7 -7835.5 0.4 -17542.66 0.21 Co 27 27513.1 1.7 13917.7 0.5 -8210.9 0.6 -22390 160 -5761.2 1.1 -22823 5 Ni 28 31848 25 8966.3 1.7 -7558 9 -30770# 400# 3629.7 0.6 -32000# 400# Cu 29 34510# 520# 3550 160 -6720 160 *															
Fe															
Co 27 27513.1 1.7 13917.7 0.5 -8210.9 0.6 -22390 160 -5761.2 1.1 -22823 5 Ni 28 31848 25 8966.3 1.7 -7558 9 -30770# 400# 3629.7 0.6 -32000# 400# Zn 30 * -480# 400# -5100# 640# * 17420# 400# * 56 K 19 3210# 1000# * * -15040# 720# 25420# 420# * 18210# 860# Ca 20 4880# 400# * -15040# 720# 25420# 420# * 18210# 860# Sc 21 7100 650 34430# 840# -10140 590 21300 610 -32850# 910# 8740 610 Ti 22 9840 150 28740 130 -7480 120 15060															
Ni															
Zn 30 * -480# 400# -5100# 640# * 17420# 400# * 56 K 19 3210# 1000# * * 32780# 990# * 18210# 860# Ca 20 4880# 400# * -15040# 720# 25420# 420# * 8190# 610# Sc 21 7100 650 34430# 840# -10140 590 21300 610 -32850# 910# 8740 610 V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-30770 #</td><td></td><td></td><td></td><td></td><td></td></td<>										-30770 #					
56 K 19 3210# 1000# * * 32780# 990# * 18210# 860# Ca 20 4880# 400# * -15040# 720# 25420# 420# * 8190# 610# Sc 21 7100 650 34430# 840# -10140 590 21300 610 -32850# 910# 8740 610 Ti 22 9840 150 28740 130 -7480 120 15960 120 -28260# 320# 1750 150 V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3		Cu		34510#	520#	3550	160	-6720	160	*		9090	160	-33440 #	430#
Ca 20 4880# 400# * -15040# 720# 25420# 420# * 8190# 610# Sc 21 7100 650 34430# 840# -10140 590 21300 610 -32850# 910# 8740 610 Ti 22 9840 150 28740 130 -7480 120 15960 120 -28260# 320# 1750 150 V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -5643.9 0.5 Mn 25 17496.52 0.2 28173.0 0.3		Zn	30	*		-480#	400#	-5100#	640#	*		17420#	400#	*	
Sc 21 7100 650 34430# 840# -10140 590 21300 610 -32850# 910# 8740 610 Ti 22 9840 150 28740 130 -7480 120 15960 120 -28260# 320# 1750 150 V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -7501.56 0.22 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3 -6699.5 0.3 -12786.3 0.4 -18775.9 0.7 Ni 28 30772	56								720#						
Ti 22 9840 150 28740 130 -7480 120 15960 120 -28260# 320# 1750 150 V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -7501.56 0.22 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3 -6699.5 0.3 -12786.3 0.4 -14648.5 0.3 Co 27 24173.1 0.5 15060.7 1.1 -7758.0 1.9 -17397 15 -5617.0 0.4 -18775.9 0.7 Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# 27 -3440# 640# -3400 -3300							840#						010#		
V 23 12400 180 26840 330 -8140 190 10760 180 -23280 490 880 180 Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -7501.56 0.22 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3 -6699.5 0.3 -12786.3 0.4 -14648.5 0.3 Co 27 24173.1 0.5 15060.7 1.1 -7758.0 1.9 -17397 15 -5617.0 0.4 -18775.9 0.7 Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 3338															
Cr 24 14492.9 0.6 24240 80 -8240 7 5322.1 0.5 -20910 160 -5643.9 0.5 Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -7501.56 0.22 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3 -6699.5 0.3 -12786.3 0.4 -14648.5 0.3 Co 27 24173.1 0.5 15060.7 1.1 -7758.0 1.9 -17397 15 -5617.0 0.4 -18775.9 0.7 Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# Zn 30 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>															
Mn 25 17496.5 1.1 21596 15 -7892.7 0.5 -871.1 0.4 -15060 100 -7501.56 0.22 Fe 26 20495.22 0.28 18250.3 0.3 -7612.8 0.3 -6699.5 0.3 -12786.3 0.4 -14648.5 0.3 Co 27 24173.1 0.5 15060.7 1.1 -7758.0 1.9 -17397 15 -5617.0 0.4 -18775.9 0.7 Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# Zn 30 35260# 570# 690# 400# -5490# 570# * 12660# 400# * 2990# 70# * 29960# 520#															
Co 27 24173.1 0.5 15060.7 1.1 -7758.0 1.9 -17397 15 -5617.0 0.4 -18775.9 0.7 Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# Zn 30 35260# 570# 690# 400# -5490# 570# * 12660# 400# * Ga 31 * -3440# 640# -3530# 780# * 20960# 520# * 57 Ca 20 4670# 500# * -16090# 810# 27040# 480# * 9910# 710# Sc 21 6980 1380 36280# 1480# -11130 1310 23420 131		Mn	25	17496.5	1.1	21596	15	-7892.7		-871.1	0.4	-15060	100	-7501.56	0.22
Ni 28 30772 5 12231.0 0.4 -8002 5 -28520# 400# -3715.2 0.4 -30340 160 Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# Zn 30 35260# 570# 690# 400# -5490# 570# * 12660# 400# * 20960# 520# * * * * * * * * * * * * * * * * * * *			26	20495.22	0.28		0.3		0.3		0.3		0.4	-14648.5	0.3
Cu 29 33380# 400# 5211 15 -6707 17 -35250# 500# 8098 15 -32140# 400# Zn 30 35260# 570# 690# 400# -5490# 570# * 12660# 400# * Ga 31 * -3440# 640# -3530# 780# * 20960# 520# * 57 Ca 20 4670# 500# * -16090# 810# 27040# 480# * 9910# 710# Sc 21 6980 1380 36280# 1480# -11130 1310 23420 1310 -36210# 1530# 10250 1310 Ti 22 8390 300 30140# 400# -6950 260 18610 260 -27310# 480# 4170 310 V 23 11410 120 28830 460 -7930 120 13070 80															
Zn 30 35260# 570# 690# 400# -5490# 570# * 12660# 400# * Ga 31 * -3440# 640# -3530# 780# * 12660# 400# * 57 Ca 20 4670# 500# * -16090# 810# 27040# 480# * 9910# 710# Sc 21 6980 1380 36280# 1480# -11130 1310 23420 1310 -36210# 1530# 10250 1310 Ti 22 8390 300 30140# 400# -6950 260 18610 260 -27310# 480# 4170 310 V 23 11410 120 28830 460 -7930 120 13070 80 -26850 590 2800 80 Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1															
Ga 31 * -3440# 640# -3530# 780# * 20960# 520# * 57 Ca 20 4670# 500# * -16090# 810# 27040# 480# * 9910# 710# Sc 21 6980 1380 36280# 1480# -11130 1310 23420 1310 -36210# 1530# 10250 1310 Ti 22 8390 300 30140# 400# -6950 260 18610 260 -27310# 480# 4170 310 V 23 11410 120 28830 460 -7930 120 13070 80 -26850 590 2800 80 Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1 -20490 120 -3684.5 1.1 Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#											500#				400#
Sc 21 6980 1380 36280# 1480# -11130 1310 23420 1310 -36210# 1530# 10250 1310 Ti 22 8390 300 30140# 400# -6950 260 18610 260 -27310# 480# 4170 310 V 23 11410 120 28830 460 -7930 120 13070 80 -26850 590 2800 80 Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1 -20490 120 -3684.5 1.1 Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3<					370#										
Ti 22 8390 300 30140# 400# -6950 260 18610 260 -27310# 480# 4170 310 V 23 11410 120 28830 460 -7930 120 13070 80 -26850 590 2800 80 Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1 -20490 120 -3684.5 1.1 Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#	57	Ca		4670#	500#	*		-16090#	810#	27040#	480#	*		9910#	710#
V 23 11410 120 28830 460 -7930 120 13070 80 -26850 590 2800 80 Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1 -20490 120 -3684.5 1.1 Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 <		Sc			1380				1310		1310				1310
Cr 24 13557.6 1.1 25430 160 -8120 100 7657.1 1.1 -20490 120 -3684.5 1.1 Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 </td <td></td>															
Mn 25 15916.5 1.5 22920 100 -8060 3 1859.3 1.6 -18620 180 -4950.5 1.5 Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
Fe 26 18843.17 0.23 19650.1 0.4 -7319.8 0.3 -4098.0 0.5 -12185.8 0.5 -12212.8 0.4 Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
Co 27 21458.3 0.5 16211.1 0.5 -7080.4 0.6 -12036.7 0.6 -9723.0 0.5 -13509.3 0.5 Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
Ni 28 26890.6 0.8 13180.5 0.5 -7561.2 1.7 -23530# 200# -2765.7 0.5 -25512 15 Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
Cu 29 31820 160 7856.9 0.5 -7074.4 1.7 -32300# 400# 1442.5 0.5 -29990# 400# Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
Zn 30 34120# 450# 1790# 200# -5340# 200# * 14070# 200# -37230# 540#															
			31							*					

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\overline{A}	Elt.	Z	S(1	n)	S(p)	$Q(4\beta)$		Q(d,	,α)	Q(p,	α)	Q(n, 0)	α)
58	Ca	20	3120#	640#	*		50070#	500#	870#	940#	2240#	860#	*	
	Sc	21	1950#	1360#	15290#	570#	40950#	400#	9730#	570#	8340#	500#	-9940#	810#
	Ti	22	5270#	330#	17400#	1320#	31050#	200#	4450#	620#	3910#	500#	-7110#	360#
	V	23	4060	120	13780	270	19450	90	9630	150	6130	180	-4600	460
	Cr	24	7538.4	1.8	14870	80	8236.9	1.5	4870	180	2020	100	-4680	160
	Mn	25	6413	3	10591.8	2.9	-4159.8	2.8	10168.2	2.8	4146.2	2.7	-1040	100
	Fe	26	10044.59	0.18	11957.8	1.5	-19860	50	5467.23	0.28	421.36	0.24	-1399.0	0.4
	Co	27	8572.9	1.2	6954.3	1.1	-36310#	300#	11470.7	1.1	2498.2	1.1	3511.7	1.1
	Ni	28	12216.2	0.5	8172.2	0.4	-53150#	500#	6522.5	0.4	-1334.8	0.4	2899.0	0.3
	Cu	29	12430.2	0.6	2872.9	0.7	*		12950.6	0.6	-1467.8	0.8	8008.6	0.6
	Zn	30	17820#	210#	2280	50	*		7060	50	-5800	160	8680	50
	Ga	31	16600#	500#	-1720 #	360#	*		12560#	500#	-4110#	500#	13740#	340#
	Ge	32	*		-640#	640#	*		7020#	710#	*		13140#	640#
59	Sc	21	3500#	570#	15670#	640#	45220#	400#	7280#	570#	8460#	570#	-12580#	900#
	Ti	22	2470#	280#	17920#	450#	35160#	200#	6200#	1320#	4210#	620#	-5970#	450#
	V	23	5500	180	14010#	260#	24400	160	6790	300	6350	200	-7330	610
	Cr	24	4170	220	14970	230	13070	220	7040	230	2930	280	-3120	250
	Mn	25	7769	4	10822.5	2.8	833.0	2.4	7710.2	2.6	4623.7	2.4	-3720	180
	Fe	26	6581.01	0.11	12126.2	2.7	-13449.3	0.7	7532.3	1.5	1110.79	0.29	266.6	0.6
	Co	27	10453.9	1.1	7363.6	0.4	-28470 #	170#	8662.9	0.3	3241.4	0.3	328.2	0.4
	Ni	28	8999.28	0.05	8598.5	1.1	-45290#	400#	8899.7	0.4	-252.2	0.4	5096.78	0.26
	Cu	29	12761.9	0.6	3418.6	0.4	*		10436.3	0.6	2413.3	0.5	5328.5	0.6
	Zn	30	12990	50	2836.8	0.7	*		10804.1	0.8	-3708	15	12338.4	0.8
	Ga	31	18290#	350#	-1250 #	180#	*		9500#	260#	-3510#	430#	10530#	170#
	Ge	32	16860#	640#	-380#	500#	*		9850#	570#	-7620#	640#	15170#	570#
60	Sc	21	1820#	640#	*		48920#	500#	8580#	710#	7690#	640#	*	
	Ti	22	4890#	360#	19320#	500#	39080#	300#	3260#	500#	3530#	1340#	-9810#	500#
	V	23	3480	270	15020#	300#	28410	220	8580#	300#	5540	340	-6600	1320
	Cr	24	6660	290	16130	250	17800	190	4440	210	2610	210	-7110	320
	Mn	25	5514	3	12170	220	5377.2	2.8	9734.7	2.8	4420.8	2.6	-2910	80
	Fe	26	8820	3	13177	4	-7239	3	5125	4	937	4	-3242	4
	Co	27	7491.92	0.07	8274.5	0.4	-22060 #	200#	11215.6	0.4	3395.6	0.3	1482.3	1.6
	Ni	28	11387.73	0.05	9532.38	0.20	-37380 #	300#	6084.8	1.1	-263.5	0.4	1355.12	0.26
	Cu	29	10058.1	1.6	4477.4	1.6	-52880 #	400#	12594.4	1.6	2602.8	1.7	6646.8	1.6
	Zn	30	15030.1	0.7	5105.0	0.4	*		8204.2	0.6	-2001.4	0.6	7555.9	0.6
	Ga	31	13900#	260#	-340#	200#	*		13420#	210#	-2180 #	280#	13370#	200#
	Ge	32	19290#	500#	620#	350#	*		7160#	420#	-7220 #	500#	11110#	360#
	As	33	*		-3110#	570#	*		12320#	640#	*		15190#	570#
61	Sc	21	3090#	780#	*		52670#	600#	*		7710#	780#	*	
	Ti	22	2090#	500#	19590#	640#	42570#	400#	4660#	570#	3390#	570#	-8780#	640#
	V	23	5340	920	15470#	940#	32390	890	5710#	920#	5470#	920#	-9980#	980#
	Cr	24	3880	220	16520	240	21750	100	6070	190	2790	140	-5720#	220#
	Mn	25	6846	3	12360	190	10241.9	2.5	7050	220	5113.7	2.8	-5690	90
	Fe	26	5579	4	13242	3	-2572	16	7316	3	1771	4	-1282	3
	Co	27	9319.1	0.8	8774	3	-15760	40	8477.5	0.8	4121.1	0.8	-1424.1	2.8
	Ni	28	7820.10	0.05	9860.57	0.22	-30860 #	300#	8718.61	0.21	489.3	1.1	3579.6	0.3
	Cu	29	11710.2	1.8	4799.9	1.0	-45080 #	300#	9883.5	1.0	3108.7	1.0	3509.5	1.5
	Zn	30	10246	16	5293	16	*		10720	16	183	16	9526	16
	Ga	31	15620#	200#	250	40	*		10790	40	30	60	10180	40
	Ge	32	14340#	420#	1060#	360#	*		11110#	350#	-4960#	420#	14590#	300#
	As	33	19500#	500#	-2900#	420#	*		9680#	500#	-4960#	580#	12290#	420#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

Section Color Co	A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta$	-)	Q(arepsilon)	p)	$Q(eta^-$	n)
The color The	58						000"		70 ^"						
V													450"		
C															
March Marc															
Fig. 26 17690.66 0.18 21448.1 0.6 -7645.3 0.4 -1926.4 0.3 -16919.4 1.1 -10880.9 0.5 No. 28 22463.8 0.3 14199.60 0.25 -6399.2 0.4 -17930 50 -7335.88 0.25 -20991.2 0.4 No. 29167 15 10205.3 0.6 -6082.7 0.6 -281309 300# 3838.9 0.6 -27919.2 0.4 No. 29167 15 10205.3 0.6 -6082.7 0.6 -281309 300# 3838.9 0.6 -27919.2 0.4 No. 29167 15 10205.3 0.6 -63692.7 0.6 -281309 300# 3838.9 0.6 -27919.2 0.4 No. 29167 15 10205.3 0.6 -5450 50 -352208 500# 6500 500# 300# 38309 0.6 -27356# 400# No. 28 28 28 -3730# 640# -3230# 640# * 18180# 540# * * No. 29 27 740# 330# 33210# 450# -9580# 360# 22750# 300# -33080# 300# 6500# 500# 6500 200# No. 29 1780 180 31410 1310 -1100 480 17690 100 -30250# 430# 6509# 160 200#															
C															
No. 1															
Car Car															
Table Tabl															
Fig.															
Sec. 21 S450# 1360# 320											200				100
Ti 22 7740# 330# 33210# 450# -9580# 360# 22580# 300# -30850# 540# 6820# 220# V 23 9560 180 31410 310 -10100 480 17690 160 220 -24270# 300# -3330 220 220 14181.7 2.8 25690 80 -8810 100 6704.4 2.4 -22410 90 -1441.5 2.4 E 6 6625.6 6625.6 0.21 22718.0 1.1 -7980.0 0.4 491.9 0.3 -15962.0 1.5 -8889.0 1.1 C 0 7 19026.8 0.4 19321.4 1.6 -6942.2 0.3 -5871.4 0.4 -13691.1 2.7 -10072.28 0.20 0.2 22151.5 0.5 15552.8 0.26 -61003.0 0.3 -13941.2 0.7 -6290.6 0.3 -17560.3 0.4 0.4 0.5															
V 23 9560 180 31410 1310 -10100 480 17690 160 -30250# 430# 6090 160 Cr 24 11700 220 28750 340 -8840 270 12580 220 -24270# 300# -330 220 241817 28 25690 80 -8810 100 6704.4 2.4 -22410 90 -1441.5 2.4 2.4 18170 2.5 14181.7 2.8 25690 80 -8810 100 6704.4 2.4 -22410 90 -1441.5 2.4 18170 2.5 15550 2.2 1.5 -8889.0 1.1 2.7 2.0 2.7 2.0	59														
Cr															
Min 25															
Fe 26 16625 60 0.21 22718.0 1.1 -7980.0 0.4 491.9 0.3 -15962.0 1.5 -8889.0 1.1															
Co 27 19026.8 0.4 19321.4 1.6 -6942.2 0.3 -5871.4 0.4 -13691.1 2.7 -10072.28 0.20 Ni 28 21215.5 0.5 15552.81 0.26 -6100.3 0.3 -13941.2 0.7 -6290.6 0.3 -17560.3 0.4 Cu 29 25192.1 0.6 11590.7 0.6 -4753.4 0.5 -22600H 170H -3800.1 1.2 -22130 50 Zn 30 30810H 200H 5709.7 0.8 -4304.6 1.0 -31350H 400H 5724.2 0.7 -31750H 300H Ga 31 34890H 430H 1030H 170H -4550H 230H * 10620H 170H -34750H 530H Ge 32 ** -2100H 450H -3720H 570H * 19140H 400H * * Fo 26 21 5320H 640H * -14400H 940H 29190H 550H * 19140H 400H * * Fo 26 15401 3 34990H 460H -10810 630 19730 220 -30230H 460H 6770 310 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3060H 3400H 780 190 Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760H 200H -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090H 300H -306.6 0.4 -28490H 170H Ga 31 32190H 360H 580H -630H 500H -3410H 450H 9480H 200H -31790H 450H V 22 38200 1.6 13075.9 1.9 -4729.6 1.6 -18760H 200H -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090H 300H -306.6 0.4 -28490H 170H Ga 31 32190H 360H 580H -630H 300H -3410H 450H 940H 8 8820H 460H 400H 8 8820															
Ni 28 21215.5 0.5 15552.81 0.26 -6100.3 0.3 -13960.6 170# -3800.1 1.2 -22130 50															
Cu 29 25192.1 0.6 11590.7 0.6 -4753.4 0.5 -22600# 170# -3800.1 1.2 -22130 50 Ga 31 34890# 430# 1030# 170# -4550# 230# * 10620# 170# -34750# 530# 60 Sc 21 5320# 640# * -14400# 940# 29190# 550# * 13390# 540# 71 22 7360# 360# 34990# 580# -10860# 500# 224340# 360# 7400# 340# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 660# 6770 310 Cr 24 10820 190 30140# 280# -9770 230 14740 190 -22450# 780 190 Mm 25 13283 4 27140 90 -9240															
Zn 30 30810# 200# 5709.7 0.8 -4304.6 1.0 -31350# 400# 5722.2 0.7 -31750# 300# Ge 32 * -2100# 4550# 230# * 10620# 170# -34750# 530# 60 Sc 21 5320# 640# * -14400# 940# 29190# 550# * 13390# 540# Ti 22 7360# 360# 34990# 580# -10860# 500# 24340# 360# * 7430# 340# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310 Cr 24 10820 190 30140# 280# -9770 230 14740 190 -28450# 780 190 Mn 25 13283 4 27140 90 -9240 180 8682.4 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Ga 31 34890# 430# 1030# 170# -4550# 230# * 10620# 170# -34750# 530# Ge 32 * * -2100# 450# -3720# 570# * 10620# 170# -34750# 530# 60 Sc 21 5320# 640# * -10860# 500# 29190# 550# * 13390# 540# Ti 22 7360# 360# 3490# 580# -10860# 500# 24340# 360# * 7430# 340# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310 Cr 24 10820 190 30140# 280# -9770 230 14740 190 -28450# 280# 780 190 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Nii 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -111097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27990# 300# -3404.4 1.6 -19200.9 1.7 Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4130# 500# * 12840# 300# * -3490# 450# -630# 300# -4130# 500# * 12840# 300# * -61 Sc 21 4910# 720# * * 3490# 500# -4510# 640# * 21000 -27430# 1030# 8809 910 Cr 24 10330 240 31540# 220# -11940 1580 21240 890 -33740# 1030# 8809 910 Cr 24 10330 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 330# 3350 # 0.2810# 200# Ga 31 32950# 180# 5350 40 -22550 40 -30240# 300# 385 16 -24830# 200# Ga 32 33630# 500# 720# 300# -3250# 360# * 13550# 300# 300# 300# 300# 300# Ga 32 33630# 500# 720# 300# -3250# 360# * 13550# 300# 300# 300# 300# 300# 300#															
Ge 32 * -2100# 450# -3720# 570# * 19140# 400# * 60 Sc 21 5320# 640# * -14400# 940# 29190# 550# * 13390# 540# Ti 22 7360# 360# 34990# 580# -10860# 500# 24340# 360# * 7430# 3490# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -27255 3 Ko 27 17945.8 1.1 20400.7 2.7 736.2 1.6 13075.9											400#				
60 Sc 21 5320# 640# * -14400# 940# 29190# 550# * 13390# 540# Ti 22 7360# 360# 34990# 580# -10860# 500# 24340# 360# * 7430# 340# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310 Cr 24 10820 190 30140# 280# -9770 230 14740 190 -28450# 280# 780 190 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 27					430#										330#
Ti 22 7360# 360# 34990# 580# -10860# 500# 24340# 360# * 7430# 340# V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310		GC	32	Ψ.		-2100#	450#	-3720m	370#	4		17140#	4 00#	Ψ.	
V 23 8980 240 32940# 460# -10810 630 19730 220 -30230# 460# 6770 310 Cr 24 10820 190 30140# 280# -9770 230 14740 190 -28450# 280# 780 190 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Ni 28 2320.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 <t< td=""><td>60</td><td>Sc</td><td>21</td><td>5320#</td><td>640#</td><td>*</td><td></td><td>-14400 #</td><td>940#</td><td>29190#</td><td>550#</td><td>*</td><td></td><td>13390#</td><td></td></t<>	60	Sc	21	5320#	640#	*		-14400 #	940#	29190#	550#	*		13390#	
Cr 24 10820 190 30140# 280# -9770 230 14740 190 -28450# 280# 780 190 Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 As 33 3219			22				580#								
Mn 25 13283 4 27140 90 -9240 180 8682.4 2.4 -22420 160 -374.4 2.4 Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27990# 300# -306.6 0.4 -28490# 170# Ga 31 <t< td=""><td></td><td></td><td>23</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>460#</td><td></td><td></td></t<>			23										460#		
Fe 26 15401 3 23999 4 -8553 3 3060 3 -20620 220 -7255 3 Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -1920.0 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090# 300# -306.6 0.4 -28490# 170# Ga 31 32190# 360# 2500# 200# -3370# 200# -3410# 450# 9480# 200# -31790# 450# Ga 32															
Co 27 17945.8 1.1 20400.7 2.7 -7163.7 0.4 -3305.2 1.6 -13414.0 2.4 -8564.92 0.21 Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090# 300# -306.6 0.4 -28490# 170# Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4510# 60# * 12840# 300# -31790# 450# * 1590# 450#															
Ni 28 20387.01 0.07 16895.9 0.3 -6290.95 0.26 -10298.8 0.4 -11097.3 0.3 -16186.1 0.4 Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090# 300# -366.6 0.4 -28490# 170# Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4510# 640# * 12840# 300# * * As 33 * -3490# 500# * * 11900# * * 11900# * * 15190# * * 15190# * *															
Cu 29 22820.0 1.6 13075.9 1.9 -4729.6 1.6 -18760# 200# -3404.4 1.6 -19200.9 1.7 Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090# 300# -306.6 0.4 -28490# 170# Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4130# 500# * 12840# 300# -31790# 450# As 33 * -630# 300# -4510# 640# * 21000# 430# * * 61 Sc 21 4910# 720# * * 31440# 1080# * 15190# 670# Ti 22 6980# 450# * -11900# 570# 26130#															
Zn 30 28020 50 8523.5 0.4 -2691.7 0.5 -27090# 300# -306.6 0.4 -28490# 170# Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4130# 500# * 12840# 300# * * 450# As 33 * -3490# 500# -4510# 640# * 21000# 430# * 61 Sc 21 4910# 720# * * 31440# 1080# * 15190# 670# Ti 22 6980# 450# * -11900# 570# 26130# 410# * 8820# 460# V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# </td <td></td>															
Ga 31 32190# 360# 2500# 200# -3370# 200# -34120# 450# 9480# 200# -31790# 450# Ge 32 36150# 580# -630# 300# -4130# 500# * 12840# 300# * As 33 * -3490# 500# -4510# 640# * 21000# 430# * 61 Sc 21 4910# 720# * * * 31440# 1080# * 15190# 670# Ti 22 6980# 450# * -11900# 570# 26130# 410# * 8820# 460# V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#															
Ge 32 36150# As 580# -630# 500# 500# 500# -4510# 640# * 12840# 21000# 430# * 300# * * 61 Sc 21 4910# 720# * * * 31440# 1080# * * 15190# 670# * 71 22 6980# 450# * * -11900# 570# 26130# 410# * * 8820# 460# 460# * 80 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 910 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 8090 910 910 910 411550 220# -10980 280 16450 100 -27430# 320# 2420 100 910 411550 25 910 4100 4 4100 4 910 910 4100 4 910															
As 33 * -3490# 500# -4510# 640# * 21000# 430# * 61 Sc 21 4910# 720# * * * 31440# 1080# * 15190# 670# Ti 22 6980# 450# * -11900# 570# 26130# 410# * 8820# 460# V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#											430#				450#
Ti 22 6980# 450# * -11900# 570# 26130# 410# * 8820# 460# V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#					380#										
Ti 22 6980# 450# * -11900# 570# 26130# 410# * 8820# 460# V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#	61	Sc	21	4910#	720#	*		*		31440#	1080#	*		15190#	670#
V 23 8820 910 34780# 980# -11940 1580 21240 890 -33740# 1030# 8090 910 Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4				6980#		*		-11900 #	570#	26130#		*		8820#	
Cr 24 10530 240 31540# 220# -10980 280 16450 100 -27430# 320# 2420 100 Mn 25 12359 3 28490 160 -9750 80 11155.9 2.5 -25790 220 1600 4 Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 2						34780#	980#					-33740 #	1030#		
Fe 26 14398.3 2.6 25410 220 -8820.7 2.8 5301.4 2.6 -19540 190 -5341.5 2.6 Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 30			24	10530	240	31540#	220#	-10980	280	16450	100	-27430 #	320#	2420	100
Co 27 16811.0 0.8 21950.7 2.5 -7836.7 1.7 -914.0 1.2 -17219.1 2.5 -6496.3 0.8 Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#		Mn	25	12359	3	28490	160	-9750	80		2.5	-25790	220	1600	4
Ni 28 19207.83 0.07 18135.0 0.3 -6464.98 0.26 -7873 16 -10098 3 -13948.1 1.6 Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#		Fe	26		2.6		220	-8820.7	2.8		2.6		190		2.6
Cu 29 21768.4 1.0 14332.3 1.0 -5063.4 1.0 -14850 40 -7622.7 1.0 -15881.0 1.1 Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#															
Zn 30 25276 16 9770 16 -2690 16 -22990# 300# 835 16 -24830# 200# Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#		Ni						-6464.98							
Ga 31 29520# 180# 5350 40 -2250 40 -30240# 300# 3920 40 -28120# 300# Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#															
Ge 32 33630# 500# 720# 300# -3230# 360# * 13530# 300# -35960# 500#															
											300#				
As 33 * -2280# 350# -4320# 500# * 15400# 360# *					500#										500#
		As	33	*		-2280#	350#	-4320#	500#	*		15400#	360#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n, 0)	α)
62	Ti	22	4220#	570#	20720#	720#	46380#	400#	2260#	640#	2670#	570#	*	
	V	23	3040#	940#	16420#	500#	35950#	300#	7560#	420#	4900#	360#	-9530#	500#
	Cr	24	6490	180	17680	910	25850	150	3060	270	1800	220	-9740#	250#
	Mn	25	4853	7	13340	100	14263	7	8860	190	4430	220	-5050	160
	Fe	26	8029	4	14425	4	2289.9	2.9	4801	4	1511	4	-5150	220
	Co	27	6598	19	9793	19	-9437	19	10700	19	4105	19	-253	19
	Ni	28	10595.7	0.3	11137.2	0.7	-25010#	140#	5614.8	0.4	347.4	0.4	-435.1	0.4
	Cu	29	8874.7	1.1	5854.5	0.6	-38470 #	300#	12396.5	0.6	3233.3	0.6	5088.7	0.6
	Zn	30	12890	16	6472.9	1.1	*		7888.0	1.7	54.4	0.7	5635.1	0.5
	Ga	31	12920	40	2927	16	*		12898.2	0.7	92.7 -3120#	0.9	10017.8	0.7
	Ge As	32 33	16450# 15490#	330# 420#	1900# -1750#	150# 420#	*		8560# 13480#	240# 420#	-3120# -3590#	220# 500#	11120# 15090#	140# 350#
63	Ti	22	1320#	640#	*		49890#	500#	4030#	780#	3170#	710#	*	
	V	23	4490#	500#	16680#	570#	39960#	400#	5170#	570#	5300#	500#	-12190 #	640#
	Cr	24	3180	390	17820#	470#	29510	360	5210	960	2100	420	-8030 #	470#
	Mn	25	6434	8	13280	150	18693	4	6300	100	4650	190	-8000	220
	Fe	26	4829	5	14401	8	6578	5	6817	5	2196	5	-3320	190
	Co	27	8498	26	10262	19	-5304	19	7780	19	4426	19	-3237	19
	Ni	28	6837.77	0.06	11377	19	-18590	40	8096.1	0.7	1001.6	0.4	1547	3
	Cu	29	10863.6	0.5	6122.40	0.06	-32080 #	200#	9353.0	0.3	3757.4	0.3	1717.0	0.4
	Zn	30	9116.7	1.6	6714.9	1.6	*		10481.5	1.6	995.8	2.2	7906.1	1.6
	Ga	31	12631.5	1.5	2668.1	1.4	*		10513	16	2491.3	1.4	7444.4	2.1
	Ge As	32 33	13250# 17250#	150# 360#	2220 950#	40 240#	*		10920 10570#	50 360#	-2470# -1550#	200# 360#	12900 11740#	40 280#
	As	33	17230#	300#	-930#	240#	*		10370#	360#	-1330#	300#	11/40#	200#
64	Ti	22	3350#	780#	*		53950#	600#	*		2910#	850#	*	
	V	23	2500#	570#	17860#	640#	43470#	400#	6890#	570#	4890#	570#	-11610 #	720#
	Cr	24	5540	570	18880#	590#	33620	440	2710#	530#	1890	1000	-11480 #	590#
	Mn	25	4173	5	14270	360	22436	4	8620	150	4350	100	-6840	890
	Fe	26	7405	7	15371	6	11034	5	4265	8	1637	6	-6850	100
	Co	27	6012	27	11446	20	-960	20	9797	20	3992	20	-2404	20
	Ni	28	9657.46	0.20	12536	19	-12783	4	5036	19	663.2	0.7	-2532.0	2.7
	Cu	29	7916.11	0.10	7200.74	0.10	-25890#	200#	12032.58	0.11	3661.4	0.3	3119.9	0.7
	Zn	30	11861.9	1.5	7713.2	0.6	-39300#	500#	7494.2	0.8	844.1	0.7	3864.3	0.7
	Ga	31	10357.0	1.9	3908.4	2.1 4	*		13046.0 8382	1.5 4	2380 -2320	16	8797.6	1.6
	Ge As	32 33	15470 14100#	40 290#	5057 -100#	200#	*		8382 12920#	250#	-2320 -1310#	40 360#	7680 13250#	16 210#
	Se	34	*	290π	490#	540#	*		8330#	590#	-4940#	590#	12310#	590#
65	V	23	3530#	640#	18040#	780#	47410#	500#	4680#	710#	5580#	640#	*	
	Cr	24	2810#	530#	19190#	500#	36910#	300#	4380#	500#	2120#	420#	-10070 #	500#
	Mn	25	6050	5	14780	440	26296	4	5750	360	4790	150	-9850#	300#
	Fe	26	4320	7	15518	6	14694	5	6380	6	2170	8	-4680	150
	Co	27	7464	20	11505	5	3472.3	2.2	7161	5	4557	3	-5015	7
	Ni	28	6098.08	0.14	12622	20	-8647.5	2.2	7437	19	1163	19	-601.2	2.8
	Cu	29	9910.4	0.7	7453.7	0.7	-20330	80	8959.9	0.7	4346.7	0.7	-193	19
	Zn	30	7979.32	0.17	7776.4	0.7	-32890 #	300#	10378.5	0.7	1739.5	0.8	6480.7	0.7
	Ga	31	11896.0	1.6	3942.5	0.6	*		10266.7	1.6	3374.5	0.9	5776.3	1.0
	Ge	32	10234	4	4934.4	2.6	*		10779.7	2.5	372.7	2.3	10336.2	2.3
	As	33	15480#	220#	-90 700#	80	*		10690	90	-330# 2840#	160#	10700	80
	Se	34	14390#	590#	780#	360#	*		11190#	360#	-3840#	420#	14370#	330#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon_{\Gamma}$))	$Q(eta^-$	n)
62	Ti	22	6310#	500#	*		-13010#	640#	28400#	430#	*		9940#	980#
	V	23	8380#	370#	36000#	580#	-13030 #	500#	23050#	300#	-33700 #	670#	8930#	320#
	Cr	24	10370	240	33140#	340#	-12210 #	250#	17980	150	-31830 #	430#	2780	150
	Mn	25	11699	7	29860	220	-10550	90	12900	20	-25310	890	2325	7
	Fe	26	13608	4	26790	190	-9311	3	7868.3	2.8	-23690	100	-4051.3	2.9
	Co	27	15917	19	23034	19	-8022	19	1363	19	-16971	19	-5274	19 1.0
	Ni Cu	28 29	18415.8 20584.9	0.3 1.7	19911 15715.1	3 0.6	-7016.1 -5365.2	0.4 1.2	-5578.4 -10800.5	0.4 0.7	-15114.8 -7178.3	2.6 0.9	-12833.6 -14510	1.0
	Zn	30	23136.3	0.7	11272.8	0.5	-3363.2 -3364.1	0.5	-10800.5 -19430#	140#	-4235.0	0.5	-14310 -22100	40
	Ga	31	28540#	200#	8219.7	1.7	-2744.1	0.7	-27670#	300#	2708.2	1.1	-26700#	300#
	Ge	32	30790#	330#	2140#	140#	-1870#	150#	*	20011	7320#	140#	-32910#	330#
	As	33	34990#	500#	-690#	360#	-3210#	420#	*		15530#	300#	*	220
63	Ti	22	5540#	640#	*		*		30260#	620#	*		11660#	580#
	V	23	7530#	980#	37400#	720#	-14010 #	570#	25000#	400#	*		10930#	430#
	Cr	24	9670	370	34240#	540#	-12920#	410#	19630	360	-30800#	540#	4450	360
	Mn	25	11288	4	30960	890	-11480	160	14964	19	-28700#	300#	3920	5
	Fe	26	12858	5	27740	100	-9970	220	9877	4	-22030	150	-2283 -3176	19 19
	Co Ni	27 28	15096 17433.5	19 0.3	24687 21170.2	19 2.6	-8751 -7272.9	19 0.4	3728 -3299.4	19 1.5	-20616 -13923.7	20 2.8	-3176 -10796.7	0.5
	Cu	29	19738.3	1.0	17259.6	0.7	-7272.9 -5775.0	0.4	-3299.4 -9032.7	1.3	-13923.7 -11444	2.8 19	-10790.7 -12483.1	0.3
	Zn	30	22007	16	12569.4	1.6	-3481.6	1.6	-15290	40	-2756.0	1.5	-18297.8	1.6
	Ga	31	25560	40	9141.0	1.6	-2613.7	1.4	-23050#	200#	-1048.6	1.5	-22880#	140#
	Ge	32	29700#	300#	5150	40	-2130	40	*		6960	40	-30670#	300#
	As	33	32740#	360#	940#	200#	-2170#	260#	*		11200#	200#	*	
64	Ti	22	4670#	720#	*		*		32460#	740#	*		12790#	720#
	V	23	6990#	500#	*	~ 00.0	-14690#	640#	26670#	400#	*	<=0.!!	11620#	540#
	Cr	24	8730	460	35560#	590#	-13580#	530#	21490	440	-35020# 28200#	670#	5340	440
	Mn Fe	25 26	10608 12234	7 6	32090# 28650	300#	-12170 -10720	220 190	16803 12129	20 5	-28390# -26250	400#	4575 -1189	6 19
	Co	27	14511	27	25846	150 21	-10720 -9249	20	5632	20	-20230 -20194	360 20	-2351	20
	Ni	28	16495.23	0.21	22798.8	2.8	-8111	3	-1094.9	0.7	-18752	4	-9590.49	0.20
	Cu	29	18779.8	0.5	18578	19	-6199.2	0.4	-6591.7	1.5	-10862	19	-11282.5	1.5
	Zn	30	20978.7	0.8	13835.6	0.6	-3955.8	0.7	-11689	4	-7780.2	0.6	-17528.2	1.5
	Ga	31	22988.5	1.5	10623.3	1.5	-2912.6	2.1	-19300 #	200#	-542.0	1.5	-19980	40
	Ge	32	28720#	140#	7725	4	-2566	4	-27620 #	500#	609	4	-28890 #	200#
	As Se	33 34	31360# *	360#	2120# -460#	200# 520#	-2370# -2040#	290# 590#	*		9730# 12930#	200# 500#	*	
<i>(5</i>				640"		32011				500"		50011		670"
65	V	23	6030# 8360#	640#	* 27050#	200#	-15140#	780#	29190#	500#	* -34480#	670#	13630#	670#
	Cr Mn	24 25	8360# 10223	470# 5	37050# 33660#	580# 400#	-14300# -12890	500# 890	23000# 18218	300# 4	-34480# -31940#	670# 400#	6700# 5931	300# 6
	Fe	25 26	10223	3 7	33000# 29790	400# 360	-12890 -11170	100	13908	5	-31940# -25030	400# 440	503	21
	Co	27	13476	19	26876	4	-9868	3	8078.5	2.2	-23485	440	-157.6	2.1
	Ni	28	15755.54	0.25	24068	4	-8630.1	2.7	786.3	0.7	-17445	5	-7772.46	0.26
	Cu	29	17826.5	0.7	19990	19	-6790.5	1.0	-4606.2	0.7	-14760	20	-9331.0	0.4
	Zn	30	19841.3	1.5	14977.2	0.7	-4115.0	0.7	-9433.8	2.3	-6102.1	0.7	-15150.5	1.5
	Ga	31	22253.0	1.5	11655.7	0.8	-3098.4	1.0	-15720	80	-4521.9	0.8	-16413	4
	Ge	32	25700	40	8842.8	2.7	-2554	16	-23460 #	300#	2236.8	2.3	-25020 #	200#
	As	33	29580#	220#	4970	80	-2230	90	*		4610	80	-28310 #	510#
	Se	34	*		680#	300#	-2090#	420#	*		14010#	300#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	.)	S(p	<u> </u>	$Q(4\beta)$	-)	Q(d,	(v)	Q(p, q)	w)	Q(n,c	v)
л	EII.		5(1		5(р) 	Ω(4ρ		Q(u,	<u></u>	Ω (β,		Q(II,C	
66	V	23	1900#	710#	*		50800#	500#	6130#	780#	5000#	710#	*	
	Cr	24	4570#	500#	20230#	640#	41290#	400#	2310#	570#	2030#	570#	-13320 #	640#
	Mn	25	3854	12	15820#	300#	29508	11	7440	440	4120	360	-9210#	400#
	Fe	26	6921	7	16389	6	18831	4	3632	5	1683	6	-8410	360
	Co	27	5295	14	12480	15	7315	14	9272	15	4091	15	-3875	14
	Ni	28	8951.9	1.5	14110.1	2.5	-4399.3	2.8	4497	20	709	19	-4724	5
	Cu	29	7065.93	0.09	8421.6	0.7	-14233	6	11551.5	0.7	4118.6	0.7	1240	19
	Zn	30	11058.5	0.9	8924.5	0.9	-27240#	200#	7236.2	0.7	1544.6	0.7	2260.0	0.7
	Ga	31	9137.5	1.3	5100.6	1.2	*	20011	12991.2	1.2	3353.8	1.9	7502.5	1.1
	Ge	32	13200	3	6238.5	2.5	*		7936.6	2.8	-195.9	2.7	6252.8	2.9
	As	33	13160	80	2836	6	*		13001	7	-240	40	10168	6
	Se	34	16710#	360#	2010#	220#			8580#	290#	-240 -3300#	280#	10108	200#
	se	34	10/10#	300#	2010#	220#	*		8380#	290#	-3300#	280#	10910#	200#
67	V	23	3110#	780#	*		54670#	600#	*		5240#	850#	*	
	Cr	24	2030#	570#	20360#	640#	45060#	400#	3810#	640#	2500#	570#	-12010 #	720#
	Mn	25	4780#	300#	16030#	500#	33860#	300#	5470#	420#	4880#	530#	-11490 #	500#
	Fe	26	3610	270	16150	270	22270	270	6070	270	2240	270	-6480	520
	Co	27	6985	15	12543	8	11557	7	6607	8	4512	8	-6686	7
	Ni	28	5808	3	14623	14	-1084	5	6153	4	914	20	-3127	6
	Cu	29	9132.6	1.1	8602.2	1.7	-10732.3	1.0	8517.0	0.9	4643.5	0.9	-1881	20
	Zn	30	7052.47	0.23	8911.0	0.9	-21300	70	10094.2	0.9	2408.3	0.7	4865.0	0.7
	Ga	31	11226.7	1.4	5268.9	1.1	-34090 #	400#	9743.8	1.3	3989.0	1.3	4191.9	1.2
	Ge	32	9123	5	6224	5	*		10710	5	1039	5	8992	5
	As	33	12633	6	2269.2	2.4	*		10601.8	2.2	2592	4	7892.0	1.5
	Se	34	12990#	210#	1840	70	*		11070	110	-2180 #	210#	13380	70
	Br	35	*		-1580 #	450#	*		10940#	500#	-1230 #	640#	12390#	450#
68	Cr	24	4190#	640#	21440#	780#	48660#	500#	1520#	710#	1840#	710#	*	
	Mn	25	2990#	500#	16990#	570#	37190#	400#	7050#	570#	4700#	500#	-10950#	640#
	Fe	26	5950	450	17320#	470#	26520	370	3970	370	2340	370	-9620#	470#
	Co	27	4680	190	13610	330	15160	190	8850	190	4150	190	-5320	190
	Ni	28	7792	4	15431	7	3515	4	3656	14	585	4	-6600	6
	Cu	29	6318.8	1.8	9113	3	-6672.5	2.4	11150.1	2.1	4422.7	1.7	−735.4	2.6
	Zn	30	10198.10	0.19	9976.6	0.9	-15817.7	0.9	6962.0	1.0	2120.6	1.0	765.0	0.8
	Ga	31	8278.3	1.7	6494.6	1.2	-28300#	260#	12524.0	1.2	3690.1	1.5	5824.1	1.5
	Ge	32	12392	5	7388.7	2.2	-26300# *	200#	7455.7	2.2	542.8	2.0	4579.6	2.0
		33	10378.6	1.9	3525	5			13423		2447.8	2.8	9409.4	2.0
	As Se	33 34	15680	70	4891.2	0.7	*		8546	3	-2390	2.8 80	7935.2	2.0
	Br	35	14070#	480#	-500#	250#	*		13580#	6 330#	-2390 -910#	400#	13790#	270#
0	C	2.4	1050"	710"			£1.400#	500"	2700#	700"	1000#	710"		
69	Cr	24	1850#	710#	*	(10"	51400#	500#	2780#	780#	1890#	710#	*	(10"
	Mn	25	4460#	570#	17260#	640#	40970#	400#	4620#	570#	4810#	570#	-13510#	640#
	Fe	26	3610#	540#	17940#	570#	29390#	400#	5140#	500#	2590#	400#	-8660#	570#
	Co	27	6420	240	14080	390	19050	140	6040	300	4650	140	-7880	140
	Ni	28	4586	5	15340	190	7122	4	6054	7	1294	14	-4264	6
	Cu	29	8240.5	2.1	9561	3	-2620	30	8717	3	5134.1	2.0	-3681	14
	Zn	30	6482.07	0.16	10139.8	1.8	-11983.1	1.7	9612.5	0.9	2704.5	1.0	3234.8	1.0
	Ga	31	10313.1	1.9	6609.7	1.4	-23070	40	9263.3	1.4	4435.4	1.4	2576.9	1.
	Ge	32	8193.2	2.3	7303.6	1.9	-34670 #	400#	10489.2	1.8	1487.1	1.7	7444.9	1
	As	33	12290	30	3420	30	*		10260	30	3360	30	6260	30
	Se	34	10316.6	1.6	4829.2	2.4	*		10863.3	1.6	454	6	10818.7	2.3
					-640	40			11020		27011			40
	Br	35	15540#	260#	-040	40	*		11030	80	270#	210#	11410	40

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2 ₁	p)	$Q(\alpha$)	$Q(2\beta)$	-)	$Q(arepsilon_{\Gamma}$))	$Q(eta^-$	n)
66	V	23	5430#	640#	*		*		31140#	500#	*		14540#	580#
	Cr	24	7380#	590#	38270#	720#	-14650#	570#	25350#	400#	*		8180#	400#
	Mn	25	9904	12	35010#	400#	-13700 #	300#	19658	18	-32260 #	500#	6396	12
	Fe	26	11241	6	31170	440	-11600	150	15938	4	-29140 #	300#	1046	5
	Co	27	12759	24	27997	14	-10309	15	9850	14	-22730	14	646	14
	Ni	28	15050.0	1.5	25615	5	-9553	3	2892.9	1.6	-22077	5	-6813.9	1.5
	Cu	29	16976.4	0.7	21044	20	-7259	19	-2534.6	1.2	-14362.0	2.2	-8417.6	0.4
	Zn	30	19037.8	0.9	16378.2	0.7	-4577.8	0.7	-7292.1	2.5	-11062.4	0.7	-14313.0	1.1
	Ga	31	21033.5	1.8	12877.1	1.1	-3361.1	1.2	-11699	6	-3749.0	1.2	-15316.8	2.4
	Ge	32	23434	4	10181.0	2.5	-2864.0	2.5	-19950 #	200#	-2984.0	2.5	-22740	80
	As	33	28640#	200#	7770	6	-2463	6	*		3343	6	-27080 #	300#
	Se	34	31100#	540#	1920#	200#	-2350#	240#	*		7530#	200#	*	
67	V	23	5010#	780#	*		*		32810#	670#	*		16000#	720#
	Cr	24	6600#	500#	*	500"	-15360#	640#	26930#	480#	*	500"	10000#	400#
	Mn	25	8640#	300#	36260#	580#	-14000#	500#	21860#	300#	-35140#	580#	8540#	300#
	Fe	26	10530	270	31970#	400#	-12030	450	18130 11998	270	-28180# 25860	480#	2730	270
	Co Ni	27 28	12279 14759.6	7 2.9	28932 27103	7 6	-10860 -10532	7 5	4137.6	7 3.0	-25860 -20964	13 5	2613 -5555.7	7 3.0
	Cu	28 29	14739.6	2.9 1.1	27103	2.3	-10532 -7893	5 19	-440.5	1.3	-20964 -18200	3 14	-5555.7 -6491.7	0.8
	Zn	30	18110.9	0.9	17332.6	0.7	-7893 -4792.5	0.7	-440.3 -5222	5	-18200 -9163.0	1.6	-0491.7 -12228.0	0.8
	Ga	31	20364.2	1.4	14193.3	1.3	-4792.3 -3724.2	1.2	-3222 -10291.8	1.3	-7909.7	1.3	-12228.0 -13343.3	2.7
	Ge	32	22323	5	11324	5	-2870	5	-16080	70	-1048	5	-18704	7
	As	33	25790	80	8507.7	0.9	-2465.0	1.4	-23800#	400#	-152.5	1.2	-23000#	200#
	Se	34	29700#	310#	4680	70	-2080	80	*		7740	70	*	200
	Br	35	*		430#	410#	-1720#	450#	*		11950#	400#	*	
68	Cr	24	6220#	640#	*		-16200#	780#	28690#	620#	*		10590#	580#
	Mn	25	7770#	400#	37350#	640#	-14490 #	570#	23550#	440#	-35020 #	720#	9160#	480#
	Fe	26	9560	370	33350#	540#	-12430	570	19980	370	-32100 #	540#	3760	370
	Co	27	11660	190	29760	190	-11370	190	13640	190	-25760 #	360#	3740	190
	Ni	28	13600	3	27974	5	-10919	6	6543	3	-25140	270	-4216	3
	Cu	29	15451.4	1.7	23736	14	-8200	20	1519.0	2.1	-17534	7	-5758.0	1.8
	Zn	30	17250.6	0.3	18578.7	1.6	-5333.1	0.8	-3028.3	2.0	-13553.4	3.0	-11199.4	1.1
	Ga	31	19505.0	1.5	15405.7	1.5	-4086.4	1.4	-8191.5	2.3	-7055.5	1.5	-12499	5
	Ge	32	21514	3 6	12657.6	2.0	-3399.7	2.0	-12789.3	1.9	-6387.4	2.0 2.2	-18462.9	1.9
	As	33 34	23012 28670#	200#	9748.8 7160.3	2.1 2.5	-2486.6 -2299	2.3 4	-20100#	260#	695.6 1180	2.2 5	-20390 -29470#	70 400#
	Se Br	35	28070# *	200#	1340#	2.3	-2299 -1680#	330#	*		10510#	260#	-29470# *	400#
69	Cr	24	6040#	640#	*		*		30450#	640#	Ψ.		11730#	640#
U)	Mn	25	7450#	500#	38700#	720#	-15420#	640#	25510#	420#	*		10650#	540#
	Fe	26	9560#	480#	34930#	570#	-13420# -13240#	500#	20950#	400#	-31520#	640#	4830#	440#
	Co	27	11100	140	31400#	330#	-13240	140	15460	140	-29190#	420#	5110	140
	Ni	28	12379	5	28950	270	-11186	6	8439	4	-23780	370	-2483	4
	Cu	29	14559.3	1.7	24992	7	-8975.9	2.5	3591.6	1.8	-21090	190	-3800.4	1.6
	Zn	30	16680.17	0.25	19253.1	3.0	-5717.1	0.8	-1317.2	1.5	-12243	3	-9403.2	1.2
	Ga	31	18591.4	1.7	16586.2	1.5	-4489.1	1.4	-6220	30	-11049.7	2.0	-10420.3	2.2
	Ge	32	20585	5	13798.3	1.5	-3613.6	1.5	-10666.0	2.0	-4382.5	1.5	-16277.5	2.3
	As	33	22670	30	10810	30	-2880	30	-16850	50	-3320	30	-16990	30
	Se	34	26000	70	8354	5	-2381.4	2.6	-24000#	400#	3255.1	2.4	-25720 #	260#
	Br	35	29610#	400#	4250	40	-1750	90	*		5350	40	*	
	Kr	36	*		430#	410#	-1840 #	500#	*		14470#	400#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	n)	S(p)	$Q(4\beta)$	-)	Q(d,	<u>α</u>)	Q(p, q)	<u>-</u> α)	$Q(\mathbf{n}, \alpha)$	x)
70	Cr	24	3970#	780#	*		54730#	600#	*		1040#	850#	*	
	Mn	25	2800#	640#	18210#	710#	43480#	500#	6010#	710#	4040#	640#	-13200 #	780#
	Fe	26	5550#	570#	19030#	570#	33060#	400#	2580#	570#	1810#	500#	-12180 #	570#
	Co	27	4420#	330#	14890#	500#	22280#	300#	7570#	470#	3850#	400#	-7520#	420#
	Ni	28	7307	4	16220	140	11348.0	2.3	3430	190	972	7	-7960	270
	Cu	29	5311.5	1.8	10287	4	1370	50	11198	3	5630	3	-2008	7
	Zn	30	9218.2	2.1	11117.5	2.4	-7634.8	2.5	6713.1	2.5	2618.8	2.1	-176	3
	Ga	31	7653.65	0.17	7781.3	1.4	-17485	15	11807.8	1.4	3834.2	1.4	4055.8	1.5
	Ge	32	11532.5	1.6	8523.0	1.5	-29460 #	200#	7234.9	1.6	1181.2	1.2	2964.8	1.0
	As	33	9300	60	4530	50	*		13350	50	3180	50	8180	50
	Se	34	13566.5	2.2	6110	30	*		7675.4	2.4	-478.6	1.6	6375	5
	Br	35	13240	40	2280	15	*		13475	15	20	70	10808	15
	Kr	36	16740#	450#	2130#	210#	*		8400#	330#	-3450#	450#	11130#	210#
71	Mn	25	4140#	710#	18380#	780#	47140#	500#	3720#	710#	4090#	710#	*	
	Fe	26	2990#	570#	19220#	640#	35900#	400#	4050#	570#	1810#	570#	-10980 #	640#
	Co	27	5810#	550#	15150#	610#	25770	470	5370#	610#	3980	590	-10340 #	610#
	Ni	28	4264	3	16070#	300#	14500.3	2.4	5580	140	1390	190	-6270	370
	Cu	29	7806.1	1.8	10786.2	2.6	5182	4	7978	4	5617	3	-5130	190
	Zn	30	5835	3	11641.4	2.9	-4182	4	9118.2	3.0	3102	3	1781	4
	Ga	31	9300.3	1.4	7863.4	2.1	-13637	5	8989.5	1.1	4732.0	1.0	1074.3	1.8
	Ge	32	7415.94	0.11	8285.3	1.5	-23580	130	10132.1	1.5	2043.6	1.6	5747.0	1.1
	As	33	11620	50	4620	4	-35830#	400#	9918	4	3950	5	4839	4
	Se	34	9288	3	6090	50	*		10680	30	612	3	9479	3
	Br	35	13148	16	1861	6	*		10643	6	2551	5	8039	6
	Kr	36	13300#	240#	2190	130	*		10640	140	-2670 #	290#	13510	130
	Rb	37	*		-1750#	450#	*		11090#	570#	*		12380#	480#
72	Mn	25	2400#	780#	*		49880#	600#	5290#	850#	3540#	780#	*	
	Fe	26	5070#	640#	20150#	710#	39720#	500#	1780#	710#	1200#	640#	-14200 #	710#
	Co	27	3900#	610#	16060#	570#	28390#	400#	7020#	570#	3690#	570#	-9780#	570#
	Ni	28	6891	3	17150	470	18359.8	2.2	3110#	300#	920	140	-9550#	400#
	Cu	29	5143.2	2.0	11665.7	2.6	8447	4	10141.7	2.6	5060	4	-3860	140
	Zn	30	8888	3	12723.3	2.6	-277.3	2.9	5541.7	2.4	2454.8	2.6	-2520	4
	Ga	31	6520.47	0.19	8548.5	2.8	-9526.6	1.3	11687.2	2.1	4693.6	1.1	2794.3	1.6
	Ge	32	10750.7	0.8	9735.7	0.8	-18645	8	7035.0	1.2	1606.0	1.2	1478.3	0.8
	As	33	8408	6	5612	4	-29900#	500#	13043	4	3735	4	6744	4
	Se	34	12793	3	7264	5	*		7180	50	110	30	4878.9	2.4
	Br	35	10631	5	3204.2	3.0	*		13579.0	1.9	2237.0	1.8	9700	30
	Kr	36	15680	130	4727	10	*		8196	17	-2820	40	8141	8
	Rb	37	14340#	640#	-710#	520#	*		13480#	540#	-1030#	640#	13580#	500#
73	Fe	26	2540#	710#	20290#	780#	42690#	500#	3380#	710#	1460#	710#	-12770#	780#
	Co	27	5290#	570#	16280#	640#	32280#	400#	4720#	570#	3960#	570#	-12270#	640#
	Ni	28	3953	3	17200#	400#	21189.4	2.4	4970	470	1390#	300#	-7950#	400#
	Cu	29	7275.8	2.4	12050.3	3.0	11965	4	7129.6	3.0	5090.5	2.9	-6710#	300#
	Zn	30	5519.2	2.8	13099.4	2.3	2634	8	7828.5	2.4	2247.0	2.2	-733.1	2.8
	Ga	31	9182.4	1.9	8842.8	2.7	-6052	7	8340	3	4729.5	2.5	-1076.6	2.0
	Ge	32	6782.94	0.05	9998.2	0.8	-14746	7	9552.4	0.8	2476.7	1.2	3913.6	1.9
	As	33	10794	6	5656	4	-24870#	200#	9665	4	4473	4	3604	4
	Se	34	8431	8	7287	8	-36280#	400#	10377	9	980	50	7981	7
	Br	35	12657	7	3068	8	*		10210	8	3146	7	6340	50
	Kr	36	10682	10	4779	7	*		10661	9	-262	16	11025	7
	Rb	37	15820#	540#	-570#	200#	*		10960#	240#	-120#	280#	10990#	200#
	Sr	38	*	D 10	910#	640#			10820#	570#	*	200	14800#	450#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta$	-)	$Q(arepsilon_{\Gamma}$))	$Q(oldsymbol{eta}^-$	n)
70	Cr	24	5820#	780#	*		*		32030#	720#	*		12220#	720#
	Mn	25	7260#	640#	*		-16310#	710#	27130#	580#	*		11460#	640#
	Fe	26	9170#	540#	36290#	640#	-14220#	570#	22700#	400#	-35220#	640#	5700#	420#
	Co	27	10840#	360#	32830#	500#	-12300 #	300#	16350#	300#	-29150#	500#	5280#	300#
	Ni	28	11893	4	30300	370	-11571	5	10350.9	2.9	-27470 #	400#	-1549.0	2.6
	Cu	29	13552.0	1.9	25620	190	-8993	14	5933.8	1.6	-19990	140	-2629.8	1.3
	Zn	30	15700.3	2.0	20679	4	-5983.4	2.4	997.1	2.1	-16875	4	-8308.2	1.6
	Ga	31	17966.8	1.9	17921.0	2.0	-5076.8	1.4	-4570	50	-10462.9	1.8	-9880.8	0.6
	Ge	32	19725.7	2.1	15132.7	1.1	-4087.6	1.0	-8632.0	1.8	-9433.0	1.1	-15520	30
	As	33	21590	50	11830	50	-3040	50	-12920	50	-2300	50	-15980	50
	Se	34	23883.1	1.7	9529.0	2.5	-2747.8	2.9	-20830 #	200#	-2118.2	2.1	-23740	40
	Br	35	28780#	260#	7109	15	-1825	16	*		4400	40	-27060 #	400#
	Kr	36	*		1490#	200#	-1870#	280#	*		8050#	200#	*	
71	Mn	25	6940#	640#	*		-17350#	780#	28800#	680#	*		12870#	640#
	Fe	26	8540#	570#	37430#	640#	-15170#	570#	23980#	400#	-34240#	720#	7130#	500#
	Co	27	10230	490	34180#	610#	-13340#	550#	18340	470	-32160#	680#	6770	470
	Ni	28	11570	4	30960#	400#	-12220	270	11923	3	-26190#	400#	-501.2	2.5
	Cu	29	13117.5	2.0	27010	140	-9814	7	7428.0	1.7	-23370#	300#	-1217.7	2.4
	Zn	30	15053.6	2.8	21928 18980.9	5	-6011	4	2577.7 -2246	2.8	-15404 -14451.7	3	-6490.0 -7648.58	2.9 0.25
	Ga Ge	31 32	16954.0 18948.5	1.4 1.6	16066.6	1.6 1.1	-5244.5 -4451.1	1.2 1.0	-2240 -6760.0	4 2.9	-14431.7 -7630.7	1.4 2.1	-7648.38 -13640	50
	As	33	20920	30	13143	4	-3439	4	-0700.0 -11391	2.9 7	-6272	4	-13040 -14035	4
	Se	33 34	20920	30	10624	3	-3439 -2913	5	-11391 -16820	130	126.4	2.9	-14033 -19792	15
	Br	35	26390	40	7970	30	-2340	5	-10320 -24440#	400#	550	50	-19792 -23470#	200#
	Kr	36	30040#	420#	4470	130	-2340 -2170	150	*	→ 00π	8310	130	*	200#
	Rb	37	*	.20	380#	400#	-1700#	570#	*		12080#	400#	*	
72	Mn	25	6540#	780#	*		*		30300#	720#	*		13460#	720#
	Fe	26	8060#	640#	38530#	780#	-16060 #	710#	25800#	500#	*		7870#	680#
	Co	27	9710#	500#	35280#	640#	-14250 #	570#	19580#	400#	-31920 #	640#	7140#	400#
	Ni	28	11155	3	32290#	400#	-13160	370	13919	3	-30090#	400#	413.7	2.7
	Cu	29	12949.3	1.8	27730#	300#	-10280	190	8805.3	1.6	-22700	470	-525.5	3.0
	Zn	30	14723.4	2.9	23510	3	-7107	4	4440.4	2.1	-20028	3	-6077.7	2.3
	Ga	31	15820.8	1.5	20189.9	1.4	-5446.2	1.8	-358	4	-13166.1	1.7	-6753.11	0.29
	Ge	32	18166.7	0.8	17599.1	1.9	-5003.7	0.8	-4717.7	2.0	-12546.1	2.7	-12764	4
	As	33	20030	50	13898	4	-3569	4	-9168	4	-5380	4	-13155	5
	Se	34	22080.9	2.5	11884.2	2.1	-3314.3	2.7	-13928	8	-5250.7	2.1	-19437	6
	Br	35 36	23779	15	9300 6589	50	-2592.1 -2176	2.1	-20730#	500#	1542 1917	4	-20810 -29950#	130 400#
	Kr Rb	37	28980#	200#	1480#	8 500#	-2176 -1960#	8 560#	*		10880#	8 500#	-29930# *	400#
73	Fe	26	7610#	640#	*		-16750#	710#	27210#	500#	*		9230#	640#
, 5	Co	27	9190#	610#	36430#	640#	-15070# -15070#	570#	21570#	400#	-34810#	720#	8740#	400#
	Ni	28	10845	3	33260#	400#	-13500#	400#	15485	3	-28970#	500#	1603.5	2.8
	Cu	29	12418.9	2.4	29200	470	-11130	140	10711.9	2.6	-26080#	400#	1086.7	2.9
	Zn	30	14407	3	24765.1	2.9	-8040	4	5704.1	1.9	-18656.3	2.9	-5076.4	2.0
	Ga	31	15702.8	1.9	21566.1	2.2	-6388.0	2.2	1253	4	-17205.3	2.2	-5184.8	1.7
	Ge	32	17533.7	0.8	18546.7	2.7	-5304.6	0.8	-3070	7	-10441.0	2.1	-11139	4
	As	33	19202	6	15392	4	-4050	4	-7305	8	-9653	4	-11156	4
	Se	34	21224	8	12899	7	-3552	8	-11676	10	-2930	7	-17237	7
	Br	35	23288	9	10332	8	-2960	30	-17570 #	200#	-2707	8	-17778	11
	Kr	36	26370	130	7983	7	-2542	7	-24600 #	400#	4027	7	-26290 #	500#
	Rb	37	30160#	450#	4160#	200#	-2250 #	210#	*		5690#	200#	*	
	Sr	38	*		200#	420#	-1940#	570#	*		14700#	400#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	_)	Q(d,	α)	Q(p, q)	α)	Q(n, 0)	α)
74	Fe	26	4760#	780#	*		46170#	600#	1020#	850#	840#	780#	*	
	Co	27	3470#	640#	17210#	710#	35230#	500#	6320#	710#	3470#	640#	-11600 #	710#
	Ni	28	6420#	200#	18330#	450#	24970#	200#	2450#	450#	780#	500#	-11380 #	450#
	Cu	29	5090	6	13187	7	14854	6	8931	7	4264	7	-5990	470
	Zn	30	8235	3	14058	3	6456.5	2.5	4737.1	2.9	1818.5	2.9	-4704	3
	Ga	31	6422	3	9745	4	-2761	7	10807	4	4143	4	308	3
	Ge	32	10196.24	0.06	11012.1	1.7	-11090.6	2.0	5876.7	0.8	1580.7	0.8	-447.3	2.7
	As	33	7979	4	6851.5	1.7	-18944	3	12436.7	1.7	3910.5	1.9	4925.5	1.9
	Se	34	12057	7	8549	4	-31390 #	100#	6727	4	544	4	3339.7	0.8
	Br	35	9712	9	4350	9	*		13291	6	2722	6	8251	7
	Kr	36	13851	7	5973	8	*		7440.7	2.3	-965	6	6461	3
	Rb	37	13910#	200#	2653	7	*		12735	9	-720	130	10233	6
	Sr	38	16950#	410#	2040#	220#	*		8210#	510#	-3900#	410#	11150#	160#
75	Fe	26	2120#	850#	*		48920#	600#	*		1120#	850#	*	
	Co	27	4900#	710#	17350#	780#	38820#	500#	3960#	710#	3650#	710#	-14100#	780#
	Ni	28	3650#	360#	18500#	580#	27830#	300#	4100#	500#	1030#	500#	-9950#	580#
	Cu	29	6536	7	13300#	200#	18562.9	2.5	6348	3	4619	3	-8630#	400#
	Zn	30	4874	3	13842	6	9610.6	2.0	7139.3	2.8	2088.1	2.4	-2686.4	3.0
	Ga	31	8486	4	9997	3	642	5	7840	3	4545	3	-3035.2	2.8
	Ge	32	6505.84	0.05	11096.3	3.0	-7533	8	8553.2	1.7	1595.4	0.8	1934.9	2.1
	As	33	10245.5	1.9	6900.7	0.9	-15815.5	1.5	8974.1	0.9	4415.8	0.9	1200.5	1.2
	Se	34	8027.60	0.07	8598.4	1.7	-25550	220	9494	4	924	4	6062.82	0.10
	Br	35	11890	7	4183	4	-37290 #	300#	9831	9	3625	5	4769	6
	Kr	36	10063	8	6324	10	*		10035	11	-398	8	9191	8
	Rb	37	13374	3	2175.8	2.3	*		10044	7	1586	8	7489.5	1.6
	Sr	38	13860#	240#	1990	220	*		10170#	300#	-3430#	550#	12970	220
	Y	39	*		-1720#	320#	*		10840#	500#	*		12160#	580#
76	Co	27	2930#	780#	18160#	850#	41790#	600#	5790#	850#	3250#	780#	*	
	Ni	28	5670#	500#	19270#	640#	31580#	400#	1900#	640#	650#	570#	-13080 #	640#
	Cu	29	4576	7	14240#	300#	21315	7	8190#	200#	3996	7	-7910#	400#
	Zn	30	7815.4	2.4	15120.6	2.7	12948.9	1.5	4414	6	1548.5	2.4	-6548.5	2.8
	Ga	31	5903	3	11026.7	2.8	3992	10	10171	3	4160.8	2.7	-1662.8	2.8
	Ge	32	9427.24	0.05	12037.3	2.4	-4199	4	5547.5	3.0	1350.5	1.7	-1973.1	1.9
	As	33	7328.50	0.07	7723.4	0.9	-11812.3	1.3	11841.9	0.9	3870.2	0.9	3054.4	1.9
	Se	34	11153.79	0.07	9506.7	0.9	-21000	30	6318.9	1.7	565	4	1691.97	0.06
	Br	35	9253	10	5409	9	-31810 #	300#	12635	9	2802	12	6310	10
	Kr	36	12761	9	7196	6	*		6985	7	-502	8	4860	8
	Rb	37	11331.7	1.5	3444	8	*		12563.6	2.2	937	7	8815	7
	Sr	38	15700	220	4320	30	*		8380	30	-3300#	200#	7950	40
	Y	39	14730#	420#	-850#	370#	*		13060#	320#	-1670#	500#	13250#	360#
77	Co	27	4580#	850#	*		44980#	600#	3340#	850#	3440#	850#	*	-
	Ni	28	3240#	640#	19580#	780#	34410#	500#	3560#	710#	890#	710#	-11560#	780#
	Cu	29	5720#	150#	14280#	430#	25290#	150#	6120#	340#	4700#	250#	-10160#	520#
	Zn	30	4557.5	2.5	15102	7	15810.3	2.0	6393	3	2081	6	-4690#	200#
	Ga	31	7767	3	10978.3	2.8	7242	4	7277	3	4628	3	-4340	7
	Ge	32	6071.29	0.05	12205.2	2.0	-1043.4	2.0	7962.5	2.4	1700.8	3.0	190.3	2.5
	As	33	9696.3	1.9	7992.4	1.7	-9085.8	2.1	8651.5	1.7	4370.2	1.7	-220	3
	Se	34	7418.86	0.06	9597.1	0.9	-16796	8	9145.5	0.9	1124.6	1.7	4469.35	0.06
	Br	35	11017	10	5271.8	2.8	-26800#	200#	9645.5	2.8	3842.4	2.8	3272	3
	Kr	36	9227	4	7169	10	-38130#	400#	9648	5	-17	6	7690.2	2.0
	Rb	37	12422.7	1.6	3106	4	*		10204	8	2365.4	2.4	6104	6
	Sr	38	11630	40	4613	8	*		10126	8	-1023	8	10175	8
	Y	39	16030#	360#	-520#	200#	*		10890#	300#	−750#	230#	11120#	200#
	Zr	40	*		850#	500#	*		10490#	500#	*		14430#	410#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\overline{A}	Elt.	Z	S(21	n)	S(2 ₁	p)	$Q(\alpha$)	$Q(2\beta^{-1})$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
 74	Fe	26	7300#	780#	*		-17540#	850#	28870#	630#	*		9760#	720#
/4	Co	27	8760#	640#	37500#	780#	-17340# -15750#	710#	23190#	500#	*		9700#	500#
	Ni	28	10370#	200#	34600#	540#	-14370#	450#	17300#	200#	-32850#	540#	2460#	200#
	Cu	29	12366	6	30390#	400#	-11800#	300#	12043	7	-25880#	400#	1516	6
	Zn	30	13754	3	26109	3	-8968	3	7665.7	2.5	-22938	3	-4129	3
	Ga	31	15604	3	22845	3	-7498	3	2810	3	-16351	4	-4823.4	3.0
	Ge	32	16979.18	0.07	19854.9	2.1	-6282.6	1.9	-1209.24	0.01	-15118.0	1.9	-10541	4
	As	33	18773	4	16849.7	1.9	-4374.8	2.1	-5572	6	-8449.7	2.4	-10704	8
	Se	34	20487.7	2.0	14205.24	0.08	-4076.2	0.8	-9881.4	2.0	-8204.65	0.06	-16637	7
	Br	35	22369	6	11636	7	-3370	50	-13372	7	-1624	7	-16808	9
	Kr	36	24534	8	9041.6	2.8	-2826.9	2.6	-21500#	100#	-1393	8	-24320 #	200#
	Rb	37	29730#	500#	7432	3	-2915	15	*		4442	8	-28040#	400#
	Sr	38	*		1470#	100#	-2150#	220#	*		8440#	100#	*	
75	Fe	26	6880#	780#	*		*		30390#	670#	*		11110#	780#
	Co	27	8370#	640#	*		-16500#	710#	24820#	500#	*		10740#	540#
	Ni	28	10060#	300#	35710#	580#	-15030#	500#	18530#	300#	-31730#	670#	3910#	300#
	Cu	29	11627	3	31630#	400#	-12530	470	13993	3	-28940#	500#	3214	3
	Zn Ga	30 31	13108.1 14907.9	2.7 2.9	27029 24055	3	-9577.6 -8178.4	3.0 2.8	9298.1 4569.6	2.0 2.6	-21390# -19747	200# 7	-2581 -3113.5	4 2.4
	Ge	32	14907.9	2.9 0.07	20841.5	3 1.9	-8178.4 -6953.1	2.8	4369.6 312.52	0.09	-19747 -13389.2	2.5	-3113.5 -9068.2	1.7
	As	33	18224	4	17912.8	1.9	-6933.1 -5320.0	1.2	-3927	4	-13389.2 -12274	3	-8892.3	0.9
	Se	34	20085	7	15449.90	0.09	-3520.0 -4687.9	0.8	-3927 -7846	8	-6036.01	0.07	-3692.3 -14953	6
	Br	35	21602	8	12732	6	-3639	6	-11888	4	-5536	5	-14846	5
	Kr	36	23915	10	10674	11	-3602	9	-17700	220	601	8	-20479	9
	Rb	37	27280#	200#	8149	7	-3141	6	-25400#	300#	780	6	-24460#	100#
	Sr	38	30810#	460#	4640	220	-2720	250	*		8420	220	*	
	Y	39	*		320#	360#	-2190#	500#	*		12810#	300#	*	
76	Co	27	7830#	780#	*		-17040#	850#	26470#	600#	*		11450#	670#
	Ni	28	9320#	450#	36620#	720#	-15630#	640#	20670#	400#	-35280 #	720#	4770#	400#
	Cu	29	11112	9	32730#	500#	-13200#	400#	15321	7	-28620#	500#	3512	7
	Zn	30	12688.9	2.9	28430#	200#	-10501.9	2.7	10909.9	1.5	-25560#	300#	-1909.8	2.8
	Ga	31	14390	4	24868	6	-8938.6	2.4	5994.7	2.1	-19114	3	-2511.0	2.0
	Ge	32	15933.08	0.02	22034.1	2.5	-7492.3	2.1	2039.06	0.01	-17943.0	2.0	-8250.0 -8193.2	0.9
	As Se	33 34	17574.0 19181.38	1.9 0.02	18820 16407.45	3 0.02	-6128.0 -5090.97	1.2 0.08	$-2002 \\ -6238$	9 4	-11115.8 -10683.96	2.6 0.05	-8193.2 -14216	0.9 4
	Br	35	21144	11	14007	9	-3090.97 -4484	10	-0238 -9810	9	-10085.90 -4544	9	-14210 -14037	12
	Kr	36	22825	4	11378	4	-3570	4	-14770	30	-4133	4	-19866	4
	Rb	37	24706	3	9769	6	-3842.3	1.4	-22000#	300#	1339	4	-21930	220
	Sr	38	29560#	110#	6490	30	-2730	40	*		2790	40	-30500#	300#
	Y	39	*		1140#	300#	-2580#	580#	*		11450#	300#	*	
77	Co	27	7510#	780#	*		*		27610#	620#	*		12550#	720#
	Ni	28	8910#	580#	37740#	780#	-16330 #	710#	21990#	500#	*		6110#	500#
	Cu	29	10300#	150#	33550#	520#	-13630 #	430#	17370#	150#	-31400 #	620#	5610#	150#
	Zn	30	12372.9	2.8	29340#	300#	-11106	3	12423.7	2.0	-24450 #	400#	-563.9	2.8
	Ga	31	13670	3	26099	3	-9430	3	7924.0	3.0	-22305	7	-850.8	2.4
	Ge	32	15498.53	0.07	23231.9	2.0	-8044.4	1.9	3386.63	0.08	-16198.8	1.5	-6992.8	0.9
	As	33	17024.8	1.9	20029.7	3.0	-6641.9	2.4	-682	3	-14908.6	2.6	-6735.7	1.7
	Se	34	18572.64	0.10	17320.47	0.08	-5726.88	0.08	-4430.0	2.0	-8675.57	0.06	-12382	9
	Br	35	20270	5	14778.6	2.9	-4707	5	-8404	3	-8232.4 2206.5	2.9	-12292	5
	Kr Ph	36	21988	8	12577.9	2.0	-4367 -3608	8	-12366 18300#	8 200#	-2206.5	2.0	-17761.7	2.2
	Rb Sr	37 38	23754.4 27330	1.8 220	10301 8058	4 11	-3608 -3677	7 10	-18390# -25760#	200# 400#	-1830 3921	9 9	-18650 -27400#	30 300#
	Sr Y	38	27330 30760#	360#	8058 3800#	200#	-3677 -2780#	290#	-23760# *	400#	5921 6750#	200#	-27400# *	300#
	Zr	40	30700 # *	σουπ	-0#	460#	-2780# -2510#	570#	*		14920#	400#	*	
	L l	40	4		0π	+00π	-2310π	5 / Οπ	*		17/2011	-τυυπ	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

	Elt.	Z	S(n))	S(p		$Q(4\beta^2)$	-)	Q(d,	α)	Q(p, q)	χ)	Q(n, a)	γ)
	1 11.		5(1)			,	Σ(¬ρ	,	Σ(u,		Σ(β,		Q(II,t	- ,
78	Ni	28	5160#	780#	20160#	850#	37970#	600#	1330#	850#	620#	780#	-14600#	850#
	Cu	29	3950#	530#	14990#	710#	28320	500	7840#	640#	4400#	590#	-9200#	710#
	Zn	30	6765.4	2.8	16150#	150#	19542.7	2.0	4204	7	1852	3	-7810#	300#
	Ga	31	5785	3	12205.7	2.7	9746	4	9307.9	2.4	3717.0	2.7	-3588	3
	Ge	32	8721	4	13159	4	2316	4	5145	4	1467	4	-3657	4
	As	33	6972	10	8893	10	-5882	10	11107	10	3904	10	1294	10
	Se	34	10497.77	0.17	10398.6	1.7	-13852	7	5976.2	0.9	872.3	0.9	477.42	0.19
	Br	35 36	8289 12080.1	5 2.0	6142 8232.4	4 2.8	-21280# -33330#	300# 400#	12511	4	3581 - 207	4	5228 3637.6	4 0.3
	Kr Rb	37	12080.1	3	6232.4 4055	2.8 4	-33330# *	400#	6822 12789	9 5	-207 2252	4 9	7818	5
	Sr	38	13442	11	5632	8	*		8016	8	-1091	8	6796	11
	Y	39	13810#	360#	1660#	300#	*		12790#	300#	-690#	370#	10690#	300#
	Zr	40	16880#	570#	1700#	450#	*		8340#	500#	-4170#	500#	11420#	460#
5 0		•	4550"	0.50 !!			4406011	ć00#	44.60.0	0.50.0	1000"	0.50"		
79	Ni	28	1750#	850#	* 15140#	67011	41960#	600#	4160#	850#	1800#	850#	*	<i>(</i> 70#
	Cu	29	5310#	590#	15140#	670#	31900#	300#	5770#	580#	4750#	500#	-11580#	670#
	Zn	30	4020.4	3.0	16220	500	22485.2	2.2	5900#	150#	2408	7	-6160#	400#
	Ga	31	6913.0	2.7	12353.4	2.7	13520.4	2.1	6952.3	2.7	4619.4	2.4	-5925	7
	Ge	32	5740	40	13110	40	4920	40	7180	40	1630	40	-1580	40
	As	33	8890	11	9063	6	-2833	6	8288	5	4441	5	-1693	6
	Se Br	34 35	6962.83 10687	0.13	10389 6331.1	10 1.0	-10441	8 80	8709.7 9242.3	1.7 1.0	1238.0 4048.0	0.9 1.0	2941.83 1869.7	0.22
		36	8335	4	8279	5	-18250 -27670#	300#	9503		711	1.0	6456	1.4
	Kr Rb	37	11939	3 4	3913.7	2.2	-27670# -39150#	500# 500#	10077.3	4 2.9	3075	5	5132	3 10
	Sr	38	10374	4 11	5830	9	-39130# *	300#	10077.3	8	-134	8	9183	9
	Y	39	13720#	310#	1930	80	*		10700	80	1290	90	8310	80
	Zr	40	13990#	500#	1890#	420#	*		10780#	360#	-3430#	420#	13120#	300#
	Nb	41	*	30011	-1910#	640#	*		11100#	640#	*	42011	12480#	580#
80	Ni	28	3130#	920#	de		46910#	700#	*		3250#	920#	ale.	
80	Cu	29	2530#	500#	* 15920#	720#	36020#	400#	* 8400#	720#	5460#	640#	* -9540#	720#
	Zn	30	6288	3	17200#	300#	26110.8	2.8	3560	500	1840#	150#	-9340# -9200#	500#
	Ga	31	4747	3	13080	4	16665	3	8970	3	4430	3	-4950#	150#
	Ge	32	8080	40	14276.6	2.8	8358.0	2.2	4881.5	2.8	1321	3	-5099.7	2.8
	As	33	6650	6	9980	40	-39	4	10358	5	3862	3	−576	4
	Se	34	9913.3	1.0	11412	5	-7448	4	5768	10	1020.9	1.8	-900.2	1.0
	Br	35	7892.28	0.13	7260.5	1.0	-14741	6	11847.8	1.0	3574.6	1.0	3673.7	1.8
	Kr	36	11522	4	9114.3	1.2	-23530#	300#	6270	4	205.5	2.9	2352.5	0.7
	Rb	37	9443.8	2.8	5022	4	-33760#	400#	12713.6	1.9	2858.0	2.7	6706	3
	Sr	38	12906	9	6797	4	*		7335	5	-617	4	5504	4
	Y	39	11400	80	2960	10	*		12737	10	1519	10	9329	6
	Zr	40	15660#	420#	3830#	310#	*		8520#	420#	-3060 #	360#	9090#	300#
	Nb	41	14840#	640#	-1060 #	500#	*		13140#	570#	-1520 #	570#	13670#	450#
81	Cu	29	3290#	640#	16080#	860#	41110#	500#	6860#	780#	7330#	780#	*	
	Zn	30	2622	6	17290#	400#	30189	5	6250#	300#	3160	500	-6660#	600#
	Ga	31	6476	4	13268	4	20349	3	6515	4	4719	4	-7480	500
	Ge	32	4827.7	2.9	14357	4	11404.5	2.3	6966.8	2.8	2278.3	2.8	-3162.1	2.8
	As	33	8390	4	10287	3	2923	6	7700	40	4193	4	-3181	3
	Se	34	6700.8	0.3	11463	3	-4861	3	7958	5	1292	10	1119	4
	Br	35	10159.4	1.4	7506.5	1.4	-12264	5	8651.2	1.0	3913.0	1.0	486	10
	Kr	36	7874.2	1.2	9096.2	1.5	-20240	90	9082.7	1.5	620	4	4976.2	1.1
	Rb	37	11353	5	4852	5	-29100 #	400#	9696	6	3586	5	3642	6
	Sr	38	9288	5	6642	4	-39780#	500#	9986	4	271	5	8297	3
	Y	39	12636	8	2690	6	*		10475	10	2325	9	6869	6
			4 4 4 7 0 11	21011	2600	00			11070	120	120#	210#	11260	90
	Zr	40	11170#	310#	3600	90	*		11070	120	-420#	310#	11360	
	Zr Nb Mo	40 41 42	11170# 16010# *	310# 570#	3600 710# 620#	500# 640#	* *		11120# 11120# 10610#	500# 710#	-420# -650# *	570#	11360 11460# 14750#	500# 640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta^{-1})$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
78	Ni	28	8400#	720#	*		-16720#	850#	23590#	600#	*		6660#	620#
, 0	Cu	29	9660	500	34570#	780#	-14100#	710#	19210	500	-30770#	780#	6220	500
	Zn	30	11322.9	2.4	30430#	400#	-11450#	200#	14379	4	-27970#	500#	438	3
	Ga	31	13551.9	2.7	27308	7	-10125	6	9111	10	-22370#	150#	-564.4	1.9
	Ge	32	14792	4	24137	4	-8530	4	5164	4	-20362	4	-6017	4
	As	33	16668	10	21098	10	-7192	10	635	10	-14114	10	-6289	10
	Se	34	17916.63	0.18	18391.00	0.18	-6028.42	0.18	-2847.67	0.26	-13102.05	0.19	-11862.5	2.8
	Br	35	19306	10	15739	4	-5017	4	-6517	5	-6825	4	-11354	4
	Kr	36	21307	4	13504.3	0.3	-4390.0	0.3	-11004	7	-6867.8	0.3	-17419.1	1.3
	Rb	37	22599	3	11224	10	-4072	7	-14760#	300#	-990	4	-17203	9
	Sr	38	25070	40	8738	8	-3267	8	-22320#	400#	-293	8	-24810#	200#
	Y	39	29840#	420#	6270#	300#	-2680#	300#	*	10011	5370#	300#	-28210#	500#
	Zr	40	*	12011	1180#	400#	-2450#	410#	*		9670#	400#	*	20011
79	Ni	28	6910#	780#	*		-16360#	850#	25860#	600#	*		8860#	780#
	Cu	29	9260#	340#	35300#	670#	-14520 #	580#	20810#	300#	*		7670#	300#
	Zn	30	10785.7	3.0	31210#	500#	-11830 #	300#	16090	40	-26830 #	600#	2202.3	2.9
	Ga	31	12698	3	28500#	150#	-10501.3	3.0	11088	6	-25340	500	1243	4
	Ge	32	14460	40	25320	40	-9390	40	6390	40	-19330	40	-4780	40
	As	33	15862	6	22222	6	-7596	6	2432	5	-17219	6	-4681	5
	Se	34	17460.60	0.21	19282.54	0.23	-6485.41	0.23	-1475	3	-11344	4	-10537	4
	Br	35	18975.9	3.0	16729.7	1.8	-5458.8	1.3	-5265.0	2.4	-10540	10	-9961.1	1.1
	Kr	36	20415	4	14421	3	-4698	3	-8965	9	-4705	3	-15578	5
	Rb	37	22115.1	2.5	12146	4	-4121	5	-12990	80	-4640	4	-15700	8
	Sr	38	23816	12	9885	9	-3578	12	-18710 #	300#	1412	8	-21380 #	300#
	Y	39	27520#	220#	7570	80	-3020	80	-26170 #	510#	1830	80	-25040 #	410#
	Zr	40	30870#	500#	3550#	300#	-2580 #	370#	*		9120#	300#	*	
	Nb	41	*		-210#	540#	-2260#	580#	*		13230#	580#	*	
80	Ni	28	4880#	920#	*		*		29020#	700#	*		11040#	760#
	Cu	29	7850#	640#	*		-14110#	720#	23020#	400#	*		9160#	400#
	Zn	30	10308	3	32340#	600#	-12440 #	400#	17887	3	-31370 #	600#	2828	3
	Ga	31	11660	3	29300	500	-10673	7	12991	4	-24770 #	300#	2230	40
	Ge	32	13816	4	26630.0	2.8	-9657.2	2.5	8224.2	2.3	-23392	3	-3971	6
	As	33	15540	10	23086	4	-8343	4	3675	3	-16956	4	-4368	3
	Se	34	16876.1	1.0	20475	4	-6971.5	1.0	133.9	1.1	-15520	40	-9762.7	0.3
	Br	35	18579	4	17650	10	-6022.5	1.3	-3713.5	2.1	-9542	5	-9518	3
	Kr	36	19857.7	0.8	15445.3	0.7	-5066.3	0.7	-7582	4	-9264.9	0.7	-15161.7	2.3
	Rb	37	21383	4	13301	4	-4311	10	-11027	7	-3396.4	2.1	-14770	9
	Sr	38	23280	8	10711	3	-3723	5	-15950#	300#	-3158	5	-20560	80
	Y	39	25120#	300#	8791	7	-3094	6	-22730 #	400#	2366	7	-22450 #	300#
	Zr	40	29650#	500#	5760#	300#	-2540#	300#	*		3830#	300#	-30780#	580#
	Nb	41	*		830#	500#	-2370#	500#	*		12110#	410#	*	
81	Cu	29	5820#	580#	* 22210#	600#	-12830# 11830#	780#	26210#	500#	* 20860#	700#	12160#	500#
	Zn	30	8910	6	33210#	600#	-11830#	500#	20092	5	-30860# 28720#	700#	4953	6
	Ga	31	11223	4	30470#	300#	-11430# 0027_4	150#	14905	4	-28720# 21022	400#	3836	4
	Ge	32	12910	40	27437	3	-9927.4	2.8	10097.3	2.3	-21932 20500	3	-2149	4
	As	33	15040	6	24564	3	-8966 7601.0	4	5443.7	2.8	-20599	4	-2845.2	2.8
	Se	34	16614.2	1.0	21440	40	-7601.0	1.0	1307.2	1.5	-14142.7	2.3	-8571.3	0.5
	Br	35	18051.6	1.4	18919	5	-6485.6	2.0	-2520	5	-13052	3	-8155.0	1.2
	Kr	36	19397	4	16356.7	1.1	-5521.6	1.1	-6168	3	-7225.7	1.4	-13592.0	2.2
	Rb	37	20796	5	13967	5	-4647	6	-9744	7	-6857	5	-13217	6
	Sr	38	22194	9	11664	5	-3784	4	-14070	90	-924	3	-18451	7
	Y	39	24040	80	9488	6	-3307	6	-19350#	400#	-826	6	-19420#	300#
	Zr	40	26830#	310#	6560	90	-2080	90 450#	-25710#	510#	5560 7500#	90	-27110#	410#
	Nb	41	30850#	640#	3120#	410#	-2350# 2140#	450#	*		7500#	400#	*	
	Mo	42	*		-440#	580#	-2140#	640#	*		15320#	580#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)		$Q(4\beta)$	-)	Q(d	,α)	Q(p,	α)	Q(n, 0)	α)
82	Cu	29	1970#	780#	*		44790#	600#	8020#	920#	7120#	850#	*	
02	Zn	30	4186	6	18180#	500#	35280	3	4600#	400#	4290#	300#	-9100#	600#
	Ga	31	3374	4	14020	6	24567.9	2.6	9429	4	5366	3	-5540#	300#
	Ge	32	7195	3	15076	4	15176.7	2.2	4519	4	1996.7	2.9	-6336	3
	As	33	5643	5	11103	4	6082	5	10141	4	4290	40	-1911	4
	Se	34	9276.2	1.0	12349.5	2.7	-1584	6	5331	3	906	5	-2420	40
	Br	35	7592.94	0.12	8398.6	1.4	-1364 -9435	6	10971.6	1.4	3282.9	1.0	1784	40 5
	Kr	36	10966.9	1.1	9903.7	1.4	-9433 -16960	11	6008.0	1.4	340.3	1.0	972.08	0.22
	Rb	37	8802		5781	3	-10900 -24100#	300#	12416	3	3119	5	5527	
				6										3 7
	Sr	38	12553	7	7842	8	-35640#	400#	6876	6	-343	6	4079	1
	Y	39	10422	8	3825	6	*		12958	6	2277	10	8385	6
	Zr	40	14240	90	5207	12	*		8228	13	-950	80	7492	14
	Nb	41	13800#	500#	1920#	310#	*		12980#	420#	-460#	420#	11370#	310#
	Mo	42	16690#	640#	1300#	570#	*		8760#	570#	-3860#	640#	12050#	500#
83	Zn	30	2050#	300#	18260#	670#	39050#	300#	5840#	580#	4770#	500#	-8010#	760#
	Ga	31	4398	4	14232	4	29757	5	7653	6	7256	4	-7410#	400#
	Ge	32	3633	3	15335	3	19014.2	2.4	7362	4	3111	4	-3681	4
	As	33	7635	5	11543	4	9401	4	7333	3	4730	3	-4799	4 4
	Se	34	5818	3	12524	5	1457	7	7904	4	1738	5	-159	4
	Br	35	9586	4	8709	4	-6808	19	8086	4	3610	4	-1153	5
	Kr	36	7470.16	0.01	9780.9	1.0	-14079	6	8697.2	1.0	762.4	1.0	3415.2	1.0
	Rb	37	10954	4	5767.8	2.3	-21510	150	9336.4	2.6	3686.8	2.4	2464.8	2.5
	Sr	38	8859	9	7899	7	-30460 #	400#	9370	8	242	7	6742	7
	Y	39	12213	19	3485	20	-40890#	500#	10033	19	2970	19	5616	19
	Zr	40	10352	13	5137	8	*		10512	8	101	9	10046	7
	Nb	41	13540#	340#	1210	150	*		10610	180	1670#	340#	9240	150
	Мо	42	14040#	570#	1540#	500#	*		10730#	570#	-3060#	570#	13670#	500#
	Tc	43	*	5.0	-1760#	640#	*		11140#	710#	*	2,0	12750#	640#
34	Zn	30	3710#	500#	*		44020#	400#	4100#	720#	4360#	640#	*	
,-	Ga	31	2900#	200#	15090#	360#	33700#	200#	8940#	200#	6980#	200#	-7020#	540#
	Ge	32	5243	4	16180	300π 4	24291	3	5493	4	4344	5	-6302	6
	As	33	4256	4	12166	4	13905	4	10272	4	5302	4	-0502 -2579	5
		34					4701.8						-2379 -4009.6	2.8
	Se		8679	4	13567	3		2.3	4869	4	1450	3		
	Br	35	6841	26	9732	26	-3889	26	10522	26	3470	26	397 -403.9	26
	Kr	36	10520.02	0.01	10715	4	-11018	5	5770.1	1.0	401.8	1.0		1.0
	Rb	37	8760	3	7057.3	2.2	-18540	13	11543.6	2.2	2801.3	2.4	3864.5	2.4
	Sr	38	11923	7	8867.9	2.6	-26480#	300#	6249	3	-329	5	2693.0	1.6
	Y	39	9760	19	4386	8	-36190 #	400#	12826	7	2498	5	7209	7
	Zr	40	13581	8	6505	19	*		7353	8	-845	8	5753	6
									13123	17	1110	90	10141	14
	Nb	41	11730	150	2596	15	*							
	Nb Mo	42	11730 15900#	150 500#	3900#	330#	*		8630#	420#	-2950 #	500# 640#	8940# 14310#	310#
	Nb Mo Tc	42 43	11730 15900# 14450#	150 500# 640#	3900# -1350#		*		8630# 13380#		-2950# -1090#	640#	14310#	
35	Nb Mo Tc Zn	42 43 30	11730 15900#	150 500# 640# 640#	3900# -1350# *	330#	* * 47180#	500#	8630#	420#	-2950 #			310#
35	Nb Mo Tc	42 43 30 31	11730 15900# 14450# 1370# 3830#	150 500# 640#	3900# -1350#	330# 570# 500#	* 47180# 38730#	500# 300#	8630# 13380# * 7150#	420#	-2950# -1090# 4950# 7330#	640#	14310#	310#
5	Nb Mo Tc Zn	42 43 30 31 32	11730 15900# 14450# 1370#	150 500# 640# 640#	3900# -1350# *	330# 570#	* 47180# 38730# 28357		8630# 13380# * 7150# 6845	420# 570#	-2950# -1090# 4950#	640# 780#	* -8880# -5163	310# 570#
5	Nb Mo Tc Zn Ga	42 43 30 31	11730 15900# 14450# 1370# 3830#	150 500# 640# 640# 360#	3900# -1350# * 15210#	330# 570# 500#	* 47180# 38730# 28357 18978	300#	8630# 13380# * 7150#	420# 570# 420#	-2950# -1090# 4950# 7330#	640# 780# 300#	14310# * -8880#	310# 570# 670#
5	Nb Mo Tc Zn Ga Ge	42 43 30 31 32	11730 15900# 14450# 1370# 3830# 3046	150 500# 640# 640# 360# 5	3900# -1350# * 15210# 16330#	330# 570# 500# 200#	* 47180# 38730# 28357	300# 4	8630# 13380# * 7150# 6845	420# 570# 420# 5	-2950# -1090# 4950# 7330# 4671	640# 780# 300# 4	* -8880# -5163	310# 570# 670# 5 4 3
5	Nb Mo Tc Zn Ga Ge As	42 43 30 31 32 33	11730 15900# 14450# 1370# 3830# 3046 5407	150 500# 640# 640# 360# 5 4	3900# -1350# * 15210# 16330# 12330	330# 570# 500# 200# 4	* 47180# 38730# 28357 18978	300# 4 3	8630# 13380# * 7150# 6845 8498	420# 570# 420# 5 4	-2950# -1090# 4950# 7330# 4671 7090	780# 300# 4 4	* -8880# -5163 -4612	310# 570# 670# 5 4 3
5	Nb Mo Tc Zn Ga Ge As Se	42 43 30 31 32 33 34	11730 15900# 14450# 1370# 3830# 3046 5407 4537	150 500# 640# 640# 360# 5 4	3900# -1350# * 15210# 16330# 12330 13849	330# 570# 500# 200# 4 4	* 47180# 38730# 28357 18978 8690	300# 4 3 4	8630# 13380# * 7150# 6845 8498 7966	420# 570# 420# 5 4 4	-2950# -1090# 4950# 7330# 4671 7090 2556	780# 300# 4 4 5	* -8880# -5163 -4612 -1352	310# 570# 670# 5 4
5	Nb Mo Tc Zn Ga Ge As Se Br Kr	42 43 30 31 32 33 34 35 36	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3	150 500# 640# 640# 360# 5 4 3 26 2.0	3900# -1350# * 15210# 16330# 12330 13849 9917 10986	330# 570# 500# 200# 4 4 4 26	* 47180# 38730# 28357 18978 8690 -733 -8305	300# 4 3 4 19 7	* 7150# 6845 8498 7966 7476 8244	420# 570# 420# 5 4 4 4 4	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4	780# 300# 4 4 5 3 2.2	* -8880# -5163 -4612 -1352 -2824 1760.0	310# 570# 670# 5 4 3 5 2.1
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb	42 43 30 31 32 33 34 35 36 37	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7	150 500# 640# 640# 360# 5 4 3 26 2.0 2.2	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97	330# 570# 500# 200# 4 4 4 26 a	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888	300# 4 3 4 19 7 4	* 7150# 6845 8498 7966 7476 8244 8534.11	420# 570# 420# 5 4 4 4 4 0.01	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51	780# 300# 4 4 5 3 2.2 0.01	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7	310# 570# 670# 5 4 3 5 2.1 1.0
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb Sr	42 43 30 31 32 33 34 35 36 37 38	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7 8525	150 500# 640# 640# 5 4 3 26 2.0 2.2 3	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97 8633	330# 570# 500# 200# 4 4 4 26 a 4	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888 -23594	300# 4 3 4 19 7 4 16	* 7150# 6845 8498 7966 7476 8244 8534.11 8678	420# 570# 420# 5 4 4 4 4 0.01	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51 -51	780# 300# 4 4 5 3 2.2 0.01	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7 5134.9	310# 570# 670# 5 4 3 5 2.1 1.0 2.8
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb Sr	42 43 30 31 32 33 34 35 36 37 38 39	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7 8525 12019	150 500# 640# 640# 5 4 3 26 2.0 2.2 3 19	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97 8633 4482	330# 570# 500# 200# 4 4 4 26 a 4 19	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888 -23594 -31990#	300# 4 3 4 19 7 4 16 400#	* 7150# 6845 8498 7966 7476 8244 8534.11 8678 9666	420# 570# 420# 5 4 4 4 4 0.01 4 20	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51 -51 3032	780# 300# 4 4 5 3 2.2 0.01 4 20	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7 5134.9 3992	310# 570# 670# 5 4 3 5 2.1 1.0 2.8 19
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb Sr Y	42 43 30 31 32 33 34 35 36 37 38 39 40	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7 8525 12019 9825	150 500# 640# 640# 5 4 3 26 2.0 2.2 3 19 8	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97 8633 4482 6570	330# 570# 500# 200# 4 4 26 a 4 19 8	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888 -23594 -31990# -42230#	300# 4 3 4 19 7 4 16	8630# 13380# * 7150# 6845 8498 7966 7476 8244 8534.11 8678 9666 9741	420# 570# 420# 5 4 4 4 4 0.01 4 20 20	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51 -51 3032 -247	780# 300# 4 4 5 3 2.2 0.01 4 20 8	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7 5134.9 3992 8481	310# 570# 670# 5 4 3 5 2.1 1.0 2.8 19
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb	42 43 30 31 32 33 34 35 36 37 38 39 40 41	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7 8525 12019 9825 13132	150 500# 640# 640# 5 4 3 26 2.0 2.2 3 19 8 14	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97 8633 4482 6570 2147	330# 570# 500# 200# 4 4 26 a 4 19 8 7	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888 -23594 -31990# -42230# *	300# 4 3 4 19 7 4 16 400#	* 7150# 6845 8498 7966 7476 8244 8534.11 8678 9666 9741 10343	420# 570# 420# 5 4 4 4 4 0.01 4 20 20 8	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51 -51 3032 -247 2216	780# 300# 4 4 5 3 2.2 0.01 4 20 8 12	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7 5134.9 3992 8481 7431	310# 570# 670# 5 4 3 5 2.1 1.0 2.8 19 9 7
5	Nb Mo Tc Zn Ga Ge As Se Br Kr Rb Sr Y	42 43 30 31 32 33 34 35 36 37 38 39 40	11730 15900# 14450# 1370# 3830# 3046 5407 4537 8864 7112.3 10479.7 8525 12019 9825	150 500# 640# 640# 5 4 3 26 2.0 2.2 3 19 8	3900# -1350# * 15210# 16330# 12330 13849 9917 10986 7016.97 8633 4482 6570	330# 570# 500# 200# 4 4 26 a 4 19 8	* 47180# 38730# 28357 18978 8690 -733 -8305 -15888 -23594 -31990# -42230#	300# 4 3 4 19 7 4 16 400#	8630# 13380# * 7150# 6845 8498 7966 7476 8244 8534.11 8678 9666 9741	420# 570# 420# 5 4 4 4 4 0.01 4 20 20	-2950# -1090# 4950# 7330# 4671 7090 2556 3882 882.4 3288.51 -51 3032 -247	780# 300# 4 4 5 3 2.2 0.01 4 20 8	* -8880# -5163 -4612 -1352 -2824 1760.0 977.7 5134.9 3992 8481	310# 570# 670# 5 4 3 5 2.1 1.0 2.8 19

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2r	1)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon_{ m I}$))	$Q(\beta^-$	n)
82	Cu	29	5260#	720#	*		*		27610#	600#	*		12810#	600#
	Zn	30	6808	4	34260#	700#	-10850 #	600#	23101	4	*		7243	4
	Ga	31	9850	4	31310#	400#	-10860	500	17175	4	-28800#	500#	5290	3
	Ge	32	12022	3	28344	3	-10356.7	3.0	12178.8	2.3	-26504	6	-953	3
	As	33	14034	5	25460	5	-8824	4	7393	4	-19766	5	-1788	4
	Se	34	15977.1	0.9	22636.5	2.1	-8157	4	2997.9	0.5	-18591.2	2.1	-7688.2	1.1
	Br	35	17752.3	1.4	19862	3	-7107	10	-1311	3	-12254.3	2.8	-7873.8	0.5
	Kr	36	18841.1	0.7	17410.3	1.0	-5990.76	0.18	-4582	6	-11491.8	1.0	-13206	5
	Rb	37	20155	4	14877	3	-5161	5	-8124	6	-5500	3	-12731	4
	Sr	38	21841	7	12695	6	-4257	6	-12379	13	-5603	6	-18368	8
	Y	39	23059	8	10467	6	-3554	6	-15970 #	300#	104	7	-18680	90
	Zr	40	25410#	300#	7898	12	-2882	13	-23260 #	400#	608	12	-25340 #	400#
	Nb	41	29810#	500#	5520#	300#	-2340 #	420#	*		6330#	300#	-28410 #	580#
	Mo	42	*		590#	500#	-1950#	570#	*		9800#	410#	*	
83	Zn	30	6230#	300#	*		-11150#	670#	24690#	300#	*		8570#	300#
	Ga	31	7772	4	32420#	500#	-9940#	300#	20412	4	-31230 #	600#	8087	3
	Ge	32	10827	3	29355	6	-9969	3	14364	4	-25951	4	1058	4
	As	33	13279	4	26619	4	-9547	3	9344	5	-24028	4	-146.8	2.8
	Se	34	15094	3	23627	4	-8240	40	4650	3	-17214	4	-5913	3
	Br	35	17179	4	21058	5	-7803	7	57	4	-16197	5	-6493	4
	Kr	36	18437.1	1.1	18179.6	1.0	-6498.09	0.22	-3193	7	-9685.7	0.5	-11874	3
	Rb	37	19757	5	15671.5	2.5	-5427.5	2.5	-6865	19	-8860.9	2.5	-11132	6
	Sr	38	21412	8	13679	7	-4780	8	-10886	9	-3495	7	-16805	9
	Y	39	22635	19	11327	19	-3828	19	-14650	150	-3307	19	-16646	22
	Zr	40	24590	90	8961	7	-2860	11	-19570#	400#	2809	9	-21890#	300#
	Nb	41	27340#	430#	6420	150	-2160	170	-26240 #	520#	3220	150	-25260 #	430#
	Mo	42	30730#	640#	3460#	410#	-2000#	500#	*		10000#	400#	*	
	Tc	43	*		-460#	640#	-2090#	710#	*		13480#	580#	*	
84	Zn	30	5760#	400#	*		-11730 #	810#	26220#	400#	*		9260#	400#
	Ga	31	7300#	200#	33350#	630#	-10310#	450#	21770#	200#	*		8820#	200#
	Ge	32	8876	4	30412	4	-8925	4	17799	4	-29150#	300#	3450	4
	As	33	11891	5	27501	4	-9055	4	11930	26	-23885	4	1416	4
	Se	34	14496.5	2.0	25110.6	3.0	-8837.3	2.8	6491.6	2.0	-22260	3	-5005	4
	Br	35	16427	26	22256	26	-7994	26	1976	26	-15403	26	-5864	26
	Kr	36	17990.18	a	19423.4	0.5	-7104.8	1.0	-1789.8	1.2	-14388	3	-11440.0	2.3
	Rb	37	19714	4	16838.2	2.4	-6294.9	2.4	-5865	5	-8034	4	-11033	7
	Sr	38	20782	6	14635.7	1.2	-5181.1	1.4	-9228	6	-7947.9	1.2	-16515	19
	Y	39	21973	7	12285	5	-4144	5	-12676	14	-2113	5	-16054	8
	Zr	40	23933	12	9990	8	-3535	6	-17250#	300#	-1913	9	-21940	150
	Nb	41	25270#	300#	7733	14	-2495	14	-23520 #	400#	3698	23	-22950#	400#
	Mo Tc	42 43	29940# *	500#	5120# 190#	300# 500#	-2240# -1710#	420# 570#	*		4450# 12570#	300# 430#	-30920# *	580#
					190#	300π	-1710#	370#			12570π	430π		
85	Zn	30	5080#	580#	*		*		27890#	500#	*		10790#	540#
	Ga	31	6740#	300#	*		-10850#	580#	23340#	300#	*		10230#	300#
	Ge	32	8290	4	31410#	300#	-9349	6	19290	5	-28480 #	400#	4659	5
	As	33	9662	4	28510	4	-7986	4	15386	4	-26390#	200#	4687	4
	Se	34	13216	4	26015	4	-8547	3	9067	3	-21554	4	-2702	26
	Br	35	15704	5	23484	4	-8467	4	3592	3	-20011	4	-4207	3
	Kr	36	17632.3	2.0	20718	4	-7516.3	2.2	-377	3	-12821.6	2.8	-9792.7	3.0
	Rb	37	19239.3	2.3	17732	4	-6615.2	1.0	-4325	19	-11673	26	-9589.1	1.2
	Sr	38	20448	7	15690.6	2.8	-5832	3	-7928	7	-5952.9	2.8	-15280	5
	Y	39	21779	27	13349	19	-4810	20	-11562	19	-5372	19	-14492	20
	Zr	40	23406	9	10956	9	-4072	7	-15665	17	185	7	-20028	15
	Nb	41	24870	150	8652	19	-2992	7	-20430#	400#	326	6	-20180#	300#
	Mo	42	27310#	400#	6176	17	-2470	100	-26560#	500#	6623	17	-27880 #	400#
	Tc	43	30670#	640#	2870#	430#	-1910#	570#	*		8080#	400#	*	
	Ru	44	*		−810#	640#	-1630#	710#	*		15930#	580#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
86	Ga	31	2300#	500#	16140#	640#	41550#	400#	8560#	570#	7070#	500#	*	
00	Ge	32	4350	440	16840#	530#	33870	440	5400#	480#	4720	440	-7460#	530#
	As	33	3844	5	13128	5	23785	3	9897	5	6878	4	-4059	4
	Se	34	6161	4	14603	4	14019.9	2.5	6061	4	4030	4	-3880	3
	Br	35	5128	4	10508	4	3651	14	11026	4	4572	4	-317	4
	Kr	36	9856.7	2.0	11979	3	-5297	4	5228	26	612	4	-2279	2
														3 4
	Rb	37	8650.98	0.20	8555.6	2.0	-13613	6	10403.15	0.20	2107.70	0.20	1913	4
	Sr	38	11491.1	2.8	9644.73	0.01	-20413	4	5946.7	2.2	-588.4	2.3	1113.95	0.0
	Y	39	9512	24	5469	14	-27710#	300#	12077	14	2379	16	5434	14
	Zr	40	12865	7	7416	19	-38200 #	400#	6636	6	-899	19	4475	8
	Nb	41	10926	7	3248	8	*		12998	8	1642	8	8718	19
	Mo	42	14672	16	5120	6	*		7819	14	-1690	150	7448	7
	Tc	43	13790#	500#	1350#	300#	*		13310#	420#	-370#	500#	11630#	340#
	Ru	44	16890#	640#	1210#	570#	*		8640#	570#	-3590#	640#	12220#	570#
37	Ga	31	3240#	640#	*		44640#	500#	6690#	710#	7540#	640#	*	
	Ge	32	2750#	530#	17290#	500#	36630#	300#	6480#	420#	4870#	360#	-6500#	500#
	As	33	4727	5	13510	440	28979.9	3.0	8216	5	7395	4	-5880#	200#
	Se	34	3994	3	14753	4	18453.9	2.2	7474	4	4291	4	-2631	4
	Br	35	6331	4	10677	4	9127	3	9233	4	6920	4	-2392	4
	Kr	36	5515.17	0.25	12366	3	-1362	4	8577	3	1938	26	884.6	2.0
	Rb	37	9922.11	0.20	8621.10	0.01	-10723	7	7593.3	2.0	2705.60	0.01	-1168	26
	Sr	38	8428.29	0.01	9422.04	0.20	-17995.3	2.9	7998.07	0.01	-257.0	2.2	3205.67	а
	Y	39	11807	14	5784.3	1.1	-25328	4	8796	3	2495.2	1.7	2387.0	2.5
	Zr	40	9449	5	7353	15	-33830#	400#	9206	19	-589	6	6949	4
	Nb	41	12812	9	3194	8	-33630π *	1 00π	10012	9	2411	9	5666	8
			10846	5						5				
	Mo	42			5040	6	*		10106 10531		-802	13	10183	6
	Tc Ru	43 44	14190# 13820#	300# 570#	869 1240#	6 500#	*		10551	16 570#	1340# -2960#	300# 570#	9175 14300#	14 500#
8	Ge	32	4130#	500#	18180#	640#	39550#	400#	4650#	570#	4580#	500#	-9260#	640#
0	As	33	3170#	200#	13930#	360#	31890#	200#	9390#	480#	7270#	200#	-5220# -5220#	360#
	Se	33 34	5529	4	15555	300# 4	24037		9390# 5789	480# 5	4169	200# 5	-5220# -5114	
								3						5
	Br	35	4896	4	11579	4	13583	4	10498	4	6562	4	-1880	4
	Kr	36	7053.1	2.6	13089	4	3938	6	6652	4	3748	4	-1631	4
	Rb	37	6082.52	0.16	9188.44	0.29	-6440	60	11367.48	0.16	3735.4	2.0	1613	3
	Sr	38	11112.87	0.01	10612.80	0.01	-15235	4	5536.18	0.20	-890.23	0.01	-794.9	2.0
	Y	39	9352.0	1.9	6707.9	1.5	-22620	150	10934.9	1.5	1668	3	3514.7	1.5
	Zr	40	12353	7	7899	6	-29290 #	300#	6365	15	-923	20	3121	6
	Nb	41	10370	60	4120	60	-39310#	400#	12510	60	1870	60	7310	60
	Mo	42	13873	5	6101	8	*		7158	7	-1543	6	6135	7
	Tc	43	12060	150	2090	150	*		13140	150	690	150	10240	150
	Ru	44	16890#	500#	3940#	300#	*		7940#	420#	-3630 #	500#	8820#	300#
	Rh	45	*		-1370 #	570#	*		13620#	570#	-1050 #	640#	14640#	570#
9	Ge	32	1660#	570#	*		42810#	400#	6230#	640#	5210#	570#	*	
	As	33	4150#	360#	13950#	500#	34910#	300#	7990#	420#	7470#	530#	-7070#	500#
	Se	34	3180	5	15560#	200#	27217	4	7336	5	4834	5	-3950	440
	Br	35	5630	5	11679	5	19434	4	8863	4	7093	4	-3666	5
	Kr	36	4916	3	13109	4	8340	4	8067	4	3961	4	-386	3
	Rb	37	7175	5	9310	6	-1087	24	9708	5	6417	5	-434	6
	Sr	38	6358.72	0.09	10888.99	0.18	-1087 -11194	4	9099.58	0.09	1402.03	0.22	2703.05	0.0
	Y	39	11480.7	2.2	7075.7	1.6	-20314	4	7882.5	1.6	1678.8	1.6	685.0	1.6
	Zr	40	9318	6	7866 4285	3	-26620# 24770#	300#	8854	3	-728	14	5294	3
	Nb	41	12520	60	4285	24	-34770#	360#	9433	24	2208	24	4304	28
	Mo	42	10400	5	6130	60	*		9570	8	-1017	7	8600	5
	Tc	43	13780	150	1997	5	*		10201	5	1579	5	7386	7
	Ru	44	11990#	420#	3870#	330#	*		10140#	300#	-1830 #	420#	11500#	300#
	Rh	45	17070#	540#	-1190#	200#	*		10370#	540#	-1230#	540#	11360#	470#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

Section Sect	A	Elt.	Z	S(21	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
New Color	86	Ga	31	6140#	450#	*		-11190#	720#	24880#	400#	*		10970#	400#
New Part							590#						670#		
Second 1969 34 1969 36 2933 4 -7513 3 12762_5 2.5 -24660 4 -1 4 4 4 5 4 4 7952 5 7115 3 -19732 4 -2223 4 4 4 7 7 7 7 7 7 7															
Ref 35 13992 26															
R															
Record Section Process Section Record Record															
S															
Y															
No. 14 2085 14 9818 7 -4945 8 -17560 3000 1419 20 -1966 17 18 18 18 18 18 18 18															
No														-19761	
March Marc															
Ru															
Ru															
Record R					200										20011
Se	87	Ga		5540#	580#	*		*			500#	*		12080#	670#
Sec. 34 10155 3 27881 4 -7875 3 142834 2.3 -24320 440 1135 4		Ge	32											6810#	
Ref															
Rb 37 18573.09 0.01 20600 3 -8009 4 -1579.4 1.1 -1625.5 3 -8166.02 0.01		Se													4
Re															3
Sr 38 19919.4 2.8 17977.7 2.0 -7314.35 0.01 -5533 4 -8903.37 a -13668 14 Y 39 21319 19 15429.0 1.1 -6372.7 2.6 -9144 7 -7560.4 1.1 -13121 4 Nb 41 23737.7 8 10610 20 -4094 20 -16184 8 -180 16 -17836 8 Mo 42 23518 16 8288 6 -2560 150 * 4155 7 -25990# 400# Tc 43 27980# 400# 2590# 400# -1610# 570# 23750# 400# * 7410# 400# 88 Ge 23 6880# 590# * -10630# 570# 23750# 400# * 7410# 400# 88 30 200# 280# 200# 22700# 400#															
Y 39			37												
No. No.					2.8										
Nb											7				4
Mo															7
TC 43 27980# 400# 5988 6 -2560 150 * 4155 7 -2590# 400# Ru 44 30710# 640# 2590# 400# -1610# 570# 23750# 400# * 7410# 400# As 33 7900# 200# 31220# 450# -9060# 280# 20000# 200# -28760# 540# 7640# 200# Se 34 9524 4 29060 440 -8161 5 1807 4 -27100# 300# 1936 5 Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.6 0.26 21555 3 -7251 <td></td>															
Ru 44 30710# 640# 2590# 400# -1610# 570# * 11300# 400# * 400# * 88 Ge 32 6880# 590# * -10630# 570# 23750# 400# * 7410# 400# As 33 7900# 200# 42906 440 -8161 5 15807 4 -27100# 300# 1936 5 Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251 26 16900.0 1.5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 1 16130.0 1.5										-21370 #	400#				
88 Ge 32 6880# 590# * -10630# 570# 23750# 400# * 7410# 400# As 33 7900# 200# 31220# 450# -9060# 280# 20000# 200# -28760# 540# 7640# 200# Se 34 9524 4 29060 440 -8161 5 15807 4 -27100# 300# 1936 5 Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251.2 26 1690.0 1.5 -16006 3 -5800.25 0.16 Kr 38 19541.16 0.01 19233.89										*				-25990#	400#
As 33 7900# 200# 31220# 450# -9060# 280# 2000# 200# -28760# 540# 7640# 200# Se 34 9524 4 29060 440 -8161 5 15807 4 -27100# 300# 1936 5 Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251 26 1690.0 1.5 -16006 3 -5800.25 0.16 Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 1-12974.6 1.1 Y 30 21802 6 -13023		Ru	44	30710#	640#	2590#	400#	-1610#	570#	*		11300#	400#	*	
Se 34 9524 4 29060 440 -8161 5 15807 4 -27100# 300# 1936 5 Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251 26 1690.0 1.5 -16006 3 -5800.25 0.16 Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 136	88														
Br 35 11226 4 26332 5 -7287 4 11893 3 -22387 4 1922 3 Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251 26 1690.0 1.5 -16006 3 -5800.25 0.16 Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 13684 5 -5404 6 -10942 7 -6038 5 -17826 9 Nb 41 23180 60 11369															
Kr 36 12568.3 2.6 23766 4 -6168 3 8230.3 2.6 -20554 3 -3164.8 2.6 Rb 37 16004.64 0.26 21555 3 -7251 26 1690.0 1.5 -16006 3 -5800.25 0.16 Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 13684 5 -5404 6 -10942 7 -6038 5 -17826 9 Nb 41 23180 60 11470 60 -4700 60 -14490 160 -440 60 -17360 60 Mo 42 24719 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Rb 37 16004.64 0.26 21555 3 -7251 26 1690.0 1.5 -16006 3 -5800.25 0.16 Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 13684 5 -5404 6 -10942 7 -6038 5 -17826 9 Nb 41 23180 60 11470 60 -4700 60 -14490 160 -440 60 -17360 60 Mo 42 24719 5 9295 5 -3690 7 -18350# 300# -628 6 -23068 6 Tc 43 26250# 340# 71															3
Sr 38 19541.16 0.01 19233.89 a -7907.20 a -4293 5 -14501.07 0.25 -12974.6 1.1 Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 13684 5 -5404 6 -10942 7 -6038 5 -17826 9 Nb 41 23180 60 11470 60 -4700 60 -14490 160 -440 60 -17360 60 Mo 42 24719 5 9295 5 -3690 7 -18350# 300# -628 6 -23068 6 Tc 43 26250# 340# 7130 150 -2890 150 -24820# 430# 4900 150 -24230# 430# Rh 45 * -1094 40# </td <td></td>															
Y 39 21159 14 16130.0 1.5 -6965.0 2.7 -8130 60 -6990.2 1.5 -13023 4 Zr 40 21802 6 13684 5 -5404 6 -10942 7 -6038 5 -17826 9 Nb 41 23180 60 11470 60 -4700 60 -14490 160 -440 60 -17360 60 Mo 42 24719 5 9295 5 -3690 7 -18350# 300# -628 6 -23068 6 Tc 43 26250# 340# 7130 150 -2890 150 -24820# 430# 4900 150 -24230# 430# Ru 44 30710# 500# 4810# 300# -2590# 420# * 5260# 400# * 8920# 430# Rh 45 * -130# 500#															
Zr							a								
Nb															
Mo 42 24719 5 9295 5 -3690 7 -18350# 300# -628 6 -23068 6 Tc 43 26250# 340# 7130 150 -2890 150 -24820# 430# 4900 150 -24230# 430# Ru 44 30710# 500# 4810# 300# -2590# 420# * 5260# 300# * Rh 45 * -130# 500# -1590# 570# * 13540# 400# * 89 Ge 32 5790# 500# * -10920# 640# 25260# 400# * 8920# 450# As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400#<															
Tc 43 26250# 340# 7130 150 -2890 150 -24820# 430# 4900 150 -22430# 430# Ru 44 30710# 500# 4810# 300# -2590# 420# * 5260# 300# * Rh 45 * -130# 500# -1590# 570# * 13540# 400# * 89 Ge 32 5790# 500# * -10920# 640# 25260# 400# * 8920# 450# As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200#<							60								60
Ru 44 30710# 500# 4810# 300# -2590# 420# * 5260# 300# * 89 Ge 32 5790# 500# * -10920# 640# 25260# 400# * 8920# 450# As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58															
Rh 45 * -130# 500# -1590# 570# * 13540# 400# * 89 Ge 32 5790# 500# * -10920# 640# 25260# 400# * 8920# 450# As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -											430#				430#
As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#					500#										
As 33 7320# 300# 32130# 580# -9370# 420# 21480# 300# * 9020# 300# Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#	89	Ge	32	5790#	500#	*		-10920#	640#	25260#	400#	*		8920#	450#
Se 34 8709 4 29490# 300# -8294 5 17543 4 -26140# 400# 3652 5 Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 <td>0,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>580#</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0,						580#								
Br 35 10525 5 27234 4 -7510 4 13438 6 -24840# 200# 3346 4 Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#													400#		
Kr 36 11968.9 2.2 24688 3 -6547 3 9673.2 2.1 -19941 4 -1998.1 2.1 Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400															
Rb 37 13257 5 22399 6 -5562 6 5996 6 -18285 6 -1862 5 Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098															
Sr 38 17471.58 0.09 20077.44 0.26 -7153.6 2.0 -1333 3 -13806.7 2.6 -9981.3 1.5 Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Y 39 20832.6 2.0 17688.5 1.6 -7965.9 1.6 -7083 24 -12388.3 1.6 -12151 6 Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Zr 40 21671 5 14573 3 -6197 4 -9861 5 -4243 3 -16770 60 Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Nb 41 22893 25 12185 24 -5210 30 -13230 24 -3615 24 -16010 24 Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Mo 42 24273 5 10246 6 -4265 8 -16760# 300# 1325 7 -21400 150 Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Tc 43 25847 6 8098 8 -3540 6 -21530# 360# 1490 60 -21130# 300# Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
Ru 44 28880# 500# 5950# 300# -3180# 300# * 7140# 300# -29470# 500#															
											σουπ				
KD /13 - V		Rh	45	2000U# *	300m	2750#	360#	-3180# -2440#	540#	*		8530#	390#	-29470# *	500ff

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p, q)	α)	Q(n,	α)
90	Ge	32	3560#	640#	de		45740#	500#	-1-		4890#	710#	al.	
90		33	2600#	500#	* 14890#	570#	38030#	400#	* 9520#	570#	7610#	500#	* -6430#	640#
	As													
	Se	34	4880	330	16290#	450#	30150	330	5630#	380#	4680	330	-6080#	450#
	Br	35	3797	5	12297	5	22494	4	10595	5	7290	4	-2736	4
	Kr	36	6494.8	2.8	13974	4	13813.3	1.9	6468	4	3796	4	-2886.7	2.9
	Rb	37	5723	8	10118	7	3297	7	11038	7	6209	6	174	7
	Sr	38	7810.4	2.1	11525	6	-5776	4	7371.7	2.1	3513.7	2.1	407.8	2.1
	Y	39	6857.03	0.10	7574.0	1.6	-15769.4	1.9	12138.4	1.6	3250.1	1.6	3750.1	1.6
	Zr	40	11968	3	8353.2	1.6	-23889	4	6237.3	1.5	-890.1	1.1	1753.93	0.1
	Nb	41	10108	24	5075	5	-30960 #	300#	11678	6	1550	5	6003	4
	Mo	42	13229	5	6836	24	-40460#	400#	6710	60	-1434	8	4821	5
	Тс	43	11401	4	2999	4	*		12673	4	1024	3	8796	7
	Ru	44	14700#	300#	4778	5	*		7510	150	-2330	6	7647	5
	Rh	45	13910#	470#	730#	420#	*		13350#	420#	-1320#	500#	11640#	300#
				470#								300#		
	Pd	46	*		1140#	540#	*		7860#	570#	*		11460#	570#
1	As	33	3640#	570#	14960#	640#	40850#	400#	7540#	570#	8110#	570#	*	500 II
	Se	34	2850	540	16540#	590#	33070	430	6930#	530#	5000#	480#	-4800#	590#
	Br	35	5178	5	12600	330	25244	4	8596	5	7641	5	-4740#	200#
	Kr	36	4086.0	2.9	14263	4	16921.6	2.2	8011	4	4606	4	-1443	4
	Rb	37	6452	10	10075	8	8893	8	9502	8	6810	8	-1383	8
	Sr	38	5775	6	11576	8	-1443	8	8771	8	3821	5	1686	6
	Y	39	7928.6	2.4	7692.1	2.8	-10364.6	3.0	10568.5	1.8	6434.4	1.8	1904.1	1.9
	Zr	40	7194.35	0.15	8690.5	1.6	-19655.7	2.2	10523.6	1.6	1267.5	1.5	5672.45	0.1
	Nb	41	12048	4	5154.4	2.9	-28070#	300#	8948	4	1855	6	3307	3
	Mo	42	10108	7	6836	7	-36280#	400#	9127	24	-1170	60	7066	8
								400π						
	Tc	43	13333.3	2.6	3103	4	*		9739	5	1564	4	5830	60
	Ru	44	11427	4	4804.1	2.4	*		9866	4	-1690	150	10093	4
	Rh	45	14940#	420#	980#	300#	*		10400#	420#	630#	420#	8760#	330#
	Pd	46	14290#	570#	1520#	500#	*		10640#	540#	-4210#	570#	14060#	500#
2	As	33	2160#	640#	*		43790#	500#	8950#	710#	7610#	640#	*	
	Se	34	4220#	590#	17120#	570#	36140#	400#	5320#	570#	4940#	500#	-7350#	570#
	Br	35	3197	8	12940	430	28584	11	10280	330	7624	8	-3790#	300#
	Kr	36	5867	4	14951	4	19689.7	2.7	5942	4	4369	4	-4131	5
	Rb	37	5099	10	11087	7	11681	6	10898	6	6627	6	-852	7
	Sr	38	7287	6	12411	9	3941	3	7208	7	3709	6	-685	4
	Y	39	6537	9	8454	11	-5891	10	11842	9	6257	9	2542	11
	Zr	40	8634.78	0.09	9396.7	1.8	-14157.8	2.7	8745.8		4113.4		3396.39	0.1
										1.6		1.6		
	Nb	41	7887	3	5846.7	1.8	-23454	5	13030.0	1.8	3286	4	6901.5	2.4
	Mo	42	12671	6	7459.5	2.9	-32230#	300#	6564	3	-1319	24	3713	3
	Tc	43	11010	4	4006	7	-41800 #	500#	11958	5	953	5	7346	24
	Ru	44	14133	4	5604	4	*		7134.3	2.9	-2042	5	6360	5
	Rh	45	12500#	300#	2048	5	*		12596	6	130#	300#	10042	6
	Pd	46	16720#	500#	3300#	420#	*		7830#	420#	-3860 #	470#	9330#	420#
	Ag	47	*		-1510#	640#	*		13290#	640#	*		14380#	620#
3	Se	34	2060#	570#	17020#	640#	39370#	400#	6890#	570#	5480#	570#	-5850#	640#
	Br	35	4730	430	13460#	590#	31340	430	8400	610	7770	540	-5910#	590#
	Kr	36	3438	4	15192	7	22986.0	2.6	7682	4	4728	4	-2690	330
	Rb	37	5919	10	11140	8	14593	8	9065	8	7203	8	-2973	9
	Sr	38	5290	8	12602	10	6721	8	8370		4143		520	8
										11		10		
	Y	39	7482	14	8649	11	-621	11	10136	12	6585	11	784	12
	Zr	40	6734.3	0.4	9595	9	-9905.3	2.1	9940.1	1.9	4236.1	1.7	4472.5	2.2
	Nb	41	8830.9	2.0	6042.8	1.5	-18201	3	11393.5	1.5	6423.8	1.5	4927.6	2.2
	Mo	42	8069.81	0.09	7642.7	1.8	-27810 #	300#	10541.7	2.9	719	3	7611.87	0.2
	Tc	43	12752	3	4086.5	1.0	-37340 #	400#	9314	6	1430	4	4702	3
			10987	3	5580	4	*		9481	3	-1628.0	2.3	8602	4
	Ru	44	10207	3	3360		4		7401			2.3	0002	
	Ru Rh Pd	44 45 46	14084 12490#	5 430#	2000 3290#	4 300#	*		9939 10280#	3 420#	736 -2440#	5 430#	7359.3 11530#	2.8

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha)$)	$Q(2\beta)$	-)	$Q(arepsilon \mathrm{p}$)	$Q(eta^-$	n)
90	Ge	32	5230#	640#	*		*		26580#	600#	*		9510#	580#
	As	33	6750#	450#	*		-9680#	570#	22670#	400#	*		9590#	400#
	Se	34	8060	330	30240#	520#	-8830	550	19160	330	-29360 #	520#	4400	330
	Br	35	9427	5	27860#	200#	-7463	5	15364	7	-24490 #	300#	4464	4
	Kr	36	11411	3	25653	4	-6881	3	10988.9	2.8	-23256	4	-1318	6
	Rb	37	12898	6	23226	7	-6157	7	7130	7	-18379	7	-1227	6
	Sr	38	14169.1	2.1	20835	3	-5107.4	2.1	2824.4	2.1	-16701	3	-6311.1	1.4
	Y	39	18337.7	2.2	18463.0	1.6	-6172.0	1.6	-3833	4	-12071	6	-9689.8	2.8
	Zr	40	21286	5	15428.86	0.12	-6674.36	0.12	-8600	3	-9852.49	0.15	-16219	24
	Nb	41	22630	60	12940	4	-5803	15	-11937	3	-2242	4	-15718	5
	Mo	42	23629	5	11122	6	-4628	5	-15289	5	-2586	5	-20849	5
	Tc	43	25190	150	9130	60	-4016	6	-19030#	300#	2612	24	-20540 #	300#
	Ru	44	26690#	300#	6775	5	-3198	5	-25170 #	400#	2842	5	-27090#	360#
	Rh	45	30980#	500#	4600#	340#	-2550#	420#	*		8410#	300#	*	
	Pd	46	*		-50#	500#	-2360#	570#	*		11260#	500#	*	
91	As	33	6240#	500#	*		-10070#	640#	24210#	400#	*		10830#	520#
	Se	34	7730	430	31430#	590#	-8930#	530#	20390	430	-28650 #	660#	5350	430
	Br	35	8976	5	28890#	300#	-7914	5	16638	9	-27070#	400#	5781	4
	Kr	36	10581	3	26560	4	-6973	3	12678	6	-22460	330	319	7
	Rb	37	12175	9	24049	8	-6278	8	8606	8	-21034	8	132	8
	Sr	38	13586	5	21694	6	-5367	5	4244	5	-15982	6	-5229	6
	Y	39	14785.6	2.4	19217	6	-4178.4	1.8	287	3	-14276	7	-5650.1	1.8
	Zr	40	19163	3	16264.49	0.14	-5440.42	0.10	-5687	6	-9236.4	2.1	-13305	3
	Nb	41	22155	24	13508	3	-6045	3	-10651	4	-7433	3	-14537	5
	Mo	42	23337	7	11911	7	-5287	7	-13969	7	-725	6	-19555	6
	Tc	43	24734	4	9939	24	-4537	7	-17420 #	300#	-614	4	-19174	4
	Ru	44	26120#	300#	7803	4	-3780	4	-22310 #	400#	4644	4	-24610 #	300#
	Rh	45	28850#	470#	5750#	300#	-3300#	300#	*		4870#	300#	-26930 #	500#
	Pd	46	*		2250#	500#	-2840#	570#	*		11670#	400#	*	
92	As	33	5790#	640#	*		*		25250#	500#	*		11530#	660#
	Se	34	7070#	520#	32080#	640#	-9010#	570#	22050#	400#	*		6310#	400#
	Br	35	8375	7	29480#	400#	-7940#	200#	18540	9	-26630 #	400#	6670	7
	Kr	36	9953	3	27550	330	-7310	4	14098	4	-25480	430	904	8
	Rb	37	11551	9	25350	7	-6481	7	10044	11	-20954	7	808	8
	Sr	38	13062	4	22486	4	-5601	4	5592	3	-19182	4	-4587	4
	Y	39	14465	9	20030	11	-4632	9	1637	9	-14360	12	-4992	9
	Zr	40	15829.13	0.15	17088.8	2.1	-2962.33	0.10	-1650.45	0.19	-12096	5	-9892.3	2.9
	Nb	41	19934	4	14537.2	2.4	-4579.2	2.3	-7528	4	-7391.0	2.6	-12316	6
	Mo	42	22779	3	12613.98	0.20	-5605	5	-12507.4	2.7	-6201.98	0.19	-18893.2	2.4
	Tc	43	24344	3	10842	5	-5180	60	-15927	5	423	4	-18757	4
	Ru	44	25560	5	8707	4	-4040	5	-19720 #	300#	619	7	-23800 #	300#
	Rh	45	27440#	300#	6852	4	-3740	150	-25870 #	500#	5699	5	-25140#	400#
	Pd	46	31010#	500#	4270#	300#	-2670 #	420#	*		6370#	300#	*	
	Ag	47	*		10#	580#	-2700#	640#	*		14150#	580#	*	
93	Se	34	6280#	590#	*		-9410#	570#	23420#	400#	*		7450#	400#
	Br	35	7930	430	30570#	590#	-8520#	520#	19730	430	-29200#	660#	7810	430
	Kr	36	9305	3	28130	430	-7569	4	15950	8	-24700 #	400#	2565	7
	Rb	37	11017	11	26091	9	-6771	8	11607	13	-23676	10	2176	9
	Sr	38	12577	9	23690	8	-5975	8	7036	8	-18605	8	-3341	12
	Y	39	14018	11	21060	13	-4940	12	2986	11	-16744	12	-3839	10
	Zr	40	15369.1	0.5	18048	5	-3337.9	0.5	-315.0	0.5	-11544	3	-8740.1	1.8
	Nb	41	16717	3	15439.5	2.4	-1929.4	2.2	-3606.7	1.8	-9685	9	-8475.6	1.5
	Mo	42	20741	6	13489.44	0.21	-4356	3	-9590.4	2.1	-5637.01	0.21	-15953	3
	Tc	43	23762.1	2.6	11546	3	-5406	24	-14594.3	2.8	-4441.8	2.1	-17376.2	2.9
	Ru	44	25120	3	9586	7	-4627	4	-18220 #	300#	2302.9	2.1	-22289	5
	Rh	45	26590#	300#	7603	4	-4042	5	-22740 #	400#	2625	4	-22500 #	300#
			29210#	500#	5340#	300#	-3170#					300#		580#
	Pd	46	29210#	συσπ	3340#	300π	-31/0#	420#	*		8010#	300#	-29940#	300#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	(α)	Q(p, 0)	α)	Q(n, q)	α)
94	Se	34	4160#	640#	*		42040#	500#	4890#	710#	4960#	640#	*	
	Br	35	2580#	530#	13970#	500#	34950#	300#	10040#	500#	8040#	530#	-4860 #	500#
	Kr	36	5283	12	15750	430	25922	12	5596	14	4624	13	-5120	430
	Rb	37	4014	8	11716	3	17806.3	2.5	10917	3	7275	3	-1809	4
	Sr	38	6831	8	13515	8	9568.4	1.7	6638	6	3763	8	-2225.3	2.8
	Y	39	6196	12	9555	10	1807	8	11227	7	6165	8	1040	10
	Zr	40	8218.6	0.5	10331	10	-4686	3	8258	9	3946.0	1.9	2029	5
	Nb	41	7227.54	0.08	6536.0	1.5	-13461	4	12800.8	1.5	6390.6	1.5	5628.6	2.4
	Mo	42	9678.31	0.23	8490.2	1.5	-22312	4	8750.0	1.8	3088.0	2.9	5127.90	0.18
	Tc	43	8624	4	4640	4	-31750 #	400#	13361	4	2915	7	8126	5
	Ru	44	13438	4	6266	3	-42440 #	500#	7053	4	-1733	4	5272	7
	Rh	45	11967	4	2980	4	*		12104	4	196	4	8725	4
	Pd	46	15170#	300#	4379	5	*		7608	6	-2670 #	300#	7784	5
	Ag	47	14210#	570#	700#	500#	*		12880#	500#	-1620 #	570#	11810#	500#
	Cd	48	*		1160#	640#	*		7700#	710#	*		11440#	640#
95	Se	34	1730#	710#	*		44660#	500#	*		5390#	710#	*	
	Br	35	4440#	420#	14260#	580#	37440#	300#	7660#	500#	7820#	500#	-7140#	580#
	Kr	36	2882	22	16050#	300#	29501	19	7440	430	4938	20	-3790 #	400#
	Rb	37	5400	20	11833	24	20895	20	8955	20	7742	20	-4012	21
	Sr	38	4345	6	13846	6	12592	6	8211	10	4517	8	-704	6
	Y	39	6929	9	9652	7	4812	8	9588	10	6523	8	-790	9
	Zr	40	6461.9	0.9	10597	6	-2202	10	9278	11	4021	9	2854	4
	Nb	41	8488.5	1.6	6805.9	0.5	-8446	4 3	11046.6	0.7	6536.8	0.5	3677	9
	Mo	42	7369.11	0.09	8631.8	1.5	-17746	3	10211.8	1.5	3605.5	1.8	6393.57	0.16
	Tc	43	9934	7	4896	5	-26420 #	300#	11497	5	5651	5	6078	5
	Ru	44	8945	10	6588	10	-36830#	400#	10859	10	332	10	8997	10
	Rh	45	13504	5	3046	5	*		9587	4	825	5	6231	5
	Pd	46	11935	5	4347	5	*		9757	4	-2103	5	9982	4
	Ag	47	15260#	500#	780#	300#	*		10120#	420#	-150#	420#	9050#	300#
	Cd	48	14560#	640#	1510#	570#	*		10350#	570#	-4640#	640#	13600#	500#
96	Br	35	2460#	420#	14990#	580#	40170#	300#	9350#	580#	7420#	500#	*	
	Kr	36	4992	28	16600#	300#	32359	20	5030#	300#	4670	430	-6720 #	400#
	Rb	37	3534	20	12484	19	24248	3	10704	13	7646	4	-2820	430
	Sr	38	5876	10	14322	22	15871	8	6349	9	4560	12	-3142	9
	Y	39	5198	9	10505	8	7486	8	11221	6	6614	10	-70	10
	Zr	40	7850.2	0.9	11519	7	641.53	0.14	7623	6	3652	10	293	8
	Nb	41	6887.9	0.5	7231.8	0.9	-5915	10	12377.31	0.22	6383.3	0.5	4271	10
	Mo	42	9154.33	0.05	9297.6	0.5	-12611	4	8285.0	1.5	3282.0	1.5	3973.6	0.5
	Tc	43	7872	7	5399	5	-21310	90	13303	5	5849	5	7038	5
	Ru	44	10694	10	7348	5	-30510#	400#	8789	4	2389.8	1.0	6373.10	0.25
	Rh	45	9418	11	3519	14	-41800 #	500#	13607	10	2393	10	9565	10
	Pd	46	14289	5	5132	6	*		7435	5	-2308	5	6680	5
	Ag	47	12990#	310#	1830	90	*		12300	90	-650#	310#	10150	90
	Cd	48	17010#	570#	3270#	500#	*		7550#	570#	-4440#	570#	9070#	500#
	In	49	*		-1450#	640#	*		12960#	710#	*		14020#	640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon_{arphi}$)	$Q(\beta^-$	n)
94	Se	34	6220#	640#	*		-10010#	710#	24540#	500#	*		8020#	660#
	Br	35	7310#	300#	31000#	580#	-8500 #	500#	21160#	300#	*		8670#	300#
	Kr	36	8721	12	29200#	400#	-7970	330	17498	12	-27920 #	400#	3201	14
	Rb	37	9933	6	26908	7	-6987	4	13789	7	-22960	430	3452	8
	Sr	38	12121	4	24654	3	-6311.4	2.5	8423.6	1.7	-21999	3	-2690	11
	Y	39	13678	11	22157	9	-5412	9	4018	7	-17021	10	-3301	6
	Zr	40	14952.93	0.19	18980	3	-3746.1	2.1	1144.74	0.22	-14472	8	-8127.8	1.5
	Nb	41	16058.4	2.0	16131	9	-2299.9	2.2	-2211	4	-9431	11	-7633.3	1.5
	Mo	42	17748.12	0.21	14532.98	0.17	-2066.45	0.18	-5830	3	-8581.0	0.5	-12879.3	1.0
	Tc	43	21375	5	12283	4	-3922	5	-11251	5	-4234	4	-15013	5
	Ru	44	24425	4	10353	3	-4836	5	-16481	5	-3065	3	-21643	4
	Rh	45	26051	6	8560	5	-4608	4	-20500#	400#	3410	4	-21980#	300#
	Pd	46	27670#	300#	6379	5	-3643	6	-25960#	500#	3825	5	-27910#	400#
	Ag	47	31420#	640#	3990#	400#	-3140#	500#	*		9310#	400#	*	
	Cd	48	*		140#	580#	-2860#	640#	*		11570#	580#	*	
95	Se	34	5890#	640#	*		*		25700#	500#	*		8870#	580#
	Br	35	7020#	520#	*		-9300#	500#	22120#	300#	*		9510#	300#
	Kr	36	8166	19	30020#	400#	-8000	430	18961	20	-26650 #	500#	4333	19
	Rb	37	9414	22	27580	430	-7209	21	15317	21	-25780 #	300#	4883	20
	Sr	38	11176	10	25561	6	-6571	6	10540	6	-21061	13	-839	9
	Y	39	13124	12	23167	10	-5889	10	5577	7	-19935	7	-2011	7
	Zr	40	14680.5	1.0	20152	8	-4433	6	2051.9	0.9	-14103.2	1.9	-7362.2	1.7
	Nb	41	15716.1	1.6	17137	11	-2859.9	1.9	-765	5	-11724	6	-6443.5	0.5
	Mo	42	17047.42	0.22	15167.8	0.5	-2241.21	0.16	-4254	10	-7731.51	0.20	-11625	4
	Tc	43	18558	5	13386	5	-1808	6	-7681	6	-6941	5	-11509	6
	Ru	44	22384	10	11229	10	-3674	11	-13492	10	-2333	10	-18621	10
	Rh	45	25471	5	9312	4	-4779	5	-18740#	300#	-1471	6	-20310	6
	Pd	46	27110#	300#	7327	4	-4151	4	-23340 #	400#	5329	4	-25630#	400#
	Ag	47	29470#	500#	5160#	300#	-3450#	420#	*		6020#	300#	-27530#	580#
	Cd	48	*		2210#	500#	-3130#	570#	*		12180#	400#	*	
96	Br	35	6910#	420#	*		-9610#	580#	23190#	300#	*		9920#	300#
	Kr	36	7875	24	30850#	500#	-8780 #	400#	19844	22	-29910#	500#	4740	29
	Rb	37	8934	4	28530#	300#	-7546	7	16982	7	-24870#	300#	5694	7
	Sr	38	10221	9	26154	15	-6580	9	12515	8	-24054	20	213	11
	Y	39	12127	9	24351	6	-5988	9	7267	6	-19733	21	-747	6
	Zr	40	14312.16	0.20	21171.1	1.7	-4996	3	3356.03	0.07	-17608	6	-6723.9	0.5
	Nb	41	15376.4	1.5	17829	6	-3211	9	219	5	-11683	7	-5962.28	0.12
	Mo	42	16523.45	0.10	16103.49	0.20	-2760.76	0.16	-2714.50	0.12	-10423.9	0.9	-10845	5
	Tc	43	17806	7	14031	5	-1793	5	-6134	11	-6324	5	-10435	11
	Ru	44	19639	3	12244.25	0.16	-1696.71	0.23	-9897	4	-5657.48	0.13	-15811	4
	Rh	45	22923	11	10107	11 5	-3187 -4307	10 5	-15180 -20610#	90	-955 -15	11	-17793	10
	Pd	46 47	26224 28250#	6 410#	8178 6180	5 90	-4307 -3940	5 90	-20610# -26620#	400# 510#	-15 6540	10 90	-24660# -25950#	300# 410#
	Ag Cd	47	28250# 31580#	410# 640#	4050#	90 400#	-3940 -3420#	90 500#	-2002U# *	310#	6540 7100#	90 400#	-25950# *	410#
	Ca In	48 49	3138U# *	040#	4050# 60#	400# 640#	-3420# -3190#	710#	*		14420#	400# 580#	*	
	111	49	*		OU#	040#	-3190#	/10#	*		14420#	36U#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
97	Br	35	3960#	500#	*		42070#	400#	7120#	640#	7610#	640#	*	
	Kr	36	2420	130	16550#	330#	35520	130	7060#	330#	4840#	330#	-4970#	520#
	Rb	37	5236	4	12728	21	27087	5	8351	19	7693	12	-5470#	300#
	Sr	38	3729	9	14516	5	18963	3	8021	21	4845	4	-1587	13
	Y	39	5857	9	10486	11	11103	8	9709	9 7	7588	7	-1912	7
	Zr	40	5575.1	0.4	11896	6	3177.9	2.8	8977	7	4273	6	1549.5	1.7
	Nb	41	8074	4	7456	4	-3010	40	10765	4	6528	4	2392	8
	Mo	42	6821.13	0.16	9230.85	0.19	-9739	5	9952.4	0.5	3688.4	1.5	5371.03	0.23
	Tc	43	9474	7	5719	4	-16400	110	11198	4	6054	4	4791	4
	Ru	44	8111.5	2.8	7588	6	-25670 #	300#	10612	6	2902	5	7939.9	2.8
	Rh	45	10980	40	3810	40	-35410 #	400#	11570	40	4850	40	7210	40
	Pd	46	9694	6	5407	11	*		11246	6	-34	6	10424	6
	Ag	47	14390	140	1930	110	*		9850	110	140	110	7730	110
	Cd	48	12950#	500#	3230#	310#	*		9850#	420#	-3180 #	500#	11300#	300#
	In	49	17370#	640#	-1090#	570#	*		10150#	570#	-2190#	640#	10870#	570#
98	Br	35	2270#	570#	*		44040#	400#	*		7070#	640#	*	
	Kr	36	4960#	330#	17550#	500#	36980#	300#	4560#	420#	4320#	420#	-8210 #	580#
	Rb	37	3921	16	14230	130	29155	17	9421	26	6654	25	-4950#	300#
	Sr	38	5913	5	15193	4	21693	3	5642	5	4332	21	-4618	19
	Y	39	4245	10	11002	9	14137	9	11340	12	7689	10	-757	22
	Zr	40	6415	8	12454	11	6938	11	7760	10	4786	11	-521	10
	Nb	41	5990	7	7871	5	-349	13	12625	5	6999	5	3331	8
	Mo	42	8642.60	0.06	9799	4	-6795	5	8197.65	0.20	3534.3	0.5	3190.4	0.9
	Tc	43	7279	5	6176	3	-13370	30	13073	3	6144	3	6000	3
	Ru	44	10176	7	8289	8	-20590	50	8308	8	2661	8	5133	6
	Rh	45	8650	40	4344	12	-29280 #	300#	13616	12	5147	15	8493	13
	Pd	46	11586	7	6010	40	*		9078	11	1884	6	7783	11
	Ag	47	10310	110	2550	30	*		13830	30	1760	30	10920	30
	Cd	48	15250#	300#	4100	120	*		7590	100	-3180#	300#	7980	50
	In	49	14780#	500#	730#	420#	*		12390#	500#	-2400#	500#	11350#	420#
99	Kr	36	2520#	500#	17800#	570#	38860#	400#	6010#	570#	4270#	500#	*	
	Rb	37	4823	17	14100#	300#	31214	13	7010	130	6823	21	-7310#	300#
	Sr	38	4170	6	15441	17	23449	5	6709	5	3697	6	-3795	21
	Y	39	6426	10	11516	7	16678	7	8642	7	7138	11	-3649	7
	Zr	40	4405	13	12615	13	10005	11	9212	12	5579	12	950	13
	Nb	41	6882	13	8338	15	3246	14	11318	12	7968	12	1647	13
	Mo	42	5925.44	0.15	9734	5	-3787	5	10346	4	4496.77	0.25	5115.15	0.23
	Tc	43	8967	3	6500.9	0.9	-10615	6	10927.6	0.9	6331.1	0.9	3921.4	0.9
	Ru	44	7472	6	8482	3	-17694.3	1.6	10310	4	3060	5	6815.9	0.4
	Rh	45	10477	14	4645	9	-24210#	300#	11250	7	5363	7	5887	8
	Pd	46	8933	7	6296	13	-34240 #	500#	11130	40	2369	11	9544	5
	Ag	47	11720	30	2680	8	*		11804	8	4335	8	8622	12
	Cd	48	10370	50	4150	30	*		11610	110	-560	90	11899	4
	In	49	15550#	420#	1030#	300#	*		9790#	420#	-940#	500#	8780#	310#
	Sn	50	*		1340#	590#	*		9960#	640#	-5190#	710#	13280#	640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$))	$Q(\beta^-$	n)
97	Br	35	6430#	500#	*		*		24460#	400#	*		10950#	400#
	Kr	36	7410	130	31540#	520#	-9130#	420#	21160	130	*		5860	130
	Rb	37	8770	20	29330#	300#	-8050	430	17602	7	-27650#	300#	6334	9
	Sr	38	9605	7	27000	19	-6870	4	14361	3	-22791	21	1683	7
	Y	39	11055	10	24808	21	-5926	10	9484	8	-22056	8	1246	7
	Zr	40	13425.4	1.0	22401	6	-5282	8	4602.0	0.4	-17307	8	-5411.2	0.4
	Nb	41	14962	4	18975	8	-3804	11	1619	6	-14559	7	-4882	4
	Mo	42	15975.47	0.17	16462.7	0.9	-2847.6	0.5	-1424.1	2.8	-9394.82	0.17	-9794	5
	Tc	43	17346	7	15016	4	-2437	4	-4630	40	-8911	4	-9215	4
	Ru	44	18805	10	12986.6	2.8	-1738.4	2.8	-8315	6	-4614.6	2.8	-14504	10
	Rh	45	20400	40	11150	40	-1420	40	-11770	120	-4060	40	-14490	40
	Pd	46	23983	6	8926	11	-3014	5	-17350 #	300#	986	5	-21370	90
	Ag	47	27370#	320#	7060	110	-4240	110	-23640 #	420#	1570	110	-23320 #	420#
	Cď	48	29970#	500#	5070#	300#	-3880#	420#	*		8440#	300#	-30640#	580#
	In	49	*		2170#	500#	-3350#	570#	*		10030#	410#	*	
98	Br	35	6230#	500#	*		*		26120#	400#	*		11100#	420#
	Kr	36	7370#	300#	*		-9930#	580#	22110#	300#	*		6140#	300#
	Rb	37	9157	16	30780#	300#	-9390#	300#	17926	18	-27600 #	400#	6141	16
	Sr	38	9642	9	27921	21	-7500	13	14864	9	-26290	130	1627	7
	Y	39	10102	10	25518	9	-6157	8	11230	9	-21065	8	2577	8
	Zr	40	11990	8	22940	12	-4866	9	6829	8	-19994	9	-3752	9
	Nb	41	14064	5	19767	8	-3598	8	2908	6	-14692	8	-4051	5
	Mo	42	15463.73	0.17	17255.07	0.18	-3271.57	0.24	109	6	-12462.3	0.4	-8963	4
	Tc	43	16753	6	15407	3	-2488	4	-3257	12	-8115	5	-8383	4
	Ru	44	18287	6	14008	6	-2236	6	-6904	8	-7969	6	-13700	40
	Rh	45	19630	16	11932	13	-1442	13	-10110	30	-3240	13	-13441	13
	Pd	46	21280	6	9819	5	-1162	6	-13680	50	-2489	5	-18570	110
	Ag	47	24700	100	7960	30	-2580	30	-19170#	300#	2240	50	-20680 #	300#
	Cd	48	28210#	400#	6030	50	-3960	50	*		2880	50	-28520 #	400#
	In	49	32150#	580#	3960#	310#	-3910#	500#	*		9640#	320#	*	
99	Kr	36	7480#	420#	*		-10730#	640#	23760#	400#	*		7540#	400#
	Rb	37	8745	4	31640#	400#	-9780 #	300#	19529	8	-30160#	400#	7231	5
	Sr	38	10083	6	29680	130	-8787	19	15099	12	-25500#	300#	1702	9
	Y	39	10671	9	26709	7	-7183	21	11686	14	-23570	17	2566	11
	Zr	40	10821	10	23617	11	-4926	12	8349	11	-18486	11	-2167	12
	Nb	41	12872	13	20792	14	-3551	14	4993	12	-17330	14	-2291	12
	Mo	42	14568.04	0.16	17605.4	0.5	-2735.1	0.9	1655.3	0.4	-11972	8	-7609	3
	Tc	43	16246	4	16300	4	-2966.5	1.0	-1747	7	-11092	5	-7174	7
	Ru	44	17647.5	2.8	14658.6	0.4	-2338.4	0.4	-5443	5	-6798.4	0.4	-12521	12
	Rh	45	19130	40	12935	8	-1985	8	-8869	9	-6438	7	-12332	8
	Pd	46	20519	7	10640	6	-1150	11	-12252	5	-1247	8	-17190	30
	Ag	47	22030	110	8690	40	-797	7	-15340#	300#	-826	13	-17150	50
	Cd	48	25620#	300#	6703	5	-2390	3	-21990 #	500#	4101	5	-24110#	300#
	In	49	30330#	500#	5130#	320#	-4200#	420#	*		4400#	300#	*	
	Sn	50	*		2070#	590#	-3740#	640#	*		12400#	510#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
100	Kr	36	4360#	570#	*	400#	41330#	400#	3910#	570#	3870#	570#	*	400#
	Rb	37	3197	20	14780#	400#	33550	21 7	8780# 5259	300#	6040	130	-6550#	400#
	Sr Y	38 39	5371 4749	9 13	15989 12095	8 12	26372 18694	11	5259 9807	18 12	3562 6118	7 12	-6750 -3162	130 11
	Zr	40	6828	13	13017	10	12850	8	6628	11	4608	11	-3162 -2150	9
	Nb	41	5533	14	9466	13	5794	20	12200	12	8009	8	1970	10
	Mo	42	8294.2	0.4	11147	12	-980	18	8042	5	4277	4	2396.0	0.5
	Tc	43	6764.4	1.0	7339.8	1.3	−7883	5	12805.8	1.3	6387.8	1.3	5231	4
	Ru	44	9673.32	0.03	9188.5	0.9	-15032.8	1.7	7916	3	2861	4	3963.7	0.4
	Rh	45	8081	19	5255	18	-21280	180	13345	19	5393	18	7280	19
	Pd	46	11101	18	6920	19	-27930	300	8673	21	2250	40	6554	18
	Ag	47	9497	8	3244	7	*		13894	7	4532	7	10110	40
	Cď	48	12334.8	2.3	4771	6	*		9580	30	1500	110	9258	5
	In	49	11010#	350#	1670	180	*		14030	190	1010#	350#	12160	210
	Sn	50	17410#	590#	3200#	420#	*		7320#	420#	-5230#	500#	8820#	420#
101	Kr	36	2150#	640#	*		44040#	500#	*		3990#	640#	*	
	Rb	37	4670#	200#	15080#	450#	36050#	200#	6630#	450#	6330#	360#	-8950#	450#
	Sr	38	3575	11	16367	21	28195	8	6507	9	3908	18	-5370#	300#
	Y	39	5805	13	12529	10	21284	25	8171	9	6226	8	-5045	18
	Zr	40	4860	12	13128	14	14792	8	8195	11	3993	11	-1096	9
	Nb	41	7165	9	9803	9	8521	7	9440	11	7259	9	-950	9
	Mo	42	5398.24	0.07	11012	8	1912	5	9526	12	4869	5	3413	8
	Tc	43	8395 6802.04	24	7441	24	-5010	24	10336	24	6635	24	2826	25 0.4
	Ru Rh	44 45	9893	0.24 19	9226.1 5474	1.4 6	-12121.7 -18800#	1.5 200#	10080.6 10924	1.0 6	3338 5676	3 9	5804.3 4666	7
	Pd	46	9893 8291	18	7130	19	-18800# -25130	300	10924	8	2607	13	8439	8
	Ag	47	11268	7	3411	18	-23130 *	300	11559	7	4851	7	7487	13
	Cd	48	9713.2	2.2	4987	5	*		11587	6	2090	30	11131	5
	In	49	12370#	270#	1710#	200#	*		12030#	200#	3890#	200#	10100#	200#
	Sn	50	11090	430	3280	350	*		11780#	420#	-1550#	420#	12980	300
102	Rb	37	2930#	360#	15870#	590#	38600#	300#	8060#	500#	5920#	500#	*	
	Sr	38	4910	70	16600#	210#	31410	70	4800	70	3830	70	-7750 #	410#
	Y	39	4183	8	13137	9	23400	10	9359	8	6212	6	-4406	6
	Zr	40	6493	12	13816	11	17519	9	6450	14	3926	11	-3420	10
	Nb	41	5484	5	10428	9	10479	7	10784	9	6180	11	-8	7
	Mo	42	8117	8	11964	9	4337	8	6942	12	3633	15	-299	13
	Tc	43	6300	26	8342	9	-2326	12	12331	9	6261	9	3409	15
	Ru	44	9219.64	0.05	10051	24	-9446.7	1.7	7625.3	1.4	3085.5	1.0	2510.1	0.5
	Rh	45	7442	9	6114	6	-16088	8	13155	6	5706	6	6191	6
	Pd	46	10542	5	7780	6	-22970	100	8399	18	2542	7	5368.6	0.4
	Ag	47	8984	9	4104	9	*		13677	19	4800	10	8981	11
	Cd In	48 49	11894.6 10150#	2.2 200#	5614 2147	5 5	*		9189 14211	5 5	1917 4100	6 5	8169 11664	5 8
	Sn	50	12700	320	3610#	220#	*		10090	210	1310#	310#	10640	100
103	Rb	37	3970#	500#	*		41420#	400#	6230#	640#	6310#	570#	*	
	Sr	38	3330#	210#	17000#	360#	33540#	200#	6130#	280#	3690#	200#	-6720 #	450#
	Y	39	5356	12	13590	70	26146	15	7578	14	6227	13	-6564	23
	Zr	40	4299	13	13931	10	19452	9	7956	12	4376	14	-2348	12
	Nb	41	6795	5	10730	10	13003	5	8848	9	6213	9	-2055	12
	Mo	42	5466	12	11945	10	6497	9	8642	10	3701	12	1063	12
	Tc	43	8102	13	8327	13	199	11	9627	10	6453	10	840	13
	Ru	44	6232.05	0.15	9983	9	-6615.6	1.9	9788	24	3617.8	1.4	4572.3	0.3
	Rh	45	9320	7	6214.2	2.3	-13399	10	10637.2	2.3	6059.7	2.3	3635.6	2.7
	Pd	46	7625.3	0.8	7963	6	-20480	70	10666	6	2998	18	7416.6	0.9
	Ag	47	10627	9	4188	4	-28620 #	300#	11340	6	5274	18	6435	19
	Cd	48	9063.2	2.5	5694	8	*		11394	5	2350	5	10208	18
	In C	49	12009	11	2262	10	*		11915	10	4426	10	9152	11
	Sn	50 51	10110	120	3570 1470#	70 210#	*		12350#	210#	2200	200	12870	70 350#
	Sb	51	*		-1470#	310#	*		14840#	420#	5970#	420#	13780#	350#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha)$)	$Q(2\beta)$	-)	$Q(arepsilon_{\Gamma}$))	$Q(eta^-$	n)
100	Kr	36	6880#	500#	*		*		24770#	400#	*		8000#	400#
	Rb	37	8021	25	32580#	400#	-10510 #	300#	21080	23	*		8203	20
	Sr	38	9540	8	30090#	300#	-9166	22	16557	11	-28350 #	400#	2758	10
	Y	39	11175	14	27536	20	-8398	12	12470	14	-23495	12	2222	15
	Zr	40	11233	12	24532	9	-5878	12	9816	8	-21145	9	-2113	15
	Nb	41	12415	9	22081	11	-3886	10	6224	8	-16437	10	-1899	8
	Mo	42	14219.7	0.3	19484	8	-3179.1	0.3	3034.36	0.17	-15861	11	-6936.5	0.9
	Tc	43	15731	4	17074	5	-2843.0	1.4	-430	18	-10975	12	-6466.9	1.4
	Ru	44	17145	6	15689.4	0.4	-2857.4	0.4	-4015	18	-10546.3	0.4	-11717	7
	Rh	45	18559	22	13737	18	-2194	19	-7453	19	-5552	18	-11480	19
	Pd	46	20034	18	11566	19	-1557	18	-11018	18	-4876	18	-16572	19
	Ag	47	21210	30	9541	13	-875	11	-13820	180	154	8	-16278	5
	Cd	48	22700	50	7452	5	-436	5	-16910	300	699	5	-20890 #	300#
	In	49	26560#	350#	5820	190	-2230	200	*		5110	180	-24440#	540#
	Sn	50	*		4220	310	-4140#	500#	*		5360	300	*	
101	Kr	36	6510#	640#	*		*		26200#	500#	*		9050#	500#
	Rb	37	7870#	200#	*		-11210#	450#	22220#	200#	*		8910#	200#
	Sr	38	8946	10	31140#	400#	-10330	130	17841	12	-27560#	400#	3931	14
	Y	39	10554	10	28518	8	-8967	7	13830	8	-26103	21	3245	11
	Zr	40	11688	13	25222	10	-7009	9	10354	8	-20634	11	-1440	12
	Nb	41	12699	13	22820	8	-5195	8	7453	24	-18853	12	-770	4
	Mo	42	13692.5	0.4	20477	11	-3002.2	0.5	4438.16	0.30	-14431	8	-5570.3	1.4
	Tc	43	15159	24	18587	27	-3164	24	1068	25	-13836	25	-5189	24
	Ru	44	16475.37	0.24	16566.0	0.5	-2838.3	0.4	-2526	5	-9054.06	0.29	-10438	18
	Rh	45	17974	9	14662	6	-2613	7	-6078	8	-8680	6	-10271	19
	Pd	46	19392	7	12385	5	-1736	5	-9596	5	-3494	5	-15365	7
	Ag	47	20765	8	10331	8	-1160	40	-12720 #	200#	-3032	19	-15211	5
	Cd	48	22048.0	2.2	8232	5	-456	5	-15530	300	2087	18	-19590	180
	In	49	23380#	360#	6480#	200#	-210#	220#	*		2240#	200#	-19400 #	360#
	Sn	50	28500#	590#	4950	300	-2280#	420#	*		6600	300	*	
102	Rb	37	7600#	300#	*		-11880#	500#	23470#	300#	*		9550#	300#
	Sr	38	8480	70	31690#	410#	-10270#	310#	19430	70	-30320#	510#	4830	70
	Y	39	9988	12	29504	20	-9229	17	15131	5	-25620#	200#	3921	9
	Zr	40	11353	12	26345	11	−7 5 90	9	11978	12	-23552	12	-768	10
	Nb	41	12650	8	23555	11	-6435	8	8268	10	-18533	8	-855.9	2.6
	Mo	42	13516	8	21767	12	-4704	12	5540	8	-17689	12	-5293	25
	Tc	43	14695	9	19353	12	-3473	10	2210	11	-12970	10	-4686	9
	Ru	44	16021.68	0.24	17491.35	0.29	-3415.4	0.5	-1203.3	0.4	-12875.5	0.3	-9765	6
	Rh	45	17335	19	15340	7	-2776	7	-4537	10	-7728	25	-9423	8
	Pd	46	18833	18	13253.7	0.4	-2103	6	-8243.5	1.8	-7234.0	0.4	-14640	5
	Ag	47	20251	10	11234	20	-1496	14	-11552	9		10	-14482	8
	Cd	48	21607.7	2.4	9025	18	−764	5	-14720	100	-1517	5	-19120#	200#
	In	49	22520	180	7135	7	-50	30	*	100	3351	7	-18460	300
	Sn	50	23790	320	5320	100	280	110	*		3610	100	*	500
103	Rb	37	6910#	450#	*		*		24850#	400#	*		10480#	410#
	Sr	38	8240#	200#	32870#	540#	-11090 #	450#	20390#	200#	*		5680#	200#
	Y	39	9539	13	30190#	200#	-9761	12	16571	12	-28040 #	300#	5059	14
	Zr	40	10792	12	27068	13	-7719	10	13145	13	-22950	70	418	10
	Nb	41	12280	5	24546	8	-6804	8	9575	11	-21144	6	466	9
	Mo	42	13583	9	22373	12	-5765	14	6307	9	-16662	13	-4459	13
	Tc	43	14402	26	20290	10	-4693	15	3428	10	-15588	10	-3569	10
	Ru	44	15451.69	0.16	18325.2	0.3	-3722.0	0.5	190.0	0.9	-10990	8	-8555	6
	Rh	45	16762	6	16265	24	-3128.8	2.5	-3229	5	-10748	9	-8199.9	2.3
	Pd	46	18168	5	14077.0	0.9	-2256.7	0.9	-6805.6	2.0	-5639.7	0.9	-13282	8
	Ag	47	19611	6	11968	7	-1646	8	-10170	10	-5308	8	-13214	4
	Cd	48	20957.8	2.3	9797	5	-894	5	-13680	70	-37.4	1.9	-18028	5
	In	49	22160#	200#	7876	11	-345	11	-18450#	300#	325	13	-17770	100
	Sn	50	22810	310	5710	70	530	70	*	20011	5400	70	*	
	Sb	51	*		2140#	360#	2770#	420#	*		7230#	300#	*	
			•				-,,,,,,		-		. 200		•	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(1)	n)	S(1	p)	$Q(4\beta$	-)	Q(d	,α)	Q(p)	ο,α)	Q(n,	α)
04	Sr	38	4760#	360#	17790#	500#	36240#	300#	4310#	420#	3600#	360#	-9330#	590#
	Y	39	3680#	400#	13930#	450#	28440#	400#	8810#	410#	6130#	400#	-5570#	450#
	Zr	40	5980	13	14555	15	22372	10	6160	10	4201	12	-4753	13
	Nb	41	4862	5	11293	10	15140	4	10480	9	6211	9	-1112	8
	Mo	42	7461	13	12610	10	9045	9	6665	9	3406	10	-1538	12
	Tc	43	5971	27	8832	27	2613	25	11773	26	5881	25	2034	25
	Ru	44	8899.9	2.5	10781	9	-4127	3	7188	9	3113	24	1070.6	2.
	Rh	45	6998.96	0.08	6981.1	2.3	-10777	6	12857.9	2.3	5862.8	2.3	5032	24
	Pd	46	10009.2	1.6	8652.4	2.7	-17768	6	8099	7	2881	6	4209.4	1.
	Ag	47	8385	6	4948	4	-25940	120	13498	4	5180	6	7942	7
	Cd	48	11388.1	2.5	6455	4	*		8989	8	2230	5	7110	5
	In	49	9621	11	2820	6	*		14188	6	4518	6	10798	8
	Sn	50	12730	70	4283	11	*		9779	7	1850#	200#	9856	6
	Sb	51	11070#	320#	-510	100	*		16470	160	6000	320	15090#	230
05	Sr	38	2580#	590#	*		38730#	500#	5710#	640#	3960#	590#	*	
	Y	39	5280#	1400#	14450#	1370#	31020	1340	6860#	1350#	5750	1340	-7920 #	1370
	Zr	40	3812	15	14690#	400#	24470	12	7704	17	4572	13	-3660	70
	Nb	41	6168	5	11480	10	17936	5	8611	10	6536	10	-3096	6
	Mo	42	5058	13	12807	9	11081	9	8402	10	3831	9	-103	13
	Tc	43	7860	40	9230	40	4780	40	9380	40	6140	40	-340	40
	Ru	44	5910.10	0.11	10720	25	-1600.7	2.9	9380	9	3502	9	3278	9
	Rh	45	8963	3	7044.5	2.9	-8211	11	10126.7	2.5	6119.2	2.5	2368	9
	Pd	46	7094.1	0.7	8747.5	2.6	-15080	4	10324.6	2.6	3229	7	6335.0	1
	Ag	47	10026	6	4965	5	-23055	22	11097	5	5696	5	5359	8
	Cd	48	8436.8	2.2	6506	4	-31520	300	11180	4	2777	8	9215.7	1
	In	49	11529	12	2961	10	*		11722	10	4883	10	8253	13
	Sn	50	9782	7	4444	7	*		12005	10	2221	6	11968	4
	Sb	51	12910	120	-323	22	*		13670	70	5780	100	12326	22
	Te	52	*		930	320	*		14080#	420#	*		17770	320
06	Sr	38	4250#	780#	*		41340#	600#	*		3680#	720#	*	
	Y	39	2850#	1430#	14730#	710#	33720#	500#	8760#	590#	6230#	540#	-6800#	640
	Zr	40	5160	430	14570	1410	27770	430	6230#	590#	4770	430	-5480 #	480
	Nb	41	4359	6	12028	13	20159	7	10232	10	6476	10	-2099	12
	Mo	42	6869	13	13508	10	13773	9	6395	10	3758	10	-2673	13
	Tc	43	5560	40	9728	15	7166	13	11285	15	6049	15	899	13
	Ru	44	8460	5	11320	40	809	5	6891	25	3145	11	284	11
	Rh	45	6583	6	7717	5	-5754	13	12444	5	5769	5	3888	11
	Pd	46	9560.96	0.28	9345.3	2.4	-12554	5	7762.6	2.6	2988.2	2.6	3006.0	1
	Ag	47	7943	5	5813.5	2.8	-20469	8	13163.5	2.9	5379	3	6736	4
	Cd	48	10869.6	1.8	7350	5	-28910	100	8695	4	2535	4	5971.5	1
	In	49	9039	16	3563	12	*		14071	12	4908	12	9841	13
	Sn	50	12087	6	5002	11	*		9540	8	2143	11	8944	5
	Sb	51	10529	23	424	8	*		15865	9	5360	70	13806	12
	Te	52	13480	320	1490	100	*		11660	160	2820#	320#	14400	120

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2	p)	$Q(\alpha$:)	$Q(2\beta$	-)	$Q(arepsilon_{ m I}$	p)	$Q(oldsymbol{eta}^-$	n)
.04	Sr	38	8090#	310#	*		-11480#	500#	21620#	300#	*		6280#	300
	Y	39	9030#	400#	30940#	500#	-10240#	400#	17760#	400#	-27750#	570#	5680#	400
	Zr	40	10279	13	28140	70	-8328	12	14626	13	-25590#	200#	1233	10
	Nb	41	11657	4	25224	5	-6917	11	10684	25	-20650	12	1070	10
	Mo	42	12927	12	23340	12	-6397	12	7746	9	-19824	13	-3817	13
	Tc	43	14073	26	20777	25	-5131	26	4456	25	-14764	25	-3308	25
	Ru	44	15131.9	2.5	19108	9	-4327.6	2.5	1299.4	2.7	-14424	10	-8135	3
	Rh	45	16319	7	16964	9	-3363.3	2.7	-1843	5	-9644	10	-7573.5	2
	Pd	46	17634.6	1.4	14866.6	1.4	-2592.6	1.4	-5426.7	2.1	-9416.9	1.4	-12664	4
	Ag	47	19012	9	12911	8	-1950	19	-8934	7	-4374	5	-12536	5
	Cd	48	20451.3	2.4	10643.2	1.8	-1181	18	-12341	6	-3800.2	1.9	-17407	10
	In	49	21630	7	8514	10	-470	8	-17010	120	1331	7	-17280	70
	Sn	50	22830	100	6545	6	143	6	*		1736	6	-23520#	300
	Sb	51	*		3060	120	2710	220	*		8170	120	*	
05	Sr	38	7330#	540#	*		-11910#	710#	22850#	500#	*		7380#	640
	Y	39	8960	1340	32240#	1400#	-10850 #	1350#	18650	1340	*		6380	1340
	Zr	40	9792	15	28620#	200#	-8565	15	15872	15	-24650 #	300#	2283	12
	Nb	41	11030	6	26036	12	-7279	8	12370	40	-23140 #	400#	2363	10
	Mo	42	12519	13	24100	13	-6596	12	8597	9	-18902	13	-2905	26
	Tc	43	13830	40	21840	40	-5820	40	5560	40	-17760	40	-2270	40
	Ru	44	14810.0	2.5	19552	10	-4839.5	2.5	2483.4	2.6	-12873	9	-7046	3
	Rh	45	15962	3	17825	10	-3932	24	-780	5	-12637	25	-6527.5	2
	Pd	46	17103.3	1.5	15728.7	1.2	-2884.7	1.2	-4084.0	1.8	-7611.1	2.6	-11373	2
	Ag	47	18411	6	13617	5	-2083	7	-7430	11	-7400	5	-11174	
	Cd	48	19824.9	2.3	11454.6	1.7	-1327	5	-10996	4	-2227.7	1.9	-16222	(
	In	49	21151	14	9416	11	-731	11	-15625	24	-1813	11	-16085	12
	Sn	50	22510	70	7264	4	74	4	-20530	300	3341	4	-22240	120
	Sb	51	23980#	300#	3961	24	2170#	200#	*		4878	23	*	
	Te	52	*		420	310	5069	3	*		11530	300	*	
)6	Sr	38	6830#	670#	*		*		23760#	740#	*		8410#	1470
	Y	39	8130#	640#	*		-10770 #	590#	20150#	500#	*		7340#	500
	Zr	40	8970	430	29020#	530#	-8820	440	17580	430	-27230 #	660#	3290	430
	Nb	41	10527	5	26720#	400#	-7455	6	13573	13	-22220	1340	3062	10
	Mo	42	11927	13	24988	13	-6972	13	10189	11	-21959	15	-1920	40
	Tc	43	13415	28	22535	13	-5897	13	6586	11	-17150	13	-1913	12
	Ru	44	14370	5	20551	10	-5182	10	3584	5	-16275	11	-6543	(
	Rh	45	15546	6	18437	25	-4215	10	580	6	-11360	40	-6016	
	Pd	46	16655.1	0.8	16389.8	2.6	-3226.0	1.2	-2775.39	0.10	-11262.0	2.6	-10908	4
	Ag	47	17969	5	14561	4	-2584	7	-6334	12	-6380	4	-10680	3
	Cd	48	19306.4	2.0	12315.0	0.8	-1653.9	1.2	-9778	5	-6003.2	0.3	-15563	10
	In	49	20568	14	10070	13	-786	15	-14135	14	-826	13	-15341	13
	Sn	50	21869	8	7963	5	-119	5	-19130	100	-309	5	-21410	22
	Sb	51	23440	120	4869	9	1797	9	*		5878	13	-21730	300
	Te	52	*		1170	100	4290	9	*		7830	100	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(i	n)	S(p	o)	$Q(4\beta$	-)	Q(d	,α)	$Q(\mathfrak{p}$	$(0,\alpha)$	Q(n)	,α)
107	Sr	38	2180#	920#	*		43650#	700#	*		*		*	
	Y	39	4380#	710#	14860#	780#	36390#	500#	6960#	710#	6610#	590#	*	
	Zr	40	3900	1200	15620#	1230#	29480	1120	7600	1750	4550#	1190#	-4630 #	1160#
	Nb	41	5592	9	12460	430	23140	14	8452	15	6864	12	-4010 #	400#
	Mo	42	4488	13	13637	10	15821	9	8075	10	4132	10	-1181	13
	Tc	43	7045	15	9904	13	9657	9	9298	13	6464	12	-1285	9
	Ru	44	5611	10	11375	15	3128	9	9140	40	3505	26	2134	12
	Rh	45	8572	13	7829	13	-3299	16	9782	12	6096	12	1286	28 2.6
	Pd	46	6536.4	0.5 4	9299 5788 1	5 2.3	-9860 -17753	5 5	10189.4 10722.0	2.4 2.3	3450.8 5852.5	2.6 2.4	5369.5 4199	2.6
	Ag	47	9536		5788.1				10722.0		3832.3 2990			2.1
	Cd In	48 49	7929.4	1.9	7337 3721	3 11	-26450	70 300#	10/91	5 11		5 11	8051.2 7199	
	Sn	50	11027 9230	17 7	5193	13	-34140# *	300#	11839	12	5268 2534	8	11103	12 6
	Sb	51	12251	9	589	7	*		13396	6	5838	7	11103	7
	Te	52	10390	120	1360	70	*		14190	70	3500	100	16730	70
	I	53	*	120	-1500#	320#	*		14090#	420#	*	100	15390#	320#
	•	55	*		130011	32011	4		1407011	42011	4.		1337011	32011
108	Y	39	3000#	780#	15690#	920#	38630#	600#	8200#	850#	6180#	780#	*	
	Zr	40	5050#	1190#	16280#	640#	32310#	400#	5410#	640#	4780#	1400#	-7100#	640#
	Nb	41	3893	11	12460	1120	25486	16	9720	430	6783	15	-2630	1340
	Mo	42	6276	13	14321	12	18768	9	6158	10	4024	10	-3645	15
	Tc	43	5244	12	10660	13	11684	9	10923	13	6278	13	-361	10
	Ru	44	7870	12	12200	12	5591	9	6826	15	3490	40	-678	13
	Rh	45	6239	18	8458	16	-912	16	12002	15	5767	14	2900	40
	Pd	46	9222.9	1.6	9949	12	-7454	5	7549	6	3191.1	2.7	2056.7	2.7
	Ag	47	7271.41	0.17	6523.1	2.3	-15161	6	13011.6	2.3	5675.2	2.3	5891	3
	Cd	48	10333.5	2.0	8134.7	2.6	-23471	6	8401	3	2682	5	4811.9	1.6
	In	49	8627	14	4419	9	-31470	130	13723 9249	9	5078 2435	9 12	8597 7910	10
	Sn Sb	50 51	11629 9863	8 7	5795 1222	12	*		15619	13 7	2433 5757	7	12842	6 12
	Te	52	13310	70	2417	8 7	*		11402	9	3098	21	13203	7
	I	53	11290#	330#	-600	110	*		16280	170	5030	330	17010	130
	1	33	11270π	330π	-000	110	ጥ		10200	170	3030	330	17010	130
109	Y	39	3980#	920#	*		41080#	700#	6410#	990#	6450#	920#	*	
	Zr	40	2910#	640#	16190#	780#	34550#	500#	6880#	710#	4720#	710#	-5760 #	780#
	Nb	41	5220	260	12630#	480#	28310	260	8400	1150	6720	500	-4990#	570#
	Mo	42	3981	14	14409	14	20940	11	7769	14	4401	12	-2470	430
	Tc	43	6431	13	10816	13	14437	10	8980	13	6716	13	-2433	11
	Ru	44	5148	12	12105	12	7766	9	8722	12	3902	15	1043	13
	Rh	45	8039	15	8627	10	1490	6	9574	10	6188	7	423	13
	Pd	46	6153.59	0.15	9864	14	-4976	8	9968	12	3620	6	4363	6
	Ag	47	9184.0	2.7	6484.2	1.4	-12468	5	10364.0	1.8	6052.2	1.7	3290	6
	Cd	48	7323.2	1.8	8186.5	2.8	-20789	5	10613.2	2.8	3302	3	7049.6	1.9
	In	49	10441	9	4526	4	-28817	8	11212	4	5507	4	6099	5
	Sn	50	8632	10	5799	12	-36460	300	11645	14	2842	15	10148	8
	Sb	51	11877	8	1470	8	*		12972	7	5967	7	10004	13
	Te I	52 53	10005 13090	7 130	2559 -820	7	*		13649 13580	6 70	3622 5410	9 100	15285 14447	7 10
	Xe	53 54	13090	130	-820 810	4 330	*		13970#	420#		100	17700	320
	Λt	34	*		810	330	*		139/0#	420#	*		17700	320

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2	p)	$Q(\alpha$:)	$Q(2\beta$	-)	$Q(arepsilon_{]}$	p)	$Q(oldsymbol{eta}^-$	n)
107	Sr Y	38 39	6430# 7240#	860# 1430#	*		* -11180#	640#	25480# 21360#	1320# 500#	*		9080# 8110#	860# 660#
	Zr	40	9060	1120	30350#	1230#	-9380#	1140#	18170	1120	-26880 #	1270#	3750	1120
	Nb	41	9951	9	27030	1340	-7691	14	15026	12	-24960 #	500#	4339	12
	Mo	42	11357	13	25665	15	-7161	13	11311	13	-21290	430	-847	15
	Tc	43	12600	40	23412	10	-6146	10	8114	15	-19836	10	-498	10
	Ru	44	14071	8	21103	13	-5327	13	4510	9	-15017	13	-5571	10
	Rh	45	15155	12	19150	40	-4685	16	1543	12	-14376	17	-5027	12
	Pd	46	16097.4	0.6	17016.1	2.6	-3530.4	1.3	-1382.4	2.0	-9338	5	-9501.6	2.9
	Ag	47	17478	5	15133	3	-2800	3	-4842	11	-9333	6	-9345.8	2.3
	Cd	48	18799.1	2.2	13150.3	2.0	-1958.0	1.9	-8478	6	-4371.7	1.9	-14453	12
	In	49	20066	15	11071	12	-1186	12	-12911	12	-3911	12	-14282	12
	Sn	50	21317	7	8756	5	-286	6	-17970	70	1331	5	-20110	9
	Sb Te	51 52	22780 23870	22 310	5591 1780	11 70	1554 4008	10 5	-21220#	300#	2666 9530	13 70	-20500 *	100
	Ie I	53	23870	310	1780 -10#	300#	4008	3 420#	*		9550 9760#	300#	*	
	1	33	*		-10#	300#	4320#	420#	*		9700#	300#	*	
108	Y	39	7390#	780#	*		*		22250#	600#	*		9010#	1270#
	Zr	40	8950#	590#	31140#	720#	-9670#	500#	19400#	400#	-29740#	810#	4300#	400#
	Nb	41	9485	9	28070#	500#	-7910#	400#	16377	12	-24470 #	500#	4934	12
	Mo	42	10764	13	26780	430	-7457	13	12905	13	-23670	1120	-77	13
	Tc	43	12289	15	24297	10	-6529	9	9109	17	-19488	12	-132	12
	Ru	44	13481	10	22105	13	-5736	12	5863	9	-18399	13	-4869	15
	Rh	45	14812	15	19833	19	-4953	29	2575	14	-13571	16	-4730	14
	Pd	46	15759.3	1.6	17779 15822	6	-3853.4 -3072	2.7 3	-271.8 -3487	0.8	-12951	9	-9188.9	2.6 2.6
	Ag Cd	47	16807 18262.9	4	13922.8	6	-3072 -2282.2	3 1.7	-3487 -7182	9 5	-8032 -8168.7	12 1.6	-8687.8 -13759	
	Ca In	48 49	18262.9	1.6 15	13922.8	1.6 9	-2282.2 -1428	1.7	-7182 -11674	10	-8168.7 -3002	1.6 9	-13739 -13679	11 10
	Sn	50	20859	7	9516	5	-1426 -526	6	-11074 -16288	8	-3002 -2369	6	-13079 -19488	7
	Sb	51	22115	9	6415	13	1312	8	-19800	130	3830	12	-19980	70
	Te	52	23700	100	3006	7	3420	8	*	130	5442	8	-24420#	300#
	I	53	*	100	750	130	4100	50	*		10710	130	*	50011
109	Y	39	6980#	860#	*				23490#	750#			10080#	810#
109	r Zr	39 40	0980# 7960#	1230#	* 31870#	860#	* -10010#	710#	23490#	750# 500#	*		5280#	810# 500#
	Nb	41	9110	260	28900#	570#	-7840	1360	17590	260	-26680#	650#	5990	260
	Mo	42	10257	14	26860	1120	-7626	16	14072	14	-22600#	400#	1185	14
	Tc	43	11675	12	25137	13	-6792	10	10717	10	-22026	13	1307	12
	Ru	44	13019	12	22765	13	-5826	13	6868	9	-17271	13	-3778	17
	Rh	45	14278	13	20827	10	-5130	40	3720	4	-16366	10	-3547	4
	Pd	46	15376.5	1.6	18322	9	-4096.9	2.7	897.8	1.8	-11234	9	-8071.0	2.6
	Ag	47	16455.4	2.7	16434	12	-3293.1	2.8	-2230	4	-10977	14	-7538.3	1.5
	Cd	48	17656.7	2.3	14709.6	2.0	-2511.3	1.9	-5874	8	-6269.1	1.8	-12456	9
	In	49	19068	12	12661	5	-1844	6	-10239	7	-6172	5	-12491	7
	Sn	50	20261	10	10218	8	-721	8	-14915	9	-667	8	-18256	10
	Sb	51	21740	7	7265	12	965	12	-18578	9	580	10	-18541	8
	Te	52	23320	70	3781	7	3198	6	-21550	300	7066	7	-23140	130
	I	53	24390#	300#	1597	8	3918	21	*		7484	9	*	
	Xe	54	*		210	310	4217	7	*		12320	300	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	$Q(\mathfrak{p}$	ο,α)	Q(n,	α)
110	Zr	40	4770#	780#	16980#	920#	37190#	600#	5120#	840#	4340#	780#	-8340#	920#
	Nb	41	3690	880	13410#	980#	30520	840	9750#	930#	6930	1400	-4300 #	980#
	Mo	42	5948	27	15140	260	23788	24	5714	26	4045	26	-4520	1120
	Tc	43	4823	13	11657	15	16423	10	10432	13	6381	13	-1664	12
	Ru	44	7405	12	13079	13	10275	9	6561	12	3541	12	-1875	13
	Rh	45	5901	18	9379	20	3641	21	11543	20	5898	20	1568	20
	Pd	46	8795.7	1.3	10620	4	-2489	14	7412	14	3397	12	1178	9
	Ag	47	6809.19	0.10	7139.8	1.4	-10008	6	12777.7	1.4	5779.4	1.8	5053	12
	Cd	48	9915.0	1.6	8917.5	1.3	-18118	7	7969.6	2.4	2922.8	2.4	3671.1	1.3
	In	49	8052	12	5255	12	-26010	50	13493	12	5384	12	7583	12
	Sn	50	11283	16	6641	14	-33920	100	8989	16	2586	18	6795	14
	Sb	51	9270	8	2109	10	*		15331	8	5927	8	11761	13
	Te	52	12586	8	3268	8	*		10926	9	3287	8	11929	8
	I	53	10860	50	40	50	*		16030	50	4940	90	15840	50
	Xe	54	13820	320	1540	100	*		11440	170	2370#	320#	14260	120
111	Zr	40	2750#	920#	*		39230#	700#	6350#	990#	4600#	920#	*	
	Nb	41	4640#	890#	13280#	670#	33430#	300#	8030#	590#	7340#	500#	-5930#	670#
	Mo	42	3468	27	14920	840	26046	13	7460	260	4470	15	-2940#	400#
	Tc	43	6061	14	11771	26	19191	11	8352	15	6595	14	-3832	13
	Ru	44	4784	13	13040	13	12467	10	8208	13	4002	13	-383	13
	Rh	45	7547	19	9521	11	6088	8	9145	11	6221	11	-735	11
	Pd	46	5726.3	0.4	10446	18	-47	5	9724	4	3910	14	3322	9
	Ag	47	8829.5	1.9	7173.5	1.5	-7379	9	10101.8	1.8	6172.8	1.8	2463	14
	Cd	48	6975.60	0.17	9083.9	1.3	-15665	6	10178.0	1.3	3218.6	2.4	5918.4	1.1
	In	49	9993	12	5333	3	-23438	6	10823	4	5724	4	4861	4
	Sn	50	8168	15	6758	13	-31540	90	11262	7	3045	10	8960	5
	Sb	51	11458	11	2284	16	-38020 #	200#	12504	12	6097	10	8929	12
	Te	52	9429	9	3427	9	*		13374	8	3722	8	14129	8
	I	53	12560	50	13	8	*		13472	6	5692	7	13138	7
	Xe	54	10540	130	1220	100	*		13990	90	3120	120	17030	90
	Cs	55	*		-1810#	220#	*		14060#	360#	*		15480#	240#
112	Zr	40	4320#	990#	*		41820#	700#	*		4250#	990#	*	
	Nb	41	3470#	420#	14000#	760#	35460#	300#	9320#	670#	6780#	590#	-5430#	760#
	Mo	42	5600#	200#	15880#	360#	28860#	200#	5560#	860#	4090#	320#	-5630#	540#
	Tc	43	4306	12	12608	14	21325	6	9994	25	6271	12	-2920	260
	Ru	44	6917	13	13895	14	14944	10	6114	13	3516	13	-3318	15
	Rh	45	5500	40	10240	50	8260	40	11050	40	5870	40	200	50
	Pd	46	8407	7	11306	9	2333	7	7218	19	3542	8	63	11
	Ag	47	6439.6	2.8	7886.8	2.5	-4985	18	12458.0	2.5	5886.8	2.7	4062	5
	Cd	48	9393.93	0.28	9648.4	1.4	-13007	8	7593.2	1.3	3008.6	1.3	2678.0	1.1
	In	49	7669	5	6027	4	-20927	11	13069	4	5378	5	6376	4
	Sn	50	10788	5	7552	3	-28629	8	8526	12	2699	4	5495.7	1.6
	Sb	51	8834	20	2949	19	-35310	90	14954	23	5895	20	10537	18
	Te	52	12051	11	4020	12	*		10593	10	3548	10	10709	12
	I	53	10181	11	765	12	*		15877	12	5516	11	14834	12
	Xe	54	13700	90	2362	10	*		11150	50	2510	7	13335	9
	Cs	55	11540#	210#	-816	4	*		16340	130	4740	310	17030	90

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2	p)	$Q(\alpha$:)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$))	$Q(eta^-$	-n)
110	Zr Nb	40 41	7680# 8910	720# 840	* 29590#	1030#	-10520# -8680#	850# 980#	21660# 18720	600# 840	* -26400#	1090#	5730# 6280	650# 840
	Mo	42	9929	26	27770#	400#	-8420	430	15530	26	-25640# -25640#	500#	1669	26
	Tc	43	11254	12	26067	13	-7256	10	11794	20	-23640π -21630	260	1633	13
	Ru	44	12554	12	23895	13	-6363	13	8258	9	-20696	14	-3144	10
	Rh	45	13940	23	21484	20	-5477	22	4629	18	-15835	20	-3294	18
	Pd	46	14949.3	1.3	19247	9	-4433	5	2017.1	0.5	-14881	9	-7682.8	1.4
	Ag	47	15993.2	2.7	17004	14	-3520	6	-987	12	-9747	4	-7024.3	1.8
	Cd	48	17238.2	1.2	15401.7	1.2	-2865.4	1.2	-4506	14	-10030.5	1.2	-11930	4
	In	49	18493	14	13441	12	-1953	12	-9020	13	-5040	12	-11911	14
	Sn	50	19915	15	11168	14	-1135	14	-13612	15	-4627	14	-17662	15
	Sb	51	21147	8	7908	10	733	14	-16990	50	1751	7	-17806	7
	Te	52	22591	9	4738	8	2699	8	-20310	100	3111	10	-22629	9
	I	53	23960	140	2600	50	3580	50	*		8500	50	-22370	300
	Xe	54	*		720	100	3872	9	*		8500	100	*	
111	Zr	40	7510#	860#	*		-11090#	990#	22380#	700#	*		6680#	1090#
	Nb	41	8330#	400#	30250#	760#	-8940#	590#	20150#	300#	*		7600#	300#
	Mo	42	9416	17	28330#	500#	-7980	1120	16846	15	-24340 #	600#	3023	15
	Tc	43	10884	14	26910	260	-7726	13	13280	13	-24000	840	2977	13
	Ru	44	12190	13	24697	15	-6659	13	9201	10	-19532	26	-2028	20
	Rh	45	13448	8	22600	12	-5979	11	5911	7	-18559	12	-2045	7
	Pd	46	14522.0	1.3	19825	9	-4548	9	3266.4	0.7	-13202	9	-6599.9	1.4
	Ag	47	15638.7	1.9	17794	4	-3777	12	177	4	-12676	18	-5938.8	1.4
	Cd	48	16890.6	1.6	16223.7	1.2	-3304.5	1.3	-3314	5	-8210.3	0.6	-10854	12
	In	49	18045.2	2.7	14251	4	-2410	4	-7555	9	-8224	4	-10621	14
	Sn	50	19451	10	12012	6	-1373	6	-12351	8	-2880	5	-16560	8
	Sb	51	20728	10	8925	10	303	14	-15883	10	-1656	15	-16678	11
	Te	52	22015	8	5535	10	2500	8	-19190	90	4966	15	-21190	50
	I	53	23424	8	3281	7	3275	5	-22130#	200#	5207	8	-21100	100
	Xe	54	24370	310	1260	90	3720	50	*		10550	90	*	
	Cs	55	*		-270#	200#	4180#	360#	*		10350#	200#	*	
112	Zr	40	7070#	920#	*		*		23650#	730#	*		6990#	760#
	Nb	41	8110#	890#	*		-9400#	670#	20990#	300#	*		7600#	300#
	Mo	42	9060#	200#	29160#	630#	-8540#	450#	18170#	200#	-27190#	730#	3490#	200#
	Tc	43	10367	11	27530	840	-8138	10	14470	40	-23670#	300#	3455	11
	Ru	44	11701	13	25666	26	-7300	13	10691	12	-22980	15	-1398	12
	Rh	45	13050	50	23270	50	-6230	40	6850	40	-18000	50	-1820	40
	Pd	46	14133	7	20827	11	-5085	11	4253	7	-16825	12	-6177	7
	Ag	47	15269.1	2.7	18333	18	-3977	14	1406	5	-11568	7	-5402.8	2.4
	Cd	48	16369.5	0.3	16821.9	0.6	-3475.6	1.1	-1919.80	0.16	-11877.9	0.7	-10254	3
	In	49	17663	12	15111	4	-2808	5	-6391	18	-7064	4	-10123	7
	Sn	50	18956	14	12885.0	0.4	-1827.6	1.2	-11088	8	-6691.8	0.3	-15890	9
	Sb	51	20292	19	9707	21	96	20	-14536	21	-496	18	-16083	19
	Te	52	21480	11	6303	16	2078	10	-17541	12	1082	10	-20685	10
	I	53	22740	50	4192	12	2957	12	-20770	90	6484	14	-20740	90
	Xe	54	24250	100	2374	11	3330	6	*		6272	10	-25280 #	200#
	Cs	55	*		400	100	3930	120	*		11370	90	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p	o)	$Q(4\beta)$	-)	Q(d,	α)	Q(p	,α)	Q(n,	α)
113	Nb Mo	41 42	4310# 3100#	500# 360#	13990# 15510#	810# 420#	38260# 31100#	400# 300#	7760# 7100#	810# 420#	7240# 4680#	720# 890#	* -3960#	670#
	Tc	43	5624	6	12640#	200#	24215	17	7839	13	6595	24	-4860	840
	Ru	44	4310	40	13900	40	17180	40	7870	40	4030	40	-1680	40
	Rh	45	7110	40	10426	12	10600	7	8729	12	6169	11	-2087	12
	Pd	46	5341	9	11150	40	4737	7	9424	10	4102	19	2128	11
	Ag	47	8514	17	7994	18	-2610	24	9670	17	6168	17	1448	24
	Cd	48	6539.74	0.22	9748.5	2.4	-10696	28	9883.0	1.5	3278.1	1.3	4934.0	0.6
	In	49	9448	4	6081.23	0.24	-18248	8	10595.9	0.4	5844.9	0.4	3736.6	1.3
	Sn	50	7744.4	1.6	7627	5	-26125	7	10775	4	3006	12	7666.2	1.6
	Sb	51	10889	25	3051	17	-32652	19	12232	18	6289	22	7699	21
	Te	52	8851	29	4040	30	-38560#	300#	13201	29	3967	29	13140	30
	I	53	12127	13	841	12	*		13179	10	5974	10	11977	10
	Xe	54	10249	11	2429	12	*		13461	8	3120	50	15673	9
	Cs	55	13550	90	-972.8	2.2	*		13340	90	5020	100	14350	50
	Ba	56	*		780#	310#	*		13750#	360#	*		17790#	320#
114	Nb	41	2950#	640#	*		40320#	510#	9130#	860#	7040#	860#	*	
	Mo	42	5390#	420#	16590#	500#	33680#	300#	5180#	420#	3930#	420#	-6600#	760#
	Tc	43	3860	430	13400#	530#	26330	430	9570#	480#	6200	430	-4080 #	530#
	Ru	44	6430	40	14699	5	19793	4	5748	7	3667	11	-4636	13
	Rh	45	5010	70	11130	80	12860	70	10630	70	5940	70	-1040	70
	Pd	46	7971	10	12012	10	7069	7	6950	40	3678	10	-1059	12
	Ag	47	5975	17	8629	8	-434	22	12102	8	5919	5	3020	8
	Cd	48	9042.97	0.14	10277	17	-8126	28	7279.6	2.4	3064.6	1.5	1617.4	0.7
	In	49	7274.00	0.25	6815.5	0.4	-15770 #	150#	12715.9	0.3	5546.5	0.4	5292.0	1.5
	Sn	50	10302.9	1.6	8481.58	0.19	-23474	11	8141	4	2696	3	4338.9	0.4
	Sb	51	8151	28	3457	22	-29810	70	14869	22	6306	22	9542	22
	Te	52	11610	40	4760	30	-35980	110	10420	30	3812	29	9696	28
	I	53	9750#	150#	1740#	150#	*		15480#	150#	5660#	150#	13690#	150#
	Xe	54	12954	13	3255	14	*		10688	15	2732	12	12148	13
	Cs	55	10990	70	-230	70	*		16050	70	4580	110	15920	70
	Ba	56	14190#	320#	1430	100	*		11100	130	1780#	220#	14140	130
115	Nb	41	4040#	710#	*		42880#	500#	*		7320#	860#	*	
	Mo	42	3010#	500#	16650#	640#	35680#	400#	6470#	570#	4390#	500#	-5290#	810#
	Tc	43	5790	900	13800#	840#	28660	790	6880#	850#	6010#	810#	-6400#	840#
	Ru	44	4040	90	14880	440	21890	90	7330	90	3930	90	-3080#	220#
	Rh	45	6590	70	11297	8	15307	7	8350	40	6265	12	-3324	9
	Pd	46	5007	15	12000	70	9607	14	9052	15	4170	50	851	17
	Ag	47	8123	19	8781	20	2021	24	9319	20	6203	19	400	50 7
	Cd	48	6140.9	0.6	10443	5	-6022	28	9653	17	3363.3	2.5	3883	2.4
	In Sn	49 50	9037.9	0.3	6810.38	0.28	-13199	29	10217.74	0.24	5902.57	0.25	2693.8	2.4 0.25
	Sn	50 51	7545.43	0.03	8753.0 3733	0.3	-21377 $-27300#$	12	10044.09	0.19	2820	4	6187.43 6633	
	Sb Te	51 52	10578 8250	27 40	3733 4860	16 40	-27300# -33040#	100# 200#	12036 13070	16 30	6516 4400	16 30	12239	17 28
	Ie I	53	8230 11610#	40 150#	4860 1740	40		200#	12720	40	6090	30	10910	30
	Xe	53 54	9642	150#	3150#	40 150#	*		13174	15	3271	30 16	14557	30 15
	Cs	55 55	9642 13090#	130#	-100#	100#			13174	100#	5271 5190#	100#	13010#	100#
	Ba	56	11190#	230#	-100# 1630#	210#	*		13460#	200#	2130#	220#	16650#	200#
	Da	50	11170#	230 11	1030#	210 11	*		13400#	200#	2130#	22U#	10050#	200#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2 ₁	p)	$Q(\alpha$	2)	$Q(2\beta$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
113	Nb	41	7780#	500#	*		-9740#	810#	22300#	400#	*		8880#	450#
	Mo	42	8690#	300#	29510#	760#	-8720 #	590#	19380#	300#	-25970#	760#	4700#	300#
	Tc	43	9930	11	28510#	300#	-8550	260	15956	8	-25830 #	300#	4748	10
	Ru	44	11230	40	26510	40	-7630	40	11720	40	-21690 #	200#	-210	60
	Rh	45	12606	10	24321	13	-6910	12	8259	18	-20798	9	-517	10
	Pd	46	13748	7	21384	12	-5278	11	5452	7	-15249	12	-5079	7
	Ag	47	14954	17	19300	18	-4452	17	2340	17	-14580	50	-4523	17
	Cd	48	15933.7	0.3	17635.3	0.7	-3861.7	1.1	-715.2	1.6	-10011	7	-9124	4
	In	49	17118	3	15729.6	1.5	-3072.6	1.3	-4950	17	-10072.4	2.4	-8783.38	0.28
	Sn	50	18532	6	13653.8	1.6	-2248.7	2.2	-9981	28	-5042.2	1.6	-14800	18
	Sb	51	19723	19	10603	18	-352 1858	18	-13297	19	-3716	18	-14921	19
	Te I	52 53	20902 22308	29 9	6986 4861	28	2707	29 10	-16143	29	3019 3190	28	-19355	30 12
	Xe	53 54	23950	90 90	3194	12 9	3087	8	-19355 -22420#	12 300#	8075	20 11	-19164 -23980	90
	Cs	55	25090#	200#	1389	10	3483	8	-22420# *	300 11	8010	13	-23960 *	90
	Ba	56	*	200π	-30#	310#	3960#	420#	*		12950#	300#	*	
114	Nb	41	7260#	590#	*		*		23210#	660#	*		9030#	590#
	Mo	42	8490#	360#	30570#	760#	-9350#	670#	20420#	300#	*		4930#	300#
	Tc	43	9480	430	28900#	530#	-8720	940	17110	440	-25380 #	590#	5200	430
	Ru	44	10734	10	27340#	200#	-8104	24	13269	8	-25020 #	300#	474	8
	Rh	45	12120	80	25030	70	-7100	70	9220	70	-20190	70	-190	70
	Pd	46	13312	9	22438	12	-5843	11	6524	7	-18910	40	-4535	18
	Ag	47	14490	5	19780	40	-4527	18	3639	5	-13452	8	-3959	5
	Cd	48	15582.71	0.25	18271	7	-4108.9	0.6	544.79	0.28	-13713	7	-8719.13	0.30
	In	49	16722	4	16564.0	2.4	-3537.4	1.3	-4073	22	-8832	17	-8313.0	1.6
	Sn	50	18047.30	0.30	14562.81	0.25	-2636.7	0.4	-8671	28	-8805.41	0.25	-14214	17
	Sb	51	19040	28	11084	22	-452	25	-11700#	150#	-2418	22	-14220	40
	Te	52	20464	29	7811	28	1530	30	-14800	30	-849	28	-18840	29
	I	53	21880#	150#	5780#	150#	2230#	150#	-18110#	170#	4330#	150#	-18660#	150#
	Xe	54	23202	14	4096	14	2719	13	-21180	100	3970	30	-23393	14
	Cs Ba	55 56	24530	110	2200 460	70 100	3360 3592	50 19	*		9150 9010	70 100	-22970# *	310#
115	Nb	41	6990#	640#	*		*		24970#	940#	*		10380#	590#
	Mo	42	8400#	500#	*		-9610#	810#	21440#	410#	*		5780#	590#
	Tc	43	9650	790	30390#	890#	-9870#	840#	17910	790	-28220 #	940#	5830	790
	Ru	44	10460	100	28280#	310#	-8670	90	14240	90	-23670#	310#	1450	110
	Rh	45	11605	10	25996	8	-7630	13	10753	20	-22920	430	1190	10
	Pd	46	12978	15	23140	40	-6066	17	7658	14	-17494	14	-3567	14
	Ag	47	14098	25	20793	20	-5103	20	4554	18	-16560	70	-3039	18
	Cd	48	15183.8	0.6	19071	7	-4523.5	1.0	1949.4	0.7	-11883	7	-7586.0	0.7
	In	49	16311.86	0.19	17087	17	-3745.8	1.5	-2533	16	-11895	5	-7047.94	0.03
	Sn	50	17848.3	1.6	15568.49	0.24	-3206.5	0.4	-7971	28	-7307.87	0.28	-13609	22
	Sb	51	18729	24	12214	16	-1036	16	-10670	30	-5723	16	-13190	30
	Te	52	19860	40	8313	28	1451	28	-13410	30	1208	28	-17340#	150#
	I	53	21361	30	6500	30	2070	30	-16640#	110#	870	40	-17320	30
	Xe	54	22596	14	4890	30	2506	14	-19640#	200#	5940	30	-22050	70
	Cs	55	24080#	100#	3160#	100#	2830#	100#	*		5810#	180#	-21870 #	150#
	Ba	56	25380#	360#	1390#	200#	2950#	220#	*		10780#	200#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p)	$,\alpha)$	Q(n,	α)
116	Мо	42	4820#	640#	17440#	710#	38330#	500#	4600#	710#	3880#	640#	*	
110	Tc	43	3210#	840#	14000#	500#	31090#	300#	9060#	420#	5900#	420#	-5300#	500#
	Ru	44	5950	90	15040	790	24644	4	5240	430	3607	5	-5930#	300#
	Rh	45	4580	70	11840	120	17510	70	10200	70	6000	80	-2280	70
	Pd	46	7477	15	12891	10	11694	7	6590	70	3800	10	-2320	40
	Ag	47	5631	19	9405	14	4279	6	11659	8	5912	8	1871	8
	Cd	48	8699.3	0.7	11019	18	-3444	28	6929	5	3178	17	525	7
	In	49	6784.72	0.22	7454.2	0.7	-10760	100	12476.0	0.4	5657.6	0.3	4423	17
	Sn	50	9563.45	0.09	9278.59	0.10	-18479	13	7754.6	0.3	2705.20	0.21	3163.72	0.26
	Sb	51	7890	17	4077	5	-24780 #	100#	14448	5	6370	5	8191	5
	Te	52	11280	40	5550	30	-30690 #	200#	9940	40	4010	30	8706	28
	I	53	9230	100	2720	100	-36850 #	330#	15110	100	5720	100	12570	100
	Xe	54	12461	18	4000	30	*		10460#	150#	2937	15	10950	30
	Cs	55	10410#	140#	680#	100#	*		15750#	100#	5030#	100#	14720#	100#
	Ba	56	13630#	280#	2170#	230#	*		10810#	210#	2050#	200#	13270#	200#
	La	57	*		-1090#	370#	*		15970#	330#	4000#	430#	16770#	310#
117	Mo	42	2740#	710#	*		40260#	500#	5900#	710#	4080#	710#	*	
	Tc	43	5000#	500#	14170#	640#	33800#	400#	7080#	570#	6290#	500#	-7350#	640#
	Ru	44	3490	430	15320#	530#	26930	430	7540	900	3970	610	-4040#	530#
	Rh	45	6230	70	12117	10	20046	10	8000	90	6188	9	-4650	430
	Pd	46	4664	10	12980	70	13973	7	8516	10	4150	70	-556	8
	Ag	47	7711	14	9639	15	6458	16	8955	19	6173	15	-820	70
	Cd	48	5777.2	1.0	11165	3	-1323	13	9275	18	3376	5	2719	7 7
	In	49	8765	5	7520	5	-8507	27	9852	5	5936	5	1634	7
	Sn	50	6943.1	0.5	9437.0	0.5	-16212	10	9849.4	0.5	3036.1	0.6	5263.6	0.6
	Sb	51	9889	10	4403	8	-22150	60	12105	8	6784	8	5577	8
	Te	52	7900	30	5562	14	-27640	250	12619	21	4265	26	11111	13
	I	53	11020	100	2460	40	-33970#	200#	12340	40	6320	40	9710	30
	Xe	54	9210	17	3980	100	*		12860	30	3480#	150#	13350	30
	Cs	55	12520#	120#	740	60	*		12870	60	5460	60	11950#	160#
	Ba	56	10950#	320#	2700#	270#	*		12950#	270#	2090	260	15270	250
	La	57	13900#	370#	-820	3	*		13260#	280#	4300#	230#	13860#	210#
118	Mo	42	4530#	710#	*	< 10 !!	42760#	500#	*	C 10 !!	3590#	710#	*	< 10 !!
	Tc	43	3480#	570#	14910#	640#	35760#	400#	8420#	640#	5820#	570#	-6790#	640#
	Ru	44	5840#	480#	16170#	450#	29440#	200#	4910#	360#	3920#	810#	-6860#	450# 790
	Rh	45	4061	26	12690	430	22341	25	9892	25	6170	90	-2920	90 90
	Pd	46	7036	8 14	13780	9 8	16264.1 8442	2.5 4	6060	70	3705 5727	8 14	-3550 322	8
	Ag Cd	47 48	5443 8355	20	10418 11809	8 24	995	27	10989 6552	8 20	5737 3145	27	-629	8 24
		48 49			8099	8			12195		5720		-629 3401	20
	In		6356	6	9999	8 5	-6257	21		8		8 0.5		20
	Sn	50	9326.42	0.13	9999 4887.4		-13574	10	7307.7	0.5	2747.5 6902		2078.0	0.8
	Sb Te	51 52	7428 10672	9 23	4887.4 6346	3.0 20	-19587 -25340#	13 200#	14241 9836	3	6902 4171	3 24	7187 7984	3 18
	Ie I	52	8610	30	3165	20 24	-25340# -31410#	200# 300#	9836 15010	19 30	5960	30	7984 11679	18 25
	Xe	53 54	11965	30 15	4932	28		300#	10120		3120	30	9630	30
	Cs	55 55	9990	60	1513	28 16	*		15348	100 18	5111	18	13570	30
	Es Ba	56	9990 12970#	320#	3150#	210#	*		10400#	220#	2210#	18 220#	13570	200#
	Lа	57	11160#	360#	-610#	390#	*		15730#	360#	4320#	360#	15790#	320#
	ьa	31	11100#	300#	-010#	370#	*		13/30#	300#	432U#	300#	13770#	340#f

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$))	$Q(oldsymbol{eta}^-$	n)
116	Мо	42	7840#	580#	*		-10110#	860#	22570#	500#	*		6750#	940#
	Tc	43	9000#	530#	30650#	590#	-9610#	420#	19280#	310#	-27390 #	590#	6660#	310#
	Ru	44	9990	5	28840#	300#	-9030#	200#	15763	8	-26610 #	400#	2090	8
	Rh	45	11170	100	26710	440	-7900	70	11810	70	-21710	790	1620	80
	Pd	46	12483	10	24188	8	-6626	12	8881	7	-20930	90	-2920	20
	Ag	47	13754	6	21410	70	-5240	40	5707	3	-15602	8	-2529	3
	Cd	48	14840.2	0.3	19799	7	-4816	7	2813.49	0.13	-15575	14	-7247.45	0.16
	In	49	15822.6	0.4	17897	5	-4090.9	2.4	-1428	5	-10556	18	-6287.23	0.22
	Sn	50	17108.88	0.10	16088.98	0.29	-3376.03	0.27	-6257	28	-10730.5	0.7	-12594	16
	Sb	51	18468	22	12830	5	-1257	7	-9330	100	-4575	5	-12831	28
	Te	52	19520	40	9287	28	961	28	-12220	30	-2524	28	-17000	40
	I Xe	53	20840#	180#	7570 5740	100 30	1680	100	-15450#	140#	2220	100	-16910	100 100#
	Cs	54 55	22103 23500#	17 120#	5740 3820#	30 180#	2096 2600#	16 100#	-18470# -21400#	200# 330#	1730 7010#	30 100#	-21420# -21090#	220#
	Ba	56	24820#	230#	2070#	200#	3020#	200#	-21400# *	330#	6790#	200#	-21090# *	220#
	La	57	24620# *	230#	540#	320#	3220#	300#	*		11770#	330#	*	
117	Mo	42	7560#	640#	*		*		23320#	660#	*		7210#	580#
	Tc	43	8200#	890#	31610#	640#	-10300 #	570#	20520#	400#	*		7620#	400#
	Ru	44	9440	440	29320#	590#	-9430#	530#	16930	430	-25280 #	660#	3170	440
	Rh	45	10810	11	27160	790	-8511	10	13285	16	-24730 #	300#	2863	11
	Pd	46	12141	15	24810	90	-6980	40	9994	7	-19645	8	-1953	8
	Ag	47	13342	23	22530	15	-5839	15	6761	14	-18730	80	-1541	14
	Cd	48	14476.5	1.2	20570	14	-5252	7	3979.4	1.1	-13876	7	-6240.0	1.0
	In	49	15549	5	18538	19	-4341	17	-304	10	-13689	6	-5488	5
	Sn	50	16506.5	0.5	16891.2	0.8	-3779.4	0.5	-5302	13	-8974.2	0.5	-11647	5
	Sb	51	17779	18	13681	8	-1697	8	-8203	27	-7679	8	-11442	29
	Te	52	19180	30	9640	13	808	14	-10910	17	-858	13	-15670	100
	I	53	20240	40	8010	30	1560	30	-13940	70	-903	27	-15461	29
	Xe	54	21671	16	6701	30	1737	30	-16730	250	3795	30	-20210#	100#
	Cs	55	22940#	120#	4730	70	2200	60	-20020 #	210#	3710	110	-19980#	210#
	Ba La	56 57	24580#	320#	3380 1350#	250 230#	2320 2870#	250 200#	*		8300 8280#	250 220#	-24880# *	400#
118	Mo	42	7270#	710#	*		*		24630#	540#	*		7680#	640#
	Tc	43	8480#	500#	*		-10830 #	640#	21100#	400#	*		7630#	590#
	Ru	44	9330#	200#	30340#	540#	-9880#	360#	18130#	200#	-28380 #	540#	3570#	200#
	Rh	45	10290	80	28010#	300#	-8710	430	14666	24	-23800 #	400#	3466	25
	Pd	46	11700	7	25898	4	-7592	4	11313	20	-23190	430	-1278	14
	Ag	47	13154	4	23400	70	-6270	70	7674	8	-17945	9	-1206.7	2.7
	Cd	48	14132	20	21448	21	-5636	21	4951	20	-17566	21	-5830	21
	In	49	15121	8	19263	8	-4722	9	768	8	-12335	16	-4902	8
	Sn	50	16269.5	0.5	17518.3	0.5	-4062.8	0.6	-3956	18	-12523.4	1.1	-11085	8
	Sb	51	17317	6	14324	3	-1851	3	-7025	20	-6342	6	-10972	14
	Te	52	18570	30	10749	18	438	18	-9618	21	-4588	18	-15330	30
	I	53	19620	100	8727	20	1101	29	-12562	24	380	21	-14857	22
	Xe	54	21175	17	7388	30	1385	30	-15730#	200#	-273	17	-19660	60
	Cs	55	22510#	100#	5500	100	1960#	150#	-18850#	300#	4738	29	-19020	250
	Ba	56	23920#	280#	3890#	200#	2310#	200#	*		4540#	200#	-23960#	280#
	La	57	25060#	430#	2100#	320#	2700#	310#	*		9640#	310#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

Rh	A	Elt.	Z	S(n	1)	S(I	p)	$Q(4\beta$	-)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
Rh 45 6007 26 12850# 200# 24876 12 7380 430 6110 10 -5720# 34 Ag 46 4090 9 13809 26 18657 8 8200 12 4190 70 -1693	119														
Page 46 4090 9 13809 26 18657 8 8200 12 4190 70 -1693															580#
Age 47 7163 15 10546 15 10828 17 8490 16 6050 16 -2260												6110			300#
Cd 48 5350 40 11710 40 3200 40 8920 40 3430 40 1500 In 49 8542 8 8287 21 -3934 29 9430 7 5877 7 490 Sn 50 6483.5 0.5 10126 8 -11271 10 9589 5 3048.8 0.8 429.9 9 Sh 51 9549 8 5110 8 -17169 16 11634 8 6916 8 4422 Te 52 7556 20 6474 8 -22590 200 12169 12 4505 9 9991 I 53 10870 30 3360 30 -28980# 300# 12040 30 6370 40 8703 Xe 54 8787 15 5112 22 -34850# 500# 12352 28 3560 100 12121 Cs 55 11967 19 1515 17 * 12591 17 5606 19 10830 1 Ba 56 10310# 280# 3470 200 * 12591 17 5606 19 10830 1 Ca 57 13300# 420# -280# 360# * 13340# 540# 1570# 540# 1570# 540# 1200# 3 Cc 58 * * 1670# 580# * 13340# 540# 550# 12320# 200# 14100 2 Ru 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 640# 640# 3481 9 -5140 4 Ru 44 5520# 500# 16930# 640# 33950# 400# 14490# 570# 3230# 570# -8200# 640# 640# 3481 476 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ru 44 6 6943 8 14746 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ru 49 6604 8 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sn 50 91047 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sh 51 7015 11 5642 7 -14529 12 13946 7 6841 7 6172 Te 52 10258 9 7183 8 -20480 300 9 339 4 4650# 300 2470 31 0 100 33 Xe 54 11449 16 5700 30 -3870 300 -3870 300# 16654 24 4156 9 96676 Rh 45 51080# 420# 270# 380 4 270# 300# 3132 4 4 4 4 516 1 4 12194 Ru 44 3109 570# 1.1 5642 7 -14529 12 13946 7 6841 8 2709 5 966.4 Sh 51 7015 11 5642 7 -14529 12 13946 7 6841 8 2709 5 966.4 Sh 51 7015 11 5642 7 -14529 12 13946 7 6841 8 2709 5 966.4 Rh 45 51080# 420# 270# 300 -3870 300 -3870 300 -3870 300 470 310 10040 3 Cc 58 13730# 710# 2100# 380# 400# 6040# 6040# 3610# 570# 310 10040 3 Cc 58 13730# 710# 2100# 380# 12716 15 580 300 300 2470 310 10040 3 Cc 58 13730# 710# 2100# 380# 400# 6040# 6040# 3610# 570# 300 335 4 22 10862 Cc 58 13730# 710# 2100# 380# 400# 6040# 6040# 3610# 570# 300 315 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1															9
In		Ag													80
Sn S0 6483.5 0.5 10126 8 -11271 10 9589 5 3048.8 0.8 42929															40
Sb					8					9430	7		7		8
Te 52 7556 20 6474 8 -22590 200 12169 12 4505 9 9991 I 53 10870 30 3360 3360 336 -28980# 300# 12040 306 6370 40 8703 Xe 54 8787 15 5112 22 -34850# 500# 12352 28 3560 100 12121 Cs 55 11967 19 1515 17 * 12591 17 5606 19 10830 1 Ba 56 10310# 280# 3470 200 * 1 12610 210 2320# 220# 14100 2 Ce 58 * 3 1300# 420# -280# 360# * 13380# 390# 4650# 360# 12900# 3 Ce 58 * * 13300# 420# -280# 360# * 13340# 540# 1570# 590# 16290# 5 120 Tc 43 3220# 710# * 40130# 500# 7820# 710# 5520# 710# * * Ru 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 6 Ru 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 6 Ru 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 6 Ru 44 6 6943 8 14746 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ag 47 5077 15 11533 9 12766 8 10448 5 5637 9 -1108 Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 16 16 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sn 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 9666 50 15 33 806 3861 17 -26180# 300# 14654 24 6206 20 10333 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 1400 14654 24 6206 20 10333 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 1400 1400 140 14516 14 12194 Ba 56 12370 360 3870 300 * 100 100 14654 24 6206 20 10333 Xe 54 11449 16 5700 300 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 100 100 14654 24 6206 20 10333 Xe 54 11449 16 5700 300 -32570# 500# 500# 580# 1740# 500# 650# 570# 660# 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 684 6770# 6770# 684 6770# 6770# 684 6770# 6770# 6770# 684 6770# 6770# 6770# 6770# 6770# 6770# 677			50				8			9589					0.7
To Sa 10870 30 30 3360 30 -28980# 300# 12040 30 6370 40 8703		Sb	51				8			11634	8	6916			8 8
Xe										12169					8
Cs 55 11967 19 1515 17 * 12501 17 5600 19 10830 1 La 56 10310# 280# 3470 200 * 12610 210 2320# 220# 14100 2 La 57 13300# 420# -280# 360# * 13380# 390# 4650# 360# 1290# 3 Ce 58 * 1670# 580# * 13240# 540# 1570# 590# 16290# 5 Ru 43 3220# 710# * 40130# 500# 7820# 710# * 20 19 10830# 7 10# * 100 40 40# 4500# 7820# 710# * 420# 40# 440# 4500# 40# 400# 40# 400# 40# 40# 40# 40# 40# 40# 40# 40# 40# 40# 40# <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>28</td>							30								28
Ba S6 10310# 280# 3470 200 * 12610 210 2320# 220# 14100 2 2 2 2 2 2 2 2 2				8787	15		22	-34850 #	500#	12352					30
La 57 13300# 420# -280# 360# * 13380# 390# 4650# 360# 12900# 3 Ce 58 * * 1670# 580# * 13320# 540# 1570# 590# 16290# 5 120 Tc 43 3220# 710# * 40130# 500# 7820# 710# 5520# 710# * Ru 44 5520# 500# 16930# 640# 26910# 200# 9160# 280# 5540# 480# -4790# 4 Pd 46 6943 8 14746 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ag 47 5077 15 11533 9 12766 8 10488 5 5637 9 -1108 Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sn 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# * 42620# 580# * 15500# 690# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 580# * 15500# 690# 580# 1740# 540# 13500# 5 Ru 44 3110# 570# 16820# 640# 36030# 400# 6640# 3610# 570# 681								*							100
Ce 58 * 1670# 580# * 13240# 540# 1570# 590# 16290# 5 120 Tc 43 3220# 710# * 40130# 500# 7820# 710# 5520# 710# * Rh 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 6 Pd 46 6943 8 14746 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ag 47 5077 15 11533 9 12766 8 10448 5 5637 9 -1108 Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709		Ba			280#			*			210		220#		200
TC			57	13300#	420#			*			390#	4650#	360#	12900#	320#
Ru 44 5520# 500# 16930# 640# 33950# 400# 4490# 570# 3230# 570# -8200# 6		Ce	58	*		1670#	580#	*		13240#	540#	1570#	590#	16290#	540#
Rh 45 4060# 200# 13540# 360# 26910# 200# 9160# 280# 5540# 480# -4790# 4 Pd 46 6943 8 14746 10 20818.3 2.2 5318 24 3481 9 -5140 4 Ag 47 5077 15 11533 9 12766 8 10448 5 5637 9 -1108 Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sn 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 22383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 1550# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 580# 5870# 650# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6770# 6 Rh 45 5510# 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 La 57 12690# 420# 590# 420# 27 -12480# 1511155 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24000# 300# 11755 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24000# 300# 11740 500# 1300# 12950 140 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 112403 18 5841 18 9515 Ba 56 9930 330 44150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12210 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12210 11 360# 130	120														
Pd															640#
Ag 47 5077 15 11533 9 12766 8 10448 5 5637 9 -1108 Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sn 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 3339 4 4136 9 6676 L 53 8060 30 3861 17 -26180# 300# 14454 24 6206 20 10533 </td <td></td> <td>480#</td> <td></td> <td>450#</td>													480#		450#
Cd 48 8050 40 12601 15 5411 5 6307 4 3089 14 -1886 In 49 6100 40 9040 50 -1980 40 11680 40 5550 40 2100 Sh 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569					8		10					3481			430
In 49 6100 40 9040 50 -1980 40 11680 40 55550 40 2100		Ag						12766							10
Sn 50 9104.7 1.1 10688 7 -8926 12 6841 8 2709 5 966.4 Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6676 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 650# 5870# 650# -6810# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27							15								8
Sb 51 7015 11 5642 7 -14529 12 13946 7 6844 7 6172 Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 4415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11995 30 3354 22 10862 Cs 53 11285 17 2219 19 -35680# 500# 112403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 500# 1730# 500# 15310# 4 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4				6100								5550			40
Te 52 10258 9 7183 8 -20480 300 9339 4 4136 9 6676 I 53 8060 30 3861 17 -26180# 300# 14654 24 6206 20 10533 Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 In 53 10570 16 4172 4 -24060# 300# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 Ce 58 11160# 640# 2410# 500# * 13810# 500# 1730# 500# 115310# 4							7			6841					1.4
Table Tabl		Sb					7			13946		6844			9
Xe 54 11449 16 5700 30 -32570# 500# 9509 23 3128 29 8569 Cs 55 9655 17 2383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 14570# 3 Ce 58 13730# 710# * 42620# 500# * * 5720# 710# * Ru 43 4330# 710# * 42620# 500# * * 5720# 710# * Ru		Te				7183	8					4136			3
Cs 55 9655 17 2383 14 * 14901 14 5161 14 12194 Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 500# 1730# 500# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 11870# 3							17								17
Ba 56 12370 360 3870 300 * 10230 300 2470 310 10940 3 La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 590# * 12810# 500# 1730# 500# 11870# 3								-32570 #	500#						18
La 57 10850# 420# 270# 360# * 15500# 360# 4750# 390# 14570# 3 Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 500# 1730# 500# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 11870# 3		Cs			17			*			14				28
Ce 58 13730# 710# 2100# 580# * 10670# 580# 1740# 540# 13500# 5 121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283		Ba		12370	360			*		10230	300	2470	310	10940	300
121 Tc 43 4330# 710# * 42620# 500# * 5720# 710# * Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 6040# 3610# 570# -6770# 6820 7030# 690# 5870# 650# -6810# 7920		La		10850#	420#	270#	360#	*		15500#	360#	4750#	390#	14570#	310#
Ru 44 3110# 570# 16820# 640# 36030# 400# 6040# 640# 3610# 570# -6770# 6 Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8		Ce	58	13730#	710#	2100#	580#	*		10670#	580#	1740#	540#	13500#	560#
Rh 45 5510# 650# 13530# 740# 29590 620 7030# 690# 5870# 650# -6810# 7 Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4	121														
Pd 46 3974 4 14660# 200# 23015 3 7351 10 3569 24 -3280# 2 Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 <td></td> <td>640#</td>															640#
Ag 47 6823 13 11412 12 15198 12 7716 15 5850 12 -3869 Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400															740#
Cd 48 5188 4 12711 5 7472 26 8283 15 3344 3 -39 In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10															200#
In 49 8180 50 9168 28 415 28 8850 50 5730 30 -636 Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4		Ag										5850	12		27
Sn 50 6170.2 0.3 10760 40 -6716 10 9213 7 2895 8 3151 Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td></td> <td>26</td> <td>8283</td> <td>15</td> <td>3344</td> <td></td> <td></td> <td>3</td>							5		26	8283	15	3344			3
Sb 51 9254 8 5790.9 2.7 -12498 15 11175.5 2.7 6916.6 2.6 3274 Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500#		In	49		50		28			8850	50	5730	30	-636	28
Te 52 7249 26 7417 27 -17800 140 11639 27 4315 26 8754 I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4															20
I 53 10570 16 4172 4 -24060# 300# 11641 10 6309 19 7391 Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4															8
Xe 54 8380 16 6017 18 -29790# 400# 11995 30 3354 22 10862 Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4															26
Cs 55 11285 17 2219 19 -35680# 500# 12403 18 5841 18 9515 Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4															6
Ba 56 9930 330 4150 140 * 12270 140 2530 140 12980 1 La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4															21
La 57 12690# 420# 590# 420# * 13110# 360# 5030# 360# 11870# 3 Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4								-35680#	500#						24
Ce 58 11160# 640# 2410# 500# * 12810# 500# 1730# 500# 15310# 4								*							140
								*							300#
Pr 59 * -890 10 * 13230# 710# * 13790# 5					640#			*				1730#	500#		450#
22 27 7 10 10 10 10 10 10 10 10 10 10 10 10 10		Pr	59	*		-890	10	*		13230#	710#	*		13790#	580#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon \mathrm{p}$)	$Q(eta^-$	n)
119	Tc Ru	43 44	8130# 9220#	640# 530#	* 30970#	580#	-11440# -10240#	710# 500#	22450# 18840#	500# 300#	* -27220#	580#	8820# 4250#	540# 300#
	Rh	45	10068	13	29020#	400#	-8930	790	15823	17	-26320 #	400#	4495	10
	Pd	46	11126	11	26500	430	-7640	90	12570	40	-21440#	200#	75	9
	Ag	47	12606	20	24326	17	-6841	16	9054	16	-21047	28	-15	25
	Cd	48	13700	40	22130	40	-5980	40	6090	40	-15880	40	-4820	40
	In	49	14899	6	20095	15	-5142	20	1775	11	-15434	8	-4118	7
	Sn	50	15809.9 16977	0.6	18224.6 15109	1.2 9	-4405.5 -2363	1.0	-2884 -5709	8 29	-10652 -9535	20 11	-10140 -9849	3 20
	Sb Te	51 52	18228	11 16	13109	8	-2303 428	8 8	-3709 -8387	13	-9333 -2817	8	-9849 -14281	21
	I	53	19470	40	9704	29	810	30	-0.367 -11460	30	-2617 -3058	28	-14261 -13758	30
	Xe	54	20752	15	8277	17	843	30	-11400 -14200	200	-3038 1613	21	-13736 -18456	16
	Cs	55	21950	60	6447	30	1610	30	-17520#	300#	1377	24	-18020#	200#
	Ba	56	23270	320	4980	200	1640	200	-20650#	540#	6200	200	-23100#	360#
	La	57	24460#	360#	2870#	310#	2490#	320#	*	5 1011	6330#	300#	*	50011
	Ce	58	*	200	1060#	560#	2660#	540#	*		11130#	540#	*	
120	Tc	43	7870#	640#	*		*		23300#	540#	*		8980#	590#
	Ru	44	8900#	450#	31960#	640#	-10940 #	640#	20270#	400#	*		4740#	400#
	Rh	45	10070#	200#	29600#	450#	-9780#	360#	16840#	200#	-25730 #	540#	4520#	200#
	Pd	46	11034	3	27600#	200#	-8636	4	13677	4	-25010#	300#	294	15
	Ag	47	12240	5	25342	25	-7340	70	10080	40	-20118	10	250	40
	Cd	48	13398	20	23147	4	-6551	8	7141	4	-19838	9	-4329	8
	In	49	14640	40	20750	40	-5610	40	2690	40	-14370	40	-3730	40
	Sn	50	15588.1	1.0	18975	20	-4810.8	0.9	-1730	3	-14410	40	-9696	8
	Sb	51	16564	8	15767	11	-2593	7	-4665	17	-8007	10	-9308	11
	Te	52	17814	18	12293	3	-267	3	-7196	12	-6592	3	-13674	28
	I	53	18925	25	10335	16	644	16	-9864	18	-1568	17	-13030	18
	Xe	54	20236	16	9054	22	670	30	-13280	300	-2280	14	-17939	18
	Cs	55	21622	16	7496	22	1180	100	-16320 #	300#	2588	30	-17370	200
	Ba	56	22680#	360#	5390	300	1730	300	-19290 #	580#	2620	300	-22170#	420#
	La	57	24150#	420#	3740#	300#	2050#	320#	*		7450#	300#	-21700#	580#
	Ce	58	*		1820#	540#	2560#	540#	*		7700#	540#	*	
121	Tc	43	7550#	710#	*		*		24470#	800#	*		10160#	640#
	Ru	44	8630#	500#	*		-11300 #	640#	21140#	400#	*		5700#	450#
	Rh	45	9570	620	30460#	800#	-10290 #	740#	18150	620	-28020 #	800#	5960	620
	Pd	46	10917	9	28200#	300#	-9120	430	14891	4	-23460#	400#	1398	6
	Ag	47	11900	19	26158	15	-7930	15	11433	30	-22880#	200#	1483	13
	Cd	48	13240	40	24244	8	-7074	8	8123.4	2.2	-18083	3	-3420	40
	In	49	14279	28	21770	30	-6080	30	3764	28	-17473	28	-2809	27
	Sn	50	15274.9	1.1	19800	40	-5203.8	1.4	-652	26	-12529	4	-8851	7
	Sb	51	16269	8	16479	8	-3082	6	-3349	6	-11160	40	-8304	3
	Te	52	17507	27	13058	26	-573	26	-6065	28	-4736 5122	26	-12864	30
	I Va	53	18629	28	11355	9	-37	10	-9149	15	-5123	9	-12150	13
	Xe	54	19829	15	9878	13	190	17	-11740	140	-402	11	-16664	14
	Cs	55 56	20940	20	7910	30	909	30	-14910# 18060#	300#	-638	21	-16290	300
	Ba	56 57	22300 23540#	250 420#	6530 4460#	140 300#	1020	140 310#	-18060# -20770#	430#	4140	140 300#	-21250# -20660#	330# 580#
	La Ce	57 58	23340#	420# 640#	2680#	300# 450#	1880# 2340#	310# 470#		580#	4410# 8910#	300# 500#		580#
	Pr	59	24090# *	υπυπ	1210#	580#	2620#	540#	*		8860#	580#	*	
	1.1	3)	717		1210#	20011	2020π	5-1011	-1-		σσσσπ	20011	-14-	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

							ir energies (e		_			<u> </u>		
A	Elt.	Z	S(n	1)	$S(\mathbf{r})$	p)	$Q(4\beta)$	-)	Q(d	,α)	Q(p)	$,\alpha)$	Q(n,	α)
122	Ru	44	5170#	640#	17660#	710#	38460#	500#	4080#	710#	3090#	710#	*	
	Rh	45	3900#	690#	14320#	500#	31490#	300#	8640#	500#	5350#	420#	-6060 #	590#
	Pd	46	6505	20	15660	620	25325	20	4910#	200#	3071	22	-6410 #	300#
	Ag	47	4770	40	12210	40	17230	40	9880	40	5170	40	-2640	40
	Cd	48	7610	3	13499	12	9702.1	2.7	5750	5	2897	15	-3558	9
	In	49	5810	60	9790	50	2510	50	11100	50	5270	60	720	50
	Sn	50	8815.4	2.3	11394	27	-4586	11	6500	40	2622	8	-320	40
	Sb	51	6806.37	0.13	6427.1	2.7	-10190	30	13473.8	2.7	6593.7	2.7	5010	8
	Te	52	9840	26	8003.1	2.1	-15706	28	8814	7	4024	8	5397.0	1.7
	I	53	7900	7	4824	26	-21540#	300#	13998	6	5965	10	9040	9
	Xe	54	10945	15	6392	12	-27480#	400#	9109	19	3270	30	7473	14
	Cs	55	9110	40	2950	40	-33370#	500#	14740 9991	40	5510	40	11270	40
	Ba	56 57	11940 10420#	140 420#	4800 1090#	30 330#	*		9991 15060#	30 420#	2560 4910#	30 360#	9832 13410#	30 300#
	La Ce	58	13260#	570#	2970#	500#	*		10410#	500#	4910# 1780#	500#	13410#	450#
	Pr	59	11430#	710#	-620#	640#	*		15530#	710#	4030#	710#	15660#	580#
123	Ru	44	3000#	710#	*		40330#	500#	5410#	710#	3300#	710#	*	
	Rh	45	5350#	500#	14500#	640#	34070#	400#	6400#	570#	5520#	570#	-8200#	640#
	Pd	46	3880	790	15640#	850#	27390	790	6530	1000	3250#	810#	-4770#	890#
	Ag	47	6510	50	12220	40	19680	30	7350	30	5600	30	-5090#	200#
	Cd	48	4873	4	13600	40	11758	3	7699	12	3101	5	-1488	4
	In	49	7930	50	10107	20	4513	20	8354	20	5391	20	-2132	20
	Sn	50	5946.2	1.2	11530	50	-2567	10	8731	27	2780	40	1788	4
	Sb	51	8960.0	2.1	6571.7	2.7	-8180	12	10684.0	1.7	6738.4	1.7	2150	40
	Te	52	6929.01	0.08	8125.8	2.1	-13517	12	11139.0	2.1	4110	7	7572.6	1.7
	I	53	9935	6	4918	3	-19290 #	200#	11313	26	6288	4	6120	8
	Xe	54	7965	15	6457	11	-24960 #	300#	11714	11	3368	18	9766	10
	Cs	55	10970	40	2978	16	-30810 #	400#	12148	16	5993	17	8356	20
	Ba	56	9120	30	4800	40	*		12158	19	3098	16	12164	17
	La	57	12180#	360#	1330#	200#	*		12810#	240#	5100#	360#	10880#	200#
	Ce	58	10480#	500#	3030#	420#	*		12620#	420#	2150#	420#	14250#	420#
	Pr	59	13520#	640#	-360#	570#	*		13170#	570#	4230#	640#	12990#	500#
124	Ru	44	4950#	780#	*		42740#	600#	*		2680#	780#	*	
	Rh	45	3600#	570#	15100#	640#	35980#	400#	7970#	640#	5020#	570#	-7460 #	640#
	Pd	46	6030#	840#	16320#	500#	29840#	300#	4400#	420#	2720#	690#	-7700#	500#
	Ag	47	4720	250	13060	830	21420	250	9130	250	4850	250	-4300	670
	Cd	48	7359	4	14440	30	13824	3	5120	40	2565	12	-4873	4
	In	49	5510	40	10740	30	6500	30	10450	30	5070	30	-820	30
	Sn	50	8489.3	2.4	12093	20	-572.8	2.0	6050	50	2466	27	-1514.0	2.2
	Sb	51	6467.50	0.06	7093.0	2.7	-5889	8	13031.9	2.7	6441.1	1.7	3862	27
	Te	52 53	9424.48	0.09	8590.22 5482.5	0.12		13	8520.9 13659.5	2.1	3939.1	2.1	4318.3	1.7 2.8
	I Xe	53 54	7493 10484	4 10	5482.5 7007	1.9 4	-17110 -22750#	60 300#	9130	1.9 5	6044 3454	26 6	7881.0 6530	2.8
	Cs	55 55	8759	15	3772	13	-22730# -28580#	300# 400#	14334	3 14	5614	13	10167	26 10
	Ba	56	11506	17	5335	17	-28380# -34560#	500#	9770	40	2877	19	9038	16
	La	57	9680#	200#	1890	60	-34300# *	σουπ	15060	60	5350	150	12490	60
	Ce	58	12700#	420#	3550#	360#	*		10340#	420#	2140#	420#	11480#	330#
	Pr	59	10990#	570#	150#	500#	*		15430#	570#	4400#	570#	14690#	500#
	Nd	60	*	2.3"	1590#	640#	*		10970#	710#	1760#	710#	13810#	640#
	. 14	30			10,000	0.511	-4-		107/011	, 1011	1,5011	, 1011	1231011	0.511

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon_{arphi}$))	$Q(\beta^-$	n)
122	Ru Rh	44 45	8280# 9410#	640# 360#	* 31140#	590#	-11950# -10720#	710# 500#	22470# 19030#	500# 300#	* -27590#	580#	6030# 6030#	800# 300#
	Pd	46	10479	20	29180#	400#	-9780#	200#	15996	20	-26860 #	400#	1715	23
	Ag	47	11600	40	26870#	200#	-8640	50	12470	60	-22140	620	1900	40
	Cd	48	12798	4	24910	3	-7649	3	9329	3	-21719	4	-2848	28
	In	49	13990	60	22500	50	-6440	50	4760	50	-16460	50	-2450	50
	Sn	50	14985.6	2.3	20562	4	-5665	20	373.1	2.7	-16156	3	-8412	3
	Sb	51	16060	8	17180	40	-3532	8	-2255	5	-9788	28	-7861	26
	Te	52	17089.1	2.7	13794.0	1.7	-1086.5	1.6	-4959	11	-8406.2	1.7	-12134	5
	I	53	18470	16	12241	9	-509	6	-7940	30	-3769	5	-11671	11
	Xe	54	19325	16	10565	12	-83	22	-10750	30	-4098	28	-16324	18
	Cs	55	20400	40	8970	40	400	40	-13600#	300#	820	30	-15470	150
	Ba	56	21860	300	7010	30	1045	30	-16740#	400#	583	30	-20490#	300#
	La	57	23120#	420#	5230#	300#	1440#	300#	-19760 #	580#	5270#	300#	-19930 #	500#
	Ce Pr	58 59	24420#	640#	3560# 1790#	500# 580#	2060# 2360#	450# 580#	*		5580# 10120#	430# 580#	-24520# *	640#
123	Ru	44	8180#	640#	*		*		23350#	940#	*		6930#	580#
	Rh	45	9250#	740#	32160#	640#	-11410 #	640#	20190#	400#	*		7190#	400#
	Pd	46	10390	790	29960#	890#	-10290 #	840#	16980	790	-25570 #	940#	2610	790
	Ag	47	11290	30	27880	620	-9150	30	13880	40	-24760 #	300#	2990	30
	Cd	48	12483	3	25810	4	-8431	9	10402	4	-20087	20	-1910	50
	In	49	13740	30	23605	23	-7210	25	5794	20	-19610	40	-1560	20
	Sn	50	14761.6	2.4	21320	3	-6260	40	1356.0	2.7	-14493	3	-7552	3
	Sb	51	15766.4	2.1	17966	27	-3950	7	-1280	3	-12940	50	-6980.93	0.10
	Te	52	16769	26	14552.8	1.7	-1532.0	1.7	-3923	10	-6519.8	2.7	-11163	5
	I	53	17835	6	12921	4	-894	9	-6900	13	-6897	4	-10660	12
	Xe	54	18910	14	11281	28	-492	12	-9594	15	-2223	10	-15180	40
	Cs	55	20084	19	9370	13	300	30	-12390 #	200#	-2252	13	-14510	30
	Ba	56	21050	140	7752	16	715	16	-15370 #	300#	2411	16	-19180 #	300#
	La	57	22600#	360#	6130#	200#	1230#	200#	-18420 #	450#	2210#	200#	-18850 #	450#
	Ce	58	23740#	500#	4120#	330#	1880#	360#	*		7030#	300#	-23580 #	580#
	Pr	59	24950#	640#	2620#	500#	2140#	500#	*		7020#	500#	*	
124	Ru	44	7950#	780#	*		*		24430#	670#	*		7330#	720#
	Rh	45	8950#	500#	*		-11800#	640#	21310#	470#	*		7470#	890#
	Pd	46	9920#	300#	30820#	580#	-10800#	500#	18310#	300#	-28600#	580#	3090#	300#
	Ag	47	11240	250	28700#	390#	-9810#	320#	14670	250	-24130#	470#	3140	250
	Cd	48	12232	4	26663	20	-8847	4	11533	3	-23560	790	-1343	20
	In	49	13440	60	24340	50	-7640	30	6750	30	-18610	40	-1130	30
	Sn	50	14435.5	2.4	22199.8	2.5	-6702	4	2291.1	1.5	-18109.0	2.9	-7081.4	1.5
	Sb	51	15427.5	2.1	18630	50	-4320	40	-254.5	1.9	-11479	20	-6519.41	0.09
	Te	52	16353.50	0.12	15161.9	2.7	-1851.9	1.7	-2863.9	2.2	-9998.1	2.7	-10653	3
	I V-	53	17428	5	13608.3	2.8	-1373	8	-5634	9	-5430.6	1.9	-10188	10
	Xe	54	18449	11	11924.9	2.2	-718	3	-8572	13	-5778.2	2.2	-14689	12
	Cs	55	19730	30	10229	10	-403	17	-11470	60	-1077	9	-14148	15
	Ba	56	20620	30	8313	17	658	17	-14170#	300#	-1130	16	-18510#	200#
	La	57	21860#	300#	6690	70	1210	60	-17110#	410#	3500	60	-18040#	300#
	Ce	58	23190#	500#	4890#	300#	1550#	420#	-20390#	590#	3450#	300#	-22760#	500#
	Pr	59	24510#	640#	3190#	500#	1990#	500#	*		8210#	450#	*	
	Nd	60	*		1230#	640#	2650#	710#	*		8470#	590#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

125 Rh	A	Elt.	Z	S(r	n)	S(p))	$Q(4\beta)$	-)	Q(d,	α)	Q(p)	,α)	Q(n, 0)	α)
Part	125	Rh	45	5180#	640#	15330#		38480#	500#	5790#	710#		710#		
Col. 48			46	3800#	500#	16520#		31780#	400#	5950#	570#	2820#	500#	-6320 #	640#
No. Proceedings Process Proc		Ag	47	6390	500	13420#	530#	23740	430	6620	900		430	-6790 #	
Sh Sh Sh Sh Sh Sh Sh Sh		Cd	48	4718							30				
No. Section Section		In	49	7680	40		27		27		27			-3720	
Te S2 6568.97 0.03 8691.70 0.14 -9354 11 10911.90 0.12 4176.5 2.1 6564.8 2.7		Sn	50	5733.50	0.20	12320	30		2.1	8245	20				
To Si		Sb	51	8707.3	2.1	7311.1	2.6		8	10271	3	6549	3	960	50
Xe		Te	52	6568.97	0.03	8691.70	0.14	-9354	11	10911.90	0.12	4176.5	2.1	6564.8	
Cs S5 10428			53	9542.8	1.9	5600.85	0.07	-15078	26	11045.76	0.12	6341.31		5144.6	
Ba S6 8651 17 5227		Xe	54	7603.3	0.4			-20540 #	200#	11461	4		5	8767.5	2.2
La		Cs	55			3716			300#		12				
Cc		Ba	56		17			-32070 #	400#	12085					
Pr		La	57	11570	60			*		12606	29	5710	40	10030	40
No. No.		Ce	58	9810#	360#		200#	*		12700#	280#	2750#	360#	13600#	
Pet A		Pr	59	12860#	500#	310#	420#	*		13060#	420#	4800#	500#	12250#	420#
Pick		Nd	60	11150#	640#	1740#	570#	*		13340#	570#	2040#	640#	15920#	570#
Ag 47 4230# 480# 13850# 450# 25710# 200# 8420# 360# 4610# 810# -5670# 450# Cd 48 6980 4 15030 430 17808.5 2.9 4650 27 250 2160 30 -6180 790 Sn 50 8190 10 12827 29 3132 11 5570 30 2279 22 -2955 11 Sb 51 6210 30 7790 30 -2040 30 12550 30 6290 30 2680 40 Te 52 9113.69 0.08 9098.0 2.1 -7395 13 8265.71 0.16 4022.78 0.14 3397.2 2.7 I 53 7145 4 6177 4 -12940 90 13325 4 6125 4 6959 4 Ke 54 10022 17 58	126	Rh	45		710#	*		40470#	500#		780#	4640#	710#	*	
Cd 48 6980 4 15030 430 17808.5 2.9 4650 250 2160 30 -6180 790 In 49 5370 40 11714 27 10138 27 9640 27 4505 27 -2580 40 Sn 50 8190 10 12827 29 3132 11 5570 30 6290 30 2680 40 Te 52 9113.69 0.08 9098.0 2.1 -7395 13 8265.71 0.16 4022.78 0.14 3397.2 2.7 I 53 7145 4 6177 4 -12940 90 13325 4 6125 4 6959 4 Xe 54 10025 4 7599 4 -18326 28 8930 4 3661 5 5672 4 Xe 54 10025 4 7599 90 -356		Pd	46	5810#	570#	17150#	640#	34160#	400#	3740#	570#	2360#	570#	-9130#	
In		Ag	47	4230#	480#	13850#	450#	25710#	200#		360#	4610#		-5670#	
Sn 50 8190 10 12827 29 3132 11 5570 30 2279 22 -2955 11 11 15 10 11 15 11 15 11 15 11 15 12 11 15 11 15 12 11 15 11 15 12 12		Cd											30		
Sb 51 6210 30 7790 30 -2040 30 12550 30 6290 30 2680 40 Te 52 9113.69 0.08 9098.0 2.1 -7395 13 8265.71 0.16 4022.78 0.14 3397.2 2.7 I 53 7145 4 6177 4 -12940 90 13325 4 6125 4 6959 4 Xe 54 10025 4 7599 4 -18326 28 8930 4 3661 5 5672 4 Cs 55 8334 13 4446 11 -24030# 200# 14021 11 5762 14 9239 11 Ba 56 11072 17 5871 15 -29680# 300# 9772 15 3238 17 8225 16 La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 366# 960# 280# * 15300# 360# 4830# 360# 13970# 220# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pm 61 * -960# 640# * 15890# 710# * 16530# 640# 127 Rh 45 4800# 780# * 42870# 600# * 4790# 850# * * Pd 46 3390# 640# 17170# 710# 36290# 500# 5530# 410# 360# 450# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6408 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 4060 248 4060		In	49	5370	40				27	9640				-2580	40
Te 52 9113.69 0.08 9098.0 2.1 -7395 13 8265.71 0.16 4022.78 0.14 3397.2 2.7 I 53 7145 4 6177 4 -12940 90 13325 4 6125 4 6959 4 Xe 54 10025 4 7599 4 -18326 28 8930 4 3661 5 5672 4 Cs 55 8334 13 4446 11 -24030# 200# 14021 11 5762 14 9239 11 Ba 56 11072 17 5871 15 -29680# 300# 9772 15 3238 17 8225 16 La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 360# 960# 280# * 15300# 360# 4830# 360# 13970# 280# Nd 60 13470# 500# 2340# 420# * 15890# 710# * 16530# 640# Pm 61 * -960# 640# * 42870# 600# * 15890# 710# * 16530# 640# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -750# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -750# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 450# 2850# 250 Ag 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 Ag 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 Ag 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 Ag 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 Ag 48 4564 52 52 52 6287.65 0.18 9180 30 Ag 48 52 52 52 52 52 52 52 52 52 52 52 52 52		Sn	50		10				11						
To To To To To To To To							30		30						
Xe S4 10025 4 7599 4 -18326 28 8930 4 3661 5 5672 4 Cs 55 8334 13 4446 11 -24030# 200# 14021 11 5762 14 9239 11 836 11072 17 5871 15 -29680# 300# 9772 15 3238 17 8225 16 La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 20 25 25 25 25 25 25 2															
Cs 55 8334 13 4446 11 -24030# 200# 14021 11 5762 14 9239 11 Ba 56 11072 17 5871 15 -29680# 300# 9772 15 3238 17 8225 16 La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 360# 960# 280# * 10870# 500# 2100# 500# 12940# 420# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pm 61 * 42870# 600# * 4790# 850#												6125			
Ba 56 11072 17 5871 15 -29680# 300# 9772 15 3238 17 8225 16 La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 360# 960# 280# * 15300# 360# 4830# 360# 13970# 280# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pd 45 4800# 780# * 42870# 600# * 4790# 850# * * 127 Rh 45 4800# 780# * 42870# 600# * 4790#															
La 57 9290 90 2590 90 -35620# 510# 14830 90 5550 90 11720 90 Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 360# 960# 280# * 15300# 360# 4830# 360# 13970# 280# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pm 61 * -960# 640# * 15890# 710# * 16530# 640# 127 Rh 45 4800# 780# * 42870# 600# * 4790# 850# * 16530# 640# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 100# 360# * 13120# 420# 2480# 500# 15030# 420# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#						4446									
Ce 58 12230# 200# 4350 40 * 10150 60 2700# 200# 10480 30 Pr 59 10460# 360# 960# 280# * 15300# 360# 4830# 360# 13970# 280# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pm 61 * -960# 640# * 15890# 710# * 16530# 640# 127 Rh 45 4800# 780# * 42870# 600# * 4790# 850# * Pd 46 3399# 640# 17170# 710# 36290# 5530# 710# 2570# 640# -7570# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900#															
Pr 59 10460# 360# 960# 280# * 15300# 360# 4830# 360# 13970# 280# Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# Pm 61 * -960# 640# * 15890# 710# * 4790# 850# * Pd 46 3390# 640# 17170# 710# 36290# 500# 5530# 710# 2570# 640# -7570# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7570# 780# Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21								-35620#	510#						
Nd 60 13470# 500# 2340# 420# * 10870# 500# 2100# 500# 12940# 420# 420# 16530# 640# * 15890# 710# * 16530# 640# 127 Rh 45 4800# 780# * 42870# 600# * 4790# 850# *								*							
Pm 61 * -960# 640# * 15890# 710# * 16530# 640# 127 Rh 45 4800# 780# * 42870# 600# * 4790# 850# * Pd 46 3390# 640# 17170# 710# 36290# 500# 5530# 710# 2570# 640# -7570# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 77163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								*							
127					500#			*					500#		
Pd 46 3390# 640# 17170# 710# 36290# 500# 5530# 710# 2570# 640# -7570# 780# Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180		Pm	61	*		−960#	640#	*		15890#	710#	*		16530#	640#
Ag 47 5830# 280# 13870# 450# 28260# 200# 6390# 450# 4810# 360# -7900# 450# Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4	127														
Cd 48 4562 12 15360# 200# 19534 12 6480 430 2320 250 -4710# 300# In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -1															
In 49 7190 30 11928 21 12088 21 7163 21 4670 21 -5050 250 Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Sn 50 5527 14 12987 29 4851 11 7717 29 2260 30 -1123 10 Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280#															
Sb 51 8380 30 7973 12 -459 8 9908 5 6399 5 -180 30 Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>11928</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						11928									
Te 52 6287.65 0.18 9180 30 -5464 11 10685.4 2.1 4202.63 0.24 5598.9 1.5 I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd <td></td>															
I 53 9143.9 2.7 6208 4 -11088 26 10750 4 6405 4 4283 4 Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Xe 54 7246 5 7699 3 -16342 29 11226 4 3908 4 7850 4 Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Cs 55 9961 12 4382 7 -21700# 200# 11664 6 6285 6 6772 6 Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Ba 56 8219 17 5756 15 -27280# 300# 11981 14 3777 14 10490 11 La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
La 57 10990 90 2515 29 -33110# 400# 12484 28 6058 29 9482 27 Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Ce 58 9230 40 4290 100 * 12490 40 3140 60 12760 30 Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
Pr 59 12290# 280# 1010# 200# * 12830# 280# 5240# 360# 11360# 200# Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#									400#						
Nd 60 10610# 420# 2500# 360# * 13120# 420# 2480# 500# 15030# 420#															
								*							
Pm 61 13510# 640# -920# 500# * 13520# 570# 4600# 640# 14010# 570#								*							
		Pm	61	13510#	640#	-920#	500#	*		13520#	570#	4600#	640#	14010#	570#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta)$	_)	$Q(arepsilon_{ m I}$	p)	$Q(\beta^-$	n)
125	Rh	45	8780#	640#	*		-12650#	710#	22520#	660#	*		8320#	580#
	Pd	46	9830#	890#	31620#	640#	-11500 #	570#	19230#	400#	-27450 #	720#	4010#	470#
	Ag	47	11110	430	29740#	590#	-10690	760	15960	430	-26920 #	590#	4110	430
	Cd	48	12077	4	27500	790	-9591	4	12548	3	-22250#	300#	-550	30
	In	49	13190	30	25510	40	-8499	30	7779	27	-21570	250	-314	27
	Sn	50	14222.8	2.4	23060.1	2.9	-7247.5	2.2	3126.6	1.5	-16484	3	-6347.4	1.5
	Sb	51	15174.8	2.1	19404	20	-4845	28	580.9	2.1	$-14680 \\ -8077.8$	30	-5802.3	2.1
	Te I	52 53	15993.45 17036	0.10 3	15784.7 14191.08	2.7 0.13	-2250.6 -1661.8	1.7 2.1	-1829.6 -4749	2.2 8	-8077.8 -8505.93	1.5 0.15	-9728.6 -9247.1	1.9 2.2
	Xe	54	18087	10	12599.2	2.2	-1001.8 -1073	26	-7524	11	-3957.0	2.2	-9247.1 -13533	9
	Cs	55	19187	14	10722	9	-261	9	-10328	27	-4011	8	-13069	15
	Ba	56	20157	16	8998	15	387	15	-13010#	200#	703	11	-17480	60
	La	57	21250#	200#	7294	29	918	30	-15820#	300#	683	27	-16920#	300#
	Ce	58	22510#	360#	5580#	200#	1660#	240#	-19060#	450#	5140#	200#	-21580#	450#
	Pr	59	23850#	500#	3870#	360#	1830#	420#	*		5030#	310#	-21490 #	590#
	Nd	60	*		1890#	500#	2670#	570#	*		10030#	500#	*	
126	Rh	45	8550#	640#	*		*		23380#	540#	*		8750#	640#
	Pd	46	9610#	500#	32480#	720#	-12140#	640#	20400#	400#	*		4590#	590#
	Ag	47	10620#	320#	30370#	450#	-11030#	360#	17090#	200#	-25970#	540#	4600#	200#
	Cd	48	11698	4	28450#	300#	-10066	20	13758	11	-25430#	400#	149	27
	In	49	13050	40	26150 23892	250	-9090	50	8620	40	-20540	430	52	27
	Sn Sb	50 51	13924 14920	10 30	23892 20100	11 40	-7828 -5250	11	4050	11 30	-19956 -13210	11 40	-5830 -5440	11 30
	Te	52	15682.66	0.09	16409.1	1.5	-3230 -2548.9	60 2.7	1520 -918	4	-13210 -11457.9	1.5	-9299.46	0.10
	I	53	16688	4	14869	4	-2348.9 -2001	4	-3560	11	-6944	4	-9299.40 -8789	4
	Xe	54	17628	4	13200	4	-1257	4	-6477	13	-7413	4	-13130	8
	Cs	55	18762	13	11563	11	-695	12	-9380	90	-2803	11	-12753	15
	Ba	56	19723	18	9586	13	260	17	-11850	30	-2765	13	-16982	29
	La	57	20860	110	7820	90	750	100	-14650 #	220#	1830	90	-16390 #	220#
	Ce	58	22050#	300#	6310	30	1360	40	-17830 #	300#	1560	30	-20950 #	300#
	Pr	59	23320#	450#	4640#	200#	1800#	360#	-20970 #	540#	6150#	200#	-20800 #	450#
	Nd	60	24610#	590#	2660#	420#	2460#	500#	*		6380#	360#	*	
	Pm	61	*		780#	640#	3010#	710#	*		11300#	580#	*	
127	Rh	45	8170#	780#	*		*	710"	24410#	630#	*		9760#	720#
	Pd	46	9200#	640#	* 21020#	E 10#	-12530#	710#	21570#	500#	*	£ 40#	5430#	540#
	Ag Cd	47 48	10060# 11542	480# 12	31020# 29210#	540# 400#	-11510# -10740	450# 790	18460# 14723	200# 16	-28430# -24180#	540# 400#	5750# 954	200# 30
	In	49	11342	30	26950	430	-10740 -9770	40	9803	22	-24180# -23510#	200#	1048	24
	Sn	50	13717	10	24701	10	-8482	10	4811	10	-18503	10	-5150	30
	Sb	51	14586	5	20801	27	-5694	20	2284	6	-16216	27	-4705	5
	Te	52	15401.34	0.20	16963.2	1.5	-2890.4	2.7	40	4	-9555	11	-8442	4
	I	53	16289	4	15306	4	-2185	4	-2744	6	-9880	30	-7908	5
	Xe	54	17271	4	13877	4	-1574	4	-5504	12	-5545	4	-12042	11
	Cs	55	18295	10	11981	6	-721	7	-8344	27	-5618	6	-11642	14
	Ba	56	19292	16	10203	12	6	15	-10840	30	-960	12	-15920	90
	La	57	20280	40	8386	27	723	29	-13350 #	200#	-834	28	-15150	40
	Ce	58	21460#	200#	6890	30	1250	30	-16440 #	300#	3400	30	-19730#	200#
	Pr	59	22750#	360#	5360#	200#	1680#	280#	-19760#	450#	3140#	220#	-19620#	360#
	Nd Pm	60 61	24080#	500#	3460# 1420#	360# 500#	2330# 3020#	420# 570#	*		8000# 8250#	300# 450#	-24260# *	580#
		~-	•		0		- 0-0	2.0	•				•	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

128					S(p	,	$Q(4\beta)$)	Q(d,	u)	Q(p)	,ω)	£(11,	α)
	Pd	46	5380#	710#	17750#	780#	38870#	500#	3520#	710#	2370#	710#	*	
	Ag	47	4250#	360#	14730#	580#	30010#	300#	7950#	500#	4360#	500#	-6970 #	580#
	Cd	48	6566	14	16090#	200#	21752	7	4150#	200#	2140	430	-7480 #	400#
	In	49	5320	150	12690	150	13590	150	8820	150	4070	150	-3980	460
	Sn	50	7963	20	13755	28	6498	18	5120	30	1980	30	-4368	18
	Sb	51	6002	20	8448	22	1301	20	12096	22	6130	19	1490	30
	Te	52	8783.4	1.7	9583	5	-3615	5	8110	30	4126.6	2.7	2549.1	1.3
	I	53	6826.13	0.05	6746	4	-9110	50	13037	4	6148	4	6164	4
	Xe	54	9610	4	8165	4	-14326	28	8762	4	3841.0	1.8	4809.1	1.8
	Cs	55	7763	8	4899	7	-19600	30	13926	6	6126	6	8552	6
	Ba	56	10632	12	6427	8	-25060 #	200#	9683	12	3574	9	7461	6
	La	57	8800	60	3100	60	-30840 #	300#	14760	60	5910	60	11110	50
	Ce	58	11630	40	4930	40	-36860#	500#	10150	90	3090	40	9780	30
	Pr	59	9860#	200#	1640	40	*		15200	40	5190#	200#	13080	40
	Nd	60	12850#	360#	3060#	280#	*		10720#	280#	2490#	360#	11990#	280#
	Pm	61	11070#	500#	-460#	420#	*		15920#	420#	4680#	500#	15800#	420#
	Sm	62	*		1170#	640#	*		11390#	710#	*		14580#	640#
129	Pd	46	1190#	780#	*		42980#	600#	7130#	850#	4550#	780#	*	
	Ag	47	5430#	500#	14780#	640#	32650#	400#	5910#	640#	4740#	570#	-9030 #	640#
	Cd	48	3887	18	15730#	300#	23947	17	6090#	200#	2490#	200#	-5550#	400#
	In	49	6760	150	12885	8	15669	4	6620	12	4283	4	-6510#	200#
	Sn	50	5300	25	13730	150	8105	17	7016	27	2050	30	-2688	17
	Sb	51	8070	29	8556	28	2870	22	9552	23	6250	24	-1210	30
	Te	52	6082.41	0.08	9663	19	-1942	11	10405	5	4250	30	4657	10
	I	53	8840	5	6802	3	-7183	22	10485	3	6422	3	3530	30
	Xe	54	6907.1	1.1	8246	4	-12409	28	10999	4	4079	4	7015.7	1.5
	Cs	55	9639	7	4928	5	-17730	30	11533	6	6512	6	6058	6
	Ba	56	7756	11	6421	12	-22750 #	200#	11888	12	4152	15	9730	11
	La	57	10770	60	3235	22	-28440 #	300#	12204	24	6209	25	8673	24
	Ce	58	8820	40	4950	60	-34290 #	500#	12320	40	3550	90	12030	30
	Pr	59	11510	40	1530	40	*		12920	40	5910	40	10850	100
	Nd	60	10070#	280#	3270#	200#	*		12940#	280#	2870#	280#	14150#	200#
	Pm	61	13170#	420#	-140#	360#	*		13370#	420#	4980#	420#	13090#	360#
	Sm	62	11400#	710#	1500#	580#	*		13500#	640#	2210#	710#	16640#	580#
130	Ag	47	1790#	640#	15380#	780#	36590#	500#	9500#	710#	6350#	710#	-6020#	780#
	Cd	48	6131	28	16430#	400#	26235	22	4210#	300#	2190#	200#	-8290#	500#
	In	49	5120	40	14110	40	17050	40	8070	40	3730	40	-5800#	200#
	Sn	50	7613	17	14583	3	9748.3	1.9	4720	150	1628	21	-5738	12
	Sb	51	5728	26	8984	22	4614	16	11787	23	6049	17	257	25
	Te	52	8419.5	0.9	10013	21	-91.4	2.6	7988	19	4211	5	1764	10
	I	53	6500.33	0.04	7220	3	-5309	26	12768	3	6210	3	5410	6
	Xe	54	9255.72	0.01	8662	3	-10458	28	8569	4	3968	4	4047.6	1.5
	Cs	55 56	7472	10	5493	8	-15720	60	13671	8	6286	9	7731	9
	Ba	56	10270	11	7051	5	-20665	28	9381	6	3843	6	6706	5
	La	57	8370	30	3853	28	-26230# 21020#	200#	14462	26	6055	28	10259	27
	Ce	58 50	11210	40 70	5390	40	-31920# 37400#	400#	9910	60 70	3340 5670	40	9040	30
	Pr Nd	59 60	9470 12350#	70 200#	2180	70 40	-37490#	510#	15070	70 40	5670 2810#	70 200#	12370	70 40
	Nd Dm	60	12350# 10590#	200# 360#	4110 370#	40	*		10450 15630#	40 280#	2810# 5000#	200# 360#	11030 14790#	
	Pm Sm	61 62	10590#	560# 640#	370# 1910#	280# 500#	*		10990#	280# 500#	2140#	570#	14/90#	280# 500#
	Eu	63	15580#	040#	-1028	15	*		15700#	710#	2140# *	310 11	16750#	640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	$Q(\alpha$)	$Q(2\beta$	-)	$Q(arepsilon_{ m p}$)	$Q(\beta^-$	n)
128	Pd	46	8770#	640#	*		-12960#	780#	22750#	500#	*		5880#	540#
	Ag	47	10080#	360#	31900#	580#	-12160#	500#	19530#	340#	-27880#	670#	6060#	300#
	Cd	48	11128	8	29960#	400#	-11280#	300#	16120	19	-27350# 22000#	500#	1583	22
	In Sn	49 50	12520 13489	160 21	28040# 25683	250# 18	-10370 -9085	290 18	10480 5632	150 18	$-23000# \\ -21904$	250# 21	1250 -4734	150 18
	Sb	51	14380	40	21440	30	-6190	40	3108	19	-21904 -15023	29	-4734 -4420	19
	Te	52	15071.0	1.7	17556	10	-3184.4	1.3	866.6	0.9	-12812	10	-8081	4
	I	53	15970.0	2.7	15920	30	-2543	4	-1807	7	-8328	6	-7488.5	2.0
	Xe	54	16856	4	14372.9	1.8	-1759.9	1.8	-4482	5	-8867.6	1.8	-11691	6
	Cs	55	17723	12	12598	7	-991	6	-7310	50	-4237	7	-11185	13
	Ba	56	18851	14	10809	6	-142	5	-9845	28	-4346	7	-15554	27
	La	57	19790	110	8850	60	680	60	-12290	60	330	50	-14720	60
	Ce	58	20860	40	7440	30	1130	30	-15220 #	200#	-0	30	-19060 #	200#
	Pr	59	22150#	200#	5940	100	1500	60	-18550#	300#	4280	40	-18870#	300#
	Nd	60	23460#	360#	4070#	200#	2180#	360#	-21640#	540#	4380#	200#	-23600#	450#
	Pm	61	24580#	580#	2040#	360#	2940#	500# 710#	*		9470#	360#	*	
	Sm	62	*		260#	580#	3430#	710#	*		9580#	580#	*	
129	Pd	46	6570#	780#	*		*		25450#	600#	*		8940#	670#
12)	Ag	47	9680#	450#	32530#	720#	-12410#	640#	20860#	400#	*		7190#	400#
	Cd	48	10453	21	30460#	500#	-11360#	400#	17533	24	-25860#	500#	3020	150
	In	49	12084	21	28980#	200#	-10740	430	11792	21	-25510#	300#	2453	18
	Sn	50	13263	20	26421	21	-9668	18	6414	17	-20638	19	-4032	26
	Sb	51	14072	22	22311	30	-6580	30	3878	21	-17770	150	-3707	21
	Te	52	14865.8	1.7	18112	10	-3533.3	1.3	1691.3	0.9	-10932	18	-7337	4
	I	53	15666	5	16386	6	-2676	4	-1008	6	-11166	19	−6718	3
	Xe	54	16517	4	14992.3	1.5	-2098.0	1.5	-3633	11	-6991.3	0.9	-10836	5
	Cs Ba	55 56	17402 18388	7	13093	6	-1087	5	-6175 -8776	22	-7049 -2492	6	-10192 -14510	7
	Lа	56 57	19570	16 30	11320 9662	11 22	-295 338	11 23	-8776 -11550	30 40	-2492 -2682	11 22	-14310 -13860	60 40
	Ce	58	20450	40	8050	30	960	30	-11330 -13970#	200#	1802	28	-18030	40
	Pr	59	21370#	200#	6460	40	1560	40	-16890#	300#	1560	60	-17530#	200#
	Nd	60	22920#	360#	4910#	200#	1920#	280#	-20320#	540#	5930#	200#	-22600#	360#
	Pm	61	24240#	500#	2920#	360#	2630#	420#	*		6160#	300#	-22280#	580#
	Sm	62	*		1040#	580#	3170#	640#	*		11030#	540#	*	
130	Ag	47	7220#	400#	*		-10820#	710#	24190#	500#	*		9290#	500#
	Cd	48	10018	24	31210#	500#	-11680#	400#	19015	22	-30800#	600#	3649	23
	In	49	11880	160	29840#	300#	-11630#	200#	12400	40	-25190#	400#	2640	40
	Sn	50	12913	18	27468	7	-10300	3	7220.7	1.9	-24363	17	-3574	21
	Sb	51	13798	24 0.9	22720 18569	150	-6940	30	4650	15	-16737	14	-3352	14
	Te I	52 53	14501.9	5	16884	18 19	-3763 -2970	10 30	2527.51	0.01 9	-14051 -9596	17 21	-6917	3
	Xe	53 54	15340 16162.8	3 1.1	15464.7	0.9	-2970 -2240.0	1.5	-36 -2618.9	2.6	-9396 -10164.6	0.9	-6311 -10453	3 5
	Cs	55	17111	10	13739	9	-2240.0 -1413	9	-2018.9 -5272	2.0	-5682	9	-10433 -9908	13
	Ba	56	18025.7	2.8	11979.2	2.8	-539	4	-7839	28	-5854.5	2.6	-14008	21
	La	57	19140	60	10274	2.0	299	28	-10450	70	-1417	26	-13410	40
	Ce	58	20030	40	8622	28	820	30	-12830	40	-1649	30	-17720	40
	Pr	59	20990	70	7130	80	1370	110	-15780#	210#	2860	70	-16930#	210#
	Nd	60	22430#	200#	5640	40	1800	40	-19090#	400#	2400	40	-21790#	300#
	Pm	61	23750#	360#	3640#	200#	2500#	280#	-21710 #	540#	7090#	200#	-21470 #	540#
	Sm	62	24980#	640#	1770#	450#	3060#	500#	*		7520#	450#	*	
	Eu	63	*		480#	580#	3240#	710#	*		11910#	580#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57	. Z	S(n	1)	S(p)	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p	,α)	Q(n,	α)
Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63													
In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	47	2750#	710#	*		41600#	500#	7940#	780#	8970#	710#	*	
Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		2170	100	16810#	510#	29990	100	7470#	410#	4270#	320#	-5080 #	510#
Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		6210	40	14196	23	19417.7	2.8	5744	17	4081	8	-7760#	300#
Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		5204	4	14670	40	11149	4	6284	5	1750	150	-4376	8
I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		7767	14	9138.2	2.8	6077	5	9320	17	6245	18	-2190	150
Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		5929.38	0.06	10214	14	1472.7	2.6	10129	21	4283	19	3797	18
Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	53	8578	3	7378.7	0.6	-3673	28	10272.9	1.1	6415.1	1.1	2834	19
Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	54	6604.41	0.01	8766	3	-8710	30	10804	3	4189	4	6226.6	0.9
La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	55	9230	10	5467	5	-13760	50	11348	5	6666	5	5326	6
Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	56	7493.50	0.30	7073	9	-18916	28	11526	5	4112	6	8823.0	2.8
Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63	57	10210	40	3797	28	-24110#	200#	12005	30	6473	28	7809	28
Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		8360	40	5370	40	-29580#	400#	12330	40	3780	60	11320	30
Nd 60 Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		11200	80	2170	50	-35030#	400#	12700	50	6100	50	9970	70
Pm 61 Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63		9240	40	3880	70	*		12720	40	3430	40	13410	40
Sm 62 Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		12340#	280#	350#	200#	*		13370#	280#	5520#	280#	12320#	200#
Eu 63 132 Ag 47 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		10700#	570#	2030#	450#	*		13460#	500#	2520#	500#	15830#	450#
Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 Ca 57 Ce 58 Pr 59 Nd 60 Pm 61		13660#	640#	-947	5	*		13440#	640#	4260#	640#	14160#	500#
Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 Ca 57 Ce 58 Pr 59 Nd 60 Pm 61	47	1480#	710#	*		45850#	500#	*		8680#	780#	*	
In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		3120#	220#	17170#	540#	34930#	200#	6150#	540#	6580#	450#	-7010#	630#
Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		2460	60	14480	120	23290	60	9420	60	5510	60	-4790#	400#
Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		7353	4	15810	3	12732.4	2.0	4050	40	1155	3	-7842	17
Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		5725	3	9660	4	7517.4	2.7	11208	3	5820	17	-1151	4
I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		8048	3	10496	4	3247	4	7808	15	4305	22	1049	18
Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		6332	4	7781	4	-1980	40	12360	4	6165	4	4572	22
Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		8936.72	0.01	9125.2	0.6	-6808	20	8368	3	4092	3	3372.2	0.9
Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		7165		6028.1	1.0	-0808 -11925	29	13438.6	1.0	6407.4	1.0	7001	3
La 57 Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61			5										
Ce 58 Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		9822.6	2.7	7665	5	-17009 -22100#	24	9176	8	3928	5	5907.4	1.1
Pr 59 Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		8030	50	4330	40	-22100#	150#	14250	40	6200	40	9420	40
Nd 60 Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		10830	40	5990	30	-27390#	300#	9870	30	3718	30	8239	23
Pm 61 Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		9000	60	2810	40	-33030 #	400#	14910	40	5920	40	11740	40
Sm 62 Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		11730	40	4410	50	*		10460	70	3210	40	10510	40
Eu 63 133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		10040#	250#	1150#	150#	*		15680#	150#	5550#	250#	13790#	150#
133 Cd 48 In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		13020#	500#	2710#	360#	*		11030#	360#	2670#	420#	12880#	360#
In 49 Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61	63	11000#	570#	-640#	570#	*		16020#	570#	4660#	640#	16330#	500#
Sn 50 Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		1730#	360#	17420#	580#	39020#	300#	7170#	580#	6640#	580#	*	
Sb 51 Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		3120#	210#	14490#	280#	28390#	200#	8470#	220#	8520#	200#	-6120#	540#
Te 52 I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		2398.7	2.7	15750	60	16770	3	7862	3	3870	40	-4110	22
I 53 Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		7360	4	9666	4	9147	3	9052	5	6073	4	-3390	40
Xe 54 Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		5820	4	10591	3	4616.5	2.3	9755.1	2.9	4213	14	2841.5	2.8
Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61		8226	8	7959	7	-364	29	10064	6	6359	6	2074	16
Cs 55 Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61	54	6435.9	2.4	9229	5	-5225	17	10509.9	2.5	4157	4	5355.8	2.4
Ba 56 La 57 Ce 58 Pr 59 Nd 60 Pm 61	55	8989.6	1.0	6080.94	0.01	-10133	12	11053.43	0.01	6673.59	0.01	4512	3
La 57 Ce 58 Pr 59 Nd 60 Pm 61		7189.9	0.4	7689.9	1.4	-15220	50	11216	5	4210	8	7973.3	1.0
Ce 58 Pr 59 Nd 60 Pm 61		9840	50	4348	28	-20090	60	11900	28	6631	28	7052	29
Pr 59 Nd 60 Pm 61		8019	26	5980	40	-25190#	300#	12060	30	4070	30	10490	17
Nd 60 Pm 61		10780	30	2756	24	-30700#	300#	12480	40	6350	30	9336	29
Pm 61		8980	50	4390	50	-36470#	500#	12680	70	3710	80	12740	50
		11850#	160#	1270	60	*		13070	60	6050	60	11410	80
Sm 62		10220#	420#	2890#	330#	*		13140#	360#	3030#	360#	15010#	300#
		13110#	500#	-550#	420#	*		13610#	500#	5130#	500#	13810#	360#
Gd 64		*	σουπ	-350# 950#	420# 640#	*		14120#	640#	2690#	710#	17290#	640#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2 ₁	p)	$Q(\alpha)$)	$Q(2\beta)$	_)	Q(arepsilon arphi)))	$Q(\beta^-$	n)
131	Ag	47	4540#	640#	*		-8780#	780#	27650#	500#	*		12670#	500#
131	Cd	48	8300	100	32190#	610#	-10460#	510#	22050	100	*		6590	110
	In	49	11330	4	30620#	400#	-12010#	200#	13956	3	-29620#	500#	4036	3
	Sn	50	12816	18	28784	17	-10942	13	7946	4	-23436	23	-3050	15
	Sb	51	13495	21	23722	3	-7510	21	5461.3	2.2	-19390	40	-2699.8	2.
	Te	52	14348.8	0.9	19198	17	-4165	10	3202.55	0.06	-12367.8	1.9	-6346	3
	I	53	15078	3	17391	21	-3168	5	616	5	-12446	14	-5633.6	0.
	Xe	54	15860.13	0.01	15986.7	0.9	-2556.8	1.5	-1729.8	2.6	-8349.58	0.01	-9585	8
	Cs	55	16702	7	14130	6	-1500	6	-4290	28	-8412	6	-8869	5
	Ba	56	17763	11	12565.6	2.6	-787	5	-6980	30	-4092.2	2.6	-13128	26
	La	57	18590	40	10848	28	46	28	-9470	50	-4158	29	-12420	40
	Ce	58	19560	40	9220	30	680	30	-11940	40	260	30	-16600	70
	Pr	59	20670	60	7550	50	1170	50	-14640#	210#	40	50	-15780	50
	Nd	60	21600#	200#	6060	40	1790	40	-17640 #	400#	4370	40	-20440 #	200#
	Pm	61	22920#	360#	4470#	200#	2460#	280#	-20390 #	450#	4230#	210#	-20230 #	450
	Sm	62	24280#	640#	2400#	450#	2980#	500#	*		9170#	400#	-24520 #	640
	Eu	63	*		970#	500#	3090#	570#	*		8840#	450#	*	
32	Ag	47	4240#	710#	*		*		28620#	500#	*		13360#	510#
	Cd	48	5290#	200#	*		-8200 #	540#	26280#	200#	*		9690#	200
	In	49	8670	70	31290#	500#	-10220 #	310#	17220	60	-29320 #	500#	6780	60
	Sn	50	12557.0	2.7	30007	22	-11730	8	8642	4	-28620	100	-2636.5	2.
	Sb	51	13492	14	24330	40	-7910	150	6068	5	-18899	4	-2495.6	2.
	Te	52	13978	3	19634	4	-4251	18	4091	3	-15213	5	-5817	4
	I	53	14910	5	17996	15	-3498	20	1449	4	-11011	5	-5361	4
	Xe	54	15541.13	0.01	16503.95	0.01	-2710.2	0.9	-843.9	1.1	-11356.92	0.06	-9291	5
	Cs	55	16396	8	14794	3	-1839	4	-3430	40	-6998.9	1.2	-8540.3	2.
	Ba	56	17316.1	2.7	13132.5	1.1	-999.6	1.5	-5964	20	-7310.4	1.1	-12737	28
	La	57	18240	40	11400	40	-220	40	-8500	50	-2950	40	-12090	50
	Ce	58	19190	30	9787	20	483	21	-11050	30	-3076	20	-16240	50
	Pr	59	20190	70	8180	40	970	60	-13600#	150#	1250	40	-15530	40
	Nd	60	20970	40	6580	40	1680	40	-16350#	300#	990	40	-19840#	200
	Pm	61	22370#	250#	5030#	160#	2280#	150#	-19430#	430#	5380#	160#	-19570#	430
	Sm Eu	62 63	23720# 24660#	500# 640#	3060# 1380#	300# 450#	2810# 3160#	360# 500#	*		5400# 10170#	300# 450#	-23880# *	500a
33	Cd	48	4840#	320#	*	5.40"	-8740#	670#	26950#	300#	*	5.40"	10420#	300
	In	49	5580#	200#	31660#	540#	-7910#	450#	21460#	200#	-30960# 27000#	540#	11010#	200
	Sn	50	9752	4	30230	100	-10241	17	12063.2	2.8	-27900#	200#	690	3
	Sb	51	13085	4	25476	4	-8511	4	6935	7	-23800	60	-1807	5
	Te	52	13868.7	2.1	20250	4	-4771	17	4706	3	-13679.6	2.9	-5305	5
	I	53	14558	6	18455	7	-3654	22	2213	6	-13512	7	-4651	6
	Xe	54	15372.6	2.4	17010.5	2.4	-3063.7	2.6	-90.0	2.6	-9744	4	-8562.2	2
	Cs	55 56	16155	5	15206.2	0.6	-1989	3	-2577	28	-9656 5562.6	4	-7707.2	1
	Ba	56 57	17012.5	2.7	13718.0	1.0	-1282.5	1.0	-5135	16	-5563.6	1.0	-11900	40
	La	57	17870	40	12014	28	-420	28	-7560	30	-5631	28	-11090	30
	Ce	58	18850	40	10312	17	220	19	-10090	50	-1272	16	-15260	30
	Pr	59	19780	50	8750	30	962	25	-12530	50	-1500	40	-14583	27
	Nd	60	20710	50 210#	7200	60	1530	50	-15100# 18170#	300#	2850	50	-18780# 18400#	160
	Pm	61	21890#	210#	5680	70	1940	60	-18170# 21270#	300#	2530	60 200#	-18400#	300
	Sm	62	23240#	500#	4040#	300#	2660#	360#	-21370#	580#	6910#	300#	-23100#	500
	Eu	63	24110#	500#	2150#	360#	3220#	420#	*		7100#	330#	*	
	Gd	64	*		310#	640#	3720#	710#	*		11930#	580#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta$	_)	Q(d)	,α)	Q(p,	α)	Q(n,	α)
134	Cd	48	3070#	500#	*		43610#	400#	5580#	640#	6330#	640#	*	
	In	49	2270#	360#	15030#	420#	32380#	300#	9310#	360#	8420#	320#	-5630#	580#
	Sn	50	3631	4	16260#	200#	21692	3	6690	60	6455	4	-5570	100
	Sb	51	3168	4	10435.6	2.6	12870.6	1.7	13236.8	2.6	8108	4	-349	3
	Te I	52 53	7668 6256	3 8	10899 8395	4 5	6416.1 1175	2.8	7812 11856	4 6	4312 6032	3 5	377 3584	5 5
	Xe	55 54	8553.6	8 2.4	9557	6	-3293	21 20	8288	4	4180.9	0.6	2731.59	0.06
	Cs	55	6891.54	0.01	6536.6	2.4	-3293 -8363	20	13098.61	0.02	6386.46	0.02	6198.0	0.6
	Ba	56	9467.6	1.0	8167.9	0.3	-13303	12	8913.6	1.1	3973	5	5110.1	0.3
	La	57	7800	30	4954	20	-18480	60	13927	20	6329	20	8487	21
	Ce	58	10486	26	6630	30	-23460#	200#	9600	40	3800	30	7497	21
	Pr	59	8662	24	3399	26	-28600 #	300#	14654	29	6040	40	10890	30
	Nd	60	11390	50	4998	17	-34340 #	400#	10290	30	3520	50	9710	30
	Pm	61	9400	80	1700	70	*		15400	60	5890	60	13210	70
	Sm	62	12220#	360#	3260#	200#	*		10960#	250#	3150#	280#	12040#	200#
	Eu	63	10760#	420#	-10#	420#	*		15860#	420#	5070#	500#	15380#	360#
	Gd	64	13510#	640#	1360#	500#	*		11610#	570#	2830#	570#	14480#	570#
135	In	49	2940#	500#	14900#	570#	37250#	400#	8100#	500#	8600#	450#	-7090#	640#
	Sn	50	2270	4	16260#	300#	25781	5	7540#	200#	6640	60	-4720 #	200#
	Sb	51	3741	3	10546	4	17891.3	2.8	11894	3	11720	3	-1630	60
	Te	52	3266	3	10997.2	2.4	10121.7	1.7	11906	4	6771	3	4464.2	2.6
	I	53	7807	5	8534	3	2864	10	9868.8	2.9	6273	4	1503	3
	Xe	54	6359	4	9659	6	-1797	11	10156	7	4154	6	4421	5
	Cs	55	8761.8	1.0	6744.8	1.0	-6646	12	10772.7	2.6	6561.4	1.0	3768	4
	Ba	56	6971.96	0.10	8248.3	0.3	-11637	19	10931.2	0.3	4166.2	1.1	7074.9	0.3
	La	57	9496	22	4982	9	-16590	80	11621	9	6656	9	6156	9
	Ce	58	7855	23	6686	22	-21760 26700#	150	11589	30	3970	40	9465	10
	Pr Nd	59 60	10479 8638	24 22	3392 4975	24 28	-26790# -31820#	200# 400#	12193 12435	20 23	6399 3880	24 30	8430 11904	40 28
	Pm	61	11380	100	1690	80	-31820# -37230#	410#	12433	90	6240	80	10820	80
	Sm	62	9550#	250#	3410	170	-37230# *	410#	13260	160	3630#	220#	14210	160
	Eu	63	12290#	360#	60#	280#	*		13790#	360#	5800#	360#	13130#	250#
	Gd	64	11160#	570#	1750#	500#	*		13560#	500#	2670#	570#	16340#	500#
	Tb	65	*	5,0	-1188	7	*		13750#	640#	*	270	15020#	570#
136	In	49	2050#	570#	*		39040#	400#	9120#	570#	8270#	500#	*	
	Sn	50	3340#	300#	16660#	500#	30530#	300#	6470#	420#	6430#	360#	-6330 #	420#
	Sb	51	2888	6	11164	7	21832	6	12638	7	11231	6	-1400 #	200#
	Te	52	4767.8	2.9	12024	3	14461.7	2.3	10306.1	2.8	9362	4	2095.0	3.0
	I	53	3837	14	9105	14	6490	60	13699	14	8256	14	5025	15
	Xe	54	8087	4	9939.0	2.1	79.2	0.4	8325	5	4293	6	2154.4	2.1
	Cs	55	6828.4	2.1	7215	4	-4998	12	12497.9	1.9	6169	3	5166	7
	Ba	56	9107.74	0.04	8594.2	1.0	-9688	12	8715.0	0.3	4048.1	0.3	4403.1	2.4
	La	57	7470	50	5480	50	-14870	90	13620	50	6380	50	7680	50
	Ce	58	9964	10	7154	9	-19697	13	9421	20	3850	28	6691.6	1.1
	Pr	59	8476	16	4013	15	-25100# 20110#	200#	14203	23	5942	20	9800	30
	Nd Dm	60	11057	22	5552	17 70	-30110# 35040#	300#	10040	24	3602	17	8865	20
	Pm Sm	61 62	9190 12020	100	2250 4050	70 80	-35040#	510#	15190 10640	70 60	6030 3460	80 50	12410 11170	70 50
	Sm Eu	63	12020	160 280#	4030 680#	250#	*		15840#	280#	5850#	360#	14810#	200#
	Gd	64	10170#	280# 500#	2230#	250# 360#	*		13840#	420#	3010#	420#	13790#	420#
	Tb	65	11380#	640#	-970#	640#	*		15880#	640#	4590#	710#	16750#	580#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	1)	$S(2_1)$	p)	$Q(\alpha)$	<u>:</u>)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$)	$Q(oldsymbol{eta}^-$	n)
134	Cd In	48 49	4800# 5390#	450# 300#	* 32450#	580#	* -8390#	580#	27510# 22360#	400# 300#	*		10470# 11140#	450# 300#
	Sn	50	6030	4	30750#	200#	-7741	23	16100	4	-29800#	300#	4418	4
	Sb	51	10527.9	3.0	26190	60	-6560	40	10023	5	-23850 #	200#	845.3	2.7
	Te	52	13488	4	20565	3	-4826	3	5592.1	2.7	-18949	3	-4747	7
	I	53	14483	6	18986	5	-4183	15	2848	5	-12409	6	-4471	5
	Xe	54	14989.49	0.01	17516	3	-3197.79	0.01	824.0	0.3	-12477.7	2.1	-8126.21	0.01
	Cs	55	15881.1	1.0	15766	4	-2380	3	-1673	20	-8322	6	-7408.9	1.0
	Ba	56	16657.5	1.1	14248.8	0.3	-1494.3	0.3	-4117	20	-8595.3	2.4	-11527	28
	La	57	17640	40	12644	20	-744	22	-6691	28	-4437	20	-10872	26
	Ce	58	18505	29	10976	20	4	21	-9186	24	-4568	20	-14967	24
	Pr Nd	59	19440 20363	40 27	9380 7753	40 24	670 1350	30 30	-11790 -14270#	60 200#	$-320 \\ -517$	30 20	-14270 -18310	50 50
	Pm	60 61	20303	160#	6090	60	2010	90	-14270# -16810#	300#	3910	60	-18310 -17580#	300#
	Sm	62	22440#	360#	4530#	200#	2800#	200#	-10010# -20070#	450#	3670#	200#	-17380# -22210#	360#
	Eu	63	23870#	500#	2880#	330#	3040#	360#	-20070π *	430π	8190#	300#	-22210# $-22140#$	580#
	Gd	64	*	30011	800#	500#	3780#	570#	*		8640#	500#	*	30011
135	In	49	5210#	450#	*		-8570#	640#	23160#	400#	*		11830#	400#
	Sn	50	5901	4	31290#	300#	-7840	100	17097	4	-29000#	400#	5317	4
	Sb	51	6909	4	26800#	200#	-4090	4	14089	3	-25320#	300#	4772	4
	Te	52	10934.3	2.7	21432.8	2.6	-2889	4	8684	4	-18584	4	-1757	5
	I	53	14064	7	19434	4	-4222.7	2.9	3802.5	2.3	-17047.6	2.7	-3724.6	2.1
	Xe	54	14912	4	18054	4	-3627	4	1437	4	-11168	5	-7593	4
	Cs	55	15653.3	1.0	16301	7	-2563.8	1.2	-938	9	-10827	5	-6703.1	1.0
	Ba	56	16439.5	1.0	14784.9	2.4	-1861.9	0.3	-3234	10	-7013.6	0.3	-10703	20
	La Ce	57 58	17292 18341	29 19	13150 11640	9 10	-1009 -357	11 11	-5707 -8403	15 22	-7041 -2955	9 10	-9882 -14159	22 23
	Pr	59	19141	17	10020	30	410	30	-6403 -10880	80	-2933 -3006	23	-14139 -13361	17
	Nd	60	20020	50	8373	25	1070	40	-13360	160	1330	28	-17550	60
	Pm	61	20790	90	6690	80	1820	90	-15900#	210#	1190	80	-16750#	210#
	Sm	62	21770#	340#	5100	160	2490	160	-18470#	430#	5500	160	-21000#	340#
	Eu	63	23050#	360#	3320#	200#	3090#	280#	-21320#	450#	5300#	200#	-20920#	450#
	Gd	64	24670#	640#	1740#	500#	3320#	570#	*		9700#	450#	*	
	Tb	65	*		170#	500#	4020#	570#	*		9810#	500#	*	
136	In	49	4990#	500#	*	500"	-9150#	640#	24000#	400#	*		12050#	400#
	Sn	50	5610#	300#	31560#	500#	-8060#	360#	18530#	300#	*	400"	5720#	300#
	Sb	51	6629	6	27420#	300#	-4520	60	15038	15	-25270#	400#	5151	6
	Te I	52 53	8034 11644	4 15	22569 20103	4	-304	3	12003.9 6793	2.3	-21082 -17144	4	1283 -1203	3 15
	Xe	53 54	14445.97	0.01	20103 18473.4	14 2.7	-2335 -3666	14 3	2457.8	14 0.3	-17144 -15989.3	14 1.7	-1203 -6918.8	1.0
	Cs		15590.2	1.9	16873	5	-3060	4	-300	50	-9848.5	2.8	-6559.5	1.9
	Ba	56	16079.70	0.11	15339.0	0.3	-3000 -2032.9	0.3	-300 -2378.55	0.27	-9848.3 -9763	2.8 4	-0339.3 -10315	9
	La	57	16960	60	13720	50	-2032.9 -1310	50	-2378.33 -4700	50	-5740	50	-9490	50
	Ce	58	17818	20	12136.46	0.29	-498.3	1.1	-7309	12	-5946.84	0.27	-13644	12
	Pr	59	18955	23	10700	23	-40	40	-10170	70	-1986	15	-13198	22
	Nd	60	19695	17	8944	24	847	24	-12388	17	-1872	16	-17220	80
	Pm	61	20570	90	7220	70	1630	70	-14930#	210#	2480	70	-16380	170
	Sm	62	21580#	200#	5742	17	2190	27	-17720#	300#	2114	23	-20730#	200#
	Eu	63	22460#	360#	4080#	200#	2960#	250#	-20110 #	540#	6520#	210#	-19930 #	450#
	Gd	64	23930#	500#	2290#	360#	3570#	420#	*		6480#	340#	-24340 #	500#
	Tb	65	*		780#	580#	3650#	640#	*		10730#	540#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\boldsymbol{A}	Elt.	Z	S(1	n)	S(1)	p)	$Q(4\beta$	-)	Q(d	,α)	Q(p,	α)	Q(n,	α)
137	In	49	2600#	640#	*		41320#	500#	*		8740#	640#	*	
157	Sn	50	1960#	500#	16570#	570#	32600#	400#	7450#	570#	6740#	500#	−5220#	570#
	Sb	51	3620	50	11450#	300#	26490	50	11280	50	11240	50	-2750#	300#
	Te	52	2950	3	12086	6	18417.5	2.1	11097	3	9580.8	2.7	2776	4
	I	53	4882	16	9220	9	10784	9	12083	9	11042	9	3311	9
	Xe	54		0.10		14	3535.2	0.4	12106.5	2.1	6524	5	5796.7	2.7
			4025.56		10127									
	Cs	55	8278.2	1.9	7405.4	0.4	-3344	8	10578	4	6444.3	0.4	3144	5
	Ba	56	6905.63	0.07	8671.5	1.9	-8137	12	10571.2	1.0	4034.0	0.3	6051.0	0
	La	57	9170	50	5542.7	1.6	-13068	13	11420.6	1.6	6673.2	1.6	5396.9	1.
	Ce	58	7481.53	0.16	7170	50	-17890	40	11436	9	4164	20	8677.7	0
	Pr	59	9933	14	3982	8	-23056	9	12125	13	6495	22	7663	22 24
	Nd	60	8457	17	5533	16	-28370#	300#	12062	17	3807	23	10895	24
	Pm	61	10970	70	2163	18	-33110#	400#	12852	23	6438	18	10102	24
	Sm	62	9290	40	4150	80	*		12740	90	3580	70	13270	40
	Eu	63	11970#	200#	624	13	*		13420	150	6090#	200#	12240	60
	Gd	64	10200#	420#	2260#	360#	*		13650#	360#	3580#	420#	15810#	360#
	Tb	65	12910#	640#	-830#	500#	*		14130#	570#	5200#	570#	14610#	500#
138	Sn	50	3140#	640#	17110#	710#	35110#	500#	6360#	640#	6530#	640#	*	
	Sb	51	2230	1070	11720#	1140#	28670	1060	12390#	1110#	11280	1060	-2050#	1140#
	Te	52	4464	4	12920	50	22566	4	9522	7	8858	5	583	5
	I	53	3695	10	9965	6	14539	7	13156	6	10613	6	3357	7
	Xe	54	5660.1	2.8	10905	9 9	7599	6	10284	14	8671	3	3403	3
	Cs	55	4413	9	7793	9	247	14	14253	9	8390	10	6539	9 4
	Ba	56	8611.72	0.04	9005.00	0.18	-6243	12	8787.9	1.9	4184.1	1.0	3798	4
	La	57	7450	4	6087	3	-11579	28	13079	3	6195	3	6709	3
	Ce	58	9724	5	7719	5	-16073	13	9180	50	3936	11	5926	5
	Pr	59	8004	14	4504	11	-21380	30	14085	11	6346	15	9156	15
	Nd	60	10505	17	6106	14	-26220 #	200#	10033	16	3782	17	8244	15
	Pm	61	8940	30	2640	30	-31270#	300#	14970	30	6140	30	11640	30
	Sm	62	11540	40	4714	18	-36570#	500#	10380	70	3420	80	10362	22
	Eu	63	9675	28	1010	50	*		15770	30	5970	160	13950	80
	Gd	64	12660#	360#	2940#	200#	*		11150#	280#	3210#	280#	12700#	250#
	Tb	65	10770#	500#	-260#	420#	*		16130#	420#	5590#	500#	16130#	360#
	Dy	66	*	20011	1250#	640#	*		11910#	710#	2760#	640#	15110#	640#
139	Sn	50	1650#	710#	*		37210#	500#	7310#	710#	6930#	640#	*	
	Sb	51	3640#	1140#	12220#	640#	30910#	400#	10710#	570#	10980#	500#	-3630#	570‡
	Te	52	2580	5	13270	1060	24709	4	10570	50	9166	7	1340#	300#
	I	53	4562	7	10064	6	18755	4	11544	5	10818	5	1682	7
	Xe	54	3744	4	10064	6	11303	8	11344	0	8765	14	4427	3
	Cs	55	5885	10	8018	4	4118	8	12393	9	10592	3	4427	15
	Cs Ba	56	3883 4723.43	0.04	9316	9	-2900	8 28		0.18	6289.0	3 1.9	7161.8	0.
									12342.66					
	La	57	8778.3	2.5	6253.5	2.0	-9726	14	11205.8	2.0	6524.8	2.0	4758.9	2.
	Ce	58	7448	8	7718	7	-14568	13	10904	7	3950	50	7585	7
	Pr	59	9756	13	4537	9	-19421	15	11811	8	6554	8	6870	50
	Nd	60	8067	30	6169	30	-24380#	200#	11899	29	4190	30	10141	28
	Pm	61	10630	30	2771	18	-29370#	300#	12795	18	6563	18	9486	18
	Sm	62	8954	16	4729	30	-34740#	500#	12403	17	3650	70	12465	16
	Eu	63	11720	30	1189	18	*		13340	40	6277	18	11420	70
	Gd	64	9900#	280#	3170#	200#	*		13230#	200#	3480#	280#	14830#	200
	Tb	65	12530#	420#	-380 #	360#	*		13790#	420#	5820#	420#	13760#	360
	Dy	66	10780#	710#	1260#	590#	*		14040#	640#	3350#	710#	17090#	590

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2	p)	Q(a)	α)	$Q(2\beta$	-)	$Q(arepsilon_{ m I}$	p)	$Q(oldsymbol{eta}^-$	n)
137	In	49	4660#	640#	*		*		25020#	500#	*		12790#	580#
	Sn	50	5300#	400#	*	400"	-8290#	500#	19520#	400#	*	400"	6650#	400#
	Sb	51	6510	50	28110#	400#	-5020#	200#	16300	50	-26840#	400#	6290	50
	Te I	52 53	7717.6 8720	2.7 9	23249 21244	4 9	-854.8 142	2.8 9	13079.7 10189	2.1 8	-20690# -19138	300# 10	2170 2002	14 8
	Xe	54	12113	4	19232.6	1.7	-1871.2	2.1	5337.8	0.3	-19136 -15247.1	2.3	-4116.0	6 1.9
	Cs	55	15106.6	1.1	17344.4	2.1	-3112	6	595.1	1.6	-13247.1 -14289	14	-5730.00	0.19
	Ba	56	16013.37	0.08	15886	4	-2502.6	2.4	-1802.6	0.3	-8581.0	0.3	-9760	50
	La	57	16640	10	14137.0	1.9	-1494.7	1.7	-3939	8	-8091.0	2.5	-8703.6	1.6
	Ce	58	17445	10	12646.0	0.3	-789.9	1.1	-6334	12	-4320.6	0.3	-12650	11
	Pr	59	18408	14	11136	12	-132	29	-9129	15	-4450	50	-12074	14
	Nd	60	19514	22	9546	16	409	20	-11560	40	-365	12	-16490	70
	Pm	61	20160	80	7715	18	1440	18	-13927	14	-21	17	-15333	18
	Sm	62	21310	160	6390	50	1880	60	-16810 #	300#	3880	40	-19850#	200#
	Eu	63	22140#	200#	4670	80	2840	50	-19180 #	400#	3740	70	-19130#	300#
	Gd Tb	64 65	22970# 24280#	500# 570#	2930# 1400#	340# 450#	3590# 3840#	420# 500#	*		8310# 7990#	300# 450#	-23160# *	580#
138	Sn	50	5100#	590#	*		-8370#	640#	20840#	500#	*		7130#	510#
	Sb	51	5860	1060	28290#	1140#	-4990#	1110#	17760	1060	-26470 #	1180#	7010	1060
	Te	52	7413	4	24380#	300#	-1687	5	14276	5	-23200 #	400#	2589	9
	I	53	8577	15	22051	8	-384	6	10907	11	-19210	50	2332	6
	Xe	54	9685.7	2.8	20125	4	137	4	8289.4	2.8	-17957	4	-1497.9	2.8
	Cs	55	12691	9	17920	17	-1268	10	3632	10	-13820	12	-3237	9
	Ba	56	15517.35	0.08	16410.4	0.3	-2560.7	0.3	-691	5	-13167.2	0.3	-9192.3	1.6
	La	57	16620	50	14758	4	-2053	3	-3385	11	-7263	3	-8672	3
	Ce	58 59	17205 17936	5	13262 11670	5	$-1046 \\ -340$	5	-5553 -8193	13 30	-7139 -3282	5	-12441 -11621	10 16
	Pr Nd	60	18962	16 17	10088	50 12	-340 390	23 23	-8193 -10521	30 17	-3282 -3389	11 12	-11021 -16017	17
	Pm	61	19910	70	8180	30	1160	30	-10321 -13190	40	972	29	-14990	50
	Sm	62	20830	17	6876	17	1724	17	-15700#	200#	798	17	-19423	13
	Eu	63	21650#	200#	5160	70	2560	60	-18080#	300#	5030	30	-18610#	300#
	Gd	64	22850#	360#	3570#	200#	3150#	280#	-20870#	540#	4940#	200#	-22900#	450#
	Tb	65	23680#	580#	2000#	360#	3840#	420#	*		9190#	300#	*	
	Dy	66	*		420#	590#	3950#	640#	*		8990#	590#	*	
139	Sn	50	4790#	640#	*	< 10 II	*	55 0 II	21770#	500#	*		7710#	1180#
	Sb	51	5870#	400#	29330#	640#	-5690#	570#	18680#	400#	*	50011	7840#	400#
	Te I	52 53	7044 8257	4 9	25000# 22990	400# 50	-1998 -1206	5 5	15440 12230	4 5	-22630# -21540	500# 1060	3704 3430	7 5
	Xe	54	9403.8	2.1	20919	3	-1200 -340.7	2.7	9269.2	2.2	-21340 -17238	4	-829	9
	Cs	55	10298	3	18923	9	653	4	6525	4	-17238 -16010	7	-529 -511	3
	Ba	56	13335.15	0.06	17108.3	0.3	-926	4	2034	7	-12230.5	2.8	-6466	3
	La	57	16228.2	2.6	15258.5	2.0	-2069.5	2.2	-2407	8	-11628	9	−7727	5
	Ce	58	17172	7	13805	7	-1522	7	-4934	28	-5975	7	-11885	13
	Pr	59	17760	11	12256	8	-600	12	-7318	15	-5589	8	-10872	14
	Nd	60	18572	30	10673	28	177	29	-9634	30	-1732	28	-15140	40
	Pm	61	19570	19	8877	16	1010	18	-12102	19	-1656	18	-14074	18
	Sm	62	20500	40	7374	16	1408	22	-14750 #	200#	2349	16	-18702	30
	Eu	63	21395	14	5903	19	2230	80	-17270 #	300#	2250	30	-17670#	200#
	Gd	64	22560#	360#	4180#	200#	2800#	250#	-19990#	540#	6580#	200#	-22030#	360#
	Tb	65	23310#	500#	2560#	300#	3590#	360#	*		6330#	300#	-21270 #	590#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	_)	Q(d)	,α)	Q(p)	,α)	Q(n,	α)
140	Sb	51	2220#	720#	12790#	780#	33110#	600#	11630#	780#	10710#	720#	-3250#	780#
	Te	52	4440	60	14080#	410#	26690	60	8350	1070	8350	80	-1140 #	410#
	I	53	3207	13	10690	13	20710	12	12801	13	10562	12	2100	50
	Xe	54	5413	3	11804	5	15089.6	2.8	9704	6	8234	9	1964	3
	Cs	55	4421	9	8694	8	7638	10	13633	9	10197	8	4953	12
	Ba	56	6427	8	9857	9	990	9	10328	12	8140	8	4760	8
	La	57	5160.98	0.04	6691.1	2.0	-6102	24	14656.6	2.0	8269.4	2.0	7876.1	2.0
	Ce	58	9200	7	8138.8	1.7	-12620	13	9154	3	3928.7	2.3	5291.5	1.6
	Pr	59	7941	10	5029	9	-17700	50	13594	8	6095	6	8099	6
	Nd	60	10316	28	6729	9	-22477	28	9586	12	3807 6235	9	7306	
	Pm Sm	61 62	8785 11147	28 17	3490 5244	40 18	-27730 -32630#	800 400#	14515 10200	27 30	3481	27 18	10634 9775	26 17
	Eu	63	9660	50	1890	50	-32030# -37730#	510#	15220	50	5900	70	12730	50
	Gd	64	12220#	200#	3670	30	−37730π *	310π	10680	40	3228	28	11890	50
	Tb	65	10420#	850#	140#	820#	*		16030#	820#	5600#	850#	15310	800
	Dy	66	13260#	640#	1990#	500#	*		11550#	500#	3000#	570#	14030#	500#
	Но	67	*	0.00	-1094	10	*		16380#	710#	*	2,0	17360#	640#
141	Sb	51	3240#	780#	*		35370#	500#	10040#	710#	10620#	710#	*	
	Te	52	1980#	410#	13840#	720#	29250#	400#	10010#	570#	8600#	1140#	20#	640#
	I	53	4392	20	10640	60	23005	16	10989	16	10633	16	-60	1060
	Xe	54	3282	4	11880	12	17236	3	10984	5	8647	7	3145	5
	Cs	55	5499	12	8780	9	11538	9	11878	9	10359	10	3149	11
	Ba La	56 57	4535 6687	9 4	9971 6951	10 9	4460 -2409	6 15	11679 12693	6 4	8018 10194	11 4	5886 5602	6 10
	Ce	58	5428.14	0.10	8406.0	1.7	-2409 -9499	9	12504.1	1.7	5950	3	8475.1	1.6
	Pr	59	9399	6	5228.5	1.2	-16090	13	11643	7	6419	5	6150	3
	Nd	60	8005	5	6794	7	-20968	20	11337	8	3805	11	9025	6
	Pm	61	10381	28	3553	14	-25980	110	12200	30	6359	18	8257	18
	Sm	62	8549	15	5009	26	-30550#	300#	12277	16	3871	29	11731	14
	Eu	63	11010	50	1759	18	-35560#	400#	13165	17	6436	17	10660	30
	Gd	64	9510	30	3530	60	*		12885	24	3390	30	13920	23
	Tb	65	12130	810	50	110	*		13800#	220#	6120#	220#	12860	110
	Dy	66	10620#	500#	2190#	850#	*		13460#	420#	3150#	420#	16060#	360#
	Но	67	13180#	640#	-1177	7	*		13990#	640#	5430#	640#	14950#	500#
142	Te I	52 53	3950# 2910	640# 370	14550# 11570#	710# 550#	31470# 25250	500# 370	8280# 12520	780# 380	8280# 10300	640# 370	-2280# 670#	710# 550#
	Xe	54	5104	4	12592	16	19304	4	9087	12	8105	5	622	330π 4
	Cs	55	4108	12	9606	8	13273	7	13183	7	9994	7	3603	8
	Ba	56	6181	8	10654	11	8108	6	9919	10	7723	7	3449	6
	La	57	5164	7	7581	8	1118	24	13956	10	9754	6	6323	7
	Ce	58	7171.6	2.5	8891	5	-5547	4	10493.5	2.9	7557.1	2.9	6027.0	2.5
	Pr	59	5843.15	0.08	5643.5	1.2	-12470	30	14999.4	1.2	8024	7	9085.1	2.0
	Nd	60	9829	3	7223.3	1.4	-18990	28	9449	6	3733	8	6644	7
	Pm	61	8690	27	4238	24	-24580	700	13828	24	5740	40	9323	25
	Sm	62	11124	9	5753	14	-28870 #	730#	9938	24	3378	14	8674	28
	Eu	63	9460	30	2670	30	-34060 #	400#	14850	30	5930	30	11830	30
	Gd	64	11810	30	4320	30	-38930#	500#	10740	60	3300	30	11067	30
	Tb	65	10090	710	620	700	*		15930	700	5940#	730#	14480	700
	Dy	66	12810#	790#	2870#	740#	*		11070#	1080#	2880#	790#	13160#	750#
	Ho Er	67 68	10960# *	570#	-840# 950#	500# 640#	*		16290# 11940#	570# 710#	5260# *	640#	16530# 15260#	500# 710#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	2n)	S(2	p)	Q(a)	α)	$Q(2\beta)$	_)	Q(arepsilonp)	$Q(\beta^{-}$	n)
140	Sb	51	5860#	1220#	*	510"	-5850#	720#	19670#	600#	*	500#	8200#	600#
	Te	52 53	7020 7769	60	26290#	510#	-3100#	310#	16410	60	-25430#	500#	3820	60
	I Xe	53 54	9157	13 4	23960 21868	1060 4	-1524 -986	13 3	13444 10283	15 8	-21110# -20070	400# 4	3967 -357	12 4
	Cs	55	10306	12	19648	10	-980 70	16	7266	8	-20070 -15868	9	-337 -208	8
	Ba	56	11150	8	17875	8	735	8	4807	8	-13608 -14914	8	-208 -4114	8
	La	57	13939.3	2.5	16007	9	-402.1	2.7	372	6	-14914 -10904	4	-5439	7
	Ce	58	16648	5	14392.4	1.6	-402.1 -1614.1	1.6	-3817	4	-10904 -10451.3	1.6	-3439 -11329	8
	Pr	59	17697	13	12747	7	-1014.1 -1080	50	-6474	25	-10451.5 -4751	6	-11329 -10745	28
	Nd	60	18383	12	11266	6	-1080 -175	3	-8803	13	-4600	8	-10743 -14830	14
	Pm	61	19420	40	9658	27	702	27	-11230	60	-684	25	-13905	27
	Sm	62	20101	17	8016	17	1318	17	-11230 -13670	30	-730	30	-18129	18
	Eu	63	21380	60	6620	60	1760	90	-16500	800	3230	50	-18129 -17430#	200#
	Gd	64	22130#	200#	4860	30	2600	30	-18950#	400#	3309	30	-21720#	300#
	Tb	65	22960#	850#	3310	800	3340#	820#	-21220#	950#	7630	800	-20910#	950#
	Dy	66	24040#	640#	1610#	450#	3840#	500#	*)30m	7510#	450#	-20710# *)30m
	Но	67	*	04011	170#	590#	4450#	710#	*		11580#	590#	*	
141	Sb	51	5460#	640#	*		-6500#	710#	20820#	500#	*		9400#	500#
	Te	52	6430#	400#	26630#	640#	-3120#	570#	17710#	400#	*		5050#	400#
	I	53	7598	16	24720#	400#	-2290	50	14551	18	-23280 #	600#	4988	16
	Xe	54	8695	4	22570	5	-1318	4	11535	6	-18910	60	781	9
	Cs	55	9919	10	20585	10	-546	12	8454	10	-18160	15	721	12
	Ba	56	10962	5	18666	6	226	5	5700	6	-14035	6	-3488	6
	La	57	11848	4	16809	5	1189	4	3084	4	-13171	9	-2927	4
	Ce	58	14628	7	15097.1	1.6	-136.6	1.6	-1240	3	-9453	8	-8816	6
	Pr	59	17339	8	13367.4	2.0	-1299.9	2.3	-5493	14	-8988.7	2.0	-9828	4
	Nd	60	18321	28	11823	8	-699	3	-8259	9	-3406	3	-14050	24
	Pm	61	19165	19	10282	16	254	16	-10597	19	-3124	15	-13138	19
	Sm	62	19696	14	8498	29	1226	15	-12710	22	1036	9	-17020	50
	Eu	63	20670	18	7003	19	1722	18	-15380	110	999	27	-16210	30
	Gd	64	21740#	200#	5422	23	2380	50	-17840 #	300#	4943	23	-20810	800
	Tb	65	22550#	320#	3720	110	3180	110	-20180 #	410#	5160	120	-19780 #	410#
	Dy	66	23880#	590#	2330#	360#	3410#	420#	*		9110#	300#	-24200 #	590#
	Но	67	*		810#	500#	4180#	570#	*		8830#	900#	*	
142	Te	52	5940#	510#	*		-3930#	710#	18860#	500#	*		5490#	500#
	I	53	7310	370	25410#	700#	-2970	1130	15740	370	-22950 #	630#	5360	370
	Xe	54	8386	4	23230	60	-1959	5	12613	7	-22030 #	400#	1177	10
	Cs	55	9607	11	21486	14	-960	9	9510	9	-17877	17	1147	9
	Ba	56	10716	10	19434	6	-295	7	6691	6	-16934	7	-2982	7
	La	57	11851	6	17552	10	438	11	3763	6	-12836	11	-2663	6
	Ce	58	12599.7	2.5	15842	8	1303.5	2.5	1416.8	2.2	-12090	6	-6588.9	2.5
	Pr	59	15242	6	14049.5	2.0	307	3	-2645	24	-8145	4	-7666.2	2.8
	Nd	60	17834	4	12451.8	1.6	-804	5	-6963.5	2.8	-7806.0	1.6	-13498	14
	Pm	61	19070	30	11032	24	-433	26	-9830	40	-2415	24	-13279	25
	Sm	62	19673	13	9305	5	607	12	-12027	28	-2083	4	-17132	13
	Eu	63	20470	60	7680	40	1200	40	-14750	700	1920	30	-16160	40
	Gd	64	21320	40	6080	30	2110	30	-16840 #	730#	1685	29	-20490	110
	Tb	65	22220	1060	4150	700	2770	700	-19310#	810#	6080	700	-19250 #	760#
	Dy	66	23430#	830#	2920#	730#	3260#	750#	-22090 #	880#	5820#	730#	-23830 #	830#
	Но	67	24130#	640#	1350#	900#	3990#	500#	*		10000#	410#	*	
	Er	68	*		-220#	640#	4480#	710#	*		10060#	580#		

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

	Elt.	Z	S(n	1)	S(p)	$Q(4\beta$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
143	Te I	52 53	1980# 3930#	710# 430#	* 11550#	540#	33660# 27540#	500# 200#	9540# 10570#	710# 450#	8530# 10810#	780# 210#	* -1050#	630#
	Xe	54	3045	5	12720	370	21404	5	10435	17	8267	13	2020	60
	Cs	55	5232	10	9735	8	15393	8	11233	8	10175	8	1577	14
	Ba	56	4166	9	10712	10	10065	7	11251	11	7977	11	4696	7
	La	57	6219	10	7618	9	4789	8	12272	9	9962	11	4525	11
	Ce	58	5144.80	0.09	8871	6	-2090	3	12036	5	7573.3	2.9	7309	8
	Pr	59	7352.1	1.9	5824.0	1.9	-8827	11	13075.5	2.0	9871.9	2.0	6894.0	2.5
	Nd	60	6123.57	0.07	7503.7	1.4	-15770	200	12724.2	1.4	5550	6	9720.3	1.6
	Pm	61	9890	24	4299.6	2.7	-22540	50	11943	4	6162	5	7374	7
	Sm	62	8602	4	5664	24	-27348	13	11717	14	3561	24	10388	4
	Eu	63	11000	30	2544	11	-32190 #	300#	12403	14	6079	17	9619	27
	Gd	64	9340	200	4210	200	-36970#	450#	12410	200	3620	210	12870	200
	Tb	65	11930	700	750	60	*		13520	50	6230	60	12210	70
	Dy	66	10120#	730#	2900	700	*		13080	110	3180	800	15260	30
	Но	67	12870#	500#	-780 #	790#	*		14050#	420#	5650#	500#	14080#	850#
	Er	68	11300#	640#	1300#	570#	*		13820#	570#	2860#	640#	17220#	570#
144	I	53	2720#	450#	12290#	640#	29570#	400#	11800#	640#	10070#	570#	-520#	640#
	Xe	54	4741	7	13530#	200#	23560	6	8610	370	7918	17	-740#	400#
	Cs	55	3667	22	10357	21	17479	20	12669	20	9790	20	2302	26
	Ba	56	5901	10	11381	10	11981	7	9458	10	7574	12	2077	8
	La	57	4749	15	8201	15	6566	13	13703	14	9747	14	5274	16
	Ce	58	6897	3	9549	8	1533.7	2.7	10303	7	7364	5	4947	6
	Pr	59	5753.6	2.8	6433	3	-5131	11	14493	3	9546.5	2.9	7828	5
	Nd	60	7817.04	0.05	7968.7	1.4	-11988	28	10750.3	1.4	7131.7	1.4	7331.4	1.6
	Pm	61	6526.8	1.5	4702.8	2.6	-19048	28	15244.7	2.6	7641	4	10246.0	3.0
	Sm	62	10519.7	2.3	6293.9	2.7	-25395	7	9887	24	3421	14	7873	3
	Eu	63	9449	15	3391	11	-31010	14	14078	11	5179	14	10550	18
	Gd	64	11600	200	4810	30	-35150#	200#	10260	40	3030	30	9821	29
	Tb	65	10020	60	1430	200	-40110#	400#	15300	40	5720	30	13200	30
	Dy	66	12472 10630#	15 300#	$3440 \\ -270$	50 16	*		10700 16220#	700 730#	2830 5640#	110 300#	12301	21 110
	Ho Er	67 68	13420#	450#	-270 1850#	360#	*		11350#	450#	2620#	450#	15580 14420#	360#
	Tm	69	*	430#	-1712	16	*		16480#	430# 640#	2020# *	430#	17750#	570#
					-1/12	10							17750π	370#
145	I	53	3730#	640#	*		31900#	500#	10050#	710#	10300#	710#	*	
	Xe	54	2692	12	13500#	400#	25570	40	9850#	200#	8140	370	520#	500#
	Cs	55	4854	22	10471	11	19572	12	10859	10	10039	9	360	370
	Ba	56	3820	11	11534	22	13916	9	10870	11	7862	11	3360	9
	La	57	6057	18	8357	14	8432	13	11813	14	9871	14	3326	14
	Ce	58	4710	30	9510	40	3580	30	11820	30	7820	30	6420	30
	Pr	59	6947	7	6483	7	-1634	8	12692	7	9771	7	6045	9
	Nd	60	5755.31	0.23	7970.4	2.4	-8506	20	12347.1	1.4	7219.6	1.4	8747.6	2.2
	Pm	61	7922.7	1.5	4808.5	2.5	-14880	110	13445.6	2.5	9546.6	2.5	8166.4	2.9
	Sm	62	6757.10	0.30	6524.2	2.7	-22409	7	13020.1	2.7	5355	24	10945.1	0.8
	Eu	63	10444	11	3314.9	2.7	-28871 22600#	8	12236	4	5859	4	8797	24
	Gd	64	9240	30	4596	22	-33690#	200#	12026	23	3250	40	11707	20
	Tb Dy	65 66	12090 9744	110 10	1920 3163	110 29	-38810#	220#	12550 12890	230 50	5440 3180	110 700	10570 14363	110 29
	Dy Но	66 67	12582	10	-161	10	*		12890	15	5860#	700 730#	13090	700
	Er	67 68	12382	280#	-101 1920#	200#	*		13700	360#	2870#	450#	16530#	760#
	Tm	69	13400#	450#	-1736	7	*		14390#	450#	5310#	540#	15310#	450#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(o	<i>t</i>)	$Q(2\beta)$	-)	Q(arepsilonp)	$Q(eta^-$	n)
143	Te I	52 53	5930# 6850#	640# 200#	* 26100#	540#	-4260# -3270#	710# 450#	19930# 17050#	500# 200#	*		6420# 6530#	630# 200#
	Xe	54	8148	5	24290#	400#	-2423	6	13734	8	-21120#	500#	2240	8
	Cs	55	9341	12	22327	18	-1629	9	10496	11	-20190	370	2095	10
	Ba	56	10347	9	20318	7	-718	7	7669	7	-15997	7	-1984	9
	La	57	11383	8	18272	12	104	8	4897	7	-14946	10	-1710	8
	Ce	58	12316.4	2.5	16452	6	882.2	2.5	2395.6	2.2	-11053	6	-5890.5	2.5
	Pr	59	13195.2	1.9	14715	4	1733.1	2.5	-108	3	-10333	6	-5189.6	1.4
	Nd	60	15952	3	13147.3	1.6	521	7	-4485.1	2.5	-6758.0	2.2	-10932	24
	Pm	61	18580	14	11523	3	-567	8	-8719	11	-6462	3	-12045	4
	Sm	62	19726	9	9902	4	72	28	-11290	200	-856.1	2.5	-16270	30
	Eu	63	20458	17	8296	18	834	17	-13820	50	-388	26	-15350	30
	Gd	64	21150	200	6880	200	1720	200	-16060	200	3470	200	-19740	730
	Tb	65	22020	120	5070	50	2550	50	-18370#	300#	3610	60	-18370#	730#
	Dy Ho	66 67	22930# 23830#	300# 500#	3523 2090#	24 320#	3040# 3660#	200# 420#	-20910# *	400#	7500 7220#	30 760#	-22990# -22090#	400# 580#
	Er	68	*	300#	460#	500#	3960#	640#	*		11570#	830#	-22090# *	360#
144	I	53	6650#	550#	*		-3770#	720#	17990#	400#	*		6850#	400#
	Xe	54	7785	6	25080#	500#	-2720	60	14895	9	-23880#	500#	2732	9
	Cs	55	8899	21	23080	380	-2090	23	11578	24	-19930#	200#	2595	21
	Ba	56	10067	9	21115	8	-1206	8	8665	8	-18853	9	-1667	10
	La Ce	57 58	10968 12041	14 3	18913 17168	15 7	-224 413	15 8	5901 3316.1	13 2.5	-14463 -13784	15 7	-1314 -5434.9	13 2.9
	Pr	59	13105.7	2.8	15304	7	1140	3	666	4	-13764 -9868	8	-3434.9 -4819.6	2.4
	Nd	60	13940.61	0.09	13792.7	2.2	1903.2	1.6	-1782.4	0.8	-9430.3	2.2	-8858.6	2.7
	Pm	61	16417	24	12206.6	3.0	847	7	-5797	11	-5636.8	3.0	-9970	4
	Sm	62	19121.7	2.7	10593.5	0.8	-132	4	-10206	28	-5252.3	0.8	-15796	11
	Eu	63	20450	30	9055	26	170	27	-13251	30	53	11	-15460	200
	Gd	64	20940	40	7351	28	1270	30	-15189	29	469	28	-19410	60
	Tb	65	21950	700	5630	40	2190	60	-17759	29	4580	30	-18270	30
	Dy	66	22590#	730#	4189	29	2787	29	-19960#	200#	4370	200	-22590#	300#
	Но	67	23500#	400#	2630	700	3450	800	-22350 #	400#	8520	50	-21420 #	400#
	Er	68	24720#	540#	1070#	750#	3800#	450#	*		8270#	200#	*	
	Tm	69	*		-410#	570#	4580#	640#	*		12500#	500#	*	
145	I	53	6450#	540#	*		-4250 #	710#	19120#	500#	*		7860#	500#
	Xe	54	7433	12	25790#	500#	-3430#	400#	16023	14	*		3707	23
	Cs	55	8522	12	24000#	200#	-2553	18	12781	15	-22060#	400#	3641	11
	Ba	56	9722	11	21891	10	-1744	9	9550	30	-17933	10	-738	15
	La	57	10806	14	19738	14	-783	15	6791	14	-16853	24	-475	13
	Ce	58 59	11600	30	17710	30	240	30 8	4360	30	-12590 12065	30	-4390 2040	30 7
	Pr Nd	59 60	12700 13572.35	7 0.24	16032 14403.2	10 2.2	881 1576.0	8 1.6	1642 -780.6	7 0.9	-12065 -8289.1	15 2.6	-3949 -8087.2	2.7
	Pm	61	13372.33	2.1	12777.2	2.2	2323.3	2.9	-780.6 -3276	0.9 4	-8289.1 -7806	3	-8087.2 -7373.3	2.7
	Sm	62	17276.8	2.4	11227.0	0.8	1116	3	-3270 -7725	20	-4192.3	0.8	-7373.3 -13104	11
	Eu	63	19893	11	9609	4	106	14	-11600	110	-3864	4	-14303	28
	Gd	64	20840	200	7987	20	583	21	-14684	21	1750	20	-18630	30
	Tb	65	22110	120	6730	110	1110	110	-17270	110	1940	110	-17890	110
	Dy	66	22216	15	4590	200	2557	21	-19000#	200#	6228	29	-21704	11
	Но	67	23220#	300#	3280	50	3000	110	-21540 #	200#	5959	29	-20580 #	200#
	Er	68	24120#	450#	1650#	200#	3720#	360#	*		10040#	200#	-25050 #	450#
	Tm	69	*		110#	360#	4360#	450#	*		9740#	200#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta$	-)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
146	Xe	54	4533	27	14310#	500#	27680	29	8040#	400#	7540#	200#	-2030#	500#
	Cs	55	3327	10	11106	12	21370	30	12273	6	9757	5	970#	200#
	Ba	56	5502	23	12182	23	15979	21	9035	29	7592	22	902	21
	La	57	4290	40	8820	30	10400	30	13430	30	9750	30	4270	30
	Ce	58	6640	40	10089	20	5361	17	9925	21	7400	18	3948	18
	Pr	59	5130	40	6900	50	440	40	14460	30	9790	30	7140	40
	Nd	60	7565.23	0.09	8589	7	-4840	4	10535.5	2.4	7006.4	1.4	6327.2	2.2
	Pm Sm	61	6258 8416.3	5 2.9	5311 7018	4 4	-11690 -18441	50 7	15004 11131	4 4	9412 6828	4	9260 8652.3	4 2.8
	Eu	62 63	7197	2.9 7	3755	6	-18441 -25879	9	15559	6	7264	4 6	11490	2.8 7
	Gd	64	11231	20	5383	5	-23679 -31764	8	10244	11	3020	12	9078	4
	Tb	65	9450	120	2130	50	-31704 -36710#	210#	14710	50	5330	210	12120	50
	Dy	66	12384	9	3460	110	*	21011	10524	29	2730	50	11320	200
	Но	67	10189	10	285	9	*		16043	10	5795	15	14830	50
	Er	68	13150#	200#	2491	10	*		10998	11	2590#	300#	13493	15
	Tm	69	11540#	280#	-896	6	*		16260#	280#	5070#	450#	16640#	360#
147	Xe	54	2480#	200#	*		29650#	200#	9290#	540#	7780#	450#	*	
	Cs	55	4681	9	11254	26	23524	18	10284	14	9816	10	-990#	400#
	Ba	56	3388	29	12243	20	17883	20	10501	22	7871	28	2255	20
	La	57	5700	40	9020	23	12364	11	11549	14	9953	13	2239	23
	Ce	58	4450	18	10250	30	7252	9	11532	15	7700	16	5400	11
	Pr	59	6830	40	7098	23	2101	16	12330	40	9852	16	5052	20
	Nd	60	5292.20	0.09	8750	30	-2789.8	1.5	12190	7	7467.8	2.4	7931.5	2.6
	Pm	61	7659	4	5405.4	0.5	-8300	8	13100.5	0.5	9569.8	0.4	7354.7	2.4
	Sm	62	6341.4	2.8	7101	4	-15070	9	12711.9	2.5	7013.8	2.7	10128.0	0.4
	Eu	63	8499	6	3837	4	-21788	6	13817.4	2.4	9284.8	2.4	9518	3
	Gd	64	7342	4	5528	6	-28750	40	13345.4	3.0	5126	11	12255.0	1.2
	Tb	65	11050	50	1946	9	-34768	11	12894	21	5881	29	10523	13
	Dy	66	9712	11	3720	50	*		12900	110	3036	29	13210	29
	Но	67	12590	8	491	8	*		13196	8	5677	9	12257	28
	Er	68	10360	40	2660	40	*		13220	40	2870	40	15610	40
	Tm	69	12990#	200#	-1059	3	*		13980#	200#	5500#	200#	14282	11
148	Xe	54	4310#	360#	*		31800#	300#	*		7200#	590#	*	
	Cs	55	3062	16	11840#	200#	25624	20	11755	28	9446	17	-330#	500#
	Ba	56	5400	70	12960	60	19810	60	8430	60	7320	60	-450	60
	La	57	4102	22	9734	28	14157	20	12949	29	9671	21	2992	21
	Ce	58	6456	14	11009	15	8938	11	9360	40	7301	17	2764	14
	Pr	59	5163	22	7811	17	3764	18	13811	22	9400	40	5946	19
	Nd	60	7332.6	1.7	9253	16	-1138.7	1.8	9980	30	7082	7	5310	30
	Pm	61	5895	6	6008	6	-6329	14	14771	6	9430	6	8407	9
	Sm	62	8141.23	0.26	7583.0	0.4	-11477	9	10829	4	6795.3	2.5	7742.1	0.4
	Eu Gd	63 64	6826 8983.7	10	4322	10 2.4	-18310	80 10	15408	10	9216 6586 2	10 2.7	10615	10 0.3
	Gd Tb	64 65	8983.7 7866	1.2	6013.5		-24790	10 16	11559 16260	6 13	6586.2 7253	2.7	10028.4 13101	
		65 66		15	2469 4406	13	-31772 -37530#	16 400#	10610	13			10713	13 22
	Dy Ho	66 67	11735 10310	12 80	1080	12 80		400#	15270	50 80	3390 5120	110 80	10/13	140
	Ho Er	67 68	10310	40	3011	80 11	*		10470	12	2505	13	12410	12
	Tm	69	10862	12	-550	40	*		16268	12	5340#	200#	16001	13
	Yb	70	*	14	1650#	400#	*		11440#	450#	2120#	450#	14560#	450#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2 ₁	p)	$Q(\alpha$:)	$Q(2\beta^{-1})$	-)	Q(arepsilonp))	$Q(\beta^-$	n)
146	Xe	54	7225	25	*		-4010#	500#	16990	30	*		4028	26
	Cs	55	8182	20	24610#	400#	-2970	370	13740	30	-21660 #	500#	4134	9
	Ba	56	9323	22	22653	22	-2142	21	10688	26	-20743	24	-183	24
	La	57	10340	40	20360	40	-960	30	7630	50	-16280	30	-50	50
	Ce	58	11346	17	18446	18	-218	17	5290	16	-15408	18	-4081	18
	Pr	59	12070	30	16410	40	920	40	2770	40	-11130	40	-3320	30
	Nd	60	13320.54	0.24	15071.9	2.6	1182.4	2.2	70.4	2.8	-11150	30	-7729.7	2.5
	Pm	61	14181	5	13282	5	1908	4	-2337	7	-7117	8	-6874	4
	Sm	62	15173.4	2.8	11826.3	2.8	2528.8	2.8	-4911	5	-6853.3	2.8	-11076	4
	Eu	63	17641	12	10279	6	1600	24	-9350	50	-3139	6	-12263	21
	Gd	64	20469	28	8698	4	476	5	-13531	8	-2723	4	-17770	110
	Tb	65	21540	50	6720	50	1120	50	-16530	50	2940	40	-17590	50
	Dy	66	22127 22771	10 11	5373 3448	29	1980 2900	29 700	-18233 $-20180#$	9 200#	3082 7860	21	-21506 -20070#	10 200#
	Но	67 68	23860#	200#	2330	29 10	3370#	730#		200#	6632	110 9	-20070# -24810#	200#
	Er Tm	69	24940#	450#	1020#	200#	3770#	450#	*		10780#	200#	-24610# *	200#
147	Xe	54	7010#	200#	*		-4510#	540#	17900#	200#	*		4880#	200#
	Cs	55	8008	12	25560#	500#	-3720 #	200#	14758	14	*		4956	22
	Ba	56	8890	21	23349	23	-2486	20	11750	22	-19600	30	710	40
	La	57	9986	16	21202	14	-1428	13	8766	19	-18657	11	886	20
	Ce	58	11090	30	19076	12	-502	11	6133	9	-14356	23	-3400	40
	Pr	59	11961	17	17187	20	303	17	3598	16	-13680	40	-2590	16
	Nd	60	12857.43	0.12	15660	30	1035.0	2.2	1119.6	0.4	-9800	16	-6764	4
	Pm	61	13917.4	2.6	13994	7	1601.1	1.4	-1497.5	2.3	-9650	30	-6117.3	2.8
	Sm	62	14757.7	0.9	12412.3	0.4	2311.0	0.4	-3909.4	1.5	-5629.5	0.4	-10220	6
	Eu	63	15696	4	10855	3	2991	3	-6802	8	-5379	5	-9530	4
	Gd	64	18573	20	9283.6	1.3	1735.3	2.0	-11161	9	-1650	3	-15660	40
	Tb	65 66	20500 22096	110	7329 5848	9	1074 1610	14	-14986	10	-914 4601	10 10	-16259 -21029	11 11
	Dy Ho	67	22780	11 9	3950	22	2240	200 50	-17590 -19783	40 8	4720	50	-21029 -19506	8
	Er	68	23510#	200#	2940	110 40	3140	40	-19763 *	0	8660	40	-19300 -23620#	200#
	Tm	69	24530#	200#	1432	10	3650#	300#	*		7975	9	-23020 #	200π
148	Xe	54	6790#	300#	*		*		18990#	310#	*		5250#	300#
	Cs	55	7743	13	*		-4060 #	400#	15798	23	*		5282	24
	Ba	56	8790	70	24220	70	-3150	60	12800	60	-22520 #	210#	1010	60
	La	57	9800	40	21976	20	-1862	28	9827	25	-18078	21	1234	21
	Ce	58	10906	20	20029	24	-1056	13	7010	11	-17423	23	-3026	19
	Pr	59	12000	40	18060	40	-111	20	4330	16	-13146	18	-2460	15
	Nd	60	12624.8	1.7	16351	16	599	20 3 6	1928.3	1.7	-12683	9	-6437.1	1.7
	Pm	61	13554	7	14760	40	1460		-566	11	-8711	17	-5671	6
	Sm	62	14482.6	2.8	12988.3	0.4	1986.8	0.4	-3066.9	0.9	-8478.5	0.4	-9862.8	2.3
	Eu	63	15324	12	11423	11	2692	10	-5762	16	-4546	10	-9014	10
	Gd	64	16326	4	9851.0	2.8	3271.29	0.03	-8410	9	-4291.9	0.9	-13598	8
	Tb	65	18920	50	7997	14	2657	16	-12550	80	-281	13	-14412	15
	Dy	66	21447	11	6352	10	1475	29	-16381	13	208	9	-20174	10
	Ho	67	22900	80	4810	100	1950	90	-19230	80	5460	80	-19450	90
	Er	68	23300	12	3502	12	2666	13	-21150#	400#	5428	14	-23576	12
	Tm Yb	69 70	23850#	200#	2105 590#	12 400#	3420 3850#	13 450#	*		9703 8990#	11 400#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	n)	S(p)	$Q(4\beta$	-)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
149	Cs	55	4410#	400#	11940#	500#	27790#	400#	9820#	450#	9570#	400#	*	
	Ba	56	3600	440	13500	440	21260	440	9510	440	7050	440	480	440
	La	57	5580	200	9920	210	15840	200	10750	200	9590	200	740	200
	Ce	58	4343	15	11250	22	10466	10	10719	15	7240	40	3924	23
	Pr	59	6575	18	7930	15	5402	11	11685	13	9460	19	3660	40
	Nd	60	5038.79	0.07	9129	15	752	4	11779	16	7170	30	6906	16
	Pm	61	7270	6	5945.2	2.5	-4576	4	12793.3	2.1	9725.7	2.1	6260	30
	Sm	62	5870.8	0.9	7559	6	-9440	9	12617.3	1.0	7183	4	9436.5	1.0
	Eu	63	8213	11	4394	4	-14795	13	13536	4	9419	5	8660	6
	Gd	64	6929	3	6117	10	-21385	28	13129	4	6855	7	11516	4
	Tb	65	9023	13	2508	3	-27610 #	200#	14579	4	9461	5	11275	7
	Dy	66	7908	12	4448	15	-34500 #	300#	13758	12	4930	50	14036	10
	Но	67	11730	80	1076	12	*		13260	15	5772	14	11760	50
	Er	68	10334	30	3040	90	*		12726	28	2361	29	14460	29
	Tm	69	13190#	200#	-310#	200#	*		13440#	200#	5300#	200#	13000#	200#
	Yb	70	10940#	500#	1720#	300#	*		13490#	300#	2720#	360#	16770#	300#
150	Cs	55	2990#	570#	*		30130#	400#	11140#	500#	9050#	450#	*	
	Ba	56	4850#	530#	13940#	500#	23780#	300#	7720#	300#	6880#	300#	-1890#	360#
	La	57	3980	480	10300	620	17470	440	12170	440	9000	440	1440	440
	Ce	58	6248	16	11920	200	12204	12	8573	23	6696	16	1064	23
	Pr	59	5332	13	8920	14	6492	11	12809	14	8577	12	4024	14
	Nd	60	7375.6	1.9	9929	10	2084	6	9566	15	6628	16	3981	9
	Pm	61	5604	20	6511	20	-2491	21	14522	20	9414	20	7493	26
	Sm	62	7986.7	0.4	8275.9	1.9	-7742	4	10525	6	6855.2	0.9	6742.0	1.0
	Eu	63	6422	7	4945	6	-12846	15	15255	6	9338	6	9896	6
	Gd	64	8708	7	6612	7	-17933	18	11246	12	6645	6	9149	6
	Tb	65	7688	8	3268	8	-24620 #	200#	15874	7	9115	7	12085	8
	Dy	66	9685	10	5110	5	-30670#	300#	11938	13	6297	9	11694	4
	Но	67	8371	19	1539	17	-37310#	300#	16624	17	7114	17	14443	16
	Er	68	12160	30	3474	21	*		10870	90	2790	18	12011	19
	Tm	69	10680#	280#	40#	200#	*		15700#	200#	4980#	200#	14910#	200#
	Yb	70	13510#	420#	2050#	360#	*		10840#	300#	2200#	300#	13620#	300#
	Lu	71	*		-1269.6	2.3	*		16400#	500#	*		16980#	300#
151	Cs	55	4130#	640#	*		32550#	500#	*		9240#	580#	*	
	Ba	56	3110#	500#	14060#	570#	26000#	400#	9020#	570#	6840#	400#	-690#	500#
	La	57	5250	620	10700#	530#	20080	440	10520	620	9150	440	-750	440
	Ce	58	4450	21	12380	440	13351	18	9710	200	6348	26	2020	70
	Pr	59	6550	15	9222	17	7873	12	10601	16	8483	16	1576	23
	Nd	60	5334.55	0.10	9931	9	3245.7	2.8	10807	10	6456	15	5102	11
	Pm	61	7860	20	6995	4	-1763	6	11700	5	8886	5	4796	16
	Sm	62	5596.46	0.11	8268	20	-5824	3	12198.8	1.9	7153	6	8478.1	1.9
	Eu	63	7932	6	4890.7	0.5	-11030	8	13193.7	0.7	9547.5	1.0	7859	6
	Gd	64	6496	7	6685	7	-15922	17	12963	5	6975	10	10793.9	2.9
	Tb	65	8589	8	3149	7	-20851	20	14214	5	9510	4	10322	11
	Dy	66	7514	5	4936	8	-27210	300	13447	4	6649	13	13163.3	2.9
	Но	67	9748	16	1602	9	-33510#	300#	14784	12	9101	12	12561	15
	Er	68	8506	24	3609	22	*		14091	20	4590	90	15240	19
	Tm	69	12350#	200#	230	9	*		13680	30	5570	22	12860	90
	Yb	70	10980#	430#	2340#	360#	*		13050#	360#	2090	300	15580	300
	Lu	71	13540#	420#	-1241.0	1.8	*		13800#	420#	5090#	500#	14300#	300#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(o	:)	$Q(2\beta$	-)	$Q(arepsilon_{\Gamma}$))	$Q(oldsymbol{eta}^-$	n)
149	Cs	55	7470#	400#	*	100"	-4740#	640#	16970#	450#	*	520"	6270#	410#
	Ba	56	9000	440	25340#	480#	-4050	440	13550	440	-21810#	530#	1520	440
	La Ce	57 58	9680 10799	200 13	22880 20984	200 22	-2590 -1579	200 13	10820 7706	200 10	$-20600 \\ -16370$	200 60	2110 -2206	200 18
	Pr	59	11738	19	18939	15	-629	16	5025	10	-16570 -15620	22	-2200 -1703	10
	Nd	60	12371.4	1.7	16940	9	270	30	2760.3	1.9	-11266	11	-5581	6
	Pm	61	13164.6	2.1	15198	16	1137	7	377	4	-10818	15	-4799.3	2.0
	Sm	62	14012.0	0.9	13566.9	1.0	1871.3	1.0	-2009	3	-7016.7	1.9	-8908	10
	Eu	63	15039	4	11977	4	2401	5	-4952	5	-6864	7	-8243	4
	Gd	64	15913	3	10439	3	3099	3	-7431	10	-3080	3	-12661	13
	Tb	65	16889	9	8522	4	4077.9	2.2	-9842	12	-2478	11	-11700	9
	Dy	66	19643	13	6917	9	2805	22	-13954	29	1284	9	-17780	80
	Но	67	22032	13	5482	14	2320	110	-17760 #	200#	1602	15	-18239	16
	Er	68	23280	50	4124	29	2076	29	-20540#	300#	6829	29	-23048	30
	Tm	69	24050#	200#	2700#	200#	2810#	200#	*		6820#	210#	-21620 #	450#
	Yb	70	*		1170#	300#	3620#	360#	*		10990#	300#	*	
150	Cs	55	7400#	400#	*		*		17960#	590#	*		6880#	590#
	Ba	56	8450#	310#	25880#	420#	-4370 #	300#	14950#	300#	*		2250#	360#
	La	57	9560	440	23800	440	-3240	440	12170	440	-20170 #	590#	2470	440
	Ce	58	10591	16	21830	60	-2325	24	8833	12	-19020	440	-1879	15
	Pr	59	11908	18	20170	21	-1680	30	5297	22	-15370	200	-1996	9
	Nd	60	12414.4	1.9	17859	11	-469	16	3371.38	0.20	-14299	10	-5686.8	1.9
	Pm	61	12874	21	15640	25	660	40	1195	21	-9847	22	-4533	20
	Sm	62	13857.5	0.9	14221.1 12504	1.9 8	1449.8	1.0 7	-1287 -3687	6	-9964.6	1.9 6	$-8681 \\ -7737$	4 7
	Eu Gd	63 64	14636 15637	12 6	11006	6	2237 2807	6	-5087 -6454	9 7	-6017 -5917	6	-7737 -12347	7
	Tb	65	16711	14	9384	12	3587	5	-9160	16	-3917 -1954	8	-12347 -11481	12
	Dy	66	17593	10	7618	4	4351.3	1.5	-11478	18	-1472	5	-15734	13
	Но	67	20100	90	5987	19	3390	50	-15460#	200#	2254	15	-16280	30
	Er	68	22495	20	4550	19	2299	18	-19190#	300#	2576	19	-22020#	200#
	Tm	69	23870#	200#	3080#	210#	2320#	200#	-21850#	360#	7870#	200#	-21360#	360#
	Yb	70	24450#	500#	1740#	300#	3260#	300#	*		7810#	300#	*	
	Lu	71	*		450#	300#	3990#	360#	*		11950#	360#	*	
151	Cs	55	7120#	640#	*		*		19080#	660#	*		7600#	580#
	Ba	56	7960#	590#	*		-5010#	450#	16290#	400#	*		3120#	590#
	La	57	9230	480	24640#	590#	-3820	440	13470	440	-22430#	590#	3470	440
	Ce	58	10698	20	22680	440	-3386	27	9718	18	-18610#	300#	-996	20
	Pr	59	11883	15	21140	200	-2526	16	6606	13	-17940	440	-1171	12
	Nd	60	12710.2	1.9	18851	10	-1354	9	3633.29	0.24	-13385	12	-5417	20
	Pm	61	13464	5	16925	11	-367	16	1267	5	-12375	10	-4406	4 6
	Sm Eu	62	13583.2 14354	0.4	14778.8 13166.5	1.9	1145.6 1964.5	1.0	-387.5 -3029	2.8	-8185.50 -8345	0.22 20	-7855 -6960	
	Gd	63 64	15204	4 4	11630.9	2.0 2.8	2652.7	1.1 2.9	-5029 -5436	4 4	-8343 -4426.6	2.8	-0900 -11154	6 8
	Tb	65	16277	5	9760	5	3496	4	-3430 -8001	9	-4420.0 -4120	7	-11134 -10385	6
	Dy	66	17199	10	8203	4	4179.6	2.6	-10486	17	-4120 -277	7	-10383 -14878	15
	Но	67	18119	15	6712	9	4695.0	1.8	-12850	21	194	11	-13863	19
	Er	68	20670	30	5148	19	3505	19	-16720	300	3754	17	-19850#	200#
	Tm	69	23030#	200#	3704	23	2559	20	-20660#	300#	3884	16	-20210#	300#
	Yb	70	24490#	430#	2380	300	2640	300	*		9000	300	-24970#	430#
	Lu	71	*		800#	360#	3440#	300#	*		9090#	360#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p))	$Q(4\beta$	-)	Q(d,	,α)	Q(p)	,α)	Q(n,	α)
152	Cs	55	2770#	710#	*		34830#	500#	*		*		*	
	Ba	56	4840#	570#	14770#	640#	28440#	400#	7170#	570#	6400#	570#	*	
	La	57	4050#	530#	11640#	500#	21960#	300#	11320#	420#	8690#	530#	-390#	500#
	Ce	58	5830#	200#	12960#	480#	15780#	200#	7860#	480#	6100#	280#	-210#	480#
	Pr	59	5050	22	9822	26	9130	19	11800	22	7776	21	2110	200
	Nd	60	7278	24	10659	27	4558	24	8862	26	5754	26	2167	27
	Pm	61	5939 8257.6	26	7600	26	-540	50	13136	26	7985	26	5432	28
	Sm	62	6306.72	0.6 0.10	8666 5600.9	5 0.5	-4645 -9283	5 13	9545 14873.7	20 0.6	6165.7 9111.5	2.0 0.7	5259.3 8822.4	1.9
	Eu	63		2.9			-9283 -14207		14873.7	6	6598		8075.2	2.0 0.7
	Gd Tb	64	8589.5 7160	40	7343.0 3820	0.7	-14207 -19000	9 70	15760	40	9270	4 40	11370	
		65 66	9437	5	5783	40 6	-19000 -23850	150	11699	9	6235	5	10656	40 5
	Dy Ho	67	8053	15	2141	13	-23830 -30180#	200#	16416	13	8955	15	13530	13
	Er	68	10305	19	4167	12	−30160π *	200π	12156	17	6010	12	12842	12
	Tm	69	9020	60	740	60	*		16820	60	6890	60	15570	60
	Yb	70	12800	340	2790	150	*		10930#	250#	2480#	250#	13120	150
	Lu	71	11390#	360#	-830#	360#	*		15930#	360#	4640#	360#	16110#	280#
153	Ba	56	2830#	570#	14830#	640#	30860#	400#	8470#	640#	6560#	570#	*	
	La	57	4840#	420#	11640#	500#	24590#	300#	9590#	500#	8710#	420#	-2240 #	500#
	Ce	58	4000#	280#	12910#	360#	17650#	200#	9110#	480#	6080#	480#	640#	360#
	Pr	59	5882	22	9880#	200#	11799	12	10367	21	8142	17	210	440
	Nd	60	5252	25	10861	19	5552.3	3.0	10160	12	5834	9	3163	12
	Pm	61	7465	27	7787	26	666	10	11006	9	7896	9	3299	13
	Sm	62	5868.40	0.13	8594	26	-3417	4	11537	5	5902	20	6766.5	0.7
	Eu	63	8550.28	0.12	5893.6	0.7	-8355	5	11919.9	0.6	8548.0	0.6	5876	20
	Gd	64	6246.95	0.13	7283.3	0.7	-12414	9	12481.1	0.7	6774	6	9815.0	0.6
	Tb	65	8670	40	3895	4	-17340	13	13586	5	9315	7	9125	7
	Dy	66	7096 9479	6	5710	40	-21940# 26640	200#	13191	6	6827	8	12267	7
	Но	67		13	2183	7	-26640	150	14451	6	9162	6	11740	9
	Er	68	8040	12	4153	15	-33170#	300#	13865	12	6341	17	14487	10 19
	Tm Yb	69 70	10320 9010#	60 250#	762 2780#	12 200#	*		15004 14280#	20 200#	8722 4150#	21 280#	13619 16270#	200#
	Lu	70 71	13020#	250# 250#	-609	10	*		13880	340	5130#	280# 340#	13760#	250#
	Hf	72	*	230#	1170#	360#	*		13520#	420#	2200#	420#	16990#	420#
154	Ba	56	4420#	640#	*		33010#	500#	6820#	710#	6270#	710#	*	
	La	57	3540#	420#	12350#	500#	26980#	300#	10890#	500#	8270#	500#	-1650 #	580#
	Ce	58	5380#	280#	13450#	360#	20240#	200#	7780#	360#	5960#	480#	-1630#	450#
	Pr	59	4610	110	10480#	230#	13630	110	11590#	230#	7980	110	850	450
	Nd	60	6570	50	11550	50	7880	50	8640	60	5820	50	1050	60
	Pm	61	5940	50	8470	50	1640	60	12350	50	7300	50	3910	50
	Sm	62	7966.8	0.8	9096	9	-2061	7	9510	26	5795	5	4134.2	1.1
	Eu	63	6442.22	0.24	6467.4	0.7	-7099	8	13735.3	0.7	7702.2	0.6	7294	5
	Gd	64	8894.72	0.17	7627.7	0.7	-11101	5	9893.1	0.7	5811.0	0.7	6516.7	0.7
	Tb	65	6910	50	4560	50	-15730	50	15260	50	8900	50	10140	50
	Dy	66	9322	8	6370	8	-20462	19	11030	40	6094	8	9441	8
	Но	67	7699	10	2785	9	-24920#	200#	16189	9	8977	9	12631	9
	Er	68	10208	10	4882	7	-29940#	300#	11711	13	5882	9	11794	6
	Tm	69	8525	19	1247	17	*		16784	17	8703	22	14842	17
	Yb	70	10800#	200#	3248	21	*		12500	60	5705	9	13981	24
	Lu	71	9410#	250#	-204 1500#	14	*		17270#	250#	6690#	360#	16700#	200#
	Hf	72	13440#	420#	1590#	340#	*		11460#	360#	2300#	420#	14520#	430#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2)	p)	$Q(\alpha$	2)	$Q(2\beta)$	_)	$Q(arepsilon_{arphi}$)	$Q(\beta^-$	n)
152	Cs	55	6900#	640#	*		*		20360#	580#	*		7940#	640#
. 52	Ba	56	7950#	500#	*		-5540#	500#	17270#	450#	*		3530#	590#
	La	57	9300#	530#	25700#	500#	-4800#	300#	14470#	300#	-22350#	580#	3860#	300#
	Ce	58	10280#	200#	23660#	360#	-3810#	210#	11170#	200#	-21330#	450#	-270#	200#
	Pr	59	11600	21	22210	440	-3474	27	7500	30	-17740	440	-886	19
	Nd	60	12612	24	19880	27	-2176	27	4613	24	-16210	30	-4835	25
	Pm	61	13800	30	17532	27	-1144	30	1634	26	-11764	28	-4749	26
	Sm	62	13854.1	0.6	15660.8	0.6	220.5	1.9	-55.69	0.18	-11108.6	0.7	-8181.1	0.
	Eu	63	14239	6	13869	20	1553	6	-2170	40	-6791	5	-6770.8	2.
	Gd	64	15086	6	12233.7	0.6	2204.4	1.0	-4589	5	-7419.6	0.6	-11155	4
	Tb	65	15750	40	10500	40	3160	40	-7110	40	-3350	40	-10040	40
	Dy	66	16951	6	8932	7	3727	4	-9617	10	-3218	5	-14566	9
	Но	67	17802	19	7077	15	4507.4	1.3	-11880	60	730	13	-13410	21
	Er	68	18812	19	5769	10	4934.3	1.6	-14230	150	963	9	-17799	21
	Tm	69	21370#	200#	4350	60	3850	100	-18300#	200#	4610	50	-18250	310
	Yb	70	23780#	340#	3020	150	2780	150	*	200	4710	150	-24230#	340
	Lu	71	24930#	360#	1510#	280#	2920#	200#	*		10060#	200#	*	
53	Ba	56	7670#	570#	*		*		18440#	450#	*		4750#	500
	La	57	8890#	530#	26410#	580#	-5230 #	500#	15510#	300#	-24420 #	580#	4850#	360
	Ce	58	9830#	200#	24550#	450#	-4210 #	480#	12420#	200#	-20490 #	450#	780#	200
	Pr	59	10931	17	22840	440	-3770	200	9079	15	-19570 #	300#	510	27
	Nd	60	12530	3	20683	18	-3085	11	5229	3	-15640#	200#	-4147	26
	Pm	61	13404	10	18446	15	-2033	13	2719	9	-14179	21	-3957	9
	Sm	62	14126.0	0.6	16194.6	0.7	-609.1	1.9	322.87	0.25	-9699	24	-7742.7	0
	Eu	63	14857.00	0.16	14559	5	272.1	2.0	-2054	4	-9402	26	-6731.6	0
	Gd	64	14836.4	2.9	12884.2	0.6	1828.3	0.7	-3740	4	-5408.92	0.22	-10240	40
	Tb	65	15832	6	11238	4	2703	5	-6301	6	-5714	4	-9267	6
	Dy	66	16533	5	9532	5	3559	4	-8674	10	-1725	4	-13609	13
	Но	67	17532	10	7967	6	4052	4	-11039	13	-1580	40	-12583	10
	Er	68	18345	19	6294	10	4802.4	1.4	-13260 #	200#	2360	10	-16820	50
	Tm	69	19343	23	4929	15	5248.3	1.5	-15600	150	2342	16	-15770	150
	Yb	70	21810#	360#	3520#	200#	4110#	200#	-19910#	360#	6000#	200#	-21860 #	280
	Lu	71	24410#	340#	2180	150	3090#	250#	*		6060	140	*	
	Hf	72	*		340#	430#	3470#	420#	*		11680#	340#	*	
54	Ba	56	7250#	640#	*		*		19400#	540#	*		5170#	580
	La	57	8380#	420#	27180#	580#	-5790#	500#	16580#	320#	*		5310#	360
	Ce	58	9380#	280#	25090#	450#	-4740#	360#	13610#	210#	-23040#	450#	1280#	200
	Pr	59	10490	110	23390#	320#	-4400	450	10410	100	-19330#	320#	1150	110
	Nd	60	11820	60	21420#	210#	-3400	50	6630	50	-18200#	210#	-3250	50
	Pm	61	13400	50	19330	50	-2640	50	3230	50	-14230	50	-4020	50
	Sm	62	13835.2	0.8	16884	24	-1200.3	1.1	1250.8	0.9	-12414	3	-7159.3	1
	Eu	63	14992.50	0.27	15062	26	-566	20	-1580	50	-8379	9	-6926.9	0
	Gd	64	15141.67	0.21	13521.29	0.27	920.3	0.7	-3312	7	-8435.2	0.3	-10464	4
	Tb	65	15580	60	11850	50	2210	50	-5520	50	-4080	50	-9080	50
	Dy	66	16419	9	10265	7	2945	5	-7789	9	-4800	7	-13453	9
	Но	67	17177	15	8500	40	4041	4	-10212	17	-615	9	-12242	12
	Er	68	18247	10	7065	6	4279.7	2.6	-12673	18	-751	6	-16703	13
	Tm	69	18850	60	5400	19	5093.8	2.6	-14710#	200#	3296	15	-15290#	200
	Yb	70	19800	150	4010	19	5474.3	1.7	-17260 #	300#	3248	20	-19630	150
	Lu	71	22440#	280#	2570#	200#	4350#	280#	*		6970#	200#	-20490 #	360
	Hf	72	*		980#	340#	3540#	420#	*		7250#	360#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
155	La	57	4470#	500#	12400#	640#	29010#	400#	9250#	570#	8640#	570#	-3350#	640#
	Ce	58	3630#	360#	13540#	420#	22410#	300#	8990#	420#	6370#	420#	-420#	500#
	Pr	59	5380	110	10490#	200#	16403	17	10210#	200#	8430#	200#	-480#	300#
	Nd	60	4530	50	11470	110	9786	9	9996	15	6338	21	2340#	200#
	Pm	61	6500	50	8400	50	4310	11	11101	5	8074	25	2465	19
	Sm	62	5806.96	0.27	8970	50	-1035	10	11168	9	5927	26	5605	24
	Eu	63	8151.3	0.4	6651.9	1.2	-5779	17	11452.4	0.8	7808.6	0.8	5082	26
	Gd	64	6435.24	0.18	7620.7	0.8	-9861	6	12008.1	0.7	5682.4	0.7	8339.1	0.3
	Tb	65	9170	50	4833	10	-14624	14	12343	10	8321	10	7285	10
	Dy	66	6833	12	6290	50	-18653	19	12869	10	6430	40	11198	10
	Но	67	9472	19	2935	19	-23494	26	13814	18	8942	18	10320	40
	Er	68	7675	8	4859	10	-28040#	300#	13514	8	6260	14	13555	7
	Tm	69	10270	17	1310	11	-32700 #	300#	14553	14	8739	13	12625	16
	Yb	70	8642	24	3364	22	*		14182	20	6080	60	15644	19
	Lu	71	10900#	200#	-98	8	*		15370#	200#	8590	150	14820	60
	Hf	72	9570#	420#	1740#	360#	*		14910#	330#	4120#	360#	17750#	330#
	Ta	73	*		-1453	15	*		14080#	420#	*		15140#	360#
156	La	57	3190#	570#	*		31110#	400#	10480#	640#	8280#	570#	*	
	Ce	58	5110#	420#	14180#	500#	24540#	300#	7420#	420#	6100#	420#	-2700 #	500#
	Pr	59	4220#	200#	11080#	360#	18520#	200#	11360#	280#	8210#	280#	140#	360#
	Nd	60	6260	200	12350	200	12060	200	8340	230	5960	200	80#	280#
	Pm	61	5295	6	9169	10	5927	5	12370	50	8031	4	3051	12
	Sm	62	7241	9	9709	10	1169	8	9860	50	6151	12	3616	9
	Eu	63	6336	3	7181	4	-4600	60	13083	4	7341	3	6212	10
	Gd	64	8536.35	0.07	8005.8	0.9	-8323	25	9914.0	0.8	5696.4	0.8	5671.2	0.4
	Tb	65	6912	10	5310	4	-13256	15	14326	4	7656	4	8923 7999.99	4 0.27
	Dy Ho	66 67	9445 7510	10 60	6568	10	-17263 -21780	9 80	10340 15630	50	5648 8530	4	11480	60
	Er	68	10074	25	3610 5460	60 30	-26390	150	11138	60 26	5664	60 25	10578	25
	Tm	69	8280	23 17	1914	16	-20390 -30970#	300#	16481	15	8498	17	13824	15
	Yb	70	10834	19	3929	14	-30970 #	300#	11872	17	5572	12	12849	12
	Lu	71	9230	60	490	60	*		16940	60	8370#	200#	15920	60
	Hf	72	11720#	330#	2560	150	*		12610#	250#	5420	9	15040#	250#
	Ta	73	10000#	420#	-1020	4	*		17520#	420#	6300#	420#	18160#	330#
157	Ce	58	3180#	500#	14170#	570#	26750#	400#	8710#	570#	6460#	500#	-1460#	640#
10,	Pr	59	5040#	360#	11010#	420#	20920#	300#	9950#	420#	8540#	360#	-1360#	420#
	Nd	60	4060	200	12180#	200#	14362	25	9660	30	6510	120	1400#	200#
	Pm	61	6205	8	9110	200	8466	7	10697	12	8390	50	1450	110
	Sm	62	5388	10	9803	6	2747	7	10973	6	6700	50	4790	50
	Eu	63	7448	5	7387	9	-2626	24	11443	4	7860	4	4700	50
	Gd	64	6359.88	0.15	8030	3	-7410	27	11705.4	0.9	5778.7	0.8	7278.1	0.9
	Tb	65	8744	4	5517.5	0.3	-12054	28	12017.3	0.3	7806.6	0.4	6621.1	0.8
	Dy	66	6967	5	6623	6	-16003	12	12536	11	5600	50	9928	5
	Ho	67	9430	60	3593	23	-20392	26	13034	25	8425	25	8970	50
	Er	68	7270	40	5220	70	-24510 #	200#	13340	30	6090	28	12627	28
	Tm	69	9950	30	1790	40	-29120	150	14211	29	8760	28	11576	29
	Yb	70	8227	14	3876	18	-33950 #	400#	13915	15	5869	18	14830	12
	Lu	71	10810	60	464	12	*		14773	21	8356	21	13633	19
	Hf	72	9160#	250#	2490#	200#	*		14350#	200#	5676	14	16680#	200#
	Ta	73	11800#	330#	-935	10	*		15290#	330#	7940#	340#	15770#	250#
	W	74			900#	500#			15170#	500#			18850#	500#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2)	p)	Q(o	2)	$Q(2\beta)$	_)	Q(arepsilon arphi)))	$Q(\beta^-$	n)
155	La	57	8010#	500#	*		-6130#	640#	17490#	400#	*		6220#	450#
	Ce	58	9010#	360#	25890#	500#	-5270 #	500#	14500#	300#	-22250 #	580#	2250#	320#
	Pr	59	9989	21	23930#	300#	-4530	440	11525	18	-21180#	300#	2340	60
	Nd	60	11096	10	21950#	200#	-3484	20	7907	9	-17350#	200#	-1840	50
	Pm	61	12435	10	19949	13	-2585	13	4878	5	-16120	110	-2556	5
	Sm	62	13773.8	0.9	17438	3	-1672.7	1.1	1879.1	0.9	-11650	50	-6524.0	1.1
	Eu Gd	63 64	14593.5 15329.96	0.5 0.25	15748 14088.1	9 0.4	-857 81.5	5 0.7	-568 -2914	10 10	-10600 -6903.7	50 0.9	-6183.5 -9980	0.9 50
	Tb	65	15529.90	11	12461	10	978	10	-2914 -5211	17	-6801	10	-9980 -8927	12
	Dy	66	16155	10	10851	10	2608	10	-6946	11	-2739	10	-12588	13
	Но	67	17170	18	9304	18	3159	18	-9414	20	-3170	50	-11506	18
	Er	68	17883	11	7644	7	4118	5	-11707	18	896	9	-15853	16
	Tm	69	18795	16	6192	11	4572	5	-14081	22	724	13	-14765	20
	Yb	70	19440#	200#	4612	19	5338.8	2.1	-16330#	300#	4813	17	-18860#	200#
	Lu	71	20310	150	3150	23	5802.8	2.6	-18620 #	300#	4593	16	-17950 #	300#
	Hf	72	23010#	420#	1540#	360#	4950#	420#	*		8470#	300#	*	
	Ta	73	*		130#	340#	3760#	420#	*		8500#	360#	*	
156	La	57	7660#	500#	*		-6550#	640#	18520#	450#	*		6660#	500#
	Ce	58	8740#	360#	26580#	580#	-5530#	500#	15650#	360#	*		2520#	300#
	Pr	59	9610#	230#	24620#	360#	-4700 #	360#	12600#	200#	-20930 #	450#	2650#	200#
	Nd	60	10790	210	22830#	280#	-3920 #	280#	8890	200	-19980 #	360#	-1610	200
	Pm	61	11790	50	20640	110	-2830	19	5919	5	-16037	18	-2044	4
	Sm	62	13048	9	18110	50	-1636	26	3174	8	-14366	13	-5614	8
	Eu	63	14487	3	16150	50	-1253	26	8	5	-10432	6	-6084	3
	Gd	64	14971.59	0.19	14657.7	0.9	-197.2 373	0.3	-2005.95	0.10	-9633.1	0.9	-9356	10
	Tb	65 66	16080 16278	50 7	12931 11400.95	4 0.22	1753.0	4 0.3	-4610 -6317	60 25	-5562 -5748.05	4 0.12	-9007 -12561	10 17
	Dy Ho	67	16980	60	9900	80	2810	70	-8640	60	-3748.03 -1520	60	-12301 -11340	60
	Er	68	17749	25	8396	26	3481	25	-3040 -10946	26	-1320 -2345	26	-11540 -15657	27
	Tm	69	18550	20	6773	16	4345	7	-13140	60	1916	23	-14403	22
	Yb	70	19476	20	5239	11	4810	4	-15450	150	1654	11	-18792	21
	Lu	71	20130#	200#	3850	60	5596	3	-17840#	300#	5640	60	-17600#	300#
	Hf	72	21290#	340#	2460	150	6029	4	*		5400	150	-21960 #	340#
	Ta	73	*		720#	360#	5140#	360#	*		9400#	300#	*	
157	Ce	58	8290#	500#	*		-5890#	570#	16530#	400#	*		3570#	450#
	Pr	59	9270#	300#	25190#	500#	-4910#	420#	13760#	300#	-22780 #	500#	3860#	360#
	Nd	60	10320	27	23260#	300#	-3980 #	200#	10216	25	-18930#	300#	-369	25
	Pm	61	11500	8	21460	19	-3153	14	7162	8	-18020#	200#	-1008	11
	Sm	62	12629	5	18972	10	-1772	5	4146	5	-13490	200	-4666 4005	6
	Eu	63	13783	4	17097	6	-1236	10	1305	4	-12584	6	-4995	4
	Gd	64	14896.23	0.16	15210.6	0.9	-688.7	0.4	-1399	5	-8752	8	-8804	4
	Tb Dv	65 66	15656	10	13523.3	0.9	178.9 1033	0.8	-3931 -6011	23	7970 4179	3	-8305.8 -12020	0.3
	Dy Ho	66 67	16412 16936	11 29	11933 10161	5 25	2056	5 24	-8011 -8120	27 40	-4179 -4031	5 24	-12020 -10690	60 30
	по Er	68	17347	29 27	8836	28	3304	27	-8120 -9992	29	-4031 -174	27	-10690 -14650	30
	Tm	69	18226	30	7250	30	3878	28	-9992 -12270	30	-174 -520	70	-14030 -13515	29
	Yb	70	19062	20	5791	12	4622	6	-14520#	200#	3501	27	-17790	60
	Lu	71	20038	23	4393	16	5107.9	2.9	-16850	150	3105	17	-16690	150
	Hf	72	20880#	360#	2980#	200#	5880	3	-19430#	450#	7070#	200#	-21110#	360#
		73	21810#	340#	1630	150	6355	6	*	•	6820	140		
	Ta	13	21010#	37011	1050	150	0333	U	*		0820	170	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	_)	Q(d)	,α)	Q(p)	,α)	Q(n,	α)
158	Ce	58	4800#	570#	*		28590#	400#	7100#	570#	6140#	570#	*	
	Pr	59	3860#	420#	11690#	500#	22930#	300#	11200#	420#	8310#	420#	−750#	500#
	Nd	60	5660#	200#	12800#	360#	16640#	200#	8220#	280#	6230#	200#	-630#	360#
	Pm	61	4863	15 7	9917	28	10381	14	12100	200	8059	16	1972	22
	Sm Eu	62 63	6644 5868	11	10242 7867	9 11	5157 -1068	5 29	9624 12816	6 13	6554 7800	7 10	2680 5331	10 11
	Gd	64	7937.39	0.06	8520	4	-5386	25	10104	3	5992.6	0.9	5147.7	0.9
	Tb	65	6778.6	1.0	5936.2	1.0	-3360 -10767	25	13775.1	1.0	7463.3	1.0	7993.8	1.3
	Dy	66	9054	5	6932.9	2.4	-14397	8	10394	4	5707	10	7308.9	2.4
	Но	67	7430	40	4052	27	-18980	30	15052	27	7832	29	10709	29
	Er	68	9960	40	5760	30	-23200	30	10890	70	5600	30	9498	27
	Tm	69	8070	40	2580	40	-27540#	200#	16220	40	8370	26	12980	30
	Yb	70	10660	13	4590	29	-32380#	300#	11535	16	5480	12	11845	10
	Lu	71	8843	19	1079	19	*		16764	18	8154	22	15060	18
	Hf	72	11270#	200#	2951	21	*		12310	60	5307	8	14047	24
	Ta	73	9650#	250#	-448	13	*		17360#	250#	7870#	360#	17030#	200#
	W	74	12230#	500#	1330#	340#	*		12940#	420#	5160	15	16180#	420#
159	Pr	59	4830#	500#	11720#	570#	24960#	400#	9550#	570#	8600#	500#	-2390#	570#
	Nd	60	3820#	360#	12770#	420#	18750#	300#	9440#	420#	6630#	360#	660#	420#
	Pm	61	5536	17	9790#	200#	12978	10	10618	27	8780	200	660#	200#
	Sm	62	5029	8	10408	15	6959	6	10800	9	6820	7	3910	200
	Eu	63	6859	11	8082	7	1286	5	11345	6	8181	10	3767	6
	Gd	64	5943.21	0.08	8595	10	-4000	4	11608	4	6385	3 0.8	6445	8
	Tb Dy	65 66	8133.0 6831.1	0.6 2.6	6131.8 6985.4	0.8 1.3	-8962 -13329	28 18	12001.9 12307.1	0.8 1.3	7866.6 5788	0.8 4	6197 9014.2	3 1.3
	Но	67	9213	2.0	4211	4	-13329 -17620	40	12806	6	8063.5	3.0	8408	5
	Er	68	7329	25	5662	27	-21708	17	12983	24	5780	60	11614	4
	Tm	69	9940	40	2560	40	-26130	30	13550	40	8510	40	10550	70
	Yb	70	7900	19	4420	30	-30540#	300#	13580	30	5860	23	14020	30
	Lu	71	10570	40	990	40	-34960#	310#	14420	40	8420	40	12770	40
	Hf	72	8822	24	2929	23	*		14299	21	5710	60	16060	19
	Ta	73	11340#	200#	-374	9	*		15180#	200#	8240	150	14910	60
	W	74	9730#	420#	1420#	360#	*		15010#	330#	5431	6	18170#	330#
	Re	75	*		-1600#	50#	*		15440#	500#	*		16760#	430#
160	Pr	59	3500#	570#	*		26960#	400#	10850#	570#	8270#	570#	*	
	Nd	60	5400#	420#	13330#	500#	20810#	300#	7910#	420#	6270#	420#	-1560#	500#
	Pm	61	4520#	200#	10480#	360#	14830#	200#	11760#	280#	8320#	200#	1190#	360#
	Sm	62	6098	8	10969	12	9438	6	9565	15	6926	9	1873	26
	Eu	63	5508	10	8562	11	2902	18	12481	11	8061	10	4463	12
	Gd	64	7451.6	0.7	9187	4	-1878	24	10024	10	6381	4	4382	5
	Tb	65	6375.21	0.13	6563.8	0.8	-7530 -11510	30	13564.1	0.8	7851.3	0.8	7269 6797.1	4 1.1
	Dy	66 67	8576.9 7125	1.4	7429.3	1.2	-16110	7 60	10508.7 14735	1.3	5954.8 7906	1.2		
	Ho Er	67 68	7125 9575	15 25	4505 6024	15 24	-10110 -20125	60 26	10830	15 40	5630	16 30	10027 9007	15 25
	Tm	69	7800	40	3030	30	-20123 -24480	60	15710	40	7980	40	12180	40
	Yb	70	10395	19	4881	29	-24480 -28840	150	11251	26	5411	29	10897	27
	Lu	71	8630	70	1720	60	-33530#	300#	16450	60	8020	60	14090	60
	Hf	72	11158	19	3520	40	*		11984	18	5366	12	13129	14
	Ta	73	9460	60	260	60	*		16990	60	7940#	200#	16260	60
	W	74	12100#	330#	2180	150	*		12550#	250#	5131	9	15220#	250#
	Re	75	10070#	430#	-1267	7	*		17610#	420#	7600#	500#	18500#	330#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(o	:)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$)	$Q(\beta^-$	n)
158	Ce	58	7980#	500#	*	500"	-6270# 5220#	640#	17400#	450#	*		3810#	500#
	Pr	59 60	8910# 9720#	360#	25860# 23810#	500# 360#	-5230# -4260#	420# 280#	14760# 11200#	300# 200#	* -21410#	450#	4060# 170#	300# 200#
	Nd Pm	61	11068	280# 14	23810#	200#	-4260# -3410	280# 110	8166	200# 17	-21410# -17840#	300#	-483	200# 14
	Sm	62	12032	10	19350	200	-1850	50	5439	5	-16078	25	-3863	6
	Eu	63	13315	11	17669	11	-1170	50	2215	10	-12247	12	-4503	10
	Gd	64	14297.27	0.16	15907	8	-659.3	0.9	-282.2	2.4	-11301	5	-7997.4	0.3
	Tb	65	15523	4	13966	4	-157.5	1.2	-3283	27	-7301	4	-8117	5
	Dy	66	16021.0	2.4	12450.4	2.4	873.7	2.4	-5104	25	-6872.8	2.4	-11646	24
	Но	67	16850	70	10675	27	1540	50	-7480	40	-2713	27	-10850	40
	Er	68	17230	40	9353	25	2665	26	-9294	26	-3168	26	-14670	40
	Tm	69	18011	29	7800	70	3511	27	-11491	29	840	30	-13353	27
	Yb	70	18887	12	6376	26	4170	7	-13908	19	114	28	-17641	14
	Lu	71	19660	60	4956	21	4790	5	-16050#	200#	4210	30	-16380#	200#
	Hf	72 73	20430 21450#	150 360#	3415 2050#	20	5404.8	2.7 4	-18470#	300#	4031 7990#	21 200#	$-20580 \\ -19770 \#$	150 450#
	Ta W	74	21430# *	300#	390#	200# 340#	6124 6613	3	*		7980#	360#	-19770# *	430#
159	Pr	59	8690#	500#	*		-5580#	570#	15470#	400#	*		4900#	450#
	Nd	60	9490#	300#	24460#	500#	-4450#	420#	12400#	300#	-20440 #	500#	1210#	300#
	Pm	61	10400	12	22590#	300#	-3564	20	9489	11	-19510#	300#	625	11
	Sm	62	11673	7	20324	26	-2349	11	6354	6	-15440 #	200#	-3024	12
	Eu	63	12727	4	18324	8	-1528	6	3489	4	-14243	14	-3425	4
	Gd	64	13880.60	0.11	16462	5	-795.5	0.9	605.7	1.3	-10600	5	-7162.1	1.0
	Tb	65	14911.6	0.8	14651	4	-139.2	1.1	-2202.8	2.9	-9566	10	-7196.3	2.4
	Dy	66	15885	5	12921.6	1.3	477.8	1.3	-4606	3	-5766.6	1.3	-11051	27
	Но	67	16639	24	11144	3	1496	10	-6759	28	-5147.8	3.0	-10097	25
	Er	68	17290	27	9714	6	2170	10	-8722	18	-1443	4	-13929	25
	Tm Yb	69 70	18000 18559	40 21	8320 7000	40 30	3040 3946	30 19	-10860 -12986	50 24	-1670 2180	40 30	-12631 -16698	29 23
	Lu	71	19410	40	5580	50	4490	40	-12980 -15270	40	1710	50	-15680	40
	Hf	72	20090#	200#	4009	20	5225.1	2.7	-17560#	300#	5869	19	-19760#	200#
	Ta	73	20990	150	2577	23	5681	6	-19690#	310#	5484	17	-18880#	300#
	W	74	21970#	500#	970#	360#	6450	4	*		9520#	300#	*	
	Re	75	*		-270#	340#	6760#	60#	*		9130#	360#	*	
160	Pr	59	8330#	500#	*		-5900#	570#	16480#	450#	*		5220#	500#
	Nd	60	9220#	360#	25050#	500#	-4740#	420#	13100#	300#	*		1350#	300#
	Pm	61	10060#	200#	23250#	360#	-3860 #	280#	10480#	200#	-19200 #	450#	1130#	200#
	Sm	62	11127	8	20760#	200#	-2190	200	7707	6	-17720 #	300#	-2263	7
	Eu	63	12368	14	18969	16	-1742	10	4356	10	-14215	14	-2990	10
	Gd	64	13394.8	0.7	17269	5	-1006	9	1731.0	1.2	-13023	6	-6480.7	1.0
	Tb	65	14508.2	0.7	15159	10	-179	3	-1454	15	-9082	4	-6740.4	1.2
	Dy	66	15408.0	2.3	13561.1	1.1	437.3	1.1	-3609 6080	24	-8400.3	1.1	-10415	3
	Ho Er	67 68	16340 16900	30 30	11490 10235	15 24	1283 2040	15 24	-6080 -7902	40 25	-4139 -4186	15 24	-9893 -13570	15 40
	Tm	69	17740	40	8690	40	2750	70	-7902 -10030	70	-260	30	-13570 -12530	40
	Yb	70	18295	40 11	7437	26	3624	26	-10030 -12224	12	-200 -891	8	-12530 -16530	40
	Lu	71	19200	60	6140	60	4140	60	-12224 -14450	80	3010	60	-15330 -15490	60
	Hf	72	19979	20	4507	12	4901.9	2.6	-16610	150	2611	20	-19571	22
	Ta	73	20800#	200#	3190	60	5451	5	-19090#	300#	6600	70	-18600#	300#
	W	74	21840#	340#	1800	150	6066	5	*		6240	150	-22650#	340#
	Re	75	*		150#	360#	6698	4			10410#	300#		

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	,α)	Q(p)	,α)	Q(n, 0)	α)
161	Nd	60	3530#	500#	13360#	570#	22920#	400#	9210#	570#	6610#	500#	-280#	570#
	Pm	61	5310#	360#	10390#	420#	17230#	300#	10280#	420#	8680#	360#	-260#	420#
	Sm	62	4508	9	10960#	200#	11384	7	10593	12	7281	15	3030#	200#
	Eu	63	6382	14	8846	12	5406	11	11127	12	8323	11	2944	17
	Gd	64	5635.4	1.0	9314	10	-304	9	11248	4	6613	10	5391	5
	Tb	65	7696.6	0.6	6808.8	1.0	-5563	28	11810.7	1.0	8092.0	1.0	5440	10
	Dy	66	6454.39	0.08	7508.5	1.2	-10216	15	12187.4	1.2	6278.9	1.3	8280.1	1.1
	Но	67	8886	15	4813.5	2.2	-14635	28	12680.7	2.6	8074	3	7919.8	2.5
	Er	68	7209	26	6108	17	-18887	24	12839	9	5850	28	10852	9
	Tm	69	9670	40	3120	40	-23120	40	13373	28	8270	40	9940	40
	Yb	70	7748	17	4830	40	-27280#	200#	13440	30	5728	30	13111	30
	Lu	71	10360	60	1689	29	-31720	150	13990	30	8312	29	11790	40
	Hf	72	8447	24	3330	60	-36340#	400#	14100	40	5762	27	15342	24
	Ta	73	11030	60	129	23	*		14784	30	8190	30	14080	29
	W	74 75	9300#	250#	2020#	200#	*		14600#	200#	5475 7660#	12	17190#	200#
	Re Os	75 76	12170# *	330#	-1197 530#	5 500#	*		15170# 15480#	330# 500#	7660# *	340#	15970# 19300#	250# 500#
	Os	70	*		330#	300#	*		13460#	300#	*		19300#	300#
162	Nd	60	5030#	570#	*		24730#	400#	7680#	570#	6400#	570#	*	
	Pm	61	4210#	420#	11070#	500#	19310#	300#	11480#	420#	8300#	420#	370#	500#
	Sm	62	5930#	200#	11580#	360#	13650#	200#	9180#	280#	6890#	200#	920#	360#
	Eu	63	4980	40	9320	40	7340	40	12240	40	8370	40	3500	40
	Gd	64	6846	4	9778	11	2054	4	9911	10	6627	6	3574	7
	Tb	65	6290	40	7460	40	-4200	40	12980	40	7750	40	6010	40
	Dy	66	8196.99	0.06	8008.9	1.3	-8355	15	10365.6	1.2	6214.9	1.2	6026.4	1.1
	Но	67	6916	4	5275	3	-13210	80	14342	3	7990	3	9137	3
	Er Tm	68 69	9204 7650	9 40	6426.2 3565	2.2 27	-17166	9 60	10759 15300	15 40	5859 7947	3 26	8479.0	1.5
	Yb	70	10058	21	5220	30	-21700 -25827	23	11190	40	5610	30	11498 10381	26 16
	Lu	71	8340	80	2280	80	-23827 -30330#	210#	16040	80	7870	80	13390	80
	Hf	72	10926	24	3896	29	-34730#	300#	11810	60	5400	40	12316	20
	Ta	73	9070	60	750	60	*	30011	16870	50	7940	50	15570	60
	W	74	11520#	200#	2510	30	*		12540	60	5304	9	14500	24
	Re	75	9730#	250#	-765	11	*		17540#	250#	7660#	360#	17580#	200#
	Os	76	12530#	500#	890#	340#	*		13010#	420#	5170#	50#	16500#	420#
163	Pm	61	4950#	500#	10990#	570#	21350#	400#	10050#	570#	8750#	500#	-1080#	570#
	Sm	62	4260#	360#	11640#	420#	15660#	300#	10230#	420#	7150#	360#	2060#	420#
	Eu	63	5850	70	9240#	210#	9890	70	10900	70	8610	70	2160#	210#
	Gd	64	5105	9	9900	40	3854	10	11188	13	7031	13	4567	10
	Tb	65	6990	40	7605	6	-1867	7	11621	4	8210	4	4531	10
	Dy	66	6271.01	0.05	7990	40	-7082	15	11791.2	1.3	6319.1	1.2	7207.0	1.2
	Но	67	8408	3	5485.83	0.05	-11587	28	12388.27	0.08	8158.45	0.11	7104.3	1.2
	Er	68	6905	5	6415	6	-15904	25	12740	5	6079	16	10151	5
	Tm	69	9322	27	3683	5	-20190	40	13184	10	8200	25	9300	16
	Yb	70	7544	21	5110	30	-24390	50	13310	30	5870	40	12412	29
	Lu	71	10030	80	2250	30	-28790	30	13760	30	8235	29	11160	40
	Hf T-	72	8166	26	3720	80	-33070#	300#	14010	40	5870	60	14545	26
	Ta	73	10830	60	650	40	*		14490	40	8270 5780	40	13380	70 50
	W	74 75	8980	60 200#	2420 -708	70 6	*		14580	60 200#	5780 8190	80	16680 15470	50 60
	Re Os	75 76	11570# 9820#	200# 420#	-708 980#	360#	*		15260# 15360#	200# 330#	5410	150 11	18780#	60 330#
	US	70	704U#	420#	70U#	300#	*		13300#	330#	5410	11	10/00#	330 11

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha$:)	$Q(2\beta^{-1})$	-)	$Q(arepsilon_{arphi}$)	$Q(\beta^-$	n)
161	Nd Pm	60 61	8920# 9820#	500# 300#	* 23730#	500#	-5080# -4120#	570# 420#	14080# 11560#	400# 300#	* -21000#	500#	2340# 1930#	450# 300#
	Sm	62	10607	9	21440#	300#	-2635	26	8834	7	-16830 #	300#	-1263	12
	Eu	63	11891	11	19815	14	-1919	13	5670	10	-16080 #	200#	-1921	10
	Gd	64	13087.0	1.2	17876	6	-1253	5	2550.0	1.6	-12560	6	-5740.9	1.4
	Tb	65	14071.9	0.6	15996	4	-428	4	-264.3	2.5	-11270	10	-5860.2	1.3
	Dy	66	15031.3	1.4	14072.3	1.1	342.8	1.1	-2854	9	-7403.0	1.2	-9744	15
	Но	67	16010	4	12242.8	2.4	1141.2	2.4	-5299	28	-6650.0	2.4	-9204	24
	Er	68	16783	9	10612	9	1798	10	-7362	18	-2818	9	-12970	40
	Tm	69	17470	40	9147	28	2510	40	-9340	40	-2800	30	-11807	29
	Yb	70	18143	23	7856	16	3150	30	-11525	27	936	29	-15640	60
	Lu	71	19000	50	6570	40	3720	40	-13780	40	450	40	-14695	30
	Hf Ta	72 73	19605 20480	28 30	5054 3650	29 40	4682 5237	24 24	-15760# -17940	200# 150	4559 4200	24 60	-18560 -17520	60 150
	W	73 74	21400#	360#	2280#	200#	5923	4	-17940 -20580#	450#	8100#	200#	-17320 $-21890#$	360#
	Re	75	22240#	340#	980	150	6328	7	-20360# *	430#	7690	140	-21090# *	300#
	Os	76	*	54011	-740#	500#	7066	12	*		12060#	430#	*	
162	Nd	60	8560#	500#	*		-5320#	570#	14980#	450#	*		2610#	500#
	Pm	61	9510#	360#	24430#	500#	-4470#	420#	12330#	300#	*		2230#	300#
	Sm	62	10440#	200#	21970#	360#	-2900#	280#	9750#	200#	-19230#	450#	-810#	200#
	Eu	63	11370	40	20280#	200#	-2040	40	6970	50	-15760 #	300#	-1270	40
	Gd	64	12481	4	18624	7	-1455	6	3901	4	-14897	8	-4890	4
	Tb	65	13980	40	16770	40	-850	40	370	40	-11170	40	-5690	40
	Dy	66	14651.38	0.10	14817.7	1.2	83.2	1.1	-1846.96	0.30	-9964.6	1.6	-9055.5	2.2
	Ho Er	67 68	15801 16413	15 24	12783 11239.7	3 0.3	1004 1647.9	3 2.3	-4564 -6508	26	-5869 -5567.7	3 0.3	-8911 -12507	9 28
	Tm	69	17320	40	9670	30	2280	40	-8650	15 80	-3507.7 -1569	26	-12307 -11710	30
	Yb	70	17806	17	8340	29	3053	30	-3050 -10657	18	-1914	18	-11710 -15340	30
	Lu	71	18700	90	7110	80	3450	80	-13050	90	1780	80	-14590	80
	Hf	72	19373	13	5584	11	4416	5	-15170	20	1381	18	-18461	26
	Ta	73	20100	80	4090	80	5010	50	-17280#	200#	5490	60	-17300#	200#
	W	74	20820	150	2638	20	5678.3	2.4	-19560#	300#	5026	29	-21230	150
	Re	75	21910#	360#	1260#	200#	6240	5	*		8990#	200#	-20590#	450#
	Os	76	*		-310#	340#	6767	3	*		8830#	360#	*	
163	Pm	61	9160#	500#	*		-4590#	570#	13240#	410#	*		3210#	450#
	Sm	62	10190#	300#	22710#	500#	-3340#	420#	10590#	300#	-18460 #	500#	-90#	300#
	Eu	63	10840	70	20830#	310#	-2360	70	8110	70	-17400 #	310#	-280	70
	Gd	64	11951	9	19220	11	-1531	10	5067	8	-14070#	200#	-3710	40
	Tb	65	13277	4	17382	11	-978	6	1782	4	-13180	40	-4486	4
	Dy	66	14468.00	0.08	15453.3	1.6	-244.6	1.1	-1213	5	-9390 7000	4	-8411	3
	Но	67	15323.7	2.2	13494.7	1.3	729.1	1.2	-3650	5	-7990	40	-8115.1	0.3
	Er	68	16109	10	11690	5	1574	5	-5869	16 28	-4275 -3976	5	-11761 -10974	26
	Tm Yb	69 70	16973 17602	28 21	10109 8675	6 18	2176 2837	6 16	-7937 -10035	28 29	-3976 -254	6 15	-10974 -14540	16 80
	Lu	70	18370	40	7470	40	3350	40	-10033 -12260	50	-234 -600	40	-14340 -13694	29
	Lu Hf	72	19090	30	6002	29	4150	30	-12260 -14360	60	-000 3274	29	-13094 -17550	60
	Ta	73	19900	50	4550	50	4749	5	-14500 -16530	40	3010	80	-16610	40
	W	74	20500#	200#	3170	60	5520	50	-18720#	300#	6970	50	-20480#	200#
	Re	75	21300	150	1800	30	6012	8	*		6490	50	-19630#	300#
												-		

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p)	,α)	Q(n.	(α)
164	Pm	61	3690#	570#	*		23210#	410#	11390#	570#	8580#	570#	*	
	Sm	62	5450#	420#	12140#	500#	17870#	300#	8980#	420#	7000#	420#	130#	500#
	Eu	63	4970#	130#	9950#	320#	11600#	110#	11860#	230#	8160#	110#	2500#	320#
	Gd Tb	64 65	6530# 5550	100# 100	10580# 8050	120# 100	6170# -170	100# 100	9640# 12910	110# 100	6880# 8290	100# 100	2540# 5360	100# 100
	Dy	66	7658.11	0.07	8661	4	-4951	15	10420	40	6357.7	1.3	5184.3	1.6
	Ho	67	6674.5	1.4	5889.3	1.4	-10339	28	13910.8	1.4	7938.4	1.4	8126.5	1.8
	Er	68	8846	5	6853.52	0.13	-10337 -14124	16	10809	3	6118.4	2.2	7759.31	0.15
	Tm	69	7247	25	4025	25	-18620	40	15141	24	8162	26	10940	24
	Yb	70	9790	21	5578	16	-22782	18	11170	30	5750	30	9831	18
	Lu	71	7920	40	2630	30	-27170	60	15890	30	8060	30	12900	40
	Hf	72	10626	29	4320	30	-31400	150	11720	80	5610	30	11667	22
	Ta	73	8820	50	1310	40	-35940 #	320#	16597	29	7900	40	14930	40
	W	74	11400	50	2990	40	*		12260	50	5407	23	13725	24
	Re	75	9540	60	-150	80	*		17240	60	7950#	200#	16950	60
	Os	76	12300#	330#	1710	150	*		12790#	250#	5282	6	15780#	250#
	Ir	77	*		-1560#	100#	*		17810#	440#	7500#	510#	19140#	350#
165	Sm	62	3780#	500#	12230#	570#	19800#	400#	10150#	570#	7430#	500#	1390#	570#
	Eu	63	5410#	180#	9910#	330#	14180#	140#	10710#	330#	8670#	240#	1290#	330#
	Gd	64	4750#	160#	10360#	170#	8070#	120#	10740#	140#	7120#	130#	3720#	230#
	Tb	65	6560#	140#	8080#	150#	2360#	100#	11460#	100#	8580#	100#	3780#	110#
	Dy Ho	66 67	5715.96 7988.8	0.05 1.1	8820 6220.0	100 0.8	-3317 -8457	27 27	11694 12193.0	4 0.8	6930 8146.5	40 0.8	6314 6420	4 40
	Er	68	6650.0	0.6	6829.1	1.5	-8437 -12886	28	12193.0	0.6	6384	3	9306.3	0.6
	Tm	69	9097	24	4275.7	1.6	-17082	14	12949	5	8269.0	1.6	8758	4
	Yb	70	7350	30	5680	40	-21430	40	13144	27	6050	40	11686	27
	Lu	71	9870	40	2710	30	-25780	40	13570	30	8250	30	10680	40
	Hf	72	7890	30	4280	40	-29840#	200#	13870	40	6060	80	13840	30
	Ta	73	10640	30	1318	20	-34260#	160#	14127	28	8185	17	12630	80
	W	74	8697	27	2870	40	*		14380	50	5780	60	15954	27
	Re	75	11260	60	-287	23	*		14960	60	8203	29	14770	60
	Os	76	9440#	250#	1610#	200#	*		14920#	200#	5570	10	17850#	200#
	Ir	77	12320#	350#	-1540#	50#	*		15310#	340#	7710#	340#	16560#	250#
166	Sm	62	4990#	570#	*		21860#	400#	8850#	570#	7380#	570#	*	
	Eu	63	4560#	380#	10690#	540#	15860#	360#	11610#	470#	8380#	470#	1690#	540#
	Gd	64	6150#	230#	11100#	240#	10400#	200#	9560#	230#	6820#	210#	1840#	360#
	Tb	65	5390#	120#	8720#	140#	4000	70	12600#	120#	8290	70	4250	100
	Dy	66	7043.5	0.4	9310#	100#	-989	7	10200	100	6875	4	4375	8
	Но	67	6243.64	0.02	6747.7	0.8	-7050	30	13607.4	0.8	8173.9	0.8	7171	4
	Er	68	8475.7	1.3	7316.0	0.9	-11067	28	10766.3	1.5	6316.3	1.1	7101.5	1.1
	Tm Vb	69 70	7030	12	4656 5055	12 7	-15790 -19708	30	14765	12 25	8143 5007	12 9	10136 9218	12 8
	Yb Lu	70 71	9372 7650	27 40	5955 3010	40	-19708 -24130	12 80	11019 15710	25 30	5997 8140	30	12350	30
	Hf	72	10290	40	4710	40	-24130 -28430	30	11490	40	5800	40	11090	30
	Ta	73	8320	30	1750	40	-28430 -32740#	200#	16430	30	8030	40	14340	40
	W	74	11098	27	3329	17	-37160#	300#	12106	30	5510	40	13022	27
	Re	75	9310	80	320	80	*		17050	70	7880	90	16290	80
	Os	76	11710#	200#	2061	30	*		12750	60	5435	5	15120	60
	Ir	77	9830#	250#	-1152	8	*		17780#	250#	7700#	360#	18300#	200#
	Pt	78	*		430#	340#	*		13330#	440#	*		17110#	420#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2 ₁))	Q(o	2)	$Q(2\beta$	-)	$Q(arepsilon_{\Gamma}$))	$Q(\beta^-$	n)
164	Pm Sm	61 62	8640# 9720#	500# 360#	* 23130#	500#	-4780# -3390#	570# 420#	14510# 11670#	420# 320#	*		3780# 310#	500# 310#
	Eu	63	10820#	120#	21590#	320#	-2800#	230#	8700#	150#	-17420 #	420#	-140#	110#
	Gd	64	11640#	100#	19820#	220#	-1960#	100#	6190#	100#	-16340#	320#	-3250#	100#
	Tb	65	12540	110	17950	110	-1020	100	2900	100	-12880	120	-3770	100
	Dy	66	13929.12	0.08	16266	4	-451.1	1.2	-25.08	0.11	-11943	8	-7660.95	0.07
	Но	67	15083	3	13880	40	429.8	1.8	-3077	24	-7674	4	-7885	5
	Er	68	15751.0	0.3	12339.35	0.14	1304.92	0.17	-4925	15	-6850.69	0.13	-11285	5
	Tm Yb	69 70	16570 17334	40 21	10440 9261	25 15	2054 2622	29 29	-7260 -9199	40 22	-2815 -3139	24 16	-10676 -14300	29 30
	Lu	71	17950	80	7740	40	3230	40	-9199 -11360	40	-3139 797	28	-14300 -13450	40
	Hf	72	18792	18	6570	22	3919	17	-11500 -13583	19	192	22	-13430 -17360	40
	Ta	73	19650	60	5030	80	4560	60	-15810	60	4220	40	-16450	60
	W	74	20379	20	3645	13	5278.3	2.0	-17810	150	3739	27	-20305	21
	Re	75	21110#	200#	2270	80	5926	5	-20130#	320#	7770	70	-19350#	300#
	Os	76	22120#	340#	1000	150	6479	5	*		7200	160	*	
	Ir	77	*		-580#	370#	6970#	100#	*		11370#	320#	*	
165	Sm	62	9230#	500#	*		-3650#	570#	12650#	420#	*		1500#	420#
	Eu	63	10380#	150#	22050#	420#	-2910#	330#	9840	90	-19140#	420#	980#	170#
	Gd	64	11280#	120#	20310#	320#	-2210#	120#	7160#	120#	-15640#	320#	-2450#	160#
	Tb	65	12110#	100#	18660#	120#	-1200#	100#	4330#	100#	-14470#	150#	-2670#	100#
	Dy	66	13374.07 14663.3	0.09	16877	8	-531.7	1.6	909.0	0.6	-11130#	100#	-6702.4	1.4
	Ho	67 68		0.8 5	14881 12718.4	4	137.7 1109.3	1.5 0.6	-1969.4 -4226	1.8 27	-10110	100	-7027.4 -10689	0.8 24
	Er Tm	69	15497 16344	6	11129.2	0.6 1.6	1842.7	2.7	-4220 -6487	27	-5842.6 -5237.1	0.6 2.2	-10089 -9984	15
	Yb	70	17140	30	9706	27	2481	28	-8660	40	-3237.1 -1641	27	-13720	40
	Lu	71	17790	40	8291	27	3030	40	-10594	30	-1830	40	-13720 -12700	30
	Hf	72	18510	40	6910	30	3780	30	-12770	40	2090	30	-16420	40
	Ta	73	19460	40	5630	30	4290	30	-15188	27	1510	30	-15683	17
	W	74	20100	60	4180	40	5029	30	-17070 #	200#	5669	30	-19460	60
	Re	75	20800	30	2700	40	5694	6	-19070 #	160#	5330	40	-18310	150
	Os	76	21750#	360#	1470#	200#	6335	6	*		9150#	200#	-22520 #	370#
	Ir	77	*		170#	160#	6820#	50#	*		8590#	150#	*	
166	Sm	62	8770#	500#	*		-3600#	570#	13800#	450#	*		1920#	420#
	Eu	63	9970#	380#	22920#	540#	-3260#	470#	10680#	370#	*	450	1170#	380#
	Gd	64	10900#	220#	21010#	360#	-2430#	280#	8060#	200#	-18010#	450#	-2040#	220#
	Tb	65	11950	120	19080#	130#	-1610	80	5190	70	-14450#	150#	-2340	70
	Dy Ho	66 67	12759.5 14232.5	0.4 1.1	17390# 15570	100# 100	-729 180	4 40	2341.3 -1183	1.2 12	-13420# -9800#	120# 100#	-5757.1 -6621.0	0.9 1.0
	Er	68	15125.8	1.1	13536.0	1.1	830.5	1.1	-3330	7	-9800# -8602.4	1.1	-0021.0 -10067.7	2.1
	Tm	69	16127	27	11485	12	1728	12	-5870	30	-4278	12	-9664	29
	Yb	70	16721	17	10231	7	2314	7	-7737	29	-4363	7	-13225	27
	Lu	71	17520	40	8690	40	3030	40	-9920	40	-380	30	-12460	40
	Hf	72	18180	30	7420	30	3540	30	-11971	30	-850	40	-16080	30
	Ta	73	18960	40	6030	40	4310	80	-14200	80	3060	40	-15310	40
	W	74	19795	14	4647	18	4856	4	-16457	20	2459	30	-19300	25
	Re	75	20560	90	3190	80	5460	50	-18540 #	210#	6670	70	-18170 #	210#
	Os	76	21150	150	1774	20	6143	3	-20700 #	300#	6140	30	-21910#	160#
	Ir	77	22150#	370#	460#	200#	6722	6	*		10020#	200#	*	
	Pt	78	*		-1120#	340#	7286	15	*		9780#	360#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	n)	S(p)	$Q(4\beta)$	_)	Q(d,	,α)	Q(p)	,α)	Q(n,	,α)
			1070"		1055011	550.0	10050#	100"	10710"		00.60#	500 II	710#	550"
167	Eu	63	4870#	540#	10570#	570#	18270#	400#	10510#	570#	8960#	500#	510#	570#
	Gd	64	4360#	360#	10890#	470#	12480#	300#	10620#	330#	7430#	320#	2940#	420#
	Tb	65	6110#	210#	8690#	280#	6620#	200#	11240#	230#	8710#	220#	3100#	230#
	Dy	66	5420	60	9330	90	660	60	11350#	120#	7010	120	5490#	120#
	Но	67	7281	5	6985	5	-4780	30	12043	5	8551	5	5440	100
	Er	68	6436.46	0.18	7508.8	0.9	-9823	28	12318.6	0.9	6554.4	1.5	8323.2	1.1
	Tm	69	8727	12	4906.6	1.5	-14193	28	12688.8	1.5	8263.3	1.4	8084.3	1.9
	Yb	70	7066	8	5991	12	-18493	19	13050	4	6178	25	10999	4
	Lu	71	9550	40	3190	30	-22670#	50#	13510	40	8380	40	10050	40
	Hf	72	7680	40	4740	40	-26970	80	13690	40	6040	40	13200	30
	Ta	73	10320	40	1780	40	-31280	30	14000	40	8330	30	11940	40
	W	74	8281	21	3290	30	-35490#	300#	14461	23	6050	30	15367	24
	Re	75	11010#	80#	230#	40#	*		14740#	50#	8270#	40#	14100#	50#
	Os	76	9140	70	1900	100	*		14870	80	5830	90	17380	70
	Ir	77	11790#	200#	-1070	4	*		15430#	200#	8210	150	16050	60
	Pt	78	9950#	430#	550#	360#	*		15690#	340#	5600#	110#	19460#	340#
168	Eu	63	3800#	640#	*		20320#	500#	11700#	640#	8930#	640#	*	
	Gd	64	5620#	500#	11640#	570#	14630#	400#	9560#	540#	7230#	420#	1090#	570#
	Tb	65	4870#	360#	9200#	420#	8590#	300#	12520#	360#	8590#	320#	3650#	330#
	Dy	66	6700	150	9920#	240#	3020	140	10040	160	6870#	170#	3540#	190#
	Но	67	5850	30	7420	70	-2990	50	13230	30	8420	30	6150#	110#
	Er	68	7771.31	0.12	8000	5	-7631	28	10791.0	0.9	6771.9	0.9	6267.8	1.1
	Tm	69	6840.6	1.8	5310.7	1.9	-12919	28	14323.9	1.9	8072.7	1.9	9232.5	1.8
	Yb	70	9063	4	6327.2	1.5	-16689	13	11017	12	6211.8	2.1	8586.1	1.3
	Lu	71	7640	50	3770	40	-21270	50	15240	40	8090	50	11510	40
	Hf	72	9960	40	5150	40	-25365	30	11370	40	5950	40	10580	40
	Ta	73	8110	40	2220	40	-29730	60	16180	40	8110	40	13690	40
	W	74	10866	23	3830	30	-33890	150	11920	30	5819	18	12390	30
	Re	75	9040#	50#	990	40	*		16800	30	7930	40	15700	30
	Os	76	11560	70	2450#	40#	*		12610	70	5529	22	14512	27
	Ir	77	9670	60	-550	90	*		17480	60	7990#	200#	17640	60
	Pt	78	12470#	340#	1220	150	*		13060#	250#	5450#	50#	16430#	250#
169	Gd	64	3860#	640#	11700#	710#	16770#	500#	10570#	640#	7920#	620#	2220#	640#
	Tb	65	5680#	420#	9250#	500#	10950#	300#	11200#	420#	9070#	360#	2530#	470#
	Dy	66	5110	330	10160#	420#	4780	300	11040#	360#	7150	310	4580#	360#
	Но	67	6810	40	7530	140	-713	20	11840	60	8652	20	4730	70
	Er	68	6003.25	0.15	8150	30	-6206	28	12068	5	7012.3	0.9	7308.1	1.2
	Tm	69	8033.6	1.5	5573.0	1.1	-10985	28	12726.8	1.1	8514.9	1.1	7442.5	1.1
	Yb	70	6866.98	0.15	6353.6	1.9	-15460	15	12876.9	1.5	6375	12	10194.9	0.4
	Lu	71	9090	40	3792	3	-19675	12	13217	5	8375	8	9450	12
	Hf	72	7430	40	4940	50	-23990	40	13500	40	6170	40	12525	29
	Ta	73	9970	40	2220	40	-28200	40	13890	40	8430	40	11380	40
	W	74	8096	20	3810	30	-32410 #	200#	14140	30	6040	30	14590	30
	Re	75	10690	30	805	16	-36620#	300#	14400	22	8343	15	13330	30
	Os	76	8799	27	2220	40	*		14820#	50#	6030	80	16812	27
	Ir	77	11500	60	-612	22	*		15120	80	8202	29	15450	80
	Pt	78	9580#	250#	1140#	200#	*		15270#	200#	5706	9	18570#	200#
	Au	79	*		-1930#	330#	*		15540#	430#	7810#	420#	17210#	360#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	$Q(\alpha$!)	$Q(2\beta$	-)	$Q(arepsilon_{\Gamma}$))	$Q(eta^-$	n)
167	Eu	63	9430#	420#	*		-3190#	570#	11920#	450#	*		2450#	450#
	Gd	64	10500#	320#	21580#	500#	-2520 #	420#	9120#	300#	-17370 #	500#	-1000#	310#
	Tb	65	11500#	220#	19780#	240#	-1870 #	210#	6350#	200#	-16010 #	410#	-1410 #	200#
	Dy	66	12460	60	18060#	140#	-1040	60	3360	60	-12690 #	210#	-4930	60
	Но	67	13524	5	16290#	100#	-109	7	263	5	-11680	70	-5426	5
	Er	68	14912.2	1.3	14256.5	1.1	665.1	1.1	-2701	4	-7995.4	1.2	-9474	12
	Tm	69	15756.7	2.0	12222.6	1.5	1409.8	1.4	-5040	30	-6761.3	1.5	-9019	7
	Yb	70	16438	27	10647	4	2152	6	-7123	28	-2954	4	-12640	30
	Lu	71	17200	40	9150	30	2800	30	-9150	40	-2900	30	-11710	40
	Hf	72	17970	40	7750	40	3410	30	-11370	30	839	29	-15440	40
	Ta	73	18650	30	6490	40	4020	40	-13520#	50#	380	40	-14534	30
	W	74	19380	30	5040	30	4741	28	-15600	70	4470	30	-18280	70
	Re	75	20310#	50#	3560#	40#	5279#	14#	-17760#	40#	3980#	50#	-17470#	40#
	Os	76	20850#	210#	2220	80	5980	50	-19890 #	310#	8100	70	-21220#	210#
	Ir	77	21620#	160#	991	30	6504.9	2.6	*		7530	70	-20410 #	300#
	Pt	78	*		-610#	360#	7160	50	*		11530#	300#	*	
168	Eu	63	8680#	620#	*		-3300 #	640#	12980#	580#	*		3000#	580#
	Gd	64	9980#	450#	22210#	570#	-2690 #	500#	10200#	420#	*		-510#	450#
	Tb	65	10980#	310#	20090#	470#	-1770 #	320#	7340#	300#	-16000#	500#	-860#	300#
	Dy	66	12120	140	18610#	240#	-1210 #	170#	4430	140	-15040#	330#	-4350	140
	Но	67	13130	30	16750	80	-410	100	1250	30	-11420 #	200#	-4840	30
	Er	68	14207.76	0.21	14984.3	1.2	551.9	1.1	-1409.27	0.25	-10350	60	-8518.8	1.5
	Tm	69	15567	12 7	12819.5	1.8	1243.7	2.2	-4250	40	-6321	6	-8794	4
	Yb	70	16129	7	11233.8	0.3	1936.1	1.2	-6221	28	-5579.69	0.28	-12150	30
	Lu	71	17190	50	9760	40	2410	50	-8670	50	-1810	40	-11670	50
	Hf	72	17640	40	8343	29	3230	30	-10470	30	-2059	28	-15080	40
	Ta	73	18440	40	6950	40	3820	40	-12600	40	1820	40	-14370	30
	W	74	19148	16	5610	30	4500	11	-14898	17	1290	30	-18130#	40#
	Re	75	20040	80	4280	40	5063	13	-17130	60	5270	40	-17360	80
	Os	76	20706	21	2685	14	5815.6	2.7	-18990	150	4814	21	-20994	21
	Ir	77	21460#	200#	1350	90	6381	9	*		8880#	70#	-20130 #	310#
	Pt	78	22420#	340#	150	150	6990	3	*		8210	170	*	
169	Gd	64	9480#	590#	*		-2770 #	640#	11440#	590#	*		500#	590#
	Tb	65	10540#	360#	20900#	500#	-2030#	330#	8470#	300#	-17880 #	580#	160#	330#
	Dy	66	11810	310	19360#	420#	-1570#	320#	5330	300	-14520 #	500#	-3610	300
	Но	67	12659	21	17450#	200#	-660#	100#	2478	20	-13360 #	300#	-3877	20
	Er	68	13774.56	0.19	15570	60	264.6	1.1	-545.5	0.3	-9650	140	-7681.5	1.9
	Tm	69	14874.2	1.0	13573	5	1198.9	1.1	-3191	3	-8500	30	-7764.6	1.1
	Yb	70	15930	4	11664.3	0.3	1719.1	1.3	-5661	28	-4675.36	0.29	-11380	40
	Lu	71	16730	30	10119	3	2420	4	-7794	28	-4061	4	-10795	28
	Hf	72	17390	40	8704	28	3150	40	-9800	30	-424 	28	-14390	40
	Ta	73	18080	40	7370	40	3730	40	-11880	30	-510	50	-13470	30
	W	74	18962	24	6030	30	4290	30	-14195	30	3150	30	-17190	30
	Re	75	19720#	40#	4640	30	5014	14	-16315	26	2700	30	-16485	15
	Os	76	20360	80	3200	30	5713	3	-18210#	200#	6881	28	-20130	60
	Ir Dt	77	21164	30	1840#	50# 210#	6141	4	-20310#	300#	6410	40	-19160	150
	Pt	78 70	22040#	360#	590#	210#	6858	5 240#	*		10190#	200#	*	
	Au	79	*		-710#	300#	7380#	340#	*		9590#	300#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(r	1)	S(p)	$Q(4\beta)$	-)	Q(d,	(α)	Q(p)	,α)	Q(n,	,α)
170	Gd	64	5300#	780#	*		18730#	600#	9070#	780#	7500#	720#	*	
170	Tb	65	4470#	500#	9860#	640#	13070#	400#	12350#	570#	8950#	500#	2930#	570#
	Dy	66	6140#	360#	10620#	360#	7100#	200#	9770#	360#	7130#	280#	2800#	360#
	Но	67	5510	50	7930	300	1070	50	13030	150	8560	80	5340#	200#
	Er	68	7256.9	1.5	8600	20	-3855	28	10660	30	7036	5	5470	60
	Tm	69	6591.96	0.17	6161.7	1.1	-9658	28	13906.1	1.1	8359.4	1.1	8131	5
	Yb	70	8457.7	1.2	6777.7	0.8	-13473	13	11259.8	1.7	6643.8	1.3	8173.7	1.2
	Lu	71	7293	17	4218	17	-18393	29	14986	17	8148	17	10884	17
	Hf	72	9610	40	5458	28	-22328	30	11520	50	6110	40	9983	28
	Ta	73	7920	40	2710	40	-26780#	90#	15930	40	8190	40	13010	40
	W	74	10444	20	4290	30	-30992	23	11810	30	5920	30	11820	30
	Re	75	8575	26	1284	28	-35160#	200#	16691	27	8049	29	15080	40
	Os	76	11275	27	2806	15	*		12580	30	5770#	40#	13818	21
	Ir	77	9340#	90#	-70#	90#	*		17350#	90#	8010#	120#	17120#	100#
	Pt	78	11860#	200#	1494	30	*		13080	60	5637	4	15850	70
	Au	79	10040#	360#	-1472	12	*		17970#	250#	7730#	360#	18970#	200#
171	Tb	65	5380#	640#	9940#	780#	15180#	500#	10830#	710#	9200#	640#	1360#	710#
	Dy	66	4600#	360#	10750#	500#	9120#	300#	10850#	420#	7400#	420#	3820#	500#
	Но	67	6350	600	8150#	630#	3310	600	11790	670	8900	620	3850#	670#
	Er	68	5681.6	0.4	8770	50	-2288	29	11789	20	7210	30	6490	140
	Tm	69	7485.8	1.2	6390.6	1.2	-7490	28	12423.6	1.5	8644.9	1.5	6500	30
	Yb	70	6614.21	0.01	6799.9	0.8	-12221	28	12679.2	0.8	6870.2	1.7	9330.8	1.2
	Lu	71	8593	17	4353.4	1.9	-16578	28	13260.0	2.2	8617.6	2.2	9130.9	2.5
	Hf	72	7250	40	5410	30	-21130	30	13364	29	6500	50	11797	29
	Ta	73	9650	40	2760	40	-25310	50	13710	40	8500	40	10990	50
	W	74	7870	30	4240	40	-29620	80	13920	40	6170	40	13920	40
	Re	75	10410	40	1250	30	-33690	30	14380	30	8510	30	12790	40
	Os	76	8447	20	2678	29	-37780#	300#	14818	21	6360	40	16238	22
	Ir	77	11120#	100#	-230	40	*		15020	50	8450	40	15030	50
	Pt	78	9240	80	1400#	120#	*		15330	80	6060	90	18170	70
	Au	79	11880#	200#	-1448	10	*		15660#	200#	8310	150	16750	60
	Hg	80	*		60#	360#	*		15980#	430#	*		20130#	340#
172	Tb	65	3890#	710#	*		17520#	500#	12240#	780#	9170#	710#	*	
	Dy	66	5890#	420#	11270#	590#	11250#	300#	9430#	500#	7180#	420#	1790#	590#
	Но	67	5040#	630#	8580#	360#	5250#	200#	12890#	280#	8980#	360#	4490#	360#
	Er	68	6836	4	9250	600	-81	25	10470	50	7178	20	4760	300
	Tm	69	6235	5	6944	5	-6044	28	13445	5	8413	6	7069	21
	Yb	70	8019.95	0.02	7334.1	1.0	-10158	28	11251.2	0.8	6883.8	0.8	7314.1	1.2
	Lu	71	6978.9	2.6	4718.1	2.3	-15200	40	14738.7	2.3	8505.6	2.6	10185.6	2.5
	Hf	72	9040	40	5863	24	-19158	28	11615	30	6546	25	9622	24
	Ta	73	7680	40	3190	40	-23950	40	15630	40	8250	40	12401	28
	W	74	10080	40	4670	40	-27990	30	11750	40	6060	40	11270	40
	Re	75	8360	50	1740	50	-32220	70	16460	40	8240	40	14400	50
	Os	76	11013	22	3280	30	-36190	150	12380	26	6029	15	13320	20
	Ir	77	9040	50	370	40	*		17260	30	8210	40	16680	30
	Pt	78	11710	70	1980	40	*		12960#	90#	5851	22	15262	27
	Au	79	9830	60	-860	90	*		17690	60	8060#	200#	18420	60
	Hg	80	12610#	340#	790	150	*		13400#	250#	5590#	330#	17100#	250#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2p))	$Q(\alpha$:)	$Q(2\beta)$	-)	Q(arepsilon p)	$Q(\beta^-$	n)
170	Gd Tb	64 65	9160# 10140#	720# 500#	* 21560#	640#	-3080# -1940#	720# 540#	12280# 9520#	630# 400#	*	54011	880# 800#	670# 500#
	Dy Ho	66 67	11250# 12320	240# 60	19880# 18090#	450# 300#	-1560# -780	280# 90	6450# 3560	200# 50	-16800# -13200#	540# 300#	-2940# -3390	200#
	Er	68	13260.1	1.5	16130	300# 140	51.2	1.7	655.2	1.5	-13200# -11800	300#	-5390 -6904.8	50 1.8
	Tm	69	14625.6	1.5	14310	30	850.6	1.1	-2490	17	-8288	20	-7489.6	1.1
	Yb	70	15324.7	1.2	12350.7	1.2	1737.2	1.2	-4510	28	-7129.8	1.2	-10751	3
	Lu	71	16380	40	10571	17	2157	20	-7170	30	-3320	17	-10660	30
	Hf	72	17040	40	9250	28	2917	29	-8960	30	-3165	28	-14030	40
	Ta	73	17890	40	7650	50	3460	40	-11220	40	658	28	-13290	30
	W	74	18540	19	6510	30	4140	30	-13365	16	140	30	-16953	17
	Re	75	19260	40	5100	40	4760	40	-15550 #	90#	4090	40	-16260	30
	Os	76	20074	14	3611	16	5536.9	2.7	-17627	21	3703	18	-19904	25
	Ir	77	20840#	100#	2140#	90#	6110#	50#	-19610#	220#	7760#	90#	-18920 #	220#
	Pt	78	21430	150	882	21	6707	3	*		7130	30	-22580 #	300#
	Au	79	*		-340#	200#	7177	15	*		11050#	200#	*	
171	Tb	65	9850#	590#	*		-2450#	640#	10490#	780#	*		1560#	540#
	Dy	66	10730#	420#	20610#	590#	-1800#	420#	7530#	300#	-16100#	670#	-2020 #	300#
	Но	67	11860	600	18770#	670#	-1020 #	630#	4690	600	-15080#	720#	-2480	600
	Er	68	12938.5	1.5	16700	300	-210	60	1587.9	1.6	-11350#	200#	-5994.4	1.8
	Tm	69	14077.7	1.2	14991	20	645	5	-1381.9	2.1	-10260	50	-6517.7	1.0
	Yb	70	15071.9	1.2	12961.6	1.2	1559.5	1.2	-3875	29	-6487.1	1.5	-10072	17
	Lu	71	15886	4	11131.1	2.0	2290.3	2.3	-6108	28	-5321.5	2.0	-9646	28
	Hf T-	72	16860	40	9632	29	2734	29	-8350	40	-1956	29	-13360	40
	Ta	73	17570	40	8214	28	3360	40	-10470	40	-1700	30	-12500	30
	W Re	74 75	18310 18980	30 30	6950 5540	40 40	3960 4680	40 40	$-12780 \\ -14840$	30 50	1880 1600	40 40	-16240 -15395	40 30
	Os	76	19720	30	3962	24	5371	40	-14840 -16830	70	5700	22	-13393 -19010#	90#
	Ir	77	20460	40	2580	40	5994#	13#	-18850	40	5210	40	-18180	40
	Pt	78	21100#	210#	1320	80	6607	3	-20950#	310#	9170	70	-21790#	210#
	Au	79	21920#	300#	50	30	7085	11	-20)30# *	310#	8510#	90#	*	210#
	Hg	80	*	20011	-1420#	360#	7668	15	*		12490#	300#	*	
172	Tb	65	9270#	640#	*		-2540#	710#	11630#	540#	*		2270#	590#
	Dy	66	10490#	360#	21210#	670#	-2070 #	500#	8470#	300#	*		-1560#	670#
	Но	67	11390#	200#	19340#	450#	-1190#	360#	5890#	200#	-14740 #	540#	-1840 #	200#
	Er	68	12518	4	17400#	200#	-350	140	2772	4	-13580 #	300#	-5345	4
	Tm	69	13721	6	15710	50	260	30	-638	6	-10140	600	-6139	6
	Yb	70	14634.16	0.02	13724.7	1.5	1310.8	1.2	-2853	24	-8825.5	1.6	-9498.4	1.9
	Lu	71	15572	17	11518.1	2.5	2152.0	2.9	-5406	28	-4814.7	2.5	-9376	29
	Hf T-	72	16290	40	10216	24	2755	24	-7310	40	-4384 701	24	-12750	40
	Ta	73	17330	40	8600	30	3310	50	-9790	50	-791 -950	28	-12320	40
	W Re	74 75	17950 18770	30 50	7420 5980	40 50	3840 4430	40 50	-11850 -14160	30 50	-950 2890	40 50	-15920 -15310	40 40
	Os	76	18770	30 16	4531	30 18	5224	50 7	-14160 -16137	30 16	2890 2550	30	-15310 -18900	40
	Us Ir	70 77	20160#	90#	3040	40	5224 5991	10	-18157 -18060	60	6580	40	-18900 -17980	80
	Pt	78	20100#	21	1759	14	6463	4	-20050	150	5906	21	-21616	23
					540#	110#		10		150		70		
	Au	79	21710#	200#	240#	110#	6923	10	*		9810	70	-20870 #	310#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	(α)	Q(p)	,α)	Q(n,	,α)
173	Dy	66	4000#	500#	11380#	640#	13610#	400#	10800#	640#	7650#	570#	3090#	720#
	Ho	67	5940#	360#	8630#	420#	7530#	300#	11550#	420#	9180#	360#	3020#	500#
	Er	68	5240#	200#	9460#	280#	1760#	200#	11580#	630#	7450#	200#	5660#	280#
	Tm	69	6953	7	7061	6	-3860	28	12174	5	8717	5	5630	50
	Yb	70	6367.10	0.02	7466	6	-8824	28	12369.9	1.0	7108.7	0.8	8203.9	1.5
	Lu	71	8216.3	2.2	4914.4	1.6	-13327	28	13136.7	1.6	8747.1	1.6	8561.3	1.8
	Hf	72	7080	40	5965	28	-17970	30	13127	28	6760	30	10999	28
	Ta	73	9140	40	3280	40	-22130	30	13750	40	8720	40	10560	30
	W	74	7700	40	4690	40	-26780	60	13700	40	6270	40	13170	40
	Re	75 76	10090	50	1750	40	-30720	40	14240	40	8600	30	12230	40
	Os Ir	76 77	8266 10960	20 30	3190 314	40	-34730#	200#	14520 14744	30 21	6339 8522	28 15	15499 14291	20 26
	Pt	78	8910	60	1850	15 60	*		15180	70	6280#	110#	17630	60
	Au	79	11590	60	-986	21	*		15350	80	8331	29	16170#	90#
	Hg	80	9720#	250#	680#	200#	*		15560#	200#	5906	13	19240#	200#
	ng	80			000#	200#			13300π				17240#	200#
174	Dy	66	5500#	640#	*		15570#	500#	9190#	710#	7530#	710#	*	
	Но	67	4410#	420#	9040#	500#	9880#	300#	13030#	420#	9360#	420#	3990#	590#
	Er	68	6370#	360#	9890#	420#	3900#	300#	10250#	360#	7430#	670#	3890#	420#
	Tm	69	5680	40	7500#	200#	-2120	50	13330	40	8720	40	6300	600
	Yb	70	7464.60	0.01	7977	4	-6717	28	11141	6	7129.8	1.0	6420.8	1.6
	Lu	71	6760.6	1.4	5307.9	1.6	-11897	28	14396.1	1.6	8600.7	1.6	9286.5	1.8
	Hf	72	8504 7420	28 40	6252.5 3620	2.2 40	-15849 -20880	10 40	11602.3 15370	2.8 40	6848.0 8550	2.6 40	9108.7 11734	2.3 28
	Ta W	73 74	9570	40	5120	40	-20880 -24909	30	11810	40	6360	40	10850	28 40
	Re	7 4 75	8190	40	2230	40	-24909 -29440#	90#	16130	40	8280	40	13690	40
	Os	76	10628	18	3731	30	-23440π -33354	22	12250	40	6119	30	12737	30
	Ir	77	8666	27	714	29	*	22	17091	27	8300	30	16030	40
	Pt	78	11450	60	2339	15	*		12770	30	5960	40	14630	21
	Au	79	9470#	90#	-420#	110#	*		17580#	90#	8100#	120#	17820#	100#
	Hg	80	12000#	200#	1098	30	*		13390	60	5785	11	16480	80
175	Но	67	5580#	500#	9120#	640#	11960#	400#	11450#	570#	9670#	500#	2290#	640#
	Er	68	4770#	500#	10250#	500#	5830#	400#	11410#	500#	7700#	450#	5000#	500#
	Tm	69	6520	70	7650#	300#	100	60	12050#	200#	9040	50	4820#	200#
	Yb	70	5822.35	0.07	8120	40	-5063	28	12271	4	7543	6	7434	4
	Lu	71	7666.7	1.0	5510.0	1.2	-9877	28	13096.4	1.2	8953.9	1.2	7855	6
	Hf	72	6708.5	0.4	6200.4	2.2	-14376	12	13110.1	2.2	7118.4	2.8	10420.2	2.3
	Ta	73	8740	40	3853	28	-19010	30	13710	40	8860	40	9974	28
	W	74	7480	40	5180	40	-23920	30	13470	40	6560	40	12420	40
	Re	75	9690	40	2350	40	-27880	50	14150	40	8670	40	11690	40
	Os	76	8181	16	3720	30	-32130	70	14160	30	6300	40	14640	30
	Ir Pt	77 78	10602 8467	27 21	688 2140	16 30	*		14755 15266	19 21	8713 6530	18 40	13790 17177	40 22
	Au	79	11240#	100#	-630	40	*		15250	70	8570	40	15620	50
	Hg	80	9400	80	1030#	120#	*		15570	80	6210	90	18780	70
176	11.	(7	41.60#	C 10#			1.4000#	500#	12700#	710#	0510#	C 10#		
176	Ho Er	67 68	4160# 6050#	640# 570#	* 10720#	570#	14090# 7950#	500# 400#	12790# 9770#	710# 500#	9510# 7580#	640# 500#	* 2950#	570#
	Tm	69	5130	110	8010#	410#	1990	100	13290#	310#	9150#	220#	5630#	310#
	Yb	70	6867.08	0.07	8470	50	-2850	28	11080	40	7629	4	5810#	200#
	Lu	71	6287.97	0.07	5975.7	1.2	-8319	28	14273.1	1.2	9033.0	1.2	8520	5
	Hf	72	8166.0	1.8	6699.7	0.9	-12478	28	11704.7	1.3	7168.6	1.3	8621.3	1.5
	Ta	73	7030	40	4170	30	-17490	40	15190	30	8910	40	11160	30
	W	74	9080	40	5520	40	-21710	30	11810	40	6620	40	10420	40
	Re	75	7850	40	2720	40	-26540	40	15880	40	8530	40	12980	40
	Os	76	10060	30	4100	40	-30310	30	12290	40	6320	40	12280	40
	Ir	77	8555	21	1062	20	-34460	80	16828	20	8424	22	15320	30
	Pt	78	11292	22	2828	18	*		12640	27	6199	15	14151	20
	Au	79	9190	50	100	40	*		17510	30	8290	70	17390	30
	Hg	80	11880	70	1670	40	*		13160#	90#	5912	21	15800	60
	Tl	81	*		-1265	18	*		17930	80	8160#	210#	19060	80

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2:	n)	S(2)	p)	Q(o	<i>(</i>)	$Q(2\beta$	-)	$Q(arepsilon_{ m p}$)	$Q(\beta^-$	n)
173	Dy	66	9890#	500#	*	500#	-2210#	640#	9720#	450#	*	50011	-530#	450#
	Но	67	10970#	670#	19900#	590#	-1450#	420#	6910#	300#	-16790#	590#	-940#	300#
	Er Tm	68 69	12080# 13188	200# 5	18040# 16320	360# 600	-480# 116	360# 21	3900# 625	200# 5	-12930# -12060#	360# 200#	-4350# -5072	200# 4
	Yb	70	14387.05	0.02	14410.2	1.6	947.0	1.2	-2139	28	-8357	4	-8886.6	2.3
	Lu	71	15195.2	2.0	12248.6	1.8	1969.4	1.8	-4484	28	-6796	6	-8550	24
	Hf	72	16120	40	10683	28	2541	28	-6680	40	-3445	28	-12150	40
	Ta	73	16820	40	9146	28	3263	28	-8840	40	-2950	28	-11370	40
	W	74	17780	40	7870	40	3560	40	-11290	30	390	40	-15260	50
	Re	75	18450	40	6410	40	4310	40	-13290	30	490	40	-14380	30
	Os	76	19279	23	4930	30	5055	6	-15500	60	4370	30	-18130	40
	Ir Pt	77 78	20000 20620	40 90	3600 2220	30 60	5716 6350	10 50	-17436 -19230#	25 200#	3980 8010	40 60	-17233 -20700	15 80
	Γι Au	79	21410	30	1000	40	6836	5	-19230# *	200#	7260	40	-20700 -19850	150
	Hg	80	22330#	360#	-180#	210#	7378	4	*		11110#	200#	*	130
174	Dy	66	9500#	590#	*		-2420#	780#	10580#	590#	*		-90#	590#
	Но	67	10350#	360#	20420#	590#	-1390#	500#	8180#	300#	*		-110#	360#
	Er	68	11610#	300#	18520#	420#	-710#	360#	5000#	300#	-15300#	500#	-3770#	300#
	Tm Yb	69 70	12630 13831.70	50 0.02	16960# 15039	200# 4	-50 739.3	70 1.5	$1710 \\ -1100.0$	40 2.3	-11800# -10580#	300# 200#	-4380 -8134.9	40 1.6
	Lu	71	14976.8	2.2	12774	6	1800.7	1.8	-3829	2.3	-10580# -6603	5	-8134.9 -8230	28
	Hf	72	15585	25	11167.0	2.3	2494.5	2.3	-5617	28	-5582.2	2.3	-11519	28
	Ta	73	16550	40	9583	28	3140	30	-8070	40	-2149	28	-11080	40
	W	74	17270	40	8400	40	3600	40	-10232	30	-2100	40	-14740	40
	Re	75	18280	50	6920	40	4040	40	-12810	40	1430	40	-14310	30
	Os	76	18894	16	5476	30	4871	10	-14677	15	1443	30	-17798	15
	Ir	77	19630	40	3900	50	5625	10	-16630#	90#	5400	40	-16990	60
	Pt	78	20354	15	2652	16	6183	3	-18677	22	4831	18	-20557	25
	Au Hg	79 80	21060# 21720	110# 150	1430# 112	100# 22	6699 7233	7 6	*		8740# 8010	90# 60	-19600# *	220#
175	Но	67	10000#	500#	*		-1600#	640#	9110#	400#	*		680#	500#
	Er	68	11140#	450#	19290#	570#	-890#	500#	6040#	400#	-14570 #	640#	-2860 #	400#
	Tm	69	12200	50	17540#	300#	-220	600	2860	50	-13910#	300#	-3440	50
	Yb	70	13286.96	0.07	15620#	200#	598.5	1.6	-213.9	2.3	-10040#	300#	-7196.7	1.6
	Lu Hf	71 72	14427.3 15213	1.0 28	13487 11508.4	5 2.3	1619.8 2400.2	1.5 2.3	-2757 -4849	28 28	-8590 -4826.1	40 2.3	-7392.4 -10812	1.9 28
	Ta	73	16150	40	10106.4	28	2995	2.3	-4649 -7120	40	-4620.1 -4127	2.3	-10812 -10250	40
	W	74	17050	40	8800	40	3370	40	-9530	30	-1077	28	-14030	40
	Re	75	17880	40	7470	40	4010	40	-11890	30	-840	40	-13364	30
	Os	76	18810	19	5960	30	4560	30	-14392	22	2830	30	-17313	27
	Ir	77	19269	17	4420	30	5430	30	-15990	40	2990	30	-16148	16
	Pt	78	19910	60	2853	24	6164	4	-17740	80	6993	21	-19550#	90#
	Au	79	20710	40	1710	40	6583	4	*		6170	50	-18830	40
	Hg	80	21410#	210#	610	90	7072	5	*		10060	70	*	
176	Ho Er	67 68	9740# 10820#	590# 500#	* 10840#	640#	-1870#	710# 500#	10080#	510# 400#	*		1290#	640# 400#
	Er Tm	68 69	10820# 11650	500# 110	19840# 18260#	640# 310#	-1050# -310#	500# 220#	6860# 4010	400# 100	* -13460#	410#	-2390# -2750	400# 100
	Yb	70	12689.44	0.02	16120#	300#	-510# 567	4	1085.0	1.5	-13400# -12130#	400#	-6397.0	1.2
	Lu	71	13954.7	1.0	14100	40	1567	6	-2020	30	-8360	50	-6971.9	1.9
	Hf	72	14874.5	1.7	12209.8	1.5	2254.2	1.5	-3935	28	-7169.7	1.5	-10239	28
	Ta	73	15770	40	10370	30	2950	30	-6300	40	-3490	30	-9800	40
	W	74	16560	40	9375	28	3340	40	-8540	40	-3449	28	-13420	40
	Re	75	17530	40	7900	40	3840	40	-11180	30	60	40	-13030	30
	Os	76	18245	30	6450	40	4570	40	-13160	30	250	40	-16770	30
	Ir D	77	19157	30	4780	30	5230	40	-15360	40	4120	30	-16236	25
	Pt	78 79	19758	16 100#	3516	16 40	5885.1 6433	2.1 7	-17149 -19100	17 80	3883 7580	17 40	-19600 -18620	40 80
	Au Hg	79 80	20430# 21287	100# 22	2240 1045	40 15	6897	6	-19100 *	80	7580 6640	40 21	-18620 *	80
	rig Tl	81	× ×	22	-240#	120#	7470	90	*		10700	80	*	
			•						•				•	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	n)	S(p)	$Q(4\beta)$	_)	Q(d,	α)	Q(p)	,α)	Q(n,	,α)
177	Er	68	4300#	640#	10860#	710#	10020#	500#	11060#	640#	7700#	590#	4160#	710#
1//	Tm	69	6170#	310#	8130#	500#	4250#	300#	11890#	500#	9350#	420#	3870#	420#
	Yb	70	5566.40	0.22	8900	100	-1285	28	12030	50	7740	40	6610#	300#
	Lu	71	7072.89	0.16	6181.5	1.2	-6115	28	13022.5	1.2	9424.8	1.2	7130	40
	Hf	72	6375.6	1.0	6787.4	0.8	-10924	15	12995.8	0.8	7553.6	1.3	9710.3	1.4
	Ta	73	8420	30	4427	3	-15667	20	13478	4	8994	4	9502	3
	W	74	7130	40	5630	40	-20330	30	13420	40	6900	40	11789	28
	Re	75	9280	40	2920	40	-24724	30	14070	40	8820	40	11120	40
	Os	76	7930	30	4180	30	-29170	80	14040	30	6580	30	13920	30
	Ir	77	10240	26	1240	30	-32707	29	14769	23	8812	22	13270	30
	Pt	78	8508	20	2781	22	*		14735	19	6357	29	16271	18
	Au	79	11100	30	-100	15	*		14879	21	8637	15	14965	26
	Hg	80	9070	80	1550	80	*		15330	80	6320#	120#	18180	80
	Tl	81	11990	80	-1155	19	*		15340	80	8165	29	16540#	90#
178	Er	68	5470#	780#	*		12180#	600#	9740#	780#	7810#	720#	*	
	Tm	69	4720#	500#	8550#	640#	6480#	400#	13230#	570#	9400#	570#	4730#	570#
	Yb	70	6780	10	9520#	300#	711	18	10390	100	7480	50	4600#	400#
	Lu	71	6025.3	1.9	6640.4	2.3	-4684	28	13864.3	2.3	9221.8	2.3	7620	50
	Hf	72	7625.94	0.18	7340.4	0.8	-8891	14	11657.8	0.8	7594.4	0.8	7906.7	1.4
	Ta	73	6960#	50#	5010#	50#	-14350#	60#	14690#	50#	8750#	50#	10210#	50#
	W	74	8780	30	5981	15	-18409	18	11670	30	6870	30	9721	15
	Re	75	7460	40	3240	40	-23350	30	15700	40	8840	40	12400	40
	Os	76	9659	20	4560	30	-27228	17	12230	30	6610	30	11730	30
	Ir	77	8276	28	1584	25	-31460#	90#	16560	30	8718	23	14680	30
	Pt	78	10698	18	3239	22	-35572	26	12592	20	6261	16	13754	16
	Au	79	8830	15	222	18	*		17341	16	8274	21	16737	16
	Hg	80	11600	80	2060	15	*		12920	30	5950	40	15044	21
	Tl Pb	81 82	9520# *	90#	-700# 370	120# 30	*		17710# 13700	90# 80	8050# *	120#	18260# 17190	100# 80
179	Tm	69	5560#	640#	8630#	780#	8760#	500#	11970#	710#	9890#	640#	3340#	710#
1//	Yb	70	4910#	200#	9710#	450#	2760#	200#	11640#	360#	7700#	220#	5740#	450#
	Lu	71	6792	5	6652	11	-2475	25	12638	5	9296	5	5960	100
	Hf	72	6098.99	0.08	7414.1	2.1	-7443	17	12631.7	0.8	7783.4	0.8	8674.8	1.4
	Ta	73	7830#	50#	5211.1	0.4	-12276	10	13234.1	0.5	9083.1	1.1	8671.3	0.9
	W	74	6960	21	5990#	50#	-17027	17	13130	15	6930	30	10928	15
	Re	75	9000	40	3466	29	-21596	27	13830	40	8920	40	10430	40
	Os	76	7547	21	4660	30	-26090	30	13960	30	6910	30	13270	30
	Ir	77	9901	22	1826	17	-29810	40	14586	18	8880	30	12628	30
	Pt	78	8342	13	3305	21	-34320	80	14490	21	6474	19	15476	29
	Au	79	10756	15	280	15	*	-	15093	19	8809	17	14536	20
	Hg	80	8684	29	1913	29	*		15328	29	6460	40	17650	30
	Tl	81	11550#	100#	-760	40	*		15220	80	8380	40	15900	50
	Pb	82	9590	80	450#	120#	*		16100	80	6333	27	19480	80
180	Tm	69	4390#	710#	*		11010#	500#	13050#	780#	9800#	710#	*	
	Yb	70	6130#	360#	10290#	590#	5040#	300#	10230#	500#	7730#	420#	3910#	590#
	Lu	71	5690	70	7430#	210#	-840	70	13730	70	9170	70	6440#	310#
	Hf	72	7387.76	0.15	8009	5	-5422	16	11269.2	2.1	7468.5	0.8	6853.5	1.4
	Ta	73	6646.9	2.3	5758.9	2.3	-10955	22	14213.2	2.3	8811.8	2.3	9097.3	2.2
	W	74	8412	15	6567.8	0.5	-15200	11	11670#	50#	6943	3	8890.9	0.4
	Re	75	7320	30	3831	26	-20212	22	15280	26	8730	40	11524	22
	Os	76	9410	23	5063	30	-24107	21	12010	30	6780	30	10990	30
	Ir	77	7967	24	2247	27	-28590	60	16278	26	8843	26	13940	40
	Pt	78	10239	14	3643	15	-32494	17	12527	23	6476	23	13167	18
	Au	79	8708	13	646	9	*		17083	11	8609	16	16068	20
	Hg	80	11390	30	2551	17	*		12764	16	6159	15	14766	20
	Tl	81	9190	70	-250	70	*		17640	60	8260	100	17800	60
	Pb	82	12060	80	960	40	*		13560#	90#	6263	20	16490	80

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2:	n)	S(2)	p)	Q(o	<u>'</u>)	$Q(2\beta)$	-)	$Q(arepsilon \mathrm{p}$)	$Q(\beta^-$	n)
177	Er	68	10350#	640#	de		-1340#	640#	8130#	500#	d.		-1560#	510#
1//	Er Tm	69	11300#	300#	* 18840#	500#	-1340# -540#	640# 420#	8130# 4920#	300#	* -15470#	590#	-1360# -2050#	300#
	Yb	70	12433.48	0.23	16910#	400#	240#	200#	1894.2	1.4	-11650#	400#	-5675.5	1.2
	Lu	71	13360.86	0.22	14650	50	1447	5	-669	3	-10300	100	-5878.8	0.9
	Hf	72	14541.6	2.0	12763.0	1.4	2245.7	1.4	-3179	28	-6678.3	1.4	-9 5 90	30
	Ta	73	15449	28	11127	3	2741	3	-5445	28	-5621	3	-9144	28
	W	74	16210	40	9798	28	3290	40	-7750	30	-2414	28	-12710	40
	Re	75	17120	40	8440	40	3700	40	-10220	30	-2190	40	-12240	40
	Os	76	17994	19	6900	30	4350	30	-12586	21	1400	30	-16149	22
	Ir	77	18796	23	5340	30	5080	30	-14502	22	1730	30	-15185	24
	Pt	78	19800	24	3843	19	5642.9	2.7	-16590	80	5440	30	-18920	40
	Au	79	20280	40	2729	16	6298	4	-18205	24	5044	20	-17831	15
	Hg	80	20950	100	1650	80	6740	50	*		8860	80	-21440	110
	Tl	81	*		510	40	7067	7	*		7890	40	*	
178	Er	68	9770#	720#	*		-1320 #	780#	9440#	600#	*		-860#	670#
	Tm	69	10890#	410#	19400#	640#	-850#	500#	6220#	400#	*		-1200 #	400#
	Yb	70	12347	10	17640#	400#	-170#	300#	2740	10	-14130#	500#	-5383	10
	Lu	71	13098.2	1.9	15540	100	1100	40	260#	50#	-10160#	300#	-5528.5	2.1
	Hf	72	14001.5	1.0	13521.9	1.4	2084.4	1.4	-2028	15	-8737.8	1.4	-8792	3
	Ta W	73	15380#	60#	11790#	50#	2550#	50#	-4950#	60#	-5500#	50#	-8970#	60#
		74 75	15910	30	10409	15	3013	15	-6863	20	-4815	15	-12210	30
	Re Os	75 76	16730 17590	40 30	8870 7480	40 30	3660 4260	40 30	-9400 -11547	30 17	-1228 -1130	28 30	-11770 -15568	30 24
	Ir	77	18516	26	5770	30	5000	30	-11347 -13948	22	2730	30	-13308 -14953	25
	Pt	78	19206	16	4478	30	5573.0	2.2	-15682	15	2670	18	-18524	15
	Au	79	19930	30	3003	20	6135	25	-17510#	90#	6455	22	-17590	80
	Hg	80	20674	15	1960	17	6577.3	3.0	-19890	26	5766	18	-21047	24
	Tl	81	21520#	120#	850#	100#	7020	10	*		9470#	90#	*	= -
	Pb	82	*		-781	26	7790	14	*		9070	80	*	
179	Tm	69	10270#	590#	*		-820#	640#	7460#	500#	*		20#	500#
	Yb	70	11690#	200#	18260#	540#	-310#	450#	3930#	200#	-13570 #	630#	-4270#	200#
	Lu	71	12818	5	16170#	300#	830	50	1298	5	-12230 #	400#	-4695	5
	Hf	72	13724.93	0.19	14054.5	1.4	1807.7	1.4	-1168	15	-8056	10	-7940#	50#
	Ta	73	14785	3	12551.5	0.9	2383.3	0.9	-3773	25	-7308.5	2.1	-8022	15
	W	74	15740	30	10992	15	2762	15	-6276	22	-4149	15	-11710	30
	Re	75	16460	40	9448	25	3400	40	-8503	27	-3280 #	60#	-11111	28
	Os	76	17206	22	7900	30	4190	30	-10751	18	98	22	-14839	26
	Ir	77	18177	22	6390	30	4782	30	-13093	15	283	30	-14156	14
	Pt	78	19040	17	4890	17	5412	9	-15340	28	3987	16	-18036	13
	Au	79 80	19586 20290	16 80	3519 2140	23 30	5981 6360	5 30	-16720 -18980	40 80	3974 7780	23 29	-16744 $-20210#$	16 90#
	Hg Tl	81	21070	40	1300	40	6711	30	-1090U *	80	6750	40	-20210# -19910	50
	Pb	82	*	40	-260	110	7598	20	*		11080	80	*	30
180	Tm	69	9950#	640#	*		-1060#	710#	8760#	510#	*		550#	540#
	Yb	70	11050#	300#	18920#	670#	-390#	500#	5180#	300#	*		-3610#	300#
	Lu	71	12480	70	17140#	410#	270	120	2260	70	-12370 #	510#	-4280	70
	Hf	72	13486.75	0.17	14662	10	1287.1	1.4	-143.23	0.28	-10530#	200#	-7493.3	0.4
	Ta	73	14480#	50#	13173.0	2.9	2024.4	2.2	-3096	21	-7163	5	-7709	15
	W	74	15372	15	11778.8	0.3	2515.3	1.0	-5278	16	-6462.2	0.3	-11123	25
	Re	75 76	16330	40	9820#	60#	3100	40	-7860	30	-2769	21	-10889	27
	Os	76	16956	21	8529	22	3860 4660	30 40	-9922	20	-2352	22	-14347	19
	Ir Pt	77 78	17868 18581	29 15	6900 5470	40 17	4660 5240	40 30	-12352 -14185	22 17	1320 1295	30 20	-13781 -17519	23
	Ρι Au	78 79	18381	15 11	3470 3952	17 20	5240 5828	30 17	-14185 -16240	60	5167	20 11	-17519 -16769	16 28
	Hg	80	20077	17	2831	16	6258.5	2.4	-10240 -18309	18	4729	15	-20050	40
	Tl	81	20740#	110#	1660	60	6710	50	*	10	8310	60	-19510	100
	Pb	82	21658	27	203	16	7419	5	*		7698	30	*	-00

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

												-	-	
<i>A</i>	Elt.	Z	S(r	n)	S(p)	$Q(4\beta$	_)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
181	Tm	69	5320#	780#	*		13270#	600#	*		9950#	840#	*	
101	Yb	70	4560#	420#	10460#	590#	7150#	300#	11220#	590#	7890#	500#	4820#	670#
	Lu	71	6190	140	7490#	320#	1720	130	12450#	230#	9760	130	4970#	420#
	Hf	72	5694.80	0.07	8020	70	-3853	25	12367	5	7799.0	2.1	7939	10
	Ta	73	7576.8	1.3	5947.9	1.8	-8975	5	12735.4	1.8	8861.0	1.8	7545.9	2.6
	W	73 74	6669.02	0.16	6589.9	2.3	-8973 -13852	14	12834.3	0.5	7230#	50#	9847.8	0.4
	Re	75 76	8751	25 30	4170	13	-18646	24 30	13489	19 40	8754	20	9730#	50#
	Os	76	7260		5000	30	-22889		13750		6970	40	12503	30
	Ir	77	9557	22	2394	17	-26664	11	14267	17	8945	15	11837	28
	Pt	78	8017	18	3693	26	-31260	80	14411	17	6734	24	14809	19
	Au	79	10317	21	724	23	*		15108	22	8990	22	14027	28
	Hg	80	8482	20	2325	16	*		15038	19	6507	18	16983	18
	Tl	81	11480	60	-163	14	*		14840	29	8381	14	15151	14
	Pb	82	9250	80	1020	100	*		15860	80	6540#	120#	18840	80
182	Yb	70	5800#	500#	10940#	720#	9430#	400#	9810#	640#	7650#	640#	*	
	Lu	71	5150#	230#	8080#	360#	3570#	220#	13430#	360#	9520#	280#	5370#	540#
	Hf	72	6718	6	8540	130	-1440	23	11340	70	7873	8	6130#	200#
	Ta	73	6062.94	0.11	6316.1	1.8	-7378	21	14060.2	1.8	8897.0	1.8	8275	5
	W	74	8083.6	1.6	7096.7	1.4	-12078	13	11397.6	1.9	6975.3	1.6	7863.2	1.6
	Re	75	7000	100	4500	100	-17150	100	14900	100	8710	100	10560	100
	Os	76	9130	30	5381	25	-21032	24	11940	30	6840	30	10332	26
	Ir	77	7660	22	2790	30	-25724	24	16017	27	8832	27	13180	30
	Pt	78	9858	19	3994	14	-29343	18	12520	25	6777	16	12497	21
	Au	79	8501	28	1208	24	*		16846	23	8831	22	15427	22
	Hg	80	10987	18	2995	22	*		12759	11	6276	15	14338	13
	Tl	81	8601	15	-44	19	*		17633	17	8464	30	17307	17
	Pb	82	11780	80	1315	15	*		13270	60	6310	40	15749	30
183	Yb	70	4350#	570#	*		11270#	400#	10780#	720#	7690#	640#	*	
	Lu	71	5910#	210#	8190#	410#	6090	80	12080#	310#	9750#	310#	3850#	510#
	Hf	72	5300	30	8690#	200#	380	60	12230	130	8260	80	6960#	300#
	Ta	73	6934.18	0.20	6532	6	-5089	24	12820.8	1.8	9350.6	1.8	7030	70
	W	74	6190.84	0.04	7224.6	1.4	-10593	16	12783.5	1.4	7431.4	1.9	9060.2	1.6
	Re	75	8430	100	4852	8	-15618	12	13135	8	8691	8	8770	8
	Os	76	7130	50	5510	110	-19860	50	13560	50	7040	50	11620	50
	Ir	70 77	9220	30	2880	30	-23616	26	14060	40	9019	29	11020	30
	Pt	78	7675	20	4010	26	-28200	30	14401	16	7069	27	14232	23
								30						
	Au	79	9962	22	1312	16	*		14901	17	9108	14	13432	24
	Hg Tl	80 81	8299 11331	12 15	2793 299	21 14	*		14777 14785	21 18	6685 8527	9 16	16278 14685	13 10
	Pb	82	8820	30	1540	30	*		15934	30	6680	70	18320	30
104	371	70		(40"			12170"	500"			7500"	700"		
184	Yb	70	5510#	640#	*	500"	13170#	500#	*	500"	7500#	780#	*	(70"
	Lu	71	4770#	310#	8600#	500#	7810#	300#	13120#	500#	9540#	420#	4410#	670#
	Hf	72	6290	50	9070	90	2750	40	11090#	200#	8160	130	5240#	300#
	Ta	73	5618	26	6850	40	-3230	40	13921	27	9428	26	7600	130
	W	74	7411.11	0.13	7701.5	1.4	-8371	16	11435.4	1.4	7597.0	1.4	7343.9	1.6
	Re	75	6481	9	5143	4	-13901	23	14737	4	8878	5	9865	4
	Os	76	8660	50	5732	8	-17904	10	11900	100	7129	13	9627.7	1.6
	Ir	77	7480	40	3240	60	-22728	30	15710	40	8800	40	12550	30
	Pt	78	9633	22	4420	29	-26283	20	12428	26	6993	16	11862	30
	Au	79	8199	24	1835	27	-31380	80	16561	26	8927	26	14791	23
	Hg	80	10616	12	3446	14	*		12663	23	6386	22	13679	17
	Tl	81	8367	14	368	12	*		17404	14	8642	18	16634	22
	Pb	82	11550	30	1753	16	*		12987	17	6611	14	15256	20
	Bi	83	*		-1350	80	*		18600	80	9040	110	19510	80

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2 ₁	p)	Q(a)	α)	$Q(2\beta$	-)	Q(arepsilonp	o)	$Q(eta^-$	n)
181	Tm	69	9710#	780#	*		*		9630#	610#	*		1360#	670#
101	Yb	70	10690#	360#	*		-660#	590#	6320#	300#	*		-2480#	310#
	Lu	71	11880	130	17780#	520#	250#	320#	3640	130	-14170#	520#	-3090	130
	Hf	72	13082.56	0.17	15440#	200#	1158.7	1.4	831.0	0.3	-10090#	300#	-6541.3	2.3
	Ta	73	14223.6	1.9	13957	5	1520.6	1.7	-1921	13	-9050	70	-6873.5	1.3
	W	74	15081	15	12348.9	0.4	2221.9	0.4	-4684	25	-5743.4	0.3	-10468	21
	Re	75	16076	28	10738	13	2772	13	-7054	14	-4873	13	-10231	21
	Os	76	16670	30	8833	29	3730	40	-9168	29	-1203	25	-13640	30
	Ir	77	17524	11	7457	25	4381	28	-11592	21	-915	22	-13098	12
	Pt	78	18256	16	5940	21	5150	5	-13720	21	2687	21	-16827	15
	Au	79	19025	23	4367	22	5751.4	2.9	-15072	22	2817	29	-15692	24
	Hg	80	19880	30	2971	17	6284	4	-17540	80	6486	19	-19350	60
	Tl	81	20670	40	2388	15	6321	6	*	00	5538	10	-18929	15
	Pb	82	21310	110	770	80	7240	7	*		9840	80	*	
82	Yb	70	10360#	500#	*		-990#	720#	7230#	400#	*		-2090#	420#
	Lu	71	11350#	210#	18540#	540#	-190#	450#	4550#	200#	-14000 #	630#	-2550#	200#
	Hf	72	12413	6	16030#	300#	1221	12	2197	6	-12250 #	300#	-5683	6
	Ta	73	13639.7	1.3	14330	70	1482.9	2.6	-980	100	-8920	130	-6267.4	1.
	W	74	14752.6	1.6	13044.7	1.6	1764.3	1.6	-3637	22	-8132.2	1.6	-9800	13
	Re	75	15750	100	11090	100	2730#	120#	-6390	100	-4300	100	-9970	110
	Os	76	16394	27	9551	22	3373	27	-8441	25	-3664	22	-13217	22
	Ir	77	17220	30	7792	30	4180	30	-10751	29	177	24	-12741	25
	Pt	78	17875	17	6389	21	4951	5	-12592	16	93	29	-16369	24
	Au	79	18818	21	4901	30	5526	4	-14973	23	3873	21	-15711	25
	Hg	80	19469	16	3719	15	5996	5	-16752	16	3516	17	-18850	13
	Τĺ	81	20080	60	2280	13	6551	6	*		7254	23	-18280	80
	Pb	82	21026	17	1153	18	7066	6	*		6547	20	*	
33	Yb	70	10150#	500#	*		*		8180#	400#	*		-1290#	450#
	Lu	71	11060	150	19120#	600#	-540#	510#	5580	80	*		-1740	80
	Hf	72	12020	30	16770#	300#	830#	200#	3080	30	-11750#	400#	-4920	30
	Ta	73	12997.12	0.23	15070	130	1341	5	517	8	-10700#	200#	-5118.1	1.
	W	74	14274.4	1.6	13540.7	1.6	1672.4	1.6	-2700	50	-7605	6	-8990	100
	Re	75	15435	15	11949	8	2123	8	-5606	26	-6669	8	-9272	23
	Os	76	16260	60	10010	50	3210	50	-7890	50	-2710	50	-12680	50
	Ir	77	16883	25	8264	27	3960	30	-10012	26	-2050	100	-12106	28
	Pt	78	17534	21	6800	30	4822	9	-11968	17	1548	27	-15543	26
	Au	79	18463	22	5306	11	5465.3	2.9	-13604	13	1571	23	-14686	14
	Hg	80	19286	17	4001	15	6039	4	-16229	29	5075	15	-18548	14
	Tl Pb	81 82	19931 20600	13 80	3294 1490	22 30	5976 6928	9 7	*		4425 8713	22 30	-17833 *	15
34	Yb	70	9860#	640#	*		*		8960#	510#	*		-900#	510#
, ,	Lu	71	10680#	360#	*		-920#	590#	6430#	300#	*		-1200#	300
	Hf	72	11590	40	17260#	400#	680#	300#	4210	40	-13690#	400#	-4280	40
	Ta	73	12552	26	15540#	200#	1410	80	1380	26	-10410	80	-4545	26
	W	74	13601.95	0.14	14234	6	1649.1	1.6	-1452.8	0.7	-9710	30	-7967	8
	Re	75	14920	100	12368	4	2288	5	-4609	28	-6216	4	-8630	50
	Os	76	15786	22	10584.4	0.7	2958.7	1.6	-6918	16	-5175.9	0.7	-12121	24
	Ir	77	16700	30	8740	110	3800	40	-9290	40	-1090	29	-11910	30
	Pt	78	17308	20	7303	27	4599	8	-10985	19	-1050 -960	50	-15214	18
	Au	79	18160	30	5840	30	5234	5	-13435	24	2600	30	-14585	23
	Hg	80	18915	14	4758	16	5662	4	-15297	16	2135	18	-17833	14
			19698	16	3160	23	6317	9	-17950	80	6019	14	-17379	30
	Tl Pb	81 82	19698 20369	16 18	3160 2053	23 16	6317 6774	9	-17950 *	80	6019 5464	14 15	-17379 *	30

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

						•	- ·		<i>′</i> •					
A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
105	371-	70	4020#	710#			1.4000#	500#						
185	Yb Lu	70 71	4030# 5550#	710# 420#	* 8640#	590#	14890# 9930#	500# 300#	* 11920#	500#	* 9800#	500#	*	
	Hf	72	4890	80	9200#	310#	4490	60	12110	100	8420#	210#	6150#	410#
	Ta	73	6626	30	7180	40	-1060	30	12600	30	9519	15	6130#	200#
	W	73 74	5753.74	0.05	7837	26	-6700	26	12615.8	1.4	7906.2	1.4	8308	6
	w Re	74 75	7671		5402.6	0.7	-0700 -11960.9	2.7		0.7	9291.1	0.7	8257.3	
				4					13257.4					1.5
	Os	76	6624.66	0.27	5875	4	-16622	14	13715	8	7500	100	11086.6	0.7
	Ir D	77	8800	40	3372	28	-20580	30	14040	60	9140	40	10760	110
	Pt	78 79	7430 9611	30 22	4370	40	-25150 -29620#	30 80#	14230 14625	40	7230 9174	30 13	13570 12840	30 21
	Au				1813	16		80#		16				19
	Hg	80	7906	17	3154	26	*		14719	17	6981	24	15631	
	Tl	81	10946	23	698	23	*		14758	22	8683	23	14189	29
	Pb	82	8561	21	1947	19	*		15757	19	6651	20	17682	19
	Bi	83	11370#	110#	-1530#	80#	*		16050#	90#	9450#	80#	16740#	80#
86	Lu	71	4390#	500#	9000#	640#	11720#	400#	13040#	640#	9750#	570#	*	
	Hf	72	6180	80	9830#	300#	6580	50	10700#	300#	8160	100	4320#	400#
	Ta	73	5280	60	7580	90	560	60	13600	70	9540	70	6750	100
	W	74	7192.1	1.2	8403	14	-4644	22	11042	26	7648.3	1.8	6420	30
	Re	75	6179.38	0.17	5828.3	0.7	-10212	21	14489.1	0.7	9302.5	0.7	9012.1	1.5
	Os	76	8265.4	0.9	6469.9	0.8	-14461	12	11930	4	7674	8	9012.0	0.9
	Ir	77	6910	30	3655	17	-19286	28	15791	17	9360	50	12284	18
	Pt	78	9250	30	4820	40	-23182	25	12460	40	7200	30	11450	50
	Au	79	7928	21	2320	30	-28569	27	16330	26	8922	26	14130	30
	Hg	80	10427	18	3970	12	-32640	22	12490	25	6516	15	12880	19
	Tl	81	8200	30	992	26	*		17173	25	8782	23	15951	24
	Pb	82	11212	20	2213	24	*		12912	15	6769	15	14769	13
	Bi	83	8980#	80#	-1106	23	*		18616	21	9290	30	19087	19
	Po	84	*		950#	80#	*		13750	80	*		17320	30
87	Lu	71	5440#	570#	*		13640#	400#	11630#	640#	9820#	640#	*	
	Hf	72	4460#	300#	9900#	500#	8400#	300#	11780#	420#	8460#	420#	5370#	590#
	Ta	73	6360	80	7760	80	2650	60	12140	90	9470	70	5160#	300#
	W	74	5466.76	0.04	8590	60	-3219	24	12201	14	7799	26	7240	40
	Re	75	7360.7	0.9	5996.9	1.1	-8189	22	12882.1	0.9	9353.0	0.9	7269	26
	Os	76	6290.3	0.5	6580.8	0.9	-13101	14	13310.9	0.9	7865	4	10132.8	0.9
	Ir	77	8450	30	3838	28	-17105	29	13967	28	9567	28	10317	28
	Pt	78	6890	30	4802	29	-21698	25	14360	40	7790	40	13214	24
	Au	79	9380	30	2450	30	-26645	24	14370	30	9170	27	12230	40
	Hg	80	7650	18	3692	25	-30950	30	14451	14	7065	26	14863	21
	Tl	81	10629	24	1194	14	*		14450	16	8768	13	13521	24
	Pb	82	8376	12	2389	23	*		15482	21	6760	11	17008	11
	Bi	83	11308	20	-1010	15	*		15869	19	9532	16	16146	14
	Po	84	9340	40	1310	40	*		15780#	90#	6630	80	19530	30
88	Lu	71	4280#	640#	*		15230#	500#	*		9570#	710#	*	
	Hf	72	6130#	420#	10590#	500#	10260#	300#	10040#	500#	7870#	420#	3270#	590#
	Ta	73	4790	80	8080#	300#	4730	60	13520	80	9570	80	5920#	300#
	W	74	6835	3	9060	60	-847	6	10650	60	7591	14	5300	60
	Re	75	5871.65	0.04	6401.8	1.1	-6645.5	2.8	14202.5	1.1	9235.0	0.9	8024	14
	Os	76	7989.61	0.15	7209.73	0.15	-10935	12	11500.7	0.9	7545.8	0.9	7897.0	0.9
	Ir	77	6867	29	4415	9	-16010	30	15366	9	9325	9	11121	9
	Pt	78	9207	25	5561	28	-20006	12	12062	17	7379	28	10631	5
	Au	79	7415	22	2975	24	-25177	12	16204	22	9181	26	13611	28
	Hg	80	10155	19	4463	25	-29658	23	12224	24	6520	13	12133	29
				30	1510	30	*		16910	30	8710	30	15170	30
	Τĺ	81	7960	30	1310	50	4		10710	50				
	_	81 82	10900	12	2660	13	*		12782	25	6807	23	14015	17
	Tl													

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(o	<i>t</i>)	$Q(2\beta)$	-)	$Q(arepsilon_{ m p}$))	$Q(\beta^-$	n)
185	Yb	70	9540#	640#	*		*		9820#	510#	*		-160#	590#
105	Lu	71	10310#	310#	*		-1140#	670#	7510#	300#	*		-460#	300#
	Hf	72	11180	70	17800#	410#	340#	310#	5070	60	-13070#	510#	-3550	70
	Ta	73	12244	14	16260	80	980	130	2425	14	-12270#	300#	-3760	14
	W	74	13164.85	0.14	14680	30	1590.1	1.6	-581.9	0.7	-9180	40	-7239	4
	Re	75	14152	8	13104.2	1.5	2194.4	1.5	-3483	28	-8269	26	-7637.8	0.5
	Os	76	15280	50	11018.2	0.7	3003.0	1.6	-6118	26	-4389.5	0.7	-11266	28
	Ir	77	16270	40	9104	29	3760	30	-8477	28	-3405	28	-11200 -11070	30
	Pt	78	17060	30	7600	60	4437	10	-10504	29	275	26	-14440	30
	Au	79	17809	10	6233	25	5180	5	-12100	21	464	28	-13580	10
	Hg	80	18522	15	4989	21	5773	4	-14642	21	3862	21	-17372	17
	Tl	81	19313	23	4144	23	5688	5	-17520#	80#	3270	30	-16778	24
	Pb	82	20110	30	2314	18	6695	5	*	σοπ	7519	19	-20680	80
	Bi	83	*	30	230#	80#	8140#	80#	*		7360#	80#	-20000 *	80
	Di	0.5	*		230π	συπ	0140π	συπ	*		7500π	συπ	*	
86	Lu	71	9940#	500#	*		*		8400#	410#	*		40#	410#
	Hf	72	11070	60	18460#	510#	-30#	400#	6080	50	-15210#	510#	-3100	50
	Ta	73	11910	70	16770#	300#	850#	210#	3320	60	-12010 #	300#	-3290	60
	W	74	12945.8	1.2	15590	40	1116	6	491.4	1.2	-11480	60	-6760.8	1.2
	Re	75	13850	4	13666	26	2077.9	1.5	-2755	17	-7822	14	-7192.5	0.5
	Os	76	14890.0	0.9	11872.5	0.9	2821.2	0.9	-5135	22	-6901.1	0.9	-10736	28
	Ir	77	15700	30	9531	17	3850	100	-7457	27	-2642	17	-10560	30
	Pt	78	16673	27	8190	22	4320	18	-9325	25	-2348	22	-14078	22
	Au	79	17540	30	6680	30	4912	14	-11830	30	1330	30	-13603	25
	Hg	80	18333	15	5783	19	5204	10	-13857	16	860	28	-16853	24
	Tl	81	19146	24	4150	30	5990	30	-16740	28	4683	23	-16417	28
	Pb	82	19773	17	2911	15	6470	6	-18783	22	4213	18	-20520 #	80#
	Bi	83	20350	80	841	20	7757	12	*		9323	27	*	
	Po	84	*		-575	22	8501	14	*		8353	24	*	
87	Lu	71	9840#	500#	*		*		9320#	400#	*		770#	400#
	Hf	72	10640#	310#	18890#	590#	-140#	500#	7090#	300#	*		-2280 #	300#
	Ta	73	11640	60	17590#	300#	400	100	4320	60	-13970 #	400#	-2460	60
	W	74	12658.8	1.2	16160	60	950	30	1315.0	1.1	-10770	50	-6048.2	1.2
	Re	75	13540.1	0.9	14400	14	1651.4	1.5	-1667	28	-9900	60	-6287.9	0.5
	Os	76	14555.7	0.9	12409.1	0.9	2721.7	0.9	-4534	24	-5999.4	1.1	-10118	17
	Ir	77	15360	40	10308	28	3835	29	-6520	40	-4911	28	-9760	40
	Pt	78	16140	40	8457	24	4550	60	-8567	28	-974	24	-13040	30
	Au	79	17312	22	7270	40	4751	29	-10583	24	-1144	28	-12560	25
	Hg	80	18077	19	6008	29	5230	14	-13131	15	2458	26	-16303	26
	Τl	81	18829	22	5164	8	5322	7	-16061	13	1981	22	-15834	14
	Pb	82	19588	17	3381	15	6393	6	-17820	30	6263	13	-19912	18
	Bi	83	20290#	80#	1203	23	7779	4	*		6214	24	-18556	21
	Po	84	*		210	40	7979	15	*		10220	30	*	
.88	Lu	71	9720#	640#	*		*		9820#	510#	*		960#	590#
55	Hf	72	10600#	300#	*		-760#	590#	7790#	300#	*		-2060#	300#
	Ta	73	11150	80	17980#	400#	380#	300#	5400	50	−13320#	400#	-2000π -1780	500m
	W	74	12302	3	16820	50	410	40	2469	3	-13140#	300#	-5523	3
	Re	75	13232.4	0.9	14990	60	1398	26	-672	9	-13140π -9410	60	-5323 -5869.18	0.0
	Os	76	14279.9	0.5	13206.6	1.1	2143.2	0.9	-3316	5	-8522.2	1.1	-9659	28
	Ir	77	15315	19	10996	9	3450	10	-5974	10	-6322.2 -4417	9	-9039 -9731	26
	Pt	78	16099	22	9399	5	4007	5	-3974 -7619	13	-3891	5	-9751 -12864	23
	Au	78 79	16799	21	9399 7777	3 17	4815	28	-7019 -10030	30	-3891 -111	28	-12804 -12325	23 14
			17805		6915		4707		-10030 -12387		-806			15
	Hg	80		17		25		16 40		16		27	-15829 15420	
	Tl Db	81	18590	40	5200	40	5560	40	-15140	30	3400	40	-15420	30
	Pb	82	19276	16	3854	16	6109	3	-17271	23	3014	17	-19503	15
	Bi D-	83	20191	20	1886	25	7264	5	*		7961	14	-18090	30
	Po	84	20788	27	440	23	8082	15	*		7154	21	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

						<u>-</u>			_					
A	Elt.	Z	S(n	1)	S(p)	$Q(4\beta)$	-)	Q(d,	(α)	Q(p	,α)	Q(n,	,α)
189	Hf	72	4360#	420#	10660#	590#	11820#	300#	11130#	500#	7910#	500#	*	
10)	Ta	73	6290#	200#	8240#	360#	6620#	200#	11700#	360#	9460#	200#	4030#	450#
	W	74	5020	40	9290	70	850	40	11990	70	7850	70	6450	70
	Re	75	7034	8	6600	9	-4397	22	12636	8	9394	8	6270	60
	Os	76	5920.8	0.4	7258.9	0.5	-9360	30	12940.5	0.5	7804.4	0.9	9168.2	1.2
	Ir	77	8176	16	4601	13	-13833	15	13480	13	9414	13	9124	13
	Pt	78	6720	11	5413	14	-18625	17	13791	30	7567	19	12177	10
	Au	79	9282	20	3050	21	-23517	29	13810	30	9147	30	11237	26
	Hg	80	7500	30	4540	30	-28200	40	14110	40	6950	40	13880	40
	Τĺ	81	10350	30	1703	15	*		14213	16	8787	14	12745	23
	Pb	82	8100	18	2800	30	*		15311	16	6907	26	16341	18
	Bi	83	10941	24	-462	23	*		15633	21	9481	24	15470	30
	Po	84	8949	30	1516	25	*		15672	24	6588	28	18906	25
190	Hf	72	5940#	500#	*		13680#	400#	9470#	640#	7410#	570#	*	
	Ta	73	4760#	280#	8640#	360#	8240#	200#	13080#	360#	9170#	360#	4710#	450#
	W	74	6840	60	9840#	200#	2920	40	9940	70	7380	70	4080#	300#
	Re	75	5730	70	7310	80	-2800	70	13740	70	9130	70	6910	90
	Os	76	7792.34	0.19	8018	8	-7337	16	11019.8	0.5	7372.8	0.5	6842.6	1.2
	Ir	77	6375	13	5055.8	1.2	-12382	8	15094.5	1.3	9329.5	1.3	10109.3	1.3
	Pt	78	8908	10	6146	13	-16890	13	11749	9	7107	28	9558.9	0.6
	Au	79	7323	20	3653	11	-22234	23	15698	6	8716	24	12362	28
	Hg	80	9820	40	5078	26	-26807	21	11711	16	6521	27	10961	29
	Tl	81	7827	12	2030	30	*		16541	15	8610	16	14302	24
	Pb	82	10644	19	3090	15	*		12630	30	6892	15	13348	19
	Bi	83	8610	30	45	27	*		17926	25	9251	23	17491	24
	Po	84	11213	26	1788	25	*		13342	18	6683	17	16070	14
191	Ta	73	6050#	360#	8750#	500#	10220#	300#	11380#	420#	9250#	420#	2950#	590#
	W	74	4870	60	9950#	200#	4520	40	11360#	200#	7300	70	5350#	300#
	Re	75	6790	70	7260	40	-552	11	11980	40	9182	11	4910	60
	Os	76	5758.73	0.11	8050	70	-5803	22	12295	8	7485.7	0.5	7919	3
	Ir	77	8026.5	0.4	5290.0	1.1	-10426	7	12988.8	1.2	9292.5	1.2	7954.5	1.2
	Pt	78	6463	4	6234	4	-15470	40	13462	13	7511	10	11085	4
	Au	79	9036	6	3780	5	-20559	9	13382	11	8887	7	10193	11
	Hg	80	7293	27	5047	23	-25523	23	13701	30	6643	22	12875	23
	Tl	81	9982	11	2201	18	-30147	18	14050	30	8783	14	11735	8
	Pb	82	7890	40	3150	40	*		15100	40	6970	50	15620	40
	Bi	83	10711	24	112	15	*		15315	16	9440	13	14740	30
	Po	84	8576	15	1758	24	*		15707	22	6990	13	18393	13
	At	85	*		-1139	21	*		15997	27	9272	26	16705	20
192	Ta	73	4640#	500#	*	260"	11770#	400#	12680#	570#	8960#	500#	*	260"
	W	74 75	6550#	200#	10450#	360#	6640#	200#	9570#	280#	7040#	280#	3160#	360#
	Re	75	5310	70	7700	80	1180	70	13500	80	8890	80	5890#	210#
	Os	76	7558.3	2.2	8821	10	-3871	16	10460	70	6961	8	5380	40
	Ir	77	6198.12	0.11	5729.3	1.1	-8960	30	14583.0	1.1	9015.2	1.2	8790	8
	Pt	78	8661.5	2.9	6868.7	2.3	-13732	14	11175.9	2.3	7025	13	8344.7	2.5
	Au	79	7046	17	4363	16	-19240	30	15245	16	8561	19 25	11324	20
	Hg	80	9491	27	5503	16	-23941	19	11533	16	6434	25	10104	19
	Tl	81	7660	30	2570	40	-28800	40	16210	40	8620	40	13360	40
	Pb	82	10400	40	3562	15	*		12527	15	6924	16	12720	30
	Bi	83	8370	30	590	50	*		17590	30	9170	30	16730	30
	Po	84	11073	13	2120	13	*		13240	25	6858	24	15420	18
	At	85	9010	30	-706	29	*		18200	30	9210	40	18640	30

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(o	<i>t</i>)	$Q(2\beta$	_)	$Q(arepsilon_{\Gamma}$))	$Q(oldsymbol{eta}^-$	n)
189	Hf	72	10490#	420#	*		-1090#	590#	8460#	300#	*		-1620#	300#
10)	Ta	73	11080#	200#	18830#	450#	-370#	360#	6150#	200#	-15330#	540#	-1230#	200#
	W	74	11860	40	17380#	300#	280	80	3370	40	-12030#	300#	-4670	40
	Re	75	12905	8	15660	60	990	16	471	15	-11660	60	-4913	8
	Os	76	13910.4	0.5	13660.7	1.2	1976.1	0.9	-2517	10	-7608	3	-8713	9
	Ir	77	15040	30	11811	13	2945	13	-4868	24	-6722	13	-8700	14
	Pt	78	15927	26	9828	10	3912	10	-6840	30	-2621	10	-12169	10
	Au	79	16700	30	8610	30	4330	30	-8966	22	-2526	22	-11451	24
	Hg	80	17650	30	7520	40	4640	40	-11780	30	910	30	-15360	40
	Τĺ	81	18314	12	6166	24	4817	9	-14551	22	466	9	-14872	14
	Pb	82	19000	15	4304	20	5915	4	-16422	26	5069	19	-18721	18
	Bi	83	19824	23	2198	22	7268.2	2.7	*		4980	40	-17592	29
	Po	84	20390	40	1013	23	7694	15	*		9104	24	*	
190	Hf	72	10290#	500#	*		*		9350#	400#	*		-1270#	450#
	Ta	73	11040#	200#	19300#	540#	-730#	450#	7120#	210#	*		-970#	200#
	W	74	11860	40	18080#	300#	-380	60	4330	40	-14510#	300#	-4470	40
	Re	75	12760	70	16600	90	550	90	1120	70	-11100#	210#	-4720	70
	Os	76	13713.2	0.5	14618	3	1375.8	1.2	-1401.3	0.4	-10380	40	-8330	13
	Ir	77	14551	9	12314.7	1.3	2748.6	1.5	-3920	4	-6063	8	-8356	10
	Pt	78	15628	5	10747.2	0.6	3268.6	0.6	-5936	16	-5608.7	0.5	-11796	20
	Au	79	16605	4	9067	10	3914	17	-8462	9	-1673	13	-11280	30
	Hg	80	17311	20	8128	17	4069	27	-10954	20	-2190	19	-14826	18
	Tl	81	18180	30	6579	8	4918	22	-13772	24	1921	22	-14599	16
	Pb	82	18744	16	4793	18	5698	5	-15853	18	1920	30	-18423	24
	Bi Po	83 84	19548 20162	25 24	2840 1327	40 17	6862 7693	3 7	*		6728 5991	24 19	-17250 *	30
191	Ta	73	10810#	360#	*		-1340#	500#	7860#	300#	*		-180#	300#
	W	74	11700	60	18590#	300#	-790#	300#	5220	40	-13440#	400#	-3610	80
	Re	75	12514	13	17100#	200#	120	60	2358	10	-13130#	200#	-3714	10
	Os	76	13551.07	0.22	15360	40	1083.9	1.2	-697	4	-9300	40	-7713.0	1.2
	Ir	77	14402	13	13308	8	2082.8	1.2	-2911	5	-8360	70	-7473.6	1.2
	Pt	78	15372	11	11289	4	3096	4	-5106	23	-4279	4	-10936	5
	Au	79	16359	21	9926	14	3327	28	-7515	9	-4333	5	-10499	17
	Hg	80	17110	40	8700	24	3670	30	-10360	40	-574	22	-14291	24
	Tl	81	17809	11	7279	21	4320	23	-13044	10	-738	8	-13938	15
	Pb	82	18530	40	5180	50	5460	40	-15160	40	3850	40	-17700	40
	Bi	83	19317	22	3201	11	6780	3	-17103	18	3844	11	-16747	15
	Po	84	19789	23	1803	16	7493	5	*		8059	14	*	
	At	85	*		649	26	7822	14	*		7175	28	*	
192	Ta	73	10690#	450#	*		-1700#	640#	8530#	410#	*		40#	400#
	W	74	11410#	200#	19200#	450#	-1200#	360#	6230#	200#	*	24 * "	-3370#	200#
	Re	75	12100	100	17650#	210#	-400	90	3250	70	-12390#	310#	-3260	70
	Os	76	13317.1	2.2	16080	40	361	4	406	3	-11990	40	-7244.8	2.4
	Ir	77	14224.7	0.4	13780	70	1756.3	1.2	-2063	16	-7774 7192 2	10	-7209	4
	Pt	78	15124.6	2.5	12158.6	2.5	2423.9	2.5	-4277	16	-7182.2	2.5	-10562	6
	Au	79	16081	16	10597	16	3148	18	-6900	40	-3352	16	-10252	27
	Hg	80	16783	22	9283	16	3384	16	-9456	20	-3602	16	-13800	17
	Tl Pb	81 82	17640 18282	30	7620 5763	30	4070	30	-12340 -14485	40	640 747	30	-13710 -17388	50 15
	Pb Bi	82 83	18282 19080	18 40	3740	21 30	5221 6377	5 4	-14485 -16460	17 40	5460	26 30	-1/388 -16540	15 30
	Po	83 84	19080	40 17	2232	30 17	7320	3	-10400 *	40	4870	40	-16540 -20006	20
		85		1 /	1050	40	7696	26			8876	29		20
	At	63	*		1030	40	/090	∠0	*		08/0	29	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

									<u> </u>			-	·	
A	Elt.	Z	S(n	1)	S(p) 	$Q(4\beta)$	-) 	Q(d,	α)	Q(p	,α)	Q(n,	α)
193	Ta	73	5880#	570#	*		13670#	400#	*		9020#	570#	*	
	W	74	4710#	280#	10510#	450#	8190#	200#	10920#	360#	7090#	280#	4390#	450#
	Re	75	6710	80	7870#	200#	3170	40	11660	60	9010	60	3930#	200#
	Os	76	5583.42	0.20	9090	70	-2332	16	11667	10	7110	70	6630	40
	Ir	77	7771.99	0.20	5943.0	2.4	-7059	7	12569.8	1.2	9035.6	1.2	6750	70
	Pt	78	6262.5	2.3	6933.0	0.4	-12290	50	12940.0	0.4	7138.0	0.5	9874.6	1.2
	Au	79	8704	18	4405	9	-17520	12	13004	10	8766	9	8995	9
	Hg	80	7122	22	5579	22	-22737	21	13447	16	6635	16	11891	16
	Τĺ	81	9680	30	2755	17	-27410	23	13825	23	8758	17	11003	8
	Pb	82	7710	50	3610	60	-31240	60	14800	50	7040	50	14820	50
	Bi	83	10420	30	618	15	*		15060	40	9396	15	14134	11
	Po	84	8326	18	2080	30	*		15625	16	7138	27	17738	19
	At	85	11060	40	-714	24	*		15712	23	9361	25	16180	30
	Rn	86	*		1170	40	*		15890	30	*		19253	28
194	Ta	73	4500#	640#	*		15230#	500#	*		*		*	
	W	74	6310#	360#	10950#	500#	10230#	300#	9250#	500#	6830#	420#	*	
	Re	75	5080#	200#	8240#	280#	4980#	200#	13120#	280#	8800#	200#	4900#	360#
	Os	76	7112	3	9490	40	-251	4	9860	70	6779	10	4390	40
	Ir	77	6066.79	0.11	6426.4	2.4	-5594	14	14061.3	2.4	8727.5	1.2	7465	10
	Pt	78	8351.8	1.3	7512.8	1.3	-10552	17	10786.3	1.2	6812.7	1.2	7281.5	0.5
	Au	79	6878	9	5021.3	2.5	-16183	7	14787	3	8350	5	10143.2	2.4
	Hg	80	9193	16	6068	9	-21179	13	11299	16	6478	6	9161	5
	Τĺ	81	7532	15	3164	21	-26217	29	15785	21	8518	26	12507	15
	Pb	82	10080	50	4020	19	-29931	24	12380	40	6939	19	12030	28
	Bi	83	8216	10	1120	50	*		17238	15	9070	40	15901	10
	Po	84	10751	19	2409	15	*		13240	30	7099	15	14870	40
	At	85	8720	30	-316	29	*		18061	27	9213	26	18166	26
	Rn	86	11390	30	1498	27	*		13510	30	6724	23	16439	18
195	W	74	4560#	420#	11000#	590#	11780#	300#	10570#	500#	6920#	500#	*	
	Re	75	6410#	360#	8340#	420#	6990#	300#	11420#	360#	8940#	360#	3130#	500#
	Os	76	5150	60	9560#	200#	1500	60	11430	70	6940	90	5780#	200#
	Ir	77	7231.86	0.06	6546.1	2.0	-3537	11	12412.8	2.4	9054.0	2.4	5540	70
	Pt	78	6105.10	0.12	7551.1	1.3	-9086	18	12453.2	1.3	6905.8	1.2	8734.7	2.3
	Au	79	8426.4	2.3	5095.9	1.0	-14541	5	12623.4	1.6	8585.5	2.7	7914.9	1.6
	Hg	80	6901	23	6090	23	-19960	40	13102	25	6623	28	10921	23
	Tl	81	9289	18	3260	11	-24685	15	13618	19	8720	19	10263	19
	Pb	82	7571	25	4059	23	-28760	50	14480	19	7030	40	13950	24
	Bi	83	10068	8	1107	18	*		14880	50	9395	14	13490	30
	Po	84	8120	40	2320	40	*		15540	40	7340	50	17150	40
	At	85	10821	27	-245	16	*		15566	17	9464	15	15710	30
	Rn	86	8740	50	1520	60	*		15830	50	6990	60	18770	50
196	W	74	5940#	500#	*		13760#	400#	9130#	640#	6850#	570#	*	
	Re	75	5040#	420#	8820#	420#	8600#	300#	12700#	420#	8610#	360#	3970#	500#
	Os	76	6840	70	9990#	300#	3550	40	9670#	200#	6820	60	3660#	200#
	Ir	77	5810	40	7210	70	-1940	40	13710	40	8820	40	6440	50
	Pt	78	7921.98	0.13	8241.2	1.3	-7296	8	10598.0	1.3	6755.8	1.3	6396.2	2.3
	Au	79	6643	3	5633.8	3.0	-13130	25	14332.2	3.0	8205	3	9044	3
	Hg	80	8884	23	6548	3	-18353	14	11097	4	6443	9	8300	3
	Tl	81	7413	16	3772	26	-23580	30	15398	12	8430	20	11555	15
	Pb	82	9712	20	4482	13	-27319	16	12300	16	6993	10	11360	17
	Bi	83	8055	25	1590	30	*		16910	30	9050	60	15115	25
	Po	84	10490	40	2736	15	*		13267	15	7276	15	14370	50
	At	85	8520	30 50	150	50	*		17800 13402	30	9270	30	17620 15943	30 20

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2 ₁	p)	Q(o	:)	$Q(2\beta)$	-)	$Q(arepsilon_{ m I}$))	$Q(eta^-$	n)
193	Та	73	10520#	500#	*		*		9360#	400#	*		710#	450#
	W	74	11250#	200#	*		-1550#	360#	7110#	200#	*		-2770#	210#
	Re	75	12020	40	18320#	300#	-830#	200#	4300	40	-14460#	400#	-2420	40
	Os	76	13141.7	2.2	16800	40	-200	40	1085.3	2.4	-11030#	200#	-6630.0	2.4
	Ir	77	13970.11	0.23	14764	10	1018	8	-1131	9	-10240	70	-6319.1	2.3
	Pt	78	14924	4	12662.4	1.2	2082.2	1.2	-3417	16	-5886.4	2.4	-9779	16
	Au	79	15750	10	11274	9	2620	15	-5928	11	-5858	9	-9465	18
	Hg	80	16613	27	9942	16	2982	18	-8870	50	-2063	16	-13260	40
	Tl	81	17337	10	8257	8	3680	21	-11593	10	-1994	17	-12993	15
	Pb	82	18110	60	6180	50	5010	60	-13870	50	2530	50	-16730	60
	Bi	83	18788	11	4180	11	6307	5	-15817	23	2700	30	-15885	13
	Po	84	19399	16	2670	40	7094	4	-17368	29	6942	20	-19320	30
	At	85	20074	27	1406	23	7572	7	*		6180	40	*	
	Rn	86	*		466	26	8040	12	*		9825	27	*	
194	Ta	73	10380#	640#	*		*		9940#	540#	*		920#	540#
	W	74	11020#	360#	*	450#	-1920#	500#	7910#	300#	*	450"	-2370#	300#
	Re	75	11790#	210#	18750#	450#	-1150#	280#	5300#	200#	-13660#	450#	-1910#	200#
	Os	76	12696	3	17360#	200#	-480	40	2325.0	2.4	-13440#	200#	-5970.2	2.0
	Ir D4	77	13838.78	0.23	15520	70	680	70	-319.8	2.5	-9590	40	-6123.4	0.3
	Pt	78 70	14614.2	2.5	13455.8	2.3	1522.8	0.5	-2576.1	2.9	-8654.8	2.3	-9427	9
	Au	79 80	15582 16315	16 16	11954.3 10473	2.4 4	2116.7 2697.6	2.5 3.0	-5274 -7976	14 18	-4964.7 -4993	2.5	-9221 -12778	16 7
	Hg Tl	81	17210	30	8743	21	3471	3.0 14	-1976 -10909	15	-4993 -822	16	-12778 -12810	50
	Pb	82	17210	22	6774	23	4738	17	-10909 -13203	22	-622 -435	23	-12810 -16395	19
	Bi	83	18640	30	4730	30	5918	5	-15203 -15309	26	4159	9	-16393 -15775	16
	Po	84	19077	17	3027	19	6987	3	-16728	21	3900	50	-19009	25
	At	85	19790	40	1760	40	7454	11	*	21	7875	26	-17830	40
	Rn	86	*	10	784	20	7862	10	*		6760	22	*	10
195	W	74	10870#	360#	*		*		8500#	300#	*		-1840#	360#
	Re	75	11490#	300#	19290#	500#	-1510#	420#	6110#	300#	-15570 #	590#	-1220 #	300#
	Os	76	12260	60	17800#	200#	-760	70	3280	60	-12270 #	300#	-5050	60
	Ir	77	13298.65	0.13	16040	40	233	10	874.8	1.6	-11740 #	200#	-5003.5	1.3
	Pt	78	14456.9	1.3	13977.5	2.3	1176.4	0.5	-1780	23	-7647.7	2.4	-8653.2	2.1
	Au	79	15305	9	12608.7	1.6	1716.8	1.6	-4412	11	-7324.3	1.6	-8454	3
	Hg	80	16094	28	11112	23	2260	24	-7306	29	-3542	23	-12147	27
	Tl	81	16821	13	9328	14	3218	12	-10130	12	-3232	11	-12019	21
	Pb	82	17660	50	7223	24	4459	29	-12650	40	1187	18	-15750	19
	Bi	83	18284	9	5126	9	5832	5	-14555	11	1623	15	-15092	14
	Po	84	18870	40	3440	60	6749.9	2.8	-16110	60	5860	40	-18410	40
	At Rn	85 86	19546 20140	24 60	2164 1200	12 50	7344 7690	6 50	*		5270 8770	11 50	-17265 *	19
106										400"				500"
196	W	74 75	10500#	500# 360#	* 10920#	500#	* 1000#	500#	9400#	400#	*		-1370#	500#
	Re	75 76	11450#	360#	19820#	590# 300#	-1900#	500#	6890# 4370	300#	* 1.4560#	200#	-1100#	300#
	Os	76 77	11980 13050	40	18330# 16780#	300#	-1050# -270	200#	4370 1700	40	-14560#	300#	-4660 -4710	40 40
	Ir Pt	77 78	13030	40 0.17	14787.3	200# 2.4	-270 812.8	80 2.3	1700 818.6	40 3.0	-11150# -10420	300# 60	-4710 -8148.8	1.0
	Au	78 79	15069	4	13185	3	1272	3	-3642	12	-10420 -6735	3	-8148.8 -8197	23
	Hg	80	15785	4	11643.8	3.0	2038	4	-3042 -6478	8	-6733 -6321.1	3.0	-6197 -11742	11
	rig Tl	81	16702	18	9863	12	2851	20	-0478 -9488	27	-0321.1 -2219	12	-11742 -11860	22
	Pb	82	17283	19	7742	8	4238	17	-11875	16	-1624	24	-15394	9
	Bi	83	18123	25	5649	28	5440	40	-14090	40	2857	27	-15020	40
	Po	84	18611	19	3843	22	6658.1	2.4	-15444	20	2946	22	-18074	17
		57							15 177	20	2740		10077	. /
	At	85	19340	40	2460	30	7195	3	*		6820	30	-17040	60

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	n)	S(p	o)	$Q(4\beta)$	_)	Q(d,	α)	Q(p)	,α)	Q(n,	α)
197	W	74	4330#	570#	*		15280#	400#	*		7020#	640#	*	
	Re	75	6030#	420#	8910#	500#	10640#	300#	11220#	420#	8890#	420#	2440#	590#
	Os	76	5100#	200#	10060#	360#	5230#	200#	10980#	360#	6790#	280#	4860#	360#
	Ir	77	6900	40	7280	40	78	26	11960	60	9035	20	4620#	200#
	Pt	78	5846.56	0.26	8270	40	-5674	5	11983.3	1.3	6976.0	1.3	7661.8	2.4
	Au	79	8072.3	2.9	5784.2	0.5	-3074 -11453	8	12364.9	0.5	8484.4	0.5	7038.4	1.4
		80	6785.6	1.5	6690		-17433 -17180	50	12738	3	6536	4	9866	
	Hg					3								3
	Tl	81	8916	20	3805	17	-21986	18	13383	28	8706	17	9517	16
	Pb	82	7468	9	4538	13	-26256 20040	17	14121	12	7056	15	13085	6
	Bi	83	9749	26	1628	11	-29940	60	14731	20	9385	19	12897	16
	Po	84	7960	50	2640	60	*		15380	50	7530	50	16500	50
	At	85	10510	30	171	16	*		15410	40	9513	15	15320	10
	Rn	86	8532	22	1860	30	*		15691	19	7095	30	18161	21
	Fr	87	*		-990	60	*		15910	70	9390	60	16620	60
198	Re	75	4710#	500#	9290#	570#	12440#	400#	12450#	570#	8730#	500#	*	
	Os	76	6600#	280#	10620#	360#	7120#	200#	9420#	360#	6610#	360#	2820#	360#
	Ir	77	5630#	200#	7800#	280#	1710#	200#	13170#	200#	8560#	200#	5400#	360#
	Pt	78	7555.6	2.1	8929	20	-3837	9	10240	40	6652.3	2.4	5250	60
	Au	79	6512.36	0.09	6450.0	0.5	-10211	28	13774.5	0.5	8077.1	0.5	7757.9	1.4
	Hg	80	8485	3	7103.5	0.5	-15481	17	10895.2	3.0	6476.8	1.2	7485.9	0.6
	Τĺ	81	7258	18	4277	8	-20814	10	15008	8	8349	24	10685	8
	Pb	82	9393	10	5015	19	-24837	16	12140	15	6952	14	10592	25
	Bi	83	7754	29	1913	28	-28940	40	16690	29	9200	30	14430	30
	Po	84	10190	50	3075	19	*		13250	30	7416	18	13881	25
	At	85	8431	10	650	50	*		17469	15	9210	40	16957	8
	Rn	86	10812	21	2164	16	*		13400	30	7104	16	15470	40
	Fr	87	8750	60	-770	40	*		18310	40	9390	60	18690	30
199	Re	75	5790#	570#	*		14230#	400#	10990#	570#	8880#	570#	*	
	Os	76	4720#	280#	10630#	450#	9060#	200#	10730#	360#	6920#	360#	4040#	450#
	Ir	77	6650#	200#	7850#	200#	3660	50	11620#	200#	8740	60	3790#	300#
	Pt	78	5556.0	0.5	8860#	200#	-2157	10	11586	20	6910	40	6530	40
	Au	79	7584.28	0.06	6478.7	2.1	-8296	11	12036.8	0.5	8414.8	0.5	5990	40
	Hg	80	6663.1	0.6	7254.3	0.6	-14338	18	12304.5	0.6	6456.7	3.0	8744.8	0.7
	Tl	81	8602	29	4394	28	-14336 -19236	28	13192	28	8631	28	8726	28
	Pb	82	7236	13	4992	13	-19230 -23730	40	13821	19	7129	16	12241	10
	Bi	83	9499	30	2019	13	-23730 -27569	17	14659	12	9415	13	12345	16
								17						
	Po	84	7806	25	3130	30	*		15190	20	7660	30	15786	20
	At	85	10180	8	639	18	*		15250	50	9514 7280	15 50	14832	25
	Rn Fr	86 87	8340 10870	40 40	2070 -713	40 19	*		15570 15972	40 21	7280 9664	20	17620 16330	40 30
	11	07	10070	40	-/13	19	*		13972	21	9004	20	10330	30
200	Os	76	6370#	360#	11210#	500#	10720#	300#	9070#	500#	6590#	420#	2010#	500#
	Ir Dt	77	5280#	200#	8420#	280#	5440#	200#	12940#	280#	8560#	280#	4540#	360#
	Pt	78 70	7282	20	9490	50	-348	23	9930#	200#	6529	28	4360#	200#
	Au	79	6218	27	7140	27	-6870	30	13375	27	8044	27	6670	30
	Hg	80	8028.52	0.11	7698.5	0.6	-12562	8	10788.3	0.6	6500.5	0.6	6562.9	0.7
	Tl	81	7059	29	4790	6	-18059	25	14618	6	8357	7	9739	6
	Pb	82	9091	15	5480	30	-22246	17	11988	13	6955	20	9936	11
	Bi	83	7645	25	2428	24	-26500	40	16408	24	9239	23	13617	28
	Po	84	9805	20	3433	13	*		13139	29	7609	11	13450	9
	At	85	8236	25	1070	30	*		17200	30	9230	60	16346	26
	Rn	86	10580	40	2470	15	*		13421	15	7215	16	15000	50
	Fr	87	8710	30	-340	50	*		18070	30	9490	30	18130	30

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2 ₁	p)	Q(o	:)	$Q(2\beta)$	-)	$Q(arepsilon \mathrm{p}$)	$Q(oldsymbol{eta}^-$	n)
197	W	74	10270#	500#	*		*		10170#	450#	*		-670#	500#
	Re	75	11070#	420#	*		-2060#	500#	7760#	300#	*		-300#	300#
	Os	76	11940#	200#	18880#	360#	-1450 #	280#	5110#	200#	-13720#	450#	-3950#	200#
	Ir	77	12714	20	17260#	300#	-460	40	2876	20	-13010 #	300#	-3691	20
	Pt	78	13768.54	0.29	15490	60	549.6	2.3	120	3	-9430	40	-7352.4	3.0
	Au	79	14715.3	1.1	14025.4	1.4	971.6	1.4	-2798	16	-8990	40	-7385.1	2.9
	Hg	80	15669	23	12324	3	1514	3	-5795	6	-5185	3	-11115	13
	Tl	81	16329	20	10353	16	2638	18	-8654	18	-4492	17	-11065	18
	Pb	82	17180	19	8310	24	3892	16	-11390	50	-208	6	-14808	25
	Bi	83	17804	10	6110	14	5365	11	-13332	12	520	15	-14285	16
	Po	84	18440	60	4230	50	6412	3	-14870	50	4700	50	-17510	60
	At	85	19028	12	2908	10	7104	3	-16610	50	4365	26	-16398	16
	Rn Fr	86 87	19680	50	2010 850	40 60	7411 7900	7 50	*		7694 6880	21 60	*	
100	ъ	7.5	10740#	500#			2270#	64011	0.600#	450#			100#	450#
198	Re	75 76	10740#	500#	* 19530#	450#	-2270# 1740#	640#	8680# 6070#	450#	* 15000#	450#	100#	450#
	Os Ir	76 77	11700# 12530#	200# 200#	19330# 17860#	450# 360#	-1740# -1010#	360# 280#	3760#	200# 200#	-15990# -12610#	450# 360#	-3640# -3470#	200# 200#
	n Pt	78	13402.1	2.1	16200	40	106	3	1050.3	2.1	-12010# -11880#	200#	-5470# -6835.6	2.1
	Γι Au	79	14584.7	2.1	14720	40	526.0	1.4	-2052	8	-11880# -8606	200#	-0855.0 -7112	3
	Hg	80	15271.0	2.9	12887.7	0.6	1380.8	0.6	-4887	9	-7823.5	0.6	-10684	16
	Tl	81	16175	14	10968	8	2258	8	-81 5 9	29	-3678	8	-10855	9
	Pb	82	16862	12	8819	9	3692	9	-10594	19	-2816	9	-14452	12
	Bi	83	17500	40	6450	30	5140	30	-12655	29	1680	30	-14080	60
	Po	84	18143	22	4703	19	6309.7	1.4	-14243	22	1983	18	-17189	19
	At	85	18940	30	3283	25	6889.4	1.9	-16290	30	5684	10	-16296	17
	Rn	86	19344	20	2335	19	7349	4	*		4840	50	-19560	60
	Fr	87	*		1090	40	7869	20	*		8640	30	*	
199	Re	75	10500#	500#	*		*		9540#	400#	*		910#	450#
	Os	76	11320#	280#	19920#	450#	-1900#	360#	6910#	200#	*		-2730 #	280#
	Ir	77	12280	50	18470#	300#	-1250#	300#	4700	40	-14550#	400#	-2570	40
	Pt	78	13111.6	2.1	16660#	200#	-300	60	2157.4	2.2	-10840 #	200#	-5879.2	2.1
	Au	79	14096.64	0.11	15408	20	173.6	1.4	-1034	28	-10560#	200#	-6210.7	0.5
	Hg	80	15148	3	13704.3	0.7	822.9	0.7	-4314	10	-6931.0	2.1	-10089	8
	Tl	81	15860	30	11498	28	2083	28	-7262	30	-5768	28	-10063	29
	Pb	82	16629	11	9270	10	3357	25	-10023	21	-1566	10	-13934	30
	Bi D-	83	17253 17990	13	7034	19	4933	7	-11974	12	-558	13	-13396	20
	Po	84 85	17990	50 10	5041 3714	19 10	6074.3 6777.3	1.9 1.2	-13710 -15595	40	3570 3257	20 28	-16565 -15664	19 14
	At Rn	86	19150	40	2720	60	7132	4	-13393 *	15	6680	40	-13004 -19140	50
	Fr	87	19630	60	1451	16	7817	10	*		6197	15	-191 4 0 *	30
200	Os	74	11000#	260#			2220#	500#	7920#	200#			2450#	200#
200	Os Ir	76 77	11090# 11930#	360# 280#	* 19050#	450#	-2320# -1490#	500# 360#	7820# 5630#	300# 200#	* -14040#	450#	-2450# -2290#	300# 200#
	Pt	78	12838	20	17340#	200#	-1490# -750	40	2904	200#	-14040# -13410#	200#	-2290# -5577	200#
	Au	79	13802	27	16000#	200#	-730 -230	50	-193	27	-13410π -10130	50	-5765	27
	Hg	80	14691.6	0.6	14177.2	2.1	716.3	0.7	-3252	11	-9403.6	2.2	-9515	28
	Tl	81	15661	9	12044	6	1667	6	-6676	23	-5242	6	-9887	12
	Pb	82	16326	14	9875	11	3150	11	-9309	13	-3994	11	-13525	15
	Bi	83	17140	40	7420	24	4701	25	-11380	30	400	40	-13234	29
	Po	84	17611	19	5452	12	5981.6	1.8	-12937	16	1001	13	-16190	9
	At	85	18416	25	4200	40	6596.2	1.3	-15120	40	4521	27	-15560	40
	Rn	86 87	18917 19580	19	3109	22 30	7043.4 7622	2.1 4	*		3915 7670	23 30	-18847	19

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

												-		
A	Elt.	Z	S(n	1)	S(p))	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
•				100			44.55.	20.5	100	500		500		
201	Os	76	4530#	420#	*		12420#	300#	10330#	500#	6760#	500#	*	
	Ir	77	6360#	280#	8410#	360#	7280#	200#	11300#	280#	8800#	280#	2890#	450#
	Pt	78	5210	50	9420#	200#	1530	50	11370	60	6940#	200#	5740#	200#
	Au	79	7232	27	7091	20	-4984	16	11699	4	8367	4	5070#	200#
	Hg	80	6230.6	0.6	7711	27	-11141	5	12142.0	0.8	6782.3	0.8	7887.9	2.2
	Τĺ	81	8205	15	4967	14	-16391	16	13076	14	8638	14	8046	14
	Pb	82	7091	18	5513	15	-21200	50	13500	30	7122	16	11330	14
	Bi	83	9117	27	2454	19	-25005	18	14526	18	9515	18	11759	17
	Po	84	7651	9	3439	23	-28458	21	14987	12	7712	28	15193	10
	At	85	9873	26	1137	11	*	21	15130	20	9548	19	14226	29
	Rn	86	8140	50	2370	60	*		15460	50	7510	50	17050	50
	Fr	87	10620	30	-304	16	*		15800	40	9683	16	15949	11
	Ra	88	*		1480	40	*		15876	25	7230	40	18814	24
.02	Os	76	5920#	500#	*		14260#	400#	*		6640#	570#	*	
	Ir	77	4950#	360#	8830#	420#	9200#	300#	12710#	420#	8570#	360#	3730#	500#
	Pt	78	7020	60	10080#	200#	3248	25	9630#	200#	6570	50	3440#	200#
	Au	79	6024	24	7900	60	-3611	28	12960	30	7900	23	5690	50
	Hg	80	7754.10	0.20	8234	3	-9404	9	10606	27	6612.5	0.8	5689.8	2.2
	Tl	81	6871	14	5606.6	1.6	-15389	28	14233.9	1.6	8429.9	1.6	8759.9	1.7
	Pb	82	8741	14	6049	15	-19666	18	11817	7	6983	28	9252	4
	Bi	83	7396	22	2759	21	-23838	17	16220	19	9354	18	12960	30
	Po	84	9492	10	3814	17	-27016	17	13140	24	7720	14	12937	13
	At	85	7873	29	1359	28	*	1,	17062	29	9480	30	15853	30
	Rn	86	10270	50	2774	19	*		13420	30	7413	18	14580	25
	Fr	87	8564	11	120	50			17812	15	9460	40	17566	9
				25			*							
	Ra	88	10933	25	1803	18	*		13650	30	7168	20	16220	40
.03	Os	76	2620#	570#	*		17630#	400#	*		*		*	
	Ir	77	5990#	500#	8890#	570#	11070#	400#	11260#	500#	8950#	500#	*	
	Pt	78	5010#	200#	10140#	360#	5160#	200#	10980#	280#	6850#	280#	4800#	360#
	Au	79	6862	23	7740	25	-1619	13	11310	50	8320	20	4110#	200#
	Hg	80	5995.3	1.6	8205	23	-7958	9	11842	4	6835	27	6976	20
	Τĺ	81	7852.5	1.6	5705.0	1.1	-13599	11	12612.0	1.1	8605.9	1.2	7125	27
	Pb	82	6917	8	6095	7	-18633	19	13105	16	7125	9	10363	7
	Bi	83	8855	20	2873	13	-22401	14	14457	19	9590	17	11169	14
	Po		7441	12	3858		-25970	40	14816	17	7924	24	14587	14
		84				18		40						
	At	85	9643	30	1510	14	*		15069	12	9643	13	13855	25
	Rn	86	7950	25	2850	30	*		15347	20	7700	30	16434	20
	Fr	87	10291	9	138	19	*		15660	50	9745	15	15511	25
	Ra	88	8480	40	1720	40	*		15780	40	7390	50	18310	40
04	Ir	77	3070#	570#	9340#	570#	14660#	400#	14110#	570#	10420#	500#	*	
	Pt	78	6370#	280#	10520#	450#	7190#	200#	9570#	360#	6840#	280#	2960#	360#
	Au	79	5580#	200#	8310#	280#	-0#	200#	12750#	200#	7960#	210#	4890#	280#
	Hg	80	7492.2	1.6	8836	3	-6349	11	10374	23	6575	3	4700	50
	Τl	81	6656.08	0.29	6365.9	1.3	-12471	22	13710.0	1.1	8180.5	1.1	7701	3
	Pb	82	8395	6	6637.5	0.3	-17140	7	11581.1	1.6	6935	14	8199.1	1.1
	Bi	83	7192	16	3148	11	-21253	26	16006	10	9489	17	12181	17
	Po	84	9102	14	4105	17	-21233 -24398	19	13111	19	7939	19	12576	18
								17						
	At	85	7784	25	1854	24	*		16777	24	9510	23	15187	27
	Rn	86	9888	20	3097	13	*		13331	29	7683	11	14197	9
	-	0-												
	Fr Ra	87 88	8340 10680	25 40	530 2109	30 16	*		17590 13671	30 17	9540 7332	60 18	17043 15780	26 50

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(o	2)	$Q(2\beta$	-)	$Q(arepsilon_{arphi}$))	$Q(\beta^{-}$	n)
201	Os Ir	76 77	10900# 11640#	360# 200#	* 19620#	450#	-2530# -1820#	500# 360#	8500# 6500#	300# 200#	*		-1700# -1370#	360# 200#
	Pt	78	12490	50	17840#	200#	-860#	200#	3920	50	-12250#	300#	-4570 -4570	60
	Au	79	13450	3	16580	40	-562	20	780	15	-12080#	200#	-4969	3
	Hg	80	14259.1	0.6	14851.8	2.2	332.3	0.8	-2392	14	-8352	20	-8687	6
	Τĺ	81	15260	30	12665	14	1534	14	-5764	21	-7230	30	-9001	18
	Pb	82	16182	17	10303	14	2844	14	-8750	15	-3057	14	-12972	26
	Bi	83	16762	18	7930	30	4500	6	-10627	17	-1658	16	-12546	17
	Po	84	17455	19	5867	11	5799.3	1.7	-12450	50	2441	12	-15605	25
	At	85	18109	10	4570	13	6472.8	1.6	-14378	12	2292	24	-14856	16
	Rn	86	18720	60	3440	50	6860.7	2.3	-16010	50	5580	50	-18280	60
	Fr	87	19325	16	2166	11	7519	4	*		5287	26	*	
	Ra	88	*		1140	40	8002	12	*		8653	24	*	
202	Os	76	10450#	500#	*		*		9610#	400#	*		-1260#	450#
	Ir	77	11310#	360#	*	200"	-2060#	500#	7580#	300#	*	20011	-1110#	300#
	Pt	78	12240	30	18490#	300#	-1280#	200#	4653	25	-14740#	300#	-4363	25
	Au	79	13260	40	17320#	200#	-960#	200#	1627	23	-11750#	200#	-4762	23
	Hg	80	13984.7	0.6	15324	20	133.8	2.2	-1405	4	-10890	50	-8236	14
	Tl Pb	81	15076 15832	6	13318 11015	27	1175.6 2589	1.7 4	-5239 -7999	15 9	$-6868 \\ -5567$	4	$-8780 \\ -12595$	14
	Po Bi	82 83	15832	12 27	8272	4 16	4362	4 17	- 7999 - 10150	30	-3567 -850	4 21	-12393 -12292	16 16
	Po	84	17142	11	6269	14	5701.0	1.7	-10130 -11667	20	-830 40	16	-1523	12
	At	85	17750	40	4800	40	6353.8	1.7	-13687	29	3540	30	-13223 -14590	60
	Rn	86	18413	22	3911	19	6773.8	1.8	-15349	23	2958	18	-17935	20
	Fr	87	19180	30	2494	25	7386	4	*	23	6597	11	-16912	21
	Ra	88	*	50	1498	20	7880	7	*		5860	50	*	-1
203	Os	76	8540#	500#	*		*		11990#	450#	*		1070#	500#
	Ir	77	10940#	450#	*		-2250#	570#	8450#	400#	*		-70#	400#
	Pt	78	12030#	200#	18970#	360#	-1570#	280#	5640#	200#	-13830 #	450#	-3350#	200#
	Au	79	12885	4	17830#	200#	-1170	40	2618	3	-13660 #	300#	-3869	3
	Hg	80	13749.4	1.6	16110	50	-305.5	2.7	-483	7	-9866	25	-7360.4	2.0
	Tl	81	14723	14	13939	3	907.4	1.2	-4237	13	-8697	23	-7892	4
	Pb	82	15658	15	11702	7	2335	7	-7476	11	-4730	7	-12116	17
	Bi	83	16251	20	8922	19	4110	30	-9362	17	-2834	13	-11655	15
	Po	84	16932 17516	10	6618	16	5496	5	-11157 -13039	20	1341 1290	9	-14791 -13959	29 20
	At	85	18220	13 50	5324 4210	19 19	6210.1 6629.9	0.8 2.1	-13039 -14820	12 40	4499	19 20	-13939 -17321	20 19
	Rn Fr	86 87	18855	11	2912	19	7275	4	-1482U *	40	4178	29	-17321 -16270	16
	Ra	88	19420	40	1840	60	7736	6	*		7650	40	-10270 *	10
204	Ir	77	9050#	500#	*		*		10960#	450#	*		1870#	450#
-01	Pt	78	11370#	200#	19410#	450#	-1570#	360#	6770#	200#	-17570#	450#	-2850#	200#
	Au	79	12440#	200#	18450#	360#	-1460#	280#	3700#	200#	-13250#	450#	-3450#	200#
	Hg	80	13487.5	0.7	16576	25	-516	20	419.7	1.2	-12350#	200#	-7000.1	1.2
	Tl	81	14508.6	1.6	14571	23	469	27	-3700	9	-8492	3	-7631	6
	Pb	82	15312	4	12342.5	1.1	1968.5	1.1	-6769	11	-7129.6	1.3	-11656	13
	Bi	83	16047	18	9244	9	3976	11	-8770	24	-2173	9	-11406	13
	Po	84	16542	14	6979	12	5484.9	1.4	-10371	13	-844	13	-14250	15
	At	85	17430	40	5712	27	6070.4	1.2	-12480	30	2360	26	-13793	29
	Rn	86	17838	19	4607	11	6546.7	1.8	-14027	17	2052	11	-16918	10
	Fr	87	18632	26	3380	40	7170.3	2.4	*		5481	27	-16130	50
	Ra	88	19161	21	2247	23	7637	7	*		4922	24	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(p))	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
205	Ir	77	4340#	640#	*		17860#	500#	12390#	640#	11990#	640#	*	
203	Pt	78	3120#	360#	10570#	500#	10800#	300#	12430#	500#	8670#	420#	5770#	500#
	Au	79	6190#	280#	8140#	280#	2300#	200#	11570#	280#	8790#	200#	3650#	360#
	Hg	80	5669	4	8930#	200#	-4766	11	11567	5	6929	24	6051	25
	Tl	81	7546.0	0.5	6419.7	1.3	-10849	15	12159.2	1.3	8388.5	1.2	6179	23
	Pb	82	6731.66	0.11	6713.06	0.21	-16060	5	12701.9	0.4	7074.0	1.6	9221.5	1.1
	Bi	83	8490	11	3244	5	-19755	9	14433	8	9740	6	10562	5
	Po	84	7251	15	4164	14	-23360	70	14714	16	8084	18	14066	11
	At	85	9168	27	1920	19	-27080	50	15050	17	9834	17	13416	21
	Rn	86	7811	9	3123	23	*		15164	12	7745	28	15878	10
	Fr	87	9988	26	629	11	*		15555	20	9829	19	14927	29
	Ra	88	8290	70	2060	70	*		15670	70	7610	70	17760	70
	Ac	89	*		-760	50	*		16160	60	9900	50	16660	50
206	Pt	78	4740#	420#	10960#	590#	14150#	300#	10770#	500#	9920#	500#	3660#	500#
	Au	79	3520#	360#	8540#	420#	5810#	300#	14420#	360#	10280#	360#	6120#	500#
	Hg	80	6729	21	9470#	200#	-2757	21	10420#	200#	7062	21	4330#	200#
	Tl	81	6503.8	0.4	7255	4	-9824	15	13147.6	1.3	7880.0	1.4	6536	3
	Pb	82	8086.66	0.06	7253.7	0.5	-14653	9	11271.37	0.21	6839.8	0.4	7130.1	1.3
	Bi	83	7035	9	3547	8	-18786	29	15792	8	9622	10	11380	8
	Po	84	8739	11	4413	6	-21754	18	13168	10	8200	13	12244	8
	At	85	7529	21	2197	18	-25910	50	16622	19	9745	17	14742	20
	Rn	86	9494	10	3450	17	*		13453	24	7894	14	13824	12
	Fr	87	8004	29	822	29	*		17439	29	9780	30	16570	30
	Ra	88	10340	70	2414	20	*		13670	30	7553	19	15366	26
	Ac	89	8700	70	-350	90	*		18130	50	9680	60	18250	50
07	Pt	78	2980#	500#	*		17910#	400#	12130#	640#	10010#	570#	*	
	Au	79	4670#	420#	8470#	420#	9250#	300#	12870#	420#	11980#	360#	4520#	500#
	Hg	80	3610	40	9560#	300#	660	30	12990#	200#	9030#	200#	7080#	200#
	Tl	81	6852	5	7378	21	-7807	14	11964	7	8520	5	5260#	200#
	Pb	82	6737.78	0.10	7487.7	0.6	-13817	9	12079.6	0.5	6758.15	0.23	7884.5	1.2
	Bi	83	8098	8	3558.0	2.1	-17210	18	14426.4	2.1	9919.3	2.1	9937.9	2.1
	Po	84	7028	8	4406	10	-20690	50	14630	8	8364	11	13611	7
	At	85	8869	19	2328	13	-24370	50	15005	16	9978	17	13065	15
	Rn	86	7573	12	3494	17	*		15048	17	8105	24	15353	14
	Fr	87	9670	30	1000	19	*		15576	18	9990	19	14677	28
	Ra Ac	88 89	8090 10400	60 70	$2500 \\ -290$	60 50	*		15570 16020	50 90	7800 9950	60 50	17160 16190	50 60
208	Pt						20760#	400#			9830#	640#		
200		78 79	4520# 3360#	570# 420#	* 8850#	500#	20760# 12770#	400# 300#	* 14240#	420#	9830# 11730#	640# 420#	* 5510#	590#
	Au Hg	79 80	3360# 4850	420# 40	8830# 9740#	300#	4200	300#	14240# 11660#	420# 300#	10370#	200#	5350#	300#
	нg Tl	80 81	4830 3787	40 6	9740# 7552	300#	-4200 -4280	30 9	14906	20	10370#	200# 4	3330# 7670#	200#
	Pb	82	7367.87	0.05	8003	5	-4280 -12093	11	11215.6	0.6	6936.3	0.5	6186	200# 4
	Bi	83	6886.9	2.7	3707.1	2.0	-12093 -16204	12	15626.2	2.0	9764.1	2.0	10597.1	2.0
	Po	84	8395	7	4703.9	2.5	-16204 -19197	9	13020.2	8	9764.1 8459	5	10397.1	1.3
	Po At	84 85	7314	15	2613	2.5 11	-19197 -23220	60	16430	8 10	8439 9916	13	14241	10
	Aı Rn	86	9092	13	3717	17	-25220 -26340	40	13485	19	8180	19	13512	15
	Fr	87	7893	21	1320	15		40	17178	15	9908	13	15952	19
			7893 9890		2717		*		13681		7908 7902		15084	19
	Ra	88		50		20	*		13681	30	7902 9780	12 90	15084 17710	
	Ac	89	8460	80	80	80	*			60				60
	Th	90	*		1750	60	*		13920	60	7440	60	16490	80

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

205 Ir	A	Elt.	Z	S(2	n)	S(2)	p)	Q(o	<i>(</i>)	$Q(2\beta$	-)	$Q(arepsilon_{ m I}$)	$Q(oldsymbol{eta}^-$	n)
Hg 80 13161 13	205						500#		420#						
Hg													450#		
Pb R2 15126				13161		17240#	200#	-970		1482			200#		
Bi		Tl	81	14202.1	0.5	15255		155	3	-2756	5	-10460 #	200#	-6782.3	0.5
Po											10				
Rn															
Rn															
Fr															
Ra															
Ac. Ref Ref											50				17
Higher Reference Higher Reference Higher Higher Reference Higher Reference Higher Reference Higher Reference Higher Higher Reference Higher Higher					80										
Hg	206														
Ti 81 14049,9 0.6 16180# 200# -325 23 -2225 8 -10770# 200# -65544 0.6 Pb 82 14818,33 0.12 13673.4 1.2 1134.8 1.1 -5597 4 -8787 4 -10792 5 Bi 83 15525 12 10260 8 3527 8 -7599 17 -3496 8 -10578 13 Po 84 15990 12 7657 4 5327.0 1.3 -9056 9 -1707 4 -13288 16 At 85 16697 27 6362 18 5887 5 -11190 30 1346 16 -12791 16 Rn 86 17305 11 5370 14 6383.7 1.6 -12699 20 1099 13 -15894 12 Fr 87 17990 40 3940 40 6923 4 -14720 60 4440 30 -15150 80 Ra 88 18634 24 3042 19 7415 4 * * 3986 19 -18610 50 Ac 89 * 1710 60 7960 50 * * 7500 50 * 207 Pt 78 7720# 500# * * 680# 570# 11950# 400# * 1600# 500# Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 Hg 80 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -2305 30 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 6 -14110# 300# -2305 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 6 -14110# 300# -2305 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -1390 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * * 5390 50 -18010 70 Au 79 8030# 420# * 1160# 500# 10650# 300# * 12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -1256 6 -9796 7 Po 84 15424 4 4 8262.0 3051.0 2.0 -6400 9 -1256 6 -9796 7 Po 84 15424 4 8262.0 300# 2200# 8480 30 -15100# 400#															
Pb 82															
Bi															
Po															
At 85 16697 27 6362 18 5887 5 -11190 30 1346 16 -12791 16 Rn 86 17305 11 5370 14 6383.7 1.6 -12699 20 1099 13 -15894 12 Fr 87 17990 40 3940 40 6923 4 -14720 60 4440 30 -15150 80 Ra 88 18634 24 3042 19 7415 4 * * 3986 19 -18610 50 Ac 89 * 1710 60 7960 50 * * 7500 50 * * 1000 50 Ac 89 * 1710 60 7960 50 * * 7500 50 * * 1000 50 Ac 89 * 1710 60 7960 50 * * 7500 50 * * 1000 50 Ac 89 * 1710 60 7960 50 * * 7500 50 * * 1000 50 Ac 89 * 180# 360# 19430# 590# 1460# 570# 11920# 300# * 2006# 300# * 2006# 300# Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 T1 811 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -5320 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5900.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 8582 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2266 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 50 2266 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -1481 25 Ra 88 18440 90 3320 50 7270 50 * 50 20 266 23 -14310 70 80 20 20 20 20 20 20 20 20 20 20 20 20 20															
Rn															
Fr 87 17990 40 3940 40 6923 4 -14720 60 4440 30 -15150 80 Ra 88 18634 24 3042 19 7415 4 * 3986 19 -18610 50 Ac 89 * 1710 60 7960 50 * 7500 50 * * 207 Pt 78 7720# 500# * 680# 570# 11950# 400# * 1600# 500# Au 79 8180# 360# 19430# 590# 1460# 500# 10220# 300# * 2060# 300# Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 T1 81 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -5320 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 1050# 400# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 500# 10650# 300# Au 79 8030# 420# * 1160# 300# 420# 120.1 2.6 -13230# 300# -2369.4 1.7 Bi 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 P0 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 106665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Au 78 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Au 89 18870 80 2580 60 7720 50 * 1060# 40 3074 12 -17490 50															
Ra 88 18634 24 3042 19 7415 4 * 3986 19 -18610 50 207 Pt 78 7720# 500# * 680# 570# 11950# 400# * 1600# 500# Au 79 8180# 360# 19430# 590# 1460# 500# 10220# 300# * 2060# 300# Hg 80 10340 30 18100# 300# 7 100# 5965 30 -14150# 300# -2305 30 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5906.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5															
Ac 89 * 1710 60 7960 50 * 7500 50 *											00				
Au 79 8180# 360# 19430# 590# 1460# 500# 10220# 300# * 2060# 300# Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 TI 81 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -5320 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13															
Hg 80 10340 30 18100# 300# 710# 200# 5965 30 -14150# 300# -2305 30 TI 81 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -5320 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 5100 60 * 208 Pt 78 7500# 500# * * * * * * * * *	207						500#								
TI 81 13356 5 16840# 200# -316 6 -980 6 -14110# 300# -5320 5 Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 5100 60 * Pt 78 7500# 500# *													300#		
Pb 82 14824.44 0.11 14742 4 392.3 1.3 -5306 7 -8795 20 -10495 8 Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50		_													
Bi 83 15133 6 10811.7 2.1 3281.8 2.1 -6827 13 -5090.2 2.1 -9937 5 Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 <															
Po 84 15767 12 7953 7 5215.9 2.5 -8511 11 -649 7 -12787 16 At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 *															
At 85 16398 19 6741 13 5872 3 -10383 21 -488 15 -12166 15 Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 12280# 400# * 1750# 500# Au 79 8030# 420# * 1160# 500# 10650# 300# * 2320# 300# Hg 80 8460 40 18210# 300# 2230# 200# 8480 30 -16010# 400# -300 30 T1 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 **															
Rn 86 17068 10 5691 13 6251.2 1.6 -12180 50 2265 9 -15464 29 Fr 87 17677 19 4450 23 6893 20 -13990 50 2296 23 -14481 25 Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 5100 60 * 208 Pt 78 7500# 500# * 1160# 500# 10650# 300# * 2320# 300# Hg 80 8460 40 18210# 300# 2230# 200# 8480 30 -16010# 400# -300 30 T1 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 * *		At	85		19			5872	3		21		15		
Ra 88 18440 90 3320 50 7270 50 * 5390 50 -18010 70 Ac 89 19100 70 2120 50 7840 50 * 5100 60 * Pt 78 7500# 500# * 1160# 500# 10650# 300# * 2320# 300# Hg 80 8460 40 18210# 300# 2230# 200# 8480 30 -16010# 400# -300 30 T1 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 **		Rn	86	17068	10	5691	13	6251.2	1.6	-12180	50	2265	9	-15464	29
Ac 89 19100 70 2120 50 7840 50 * 5100 60 * 208 Pt 78 7500# 500# *		Fr								-13990	50				
208 Pt 78 7500# 500# *		Ra								*				-18010	70
Au 79 8030# 420# * 1160# 500# 10650# 300# * 2320# 300# Hg 80 8460 40 18210# 300# 2230# 200# 8480 30 -16010# 400# -300 30 TI 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12		Ac	89	19100	70	2120	50	7840	50	*		5100	60	*	
Hg 80 8460 40 18210# 300# 2230# 200# 8480 30 -16010# 400# -300 30 TI 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14	208								500#						
TI 81 10639.4 1.8 17110# 300# 1480# 200# 2120.1 2.6 -13230# 300# -2369.4 1.7 Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 *							300#						400#		
Pb 82 14105.65 0.11 15381 20 516.6 1.2 -4279.0 1.3 -12550 30 -9765.3 2.1 Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717		_													
Bi 83 14985 8 11194.8 2.0 3051.0 2.0 -6400 9 -5125 6 -9796 7 Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 **															
Po 84 15424 4 8262.0 1.3 5215.4 1.3 -7814 11 -2306.5 1.3 -12313 13 At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 *															
At 85 16183 17 7020 12 5751.1 2.2 -9804 15 296 9 -11906 12 Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 *															
Rn 86 16665 14 6045 12 6260.7 1.7 -11383 14 201 13 -14883 21 Fr 87 17570 30 4814 19 6785 24 -13420 60 3273 17 -14280 50 Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 *															
Ra 88 17980 20 3717 12 7273 5 -14960 40 3074 12 -17490 50 Ac 89 18870 80 2580 60 7720 50 * 6310 60 *															
Ac 89 18870 80 2580 60 7720 50 * 6310 60 *		Fr	87	17570	30	4814	19	6785	24	-13420	60	3273	17	-14280	50
		Ra			20		12		5	-14960	40	3074	12	-17490	50
Th 90 * 1460 40 8200 30 * 5850 60 *				18870	80					*				*	
		Th	90	*		1460	40	8200	30	*		5850	60	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta)$	_)	Q(d,	α)	Q(p,	α)	Q(n)	,α)
209	Au	79	4510#	500#	8840#	570#	15720#	400#	12710#	570#	11960#	500#	*	22011
	Hg	80	3450#	150#	9830#	330#	7720#	150#	12880#	340#	10430#	330#	6630#	330#
	Tl Db	81	4966 3937.4	6 1.3	7670 8153 5	30	$-762 \\ -8674$	8	13550	30 6	12165 9502.8	21 1.4	6220# 8978	300#
	Pb Bi	82 83	7459.8	1.5	8153.5 3799.0	2.1 0.8	-8674 -14489	10 15	14131 14904.2	0.8	10391.0	0.8	9641.1	20 0.8
	Po	84	6967.8	1.9	4784.8	2.4	-18224	6	14399.3	2.5	8526	8	13065.9	1.4
	At	85	8484	10	2702	5	-21730	50	14974	8	10170	6	12792	9
	Rn	86	7357	15	3760	13	-25310#	140#	14997	16	8353	18	14894	11
	Fr	87	9175	19	1403	18	*	14011	15576	17	10227	17	14307	21
	Ra	88	7941	11	2765	13	*		15413	18	7965	29	16638	10
	Ac	89	9980	80	170	50	*		16010	70	10140	50	15730	60
	Th	90	8390#	140#	1680#	150#	*		15930#	150#	7750#	150#	18450#	140#
210	Au	79	3200#	570#	*		17120#	400#	14030#	570#	11730#	570#	*	
	Hg	80	4790#	250#	10110#	450#	10590#	200#	11450#	360#	10310#	360#	4820#	450#
	Tl	81	3674	13	7890#	150#	2725	14	14730	30	12100	30	7210#	300#
	Pb	82	5185.2	1.3	8373	6	-5124	5	12732.4	1.9	11170	5	7405	30
	Bi	83	4604.63	0.08	4466.3	1.1	-11459	15	17667.4	0.8	12524.1	0.8	11889	5
	Po	84	7658.4	1.4	4983.4	0.8	-16396	9	13627.9	2.0	8965.5	2.1	12145.31	0.12
	At	85	7161	9	2895	8	-20760	60	16208	8	10038	10	13729	8
	Rn	86	8735	11	4011	7	-23664	19	13576	10	8487	13	13187	8
	Fr	87	7635	21	1681	18	*		17033	19	10166	17	15541	20
	Ra	88	9487 8130	11 80	3077 360	17 60	*		13820 17770	15	8151 10110	20	14724 17280	13 60
	Ac Th	89 90	10380#	140#	2070	50	*		14020	60 60	7780	80 50	16160	60
211	Hg	80	3330#	280#	10240#	450#	11810#	200#	12630#	450#	10340#	360#	6010#	450#
	Τl	81	4900	40	8000#	200#	5570	40	13280#	160#	12050	50	5670#	300#
	Pb	82	3835.8	2.6	8535	12	-1738	7	13863	6	11121.2	2.7	8420	30
	Bi	83	5138	5	4420	5	-7719	13	16466	6	14754	5	10537	6
	Po	84	4550.8	0.5	4929.6	0.9	-13265	8	16536.9	0.9	11301.7	2.1	14962.4	0.5
	At	85	7746	8	2983.1	2.5	-18850	50	15429.6	2.8	10686.4	2.8	12869	3
	Rn	86	7222	8	4072	10	-22670	70	14838	8	8579	11	14361	7
	Fr	87	8878	19	1824	13	-26220 #	100#	15512	16	10379	16	13976	15
	Ra	88	7682	12	3124	17	*		15312	17	8362	14	16134	14
	Ac	89	9660	80	530	50	*		16050	50	10340	50	15510	50
	Th	90	8220	80	2170	90	*		15780	90	8020	90	17830	70
	Pa	91	*		−730#	100#	*		16420#	170#	10260#	110#	16970#	120#
212	Hg	80	4690#	360#	*	2004	13130#	300#	11140#	500#	10160#	500#	*	450#
	Tl Db	81	3540# 5127.2	210#	8220#	280#	7080#	200#	14530#	280#	11960#	250#	6640#	450# 150#
	Pb	82	5127.2	2.5 6	8760 4014 0	40	1111	3 9	12409	12	10960	6	6740#	150#
	Bi Po	83 84	4330 6008.2	0.5	4914.0 5799	2.7 5	-4602 -10171		17321.4 15133.3	1.9	14360.7 12753.2	2.1	11173 12891.6	6 1.3
	Po At	84 85	5052	3	3484.6	2.2	-10171 -15910	11 50	18035.7	0.8 2.1	12/33.2	0.8 2.5	15276.8	2.0
	Rn	86	7976	3 7	4301	4	-13910 -20770	10	14023	8	9087	6	13353	3
	Fr	87	7447	15	2050	11	-25770 -25110	80	16800	10	10289	13	15013	10
	Ra	88	9102	14	3348	16	-23110 *	50	13845	19	8435	18	14388	15
	Ac	89	8000	70	840	50	*		17550	50	10280	50	16690	50
	Th	90	9870	70	2380	50	*		14030	60	8130	50	15899	12

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2:	n)	S(2)	p)	Q(α)	$Q(2\beta)$	-)	$Q(arepsilon \mathrm{p}$)	$Q(\beta^-$	n)
209	Au Hg	79 80	7870# 8300#	500# 150#	* 18680#	430#	1000# 1900#	640# 330#	11110# 8970#	400# 150#	* -14940#	430#	2650# 40#	400# 150#
	Tl	81	8753	8	17410#	300#	2700#	200#	4614	6	-14830 #	300#	33	6
	Pb	82	11305.2	1.3	15705	30	2248	4	-1248.6	1.9	-11640	30	-6815.7	2.2
	Bi	83	14346.7	2.0	11802	5	3137.3	0.8	-5376	5	-8797.5	1.8	-8860.4	1.5
	Po	84	15363	7	8492.0	1.4	4979.2	1.4	-7425	10	-1906.5	1.4	-11968	9
	At	85	15798	13	7406	6	5757.0	2.0	-9113	16	-1301	5	-11298	12
	Rn	86	16449	13	6373	12	6155.4	2.0	-10799	11	1240	10	-14346	15
	Fr	87	17068	23	5120	19	6777	4	-12610	50	1411	17	-13569	17
	Ra	88	17830	50	4085	10	7143.1	2.7	-14510#	140#	4225	13	-16970	60
	Ac	89	18450	70	2890	50	7730	50	*		4220	50	-15910	60
	Th	90	*		1760#	150#	8100#	140#	*		7350#	140#	*	
210	Au	79	7710#	500#	*		*		11580#	400#	*		2900#	430#
	Hg	80	8240#	200#	18950#	450#	1840#	360#	9360#	200#	*		210#	200#
	Tl	81	8639	12	17720#	300#	2540#	300#	5545	12	-14000#	400#	296	12
	Pb	82	9122.5	0.9	16040	30	3792	20	1224.6	0.9	-13370#	150#	-4541.2	0.5
	Bi	83	12064.4	1.9	12619.8	1.8	5036.5	0.8	-2820	8	-8436	6	-6497.2	1.6
	Po	84	14626.2	1.3	8782.48	0.13	5407.53	0.07	-6348	5	-5627.5	1.3	-11142	5
	At	85	15645 16092	12	7680 6713	8 5	5631.2 6159.0	1.0 2.2	-8639 -10048	17	$-1002 \\ -528$	8 5	-11102 -13907	13 15
	Rn Fr	86 87	16810	12 19	5441	18	6672	5	-10048 -12120	10 60	-328 2260	16	-13907 -13263	16
	Ra	88	17428	13	4480	14	7151	3	-12120 -13617	21	2095	14	-15203 -16470	50
	Ac	89	18110	80	3120	60	7610	50	-13017 *	21	5270	60	-10470 -15650#	150#
	Th	90	18770	40	2246	21	8069	6	*		4912	20	*	150π
211	Hg	80	8120#	250#	*		1490#	450#	9870#	200#	*		550#	200#
	Tl	81	8580	40	18120#	400#	2310#	300#	5780	40	-15700#	400#	580	40
	Pb	82	9020.9	2.7	16430#	150#	3570	30	1939.6	2.5	-12420#	200#	-3772.3	2.5
	Bi	83	9743	5	12792	8	6750.4	0.5	-212	6	-9901	13	-3977	5
	Po	84	12209.1	1.5	9395.9	1.4	7594.6	0.5	-3677	7	-4993.0	1.0	-8532	8
	At	85	14907	6	7966.5	2.4	5982.4	1.3	-7507	12	-4144.3	2.4	-10114	5
	Rn	86	15957	12	6967	7	5965.5	1.4	-9587	10	-91	7	-13494	17
	Fr	87	16513	19	5836	13	6662	3	-11340	50	543	14	-12654	15
	Ra	88	17169	10	4805	13	7042	3	-13080	70	3148	9	-16030	60
	Ac	89	17780	70	3610	50	7620	50	-14880 #	120#	3250	60	-14930	60
	Th	90	18600#	160#	2530	70	7940	50	*		6180	70	*	
	Pa	91	*		1340#	110#	8510#	110#	*		6000#	120#	*	
212	Hg	80	8020#	360#	*		1320#	500#	10310#	300#	*		760#	300#
	Tl	81	8450#	200#	18460#	450#	2130#	360#	6570#	200#	*		870#	200#
	Pb	82	8963.0	2.1	16760#	200#	3290	30	2820.6	1.9	-14210 #	200#	-3761	6
	Bi	83	9468.6	1.8	13449	12	6207.26	0.03	510.3	2.7	-9330	40	-3756.7	1.7
	Po	84	10558.98	0.17	10218.9	0.9	8954.20	0.11	-1709.9	2.9	-7165.5	2.4	-6793.5	2.5
	At	85	12799	8	8414.2	2.0	7817.1	0.6	-5112	9	-4058	6	-7944	7
	Rn	86	15197	6	7284.4	2.9	6385.1	2.6	-8461	12	-3516.0	3.0	-12591	12
	Fr	87	16325	18	6122	12	6529.0	1.6	-10790	50	842	9	-12419	12
	Ra	88	16784	14	5172	12	7031.7	1.7	-12310	15	1267	13	-15470	50
	Ac	89	17660	80	3970	50	7520	50	-14320	90	4130	50	-14700	90
	Th	90	18091	21	2910	14	7958	5	*		3990	13	-18040#	100#
	Pa	91	*		1770	90	8420	50	*		7100	90	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n	1)	S(I	p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
213	Hg	80	3160#	420#	*		14320#	300#	*		10200#	500#	*	
	Τĺ	81	4740#	200#	8260#	300#	8363	27	13120#	200#	12010#	200#	5100#	400#
	Pb	82	3726	7	8940#	200#	2492	8	13590	40	10907	13	7810#	200#
	Bi	83	5185	5	4972	5	-1679	7	15972	5	14361	5	9662	13
	Po	84	4355.4	2.9	5825	3	-6999	10	15916	6	13002.4	2.8	13721.3	2.8
	At	85	6023	5	3499	5	-12734	16	16564	5	14238	5	13859	5
	Rn	86	5108	4	4357	4	-17816	10	16662	4	11140	8	15904	3
	Fr	87	8108	10	2182	6	-23220	70	15913	8	10916	7	14066	9
	Ra	88	7527	15	3427	13	*		15197	15	8543	18	15597	11
	Ac	89	9190	50	935	19	*		16033	17	10576	18	15134	21
	Th	90	8062	14	2450	50	*		15630	50	8190	60	17324	13
	Pa	91	10000	100	-260	70	*		16460	100	10470	70	16520	90
214	Hg	80	4560#	500#	*		15650#	400#	*		*		*	
	Tl	81	3390#	200#	8490#	360#	9840#	200#	14420#	360#	11950#	280#	*	
	Pb	82	5051	7	9256	27	4137	9	12080#	200#	10760	40	6090#	200#
	Bi	83	4040	12	5286	13	-242	14	17059	11	14156	11	10520	40
	Po	84	5887.8	2.8	6527	5	-4563	5	14358.7	1.9	12253	5	11669.3	2.6
	At	85	4872	6	4015	5	-9824	16	17700	4	13917	4	14126	7
	Rn	86	6695	10	5029	10	-15015	14	15019	9	12192	9	13759	9
	Fr	87	5477	10	2552	9	-20440	80	18412	9	12661	11	16335	9
	Ra	88	8324	11	3643	7	*		14320	10	9097	13	14495	9
	Ac	89	7782	22	1191	18	*		17354	19	10476	17	16231	19
	Th	90	9497	14	2749	19	*		14130	50	8360	50	15509	13
	Pa	91	8250	100	-80	80	*		18090	80	10440	110	17930	90
215	Hg	80	3040#	570#	*		16750#	400#	*		*		*	
	Tl	81	4630#	360#	8560#	500#	11170#	300#	12960#	420#	12020#	420#	*	
	Pb	82	3550	50	9410#	200#	5510	50	13270	60	10760#	210#	7230#	300#
	Bi	83	5241	13	5477	6	1311	9	15544	9	14042	6	8830#	200#
	Po	84	4143.0	2.5	6630	11	-3075	8	15401	5	12440.3	2.6	12653.5	2.3
	At	85	5947	8	4075	7	-7286	14	16109	7	13978	7	12509	7
	Rn	86	4920	12	5078	9	-12090	12	16122	9	12324	8	14847	8
	Fr	87	6795	11	2651	11	-17550	70	16725	8	13842	8	14593	7
	Ra	88	5630	9	3797	11	-22390	90	16797	9	10914	12	16840	8
	Ac	89	8485	20	1351	13	*		16396	16	11094	17	15193	15
	Th	90	7845	14	2811	18	*		15478	18	8510	50	16767	14
	Pa	91	9690	110	120	70	*		16450	70	10620	70	16230	90
	U	92	*		1850	120	*		15970	110	8190	120	18460	90
216	Hg	80	4420#	570#	* 9790#	500#	18080#	400#	* 1.4250#	500#	* 11020#	420#	*	
	Tl Pb	81 82	3270#	420#	8780#	500#	12460#	300#	14250#	500#	11920#	420#	*	260#
			4930#	200#	9720#	360#	7230#	200#	11730#	280#	10560#	200#	5460#	360#
	Bi	83	3827	13	5760	50	2903	12	16768	11	13942	13	9737	29
	Po	84	5747.2	2.3	7136	6	-1509	9	13694	11	11878	5	10632	7
	At D.	85	4559	8	4491	4	-5888 10045	11	17438	4	13774	4	13135	6
	Rn	86	6650	10	5780	9	-10045	13	14344	7	11697	8	12553	7
	Fr	87	5418	8	3149	9	-14830	50	18001	10	13531	5	15197	6
	Ra	88	7314	11	4316	11	-19775	29	14961	12	11708	10	14634	9
	Ac	89	5958	16	1678	13	*		18762	12	12663	15	17344	12
	Th	90	8695	15	3021	17	*		14565	20	9008	19	15599	16
	Pa	91	8140	90	410	50	*		17820	50	10540	50	17290	60
	U	92	9930	90	2090	80	*		14290	80	8270	80	16593	30

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(α)	$Q(2\beta$	-)	$Q(arepsilon_{ m I}$	o)	$Q(eta^-$	n)
213	Hg Tl	80 81	7850# 8280	360# 50	*		* 1900#	400#	10870# 7015	300# 27	*		1150# 1261	360# 27
	Pb	82	8853	7	17160#	200#	3020#	150#	3450	8	-13250 #	300#	-3157	7
	Bi	83	9515	7	13730	40	5988	3	1348	7	-10970 #	200#	-2933	5
	Po	84	10363.6	2.9	10739	4	8536.1	2.6	-958	4	-6394	3	-6097	3
	At	85	11075	5	9298	7	9254	5	-3027	7	-5751	5	-5991	6
	Rn	86	13083	7	7841	3	8245.2	2.9	-6042	10	-2616	3	-10251	9
	Fr	87	15555	13	6484	6	6904.9	1.2	-9708	16	-2214	6	-11425	12
	Ra	88	16629	13	5477	12	6861.7	2.3	-11775	13	1716	10	-15000	50
	Ac	89	17190	60	4283	19	7499	4	-13510	70	2382	18	-14027	18
	Th	90	17930	70	3290	12	7837	7	*		5030	15	-17540	80
	Pa	91	18560#	130#	2120	90	8390	50	*		5100	90	*	
214	Hg	80	7720#	500#	*		*		11360#	400#	*		1320#	400#
	Tl	81	8130#	280#	*	200"	1710#	450#	7670#	200#	*	200"	1600#	200#
	Pb	82	8776.6	2.0	17520#	300#	2760#	200#	4287.3	2.3	-15140#	300#	-3022	5
	Bi	83	9225	11	14230#	200#	5621	3	2179	12	-10274	29	-2618	12
	Po	84	10243.2	0.9	11499.1	2.1	7833.54	0.06	-150	9	-8555	7	-5962	5 5
	At	85	10894	5	9840	4	8987	4	-2421	10	-5437	7	-5755	
	Rn	86	11803	10	8528	9	9208	9	-4412	11	-4955	10	-8838	10
	Fr	87 88	13585 15851	12 12	6908 5826	9	8589 7272.6	4	-7403 -10602	18 12	-1668 -1500	10 6	-9376 -14133	13
	Ra					6		2.6 2.5						16
	Ac Th	89 90	16980 17559	50 15	4618 3684	18 15	7352.1 7827	2.5 5	-13040 *	80	2708 3060	16 14	$-13748 \\ -17040$	18 70
	Pa	91	18250	110	2370	90	8270	50	*		6040	80	*	70
215	Hg	80	7600#	500#	*		*		11870#	400#	*		1670#	450#
	Tl	81	8020#	300#	*		*		8280#	300#	*		2020#	300#
	Pb	82	8600	50	17900#	300#	2540#	200#	4880	50	-14130 #	400#	-2530	50
	Bi	83	9282	7	14732	28	5280	40	2885	9	-12120 #	200#	-1972	6
	Po	84	10031	4	11916	7	7526.3	0.8	627	8	-7647.9	2.5	-5233	5
	At	85	10819	8	10602	8	8178	4	-1574	10	-7344	13	-5007	11
	Rn	86	11615	8	9093	8	8839	8	-3702	11	-3987	8	-8281	11
	Fr	87	12272	9	7680	8	9540	7	-5713	14	-3591	8	-7846	9
	Ra	88	13954	12	6348	8	8864	3	-8388	12	-435	12	-11981	17
	Ac	89	16267	20	4994	13	7746	3	-11830	70	-300	15	-12736	16
	Th	90	17341	13	4002	13	7665	4	-14000	90	3540	10	-16640	80
	Pa	91	17940	100	2870	70	8240	50	*		4130	70	*	
	U	92	*		1770	90	8590	50	*		6940	90	*	
216	Hg	80	7460#	570#	*		*		12380#	450#	*		1880#	500#
	Tl	81	7890#	360#	*		*		8840#	300#	*		2300#	300#
	Pb	82	8480#	200#	18280#	450#	2300#	360#	5700#	200#	-16020#	450#	-2220#	200#
	Bi	83	9068	16	15170#	200#	5000#	200#	3617	12	-11330#	300#	-1656	11
	Po	84	9890.2	2.1	12612.8	2.0	6906.4	0.5	1530	6	-9850	50	-5033	7
	At	85	10506	5	11121	12	7950	3	-714	5	-6662	7	-4646	8
	Rn	86	11570	11	9855	6	8197	6	-3038	10	-6494	6	-8137	9
	Fr	87	12213	9	8227	6	9174	3	-5173	12	-3062	8	-7634	9
	Ra	88	12944	10	6967	13	9526	8	-7007	15	-2829	12	-10811	15
	Ac	89	14442	19	5475	14	9235	6	-9650	50	537	13	-10849	14
	Th	90	16539 17830	16	4372	13	8072 8097	4 15	-12770	30	476 4480	14	-15640 -15200	70 100
	Pa	91 92		90	3220 2210	60	8531	15 26	*		4480 4856	50 29		100
	U	92	*		2210	30	8331	26	*		4836	29	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p))	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	,α)
217	Tl	81	4480#	500#	8840#	570#	13920#	400#	12820#	570#	12000#	570#	*	
	Pb	82	3310#	360#	9770#	420#	8580#	300#	13040#	420#	10640#	360#	6710#	500#
	Bi	83	5215	21	6040#	200#	4415	19	15100	60	13777	18	7910#	200#
	Po	84	3970	7	7279	13	-6	10	14965	9	11948	13	11713	7
	At	85	5933	6	4677	5	-4309	12	15647	5	13729	5	11242	12
	Rn	86	4666	7	5887	5	-8547	11	15625	8	11902	6	13775	4
	Fr	87	6728	8	3227	9	-12754	17	16194	10	13498	11	13341	8
	Ra	88	5473	11	4370	8	-17080 #	70#	16282	10	11712	11	15856	12
	Ac	89	7512	16	1876	14	*		16881	14	13475	13	15309	14
	Th	90	6164	16	3228	15	*		16886	16	10626	19	17759	12
	Pa	91	8800	60	519	20	*		16858	18	11238	19	16271	22
	U	92	8160#	80#	2120#	90#	*		15820#	100#	8350#	100#	17930#	70#
218	Tl	81	3200#	570#	*		15080#	400#	14030#	570#	11840#	570#	*	
	Pb	82	4860#	420#	10150#	500#	10240#	300#	11450#	420#	10410#	420#	4890#	500#
	Bi	83	3590	30	6310#	300#	6157	27	16450#	200#	13740	60	8950#	300#
	Po	84	5598	7	7662	18	1706	11	13194	11	11592	6	9660	50
	At	85	4368	13	5074	13	-2750	50	17027	12	13504	12	12115	13
	Rn	86	6512	4	6466	5	-7149	11	13671	4	11337	7	11405	3
	Fr	87	5327	8	3888	6	-11625	19	17517	7	13092	9	13961	8
	Ra	88	7310	13	4952	13	-15243	18	14391	12	11197	13	13466	13 50
	Ac	89	5930	50	2340	50	*		18260	50	13170	50	16170	
	Th Pa	90 91	7910 6456	15 24	3626 811	15 21	*		14933 19096	15 22	11200 12626	16	15479 18300	13 22
	ra U	92	9150#	70#	2463	21	*		14810	60	8890	20 70	16619	16
	U	92	9130π	70π	2403	21	*		14010	00	0090	70	10019	10
219	Pb	82	3250#	500#	10190#	570#	11450#	400#	12680#	570#	10430#	500#	6070#	570#
	Bi	83	5010#	200#	6460#	360#	7670#	200#	14750#	360#	13670#	280#	7210#	360#
	Po	84	3747	16	7820	30	3287	18	14662	24	11671	19	10850#	200#
	At	85	5773	12	5250	4	-1170	50	15223	7	13478	3	10168	12
	Rn	86	4459	3	6558	12	-5640	50	15146	5	11437	4	12693.4	2.3
	Fr	87	6513	8	3889	7	-9920	50	15670	8	13229	9	12008	8
	Ra	88	5328	14	4954	9	-13890	50	15790	10	11287	9	14788	10
	Ac	89	7350	70	2370	50	-17890	100	16390	50	13140	50	14240	50
	Th	90	5970	50	3660	70	*		16480	50	11190	50	16830	50
	Pa	91	8210	50	1120	50	*		17050	50	13110	50	16040	50
	U	92	6680	50	2690	50	*		16930	50	10350	70	18630	50
	Np	93	*		-270	90	*		17190#	110#	11250	90	17300	100
220	Pb	82	4680#	570#	* (750#	500"	13060#	400#	11200#	570#	10220#	570#	* 9150#	500"
	Bi	83	3540#	360#	6750#	500#	9340#	300#	16080#	420#	13440#	420#	8150#	500#
	Po	84	5489	24	8310#	200#	4993	20	12760	30	11398	25	8670#	300#
	At	85	4092	14	5595	21	632	15	16730	14	13356	15	11292	23
	Rn	86 97	6288.6	2.3	7073 4636	3	-4057 8740#	22 50#	13225	12	11081	5	10375	7
	Fr	87	5207 7195	8	4636 5636	4	-8740# -12660#	50# 100#	16976 13922	4 9	12688 10820	6	12734 12258	6
	Ra	88		12 50		11		100#				10		9
	Ac Th	89 90	5900 7870	50 60	2940 4190	10 60	-16570#	200#	17803	13	12718 10829	9 25	15075 14426	9
	rn Pa	90 91	6390#	70#	4190 1540#	70#	*		14540 18560#	60 50#	10829	25 50#	14426 17160#	23 50#
	Ра U	91	8430#	110#	2900#	110#	*		14960#	100#	12880#	100#	16370#	100#
	Np	93	7220#	220#	270#	200#	*		19130#	200#	12200#	210#	18890#	200#
	тър)5	122011	22011	270π	200#	Ψ.		1/150π	2001	12200π	2101	100701	20011

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2 ₁	p)	Q(a)	α)	$Q(2\beta)$		$Q(arepsilon_{ m I}$))	$Q(eta^-$	n)
217	Tl Pb	81 82	7740# 8250#	500# 300#	* 18550#	500#	* 2150#	420#	9580# 6360#	400# 300#	* -14910#	500#	2760# 1710#	450# 300#
	Bi	83	9042	19	15760#	300#	4520	30	4335	18	-13280#	300#	-1124	18
	Po	84	9717	7	13040	50	6662.1	2.4	2225	8	-8890#	200#	-4444	7
	At	85	10492	8	11813	7	7201.4	1.2	80	8	-8768	12	-3930	8
	Rn	86	11316	9	10378	5	7887.2	2.9	-2231	8	-5413	4	-7384	6
	Fr	87	12146	9	9008	9	8469	4	-4389	13	-5231	7	-7048	11
	Ra	88	12787	10	7520	10	9161	6	-6316	13	-1652	9	-10326	13
	Ac	89	13470	17	6192	13	9832	10	-8365	20	-1556	12	-9666	17
	Th	90	14858	14	4906	13	9435	4	-10770 #	70#	1626	14	-13660	50
	Pa	91	16940	70	3540	20	8489	4	*		1635	19	-14070	30
	U	92	18090#	110#	2530#	70#	8430#	70#	*		5390#	70#	*	
218	Tl	81	7680#	500#	*		*		9960#	400#	*		2870#	500#
	Pb	82	8170#	360#	18980#	500#	1850#	500#	7100#	300#	*	400#	-1350#	300#
	Bi	83	8801	29	16080#	300#	4330#	200#	5118	29	-12390#	400#	-739	28
	Po	84 85	9568.2 10301	2.0 12	13700# 12354	200# 16	6114.75 6874	0.09 3	3139.6 1039	2.9 12	-11170# -7921	300# 21	-4109 -3632	5 12
	At	86		6		2.7	7262.5	3 1.9	-1434		-7921 -7955	7	-3032 -7169	7
	Rn Fr	87	11178 12054	6	11143.0 9775	6	8014.0	2.0	-1434 -3780	11 50	-7933 -4624	7	-6902	8
	Ra	88	12783	14	8180	13	8546	6	-5716	15	-4024 -4296	12	-0902 -10124	16
	Ac	89	13440	50	6710	50	9380	50	-7840	50	-760	50	-9430	50
	Th	90	14074	16	5502	14	9849	9	-9528	17	-812	13	-12773	19
	Pa	91	15260	60	4039	21	9815	10	*	1,	2691	22	-12360#	70#
	U	92	17310	30	2982	18	8775	9	*		2400	17	*	
219	Pb	82	8100#	500#	*		1650#	570#	7600#	400#	*		-1010#	400#
	Bi	83	8590#	200#	16610#	450#	3950#	360#	5890#	200#	-14190 #	450#	-150#	200#
	Po	84	9345	17	14140#	300#	5910	50	3852	16	-10060 #	300#	-3488	20
	At	85	10141	6	12912	18	6342	5	1778	8	-10109	27	-2893	4
	Rn	86	10972	5	11632	7	6946.2	0.3	-565	8	-6816.5	2.4	-6301	5
	Fr	87	11839	10	10355	8	7448.6	1.8	-2950	50	-6769	14	-6105	13
	Ra	88	12638	11	8842	9	8138	3	-5080	50	-3112	8	-9520	50
	Ac	89	13280	50	7320	50	8830	50	$-6970 \\ -8820$	70	-2780 530	50	-8870	50
	Th Pa	90 91	13880 14670	50 50	6000 4740	50 50	9510 10080	50 50	-8820 -10920	70 100	410	50 70	-12280 -11430	50 50
	га U	92	15830#	90#	3500	50	9940	50	-10920 *	100	3630	50	-11430 *	30
	Np	93	*	70π	2190	90	9170	50	*		3480	90	*	
220	Pb	82	7930#	500#	*		1390#	570#	8410#	400#	*		-690#	450#
	Bi	83	8540#	300#	16940#	500#	3680#	420#	6440#	300#	*		70#	300#
	Po	84	9236	18	14770#	300#	5360#	200#	4651	18	-12300 #	400#	-3204	18
	At	85	9865	18	13420	30	6077	18	2893	15	-9200#	200#	-2525	14
	Rn	86	10747.9	2.7	12322.8	2.0	6404.74	0.10	342	8	-9358	16	-6077	7
	Fr	87	11719	6	11194	12	6800.7	1.9	-2261	7	-6203	5	-5983	9
	Ra	88	12524	14	9525	8	7592	6	-4399	24	-5848	8	-9370	50
	Ac	89	13240	50	7893	8	8348	4	-6480 #	50#	-2163	9	-8800	50
	Th	90	13840	25	6560	25	8953	20	-8260 #	100#	-2014	24	-11940	60
	Pa	91	14610#	50#	5200#	70#	9650#	50#	-10090#	200#	1360#	70#	-11140#	70#
	U	92	15100#	100#	4010#	100#	10210#	100#	*		1170#	110#	-14600#	130#
	Np	93	*		2950#	200#	10090#	200#	*		4480#	200#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta)$	_)	Q(d)	,α)	Q(p,	,α)	Q(n,	,α)
221	Bi	83	4790#	420#	6860#	500#	10820#	300#	14530#	500#	13510#	420#	6560#	500#
	Po	84	3561	26	8330#	300#	6810	20	14200#	200#	11420	30	9970#	300#
	At	85	5664	20	5770	23	2260	50	14812	21	13290	14	9210	30
	Rn	86	4212	6	7193	15	-2469	10	14786	6	11237	13	11761	6
	Fr	87	6276	6	4624	5	-7100	50	15159	5	12924	5	10826	13
	Ra	88	5378	9	5807	6	-11560	50	15057	8	10769	6	13393	5
	Ac	89	7290	50	3040	50	-15330#	210#	15840	50	12740	50	13110	50
	Th	90	5800	24	4092	10	*	210#	16080	50	10960	50	15936	14
	Pa	91	7910#	70#	1580	60	*		16620	70	12870	50	15180	70
	U	92	6490#	110#	2990#	70#	*		16690	70	10700	50	17800	50
	Np	93	8530#	280#	370#	220#	*		17270#	210#	12820#	200#	16810#	200#
222	Bi	83	3440#	420#	*		12350#	300#	15770#	500#	13320#	500#	*	
	Po	84	5360	40	8900#	300#	8170	40	12380#	300#	11070#	200#	7850#	400#
	At	85	3901	21	6110	25	4332	17	16400	24	13136	22	10320#	200#
	Rn	86	6171	6	7699	14	-831	12	12707	14	10840	4	9337	16
	Fr	87	4971	9	5382	9	-5780#	70#	16477	8	12413	8	11628	8
	Ra	88	6715	6	6246	6	-9950	50	13549	6	10566	8	11137	5
	Ac	89	5970	50	3631	7	-14400#	200#	17062	10	12091	10	13650	9
	Th	90	7809	15	4610	50	*	20011	14170	14	10500	50	13455	15
	Pa	91	6290#	90#	2080#	70#	*		18200#	80#	12550#	90#	16230#	90#
	U	92	8320	70	3390	70	*		14770#	70#	10600	70	15450	70
	Np	93	6900#	280#	790#	200#	*		18800#	220#	12600#	200#	18130#	200#
223	Bi	83	4660#	500#	*		13750#	400#	*		13330#	570#	*	
.23	Po	84	3480#	200#	8940#	360#	9850#	200#	13690#	360#	11120#	360#	9060#	450#
	At	85	5596	21	6350	40	5602	16	14365	24	13029	23	8260#	300#
	Rn	86	4054	8	7852	18	1004	12	14303	16	10878	16	10773	19
	Fr	87	6067	8	5278.8	2.3	-3940	70	14622	6	12634.4	2.1	9653	14
	Ra	88	5158	5	6434	8	-8600	70	14667	5	10615	4	12267.6	2.3
		89	6867	9	3783	8	-3000 -12770#	200#	15573	8	12420	11	11990	8
	Ac Th			15	4525	10		200#	15570			11		12
	Pa	90 91	5889 7910#	100#	2170	70	*		16090	50 70	10506 12520	70	14762 14220	70
	Ра U	91	6510	90	3610#	100#	*		16170		10480#	70 90#	16810	70
	Np	92	8490#	280#	960#	200#	*		16170	90 200#	12530#	220#	16030#	200#
224	Bi	83	3380#	570#	*		15080#	400#	*		*		*	
224	Po	84	5240#	280#	9520#	450#	11080#	200#	11890#	360#	10680#	360#	*	
	At	85	3788	26	6660#	200#	7477	23	15940	50	12801	30	9260#	300#
	Rn	86	6016	13	8272	17	2451	14	12203	19	10526	17	8318	22
	Fr	87	4705	11	5930	14	-2114	14	16087	11	12141	13	10612	18
	Ra	88	6478.7	2.3	6845.4	2.1	-6896	23	13159	8	10413	5	10012	6
		89	5663	8	4288	4		200#	16625	6	12134	6	12603	6
	Ac						-11640#	200#						
	Th	90 91	7463	14	5121 2813	12	*		14083 17370	11	10330	50	12676 14990	11 50
	Pa U	91	6530 8190	70 70	3890	12 70	*		14280#	14 80#	11786 10210	11	14428	25
	U Np	92	6800#	70 280#	3890 1250#	210#	*		18310#	200#	10210	60 200#	14428 17150#	200#
25	•						125 404	200#	12110#					
225	Po	84	3450#	360#	9590#	500#	12540#	300#	13110#	500#	10670#	420#	* 7210#	420"
	At	85	5390#	300#	6810#	360#	8760#	300#	14030#	360#	12770#	300#	7310#	420#
	Rn	86	3982	15	8466	25	4224	12	13817	18	10445	19	9690	40
	Fr	87	5999	16	5913	15	-520	70	14142	14	12312	12	8514	20
	Ra	88	4904.1	2.8	7044	11	-5387	11	14321.5	2.9	10479	8	11267.3	2.9
	Ac	89	6668	6	4478	5	-9950	70	15115	5	12181	6	10906	9
	Th	90	5755	11	5213	6	*		15195	9	10553	7	13636	7
	Pa	91	7590	70	2940	70	*		15670	70	12000	70	13370	70
	U Np	92	6414	26	3771	13	*		15770	70	10090#	70#	15823	16
		93	8360#	210#	1420	80	*		16460	100	12180	90	15080#	100#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(a)	χ)	$Q(2\beta$	-)	$Q(arepsilon_{arphi}$)	$Q(\beta^-$	n)
221	Bi	83	8330#	360#	*		3360#	500#	7320#	300#	*		760#	300#
	Po	84	9050	25	15080#	400#	5110#	300#	5302	20	-11180 #	400#	-2673	24
	At	85	9756	14	14080#	200#	5628	23	3505	15	-11330#	300#	-1901	14
	Rn	86	10501	6	12788	17	6163	3	1508	7	-8081	19	-5082	7
	Fr	87	11483	8	11697	6	6457.7	1.4	-1250	50	-8387	15	-5064	10
	Ra	88	12573	9	10444	5	6880.4	2.0	-3977	9	-4937	5	-8851	7
	Ac	89	13190	70	8670	50	7780	50	-5850	70	-4250	50	-8220	60
	Th	90	13670	50	7032	12	8626	4	-7580	50	-619	11	-11350 #	50#
	Pa	91	14310	70	5770	70	9250	50	-9470 #	210#	-660	50	-10630 #	110#
	U	92	14910	70	4530	70	9890	50	*		2560	60	-13860 #	200#
	Np	93	15750#	220#	3270#	210#	10360#	200#	*		2340#	210#	*	
222	Bi	83	8230#	420#	*		3120#	500#	7780#	300#	*		880#	300#
	Po	84	8920	40	15760#	400#	4610#	300#	6110	40	*		-2370	40
	At	85	9565	21	14440#	300#	5310	30	4575	18	-10430 #	300#	-1590	17
	Rn	86	10382.5	1.9	13469	18	5590.4	0.3	2052	5	-10691	20	-4976	5
	Fr	87	11247	8	12576	16	5855	14	-243	9	-7694	16	-4657	9
	Ra	88	12093	9	10870	5	6678	4	-2883	13	-7440	7	-8270	50
	Ac	89	13265	8	9439	6	7137.4	2.0	-5530#	70#	-3945	7	-8390	10
	Th	90	13609	25	7645	15	8127	5	-7070	50	-3050	13	-11240	50
	Pa	91	14210#	90#	6170#	70#	8890#	50#	-8860 #	210#	340#	90#	-10440 #	90#
	U	92	14800#	110#	4970	60	9480	50	*		40	50	-13650 #	210#
	Np	93	15440#	280#	3780#	200#	9910#	200#	*		3350#	200#	*	
23	Bi	83	8100#	500#	*		*		8710#	400#	*		1580#	400#
	Po	84	8840#	200#	*		4380#	450#	6690#	200#	*		-1950#	200#
	At	85	9497	20	15250#	300#	4720#	200#	5046	14	-12590#	300#	-1016	14
	Rn	86	10224	10	13962	21	5283	18	3156	8	-9390	40	-4060	11
	Fr	87	11038	5	12978	14	5561.4	2.8	557	7	-9860	16	-4009	5
	Ra	88	11873	5	11816	6	5978.99	0.21	-2153	9	-6427.9	2.4	-7459	6
	Ac	89	12840	50	10029	8	6783.2	1.0	-4490	70	-5841	10	-7449	14
	Th	90	13697	12	8156	10	7567	4	-6450	70	-2223	10	-10840 #	70#
	Pa	91	14200	90	6780	90	8330	50	-8280 #	210#	-1590	70	-10020	90
	U	92	14830	90	5680	70	8940	50	*		1340	70	-13250 #	210#
	Np	93	15390#	280#	4360#	200#	9640#	200#	*		1160#	210#	*	
224	Bi	83	8040#	500#	*		*		9120#	400#	*		1680#	450#
	Po	84	8720#	200#	*		3820#	450#	7470#	200#	*		-1590#	200#
	At	85	9385	27	15600#	300#	4470#	300#	5962	25	-11710 #	400#	-750	24
	Rn	86	10070	10	14620	40	4757	20	3619	10	-11920#	200#	-4009	10
	Fr	87	10772	13	13782	19	4948	18	1514	12	-8968	18	-3556	11
	Ra	88	11637	5	12124.2	1.9	5788.92	0.15	-1168	10	-8853	8	-7071	7
	Ac	89	12530	6	10722	8	6326.9	0.7	-3628	9	-5437	4	-7223	10
	Th	90	13352	16	8904	11	7299	6	-5729	25	-4529	10	-10400	70
	Pa	91	14440#	70#	7337	9	7694	4	-8010 #	200#	-1253	10	-10050	70
	U	92	14690	60	6059	26	8628	7	*		-953	25	-12950 #	200#
	Np	93	15290#	280#	4860#	210#	9230#	200#	*		2270#	210#	*	
25	Po	84	8690#	360#	*	500"	*	100"	8000#	300#	*	500 "	-1250#	300
	At	85	9180#	300#	16320#	500#	3870#	420#	6570#	300#	-13730#	500#	-120#	300#
	Rn	86	9998	14	15120#	200#	4335	23	4541	11	-10670#	200#	-3286	16
	Fr	87	10704	12	14185	18	4613	18	2183	13	-11179	25	-3077	12
	Ra	88	11382.8	3.0	12975	8	5097	5	-317	6	-7741	10	-6312	5
	Ac	89	12331	8	11323	5	5935.1	1.4	-2700	70	-7400	12	-6428	11
	Th	90	13218	10	9501	5	6921.4	2.1	-5070	12	-3805	5	-9623	9
	Pa	91	14120	100	8060	70	7390	50	-7250	100	-3180	70	-9450	70
	U	92	14600	70	6584	14	8015	7	*		97	15	-12570#	200#
	Np	93	15160#	210#	5310	100	8790	50	*		440	70	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(1	n)	S(p))	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
226	Po	84	5050#	500#	*		13880#	400#	11430#	570#	10280#	570#	*	
	At	85	3850#	420#	7210#	420#	10310#	300#	15420#	360#	12400#	360#	8120#	500#
	Rn	86	5858	15	8940#	300#	5550	11	11747	25	10183	17	7320#	200#
	Fr	87	4371	13	6303	13	1487	13	15786	12	11995	10	9739	15
	Ra	88	6396.6	2.9	7442	12	-3661	13	12630	11	10149.5	2.3	8924	8
	Ac	89	5399	6	4973	4	-8470#	90#	16194	3	11940	3	11573	3
	Th	90	7184	7	5729	6	*	7011	13674	6	10236	8	11611	5
	Pa	91	6380	70	3566	12	*		16750	15	11512	15	13854	13
	U	92	8122	17	4300	70	*		14177	15	9870	70	13589	16
	Np	93	6880#	110#	1890#	90#	*		17770#	90#	11800#	110#	16100#	110#
	- 'F													
227	Po	84	3340#	570#	*		15100#	400#	*		10310#	570#	*	
	At	85	5200#	420#	7350#	500#	11630#	300#	13660#	420#	12440#	360#	6300#	500#
	Rn	86	3933	18	9020#	300#	7081	14	13200#	300#	10039	26	8620#	200#
	Fr	87	5909	9	6354	12	2851	9	13859	13	12101	11	7618	23
	Ra	88	4561.43	0.27	7632	7	-1868	10	14068	12	10293	11	10379	10
	Ac	89	6531	3	5107.2	2.2	-6710	70	14567.3	2.9	11887.7	2.1	9747	11
	Th	90	5464	5	5793	3	-10970#	100#	14878	5	10435	4	12625.3	2.3
	Pa	91	7273	14	3655	9	*		15232	9	11702	12	12243	8
	U	92	6355	16	4277	15	*		15420	70	10047	12	14698	14
	Np	93	8290#	110#	2060	70	*		15890	70	11700	80	14350	70
	Pu	94	*	110#	3300#	130#	*		15890#	120#	9760#	220#	16690#	100#
228	At	85	3870#	500#	7890#	570#	12790#	400#	14850#	570#	12020#	500#	*	
	Rn	86	5714	23	9530#	300#	8472	18	11340#	300#	9710#	300#	6360#	300#
	Fr	87	4370	9	6791	16	4461	8	15348	12	11714	13	8640#	300#
	Ra	88	6308.8	2.3	8031	6	-282	14	12131	7	9984	12	8053	11
	Ac	89	5026.2	2.4	5572.0	2.4	-4700	50	15937.7	2.4	11765.7	2.9	10721	12
	Th	90	7105.2	2.3	6367.6	2.1	-9316	29	13173	3	9998	5	10424.3	2.8
	Pa	91	5979	8	4170	5	*		16437	6	11478	7	12933	6
	U	92	7895	17	4898	16	*		13900	18	9750	70	12559	15
	Np	93	7040	90	2740	50	*		16980	50	11080	50	14900	90
	Pu	94	8750#	100#	3760	80	*		14020#	90#	9360	80	14350	30
220		0.5	4020#	55 0			4.4420.0	400"	12250#		1211011			
229	At	85	4930#	570#	*		14130#	400#	13250#	570#	12140#	570#	*	
	Rn	86	3952	22	9610#	400#	9777	13	12590#	300#	9610#	300#	7460#	400#
	Fr	87	5787	8	6864	18	5771	6	13493	15	11785	12	6700#	300#
	Ra	88	4450	16	8111	17	1351	17	13590	17	9905	17	9461	19
	Ac	89	6276	12	5539	12	-3090	90	14223	12	11886	12	8816	14
	Th	90	5256.7	2.6	6598.1	2.8	-7810	50	14446.8	2.7	10140	4	11564.2	2.7
	Pa	91	7098	5	4163	3	-12250	90	14803	3	11563	5	11234	4
	U	92	6083	15	5002	7	*		15090	9	10041	13	13659	7
	Np	93	7890	100	2730	90	*		15450	90	11310	90	13390	90
	Pu	94	6760	60	3490	70	*		15540	90	9480#	100#	15710	50
	Am	95	*		1230	90	*		16090#	130#	*		15020#	120#
230	Rn	86	5390#	200#	10070#	450#	11190#	200#	11070#	450#	9430#	360#	5410#	450#
250	Fr	87	4253	8	7165	15	7313	200 11	14954	19	11465	16	7650#	300#
	Ra	88	6117	6 19	8441	11	2901	11	11843	12	9698	12	7030#	17
	Ac	89	4923	20	6013	22	-1400	50	15609	16	11525	16	9802	17
	Th	90	6794.3	2.2		12	-6072	15		1.9	9877.1	1.7	9331.3	
			5795		7116 4701		-0072 -10760#		12678.7		11233		9331.3 11970	1.5
	Pa	91		4		4		130#	16113	3		3		3
	U	92	7667	7	5571	5	*		13402	6	9648	9	11457	5
	Np	93	6610	100	3260	50	*		16720	50	11050	50	14050	50
	Pu	94	8530	50	4130	90	*		14050	50	9240	70	13535	18
	Am	95	7290#	160#	1750#	140#	*		17560#	140#	11030#	170#	16020#	150#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(21	n)	S(2 ₁	p)	Q(α)	$Q(2\beta$	i-)	$Q(arepsilon_{ m I}$))	$Q(oldsymbol{eta}^-$	n)
226	Po	84	8500#	450#	*		*		8800#	400#	*		-920#	500#
	At	85	9240#	300#	16790#	500#	3460#	420#	7090#	300#	*	200"	10#	300#
	Rn	86	9841	14	15740#	200#	3840	40	5079	11	-13070#	300#	-3145	16
	Fr	87	10371 11300.7	13 1.9	14768 13355	23	4143 4870.70	17 0.25	3211 470	7 5	-10160#	300#	$-2544 \\ -6041$	7 5
	Ra Ac	88 89	12068	5	12017	10 12	5506	8	-1724	12	-10155 -6800	11 12	-6041 -6072	6
	Th	90	12939	11	10206	5	6452.5	1.0	-1724 -4131	14	-6084	5	-9210	70
	Pa	91	13972	14	8779	12	6987	1.0	-4131 -6740#	90#	-2893	12	-9210 -9418	16
	U	92	14536	27	7243	16	7701	4	*	7011	-2370	14	-12330	70
	Np	93	15240#	220#	5660#	90#	8200	50	*		1150#	110#	*	70
227	Po	84	8390#	500#	*		*		9400#	400#	*		-410#	500#
	At	85	9050#	420#	*		2920#	500#	7800#	300#	*		670#	300#
	Rn	86	9791	18	16220#	300#	3380#	200#	5708	14	-11950#	400#	-2706	15
	Fr	87	10281	13	15290#	300#	3830	15	3833	6	-12220 #	300#	-2057	6
	Ra	88	10958.0	2.9	13934	11	4363	8	1372.9	2.4	-8858	11	-5203	3
	Ac	89	11930	5	12549	12	5042.27	0.14	-982	7	-8960	7	-5419	5
	Th	90	12648	5	10766.2	3.0	6146.60	0.10	-3241	10	-5152.0	2.4	-8300	12
	Pa	91	13650	70	9384	9	6580.4	2.1	-5730	70	-4767	8	-8569	15
	U	92	14477	15	7843	11	7235	3	-7720 #	100#	-1441	11	-11800#	90#
	Np	93	15170	100	6360	100	7816	14	*		-760	70	*	
	Pu	94	*		5190#	100#	8510#	120#	*		2150#	100#	*	
228	At	85	9070#	500#	*		2430#	570#	8300#	400#	*		730#	400#
	Rn	86	9646	21	16880#	400#	2910#	200#	6303	18	-14330#	400#	-2510	19
	Fr	87	10279	9	15810#	300#	3248	23	4489	7	-11390#	300#	-1865	7
	Ra	88	10870.2	2.3	14385	11	4070	10	2169.3	2.6	-11235	14	-4980.6	2.3
	Ac	89	11557	3	13204	7	4721	11	-29	5	-8077	6	-4981.4	2.6
	Th	90	12569	5	11474.8	1.9	5520.15	0.22	-2451	14	-7695.7	1.9	-8132	8
	Pa	91	13252	12	9964	5	6264.5	1.5	-4670	50	-4215	5	-8193	11
	U	92	14249	19	8553	15	6804	10	-6870	30	-3872	14	-11410	70
	Np	93	15320#	100#	7020	50	7310	50	*		-520	50	-11250#	110#
	Pu	94	*		5820	30	7940	18	*		-250	30	*	
229	At	85	8800#	500#	*		*		9160#	400#	*		1510#	400#
	Rn	86	9666	19	17500#	400#	2410#	300#	6800	20	*		-2093	15
	Fr	87	10157	8	16390#	300#	2850#	300#	4978	13	-13310#	400#	-1343	5
	Ra	88	10758	16	14902	21	3603	19	2976	16	-9970	23	-4404	16
	Ac	89	11302	12	13570	13	4444	17	793	13	-9983	14	-4152	12
	Th	90	12361.9	2.8	12170.1	2.7	5167.6	1.0	-1625	6	-6643.7	2.7	-7409	5
	Pa	91	13077 13978	8	10530.6 9172	3.0	5835	4 3	-3880	90	-6287	4	-7397	15
	U	92		11		6	6476		-6190	50	-2849	6	-10460	50
	Np	93	14930	110	7630 6230	90 50	7010 7500	50 50	-8370	120	$-2430 \\ 880$	90 50	-10380	90
	Pu Am	94 95	15520#	110#	6230 4990	50 110	7590 8140	50 50	*		1270	50 100	*	
						110					1270	100		
230	Rn	86	9340#	200#	*	400"	2070#	450#	7530#	200#	*	400.	-1690#	200#
	Fr	87	10040	9	16780#	400#	2450#	300#	5648	17	-12630#	400#	-1147	17
	Ra	88	10567	10	15305	20	3344	15	3654	10	-12135	17	-4245	16
	Ac	89	11199	16	14124	17	3893	17	1665	16	-9119	17	-3819	16
	Th	90	12051.0	1.1	12655.6	1.8	4769.9	1.5	-752	5	-8988 5805	15	-7106	3
	Pa U	91	12893 13750	5 15	11299 9734	3	5439.4 5992.5	0.7 0.5	-3060 -5319	50 15	-5805 -5260	12	-7108 -10240	7
	U Np	92 93	13/50	15 70	9734 8270	5 50	5992.5 6780	50 50	-5319 -7700#	15 140#	-5260 -1950	5 50	-10240 -10230	90 70
	Np Pu	93 94	15300	30	6866	21	7181	30 7	-//00# *	140#	-1930 -1565	16	-10230 -13290	90
	Am	94 95	13300	30	5240#	21 140#	7730#	100#	*		-1363 1860#	160#	-13290 *	9 0
	AIII	93	*		3240#	140#	1130#	100#	*		1000#	100#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(1	n)	S (p)	$Q(4\beta)$	_)	Q(d,	α)	Q(p,	α)	Q(n,	α)
231	Rn	86	3670#	360#	*		12640#	300#	12340#	500#	9630#	500#	*	
231	Fr	87	5478	10	7260#	200#	8656	8	13429	15	11701	19	6040#	400#
	Ra	88	4371	15	8559	13	4410	12	13259	12	9696	13	8619	21
	Ac	89	6147	21	6042	17	140	50	13239	20	11687	13	8025	15
	Th	90	5118.02	0.20	7311	16	-4493	23	13837	12	9785.2	1.9	10522.0	1.8
	Pa	91	6821	3	4727.2	1.5	-8990#	300#	14549.6	2.6	11517.5	1.9	10176.1	2.3
	U	92	5880	5	5657	4	-13460 #	300#	14620	3	9746	5	12681.4	2.8
	Np	93	7680	70	3280	50	*		15120	50	11270	50	12350	50
	Pu	94	6697	27	4220	60	*		15240	90	9580	60	14733	27
	Am	95	8590#	330#	1810#	300#	*		15730#	300#	11190#	300#	14460#	300#
	Cm	96	*		2950#	330#	*		15830#	310#	*		16830#	300#
232	Fr	87	4079	16	7670#	300#	10126	16	14740#	200#	11574	19	6900#	400#
	Ra	88	5791	15	8873	12	5887	9	11721	11	9693	10	6781	16
	Ac	89	4680	18	6351	17	1800#	100#	15349	17	11457	20	9133	14
	Th	90	6440.4	1.1	7605	13	-2916	18	12319	16	9621	12	8531	16
	Pa	91	5549	8	5158	8	-7390#	300#	15795	8	11225	8	10903	14
	U	92	7267.8	2.8	6103.8	2.0	-11700#	200#	13147	3	9577	3	10670.3	2.0
			6340#			100#		20011			11010#	100#	13110#	100#
	Np	93		110#	3740#		*		16460#	100#				100#
	Pu	94	8017	29	4550	50	*		13840	50	9450	90	12799	19
	Am	95	7140#	420#	2260#	300#	*		17120#	300#	10810#	300#	15210#	310#
	Cm	96	9030#	360#	3390#	360#	*		14090#	240#	9030#	220#	14560#	210#
33	Fr	87	5224	24	*		11431	20	13180#	300#	11740#	200#	*	
	Ra	88	4234	13	9028	16	7415	9	12964	12	9711	11	7930#	200#
	Ac	89	5918	18	6478	16	3360	50	13802	17	11656	17	7468	15
	Th	90	4786.39	0.09	7712	13	-1320	50	13680	13	9757	16	9862	10
	Pa	91	6528	8	5246.3	1.1	-5770 #	100#	14384.4	1.0	11490.9	1.0	9297	16
	U	92	5761.7	2.5	6316	8	-10370	70	14205.6	2.4	9610	3	11703.0	2.
	Np	93	7480#	110#	3950	50	-14910 #	230#	14850	50	11200	50	11420	50
	Pu	94	6380	50	4600#	110#	*		15140	70	9680	70	14080	50
	Am	95	8150#	320#	2390#	100#	*		15670#	100#	11190#	100#	13670#	110#
	Cm	96	7090#	210#	3340#	310#	*		15600#	310#	9230#	150#	16010	70
	Bk	97	*	210#	740#	300#	*		16300#	370#	*	15011	15580#	260#
	-	0.0			0.250		0706		11760		0744		<120.0	2001
234	Ra	88	5475	12	9278	21	8786	8	11569	16	9714	11	6120#	300#
	Ac	89	4538	19	6782	16	4886	16	15055	17	11489	18	8407	16
	Th	90	6190.0	2.6	7984	13	263	7	12169	13	9714	13	8043	12
	Pa	91	5222	4	5682	4	-4120#	160#	15603	4	11387	4	10222	14
	U	92	6845.5	2.0	6633.4	0.8	-8580	17	12909	8	9584.7	1.5	9975.5	0.
	Np	93	6070	50	4253	9	-13500 #	140#	16056	8	11013	9	12177	8
	Pu	94	7770	50	4890	50	*		13700#	100#	9590	50	12190	7
	Am	95	6870#	190#	2880#	170#	*		16810#	160#	11020#	160#	14480#	170#
	Cm	96	8640	70	3830#	100#	*		14100#	300#	9180#	300#	14062	28
	Bk	97	7480#	270#	1130#	160#	*		17850#	250#	11050#	330#	16690#	330#
35	Ra	88	3870#	300#	*		10210#	300#	12920#	300#	9920#	300#	*	
	Ac	89	5555	20	6862	16	6314	14	13734	16	11724	17	6931	20
	Th	90	4667	13	8112	19	1835	24	13421	18	9727	18	9167	16
	Pa	91	6121	15	5613	14	-2340	50	14268	14	11706	14	8781	19
	U N	92	5297.50	0.23	6709	4	-7120#	200#	14140.2	0.8	9836	8	11118.5	0.
	Np	93	6983	8	4390.9	0.9	-11660#	400#	14834.7	2.2	11297.6	1.8	10743	8
	Pu	94	6239	22	5061	22	*		14940	50	9690#	100#	13219	21
	Am	95	7910#	170#	3010	50	*		15280	70	11130	60	12910#	110#
	Cm	96	6760#	200#	3720#	260#	*		15480#	230#	9560#	360#	15320#	200#
	Bk	97	8820#	430#	1310#	400#	*		16120#	410#	11260#	450#	15010#	500#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2	n)	S(2)	p)	Q(c)	α)	$Q(2\beta$	-)	Q(arepsilon p)	$Q(eta^-$	n)
231	Rn	86	9050#	300#	*	400#	1750#	500#	8240#	300#	*		-1100#	300#
	Fr	87 88	9730 10488	9 19	17320# 15724	400# 17	2170# 2906	300# 18	6318 4401	15 11	* -11120#	200#	-507 -3693	13 19
	Ra Ac	89	11070	18	14483	17	3655	14	2338	13	-11120# -11013	200# 15	-3093 -3171	13
	Th	90	11912.3	2.2	13324	15	4213.3	1.6	9.9	2.5	-7989	10	-6429.0	2.8
	Pa	91	12615.1	2.8	11843	12	5149.9	0.8	-2200	50	-7703	16	-6262	5
	U	92	13547	6	10358	3	5576.3	1.7	-4503	23	-4345.5	2.5	-9500	50
	Np	93	14300	100	8850	50	6370	50	-6790#	300#	-3840	50	-9380	50
	Pu	94	15230	60	7479	23	6839	20	-8960 #	300#	-595	23	-12690 #	140#
	Am	95	15880#	310#	5950#	310#	7420#	310#	*		-120#	300#	*	
	Cm	96	*		4700#	300#	8080#	320#	*		3050#	300#	*	
232	Fr	87	9557	15	*	20011	1960#	400#	6918	19	*	200#	-215	18
	Ra Ac	88	10162 10827	14 21	16130# 14910	200# 15	2829 3345	20 15	5050 3208	9 15	-13250# -10215	300# 15	-3337 -2733	16 13
	Th	89 90	11558.4	1.1	13647	10	4081.6	1.4	837.3	2.2	-10213 -10059	13	-2733 -6048.9	1.7
	Pa	91	12370	8	12470	18	4627	8	-1410#	100#	-7105	15	-5931	8
	U	92	13148	5	10831.0	1.1	5413.63	0.09	-3754	18	-6495.3	1.2	-9090	50
	Np	93	14020#	110#	9390#	100#	6010#	100#	-5980#	320#	-3350#	100#	-9020#	100#
	Pu	94	14714	23	7830	18	6716	10	-7950 #	200#	-2732	18	-12120 #	300#
	Am	95	15740#	330#	6480#	300#	7320#	300#	*		430#	300#	-12000 #	420#
	Cm	96	*		5200#	200#	7800#	200#	*		710#	200#	*	
233	Fr	87	9303	21	*		1670#	400#	7612	24	*		352	22
	Ra	88	10025	14	16700#	300#	2547	16	5602	9	*		-2892	16
	Ac	89	10597	18	15350	15	3215	14	3819	13	-12054	19	-2210 5206	13
	Th Pa	90	11226.8 12077.6	1.1 1.7	14063 12851	11 13	3745 4375	16	1812.5 -460	2.2 50	-9054 -8954	9 13	-5286 -5191.4	8 1.8
	Ра U	91 92	13029	3	12631	2.1	4908.7	12 1.2	-3130	50	-8934 -5816.6	2.2	-3191.4 -8510#	100#
	Np	93	13820	70	10050	50	5630	50	-5130 -5320#	110#	-5290	50	-8490	50
	Pu	94	14400	60	8330	50	6420	50	-7240	90	-1850	50	-11360#	300#
	Am	95	15290#	320#	6940#	110#	7060#	50#	-9600#	250#	-1390#	140#	-11120#	230#
	Cm	96	16120#	310#	5590	70	7470	50	*		1640	70	*	
	Bk	97	*		4130#	370#	8290#	210#	*		2230#	370#	*	
234	Ra	88	9709	12	*		2460#	200#	6318	9	*		-2449	16
	Ac	89	10456	19	15810	20	2930	15	4502	15	-11368	24	-1962	14
	Th Pa	90 91	10976.4 11750	2.6 9	14462 13393	10 14	3672 4076	11	2468.0 384	2.4 9	$-11010 \\ -8258$	9 14	-4947.8 -4652	2.5 4
	U	92	12607.1	1.6	11879.7	0.9	4857.5	16 0.7	-2205	7	-8238 -7875.7	0.9	-4032 -7870	50
	Np	93	13550#	100#	10570	11	5356	9	-4510#	160#	-4824	8	-8170	50
	Pu	94	14156	19	8837	7	6310	5	-6375	19	-3858	7	-10990#	100#
	Am	95	15020#	340#	7480#	190#	6800#	150#	-8990#	210#	-780#	170#	-10900#	170#
	Cm	96	15730#	200#	6216	25	7365	9	*		-620	50	-14210 #	230#
	Bk	97	*		4460#	330#	8100	50	*		2900#	180#	*	
235	Ra	88	9350#	300#	*		2250#	420#	7110#	300#	*		-1780#	300#
	Ac	89	10094	19	16141	24	2852	16	5068	20	*		-1327	14
	Th	90	10857	13	14894	16	3376	17	3099	13	-10202	16	-4392	14
	Pa	91	11343	14	13597	19	4101	19	1246	14	-9841	20	-3927	14
	U Np	92 93	12143.0 13050	2.0 50	12390.8 11024.3	0.9 1.2	4678.0 5193.8	0.7 1.5	-1264 -3580	20 50	-6983.1 -6585	2.4 4	-7107 -7378	8 7
	Np Pu	93 94	14010	50 50	9315	21	5193.8	20	-3380 -5850#	200#	-0383 -3252	20	-/3/8 -10350#	/ 160#
	Am	95	14780#	110#	7900	70	6576	13	-8080#	400#	-3232 -2620	50	-10330π -10170	50
				210#	6600#	210#	7300#	200#			400#			
	Cm	96	15400#	210#	0000π	Z10#	/ 300 11	200#	*		400#	200#	-13490 #	250#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
236	Ac	89	4210	40	7200#	300#	7840	60	15000	40	11750	40	7950	40
	Th	90	5834	19	8391	20	3354	14	12125	20	9811	19	7568	16
	Pa	91	5026	20	5973	19	-710#	110#	15432	14	11466	14	9672	19
	U	92	6545.52	0.26	7133	14	-5410	18	12817	4	9819.2	0.8	9359.3	0.9
	Np	93	5740	50	4830	50	-10160 #	400#	15940	50	11320	50	11540	50
	Pu	94	7352	21	5430.5	1.8	*		13658	8	9820	50	11628.8	2.5
	Am	95	6660#	120#	3430#	110#	*		16400#	110#	10850#	120#	13740#	120#
	Cm	96	8250#	200#	4060	60	*		14110#	160#	9460#	100#	13450	50
	Bk	97	7230#	570#	1780#	450#	*		17530#	400#	11110#	410#	15930#	410#
237	Ac	89	5270#	400#	*		9150#	400#	13600#	500#	11950#	400#	*	
	Th	90	4371	21	8550	40	4863	16	13309	21	9978	21	8671	18
	Pa	91	5878	19	6017	19	960#	60#	14221	18	11779	13	8333	19
	U	92	5125.8	0.5	7233	14	-3860	70	13812	14	9915	4	10423.6	2.5
	Np	93	6580	50	4861.95	0.25	-8320#	220#	14663.6	0.3	11590.7	0.4	10179	4
	Pu	94	5881.2	2.1	5580	50	-12850	90	14759.4	1.6	10001	8	12593.1	1.3
	Am	95	7540# 6680	130#	3620# 4080#	60#	*		15100# 15330	60# 90	11080# 9650#	60#	12260#	60# 70
	Cm Bk	96 97	8430#	70 460#	4080# 1960#	130# 230#	*		15870#	300#	11330#	170# 230#	14540 14370#	280#
	Cf	98	8430# *	400#	2890#	410#	*		15950#	410#	9350#	230# 170#	16860	90
238	Th	90	5500#	280#	8780#	490#	6360#	280#	12020#	290#	10030#	280#	7040#	410#
	Pa	91	4705	21	6350	22	2470	50	15350	21	11740	21	9183	21
	U	92	6153.7	1.3	7509	13	-2137	12	12685	14	9883	14	8936	13
	Np	93	5488.32	0.20	5224.5	0.6	-6760#	260#	15720.8	0.3	11399.9	0.4	10812	14
	Pu	94	6999.8	1.3	5997.4	0.4	-11110#	300#	13500	50	9984.2	0.9	10890.77	0.28
	Am	95	6220#	80#	3960	50	*		16230	50	11100	50	13020	50
	Cm	96	7870	70	4410#	60#	*		14120#	110#	9680	50	12909	24
	Bk	97	7040#	340#	2320#	270#	*		17070#	260#	11050#	330#	15240#	260#
	Cf	98	8730#	310#	3200#	370#	*		14450#	500#	9440#	500#	14890#	360#
239	Th	90	4150#	490#	*		7860#	400#	13140#	570#	10090#	400#	*	
	Pa	91	5630#	200#	6480#	340#	3950#	200#	14090#	200#	11950#	200#	7760#	200#
	U	92	4806.38	0.17	7610	16	-570	50	13756	13	10103	14	9964	14
	Np	93	6214.9	1.0	5285.7	1.5	-4940#	210#	14631.7	1.1	11730.5	1.0	9624	14
	Pu	94	5646.2	0.3	6155.3	0.4	-9680# 14170#	210#	14427.4	0.3	10070	50	11790.04	0.25
	Am	95	7100 6370	50 60	4061.8 4560	1.7 70	-14170#	300#	15009.5 15290#	2.1 80#	11352.9 9970#	2.3 120#	11660 13890	50 50
	Cm Bk	96 97	8040#	330#	2480#	210#	*		15710#	220#	11260#		13860#	240#
	Cf	98	7080#	360#	3240#	330#			15710#	310#	9590#	210# 450#	15860#	240#
	Es	99	*	300#	1010#	420#	*		16330#	310#	9390 11 *	430#	15660#	500#
	LS	22	*		1010#		*				*		13000#	
240	Pa U	91 92	4500# 5928.5	280# 2.9	6830# 7910#	450# 200#	5400# 991	200#	15100# 12532	350# 16	11820# 10052	200# 13	8540# 8407	450# 16
	Np	92	5928.5 5066	2.9 17	7910# 5545	200# 17	-3350#	3 150#	15719	17	11790	17	10435	21
	Pu	94	6534.22	0.23	6474.6	1.0	-3330π -7866	19	13381.53	0.29	10117.78	0.21	10433	0.5
	Am	95	5952	14	4367	1.0	-12690#	400#	16058	14	11283	14	12285	14
	Cm	96	7490	50	4955.1	2.3	*	40011	14010	50	10020#	60#	12279.0	2.2
	Bk	97	6660#	260#	2770#	160#	*		16930#	150#	11280#	170#	14740#	160#
	Cf	98	8350#	210#	3550#	210#	*		14490#	260#	9670#	230#	14390	70
	Es	99	7430#	500#	1360#	450#	*		17630#	500#	11120#	410#	16660#	460#
241	Pa	91	5340#	360#	*		6710#	300#	13900#	500#	11980#	410#	*	
	U	92	4590#	200#	8000#	280#	2500#	200#	13570#	280#	10170#	200#	9320#	340#
	Np	93	6130	70	5740	70	-1770 #	210#	14400	70	11820	70	9010	70
	Pu	94	5241.52	0.03	6650	17	-6370 #	170#	14354.9	1.0	10364.57	0.29	11293.8	1.2
	Am	95	6647	14	4479.96	0.17	-10930#	230#	15056.92	0.29	11635.2	0.4	11126.14	0.23
	Cm	96	6093.8	2.1	5097	14	-15420#	300#	15022.2	2.0	10140	50	13185.0	1.2
	Bk	97	7700#	250#	2980#	200#	*		15600#	210#	11450#	200#	13260#	210#
	Cf	98	6740#	170#	3630#	220#	*		15790#	270#	9980#	300#	15530#	170#
	Es	99	8410#	460#	1420#	230#	*		16310#	310#	11450#	370#	15290#	340#
	Fm	100	*		2360#	500#	*		16280#	420#	*		17500#	420#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2:	n)	S(2)	p)	Q(α)	$Q(2\beta$;-)	Q(arepsilonp))	$Q(\beta^-$	n)
236	Ac	89	9760	40	*		2720	40	5890	40	*		-870	40
	Th	90	10500	14	15253	16	3333	17	3811	14	-12160 #	300#	-4105	20
	Pa	91	11148	15	14085	20	3755	19	1960	50	-9312	20	-3656	14
	U	92	11843.0	0.3	12746.3	2.4	4572.9	0.9	-456.9	1.6	-8862	13	-6669.8	0.9
	Np	93	12720	50	11540	50	5010	50	-2660 #	120#	-6200	50	-6880	50
	Pu	94	13591	7	9821.4	1.6	5867.15	0.08	-4953	18	-5306.2	1.6	-9800	50
	Am	95	14560#	190#	8490#	110#	6260	50	-7500#	420#	-2290#	110#	-10070#	230#
	Cm	96	15012	25	7073	19	7067	5	*		-1616	27	-12920 #	400#
	Bk	97	16060#	430#	5500#	430#	7780#	500#	*		1630#	400#	*	
237	Ac	89	9480#	400#	*		2680#	400#	6490#	400#	*		-310#	400#
	Th	90	10205	21	15750#	300#	3196	18	4565	16	*		-3450	21
	Pa	91	10904	19	14407	19	3795	18	2656	13	-10980	40	-2988	13
	U	92	11671.3	0.5	13205	13	4233.6	1.0	298.5	1.4	-8154	14	-6060	50
	Np	93	12314.1	0.9	11995	14	4957.3	0.7	-1700#	60#	-7751	14	-6101.3	1.6
	Pu	94	13233	21	10405.1	1.3	5747.6	2.3	-4160	70	-4641.9	1.3	-9020#	110#
	Am	95	14200#	80#	9050#	60#	6200#	30#	-6620#	230#	-4100#	80#	-9360#	60#
	Cm	96	14930#	210#	7510	70	6770	50	-8690	110	-940	70	-12370#	410#
	Bk	97	15660#	460#	6020#	230#	7500#	200#	*		-140#	250#	*	
	Cf	98	*		4670#	220#	8220	50	*		2790	90	*	
238	Th	90	9870#	280#	*		3170#	280#	5220#	280#	*		-3070#	280#
	Pa	91	10583	21	14900	40	3628	21	3439	16	-10420 #	400#	-2567	16
	U	92	11279.5	1.2	13525	14	4269.9	2.1	1144.6	1.2	-9936	16	-5635.2	1.2
	Np	93	12070	50	12457	14	4691	4	-970	50	-7362	13	-5708.4	1.3
	Pu	94	12881.0	1.6	10859.4	0.4	5593.27	0.19	-3282	12	-6516.0	0.6	-8480#	60#
	Am	95	13760#	120#	9530	70	6040	50	-5800#	260#	-3740	50	-8900	90
	Cm	96	14552	22	8034	12	6670	10	−7830#	300#	-2936	12	-11810#	230#
	Bk Cf	97 98	15470# *	480#	6400# 5160#	280# 300#	7330# 8130#	200# 300#	*		360# 740#	260# 310#	-11790# *	270#
239	Th	90	9650#	400#	*		2900#	500#	5880#	400#	*		-2520#	400#
237	Pa	91	10330#	200#	15260#	450#	3560#	200#	4030#	200#	*		-2040#	200#
	U	92	10960.1	1.3	13960	16	4130	13	1984.4	1.2	-9240#	280#	-4953.3	1.2
	Np	93	11703.2	1.0	12795	13	4597	14	-79.4	1.9	-8872	16	-4923.5	1.0
	Pu	94	12646.1	1.3	11379.9	0.5	5244.52	0.21	-2560	50	-6008.5	1.2	-7900	50
	Am	95	13320#	60#	10059.2	1.7	5922.4	1.4	-4860#	210#	-5353.2	1.7	-8126	12
	Cm	96	14240	90	8520	50	6540	50	-7120#	220#	-2310	50	-11140#	260#
	Bk	97	15080#	310#	6900#	220#	7200#	200#	-9310#	360#	-1460 #	210#	-11100#	360#
	Cf	98	15810#	230#	5560#	220#	7810#	60#	*		1540#	210#	*	
	Es	99	*		4210#	370#	8430#	500#	*		2050#	390#	*	
240	Pa	91	10130#	200#	*		3260#	200#	4590#	200#	*		-1730#	200#
	U	92	10734.9	2.9	14390#	280#	4035	14	2590.1	2.7	-11020#	400#	-4666.9	2.8
	Np	93	11281	17	13156	23	4557	22	806	22	-8310#	200#	-4343	17
	Pu	94	12180.5	0.4	11760.3	1.2	5255.82	0.14	-1598.9	1.7	-7736.3	1.2	-7336.4	1.7
	Am	95	13050	50	10522	14	5710	50	-4150#	150#	-5090	14	-7710	60
	Cm	96	13864	12	9016.8	1.7	6397.8	0.6	-6267	19	-4152.9	1.7	-10600#	210#
	Bk Cf	97	14690#	300# 300#	7340#	160#	7200#	190#	-8530#	430#	-1020#	150#	-10680# 12640#	260#
	Es	98 99	15430#	300#	6032 4600#	22 480#	7711 8230#	4 570#	*		-450 2660#	60 450#	-13640# *	300#
241	Pa	91	9840#	360#	*		3200#	500#	5380#	310#	*		-1150#	300#
271	U	92	10520#	200#	14830#	450#	3820#	200#	3240#	200#	*		-4190#	200#
	Np	93	11190	70	13660#	210#	4310	70	1330	70	-9940#	210#	-3940	70
	Pu	94	11775.74	0.23	12195.5	1.2	5140.1	0.5	-746.7	1.2	-7049.3	2.7	-6626	14
	Am	95	12598.7	1.7	10954.6	1.0	5637.82	0.12	-3100#	200#	-6671	17	-6861.2	1.7
	Cm	96	13590	50	9464.4	1.2	6185.2	0.6	-5630#	170#	-3712.5	1.2	-10030#	150#
	Bk	97	14360#	290#	7940#	200#	7040#	210#	-7830#	300#	-2770#	200#	-10030#	200#
	Cf	98	15090#	270#	6400#	180#	7660#	150#	-9800#	340#	310#	170#	-12940#	430#
	Es	99	15840#	370#	4970#	310#	8250	20	*		910#	270#	*	
	Fm	100	*		3720#	360#	8760#	310#	*		3850#	300#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

242 U 92 5650w 280# 8310w 360# 3820w 200w 12420w 280w 10150w 280w 7820w 450w 4	A	Elt.	Z	S(n)	S(1)	p)	$Q(4\beta)$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
No	242	U	92	5650#	280#	8310#	360#	3820#	200#	12420#	280#	10150#	280#	7820#	450#
Pu															
Cm			94	6309.6		6830	70	-4670	13		17	10269.9		9790.6	1.0
Bit St St St St St St St		Am	95	5537.64		4776.07	0.19	-9330#	260#	16053.50		11743.8		11803.4	
Cf			96					-13600 #	400#						
Fig.															
Fire 100 8800# 500# 2750# 460# # 14910# 570# 9710# 500# 15780# 450#															
No.															
Np		Fm	100	8800#	500#	2750#	460#	*		14910#	5/0#	9710#	500#	15780#	450#
Pu	243						2004								200#
Am															
Cm															
Bit Property Property Property Bit Property Property Bit Property Bit Property Bit															
Cf 98 6470# 120# 4030# 230# * 15670# 230# 10190# 190# 14910# 1101# 101# 101									22011						
Es															
Fm 100 7080# 460# 2700# 330# * 16240# 310# 10050# 460# 17040# 220#															
P\tau 94 6019.9 2.9 7360# 30# -1672 3 1310.0 200 10410 70 9260# 200# Am 95 5367.2 1.6 5164.4 2.6 -6150# 180# 15873.1 1.2 11788.1 1.0 11270 70 70 70 70 70 70 70		Fm	100	7080#	460#	2700#	330#	*		16240#	310#	10050#	460#	17040#	220#
Am 95 \$367.2 1.6 \$5164.4 2.6 \$-6150\text{#} \$180\text{#} \$1873.1 \$1.2 \$11788.1 \$1.0 \$11270 \$70 \$0.04 \$18 \$97 \$6047 \$15 \$3757 \$14 \$* \$16621 \$14 \$11876 \$14 \$13426 \$14 \$1470 \$150 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$14 \$13426 \$14 \$1876 \$15	244		93												
Cm 96 6801.4 1.0 6012.1 1.2 -10510# 200# 13694.63 0.20 10381.56 0.17 11143.12 0.04 Bk 97 6047 15 3757 14 * 16621 14 11876 14 13426 14 Cf 98 7580# 110# 4500 5 * 14460# 200# 10310# 200# 13422.8 2.8 Es 99 6790# 280# 2250# 210# * 17350# 180# 11560# 250# 15640# 270# Em 100 8490# 290# 3070# 290# * 1480# 420# 420# 1560# 250# 15640# 270# Pu 94 4699 13 7310# 300# -207 14 14010# 30# 10630 200 10210# 200# Am 95 6050.0 1.9 5194.5 2.9 -447															
Bk 97 6047 15 3757 14 * 16621 14 11876 14 13426 14															
Cf 98 7580# 110# 4500 5 * 14460# 200# 10310# 200# 13422.8 2.8 Es 99 6790# 280# 2250# 210# * 17350# 180# 11560# 250# 15640# 270# Pu 94 4699 13 7310# 300# -207 14 14010# 30# 10630 200 10210# 200# Am 95 6050.0 1.9 5194.5 2.9 -4470# 200# 14856.7 2.9 12047.6 1.8 10130 200 Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618									200#						
Es 99 6790# 280# 2250# 210# * 17350# 180# 11560# 250# 15640# 270# 245 Np 93 5380# 420# * 4080# 30# 14240# 420# 12130# 360# * Pu 94 4699 13 7310# 300# -207 14 14010# 30# 10630 200 10210# 200# Am 95 6050.0 1.9 5194.5 2.9 -4470# 20# 14867.7 2.9 12047.6 1.8 10130 200 Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
Fm 100 8490# 290# 3070# 290# * 14880# 330# 9970# 300# 15290# 260# 245 Np 93 5380# 420# * 4080# 300# 14240# 420# 12130# 360# * Pu 94 4699 13 7310# 300# -207 14 14010# 30# 10630 200 10210# 200# Am 95 6050.0 1.9 5194.5 2.9 -4470# 200# 14856.7 2.9 12047.6 1.8 10130 200 Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14287.8 2.2 Es 99 7730# 270# 2400# 200# * 16090# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16120# 400# 246 Pu 94 5855 20 7780# 300# 1305 15 12900# 300# 10380# 40# 8680# 300# Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 220# 15899# 18# 12103# 18# 10770# 40# Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 270# 220# * 17130# 220# 11780# 250# 114860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3470# 200# * 1430# 100# 14690# 1100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 100# 144734 4 10265 5 11254 21 13298 15 Es 99 7390# 220# 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 14343 4 10518 4 11329 151124 20# Fm 100 6590# 120# 3520# 250# * 15904 20 11964 20 13511 24# Fm 100 6590# 120# 3520# 250# * 15904 20 11964 20 13511 24# Fm 100 6590# 120# 3520# 250# * 15904 20 11964 20 13511 24#															
Pu 94 4699 13 7310# 300# -207 14 14010# 30# 10630 200 10210# 200# Am 95 6050.0 1.9 5194.5 2.9 -4470# 200# 14856.7 2.9 12047.6 1.8 10130 200 Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14227.8 2.2 Es 99 7730# 2400# 200# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 280# 3130# 270# <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>															
Am 95 6050.0 1.9 5194.5 2.9 -4470# 200# 14856.7 2.9 12047.6 1.8 10130 200 Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14227.8 2.2 Es 99 7730# 270# 2400# 200# * 16090# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16600# 370# 11740# 500# 14280# 200# Md 101 * 980# 370# * <	245	Np	93	5380#	420#	*		4080#	300#	14240#	420#	12130#	360#	*	
Cm 96 5518.6 0.5 6163.6 1.1 -9180# 200# 14540.3 1.3 10400.6 0.5 11934.0 0.8 Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11993.0 1.4 Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14227.8 2.2 Es 99 7730# 270# 2400# 200# * 16090# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16600# 370# 11740# 500# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16450# 200# Am 95 4978# 18# 300# 1305 15 12900# <td< td=""><td></td><td>Pu</td><td>94</td><td>4699</td><td>13</td><td>7310#</td><td>300#</td><td>-207</td><td>14</td><td>14010#</td><td>30#</td><td>10630</td><td>200</td><td>10210#</td><td>200#</td></td<>		Pu	94	4699	13	7310#	300#	-207	14	14010#	30#	10630	200	10210#	200#
Bk 97 6971 14 3927.0 1.4 -13460# 310# 15342.6 1.7 11874.1 1.5 11992.2 1.4 Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14227.8 2.2 Es 99 7730# 270# 2400# 200# * 16909# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16450# 200# Am 95 4978# 18# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1															
Cf 98 6164 3 4618 15 * 15406 5 10520# 200# 14227.8 2.2 Es 99 7730# 270# 2400# 200# * 16090# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16120# 400# 246 Pu 94 5855 20 7780# 300# 1305 15 12900# 300# 10380# 40# 8680# 300# Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15															
Es 99 7730# 270# 2400# 200# * 16090# 230# 11840# 200# 14280# 280# Fm 100 6850# 280# 3130# 270# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16120# 400# 246 Pu 94 5855 20 7780# 300# 1305 15 12900# 300# 10380# 40# 8680# 300# Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 2770# 200# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 2770# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11254 15 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# 120# 15840# 120# 150# 150# 150# 150# 150# 150# 150# 15									310#						
Fm 100 6850# 280# 3130# 270# * 16150# 280# 10250# 320# 16450# 200# Md 101 * 980# 370# * 16600# 370# 11740# 500# 16120# 400# 246 Pu 94 5855 20 7780# 300# 1305 15 12900# 300# 10380# 40# 8680# 300# Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 300# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 13434 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# Fm 100 6590# 120# 3820# 250# * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120# 1500# 1500# 1500# 1500# 1500# 1500# 150# 15															
Md 101 * 980# 370# * 16600# 370# 11740# 500# 16120# 400# 246 Pu 94 5855 20 7780# 300# 1305 15 12900# 300# 10380# 40# 8680# 300# Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220#															
Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# 14850# 120# 120# 14870# 180# 10770# 360#					280#										
Am 95 4978# 18# 5473# 22# -2910# 220# 15899# 18# 12103# 18# 10770# 40# Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# 14850# 120# 120# 14870# 180# 10770# 360#	246	Pu	94	5855	20	7780#	300#	1305	15	12900#	300#	10380#	40#	8680#	300#
Cm 96 6458.9 1.2 6572.5 2.0 -7572 15 13448.6 1.5 10306.0 1.6 10508.8 2.5 Bk 97 5920 60 4330 60 -12150# 270# 16230 60 11650 60 12440 60 Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 200# <td></td>															
Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#		Cm	96		1.2			-7572				10306.0	1.6	10508.8	
Cf 98 7366.2 2.4 5012.5 1.8 * 14087 14 10265 5 12554.7 1.4 Es 99 6540# 300# 2770# 220# * 17130# 220# 11780# 250# 14860# 220# Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#			97	5920	60	4330	60	-12150 #	270#	16230	60			12440	60
Fm 100 8070# 200# 3470# 200# * 14870# 180# 10310# 210# 14850# 120# Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#							1.8				14				
Md 101 7230# 400# 1360# 320# * 17860# 330# 11590# 340# 17010# 330# 247 Pu 94 4360# 200# * 3000# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904															
247 Pu 94 4360# 200# * 3000# 200# 13930# 360# 10770# 360# * Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#															
Am 95 5910# 100# 5530# 100# -1430# 100# 14690# 100# 12210# 100# 9600# 310# Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#		Md	101	7230#	400#	1360#	320#	*		17/860#	330#	11590#	340#	17/010#	330#
Cm 96 5155 4 6750# 18# -6140# 120# 14343 4 10518 4 11374 4 Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#	247						100#								210#
Bk 97 6550 60 4416 5 -10450# 210# 15196 5 11902 5 11257 5 Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#															
Cf 98 6058 15 5150 60 * 15001 15 10254 21 13298 15 Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#															
Es 99 7390# 220# 2801 19 * 15904 20 11964 20 13511 24 Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#									21011						
Fm 100 6590# 120# 3520# 250# * 16020# 230# 10510# 220# 15840# 120#															

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(α)	$Q(2\beta$	-)	$Q(arepsilon_{]}$	p)	$Q(\beta^-$	n)
242	U	92	10240#	200#	*		3670#	200#	3900#	200#	d.		-3710#	210#
242	Np	93	11040	200#	14070#	280#	4100	200#	1950	200#	* -9510#	360#	-3710# -3610	200
	Pu		11551.1	0.7	12576.5	2.7	4984.2	1.0	-86.8	0.8	-9310# -8770#	200#	-6288.8	0.7
		94	12185	14	11426	17	5588.50	0.25	-80.8 -2270#	200#	-8770# -6080	200# 70	-6288.8 -6305.1	1.2
	Am	95												
	Cm	96	13063.2	1.7	9899.6	0.4	6215.63	0.08	-4583	13	-5440.4	0.4	-9300# 0660#	200#
	Bk	97	14070#	250#	8350#	200#	6890#	210#	-7070#	330#	-2490#	200#	-9660#	260#
	Cf	98	14747	23	6915	13	7517	4	-9010#	400#	-1604	13	-12550#	230#
	Es Fm	99 100	15540#	480#	5440# 4170#	300# 400#	8160 8700#	20 500#	*		1480# 1780#	330# 430#	-12400# *	390#
243	U	92	9980#	360#	*		3480#	500#	4610#	300#	*		-3130#	360#
	Np	93	10530#	80#	14340#	300#	4110#	200#	2700#	30#	*		-2910#	30#
	Pu	94	11343.2	2.4	13020#	200#	4757.0	2.6	572.6	2.6	-8150#	200#	-5784.8	2.4
	Am	95	11902.0	1.2	11660	70	5439.1	0.9	-1515	5	-7530	200	-5700.0	1.2
	Cm	96	12662.5	1.6	10351.1	1.0	6168.8	1.0	-3810#	110#	-4823.9	1.2	-8620#	200#
	Bk	97	13490#	200#	8823	4	6874	4	-6060#	210#	-4067	4	-8769	14
	Cf	98	14480#	200#	7290#	110#	7420#	100#	-8400 #	240#	-1100#	110#	-11880 #	280#
	Es	99	15260#	310#	5860#	290#	8072	10	*		-280 #	290#	-11720 #	450#
	Fm	100	15880#	370#	4520#	270#	8690	50	*		2710#	220#	*	
244	Np	93	10360#	360#	*		3870#	360#	3320#	300#	*		-2620#	300#
	Pu	94	11053.5	2.5	13390#	200#	4665.6	1.0	1354.1	2.5	-9840#	300#	-5440.3	2.6
	Am	95	11731.5	1.0	12120	200	5138	17	-835	14	-7290#	30#	-5374.1	1.4
	Cm	96	12494.5	0.4	10843.0	0.7	5901.60	0.03	-3026.3	2.5	-6591.7	2.4	-8309	4
	Bk	97	13160#	200#	9332	14	6779	4	-5310#	180#	-3750	14	-8350#	120#
	Cf	98	14051	13	7903.5	2.5	7329.0	1.8	-7490#	200#	-2992.8	2.7	-11340#	210#
	Es	99	14920#	310#	6290#	270#	7940#	100#	*	20011	50#	180#	-11430#	280#
	Fm	100	15580#	450#	5000#	200#	8550#	200#	*		690#	230#	*	20011
245	Np	93	10130#	300#	*		3830#	420#	3990#	300#	*		-1990#	300#
243	Pu	94	10719	14	13760#	300#	4560#	200#	2174	14	*		-4772	14
	Am	95	11417.2	2.0	12550#	30#	5220	70	86.6	2.1	_8590#	300#	-4772 -4622.7	1.6
	Cm	96	12320.1	1.1	11328.0	2.5	5624.5	0.5	-2380.6	2.1	-6090.4	2.5	-4022.7 -7781	14
	Bk	97	13018	5	9939.2	1.9	6454.5	1.4	-2500.0 $-4550#$	200#	-5354.3	1.7	-7735.7	2.9
	Cf	98	13750#	110#	8374.7	2.4	7258.5	1.4	-4330# -6800#	200#	-3354.3 -2355.7	2.2	-7733.7 -10710#	180#
	Es	99	14520#	290#	6900#	200#	7238.3 7909	3	-8910#	370#	-2333.7 -1640#	200#	-10710# -10670#	280#
				290#	5380#	230#	7909 8440#	3 100#		370#	-1040# 1420#	200#		280#
	Fm Md	100 101	15340#	290#	4050#	230# 370#	8980#	210#	*		1960#	200# 360#	*	
	1.14	101			102011	5,0					1,00	20011		
246	Pu	94	10554	15	*		4350#	200#	2778	15	*		-4577	15
	Am	95	11028#	18#	12790#	300#	5150#	200#	1030#	60#	-8190 #	300#	-4082#	18#
	Cm	96	11977.6	1.1	11767.0	2.7	5475.1	0.9	-1473.3	1.5	-7850	14	-7268.2	1.8
	Bk	97	12890	60	10490	60	6070	60	-3930#	230#	-5220	60	-7490	60
	Cf	98	13530.5	2.7	8939.5	1.1	6861.6	1.0	-6099	15	-4203.3	1.2	-10350 #	200#
	Es	99	14270#	290#	7390#	220#	7740#	100#	-8210 #	340#	-1200 #	220#	-10360 #	300#
	Fm	100	14920#	200#	5867	15	8377	8	*		-485	15	-13160 #	310#
	Md	101	*		4490#	320#	8890	40	*		2460#	330#	*	
247	Pu	94	10210#	200#	*		4320#	360#	3570#	200#	*		-3960#	200#
	Am	95	10890#	100#	13320#	320#	4850#	110#	1660#	100#	*		-3540#	100#
	Cm	96	11614	4	12223	14	5354	3	-571	16	-7151	15	-6510	60
	Bk	97	12467	5	10989	5	5890	5	-3089	20	-6793#	19#	-6672	5
	Cf	98	13424	16	9479	15	6497	15	-5570#	120#	-3802	15	-9870#	220#
	Es	99	13930#	200#	7813	20	7464	20	-7360#	210#	-2680	60	-9682	25 25
	Fm	100	14660#	230#	6290#	120#	8258	10		Δ10π	-2000 290#	120#	-9082 -12510#	280#
									*		290# 750#			200#
	Md	101	15480#	370#	5010#	290#	8764	10	*		/30#	310#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(1)	n)	S(p)	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
248	Am	95	4660#	220#	5830#	280#	260#	210#	15880#	200#	12250#	200#	10320#	360#
240	Cm	95 96	6212	4	7050#	100#	-4505	9	13110#	18#	10356.3	2.9	9861	13
	Bk	90 97	5480#	70#	4740#	70#	-4303 -9070#	250#	16170#	70#	11940#	70#	11830#	70#
	Cf	98	6937	16	5541	7	-13380#	220#	13980	60	10288	5	11880	5 50#
	Es	99	6350#	60#	3090#	50#	*		16920#	50#	11780#	50#	14130#	
	Fm	100	7850#	120#	3970	21	*		14710#	220#	10400#	200#	14159	9
	Md	101	6860#	320#	1810#	260#	*		17670#	240#	11830#	310#	16430#	310#
	No	102	*		2610#	310#	*		15220#	340#	10210#	380#	16080#	300#
49	Am	95	5530#	360#	*		1930#	300#	14710#	360#	12570#	300#	*	
	Cm	96	4713.37	0.25	7100#	200#	-2768	7	14310#	100#	10621#	18#	11002	15
	Bk	97	6310#	70#	4835.3	2.6	-7390#	200#	15024	4	12093.5	1.4	10499#	18#
	Cf	98	5587	5	5650#	70#	-12060 #	280#	14944	5	10620	60	12752.2	1.3
	Es	99	7200#	60#	3350#	30#	*		15780#	30#	11950#	30#	12850#	70#
	Fm	100	6450	10	4070#	50#	*		15652	20	10480#	220#	15075	6
	Md	101	7990#	310#	1960#	200#	*		16270#	230#	11910#	200#	14980#	300#
	No	102	6910#	360#	2660#	370#	*		16560#	350#	10530#	380#	17240#	280#
50	Cm	96	5832	10	7400#	300#	-1083	13	13140#	200#	10700#	100#	9530#	200#
	Bk	97	4968	4	5090	4	-5680#	300#	16268	4	12281	5	11440#	100#
	Cf	98	6623.7	1.3	5965.0	1.4	-10390 #	200#	13800#	70#	10545	5	11284	4
	Es	99	6020#	100#	3790#	100#	*		16700#	100#	11990#	100#	13380#	100#
	Fm	100	7518	10	4390#	30#	*		14480#	50#	10358	21	13615	17
	Md	101	6670#	360#	2180#	300#	*		17440#	300#	11820#	320#	15700#	300#
	No	102	8290#	340#	2960#	280#	*		15130#	310#	10490#	290#	15540#	230#
1	Cm	96	4413	25	*		694	27	14260#	300#	10950#	200#	*	
	Bk	97	5793	11	5051	15	-3739	22	15188	11	12699	11	10310#	200#
	Cf	98	5107	4	6104	5	-8710#	120#	14999	4	10920#	70#	12389	4
	Es	99	6780#	100#	3947	6	-13220#	300#	15500	6	12138	8	12080#	70#
	Fm	100	6190	17	4560#	100#	*		15490#	30#	10520#	50#	14362	16
	Md	101	7740#	300#	2394	20	*		16158	20	11933	21	14310#	60#
	No	102	6790#	230#	3070#	320#	*		16330#	230#	10570#	260#	16600#	120#
	Lr	103	*	200	1130#	360#	*		16660#	410#	11970#	370#	16230#	380#
52	Cm	96	5660#	300#	*		2240#	300#	*		10820#	420#	*	
, _	Bk	97	4770#	200#	5400#	200#	-1980#	240#	16260#	200#	12650#	200#	11080#	360#
	Cf	98	6172	4	6482	11	-6837	10	13795	4	11052.3	2.6	10930.32	0.2
	Es	99	5290	50	4130	50	-0657 -11440#	240#	16840	50	12440	50	13090	50
	Es Fm	100	7210	30 16		8	-11440# *	2 40#	14300#	100#	10510#	30#	13090	50
	rm Md	100	6530#		4986 2730#	8 130#			17150#	130#	10510#			130#
	Ma No	101	8050#	130# 120#	2730# 3384	21	*		1/150#		10500#	130# 200#	14980# 14999	130#
	Lr	102	8030# 7060#	380#	3384 1400#	260#	*		17880#	300# 310#	11820#	200# 370#	14999 17150#	310#
:2							2404	260#						
53	Bk	97	5680#	410#	5420#	470#	-240#	360#	14990#	360#	12800#	360#	* 11050	11
	Cf	98	4804	4	6520#	200#	-5057	8	14784	11	11216	6	11958	11
	Es	99	6360	50	4313.0	2.6	-9570#	200#	15586	4	12704.2	1.4	11707	4
	Fm	100	5541	6	5240	50	-14210#	410#	15544	7	10980#	100#	13821.8	3.0
	Md	101	7410#	130#	2930#	30#	*		15930#	40#	11970#	30#	13590#	110#
	No	102	6584	12	3440#	130#	*		16103	20	10590#	300#	15933	10
	Lr	103	8230#	310#	1590#	200#	*		16440#	230#	11880#	290#	15590#	360#
	Rf	104	*		2470#	470#	*		16540#	510#	*		17640#	460#
4	Bk	97	4610#	470#	*		940#	310#	16050#	420#	12610#	300#	*	
	Cf	98	6031	12	6880#	360#	-3382	15	13520#	200#	10977	16	10340	25
	Es	99	5091	4	4600	6	-7880 #	300#	16667	5	12720	5	12409	11
	Fm	100	6514	4	5396.7	2.3	-12300 #	280#	14320	50	11255	6	12414	4
	Md	101	5790#	110#	3180#	100#	*		17350#	100#	12360#	100#	14590#	100#
	No	102	7707	12	3740#	30#	*		14920#	130#	10621	21	14416	18
	Lr	103	6780#	360#	1780#	300#	*		17710#	300#	11890#	320#	16550#	300#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(α)	$Q(2\beta$	B-)	$Q(arepsilon_{]}$	p)	$Q(eta^-$	n)
248	Am	95	10570#	200#	*		4940#	360#	2480#	210#	*		-3040#	200#
	Cm	96	11366.8	2.7	12580	15	5161.81	0.25	155	6	-9000#	200#	-6168	6
	Bk	97	12030#	90#	11490#	70#	5780#	70#	-2220 #	90#	-6360#	120#	-6100#	70#
	Cf	98	12995	5	9957	5	6361	5	-4660	10	-5584	6	-9412	20
	Es	99	13740#	230#	8250#	80#	7160#	50#	-6850 #	240#	-2480 #	50#	-9450#	130#
	Fm	100	14434	17	6770	9	7995	8	-8720 #	230#	-1495	18	-12110#	210#
	Md	101	15110#	350#	5330#	330#	8700#	150#	*		1280#	240#	*	
	No	102	*		4150#	230#	9230#	100#	*		1660#	250#	*	
249	Am	95	10190#	310#	*	20011	4790#	420#	3260#	300#	*		-2360#	300#
	Cm	96	10925	4	12940#	200#	5148	13	1027.9	2.6	*	20011	-5400#	70#
	Bk	97	11786	5	11890#	100#	5521.0	1.4	-1330#	30#	-8010#	200#	-5463	5
	Cf	98	12524	15	10388	4	6293.3	0.5	-3796 -6060#	6	-4958.9	2.6	-8650# 8700#	50#
	Es	99	13550#	40#	8890#	30#	6940#	30#	-6060#	200#	-4190#	80#	-8790# 11700#	30#
	Fm	100	14300# 14850#	120# 290#	7163 5920#	17 200#	7709	6 18	-8260#	280#	-1008 -360#	8 210#	-11700# -11460#	240# 300#
	Md No	101 102	14830#	290#	3920# 4470#	300#	8441 9170#	200#	*		2600#	280#	-11400# *	300#
250	Cm	96	10546	10	*		5170	18	1819	10	*		-4928	10
	Bk	97	11270#	70#	12190#	200#	5531#	18#	-280 #	100#	-7440#	300#	-4844	4
	Cf	98	12210	5	10800.3	2.7	6128.51	0.19	-2902	8	-6869.3	2.7	-8080 #	30#
	Es	99	13220#	110#	9430#	120#	6830#	120#	-5410#	320#	-3910 #	100#	-8370 #	100#
	Fm	100	13968	12	7744	9	7557	8	-7490 #	200#	-2940	8	-11230 #	200#
	Md	101	14660#	380#	6250#	310#	8310#	200#	*		170#	300#	-11220 #	410#
	No	102	15200#	300#	4910#	200#	8950#	200#	*		760#	200#	*	
251	Cm	96	10245	23	*		5120#	200#	2513	22	*		-4373	23
	Bk	97	10761	11	12450#	300#	5650#	100#	716	12	*		-4014	11
	Cf	98	11730	4	11194	4	6177.0	0.9	-1819	16	-6144	11	-7160#	100#
	Es	99	12810#	30#	9912	6	6598	3	-4454 6000#	20	-5727	7	-7631	10
	Fm	100	13708	16	8347	15 40#	7425.1	2.0	-6900# 9760#	120#	-2505	15	-10750#	300#
	Md No	101 102	14410# 15080#	200# 300#	6790# 5250#	120#	7963 8752	4 4	-8760# *	300#	-1550# 1490#	100# 120#	-10670#	200#
	Lr	103	*	300#	4080#	360#	9370#	360#	*		1810#	420#	*	
252	Cm	96	10080#	300#	*		*		3020#	300#	*		-4240#	300#
	Bk	97	10560#	200#	*		5550#	280#	1240#	210#	*		-3670#	200#
	Cf	98	11278.4	2.7	11533	10	6216.95	0.04	-781	6	-7902	23	-6549	6
	Es	99	12070#	110#	10230	50	6790#	50#	-3220 #	140#	-5220	50	-6730	50
	Fm	100	13399	10	8933	6	7152.7	2.0	-6056	11	-4608	7	-10222	20
	Md	101	14260#	330#	7290#	160#	7790#	140#	-8230 #	270#	-1290 #	130#	-10410 #	170#
	No	102	14840#	200#	5779	12	8549	5	*		-371	18	-12930 #	300#
	Lr	103	*		4470#	380#	9164	17	*		2480#	240#	*	
253	Bk	97	10440#	360#	*		5400#	200#	1920#	360#	*		-3180#	360#
	Cf	98	10976	5	11924	23	6126	4	-44	5	-7040#	300#	-6060	50
	Es	99	11644	6	10795	11	6739.24	0.05	-2160#	30#	-6810#	200#	-5876	5
	Fm	100	12751	15	9367	5	7198.0	2.7	-5013	7	-3978	4	-9240#	130#
	Md	101	13940#	40#	7920#	30#	7573	8	-7400#	200#	-3410#	60#	-9770#	30#
	No	102	14630#	120#	6173	17	8415	4	-9200#	410#	254	9	-12450#	240#
	Lr Rf	103 104	15300#	360#	4970# 3870#	200# 430#	8918 9350#	20 300#	*		780# 3400#	240# 410#	*	
254	Bk			360#					2400#	300#				300#
<i>4</i> 34	Cf	97 98	10280# 10836	360# 11	* 12290#	300#	* 5927	5	439	300# 12	*		-2980# -5740	300# 12
	Es	98 99	11450	50	11120#	200#	5927 6615.7	5 1.5	439 -1460#	100#	* -6230#	360#	-5740 -5426	5
	Es Fm	100	12055	6	9710	3	7307.5	1.9	-1460# -3821	100#	-6230# -5688	500# 5	-3420 -8340#	30#
	Md	100	13200#	160#	8420#	110#	7800#	1.9	-5621 -6420#	320#	-3088 -2850#	100#	-8980#	100#
	No	102	14291	13	6670	110#	8226	8	-8480#	280#	-1911	100#	-11920#	200#
			/ 1	10	30,0			U	3 13011	20011	1/11	10	2 1 / 4 O II	-0011
	Lr	103	15010#	380#	5220#	330#	8816	12	*		1410#	300#	-11760 #	510#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta$	_)	Q(d,	α)	Q(p,	,α)	Q(n,	α)
255	Cf Es	98 99	4600# 5973	200#	6870# 4541	360# 16	-2000# -5858	200#	14590# 15499	410# 11	11140# 12919	280# 11	11400# 11200#	360# 200#
	Fm	100	5174	5	5480	6	-10530#	120#	15500	4	11370	50	13411	4
	Md	101	6680#	100#	3349	7	-14750#	360#	16208	7	12891	8	13190	50
	No	102	5987	18	3940#	100#	*		16350#	40#	11160#	130#	15638	16
	Lr	103	8000#	300#	2065	20	*		16299	19	11940	20	15080#	130#
	Rf	104	6940#	310#	2830#	320#	*		16470#	230#	10460#	260#	17110#	120#
	Db	105	*		900#	460#	*		16750#	550#	*		16500#	430#
256	Cf	98	5840#	370#	*		-780#	320#	13360#	430#	10980#	480#	*	
	Es	99	4970#	100#	4910#	220#	-4560#	130#	16560#	100#	12750#	100#	11910#	370#
	Fm	100	6384	7	5891	12	-8735	19	14207	7	11340	6	11832	6
	Md	101	5460#	120#	3630#	120#	-13040#	270#	17260#	120#	12970#	120#	14090#	120#
	No Lr	102 103	7056 6270	17 80	4310 2350	10 80	*		15080# 17730	100# 80	11510# 12250	30# 80	14123 16220#	8 90#
	Rf	103	8180#	120#	3014	25	*		15060#	300#	10510#	200#	15510	90# 19
	Db	104	7170#	430#	1120#	270#	*		18010#	370#	11810#	480#	17570#	310#
257	Es	99	5860#	420#	4930#	520#	-3260#	410#	15310#	460#	12930#	410#	10660#	510#
	Fm	100	4968	6	5890#	100#	-7276	12	15212	12	11463	6	12895	12
	Md	101	6530#	120#	3783	6	-11210 #	200#	15904	4	12954.3	2.5	12649	4
	No	102	5646	10	4500#	120#	*		16115	9	11660#	100#	14991	7
	Lr Rf	103 104	7150# 6427	90# 21	2450# 3170	50# 80	*		16570# 16630	50# 21	12810#	50# 300#	14860# 16789	110# 14
	Db	104	8360#	310#	1300#	200#	*		16590#	230#	10860# 11870#	350#	15980#	360#
					1300#	200π				230π			13980#	300#
258	Es	99	4770#	570#	*		-2080#	410#	16370#	510#	12760#	450#	*	
	Fm	100	6240#	200#	6270#	460#	-5920#	200#	13950#	220#	11200#	200#	11260#	280#
	Md	101	5378	4	4192	6	-10110#	310#	16911	7	12751	6	13244	12
	No	102	6840#	100#	4800#	100#	-13770 #	430#	14730#	160#	11500#	100#	13320#	100#
	Lr	103	5960#	110#	2750#	100#	*		17670#	100#	12840#	100#	15590#	100#
	Rf Db	104 105	7600 6480#	30 370#	3610# 1360#	60# 310#	*		15310 18290#	90 310#	11260 12330#	40 330#	15180 17500#	40 310#
	Sg	105	*	370#	2250#	460#	*		15460#	480#	10520#	550#	16560#	430#
259	Fm	100	4790#	350#	6290#	490#	-4660#	290#	15010#	500#	11380#	300#	12310#	420#
20)	Md	101	6130#	200#	4090#	280#	-8370#	210#	15750#	200#	13000#	200#	12080#	220#
	No	102	5470#	100#	4897	8	-12440#	120#	15796	7	11490#	120#	14238	8
	Lr	103	7000#	120#	2920#	120#	*		16320#	70#	12890#	70#	14040#	140#
	Rf	104	6050#	80#	3710#	130#	*		16410#	90#	11480#	110#	16190#	70#
	Db	105	7880#	310#	1640	60	*		16840	50	12630	60	15890	100
	Sg	106	6800#	430#	2570#	330#	*		17020#	230#	10890#	270#	17940#	120#
260	Fm	100	6010#	520#	*		-3380#	480#	13770#	590#	11230#	600#	*	
	Md	101	5140#	370#	4440#	420#	−7120#	330#	16840#	370#	12830#	320#	12800#	520#
	No	102	6540#	200#	5300#	280#	-10940 #	200#	14640#	200#	11480#	200#	12670#	200#
	Lr	103	5650#	140#	3090#	120#	-15050#	280#	17510#	160#	12890#	120#	14930#	120#
	Rf	104	7290#	210#	3990#	210#	*		15080#	230#	11350#	210#	14550#	200#
	Db	105	6390#	110#	1980#	120#	*		18040#	100#	12670#	90#	16650#	100#
	Sg	106	8040#	120#	2730	60	*		15460#	310#	11210#	200#	16328	23
	Bh	107	*		490#	270#	*		18790#	480#	*		18760#	320#
261	Md	101	6050#	600#	4480#	670#	-5730#	520#	15590#	580#	13020#	550#	11520#	650#
	No	102	5230#	280#	5390#	370#	-9550#	200#	15540#	280#	11630#	200#	13680#	280#
	Lr	103	6790#	240#	3340#	280#	-13580 #	290#	16190#	200#	12940#	220#	13520#	200#
	Rf	104	5900#	210#	4250#	130#	*		16180#	90#	11400#	110#	15490#	110#
	Db	105	7440#	140#	2130#	230#	*		16660#	130#	12830#	120#	15170#	150#
	Sg	106	6614	28	2960#	100#	*		16720	60	11070#	310#	17310	40
	Bh	107	8260#	320#	700#	210#	*		17330#	240#	12750#	460#	16980#	370#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(2)	p)	Q(a)	α)	$Q(2\beta$;-)	$Q(arepsilon_{]}$	p)	$Q(\beta^-$	n)
255	Cf	98	10640#	200#	*		5740#	200#	1010#	200#	*		-5250#	200#
	Es	99	11064	11	11420#	360#	6436.3	1.3	-754	13	-7590#	300#	-4885	11
	Fm	100	11689	5	10080	6	7239.7	1.8	-3008	16	-4831	12	-7720 #	100#
	Md	101	12470#	30#	8745	7	7905.9	2.6	-5104	19	-4436	8	-7952	12
	No	102	13694	16	7116	15	8428	3	-7520#	120#	-1385	15	-11140#	300#
	Lr	103	14770#	200#	5800#	40#	8556	7	-9650#	360#	-790#	100#	-11320 #	280#
	Rf	104	15370#	430#	4610#	120#	9055	4	*		2320#	120#	*	
	Db	105	*	.50	3560#	410#	9440#	200#	*		2430#	470#	*	
256	Cf	98	10440#	320#	*		5560#	100#	1550#	310#	*		-5120#	320#
	Es	99	10950#	100#	11780#	310#	6230#	220#	-270 #	160#	*		-4680#	100#
	Fm	100	11559	6	10433	12	7027	5	-2335	10	-6610 #	200#	-7428	9
	Md	101	12140#	160#	9110#	120#	7740#	110#	-4290 #	150#	-3920 #	120#	-7420 #	120#
	No	102	13044	12	7659	8	8582	5	-6400	19	-3267	9	-10197	19
	Lr	103	14270#	310#	6280#	130#	8810#	100#	-8750#	250#	-390	80	-10650#	140#
	Rf	104	15120#	280#	5079	20	8926	15	*		126	23	-13440#	360#
	Db	105	*	200	3950#	390#	9340	30	*		3260#	240#	*	200
257	Es	99	10830#	410#	*		6050#	200#	410#	410#	*		-4160#	410#
	Fm	100	11352	6	10800#	200#	6863.5	1.4	-1657	8	-5740#	310#	-6940 #	120#
	Md	101	11993	7	9674	11	7557.6	1.0	-3670 #	40#	-5480 #	100#	-6900	8
	No	102	12703	16	8130	8	8477	6	-5619	13	-2529	9	-9570	80
	Lr	103	13420#	50#	6760#	50#	9070	30	-7540#	210#	-2080#	130#	-9630#	50#
	Rf	104	14610#	120#	5519	18	9083	8	*		755	13	-12700#	240#
	Db	105	15530#	410#	4320#	200#	9207	20	*		1170#	220#	*	2.0
258	Es	99	10630#	410#	*		5880#	500#	1020#	400#	*		-3960#	400#
	Fm	100	11200#	200#	11190#	370#	6660#	200#	-1050#	220#	*		-6640#	200#
	Md	101	11910#	120#	10080#	100#	7271.3	1.9	-3100#	100#	-5010#	410#	-6632	8
	No	102	12490#	100#	8590#	100#	8150#	100#	-4860#	110#	-4400#	100#	-9260#	110#
	Lr	103	13110#	130#	7250#	160#	8904	19	-7020#	320#	-1500#	100#	-9160#	100#
	Rf	104	14020	40	6060	30	9190	30	-8900#	410#	-1200	30	-11940#	210#
	Db	105	14840#	390#	4530#	320#	9500	50	*	71011	1840#	310#	*	21011
	Sg	106	*	37011	3560#	410#	9620#	300#	*		2090#	410#	*	
259	Fm	100	11030#	280#	*		6470#	200#	-370#	280#	*		-6050#	280#
237	Md	101	11510#	200#	10360#	460#	7110#	200#	-2230#	210#	-6370#	450#	-5930#	220#
	No	102	12311	9	9089	8	7854	5	-4280#	70#	-3640#	200#	-8780#	100#
	Lr	103	12960#	80#	7720#	70#	8580#	70#	-6140#	90#	-3120#	70#	-8560#	80#
	Rf	103	13650#	70#	6460#	70#	9130#	70# 70#	-8160#	140#	-3120# -400#	120#	-8500# -11510#	310#
	Db	104	14360#	210#	5250#	70#	9620			140#	-400# -80#	120#		420#
	Sg	105	*	210#	3930#	120#	9765	50 8	*		2890#	120#	-11320# *	420#
260	Fm	100	10800#	480#	*		6300#	300#	150#	480#	*		-5930#	480#
200	Md	100	11280#	320#	* 10730#	510#	6940#	300#	-1730# -1730#	340#			-5600#	320#
						280#	7700#				* 5290#	250#	-3600# -8310#	320# 210#
	No	102	12010#	220#	9390#			200#	-3540# 5400#	280#	-5380# 2640#	350#		
	Lr	103	12650#	160#	7990#	120#	8400#	140#	-5400# 7400#	160#	-2640# 2220#	240#	-8160# 10020#	140#
	Rf	104	13340#	200#	6910#	220#	8900#	200#	-7400#	200#	-2220# 520#	200#	-10920#	210#
	Db	105	14270#	320#	5690#	140#	9500#	40#	-9650#	260#	530#	120#	-10920#	150#
	Sg Bh	106 107	14840# *	410#	4370 3050#	40 390#	9901 10400	10 50	*		900# 4040#	80# 250#	*	
261				250H						550#				550#
261	Md	101	11190#	550#	*	250"	6750#	300#	-980# 2860#	550#	* 4600#	400"	-5110# 7800#	550#
	No	102	11770#	200#	9830#	350#	7440#	200#	-2860#	210#	-4600# 4200#	480#	-7890# 7660#	240#
	Lr	103	12440#	210#	8640#	280#	8140#	200#	-4750#	230#	-4280#	370#	-7660#	280#
	Rf	104	13190#	90#	7340	50	8650	50	-6690	50	-1580#	210#	-10430#	110#
	Db	105	13830#	120#	6120#	130#	9220#	100#	-8830 #	240#	-1260#	170#	-10310#	110#
	Sg	106	14660#	120#	4940#	80#	9714	15	*		1570#	200#	-13390 #	250#
	Bh	107	*		3440#	220#	10500	50	*		2170#	230#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(t	n)	<i>S</i> (₁	p)	$Q(4\beta^{-1})$	-)	Q(d,	α)	Q(p,	α)	Q(n,	α)
262	Md	101	5020#	710#	*		-4630#	520#	16570#	660#	12790#	580#	*	
	No	102	6430#	410#	5770#	620#	-8270#	360#	14260#	480#	11340#	410#	12040#	460#
	Lr	103	5530#	280#	3640#	280#	-12440 #	370#	17200#	280#	12890#	200#	14120#	280#
	Rf	104	7000#	230#	4450#	300#	*		14830#	260#	11410#	240#	13960#	220#
	Db	105	6130#	180#	2350#	150#	*		17820#	250#	12760#	160#	16050#	160#
	Sg	106	7710	40	3230#	120#	*		15400#	100#	11240	60	15650#	80#
	Bh	107	6660#	370#	750#	310#	*		18710#	310#	12890#	330#	18200#	310#
263	No	102	5040#	610#	5790#	700#	-7060#	500#	15260#	710#	11440#	580#	13010#	660#
	Lr	103	6440#	350#	3660#	460#	-10770#	420#	15990#	350#	12980#	350#	12820#	420#
	Rf	104	5710#	270#	4640#	250#	-14920#	200#	15910#	250#	11340#	200#	14790#	250#
	Db	105	7210#	220#	2570#	280#	*		16500#	180#	12830#	260#	14480#	210#
	Sg	106	6250#	100#	3350#	170#	*		16590#	150#	11380#	130#	16690#	220#
	Bh	107	8120#	430#	1160#	310#	*		17200#	310#	12810#	310#	16470#	320#
	Hs	108	*		2150#	330#	*		17260#	240#	11220#	280#	18780#	130#
264	No	102	6190#	770#	*		-5770#	660#	14090#	770#	11300#	780#	*	
	Lr	103	5420#	520#	4040#	660#	-9680#	470#	16990#	570#	12790#	480#	13450#	670#
	Rf	104	6750#	390#	4940#	460#	-13490 #	360#	14690#	410#	11380#	410#	13270#	410#
	Db	105	5820#	290#	2680#	280#	*		17680#	330#	12910#	240#	15450#	310#
	Sg	106	7480#	300#	3620#	330#	*		15240#	320#	11340#	300#	15110#	290#
	Bh	107	6510#	350#	1420#	200#	*		18400#	180#	12920#	180#	17400#	210#
	Hs	108	8190#	130#	2220#	310#	*		15730#	310#	11290#	210#	17200	30
265	Lr	103	6220#	700#	4070#	810#	-8180#	600#	15820#	730#	13000#	660#	12250#	740#
	Rf	104	5460#	510#	4980#	570#	-12210 #	360#	15670#	460#	11450#	410#	14240#	510#
	Db	105	6950#	330#	2880#	420#	-16200 #	500#	16440#	270#	12950#	320#	14030#	300#
	Sg	106	6060#	310#	3860#	270#	*		16390#	210#	11410#	190#	16050#	260#
	Bh	107	7710#	290#	1660#	370#	*		16940#	250#	12910#	240#	15810#	270#
	Hs	108	6730	40	2450#	180#	*		17120#	310#	11220#	310#	18180	40
	Mt	109	*		170#	450#	*		17710#	470#	*		17780#	550#
266	Lr	103	4680#	800#	*		-6480#	610#	17320#	830#	13360#	760#	*	
	Rf	104	6690#	590#	5450#	720#	-11060 #	470#	14410#	640#	11210#	550#	12590#	680#
	Db	105	5820#	360#	3240#	460#	-15230 #	420#	17370#	460#	12850#	320#	14650#	400#
	Sg	106	7250#	270#	4150#	330#	*		14970#	340#	11370#	300#	14510#	290#
	Bh	107	6380#	290#	1980#	200#	*		18030#	330#	12780#	190#	16640#	230#
	Hs	108	7840	50	2570#	240#	*		15790#	180#	11500#	310#	16590#	100#
	Mt	109	6790#	550#	230#	310#	*		19110#	310#	13150#	330#	19110#	430#
267	Rf	104	4700#	740#	5470#	820#	-9210#	580#	15920#	790#	11930#	720#	14080#	820#
	Db	105	6730#	500#	3290#	630#	-13720 #	650#	16100#	550#	12860#	550#	13340#	600#
	Sg	106	5880#	360#	4220#	380#	-18070 #	290#	16030#	340#	11310#	350#	15380#	440#
	Bh	107	7410#	310#	2140#	360#	*		16680#	290#	12850#	390#	15050#	350#
	Hs	108	6560#	100#	2740#	190#	*		16950#	250#	11460#	200#	17520#	300#
	Mt	109	8240#	590#	630#	500#	*		17600#	500#	13090#	500#	17380#	530#
	Ds	110	*		1370#	340#	*		17910#	470#	*		19960#	140#
268	Rf	104	6040#	880#	*		-7350#	720#	14560#	880#	12110#	860#	*	
	Db	105	5080#	670#	3670#	780#	-12090 #	580#	17700#	710#	13240#	640#	14480#	760#
	Sg	106	7080#	540#	4560#	630#	-16850 #	560#	14780#	550#	11180#	520#	13760#	590#
	Bh	107	6030#	460#	2290#	460#	*		17900#	450#	12880#	400#	15970#	440#
	Hs	108	7890#	300#	3230#	390#	*		15440#	330#	11280#	370#	15680#	310#
	Mt	109	6710#	550#	790#	250#	*		18730#	240#	13120#	230#	18380#	330#
	Ds	110	8300#	330#	1430#	590#	*		16400#	430#	11830#	540#	18390#	300#
269	Db	105	5990#	820#	3620#	910#	-10220#	780#	16420#	850#	13940#	780#	13170#	850#
	Sg	106	5110#	590#	4590#	640#	-15070 #	370#	16400#	550#	11890#	460#	15330#	590#
	Bh	107	7400#	530#	2610#	600#	*		16380#	450#	12720#	450#	14390#	470#
	Hs	108	6340#	310#	3530#	400#	*		16510#	290#	11320#	210#	16590#	280#
	Mt	109	7850#	520#	750#	540#	*		17430#	470#	13100#	470#	16910#	490#
	Ds	110	6890#	300#	1610#	240#	*		17760#	500#	11740#	310#	19340	50

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(2)	n)	S(21	p)	Q(a)	α)	$Q(2\beta)$	_)	$Q(arepsilon_{ m l}$	p)	$Q(oldsymbol{eta}^-$	n)
262	Md	101	11070#	590#	*		6500#	300#	-480#	540#	*		-4900#	540#
202	No	101	11650#	410#	* 10240#	570#	7250#	300#	-480# -2290#	420#	*		-4900# -7530#	410#
	Lr	103	12320#	240#	9030#	370#	7990#	200#	-4150#	250#	-3770#	550#	-7330# -7290#	210#
	Rf	103	12900#	300#	7800#	300#	8490#	200#	-4130# -5970#	230#	-3770# -3350#	300#	-9990#	250#
	Db	105	13560#	170#	6600#	190#	9050#	100#	-8290#	340#	-590#	250#	-9820#	140#
	Sg	106	14320	40	5360#	200#	9600	15	-0270m *	34011	-240	60	-12840#	210#
	Bh	107	14930#	390#	3710#	320#	10319	15	*		2940#	330#	*	210#
263	No	102	11470#	530#	*		7000#	400#	-1630#	510#	*		-7040#	530#
	Lr	103	11970#	350#	9430#	580#	7680#	200#	-3380 #	330#	-5190#	580#	-6740 #	360#
	Rf	104	12710#	160#	8280#	250#	8250#	150#	-5440 #	180#	-2640 #	390#	-9570 #	210#
	Db	105	13340#	200#	7030#	260#	8830#	150#	-7390 #	350#	-2280 #	260#	-9330 #	170#
	Sg	106	13960#	100#	5710#	110#	9400	60	-9490#	160#	510#	240#	-12420 #	320#
	Bh	107	14780#	370#	4390#	320#	10080#	300#	*		950#	340#	*	
	Hs	108	*		2910#	130#	10730	50	*		4020#	130#	*	
264	No	102	11230#	690#	*		6820#	400#	-1070 #	690#	*		-6790#	660#
	Lr	103	11870#	480#	9830#	660#	7400#	300#	-2990#	500#	*		-6450#	460#
	Rf	104	12460#	420#	8600#	510#	8040#	300#	-4710#	460#	-4340 #	610#	-9110#	400#
	Db	105	13030#	280#	7320#	310#	8660#	200#	-6700#	300#	-1660#	370#	-8900#	250#
	Sg	106	13730#	290#	6190#	360#	9210#	200#	-8780#	280#	-1260#	320#	-11790#	420#
	Bh	107	14630#	350#	4770#	230#	9960#	150#	*		1660#	240#	-11690#	220#
	Hs	108	*		3380	50	10591	20	*		2080#	100#	*	
265	Lr	103	11640#	620#	*		7230#	200#	-2250#	590#	*	·	-5920#	660#
	Rf	104	12210#	390#	9020#	610#	7810#	300#	-4110#	380#	-3610#	690#	-8740#	430#
	Db	105	12770#	280#	7820#	360#	8500#	100#	-5930#	320#	-3180#	490#	-8370#	360#
	Sg	106	13540#	160#	6540#	200#	9050#	110#	-8110#	130#	-570#	380#	-11340#	220#
	Bh	107	14220#	380#	5270#	290#	9680#	210#	-10260#	510#	-240#	330#	-11220 #	240#
	Hs Mt	108 109	14920#	130#	3870# 2400#	100# 540#	10470 11120#	15 400#	*		2830# 3330#	280# 490#	*	
	IVIL	109			2400π	340π	11120π	400π	*		3330π	490π		
266	Lr	103	10900#	730#	*		7570#	300#	-1120#	650#	*		-5140#	690#
	Rf	104	12140#	590#	9510#	750#	7550#	300#	-3540#	530#	*		-8480 #	520#
	Db	105	12770#	370#	8220#	520#	8210#	200#	-5370#	330#	-2790 #	620#	-8130#	310#
	Sg	106	13310#	370#	7040#	440#	8800#	100#	-7520#	250#	-2360 #	440#	-10870 #	340#
	Bh	107	14100#	240#	5840#	290#	9430#	80#	-9860#	350#	330#	280#	-10870 #	160#
	Hs	108	14570	50	4220#	290#	10346	16	*		1050#	130#	-13610#	450#
	Mt	109	*		2670#	350#	10996	25	*		4260#	390#	*	
267	Rf	104	11390#	680#	*		7890#	300#	-2360#	630#	*		-7360#	640#
	Db	105	12550#	470#	8740#	690#	7920#	300#	-4690#	490#	-4840#	720#	-7620#	480#
	Sg	106	13130#	280#	7460#	440#	8630#	210#	-6850#	270#	-1560#	540#	-10370#	300#
	Bh	107	13790#	350#	6300#	350#	9230#	200#	-9030# 11220#	570#	-1260#	390#	-10440#	270#
	Hs	108	14390#	100#	4720#	160#	10038	13	-11230#	170#	1750#	260#	-13380#	320#
	Mt Ds	109 110	15030#	680#	3200# 1600#	550# 140#	10870# 11780	400# 50	*		2400# 5450#	530# 140#	*	
269				010#						010#				700#
268	Rf Db	104 105	10740#	810# 600#	* 0140#	790#	8040# 8260#	300# 300#	-1330# 3750#	810# 650#	*		-6670# -6820#	780# 590#
		105	11820#		9140#		8260#	300#	-3750# 6030#	650# 550#	* 2020#	740#		540#
	Sg Bh	106	12960# 13440#	530# 420#	7850# 6510#	660# 480#	8300# 9020#	300#	-6030# -8340#	550# 450#	-3930# -560#	740# 560#	-10040# -9920#	340# 390#
	Вn Hs	107	13440#	420# 290#	5370#	480# 380#	9623	300# 16	-8340# -10820#	450# 410#	-360# -270#	380#	-9920# -13030#	580#
	пs Mt	108	14450#	390#	3530#	280#	9023 10670#	150#	-10820# *	410#	-270# 3100#	350#	-13030# -12800#	270#
	Ds	110	*	JJUπ	2070#	300#	11660#	300#	*		3710#	320#	-12800# *	270π
269	Db	105	11070#	750#	J.		8490#	300#	-2330#	730#	ı.		-5730#	780#
209		105	12190#	750# 450#	* 8260#	680#	8490# 8650	500# 50	-2330# -4800#	390#	* -3000#	760#	-5730# -9120#	780# 530#
	Sg Bh	106	12190#	450# 460#	8260# 7170#	560#	8630 8570#	300#	-4800# -7890#	590# 600#	-3000# -2870#	650#	-9120# -9420#	330# 470#
		107	13430#	460# 160#	7170# 5820#	290#	8370# 9340#	300# 160#	/890# 10270#	130#	-2870# 470#	490#	-9420# -12660#	470# 260#
			1 + /. 31 111	1 1 11 111	107/11##	∠2U#	フ.ナケリサ	1 (1)()///	- 104/0#	1.1011	+/\#	サッリサ		
	Hs Mt	109	14560#	680#	3970#	530#	10530#	400#	*		1270#	600#	-12350#	550#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(i	n)	S((p)	$Q(4\beta)$	-)	Q(d,	,α)	Q(p)	,α)	Q(n,	α)
270	Db	105	4910#	880#	*		-8400#	640#	17540#	910#	13730#	840#	*	
2.0	Sg	106	6340#	670#	4950#	840#	-13190#	560#	15140#	770#	12280#	690#	13690#	800#
	Bh	107	5320#	470#	2830#	460#	*		18140#	550#	13280#	390#	15800#	500#
	Hs	108	7520#	280#	3650#	450#	*		15020#	460#	11210#	360#	14950#	360#
	Mt	109	6730#	490#	1140#	210#	*		18590#	330#	12920#	200#	17590#	310#
	Ds	110	8230	60	1980#	470#	*		16240#	240#	11750#	510#	17670#	110#
271	Sg	106	4810#	810#	4840#	850#	-11190#	590#	16320#	860#	12560#	790#	14930#	880#
2/1	Bh	107	6380#	510#	2860#	700#	-11190# *	330π	16870#	550#	13980#	630#	14510#	670#
	Hs	107	5440#	370#	3780#	400#	*		16970#	470#	11800#	470#	16590#	550#
	Mt	109	7680#	370#	1300#	410#			17250#	350#	13140#	440#	15940#	500#
	Ds	110	6800#	110#	2050#	200#	*		17290#	470#	11660#	250#	18760#	300#
					2020	200				.,			10,00	20011
272	Sg	106	6250#	930#	*		-9430#	840#	14980#	950#	12300#	960#	*	
	Bh	107	5200#	680#	3260#	790#	-13980 #	580#	18010#	770#	13890#	640#	15290#	820#
	Hs	108	6810#	580#	4200#	660#	*		15490#	590#	12390#	630#	14890#	630#
	Mt	109	5590#	590#	1450#	560#	*		19180#	550#	13880#	500#	17750#	610#
	Ds	110	8000#	420#	2380#	530#	*		16020#	450#	11510#	620#	17100#	430#
	Rg	111	*		460#	250#	*		18810#	240#	12800#	240#	19050#	520#
273	Sg	106	4630#	880#	*		-8340#	520#	*		12580#	800#	*	
	Bh	107	6230#	870#	3240#	1000#	-12060 #	870#	16590#	910#	14010#	890#	13970#	930#
	Hs	108	5190#	630#	4190#	650#	*		16680#	560#	12530#	470#	16050#	670#
	Mt	109	6940#	650#	1580#	660#	*		17680#	510#	14460#	490#	16130#	510#
	Ds	110	5730#	430#	2520#	500#	*		17970#	360#	12510#	220#	18890#	280#
	Rg	111	8150#	580#	610#	670#	*		17460#	540#	12880#	530#	17630#	550#
274	Bh	107	5020#	930#	3630#	800#	-10930#	640#	17810#	960#	13790#	850#	*	
27.	Hs	108	6480#	700#	4440#	910#	*	0.1011	15410#	800#	12430#	720#	14380#	830#
	Mt	109	5540#	550#	1930#	510#	*		18950#	620#	14370#	450#	16970#	550#
	Ds	110	7230#	410#	2800#	580#	*		16330#	620#	12960#	510#	17100#	480#
	Rg	111	6150#	560#	1030#	220#	*		19310#	450#	13530#	200#	19160#	380#
275	Bh	107	6060#	860#			-9610#	790#	16380#	780#	13970#	940#		
213	Hs	107	4940#	830#	* 4350#	850#	-9010# *	790#	16700#	910#	12690#	790#	* 15690#	940#
	Mt	109	6490#	550#	1950#	730#	*		17650#	560#	14690#	660#	15690#	680#
	Ds	110	5700#	570#	2970#	540#	*		17560#	590#	12850#	640#	18210#	660#
	Rg	111	7390#	550#	1190#	650#	*		17650#	540#	14150#	660#	17360#	710#
	8								-,					
276	Hs	108	6410#	960#	4690#	960#	-12070 #	960#	15320#	980#	12520#	1020#	13910#	910#
	Mt	109	5590#	680#	2590#	790#	*		18540#	800#	14290#	650#	16330#	870#
	Ds	110	7100#	680#	3580#	690#	*		16010#	650#	12690#	690#	16300#	660#
	Rg Cn	111	5880#	820#	1370#	750# 700#	*		19000#	740# 620#	14000#	640# 800#	18420# 17640#	760# 610#
	CII	112	*		2230#	790#	*		16450#	620#	12520#	800#	17040#	010#
277	Hs	108	4860#	930#	*		-10910#	560#	16510#	810#	12680#	820#	*	
	Mt	109	6420#	880#	2610#	1030#	*		17060#	910#	14350#	920#	14930#	930#
	Ds	110	5470#	670#	3460#	660#	*		17020#	570#	12760#	520#	17300#	710#
	Rg	111	7220#	820#	1490#	760#	*		17480#	660#	14000#	650#	16740#	630#
	Cn	112	6020#	610#	2370#	650#	*		17820#	540#	12650#	230#	18850#	420#
278	Mt	109	5300#	940#	3050#	820#	-13150#	650#	18160#	980#	13980#	860#	15690#	860#
	Ds	110	6830#	730#	3880#	940#	*		15780#	820#	12420#	750#	15410#	860#
	Rg	111	5890#	630#	1910#	520#	*		18690#	650#	13820#	540#	17340#	550#
	Cn	112	7540#	460#	2690#	680#	*		16160#	770#	12500#	680#	17010#	600#
	Ed	113	*		800#	230#	*		19250#	620#	*		19240#	550#
279	Mt	109	6310#	910#	J.		-11740#	970#	16710#	860#	14070#	1010#	Tr.	
219	Ds	110	5330#	910# 870#	* 3900#	860#	-11/40# *	9/U#	16710#	920#	12680#	800#	* 16490#	960#
	Rg	111	6810#	550#	1900#	750#	*		17350#	920# 570#	14100#	690#	16110#	980# 680#
	Cn	112	5970#	630#	2780#	580#	*		17400#	690#	12410#	780#	18140#	710#
	Ed	113	7720#	720#	980#	820#	*		17550#	710#	13750#	920#	17400#	940#
	Lu	113	1120m	1 20m	>00π	020π	Ψ.		1133011	71011	13130π) L UTT	1 / TOOM	ノマリガ

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\boldsymbol{A}	Elt.	Z	S(2)	n)	S(2	(p)	Q(a)	χ)	$Q(2\beta$	B-)	$Q(arepsilon_{]}$	p)	$Q(oldsymbol{eta}^-$	n)
270	Db	105	10900#	810#	*		8260#	200#	-1920#	680#	*		-5530#	720#
2.0	Sg	106	11450#	730#	8560#	870#	8990#	300#	-3620#	610#	*		-8060#	670#
	Bh	107	12720#	480#	7410#	600#	9060	50	-6480#	330#	-2210#	690#	-8410#	310#
	Hs	108	13860#	380#	6270#	530#	9070	40	-9570#	250#	-1940#	440#	-12330#	530#
	Mt	109	14580#	290#	4670#	420#	10180	50	*	23011	1940#	410#	-12200#	170#
	Ds	110	15110#	310#	2730#	290#	11117	28	*		2830#	130#	*	17011
271	Sg	106	11150#	690#	*		8890#	110#	-2980#	650#	*		-7540#	650#
	Bh	107	11700#	560#	7810#	750#	9420	50	-5180#	530#	-3680 #	740#	-7260 #	480#
	Hs	108	12970#	310#	6600#	460#	9510#	110#	-8210 #	300#	-1040 #	620#	-11040 #	330#
	Mt	109	14410#	570#	4960#	500#	9910#	200#	*		-410#	440#	-11650 #	330#
	Ds	110	15030#	100#	3190#	160#	10870	18	*		3550#	270#	*	
272	Sg	106	11050#	920#	*		8680#	300#	-2430#	890#	*		-7410#	840#
	Bh	107	11580#	600#	8100#	810#	9300	50	-4790#	720#	*		-7020 #	600#
	Hs	108	12250#	570#	7060#	760#	9780#	200#	-7010#	660#	-3040#	780#	-10170 #	610#
	Mt	109	13270#	510#	5220#	560#	10350#	300#	-9190#	540#	370#	640#	-10440#	500#
	Ds	110	14810#	420#	3680#	480#	10760#	300#	*		990#	500#	*	
	Rg	111	*		2520#	290#	11197	13	*		4380#	400#	*	
273	Sg	106	10880#	770#	*		*		-1870 #	620#	*		-6840#	730#
	Bh	107	11430#	810#	*		9060#	300#	-4080 #	810#	*		-6450#	860#
	Hs	108	11990#	460#	7450#	690#	9700	50	-6470#	390#	-1980#	820#	-9760#	610#
	Mt	109	12530#	540#	5790#	590#	10810#	200#	-7980#	680#	-1370#	680#	-9370#	590#
	Ds	110	13740#	170#	3960#	310#	11370	50	*		2060#	530#	-12490 #	270#
	Rg	111	*		2980#	620#	10900#	250#	*		1820#	720#	*	
274	Bh	107	11250#	820#	*		8950	50	-3560#	710#	*		-6280#	720#
	Hs	108	11660#	780#	7670#	940#	9570#	200#	-5710#	710#	-3820 #	780#	-9300#	730#
	Mt	109	12480#	600#	6120#	640#	10600#	210#	-7370#	400#	-680#	780#	-9180#	380#
	Ds	110	12960#	570#	4390#	640#	11660#	300#	*		20#	540#	-11570 #	660#
	Rg	111	14300#	290#	3550#	520#	11480	50	*		2610#	460#	*	
275	Bh	107	11090#	910#	*		*		-3140#	730#	*		-5870#	840#
	Hs	108	11410#	690#	7980#	770#	9440	50	-4950#	720#	*		-8700#	690#
	Mt	109	12030#	600#	6380#	810#	10480	50	-6470 #	670#	-2140#	750#	-8440#	570#
	Ds	110	12930#	430#	4900#	550#	11400#	300#	*		790#	720#	-11120#	450#
	Rg	111	13540#	740#	4000#	670#	11770#	400#	*		760#	630#	*	
276	Hs	108	11340#	960#	*		9280#	200#	-4260#	930#	*		-8620#	860#
	Mt	109	12070#	640#	6950#	820#	10100	9	-6170#	820#	-1670#	800#	-8320#	670#
	Ds	110	12800#	670#	5520#	810#	11110#	200#	-7810#	810#	-1370 #	800#	-10830 #	750#
	Rg	111	13270#	650#	4340#	720#	11480#	400#	*		1370#	760#	*	
	Cn	112	*		3420#	710#	11910#	730#	*		1500#	720#	*	
277	Hs	108	11270#	800#	*		9050#	200#	-3650 #	660#	*		-7890#	760#
	Mt	109	12000#	820#	7300#	920#	9910#	100#	-5370 #	870#	*		-7650#	890#
	Ds	110	12570#	560#	6060#	700#	10830#	110#	-7260 #	410#	-430#	850#	-10420 #	740#
	Rg	111	13100#	730#	5070#	670#	11200#	300#	*		-270 #	740#	-10090 #	790#
	Cn	112	*		3740#	430#	11620	50	*		2570#	570#	*	
278	Mt	109	11720#	820#	*		9630	50	-4780#	720#	*		-7480#	730#
	Ds	110	12300#	830#	6480#	980#	10470#	200#	-6550 #	760#	-2400 #	830#	-10030 #	810#
	Rg	111	13110#	720#	5380#	640#	10850	50	-8370 #	400#	260#	790#	-9960#	390#
	Cn	112	13560#	740#	4190#	700#	11310#	200#	*		500#	580#	*	
	Ed	113	*		3180#	660#	11850	50	*		3260#	550#	*	
279	Mt	109	11620#	970#	*		9380#	300#	-4280#	790#	*		-6960#	910#
	Ds	110	12160#	710#	6950#	810#	10080#	110#	-5900#	750#	*		-9460#	700#
	Rg	111	12710#	670#	5770#	820#	10520	50	-7460 #	820#	-1250 #	750#	-9230#	610#
	Cn	112	13520#	480#	4690#	600#	11040#	200#	*		1360#	770#	-11930 #	490#
	Ed	113	*		3680#	870#	11520#	870#	*		1430#	790#	*	

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

A	Elt.	Z	S(n)	S(p)	$Q(4\beta^-)$	Q(d	,α)	Q(p)	,α)	Q(n)	,α)
280	Ds	110	6680#	980#	4260#	1030#	*	15500#	1000#	12420#	1050#	14670#	950#
	Rg	111	5960#	680#	2530#	800#	*	18220#	820#	13610#	660#	16560#	880#
	Cn	112	7410#	740#	3370#	720#	*	15890#	680#	12220#	780#	16200#	700#
	Ed	113	6170#	810#	1180#	610#	*	18920#	590#	13600#	420#	18450#	660#
201	Б	110	5160#	070"				1.6650#	000#	12560#	0.50#		
281	Ds	110	5160#	970#	*		*	16650#	880#	12560#	850#	*	
	Rg	111	6660#	970#	2510#	1120#	*	16880#	1000#	13780#	1020#	15210#	1020#
	Cn	112	5750#	700#	3160#	660#	*	16960#	570#	12370#	530#	17290#	740#
	Ed	113	7400#	500#	1180#	660#	*	17490#	550#	13740#	530#	16940#	470#
282	Rg	111	5570#	1040#	2920#	870#	*	17990#	1020#	13540#	890#	15950#	940#
	Cn	112	7120#	760#	3610#	1040#	*	15800#	840#	12070#	780#	15500#	890#
	Ed	113	6160#	470#	1580#	530#	*	18740#	690#	13560#	580#	17600#	560#
202	ъ	111	6500#	060#				1.65.60#	010#	12/2011	1050#		
283	Rg	111	6590#	960#	*	000"	*	16560#	910#	13620#	1050#	*	000"
	Cn	112	5560#	900#	3600#	890#	*	16900#	1010#	12460#	810#	16610#	990#
	Ed	113	7090#	570#	1560#	790#	*	17400#	580#	13870#	730#	16470#	690#
284	Cn	112	7010#	1010#	4020#	1070#	*	15460#	1040#	12110#	1140#	14760#	990#
	Ed	113	6190#	690#	2180#	810#	*	18330#	850#	13440#	660#	16940#	970#
	Fl	114	*	0,0	3070#	790#	*	15910#	750#	11980#	720#	16550#	760#
	_												
285	Cn	112	5440#	990#	*		*	16600#	910#	12240#	880#	*	
	Ed	113	6930#	970#	2100#	1140#	*	16960#	1010#	13620#	1040#	15580#	1040#
	Fl	114	5990#	760#	2880#	660#	*	17010#	590#	12140#	530#	17670#	760#
286	Ed	113	5790#	1040#	2450#	880#	*	18180#	1040#	13390#	900#	16380#	960#
200	Fl	114	7300#	760#	3250#	1040#	*	15890#	850#	11930#	790#	15930#	900#
••=		440	<0.40 H	000"				4.5500.0		1276011	4000"		
287	Ed	113	6840#	980#	*		*	16780#	930#	13560#	1080#	*	
	Fl	114	5770#	900#	3230#	900#	*	17050#	1010#	12350#	810#	17170#	1010#
	Ef	115	*		1170#	790#	*	17600#	590#	13840#	790#	16950#	690#
288	Fl	114	7100#	1010#	3490#	1080#	*	15740#	1040#	12180#	1140#	15520#	990#
	Ef	115	6200#	690#	1590#	810#	*	18710#	850#	13630#	660#	17690#	970#
200	El	114	55504	1000#				17020#	020#	12410#	000#		
289	Fl	114	5550#	1000#	*	11.40//	*	17030#	930#	12410#	880#	*	1040#
	Ef	115	7180#	970#	1670#	1140#	*	17300#	1010#	13760#	1040#	16300#	1040#
	Lv	116	*		2530#	730#	*	17340#	660#	*		18400#	820#
290	Ef	115	5840#	1040#	1960#	880#	*	18560#	1040#	13690#	900#	17300#	980#
	Lv	116	7400#	820#	2760#	1040#	*	16140#	850#	12170#	790#	16770#	900#
291	Еf	115	6000#	1020#			al.	17140#	000#	12010#	1120#		
491	Ef	115	6980# 5990#	1020# 900#	* 2800#	900#	*	17140# 17430#	980#	13810# 12480#	1120#	* 17000#	1010#
	Lv	116	5880#	900#			*		1010#		810#	17990#	1010#
	Eh	117	*		690#	890#	*	17980#	770#	*		17680#	800#
292	Lv	116	7220#	1010#	3040#	1130#	*	16060#	1040#	12440#	1140#	16320#	1000#
	Eh	117	6300#	900#	1100#	910#	*	19090#	940#	13910#	830#	18560#	1050#
202		117	564011	1000"				17200"	000"	10640#	000"		
293	Lv	116	5640#	1000#	*	1140"	*	17390#	980#	12640#	880#	*	10/0"
	Eh	117	7260#	1050#	1150#	1140#	*	17710#	1020#	14050#	1050#	17140#	1040#
	Ei	118	*		1990#	970#	*	17780#	920#	*		19320#	960#
294	Eh	117	5940#	1050#	1440#	880#	*	18990#	1040#	14000#	900#	18180#	1030#
	Ei	118	7480#	970#	2210#	1050#	*	16600#	940#	12530#	890#	17720#	900#
295	Ei	118	6020#	930#	2300#	920#	*	17840#	1040#	12800#	930#	18920#	1030#

Table III. Nuclear-reaction and separation energies (continued, Explanation of Table on p. 030003-98)

\boldsymbol{A}	Elt.	Z	S(2	n)	S(2)	2p)	Q(o	<i>t</i>)	Q(2f)	B ⁻)	Q(arepsilon	p)	$Q(\beta^{-}$	n)
200	Ъ	110	12000#	1000#			0010#	20011	5100#	070#			0220#	0001
280	Ds	110	12000#	1000#	*	02011	9810#	200#	-5180#	970#	*	050#	-9330# -9330#	890#
	Rg	111	12770#	640#	6430#	820#	10146	7	-7250#	670#	-900#	850#	-9220#	700#
	Cn	112	13380#	730#	5260#	850#	10730#	200#	*		-720#	840#	-11610#	910#
	Ed	113	13890#	440#	3960#	540#	11230#	750#	*		2080#	580#	*	
81	Ds	110	11840#	830#	*		9510#	210#	-4590#	700#	*		-8530#	790‡
	Rg	111	12620#	910#	6780#	1050#	9900#	400#	-6510#	860#	*		-8470#	990
	Cn	112	13150#	600#	5680#	710#	10450	50	*	00011	210#	870#	-11190#	560
	Ed	113	13570#	760#	4540#	520#	11050#	600#	*		640#	610#	*	300
32	Rg	111	12230#	840#	*		9640#	210#	-5930#	750#	*		-8290#	760
	Cn	112	12860#	880#	6120#	1020#	10170#	200#	*		-1740 #	880#	-10910 #	720
	Ed	113	13560#	540#	4740#	640#	10780	50	*		1140#	880#	*	
33	Rg	111	12160#	1070#	*		9360#	200#	-5430#	820#	*		-7770#	960
,,,	Cn	112	12680#	720#	6520#	840#	9940#	110#	*	02011	*		-10310#	710
	Ed	113	13250#	530#	5170#	920#	10510#	110#	*		-380#	790#	-10310# *	/10
	Ľű	113	13430#	550#	J1/0#	74U#	10510#	110#	*		-300#	170#	*	
34	Cn	112	12570#	1040#	*		9600#	200#	-6380#	1040#	*		-10230#	920
	Ed	113	13280#	640#	5790#	840#	10280	50	*		20#	880#	*	
	Fl	114	*		4630#	930#	10800#	300#	*		150#	900#	*	
. ~		110	10160#	0.40#			0220	50	5020#	700"			0.400#	700
35	Cn	112	12460#	840#	*		9320	50	-5830#	700#	*		-9490#	790
	Ed	113	13120#	920#	6130#	1070#	10010	50	*		*		-9260#	1040
	Fl	114	*		5060#	720#	10560	50	*		1170#	900#	*	
36	Ed	113	12720#	850#	*		9790	50	*		*		-9060#	760
,0	Fl	114	13290#	930#	5350#	1040#	10370	30	*		-690#	880#	*	700
37	Ed	113	12630#	1090#	*		9540#	200#	-6650 #	850#	*		-8600 #	980
	Fl	114	13070#	730#	5680#	840#	10160	50	*		*		*	
	Ef	115	*		4410#	920#	10760	50	*		590#	790#	*	
88	Fl	114	12870#	1040#	*		10072	13	*		*		-10920#	920
50	Ef	115	*	104011	4820#	850#	10750	50	*		1240#	900#	*	720
89	Fl	114	12650#	840#	*		9970	50	-6960 #	760#	*		-10280 #	790
	Ef	115	13370#	920#	5160#	1090#	10510	50	*		*		*	
	Lv	116	*		4120#	780#	11100#	300#	*		2200#	940#	*	
20	E.C	115	12020#	050#			10450	50					0710#	020
90	Ef	115	13020#	850#	*	1040#	10450	50	*		*	000#	-9710#	820
	Lv	116	*		4420#	1040#	11000	70	*		340#	880#	*	
91	Ef	115	12820#	1130#	*		10320#	300#	-7810#	980#	*		-9280#	1030
	Lv	116	13280#	790#	4760#	850#	10890	50	*		*		*	
	Eh	117	*		3440#	1000#	11480#	400#	*		1620#	890#	*	
92	Lv	116	13100#	1040#	*	0.40"	10774	15	*		*	1020"	-11630#	1000
	Eh	117	*		3900#	940#	11380#	400#	*		2300#	1030#	*	
93	Lv	116	12860#	850#	*		10680	50	-8200#	910#	*		-10980#	890
, ,	Eh	117	13560#	1000#	4180#	1130#	11290	50	-6200π *	710π	*		-10960π *	370
	Ei	118	13300 11	1000π	3090#	930#	11920#	500#	*		3340#	1070#	*	
	-													
94	Eh	117	13200#	940#	*		11200	50	*		*		-10420 #	960
	Ei	118	*		3360#	1040#	11840	70	*		1510#	890#	*	
95	Ei	118	13500#	950#	3730#	870#	11700#	200#	*		*		*	

Graphs of separation and decay energies

Figs.	1– 9.	S_{2n}	two-neutron separation energies.
Figs.	10–17.	S_{2n}	two-proton separation energies.

Figs. 18–26. Q_{α}^{p} α -decay energies.

Mass numbers and element symbols are indicated only along the borders of the graphs; those for the intermediate points must be derived by enumeration.

Points represent experimental values.

Open circles represent values estimated from TMS (see Part I, p. 030002-9).

Lines connect points for isotopes (S_{2n}, Q_{α}) or isotones (S_{2p}) .

Other types of graphs are available from the AMDC web-site (see text).

References used in the

AME2016 and the NUBASE2016 evaluations

REGULAR JOURNALS (CODEN identifiers) AND BOOKS

LOCE III I	, o ora are	o (CODET (Tachelliots) FIT (D DOOTES
AAFPA		Annales Academiae Scientiarum Fennicae, series A VI (Finland)
ADNDA		Atomic Data and Nuclear Data Tables (Elsevier, USA)
AENGA		Atomnaya Energiya (Russia)
AFYSA	1950-70	Arkiv för Fysik (Sweden)
ANPHA	-, -, -, -, -, -, -, -, -, -, -, -, -, -	Annales de Physique (France)
ANPYA		Annalen der Physik (Germany,DR)
APAHA		Acta Physica Academiae Scientiarium Hungaricae
APASA		Acta Physica Austriaca
APJLA		Astrophysical Journal Letters
APOBB	1970	Acta Physica Polonica Section B
APPOA	1969	Acta Physica Polonica Acta Physica Polonica
ARISE	1986-92	International Journal of Radiation Applications and Instrumentation - Part A - Applied
MICIOL	1700 72	Radiation and Isotopes (Great Britain)
ARISE	1993	Applied Radiation and Isotopes (Elsevier)
ATKEA	1773	Atomkernenergie (Germany)
ATKOA		Atomki Kozlemenyek (Hungary)
AUJPA		Australian Journal Physics
BAPMA		Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, As-
DAI MA		tronomiques et Physiques
BAPSA		Bulletin of the American Physical Society
BRSPE		Bulletin of the Russian Academy of Sciences, Physics
CHDBA	1966	Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, serie B (France)
СПРВА	1900	Acta Physica Sinica (Beijing)
CJCHA		Canadian Journal of Chemistry
CJPHA		Canadian Journal of Physics
CODBA		CODATA Bulletin (Committee on Data for Science and Technology - ICSU)
COREA	1965	Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (France)
CPCHC	2008	Chinese Physics C (former "High-Energy Physics and Nuclear Physics")
CPHMA	2000	Commentationes Physico-Mathematicae : Societas Scientiarum Fennicae (Finland)
CPLEE	1992	Chinese Physics Letters
CUSCA	1772	Current Science (India)
CZYPA		Czechoslovak Journal of Physics (Kluwer, london)
DABBB	1953-96	Dissertation Abstract International B
DANKA	1755-70	Doklady Akademii Nauk SSSR
EPJAA	1998	European Physical Journal A (replaces ZPAAD)
EPJDD	1998	European Physical Journal D
EPJDR	1999	European Physical Journal Direct
EPJST	2007	European Physical Journal Special Topics [nsr: ZSTNE]
EULEE	1986	Europhysics Letters (replaces JPSLB and NCLTA)
FECLA	1980	Particles and Nuclei, Letters (Russia)
FZKAA		Fizika (Croatia)
HPACA		Helvetica Physica Acta
HYIND		Hyperfine Interactions
IANFA		Izvestiya Akademii Nauk SSSR, seriya Fizicheskaya
IEIMA		IEEE Transactions on Instrumentation and Measurement (USA)
IJARA	1956-85	International Journal of Applied Radiation and Isotopes (Great Britain)
IJAKA IJMPD	1730-03	International Journal of Mass Spectrometry and Ion Processes (Elsevier)
IJOPA		Indian Journal of Pure and Applied Physics
IJPYA		Indian Journal of Physics and Proceedings of the Indian Association for the Cultivation of
131 171		Colors

Science

```
IMPAE
                        International Journal of Modern Physics A (World Scientific Publishing, Singapore)
IMPEE
                        International Journal of Modern Physics E (World Scientific Publishing, Singapore)
JCOMA
            ...-1991
                        Journal of the Less Common Metals (Switzerland)
JINCA
            ...-1981
                        Journal of Inorganic and Nuclear Chemistry (USA)
JLTPA
                        Journal of Low Temperature Physics
JMOPE
                        Journal of Modern Optics (Great Britain)
                        Journal of Nuclear Energy A and B (Great Britain)
JNCEA
                        Journal of Nuclear and Radiochemical Sciences (Japan)
JNRSA
            1961-98
                        Journal de Physique (France)
JOPQA
JOPQS
                        Journal de Physique (France) Suppl. Colloques
JPAGB
                        Journal of Physics, A (Great Britain)
JPCSD
                        Journal of Physics, G Conference Series (Great Britain)
            1989-...
                        Journal of Physics, G Nuclear Physics (Great Britain)
JPGPE
JPHGB
            ...-1988
                        Journal of Physics, G Nuclear Physics (Great Britain)
            ...-1960
JPRAA
                        Journal de Physique et le Radium (France)
            ...-1985
JPSLB
                        Journal de Physique Lettres (France)
                        Journal of Research of the National Institute of Standards and Technology
JRNBA
                        Journal Radioanal. Nuclear Chemistry
JRNCD
JUPSA
                        Journal of the Physical Society of Japan
                        Japanese Physical Society Conference Proceedings
JUPSC
KDVSA
                        Det Kongelige Danske Videnskabernes Selskab, Matematisk-Fysiske Meddelelser
KERNA
                        Kernenergie (Germany)
KPSJA
                        Journal of the Korean Physical Society
                        Kyoto University, Research Reactor Institute: Annual Report
KURAA
                        Modern Physics Letters section A (World Scientific Publishing, Singapore)
MPLAE
MTRGA
                        Metrologia
NATUA
                        Nature (Great Britain)
            1955-99
                        Nuovo Cimento A (Italy)
NCIAA
NCLTA
            ...-1985
                        Nuovo Cimento Lettere (Italy)
                        Nuclear Data Tables, section A (USA)
NDSAA
NDSBA
                        Nuclear Data Sheets (USA)
NIMAE
            1986-...
                        Nuclear Instruments and Methods in Physics Research A (Netherlands)
NIMBE
            1983-...
                        Nuclear Instruments and Methods in Physics Research B (Netherlands)
                        Nuclear Science and Engineering (American Nuclear Society, USA)
NSENA
            ...-1969
NUCIA
                        Nuovo Cimento (Italy)
NUIMA
            ...-1985
                        Nuclear Instruments and Methods (Netherlands)
NUPAB
            1967-...
                        Nuclear Physics, section A (Netherlands)
NUPBB
            1967-...
                        Nuclear Physics, section B (Netherlands)
            1957-66
                        Nuclear Physics (Netherlands)
NUPHA
                        Pure and Applied Chemistry
PACHA
PCPSA
                        Proceedings Cambridge Philosophical Society
                        Particle Emission from Nuclei, ed. by D.N. Poenaru and M.S. Ivaşcu, CRC Press (USA),
PENUC
                        1989
PHFEA
                        Physica Fennica (Finland)
PHLTA
            ...-1967
                        Physics Letters (Netherlands)
            ...-1955
PHMAA
                        Philosophical Magazine (Great Britain)
PHMAB
            1956-...
                        Philosophical Magazine (Great Britain)
PHNOA
                        Physica Norvegia
            1930-69
                        Physical Review (USA) (not 1964 and 1965)
PHRVA
PHSTB
            1970-...
                        Physica Scripta (Sweden)
                        Physica Scripta (Sweden) T-volumes
            1970-...
PHSTT
PHYSA
                        Physica (Netherlands)
PISAA
                        Proceedings of the Indian Academy of Sciences, section A
PLRBA
            1964-65
                        Physical Review, section B (USA)
```

PLSSA Planetary and Space Science (Netherlands) **PPNPD** Progress in Particle and Nuclear Physics **PPNUE** 2005 Physics of Particle and Nuclei Proceedings of the Physical Society (Great Britain) PPSOA **PRAMC** Pramana, Journal of Physics (India) Proceedings of the Royal Society of London, Series A **PRLAA** Physical Review Letters (USA) **PRLTA PRVAA** 1970-... Physical Review, section A (USA) 1970-... **PRVCA** Physical Review, section C (USA) Physical Review, section D (USA) **PRVDA** 1970-... **PRXHA** 2014-... Physical Review, section X (USA) **PRYCA** Proceedings of the Royal Society of Canada -12 Progress in Theoretical Physics (Kyoto), Suppl. **PTPSA PYLAA** 1968-... Physics Letters, section A (Netherlands) Physics Letters, section B (Netherlands) **PYLBB** 1968-... **PZETA** Pis'ma v Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Russie) Radiochimica Acta (Germany) **RAACA** Radiation Effects and Defects in Solids (Great Britain) **RAEFB RBFSA** Revista Brasiliera de Fisica Reviews of Modern Physics (USA) **RMPHA RMXFA** Revista Mexicana de Física **RPHAA** 1966-90 Revue de Physique Appliquée (Paris) Reports on Progress in Physics (Great Britain) **RPPHA RRALA** Radiochemical and Radioanalytical Letters (Hungary) South African Journal of Physics **SAPHD SCIEA** Science (American Association for the Advancement of Science) **SHIBA** Shitsuryo Bunseki (Mass Spectrometry, Japan) Treatise on Heavy-Ion Science, ed. by D.A. Bromley, Plenum Press, 1989 THISc Ukrains'kii Fizicheskii Zhurnal **UFZHA VDPEA** Verhandlungen der Deutschen Physikalischen Gesellschaft **VHDPG** Verhandlungen der Deutschen Physikalischen Gesellschaft YAFIA Yadernaya Fizika (Russia) ...-1997 YTHLD Chinese Journal of Nuclear Physics YWPIF Nuclear Physics Review (China) 1974-... **ZDACE** Zeitschrift für Physik D (Germany) Zeitschrift für Naturforschung, part A (Germany) **ZENAA** ZEPYA ...-1974 Zeitschrift für Physik (Germany) Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Russia) **ZETFA** 1975-97 Zeitschrift für Physik A (Germany) (replaces ZEPYA) **ZPAAD**

REPORTS, PREPRINTS, THESIS, ABSTRACTS, COMMUNICATIONS

Zeitschrift für Physik C (Germany)

AAAAA to be pd To be published in journal AAAAA PrvCom AHW Mon Private communication to A.H. Wapstra in given Month PrvCom BPf Mon Private communication to B. Pfeiffer in given Month PrvCom FGK Mon Private communication to F.G. Kondev in given Month PrvCom GAu Mon Private communication to G. Audi in given Month PrvCom Hwj Mon Private communication to Huang Wenjia in given Month PrvCom JB1 Mon Private communication to J. Blachot in given Month PrvCom NDG Mon Private communication to Nuclear Data Group in given Month PrvCom SNa Mon Private communication to S. Naimi in given Month

PrvCom SNa Mon Private communication to S. Naimi in given Month PrvCom WgM Mon Private communication to M. Wang in given Month

PrvCom Ref Quoted by reference in question

ZPCFD

1975-97

Table of Isotopes Table of Isotopes, LBL Brookhaven AnRpt Institute Annual Report from Institute (or City) ANL-Argonne National Laboratory, report

European Organization for Nuclear Research, report CERN-

Reports on work done with DOE support COO-

Defense Atomic Support Agency, Washington, DC, report DASA-GANIL-Grand Accelerateur National d'Ions Lourds, report Gesellschaft für SchwerIonforschung, report

GSI-IAEA-International Atomic Energy Agency, report

Idaho Operations Office of US Atomic Energy Commission, report IDO-

IPNO-DRE Institut de Physique Nucléaire d'Orsay, report JINR-Joint Institute for Nuclear Research Dubna, report

KFK-Kernphysik Zentrum Karlsruhe, report

Lawrence Berkeley National Laboratory, report LBL-

LNPI-Leningrad report

Leninst YF-Leningradskii Institut Yadernoi Fiziki

Nuclear Energy Agency - Nuclear Data Center NEANDC-

Cited in NSR for 1965An05 NP-

Oak Ridge National Laboratory report ORNL-

UCRL-University of California Radiation Laboratory report USIP-University of Stockholm Institute of Physics report Th.- City Dissertation from corresponding University

CONFERENCE PROCEEDINGS AND ABSTRACTS

P-Adelaide	2016	Int. Nucl. Physics Conf. (INPC2016), Adelaide, Australia, September 2016
P-Aizu	2002	Proc. Frontiers of Collective Motion, Aizu, Japan, November 2002
P-Alma Ata	1978	Program of 28th USSR Conference on Nuclear Spectroscopy
P-Alma Ata	1984	Program of 34th USSR Conference on Nuclesr Spectroscopy
P-Amsterdam	1974	Proc. Intern. Conference Nuclear Structure
P-Amsterdam	1982	Proc. Intern. Conference Nuclear Structure
P-Amsterdam	1996	2nd. North-West Europe Nuclear Physics Conference NWE'96
P-Argonne	2012	Int. Conf. on Nuclear Structure 2012
P-Arles	1995	Proc. Int. Conf. on Exotic Nuclei and Atomic Masses ENAM-95
B-Arles	1995	Abstracts ENAM-95
P-Aulanko	2001	Proc. Int. Conf. on Exotic Nuclei and Atomic Masses ENAM-2001
B-Aulanko	2001	Abstracts ENAM-2001
P-BadHonnef	1988	Proc. Int. Workshop Nucl. Struct. of the Zr Region
P-Baku	1976	Program of 26th USSR Conference on Nuclear Spectroscopy
P-Bellaire	1998	Proc. Int. Conf. on Exotic Nuclei and Atomic Masses ENAM-98
B-Bellaire	1998	Abstracts ENAM-98
P-Berkeley	1980	Proc. Intern. Conf. Nuclear Physics Berkeley
P-Bernkastel	1992	Proc. 9th Int. Conf. Atomic Masses and Fundamental Constants AMCO-9, and 6th Int.
		Conf. Nuclei far from Stability NUFAST-6
B-Bernkastel	1992	Abstracts AMCO-9 and NUFAST-6
P-Birmingham	1985	Proc. Specialists Meeting on Delayed Neutron Properties
P-Bombay	1974	Proc. Nucl. Phys. and Solid State Phys. Symposium
P-Bombay	1985	Symposium on Quantum Electronics
P-Bormio	1999	XXXVII International Winter meeting on Nuclear Physics
P-Brookhaven	1979	Proc. 3rd Int. Conf. Neutron Capture Gamma Ray Spectroscopy
B-Bruges	2016	ND2016 conference
P-Budapest	1972	Proc. 1st Int. Conf. Neutron Capture Gamma Ray Spectroscopy
P-Cadarache	2005	Proc. Nuclear Fission and Fission-Product Spectroscopy, AIP-798
P-Cargese	1976	Proc. 3rd Int. Conf. Nuclei far from Stability NUFAST-3 CERN 76-13

```
P-Charkov
                  1986
                           Program of 38th USSR Conference on Nuclear Spectroscopy
                  1984
                           Proc. 7th Int. Conf. Atomic Masses and Fundamental Constants AMCO-7
P-Darmstadt
P-Debreccen
                  1968
                           Proc. Conf. Electron Capture and Higher Order Processes in Nuclear Decays
                           Int. Symposium on Exotic Nuclear Systems, AIP-802
P-Debreccen
                  2005
                           Repts. Third Conf. Neutron-deficient Isotopes
P-Dubna
                  1961
                           Proc. International Symposium on Nuclear Structure
P-Dubna
                  1968
                  1989
                           Int. School-Seminar on Heavy-Ion Physics
P-Dubna
P-Dubna
                  1999
                           Proc.49th Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei
                           Proc. Intern. Conf. Nuclear Physics Florence
P-Florence
                  1983
                           Proc. 8th Int. Symp. Capture Gamma Ray Spectroscopy and Related Topics
P-Fribourg
                  1993
P-Gatlinburg
                  1967
                           Proc. Intern. Conf. Gatlinburg
P-Grenoble
                  1981
                           Proc. 4th Int. Conf. Neutron Capture Gamma Ray Spectroscopy
                           Proc. 4th Int. Conf. Nuclei far from Stability NUFAST-4 CERN 81-09
P-Helsingor
                  1981
                           Program of 32th USSR Conference on Nuclear Spectroscopy
P-Kiev
                  1982
P-Knoxville
                  1984
                           Proc. 5th Int. Symp. Capture Gamma-Ray Spectroscopy and Related Topics
P-Kyoto
                  1970
                           Conference on Mass Spectroscopy
P-Kyoto
                  1996
                           Proc. Research Meeting Unstable Nuclei and Nuclear Methodology
P-Lansing
                  1979
                           Proc. 6th Int. Conf. Atomic Masses and Fundamental Constants AMCO-6
P-Legnaro
                  1971
                           Proc. Conf. Structure of 1f7/2 Nuclei, Legnaro
P-Leningrad
                  1975
                           Program of 25th USSR Conference on Nuclear Spectroscopy
P-Leningrad
                  1985
                           Program of 35th USSR Conference on Nuclear Spectroscopy
P-Leningrad
                  1990
                           Program of 40th USSR Conference on Nuclear Spectroscopy
P-Leuven
                  1987
                           Proc. 6th Int. Symp. Capture Gamma-Ray Spectroscopy and Related Topics
                  2011
                           Int. Conf. on Advances in Radioactive Isotope Science ARIS2011
P-Leuven
                           Proc. 2nd Int. Conf. Nuclei far from Stability NUFAST-2 CERN 70-30
                  1970
P-Levsin
P-Lisbon
                  2007
                           Proc. Proton Emitting Nuclei and Related Topics -PROCON 2007, AIP-961
P-Miami
                  1989
                           Symposium on Exotic Nuclear Spectroscopy
                           Program of 41th USSR Conference on Nuclear Spectroscopy
                  1991
P-Minsk
                  1990
                           Proc. Xth Int. Conf. Neutron Capture Gamma Ray Spectroscopy
P-Monterey
P-Moscow
                  1955
                           Conf. Acad. Sci. USSR Peaceful Use of Atomic Energy
P-Moscow
                  1971
                           Program of 21st USSR Conference on Nuclear Spectroscopy
P-Moscow
                  1983
                           Program of 33rd USSR Conference on Nuclear Spectroscopy
                           Frontiers in Gamma-Ray Spectroscopy 2012 - FIG12, AIP-1609
P-New-Dehli
                 2012
P-Niigata
                  1991
                           Proc. Int. Symp. on Structure and Reactions of Unstable Nuclei
P-PacGrove
                  1991
                           Proc. 7th Int. Symp. Capture Gamma Ray Spectroscopy
P-Paris
                  1958
                           Compt.Rend.Congr.Intern.Phys.Nucl., Paris, P.Gugenberger, Ed., Dunod, Paris(1959)
P-Paris
                  1975
                           Proc. 5th Int. Conf. Atomic Masses and Fundamental Constants AMCO-5
                  1975
                           Proc. 2nd Int. Conf. Neutron Capture Gamma Ray Spectroscopy
P-Petten
                  1987
                           Proc. 5th Int. Conf. Nuclei far from Stability NUFAST-5, AIP-164
P-Rosseau
                  1981
                           Program of 31st USSR Conference on Nuclear Spectroscopy
P-Samarkand
P-Santa Fe
                  2004
                           Int. Conf. Nuclear Data for Science and Technology
                  1999
                           1st Int. Conf. Chemistry and Physics of the Transactinide Elements (TAN'99)
B-Seeheim
P-StMalo
                  1988
                           Proc. 3rd Int. Conf. Nucleus-Nucleus Collisions
                  1995
                           Low Energy Nuclear Dynamics, EPS XV Nucl. Phys. Div.
P-StPetersbg
P-Studsvik
                  1969
                           Proc. Conf., Neutron Capture Gamma Ray Spectroscopy
                           10th Int. Mass Spectrometry Conf. (in Adv. in Mass Spectr. 1985)
P-Swansea
                  1985
                  1977
                           Program of 27th USSR Conference on Nuclear Spectroscopy
P-Tashkent
P-Tbilis
                  1964
                           Program of 14th USSR Conference on Nuclear Spectroscopy
P-Teddington
                  1972
                           Proc. 4th Int. Conf. Atomic Masses and Fundamental Constants
                           Symposium on Nuclear Data, JAERI
                  1994
P-Tokai
                           Proc. 2nd Intern. Conf. Nuclidic Masses
P-Vienna
                  1964
P-Winnipeg
                  1967
                           Proc. 3rd Int. Conf. Atomic Masses and Fundamental Constants
P-Yerevan
                  1969
                           Program of 19th USSR Conference on Nuclear Spectroscopy
P-Yurmala
                  1987
                           Program of 37th USSR Conference on Nuclear Spectroscopy
```

LIST OF REFERENCES

1951Br87

PHRVA

84,

Before 1948 W.B. Lewis, B.V. Bowden 1934Le01 PRLAA 145. 235 1940Kr08 **PCPSA** 36, R.S. Krishnan, E.A. Nahum 1948 1948Fe09 **PPSOA** 61, N. Feather, J. Kyles, R.W. Pringle 1948Ma29 **PPSOA** 60. D.G.E. Martin, H.O.W. Richardson, Y.K. Hsu 1948Ma30 **PRLAA** 195, 287 D.G.E. Martin, H.O.W. Richardson 1948Sa18 **PHRVA** 74, 1264 D. Saxon 1948St.A 58St50 K. Street, Jr., A. Ghiorso, D.A. Orth, G.T. Seaborg PrvCom 1949Be36 **PHRVA** 76, 1624 L.A. Beach, C.L. Peacock, R.G. Wilkinson **PHRVA** 1949Be53 76, 574 P.R. Bell, B.H. Ketelle, J.M. Cassidy **PHRVA** T.W. Bonner, J.E. Evans, J.C. Harris, G.C. Phillips 1949Bo67 75, 1949Ch35 **PHRVA** 76, C.Y. Chao, C.C. Lauritsen, A.V. Tollestrup 1949Du15 **PHRVA** 76, 1272 R.B. Duffield, L.M. Langer 1949Fe18 **PHRVA** 76, 1888 L. Feldman, L. Lidofsky, P. Macklin, C.S. Wu 1949La06 **PHRVA** 76, 641 L.M. Langer, H.C. Price, Jr. 1949Ma57 **PHRVA** 76, 1719 K.C. Mann, D. Rankin, P.N. Kaykin G.W. Parker, G.E. Creek, G.M. Hebert, P.M. Lantz, W.J. Martin ORNL-499 45 1949Pa.A G.W. Parker, G.E. Creek, G.M. Hebert, P.M. Lantz ORNL-336 42 1949Pa.B 1949To16 PHRVA 76, 428 A.V. Tollestrup, C.C. Lauritsen, W.A. Fowler 1949To23 **PHRVA** 75, 1947 A.V. Tollestrup, F.A. Jenkins, W.A. Fowler, C.C. Lauritsen 1950 1950Ag01 **PHRVA** 77, 655 H.M. Agnew 1950B192 **HPACA** 23, 623 J.P. Blaser, F. Boehm, P. Marmier 1950Br52 **PHRVA** 79, 606 J.A. Bruner, L.M. Langer 79, 1950Br66 **PHRVA** 902 A.R. Brosi, H. Zeldes, B.H. Ketelle 79, 1950Ch53 **PHRVA** 108 C.Y. Chao, A.V. Tollestrup, W.A. Fowler, C.C. Lauritsen 1950Fr10 **PHRVA** 80, G. Friedlander, M.L. Perlman, D.E. Alburger, A.W. Sunyar 1950Fr58 **PHRVA** 79, 897 M.S. Freedman, D.W. Engelkemeir **PHRVA** 79, R.W. Hayward 1950Ha58 409 **PHRVA** 79, R.W. Hayward 1950Ha65 541 1950Hu27 **PHRVA** 77, 726 D.J. Hugheas, C. Eggler, D.E. Alburger 1950Ke11 **PHRVA** 79, 242 B.H. Ketelle, C.M. Nelson, G.E. Boyd 1950La04 **PHRVA** 77, 798 L.M. Langer, J.W. Motz, H.C. Price, Jr. **PHRVA** 1950Ma14 78, 363 L.B. Magnusson, S.G. Thompson, G.T. Seaborg 977 E.A. Martell, W.F. Libby 1950Ma76 **PHRVA** 80, 1950Me55 **PHRVA** 79. 19 J.Y. Mei, A.C.G. Mitchell, C.M. Huddleston 1950Mo56 **PHRVA** 80, 309 R.C. Mobley, R.A. Laubenstein R.A. Naumann, F.L. Reynolds, I. Perlman 1950Na09 **PHRVA** 77, 398 1950Ok52 **PHRVA** 80, 293 G.D. O'Kelley, G.W. Barton, Jr. **PHRVA** G.E. Owen, C. Sharp Cook, P.H. Owen 1950Ow03 78, 606 1950Ri59 **PHRVA** 524 H.T. Richards, R.V. Smith, C.P. Browne 80. 1951 1951Bo48 **PHRVA** 83, 216 G.E. Boyd, B.H. Ketelle 1951Bo49 **PHRVA** T.W. Bonner, J.W. Butler 83. PHRVA A.B. Brown, C.W. Snyder, W.A. Fowler, C.C. Lauritsen 1951Br10 82,

292 H.N. Brown, W.L. Bendel, F.J. Shore, R.A. Becker

```
1951Ca04
             PHRVA
                         81,
                                     485 R. Canada, A.C.G. Mitchell
                                     955
                                          R. Canada, A.C.G. Mitchell
1951Ca28
             PHRVA
                         83,
             PHRVA
                                     749
                                          R.R. Carlson
1951Ca37
                         84,
1951Ca43
             PHRVA
                         83,
                                     483 J.M. Cassidy
1951Du03
             PHRVA
                         81,
                                     203 R.B. Duffield, L.M. Langer
1951Du19
             PHRVA
                         84.
                                     1065 R.B. Duffield, L.M. Langer
1951Fr19
             PHRVA
                         84,
                                          G. Friedlander, D.E. Alburger
             PHRVA
                                          C.M. Huddleston, A.B. Smith
1951Hu38
                         84,
1951Hy24
             PHRVA
                         82,
                                     944 E.K. Hyde, G.D. O'Kelley
1951Je01
             PHRVA
                         81,
                                     143 E.N. Jensen, R.T. Nichols, J. Clement
1951Kl55
             PHRVA
                         83,
                                     212 E.D. Klema, G.C. Phillips
1951Ko17
             AFYSA
                         3,
                                      47 E. Kondaiah
1951Li26
             PHRVA
                                     512 C.W. Li, W. Whaling, W.A. Fowler, C.C. Lauritsen
                         83.
1951Li29
             PHRVA
                                     122
                                          C.W. Li, W. Whaling
                         82,
             PHRVA
                                     276
1951Lv10
                         82,
                                          W.S. Lyon
1951Mc11
             PHRVA
                                     734
                                          C.L. McGinnis
                         81.
1951Mc48
             PHRVA
                         84,
                                     384
                                          J.J.G. McCue, W.M. Preston
1951Me10
             PHRVA
                         81,
                                           W.W. Meinke, A. Ghiorso, G.T. Seaborg
1951Or.A
             UCRL- 1951
                                           D.A. Orth, K. Street, Jr.
1951Ro50
             PHRVA
                         83,
                                     349
                                          J.M. Robson
1951Ta05
             PHRVA
                         81,
                                     461 S.I. Taimuty
1951Ve05
             PHYSA
                         17,
                                     637
                                          N.F. Verster, G.J. Nijgh, R. van Lieshout, C.J. Bakker
             PHRVA
1951Wh05
                         81,
                                     150
                                          W. Whaling, C.W. Li
1951Wi26
             PHRVA
                                          R.M. Williamson, C.P. Browne, D.S. Craig, D.J. Donahue
                         84,
                                     731
                                           1952
                                     734 D.E. Alburger
1952Al06
             PHRVA
                         85,
1952Be55
             AFYSA
                                     191 I. Bergström
                         5,
1952Be78
             IANFA
                         16,
                                     314 E.Y. Berlovich
1952Ch31
             PHRVA
                         88,
                                     887 L.S. Cheng, J.L. Dick, J.D. Kurbatov
1952Cr30
             PHRVA
                         88,
                                     808 D.S. Craig, D.J. Donahue, K.W. Jones
1952Fa14
             PHRVA
                         87,
                                     252 C.Y. Fan
                                     1091 L. Feldman, C.S. Wu
1952Fe16
             PHRVA
                         87,
             PPSOA
1952Fr23
                                     911
                                          J.H. Fremlin, M.C. Walters, and 95Tr07 and 02Tr04
                         65,
1952Fu04
             PHRVA
                                     347
                                           S.C. Fultz, M.L. Pool
                         86.
1952Ha44
             PHRVA
                                          J.R. Haskins, J.E. Duval, L.S. Cheng, J.D. Kurbatov
                         88.
             Th.-Berkeley
1952Hi.A
                                           G.H. Higgins
                                          M.I. Kalkstein, W.F. Libby
1952Ka41
             PHRVA
                         85,
                                     368
1952Ko27
             AFYSA
                         4,
                                          E. Kondaiah
1952Lo06
             PHRVA
                         85,
                                     585
                                           J.A. Lovington, J.J.G. McCue, W.M. Preston
1952Mc34
             PHRVA
                         87,
                                     202
                                          C.L. McGinnis (also PrvCom NDG)
1952Me53
             PHRVA
                         88,
                                    1360
                                          F.R. Metzger
1952Mi54
             PHRVA
                         88,
                                    1254
                                          C. Mileikowsky, W. Whaling
             PHRVA
1952Mo12
                                     501 H.T. Motz
                         85.
1952Mo22
             PHRVA
                         86,
                                     165 H.T. Motz, D.E. Alburger
             Th.-Berkeley
1952Or.A
                                           D.A. Orth
1952Ro16
             PHRVA
                                     863 D. Rose, G. Hinman, L.G. Lang
                         86.
                                          W.A. Schoenfeld, R.W. Duborg, W.M. Preston, C. Goodman
1952Sc09
             PHRVA
                         85,
1952Sc11
             PHRVA
                         85,
                                     1046 C.L. Scoville, S.C. Fultz, M.L. Pool
1952Sc15
             PHRVA
                                     248 G. Schrank, J.R. Richardson
                         86.
1952Sm13
             PHRVA
                                      98 A.B. Smith
                         86.
                                     454 A.B. Smith, A.C.G. Mitchell, R.S. Caird
1952Sm41
             PHRVA
                         87,
1952Wa12
             PHRVA
                         86,
                                     561
                                          A.H. Wapstra
             PHRVA
                         85,
1952Wi26
                                     687 R.G. Winter
                                           1953
1953Am08
             PHRVA
                         91,
                                      68 D.P. Ames, M.E. Bunker, L.M. Langer, B.M. Sorenson
```

```
1953An01
             PHRVA
                          90,
                                      656 C.E. Anderson, G.W. Wheeler, W.W. Watson
1953As.A
             Th.-Berkeley
                                           F. Asaro
                          17,
                                      437
1953Ba81
             IANFA
                                           A.A. Bashilov, N.M. Antoneva, B.S. Dzelepov, A.I. Dolgintseva
1953Ba82
             IANFA
                          17,
                                      468
                                           A.A. Bashilov, N.M. Antoneva, D.C. Broder, B.S. Dzelepov
1953Be42
             PHRVA
                          90,
                                      888
                                           W.L. Bendel, F.J. Shore, H.N. Brown, R.A. Becker
1953B144
             PHRVA
                          90.
                                      464 E. Bleuler, J.W. Blue, S.A. Chowdary, A.C. Johnson, D.J. Tendam
1953Bu63
             PHRVA
                          91,
                                     1219 J.P. Butler, J.S. Adams
                                      242 E.R. Collins, C.D. MacKenzie, C.A. Ramm
1953Co02
             PRLAA
                          216,
1953Cr18
             PHRVA
                          90,
                                     1124 B. Crasemann, H.T. Easterday
1953Cr.A
             PrvCom
                                   58St50 W.W.T. Crane
                                      824 D.J. Donahue, K.W. Jones, M.T. McEllistrem, H.T. Richards
1953Do04
             PHRVA
                          89,
                          89,
                                      854 R.B. Duffield, L.M. Langer
1953Du03
             PHRVA
             PHRVA
1953Ea11
                          91.
                                      653 H.T. Easterday
1953Fa18
             PHRVA
                                     1195 K.F. Famularo, G.C. Phillips
                          91,
1953Fi.A
             Th.-Rochester
                                           R.W. Fink
1953Gl.A
             ANL-5000
                                       55
                                           L.E. Glendenin, E.P. Steinberg
1953Ha66
             CJPHA
                                      278
                                           J.A. Harvey
                          31,
1953Hy83
             PHRVA
                          90,
                                      267
                                           E.K. Hyde, A. Ghiorso
1953Jo20
             CJPHA
                          31,
                                     1136
                                           F.A. Johnson
1953Kn23
             PHRVA
                          91,
                                      889
                                           J.D. Knight, M.E. Bunker, B. Warren, J.W. Starner
1953Ky19
             PPSOA
                          66,
                                      519
                                           J. Kyles, C.G. Campbell, W.J. Henderson
1953Li01
             PHRVA
                          90,
                                      387
                                           L. Lidofsky, E. Alperovitch, C.S. Wu
                          90,
1953Ma23
             PHRVA
                                      330
                                           L. Marquez
             PHRVA
1953Ma64
                          92,
                                     1511 L. Marquez
                          92,
                                           J.F. Perkins, S.K. Haynes
1953Pe14
             PHRVA
                                      687
1953Ph28
             PHRVA
                          91.
                                      462
                                           G.C. Phillips, K.F. Famularo, C.R. Gosset
1953Sa26
             COREA
                          236.
                                           M. Sakai, P. Hubert
1953Sh48
             PHRVA
                          91,
                                           F.J. Shore, W.L. Bendel, H.N. Brown, R.A. Becker
                          19.
1953St31
             PHYSA
                                      279
                                           P.H. Stoker, Ong Ping Hok
1953Wa05
             PHRVA
                          89,
                                      502 F. Wagner, Jr., M.S. Freedman, D.W. Engelkemeir, J.R. Huizenga
1953Yo03
             JUPSA
                          8,
                                      435
                                           Y. Yoshizawa
1953Yu04
             COREA
                          237,
                                     1077 T. Yuasa
                                            1954
1954Ah20
             AFYSA
                                      459
                                           K. Ahnlund
                          7.
1954Ah37
             PHRVA
                          96.
                                      999
                                           K. Ahnlund
1954Ah47
             AFYSA
                          8,
                                      489
                                           K. Ahnlund, S. Thulin, R. Pauli
1954Al35
             PHRVA
                          96,
                                      684
                                           K.W. Allen, E. Almqvist, J.T. Dewan, T. Pepper
             PHRVA
                          93,
                                     1073
                                           W. Bernstein, S.S. Markowitz, S. Katcoff
1954Be10
1954Bo39
             PHRVA
                          94,
                                     1078
                                           F.I. Boley
1954Br37
             PPSOA
                          67,
                                      397
                                           W.D. Brodie
                                           H.N. Brown, R.A. Becker
1954Br96
             PHRVA
                          96,
                                     1372
                          9,
                                           H. Daniel, W. Bothe
1954Da22
             ZENAA
                                      402
1954Da31
             ZENAA
                          9.
                                      974
                                           H. Daniel
1954De13
             PHRVA
                          95,
                                      646 E. Der Mateosian
1954De17
             PHRVA
                          95.
                                      458 E. Der Mateosian, C.S. Wu
1954El10
             PRLAA
                          224.
                                      129
                                           R.B. Elliott, D.J. Livesev
1954El24
             PRYCA
                          48,
                                       12 L.G. Elliott, R.L. Graham, J. Walker, J.L. Wolfson
             PHRVA
                          94.
                                      794 R.L. Graham, J. Walker
1954Gr19
1954Ha68
             PHRVA
                          96,
                                     1003 T.H. Handley, E.L. Olsen
1954Hu61
             PHRVA
                          96,
                                      548 J.R. Huizenga, C.M. Stevens
1954Ki23
             RMPHA
                          26,
                                      327 R.W. King
1954Le08
             PHRVA
                          93.
                                      155
                                           M.R. Lee, R. Katz
             PHRVA
1954Li19
                          94,
                                      780 L. Lidofsky, R. Gold, C.S. Wu
             PHRVA
                          95,
                                      444
1954Li24
                                           T. Lindqvist, A.C.G. Mitchell
1954Li42
             PHRVA
                          95,
                                     1535
                                           T. Lindqvist, A.C.G. Mitchell
1954Ma54
             PHRVA
                          95.
                                      708
                                           H.B. Mathur, E.K. Hyde
1954Ma75
             PHRVA
                          96,
                                      126
                                          H.B. Mathur, E.K. Hyde
```

```
7,
1954Mi60
             AFYSA
                                        89
                                           C. Mileikowsky
             AFYSA
1954Mi61
                          8,
                                       117
                                            C. Mileikowsky
             PHRVA
                                            C. Mileikowsky, K. Ahnlund
1954Mi89
                          96.
                                      996
1954Na14
             JPRAA
                                      570
                                            M.E. Nahmias, A.H. Wapstra
                          15,
1954Na18
             COREA
                          239.
                                       47
                                            M.E. Nahmias, T. Yuasa
1954Ni06
             PHRVA
                          94.
                                      369 R.T. Nichols, E.N. Jensen
1954Nu26
             PHYSA
                          20,
                                           R.H. Nussbaum, R. van Lieshout, A.H. Wapstra, N.F. Verster, F.E.L. Ten Haaf,
                                            G.J. Nijgh, L. Th. M. Ornstein
1954Nu27
             PHYSA
                          20,
                                      571
                                            R.H. Nussbaum, A.H. Wapstra, R. van Lieshout, G.J. Nijgh, L. Th. M. Ornstein,
                                            (and PrvCom NDG)
19540103
             PHRVA
                          93.
                                     1125
                                           J.L. Olsen, G.D. O'Kelley
19540105
             PHRVA
                          95,
                                     1539 J.L. Olsen, G.D. O'Kelley
1954Pa39
             AFYSA
                                      212 R. Pauli, K. Ahnlund, C. Mileikowsky
                          8.
1954Po26
             PHRVA
                          95.
                                     1523 A.V. Pohm, W.E. Lewis, J.H. Talboy, Jr., E.N. Jensen
             PHRVA
                          96,
1954Pr31
                                           C.H. Pruett, R.G. Wilkinson
1954Ri09
             PHYSA
                          20.
                                      107
                                           L.H. Th. Rietjens, H.J. van den Bold, P.M. Endt
1954Sa22
             PHRVA
                          94,
                                      642
                                            B. Saraf
1954Th17
             AFYSA
                          7,
                                      289
                                            S. Thulin, K. Nybø
1954Th30
             PHRVA
                          96,
                                      850
                                            J. Thirion, R. Cohen, W. Whaling
1954Th36
             AFYSA
                          8,
                                      219
                                            S. Thulin, J. Moreau, H. Atterling
1954Th39
             AFYSA
                          8,
                                      229
                                            S. Thulin, J. Moreau, H. Atterling
1954Wo23
             PHRVA
                          95,
                                      761
                                            C. Wong
                                           P.P. Zarubin
1954Za05
             IANFA
                          18,
                                      563
                                             1955
1955Ad10
             COREA
                          240.
                                     1421
                                           J.P. Adloff
1955Ah41
             AFYSA
                          9.
                                        39
                                            K. Ahnlund
1955At21
             PHYSA
                          21,
                                            A.H.W. Aten, Jr., G.D. De Feyfer
                                      543
1955Ba.A
             P-Moscow
                                      251
                                            S.A. Baranov, K.N. Shlyagin
1955Be20
             ZEPYA
                          142,
                                      585
                                            W. Beekman
1955Be78
             PHMAA
                          46,
                                      341
                                           E.H. Bellamy, F.C. Flack
1955Bi29
             NUCIA
                          2,
                                     1052
                                            A. Bisi, E. Germagnoli, L. Zappa
                                     1324
1955B123
             PHRVA
                          100.
                                            J.W. Blue, E. Bleuler
                                      254
                                           C.P. Browne, D.C. Hoffman, W.T. Crane, J.P. Balagna, G.H. Higgins,
1955Br02
             JINCA
                          1,
                                            J.W. Barnes, R.W. Hoff, H.L. Smith, J.P. Mize, M.E. Bunker
1955Br16
             PHRVA
                          100.
                                        84
                                            R.M. Brugger, T.W. Bonner, J.B. Marion
1955Bu01
             PHRVA
                          97,
                                      1272
                                            M.E. Bunker, J.W. Starner
1955Bu.A
             PHRVA
                          99,
                                      659
                                            M.E. Bunker, J.P. Mize, J.W. Starner
             PHRVA
                                            M.C. Day, Jr., G.W. Eakins, A.F. Voigt
1955Da37
                          100,
                                      796
1955De18
             PHMAA
                                      445
                                            H. De Waard
                          46,
1955De40
             PHYSA
                          21,
                                      803
                                           E.F. De Haan, G.J.S. Sizoo, P. Kramer
1955Dr43
             IANFA
                          19,
                                      324
                                            G.M. Drabkin, V.I. Orlov, L.I. Rusinov
                                            D.W. Engelkemeir, P.R. Fields, S. Fried, G.L. Pyle, C.M. Stevens, L.B. Asprey,
1955En16
             JINCA
                          1,
                                      345
                                            C.P. Browne, H.L. Smith, R.W. Spence
             PHRVA
                          99.
                                     1440 B. Farrelly, L. Koerts, N. Benczer, R. van Lieshout, C.S. Wu
1955Fa33
1955Go.A
             P-Moscow
                                      226 L.L. Goldin, E.F. Tretyakov, G.I. Novikov
1955Gr08
             PHRVA
                          97,
                                     1033
                                            W.E. Graves, A.C.G. Mitchell
1955Ha.A
             Th.-Delft
                                            H. Hagedoorn
             PHRVA
                          97.
                                     1031
1955Jo02
                                           J.T. Jones, Jr., E.N. Jensen
1955Jo09
             PHRVA
                          99,
                                     1645 M.W. Johns, B.C. Chidley, I.R. Williams
1955Ki28
             PHRVA
                          99,
                                     1393 J.D. Kington, J.K. Bair, H.O. Cohn, H.B. Willard
1955Ko14
             PHRVA
                          98,
                                     1230 L. Koerts, P. Macklin, B. Farrelly, R. van Lieshout, C.S. Wu
1955Ma01
             ZENAA
                          10,
                                      168
                                           Th. Mayer-Kuckuk, H. Daniel
1955Ma12
             PHRVA
                                       103 P. Marmier, F. Boehm
                          97,
             PHRVA
1955Ma13
                          97,
                                      117 H.B. Mathur, E.K. Hyde, C.A. Levine, P.K. Kofstad
1955Ma40
             COREA
                          240,
                                      291
                                            N. Marty
1955Ma62
             JPRAA
                          16.
                                      458
                                           N. Marty
1955Ma63
             HPACA
                          28,
                                       193
                                           D. Maeder, P. Stahelin
```

```
PHRVA
                          100,
1955Ma76
                                      847 J.B. Marion, T.W. Bonner, C.F. Cook
1955Ma84
             PHRVA
                          100,
                                       91
                                           J.B. Marion, T.W. Bonner, C.F. Cook
1955Ma.A
             ANL-5386
                                            L.B. Magnusson, F. Wagner, Jr., D.W. Engelkemeir, M.S. Freedman
1955Mc17
             PHRVA
                          97,
                                          C.L. McGinnis
1955Mi90
             PHRVA
                          100,
                                     1390 J.P. Mize, M.E. Bunker, J.W. Starner
1955Mo69
             JINCA
                          1.
                                      274 F.F. Momyer, Jr., F. Asaro, E.K. Hyde
                          97,
1955Mu19
             PHRVA
                                     1007 J.J. Murray, F. Boehm, F. Marmier, J.W.M. Dumond
                                       77 R.H. Nussbaum, A.H. Wapstra, M.J. Sterk, R.E.W. Kropveld
1955Nu11
             PHYSA
                          21,
1955On05
             PHYSA
                          21,
                                      676 Ong Ping Hok, P. Kramer
1955Pa50
             AFYSA
                                      571
                                           R.T. Pauli
                          9,
1955Pe24
             PHRVA
                          98,
                                      262 I. Perlman, F. Stephens, F. Asaro
                          99.
                                       42
1955Ra27
             PHRVA
                                           J.O. Rasmussen, H. Slatis, T.O. Passel
             PHRVA
                          97.
                                       97
1955Ro05
                                           H. Roderick, O. Lonsjo, W.E. Meyerhof
             PHRVA
                          99.
                                      810
                                           A.W. Schardt, J.P. Welker
1955Sc09
1955Th01
             AFYSA
                          9,
                                      137
                                           S. Thulin
                                            1956
1956Ar33
             AFYSA
                          10.
                                           E. Arbman, N. Svartholm
1956As38
             PHRVA
                          104,
                                       91
                                           F. Asaro, I. Perlman
1956Av28
             ANPHA
                          1,
                                       10
                                           P. Avignon
1956Ba39
             ZETFA
                          30,
                                      225
                                            S.A. Baranov, K.N. Shlyagin
1956Ba95
             JNCEA
                          3.
                                      132
                                            S.A. Baranov, K.N. Shlyagin
             PHRVA
1956Be18
                          101,
                                     1027
                                           N. Benczer, B. Farrelly, L. Koerts, C.S. Wu
                          4,
1956Bi30
             NUCIA
                                           A. Bisi, S. Terrani, L. Zappa
                                      758
1956B110
             PHRVA
                          104.
                                           N.C. Blais, W.W. Watson
                                      202
1956Ch67
             PHRVA
                          104.
                                           A. Chetham-Strode, L.W. Holm
             Th.-Berkeley
1956Ch.A
                                            A. Chetham-Strode, Jr. UCRL-3322
             PHRVA
                          101,
                                     1042
                                           J.M. Cork, M.K. Brice, D.W. Martin, L.C. Schmid, R.G. Helmer
1956Co13
1956Da06
             ZENAA
                                      212
                          11.
                                           H. Daniel, R. Nierhaus
1956Do41
             PHRVA
                          104,
                                     1059
                                           R.A. Douglas, J.W. Broer, R. Chiba, D.F. Herring, E.A. Silverstein
1956Dr11
             PHRVA
                          102,
                                      426
                                           B.J. Dropesky, A.W. Schardt
1956Du31
             PHRVA
                          103,
                                     1413
                                            V.S. Dubey, C.E. Mandeville, M.A. Rothman
1956Gr07
             PHRVA
                          101,
                                      776
                                           D. Green, J.R. Richardson
             PHRVA
                                      701
1956Gr10
                          101,
                                           W.E. Graves, A.C.G. Mitchell
             PHRVA
                          101,
                                     1306
                                            P.R. Gray
1956Gr11
1956Gr12
             PHRVA
                          101.
                                     1368
                                            W.E. Graves, S.K. Suri
1956Gr35
             PHRVA
                          102,
                                      761
                                           L. Grodzins, H. Motz
1956Ha10
             PHRVA
                          101,
                                       93
                                            R.W. Hayward, D.D. Hoppes
                                            R.W. Hayward, D.D. Hoppes
1956Ha59
             PHRVA
                          104,
                                      183
1956Ho23
             JINCA
                                      209
                                            D.C. Hoffman, C.P. Browne
                          2.
1956Ho66
             PHRVA
                          104,
                                      368
                                           D.D. Hoppes, R.W. Hayward
1956Jo05
             CJPHA
                          34,
                                       69
                                           M.W. Johns, C.V. McMullen, I.R. Williams, S.V. Nablo
                                           N.R. Johnson, R.K. Sheline, R. Wolfgang
1956Jo20
             PHRVA
                          102,
                                      831
1956Ke23
             PHRVA
                          103,
                                      190
                                           B.H. Ketelle, H. Thomas, A.R. Brosi
1956Ki16
             PHRVA
                          102.
                                     1140
                                           H.W. Kirby, G.R. Grove, D.L. Timma
1956Ki29
             PHRVA
                          104.
                                      154
                                            O.C. Kistner, A. Schwarzschild, B.M. Rustad
1956Kn20
             PHRVA
                          102.
                                     1592 J.D. Knight, J.P. Mize, J.W. Starner, J.W. Barnes
1956Ko67
             ZETFA
                          31,
                                      771
                                           L.M. Kondratev, G.I. Novikova, Y.P. Sobolev, L.L. Goldin
1956La24
             ANPHA
                          1,
                                      152 J. Laberrigue-Frolow
1956Ma14
             PHRVA
                          101,
                                      283 J.B. Marion, R.A. Chapman
1956Ma27
             PHRVA
                          102,
                                      457 D.W. Martin, J.M. Cork, S.B. Burson
1956Ma87
             PHRVA
                          104,
                                     1028 J. Marion, F.B. Hagedorn
                                      905 R.H. Nussbaum, A.H. Wapstra, W.A. Bruil, M.J. Sterk, G.J. Nijgh, N. Grobben
1956Nu02
             PHRVA
                          101,
1956Ok02
             PHRVA
                          101,
                                     1059
                                           G.D. O'Kelley, N.H. Lazar, E. Eichler
             PHRVA
                                      740
1956Pe38
                          104,
                                           J.R. Penning, H.R. Maltrud, J.C. Hopkins, F.H. Schmidt
1956Po16
             ZENAA
                                      143
                                           W. Porschen, W. Riezler
                          11.
1956Po28
             PHRVA
                          103.
                                      921
                                           F.T. Porter, M.S. Freedman, T.B. Novey, F. Wagner, Jr.
1956Sa06
             PHRVA
                          104,
                                     1434
                                           R.M. Sanders
```

```
1956Sc.A
             BAPSA
                          1,
                                      162 A.W. Schardt, B. Dropesky
             ZETFA
                          30,
                                      891
1956Sh31
                                           K.N. Shlyagin
             JINCA
                                       93
                                           H.L. Smith, C.P. Browne, D.C. Hoffman, J.P. Mize, M.E. Bunker
1956Sm85
                          3,
1956Sm96
             PHRVA
                          104,
                                      706
                                           F.B. Smith, N.B. Gove, R.W. Henry, R.A. Becker
1956Th11
             PHRVA
                          102,
                                      195
                                           M.T. Thieme, E. Bleuler
1956Tu17
             PHRVA
                          103.
                                     1000
                                           W. Turchinetz, R.W. Pringle
                                           D.M. Van Patter, C.P. Swann, W.C. Porter, C.E. Mandeville
1956Va14
             PHRVA
                          103,
1956Wa24
             PHRVA
                          102,
                                      816 R.G. Waddell, E.N. Jensen
1956Wo09
             CJPHA
                          34,
                                      256
                                          J.R. Wolfson
                                            1957
1957Ah19
             AFYSA
                          11.
                                      379
                                           K. Ahnlund
             PHRVA
                          106.
                                           S. Amiel, A. Chetham-Strode, Jr., G.R. Choppin, A. Ghiorso, B.G. Harvey,
1957Am47
                                            L.W. Holm, S.G. Thompson
1957As.A
             BAPSA
                          2.
                                      393
                                           F. Asaro, S.G. Thompson, F.S. Stephens, Jr., I. Perlman
1957Ba08
             ZENAA
                          12,
                                      520
                                           G. Baro, P. Rey
1957Be44
             PHRVA
                          107,
                                      737
                                           E.M. Bernstein, H.W. Lewis
1957Bi84
             PHRVA
                          108,
                                     1025
                                           H. Bichsel, T.W. Bonner
1957Bj56
             NUPHA
                          4.
                                      313
                                           S. Bjornholm, O. Nathan, O.B. Nielsen, R.K. Sheline
1957Br82
             PHRVA
                          108,
                                     1007
                                           C.P. Browne
1957Bu37
             PHRVA
                          106,
                                     1224
                                           J.W. Butler, K.L. Dunning, R.O. Bondelid
                                           M.E. Bunker, J.P. Mize, J.W. Starner
1957Bu41
             PHRVA
                          105,
                                      227
             PHRVA
1957Ch30
                          105,
                                      633 R.A. Chapman, J.C. Slattery
1957Co62
             PPSOA
                          70,
                                           R.D. Connor, I.L. Fairweather
1957Da07
             ZENAA
                          12.
                                      363 H. Daniel
1957Dz64
             IANFA
                          21.
                                      978
                                           B.S. Dzelepov, O.E. Kraft, V.B. Zhinkina
1957Fr.A
             PrvCom
                                   58St50
                                           M.S. Freedman, D.W. Engelkemeir, F.T. Porter, F. Wagner, Jr.
             PHRVA
                          107,
                                           D.G. Gardner, W.W. Meinke
1957Ga15
1957Gl20
             PHMAB
                                       49
                                           R.N. Glover, D.E. Watt
                          2.
1957Gr47
             PHRVA
                          105,
                                     1570 H.G. Graetzer, A.B. Robbins
1957Ha08
             CJPHA
                          35,
                                      258 B.G. Harvey, H.G. Jackson, T.A. Eastwood, G.C. Hanna
1957Ha99
             PHRVA
                          108,
                                      735 F.B. Hagedorn
                          105,
                                     1011
                                           R.L. Heath
1957He39
             PHRVA
             NUPHA
                                      161
                                           C.J. Herrlander, T.R. Gerholm
1957He43
                          3.
                          NDG
             PrvCom
                                      Jun
                                           E.N. Jensen
1957Je.A
1957Jo24
             PISAA
                          45.
                                      390
                                           M.C. Joshi, B.N. Subba Rao, B.V. Thosar
1957Ki22
             PHRVA
                          105,
                                     1339
                                           O.G. Kistner, A. Schwarzschild, B.M. Rustadt, D.E. Alburger
1957Kn.A
             PrvCom
                          NDG
                                      Apr
                                           J.D. Knight
                          244,
                                     1358
                                           C. Levi, L. Papineau
1957Le27
             COREA
1957Mi63
             ANPHA
                          2,
                                      116
                                           A. Michalowicz
1957Na03
             NUPHA
                          4,
                                      125
                                           O. Nathan
1957Ok.A
             BAPSA
                          2,
                                       24
                                           G.D. O'Kelley, Q.V. Larson, G.E. Boyd
                                      985
19570105
             PHRVA
                          106,
                                           J.L. Olsen, L.G. Mann, M. Lindner
1957Ra04
             PHRVA
                          107,
                                      141
                                           J.O. Rasmussen, F.L. Canavan, J.M. Hollander
1957Ri43
             ZENAA
                          12.
                                      665
                                           W. Riezler, G. Kauw
1957Ro54
             CJPHA
                          35.
                                      649 J.C. Roy, T.P. Kohman
1957Sm73
             PHRVA
                          107.
                                     1314 W.G. Smith, R.L. Robinson, J.H. Hamilton, L.M. Langer
1957Th10
             PHRVA
                          106,
                                           T.D. Thomas, R. Vandenbosch, R.A. Glass, G.T. Seaborg
             PHRVA
                                           D.M. Van Patter, M.A. Rothman, W.C. Porter, C.E. Mandeville
1957Va03
                          107,
1957Va08
             PHYSA
                          23,
                                      753 B. Van Nooijen, J. Konijn, A. Heyligers, J.F. van den Brugge, A.H. Wapstra
1957Wa01
             PHRVA
                          105,
                                           E.K. Warburton, J.N. McGruer
1957Yo04
             PHRVA
                          108,
                                       72 T.E. Young, G.C. Phillips, R.R. Spencer
                                            1958
1958A199
             PHRVA
                          112
                                           D.E. Alburger, S. Ofer, M. Goldhaber
1958Ar56
             AFYSA
                          13.
                                      501
                                           E. Arbman, J. Brude, T.R. Gerholm
                                           H. Bichsel
1958Bi41
             PHRVA
                          112,
                                     1089
```

```
1958Br88
             HPACA
                          31,
                                       335 J. Brunner, J. Halter, P. Scherrer
             PHRVA
                          110,
1958Du78
                                      1076
                                            K.L. Dunning, J.W. Butler, R.O. Bondelid
1958Ea06
             JINCA
                          6,
                                       261
                                            T.A. Eastwood, R.P. Schuman
1958El44
             PHRVA
                          112.
                                      1200
                                            A.J. Elwyn, H.H. Landon, S. Oleksa, G.N. Glasoe
1958Fe16
             PHRVA
                          112,
                                      1238
                                            J.M. Ferguson
1958Gi05
             PHRVA
                          109.
                                      1263
                                            J.E. Gindler, J.R. Huizenga, D.W. Engelkemeir
1958GI56
             IANFA
                          22,
                                       941
                                            M.P. Glazunov, B.F. Fulev
             PRLTA
                                            H.E. Gove, J.A. Kuehner, A.E. Litherland, E. Almqvist, D.A. Bromley, A.D. Fer-
1958Go77
                          1,
                                            guson, P.H. Rose, R.P. Bastide, N. Brooks, R.D. Connor
1958Gr07
             IANFA
                           22,
                                       194
                                            E.P. Grigorev, A.V. Zolotavin, I.I. Kuzmin, E.D. Pavlitskaia
1958Ha32
             PHRVA
                           112,
                                      2010 J.H. Hamilton, L.M. Langer, W.G. Smith
1958Hi.A
             Th.-Berkeley
                                            M.W. Hill
             PHRVA
                           109.
                                      1282 D.C. Hoffman, B.J. Dropesky
1958Ho02
             PHRVA
                           109.
                                      1243
                                            C.H. Johnson, A. Galonsky, J.P. Ulrich
1958Jo01
             PHRVA
                                            K.W. Jones, L.J. Lidofsky, J.L. Weil
1958Jo28
                           112,
                                      1252
1958Ki40
             PHRVA
                           112.
                                      1972
                                            O.C. Kistner, B.M. Rustad
1958Ko57
             PHYSA
                          24,
                                       377
                                            J. Konijn, B. van Nooijen, H.L. Hagedoorn
1958Ko60
             PHYSA
                          24,
                                       129
                                            J. Konijn, H.L. Hagedoorn, B. van Nooijen
1958Mc64
             PHRVA
                           111,
                                            M.T. McEllistrem, H.J. Martin, D.W. Miller, M.B. Sampson
1958Na15
             CJPHA
                          36,
                                      1409
                                            S.V. Nablo, M.W. Johns, A. Artna, R.H. Goodman
1958Ni28
             NUPHA
                          9,
                                       528
                                            G.J. Nijgh, A.H. Wapstra, L.T.M. Ornstein, N. Salomons-Grobben
1958No30
             AFYSA
                           14,
                                        85
                                            T. Novakov, R. Stockendal, M. Schmorak, B. Johansson
1958Pe17
             PHRVA
                           110,
                                       381
                                            M.L. Perlman, J.P. Welker, M. Wolfsberg
                                      1954
                                            N.T. Porile
1958Po79
             PHRVA
                          112,
1958Ri23
             ZENAA
                                       904
                                            W. Riezler, G. Kauw
                          13.
1958Ro09
             PHRVA
                          109.
                                      1255
                                            R.L. Robinson, L.M. Langer
                                            V.A. Sergienko
1958Se71
             IANFA
                          22.
                                       198
1958St50
             RMPHA
                          30,
                                       585
                                            D. Strominger, J.M. Hollander, G.T. Seaborg
             PHRVA
1958Su60
                          109,
                                            C.R. Sun, B.T. Wright
1958Wa.A
             P-Paris
                                            R.J. Walen, G. Bastin
1958Yt22
             NUPHA
                          9,
                                            C. Ythier, R.K. Girgis, R.A. Ricci, R. van Lieshout
                                             1959
                                            W.T. Achor, W.E. Phillips, J.I. Hopkins, S.K. Haynes
             PHRVA
                          114.
1959Ac28
                                       137
             PHRVA
                                       939
1959Al06
                          116,
                                            D.E. Alburger, A. Gallmann, D.H. Wilkinson
1959Am16
             PISAA
                          50.
                                       342
                                            K.S.Y. Ambiye, M.C. Yoshi, B.V. Thosar
1959An33
             NUPHA
                           13,
                                       310
                                            S.L. Anderson, T. Holtebekk, O. Lonsjo, R. Tangen
1959Ba13
             PPSOA
                          73,
                                       513
                                            F. De S. Barros, P.D. Forsyth, A.A. Jaffe, I.J. Taylor
                           115,
                                            N. Benczer-Koller, A. Schwarzschild, C.S. Wu
1959Be72
             PHRVA
                                       108
1959Bo52
             ZEPYA
                           155,
                                       488
                                            F. Bonhoeffer, H.H. Hennies, A. Flammersfeld
1959Bo61
             NUPHA
                          14,
                                       145
                                            P. Boskma, H. De Waard
1959Br06
             CJPHA
                          37,
                                      1514
                                            D.A. Bromley, A.J. Ferguson, H.E. Gove, J.A. Kuehner, A.E. Litherland,
                                             E. Almqvist, R. Batchelor
1959Br65
             PHRVA
                          113,
                                       239
                                            A.R. Brosi, B.H. Ketelle, H.C. Thomas, R.J. Kerr
1959Br74
             NUPHA
                          12,
                                       662
1959Bu20
             PHRVA
                          116.
                                       143 M.E. Bunker, B.J. Dropesky, J.D. Knight, J.W. Stamer, B. Warren
1959Co63
             PPSOA
                          74.
                                            R.D. Connor, I.L. Fairweather
                                       161
1959Cu86
             PHRVA
                          114,
                                      1600
                                            J.B. Cumming
             BAPSA
                                        57 B.J. Dropesky, D.C. Hoffman, W.R. Daniels
1959Dr.A
                          4,
1959Fe99
             CJPHA
                          37,
                                            A.J. Ferguson, H.E. Gove
1959Fl40
             PHRVA
                                       744
                                            K.F. Flynn, L.E. Glendenin
                           116,
1959Gh.A
             UCRL-8714
                                            A. Ghiorso
             NUPHA
                                       204 R.K. Girgis, R. van Lieshout
1959Gi50
                           12,
                                      1271
1959Gi54
             PHRVA
                          115,
                                            J.E. Gindler, J. Gray, Jr., J.R. Huizenga
             PHRVA
1959Go68
                          113,
                                       246
                                            C.R. Gossett, J.W. Butler
1959Gr93
             IANFA
                                       191
                                            E.P. Grigorev, A.V. Zolotavin, B. Kratsik
                          23.
1959Ha27
             PHRVA
                           114.
                                      1133
                                            D.S. Harmer, M.L. Perlman
1959Hi66
             PPSOA
                          73,
                                            S. Hinds, R. Middleton
```

```
1959Hi67
             PPSOA
                          73,
                                      721
                                            S. Hinds, R. Middleton
             PPSOA
                          73,
                                            S. Hinds, R. Middleton
1959Hi68
                                      727
                          74,
                                      779
                                            S. Hinds, R. Middleton
1959Hi75
             PPSOA
1959Ho97
             AFYSA
                          15,
                                      387
                                            G. Holm, H. Ryde
1959Jo37
             PHRVA
                          114,
                                      279
                                            N.R. Johnson, G.D. O'Kelley
1959Ju40
             PHRVA
                          113.
                                      602 J.O. Juliano, C.W. Kocher, T.D. Nainan, A.C.G. Mitchell
1959Ke26
             NUPHA
                          11,
                                           W.H. Kelly, G.B. Beard, R.A. Peters
1959Kn38
             JINCA
                                      183 J.D. Knight, D.C. Hoffman, B.J. Dropesky, D.L. Frasco
                          10.
1959Ku79
             PHYSA
                          25,
                                      600 J. Kuperus, P.J.M. Smulders, P.M. Endt
1959Me68
             PPSOA
                          74,
                                      693 R.E. Meads, J.E.G. McIldowie
                                     1126 C.H. Millar, T.A. Eastwood, J.C. Roy
1959Mi19
             CJPHA
                          37,
             ZETFA
                          37,
                                      928
                                           G.I. Novikova, E.A. Volkova, L.I. Goldin, D.M. Ziv, E.F. Tretyakov
1959No41
             ZETFA
                                     1558 V.P. Perelygin, E.D. Donets, G.N. Flerov
1959Pe27
                          37,
1959Po77
             PHRVA
                                     1286 F.T. Porter, P.P. Day
                          114.
             NUPHA
                                      360 R.A. Ricci, R. van Lieshout
1959Ri35
                          10.
1959Ro53
             CJPHA
                          37.
                                      385
                                           J.P. Roy, L.P. Roy
1959Su.A
             BAPSA
                          4,
                                      278
                                           D.C. Sutton, H.A. Hill, R. Sherr, and PrvCom
1959To25
             BAPSA
                          4,
                                      366
                                            C.W. Townley, J.D. Kurbatov, M.H. Kurbatov
1959Va02
             PHRVA
                          115,
                                            S.E. Vandenbosch, H. Diamond, R.K. Sjoblom, P.R. Fields
1959Va32
             PHRVA
                          113,
                                      259
                                            S.E. Vandenbosch
1959We30
             PHRVA
                          113,
                                      881
                                            H.I. West, Jr., L.G. Mann, G.M. Iddings
1959Yo25
             PHRVA
                          116,
                                      962
                                            T.E. Young, G.C. Phillips, R.R. Spencer, D.A.A.S.N. Rao
1960An04
             ZETFA
                          38.
                                      372
                                           S.F. Antonova, S.S. Vasilenko, M.G. Kaganskii, D.L. Kaminskii
1960Ar05
             CJPHA
                          38.
                                            A. Artna, M.E. Law
1960Ba17
             NUPHA
                          15,
                                            G. Backstrom, O. Bergman, J. Burde, J. Lindskog
1960Ba44
             IANFA
                                            S.A. Baranov, A.G. Zelenkov, V.M. Kulakov
                          24,
1960Bo21
             PHRVA
                          120,
                                      889
                                           R.O. Bondelid, C.A. Kennedy, J.W. Butler
1960Cl02
             NUPHA
                          14,
                                      472 R.L. Clarke, E. Almqvist, E.B. Paul
1960Cr01
             NUPHA
                          14,
                                            C.B. Creager, C.W. Kocher, A.C.G. Mitchell
1960Dr03
             NUPHA
                          16,
                                      357
                                            B.J. Dropesky, A.W. Schardt, T.T. Shull
                          24,
1960Dz02
             IANFA
                                      802 B.S. Dzelepov, I.F. Uchevatkin, S.A. Shestopalova
             ANPHA
                                      181
1960Fe03
                          5,
                                           L. Feuvrais
                          75.
1960Fo01
             PPSOA
                                      291
                                            P.D. Forsyth, F. De S. Barros, A.A. Jaffe, T.J. Taylor, S. Ramavataram
1960Fr04
             PHRVA
                          120.
                                      1436
                                            J.M. Freeman
1960Ge01
             PHRVA
                          118,
                                      1302
                                            K.N. Geller, J. Halpern, E.G. Muirhead
1960Gi01
             NUPHA
                          14,
                                      589
                                            R.K. Girgis, R.A. Ricci, R. van Lieshout
                                      337
1960Gu05
             AFYSA
                          17,
                                            R.K. Gupta
1960Ha26
             PHRVA
                          119,
                                      772
                                            J.H. Hamilton, L.M. Langer, W.G. Smith
1960He09
             PHRVA
                          119,
                                      788
                                            R.G. Helmer, S.B. Burson
1960Hi03
             PPSOA
                          75,
                                      444
                                            S. Hinds, R. Middleton
                                           R.W. Hoff, F. Asaro, I. Perlman, in E.K. Hyde, I. Perlman, G.T. Seaborg, Nu-
1960Ho.A
             PrvCom
                                     Hyde
                                            clear Properties Heavy Elements p. 799
             PHRVA
                                     1086
1960Ja07
                          117.
                                           T.H. Jacobi, H.A. Howie, J.R. Richardson
1960Ja13
             PHRVA
                          120.
                                      914 N. Jarmie, M.G. Silbert
1960Ja17
             PPSOA
                          76.
                                      914 A.A. Jaffe, F. De S. Barros, P.D. Forsyth, J. Muto, I.J. Taylor, S. Ramavataram
1960Je03
             NUPHA
                          19,
                                           B.S. Jensen, O.B. Nielsen, O. Skilbreit
             PHRVA
                                     1953
                                            W.R. Kane, G.T. Emery, G. Scharff-Goldhaber, M. McKeown
1960Ka14
                          119,
1960Ka20
             JUPSA
                                     2140 T. Katoh, M. Nozawa, Y. Yoshizawa, Y. Koh
                          15.
1960Ko04
             ZETFA
                          38,
                                     1436 A.P. Komar, G.A. Korolev, G.E. Kocharov
1960Ko12
             PHRVA
                          120,
                                     1348 C.W. Kocher, A.C.G. Mitchell, C.B. Creager, T.D. Nainan
                                     2179 T. Kuroyanagi
1960Ku06
             JUPSA
                          15,
             PHRVA
                                     1308 L.M. Langer, D.R. Smith
1960La04
                          119,
1960Lu07
                                      939
                                           G. Luhrs, C. Mayer-Boricke
             ZENAA
                          15,
1960Ma21
             PPSOA
                          76,
                                       56
                                           B.E.F. Macefield, J.H. Towle
1960Ma.A
             UCRL-8740
                                            T.V. Marshall
1960Mc12
             NUPHA
                          17,
                                       116 G.J. McCallum, A.T.G. Ferguson, G.S. Mani
```

```
1960Mi.A
             Th.-Princeton
                                            J.H. Miller III
             JUPSA
                          15,
                                      213 H. Morinaga, T. Kuroyanagi, H. Mitsui, K. Shoda
1960Mo01
1960Mo.A
             BAPSA
                          5,
                                      338
                                           R.B. Moore
1960Mu07
             PPSOA
                          75,
                                      929
                                           J. Muto, F. De S. Barros, A.A. Jaffe
1960Nu02
             PHRVA
                          120,
                                      1815 H. Nutley, J.B. Gerhard
1960Pr07
             PHRVA
                          118.
                                      113
                                            W.W. Pratt, R.G. Cochran
1960Sc14
             NUPHA
                          21,
                                       55
                                           W. Schneider
             NUPHA
                                           O.J. Segaert, J. Demuynck, A.M. Hoogenboom, H. van den Bold
1960Se05
                          16,
1960Sp08
             NUPHA
                                      310 R.R. Spencer, G.C. Phillips, T.E. Young
                          21,
1960Ta12
             PPSOA
                          75,
                                      772 I.J. Taylor, F. De S. Barros, P.D. Forsyth, A.A. Jaffe, S. Ramavataram
1960Ta19
             NUPHA
                          21,
                                      133 K. Takahashi, H. Morinaga
                          39,
1960Vo05
             ZETFA
                                       70
                                           A.A. Vorobiev, A.P. Komar, V.A. Korolev
                                     1092 A.A. Vorobiev, A.P. Komar, V.A. Korolev
1960Vo07
             IANFA
                          24.
1960Wa03
             PHRVA
                          117,
                                      191
                                           W.R. Ware, E.O. Wiig
1960Wa04
             PHRVA
                          117,
                                     1297
                                            R. Wallace, J.A. Welch, Jr.
1960Wa10
             PHRVA
                          118.
                                      181
                                            M.A. Wahlgren, W.W. Meinke
1960Wa14
             NUPHA
                          16,
                                      246
                                            R.J. Walen, G. Bastin-Scoffier
1960Wi07
             PHRVA
                          117,
                                     1325
                                            R.M. Williamson, T. Katman, B.S. Burton
1960Yu01
             NUPHA
                          16,
                                      119
                                            H. Yuta, H. Morinaga
1960Ze02
             PHRVA
                          120,
                                     1723
                                           B. Zeidman, J.L. Yntema, B.J. Raz
                                             1961
1961Ar05
             NUPHA
                          22.
                                      341 E. Arbman, I.B. Haller
                                            A. Artna, M.W. Johns
1961Ar15
             CJPHA
                          39.
                                     1817
1961Ba43
             ZETFA
                          41.
                                           K.A. Baskova, S.S. Vasilev, N.S. Chang, L.Y. Shavtvalov
1961Ba44
             ZETFA
                          41.
                                           S.A. Baranov, V.M. Kulakov, P.S. Samoilov, A.G. Zelenkov, Y.F. Rodionov
1961Be13
             PHRVA
                          123,
                                     2100 E.H. Beckner, R.L. Bramblett, G.C. Phillips, T.A. Eastwood
             PHRVA
1961Be15
                          122.
                                     1576 G.B. Beard, W.H. Kelly
1961Be20
             ZETFA
                          40,
                                            A. Bedesku, O.M. Kalinkina, K.P. Mitrofanov, A.A. Sorokin, N.V. Forafontov,
                                        91
                                            V.S. Shpinel
             NUPHA
1961Be41
                          28,
                                      570
                                           G.B. Beard, W.H. Kelly
1961Bo13
             PHRVA
                          124.
                                      213 H.H. Bolotin, A.C. Li, A. Schwarzschild
                                           N.A. Bonch-Osmolovskaya, B.S. Dzelepov, O.E. Kraft, Y.Y. Yang
1961Bo24
             NUPHA
                          27,
1961Bo.B
             P-Dubna
                                            N.A. Bonch-Osmolovskaya, B.S. Dzelepov, O.E. Kraft
                                     1770
1961Bu04
             PHRVA
                          121,
                                           J.W. Butler, R.O. Bondelid
1961Cu02
             PHRVA
                          122.
                                     1267
                                           J.B. Cumming, N.T. Porile
1961Da01
             ZEPYA
                          164,
                                      303
                                            H. Daniel, P. Panussi
1961De17
             NUPHA
                          28,
                                      148
                                            H.G. Devare
                          22,
1961De25
             JOPQA
                                      656
                                            P. Depommier, M. Chabre
1961Di04
             NUPHA
                          25,
                                            R.M. Diamond, J.M. Hollander, D.J. Horen, R.A. Naumann
                                      248
1961Du02
             PHRVA
                          123,
                                      1321
                                            K.L. Dunning, J.W. Butler
1961Er04
             AFYSA
                          20,
                                      209
                                            P. Erman, Z. Sujkowski
                                           R.W. Fink, G. Andersson, J. Kantele
1961Fi05
             AFYSA
                          19,
                                      323
1961Ga05
             PHRVA
                          122.
                                     1590
                                           C.J. Gallagher, Jr., H.L. Nielsen, O.B. Nielsen
1961Gl02
             PHRVA
                          122,
                                      229
                                           C.E. Gleit, C.D. Coryell
                                     1914 C.E. Gleit, C.D. Coryell
1961Gl06
             PHRVA
                          124.
1961Gr33
             IANFA
                          25.
                                     1217
                                           E.P. Grigorev, K.Y. Gromov, B.S. Dzelepov, Z.T. Zhelev, V. Zvolska, I. Zvolskii
1961Gu02
             AFYSA
                          18,
                                           R.K. Gupta, J. Svedberg, G. Andersson
             JUPSA
                                      1280 H. Hisatake
1961Hi06
                          16,
1961Hi11
             PPSOA
                          78,
                                      473
                                           S. Hinds, H. Marchant, R. Middleton
1961Ho10
             JUPSA
                                      841
                                           S. Homma, T. Kuroyanagi, H. Morinaga
                          16.
1961Ho13
             JINCA
                          18,
                                           R.W. Hoff, J.M. Hollander, M.C. Michel
                                      909
1961Ja07
             PHRVA
                          123,
                                            N. Jarmie, M.G. Silbert
                                     1142 H.E. Jackson, L.M. Bollinger
1961Ja21
             PHRVA
                          124,
             ZEPYA
                                       94
                                           J. Jaenecke, H. Jung
1961Ja22
                          165,
1961 Ia23
             RMXFA
                          10,
                                      247
                                            A. Jaidar, G. Lopez, M. Mazari, R. Dominguez
1961Jo08
             PHRVA
                          122.
                                     1546
                                           N.R. Johnson, E. Eichler, G.D. O'Kelley, J.W. Chase, J.T. Wasson
1961Jo15
             PHRVA
                          124,
                                      157 R.C. Jopson, H. Mark, C.S. Swift, J.H. Zenger
```

```
AFYSA
1961Ju05
                          17,
                                      429
                                            B. Jung, T. Svedberg
             IANFA
                          25,
                                      237
1961Ko11
                                            G.E. Kocharov, G.A. Korolev
             JUPSA
1961Ku09
                          16,
                                     2369
                                            T. Kuroyanagi
1961Ku10
             JUPSA
                                     2393
                                            T. Kuroyanagi, H. Yuta, K. Takahashi, H. Morinaga
                          16,
1961La05
             DANKA
                          137,
                                       551
                                            A.K. Lavrukhina, T.V. Malysheva, B.A. Khotin
1961La16
             ZEPYA
                          165.
                                            H. Langhoff, P. Kilian, A. Flammersfeld
1961Ma03
             PHRVA
                          121,
                                            H.J. Martin, M.B. Sampson, D.W. Miller
             PHRVA
                                      1758 R.D. Macfarlane, T.P. Kohman
1961Ma05
                          121,
1961Ma08
             PPSOA
                          77,
                                      1050 B.E.F. Macefield, J.H. Towle, W.B. Gilboy
1961Ni02
             PHRVA
                          122,
                                       172 R.T. Nichols, R.E. McAdams, E.N. Jensen
1961Pe23
             ZETFA
                          41,
                                      1780 K.A. Petrzhak, M.I. Yakunin
             JINCA
1961Re06
                          18,
                                        13 I. Rezanka, J. Frana, M. Vobecky, A. Mastalka
1961Ri02
             NUPHA
                                       494 R. Rikmenspoel, C.M. Van Patter
                          24.
1961Ro12
             PHRVA
                                      1349
                                            E.L. Robinson, O.E. Johnson
                          123,
             Th.-Berkeley
                                            C.P. Ruiz
1961Ru06
1961Rv02
             HPACA
                          34.
                                       240
                                            A. Rvtz
1961Ry04
             HPACA
                          34,
                                       819
                                            A. Rytz, H. Winkler, F. Zamboni, W. Zych
1961Ry05
             HPACA
                          34,
                                       819
                                            A. Rytz, H.H. Staub, H. Winckler
1961Sa11
             PHRVA
                          123,
                                       855
                                            D. Sadeh
1961Sc11
             PHRVA
                          123,
                                       893
                                            A.W. Schardt, A. Goodman
1961Se08
             IANFA
                          25,
                                       848
                                            I.P. Selinov, V.L. Chikhladze, D.E. Khulelidze
1961Sh23
             NUPHA
                          28,
                                       649
                                            S.M. Shafroth
                                       221
                                            M.G. Silbert, N. Jarmie
1961Si03
             PHRVA
                          123,
             PHRVA
                                            A.M. Smith, F.E. Steigert
1961Sm05
                          122,
                                      1527
                                            T.T. Thwaites, W.W. Pratt
1961Th01
             PHRVA
                          124,
                                     1526
1961To03
             PPSOA
                          77.
                                           J.H. Towle, B.E.F. Macefield
1961To10
             JOPOA
                          22.
                                       683 J. Tousset, A. Moussa
1961Va08
             ZETFA
                          40,
                                            S.S. Vasilev, No Hsieng Chang, L. Ya. Shavtvalov
1961Va19
             IANFA
                          25.
                                            A.K. Valter, I.I. Zalubovski, A.P. Klyucharev, V.A. Lutsik
1961We11
             PHRVA
                          124,
                                       527 H.I. West, Jr., L.G. Mann, R.J. Nagle
1961Ya01
             PHRVA
                          121,
                                       600 S.S. Yamamoto, F.E. Steigert
1961Zy02
             APPOA
                          20,
                                      32.1
                                           J. Żylicz, Z. Preibisz, S. Chojnacki, J. Wolowski, Y. Norseev
                                             1962
1962An05
             ZENAA
                          17,
                                       238
                                            G. Andersson-Lindstrom
1962Ar05
             PRLTA
                          9.
                                            P.E. Argan, G. Bendiscioli, A. Piazzoli, V. Bisi, M.I. Ferrero, G. Piragino
1962Ba23
             PRLTA
                          9,
                                        16
                                            R.C. Barber, L.A. Cambey, J.H. Ormrod, R.L. Bishop, H.E. Duckworth
1962Ba24
             CJPHA
                          40,
                                      1496
                                            R.C. Barber, R.L. Bishop, L.A. Cambey, W. McLatchie, H.E. Duckworth
             PHRVA
                                            R.K. Bardin, C.A. Barnes, W.A. Fowler, P.A. Seeger
1962Ba26
                          127,
1962Ba28
             NUPHA
                          33,
                                       347
                                            B. Basu, A.P. Patro
1962Ba32
             AFYSA
                          21,
                                        65
                                            E. Bashandy, M.S. El-Nesr
1962Bj01
             NUPHA
                          30,
                                       488
                                            S. Bjornholm, O.B. Nielsen
                                       975
                                            N.A. Bonch-Osmolovskaya, K. Ya. Gromov, B.S. Dzelepov, O.E. Kraft,
1962Bo22
             IANFA
                          26,
                                            T.V. Malysheva, L.N. Nikityuk, B.A. Khotin, Chzhou, Yue-Va, V.G. Chumin
1962Bo25
             AFYSA
                          22.
                                       111 E.C.O. Bonacalza, P. Thieberger, I. Bergström
1962Br10
             PHRVA
                          125.
                                       992 C.P. Browne, W.E. Dorenbusch, J.R. Erskine
1962Br15
             PHRVA
                          125.
                                      1323 H.W. Brandhorst, Jr., J.W. Cobble
1962Bu16
             PHRVA
                          127,
                                            M.E. Bunker, B.J. Dropesky, J.D. Knight, J.W. Starner
                                            V.L. Chikhladze, D.E. Khulelidze, R.A. Ryukhin
1962Ch21
             ZETFA
                          43,
1962Cr04
             NUPHA
                          34,
                                       580 J.G. Cramer, Jr., C.M. Class
1962Da03
             NUPHA
                          31,
                                       293 H. Daniel
1962Ei02
             NUPHA
                          35,
                                       625 E. Eichler, G.D. O'Kelley, R.L. Robinson, J.A. Marinsky, N.R. Johnson
             NUPHA
1962El02
                          31,
                                       128 M.S. El-Nesr, E. Bashandy
             NUPHA
1962Ew01
                          29.
                                       153
                                            G.T. Ewan, R.L. Graham, J.S. Geiger
1962Fr07
             ZEPYA
                                       456 L. Frevert
                          169.
1962Fr09
             NUPHA
                          38,
                                        89
                                            J.M. Freeman, D. West
1962Fu16
             NUPHA
                          39.
                                       147
                                            E.G. Funk, Jr., J.W. Mihelich, C.F. Schwerdtfeger
1962Ga07
             NUPHA
                          33,
                                            C.J. Gallagher, Jr., M. Jorgensen, O. Skilbreid
```

```
PHRVA
1962Gu03
                          126,
                                      642 R. Gunnink, A.W. Stoner
             NUPHA
                                            S. Hinds, M. Marchant, R. Middleton
1962Hi01
                          31,
                                      118
             NUPHA
                                            S. Hinds, H. Marchant, R. Middleton
1962Hi06
                          38.
                                       81
1962Ho14
             PHRVA
                          128,
                                           D.A. Howe, L.M. Langer, E.H. Spejewaki, D.E. Wortman
1962In01
             NUPHA
                          38,
                                       50 H. Inoue, J. Ruan, S. Yasukawa, Y. Yoshizawa
1962Ka08
             NUPHA
                          32.
                                           T. Katoh, M. Nozawa, Y. Yoshizawa
1962Ka23
             NUPHA
                          36,
                                           T. Katoh, M. Nozawa, Y. Yoshizawa, Y. Koh
             AAFPA
1962Ka27
                          6.
1962Kh05
             IANFA
                          26,
                                      1036 D.E. Khulelidze, V.L. Chikhladze, N.A. Vartenov, Y.A. Kyukhin
1962Ko10
             NUPHA
                          39,
                                       89
                                            K. Kotajima
1962Ko12
             IANFA
                          26,
                                      235
                                           G.A. Korolev, G.E. Kocharov
                                      582 N.L. Lark, P.F.A. Goudsmit, J.F.W. Jansen, J.E.J. Oberski, A.H. Wapstra
             NUPHA
1962La10
                          35,
             NUPHA
1962Li03
                          31.
                                           E.W.A. Lingeman, K.E.G. Lobner, G.J. Nijgh, A.H. Wapstra
             ZETFA
                                      1579
1962Lo10
                          43,
                                            V.M. Lobashov, V.A. Nazarenko, L.F. Saenko
             PHRVA
1962Ma06
                          125,
                                      942
                                           H.J. Martin, Jr., M.B. Sampson, R.L. Preston
1962Ne08
             PHRVA
                          125.
                                     2005
                                           J.W. Nelson, H.S. Plendl, R.H. Davis
1962No06
             NUPHA
                          36,
                                      411
                                            M. Nozawa
1962Nu01
             PHRVA
                          127,
                                      943
                                            M. Nurmia, P. Kauranen, A. Siivola
1962Pa05
             PHRVA
                          127,
                                      1258
                                            A.P. Patro, B. Basu
1962Pe08
             HPACA
                          35,
                                      175
                                            C.F. Perdrisat, J.H. Brunner, H.J. Leisi
1962Pe15
             PHRVA
                          127,
                                      917
                                           I. Perlman, F. Asaro, A. Ghiorso, A. Larsh, R. Latimer
1962Pi02
             PHRVA
                          127,
                                     1708
                                            W.R. Pierson, H.C. Griffin, C.D. Coryell
                                            D.J. Pullen, A.E. Litherland, S. Hinds, R. Middleton
1962Pu01
             NUPHA
                          36,
             NUPHA
                                      431
1962Ru05
                          36,
                                           J. Ruan, Y. Yoshizawa, Y. Koh
1962Sc04
             PHRVA
                          125,
                                      1641
                                           C.F. Schwerdtfeger, E.G. Funk, Jr., J.W. Mihelich
1962Se03
             PHRVA
                          125.
                                      968
                                           M.L. Seghal
1962Sh01
             NUPHA
                          29.
                                      177
                                           R.K. Sheline, R.A. Harlan
1962Si14
             AAFPA
                                            A. Siivola
                          6.
             NUPHA
                                           J. Unik, P. Day, S. Vandenbosch
1962Un01
                          36.
1962Va08
             NUPHA
                          30,
                                      177
                                            S.E. Vandenbosch, P. Day
1962Va10
             NUPHA
                          31,
                                           B. Van Nooijen, H. van Krugten, W.J. Wiesehahn, A.H. Wapstra
1962Wa15
             PHMAB
                          7,
                                      105
                                           D.E. Watt, R.N. Glover
1962Wa16
             NUPHA
                          31.
                                      575
                                            A.H. Wapstra, J.F.W. Jansen, P.F.A. Goudsmit, J. Oberski
             NUPHA
                                      232 R.J. Walen, V. Nedovesov, G. Bastin-Scoffier
1962Wa18
                          35,
             NUPHA
                                      207 L.B. Warner, R.K. Sheline
1962Wa20
                          36,
1962Wa28
             COREA
                          255,
                                      1604
                                            R.J. Walen
1962Ya01
             NUPHA
                          30.
                                            T. Yamazaki, H. Ikegami, M. Sakai
                                            1963
1963Ab02
             PHLTA
                                            A. Abdumalikov, A. Abdurazakov, K. Gromov, Z. Zhelev, N. Lebedev, B. Dzele-
                                            pov, A. Kudryavtseva
1963Ba20
             CJPHA
                          41,
                                           R.C. Barber, R.L. Bishop, W. McLatchie, P. Van Rookhuyzen, H.E. Duckworth
             NUPHA
                                           C.V.K. Baba, G.T. Ewan, J.F. Suarez
1963Ba31
                          43.
1963Ba32
             NUPHA
                          43,
                                      285 C.V.K. Baba, G.T. Ewan, J.F. Suarez
                          44,
1963Ba37
             ZETFA
                                       35 N.B. Badalov, S.S. Vasilenko, M.G. Kaganskii, D.L. Kaminskii, M.K. Nikitin
1963Ba47
             CJPHA
                          41.
                                     1482 R.C. Barber, W. McLatchie, R.L. Bishop, P. Van Rookhuyzen, H.E. Duckworth
1963Ba52
             PHRVA
                          132.
                                     1763 F.J. Bartis
1963Bi03
             NUPHA
                          41,
                                       21
                                           K.M. Bisgard, P. Dahl, P. Hornshoj, A.B. Knutsen
1963Bi12
             CJPHA
                                     1532 R.L. Bishop, R.C. Barber, W. McLatchie, J.D. Macdougall, P. Van Rookhuyzen,
                          41,
                                            H.E. Duckworth
1963Bj01
             NUPHA
                          42,
                                      469
                                            S. Bjornholm, F. Boehm, A.B. Knutsen, O.B. Nielsen
1963Bj02
             NUPHA
                          42,
                                      642 S. Bjornholm, O.B. Nielsen
                                      1078 R.O. Bondelid, J.W. Butler
1963Bo07
             PHRVA
                          130.
1963Bo14
             PHYSA
                          29.
                                      277 P. Born, C. Bobeldijk, W.A. Oost, J. Blok
1963Bo17
             PHYSA
                          29.
                                      535 P. Born, A. Veefkind, W.H. Elsenaar, J. Blok
1963Ca03
             PHRVA
                          129,
                                     1782 D.C. Camp, L.M. Langer
1963Ca06
             PHRVA
                          132.
                                     2239
                                            T.A. Carlson
1963Ch03
             NUCIA
                          27,
                                       86 G. Chilosi, P. Cuzzocrea, G.B. Vingiani, R.A. Ricci, H. Morinaga
```

```
PHRVA
1963Cr06
                          132,
                                     1681
                                            B. Crasemann, G.T. Emery, W.R. Kane, M.L. Perlman
             ZEPYA
                          172,
1963Da03
                                      202
                                            H. Daniel, O. Mehling, D. Schotte
                          132,
                                            R.A. Damerow, R.R. Ries, W.H. Johnson, Jr.
1963Da10
             PHRVA
                                     1673
             JINCA
                          25,
                                      741
                                            P. Del Marmol, P.F. Fettweis
1963De11
1963Di05
             JINCA
                          25,
                                      143
                                           H. Diamond, J.E. Gindler
1963Do07
             PHRVA
                          132.
                                           I. Dostrovsky, S. Katcoff, R.W. Stoenner
1963Dz07
             ZETFA
                          45,
                                            B.S. Dzelepov, R.B. Ivanov, V.G. Nedovesov, V.P. Chechev
             PHRVA
                                     2597
                                            G.T. Emery, W.R. Kane, M. McKeown, M.L. Perlman, G. Scharff-Goldhaber
1963Em02
                          129,
1963Fr04
             PHRVA
                          131,
                                      772
                                           A.M. Friedman, J. Milsted
1963Fr10
             PHRVA
                          132,
                                            G. Frick, A. Gallmann, D.E. Alburger, D.H. Wilkinson, J.P. Coffin
1963Fu17
             KERNA
                                      152 L. Funke, K. Hohmuth, H. Jungclaussen, K.-H. Kaun, G. Muller, H. Sodan,
                                            L. Werner
             PHRVA
                                     1759
                                           B.R. Gasten
1963Ga09
                          131.
             NUPHA
                                            K.N. Geller
1963Ge02
                          40.
                                      177
             PHRVA
                                      299
1963GI04
                          130.
                                            N.W. Glass, R.W. Peterson
1963Go06
             NUCIA
                          30.
                                       14
                                            K.P. Gopinathan, M.C. Joshi, M. Radha Menon
1963Gr08
             AAFPA
                          6,
                                       128
                                            G. Graeffe
1963Gr.A
             BAPSA
                                      486
                                            D.E. Groce, J.H. McNally, W. Whaling
                          8.
1963Gu04
             PHRVA
                          131,
                                      301
                                            R. Gunnink
1963Ho18
             JINCA
                          25.
                                      1303
                                            R.W. Hoff, F. Asaro, I. Perlman
1963Ho.A
             PrvCom
                          AHW
                                            A.M. Hoogenboom
1963Ik01
             NUPHA
                          41,
                                       130
                                           H. Ikegami, K. Sugiyama, T. Yamazaki, M. Sakai
1963Ja06
             NUPHA
                          41,
                                      303
                                            A. Jasinski, J. Kownacki, H. Lancman, J. Ludziejewski, S. Chojnacki, I. Yut-
                                            landov
                                       69
                                            J. Jaenecke
1963Ja12
             PHLTA
                          6,
1963Jo04
             NUPHA
                          41.
                                       167
                                            C.H. Johnson, F. Pleasonton, T.A. Carlson
1963Ka21
             PHLTA
                          6.
                                           M. Karras, J. Kantele
1963Ko08
             PHRVA
                          130,
                                           P.F.M. Koehler, L. Slack, N.B. Gove
                                           B. Kracik, Z. Miligui, V. Brabec, M. Vejs, A. Mastalka, T. Kucarova
1963Kr04
             CZYPA
                          13,
                                       79
1963Ku22
             NUPHA
                          48,
                                           T. Kuroyanagi, T. Tamura
1963La06
             PHRVA
                          132,
                                      324 L.M. Langer, D.E. Wortman
1963Ma27
             NUPHA
                          44,
                                      309
                                           B.E.F. Macefield, R. Middleton, D.J. Pullen
1963Me06
             NUPHA
                          46,
                                      233 D.G. Megli, T.T. Thwaites
                                       90
1963Me08
             NUPHA
                          48.
                                            M.K. Mehta, W.E. Hunt, H.S. Plendl, R.H. Davis
             NUPHA
                          49.
                                            K. Miyano, T. Kuroyanagi
1963Mi17
                                      315
             PHRVA
                          129,
                                     1723
                                            J.W. Nelson, E.B. Carter, G.E. Mitchell, R.H. Davis
1963Ne05
                                            K. Okano, K. Nishimira
1963Ok01
             JUPSA
                          18.
                                      1563
1963Or01
             PHRVA
                          132,
                                      355
                                            C.J. Orth, M.E. Bunker, J.W. Starner
1963Pa09
             NUPHA
                          45,
                                      336
                                            M. Pasternak, T. Sonnino
1963Pe11
             AFYSA
                          23,
                                            L. Persson, R. Hardell, S. Nilsson
1963Pe13
             NUPHA
                          44,
                                      653
                                           L. Persson, H. Ryde, K. Oelsner-Ryde
1963Pe16
             PHLTA
                          6,
                                      347
1963Pl01
             CZYPA
                          13,
                                       23
                                            Z. Plajner, L. Maly, N. Eissa, A. Benadek
                                            Z. Preibisz, K. Pawlak, K. Stryczniewicz
1963Pr13
             BAPMA
                          11,
                                      691
1963Rh02
             PHRVA
                          131,
                                     1227
                                            J.I. Rhode, O.E. Johnson
1963Ri07
             PHRVA
                          132.
                                     1662
                                           R.R. Ries, R.A. Damerow, W.H. Johnson, Jr.
             PHRVA
                          129,
                                     2653
1963Ro10
                                           P.C. Rogers, G.E. Gordon
1963Ry01
             AFYSA
                          23.
                                      171
                                            H. Ryde, L. Persson, K. Oelsner-Ryde
1963Ry04
             NUPHA
                          43,
                                      229
                                            A. Rytz, H.H. Staub, H. Winkler, F. Zamboni
1963Sc15
             PHRVA
                          132,
                                     2650
                                           F. Schima, E.G. Funk, Jr., J.W. Mihelich
1963St06
             NUPHA
                                      524
                                            W.A. Stensland, A.F. Voigt
                          41.
1963Su.A
             Th.-Berkeley
                                            V.B. Subrahmanyam
1963Ta05
             NUPHA
                          41,
                                      22.1
                                           H.W. Taylor, G.N. White, R. McPherson
                                      380 B.V. Thosar, R.P. Sharma, K.G. Prasad
1963Th02
             NUPHA
                          41,
                                      1778 T.T. Thwaites
1963Th03
             PHRVA
                          129,
                                      990
1963Va24
             PHYSA
                          29.
                                           C. van der Leun, P.M. Endt
1963Va37
             ZETFA
                          45,
                                     1385
                                            S.S. Vasilev, L.Y. Shavtvalov
1963Ve09
             PHRVA
                          132.
                                     1736
                                            M.N. Vergnes, R.K. Sheline
1963Wo01
             PHRVA
                          131,
                                      325
                                           D.E. Wortman, L.M. Langer
```

```
1963Wo04
             RAACA
                          1,
                                            G. Wolzak, H. Morinaga
                          19,
1963Wu01
             CHJPB
                                            P.-K. Wung, G.-G. Yan, S.-K. Chu, S.-P. Chen, S. Huo, S.-F. Wang, L.-S. Chen
                                       524
             NUPHA
1963Yo07
                          46,
                                            Y. Yoshizawa, H. Okamura, S. Iwata, I. Fugiwara, T. Shigematsu, M. Tabushi,
                                            T. Tarumoto, K. Sakamoto
1963Zy01
             NUPHA
                          42,
                                       330 J. Żylicz, Z. Sujkowski, J. Jastrzebski, O. Wolczek, S. Chojnacki, I. Yutlandov
1964Ag.A
             P-Tbilis
                                            V.K. Ageev, K.Y. Gromov, B.S. Dzelepov, Z. Zhelev, V. Kalinnikov,
                                            A. Kudryavtseva
                                            N.H. Albins
1964Al29
             AFYSA
                          26,
                                       235
1964An12
             JOPQA
                          25,
                                            S. Andre, P. Depommier
                                       673
1964Ar17
                                       153
                                            S.E. Arnell
             AFYSA
                          26,
1964As01
             PLRBA
                          133.
                                            F. Asaro, S. Bjornholm, I. Perlman
                                       291
1964Ba03
             CJPHA
                          42,
                                            R.C. Barber, W. McLatchie, R.L. Bishop, J.D. Macdougall, P. van Rookhuyzen,
                                            H.E. Duckworth
1964Ba13
             NUPHA
                          52,
                                       125
                                            H. Bakhru, S.K. Mukherjee
1964Ba15
             PRLTA
                          12,
                                            R.C. Barber, H.E. Duckworth, B.G. Hogg, J.D. Macdougall, W. McLatchie,
                                            P. Van Rookhuyzen
1964Ba36
             PLRBA
                          136,
                                            E.L. Bahn, Jr., B.D. Pate, R.D. Fink, C.D. Coryell
1964Ba46
             ZETFA
                          47,
                                      1162
                                            K.A. Baskova, S.S. Vasilev, M.A. Khamo-LEILA, L.Y. Shavtvalov
1964Be10
             NUPHA
                          50,
                                      657
                                            U. Bertelsen, G.T. Ewan, H.L. Nielsen
             PLRBA
                                            J.H. Bjerregaard, H.R. Blieden, O. Hansen, G. Sidenius, G.R. Satchler
1964Bj02
                          136,
                                      1348
1964Bl11
             NUPHA
                          55,
                                      331
                                            K.J. Blinowska, P.G. Hansen, H.L. Nielsen, O. Schult, K. Wien
1964Bo10
             PLRBA
                          134,
                                            R.O. Bondelid, E.E. Dowling Whiting
1964Bo13
             NUPHA
                          53.
                                            R.O. Bondelid, J.W. Butler
                                       618
1964Bo25
             AFYSA
                          26.
                                            E.C.O. Bonacalza
1964Br08
             PLRBA
                          134,
                                            C.P. Browne, I. Michael
             JINCA
                                            R.L. Brodzinski, J.R. Finkel, D.C. Conway
1964Br09
                          26,
1964Bu10
             PLRBA
                          136,
                                            S.B. Burson, E.B. Shera, T. Gedayloo, R.G. Helmer, D. Zei
1964Bu12
             JINCA
                          26,
                                      1491
                                            F.D.S. Butement, S.M. Qaim
1964Ch17
             NUPHA
                          55,
                                       577 P. Christmas
1964Ch19
             PRLTA
                          13,
                                      665 L.F. Chase, Jr., H.A. Grench, R.E. McDonald, F.J. Vaughn
                          135,
                                            B.L. Cohen, R. Patell, A. Prakash, E.J. Schneid
1964Co11
             PLRBA
                                       383
1964Da11
             NUPHA
                                            E.A. Davis, T.W. Bonner, D.M. Worley, Jr., R. Bass
                          55,
1964Da15
             NUPHA
                          56,
                                       147
                                            H. Daniel, J. Huefner, T. Lorenz, O.W.B. Schult, U. Gruber
1964Da16
             PLRBA
                          136.
                                      1240
                                            H. Daniel, G. Th. Kaschl, H. Schmitt, K. Springer
1964De02
             PLRBA
                          133,
                                       568
                                            S.H. Devare, H.G. Devare
                                            S.H. Devare, H.G. Devare
1964De10
             PLRBA
                          134,
                                       705
                                            R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya
1964De15
             P-Vienna
                                       430
1964De16
             PHYSA
                          30,
                                      1938
                                            A. De Beer, H.P. Blok, J. Blok
1964Ej05
             NUPHA
                          59,
                                       625
                                            H. Ejiri, Y. Nogami, Y. Nakajima, K. Horie, K. Etoh, A. Sugawara
1964Er02
             PLRBA
                          133,
                                      370
                                            J.R. Erskine, W.W. Buechner
1964Er06
             PLRBA
                          135,
                                       110
                                            J.R. Erskine
1964Fi02
             PLRBA
                          133,
                                      1502
                                            T.R. Fisher, W. Whaling
1964Fl02
             RAACA
                          2.
                                      210
                                            J. Flegenheimer, G.B. Baro
1964Fr04
             CZYPA
                          14.
                                       152 J. Frana, I. Rezanka
1964Fu08
             NUPHA
                          60.
                                            M. Fujioka, K. Hisatake, K. Takahashi
1964Fu11
             NUPHA
                          55,
                                            L. Funke, H. Graber, K.-H. Kaun, H. Sodan, L. Werner
             PLRBA
1964Go08
                          134,
                                       297
                                            K.P. Gopinathan, M.G. Joshi
1964Gr04
             PHRVA
                          133,
                                      1373 R.D. Griffioen, R.D. Macfarlane
1964Gr11
             AAFPA
                                       145
                                            G. Graeffe, K. Valli, J. Aaltonen
                          6.
1964Ha29
             PHYSA
                          30,
                                      1802 J.H. Hamilton, K.E.G. Lobner, A.R. Sattler, R. van Lieshout
1964Ho03
             JINCA
                          26,
                                      1769 D.C. Hoffman, W.R. Daniels
             NUPHA
1964Ho08
                          52,
                                      590 K. Hohmuth, G. Muller, J. Schintlmeister
1964Ho14
             PRLTA
                          13,
                                       241 R.E. Holland, F.J. Lynch, K.-E. Nysten
1964Ho28
             APASA
                          18,
                                       309
                                            I Hofman
1964Jo03
             PHLTA
                          8.
                                       61
                                            H.S. Johansen, M. Jorgensen, O.B. Nielsen, G. Sidenius
1964Jo09
             NUPHA
                          52,
                                            M.C. Joshi, B.V. Thosar, K.G. Prasad
```

```
PLRBA
1964Jo11
                          136,
                                     1719
                                            C.H. Johnson, C.C. Trail, A. Galonsky
             PLRBA
                                     1504
                                            R.W. Kavanagh
1964Ka08
                          133,
                                            J. Kantele, M. Karras
1964Ka10
             PLRBA
                          135,
1964Ka16
             AAFPA
                                      162
                                           J. Kantele, K.M. Broom, D.M. Chittenden
                          6,
1964Ka23
             AFYSA
                          27.
                                            S.E. Karlsson, O. Bergman, W. Scheuer
1964Ke03
             PLRBA
                          133.
                                           R.A. Kenefick, R.K. Sheline
1964Ku02
             NUPHA
                          50,
                                      417
                                            T. Kuroyanagi, T. Tamura, K. Tanaka, H. Morinaga
1964La03
             PLRBA
                                      1145 L.M. Langer, E.H. Spejewski, D.E. Wortman
                          133.
1964La13
             PLRBA
                          135,
                                      581 L.M. Langer, E.H. Spejewski, D.E. Wortman
1964Le05
             NUPHA
                          50,
                                      648 H. Leutz, K. Ziegler
1964Le09
             JOPQA
                          25,
                                      326 J. Lehmann
                                      752 J.C. Legg, E. Rost
1964Le10
             PLRBA
                          134,
                          59.
                                      504 P. Lipnik, G. Pralong, J.W. Sunier
1964Li10
             NUPHA
                                           K.C. Mann, F.A. Payne, R.P. Chaturvedi
             CJPHA
                                      1700
1964Ma30
                          42,
1964Ma36
             CZYPA
                          14,
                                      240
                                            L. Maly, Z. Plajner, J. Jursik, M. Finger
1964Ma.A
             P-Vienna
                                      279
                                            J.B. Marion
1964Ma.B
             P-Vienna
                                      305
                                            M. Mazari, A. Jaidar, G. Lopez, A. Tejera, J. Caracea, R. Dominguez, F. Alba
1964Mc07
             CJPHA
                          42,
                                      926
                                            W. McLatchie, R.C. Barber, R.L. Bishop, H.E. Duckworth
1964Mc11
             PHLTA
                          10.
                                            W. McLatchie, R.C. Barber, H.E. Duckworth, P. Van Rookhuyzen
1964Mc21
             CPHMA
                          30,
                                       #4
                                            J.D. McCoy
1964Mi04
             NUPHA
                          51,
                                       50
                                            R. Middleton, D.J. Pullen
1964Mi.A
             P-Vienna
                                      329
                                            R. Middleton, H. Marchant
                                            H. Morinaga, G. Wolzak
1964Mo18
             PHLTA
                          11,
                                      148
1964Mo.A
             P-Vienna
                                      423
                                            P.E. Moreland, Jr., K.T. Bainbridge
1964Ne10
             PLRBA
                          135.
                                      325
                                            C.L. Nealy, R.K. Sheline
1964No06
             PLRBA
                          136.
                                           L.R. Norris, C.F. Moore
1964Nu02
             AAFPA
                                            M. Nurmia, G. Graeffe, K. Valli, J. Aaltonen
                          6.
1964On03
             PLRBA
                          136,
                                      365
                                            R.J. Onega, W.W. Pratt
1964Pa03
             APASA
                                      315 H. Paul
                          18,
1964Pe17
             PLRBA
                          136,
                                      330 N.F. Peek, J.A. Jungerman, C.G. Patten
1964Ro17
             PLRBA
                          136,
1964Sa12
             NUPHA
                          53,
                                      457
                                            R.C. Salgo, H.H. Staub, H. Winkler, F. Zamboni
                                           K. Sato
1964Sa32
             SHIBA
                          5,
                                       54
                                       11
             IDO-17042
1964Sc27
                                            R.P. Schuman
             PHLTA
                                            R.K. Sheline, C. Watson, E.W. Hamburger
1964Sh04
                          8,
                                      121
1964Sh06
             PLRBA
                          133,
                                      624
                                            W.N. Shelton, R.K. Sheline
1964Sh13
             PLRBA
                          136.
                                      351
                                            R.K. Sheline, W.N. Shelton, H.T. Motz, R.E. Carter
1964Sh21
             JUPSA
                          19,
                                      245
                                            Y. Shida
1964Si18
             PLRBA
                          136,
                                      618
                                            R.J. Silva, G.E. Gordon
                                      1197
                                            P.J.M. Smulders
1964Sm03
             PHYSA
                          30,
1964So01
             NUPHA
                          54,
                                            T. Sonino, E. Eichler, S. Amiel
                                      568
1964Sp12
             P-Vienna
                                      289
                                            A. Sperduto, W.W. Buechner
1964St01
             PLRBA
                          133,
                                      911
                                            P.H. Stelson, F.K. McGowan
                                           E. Takekoshi, Z.-I. Matumoto, M. Ishii, K. Sugiyama, S. Hayashibe,
1964Ta11
             JUPSA
                          19,
                                      587
                                            H. Sekiguchi, H. Natsume
1964Te02
                                     1129
             JINCA
                          26,
                                           G.P. Tercho, J.A. Marinsky
1964Th05
             NUPHA
                          60.
                                       35 K.S. Thorne, E. Kashy
1964To04
             PLRBA
                          136.
                                     1233 K.S. Toth, T.H. Handley, E. Newman, I.R. Williams
1964Va05
             PHLTA
                          9,
                                            R. van Lieshout, S. Monaro, G.B. Vingiani, H. Morinaga
1964Va20
             AAFPA
                          6,
1964Ve02
             NUPHA
                          57,
                                      451
                                           E. Veje, C. Droste, O. Hansen, S. Holm
1964Wa14
             NUPHA
                          54,
                                      519
                                            C. Watson, C.F. Moore, R.K. Sheline
1964We06
             PLRBA
                          134,
                                      257 P. Weinzierl, E. Ujlaki, G. Preinreich, G. Eder
             PLRBA
1964Wi07
                          135,
                                           D.C. Williams, R.A. Naumann
                                          J.L. Yntema, G.R. Satchler
1964Yn03
             PLRBA
                          134,
                                      976
                                            1965
1965An05
             AFYSA
                          28,
                                           G. Andersson, G. Rudstam, G. Sorensen
```

```
1965An07
             NP-15663
                                            S.C. Anspach, L.M. Cavallo, S.B. Garfinkel, J.M.R. Hutchinson, C.N. Smith
                          140,
                                      904
1965Ba29
             PLRBA
                                           J.B. Ball, R.F. Sweet
                          29,
                                            Ts. Vylov, V.M. Gorodzankin, K. Ya. Gromov, V.V. Kuznetsov
1965Ba48
             IANFA
                                     2255
1965Be19
             PHLTA
                          18,
                                      293
                                            D. Berenyi, C. Ujhelyi, I. Feher
1965Be24
             NUPHA
                          74,
                                      459
                                           H. Beekhuis, H. de Waard
1965Bi04
             PLRBA
                          138.
                                      514
                                            W.N. Bishop
1965Bi12
             IANFA
                          29,
                                      151
                                            E.I. Biryukov, V.T. Novikov, N.S. Shimanskaya
             AFYSA
                                          P.H. Blichert-Toft
1965Bl06
                          28,
                                      415
1965B113
             PLRBA
                          140,
                                      1567
                                            A.G. Blair, D.D. Armstrong
1965Br12
             PLRBA
                          138,
                                     1368
                                           R.L. Brodzinski, D.C. Conway
1965Br25
             PHYSA
                          31,
                                     1305
                                            G.A. Brinkman, A.H.W. Aten, Jr., J.T. Veenboer
             NUPHA
                                      194
                                           C.P. Browne, W.E. Dorenbusch, F.H. O'Donnell
1965Br28
                          72,
                                      529
                                           L. Broman, J. Dubois
1965Br31
             NUPHA
                          72,
1965Bu03
                                      907 F.D.S. Butement, S.M. Quaim
             JINCA
                          27,
             NUPHA
                                           J. Burde, M. Rakavi, G. Adam
1965Bu07
                                      561
                          65,
1965Ce02
             PRLTA
                          15.
                                      300
                                           J. Cerny, C. Détraz, R.H. Pehl
1965Co06
             CJPHA
                          43,
                                      383
                                            C.R. Cothern, R.D. Connor
1965Cr04
             NUPHA
                          70,
                                      129
                                            T. Cretzu, K. Hohmuth, J. Schintlmeister
1965Da01
             NUPHA
                          63.
                                      145
                                            H. Daniel, M. Kuntze, B. Martin, P. Schmidlin, H. Schmitt
1965De08
             PRLTA
                          14,
                                      708
                                            C. Détraz, J. Cerny, R.H. Pehl
1965De09
             PLRBA
                          138,
                                      540
                                            J.W. Dewdney, K.T. Bainbridge
1965De13
             IANFA
                          29,
                                      859
                                            R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya
                                      198
                                            A.G. Demin, Y.P. Kushakevich
1965De15
             YAFIA
                          1,
                                            S.A. De Wit, A.H. Wapstra
             NUPHA
                          73,
                                       49
1965De20
             PLRBA
                          140,
                                      536
                                           S.H. Devare, R.M. Singru, H.G. Devare
1965De22
1965Du02
             COREA
                          261.
                                           J.C. Duperrin, A. Guizon-Juillard
1965Er02
             PLRBA
                          138.
                                      851
                                           J.R. Erskine
1965Er03
             PLRBA
                          138,
                                       66
                                           J.R. Erskine
                          22,
                                           K.F. Flynn, L.E. Glendenin, E.P. Steinberg
1965Fl02
             NSENA
1965Fr04
             NUPHA
                          64,
                                      303
1965Fr12
             PLRBA
                          140,
                                      563
                                            M.S. Freedman, F.T. Porter, F. Wagner, Jr.
1965Fu13
             NUPHA
                          70,
                                      335
                                           L. Kunke, H. Graber, K.-H. Kaun, H. Sodan, L. Werner
1965Go05
             PLRBA
                          137,
                                      1466
                                            S. Gorodetsky, A. Gallmann, R. Rebmeister
1965Gr35
             YAFIA
                          2.
                                      783
                                            K.Y. Gromov, Z.T. Zhelev, V. Zvolska, V.G. Kalinnikov
             NUPHA
                                      401
1965Gu03
                          64,
                                            M. Guttman, E.G. Funk, Jr., J.W. Mihelich
                          19,
             PHLTA
                                      304
                                            P.G. Hansen, H.L. Nielsen, K. Wilsky, J. Treherne
1965Ha30
1965Ho07
             NUPHA
                          71.
                                      449
                                            C.G. Hoot, M. Kondo, M.E. Rickey
1965Hs02
             NUPHA
                          73,
                                      379
                                            S.T. Hsue, L.M. Langer, S.M. Tang, D.A. Zollman
1965Is01
             ZENAA
                          20,
                                      541
                                            A. Isola, M. Nurmia
                          29.
                                            Y.F. Ivanov, I.A. Rumer, A.Y. Bukach
1965Iv01
             IANFA
                                      157
1965Iw01
             JUPSA
                          20,
                                     2105
                                            T. Iwashita
1965Jo04
             NUPHA
                          61,
                                      385
                                            M.W. Johns, M. Kawamura
1965Jo13
             NUPHA
                          72,
                                      617
                                            N.R. Johnson, K. Wilsky, P.G. Hansen, H.L. Nielsen
                          27,
1965Ka07
             JINCA
                                     1451
                                            P. Kauranen, H. Ihochi
1965Ke04
             NUPHA
                          61,
                                      513
                                            W.J. Keeler, R.D. Connor
1965Ke09
             PLRBA
                          139,
                                      1479
                                            R.A. Kenefick, R.K. Sheline
1965Ko09
             ZENAA
                          20.
                                            W. Kohler, K. Knopf
                                      969
1965Ku02
             NUPHA
                          64.
                                      524 H.-M. Kuan, J.R. Risser
1965Kv01
             NUPHA
                          74,
                                            E. Kvale, A.C. Pappas
             NUPHA
                                           H. Leutz, K. Schneckenberger, H. Wennige
1965Le06
                          63,
1965Le07
             NUPHA
                          65,
                                      337
                                            W.H.G. Lewin, J. Lettinga, B. van Nooijen, A.H. Wapstra
1965Ma07
             PHLTA
                          14,
                                          A. Marinov, J.R. Erskine
1965Ma12
             PRLTA
                          14,
                                      114 R.D. Macfarlane, A. Siivola
             NUPHA
1965Ma32
                          67,
                                       73 J.H.E. Mattauch, W. Thiele, A.H. Wapstra
1965Ma51
             IANFA
                          29.
                                     1121 I. Mahunka, T. Fenyes
1965Mc09
             PLRBA
                          140.
                                     1513
                                           R. McPherson, R.A. Easterlund, A.M. Poskanzer, P.L. Reeder
1965Me02
             JINCA
                                       33
                                            D. Metta, H. Diamond, R.F. Barnes, J. Milsted, J. Gray, Jr., D.J. Henderson,
                          27,
                                            C.M. Stevens
1965Me12
             PHLTA
                          19,
                                           R. Messlinger, H. Morinaga, C. Signorini
```

```
NUPHA
1965Mo05
                          61,
                                            S. Morinobu, T. Hirose, K. Hisatake
             NUPHA
                          74,
                                            R. Moreh, T. Daniels
1965Mo16
                                       403
             NUPHA
                          70,
                                       293
                                            R. Moreh
1965Mo19
1965Mu09
             NUPHA
                          67,
                                       466
                                            A. Mukerji, D.N. McNelis, J.W. Kane, Jr.
1965Ne02
             NUPHA
                          62,
                                       434
                                            J.W. Nelson, J.D. Oberholtzer, H.S. Plendl
1965Og01
             NUPHA
                          66.
                                       119
                                           I. Ogawa, T. Doke, M. Miyajima, A. Nakamoto
1965Pa08
             NUPHA
                          72,
                          29.
                                            H. Pettersson, O. Berhman, C. Bergman
1965Pe18
             AFYSA
1965Pl01
             NUPHA
                          73,
                                            H.S. Plendl, L.J. Defelice, R.K. Sheline
1965Pr03
             NUPHA
                          67,
                                       302
                                            W.V. Prestwich, T.J. Kennett
1965Ra02
             PLRBA
                          137,
                                        13
                                            A.V. Ramaya, Y. Yoshizawa
             NUPHA
                                       609
1965Re07
                          65,
                                            R. Reising, B.D. Pate
                                            M.E. Rickey, P.D. Kunz, J.J. Kraushaar, W.G. Anderson
1965Ri06
             PHLTA
                          17,
                                       296
                          70,
             NUPHA
                                       369
1965Ry01
                                            A. Rytz
                                            F. Schima, T. Katoh
1965Sc19
             PLRBA
                          140.
                                      1496
1965Si06
             NUPHA
                                       161
                                            A. Siivola, G. Graeffe
                          64.
1965St06
             PLRBA
                          137,
                                       772
                                            G.L. Struble, J. Kern, R.K. Sheline
1965Va02
             NUPHA
                          63,
                                       241
                                            B. Van Nooijen, W. Lourens, H. van Krugten, A.H. Wapstra
1965Wa14
             PLRBA
                          140,
                                            W.N. Wang, E.J. Winhold
1965Wi08
             PHLTA
                          15,
                                            E.T. Williams, P.G. Hansen, J. Lipperts, H.L. Nielsen, K. Wilsky
1965Za01
             PLRBA
                          137,
                                      1479
                                            C.D. Zafiratos, F. Ajzenberg-Selove, F.S. Dietrich
                                             1966
1966Ah.A
             UCRL-16580
                                            I. Ahmad, F. Asaro, I. Perlman
1966Ah.B
             Th.-Berkelev
                                            I. Ahmad
                          21,
1966Ak01
             AENGA
                                       243
                                            G.N. Akapev, A.G. Demin, V.A. Druin, E.G. Imaev, I.V. Kolesov, Y.V. Lobanov,
                                            L.P. Pashchenko
1966An10
             CHDBA
                                       214 S. Andre, P. Depommier
                          262.
1966Au04
             NUPHA
                          81,
                                       441 R.L. Auble, W.H. Kelly
1966Av03
             IANFA
                          30,
                                       542 M.P. Avotina, E.P. Grigorev, B.S. Dzelepov, A.V. Zolotavin, V.O. Sergeev
1966Ba07
             YAFIA
                          4,
                                      1108
                                            S.A. Baranov, Y.F. Rodionov, V.M. Kulakov, V.M. Shatinskii
1966Ba14
             CHDBA
                          262,
                                        89
                                            G. Bastin, C.F. Leang, R.J. Walen
1966Ba19
             CHDBA
                          262,
                                       370
                                            G. Bastin, C.F. Leang, R.J. Walen
1966Be10
             PHRVA
                          141,
                                      1112
                                            J.L. Benson, W.H. Johnson, Jr.
1966Be12
             PHLTA
                                      205
                                            H. Beekhuis
                          21.
1966Be21
             IANFA
                          30.
                                      1130
                                            Yu. I. Belyanin, E.I. Biryukov, N.S. Shimanskaya
1966Bi01
             NUPHA
                          86,
                                       145
                                            J.H. Bjerregaard, O. Hansen, O. Nathan, S. Hinds
1966Bi02
             NUPHA
                          85,
                                            J.H. Bjerregaard, O. Nathan, S. Hinds, R. Middleton
1966Bl04
             NUPHA
                                            L.M. Blau, W.P. Alford, D. Cline, H.E. Gove
                          76,
                                        45
1966B115
             PHRVA
                          151,
                                       930
                                            A.G. Blair, D.D. Armstrong
1966Bo20
             NUPHA
                          86,
                                       187
                                            B.E. Bonner, G. Rickards, D.L. Bernard, G.C. Phillips
1966Br05
             NUPHA
                          77,
                                       365
                                            G. Brown, S.E. Warren, R. Middleton
1966Br06
             NUPHA
                          77,
                                       385
                                            G. Brown, A. Macgregor, R. Middleton
             NUPHA
                          81,
                                       233
                                            H.F. Brinckmann, C. Heiser, K.F. Alexander, W. Neubert, H. Rotter
1966Br14
1966Br18
             PHRVA
                          149,
                                       767
                                            D.G. Burke, B. Zeidman, B. Elbek, B. Herskind, M. Olesen
1966Bu16
             KDVSA
                          35.
                                       #2 D.G. Burke, B. Zeidman, B. Elbek, B. Herskind, M. Olesen
1966Ca09
             NUPHA
                          82.
                                       471
                                            R.C. Catura, J.R. Richardson
1966Ca10
             NUPHA
                          85,
                                       317
                                            M.J. Canty, W.F. Davidson, R.D. Connor
             NUPHA
1966Cu02
                          86,
                                       481
                                            R.Y. Cusson
1966Da04
             NUPHA
                          76,
                                        97
                                            H. Daniel, G.T. Kaschl
1966Da06
             PHRVA
                          147,
                                       845
                                            W.R. Daniels, D.C. Hoffman
1966De11
             NUPHA
                          83,
                                       289 E.Y. De Aisenberg, J.F. Suarez
                                       734 W.E. Dorenbusch, T.A. Belote, O. Hansen
1966Do02
             PHRVA
                          146,
1966Do06
             NUPHA
                                       390 W.E. Dorenbusch, O. Hansen, D.J. Pullen, T.A. Belote, G. Sidenius
                          81.
1966Ei01
             PHRVA
                          146,
                                       899 E. Eichler, J.W. Chase, N.R. Johnson, G.D. O'Kelley
1966El09
             ORNL-3889
                                       49
                                            J.S. Eldridge, W.S. Lyon
1966Er02
             PHRVA
                          142.
                                       633 J.R. Erskine, A. Marinov, J.P. Schiffer
1966Fi06
             PHRVA
                          150,
                                       941 H.J. Fischbeck, F.T. Porter, M.S. Freedman, F. Wagner, Jr., H.H. Bolotin
```

```
RAACA
1966Fr11
                          5,
                                      192 A.M. Friedman, J. Milsted, D. Metta, D. Henderson, J. Lerner, A.L. Harkness,
                                            D.J. Rokop
             NUPHA
1966Fu05
                          84,
                                      461 L. Funke, H. Graber, K.-H. Kaun, R. Ross, H. Sodan, L. Werner, J. Frana
             NUPHA
1966Fu08
                          84,
                                      424 L. Funke, H. Graber, K.-H. Kaun, H. Sodan, G. Geske, J. Frana
1966Ga03
             NUPHA
                          76,
                                      353 R. Gaeta, M.A. Vigon
1966Ga06
             PHLTA
                          20.
                                      669 J. Gastebois, M. Berloutaud, J.M. Lagat, J. Quidort
1966Ga08
             PHRVA
                          147,
                                      753 A. Gallmann, P. Fintz, J.B. Nelson, D.E. Alburger
1966Gl02
             NUPHA
                                      279 K.M. Glibert, H.T. Easterday
                          86,
1966Gr26
             PHNOA
                                           A. Graue
1966Gu05
             NUPHA
                          85,
                                      288 S.G. Gujrathi, S.K. Mukherjee
                                      257 P.G. Hansen, H.L. Nielsen, K. Wilsky, Y.K. Agarwal, C.V.K. Baba, S.K. Bhat-
1966Ha15
             NUPHA
                          76,
                                            tacheriee
1966Ha29
             NUPHA
                                       62
                          84.
                                           G.R. Hagee, R.C. Lange, J.T. McCarty
1966Ha32
             PHLTA
                                      487
                                           J.C. Hardy, D.J. Skyrme, I.S. Towner
                          23.
1966He10
             NUPHA
                                           P.V. Hewka, C.H. Holbrow, R. Middleton
                          88.
1966Hi01
             PHLTA
                          21.
                                      328
                                           S. Hinds, J.H. Bjerregaard, O. Hansen, O. Nathan
1966Hi06
             NUPHA
                          84,
                                      651
                                           S. Hinds, R. Middleton
                                           S.T. Hsue, L.M. Langer, E.H. Spejewski, S.M. Tang
1966Hs01
             NUPHA
                          80,
                                      657
1966Ja12
             PHRVA
                          151,
                                      956
                                           A.D. Jackson, Jr., J.S. Evans, R.A. Naumann, J.D. McCullen
1966Jo07
             NUPHA
                          84,
                                      569
                                           M.H. Jorgensen, O.B. Nielsen, O. Skilbreid
1966Ki06
             CJPHA
                          44,
                                     2661
                                           J.E. Kitching, M.W. Johns
1966Kl02
             NUPHA
                          79,
                                       27 H. Klein, H. Leutz
             NUPHA
                          78,
                                           T. Lauritsen, F. Ajzenberg-Selove
1966La04
             NUPHA
                                       81 H. Leutz, G. Schulz, H. Wenniger
1966Le06
                          75,
1966Li04
             PHRVA
                          141,
                                           A.C. Li, I.L. Preiss, P.M. Strudler, D.A. Bromley
1966Ma05
             ZENAA
                          21.
                                       63 J.D. Macdougall, W.M. McLatchie, S. Whineray, H.E. Duckworth
1966Ma18
             PHLTA
                          21.
                                      661 N. Mangelson, M. Reed, C.C. Lu, F. Ajzenberg-Selove
1966Ma49
             IANFA
                          30,
                                     1185 E.P. Mazets, Y.V. Sergeenkov
                                     1375 I. Mahunka, L. Tron, T. Fenyes, V.A. Khalkin
1966Ma51
             IANFA
                          30.
1966Ma60
             RMPHA
                          38,
                                      660 J. Marion
1966Mc13
             NUPHA
                          88.
                                      257 J.H. McNally
1966Mo06
             PHRVA
                          141,
                                     1166 C.F. Moore, P. Richard, C.E. Watson, D. Robson, J.D. Fox
1966Ne01
             PRLTA
                          16,
                                       28 E. Newman, J.C. Hiebert, B. Zeidman
1966No05
             NUPHA
                          86,
                                      102 A.E. Norris, G. Friedlander, E.M. Franz
             NUPHA
1966Ny01
                          88,
                                       63
                                           B. Nyman, A. Johansson, C. Bergman, G. Backstrom
                                     1029
1966Pa06
             CJPHA
                          44.
                                           P.J. Pan, Y.S. Horowitz, R.B. Moore, R. Barton
1966Pa18
             NUPHA
                          85.
                                           P.B. Parks, P.M. Beard, E.G. Bilpuch, H.W. Newson
                                      504
1966Pa20
             PHLTA
                          23,
                                      269
                                           B. Parsa, G.E. Gordon
1966Pe10
             NUPHA
                          83,
                                           H. Pettersson, G. Backstrom, C. Bergman
                          146,
                                      774
                                           F.T. Porter, M.S. Freedman, F. Wagner, Jr., K.A. Orlandini
1966Po04
             PHRVA
1966Qa02
             NUPHA
                          88,
                                      285
                                           S.N. Qaim
1966Ra03
             PHRVA
                          142,
                                      768
                                           P.V. Rao, B. Crasemann
1966Re02
             PHLTA
                          20,
                                       40
                                           W. Reichart, H.H. Staub, H. Stussi, F. Zamboni
                                     1192
                                           Research-Group, Combined Radioactivity Group LRL-LASL-UCRL-ANL
1966Rg01
             PHRVA
                          148,
1966Ri01
             NUPHA
                          75,
                                      381
                                           P. Riehs
1966Ri09
             NUPHA
                          86.
                                      167
                                           G. Rickards, B.E. Bonner, G.C. Phillips
1966Ry01
             NUPHA
                          80.
                                           H. Ryde, G.D. Symons, S. Szymanski
1966Sc17
             PHRVA
                          149.
                                      820 J.J. Schwartz, W. Parker, Q. Alford
1966Sc23
             NUPHA
                          89,
                                      401
                                           D. Schwalm, B. Povh
             PHRVA
                                      950 F.J. Schima
1966Sc24
                          151,
1966Se07
             NUPHA
                          85.
                                      227 B. Sethi, S.K. Mukherjee
1966Sh03
             PHRVA
                          143,
                                          R.K. Sheline, C.E. Watson, B.P. Maier, U. Gruber, R.H. Koch, O.W.B. Shult,
                                           H.T. Motz, E.T. Jurney, G.L. Struble, T. von Egidy, T. Elze, E. Bieber
1966Sh14
             PHLTA
                                      648 W.N. Shelton, C.E. Watson
                          22,
             PHRVA
                          151.
                                     1011 R.K. Sheline, W.N. Shelton, T. Udagawa, E.T. Jurney, H.T. Motz
1966Sh16
1966Si08
             NUPHA
                                      385 A. Siivola
                          84,
                                           K.M. Smith, G.M. Lewis
1966Sm05
             NUPHA
                          89
                                      561
1966Sn02
             PHRVA
                          147.
                                      967
                                           R.E. Snyder, G.B. Beard
1966St15
             PHRVA
                          151,
                                           M.M. Stautberg, J.J. Kraushaar
```

```
1966Va12
             PHRVA
                          150,
                                       886 J. Van Klinken, A.J. Bureau, G.W. Eakins, R.J. Hanson
             UCRL-16580
                                            K. Valli, E.K. Hyde
1966Va.A
                                        85
             ZEPYA
                          195,
                                       343 H. Vonach, H. Munzer, P. Hille
1966Vo05
1966Wh01
             PHRVA
                          150,
                                       836
                                            W. Whaling
                                            K. Wien
1966Wi04
             ZEPYA
                          191,
                                       137
1966Wi11
             PHLTA
                          22.
                                       162 D.C. Williams, J.D. Knight, W.T. Leland
1966Wi12
             NUPHA
                          84,
                                       609 I.R. Williams, K.S. Toth, T.H. Handley
1966Yo01
             PHLTA
                          22,
                                       625 D.H. Youngblood, G.C. Morrison, R.E. Segel
1966Za01
             NUPHA
                          77,
                                        81 C.D. Zafiratos, F. Ajzenberg-Selove, F.S. Dietrich
1966Zy02
             NUPHA
                          84,
                                        13 J. Żylicz, P.G. Hansen, H.L. Nielsen, K. Wilsky
                                             1967
1967Ad03
             PHRVA
                          159.
                                       985 I. Adam, K.S. Toth, R.A. Meyer
             PHRVA
                                            I. Ahmad, A.M. Friedman, R.F. Barnes, R.K. Sjoblom, J. Milsted, P.R. Fields
1967Ah02
                          164,
                                      1537
1967Al08
             NUPAB
                          98.
                                            A.M. Aldridge, H.S. Plendl, J.P. Aldridge, III
                                       323
1967An01
             NUPAB
                          94,
                                       289
                                            S. Antman, H. Pettersson, A. Suarez
1967Ar01
             PYLBB
                          24,
                                        84
                                            E. Arei, H. Miessner
1967As02
             PHRVA
                          158,
                                      1073
                                            F. Asaro, I. Perlman
1967Ba01
             NUPAB
                          91.
                                            V.A. Balalaev, B.S. Dzelepov, L.N. Moskvin, S.A. Shetopalova, N.A. Voinova
1967Ba15
             PHRVA
                          155,
                                      1319
                                            P.D. Barnes, J.R. Comfort, C.D. Bockelman
1967Ba32
             PHRVA
                          159,
                                       920 P.D. Barnes, J.R. Comfort, C.D. Bockelman, O. Hansen, A. Sperduto
                                            A. Backlin, A. Suarez, O.W.B. Schult, B.P.K. Mayer, U. Gruber, E.B. Shera,
1967Ba34
             PHRVA
                          160,
                                      1011
                                            D.W. Hafemeister, W.N. Shelton, R.K. Sheline
                          5,
1967Ba42
             YAFIA
                                            S.A. Baranov, I.G. Aliev, L.V. Chistyakov
1967Ba43
             YAFIA
                          5.
                                            S.A. Baranov, M.K. Chadzhiev, V.M. Kulakov, V.M. Shatinskii
1967Ba51
             CHDBA
                          265.
                                            G. Bastin-Scoffier
             P-Gatlinburg
1967Ba.A
                                            C.A. Barnes, E.G. Adelsberger, D.C. Hensley, A.B. Macdonald
             NUPAB
                          104.
                                            G. Berzins, W.H. Kelly, G. Graeffe, W.B. Walters
1967Be46
1967Bi04
             NUPAB
                          97,
                                       203 L. Birstein, C. Drory, A.A. Jaffe, Y. Zioni
1967Bj01
             NUPAB
                          94,
                                       457
                                           J.H. Bjerregaard, O. Hansen, O. Nathan, S. Hinds
1967Bj02
             PHRVA
                          155,
                                      1229 J.H. Bjerregaard, O. Hansen
1967Bj05
             PHRVA
                          160,
                                       889
                                           J.H. Bjerregaard, O. Hansen, G.R. Satchler
                          103,
1967Bj06
             NUPAB
                                        33 J.H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman, S. Hinds, R. Middleton
                          25,
1967B119
             PYLBB
                                       215
                                            R. Bloch, R.E. Pixley, P. Truol
1967Bo41
             YAFIA
                                       893
                                            D.D. Bogdanov, S. Darotsi, V.A. Karnaukhov, L.A. Petrov, G.M. Ter-Akopyan
                          6.
1967Br10
             NUPAB
                          101.
                                       163
                                            G. Brown, J.G.B. Haigh, F.R. Hudson, A.E. Macgregor
1967Ca18
             NUPAB
                          104,
                                       35
                                            M.J. Canty, R.D. Connor
1967Ch05
             NUPAB
                          94,
                                       417
                                            P. Charoenkwan, J.R. Richardson
             NUPAB
                                            P.R. Christensen, B. Herskind, R.R. Borchers, L. Westgaard
1967Ch16
                          102,
1967Co15
             PHRVA
                          157,
                                      1065
                                            J.R. Comfort, C.K. Bockelman, P.D. Barnes
1967Da10
             CJPHA
                          45,
                                      2295
                                            W.F. Davidson, C.R. Cothern, R.D. Connor
1967De02
             NUPAB
                          94,
                                       673
                                            M.E. De Lopez, M. Mazari, T.A. Belote, W.E. Dorenbusch, O. Hansen
1967De15
             JNCEA
                          21,
                                       833
                                            A.J. De Ruytter, P. Pelfer
1967Do03
             NUPAB
                          102,
                                       681
                                            W.E. Dorenbusch, J. Rapaport, T.A. Belote
                                            B.S. Dzelepov, R.B. Ivanov, M.A. Mikhailov, L.N. Moskvin, O.M. Nazarenko,
1967Dz02
             IANFA
                          31,
                                       568
                                             V.F. Radionov
1967Eh02
             ZEPYA
                          207,
                                       268 D. Ehrlich
             P-Winnipeg
1967Er02
                                           J.R. Erskine, A.M. Friedman, T.H. Braid, R.R. Chasman
             PHRVA
                                      1094 R.A. Esterlund, R. McPherson, A.M. Poskanzer, P.L. Reeder
1967Es02
                          156.
1967Fi04
             PYLBB
                          24,
                                       340 P.R. Fields, R.F. Barnes, R.K. Sjoblom, J. Milsted
1967Fl05
             YAFIA
                          5,
                                            G.N. Flerov, S.M. Polikhanov, V.L. Mikheev, V.I. Ilyushchenko, V.F. Kushniruk,
                                            M.B. Miller, A.M. Sukhov, V.A. Schegolov
1967FI15
                                       342
                                            G.N. Flerov, S.M. Polikanov, V.L. Mikheev, V.I. Ilyushchenko, M.B. Miller,
             AENGA
                          22,
                                             V.A. Shchegolev
1967Fo04
                                      1248 C.M. Fou, R.W. Zurmuhle, J.M. Joyce
             PHRVA
                          155.
1967Fr02
             NUPAB
                                            J. Frana, I. Rezanka, Z. Plajner, A. Spalek, J. Jursik, M. Vobecky, A. Mastalka,
                          94,
                                            L. Funke, A. Graber, H. Sodan
1967Gh01
             PRLTA
                          18,
                                           A. Ghiorso, T. Sikkeland, M.J. Nurmia
```

```
1967Go22
                          104,
             NUPAB
                                           P.F.A. Goudsmit, J. Konijn, F.W.N. De Boer
             PHYSA
1967Go25
                          35,
                                      479
                                           P.F.A. Goudsmit
             IANFA
1967Go32
                          31,
                                     1618
                                           N.A. Golovkov, K.Y. Gromov, N.A. Lebedev, B. Makhmudov, A.S. Rudnev,
                                            V.G. Chumin
1967Gr01
             PYLBB
                          24,
                                      171
                                           M.W. Greene
1967Gr21
             NUPAB
                          103.
                                           A. Graue, E. Jastad, J.R. Lien, P. Torvund, W.H. Moore
1967Gu06
             PHRVA
                          159,
                                           S.C. Gujrathi, S.K. Mukherjee
1967Gu11
                                           S.C. Gujrathi, S.K. Mukherjee
             IJPYA
                          41,
1967Gu12
             IJPYA
                          41,
                                           S.C. Gujrathi, S.K. Mukherjee
1967Ha03
             NUPAB
                          90,
                                      573 S.K. Haynes, M. Velinsky, L.J. Velinsky
                                       95 P.G. Hansen, H.L. Nielsen, K. Wilsky, J.G. Cuninghame
1967Ha04
             PYLBB
                          24,
             NUPAB
                                      260 W.D. Harrison
1967Ha08
                          92,
             NUPAB
                                      330 H.J. Hay, D.C. Kean
1967Ha17
                          98.
                                           R.A. Harlan, R.K. Sheline
1967Ha25
             PHRVA
                                     1005
                          160,
             P-Winnipeg
                                           O. Hansen
1967Ha.A
                                      527
1967Hi01
             PYLBB
                                       89
                                           S. Hinds, H. Marchant, R. Middleton
                          24.
1967Hi02
             PYLBB
                          24,
                                       34
                                           S. Hinds, H. Marchant, R. Middleton
1967Hi01
             AFYSA
                          33,
                                      147
                                           S.A. Hjorth
1967Hj03
             AFYSA
                          33,
                                      121
                                           S.A. Hjorth, L.H. Allen
1967Ho01
             NUPAB
                          90,
                                      545
                                           J.L. Honsaker
1967Ho12
             PHRVA
                          159,
                                     1000
                                           K.J. Hofstetter, P.J. Daly
1967Ho19
             AFYSA
                          36,
                                      211
                                           D.C. Hoffman, O.B. Michelsen, W.R. Daniels
             NUPAB
                                           S.T. Hsue, M.U. Kim, S.M. Tang
1967Hs01
                          94.
                                      146
             NUPAB
1967Hs03
                          101,
                                      688
                                           S.T. Hsue, M.U. Kim, L.M. Langer, E.H. Spejewski, J.B. Willet
1967Hu05
             ZEPYA
                          203,
                                      435
                                           E. Huster, H. Verbeek
1967Hu07
             CHDBA
                          265.
                                           K. Hubenthal, J. Berthier, J.-C. Hocquenghem, A. Moussa
1967II01
             YAFIA
                                           V.I. Ilyushchenko, M.B. Miller, V.L. Mikheev, V.A. Shchegolev
                          6.
                                     1117
1967Jo03
             PHRVA
                          153,
                                     1169
                                           R.R. Johnson, N.M. Hintz
             P-Winnipeg
                                      793
                                           W.H. Johnson, M.C. Hudson, R.A. Britten, D.C. Kayser
1967Jo18
1967Ka01
             NUPAB
                          90,
                                       23
                                           V.A. Karnaukhov, G.M. Ter-Akopyan, L.S. Vertogradov, L.A. Petrov
1967Ka11
             PHRVA
                          159,
                                      931
                                           A.A. Katsanos, J.R. Huizenga
1967Ke02
             PHRVA
                          153,
                                           J. Kern, G.L. Struble, R.K. Sheline
1967Ki01
             NUPAB
                          98,
                                      337
                                           J.E. Kitching, M.W. Johns
                          90.
1967Ko01
             NUPAB
                                      558 J. Konijn, E.W.A. Lingeman, S.A. De Wit
                          98.
                                      273
1967Le06
             NUPAB
                                           J. Lehmann
                          36,
                                      183
                                           Y. Le Beyec, M. Lefort
1967Le21
             AFYSA
             NUPAB
                          95.
                                      632
                                            A. Marelius, P. Sparrman, S.-E. Hagglund
1967Ma07
1967Ma35
             PHRVA
                          163,
                                     1098
                                            K.W. Marlow, M.A. Waggoner
1967Mc03
             NUPAB
                          92,
                                      401
                                           W.R. McMurray, P. Van Der Merwe, I.J. Van Heerden
             NUPAB
                                           W.R. McMurray, M. Peisach, R. Pretorius, P. Van der Merwe, I.J. Van Heerden
1967Mc07
                          99,
1967Mc10
             NUPAB
                          98,
                                           M.F. McCann, G.M. Lewis, K.M. Smith
1967Mc14
             PRLTA
                          19,
                                     1442
                                           R.L. McGrath, J. Cerny, E. Norbeck
1967Mi02
             NUPAB
                          94,
                                      261
                                           R.G. Miller, R.W. Kavanagh
                                           V.L. Mikheev, V.I. Ilyushchenko, M.B. Miller, S.M. Polikanov, G.N. Flerov,
1967Mi03
             AENGA
                          22,
                                       90
                                            Y.P. Kharitonov
                                       49
1967Mi06
             YAFIA
                          5.
                                           V.L. Mikheev, V.I. Ilyushchenko, M.B. Miller
1967Mi13
             JUPSA
                          23.
                                     1191
                                           K. Mivano
1967Mo10
             CHDBA
                          264.
                                           E. Monnand, J.A. Pinston, R. Henck
                                           H. Morinaga, K. Miyano, K. Fujikawa, R. Chiba, K. Ebisawa, N. Kawai
1967Mo11
             PYLBB
                          25,
             NUPAB
                          99.
                                           J.A. Moragues, P. Reyes-Suter, T. Suter
1967Mo12
                                      652
1967Mo13
             NUPAB
                          100,
                                           Y. Motavalledi-Nobar, J. Berthier, J. Blachot, R. Henck
                                       45
1967Mo17
             NUPAB
                          102,
                                      406
                                           W.G. Mourad, K.E. Nielsen, M. Petrilak
1967Mo22
             NUPAB
                          104,
                                      327
                                           W.H. Moore, G.K. Schlegel, S.O. Dell, A. Graue, J.R. Lien
                                     1039
1967Mu16
             PHRVA
                          159,
                                           G. Muehllehner, A.S. Poltorak, W.C. Parkinson, R.H. Bassel
             PHRVA
                          160,
                                     1035 R.A. Naumann, P.K. Hopke
1967Na08
             PHRVA
1967Ne04
                          155,
                                     1314 C.L. Nealy, R.K. Sheline
1967Ne08
             PHRVA
                          164,
                                     1503
                                           C.L. Nealy, R.K. Sheline
1967Ni02
             NUPAB
                          93.
                                      385
                                           H.L. Nielsen, K. Wilsky, J. Żylicz, G. Sorensen
1967Nu01
             PYLBB
                          26,
                                           M. Nurmia, T. Sikkeland, R. Silva, A. Ghiorso
```

```
1967Oa01
             PYLBB
                          24,
                                       142 N.S. Oakey, R.D. McFarlane
             NUPAB
                          104,
                                       609
                                            B.J. O'Brien, W.E. Dorenbusch, T.A. Belote, J. Rapaport
1967Ob04
                                      957
                                            F.H. O'Donnel, C.P. Browne
1967Od01
             PHRVA
                          158,
1967Pa04
             JOPOA
                          28,
                                       388 P. Paris
1967Pa08
             CJPHA
                          45,
                                      2621
                                            J.J.H. Park, P. Christmas
1967Pi03
             PHRVA
                          159.
                                      939
                                            W.R. Pierson, K. Rengan
1967Pr04
             PHRVA
                          157,
                                       779
                                           F.W. Prosser, Jr., G.U. Din, D.D. Tolbert
1967Pr10
             PHRVA
                                      1080 W.V. Prestwich, R.E. Cote, G.E. Thomas
                          161,
1967Ra13
             NUPAB
                          99.
                                       547 R.C. Ragaini, G.E. Gordon, W.B. Walters
1967Ra14
             NUPAB
                          100,
                                       280 J. Rapaport, T.A. Belote, W.E. Dorenbusch
1967Ri.A
             BAPSA
                          12,
                                       522 F.A. Rickey, Jr., H.C. Britt, and PrvCom AHW
             JOPQA
                                      637
1967Ro17
                          28,
                                            G. Rotbart, J. Kalifa, G. Ronsin, M. Vergnes
             NUPAB
1967Sc01
                          96.
                                       337
                                            S.O. Schriber, M.W. Johns
1967Sc05
             PHRVA
                                            O.W.B. Schult, M.E. Bunker, D.W. Hafemeister, E.B. Shera, E.T. Jurney,
                          154,
                                            J.W. Starner, A. Backlin, B. Fogelberg, U. Gruber, B.P.K. Maier, H.R. Koch,
                                             W.N. Shelton, M. Minor, R.K. Sheline
1967Sc10
             ZEPYA
                          203,
                                       289
                                            G. Schulz
1967Sc15
             NUPAB
                          101,
                                       177
                                            G. Schulte
1967Sc26
             NUPAB
                          104,
                                      692
                                            G. Schulz, K. Ziegler
1967Sc30
             PHRVA
                          164,
                                      1548
                                            O.W.B. Schult, W.R. Kane, M.A.J. Mariscotti, J.M. Simic
1967Se10
             PHRVA
                          164,
                                      1450
                                            K.K. Seth, J.A. Biggerstaff, P.D. Miller, G.R. Satchler
1967Si02
             NUPAB
                          92,
                                      475
                                            A. Siivola
             PYLBB
1967Si07
                          24,
                                       331
                                            T. Sikkeland, A. Ghiorso
1967Si08
             PYLBB
                          24,
                                      333
                                            T. Sikkeland, A. Ghiorso, J. Maly, M.J. Nurmia
1967Si09
             NUPAB
                          101,
                                       129
                                            A. Siivola
1967Sp03
             PHRVA
                          155.
                                            R.R. Spencer, K.T. Faler
                                      1368
1967Sp06
             NUPAB
                          99.
                                            E.H. Spejewski, J.B. Willett
                                      625
1967Sp08
             ZEPYA
                          204,
                                       129
                                            A. Spalek, I. Rezanka, J. Frana, A. Mastalka
1967Sp09
             P-Winnipeg
                                       657
                                            A. Sperduto
1967St14
             YAFIA
                                      1205
                                            G.L. Struble, R.K. Sheline
1967St24
             NUPAB
                          104,
                                            M.M. Stautberg, R.R. Johnson, J.J. Kraushaar, B.W. Ridley
1967St30
             P-Winnipeg
                                       495
                                            H.H. Staub
1967Su05
             PHRVA
                          163,
                                      1091
                                            J.W. Sunier, A.J. Armini, R.M. Polichar, J.R. Richardson
                                            R.G. Tee, A. Aspinal
1967Te02
             NUPAB
                          98,
                                      417
                                       325
1967Th05
             NUIMA
                          56,
                                            G.F. Thomas, D.E. Blatchley, L.M. Bollinger
             NUPAB
                          100,
                                       425
                                            E. Tielsch-Cassel
1967Ti04
             KDVSA
                                        #8
                                            P.O. Tjom, B. Elbek
1967Tj01
                          36.
1967Tr06
             NUPAB
                          97,
                                       405
                                            W. Treytl, K. Valli
                                            D. Varga, D. Berenyi, C. Ujhelyi, F. Molnar
1967Va01
             NUPAB
                          91,
                                       157
             NUPAB
                                            J. Van Klinken, L.M. Taff
1967Va14
                          99.
                                      473
1967Va17
             PHRVA
                          159,
                                      1013
                                            K. Valli, M.J. Nurmia, E.K. Hyde
1967Va20
             JINCA
                          29,
                                      2503
                                            K. Valli, E.K. Hyde, W. Treytl
1967Va22
             PHRVA
                          161,
                                      1284
                                            K. Valli, W. Treytl, E.K. Hyde
1967Va23
             NUPAB
                          102,
                                       369
                                            L. Van Neste, R. Coussement, J.P. Deutsch
1967Va27
             IANFA
                                      284
                                            S.S. Vasilev, E.T. George, L.Y. Shavtalov
                          31,
             P-Winnipeg
                                      296
1967Va.A
                                            K. Valli
1967Ve04
             NUPAB
                          103.
                                            E. Veje
                                       188
1967Vo05
             PHRVA
                          164.
                                      1374
                                            D. Von Ehrenstein, J.P. Schiffer
1967Vr04
             IANFA
                          31,
                                            J. Vrzal, K.Y. Gromov, J. Liptak, F. Molnar, V.A. Morozov, J. Urbanets,
                                             V.G. Chumin
1967Wa09
             NUPAB
                          97,
                                       641
                                            A.H. Wapstra
1967Wa23
             PHRVA
                                      1545 T.E. Ward, H. Ihochi, M. Karras, J.L. Meason
                          164.
1967Wh03
             PHRVA
                          160,
                                      997 C.A. Whitten, Jr., L.C. McIntyre
             NUPAB
1967Wi08
                          103,
                                      433 C.A. Wiedner, A. Heusler, J. Solf, J.P. Wurm
                                      1094 S. Wirjoamidjojo, B.D. Kern
1967Wi14
             PHRVA
                          163,
             NUIMA
1967Wi19
                          52,
                                       77
                                            J.B. Willet, E.H. Spejewski
1967Yt03
             PHYSA
                          34,
                                            C. Ythier, J.C. Meyer, J. Konijn, R. van Lieshout
                                       559
```

```
IANFA
                          32,
                                           A.A. Abdurazakov, J. Vrzal, K. Ya. Gromov, Zh. T. Zhelev, V.G. Kalinnikov,
1968Ab14
                                            J. Liptak, S.K. Li, F.N. Mukhtasimov, U.K. Nazarov, J. Urbanets
                                          L.N. Abesalashvili, K.Y. Gromov, Z.T. Zhelev, V.G. Kalinnikov, J. Liptak,
1968Ab17
             IANFA
                          32,
                                            U.K. Nazarov, J. Urbanets
1968Ad03
             JPAGB
                          1.
                                          J.M. Adams, A. Adams, J.M. Calvert
                                       289 I. Adam, K.S. Toth, M.F. Roche
1968Ad04
             NUPAB
                          121,
1968Ad08
             APPOA
                          34.
                                           B. Adamowicz, Z. Moroz, Z. Preibisz, A. Zglinski
1968Ah01
             NUPAB
                          119,
                                       27
                                           I. Ahmad, A.M. Friedman, J.P. Unik
1968An03
             NUPAB
                          110,
                                      289
                                            S. Antman, H. Petterson, Y. Grunditz
1968An11
             NUPAB
                          121,
                                      337
                                           S. Andre, P. Liaud
                                      1194 A.J. Armini, J.W. Sunier, J.R. Richardson
1968Ar03
             PHRVA
                          165,
                                       14 R.L. Auble, J.B. Ball, C.B. Fulmer
1968Au04
             NUPAB
                          116,
1968Az01
             ZEPYA
                          208.
                                      234
                                           A. Azman, A. Mojlk, J. Pahor
1968Ba25
             YAFIA
                          7,
                                      727
                                            S.A. Baranov, V.M. Kulakov, V.M. Shatinskii
1968Ba53
             YAFIA
                          7,
                                      1153
                                            I. Bacso, D.D. Bogdanov, S. Darocsy, V.A. Karnaukhov, L.A. Petrov
1968Ba73
             JOPOS
                          1,C1
                                      181
                                            G. Bastin, C.F. Leang, R.J. Walen
1968Be02
             NUPAB
                          106,
                                      296
                                            J.E. Benn, E.B. Dally, H.H. Muller, R.E. Pixley, H.H. Staub, H. Winkler
1968Be06
             NUPAB
                          108,
                                      382
                                            H. Beekhuis, R.J. Van Duinen
1968Be10
             NUPAB
                          109,
                                            T.A. Belote, W.E. Dorenbusch, J. Rapaport
1968Be13
             PHRVA
                          167,
                                      1043
                                            R.C. Bearse, D.H. Youngblood, J.L. Yntema
1968Be21
             NUPAB
                          121,
                                      433
                                            C.E. Bemis, Jr., J. Halperin
             ZEPYA
                                      229
                                            E. Beck, H. Daniel
1968Be35
                          216,
                                           T.A. Belote, W.E. Dorenbusch, J. Rapaport
1968Be36
             NUPAB
                          120,
                                      401
1968Be.A
             BAPSA
                                      1430
                                           M.J. Bennet, R.K. Sheline
                          13,
1968Bi01
             NUPAB
                          107.
                                           J.H. Bjerregaard, O. Hanson, O. Nathan, R. Chapman, S. Hinds
1968Bi02
             NUPAB
                          110.
                                           J.H. Bjerregaard, O. Hansen, O. Nathan, L. Vistisen, R. Chapman, S. Hinds
1968Bi03
             NUPAB
                          113,
                                           J.H. Bjerregaard, O. Hansen, O. Nathan, L. Vistisen, R. Chapman
1968Bj05
             NUPAB
                                            S. Bjornholm, J. Dubois, B. Elbek
                          118,
1968Br23
             PHRVA
                          174,
                                      1247
                                           H. Brunnader, J.C. Hardy, J. Cerny
1968Bu02
             PHRVA
                          166,
                                     1096
                                           G.W. Butler, J. Cerny, S.W. Cosper, R.L. McGrath
1968Ch20
             NUPAB
                          119,
                                      305
                                           R. Chapman, S. Hinds, A.E. Macgregor
1968Ch.A
             PrvCom
                          AHW
                                      May
                                           R.E. Chrien
1968Co20
             PHRVA
                          172,
                                     1126
                                           E.R. Cosman, D.C. Slater
                                            M. Conjeaud, S. Harar, Y. Cassagnou
1968Co22
             NUPAB
                          117,
                                      449
1968Da02
             NUPAB
                          107,
                                      569
                                            W.R. Daniels, D.C. Hoffman, F.O. Lawrence, C.J. Orth
1968Da09
             PHRVA
                          172.
                                     1176
                                            J.M. D'Auria, H. Bakhru, J.C. Preiss
1968Da13
             NUPAB
                          112,
                                      241
                                            W.R. Daniels, F.O. Lawrence, D.C. Hoffman
1968De17
             YAFIA
                          8,
                                      255
                                            R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya
                                            W.E. Dorenbusch, F.T. Dao, J. Rapaport, T.A. Belote
1968Do02
             PYLBB
                          26,
                                       148
1968Do03
             NUPAB
                          109,
                                      649
                                            W.E. Dorenbusch, T.A. Belote, J. Rapaport
1968Do06
             NUPAB
                          112,
                                      385
                                            W.E. Dorenbusch
1968Do12
             PHRVA
                          175,
                                      1446
                                            K.W. Dolan, D.K. Daniels
                                            G.A.P. Engelbertink, H. Lindeman, M.J.N. Jacobs
1968En01
             NUPAB
                          107,
                                      305
1968Et01
             PHRVA
                          168,
                                     1249
                                            R.C. Etherton, L.M. Beyer, W.H. Kelly, D.J. Horen
1968Fi01
             NUPAB
                          111.
                                      338
                                           E. Fincke, U. Jahnke
1968Fi04
             PHRVA
                                     1078 H.J. Fischbeck
                          173.
1968Fu07
             NUPAB
                                           L. Funcke, W. Andrejtscheff, H. Graber, U. Hagemann, K.-H. Kaun, P. Kemnitz,
                          118,
                                            W. Meiling, H. Sodan, F. Stary, G. Winter
1968Fu11
             JUPSA
                          25.
                                      946 S. Fukumoto, T. Matsuo, H. Matsuda
1968Go34
             APPOA
                          34,
                                      511 M. Gonsior, G.I. Lizurei, G. Nevodnichanskii, A.V. Potempa
1968Go.A
             BAPSA
                          13,
                                      1452 K.P. Gopinathan, W. Rubinson
1968Go.B
             P-Dubna
                                       54
                                           N.A. Golovkov, R.B. Ivanov, Y.V. Norseev, So Ki Kvan, V.A. Khalkin,
                                            V.G. Shumin
                                       27
1968Go.C
             P-Dubna
                                           N.A. Golovkov, S.V. Khvan, V.G. Chumin
1968Gr09
             NUPAB
                                      353
                                           T.B. Grandy, W.J. McDonald, W.K. Dawson, G.C. Neilson
                          113,
1968Gr14
             PYLBB
                                      274
                                            R.C. Greenwood
                          27.
1968Gr16
             NUPAB
                          120.
                                      493
                                           A. Graue, E. Hvidsen, J.R. Lien, G. Sandvik, W.H. Moore
1968Gr17
             NUPAB
                          120,
                                           A. Graue, L. Herland, J.R. Lien, E.R. Cosman
```

```
1968Ha09
             PYLBB
                          26,
                                       432
                                            M. Hagen, K.H. Maier, R. Michaelsen
             PHRVA
                                      1373
1968Ha10
                          168,
                                            R.A. Harlan, R.R. Sheline
             NUPAB
                                            O. Hansen, O. Nathan, L. Vistisen, R. Chapman
1968Ha13
                          113,
                                        75
1968Ha14
             NUPAB
                          113,
                                       206
                                            R.L. Hahn, M.F. Roche, K.S. Toth
1968He03
             PYLBB
                          26,
                                       435
                                            D.C. Hensley, P.H. Nettles, C.A. Barnes
1968Ho10
             JOPOA
                          29.
                                       138 J.C. Hocquenghem, S. Andre, P. Liaud
1968Ho13
             NUPAB
                          115,
                                       225 R.W. Hoff, J.E. Evans, E.K. Hulet, R.J. Dupzyk, B.J. Qualheim
             AFYSA
1968Ho22
                          37.
1968Hs01
             NUPAB
                          109,
                                       423
                                            S.T. Hsue, M.U. Kim, L.M. Langer, E.H. Spejewski
1968Hs02
             NUPAB
                          117,
                                       686
                                            S.T. Hsue, M.U. Kim, L.M. Langer, W.F. Piel, E.H. Spejewski
1968Hu05
             PHRVA
                          167,
                                      1064 H.C. Hudson, W.H. Johnson, Jr.
                                       321
                                            J.F.W. Jansen, W. Pauw, C.J. Touset
1968Ja06
             NUPAB
                          115,
                                           A. Jasinski, C.J. Herrlander
1968Ja11
             AFYSA
                                       585
                          37.
             NUPAB
                                       104 L.V. Johnson, T.J. Kennett
1968Jo11
                          113.
                                            B.G. Kiselev, V.R. Burmistrov
1968Ki07
             YAFIA
                                      1057
                          8,
1968Kl08
             IANFA
                          32.
                                      1640
                                            A.A. Klyushnikov, N.F. Mitrokhovich, A.I. Feoktistov
1968La18
             PHRVA
                          175,
                                      1507
                                            I.M. Ladenbauer-Bellis, H. Bakhru
1968Le07
             CHDBA
                          266,
                                      629
                                            C.F. Leang, G. Bastin-Scoffier
1968Li01
             ZEPYA
                          208.
                                       208
                                            E. Liukhonen, J. Kantele
1968Li12
             NUPAB
                          122,
                                       373
                                            H. Lindeman, G.A.P. Engelbertink, M.W. Ockeloen, H.S. Pruys
1968Lo15
             YAFIA
                          8,
                                      849
                                            Y.V. Lobanov, V.A. Durin
1968Ma35
             PHRVA
                          174,
                                      1485
                                            M.A.J. Mariscotti, W. Gelletly, J.A. Moragues, W.R. Kane
1968Ma45
             JUPSA
                          25,
                                      950
                                            H. Matsuda, T. Matsuo
1968Mc06
             PHRVA
                          168,
                                     1393
                                            M. McDonnel, M.K. Ramaswami
                                            L.D. McIsaac
1968Mc09
             PHRVA
                          172,
                                     1253
1968Mc10
             PHRVA
                          171.
                                      1254
                                            W.J. McDonald, J.T. Sample, D.M. Sheppard, G.M. Stinson, K.W. Jon
1968Mc12
             PYLBB
                          27.
                                            R.L. McGrath, J.C. Hardy, J. Cerny
1968Mi08
             NUPAB
                          119,
                                            W. Michaelis, F. Weller, H. Schmidt, G. Markus, U. Fanger
             PHRVA
                          175,
                                            P.A. Moore, P.J. Riley, C.M. Jones, M.D. Mancusi, J.L. Foster, Jr.
1968Mo21
             P-Debreccen
                                            B. Mysek, Z. Sujkowski, B. Kotlinska
1968My.A
1968Pa03
             NUPAB
                          110,
                                       674
                                            B. Parsa, G.E. Gordon, W.B. Walters
1968Pe01
             NUPAB
                          108,
                                       124 H. Petterson, S. Antman, Y. Grunditz
1968Pi03
             JOPQA
                          29,
                                       257
                                            R.A. Pinston, E. Monnand, A. Moussa
                          30.
1968Re12
             JINCA
                                     2887
                                            K. Rengan, H.C. Griffin
             PHRVA
1968Ri07
                          170.
                                     1157
                                            F.A. Rickey, R.K. Sheline
                                            J.E. Robertshaw, S. Mecca, A. Sperduto, W.W. Buechner
1968Ro09
             PHRVA
                          170,
                                     1013
1968Sa09
             NUPAB
                                       409
                                            R. Santo, R. Stock, J.H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman,
                          118,
1968Sa13
             NUPAB
                          121,
                                        65
                                            C. Samour, H.E. Jackson, J. Julien, A. Bloch, C. Lopata, J. Morgenstern
             PHRVA
                          165,
                                            I.G. Schröder, M. McKeown, G. Scharff-Goldhaber
1968Sc01
                                     1184
1968Sc04
             PHRVA
                          166,
                                      1212
                                            D. Schroeer, P.S. Jastram
1968Sc10
             JOPQA
                          29,
                                       385
                                            F. Schussler
1968Sc14
             ZEPYA
                          217,
                                      282
                                            W.D. Schmidt-Ott, W. Weirauch, F. Smend, H. Langhoff, D.G. Foller
1968Sc15
             PHRVA
                          175,
                                      1453
                                            J.J. Schwartz
1968Sh12
             PHRVA
                          170,
                                      1108
                                            E.B. Shera, M.E. Bunker, R.K. Sheline, S.H. Vegors
1968Si01
             NUPAB
                          109,
                                      231
                                            A. Siivola
1968Sn01
             NUPAB
                                       581
                                            R.E. Snyder, G.B. Beard
                          113.
1968Sp01
             NUPAB
                          113.
                                       395
                                            R. Spilling, H. Gruppelaar, H.F. de Vries, A.M.J. Spits
1968Su02
             PRLTA
                          21,
                                       237
                                            A.W. Sunyar, G. Scharff-Goldhaber, M. McKeown
1968Te01
             PYLBB
                          26,
                                       371
                                            B. Teitelman, G.M. Temmer
1968To10
             PHRVA
                          174,
                                      1494
                                            D.F. Torgerson, R.A. Gough, R.D. Macfarlane
1968Tr01
             NUPAB
                          111,
                                       241
                                            A. Trier, L. Gonzáles, J. Rapaport, T.A. Belote, W.E. Dorenbusch
1968Tr07
             ZENAA
                          23,
                                     2127
                                            N. Trautmann, R. Denig, N. Karfeel, G. Herrmann
1968Va04
             PHRVA
                          167,
                                      1094 K. Valli, W.J. Treytl, E.K. Hyde
1968Va06
             NUPAB
                          112,
                                      372 J. Van Klinken, F. Pleiter, H.T. Dijkstra
1968Va08
             ATKOA
                          10.
                                       27 E. Vatai, K. Hohmuth
1968Va17
             PHYSA
                          40,
                                      253
                                            H. Van Krugten, E.W. Koopmans
1968Va18
             PHRVA
                          176.
                                      1377
                                            K. Valli, E.K. Hyde
1968Vi01
             PYLBB
                          26,
                                            G.B. Vingiani, G. Chilosi, W. Bruynesteyn
```

```
1968Vi05
             IANFA
                          32,
                                      1625 V.D. Vitman, B.S. Dzelepov, A.I. Medvedev
1968We02
             NUPAB
                           109,
                                       561
                                            H. Wenniger, J. Stiewe, H. Leutz
1968Wh03
             NUIMA
                          66,
                                        70
                                            D.H. White, D.J. Groves, R.E. Birket
1968Wi21
             IANFA
                          32,
                                            K. Wilsky, K.Y. Gromov, Z.T. Zhelev, V.V. Kuznetsov, G. Muziol, O.B. Nielsen,
                                       187
                                             O. Skillbreit
1968Wi25
             ATKEA
                          13.
                                       383
                                           P. Wille
1968Wo01
             NUPAB
                          107,
                                            A.C. Wolff, M.A. Meyer, P.M. Endt
1968Wo02
             NUPAB
                           112.
                                       156 J.L. Wolfson, A.J. Collier
1968Wo09
             PYLBB
                          28,
                                        77
                                            S.S.M. Wong, W.G. Davies
1968Yo01
             PYLBB
                                       143 H.J. Young, J. Rapaport, and PrvCom AHW
                          26,
1968Yo06
             PHRVA
                          173,
                                       949 P.G. Young, R.H. Stoker, G.G. Olsen
                                        31 H. Zemann, D. Zemrad
1968Ze04
             APASA
                          27,
1968Zh04
                                      1610
                                            Zh. Zhelev, V.G. Kalinnikov, J. Liptak, L.K. Peker
             IANFA
                          32,
                                             1969
1969Ai03
             PHRVA
                           188,
                                      1813
                                            F. Ajzenberg-Selove
1969Ak01
             IANFA
                          33,
                                       104
                                             M.R. Akhmed, K.A. Baskova, S.S. Vasilev, L.Y. Shaftalov
1969An18
             PYLBB
                          30.
                                       160
                                             S. Andre, P. Liaud, F. Perales, S.Y. van der Werf
1969Ar23
             IANFA
                          33,
                                             R. Arlt, Z. Malek, G. Musiol, G. Pfrepper, H. Strusny
1969Ar.A
             P-Studsvik
                                             S.E. Arnell, R. Hardell, O. Skeppstedt, E. Wallander
1969Ba02
             CJPHA
                          47,
                                       419
                                            H. Bakhru, R.I. Morse, I.L. Preiss
                                            H. Bakhru, I.M. Ladenbauer-Bellis
1969Ba07
             PHRVA
                           177,
                                      1686
             PHRVA
                          184,
                                      1142 H. Bakhru, I.M. Ladenbauer-Bellis
1969Ba31
             YAFIA
                           10,
                                            S.A. Baranov, V.M. Shatinskii, V.M. Kulakov
1969Ba57
                                      1110
1969Be06
             JINCA
                          31.
                                       599
                                            C.E. Bemis, Jr., J. Halperin, R. Eby
1969Be17
             NUPAB
                          129.
                                       571
                                            K. Beg, R.D. Macfarlane
1969Be74
             NUIMA
                          76,
                                        77
                                             E. Beck
             NUPAB
                                            J.H. Bjerregaard, O. Hansen, O. Nathan, R. Chapman, S. Hinds
1969Bj01
                           131,
1969Bl01
             PRLTA
                          22,
                                       470
                                            A.G. Blair, J.G. Beery, E.R. Flynn
1969B103
             NUPAB
                           123,
                                       129
                                             R. Bloch, T. Knellwolf, R.E. Pixley
1969B116
             NUPAB
                          139,
                                       434
                                            J. Blachot, J.A. Pinston, F. Schussler
1969Bo48
             NUIMA
                          72,
                                        40
                                           H.M.W. Booij, E.A. Van Hoek, J. Blok
1969Bo49
             NUIMA
                          73,
                                       323
                                            H.E. Bosch, M.A. Fariolli, N. Martin, M.C. Simon
             PHRVA
1969Br11
                           185,
                                      1553
                                            H.C. Britt, J.D. Cramer
1969Br21
             NUPAB
                          137,
                                       487
                                             H. Brunnader, J.C. Hardy, J. Cerny
1969Bu01
             NUPAB
                           124.
                                             D.G. Burke, D.E. Nelson, C.W. Reich
                                       683
1969Bu05
             PHRVA
                          179,
                                      1113
                                             D.L. Bushnell, R.P. Chaturvedi, R.K. Smither
1969Bu.A
             P-Yerevan
                                        71
                                             V.R. Burmistrov, B.G. Kiselev
             NUPAB
                          125,
                                             G.C. Carlson, W.C. Schick, Jr., W.L. Talbert, Jr., F.K. Wohn
1969Ca03
                                       267
1969Ce01
             PRLTA
                          22,
                                             J. Cerny, E.A. Mendelson, Jr., G.J. Wozniak, J.E. Esterl, J.S. Har
                                       612
1969Ch18
             PYLBB
                          29,
                                       652
                                            J. Chaumont, E. Roeckl, Y. Nir-El, C. Thibault-Philippe, R. Klapisch, R. Bernas
1969Co03
             NUPAB
                           129,
                                        10
                                             M. Conjeaud, S. Harar, E. Thuriere
1969Da15
             PHRVA
                           181,
                                      1618
                                            J.W. Dawson, R.K. Sheline, E.T. Jurney
1969De19
             YAFIA
                          10,
                                       433
                                            R.A. Demirkhanov, V.V. Dorokhov
                                            P. De Wit, C. Van der Leun
1969De27
             PYLBB
                          30,
                                       639
1969Do01
             NUPAB
                                            W.E. Dorenbusch, T.A. Belote, J. Rapaport
                          133.
                                       146
1969Fa01
             NUPAB
                          123.
                                            K.T. Faler, R.R. Spencer, R.A. Harlan
                                       616
1969Fl02
             ZEPYA
                          225,
                                            D. Flothman, W. Wiesner, R. Lohken, H. Rebel
             NUPAB
1969Fr01
                          127,
                                            A.M. Friedman, I. Ahmad, J. Milsted, D.W. Engelkemeir
1969Fr08
             NUPAB
                          132,
                                       593
                                           J.M. Freeman, J.G. Jenkin, G. Murray, D.C. Robinson, W.E. Burcham
1969Fr22
             ANPYA
                          23,
                                            V.R. Friedrich, M. Kiesling, G. Otto
                                       168
1969Ge07
             PHRVA
                          181,
                                      1682
                                            W. Gelletly, J.A. Moragues, M.A.J. Mariscotti, W.R. Kane
1969Gh01
             PRLTA
                          22,
                                      1317
                                             A. Ghiorso, M. Nurmia, J. Harris, K. Eskola, P. Eskola
1969Go23
             IANFA
                          33,
                                      1622
                                            N.A. Golovkov, S. Guetch, B.S. Dzelepov, Yu. V. Norseev, V.A. Chalkin,
                                             V.G. Shumin
1969Gr08
             NUPAB
                           131,
                                       180
                                            H. Gruppelaar, A.M.F. Op den Kamp, A.M.J. Spits
1969Gr24
             NUPAB
                           136.
                                       513
                                            A. Graue, J.R. Lien, S. Royrvik, O.J. Aaroy, W.H. Moore
1969Gr28
             CHDBA
                          269,
                                       652 B. Grennberg, A. Rytz
```

```
1969Gr31
             YAFIA
                          10,
                                            L.V. Groshev, V.N. Dvoretskii, A.M. Demidov, M.S. Alvash
             NUPAB
1969Ha11
                          127,
                                        71
                                            O. Hansen, O. Nathan, R. Chapman, S. Hinds
1969Ha32
             PHRVA
                          182,
                                      1329
                                            R.L. Hahn, M.F. Roche, K.S. Toth
1969Ha44
             NUPAB
                                       414
                          136,
                                            P.E. Haustein, A.F. Voigt
1969Ha.A
             P-Studsvik
                                       209
                                            R. Hardell
1969He05
             ZEPYA
                          218.
                                       137
                                            G. Heymann, P. van der Merwe, I.J. van Heerden, I.C. Dormehl
1969Ho10
             NUPAB
                          131,
                                       551
                                            D.C. Hoffman, F.O. Lawrence, W.R. Daniels
             PHRVA
                                      1709
                                            P.K. Hopke, R.A. Naumann, E.H. Spejewski
1969Ho37
                          187,
1969Jo16
             NUPAB
                          133,
                                       213
                                            K.H. Johansen, B. Bengtson, P.G. Hansen, P. Hornshøj
1969Ka06
             JUPSA
                                      1071
                                            T. Katoh, T. Morii, H. Inoue, Y. Yoshizawa, H. Gotoh, E. Sakai
                          26,
1969Ka13
             NUCIA
                          61,
                                       220
                                            Y. Kabasakal, M.K. Ramaswamy
                                      1340
             IANFA
1969Ki15
                          33,
                                            B.G. Kiselev, V.R. Burmistrov
             YAFIA
                          10,
                                      1105
1969Ki16
                                            B.G. Kiselev, V.R. Burmistrov
             P-Yerevan
                                        42 B.G. Kiselev, V.N. Lebkovskii
1969Ki.A
             ZEPYA
                          222,
                                       144
1969Ku03
                                            E. Kuhlmann, K.E.G. Lobner
1969Ku07
             NUPAB
                          133.
                                       554
                                            T. Kuroyanagi, T. Tamura
1969La11
             PHRVA
                          178,
                                      1919
                                            R.G. Lanier, R.K. Sheline, H.F. Mahlein, T. von Egidy, W. Kaiser, H.R. Koch,
                                             U. Gruber, B.P.K. Maier, O.W.B. Schult, D.W. Hafemeister, E.B. Shera
1969La15
             PHRVA
                          180.
                                      1015
                                            I.M. Ladenbauer-Bellis, H. Bakhru
1969La33
             PHRVA
                          187,
                                      1739
                                            I.M. Ladenbauer-Bellis, H. Bakhru, A. Luzzati
1969Le05
             NUPAB
                          135,
                                        36
                                            C.M. Lederer, J.M. Jaklevic, S.G. Prussin
1969Le.A
             Th.-Paris
                                            C.F. Leang
                                       939
             APPOA
                                            J. Ludziejewski, J. Kownacki, W. Klamra, J. Chaszczewska, W. Przyborski
1969Lu09
                          36,
1969Ly06
             NUPAB
                          135,
                                        97 L.L. Lynn, W.E. Dorenbusch, T.A. Belote, J. Rapaport
1969Mc05
             NUPAB
                          127,
                                       531
                                            M. McDonnel, M.K. Ramaswami
1969Mi10
             PHRVA
                                            R.C. Minehart, L. Coulson, W.F. Grubb, III, K. Ziock
                          177.
                                      1455
1969Mo13
             PHRVA
                          180.
                                            J.A. Moragues, M.A.J. Mariscotti, W. Gelletly, W.R. Kane
                                      1105
1969Mo16
             NUPAB
                          134,
                                       321
                                            E. Monnand, J. Blachot, A. Moussa
             PHRVA
                                            T. Nagarajan, M. Ravindranath, K.V. Reddy, S. Janananda
1969Na03
                          178,
                                      1968
1969Na05
             NUPAB
                          134,
                                            T. Nagarajan, M. Ravindranath, K.V. Reddy
                                       433
1969Na11
             NUPAB
                          137,
                                            T. Nagarajan, M. Ravindranath, K.V. Reddy
1969Na21
             SHIBA
                          17,
                                       705
                                            H. Nakabushi, I. Katakuse, K. Ogata
1969Oh01
             PHRVA
                          177,
                                      1695
                                            H. Ohnuma, J.R. Erskine, J.A. Nolen, Jr., J.P. Schiffer, P.G. Roos
1969Ov01
             NUIMA
                          68,
                                        61
                                            J.C. Overley, P.D. Parker, D.A. Bromley
                          135,
1969Ph01
             NUPAB
                                       116
                                            M.E. Phelps, D.G. Sarantes
1969Ph03
                                       351
                                            A. Phillippe, C. Ballaux, R. Dams, F. Adams
             RRALA
                          1.
1969Pi08
             NUPAB
                          133.
                                       124
                                            J.A. Pinston, F. Schussler, A. Moussa
1969Pr04
             NUPAB
                          131,
                                       679
                                            G. Presser, R. Bass, K. Kruger
1969Pr06
             PHRVA
                          180,
                                       945
                                            W.V. Prestwich, G.E. Thomas
                                      1930
                                            V. Prodi, K.F. Flynn, L.E. Glendenin
1969Pr11
             PHRVA
                          188,
1969Ra02
             NUPAB
                          123,
                                       627
                                            J. Rapaport, T.A. Belote, W.E. Dorenbusch
1969Ra24
             NUPAB
                          138,
                                        49
                                            S. Ray, J.N. Mo, S. Murzynski, S.K. Mark
1969Re04
             PHYSA
                          40,
                                       567
                                            E.R. Reddingius, H. Postma
1969Sa08
             NUPAB
                          130,
                                        97
                                            D.G. Sarantites, S. Gronemeyer
1969Sh04
             NUPAB
                                        73
                                            M.H. Shapiro, C. Moss, W.M. Denny
                          128.
1969St02
             PHRVA
                          178,
                                      2024
                                            R.H. Stokes, P.G. Young
1969St07
             PHRVA
                          178,
                                      1789
                                            R.H. Stokes, P.G. Young
1969Te01
             PHRVA
                          177.
                                      1595
                                            J. Tenenbaum, R. Moreh, Y. Wand, B. Arad, G. Ben-David
1969Ti01
             KDVSA
                          37,
                                        #7
                                            P.O. Tjom, B. Elbek
                                       261
                                            S. Toernqvist, S. Stroem
1969To14
             AFYSA
                          38,
1969Va06
             NUPAB
                          130,
                                       586
                                            J.M. Vara, R. Gaeta
1969Va17
             NUPAB
                          134,
                                       215
                                            S.Y. Van der Werf, H. De Waard, H. Beekhuis
1969Wa10
             PHRVA
                          182,
                                      1186
                                            T.E. Ward, P.H. Riley, P.K. Kuroda
                                      2679
1969Wa15
             JINCA
                          31,
                                            T.E. Ward, P.H. Pile, P.K. Kuroda
1969Wa19
             PHRVA
                          185,
                                      1439
                                            J. Walinga, J.C. Manthuruthil, C.P. Poirier
1969Wa24
                                            T.E. Ward, P.K. Kuroda
             RAACA
                          12,
                                       217
1969Wa.A
             UCRL-18667
                                            D. Ward, F.S. Stephens, R.M. Diamond
1969Wi.A
             Th.-Berkeley
                                            J.B. Wilhelmy UCRL-18978]
1969Ya02
             NUPAB
                          130,
                                       456
                                            T. Yamazaki, J. Sato
```

```
1969Zo04
             PHRVA
                           185,
                                      1537 W.H. Zoller, W.B. Walters, C.D. Coryell
                                             1970
1970Ab05
             NUPAB
                          151.
                                       187
                                            C. Abulaffio, J. Felsteiner, R. Kalish, B. Rosner, G. Vourvopoulos
1970Ab15
             NUCIA
                          70.
                                            U. Abbondanno, R. Giacomich, L. Granata, M. Lagonegro, G. Poiani, P. Blasi,
1970Ad01
             NUPAB
                           143.
                                           E.G. Adelsberger, A.V. Nero, A.B. McDonald
1970Af.A
             JINR-P6-4972
                                             V.P. Afanasiev, M. Bocharova, N.A. Golovkov, I. Gromova, R.B. Ivanov,
                                             V.I. Kuzmin, Y.V. Norseev, V.G. Chumin
1970Ag01
             IANFA
                          34,
                                            V.A. Ageev, N.F. Mitrokhovich, A.I. Feoktistov
1970Ag02
             IANFA
                          34,
                                       435 V.A. Ageev, N.F. Mitrokhovich, A.I. Feoktistov
1970Ag03
                          34.
             IANFA
                                       201 V.A. Ageev, N.F. Mitrokhovich, A.I. Feoktistov
1970Ah01
             NUPAB
                          140.
                                       141 I. Ahmad, R.K. Sjoblom, R.F. Barnes, E.P. Horwitz, P.R. Fields
             NUPAB
1970Aj01
                           142,
                                            F. Ajzenberg-Selove, G. Igo
1970Ak02
             IANFA
                          34,
                                             A.I. Akhmadzhanov, R. Broda, V. Valyus, I. Zvolski, I. Molnar, Y. Stygen,
                                             V.I. Fominikh, A. Krynkevich, V.M. Tsupko-Sitnikov
1970An06
             ZEPYA
                          234,
                                       455
                                             A. Antilla, M. Bister, E. Arminen
1970An14
             NUPAB
                          153,
                                             M.L. Andersen, S.A. Andersen, O. Nathan, K.M. Bisgard, K. Gregersen,
                                             O. Hansen, S. Hinds, R. Chapman
1970An25
             NUPAB
                           157,
                                       561
                                            T.R. Anfinsen, K. Bjorndal, A. Graue, J.R. Lien, G.E. Sandvik, L.O. Tveita,
                                             K. Ytterstad, E.R. Cosman
             IANFA
1970Ar04
                          34,
                                       409
                                            R. Arlt, G. Beyer, G. Musiol, L.K. Peker, G. Pfrepper, H. Strusny
                                            J. Ashkenazi, E. Friedman, D. Nir, J. Zioni
             NUPAB
1970As08
                          158,
             PRVCA
1970Be24
                          2.
                                            R.W. Bercaw, R.E. Warner
1970Be48
             NUPAB
                          157.
                                       520 G.B. Beard, G.E. Thomas
1970Be.A
             P-Leysin
                                       353 E. Beck, ISOLDE
1970Bo13
             PRVCA
                          2,
                                      1841
                                            J. Borggreen, K. Valli, E.K. Hyde
                          32,
                                             G.G.J. Boswell, T. McGee
1970Bo19
             JINCA
1970Bo29
             PRVCA
                          2,
                                      1951
                                            L.M. Bollinger, G.E. Thomas
1970Br01
             PRVCA
                           1,
                                       275
                                            T.H. Braid, R.R. Chasman, J.R. Erskine, A.M. Friedman
1970Br23
             NUPAB
                          153,
                                       289
                                            C.P. Browne, G. Maille, R. Tarara J.R. Duray
1970Br.A
             JINR-E6-5197
                                             R. Broda, S. Chojnacki, C. Droste, T. Morek, W. Walus
                                      1513
1970Bu19
             PRVCA
                          2.
                                            D.J. Buss, R.K. Smither
                          141,
1970Ca01
             NUPAB
                                        97 P.E. Cavanagh, C.F. Coleman, A.G. Hardacre, G.A. Gard, J.F. Turner
1970Ce02
             PRLTA
                          24,
                                      1128
                                            J. Cerny, C.U. Cardinal, H.C. Evans, K.P. Jackson, N.A. Jelley
             PYLBB
                          33.
                                            J. Cerny, J.E. Esterl, R.A. Gough, R.G. Sextro
1970Ce04
                                       284
1970Ch02
             NUPAB
                           142,
                                       634
                                            J.C. Chang, G. Schupp, R.R. Hurst
1970Ch28
             NUPAB
                           156,
                                       276
                                            A. Charvet, R. Duffait, A. Emsallem, R. Chéry
             JOPQA
1970Ch29
                          31,
                                       737
                                             A. Charvet, R. Duffait, A. Emsallem, R. Chéry
1970Ch.A
             BAPSA
                                             R.E. Chrien, S. Bokharee, J.B. Garg
                           15,
                                        87
1970Cr04
             NUPAB
                           153,
                                       413
                                            F.P. Cranston, R.E. Birkett, D.H. White, J.A. Hughes
1970De39
             NUPAB
                           158,
                                            F.W.N. De Boer, E.W.A. Lingeman, R. van Lieshout, R.A. Ricci
             COO-1779-49
1970Do.A
                                        47
                                             R. Doebler (Also Thesis Michigan State University)
1970Dz04
             PYLBB
                                       302
                                            T.G. Dzubay, A.A. Jaffe, E.J. Ludwig, T.A. White, F. Everling, D.W. Miller,
                          33,
                                             D.A. Outlaw
                                            J. Eidens, E. Roeckl, P. Armbruster
1970Ei02
             NUPAB
                           141.
                                       289
1970El.A
             BAPSA
                          15.
                                      1670
                                           J.L. Ellis, H.E. Hall.Jr.
1970Er03
             NUPAB
                           146,
                                        43 B. Erlandson, A. Marcinkowski
             PRVCA
1970Es02
                          2..
                                      1058 P. Eskola, K. Eskola, M. Nurmia, A. Ghiorso
1970Es03
             PYLBB
                          33,
                                            J.E. Esterl, J.C. Hardy, R.G. Sextro, J. Cerny
                                       287
1970Fa06
             NUPAB
                           146,
                                       549 U. Fanger, D. Heck, W. Michaelis, H. Ottmar, H. Schmidt, R. Gaeta
1970Fi03
             NUPAB
                           144,
                                        67 E. Fincke, U. Jahnke, B. Schreiber, A. Weidinger
1970Fi12
             NUPAB
                           154,
                                            P.R. Fields, I. Ahmad, R.F. Barnes, R.K. Sjoblom, E.P. Horwitz
             CERN-70-29
1970Fi.A
                                             M. Finger, R. Foucher, J.P. Husson, J. Jastrzebski, A. Johnson, C. Sebille,
                                             R. Henck, J.M. Kuchly, R. Regal, P. Siffert, G. Astner, B.R. Erdal, E. Hagebo,
                                             A. Kjelberg, F. Munnich, P. Patzelt, E. Beck, H. Kugler
1970Fl05
             NUPAB
                           154.
                                            E.R. Flynn, J.G. Beery, A.G. Blair
1970Fl08
             NUPAB
                           157,
                                            D.G. Fleming, M. Blann, H.W. Fulbright, J.A. Robbins
```

```
1970Fo09
             PYLBB
                          32,
                                      689
                                           I. Fodor, I. Szentpetery, J. Szucz
             IANFA
                          34,
1970Ga32
                                     2048
                                            S. Gabrakov, Z. Zhelev, N.G. Zaitseva, I. Penev, S.S. Sabirov
             PRVCA
                          1,
                                     1052
1970Ge03
                                            W. Gelletly, J.A. Moragues, M.A. Mariscotti, W.R. Kane
1970Gh01
             PYLBB
                          32,
                                       95
                                           A. Ghiorso, M. Nurmia, K. Eskola, P. Eskola
1970Gh02
             PRLTA
                          24,
                                     1498
                                           A. Ghiorso, M. Nurmia, K. Eskola, J. Harris, P. Eskola
                                      123 D.R. Goosman, E.G. Adelsberger, K.A. Snover
1970Go04
             PRVCA
                          1,
1970Go11
             PRVCA
                          1,
                                     1939 D.R. Goosman, R.W. Kavanagh
             NUPAB
                          151,
                                      513 P.F.A. Goudsmit, J. Konijn, F.W.N. De Boer
1970Go20
1970Go39
             NUIMA
                          88,
                                           W. Goedbloed, S.C. Goverse, C.P. Gerner, A. Brinkman, J. Blok
1970Go42
             PRVCA
                          2,
                                     2406 D.J. Gorman, F. Asaro
                                     1939 D.R. Goosman, R.W. Kavanagh
1970Go45
             PRVCA
                          1,
             PYLBB
                                      474 J.W. Gruter, K. Sistemich, P. Armbruster, J. Eidens, H. Lawin
1970Gr38
                          33,
             KDVSA
                          37.
                                      #12 T. Grotdal, K. Nybø, B. Elbek
1970Gr46
                                           M.C. Gupta, R.D. MacFarlane
1970Gu14
             JINCA
                          32,
                                     3425
             PRVCA
                                           J.C. Hardy, H. Brunnader, J. Cerny
1970Ha10
                                      561
                          1,
1970Ha18
             NUPAB
                          148.
                                           P.G. Hansen, H.L. Nielsen, K. Wilsky, M. Alpsten, M. Finger, A. Lindahl,
                                            R.A. Naumann, O.B. Nielsen
1970Ha21
             NUPAB
                          158,
                                      625
                                           T. Hattula, S. Andre, F. Schussler, A. Moussa
1970Ha56
             PHSTB
                          1,
                                       85
                                           R. Hardell, C. Boer
1970Ha60
             PHSTB
                          2,
                                       23
                                           A. Hasselgren
1970He14
             CJPHA
                          48,
                                     1040
                                           A.W. Herman, E.A. Heighway, J.D. McArthur
1970He27
             NUPAB
                          159,
                                       49
                                           D. Heck, N.M. Ahmed, U. Fanger, W. Michaelis, H. Ottmar, H. Schmidt
                                           R.A. Hinrichs, R. Sherr, G.M. Crawley, I. Proctor
1970Hi06
             PRLTA
                          25,
                                      829
1970Ho01
             NUPAB
                          140,
                                           K.J. Hofstetter, T.T. Sugihara
             PYLBB
                          33,
                                            K.P. Jackson, C.U. Cardinal, H.C. Evans, N.A. Jelley, J. Cerny
1970Ja22
1970Jo08
             PRVCA
                                     2030 H.D. Jones, R.K. Sheline
                          1.
1970Jo11
             NUPAB
                          150.
                                      497 H.D. Jones, R.K. Sheline
1970Jo22
             PRVCA
                          2,
                                           H.D. Jones, R.K. Sheline
1970Ju04
             PRVCA
                                           E.T. Jurney, R.K. Sheline, E.B. Shera, H.R. Koch, B.P.K. Maier, U. Gruber,
                          2,
                                            H. Baader, D. Breitig, O.W.B. Schult
1970Ka04
             NUPAB
                          147,
                                      120
                                           M. Karras, T.E. Ward, H. Schoche
1970Ka22
             PRLTA
                          25,
                                      953
                                           W.R. Kane
1970Ke05
             P-Kyoto
                                            D.P. Kerr, K.T. Bainbridge
1970Ke08
             PRVCA
                          2,
                                      213
                                           K.W. Kemper, C.M. McKenna, J.W. Nelson
1970Ki01
             NUPAB
                          142,
                                           H.J. Kim, R.L. Robinson, C.H. Jonnson, S. Raman
1970Kl05
             ZEPYA
                          238,
                                           H.V. Klapdor, K. Buchholz, F. Kaestner
                                       11
1970Kn03
             PRLTA
                          25.
                                           D.W. Kneff, H.W. Lefevre, G.U. Din
                                     1210
1970Kn05
             NUPAB
                          159,
                                      642
                                            K.T. Knoepfle, M. Rogge, C. Mayer-Boricke, J. Pedersen, D. Burch
1970Le05
             YAFIA
                          11,
                                      483
                                            V.N. Levkovskii, I.V. Kazachevskii
                                      197
1970Li04
             AFYSA
                          40,
                                            H. Linusson, R. Hardell, S. Arnell
1970Lo02
             NUPAB
                          152,
                                      463
                                            W. Lourens, B.O. Ten Brink, A.H. Wapstra
1970Ma05
             NUPAB
                          145,
                                      223
                                           J.D. Macdougall, W. McLatchie, S. Whineray, H.E. Duckworth
1970Ma11
             CJPHA
                          48,
                                     2056
                                           J.F. Mason, M.W. Johns
1970Ma19
             NUPAB
                          147,
                                      513
                                           E.S. Macias, J.P. Op den Beeck, W.B. Walters
1970Ma25
             NUPAB
                          149,
                                      593
                                           S. Maripuu
1970Ma31
             NUPAB
                          151,
                                      465
                                           S. Maripuu
1970Ma36
             NUPAB
                          153.
                                           S. Maripuu
                                      183
1970Ma47
             JUPSA
                          29,
                                     1116
                                           Z.-IMatumoto, T. Tamura
1970Ma.A
             P-Levsin
                                      321
                                            M.I. Macias-Marques, R. Foucher, M. Caillau, J. Belhassen
             NUPAB
                          140.
                                           D.K. McMillan, B.D. Pate
1970Mc01
1970Mc03
             NUPAB
                          145,
                                      244 W. McLatchie, S. Whineray, J.D. Macdougall, H.E. Duckworth
1970Mc06
             NUPAB
                          144,
                                      593
                                           A.B. McDonald, E.G. Adelsberger
1970Me11
             PRLTA
                          25,
                                      533
                                           R. Mendelson, G.J. Wozniak, A.D. Bacher, J.M. Loiseaux, J. Cerny
                                      225
1970Mi01
             NUPAB
                          143,
                                           W. Michaelis, F. Weller, U. Fanger, R. Gaeta, G. Markus, H. Ottmar, H. Schmidt
                                      423
1970Mo08
             NUPAB
                          145,
                                           C.E. Moss
1970Mu02
             NUPAB
                          142,
                                       2.1
                                           G. Murray, W.J.K. White, J.C. Wilmott, R.F. Entwistle
1970Mu15
             PRVCA
                                           T.J. Mulligan, R.K. Sheline, M.E. Bunker, E.T. Jurney
                          2.
1970Mu17
             NUPAB
                          158.
                                      183
                                           F. Münnich, A. Kjelberg, D.J. Hnatowich
1970Ob02
             NUPAB
                          153,
                                      593
                                           B.J. O'Brien, G.E. Coote
```

```
1970Oh05
             JUPSA
                          29,
                                      1435 S. Ohya, T. Tamura, S. Kageyama
             DASA-2570
                                            V.J. Orphan, N.C. Rasmussen, T.L. Harper
1970Or.A
             ZEPYA
                          233,
                                      260 H. Petterson, S. Antman, Y. Grunditz
1970Pe04
1970Pi01
             NUPAB
                          144,
                                       42
                                           J.A. Pinston, F. Schussler
                          154,
1970Oa03
             NUPAB
                                      145 S.M. Qaim
1970Ra14
             APAHA
                          28.
                                      263 K. Raichev, L. Tron
1970Re02
             PRVCA
                          1,
                                      721 P.L. Reeder
1970Re13
             RAACA
                          14.
                                           J.L. Repace
1970Re.A
             PrvCom
                          NDG
                                            A.C. Rester
1970Ro06
             PRVCA
                                      1761
                                            A.A. Rollefson, P.F. Jones, R.J. Shea
                          1,
1970Ro07
             NUPAB
                          147,
                                      235
                                           M.L. Roush, L.A. West, J.B. Marion
1970Ru.A
                                            G. Rudstam, E. Lund, L. Westgaard, B. Grapengieser, and PrvCom AHW
             P-Leysin
1970Sa19
             NUPAB
                          157,
                                      113
                                            M. Sakai, R. Bertini, C. Gehringer
1970Sc06
             ZEPYA
                                      398
                                            W.D. Schmidt-Ott
                          232,
             ZEPYA
                          236,
                                      445
1970Sc20
                                            W.D. Schmidt-Ott
1970Sc22
             NUPAB
                          153.
                                      502
                                            W. Schlegel, D. Schmitt, R. Santo, F. Puhlhofer
1970Se14
             PHSTB
                          2,
                                      169
                                            E. Selin
1970Sh05
             PRVCA
                          1,
                                     1835
                                            S. Shastri, H. Bakhru, I.M. Ladenbauer-Bellis
1970Si19
             PRVCA
                          2,
                                     1948
                                            R.J. Silva
1970Sm.A
             BAPSA
                          15,
                                      549
                                            R.K. Smither, D.J. Bush, D.L. Bushnell
1970Sp02
             NUPAB
                          145,
                                      449
                                            A.M.J. Spits, A.M.F. Op den Kamp, H. Gruppelaar
1970St25
             P-Kyoto
                                     1296
                                            C.M. Stevens, P.E. Moreland
1970Th.A
             Th.-Paris
                                            F. Thuriere
                          149.
                                      641
1970To07
             NUPAB
                                           D.F. Torgerson, R.D. Macfarlane
             PRVCA
1970To18
                          2,
                                     2309
                                           D.F. Torgerson, R.D. Macfarlane
1970Um01
             PRVCA
                          2.
                                           C.J. Umbarger, K.W. Kemper, J.W. Nelson, H.S. Plendl
                                     1378
1970Va13
             PRVCA
                                     2115 K. Valli, E.K. Hyde, J. Borggreen
                          1.
1970Va31
             NUPAB
                          157,
                                           J. Van Klinken, L.M. Taff, H.T. Dijkstra, A.H. De Haan, H. Hanson,
                                            B.K.S. Koene, J.W. Maring, J.J. Schuurman, F.B. Yano
1970Va.A
             PrvCom
                          AHW
                                           B. Van Nooijen, N.R. Johnson
1970Vo04
             PRVCA
                                     2066 D. Von Ehrenstein, G.C. Morrison, J.A. Nolen, Jr., N. Williams
                          1.
1970Wa14
             NUPAB
                          148,
                                      225
                                           T.E. Ward, P.H. Pile, P.K. Kuroda
1970Wa20
             PRVCA
                          2,
                                      675
                                           O.A. Wasson, R.E. Chrien
                                     2483
                                           T.E. Ward, D.L. Swindle, R.J. Wright, P.K. Kuroda
1970Wa21
             JINCA
                          32,
1970Wh01
             NUPAB
                          151.
                                            S. Whineray, J.D. Macdougall, W. McLatchie, H.E. Duckworth
                                      377
1970Wh04
                                            C.A. Whitten, Jr., M.C. Mermaz, D.A. Bromley
             PRVCA
                                     1455
                          1.
1970Wo05
             NUPAB
                          146.
                                       33
                                           F.K. Wohn, W.L. Talbert
1970Wo08
             NUPAB
                          152,
                                      561
                                            F.K. Wohn, W.L. Talbert, Jr., J.K. Halbig
1970Ya03
             PRVCA
                                      290
                                            T. Yamazaki
                          1.
1970Ya05
             NUPAB
                          149,
                                            K. Yagi, Y. Aoki, K. Sato
                                       45
                                             1971
1971Af05
                          35,
                                            V.P. Afanasiev, V.S. Buttsev, I.I. Gromova, V.G. Kalinnikov, N.A. Tikhonov
             IANFA
                                     1618
1971Al01
             NUPAB
                          161.
                                      209
                                            G. Alenius, S.E. Arnell, C. Schale, E. Wallander
                                            G. Alenius, S.E. Arnell, C. Schale, E. Wallander
1971Al14
             PHSTB
                          3.
                                       55
1971Al19
             NUPAB
                          174.
                                            W.P. Alford, N. Schulz, J. Jamshidi
                                       148
1971Al22
             PHSTB
                                       105
                                            G. Alenius, S.E. Arnell, C. Schale, E. Wallander
                          3.
1971Ar12
             NUPAB
                          166,
                                            S.E. Arnell, H. Linusson, Z. Sawa
             NUPAB
                                            N.K. Aras, P. Fettweis, G. Chilosi, G.D. O'Kelley
1971Ar23
                          169,
                                      209
1971Ar39
             PHSTB
                                       89
                                           S.E. Arnell, R. Hardell, A. Hasselgren, C.G. Mattson, O. Skeppstedt
                          4.
1971Ba01
             NUPAB
                          160,
                                      225 J.B. Ball
1971Ba08
             PRVCA
                          3,
                                      937 H. Bakhru, I.M. Ladenbauer-Bellis, I. Rezanka
             NUPAB
                                      552 F. Bazan, R.A. Meyer
1971Ba18
                          164,
             PRVCA
                                      196 J.B. Ball, R.L. Auble, P.G. Roos
1971Ba43
                          4.
1971Bb10
                                     1101
                                            S.A. Baranov, V.M. Shatinskii, V.M. Kulakov
             YAFIA
                          14,
1971Be10
             PRVCA
                                     1294
                                            F.M. Bernthal, J.O. Rasmussen, J.M. Hollander
                          3.
1971Be29
             NUPAB
                          168.
                                      151
                                           F.D. Becchetti, D. Dehnhard, T.G. Dzubay
1971Be41
             NUPAB
                          171,
                                           M.J. Bennet, R.K. Sheline, Y. Shida
```

```
1971Bi.A
             UCRL-51060
                                             R.E. Birkett
                          160,
                                       337
                                            H.M.W. Booij, E.A. Van Hoek, H. Van der Molen, W.F. Slot, J. Blok
1971Bo01
             NUPAB
             NUPAB
                          162,
                                       407
1971Bo06
                                            J. Borggreen, E.K. Hyde
1971Br13
             JOPQA
                          32,
                                       101
                                            J.P. Briand, P. Chevallier, A. Touati
1971Ca19
             PRVCA
                          4,
                                       130
                                            R.F. Casten, E.R. Flynn, O. Hansen, T.J. Mulligan
1971Ch26
             JOPOA
                          32.
                                       359
                                            A. Charvet, D.H. Phuoc, R. Duffait, A. Emsallem, R. Chery
1971Da16
             NUPAB
                          170,
                                            W. Darcey, R. Chapman, S. Hinds
             PRVCA
                                       919
                                           W.R. Daniels, D.C. Hoffman
1971Da19
                          4,
1971Da28
             NUPAB
                          178,
                                       172 J.M. D'Auria, D. Ostrom, S.C. Gujrathi
1971De52
             RMXFA
                          20,
                                        17 H. Del Castillo, R. Roos, A. Tejera, F. Alba
                                      1037 P.F. Dittner, C.E. Bemis, Jr., D.C. Henley, R.J. Silva, C.D. Goodman
1971Di03
             PRLTA
                          26,
             PYLBB
                          37,
                                       173 W.E. Dorenbusch, J.B. Ball, R.L. Auble, J. Rapaport, T.A. Belote
1971Do18
                                      1391 J.L. Dubbard, R.K. Sheline, J.B. Ball
1971Du02
             PRVCA
                          3.
1971Dy01
             NUPAB
                                       393
                                            N.C. Dyer, J.H. Hamilton
                          173,
                                      2249
                                            B.S. Dzelepov, A.G. Dmitriev, N.N. Zhukovskii
1971Dz08
             IANFA
                          35,
1971El05
             NUPAB
                          170.
                                       209
                                            C. Ellegaard, P.D. Barnes, E.R. Flynn
1971En01
             PRVCA
                          3,
                                       180
                                            G.A.P. Engelbertink, J.W. Olness
1971Es01
             PRVCA
                          4,
                                       632
                                            K. Eskola, P. Eskola, M. Nurmia, A. Ghiorso
1971Ev01
             CJPHA
                          49.
                                            F. Everling, G.L. Morgan, D.W. Miller, L.W. Seagondollar, P.W. Tillman, Jr.
1971Fi01
             NUPAB
                           160,
                                            P.R. Fields, I. Ahmad, A.M. Friedman, J. Lerner, D.N. Metta
1971Fo01
             PRVCA
                          3,
                                       337
                                            H.T. Fortune, G.C. Morrisson, J.A. Nolen, Jr., P. Kienle
1971Fo22
             PYLBB
                          36,
                                       334
                                            B. Fogelberg, A. Backlin, T. Nagarajan
                                       625
                                            A. Frana, A. Spalek, M. Fiser, A. Kolec
1971Fr03
             NUPAB
                           165,
             PRVCA
                          3,
                                            W. Gelletly, W.R. Kane, D.R. MacKenzie
1971Ge05
                                      1678
             PRVCA
                          4,
                                      1850
                                            A. Ghiorso, M. Nurmia, K. Eskola, P. Eskola
1971Gh01
1971Gh03
             NATUA
                          229.
                                       603
                                            A. Ghiorso, M. Nurmia, J. Harris, K. Eskola, P. Eskola
1971Go01
             PRVCA
                                       746 D.J. Gorman, F. Asaro
                          3,
1971Go18
             PRVCA
                          4,
                                            D.R. Goosman, K.W. Jones, E.K. Warburton, D.E. Alburger
1971Go21
             YAFIA
                                            K.S. Goncharov, A.P. Klyucharev, S.A. Pisminetskii, Y.N. Rakivnenko, V.V. Re-
                           14,
                                             maev, I.A. Romanii, E.A. Skakun
1971Go35
             IANFA
                          35,
                                      2272
                                            N.A. Golovkov, R.B. Ivanov, A. Kolaczkowski, Y.V. Norseev, V.G. Chumin
1971Gr01
             NUPAB
                           160,
                                       497
                                            A. Graue, J.R. Lien, H. Vinje, P.B. Vold, W.H. Moore
1971Gr04
             NUPAB
                          162,
                                       593 A. Graue, J.R. Lien, L. Rasmussen, G.E. Sandvik, E.R. Cosman
             MTRGA
1971Gr17
                          7,
                                        65 B. Grennberg, A. Rytz
             YAFIA
1971Gr22
                          13,
                                       681 L.V. Groshev, A.M. Demidov, V.F. Leonov, L.L. Sokolovskii
1971Gr28
             YAFIA
                           13,
                                      1129
                                            L.V. Groshev, L.I. Govor, A.M. Demidov, A.S. Rachimov
1971Gr37
             YAFIA
                           14.
                                       473 L.V. Groshev, A.M. Demidov, V.F. Leonov, L.L. Sokolovskii
1971Gr42
             IANFA
                          35,
                                      1644
                                            L.V. Groshev, A.M. Demidov, V.F. Leonov, L.L. Sokolovskii
1971Gr.A
             P-Moscow
                                        70
                                            L.V. Groshev, V.N. Dvoretskii, A.M. Demidov
             NUPAB
                           161,
                                       410
                                            S.C. Gujrathi, J.M. D'Auria
1971Gu02
1971Gu18
             NUPAB
                          172,
                                       353
                                            S.C. Gujrathi, J.M. D'Auria
1971Gu.A
             Th.-Strasbourg
                                             G. Guillaume
1971Ha01
             NUPAB
                           175,
                                       428
                                            U. Hagemann, W. Neubert, W. Schulze
                                       327
                                            D. Heck, U. Fanger, W. Michaelis, H. Ottmar, J. Schmidt
1971He10
             NUPAB
                           165,
1971He13
             NUPAB
                                       449
                                            R.G. Helmer, R.C. Greenwood, C.W. Reich
                           168.
1971Ho01
             NUPAB
                           163.
                                       277
                                            P. Hornshøj, K. Wilsky, P.G. Hansen, A. Lindahl, O.B. Nielsen
                                            P. Hornshøj, K. Wilsky, P.G. Hansen, A. Lindahl, O.B. Nielsen
             PYLBB
                          34.
                                       591
1971Ho07
1971Ho16
             NUPAB
                          169.
                                       641
                                            R.W. Hoff, E.K. Hulet, R.J. Dupzyk, R.W. Lougheed, J.E. Evans
1971Ho24
             PRVCA
                          4,
                                      1182
                                            M. Honda, M. Imamura
                          27,
                                      1086 H.H. Howard, R.H. Stokes, B.H. Erkila
1971Ho26
             PRLTA
1971Hs03
             NUPAB
                          174,
                                            T.H. Hsu, J.L. Honsaker, W.J. McDonald, G.C. Nelson
1971Hu03
             PRLTA
                                       523
                                           E.K. Hulet, J.F. Wild, R.W. Lougheed, J.E. Evans, B.J. Qualheim, M. Nurmia,
                          26,
                                             A. Ghiorso
             PHSTB
                                            N. Ibrahiem, H. Pettersson
1971Ib01
                          4,
                                       161
                                            A.A. Jaffe, G.A. Bissinger, S.M. Shafroth, T.A. White, T.G. Dzubay, F. Everling,
1971Ja09
             PRVCA
                                      2489
                          3,
                                             D.W. Miller, D.A. Outlaw
1971Jo14
             IINCA
                          33,
                                      1215
                                            K.C. Jordan, G.W. Otto, R.P. Ratay
1971Ka22
             ZEPYA
                          245.
                                       451
                                            N. Kaffrell
1971Ka42
             APOBB
                          2,
                                            R. Kaczarowski, W. Kurcewicz, A. Płochocki, J. Żylicz
```

```
CJPHA
                          49.
1971Ke01
                                      756 D.P. Kerr, K.T. Bainbridge
                          49,
             CJPHA
1971Ke02
                                     1950
                                           D.P. Kerr, K.T. Bainbridge
             PRVCA
                                     1431
1971Ke07
                          4.
                                           B.H. Ketelle, A.R. Brosi, J.R. van Hise
                          176,
             NUPAB
                                      449
                                            R.L. Kernell, H.J. Kim, R.L. Robinson, C.H. Johnson
1971Ke21
1971Ki01
             NUPAB
                          170,
                                      187
                                           C.H. King, P.R. Maurenzig, N. Stein, T.P. Cleary
1971Ki15
             YAFIA
                          14.
                                      249 B.G. Kiselev, V.N. Levkovskiĭ, O.I. Artem'ev
1971La02
             PRVCA
                          3,
                                          H. Lancman, J.M. Lebowitz
             NUPAB
                          170.
                                      115 J.R. Leslie, W. McLatchie, C.F. Monahan, J.K. Thrasher
1971Le21
1971Li02
             NUPAB
                          160,
                                      630 E.W.A. Lingeman, F.W.N. De Boer, P. Koldewijn, P.R. Maurenzig
1971Lo15
             NUPAB
                          171,
                                      337
                                           W. Lourens, B.O. Ten Brink, A.H. Wapstra
1971Lu01
             PRVCA
                          3,
                                     1243 M.T. Lu, W.P. Alford
             PRVCA
                                     1162 J.V. Maher, J.R. Comfort, G.C. Morrisson
1971Ma11
                          3,
             NUPAB
                          166,
1971Ma24
                                           S.G. Malmskog, V. Berg, B. Fogelberg, A. Backlin
1971Ma45
             NUPAB
                                      298
                                           P. Manfrass, H. Prade, M.R. Beitins, W.A. Bondarenko, N.D. Kramer,
                          172,
                                            P.T. Prokofjew
1971Ma47
             NUPAB
                          174.
                                      343
                                            S. Matsuki, Y. Yoshida, M. Hyakutake, M. Matoba, S. Nakamura
1971Mi01
             PRVCA
                          3,
                                      766
                                           M.M. Minor, R.K. Sheline, E.T. Jurney
1971Mo01
             PRVCA
                          3,
                                            J.M. Mosher, R.W. Kavanagh, T.H. Tombrello
1971Mo02
             NUPAB
                          161,
                                      228
                                           J.M. Morton, W.G. Davies, W. McLatchie, W. Darcey, J.E. Kitching
1971Mo03
             PRLTA
                          26.
                                      854
                                           H.T. Motz, E.T. Jurney, E.B. Shera, R.K. Sheline
1971Mo20
             NUPAB
                          168,
                                      561
                                           N.A. Morcos, T.E. Ward, P.K. Kuroda
1971My01
             APOBB
                          2,
                                      441
                                           B. Myslek, B. Pietrzek, Z. Sujkowski, J. Szcepankowski
             PRVCA
                                      247
1971Na01
                          3,
                                            T. Nagarajan, M. Ravindranath, K.V. Reddy
             PRVCA
                                      254
1971Na02
                          3,
                                           T. Nagarajan, M. Ravindranath, K.V. Reddy
             BAPSA
1971Ne.A
                          16,
                                      489
                                           P.H. Nettles, C.A. Barbes, D.C. Hensley, C.D. Goodman, and Nettles Thesis
1971Oh01
             PRVCA
                                      158 H. Ohnuma, A.M. Sourkes
                          3.
1971Or04
             PRVCA
                          3.
                                     2402
                                           C.J. Orth, B.J. Dropesky, N.J. Freeman
1971Ot01
             NUPAB
                          164,
                                           H. Ottmar, N.M. Ahmed, U. Fanger, D. Heck, W. Michaelis, H. Schmidt
             NUPAB
1971Pe23
                          167,
                                          B.I. Person, J.L. Plesser, J.W. Sunier
1971Pi08
             ZEPYA
                          247,
                                      400 M. Piiparinen, A. Anttila, M. Viitasalo
1971Pl08
             IANFA
                          35,
                                     1569
                                           Z. Plajner, M. Vejs, I. Prochazka, A. Mashtalka, O. Voitishek, M. Gonusek,
                                            A. Kokesh
1971Po.A
             P-Legnaro
                                      375
                                           C.P. Poirier, J.C. Manthuruthil
                          167,
                                      667
1971Pr03
             NUPAB
                                           R. Prieels, J.P. Deutsch
1971Pr13
                          176,
                                      338 R.H. Price, D.G. Burke, M.W. Johns
             NUPAB
                                           F. Rauch
1971Ra08
             ZEPYA
                          243,
                                      105
1971Ra09
             NUPAB
                          168.
                                      177
                                           J. Rapaport, T.A. Belote, D.E. Bainum, W.E. Dorenbusch
1971Ra17
             NUPAB
                          170,
                                      199
                                           J. Rapaport, T.A. Belote, D.E. Bainum
1971Ra35
             NUPAB
                          177,
                                      307
                                            J. Rapaport, W.E. Dorenbusch, T.A. Belote
                                     2684
1971Ro19
             JINCA
                          33,
                                            G. Rossner, G. Herrmann
1971Ru17
             PYLAA
                                      321
                                            S.L. Ruby, R.G. Clark, L.E. Glendenin
                          36.
1971Sc07
             NUPAB
                          165,
                                      415
                                           L.A. Schaller, J. Kern, B. Michaud
                                           W.N. Shelton, R.K. Sheline
1971Sh04
             ZEPYA
                          242,
                                      368
             PRVCA
1971Sm01
                          4,
                                       22
                                           L.G. Smith
1971Su14
             YAFIA
                          14,
                                     1297
                                            G.Y. Sung-Ching-Yang, V.A. Druin, A.S. Trofimov
             PRVCA
1971Sw01
                          3,
                                      259
                                           D.L. Swindle, T.E. Ward, P.K. Kuroda
1971Ta07
             PRVCA
                          4.
                                      517
                                           K. Takehashi, D.L. Swindle, P.K. Kuroda
1971To01
             PRVCA
                                      854 K.S. Toth, R.L. Hahn
                          3.
1971To05
             NUPAB
                          171,
                                      305
                                           R. Torti, R. Graetzer
             PRVCA
1971To10
                          4,
                                     2223 K.S. Toth, R.L. Hahn, M.A. Ijaz
1971Tr03
             PRVCA
                                     2205
                                           G.F. Trentelman, B.M. Preedom, E. Kashy
1971Um03
             NUPAB
                          169,
                                      109
                                           C.J. Umbarger, J.A. Robinson, R.R. Reece, R.C. Bearce
1971Va18
             NUPAB
                          170,
                                      607 J.G. Vanderbaan, H.G. Leighton
                                      456 J.G. Vanderbaan, B.R. Sikura
1971Va21
             NUPAB
                          173,
                                     1570 J. Vervier, H.H. Bolotin
1971Ve03
             PRVCA
                          3.
                                      319
1971Vi14
             CPHMA
                          41.
                                           M. Viitasalo
1971Wa21
             NUPAB
                          173,
                                      634
                                           B.A. Watson, C.C. Chang, M. Hasinoff
1971We01
             PRVCA
                          3,
                                     1668
                                           C.V. Weiffenbach, R. Tickle
1971Wi04
             PRVCA
                          3,
                                     1199
                                           B.H. Wildenthal, E. Newman, R.L. Auble
```

```
1971Wi07
             NUPAB
                          166,
                                       661 D.H. Wilkinson, D.E. Alburger, D.R. Goosman, K.W. Jones, E.K. Warburton,
                                            G.T. Garvey, R.L. Williams
             PYLBB
                          37,
1971Ya10
                                       369
                                            K. Yagi, K. Sato, Y. Aoki
1971Zi03
             PRVCA
                          4,
                                      1809
                                            M.S. Zisman, B.G. Harvey
                                             1972
1972Ah04
             NUPAB
                          186.
                                       620 I. Ahmad, R.K. Sjoblom, R.F. Barnes, F. Wagner, Jr., P.R. Fields
1972Ah07
             JINCA
                          34,
                                            I. Ahmad, R.F. Barnes, R.K. Sjoblom, P.R. Fields
1972Al19
             NUPAB
                          186,
                                            G. Alenius, S.E. Arnell, C. Schale, E. Wallander
1972Ba08
             CJPHA
                          50,
                                        34 R.C. Barber, R.L. Bishop, J.O. Meredith, F.C.G. Southon, P. Williams,
                                            H.E. Duckworth, P. van Rookhuyzen
             PRVCA
                          5,
                                      1351
1972Ba26
                                            T.T. Bardin, J.A. Becker, T.R. Fisher
             NUPAB
                                            D. Bachner, H. Kelleter, B. Schmidt, W. Seliger
1972Ba31
                          184,
                                      609
             PRLTA
                          28,
1972Ba35
                                      1069
                                            G.C. Ball, W.G. Davies, J.S. Forster, J.C. Hardy
1972Ba37
             NUPAB
                          186.
                                            H. Bakhru, I.M. Ladenbauer-Bellis, B. Jones
                                       321
1972Ba91
             IANFA
                          36,
                                            G.Y. Baier, V.S. Buttsev, K.Y. Gromov, V.G. Kalinnikov, K.O. Mortensen,
                                            G.L. Nilsson, N.A. Tikhonov
1972Bb24
             ZETFA
                          63,
                                       375
                                            S.A. Baranov, V.M. Shatinskii, V.M. Kulakov, Y.F. Radionov
1972Be07
             NUPAB
                          182,
                                        69
                                            R.R. Betts, O. Hansen, D.J. Pullen
1972Be11
             NUPBB
                          39,
                                       371
                                            K.-E. Bergkvist
1972Be12
             PRVCA
                          5,
                                      1426
                                            W. Benenson, J. Driesbach, I.D. Proctor, G.F. Trentelman, B.M. Preedom
             ZEPYA
                          252,
                                            H. Behrens, M. Kobelt, W.G. Thies, H. Appel
1972Be44
                                       349
             PRVCA
1972Be51
                                      957
                                            R.R. Betts, H.T. Fortune, D.J. Pullen
                          6,
                          197,
             NUPAB
                                      620
                                            J. Bleck, R. Butt, K.H. Lindenberger, W. Ribbe, W. Zeitz
1972B116
             PRVCA
1972Bo46
                          6.
                                            L.M. Bollinger, G.E. Thomas
1972Br13
             NUPAB
                          185.
                                            M. Brien, J.E. Kitching, J.K.P. Lee, P.F. Hinrichsen
1972Br31
             APOBB
                                            R. Broda, M. Rybicka, J. Styczen, W. Walus, K. Krolas
                          3.
                          34,
1972Bu05
             JINCA
                                      1087
                                            F.T. Bunus
1972Ca01
             KDVSA
                          38,
                                       #13 R.F. Casten, P. Kleinheinz, P.J. Daly, B. Elbek
1972Ca07
             NUIMA
                          98,
                                      432 J.L. Campbell, L.A. McNellen
1972Ca10
             NUPAB
                          184,
                                       357
                                            R.F. Casten, E.R. Flynn, O. Hansen, T.J. Mulligan
1972Ca33
             NUPAB
                          198,
                                       289
                                           P.L. Carson, L.C. McIntyre
1972Ce01
             NUPAB
                          188,
                                       666
                                           J. Cerny, R.A. Gough, R.G. Sextro, J.E. Esterl
                                            R. Chapman, W. McLatchie, J.E. Kitching
1972Ch11
             NUPAB
                          186,
                                       603
             NUPAB
                                       225
                                            H.C. Cheung, J.K.P. Lee, J.E. Kitching, S.K. Mark, Tseh Y. Li
1972Ch33
                          193.
             NUPAB
                          197.
                                       490
                                            A. Charvet, R. Chery, D.H. Phuoc, R. Duffait, A. Emsallem, G. Marguier
1972Ch44
1972Co13
             NUPAB
                          185,
                                       644
                                            W.F. Coetzee, M.A. Meyer, D. Reitmann
1972Cu07
             NUPAB
                          196,
                                       593
                                            J.C. Cunnane, R. Hochel, C.W. Yates, P.J. Daly
1972Da.A
             BAPSA
                          17,
                                        71
                                            C.N. Davids, D.L. Matthews, D. Whitmire
1972De11
             P-Teddington
                                            R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya see also 72De39
1972De47
             NUPAB
                          195,
                                       385
                                            P. Debenham, N.H. Hintz
1972Dz13
             YAFIA
                          15,
                                      1093
                                            J.D. Dzafar, A.A. Abdullah, N.H. Al Quaraishi, M.S. Alwash, M.A. Khalil,
                                            A.M. Demidov
1972El03
             CJPHA
                          50,
                                      674
                                            S.A. Elbakr, C. Glavina, W.K. Dawson, V.K. Gupta, W.J. McDonald, G.C. Nel-
1972Em01
             NSENA
                          48.
                                            J.F. Emery, S.A. Reynolds, E.I. Wyatt, G.I. Gleason
1972Er05
             NUPAB
                          194.
                                       449 B.R. Erdal, L. Westgaard, J. Zylicz, E. Roeckl, ISOLDE
1972Es03
             PRVCA
                          5,
                                       942 K. Eskola
             NUPAB
                          186,
                                       545 L.C. Farwell, J.J. Kraushaar, H.W. Baer
1972Fa08
1972Fe06
             NUPAB
                                       123 J.A. Fenton, T.H. Kruse, N. Williams, M.E. Williams, R.N. Boyd, W. Savin
                          187.
1972Fi.A
             AnRpt MSUCL
                                        28 R.B. Firestone, K. Kosanke, W.C. McHarris, W.H. Kelly
1972FI17
             PYLBB
                          42,
                                        49 E.R. Flynn, J.D. Garrett
                                       309 I. Forsblom, T. Weckstrom, T. Sundius, G. Bergstrom, S. Forss, G. Wansen
1972Fo25
             PHSTB
                          6,
1972Fu10
             NCLTA
                          4,
                                       430
                                            A. Fubini
             PRLTA
                          29,
                                       958 H. Gauvin, Y. Le Beyec, M. Lefort, N.T. Porile
1972Ga27
1972Gi17
             NUIMA
                          105,
                                       179
                                            H.J. Gils, R. Lohken, W. Wiesner
1972Go31
             PRVCA
                                       820
                                            D.R. Goosman, D.E. Alburger
                          6.
1972Go33
             CHDBA
                          275,
                                           J. Gorman, A. Rytz, H.V. Michel
```

```
1972Go.A
             PrvCom
                                   91Ry01 J. Gorman, A. Rytz
             NUPAB
                          187,
                                            A. Graue, L.H. Herland, K.J. Lervik, J.T. Nesse, E.R. Cosman
1972Gr12
                                       141
             NUPAB
                                       592
                                            T. Grotdal, J. Limstrand, K. Nybø, K. Skar, T.F. Thorsteinsen
1972Gr19
                          189,
1972Gr23
             YAFIA
                          15,
                                       625
                                            L.V. Groshev, L.I. Govor, A.M. Demidov
1972Gr34
             IANFA
                          36,
                                       833 L.V. Groshev, L.I. Govor, A.M. Demidov
1972Gr39
             PRVCA
                          6.
                                      1756 M.B. Greenfield, C.R. Bingham, E. Newman, M.J. Saltmars
1972Ha74
             NUPAB
                          198,
                                       353
                                            A. Hasselgren
             NUPAB
                                            G. Heymann, P.M. Cronje
1972He23
                          193,
                                       357
1972He36
             ZEPYA
                          255,
                                       385
                                            A. Helppi, A. Pakkanen
1972He.A
             AnRpt Grenoble
                                            M. Hermen, A. Gizon also Thesis Grenoble 1971
                                       599
1972Ho18
             NUPAB
                          187,
                                            P. Hornshøj, K. Wilsky, P.G. Hansen, B. Jonson, O.B. Nielsen
                                       609 P. Hornshøj, K. Wilsky, P.G. Hansen, B. Jonson, O.B. Nielsen
1972Ho19
             NUPAB
                          187,
                                       481
1972Ho40
             NUPAB
                          194,
                                            G.A. Hokken, A.J.G. Hendricx, J. De Kogel
1972Hs01
             NUPAB
                          179.
                                        80
                                            T.H. Hsu, R. Fournier, B. Hird, J. Kroon, G.C. Ball, F. Ingebretsen
             NUPAB
1972Hu06
                          189.
                                       264
                                            F.R. Hudson, R.N. Glover
1972Hu10
             NUPAB
                          195.
                                       485
                                            P. Hubert, M.M. Aleonard, D. Castera, F. Leccia, P. Mennrath
1972Ja28
             APOBB
                          3,
                                       643
                                            M. Jaskola, K. Nybø, B. Elbek
1972Ja.A
             P-Teddington
                                       236
                                            A.A. Jaffe, G.A. Bissinger, S.M. Shafroth, T.A. White, T.G. Dzubay, F. Everling,
                                            D.W. Miller, D.A. Outlaw
1972Je02
             NUPAB
                          185,
                                       209
                                            H.B. Jensen, H.B. Mak, C.A. Barnes
1972Jo08
             ZEPYA
                          251,
                                       425
                                            H.W. Jongsma, R. Kamermans, H. Verheul
1972Ka57
             SHIBA
                          20,
                                       255
                                            I. Kakatuse
                                            A. Kerek, G.B. Holm, S. Borg, L.-E. de Geer
1972Ke21
             NUPAB
                          195,
                                       177
             NUPAB
1972Ke28
                          198,
                                       466
                                            A. Kerek, P. Carle, J. McDonald
1972Ki06
             ZEPYA
                          251,
                                        93
                                            A. Kiuru
1972Ki15
             CPHMA
                          42.
                                            A. Kiuru, P. Holmberg, L. Vanhanen
                                        11
1972Ko03
             PRVCA
                          5,
                                       568
                                            J.J. Kolata, W.W. Daehnick
1972Ko47
             PRVCA
                          6,
                                      1713
                                            S.E. Koonin, B.I. Persson
                          23.
                                       219 F. Lagoutine, J. Legrand, C. Perrot, J.P. Brethon, J. Morel
1972La14
             IJARA
1972La20
             ZEPYA
                          253,
                                        16 R. Lasijo, R.K. Sheline, R.D. Griffioen, J.L. Dubbard
1972Le17
             PRVCA
                                       517
                                            L. Lessard, S. Gales, J.L. Foster, Jr.
                          6.
1972Le37
             IJARA
                          23,
                                       279
                                            V.E. Lewis, M.J. Woods, I.W. Goodier
1972Lo26
             NUIMA
                          105,
                                       453
                                            G.D. Lopez, G.E. Thomas
                                       272 L.L. Lynn, R.C. Schaller, D.A. Barbour, T.A. Belote, W.E. Dorenbusch
1972Ly01
             NUPAB
                          182,
1972Ma15
             PRVCA
                          5,
                                      1380
                                            J.V. Maher, J.R. Erskine, A.M. Friedman, R.H. Siemsen, J.P. Schiffer
             NUPAB
                          185,
                                       465
                                            P. Martin, M. Buenerd, Y. Dupont, M. Chabre
1972Ma23
1972Ma42
             PHSTB
                          5,
                                        58
                                            C.G. Mattsson, S.E. Arnell, L. Jonsson
1972Ma50
             PRVCA
                          6,
                                       851
                                            J.C. Manthuruthil, F.W. Prosser, Jr.
1972Ma.A
             P-Budapest
                                            P. Matusek, H. Ottmar, C. Weitkamp, H. Woods
                                       922
1972Mc08
             PRVCA
                          5,
                                            D.A. McClure, J.W. Lewis, III
1972Mc25
             ZEPYA
                          255,
                                       335
                                            J.C. McGeorge, D.W. Nix, R.W. Fink, J.H. Landrum
1972Me09
             NUPAB
                          185,
                                       625
                                            M.A. Meyer, J.P.L. Reinecke, D. Reitmann
1972Mi16
             HPACA
                          45,
                                        93
                                            B. Michaud, J. Kern, L. Ribordy, L.A. Schaller
                                      1505
1972Mi26
             JUPSA
                          33,
                                            K. Miyano, H. Nakharr, G. Gil
1972Mi27
             JUPSA
                          33,
                                      1509
                                            K. Miyano, C. Gil
             PRVCA
1972Mo12
                          5,
                                      1678
                                            R.A. Moyer
1972Mo33
             NUPAB
                          195.
                                       192
                                            E. Monnand, R. Brissot, L.C. Carraz, J. Crançon, R. Ristori, F. Schussler,
                                             A. Moussa
1972Mu02
             PRVCA
                          5,
                                            T. Mukoyama, S. Shimizu
             PRVCA
                                            T.J. Mulligan, E.R. Flynn, O. Hansen, R.F. Carsten, R.K. Sheline
1972Mu09
                          6,
             BAPSA
                          17,
                                            S.F. Mughabghab, G.W. Cole, R.E. Chrien, O.A. Wasson, M.R. Bhat
1972Mu.A
1972Na04
             NCIAA
                                       305 T. Nagarajan, M. Ravindranath, K.V. Reddy
                          8.
1972Ne05
             NUPAB
                          185,
                                       213 A.V. Nero
             PRVCA
                                      6793 A.V. Nero, R.E. Pixley, E.G. Adelsberger
1972Ne10
                          6,
1972Og03
             IJMPD
                                       365 K. Ogata
                          8.
             NUPAB
1972Op01
                          180,
                                       569
                                            A.M.F. Op den Kamp, A.M.J. Spits
1972Pa02
             PRVCA
                                       485
                                            R.A. Paddock
                          5,
1972Pa06
             NUPAB
                          184.
                                       157
                                            A. Pakkanen, T. Komppa, H. Helppi
1972Pa24
             ZEPYA
                          254,
                                            A. Pakkanen, H. Helppi, T. Komppa, P. Puumalainen
```

```
1972Pe05
             PRVCA
                                      1443
                                            B.I. Persson, S.E. Koonin
             ZEPYA
                          252,
1972Pi07
                                       206
                                            M. Piiparinen
             ZEPYA
                          252,
                                            V. Pursiheimo, T. Tuurnala, T. Raunemaa
1972Pu02
                                       283
1972Ra05
             PRVCA
                          5,
                                       453
                                            J. Rapaport, J.B. Ball, R.L. Auble, T.A. Belote, W.E. Dorenbusch
                                            D. Rabenstein, D. Harrach, H. Vonach, G.G. Dussel, R.P.I. Perazzo
1972Ra39
             NUPAB
                          197,
                                       129
1972Ri08
             PRVCA
                          5.
                                      2072
                                            F.A. Rickey, E.T. Jurney, H.C. Britt
1972Sc08
             ZEPYA
                          249,
                                            W.D. Schmidt-Ott, R.W. Fink
             NUPAB
                                       220 R.E. Shamu, E.M. Bernstein, D. Blondin, J.J. Ramirez
1972Sh08
                          189,
1972Sh13
             PRVCA
                                       537
                                           E.B. Shera, U. Gruber, B.P.K. Maier, H.R. Koch, O.W.B. Schult, R.G. Lanier,
                                            N. Onishi, R.K. Sheline
                          197.
1972Sh27
             NUPAB
                                        17
                                           J.R. Sheppard, R. Graetzer, J.J. Kraushaar
                          NDG
1972Sh.A
             PrvCom
                                       Jan E.B. Shera
             PRVCA
                                      1001
1972Si25
                                            W.L. Sievers, D.A. Close, C.J. Umbarger, R.C. Bearse, F.W. Prosser, Jr.
                          6.
                                            M. Singh, J.W. Sunier, R.M. Devries, G.E. Johnson
             NUPAB
                          193.
                                       449
1972Si28
                                            W.F. Slot, G.H. Dulfer, H. Van der Molen, H. Verheul
1972S103
             NUPAB
                          186,
                                        28
1972Sv02
             PHSTB
                                        23
                                            B. Svahn, C. Bergman, H. Petterson
                          5.
1972Sw01
             NUPAB
                          185,
                                       561
                                            D.L. Swindle, N.A. Morcos, T.E. Ward, J.L. Meason
1972Ta13
             ZEPYA
                          251,
                                        87
                                            O. Tannila, J. Kantele
1972To05
             NUPAB
                          185,
                                       574
                                            J.P. Torres, P. Paris
1972To06
             PRVCA
                          5.
                                      2060
                                            K.S. Toth, R.L. Hahn, M.A. Ijaz, R.F. Walker, Jr.
1972To07
             NUPAB
                          189,
                                       609
                                            J.P. Torres, P. Paris, D. Lecouturier, P. Kilcher
1972Vi11
             RAACA
                          17,
                                       213 J. Visser, L. Lindner
                                            T. von Egidy, O.W.B. Schult, D. Rabenstein, J.R. Erskine, O.A. Wasson,
1972Vo08
             PRVCA
                          6,
                                       266
                                            R.E. Chrien, D. Breitig, R.P. Sharma, H.A. Baader, H.R. Koch
1972Wa04
             JINCA
                          34.
                                            T.E. Ward, N.A. Morcos, P.K. Kuroda
1972Wa06
             NUPAB
                          184.
                                            G. Wallace, G.J. McCallum, N.G. Chapman
1972Wa10
             NUPAB
                          188.
                                       129
                                           E. Wallander, E. Selin
1972Wa11
             JINCA
                          34,
                                      1767
                                            A.C. Wahl
1972We.A
                                        94 L. Westgaard, J. Żylicz, O.B. Nielsen, ISOLDE
             P-Teddington
1972Wh02
             PRVCA
                                       513 D.H. White, R.E. Birkett
1972Wh05
             NUPAB
                          187,
                                        12 D.H. White, R.E. Howe
1972Wi07
             NUPAB
                          183,
                                       439
                                            J.L. Wiza, J.D. Garrett, R. Middleton
1972Wi18
             NUPAB
                          191,
                                       166
                                           W. Wiesner, D. Flothman, H.J. Gils, R. Lohken, H. Rebel
1972Za04
             PRVCA
                          6.
                                       506
                                            J.I. Zaitz, R.K. Sheline
             NUPAB
1972Zi02
                          181,
                                            J. Zioni, A.A. Jaffe, E. Friedman, N. Haik, R. Schreckman, D. Nir
                                             1973
1973Ab10
             IANFA
                          37,
                                            S.N. Abramovich, B. Ya. Guzhkovskii, A.G. Zvenigorodskii, S.V. Trusillo
1973Ad02
             PRVCA
                                            E.G. Adelsberger, A.B. McDonald, C.L. Cocke, C.N. Davis, A.P. Shukla,
                          7,
                                            H.B. Mak, D. Ashery
1973Ah02
             PRVCA
                          8,
                                       737
                                            I. Ahmad, J. Milsted, R.K. Sjoblom, J. Lerner, P.R. Fields
1973Ah04
             NUPAB
                          208,
                                            I. Ahmad, H. Diamond, J.M. Isted, J. Lerner, R.K. Sjoblom
             PRVCA
1973Al11
                          8,
                                       657
                                            D.E. Alburger, D.H. Wilkinson
             PRVCA
1973Al13
                                      1011 D.E. Alburger, D.R. Goosman, C.N. Davids
                          8.
                                            V.S. Aleksandrov, B.S. Dzelepov, A.I. Medvedev, V.E. Ter-Nersesyants,
1973Al20
             IANFA
                          37,
                                      1035
                                            I.F. Uchevatkin, S.A. Shestopalova
1973Ba20
             IANFA
                          37.
                                        38 L.M. Bak, V.G. Nedovesov, Y.V. Kholnov, G.E. Shchukin
1973Ba22
             IANFA
                          37,
                                           K.A. Baskova, S.S. Vasilev, M.A. Mokhsen, T.V. Shugay, L.Y. Shavtalov
             PRLTA
1973Ba34
                          31,
                                       395 G.C. Ball, J.G. Costa, W.G. Davies, J.S. Forster, J.C. Hardy, A.B. McDonald
             JPAGB
                                      1011 D.G. Barnes, J.M. Calvert, T. Toy
1973Ba35
                          6.
1973Ba40
             PRLTA
                                       728 R.C. Barber, J.O. Meredith, F.C.G. Southon, P. Williams, J.W. Barnard,
                          31,
                                            K. Sharma, H.E. Duckworth
             PRVCA
                                      1438
1973Ba56
                          8.
                                            J.B. Ball, J.J. Pinajian, J.S. Larsen, A.C. Rester
             NUPAB
1973Ba72
                          217,
                                       116 B.B. Back, E.R. Flynn, O. Hansen, R.F. Casten, J.D. Garrett
             PYLBB
1973Be09
                          43,
                                       117
                                            W. Benenson, E. Kashy, I.D. Proctor, B.M. Preedom
1973Be14
             PRVCA
                          7,
                                      1143
                                            W. Benenson, E. Kashy, I.D. Proctor
1973Be23
             PRVCA
                          8,
                                       210 W. Benenson, E. Kashy, I.D. Proctor
```

```
1973Be33
             PRLTA
                                      647 C.E. Bemis, Jr., R.J. Silva, D.C. Hensley, O.L. Keller, Jr., J.R. Tarrant, L.D. Hunt,
                          31,
                                            P.F. Dittner, R.L. Hahn, C.D. Goodman
             PRVCA
                          7,
                                     1686
1973Bo13
                                           W.W. Bowman, D.R. Haenni, T.T. Sugihara
1973Bo20
             YAFIA
                          17,
                                      457
                                            D.D. Bogdanov, V.A. Karnaukhov, L.A. Petrov
                          7,
1973Br06
             PRVCA
                                     1545 R.A. Britten, W.H. Johnson
1973Br12
             PRVCA
                          7,
                                     2545 E. Browne, F. Asaro
1973Br27
             PRVCA
                          8,
                                     1805 C.P. Browne, V.D. Coss, A.A. Rollefson
             NUPAB
                          216,
                                      493 R. Broda, A.Z. Hrynkiewicz, J. Styczen, W. Walus
1973Br32
1973Bu02
             CJPHA
                          51,
                                      455 D.G. Burke, J.C. Waddington, D.E. Nelson, J. Buckley
1973Bu17
             IANFA
                          37,
                                      938
                                           V.S. Buttsev, K.Y. Gromov, V.G. Kalinnikov, V.A. Morozov, T.M. Muminov,
                                            A.B. Khalikulov
             IANFA
                                      953
                                           V.S. Buttsev, Ts. Vylov, K.Y. Gromov, V.G. Kalinnikov, I.I. Gromova, V.A. Mo-
1973Bu18
                          37,
                                            rozov, T.M. Muminov, H. Fuia, A.B. Khalikulov
                                            V.S. Buttsev, K.Y. Gromov, V.G. Kalinnikov
                                     1024
1973Bu21
             IANFA
                          37.
             NUPAB
1973Ca10
                          205,
                                      121
                                            M.H. Cardoso, P.F.A. Goudsmit, J. Konijn
1973Ch24
             JINCA
                          35.
                                     3061
                                            K. Chayawattanangkur, G. Herrmann, N. Trautmann
1973Cl12
             NUPAB
                          215,
                                            G.J. Clark, J.M. Freeman, D.C. Robinson, J.S. Ryder, W.E. Burcham,
                                            G.T.A. Squier
1973Da01
             PRVCA
                          7,
                                       122
                                            C.N. Davids, D.R. Goosman
1973Da05
             CJPHA
                          51,
                                      686
                                           J.M. D'Auria, R.D. Guy, S.C. Gujrathi
1973Da22
             PRVCA
                          8,
                                     1029
                                            C.N. Davids, D.R. Goosman
1973De16
             PRVCA
                          7,
                                     2131
                                           J.H. Degnan, G.R. Rao
             ZEPYA
                                       75
                                           F.W.N. De Boer, P.F.A. Goudsmit, B.J. Meyer, and PrvCom AHW
1973De22
                          260,
                                           A.M. Demidov, M.R. Akhmed, M.A. Khalil, C. Al-Nadzar
1973De39
             IANFA
                          37,
                                      998
             NUPAB
                          208,
1973Ea01
                                            D.A. Eastham, I.S. Grant
1973Ed01
             NUPAB
                          199.
                                           F.M. Edwards, J.J. Kraushaar, B.W. Ridley
1973Es01
             PRVCA
                                      280
                                           P. Eskola
                          7,
1973Es02
             PHFEA
                          8,
                                            P. Eskola, K. Eskola, M. Nurmia, A. Ghiorso
             NUPAB
                          208,
                                           P.R. Fields, I. Ahmad, R.F. Barnes, R.K. Sjoblom, W.C. McHarris
1973Fi06
             PRLTA
                          30,
                                      102
                                            A. Friedman, K. Katori
1973Fr01
1973Ga01
             NUPAB
                          202,
                                      535
                                            S. Gales, L. Lessard, J.L. Foster, Jr.
1973Ga04
             CJPHA
                          51,
                                      203
                                           R.D. Gadsby, D.G. Burke, J.C. Waddington
1973Gh03
             PRVCA
                          7,
                                     2032
                                            A. Ghiorso, K. Eskola, P. Eskola, M. Nurmia
                          201,
                                            S.C. Goverse, J. Van Pelt, J. Vandenberg, J.C. Klein, J. Blok
1973Go05
             NUPAB
                                      326
                                     1133
1973Go11
             PRVCA
                          7,
                                           D.R. Goosman, D.E. Alburger, J.C. Hardy
             PRLTA
                          30,
                                     1255
                                            J.D. Goss, C.P. Browne, A.A. Rollefson
1973Go19
             PRVCA
                          7,
                                     2409
                                            D.R. Goosman, C.N. Davids, D.E. Alburger
1973Go22
                          276,
1973Go29
             CHDBA
                                      669
                                            D.J. Gorman, H.V. Michel, F. Asaro, A. Rytz
1973Go33
             PRVCA
                          8,
                                     1324
                                            D.R. Goosman, C.N. Davids, D.E. Alburger
1973Go34
             PRVCA
                          8,
                                     1331
                                            D.R. Goosman, C.N. Davids, D.E. Alburger
1973Go39
             CHDBA
                          277,
                                            D.J. Gorman, A. Rytz
                                       29
1973Go40
             NUPAB
                          217,
                                      159
                                            J. Godart, A. Gizon
1973Gr26
             NUPAB
                          211,
                                      541
                                            T. Grotdal, L. Loset, K. Nybø, T.F. Thorsteinsen
                                      574
                                           H. Guratzsch, A.P. Kabachenko, I.V. Kuznetsov, K. Siewek-Wilczynska,
1973Gu05
             NUPAB
                          205,
                                            N.I. Tarantin
                          199.
1973Ha02
             NUPAB
                                           S.I. Hayakawa, S.K. Mark, J.K.P. Lee, J.E. Kitching, G.C. Ball, W.G. Davies
1973Ha11
             NUPAB
                          203.
                                      532 J.K. Halbig, F.K. Wohn, W.L. Talbert, Jr., J.J. Eitter
1973Ha32
             PRLTA
                          31,
                                           O. Hausser, W. Witthuhn, T.K. Alexander, A.B. McDonald, J.C.D. Milton,
                                            A. Olin
                          47.
                                       93
                                           T. Hinderling, H.H. Staub
1973Hi.A
             HPACA
1973Ho09
             NUPAB
                          211,
                                       165 R. Hochel, P.J. Daly, K.J. Hofstetter
1973Hu07
             PYLBB
                                       361 E. Huenges, H. Rosler, H. Vonach
                          46.
1973Ja06
             ZEPYA
                          258,
                                      337 U. Jäger, H. Münzel, G. Pfennig
             ZEPYA
1973Ja10
                          261,
                                       95 J.F.W. Jansen, A. Faas, W.J.B. Winter
             PHSTB
                                       99
1973Jo11
                                           A. Johansson, B. Nyman
                          8.
             NUPAB
                          203,
                                       97
                                           N. Kato
1973Ka03
1973Ka07
             JUPSA
                          34,
                                      857
                                            K. Kawade, H. Yamamoto, K. Tsuchiya, T. Katoh
1973Ka23
             PRVCA
                          8.
                                      414
                                           N. Kaffrell
1973Ki11
             NUPAB
                          213,
                                       61
                                            K. Kimura
```

```
PRVCA
                          7,
1973Ko03
                                      404 R.L. Kozub, D.H. Youngblood
             PRVCA
                                           J.J. Kolata, J.V. Maher
1973Ko06
                          8,
                                      285
             NUPAB
                                           S. Kochan, B. Rosner, I. Tserruya, R. Kalish
1973Ko10
                          204.
                                       185
             NUIMA
                          109,
                                            J. Konijn, P.F.A. Goudsmit, E.W.A. Lingeman
1973Ko13
1973Ku09
             JOPQA
                          34,
                                           W. Kurcewicz, K. Stryczniewicz, J. Żylicz, R. Broda, S. Chojnacki, W. Walus,
                                            I. Yutlandov
             PRVCA
                                     2600 H. Lancman, A. Bond
1973La17
                          7,
             MTRGA
                                       14 V.E. Lewis, D. Smith, A. Williams
1973Le18
                          9.
1973Lo08
             CJPHA
                          51,
                                     1369 G. Løvhøiden, D.G. Burke, J.C. Waddington
1973Mc04
             PRVCA
                          7,
                                     2097 J.R. McPherson, F. Gabbard
1973Me09
             NUPAB
                          204,
                                      636 B.J. Meyer, F.W.N. De Boer, P.F.A. Goudsmit
                                           J.O. Meredith, F.C.G. Southon, R.C. Barber, P. Williams, H.E. Duckworth
             IJMPD
1973Me28
                          10,
                          202,
             NUPAB
1973Mo03
                                      473
                                           M.A. Moinester, G. Finkel, J. Alster, P. Martin
             JINCA
                          35,
                                     3659
                                            N.A. Morcos, W.D. James, D.E. Adams, P.K. Kuroda
1973Mo18
             PRVCA
1973Mo23
                                      1961
                                            A. Moalem, B.H. Wildenthal
                          8,
1973No09
             NUPAB
                          217,
                                      253
                                            T. Nomura, K. Hiruta, T. Inamura, M. Odera
1973Oe02
             ZEPYA
                          259,
                                      263
                                            W. Oelert
1973Ok.A
             PrvCom
                          NDG
                                            G.D. O'Kelley, C.F. Goeking, L.L. Collins, Sr.
                                      Aug
1973Oo01
             NUPAB
                          213,
                                      221
                                            M.A. Oothoudt, N.M. Hintz
1973Or03
             PRVCA
                          8.
                                      718
                                            C.J. Orth, W.R. Daniels, D.C. Hoffman, F.O. Lawrence
1973Pi01
             NUPAB
                          203,
                                      369
                                            W.F. Piel,Jr.
1973Po16
             RAACA
                          19,
                                      148 P. Polak
                          35,
                                      1057
                                           I.L. Preiss, J.J. Labrecque
1973Pr05
             JINCA
             PYLBB
                          44,
                                           S. Raman, H.J. Kim, T.A. Wakiewicz, M.J. Martin
1973Ra13
                                      255
             PRVCA
                          7,
                                      1663 I. Rezanka, I.M. Ladenbauer-Bellis, T. Tamura, W.B. Jones, F.M. Bernthal
1973Re03
             PYLBB
                          43.
                                       30 J.S. Ryder, G.J. Clark, J.E. Draper, J.M. Freeman, W.E. Burcham, G.T.A. Squier
1973Ry01
1973Sc17
             PYLBB
                          44.
                                      449 H. Schmeing, J.C. Hardy, R.L. Graham, J.S. Geiger, K.P. Jackson
1973Se03
             NUPAB
                          199,
                                      241 J.C. Sens, A. Pape, R. Armbruster
             PRVCA
                                      258 R.G. Sextro, R.A. Gough, J. Cerny
1973Se08
                          8,
1973Se12
             JUPSA
                          34,
                                      1443 T. Seo, T. Hayashi, T. Mitamura
1973Sh.A
             PrvCom
                          NDG
                                       Jan E.B. Shera in NDS974
1973Si40
             NUPAB
                          216,
                                           R.J. Silva, P.F. Dittner, M.L. Mallory, O.L. Keller, K. Eskola, P. Eskola, M. Nur-
                                            mia, A. Ghiorso
             NUPAB
                                      260
1973Sp06
                          215,
                                           A.M.J. Spits, J.A. Akkermans
             PRVCA
                                       161 D.F. Torgerson, K. Wien, Y. Fares, N.S. Oakey, R.D. Macfarlane, W.A. Lanford
1973To08
                          8.
                          259,
                                            S.Y. Van der Werf
1973Va11
             ZEPYA
                                       45
             PRVCA
                                       178 J. Vernotte, S. Galès, M. Langevin, J.M. Maison
1973Ve06
                          8.
1973Ve08
             NUPAB
                          212,
                                      493
                                           J. Vernotte, S. Galès, M. Langevin, J.M. Maison
1973Vi09
             RPHAA
                          8,
                                      231
                                            C. Vieu, A. Peghaire, J.S. Dionisio
             NUPAB
                          217,
1973Vi10
                                      372
                                            V.E. Viola, Jr., M.M. Minor, C.T. Roche
1973Wa17
             PRVCA
                          8,
                                      297
                                            O.A. Wasson, G.G. Slaughter
1973Wa18
             PRVCA
                          8,
                                      340 T.E. Ward, Y.Y. Chu, J.B. Cunning
1973Wi06
             PRLTA
                          30,
                                      866 K.H. Willcox, N.A. Jelley, G.J. Wozniak, R.B. Weisenmiller, H.L. Harney,
1973Wo01
             PRVCA
                                       160 F.K. Wohn, J.K. Halbig, W.L. Talbert, Jr., J.R. McConnel
                          204.
1973Ya02
             NUPAB
                                           S.W. Yates, P.J. Daly, N.R. Johnson, N.K. Arras
1973Za08
             ZEPYA
                          264.
                                      227 J.I. Zaitz, R.K. Sheline, R.D. Griffieon
                                             1974
1974Aj01
             NUPAB
                          227,
                                         1 F. Ajzenberg-Selove, T. Lauritsen
1974Al03
             PRVCA
                          9.
1974An05
             IANFA
                          38,
                                       48 N.M. Antoneva, A.V. Barkov, A.V. Zolotavin, P.P. Dmitriev, S.V. Kamynov,
                                            G.S. Katykhin, E.T. Kondrat, N.I. Krasnov, Y.N. Podkopayen, V.A. Sergienko,
                                            V.I. Fominikh
1974An22
             IANFA
                          38,
                                     1741
                                            N.M. Antoneva, A.V. Barkov, V.M. Vinogradov, A.V. Zolotavin, G.S. Katykhin,
                                            V.M. Makarov, A.G. Shablinskii
1974An23
             IANFA
                          38.
                                            N.M. Antoneva, A.V. Barkov, V.M. Vinogradov, A.V. Zolotavin, G.S. Katykhin,
                                            V.M. Makarov, A.G. Shablinskii
```

```
1974An24
             IANFA
                          38,
                                      1757 N.M. Antoneva, A.V. Barkov, A.V. Zolotavin, P.P. Zarubin, V.M. Makarov,
                                             V.Y. Padalko, Y.N. Podkopaev, V.A. Sergienko
             IANFA
                          38,
                                      1569 R. Arlt, K.Y. Gromov, A. Latuszynski, K.G. Ortlepp, A. Jasinski
1974Ar27
1974Ba15
             PYLBB
                          49.
                                        33 G.C. Ball, J.G. Costa, W.G. Davies, J.S. Forster, J.C. Hardy, A.B. McDonald
1974Ba90
             CJPHA
                          52,
                                      2386 R.C. Barber, J.W. Barnard, D.A. Burrel, J.O. Meredith, F.C.G. Southon,
                                            P. Williams, H.E. Duckworth
             PRVCA
1974Be07
                          9.
                                       589 R.R. Betts, H.T. Fortune, D.J. Pullen
             PRVCA
                                      2130 W. Benenson, E. Kashy, D.H. Kong, A. Siou, A. Moalem, H. Nann
1974Be20
                          9,
1974Be.A
             ORNL-4967
                                        37 C.E. Bemis, R.J. Silva, D.C. Hensley, O.L. Keller, Jr., O.L. Keller, J.R. Tarrant,
                                            L.D. Hunt, P.F. Dittner, R.L. Hahn, C.D. Goodman
1974Bi08
             PRVCA
                           10,
                                       729 P.K. Bindal, D.H. Youngblood, L. Kozun
                                       836 J.D. Bowman, A.M. Poskanzer, R.G. Korteling, G.W. ButlerJ.D. Bowman,
1974Bo05
             PRVCA
                          9,
                                             A.M. PoskaJ.D. Bowman, A.M. Poskanzer, R.G. Korteling, G.W. Butlernzer,
                                             R.G. Korteling, G.W. Butler
1974Bo26
                                       213
                                            H.E. Bosch, J. Davidson, M.A. Fariolli, V. Silbergleit
             NUIMA
                           117,
1974Bu21
             IANFA
                          38.
                                      1566
                                            V.P. Burminskii, B.G. Kiselev, O.D. Kovrigin
1974Bu22
             PRVCA
                           10,
                                            D.L. Bushnell, D.J. Buss, R.K. Smither
                                      2483
1974By01
             NUPAB
                          223,
                                       125
                                            T. Byrski, F.A. Beck, P. Engelstein
1974Ca.A
             Th.-Amsterdam
                                             M.H. Cardoso
1974Ce05
             PRVCA
                          10,
                                      2654
                                            J. Cerny, N.A. Jelley, D.L. Hendrie, C.F. Maguire, J. Mahoney, D.K. Scott,
                                             R.B. Weisenmiller
1974Ch17
             JPSLB
                          35,
                                        41
                                            A. Charvet, R. Chery, R. Duffait
             PRVCA
                          9,
                                            R.E. Chrien, D.I. Garber, J.L. Holm, K. Rimawi
1974Ch18
                                      1839
             ZEPYA
1974Ch21
                          267,
                                       355
                                            A. Charvet, R. Chery, D.P. Phuoc, R. Duffait
1974Co21
             CJPHA
                          52,
                                            A.H. Colenbrander, T.J. Kennett
                                      1215
1974Co27
             PRVCA
                          10.
                                            J.R. Comfort, R.W. Finlay, C.M. McKenna, P.T. Debevec
                                      1236
1974Co35
             NUPAB
                          233.
                                       185 F. Corvi, M. Stefanon
1974Da02
             PRVCA
                          9,
                                            C.N. Davids, D.R. Goosman, D.E. Alburger, A. Gallmann, G. Guillaume,
                                             D.H. Wilkinson, W.A. Lanford
1974De09
             NUPAB
                          225,
                                       317
                                            F.W.N. De Boer, P.F.A. Goudsmit, P. Koldewijn, B.J. Meyer
1974De22
             YAFIA
                           19,
                                      1161 R.A. Demirkhanov, M.I. Dzkuya, V.V. Dorokhov, G.A. Dorokhova
1974De31
             CJPHA
                          52,
                                      1416 P. Debenham, W.R. Falk, M. Canty
1974De37
             NUPAB
                          230.
                                       490 E.O. Deneijs, M.A. Meyer, J.P.L. Reinecke, D. Reitman
                                            F.W.N. De Boer, P.F.A. Goudsmit, B.J. Meijer, P. Koldewijn, J. Konijn, R. Beetz
1974De47
             NUPAB
                          236,
                                       349
                           10,
1974Di03
             PRVCA
                                      1172
                                            M. Diksie, L. Yaffe, D.G. Sarantites
                                       114
                                            J.S. Dionisio, C. Vieu, V. Berg, C. Bourgeois
1974Di.A
             P-Amsterdam
1974Do09
             NUPAB
                          229.
                                        47
                                            G. Doukellis, C. McKenna, R. Finlay, J. Rappaport, H.J. Kim
1974Em01
             NUPAB
                          231,
                                       437
                                            A. Emsallem, D.P. Huoc, R. Chery, M. Ashgar
1974Er.A
             AnRpt Julich
                                             R. Ermer, W. Delang, P. Gottel, H.H. Guven, B. Hrastnik, O.W.B. Schult, H. Sey-
1974Ev02
             NUPAB
                          230,
                                       109
                                            D. Evers, W. Assmann, K. Rudolph, S.J. Skorka, P. Sperr
                          9,
1974Fl01
             PRVCA
                                       210
                                            E.R. Flynn, J.D. Garrett
                          9,
1974Fr01
             PRVCA
                                       760
                                            A.M. Friedman, K. Katori, D. Albroght, J.P. Schiffer
             PRVCA
                          9,
1974Ge05
                                      2363
                                            W. Gelletly, W.R. Kane, D.R. MacKenzie
1974Gh04
             PRLTA
                                      1490
                                            A. Ghiorso, J.M. Nitschke, J.R. Alonso, C.T. Alonso, M. Nurmia, G.T. Seaborg,
                          33.
                                             E.K. Hulet, R.W. Lougheed
1974Gi09
             NUPAB
                          233.
                                            S. Gilad, S. Cochavi, M.A. Moinester, J. Alster, M. Buenard, P. Nartin
1974Gl10
             AENGA
                          37.
                                            V.M. Glazov, R.I. Borisova, A.I. Shaviev
1974Go17
             PRVCA
                          10,
                                       756 D.R. Goosman, D.E. Alburger
                                            S.C. Goverse, J. Kuiper, J. Blok
1974Go20
             ZEPYA
                          269,
1974Gr11
             NUPAB
                          223,
                                        66 R.C. Greenwood, C.W. Reich
1974Gr22
             PRVCA
                                       624 R.D. Griffioen, R.K. Sheline
                           10.
1974Gr37
             NUIMA
                           121,
                                       385 R.C. Greenwood, R.G. Helmer
1974Gr41
             IANFA
                          38,
                                      2499 E.P. Grigorev, A.V. Zolotavin, S.V. Kaminov
1974Gu10
                           19,
             YAFIA
                                      1167 K. Gurach, A.P. Kabachenko, I.V. Kuznetsov, N.I. Tarantin
             PRVCA
                                       252 J.C. Hardy, H. Schmeing, W. Benenson, G.M. Crawley, E. Kashy, H. Nann
1974Ha02
                          9.
1974Ha35
             PRLTA
                          33,
                                       320
                                            J.C. Hardy, G.C. Ball, J.S. Geiger, R.L. Graham, J.A. Macdonald, H. Schmeing
1974Ha55
             PRVCA
                          10.
                                      1829
                                            G. Hardie, D. Gloeckner, L. Meyer-Schutzmeister, T.H. Braid
1974Ho21
             PYLBB
                          51,
                                       345 S.D. Hoath, R.J. Petty, J.M. Freeman, G.T.A. Squier, W.E. Burcham
```

```
1974Ho27
             NUPAB
                          230,
                                       380 P. Hornshøj, P.G. Hansen, B. Jonson
                                            B. Hrastnik, H. Seyfarth, A.M. Hassan, W. Delang, P. Gottel
             NUPAB
                          219,
1974Hr01
                                       381
                                       307
1974Hu15
             NUIMA
                          121,
                                            E. Huenges, H. Vonach, J. Labetzki
1974Ia01
             CJPHA
                          52,
                                        96
                                            R. Iafigliola, S.C. Gujrathi, B.L. Tracy, J.K.P. Lee
1974Is01
             PRVCA
                          9,
                                      1662
                                            H.A. Ismail, W.H. Moore, J.N. Hallock, H.A. Enge
1974Ja10
             PYLBB
                          49.
                                       341
                                            K.P. Jackson, J.C. Hardy, H. Schmeing, R.L. Graham, J.S. Geiger, K.W. Allen
1974Je01
             PRVCA
                          9.
                                      2067
                                            N.A. Jelley, K.H. Wilcox, R.B. Weisenmiller, G.J. Wozniak, J. Cerny
             PRVCA
                                      2449 P.L. Jolivette, J.D. Goss, G.L. Marolt, A.A. Rollefson, C.P. Browne
1974Jo14
                          10,
1974Ju.A
             PrvCom
                                   74AjLa E.T. Jurney
1974Ju.B
             PrvCom
                          AHW
                                            E.T. Jurney
1974Ka05
             ZEPYA
                          266,
                                        21 N. Kaffrell, N. Trautmann, R. Denig
             PRVCA
1974Ka15
                          9.
                                      2102 E. Kashy, W. Benenson, J.A. Nolen, Jr.
1974Ke01
             NUPAB
                          221,
                                       333 J. Kern, G. Mauron, B. Michaud, K. Schreckenbach, T. von Egidy, W. Mampe,
                                            H.R. Koch, H.A. Baader, D. Breitig, U. Gruber
             PRVCA
1974Ke13
                          10.
                                      1554
                                            J. Kern, D. Duc
1974Ke14
             ZEPYA
                          270.
                                       129
                                            J. Keinonen, A. Anttila, M. Bister
1974Ki02
             PRVCA
                          9,
                                       767
                                            J. Kim, R.L. Robinson
1974Kn02
             PRVCA
                          9,
                                      1467
                                            J.D. Knight, C.J. Orth, W.T. Leland, A.B. Tucker
1974Ko08
             NUPAB
                          221,
                                            D.H. Kong-A-Siou, A.J. Cole, A. Giorni, J.P. Longequeue
1974Ko20
             NUPAB
                          231,
                                            D.G. Kovar, N. Stein, C.K. Bockelman
1974Ku01
             NUPAB
                          218,
                                       201
                                            I. Kumabe, S. Matsuki, S. Nakamura, M. Hyakutake, M. Matoba, T. Sato
1974Le02
             PRVCA
                          9,
                                      1091
                                            Y. Le Beyec, M. Lefort, J. Livet, N.T. Porile, A. Siivola
                          9,
                                            R.G. Markham, H.W. Fulbright
1974Ma09
             PRVCA
                                      1633
                          19,
1974Me15
             YAFIA
                                       437
                                            R.J. Metskvarishvili, Z.N. Miminoshvili, M.A. Elizbarashvili
                          224,
1974Mu10
             NUPAB
                                            F. Münnich, D. Lode, H. Schrader, A. Hoglund, W. Pessara
1974Na07
             PRVCA
                          9.
                                            H. Nann, W. Benenson, E. Kashy, P. Turek
1974Ne10
             PRVCA
                          10.
                                            K. Neubeck, H. Schober, H. Waffler
                                       320
1974No02
             PRVCA
                          9,
                                      1168
                                            T. Nomura, K. Hiruta, M. Yoshie, O. Hashimoto
1974No07
             NUIMA
                          115,
                                            J.A. Nolen, Jr., G. Hamilton, E. Kashy, D. Proctor
1974Oe03
             NUPAB
                          230,
                                       413
                                            W. Oelert, G. Lindstrom, V. Riech
1974Pe15
             NUPAB
                          235,
                                       205
                                           R.J. Peel, D.R. Dixon, M.W. Hill, G.L. Jensen, N.F. Mangelson, N. Nath,
                                             V.C. Rogers
1974Po08
             PRVCA
                          10,
                                       803
                                            F.T. Porter, I. Ahmad, M.S. Freedman, J. Milsted, A.M. Friedman
                                      2135 P.T. Prokofev, L.I. Simonov
1974Pr15
             IANFA
                          38.
             PHFEA
1974Ra31
                          9,
                                       103
                                            V. Rahkonen, J. Kantele
             P-Bombay
                                            C.N. Rao, B.M. Rao, P.M. Rao, K.V. Reddy
1974Ra.A
                                        10
             PRVCA
                          9.
                                      1978
                                            K. Rimawi, J.B. Garg, R.E. Chrien, G.W. Cole, O.A. Wasson
1974Ri03
1974Ri08
             NUPAB
                          228,
                                       461
                                            A. Riccato, P. David
                                            E. Roeckl, D. Lode, K. Bächmann, B. Neidhart, G.K. Wolf, W. Lauppe, N. Kaf-
1974Ro11
             ZEPYA
                          266,
                                        65
                                             frell, P. Patzelt
1974Ro12
             ZEPYA
                          266,
                                            E. Roeckl, D. Lode, W. Pessar
1974Ro16
             PRVCA
                          9,
                                      1801
                                            R.G.H. Robertson, S.M. Austin
1974Ro17
             PRLTA
                          32,
                                      1207
                                            R.G.H. Robertson, S. Martin, W.R. Falk, D. Ingham, A. Djaloeis
                          9,
                                            S.J. Rothman, N.L. Peterson, W.K. Chen, J.J. Hines, R. Bastar, L.C. Robinson,
1974Ro18
             PRVCA
                                      2272
                                            L.J. Nowicki, J.B. Anderson
1974Ro44
             PRAMC
                          3.
                                       186
                                            A. Roy, K.V.K. Iyengar, M.L. Jhingan, S.K. Bhattacherjee
                                            G. Rudstam, S. Shalev, O.C. Jonsson
1974Ru08
             NUIMA
                          120.
1974Sc02
             CJPHA
                          52.
                                            R.L. Schulte, J.D. King, W. Taylor
                                       131
1974Sc06
             ZEPYA
                          266,
                                       129
                                            H.M. Schupferling, K.-W. Hoffmann
             PRVCA
                                       296 W.D. Schmidt-Ott, K.S. Toth, E. Newman, C.R. Bingham
1974Sc19
                          10,
1974Sc26
             PRLTA
                                      1343 D.K. Scott, B.G. Harvey, D.L. Hendrie, L. Krauss, C.F. Maguire, J. Mahoney,
                          33,
                                             Y. Terrien, K. Yagi
1974Se05
             PRLTA
                          33,
                                       233 K.K. Seth, A. Saha, W. Benenson, W.A. Langford, H. Nann, B.H. Wildenthal
1974Sp04
             NUPAB
                          224,
                                       517
                                            A.M. Spits, J. de Boer
             ZEPYA
1974To04
                          268,
                                       289 F. Tolea, K.R. Baker, W.D. Schmidt-Ott, R.W. Fink
             PRVCA
1974To07
                          10,
                                      2550 K.S. Toth, C.R. Bingham, W.D. Schmidt-Ott
1974Vi02
             ZEPYA
                          269,
                                       173
                                            M. Viitasalo, I. Forsblom
1974Vo08
             IANFA
                          38,
                                       672 I. Votsilka, K.U. Zibert, B. Kracik, J. Liptak, A.F. Novgorodov, K.G. Ortlepp,
                                            M. Toshev, V. Habenicht
```

```
1974Vy01
             IANFA
                                       701 Ts. Vylov, N.A. Golovkov, K.Y. Gromov, I.I. Gromova, A. Kolachkovsky,
                          38,
                                            M.Y. Kuznetsova, Y.V. Norseev, V.G. Chumin
1974Wa08
             PRVCA
                          9.
                                      1396 C.W. Wang, Y.C. Liu, E.K. Lin, C.C. Hsu, G.C. Kiang
1974Wa14
             PRVCA
                          10,
                                      1983 T.R. Ward, P.F. Haustein, J.B. Cumming, Y.Y. Chu
1974Wi17
             PRVCA
                          10,
                                      2184 B.H. Wildenthal, J.A. Rice, B.M. Preedom
1974Ya07
             JUPSA
                          37.
                                        10 H. Yamamoto, K. Kawade, H. Fukaya, T. Katoh
                                             1975
1975Ad08
             IANFA
                          39,
                                      1681
                                            I. Adam, G. Baier, K.Y. Gromov, T.A. Islamov, K.G. Ortlepp, K. Tiroff, E. Her-
                                             rmann, H. Strusnii
                          254,
             NUPAB
                                        63
                                            I. Adam, K.Y. Gromov
1975Ad09
1975Ah01
             NUPAB
                          239.
                                           I. Ahmad, J. Milsted
1975Ah05
             PRVCA
                                            I. Ahmad, F.T. Porter, M.S. Freedman, R.K. Sjoblom, J. Lerner, R.F. Barnes,
                          12,
                                            J. Milsted, P.R. Fields
1975Ai03
             PRVCA
                                      1868 F. Ajzenberg-Selove, R. Middleton, J.D. Garrett
                           12.
1975Al.A
             P-Leningrad
                                            A.A. Aleksandrov, et al
1975An07
             NUPAB
                          242,
                                            R.E. Anderson, R.L. Bunting, J.D. Burch, S.R. Chinn, J.J. Kraushaar, R.J. Peter-
                                            son, D.E. Prull, B.W. Ridley, R.A. Ristinen
1975As04
             NUPAB
                          247,
                                            M. Asghar, J.P. Gautheron, G. Bailleul, J.P. Bocquet, J. Greif, H. Schrader,
                                            G. Siegert, C. Ristori, J. Crancon, G.I. Crawford
1975Ba25
             YAFIA
                          21,
                                       230 S.A. Baranov, V.M. Shatinskii, L.V. Chistyakov, V.M. Shubko
                                            S.A. Baranov, V.M. Shatinskii
1975Ba27
             ZETFA
                          68,
                          22,
1975Ba65
             YAFIA
                                       670 S.A. Baranov, V.M. Shatinskii
             AnRpt CSNSM
                                            G. Bastin, C.F. Liang
1975Ba.B
                                        35
1975Be09
             ZENAA
                                       356 M.J. Bechara, O. Dietsch
                          30.
1975Be21
             NUPAB
                          245.
                                            H. Behrens, M. Kobelt, L. Szybisz, W.G. Thies
                                       515
1975Be28
             NUPAB
                          246,
                                       317
                                            H. Behrens, M. Kobelt, L. Szybisz, W.G. Thies
             PYLBB
1975Be38
                          58,
                                            W. Benenson, A. Guilchard, E. Kashy, D. Mueller, H. Nann, L.W. Robinson
1975Be.B
             P-Paris
                                        54 U. Bertsche, F. Rauch, K. Stelzer
1975Bh01
             PRVCA
                          12,
                                      1457 M.R. Bhat, R.E. Chrien, G.W. Cole, O.A. Wasson
1975Bl01
             PRVCA
                          11,
                                       939 J.N. Black, W.C. McHarris, W.H. Kelly, B.H. Wildenthal
1975Bo11
             YAFIA
                          21,
                                       233 D.D. Bogdanov, A.V. Demyanov, V.A. Karnaukhov, L.A. Petrov
1975Bo14
             NUPAB
                          245,
                                       107
                                            W. Bohne, H. Fuchs, K. Grabisch, D. Hilscher, U. Jahnke, H. Kluge, T.G. Mas-
                                             terson, H. Morgenstern
1975Bo29
             ZPAAD
                          273,
                                       373
                                            H.E. Bosch, J. Davidson, V. Silbergleit, C.A. Heras, S.M. Abecassis
1975Bo59
             RBFSA
                          5.
                                            L.C.S. Boueres, O. Dietsch, T. Polga
                                       215
1975Br02
             PRVCA
                          11,
                                       546
                                            D. Breitig, R.F. Casten, W.R. Kane, G.W. Cole, J.A. Cizewski
1975Br16
             NUPAB
                          245,
                                       243
                                            A.R. Brosi, B.H. Ketelle
                                       483
                                            A. Brondi, R. Moro, P. Pelter, F. Terassi
1975Br29
             NCIAA
                          30,
1975Br.A
             Th.-Mainz
                                             W. Brüchle
                                      1401
1975Bu01
             PRVCA
                          11,
                                            D.L. Bushnell, J. Hawkins, R. Goebbert, R.K. Smither
1975Bu02
             CJPHA
                          53,
                                            D.G. Burke, J.M. Balogh, and erratum CJPHA 63(1985)649
1975Bu.A
             BAPSA
                          20,
                                       625
                                            M.E. Bunker, B.S. Nielsen, J.W. Starner, B.J. Dropesky, W.R. Daniels
1975Ca06
             NUPAB
                          241,
                                       341
                                            C. Cabot, C. Deprun, H. Gauvin, B. Lagarde, Y. Le Beyec, M. Lefort
1975Ca07
             NUPAB
                          242,
                                       221
                                            T. Caldwell, D.J. Pullen, O. Hansen
             NUPAB
                          238.
1975Ch05
                                       333
                                            A. Charvet, R. Chery, R. Duffait, M. Morgue
1975Ch11
             PRVCA
                                            J. Chao, D.K. Olsen, C. Newson, P.J. Riley
                          11,
                                      1237
1975Ch21
             JPHGB
                                            R. Chapman, G.D. Dracoulis
                           1.
                                            Collaboration CSNSM-IPN-Marbourg-Stockholm-Varsovie
1975Co.A
             AnRpt CSNSM
1975Da14
             NUPAB
                                            J.M. Davidson, T. Taylor, D.A. Hutcheon, D.M. Sheppard, W.C. Olsen
                          250,
1975De.A
             P-Petten
                                       609
1975Em04
             ZPAAD
                          275,
                                       157 A. Emsallem, M. Ashgar
1975Em.A
             P-Petten
                                       395 A. Emsallem, M. Ashgar
                          NDG
                                       Jul J.R. Erskine
1975Er.A
             PrvCom
1975Fl07
             ZPAAD
                                       219 D. Flothman, H.J. Gils, W. Wiesner, R. Loehken
                          272,
1975Fr16
             PRVCA
                                       616 E.M. Franz, S. Katcoff
                          12,
1975Fr.A
             P-Paris
                                       126 J.M. Freeman, R.J. Petty, S.H. Hoath, J.S. Ryder, W.E. Burcham, G.T.A. Squier
1975Fr.B
             AnRpt AFI
                                       146 K. Fransson, M. af Ugglas, P. Carle
```

```
1975Gr32
             NUPAB
                          252,
                                      260 R.C. Greenwood, C.W. Reich, S.H. Vegors, Jr.
             JPHGB
1975Gu01
                          1,
                                       67
                                            S.C. Gujrathi, C. Weiffenbach, J.K.P. Lee
             PRVCA
                                     1109
1975Gu15
                          12,
                                           A. Guichard, H. Nann, B.H. Wildenthal
1975Ha43
             ZPAAD
                          274,
                                      335 H.H. Hansen, D. Mouchet
1975He.C
             KFK-2223
                                            D. Heck, J.A. Pinston, H. Börner, F. Braumandl, P. Jeuch, H.R. Koch,
                                            W. Mampe, R. Rousille, K. Schreckenbach
1975Ho09
             PYLBB
                          57,
                                           P. Hornshøj, P. Tidemand-Petersson, R. Bethoux, A.A. Caretto, J.W. Grüter,
                                            P.G. Hansen, B. Jonson, E. Hagberg, S. Mattsson
1975Ho14
             NUPAB
                          248,
                                      406 P. Hornshøj, P. Tidemand-Petersson, R. Kaczarowski, B. Kotlinska
1975Ij.A
             BAPSA
                          20,
                                     1154 M.A. Ijaz, Vpi e su, E.L. Robinson, K.S. Toth, C.R. Bingham
1975Is04
             PRVCA
                          12,
                                      708 H.A. Ismail, J.N. Hallock, W.H. Moore, H.A. Enge
             PRVCA
1975Ja10
                          11,
                                     2114 J. Jänecke, F.D. Becchetti, L.T. Chua, A.M. Vandermolen
                                      625 O.P. Jolly, D.G. Burke
1975Jo.A
             BAPSA
                          20.
                                      314 K. Kawade, H. Yamamoto, Y. Ikeda, T. Katoh
             JUPSA
1975Ka15
                          38.
             PRVCA
1975Ka18
                                     1959
                                           E. Kashy, W. Benenson, D. Mueller, R.G.H. Robertson, D.R. Goosman
                          11,
1975Ka25
             PRVCA
                                     1054
                                           D. Kaiser, W.H. Johnson, Jr.
                          12.
1975Ka.A
             P-Petten
                                      544
                                            B. Kardon, H. Seyfarth, P. Gottel, H.H. Guven
1975Ke08
             PRVCA
                          12,
                                      553
                                            G.G. Kennedy, S.C. Gujrathi, S.K. Mark
1975Ke09
             ZPAAD
                          274,
                                      233
                                            G.G. Kennedy, S.C. Gujrathi, S.K. Mark
1975Ke12
             NUPAB
                          255,
                                      296
                                           J.J. Kent, S.L. Blatt
1975Kl06
             NUPAB
                          245,
                                      133
                                           H.V. Klapdor, M. Schrader, G. Bergdolt, A.M. Bergdolt
1975Ko18
             PRVCA
                          12,
                                     1511
                                           R. Kouzes, W.H. Moore, and erratum PRVCA 13,890
                                           A.W. Kuhfeld, N.M. Hintz
1975Ku14
             NUPAB
                          247,
                                      152
             JINCA
                                           J.J. Labreque, I.L. Preiss, H. Bakhru, R.I. Morse
1975La02
                          37,
                                      623
1975Li14
             JUPSA
                          39.
                                           C.Y. Liu, T.H. Hsue, K. Lin, P.K. Tseng, C.C. Hsu, C.W. Wang
1975Li22
             NUPAB
                          253.
                                      165 J.R. Lien, J.S. Vaagen, A. Graue
1975Lo03
             NUPAB
                          243.
                                      413 M.A. Lone, E.D. Earle, G.A. Bartholemew
                                           D.H. Lueders, J.M. Daley, S.G. Buccino, F.E. Durham, C.E. Hollandsworth,
1975Lu02
             PRVCA
                          11,
                                     1470
                                            W.P. Bucher, H.D. Jones
1975Ma04
             NUPAB
                          237,
                                      285
                                           M.R. MacPhail, R.G. Summers-Gill, see also thesis Winnipeg, and PrvCom
                                            AHW September 1980
1975Ma05
             PRVCA
                          11,
                                      587
                                            G.J. Matthews, F.M. Bernthal, J.D. Immele
1975Ma.A
             P-Petten
                                      655 P. Matusek
                                      401 L.R. Medsker, H.T. Fortune, S.C. Headley
1975Me10
             PRVCA
                          12,
                                      297
                                           L.R. Medsker, H.T. Fortune
1975Me13
             PYLBB
                          58.
             ZPAAD
                          275,
                                       67
                                           B.J. Meijer, J. Konijn
1975Me20
             PRVCA
                          12.
                                     2010
                                           R.A. Meyer, R.G. Lanier, J.T. Larsen
1975Me23
1975Mo26
             PYLBB
                          58,
                                      286
                                            A. Moallem, M.A.M. Shahabuddin, R.G. Markham, H. Nann
1975Mo29
             NUPAB
                          252,
                                      477
                                            P. Morgen, J.H. Onsgaard, B.S. Nielsen, C. Sondergaard
                                           L.G. Multhauf, K.G. Tirsell, S. Raman, J.B. McGrory
1975Mu08
             PYLBB
                          57,
                                       44
1975Mu09
             PRVCA
                          12,
                                            D. Mueller, E. Kashy, W. Benenson, H. Nann
                                       51
1975Na.A
             P-Petten
                                      566
                                           M.R. Najam, A.F.M. Ishaq, M. Anwar, A.M. Khan, J.A. Mirza
1975No.A
             P-Paris
                                      140
                                           J. Nolen
                                      579
1975Pl06
             IJARA
                          26,
                                           J. Plch, J. Zderadicka, O. Dragoun
             NUPAB
                          242,
                                      189
                                           D. Rabenstein, D. Harrach
1975Ra07
1975Ra08
             JPHGB
                          1.
                                      461
                                           C.N. Rao, B.M. Rao, P.M. Rao, K.V. Reddy see 75Ra09
             PRVCA
1975Ra09
                          11.
                                     1735
                                           C.N. Rao, B.M. Rao, K.V. Reddy
1975Re09
             NUPAB
                          249.
                                           W. Reiter, W.H. Breunlich, P. Hille
                                      166
1975Ro01
             PRLTA
                          34,
                                       33
                                           R.G.H. Robertson, W.S. Chien, D.R. Goosman
             NUPAB
1975Ro05
                          240,
                                      22.1
                                           C. Rolfs, W.S. Rodney, S. Durrance, H. Winkler
1975Ro16
             NUPAB
                          246,
                                      380 R. Rousille, J.A. Pinston, H. Börner, H.R. Koch, D. Heck
1975Ro25
             ZEPYA
                          275,
                                       45
                                           S. Roodbergen, H. Visser, W. Molendijk, H.S. Bedet, H. Verheul
                                      232 H. Schmeing, J.C. Hardy, R.L. Graham, J.S. Geiger
1975Sc07
             NUPAB
                          242,
1975Se.A
             BAPSA
                          20.
                                       73 F.J.D. Serduke, W. Henning
                                      391 B. Singh, M.W. Johns
1975Si03
             CJPHA
                          53,
             BAPSA
                          20,
1975Sl.A
                                      560
                                           G.G. Slaughter, S. Raman
             PRVCA
1975Sm02
                                     1392 L.G. Smith, A.H. Wapstra
                          11.
1975Sq01
             NUPAB
                          242,
                                       62 G.T.A. Squier, W.E. Burcham, J.M. Freedman, R.J. Petty, S.D. Hoath, J.S. Ryder
```

1975St07	NUPAB	242,	30	H. Strusny, H. Tyrroff, E. Herrmann, G. Musiol, M.I. Baznat, G. Beyer,
17735107	NOTAD	242,	30	K.Y. Gromov, M. Honusek, T.A. Islamov, V.V. Kuznetsov, HU. Siebert
1975St08	CJPHA	53,	922	W.R. Stott, J.C. Waddington, D.G. Burke, G. Løvhøiden
1975St12	CZYPA	25,	626	H. Strusny, H. Tyrroff, E. Herrmann, G. Musiol
1975Ta06	ZPAAD	272,	301	C.W. Tang, A. Pakkanen, Z.C. Mester, C.D. Coryell, G. Chilosi, A.H. Wapstra,
				K. Bos
1975Ta12	PRVCA	12,		H. Taketani, H.L. Sharma, N.M. Hintz
1975Th04	NUPAB	242,	1	R.C. Thompson, J.S. Boyno, J.R. Huizenga, D.G. Burke, T.W. Elze
1975Th06	NUPAB	245,	444	R. Thompson, A. Ikeda, R.K. Sheline
1975Th08	PRVCA	12,	644	C. Thibault, R. Klapisch, C. Rigaud, A.M. Poskanzer, R. Prieels, L. Lessard,
				W. Reisdorf
1975To05	PRVCA	12,	533	K.S. Toth, W.D. Schmidt-Ott, C.R. Bingham, M.A. Ijaz
1975Un.A	P-Paris		81	UNISOR consortium
1975Va24	PHFEA	10,	133	S. Vaisala, T. Raunemaa, A. Fontell, G. Graeffe, A. Siivola
1975Va.A	P-Leningrac	l	156	V.M. Vachte, N.A. Golovkov, B.S. Dzelepov, R.B. Ivanov, A. Lyushenski,
				M.A. Michailova, A.B. Mozhuchin, B.G. Shumin
1975Vi01	JINCA	37,	11	V.E. Viola, Jr., C.T. Roche, M.M. Minor
1975Vy02	IANFA	39,	1671	Ts. Vylov, I.I. Gromova, V.G. Kalinnikov, V. Kuznetsov, T.M. Muminov,
•				V.A. Morozov, V.I. Fominikh, R.R. Uzmanov, E.R. Shavgulidze
1975We03	CJPHA	53,	101	C. Weiffenbach, S.C. Gujrathi, J.K.P. Lee
1975We10	PHSTB	11,	10	T. Westrom, B. Fant, I. Forsblom, M. Viitasalo
1975We23	ZPAAD	275,	127	L. Westgaard, K. Aleklett, G. Nyman, E. Roeckl
1975We24	PHFEA	10,	167	T. Weckstrom, I. Forsblom, P. Holmberg
1975We.A	P-Petten	-,	749	
1975Wi06	PRVCA	11,		W.M. Wilson, G.E. Thomas, H.E. Jackson
1975Wi08	ZPAAD	272,	291	G. Wirth, N. Kaffrell, K. Chayawattanangkur, G. Herrmann, K.E. Seyb
1975Wi26	PYLBB	59,	142	K.H. Wilcox, R.B. Weisenmiller, G.J. Wozniak, N.A. Jelley, D. Ashery, J. Cerny
1975Yo01	NUPAB	243,	143	N. Yoshikawa
1975Ze.A	JINR-P6-89	,	113	A. Zelinsky, K. Zuber, Y. Zuber, V.V. Kuznetsov, A. Kolachkovsky, A. Lya-
177320.11	JII (II 1 0 0)	2)		tushinsky, Y.V. Norseev, H.G. Ortlepp, I. Penev, A.V. Potempa
				1976
40741100	PD-14G			1976
1976Aj03	PRVCA	14,	767	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern,
-				F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier
1976Al01	NUPAB	257,	490	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath
1976Al01 1976Al16	NUPAB NUIMA	257, 136,	490 323	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger
1976Al01 1976Al16 1976An05	NUPAB NUIMA PYLBB	257, 136, 61,	490	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson
1976Al01 1976Al16	NUPAB NUIMA	257, 136,	490 323	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al
1976Al01 1976Al16 1976An05	NUPAB NUIMA PYLBB	257, 136, 61, 41,	490 323 234	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB	257, 136, 61, 41,	490 323 234 342 106 87	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A	NUPAB NUIMA PYLBB AENGA P-Cargese	257, 136, 61, 41,	490 323 234 342 106	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB	257, 136, 61, 41,	490 323 234 342 106 87	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Her-
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB	257, 136, 61, 41, 256, 13, 260,	490 323 234 342 106 87 1479 269	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB	257, 136, 61, 41, 256, 13, 260,	490 323 234 342 106 87 1479 269	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB	257, 136, 61, 41, 256, 13, 260,	490 323 234 342 106 87 1479 269	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva,
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstet-
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy,
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter,
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl	257, 136, 61, 41, 256, 13, 260, 14, Ridge	490 323 234 342 106 87 1479 269 2095 73	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA	257, 136, 61, 41, 256, 13, 260, 14, Ridge JCL 14,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA	257, 136, 61, 41, 256, 13, 260, 14, Ridge JCL 14,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson,Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis,Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen R.F. Carlton, S. Raman, J.A. Harvey, G.G. Slaughter
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA NUPAB PRVCA	257, 136, 61, 41, 256, 13, 260, 14, Ridge UCL 14,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen R.F. Carlton, S. Raman, J.A. Harvey, G.G. Slaughter R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA NUPAB PRVCA PRVCA PRVCA PRVCA	257, 136, 61, 41, 256, 13, 260, 14, Ridge UCL 14,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen R.F. Carlton, S. Raman, J.A. Harvey, G.G. Slaughter R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale R.E. Chrien, G.W. Cole, G.C. Slaughter, J.A. Harvey
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA NUPAB PRVCA PRVCA PRVCA PRVCA PYLBB	257, 136, 61, 41, 256, 13, 260, 14, Ridge UCL 14, 261, 14, 14, 13, 64,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen R.F. Carlton, S. Raman, J.A. Harvey, G.G. Slaughter R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale R.E. Chrien, G.W. Cole, G.C. Slaughter, J.A. Harvey G.M. Crawley, W.F. Steele, J.N. Bishop, P.A. Smith, S. Maripuu
1976Al01 1976Al16 1976An05 1976Ba99 1976Ba.A 1976Be02 1976Be08 1976Be11 1976Be50 1976Be.A 1976Be.B 1976Bi09	NUPAB NUIMA PYLBB AENGA P-Cargese NUPAB PRVCA NUPAB PRVCA AnRpt Oakl AnRpt MSU PRVCA NUPAB PRVCA PRVCA PRVCA PRVCA	257, 136, 61, 41, 256, 13, 260, 14, Ridge UCL 14, 261, 14, 14, 13, 64,	490 323 234 342 106 87 1479 269 2095 73 11 1586	F. Ajzenberg-Selove, E.R. Flynn, O. Hansen, J.D. Sherman, N. Stern, J.W. Sunier M.M. Aleonard, P. Hubert, L. Sarger, P. Mennrath D.E. Alburger G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson S.A. Baranov, et al T. Batsch, M. Nowicki, J. Żylicz D. Berenyi, G. Hock, A. Menes, G. Szekely, Cs. Ujhelyi, B.A. Zon W. Benenson, A. Guichard, E. Kashy, D. Mueller, H. Nann G. Beyer, A. Jasinski, O. Knotek, H.G. Ortlepp, H.U. Siebert, R. Aelt, E. Herrmann, G. Musiol, H. Tyrroff D. Benson, Jr., P. Kleinheinz, R.K. Sheline, R.B. Shera C.E. Bemis, Jr., C.E. Bemis, D.C. Hensley, P.F. Dittner, R.L. Hahn, R.J. Silva, J.R. Tarrant, L.D. Hunt, and PrvCom AHW July 1981 F.M. Bernthal C.R. Bingham, L.L. Riedinger, F.E. Turner, B.D. Kern, J.L. Weil, K.J. Hofstetter, J. Lin, E.F. Zganjar, A.V. Ramayya, J.H. Hamilton, J.L. Wood, G.M. Gowdy, R.W. Fink, E.H. Spejewski, W.D. Schmidt-Ott, R.L. Mlekodaj, H.K. Carter, K.S.R. Sastry R.F. Casten, D. Burke, O. Hansen R.F. Carlton, S. Raman, J.A. Harvey, G.G. Slaughter R.F. Casten, W.R. Kane, J.R. Erskine, A.M. Friedman, D.S. Gale R.E. Chrien, G.W. Cole, G.C. Slaughter, J.A. Harvey

```
1976Da.C
             P-Cargese
                                       100 J.M. D'Auria, J.W. Grüter, L. Westgaard, G. Nyman, P. Peuser, E. Roeckl,
                                            H. Otto, ISOLDE
1976Da.D
             P-Cargese
                                       262 J.M. D'Auria, L.C. Carraz, P.G. Hansen, B. Jonson, S. Mattsson, H.L. Ravn,
                                            M. Skarestad, L. Westgaard
1976Di15
             NUIMA
                          139,
                                       181 J.S. Dionisio, C. Vieu, C.M. Truong, G. Leur
1976Di.A
             AnRpt OakRidge
                                            P.F. Dittner, R.J. Silva, D.C. Hensley, R.L. Hahn, J.R. Tarrant, L.D. Hunt, and
                                            PrvCom AHW July 1981
1976Do05
             NUPAB
                                       210 P. Doll, G.J. Wagner, K.T. Knopfle
                          263,
1976Ed.A
             P-Cargese
                                       258 M.D. Edmiston, R.A. Warner, W.C. McHarris, W.H. Kelly
1976El11
             PRVCA
                          14,
                                       583 D. Elmore, W.P. Alford
1976El12
             CJPHA
                          54,
                                      1493 D. Elmore, W.P. Alford
1976Fl02
             PRVCA
                          13,
                                       568 E.R. Flynn, J.D. Sherman, N. Stein, D.K. Olsen, P.J. Riley
             PRVCA
                          13,
                                      1049 S. Fortier, H. Laurent, J.P. Schapira, M.S. Antony, A. Knipper
1976Fo01
1976Fr13
             NUIMA
                                       153 J.M. Freeman
                          134,
             USIP-76-09
1976Fr.A
                                             K. Fransson, M. af Ugglas, P. Carle, T. Erikson
1976Ga19
             NUPAB
                          268.
                                            S. Galès, S. Fortier, H. Laurent, J.M. Maison, J.P. Schapira
1976Ga.A
             P-Baku
                                            M. Gasior, B.G. Kalinnikov, T. Kretsu
1976Ge02
             PRVCA
                          13,
                                      1434
                                            W. Gelletly, W.R. Kane, R.F. Casten
1976Ge06
             NUIMA
                          134,
                                       309 H. Genz, J. Reisberg, A. Richter, B.M. Schmitz, G. Schrieder, K. Werner
1976Ge08
             NUPAB
                          267,
                                            H. Genz, A. Richter, B.M. Schmitz, H. Behrens
1976Ge14
             PRVCA
                          14,
                                      1896 R.J. Gehrke, R.G. Helmer, C.W. Reich, R.A. Anderl
1976Go02
             PRVCA
                          13,
                                      1601
                                            G.M. Gowdy, A.C. Xenoulis, J.L. Wood, K.R. Baker, R.W. Fink, J.L. Weil,
                                            B.D. Kern, K.J. Hofstetter, E.H. Spejewski, R.L. Mlekodaj, H.K. Carter,
                                            W.D. Schmidt-Ott, J. Lin, C.B. Ringham, L.L. Riedinger, E.F. Zganjar, K.S. Sas-
                                            try, A.V. Ramayya, J.H. Hamilton
1976Gr09
             NUPAB
                          270.
                                        29 R.C. Greenwood, R.J. Gehrke, R.G. Helmer, C.W. Reich, J.D. Baker
1976Gr19
             PHSTB
                          14.
                                       263 T. Grotdal, L. Guldberg, K. Nybø, T.F. Thorsteinsen
1976Gr20
             APOBB
                          7,
                                       507 K.Y. Gromov, D.T. Dzelev, K. Zuber, Y. Zuber, T.A. Islamov, V.V. Kuznetsov,
                                            H.G. Ortlepp, A.V. Potempa
1976Gr.A
             P-Cargese
                                       428 J.W. Grüter, B. Jonson, O.B. Nielsen
1976Ha29
             PYLBB
                          63,
                                           J.C. Hardy, J.A. Macdonald, H. Schmeing, T. Faestermann, H.R. Andrews,
                                            J.S. Geiger, R.L. Graham, K.P. Jackson
1976Ha36
             ZPAAD
                          278,
                                       183
                                            W. Hartl, J.W. Hammer
             PRVCA
                                       P.E. Haustein, E.M. Franz, S. Katcoff, N.A. Morcos, H.A. Smith, Jr., T.E. Ward
1976Ha39
                          14,
1976He04
             NUPAB
                          258.
                                            R.G. Helmer, R.J. Gehrke, R.C. Greenwood, C.W. Reich, L.D. McIsaac
                          276,
1976He10
             ZPAAD
                                       393
                                            W. Herzog, N. Trautmann, R. Denig, G. Herrmann
1976He.B
             NDSBA
                          17,
                                       287
                                            E.A. Henry
1976Hi08
             CJPHA
                          54,
                                      1360
                                            C.R. Hirning, D.G. Burke
1976Hi09
             NUPAB
                          263,
                                       460
                                            F. Hintenberger, P. von Rossen, B. Schuller, J. Bisping, R. Jahn
1976Hi10
             PRLTA
                          37,
                                            G.T. Hickey, D.C. Weisser, J. Cerny, G.M. Crawley, A.F. Zeller, T.R. Ophel,
                                             D.F. Hebbard
1976Hi14
             JPHGB
                          2,
                                     L143
                                            G.T. Hickey, G.M. Crawley, D.C. Weisser, N. Shikazono
1976Hu01
             PRVCA
                          13,
                                            A. Huck, G.J. Costa, G. Walter, M.M. Aleonard, J. Dalmas, P. Hubert, F. Leccia,
                                            P. Mennrath, J. Vernotte, M. Langevin, J.M. Maison
             PRVCA
1976In06
                          14.
                                       254 P.D. Ingalls
             PRVCA
1976Jo01
                          13,
                                       439 P.L. Jolivette, J.D. Goss, J.A. Bieszk, R.D. Hichwa, C.P. Browne
1976Jo.A
             P-Cargese
                                       277 B. Jonson, E. Hagberg, P.G. Hansen, P. Hornshøj, P. Tidemand-Petersson,
                          260,
1976Ka08
             NUPAB
                                       141 E.J. Kaptein, H.P. Blok, L. Hulstman, J. Blok
             NUPAB
                                       346 R. Kamermans, H.W. Jongsma, T.J. Ketel, R. van der Wey, H. Verheul
1976Ka19
                          266,
1976Ka24
             PRVCA
                          14,
                                      1773 E. Kashy, W. Benenson, D. Mueller, H. Nann, L. Robinson
1976Ka50
             SHIBA
                          24,
                                       247 I. Kakatuse, H. Nakabushi, K. Ogata
1976Ki12
             NUPAB
                          272,
                                       381 K. Kimura, N. Takagi, M. Tanaka
             PRVCA
                                      1544 E. Lund, G. Rudstam
1976Lu02
                          13,
             NUIMA
1976Lu04
                          134,
                                       173 E. Lund, G. Rudstam
             PRVCA
1976Ma03
                          13,
                                       118 J.F. Mateja, G.F. Neal, J.D. Goss, P.R. Chagnon, C.P. Browne
1976Ma16
             PRVCA
                          13,
                                      1117 D.J. Martin, M.R. MacPhail
1976Ma35
             PRVCA
                          14.
                                      1141 L.G. Mann, W.B. Walters, R.A. Meyer
1976Ma40
             PRVCA
                          14,
                                      1320 D.J. Martin, H.C. Evans, J.A. Szucs
```

```
1976Ma49
             ZPAAD
                                      327 P. Maier-Komor, P. Glassel, E. Huengas, H. Rossler, H.K. Vonach, H. Baier
                          278,
             PRVCA
                                           L.R. Medsker
1976Me08
                          13,
                                     1751
1976Mi01
             PRVCA
                                      879
                                            G.F. Millington, R.M. Hutcheon, J.R. Leslie, W.M. McLatchie
                          13,
1976Mo32
             NUPAB
                          272,
                                           S. Mordechai, E. Friedman, A.A. Jaffe, D. Nir, M. Paul
                                       82
1976Na23
             PRVCA
                          14,
                                     2338 H. Nann, D. Mueller, A. Saha, E. Kashy
1976No07
             PYLBB
                          65.
                                      125 J.W. Noé, D.F. Geesaman, P. Paul, M. Suffert
             PRVCA
1976Nu01
                          13,
                                     2017 L.L. Nunnelley, W. Loveland
1976Pa11
             PRVCA
                                     1573 B.P. Pathak, L. Lesard, L. Nikkinen
                          14,
1976Pi04
             NUPAB
                          264,
                                         1 J.A. Pinston, R. Rousille, H. Börner, H.R. Koch
1976Pi13
             NUPAB
                          270,
                                           J.A. Pinston, R. Rousille, H. Börner, W.F. Davidson, P. Jeuch, H.R. Koch,
                                            K. Schreckenbach
1976Ra16
             JPGPE
                                      243 B.M. Rao, C.N. Rao, P.M. Rao, R. Mathews, K.V. Reddy
                          2,
1976Ra33
             CUSCA
                          45,
                                      606 K.V. Ramania, G.K. Raju, K.V. Reddy
1976Ra37
             ZPAAD
                          279.
                                      301 D.G. Raich, H.R. Bowman, R.E. Eppley, J.O. Rasmussen, I. Rezanka
             PRVCA
                                           R.G.H. Robertson, W. Benenson, E. Kashy, D. Mueller
1976Ro04
                          13,
                                      1018
1976Sc13
             NUPAB
                          263.
                                      193
                                            M. Schrader, H. Reiss, G. Rosner, H.V. Klapdor
1976Sh24
             NUIMA
                          135,
                                           J.F. Sharpey-Schafer, A.M. Al Naser, A.H. Behbehani, L.L. Green, A.N. James,
                                            C. Lister, P.J. Nolan
1976S106
             NUPAB
                          274.
                                       93
                                           D.N. Slater, W. Booth
1976Sp08
             NUPAB
                          265,
                                      416 R.J. Sparks
1976Sq01
             PYLBB
                          65,
                                      122
                                           G.T.A. Squier, W.E. Burcham, S.D. Hoath, J.M. Freeman, P.H. Barker, R.J. Petty
1976St10
             NUPAB
                          266,
                                      390
                                           O. Straume, G. Løvhøiden, D.G. Burke
             NUPAB
                                            W.F. Steele, P.A. Smith, J.E. Finck, G.M. Crawley
1976St11
                          266,
                                      424
             BAPSA
                                      658 E. Sugarbaker, W.S. Gray
1976Su.A
                          21,
             BAPSA
                                      984 E. Sugarbaker, W.S. Gray
1976Su.B
                          21,
1976To06
             PYLBB
                                      150 K.S. Toth, M.A. Ijaz, J. Lin, E.L. Robinson, B.O. Hannah, E.H. Spejewski,
                          63,
                                            J.D. Cole, J.H. Hamilton, A.V. Ramayya
             PRVCA
1976Tr01
                          13,
                                       50 R.E. Tribble, R.A. Kenefick, R.L. Spross
             PYLBB
                                      353 R.E. Tribble, J.D. Cossairt, R.A. Kenefick
1976Tr03
                          61.
1976Tr07
             IANFA
                          40,
                                     2026 E.F. Tretyakov, N.F. Myasoedov, A.M. Apalikov, V.F. Konyaev, V.A. Lyubimov,
                                            E.G. Novikov
1976Tu.A
             Th.-Berkeley
                                            D.G. Tuggle
1976Vi02
             PYLBB
                          60,
                                      261
                                           D.J. Vieira, D.F. Sherman, M.S. Zisman, R.A. Gough, J. Cerny
1976Vi.A
                                      462 C. Vieu, J.S. Dionisio, V. Berg, C. Bourgeois
             P-Cargese
                                             1977
             PRVCA
                                         1 F. Ajzenberg-Selove, E.R. Flynn, S. Orbesen, J.W. Sunier
1977Aj01
                          15,
                                            K. Aleklett, E. Lund, G. Nyman, G. Rudstam
1977Al09
             NUPAB
                          281,
1977Al17
             NUPAB
                          285,
                                            K. Aleklett, E. Lund, G. Nyman, G. Rudstam
1977Az01
             PRVCA
                          15,
                                      1847
                                           G. Azuelos, J.E. Kitching, K. Ramavataram
1977Ba10
             CJPHA
                          55,
                                      200 J.W. Barnard, P. Williams, R.C. Barber, S.S. Hague, K.S. Kozier, K.K. Sharma,
                                            H.E. Duckworth
             NUPAB
                          279,
                                       199 P.H. Barker, R.E. White, H. Naylor, N.S. Wyatt
1977Ba16
                          41,
             IANFA
                                      101 I.F. Barchuk, G.V. Belykh, V.I. Golyshkin, A.F. Ogorodnik, M.M. Tuschinski
1977Ba33
1977Ba69
             YAFIA
                          26,
                                      461
                                           S.A. Baranov, V.M. Shatinskii
1977Be03
             PRVCA
                          15.
                                      146 M.J. Bennet, R.K. Sheline
1977Be09
             PRVCA
                          15.
                                      705
                                           C.E. Bemis, Jr., R.L. Ferguson, F. Plasil, R.J. Silva, F. Pleasanton, R.L. Hahn
             PRVCA
1977Be13
                          15,
                                      1187
                                           W. Benenson, D. Mueller, E. Kashy, H. Nann, L.W. Robinson
1977Be15
             ZPAAD
                          281,
                                      145 D. Benson, Jr., P. Kleinheinz, R.K. Sheline
1977Be36
             PRVCA
                                     1146 C.E. Bemis, Jr., P.F. Dittner, R.J. Silva, R.L. Hahn, J.R. Tarrant, L.D. Hunt,
                          16,
1977Bh03
             ZPAAD
                          281.
                                       65 T.S. Bhatia, H. Hafner, R. Haupt, R. Maschuw, G.J. Wagner
             NUPAB
                                      229
1977Bo02
                          275,
                                           D.D. Bogdanov, A.V. Demyanov, V.A. Karnaukhov, L.A. Petrov, A. Płochocki,
                                            V.G. Subbotin, J. Voboril
             PYLBB
1977Bo28
                          71.
                                       67 D.D. Bogdanov, J. Vobořil, A.V. Demyanov, L.A. Petrov
1977Bo31
             IANFA
                          41,
                                            N.A. Bonch-Osmolovskaya, V.M. Gorodzankin, K.Y. Gromov, T. Kretsu,
                                            V.V. Kuznetsov, G. Makarie, A.S. Khamidov, M. Yatiski
```

```
1977Bo32
             IANFA
                                     1189 B. Bogdan, M. Gasior, T. Kretsu, V.V. Kuznetsov, N.A. Lebedev, G.I. Lizurei,
                          41,
                                            G. Makarie, D.G. Popesku, A.S. Khamidov
             PrvCom
                          AHW
                                      Oct V.R. Bom, D. De Bruin
1977Bo.A
1977Ca09
             PRVCA
                                      883 R.F. Carlton, S. Raman, G.G. Slaughter
                          15,
                                      235 R.F. Casten, R.C. Greenwood, M.R. MacPhail, R.E. Chrien, W.R. Kane,
1977Ca19
             NUPAB
                          285,
                                            G.J. Smith, J.A. Cizewski BNL-22352
1977Ca23
             ZPAAD
                          283,
                                      221 C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec
1977Ch06
             ZPAAD
                                          H.C. Cheung, S.I. Hayakawa, J.E. Kitching, J.K.P. Lee, S.K. Mark,
                          280,
1977Co08
             PRVCA
                          15,
                                     1685 J.D. Cossairt, R.E. Tribble, R.A. Kenefick
1977Cr05
             IANFA
                          41,
                                     2032 T. Cretsu, G. Makarie, A.V. Potempa, E. Senyavski
             PRVCA
                                      800 J. Deslauriers, S.C. Gujrathi, S.K. Mark
1977De06
                          15,
             ZPAAD
1977De25
                          283,
                                       33 J. Deslauriers, S.C. Gujrathi, S.K. Mark
1977De32
             JPSLB
                          38.
                                      393 S. Della Negra, B. Lagarde, Y. Le Beyec
             AENGA
                                           A.A. Druzhinin, V.K. Grigorev, A.A. Lbov, S.P. Vesnovskii, N.G. Krylov,
1977Dr07
                          42,
                                            V.N. Polynov
1977Em02
             NUPAB
                          293,
                                      379
                                           R.A. Emigh, R.E. Anderson
1977Er02
             ZPAAD
                          280,
                                           B. Erlandson, J. Lyttkens
1977Fi08
             NUPAB
                          288,
                                          L.K. Fifield, F.P. Calaprice, C.H. Zimmermann, M.J. Hurst, A. Pakkanen,
                                            T.J.M. Symons, F. Watt, K.W. Allen
1977Fl03
             PRVCA
                          15,
                                          E.R. Flynn, J.W. Sunier, F. Ajzenberg-Selove
1977Fo02
             ZPAAD
                          281,
                                       89 B. Fogelberg, W. Maup
             PYLBB
                                      408 H.T. Fortune, R. Middleton, M.E. Coburn, G.E. Moore, S. Mordechai, R.V. Kol-
1977Fo09
                          70,
                                            larits, H. Nann, W. Chung, B.H. Wildenthal
1977Fr20
                          281.
             ZPAAD
                                           T. Freie, H. Lorenz-Wirba, B. Cleff, H.P. Trautvetter, C. Rolfs
1977Ge03
             NUPAB
                          283,
                                       45 J. Genevey-Rivier, A. Charvet, G. Marguier, C. Richard-Serre, J. D'Auria,
                                            A. Huck, G. Klotz, A. Knipper, G. Walter
1977Gu02
             PRVCA
                          15,
                                      894 P. Guilbault, D. Ardouin, R. Tamisier, P. Avignon, M. Vergnes, G. Rotbard,
                                            G. Berrier
1977Ha31
             PRVCA
                          16,
                                     1129 D.R. Haenni, T.T. Sugihara
1977Ha32
             PRVCA
                                     1559 P.E. Haustein, E.M. Franz, R.F. Petry, J.C. Hill
                          16.
1977Ha48
             NUPAB
                          293,
                                        1 E. Hagberg, P.G. Hansen, J.C. Hardy, P. Hornshøj, B. Jonson, S. Mattsson,
                                            P. Tidemand-Petersson
                          147.
                                      425 J.C.P. Heggie, Z.E. Zwitkowski
1977He26
             NUIMA
                                        1 C.L. Hollas, K.A. Aniol, D.W. Gebbie, M. Borsaru, J. Nurzinski, L.O. Bar-
1977Ho02
             NUPAB
                          276,
                                            bopoulos
1977Ho09
             JUPSA
                          42.
                                     1098
                                            M. Hoshi, M. Fujiwara, Y. Yoshisama
1977Ho18
             PRLTA
                          39.
                                      537
                                            P. Hornshøj, H.L. Nielsen, N. Rud
1977Ho25
             NUPAB
                          288,
                                      429
                                           P. Hornshøj, L. Hojsholt-Poulsen, N. Rud
                                            M.A. Ijaz, C.R. Bingham, H.K. Carter, E.L. Robinson, K.S. Toth
1977Ij01
             PRVCA
                          15,
                                     2251
1977Is01
             ZPAAD
                          281,
                                            A.F.M. Ishaq, S. Robertson, W.V. Prestwich, T.J. Kennett
1977Je03
             PRVCA
                          15,
                                     1972
                                           C.M. Jensen, W.R.G. Lanier, G.L. Struble, L.G. Mann, S.G. Prussin
1977Jo03
             PRVCA
                          15,
                                      915
                                           C.H. Johnson, J.K. Bair, C.M. Jones
                                      269
                                            K. Kawade, H. Yamamoto, Y. Ikeda, V.N. Bhoraskar, T. Katoh
1977Ka08
             NUPAB
                          279,
             PRVCA
                          15,
                                      792
                                           G. Kennedy, J. Deslauriers, S.C. Gujrathi, S.K. Mark
1977Ke03
             PRVCA
1977Ko04
                          15,
                                     1947
                                           J.J. Kolata, M. Oothoudt
             PRVCA
                          16.
                                      132 R.L. Kozub, B.E. Cooke, J.R. Leslie, B.C. Robertson
1977Ko10
1977Ko15
             PRVCA
                                      588 B.K.S. Koene, R.E. Chrien
                          16.
1977Ko.A
             PrvCom
                          AHW
                                      Feb B.K. Koene, R.E. Chrien, M. Yachim
                                           T. Kozlowski, T. Kormitski, Y. Lushtshnski, A. Yasinski
1977Ko.B
             P-Tashkent
1977Kr.A
             JINR-P6-10748
                                            T. Kretsu, V.V. Kuznetsov, G. Luzurej, Chan Chen Mo, V.M. Gorodzankin,
1977Li14
             NUPAB
                          286,
                                      263 J. Liptak, K. Kristiakova, J. Kristiak
             PHSTB
                                      205 E. Lingeman
1977Li16
                          15,
             NUPAB
1977Lu06
                          286.
                                      403 E. Lund, K. Aleklett, G. Rudstam
             PRVCA
1977Ma12
                                     1708 J.F. Mateja, C.P. Browne
                          15.
                                           J.A. Macdonald, J.C. Hardy, H. Schmeing, T. Faestermann, H.R. Andrews,
1977Ma24
             NUPAB
                          288,
                                            J.S. Geiger, R.L. Graham, K.P. Jackson
1977Mc05
             NUPAB
                          281,
                                      325 A.B. McDonald, E.D. Earle, M.A. Lone, F.C. Khanna, H.C. Lee
```

```
PRVCA
1977Mc09
                          16,
                                            D.A. McClure, S. Raman, G.C. Slaughter
             PRVCA
1977Me04
                          15,
                                      649
                                            L.R. Medsker, L.H. Fry, Jr., J.L. Yntema
             PRVCA
                                            R.J. Mitchell, T.V. Ragland, R.P. Scharenberg, R.E. Holland, F.J. Lynch
1977Mi10
                          16,
                                      1605
1977Mi.A
             KFK-2438
                                            M. Mirkiditsian
1977Mo13
             NUPAB
                          289,
                                        36
                                            S. Mordechai, M.E. Coburn, G.E. Moore, H.T. Fortune
1977Mu03
             PRVCA
                          15.
                                      1282 D. Mueller, E. Kashy, W. Benenson
1977Na05
             PRVCA
                          15,
                                     1448
                                            A.M. Nathan, D.E. Alburger
             PRVCA
                                            A.M. Nathan, D.E. Alburger, J.W. Olness, E.K. Warburton
1977Na17
                          16,
1977Na24
             NUIMA
                          144,
                                       331 H. Naylor, R.E. White
1977No08
             PYLBB
                          71,
                                       314 J.A. Nolen, T.S. Bhatia, H. Hafner, P. Doll, C.A. Wiedner, G.J. Wagner
1977Nu01
             PRVCA
                          15,
                                       444 L.L. Nunnelley, W.D. Loveland
             PRVCA
                                       730 L.A. Parks, C.N. Davids, R.C. Pardo
1977Pa01
                          15,
                                      1811 R.C. Pardo, C.N. Davids, M.J. Murphy, E.B. Norman, L.A. Parks
1977Pa13
             PRVCA
                          15,
1977Pa18
             PRVCA
                                       370 R.C. Pardo, C.N. Davids, M.J. Murphy, E.B. Norman, L.A. Parks
                          16,
                                        94
                                            M. Paul, A. Murinov, J. Burde, C. Drory, J. Lichtenstadt, S. Mordechai, E. Navon
1977Pa24
             NUPAB
                          289.
1977Pe17
             PRVCA
                          16.
                                      1878
                                            F. Pellegrini, P. Guazzoni, D. Sinclair, E. Garman
1977Pr07
             PRVCA
                          16,
                                      1001
                                            S.G. Prussin, R.G. Lanier, G.L. Struble, L.G. Mann, S.M. Schoenung
1977Ra08
             IJOPA
                          15,
                                       41
                                            K.V. Ramaniah, G.R. Raju, K.V. Reddy
1977Ra17
             JPHGB
                          3,
                                       637
                                            Venkata Ramaniahah, G. Kusa Raju, K. Venkata Reddy
1977Ra18
             JPHGB
                          3,
                                       633
                                            Venkata Ramaniahah, K. Venkata Reddy
1977Re12
             CUSCA
                          46,
                                        95
                                            T.S. Reddy, R. Matthews, K.V. Reddy
1977Re.A
             Th.-Montreal
                                            D.M. Rehfield DABBB 38,4874(1978)
             PRVCA
                          15,
                                      1271
                                            K. Rimawi, R.E. Chrien
1977Ri04
                                       206 D.W.O. Rogers, N. Anyas-Weiss, S.P. Dolan, N.A. Jelley, T.K. Alexander
1977Ro03
             CJPHA
                          55.
                                           A.G. Schmidt, R.L. Mlekodaj, E.L. Robinson, F.T. Avignone, J. Lin,
1977Sc03
             PYLBB
                          66,
                                            G.M. Gowdy, J.L. Wood, R.W. Fink
1977Sc21
             ZPAAD
                          283,
                                            F. Schussler, J. Blachot, E. Monnand, J.A. Pinston, B. Pfeiffer, K. Hawerkamp,
                                            R. Stippler
1977Sh04
             CJPHA
                                            S.H. Sharma, K.S. Kozier, J.W. Barnard, R.C. Barber, S.S. Haque, H.E. Duck-
                          55,
                                       506
1977Sh06
             PRVCA
                          15,
                                      903
                                            J.D. Sherman, D.L. Hendrie, M.S. Zisman
1977Sh08
             PYLBB
                          67,
                                       2.75
                                            J.D. Sherman, E.R. Flynn, O. Hansen, N. Stein, J.W. Sunier
1977Sh12
             CJPHA
                          55,
                                      1360 K.S. Sharma, J.O. Meredith, R.C. Barber, K.S. Kozier, S.S. Hague, J.W. Barnard,
                                            F.C.G. Southon, P. Williams, H.E. Duckworth
             CJPHA
1977So02
                          55,
                                       383
                                            F.C.G. Southon, J.O. Meredith, R.C. Barber, H.E. Duckworth
             NUPAB
                          281,
                                       240
                                            M. Stefanon, F. Corvi
1977St10
1977St15
             PRVCA
                          16.
                                      574
                                            M.L. Stelts, J.C. Browne
1977St22
             CJPHA
                          55,
                                      1687
                                            O. Straume, D.G. Burke
1977Tr03
             PRVCA
                          15,
                                     2028
                                            R.E. Tribble, J.D. Cossairt, R.A. Kenefick
1977Tr05
             PRVCA
                          16,
                                      917
                                            R.E. Tribble, J.D. Cossairt, D.P. May, R.A. Kenefick
1977Tr07
             PRVCA
                                            R.E. Tribble, J.D. Cossairt, D.P. May, R.A. Kenefick
                          16,
                                      1835
1977Tu01
             ZPAAD
                          280,
                                       309
                                            T. Tuurnala, K. Katajanheimo, E. Hammaren
1977Vo02
             NUPAB
                          278,
                                       189
                                            H. Vonach, P. Glässel, E. Huenges, P. Maier-Komor, H. Rösler, H.J. Scheerer,
                                            H. Paul, D. Semrad
1977Vy02
             IANFA
                          41,
                                      1634 Ts. Vylov, N.A. Golovkov, B.S. Dzelepov, R.B. Ivanov, M.A. Mikhailova,
                                            Y.V. Norseev, V.G. Shumin
1977Wh01
             NUPAB
                          276.
                                       333 R.E. White, H. Naylor
                                       365 R.E. White, H. Naylor
1977Wh03
             AUJPA
                          30.
1977Ya07
             JUPSA
                          43,
                                            H. Yamamoto, K. Kawade, K. Ikeda, T. Katoh
1977Zo02
             PRVCA
                                       408 D.R. Zolnowski, T.T. Sugihara
                          16,
                                             1978
1978Aj01
             PRVCA
                                       960 F. Ajzenberg-Selove, E.R. Flynn, J.W. Sunier, D.L. Hanson
                          17,
             PRVCA
1978Al18
                          18,
                                       462 K. Aleklett, E. Lund, G. Rudstam
             PRVCA
1978Al29
                          18.
                                     2.72.7
                                            D.E. Alburger, S. Mordechai, H.T. Fortune, R. Middleton
1978An10
             NUPAB
                          303,
                                            K.A. Aniol, D.W. Gebbie, C.L. Hollas, J. Nurzinski
1978An14
             PHSTB
                          18,
                                            G. Andersson, M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson, P. Tidemand-
                                            Petersson
```

1978Ar12	PRVCA	18,	1201	D. Ardouin, C. Lebrun, F. Guilbault, B. Remand, E.R. Flynn, D.L. Hanson, S.D. Orbesen, M.N. Vergnes, G. Rotbard, K. Kumar
1978As06	ZPAAD	288,	45	M. Ashgar, A. Emsallem, E. Hagberg, B. Jonson, P. Tidemand-Petersson
1978Az01	PRVCA	17,	443	G. Azuelos, G.R. Rao, P. Taras
1978Ba30	IANFA	42,	205	Y.A. Badenko, K.I. Derebshova, V.N. Kushmin, Y.A. Nemilov, L.M. Solin, E.D. Teterin, V.S. Romanov
1978Ba44	PRLTA	41,	738	P.A. Baisden, R.E. Leber, M. Nurmia, J.M. Nitschke, M. Michel, A. Ghiorso
1978Ba.C	P-Alma Ata		123	S.A. Baranov, V.M. Shatinskii, L.V. Chistyakov, N.I. Aleshin
1978Be09	PRVCA	17,	529	G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, J. Kalifa, R. Seltz, H.L. Sharma
1978Be22	ZPAAD	285,	405	D. Benson, Jr., P. Kleinheinz, R.K. Sheline, E.B. Shera
1978Be26	PRVCA	17,	1939	W. Benenson, E. Kashy, A.G. Ledebuhr, R.C. Pardo, R.G.H. Robertson, L.W. Robinson
1978Bh02	PYLBB	76,	562	T.S. Bhatia, H. Hafner, J.A. Nolen, Jr., W. Saathoff, R. Schuhmacher, R.E. Tribble, G.J. Wagner, C.A. Wiedner
1978Bo20	NUPAB	303,	145	D.D. Bogdanov, A.V. Demyanov, V.A. Karnaukhov, L.A. Petrov, J. Voboril
1978Bo32	NUPAB	307,	421	D.D. Bogdanov, A.V. Demyanov, V.A. Karnaukhov, M. Nowicki, L.A. Petrov,
15,702002	1,01112	557,		J. Voboril, A. Płochocki
1978Bo.A	P-Alma Ata		54	D.D. Bogdanov, I. Bobordzil, A.V. Demianov, L.A. Petrov
1978Bu18	PRVCA	18,		D.G. Burke, G. Løvhøiden, E.R. Flynn, J.W. Sunier
1978Ca11	ZPAAD	287,	71	C. Cabot, S. Della Negra, C. Deprun, H. Gauvin, Y. Le Beyec
1978Ch22	MTRGA	14,		P. Christmas, P. Cross
1978Co.A	AnRpt Texas	*	137	J.D. Cossairt, D.P. May
1978Cr02	IANFA	42,	56	T. Cretzu, V.V. Kuznetsov, G. Luzurej, V.M. Gorodzankin, G. Macarie
1978Cr03	ZPAAD	287,	45	
1978Da04	PRVCA	17,	1815	C.N. Davids, D.F. Geesaman, S.L. Tabor, M.J. Murphy, E.B. Norman,
				R.C. Pardo
1978Da07	NUPAB	301,	397	J.M. D'Auria, J.W. Grüter, E. Hagberg, P.G. Hansen, J.C. Hardy, P. Hornshøj, B. Jonson, S. Mattsson, H.L. Ravn, P. Tidemand-Petersson
1978De18	NUPAB	302,	186	P. Decowski, W. Benenson, B.A. Brown, A.A. Rollefson
1978De.A	AnRpt Berke	eley		R.J. De Meyer, D.P. Stahel, A.N. Bice, R. Jahn, J. Cerny
1978Di09	YAFIA	28,	273	R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya, G.A. Dorokhova, see also report SFTI1 Suchumi
1978Do06	ZPAAD	286,	107	P.H. Do, R. Chery, H.G. Börner, W.F. Davidson, J.A. Pinston, R. Rousille, K. Schreckenbach, H.R. Koch, H. Seyfarth, D. Heck
1978Du06	ZPAAD	287,	165	F. Dubbers, L. Funke, P. Kemnitz, G. Winter, S. Elfstrom, T. Lindblad, C.G. Linden
1978Ek02	PHSTB	18,	51	C. Ekstrom, S. Ingelman, G. Wannberg, M. Skarestad
1978El11	PRVCA	18,	2713	Y.A. Ellis, K.S. Toth, H.K. Carter
1978Fi02	PRVCA	17,		R.B. Firestone, R.A. Warner, W.C. McHarris, W.H. Kelly
1978Ga07	YAFIA	27,		Yu. P. Gangrskii, G.M. Marinescu, M.B. Miller, V.N. Samosyuk, I.F. Kharisov
1978Ge01	NUPAB	295,	221	C.P. Gerner, J. Van Pelt, O.W. De Ridder, J. Blok
1978Go15	NUPAB	312,	56	G.M. Gowdy, J.L. Wood, R.C. Fink
1978Gr10	NUPAB	303,	265	H.C. Griffin, I. Ahmad, A.M. Friedman, L.E. Glendenin
1978Gr13	YAFIA	27,	1421	I.I. Gromova, T. Kretsu, V.V. Kuznetsov, G.I. Lizurei, N.A. Lebedev,
17700113	17 11 17 1	27,	1721	V.M. Gorozhankin, G. Macarie
1978Gu14	ZPAAD	287,	271	H.H. Guven, B. Kardon, H. Seyfarth
1978Ha07	PYLBB	73,	127	O. Hausser, T.K. Alexander, T. Faestermann, D. Horn, D. Ward, H.R. Andrews,
				I.S. Towner
1978Ha11	NUPAB	296,	251	S.I. Hayakama, I.R. Hyman, J.K.P. Lee
1978Ha14	PRVCA	17,	1414	J.E. Halverson, W.H. Johnson, Jr.
1978Ha52	HYIND	4,	196	O. Häusser, T. Faestermann, I.S. Towner, T.K. Alexander, H.R. Andrews, J.R. Beene, D. Horn, D. Ward, C. Broude
1978Hi06	NUPAB	308,	61	F. Hintenberger, R. Schonhagen, P. von Rossesn, B. Schuller, F.E. Blumenberg, P.D. Eversheim, R. Gorgen
1978Hu06	CJPHA	56,	936	H. Huang, B.P. Pathek, J.K.P. Lee
1978Ik02	PYLBB	74,	326	H. Ikegami, T. Yamazaki, S. Morinobu, I. Katayama, M. Fujiwara, Y. Fujita, N. Koori
1978Ik03	JUPSA	45,	725	Y. Ikeda, H. Yamamoto, K. Kawade, T. Katoh, K. Nagahara

1978Ja06	JPHGB	4,	579	A.N. James, J.F. Sharpey-Schafer, A.M. Al Naser, A.H. Behbehani, C.J. Lister,
				P.J. Nolan, P.H. Barker, W.E. Burcham
1978Ka10	JUPSA	44,	25	M. Kanazawa, S. Ohya, T. Tamura, Z. Ishibashi, N. Mutsuro
1978Ka12	PRVCA	17,		R. Kamermans, J. Van Driel, H.P. Blok, P.J. Blankhorst
1978Ke06	PRVCA	17,	1929	G.J. KeKelis, M.S. Zisman, D.K. Scott, R. Jahn, D.J. Vieira, J. Cerny,
107017 10	DDIVCA	1.0	1020	F. Ajzenberg-Selove
1978Ke10	PRVCA	18,	1938	B.D. Kern, F. Gabbard, R.G. Kruzek, M.R. McPherson, K.K. Sekharan,
1079V-24	NII IDA D	207	71	F.D. Snyder
1978Ko24	NUPAB	307,		R.T. Kouzes, D. Mueller
1978Ko27	NUPAB	309,		R.T. Kouzes, P. Kutt, D. Mueller, R. Sherr
1978Ko28	PRVCA ZPAAD	18,		R.T. Kouzes, D. Mueller, C. Yu E. Koglin, C. Lyng, C. Siggert, B. Dooker, K.D. Wyngob, H. Wellnik
1978Ko29		288,	319	E. Koglin, G. Jung, G. Siegert, R. Decker, K.D. Wunsch, H. Wollnik
1978Le.A	Table of Is	otopes		C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. Shihab-
1978Lo07	NUPAB	202	5.1	Eldin, L.J. Jardine, J.K. Tuli, A.B. Buyrn
1978L007 1978L013	JINCA	302, 40,		G. Løvhøiden, O. Straume, D.G. Burke R.W. Lougheed, J.F. Wild, E.K. Hulet, R.W. Hoff, J.H. Landrum
1978L013	JUPSA	40, 44,		Z. Matumoto, T. Tamura
1978Ma18	NUPAB	301,	213	J.W. Maas, E. Somorjai, H.D. Graber, C.A. Vandenwijngaard, C. Van der Leun,
19/61/1423	NOTAD	301,	213	P.M. Endt
1978Ma24	NUPAB	301,	237	J.W. Maas, A.J.C. Holvast, A. Baghus, H.J.M. Aarts, P.M. Endt
1978Mo12	NUPAB	305,	29	L.A. Montestraque, M.C. Cobian Rozak, G. Szaloky, J.D. Zumbro, S.E. Darden
1978Mu05	PRVCA	17,	1574	M.J. Murphy, C.N. Davids, E.B. Norman, R.C. Pardo
1978Na02	PRVCA	17,	830	F. Naulin, C. Détraz, M. Bernas, E. Kashy, M. Langevin, F. Pougheon, P. Roussel
1978Na11	PRVCA	18,		H. Nann, A. Saha, S. Raman
1978No03	PRVCA	17,	2176	E.B. Norman, C.N. Davids, M.J. Murphy, R.C. Pardo
1978No05	PRVCA	18,	102	E.B. Norman, C.N. Davids
1978Pa11	PRVCA	18,	1249	R.C. Pardo, E. Kashy, W. Benenson, L.W. Robinson
1978Pa12	PRVCA	18,	1277	I. Paschopoulos, E. Müller, H.J. Körner, I.C. Oelrich, K.E. Rehm, H.J. Scheerer
1978Pe08	NUPAB	302,	1	J.G. Pengra, H. Genz, R.W. Fink
1978Pf01	PRLTA	41,	63	L.P. Pfeiffer, A.P. Mills, Jr., R.S. Raghavan, F. Achandros
1978Ra15	PRVCA	18,	1085	G.R. Rao, G. Azuelos, J.C. Kim, J.P. Martin, P. Taras
1978Ra16	PRVCA	18,	1158	S. Raman, R.F. Carlton, G.G. Slaughter, M.R. Meder
1978Re01	ZPAAD	284,	403	T.S. Reddy, R. Matthews, K.V. Reddy
1978Ro01	PRVCA	17,	4	R.G. HRobertson, E. Kashy, W. Benenson, A. Ledebuhr
1978Ro03	ZPAAD	284,	407	A. Robertson, T.J. Kennett, W.V. Prestwich
1978Ro08	PRVCA	17,	1535	R.G.H. Robertson, T.L. Khoo, G.M. Crawley, A.B. McDonald, E.G. Adelberger, S.J. Freedman
1978Ro14	PRVCA	18,	86	G. Rotbard, L. Larana, M. Vergnes, G. Berrier, J. Kalifa, F. Guilbault,
		,		R. Tamisier
1978Ro19	PYLBB	78,	393	E. Roeckl, R. Kirchner, O. Klepper, G. Nyman, W. Reisdorf, D. Schardt,
		,		K. Wien, R. Fass, S. Mattsson
1978Sc26	ZPAAD	288,	189	U.J. Schrewe, W.D. Schmidt-Ott, RD. von Dincklage, E. Georg, P. Lemmertz,
				H. Jungclas, D. Hirdes
1978Se04	PRVCA	17,	1919	R.R. Sercely, R.J. Peterson, E.R. Flynn
1978Se07	PRLTA	41,	1589	K. Seth, H. Nann, S. Iversen, M. Kaletka
1978Sh11	NUPAB	304,	40	S. Shastry, R.A. Emigh, R.J. Peterson, R.E. Anderson
1978St02	ZPAAD	284,	95	R. Stippler, F. Münnich, H. Schrader, J.P. Bocquet, M. Asghar, G. Siegert,
10705:25	NITINGA	155	252	R. Decker, B. Pfeiffer, H. Wollnik, E. Monnand, F. Schussler
1978St25	NUIMA	155,	253	H.L. Stelts, R.E. Chrien
1978Su03	ZPAAD	287,	287	K. Sümmerer, N. Kaffrell, H. Otto, P. Peuser, N. Trautmann
1978Sz04	PRVCA	17,	2253	A. Szanto De Toledo, H.V. Klapdor, H. Hafner, W. Saathoff, E.M. Szanto, M. Schrader
1978Sz09	JPHGB	4,	L187	A. Szanto De Toledo, H.V. Klapdor, H. Hafner, W. Saathoff, E.M. Szanto,
				M. Schrader, H. Dias
1978Ta10	PRVCA	18,	1064	R.W. Tarara, J.P. Zumbro, C.P. Browne
1978Tu04	PHSTB	18,	31	T. Tuurnala, R. Katajanheimo, O. Heinonen
1978Va04	NUPAB	295,	211	J. Van Pelt, C.P. Gerner, O.W. De Ridder, J. Blok
1978Ve10	JPSLB	39,	291	L. Vergnes, G. Rotbard, J. Kalifa, G. Berrier, J. Vernotte, Y. Deschamps, R. Selz
1978We12	PHSTB	18,	275	T. Weckstrom

```
1978We14
             NUPAB
                          308,
                                      222 D.C. Weisser, A.F. Zeller, T.R. Ophel, D.F. Hebbard
             PRVCA
1978Wi04
                                      401
                                           D.H. Wilkinson, A. Gallmann, D.E. Alburger
                          18,
1978Wo01
             PRVCA
                          17,
                                           C. Woods
                                       66
1978Wo15
             PRVCA
                          18,
                                     2328 F.K. Wohn, W.L. Talbert, Jr.
1978Ya07
             PRVCA
                          17.
                                     2061
                                            Y. Yamazaki, R.K. Sheline, E.B. Shera corr PRVCA 18,2450
1978Ze04
             PRVCA
                          18.
                                     2122 B. Zeidman, J.A. Nolen, Jr.
1978Zg.A
             PrvCom
                          AHW
                                      Sep E.F. Zganjar, W.R. Kane, G.J. Smith, J.A. Cizewski
                                            1979
                                     1089 I.A. Adam, A.V. Budzyak, M. Gonusek, V.M. Gorodzhankin, B.S. Dzele-
1979Ad08
             IANFA
                          43,
                                            pov, V.G. Kalinnikov, A.V. Kudryavtseva, V.V. Kuznetsov, V.I. Stegaylov,
                                            A. Shshalek
1979Ah03
             PRVCA
                          20.
                                      290 I. Ahmad, S.W. Yates, R.K. Sjoblom, A.M. Friedman
1979Ai02
             PRVCA
                          19,
                                     1742 F. Ajzenberg-Selove, E.R. Flynn, D.L. Hanson, S. Orbesen
1979Ai03
             PRVCA
                          19.
                                     2068 F. Ajzenberg-Selove, E.R. Flynn, D.L. Hansen, S. Orbesen
1979Al04
             JPHGB
                          5,
                                           A.M. Al Naser, A.H. Behbehani, P.A. Butler, L.L. Green, A.N. James, C.J. Lis-
                                            ter, P.J. Nolan, N.R.F. Ramsmo, J.F. Sharpey-Schafer, H.M. Sheppard, L.H. Zy-
                                            ber, R. Zyber
1979Al05
             ZPAAD
                          290,
                                      173
                                           K. Aleklett, E. Lund, G. Rudstam
                                           W.P. Alford, R.E. Anderson, P.A. Batay-Csorba, R.A. Emigh, D.A. Lind,
1979Al07
             NUPAB
                          321,
                                       45
                                            P.A. Smith, C.D. Zafiratos
1979Al16
             ZPAAD
                          291,
                                           G.D. Alkhazov, L.K. Batist, E.Y. Berlovich, Y.S. Blinnikov, Y.V. Yelkin,
                                            K.A. Mezilev, Y.N. Novikov, V.N. Pantelejev, A.G. Poljakov, N.D. Schigolev,
                                            V.N. Tatasov, V.P. Afanasjev, K.Y. Gromov, M. Jachim, M. Janicki, V.G. Kalin-
                                            nikov, J. Kormicki, A. Potempa, E. Rurarz, F. Tarkanyi, Y.V. Yushkievich
1979Al19
             NUPAB
                          330.
                                       77 W.P. Alford, R.E. Anderson, P.A. Batay-Csorba, R.A. Emigh, D.A. Lind,
                                            P.A. Smith, C.D. Zafiratos
1979An36
             IANFA
                                     1076 N.M. Antoneva, V.M. Vinogradov, E.P. Grigorev, P.P. Dimitrev, A.V. Zolotavin,
                                            G.S. Katichin, N.N. Krasnov, V.M. Makarov
1979Ay01
             PYLBB
                          82,
                                       43 J. Äystö, D.M. Moltz, M.D. Cable, R.D. Von Dincklage, R.F. Parry,
                                            J.M. Wouters, J. Cerny
1979Ba06
             ZPAAD
                          289.
                                      325 J.N. Barkman, J.E. McFee, T.J. Kennett, W.V. Prestwich
                          325,
             NUPAB
1979Ba31
                                      305 G.C. Ball, W.G. Davies, J.S. Forster, H.R. Andrews, D. Horn, W. McLatchie
1979Ba67
             AENGA
                          47,
                                      404 S.A. Baranov, V.M. Shatinskii, L.V. Chistyakov
                                           Z. Berant, Y. Birenbaum, R. Moreh, see NUIMA 166(1979)81, and PrvCom
1979Be.A
             P-Brookhaven
                                      561
                                            AHW February 1980
1979Bo37
             ZENAA
                          34,
                                      1536
                                           T. Borello-Lewin, O. Dietsch
1979Br05
             ZPAAD
                          289,
                                            P. Brodeur, B.P. Pathek, S.K. Mark
1979Br19
             PRVCA
                                            R.E. Brown, J.A. Cizewski, E.R. Flynn, J.W. Sunier
                          20,
1979Br25
             NUIMA
                          166,
                                           F. Braumandl, K. Schreckenbach, T. von Egidy
1979Br26
             ZPAAD
                          292,
                                      397 F. Braumandl, T. von Egidy, D.D. Warner
1979Br.A
             Th.-McMaster
                                            P.M. Brewste
1979Br.B
             AnRpt NotrDame
                                            C.P. Browne, et al
1979Bu05
             NUPAB
                                       77 D.G. Burke, G. Løvhøiden, E.R. Flynn, J.W. Sunier
                          318.
             NUPAB
1979Ca02
                          316.
                                       61 R.F. Casten, M.R. MacPhail, W.R. Kane, D. Breitig, K. Schreckenbach,
                                            J.A. Cizewski
1979Da04
             PRVCA
                          19.
                                     1463 C.N. Davids, C.A. Gagliardi, M.J. Murphy, E.B. Norman
1979Da.A
             P-Lansing
                                      419 C.N. Davids
             NUPAB
                          332.
                                      382 K.R.S. Devan, C.E. Brient
1979De44
1979Do09
             PRVCA
                                      1112 R.E. Doebler, W.M. McHarris, W.H. Kelly
                          20.
1979Du02
             NUPAB
                          315,
                                      317 F. Dubbers, L. Funke, P. Kemnitz, K.D. Schilling, H. Strusny, E. Will, G. Winter,
                                            M.K. Balodis
1979El11
             ZPAAD
                          293,
                                      261
                                           K. Elix, H.W. Becker, L. Buchmann, J. Görres, K.U. Kettner, M. Wiescher,
                                            C. Rolfs
1979Fi07
             PYLBB
                                       36 R.B. Firestone, R.C. Pardo, W.C. McHarris
                          89.
1979FI02
             PRVCA
                          19,
                                      355
                                           E.R. Flynn, D.L. Hansen, R.A. Hardekopf
1979Fo09
             NUPAB
                          321.
                                      137
                                            S. Fortier, S. Galès
1979Fo10
             NUPAB
                          323,
                                           B. Fogelberg, P. Carlé
```

1	1979Ge02	PRVCA	19,	1938	D.F. Geesaman, R.L. McGrath, J.W. Noé, R.E. Malmin
1	1979Ha09	ZPAAD	290,	113	H.H. Hansen, E. Cellen, G. Grosse, D. Mouchel, A. Larsen, R. Vaninbroukx
1	1979На10	NUPAB	318,	29	E. Hagberg, P.G. Hansen, P. Hornshøj, B. Jonson, S. Mattsson, P. Tidemand-Petersson, ISOLDE
1	1979Ha26	PRVCA	19,	2332	P.E. Haustein, HC. Hseuh, R.L. Klobuchar, E.M. Franz, S. Katcoff, L.K. Peker
1	1979Ha32	PRVCA	20,	345	J.E. Halvarson, W.H. Johnson, Jr.
1	1979Но10	ZPAAD	291,	53	S. Hofmann, W. Faust, G. Münzenberg, W. Reisdorf, P. Armbruster, K. Güttner, H. Ewald
1	1979Но27	NUPAB	330,	429	J. Honkanen, M. Kortelahti, K. Valli, K. Eskola, A. Hautojärvi, K. Vierinen
1	1979Ik04	NUPAB	329,	84	H. Ikegami, T. Yamazaki, S. Morinobu, I. Katayama, M. Fujiwara, Y. Fujita, H. Taketani, M. Adachi, T. Matsuzaki, N. Koori, M. Matoba
1	1979Ik06	JUPSA	47,	1039	Y. Ikeda, H. Yamamoto, K. Kawade, T. Takeuchi, T. Katoh, T. Nagahara
1	1979Ik07	JUPSA	47,	1389	Y. Ikeda, H. Yamamoto, K. Kawade, T. Katoh, T. Nagahara
1	1979Io01	NUPAB	313,	283	V.A. Ionescu, J. Kern, R.F. Casten, W.R. Kane, I. Ahmad, J. Erskine, A.M. Friedman, K. Katori
1	1979Ja21	NUPAB	325,	337	J. Jänecke, F.D. Becchetti, C.E. Thorn
1	1979Ka.A	P-Lansing		39	E. Kashy, W. Benenson, J.A. Nolen, Jr., R.G.H. Robertson
1	1979Ka.B	PrvCom	NDG	Sep	N. Kaffrell
1	1979Ke02	ZPAAD	289,	407	U. Keyser, H. Berg, F. Münnich, K. Hawerkamp, H. Schrader, B. Pfeiffer, E. Monnand
1	1979Ke.D	P-Brookhave	n	646	M.J. Kenny, M.L. Stelts, R.E. Chrien
1	1979Ko10	CJPHA	57,	266	K.S. Kozier, K.S. Sharma, R.C. Barber, J.W. Barnard, R.J. Ellis, V.P. Derenchuk
1	1979Ko.B	P-Lansing		45	R.T. Kouzes, R. Sherr
1	1979Lu01	NUPAB	313,	191	J. Lukasiak, R. Kaczarowski, J. Jastrzebski, S. André, J. Treherne
1	1979Me13	NUPAB	324,	335	T.C. Meyer
1	1979Mo02	PRLTA	42,	43	D.M. Moltz, J. Äystö, M.D. Cable, R.D. von Dincklage, R.F. Parry, J.M. Wouters, J. Cerny
1	1979Pa14	NUPAB	331,	16	V. Paar
1	1979Pe17	NUPAB	332,	95	P. Peuser, H. Otto, N. Kaffrell, G. Nyman, E. Roeckl
1	1979Pi08	NUPAB	321,	25	J.A. Pinston, W. Mampe, R. Rousille, K. Schreckenbach, D. Heck, H.G. Börner, H.R. Koch, S. Andre, D. Barnéoud
1	1979Pl06	NUPAB	332,	29	A. Płochocki, G.M. Gowdy, R. Kirchner, O. Klepper, W. Reisdorf, E. Roeckl, P. Tidemand-Petersson, J. Żylicz, U.J. Schrewe, R. Kantus, RD. von Dincklage, W.D. Schmidt-Ott
1	1979Pr15	ZENAA	34,	387	HJ. Probst, C. Alderliesten, P. Jahn
	1979Ry.A	P-Lansing	,	249	A. Rytz
	1979Sa.A	AnRpt KVI			A. Saha, R.H. Siemsen, J.W. Smits, J. Van Popta, and PrvCom AHW
	1979Sc09	NUPAB	318,	253	KH. Schmidt, W. Faust, G. Münzenberg, HG. Clerc, W. Lang, K. Pielenz, D. Vermeulen, H. Wohlfarth, H. Ewald, K. Güttner
1	1979Sc11	ZPAAD	290,	359	F. Schussler, J. Blachot, E. Monnand, B. Fogelberg, S.H. Feenstra, J. van Klinken, G. Jung, K.D. Wünsch
1	1979Sc22	NUPAB	326,	65	D. Schardt, R. Kirchner, O. Klepper, W. Reisdorf, E. Roeckl, P. Tidemand-Petersson, G.T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, G. Nyman
1	1979Sc.A	NDSBA	26,	81	M.R. Schmorak
	1979Sw01	NUIMA	159,	407	Z.E. Switkowski, R.J. Petty, J.C.P. Heggie, G.J. Clark
1	1979Ta22	JUPSA	47,	1735	Y. Tagishi, K. Katori, Y. Toba, M. Sasagase, M. Sato, T. Mikumo
1	1979Ta.B	BAPSA	24,	836	R.W. Tarara, J.D. Zumbro, C.P. Browne
	1979To06	PRVCA	19,	2399	K.S. Toth, M.A. Ijaz, C.R. Bingham, L.L. Riedinger, H.K. Carter, D.C. Sousa
1	1979To18	PRVCA	20,	1902	K.S. Toth, Y.A. Ellis, D.C. Sousa, H.K. Carter, D. Sen, E.F. Zganjar
	1979Ve.A	P-Lansing		431	J. Verplancke, D. Vandeplassche, M. Huyse, K. Cornelis, G. Lhersonneau
1	1979Vi01	PRVCA	19,	177	D.J. Vieira, R.A. Gough, J. Cerny
1	1979Vo05	PRVCA	20,	944	T. von Egidy, J.A. Cizewski, C.M. McCullagh, S.S. Malik, M.L. Stelts, R.E. Chrien, D. Breitig, R.F. Casten, W.R. Kane, G.J. Smith
1	1979Wa04	NUPAB	316,	13	D.D. Warner, W.F. Davidson, H.G. Börner, R.F. Casten, A.I. Namenson
	1979Wa22	JPHGB	5,	1723	D.D. Warner, W.F. Davidson, W. Gelletly
	1979We02	NUPAB	313,	385	D. Weber, G.M. Crawley, W. Benenson, E. Kashy, H. Nann
	1979We07	PRVCA	20,	115	H. Weigmann, S. Raman, J.A. Harvey, R.L. Macklin, G.G. Slaughter
			-		-

10001101				
1980Ad04	ZPAAD	295,	251	M. Adachi, A. Muroi, T. Matsuzaki, H. Taketani
1980Al02	PRVCA	21,	705	D.E. Alburger, P. Richards, T.H. Ku
1980Al14	ZPAAD	295,	305	G.D. Alkhazov, E.Y. Berlovich, K.A. Mezilev, Y.N. Novikov, V.N. Pantelejev,
				A.G. Poljakov, K.Y. Gromov, V.G. Kalinnikov, J. Kormicki, A. Potempa, E. Ru-
1000 1115	504 A D	205	221	rarz, F. Tarkanyi
1980A115	ZPAAD	295,	331	K. Aleklett, P. Hoff, E. Lund, G. Rudstam
1980An.A	P-Berkeley		134	M.S. Antony, A. Huck, G. Klotz, A. Knipper, C. Miehé, G. Walter
1980Ba.A	ThUtrecht			J.R. Balder
1980Bl.A	ThGiessen	2.40	<i>C</i> 1	A. Blönnigen Diplomarbeit
1980Br23	NUPAB	349,	61	
1000D04	LANIEA	4.4	70	L.L. Riedinger
1980Bu04	IANFA	44,	79	A.V. Budzyak, T. Kretsu, V.V. Kuznetsov, N.A. Lebedev, G.I. Lizurei,
1000D ₃₁ 15	DDVCA	22	1100	Y.V. Yushkvich, M. Yanitski
1980Bu15	PRVCA	22,	1180	G.R. Burleson, G.S. Blanpied, G.H. Daw, A.J. Viescas, C.L. Morris,
				H.A. Thiessen, S.J. Greene, W.J. Braithwaite, W.B. Cottingame, D.B. Holtkamp,
1980Ca02	PRVCA	21	65	I.B. Moore, C.F. Moore R.F. Casten, G.J. Smith, M.R. MacPhail, D. Breitig, W.R. Kane, M.L. Stelts,
1960Ca02	FRVCA	21,	03	S.F. Mughabghab, J.A. Cizewski, H.G. Börner, W.F. Davidson, K. Schrecken-
				bach
1980De02	ZPAAD	294,	35	R. Decker, K.D. Wünsch, H. Wollnik, E. Koglin, G. Siegert, G. Jung
1980De35	PRVCA	22,	2163	
1980Di07	PRVCA	21,	2103	A.C. Di Rienzo, H.A. Enge, D.B. Gazes, M.K. Salomaa, A. Sperduto, W. Schier,
1700107	TRVCIT	21,	2101	H.E. Wegner
1980Du02	ZPAAD	294,	107	J.P. Dufour, A. Fleury, F. Hubert, Y. Llabador, M.B. Mahourat, R. Bimbert,
17002402		271,	107	D. Gardes
1980Ew03	ZPAAD	296,	223	G.T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson
1980Ga07	YAFIA	31,	306	Yu. P. Gangrskii, M.B. Miller, L.V. Mikhailov, I.F. Kharisov
1980Gi04	PRVCA	21,	2041	J. Gilat, S. Katcoff, L.K. Peker
1980Go11	NUPAB	344,	1	H. Gokturk, N.K. Aras, P. Fettweis, P. Del Marmol, J. Vanhorenbeek, K. Cornelis
1980Gr02	PRVCA	21,	498	R.C. Greenwood, R.E. Chrien
1980Gr12	NUIMA	175,	515	R.C. Greenwood, R.E. Chrien
1980Gr.A	DABBB	40,	3235	S.A. Gronemeyer in Diss. Abst. Int. 40B, 3235 (1980)
1980Ha20	PRVCA	22,	247	H.I. Hayakawa, I. Hyman, J.K.P. Lee
1980Ha36	PHSTB	22,	439	R. Hanninen, G.U. Din
1980Ho17	IJARA	31,	153	H. Houtermans, O. Milosevic, F. Reichel
1980Ho29	CZYPA	30,	763	J. Hinzatko, K. Konesny, F. Becvar, E.A. Eissa
1980Is02	CJPHA	58,	168	M.A. Islam, T.J. Kennett, S.A. Kerr, W.V. Prestwich
1980Ja.A	AnRpt KVI		31	J. Jänecke, E.H.L. Aarts, A.G. Drentje, C. Gaarde, M.H. Harakeh
1980Ka19	PRVCA	22,	997	J. Kalifa, G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, Y. Deschamps,
				R. Seltz
1980Ko01	NUPAB	334,	35	J. Kopecky, R.E. Chrien, H. Liou
1980Ko25	CJPHA	58,	1311	K.S. Kozier, K.S. Sharma, R.C. Barber, J.W. Barnard, R.J. Ellis, V.P. Derenchuk,
				H.E. Duckworth
1980Kr07	ZPAAD	295,	199	K.L. Kratz, H. Ohm
1980Kr.A	P-Berkeley		135	L. Krauss, I. Linck, A. Poves, J.C. Sens
1980Le18	PRVCA	22,	1976	A.G. Ledebuhr, L.H. Harwood, R.G.H. Robertson, T.J. Bowles
1980Li07	NUPAB	337,	401	H.I. Liou, R.E. Chrien, J. Kopecky, J.A. Konter
1980Lo10	PHSTB	22,	203	G. Løvhøiden, D.G. Burke, E.R. Flynn, J.W. Sunier
1980Lu04	ZPAAD	294,	233	E. Lund, P. Hoff, K. Aleklett, O. Glomset, G. Rudstam
1980Ma40	PRVCA	22,	2449	W. Mayer, K.E. Rehm, H.J. Körner, W. Mayer, E. Müller, I. Oelrich,
10003.5.10	NII IDA D	244	0.0	H.J. Scheerer, R.E. Segel, P. Sperr, W. Wagner
1980Mu10	NUPAB	344,	89	M. Muller-Veggian, H. Beuscher, D.R. Haenni, R.M. Lieder, A. Neskakis,
10007 12	DDVC 4	22	2204	C. Mayer-Boricke
1980Mu12	PRVCA	22,	2204	M.J. Murphy, C.N. Davids, E.B. Norman
1980Na12	PYLBB	96, 41	261	H. Nann, K.K. Seth, S.G. Iversen, M.O. Kaletka, D.B. Barlow, D. Smith
1980Na14	JPSLB	41,	79	F. Naulin, C. Détraz, M. Bernas, D. Guillemaud, E. Kashy, M. Langevin,
10800~01	7D4 4 D	204	290	F. Pougheon, P. Roussel, M. Roy-Stephan
1980Ox01	ZPAAD	294,	389	K. Oxorn, B. Singh, S.K. Mark

```
1980Pa02
             PRVCA
                                       462 R.C. Pardo, L.W. Robinson, W. Benenson, E. Kashy, R.M. Ronnigen
                          21,
1980Pa07
             PYLBB
                          91,
                                            R.C. Pardo, S. Gales, R.M. Ronningen, L.H. Harwood
                                        41
             ZPAAD
                                       221 E. Roeckl, G.M. Gowdy, R. Kirchner, O. Klepper, A. Piotrowski, A. Płochocki,
1980Ro04
                          294,
                                             W. Reisdorf, P. Tidemand-Petersson, J. Żylicz, D. Schardt, G. Nyman, W. Lin-
1980Sa11
             JPHGB
                          6.
                                       525 J. Sala-Lizzaraga, J. Byrne
                                            U.J. Schrewe, P. Tidemand-Petersson, G.M. Gowdy, R. Kirchner, O. Klepper,
1980Sc09
             PYLBB
                          91,
                                             A. Płochocki, W. Reisdorf, E. Roeckl, J.L. Wood, J. Żylicz, R. Fass, D. Schardt
1980Sh06
             PYLBB
                          91,
                                            K.S. Sharma, R.J. Ellis, V.P. Derenchuk, R.C. Barber, H.E. Duckworth
1980Sh14
             CJPHA
                           58,
                                       837 M.A.M. Shababuddin, D.G. Burke
1980St10
             ZPAAD
                          295.
                                       259 O. Straume, G. Løvhøiden, D.G. Burke
             PRVCA
                                      1667 E.M. Takagui, O. Dietzsch
1980Ta07
                          21,
             PRVCA
                                        17 R.E. Tribble, D.M. Tanner, A.F. Zeller
1980Tr04
                          22,
1980Ve01
             ZPAAD
                          294.
                                       144 D. Vermeulen, H.-G. Clerc, W. Lang, K.H. Schmidt, G. Münzenberg
             NUPAB
                          344,
                                            R. Vennink, J. Kopecky, P.M. Endt, P.W.W. Glaudemans
1980Ve05
1980Vi.A
             PrvCom
                          AHW
                                             V.D. Vitman, F.V. Moroz, Yu. Ya. Sergeev, V.K. Tarasov
1980Vy01
             IANFA
                          44,
                                            Ts. Vylov, S. Omanov, V. Csaleksandrov, N.B. Badalov, A. Budzyak,
                                             V.V. Kuznetsov, A.I. Muminov, Han Ken Mo
1980Wa24
             PRVCA
                          22.
                                      2330 E.K. Warburton, D.E. Alburger, D.J. Millener
1980Ya07
             JINCA
                          42,
                                            H. Yamamoto, Y. Ikeda, K. Kawade, T. Katoh, T. Nagahara
1980Ya.A
             AnRpt Berkeley
                                             S. Yashita, M. Leino, A. Ghiorso
                                             1981
1981Ad02
             NUPAB
                          356,
                                       129
                                            I. Adam, M. Honusek, Z. Hons, V.V. Kuznetsov, T.M. Muminov, R.R. Usmanov,
                                             A. Budzvak
1981Ai02
             PRVCA
                          24.
                                      1762 F. Ajzenberg-Selove, R.E. Brown, E.R. Flynn, J.W. Sunier
1981Al03
             PRVCA
                          23,
                                       473 D.E. Alburger, D.J. Millener, D.H. Wilkinson
1981Al07
             PRVCA
                          23.
                                      2217 D.E. Alburger, C.J. Lister, J.W. Olness, D.J. Millener
1981Al20
             ZPAAD
                          302,
                                       241 K. Aleklett, P. Hoff, E. Lund, G. Rudstam
1981Ar13
             PYLBB
                           104,
                                            Y. Arai, M. Fujioka, E. Tanaka, J. Shinozuka, H. Miyatake, M. Yoshii, T. Ishi-
                                             matsu, see also NUPAB 420(84)193
1981Ar.A
             JINR-P6-81-524
                                             K.P. Artamonova, A. Budzyak,
                                                                                E.P. Grigorev, A. Dzumamuratov,
                                             A.V. Zolotavin, A.I. Ivanov, V.G. Kalinnikov, V.V. Kuznetsov, V.O. Sergeev,
                                             R. Usmanov
             PRVCA
1981Ay01
                                       879
                          23,
                                            J. Äystö, M.D. Cable, R.F. Parry, J.M. Wouters, D.M. Moltz, J. Cerny
1981Ba40
             ZPAAD
                          302.
                                            G.K. Bavaria, J.E. Crawford, S. Calamawy, J.E. Kitching
                                       329
1981Ba53
             IANFA
                          45,
                                       727
                                            I.F. Barchuck, V.I. Goyshkin, E.N. Gorban, A.F. Ogorodnik
1981Be03
             PRVCA
                          23,
                                       555
                                            C.E. Bemis, Jr., P.F. Dittner, R.L. Ferguson, D.C. Hensley, F. Plasil, F. Pleasonton
1981Be40
             PRVCA
                                            M. Bernas, J.C. Peng, H. Doubre, M. Langevin, M.J. Le Vine, F. Pougheon,
                          24,
                                             P. Roussel
1981Bo30
             ZPAAD
                          302,
                                       121
                                            J. Bonn, P. Hartmann, D. Weskott
1981Bo.B
             AnRpt Julich
                                            M. Bogdanovic, T.D. MacMahon, H. Seyfarth
                                            M. Budzinski, K. Ya. Gromov, V.V. Kuznetsov, T.M. Muminov, P.R. Usmanov,
1981Bu.A
             P-Samarkand
                                       621
                                             T. Chazratov
             PRVCA
                                      1453 J.A. Cizewski, E.R. Flynn, R.E. Brown, D.L. Hanson, S.D. Orbesen, J.W. Sunier
1981Ci01
                          23,
1981Co17
             PRVCA
                          24.
                                            T. Cousins, T.J. Kennett, W.V. Prestwich
1981Da06
             PRVCA
                          23.
                                      1612 E. Dafni, H.E. Mahnke, J.W. Noe, M.H. Rafailovich, G.D. Sprouse
1981De22
             ZPAAD
                          300,
                                            S. Della Negra, C. Deprun, D. Jacquet, Y. Le Beyec
             ZPAAD
                                           R. Decker, K.D. Wünsch, H. Wollnik, G. Jung, J. Münzel, G. Siegert, E. Koglin
1981De25
                          301,
1981De38
             ZPAAD
                          303,
                                            J. Deslauriers, S.C. Gujrathi, S.K. Mark
1981Dr07
             ZPAAD
                          302,
                                            S. Drissi, S. André, J. Genevey, V. Barci, A. Gizon, J. Gizon, J.A. Pinston, J. Jas-
                                             trzebski, R. Kossakowski, Z. Preibisz
1981Eb01
             ZPAAD
                          299
                                       209
                                            I.D.U. Ebong, R.R. Roy
1981El03
             PRVCA
                                       480 Y.A. Ellis-Akovali, K.S. Toth, C.R. Bingham, H.K. Carter, D.C. Sousa
                          23,
1981En07
             NUPAB
                                            G. Engler, R.E. Chrien, H.I. Liou
                          372,
1981Fe05
             NUPAB
                                            M. Fernandez, G. Murillo, J. Ramirez, O. Avila, S.E. Darden, M.C. Rozak,
                          369,
                                             J.L. Foster, B.P. Hichwa, P.L. Jolivette
```

10015.03	NILIDAD	262	211	
1981Fi02	NUPAB	363,	311	C.A. Fields, F.W.N. De Boer, J.J. Kraushaar, R.A. Ristinen, L.E. Samuelson, E. Sugarbaker
1981Fl02	PRVCA	24,	902	E.R. Flynn, F. Ajzenberg-Selove, R.E. Brown, J.A. Cizewski, J.W. Sunier,
17011102	TRVCH	۷٦,	702	and erratum PRVCA 25(1982)2851
1981Fl05	PYLBB	105,	125	E.R. Flynn, R.E. Brown, J.W. Sunier, J.M. Gurski, J.A. Cizewski, D.G. Burke
1981Fl.A	P-Helsingor	,	107	E.R. Flynn, R.E. Brown, J.W. Sunier, D.G. Burke, F. Ajzenberg-Selove,
	C			J.A. Cizewski
1981Ga36	IANFA	45,	1861	N. Ganbaatar, J. Kormicki, K.A. Mezilev, Y.N. Novikov, Y.P. Prokofiev,
				A. Potempa, F. Tarkani
1981Gi01	PYLBB	98,	29	F. Girshik, K. Krien, R.A. Naumann, G.L. Struble, R.G. Lanier, L.G. Mann,
				J.A. Cizewski, E.R. Flynn, T. Nail, R.K. Sheline
1981Ha08	NUPAB	357,	356	J.C. Hardy, G.C. Ball, W.G. Davies, J.S. Forster, H. Schmeing, E.T.H. Clifford
1981Ha44	NUPAB	371,	349	J.C. Hardy, T. Faestermann, H. Schmeing, J.A. Macdonald, H.R. Andrews,
100111101	MIDIE	252	0.2	J.S. Geiger, R.L. Graham, K.P. Jackson
1981Hi01	NUPAB	352,	93	F. Hintenberger, P. von Rossen, S. Cierjacks, G. Schmalz, D. Erbe, B. Leugers
1981Ho10	ZPAAD	299,	281	S. Hofmann, G. Münzenberg, F. Heßberger, W. Reisdorf, P. Armbruster, B. Thuma
1981Ho17	ZPAAD	300,	289	P. Hoff, K. Aleklett, E. Lund, G. Rudstam
1981Ho17	NUIMA	186,	257	
1981Ho.A	P-Helsingor	100,	190	S. Hofmann, G. Münzenberg, W. Faust, F. Heßberger, W. Reisdorf,
1701110.71	1 Heisingoi		170	J.R.H. Schneider, P. Armbruster, K. Güttner, B. Thuma
1981Ho.B	PrvCom	AHW	Oct	C. Hofmeyr, D. Warner, H.G. Börner, G. Barreau, R.F. Casten, M. Stelts,
1701110.B	11,0011	711111	000	J.S. Dionisio
1981Hs02	PRVCA	23,	1217	HC. Hseuh, EM. Franz, P.E. Haustein, S. Katcoff, L.K. Peker
1981Hu03	NUPAB	352,	247	M. Huyse, K. Cornelis, G. Lhersonneau, J. Verplancke, W.B. Wolters, K. Heyde,
				P. Van Isacker, M. Warnquier, G. Wenes, H. Vincx
1981Jo.B	P-Helsingor		640	B. Jonson, O.B. Nielsen, L. Westgaard, J. Żylicz
1981Ka07	PRVCA	23,	1274	R. Kantus, U.J. Schrewe, W.D. Schmidt-Ott, R. Michaelsen
1981Ke02	CJPHA	59,	93	T.J. Kennett, M.A. Islam, W.V. Prestwich
1981Ke03	ZPAAD	299,	323	T.J. Kennett, W.V. Prestwich, M.A. Islam
1981Ke11	CJPHA	59,	1212	T.J. Kennett, W.V. Prestwich, M.A. Islam
1981Ko13	PRVCA	23,	2743	R.T. Kouzes, K. Krien
1981Ko.A	PrvCom	NDG	Oct	B.K. Koene, R.E. Chrien, M.L. Stets, L.K. Peker
1981Le23	PRVCA	24,	2370	M.E. Leino, S. Yashita, A. Ghiorso
1981Li12	PRVCA	24,	260	C.J. Lister, P.E. Haustein, D.E. Alburger, J.W. Olness
1981Lo.A	P-Grenoble		383	M.A. Lone
1981Lu07	ZETFA	81,	1158	V.A. Lyubimov, E.G. Novikov, V.Z. Nozik, E.F. Tretyakov, V.S. Kozik,
				N.F. Myasoedov
1981Ma30	NUPAB	370,	1	S. Matsuki, N. Sakamoto, K. Ogino, Y. Kadota, T. Tanabe, Y. Okuma
1981Mi12	ZPAAD	301,	199	P. Misaelides, P. Tidemand-Petersson, U.J. Schrewe, I.S. Grant, R. Kirchner,
				O. Klepper, I.C. Malcolm, P.J. Nolan, E. Roeckl, WD. Schmidt-Ott, J.L. Wood
1981Mu06	ZPAAD	300,	107	G. Münzenberg, S. Hofmann, F.P. Heßberger, W. Reisdorf, K.H. Schmidt,
				J.R.H. Schneider, P. Armbruster, C.C. Sahm, B. Thuma
1981Mu12	ZPAAD	302,	7	G. Münzenberg, S. Hofmann, W. Faust, F.P. Heßberger, W. Reisdorf, K
400437				H. Schmidt, T. Kitahara, P. Armbruster, K. Güttner, B. Thuma, D. Vermeulen
1981Na.A	P-Helsingor		376	F. Naulin, C. Détraz, M. Roy-Stephan, M. Bernas, J. de Boer, D. Guillemaud,
100137.00	D G .	20	110	M. Langevin, F. Pougheon, P. Roussel
1981Ni08	RAACA	29,	113	K. Nishiizumi, R. Gensho, M. Honda
1981Ox01	ZPAAD	303,	63	K. Oxorn, S.K. Mark
1981Pa11	PYLBB	103,	297	A.D. Panagiotou, I. Paschopoulos, A. Huck, N. Schulz
1981Pa17	ZPAAD	302,	117	A.D. Panagiotou, P.K. Kananis, E.N. Gazis, M. Bernas, C. Détraz, M. Langevin,
1001D-04	DDV/C A	24	1216	D. Guillemaud, E. Plagnol P. I. Prestyood, D.P. Curtis, I.H. Cappia
1981Pr06	PRVCA	24,	1346	R.J. Prestwood, D.B. Curtis, J.H. Cappis
1981Ra07	PRVCA	23,	1979	S. Raman, O. Shahal, A.Z. Hussein, G.C. Slaughter, J.A. Harvey
1981Ri04	PRVCA	23,	2342	B.G. Ritchie, K.S. Toth, H.K. Carter, R.L. Mlekodaj, E.H. Speje
1981Ro02	PRVCA	23,	973	R.G.H. Robertson, J.A. Nolen, Jr., T. Chapuran, R. Vodhanel
1981Sa09	PRVCA	23,	1713	T. Saito, T. Toriyama, M. Kanbe, K. Hisatake D. Schardt, T. Batsch, R. Kirchner, O. Klepper, W. Kurcewicz, E. Roeckl,
1981Sc17	NUPAB	368,	153	P. Tidemand-Petersson
				1. 11demanu-1 etersson

1981Sc21	PRVCA	24,	2695	W.D. Schmidt-Ott, R. Kantus, E. Runte, U.J. Schrewe, R. Michaelsen
1981Se11	PYLBB	103,	409	U. Sennhauser, L. Felawka, T. Kozlowski, H.K. Walter, F.W. Schlepuetz, R. En-
		ŕ		gfer, E.A. Hermes, P. Heusi, H.P. Isaak, H.S. Pruys, A. Zglinski, W.H.A. Hes-
				seling
1981Se.A	P-Helsingor		655	K.T. Seth
1981Sm02	PYLBB	102,	114	L.G. Smith, E. Koets, A.H. Wapstra
1981So06	PRVCA	24,		K. Sofia, B.N. Subba Rao, J.E. Cramfort
1981Sp03	ZPAAD	299,		L. Spanier, S.Z. Gui, H. Hick, E. Nolte
1981St18	PRVCA	24,	1/85	P. Stephans, E. Mordechai, H.T. Fortune
1981Su.A 1981Th04	Leninst-YF-0 PRVCA		2720	L.A. Sushkov, V.L. Alekseev, L.D. Kabina, I.A. Kondurov, D.D. Uorner C. Thibault, F. Touchard, S. Buttgenbach, R. Klapisch, M. de Saint Simon,
190111104	FRVCA	23,	2720	H.T. Duong, P. Jacquinot, P. Juncar, S. Liberman, P. Pillet, J. Pinard, J.L. Vialle,
				A. Pesnelle, G. Huber
1981To02	NUPAB	356,	26	K.S. Toth, Y.A. Ellis-Akovali, D.M. Moltz, C.R. Bingham, H.K. Carter,
100177.11	II. D.	22	500	D.C. Sousa
1981Va11	IJARA	32,	589	R. Vaninbroukx, G. Grosse, W. Zehner
1981Va27	IANFA	45,	1861	V.M. Vakhtel, N.A. Golovkov, R.B. Ivanov, M.I. Mikhailova, A.F. Novgorodov,
1981Va.B	P-Grenoble		548	Y.V. Norseev, V.G. Chumin, Y.V. Yushkevich C. Van der Leun, P. De Wit, C. Alderliesten, and PrvCom AHW
1981 Va.B 1981 Vo03	NUPAB	365,	26	T. von Egidy, G. Barreau, H.G. Börner, W.F. Davidson, J. Larysz, D.D. Warner,
1981 1003	NUIAD	303,	20	P.H.M. Van Assche, K. Nybo, T.F. Thorsteinsen, G. Lovhoiden, E.R. Flynn,
				J.A. Cizewski, R.K. Sheline, D. Decman, D.G. Burke, G. Sletten, N. Kaffrell,
				W. Kurcewicz, T. Bjornstad, G. Nyman
1981Wa11	NUPAB	362,	1	C. Wagemans, E. Allaert, A. De Clerq, P. D'Hondt, A. De Ruytter, G. Barreau,
		,		A. Emsallem
1981Wa31	NUIMA	190,	167	C. Wagemans, E. Allaert, G. Barreau, A. Emsallem, P. D'Hondt
1981We12	NUPAB	368,	117	H. Weigmann, C. Wagemans, A. Emsallem, M. Ashgar
1981Wh03	PYLBB	105,	116	R.E. White, H. Naylor, P.H. Barker, D.M.J. Lovelock, R.M. Smythe
1981Ya06	JINCA	43,	855	H. Yamamoto, Y. Ikeda, K. Kawade, T. Katoh, T. Nagahara
				1982
1982Ah01	NUPAB	373,	434	I. Ahmad, E.P. Horwitz
1982Al19	NUIMA	197,	383	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun
1982Al19 1982Al29	NUIMA PRVCA			I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam
1982Al19	NUIMA	197,	383	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev,
1982A119 1982A129 1982A1.A	NUIMA PRVCA LNPI-820	197, 26,	383 1157	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi
1982A119 1982A129 1982A1.A 1982A1.C	NUIMA PRVCA LNPI-820 PrvCom	197, 26, NDG	383 1157 Dec	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows
1982A119 1982A129 1982A1.A	NUIMA PRVCA LNPI-820	197, 26,	383 1157	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony
1982A119 1982A129 1982A1.A 1982A1.C 1982An12	NUIMA PRVCA LNPI-820 PrvCom JPHGB	197, 26, NDG 8,	383 1157 Dec 1659	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson,
1982A119 1982A129 1982A1.A 1982A1.C 1982An12	NUIMA PRVCA LNPI-820 PrvCom JPHGB	197, 26, NDG 8,	383 1157 Dec 1659	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB	197, 26, NDG 8, 113,	383 1157 Dec 1659 72	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB	197, 26, NDG 8, 113,	383 1157 Dec 1659 72 443	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Au01 1982Ba15	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA	197, 26, NDG 8, 113, 378, 46,	383 1157 Dec 1659 72 443 63	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach,
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Au01 1982Ba15 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189 2077 273	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison,
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189 2077 273 2848	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189 2077 273	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier,
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB IANFA PRVCA	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189 2077 273 2848	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier, L. Ussery, W. Stoffl, T. Nail, R.K. Sheline, J.A. Cizewski
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB IANFA NCLTA PRVCA PRVCA P-Kiev	197, 26, NDG 8, 113, 378, 46, 380,	383 1157 Dec 1659 72 443 63 189 2077 273 2848 914	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier, L. Ussery, W. Stoffl, T. Nail, R.K. Sheline, J.A. Cizewski R.B. Begdzanov, K. Sh. Azimov
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28 1982Ba29 1982Be20 1982Be21 1982Be38	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB IANFA PRVCA	197, 26, NDG 8, 113, 378, 46, 380, 46, 33, 25,	383 1157 Dec 1659 72 443 63 189 2077 273 2848 914	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier, L. Ussery, W. Stoffl, T. Nail, R.K. Sheline, J.A. Cizewski
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28 1982Ba29 1982Be20 1982Be21 1982Be38 1982Be38	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB IANFA NCLTA PRVCA PRVCA P-Kiev PRVCA	197, 26, NDG 8, 113, 378, 46, 380, 46, 33, 25, 26,	383 1157 Dec 1659 72 443 63 189 2077 273 2848 914 127 941	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Re- ich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier, L. Ussery, W. Stoffl, T. Nail, R.K. Sheline, J.A. Cizewski R.B. Begdzanov, K. Sh. Azimov J.D. Bowman, R.E. Eppley, E.K. Hyde
1982A119 1982A129 1982A1.A 1982A1.C 1982An12 1982An19 1982Ba15 1982Ba28 1982Ba28 1982Ba29 1982Be20 1982Be21 1982Be38 1982Be38 1982Be38	NUIMA PRVCA LNPI-820 PrvCom JPHGB PYLBB NUPAB IANFA NUPAB IANFA NCLTA PRVCA PRVCA P-Kiev PRVCA RAACA	197, 26, NDG 8, 113, 378, 46, 380, 46, 33, 25, 26,	383 1157 Dec 1659 72 443 63 189 2077 273 2848 914 127 941 1	I. Ahmad, E.P. Horwitz P.F. AAlkemade, C. Alderliesten, P. De Wit, C. Van der Leun K. Aleklett, P. Hoff, E. Lund, G. Rudstam G.D. Alkhazov, N. Ganbaatar, K.Y. Gromov, V.G. Kalinnikov,K.A. Mezilev, Y.N. Novikov, A.M. Nurmukhamedov, A. Potempa, F. Tarkanyi D.E. Alburger, J.W. Olness, T.W. Burrows M.S. Antony J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. Elbek, H.A. Gustavson, P.G. Hansen, B. Jonson, P. Knudsen, E. Laegsgaard, J. Pedersen, H.L. Ravn G. Audi, M. Epherre, C. Thibault, A.H. Wapstra, K. Bos I.F. Barchuk, V.I. Golyshkin, E.N. Gorban A. Backlin, G. Hedin, B. Fogelberg, M. Saraceno, R.C. Greenwood, C.W. Reich, H.R. Koch, H.A. Baader, H.D. Breitig, O.W.B. Schult, K. Schreckenbach, T. von Egidy, W. Mampe I.F. Barchuk, V.I. Golyshkin, E.N. Gorbinj E. Bellotti, E. Fiorini, C. Liguori, A. Pullia, A. Sarracino, L. Zanotti G. Berrier-Ronsin, M. Vergnes, G. Rotbard, J. Vernotte, S. Fortier, J.M. Maison, R. Tamisier J.A. Becker, J.B. Carlson, R.G. Lanier, L.G. Mann, G.L. Struble, K.H. Maier, L. Ussery, W. Stoffl, T. Nail, R.K. Sheline, J.A. Cizewski R.B. Begdzanov, K. Sh. Azimov J.D. Bowman, R.E. Eppley, E.K. Hyde W. Brüchle, G. Herrmann

1982Ca04	PYLBB	109,	419	L.C. Carraz, P.G. Hansen, A. Huck, B. Jonson, G. Klotz, A. Knipper, K.L. Kratz, C. Miéhé, S. Mattsson, G. Nyman, H. Ohm, A.M. Poskanzer, A. Poves,
1092Ca16	DDVCA	26	1770	H.L. Ravn, C. Richard-Serre, A. Schröder, G. Walter, W. Ziegert
1982Ca16	PRVCA	26,	1778	M.D. Cable, J. Honkanen, R.F. Parry, H.M. Thierens, J.M. Wouters, Z.Y. Zhou, J. Cerny
1982Cr01	PYLBB	109,	8	G.M. Crawley, W. Benenson, G. Bertsch, S. Gales, D. Weber, B. Zwieglinsky
1982De03	PRVCA	25,		P. De Gelder, D. De Frenne, E. Jacobs, K. Heyde, S. Fortier, J.M. Maison,
1702200	111, 011	,	1.0	M.N. Rao, C.P. Massolo
1982De06	PRVCA	25,	504	J. Deslauriers, S.C. Gujrathi, S.K. Mark
1982De11	ANPHA	7,	149	
1982De36	ZPAAD	307,	305	S. Della Negra, H. Gauvin, D. Jacquet, Y. Le Beyec
1982De43	ZPAAD	308,	243	S. Della Negra, D. Jacquet, Y. Le Beyec
1982De.A	ThOrsay			Ph. Dessagne
1982Di01	PYLBB	108,	265	W.R. Dixon, W.F. Davidson, R.S. Storey, D.M. Rehfield
1982Di05	NUPAB	378,	273	W.R. Dixon, R.S. Storey, A.F. Bielajew
1982En03	PRVCA	25,		H.A. Enge, M. Salomaa, A. Sperduto, J. Ball, W. Schier, A. Graue, A. Graue
1982Ew01	NUPAB	380,	423	G.T. Ewan, E. Hagberg, B. Jonson, S. Mattsson, P. Tidemand-Petersson
1982Fi10	NUPAB	385,		L.K. Fifield, J.L. Durell, M.A.C. Hotchkis, J.R. Leigh, T.R. Ophel, D.C. Weisser
1982F109	PRVCA	25,	2851	E.R. Flynn, F. Ajzenberg-Selove, R.E. Brown, J.A. Cizewski, J.W. Sunier
1982Ga05	PRLTA	48,	914	C.A. Gagliardi, G.T. Garvey, J.R. Wrobel, S.J. Freedman
1982Ga24	ZPAAD	308,	359	H. Gabelmann, J. Munzel, B. Pfeiffer, G.I. Crawford, H. Wollnik, KL. Kratz
1982Gi.A	ThMainz			H. Gietz
1982Gr.A 1982Hi14	P-Amsterdar ZPAAD	m 309,	27	K.Y. Gromov, et al R. Hingmann, HG. Clerc, C.C. Sahm, D. Vermeulen, K.H. Schmidt, J.G. Keller
1982Hi14 1982Ho04	ZPAAD	305,	111	S. Hofmann, W. Reisdorf, G. Münzenberg, F.P. Heßberger, J.R.H. Schneider,
				P. Armbruster
1982Ho07	PRVCA	25,		R.W. Hoff, W.F. Davidson, D.D. Warner, H.G. Börner, T. von Egidy
1982Ho11	PYLBB NUIMA	116,		P. Hornshoj, J. Kolind, N. Rud
1982Hu02 1982Is05	PRVCA	192, 25,	3184	P. Hungerford, H.H. Schmidt M.A. Jelam, T.I. Kennett, W.V. Practwich
1982Jo03	JPHGB	23, 8,	1405	M.A. Islam, T.J. Kennett, W.V. Prestwich M.G. Johnson, I.S. Grant, P. Misealides, P.J. Nolan, P. Peuser, R. Kirchner,
		,		O. Klepper, E. Roeckl, P. Tidemand-Petersson
1982Ka25	ZPAAD	308,	33	K. Kawade, K. Sistemich, G. Battistuzzi, H. Lawin, K. Shizuma, J. Blomqvist
1982Ka.A	PrvCom	AHW	Jul	W. Kane, et al
1982Kl03	ZPAAD	305,	125	O. Klepper, T. Batsch, S. Hofmann, R. Kirchner, W. Kurcewicz, W. Reisdorf, E. Roeckl, D. Schardt, G. Nymann
1982Ko06	PRVCA	25,		R.T. Kouzes, M.M. Lowry, C.L. Bennett, and PrvCom AHW May 1988
1982Kr05	ZPAAD	304,	307	H. Kräwinkel, H.W. Becker, L. Buchmann, J. Görres, K.U. Kettner, W.E. Kieser, R. Santo, P. Schmalbrock, H.P. Trautvetter, A. Vlieks, C. Rolfs, J.W. Hammer, R.E. Arumo, W.S. Bodney,
1982Kr12	NUPAB	386,	245	R.E. Azuma, W.S. Rodney B. Krusche, K.P. Lieb, H. Daniel, T. von Egidy, G. Barreau, H.G. Börner,
1902K112	NUIAB	300,	243	R. Brissot, C. Hofmeyr, R. Rascher
1982Ku15	ZPAAD	308,	21	W. Kurcewicz, E.F. Zganjar, R. Kirchner, O. Klepper, E. Roeckl, P. Komninos,
17021113	ZIMD	300,	21	E. Nolte, D. Schardt, P. Tidemand-Petersson
1982La22	NUIMA	196,	559	R.G. Lanier, L.G. Mann, G.L. Stuble
1982La25	IJARA	33,	711	F. Lagoutine, J. Legrand
1982Mo04	PRVCA	25,	1276	S. Mordechai, S. Lafrance, H.T. Fortune
1982Mo10	PYLBB	113,	16	D.M. Moltz, K.S. Toth, F.T. Avignone III, H. Noma, B.G. Ritchie, B.D. Kern
1982Mo12	PRVCA	25,	3218	C.L. Morris, H.T. Fortune, L.C. Bland, R. Gilman, S.J. Greene, W.B. Cot-
				tingame, D.B. Holtkamp, G.R. Burleson, C.F. Moore
1982Mo23	PRVCA	26,	1914	D.M. Moltz, K.S. Toth, R.E. Tribble, R.E. Neese, J.P. Sullivan
1982Na04	PRVCA	25,		F. Naulin, C. Détraz, M. Roy-Stéphan, M. Bernas, J. de Boer, D. Guillemaud, M. Langevin, F. Pougheon, P. Roussel
1982No06	ZPAAD	305,		E. Nolte, H. Hick
1982No08	ZPAAD	306,	223	E. Nolte, S.Z. Gui, G. Colombo, G. Korschinek, K. Eskola
1982Oh04	JUPSA	51,	43	M. Ohshima, Z. Matumoto, T. Tamura
1982Ol01	NUPAB	373,	13	J.W. Olness, E.K. Warburton, D.E. Alburger, C.J. Lister, D.J. Millener
1982Pa24	ZPAAD	308,	345	B. Pahlmann, U. Keyser, F. Münnich, B. Pfeiffer

40000105		•••		
1982Pl05	NUPAB	388,	93	A. Płochocki, J. Żylicz, R. Kirchner, O. Klepper, E. Roeckl, P. Tidemand-
1982Ra13	ZPAAD	305,	359	Petersson, I.S. Grant, P. Misealides M.S. Rapaport, G. Engler, A. Gayer, I. Yoresh
1982Ra.A	PrvCom	AHW		A. Raemy, J.C. Dousse, J. Kern, W. Schwitz
1982Sc03	NUPAB	376,		K. Schreckenbach, A.I. Namenson, W.F. Davidson, T. von Egidy, H.G. Börner,
		,		J.A. Pinston, R.K. Smither, D.D. Warner, R.F. Casten, M.L. White, W. Stofl
1982Sc14	PRVCA	25,	2888	H.H. Schmidt, P. Hungerford, H. Daniel, T. von Egidy, S.A. Kerr, R. Brissot,
				G. Barreau, H.G. Börner, C. Hofmeyr, K.P. Lieb
1982Sc15	PRVCA	25,	3091	U.J. Schrewe, E. Hagberg, H. Schmeing, J.C. Hardy, V.T. Koslowsky,
				K.S. Sharma, E.T.H. Clifford
1982Sc25	ZPAAD	308,		H.J. Scheerer, D. Pereira, A. Chalupka, R. Gyufko
1982So.A	P-Kiev	L	51 54	L.M. Solin, V.A. Yakovlev, V.N. Kushmin, Yu. A. Nemilov
1982So.B	AnRpt Julich	11	54	F. Soramel-Stanco, R. Julin, B. Rubio, A. Ercan, P. Kleinheinz, J. Tain, G.P.A. Berg, W. Huerliman, I. Katayama, S.A. Martin, J. Messburger,
				J.G.M. Roemer, B. Styczen, H.J. Scheerer
1982Ta18	NUPAB	388,	498	M. Tan, R.A. Braga, R.W. Fink, P.V. Rao
1982Th01	PRVCA	25,		C.E. Thorn, W.F. Piel,Jr., M.J. LeVine, P.D. Bond, A. Gallmann
1982Ti02	NUPAB	376,	421	T.A.A. Tielens, J. Kopecky, F. Stecher-Rasmussen, W. Ratinsky, K. Abrahams,
		,		P.M. Endt
1982To14	PYLBB	117,	11	K.S. Toth, Y.A. Ellis-Akovali, D.M. Moltz, R.L. Mlekodaj
1982Va13	NUPAB	380,	261	C. Van der Leun, C. Alderliesten
1982Ve.A	P-Kiev		91	G.V. Veselov, N. Ganbataar, K.A. Mezilev
1982Vy02	IANFA	46,	16	Ts. Vylov, V.M. Gorodzhankin, K. Ya. Gromov, V.G. Kalinnikov, T. Kretsu,
100011 00		4.6	024	V.V. Kuznetsov
1982Vy03	IANFA	46,	834	Ts. Vylov, V.M. Gorodzhankin, K. Ya. Gromov, V.V. Kuznetsov
1982Vy06	IANFA	46,	2066	Ts. Vylov, V.G. Kalinnikov, V.V. Kuznetsov, Z.N. Li, A.A. Solnyshkin, Y.U. Yuskevich
1982Vy07	IANFA	46,	2239	Ts. Vylov, V.M. Gorodzhankin, K.Y. Gromov, V.V. Kuznetsov, T. Kretsu,
1962 V y 07	IANIA	40,	2239	N.A. Lebedev, Yu. V. Yushkevich
1982Vy10	YAFIA	36,	812	Ts. Vylov, V.M. Gorozhankin, K. Ya. Gromov, A.I. Ivanov, I.F. Uchevatkin,
, , , , , , , , , , , , , , , , , , ,		,		V.G. Chumin
1982Wi.A	ThUn.N.Ca	aroln		J.F. Wilkerson
1982Zu02	PRVCA	26,	965	J.D. Zumbro, C.P. Browne, J.F. Mateja, H.T. Fortune, R. Middleton
1982Zu04	PRVCA	26,	2668	J.D. Zumbro, A.A. Rollefson, R.W. Tarara, C.P. Browne
1982Zw02	NUPAB	389,	301	B. Zwiegliński, W. Benenson, G.M. Crawley, S. Galès, D. Weber
				1002
				1983
1983Ad05	CZYPA	33,	465	J. Adam, V. Hnatowicz, A. Kugler
1983Al06	ZPAAD	310,		G.D. Alkhazov, K.A. Mezilev, Yu. N. Novikov, N. Ganbaatar, K. Ya. Gromov,
		,		V.G. Kalinnikov, A. Potempa, E. Sieniawski, F. Tarkanyi
1983Al18	PZETA	38,	144	G.D. Alkhazov, A.A. Bykov, V.D. Vitman, Yu. V. Naukov, S. Yu. Orlov,
				V.K. Tarasov
1983Al20	YAFIA	37,	797	D.V. Aleksandrov, E.A. Ganza, Yu. A. Glukhov, V.I. Dukhanov, I.B. Mazurov
1983Al.A	PrvCom	AHW	Jan	G.D. Alkhazov
1983Al.B	P-Moscow		87	G.D. Alkhazov, A.A. Akhmonen, L. Kh. Batist, Yu. S. Blinnikov, N. Gan-
				bataar, K. Ya. Gromov, Yu. V. Elkin, V.G. Kalinnikov, K.A. Mezilev, F.V. Mo-
				roz, Yu. N. Novikov, A.M. Nurmukhamedov, V.N. Panteleev, A.G. Polyakov,
1983An15	JPHGB	9,	L245	A. Potempa, E. Senyavski, V.K. Tarasov, F. Tarkani M.S. Antony, J. Britz, J.B. Buep, A. Papp
1983Ay01	NUPAB	9, 404,	1	J. Äystö, J. Honkanen, W. Trzaska, K. Eskola, K. Vierinen, S. Messelt
1983Ba32	PRVCA	28,	337	P.A. Baisden, D.H. Sisson, S. Niemeyer, B. Hudson, C.L. Bennet, R.A. Nau-
-, -, -, -, -, -, -, -, -, -, -, -, -, -		,		mann
1983Be18	NUPAB	399,	131	H. Behrens, P. Christmas
1983Be42	NUPAB	408,	87	G.J. Beyer, A. De Rújula, RD. von Dincklage, H. Å. Gustafsson, P.G. Hansen,
				P. Hoff, B. Jonson, H.L. Ravn, K. Riisager
1983Be.C	PrvCom	GAu	Sep	M. Bernas, et al
1983B116	ZPAAD	314,	199	J. Blomqvist, A. Kerek, B. Fogelberg
1983Bo29	PYLBB	130,	167	P.D. Bond, R.F. Casten, D.D. Warner, D. Horn

1002D 02	CIDILA	<i>C</i> 1	460	
1983Bu03	CJPHA	61,		D.G. Burke, I. Nowikov, Y.K. Peng, J.C. Yanch
1983Ca04 1983Ca06	PRVCA PYLBB	27,		R.F. Casten, D.D. Warner, G.M. Gowdy, N. Rofail, K.P. Lieb M.D. Cable, J. Honkanen, R.F. Parry, S.H. Zhou, Z.Y. Zhou, J. Cerny for 26Sii
1983Ca06 1983Ch08	ZPAAD	123, 310,	135	
1983Ch39	PRVCA	28,	2099	A. Chalupka, H. Vonach, E. Hueges, H.J. Scheerer C. Chung, W.B. Walters, D.S. Brenner, A. Aprahamian, R.L. Gill, M. Shmid,
1965C1159	FRVCA	20,	2099	R.E. Chrien, LJ. Yuan, A. Wolf, Z. Berant
1983Ch47	NUIMA	215,	397	P. Christmas, S.M. Judge, T.B. Ryves, D. Smith, G. Winkler
1983Ci01	PRVCA	27,	1040	J.A. Cizewski, D.G. Burke, E.R. Flynn, R.E. Brown, J.W. Sunier
1983De03	PRVCA	27,	892	R.A. Dewberry, R.T. Kouzes, R.A. Neumann
1983De03	NUPAB	394,	378	C. Détraz, M. Langevin, M.C. Goffri-Kouassi, D. Guillemaud, M. Epherre,
17030004	потив	37 4 ,	370	G. Audi, C. Thibault, F. Touchard
1983De17	ZPAAD	312,	209	D.J. Decman, R.K. Sheline, Y. Tanaka, E.T. Jurney
1983De20	NUPAB	401,	397	P. De Gelder, D. De Frenne, K. Heyde, N. Kaffrell, A.M. VanDenBerg, N. Blasi,
1,002,020	1,01112	.01,		M.N. Harakah, W. Sterrenburg
1983De28	NUPAB	404,	225	M.G. Delfini, J. Kopecky, J.B.M. de Haas, H.I. Liou, R.E. Chrien, P.M. Endt
1983De29	NUPAB	404,	250	M.G. Delfini, J. Kopecky, R.E. Chrien, H.I. Liou, P.M. Endt
1983De47	YAFIA	38,	1105	A.V. Derbin, L.A. Popeko
1983De51	YAFIA	38,	1377	R.A. Demirkhanov, V.V. Dorokhov, M.I. Dzkuya, G.A. Dorokhova, see also
				report SFTI1 Suchumi
1983Do11	ZPAAD	313,	207	Zs. Dombrádi, A. Krasznahorkay, J. Gulyás
1983En03	NSENA	85,	139	T.R. England, W.B. Wilson, R.E. Schenter, F.M. Mann
1983Fe06	ZPAAD	314,	159	P. Fettweiss, J.C. Dehaes
1983Fl05	PRVCA	28,	97	E.R. Flynn, J. van der Plicht, J.B. Wilhelmy, L.G. Mann, G.L. Struble,
				R.G. Lanier
1983F106	PRVCA	28,	575	E.R. Flynn, R.E. Brown, F. Ajzenberg-Selove, J.A. Cizewski
1983Fo.B	PrvCom	AHW	Jun	I. Förster
1983Ga18	PRVCA	28,	2423	£ , ;,
1983Ga.A	P-Moscow		90	N. Ganbaatar, Ya. Kormitski, K.A. Mezilev, Yu. N. Novikov, A.M. Nur-
				mukhamedov, A. Potempa, E. Senyavski, F. Tarkani
1983Ge08	NUIMA	211,	89	W. Gelletly
1983Gn01	NUPAB	406,	29	B.E. Gnade, R.E. Fink, J.L. Wood
1983Gr01	PYLBB	120,	63	H. Grawe, H. Haas
1983Ha06	NUPAB	395,	152	E. Hagberg, J.C. Hardy, H. Schmeing, E.T.H. Clifford, V.T. Koslowsky
1983Ha35	IJARA	34,	1241	H.H. Hansen
1983He08	PRVCA PRVCA	27,	2248	R.G. Helmer, C.W. Reich
1983Hi05	NUPAB	27, 404,	2857 51	J.C. Hill, H. Yamamoto, A. Wolf R. Hingmann, HG. Clerc, CC. Sahm, D. Vermeulen, KH. Schmidt,
1983Hi08	NUFAB	404,	31	J.G. Kekeller
1983Ho08	NUPAB	398,	130	M.A.C. Hotchkis, L.K. Fifield, J.R. Leigh, T.R. Ophel, G.D. Putt, D.C. Weiser
1983Ho23	PYLBB	133,	146	J. Honkanen, M.D. Cable, R.F. Parry, S.H. Zhou, Z.Y. Zhou, J. Cerny
1983Hu11	ZPAAD	313,	325	P. Hungerford, T. von Egidy, H.H. Schmidt, S.A. Kerr, H.G. Börner, E. Monnand
1983Hu12	ZPAAD	313,	337	P. Hungerford, T. von Egidy, H.H. Schmidt, S.A. Kerr, H.G. Börner, E. Monnand
1983Hu13	ZPAAD	313,	349	P. Hungerford, T. von Egidy, H.H. Schmidt, S.A. Kerr, H.G. Börner, E. Monnand
1983Ia02	CJCHA	61,	694	R. Iafigliola, M. Chatterjee, H. Dautet, J.K.P. Lee
1983Iw02	IJARA	34,	1537	Y. Iwata, M. Kawamoto, Y. Yoshizawa
1983Jo04	NUPAB	396,	479c	B. Jonson, J.U. Andersen, G.J. Beyer, G. Charpak, A. De Rújula, B. El-
				bek, H.A. Gustavson, P.G. Hansen, P. Knudsen, E. Laegsgaard, J. Pedersen,
				H.L. Ravn
1983Ke.A	P-Florence		B118	S.A. Kerr, F. Hoyler, K. Schreckenbach, H.G. Börner, G.G. Colvin, see also
				P-Knoxville(1984)416
1983Kr11	ZPAAD	312,	43	KL. Kratz, H. Ohm, A. Schroder, H. Gabelmann, W. Ziegert, B. Pfeiffer,
				G. Jung, E. Monnand, J.A. Pinston, F. Schussler, G.I. Crawford, S.G. Prussin,
				Z.M. de Oliveira
1983La12	PYLBB	125,	116	M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault,
				M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault, F. Touchard, M. Epherre
1983La12 1983La23	PYLBB PYLBB	125, 130,	116 251	M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault,F. Touchard, M. EpherreM. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault,
1983La23	PYLBB	130,	251	M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault, F. Touchard, M. Epherre M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault, F. Touchard, G. Klotz, C. Miehé, G. Walter, M. Epherre, C. Richard-Serre
				M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault,F. Touchard, M. EpherreM. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault,

10021 - 4	Th II-1-:1-:			M. Laine (Demont IIII D.D27)
1983Le.A 1983Li11	ThHelsinki PRVCA	28,	2127	M. Leino (Report HU-P-D37) C.J. Lister, B.J. Varley, D.E. Alburger, P.E. Haustein, S.K. Saha, J.W. Olness,
1903L111	TRVCA	20,	2127	H.G. Price, A.D. Irving
1983Mi20	PYLBB	130,	1	T. Minamisono, K. Takeyama, T. Ishigai, H. Takeshima, Y. Nojiri, K. Asahi
1983Mo09	PRVCA	28,	623	S. Mordechai, S. LaFrance, H.T. Fortune
1983Ni05	ZPAAD	312,	265	J.M. Nitschke, M.D. Cable, WD. Zeitz
1983Ny01	NUPAB	408,	127	K. Nybø, T.F. Thorsteinsen, G. Løvhøiden, E.R. Flynn, J.A. Cizewski, R.K. She-
-, -, -, -, -, -, -, -, -, -, -, -, -, -		,		line, D. Decman, D.G. Burke, G. Sletten, P. Hill, N. Kaffrell, W. Kurcewicz,
				G. Nymann
1983Og.A	JINR-D7-83	-644		Yu. Ts. Oganessian
1983Pa.A	ThBerkeley			R.F. Parry DABBB 44,2472(1984)
1983Pu01	NUPAB	399,	190	G.P. Putt, L.K. Field, M.A.C. Hotchkis, T.R. Ophel, D.C. Weisser
1983Ra04	PRVCA	27,	1188	S. Raman, E.T. Jurney, D.A. Outlaw, I.S. Towner
1983Ra25	PRLTA	51,	975	R.S. Raghavan
1983Ra.A	P-Florence		I-1	K.V. Ramaniah, S.B. Reddy, V.V. Rama Murti, K.L. Narasimham
1983Re05	PRVCA	27,	3002	P.L. Reeder, R.A. Warner, R.L. Gill
1983Ro08	NUPAB	401,	41	M. Rotbard, M. Vergnes, J. Vernotte, G. Berrier-Ronsin, J. Kalifa, R. Tamisier
1983Ru06	NUPAB	399,	163	E. Runte, WD. Schmidt-Ott, P. Tidemand-Petersson, R. Kirchner, O. Klepper,
				W. Kurcewicz, E. Roeckl, N. Kaffrell, P. Peuser, K. Rykaczewski, M. Bernas,
				P. Dessagne, M. Langevin
1983Ru08	NUPAB	407,	60	J.F.G.A. Ruyl, P.M. Endt
1983Sc18	ZPAAD	310,	295	U.J. Schrewe, E. Hagberg, H. Schmeing, J.C. Hardy, V.T. Koslowsky,
				K.S. Sharma
1983Sc23	PRVCA	28,		N. Schulz, A. Chevallier, J. Chevallier, S. Khazrouni, L. Kraus, I. Linck
1983Sc24	ZPAAD	312,	21	J.R.H. Schneider, S. Hofmann, F.P. Heßberger, G. Münzenberg, W. Reisdorf,
10020 20	504.45	212	105	P. Armbruster
1983Sc28	ZPAAD	313,		U.J. Schrewe, W.D. Schmidt-Ott
1983Se17	IANFA	47,		V.A. Sergienko, A.V. Borontsovskii, M.A. Nain
1983Sh06	ZPAAD	311,	71	K. Shizuma, H. Lawin, K. Sistemich
1983Sh31	PRVCA	28,	1712	B. Sherrill, K. Beard, W. Benenson, B.A. Brown, E. Kashy, W.E. Ormand,
1002T- A	DADCA	20	(50	H. Nann, J.J. Kehayias, A.D. Bacher, T.E. Ward
1983Ta.A 1983Ti02	BAPSA NUPAB	28, 403,	658 13	R.W. Tarara, C.P. Browne, see BAPSA 28,968
1983Ti02	PRVCA	403, 27,	889	T.A.A. Tielens, J. Kopecky, K. Abrahams, P.M. Endt K.S. Toth
1983To20	NUPAB	411,	209	Y. Tokunaga, H. Seyfarth, O.W.B. Schult, H.G. Börner, Ch. Hofmeyr, G. Bar-
17031020	NOTAB	711,	207	reau, R. Brissot, Ch. Monkemeyer, U. Kaup
1983Ts01	PRVCA	27,	2397	J.S. Tsai, T.J. Kennett, W.V. Prestwich
1983Ve06	IANFA	47,		G.V. Veselov, N. Ganbaatar, Ya. Kormitski, Yu. N. Novikov, A. Potempa,
-, -, -, -, -, -, -, -, -, -, -, -, -, -		,		E. Senyavski, V.A. Sergienko, F. Tarkani
1983Ve.A	P-Moscow		99	G.V. Veselov, N. Ganbaatar, K.A. Mezilev, Yu. N. Novikov, A. Potempa,
				V.A. Sergienko, F. Tarkanyi, A.G. Teterin
1983Vi.A	P-Moscow		575	V.D. Vitman, F.V. Moroz, S. Yu. Orlov, V.K. Tarasov
1983Vo10	ZPAAD	313,	167	E. Voth, W.D. Schmidt-Ott, H. Behrens
1983Vo.A	PrvCom	AHW	Jul	H. Vonach
1983Wa26	IJARA	34,	1191	K.F. Walz, K. Debertin, H. Schrader
1983Wa27	NUPAB	411,	81	F.B. Waanders, J.P.L. Reinecke, H.N. Jacobs, J.J.A. Smit, M.A. Meyer,
				P.M. Endt
1983We07	ZPAAD	313,	173	B. Weiss, C.F. Liang, P. Paris, A. Peghaire, A. Gizon, and Prv-
				Com GAu Oct 1983
1983Wi14	NUPAB	411,	151	C.A. Wiedner, R. Haupt, W. Saathoff, J. Haas, R. Gyufko, K.R. Cordell,
				S.T. Thornton, R.A. Cecil, R.L. Parks
1983Wi.A	PrvCom	AHW	Jan	C.A. Wiedner, et al
1983Wi.B	PrvCom	AHW		CA. Wiedner, et al
1983Wo01	PRVCA	27,	27	C.J. Woodward, R.E. Tribble, D.M. Tanner
1983Wo04	PRVCA	27,	1745	J.M. Wouters, H.M. Thierens, J. Äystö, M.D. Cable, P.E. Haustein, R.F. Parry,
1002377 10	DD I TO	<i>5</i> 1	0.72	J. Cerny
1983Wo10	PRLTA	51,	873	F.K. Wohn, J.C. Hill, R.F. Petry, H. Dejbakhsh, Z. Berant, R.L. Gill
1983Zu01	NUPAB	393,	15	J.D. Zumbro, R.W. Tarara

1984

1984Ah02	NUPAB	413,	423	I. Ahmad, J.L. Lerner
1984Al08	YAFIA	39,	513	D.V. Aleksandrov, E.A. Ganza, Yu. A. Glukhov, B.G. Novatskii, A.A. Ogloblin,
				D.N. Stepanov
1984Al36	IANFA	48,	834	G.D. Alkhazov, N. Ganbaatar, K. Ya. Gromov, V.K. Kalinnikov, K.A. Mezilev,
		,		Yu. N. Novikov, A.M. Nurmhukhamedov, A. Potempa, F. Tarkani
1984An03	NCIAA	79,	100	M.S. Antony, J. Britz, J.B. Bueb, A. Pape
1984An17	NCIAA	81,	414	M.S. Antony, J. Britz, J. Bueb, A. Pape
1984Ay01	PYLBB	138,	369	J. Äystö, J. Arje, V. Koponen, P. Taskinen, H. Hyvonen, A. Hautojarvi, K. Vier-
				inen
1984Ba12	PRVCA	29,	1530	P.H. Barker, R.E. White
1984Ba.B	P-Darmstadt		55	P.H. Barker, R.E. White, D.M.J. Lovelock, R.M. Smythe
1984Be10	NUPAB	413,	363	M. Bernas, Ph. Dessagne, M. Langevin, J. Payet, F. Pougheon, P. Roussel, W
				D. Schmidt-Ott, P. Tidemand-Petersson, M. Girod
1984Be.A	PrvCom		84De33	M. Bernas, Ph. Dessagne, M. Langevin, J. Payet, F. Pougheon, P. Roussel,
				I. Turkevicz, M. Girod confirmed PrvCom GAu 1988
1984Bh02	NCIAA	79,	471	P. Bhattacharya
1984Bl.A	P-Darmstadt	,	134	F. Blönnigen, G. Bewersdorf, C. Geisse, W. Lippert, B. Pfeiffer, U. Stöhlker,
170 111.71	1 Durmstaat		131	H. Wollnik
1984Bo.C	P-Knoxville		382	M. Bogdanovic, H. Seyfarth, H.R. Börner, S. Kerr, F. Hoyler, K. Schreckenbach,
1904DU.C	r-Kiloxville		362	
10015				G.G. Colvin
1984Br.A	AnRpt IPN		13	F. Bragança Gil, C. Bourgeois, P. Kilcher, M.G. Porquet, B. Roussière,
				J. Sauvage, ISOCELE
1984Bu09	NUPAB	415,	93	L. Buchmann, M. Hilgemeier, A. Krauss, A. Redder, C. Rolfs, H.P. Trautvetter,
				T.R. Donoghue
1984Bu14	PRVCA	29,	2339	D.G. Burke
1984Bu23	PRVCA	30,	742	B.L. Burks, R.E. Anderson, Y. Aoki, B.C. Karp, E.J. Ludwig, W.J. Thompson,
		,		R.L. Varner
1984Ca32	PRVCA	30,	1671	F. Calaprice, G.T. Ewan, RD. von Dincklage, B. Jonson, O.C. Jonsson,
17010432	1100011	50,	10/1	H.L. Ravn
1984Ch02	PRVCA	29,	502	C. Chung, W.B. Walters, N.K. Aras, F.K. Wohn, D.S. Brenner, Y.Y. Chu,
1904CH02	FRVCA	29,	392	
10046 10	70440	210	107	M. Shmid, R.L. Gill, R.E. Chrien, LJ. Yuan
1984Co19	ZPAAD	319,	107	M.D. Cohler, D.L. Watson, R. Wadsworth, S.M. Lane, M.J. Smithson,
				R.E. Brown, JC. Peng, N. Stein, J.W. Sunier, D.M. Drake
1984Co.A	P-Darmstadt		272	E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, and PrvCom AHW July 1984
1984Cr01	JPGPE	10,	1133	D.A. Craig, H.W. Taylor
1984Da.A	P-Darmstadt		257	H. Dautet, N. Campeau, J.K.P. Lee, C. Bourgeois, B. Roussière, A. Houdayer
1984De15	NUPAB	419,	101	J.B.M. De Hass, K. Abrahams, T.A.A. Tielens, H. Postma, W.J. Huiskamp
1984De16	NUPAB	419,	165	D.J. Decman, H. Grawe, H. Kluge, K.H. Maier, A. Maj, M. Menningen, N. Roy,
		- ,		W. Wiegner
1984De33	NUPAB	426,	399	Ph. Dessagne, M. Bernas, M. Langevin, G.C. Morrison, J. Payet, F. Pougheon,
170 12033	HOIMB	120,	377	P. Roussel
1984El05	DVI DD	1.4.1	206	
	PYLBB	141,	306	R.J. Ellis, K.S. Sharma, R.C. Barber, S.R. Loewen, H.E. Duckworth
1984Fa04	PYLBB	137,	23	T. Faestermann, A. Gillitzer, K. Hartel, P. Kienle, E. Nolte, and AMCO-
10047104				7,p.177,184
1984Fi02	NUPAB	417,	534	L.K. Fifield, M.A.C. Hotchkis, P.V. Drumm, T.R. Ophel, G.D. Putt, D.C. Weisser
1984Fi05	PRVCA	29,	2118	B.W. Filippone, C.N. Davids, R.C. Pardo, J. Äystö
1984Fi.A	BAPSA	29,	1056	S.A. Fisher, R.L. Hershberger, F. Gabbard
1984Fo19	NUPAB	429,	205	B. Fogelberg, J. Blomqvist
1984Fo.A	P-Knoxville		427	I. Förster, H.G. Börner, P. von Brentano, G.G. Colvin, A.M.I. Haque, S.A. Kerr,
				R. Rascher, R. Richter, K. Schreckenbach
1984Ga.B	BAPSA	29,	1041	Z. Gacsi, Ya. Guyash, T. Kibedi, E. Koltai, A. Krasnakhorkai, T. Fenesh
1984Gi09	PRVCA	30,	958	R. Gilman, H.T. Fortune, L.C. Bland, R.R. Kiziah, C.F. Moore, P.A. Seidl,
17010107	110011	50,	750	C.L. Morris, W.B. Cottingame
100411-20	DVI DD	120	260	-
1984Ha20	PYLBB	138,	260	B.J. Hall, R.J. Ellis, G.R. Dyck, C.A. Lander, R. Beach, K.S. Sharma, R.C. Bar-
100477.27	MID: 5	100	~~:	ber, H.E. Duckworth
1984Ha27	NUPAB	420,	351	R. Hanninen

1984Ha31	ZPAAD	317,	193	R. Haupt, CA. Wiedner, G.J. Wagner, K. Wannebo, T.S. Bhatia, H. Hafner,
				R. Maschuw, W. Saathoff, S.T. Thornton
1984Ha.A	P-Darmstadt			W. Hampel, R. Schlotz
1984Ha.B	P-Darmstadt		244	W. Habenicht, L. Spanier, G. Korschinek, H. Ernst, E. Nolte
1984He.A	ThMontrea	l		D.W. Hetherington
1984Ho02	PRVCA	29,	618	R.W. Hoff, T. von Egidy, R.W. Lougheed, D.H. White, H.G. Börner, K. Schreckenbach, G. Barreau, D.D. Warner
1984Ho.A	P-Darmstadt		184	S. Hofmann, Y.K. Agarwal, P. Armbruster, F.P. Heßberger, P.O. Larsson, G. Münzenberg, K. Poppensieker, W. Reisdorf, J.R.H. Schneider, H.J. Schött
1984Ho.B	ThCanberra	ì		M.A.C. Hotchkis
1984Ia.A	P-Darmstadt		141	R. Iafigliola, H. Dautet, S.W. Xu, J.K.P. Lee, R. Chrien, R. Gill, M. Shmid
1984Is09	KURAA	17,	132	T. Ishii, H. Yamamoto, M. Yoshida, K. Kawade, H. Miyade, Y. Iwata, T. Katoh, JZ. Ruan, Y. Fumakoshi, Y. Kawase, K. Okano
1984Ka07	PYLBB	137,	150	I. Katayama, S. Morinobu, M. Fujiwara, Y. Fujita, T. Yamazaki, H. Ikegami
1984Ka22	PRVCA	30,	807	S. Kahane, S. Raman, G.G. Slaughter, C. Coceva, M. Stefanon
1984Ka.A	P-Alma Ata	30,	128	V.G. Kalinnikov, V.V. Kuznetsov, V.I. Stegailov, see also P-Yurmala(1987)p119
1984Ke11	CJPHA	62,	861	T.J. Kennett, W.V. Prestwich, J.S. Tai
1984Ke15	PRVCA	30,	1840	T.J. Kennett, M.A. Islam, W.V. Prestwich
1984Ko10	PRVCA	29,	2343	R.T. Kouzes, M.M. Lowry, C.L. Bennett, and PrvCom AHW May 1988
1984Ko29	NUPAB	427,	413	J. Kopecky, M.G. Delfini, R.E. Chrien
1984Kr05	NUPAB	417,	231	B. Krusche, K.P. Lieb, L. Ziegler, H. Daniel, T. von Egidy, R. Rascher,
				H.G. Börner, G. Barreau, D.D. Warner
1984Kr.B	P-Darmstadt		127	KL. Kratz, A. Schröder, H. Ohm, H. Gabelmann, W. Ziegert, B. Steinmüller, B. Pfeiffer
1984Ku28	NIMBE	5,	430	W. Kutschera, P.J. Billquist, D. Frekers, W. Henning, K.J. Jensen, Ma Xiuzeng, R. Pardo, M. Paul, K.E. Rehm, R.K. Smither, J.L. Yntema, L.F. Mausner
1984La03	NUPAB	414,	151	M. Langevin, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, C. Thibault, F. Touchard, M. Epherre
1984La06	NUPAB	413,	236	R.G. Lanier, R.K. Sheline, G.L. Struble, L.G. Mann, J.A. Cizewski, and erratum NUPAB 427,650
1984La.A	P-Darmstadt		652	E. Laegsgaard, J.U. Andersen, G.J. Beyer, A. De Rújula, P.G. Hansen, B. Jonson, H.L. Ravn
1984Li05	NUPAB	417,	365	
1984Li24	PZETA	39,	529	É.T. Lippmaa, R. Ĭ. Pikver, É.R. Suurmaa, Ya. O. Past, Yu. Kh. Puskar, I.A. Kop-
				pel', A.A. Tammik
1984Li.A	AnRpt Berke	eley		W.X. Li, K.E. Gregorich, R.B. Welch, W. Kot, D. Lee, G.T. Seaborg
1984Lu02	ZPAAD	315,	295	E. Lund, B. Fogelberg
1984Ma49	ZPAAD	319,		W.A. Mayer, W. Henning, R. Holzwarth, H.J. Körner, G. Korschinek,
				W.U. Mayer, G. Rosner, H.J. Scheerer
1984Mi.A	AnRpt Muni	ch	40	C. Mittag, H. Puchta, F. Riess, M. Stallknecht
1984Mo22	NUPAB	427,	317	D.M. Moltz, K.S. Toth, F.T. Avignone III, H. Noma, B.D. Kern, R.E. Tribble, J.P. Sullivan
1984Mu07	ZPAAD	315,	145	G. Münzenberg, W. Reisdorf, S. Hofmann, Y.K. Agarwal, F.P. Heßberger,
		ŕ		K. Poppensieker, J.R.H. Schneider, W.F.W. Schneider, KH. Schmidt,
1004NI:02	704 4 0	216	240	H.J. Schött, P. Armbruster, CC. Sahm, D. Vermeulen
1984Ni03	ZPAAD	316,	249	J.M. Nitschke, P.A. Wilmarth, P.K. Lemmertz, WD. Zeitz, J.A. Honkanen
1984Ni16	PZETA	39,	441	E.N. Nikolaev, Yu. I. Neronov, M.V. Gorshkov, V.L. Talroze
1984No05	NUPAB	423,	197	G.J.L. Nooren, C. van der Leun
1984Ox01	ZPAAD	316,	97	K. Oxorn, S.K. Mark
1984Pi03	NUPAB	414,	219	Š. Piskoř, P. Franc, J. Kremenek, W. Schäferlingová
1984Po09	RAACA	35,	23	P. Polak, L. Lindner
1984Ra09	PRVCA	30,	26	S. Raman, W. Ratynski, E.T. Jurney, M.E. Bunker, J.W. Starner
1984Ro.A	BAPSA	29,	1041	G. Rotbard, M. Vergnes, J. Vernotte, G. Berrier Ronsin, S. Gales, G.M. Crawley
1984Ru06	NUPAB	419,	439	J.F.A.G. Ruyl, J.B.M. de Haas, P.M. Endt, L. Zybert
1984Ru.A	P-Darmstadt		196	B. Rubio, R. Julin, A. Ercan, K. Zuber, P. Kleinheinz, J.L. Tain, G.P.A. Berg,
				G. Hlawatsch, I. Katayama, J. Meissburger, D. Paul, J.G. Roemer, J. Blomqvist
1984Ry02	NUIMA	223,	325	A. Rytz, R.A.P. Wiltshire
1984Sc06	ZPAAD	315,	49	U.J. Schrewe, E. Hagberg, H. Schmeing, J.C. Hardy, V.T. Koslowsky,
				K.S. Sharma

1984Sc13	ZPAAD	316,	19	KH. Schmidt, CC. Sahm, K. Pielenz, HG. Clerc
1984Sc18	ZPAAD	317,	305	U.J. Schrewe, E. Voth, U. Bosch, WD. Schmidt-Ott, H. Behrens
1984Sc.A	GSI-84-3			J. Schneider Thesis
1984Sc.B	P-Darmstadt		203	U.J. Schrewe, P. Tidemand-Petersson, H. Behrens, H. Dornhöfer, R. Michaelsen,
				E. Runte, WD. Schmidt-Ott, E. Voth
1984Sc.C	P-Darmstadt		229	D. Schardt, P.O. Larsson, R. Kirchner, O. Klepper, V.T. Koslowsky, E. Roeckl, K. Rykaczewski, P. Kleinheinz, K. Zuber
1984Sh28	PRVCA	30,	2111	T. Shinozuka, M. Fujioka, H. Miyatake, M. Yoshii, H. Hama, T. Kamiya
1984Sh31	AENGA	56,	245	V.M. Shatinsky
1984Sh51 1984Th08		,		C.E. Thorn, J.W. Olness, E.K. Warburton, S. Raman
	PRVCA	30,		
1984To09	PRLTA	53,	1623	K.S. Toth, Y.A. Ellis-Akovali, C.R. Bingham, D.M. Moltz, D.C. Sousa, H.K. Carter, R.L. Mlekodaj, E.H. Spejewski
1984To11	NUPAB	430,	269	Y. Tokunaga, H. Seyfarth, O.W.B. Schult, S. Brant, V. Paar, D. Vretenar, H.G. Börner, G. Barreau, H. Faust, Ch. Hofmeyr, K. Schreckenbach, R.A. Meyer
1984Vo01	JPHGB	10,	221	T. von Egidy, H. Daniel, P. Hungerford, H.H. Schmidt, K.P. Lieb, B. Krusche,
1984 VOUT	JPHUD	10,	221	
100437.07	DDMCA	20	10.40	S.A. Kerr, G. Barreau, H.G. Börner, R. Brissot, C. Hofmeyr, R. Rascher
1984Vo07	PRVCA	29,	1243	T. von Egidy, R.W. Hoff, R.W. Lougheed, D.H. White, H.G. Börner, K. Schreck-
				enbach, D.D. Warner, G. Barreau, E. Hungerford
1984Ya.A	ThBerkeley			S. Yashita
				1985
1985Ad.A	P-Leningrad		93	Dz. Adam, T. Dzelev, D. Zakoutski, B. Kratsik, I. Penev
1985Af.A	P-Leningrad		1083	V.P. Afanasiev, Yu. S. Blinnikov, N. Ganbaatar, V. Dzeleznyakov,
				V.G. Kalinikov, Ya. Kormitski, K.A. Mezilev, Yu. N. Novikov, A.M. Nur-
				mudzamedov, V.N. Panteleev, A.G. Polyakov, A. Potempa, F. Tarkani
1985Ah.A	P-Bombay			S.A. Ahmad, et al, and 89Ot.1
1985Al02	PRVCA	31,	360	T. Altzitzoglou, R.T. Kouzes, F.W. Loeser, M.M. Lowry, R.A. Naumann,
				R.E. Chrien, and erratum PRVCA 32,665
1985Al08	NUPAB	438,	482	G.D. Alkhazov, A.A. Bykov, V.D. Wittmann, V.E. Starodubsky, S.Y. Orlov,
		,		V.N. Panteleyev, A.G. Polyakov, V.K. Tarasov
1985Al11	PRLTA	55,	799	T. Altzitzoglou, F. Calaprice, M. Dewey, M. Lowry, L. Piilonen, J. Brorson,
		,		S. Hagen, F. Loeser
1985Al13	PYLBB	157,	350	G.D. Alkhazov, A.A. Bykov, V.D. Wittmann, S. Yu. Orlov, V.K. Tarasov
1985An17	NCIAA	88,	265	M.S. Antony, J. Britz, J.B. Bueb, V.B. Ndocko-Ndongué
1985Ap01	PZETA	42,	233	A.M. Apalikov, S.D. Boris, A.I. Golutvin, L.P. Laptin, V.A. Lyubi-
1703/1p01	IZLIA	12,	233	mov, N.F. Myasoedov, V.V. Nagovitsyn, E.G. Novikov, V.Z. Nozik,
				V.A. Soloshchenko, I.N. Tikhomirov, E.F. Tretyakov
1985Au07	ZPAAD	321,	533	G. Audi, R.L. Graham, J.S. Geiger
1985Au07	PRLTA	55,	1384	J. Äystö, D.M. Moltz, X.J. Xu, J.E. Reiff, J. Cerny
-	ZPAAD	322,		A. Baas-May, J.V. Kratz, N. Trautmann
1985Ba57 1985Be17				
	ZPAAD	320,		F.J. Bergmeister, K.P. Lieb, K. Pampus, M. Uhrmacher
1985Be20	PYLBB	156,	159	Z. Berant, R.L. Gill, M.H. Rafailovich, R.E. Chrien, J.C. Hill, F.K. Wohn,
1005D 04	704 4 0	221	125	R.F. Petry, C. Chung, G. Peaslee, M. Mohsen
1985Be24	ZPAAD	321,	435	M. Bernas, M. Langevin, G. Parrot, E. Pougheon, E. Quiniou, P. Roussel,
100575 50	DIM DD	1.60	0.7	Ph. Dessagne, W.D. Schmidt-Ott
1985Be50	PYLBB	162,	87	W. Benenson, K. Beard, C. Bloch, B. Sherrill, B.A. Brown, A.D. Panagiotou,
				J. van der Plicht, J.S. Winsfield, C.E. Thorn
1985Bj01	NUPAB	443,	283	T. Bjornstad, M.J.G. Borge, P. Dessagne, RD. von Dincklage, G.T. Ewan,
				P.G. Hansen, A. Huck, B. Jonson, G. Klotz, A. Knipper, P.O. Larsson, G. Ny-
				man, H.L. Ravn, C. Richard-Serre, K. Riisager, D. Schardt, G. Walter
1985Bo34	PYLBB	159,	217	S. Boris, A. Golutvin, L. Laptin, V. Lubimov, V. Nagovizin, E. Novikov,
				V. Nozik, V. Soloshenko, I. Tihomirov, E. Tretjakov
1985Bo46	PRLTA	55,	2269	J.A. Bounds, C.R. Bingham, P. Juncar, H.K. Carter, G.A. Leander, R.L. Mleko-
				daj, E.H. Spejewski, W.M. Fairbank, Jr.
1985Bo49	PYLBB	164,	22	U. Bosch, WD. Schmidt-Ott, P. Tidemand-Petersson, E. Runte, W. Hille-
				brandt, M. Lechle, FK. Thielemann, R. Kirchner, O. Klepper, E. Roeckl,
				K. Rykaczewski, D. Schardt, N. Kaffrell, M. Bernas, Ph. Dessagne,
				W. Kurcewicz

1985Bo58	NUIMA	228,	387	V.R. Bom, P.C. Coops
1985Br03	PYLBB	150,	75	M. Brauner, D. Rychel, R. Gyufko, C.A. Wiedner, S.T. Thornton
1985Br08	NUIMA	234,	218	M. Brugger, N. Hildebrand, T. Karlewski, N. Trautmann, A.K. Mazumdar, G. Herrmann
1985Co06	PRLTA	54,	1783	E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, J.L. Wood
1985Co24	PYLBB	163,	66	A. Coc, C. Thibault, F. Touchard, H.T. Duong, P. Juncar, S. Liberman, J. Pinard, J. Lermé, J.L. Vialle, S. Büttgenbach, A.C. Mueller, A. Pesnelle, and the ISOLDE Collaboration
1985Co.B	PrvCom	AHW	Dec	G.G. Colvin
1985Da15	PRVCA	32,	713	N.J. Davis, J.A. Kuehner, A.A. Pilt, A.J. Trudel, M.C. Vetterli, C. Bamber,
-, -, -, -, -, -, -, -, -, -, -, -, -, -		,		E.K. Warburton, J.W. Olness, S. Raman
1985De08	JPHGB	11,	L59	K. Deneffe, E. Coenen, M. Huyse, P. Van Duppen, J. Vanhorenbeeck, P. del Marmol, P. Fettweis
1985De14	NUPAB	436,	311	D.J. Decman, H. Grawe, H. Kluge, K.H. Maier, A. Maj, N. Roy, Y.K. Agarwal, K.P. Blume, M. Guttormsen, H. Hubel, J. Recht
1985De40	CJPHA	63,	966	V.P. Derenchuk, R.J. Ellis, K.S. Sharma, R.C. Barber, H.E. Duckworth
1985Dr06	NUPAB	441,	95	P.V. Drumm, L.K. Fifield, R.A. Bark, M.A.C. Hotchkis, C.L. Woods, P. Maier-
		,		Komor
1985Dy04	PYLBB	157,	139	G.R. Dyck, R.J. Ellis, K.S. Sharma, C.A. Lander, M.H. Sidky, R.C. Barber, H.E. Duckworth
1985El01	NUPAB	435,	34	R.J. Ellis, R.C. Barber, G.R. Dyck, B.J. Hall, K.S. Sharma, C.A. Lander, H.E. Duckworth, and PrvCom AHW October 1991
1985Ev01	PYLBB	153,	25	P.D. Eversheim, F. Hinterberger, S. Kuhn, P. Von Rossen, J. Romer, R.P. Trelle
1985Fi03	NUPAB	440,	531	L.K. Fifield, C.L. Woods, R.A. Bark, P.V. Drumm, M.A.C. Hotchkis
1985Fi08	NUPAB	437,	141	L.K. Fifield, P.V. Drumm, M.A.C. Hotchkis, T.R. Ophel, C.L. Woods
1985Fr01	NUPAB	433,	351	R. Franke, H. Kockskamper, B. Steinheuer, K. Wingender, W. von Witsch
1985Fu03	NUPAB	435,	7	Y. Fujita, S. Morinobu, I. Katayama, M. Fujiwara, T. Yamazaki, H. Ikegami,
				H. Taketani, M. Adachi, T. Matsuzaki, M. Matoba, N. Koori
1985Ge02	JPHGB	11,	1055	W. Gelletly, J.R. Larysz, H.G. Börner, R.F. Casten, W.F. Davidson, W. Mampe, K. Schreckenbach, D.D. Warner
1985Gy01	PYLBB	150,	335	R. Gyufko, D. Rychel, M. Steck, CA. Wiedner, R.L. Parks, S.T. Thornton
1985Ha12	PRVCA	31,	1594	F.X. Hartmann, R.A. Naumann
1985He06	ZPAAD	321,	317	F.P. Heßberger, G. Münzenberg, S. Hofmann, W. Reisdorf, KH. Schmidt, H.J. Schött, P. Armbruster, R. Hingmann, B. Thuma, D. Vermeulen
1985He22	ZPAAD	322,	557	F.P. Heßberger, G. Münzenberg, S. Hofmann, Y.K. Agarwal, K. Poppensieker, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, W.F.W. Schneider, H.J. Schött,
				P. Armbruster, B. Thuma, CC. Sahm, D. Vermeulen
1985He.A	GSI-85-11			F.P. Heßberger
1985Hi.A	AnRpt GSI		88	R. Hingmann, W. Kuehn, V. Metag, R. Novotny, A. Ruckelshausen, H. Stroeher, F.P. Heßberger, S. Hofmann, G. Münzenberg, W. Reisdorf
1985Ho21	PYLBB	160,	375	E. Hourani, M. Hussonnois, L. Stab, L. Brillard, S. Gales, J.P. Schapira
1985Ho.A	PrvCom	NDG	876	C. Hofmeyr, C. Franklyn, G. Barreau, H.G. Börner, R. Brissot, H. Faust,
1985Hu03	PRVCA	31,	2226	K. Schreckenbach A. Huck, G. Klotz, A. Knipper, C. Miehé, C. Richard-Serre, G. Walter, A. Poves,
				H.L. Ravn, G. Marguier
1985Ke08	ZPAAD	322,	121	T.J. Kennett, W.V. Prestwich, J.S. Tsai
1985Ke11	PRVCA	32,	2148	T.J. Kennett, W.V. Prestwich, J.S. Tsai
1985Ke.A	PrvCom	AHW	Jan	T.J. Kennett
1985Kh04	PYLBB	156,	155	S. Khan, Th. Kihm, K.T. Knöpfle, G. Mairle, V. Bechtold, L. Friedrich
1985Ko47	NIMBE	12,	325	P.J.J. Kok, K. Abrahams, H. Postma, W.J. Huiskamp
1985Kr06	NUPAB	439,	219	B. Krusche, Ch. Winter, K.P. Lieb, P. Hungerford, H.H. Schmidt, T. von Egidy, H.J. Scheerer, S.A. Kerr, H.G. Börner
1985La17	IJARA	36,	443	R.M. Lambrecht, S. Mirzadeh
1985Le10	PRVCA	32,	277	R.S. Lee, J.H. Hamilton, A.V. Ramayya, A.P. de Lima, D.L. Sastry, K.S.R. Sastry, E.H. Spejewski, R.L. Mlekodaj, H.K. Carter, WD. Schmidt-Ott, J. Lin, C.R. Bingham, L.L. Riedinger, E.F. Zganjar, J.L. Weil, B.D. Kern, A.C. Xenoulis, R.W. Fink, Sun Xi-jun, Guo Jun-sheng, Cho Chi-cheng, Pan Zong-you,
				Guo Ying-xian
1985Li02	PRLTA	54,	285	E. Lippmaa, R. Pikver, E. Suurmaa, J. Past, J. Puskar, I. Koppel, A. Tammik

1985Ma54	JPHGB	11,	1231	T.D. MacMahon, G.R. Massoumi, T. Mitsunari, M. Thein, O. Chalhoub, D. Breitig, H.A. Baader, U. Heim, H.R. Koch, L. Wimmwer, H. Seyfarth, K. Schreckenbach, G.B. Orr, G.J. Smith, W.R. Kane, I.A. Kondurov, P.A. Sushkov, Yu. E. Loginov, D. Rabenstein, M. Bogdanovic
1985Ma59	PRVCA	32,	2215	J. Markey, F. Boehm
1985Mu11	ZPAAD	322,	227	•
1985No03	PRVCA	31,	1937	
1985Oh06	PYLBB	160,	322	T. Ohi, M. Nakajima, H. Tamura, T. Matsuzaki, T. Yamazaki, O. Hashimoto,
				R.S. Hayano
1985Pf.A	P-Birmingh	am	75	B. Pfeiffer, KL. Kratz, H. Gabelmann, W. Ziegert, V. Harms, B. Leist, and 93Ru01
1985Pi03	PRVCA	31,	1032	A.A. Pilt, J.A. Cameron, R.B. Schubank, E.E. Habib
1985Re02	NUPAB	435,	333	J.P.L. Reinecke, F.B. Waanders, P. Oberholzer, P.J.C. Janse van Rensburg, J.A. Cilliers, J.J.A. Smit, M.A. Meyer, P.M. Endt
1985Ry02	ZPAAD	322,	263	K. Rykaczewski, I.S. Grant, R. Kirchner, O. Klepper, V.T. Koslowsky, P.O. Larsson, E. Nolte, G. Nyman, E. Roeckl, D. Schardt, L. Spanier, P. Tidemand-Petersson, E.F. Zganjar, J. Żylicz
1985Sa15	ZPAAD	321,	255	M. Samri, J.G. Costa, G. Klotz, D. Magnac, R. Selz, J.P. Zirnfeld
1985Sc09	ZPAAD	320,	595	U.J. Schrewe, H. Dornhöfer, E. Runte, W.D. Schmidt-Ott, T. Tidemand-
				Petersson, R. Michaelsen
1985Sc16	NUIMA	236,	225	H. Schölermann, B.R.L. Siebert
1985Sh03	PRVCA	31,	875	B. Sherrill, K. Beard, W. Benenson, C. Bloch, B.A. Brown, E. Kashy, J.A. Nolen, Jr., A.D. Panagiotou, J. van der Plicht, J.S. Winfield, see P-Darmstadt
				p. 82
1985Si07	PRVCA	31,	1891	J.J. Simpson, W.R. Dixon, R.S. Storey
1985Si25	JPSLB	46,	L1095	C. Signarbieux, G. Simon, J. Trochon, F. Brisard and PrvCom GAu Jan 1988
1985So03	PRVCA	31,	1801	L.P. Somerville, M.J. Nurmia, J.M. Nitschke, A. Ghiorso, E.K. Hulet,
1985St02	PRVCA	32,	582	R.W. Lougheed R.E. Stone, C.E. Bingham, L.L. Riedinger, R.W. Lide, H.K. Carter, R.L. Mlekos-
1005016				daj, E.H. Spejewski
1985St16	ZPAAD	322,	83	[190Pb]C. Stenzel, H. Grawe, H. Haas, HE. Mahnke, K.H. Maier
1985Ta.A	P-Swansea	220		V.L. Talrose, E.N. Nikolaev
1985Ti01 1985Ti02	ZPAAD	320,		P. Tidemand-Petersson, E. Runte, WD. Schmidt-Ott, U.J. Schrewe
19831102	NUPAB	437,	342	P. Tidemand-Petersson, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, A. Płochocki, J. Żylicz
1985To10	NUPAB	439,	427	Y. Tokunaga, H. Seyfarth, R.A. Meyer, O.W.B. Schult, H.G. Börner, G. Barreau,
1985Ts01	ZPAAD	322,	205	H.R. Faust, K. Schreckenbach, S. Brant, V. Paar, M. Vouk, D. Vretenar J.S. Tsai, T.J. Kennett, W.V. Prestwich
1985Ts02	ZPAAD	322,		J.S. Tsai, W.V. Prestwich, T.J. Kennett
1985Uh01	NIMBE	9,	234	M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke, K.P. Lieb
1985Va03	PYLBB	154,	354	P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, J.L. Wood
1985Va.A	JINR-R6-85		334	E.V. Vasileva, et al
1985Vo03	PRVCA	31,	1510	RD. von Dincklage, J. Gerl, H.L. Ravn, G.J. Beyer
1985Vo09	ZPAAD	321,	375	RD. von Dincklage, H.J. Hay
1985Vo13	NUPAB	445,	113	RD. von Dincklage, H.J. Hay, H.L. Ravn
1985Vo15	ZPAAD	322,	669	T. von Egidy, H.G. Börner, F. Hoyler
1985Wh03	MTRGA	21,	193	R.E. White, P.H. Barker, D.M.J. Lovelock
1985Wi07	ZPAAD	321,	179	P.A. Wilmarth, J.M. Nitschke, P.K. Lemmertz, R.B. Firestone
1985Wi15	NUPAB	444,	49	K. Wick, U. Berghaus, H. Bruckmann, P. Lara, W. Schutte, B. Anders, Y. Koike
1985Wo01	PYLBB	150,	79	P.J. Woods, R. Chapman, J.L. Durell, J.N. Mo, N.E. Sanderson, R.A. Cunningham, B.R. Fulton
1985Wo04	NUPAB	437,	454	C.L. Woods, L.K. Fifield, R.A. Bark, P.V. Drumm, M.A.C. Hotchkis
1985Wo07	ZPAAD	321,	119	P.J. Woods, R. Chapman, J.L. Durell, J.N. Mo, R.J. Smith, N.E. Sanderson,
1985Wo.A	PrvCom	GAu	Feb	B.R. Fulton, R.A. Cunningham P.J. Woods

1986Ad07	IANFA	50,	855	J. Adam, V. Vagner, M. Gonusek, B. Kratick
1986Ag.A	P-Charkov	,	98	V.A. Ageev, V.S. Belyavenko, V.A. Dzeltonodzskii, A.A. Klyushnikov
1986Au02	NUPAB	449,	491	G. Audi, A. Coc, M. Epherre, G. Le Scornet, C. Thibault, F. Touchard, ISOLDE
1986Ba26	PRVCA	34,	362	S.W. Barwick, P.B. Price, H.L. Ravn, E. Hourani, M. Hussonnois
1986Ba72	IANFA	50,	1898	K.A. Baskova, G.I. Borisov, A.B. Vovk, T.M. Gerus, L.I. Go
1986Be35	NUPAB	460,	352	A.V. Belozyorov, C. Borcea, Z. Dlouhy, A.M. Kalinin, R. Kalpakchieva, Nguyen Hoai Chau, Yu. Ts. Oganessian, Yu. E. Penionzhkevich
1986Be53	UFZHA	31,	1773	V.S. Belyavenko, G.P. Borozenets, I.N. Vishnevsky, V.A. Zheltonozhsky
1986Bj01	NUPAB	453,	463	T. Björnstad, M.J.G. Borge, J. Blomqvist, R.D. von Dincklage, G.T. Ewan,
, , .		,		P. Hoff, B. Jonson, K. Kawade, A. Kerek, O. Klepper, G. Løvhøiden, S. Matts-
				son, G. Nyman, H.L. Ravn, G. Rudstam, K. Sistemich, O. Tengblad, ISOLDE
1986Bo28	ZPAAD	325,	149	V.R. Bom, P.C. Coops, R.W. Hollander, E. Coenen, K. Deneffe, P. Van Duppen,
				M. Huyse
1986Bo46	PHSTB	34,	591	M.J.G. Borge, A. De Rújula, P.G. Hansen, B. Jonson, G. Nyman, H.L. Ravn,
				K. Riisager, ISOLDE
1986Bu18	PRVCA	34,	2316	B.L. Burks, R.L. Varner, E.J. Ludwig
1986Ch01	PRVCA	33,	130	T. Chapuran, K. Dybdal, D.B. Fossan, T. Lönnroth, W.F. Piel, Jr., D. Horn,
				E.K. Warburton
1986Co12	ZPAAD	324,	485	E. Coenen, K. Deneffe, M. Huyse, P. Van Duppen, J.L. Wood
1986Cu01	PRLTA	56,	34	M.S. Curtin, L.H. Harwood, J.A. Nolen, B. Sherrill, Z.Q. Xie, B.A. Brown
1986Da.A	AnRpt McG		29	H. Dautet, R. Turcotte, S.K. Mark
1986De13	NUPAB	454,	1	H.P.L. De Esch, C. van der Leun
1986De14	NUPAB	454,	48	H.P.L. De Esch, J.B.J.M. Lanen, C. van der Leun
1986Di01	PRVCA	33,	103	G.U. Din, A.M. Al Soraya, J.A. Cameron, V.P. Janzen, R.B. Schubank
1986Ek01	PHSTB	34,	614	B. Ekström, B. Fogelberg, P. Hoff, E. Lund, A. Sangiyavanish
1986Fi06	NUPAB DVI DD	453,	497	L.K. Fifield, C.L. Woods, W.N. Catford, R.A. Bark, P.V. Drumm, K.T. Keoghan
1986Fr09	PYLBB	173,	485	M. Fritschi, E. Holzschuh, W. Kündig, J.W. Petersen, R.E. Pixley, H. Stüssi, and PrvCom AHW
1986Ga19	PRVCA	34,	1663	C.A. Gagliardi, D.R. Semon, R.E. Tribble, L.A. Van Ausdeln
1986Gi07	PRLTA	56,	1874	R.L. Gill, R.F. Casten, D.D. Warner, A. Piotrowski, H. Mach, J.C. Hill,
17000107	TREIT	50,	1071	K.K. Wohn, J.A. Winger, R. Moreh
1986Gi08	NUPAB	453,	1	KL. Gippert, E. Runte, WD. Schmidt-Ott, P. Tidemand-Petersson, N. Kaf-
		Í		frell, P. Peuser, R. Kirchner, O. Klepper, W. Kurcewicz, P.O. Larsson, E. Roeckl,
				D. Schardt, K. Rykaczewski
1986Go10	ZPAAD	324,	117	H. Göktürk, B. Ekstrom, E. Lund, B. Fogelberg
1986Gr01	PRLTA	56,	819	G.L. Greene, E.G. Kessler, Jr., R.D. Deslattes, H. Börner
1986Ha22	NUPAB	455,	231	A.M.I. Hague, R.F. Casten, I. Förster, A. Gelberg, R. Rascher, R. Richter,
				P. von Brentano, G. Barreau, H.G. Börner, S.A. Kerr, K. Schreckenbach,
				D.D. Warner
1986Hi08	PRVCA	34,	2312	J.C. Hill, F.K. Wohn, K. Leininger, J.A. Winger, M.E. Nieland, R.L. Gill, A. Pi-
100577 01			242	otrowski, R.F. Petry, J.D. Goulden
1986Hu01	PRLTA	56,	313	E.K. Hulet, J.F. Wild, R.J. Dougan, R.W. Lougheed, J.H. Landrum,
				A.D. Dougan, M. Schädel, R.L. Hahn, P.A. Baisden, C.M. Henderson,
10061105	DDVCA	24	1204	R.J. Dupzyk, K. Sümmerer, G.R. Bethune
1986Hu05	PRVCA	34,	1394	E.K. Hulet, R.W. Lougheed, J.F. Wild, R.J. Dougan, K.J. Moody, R.L. Hahn, C.M. Henderson, R.J. Dupzyk, G.R. Bethune
1986Ka38	JUPSA	55,	3014	H. Kawakami, S. Shibita, J. Tanaka, T. Toriyama, S. Noguchi, M. Mushano,
1900Ka30	JUISA	55,	3014	K. Hisatake
1986Ka43	NUPAB	460,	437	N. Kaffrell, P. Hill, J. Rogowski, H. Tetzlaff, N. Trautmann, E. Jacobs,
1,00114.0	1,01112	.00,	,	P. De Gelder, D. De Frenne, K. Heyde, G. Skarnemark, J. Alstad, N. Blasi,
				M.N. Harakeh, W.A. Sterrenburg, K. Wolfsberg
1986Ke03	NUPAB	452,	173	J.G. Keller, KH. Schmidt, F.P. Heßberger, G. Münzenberg, W. Reisdorf, H
		,		G. Clerc, CC. Sahm, and PrvCom KH. Schmidt to AHW November 1992
1986Ke14	NIMAE	249,	366	T.J. Kennett, W.V. Prestwich, J.S. Tsai
1986Ko01	PRVCA	33,	392	T. Kohno, M. Adachi, S. Fukuda, M. Taya, M. Fukuda, H. Taketani, Y. Gono,
				M. Sugawara, Y. Ishikawa
1986Ko19	ZPAAD	324,	271	P.J.J. Kok, J.B.M. de Haas, K. Abrahams, H. Postma, W.J. Huiskamp

1986Lo16	JCOMA	122,	461	R.W. Lougheed, E.K. Hulet, R.J. Dougan, J.F. Wild, R.J. Dupzyk, C.M. Henderson, K.J. Moody, R.L. Hahn, K. Summerer, G. Bethune
1986Ma12	PRLTA	56,	1547	H. Mach, A. Piotrowski, R.L. Gill, R.F. Casten, D.D. Warner
1986Ma40	PRVCA	34,		L.G. Mann, R.G. Lanier, G.L. Struble, R.A. Naumann, R.T. Kouzes
1986Mi08	PRVCA	33,		C. Miehé, Ph. Dessagne, P. Baumann, A. Huck, G. Klotz, A. Knipper, G. Walter,
170011100	TRVCH	55,	1730	C. Richard-Serre
1986Mi14	PRVCA	33,	2204	D. Miljanic, S. Blagus, M. Zadro
			2204	
1986Pr03	NUPAB	455,	1	P.T. Prokofjev, V.A. Bondarenko, T.V. Guseva, N.D. Kramer, L.I. Simonova,
				J.J. Tambergs, K. Schreckenbach, W.F. Davidson, J.A. Pinston, D.D. Warner,
10068.05	2D1 1 D	225	221	P.H.M. van Assche, A.M.J. Spits
1986Pr05	ZPAAD	325,	321	W.V. Prestwich, T.J. Kennett, J.S. Tsai
1986Ru04	ZPAAD	324,	27	B. Rubio, A. Ercan, G. de Angelis, P. Kleinheinz, J.L. Tain, B. Brinkmoeller,
				D. Paul, J. Meissburger, L.G. Mann, D.J. Decman, T.N. Massey, G.L. Struble,
				H.J. Scheerer, J. Blomqvist
1986Ru05	ZPAAD	324,	119	E. Runte, T. Hild, WD. Schmidt-Ott, U.J. Schrewe, P. Tidemand-Petersson,
				R. Michaelsen
1986Ry04	NIMAE	253,	47	A. Rytz, R.A.P. Wiltshire, M. King
1986Sc16	NUPAB	454,	267	H.H. Schmidt, T. von Egidy, H.J. Scheerer, P. Hungerford, H.G. Börner,
				S.A. Kerr, K. Schreckenbach, R.F. Casten, W.R. Kane, D.D. Warner,
				A. Chalupka, M.K. Balodis, T.V. Guseva, P.T. Prokofjev, J.J. Tambergs
1986Sc21	NUPAB	457,	182	P. Schmalbrock, T.R. Donoghue, M. Wiescher, V. Wijekumar, C.P. Browne,
				A.A. Rollefson, C. Rolfs, A. Vlieks
1986Sc25	JPHGB	12,	411	H.H. Schmidt, W. Stöffl, T. von Egidy, P. Hungerford, H.J. Scheerer, K. Schreck-
				enbach, H.G. Börner, D.D. Warner, R.E. Chrien, R.C. Greenwood, C.W. Reich
1986Se04	PYLBB	173,	397	K.K. Seth, S. Iversen, M. Kaletka, D. Barlow, A. Saha, R. Soundranayagam
1986Si20	ZPAAD	325,	139	K. Sistemich, K. Kawade, H. Lawin, G. Lhersonneau, H. Ohm, U. Paffrath,
		Ź		V. Lopac, S. Brant, V. Paar
1986Sm05	ZPAAD	324,	283	R.J. Smith, P.J. Woods, R. Chapman, J.L. Durell, J.N. Mo, B.R. Fulton,
		,		R.A. Cunningham
1986To12	PYLBB	178,	150	K.S. Toth, Y.A. Ellis-Akovali, J.M. Nitschke, P.A. Wilmarth, P.K. Lemmertz,
		,		D.M. Moltz, F.T. Avignone III
1986Ts04	СЈРНА	64,	1569	J.S. Tsai, W.V. Prestwich, T.J. Kennett
1986Ul02	ZPAAD	325,	247	G. Ulm, S.K. Bhattacherjee, P. Dabkiewicz, G. Huber, HJ. Kluge, T. Kuhl,
		,		H. Lochmann, EW. Otten, K. Wendt, S.A. Ahmad, W. Klempt, R. Neugart,
				ISOLDE
1986Va08	PRVCA	33,	1141	G. Vandenput, P.H.M. van Assche, L. Jacobs, J.M. van den Cruyce,
1700 1400	TRVCH	55,	11.11	R.K. Smither, K. Schreckenbach, T. von Egidy, D. Breitig, H.A. Baader,
				H.R. Koch
1986Ve.A	P-Charkov		107	G.V. Veselov, K.A. Mezilev, Yu. N. Novikov, A.V. Lopov, V.A. Sergienko
1986 Ve.A 1986 Ve.B	P-Charkov		107 138	G.V. Veselov, K.A. Mezilev, Yu. N. Novikov, A.V. Lopov, Yu. Ya. Sergeev,
1900 VC.D	r-Charkov		136	V.A. Sergienko, V.I. Tichonov
100637:00	DDITA	57	2252	
1986Vi09	PRLTA	57,	3253	D.J. Vieira, J.M. Wouters, K. Vaziri, R.H. Krauss, Jr., H. Wollnik, G.W. Butler,
1006W-17	DAEED	0.4	27	F.K. Wohn, A.H. Wapstra
1986Wa17	RAEFB	94,	27	R.A. Warner, P.L. Reeder
1986Wi15	ZPAAD	325,	485	P.A. Wilmarth, J.M. Nitschke, R.B. Firestone, J. Gilat
1986Wi16	NUPAB	460,	501	Ch. Winter, B. Krusche, K.P. Lieb, H.H. Schmidt, T. von Egidy, P. Hungerford,
1006111.07	DITT DD	100	205	F. Hoyler, H.G. Börner
1986Wo07	PYLBB	182,	297	P.J. Woods, R. Chapman, J.L. Durell, J.N. Mo, R.J. Smith, B.R. Fulton,
100/77 1=		404	4.60	R.A. Cunningham, P.V. Drumm, L.K. Fifield
1986Ya17	PYLBB	181,	169	S. Yasumi, M. Ando, H. Maezawa, H. Kitamura, T. Ohta, F. Ochiai, A. Mikuni,
				M. Maruyama, M. Fujioka, K. Ishii, T. Shinozuka, K. Sera, T. Omori, G. Izawa,
				M. Yagi, K. Masumoto, K. Shima, T. Mukoyama, Y. Inagaki, I. Sugai, A. Ma-
				suda, O. Kawakami
				1097
				1987
1987Aj.A	PrvCom	AHW	Jul	F. Ajzenberg-Selove
-> >	-1.00111	1	341	-

1987Ba52	NUPAB	472,	445	M.K. Balodis, P.T. Prokofjev, N.D. Kramer, L.I. Simonova, K. Schrecken-
				bach, W.F. Davidson, J.A. Pinston, P. Hungerford, H.H. Schmidt, H.J. Scheerer,
				T. von Egidy, P.H.M. van Assche, A.M.J. Spits, R.F. Casten, W.R. Kane,
				D.D. Warner, J. Kern
1987Bo07	PRLTA	58,	2019	S. Boris, A. Golutvin, L. Laptin, V. Lubimov, V. Nagovizin, V. Nozik,
				E. Novikov, V. Soloshenko, I. Tihomirov, E. Tretjakov, N. Myasoedov
1987Bo21	PHSTB	36,	218	M.J.G. Borge, P. Dessagne, G.T. Ewan, P.G. Hansen, A. Huck, B. Jonson,
				G. Klotz, A. Knipper, S. Mattsson, G. Nyman, C. Richard-Serre, K. Riisager,
				G. Walter, ISOLDE
1987Bo24	NUPAB	470,	13	M. Bogdanović, R. Brissot, G. Barreau, K. Schreckenbach, S. Kerr, H.G. Börner,
				I.A. Kondurov, Yu. E. Loginov, V.V. Martynov, P.A. Sushkov, H. Seyfarth,
				T. von Egidy, P. Hungerford, H.H. Schmidt, H.J. Scheerer, A. Chalupka,
				W. Kane, G. Alaga
1987Bo29	HYIND	34,	25	W. Borchers, R. Neugart, E.W. Otten, H.T. Duong, G. Ulm, K. Wendt, ISOLDE,
				and 89Ot.1
1987Bo59	HYIND	38,	793	G. Bollen, P. Dabkiewicz, P. Egelhof, T. Hilberath, H. Kalinowsky, F. Kern,
				H. Schnatz, L. Schweikhard, H. Stolzenberg, R.B. Moore, H.J. Kluge,
				G.M. Temmer, G. Ulm
1987Br05	NUPAB	465,	221	A. Bruce, D. Hicks, D.D. Wagner
1987Br33	JPHGB	13,	1565	V.B. Brudanin, T. Vylov, Ch. Briançon, V.M. Gorojankin, K.Y. Gromov,
				A. Marinov, A.P. Novgorodov, V.N. Pokrovski, N.I. Rukhadze
1987Br.B	AnRpt Julic	h	9	B. Brinkmoeller, H.P. Morsch, R. Siebert, P. Decowski, M. Rogge, P. Turek
1987Bu.A	BAPSA	32,	1063	B. Budick, Hong Lin
1987Ch.A	AnRpt Dare	sb	7	R. Chapman, J.L. Durell, J.N. Mo, P.J. Woods, B.R. Fulton, R.A. Cunningham,
				P.V. Drumm, L.K. Fifield
1987Ci.A	P-Leuven		S103	J.A. Cizewski, G.G. Colvin, H.G. Börner, P. Geltenbort, F. Hoyler, S.A. Kerr,
				K. Schreckenbach, and PrvCom AHW
1987Co08	NUPAB	465,	240	G.G. Colvin, H.G. Börner, P. Geltenbort, F. Hoyler, S.A. Kerr, K. Schrecken-
				bach, J.A. Cizewski, and PrvCom AHW December 1988
1987De04	ZPAAD	326,	155	J. Deslauriers, S.C. Gujrathi, S.K. Mark
1987De33	JPHGB	13,	1283	C.T.A.M. De Laat, P. Polak, A. Taal, J. Konijn, W. Lourens, A.H. Wapstra
1987De.A	AnRpt Leuv	en	47	P. Dendooven, M. Huyse, G. Reusen, J. Wouters, P. Van Duppen, I. Ahmad,
	-			R. Holzmann, R.V.F. Janssens
1987Eb02	NUPAB	464,	9	J. Eberz, U. Dinger, G. Huber, H. Lochmann, R. Menges, R. Neugart, R. Kirch-
				ner, O. Klepper, T. Kuhl, D. Marx, G. Ulm, K. Wendt, ISOLDE
1987El02	JPHGB	13,	93	A.M.Y. El-Lawindy, J.D. Burrows, P.A. Butler, J.R. Cresswell, V. Holliday,
				G.D. Jones, R. Tanner, R. Wadsworth, D.L. Watson, K.A. Connell, J. Simpsom,
				C. Lauterbach, J.R. Mines
1987El09	PRVCA	36,	1529	Y.A. Ellis-Akovali, K.S. Toth, H.K. Carter, C.R. Bingham, I.C. Girit, M.O. Ko-
		,		rtelahti
1987Fa.A	P-Rosseau		675	T. Faestermann, A. Gillitzer, K. Hartel, W. Henning, P. Kienle
1987Fo20	NUPAB	475,	301	B. Fogelberg, A.M. Bruce, D.D. Warner
1987Ga.A	P-Yurmala		86	N. Ganbaatar, G.V. Veselov, K.A. Mezilev, V.G. Kalinnikov
1987Ge01	JPHGB	13,	69	W. Gelletly, J.R. Larysz, H.G. Börner, R.F. Casten, W.F. Davidson, W. Mampe,
		,		K. Schreckenbach, D.D. Warner
1987Gi05	PYLBB	192,	39	A. Gillibert, W. Mittig, L. Bianchi, A. Cunsolo, B. Fernandez, A. Foti, J. Gaste-
		,		bois, C. Gregoire, Y. Schutz, C. Stephan
1987Gi07	NUPAB	473,	717	C. Giusti, F.D. Pacati
1987Go25	PZETA	45,	205	M.G. Gornov, Y.B. Gurov, V.P. Koptev, P.V. Morokhov, K.O. Oganesyan,
		,		B.P. Osipenko, V.A. Pechkurov, V.I. Savel'ev, F.M. Sergeev, A.A. Khomutov,
				B.A. Chernyshev, R.R. Shafigullin, A.V. Shishkov
1987Gr12	PRVCA	35,	1965	R.C. Greenwood, R.A. Anderl, J.D. Cole, H. Willmes
1987Gr18	ZPAAD	327,	383	M. Graefenstedt, U. Keyser, F. Münnich, F. Schreiber, H.R. Faust, H. Weikard
1987Gr.A	P-Rosseau	,	30	M. Graefenstedt, U. Keyser, F. Münnich, F. Schreiber
1987Gr.B	VHDPG	PG,	81,89	M. Graefenstedt, et al
1987Ha.A			43	H. Hama, et al
	Ankni iono			
1987Ha.B	AnRpt Toho P-Rosseau	114		
1987Ha.B 1987He10	P-Rosseau		650	H. Hama, M. Yoshii, K. Taguchi, T. Ishimatsu, T. Shinozuka, M. Fujioka
1987Ha.B 1987He10	-	3,		

1987He14	PRVCA	36,		D.W. Hetherington, R.L. Graham, M.A. Lone, J.S. Geiger, G.E. Lee-Whiting
1987He21	NUPAB	474,		K. Heiguchi, S. Mitarai, B.J. Min, T. Kuroyanagi
1987He28	NUPAB	474,	77	R.G. Helmer, M.A. Lee, C.W. Reich, I. Ahmad
1987Ho06	ARISE	38,	195	D.D. Hoppes, B.M. Coursey, F.J. Schima, D. Yang
1987Ho.A	AnRpt LBL		39	M.A.C. Hotchkis, J.E. Reiff, D.J. Vieira, F. Blönnigen, T.F. Lang, D.M. Moltz,
				X. Xu, J. Cerny
1987Ju02	ARISE	38,	193	S.M. Judge, A.M. Privitera, M.J. Woods
1987Ju04	ARISE	38,	839	S.M. Judge, P. Christmas, P. Cross, D. Smith, W.D. Hamilton, and PrvCom
				AHW February 1989
1987Ka29	NUPAB	470,	141	N. Kaffrell, P. Hill, J. Rogowski, H. Tetzlaff, N. Trautmann, E. Jacobs,
				P. De Gelder, D. De Frenne, K. Heyde, S. Borjesson, G. Skarnemark, J. Alstad,
				N. Blasi, M.N. Harakeh, W.A. Sterrenburg, K. Wolfsberg
1987Ka.A	AnRpt RCN	P	86	K. Katori, H. Miyatake, A. Higashi, A. Shinohara, N. Ikeda, I. Katayama,
				S. Morinobu
1987Ke09	CJPHA	65,	1111	T.J. Kennett, W.V. Prestwich, J.S. Tsai
1987Ke.A	P-Leuven		S571	J. Kern, H.G. Börner, G.G. Colvin, S. Drissi, T. von Egidy, M. Kalanga, J
				L. Salici
1987Ko34	NUPAB	472,	419	V.T. Koslowsky, J.C. Hardy, E. Hagberg, R.E. Azuma, G.C. Ball, E.T.H. Clif-
		,		ford, W.G. Davies, H. Schmeing, U.J. Schrewe, K.S. Sharma
1987Li.A	P-Rosseau		521	C.F. Liang, P. Paris, Ch. Briançon
1987Me08	ZPAAD	327,	171	F. Meissner, WD. Schmidt-ott, L. Ziegeler
1987Mh.A	P-Leuven	,	199	A.K. Mheemed, S.S. Kamoon, S.A. Abbas, T. Al-Janabi
1987Mi10	PRVCA	36,	420	G.J. Miller, J.C. McGeorge, I. Anthony, R.O. Owens
1987Mo06	PRVCA	35,	1275	D.M. Moltz, A.C. Betker, J.P. Sullivan, R.H. Burch, C.A. Gagliardi, R.E. Trib-
		,		ble, K.S. Toth, F.T. Avignone III
1987Mu15	ZPAAD	328,	49	G. Münzenberg, P. Armbruster, G. Berthes, H. Folger, F.P. Heßberger, S. Hof-
		,		mann, J. Keller, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, H
				J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, R. Hingmann, U. Gollerthan,
				E. Hanelt
1987Ne.A	P-Rosseau		126	R. Neugart, E. Arnold, W. Borchers, W. Neu, G. Ulm, K. Wendt
1987Pe06	PRVCA	35,	1617	K.I. Pearce, N.M. Clarke, R.J. Griffiths, P.J. Simmonds, A.C. Dodd, D. Barker,
17071 600	110021	55,	1017	J.B.A. England, M.C. Mannion, C.A. Ogilvie
1987Ra04	NUPAB	464,	349	V. Rahkonen, T. Lonnroth
1987Ra06	PRVCA	36,	303	M.S. Rapaport, C.F. Liang, P. Paris, and PrvCom GAu July 1988
1987Ru05	ZPAAD	328,	373	E. Runte, F. Meissner, V. Freystein, T. Hild, H. Salewski, WD. Schmidt-Ott,
17071403	ZIMID	320,	313	R. Michaelsen
1987Sa53	JUPSA	56,	3881	H.S. Sahota, T. Iwashita, B.S. Grewal
1987Sc.A	P-Rosseau	50,	477	D. Schardt, R. Barden, R. Kirchner, O. Klepper, A. Płochocki, E. Roeckl,
170750.71	1 -Rosseau		7//	P. Kleinheinz, M. Piiparinen, B. Rubio, K. Zuber, C.F. Liang, P. Paris, A. Huck,
				G. Walter, G. Marguier, H. Gabelmann, J. Blomqvist
1987Se04	NUPAB	464,	291	P.B. Semmes, R.A. Braga, R.W. Fink, J.L. Wood, J.D. Cole
1987Se04 1987Se05	PRLTA	58,	381 1930	K.K. Seth, M. Artuso, D. Barlow, S. Iversen, M. Kaletka, H. Nann, B. Parker,
17073603	IKLIA	50,	1930	R. Soundranayagam
1987Se.A	P-Rosseau		324	K. K. Seth
1987Sp.A 1987Sp02	PRVAA	35,	679	
_	NUPAB		359	P.T. Springer, C.L. Bennett, P.A. Baisden L. Spanier, V. Aleklett, P. Eksterry, P. Esgelbarg
1987Sp09 1987Sp.A		474,	S559	L. Spanier, K. Aleklett, B. Ekström, B. Fogelberg
•	P-Leuven	226		A.M.J. Spits, S.J. Robinson
1987St04	ZPAAD	326,	139	E. Stiliaris, H.G. Bohlen, X.S. Chen, B. Gebauer, A. Miczaika, W. von Oertzen,
10070/11	DDVCA	25	2022	W. Weller, T. Wilpert
1987St11	PRVCA	35,	2033	G.S.F. Stephans, H.T. Fortune, L.C. Bland, M. Carchidi, R. Gilman, G.P. Gil-
10070. 4	D.D.		400	foyle, J.W. Sweet
1987St.A	P-Rosseau		489	J. Styczen, P. Kleinheinz, W. Starzecki, B. Rubio, G. de Angelis, H.J. Hahn,
10075 02	DDL/C t	25	216	C.F. Liang, P. Paris, R. Reinhardt, P. von Brentano, J. Blomqvist
1987To02	PRVCA	35,		K.S. Toth, D.C. Sousa, J.M. Nitschke, P.A. Wilmarth
1987To09	PRVCA	35,	2330	K.S. Toth, D.M. Moltz, F. Blönnigen, F.T. Avignone,III
1987Va09	PRVCA	35,	1861	P. Van Duppen, E. Coenen, K. Deneffe, M. Huyse, J.L. Wood
1987Va20	NUPAB	469,	531	L. Van Elmbt, J. Deutsch, R. Prieels, and NUPAB 493(1989)611
1987Ve.A	P-Yurmala	460	146	G.V. Veselov, K.A. Mezilev, Yu. N. Novikov, A.V. Lopov, V.A. Sergienko
1987Vi01	NUPAB	463,	605	K. Vierinen

1987Wh01	PRVCA	35,	81	D.H. White, H.G. Börner, R.W. Hoff, K. Schreckenbach, W.F. Davidson, T. von Egidy, D.D. Warner, P. Jeuch, G. Barreau, W.R. Kane, M.L. Stelts, R.E. Chrien, R.F. Casten, R.G. Lanier, R.W. Lougheed, R.T. Kouzes, R.A. Nau-
				mann, R. Dewberry
1987Wi03	NUPAB	464,	315	A. Willis, M. Morlet, N. Marty, C. Djalali, G.M. Crawley, A. Galonsky, V. Rotberg, B.A. Brown
1987Wi15	NUPAB	473,	129	Ch. Winter, B. Krusche, K.P. Lieb, T. Weber, G. Hlawatsch, T. von Egidy, F. Hoyler
1987Zi02	NUPAB	466,	280	F. Zijderhand, R.C. Makkus, C. van der Leun
				1988
1988Ah02	NUPAB	483,	244	S.A. Ahmad, W. Klempt, R. Neugart, E.W. Otten, PG. Reinhard, G. Ulm,
1000 4 01	DVI DD	210	240	K. Wendt, ISOLDE
1988Ax01	PYLBB	210,	249	H. Axelsson, M. Cronqvist, A. De Rújula, P.G. Hansen, L. Johannsen, B. Jonson, R.A. Naumann, G. Nyman, J.W. Petersen, H.L. Ravn, K. Riisager, J.A. Scircle, ISOLDE
1988Ay01	PYLBB	201,	211	J. Äystö, P. Taskinen, M. Yoshii, J. Honkanen, P. Jauho, H. Penttilä, C.N. Davids
1988Ay02	NUPAB	480,	104	J. Äystö, C.N. Davids, J. Hattula, J. Honkanen, P. Jauho, R. Julin, S. Juutinen, J. Kumpalainen, T. Loenroth, A. Pakkanen, A. Passoja, H. Penttilä, P. Taskinen, E. Verho, A. Virtanen, M. Yoshi
1988Ba10	ZPAAD	329,	319	R. Barden, R. Kirchner, O. Klepper, A. Płochocki, GE. Rathke, E. Roeckl, K. Rykaczewski, D. Schardt, J. Żylicz
1988Ba42	ZPAAD	330,	341	D. Barnéoud, J. Blachot, J. Genevey, A. Gizon, R. Béraud, R. Duffait, A. Emsallem, M. Meyer, N. Redon, D. Rolando-Eugio
1988Be.A	P-StMalo		A1	R. Béraud, R. Duffait, A. Emsallem, M. Meyer, N. Redon, D. Rolando-Eugio, D. Barnéoud, J. Blachot, J. Genevey, A. Gizon
1988Bo06	NUPAB	477,	89	U. Bosch, WD. Schmidt-Ott, E. Runte, P. Tidemand-Petersson, P. Koschel, F. Meissner, R. Kirchner, O. Klepper, E. Roeckl, K. Rykaczewski, D. Schardt
1988Bo20	ZPAAD	330,	227	H.G. Bohlen, B. Gebauer, D. Kolbert, W. von Oertzen, E. Stiliaris, M. Wilpert, T. Wilpert
1988Bo28	ZPAAD	331,	21	V.R. Bom, R.W. Hollander, E. Coenen, K. Deneffe, P. Van Duppen, M. Huyse
1988Bo39	NUPAB	490,	287	M.J.G. Borge, H. Cronberg, M. Cronqvist, H. Gabelmann, P.G. Hansen, L. Johannsen, B. Jonson, S. Mattsson, G. Nyman, A. Richter, K. Riisager, O. Teng-
				blad, M. Tomaselli
1988Bu08	NUPAB	483,	221	D.G. Burke, G. Løvhøiden, T.F. Thorsteinsen
1988Ca21	NUPAB	489,	347	W.N. Catford, L.K. Fifield, T.R. Ophel, N.A. Orr, D.C. Weisser, C.L. Woods
1988Cl04	JPHGB	14,	1399	N.M. Clarke, P.R. Hayes, M.B. Becha, K.I. Pearce, R.J. Griffiths, J.B.A. England, L. Zybert, C.N. Pinder, G.M. Field, R.S. Mackintosh
1988Co18	JPHGB	14,	1411	G.G. Colvin, S.J. Robinson, F. Hoyler
1988CoTa	CODBA	63,		E.R. Cohen, B.N. Taylor
1988De03	NUPAB	476,	316	H.P.L. De Esch, C. van der Leun
1988Du09	PYLBB	206,	195	J.P. Dufour, R. Del Moral, F. Hubert, D. Jean, M.S. Pravikoff, A. Fleury, A.C. Mueller, KH. Schmidt, K. Sümmerer, E. Hanelt, J. Frehaut, M. Beau, G. Giraudet
1988Fi04	NUPAB	484,	117	L.K. Fifield, R. Chapman, J.L. Durell, J.N. Mo, R.J. Smith, P.J. Woods, B.R. Fulton, R.A. Cunningham, P.V. Drumm
1988Fo05	PYLBB	209,	173	B. Fogelberg, Ye Zongyuan, L. Spanier
1988Fu10	JUPSA	57,	2976	Y. Fukuchi, T. Komatsubara, H. Sakamoto, T. Aoki, K. Furuno
1988Gi04	PRVCA	37,	2600	M. Girod, Ph. Dessagne, M. Bernas, M. Langevin, F. Pougheon, P. Roussel
1988Gr30	RAACA	43,	223	K.E. Gregorich, R.A. Henderson, D.M. Lee, M.J. Nurmia, R.M. Chasteler, H.L. Hall, D.A. Bennett, C.M. Gannett, R.B. Chadwick, J.D. Leyba, D.C. Hoffman, G. Herrmann
1988Ho.B	VHDPG	6,	67	S. Hofmann, P. Armbruster, G. Berthes, F. Heßberger, G. Münzenberg, K. Poppensieker, T. Faestermann, A. Gillitzer, W. Kurcewicz, I. Zychor
1988Hu07	ZPAAD	330,	121	M. Huyse, P. del Marmol, E. Coenen, K. Deneffe, P. Van Duppen, J. Vanhorenbeeck
1988Ka14	ZPAAD	330,	55	T. Karlewski, N. Hildebrand, M. Brügger, N. Kaffrell, N. Trautmann, G. Herrmann

100017 22	H IDG A		2072	WW. L. COM. The White Tolling Coll. Tolling
1988Ka32	JUPSA	57,	2873	H. Kawakami, S. Kato, F. Naito, K. Nisimura, T. Ohshima, S. Shibata, T. Suzuki,
				K. Ukai, N. Morikawa, N. Nogawa, T. Nagafuchi, H. Taketani, M. Iwahashi,
10001/202	704 4 0	220	27	K. Hisatake, Y. Fukushima, T. Matsuda, T. Taniguchi
1988Ke03 1988Ke09	ZPAAD	330,		B.D. Kern, R.L. Mlekodaj, M.O. Kortelahti, R.A. Braga, R.W. Fink
	CJPHA NUPAB	66,	947	T.J. Kennett, W.V. Prestwich, J.S. Tsai
1988Ku14	NUPAD	484,	264	T. Kuroyanagi, S. Mitarai, B.J. Min, H. Tomura, Y. Haruta, K. Heiguchi, S. Suematsu, Y. Onizuka
1988Ma.A	P-BadHonne	ef	391	H. Mach, E.K. Warburton, R.L. Gill, R.F. Casten, A. Wolf, Z. Berant,
				J.A. Winger, K. Sistemich, G. Molnár, S.M. Yates
1988Me.A	ThMainz			R. Menges, et al, and 89Ot.1
1988Mi13	PRVCA	38,	895	L.W. Mitchell, P.H. Fisher
1988Mo18	PRVCA	38,	737	M.F. Mohar, E. Adamides, W. Benenson, C. Bloch, B.A. Brown, J. Clayton,
				E. Kashy, M. Lowe, J.A. Nolen, Jr., W.E. Ormand, J. van der Plicht, B. Sherrill,
				J. Stevenson, J.S. Winfield
1988Ni02	PRVCA	37,	2694	J.M. Nitschke, P.A. Wilmarth, J. Gilat, K.S. Toth, F.T. Avignone III
1988No02	PRVCA	37,		E.B. Norman, K.T. Lesko, A.E. Champagne
1988Or01	NUPAB	477,	523	N.A. Orr, W.N. Catford, L.K. Fifield, T.R. Ophel, D.C. Weisser, C.L. Woods
10000				and erratum Nucl. Phys. A485(1988)734.
1988Or.A	ThCanberra	a	1.6	N.A. Orr
1988Qu.A	AnRpt GSI		16	A.B. Quint, W. Morawek, KH. Schmidt, P. Armbruster, F.P. Heßberger, S. Hof-
10000 06	704 4 0	220	160	mann, G. Münzenberg, W. Reisdorf, H. Stelzer, HG. Clerc, CC. Sahm
1988Sa06	ZPAAD	329,	169	H. Salewski, WD. Schmidt-Ott
1988Sa18	PRVCA	37,	2371	JL. Salicio, S. Drissi, M. Gasser, J. Kern, H.G. Börner, G.G. Colvin,
10000 . 1	VIIDDC	4	112	K. Schreckenbach, R.W. Hoff, R.W. Lougheed D. Schardt, R. Barden, R. Kirchner, O. Klepper, E. Roeckl, P. Kleinheinz, B. Ru-
1988Sc.A	VHDPG	6,	113	
1988Si22	JUPSA	57,	3762	bio, A. Huck, G. Walter K. Singh, T.S. Gill, K. Singh
1988St.A	P-BadHonne			M.L. Stolzenwald, S. Brant, H. Ohm, K. Sistemich, G. Lhersonneau
1988Vi02	PRVCA	38,	1509	K.S. Vierinen, A.A. Shihab-Eldin, J.M. Nitschke, P.A. Wilmarth,
1900 V102	TRVCA	50,	1309	R.M. Chasteler, R.B. Firestone, K.S. Toth
1988Wi05	ZPAAD	329,	503	P.A. Wilmarth, J.M. Nitschke, K. Vierinen, K.S. Toth, M. Kortelahti
1988Wo02	NUPAB	476,	392	
1988Wo07	NUPAB	484,	145	C.L. Woods, W.N. Catford, L.K. Fifield, N.A. Orr
1988Wo09	ZPAAD	331,	229	J.M. Wouters, R.H. Kraus, Jr., D.J. Vieira, G.W. Butler, K.E.G. Lobner
		,		
				1989
1989Al33	IANFA	53,	2089	G.D. Alkhazov, B.N. Belyayev, V.D. Domkin, Yu. G. Korobulin, V.V. Lukashe-
1909/133	IANA	55,	2009	vich, V.S. Mukhin
1989An13	YAFIA	50,	619	A.N. Andreyev, D.D. Bogdanov, A.V. Yerimin, A.P. Kabachenko, O.A. Orlova,
170771113	1711 171	50,	017	G.M. Ter-Akopian, V.I. Chepigin
1989An.A	P-Dubna		508	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.A. Orlova,
				S. Sharo, G.M. Ter-Akopian, A.V. Yeremin, and 89An13
1989Ay.A	P-Dubna		427	J. Äystö, P. Dendooven, P. Jauho, A. Jokinen, J. Parmonen, H. Penttilä, P. Taski-
Ž				nen, M. Leino, K. Eskola
1989Ba22	PYLBB	223,	273	A.S. Barabash, V.V. Kuzminov, V.M. Lobashev, V.M. Novikov, B.M. Ovchin-
				nikov, A.A. Pomansky
1989Ba28	PRVCA	40,	940	S.C. Baker, M.J. Brown, P.H. Barker
1989Ba42	NUPAB	500,	1	E.L. Bakkum, C. van der Leun
1989Bo.A	PrvCom	GAu	Dec	H.G. Bohlen
1989Bu09	ZPAAD	333,	131	D.G. Burke, H. Folger, H. Gabelmann, E. Hagebø, P. Hill, P. Hoff, O. Jons-
				son, N. Kaffrell, W. Kurcewicz, G. Løvhøiden, K. Nybø, G. Nyman, H. Ravn,
				K. Riisager, J. Rogowski, K. Steffensen, T.F. Thorsteinsen, ISOLDE
1989Bu.A	ThBordeau			J. Busto PrvCom of F. Leccia 1988
1989Ca25	NUPAB	503,	263	W.N. Catford, L.K. Fifield, N.A. Orr, C.L. Woods
1989Ch01	PRVCA	39,	248	A.E. Champagne, R.T. Kouzes, A.B. McDonald, M.M. Lowry, D.R. Benton,
10000000	MIDIE	402	202	K.P. Coulter, Z.Q. Mao
1989Cl02	NUPAB	493,	293	E.T.H. Clifford, E. Hagberg, J.C. Hardy, H. Schmeing, R.E. Azuma, H.C. Evans,
				V.T. Koslowsky, U.J. Schrewe, K.S. Sharma, I.S. Towner

1989Dr03	NUPAB	496,	530	P.V. Drumm, L.K. Fifield, R.A. Bark, M.A.C. Hotchkis, C.L. Woods
1989Fi01	PRVCA	39,	219	R.B. Firestone, J.M. Nitschke, P.A. Wilmarth, K. Vierinen, J. Gilat, K.S. Toth,
		Ź		Y.A. Akovali
1989Gr03	NUPAB	491,	373	M. Graefenstedt, U. Keyser, F. Münnich, F. Schreiber, ISOLDE
1989Gr23	ZPAAD	334,	239	M. Graefenstedt, P. Jürgens, U. Keyser, F. Münnich, F. Schreiber, K. Balog,
19090123	LIAAD	33 4 ,	239	
10000 03	70440	222	100	T. Winkelmann, H.R. Faust
1989Gu03	ZPAAD	332,	189	D. Guillemaud-Mueller, Y.E. Penionzhkevich, R. Anne, A.G. Artukh, D. Bazin,
				V. Borrel, C. Détraz, D. Guerreau, B.A. Gvozdev, J.C. Jacmart, D.X. Jiang,
				A.M. Kalinin, V.V. Kamanin, V.B. Kutner, M. Lewitowicz, S.M. Lukyanov,
				A.C. Mueller, N. Hoai Chau, F. Pougheon, A. Richard, M.G. Saint-Laurent,
				W.D. Schmidt-Ott (see also 93Po.A)
1989Ha27	NUPAB	500,	90	Y. Hatsukawa, T. Ohtsuki, K. Sueki, H. Nakahara, I. Kohno, M. Magara, N. Shi-
				nohara, H.L. Hall, R.A. Henderson, C.M. Gannett, J.A. Leyba, R.B. Chadwick,
				K.E. Gregorich, D. Lee, M.J. Nurmia, D.C. Hoffman
1989Ha.A	PENUC	III,	99	J.C. Hardy, E. Hagberg
1989He03	NIMAE	274,		F.P. Heßberger, S. Hofmann, G. Münzenberg, KH. Schmidt, P. Armbruster,
190911603	MINIAL	274,	322	
100011 11	MIDAD	40.4		R. Hingmann
1989He11	NUPAB	494,		D.W. Hetherington, A. Alousi, R.B. Moore
1989He13	ZPAAD	333,	111	F.P. Heßberger, H. Gäggeler, P. Armbruster, W. Brüchle, H. Folger, S. Hof-
				mann, D. Jost, J.V. Kratz, M.E. Leino, G. Münzenberg, V. Ninov, M. Schädel,
				U. Scherer, K. Sümmerer, A. Türler, D. Ackermann
1989Hi04	NUPAB	492,	237	T. Hild, WD. Schmidt-Ott, V. Freystein, F. Meissner, E. Runte, H. Salewski,
				R. Michaelsen
1989Ho08	ZPAAD	332,	407	P. Hoff, B. Ekström, B. Fogelberg PrvCom of L. Spanier et al to ref.
1989Ho12	ZPAAD	333,	107	S. Hofmann, P. Armbruster, G. Berthes, T. Faestermann, A. Gillitzer,
		,		F.P. Heßberger, W. Kurcewicz, G. Münzenberg, K. Poppensieker, H.J. Schött,
				I. Zychor
1989Ho13	NUPAB	496,	462	J. Honkanen, V. Koponen, P. Taskinen, J. Aysto, K. Eskola, S. Messelt, K. Ogawa
1989Ho15	NUPAB	500,	111	C. Hofmeyr
1989Hu03	PRVCA			H. Huck, A. Jech, G. Marti, M.L. Perez, J.J. Rossi, H.M. Sofia
		39,	997	
1989Je07	NUPAB	503,	77	C. Jeanperrin, L.H. Rosier, B. Ramstein, E.I. Obiajunwa
1989Jo.A	AnRpt JYFL		81	A. Jokinen, J. Äystö, C.N. Davids, K. Eskola, P. Jauho, M. Leino, J.M. Parmo-
				nen, H. Penttilä, P. Taskinen
1989Ka04	PRVCA	39,	818	S. Kato, S. Kubono, M.H. Tanaka, M. Yasue, T. Nomura, Y. Fuchi, S. Ohkawa,
				T. Miyachi, K. Iwata, T. Suehiro, Y. Yoshida
1989Ki11	NUPAB	496,	429	S.W. Kikstra, C. van der Leun, S. Raman, E.T. Jurney, I.S. Towner
1989Ko07	ZPAAD	332,	229	M.O. Kortelahti, H.K. Carter, R.A. Braga, R.W. Fink, B.D. Kern
1989Ko22	ZPAAD	333,	339	V. Koponen, J. Äystö, J. Honkanen, P. Jauho, H. Penttilä, J. Suhonen, P. Taski-
				nen, K. Rykaczewski, J. Żylicz, C.N. Davids
1989Ku08	NUPAB	494,	203	H. Kudo, T. Nomura, K. Sueki, M. Magara, N. Yoshida
1989Lo07	NUPAB	494,		G. Løvhøiden, T.F. Thorsteinsen, E. Andersen, M.F. Kiziltan, D.G. Burke
1989Ma05	JPGPE	15,	173	A.M. Mandal, S.K. Saha, S.M. Sahakundu, A.P. Patro
1989Me02	ZPAAD	332,	153	F. Meissner, WD. Schmidt-Ott, V. Freystein, T. Hild, E. Runte, H. Salewski,
1909IVIC02	LIAAD	332,	133	R. Michaelsen
1000M:02	DDVCA	20	002	
1989Mi03	PRVCA	39,	992	Ch. Miehé, Ph. Dessagne, P. Baumann, A. Huck, G. Klotz, A. Knipper, G. Wal-
10002 511 6		- 0.4		ter, G. Marguier
1989Mi16	NUPAB	501,	437	S. Michaelsen, Ch. Winter, K.P. Lieb, B. Krusche, S. Robinson, T. von Egidy
1989Mi17	NUPAB	501,	557	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda,
1989Mi17	NUPAB		557	
1989Mi17 1989Mi.A			557 66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda,
	NUPAB			H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka
1989Mi.A	NUPAB P-Dubna	501,	66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger,
1989Mi.A	NUPAB P-Dubna	501,	66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt,
1989Mi.A	NUPAB P-Dubna	501,	66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ack-
1989Mi.A	NUPAB P-Dubna	501,	66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita,
1989Mi.A 1989Mu09	NUPAB P-Dubna ZPAAD	501, 333,	66 163	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab
1989Mi.A 1989Mu09 1989Mu16	NUPAB P-Dubna ZPAAD	501, 333, 502,	66	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab G. Münzenberg
1989Mi.A 1989Mu09 1989Mu16 1989Ok.A	NUPAB P-Dubna ZPAAD NUPAB NEANDC(J)-	501, 333, 502, -140/U	66 163 571	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab G. Münzenberg K. Okano, Y. Kawase
1989Mi.A 1989Mu09 1989Mu16	NUPAB P-Dubna ZPAAD	501, 333, 502,	66 163	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab G. Münzenberg K. Okano, Y. Kawase N.A. Orr, W.N. Catford, L.K. Fifield, M.A.C. Hotchkis, T.R. Ophel,
1989Mi.A 1989Mu09 1989Mu16 1989Ok.A	NUPAB P-Dubna ZPAAD NUPAB NEANDC(J)-	501, 333, 502, -140/U	66 163 571	H. Miyatake, T. Nomura, S. Kubono, J. Tanaka, M. Oyaizu, H. Okawa, N. Ikeda, K. Sueki, H. Kudo, K. Morita, T. Shinozuka V.L. Mikheev, et al G. Münzenberg, P. Armbruster, S. Hofmann, F.P. Heßberger, H. Folger, J.G. Keller, V. Ninov, K. Poppensieker, A.B. Quint, W. Reisdorf, KH. Schmidt, J.R.H. Schneider, H.J. Schött, K. Sümmerer, I. Zychor, M.E. Leino, D. Ackermann, U. Gollerthan, E. Hanelt, W. Morawek, D. Vermeulen, Y. Fujita, T. Schwab G. Münzenberg K. Okano, Y. Kawase

1989Or04	NUPAB	491,		N.A. Orr, L.K. Fifield, W.N. Catford, C.L. Woods
1989Ot.A	THISc	8,	517	E.W. Otten
1989Po09	NUPAB	499,	495[184Ir] M.G. Porquet, C. Bourgeois, P. Kilcher, B. Roussière, J. Sauvage, H. Dautet, J.K.P. Lee, ISOCELE
1989Po10	NUPAB	500,	287	F. Pougheon, V. Borrel, J.C. Jacmart, R. Anne, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, D. Bazin, R. Del Moral, J.P. Dufour, F. Hubert, M.S. Pravikoff, G. Audi, E. Roeckl, B.A. Brown
1989Pr.A	PENUC	II,	205	P.B. Price, S.W. Barwick
1989Re04	PRVCA	40,	368	A. Redondo, R.G.H. Robertson
1989Re.A	P-Miami	-,		P.L. Reeder, et al
1989Ri03	NUPAB	499,	221	R. Richter, I. Förster, A. Gelberg, A.M.I. Haque, P. von Brentano, R.F. Cas-
				ten, H.G. Börner, G.G. Colvin, K. Schreckenbach, G. Barreau, S.A. Kerr, H.H. Schmidt, P. Hungerford, H.J. Scheerer, T. von Egidy, R. Rascher
1989Ry02	ZPAAD	332,	275	K. Rykaczewski, A. Płochocki, I.S. Grant, H. Gabelmann, R. Barden, D. Schardt, J. Żylicz, G. Nyman, ISOLDE
1989Sa01	JPGPE	15,	73	S.K. Saha, S.M. Sahakundu
1989Sa11	NUPAB	494,	36	S.L. Sakharov, I.A. Kondurov, Yu. E. Loginov, V.V. Martynov, A.A. Radionov,
		ŕ		P.A. Sushkov, Yu. L. Khazov, A.I. Egorov, V.K. Isupov, H.G. Börner, F. Hoyler, S. Kerr, K. Schreckenbach, G. Hlawatsch, T. von Egidy, H. Lindner
1989Sc24	NUPAB	501,		H. Schölermann, R. Böttger
1989Sc31	NUPAB	504,	1	H.H. Schmidt, P. Hungerford, T. von Egidy, H.J. Scheerer, H.G. Börner,
				S.A. Kerr, K. Schreckenbach, F. Hoyler, G.G. Colvin, A.M. Bruce, R.F. Casten, D.D. Warner, I.L. Kugava, V.A. Bondarenko, N.D. Kramer, P.T. Prokofjef, A. Chalupka
1989Sc.A	NDSAA	57,	515	M.R. Schmorak
1989Sh10	NIMAE	275,		K.S. Sharma, H. Schmeing, H.C. Evans, E. Hagberg, J.C. Hardy, V.T. Koslowsky
1989Si04	PRVDA	39,	1825	J.J. Simpson, A. Hime
1989Sm06	SAPHD	12,	74	J.J.A. Smit, Z.H.J. Pretorius, F.B. Waanders, J.P.L. Reinecke, J. Keilonen
1989St05	PRVCA	39,		S.T. Staggs, R.G.H. Robertson, D.L. Wark, P.P. Nguyen, J.F. Wilkerson,
19693103	FRVCA	39,	1503	T.J. Bowles
1989St06	PRVCA	39,	1963	C.A. Stone, S.H. Faller, W.B. Walters
1989Su.A	BAPSA			
		34,	1819	B. Sur, E.B. Norman, K.T. Lesko, E. Browne, R.M. Larimer, H.L. Hall, J.D. Leyba, D.C. Hoffman
1989Ta11	ZPAAD	333,	29	J.L. Tain, B. Rubio, P. Kleinheinz, D. Schardt, R. Barden, J. Blomqvist
1989To01	PRVCA	39,	1150	K.S. Toth, D.M. Moltz, J.D. Robertson
1989Vi02	PRVCA	39,	1972	K.S. Vierinen, J.M. Nitschke, P.A. Wilmarth, R.M. Chasteler, A.A. Shihab-
10007704	MIDAD	400		Eldin, R.B. Firestone, K.S. Toth, Y.A. Akovali
1989Vi04	NUPAB	499,		K.S. Vierinen, J.M. Nitschke, P.A. Wilmarth, R.B. Firestone, J. Gilat
1989Wa10	PRVCA	39,	1647	S. Wang, D. Snowden-Ifft, P.B. Price, K.J. Moody, E.K. Hulet
1989Wi01	ZPAAD	332,	33	G. Winter, J. Döring, L. Funke, L. Kaubler, R. Schwengner, H. Prade
1989Wi05	NUPAB	491,	395	Ch. Winter, B. Krusche, K.P. Lieb, S. Michaelsen, G. Hlawatsch, H. Linder, T. von Egidy, F. Hoyler, R.F. Casten
1989Yu01	PRVCA	39,	256	S. Yuan, T. Zhang, S. Xu, W. Li, L. Zhang, M. Liu, X. Ou, W. Li
1989Zh04	PRVCA	39,	1985	Z. Zhao, M. Gai, B.J. Lund, S.L. Rugari, D. Mikolas, B.A. Brown, J.A. Nolen, Jr., M. Samuel
1989Zl.A	PrvCom	GAu	May	I. Žlimen
				1990
1990Aj01	NUPAB	506,	1	F. Ajzenberg-Selove, and PrvCom AHW
1990Ak01	PRVCA	41,		Y.A. Akovali, K.S. Toth, A.L. Goodman, J.M. Nitschke, P.A. Wilmarth, D.M. Moltz, M.N. Rao, D.C. Sousa
1990Ak04	PRVCA	42,	1130	Y.A. Akovali, K.S. Toth, C.R. Bingham, M.B. Kassim, M. Zhang, H.K. Carter, W.D. Hamilton, J. Kormicki
1990Am04	PZETA	51,	607	A.I. Amelin, M.G. Gornow, Yu. B. Gurov, A.I. Ilin, V.P. Koplev, P.V. Morokhov, K.O. Oganesyan, V.A. Pechkurov, V.I. Saveliev, E.M. Sergeyev, B.A. Chern'yshev, R.R. Shafigulin, A.V. Shishkov

1990Am05	YAFIA	52,	1231	A.I. Amelin, M.G. Gornov, Y.B. Gurov, A.L. Il'in, P.V. Morokhov, V.A. Pechkurov, V.I. Savelev, F.M. Sergeev, S.A. Smirnov, B.A. Chernyshev,
1990An19	ZPAAD	337,	229	R.R. Shafigullin, A.V. Shishkov A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, S. Sharo,
1990An22	ZPAAD	337,	231	G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, S. Sharo, G.M. Ter-Akopian, A.V. Yeremin, O.N. Malyshev
1990An31	JRNCD	142,	203	R.A. Anderl, R.C. Greenwood
1990Be.A	PrvCom	AHW	Jun	C.E. Bemis
1990Be.B	P-Leningrad		132	E.A. Belomytseva, G.V. Veselov, K.A. Mezilev, Yu. N. Novikov, A.G. Polyakov, A.V. Popov, Yu. Ya. Sergeev, V.A. Sergienko, V.I. Tichonov
1990Bo24	NUPAB	515,	21	M.J.G. Borge, H. Gabelmann, L. Johannsen, B. Jonson, G. Nyman, K. Riisager, O. Tengblad, ISOLDE
1990Bo39	YAFIA	52,	358	D.D. Bogdanov, V.P. Bugrov, S.G. Kadmenskii
1990Bo52	IANFA	54,	1787	S.T. Boneva, E.V. Vasileva, V.D. Kulik, L.K. Khem, Yu. P. Popov,
				A.M. Sukhovoi, V.A. Khitrov, Yu. V. Kholnov
1990Bu17	PRVCA	42,	499	D.G. Burke, P.E. Garrett, Tao Qu, R.A. Naumann
1990Bu28	YAFIA	52,	305	E. Bukhner, I.N. Vishnevsky, F.A. Danevich, Yu. G. Zdesenko, H.V. Klapdor, B.N. Kropivyansky, V.N. Kuts, A. Piepke, V.I. Tretyak, G. Heusser, J. Schneider,
				H. Strecker
1990Ch34	PRVCA	42,	1171	R.M. Chasteler, J.M. Nitschke, R.B. Firestone, K.S. Vierinen, P.A. Wilmarth
1990Ch37	PRVCA	42,	1796	R.M. Chasteler, J.M. Nitschke, R.B. Firestone, K.S. Vierinen, P.A. Wilmarth
1990De43	NUPAB	519,	529	C. Détraz, R. Anne, P. Bricault, D. Guillemaud-Mueller, M. Lewitowicz, A.C. Mueller, Yu Hu Zhang, V. Borrel, J.C. Jacmart, F. Pougheon, A. Richard, D. Bazin, J.P. Dufour, A. Fleury, F. Hubert, M.S. Pravikoff
1990Dy04	PYLBB	245,	343	G.R. Dyck, M.H. Sidky, J.G. Hykawy, C.A. Lander, K.S. Sharma, R.C. Barber, H.E. Duckworth
1990En02	NUPAB	510,	209	P.M. Endt, C. Alderliesten, F. Zijderhand, A.A. Wolters, A.G.M. van Hees
1990En08	NUPAB	521,	1	P.M. Endt
1990Fa03	PHSTB	41,	652	B. Fant, T. Weckstrom, A. Kallberg
1990Fo07	ZPAAD	337,	251	B. Fogelberg, Y. Zongyuan, B. Ekström, E. Lund, K. Aleklett, L. Sihver
1990Ge12	ZDACE	17,	119	Ch. Gerz, D. Wilsdorf, G. Werth
1990Gr10	ZPAAD	336,	247	M. Graefenstedt, P. Jürgens, U. Keyser, F. Münnich, F. Schreiber, K. Balog, T. Winkelmann, H.R. Faust, B. Pfeiffer
1990На02	PRVCA	41,	618	H.L. Hall, K.E. Gregorich, R.A. Henderson, C.M. Gannett, R.B. Chadwick, J.D. Leyba, K.R. Czerwinski, B. Kadkhodayan, S.A. Kreek, D.M. Lee, M.J. Nurmia, D.C. Hoffman, C.E.A. Palmer, P.A. Baisden
1990He11	PRVCA	41,	2325	M. Hellström, B. Fogelberg, L. Spanier, H. Mach
1990Ho02	PRVCA	41,	484	R.W. Hoff, S. Drissi, J. Kern, W. Strassmann, H.G. Börner, K. Schreckenbach,
		ŕ		G. Barreau, W.D. Ruhter, L.G. Mann, D.H. White, J.H. Landrum, R.J. Dupzyk, R.F. Casten, W.R. Kane, D.D. Warner
1990Но03	PRVCA	41,	631	D.C. Hoffman, D.M. Lee, K.E. Gregorich, M.J. Nurmia, R.B. Chadwick, K.B. Chen, K.R. Czerwinski, C.M. Gannett, H.L. Hall, R.A. Henderson, B. Kadkhodayan, S.A. Kreek, J.D. Leyba
1990Но10	NUPAB	512,	189	F. Hoyler, J. Jolie, G.G. Colvin, H.G. Börner, K. Schreckenbach, P. Van Isacker, P. Fettweis, H. Göktürk, J.C. Dehaes, R.F. Casten, D.D. Warner, A.M. Bruce
1990Is02	PRVCA	41,	1272	M.A. Islam, T.J. Kennett, W.V. Prestwich
1990Is03	ZPAAD	335,	173	M.A. Islam, T.J. Kennett, W.V. Prestwich
1990Is06	ZPAAD	335,	243	M.C.P. Isaac, V.R. Vanin, O.A.M. Helene
1990Is07	PRVCA	42,	207	M.A. Islam, T.J. Kennett, W.V. Prestwich
1990Is09	СЈРНА	68,	1237	M.A. Islam, T.J. Kennett, W.V. Prestwich
1990Ka01	PRVCA	41,	1276	S. Kato, S. Kubono, M.H. Tanaka, M. Yasue, T. Nomura, Y. Fuchi, Y. Funatsu, S. Ohkawa, T. Miyachi, K. Iwata, T. Suehiro, Y. Yoshida, O. Nitoh
1990Ka10	PRVCA	41,	2004	S. Kato, S. Kubono, T. Nomura, Y. Fuchi, Y. Funatsu, S. Ohkawa, T. Miyachi, T. Suehiro, Y. Yoshida
1990Ka19	PRVCA	42,	563	S. Kato, S. Kubono, M.H. Tanaka, T. Nomura, Y. Fuchi, Y. Funatsu, S. Ohkawa, T. Miyachi, T. Suehiro, Y. Yoshida
1990Ka21	NUPAB	514,	173	A. Kaerts, P.H.M. van Assche, S.A. Kerr, F. Hoyler, H.G. Börner, R.F. Casten, D.D. Warner

1990Ka27	PRVCA	42,	1918	S. Kato, S. Kubono, M.H. Tanaka, M. Yasue, Y. Fuchi, Y. Funatsu, S. Ohkawa,
				T. Miyashi, T. Suehiro, Y. Yoshida
1990Ki07	NUPAB	512,	425	S.W. Kikstra, C. van der Leun, P.M. Endt, J.G.L. Booten, A.G.M. van Hees,
				A.A. Wolters
1990Ko25	PRVCA	42,	1267	M.O. Kortelahti, B.D. Kern, R.A. Braga, R.W. Fink, I.C. Girit, R.L. Mlekodaj
1990Le03	ZPAAD	335,	117	M. Lewitowicz, R. Anne, A.G. Artukh, D. Bazin, A.V. Belozyorov, P. Bricault,
				C. Détraz, D. Guillemaud-Mueller, J.C. Jacmart, E. Kashy, A. Latimier,
				S.M. Lukyanov, A.C. Mueller, Yu. E. Penionzhkevich, F. Pougheon, A. Richard,
				W.D. Schmidt-Ott, Y. Zhang
1990Li14	NUCIA	103,	553	Sr. Little Flower, B.R.S. Babu, P. Venkataramaiah, H. Sanjeeviah
1990Li40	NIMAE	297,	217	H. Lindner, H. Trieb, T. von Egidy, H. Hiller, J. Klora, U. Mayerhofer, A. Walter,
				A.H. Wapstra
1990Ma03	PRVCA	41,	226	H. Mach, E.K. Warburton, R.L. Gill, R.F. Casten, J.A. Becker, B.A. Brown,
				J.A. Winger
1990Me08	PRVCA	41,	2921	J.T. Meek, W.G. Millen, G.W. Stockton, R.T. Kouzes
1990Mu06	NUPAB	513,	1	A.C. Mueller, D. Guillemaud-Mueller, J.C. Jacmart, E. Kashy, F. Pougheon,
				A. Richard, A. Staudt, H.V. Klapdor-Kleingrothaus, M. Lewitowicz, R. Anne,
				P. Bricault, C. Détraz, Yu. E. Penionzhkevich, A.G. Artukh, A.V. Belozyorov,
				S.M. Lukyanov, D. Bazin, W.D. Schmidt-Ott
1990Ne.A	PrvCom		Gizon	R. Neugart
1990Ne.B	P-Monterey			Zs. Netmeth, Karlsruhe
1990Ni05	ZPAAD	336,	473	V. Ninov, F.P. Heßberger, P. Armbruster, S. Hofmann, G. Münzenberg, M. Leino,
				Y. Fujita, D. Ackermann, W. Morawek, A. Lüttgen
1990Og01	PYLBB	235,	35	A.A. Ogloblin, N.I. Venikov, S.K. Lisin, S.V. Pirozhkov, V.A. Pchelin,
				Yu. F. Rodionov, V.M. Semochkin, V.A. Shabrov, I.K. Shvetsov, V.M. Shubko,
				S.P. Tretyakova, V.L. Mikheev
1990Pi05	NUPAB	510,	301	Š. Piskoř, W. Schäferlingová
1990Po13	IANFA	54,	852	A.V. Potempa, V.P. Afanasjev, Ya. Vavryshchuk, K. Ya. Gromov, V.G. Kalin-
				nikov, N. Yu. Kovotskii, V.V. Kuznetsov, M. Lewandowski, Ya. A. Saidimov,
				M. Yakhim, Zh. Sereter, V.I. Fominykh, V. Charnadski, Yu. V. Yushkevich,
				M. Yanistki, A. Yasinski
1990Pr02	CJPHA	68,	261	W.V. Prestwich, T.J. Kennett, and erratum CJPHA 68,1352
1990Re08	ZPAAD	336,	381	G. Reusen, V.R. Bom, P. Decrock, P. Dendooven, M. Huyse, R.W. Hollander,
				P. Van Duppen, J. Vanhorenbeeck, J. Wauters
1990Sa32	ZPAAD	337,	161	H. Salewski, K. Becker, WD. Schmidt-Ott, T. Hild, F. Meissner, E. Runte,
				R. Michaelsen
1990Sa.A	ThGottinge			H. Salewski
1990Se17	FZKAA	22,	183	H. Seyfarth, H.H. Guven, B. Kardon, G. Lhersonneau, K. Sistemich, S. Brant,
		_		N. Kaffrell, P. Maier-Komor, H.K. Vonach, V. Paar, D. Vorkapic, R.A. Meyer
1990Sh15	IMPAE	5,	2821	R.K. Sheline, C.F. Liang, P. Paris
1990Sh.A	AnRpt LBL		114	A.A. Shihab-Eldin, P.A. Wilmarth, K.S. Vierinen, J.M. Nitschke,
10000 00	DD AMG	25	220	R.M. Chasteler, R.B. Firestone
1990So08	PRAMC	35,	329	P.C. Sood, R.K. Sheline
1990St13	ZPAAD	336,	369	U. Stöhlker, A. Blönnigen, W. Lippert, H. Wollnik
1990St25	PRLTA	65,	3104	H. Stolzenberg, St. Becker, G. Bollen, F. Kern, HJ. Kluge, Th. Otto, G. Savard,
1000T 01	704 4 0	227	261	L. Schweikhard, G. Audi, R.B. Moore
1990Tu01	ZPAAD	337,	361	X.L. Tu, X.G. Zhou, D.J. Vieira, J.M. Wouters, Z.Y. Zhou, H.L. Seifert,
10000 22	NIDAAE	202	(71	V.G. Lind
1990Wa22	NIMAE	292,	671	A.H. Wapstra
1990We01	PRVCA	41,	778	D. Weselka, P. Hille, A. Chalupka
1990Wi12	PRVCA	42,	954	J.A. Winger, J.C. Hill, F.K. Wohn, E.K. Warburton, R.L. Gill, A. Piotrowski,
100071- 4	CANIL TOO	002		R.B. Schuhmann, D.S. Brenner
1990Zh.A	GANIL-T-90	102		Y.H. Zhang
				1991
1991Aj01	NUPAB	523,	1	F. Ajzenberg-Selove
1991An10	ZPAAD	338,	363	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Maly-
				shev, G.M. Ter-Akopian, A.V. Yeremin

1991Ba06	NUPAB	523,	261	M.K. Balodis, N.D. Kramer, P.T. Prokofjev, A.V. Afanasjev, T.V. Guseva, J.J. Tambergs, K. Schreckenbach, W.F. Davidson, D.D. Warner, J.A. Pinston,
1991Be25	NUPAB	533,	113	P.H.M. van Assche, A.M.J. Spits A. Ben Braham, C. Bourgeois, P. Kilcher, F. Le Blanc, B. Roussière, J. Sauvage,
1991Bi04	PRVCA	44,	1208	A.J. Kreiner, M.G. Porquet, ISOCELE C.R. Bingham, M.B. Kassim, M. Zhang, Y.A. Akovali, K.S. Toth, W.D. Hamilton, H.K. Carter, J. Kormicki, J. von Schwarzenberg, M.M. Jarrio
1991Bl05	PRVCA	44,	325	S. Blagus, D. Miljanic, M. Zadro, G. Calvi, M. Lattuada, F. Riggi, C. Spitaleri, C. Blyth, O. Karban
1991Bo22	ZPAAD	339,	311	A. Bouldjedri, A. Astier, R. Béraud, R. Duffait, A. Emsallem, H. Haas, ISOLDE
1991Bo32	NUPAB	531,	353	V. Borrel, J.C. Jacmart, F. Pougheon, R. Anne, C. Détraz, D. Guillemaud-Mueller, A.C. Mueller, D. Bazin, R. Del Moral, J.P. Dufour, F. Hubert, M.S. Pravikoff, E. Roeckl
1991Bo35	NUPAB	534,	255	H.G. Börner, R.F. Casten, I. Förster, D. Lieberz, P. von Brentano, S.J. Robinson, T. von Egidy, G. Hlawatsch, H. Lindner, P. Geltenbort, F. Hoyler, H. Faust, G. Colvin, W.R. Kane, M. MacPhail
1991Bo.B	P-Niigata		83	H.G. Bohlen
1991Br17	ZPAAD	339,	495	T. Brohm, HG. Clerc, U. Gollerthan, W. Schwab, KH. Schmidt, R.S. Simon
1991Bu12	PRLTA	67,	2626	B. Budick, J. Chen, H. Lin
1991Du07	ZPAAD	341,	39	S.B. Dutta, R. Kirchner, O. Klepper, T.U. Kuhl, D. Marx, G.D. Sprouse, R. Menges, U. Dinger, G. Huber, S. Schroder
1991Fi03	PRVCA	43,	1066	R.B. Firestone, J. Gilat, J.M. Nitschke, P.A. Wilmarth, K.S. Vierinen
1991Go19	NUPAB	531,	613	M.G. Gornov, Yu. B. Gurov, P.V. Morokhov, V.A. Pechkurov, V.I. Savelyev, F.M. Sergeev, B.A. Chernyshev, R.R. Shafigullin, A.V. Shishkov, V.P. Koptev, K.O. Oganesyan, B.P. Osipenco
1991Gr12	NUPAB	530,	401	J.C. Griffin, R.A. Braga, R.W. Fink, J.L. Wood, H.K. Carter, R.L. Mlekodaj, C.R. Bingham, E. Coenen, M. Huyse, P. Van Duppen
1991Gr13	PRVCA	44,	1728	V. Grafen, B. Ackermann, H. Baltzer, T. Bihn, C. Günther, J. de Boer, N. Gollwitzer, G. Graw, R. Hertenberger, H. Kader, A. Levon, A. Lösch
1991Ha31	EULEE	15,	491	D. Hagena, G. Werth
1991He04	ZPAAD	338,		K. Heiguchi, T. Hosoda, T. Komatsubara, T. Nomura, K. Furuno, R. Nakatani, S. Mitarai, T. Kuroyanagi
1991He21	ZPAAD	340,	225	F. Heine, T. Faestermann, A. Gillitzer, J. Homolka, M. Köpf, W. Wagner, see also 92He. A
1991Hi11	PRVCA	44,	1581	Y. Hirabayashi
1991Hi.A	AnRpt LBL	,	69	M.M. Hindi, K.L. Wedding, E.B. Norman, K.T. Lesko, B. Sur, RM. Larimer, M.T.F. da Cruz, K.R. Czerwinski
1991Ho05	JPGPE	17,	145	T.H. Hoare, P.A. Butler, G.D. Jones, M. Loiselet, O. Naviliat-Cuncic, J. Vervier, M. Dahlinger, A.M.Y. El-Lawindy, R. Wadsworth, D.L. Watson
1991Ho08	CZYPA	41,	525	J. Honzatko, K. Konecny, Z. Kosina
1991Hy01	PRLTA	67,	1708	J.G. Hykawy, J.N. Nxumalo, P.P. Unger, C.A. Lander, R.C. Barber, K.S. Sharma, R.D. Peters, H.E. Duckworth
1991Io02	NUPAB	531,	112	M. Ionescu-Bujor, A. Iordachescu, G. Pascovici
1991Is01	PRVCA	43,	1086	M.A. Islam, T.J. Kennett, W.V. Prestwich
1991Is02	CJPHA	69,	658	M.A. Islam, T.J. Kennett, W.V. Prestwich
1991Jo11	ZPAAD	340,	21	A. Jokinen, J. Äystö, P. Dendooven, K. Eskola, Z. Janas, P.P. Jauho, M.E. Leino, J.M. Parmonen, H. Penttilä, K. Rykaczewski, P. Taskinen
1991Ka41	PYLBB	256,	105	H. Kawakami, S. Kato, T. Ohshima, S. Shibata, K. Ukai, N. Morikawa, N. Nogawa, K. Haga, T. Nagafuchi, M. Shigeta, Y. Fukushima, T. Taniguchi
1991Ke06	NIMAE	300,	67	H. Keller, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, R.S. Simon, P. Kleinheinz, C.F. Liang, P. Paris
1991Ke08	ZPAAD	339,	355	H. Keller, R. Barden, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, I.S. Grant, A. Płochocki, K. Rykaczewski, J. Szerypo, J. Żylicz, ISOLDE
1991Ke10	NUPAB	534,	77	J. Kern, A. Raemy, W. Beer, JCl. Dousse, W. Schwitz, M.K. Balodis, P.T. Prokofjev, N.D. Kramer, L.I. Simonova, R.W. Hoff, D.G. Gardner, M.A. Gardner, R.F. Casten, R.L. Gill, R. Eder, T. von Egidy, E. Hagn, P. Hungerford, H.J. Scheerer, H.H. Schmidt, E. Zech, A. Chalupka, A.V. Murzin, V.A. Libman, I.V. Kononenko, C. Coceva, P. Giacobbe, I.A. Kondurov, Yu. E. Loginov, P.A. Sushkov, S. Brant, V. Paar

1	991Ke11	ZPAAD	340,	363	H. Keller, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt, R.S. Simon, P. Klein-
					heinz, R. Menegazzo, C.F. Liang, P. Paris, K. Rykaczewski, J. Żylicz, and Thesis H. Keller THD report GSI-91-6 February 1991
1	991Ki04	NUPAB	529,	39	S.W. Kikstra, Z. Guo, C. van der Leun, P.M. Endt, S. Raman, T.A. Walkiewicz,
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	TTOTAL	32),	37	J.W. Starner, E.T. Jurney, I.S. Towner
1	991Kl02	PRVCA	44,	2801	N. Klay, F. Kaeppeler, H. Beer, G. Schatz, H. Börner, F. Hoyler, S.J. Robin-
					son, K. Schreckenbach, B. Krusche, U. Mayerhofer, G. Hlawatsch, H. Lindner,
					T. von Egidy, W. Andrejtscheff, P. Petkov
	991Ko.A	P-Minsk		117	I.A. Kondurov, Yu. E. Loginov, P.A. Sushkov
	991Ko.B	P-Niigata	2.10	187	T. Kobayashi
	1991Kr15	ZPAAD	340,	419	KL. Kratz, H. Gabelmann, P. Möller, B. Pfeiffer, H.L. Ravn, A. Wöhr, ISOLDE
	991Kr.A	AnRpt LBL PRVCA	4.4	57	S.A. Kreek, et al
1	1991Le09	PRVCA	44,	336	M. Leino, P.P. Jauho, J. Aysto, P. Decrock, P. Dendooven, K. Eskola, M. Huyse, A. Jokinen, J.M. Parmonen, H. Penttila, G. Reusen, P. Taskinen, P. Van Duppen,
					J. Wauters
1	991Le15	ZPAAD	340,	107	M. Lewandowski, A.W. Potempa, V.I. Fominikh, K.Y. Gromov, M. Jan-
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		5 10,	107	icki, J.V. Juschkevich, V.G. Kalinnikov, N.J. Kotovskij, V.V. Kuznetsov,
					N. Raschkova, J.A. Sajdimov, J. Wawryszczuk
1	991Ly01	PRVCA	44,	764	J.E. Lynn, E.T. Jurney, S. Raman
1	991Ma65	ZPAAD	341,	1	U. Mayerhofer, T. von Egidy, J. Jolie, H.G. Börner, G. Colvin, S. Judge, B. Kr-
					uschke, S.J. Robinson, K. Schreckenbach, S. Brant, V. Paar
1	991Me05	ZPAAD	339,	315	F. Meissner, WD. Schmidt-Ott, K. Becker, U. Bosch-Wicke, U. Ellmers,
					H. Salewski, R. Michaelsen
	991Mi08	ZPAAD	338,	371	S. Michaelsen, K.P. Lieb, S.J. Robinson
	1991Mi15	NUPAB	530,		B.J. Min, S. Suematsu, S. Mitarai, T. Kuroyanagi, K. Heiguchi, M. Matsuzaki
1	991No07	JPGPE	17,	s291	E.B. Norman, B. Sur, K.T. Lesko, M.M. Hindi, RM. Larimer, T,R. Ho,
1	991Or01	PYLBB	258,	29	J.T. Witort, P.N. Luke, W.L. Hansen, E.E. Haller N.A. Orr, W. Mittig, L.K. Fifield, M. Lewitowicz, E. Plagnol, Y. Schutz,
1	19910101	LILDD	236,	29	W.L. Zhan, L. Bianchi, A. Gillibert, A.V. Belozyorov, S.M. Lukyanov,
					Yu. E. Penionzhkevich, A.C.C. Villari, A. Cunsolo, A. Foti, G. Audi,
					C. Stephan, L. Tassan-Got, and PrvCom GAu December 1990, and erra-
					tum PYLBB 271(1991)468
1	991Pa05	ZPAAD	338,	295	R.D. Page, P.J. Woods, S.J. Bennett, M. Freer, B.R. Fulton, R.A. Cunningham,
					J. Groves, M.A.C. Hotchkis, A.N. James
1	991Pe04	ZPAAD	338,	291	H. Penttilä, J. Äystö, K. Eskola, Z. Janas, P.P. Jauho, A. Jokinen, M.E. Leino,
_	00470 40				J.M. Parmonen, P. Taskinen
1	991Pe10	PRVCA	44,	935	H. Penttilä, P.P. Jauho, J. Äystö, P. Decrock, P. Dendooven, M. Huyse,
1	001D-01	DDVCA	42	501	G. Reusen, P. Van Duppen, J. Wauters
1	991Ra01	PRVCA	43,	521	S. Raman, T.A. Walkiewicz, S. Kahane, E.T. Jurney, J. Sa, Z. Gacsi, J.L. Weil, K. Allaart, G. Bonsignori, J.F. Shriner, Jr.
1	991Re02	PRVCA	44,	1435	P.L. Reeder, R.A. Warner, W.K. Hensley, D.J. Vieira, J.M. Wouters
	991Reo2	PrvCom	GAu	Sep	G. Reusen, M. Huyse
	991Ro07	PRLTA	67,	957	R.G.H. Robertson, T.J. Bowles, G.J. Stephenson, Jr., D.L. Wark, J.F. Wilkerson,
			,		D.A. Knapp
1	991Ro.A	P-PacGrove		440	S.J. Robinson, H.G. Börner, S. Judge, J. Jolie, P. Schillebeeckx
1	991Ry01	ADNDA	47,	205	A. Rytz
1	991Sh19	PRVCA	44,	2439	K.S. Sharma, E. Hagberg, G.R. Dyck, J.C. Hardy, V.T. Koslowsky, H. Schmeing,
					R.C. Barber, S. Yuan, W. Perry, M. Watson
1	991Su09	PRLTA	66,	2444	B. Sur, E.B. Norman, K.T. Lesko, M.M. Hindi, RM. Larimer, P.N. Luke,
1	0017-00	DDVCA	4.4	1060	W.L. Hansen, E.E. Haller
1	991To08	PRVCA	44,	1868	K.S. Toth, K.S. Vierinen, M.O. Kortelahti, D.C. Sousa, J.M. Nitschke, P.A. Wilmarth
1	991To09	ZPAAD	340,	343	K.S. Toth, K.S. Vierinen, J.M. Nitschke, P.A. Wilmarth, R.M. Chasteler
	991Tu02	PRLTA	67,	3211	A.L. Turkevich, T.E. Economou, G.A. Cowan
	1991 Va04	NUPAB	529,	268	P. Van Duppen, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, J. Wauters
	991Wa21	ZPAAD	339,	533	J. Wauters, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen
	991Wa.A	PrvCom	AHW		A.H. Wapstra
1	991Zh24	PYLBB	260,	285	X.G. Zhou, X.L. Tu, J.M. Wouters, D.J. Vieira, K.E.G. Lobner, H.L. Seifert,
					Z.Y. Zhou, G.W. Butler

1991Zl01	PRLTA	67,	560	I. Žlimen, A. Ljubičić, S. Kaučić, B.A. Logan
				1992
1992Al.A	B-Bernkastel		PC2	D.V. Aleksandrov, Yu. A. Glukhov, E. Yu. Nikolskii, B.G. Novatskii, A.A. Ogloblin, D.N. Stepanov
1992Al.B	B-Bernkastel		PA6	G.D. Alkhazov, B.N. Belyaev, V.D. Domkin, Yu. G. Korobulin, V.V. Lukashevich, V.S. Mukhin, Yu. A. Suchilin, V.G. Khlopin
1992An04	ZPAAD	342,	123	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, R.N. Sagajdak, G.M. Ter-Akopian, A.V. Yeremin
1992An13	JRNCD	164,	303	M.S. Antony, D. Oster, A. Hachem
1992An.A	P-Bernkastel	,	759	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, M. Florek, A.P. Kabachenko,
				O.N. Malyshev, S. Saro, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin
1992Ba01	PRVCA	45,	69	D. Bazin, R. Del Moral, J.P. Dufour, A. Fleury, F. Hubert, M.S. Pravikoff, R. Anne, P. Bricault, C. Détraz, M. Lewitowicz, Y. Zheng, D. Guillemaud-Mueller, J.C. Jacmart, A.C. Mueller, F. Pougheon, A. Richard
1992Ba28	ZPAAD	342,	125	K. Balog, M. Graefenstedt, M. Groß, P. Jürgens, U. Keyser, F. Münnich, T. Otto, F. Schreiber, T. Winkelmann, J. Wulff, ISOLDE
1992Ba.A	P-Bernkastel		777	P.H. Barker, S.A. Brindhaban
1992Be17	ZPAAD	341,	155	M.R. Beitins, S.T. Boneva, V.A. Khitrov, L.A. Malov, Y.P. Popov, P.T. Prokofjev, G.L. Rezvaya, L.I. Simonova, A.M. Sukhovoj, E.V. Vasilieva
1992Bo02	NUPAB	536,	260	R. Böttger, H. Schölermann
1992Bo05	NUPAB	539,	249	M.J.G. Borge, D.G. Burke, H. Gietz, P. Hill, N. Kaffrell, W. Kurcewicz,
				G. Løvhøiden, S. Mattsson, R.A. Naumann, K. Nybø, G. Nyman, T.F. Thorsteinsen, ISOLDE
1992Bo28	JMOPE	39,	257	G. Bollen, HJ. Kluge, Th. Otto, G. Savard, L. Schweikhard, H. Stolzenberg,G. Audi, R.B. Moore, G. Rouleau, ISOLDE, and PrvCom GAu November 1991
1992Bo37	ZPAAD	344,	135	V. Borrel, R. Anne, D. Bazin, C. Borcea, G.G. Chubarian, R. Del Moral, C. Détraz, S. Dogny, J.P. Dufour, L. Faux, A. Fleury, L.K. Fifield, D. Guillemaud-Mueller, F. Hubert, E. Kashy, M. Lewitowicz, C. Marchand, A.C. Mueller, F. Pougheon, M.S. Pravikoff, M.G. Saint-Laurent, O. Sorlin
1992Bo.B	PrvCom	AHW	Apr	R. Böttger
1992Bo.D	P-Bernkastel		743	V.A. Bolshakov, A.G. Dernjatin, K.A. Mezilev, Yu. N. Novikov, A.V. Popov, Yu. Ya. Sergeev, V.I. Tikhonov, V.A. Sergienko, G.V. Veselov
1992Br17	NUPAB	542,	1	A.M. Bruce, W. Gelletly, G.G. Colvin, P. Van Isacker, D.D. Warner
1992Bu10	ZPAAD	342,	403	D. Bucurescu, M.S. Rapaport, C.F. Liang, P. Paris, G. Cata-Danil
1992Bu12	NUPAB	550,	179	D.G. Burke, P.E. Garrett
1992Bu13	PRVCA	46,	1267	B. Budick, J. Chen, H. Lin
1992Ch09	PRVCA	45,	1720	WT. Chou, E.K. Warburton
1992Ch27	PRLTA	69,	3151	M. Chen, D.A. Imel, T.J. Radcliffe, H. Henrikson, F. Boehm
1992Co23	PYLBB	295,	143	E. Cosulich, G. Gallinaro, F. Gatti, S. Vitale
1992Cz.A	LBL-32		233	K.R. Czerwinski (thesis)
1992Da03	ARISE	43,	69	J. Dalmasso, G. Barci-Funel, G.J. Ardisson
1992Da14	ZPAAD	343,	161	B. Dasmahapatra, S. Bhattacharya
1992Do10	PRVCA	46,	2127	J. Döring, G. Winter, L. Funke, B. Cederwall, F. Lidén, A. Johnson, A. Atac, J. Nyberg, G. Sletten, M. Sugawara
1992Ga15	NUPAB	550,	1	P.E. Garret, D.G. Burke
1992Ge08	PRLTA	68,	3412	H. Geissel, K. Beckert, F. Bosch, H. Eickhoff, B. Franczak, B. Franzke, M. Jung, O. Klepper, R. Moshammer, G. Münzenberg, F. Nickel, F. Nolden, U. Schaaf, C. Scheidenberger, P. Spädtke, M. Steck, K. Sümmerer, A. Magel
1992Go10	PRVCA	46,	833	J. Görres, M. Wiescher, K. Scheller, D.J. Morrissey, B.M. Sherrill, D. Bazin, J.A. Winger
1992Gr02	PRVCA	45,	1058	K.E. Gregorich, H.L. Hall, R.A. Henderson, J.D. Leyba, K.R. Czerwinski, S.A. Kreek, B.A. Khadkodayan, M.J. Nurmia, D.M. Lee, D.C. Hoffman
1992Gr06	NIMAE	311,	512	M. Groß, P. Jürgens, U. Keyser, S. Kluge, M. Mehrtens, S. Müller, F. Münnich, J. Wulff
1992Gr09	ZPAAD	341,	247	H. Grawe, P. Hoff, J.P. Omtvedt, K. Steffensen, R. Eder, H. Haas, H. Ravn, ISOLDE

1992Gr.A	P-Bernkaste	el	77	M. Groß, P. Jürgens, S. Kluge, M. Mehrtens, S. Müller, F. Münnich, J. Wulff, see also 87Gr18
1992Gu03	NUPAB	540,	117	Z. Guo, C. Alderliesten, C. van der Leun, P.M. Endt
1992Ha03	PRVCA	45,	900	F.X. Hartmann
1992Ha10	PRVCA	45,	1609	E. Hagberg, X.J. Sun, V.T. Koslowsky, H. Schmeing, J.C. Hardy
1992Ha15	NIMAE	313,	237	,
1992Ha21	ZPAAD	343,	7	A. Harder, S. Michaelsen, A. Jungclaus, K.P. Lieb, A.P. Williams, H.G. Börner, M. Trautmannsheimer
1992Ha22	PRVCA	46,	1873	T.M. Hamilton, K.E. Gregorich, D.M. Lee, K.R. Czerwinski, N.J. Hannink, C.D. Kacher, B. Kadkhodayan, S.A. Kreek, M.J. Nurmia, M.R. Lane, M.P. Neu, A. Türler, D.C. Hoffman
1992He.A	P-Bernkaste	el	331	F. Heine, T. Faestermann, A. Gillitzer, H.J. Körner
1992Ho09	PYLBB	287,	381	E. Holzschuh, M. Fritschi, W. Kündig
1992Hu04	PRVCA	46,	1209	M. Huyse, P. Decrock, P. Dendooven, G. Reusen. P. Van Duppen, J. Wauters
		*		
1992Id01	ZPAAD	341,	427	N. Idrissi, A. Gizon, J. Genevey, P. Paris, V. Barci, D. Barnéoud, J. Blachot, D. Bucurescu, R. Duffait, J. Gizon, C.F. Liang, B. Weiss
1992Iv.A	Th-Pennsyl	vania		R.A. Ivie Master's Thesis
1992Jo05	NUPAB	549,	420	A. Jokinen, J. Äystö, P.P. Jauho, M. Leino, J.M. Parmonen, H. Penttilä, K. Eskola, Z. Janas
1992Ju01	PRLTA	69,	2164	M. Jung, F. Bosch, K. Beckert, H. Eickhoff, H. Folger, B. Franzke, A. Gruber,
				P. Kienle, O. Klepper, W. Koenig, C. Kozhuharov, R. Mann, R. Moshammer, F. Nolden, U. Schaaf, G. Soff, P. Spädtke, M. Steck, T. Stöhlker, K. Sümmerer
1992Ka29	PYLBB	287,	45	H. Kawakami, S. Kato, T. Ohshima, C. Rosenfeld, H. Sakamoto, T. Sato, S. Shibata, J. Shirai, Y. Sugaya, T. Suzuki, K. Takahashi, T. Tsukamoto, K. Ueno,
100017 06	DITOTED	16	575	K. Ukai, S. Wilson, Y. Yonezawa
1992Ke06	PHSTB	46,	575	J. Kern, T. Engel, D. Hagena, G. Werth
1992Kr01	PRVCA	45,	1064	J.V. Kratz, M.K. Gober, H.P. Zimmermann, M. Schädel, W. Brüchle, E. Schimpf, K.E. Gregorich, A. Türler, N.J. Hannink, K.R. Czerwinski, B. Kadkhodayan, D.M. Lee, M.J. Nurmia, D.C. Hoffman, H. Gäggeler, D. Jost, J. Kovacs, U.W. Scherer, A. Weber
1992Kr.A	AnRpt LBL	,	58	S.A. Kreek, et al
1992Ku02	NUPAB	537,	153	S. Kubono, Y. Funatsu, N. Ikeda, M. Yasue, T. Nomura, Y. Fuchi, H. Kawashima, S. Kato, H. Miyatake, H. Orihara, T. Kajino
1992Li09	ZPAAD	341,	401	C.F. Liang, P. Paris, A. Gizon, V. Barci, D. Barneou, R. Béraud, J. Blachot, Ch. Briançon, J. Genevey, R.K. Sheline, and PrvCom GAu September 1992
1992Lo.B	UCRL-JC-1	100051		R.W. Lougheed, et al
			202	
1992Me10	ZPAAD	343,		F. Meissner, H. Salewski, WD. Schmidt-Ott, U. Bosch-Wicke, R. Michaelsen
1992Mo03	PRVCA	45,	1392	K.J. Moody, E.K. Hulet, P.B. Price
1992Mo15	ZPAAD	342,	273	D.M. Moltz, J.C. Batchelder, T.F. Lang, T.J. Ognibene, J. Cerny, P.E. Haustein, P.L. Reeder
1992Mo25	PRVCA	46,	2624	K.J. Moody, R.W. Lougheed, E.K. Hulet
1992Mu12	ZPAAD	342,	393	J. Mukai, A. Odahara, R. Nakatani, Y. Haruta, H. Tomura, B.J. Min, K. Heiguchi, S. Suematsu, S. Mitarai, T. Kuroyanagi
1992Os04	ZPAAD	343,	489	A.N. Ostrowski, H.G. Bohlen, A.S. Demyanova, B. Gebauer, R. Kalpakchieva, Ch. Langner, H. Lenske, M. von Lucke-Petsch, W. von Oertzen, A.A. Ogloblin, Y.E. Penionzhkevich, M. Wilpert, Th. Wilpert
1992Os07	NIMBE	70,	551	A. Osa, T. Ikuta, A. Taniguchi, H. Yamamoto, K. Kawade, S. Ichikawa, Y. Kawase
1992Ot.A	PrvCom	GAu	Mar	E.W. Otten
1992Ot.A 1992Pa05	PRLTA	68,	1287	R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, S. Hofmann,
19941 dUJ	INLIA	00,	140/	A.N. James, K. Livingston, P.J. Sellin, A.C. Shotter
1992Pl01	ZPAAD	342,	43	A. Płochocki, K. Rykaczewski, T. Batsch, J. Szerypo, J. Żylicz, R. Barden, O. Klepper, E. Roeckl, D. Schardt, H. Gabelmann, P. Hill, H. Ravn, T. Thorsteinsen, I.S. Grant, H. Grawe, P. Manakos, L.D. Skouras, ISOLDE
1992Po14	BRSPE	56,	666	A.V. Potempa, K. Ya. Gromov, J. Wawryszczuk, V.G. Kalinnikov,
				V.V. Kuznetsov, M. Levandovsky, J. Saraatar, Ya. Saidimov, V.I. Fominykh, Yu. V. Yushkevich, M.B. Yuldashev
1992Pr03	ZPAAD	342,	23	· · · · · · · · · · · · · · · · · · ·
1992Pr03 1992Pr04	ZPAAD ZPAAD	342, 342,	23 27	Yu. V. Yushkevich, M.B. Yuldashev

1000= :-				
1992Ra18	PRVCA	46,	2241	S. Raman, J.L. Campbell, A. Prindle, R. Gunnink, J.C. Palathingal
1992Ra19	PRVCA	46,	972	S. Raman, E.T. Jurney, J.W. Starner, J.E. Lynn
1992Sa03	NUPAB	540,	83	J. Sauvage, C. Bourgeois, P. Kilcher, F. Le Blanc, B. Roussière, M.I. Macias- Marques, F. Bragança Gil, M.G. Porquet, H. Dautet, ISOCELE
1992Sc16	NUPAB	545,	646	WD. Schmidt-Ott, H. Salewski, F. Meissner, U. Bosch-Wicke, P. Koschel, V. Kunze, R. Michaelsen
1992Sh.A	P-Bernkastel		31	K.S. Sharma, P. Unger, G.R. Dyck, R.C. Barber, E. Hagberg, J.G. Hykawy,
				V.T. Koslowsky, J.C. Hardy, H. Schmeing, G. Savard, W. Perry, M. Watson,
				and PrvCom AHW October 1992
1992Sp.A	PrvCom		92Ch09	L. Spanier, B. Fogelberg, M. Hellström
1992Th06	NUPAB	548,	71	K. Theine, A.P. Byrne, H. Hubel, M. Murzel, R. Chapman, D. Clarke, F. Khaz-
			0=1	aie, J.C. Lisle, J.N. Mo, J.D. Garrett, H. Ryde, R. Wyss
1992To02	PRVCA	45,	856	K.S. Toth, H.J. Kim, J.W. McConnell, C.R. Bingham, D.C. Sousa
1992Ul.A	PrvCom	AHW	Mar	S. Ulbig
1992Un01	NIMAE	312,	349	M.P. Unterweger, D.D. Hoppes, F.J. Schima
1992Va.A	P-Bernkastel			R.S. Van Dyck,Jr., D.L. Farnham, P.B. Schwinberg
1992Wa06	PRVCA	45,	1597	T.A. Walkiewicz, S. Raman, E.T. Jurney, J.W. Starner, J.E. Lynn
1992Wo03	ARISE	43,	551	D.H. Woods, S.A. Woods, M.J. Woods, J.L. Makepeace, C.W.A. Downey,
100211-06	NIIMAE	212	246	D. Smith, A.S. Munster, S.E.M. Lucas, H. Sharma
1992Wo06	NIMAE	312,	346	M.J. Woods, S.E.M. Lucas, D.F.G. Reher, G. Sibbens
1992Wu09	ZPAAD	344,	205	S. Wüstenbecker, H.W. Becker, H. Ebbing, W.H. Schulte, M. Berheide,
1992Xu04	PRVCA	46,	510	M. Buschmann, C. Rolfs, G.E. Mitchell, J.S. Schweitzer SW. Xu, JS. Guo, SG. Yuan, MQ. Liu, E. Hagberg, V.T. Koslowsky,
1992Au04	FRVCA	40,	310	J.C. Hardy, G. Dyck, H. Schmeing, and erratum PRVCA 46(1992)2644
				J.C. Hardy, G. Dyck, H. Schineing, and effatum FRVCA 40(1992)2044
				1993
1993Ab11	PYLBB	316,	26	H. Abele, G. Helm, U. Kania, C. Schmidt, J. Last, D. Dubbers
1993A103	ZPAAD	344,	425	G.D. Alkhazov, L.H. Batist, A.A. Bykov, F.V. Moroz, S. Yu. Orlov, V.K. Tarasov,
				V.D. Wittmann
1993An07	ZPAAD	345,	247	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin
1993An11	PYLBB	312,	49	A.N. Andreyev, D.D. Bogdanov, S. Saro, G.M. Ter-Akopian, M. Veselsky,
		- ,		A.V. Yeremin
1993An19	NIMAE	330,	125	A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, V.A. Gorshkov, K.V. Mikhailov,
				A.P. Kabachenko, G.S. Popeko, S. Daro, G.M. Ter-Akopian, A.V. Yeremin
1993As02	PRVCA	47,	2954	K. Ashktorab, J.W. Jänecke, F.D. Becchetti, D.A. Roberts
1993Ba12	PRVCA	47,	2038	J.C. Batchelder, D.M. Moltz, T.J. Ognibene, M.W. Rowe, J. Cerny
1993Ba61	PRVCA	48,	2593	J.C. Batchelder, D.M. Moltz, T.J. Ognibene, M.W. Rowe, R.J. Tighe, J. Cerny
1993Be21	PRVCA	48,	R1	G.E. Berman, M.L. Pitt, F.P. Calaprice, M.M. Lowry
1993Be46	ZPAAD	346,	325	P. Bednarczyk, G. de Angelis, P. Spolaore, D. Ackermann, J. Rico, D. Bazzacco,
				S. Lunardi, L. Müller, C. Rossi Alvarez, F. Scarlassara, G.F. Segato, F. Soramel
1993Bo01	NUPAB	551,	54	V.A. Bondarenko, I.L. Kuvaga, P.T. Prokofjev, V.A. Khitrov, Yu. V. Kholnov,
1002D -02	704 4 0	244	201	Le Hong Khiem, Yu. P. Popov, A.M. Sukhovoj, S. Brant, V. Paar, V. Lopac
1993Bo03	ZPAAD	344,	381	H.G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W. von Oertzen, A.N. Ostrowelki, M. Wilnert, Th. Wilnert, H. Lengke, D.V. Alexandrey, A.S. Demyenous
				trowski, M. Wilpert, Th. Wilpert, H. Lenske, D.V. Alexandrov, A.S. Demyanova, E. Nikolskii, A.A. Korsheninnikov, A.A. Ogloblin, R. Kalpakchieva, Y.E. Pe-
				nionzhkevich, Š. Piskoř
1993Bo20	NUPAB	556,	115	R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, A. Cesana, M. Terrani
1993Bo20 1993Bo.A	AnRpt GSI	330,	65	F. Bosch, M. Jung
1993Bu02	PRVCA	47,	131	D.G. Burke, P.C. Sood, P.E. Garrett, Tao Qu, R.K. Sheline, R.W. Hoff
1993Du02 1993Ch21	PRVCA	48,	109	R.E. Chrien, B.K.S. Koene, M.L. Stelts, R.A. Meyer, S. Brant, V. Paar, V. Lopac
1993Cii21 1993Di03	PRVCA	40, 47,	2916	D.E. DiGregorio, S. Gil, H. Huck, E.R. Batista, A.M.J. Ferrero, A.O. Gattone
1993Dio3	ARISE	47, 44,	1097	S.N. Dmitriev, Yu. Ts. Oganessian, G.V. Buklabov, Yu. P. Kharitonov, A.F. Nov-
17751511102	THOL	,	1071	gorodov, L.I. Salamatin, G. Ya. Starodub, S.V. Shishkin, Yu. V. Yushkevich,
				D. Newton
1993Do05	PRVCA	47,	2560	J. Döring, J.W. Holcomb, T.D. Johnson, M.A. Riley, S.L. Tabor, P.C. Womble,
		,	2000	G. Winter

1993Dr.A	P-Fribourg		305	S. Drissi, M. Deleze, P.E. Garrett, J. Jolie, J. Kern, S.J. Mannanal, P.A. Tercier, J.P. Vorlet, N. Warr, G. Mouze, C. Ythier, H.G. Borner, F. Hoyler, S. Judge, K. Schreckenbach, A. Williams
1993Go37	PRVAA	47,	3433	M.V. Gorshkov, G.M. Alber, L. Schweikhard, A.G. Marshall
1993Go38	IJMPD	128,	47	M.V. Gorshkov, S. Guan, A.G. Marshall
1993Gr17	NIMAE	337,	106	R.C. Greenwood, M.H. Putnam
1993Gr.C	AnRpt Berke		76	K.E. Gregorich, C.D. Kacher, M.F. Mohar, D.M. Lee, M.R. Lane, E.R. Syl-
1993GI.C	All Cpt Belke	ЛСУ	70	wester, D.C. Hoffman, M. Schädel, W. Brüchle, J.V. Kratz, R. Günther and An- Rpt GSI p.14
1993Ha05	ZPAAD	345,	143	A. Harder, S. Michaelsen, K.P. Lieb, A.P. Williams
1993Но.А	AnRpt GSI		64	S. Hofmann, V. Ninov, F.P. Heßberger, H. Folger, G. Münzenberg, H.J. Schött, P. Armbruster, A.N. Andreyev, A.G. Popeko, A.V. Yeremin, M.E. Leino, R. Janik, S. Saro, M. Veselsky, and PrvCom AHW September 1995
1993Ja03	NUPAB	552,	340	Z. Janas, J. Äystö, K. Eskola, P.P. Jauho, A. Jokinen, J. Kownacki, M. Leino, J.M. Parmonen, H. Penttilä, J. Szerypo, J. Żylicz
1993Je06	PHSTB	48,	399	R. Jertz, D. Beck, G. Bollen, J. Emmes, HJ. Kluge, E. Schark, S. Schwarz,
		,		T. Schwarz, L. Schweikhard, P. Senne C. Carlberg, I. Bergström, H. Borgen-
				strand, G. Rouleau, R. Schuch, F. Söderberg
1993Kl02	PRVCA	47,	2502	G. Klotz, P. Baumann, M. Bounajma, A. Huck, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, A. Poves, J. Retamosa
1993Li10	NUCIA	106,	163	Sr. Little Flower, B.R.S. Babu, K. Neelakandan, R.N. Mukherjee, B.B. Baliga
1993Li18	PYLBB	312,	46	K. Livingston, P.J. Woods, T. Davinson, N.J. Davis, S. Hofmann, A.N. James,
				R.D. Page, P.J. Sellin, A.C. Shotter
1993Li34	PRVCA	48,	2151	K. Livingston, P.J. Woods, T. Davinson, N.J. Davis, S. Hofmann, A.N. James,
				R.D. Page, P.J. Sellin, A.C. Shotter
1993Li40	PRVCA	48,	3113	K. Livingston, P.J. Woods, T. Davinson, N.J. Davis, A.N. James, R.D. Page,
				P.J. Sellin, A.C. Shotter
1993Ma50	NUPAB	565,	543	G. Mairle, M. Seeger, H. Reinhardt, T. Kihm, K.T. Knöpfle, Chen Lin Wen
1993Ma.A	PrvCom	GAu	Feb	A.G. Marshall
1993Mi04	NUPAB	552,	232	S. Michaelsen, A. Harder, K.P. Lieb, G. Graw, R. Hertenberger, D. Hofer, P. Schiemenz, E. Zanotti, H. Lenske, A. Weigel, H.H. Wolter, S.J. Robinson, A.P. Williams
1993Mo01	PRLTA	70,	394	J.L. Mortara, I. Ahmad, K.P. Coulter, S.J. Freedman, B.K. Fujikawa, J.P. Greene, J.P. Schiffer, W.H. Trzaska, A.R. Zeuli
1993Mo18	NUPAB	563,	21	K.J. Moody, R.W. Lougheed, J.F. Wild, R.J. Dougan, E.K. Hulet, R.W. Hoff, C.M. Henderson, R.J. Dupzyk, R.L. Hahn, K. Sümmerer, G.D. O'Kelley, G.R. Bethune
1993Nx01	PYLBB	302,	13	J.N. Nxumalo, J.G. Hykawy, P. P Unger, C.A. Lander, R.C. Barber, K.S. Sharma, H.E. Duckworth
1993Nx02	PYLBB	312,	388	J.N. Nxumalo, J.G. Hykawy, K.J. Aarts, R.C. Barber, K.S. Sharma, H.E. Duckworth
1993Oh02	PRVDA	47,	4840	T. Ohshima, H. Sakamoto, T. Sato, J. Shirai, T. Tsukamoto, Y. Sugaya, K. Takahashi, T. Suzuki, C. Rosenfeld, S. Wilson, K. Ueno, Y. Yonezawa, H. Kawakami, S. Kato, S. Shibata, K. Ukai
1993Os06	NIMAE	332,	169	A. Osa, T. Ikuta, M. Shibata, M. Miyachi, H. Yamamoto, K. Kawade, Y. Kawase, S. Ichikawa
1993Pe11	NUPAB	561,	416	H. Penttilä, T. Enqvist, P.P. Jauho, A. Jokinen, M. Leino, J.M. Parmonen, J. Äystö, K. Eskola
1993Po.A	PrvCom	GAu	Dec	F. Pougheon
1993Pr.A	P-Fribourg		441	P.T. Prokofjev, A.V. Afanasjev, M.R. Beitins, L.I. Simonova, M.K. Balodis, G.L. Rezvaja
1993Qu03	ZPAAD	346,	119	A.B. Quint, W. Reisdorf, KH. Schmidt, P. Armbruster, F.P. Heßberger, S. Hofmann, J. Keller, G. Münzenberg, H. Stelzer, HG. Clerc, W. Morawek, CC. Sahm
1993Ru01	ADNDA	53,	1	G. Rudstam, K. Aleklett, L. Sihver
1993Ru03	PRVCA	47,	2574	D. Rudolph, C.J. Gross, M.K. Kabadiyski, K.P. Lieb, M. Weiszflog, H. Grawe,
				J. Heese, KH. Maier, J. Eberth
1993Sc16	ZPAAD	345,	265	D. Schardt, K. Riisager

1993Se04	PRVCA	47,	1933	P.J. Sellin, P.J. Woods, T. Davinson, N.J. Davis, K. Livingston, R.D. Page,
1993Se09	ZPAAD	346,	323	A.C. Shotter, S. Hofmann, A.N. James P.J. Sellin, P.J. Woods, T. Davinson, N.J. Davis, A.N. James, K. Livingston,
40000100	TD 600	4.0		R.D. Page, A.C. Shotter
1993Sh07	JPGPE	19,	617	R.K. Sheline, J. Kvasil, C.F. Liang, P. Paris
1993Sh23	ARISE	44,	923	M. Shibata, M. Asai, T. Ikuta, H. Yamamoto, J. Ruan, K. Okano, K. Aoki, K. Kawade
1993Si05	NIMAE	330,	195	M.H. Sidky, J.G. Hyckawy, G.R. Dyck, R.C. Barber, K.S. Sharma, C.A. Lander, H.E. Duckworth
1993Sp.A	AnRpt JYFI	_	95	A.M. Spits, P.H.M. Van Assche, H.G. Borner, W.F. Davidson, D.D. Warner, K. Schreckenbach, G.G. Colvin, R.C. Greenwood, C.W. Reich, P.O. Lipas, J. Suhonen, P. Sinkko, A. Backlin
1993To04	PRVCA	48,	436	K.S. Toth, D.C. Sousa, J.M. Nitschke, K.S. Vierinen, P.A. Wilmarth
1993To05	PRVCA	48,	445	K.S. Toth, P.A. Wilmarth, J.M. Nitschke, D.C. Sousa
1993Va04	PRLTA	70,	2888	R.S. Van Dyck,Jr., D.L. Farnham, P.B. Schwinberg
1993Va.C	PrvCom	GAu	May	R.S. Van Dyck, Jr., D.L. Farnham, P.B. Schwinberg
1993Wa03	ZPAAD	345,	21	J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, R. Kirchner, O. Klepper, E. Roeckl
1993Wa04	PRVCA	47,	1447	J. Wauters, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen, P. Lievens, ISOLDE
1993We03	PYLBB	300,	210	
1993Wi03	PYLBB	299,	214	E.W. Otten, A. Picard, M. Schrader, M. Steininger J.A. Winger, D. Bazin, W. Benenson, G.M. Crawley, D.J. Morrissey, N.A. Orr, R. Pfaff, B.M. Sherrill, M. Steiner, M. Thoennessen, S.J. Yennello, B.M. Young
1993Wi05	PRLTA	70,	1759	F.E. Wietfeldt, Y.D. Chan, M.T.F. da Cruz, A. García, RM. Larimer, K.T. Lesko, E.B. Norman, R.G. Stokstad, I. Žlimen
1993Wo04	PRVCA	47,	2546	P.C. Womble, J. Döring, T. Glasmacher, J.W. Holcomb, G.D. Johns, T.D. Johnson, T.J. Petters, M.A. Riley, V.A. Wood, S.L. Tabor, P. Semmes
1993Yo07	PRLTA	71,	4124	B.M. Young, W. Benenson, M. Fauerbach, J.H. Kelley, R. Pfaff, B.M. Sherrill, M. Steiner, J.S. Winfield, T. Kubo, M. Hellström, N.A. Orr, J. Stetson, J.A. Winger, S.J. Yennello
				1994
1994Ah03	NUPAB	576,	246	I. Ahmad, J.E. Gindler, M.P. Carpenter, D.J. Henderson, E.F. Moore, R.V.F. Janssens, I.G. Bearden, C.C. Foster
1994Ah03 1994An01	NUPAB NUPAB	576, 568,	246 323	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Maly-
				R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky,
1994An01	NUPAB	568,	323	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi,
1994An01 1994An02	NUPAB ZPAAD	568, 347,	323 225	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti P. Baumann, M. Bounajma, A. Huck, G. Klotz, A. Knipper, G. Walter, G. Mar-
1994An01 1994An02 1994Ba06	NUPAB ZPAAD PRVCA	568, 347, 49,	323 225 1221	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti
1994An01 1994An02 1994Ba06 1994Ba50	NUPAB ZPAAD PRVCA PRVCA	568, 347, 49, 50,	323 225 1221 1180	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti P. Baumann, M. Bounajma, A. Huck, G. Klotz, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, H. Ravn, E. Hagebø, P. Hoff, K. Steffensen M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, HR. Faust, E. Hanelt, A. Heinz, M. Heese, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, KH. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, B. Voss B. Blank, S. Andriamonje, R. Del Moral, J.P. Dufour, A. Fleury, T. Josso, M.S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, KH. Schmidt, K. Sümmerer, W. Trinder, M. Weber, T. Brohm, A. Grewe,
1994An01 1994An02 1994Ba06 1994Ba50 1994Be24	NUPAB ZPAAD PRVCA PRVCA PYLBB	568, 347, 49, 50, 331,	323 225 1221 1180 19	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti P. Baumann, M. Bounajma, A. Huck, G. Klotz, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, H. Ravn, E. Hagebø, P. Hoff, K. Steffensen M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, HR. Faust, E. Hanelt, A. Heinz, M. Heese, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, KH. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, B. Voss B. Blank, S. Andriamonje, R. Del Moral, J.P. Dufour, A. Fleury, T. Josso, M.S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, KH. Schmidt, K. Sümmerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, M. Pfützner R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, P. Monti, A.L. Pasinetti,
1994An01 1994An02 1994Ba06 1994Ba50 1994Be24 1994B110	NUPAB ZPAAD PRVCA PRVCA PYLBB PRVCA NUPAB	568, 347, 49, 50, 331, 50,	323 225 1221 1180 19 2398	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti P. Baumann, M. Bounajma, A. Huck, G. Klotz, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, H. Ravn, E. Hagebø, P. Hoff, K. Steffensen M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, HR. Faust, E. Hanelt, A. Heinz, M. Heese, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, KH. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, B. Voss B. Blank, S. Andriamonje, R. Del Moral, J.P. Dufour, A. Fleury, T. Josso, M.S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, KH. Schmidt, K. Sümmerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, M. Pfützner R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, P. Monti, A.L. Pasinetti, H.L. Ravn
1994An01 1994An02 1994Ba06 1994Ba50 1994Be24	NUPAB ZPAAD PRVCA PRVCA PYLBB	568,347,49,50,331,50,	323 225 1221 1180 19 2398	R.V.F. Janssens, I.G. Bearden, C.C. Foster A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, Yu. A. Muzychka, B.I. Pustylnik, G.M. Ter-Akopian, A.V. Yeremin A.N. Andreyev, D.D. Bogdanov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, R.N. Sagaidak, G.M. Ter-Akopian, M. Veselsky, A.V. Yeremin V. Banerjee, A. Banerjee, G.S.N. Murthy, R.P. Sharma, S.K. Pardha Saradhi, A. Chakrabarti P. Baumann, M. Bounajma, A. Huck, G. Klotz, A. Knipper, G. Walter, G. Marguier, C. Richard-Serre, H. Ravn, E. Hagebø, P. Hoff, K. Steffensen M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, HR. Faust, E. Hanelt, A. Heinz, M. Heese, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, C. Röhl, KH. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got, B. Voss B. Blank, S. Andriamonje, R. Del Moral, J.P. Dufour, A. Fleury, T. Josso, M.S. Pravikoff, S. Czajkowski, Z. Janas, A. Piechaczek, E. Roeckl, KH. Schmidt, K. Sümmerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz, A. Junghans, C. Rohl, S. Steinhauser, B. Voss, M. Pfützner R. Bonetti, C. Chiesa, A. Guglielmetti, C. Migliorino, P. Monti, A.L. Pasinetti,

1994Bu18	ZPAAD	349,	3	D. Bucurescu, D. Barnéoud, R. Béraud, G. Cata-Danil, T. von Egidy, A. Em-
				sallem, J. Genevey, A. Gizon, J. Gizon, C.F. Liang, P. Paris, C.A. Ur, B. Weiss
1994De04	NUPAB	568,	141	M.E. Debray, A.J. Kreiner, M. Davidson, J. Davidson, D. Hojman, D. Santos,
1004Da09	DDVCA	49,	1967	V.R. Vanin, N. Schutz, M. Aiche, A. Chevallier, J. Chevallier, J.C. Sens
1994Do08	PRVCA	49,	1867	M. Dombsky, L. Buchmann, J.M. D'Auria, U. Giesen, K.P. Jackson, J.D. King, E. Korkmaz, R.G. Korteling, P. McNeely, J. Powell, G. Roy, M. Trinczek, J. Vin-
				cent
1994Fa06	PRVCA	49,	2440	L. Faux, M.S. Pravikoff, S. Andriamonje, B. Blank, R. Del Moral, JP. Dufour,
133 11 400	110, 011	.,,	2	A. Fleury, C. Marchand, KH. Schmidt, K. Sümmerer, T. Brohm, HG. Clerc,
				A. Grewe, E. Hanelt, B. Voss, C. Ziegler
1994Fo08	PRVCA	50,	1355	H.T. Fortune, GB. Liu, D.E. Alburger
1994Fo14	PRLTA	73,	2413	B. Fogelberg, M. Hellström, D. Jerrestam, H. Mach, J. Blomqvist, A. Kerek,
				L.O. Norlin, J.P. Omtvedt
1994Gi07	PRVCA	50,	2612	R.L. Gill
1994Go.A	PrvCom	AHW	Jul	M.V. Gorshkov
1994Gr07	PRVCA	49,	2971	P. Grabmayer, A. Mondry, G.J. Wagner, P. Woldt, G.P.A. Berg, J. Lisantti,
				D.W. Miller, H. Nann, E.J. Stephenson
1994Gr08	PRLTA	72,	1423	K.E. Gregorich, M.R. Lane, M.F. Mohar, D.M. Lee, C.D. Kacher, E.R. Syl-
				wester, D.C. Hoffman
1994Ha.A	ThMainz			H. Hartmann
1994He08	PRVCA	49,	1845	R.G. Helmer, C.W. Reich
1994He28	PRVCA	50,	2219	M. Hencheck, R.N. Boyd, M. Hellström, D.J. Morrissey, M.J. Balbes,
				F.R. Chloupek, M. Fauerbach, C.A. Mitchell, R. Pfaff, C.F. Powell, G. Raimann,
100 4110 4	DDI (C.)	40	2200	B.M. Sherrill, M. Steiner, J. Vandegriff, S.J. Yennello
1994Hi04	PRVCA	49,	3289	M.M. Hindi, R.L. Kozub, S.J. Robinson
1994Hi05	PRVCA	50,	728	M.M. Hindi, A.E. Champagne, M.T.F. da Cruz, RM. Larimer, K.T. Lesko,
10041101	DDMCA	50	1240	E.B. Norman, B. Sur
1994Hy01	PRVCA	50,	1249	J.G. Hykawy, R.C. Barber, K.S. Sharma, K.J. Aarts, J.N. Nxumalo, H.E. Duckworth
1994Ib01	ZPAAD	350,	9	F. Ibrahim, P. Kilcher, B. Roussière, J. Sauvage, J. Genevey, A. Gizon, A. Knip-
		,		per, G. Marguier, D. Barnéoud, R. Béraud, G. Cata-Danil, J. Blachot, I. Delon-
				cle, R. Duffait, A. Emsallem, D. Hojman, A.J. Kreiner, F. Le Blanc, J. Libert,
				J. Oms
1994It.A	P-Tokai		185	S. Itoh, M. Yasuda, H. Yamamoto, T. Iida, A. Takahashi, K. Kawade
1994Jo.A	ThJyvaskyla	ı		A. Jokinen
1994Ko16	PYLBB	326,	31	A.A. Korsheninnikov, K. Yoshida, D.V. Aleksandrov, N. Aoi, Y. Doki, N. In-
				abe, M. Fujimaki, T. Kobayashi, H. Kumagai, CB. Moon, E. Yu. Nikolskii,
				M.M. Obuti, A.A. Ogloblin, A. Ozawa, S. Shimoura, T. Suzuki, I. Tanihata,
				Y. Watanabe, M. Yanokura
1994Ko.A	AnRpt AECL	,	3-1	V.T. Koslowsky, E. Hagberg, G. Savard, M.J. Watson, J.C. Hardy
1994Kr13	PRVCA	50,	2288	S.A. Kreek, H.L. Hall, K.E. Gregorich, R.A. Henderson, J.D. Leyba, K.R. Cz-
				erwinski, B. Kadkhodayan, M.P. Neu, C.D. Kacher, T.M. Hamilton, M.R. Lane,
				E.R. Sylwester, A. Türler, D.M. Lee, M.J. Nurmia, D.C. Hoffman
1994La22	PRLTA	73,	624	Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V.K. Utyonkov, F. Sh. Ab-
				dullin, G.V. Buklanov, B.N. Gikal, S. Iliev, A.N. Mezentsev, A.N. Polyakov,
				I.M. Sedykh, I.V. Shirokovsky, V.G. Subbotin, A.M. Sukhov, Yu. S. Tsyganov,
10041 05	704 4 0	240	151	V.E. Zhuchko, R.W. Lougheed, K.J. Moody, J.F. Wild, E.K. Hulet, J.H. McQuaid
1994Le05	ZPAAD	348,	151	M. Leino, J. Uusitalo, T. Enqvist, K. Eskola, A. Jokinen, K. Loberg, W.H. Trza-
1994Le22	NII IDA D	576	267	ska, J. Äystö
1994LC22	NUPAB	576,	267	A.I. Levon, J. de Boer, G. Graw, R. Hertenberger, D. Hofer, J. Kvasil, A. Lösch, E. Müller-Zanotti, M. Würkner, H. Baltzer, V. Grafen, C. Günther
1994Li12	PRVCA	49,	2230	C.F. Liang, R.K. Sheline, P. Paris, M. Hussonois, J.F. Ledu, D.B. Isabelle
1994Li12	PRVCA	49,	3098	S. Lin, S.A. Brindhaban, P.H. Barker
1994Ma14	PRVCA	49,	1755	P.V. Magnus, E.G. Adelberger, A. García
1994Mu02	NUPAB	568,	202	J. Mukai, A. Odahara, H. Tomura, S. Suematsu, S. Mitarai, T. Kuroyanagi,
		,	-v -	D. Jerrestam, J. Nyberg, G. Sletten, A. Atac, S.E. Arnell, H.A. Roth, Ö. Skepp-
				stedt
1994Os04	PYLBB	338,	13	A.N. Ostrowski, H.G. Bohlen, B. Gebauer, S.M. Grimes, R. Kalpakchieva,
				Th. Kirchner, T.N. Massey, W. von Oertzen, Th. Stolla, M. Wilpert, Th. Wilpert

1994Ot01	NUPAB	567,	281	T. Otto, G. Bollen, G. Savard, L. Schweikhard, H. Stolzenberg, G. Audi, R.B. Moore, G. Rouleau, J. Szerypo, Z. Patyk, ISOLDE
1994Pa11	PRVCA	49,	3312	R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James, K. Livingston, P.J. Sellin, A.C. Shotter
1994Pa12	PRLTA	72,	1798	R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James,
1994Pa37	NUPAB	580,	173	K. Livingston, P.J. Sellin, A.C. Shotter G. Passler, J. Rikovska, E. Arnold, HJ. Kluge, L. Monz, R. Neugart, H. Ravn,
1994Po26	IANFA	58,	41	K. Wendt, ISOLDE A.V. Potempa, G.V. Veselov, V.A. Sergienko, K. Ya. Gromov, S.V. Evtisov,
1994Ru19	PLSSA	42,	227	V.G. Kalinnikov, V.V. Kuznetsov, Zh. Sereeter, V.I. Fominykh, M.B. Yuldashev W. Rühm, B. Schneck, K. Knie, G. Korschinek, L. Zerle, E. Nolte, D. Weselka,
1994Sa31	PRVCA	50,	1170	H. Vonach C. Sáenz, E. Cerezo, E. Garcia, A. Morales, J. Morales, R. Nunez-Lagos, A. Or-
				tiz de Solorzano, J. Puimedon, A. Salinas, M.L. Sarsa, J.A. Villar, A. Klimenko, V. Kuzminov, N. Metlinsky, V. Novikov, A. Pomansky, B. Pritychenko
1994Sc01	PRVCA	49,	46	K.W. Scheller, J. Gorres, J.G. Ross, M. Wiescher, R. Harkewicz, D.J. Morrissey, B.M. Sherrill, M. Steiner, N.A. Orr, J.A. Winger
1994Se12	ZPAAD	349,	25	H.L. Seifert, J.M. Wouters, D.J. Vieira, H. Wollnik, X.G. Zhou, X.L. Tu, Z.Y. Zhou, G.W. Butler
1994Sh02	PRVCA	49,	725	R.K. Sheline, C.F. Liang, P. Paris, A. Gizon, V. Barci
1994Sh07	ZPAAD	348,	25	T. Shizuma, M. Kidera, E. Ideguchi, A. Odahara, H. Tomura, S. Suematsu,
177451107	ZIMD	540,	23	T. Kuroyanagi, Y. Gono, S. Mitarai, J. Mukai, T. Komatsubara, K. Furuno, K. Heiguchi
1994Si26	ARISE	45,	669	B.R.S. Simpson, B.R. Meyer
1994St31	ZPAAD	347,	287	ML. Stolzenwald, G. Lhersonneau, M. Liang, G. Molnar, H. Ohm, K. Sis-
				temich
1994Ti03	PRVCA	49,	2871	R.J. Tighe, D.M. Moltz, J.C. Batchelder, T.J. Ognibene, M.W. Rowe, J. Cerny
1994To10	PRVCA	50,	518	K.S. Toth
1994Wa05	NUPAB	568,	397	P.M. Walker, G.D. Dracoulis, A.P. Byrne, B. Fabricius, T. Kibédi, A.E. Stuchbery, N. Rowley
1994Wa17	PRVCA	50,	487	C. Wagemans, S. Druyts, P. Geltenbort
1994Wa23	PRVCA	50,	2768	J. Wauters, N. Bijnens, H. Folger, M. Huyse, H.Y. Hwang, R. Kirchner,
				J. von Schwarzenberg, P. Van Duppen
1994We02	ZPAAD	347,	185	C. Wennemann, WD. Schmidt-Ott, T. Hild, K. Krumbholz, V. Kunze, F. Meissner, H. Keller, R. Kirchner, E. Roeckl
1994Ya07	PYLBB	334,	229	S. Yasumi, H. Maezawa, K. Shima, Y. Inagaki, T. Mukoyama, T. Mizogawa,
1994Ye08	NIMAE	350,	608	K. Sera, S. Kishimoto, M. Fujioka, K. Ishii, T. Omori, G. Izawa, O. Kawakami A.V. Yeremin, A.N. Andreyev, D.D. Bogdanov, G.M. Ter-Akopian, V.I. Chep-
17741000	THIMITE	330,	000	igin, V.A. Gorshkov, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko,
100437 01	DDVCA	40	270	R.N. Sagaidak, S. Sharo, E.N. Voronkov, A.V. Taranenko, A. Yu. Lavrentjev
1994Yo01	PRVCA	49,	279	B.M. Young, W. Benenson, J.H. Kelley, N.A. Orr, R. Pfaff, B.M. Sherrill, M. Steiner, M. Thoennessen, J.S. Winfield, J.A. Winger, S.J. Yennello, A. Zeller
				1995
1995Al31	PZETA	62,	18	D.V. Aleksandrov, E. Yu. Nikolsky, B.G. Novatsky, D.N. Stepanov, V. Buryan, V. Kroga, Ya. Novak
1995Ap.A	PrvCom	GAu	May	A. Aprahamian, D.S. Brenner, R. Gill, A. Piotrowski, R.F. Casten
1995Ba28	PRLTA	74,	3569	D. Bazin, B.A. Brown, J. Brown, M. Fauerbach, M. Hellström, S.E. Hirzebruch,
		. ,		J.H. Kelley, R.A. Kryger, D.J. Morrissey, R. Pfaff, C.F. Powell, B.M. Sherrill, M. Thoennessen
1995Ba75	PRVCA	52,	1807	J.C. Batchelder, K.S. Toth, D.M. Moltz, T.J. Ognibene, M.W. Rowe, C.R. Bingham, E.F. Zganjar, B.E. Zimmerman
1995Bi01	PRVCA	51,	125	
1995Bi17	PRLTA	75,	4571	N. Bijnens, P. Decrock, S. Franchoo, M. Gaelens, M. Huyse, HY. Hwang, I. Reusen, J. Szerypo, J. von Schwarzenberg, J. Wauters, J.G. Correia, A. Jokinen, P. Van Duppen, ISOLDE

1995Bi.A	P-Arles		545	C.R. Bingham, J.D. Richards, B.E. Zimmerman, Y.A. Akovali, W.B. Walters, J. Rikovska, P. Joshi, E.F. Zganjar, M. Lindroos, O. Tengblad, P. Van Duppen,
1995Bl05	NUPAB	588,	171c	ISOLDE, and PrvCom GAu June 1995 B. Blank, S. Andriamonje, T. Brohm, S. Czajkowski, F. Davi, R. Del Moral, C. Donzaud, J.P. Dufour, A. Fleury, A. Grewe, R. Grzywacz, E. Hanelt, A. Heinz, Z. Janas, T. Josso, A. Junghans, M. Lewitowicz, A. Musquere, A. Piechaczek, M.S. Pravikoff, M. Pfutzner, E. Roeckl, C. Rohl, J.E. Sauvestre, K. H. Schmidt, S. Strinkovsky, K. Suppresson, W. Trinder, B. Vess, M. Weber,
1995Bl06	PRLTA	74,	4611	KH. Schmidt, S. Steinhauser, K. Summerer, W. Trinder, B. Voss, M. Weber B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, J.P. Dufour, A. Fleury, A. Musquére, M.S. Pravikoff, R. Grzywacz, Z. Janas, M. Pfützner,
1995B123	PYLBB	364,	8	A. Grewe, A. Heinz, A. Junghans, M. Lewitowicz, JE. Sauvestre, C. Donzaud B. Blank, S. Andriamonje, S. Czajkowski, F. Davi, R. Del Moral, C. Donzaud, J.P. Dufour, A. Fleury, A. Grewe, R. Grzywacz, A. Heinz, Z. Janas, A. Junghans, M. Lawitowicz, A. Mysayafra, M.S. Provident M. Pfiitzaga, L. F. Sauvestra.
1995Bo03	NUPAB	582,	1	M. Lewitowicz, A. Musquére, M.S. Pravikoff, M. Pfützner, JE. Sauvestre V.A. Bondarenko, I.L. Kuvaga, P.T. Prokofjev, A.M. Sukhovoj, V.A. Khitrov, Yu. P. Popov, S. Brant, V. Paar
1995Bo05	NUPAB	584,	279	V.A. Bondarenko, I.L. Kuvaga, P.T. Prokofjev, A.M. Sukhovoj, V.A. Khitrov,
1995Bo10	NUPAB	583,	775c	Yu. P. Popov, S. Brant, V. Paar, Lj. Šimičic H.G. Bohlen, B. Gebauer, Th. Kirchner, M. von Lucke-Petsch, W. von Oertzen, A.N. Ostrowski, Ch. Seyfert, Th. Stolla, M. Wilpert, Th. Wilpert, S.M. Grimes, T.N. Massey, R. Kalpakchieva, Y.E. Penionzhkevich, D.V. Alexandrov,
1995Bo.B	P-StPetersbg	;		I. Mukha, A.A. Ogloblin, C. Détraz H.G. Bohlen, B. Gebauer, M. von Lucke-Petsch, W. von Oertzen, A.N. Ostrowski, Ch. Seyfert, Th. Stolla, M. Wilpert, Th. Wilpert, R. Kalpakchieva, Yu. E. Penionzhkevich, S.M. Grimes, T.N. Massey, I. Mukha, D.V. Alexandrov, A.A. Ogloblin, H. Lenske
1995Br10	PRLTA	74,	868	R. Broda, B. Fornal, W. Królas, T. Pawłat, D. Bazzacco, S. Lunardi, C. Rossi-Alvarez, R. Menegazzo, G. de Angelis, P. Bednarczyk, J. Rico, D. De Acuña, P.J. Daly, R.H. Mayer, M. Sferrazza, H. Grawe, K.H. Maier, R. Schubart
1995Br24	NUPAB	595,	481	J.B. Breitenbach, J.L. Wood, M. Jarrio, R.A. Braga, H.K. Carter, J. Kormicki, P.B. Semmes
1995Bu11	NUPAB	587,	475	D. Bucurescu, D. Barnéoud, Gh. Cata-Danil, T. von Egidy, J. Genevey, A. Gizon, J. Gizon, C.F. Liang, P. Paris, B. Weiss, S. Brant, V. Paar, R. Pezer
1995Ca27	NUPAB	592,	89	H. Carlsson, R.A. Bark, L.P. Ekstrom, A. Nordlund, H. Ryde, G.B. Hagemann, S.J. Freeman, H.J. Jensen, T. Lonnroth, M.J. Piiparinen, H. Schnack-Petersen, F. Ingebretsen, P.O. Tjom
1995Ch74	BRSPE	59,	1854	V.G. Chumin, S.S. Eliseev, K. Ya. Gromov, Yu. V. Norseev, V.I. Fominykh, V.V. Tsupko-Sitnikov
1995Da14	ZPAAD	351,	225	M. Daszewski, Z. Janas, W. Kurcewicz, B. Szweryn
1995Da.A	P-Arles		263	C.N. Davids, P.J. Woods, J.C. Batchelder, C.R. Bingham, D.J. Blumenthal, L.T. Brown, B.C. Busse, L.F. Conticchio, T. Davinson, S.J. Freeman, M. Freer, D.J. Henderson, R.J. Irvine, R.D. Page, H.T. Penttilä, A.V. Ramayya, D. Seweryniak, K.S. Toth, W.B. Walters, A.H. Wuosmaa, B.E. Zimmerman, and PrvCom GAu June 1995
1995Di08	PHSTT	59,	144	F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard
1995Fa.A	AnRpt GSI		21	T. Faestermann, J. Friese, H. Geissel, R. Gernhauser, H. Gilg, F. Heine, J. Homolka, P. Kienle, HJ. Korner, G. Munzenberg, J. Reinhold, R. Schneider, K. Summerer, K. Zeitelhack
1995Fe12	ZPAAD	353,	9	V.N. Fedoseyev, Y. Jading, O.C. Jonsson, R. Kirchner, KL. Kratz, M. Krieg, E. Kugler, J. Lettry, T. Mehren, V.I. Mishin, H.L. Ravn, T. Rauscher, H.L. Ravn, F. Scheerer, O. Tengblad, P. Van Duppen, A. Wohr, ISOLDE
1995Ga04	NUPAB	581,	267	P.E. Garrrett, D.G. Burke
1995Ga16	PRVCA	51,	3487	A. García, E.G. Adelberger, P.V. Magnus, H.E. Swanson, F.E. Wietfeldt, O. Tengblad, ISOLDE
1995Ga.A	P-Arles		595	A. Gadea, B. Rubio, J.L. Tain, J. Bea, L. Garcia-Raffi, J. Rico, L. Batist, V. Wittmann, A. Bykov, F. Moroz, H. Keller, R. Kirchner, E. Roeckl

10050-06	NILIDAD	502	207	D. Conneil Thomas Enides I. Vlans, H. Lindons, H. Massack of at 1.04, W. Calendar
1995Ge06	NUPAB	592,	307	R. Georgii, T. von Egidy, J. Klora, H. Lindner, U. Mayerhofer, J. Ott, W. Schauer, P. von Neumann-Cosel, A. Richter, C. Schlegel, R. Schulz, V.A. Khitrov,
				A.M. Sukhovoj, A.V. Vojnov, J. Berzins, V. Bondarenko, P. Prokofjevs, L.J. Si-
				monova, M. Grinberg, Ch. Stojanov
1995Ge14	YAFIA	58,	1170	A. Sh. Georgadze, F.A. Danevich, Yu. G. Zdesenko, V.V. Kobychev, B.N. Kropivyansky, V.N. Kuts, A.S. Nikolaiko, V.I. Tretyak and 02Tr04
1995Gh04	NUPAB	583,	861c	A. Ghiorso, D. Lee, L.P. Somerville, W. Loveland, J.M. Nitschke, W. Ghiorso,
1,500 0110 1	1,01112	200,	0010	G.T. Seaborg, P. Wilmarth, R. Leres, A. Wydler, M. Nurmia, K. Gregorich,
				R. Gaylord, T. Hamilton, N.J. Hannink, D.C. Hoffman, C. Jarzynski, C. Kacher,
				B. Kadkhodayan, S. Kreek, M. Lane, A. Lyon, M.A. McMahan, M. Neu,
1995Gj01	NUPAB	582,	369	T. Sikkeland, W.J. Swiatecki, A. Türler, J.T. Walton, S. Yashita N.L. Gjorup, P.M. Walker, G. Sletten, M.A. Bentley, B. Fabricius, J.F. Sharpey-
1773GJ01	NOTAB	302,	307	Schafer
1995Gu01	NUPAB	583,	867c	A. Guglielmetti, B. Blank, R. Bonetti, Z. Janas, H. Keller, R. Kirchner, O. Klep-
				per, A. Piechaczek, A. Płochocki, G. Poli, P.B. Price, E. Roeckl, K. Schmidt,
1995Ha.B	D Anlas		107	J. Szerypo, A.J. Westphal
1995На.В	P-Arles		487	J.H. Hamilton, Q.H. Lu, S.J. Zhu, K. Butler-Moore, A.V. Ramayya, B.R.S. Babu, L.K. Peker, W.C. Ma, T.N. Ginter, J. Kormicki, D. Shi, J.K. Deng, J.O. Ras-
				mussen, M.A. Stoyer, S.Y. Chu, K.E. Gregorich, M.F. Mohar, S. Prussin,
				J.D. Cole, R. Aryaeinejad, N.R. Johnson, I.Y. Lee, F.K. McGowan, G.M. Ter-
				Akopian, Yu. Ts. Oganessian
1995Hi02 1995Hi12	PRVCA	51,	1736	T. Hild, WD. Schmidt-Ott, V. Kunze, F. Meissner, C. Wennemann, H. Grawe T. Hild, WD. Schmidt-Ott, V. Kunze, F. Meissner, H. Salewski, K.S. Toth,
19931112	PRVCA	52,	2236	R. Michaelsen
1995Hi14	JPGPE	21,	639	KH. Hiddemann, H. Daniel, O. Schwentker
1995Ho03	ZPAAD	350,	277	S. Hofmann, V. Ninov, F.P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg,
				H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro, R. Janik,
1995Ho04	ZPAAD	350,	281	M. Leino S. Hofmann, V. Ninov, F.P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg,
177511001	ZiriiD	330,	201	H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro, R. Janik,
				M. Leino
1995Ho26	RAACA	70,	93	S. Hofmann
1995Ho.B 1995Ho.C	PrvCom P-Arles	GAu	Mar 571	S. Hofmann, V. Ninov, F.P. Heßberger, and GSI Annual report 1995 S. Hofmann, F.P. Heßberger, H. Folger, V. Ninov, A.N. Andreyev, D.D. Bog-
1773110.0	1 -7 11103		3/1	danov, V.I. Chepigin, A.P. Kabachenko, O.N. Malyshev, A.G. Popeko, G.M. Ter-
				Akopian, A.V. Yeremin, S. Saro
1995Ik03	JUPSA	64,	3244	T. Ikuta, A. Taniguchi, H. Yamamoto, K. Kawade, Y. Kawase
1995Ir01	PRLTA	75,	4182	H. Irnich, H. Geissel, F. Nolden, K. Beckert, F. Bosch, H. Eickhoff, B. Franzke, Y. Fujita, M. Hausmann, H.C. Jung, O. Klepper, C. Kozhuharov, G. Kraus,
				A. Magel, G. Münzenberg, F. Nickel, T. Radon, H. Reich, B. Schlitt, W. Schwab,
				M. Steck, K. Sümmerer, T. Suzuki, H. Wollnik
1995Jo02	NUPAB	584,	489	A. Jokinen, T. Enqvist, P.P. Jauho, M. Leino, J.M. Parmonen, H. Penttilä,
1995Jo.A	P-Arles		499	J. Äystö, K. Eskola A. Jokinen, et al
1995Jo.A 1995Ka.A	B-Arles		PD22	V.G. Kalinnikov, B.P. Osipenko, F. Pražak, A.A. Solnyshkin, V.I. Stegailov,
				P. Čaloun, S.E. Zaparov
1995Ke04	NUPAB	586,	219	M. Keim, E. Arnold, W. Borchers, U. Georg, A. Klein, R. Neugart, L. Ver-
1005V a05	704.40	252	1	meeren, R.E. Silverans, P. Lievens
1995Ke05	ZPAAD	352,	1	H. Keller, R. Kirchner, B. Rubio, J.L. Tain, Th. Dörfler, WD. Schmidt-Ott, E. Roeckl
1995Ko54	RAACA	68,	155	A. Koua Aka, V. Barci, G. Ardisson, R. Righetti, J.F. Le Du, D. Trubert
1995Kr03	PRLTA	74,	860	R.A. Kryger, A. Azhari, M. Hellström, J.H. Kelley, T. Kubo, R. Pfaff,
				E. Ramakrishnan, B.M. Sherrill, M. Thoennessen, S. Yokoyama, R.J. Charity,
1995Kr04	ZPAAD	351,	11	J. Dempsey, A. Kirov, N. Robertson, D.G. Sarantites, L.G. Sobotka, J.A. Winger K. Krumbholz, WD. Schmidt-Ott, T. Hild, V. Kunze, F. Meissner, C. Wen-
177JIXIU 1	LIAAD	551,	11	nemann, H. Keller, R. Kirchner, O. Klepper, E. Roeckl, D. Schardt,
				K. Rykaczewski
1995La09	NUPAB	588,	501	Yu. A. Lazarev, I.V. Shirokovsky, V.K. Utyonkov, S.P. Tretyakova, V.B. Kutner

1995La20	PRLTA	75,	1903	Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, Yu. S. Tsyganov,
1773La20	TKLIM	75,	1703	V.K. Utyonkov, F. Sh. Abdullin, S. Iliev, A.N. Polyakov, J. Rigol, I.V. Shi-
				rokovsky, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, B.N. Gikal, V.B. Kut-
				ner, A.N. Mezentsev, I.M. Sedykh, D.V. Vakatov, R.W. Lougheed, J.F. Wild,
				K.J. Moody, E.K. Hulet
1995Le04	PRVCA	51,	1047	M.J. Leddy, S.J. Freeman, J.L. Durell, A.G. Smith, S.J. Warburton, D.J. Blu-
				menthal, C.N. Davids, C.J. Lister, H.T. Penttilä
1995Le15	APOBB	26,	309	M. Leino, J. Äystö, T. Enqvist, A. Jokinen, M. Nurmia, A. Ostrowski, W.H. Trza-
				ska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ninov
1995Le19	PRVCA	51,	2770	Y.S. Lee, M. Kobayashi, T. Hukotome, T. Horiguchi, H. Inoue
1995Le.A	P-Arles		505	M. Leino, T. Enqvist, W.H. Trzaska, J. Uusitalo, K. Eskola, P. Armbruster, V. Ni-
10051 1-04	7D4 4 D	252	202	nov, and PrvCom GAu June 1995
1995Lh04 1995Me03	ZPAAD PRVCA	352,	293	G. Lhersonneau, H. Gabelmann, B. Pfeiffer, KL. Kratz, ISOLDE
1995181605	PRVCA	51,	1558	F. Meissner, T. Hild, V. Kunze, WD. Schmidt-Ott, C. Wennemann, P.C. Sood, R. Kirchner, E. Roeckl, K. Rykaczewski
1995Me16	PHSTT	56,	272	K. A. Mezilev, Yu. N. Novikov, A.V. Popov, B. Fogelberg, L. Spanier
1995Mo14	ZPAAD	352,	7	K. Morita, Y.H. Pu, J. Feng, M.G. Hies, K.O. Lee, A. Yoshida, S.C. Jeong,
1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	211112	<i>552</i> ,	•	S. Kubono, T. Nomura, Y. Tagaya, M. Wada, M. Kurokawa, T. Motobayashi,
				H. Ogawa, T. Uchibori, K. Sueki, T. Ishizuka, K. Uchiyama, Y. Fujita, H. Miy-
				atake, T. Shimoda, T. Shinozuka, H. Kudo, Y. Nagai, S.A. Shin
1995Mo26	NUPAB	588,	203c	D.J. Morrissey, and the A1200 Group
1995Ni05	ZPAAD	351,	125	V. Ninov, F.P. Heßberger, S. Hofmann, H. Folger, A.V. Yeremin, A.G. Popeko,
				A.N. Andreyev, S. Saro
1995Ni.A	P-Arles		571	V. Ninov, F.P. Heßberger, H. Folger, S. Hofmann, A.G. Popeko, A.V. Yeremin,
				A.N. Andreyev, S. Ŝaro, and Abstracts PD19
1995No.A	P-Arles	251	363	T. Nomura
1995Ok02	ZPAAD	351,	243	K. Okano, A. Taniguchi, S. Yamada, T. Sharshar, M. Shibata, K. Yamauchi
1995Os03	NUPAB	588,	185	A. Osa, M. Asai, M. Koizumi, T. Sekine, S. Ichikawa, Y. Kojima, H. Yamamoto, K. Kawade
1995Oz02	NUPAB	592,	244	A. Ozawa, G. Raimann, R.N. Boyd, F.R. Chloupek, M. Fujimaki, K. Kimura,
				H. Kitagawa, T. Kobayashi, J.J. Kolata, S. Kubono, I. Tanihata, Y. Watanabe,
1005D 12	MIDAD	500	250	K. Yoshida
1995Pe12	NUPAB	588,		Yu. E. Penionzhkevich
1995Pf04 1995Pi03	ZPAAD NUPAB	353, 584,	1 509	B. Pfeiffer, G. Lhersonneau, H. Gabelmann, KL. Kratz, ISOLDE A. Piechaczek, M.F. Mohar, R. Anne, V. Borrel, B.A. Brown, J.M. Corre,
19931103	NOIAD	J0 4 ,	309	D. Guillemaud-Mueller, R. Hue, H. Keller, S. Kubono, V. Kunze, M. Le-
				witowicz, P. Magnus, A.C. Mueller, T. Nakamura, M. Pfützner, E. Roeckl,
				K. Rykaczewski, M.G. Saint-Laurent, WD. Schmidt-Ott, O. Sorlin
1995Po01	PRVCA	51,	519	
1995Re.A	P-Arles	,	587	P.L. Reeder, Y. Kim, W.K. Hensley, H.S. Miley, R.A. Warner, Z.Y. Zhou,
				D.J. Vieira, J.M. Wouters, H.L. Seifert, and PrvCom GAu June 1995
1995Ry03	PRVCA	52,	2310	K. Rykaczewski, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J.M. Corre,
				T. Dörfler, A. Fomichov, R. Grzywacz, D. Guillemaud-Mueller, R. Hue,
				M. Huyse, Z. Janas, H. Keller, M. Lewitowicz, S. Lukyanov, A.C. Mueller,
				Yu. Penionzhkevich, M. Pfützner, F. Pougheon, M.G. Saint-Laurent, K. Schmidt,
10050 42	NILIDAD	502	221	W.D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters, J. Żylicz
1995Sa42	NUPAB	592,	221	J. Sauvage, D. Hojman, F. Ibrahim, B. Roussière, P. Kilcher, F. Le Blanc, J. Oms,
1995Sc03	NUPAB	582,	109	J. Libert, ISOCELE K. Scheller, J. Görres, S. Vouzoukas, M. Wiescher, B. Pfeiffer, KL. Kratz,
19953005	NOTAB	302,	109	D.J. Morrissey, B.M. Sherrill, M. Steiner, M. Hellström, J.A. Winger
1995Sc28	NUPAB	588,	191c	R. Schneider, T. Faestermann, J. Friese, R. Gernhauser, H. Geissel, H. Gilg,
1990000	1,01112	200,	1,10	F. Heine, J. Homolka, P. Kienle, HJ. Korner, G. Münzenberg, J. Reinhold,
				K. Sümmerer, K. Zeitelhack
1995So03	NUPAB	583,	763c	O. Sorlin, D. Guillemaud-Mueller, R. Anne, L. Axelsson, D. Bazin, W. Böhmer,
				V. Borrel, Y. Jading, H. Keller, KL. Kratz, M. Lewitowicz, S.M. Lukyanov,
				T. Mehren, A.C. Mueller, Yu. E. Penionzhkevich, F. Pougheon, M.G. Saint-
				Laurent, V.S. Salamatin, S. Shoedder, A. Wöhr
1995So11	PRVCA	52,	88	P.C. Sood, A. Gizon, D.G. Burke, B. Singh, C.F. Liang, R.K. Sheline, M.J. Mar-
				tin, R.W. Hoff

1995St26	PRLTA	75,	3237	W. Stoeffl, D.J. Decman
1995Sy01	PRVCA	51,	2765	I. Sykora, K. Janko, P.P. Povinec
1995Sz01	NUPAB	584,	221	J. Szerypo, M. Huyse, G. Reusen, P. Van Duppen, Z. Janas, H. Keller, R. Kirchner, O. Klepper, A. Piechaczek, E. Roeckl, D. Schardt, K. Schmidt, R. Grzywacz, M. Pfützner, A. Płochocki, K. Rykaczewski, J. Żylicz, G.D. Alkhazov, L. Batist, A. Bykov, V. Wittmann, B.A. Brown
1995Tr02	PYLBB	348,	331	W. Trinder, E.G. Adelberger, B.A. Brown, Z. Janas, H. Keller, K. Krumbholz, V. Kunze, P. Magnus, F. Meissner, A. Piechaczek, M. Pfützner, E. Roeckl, K. Rykaczewski, WD. Schmidt-Ott, M. Weber
1995Tr03	PYLBB	349,	267	W. Trinder, E.G. Adelberger, Z. Janas, H. Keller, K. Krumbholz, V. Kunze, P. Magnus, F. Meissner, A. Piechaczek, M. Pfützner, E. Roeckl, K. Rykaczewski, WD. Schmidt-Ott, M. Weber
1995Uu01	PRVCA	52,	113	J. Uusitalo, T. Enqvist, M. Leino, W.H. Trzaska, K. Eskola, P. Armbruster, V. Ninov
1995Va38	PHSTT	59,	134	R.S. Van Dyck,Jr., D.L. Farnham, P.B. Schwinberg
1995Ve08	BRSPE	59,	1851	G.V. Veselov, V.A. Sergienko, A.V. Potempa, K. Ya. Gromov, V.G. Kalinnikov, N. Yu. Kotovsky, V.I. Fominykh, M.B. Yuldashev
1995Wi20	PRVCA	52,	1028	F.E. Wietfeldt, E.B. Norman, Y.D. Chan, M.T.F. da Cruz, A. García, E.E. Haller, W.L. Hansen, M.M. Hindi, RM. Larimer, K.T. Lesko, P.N. Luke, R.G. Stockstad, B. Sur, I. Žlimen
1995Zh10	NUPAB	586,	483	K. Zhao, J.S. Lilley, P.V. Drumm, D.D. Warner, R.A. Cunningham, J.N. Mo
1995Zh36	ZPAAD	353,	3	X. Zhou, Y. Guo, X. Sun, X. Lei, X. Chen, Z. Liu, Y. Zhang, H. Jin, Y. Luo, S.X. Wen, G.J. Yuan, G.S. Li, C.X. Yang
1995Zi03	PRLTA	75,	1719	M. Zinser, F. Humbert, T. Nilsson, W. Schwab, T. Blaich, M.J.G. Borge, L.V. Chulkov, H. Eickhoff, T.W. Elze, H. Emling, B. Franzke, H. Freiesleben, H. Geissel, K. Grimm, D. Guillemaud-Mueller, P.G. Hansen, R. Holzmann, H. Irnich, B. Jonson, J.G. Keller, O. Klepper, H. Klingler, J.V. Kratz, R. Kulessa, D. Lambrecht, Y. Leifels, A. Magel, M. Mohar, A.C. Mueller, G. Münzenberg, F. Nickel, G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, B.M. Sherrill, H. Simon, K. Stelzer, J. Stroth, O. Tengblad, W. Trautmann, E. Wajda, E. Zude, preprint GSI-95-03
				1996
1996An21	BRSPE	60,	119	A.N. Andreyev, A.G. Popeko, A.V. Eremin, S. Hofmann, F. Heßberger, H. Folger, V. Ninov, S. Saro
1996Ar36	ZPCFD	72,	239	R. Arnold, C. Augier, A. Barabash, D. Blum, V. Brudanin, J.E. Campagne, D. Dassié, V. Egorov, R. Eschbach, J.L. Guyonnet, F. Hubert, Ph. Hubert, S. Jullian, O. Kochetov, I. Kisel, V.N. Kornoukhov, V. Kovalenko, D. Lalanne, F. Laplanche, F. Leccia, I. Linck, C. Longuemare, F. Mauger, P. Mennrath, H.W. Nicholson, A. Nozdrin, F. Piquemal, O. Purtov, J-L. Reyss, F. Scheibling, J. Suhonen, C.S. Sutton, G. Szklarz, V.I. Tretyak, V. Umatov, I. Vanushin, A. Vareille, Yu. Vasilyev, Ts. Vylov, V. Zerkin, NEMO
1996Ax01	PRVCA	54,	1511	L. Axelsson, M.J.G. Borge, S. Fayans, V.Z. Goldberg, S. Grévy, D. Guillemaud-Mueller, B. Jonson, KM. Källman, T. Lönnroth, M. Lewitowicz, P. Manngård, K. Markenroth, I. Martel, A.C. Mueller, I. Mukha, T. Nilsson, G. Nyman, N.A. Orr, K. Riisager, G.V. Rogatchev, MG. Saint-Laurent, I.N. Serikov, O. Sorlin, O. Tengblad, F. Wenander, J.S. Winfield, R. Wolski
1996Ba24	YAFIA	59,	1511 197	Mueller, B. Jonson, KM. Källman, T. Lönnroth, M. Lewitowicz, P. Manngård, K. Markenroth, I. Martel, A.C. Mueller, I. Mukha, T. Nilsson, G. Nyman, N.A. Orr, K. Riisager, G.V. Rogatchev, MG. Saint-Laurent, I.N. Serikov, O. Sorlin, O. Tengblad, F. Wenander, J.S. Winfield, R. Wolski A.S. Barabash, R.R. Saakyan and 02Tr04
	YAFIA PRVCA	59, 54,		Mueller, B. Jonson, KM. Källman, T. Lönnroth, M. Lewitowicz, P. Manngård, K. Markenroth, I. Martel, A.C. Mueller, I. Mukha, T. Nilsson, G. Nyman, N.A. Orr, K. Riisager, G.V. Rogatchev, MG. Saint-Laurent, I.N. Serikov, O. Sorlin, O. Tengblad, F. Wenander, J.S. Winfield, R. Wolski A.S. Barabash, R.R. Saakyan and 02Tr04 J.C. Batchelder, K.S. Toth, E.F. Zganjar, D.M. Moltz, C.R. Bingham, T.J. Ognibene, J. Powell, M.W. Rowe
1996Ba24	YAFIA	59,	197	Mueller, B. Jonson, KM. Källman, T. Lönnroth, M. Lewitowicz, P. Manngård, K. Markenroth, I. Martel, A.C. Mueller, I. Mukha, T. Nilsson, G. Nyman, N.A. Orr, K. Riisager, G.V. Rogatchev, MG. Saint-Laurent, I.N. Serikov, O. Sorlin, O. Tengblad, F. Wenander, J.S. Winfield, R. Wolski A.S. Barabash, R.R. Saakyan and 02Tr04 J.C. Batchelder, K.S. Toth, E.F. Zganjar, D.M. Moltz, C.R. Bingham, T.J. Og-

1996Bo37	PRLTA	77,	5190	F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, E. Wefers, K. Zeitelhack, K. Beckert, B. Franzke, O. Klepper, C. Kozhuharov, G. Menzel, R. Moshammer, E. Nalder, H. Brick, R. Schlitt, M. Stock, T. Stöhler, T. Wickley, K. Talakachi,
1996Ca02	NUPAB	598,	61	F. Nolden, H. Reich, B. Schlitt, M. Steck, T. Stöhlker, T. Winkler, K. Takahashi
1996Ca02 1996Ch32	PRLTA	77,	61 2400	P. Campbell, J.A. Behr, J. Billowes, G. Gwinner, G.D. Sprouse, F. Xu M. Chartier, G. Auger, W. Mittig, A. Lepine-Szilly, L.K. Fifield, J.M. Casand-
1990Cli32	FKLIA	//,	2400	jian, M. Chabert, J. Ferme, A. Gillibert, M. Lewitowicz, M. MacCormick, M.H. Moscatello, O.H. Odland, N.A. Orr, G. Politi, C. Spitaels, A.C.C. Villari
1996Da06	PRLTA	76,	592	C.N. Davids, P.J. Woods, H.T. Penttilä, J.C. Batchelder, C.R. Bingham, D.J. Blumenthal, L.T. Brown, B.C. Busse, L.F. Conticchio, T. Davinson, D.J. Henderson,
10055 50		= 0		R.J. Irvine, D. Seweryniak, K.S. Toth, W.B. Walters, B.E. Zimmerman
1996De60	YAFIA	59,	2117	A.V. Derbin, A.I. Egorov, V.N. Muratova, S.V. Baklanov and 02Tr04
1996Do23	PRVCA	54,	2894	T. Dörfler, WD. Schmidt-Ott, T. Hild, T. Mehren, W. Böhmer, P. Möller,
				B. Pfeiffer, T. Rauscher, KL. Kratz, O. Sorlin, V. Borrel, S. Grévy, D. Guillemaud-Mueller, A.C. Mueller, F. Pougheon, R. Anne, M. Lewitowicz,
1006D-07	NILIDA D	601	224	A. Ostrowsky, M. Robinson, M.G. Saint-Laurent
1996Dr07	NUPAB	601,	234	S. Drissi, S. Andre, D. Barnéoud, C. Foin, J. Genevey, J. Kern
1996Dr.A	PrvCom	JBl	Sep	S. Drissi
1996En01	ZPAAD	354,	1	T. Enqvist, K. Eskola, A. Jokinen, M. Leino, W.H. Trzaska, J. Uusitalo, V. Ninov, P. Armbruster
1996En02	ZPAAD	354,	9	T. Enqvist, P. Armbruster, K. Eskola, M. Leino, V. Ninov, W.H. Trzaska, J. Uusitalo
1996Fa09	NUPAB	602,	167	L. Faux, S. Andriamonje, B. Blank, S. Czajkowski, R. Del Moral, J.P. Dufour,
19901 409	NOIAD	002,	107	A. Fleury, T. Josso, M.S. Pravikoff, A. Piechaczek, E. Roeckl, KH. Schmidt,
				K. Sümmerer, W. Trinder, M. Weber, T. Brohm, A. Grewe, E. Hanelt, A. Heinz,
				A. Junghans, C. Rohl, S. Steinhauser, B. Voss, Z. Janas, M. Pfützner
1996Ga30	NUPAB	611,	68	P.E. Garrett, N. Warr, H. Baltzer, S. Boehmsdorff, D.G. Burke, M. Deleze,
17700430	NOTAB	011,	00	S. Drissi, J. Groger, C. Gunther, J. Kern, S.J. Mannanal, J. Manns, U. Muller,
				JP. Vorlet, T. Weber
1996Gi08	NUPAB	605,	301	A. Gizon, J. Genevey, D. Bucurescu, Gh. Cata-Danil, J. Gizon, J. Inchaouh,
		,		D. Barnéoud, T. von Egidy, C.F. Liang, B.M. Nyako, P. Paris, I. Penev,
				A. Płochocki, E. Ruchowska, C.A. Ur, B. Weiss, L. Zolnai
1996Go06	JPGPE	22,	377	V.M. Gorozhankin, V.G. Kalinnikov, A. Kovalik, A.A. Solnyshkin, A.F. Nov-
				gorodov, N.A. Lebedev, N. Yu. Kotovskij, E.A. Yakushev, M.A. Mahmoud,
				M. Rysavy
1996Ho12	PRVCA	54,	78	R.W. Hoff, H.G. Borner, K. Schreckenbach, G.G. Colvin, F. Hoyler, W. Schauer,
				T. von Egidy, R. Georgii, J. Ott, S. Schrunder, R.F. Casten, R.L. Gill, M. Balodis,
				P. Prokofjevs, L. Simonova, J. Kern, V.A. Khitrov, A.M. Sukhovoj, O. Bersillon,
				S. Joly, G. Graw, D. Hofer, B. Valnion
1996Ho13	ZPAAD	354,	229	S. Hofmann, V. Ninov, F.P. Heßberger, P. Armbruster, H. Folger, G. Münzenberg,
				H.J. Schött, A.G. Popeko, A.V. Yeremin, S. Saro, R. Janik, M. Leino
1996Ho16	PRLTA	77,	1020	P. Hoff, P. Baumann, A. Huck, A. Knipper, G. Walter, G. Marguier, B. Fogel-
				berg, A. Lindroth, H. Mach, M. Sanchez-Vega, R.B.E. Taylor, P. Van Duppen,
				A. Jokinen, M. Lindroos, M. Ramdane, W. Kurcewicz, B. Jonson, G. Nyman,
				Y. Jading, KL. Kratz, A. Wohr, G. Løvhøiden, T.F. Thorsteinsen, J. Blomqvist,
				ISOLDE
1996Hw03	NIMAE	383,	447	H.Y. Hwang, C.B. Lee, T.S. Park, H.J. Kim
1996Ik01	PRVCA	54,	2043	H. Ikezoe, T. Ikuta, S. Hamada, Y. Nagame, I. Nishinaka, K. Tsukada, Y. Oura, T. Ohtsuki
1996Ki23	HYIND	103,	49	P. Kienle
1996Kl.A	AnRpt JYFL		30	I. Klöckl, KL. Kratz, G. Lhersonneau, P. Pfeiffer, S. Schoedder, P. Dendooven,
	•			A. Honkanen, M. Huhta, M. Oinonen, J. Persson, K. Peräjärvi, J.C. Wang,
				J. Äystö
1996Ko13	PRVCA	54,	R459	F.G. Kondev, G.D. Dracoulis, A.P. Byrne, T. Kibédi, S. Bayer, G.J. Lane
1996Ko17	NUPAB	601,	195	F.G. Kondev, G.D. Dracoulis, A.P. Byrne, M. Dasgupta, T. Kibédi, G.J. Lane
1996La11	PRVCA	53,	2893	M.R. Lane, K.E. Gregorich, D.M. Lee, M.F. Mohar, M. Hsu, C.D. Kacher,
				B. Kadkhodayan, M.P. Neu, N.J. Stoyer, E.R. Sylwester, J.C. Yang, D.C. Hoff-
				man

1996La12	PRVCA	54,	620	Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, A.N. Polyakov, J. Rigol, I.V. Shirokovsky, Yu. S. Tsyganov, S. Iliev,
				V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, B.N. Gikal, V.B. Kutner, A.N. Mezentsev, K. Subotic, J.F. Wild, R.W. Lougheed, K.J. Moody
1996Le09	ZPAAD	355,	157	M. Leino, J. Uusitalo, R.G. Allatt, P. Armbruster, T. Enqvist, K. Eskola, S. Hofmann, S. Hurskanen, A. Jokinen, V. Ninov, R.D. Page, W.H. Trzaska
1996Lh03	PRVCA	54,	1117	G. Lhersonneau, P. Dendooven, S. Hankonen, A. Honkanen, M. Huhta, R. Julin, S. Juutinen, M. Oinonen, H. Penttila, A. Savelius, S. Tormanen, J. Aysto, P.A. Butler, J.F.C. Cocks, P.M. Jones, J.F. Smith
1996Lh04	PRVCA	54,	1592	G. Lhersonneau, P. Dendooven, A. Honkanen, M. Huhta, M. Oinonen, H. Penttilä, J. Äystö, J. Kurpeta, J.R. Persson, A. Popov
1996Li05	ZPAAD	354,	153	C.F. Liang, P. Paris, A. Płochocki, E. Ruchowska, A. Gizon, D. Barnéoud, J. Genevey, G. Cata, R.K. Sheline
1996Li37	PRVCA	54,	2304	C.F. Liang, P. Paris, R.K. Sheline, P. Alexa, A. Gizon
1996Ma72	RAACA	72,	39	M. Magara, N. Shinohara, Y. Hatsukawa, K. Tsukada, H. Imura, S. Utsuda, SI. Ichikawa, T. Suzuki, Y. Nagame, Y. Kobayashi, M. Oshima, T. Horichuchi
1996Me09	PRLTA	77,	458	T. Mehren, B. Pfeiffer, S. Schoedder, KL. Kratz, M. Huhta, P. Dendooven, A. Honkanen, G. Lhersonneau, M. Oinonen, JM. Parmonen, H. Penttilä,
1996Ni09	ZPAAD	356,	11	A. Popov, V. Rubchenya, J. Äystö V. Ninov, F.P. Heßberger, S. Hofmann, H. Folger, G. Münzenberg, P. Armbruster, A.V. Yeremin, A.G. Popeko, M. Leino, S. Saro
1996Od01	ZPAAD	354,	231	A. Odahara, Y. Gono, S. Mitarai, T. Shizuma, E. Ideguchi, J. Mukai, H. Tomura, B.J. Min, S. Suematsu, T. Kuroyanagi, K. Heiguchi, T. Komatsubara, K. Furuno
1996Os04	JUPSA	65,	928	A. Osa, T. Ikuta, K. Kawade, H. Yamamoto, S. Ichikawa
1996Pa01	PRVCA	53,	660	R.D. Page, P.J. Woods, R.A. Cunningham, T. Davinson, N.J. Davis, A.N. James, K. Livingston, P.J. Sellin, A.C. Shotter, and PrvCom AHW August 1996
1996Pf01	PRVCA	53,	1753	R. Pfaff, D.J. Morrissey, W. Benenson, M. Fauerbach, M. Hellström, C.F. Powell, B.M. Sherrill, M. Steiner, J.A. Winger
1996Ra04	PRVCA	53,	616	S. Raman, E.K. Warburton, J.W. Starner, E.T. Jurney, J.E. Lynn, P. Tikkanen, J. Keinonen
1996Ra16	PRVCA	53,	2732	S. Raman, J.B. McGrory E.T. Jurney, J.W. Starner
1996Ri12	PRVCA	54,	2041	J.D. Richards, C.R. Bingham, Y.A. Akovali, J.A. Becker, E.A. Henry, P. Joshi, J. Kormicki, P.F. Mantica, K.S. Toth, J. Wauters, E.F. Zganjar
1996Ry.B	AnRpt JYFL		33	K. Rykaczewski
1996Sh27	JUPSA	65,	3172	M. Shibata, A. Odahara, S. Mitarai, Y. Gono, M. Kidera, K. Miyazaki, T. Kuroy-
				anagi
1996Ta18	PRVCA	54,	2926	R.B.E. Taylor, S.J. Freeman, J.L. Durell, M.J. Leddy, A.G. Smith, D.J. Blumenthal, M.P. Carpenter, C.N. Davids, C.J. Lister, R.V.F. Janssens, D. Seweryniak
1996To01	PRVCA	53,	2513	K.S. Toth, J.C. Batchelder, C.R. Bingham, L.F. Conticchio, W.B. Walters, C.N. Davids, D.J. Henderson, R. Herman, H. Penttilä, J.D. Richards, A.H. Wuosmaa, B.E. Zimmerman
1996To05	ZPAAD	355,	345	Y. Toh, K. Okano, A. Taniguchi, S. Yamada, Y. Kawase
1996To08	ZPAAD	355,	225	K.S. Toth, J.C. Batchelder, D.M. Moltz, J.D. Robertson
1996Ur02	PRVCA	54,	945	W. Urban, W.R. Phillips, J.L. Durell, M.A. Jones, M. Leddy, C.J. Pearson, A.G. Smith, B.J. Varley, I. Ahmad, L.R. Morss, M. Bentaleb, E. Lubkiewicz, N. Schulz
1996Wa33	PRVCA	54,	2916	P.M. Wallace, E.G. Bilpuch, C.R. Bybee, G.E. Mitchell, E.F. Moore, J.D. Shriner, J.F. Shriner, Jr., G.A. Vavrina, C.R. Westerfeldt
1996WaZX	AnRpt Tohok	αı	25	A. Watanabe, T. Shinozuka, M. Fujita, Y. Kanai, T. Kohda, M. Fujioka
1996Wo.A	P-Amsterdan		D14	A. Wöhr, V. Fedoseyev, Y. Jading, A. Jokinen, T. Kautzsch, I. Klöckl, KL. Kratz, V.I. Mishin, HL. Ravn, P. Van Duppen, W.B. Walters, ISOLDE
1996Ya12	JUPSA	65,	3390	S. Yamada, A. Taniguchi, Y. Toh, K. Okano
1996Ya.A	P-Kyoto	55,	51	K. Yamauchi, Y. Kojima, H. Sakane, Y. Tsurita, H. Yamamoto, K. Kawade, A. Taniguchi, Y. Kawase, K. Okano, J.Z. Ruan and report KURRI-KR3 p. 51
				1997
1997An09	ZPAAD	358,	63	A.N. Andreyev, N. Bijnens, T. Enqvist, M. Huyse, P. Kuusiniemi, M. Leino, W.H. Trzaska, J. Uusitalo, P. Van Duppen

1997As05	PRVCA	56,	3045	M. Asai, T. Sekine, A. Osa, M. Koizumi, Y. Kojima, M. Shibata, H. Yamamoto,
1997Ba21	ZPAAD	357,	121	K. Kawade J.C. Batchelder, K.S. Toth, C.R. Bingham, L.T. Brown, L.F. Conticchio, C.N. Davids, T. Davinson, D.J. Henderson, R.J. Irvine, D. Seweryniak,
1997Ba25	PRVCA	55,	2142	W.B. Walters, P.J. Woods, J. Wauters, E.F. Zganjar J.C. Batchelder, K.S. Toth, C.R. Bingham, L.T. Brown, L.F. Conticchio,
				C.N. Davids, D. Seweryniak, J. Wauters, J.L. Wood, E.F. Zganjar
1997Ba35 1997Be70	ZPAAD PYLBB	357, 415,	351 111	A.S. Barabash, R. Gurriaran, F. Hubert, Ph. Hubert, V.I. Umatov M. Bernas, C. Engelmann, P. Armbruster, S. Czajkowski, F. Ameil, C. Bockstiegel, Ph. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stephan, K. Sümmerer, L. Tassan-Got, B. Voss
1997Bl03	NUPAB	615,	52	B. Blank, F. Boué, S. Andriamonje, S. Czajkowski, R. Del Moral, J.P. Dufour, A. Fleury, P. Pourre, M.S. Pravikoff, N.A. Orr, KH. Schmidt, E. Hanelt
1997Bl04	ZPAAD	357,	247	B. Blank, F. Boué, S. Andriamonje, S. Czajkowski, R. Del Moral, J.P. Dufour, A. Fleury, P. Pourre, M.S. Pravikoff, E. Hanelt, N.A. Orr, KH. Schmidt
1997Bo10	NUPAB	616,	254c	H.G. Bohlen, W. von Oertzen, Th. Stolla, R. Kalpakchieva, B. Gebauer, M. Wilpert, Th. Wilpert, A.N. Ostrowski, S.M. Grimes, T.N. Massey
1997Ch53	BRSPE	61,	1606	V.G. Chumin, J.K. Jabber, K.V. Kalyapkin, S.A. Kudrya, V.V. Tsupko-Sitnikov, K. Ya. Gromov, V.I. Fominykh, T.A. Furyaev
1997Da07	PRVCA	55,	2255	C.N. Davids, P.J. Woods, J.C. Batchelder, C.R. Bingham, D.J. Blumenthal, L.T. Brown, B.C. Busse, L.F. Conticchio, T. Davinson, S.J. Freeman, D.J. Henderson, R.J. Irvine, R.D. Page, H.T. Penttilä, D. Seweryniak, K.S. Toth,
				W.B. Walters, B.E. Zimmerman
1997Ga12	PYLBB	398,		F. Gatti, P. Meunier, C. Salvo, S. Vitale
1997Gi07	ZPAAD	358,	369	A. Gizon, J. Genevey, Gh. Cata-Danil, D. Barnéoud, R. Béraud, A. Emsallem, C. Foin, J. Gizon, C.F. Liang, P. Paris, I. Penev, A. Płochocki, B. Weiss
1997Go18	PRLTA	79,	2415	M. Górska, M. Lipoglavšek, H. Grawe, J. Nyberg, A. Atac, A. Axelsson, R. Bark, J. Blomqvist, J. Cederkäll, B. Cederwall, G. de Angelis, C. Fahlander, A. Johnson, S. Leoni, A. Likar, M. Matiuzzi, S. Mitarai, LO. Norlin, M. Palacz, J. Persson, H.A. Roth, R. Schubart, D. Seweryniak, T. Shizuma, Ö. Skeppstedt, G. Sletten, W.B. Walters, M. Weiszflog
1997Gr02	PRVCA	55,	1126	R. Grzywacz, R. Anne, G. Auger, C. Borcea, J.M. Corre, T. Dorfler, A. Fomichov, S. Grevy, H. Grawe, D. Guillemaud-Mueller, M. Huyse, Z. Janas, H. Keller, M. Lewitowicz, S. Lukyanov, A.C. Mueller, N. Orr, A. Ostrowski, Yu. Penionzhkevich, A. Piechaczek, F. Pougheon, K. Rykaczewski, M.G. Saint-Laurent, W.D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters, J. Żylicz
1997Gu32	YTHLD	19,	180	J. Guo, K. Zhao, X. Lu, Y. Cheng, T. Li, C. Fu, S. Li
1997Ha04	NUPAB	613,	183	E. Hagberg, I.S. Towner, J.C. Hardy, V.T. Koslowsky, G. Savard, S. Sterbenz
1997Ha30	ZPAAD	358,	15	T. Hayakawa, T. Komatsubara, J. Lu, J. Mukai, K. Furuno
1997He29	ZPAAD	359,	415	F.P. Heßberger, S. Hofmann, V. Ninov, P. Armbruster, H. Folger, G. Münzenberg,
				H.J. Schött, A.G. Popeko, A.V. Yeremin, A.N. Andreyev, S. Saro
1997Ho12	NUPAB	621,	689	A. Honkanen, P. Dendooven, M. Huhta, G. Lhersonneau, P.O. Lipas, M. Oinonen, JM. Parmonen, H. Penttilä, K. Peräjärvi, T. Siiskonen, J. Äystö
1997Ho14	ZPAAD	358,	377	S. Hofmann, F.P. Heßberger, V. Ninov, P. Armbruster, G. Münzenberg, C. Stodel, A.G. Popeko, A.V. Yeremin, S. Saro, M. Leino
1997Ir01	PRVCA	55,	1621	R.J. Irvine, C.N. Davids, P.J. Woods, D.J. Blumenthal, L.T. Brown, L.F. Conticchio, T. Davinson, D.J. Henderson, J.A. Mackenzie, H.T. Penttilä, D. Seweryniak, W.B. Walters
1997Is13	NIMAE	395,	210	T. Ishii, M. Itoh, M. Ishii, A. Makishima, M. Ogawa, I. Hossain, T. Hayakawa, T. Kohno
1997Ja12	NUPAB	627,	119	Z. Janas, A. Płochocki, J. Szerypo, R. Collatz, Z. Hu, H. Keller, R. Kirchner, O. Klepper, E. Roeckl, K. Schmidt, R. Bonetti, A. Guglielmetti, G. Poli, A. Piechaczek
1997Ju02	PRVCA	56,	118	E.T. Jurney, J.W. Starner, J.E. Lynn, S. Raman
1997Ko13	NUPAB	617,	91	F.G. Kondev, G.D. Dracoulis, A.P. Byrne, T. Kibédi, S. Bayer
1997Ko65	NIMAE	401,	289	V.T. Koslowsky, E. Hagberg, J.C. Hardy, G. Savard, H. Schmeing, K.S. Sharma, X.J. Sun

19	997Li12	PRVCA	55,	2768	C.F. Liang, P. Paris, R.K. Sheline
	997Li23	PRVCA	56,	2324	C.F. Liang, P. Paris, R.K. Sheline
19	997Li25	ZPAAD	359,	1	W. Liu, M. Hellström, R. Collatz, J. Benlliure, L. Chulkov, D. Cortina Gil, F. Far-
					get, H. Grawe, Z. Hu, N. Iwasa, M. Pfützner, A. Piechaczek, R. Raabe, I. Reusen,
					E. Roeckl, G. Vancraeynest, A. Wöhr
	997Lo.A	PrvCom	GAu	May	R.W. Lougheed
	997Ma75	NIMAE	390,	267	R.H. Martin, K.I.W. Burns, J.G.V. Taylor
19	997Mi03	PRVCA	55,	1555	S. Mitsuoka, H. Ikezoe, T. Ikuta, Y. Nagame, K. Tsukada, I. Nishinaka, Y. Oura,
					Y.L. Zhao
19	997Mu02	ZPAAD	356,	367	J. Mukai, N. Hashimoto, T. Saitoh, M. Matsuda, T. Hayakawa, J. Lu, T. Komat-
					subara, K. Furuno
19	997Mu08	PRVCA	55,	2267	U. Müller, P. Sevenich, K. Freitag, C. Günther, P. Herzog, G.D. Jones, C. Kliem,
					J. Manns, T. Weber, B. Will, ISOLDE
19	997No.A	AnRpt Riken		74	M. Notani, N. Aoi, N. Fukuda, E. Ideguchi, M. Ishihara, H. Iwasaki, H. Ogawa,
					T. Kubo, S.M. Lukyanov, T. Nakamura, Yu. E. Penionzhkevich, H. Sakurai,
					T. Teranishi, Y.X. Watanabe, K. Yoneda, A. Yoshida
19	997Oi01	PRVCA	56,	745	M. Oinonen, A. Jokinen, J. Äystö, P. Baumann, F. Didierjean, A. Honkanen,
					A. Huck, M. Huyse, A. Knipper, G. Marguier, Yu. Novikov, A. Popov, M. Ramd-
					hane, D.M. Seliverstov, P. Van Duppen, G. Walter, ISOLDE
19	997Pu01	ZPAAD	357,	3	Y.H. Pu, K. Morita, M.G. Hies, K.O. Lee, A. Yoshida, T. Nomura, Y. Tagaya,
					T. Motobayashi, M. Kurokawa, H. Minemura, T. Uchibori, T. Ariga, K. Sueki,
1.0	007D 06	IED (A	16	5.00	S.A. Shin
	997Ro26	IEIMA	46,	560	S. Röttger, A. Paul, U. Keyser
15	997Sc30	NUPAB	624,	185	K. Schmidt, P.C. Divari, Th. W. Elze, R. Grzywacz, Z. Janas, I.P. John-
					stone, M. Karny, H. Keller, R. Kirchner, O. Klepper, A. Płochocki, E. Roeckl,
1.0	20761-00	DDVCA	<i>E E</i>	1160	K. Rykaczewski, L.D. Skouras, J. Szerypo, J. Żylicz
	997Sh09	PRVCA	55,	1162	R.K. Sheline, C.F. Liang, P. Paris, A. Gizon
13	997Su06	NUPAB	616,	341c	K. Sümmerer, R. Schneider, T. Faestermann, J. Friese, H. Geissel, R. Gernhauser, H. Gilg, F. Heine, J. Homolka, P. Kienle, HJ. Korner, G. Münzenberg,
					J. Reinhold, K. Zeitelhack
10	997Sz04	ZPAAD	359,	117	J. Szerypo, R. Grzywacz, Z. Janas, M. Karny, M. Pfützner, A. Płochocki,
1,))/ISZ01	ZiriiD	337,	117	K. Rykaczewski, J. Żylicz, M. Huyse, G. Reusen, J. Schwarzenberg, P. Van Dup-
					pen, A. Woehr, H. Keller, R. Kirchner, O. Klepper, A. Piechaczek, E. Roeckl,
					K. Schmidt, L. Batist, A. Bykov, V. Wittman, B.A. Brown
10	997Ta22	PYLBB	409,	64	O. Tarasov, R. Allatt, J.C. Angélique, R. Anne, C. Borcea, Z. Dlouhy,
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11222	,	٠.	C. Donzaud, S. Grevy, D. Guillemaud-Mueller, M. Lewitowicz, S. Lukyanov,
					A.C. Mueller, F. Nowacki, Yu. Oganessian, N.A. Orr, A.N. Ostrowski,
					R.D. Page, Yu. Penionzhkevich, F. Pougheon, A. Reed, M.G. Saint-Laurent,
					W. Schwab, E. Sokol, O. Sorlin, W. Trinder, J.S. Winfield
19	997Te07	PYLBB	407,	110	T. Teranishi, S. Shimoura, Y. Ando, M. Hirai, N. Iwasa, T. Kikuchi, S. Moriya,
					T. Motobayashi, H. Murakami, T. Nakamura, T. Nishio, H. Sakurai, T. Uchibori,
					Y. Watanabe, Y. Yanagisawa, M. Ishihara
19	997Uu01	ZPAAD	358,	375	J. Uusitalo, M. Leino, R.G. Allatt, T. Enqvist, K. Eskola, P.T. Greenlees,
					S. Hurskanen, A. Keenan, H. Kettunen, P. Kuusiniemi, R.D. Page, W.H. Trzaska
19	997Wa05	PRVCA	55,	1192	J. Wauters, J.C. Batchelder, C.R. Bingham, D.J. Blumenthal, L.T. Brown,
					L.F. Conticchio, C.N. Davids, T. Davinson, R.J. Irvine, D. Seweryniak,
					K.S. Toth, W.B. Walters, P.J. Woods, E.F. Zganjar
19	997Wo06	NUPAB	621,	289c	A. Wohr, A. Andreev, N. Bijnens, J. Breitenbach, S. Franchoo, M. Huyse,
					Y.A. Kudryavtsev, A. Piechaczek, R.R. Raabe, G. Reusen, L. Vermeeren,
					P. Van Duppen
19	997Xu01	PRVCA	55,	R553	X.J. Xu, W.X. Huang, R.C. Ma, Z.D. Gu, Y.F. Yang, Y.Y. Wang, C.F. Dong,
					L.L. Xu
19	997Za07	PRLTA	79,	4306	K. Zaerpoor, Y.D. Chan, D.E. DiGregorio, M.R. Dragowsky, M.M. Hindi,
					M.C.P. Isaac, K.S. Krane, R.M. Larimer, A.O. Macchiavelli, R.W. Macleod,
					P. Mincinovic, E.B. Norman

1997Zi04	NUPAB	619,	151	M. Zinser, F. Humbert, T. Nilsson, W. Schwab, H. Simon, T. Aumann, M.J.G. Borge, L.V. Chulkov, J. Cub, Th. W. Elze, H. Emling, H. Geissel, D. Guillemaud-Mueller, P.G. Hansen, R. Holzmann, H. Irnich, B. Jonson, J.V. Kratz, R. Kulessa, Y. Leifels, H. Lenske, A. Magel, A.C. Mueller, G. Münzenberg, F. Nickel, G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, K. Stelzer, J. Stroth, A. Surowiec, O. Tengblad, E. Wajda, E. Zude
				1998
1998Ag.A	P-Bellaire		809	J. Agramunt, A. Algora, L. Batist, R. Borcea, D. Cano-Ott, R. Collatz, A. Gadea, J. Gerl, M. Gierlik, M. Gorska, O. Guilbaud, H. Grawe, M. Hellström, Z. Hu, Z. Janas, M. Karny, R. Kirchner, P. Kleinheinz, W. Liu, T. Martinez, F. Moroz, A. Płochocki, M. Rejmund, E. Roeckl, B. Rubio, K. Ryckaczewski, M. Shibata, J. Szerypo, J.L. Tain, V. Wittmann, EUROBALL
1998Am04	EPJAA	1,	275	F. Ameil, M. Bernas, P. Armbruster, S. Czajkowski, P. Dessagne, H. Geissel, E. Hanelt, C. Kozhuharov, C. Miehé, C. Donzaud, A. Grewe, A. Heinz, Z. Janas, M. de Jong, W. Schwab, S. Steinhäuser
1998At04	ARISE	49,	1175	M.R.P. Attie, M.F. Koskinas, M.S. Dias, K.A. Fonseca
1998Ax02	NUPAB	634,	475	L. Axelsson, J. Äystö, M.J.G. Borge, L.M. Fraile, H.O.U. Fynbo, A. Honkanen, P. Hornshøj, A. Jokinen, B. Jonson, P.O. Lipas, I. Martel, I. Mukha, T. Nilsson, G. Nyman, B. Petersen, K. Riisager, M.H. Smedberg, O. Tengblad, ISOLDE, and PrvCom GAu December 1997, and erratum NUPAB 641,529
1998Az01	PRVCA	57,	628	A. Azhari, T. Baumann, J.A. Brown, M. Hellström, J.H. Kelley, R.A. Kryger, D.J. Millener, H. Madani, E. Ramakrishnan, D.E. Russ, T. Suomijarvi, M. Thoennessen, S. Yokoyama
1998Ba13	PRVCA	57,	1042	J.C. Batchelder, C.R. Bingham, K. Rykaczewski, K.S. Toth, T. Davinson, J.A. McKenzie, P.J. Woods, T.N. Ginter, C.J. Gross, J.W. McConnell, E.F. Zganjar, J.H. Hamilton, W.B. Walters, C. Baktash, J. Greene, J.F. Mas, W.T. Milner, S.D. Paul, D. Shapira, X.J. Xu, C.H. Yu
1998Ba83	PRVCA	58,	2571	P.H. Barker, P.A. Amundsen
1998Ba85	NUPAB	641,	133	M. Balodis, P. Prokofjevs, N. Krāmere, L. Simonova, J. Bērzinš, T. Krasta, J. Kern, A. Raemy, J.C. Dousse, W. Schwitz, J.A. Cizewski, G.G. Colvin, H.G. Börner, P. Geltenbort, F. Hoyler, S.A. Kerr, K. Schreckenbach, R. Georgii, T. von Egidy, J. Klora, H. Lindner, U. Mayerhofer, A. Walter, A.V. Murzin, V.A. Libman, I.A. Kondurov, Yu. E. Loginov, P.A. Sushkov, S. Brant, V. Paar, V. Lopac
1998Ba.A	P-Bellaire		90	Y. Bai, D.J. Vieira, H.L. Seifert, J.M. Wouters, and PrvCom AHW June 1998
1998Ba.B	P-Bellaire		264	J.C. Batchelder, C.R. Bingham, K. Rykaczewski, K.S. Toth, T. Davinson, T.N. Ginter, C.J. Gross, R. Grzywacz, Z. Janas, M. Karny, S.H. Kim, B.D. MacDonald, J.F. Mas, J.W. McConnell, A. Piechaczek, J.J. Ressler, R.C. Slinger, J. Szerypo, W.B. Walters, W. Weintraub, P.J. Woods, CH. Yu, E.F. Zganjar
1998Be19	PRVCA	57,	2740	T. Belgya, B. Fazekas, Zs. Kasztovszky, Zs. Revay, G. Molnar, M. Yeh, P.E. Garrett, S.W. Yates
1998Be28	NUPAB	636,	419	A.V. Belozyorov, R. Kalpakchieva, Yu. E. Penionzhkevich, Z. Dlouhy, S. Piskor, J. Vincour, H.G. Bohlen, M. von Lucke-Petsch, A.N. Ostrowski, D.V. Alexandrov, E. Yu. Nikolsky, B.G. Novatsky, D.N. Stepanov
1998Bh04	PRVCA	58,	1247	M. Bhattacharya, A. García, M.M. Hindi, E.B. Norman, C.E. Ortiz, N.I. Kaloskamis, C.N. Davids, O. Civitarese, J. Suhonen
1998Bh12	PRVCA	58,	3677	M. Bhattacharya, A. García, N.I. Kaloskamis, E.G. Adelberger, H.E. Swanson, R. Anne, M. Lewitowicz, M.G. Saint-Laurent, W. Trindler, C. Donzaud,
1998Bi.A	P-Bellaire		474	D. Guillemaud-Mueller, S. Leenhardt, A.C. Mueller, F. Pougheon, O. Sorlin C.R. Bingham, J.C. Batchelder, J.A. Cizewski, C.N. Davids, R.J. Irvine, W. Reviol, D. Sewerniak, K.S. Toth, W.B. Walters, J. Wauters, J.L. Wood, X.J. Xu, J. Uusitalo, E.F. Zganjar
1998Bo30	NUPAB	642,	419	R. Böttger, H. Schölermann

1998Ch20	NUPAB	637,	3	M. Chartier, W. Mittig, N.A. Orr, JC. Angélique, G. Audi, JM. Casandjian, A. Cunsolo, C. Donzaud, A. Foti, A. Lépine-Szily, M. Lewitowicz, S. Lukyanov,
1998Co27	EPJAA	3,	17	M. MacCormick, D.J. Morrissey, A.N. Ostrowski, B.M. Sherril, C. Stéphan, T. Suomijärvi, L. Tassan-Got, D.J. Vieira, A.C.C. Villari, J.M. Wouters J.F.C. Cocks, M. Muikku, W. Korten, R. Wadsworth, S. Chmel, J. Domscheit,
13300027	Zi vi i i	Σ,	1,	P.T. Greenlees, K. Helariutta, I. Hibbert, M. Houry, D. Jenkins, P. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, P. Kuusiniemi, M. Leino, Y. Le Coz,
1998Cz01	NUPAB	628,	537	R. Lucas, E. Mergel, R.D. Page, A. Savelius, W. Trzaska C. Czajkowski, S. Andriamonje, B. Blank, F. Boué, R. Del Moral, J.P. Dufour, A. Fleury, P. Pourre, M.S. Pravikoff, E. Hanelt, KH. Schmidt, N.A. Orr
1998Da03	PRLTA	80,	1849	C.N. Davids, P.J. Woods, D. Seweryniak, A.A. Sonzogni, J.C. Batchelder, C.R. Bingham, T. Davinson, D.J. Henderson, R.J. Irvine, G.L. Poli, J. Uusitalo, W.B. Walters
1998Da23	NUPAB	643,	317	F.A. Danevich, A. Sh. Georgadze, V.V. Kobychev, B.N. Kropivyansky, A.S. Nikolaiko, O.A. Ponkratenko, V.I. Tretyak, Yu. G. Zdesenko
1998Dr09	PRVCA	58,	1837	G.D. Dracoulis, A.P. Byrne, S.M. Mullins, T. Kibédi, F.G. Kondev, P.M. Davidson
1998En.A	PrvCom	AHW	Aug	T. Enqvist, et al (PrvCom of H. Geissel)
1998Es02	PRVCA	57,	417	K. Eskola, P. Kuusiniemi, M. Leino, J.F.C. Cocks, T. Enqvist, S. Hurskanen,
1990E802	TRVCA	57,	417	-
1000E-06	DDVCA	5 0	740	H. Kettunen, W.H. Trzaska, J. Uusitalo, R,G. Allat, P.T. Greenlees, R.D. Page
1998Fo06	PRVCA	58,	749	B.D. Foy, D.S. Brenner, C.N. Davids, D. Seweryniak, D. Blumenthal, R.L. Gill,
1000C 12	EDIA A	2	225	N.V. Zamfir, D.D. Warner, C.J. Barton
1998Ge13	EPJAA	3,	225	U. Georg, W. Borchers, M. Keim, A. Klein, P. Lievens, R. Neugart, M. Neuroth,
10000 12	DVII DD	420	2.47	P.M. Rao, Ch. Schulz, ISOLDE
1998Gr12	PYLBB	429,	247	R. Grzywacz, S. Andriamonje, B. Blank, F. Boué, S. Czajkowski, F. Davi,
				R. Del Moral, C. Donzaud, J.P. Dufour, A. Fleury, H. Grawe, A. Grewe,
				A. Heinz, Z. Janas, A.R. Junghans, M. Karny, M. Lewitowicz, A. Musquère,
1000 5 11		0.4		M. Pfützner, MG. Porquet, M.S. Pravikoff, JE. Sauvestre, K. Sümmerer
1998Gr14	PRLTA	81,	766	R. Grzywacz, R. Béraud, C. Borcea, A. Emsallem, M. Glogowski, H. Grawe,
				D. Guillemaud-Mueller, M. Hjorth-Jensen, M. Houry, M. Lewitowicz,
				A.C. Mueller, A. Nowak, A. Płochocki, M. Pfützner, K. Rykaczewski,
				M.G. Saint-Laurent, JE. Sauvestre, M. Schaefer, O. Sorlin, J. Szerypo,
				W. Trinder, S. Viteritti, J. Winfield
1998Gr.A	B-Bellaire		C7	R. Grzywacz (and oral presentation)
1998Gr.B	P-Bellaire		430	R. Grzywacz
1998Gu10	PRVCA	58,	116	V. Guimarães, S. Kubono, N. Ikeda, I. Katayama, T. Nomura, M.H. Tanaka,
				Y. Fuchi, H. Kawashima, S. Kato, H. Toyokawa, C.C. Yun, T. Niizeki, T. Kubo,
				M. Ohura, M. Hosaka
1998Ha36	PRVCA	58,	821	P.D. Harty, N.S. Bowden, P.H. Barker, P.A. Amundsen
1998He.B	ThBoulder			T.P. Heavner
1998Ho13	RPPHA	61,	639	S. Hofmann
1998Ic02	PRVCA	58,	1329	S. Ichikawa, K. Tsukada, I. Nishinaka, Y. Hatsukawa, H. Iimura, K. Hata,
				Y. Nagame, M. Asai, Y. Kojima, T. Hirose, M. Shibata, K. Kawade, Y. Oura
1998Ik01	PRVCA	57,	2804	T. Ikuta, H. Ikezoe, S. Mitsuoka, I. Nishinaka, K. Tsukuda, Y. Nagame, J. Lu,
				T. Kuzumaki
1998Ik02	EPJAA	2,	379	H. Ikezoe, T. Ikuta, S. Mitsuoka, Y. Nagame, I. Nishinaka, K. Tsukada, T. Oht-
				suki, T. Kuzumaki, J. Lu
1998Is06	EPJAA	2,	173	S. Issmer, M. Fruneau, J.A. Pinston, M. Asghar, D. Barnéoud, J. Genevey,
				Th. Kerscher, K.E.G. Löbner
1998Is11	PRLTA	81,	4100	T. Ishii, M. Asai, I. Hossain, P. Kleinheinz, M. Ogawa, A. Makishima,
				S. Ichikawa, M. Itoh, M. Ishii, J. Blomqvist
1998Jo.A	PrvCom	AHW	Mar	T. Johansson, I. Bergström, et al
1998Ka42	NUPAB	640,	3	M. Karny, L. Batist, B.A. Brown, D. Cano-Ott, R. Collatz, A. Gadea,
				R. Grzywacz, A. Guglielmetti, M. Hellström, Z. Hu, Z. Janas, R. Kirchner,
				F. Moroz, A. Piechaczek, A. Płochocki, E. Roeckl, B. Rubio, K. Rykaczewski,
				M. Shibata, J. Szerypo, J.L. Tain, V. Wittmann, A. Wöhr

1998Ka.A	AnRpt GSI		22	M. Karny, L. Batist, D. Cano, R. Collatz, A. Gadea, M. Gierlik, R. Grzywacz, A. Guglielmetti, M. Hellström, Z. Hu, Z. Janas, R. Kirchner, F. Moroz,
1998Ki20	PYLBB	443,	82	J.F.C. Cocks, D.M. Cullen, P.T. Greenlees, M.K. Harder, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpää, A. Keenan, H. Kettunen, P. Kuusiniemi,
1998Ko09	NUPAB	632,	172	M. Leino, R. Lemmon, M. Muikku, A. Savelius, J. Uusitalo, P. Van Isacker F.G. Kondev, G.D. Dracoulis, A.P. Byrne, T. Kibédi
1998Ko66	JUPSA	67,	473 3405	Y. Kojima, M. Asai, A. Osa, M. Koizumi, T. Sekine, M. Shibata, H. Yamamoto,
1996 K 000	JUISA	07,	3403	K. Kawade, T. Tachibana
1998Ku17	EPJAA	2,	241	J. Kurpeta, G. Lhersonneau, J.C. Wang, P. Dendooven, A. Honkanen, M. Huhta, M. Oinonen, H. Penttilä, K. Peräjärvi, J.R. Persson, A. Płochocki, J. Äystö
1998Le15	EPJAA	2,	9	A.I. Levon, J. de Boer, M. Loewe, M. Würkner, T. Czosnyka, J. Iwanicki, P.J. Napiorkowski
1998Li50	PYLBB	440,	246	M. Lipoglavšek, D. Seweryniak, C.N. Davids, C. Fahlander, M. Górska, R.V.F. Janssens, J. Nyberg, J. Uusitalo, W.B. Walters, I. Ahmad, J. Blomqvist, M.P. Carpenter, J.A. Cizewski, S.M. Fischer, H. Grawe, G. Hackman, M. Huhta, C.J. Lister, D. Nisius, G. Poli, P. Reiter, J. Ressler, J. Schwartz, A. Sonzogni
1998Lu08	EPJAA	2,	149	X. Lu, J. Guo, K. Zhao, Y. Cheng, Y. Ma, Z. Li, S. Li, M. Ruan
1998Mo30	EPJAA	3,	99	T. Morek, K. Starosta, Ch. Droste, D. Fossan, G. Lane, J. Sears, J. Smith, P. Vaska
1998No.A	P-Bellaire		359	M. Notani, N. Aoi, N. Fukuda, H. Iwasaki, K. Yoneda, H. Ogawa, T. Teranishi, S.M. Lukyanov, Yu. E. Penionzhkevich, T. Nakamura, H. Sakurai, E. Ideguchi, A. Yoshida, Y. Watanabe, T. Kubo, M. Ishihara
1998Pf02	PYLBB	444,	32	M. Pfützner, P. Armbruster, T. Baumann, J. Benlliure, M. Bernas, W.N. Catford, D. Cortina-Gil, J.M. Daugas, H. Geissel, M. Górska, H. Grawe, R. Grzywacz, M. Hellström, N. Iwasa, Z. Janas, A.R. Junghans, M. Karny, S. Leenhardt, M. Lewitowicz, A.C. Mueller, F. de Oliveira, P.H. Regan, M. Rejmund, K. Rykaczewski, K. Sümmerer
1998Po.A	PrvCom	GAu	Mar	F. Pougheon
1998Ru04	PRVCA	58,	771	D. Rupnik, E.F. Zganjar, J.L. Wood, P.B. Semmes, P.F. Mantica
1998Sh21	ARISE	49,	1481	M. Shibata, Y. Satoh, S. Itoh, H. Yamamoto, K. Kawade, Y. Kasugai, Y. Ikeda
1998Si12	ARISE	49,	1397	H. Siegert, H. Schrader, U. Schötzig
1998So03	NUPAB	632,	205	O. Sorlin, V. Borrel, S. Grévy, D. Guillemaud-Mueller, A.C. Mueller, F. Pougheon, W. Böhmer, KL. Kratz, T. Mehren, P. Möller, B. Pfeiffer, T. Rauscher, M.G. Saint-Laurent, R. Anne, M. Lewitowicz, A. Ostrowski, T. Dörfler, WD. Schmidt-Ott
1998St24	NUPAB	641,	401	A.E. Stuchbery, G.D. Dracoulis, T. Kibedi, A.P. Byrne, B. Fabricius, A.R. Poletti, G.J. Lane, A.M. Baxter
1998Su16	EPJAA	2,	237	M. Sugawara, H. Kusakari, T. Murakami, T. Kohno
1998Ti06	NUPAB	636,	249	D.R. Tilley, C.M. Cheves, J.H. Kelley, S. Raman, H.R. Weller
1998To14	PRVCA	58,	1310	K.S. Toth, XJ. Xu, C.R. Bingham, J.C. Batchelder, L.F. Conticchio, W.B. Walters, L.T. Brown, C.N. Davids, R.J. Irvine, D. Seweryniak, J. Wauters, E.F. Zgan-
1998Tu01	PRVCA	57,	1648	jar A. Türler, R. Dressler, B. Eichler, H.W. Gäggeler, D.T. Jost, M. Schädel, W. Brüchle, K.E. Gregorich, N. Trautmann, S. Taut
1998Ut02	PRVCA	57,	2731	S. Utku, J.G. Ross, N.P.T. Bateman, D.W. Bardayan, A.A. Chen, J. Görres, A.J. Howard, C. Iliadis, P.D. Parker, M.S. Smith, R.B. Vogelaar, M. Wiescher,
1998Vi06	PYLBB	437,	264	K. Yildiz; erratum Phys. Rev. C58, 1354 (1998) S.M. Vincent, P.H. Regan, D.D. Warner, R.A. Bark, D. Blumenthal, M.P. Carpenter, C.N. Davids, W. Gelletly, R.V.F. Janssens, C.D. O'Leary, C.J. Lister, J. Simpson, D. Seweryniak, T. Saitoh, J. Schwartz, S. Törmänen, O. Juillet, F. Nowacki, P. Van Isacker
1998Wa.A	PrvCom	AHW	Feb	A.H. Wapstra
1998Wh01	PRVCA	57,	1112	D.H. White, R.W. Hoff, H.G. Börner, K. Schreckenbach, F. Hoyler, G. Colvin, I. Ahmad, A.M. Friedman, J.R. Erskine

1998Wh02	PYLBB	425,	239	C. Wheldon, R. D'Alarcao, P. Chowdhury, P.M. Walker, E. Seabury, I. Ahmad, M.P. Carpenter, D.M. Cullen, G. Hackman, R.V.F. Janssens, T.L. Khoo, D. Nisius, C.J. Pearson, P. Reiter
1998Wi.A	P-Bellaire		606	J.A. Winger, H.H. Yousif, W.C. Ma, V. Ravikumar, W. Lui, S.K. Phillips,
1998Wu01	PRLTA	80,	2085	R.B. Piercey, P.F. Mantica, B. Pritychenko, R.M. Ronningen, M. Steiner A.H. Wuosmaa, I. Ahmad, S.M. Fischer, J.P. Greene, G. Hackman, V. Nanal, G. Savard, J.P. Schiffer, P. Wilt, S.M. Austin, B.A. Brown, S.J. Freedman, J.J. Connell
1998Zh03	EPJAA	1,	1	Y.H. Zhang, Q.Z. Zhao, S.F. Zhu, H.S. Xu, X.H. Zhou, Y.X. Guo, X.G. Lei, J. Lu, Q.B. Gou, H.J. Jin, Z. Liu, Y.X. Luo, X.F. Sun, Y.T. Zhu
1998Zh09	NUPAB	628,	386	C.T. Zhang, P. Bhattacharyya, P.J. Daly, Z.W. Grabowski, R.H. Mayer, M. Sferrazza, R. Broda, B. Fornal, W. Królas, T. Pawlat, D. Bazzacco, S. Lunardi, C. Rossi Alvarez, G. de Angelis
1998Zh22	PRVCA	58,	156	L. Zhang, J. Zhao, J. Zheng, J. Wang, Z. Qin, Y. Yang, C. Zhang, G. Jin, G. Guo, Y. Du, T. Guo, T. Wang, B. Guo, J. Tian, Y. Lou
				1999
1999A120	PYLBB	457,	253	A. Alessandrello, J.W. Beeman, C. Brofferio, O. Cremonesi, E. Fiorini, A. Giuliani, E.E. Haller, B. Margesin, A. Monfardini, A. Nucciotti, M. Pavan, G. Pessina, G. Pignatel, E. Previtali, L. Zanotti, M. Zen
1999Am05	NUPAB	651,	3	F. Ames, G. Audi, D. Beck, G. Bollen, M. de Saint Simon, R. Jertz, HJ. Kluge, A. Kohl, M. König, D. Lunney, I. Martel, R.B. Moore, T. Otto, Z. Patyk, H. Raimbault-Hartmann, G. Rouleau, G. Savard, E. Schark, S. Schwarz, L. Schweikhard, H. Stolzenberg, J. Szerypo, ISOLDE
1999An10	PRLTA	82,	1819	A.N. Andreyev, M. Huyse, P. Van Duppen, J.F.C. Cocks, K. Helariutta, H. Ket-
1999An36	APOBB	30,	1255	tunen, P. Kuusiniemi, M. Leino, W.H. Trzaska, K. Eskola, R. Wyss A.N. Andreyev, N. Bijnens, J.F. Cocks, K. Eskola, K. Helariutta, M. Huyse, H. Kattunen, P. Kuusiniemi, M. Leino, W.H. Trzaska, P. Van Duppen, P. Wyss
1999An52	ЕРЈАА	6,	381	H. Kettunen, P. Kuusiniemi, M. Leino, W.H. Trzaska, P. Van Duppen, R. Wyss A.N. Andreyev, D. Ackermann, P. Cagarda, J. Gerl, F. Heßberger, S. Hofmann, M. Huyse, A. Keenan, H. Kettunen, A. Kleinbohl, A. Lavrentiev, M. Leino, B. Lommel, M. Matos, G. Münzenberg, C. Moore, C.D. O'Leary, R.D. Page, S. Reshitko, S. Saro, C. Schlegel, H. Schaffner, M. Taylor, P. Van Duppen, L. Weissman, R. Wyss
1999Ar25	NUPAB	658,	299	R. Arnold, C. Augier, J. Baker, A. Barabash, D. Blum, V. Brudanin, A.J. Caffrey, J.E. Campagne, E. Caurier, D. Dassié, V. Egorov, T. Filipova, R. Gurriaran, J.L. Guyonnet, F. Hubert, Ph. Hubert, S. Jullian, I. Kisel, O. Kochetov, V.N. Kornoukhov, V. Kovalenko, D. Lalanne, F. Laplanche, F. Leccia, I. Linck, C. Longuemare, Ch. Marquet, F. Mauger, H.W. Nicholson, I. Pilugin, F. Piquemal, JL. Reyss, X. Sarazin, F. Scheibling, J. Suhonen, C.S. Sutton, G. Szklarz, V. Timkin, R. Torres, V.I. Tretyak, V. Umatov, I. Vanyushin, A. Vareille, Yu. Vasilyev, Ts. Vylov
1999As03	PRVCA	59,	3060	M. Asai, S. Ichikawa, K. Tsukada, M. Sakama, M. Shibata, Y. Kojima, A. Osa, I. Nishinaka, Y. Nagame, K. Kawade, T. Tachibana
1999Ba45	EPJAA	5,	49	J.C. Batchelder, K.S. Toth, C.R. Bingham, L.T. Brown, L.F. Conticchio, C.N. Davids, R.J. Irvine, D. Sewerniak, W.B. Walters, J. Wauters, E.F. Zganjar, J.L. Wood, C. De Coster, B. Decroix, K. Heyde
1999Be53	NUPAB	658,	129	U.C. Bergmann, L. Axelsson, M.J.G. Borge, V.N. Fedoseyev, C. Forssén, H.O.U. Fynbo, S. Grévy, P. Hornshøj, Y. Jading, B. Jonson, U. Köster, K. Markenroth, F.M. Marqués, V.I. Mishin, T. Nilsson, G. Nyman, A. Oberstedt, H.L. Ravn, K. Riisager, G. Schrieder, V. Sebastian, H. Simon, O. Tengblad, F. Wenander, K. Wilhelmsen Rolander, ISOLDE
1999Be63	NUPAB	660,	87	J. Benlliure, KH. Schmidt, D. Cortina-Gil, T. Enqvist, F. Farget, A. Heinz, A.R. Junghans, J. Pereira, J. Taieb
1999Be64	NUPBB	563,	97	P. Belli, R. Bernabei, C.J. Dai, F. Grianti, H.L. He, G. Ignesti, A. Incicchitti, H.H. Kuang, J.M. Ma, F. Montecchia, O.A. Ponkratenko, D. Prosperi, V.I. Tretyak, Yu. G. Zdesenko

1999Bi14	PRVCA	59,	2984	C.R. Bingham, J. Batchelder, K. Rykaczewski, K.S. Toth, CH. Yu, T.N. Ginter, C.J. Gross, R. Grzywacz, M. Karny, S.H. Kim, B.D. MacDonald, J.F. Mas,
1999Bo26	PPNPD	42,	17	J.W. McConnell, P.B. Semmes, J. Szerypo, W. Weintraub, E.F. Zganjar H.G. Bohlen, A. Blazevic, B. Gebauer, W. von Oertzen, S. Thummerer, R. Kalpakchieva, S.M. Grimes, T.N. Massey
1999Br47	PRLTA	83,	4510	M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, and Prv-Com GAu Nov 1999
1999Ca21	EPJAA	5,	1	G. Canchell, R. Béraud, E. Chabanat, E. Emsallem, N. Redon, P. Dendooven, J. Huikari, A. Jokinen, V. Kolhinen, G. Lhersonneau, M. Oinonen, A. Nieminen, H. Penttilä, K. Peräjärvi, J.C. Wang
1999Ca46	PRLTA	83,	4506	C. Carlberg, T. Fritioff, I. Bergström
1999Co13	JPGPE	25,	839	J.F.C. Cocks, and the JUROSPHERE Collaboration
1999Da.A	GANIL-T9			JM. Daugas Thesis
1999Dl01	JPGPE	25,	859	Z. Dlouhý, Yu. Penionzhkevich, R. Anne, D. Baiborodin, C. Borcea, A. Fomichev, D. Guillemaud-Mueller, R. Kalpakchieva, M. Lewitowicz, S. Lukyanov, A.C. Mueller, Yu. Oganessian, R.D. Page, A. Reed, M.G. Saint-Laurent, E. Sokol, N. Skobelev, O. Sorlin, O. Tarasov, V. Toneev, W. Trinder
1999Dr09	PRVCA	59,	3433	R. Dressler, B. Eichler, D.T. Jost, D. Piguet, A. Tuerler, Ch. Duehlmann, R. Eichler, H.W. Gaeggeler, M. Gaertner, M. Schaedel, S. Taut, A.B. Yakushev
1999Dr10	PRVCA	60,	014303	G.D. Dracoulis, A.P. Byrne, A.M. Baxter, P.M. Davidson, T. Kibedi, T.R. Mc-Goram, R.A. Bark, S.M. Mullins
1999Dr13	JPGPE	25,	1839	O. Dragoun, A. Spalek, M. Rysavy, A. Kovalik, E.A. Yakushev, V. Brabec, A.F. Novgorodov, N. Dragounova, J. Rizek
1999Fe10	EPJAA	6,	235	X.C. Feng, Y.X. Guo, X.H. Zhou, X.F. Sun, X.G. Lei, W.X. Huang, J.J. He, Z. Liu, Y.H. Zhang, S.F. Zhu, Y.X. Luo, S.X. Wen, G.J. Yuan, X.G. Wu
1999Fo01	PRLTA	82,	1823	B. Fogelberg, K.A. Mezilev, H. Mach, V.I. Isakov, J. Slivova
1999Fo.A	PrvCom	GAu	Oct	K. Foehl
1999Ga41	EPJAA	6,	59	Z.G. Gan, Z. Qin, J.S. Guo, L.J. Shi, H.Y. Liu, T.R. Guo, X.G. Lei, R.C. Ma, W.X. Huang, S.G. Yuan, X.Q. Zhang, G.M. Jin
1999Ga.A	B-Seeheim		O34	H.W. Gäggeler, R. Dressler, A. Türler, D.T. Jost, B. Eichler, H.R. von Gunten
1999Ge01	PRVCA	59,	82	J. Genevey, F. Ibrahim, J.A. Pinston, H. Faust, T. Friedrichs, M. Gross, S. Oberstedt
1999Gi14	NUPAB	658,	97	J. Gizon, A. Gizon, J. Timár, Gh. Cata-Danil, B.M. Nyakó, L. Zolnai, A.J. Boston, D.T. Joss, E.S. Paul, A.T. Semple, N.J. O'Brien, C.M. Parry, D. Bucurescu, S. Brant, V. Paar
1999Gr28	ЕРЈАА	6,	269	P.T. Greenlees, P. Kuusiniemi, N. Amzal, A. Andreyev, P.A. Butler, K.J. Cann, J.F.C. Cocks, O. Dorvaux, T. Enqvist, P. Fallon, B. Gall, M. Guttormsen, D. Hawcroft, K. Helariutta, F.P. Heßberger, F. Hoellinger, G.D. Jones, P. Jones,
				R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, M. Leino, S. Messelt, M. Muikku, S. Ødegård, R.D. Page, A. Savelius, A. Schiller, S. Siem, W.H. Trzaska, T. Tveter, J. Uusitalo
1999Ha05	PRLTA	82,	1391	M. Hannawald, T. Kautsch, A. Wöhr, W.B. Walters, KL. Kratz, V.N. Fedoseyev, V.L. Mishin, W. Böhmer, B. Pfeiffer, V. Sebastian, Y. Jading, U. Köster, J. Lettry, H.L. Ravn, ISOLDE
1999He11	JPGPE	25,	877	F.P. Heßberger
1999Ho01	NUPAB	645,	331	J. Honzátko, I. Tomandl, V. Bondarenko, D. Bucurescu, T. von Egidy, J. Ott,
177711001	NOTAB	043,	331	W. Schauer, HF. Wirth, C. Doll, A. Gollwitzer, G. Graw, R. Hertenberger, B.D. Valnion see also 98Ho16
1999Ho09	PYLBB	451,	247	E. Holzschuh, W. Kündig, L. Palermo, H. Stüssi, P. Wenk
1999Ho28	PRVCA	60,	057301	F. Hoellinger, B.J.P. Gall, N. Schulz, N. Amzahl, P.A. Butler, P.T. Greenlees,
		<i></i> ,	50,001	D. Hawcroft. J.F.C. Cocks, K. Helariutta, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, D. Savelius
1999Hu05	PRVCA	59,	2402	W.X. Huang, R.C. Ma, S.W. Xu, X.J. Xu, J.S. Guo, X.F. Sun, Y.X. Xie, Z.K. Li, Y.X. Ge, Y.Y. Wang, C.F. Wang, T.M. Zhang, G.M. Jin. Y.X. Luo
1999Hu10	PRVCA	60,	024315	Z. Hu, L. Batist, J. Agramunt, A. Algora, B.A. Brown, D. Cano-Ott, R. Collatz, A. Gadea, M. Gierlik, M. Górska, H. Grawe, M. Hellström, Z. Janas, M. Karny, R. Kirchner, F. Moroz, A. Płochocki, M. Rejmund, E. Roeckl, B. Rubio, M. Shibata, T. Szerypo, J.L. Tain, V. Wittmann

1999Ja02	PRLTA	82,	295	Z. Janas, C. Chandler, B. Blank, P.H. Regan, A.M. Bruce, W.N. Catford, N. Curtis, S. Czajkowski, Ph. Dessagne, A. Fleury, W. Gelletly, J. Giovinazzo, R. Grzywacz, M. Lewitowicz, C. Longour, C. Marchand, C. Miehé, N.A. Orr, R.D. Page, C.J. Pearson, M.S. Pravikoff, A.T. Reed, M.G. Saint-
1999Ke05	PYLAA	255,	221	Laurent, J.A. Sheikh, S.M. Vincent, R. Wadsworth, D.D. Warner, J.S. Winfield E.G. Kessler, Jr., M.S. Dewey, R.D. Deslattes, A. Henins, H.G. Börner, M. Jentschel, C. Doll, H. Lehmann
1999La14	PRVCA	59,	3086	C.A. Laue, K.E. Gregorich, R. Sudowe, M.B. Hendricks, J.L. Adams, M.R. Lane, D.M. Lee, C.A. McGrath, D.A. Shaughnessy, D.A. Strellis, E.R. Sylwester, P.A. Wilk, D.C. Hoffman
1999Le68	NUPAB	654,	687c	M. Lewitowicz, J.M. Daugas, R. Grzywacz, L. Achouri, J.C. Angélique, D. Baiborodin, R. Bentida, R. Béraud, C. Bingham, C. Borcea, W. Catford, A. Emsallem, G. de France, M. Glogowski, H. Grawe, D. Guillemaud-Mueller, M. Houry, S. Hurskanen, K.L. Jones, R.C. Lemmon, A.C. Mueller, A. Nowak, F. de Oliveira-Santos, A. Płochocki, M. Pfützner, P.H. Regan, K. Rykaczewski, M.G. Saint-Laurent, J.E. Sauvestre, M. Sawicka, M. Schaefer, G. Sletten, O. Sorlin, M. Stanoiu, J. Szerypo, W. Trinder, S. Viteritti, J. Winfield
1999Lh01	PRVCA	60,	014315	G. Lhersonneau, J.C. Wang, S. Hankonen, P. Dendooven, P. Jones, R. Julin, J. Äystö
1999Mo30	NUPAB	657,	251	CB. Moon, S.J. Chae, T. Komatsubara, T. Shizuma, Y. Sasaki, H. Ishiyama, T. Jumatsu, K. Furuno
1999Na27	PRLTA	83,	1112	T. Nakamura, N. Fukuda, T. Kobayashi, N. Aoi, H. Iwasaki, T. Kubo, A. Mengoni, M. Notani, H. Otsu, H. Sakurai, S. Shimoura, T. Teranishi, Y.X. Watanabe, K. Yoneda, M. Ishihara
1999Ni03	PRLTA	83,	1104	V. Ninov, K.E. Gregorich, W. Loveland, A. Ghiorso, D.C. Hoffman, D.M. Lee, H. Nitsche, W.J. Swiatecki, U.W. Kirbach, C.A. Laue, J.L. Adams, J.B. Patin, D.A. Shaughnessy, D.A. Strellis, P.A. Wilk
1999Og03	PYLBB	451,	11	H. Ogawa, K. Asahi, K. Sakai, A. Yoshimi, M. Tsuda, Y. Uchiyama, T. Suzuki, K. Suzuki, N. Kurokawa, M. Adachi, H. Izumi, H. Ueno, T. Shimoda, S. Tanimoto, N. Takahashi, WD. Schmidt-Ott, M. Schäfer, S. Fukuda, A. Yoshida, M. Notani, T. Kubo, H. Okuno, H. Sato, N. Aoi, K. Yoneda, H. Iwasaki,
1999Og05	ЕРЈАА	5,	63	N. Fukuda, N. Fukunishi, M. Ishihara, H. Miyatake Yu. Ts. Oganessian, A.V. Yeremin, G.G. Gulbekian, S.L. Bogomolov, V.I. Chepigin, B.N. Gikal, V.A. Gorshkov, M.G. Itkis, A.P. Kabachenko, V.B. Kutner, A. Yu. Lavrentev, O.N. Malyshev, A.G. Popeko, J. Roháč, R.N. Sagaidak, S. Hofmann, G. Münzenberg, M. Veselsky, S. Saro, N. Iwasa, K. Morita
1999Og07	NATUA	400,	242	Yu. Ts. Oganessian, A.V. Yeremin, A.G. Popeko, S. L Bogomolov, G.V. Buklanov, M.L. Chelnokov, V.I. Chepigin, B.N. Gikal, V.A. Gorshkov, G.G. Gulbekian, M.G. Itkis, A.P. Kabachenko, A. Yu. Lavrentev, O.N. Malyshev, J. Ro-
1999Og10	PRLTA	83,	3154	hac, R.N. Sagaidak, S. Hofmann, S. Saro, G. Giardina, K. Morita Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bo- gomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, K. Subotic, M.G. Itkis, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed
1999Og.B	B-Seeheim		O5	Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, K. Subotik, M.G. Itkis, K.J. Moody, J.F. Wild, N.J. Stoyer, R.W. Lougheed, and email
1999Po09	PRVCA	59,	2979	G.L. Poli, C.N. Davids, P.J. Woods, D. Seweryniak, J.C. Batchelder, L.T. Brown, C.R. Bingham, M.P. Carpenter, L.F. Conticchio, T. Davinson, J. de Boer, S. Hamada, D.J. Henderson, R.J. Irvine, R.V.F. Janssens, H.J. Maier, L. Müller, F. Soramel, K.S. Toth, W.B. Walters, J. Wauters
1999Pr10	PRVCA	60,	054307	J.I. Prisciandaro, P.F. Mantica, A.M. Oros-Peusquens, D.W. Anthony, M. Huhta, P.A. Lofy, R.M. Ronningen
1999Re06	PRVCA	59,	2416	I. Reusen, I. Reusen, A. Andreyev, J. Andrzejewski, N. Bijnens, S. Franchoo, M. Huyse, Yu. Kudryavtsev, K. Kruglov, W.F. Mueller, A. Piechaczek, R. Raabe, K. Rykaczewski, J. Szerypo, P. Van Duppen, L. Vermeeren, J. Wauters, A. Wöhr

1999Re16	PRVCA	60,	024311	A.T. Reed, O. Tarasov, R.D. Page, D. Guillemaud-Mueller, Yu. E. Penionzhkevich, R.G. Allatt, J.C. Angélique, R. Anne, C. Borcea, V. Burjan, W.N. Catford, Z. Dlouhý, C. Donzaud, S. Grévy, M. Lewitowicz, S.M. Lukyanov, F.M. Marqués, G. Martinez, A.C. Mueller, P.J. Nolan, J. Novák, N.A. Orr, F. Pougheon, P.H. Regan, M.G. Saint-Laurent, T. Siiskonen, E. Sokol, O. Sorlin,
1999Ry04	PRVCA	60,	011301	J. Suhonen, W. Trinder, S.M. Vincent K. Rykaczewski, J.C. Batchelder, C.R. Bingham, T. Davinson, T.N. Ginter, C.J. Gross, R. Grzywacz, M. Karny, B.D. MacDonald, J.F. Mas, J.W. Mc- Connell, A. Piechacczek, R.C. Slinger, K.S. Toth, W.B. Walters, P.J. Woods, E.F. Zganjar, B. Barmore, L. Gr. Ixaru, A.T. Kruppa, W. Nazarewicz, M. Rizea, T. Vertse
1999Sa06	PYLBB	448,	180	H. Sakurai, S.M. Lukyanov, M. Notani, N. Aoi, D. Beaumel, N. Fukuda, M. Hirai, E. Ideguchi, N. Imai, M. Ishihara, H. Iwasaki, T. Kubo, K. Kusaka, H. Kumagai, T. Nakamura, H. Ogawa, Yu. E. Penionzhkevich, T. Teranishi, Y.X. Watanabe, K. Yoneda, A. Yoshida
1999Sa.A 1999Sa.D	P-Bormio B-Seeheim		PW4	F. Sarazin, et al, and PrvCom to D. Lunney March 1999 M. Sakama, K. Tsukuda, M. Asai, S. Ichikawa, Y. Oura, A. Osa, M. Shibata, I. Nishinaka, Y. Nagame, M. Ebihara, K. Kawade, H. Nakahara and poster
1999Se14	PRVCA	60,	031304	D. Seweryniak, J. Uusitalo, M.P. Carpenter, D. Nisius, C.N. Davids, C.R. Bingham, L.T. Brown, I. Conticchio, D.J. Henderson, R.V.F. Janssens, W.B. Walters, J. Wauters, P.J. Woods
1999Sh03	PRVCA	59,	101	R.K. Sheline, P. Alexa, C.F. Liang, P. Paris
1999Sm07	ЕРЈАА	5,	43	M.B. Smith, R. Chapman, J.F.C. Cocks, O. Dorvaux, K. Helariutta, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, Y. Le Coz, M. Leino, D.J. Middleton, M. Muikku, P. Nieminen, P. Rahkila, A. Savelius, KM. Spohr
1999So08	PRVCA	59,	1324	D. Sohler, J. Cederkall, M. Lipoglavsek, Zs. Dombradi, M. Gorska, J. Persson, D. Seweryniak, I. Ahmad, A. Atac, R.A. Bark, J. Blomqvist, M.P. Carpenter, B. Cederwall, C.N. Davids, C. Fahlander, S.M. Fischer, H. Grawe, G. Hackman, R.V.F. Janssens, A. Johnson, A. Kerek, W. Klamra, J. Kownacki, C.J. Lister, S. Mitarai, D. Nisius, LO. Norlin, J. Nyberg, G. Poli, P. Reiter, J.J. Ressler,
1999So17	PRLTA	83,	1116	H.A. Roth, J. Schwartz, G. Sletten, J. Uusitalo, W.B. Walters, M. Weiszflog A.A. Sonzogni, C.N. Davids, P.J. Woods, D. Seweryniak, M.P. Carpenter, L.I. Bosslor, J. Schwartz, J. Livsitalo, W.P. Walters
1999So20	NUPAB	660,	3	J.J. Ressler, J. Schwartz, J. Uusitalo, W.B. Walters O. Sorlin, C. Donzaud, L. Axelsson, M. Belleguic, R. Béraud, C. Borcea, G. Canchel, E. Chabanat, J.M. Daugas, A. Emsallem, D. Guillemaud- Mueller, KL. Kratz, S. Leenhardt, M. Lewitowicz, C. Longour, M.J. Lopez, F. de Oliveira Santos, L. Petizon, B. Pfeiffer, F. Pougheon, M.G. Saint-Laurent, J.E. Sauvestre, and erratum Nucl. Phys. A669 (2000) 351
1999Ta20	EPJAA	5,	123	Y. Tagaya, S. Hashimoto, K. Morita, Y.H. Pu, T. Ariga, K. Ohta, T. Minemura, I. Hisinaga, T. Motobayashi, T. Nomura
1999To04	EPJAA	4,	233	Y. Toh, S. Yamada, A. Taniguchi, Y. Kawase
1999To11	PRVCA	60,	011302	K.S. Toth, C.R. Bingham, J.C. Batchelder, L.T. Brown, L.F. Contecchio, C.N. Davids, R.J. Irvine, D. Sewerniak, D.M. Moltz, W.B. Walters, J. Wauters, E.F. Zganjar
1999Uu01	PRVCA	59,	2975	J. Uusitalo, C.N. Davids, P.J. Woods, D. Sewernyak, A.A. Sonzogni, J.C. Batchelder, C.R. Bingham, T. Davinson, J. de Boer, D.J. Henderson, H.J. Maier, J. Ressler, R. Slinger, W.B. Walters
1999Wa09	PYLBB	454,	1	J.C. Wang, P. Dendooven, M. Hannawald, A. Honkanen, M. Huhta, A. Jokinen, KL. Kratz, G. Lhersonneau, M. Oinonen, H. Penttilä, K. Peräjärvi, B. Pfeiffer, J. Äystö
1999Xi03	EPJAA	5,	341	Y. Xie, S. Xu, Z. Li, Y. Yu, Q. Pan, C. Wang, T. Zhang, G. Long, Y. Li
1999Xi04	EPJAA	6,	239	Y. Xie, S. Xu, Z. Li, Y. Yu, Q. Pan, C. Wang, T. Zhang
1999Ya.A	P-Dubna		118	E.A. Yakushev, V.M. Gorozhankin, O. Dragoun, A. Kovalik, A.F. Novgorodov, M. Rysavy, A. Shpalek
				2000
2000Ah02	PRVCA	61,	044301	I. Ahmad, R.R. Chasman, P.R. Fields

2000An14	NATUA	405,	430	A.N. Andreyev, M. Huyse, P. Van Duppen, L. Weissman, D. Ackermann, J. Gerl, F.P. Heßberger, S. Hofmann, A. Kleinböhl, G. Münzenberg, S. Reshitko, C. Schlegel, H. Schaffner, P. Cagarda, M. Matos, S. Saro, A. Keenan, C. Moore, C.D. O'Leary, R.D. Page, M. Taylor, H. Kettunen, M. Leino, A. Lavrentiev, R. Wyss, K. Heyde
2000As.A	AnRpt JAER	I	13	M. Asai, K. Tsukada, S. Ichikawa, H. Haba, A. Osa, Y. Nagame, S. Goto, M. Sakama, Y. Kojima, M. Shibata, K. Akiyama, A. Toyoshima
2000Be42	EPJAA	8,	307	D. Beck, F. Ames, G. Audi, G. Bollen, F. Herfurth, HJ. Kluge, A. Kohl, M. König, D. Lunney, I. Martel, R.B. Moore, H. Raimbault-Hartmann, E. Schark, S. Schwarz, M. de Saint Simon, J. Szerypo, ISOLDE
2000Bo24	NUPAB	673,	85	V. Bondarenko, T. von Egidy, J. Honzátko, I. Tomandl, D. Bucurescu, N. Mărginean, J. Ott, W. Schauer, HF. Wirth, C. Doll
2000Ca.A	ThValencia			Cano-Ott
2000Ch07	PRVCA	61,	044309	C. Chandler, P.H. Regan, B. Blank, C.J. Pearson, A.M. Bruce, W.N. Catford, N. Curtis, S. Czajkowski, Ph. Dessagne, A. Fleury, W. Gelletly, J. Giovinazzo, R. Grzywacz, Z. Janas, M. Lewitowicz, C. Marchand, Ch. Miehe, N.A. Orr, R.D. Page, M.S. Pravikoff, A.T. Reed, M.G. Saint-Laurent, S.M. Vincent, R. Wadsworth, D.D. Warner, J.S. Winfield, F. Xu
2000Da07	PYLBB	476,	213	J.M. Daugas, R. Grzywacz, M. Lewitowicz, L. Achouri, J.C. Angélique, D. Baiborodin, K. Bennaceur, R. Bentida, R. Béraud, C. Borcea, C. Bingham, W.N. Catford, A. Emsallem, G. de France, H. Grawe, K.L. Jones, R.C. Lemmon, M.J. Lopez Jimenez, F. Nowacki, F. de Oliveira Santos, M. Pfützner, P.H. Regan, K. Rykaczewski, J.E. Sauvestre, M. Sawicka, G. Sletten, M. Stanoiu
2000Do10	JRNBA	105,	43	J. Döring, A. Aprahamian, M. Wiescher
2000Fy01	NUPAB	677,	38	H.O.U. Fynbo, M.J.G. Borge, L. Axelsson, J. Äystö, U.C. Bergmann,
2000Ge01	NUPAB	662,	3	L.M. Fraile, A. Honkanen, P. Hornshøj, Y. Jading, A. Jokinen, B. Jonson, I. Martel, I. Mukha, T. Nilsson, G. Nyman, M. Oinonen, I. Piqueras, K. Riisager, T. Siiskonen, M.H. Smedberg, O. Tengblad, J. Thaysen, F. Wenander, ISOLDE L. Genilloud, H.G. Börner, F. Corminboeuf, Ch. Doll, S. Drissi, M. Jentschel,
				J. Jolie, J. Kern, H. Lehmann, N. Warr, and erratum NUPAB 669(2000)407
2000Ge07	PYLBB	480,	77	T. Gehrmann
2000Gi01	PRVCA	61,	014308	T.N. Ginter, J.C. Batchelder, C.R. Bingham, C.J. Gross, R. Grzywacz, J.H. Hamilton, Z. Janas, M. Karny, S.H. Kim, J.F. Mas, J.W. McConnell, A. Piechaczek, A.V. Ramayya, K. Rykaczewski, P.B. Semmes, J. Szerypo, K.S. Toth, R. Wadsworth, CH. Yu, E.F. Zganjar
2000He17	EPJAA	8,	521	F.P. Heßberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, S. Saro, A. Andreyev, A. Lavrentev, A.G. Popeko, A.V. Yeremin, and erratum EP-JAA 9(2000)433
2000Hi08	PRVCA	61,	055501	M.M. Hindi, RM. Larimer, E.B. Norman, G.A. Rech
2000Ho13	PYLBB	482,	1	E. Holzschuh, L. Palermo, H. Stussi, P. Wenk
2000Ho19	RAACA	88,	139	A. Hohn, H.H. Coenen, S.M. Qaim
2000Hu17	PRVCA	62,	064315	Z. Hu, L. Batist, J. Agramunt, A. Algora, B.A. Brown, D. Cano-Ott, R. Collatz, A. Gadea, M. Gierlik, M. Górska, H. Grawe, M. Hellström, Z. Janas, M. Karny, R. Kirchner, F. Moroz, A. Płochocki, M. Rejmund, E. Roeckl, B. Rubio, M. Shibata, J. Szerypo, J.L. Tain, V. Wittmann
2000Io02	PRVCA	62,	014306	M. Ionescu-Bujor, A. Iordachescu, D. Bucurescu
2000Je09	PRVCA	62,	021302	D.G. Jenkins, M. Muikku, P.T. Greenlees, K. Hauschild, K. Helariutta, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, N.S. Kelsall, H. Kettunen, P. Kuusiniemi, M. Leino, C.J. Moore, P. Nieminen, C.D. O'Leary, R.D. Page, P. Rakhila, W. Reviol, M.J. Taylor, J. Uusitalo, R. Wadsworth
2000Jo18	EPJAA	9,	9	A. Jokinen, J.C. Wang, J. Äystö, P. Dendooven, S. Nummela, J. Huikari, V. Kolhinen, A. Nieminen, K. Peräjärvi, S. Rinta-Antila
2000Ka21	EPJAA	7,	451	R. Kalpakchieva, H.G. Bohlen, W. von Oertzen, B. Gebauer, M. von Lucke- Petsch, T.N. Massey, A.N. Ostrowski, Th. Stolla, M. Wilpert, Th. Wilpert
2000Ko15	EPJAA	7,	167	A. Korgul, W. Urban, T. Rzaca-Urban, M. Rejmund, J.L. Durell, M.J. Leddy, M.A. Jones, W.R. Phillips, A.G. Smith, B.J. Varley, N. Schulz, M. Bentaleb, E. Lubkiewicz, I. Ahmad, L.R. Morss

2000Ko16	PRVCA	61,	044323	F.G. Kondev, M.P. Carpenter, R.V.F. Janssens, I. Wiedenhöver, M. Alcorta, L.T. Brown, C.N. Davids, T.L. Khoo, T. Lauritsen, C.J. Lister, D. Seweryniak, S. Siem, A.A. Sonzogni, J. Uusitalo, P. Bhattacharyya, S.M. Fischer, W. Reviol,
2000Ko48	PRVCA	62,	044305	L.L. Riedinger, R. Nouicer F.G. Kondev, R.V.F. Janssens, M.P. Carpenter, K. Abu Saleem, I. Ahmad, M. Alcorta, H. Amro, P. Bhattacharyya, L.T. Brown, J. Caggiano, C.N. Davids, S.M. Fischer, A. Heinz, B. Herskind, R.A. Kaye, T.L. Khoo, T. Lauritsen, C.J. Lister, W.C. Ma, R. Nouicer, J. Ressler, W. Reviol, L.L. Riedinger, D.G. Sarantites, D. Seweryniak, S. Siem, A. Sonzogni, J. Uusitalo, P.G. Varmette, I. Wiedenhöver
2000Kr18	HYIND	129,	185	K. Kratz, B. Pfeiffer, F. Thielemann, W.B. Walters
2000Kr.A	PrvCom	GAu	Jun	KL. Kratz, B. Pfeiffer
2000Ku25	YAFIA	63,	1365	V.V. Kuzminov, N. Ja. Osetrova
2000La25	PRVCA	61,	067603	C.A. Laue, K.E. Gregorich, R. Sudowe, J.L. Adams, M.R. Lane, D.M. Lee, C.A. McGrath, D.A. Shaughnessy, D.A. Strellis, E.R. Sylwester, P.A. Wilk, D.C. Hoffman
2000La34	PRVCA	62,	064307	Yu. A. Lazarev, Yu. V. Lobanov, Yu. Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, A.N. Polyakov, J. Rigol, I.V. Shirokovsky, Yu. S. Tsyganov, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, A.N. Mezentsev, K. Subotic, K.J. Moody, N.J. Stoyer, J.F. Wild, R.W. Lougheed
2000Li08	EPJAA	7,	1	Z. Li, S. Xu, Y. Xie, T. Zhang, R. Ma, J. Du, Y. Guo, Y. Ge, C. Wang, B. Guo, J. Xing
2000Li37	PRVCA	62,	047303	C.F. Liang, P. Paris, R.K. Sheline
2000Ma62	PRVCA	62,	034308	K. Markenroth, L. Axelsson, S. Baxter, M.J.G. Borge, C. Donzaud, S. Fayans, H.O.U. Fynbo, V.Z. Goldberg, S. Grévy, D. Guillemaud-Mueller, B. Jonson, KM. Källman, S. Leenhardt, M. Lewitowicz, T. Lönnroth, P. Manngøard, I. Martel, A.C. Mueller, I. Mukha, T. Nilsson, G. Nyman, N.A. Orr, K. Riisager, G.V. Rogachev, MG. Saint-Laurent, I.N. Serikov, N.B. Shul'gina, O. Sorlin, M. Steiner, O. Tengblad, M. Thoennessen, E. Tryggestad, W.H. Trzaska, F. Wenander, J.S. Winfield, R. Wolski
2000Ma65	EPJAA	8,	295	O.N. Malyshev, A.V. Belozerov, M.L. Chelnokov, V.I. Chepigin, V.A. Gorshkov, A.P. Kabachenko, A.G. Popeko, J. Rohach, R.N. Sagaidak, A.V. Yeremin, S.I. Mulgin, S.V. Zhdanov
2000Ma95	PRVCA	62,	057303	H. Mahmud, C.N. Davids, P.J. Woods, T. Davinson, D.J. Henderson, R.J. Irvine, D. Seweryniak, W.B. Walters
2000Me.A	PrvCom	AHW	Sep	K.A. Mezilev, B. Fogelberg, V.I. Isakov, H. Mach
2000Ni02	PRVCA	61,	034309	K. Nishio, H. Ikezoe, S. Mitsuoka, J. Lu
2000O101	PRLTA	84,	4056	J.M. Oliveira, Jr., A. Lépine-Szily, H.G. Bohlen, A.N. Ostrowski, R. Lichtenthäler, A. Di Pietro, A.M. Laird, G.F. Lima, L. Maunoury, F. de Oliveira San-
2000Pe28	PYLBB	492,	1	tos, P. Roussel-Chomaz, H. Savajols, W. Trinder, A.C.C. Villari, A. de Vismes K. Peräjärvi, T. Siiskonen, A. Honkanen, P. Dendooven, A. Jokinen, P.O. Lipas, M. Oinonen, H. Penttilä, J. Äystö
2000Pi03	PRVCA	61,	024312	J.A. Pinston, C. Foin, J. Genevey, R. Béraud, E. Chabanat, H. Faust, S. Oberstedt, B. Weiss
2000Po26	PYLBB	491,	225	Zs. Podolyák, P.H. Regan, M. Pfutzner, J. Gerl, M. Hellström, M. Caamano, P. Mayet, Ch. Schlegel, A. Aprahamian, J. Benlliure, A.M. Bruce, P.A. Butler, D. Cortina Gil, D.M. Cullen, J. Doring, T. Enqvist, F. Rejmund, C. Fox, J. Garces Narro, H. Geissel, W. Gelletly, J. Giovinazzo, M. Gorska, H. Grawe, R. Grzywacz, A. Kleinbohl, W. Korten, M. Lewitowicz, R. Lucas, H. Mach, M. Mineva, C.D. O'Leary, F. de Oliveira, C.J. Pearson, M. Rejmund, M. Sawicka, H. Schaffner, K. Schmidt, Ch. Theisen, P.M. Walker, D.D. Warner, C. Wheldon, H.J. Wollersheim, S.C. Wooding, F.R. Xu
2000Ra23	NUPAB	677,	75	T. Radon, H. Geissel, G. Münzenberg, B. Franzke, Th. Kerscher, F. Nolden, Yu. N. Novikov, Z. Patyk, C. Scheidenberger, F. Attallah, K. Beckert, T. Beha, F. Bosch, H. Eickhoff, M. Falch, Y. Fujita, M. Hausmann, F. Herfurth, H. Irnich, H.C. Jung, O. Klepper, C. Kozhuharov, Yu. A. Litvinov, K.E.G. Löbner, F. Nickel, H. Reich, W. Schwab, B. Schlitt, M. Steck, K. Sümmerer, T. Winkler, H. Wollnik

2000Re03	PRLTA	84,	2104	J.J. Ressler, A. Piechaczek, W.B. Walters, A. Aprahamian, M. Wiescher, J.C. Batchelder, C.R. Bingham, D.S. Brenner, T.N. Ginter, C.J. Gross, R. Grzywacz, D. Kulp, B. MacDonald, W. Reviol, J. Rikovska, K. Rykaczewski,
2000Ri14	PRLTA	85,	1392	J. A. Winger, E.F. Zganjar J. Rikovska, T. Giles, N.J. Stone, K. van Esbroeck, G. White, A. Wöhr, M. Veskovic, I.S. Towner, P.F. Mantica, J.I. Prisciandaro, D.J. Morrissey, V.N. Fedoseyev, V.I. Mishin, U. Köster, W.B. Walters, NICOLE, ISOLDE
2000Sa21	PRLTA	84,	5062	F. Sarazin, H. Savajols, W. Mittig, F. Nowacki, N.A. Orr, Z. Ren, P. Roussel-Chomaz, G. Auger, D. Baiborodin, A.V. Belozyorov, C. Borcea, E. Caurier, Z. Dlouhý, A. Gillibert, A.S. Lalleman, M. Lewitowicz, S.M. Lukyanov, F. de Oliveira, Y.E. Penionzhkevich, D. Ridikas, H. Sakuraï, O. Tarasov, A. de Vismes
2000Sa52	EPJAA	9,	303	M. Sakama, K. Tsukada, M. Asai, S. Ichikawa, H. Haba, S. Goto, Y. Oura, I. Nishinaka, Y. Nagame, M. Shibata, Y. Kojima, K. Kawade, M. Ebihara, H. Nakahara
2000Sh10	PRVCA	61,	044609	D.A. Shaughnessy, J.L. Adams, K.E. Gregorich, M.R. Lane, C.A. Laue, D.M. Lee, C.A. McGrath, J.B. Patin, D.A. Strellis, E.R. Sylwester, P.A. Wilk, D.C. Hoffman
2000Si02	ARISE	52,	467	G. Sibbens, B. Denecke
2000Sm06	JPGPE	26,	787	M.B. Smith, R. Chapman, J.F.C. Cocks, KM. Spohr, O. Dorvaux, K. Helariutta, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, H. Kettunen, P. Kuusiniemi, Y. Le Coz, M. Leino, D.J. Middleton, M. Muikku, P. Nieminen, P. Rahkila, A. Savelius
2000So11	PHSTT	88,	153	G.A. Souliotis
2000We.A	AnRpt GSI		10	E. Wefers, T. Faestermann, R. Schneider, A. Stolz, K. Sümerrer, J. Friese, H. Geissel, M. Hellström, P. Kienle, HJ. Körner, M. Münch, G. Münzenberg, P. Thirolf, H. Weick
2000Wh04	PRVCA	62,	057301	C. Wheldon, P.M. Walker, P. Chowdhury, I. Shestakova, R. D'Alarcao, I. Ahmad, M.P. Carpenter, D.M. Cullen, R.V.F. Janssens, T.L. Khoo, F.G. Kondev, C.J. Lister, C.J. Pearson, Zs. Podolyák, D. Seweryniak, I. Wiedenhoever
2000Wi15	PRLTA	85,	2697	P.A. Wilk, K.E. Gregorich, A. Türler, C.A. Laue, R. Eichler, V. Ninov, J.L. Adams, U.W. Kirbach, M.R. Lane, D.M. Lee, J.B. Patin, D.A. Shaughnessy, D.A. Strellis, H. Nitsche, D.C. Hoffman
2000Xu08	EPJAA	8,	435	S. Xu, Y. Xie, Y. Yu, Z. Li, Q. Pan, C. Wang, J. Xing, T. Zhang
2000Ye02	JPGPE	26,	839	G. Yeandle, J. Billowes, P. Campbell, E.C.A. Cochrane, P. Dendooven, D.E. Evans, D.H. Forest, J.A.R. Griffith, J. Huikari, A. Jokinen, I.D. Moore, A. Nieminen, K. Peräjärvi, G. Tungate, J. Äystö
				2001
2001Ba06	PRVCA	63,	024302	P.H. Barker
2001Be53	EPJAA	11,	279	U.C. Bergmann, M.J.G. Borge, J. Cederkäll, C. Forssén, E. Fumero, H.O.U. Fynbo, H. Gausemel, H. Jeppesen, B. Jonson, K. Markenroth, T. Nilsson, G. Nyman, K. Riisager, H. Simon, O. Tengblad, L. Weissman, F. Wenander, K. Wilhelmsen Rolander, ISOLDE
2001Bo11	NUPAB	686,	64	R. Bonetti, C. Carbonini, A. Guglielmetti, M. Hussonnois, D. Trubert,
2001Bo54	NUPAB	695,	69	C. Le Naour R. Borcea, J. Äystö, E. Caurier, P. Dendooven, J. Döring, M. Gierlik, M. Górska,
20012031	TTOTAL	053,		H. Grawe, M. Hellström, Z. Janas, A. Jokinen, M. Karny, R. Kirchner, M. La Commara, K. Langanke, G. Martínez-Pinedo, P. Mayet, A. Nieminen, F. Nowacki, H. Penttilä, A. Płochocki, M. Rejmund, E. Roeckl, C. Schlegel, K. Schmidt, R. Schwengner, M. Sawicka, and erratum NUPAB 703(2002)889
2001Bo59	HYIND	132,	215	G. Bollen, F. Ames, G. Audi, D. Beck, J. Dilling, O. Engels, S. Henry, F. Herfurth, A. Kellerbauer, HJ. Kluge, A. Kohl, E. Lamour, D. Lunney, R.B. Moore, M. Oinonen, C. Scheidenberger, S. Schwarz, G. Sikler, J. Szerypo, C. Weber, ISOLDE
2001Br27	EPJDD	15,	181	S. Brunner, T. Engel, A. Schmitt, G. Werth

2001Ca37	PRVCA	64,	025802	J.A. Caggiano, D. Bazin, W. Benenson, B. Davids, R. Ibbotson, H. Scheit, B.M. Sherrill, M. Steiner, J. Yurkon, A.F. Zeller, B. Blank, M. Chartier,
				J. Greene, J.A. Nolen, Jr., A.H. Wuosmaa, M. Bhattacharya, A. García, M. Wiescher
2001Ca60	ЕРЈАА	12,	377	G. Canchel, L. Achouri, J. Äystö, R. Béraud, B. Blank, E. Chabanat, S. Czajkowski, P. Dendooven, A. Emsallem, J. Giovinazzo, J. Honkanen, A. Jokinen, M. Lewitowicz, C. Longour, F. de Oliveira-Santos, K. Peräjärvi, M. Staniou, J.C. Thomas
2001Ca.B	AnRpt GSI		15	P. Cagarda,, S. Antalic, D. Ackermann, F.P. Heßberger, S. Hofmann, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, A.G. Popeko, Š. Šáro, J. Uusitalo, A.V. Yeremin
2001Ch31	PYLBB	505,	21	L. Chen, B. Blank, B.A. Brown, M. Chartier, A. Galonsky, P.G. Hansen, M. Thoennessen
2001Da22	NUPAB	694,	375	F.A. Danevich, V.V. Kobychev, O.A. Ponkratenko, V.I. Tretyak, Yu. G. Zdesenko
2001Do08	PRLTA	86,	4259	G. Douysset, T. Fritioff, C. Carlberg, I. Bergström, M. Björkhage
2001Dr05	PRVCA	63,	061302	G.D. Dracoulis, T. Kibédi, A.P. Byrne, A.M. Baxter, S.M. Mullins, R.A. Bark
2001Fo08	PRLTA	87,	212501	B. Fornal, R. Broda, K.H. Maier, J. Wrzesinski, G.J. Lane, M. Cromaz,
20011 008	TKLIA	67,	212301	A.O. Macchiavelli, R.M. Clark, K. Vetter, A.P. Byrne, G.D. Dracoulis, M.P. Carpenter, R.V.F. Janssens, I. Wiedenhoever, M. Rejmund, J. Blomqvist
2001Fr18	EPJDD	15,	141	T. Fritioff, C. Carlberg, G. Douysset, R. Schuch, I. Bergström
2001Ga01	PRVCA	63,	014302	M. Galeazzi, F. Fontanelli, F. Gatti, S. Vitale
2001Ga20	EPJAA	10,	21	Z.G. Gan, Z. Qin, H.M. Fan, X.G. Lei, Y.B. Xu, J.J. He, H.Y. Liu, X.L. Wu, J.S. Guo, X.H. Zhou, S.G. Yuan, G.M. Jin
2001Ga24	PRVCA	63,	044307	J. Garcés Narro, C. Longour, P.H. Regan, B. Blank, C.J. Pearson, M. Le-
				witowicz, C. Miehé, W. Gelletly, D. Appelbe, L. Axelsson, A.M. Bruce, W.N. Catford, C. Chandler, R.M. Clark, D.M. Cullen, S. Czajkowski, J.M. Daugas, P. Dessagne, A. Fleury, L. Frankland, J. Giovinazzo, B. Greenhalgh, R. Grzywacz, M. Harder, K.L. Jones, N. Kelsall, T. Kszczot, R.D. Page, A.T. Reed, O. Sorlin, R. Wadsworth
2001Ga59	EPJAA	11,	413	M. Gaelens, J. Andrzejewski, J. Camps, P. Decrock, M. Huyse, K. Kruglov, W.F. Mueller, A. Piechaczek, N. Severijns, J. Szerypo, G. Vancraeynest,
				P. Van Duppen, J. Wauters
2001Gi01	EPJAA	10,	73	J. Giovinazzo, B. Blank, C. Borcea, M. Chartier, S. Czajkowski, G. de France, R. Grzywacz, Z. Janas, M. Lewitowicz, F. de Oliveira Santos, M. Pfützner, M.S. Pravikoff, J.C. Thomas
2001Gi17	EPJAA	12,	309	A. Gizon, J. Genevey, C.F. Liang, P. Paris, D. Barnéoud, J. Inchaouh, I. Penev, A. Płochocki
2001Gr07	NUPAB	682,	41c	R. Grzywacz, C.H. Yu, Z. Janas, S.D. Paul, J.C. Batchelder, C.R. Bingham, T.N. Ginter, C.J. Gross, J. McConnell, M. Lipoglavsek, A. Piechaczek, D.C. Radford, J.J. Ressler, K. Rykaczewski, J. Shergur, W.B. Walters, E.F. Zganjar, C. Baktash, M.P. Carpenter, R.V.F. Janssens, C.E. Svensson, J.C. Waddington, D. Ward, E. Dragulescu
2001Ha39	NUPAB	688,	578c	M. Hannawald, V.N. Fedoseyev, U. Koster, KL. Kratz, V.I. Mishin, W.F. Mueller, H.L. Ravn, J. Van Roosbroeck, H. Schatz, V. Sebastian, W.B. Wal-
2001Ha46	PRLTA	87,	072501	ters, ISOLDE K. Hauschild, M. Rejmund, H. Grawe, E. Caurier, F. Nowacki, F. Becker, Y. Le Coz, W. Korten, J. Döring, M. Górska, K. Schmidt, O. Dorvaux, K. Helari-
2001На66	HYIND	132,	291	utta, P. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo, F. Azaiez, M. Belleguic M. Hausmann, J. Stadlmann, F. Attallah, K. Beckert, P. Beller, F. Bosch, H. Eickhoff, M. Falch, B. Franczak, B. Franzke, H. Geissel, Th. Kerscher, O. Klepper, HJ. Kluge, C. Kozhuharov, Yu. A. Litvinov, K.E.G. Lobner, G. Munzenberg, N. Nankov, F. Nolden, Yu. N. Novikov, T. Ohtsubo, T. Radon, H. Schatz,
2001He29	PRLTA	87,	142501	C. Scheidenberger, M. Steck, Z. Sun, H. Weick, H. Wollnik F. Herfurth, J. Dilling, A. Kellerbauer, G. Audi, D. Beck, G. Bollen, HJ. Kluge, D. Lunney, R.B. Moore, C. Scheidenberger, S. Schwarz, G. Sikler, J. Szerypo, ISOLDE

2001He35	ЕРЈАА	12,	57	F.P. Heßberger, S. Hofmann, D. Ackermann, V. Ninov, M. Leino, G. Münzenberg, S. Saro, A. Lavrentev, A.G. Popeko, A.V. Yeremin, Ch. Stodel
200111-26	PRVAA	61	062504	and PrvCom
2001He36 2001He.A	AnRpt GSI	64,		T.P. Heavner, S.R. Jefferts, G.H. Dunn F.P. Heßberger, S. Hofmann, D. Ackermann
2001Hi06	PRVCA	63,		M.M. Hindi, B.O. Faircloth, R.L. Kozub, K.R. Czerwinski, RM. Larimer, E.B. Norman, B. Sur, I. Žlimen
2001Ho06	EPJAA	10,	5	S. Hofmann, F.P. Heßberger, D. Ackermann, S. Antalic, P. Cagarda, S. Ćwiok, B. Kindler, J. Kojouharova, B. Lommel, R. Mann, G. Münzenberg, A.G. Popeko, S. Saro, H.J. Schött, A.V. Yeremin
2001Ke05	APOBB	32,	989	H. Kettunen, P.T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, J. Uusitalo
2001Ke06	PRVCA	63,	044315	H. Kettunen, J. Uusitalo, M. Leino, P. Jones, K. Eskola, P.T. Greenlees, K. Helariutta, R. Julin, S. Juutinen, H. Kankaanpaa, P. Kuusiniemi, M. Muikku, P. Nieminen, P. Rahkila
2001Ke14	PRAMC	56,	735	S.L. Keshava, K. Gopala, P. Venkataramaiah
2001Ki13	PPNPD	46,	73	P. Kienle, T. Faestermann, J. Friese, HJ. Körner, M. Münch, R. Schneider, A. Stolz, E. Wefers, H. Geissel, G. Münzenberg, C. Schlegel, K. Sümmerer, H. Weick, M. Hellström, P. Thirolf
2001Kl13	MPLAE	16,	2409	H.V. Klapdor-Kleingrothaus, A. Dietz, H.L. Harney, I.V. Krivosheina
2001Ko07	NIMAE	458,	656	Y. Kojima, M. Shibata, H. Uno, K. Kawade, A. Taniguchi, Y. Kawase, K. Shizuma
2001Ko44	PYLBB	512,	268	F.G. Kondev, M.P. Carpenter, R.V.F. Janssens, K. Abu Saleem, I. Ahmad, H. Amro, J.A. Cizewski, M. Danchev, C.N. Davids, D.J. Hartley, A. Heinz, T.L. Khoo, T. Lauritsen, C.J. Lister, W.C. Ma, G.L. Poli, J. Ressler, W. Reviol, L.L. Riedinger, D. Seweryniak, M.B. Smith, I. Wiedenhöver and Prv-Com AHW August 2001
2001Ko52	PRLTA	87,	092501	A.A. Korsheninnikov, M.S. Golovkov, I. Tanihata, A.M. Rodin, A.S. Fomichev, S.I. Sidorchuk, S.V. Stepantsov, M.L. Chelnokov, V.A. Gorshkov, D.D. Bogdanov, R. Wolski, G.M. Ter-Akopian, Yu. Ts. Oganessian, W. Mittig, P. Roussel-Chomaz, H. Savajols, E.A. Kuzmin, E. Yu. Nikolsky, A.A. Ogloblin
2001Ko.B	PrvCom	AHW	Aug	F.G. Kondev
2001Ku07	APOBB	32,	1009	P. Kuusiniemi, J.F.C. Cocks, K. Eskola, P.T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpaa, A. Keenan, H. Kettunen, M. Leino, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo
2001La09	NUPAB	682,	71c	G.J. Lane, R. Broda, B. Fornal, A.P. Byrne, G.D. Dracoulis, J. Blomqvist, R.M. Clark, M. Cromaz, M.A. Deleplanque, R.M. Diamond, P. Fallon, R.V.F. Janssens, I.Y. Lee, A.O. Macchiavelli, K.H. Maier, M. Rejmund, F.S. Stephens, C.E. Svensson, K. Vetter, D. Ward, I. Wiedenhover, J. Wrzesinski
2001La31	HYIND	132,	315	A.S. Lalleman, G. Auger, W. Mittig, M. Chabert, M. Chartier, J. Ferme, A. Gillibert, A. Lepine-Szily, M. Lewitowicz, M.H. Moscatello, N.A. Orr,
2001Li17	PRVCA	63,	047307	G. Politi, F. Sarazin, H. Savajols, P. Van Isacker, A.C.C. Villari K. Lindenberg, F. Neumann, D. Galaviz, T. Hartmann, P. Mohr, K. Vogt, S. Volz, A. Zilges
2001Li44	PRVCA	64,	034310	C.F. Liang, P. Paris, R.K. Sheline
2001Lu17	PRVCA	64,	054311	D. Lunney, G. Audi, H. Doubre, S. Henry, C. Monsanglant, M. de Saint Simon,
		ŕ		C. Thibault, C. Toader, C. Borcea, G. Bollen, ISOLDE
2001Lu20	HYIND	132,	299	D. Lunney, C. Monsanglant, G. Audi, G. Bollen, C. Borcea, H. Doubre, C. Gaulard, S. Henry, M. de Saint Simon, C. Thibault, C. Toader, N. Vieira, ISOLDE
2001Ma08	PRVCA	63,	024613	V. Maddalena, T. Aumann, D. Bazin, B.A. Brown, J.A. Caggiano, B. Davids, T. Glasmacher, P.G. Hansen, R.W. Ibbotson, A. Navin, B.V. Pritychenko, H. Scheit, B.M. Sherrill, M. Steiner, J.A. Tostevin, J. Yurkon
2001Ma69	PRVCA	64,	031303	H. Mahmud, C.N. Davids, P.J. Woods, T. Davinson, A. Heinz, G.L. Poli, J.J. Ressler, K. Schmidt, D. Seweryniak, M.B. Smith, A.A. Sonzogni, J. Uusitalo, W.B. Walters

2001Ma96	ЕРЈАА	12,	269	C. Mazzocchi, Z. Janas, J. Döring, M. Axiotis, L. Batist, R. Borcea, D. Cano-Ott, E. Caurier, G. de Angelis, E. Farnea, A. Faßbender, A. Gadea, H. Grawe,
2001Mi22	ЕРЈАА	11,	9	A. Jungclaus, M. Kapica, R. Kirchner, J. Kurcewicz, S.M. Lenzi, T. Martínez, I. Mukha, E. Nácher, D.R. Napoli, E. Roeckl, B. Rubio, R. Schwengner, J.L. Tain, C.A. Ur M.N. Mineva, M. Hellström, M. Bernas, J. Gerl, H. Grawe, M. Pfützner, P.H. Regan, M. Rejmund, D. Rudolph, F. Becker, C.R. Bingham, T. Enqvist, B. Fogelberg, H. Gausemel, H. Geissel, J. Genevey, M. Górska, R. Grzywacz, K. Hauschild, Z. Janas, I. Kojouharov, Y. Kopatch, A. Korgul, W. Korten,
2001No07	ЕРЈАА	11,	257	J. Kurcewicz, M. Lewitowicz, R. Lucas, H. Mach, S. Mandal, P. Mayet, C. Mazzocchi, J.A. Pinston, Zs. Podolyàk, H. Schaffner, Ch. Schlegel, K. Schmidt, K. Sümmerer, H.J. Wollersheim Yu. N. Novikov, H. Schatz, P. Dendooven, R. Béraud, Ch. Miehé, A.V. Popov, D.M. Seliverstov, G.K. Vorobjev, P. Baumann, M.J.G. Borge, G. Canchel, Ph. Dessagne, A. Emsallem, W. Huang, J. Huikari, A. Jokinen, A. Knipper, V. Kolhinen, A. Nieminen, M. Oinonen, H. Penttilä, K. Peräjärvi, I. Piqueras,
2001Og01	PRVCA	63,	011301	S. Rinta-Antila, J. Szerypo, Y. Wang, J. Äystö Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bo- gomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, O.V. Ivanov, G.V. Buklanov, K. Subotic, M.G. Itkis, K.J. Moody, J.F. Wild,
2001Og08	PRVCA	64,	054606	N.J. Stoyer, M.A. Stoyer, R.W. Lougheed, C.A. Laue, Ye. A. Karelin, A.N. Tatarinov Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, K. Subotic, O.V. Ivanov, A.N. Voinov, V.I. Zagrebaev, K.J. Moody, J.F. Wild, N.J. Stoyer, M.A. Stoyer, R.W. Lougheed
2001Pa52	HYIND	132,	189	A. Paul, S. Röttger, A. Zimbal, U. Keyser
2001Pe14	YAFIA	64,	1197	Yu. E. Penionzhkevich
2001Po05	PRVCA	63,	044304	G.L. Poli, C.N. Davids, P.J. Woods, D. Seweryniak, M.P. Carpenter, J.A. Cizewski, T. Davinson, A. Heinz, R.V.F. Janssens, C.J. Lister, J.J. Ressler, A.A. Sonzogni, J. Uusitalo, W.B. Walters
2001Ro35	HYIND	132,	153	E. Roeckl
2001Ro.B	B-Aulanko		PH23	M.W. Rowe, J.C. Batchelder, T.N. Ginter, K.E. Gregorich, F.Q. Guo, F.P. Heßberger, V. Ninov, J. Powell, K.S. Toth, X.J. Xu, J. Cerny
2001Ry01	NUPAB	682,	270c	K.P. Rykaczewski, R.K. Grzywacz, M. Karny, J.W. McConnell, M. Momayezi, J. Wahl, Z. Janas, J.C. Batchelder, C.R. Bingham, D. Hartley, M.N. Tantawy, C.J. Gross, T.N. Ginter, J.H. Hamilton, W.D. Kulp, M. Li-
2001Sc23 2001Sc41	ARISE NUPAB	55, 693,	89 533	poglavsek, A. Piechaczek, E.F. Zganjar, W.B. Walters, J.A. Winger U. Schotzig, H. Schrader, E. Schonfeld, E. Gunther, R. Klein S. Schwarz, F. Ames, G. Audi, D. Beck, G. Bollen, C. De Coster, J. Dilling, O. Engels, R. Fossion, JE. Garcia Ramos, S. Henry, F. Herfurth, K. Heyde, A. Kellerbauer, HJ. Kluge, A. Kohl, E. Lamour, D. Lunney, I. Martel, R.B. Moore, M. Oinonen, H. Raimbault-Hartmann, C. Scheidenberger, G. Sik-
2001Sh36	PRVCA	64,	054307	ler, J. Szerypo, C. Weber, ISOLDE I. Shestakova, G. Mukherjee, P. Chowdhury, R. D'Alarcao, C.J. Pearson, Zs. Podolyák, P.M. Walker, C. Wheldon, D.M. Cullen, I. Ahmad, M.P. Carpenter, M.P. Carpenter, R.V.F. Janssens, T.L. Khoo, F.G. Kondev, C.J. Lister,
2001So02	PRVCA	63,	031304	D. Seweryniak, I. Wiedenhoever F. Soramel, A. Guglielmetti, L. Stroe, L. Müller, R. Bonetti, G.L. Poli, F. Malerba, E. Bianchi, A. Andrighetto, J.Y. Guo, Z.C. Li, E. Maglione, F. Scar- lassara, C. Signorini, Z.H. Liu, M. Ruan, M. Ivascu, C. Broude, P. Bednarczyk, I. S. Forreira
2001St.A	AnRpt GSI		7	L.S. Ferreira A. Stolz, T. Faestermann, R. Schneider, K. Suemmerer, E. Wefers, J. Friese, H. Geissel, J. Gerl, M. Hellstroem, P. Kienle, HJ. Koerner, M.N. Mineva, M. Muench, G. Muenzenberg, C. Schlegel, R.S. Simon, P. Thirolf, H. Weick, K. Zeitelhack

2001Ta23	PYLBB	515,	255	S. Takeuchi, S. Shimoura, T. Motobayashi, H. Akiyoshi, Y. Ando, N. Aoi, Zs. Fülöp, T. Gomi, Y. Higurashi, M. Hirai, N. Iwasa, H. Iwasaki, Y. Iwata, H. Kobayashi, M. Kurokawa, Z. Liu, T. Minemura, S. Ozawa, H. Sakurai,
2001Th01 2001To06	PRVCA PRVCA	63, 63,	014308 034314	M. Serata, T. Teranishi, K. Yamada, Y. Yanagisawa, M. Ishihara M. Thoennessen, S. Yokoyama, P.G. Hansen B.E. Tomlin, C.J. Barton, N.V. Zamfir, M.A. Caprio, R.L. Gill, R. Krücken, J.R. Novak, J.R. Cooper, K.E. Zyromski, G. Cata-Danil, C.W. Beausang, A. Wolf, N.A. Pietralla, H. Newman, J. Cederkall, B. Liu, Z. Wang, R.F. Casten, D.S. Brenner
2001Va33 2001Va.A	HYIND PrvCom	132, AHW	163 Oct	R.S. Van Dyck, Jr., S.L. Zafonte, P.B. Schwinberg R.S. Van Dyck,Jr.
2001 Va.A 2001 Va.B	AnRpt GSI	71111	14	K. Van de Vel, A.N. Andreyev, D. Ackermann, S. Antalic, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Heßberger, S. Hofmann, M. Huyse, D. Karlgren, B. Kindsller, I. Kozhoukharov, M. Leino, B. Lommel, G. Muenzenberg, C. Moore, R.D. Page, C. Schlegel, P. Van Duppen
2001Wa50 2001Ze.A	HYIND ThOrsay	132,	323	C. Wagemans, J. Wagemans, G. Goeminne T. Zerguerras
				2002
2002Aa.A	MPLAE to b	pe pd		C.E. Aalseth, F.T. Avignone III, A. Barabash, F. Boehm, R.L. Brodzinski, J.I. Collar, P.J. Doe, H. Ejiri, S.R. Elliott, E. Fiorini, R.J. Gaitskell, G. Gratta, R. Hazama, K. Kazkaz, G.S. King III, R.T. Kouzes, H.S. Miley, M.K. Moe, A. Morales, J. Morales, A. Piepke, R.G.H. Robertson, W. Tornow, P. Vogel,
2002An15	EPJAA	14,	63	R.A. Warner, J.F. Wilkerson arXiv:hep-ex/0202018 v1 7 Feb 2002 A.N. Andreyev, K. Van de Vel, A. Barzakh, A. De Smet, H. De Witte, D.V. Fedorov, V.N. Fedoseyev, S. Franchoo, M. Górska, M. Huyse, Z. Janas, U. Köster, W. Kurcewicz, J. Kurpeta, V.I. Mishin, K. Partes, A. Płochocki, P. Van Duppen, L. Weissman
2002An19	PRVCA	66,	014313	A.N. Andreyev, M. Huyse, K. Van de Vel, P. Van Duppen, O. Dorvaux, P. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo, R. Wyss, K. Hauschild, Y. Le Coz
2002As08	JNRSA	3,	187	M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, K. Akiyama, A. Toyoshima, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, K. Kawade
2002At01	NUPAB	701,	561c	F. Attallah, M. Hausmann, Y.A. Litvinov, T. Radon, J. Stadlmann, K. Beckert, F. Bosch, M. Falch, B. Franzke, H. Geissel, Th. Kerscher, O. Klepper, HJ. Kluge, C. Kozhuharov, K.E.G. Löbner, G. Munzenberg, F. Nolden, Y.N. Novikov, Z. Patyk, W. Quint, H. Schatz, C. Scheidenberger, B. Schlitt, M. Steck, K. Sümmerer, H. Weick, H. Wollnik
2002Be64	PHSTB	66,	201	I. Bergström, T. Fritioff, R. Schuch, J. Schönfelder
2002Be74	PYLBB	546,	23	R. Bernabei, P. Belli, F. Cappella, R. Cerulli, F. Montecchia, A. Incicchitti, D. Prosperi, C.J. Dai
2002Bf02	NIMAE	487,	618	I. Bergström, C. Carlberg, T. Fritioff, G. Douysset, J. Schönfelder, R. Schuch
2002Bo11	NIMAE	480,	696	S.B. Borzakov, R.E. Chrien, H. Faikow-Stanczyk, Yu. V. Grigoriev, Ts. Ts. Panteleev, S. Pospisil, L.M. Smotritsky, S.A. Telezhnikov
2002Bo41	NUPAB	709,	3	V. Bondarenko, J. Berzins, P. Prokofjevs, L. Simonova, T. von Egidy, J. Honzátko, I. Tomandl, P. Alexa, HF. Wirth, U. Köster, Y. Eisermann, A. Metz, G. Graw, R. Hertenberger, L. Rubacek
2002Ca37	PRLTA	89,	082501	P. Campbell, H.L. Thayer, J. Billowes, P. Dendooven, K.T. Flanagan, D.H. Forest, J.A.R. Griffith, J. Huikari, A. Jokinen, R. Moore, A. Nieminen, G. Tungate,
2002Cl.A	P-Aulanko		39	S. Zemlyanoi, J. Äystö J.A. Clark, R.C. Barber, C. Boudreau, F. Buchinger, J.A. Caggiano, J.E. Crawford, H. Fukutani, S. Gulick, J.C. Hardy, A. Heinz, J.K.P. Lee, M. Maier, R.B. Moore, G. Savard, J. Schwarz, D. Sewerniak, K.S. Sharma, G. Sprouse, J. Vaz, J.C. Wang
2002Di12	EPJAA	13,	281	I. Dillmann, M. Hannawald, U. Köster, V.N. Fedoseyev, A. Wöhr, B. Pfeiffer, D. Fedorov, J. Shergur, L. Weissman, W.B. Walters, KL. Kratz

2002Do19	PRVCA	66,	064321	D.J. Dobson, S.J. Freeman, P.T. Greenlees, A.N. Qadir, S. Juutinen, J.L. Durell, T. Enqvist, P. Jones, R. Julin, A. Keenan, H. Kettunen, P. Kuusiniemi, M. Leino,
2002Fa13	EPJAA	15,	185	P. Nieminen, P. Rahkila, S.D. Robinson, J. Uusitalo, B.J. Varley T. Faestermann, R. Schneider, A. Stolz, K. Sümmerer, E. Wefers, J. Friese, H. Geissel, M. Hellström, P. Kienle, HJ. Körner, M. Mineva, M. Münch, G. Münzenberg, C. Schlegel, K. Schmidt, P. Thirolf, H. Weick, K. Zeitelhack
2002Ga12	NUPAB	700,	117	E. Garrido, D.V. Fedorov, A.S. Jensen
2002Ge07	PRVCA	65,	034322	J. Genevey, J.A. Pinston, C. Foin, M. Rejmund, H. Faust, B. Weiss
2002Ge16	JPGPE	28,	2993	G. Georgiev, G. Neyens, M. Hass, D.L. Balabanski, C. Bingham, C. Borcea, N. Coulier, R. Coussement, J.M. Daugas, G. De France, F. de Oliveira Santos, M. Gorska, H. Grawe, R. Grzywacz, M. Lewitowicz, H. Mach, I. Matea, R.D. Page, M. Pfützner, Yu. E. Penionzhkevich, Z. Podolyák, P.H. Regan, K. Rykaczewski, M. Sawicka, N.A. Smirnova, Y.G. Sobolev, M. Stanoiu, S. Teughels, K. Vyvey
2002Gi09	PRLTA	89,	102501	J. Giovinazzo, B. Blank, M. Chartier, S. Czajkowski, A. Fleury, M.J. Lopez Jimenez, M.S. Pravikoff, JC. Thomas, F. de Oliveira Santos, M. Lewitowicz, V. Maslov, M. Stanoiu, R. Grzywacz, M. Pfützner, C. Borcea, B.A. Brown
2002He23	EPJAA	15,	17	F. Herfurth, A. Kellerbauer, F. Ames, G. Audi, D. Beck, K. Blaum, G. Bollen, O. Engels, HJ. Kluge, D. Lunney, R.B. Moore, M. Oinonen, E. Sauvan, C. Scheidenberger, S. Schwarz, G. Sikler, C. Weber, ISOLDE
2002He29	EPJAA	15,	335	F.P. Heßberger, S. Hofmann, I. Kojouharov, D. Ackermann, S. Antalic, P. Cagarda, B. Kindler, B. Lommel, R. Mann, A.G. Popeko, S. Saro, J. Uusitalo, A.V. Yeremin
2002He.A	P-Aulanko		337	F.P. Heßberger, S. Hofmann, D. Ackermann
2002Ho11	EPJAA	14,	147	S. Hofmann, F.P. Heßberger, D. Ackermann, G. Münzenberg, S. Antalic, P. Cagarda, B. Kindler, J. Kojouharova, M. Leino, B. Lommel, R. Mann, A.G. Popeko, S. Reshitko, S. Śaro, J. Uusitalo, A.V. Yeremin
2002Hu14	EPJAA	15,	329	A. Hürstel, M. Rejmund, E. Bouchez, P.T. Greenlees, K. Hauschild, S. Juutinen, H. Kettunen, W. Korten, Y. Le Coz, P. Nieminen, Ch. Theisen, A.N. Andreyev, F. Becker, T. Enqvist, P.M. Jones, R. Julin, H. Kankaanpää, A. Keenan, P. Kuusiniemi, M. Leino, A-P. Leppänen, M. Muikku, J. Pakarinen, P. Rahkila, J. Uusitalo
2002Iz01	FECLA	111,	36	I.N. Izosimov, A.A. Kazimov, A.A. Solnyshkin
2002Je09	PRVCA	66,	011301	D.G. Jenkins, A.N. Andreyev, R.D. Page, M.P. Carpenter, R.V.F. Janssens, C.J. Lister, F.G. Kondev, T. Enqvist, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, AP. Leppännen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, C.D. O'Leary, P. Raddon, A. Simons, R. Wadsworth, D.T. Joss
2002Je11	NUPAB	709,	119	H. Jeppesen, U.C. Bergmann, M.J.G. Borge, J. Cederkäll, V.N. Fedoseyev, H.O.U. Fynbo, V.Y. Hansper, B. Jonson, K. Markenroth, V.I. Mishin, T. Nilsson, G. Nyman, K. Riisager, O. Tengblad, K. Wilhelmsen Rolander, ISOLDE
2002Jo09	EPJDR	4,	A3	A. Jokinen, A. Nieminen, J. Äystö, R. Borcea, E. Caurier, P. Dendooven, M. Gierlik, M. Górska, H. Grawe, M. Hellström, M. Karny, Z. Janas, R. Kirchner, M. La Commara, G. Martinez-Pinedo, P. Mayet, H. Penttilä, A. Płochocki, M. Rejmund, E. Roeckl, M. Sawicka, C. Schlegel, K. Schmidt, R. Schwengner
2002Ke.A	ThHeidelb	_		A. Kellerbauer
2002Ke.C	PrvCom	NDG	May	H. Kettunen
2002Ko09	PYLBB	528,	221	F.G. Kondev, M.P. Carpenter, R.V.F. Janssens, C.J. Lister, K. Abu Saleem, I. Ahmad, H. Amro, J. Caggiano, C.N. Davids, A. Heinz, B. Herskind, T.L. Khoo, T. Lauritsen, W.C. Ma, J.J. Ressler, W. Reviol, L.L. Riedinger, D.G. Sarantites, D. Seweryniak, S. Siem, A.A. Sonzogni, P.G. Varmette, I. Wiedenhöver
2002La18	NUPAB	708,	167	M. La Commara, K. Schmidt, H. Grawe, J. Döring, R. Borcea, S. Galanopoulos, M. Górska, S. Harissopulos, M. Hellström, Z. Janas, R. Kirchner, C. Mazzocchi, A.N. Ostrowski, C. Plettner, G. Rainovski, E. Roeckl
2002Le16	PRVCA	65,	054318	A. Lépine-Szily, J.M. Oliveira, Jr, V.R. Vanin, A.N. Ostrowski, R. Lichtenthäler, A. Di Pietro, V. Guimaraes, A.M. Laird, I. Mannoury, G.F. Lima, F. de Oliveira Santos, P. Roussel-Chomaz, H. Savajois, W. Trindler, A.C.C. Villari, A. de Vismes

2002Le.A	PrvCom	GAu	Iun	Lettre électronique de l'In2p3
2002Li24	PRVCA	65,	044618	G.F. Lima, A. Lépine-Szily, G. Audi, W. Mittig, M. Chartier, N.A. Orr, R. Lich-
				tenthaler, JC. Angélique, JM. Casandjian, A. Cunsolo, C. Donzaud, A. Foti,
				A. Gillibert, M. Lewitowicz, S. Lukyanov, M. MacCormick, D.J. Morrissey,
				A.N. Ostrowski, B.M. Sherrill, C. Stéphan, T. Suomijärvi, L. Tassan-Got,
20021 - 12	DDVCA	66	025002	D.J. Vieira, A.C.C. Villari, J.M. Wouters
2002Lo13	PRVCA	66,	025803	M.J. López Jiménez, B. Blank, M. Chartier, S. Czajkowski, P. Dessagne, G. de France, J. Giovinazzo, D. Karamanis, M. Lewitowicz, V. Maslov,
				C. Miehé, P.H. Regan, M. Stanoiu, M. Wiescher
2002Lu15	EPJAA	15,	315	R. Lucas, MG. Porquet, Ts. Venkova, I. Deloncle, M. Houry, Ch. Theisen,
		- ,		A. Astier, A. Bauchet, S. Lalkovski, G. Barreau, N. Buforn, T.P. Doan,
				L. Donadille, O. Dorvaux, J. Durell, Th. Ethvignot, B.P.J. Gall, D. Grimwood,
				W. Korten, Y. Le Coz, M. Meyer, A. Minkova, A. Prévost, N. Redon, A. Roach,
200215.10	DIM DD	500	20	N. Schulz, A.G. Smith, O. Stézowski, B.J. Varley
2002Ma19	PYLBB	532,	29	C. Mazzocchi, Z. Janas, L. Batist, V. Belleguic, J. Döring, M. Gierlik, M. Kapica,
				R. Kirchner, G.A. Lalazissis, H. Mahmud, E. Roeckl, P. Ring, K. Schmidt, P.J. Woods, J. Żylicz
2002Ma61	EPJAA	15,	85	H. Mahmud, C.N. Davids, P.J. Woods, T. Davinson, A. Heinz, J.J. Ressler,
		,		K. Schmidt, D. Seweryniak, J. Shergur, A.A. Sonzogni, W.B. Walters
2002Me07	PRLTA	88,	102501	M. Meister, K. Markenroth, D. Aleksandrov, T. Aumann, L. Axelsson, T. Bau-
				mann, M.J.G. Borge, L.V. Chulkov, W. Dostal, B. Eberlein, Th. W. Elze, H. Em-
				ling, C. Forssén, H. Geissel, M. Hellström, R. Holzmann, B. Jonson, J.V. Kratz,
				R. Kulessa, Y. Leifels, A. Leistenschneider, I. Mukha, G. Münzenberg, F. Nickel,
				T. Nilsson, G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, H. Simon, O. Tengblad, M.V. Zhukov
2002Mo31	PYLBB	547,	200	R. Moore, A.M. Bruce, P. Dendooven, J. Billowes, P. Campbell, A. Ezwam,
		,		K.T. Flanagan, D.H. Forest, J. Huikari, A. Jokinen, A. Nieminen, H.L. Thayer,
				G. Tungate, S. Zemlyanoi, J. Äystö
2002Mo.B	P-Aizu		140	Morimoto
2002Mu.A	AnRpt ANL,		51	G. Mukherjee et al
2002Ni10	PRLTA	89,	039901	V. Ninov, K.E. Gregorich, W. Loveland, A. Ghiorso, D.C. Hoffman, D.M. Lee, H. Nitsche, W.J. Swiatecki, U.W. Kirbach, C.A. Laue, J.L. Adams, J.B. Patin,
				D.A. Shaughnessy, D.A. Strellis, P.A. Wilk
2002No11	PYLBB	542,	49	M. Notani, H. Sakurai, N. Aoi, Y. Yanagisawa, A. Saito, N. Imai, T. Gomi,
				M. Miura, S. Michimasa, H. Iwasaki, N. Fukuda, M. Ishihara, T. Kubo,
				S. Kubono, H. Kumagai, S.M. Lukyanov, T. Motobayashi, T.K. Onishi,
				Yu. E. Penionzhkevich, S. Shimoura, T. Teranishi, K. Ue, V. Ugryumov,
2002D-15	EDIAA	1.4	420	A. Yoshida
2002Pe15	EPJAA	14,	439	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco,
2002Pe15	ЕРЈАА	14,	439	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić,
2002Pe15 2002Pf02	ЕРЈАА ЕРЈАА	14, 14,	439 279	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar
				A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giov- inazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz,
				A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl,
2002Pf02	ЕРЈАА	14,	279	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas
				A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic,
2002Pf02	ЕРЈАА	14,	279	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas,
2002Pf02	ЕРЈАА	14,	279	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt,
2002Pf02	ЕРЈАА	14,	279	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas,
2002Pf02 2002Pl03 2002Py01	EPJAA PRVCA PRLTA	14, 66, 88,	279 044319	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas
2002Pf02 2002Pl03	EPJAA PRVCA	14,	279 044319	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas Yu. V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin,
2002Pf02 2002Pl03 2002Py01 2002Py02	EPJAA PRVCA PRLTA NIMAE	14, 66, 88, 488,	279 044319 122501 381	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas Yu. V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska
2002Pf02 2002Pl03 2002Py01	EPJAA PRVCA PRLTA	14, 66, 88,	279 044319 122501 381	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas Yu. V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska H. Raimbault-Hartmann, G. Audi, D. Beck, G. Bollen, M. de Saint Simon, H
2002Pf02 2002Pl03 2002Py01 2002Py02 2002Ra23	EPJAA PRVCA PRLTA NIMAE NUPAB	14, 66, 88, 488, 706,	279 044319 122501 381 3	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas Yu. V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska H. Raimbault-Hartmann, G. Audi, D. Beck, G. Bollen, M. de Saint Simon, HJ. Kluge, M. König, R.B. Moore, S. Schwarz, G. Savard, J. Szerypo, ISOLDE
2002Pf02 2002Pl03 2002Py01 2002Py02	EPJAA PRVCA PRLTA NIMAE	14, 66, 88, 488,	279 044319 122501 381	A. Yoshida C.M. Petrache, G. Lo Bianco, P.G. Bizzeti, A.M. Bizzeti-Sona, D. Bazzacco, S. Lunardi, M. Nespolo, G. de Angelis, P. Spolaore, N. Blasi, S. Brant, V. Krstić, D. Vretenar M. Pfützner, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, L.V. Grigorenko, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, C. Mazzocchi, I. Mukha, G. Münzenberg, C. Plettner, E. Roeckl, K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas Plettner, C., L. Batisit, J. Doering, A. Blazhev, H. Grawe, V. Belleguic, C.R. Bingham. R. Borcea, M. Gierlik, M. Goerska, N. Harringyon, Z. Janas, M. Karny, R. Kirchner, C. Mazzocchi, P. Munro, E. Roeckl, K. Schmidt, R. Schwengner M.C. Pyle, A. García, E. Tatar, J. Cox, B.K. Nayak, S. Triambak, B. Laughman, A. Komives, L.O. Lamm, J.E. Rolon, T. Finnessy, L.D. Knutson, P.A. Voytas Yu. V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska H. Raimbault-Hartmann, G. Audi, D. Beck, G. Bollen, M. de Saint Simon, H

2002Sh08	PRVCA	65,	034313	J. Shergur, B.A. Brown, V. Fedoseyev, U. Köster, KL. Kratz, D. Sewery-
		,		niak, W.B. Walters, A. Wöhr, D. Fedorov, M. Hannawald, M. Hjorth-Jensen, V. Mishin, B. Pfeiffer, J.J. Ressler, H.O.U. Fynbo, P. Hoff, H. Mach, T. Nilsson,
				K. Wilhelmsen-Rolander, H. Simon, A. Bickley, ISOLDE
2002Sh16	JUPSA	71,	1401	M. Shibata, T. Shindou, A. Taniguchi, Y. Kojima, K. Kawade, SI. Ichikawa, Y. Kawase
2002Sh43	PTPSA	146,	60	BM. Sherrill
2002Sh.A	AnRpt JAEl		26	M. Shibata, T. Shindou, Y. Kojima, M. Asai, K. Tsukada, S. Ichikawa, H. Haba, Y. Nagame, K. Kawade
2002Sh.B	P-Aulanko		479	M. Shibata, T. Shindou, K. Kawade, V. Kojima, A. Taniguchi, Y. Kawase, S. Ichikawa
2002Sh.C	AnRpt JAEl	RI	45	N. Shinohara, Yu. N. Novikov, G. Münzenberg, H. Wollnik, Y. Hatsukawa, M. Asai, K. Tsukada, A. Osa, M. Oshima, H. Haba, S. Ichikawa, Y. Nagame, A.V. Popov, D.M. Seliverstov and PrvCom to 2008Qi03
2002So.A	PrvCom	GAu	Oct	
2002Tr04	ADNDA	80,	83	V.I. Tretyak, Yu. G. Zdesenko
2002Tu05	EPJAA	15,	271	A. Türler "Heavy-element chemistry - Status and perspectives"
2002Un02	ARISE	56,	125	M.P. Unterweger
2002Va13	PRVCA	65,	064301	K. Van de Vel, A.N. Andreyev, M. Huyse, P. Van Duppen, J.F.C. Cocks, O. Dor-
2002 va13	TRVCI	03,	004301	vaux, P.T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, M. Muikku, P. Nieminen, K. Eskola, R. Wyss
2002We07	PRVCA	65,	044321	L. Weissman, J. Cederkall, J. Äystö, H. Fynbo, L. Fraile, V. Fedoseyev, S. Franchoo, A. Jokinen, U. Köster, G. Martinez-Pinedo, T. Nilsson, M. Oinonen,
				K. Peräjärvi, M.D. Seliverstov, ISOLDE
2002Xu11	PRVCA	66,	047302	S.W. Xu, Z.K. Li, F.R. Xu, Y.X. Xie, X.D. Wang
2002Zd02	PYLBB	546,	206	Yu. G. Zdesenko, F.A. Danevich, V.I. Tretyak
				2003
2003Ah07	PRVCA	68,	044306	I. Ahmad, R.R. Chasman, J.P. Greene, F.G. Kondev, E.F. Moore, E. Browne, C.E. Porter, L.K. Felker
2003A102	PRVCA	67,	014323	A. Alessandrello, C. Arnaboldi, C. Brofferio, S. Capelli, O. Cremonesi, E. Fiorini, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, M. Vanzini, L. Zanotti, A. Giuliani, M. Pedretti, C. Bucci, C. Pobes
2003An26	EPJAA	18,	39	A.N. Andreyev, D. Ackermann, S. Antalic, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Heßberger, S. Hofmann, M. Huyse, D. Karlgren, A. Keenan, H. Kettunen, A. Kleinböhl, B. Kindler, I. Kojouharov, A. Lavrentiev, C.D. O'Leary, M. Leino, B. Lommel, M. Matos, C.J. Moore, G. Münzenberg, R.D. Page, S. Reshitko, S. Saro, H. Schaffner, C. Schlegel, M.J. Taylor, K. Van de Vel, P. Van Duppen,
2003An27	EPJAA	18,	55	L. Weissman, K. Heyde A.N. Andreyev, D. Ackermann, F.P. Heßberger, S. Hofmann, M. Huyse, I. Ko-
				jouharov, B. Kindler, B. Lommel, G. Münzenberg, R.D. Page, K. Van de Vel, P. Van Duppen, K. Heyde
2003Ar36	PRLTA	91,	161802	C. Arnaboldi, C. Brofferio, O. Cremonesi, E. Fiorini, C. Lo Bianco, L. Martensson, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, A. Giuliani, B. Margesin, M. Zen
2003Ba18	PRVCA	67,	034310	C.J. Barton, D.S. Brenner, N.V. Zamfir, M.A. Caprio, A. Aprahamian, M.C. Wiescher, C.W. Beausang, Z. Berant, R.F. Casten, J.R. Cooper, R.L. Gill,
2003Ba20	EPJAA	16,	489	R. Krücken, J.R. Novak, N. Pietralla, M. Shawcross, A. Teymurazyan, A. Wolf T. Bäck, B. Cederwall, K. Lagergren, R. Wyss, A. Johnson, D. Karlgren,
		,		P. Greenlees, D. Jenkins, P. Jones, D.T. Joss, R. Julin, S. Juutinen, A. Keenan, H. Kettunen, P. Kuusiniemi, M. Leino, AP. Leppänen, M. Muikku, P. Niemi-
2003Ba39	NUPAB	720,	245	nen, J. Pakarinen, P. Rahkila, J. Uusitalo L. Batist, J. Döring, I. Mukha, C. Plettner, C.R. Bingham, R. Borcea, M. Gierlik, H. Grawe, K. Hauschild, Z. Janas, I.P. Johnstone, M. Karny, M. Kavatsyuk, R. Kirchner, M. La Commara, C. Mazzocchi, F. Moroz, J. Pavan, A. Płochocki,
				E. Roeckl, B. Salvachúa, K. Schmidt, R. Schwengner, L.D. Skouras, S.L. Tabor, M. Wiedeking
2003Ba49	PRVCA	67,	064316	D.K. Barillari, J.V. Vaz, R.C. Barber, K.S. Sharma

2003Ba.A	PrvCom	GAu	Apr	C. Bachelet
2003Ba.A 2003Be02	EPJDD	22,	Apr 41	I. Bergström, M. Björkhage, K. Blaum, H. Bluhme, T. Fritioff, Sz. Nagy,
		,		R. Schuch
2003Be05	NUPAB	714,	21	U.C. Bergmann, C.A. Diget, K. Riisager, L. Weissman, G. Auböck, J. Cederkäll, L.M. Fraile, H.O.U. Fynbo, H. Gausemel, H. Jeppesen, U. Köster, KL. Kratz,
2003Be18	EPJAA	16,	447	P. Möller, T. Nilsson, B. Pfeiffer, H. Simon, K. Van de Vel, J. Äystö, ISOLDE A.V. Belozerov, M.L. Chelnokov, V.I. Chepigin, T.P. Drobina, V.A. Gorshkov, A.P. Kabachenko, O.N. Malyshev, I.M. Merkin, Yu. Ts. Oganessian, A.G. Popeko, R.N. Sagaidak, A.I. Svirikhin, A.V. Yeremin, G. Berek, I. Brida, Š. Šáro
2003Bi05	PRVCA	67,	065801	I. Bikit, N. Zikić-Todorović, J. Slivka, M. Vesković, M. Krmar, Lj. Čonkić, J. Puzović, I.V. Aničin
2003B117	PRLTA	91,	260801	K. Blaum, G. Audi, D. Beck, G. Bollen, F. Herfurth, A. Kellerbauer, HJ. Kluge, E. Sauvan, S. Schwarz
2003Bo25	NUPAB	726,	175	V. Bondarenko, A.V. Afanasjev, F. Bečvář, J. Honzátko, ME. Montero-Cabrera, I. Kuvaga, S.J. Robinson, A.M.J. Spits, S.A. Telezhnikov
2003Ce01	PYLBB	556,	14	S. Cebrián, N. Coron, G. Dambier, P. de Marcillac, E. García, I.G. Irastorza, J. Leblanc, A. Morales, J. Morales, A. Ortiz de Solórzano, J. Puimedón, M.L. Sarsa, J.A. Villar
2003Da05	PRVCA	67,	014310	F.A. Danevich, A. Sh. Georgadze, V.V. Kobychev, S.S. Nagorny, A.S. Nikolaiko, O.A. Ponkratenko, V.I. Tretyak, S. Yu. Zdesenko, Yu. G. Zdesenko, P.G. Bizzeti, T.F. Fazzini, P.R. Maurenzig
2003Da09	NUPAB	717,	129	F.A. Danevich, A.S. Georgadze, V.V. Kobychev, A.S. Nikolaiko, O.A. Ponkratenko, V.I. Tretyak, S.Y. Zdesenko, Y.G. Zdesenko, P.G. Bizzeti, T.F. Fazzini, P.R. Maurenzig
2003De11	NATUA	422,	876	P. de Marcillac, N. Coron, G. Dambier, J. Leblanc, JP. Moalic
2003Di06	PRLTA	91,	162503	I. Dillmann, KL. Kratz, A. Wöhr, O. Arndt, B.A. Brown, P. Hoff, M. Hjorth-Jensen, U. Köster, A.N. Ostrowski, B. Pfeiffer, D. Seweryniak, J. Shergur, W.B. Walters, ISOLDE
2003Do09	PRVCA	68,	034306	J. Döring, H. Grawe, K. Schmidt, R. Borcea, S. Galanopoulos, M. Górska, S. Harissopulos, M. Hellström, Z. Janas, R. Kirchner, M. La Commara, C. Mazzocchi, E. Roeckl, R. Schwengner
2003Fr08	PHSTB	67,	276	T. Fritioff, G. Douysset
2003Fu10	NUPAB	718,	688c	Zs. Fülöp, L. Bartha, Gy. Gyürky, E. Somorjai, S. Kubono, H. Kudo, D. Kaji
2003Ge04	PRVCA	67,	054312	J. Genevey, J.A. Pinston, H.R. Faust, R. Orlandi, A. Scherillo, G.S. Simpson,, I.S. Tsekhanovich, A. Covello, A. Gargano, W. Urban
2003Gi05	PRVCA	67,	064609	T.N. Ginter, K.E. Gregorich, W. Loveland, D.M. Lee, U.W. Kirbach, R. Sudowe, C.M. Folden III, J.B. Patin, N. Seward, P.A. Wilk, P.M. Zielinski, K. Aleklett, R. Eichler, H. Nitsche, D.C. Hoffman
2003Gi06	NUPAB	724,	313	M. Gierlik, A. Płochocki, M. Karny, W. Urban, Z. Janas, L. Batist, F. Moroz, R. Collatz, M. Górska, H. Grawe, M. Hellström, Z. Hu, R. Kirchner, W. Liu, M. Rejmund, E. Roeckl, M. Shibata, J. Agramunt, A. Algora, A. Gadea, B. Rubio, J.L. Tain, D. Cano-Ott, S. Harissopulos
2003Gi10	PRVCA	68,	034330	T.N. Ginter, J.C. Batchelder, C.R. Bingham, C.J. Gross, R. Grzywacz, J.H. Hamilton, Z. Janas, M. Karny, A. Piechaczek, A.V. Ramayya, K.P. Rykaczewski, W.B. Walters, E.F. Zganjar
2003Go11	PYLBB	566,	70	M.S. Golovkov, Yu. Ts. Oganessian, D.D. Bogdanov, A.S. Fomichev, A.M. Rodin, S.I. Sidorchuk, R.S. Slepnev, S.V. Stepantsov, G.M. Ter-Akopian, R. Wolski, V.A. Gorshkov, M.L. Chelnokov, M.G. Itkis, E.M. Kozulin, A.A. Bogatchev, N.A. Kondratiev, I.V. Korzyukov, A.A. Yukhimchuk, V.V. Perevozchikov, Yu. I. Vinogradov, S.K. Grishechkin, A.M. Demin, S.V. Zlatoustovsky, A.V. Kuryakin, S.V. Fil'chagin, R.I. Il'kayev, F. Hanappe, T. Materna, L. Stuttge, A.H. Ninane, A.A. Korsheninnikov, E. Yu. Nikolskii, I. Tanihata, P. Roussel-Chomaz, W. Mittig, N. Alamanos, V. Lapoux, E.C. Pollacco, L. Nalpas
2003Gr13	NUPAB	724,	14	C. Granja, S. Pospíšil, J. Kubašta, S.A. Telezhnikov
2003Gr27	NUPAB	729,	679	C. Granja, S. Pospíšil, S.A. Telezhnikov, R.E. Chrien

2003Gu06	PRVCA	67,	064601	V. Guimarães, S. Kubono, F.C. Barker, M. Hosaka, S.C. Jeong, I. Katayama,
		,		T. Miyachi, T. Nomura, M.H. Tanaka, Y. Fuchi, H. Kawashima, S. Kato, C.C. Yun, K. Ito, H. Orihara, T. Terakawa, T. Kishida, Y. Pu, S. Hamada, M. Hi-
				rai, H. Miyatake
2003He06	EPJAA	16,	365	F.P. Heßberger, S. Hofmann, D. Ackermann
2003Hu01	EPJAA	16,	359	J. Huikari, M. Oinonen, A. Algora, J. Cederkäll, S. Courtin, P. Dessagne, L. Fraile, S. Franchoo, H. Fynbo, W.X. Huang, A. Jokinen, A. Knipper, F. Marechal, C. Miehé, E. Nacher, K. Peräjärvi, E. Poirier, L. Weissman, J. Äystö, ISOLDE
2003Ke04	EPJAA	16,	457	H. Kettunen, T. Enqvist, M. Leino, K. Eskola, P.T. Greenlees, K. Helariutta, P. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Koivisto, P. Kuusiniemi, M. Muikku, P. Nieminen, P. Rahkila, J. Uusitalo
2003Ke08	ЕРЈАА	17,	537	H. Kettunen, T. Enqvist, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, AP. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo
2003Ki08 2003Ko.A	NUPAB ThJyvaskyla	723,	499	H. Kiel, D. Münstermann, K. Zuber V. Kolhinen
2003Kr20	RAACA	91,	59	J.V. Kratz, A. Nähler, U. Rieth, A. Kronenberg, B. Kuczewski, E. Strub,
200314120	K/I/C/I	<i>)</i> 1,	37	W. Brüchle, M. Schädel, B. Schausten, A. Türler, H.W. Gäggeler, D.T. Jost, K.E. Gregorich, H. Nitsche, C. Laue, R. Sudowe, P.A. Wilk
2003Ku25	EPJAA	18,	5	J. Kurpeta, A. Płochocki, A.N. Andreyev, J. Äystö, A. De Smet, H. De Witte, AH. Evensen, V. Fedoseyev, S. Franchoo, M. Górska, M. Huhta, M. Huyse, Z. Janas, A. Jokinen, M. Karny, E. Kugler, W. Kurcewicz, U. Köster, J. Lettry, A. Nieminen, K. Partes, M. Ramdhane, H.L. Ravn, K. Rykaczewski, J. Szerypo,
2003Le26	NUPAB	722,	512	K. Van de Vel, P. Van Duppen, L. Weissman, G. Walter, A. Wöhr, ISOLDE A. Lepine-Szily, J.M. Oliveira, D. Galante, G. Amadio, V. Vanin, R. Lichten-
				thaler, V. Guimaraes, G.F. Lima, H.G. Bohlen, A.N. Ostrowski, A. Di Pietro, A.M. Laird, L. Maunoury, F. de Oliveira Santos, P. Roussel-Chomaz, H. Savajols, W. Trinder, A.C.C. Villari, A. de Vismes
2003Li42	PYLBB	573,	80	Yu. A. Litvinov, F. Attallah, K. Beckert, F. Bosch, D. Boutin, M. Falch, B. Franzke, H. Geissel, M. Hausmann, Th. Kerscher, O. Klepper, HJ. Kluge, C. Kozhuharov, K.E.G. Löbner, G. Münzenberg, F. Nolden, Yu. N. Novikov, Z. Patyk, T. Radon, C. Scheidenberger, J. Stadlmann, M. Steck, M.B. Trzhaskovskaya, H. Wollnik
2003Li.A	PrvCom	GAu	Jul	Y. Litvinov, Ch. Scheidenberger
2003Li.B	PrvCom	GAu	Aug	Y. Litvinov
2003Ma02	PRVCA	67,	014311	P.F. Mantica, A.C. Morton, B.A. Brown, A.D. Davies, T. Glasmacher, D.E. Groh, S.N. Liddick, D.J. Morrissey, W.F. Mueller, H. Schatz, A. Stolz, S.L. Tabor, M. Honma, M. Horoi, T. Otsuka
2003Ma34	EPJAA	17,	519	C. Mazzocchi, E. Badura, C. Bingham, B. Blank, M. Chartier, H. Geissel, J. Giovinazzo, E. Grodner, R. Grzywacz, M. Hellström, Z. Janas, J. Kurcewicz, A.S. Lalleman, I. Mukha, G. Münzenberg, M. Pfützner, C. Plettner, E. Roeckl,
2003Me11	NUPAB	723,	13	K.P. Rykaczewski, K. Schmidt, R.S. Simon, M. Stanoiu, JC. Thomas M. Meister, L.V. Chulkov, H. Simon, T. Aumann, M.J.G. Borge, Th. W. Elze, H. Emling, H. Geissel, M. Hellström, B. Jonson, J.V. Kratz, R. Kulessa, Y. Leifels, K. Markenroth, G. Münzenberg, F. Nickel, T. Nilsson, G. Nyman, V. Pribora, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, O. Tengblad
2003Me20	PRVCA	68,	041301	A. Melerangi, D. Appelbe, R.D. Page, H.J. Boardman, P.T. Greenlees, P. Jones, D.T. Joss, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, M.H. Muikku, P. Nieminen, J. Pakarinen, P. Rahkila, J. Simpson
2003Mo36	NUPAB	728,	350	CB. Moon, T. Komatsubara, T. Shizuma, Y. Sasaki, K. Furuno, C.S. Lee
2003Ni10	PRVCA	68,	064305	K. Nishio, H. Ikezoe, S. Mitsuoka, K. Satou, C.J. Lin
2003Ni11	PRVCA	68,	067301	Y. Nir-El, G. Haquin
2003Oz01	PRVCA	67,	014610	A. Ozawa, Y. Yamaguchi, M. Chiba, R. Kanungo, K. Kimura, S. Momota, T. Suda, T. Suzuki, I. Tanihata, T. Zheng, S. Watanabe, T. Yamaguchi, K. Yoshida

2003Pe23	PRVCA	68,	034607	W.A. Peters, T. Baumann, D. Bazin, B.A. Brown, R.R.C. Clement, N. Frank,
				P. Heckman, B.A. Luther, F. Nunes, J. Seitz, A. Stolz, M. Thoennessen, E. Tryggestad
2003Pi03	EPJAA	16,	313	I. Piqueras, M.J.G. Borge, Ph. Dessagne, J. Giovinazzo, A. Huck, A. Jokinen, A. Knipper, C. Longour, G. Marguier, M. Ramdhane, V. Rauch, O. Tengblad, G. Wolter, Ch. Miché, ISOLDE
2003Pi08	PRVCA	67,	051305	G. Walter, Ch. Miehé, ISOLDE A. Piechaczek, E.F. Zganjar, G.C. Ball, P. Bricault, J.M. D'Auria, J.C. Hardy, D.F. Hodgson, V. Iacob, P. Klages, W.D. Kulp, J.R. Leslie, M. Lipoglavsek, J.A. Macdonald, HB. Mak, D.M. Moltz, G. Savard, J. von Schwarzenberg, C.E. Svensson, I.S. Towner, J.L. Wood
2003Ro21	PRVCA	68,	054301	A.P. Robinson, C.N. Davids, G. Mukherjee, D. Seweryniak, S. Sinha, P. Wilt, P.J. Woods
2003Sa02	EPJAA	16,	51	M. Sawicka, J.M. Daugas, H. Grawe, S. Ćwiok, D.L. Balabanski, R. Béraud, C. Bingham, C. Borcea, M. La Commara, G. de France, G. Georgiev, M. Górska, R. Grzywacz, M. Hass, M. Hellström, Z. Janas, M. Lewitowicz, H. Mach, I. Matea, G. Neyens, C. O'Leary, F. de Oliveira Santos, R.D. Page, M. Pfützner, Zs. Podolyák, K. Rykaczewski, M. Stanoiu, J. Żylicz
2003So02	EPJAA	16,	55	O. Sorlin, C. Donzaud, F. Nowacki, J.C. Angélique, F. Azaiez, C. Bourgeois, V. Chiste, Z. Dlouhy, S. Grévy, D. Guillemaud-Mueller, F. Ibrahim, KL. Kratz, M. Lewitowicz, S.M. Lukyanov, J. Mrazek, YuE. Penionzhkevich, F. de Oliveira Santos, B. Pfeiffer, F. Pougheon, A. Poves, M.G. Saint-Laurent, M. Stanoiu
2003So21	NUPAB	719,	193c	O. Sorlin, C. Donzaud, F. Azaiez, C. Bourgeois, L. Gaudefroy, F. Ibrahim, D. Guillemaud-Mueller, F. Pougheon, M. Lewitowicz, F. de Oliveira Santos, M.G. Saint-Laurent, M. Stanoiu, S.M. Lukyanov, Yu. E. Penionzhkevich, J.C. Angélique, S. Grévy, KL. Kratz, B. Pfeiffer, F. Nowacki, Z. Dlouhy, J. Mrasek
2003To03	PRVCA	67,	035503	N.R. Tolich, P.H. Barker, P.D. Harty, P.A. Amundsen
2003To08	NUPAB	717,	149	I. Tomandl, T. von Egidy, J. Honzatko, V. Bondarenko, HF. Wirth, D. Bu-
				curescu, V.Y. Ponomarev, G. Graw, R. Hertenberger, Y. Eisermann, S. Raman
2003Tu05	EPJAA	17,	505	A. Türler, Ch. E. Düllmann, H.W. Gäggeler, U.W. Kirbach, A.B. Yakushev, M. Schädel, W. Bruchle, R. Dressler, K. Eberhardt, B. Eichler, R. Eichler, T.N. Ginter, F. Glaus, K.E. Gregorich, D.C. Hoffman, E. Jäger, D.T. Jost, D.M. Lee, H. Nitsche, J.B. Patin, V. Pershina, D. Piguet, Z. Qin, B. Schausten, E. Schimpf, HJ. Schött, S. Soverna, R. Sudowe, P. Thörle, S.N. Timokhin, N. Trautmann, A. Vahle, G. Wirth, P.M. Zielinski
2003Va16	PRVCA	68,	054311	K. Van de Vel, A.N. Andreyev, D. Ackermann, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Heßberger, S. Hofmann, M. Huyse, D. Karlgren, I. Kojouharov, M. Leino, B. Lommel, G. Münzenberg, C. Moore, R.D. Page, S. Saro, P. Van Duppen, R. Wyss
2003Va.A	PrvCom	GAu	Aug	R.S. Van Dyck, Jr.
2003Vo03	NUPAB	714,	355	T. von Egidy, C. Doll, J. Jolie, N.V. Warr, J. Kern, M. Crittin, L. Genilloud
2003Wa13	PRVCA	67,	064303	Y. Wang, S. Rinta-Antila, P. Dendooven, J. Huikari, A. Jokinen, V.S. Kolhinen, G. Lhersonneau, A. Nieminen, S. Nummela, H. Penttilä, K. Peräjärvi, J. Szerypo, J.C. Wang, J. Äystö
2003Wi02	NUPAB	716,	3	HF. Wirth, T. von Egidy, I. Tomandl, J. Honzátko, D. Bucurescu, N. Mrginean, V. Yu. Ponomarev, R. Hertenberger, Y. Eisermann, G. Graw
2003Xu04	EPJAA	16,	347	S.W. Xu, Y.X. Xie, Z.K. Li, X.D. Wang, B. Guo, C.G. Leng, C.F. Wang, Y. Yu
2003Ye02	YAFIA	66,	1078	A.V. Yeremin, A.V. Belozerov, M.L. Chelnokov, V.I. Chepigin, V.A. Gorshkov, A.P. Kabachenko, O.N. Malyshev, Yu. Ts. Oganessian, A.G. Popeko, R.N. Sagaidak, A.I. Svirikhin, S. Hofmann, G. Berek, I. Brida, S. Saro
2003Yo02	PRVCA	67,	014316	K. Yoneda, N. Aoi, H. Iwasaki, H. Sakurai, H. Ogawa, T. Nakamura, WD. Schmidt-Ott, M. Schäfer, M. Notani, N. Fukuda, E. Ideguchi, T. Kishida, S.S. Yamamoto, M. Ishihara

2004

2004A104	PRVCA	69,	024320	S.D. Al-Garni, P.H. Regan, P.M. Walker, E. Roeckl, R. Kirchner, F.R. Xu, L. Batist, A. Blazhev, R. Borcea, D.M. Cullen, J. Döring, H.M. El-Masri, J. Garces Narro, H. Grawe, M. La Commara, C. Mazzocchi, I. Mukha, C.J. Pear-
				son, C. Plettner, K. Schmidt, W.D. Schmidt-Ott, Y. Shimbara, C. Wheldon,
2004An07	PRVCA	69,	054308	R. Wood, S.C. Wooding A.N. Andreyev, D. Ackermann, F.P. Heßberger, K. Heyde, S. Hofmann, M. Huyse, D. Karlgren, I. Kojouharov, B. Kindler, B. Lommel, G. Münzenberg, R.D. Page, K. Van de Vel, P. Van Duppen, W.B. Walters, R. Wyss
2004As12	EPJAA	22,	411	M. Asai, M. Sakama, K. Tsukada, S. Ichikawa, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, H. Nakahara, M. Shibata, K. Kawade
2004Ba78	PRVCA	70,	024302	P.H. Barker, I.C. Barnett, G.J. Baxter, A.P. Byrne
2004Ba.A	PrvCom	GAu	Jul	C. Bachelet
2004B110	PRVCA	69,	064304	A. Blazhev, M. Górska, H. Grawe, J. Nyberg, M. Palacz, E. Caurier, O. Dorvaux, A. Gadea, F. Nowacki, C. Andreoiu, G. de Angelis, D. Balabanski, Ch. Beck, B. Cederwall, D. Curien, J. Döring, J. Ekman, C. Fahlander, K. Lagergren, J. Ljungvall, M. Moszyński, LO. Norlin, C. Plettner, D. Rudolph, D. Sohler, K.M. Spohr, O. Thelen, M. Weiszflog, M. Wisell, M. Wolińska, W. Wolski
2004Bl16	EULEE	67,	586	K. Blaum, D. Beck, G. Bollen, P. Delahaye, C. Guenaut, F. Herfurth, A. Kellerbauer, HJ. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian
2004B120	NUPAB	746,	305c	K. Blaum, G. Audi, D. Beck, G. Bollen, C. Guénaut, P. Delahaye, F. Herfurth, A. Kellerbauer, HJ. Kluge, D. Lunney, D. Rodríguez, S. Schwarz, L. Schweikhard, C. Weber, C. Yazidjian
2004Br14	PRVCA	69,	034327	S. Brant, G. Lhersonneau, K. Sistemich
2004Br19	EPJAA	20,	145	R. Broda, B. Fornal, W. Krolas, T. Pawlat, J. Wrzesinski, D. Bazzacco, G. de Angelis, S. Lunardi, C. Rossi Alvarez
2004Cl03	PRLTA	92,	192501	J.A. Clark, G. Savard, K.S. Sharma, J. Vaz, J.C. Wang, Z. Zhou, A. Heinz, B. Blank, F. Buchinger, J.E. Crawford, S. Gulick, J.K.P. Lee, A.F. Levand,
2004Co26	PRVCA	70,	064606	D. Seweryniak, G.D. Sprouse, W. Trimble C. Cozzini, G. Angloher, C. Bucci, F. von Feilitzsch, D. Hauff, S. Henry, Th. Jagemann, J. Jochum, H. Kraus, B. Majorovits, V. Mikhailik, J. Ninkovic, F. Petricca, W. Potzel, F. Pröbst, Y. Ramachers, W. Rau, M. Razeti, W. Seidel,
2004Da04	PRVCA	69,	011302	M. Stark, L. Stodolsky, A.J.B. Tolhurst, W. Westphal, H. Wulandari C.N. Davids, P.J. Woods, H. Mahmud, T. Davinson, A. Heinz, J.J. Ressler, K. Schmidt, D. Seweryniak, J. Shergur, A.A. Sonzogni, W.B. Walters
2004De16	PRVCA	69,	044305	H. De Witte, A.N. Andreyev, I.N. Borzov, E. Caurier, J. Cederkäll, A. De Smet, S. Eeckhaudt, D.V. Fedorov, V.N. Fedosseev, S. Franchoo, M. Górska, H. Grawe, G. Huber, M. Huyse, Z. Janas, U. Köster, W. Kurcewicz, J. Kurpeta,
2004De40	EPJAA	21,	243	A. Płochocki, K. Van de Vel, P. Van Duppen, L. Weissman S. Dean, M. Gorska, F. Aksouh, H. de Witte, M. Facina, M. Huyse, O. Ivanov, K. Krouglov, Yu. Kudryavtsev, I. Mukha, D. Smirnov, JC. Thomas, K. Van de Vel, J. Van de Walle, P. Van Duppen, J. Van Roosbroeck
2004Di18	EPJAA	22,	163	J. Dilling, F. Herfurth, A. Kellerbauer, G. Audi, G. Bollen, HJ. Kluge, R.B. Moore, C. Scheidenberger, S. Schwarz, G. Sikler, ISOLDE
2004Dr04	PRVCA	69,	054318	G.D. Dracoulis, G.J. Lane, A.P. Byrne, T. Kibédi, A.M. Baxter, A.O. Mac- chiavèlli, P. Fallon, R.M. Clark
2004Dr06	PYLBB	584,	22	G.D. Dracoulis, F.G. Kondev, G.J. Lane, A.P. Byrne, T. Kibedi, I. Ahmad, M.P. Carpenter, S.J. Freeman, R.V.F. Janssens, N.J. Hammond, T. Lauritsen, C.J. Lister, G. Mukherjee, D. Seweryniak, P. Chowdhury, S.K. Tandel, R. Gramer
2004Fo06	PRVCA	70,	34312	B. Fogelberg, H. Gausemel, K.A. Mezilev, P. Hoff, H. Mach, M. Sanchez-Vega, A. Lindroth, E. Ramstrom, J. Genevey, J.A. Pinston, M. Rejmund
2004Fo08	PRLTA	93,	212702	C.M. Folden III, K.E. Gregorich, Ch. E. Düllmann, H. Mahmud, G.K. Pang, J.M. Schwantes, R. Sudowe, P.M. Zielinski, H. Nitsche, D.C. Hoffman
2004Fu.A	P-Santa Fe		1454	K. Furutaka, H. Harada, S. Raman, AIP Conf. Proc. 769, 1454 (2005)
2004Ga24	PRVCA	69,	054307	H. Gausemel, B. Fogelberg, T. Engeland, M. Hjorth-Jensen, P. Hoff, H. Mach,
2004Ga29	ЕРЈАА	20,	385	K.A. Mezilev, J.P. Omtvedt Z.G. Gan, J.S. Guo, X.L. Wu, Z. Qin, H.M. Fan, X.G. Lei, H.Y. Liu, B. Guo, H.G. Xu, R.F. Chen, C.F. Dong, F.M. Zhang, H.L. Wang, C.Y. Xie, Z.Q. Feng, Y. Zhen, L.T. Song, P. Luo, H.S. Xu, X.H. Zhou, G.M. Jin, Z. Ren

2004Ga44	PRVCA	70,	037301	H. Gausemel, K.A. Mezilev, B. Fogelberg, P. Hoff, H. Mach, E. Ramström
2004G104	PRVCA	69,	024617	K.A. Gladnishki, Zs. Podolyák, P.H. Regan, J. Gerl, M. Hellström, Y. Kopatch, S. Mandal, M. Górska, R.D. Page, H.J. Wollersheim, A. Banu, G. Benzoni, H. Boardman, M. La Commara, J. Ekman, C. Fahlander, H. Geissel, H. Grawe, E. Kaza, A. Korgul, M. Matos, M.N. Mineva, C.J. Pearson, C. Plettner, D. Rudolph, Ch. Scheidenberger, KH. Schmidt, V. Shishkin, D. Sohler,
20046 15	DDVGA	60	021202	K. Sümmerer, J.J. Valiente-Dobón, P.M. Walker, H. Weick, M. Winkler, O. Yordanov
2004Go15	PRVCA	69,	031302	V.Z. Goldberg, G.G. Chubarian, G. Tabacaru, L. Trache, R.E. Tribble, A. Aprahamian, G.V. Rogachev, B.B. Skorodumov, X.D. Tang
2004Go38	PRVCA	70,	014309	J. TM. Goon, D.J. Hartley, L.L. Riedinger, M.P. Carpenter, F.G. Kondev, R.V.F. Janssens, K.H. Abu Saleem, I. Ahmad, H. Amro, J.A. Cizewski, C.N. Davids, M. Danchev, T.L. Khoo, A. Heinz, T. Lauritsen, W.C. Ma, G.L. Poli, J. Ressler, W. Reviol, D. Seweryniak, M.B. Smith, I. Wiedenhover, J. Zhang
2004Gr20	PYLBB	594,	252	S. Grevy, J.C. Angélique, P. Baumann, C. Borcea, A. Buta, G. Canchel, W.N. Catford, S. Courtin, J.M. Daugas, F. de Oliveira, P. Dessagne, Z. Dlouhy, A. Knipper, K.L. Kratz, F.R. Lecolley, J.L. Lecouey, G. Lhersonneau, M. Lewitowicz, E. Liénard, S. Lukyanov, F. Maréchal, C. Miehé, J. Mrazek, F. Negoita, N.A. Orr, D. Pantelica, Y. Penionzhkevich, J. Péter, B. Pfeiffer, S. Pietri, E. Poirier, O. Sorlin, M. Stanoiu, I. Stefan, C. Stodel, C. Timis
2004He25	EPJAA	22,	253	F.P. Heßberger, S. Hofmann, I. Kojouharov, D. Ackermann
2004He28	EPJAA	22,	417	F.P. Heßberger, S. Hofmann, D. Ackermann, P. Cagarda, RD. Herzberg, I. Kojouharov, P. Kuusiniemi, M. Leino, R. Mann
2004Io01	PRVCA	70,	034305	M. Ionescu-Bujor, A. Iordachescu, D.L. Balabanski, S. Chmel, G. Neyens,
				G. Baldsiefen, D. Bazzacco, F. Brandolini, D. Bucurescu, M. Danchev, M. De Poli, G. Georgiev, A. Görgen, H. Haas, H. Hubel, G. Ilie, N. Marginean, R. Menegazzo, P. Pavan, G. Rainovski, R.V. Ribas, C. Rossi Alvarez, C.A. Ur, K. Vyvey, S. Frauendorf
2004Iz02	YAFIA	67,	1901	N. Izosimov, A.A. Kazimov, V.G. Kalinnikov, A.A. Solnyshkin, J. Suhonen
2004Jo12	PRVCA	70,	017302	D.T. Joss, K. Lagergren, D.E. Appelbe, C.J. Barton, J. Simpson, B. Cederwall, B. Hadinia, R. Wyss, S. Eeckhaudt, T. Grahn, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, AP. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, J. Uusitalo, R.D. Page, E.S. Paul, D.R. Wiseman
2004Ka38	PRVCA	70,	014310	M. Karny, L. Batist, D. Jenkins, M. Kavatsyuk, O. Kavatsyuk, R. Kirchner, A. Korgul, E. Roeckl, J. Zylicz
2004Ke06	PRVCA	69,	054323	H. Kettunen, T. Enqvist, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, P. Kuusiniemi, M. Leino, AP. Leppanen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo
2004Ke10	PRLTA	93,	072502	A. Kellerbauer, G. Audi, D. Beck, K. Blaum, G. Bollen, B.A. Brown, P. Delahaye, C. Guénaut, F. Herfurth, HJ. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian and PrvCom GAu September 2003
2004K103	PYLBB	578,	54	H.V. Klapdor-Kleingrothaus, I.V. Krivosheina, A. Dietz, O. Chkvorets
2004Ko.A	P-Santa Fe		225	F.G. Kondev
2004Ku24	EPJAA	22,	429	P. Kuusiniemi, F.P. Heßberger, D. Ackermann, S. Hofmann, I. Kojouharov
2004Le12	NUPAB	734,	331	A. Lépine-Szily, J.M. Oliveira, D. Galante, G. Amadio, R. Lichtenthäler, H.G. Bohlen, A.N. Ostrowski, A. Blazevic, C. Borcea, V. Guimarães, V. Lapoux, G. Lima, F. de Oliveira Santos, N.A. Orr, P. Roussel-Chomaz, Th. Stolla, J.S. Winfield
2004Li28	CZYPA	54,	189	C.F. Liang, P. Paris, R.K. Sheline, P. Alexa
2004Li75	PRVCA	70,	064303	S.N. Liddick, P.F. Mantica, R. Broda, B.A. Brown, M.P. Carpenter, A.D. Davies, B. Fornal, T. Glasmacher, D.E. Groh, M. Honma, M. Horoi, R.V.F. Janssens, T. Mizusaki, D.J. Morrissey, A.C. Morton, W.F. Mueller, T. Otsuka, J. Pavan, H. Schatz, A. Stolz, S.L. Tabor, B.E. Tomlin, M. Wiedeking
2004Ma.A	ThGiessen			M. Matoš
2004Mo15	NUPAB	734,	188	K. Moody, for the Dubna-Livermore Collaboration

2004Mo26	JUPSA	73,	1738	K. Morita, K. Morimoto, D. Kaji, H. Haba, E. Ideguchi, J.C. Peter, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, I. Tanihata, H. Xu, A.V. Yeremin, A. Yoneda, A. Yoshida, Y.L. Zhao, T. Zheng, S. Goto, F. Tokanai
2004Mo40	EPJAA	21,	257	K. Morita, K. Morimoto, D. Kaji, H. Haba, E. Ideguchi, R. Kanungo, K. Katori, H. Koura, H. Kudo, T. Ohnishi, A. Ozawa, T. Suda, K. Sueki, I. Tanihata, H. Xu, A.V. Yeremin, A. Yoneda, A. Yoshida, YL. Zhao, T. Zheng
2004MoZU 2004Mu26	PrvCom PRLTA	NDG 93,	150801	K. Morita (to be published in Proc. EXON 2004) M. Mukherjee, A. Kellerbauer, D. Beck, K. Blaum, G. Bollen, F. Carrel, P. Delahaye, J. Dilling, S. George, C. Guénaut, F. Herfurth, A. Herlert, HJ. Kluge, U. Köster, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian
2004Mu30	PRVCA	70,	044311	I. Mukha, L. Batist, E. Roeckl, H. Grawe, J. Doring, A. Blazhev, C.R. Hoffman, Z. Janas, R. Kirchner, M. La Commara, S. Dean, C. Mazzocchi, C. Plettner, S.L. Tabor, M. Wiedeking
2004Mu32	NUPAB	746,	66	I. Mukha, L. Batist, F. Becker, A. Blazhev, W. Brüchle, J. Döring, M. Gorska, H. Grawe, T. Faestermann, C. Hoffman, Z. Janas, A. Jungclaus, M. Karny, M. Kavatsyuk, O. Kavatsyuk, R. Kirchner, M. La Commara, C. Mazzocchi, C. Plettner, A. Plochocki, E. Roeckl, M. Romoli, M. Schädel, R. Schwengner, S.L. Tabor, M. Wiedeking, and the GSI ISOL Collaboration
2004Na.A	ThValencia	60	021601	E. Nácher
2004Og03	PRVCA	69,	021601	Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally,
2004Og05	NUPAB	734,	109	R.W. Lougheed Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bo- gomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Ken-
2004Og07	PRVCA	69,	054607	neally, R.W. Lougheed Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bo- gomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Ken- neally, R.W. Lougheed
2004Og12	PRVCA	70,	064609	Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, I.V. Shirokovsky, Yu. S. Tsyganov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, A.A. Voinov, G.V. Buklanov, K. Subotic, V.I. Zagrebaev, M.G. Itkis, J.B. Patin, K.J. Moody, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, R.I. Ilkaev, S.P. Vesnovskii, and erratum PRVCA 71(2005)029902
2004Ra23	PRVCA	70,	044318	S. Raman, X. Ouyang, M.A. Islam, J.W. Starner, E.T. Jurney, J.E. Lynn, G. Martínez-Pinedo
2004Ra28	PRVCA	70,	064308	P.M. Raddon, D.G. Jenkins, C.D. O'Leary, A.J. Simons, R. Wadsworth, A.N. Andreyev, R.D. Page, M.P. Carpenter, F.G. Kondev, T. Enqvist, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, AP. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, J. Uusitalo, D.T. Joss
2004Ra33	SCIEA	303,	334	S. Rainville, J.K. Thompson, D.E. Pritchard
2004Re04	PRVCA	69,	034331	J.J. Ressler, C.W. Beausang, H. Ai, H. Amro, M.A. Caprio, R.F. Casten, A.A. Hecht, S.D. Langdown, E.A. McCutchan, D.A. Meyer, P.H. Regan, M.J.S. Sciacchitano, A. Yamamoto, N.V. Zamfir
2004Ri12	PRVCA	70,	11301	S. Rinta-Antila, S. Kopecky, V.S. Kolhinen, J. Hakala, J. Huikari, A. Jokinen, A. Nieminen, J. Äystö, J. Szerypo

2004Ro32	PRLTA	93,	161104	D. Rodríguez, V.S. Kolhinen, G. Audi, J. Äystö, D. Beck, K. Blaum, G. Bollen, F. Herfurth, A. Jokinen, A. Kellerbauer, HJ. Kluge, M. Oinonen, H. Schatz,
2004Sa05	PRVCA	69,	014308	E. Sauvan, S. Schwarz M. Sakama, M. Asai, K. Tsukada, S. Ichikawa, I. Nishinaka, Y. Nagame, H. Haba, S. Goto, M. Shibata, K. Kawade, Y. Kojima, Y. Oura, M. Ebihara,
2004Sa53	PRVCA	70,	042501	H. Nakahara G. Savard, J.A. Clark, F. Buchinger, J.E. Crawford, S. Gulick, J.C. Hardy, A.A. Hecht, V.E. Iacob, J.K.P. Lee, A.F. Levand, B.F. Lundgren, N.D. Scielzo, K.S. Sharma, I. Tanihata, I.S. Towner, W. Trimble, J.C. Wang, Y. Wang, Z. Zhou
2004Sc04	ARISE	60,	317	H. Schrader
2004Sc42	PRVCA	70,	054318	A. Scherillo, J. Genevey, J.A. Pinston, A. Covello, H. Faust, A. Gargano, R. Orlandi, G.S. Simpson, I. Tsekhanovich, N. Warr
2004Sh15	EPJAA	20,	207	T. Shizuma, Z.G. Gan, K. Ogawa, H. Nakada, M. Oshima, Y. Toh, T. Hayakawa, Y. Hatsukawa, M. Sugawara, Y. Utsuno, Z. Liu
2004St05	PYLBB	586,	27	J. Stadlmann, M. Hausmann, F. Attallah, K. Beckert, P. Beller, F. Bosch, H. Eickhoff, M. Falch, B. Franczak, B. Franzke, H. Geissel, Th. Kerscher, O. Klepper, HJ. Kluge, C. Kozhuharov, Yu. A. Litvinov, K.E.G. Löbner, M. Matoš, G. Münzenberg, N. Nankov, F. Nolden, Yu. N. Novikov, T. Ohtsubo, T. Radon, H. Schatz, C. Scheidenberger, M. Steck, H. Weick, H. Wollnik
2004St18	NUPAB	738,	43	S.V. Stepantsov, M.S. Golovkov, A.S. Fomichev, A.M. Rodin, S.I. Sidorchuk, R.S. Slepnev, G.M. Ter-Akopian, M.L. Chelnokov, V.A. Gorshkov, Yu. Ts. Oganessian, R. Wolski, A.A. Korsheninnikov, E. Yu. Nikolskii, I. Tanihata
2004Th09	ЕРЈАА	21,	419	J.C. Thomas, L. Achouri, J. Äystö, R. Beraud, B. Blank, G. Canchel, S. Czajkowski, P. Dendooven, A. Ensallem, J. Giovinazzo, N. Guillet, J. Honkanen, A. Jokinen, A. Laird, M. Lewitowicz, C. Longour, F. de Oliveira Santos, K. Peräjärvi, M. Stanoiu
2004Th17	NATUA	430,	58	J.K. Thompson, S. Rainville, D.E. Pritchard
2004Ti06	NUPAB	745,	155	D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Weller
2004To03	PRVCA	69,	014312	I. Tomandl, J. Novák, V. Burjan, S. Raman, T. von Egidy, HF. Wirth, U. Köster, W. Schauer, J.W. Starner, E.T. Jurney, G. Graw, R. Hertenberger, A. Gollwitzer, B. Valnion, A. Metz
2004Ur04	EPJAA	22,	157	W. Urban, A. Zlomaniec, G. Simpson, J.A. Pinston, J. Kurpeta, T. Rzaca-Urban, J.L. Durell, A.G. Smith, B.J. Varley, N. Schulz, I. Ahmad
2004Va03	PRVCA	69,	024316	J.J. Valiente-Dobón, P.H. Regan, C. Wheldon, C.Y. Wu, N. Yoshinaga, K. Higashiyama, J.F. Smith, D. Cline, R.S. Chakrawarthy, R. Chapman, M. Cromaz, P. Fallon, S.J. Freeman, A. Görgen, W. Gelletly, A. Hayes, H. Hua, S.D. Lang-
2004Va07	PRLTA	92,	112501	down, I.Y. Lee, X. Liang, A.O. Macchiavelli, C.J. Pearson, Zs. Podolyák, G. Sletten, R. Teng, D. Ward, D.D. Warner, A.D. Yamamoto J. Van Roosbroeck, C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, J. Cederkall, P. Delahaye, A. De Maesschalck, H. De Witte, D. Fedorov, V.N. Fedoseyev, S. Franchoo, H.O.U. Fynbo, M. Górska, F. Herfurth, K. Heyde, M. Huyse, A. Kellerbauer, HJ. Kluge, U. Köster, K. Kruglov, D. Lunney, V.I. Mishin, W.F. Mueller, Sz. Nagy, S. Schwarz, L. Schweikhard,
				N.A. Smirnova, K. Van de Vel, P. Van Duppen, A. Van Dyck, W.B. Walters, L. Weissman, C. Yazidjian
2004Va14	PRLTA	92,	220802	R.S. Van Dyck, Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinber
2004Wa26	PRVCA	70,	034314	W.B. Walters, B.E. Tomlin, P.F. Mantica, B.A. Brown, J. Rikovska Stone,
				A.D. Davies, A. Estrade, P.T. Hosmer, N. Hoteling, S.N. Liddick, T.J. Mertzimekis, F. Montes, A.C. Morton, W.F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, D. Seweryniak, H. Schatz, J. Shergur, A. Stolz
2004Wo07	PRVCA	69,	051302	P.J. Woods, P. Munro, D. Seweryniak, C.N. Davids, T. Davinson, A. Heinz, H. Mahmud, F. Sarazin, J. Shergur, W.B. Walters, A. Woehr
2004Wo16	NUPAB	742,	349	A. Wöhr, A. Aprahamian, P. Boutachkov, J.L. Galache, J. Gorres, M. Shawcross, A. Teymurazyan, M.C. Wiescher, D.S. Brenner, C.N. Davids, S.M. Fischer, A.M. Heinz, R.V.F. Janssens, D. Seweryniak
2004Xu08	JUPSA	73,	2588	Y. Xu, W. Yang, S. Yuan, Y. Niu, H. Ding, X. Wang, L. Zhao, P. Wang, H. Li

2004Ze05	ЕРЈАА	20,	389	T. Zerguerras, B. Blank, Y. Blumenfeld, T. Suomijärvi, D. Beaumel, B.A. Brown, M. Chartier, M. Fallot, J. Gio vinazzo, C. Jouanne, V. Lapoux, I. Lhenry-Yvon, W. Mittig, P. Roussel-Chomaz, H. Savajols, J.A. Scarpaci, A. Shrivastava, M. Thoennessen
				2005
2005Ah03	PRVCA	71,	054305	I. Ahmad, F.G. Kondev, E.F. Moore, M.P. Carpenter, R.R. Chasman, J.P. Greene, R.V.F. Janssens, T. Lauritsen, C.J. Lister, D. Seweryniak, R.W. Hoff, J.E. Evans, R.W. Lougheed, C.E. Porter, L.K. Felker
2005As05	PRLTA	95,	102502	M. Asai, K. Tsukada, M. Sakama, S. Ichikawa, T. Ishii, Y. Nagame, I. Nishinaka, K. Akiyama, A. Osa, Y. Oura, K. Sueki, M. Shibata
2005Ba51	PRVCA	71,	054302	A.M. Baxter, A.P. Byrne, G.D. Dracoulis, P.M. Davidson, T. Kibédi, R.V.F. Janssens, M.P. Carpenter, C.N. Davids, T.L. Khoo, T. Lauritsen
2005Ba64	PRVCA	72,	017301	A.E. Barzakh, D.V. Fedorov, A.M. Ionan, V.S. Ivanov, F.V. Moroz, K.A. Mezilev, S. Yu. Orlov, V.N. Panteleev, Yu. M. Volkov
2005Вь02	EPJAA	25,	s149	J.C. Batchelder, M. Tantawy, C.R. Bingham, M. Danchev, D.J. Fong, T.N. Ginter, C.J. Gross, R. Grzywacz, K. Hagino, J.H. Hamilton, M. Karny, W. Krolas, C. Mazzocchi, A. Piechaczek, A.V. Ramayya, K.P. Rykaczewski, A. Stolz, J.A. Winger, CH. Yu, E.F. Zganjar
2005Bh06	NUPAB	750,	199	T. Bhattacharjee, S. Chanda, S. Bhattacharyya, S.K. Basu, R.K. Bhowmik, S. Muralithar, R.P. Singh, N.S. Pattabiraman, S.S. Ghugre, U. Datta Pramanik, S. Bhattacharya
2005B115	PRLTA	94,	232501	B. Blank, A. Bey, G. Canchel, C. Dossat, A. Fleury, J. Giovinazzo, I. Matea, N. Adimi, F. de Oliveira, I. Stefan, G. Georgiev, S. Grévy, J.C. Thomas, C. Borcea, D. Cortina, M. Caamano, M. Stanoiu, F. Aksouh, B.A. Brown, F.C. Barker, W.A. Richter
2005Ca02	EPJAA	23,	201	M. Caamano, P.M. Walker, P.H. Regan, M. Pfutzner, Zs. Podolyák, J. Gerl, M. Hellstrom, P. Mayet, M.N. Mineva, A. Aprahamian, J. Benlliure, A.M. Bruce, P.A. Butler, D. Cortina Gil, D.M. Cullen, J. Doring, T. Enqvist, C. Fox, J. Garces Narro, H. Geissel, W. Gelletly, J. Giovinazzo, M. Gorska, H. Grawe, R. Grzywacz, A. Kleinbohl, W. Korten, M. Lewitowicz, R. Lucas, H. Mach, C.D. O'Leary, F. de Oliveira, C.J. Pearson, F. Rejmund, M. Rejmund, M. Sawicka, H. Schaffner, C. Schlegel, K. Schmidt, KH. Schmidt, P.D. Stevenson, Ch. Theisen, F. Vives, D.D. Warner, C. Wheldon, H.J. Wollersheim, S. Wooding, F. Xu, O. Yordanov
2005Ca03	NUPAB	748,	333	C.M. Cattadori, M. De Deo, M. Laubenstein, L. Pandola, V.I. Tretyak
2005Ca43 2005Ca.A	JPGPE	31,	s1599 51	M.P. Carpenter, F.G. Kondev, R.V.F. Janssens M.P. Carpenter et al
2005Ch65	AnRpt ANL, PRVCA	72,	054309	A. Chakraborty, Krishichayan, S.S. Ghugre, R. Goswami, S. Mukhopadhyay, N.S. Pattabiraman, S. Ray, A.K. Sinha, S. Sarkar, P.V. Madhusudhana Rao, U. Garg, S.K. Basu, M.B. Chatterjee, M.S. Sarkar, L. Chaturvedi, A. Dhal, R.K. Sinha, I.M. Govil, R.K. Bhowmik, A. Jhingan, N. Madhavan, S. Muralithar, S. Nath, R.P. Singh, P. Sugathan
2005De01	EPJAA	23,	243	H. De Witte, A.N. Andreyev, S. Dean, S. Franchoo, M. Huyse, O. Ivanov, U. Köster, W. Kurcewicz, J. Kurpeta, A. Płochocki, K. Van de Vel, J. Van de Walle, P. Van Duppen
2005Do20	PRVCA	72,	054315	C. Dossat, A. Bey, B. Blank, G. Canchel, A. Fleury, J. Giovinazzo, I. Matea, F. de Oliveira Santos, G. Georgiev, S. Grévy, I. Stefan, J.C. Thomas, N. Adimi, C. Borcea, D. Cortina Gil, M. Caamano, M. Stanoiu, F. Aksouh, B.A. Brown, L.V. Grigorenko
2005Dr05	PRVCA	71,	044326	G.D. Dracoulis, G.J. Lane, F.G. Kondev, A.P. Byrne, T. Kibédi, H. Watanabe, I. Ahmad, M.P. Carpenter, S.J. Freeman, R.V.F. Janssens, N.J. Hammond, T. Lauritsen, C.J. Lister, G. Mukherjee, D. Seweryniak, P. Chowdhury, S.K. Tandel
2005El10	PRVCA	72,	054306	H.M. El-Masri, P.M. Walker, G.D. Dracoulis, T. Kibédi, A.P. Byrne, A.M. Bruce, J.N. Orce, A. Emmanouilidis, D.M. Cullen, C. Wheldon, F.R. Xu
2005Fr.A	IPNO-DRE-N	NS	5	S. Franchoo, N. Barre, B. Roussiere, J. Sauvage

2005Ga01	EPJAA	23,	41	L. Gaudefroy, O. Sorlin, C. Donzaud, J.C. Angelique, F. Azaiez, C. Bourgeois, V. Chiste, Z. Dlouhy, S. Grevy, D. Guillemaud-Mueller, F. Ibrahim, KL. Kratz, M. Lewitowicz, S.M. Lukyanov, I. Matea, J. Mrazek, F. Nowacki,
				F. de Oliveira Santos, YuE. Penionzhkevich, B. Pfeiffer, F. Pougheon, M.G. Saint-Laurent, M. Stanoiu
2005Ga.B	ThOrsay Se	ent		L. Gaudefroy
2005Gi15	JPGPE	31,	s1509	J. Giovinazzo
2005Gr32	EPJAA	25,		R. Grzywacz, M. Karny, K.P. Rykaczewski, J.C. Batchelder, C.R. Bingham,
				D. Fong, C.J. Gross, W. Krolas, C. Mazzocchi, A. Piechaczek, M.N. Tantawy, J.A. Winger, E.F. Zganjar
2005Gu25	PRVCA	72,	034312	F.Q. Guo, J. Powell, D.W. Lee, D. Leitner, M.A. McMahan, D.M. Moltz, J.P. O'Neil, K. Perajarvi, L. Phair, C.A. Ramsey, X.J. Xu, J. Cerny
2005Gu27	JPGPE	31,	s1765	C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, F. Herfurth, A. Kellerbauer, HJ. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazid-jian
2005Gu37	EPJAA	25,	s35	C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, F. Herfurth, A. Kellerbauer, HJ. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidijian
2005Ha45	PRVCA	72,	024303	S. Harissopulos, J. Döring, M. La Commara, K. Schmidt, C. Mazzocchi, R. Borcea, S. Galanopoulos, M. Górska, H. Grawe, M. Hellström, Z. Janas, R. Kirchner, E. Roeckl, I.P. Johnstone, R. Schwengner, L.D. Skouras
2005He26	EPJAA	25,	s17	F. Herfurth, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, S. George, C. Guénaut, A. Herlert, A. Kellerbauer, HJ. Kluge, D. Lunney, M. Mukherjee,
2005He27	EPJAA	26,	233	S. Rahaman, S. Schwarz, L. Schweikhard, C. Weber, C. Yazidjian F.P. Heßberger, S. Antalic, B. Streicher, S. Hofmann, D. Ackermann, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio,
2005He.A	PrvCom	GAu	Ana	S. Saro, B. Sulignano A. Herlert
2005He.A 2005Ho15	NUPAB	756,	Aug 249	J. Honzátko, V. Bondarenko, I. Tomandl, T. von Egidy, HF. Wirth, D. Bucurescu, V. Yu. Ponomarev, N. Mărginean, R. Hertenberger, Y. Eisermann, G. Graw, L. Rubáček
2005Hu.A	PrvCom	GAu	Jul	M. Huyse
2005Ic02	PRVCA	71,	067302	S. Ichikawa, M. Asai, K. Tsukada, H. Haba, Y. Nagame, M. Shibata, M. Sakama, Y. Kojima
2005Ja03	EPJAA	23,	197	Z. Janas, C. Mazzocchi, L. Batist, A. Blazhev, M. Górska, M. Kavatsyuk, O. Kavatsyuk, R. Kirchner, A. Korgul, M. La Commara, K. Miernik, I. Mukha, A. Plochocki, E. Roeckl, K. Schmid
2005Ja06	EPJAA	23,	401	Z. Janas, L. Batist, J. Doring, M. Gierlik, R. Kirchner, J. Kurcewicz, H. Mahmud, C. Mazzocchi, A. Plochocki, E. Roeckl, K. Schmidt, P.J. Woods, J. Żylicz
2005Ja10	EPJAA	24,	205	Z. Janas, L. Batist, R. Borcea, J. Doring, M. Gierlik, M. Karny, R. Kirchner, M. La Commara, S. Mandal, C. Mazzocchi, F. Moroz, S. Orlov, A. Płochocki, E. Roeckl, J. Żylicz
2005Ka34	EPJAA	25,	211	O. Kavatsyuk, M. Kavatsyuk, L. Batist, A. Banu, F. Becker, A. Blazhev, W. Brüchle, J. Döring, T. Faestermann, M. Górska, H. Grawe, Z. Janas, A. Jungclaus, M. Karny, R. Kirchner, M. La Commara, S. Mandal, C. Mazzocchi, I. Mukha, S. Muralithar, C. Plettner, A. Płochocki, E. Roeckl, M. Romoli,
2005Ka39	EPJAA	25,	355	M. Schädel, R. Schwengner, J. Zylicz A. Kankainen, G.K. Vorobjev, S.A. Eliseev, W. Huang, J. Huikari, A. Jokinen, A. Nieminen, Yu. N. Novikov, H. Penttilä, A.V. Popov, S. Rinta-Antila,
200517.20	EDIA A	25	(22	H. Schatz, D.M. Seliverstov, Yu. P. Suslov, J. Äystö
2005Kr20	EPJAA	25,	s633	KL. Kratz, B. Pfeiffer, O. Arndt, S. Hennrich, A. Wöhr, ISOLDE
2005Ku06	EPJAA	23,	417	P. Kuusiniemi, F.P. Heßberger, D. Ackermann, S. Hofmann, I. Kojouharov
2005Ku31	EPJAA	25,	397	P. Kuusiniemi, F.P. Heßberger, D. Ackermann, S. Hofmann, B. Sulignano, I. Ko- jouharov, R. Mann
2005Ku.A	P-Debrecen		73	T. Kurtukian Nieto, J. Benlliure, KH. Schmidt, E. Casarejos, D. Cortina-Gil, M. Fernandez-Ordonez, J. Pereira, L. Audouin, B. Blank, F. Becker, J. Giovinazzo, D. Henzlova, B. Jurado, F. Rejmund, O. Yordanov

2005La01	PYLBB	606,	34	G.J. Lane, K.H. Maier, A.P. Byrne, G.D. Dracoulis, R. Broda, B. Fornal, M.P. Carpenter, R.M. Clark, M. Cromaz, R.V.F. Janssens, A.O. Macchiavelli, I. Wiedenhover, K. Vetter
2005Le34	PRVCA	72,	034305	F. Le Blanc, L. Cabaret, E. Cottereau, J.E. Crawford, S. Essabaa, J. Genevey, R. Horn, G. Huber, J. Lassen, J.K.P. Lee, G. Le Scornet, J. Lettry, J. Obert,
2005Le42	EPJAA	25,	s183	J. Oms, A. Ouchrif, J. Pinard, H. Ravn, B. Roussière, J. Sauvage, D. Verney AP. Leppänen, J. Uusitalo, S. Eeckhaudt, T. Enqvist, K. Eskola, T. Grahn, F.P. Heßberger, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, M. Leino, P. Nieminen, J. Pakarinen, J. Perkowski, P. Rahkila, G. Sahalar, G. Sahalar
2005Li17	NIMAE	543,	591	C. Scholey, G. Sletten Z. Liu, J. Kurcewicz, P.J. Woods, C. Mazzocchi, F. Attallah, E. Badura, C.N. Davids, T. Davinson, J. Döring, H. Geissel, M. Górska, R. Grzywacz, M. Hellström, Z. Janas, M. Karny, A. Korgul, I. Mukha, M. Pfützner, C. Plettner, A. Behiman, F. Basald, K. Bukasanyaki, K. Sahrsidt, D. Sayanyarisik, H. Weigle
2005Li24	NUPAB	756,	3	A. Robinson, E. Roeckl, K. Rykaczewski, K. Schmidt, D. Seweryniak, H. Weick Yu. A. Litvinov, H. Geissel, T. Radon, F. Attallah, G. Audi, K. Beckert, F. Bosch, M. Falch, B. Franzke, M. Hausmann, M. Hellström, Th. Kerscher, O. Klepper, HJ. Kluge, C. Kozhuharov, K.E.G. Löbner, G. Münzenberg, F. Nolden, Yu. N. Novikov, W. Quint, Z. Patyk, H. Reich, C. Scheidenberger, B. Schlitt, M. Stark K. Stimmers, L. Vernesser, M. Windley, Th. Windley, H. Welleile, M. Stark K. Stimmers, L. Vernesser, M. Windley, Th. Windley, H. Welleile, M. Stark K. Stimmers, L. Vernesser, M. Windley, Th. Windley, H. Welleile, M. Stark, M. Stark, R. Stimmers, L. Vernesser, M. Windley, Th. Windley, H. Welleile, M. Well
2005Li47	PRVCA	72,	047301	M. Steck, K. Sümmerer, L. Vermeeren, M. Winkler, Th. Winkler, H. Wollnik Z. Liu, P.J. Woods, K. Schmidt, H. Mahmud, P.S.L. Munro, A. Blazhev, J. Doring, H. Grawe, M. Hellstrom, R. Kirchner, Z.K. Li, C. Mazzocchi, I. Mukha, C. Plettner, E. Roeckl, M. La Commara
2005Li53	PRVCA	72,	054321	S.N. Liddick, P.F. Mantica, R. Broda, B.A. Brown, M.P. Carpenter, A.D. Davies, B. Fornal, M. Horoi, R.V.F. Janssens, A.C. Morton, W.F. Mueller, J. Pavan, H. Schatz, A. Stolz, S.L. Tabor, B.E. Tomlin, M. Wiedeking
2005Li60	PRVCA	72,	064327	Z.H. Li, Y.L. Ye, H. Hua, D.X. Jiang, Y.M. Zhang, F.R. Xu, Q.Y. Hu, G.L. Zhang, Z.Q. Chen, T. Zheng, C.E. Wu, J.L. Lou, X.Q. Li, D.Y. Pang, S. Wang, C. Li, H.S. Xu, Z.Y. Sun, L.M. Duan, Z.G. Hu, R.J. Hu, H.G. Xu, R.S. Mao, Y. Wang, X.H. Yuan, H. Gao, L.J. Wu, H.R. Qi, T.H. Huang, F. Fu, F. Jia, Q. Gao, X.L. Ding, J.L. Han, X.Y. Zhang
2005Ma59	PYLBB	622,	45	C. Mazzocchi, R. Grzywacz, J.C. Batchelder, C.R. Bingham, D. Fong, J.H. Hamilton, J.K. Hwang, M. Karny, W. Krolas, S.N. Liddick, A.F. Lisetskiy, A.C. Morton, P.F. Mantica, W.F. Mueller, K.P. Rykaczewski, M. Steiner, A. Stolz, J.A. Winger
2005Ma95	EPJAA	25,	s93	C. Mazzocchi, R. Grzywacz, J.C. Batchelder, C.R. Bingham, D. Fong, J.H. Hamilton, J.K. Hwang, M. Karny, W. Krolas, S.N. Liddick, A.C. Morton, P.F. Mantica, W.F. Mueller, K.P. Rykaczewski, M. Steiner, A. Stolz, J.A. Winger
2005Ma.A 2005Mu15	PrvCom PRLTA	GAu 95,	Oct 022501	M. Martin I. Mukha, E. Roeckl, J. Döring, L. Batist, A. Blazhev, H. Grawe, C.R. Hoffman, M. Huyse, Z. Janas, R. Kirchner, M. La Commara, C. Mazzocchi, C. Plettner, S.L. Tabor, P. Van Duppen, M. Wiedeking
2005Og02	PRVCA	72,	034611	Yu. Ts. Oganessian, V.K. Utyonkov, S.N. Dmitriev, Yu. V. Lobanov, M.G. Itkis, A.N. Polyakov, Yu. S. Tsyganov, A.N. Mezentsev, A.V. Yeremin, A.A. Voinov, E.A. Sokol, G.G. Gulbekian, S.L. Bogomolov, S. Iliev, V.G. Subbotin, A.M. Sukhov, G.V. Buklanov, S.V. Shishkin, V.I. Chepygin, G.K. Vostokin, N.V. Aksenov, M. Hussonnois, K. Subotic, V.I. Zagrebaev, K.J. Moody, J.B. Patin, J.F. Wild, M.A. Stoyer, N.J. Stoyer, D.A. Shaughnessy, J.M. Kenneally, P.A. Wilk, R.W. Lougheed, H.W. Gäggeler, D. Schumann, H. Bruchertseifer, R. Eichler
2005Oh08	PRLTA	95,	052501	T. Ohtsubo, F. Bosch, H. Geissel, L. Maier, C. Scheidenberger, F. Attallah, K. Beckert, P. Beller, D. Boutin, T. Faestermann, B. Franczak, B. Franzke, M. Hausmann, M. Hellstrom, E. Kaza, P. Kienle, O. Klepper, HJ. Kluge, C. Kozhuharov, Yu. A. Litvinov, M. Matos, G. Munzenberg, F. Nolden, Yu. N. Novikov, M. Portillo, T. Radon, J. Stadlmann, M. Steck, T. Stohlker, K. Summerer, K. Takahashi, H. Weick, M. Winkler, T. Yamaguchi
2005Pa31	PRVCA	71,	055804	A. Parikh, J.A. Caggiano, C. Deibel, J.P. Greene, R. Lewis, P.D. Parker, C. Wrede
2005Pi13	PRVCA	71,	064327	J.A. Pinston, J. Genevey, R. Orlandi, A. Scherillo, G.S. Simpson, I. Tsekhanovich, W. Urban, H. Faust, N. Warr

2005Po03	ЕРЈАА	24,	39	MG. Porquet, Ts. Venkova, R. Lucas, A. Astier, A. Bauchet, I. Deloncle, A. Prevost, F. Azaiez, G. Barreau, A. Bogachev, N. Buforn, A. Buta, D. Curien, T.P. Doan, L. Donadille, O. Dorvaux, G. Duchene, J. Durell, Th. Ethvignot, B.P.J. Gall, D. Grimwood, M. Houry, F. Khalfallah, W. Korten, S. Lalkovski, Y. Le Coz, M. Meyer, A. Minkova, I. Piqueras, N. Redon, A. Roach, M. Rousseau, N. Schulz, A.G. Smith, O. Stezowski, Ch. Theisen, B.J. Varley
2005Ra34	NATUA	438,	1096	· · · · · · · · · · · · · · · · · · ·
2005Re02	PRVCA	71,	014302	J.J. Ressler, C.W. Beausang, H. Ai, H. Amro, M. Babilon, J.A. Caggiano, R.F. Casten, G. Gurdal, A. Heinz, R.O. Hughes, E.A. McCutchan, D.A. Meyer, C. Plettner, J. Qian, M.J.S. Sciacchitano, N.J. Thomas, E. Williams, N.V. Zamfir
2005Ri17	JPHGB	31,	s1949	S. Rigby, D.M. Cullen, D.T. Scholes, C. Scholey, P. Rahkila, S. Eeckhaudt, T. Grahn, P. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, A. Leppänen, P. Nieminen, M. Nyman, J. Pakarinen, J. Uusitalo
2005Ro19	PRLTA	95,	032502	A.P. Robinson, P.J. Woods, D. Seweryniak, C.N. Davids, M.P. Carpenter, A.A. Hecht, D. Peterson, S. Sinha, W.B. Walters, S. Zhu
2005Ro40	EPJAA	25,	s155	A.P. Robinson, C.N. Davids, D. Seweryniak, P.J. Woods, B. Blank, M.P. Carpenter, T. Davinson, S.J. Freeman, N. Hammond, N. Hoteling, R.V.F. Janssens, T.L. Khoo, Z. Liu, G. Mukherjee, C. Scholey, J. Shergur, S. Sinha, A.A. Sonzogni, W.B. Walters, A. Woehr
2005Sa44	PRLTA	95,	102501	G. Savard, F. Buchinger, J.A. Clark, J.E. Crawford, S. Gulick, J.C. Hardy, A.A. Hecht, J.K.P. Lee, A.F. Levand, N.D. Scielzo, H. Sharma, K.S. Sharma, I. Tanihata, A.C.C. Villari, Y. Wang
2005Sc22	JPGPE	31,	s1719	C. Scholey, M. Sandzelius, S. Eeckhaudt, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, M. Leino, AP. Leppanen, P. Nieminen, M. Nyman, J. Perkowski, J. Pakarinen, P. Rahkila, P.M. Rahkila, J. Uusitalo, K. Van de Vel, B. Cederwall, B. Hadinia, K. Lagergren, D.T. Joss, D.E. Appelbe, C.J. Barton,
2005Sh24	PRVCA	71,	064323	J. Simpson, D.D. Warner, I.G. Darby, R.D. Page, E.S. Paul, D. Wiseman J. Shergur, D.J. Dean, D. Seweryniak, W.B. Walters, A. Wöhr, P. Boutachkov, C.N. Davids, I. Dillmann, A. Juodagalvis, G. Mukherjee, S. Sinha, A. Teymurazyan, I. Zartova
2005Sh38	PRVAA	72,	022510	W. Shi, M. Redshaw, E.G. Myers, and PrvCom GAu February 2006
2005Sh52	EPJAA	25,	s45	K.S. Sharma, J. Vaz, R.C. Barber, F. Buchinger, J.A. Clark, J.E. Crawford, H. Fukutani, J.P. Greene, S. Gulick, A. Heinz, J.K.P. Lee, G. Savard, Z. Zhou, J.C. Wang
2005Si34	NUPAB	763,	45	
2005Th03	PRVCA	71,	021302	J.S. Thomas, D.W. Bardayan, J.C. Blackmon, J.A. Cizewski, U. Greife, C.J. Gross, M.S. Johnson, K.L. Jones, R.L. Kozub, J.F. Liang, R.J. Livesay, Z. Ma, B.H. Moazen, C.D. Nesaraja, D. Shapira, M.S. Smith
2005Th.A	P-Cadarache		131	JC. Thomas, et al
2005Tr13	EPJAA	25,	s101	V. Tripathi, S.L. Tabor, P.F. Mantica, C.R. Hoffman, M. Wiedeking, A.D. Davies, S.N. Liddick, W.F. Mueller, A. Stolz, B.E. Tomlin, A. Volya
2005Uu02	PRVCA	71,	024306	J. Uusitalo, M. Leino, T. Enqvist, K. Eskola, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, A. Keenan, H. Kettunen, H. Koivisto, P. Kuusiniemi, AP. Leppänen, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey
2005Va04	EPJAA	24,	57	K. Van de Vel, A.N. Andreyev, D. Ackermann, H.J. Boardman, P. Cagarda, J. Gerl, F.P. Heßberger, S. Hofmann, M. Huyse, D. Karlgren, I. Kojouharov, M. Leino, B. Lommel, G. Münzenberg, C. Moore, R.D. Page, S. Saro, P. Van Duppen, R. Wyss
2005Va19	PRVCA	71,	054307	J. Van Roosbroeck, H. De Witte, M. Gorska, M. Huyse, K. Kruglov, D. Pauwels, JCh. Thomas, K. Van de Vel, P. Van Duppen, S. Franchoo, J. Cederkall, V.N. Fedoseyev, H. Fynbo, U. Georg, O. Jonsson, U. Koster, L. Weissman, W.F. Mueller, V.I. Mishin, D. Fedorov, A. De Maesschalck, N.A. Smirnova, K. Heyde

2005We11	PYLAA	347,	81	C. Weber, G. Audi, D. Beck, K. Blaum, G. Bollen, F. Herfurth, A. Kellerbauer,
2005Xu04	PRVCA	71,	054318	HJ. Kluge, D. Lunney, S. Schwarz S.W. Xu, Z.K. Li, Y.X. Xie, Q.Y. Pan, W.X. Huang, X.D. Wang, Y. Yu, Y.B. Xing, N.C. Shu, Y.S. Chen, F.R. Xu, K. Wang
				2006
2006Ac04	EPJAA	27,	287	N.L. Achouri, F. de Oliveira Santos, M. Lewitowicz, B. Blank, J. Aÿstö, G. Canchel, S. Czajkowski, P. Dendooven, A. Emsallem, J. Giovinazzo, N. Guillet, A. Jokinen, A.M. Laird, C. Longour, K. Peräjärvi, N. Smirnova, M. Stanoiu, JC. Thomas
2006An04	PRVCA	73,	024317	A.N. Andreyev, S. Antalic, D. Ackermann, S. Franchoo, F.P. Heßberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, P. Kuusiniemi, S.R. Lesher, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, R.D. Page, J.J. Ressler, B. Streicher, S. Saro, B. Sulignano, P. Van Duppen, D.R. Wiseman
2006An11	PRVCA	73,	044324	A.N. Andreyev, S. Antalic, D. Ackermann, S. Franchoo, F.P. Heßberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, P. Kuusiniemi, S.R. Lesher, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, R.D. Page, J.J. Ressler, B. Streicher, S. Saro, B. Sulignano, P. Van Duppen, D. Wiseman, R. Wyss
2006An36	PRVCA	74,	064303	A.N. Andreyev, S. Antalic, M. Huyse, P. Van Duppen, D. Ackermann, L. Bianco, D.M. Cullen, I.G. Darby, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, I. Kojouharov, B. Kindler, AP. Leppänen, B. Lommel, R. Mann, G. Münzenberg, J. Pakarinen, R.D. Page, J.J. Ressler, S. Saro, B. Streicher, B. Sulignano, J. Thomson, R. Wyss
2006As03	PRVCA	73,	067301	M. Asai, K. Tsukada, S. Ichikawa, M. Sakama, H. Haba, I. Nishinaka, Y. Nagame, S. Goto, Y. Kojima, Y. Oura, M. Shibata
2006Ba09	PRVCA	73,	024308	J.E. Bastin, RD. Herzberg, P.A. Butler, G.D. Jones, R.D. Page, D.G. Jenkins, N. Amzal, P.M.T. Brew, N.J. Hammond, R.D. Humphreys, P.J.C. Ikin, T. Page, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpää, A. Keenan, H. Kettunen, P. Kuusiniemi, M. Leino, A.P. Leppänen, M. Muikku, P. Nieminen, P. Rahkila, C. Scholey, J. Uusitalo, E. Bouchez, A. Chatillon, A. Hürstel, W. Korten, Y. Le Coz, Ch. Theisen, D. Ackermann, J. Gerl, K. Helariutta, F.P. Hessberger, Ch. Schlegel, H.J. Wollersheim, M. Lach, A. Maj, W. Meczynski, J. Styczen, T.L. Khoo, C.J. Lister, A.V. Afanasjev, H.J. Maier, P. Reiter, P. Bednarczyk, K. Eskola, K. Hauschild
2006Ba55	EPJAA	29,	175	L. Batist, A. Blazhev, J. Doring, H. Grawe, M. Kavatsyuk, O. Kavatsyuk, R. Kirchner, M. La Commara, C. Mazzocchi, I. Mukha, C. Plettner, E. Roeckl, M. Romoli
2006Be33	PRVCA	74,	024603	T. Belgya
2006Bo11	PRLTA	96,	152501	G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, P.A. Lofy, D.J. Morrissey, A. Prinke, R. Ringle, J. Savory, P. Schury, S. Schwarz, C. Sumithrarachchi, T. Sun, L. Weissman
2006Bo33	PHSTT	125,	180	M.J.T. Borge, R. Boutami, L.M. Fraile, K. Gulda, W. Kurcewicz, H. Mach, T. Martinez, B. Rubio, O. Tengblad
2006Bu12	PRVCA	74,	025501	J.T. Burke, P.A. Vetter, S.J. Freedman, B.K. Fujikawa, W.T. Winter
2006Ca05	PRVCA	73,	014319	E. Casarejos, C. Angulo, P.J. Woods, F.C. Barker, P. Descouvemont, M. Aliotta, T. Davinson, P. Demaret, M. Gaelens, P. Leleux, Z. Liu, M. Loiselet, A.S. Murphy, A. Ninane, I.A. Roberts, G. Ryckewaert, J.S. Schweitzer, F. Vanderbist
2006Ch10	PRVCA	73,	024306	R.S. Chakrawarthy, P.M. Walker, J.J. Ressler, E.F. Zganjar, G.C. Ball, M.B. Smith, A.N. Andreyev, S.F. Ashley, R.A.E. Austin, D. Bandyopadhyay, J.A. Becker, J.J. Carroll, D.S. Cross, D. Gohlke, J.J. Daoud, P.E. Garrett, G.F. Grinyer, G. Hackman, G.A. Jones, R. Kanungo, W.D. Kulp, Y. Litvinov, A.C. Morton, W.J. Mills, C.J. Pearson, R. Propri, C.E. Svensson, R. Wheeler, S.J. Williams

2006Ch52	ЕРЈАА	30,	397	A. Chatillon, Ch. Theisen, P.T. Greenlees, G. Auger, J.E. Bastin, E. Bouchez, B. Bouriquet, J.M. Casandjian, R. Cee, E. Clément, R. Dayras, G. de France, R. de Tourreil, S. Eeckhaudt, A. Görgen, T. Grahn, S. Grévy, K. Hauschild, RD. Herzberg, P.J.C. Ikin, G.D. Jones, P. Jones, R. Julin, S. Juutinen, H. Kettunen, A. Korichi, W. Korten, Y. Le Coz, M. Leino, A. Lopez-Martens, S.M. Lukyanov, Yu. E. Penionzhkevich, J. Perkowski, A. Pritchard, P. Rahkila, M. Rejmund, J. Saren, C. Scholey, S. Siem, M.G. Saint-Laurent, C. Simenel, Yu. G. Sobolev,
2006De21	PRVCA	73,	044303	Ch. Stodel, J. Uusitalo, A. Villari, M. Bender, P. Bonche, PH. Heenen M.S. Dewey, E.G. Kessler Jr., R.D. Deslattes, H.G. Börner, M. Jentschel, C. Doll, P. Mutti
2006De36	PRVCA	74,	034331	P. Delahaye, G. Audi, K. Blaum, F. Carrel, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, D. Lunney, L. Schweikhard, C. Yazidjian
2006Dr04	PYLBB	635,	200	G.D. Dracoulis, G.J. Lane, F.G. Kondev, A.P. Byrne, R.O. Hughes, P. Nieminen, H. Watanabe, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, D. Seweryniak, S. Zhu, P. Chowdhury, F.R. Xu
2006Dv01	PRLTA	97,	242501	J. Dvorak, W. Brüchle, M. Chelnokov, R. Dressler, Ch. E. Düllmann, K. Eberhardt, V. Gorshkov, E. Jäger, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, Z. Novackova, Z. Qin, M. Schädel, B. Schausten, E. Schimpf, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, B. Wierczinski, A. Yakushev, A. Yeremin
2006Er03	PYLBB	636,	191	T. Eronen, V. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, I. Moore, H. Penttilä, S. Rahaman, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, J. Äystö,
2006Er08	PRLTA	97,	232501	A. Bey, B. Blank, G. Canchel, C. Dossat, J. Giovinazzo, I. Matea, N. Adimi T. Eronen, V. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, I. Moore, H. Penttilä, S. Rahaman, J. Rissanen, A. Saastamoinen, T. Sonoda, J. Äystö, J.C. Hardy, V.S. Kolhinen
2006Fi.A	IAEA-Library 45		45	R.B. Firestone, S.M. Mughabghab, G.L. Molnar in Database of prompt gamma rays from slow neutron capture for elemental analysis - Vienna :
2006Fo02	PRVCA	73,	014611	International Atomic Energy Agency, 2006. C.M. Folden III, S.L. Nelson, Ch. E. Düllmann, J.M. Schwantes, R. Sudowe, P.M. Zielinski, K.E. Gregorich, H. Nitsche, D.C. Hoffman
2006Ga04	NUPAB	766,	52	C. Gaulard, G. Audi, C. Bachelet, D. Lunney, M. de Saint Simon, C. Thibault, N. Vieira
2006Ga28	PRLTA	97,	092501	L. Gaudefroy, O. Sorlin, D. Beaumel, Y. Blumenfeld, Z. Dombrádi, S. Fortier, S. Franchoo, M. Gélin, J. Gibelin, S. Grévy, F. Hammache, F. Ibrahim, K.W. Kemper, KL. Kratz, S.M. Lukyanov, C. Monrozeau, L. Nalpas, F. Nowacki, A.N. Ostrowski, T. Otsuka, YuE. Penionzhkevich, J. Piekarewicz, E.C. Pollacco, P. Roussel-Chomaz, E. Rich, J.A. Scarpaci, M.G. Saint-Laurent, D. Sohler, M. Stanoiu, T. Suzuki, E. Tryggestad, D. Verney
2006Ge05	PRVCA	73,	037308	J. Genevey, R. Guglielmini, R. Orlandi, J.A. Pinston, A. Scherillo, G. Simpson, I. Tsekhanovich, N. Warr, J. Jolie
2006Gr24	PRVCA	74,	044611	K.E. Gregorich, J.M. Gates, Ch. E. Düllmann, R. Sudowe, S.L. Nelson, M.A. Garcia, I. Dragojević, C.M. Folden III, S.H. Neumann, D.C. Hoffman, H. Nitsche
2006На03	PRLTA	96,	042504	U. Hager, T. Eronen, J. Hakala, A. Jokinen, V.S. Kolhinen, S. Kopecky, I. Moore,
2006На17	NIMAE	560,	388	A. Nieminen, M. Oinonen, S. Rinta-Antila, J. Szerypo, J. Äystö K. Hauschild, A.V. Yeremin, O. Dorvaux, A. Lopez-Martens A.V. Beloze- rov, Ch. Briançon, M.L. Chelnokov, V.I. Chepigin, S.A. Garcia-Santamaria, V.A. Gorshkov, F. Hanappe, A.P. Kabachenko, A. Korichi, O.N. Malyshev, Yu. Ts. Oganessian, A.G. Popeko, N. Rowley, A.V. Shutov, L. Stuttgé,
2006На62	IJMPD	251,	119	A.I. Svirikhin P.A. Hausladen, J.R. Beene, A. Galindo-Uribarri, Y. Larochelle, J.F. Liang,
2006Не19	NATUA	442,	896	P.E. Mueller, D. Shapira, D.W. Stracener, J. Thomas, R.L. Varner, H. Wollnik R.D. Herzberg, P.T. Greenlees, P.A. Butler, G.D. Jones, M. Venhart, I.G. Darby, S. Eeckhaudt, K. Eskola, T. Grahn, C. Gray-Jones, F.P. Heßberger, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, W. Korten, M. Leino, AP. Leppänen, S. Moon, M. Nyman, R.D. Page, J. Pakarinen, A. Pritchard, P. Rahkila, J. Sarén, C. Scholey, A. Steer, Y. Sun, Ch. Theisen, J. Uusitalo

2006He20	EPJAA	29,	165	F.P. Heßberger,S. Hofmann, D. Ackermann, S. Antalic, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio,
2006Не27	EPJAA	30,	561	A.G. Popeko, B. Sulignano, S. Saro, B. Streicher, M. Venhart, A.V. Yeremin F.P. Heßberger, S. Hofmann, D. Ackermann, S. Antalic, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio,
2006He29	IJMPD	251,	131	A.G. Popeko, B. Sulignano, S. Saro, B. Streicher, M. Venhart, A.V. Yeremin A. Herlert, S. Baruah, K. Blaum, P. Delahaye, M. Dworschak, S. George, C. Guenaut, U. Hager, F. Herfurth, A. Kellerbauer, M. Marie-Jeanne,
2006Ні18	PYLBB	643,	257	S. Schwarz, L. Schweikhard, C. Yazidjian P. Himpe, G. Neyens, D.L. Balabanski, G. Belier, D. Borremans, J.M. Daugas, F. de Oliveira Santos, M. De Rydt, K. Flanagan, G. Georgiev, M. Kowalska, S. Mallion, I. Matea, P. Morel, Yu. E. Penionzhkevich, N.A. Smirnova, C. Stodel, K. Turzó, N. Vermeulen, D. Yordanov
2006Hw01	PRVCA	73,	044316	J.K. Hwang, A.V. Ramayya, J.H. Hamilton, Y.X. Luo, A.V. Daniel, G.M. Ter-Akopian, J.D. Cole, S.J. Zhu
2006Jo10	PYLBB	641,	34	D.T. Joss, I.G. Darby, R.D. Page, J. Uusitalo, S. Eeckhaudt, T. Grahn, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, AP. Leppänen, M. Nyman, J. Pakarinen, P. Rahkila, J. Sarén, C. Scholey, A. Steer, A.J. Cannon, P.D. Stevenson, J.S. Al-Khalili, S. Ertürk, M. Venhart, B. Gall, B. Hadinia,
2006Ka48	EPJAA	29,	271	J. Simpson A. Kankainen, L. Batist, S.A. Eliseev, VV. Elomaa, T. Eronen, U. Hager, J. Hakala, A. Jokinen, I. Moore, Yu. N. Novikov, H. Penttilä, K. Peräjärvi, A.V. Popov, S. Rahaman, S. Rinta-Antila, P. Ronkanen, A. Saastamoinen, D.M. Seliverstov, T. Sonoda, G.K. Vorobjev, J. Äystö
2006Ka74	IJMPD	251,	138	M. Kavatsyuk, L. Batist, M. Karny, E. Roeckl
2006Ko25	NIMAE	564,	275	Y. Kojima, M. Shibata, A. Taniguchi, Y. Kawase, R. Doi, A. Nagao, K. Shizuma
2006Ku26	EPJAA	30,	551	P. Kuusiniemi, F.P. Heßberger, D. Ackermann, S. Antalic, S. Hofmann,
2000 Ku 20	LIJAA	50,	331	K. Nishio, B. Sulignano, I. Kojouharov, R. Mann
2006La16	PRVCA	74,	024316	K. Ivisino, B. Sunghano, I. Rojounarov, R. Ivisino, B. Sunghano, I. Rojounarov, R. Ivisino, B. Sunghano, I. Rojounarov, R. Ivisino, S. Eeckhaudt, T. Grahn, P.T. Greenlees, B. Hadinia, P.M. Jones, R. Julin, S. Juutinen, D. Karlgren, H. Kettunen, M. Leino, AP. Leppänen, P. Nieminen, M. Nyman, R.D. Page, J. Pakarinen, E.S. Paul, P. Rahkila, C. Scholey, J. Simpson, J. Uusitalo, D.R. Wiseman
2006Li41	PRLTA	97,	082501	S.N. Liddick, R. Grzywacz, C. Mazzocchi, R.D. Page, K.P. Rykaczewski, J.C. Batchelder, C.R. Bingham, I.G. Darby, G. Drafta, C. Goodin, C.J. Gross, J.H. Hamilton, A.A. Hecht, J.K. Hwang, S. Ilyushkin, D.T. Joss, A. Korgul, W. Królas, K. Lagergren, K. Li, M.N. Tantawy, J. Thomson, J.A. Winger
2006Lo12	PRVCA	74,	044303	A. Lopez-Martens, K. Hauschild, A.V. Yeremin, A.V. Belozerov, Ch. Briançon, M.L. Chelnokov, V.I. Chepigin, D. Curien, O. Dorvaux, B. Gall, V.A. Gorshkov, M. Guttormsen, F. Hanappe, A.P. Kabachenko, F. Khalfallah, A. Korichi, A.C. Larsen, O.N. Malyshev, A. Minkova, Yu. Ts. Oganessian, A.G. Popeko, M. Rousseau, N. Rowley, R.N. Sagaidak, S. Sharo, A.V. Shutov, S. Siem, A.I. Svirikhin, N.U.H. Syed, Ch. Theisen
2006Lu03	ARISE	64,	588	J. Luo, X. Kong
2006Lu19	IJMPD	251,	286	D. Lunney, N. Vieira, G. Audi, C. Gaulard, M. de Saint Simon, C. Thibault
2006Ma.A	PrvCom	GAu	Jul	M. Martin
2006Me03	PRVCA	73,	024307	D.A. Meyer, C.W. Beausang, J.J. Ressler, H. Ai, H. Amro, M. Babilon, R.F. Casten, C.R. Fitzpatrick, G. Gurdal, A. Heinz, E.A. McCutchan, C. Plettner, J. Qian, N.J. Thomas, V. Werner, E. Williams, N.V. Zamfir, J. Zhang
2006Me04	PRVCA	73,	024318	T.J. Mertzimekis, P.F. Mantica, A.D. Davies, S.N. Liddick, B.E. Tomlin
2006Mo07	PRVCA	73,	035801	F. Montes, A. Estrade, P.T. Hosmer, S.N. Liddick, P.F. Mantica, A.C. Morton, W.F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, H. Schatz, A. Stolz, B.E. Tomlin, O. Arndt, KL. Kratz, B. Pfeiffer, P. Reeder, W.B. Walters, A. Aprahamian, A. Wohr
2006Mu03	NATUA	439,	298	I. Mukha, E. Roeckl, L. Batist, A. Blazhev, J. Döring, H. Grawe, L. Grigorenko, M. Huyse, Z. Janas, R. Kirchner, M. La Commara, C. Mazzocchi, S.L. Tabor, P. Van Duppen
2006Na13	PRLTA	96,	163004	Sz. Nagy, T. Fritioff, M. Suhonen, R. Schuch, K. Blaum, M. Björkhage, I. Bergström also arXiv:1209. 5281v1 24 Sep 2012

2006Na18	EPJDD	39,	1	Sz. Nagy, T. Fritioff, A. Solders, R. Schuch, M. Björkhage, I. Bergström
2006Na49	EULEE	74,	404	
2006Og05	PRVCA	74,	044602	Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin,
				A.N. Polyakov, R.N. Sagaidak, I.V. Shirokovsky, Yu. S. Tsyganov, A.A. Voinov,
				G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, S. Iliev, V.G. Subbotin, A.M. Sukhov, K. Subotic, V.I. Zagrebaev, G.K. Vostokin,
				M.G. Itkis, K.J. Moody, J.B. Patin, D.A. Shaughnessy, M.A. Stoyer, N.J. Stoyer,
				P.A. Wilk, J.M. Kenneally, J.H. Landrum, J.F. Wild, R.W. Lougheed
2006PaDG	JPGPE	33,		Particle Data Group
2006Pe16	PRVCA	74,	014313	F. Perrot, F. Maréchal, C. Jollet, Ph. Dessagne, JC. Angélique, G. Ban, P. Bau-
				mann, F. Benrachi, U. Bergmann, C. Borcea, A. Buta, J. Cederkall, S. Courtin,
				JM. Daugas, L.M. Fraile, S. Grévy, A. Jokinen, F.R. Lecolley, E. Liénard, G. Le Scornet, V. Méot, Ch. Miehé, F. Negoita, N.A. Orr, S. Pietri, E. Poirier,
				M. Ramdhane, O. Roig, I. Stefan, W. Wang
2006Pe17	PRVCA	74,	014316	D. Peterson, B.B. Back, R.V.F. Janssens, T.L. Khoo, C.J. Lister, D. Seweryniak,
				I. Ahmad, M.P. Carpenter, C.N. Davids, A.A. Hecht, C.L. Jiang, T. Lauritsen,
				X. Wang, S. Zhu, F.G. Kondev, A. Heinz, J. Qian, R. Winkler, P. Chowdhury,
2006Ph01	PRVCA	74,	027302	S.K. Tandel, U.S. Tandel A.A. Phillips, C. Andreoiu, G.C. Ball, D. Bandyopadhyay, J.A. Behr,
2000F1101	FRVCA	74,	027302	T.E. Chupp, P. Finlay, P.E. Garrett, G.F. Grinyer, G. Hackman, M.E. Hayden,
				B. Hyland, S.R. Nuss-Warren, M.R. Pearson, M.A. Schumaker, M.B. Smith,
				C.E. Svensson, E.R. Tardiff, J.J. Valiente-Dobón, T. Warner
2006Qi03	YWPIF	23,	400	Z. Qin, X.L. Wu, H.J. Ding, W. Wu, W.X. Huang, X.G. Lei, Y.B. Xu, X.H. Yuan,
2006D-10	HMDD	251	105	B. Guo, W.F. Yang, Z.G. Gan, H.M. Fan, J.S. Guo, H.S. Xu, G.Q. Xiao
2006Re19	IJMPD	251,	125	M. Redshaw, J. McDaniel, W. Shi, E.G. Myers, and PrvCom GAu February 2006
2006Ri15	IJMPD	251,	300	R. Ringle, P. Schury, T. Sun, G. Bollen, D. Davies, J. Huikari, E. Kwan,
		,		D.J. Morrissey, A. Prinke, J. Savory, S. Schwarz, C. Sumithrarachchi
2006Ro11	NUPAB	769,	1	D. Rodríguez, G. Audi, J. Äystö, D. Beck, K. Blaum, G. Bollen, F. Herfurth,
				A. Jokinen, A. Kellerbauer, HJ. Kluge, V.S. Kolhinen, M. Oinonen, E. Sauvan,
2006Sa56	IJMPD	251,	252	S. Schwarz G. Savard, J.C. Wang, K.S. Sharma, H. Sharma, J.A. Clark, C. Boudreau,
20005450	131411 15	231,	232	F. Buchinger, J.E. Crawford, J.P. Greene, S. Gulick, A.A. Hecht, J.K.P. Lee,
				A.F. Levand, N.D. Scielzo, W. Trimble, J. Vaz, B.J. Zabransky
2006Se08	PRVCA	73,	061301	D. Seweryniak, K. Starosta, C.N. Davids, S. Gros, A.A. Hecht, N. Hoteling,
				T.L. Khoo, K. Lagergren, G. Lotay, D. Peterson, A. Robinson, C. Vaman,
2006Si36	PRVCA	74,	064308	W.B. Walters, P.J. Woods, S. Zhu G.S. Simpson, J.A. Pinston, D. Balabanski, J. Genevey, G. Georgiev, J. Jolie,
20005130	TRVCH	77,	004300	D.S. Judson, R. Orlandi, A. Scherillo, I. Tsekhanovich, W. Urban, N. Warr
2006Sk03	PRVCA	73,	044301	F. Skaza, V. Lapoux, N. Keeley, N. Alamanos, E.C. Pollacco, F. Auger,
				A. Drouart, A. Gillibert, D. Beaumel, E. Becheva, Y. Blumenfeld, F. Delaunay,
				L. Giot, K.W. Kemper, L. Nalpas, A. Obertelli, A. Pakou, R. Raabe, P. Roussel-
2006Su12	PRVCA	74,	024322	Chomaz, JL. Sida, JA. Scarpaci, S. Stepantsov, R. Wolski C.S. Sumithrarachchi, D.W. Anthony, P.A. Lofy, D.J. Morrissey
2006Ta08	PRVCA	73,	024322	M.N. Tantawy, C.R. Bingham, K.P. Rykaczewski, J.C. Batchelder, W. Królas,
		,		M. Danchev, D. Fong, T.N. Ginter, C.J. Gross, R. Grzywacz, K. Hagino,
				J.H. Hamilton, D.J. Hartley, M. Karny, K. Li, C. Mazzocchi, A. Piechaczek,
				A.V. Ramayya, K. Rykaczewski, D. Shapira, A. Stolz, J.A. Winger, CH. Yu,
2006Ta13	PRVCA	72	044306	E.F. Zganjar
20001413	FRVCA	73,	044300	S.K. Tandel, P. Chowdhury, E.H. Seabury, I. Ahmad, M.P. Carpenter, S.M. Fischer, R.V.F. Janssens, T.L. Khoo, T. Lauritsen, C.J. Lister, D. Seweryniak,
				Y.R. Shimizu
2006Ta19	PRLTA	97,	082502	S.K. Tandel, T.L. Khoo, D. Seweryniak, G. Mukherjee, I. Ahmad, B. Back,
				R. Blinstrup, M.P. Carpenter, J. Chapman, P. Chowdhury, C.N. Davids,
				A.A. Hecht, A. Heinz, P. Ikin, R.V.F. Janssens, F.G. Kondev, T. Lauritsen,
2006Th07	PRVCA	74,	034329	C.J. Lister, E.F. Moore, D. Peterson, P. Reiter, U.S. Tandel, X. Wang, S. Zhu P. Thakur, V. Kumar, A.K. Bhati, S.C. Bedi, R.P. Singh, R.K. Bhowmik,
_50011107	111,011	, .,	00 102)	A.E. Stuchbery
				· · · · · · · · · · · · · · · · · · ·

2006Tr02	PRVCA	73,	054303	V. Tripathi, S.L. Tabor, C.R. Hoffman, M. Wiedeking, A. Volya, P.F. Mantica, A.D. Davies, S.N. Liddick, W.F. Mueller, A. Stolz, B.E. Tomlin, T. Otsuka, Y. Utsuno
2006Tr10	PRVCA	74,	054306	S. Triambak, A. Garcia, D. Melconian, M. Mella, O. Biesel
2006Va22	IJMPD	251,	231	R.S. Van Dyck, Jr., D.B. Pinegar, S. Van Liew, S.L. Zafonte
2006Vo09	PRVCA	74,	034319	T. von Egidy, HF. Wirth, I. Tomandl, J. Honzátko
2006Wh02	PRVCA	74,	027303	C. Wheldon, J.J. Valiente-Dobón, P.H. Regan, C.J. Pearson, C.Y. Wu, J.F. Smith, A.O. Macchiavelli, D. Cline, R.S. Chakrawarthy, R. Chapman, M. Cromaz, P. Fallon, S.J. Freeman, W. Gelletly, A. Görgen, A.B. Hayes, H. Hua, S.D. Langdown, I.Y. Lee, X. Liang, Zs. Podolyák, G. Sletten, R. Teng, D. Ward, D.D. Warner, A.D. Yamamoto
2006Wi10	PRVCA	73,	044318	J.A. Winger, P.F. Mantica, R.M. Ronningen
2006Xu03	EPJAA	28,	37	SW. Xu, YX. Xie, FR. Xu, HL. Liu, ZK. Li
2006Xu07	EPJAA	29,	161	S.W. Xu, Y.X. Xie, Z.K. Li, F.R. Xu, H.L. Liu, Y.B. Xing, B. Guo, J.P. Xing, C.F. Wang
				2007
2007Be16	PRLTA	98,	142501	B.R. Beck, J.A. Becker, P. Beiersdorfer, G.V. Brown, K.J. Moody, J.B. Wilhelmy, F.S. Porter, C.A. Kilbourne, R.L. Kelley
2007Be48	NUPAB	789,	15	P. Belli, R. Bernabei, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich,
				A. d'Angelo, A. Incicchitti, V.V. Kobychev, S.S. Nagorny, S. Nisi, F. Nozzoli, D. Prosperi, V.I. Tretyak, S.S. Yurchenko
2007Be61	PRVCA	76,	064603	P. Belli, R. Bernabei, N. Bukilic, F. Cappella, R. Cerulli, C.J. Dai, F.A. Danevich,
		,		J.R. de Laeter, A. Incicchitti, V.V. Kobychev, S.S. Nagorny, S. Nisi, F. Nozzoli,
				D.V. Poda, D. Prosperi, V.I. Tretyak, S.S. Yurchenko
2007Bo50	EPJST	150,	337	G. Bollen, C. Bachelet, M. Block, D.A. Davies, M. Facina, C.M. Folden III, C. Guénaut, J. Huikari, E. Kwan, A. Kwiatowski, D.J. Morrissey, G. Pang, A. Prinke, R. Ringle, J. Savory, P. Schury, S. Schwarz, C. Sumithrarachchi, T. Sun
2007Ch07	PYLBB	645,	133	B. Cheal, M.D. Gardner, M. Avgoulea, J. Billowes, M.L. Bissell, P. Campbell, T. Eronen, K.T. Flanagan, D.H. Forest, J. Huikari, A. Jokinen, B.A. Marsh, I.D. Moore, A. Nieminen, H. Penttilä, S. Rinta-Antila, B. Tordoff, G. Tungate,
				J. Äystö
2007Cl01	PRVCA	75,	032801	J.A. Clark, K.S. Sharma, G. Savard, A.F. Levand, J.C. Wang, Z. Zhou, B. Blank,
2007DaZU	P-Lisbon		3	F. Buchinger, J.E. Crawford, S. Gulick, J.K.P. Lee, D. Seweryniak, W. Trimble
2007DaZU 2007Do17	NUPAB	792,	18	C.N. Davids C. Dossat, N. Adimi, F. Aksouh, F. Becker, A. Bey, B. Blank, C. Borcea, R. Borcea, A. Boston, M. Caamano, G. Canchel, M. Chartier, D. Cortina, S. Czajkowski, G. de France, F. de Oliveira Santos, A. Fleury, G. Georgiev, J. Giov-
				inazzo, S. Grévy, R. Grzywacz, M. Hellström, M. Honma, Z. Janas, D. Karamanis, J. Kurcewicz, M. Lewitowicz, M.J. López Jiménez, C. Mazzocchi, I. Matea, V. Maslov, P. Mayet, C. Moore, M. Pfützner, M.S. Pravikoff, M. Stanoiu, I. Stefan, J.C. Thomas
2007Ei02	NUPAB	787,	373c	R. Eichler, N.V. Aksenov, A.V. Belozerov, G.A. Bozhikov, V.I. Chepigin, R. Dressler, S.N. Dmitriev, H.W. Gäggeler, V.A. Gorshkov, F. Haenssler, M.G. Itkis, V. Ya. Lebedev, A. Laube, O.N. Malyshev, Yu. Ts. Oganessian, O.V. Petruschkin, D. Piguet, P. Rasmussen, S.V. Shishkin, A.V. Shutov,
2007Fo02	PRVCA	75,	054308	A.I. Svirikhin, E.E. Tereshatov, G.K. Vostokin, M. Wegrzecki, A.V. Yeremin B. Fogelberg, K.A. Mezilev, V.I. Isakov, K.I. Erokhina, H. Mach, E. Ramström, H. Gausemel
2007Ge07	PRLTA	98,	162501	S. George, S. Baruah, B. Blank, K. Blaum, M. Breitenfeldt, U. Hager, F. Her-
				furth, A. Herlert, A. Kellerbauer, HJ. Kluge, M. Kretzschmar, D. Lunney, R. Savreux, S. Schwarz, L. Schweikhard, C. Yazidjian
2007Go24	PRVCA	76,	021605	M.S. Golovkov, L.V. Grigorenko, A.S. Fomichev, A.V. Gorshkov, V.A. Gorshkov, S.A. Krupko, Yu. Ts. Oganessian, A.M. Rodin, S.I. Sidorchuk, R.S. Slepnev, S.V. Stepantsov, G.M. Ter-Akopian, R. Wolski, A.A. Korsheninnikov, E. Yu. Nikolskii, V.A. Kuzmin, B.G. Novatskii, D.N. Stepanov, P. Roussel-Chomaz, W. Mittig

2007Gr18	PRVCA	76,	025503	G.F. Grinyer, M.B. Smith, C. Andreoiu, A.N. Andreyev, G.C. Ball, P. Bricault, R.S. Chakrawarthy, J.J. Daoud, P. Finlay, P.E. Garrett, G. Hackman, B. Hyland, J.R. Leslie, A.C. Morton, C.J. Pearson, A.A. Phillips, M.A. Schumaker,
2007Gu09	PRVCA	75,	044303	C.E. Svensson, J.J. Valiente-Dobon, S.J. Williams, E.F. Zganjar C. Guénaut, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, F. Herfurth, A. Kellerbauer, HJ. Kluge, J. Libert, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian
2007Ha20	PRVCA	75,	064302	U. Hager, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, S. Rahaman, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, J. Äystö
2007Ha32	NUPAB	793,	20	U. Hager, A. Jokinen, VV. Elomaa, T. Eronen, J. Hakala, A. Kankainen, S. Rahaman, J. Rissanen, I.D. Moore, S. Rinta-Antila, A. Saastamoinen, T. Sonoda, J. Äystö
2007Ha45	PRVCA	76,	044312	B. Hadinia, B. Cederwall, D.T. Joss, R. Wyss, R.D. Page, C. Scholey, A. Johnson, K. Lagergren, E. Ganioglu, K. Andgren, T. Bäck, D.E. Appelbe, C.J. Barton, S. Eeckhaudt, T. Grahn, P. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, AP. Lepänen, R.J. Liotta, P. Nieminen, J. Pakarinen, J. Perkowski, P. Rahkila, M. Sandzelius, J. Simpson, J. Uusitalo, K. Van de Vel, D.D. Warner, D.R. Wiseman
2007Ha57	EPJAA	34,	363	H. Hayashi, Y. Akita, O. Suematsu, M. Shibata, M. Asai, T.K. Sato, S. Ichikawa, I. Nishinaka, Y. Nagame, A. Osa, K. Tsukada, T. Ishii, Y. Kojima, A. Taniguchi
2007Ho18	EPJAA	32,	251	S. Hofmann, D. Ackermann, S. Antalic, H.G. Burkhard, V.F. Comas, R. Dressler, Z. Gan, S. Heinz, J.A. Heredia, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, G. Münzenberg, K. Nishio, A.G. Popeko, S. Saro, H.J. Schott, B. Streicher, B. Sulignano, J. Uusitalo, M. Venhart, A.V. Yeremin
2007Io03	PYLBB	650,	141	M. Ionescu-Bujor, A. Iordachescu, N. Marginean, C.A. Ur, D. Bucurescu, G. Suliman, D.L. Balabanski, F. Brandolini, S. Chmel, P. Detistov, K.A. Gladnishki, H. Hubel, S. Mallion, R. Marginean, N.H. Medina, D.R. Napoli, G. Neyens, P. Pavan, R.V. Ribas, C. Rusu, K. Turzo, N. Vermeulen
2007Je07	EPJAA	32,	31	H.B. Jeppesen, J. Byskov-Nielsen, P. Wright, J.G. Correia, L.M. Fraile, H.O.U. Fynbo, K. Johnston, K. Riisager
2007Ju03	PYLBB	649,	43	B. Jurado, H. Savajols, W. Mittig, N.A. Orr, P. Roussel-Chomaz, D. Baiborodin, W.N. Catford, M. Chartier, C.E. Demonchy, Z. Dlouhý, A. Gillibert, L. Giot, A. Khouaja, A. Lépine-Szily, S. Lukyanov, J. Mrazek, Y.E. Penionzhkevich, S. Pita, M. Rousseau, A.C. Villari
2007Ju05	PRLTA	99,	132501	A. Jungclaus, L. Cáceres, M. Górska, M. Pfützner, S. Pietri, E. Werner-Malento, H. Grawe, K. Langanke, G. Martinez-Pinedo, F. Nowacki, A. Poves, J.J. Cuenca-Garcia, D. Rudolph, Z. Podolyák, P.H. Regan, P. Detistov, S. Lalkovski, V. Modamio, J. Walker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casarejos, B. Cederwall, F.C.L. Crespi, B. Hadinia, M. Hellström, R. Hoischen, G. Ilie, J. Jolie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G.S. Simpson, S.J. Steer, S. Tashenov, O. Wieland
2007Ju06	PRVCA	76,	054306	D.S. Judson, A.M. Bruce, T. Kibedi, G.D. Dracoulis, A.P. Byrne, G.J. Lane, K.H. Maier, CB. Moon, P. Nieminen, J.N. Orce, M.J. Taylor
2007Ka15	ЕРЈАА	31,	319	O. Kavatsyuk, C. Mazzocchi, Z. Janas, A. Banu, L. Batist, F. Becker, A. Blazhev, W. Brüchle, J. Döring, T. Faestermann, M. Górska, H. Grawe, A. Jungclaus, M. Karny, M. Kavatsyuk, O. Klepper, R. Kirchner, M. La Commara, K. Miernik, I. Mukha, C. Plettner, A. Plochocki, E. Roeckl, M. Romoli, K. Rykaczewski, M. Schadel, K. Schmidt, R. Schwengner, J. Zylicz
2007Ke09	PRVCA	76,	045504	A. Kellerbauer, G. Audi, D. Beck, K. Blaum, G. Bollen, C. Guénaut, F. Herfurth, A. Herlert, HJ. Kluge, D. Lunney, S. Schwarz, L. Schweikhard, C. Weber, C. Yazidjian
2007Kh22	EPJAA	34,	355	J. Khuyagbaatar, S. Hofmann, F.P. Heßberger, D. Ackermann, S. Antalic, H.G. Burkhard, S. Heinz, B. Kindler, A.F. Lisetskiy, B. Lommel, R. Mann, K. Nishio, H.J. Schött, B. Sulignano

2007Ku23	EPJAA	33,	307	J. Kurpeta, W. Urban, Ch. Droste, A. Plochocki, S.G. Rohozinski, T. Rzaca-Urban, T. Morek, L. Prochniak, K. Starosta, J. Aysto, H. Penttila, J.L. Durell,
2007Ku30	PRVCA	76,	054320	A.G. Smith, G. Lhersonneau, I. Ahmad J. Kurcewicz, W. Czarnacki, M. Karny, M. Kasztelan, M. Kisieliński, A. Korgul, W. Kurcewicz, J. Kurpeta, S. Lewandowski, P. Majorkiewicz, H. Penttilä, A. Płochocki, B. Roussiére, O. Steczkiewicz, A. Wojtasiewicz
2007Le14	PRVCA	75,	054307	AP. Leppänen, J. Uusitalo, M. Leino, S. Eeckhaudt, T. Grahn, P.T. Greenlees, P. Jones, R. Julin, S. Juutinen, H. Kettunen, P. Kuusiniemi, P. Nieminen, J. Pakarinen, P. Rahkila, C. Scholey, G. Sletten
2007Li71	PRLTA	99,	262501	Yu. A. Litvinov, F. Bosch, H. Geissel, J. Kurcewicz, Z. Patyk, N. Winckler, L. Batist, K. Beckert, D. Boutin, C. Brandau, L. Chen, C. Dimopoulou, B. Fabian, T. Faestermann, A. Fragner, L. Grigorenko, E. Haettner, S. Hess, P. Kienle, R. Knöbel, C. Kozhuharov, S.A. Litvinov, L. Maier, M. Mazzocco, F. Montes, G. Münzenberg, A. Musumarra, C. Nociforo, F. Nolden, M. Pfützner, W.R. Plass A. Prochazka, R. Reda, R. Reuschl, C. Scheidenberger, M. Steck, T. Stohlker, S. Torilov, M. Trassinelli, B. Sun, H. Weick, M. Winkler
2007Lo11	EPJAA	32,	245	A. Lopez-Martens, K. Hauschild, A.V. Yeremin, O. Dorvaux, A.V. Belozerov, Ch. Briancon, M.L. Chelnokov, V.I. Chepigin, D. Curien, P. Desesquelles, B. Gall, V.A. Gorshkov, M. Guttormsen, F. Hanappe, A.P. Kabachenko, F. Khalfallah, A. Korichi, A.C. Larsen, O.N. Malyshev, A. Minkova, Yu. Ts. Oganessian, A.G. Popeko, M. Rousseau, N. Rowley, R.N. Sagaidak, S. Sharo, A.V. Shutov, S. Siem, L. Stuttge, A.I. Svirikhin, N.U.H. Syed, Ch. Theisen
2007Ma35	PRLTA	98,	212501	C. Mazzocchi, R. Grzywacz, S.N. Liddick, K.P. Rykaczewski, H. Schatz, J.C. Batchelder, C.R. Bingham, C.J. Gross, J.H. Hamilton, J.K. Hwang, S. Ilyushkin, A. Korgul, W. Krolas, K. Li, R.D. Page, D. Simpson, J.A. Winger
2007Ma92	EPJAA	34,	341	A. Martín, D. Ackermann, G. Audi, K. Blaum, M. Block, A. Chaudhuri, Z. Di, S. Eliseev, R. Ferrer, D. Habs, F. Herfurth, F.P. Heßberger, S. Hofmann, HJ. Kluge, M. Mazzocco, M. Mukherjee, J.B. Neumayr, Yu. Novikov, W. Plaß, S. Rahaman, C. Rauth, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P.G. Thirolf, G. Vorobjev, C. Weber
2007Mu15	PRLTA	99,	182501	I. Mukha, K. Sümmerer, L. Acosta, M.A.G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J. Espino, A. Fomichev, J.E. García-Ramos, H. Geissel, J. Gómez-Camacho, L. Grigorenko, J. Hoffmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfutzner, C. Rodríguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P.J. Woods
2007My02	APOBB	38,	1277	S. Myalski, M. Kmiecik, A. Maj, P.H. Regan, A.B. Garnsworthy, S. Pietri, D. Rudolph, Zs. Podolyák, S.J. Steer, F. Becker, P. Bednarczyk, J. Gerl, M. Gorska, H. Grawe, I. Kojouharov, H. Schaffner, H.J. Wollersheim, W. Prokopowicz, J. Grebosz, G. Benzoni, B. Blank, C. Brandau, A.M. Bruce, L. Caceres, F. Camera, W.N. Catford, I.J. Cullen, Zs. Dombradi, P. Doornenbal, E. Estevez, H. Geissel, W. Gelletly, A. Heinz, R. Hoischen, G. Ilie, G.A. Jones, A. Jungclaus, A. Kelic, F.G. Kondev, T. Kurtukian-Nieto, N. Kurz, S. Lalkovski, Z. Liu, F. Montes, M. Pfutzner, T. Saito, T. Shizuma, A.J. Simons, S. Schwertel, S. Tachenov, P.M. Walker, E. Werner-Malento, O. Wieland
2007Og01 2007Og02	JPHGB PRVCA	34, 76,	R165 011601	Y. Oganessian Yu. Ts. Oganessian, V.K. Utyonkov, Yu. V. Lobanov, F. Sh. Abdullin, A.N. Polyakov, R.N. Sagaidak, I.V. Shirokovsky, Yu. S. Tsyganov, A.A. Voinov, G.G. Gulbekian, S.L. Bogomolov, B.N. Gikal, A.N. Mezentsev, V.G. Subbotin, A.M. Sukhov, K. Subotic, V.I. Zagrebaev, G.K. Vostokin, M.G. Itkis, R.A. Henderson, J.M. Kenneally, J.H. Landrum, K.J. Moody, D.A. Shaughnessy, M.A. Stoyer, N.J. Stoyer, P.A. Wilk
2007Ok05	PRVCA	76,	044315	Y. Oktem, D.L. Balabanski, B. Akkus, C.W. Beausang, M. Bostan, R.B. Cakirli, R.F. Casten, M. Danchev, M. Djongolov, M.N. Erduran, S. Erturk, K.A. Gladniski, G. Gurdal, J. Tm. Goon, D.J. Hartley, A.A. Hecht, R. Krucken, N. Nikolov, J.R. Novak, G. Rainovski, L.L. Riedinger, I. Yigitoglu, N.V. Zamfir, O. Zeidan

2007Pa27	PRVCA	75,	061302	R.D. Page, L. Bianco, I.G. Darby, J. Uusitalo, D.T. Joss, T. Grahn, RD. Herzberg, J. Pakarinen, J. Thomson, S. Eeckhaudt, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, AP. Leppänen, M. Nyman, P. Rahkila, J. Sarén, C. Scholey, A. Steer, M.B. Gómez Hornillos, J.S. Al-Khalili, A.J. Cannon, P.D. Stevenson, S. Ertürk, B. Gall, B. Hadinia, M. Venhart, J. Simp-
2007Ra23	EPJAA	32,	87	Son S. Rahaman, U. Hager, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Ris- sanen, A. Saastamoinen, T. Sonoda, J. Äystö
2007Ra27	EPJAA	34,	5	S. Rahaman, J. Hakala, VV. Elomaa, T. Eronen, U. Hager, A. Jokinen, A. Kankainen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, C. Weber, J. Äystö
2007Ra37	EPJST	150,	329	
2007Re03	PRLTA	98,	053003	M. Redshaw, E. Wingfield, J. McDaniel, E.G. Myers
2007Ri01	EPJAA	31,	1	S. Rinta-Antila, T. Eronen, VV. Elomaa, U. Hager, J. Hakala, A. Jokinen, P. Karvonen, H. Penttilä, J. Rissanen, T. Sonoda, A. Saastamoinen, J. Äystö
2007Ri08	PRVCA	75,	055503	R. Ringle, T. Sun, G. Bollen, D. Davies, M. Facina, J. Huikari, E. Kwan, D.J. Morrissey, A. Prinke, J. Savory, P. Schury, S. Schwarz, C.S. Sumithrarachchi and Prvcom GAu Nov 2009
2007Sa36	PRLTA	99,	022501	M. Sandzelius, B. Hadinia, B. Cederwall, K. Andgren, E. Ganioglu, I.G. Darby, M.R. Dimmock, S. Eeckhaudt, T. Grahn, P.T. Greenlees, E. Ideguchi, P.M. Jones, D.T. Joss, R. Julin, S. Juutinen, A. Khaplanov, M. Leino, L. Nelson, M. Niikura, M. Nyman, R.D. Page, J. Pakarinen, E.S. Paul, M. Petri, P. Rahkila, J. Saren, C. Scholey, J. Sorri, J. Uusitalo, R. Wadsworth, R. Wyss
2007Sc24	PRVCA	75,	055801	P. Schury, C. Bachelet, M. Block, G. Bollen, D.A. Davies, M. Facina, C.M. Folden III, C. Guénaut, J. Huikari, E. Kwan, A. Kwiatkowski, D.J. Morrissey, R. Ringle, G.K. Pang, A. Prinke, J. Savory, H. Schatz, S. Schwarz, C.S. Sumithrarachchi, T. Sun, and erratum PRVCA 80(2009)029905
2007Se04	PRLTA	99,	022504	D. Seweryniak, M.P. Carpenter, S. Gros, A.A. Hecht, N. Hoteling, R.V.F. Janssens, T.L. Khoo, T. Lauritsen, C.J. Lister, G. Lotay, D. Peterson, A.P. Robinson, W.B. Walters, X. Wang, P.J. Woods, S. Zhu
2007Se06	PRLTA	99,	082502	D. Seweryniak, B. Blank, M.P. Carpenter, C.N. Davids, T. Davinson, S.J. Freeman, N. Hammond, N. Hoteling, R.V.F. Janssens, T.L. Khoo, Z. Liu, G. Mukherjee, A. Robinson, C. Scholey, S. Sinha, J. Shergur, K. Starosta, W.B. Walters, A. Woehr, P.J. Woods
2007Sh05 2007Sh34	EPJAA PYLBB	31, 654,	171 87	M. Shibata, O. Suematsu, Y. Kojima, K. Kawade, A. Taniguchi, Y. Kawase S. Shimoura, S. Ota, K. Demichi, N. Aoi, H. Baba, Z. Elekes, T. Fukuchi, T. Gomi, K. Hasegawa, E. Ideguchi, M. Ishihara, N. Iwasa, H. Iwasaki, S. Kanno, S. Kubono, K. Kurita, M. Kurokawa, Y.U. Matsuyama, S. Michimasa, K. Miller, T. Minemura, T. Motobayashi, T. Murakami, M. Notani, A. Odahara, A. Saito, H. Sakurai, E. Takeshita, S. Takeuchi, M. Tamaki, T. Teranishi, K. Yamada, Y. Yanagisawa, I. Hamamoto
2007Sh42	EPJAA	34,	1	T. Shizuma, T. Ishii, H. Makii, T. Hayakawa, S. Shigematsu, M. Matsuda, E. Ideguchi, Y. Zheng, M. Liu, T. Morikawa
2007Si24	NUPAB	791,	267	H. Simon, M. Meister, T. Aumann, M.J.G. Borge, L.V. Chulkov, U. Datta Pramanik, Th. W. Elze, H. Emling, C. Forssen, H. Geissel, M. Hellstrom, B. Jonson, J.V. Kratz, R. Kulessa, Y. Leifels, K. Markenroth, G. Munzenberg, F. Nickel, T. Nilsson, G. Nyman, A. Richter, K. Riisager, C. Scheidenberger, G. Schrieder, O. Tengblad, M.V. Zhukov
2007Si27	PRVCA	76,	041303	G.S. Simpson, J.C. Angelique, J. Genevey, J.A. Pinston, A. Covello, A. Gargano, U. Köster, R. Orlandi, A. Scherillo
2007St12	APOBB	38,	1561	B. Streicher, S. Antalic, S. Saro, M. Venhart, F.P. Heßberger, S. Hofmann, D. Ackermann, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, B. Sulignano, P. Kuusiniemi

2007St18	NUPAB	787,	388c	N.J. Stoyer, J.H. Landrum, P.A. Wilk, K.J. Moody, J.M. Kenneally, D.A. Shaughnessy, M.A. Stoyer, J.F. Wild, R.W. Lougheed, S.N. Dmitriev, Yu. Ts. Oganessian, S.V. Shishkin, N.V. Aksenov, E.E. Tereshatov,
2007Su05	PRVCA	75,	024305	G.A. Bozhikov, G.K. Vostokin, V.K. Utyonkov, A.A. Yeremin C.S. Sumithrarachchi, D.J. Morrissey, B.A. Brown, A.D. Davies, D.A. Davies, M. Fancina, E. Kwan, P.F. Mantica, M. Portillo, Y. Shimbara, J. Stoker, R.R. Weerasiri
2007Su07	EPJAA	31,	393	B. Sun, Yu. A. Litvinov, P.M. Walker, K. Beckert, P. Beller, F. Bosch, D. Boutin, C. Brandau, L. Chen, C. Dimopoulou, H. Geissel, R. Knöbel, C. Kozhuharov, J. Kurcewicz, S.A. Litvinov, M. Mazzocco, J. Meng, C. Nociforo, F. Nolden, W.R. Plass, C. Scheidenberger, M. Steck, H. Weick, M. Winkler
2007Su19	EPJAA	33,	327	
2007To23 2007Tr08	EPJST PRVCA	150, 76,	183 021301	B.E. Tomlin, P.F. Mantica, W.B. Walters V. Tripathi, S.L. Tabor, P.F. Mantica, Y. Utsuno, P. Bender, J. Cook, C.R. Hoffman, S. Lee, T. Otsuka, J. Pereira, M. Perry, K. Pepper, J.S. Pinter, J. Stoker, A. Volya, D. Weisshaar
2007Ya08	PRVCA	76,	024308	C. Yazidjian, G. Audi, D. Beck, K. Blaum, S. George, C. Guénaut, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, D. Lunney, L. Schweikhard
				2008
2008Ah02 2008Ak03	PRVCA PYLBB	77, 666,	054302 430	I. Ahmad, F.G. Kondev, Z.M. Koenig, Wm. C. McHarris, S.W. Yates Yu. Aksyutina, H.T. Johansson, P. Adrich, F. Aksouh, T. Aumann, K. Boretzky, M.J.G. Borge, A. Chatillon, L.V. Chulkov, D. Cortina-Gil, U. Datta Pramanik, H. Emling, C. Forssén, H.O.U. Fynbo, H. Geissel, M. Hellström, G. Ickert, K.L. Jones, B. Jonson, A. Kliemkiewicz, J.V. Kratz, R. Kulessa, M. Lantz, T. LeBleis, A.O. Lindahl, K. Mahata, M. Matos, M. Meister, G. Münzenberg, T. Nilsson, G. Nyman, R. Palit, M. Pantea, S. Paschalis, W. Prokopowicz, R. Reifarth, A. Richter, K. Riisager, G. Schrieder, H. Simon, K. Sümmerer, O. Teng-
2008An05	PRVCA	77,	054303	blad, W. Walus, H. Weick, M.V. Zhukov K. Andgren, B. Cederwall, J. Uusitalo, A.N. Andreyev, S.J. Freeman, P.T. Green- lees, B. Hadinia, U. Jakobsson, A. Johnson, P.M. Jones, D.T. Joss, S. Juutinen, R. Julin, S. Ketelhut, A. Khaplanov, M. Leino, M. Nyman, R.D. Page, P. Rahkila, M. Sandzelius, P. Sapple, J. Sarén, C. Scholey, J. Simpson, J. Sorri, J. Thomson, R. Wyss
2008An11	PRVCA	78,	044328	K. Andgren, U. Jakobsson, B. Cederwall, J. Uusitalo, T. Bäck, S.J. Freeman, P.T. Greenlees, B. Hadinia, A. Hugues, A. Johnson, P.M. Jones, D.T. Joss, S. Juutinen, R. Julin, S. Ketelhut, A. Khaplanov, M. Leino, M. Nyman, R.D. Page, P. Rahkila, M. Sandzelius, P. Sapple, J. Sarén, C. Scholey, J. Simpson, J. Sorri, J. Thomson, R. Wyss
2008An16	EPJAA	38,	219	S. Antalic, F.P. Heßberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, Š. Šáro, B. Streicher, B. Sulignano, M. Venhart
2008Ba53	PRLTA	101,	252501	D. Bazin, F. Montes, A. Becerril, G. Lorusso, A. Amthor, T. Baumann, H. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P. Mantica, M. Matos, R. Meharchand, K. Minamisono, G. Perdikakis, J. Pereira, J. Pinter, M. Portillo, H. Schatz, K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers
2008Ba54	PRLTA	101,	262501	S. Baruah, G. Audi, K. Blaum, M. Dworschak, S. George, C. Guénaut, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, D. Lunney, H. Schatz, L. Schweikhard, C. Yazidjian
2008Bh08	PRVCA	77,	065503	M. Bhattacharya, D. Melconian, A. Komives, S. Triambak, A. García, E.G. Adelberger, B.A. Brown, M.W. Cooper, T. Glasmacher, V. Guimaraes, P.F. Mantica, A.M. Oros-Peusquens, J.I. Prisciandaro, M. Steiner, H.E. Swanson, S.L. Tabor, M. Wiedeking
2008Bl05	PRLTA	100,	132501	M. Block, C. Bachelet, G. Bollen, M. Facina, C.M. Folden III, C. Guénaut, A.A. Kwiatkowski, D.J. Morrissey, G.K. Pang, A. Prinke, R. Ringle, J. Savory, P. Schury, S. Schwarz

2008Bo26	NUPAB	811,	28	V. Bondarenko, I. Tomandl, HF. Wirth, J. Honzatko, A.M. Sukhovoj, L.A. Malov, L.I. Simonova, R. Hertenberger, T. von Egidy, J. Berzins
2008Br.A	PrvCom	GAu	Dec	M. Breitenfeldt
2008Br.C	PrvCom	GAu	Mar	M. Brodeur
2008Br.D	PrvCom	GAu	Aug	M. Brodeur
2008Ca22	PRVCA	78,	044001	M. Caamano, D. Cortina-Gil, W. Mittig, H. Savajols, M. Chartier, C.E. De-
		,		monchy, B. Fernandez, M.B. Gomez Hornillos, A. Gillibert, B. Jurado, O. Kiselev, R. Lemmon, A. Obertelli, F. Rejmund, M. Rejmund, P. Roussel-Chomaz,
				R. Wolski
2008Ch07	NUPAB	801,	101	G. Christian, W.A. Peters, D. Absalon, D. Albertson, T. Baumann, D. Bazin, E. Breitbach, J. Brown, P.L. Cole, D. Denby, P.A. De Young, J.E. Finck, N. Frank, A. Fritsch, C. Hall, A.M. Hayes, J. Hinnefeld, C.R. Hoffman, R. Howes, B. Luther, E. Mosby, S. Mosby, D. Padilla, P.V. Pancella, G. Peaslee,
2008Ch28	PRVCA	78,	054307	W.F. Rogers, A. Schiller, M.J. Strongman, M. Thoennessen, L.O. Wagner R.J. Charity, S.A. Komarov, L.G. Sobotka, J. Clifford, D. Bazin, A. Gade, J. Lee, S.M. Lukyanov, W.G. Lynch, M. Mocko, S.P. Lobastov, A.M. Rogers, A. Sanetullaev, M.B. Tsang, M.S. Wallace, R.G.T. Zegers, S. Hudan, C. Metelko, M.A. Famiano, A.H. Wuosmaa, M.J. van Goethem
2008Ch.A	ThGiessen			Lixin Chen
2008De29	PRVCA	78,	044303	D.H. Denby, P.A. DeYoung, T. Baumann, D. Bazin, E. Breitbach, J. Brown, N. Frank, A. Gade, C.C. Hall, J. Hinnefeld, C.R. Hoffman, R. Howes, R.A. Jenson, B. Luther, S.M. Mosby, C.W. Olson, W.A. Peters, A. Schiller, A. Spyrou, M. Thoennessen
2008Dr05	PRVCA	78,	024605	I. Dragojevic, K.E. Gregorich, Ch. E. Düllmann, M.A. Garcia, J.M. Gates, S.L. Nelson, L. Stavsetra, R. Sudowe, H. Nitsche
2008Du09	PRVCA	77,	064320	Ch. E. Düllmann, A. Türler and erratum PRVCA 78(2008)029901
2008Dv02	PRLTA	100,	132503	J. Dvorak, W. Brüchle, M. Chelnokov, Ch. E. Düllmann, Z. Dvorakova, K. Eberhardt, E. Jäger, R. Krücken, A. Kuznetsov, Y. Nagame, F. Nebel, K. Nishio, R. Perego, Z. Qin, M. Schädel, B. Schausten, E. Schimpf, R. Schuber, A. Semchenkov, P. Thörle, A. Türler, M. Wegrzecki, B. Wierczinski, A. Yakushev, A. Yeremin
2008Dw01	PRLTA	100,	072501	M. Dworschak, G. Audi, K. Blaum, P. Delahaye, S. George, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, D. Lunney, L. Schweikhard, C. Yazidjian and PrvCom GAu May 2007
2008Ea01	PRVCA	77,	024303	M.C. Eastman, K.S. Krane
2008Er04	PRLTA	100,	132502	T. Eronen, VV. Elomaa, U. Hager, J. Hakala, J.C. Hardy, A. Jokinen,
		,		A. Kankainen, I.D. Moore, H. Penttilä, S. Rahaman, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, T. Sonoda, C. Weber, J. Äystö
2008Fa11	PRVCA	78,	022801	J. Fallis, J.A. Clark, K.S. Sharma, G. Savard, F. Buchinger, S. Caldwell, J.E. Crawford, C.M. Deibel, J.L. Fisker, S. Gulick, A.A. Hecht, D. Lascar, J.K.P. Lee, A.F. Levand, G. Li, B.F. Lundgren, A. Parikh, S. Russell, M. Scholtevan de Vorst, N.D. Scielzo, R.E. Segel, H. Sharma, S. Sinha, M. Sternberg, T. Sava, J. Tarihata, J. Van Schale, J. G. Wang, Y. Wang, G. Wand, Z. Zhang, A. Tarihata, J. Van Schale, J. G. Wang, Y. Wang, G. Wand, Z. Zhang, L. Tarihata, J. Van Schale, J. G. Wang, Y. Wang, G. Wand, Z. Zhang, L. Tarihata, J. Van Schale, J. G. Wang, Y. Wang, G. Wand, Z. Zhang, L. Tarihata, J. Wang, Y. Wang, G. Wand, Z. Zhang, L. Tarihata, J. Wang, Y. Wang, G. Wand, Z. Zhang, L. Tarihata, J. Wang, Y. Wang, G. Wand, Z. Zhang, L. Wang, Y. Wang, G. Wand, Z. Zhang, Y. Wang, Y
2008Fe02	EPJAA	35,	167	T. Sun, I. Tanihata, J. Van Schelt, J.C. Wang, Y. Wang, C. Wrede, Z. Zhou M. Ferraton, R. Bourgain, C.M. Petrache, D. Verney, F. Ibrahim, N. de Séréville, S. Franchoo, M. Lebois, C. Phan Viet, L. Sagui, I. Stefan, J.F. Clavelin, M. Vilmey
2008Fi.A	PrvCom	BPf	Oct	may R.B. Firestone
2008Ga04	PYLBB	660,	326	A.B. Garnsworthy, P.H. Regan, L. Cáceres, S. Pietri, Y. Sun, D. Rudolph,
20000404	1 1LDD	000,	320	M. Górska, Zs. Podolyák, S.J. Steer, R. Hoischen, A. Heinz, F. Becker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, H. Grawe, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tachenov, E. Werner-Malento, H.J. Wollersheim, G. Benzoni, B.B. Blank, C. Brandau, A.M. Bruce, F. Camera, W.N. Catford, I.J. Cullen, Zs. Dombrádi, E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, A. Jungclaus, M. Kmiecik, F.G. Kondev, T. Kurtukian-Nieto, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, M. Pfützner, S. Schwertel, T. Shizuma, A.J. Simons, P.M. Walker, O. Wieland, F.R. Xu

2008Ga08	PRVCA	77,	034603	J.M. Gates, M.A. Garcia, K.E. Gregorich, Ch. E. Düllmann, I. Dragojević, J. Dvorak, R. Eichler, C.M. Folden III, W. Loveland, S.L. Nelson, G.K. Pang,
				L. Stavsetra, R. Sudowe, A. Türler, H. Nitsche
2008Ga.A 2008Ge07	PrvCom PRLTA	101,	08Bh08 252502	A. Garcia et al at ISOLDE W. Geithner, T. Neff, G. Audi, K. Blaum, P. Delahaye, H. Feldmeier, S. George, C. Guenaut, F. Herfurth, A. Herlert, S. Kappertz, M. Keim, A. Kellerbauer, HJ. Kluge, M. Kowalska, P. Lievens, D. Lunney, K. Marinova, R. Neugart, L. Schweikhard, S. Wilbert, C. Yazidjian and PrvCom from A. Herlert Febru-
2008Ge08	EULEE	82,	50005	ary 2005 S. George, G. Audi, B. Blank, K. Blaum, M. Breitenfeldt, U. Hager, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, M. Kretzschmar, D. Lunney, R. Savreux, S. Schwarz, L. Schweikhard, C. Yazidjian
2008Go23	PRVCA	78,	014311	M.B. Gómez Hornillos, M. Chartier, W. Mittig, A. Lépine-Szily, L. Caballero, C.E. Demonchy, G. Georgiev, N.A. Orr, G. Politi, M. Rousseau, P. Roussel-Chomaz, A.C.C. Villari
2008Go.A	AnRpt GSI		140	A. Gorshkov et al
2008Gr17	PRVCA	78,	021303	P.T. Greenlees, RD. Herzberg, S. Ketelhut, P.A. Butler, P. Chowdhury, T. Grahn, C. Gray-Jones, G.D. Jones, P. Jones, R. Julin, S. Juutinen, TL. Khoo, M. Leino, S. Moon, M. Nyman, J. Pakarinen, P. Rahkila, D. Rostron, J. Sarén, C. Scholey, J. Sorri, S.K. Tandel, J. Uusitalo, M. Venhart
2008Ha12	PRVCA	77,	047305	K. Hauschild, A. Lopez-Martens, A.V. Yeremin, O. Dorvaux, A.V. Belozerov, M.L. Chelnokov, V.I. Chepigin, B. Gall, V.A. Gorshkov, M. Guttormsen, P. Jones, A.P. Kabachenko, A. Khouaja, A.C. Larsen, O.N. Malyshev, A. Minkova, H.T. Nyhus, Yu. Ts. Oganessian, D. Pantelica, A.G. Popeko, F. Ro-
2008Ha21	PRVCA	77,	068801	taru, S. Saro, A.V. Shutov, S. Siem, A.I. Svirikhin, N.U.H. Syed T. Hayakawa, T. Shizuma, S. Miyamoto, S. Amano, K. Horikawa, K. Ishihara, M. Mori, K. Kawase, M. Kando, N. Kikuzawa, S. Chiba, T. Mochizuki, T. Ka-
2008Ha23	PRLTA	101,	052502	jino, M. Fujiwara J. Hakala, S. Rahaman, VV. Elomaa, T. Eronen, U. Hager, A. Jokinen, A. Kankainen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saas-
2008На31	PRVCA	78,	021302	tamoinen, T. Sonoda, C. Weber, J. Áystö K. Hauschild, A. Lopez-Martens, A.V. Yeremin, O. Dorvaux, S. Antalic, A.V. Belozerov, Ch. Briançon, M.L. Chelnokov, V.I. Chepigin, D. Curien, B. Gall, A. Görgen, V.A. Gorshkov, M. Guttormsen, F. Hanappe, A.P. Kabachenko, F. Khalfallah, A.C. Larsen, O.N. Malyshev, A. Minkova, A.G. Popeko, M. Rousseau, N. Rowley, S. Saro, A.V. Shutov, S. Siem, L. Stuttgè, A.I. Svirikhin, N.U.H. Syed, Ch. Theisen, M. Venhart
2008Ha.A	PrvCom	BPf	Sep	P.A. Hausladen
2008Hi05	PRVCA	77,	034305	T.A. Hinners, V. Tripathi, S.L. Tabor, A. Volya, P.C. Bender, C.R. Hoffman, S. Lee, M. Perry, P.F. Mantica, A.D. Davies, S.N. Liddick, W.F. Mueller, A. Stolz, B.E. Tomlin
2008Но03	PRLTA	100,	152502	C.R. Hoffman, T. Baumann, D. Bazin, J. Brown, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, J. Hinnefeld, R. Howes, P. Mears, E. Mosby, S. Mosby, J. Reith, B. Rizzo, W.F. Rogers, G. Peaslee, W.A. Peters, A. Schiller, M.J. Scott, S.L. Tabor, M. Thoennessen, P.J. Voss, T. Williams
2008Ia01	PRVCA	77,	045501	V.E. Iacob, J.C. Hardy, V. Golovko, J. Goodwin, N. Nica, H.I. Park, L. Trache, R.E. Tribble
2008Jo03	PRVCA	77,	034311	G.A. Jones, S.J. Williams, P.M. Walker, Zs. Podolyák, S. Zhu, M.P. Carpenter, J.J. Carroll, R.S. Chakrawarthy, P. Chowdhury, I.J. Cullen, G.D. Dracoulis, A.B. Garnsworthy, G. Hackman, R.V.F. Janssens, T.L. Khoo, F.G. Kondev, G.J. Lane, Z. Liu, D. Seweryniak, N.J. Thompson
2008Jo04	PRVCA	77,	064316	E.K. Johansson, D. Rudolph, LL. Andersson, D.A. Torres, I. Ragnarsson, C. Andreoiu, C. Baktash, M.P. Carpenter, R.J. Charity, C.J. Chiara, J. Ekman, C. Fahlander, C. Hoel, O.L. Pechenaya, W. Reviol, R. du Rietz, D.G. Sarantites, D. Seweryniak, L.G. Sobotka, C.H. Yu, S. Zhu
2008Kh10	EPJAA	37,	177	J. Khuyagbaatar, S. Hofmann, F.P. Heßberger, D. Ackermann, H.G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, J. Maurer, K. Nishio, Yu. Novikov
2008Kn.A	ThGSI			Knöbel Knöbel

2008Lo07	PRVCA	77,	064313	R.L. Lozeva, G.S. Simpson, H. Grawe, G. Neyens, L.A. Atanasova, D.L. Balabanski, D. Bazzacco, F. Becker, P. Bednarczyk, G. Benzoni, N. Blasi, A. Blazhev, A. Bracco, C. Brandau, L. Cáceres, F. Camera, S.K. Chamoli, F.C.L. Crespi, JM. Daugas, P. Detistov, M. De Rydt, P. Doornenbal, C. Fahlander, E. Farnea, G. Georgiev, J. Gerl, K.A. Gladnishki, M. Górska, J. Grebosz, M. Hass, R. Hoischen, G. Ilie, M. Ionescu-Bujor, A. Iordachescu, J. Jolie, A. Jungclaus, M. Kmiecik, I. Kojouharov, N. Kurz, S.P. Lakshmi, G. Lo Bianco, S. Mallion, A. Maj, D. Montanari, O. Perru, M. Pfützner, S. Pietri, J.A. Pinston, Zs. Podolyák, W. Prokopowicz, D. Rudolph, G. Rusev, T.R. Saitoh, A. Saltarelli, H. Schaffner, R. Schwengner, S. Tashenov, K. Turzó, J.J. Valiente-Dobón, N. Vermeulen, J. Walker, E. Werner-Malento, O. Wieland, HJ. Wollersheim
2008Ma01	PRVCA	77,	014313	P.F. Mantica, R. Broda, H.L. Crawford, A. Damaske, B. Fornal, A.A. Hecht, C. Hoffman, M. Horoi, N. Hoteling, R.V.F. Janssens, J. Pereira, J.S. Pinter, J.B. Stoker, S.L. Tabor, T. Sumikama, W.B. Walters, X. Wang, S. Zhu
2008Mo09	NUPAB	805	172c	K. Morita
2008Mu05	EPJAA	35,	31	M. Mukherjee, D. Beck, K. Blaum, G. Bollen, P. Delahaye, J. Dilling, S. George, C. Guénaut, F. Herfurth, A. Herlert, A. Kellerbauer, HJ. Kluge, U. Köster, D. Lunney, S. Schwarz, L. Schweikhard, C. Yazidjian
2008Mu13	PRVCA	77,	061303	I. Mukha, L. Grigorenko, K. Sümmerer, L. Acosta, M.A.G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J.M. Espino, A. Fomichev, J.E. García-Ramos, H. Geissel, J. Gómez-Camacho, J. Hofmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfützner, C. Rodríguez-Tajes, E. Roeckl, M. Stanoiu, H. Weick, P.J. Woods
2008Ne01	PRLTA	100,	022501	S.L. Nelson, K.E. Gregorich, I. Dragojević, M.A. Garcia, J.M. Gates, R. Sudowe, H. Nitsche
2008Ne08	PRVCA	78,	024606	S.L. Nelson, C.M. Folden III, K.E. Gregorich, I. Dragojević, Ch. E. Düllmann, R. Eichler, M.A. Garcia, J.M. Gates, R. Sudowe, H. Nitsche
2008Os02	NIMBE	266,	4394	A. Osa, Si. Ichikawa, M. Matsuda, T.K. Sato, SC. Jeong
2008Pa33	PRVCA	78,	041307	D. Pauwels, O. Ivanov, N. Bree, J. Büscher, T.E. Cocolios, J. Gentens, M. Huyse, A. Korgul, Yu. Kudryavtsev, R. Raabe, M. Sawicka, I. Stefanescu, J. Van de Walle, P. Van den Bergh, P. Van Duppen, W.B. Walters
2008Qi03	RAACA	96,	455	Z. Qin, W. Brüchle, D. Ackermann, K. Eberhardt, F.P. Heßberger, E. Jäger, J.V. Kratz, P. Kuusiniemi, D. Liebe, G. Münzenberg, D. Nayak, Yu. N. Novikov, M. Schädel, B. Schausten, E. Schimpf, A. Semchenkov, B. Sulignano, P. Thörle, X.L. Wu and PrvCom from 2002Sh. C
2008Ra09	PYLBB	662,	111	S. Rahaman, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, J. Julin, A. Kankainen, A. Saastamoinen, J. Suhonen, C. Weber, J. Aÿstö
2008Re16	PRLTA	100,	093002	M. Redshaw, J. McDaniel, E.G. Myers
2008Ri05	PRVCA	78,	034304	S.V. Rigby, D.M. Cullen, P.J.R. Mason, D.T. Scholes, C. Scholey, P. Rahkila, S. Eeckhaudt, T. Grahn, P. Greenlees, P.M. Jones, R. Julin, S. Juutinen, H. Kettunen, M. Leino, AP. Leppänen, P. Nieminen, M. Nyman, J. Pakarinen, J. Uusitalo
2008Ro21	PRVCA	78,	034308	A.P. Robinson, T.L. Khoo, I. Ahmad, S.K. Tandel, F.G. Kondev, T. Nakatsukasa, D. Seweryniak, M. Asai, B.B. Back, M.P. Carpenter, P. Chowdhury, C.N. Davids, S. Eeckhaudt, J.P. Greene, P.T. Greenlees, S. Gros, A. Heinz, RD. Herzberg, R.V.F. Janssens, G.D. Jones, T. Lauritsen, C.J. Lister, D. Peterson, J. Qian, U.S. Tandel, X. Wang, S. Zhu
2008Ru09	PRVCA	78,	021301	D. Rudolph, R. Hoischen, M. Hellström, S. Pietri, Zs. Podolyák, P.H. Regan, A.B. Garnsworthy, S.J. Steer, F. Becker, P. Bednarczyk, L. Cáceres, P. Doornenbal, J. Gerl, M. Górska, J. Grebosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, LL. Andersson, L. Atanasova, D.L. Balabanski, M.A. Bentley, A. Blazhev, C. Brandau, J.R. Brown, C. Fahlander, E.K. Johansson, A. Jungclaus, S.M. Lenzi
2008Ry03	PRLTA	101,	012501	V.L. Ryjkov, M. Brodeur, T. Brunner, M. Smith, R. Ringle, A. Lapierre, F. Ames, P. Bricault, M. Dombsky, P. Delheij, D. Lunney, M.R. Pearson, J. Dilling
2008Sm03	PRLTA	101,	202501	M. Smith, M. Brodeur, T. Brunner, S. Ettenauer, A. Lapierre, R. Ringle, V.L. Ryjkov, F. Ames, P. Bricault, G.W.F. Drake, P. Delheij, D. Lunney, F. Sarazin, J. Dilling

2008Sm.A	ThVancou	ver		M.J. Smith
2008So20 2008Su14	PRVAA EPJAA	78, 36,	012514 243	A. Solders, I. Bergström, Sz. Nagy, M. Suhonen, R. Schuch G. Suliman, D. Bucurescu, R. Hertenberger, HF. Wirth, T. Faestermann, R. Krücken, T. Behrens, V. Bildstein, K. Eppinger, C. Hinke, M. Mahgoub,
2008Su19	NUPAB	812,	1	P. Meierbeck, M. Reithner, S. Schwertel, N. Chauvin B. Sun, R. Knöbel, Yu. A. Litvinov, H. Geissel, J. Meng, K. Beckert, F. Bosch, D. Boutin, C. Brandau, L. Chen, I.J. Cullen, C. Dimopoulou, B. Fabian, M. Hausmann, C. Kozhuharov, S.A. Litvinov, M. Mazzocco, F. Montes, G. Münzenberg, A. Musumarra, S. Nakajima, C. Nociforo, F. Nolden, T. Ohtsubo, A. Ozawa, Z. Patyk, W.R. Plaß, C. Scheidenberger, M. Steck, T. Suzuki, P.M. Walker, H. Weick, N. Winckler, M. Winkler, T. Yamaguchi
2008Tr04	PRVCA	77,	034310	V. Tripathi, S.L. Tabor, P. Bender, C.R. Hoffman, S. Lee, K. Pepper, M. Perry, P.F. Mantica, J.M. Cook, J. Pereira, J.S. Pinter, J.B. Stoker, D. Weisshaar, Y. Utsuno, T. Otsuka
2008We02	NUPAB	803,	1	C. Weber, G. Audi, D. Beck, K. Blaum, G. Bollen, F. Herfurth, A. Kellerbauer, HJ. Kluge, D. Lunney, S. Schwarz
2008We10	PRVCA	78,	054310	C. Weber, VV. Elomaa, R. Ferrer, C. Fröhlich, D. Ackermann, J. Äystö, G. Audi, L. Batist, K. Blaum, M. Block, A. Chaudhuri, M. Dworschak, S. Eliseev, T. Eronen, U. Hager, J. Hakala, F. Herfurth, F.P. Heßberger, S. Hofmann, A. Jokinen, A. Kankainen, HJ. Kluge, K. Langanke, A. Martín, G. Martínez-Pinedo, M. Mazzocco, I.D. Moore, J.B. Neumayr, Yu. N. Novikov, H. Penttilä, W.R. Plaß, A.V. Popov, S. Rahaman, T. Rauscher, C. Rauth, J. Rissanen, D. Rodríguez, A. Saastamoinen, C. Scheidenberger, L. Schweikhard, D.M. Seliverstov, T. Sonoda, FK. Thielemann, P.G. Thirolf, G.K. Vorobjev
				2009
2009Ak03	PYLBB	679,	191	Yu. Aksyutina, H.T. Johansson, T. Aumann, K. Boretzky, M.J.G. Borge, A. Chatillon, L.V. Chulkov, D. Cortina-Gil, U. Datta Pramanik, H. Emling, C. Forssén, H.O.U. Fynbo, H. Geissel, G. Ickert, B. Jonson, R. Kulessa, C. Langer, M. Lantz, T. LeBleis, A.O. Lindahl, K. Mahata, M. Meister, G. Münzenberg, T. Nilsson, G. Nyman, R. Palit, S. Paschalis, W. Prokopowicz, R. Reifarth, A. Richter, K. Riisager, G. Schrieder, H. Simon, K. Summerer, O. Tengblad, H. Weick, M.V. Zhukov
2009Al29	PRVCA	80,	061302	N. Al-Dahan, Zs. Podolyák, P.H. Regan, M. Górska, H. Grawe, K.H. Maier, J. Gerl, S.B. Pietri, H.J. Wollersheim, N. Alkhomashi, A.Y. Deo, A.M.D. Bacelar, G. Farrelly, S.J. Steer, A.M. Bruce, P. Boutachkov, C. Domingo-Pardo, A. Algora, J. Benlliure, A. Bracco, E. Calore, E. Casarejos, I.J. Cullen, P. Detistov, Zs. Dombrádi, M. Doncel, F. Farinon, W. Gelletly, H. Geissel, N. Goel, J. Grebosz, R. Hoischen, I. Kojouharov, N. Kurz, S. Lalkovski, S. Leoni, F. Molina, D. Montanari, A.I. Morales, A. Musumarra, D.R. Napoli, R. Nicolini, C. Nociforo, A. Prochazka, W. Prokopowicz, B. Rubio, D. Rudolph, H. Schaffner, P. Strmen, I. Szarka, T. Swan, J.S. Thomas, J.J. Valiente-Dobón,
2009Al30	PRVCA	80,	064308	S. Verma, P.M. Walker, H. Weick N. Alkhomashi, P.H. Regan, Zs. Podolyák, S. Pietri, A.B. Garnsworthy, S.J. Steer, J. Benlliure, E. Caserejos, R.F. Casten, J. Gerl, H.J. Wollersheim, J. Grebosz, G. Farrelly, M. Górska, I. Kojouharov, H. Schaffner, A. Algora, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, A.M. Denis Bacelar, I.J. Cullen, L. Cáceres, P. Doornenbal, M.E. Estevez, Y. Fujita, W. Gelletly, R. Hoischen, R. Kumar, N. Kurz, S. Lalkovski, Z. Liu, C. Mihai, F. Molina, A.I. Morales, D. Mücher, W. Prokopowicz, B. Rubio, Y. Shi, A. Tamii,
2009An11	PRVCA	79,	064320	S. Tashenov, J.J. Valiente-Dobón, P.M. Walker, P.J. Woods, F.R. Xu A.N. Andreyev, S. Antalic, D. Ackermann, L. Bianco, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, I. Kojouharov, B. Kindler, B. Lommel, R. Mann, K. Nishio, R.D. Page, J.J. Ressler, P. Sapple, B. Streicher, S. Saro, B. Sulignano, J. Thomson, P. Van Duppen, M. Venhart

2000 4 14	DDMCA	0.0	024202	ANAL GALL DAL MEG L'UEG LEI
2009An14	PRVCA	80,	024302	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, V.F. Comas, J. Elseviers, S. Franchoo, S. Heinz, J.A. Heredia, F.P. Heßberger, S. Hofmann,
				M. Huyse, J. Khuyagbaatar, I. Kojouharov, B. Kindler, B. Lommel, R. Mann,
				R.D. Page, S. Rinta-Antila, P.J. Sapple, Š. Šáro, P. Van Duppen, M. Venhart,
*****	PP7101	0.0	0.4.400.4	H.V. Watkins
2009An17	PRVCA	80,	044334	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, V.F. Comas, J. El-
				seviers, S. Franchoo, S. Heinz, J.A. Heredia, F.P. Hessberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, I. Kojouharov, B. Kindler, B. Lommel, R. Mann,
				R.D. Page, S. Rinta-Antila, P.J. Sapple, S. Saro, P. Van Duppen, M. Venhart,
				H.V. Watkins
2009An20	PRVCA	80,	054322	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, V.F. Comas, J. El-
				seviers, S. Franchoo, S. Heinz, J.A. Heredia, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, I. Kojouharov, B. Kindler, B. Lommel, R. Mann,
				R.D. Page, S. Rinta-Antilla, P.J. Sapple, S. Saro, P. Van Duppen, M. Venhart,
				H.V. Watkins
2009Ba04	PRVCA	79,	017302	F.C. Barker
2009Ba52	PRVCA	80,	054318	J.C. Batchelder, J.L. Wood, P.E. Garrett, K.L. Green, K.P. Rykaczewski, J
				C. Bilheux, C.R. Bingham, H.K. Carter, D. Fong, R. Grzywacz, J.H. Hamilton, D.J. Hartley, J.K. Hwang, W. Krolas, W.D. Kulp, Y. Larochelle, A. Piechaczek,
				A.V. Ramayya, E.H. Spejewski, D.W. Stracener, M.N. Tantawy, J.A. Winger,
				E.F. Zganjar
2009Bo.A	PrvCom	GAu	Aug	C. Borgmann
2009Br09	PRVCA	80,	035805	M. Breitenfeldt, G. Audi, D. Beck, K. Blaum, S. George, F. Herfurth, A. Herlert,
				A. Kellerbauer, HJ. Kluge, M. Kowalska, D. Lunney, S. Naimi, D. Neidherr, H. Schatz, S. Schwarz, L. Schweikhard
2009Br10	PRVCA	80,	044318	M. Brodeur, T. Brunner, C. Champagne, S. Etternauer, M. Smith, A. Lapierre,
				R. Ringle, V.L. Ryjkov, G. Audi, P. Delheij, D. Lunney, J. Dilling
2009Br.A	PrvCom	GAu		M. Brodeur
2009Bu.A 2009Ce04	PrvCom PRLTA	GAu 103,	Mar 152502	D. Bucurescu J. Cerny, D.M. Moltz, D.W. Lee, K. Peräjärvi, B.R. Barquest, L.E. Grossman,
2007004	TKLIM	103,	132302	W. Jeong, C.C. Jewett
2009Ch08	PRLTA	102,	122503	L. Chen, Yu. A. Litvinov, W.R. Plaß, K. Beckert, P. Beller, F. Bosch,
				D. Boutin, L. Caceres, R.B. Cakirli, J.J. Carroll, R.F. Casten, R.S. Chakrawarthy,
				D.M. Cullen, I.J. Cullen, B. Franzke, H. Geissel, J. Gerl, M. Górska, G.A. Jones, A. Kishada, R. Knöbel, C. Kozhuharov, S.A. Litvinov, Z. Liu, S. Mandal,
				F. Montes, G. Münzenberg, F. Nolden, T. Ohtsubo, Z. Patyk, Zs. Podolyák,
				R. Propri, S. Rigby, N. Saito, T. Saito, C. Scheidenberger, M. Shindo, M. Steck,
				P. Ugorowski, P.M. Walker, S. Williams, H. Weick, M. Winkler, HJ. Woller-
2000001.00	DVI DD	674	22	sheim, T. Yamaguchi
2009Ch09	PYLBB	674,	23	F.C. Charlwood, K. Baczynska, J. Billowes, P. Campbell, B. Cheal, T. Eronen, D.H. Forest, A. Jokinen, T. Kessler, I.D. Moore, H. Penttilä, R. Powis, M. Rüffer,
				A. Saastamoinen, G. Tungate, J. Äystö
2009Cr02	PRVCA	79,	054320	H.L. Crawford, P.F. Mantica, J.S. Berryman, R. Broda, B. Fornal, C.R. Hoffman,
				N. Hoteling, R.V.F. Janssens, S.M. Lenzi, J. Pereira, J.B. Stoker, S.L. Tabor,
2009Cr03	APOBB	40,	481	W.B. Walters, X. Wang, S. Zhu H.L. Crawford, R.V.F. Janssens, P.F. Mantica, J.S. Berryman, R. Broda,
20070103	AII ODD	40,	401	M.P. Carpenter, B. Fornal, G.F. Grinyer, N. Hoteling, B. Kay, T. Lauritsen,
				K. Minamisono, I. Stefanescu, J.B. Stoker, W.B. Walters, S. Zhu
2009Cu02	PRVCA	80,	024303	D.M. Cullen, P.J.R. Mason, S.V. Rigby, C. Scholey, S. Eeckhaudt, T. Grahn,
				P.T. Greenlees, U. Jakobsson, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, A.M. Kishada, M. Leino, AP. Leppanen, K. Mäntyniemi, P. Nieminen, M. Ny-
				man, J. Pakarinen, P. Peura, P. Rahkila, J. Sarén, J. Sorri, J. Uusitalo, B.J. Varley,
				M. Venhart
2009Da03	NUPAB	818,	264	J.V. Dawson, C. Reeve, J.R. Wilson, K. Zuber, M. Junker, C. Gössling, T. Köttig,
200000-02	DDV/C A	70	011602	D. Münstermann, S. Rajek, O. Schulz
2009Dr02	PRVCA	79,	011602	I. Dragojević, K.E. Gregorich, Ch. E. Düllmann, J. Dvorak, P.A. Ellison, J.M. Gates, S.L. Nelson, L. Stavsetra, H. Nitsche
2009Dr04	PRVCA	79,	054313	G.D. Dracoulis, P.M. Davidson, G.J. Lane, A.P. Byrne, T. Kibédi, P. Nieminen,
				H. Watanabe, A.N. Wilson

2009Dr06	PRVCA	79,	061303	G.D. Dracoulis, G.J. Lane, F.G. Kondev, H. Watanabe, D. Seweryniak, S. Zhu, M.P. Carpenter, C.J. Chiara, R.V.F. Janssens, T. Lauritsen, C.J. Lister, E.A. Mc-
2009Dr08	EPJAA	40,	127	Cutchan, I. Stefanescu G.D. Dracoulis, P.M. Davidson, G.J. Lane, A.P. Byrne, T. Kibédi, P. Nieminen, A.N. Wilson, H. Watanabe
2009Dr12	PRVCA	80,	054320	G.D. Dracoulis, G.J. Lane, A.P. Byrne, P.M. Davidson, T. Kibédi, P.H. Nieminen, H. Watanabe, A.N. Wilson, H.L. Liu, F.R. Xu
2009E107	PRLTA	102,	252501	VV. Elomaa, G.K. Vorobjev, A. Kankainen, L. Batist, S. Eliseev, T. Eronen, J. Hakala, A. Jokinen, I.D. Moore, Yu. N. Novikov, H. Penttilä, A. Popov, S. Rahaman, J. Rissanen, A. Saastamoinen, H. Schatz, D.M. Seliverstov, C. Weber, J. Äystö
2009El08	EPJAA	40,	1	VV. Elomaa, T. Eronen, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, I.D. Moore, S. Rahaman, J. Rissanen, V. Rubchenya, C. Weber, J. Äystö
2009Er02	PRVCA	79,	032802	T. Eronen, VV. Elomaa, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, T. Kessler, I.D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö
2009Er07	PRLTA	103,	252501	T. Eronen, VV. Elomaa, J. Hakala, J.C. Hardy, A. Jokinen, I.D. Moore, M. Reponen, J. Rissanen, A. Saastamoinen, C. Weber, J. Äystö
2009Fa15	EPJAA	42,	339	T. Faestermann, R. Hertenberger, HF. Wirth, R. Krücken, M. Mahgoub, P. Maier-Komor
2009Fa.A	PrvCom	GAu	Mar	T. Faestermann
2009Fo02	PRVCA	79,	027602	C.M. Folden III, I. Dragojevic, Ch. E. Düllmann, R. Eichler, M.A. Garcia,
20071002	111, 011	, , ,	02,002	J.M. Gates, S.L. Nelson, R. Sudowe, K.E. Gregorich, D.C. Hoffman, H. Nitsche
2009Fo05	PRVCA	79,	064318	C.M. Folden III, A.S. Nettleton, A.M. Amthor, T.N. Ginter, M. Hausmann, T. Kubo, W. Loveland, S.L. Manikonda, D.J. Morrissey, T. Nakao, M. Portillo,
2009Fu05	EPJAA	39,	49	B.M. Sherrill, G.A. Souliotis, B.F. Strong, H. Takeda, O.B. Tarasov T. Fukuchi, T. Hori, T. Masue, K. Tajiri, A. Sato, T. Furukawa, A. Odahara, T. Shimoda, Y. Wakabayashi, Y. Gono, T. Suzuki, M. Ukai, T. Wakui, A. Yamazaki, Y. Miyashita, N. Sato, M. Tateoka, M. Ohguma, T. Shinozuka, T. Koike, K. Shinozuka, Y. Miyashita, N. Sato, M. Tateoka, M. Ohguma, T. Shinozuka, T. Koike, K. Shinozuka, T. Koike, M. W. Marasaki, Y. Miyashita, N. Sato, M. Tateoka, M. Ohguma, T. Shinozuka, T. Koike, M. Shinozuka, M. Shinozuka, T. Koike, M. Shinozuka, T. Koike, M. Shinozuka, M.
2009Ga05	PRLTA	102,	092501	K. Shirotori, Y. Miura, S. Kinoshita, Y. Ma, Y.Y. Fu, H. Tamura L. Gaudefroy, J.M. Daugas, M. Hass, S. Grevy, Ch. Stodel, J.C. Thomas, L. Perrot, M. Girod, B. Rosse, J.C. Angelique, D.L. Balabanski, E. Fiori, C. Force, G. Georgiev, D. Kameda, V. Kumar, R.L. Lozeva, I. Matea, V. Meot, P. Morel, B.S. Nara Singh, F. Nowacki, G. Simpson
2009Ga24	NUPAB	826,	1	C. Gaulard, C. Bachelet, G. Audi, C. Guénaut, D. Lunney, M. de Saint Simon, M. Sewtz, C. Thibault
2009Ga40	PRVCA	80,	064303	A.B. Garnsworthy, P.H. Regan, S. Pietri, Y. Sun, F.R. Xu, D. Rudolph, M. Górska, L. Cáceres, Zs. Podolyák, S.J. Steer, R. Hoischen, A. Heinz, F. Becker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, H. Grawe, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopwicz, T. Saito, H. Schaffner, S. Tachenov, E. Werner-Malento, H.J. Wollersheim, G. Benzoni, B. Blank, C. Brandau, A.M. Bruce, F. Camera, W.N. Catford, I.J. Cullen, Zs. Dombrádi, E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, A. Jungclaus, M. Kmiecik, F.G. Kondev, T. Kurtukian-Nieto, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, M. Pfützner, S. Schwertel, T. Shizuma, A.J. Simons, P.M. Walker, O. Wieland
2009Go16	PRVCA	79,	064314	M.B. Gomez Hornillos, D. O'Donnell, J. Simpson, D.T. Joss, L. Bianco, B. Cederwall, T. Grahn, P.T. Greenlees, B. Hadinia, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, R.D. Page, E.S. Paul, M. Petri, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P.J. Sapple, J. Saren, C. Scholey, J. Sorri, J. Thomson, J. Uusitalo
2009Go29	PRVCA	80,	045501	J.R. Goodwin, V.V. Golovko, V.E. Iacob, J.C. Hardy
20070029	INVEA	00,	UTJJUI	J.R. Goodwill, V. V. Golovko, V.L. Ideou, J.C. Haldy

2009Go40	PYLBB	672,	313	M. Górska, L. Cáceres, H. Grawe, M. Pfützner, A. Jungclaus, S. Pietri, E. Werner-Malento, Z. Podolyák, P.H. Regan, D. Rudolph, P. Detistov, S. Lalkovski, V. Modamio, J. Walker, T. Beck, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, R. Hoischen, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H. Weick, HJ. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casarejos, B. Cederwall, F.C.L. Crespi, B. Hadinia, M. Hellstrom, G. Ilie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G.S. Simpson, S.J. Steer, S. Tashenov, O. Wieland, Zs. Dombrádi, P. Reiter, D. Sohler
2009Gu11	PRVCA	79,	054317	L. Gu, S.J. Zhu, J.H. Hamilton, A.V. Ramayya, J.K. Hwang, S.H. Liu, J.G. Wang, Y.X. Luo, J.O. Rasmussen, I.Y. Lee, X.L. Che, H.B. Ding, K. Li, Q. Xu, Y.Y. Yang, W.C. Ma
2009Gu17 2009Gy01	PPNUE NUPAB	40, 828,	558 1	Yu. B. Gurov, S.V. Lapushkin, B.A. Chernyshev, V.G. Sandukovsky Gy. Gyürky, G. Rastrepina, Z. Elekes, J. Farkas, Zs. Fülöp, G.G. Kiss, E. So-
-				morjai, T. Szücs
2009На42	PRVCA	80,	064310	B. Hadinia, B. Cederwall, R.D. Page, M. Sandzelius, C. Scholey, K. Andgren, T. Bäck, E. Ganioğlu, M.B. Gómez Hornillos, T. Grahn, P.T. Greenlees, E. Ideguchi, U. Jakobsson, A. Johnson, P.M. Jones, R. Julin, J. Juutinen, S. Ketelhut, A. Khaplanov, M. Leino, M. Niikura, M. Nyman, I. Özgür, E.S. Paul, P. Peura, P. Rahkila, J. Sarén, J. Sorri, J. Uusitalo, R. Wyss
2009Ha.B	NIMAE	606,	484	
2009He20	EPJAA	41,	145	F.P. Heßberger, S. Hofmann, B. Streicher, B. Sulignano, S. Antalic, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, A.G. Popeko, Š. Šáro, J. Uusitalo, A.V. Yeremin
2009Не23	EPJAA	42,	333	RD. Herzberg, S. Moon, S. Eeckhaudt, P.T. Greenlees, P.A. Butler, T. Page, A.V. Afanasjev, N. Amzal, J.E. Bastin, F. Becker, M. Bender, B. Bruyneel, J.F.C. Cocks, I.G. Darby, O. Dorvaux, K. Eskola, J. Gerl, T. Grahn, C. Gray-Jones, N.J. Hammond, K. Hauschild, PH. Heenen, K. Helariutta, A. Herzberg, F. Hessberger, M. Houry, A. Hurstel, R.D. Humphreys, G.D. Jones, P.M. Jones, R. Julin, S. Juutinen, H. Kankaanpää, H. Kettunen, T.L. Khoo, W. Korten, P. Kuusiniemi, Y. LeCoz, M. Leino, AP. Leppänen, C.J. Lister, R. Lucas, M. Muikku, P. Nieminen, M. Nyman, R.D. Page, T. Page, J. Pakarinen, A. Pritchard, P. Rahkila, P. Reiter, M. Sandzelius, J. Saren, Ch. Schlegel, C. Scholey, Ch. Theisen, W.H. Trzaska, J. Uusitalo, A. Wiens, H.J. Wollersheim
2009In01 2009Je05	PRVCA PRVCA	79, 80,	034313 054303	T.T. Inamura, H. Haba
2009Je03 2009Ka30	PRVCA	80, 80,	034303	D.G. Jenkins L.W. Kastens, S.B. Cahn, A. Manzur, D.N. McKinsey
2009Ke.A	PrvCom	GAu	Nov	J. Ketelaer
2009Ki14	PRVCA	80,	034315	H. Kikunaga, Y. Kasamatsu, H. Haba, T. Mitsugashira, M. Hara, K. Takamiya, T. Ohtsuki, A. Yokoyama, T. Nakanishi, A. Shinohara
2009Ko15	ARISE	67,	1702	K. Kossert, G. Jörg, O. Nähle, C. Lierse v Gostomski
2009Ko19	PRVCA	80,	014304	F.G. Kondev, G.D. Dracoulis, G.J. Lane, I. Ahmad, A.P. Byrne, M.P. Carpenter, P. Chowdhury, R.V.F. Janssens, T. Kibédi, T. Lauritsen, C.J. Lister, D. Seweryniak, S.K. Tandel, S. Zhu
2009Ko35	EPJAA	42,	351	M. Kowalska, S. Naimi, J. Agramunt, A. Algora, G. Audi, D. Beck, B. Blank, K. Blaum, Ch. Böhm, M. Breitenfeldt, E. Estevez, L.M. Fraile, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, D. Lunney, E. Minaya-Ramirez, D. Neidherr, B. Olaizola, K. Riisager, M. Rosenbusch, B. Rubio, S. Schwarz, L. Schweikhard, U. Warring
2009Ku19	PRVCA	80,	035502	T. Kurtukian Nieto, J. Souin, T. Eronen, L. Audirac, J. Äystö, B. Blank, VV. Elomaa, J. Giovinazzo, U. Hager, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, T. Kessler, I.D. Moore, H. Penttilä, S. Rahaman, M. Reponen, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, T. Sonoda, C. Weber
2009Ku28	NUPAB	827,	587c	T. Kurtukian-Nieto, J. Benlliure, KH. Schmidt, L. Audouin, F. Becker, B. Blank, I.N. Borzov, E. Casarejos, M. Fernández-Ordóñez, J. Giovinazzo, D. Henzlova, B. Jurado, K. Langanke, G. Martínez-Pinedo, J. Pereira, F. Rejmund, O. Yordanov

2009Kw02	PRVCA	80,	051302	A.A. Kwiatkowski, B.R. Barquest, G. Bollen, C.M. Campbell, D.L. Lincoln, D.J. Morrissey, G.K. Pang, A.M. Prinke, J. Savory, S. Schwarz, C.M. Folden III,
2009La17	PRVCA	80,	024321	D. Melconian, S.K.L. Sjue, M. Block G.J. Lane, G.D. Dracoulis, A.P. Byrne, R.O. Hughes, H. Watanabe, F.G. Kondev, C.J. Chiara, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, C.J. Lister, E.A. Mc- Cutchan, D. Seweryniak, S. Zhu, P. Chowdhury, I. Stefanescu
2009Le02	PYLBB	672,	6	JL. Lecouey, N.A. Orr, F.M. Marqués, N.L. Achouri, JC. Angélique, B.A. Brown, F. Carstoiu, W.N. Catford, N.M. Clarke, M. Freer, B.R. Fulton, S. Grévy, F. Hanappe, K.L. Jones, M. Labiche, R.C. Lemmon, A. Ninane, E. Sauvan, K.M. Spohr, L. Stuttgé
2009Le03	PRVCA	79,	014318	A.I. Levon, G. Graw, Y. Eisermann, R. Hertenberger, J. Jolie, N. Yu. Shirikova, A.E. Stuchbery, A.V. Sushkov, P.G. Thirolf, HF. Wirth, N.V. Zamfir
2009Le26	PRVCA	80,	044308	M. Lebois, D. Verney, F. Ibrahim, S. Essabaa, F. Azaiez, M.C. Mhamed, E. Cottereau, P.V. Cuong, M. Ferraton, K. Flanagan, S. Franchoo, D. Guillemaud-Mueller, F. Hammache, C. Lau, F. Le Blanc, JF. Le Du, J. Libert, B. Mouginot, C. Petrache, B. Roussiere, L. Sagui, N. de Sereville, I. Stefan, B. Tastet
2009Le.A	PrvCom	GAu	May	A.I. Levon
2009Mo12	JUPSA	78,	064201	K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, Y. Kudou, N. Sato,
				T. Sumita, A. Yoneda, T. Ichikawa, Y. Fujimori, S. Goto, E. Ideguchi, Y. Kasamatsu, K. Katori, Y. Komori, H. Koura, H. Kudo, K. Ooe, A. Ozawa,
200014 22	DDITA	102	100500	F. Tokanai, K. Tsukada, T. Yamaguchi, A. Yoshida
2009Mo23	PRLTA	103,	122502	B.J. Mount, M. Redshaw, E.G. Myers
2009Mu17	EPJAA	42,	421	I. Mukha, For the S271 Collaboration
2009Na.A 2009Ne03	PrvCom	GAu	Nov	S. Naimi D. Naidharr C. Andi D. Bask V. Blaum Ch. Böhm M. Braitanfaldt
2009Ne03	PRLTA	102,	112501	D. Neidherr, G. Audi, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, R.B. Cakirli, R.F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, E. Noah, L. Penescu, M. Rosenbusch, S. Schwarz, L. Schweikhard, T. Stora
2009Ne11	PRVCA	80,	044323	D. Neidherr, R.B. Cakirli, G. Audi, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, R.F. Casten, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, M. Rosenbusch, S. Schwarz, L. Schweikhard
2009Od01	PRVCA	79,	051304	 D. O'Donnell, J. Simpson, C. Scholey, T. Back, P.T. Greenlees, U. Jakobsson, P. Jones, D.T. Joss, D.S. Judson, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, R.D. Page, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P.J. Sapple, J. Saren, J. Thomson, J. Uusitalo, H.V. Watkins
2009Pa16	PRVCA	79,	044309	D. Pauwels, O. Ivanov, N. Bree, J. Buscher, T.E. Cocolios, M. Huyse, Yu. Kudryavtsev, R. Raabe, M. Sawicka, J. Van de Walle, P. Van Duppen, A. Korgul, I. Stefanescu, A.A. Hecht, N. Hoteling, A. Wohr, W.B. Walters, R. Broda, B. Fornal, W. Krolas, T. Pawlat, J. Wrzesinski, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, D. Seweryniak, S. Zhu, J.R. Stone, X. Wang
2009Pa25	PRVCA	79,	064323	S. Pascu, Gh. Cata-Danil, D. Bucurescu, N. Marginean, N.V. Zamfir, G. Graw, A. Gollwitzer, D. Hofer, B.D. Valnion
2009Pa35	PRVCA	80,	034307	N. Patronis, H. De Witte, M. Gorska, M. Huyse, K. Kruglov, D. Pauwels, K. Van de Vel, P. Van Duppen, J. Van Roosbroeck, JC. Thomas, S. Franchoo, J. Cederkall, V.N. Fedoseyev, H. Fynbo, U. Georg, O. Jonsson, U. Köster, T. Ma-
2009Pe06	PRVCA	79,	035806	terna, L. Mathieu, O. Serot, L. Weissman, W.F. Mueller, V.I. Mishin, D. Fedorov J. Pereira, S. Hennrich, A. Aprahamian, O. Arndt, A. Becerril, T. Elliot, A. Estrade, D. Galaviz, R. Kessler, KL. Kratz, G. Lorusso, P.F. Mantica, M. Matos, P. Möller, F. Montes, B. Pfeiffer, H. Schatz, F. Schertz, L. Schnorrenberger, E. Smith, A. Stolz, M. Quinn, W.B. Walters, A. Wöhr
2009Pe31	EPJAA	42,	379	J. Perkowski, J. Andrzejewski, J. Srebrny, A.M. Bruce, Ch. Droste, E. Grodner, M. Kisieliński, A. Korman, M. Kowalczyk, J. Kownacki, A. Król, J. Marganiec, J. Mierzejewski, T. Morek, K. Sobczak, W.H. Trzaska, M. Zielińska

2009Po01	PYLBB	672,	116	Zs. Podolyák, G.F. Farrelly, P.H. Regan, A.B. Garnsworthy, S.J. Steer, M. Gorska, J. Benlliure, E. Casarejos, S. Pietri, J. Gerl, H.J. Wollersheim, R. Kumar, F. Molina, A. Algora, N. Alkhomashi, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, L. Caceres, I.J. Cullen, A.M.D. Bacelar, P. Doornenbal, M.E. Estevez, Y. Fujita, W. Gelletly, H. Geissel, H. Grawe, J. Grebosz, R. Hoischen, I. Kojouharov, S. Lalkovski, Z. Liu, K.H. Maier, C. Mihai, D. Mucher, B. Rubio, H. Schaffner, A. Tamii, S. Tashenov, J.J. Valiente-Dobon,
2009Po02	PRVCA	79,	031305	P.M. Walker, P.J. Woods Zs. Podolyák, S.J. Steer, S. Pietri, F.R. Xu, H.L. Liu, P.H. Regan, D. Rudolph, A.B. Garnsworthy, R. Hoischen, M. Gorska, J. Gerl, H.J. Wollersheim, T. Kurtukian-Nieto, G. Benzoni, T. Shizuma, F. Becker, P. Bednarczyk, L. Caceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfutzner, A. Jungclaus, D.L. Balabanski, C. Brandau, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombradi, E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krucken, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, P.M. Walker, E. Werner-Malento, O. Wieland
2009Qi04	PRVCA	79,	064319	J. Qian, A. Heinz, T.L. Khoo, R.V.F. Janssens, D. Peterson, D. Seweryniak, I. Ahmad, M. Asai, B.B. Back, M.P. Carpenter, A.B. Garnsworthy, J.P. Greene, A.A. Hecht, C.L. Jiang, F.G. Kondev, T. Lauritsen, C.J. Lister, A. Robinson, G. Savard, R. Scott, R. Vondrasek, X. Wang, R. Winkler, S. Zhu
2009Ra11	PRLTA	103,	042501	S. Rahaman, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, C. Weber, J. Äystö
2009Ra33	PRVCA	80,	054307	R. Raabe, J. Buscher, J. Ponsaers, F. Aksouh, M. Huyse, O. Ivanov, S.R. Lesher, I. Mukha, D. Pauwels, M. Sawicka, D. Smirnov, I. Stefanescu, J. Van de Walle, P. Van Duppen, C. Angulo, J. Cabrera, N. de Sereville, I. Martel, A.M. Sanchez-Benitez, C. Aa. Diget
2009Re03	PRVAA	79,	012506	M. Redshaw, B.J. Mount, E.G. Myers
2009Re07	PRLTA	102,	212502	M. Redshaw, B.J. Mount, E.G. Myers, F.T. Avignone III
2009Re15	PRVAA	79,	012507	M. Redshaw, B.J. Mount, E.G. Myers
2009Ri03	PYLBB	675,	170	R. Ringle, M. Brodeur, T. Brunner, S. Ettenauer, M. Smith, A. Lapierre,
2009Ri12	PRVCA	80,	064321	V.L. Ryjkov, P. Delheij, G.W.F. Drake, J. Lassen, D. Lunney, J. Dilling R. Ringle, C. Bachelet, M. Block, G. Bollen, M. Facina, C.M. Folden III, C. Guénaut, A.A. Kwiatkowski, D.J. Morrissey, G.K. Pang, A.M. Prinke, J. Sa-
2009Ru08	PRLTA	103,	072502	vory, P. Schury, S. Schwarz, C.S. Sumithrarachchi G. Rugel, T. Faestermann, K. Knie, G. Korschinek, M. Poutivtsev, D. Schumann,
				N. Kivel, I. Günther-Leopold, R. Weinreich, M. Wohlmuther
2009Sa09	EPJAA	39,	33	J. Sauvage, J. Genevey, B. Roussière, S. Franchoo, A.N. Andreyev, N. Barré, JF. Clavelin, H. De Witte, D.V. Fedorov, V.N. Fedoseyev, L.M. Fraile, X. Grave, G. Huber, M. Huyse, H.B. Jeppesen, U. Köster, P. Kunz, S.R. Lesher, B.A. Marsh, I. Mukha, J. Oms, M. Seliverstov, I. Stefanescu, K. Van de Vel, J. Van de Walle, P. Van Duppen, Yu. M. Volkov
2009Sa12	PRLTA	102,	132501	J. Savory, P. Schury, C. Bachelet, M. Block, G. Bollen, M. Facina, C.M. Folden III, C. Guénaut, E. Kwan, A.A. Kwiatkowski, D.J. Morrissey, G.K. Pang, A. Prinke, R. Ringle, H. Schatz, S. Schwarz, C.S. Sumithrarachchi
2009Sa27	PRVCA	79,	064315	M. Sandzelius, E. Ganioglu, B. Cederwall, B. Hadinia, K. Andgren, T. Back, T. Grahn, P. Greenlees, U. Jakobsson, A. Johnson, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, A. Khaplanov, M. Leino, M. Nyman, P. Peura, P. Rahkila, J. Saren, C. Scholey, J. Uusitalo, R. Wyss
2009Sa38	PRVCA	80,	044330	A. Saastamoinen, T. Eronen, A. Jokinen, VV. Elomaa, J. Hakala, A. Kankainen, I.D. Moore, S. Rahaman, J. Rissanen, C. Weber, J. Äystö, L. Trache
2009Sc19	PRVCA	80,	025501	N.D. Scielzo, S. Caldwell, G. Savard, J.A. Clark, C.M. Deibel, J. Fallis, S. Gulick, D. Lascar, A.F. Levand, G. Li, J. Mintz, E.B. Norman, K.S. Sharma, M. Sternberg, T. Sun, J. Van Schelt
2009Se13	EPJAA	41,	315	M.D. Seliverstov, A.N. Andreyev, N. Barre, A.E. Barzakh, S. Dean, H. De Witte, D.V. Fedorov, V.N. Fedoseyev, L.M. Fraile, S. Franchoo, J. Genevey, G. Huber, M. Huyse, U. Koster, P. Kunz, S.R. Lesher, B.A. Marsh, I. Mukha, B. Roussiere,
2009Sh17	EPJAA	39,	263	J. Sauvage, I. Stefanescu, K. Van de Vel, P. Van Duppen, Yu. M. Volkov T. Shizuma, T. Ishii, H. Makii, T. Hayakawa, M. Matsuda

20005:21	DDI (C.)	0.0	02.420.4	
2009Si21	PRVCA	80,	024304	G.S. Simpson, W. Urban, J. Genevey, R. Orlandi, J.A. Pinston, A. Scherillo, A.G. Smith, J.F. Smith, I. Ahmad, J.P. Greene
2009Si35	PRVCA	80,	064608	E.C. Simpson, J.A. Tostevin, Zs. Podolyák, P.H. Regan, S.J. Steer
2009St04	PRVCA	79,	015803	J.B. Stoker, P.F. Mantica, D. Bazin, A. Becerril, J.S. Berryman, H.L. Craw-
				ford, A. Estrade, C.J. Guess, G.W. Hitt, G. Lorusso, M. Matos, K. Minamisono,
2009St16	IMPEE	18,	1002	F. Montes, J. Pereira, G. Perdikakis, H. Schatz, K. Smith, R.G.T. Zegers S.J. Steer, Zs. Podolyák, S. Pietri, M. Górska, G.F. Farrelly, P.H. Regan,
20093110	IMIFEE	10,	1002	D. Rudolph, A.B. Garnsworthy, R. Hoischen, J. Gerl, H.J. Wollersheim,
				H. Grawe, K.H. Maier, F. Becker, P. Bednarczyk, L. Cáceres, P. Doornen-
				bal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes,
				W. Prokopowicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, T. Kurtukian-
				nieto, G. Benzoni, M. Pfützner, A. Jungelaus, D.L. Balabanski, C. Brandau,
				A. Brown, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombrádi, M.E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krücken,
				S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, T. Shizuma, P.M. Walker,
				E. Werner-Malento, O. Wieland
2009St21	PRLTA	103,	132502	L. Stavsetra, K.E. Gregorich, J. Dvorak, P.A. Ellison, I. Dragojević, M.A. Garcia,
20005428	EDIA A	40	407	H. Nitsche
2009St28	EPJAA	42,	407	I. Stefanescu, W.B. Walters, P.F. Mantica, B.A. Brown, A.D. Davies, A. Estrade, P.T. Hosmer, N. Hoteling, S.N. Liddick, W.D.M. Rae, T.J. Mertzimekis,
				F. Montes, A.C. Morton, W.F. Mueller, M. Ouellette, E. Pellegrini, P. Santi,
				D. Seweryniak, H. Schatz, J. Shergur, A. Stolz, J.R. Stone, B.E. Tomlin
2009Su14	PRLTA	103,	152503	D. Suzuki, H. Iwasaki, D. Beaumel, L. Nalpas, E. Pollacco, M. Assie, H. Baba,
				Y. Blumenfeld, N. De Sereville, A. Drouart, S. Franchoo, A. Gillibert, J. Guillot,
				F. Hammache, N. Keeley, V. Lapoux, F. Marechal, S. Michimasa, X. Mougeot, I. Mukha, H. Okamura, H. Otsu, A. Ramus, P. Roussel-Chomaz, H. Sakurai,
				JA. Scarpaci, O. Sorlin, I. Stefan, M. Takechi
2009Ta24	PRVCA	80,	034609	O.B. Tarasov, M. Portillo, A.M. Amthor, T. Baumann, D. Bazin, A. Gade,
				T.N. Ginter, M. Hausmann, N. Inabe, T. Kubo, D.J. Morrissey, A. Nettleton,
200011.04	DDIVCA	0.0	027201	J. Pereira, B.M. Sherrill, A. Stolz, M. Thoennessen
2009Ur04	PRVCA	80,	037301	W. Urban, J.A. Pinston, G.S. Simpson, A.G. Smith, J.F. Smith, T. Rząca-Urban, I. Ahmad
2009Wa02	PRVCA	79,	024306	H. Watanabe, G.J. Lane, G.D. Dracoulis, T. Kibédi, A.P. Byrne, P. Niemi-
				nen, R.O. Hughes, F.G. Kondev, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen,
•	DDI G		0.4.004	D. Seweryniak, S. Zhu, P. Chowdhury, CB. Moon
2009Wa06	PRVCA	79,	044321	P.M. Walker, R.J. Wood, G.D. Dracoulis, T. Kibédi, R.A. Bark, A.M. Bruce, A.P. Byrne, P.M. Davidson, H.M. El-Masri, G.J. Lane, C. Moon, J.N. Orce,
				F.M. Prados Estevez, C. Wheldon, A.N. Wilson
2009Wa11	PRVCA	79,	064311	H. Watanabe, G.J. Lane, G.D. Dracoulis, A.P. Byrne, P. Nieminen, F.G. Kondev,
				K. Ogawa, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, D. Seweryniak, S. Zhu,
2000111 24	EDIA	40	160	P. Chowdhury
2009Wa24	EPJAA	42,	163	H. Watanabe, G.J. Lane, G.D. Dracoulis, A.P. Byrne, P. Nieminen, F.G. Kondev, K. Ogawa, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, D. Seweryniak, S. Zhu,
				P. Chowdhury
2009Wi03	PRLTA	102,	142502	J.A. Winger, S.V. Ilyushkin, K.P. Rykaczewski, C.J. Gross, J.C. Batchelder,
				C. Goodin, R. Grzywacz, J.H. Hamilton, A. Korgul, W. Krolas, S.N. Liddick,
				C. Mazzocchi, S. Padgett, A. Piechaczek, M.M. Rajabali, D. Shapira, E.F. Zgan-
2009Wi09	PYLBB	679,	36	jar, I.N. Borzov N. Winckler, H. Geissel, Yu. A. Litvinov, K. Beckert, F. Bosch, D. Boutin,
2007 1107	TTLDD	077,	30	C. Brandau, L. Chen, C. Dimopoulou, H.G. Essel, B. Fabian, T. Faester-
				mann, A. Fragner, E. Haettner, S. Hess, P. Kienle, R. Knöbel, C. Kozhuharov,
				S.A. Litvinov, M. Mazzocco, F. Montes, G. Münzenberg, C. Nociforo,
				F. Nolden, Z. Patyk, W.R. Plass, A. Prochazka, R. Reda, R. Reuschl, C. Scheidenberger, M. Steek, T. Stehlker, S. Vu, Torilov, M. Trassinelli, R. Sun, H. We
				denberger, M. Steck, T. Stohlker, S. Yu. Torilov, M. Trassinelli, B. Sun, H. Weick, M. Winkler
2009Wi10	PRLTA	103,	122501	J.S.E. Wieslander, J. Suhonen, T. Eronen, M. Hult, VV. Elomaa, A. Jokinen,
		•		G. Marissens, M. Misiaszek, M.T. Mustonen, S. Rahaman, C. Weber, J. Äystö

2010Ac.A 2010Al24	AnRpt GSI PRVCA	82,	041602	D. Ackermann et al H. Alvarez-Pol, J. Benlliure, E. Casarejos, L. Audouin, D. Cortina-Gil, T. Enqvist, B. Fernandez-Dominguez, A.R. Junghans, B. Jurado, P. Napolitani,
2010An01	JPGPE	37,	035102	J. Pereira, F. Rejmund, KH. Schmidt, O. Yordanov A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, V.F. Comas, J. El- seviers, S. Franchoo, S. Heinz, J.A. Heredia, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, I. Kojouharov, B. Kindler, B. Lommel, R. Mann, R.D. Page, S. Rinta-Antila, P.J. Sapple, Š. Šáro, P. Van Duppen, M. Venhart, H.V. Watkins
2010An02	PRVCA	81,	011901	N.G. Antoniou, F.K. Diakonos, A.S. Kapoyannis
2010An08	EPJAA	43,	35	S. Antalic, F.P. Heßberger, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, Š. Šáro
2010As.A	AnRpt JAEA		21	M. Asai, K. Tsukada, N. Sato, T.K. Sato, A. Toyoshima, T. Ishii, Y. Nagame (JAEA-Review 2010-056)
2010Ba43	PRVCA	82,	045501	G.C. Ball, G. Boisvert, P. Bricault, R. Churchman, M. Dombsky, T. Lindner, J.A. Macdonald, E. Vandervoort, S. Bishop, J.M. D'Auria, J.C. Hardy, V.E. Iacob, J.R. Leslie, HB. Mak
2010Ba48	NUPAB	847,	121	M. Balodis, I. Tomandl, V. Bondarenko, L. Simonova, T. Krasta, J. Bērzinš
2010Be16	PRVCA	81,	064325	J.S. Berryman, R.M. Clark, K.E. Gregorich, J.M. Allmond, D.L. Bleuel, M. Cromaz, I. Dragojević, J. Dvorak, P.A. Ellison, P. Fallon, M.A. Garcia, S. Gros, I.Y. Lee, A.O. Macchiavelli, H. Nitsche, S. Paschalis, M. Petri, J. Qian, M.A. Stoyer, M. Wiedeking
2010Bi03	PYLBB	690,	15	L. Bianco, R.D. Page, I.G. Darby, D.T. Joss, J. Simpson, J.S. Al-Khalili, A.J. Cannon, B. Cederwall, S. Eeckhaudt, S. Ertürk, B. Gall, M.B. Gómez Hornillos, T. Grahn, P.T. Greenlees, B. Hadinia, K. Heyde, U. Jakobsson, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, AP. Leppänen, M. Nyman, D. O'Donnell, E.S. Paul, M. Petri, P. Peura, A. Puurunen, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P.J. Sapple, J. Sarén, C. Scholey, N.A. Smirnova, A.N. Steer, P.D. Stevenson, E.B. Suckling, J. Thomson, J. Uusitalo, M. Venhart
2010Bl09	EPJAA	44,	363	B. Blank, C. Borcea, G. Canchel, CE. Demonchy, F. de Oliveira Santos, C. Dossat, J. Giovinazzo, S. Grevy, L. Hay, P. Hellmuth, S. Leblanc, I. Matea, JL. Pedroza, L. Perrot, J. Pibernat, A. Rebii, L. Serani, J.C. Thomas
2010Bo.A	PrvCom	WgM	Sep	C. Boehm
2010Br02	PRVCA	81,	034313	M. Breitenfeldt, Ch. Borgmann, G. Audi, S. Baruah, D. Beck, K. Blaum, Ch. Böhm, R.B. Cakirli, R.F. Casten, P. Delahaye, M. Dworschak, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya-Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, R. Savreux, S. Schwarz, L. Schweikhard, C. Yazidjian
2010Ch19	PYLBB	691,	234	L. Chen, W.R. Plaß, H. Geissel, R. Knöbel, C. Kozhuharov, Yu. A. Litvinov, Z. Patyk, C. Scheidenberger, K. Siegień-Iwaniuk, B. Sun, H. Weick, K. Beckert, P. Beller, F. Bosch, D. Boutin, L. Caceres, J.J. Carroll, D.M. Cullen, I.J. Cullen, B. Franzke, J. Gerl, M. Górska, G.A. Jones, A. Kishada, J. Kurcewicz, S.A. Litvinov, Z. Liu, S. Mandal, F. Montes, G. Münzenberg, F. Nolden, T. Ohtsubo, Zs. Podolyák, R. Propri, S. Rigby, N. Saito, T. Saito, M. Shindo, M. Steck, P. Ugorowski, P.M. Walker, S. Williams, M. Winkler, HJ. Wollersheim, T. Yamaguchi
2010Cl01	PYLBB	690,	19	R.M. Clark, K.E. Gregorich, J.S. Berryman, M.N. Ali, J.M. Allmond, C.W. Beausang, M. Cromaz, M.A. Deleplanque, I. Dragojevic, J. Dvorak, P.A. Ellison, P. Fallon, M.A. Garcia, J.M. Gates, S. Gros, H.B. Jeppesen, D. Kaji, I.Y. Lee, A.O. Macchiavelli, K. Morimoto, H. Nitsche, S. Paschalis, M. Petri, L. Stavsetra, F.S. Stephens, H. Watanabe, M. Wiedeking
2010Co13	JPGPE	37,	125130	T.E. Cocolios, A.N. Andreyev, S. Antalic, A. Barzakh, B. Bastin, J. Büscher, I.G. Darby, W. Dexters, D.V. Fedorov, V.N. Fedosseev, K.T. Flanagan, S. Franchoo, G. Huber, M. Huyse, M. Keupers, U. Köster, Yu. Kudryavtsev, E. Mane, B.A. Marsh, P. Molkanov, R.D. Page, M.D. Seliverstov, A.M. Sjoedin, I. Stefan, J. Van de Walle, P. Van Duppen, M. Venhart, S. Zemlyanoy

2010Cr02	PRVCA	82,	014311	H.L. Crawford, R.V.F. Janssens, P.F. Mantica, J.S. Berryman, R. Broda, M.P. Carpenter, N. Cieplicka, B. Fornal, G.F. Grinyer, N. Hoteling, B.P. Kay,
2010Da06	PRVCA	81,	034304	T. Lauritsen, K. Minamisono, I. Stefanescu, J.B. Stoker, W.B. Walters, S. Zhu J.M. Daugas, T. Faul, H. Grawe, M. Pfützner, R. Grzywacz, M. Lewitowicz, N.L. Achouri, J.C. Angélique, D. Baiborodin, R. Béntida, R. Bénaud, C. Borcea, C.R. Bingham, W.N. Catford, A. Emsallem, G. de France, K.L. Grzywacz, R.C. Lemmon, M.J. Lopez Jimenez, F. de Oliveira Santos, P.H. Regan, K. Rykaczewski, J.E. Sauvestre, M. Sawicka, M. Stanoiu
2010Da17	PRLTA	105,	162502	I.G. Darby, R.K. Grzywacz, J.C. Batchelder, C.R. Bingham, L. Cartegni, C.J. Gross, M. Hjorth-Jensen, D.T. Joss, S.N. Liddick, W. Nazarewicz, S. Padgett, R.D. Page, T. Papenbrock, M.M. Rajabali, J. Rotureau, K.P. Rykaczewski
2010De04	PRVCA	81,	024322	A.Y. Deo, Zs. Podolyák, P.M. Walker, A. Algora, B. Rubio, J. Agramunt, L.M. Fraile, N. Al-Dahan, N. Alkhomashi, J.A. Briz, E. Estevez, G. Farrelly, W. Gelletly, A. Herlert, U. Köster, A. Maira, S. Singla
2010Dr02	PRVCA	81,	054313	G.D. Dracoulis, G.J. Lane, F.G. Kondev, H. Watanabe, D. Seweryniak, S. Zhu, M.P. Carpenter, C.J. Chiara, R.V.F. Janssens, T. Lauritsen, C.J. Lister, E.A. Mc-Cutchan, I. Stefanescu
2010Dr05	PRVCA	82,	034317	G.D. Dracoulis, G.J. Lane, R.O. Hughes, F.G. Kondev, H. Watanabe, D. Seweryniak, S. Zhu, M.P. Carpenter, C.J. Chiara, R.V.F. Janssens, T. Lauritsen, C.J. Lister, E.A. McCutchan, I. Stefanescu, P. Chowdhury
2010Du06	PRLTA	104,	252701	Ch. E. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J.V. Kratz, D. Ackermann, LL. Andersson, M. Block, W. Brüchle, J. Dvorak, H.G. Essel, P.A. Ellison, J. Even, J.M. Gates, A. Gorshkov, R. Graeger, K.E. Gregorich, W. Hartmann, RD. Herzberg, F.P. Heßberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J.P. Omtvedt, E. Parr, D. Rudolph, J. Runke, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thörle-Pospiech, J. Uusitalo, M. Wegrzecki, N. Wiehl
2010Dw01	PRVCA	81,	064312	M. Dworschak, M. Block, D. Ackermann, G. Audi, K. Blaum, C. Droese, S. Eliseev, T. Fleckenstein, E. Haettner, F. Herfurth, F.P. Heßberger, S. Hofmann, J. Ketelaer, J. Ketter, HJ. Kluge, G. Marx, M. Mazzocco, Yu. N. Novikov, W.R. Plaß, A. Popeko, S. Rahaman, D. Rodríguez, C. Scheidenberger, L. Schweikhard, P.G. Thirolf, G.K. Vorobyev, M. Wang, C. Weber
2010El06	PRLTA	105,	182701	P.A. Ellison, K.E. Gregorich, J.S. Berryman, D.L. Bleuel, R.M. Clark, I. Drago- jević, J. Dvorak, P. Fallon, C. Fineman-Sotomayor, J.M. Gates, O.R. Gothe, I.Y. Lee, W.D. Loveland, J.P. McLaughlin, S. Paschalis, M. Petri, J. Qian, L. Stavsetra, M. Wiedeking, H. Nitsche
2010El11	PYLBB	693,	426	S. Eliseev, Ch. Böhm, D. Beck, K. Blaum, M. Breitenfeldt, V.N. Fedosseev, S. George, F. Herfurth, A. Herlert, HJ. Kluge, M. Kowalska, D. Lunney, S. Naimi, D. Neidherr, Yu. N. Novikov, M. Rosenbusch, L. Schweikhard,
2010Et01	PRVCA	81,	024314	S. Schwarz, M. Seliverstov, K. Zuber S. Ettenauer, M. Brodeur, T. Brunner, A.T. Gallant, A. Lapierre, R. Ringle, M.R. Pearson, P. Delheij, J. Lassen, D. Lunney, J. Dilling
2010Fe01	PRVCA	81,	044318	R. Ferrer, M. Block, C. Bachelet, B.R. Barquest, G. Bollen, C.M. Campbell, M. Facina, C.M. Folden III, C.M. Folden, C. Guénaut, A.A. Kwiatkowski, D.L. Lincoln, D.J. Morrissey, G.K. Pang, A.M. Prinke, R. Ringle, J. Savory, P. Schury, S. Schwarz
2010Fl01	PRVCA	82,	027309	X. Flechard, E. Lienard, O. Naviliat-Cuncic, D. Rodriguez, M.A.G. Alvarez, G. Ban, B. Carniol, D. Etasse, J.M. Fontbonne, A.M. Lallena, J. Praena
2010Ga04 2010Go16	ARISE PYLBB	68, 692,	1561 307	E. García-Torano, V. Peyrés Medina, M. Roteta Ibarra V.Z. Goldberg, B.T. Roeder, G.V. Rogachev, G.G. Chubarian, E.D. Johnson, C. Fu, A.A. Alharbi, M.L. Avila, A. Banu, M. McCleskey, J.P. Mitchell, E. Simmons, G. Tabacaru, L. Trache, R.E. Tribble
2010Gr04	PRVCA	81,	061601	R. Graeger, D. Ackermann, M. Chelnokov, V. Chepigin, Ch. E. Düllmann, J. Dvorak, J. Even, A. Gorshkov, F.P. Heßberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J.V. Kratz, J. Krier, A. Kuznetsov, B. Lommel, K. Nishio, H. Nitsche, J.P. Omtvedt, O. Petrushkin, D. Rudolph, J. Runke, F. Samadani, M. Schädel, B. Schausten, A. Türler, A. Yakushev, Q. Zhi

2010Ha04	PRVCA	81,	021302	C.C. Hall, E.M. Lunderberg, P.A. DeYoung, T. Baumann, D. Bazin, G. Blanchon, A. Bonaccorso, B.A. Brown, J. Brown, G. Christian, D.H. Denby, J. Finck, N. Frank, A. Gade, J. Hinnefeld, C.R. Hoffman, B. Luther, S. Mosby, W.A. Pe
2010Ha.A	NIMAE	613,	79	ters, A. Spyrou, M. Thoennessen H. Hayashi et al
2010He10	EPJAA	43,	55	F.P. Heßberger, S. Antalic, B. Sulignano, D. Ackermann, S. Heinz, S. Hofmann, B. Kindler, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, A.G. Popeko, Š. Šáro, B. Streicher, J. Uusitalo,
2010He11	EPJAA	43,	175	M. Venhart, A.V. Yeremin F.P. Heßberger, S. Antalic, D. Ackermann, S. Heinz, S. Hofmann, J. Khuyag-baatar, B. Kindler, I. Kojouharov, B. Lommel, R. Mann
2010He25	EPJAA	46,	337	J.A. Heredia, A.N. Andreyev, S. Antalic, S. Hofmann, D. Ackermann, V.F. Comas, S. Heinz, F.P. Heßberger, B. Kindler, J. Khuyagbaatar, B. Lommel,
2010Но12	PRVCA	82,	025806	R. Mann P. Hosmer, H. Schatz, A. Aprahamian, O. Arndt, R.R.C. Clement, A. Estrade, K. Farouqi, KL. Kratz, S.N. Liddick, A.F. Lisetskiy, P.F. Mantica, P. Möller, W.F. Mueller, F. Montes, A.C. Morton, M. Ouellette, E. Pellegrini, J. Pereira, B. Pfeiffer, P. Reeder, P. Santi, M. Steiner, A. Stolz, B.E. Tomlin, W.B. Walters,
2010II01	PYLBB	687,	305	A. Wohr G. Ilie, G. Neyens, G.S. Simpson, J. Jolie, A. Blazhev, H. Grawe, R.L. Lozeva, N. Vermeulen, L. Atanasova, D.L. Balabanski, F. Becker, P. Bednarczyk, C. Brandau, L. Caceres, S.K. Chamoli, J.M. Daugas, P. Doornenbal, J. Gerl, M. Górska, J. Grebosz, M. Hass, M. Ionescu-Bujor, A. Jungclaus, M. Kmiecik, I. Kojouharov, N. Kurz, A. Maj, S. Mallion, O. Perru, M. Pfützner, Zs. Podolyák, W. Prokopowicz, M. De Rydt, T.R. Saito, H. Schaffner, K. Turzó, J. Walker,
2010Ja05	PRVCA	82,	044302	E. Werner-Malento, H.J. Wollersheim U. Jakobsson, J. Uusitalo, S. Juutinen, M. Leino, P. Nieminen, K. Andgren, B. Cederwall, P.T. Greenlees, B. Hadinia, P. Jones, R. Julin, S. Ketelhut, A. Khaplanov, M. Nyman, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén,
2010Jo06	NUPAB	842,	15	C. Scholey, J. Sorri H.T. Johansson, Yu. Aksyutina, T. Aumann, K. Boretzky, M.J.G. Borge, A. Chatillon, L.V. Chulkov, D. Cortina-Gil, U. Datta Pramanik, H. Emling, C. Forssén, H.O.U. Fynbo, H. Geissel, G. Ickert, B. Jonson, R. Kulessa, C. Langer, M. Lantz, T. LeBleis, K. Mahata, M. Meister, G. Münzenberg, T. Nilsson, G. Nyman, R. Palit, S. Paschalis, W. Prokopowicz, R. Reifarth, A. Richter, K. Riisager, G. Schrieder, H. Simon, K. Sümmerer, O. Tengblad, H. Weick, M.V. Zhukov
2010Jo07	NUPAB	847,	66	H.T. Johansson, Yu. Aksyutina, T. Aumann, K. Boretzky, M.J.G. Borge, A. Chatillon, L.V. Chulkov, D. Cortina-Gil, U. Datta Pramanik, H. Emling, C. Forssén, H.O.U. Fynbo, H. Geissel, G. Ickert, B. Jonson, R. Kulessa, C. Langer, M. Lantz, T. LeBleis, K. Mahata, M. Meister, G. Münzenberg, T. Nilsson, G. Nyman, R. Palit, S. Paschalis, W. Prokopowicz, R. Reifarth, A. Richter, K. Riisager, G. Schrieder, N.B. Shulgina, H. Simon, K. Sümmerer,
2010Ka26	PRVCA	82,	034311	O. Tengblad, H. Weick, M.V. Zhukov A. Kankainen, VV. Elomaa, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, T. Kessler, V.S. Kolhinen, I.D. Moore, S. Rahaman, M. Reponen, J. Rissanen, A. Saastamoinen, C. Weber, J. Äystö
2010Ka29	NUPAB	842,	1	D. Kanjilal, S. Bhattacharya, A. Goswami, R. Kshetri, R. Raut, S. Saha, R.K. Bhowmik, J. Gehlot, S. Muralithar, R.P. Singh, G. Jnaneswari, G. Mukher-
2010Ka30	PRVCA	82,	052501	jee, B. Mukherjee A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V.S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, J. Äystö
2010Ke09	EPJDD	58,	47	J. Ketelaer, T. Beyer, K. Blaum, M. Block, K. Eberhardt, F. Herfurth, C. Smorra,
2010Kh06	EPJAA	46,	59	Sz. Nagy J. Khuyagbaatar, F.P. Heßberger, S. Hofmann, D. Ackermann, V.S. Comas, S. Heinz, J.A. Heredia, B. Kindler, I. Kojouharov, B. Lommel, R. Mann,
2010Ko15	PYLBB	684,	17	K. Nishio, A. Yakushev V.S. Kolhinen, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, M. Kortelainen, J. Suhonen, J. Äystö

2010Ko17	PYLBB	690,	245	Y. Kondo, T. Nakamura, Y. Satou, T. Matsumoto, N. Aoi, N. Endo, N. Fukuda, T. Gomi, Y. Hashimoto, M. Ishihara, S. Kawai, M. Kitayama, T. Kobayashi, Y. Matsuda, N. Matsui, T. Motobayashi, T. Nakabayashi, T. Okumura, H.J. Ong,
				T.K. Onishi, K. Ogata, H. Otsu, H. Sakurai, S. Shimoura, M. Shinohara, T. Sug-
2010Ko28	PRVCA	92	022501	imoto, S. Takeuchi, M. Tamaki, Y. Togano, Y. Yanagisawa V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen,
2010 K 028	PRVCA	82,	022301	I.D. Moore, J. Rissanen, A. Saastamoinen, J. Suhonen, J. Äystö
2010Ku02	APOBB	41,	525	J. Kurcewicz, F. Bosch, H. Geissel, Yu. A. Litvinov, N. Winckler, K. Beck-
				ert, P. Beller, D. Boutin, C. Brandau, L. Chen, C. Dimopoulou, H.G. Essel, B. Fabian, T. Faestermann, A. Fragner, B. Franzke, E. Haettner, M. Hausmann,
				S. Hess, P. Kienle, R. Knöbel, C. Kozhuharov, S.A. Litvinov, L. Maier, M. Mazzocco, F. Montes, A. Musumarra, C. Nociforo, F. Nolden, Z. Patyk, W.R. Plass, A. Prochazka, R. Reda, R. Reuschl, C. Scheidenberger, M. Steck, T. Stohlker,
				B. Sun, K. Takahashi, S. Torilov, M. Trassinelli, H. Weick, M. Winkler
2010Kw02	PRVCA	81,	058501	A.A. Kwiatkowski, B.R. Barquest, G. Bollen, C.M. Campbell, R. Ferrer, A.E. Gehring, D.L. Lincoln, D.J. Morrissey, G.K. Pang, J. Savory, S. Schwarz
2010La16	PRVCA	82,	051304	G.J. Lane, G.D. Dracoulis, F.G. Kondev, R.O. Hughes, H. Watanabe, A.P. Byrne, M.P. Carpenter, C.J. Chiara, P. Chowdhury, R.V.F. Janssens, T. Lauritsen,
2010La.A	PrvCom	GAu	Mar	C.J. Lister, E.A. McCutchan, D. Seweryniak, I. Stefanescu, S. Zhu Alain Lapierre
2010La.A 2010Li13	PRVCA	81,	045803	W.H. Lippincott, S.B. Cahn, D. Gastler, L.W. Kastens, E. Kearns, D.N. McKin-
2010L113	TRVCH	01,	043003	sey, J.A. Nikkel
2010Lo14	ARISE	68,	1454	M. Loidl, M. Rodrigues, B. Censier, S. Kowalski, X. Mougeot, P. Cassette,
				T. Branger, D. Lacour
2010Ma08	PRVCA	81,	024302	P.J.R. Mason, D.M. Cullen, C. Scholey, P.T. Greenlees, U. Jakobsson,
				P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, P. Peura,
	DD116.	0.4	0.4=004	A. Puurunen, P. Rahkila, P. Ruotsalainen, J. Sorri, J. Saren, J. Uusitalo, F.R. Xu
2010Ma20	PRVCA	81,	047301	F. Ma, X.H. Zhou, Y. Zheng, S.W. Xu, Y.X. Xie, L. Chen, X.G. Lei, Y.X. Guo,
				Y.H. Zhang, Z.K. Li, Y.H. Qiang, S. Guo, H.X. Wang, H.B. Zhou, B. Ding, G.S. Li, N.T. Zhang
2010Ma27	CPLEE	27,	062104	F. Ma, X.H. Zhou, Y. Zheng, S.W. Xu, Y.X. Xie, L. Chen, Y.H. Zhang, Z.K. Li,
		,		Y.H. Qiang, X.G. Lei, Y.X. Guo, S. Guo, B. Ding, H.X. Wang, G.S. Li,
				H.B. Zhou
2010Ma37	CPCHC	34,	1082	F. Ma, X.H. Zhou, Y. Zheng, S.W. Xu, Y.X. Xie, L. Chen, X.G. Lei, Y.X. Guo,
201015.04	DDI (C.)	0.0	024602	Y.H. Zhang, Z.K. Li, S. Guo, B. Ding, H.B. Zhou, G.S. Li, H.X. Wang
2010Mc04	PRVCA	82,	024603	P.M. McCowan, R.C. Barber
2010Mi.A	PrvCom	WgM	Sep	E. Minaya
2010Mo03	PRVCA	81,	032501	B.J. Mount, M. Redshaw, E.G. Myers
2010Mo09	PRVCA	81,	054304	V. Modamio, A. Jungclaus, A. Algora, D. Bazzacco, D. Escrig, L.M. Fraile, S. Lenzi, N. Marginean, T. Martinez, D.R. Napoli, R. Schwengner, C.A. Ur
2010Mo29	PRVAA	81,	064501	B.J. Mount, H.S.P. Müller, M. Redshaw, E.G. Myers
2010Mo30	PRVAA	82,	042513	B.J. Mount, M. Redshaw, E.G. Myers
2010Mu12	PRVCA	82,	054315	I. Mukha, K. Sümmerer, L. Acosta, M.A.G. Alvarez, E. Casarejos, A. Chatillon,
				D. Cortina-Gil, I.A. Egorova, J.M. Espino, A. Fomichev, J.E. García-Ramos,
				H. Geissel, J. Gómez-Camacho, L. Grigorenko, J. Hofmann, O. Kiselev, A. Korskanianikov, N. Kusz, Vi. A. Littingve, F. Littingve, J. Martal, C. Nacifora
				rsheninnikov, N. Kurz, Yu. A. Litvinov, E. Litvinova, I. Martel, C. Nociforo, W. Ott, M. Pfützner, C. Rodríguez-Tajes, E. Roeckl, M. Stanoiu, N.K. Timo-
				feyuk, H. Weick, P.J. Woods
2010Mu13	PRVCA	82,	054316	G. Mukherjee, P. Chowdhury, F.G. Kondev, P.M. Walker, G.D. Dracoulis,
				R. D'Alarcao, I. Shestakova, K. Abu Saleem, I. Ahmad, M.P. Carpenter,
				A. Heinz, R.V.F. Janssens, T.L. Khoo, T. Lauritsen, C.J. Lister, D. Sewery-
				niak, I. Wiedenhoever, D.M. Cullen, C. Wheldon, D.L. Balabanski, M. Danchev,
				T.M. Goon, D.J. Hartley, L.L. Riedinger, O. Zeidan, M.A. Riley, R.A. Kaye,
2010Na13	PRLTA	105,	032502	G. Sletten S. Naimi, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breit-
20101113	IKLIA	105,	032302	enfeldt, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney,
				D. Neidherr, M. Rosenbusch, S. Schwarz, L. Schweikhard, K. Zuber
				, , . ,

2010Na17	PRVCA	82,	034323	F. Naqvi, M. Górska, L. Cáceres, A. Jungclaus, M. Pfützner, H. Grawe, F. Nowacki, K. Sieja, S. Pietri, E. Werner-Malento, P.H. Regan, D. Rudolf, Z. Podolyák, J. Jolie, K. Andgren, T. Beck, P. Bednarczyk, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casarejos, B. Cederwall, F.C.L. Crespi, P. Detistov, Zs. Dombrádi, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, B. Hadinia, M. Hellström, R. Hoischen, G. Ilie, A. Khaplanov, I. Kojouharov, M. Kmiecik, N. Kurz, S. Lalkovski, A. Maj, S. Mandal, V. Modamio, F. Montes, S. Myalski, W. Prokopowicz, P. Reiter, H. Schaffner, G. Simpson, D. Sohler, S.J. Steer,
2010Ni10	PRVCA	81,	064606	S. Tashenov, J. Walker, O. Wieland, H.J. Wollersheim E. Yu. Nikolskii, A.A. Korsheninnikov, H. Otsu, H. Suzuki, K. Yoneda, H. Baba, K. Yamada, Y. Kondo, N. Aoi, A.S. Denikin, M.S. Golovkov, A.S. Fomichev, S.A. Krupko, M. Kurokawa, E.A. Kuzmin, I. Martel, W. Mittig, T. Motobayashi, T. Nakamura, M. Niikura, S. Nishimura, A.A. Ogloblin, P. Roussel-Chomaz, A. Sanchez-Benitez, Y. Satou, S.I. Sidorchuk, T. Suda, S. Takeuchi, K. Tanaka,
2010Ni14	PRVCA	82,	024611	G.M. Ter-Akopian, Y. Togano, M. Yamaguchi K. Nishio, S. Hofmann, F.P. Heßberger, D. Ackermann, S. Antalic, Y. Aritomo, V.F. Comas, Ch. E. Düllmann, A. Gorshkov, R. Graeger, K. Hagino, S. Heinz, J.A. Heredia, K. Hirose, H. Ikezoe, J. Khuyagbaatar, B. Kindler, I. Kojouharov, B. Lommel, R. Mann, S. Mitsuoka, Y. Nagame, I. Nishinaka, T. Ohtsuki, A.G. Popeko, S. Saro, M. Schädel, A. Türler, Y. Watanabe, A. Yakushev, A.V. Yeremin
2010Og01	PRLTA	104,	142502	Yu. Ts. Oganessian, F. Sh. Abdullin, P.D. Bailey, D.E. Benker, M.E. Bennett, S.N. Dmitriev, J.G. Ezold, J.H. Hamilton, R.A. Henderson, M.G. Itkis, Yu. V. Lobanov, A.N. Mezentsev, K.J. Moody, S.L. Nelson, A.N. Polyakov, C.E. Porter, A.V. Ramayya, F.D. Riley, J.B. Roberto, M.A. Ryabinin, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, R. Sudowe, A.M. Sukhov, Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, P.A. Wilk
2010Oh02	JUPSA	79,	073201	T. Ohnishi, T. Kubo, K. Kusaka, A. Yoshida, K. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, D. Kameda, K. Tanaka, N. Inabe, Y. Yanagisawa, Y. Gono, H. Watanabe, H. Otsu, H. Baba, T. Ichihara, Y. Yamaguchi, M. Takechi, S. Nishimura, H. Ueno, A. Yoshimi, H. Sakurai, T. Motobayashi, T. Nakao, Y. Mizoi, M. Matsushita, K. Ieki, N. Kobayashi, K. Tanaka, Y. Kawada, N. Tanaka, S. Deguchi, Y. Satou, Y. Kondo, T. Nakamura, K. Yoshinaga, C. Ishii, H. Yoshii, Y. Miyashita, N. Uematsu, Y. Shiraki, T. Sumikama, J. Chiba, E. Ideguchi, A. Saito, T. Yamaguchi, I. Hachiuma, T. Suzuki, T. Moriguchi, A. Ozawa, T. Ohtsubo, M.A. Famiano, H. Geissel, A.S. Nettleton, O.B. Tarasov, D.P. Bazin, B.M. Sherrill, S.L. Manikonda, J.A. Nolen
2010Ra12	PRVCA	82,	011303	P. Rahkila, D.G. Jenkins, J. Pakarinen, C. Gray-Jones, P.T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, H. Koivisto, M. Leino, P. Nieminen, M. Nyman, P. Papadakis, S. Paschalis, M. Petri, P. Peura, O.J. Roberts, T. Ropponen, P. Ruotsalainen, J. Saren, C. Scholey, J. Sorri, A.G. Tuff, J. Uusitalo, R. Wadsworth, M. Bender, PH. Heenen
2010Re01	PRVCA	81,	014301	J.J. Ressler, J.A. Caggiano, C.J. Francy, P.N. Peplowski, J.M. Allmond, C.W. Beausang, L.A. Bernstein, D.L. Bleuel, J.T. Burke, P. Fallon, A.A. Hecht, D.V. Jordan, S.R. Lesher, M.A. McMahan, T.S. Palmer, L. Phair, N.D. Scielzo,
2010Re07	PRLTA	105,	172501	P.G. Swearingen, G.A. Warren, M. Wiedeking M.W. Reed, I.J. Cullen, P.M. Walker, Yu. A. Litvinov, K. Blaum, F. Bosch, C. Brandau, J.J. Carroll, D.M. Cullen, A.Y. Deo, B. Detwiller, C. Dimopoulou, G.D. Dracoulis, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, W.R. Plass, A. Prochazka, C. Scheidenberger, M. Steck, Th. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yamaguchi
2010Ru07	EPJAA	44,	31	C. Rusu, D. Bucurescu, N. Marginean, M. Ionescu-Bujor, A. Iordachescu, G. Cata-Danil, I. Cata-Danil, D. Deleanu, D. Filipescu, D. Ghita, T. Glodariu, M. Ivascu, C. Mihai, R. Marginean, S. Pascu, T. Sava, L. Stroe, G. Suliman, N.V. Zamfir

2010Sc02	PRVCA	81,	014306	C. Scholey, K. Andgren, L. Bianco, B. Cederwall, I.G. Darby, S. Eeck-
20100002		01,	01.000	haudt, S. Ertürk, M.B. Gomez Hornillos, T. Grahn, P.T. Greenlees, B. Hadinia, E. Ideguchi, P. Jones, D.T. Joss, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, AP. Leppänen, P. Nieminen, M. Niikura, M. Nyman, D. O'Donnell, R.D. Page, J. Pakarinen, P. Rahkila, J. Sarén, M. Sandzelius, J. Simpson, J. Sorri, J. Thom-
2010Se16	PRVCA	82,	067301	son, J. Uusitalo, M. Venhart G.W. Severin, L.D. Knutson, P.A. Voytas, E.A. George
2010Si03	PRVCA	81,	024313	G.S. Simpson, W. Urban, J.A. Pinston, J.C. Angelique, I. Deloncle, H.R. Faust, J. Genevey, U. Köster, T. Materna, R. Orlandi, A. Scherillo, A.G. Smith, J.F. Smith, T. Rzaca-Urban, I. Ahmad, J.P. Greene
2010Sp02	PYLBB	683,	129	A. Spyrou, T. Baumann, D. Bazin, G. Blanchon, A. Bonaccorso, E. Breitbach, J. Brown, G. Christian, A. DeLine, P.A. DeYoung, J.E. Finck, N. Frank, S. Mosby, W.A. Peters, A. Russel, A. Schiller, M.J. Strongman, M. Thoennessen
2010St14	EPJAA	45,	275	B. Streicher, F.P. Heßberger, S. Antalic, S. Hofmann, D. Ackermann, S. Heinz, B. Kindler, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, Š. Šáro, B. Sulignano, J. Uusitalo, M. Venhart
2010St.A	AnRpt GSI		151	K. Straub et al
2010Ta04	PRLTA	104,	062701	K. Tanaka, T. Yamaguchi, T. Suzuki, T. Ohtsubo, M. Fukuda, D. Nishimura, M. Takechi, K. Ogata, A. Ozawa, T. Izumikawa, T. Aiba, N. Aoi, H. Baba, Y. Hashizume, K. Inafuku, N. Iwasa, K. Kobayashi, M. Komuro, Y. Kondo, T. Kubo, M. Kurokawa, T. Matsuyama, S. Michimasa, T. Motobayashi, T. Nakabayashi, S. Nakajima, T. Nakamura, H. Sakurai, R. Shinoda, M. Shinohara, H. Suzuki, E. Takeshita, S. Takeuchi, Y. Togano, K. Yamada, T. Yasuno, M. Yoshitake
2010Vi07	PRVCA	82,	064311	P. Vingerhoets, K.T. Flanagan, M. Avgoulea, J. Billowes, M.L. Bissell, K. Blaum, B.A. Brown, B. Cheal, M. De Rydt, D.H. Forest, Ch. Geppert, M. Honma, M. Kowalska, J. Krämer, A. Krieger, E. Mané, R. Neugart, G. Neyens, W. Nörtershäuser, T. Otsuka, M. Schug, H.H. Stroke, G. Tungate, D.T. Yordanov
2010Wa42	PRVCA	82,	064317	F. Wauters, B. Verstichel, M. Breitenfeldt, V. De Leebeeck, V. Yu. Kozlov, I. Kraev, S. Roccia, G. Soti, M. Tandecki, E. Traykov, S. Van Gorp, D. Zakoucky, N. Severijns
2010Wi03	PRVCA	81,	044303	J.A. Winger, K.P. Rykaczewski, C.J. Gross, R. Grzywacz, J.C. Batchelder, C. Goodin, J.H. Hamilton, S.V. Ilyushkin, A. Korgul, W. Królas, S.N. Liddick, C. Mazzocchi, S. Padgett, A. Piechaczek, M.M. Rajabali, D. Shapira, E.F. Zganjar, J. Dobaczewski
2010Wr01	PRVCA	81,	055503	C. Wrede, J.A. Clark, C.M. Deibel, T. Faestermann, R. Hertenberger, A. Parikh, HF. Wirth, S. Bishop, A.A. Chen, K. Eppinger, A. García, R. Krücken, O. Lepyoshkina, G. Rugel, K. Setoodehnia and PrvCom WgM April 2011
2010Xu12	EPJAA	46,	55	S.W. Xu, Y.X. Xie, F. Ma, X.H. Zhou, Z.K. Li, Y. Zheng, L. Chen, X.G. Lei, Y.H. Zhang, H.L. Lui, F.R. Xu
				2011
2011Ac.A	AnRpt GSI		208	D. Ackermann, F.P. Heßberger, S. Antalic, M. Block, HG. Burkhard, V.F. Comas, P. Greenlees, S. Heinz, S. Hofmann, S. Ketelhut, J. Khuyagbaatar, B. Kindler, I. Kojouharov, M. Mazzocco, M. Leino, B. Lommel, R. Mann,
2011An13	ЕРЈАА	47,	62	J. Maurer, A.G. Popeko, J. Sorri, J. Uusitalo, A.V. Yeremin S. Antalic, F.P. Heßberger, D. Ackermann, S. Heinz, S. Hofmann, Z. Kalaninova, B. Kindler, J. Khuyagbaatar, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel, R. Mann, K. Nishio, Š. Šáro, B. Streicher, B. Sulignano, M. Venhart
2011Ar18	PRVCA	84,	061307	O. Arndt, KL. Kratz, W.B. Walters, K. Farouqi, U. Köster, V. Fedosseev, S. Hennrich, C.J. Jost, A. Wöhr, A.A. Hecht, B. Pfeiffer, J. Shergur, N. Hoteling
2011As03	PRVCA	83,	014315	M. Asai, K. Tsukada, H. Haba, Y. Ishii, T. Ichikawa, A. Toyoshima, T. Ishii, Y. Nagame, I. Nishinaka, Y. Kojima, K. Sueki
2011As08	PRLTA	107,	102502	P. Ascher, L. Audirac, N. Adimi, B. Blank, C. Borcea, B.A. Brown, I. Companis, F. Delalee, C.E. Demonchy, F. de Oliveira Santos, J. Giovinazzo, S. Grevy, L.V. Grigorenko, T. Kurtukian-Nieto, S. Leblanc, JL. Pedroza, L. Perrot, J. Pibernat, L. Serani, P.C. Srivastava, JC. Thomas

2011As.A	AnRpt RIK	EN 44	-22	M. Asai, H. Haba, N. Sato, Y. Kasamatsu, D. Kaji, K. Morimoto, K. Morita
2011Ba14	PRVCA	83,	045503	A.S. Barabash, Ph. Hubert, Ch. Marquet, A. Nachab, S.I. Konovalov, F. Perrot, F. Piquemal, V. Umatov
2011Be02	JPGPE	38,	015103	P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich, A. d'Angelo, A. Di Marco, A. Incicchitti, F. Nozzoli, V.I. Tretyak
2011Be34	PRVCA	84,	041303	A.D. Becerril, G. Lorusso, A.M. Amthor, T. Baumann, D. Bazin, J.S. Berryman, B.A. Brown, H.L. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P.F. Mantica, M. Matos, R. Meharchand, K. Minamisono, F. Montes, G. Perdikakis, J. Pereira, M. Portillo, H. Schatz, K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers
2011Be53	PACHA	83,	397	M. Berglund, M.E. Wieser
2011Bo09	NUPAB	856,	1	V. Bondarenko, I. Tomandl, J. Honzatko, HF. Wirth, T. von Egidy
2011Bo23	PRVCA	84,	044311	P. Boutachkov, M. Górska, H. Grawe, A. Blazhev, N. Braun, T.S. Brock, Z. Liu, B.S. Nara Singh, R. Wadsworth, S. Pietri, C. Domingo-Pardo, I. Kojouharov, L. Cáceres, T. Engert, F. Farinon, J. Gerl, N. Goel, J. Grbosz, R. Hoischen, N. Kurz, C. Nociforo, A. Prochazka, H. Schaffner, S.J. Steer, H. Weick, HJ. Wollersheim, T. Faestermann, Zs. Podolyák, D. Rudolph, A. Atac, L. Bettermann, K. Eppinger, F. Finke, K. Geibel, A. Gottardo, C. Hinke, G. Ilie, H. Iwasaki, J. Jolie, R. Krücken, E. Merchán, J. Nyberg, M. Pfützner, P.H. Regan, P. Reiter, S. Rinta-Antila, C. Scholl, PA. Söderström, N. Warr, P.J. Woods, F. Nowacki, K. Sieja
2011Br01	PRVCA	82,	061309	T.S. Brock, for the RISING Collaboration
2011Br12	PRVCA	84,	014330	R. Broda, K.H. Maier, B. Fornal, J. Wrzesiński, B. Szpak, M.P. Carpenter, R.V.F. Janssens, W. Królas, T. Pawłat, S. Zhu
2011Ch16	CPLEE	28,	042101	F-Q. Chen, XR. Zhou
2011Ch32	PRVCA	84,	014320	R.J. Charity, J.M. Elson, J. Manfredi, R. Shane, L.G. Sobotka, B.A. Brown, Z. Chajecki, D. Coupland, H. Iwasaki, M. Kilburn, J. Lee, W.G. Lynch, A. Sanetullaev, M.B. Tsang, J. Winkelbauer, M. Youngs, S.T. Marley, D.V. Shetty, A.H. Wuosmaa, T.K. Ghosh, M.E. Howard
2011Ch.A	PrvCom	FGK		P. Chowdhury
2011Cu01	PRVCA	83,	014316	D.M. Cullen, P.J.R. Mason, C. Scholey, S. Eeckhaudt, T. Grahn, P.T. Greenlees, U. Jakobsson, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, A.M. Kishada, M. Leino, AP. Leppänen, K. Mäntyniemi, P. Nieminen, M. Nyman, J. Pakarinen, P. Peura, M.G. Procter, P. Rahkila, S.V. Rigby, J. Sarén, J. Sorri, J. Uusitalo, B.J. Varley, M. Venhart
2011Da01	PYLBB	695,	78	I.G. Darby, R.D. Page, D.T. Joss, J. Simpson, L. Bianco, R.J. Cooper, S. Eeckhaudt, S. Erturk, B. Gall, T. Grahn, P.T. Greenlees, B. Hadinia, P.M. Jones, D.S. Judson, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, AP. Leppanen, M. Nyman, P. Rahkila, J. Saren, C. Scholey, A.N. Steer, J. Uusitalo, M. Venhart
2011Da08	PRVCA	83,	054312	J.M. Daugas, I. Matea, JP. Delaroche, M. Pfutzner, M. Sawicka, F. Becker, G. Belier, C.R. Bingham, R. Borcea, E. Bouchez, A. Buta, E. Dragulescu, G. Georgiev, J. Giovinazzo, M. Girod, H. Grawe, R. Grzywacz, F. Hammache, F. Ibrahim, M. Lewitowicz, J. Libert, P. Mayet, V. Meot, F. Negoita, F. de Oliveira Santos, O. Perru, O. Roig, K. Rykaczewski, M.G. Saint-Laurent, J.E. Sauvestre, O. Sorlin, M. Stanoiu, I. Stefan, Ch. Stodel, Ch. Theisen, D. Verney, J. Zylicz
2011Da12	PRVCA	83,	064320	I.G. Darby, R.D. Page, D.T. Joss, L. Bianco, T. Grahn, D.S. Judson, J. Simpson, S. Eeckhaudt, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, AP. Leppänen, M. Nyman, P. Rahkila, J. Sarén, C. Scholey, A.N. Steer, J. Uusitalo, M. Venhart, S. Ertürk, B. Gall, B. Hadinia
2011El02	PRLTA	106,	052504	S. Eliseev, C. Roux, K. Blaum, M. Block, C. Droese, F. Herfurth, HJ. Kluge, M.I. Krivoruchenko, Yu. N. Novikov, E. Minaya-Ramirez, L. Schweikhard, V.M. Shabaev, F. Simkovic, I.I. Tupitsyn, K. Zuber, N.A. Zubova
2011El04	PRVCA	83,	038501	S. Eliseev, D. Nesterenko, K. Blaum, M. Block, C. Droese, F. Herfurth, E. Minaya-Ramirez, Yu. N. Novikov, L. Schweikhard, K. Zuber
2011El05	PRVCA	84,	012501	S. Eliseev, M. Goncharov, K. Blaum, M. Block, C. Droese, F. Herfurth, E. Minaya-Ramirez, Yu. N. Novikov, L. Schweikhard, V.M. Shabaev, I.I. Tupitsyn, K. Zuber, N.A. Zubova

2011EI08	PRLTA	107,	152501	S. Eliseev, C. Roux, K. Blaum, M. Block, C. Droese, F. Herfurth, M. Kretzschmar, M.I. Krivoruchenko, E. Minaya-Ramirez, Yu. N. Novikov, L. Schweikhard, V.M. Shabaev, F. Simkovic, I.I. Tupitsyn, K. Zuber, N.A. Zubova
2011Er02	PRVCA	83,	055501	T. Eronen, D. Gorelov, J. Hakala, J.C. Hardy, A. Jokinen, A. Kankainen, V.S. Kolhinen, I.D. Moore, H. Penttilä, M. Reponen, J. Rissanen, A. Saastamoinen, J. Äystö two errata Phys. Rev. C 83(2011)069901 and Phys. Rev. C 84(2011)059905
2011Es03	PRVCA	84,	034304	M.E. Estevez Aguado, A. Algora, B. Rubio, J. Bernabeu, E. Nacher, J.L. Tain, A. Gadea, J. Agramunt, K. Burkard, W. Huller, J. Doring, R. Kirchner, I. Mukha, C. Plettner, E. Roeckl, H. Grawe, R. Collatz, M. Hellstrom, D. Cano-Ott, M. Karny, Z. Janas, M. Gierlik, A. Płochocki, K. Rykaczewski, L. Batist, F. Moroz, V. Wittman, A. Blazhev, J.J. Valiente, C. Espinoza
2011Es06	PRLTA	107,	172503	A. Estradé, M. Matoš, H. Schatz, A.M. Amthor, D. Bazin, M. Beard, A. Becerril, E.F. Brown, R. Cyburt, T. Elliot, A. Gade, D. Galaviz, S. George, S.S. Gupta, W.R. Hix, R. Lau, G. Lorusso, P. Möller, J. Pereira, M. Portillo, A.M. Rogers, D. Shapira, E. Smith, A. Stolz, M. Wallace, M. Wiescher
2011Fa10	PRVCA	84,	045807	J. Fallis, J.A. Clark, K.S. Sharma, G. Savard, F. Buchinger, S. Caldwell, A. Chaudhuri, J.E. Crawford, C.M. Deibel, S. Gulick, A.A. Hecht, D. Lascar, J.K.P. Lee, A.F. Levand, G. Li, B.F. Lundgren, A. Parikh, S. Russell, M. Scholtevan de Vorst, N.D. Scielzo, R.E. Segel, H. Sharma, S. Sinha, M.G. Sternberg, T. Sun, I. Tanihata, J. Van Schelt, J.C. Wang, Y. Wang, C. Wrede, Z. Zhou
2011Fo15	PRVCA	84,	054310	N. Fotiades, M. Devlin, R.O. Nelson, J.A. Cizewski, R. Krucken, R.M. Clark, P. Fallon, I.Y. Lee, A.O. Macchiavelli, W. Younes
2011Ga19	PRVCA	83,	054618	J.M. Gates, Ch. E. Düllmann, M. Schädel, A. Yakushev, A. Türler, K. Eberhardt, J.V. Kratz, D. Ackermann, LL. Andersson, M. Block, W. Brüchle, J. Dvorak, H.G. Essel, P.A. Ellison, J. Even, U. Forsberg, J. Gellanki, A. Gorshkov, R. Graeger, K.E. Gregorich, W. Hartmann, RD. Herzberg, F.P. Heßberger, D. Hild, A. Hübner, E. Jäger, J. Khuyagbaatar, B. Kindler, J. Krier, N. Kurz, S. Lahiri, D. Liebe, B. Lommel, M. Maiti, H. Nitsche, J.P. Omtvedt, E. Parr, D. Rudolph, J. Runke, H. Schaffner, B. Schausten, E. Schimpf, A. Semchenkov, J. Steiner, P. Thörle-Pospiech, J. Uusitalo, M. Wegrzecki, N. Wiehl
2011Go23	PRVCA	84,	028501	M. Goncharov, K. Blaum, M. Block, C. Droese, S. Eliseev, F. Herfurth, E. Minaya Ramirez, Yu. N. Novikov, L. Schweikhard, K. Zuber
2011Gr01	JPGPE	38,	015101	P. Granholm, T. Lönnroth, J. Suhonen, J. Bergman, KM. Källman, JO. Lill, M. Norrby, E. Ydrefors, P. Tikkanen
2011На08	PRLTA	106,	122501	E. Haettner, D. Ackermann, G. Audi, K. Blaum, M. Block, S. Eliseev, T. Fleckenstein, F. Herfurth, F.P. Heßberger, S. Hofmann, J. Ketelaer, J. Ketter, HJ. Kluge, G. Marx, M. Mazzocco, Yu. N. Novikov, W.R. Plaß, S. Rahaman, T. Rauscher, D. Rodríguez, H. Schatz, C. Scheidenberger, L. Schweikhard, B. Sun, P.G. Thirolf, G. Vorobjev, M. Wang, C. Weber
2011Ha13	PRVCA	83,	034602	H. Haba, D. Kaji, H. Kikunaga, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, T. Sumita, A. Yoneda, Y. Kasamatsu, Y. Komori, K. Ooe, A. Shinohara
2011Ha48	EPJAA	47,	129	J. Hakala, R. Rodríguez-Guzmán, VV. Elomaa, T. Eronen, A. Jokinen, V.S. Kolhinen, I.D. Moore, H. Penttilä, M. Reponen, J. Rissanen, A. Saastamoinen, J. Äystö
2011He10	EPJAA	47,	75	F. Herfurth, G. Audi, D. Beck, K. Blaum, G. Bollen, P. Delahaye, M. Dworschak, S. George, C. Guénaut, A. Kellerbauer, D. Lunney, M. Mukherjee, S. Rahaman, S. Schwarz, L. Schweikhard, C. Weber, C. Yazidjian
2011Hi.A 2011Ho02	P-Leuven JPGPE	38,	200 035104	C. Hinke R. Hoischen, D. Rudolph, H.L. Ma, P. Montuenga, M. Hellström, S. Pietri, Zs. Podolyák, P.H. Regan, A.B. Garnsworthy, S.J. Steer, F. Becker, P. Bed- narczyk, L. Cáceres, P. Doornenbal, J. Gerl, M. Górska, J. Grebosz, I. Ko- jouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, LL. An- dersson, L. Atanasova, D.L. Balabanski, M.A. Bentley, A. Blazhev, C. Brandau, J.R. Brown, C. Fahlander, E.K. Johansson, A. Jungclaus
2011Ke03	PRVCA	84,	014311	J. Ketelaer, G. Audi, T. Beyer, K. Blaum, M. Block, R.B. Cakirli, R.F. Casten, C. Droese, M. Dworschak, K. Eberhardt, M. Eibach, F. Herfurth, E. Minaya-Ramirez, Sz. Nagy, D. Neidherr, W. Nörtershäuser, C. Smorra, M. Wang

2011Ko01	ARISE	69,	500	K. Kossert, O. Nahle, P.E. Warwick, H. Wershofen, I.W. Croudace
2011Ko03	PYLBB	697,	116	V.S. Kolhinen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, J. Äystö
2011Ko36	PRVCA	84,	034320	U. Köster, N.J. Stone, K.T. Flanagan, J. Rikovska Stone, V.N. Fedosseev,
20111030	TRVCA	04,	034320	K.L. Kratz, B.A. Marsh, T. Materna, L. Mathieu, P.L. Molkanov, M.D. Seliv-
				erstov, O. Serot, A.M. Sjödin, Yu. M. Volkov
2011Ko.A	PrvCom	GAu	May	F.G. Kondev
2011Ko.B	PrvCom	GAu	Nov	F.G. Kondev
2011Kr.A	PrvCom	GAu	May	S. Kreim preliminary
2011Ku16	PRVCA	84,	044304	J. Kurpeta, W. Urban, A. Płochocki, J. Rissanen, J.A. Pinston, VV. Elomaa,
				T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, I.D. Moore, H. Penttilä, A. Saastamoinen, C. Weber, J. Äystö
2011Li28	PYLBB	702,	24	Z. Liu, D. Seweryniak, P.J. Woods, C.N. Davids, M.P. Carpenter, T. Davinson,
				R.V.F. Janssens, R.D. Page, A.P. Robinson, J. Shergur, S. Sinha, X.D. Tang, F.R. Xu, S. Zhu
2011Li50	PRVCA	84,	061305	S.N. Liddick, S. Suchyta, B. Abromeit, A. Ayres, A. Bey, C.R. Bingham,
				M. Bolla, M.P. Carpenter, L. Cartegni, C.J. Chiara, H.L. Crawford, I.G. Darby,
				R. Grzywacz, G. Gurdal, S. Ilyushkin, N. Larson, M. Madurga, E.A. Mc-
				Cutchan, D. Miller, S. Padgett, S.V. Paulauskas, J. Pereira, M.M. Rajabali,
20111 -01	DVI DD	604	216	K. Rykaczewski, S. Vinnikova, W.B. Walters, S. Zhu
2011Lo01	PYLBB	694,	310	R.L. Lozeva, D.L. Balabanski, G. Georgiev, JM. Daugas, S. Péru, G. Audi, S. Cabaret, T. Faul, M. Ferraton, E. Fiori, C. Gaulard, F. Ibrahim, P. Morel,
				L. Risegari, D. Verney, D.T. Yordanov
2011Lo06	NUPAB	852,	15	A. Lopez-Martens, T. Wiborg-Hagen, K. Hauschild, M.L. Chelnokov, V.I. Chep-
		,		igin, D. Curien, O. Dorvaux, G. Drafta, B. Gall, A. Görgen, M. Guttorm-
				sen, A.V. Isaev, I.N. Izosimov, A.P. Kabachenko, D.E. Katrasev, T. Kut-
				sarova, A.N. Kuznetsov, A.C. Larsen, O.N. Malyshev, A. Minkova, S. Mullins,
				H.T. Nyhus, D. Pantelica, J. Piot, A.G. Popeko, S. Saro, N. Scintee, S. Siem,
20111 00	DVI DD	600	1.41	N.U.H. Syed, E.A. Sokol, A.I. Svirikhin, A.V. Yeremin
2011Lo09	PYLBB	699,	141	G. Lorusso, A. Becerril, A. Amthor, T. Baumann, D. Bazin, J.S. Berryman,
				B.A. Brown, R.H. Cyburt, H.L. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P.F. Mantica, M. Matos, R. Meharchand,
				K. Minamisono, F. Montes, G. Perdikakis, J. Pereira, M. Portillo, H. Schatz,
				K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers
2011Lo.A	PrvCom	GAu	dec	A. Lopez-Martens
2011Ma45	PRVCA	84,	024303	E. Mané, B. Cheal, J. Billowes, M.L. Bissell, K. Blaum, F.C. Charlwood,
				K.T. Flanagan, D.H. Forest, Ch. Geppert, M. Kowalska, A. Krieger, J. Krämer,
				I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, M.M. Rajabali,
				R. Sánchez, M. Schug, H.H. Stroke, P. Vingerhoets, D.T. Yordanov, M. Žáková
2011Mo27	KPSJA	59,	1525	CB. Moon, G.D. Dracoulis, R.A. Bark, A.P. Byrne, P.A. Davidson, T. Kibédi, G.J. Lane, A.N. Wilson
2011Na34	PRLTA	107,	172502	B.S. Nara Singh, Z. Liu, R. Wadsworth, H. Grawe, T.S. Brock, P. Boutachkov,
		,		N. Braun, A. Blazhev, M. Górska, S. Pietri, D. Rudolph, C. Domingo-Pardo,
				S.J. Steer, A. Atac, L. Bettermann, L. Cáceres, K. Eppinger, T. Engert,
				T. Faestermann, F. Farinon, F. Finke, K. Geibel, J. Gerl, R. Gernhäuser, N. Goel,
				A. Gottardo, J. Grebosz, C. Hinke, R. Hoischen, G. Ilie, H. Iwasaki, J. Jolie,
				A. Kaskas, I. Kojouharov, R. Krücken, N. Kurz, E. Mérchan, C. Nociforo,
				J. Nyberg, M. Pfützner, A. Prochazka, Zs. Podolyák, P.H. Regan, P. Reiter,
				S. Rinta-Antila, C. Scholl, H. Schaffner, PA. Söderström, N. Warr, H. Weick,
2011Ni01	PRLTA	106,	052502	HJ. Wollersheim, P.J. Woods, F. Nowacki, K. Sieja S. Nishimura, Z. Li, H. Watanabe, K. Yoshinaga, T. Sumikama, T. Tachibana,
20111101	TKLIM	100,	032302	K. Yamaguchi, M. Kurata-Nishimura, G. Lorusso, Y. Miyashita, A. Odahara,
				H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, J. Chiba, P. Doornenbal,
				S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito,
				D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krücken, S. Kubono,
				T. Nakano, H.J. Ong, S. Ota, Zs. Podolyák, H. Sakurai, H. Scheit, K. Steiger,
				D. Steppenbeck, K. Sugimoto, S. Takano, A. Takashima, K. Tajiri, T. Teranishi,
				Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi

2011Og04	PRVCA	83,	054315	Yu. Ts. Oganessian, F. Sh. Abdullin, P.D. Bailey, D.E. Benker, M.E. Bennett, S.N. Dmitriev, J.G. Ezold, J.H. Hamilton, R.A. Henderson, M.G. Itkis, Yu. V. Lobanov, A.N. Mezentsev, K.J. Moody, S.L. Nelson, A.N. Polyakov, C.E. Porter, A.V. Ramayya, F.D. Riley, J.B. Roberto, M.A. Ryabinin, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, R. Sudowe, A.M. Sukhov, R. Taylor, V.S. Tayanay, V.K. Utverkov, A.A. Vinney, C.K. Vostekin, R.A. Wills
2011Pa38	PRVCA	84,	065502	Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin, P.A. Wilk H.I. Park, J.C. Hardy, V.E. Iacob, A. Banu, L. Chen, V.V. Golovko, J. Goodwin, V. Horvat, N. Nica, E. Simmons, L. Trache, R.E. Tribble
2011Pa.A	P-Leuven		158	D. Pauwels, D. Radulov, I.G. Darby, H. De Witte, J. Diriken, D.V. Fedorov, V.N. Fedosseev, L.M. Fraile, M. Huyse, U. Köster, B.A. Marsh, LA. Popescu, M.D. Seliverstov, A.M. Sjoedin, P. Van den Bergh, J. Van de Walle, P. Van Duppen, M. Venhart, W.B. Walters, K. Wimmer
2011Pe29	PRVCA	84,	054311	A.B. Pérez-Cerdán, B. Rubio, W. Gelletly, A. Algora, J. Agramunt, K. Burkard, W. Hüller, E. Nácher, P. Sarriguren, L. Caballero, F. Molina, L.M. Fraile, E. Reillo, M.J.G. Borge, Ph. Dessagne, A. Jungclaus, MD. Salsac
2011Pi05	PRVCA	83,	044328	S. Pietri, A. Jungclaus, M. Górska, H. Grawe, M. Pfützner, L. Cáceres, P. Detistov, S. Lalkovski, V. Modamio, Z. Podolyák, P.H. Regan, D. Rudolph, J. Walker, E. Werner-Malento, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, J. Grebosz, I. Kojouharov, N. Kurz, W. Prokopowicz, H. Schaffner, H.J. Wollersheim, K. Andgren, J. Benlliure, G. Benzoni, A.M. Bruce, E. Casarejos, B. Cederwall, F.C.L. Crespi, B. Hadinia, M. Hellström, R. Hoischen, G. Ilie, A. Khaplanov, M. Kmiecik, R. Kumar, A. Maj, S. Mandal, F. Montes, S. Myalski, G. Simpson, S.J. Steer, S. Tashenov, O. Wieland
2011Po01	PRVCA	83,	014306	M. Pomorski, K. Miernik, W. Dominik, Z. Janas, M. Pfützner, C.R. Bingham, H. Czyrkowski, M. Cwiok, I.G. Darby, R. Dabrowski, T. Ginter, R. Grzywacz, M. Karny, A. Korgul, W. Kuśmierz, S.N. Liddick, M. Rajabali, K. Rykaczewski, A. Stolz
2011Po07 2011Po09	ARISE PRVCA	69, 83,	1267 061306	S. Pommé, J. Paepen, T. Altzitzoglou, R. Van Ammel, E. Yeltepe M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J.S. Berryman, H. Czyrkowski, R. Dabrowski, T. Ginter, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S.N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K.P. Rykaczewski, A. Stolz, S. Suchyta
2011Pr02	PRVCA	83,	034311	M.G. Procter, D.M. Cullen, C. Scholey, P.T. Greenlees, J. Hirvonen, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, N.M. Lumley, P.J.R. Mason, P. Nieminen, M. Nyman, P. Peura, P. Rahkila, JM. Regis, P. Ruotsalainen, J. Sarén, Y. Shi, J. Sorri, S. Stolze, J. Uusitalo, F.R. Xu
2011Ra24	PYLBB	703,	412	S. Rahaman, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, J. Rissanen, J. Suhonen, C. Weber, J. Äystö
2011Ri01	PRVCA	83,	011301	J. Rissanen, J. Sunonen, C. Weber, J. Aysto J. Rissanen, J. Kurpeta, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, I.D. Moore, P. Karvonen, A. Płochocki, L. Próchniak, H. Penttilä, S. Rahaman, M. Reponen, A. Saastamoinen, J. Szerypo, W. Urban, C. Weber, J. Äystö
2011Ri07	EPJAA	47,	97	J. Rissanen, J. Kurpeta, A. Plochocki, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, P. Karvonen, I.D. Moore, H. Penttila, S. Rahaman,
2011Ro18	PRLTA	106,	252503	A. Saastamoinen, W. Urban, C. Weber, J. Aysto A.M. Rogers, M.A. Famiano, W.G. Lynch, M.S. Wallace, F. Amorini, D. Bazin, R.J. Charity, F. Delaunay, R.T. de Souza, J. Elson, A. Gade, D. Galaviz, M J. van Goethem, S. Hudan, J. Lee, S. Lobastov, S. Lukyanov, M. Matoš,
2011Ro47	PRVCA	84,	051306	M. Mocko, H. Schatz, D. Shapira, L.G. Sobotka, M.B. Tsang, G. Verde A.M. Rogers, J. Giovinazzo, C.J. Lister, B. Blank, G. Canchel, J.A. Clark, G. de France, S. Grevy, S. Gros, E.A. McCutchan, F. de Oliveira Santos, G. Savard, D. Seweryniak, I. Stefan, JC. Thomas
2011Ru.A	P-Leuven		367	M. Rudigier, A. Blazhev, J. Jolie, J.M. Regis, N. Warr, C. Fransen, T. Materna, U. Köster, G. Simpson, M. Hackstein, M. Pfeiffer, T. Thomas
2011Sa41	JUPSA	80,	094201	N. Sato, H. Haba, T. Ichikawa, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, T. Sumita, A. Yoneda, E. Ideguchi, H. Koura, A. Ozawa, T. Shinozuka, T. Yamaguchi, A. Yoshida

2011Sa59	PRVCA	84,	054303	P.J. Sapple, R.D. Page, D.T. Joss, L. Bianco, T. Grahn, J. Pakarinen, J. Thomson, J. Simpson, D. O'Donnell, S. Ertürk, P.T. Greenlees, U. Jakobsson, P.M. Jones,
				R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, P. Peura, A. Puurunen, P. Rahkila, P. Ruotsalainen, J. Saren, C. Scholey, J. Uusitalo
2011Si32	JPCSD	267,	012031	G.S. Simpson, A. Scherillo, J. Genevey, R. Orlandi, J.A. Pinston, I.S. Tsekhanovich, N. Warr, A. Covello, A. Gargano
2011So11	EPJAA	47,	40	J. Souin, T. Eronen, P. Ascher, L. Audirac, J. Äystö, B. Blank, VV. Elomaa, J. Giovinazzo, J. Hakala, A. Jokinen, V.S. Kolhinen, P. Karvonen, I.D. Moore, S. Rahaman, J. Rissanen, A. Saastamoinen, J.C. Thomas
2011St21	PRVCA	84,	044313	S.J. Steer, Zs. Podolyák, S. Pietri, M. Górska, H. Grawe, K.H. Maier, P.H. Regan, D. Rudolph, A.B. Garnsworthy, R. Hoischen, J. Gerl, H.J. Wollersheim, F. Becker, P. Bednarczyk, L. Cáceres, P. Doornenbal, H. Geissel, J. Grebosz, A. Kelic, I. Kojouharov, N. Kurz, F. Montes, W. Prokopwicz, T. Saito, H. Schaffner, S. Tashenov, A. Heinz, M. Pfützner, T. Kurtukian-Nieto, G. Benzoni, A. Jungclaus, D.L. Balabanski, M. Bowry, C. Brandau, A. Brown, A.M. Bruce, W.N. Catford, I.J. Cullen, Zs. Dombrádi, M.E. Estevez, W. Gelletly, G. Ilie, J. Jolie, G.A. Jones, M. Kmiecik, F.G. Kondev, R. Krücken, S. Lalkovski, Z. Liu, A. Maj, S. Myalski, S. Schwertel, T. Shizuma, P.M. Walker, E. Werner-Malento, O. Wieland
2011Su11	PRLTA	106,	202501	T. Sumikama, K. Yoshinaga, H. Watanabe, S. Nishimura, Y. Miyashita, K. Yamaguchi, K. Sugimoto, J. Chiba, Z. Li, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H.J. Ong, S. Ota, Zs. Podolyák, H. Sakurai, H. Scheit, K. Steiger, D. Steppenbeck, S. Takano, A. Takashima, K. Tajiri, T. Teranishi, Y. Wakabayashi, P.M. Walker, O. Wieland, H. Yamaguchi
2011Sw02	PRVCA	83,	034322	T.P.D. Swan, P.M. Walker, Zs. Podolyák, M.W. Reed, G.D. Dracoulis, G.J. Lane, T. Kibédi, M.L. Smith
2011Sz01	PRVCA	83,	064315	B. Szpak, K.H. Maier, A.S. Smolkowska, B. Fornal, R. Broda, M.P. Carpenter, N. Cieplicka, R.V.F. Janssens, W. Królas, T. Pawlat, J. Wrzesinski, S. Zhu
2011Ti10	PRVCA	84,	044302	J. Timar, K. Starosta, I. Kuti, D. Sohler, D.B. Fossan, T. Koike, E.S. Paul, A.J. Boston, H.J. Chantler, M. Descovich, R.M. Clark, M. Cromaz, P. Fallon, I.Y. Lee, A.O. Macchiavelli, C.J. Chiara, R. Wadsworth, A.A. Hecht, D. Almehed, S. Frauendorf
2011To04	PRVCA	83,	044326	I. Tomandl, J. Honzatko, T. von Egidy, HF. Wirth, T. Faestermann, V. Yu. Ponomarev, S. Pasic, R. Hertenberger, Y. Eisermann, G. Graw
2011To.A	PrvCom	GAu	Aug	I. Towner, S. Ettenauer
2011Tu02	PRLTA	106,	112501	X.L. Tu, H.S. Xu, M. Wang, Y.H. Zhang, Yu. A. Litvinov, Y. Sun, H. Schatz, X.H. Zhou, Y.J. Yuan, J.W. Xia, G. Audi, K. Blaum, C.M. Du, P. Geng, Z.G. Hu, W.X. Huang, S.L. Jin, L.X. Liu, Y. Liu, X. Ma, R.S. Mao, B. Mei, P. Shuai, Z.Y. Sun, H. Suzuki, S.W. Tang, J.S. Wang, S.T. Wang, G.Q. Xiao, X. Xu, T. Yamaguchi, Y. Yamaguchi, X.L. Yan, J.C. Yang, R.P. Ye, Y.D. Zang, H.W. Zhao, T.C. Zhao, X.Y. Zhang, W.L. Zhan
2011Tu09	NIMAE	654,	213	X.L. Tu, M. Wang, Yu. A. Litvinov, Y.H. Zhang, H.S. Xu, Z.Y. Sun, G. Audi, K. Blaum, C.M. Du, W.X. Huang, Z.G. Hu, P. Geng, S.L. Jin, L.X. Liu, Y. Liu, B. Mei, R.S. Mao, X.W. Ma, H. Suzuki, P. Shuai, Y. Sun, S.W. Tang, J.S. Wang, S.T. Wang, G.Q. Xiao, X. Xu, J.W. Xia, J.C. Yang, R.P. Ye, T. Yamaguchi, X.L. Yan, Y.J. Yuan, Y. Yamaguchi, Y.D. Zang, H.W. Zhao, T.C. Zhao, X.Y. Zhang, X.H. Zhou, W.L. Zhan
2011Va02	ARISE	69,	785	R. Van Ammel, S. Pomme, J. Paepen, G. Sibbens
2011Ve01	PYLBB	695,	82	M. Venhart, A.N. Andreyev, J.L. Wood, S. Antalic, L. Bianco, P.T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, R.D. Page, P. Peura, P. Rahkila, J. Sarén, C. Scholey, J. Sorri, J. Thomson, J. Uusitalo
2011Ve.A	PrvCom	FGK	Jan	Martin Venhart

2011Wa03	PYLBB	696,	186	H. Watanabe, T. Sumikama, S. Nishimura, K. Yoshinaga, Z. Li, Y. Miyashita, K. Yamaguchi, H. Baba, J.S. Berryman, N. Blasi, A. Bracco, F. Camera, J. Chiba, P. Doornenbal, S. Go, T. Hashimoto, S. Hayakawa, C. Hinke, E. Ideguchi, T. Isobe, Y. Ito, D.G. Jenkins, Y. Kawada, N. Kobayashi, Y. Kondo, R. Krucken, S. Kubono, G. Lorusso, T. Nakano, M. Kurata-Nishimura, A. Odahara, H.J. Ong, S. Ota, Zs. Podolyák, H. Sakurai, H. Scheit, Y. Shi, K. Steiger, D. Steppenbeck, K. Sugimoto, K. Tajiri, S. Takano, A. Takashima, T. Teranishi,
2011Wi09	PRVCA	84,	014329	Y. Wakabayashi, P.M. Walker, O. Wieland, F.R. Xu, H. Yamaguchi K. Wimmer, U. Köster, P. Hoff, Th. Kröll, R. Krücken, R. Lutter, H. Mach, Th. Morgan, S. Sarkar, M. Saha Sarkar, W. Schwerdtfeger, P.C. Srivastava, P.G. Thirolf, P. Van Isacker
2011Ya25	PYLBB	697,	90	M.T. Yamashita, R.S. Marques de Carvalho, T. Frederico, L. Tomio
				2012
2012Al05	PRVCA	85,	034301	N. Al-Dahan, P.H. Regan, Zs. Podolyák, P.M. Walker, N. Alkhomashi, G.D. Dracoulis, G. Farrelly, J. Benlliure, S.B. Pietri, R.F. Casten, P.D. Stevenson, W. Gelletly, S.J. Steer, A.B. Garnsworthy, E. Casarejos, J. Gerl, H.J. Wollersheim, J. Grebosz, M. Górska, I. Kojouharov, H. Schaffner, A. Algora, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, I.J. Cullen, A.M.D. Bacelar, A.Y. Deo, M.E. Estevez, Y. Fujita, R. Hoischen, R. Kumar, S. Lalkovski, Z. Liu, P.J. Mason, C. Mihai, F. Molina, D. Mücher, B. Rubio, A. Tamii, S. Tashenov, J.J. Valiente-Dobón, P.J. Woods and Pub. Note PRVCA 85, 039904
2012An08	ARISE	70,	1985	E. Andreotti, M. Hult, G. Marissens, R. Gonzalez de Orduna, P. Vermaercke
2012Ar05	ZETFA	95,	224	S.S. Arzumanov, L.N. Bondarenko, V.I. Morozov, Yu. N. Panin and S.M. Chernyavsky
2012As05	PRVCA	85,	054316	A. Astier, MG. Porquet, Ch. Theisen, D. Verney, I. Deloncle, M. Houry, R. Lucas, F. Azaiez, G. Barreau, D. Curien, O. Dorvaux, G. Duchene, B.J.P. Gall, N. Redon, M. Rousseau, O. Stezowski
2012As06	PRVCA	85,	064316	A. Astier, MG. Porquet, Ts. Venkova, D. Verney, Ch. Theisen, G. Duchêne, F. Azaiez, G. Barreau, D. Curien, I. Deloncle, O. Dorvaux, B.J.P. Gall, M. Houry, R. Lucas, N. Redon, M. Rousseau, O. Stézowski
2012At01	EPJAA	48,	22	D.R. Atanasov, N. Winckler, D. Balabanski, L. Batist, F. Bosch, D. Boutin, C. Brandau, C. Dimopoulou, H.G. Essel, T. Faestermann, H. Geissel, I. Hachiuma, S. Hess, T. Izumikawa, P. Kienle, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S.A. Litvinov, Yu. A. Litvinov, R.S. Mao, R. Märtin, M. Mazzocco, G. Münzenberg, K. Namihira, F. Nolden, T. Ohtsubo, Z. Patyk, R. Reuschl, M.S. Sanjari, C. Scheidenberger, D. Shubina, U. Spillmann, M. Steck, Th. Stöhlker, B. Sun, T. Suzuki, M. Trassinelli, I.I. Tupitsyn, H. Weick, M. Winkler, D.F.A. Winters, T. Yamaguchi
2012Au03	PRLTA	109,	032505	M. Auger, for the EXO Collaboration
2012Au08	EPJAA	48,	179	L. Audirac, P. Ascher, B. Blank, C. Borcea, B.A. Brown, G. Canchel, C.E. Demonchy, F. de Oliveira Santos, C. Dossat, J. Giovinazzo, S. Grévy, L. Hay, J. Huikari, S. Leblanc, I. Matea, JL. Pedroza, L. Perrot, J. Pibernat, L. Serani, C. Stodel, JC. Thomas
2012Ba58	PRVCA	86,	064311	J.C. Batchelder, N.T. Brewer, R.E. Goans, R. Grzywacz, B.O. Griffith, C. Jost, A. Korgul, S.H. Liu, S.V. Paulauskas, E.H. Spejewski, D.W. Stracener
2012Be04	ARISE	70,	1849	MM. Bé, P. Cassette, M.C. Lépy, MN. Amiot, K. Kossert, O.J. Nähle, O. Ott, C. Wanke, P. Dryak, G. Ratel, M. Sahagia, A. Luca, A. Antohe, L. Johansson, J. Keightley, A. Pearce
2012Be14	PRVCA	85,	044610	P. Belli, R. Bernabei, R.S. Boiko, V.B. Brudanin, F. Cappella, V. Caracciolo, R. Cerulli, D.M. Chernyak, F.A. Danevich, S. d'Angelo, E.N. Galashov, A. Incicchitti, V.V. Kobychev, M. Laubenstein, V.M. Mokina, D.V. Poda, R.B. Podviyanuk, O.G. Polischuk, V.N. Shlegel, Yu. G. Stenin, J. Suhonen, V.I. Tretyak, Ya. V. Vasiliev

2012Be28	PYLBB	715,	293	G. Benzoni, A.I. Morales, J.J. Valiente-Dobón, A. Gottardo, A. Bracco, F. Camera, F.C.L. Crespi, A.M. Corsi, S. Leoni, B. Million, R. Nicolini, O. Wieland, A. Gadea, S. Lunardi, P. Boutachkov, A.M. Bruce, M. Górska, J. Grebosz, S. Pietri, Zs. Podolyák, M. Pfützner, P.H. Regan, H. Weick, J. Alcántara Núnez, A. Algora, N. Al-Dahan, G. de Angelis, Y. Ayyad, N. Alkhomashi, P.R.P. Allegro, D. Bazzacco, J. Benlliure, M. Bowry, M. Bunce, E. Casarejos, M.L. Cortes, A.M.D. Bacelar, A.Y. Deo, C. Domingo-Pardo, M. Doncel, Zs. Dombradi, T. Engert, K. Eppinger, G.F. Farrelly, F. Farinon, E. Farnea, H. Geissel, J. Gerl, N. Goel, E. Gregor, T. Habermann, R. Hoischen, R. Janik, S. Klupp, I. Kojouharov, N. Kurz, S. Mandal, R. Menegazzo, D. Mengoni, D.R. Napoli, F. Naqvi, C. Nociforo, A. Prochazka, W. Prokopowicz, F. Recchia, R.V. Ribas, M.W. Reed, D. Rudolph, E. Sahin, H. Schaffner, A. Sharma, B. Sitar, D. Siwal, K. Steiger, P. Strmen, T.P.D. Swan, I. Szarka, C.A. Ur, P.M. Walker, HJ. Woller-
				sheim
2012Bi.A	P-Argonne			J. Billowes
2012Bo.A	PrvCom	May	Lunney	Ch. Borgmann
2012Br03	PRLTA	108,	052504	M. Brodeur, T. Brunner, C. Champagne, S. Ettenauer, M.J. Smith, A. Lapierre,
				R. Ringle, V.L. Ryjkov, S. Bacca, P. Delheij, G.W.F. Drake, D. Lunney, A. Schwenk, J. Dilling
2012Ca03	PRVCA	85,	014312	L. Cartegni, C. Mazzocchi, R. Grzywacz, I.G. Darby, S.N. Liddick,
				K.P. Rykaczewski, J.C. Batchelder, L. Bianco, C.R. Bingham, E. Freeman,
				C. Goodin, C.J. Gross, A. Guglielmetti, D.T. Joss, S.H. Liu, M. Mazzocco, S. Padgett, R.D. Page, M.M. Rajabali, M. Romoli, P.J. Sapple, J. Thomson,
				H.V. Watkins
2012Ca05	PYLBB	707,	46	Z.X. Cao, Y.L. Ye, J. Xiao, L.H. Lv, D.X. Jiang, T. Zheng, H. Hua, Z.H. Li,
				X.Q. Li, Y.C. Ge, J.L. Lou, R. Qiao, Q.T. Li, H.B. You, R.J. Chen, D.Y. Pang,
				H. Sakurai, H. Otsu, M. Nishimura, S. Sakaguchi, H. Baba, Y. Togano,
				K. Yoneda, C. Li, S. Wang, H. Wang, K.A. Li, T. Nakamura, Y. Nakayama, Y. Kondo, S. Deguchi, Y. Satou, K. Tshoo
2012Ch02	PRLTA	108,	032501	G. Christian, N. Frank, S. Ash, T. Baumann, D. Bazin, J. Brown, P.A. DeYoung,
				J.E. Finck, A. Gade, G.F. Grinyer, A. Grovom, J.D. Hinnefeld, E.M. Lunderberg, B. Luther, M. Mosby, S. Mosby, T. Nagi, G.F. Peaslee, W.F. Rogers, J.K. Smith,
				J. Snyder, A. Spyrou, M.J. Strongman, M. Thoennessen, M. Warren, D. Weis-
				shaar, A. Wersal
2012Ch16	PRLTA	108,	162501	R. Chevrier, J.M. Daugas, L. Gaudefroy, Y. Ichikawa, H. Ueno, M. Hass,
				H. Haas, S. Cottenier, N. Aoi, K. Asahi, D.L. Balabanski, N. Fukuda, T. Fu-
				rukawa, G. Georgiev, H. Hayashi, H. Iijima, N. Inabe, T. Inoue, M. Ishihara, Y. Ishii, D. Kameda, T. Kubo, T. Nanao, G. Neyens, T. Ohnishi, M.M. Rajabali,
				K. Suzuki, H. Takeda, M. Tsuchiya, N. Vermeulen, H. Watanabe, A. Yoshimi
2012Ch19	NUPAB	882,	71	L. Chen, W.R. Plass, H. Geissel, R. Knöbel, C. Kozhuharov, Yu. A. Litvinov,
		Ź		Z. Patyk, C. Scheidenberger, K. Siegien-Iwaniuk, B. Sun, H. Weick, K. Beckert,
				P. Beller, F. Bosch, D. Boutin, L. Caceres, J.J. Carroll, D.M. Cullen, I.J. Cullen,
				B. Franzke, J. Gerl, M. Gorska, G.A. Jones, A. Kishada, J. Kurcewicz,
				S.A. Litvinov, Z. Liu, S. Mandal, F. Montes, G. Munzenberg, F. Nolden, T. Oht-
				subo, Zs. Podolyák, R. Propri, S. Rigby, N. Saito, T. Saito, M. Shindo, M. Steck, P.M. Walker, S. Williams, M. Winkler, HJ. Wollersheim, T. Yamaguchi
2012Ch30	ARISE	70,	1871	V.P. Chechev
2012Ch40	PRVCA	86,	041307	R.J. Charity, L.G. Sobotka, K. Hagino, D. Bazin, M.A. Famiano, A. Gade, S. Hu-
				dan, S.A. Komarov, Jenny Lee, S.P. Lobastov, S.M. Lukyanov, W.G. Lynch,
				C. Metelko, M. Mocko, A.M. Rogers, H. Sagawa, A. Sanetullaev, M.B. Tsang,
2012Ch51	JPCSD	381,	012071	M.S. Wallace, M.J. van Goethem, A.H. Wuosmaa B. Cheal, J. Billowes, M.L. Bissell, K. Blaum, F.C. Charlwood, K.T. Flana-
2012CII31	JI CSD	361,	012071	gan, D.H. Forest, Ch. Geppert, M. Kowalska, K. Kreim, A. Krieger, J. Krämer,
				K.M. Lynch, E. Mané, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser,
				J. Papuga, T.J. Procter, M.M. Rajabali, H.H. Stroke, P. Vingerhoets, D.T. Yor-
			_	danov, M. Žáková
2012Ch.A	PrvCom	May	Lunney	A V Davanhayan K S Krana
2012Da04 2012Da06	PRVCA ARISE	85, 70,	064301 1924	A.Y. Dauenhauer, K.S. Krane C.J. da Silva, A. Iwahara, D.S. Moreira, J.U. Delgado, R.S. Gomes
20121200	, 11(1)D	, 0,	1/4	C.B. da Sirva, 71. Iwanara, D.B. Moleira, J.O. Delgado, N.B. Gollies

2012Da16	EPJAA	48,	157	F.A. Danevich, E. Andreotti, M. Hult, G. Marissens, V.I. Tretyak, A. Yuksel
2012Da10 2012Da17	EPJAA	48,	867	L.S. Danu, P.K. Joshi, D.C. Biswas, S. Mukhopadhyay, A. Goswami,
		,		P.N. Prashanth, L.A. Kinage, R.K. Choudhury, B. Singh
2012Dr01	NUPAB	875,	1	C. Droese, K. Blaum, M. Block, S. Eliseev, F. Herfurth, E. Minaya-Ramirez,
				Yu. N. Novikov, L. Schweikhard, V.M. Shabaev, I.I. Tupitsyn, S. Wycech, K. Zu-
20125 02	DIM DD	7 00	5 0	ber, N.A. Zubova
2012Dr02	PYLBB	709,	59	
				F.G. Kondev, M. Carpenter, R.V.F. Janssens, T. Lauritsen, C.J. Lister, D. Seweryniak, S. Zhu, P. Chowdhury, Y. Shi, F.R. Xu
2012Dr.A	PrvCom	FGK		G.D. Dracoulis
2012Fa07	ARISE	70,	2328	Fang Kaihong, Wang Dawei, Yang Shaobo, Zhao Jiangtao, Peng Haibo, Wang
		ŕ		Qiang, Wang Tieshan
2012Fi01	PRLTA	108,	062502	D. Fink, J. Barea, D. Beck, K. Blaum, Ch. Bohm, Ch. Borgmann, M. Breit-
				enfeldt, F. Herfurth, A. Herlert, J. Kotila, M. Kowalska, S. Kreim, D. Lunney,
				S. Naimi, M. Rosenbusch, S. Schwarz, L. Schweikhard, F. Simkovic, J. Stanja,
2012EI05	IDCDE	20	125101	K. Zuber and PrvCom WgM March 2012
2012Fl05	JPGPE	39,	125101	K.T. Flanagan, J. Billowes, P. Campbell, B. Cheal, G.D. Dracoulis, D.H. Forest, M.D. Gardner, J. Huikari, A. Jokinen, B.A. Marsh, R. Moore, A. Nieminen,
				H. Penttilä, H.L. Thayer, G. Tungate, J. Äystö
2012Fo04	PRVCA	85,	027303	H.T. Fortune, R. Sherr
2012Fo09	NIMAE	687,	1	
				E. Berdugo, P.J. Cammarata, A.C. Raphelt, B.T. Roeder, T.A. Werke
2012Ga15	PRVCA	85,	044311	A.T. Gallant, M. Brodeur, T. Brunner, U. Chowdhury, S. Ettenauer, V.V. Si-
				mon, E. Mané, M.C. Simon, C. Andreoiu, P. Delheij, G. Gwinner, M.R. Pearson,
20126 17	DDVCA	0.5	045504	R. Ringle, J. Dilling
2012Ga17	PRVCA	85,	045504	A. Gando, Y. Gando, H. Hanakago, H. Ikeda, K. Inoue, R. Kato, M. Koga, S. Matsuda, T. Mitsui, T. Nakada, K. Nakamura, A. Obata, A. Oki, Y. Ono,
				I. Shimizu, J. Shirai, A. Suzuki, Y. Takemoto, K. Tamae, K. Ueshima, H. Watan-
				abe, B.D. Xu, S. Yamada, H. Yoshida, A. Kozlov, S. Yoshida, T.I. Banks,
				J.A. Detwiler, S.J. Freedman, B.K. Fujikawa, K. Han, T. O'Donnell, B.E. Berger,
				Y. Efremenko, H.J. Karwowski, D.M. Markoff, W. Tornow, S. Enomoto,
				M.P. Decowski (KamLAND-Zen Collaboration)
2012Ga29	PRLTA	109,	032506	A.T. Gallant, J.C. Bale, T. Brunner, U. Chowdhury, S. Ettenauer, A. Lennarz,
				D. Robertson, V.V. Simon, A. Chaudhuri, J.D. Holt, A.A. Kwiatkowski,
				E. Mané, J. Menéndez, B.E. Schultz, M.C. Simon, C. Andreoiu, P. Delheij, M.R. Pearson, H. Savajols, A. Schwenk, J. Dilling
2012Ga45	PRLTA	109,	202503	L. Gaudefroy, W. Mittig, N.A. Orr, S. Varet, M. Chartier, P. Roussel-Chomaz,
201204.0	1112111	10,,	202000	J.P. Ebran, B. Fernández-Domínguez, G. Frémont, P. Gangnant, A. Gillibert,
				S. Grévy, J.F. Libin, V.A. Maslov, S. Paschalis, B. Pietras, YuE. Penionzhke-
				vich, C. Spitaels, A.C.C. Villari
2012Go19	PRLTA	109,	162502	A. Gottardo, J.J. Valiente-Dobón, G. Benzoni, R. Nicolini, A. Gadea, S. Lunardi,
				P. Boutachkov, A.M. Bruce, M. Górska, J. Grebosz, S. Pietri, Zs. Podolyák,
				M. Pfützner, P.H. Regan, H. Weick, J. Alcántara Núnez, A. Algora, N. Al-Dahan,
				G. de Angelis, Y. Ayyad, N. Alkhomashi, P.R.P. Allegro, D. Bazzacco, J. Benlliure, M. Bowry, A. Bracco, M. Bunce, F. Camera, E. Casarejos, M.L. Cortes,
				F.C.L. Crespi, A. Corsi, A.M.D. Bacelar, A.Y. Deo, C. Domingo-Pardo, M. Don-
				cel, Zs. Dombradi, T. Engert, K. Eppinger, G.F. Farrelly, F. Farinon, E. Farnea,
				H. Geissel, J. Gerl, N. Goel, E. Gregor, T. Habermann, R. Hoischen, R. Janik,
				S. Klupp, I. Kojouharov, N. Kurz, S.M. Lenzi, S. Leoni, Mandal, R. Menegazzo,
				D. Mengoni, B. Million, A.I. Morales, D.R. Napoli, F. Naqvi, C. Nociforo,
				A. Prochazka, W. Prokopowicz, F. Recchia, R.V. Ribas, M.W. Reed, D. Rudolph,
				E. Sahin, H. Schaffner, A. Sharma, B. Sitar, D. Siwal, K. Steiger, P. Strmen, T.P.D. Swan, I. Szarka, C.A. Ur, P.M. Walker, O. Wieland, H-J. Wollersheim,
				F. Nowacki, E. Maglione, A.P. Zuker
2012Gu14	PRVCA	86,	014323	S. Guo, Y.H. Zhang, X.H. Zhou, M.L. Liu, Y.X. Guo, Y.H. Qiang, Y.D. Fang,
				X.G. Lei, F. Ma, M. Oshima, Y. Toh, M. Koizumi, A. Osa, A. Kimura, Y. Hat-
				sukawa, M. Sugawara, H. Kusakari
2012Gy01	ARISE	70,	278	Gy. Gyurky, J. Farkas, Z. Halasz, T. Szucs

2012Ha05	PRVCA	85,	024611	H. Haba, D. Kaji, Y. Kudou, K. Morimoto, K. Morita, K. Ozeki, R. Sakai, T. Sumita, A. Yoneda, Y. Kasamatsu, Y. Komori, A. Shinohara, H. Kikunaga,
2012Ha25	PRLTA	109,	032501	H. Kudo, K. Nishio, K. Ooe, N. Sato, K. Tsukada J. Hakala, J. Dobaczewski, D. Gorelov, T. Eronen, A. Jokinen, A. Kankainen, V.S. Kolhinen, M. Kortelainen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Ris-
2012He09	ЕРЈАА	48,	75	sanen, A. Saastamoinen, V. Sonnenschein, J. Äystö F.P. Heßberger, S. Antalic, D. Ackermann, Z. Kalaninova, S. Heinz, S. Hofmann, B. Streicher, B. Kindler, I. Kojouharov, P. Kuusiniemi, M. Leino, B. Lommel,
2012He11 2012Hi07	PRVCA NATUA	86, 486,	014605 342	R. Mann, K. Nishio, Š. Šáro, B. Sulignano, M. Venhart G.Z. He, S. Jiang, Z.Y. Zhou, M. He, W.Z. Tian, J.L. Zhang, L.J. Diao, H. Li C.B. Hinke, M. Böhmer, P. Boutachkov, T. Faestermann, H. Geissel, J. Gerl, R. Gernhäuser, M. Górska, A. Gottardo, H. Grawe, J.L. Grębosz, R. Krücken, N. Kurz, Z. Liu, L. Maier, F. Nowacki, S. Pietri, Zs. Podolyák, K. Sieja, K. Steiger, K. Straub, H. Weick, HJ. Wollersheim, P.J. Woods, N. Al-Dahan, N. Alkhomashi, A. Ataç, A. Blazhev, N.F. Braun, I.T. Çeliković, T. Davinson, I. Dillmann, C. Domingo-Pardo, P.C. Doornenbal, G. de France, G.F. Farrelly, F. Farinon, N. Goel, T.C. Habermann, R. Hoischen, R. Janik, M. Karny, A. Kaşkaş, I.M. Kojouharov, Th. Kröll, Y. Litvinov, S. Myalski, F. Nebel, S. Nishimura, C. Nociforo, J. Nyberg, A.R. Parikh, A. Procházka, P.H. Regan, C. Rigollet, H. Schaffner, C. Scheidenberger, S. Schwertel, PA. Söderström, S.J. Steer, A. Stolz, P. Strmeň
2012Но12	EPJAA	48,	62	
2012Hu10	PRVCA	86,	054314	R.O. Hughes, G.J. Lane, G.D. Dracoulis, A.P. Byrne, P.H. Nieminen, H. Watanabe, M.P. Carpenter, P. Chowdhury, R.V.F. Janssens, F.G. Kondev, T. Lauritsen, D. Seweryniak, S. Zhu
2012Ja01	PRVCA	85,	014309	U. Jakobsson, J. Uusitalo, S. Juutinen, M. Leino, T. Enqvist, P.T. Greenlees, K. Hauschild, P. Jones, R. Julin, S. Ketelhut, P. Kuusiniemi, M. Nyman, P. Peura, P. Rahkila, P. Ruotsalainen, J. Sarén, C. Scholey, J. Sorri
2012Ja11	PRVCA	86,	011304	M.F. Jager, R.J. Charity, J.M. Elson, J. Manfredi, H. Mohammad, L.G. Sobotka, M. McCleskey, R.G. Pizzone, B.T. Roeder, A. Spiridon, E. Simmons, L. Trache, M. Kurokawa
2012Ka12	EPJAA	48,	49	A. Kankainen, Yu. N. Novikov, M. Oinonen, L. Batist, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, P. Karvonen, M. Reponen, J. Rissanen, A. Saastamoinen, G. Vorobjev, C. Weber, J. Äystö
2012Ka13	EPJAA	48,	47	A. Kankainen, V.S. Kolhinen, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Saastamoinen, J. Äystö
2012Ka36	PRVCA	86,	054319	D. Kameda, T. Kubo, T. Ohnishi, K. Kusaka, A. Yoshida, K. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, K. Tanaka, N. Inabe, Y. Yanagisawa, Y. Gono, H. Watanabe, H. Otsu, H. Baba, T. Ichihara, Y. Yamaguchi, M. Takechi, S. Nishimura, H. Ueno, A. Yoshimi, H. Sakurai, T. Motobayashi, T. Nakao, Y. Mizoi, M. Matsushita, K. Ieki, N. Kobayashi, K. Tanaka, Y. Kawada, N. Tanaka, S. Deguchi, Y. Satou, Y. Kondo, T. Nakamura, K. Yoshinaga, C. Ishii, H. Yoshii, Y. Miyashita, N. Uematsu, Y. Shiraki, T. Sumikama, J. Chiba, E. Ideguchi, A. Saito, T. Yamaguchi, I. Hachiuma, T. Suzuki, T. Moriguchi, A. Ozawa, T. Ohtsubo, M.A. Famiano, H. Geissel, A.S. Nettleton, O.B. Tarasov, D. Bazin, B.M. Sherrill, S.L. Manikonda, J.A. Nolen
2012Ke01 2012Ki16	NUPAB SCIEA	880, 335,	88 1614	J.H. Kelley, E. Kwan, J.E. Purcell, C.G. Sheu, H.R. Weller N. Kinoshita, M. Paul, Y. Kashiv, P. Collon, C.M. Deibel, B. DiGiovine, J.P. Greene, D.J. Henderson, C.L. Jiang, S.T. Marley, T. Nakanishi, R.C. Pardo, K.E. Rehm, D. Robertson, R. Scott, C. Schmitt, X.D. Tang, R. Vondrasek, A. Yokoyama
2012Kn01	PRLTA	108,	122502	A. Knecht, R. Hong, D.W. Zumwalt, B.G. Delbridge, A. García, P. Müller, H.E. Swanson, I.S. Towner, S. Utsuno, W. Williams, C. Wrede

2012Ko24 2012Ko29	ARISE PRVCA	70, 86,	2215 024307	K. Kossert, O.J. Nähle, O. Ott, R. Dersch A. Korgul, K.P. Rykaczewski, J.A. Winger, S.V. Ilyushkin, C.J. Gross,
				J.C. Batchelder, C.R. Bingham, I.N. Borzov, C. Goodin, R. Grzywacz, J.H. Hamilton, W. Królas, S.N. Liddick, C. Mazzocchi, C. Nelson, F. Nowacki, S. Padgett, A. Piechaczek, M.M. Rajabali, D. Shapira, K. Sieja, E.F. Zganjar
2012Ko43	PRLTA	109,	232501	Z. Kohley, J. Snyder, T. Baumann, G. Christian, P.A. DeYoung, J.E. Finck, R.A. Haring-Kaye, M. Jones, E. Lunderberg, B. Luther, S. Mosby, A. Simon, J.K. Smith, A. Spyrou, S.L. Stephenson, M. Thoennessen
2012Kr05	PRVCA	85,	044319	K.S. Krane
2012Kr07	ARISE	70,	1649	K.S. Krane
2012Ku06	PRVCA	85,	027302	J. Kurpeta, W. Urban, T. Materna, H. Faust, U. Köster, J. Rissanen, T. Rzaca-Urban, C. Mazzocchi, A.G. Smith, J.F. Smith, J.P. Greene, I. Ahmad
2012Ku26	PYLBB	717,	371	J. Kurcewicz, F. Farinon, H. Geissel, S. Pietri, C. Nociforo, A. Prochazka, H. Weick, J.S. Winfield, A. Estradé, P.R.P. Allegro, A. Bail, G. Bélier, J. Benlliure, G. Benzoni, M. Bunce, M. Bowry, R. Caballero-Folch, I. Dillmann, A. Evdokimov, J. Gerl, A. Gottardo, E. Gregor, R. Janik, A. Kelić-Heil, R. Knöbel, T. Kubo, Yu. A. Litvinov, E. Merchan, I. Mukha, F. Naqvi, M. Pfützner, M. Pomorski, Zs. Podolyák, P.H. Regan, B. Riese, M.V. Ricciardi, C. Scheidenberger, B. Sitar, P. Spiller, J. Stadlmann, P. Strmen, B. Sun, I. Szarka, J. Taieb,
2012Ku28	PRVCA	86,	044306	S. Terashima, J.J. Valiente-Dobon, M. Winkler, Ph. Woods J. Kurpeta, W. Urban, A. Plochocki, J. Rissanen, J.A. Pinston, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, I.D. Moore, H. Penttilä, A. Saastamoinen, C. Weber, J. Äystö
2012La05	PRVCA	85,	024317	A. Lapierre, M. Brodeur, T. Brunner, S. Ettenauer, P. Finlay, A.T. Gallant, V.V. Simon, P. Delheij, D. Lunney, R. Ringle, H. Savajols, J. Dilling
2012La.A	P-Argonne			G.J. Lane
2012Li02	PRVCA	85,	014328	S.N. Liddick, B. Abromeit, A. Ayres, A. Bey, C.R. Bingham, M. Bolla, L. Cartegni, H.L. Crawford, I.G. Darby, R. Grzywacz, S. Ilyushkin, N. Larson, M. Madurga, D. Miller, S. Padgett, S. Paulauskas, M.M. Rajabali, K. Rykaczewski, S. Suchyta
2012Lo08	PRVCA	86,	014313	G. Lorusso, A. Becerril, A. Amthor, T. Baumann, D. Bazin, J.S. Berryman, B.A. Brown, R.H. Cyburt, H.L. Crawford, A. Estrade, A. Gade, T. Ginter, C.J. Guess, M. Hausmann, G.W. Hitt, P.F. Mantica, M. Matos, R. Meharchand, K. Minamisono, F. Montes, G. Perdikakis, J. Pereira, M. Portillo, H. Schatz, K. Smith, J. Stoker, A. Stolz, R.G.T. Zegers
2012Lu07	PRLTA	108,	142503	E. Lunderberg, P.A. De Young, Z. Kohley, H. Attanayake, T. Baumann, D. Bazin, G. Christian, D. Divaratne, S.M. Grimes, A. Haagsma, J.E. Finck, N. Frank, B. Luther, S. Mosby, T. Nagi, G.F. Peaslee, A. Schiller, J. Snyder, A. Spyrou, M.J. Strongman, M. Thoennessen
2012Lu14	ARISE	70,	1876	A. Luca, M. Sahagia, A. Antohe
2012Ma03	APOBB	43,	247	T. Malkiewicz, G.S. Simpson, W. Urban, J. Genevey, J.A. Pinston, I. Ahmad, J.P. Greene, U. Koster, T. Materna, M. Ramdhane, T. Rzaca-Urban, A.G. Smith, G. Thiamova
2012Ma30	ARISE	70,	2270	M. Marouli, S. Pommé, J. Paepen, R. Van Ammel, V. Jobbágy, A. Dirican, G. Suliman, H. Stroh, C. Apostolidis, K. Abbas, A. Morgenstern
2012Ma37	PRLTA	109,	112501	M. Madurga, R. Surman, I.N. Borzov, R. Grzywacz, K.P. Rykaczewski, C.J. Gross, D. Miller, D.W. Stracener, J.C. Batchelder, N.T. Brewer, L. Cartegni, J.H. Hamilton, J.K. Hwang, S.H. Liu, S.V. Ilyushkin, C. Jost, M. Karny, A. Korgul, W. Królas, A. Kuźniak, C. Mazzocchi, A.J. Mendez II, K. Miernik, W. Padgett, S.V. Paulauskas, A.V. Ramayya, J.A. Winger, M. Wolińska-Cichocka, E.F. Zganjar
2012Me04 2012Mo25	EPJAA JUPSA	48, 81,	20 103201	G. Meierhofer, P. Grabmayr, L. Canella, P. Kudejova, J. Jolie, N. Warr K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, Y. Kudou, T. Sumita, Y. Wakabayashi, A. Yoneda, K. Tanaka, S. Yamaki, R. Sakai, T. Akiyama, Si. Goto, H. Hasebe, M. Huang, T. Huang, E. Ideguchi, Y. Kasamatsu, K. Katori, Y. Kariya, H. Kikunaga, H. Koura, H. Kudo, A. Mashiko, K. Mayama, Sic. Mitsuoka, T. Moriya, M. Murakami, H. Murayama, S. Namai, A. Ozawa, N. Sato, K. Sueki, M. Takeyama, F. Tokanai, T. Yamaguchi, A. Yoshida

2012Mo.A	PrvCom		Moon	C.B. Moon, G.D. Dracoulis, R.A. Bark, A.P. Byrne, P.A. Davidson, T. Kibédi,
2012Mu05	PRVCA	85,	044325	G.J. Lane, A.N. Wilson I. Mukha, L. Grigorenko, L. Acosta, M.A.G. Alvarez, E. Casarejos, A. Chatillon, D. Cortina-Gil, J.M. Espino, A. Fomichev, J.E. García-Ramos, H. Geissel, J. Gómez-Camacho, J. Hofmann, O. Kiselev, A. Korsheninnikov, N. Kurz, Yu. A. Litvinov, I. Martel, C. Nociforo, W. Ott, M. Pfützner, C. Rodríguez-Tajes, E. Roeckl, C. Scheidenberger, M. Stanoiu, K. Sümmerer, H. Weick, P.J. Woods
2012Na15	PRVCA	86,	014325	S. Naimi, G. Audi, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, S. George, F. Herfurth, A. Herlert, A. Kellerbauer, M. Kowalska, D. Lunney, E. Minaya Ramirez, D. Neidherr, M. Rosenbusch, L. Schweikhard, R.N. Wolf, K. Zuber
2012Ne05	ARISE	70,	1990	Y. Nedjadi, C. Bailat, Y. Caffari, P. Froidevaux, C. Wastiel, N. Kivel, I. Guenther- Leopold, G. Triscone, F. Jaquenod, F. Bochud
2012No08	PHSTT	150,	014028	C. Nociforo, F. Farinon, A. Musumarra, F. Bosch, D. Boutin, A. Del Zoppo, P. Figuera, M. Fisichella, H. Geissel, R. Knöbel, I. Kojouharov, C. Kozhuharov, T. Kuboki, J. Kurcewicz, Yu. A. Litvinov, M. Mazzocco, Y. Motizuki, F. Nolden, T. Ohstubo, Y. Ohkuma, Z. Patyk, M.G. Pellegriti, S. Pietri, Z. Podolyák, A. Prochazka, M.S. Sanjari, C. Scheidenberger, V. Scuderi, B. Sun, T. Suzuki, D. Torresi, H. Weick, J.S. Winfield, N. Winckler, M. Winkler, H.J. Wollersheim, T. Yamaguchi
2012Od01	PRVCA	85,	054315	D. O'Donnell, R.D. Page, C. Scholey, L. Bianco, L. Capponi, R.J. Carroll, I.G. Darby, L. Donosa, M. Drummond, F. Ertugral, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, P. Jones, D.T. Joss, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, A. Lopez-Martens, K. Mulholland, P. Nieminen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Saren, B. Saygi, J. Simpson, J. Sorri, A. Thornthwaite, J. Uusitalo
2012Og02	PRLTA	108,	022502	Yu. Ts. Oganessian, F. Sh. Abdullin, S.N. Dmitriev, J.M. Gostic, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, V.G. Subbotin, A.M. Sukhov, Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin
2012Og06	PRLTA	109,	162501	Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R.A. Boll, S.N. Dmitriev, J. Ezold, K. Felker, J.M. Gostic, R.K. Grzywacz, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K. Miernik, D. Miller, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, M.A. Ryabinin, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.V. Shumeiko, M.A. Stoyer, N.J. Stoyer, V.G. Subbotin, A.M. Sukhov, Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin
2012Os04	JUPSA	81,	084201	M. Oshima, T. Kin, S. Nakamura, M. Honma, F. Minato, T. Hayakawa, K.Y. Hara, A. Kimura, M. Koizumi, H. Harada, J. Goto, Y. Murakami
2012Pa07	PRVCA	85,	035501	H.I. Park, J.C. Hardy, V.E. Iacob, L. Chen, J. Goodwin, N. Nica, E. Simmons, L. Trache, R.E. Tribble
2012Po03	APOBB	43,	267	M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, T. Baumann, J. Berryman, H. Czyrkowski, R. Dabrowski, T. Ginter, L. Grigorenko, J. Johnson, G. Kamiński, A. Kuźniak, N. Larson, S.N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Palauskas, J. Pereira, K.P. Rykaczewski, A. Stolz, S. Suchyta
2012Po12	ARISE	70,	1900	S. Pommé, T. Altzitzoglou, R. Van Ammel, G. Suliman, M. Marouli, V. Jobbagy, J. Paepen, H. Stroh, C. Apostolidis, K. Abbas, A. Morgenstern
2012Po13	ARISE	70,	1913	S. Pommé, G. Suliman, M. Marouli, R. Van Ammel, V. Jobbagy, J. Paepen, H. Stroh, C. Apostolidis, K. Abbas, A. Morgenstern
2012Po14	ARISE	70,	2608	S. Pomme, M. Marouli, G. Suliman, H. Dikmen, R. Van Ammel, V. Jobbagy, A. Dirican, H. Stroh, J. Paepen, F. Bruchertseifer, C. Apostolidis, A. Morgenstern
2012Pr11	PRVCA	86	034329	T.J. Procter, J. Billowes, M.L. Bissell, K. Blaum, F.C. Charlwood, B. Cheal, K.T. Flanagan, D.H. Forest, S. Fritzsche, Ch. Geppert, H. Heylen, M. Kowalska, K. Kreim, A. Krieger, J. Krämer, K.M. Lynch, E. Mané, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, M.M. Rajabali, H.H. Stroke, P. Vingerhoets, D.T. Yordanov, M. Žáková

2012Qu01	PRVCA	85,	035807	M. Quinn, A. Aprahamian, J. Pereira, R. Surman, O. Arndt, T. Baumann, A. Becerril, T. Elliot, A. Estrade, D. Galaviz, T. Ginter, M. Hausmann, S. Hennrich, R. Kessler, KL. Kratz, G. Lorusso, P.F. Mantica, M. Matos, F. Montes, B. Pfeif-
2012Ra10	PRVCA	85,	034326	fer, M. Portillo, H. Schatz, F. Schertz, L. Schnorrenberger, E. Smith, A. Stolz, W.B. Walters, A. Wöhr M.M. Rajabali, R. Grzywacz, S.N. Liddick, C. Mazzocchi, J.C. Batchelder, T. Baumann, C.R. Bingham, I.G. Darby, T.N. Ginter, S.V. Ilyushkin, M. Karny, W. Królas, P.F. Mantica, K. Miernik, M. Pfützner, K.P. Rykaczewski, D. Weis-
2012Ra34	PRVAA	86,	050502	shaar, J.A. Winger R. Rana, M. Höcker, E.G. Myers
2012Ra34 2012Re05	PRVCA	85,	030302	R. Reifarth, S. Dababneh, M. Heil, F. Kappeler, R. Plag, K. Sonnabend, E. Uberseder
2012Re17	PRVCA	86,	041306	M. Redshaw, G. Bollen, M. Brodeur, S. Bustabad, D.L. Lincoln, S.J. Novario,
2012Re19	PRVCA	86,	054321	R. Ringle, S. Schwarz M.W. Reed, P.M. Walker, I.J. Cullen, Yu. A. Litvinov, D. Shubina, G.D. Dracoulis, K. Blaum, F. Bosch, C. Brandau, J.J. Carroll, D.M. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, G.X. Dong, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, W.R. Plaß, Zs. Podolyák, A. Prochazka, C. Scheidenberger, M. Steck, Th. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, H. Weick, N. Winckler, M. Winkler, P.J. Woods, F.R. Xu, T. Yamaguchi
2012Re.A	PrvCom	GAu	May	M. Reed
2012Re.B	PrvCom	FGK	Jun	P.H. Regan
2012Ri08	PRVCA	86,	047301	L.A. Riley, P. Adrich, N. Ahsan, T.R. Baugher, D. Bazin, B.A. Brown, J.M. Cook, P.D. Cottle, C. Aa. Diget, A. Gade, T. Glasmacher, K.E. Hosier, K.W. Kemper, A. Ratkiewicz, K.P. Siwek, J.A. Tostevin, A. Volya, D. Weisshaar
2012Ro25	PRLTA	109,	092503	F. Rotaru, F. Negoita, S. Grévy, J. Mrazek, S. Lukyanov, F. Nowacki, A. Poves, O. Sorlin, C. Borcea, R. Borcea, A. Buta, L. Cáceres, S. Calinescu, R. Chevrier, Zs. Dombrádi, J.M. Daugas, D. Lebhertz, Y. Penionzhkevich, C. Petrone, D. Sohler, M. Stanoiu, J.C. Thomas
2012Sc.A 2012Si07	PrvCom PRLTA	GAu 108,	May 202502	S. Schwarz S.I. Sidorchuk, A.A. Bezhekh, V. Chudoba, I.A. Egorova, A.S. Fomichev
20128107	PRLIA	108,	202302	S.I. Sidorchuk, A.A. Bezbakh, V. Chudoba, I.A. Egorova, A.S. Fomichev, M.S. Golovkov, A.V. Gorshkov, V.A. Gorshkov, L.V. Grigorenko, P. Jaløuvková, G. Kaminski, S.A. Krupko, E.A. Kuzmin, E. Yu. Nikolskii, Yu. Ts. Oganessian, Yu. L. Parfenova, P.G. Sharov, R.S. Slepnev, S.V. Stepantsov, G.M. Ter-Akopian, R. Wolski, A.A. Yukhimchuk, S.V. Filchagin, A.A. Kirdyashkin, I.P. Maksimkin, O.P. Vikhlyantsev
2012Si10	PRVCA	85,	064308	V.V. Simon, T. Brunner, U. Chowdhury, B. Eberhardt, S. Ettenauer, A.T. Gallant, E. Mane, M.C. Simon, P. Delheij, M.R. Pearson, G. Audi, G. Gwinner, D. Lunney, H. Schatz, J. Dilling
2012Sm01	PRVCA	85,	027601	C. Smorra, T. Beyer, K. Blaum, M. Block, Ch. E. Düllmann, K. Eberhardt,
2012Sm07	PRVCA	86,	044604	M. Eibach, S. Eliseev, Sz. Nagy, W. Nörtershäuser, D. Renisch C. Smorra, T.R. Rodríguez, T. Beyer, K. Blaum, M. Block, Ch. E. Dullmann, K. Eberhardt, M. Eibach, S. Eliseev, K. Langanke, G. Martínez-Pinedo, Sz. Nagy, W. Nörtershäuser, D. Renisch, V.M. Shabaev, I.I. Tupitsyn, N.A. Zubova
2012So10 2012Sp02	JPGPE PRLTA	39, 108,	095107 102501	P.C. Sood, R. Gowrishankar, K. Vijay Sai A. Spyrou, Z. Kohley, T. Baumann, D. Bazin, B.A. Brown, G. Christian, P.A. De Young, J.E. Finck, N. Frank, E. Lunderberg, S. Mosby, W.A. Peters, A. Schiller, J.K. Smith, J. Snyder, M.J. Strongman, M. Thoennessen, A. Volya
2012St.A	P-Argonne			M.A. Stoyer
2012Su11	ARISE	70,	1907	G. Suliman, S. Pommé, M. Marouli, R. Van Ammel, V. Jobbágy, J. Paepen, H. Stroh, C. Apostolidis, K. Abbas, A. Morgenstern
2012Sv02	ЕРЈАА	48,	121	A.I. Svirikhin, A.V. Andreev, V.N. Dushin, M.L. Chelnokov, V.I. Chepigin, M. Gupta, A.V. Isaev, I.N. Izosimov, D.E. Katrasev, A.N. Kuznetsov, O.N. Maly-
2012Sw01	PRVCA	85,	024313	shev, S. Mullins, A.G. Popeko, E.A. Sokol, A.V. Yeremin T.P.D. Swan, P.M. Walker, Zs. Podolyák, M.W. Reed, G.D. Dracoulis, G.J. Lane, T. Kibédi, M.L. Smith

2012Sw02	PRVCA	86,	044307	T.P.D. Swan, P.M. Walker, Zs. Podolyák, M.W. Reed, G.D. Dracoulis, G.J. Lane,
2012Ta18	PRVCA	86,	044310	T. Kibédi, M.L. Smith M.J. Taylor, G.A. Alharshan, D.M. Cullen, M.G. Procter, N.M. Lumley, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, A. Lopez-Martens, P. Nieminen, J. Partanen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, F.R. Xu, Z.J. Bai
2012Ta.A 2012Th13	P-New-Dehl PRVCA	i 86,	157 064315	S.K. Tandel A. Thornthwaite, D. O'Donnell, R.D. Page, D.T. Joss, C. Scholey, L. Bianco, L. Capponi, R.J. Carroll, I.G. Darby, L. Donosa, M.C. Drummond, F. Ertuğral, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Labiche, M. Leino, A. Lopez-Martens, K. Mullholland, P. Nieminen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruot-
2012Tr06	PRLTA	109,	042301	salainen, M. Sandzelius, J. Sarén, B. Sayǧi, J. Simpson, J. Sorri, J. Uusitalo S. Triambak, P. Finlay, C.S. Sumithrarachchi, G. Hackman, G.C. Ball, P.E. Garrett, C.E. Svensson, D.S. Cross, A.B. Garnsworthy, R. Kshetri, J.N. Orce, M.R. Pearson, E.R. Tardiff, H. Al-Falou, R.A.E. Austin, R. Churchman, M.K. Djongolov, R. D'Entremont, C. Kierans, L. Milovanovic, S. O'Hagan,
2012Va02	PRVCA	85,	045805	S. Reeve, S.K.L. Sjue, S.J. Williams J. Van Schelt, D. Lascar, G. Savard, J.A. Clark, S. Caldwell, A. Chaudhuri, J. Fallis, J.P. Greene, A.F. Levand, G. Li, K.S. Sharma, M.G. Sternberg, T. Sun, B.J. Zabransky
2012Ve04	ЕРЈАА	48,	101	M. Venhart, A.N. Andreyev, S. Antalic, L. Bianco, P.T. Greenlees, U. Jakobsson, P. Jones, D.T. Joss, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, R.D. Page, P. Peura, P. Rahkila, J. Sarén, C. Scholey, J. Sorri, J. Thomson, J. Uusitalo
2012Vi10	NATUA	488,	357	R. Vincent, S. Klyatskaya, M. Ruben, W. Wernsdorfer, F. Balestro
2012Wa10	PRVCA	85,	034329	P.T. Wady, J.F. Smith, E.S. Paul, B. Hadinia, C.J. Chiara, M.P. Carpenter, C.N. Davids, A.N. Deacon, S.J. Freeman, A.N. Grint, R.V.F. Janssens, B.P. Kay, T. Lauritsen, C.J. Lister, B.M. McGuirk, M. Petri, A.P. Robinson, D. Seweryniak, D. Steppenbeck, S. Zhu
2012Wa21	ARISE	70,	1927	Sl. Wang, T. Bai, Q. Li, Zy. Chen, Ql. Shi, Xs. Li, Xl. Zhang, F. Xie, Yf. Chang
2012We08	JPCSD	337,	012018	L. Weissman, U. Bergmann, J. Cederkall, L. Fraile, S. Franchoo, H.O.U. Fynbo, T. Fritioff, U. Koster, O. Arnd, I. Dillman, O. Hallmann, KL. Kratz, B. Pfeiffer, A. Wohr, L. Gaudefroy, O. Sorlin
2012Zh04	CPLEE	29,	012502	Z.Y. Zhang, Z.G. Gan, L. Ma, M.H. Huang, T.H. Huang, X.L. Wu, G.B. Jia, G.S. Li, L. Yu, Z.Z. Ren, S.G. Zhou, Y.H. Zhang, X.H. Zhou, H.S. Xu,
2012Zh34	PRLTA	109,	102501	H.Q. Zhang, G.Q. Xiao, W.L. Zhang Y.H. Zhang, H.S. Xu, Yu. A. Litvinov, X.L. Tu, X.L. Yan, S. Typel, K. Blaum, M. Wang, X.H. Zhou, Y. Sun, B.A. Brown, Y.J. Yuan, J.W. Xia, J.C. Yang, G. Audi, X.C. Chen, G.B. Jia, Z.G. Hu, X.W. Ma, R.S. Mao, B. Mei, P. Shuai, Z.Y. Sun, S.T. Wang, G.Q. Xiao, X. Xu, T. Yamaguchi, Y. Yamaguchi, Y.D. Zang, H.W. Zhao, T.C. Zhao, W. Zhang, W.L. Zhan
				2013
2013Ag11 2013Ah03	PRLTA PRVCA	111, 87,	122503 054328	M. Agostini, for the GERDA Collaboration I. Ahmad, J.P. Greene, F.G. Kondev, S. Zhu, M.P. Carpenter, R.V.F. Janssens, R.A. Boll, J.G. Ezold, S.M. Van Cleve, E. Browne
2013Al14	PRVCA	88,	034301	T. Al Kalanee, J. Gibelin, P. Roussel-Chomaz, N. Keeley, D. Beaumel, Y. Blumenfeld, B. Fernández-Domínguez, C. Force, L. Gaudefroy, A. Gillibert, J. Guillot, H. Iwasaki, S. Krupko, V. Lapoux, W. Mittig, X. Mougeot, L. Nalpas, E. Pollacco, K. Rusek, T. Roger, H. Savajols, N. de Séréville, S. Sidorchuk, D. Suzuki, I. Strojek, N.A. Orr
2013An03	PRVCA	87,	014317	A.N. Andreyev, S. Antalic, D. Ackermann, L. Bianco, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, Z. Kalaninová, I. Kojouharov, B. Kindler, B. Lommel, R. Mann, K. Nishio, R.D. Page, J.J. Ressler, B. Streicher, S. Saro, B. Sulignano, P. Van Duppen

2013An10	PRVCA	87,	054311	A.N. Andreyev, V. Liberati, S. Antalic, D. Ackermann, A. Barzakh, N. Bree,
				T.E. Cocolios, J. Diriken, J. Elseviers, D. Fedorov, V.N. Fedosseev, D. Fink, S. Franchoo, S. Heinz, F.P. Hessberger, S. Hofmann, M. Huyse, O. Ivanov, J. Khuyagbaatar, B. Kindler, U. Koster, J.F.W. Lane, B. Lommel, R. Mann,
				B. Marsh, P. Molkanov, K. Nishio, R.D. Page, N. Patronis, D. Pauwels,
				D. Radulov, S. Saro, M. Seliverstov, M. Sjodin, I. Tsekhanovich, P. Van den Bergh, P. Van Duppen, M. Venhart, M. Veselsky
2013An13	PRLTA	110,	242502	A.N. Andreyev, M. Huyse, P. Van Duppen, C. Qi, R.J. Liotta, S. Antalic, D. Ack-
				ermann, S. Franchoo, F.P. Heßberger, S. Hofmann, I. Kojouharov, B. Kindler, P. Kuusiniemi, S.R. Lesher, B. Lommel, R. Mann, K. Nishio, R.D. Page, B. Stre-
				icher, Š. Šáro, B. Sulignano, D. Wiseman, R.A. Wyss
2013As01	PRVCA	87,	014309	A. Astier, MG. Porquet
2013As02	PRVCA	87,	014332	M. Asai, K. Tsukada, M. Sakama, H. Haba, T. Ichikawa, Y. Ishii, A. Toyoshima, T. Ishii, I. Nishinaka, Y. Nagame, Y. Kasamatsu, M. Shibata, Y. Kojima,
2013Ba29	PYLBB	723,	302	H. Hayashi A.M.D. Bacelar, A.M. Bruce, Zs. Podolyák, N. Al-Dahan, M. Górska,
2013142)	TTLDD	723,	302	S. Lalkovski, S. Pietri, M.V. Ricciardi, A. Algora, N. Alkhomashi, J. Benlliure, P. Boutachkov, A. Bracco, E. Calore, E. Casarejos, I.J. Cullen, A.Y. Deo, P. Detistov, Zs. Dombradi, C. Domingo-Pardo, M. Doncel, F. Farinon, G.F. Farrelly,
				H. Geissel, W. Gelletly, J. Gerl, N. Goel, J. Grebosz, R. Hoischen, I. Kojouharov,
				N. Kurz, S. Leoni, F. Molina, D. Montanari, A.I. Morales, A. Musumarra,
				D.R. Napoli, R. Nicolini, C. Nociforo, A. Prochazka, W. Prokopowicz, P.H. Regan, B. Rubio, D. Rudolph, KH. Schmidt, H. Schaffner, S.J. Steer, K. Steiger,
				P. Strmen, T.P.D. Swan, I. Szarka, J.J. Valiente-Dobón, S. Verma, P.M. Walker,
				H. Weick, H.J. Wollersheim
2013Ba41	PRVCA	88,	024315	A.E. Barzakh, L. Kh. Batist, D.V. Fedorov, V.S. Ivanov, K.A. Mezilev,
2013Be07	EPJAA	49,	24	P.L. Molkanov, F.V. Moroz, S. Yu. Orlov, V.N. Panteleev, Yu. M. Volkov P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich, S. d'Angelo,
2013 DC 07	LIJAA	42,	24	A. Di Marco, A. Incicchitti, G.P. Kovtun, N.G. Kovtun, M. Laubenstein,
				D.V. Poda, O.G. Polischuk, A.P. Shcherban, V.I. Tretyak
2013Be09	PRVCA	87,	034607	P. Belli, R. Bernabei, F. Cappella, R. Cerulli, F.A. Danevich, S. d'Angelo, A. In-
				cicchitti, G.P. Kovtun, N.G. Kovtun, M. Laubenstein, D.V. Poda, O.G. Polischuk, A.P. Shcherban, D.A. Solopikhin, J. Suhonen, V.I. Tretyak
2013Be16	EPJAA	49,	50	J.W. Beeman, F. Bellini, L. Cardani, N. Casali, S. Di Domizio, E. Fiorini,
				L. Gironi, S.S. Nagorny, S. Nisi, F. Orio, L. Pattavina, G. Pessina, G. Piperno,
2013Be31	EPJAA	49,	92	S. Pirro, E. Previtali, C. Rusconi, C. Tomei, M. Vignati G. Bellini, for the Borexino Collaboration
2013Bu12	PRVCA	88,	022501	S. Bustabad, G. Bollen, M. Brodeur, D.L. Lincoln, S.J. Novario, M. Redshaw,
		,		R. Ringle, S. Schwarz, A.A. Valverde
2013Bu17	PRVCA	88,	035502	S. Bustabad, G. Bollen, M. Brodeur, D.L. Lincoln, S.J. Novario, M. Redshaw,
2013Ca18	PRVCA	88,	034313	R. Ringle, S. Schwarz C. Caesar, for the R3B Collaboration
2013Ch12	PRLTA	110,	122502	L. Chen, P.M. Walker, H. Geissel, Yu. A. Litvinov, K. Beckert, P. Beller,
2010 01112	1112111	110,	122002	F. Bosch, D. Boutin, L. Caceres, J.J. Carroll, D.M. Cullen, I.J. Cullen,
				B. Franzke, J. Gerl, M. Górska, G.A. Jones, A. Kishada, R. Knöbel,
				C. Kozhuharov, J. Kurcewicz, S.A. Litvinov, Z. Liu, S. Mandal, F. Montes, G. Münzenberg, F. Nolden, T. Ohtsubo, Z. Patyk, W.R. Plaß, Zs. Podolyák,
				S. Rigby, N. Saito, T. Saito, C. Scheidenberger, E.C. Simpson, M. Shindo,
				M. Steck, B. Sun, S.J. Williams, H. Weick, M. Winkler, HJ. Wollersheim, T. Yamaguchi
2013Ch49	PRVCA	88,	054317	A. Chaudhuri, C. Andreoiu, T. Brunner, U. Chowdhury, S. Ettenauer, A.T. Gal-
				lant, G. Gwinner, A.A. Kwiatkowski, A. Lennarz, D. Lunney, T.D. Macdonald,
2013Da16	PYLBB	726,	665	B.E. Schultz, M.C. Simon, V.V. Simon, J. Dilling H.M. David, P.J. Woods, G. Lotay, D. Seweryniak, M. Albers, M. Al-
		. = 0,	300	corta, M.P. Carpenter, C.J. Chiara, T. Davinson, D.T. Doherty, C.R. Hoffman,
				R.V.F. Janssens, T. Lauritsen, A.M. Rogers, S. Zhu

2013De20	PRVCA	87,	067303	H. De Witte, S. Eeckhaudt, A.N. Andreyev, I.N. Borzov, J. Cederkäll,
		,		A. De Smet, D.V. Fedorov, V.N. Fedoseyev, S. Franchoo, M. Górska, H. Grawe, G. Huber, M. Huyse, Z. Janas, U. Köster, W. Kurcewicz, J. Kurpeta,
				A. Płochocki, K. Van de Vel, P. Van Duppen, L. Weissman
2013Dr01	PRVCA	87,	014326	G.D. Dracoulis, G.J. Lane, H. Watanabe, R.O. Hughes, N. Palalani, F.G. Kondev, M.P. Carpenter, R.V.F. Janssens, T. Lauritsen, C.J. Lister, D. Seweryniak, S. Zhu, P. Chaudham, W.Y. Liang, Y. Shi, E.P. Yu.
2013Dr04	EPJAA	49,	13	P. Chowdhury, W.Y. Liang, Y. Shi, F.R. Xu C. Droese, D. Ackermann, LL. Andersson, K. Blaum, M. Block,
				M. Dworschak, M. Eibach, S. Eliseev, U. Forsberg, E. Haettner, F. Herfurth, F.P. Heßberger, S. Hofmann, J. Ketelaer, G. Marx, E. Minaya Ramirez, D. Nesterenko, Yu. N. Novikov, W.R. Plaß, D. Rodríguez, D. Rudolph, C. Schei-
				denberger, L. Schweikhard, S. Stolze, P.G. Thirolf, C. Weber
2013Dr05	PYLBB	720,	330	G.D. Dracoulis, G.J. Lane, A.P. Byrne, H. Watanabe, R.O. Hughes, F.G. Kondev, M. Carpenter, R.V.F. Janssens, T. Lauritsen, C.J. Lister, D. Seweryniak, S. Zhu,
				P. Chowdhury, Y. Shi, F.R. Xu
2013Dr06	PRVCA	87,	054309	M.C. Drummond, D.T. Joss, R.D. Page, J. Simpson, D. O'Donnell, K. And-
				gren, L. Bianco, B. Cederwall, I.G. Darby, S. Eeckhaudt, M.B. Gomez-
				Hornillos, T. Grahn, P.T. Greenlees, B. Hadinia, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, AP. Leppänen, M. Leino, M. Nyman, J. Pakarinen, P. Rahkila,
				M. Sandzelius, P.J. Sapple, J. Sarén, B. Saygi, C. Scholey, J. Sorri, J. Thomson,
				J. Uusitalo, M. Venhart
2013El01	PRLTA	110,	082501	S. Eliseev, K. Blaum, M. Block, C. Droese, M. Goncharov, E. Minaya Ramirez,
2013Fi08	PRVCA	88,	011303	D.A. Nesterenko, Yu. N. Novikov, L. Schweikhard M. Fisichella, A. Musumarra, F. Farinon, C. Nociforo, A. Del oppo, P. Figuera,
20131100	1100011	00,	011303	M. La Cognata, M.G. Pellegriti, V. Scuderi, D. Torresi, E. Strano
2013Fl09	PRLTA	111,	212501	K.T. Flanagan, K.M. Lynch, J. Billowes, M.L. Bissell, I. Budincevic, T.E. Co-
				colios, R.P. de Groote, S. De Schepper, V.N. Fedosseev, S. Franchoo, R.F. Gar-
				cia Ruiz, H. Heylen, B.A. Marsh, G. Neyens, T.J. Procter, R.E. Rossel, S. Rothe, I. Strashnov, H.H. Stroke, K.D.A. Wendt
2013Fr13	PYLBB	722,	233	D. Frekers, M.C. Simon, C. Andreoiu, J.C. Bale, M. Brodeur, T. Brun-
				ner, A. Chaudhuri, U. Chowdhury, J.R.C. López-Urrutia, P. Delheij, H. Ejiri,
				S. Ettenauer, A.T. Gallant, V. Gavrin, A. Grossheim, M.N. Harakeh, F. Jang,
				A.A. Kwiatkowski, J. Lassen, A. Lennarz, M. Luichtl, T. Ma, T.D. Macdonald, E. Mané, D. Robertson, B.E. Schultz, V.V. Simon, A. Teigelhöfer, J. Dilling
2013Ga07	PRLTA	110,	062502	A. Gando, for the KamLAND-Zen Collaboration
2013Go10	PYLBB	725,	292	
				P. Boutachkov, A.M. Bruce, M. Górska, J. Grebosz, S. Pietri, Zs. Podolyák,
				M. Pfützner, P.H. Regan, H. Weick, J. Alcántara Núnez, A. Algora, N. Al-Dahan, G. de Angelis, Y. Ayyad, N. Alkhomashi, P.R.P. Allegro, D. Bazzacco, J. Ben-
				lliure, M. Bowry, A. Bracco, M. Bunce, F. Camera, E. Casarejos, M.L. Cortes,
				F.C.L. Crespi, A. Corsi, A.M.D. Bacelar, A.Y. Deo, C. Domingo-Pardo, M. Don-
				cel, Zs. Dombradi, T. Engert, K. Eppinger, G.F. Farrelly, F. Farinon, E. Farnea,
				H. Geissel, J. Gerl, N. Goel, E. Gregor, T. Habermann, R. Hoischen, R. Janik, P.R. John, S. Klupp, I. Kojouharov, N. Kurz, S.M. Lenzi, S. Leoni, S. Mandal,
				R. Menegazzo, D. Mengoni, B. Million, V. Modamio, A.I. Morales, D.R. Napoli,
				F. Naqvi, R. Nicolini, C. Nociforo, A. Prochazka, W. Prokopowicz, F. Recchia,
				R.V. Ribas, M.W. Reed, D. Rudolph, E. Sahin, H. Schaffner, A. Sharma, B. Sitar,
				D. Siwal, K. Steiger, P. Strmen, T.P.D. Swan, I. Szarka, C.A. Ur, P.M. Walker, O. Wieland, HJ. Wollersheim
2013Gr03	PRVCA	87,	045502	G.F. Grinyer, G.C. Ball, H. Bouzomita, S. Ettenauer, P. Finlay, A.B. Garnswor-
		•		thy, P.E. Garrett, K.L. Green, G. Hackman, J.R. Leslie, C.J. Pearson, E.T. Rand,
201211 22	DDI// /	0.0	050505	C.S. Sumithrarachchi, C.E. Svensson, J.C. Thomas, S. Triambak, S.J. Williams
2013Ho22 2013It01	PRVAA PRVCA	88, 88,	052502 011306	M. Höcker, R. Rana, E.G. Myers Y. Ito, P. Schury, M. Wada, S. Naimi, T. Sonoda, H. Mita, F. Arai, A. Takamine,
20131101	INVCA	00,	011300	K. Okada, A. Ozawa, H. Wollnik
2013Ja06	PRVCA	87,	054320	U. Jakobsson, S. Juutinen, J. Uusitalo, M. Leino, K. Auranen, T. Enqvist,
				P.T. Greenlees, K. Hauschild, P. Jones, R. Julin, S. Ketelhut, P. Kuusiniemi, M. Nyman, P. Peura, P. Rahkila, P. Ruotsalainen, J. Sarén, C. Scholey, J. Sorri

2013Ka08	PRVCA	87,	024307	A. Kankainen, J. Hakala, T. Eronen, D. Gorelov, A. Jokinen, V.S. Kolhinen, I.D. Moore, H. Penttilä, S. Rinta-Antila, J. Rissanen, A. Saastamoinen, V. Son-
2013Ka16	PRVCA	87,	044335	nenschein, J. Äystö Z. Kalaninová, A.N. Andreyev, S. Antalic, F.P. Heßberger, D. Ackermann, B. Andel, M.C. Drummond, S. Hofmann, M. Huyse, B. Kindler, J.F.W. Lane, V. Liberati, B. Lommel, R.D. Page, E. Rapisarda, K. Sandhu, Š. Šáro, A. Thorn-
2013Ko03	PRVCA	87,	011304	thwaite, P. Van Duppen Z. Kohley, E. Lunderberg, P.A. DeYoung, A. Volya, T. Baumann, D. Bazin, G. Christian, N.L. Cooper, N. Frank, A. Gade, C. Hall, J. Hinnefeld, B. Luther, S. Mosby, W.A. Peters, J.K. Smith, J. Snyder, A. Spyrou, M. Thoennessen
2013Ko10	PRLTA	110,	152501	Z. Kohley, T. Baumann, D. Bazin, G. Christian, P.A. DeYoung, J.E. Finck, N. Frank, M. Jones, E. Lunderberg, B. Luther, S. Mosby, T. Nagi, J.K. Smith, J. Snyder, A. Spyrou, M. Thoennessen
2013Ko20	ARISE	81,	140	K. Kossert, G. Jörg, C. Lierse v. Gostomski
2013Ko31	PRVCA	88,	044330	A. Korgul, K.P. Rykaczewski, R. Grzywacz, H. Sliwinska, J.C. Batchelder,
2013Kr15	NIMBE	317,	492	C. Bingham, I.N. Borzov, N. Brewer, L. Cartegni, A. Fijalkowska, C.J. Gross, J.H. Hamilton, C. Jost, M. Karny, W. Królas, S. Liu, C. Mazzocchi, M. Madurga, A.J. Mendez II, K. Miernik, D. Miller, S. Padgett, S. Paulauskas, D. Shapira, D. Stracener, K. Sieja, J.A. Winger, M. Wolinska-Cichocka, E.F. Zganjar S. Kreim, D. Atanasov, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, T.E. Cocolios, D. Fink, S. George, A. Herlert, A. Kellerbauer, U. Köster, M. Kowalska, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr,
				T. Nicol, R.E. Rossel, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, R.N. Wolf, K. Zuber
2013La02	PRVCA	87,	014318	J.F.W. Lane, A.N. Andreyev, S. Antalic, D. Ackermann, J. Gerl, F.P. Heßberger, S. Hofmann, M. Huyse, H. Kettunen, A. Kleinböhl, B. Kindler, I. Kojouharov, M. Leino, B. Lommel, G. Münzenberg, K. Nishio, R.D. Page, Š. Šáro, H. Schaffner, M.J. Taylor, P. Van Duppen
2013La11	PRVCA	87,	034308	S. Lalkovski, A.M. Bruce, A. Jungclaus, M. Górska, M. Pfützner, L. Cáceres, F. Naqvi, S. Pietri, Zs. Podolyák, G.S. Simpson, K. Andgren, P. Bednarczyk, T. Beck, J. Benlliure, G. Benzoni, E. Casarejos, B. Cederwall, F.C.L. Crespi, J.J. Cuenca-García, I.J. Cullen, A.M.D. Bacelar, P. Detistov, P. Doornenbal, G.F. Farrelly, A.B. Garnsworthy, H. Geissel, W. Gelletly, J. Gerl, J. Grebosz, B. Hadinia, M. Hellström, C. Hinke, R. Hoischen, G. Ilie, G. Jaworski, J. Jolie, A. Khaplanov, S. Kisyov, M. Kmiecik, I. Kojouharov, R. Kumar, N. Kurz, A. Maj, S. Mandal, V. Modamio, F. Montes, S. Myalski, M. Palacz, W. Prokopowicz, P. Reiter, P.H. Regan, D. Rudolph, H. Schaffner, D. Sohler, S.J. Steer, S. Tashenov, J. Walker, P.M. Walker, H. Weick, E. Werner-Malento, O. Wieland, H.J. Wollersheim, M. Zhekova
2013La23	PRVCA	88,	015501	A.T. Laffoley, C.E. Svensson, C. Andreoiu, R.A.E. Austin, G.C. Ball, B. Blank, H. Bouzomita, D.S. Cross, A. Diaz Varela, R. Dunlop, P. Finlay, A.B. Garnsworthy, P.E. Garrett, J. Giovinazzo, G.F. Grinyer, G. Hackman, B. Hadinia, D.S. Jamieson, S. Ketelhut, K.G. Leach, J.R. Leslie, E. Tardiff, J.C. Thomas, C. Unsworth
2013Le10	PRVCA	87,	034312	B. Lehnert, K. Zuber, E. Andreotti, M. Hult
2013Li01	PRLTA	110,	012501	D.L. Lincoln, J.D. Holt, G. Bollen, M. Brodeur, S. Bustabad, J. Engel, S.J. Novario, M. Redshaw, R. Ringle, S. Schwarz
2013Li49	PRVCA	88,	044322	V. Liberati, A.N. Andreyev, S. Antalic, A. Barzakh, T.E. Cocolios, J. Elseviers, D. Fedorov, V.N. Fedoseev, M. Huyse, D.T. Joss, Z. Kalaninová, U. Köster, J.F.W. Lane, B. Marsh, D. Mengoni, P. Molkanov, K. Nishio, R.D. Page, N. Patronis, D. Pauwels, D. Radulov, M. Seliverstov, M. Sjödin, I. Tsekhanovich, P. Van den Bergh, P. Van Duppen, M. Venhart, M. Veselsky
2013Ma13	ARISE	74,	123	M. Marouli, G. Suliman, S. Pommé, R. Van Ammel, V. Jobbágy, H. Stroh, H. Dikmen, J. Paepen, A. Dirican, F. Bruchertseifer, C. Apostolidis, A. Morgenstern
2013Ma15	NDSBA	114,	397	A. MacDonald, B. Karamy, K. Setoodehnia, B. Singh

2013Ma22	PRVCA	87,	034315	C. Mazzocchi, K.P. Rykaczewski, A. Korgul, R. Grzywacz, P. Baczyk, C. Bingham, N.T. Brewer, C.J. Gross, C. Jost, M. Karny, M. Madurga, A.J. Mendez II, K. Miernik, D. Miller, S. Padgett, S.V. Paulauskas, D.W. Stracener, M. Wolińska-
2013Ma81	PRVCA	88,	054322	Cichocka, I.N. Borzov V. Manea, D. Atanasov, D. Beck, K. Blaum, C. Borgmann, R.B. Cakirli, T. Eronen, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, Yu. A. Litvinov, D. Lunney, D. Neidherr, M. Rosenbusch, L. Schweikhard, F. Wienholtz, R.N. Wolf, K. Zuber
2013Ma87	PRVCA	88,	064320	C. Mazzocchi, R. Surman, R. Grzywacz, J.C. Batchelder, C.R. Bingham, D. Fong, J.H. Hamilton, J.K. Hwang, M. Karny, W. Królas, S.N. Liddick, P.F. Mantica, A.C. Morton, W.F. Mueller, K.P. Rykaczewski, M. Steiner, A. Stolz, J.A. Winger, I.N. Borzov
2013Ma.A	PrvCom	Apr	Lunney	Vladimir Manea
2013Mi13	PRVCA	88,	014309	K. Miernik, K.P. Rykaczewski, R. Grzywacz, C.J. Gross, D.W. Stracener, J.C. Batchelder, N.T. Brewer, L. Cartegni, A. Fijalkowska, J.H. Hamilton, J.K. Hwang, S.V. Ilyushkin, C. Jost, M. Karny, A. Korgul, W. Królas, S.H. Liu, M. Madurga, C. Mazzocchi, A.J. Mendez II, D. Miller, S.W. Padgett, S.V. Paulauskas, A.V. Ramayya, R. Surman, J.A. Winger, M. Wolinska-Cichocka, E.F. Zganjar
2013Mi19	PRLTA	111,	132502	K. Miernik, K.P. Rykaczewski, C.J. Gross, R. Grzywacz, M. Madurga, D. Miller, J.C. Batchelder, I.N. Borzov, N.T. Brewer, C. Jost, A. Korgul, C. Mazzocchi, A.J. Mendez II, Y. Liu, S.V. Paulauskas, D.W. Stracener, J.A. Winger, M. Wolinska-Cichocka, E.F. Zganjar
2013Mo12	NUPAB	909,	69	S. Mosby, N.S. Badger, T. Baumann, D. Bazin, M. Bennett, J. Brown, G. Christian, P.A. DeYoung, J.E. Finck, M. Gardner, J.D. Hinnefeld, E.A. Hook, E.M. Lunderberg, B. Luther, D.A. Meyer, M. Mosby, G.F. Peaslee, W.F. Rogers, J.K. Smith, J. Snyder, A. Spyrou, M.J. Strongman, M. Thoennessen
2013Mo20	PRVCA	88,	014319	A.I. Morales, J. Benlliure, M. Górska, H. Grawe, S. Verma, P.H. Regan, Zs. Podolyák, S. Pietri, R. Kumar, E. Casarejos, A. Algora, N. Alkhomashi, H. Álvarez-Pol, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, L.S. Cáceres, I.J. Cullen, A.M.D. Bacelar, P. Doornenbal, M.E. Estévez Aguado, G. Farrelly, Y. Fujita, A.B. Garnsworthy, W. Gelletly, J. Gerl, J. Grebosz, R. Hoischen, I. Kojouharov, N. Kurz, S. Lalkovski, Z. Liu, C. Mihai, F. Molina, D. Mücher, W. Prokopowicz, B. Rubio, H. Schaffner, S.J. Steer, A. Tamii, S. Tashenov, J.J. Valiente-Dobón, P.M. Walker, H.J. Wollersheim, P.J. Woods
2013Mu08	PRVCA	88,	024618	M. Murakami, S. Goto, H. Murayama, T. Kojima, H. Kudo, D. Kaji, K. Morimoto, H. Haba, Y. Kudou, T. Sumita, R. Sakai, A. Yoneda, K. Morita, Y. Kasamatsu, H. Kikunaga, T.K. Sato
2013Ny01	PRVCA	88,	054320	M. Nyman, S. Juutinen, I. Darby, S. Eeckhaudt, T. Grahn, P.T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, H. Kettunen, M. Leino, P. Nieminen, P. Peura, P. Rahkila, J. Sarén, C. Scholey, J. Sorri, J. Uusitalo, T. Enqvist
2013Og01	PRVCA	87,	014302	Yu. Ts. Oganessian, F. Sh. Abdullin, S.N. Dmitriev, J.M. Gostic, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, N.J. Stoyer, V.G. Subbotin, A.M. Sukhov, Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin
2013Og03	PRVCA	87,	034605	Yu. Ts. Oganessian, V.K. Utyonkov, F. Sh. Abdullin, S.N. Dmitriev, R. Graeger, R.A. Henderson, M.G. Itkis, Yu. V. Lobanov, A.N. Mezentsev, K.J. Moody, S.L. Nelson, A.N. Polyakov, M.A. Ryabinin, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.A. Stoyer, N.J. Stoyer, V.G. Subbotin, K. Subotic, A.M. Sukhov, Yu. S. Tsyganov, A. Türler, A.A. Voinov, G.K. Vostokin, P.A. Wilk, A. Yakushev
2013Og04	PRVCA	87,	054621	Yu. Ts. Oganessian, F. Sh. Abdullin, C. Alexander, J. Binder, R.A. Boll, S.N. Dmitriev, J. Ezold, K. Felker, J.M. Gostic, R.K. Grzywacz, J.H. Hamilton, R.A. Henderson, M.G. Itkis, K. Miernik, D. Miller, K.J. Moody, A.N. Polyakov, A.V. Ramayya, J.B. Roberto, M.A. Ryabinin, K.P. Rykaczewski, R.N. Sagaidak, D.A. Shaughnessy, I.V. Shirokovsky, M.V. Shumeiko, M.A. Stoyer, N.J. Stoyer, V.G. Subbotin, A.M. Sukhov, Yu. S. Tsyganov, V.K. Utyonkov, A.A. Voinov, G.K. Vostokin

2013Ol06	PRVCA	88,	044306	B. Olaizola, L.M. Fraile, H. Mach, A. Aprahamian, J.A. Briz, J. Cal-González, D. Ghita, U. Köster, W. Kurcewicz, S.R. Lesher, D. Pauwels, E. Picado,
2013Pr01	PRVCA	87,	014308	A. Poves, D. Radulov, G.S. Simpson, J.M. Udías M.G. Procter, D.M. Cullen, M.J. Taylor, J. Pakarinen, K. Auranen, T. Bäck, T. Braunroth, B. Cederwall, A. Dewald, T. Grahn, P.T. Greenlees, U. Jakobsson, R. Julin, S. Juutinen, A. Herzán, J. Konki, M. Leino, R. Liotta, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, C. Qi
2013Ra17	PRVCA	88,	014307	D. Radulov, C.J. Chiara, I.G. Darby, H. De Witte, J. Diriken, D.V. Fedorov, V.N. Fedosseev, L.M. Fraile, M. Huyse, U. Köster, B.A. Marsh, D. Pauwels, L. Popescu, M.D. Seliverstov, A.M. Sjödin, P. Van den Bergh, P. Van Duppen, M. Venhart, W.B. Walters, K. Wimmer
2013Re18	PRVCA	88,	041302	F. Recchia, C.J. Chiara, R.V.F. Janssens, D. Weisshaar, A. Gade, W.B. Walters, M. Albers, M. Alcorta, V.M. Bader, T. Baugher, D. Bazin, J.S. Berryman, P.F. Bertone, B.A. Brown, C.M. Campbell, M.P. Carpenter, J. Chen, H.L. Crawford, H.M. David, D.T. Doherty, C.R. Hoffman, F.G. Kondev, A. Korichi, C. Langer, N. Larson, T. Lauritsen, S.N. Liddick, E. Lunderberg, A.O. Macchiavelli, S. Noji, C. Prokop, A.M. Rogers, D. Seweryniak, S.R. Stroberg, S. Suchyta, S. Williams, K. Wimmer, S. Zhu
2013Ri07	PRVCA	88,	044313	J. Rissanen, R.M. Clark, K.E. Gregorich, J.M. Gates, C.M. Campbell, H.L. Crawford, M. Cromaz, N.E. Esker, P. Fallon, U. Forsberg, O. Gothe, IY. Lee, H.L. Liu, A.O. Machiavelli, P. Mudder, H. Nitsche, G. Pang, A. Rice, D. Rudolph, M.A. Stoyer, A. Wiens, F.R. Xu
2013Ro.A	PrvCom	GAu	May	Marco Rosenbusch
2013Ru07	PRVCA	87,	064317	M. Rudigier, G.S. Simpson, J.M. Daugas, A. Blazhev, C. Fransen, G. Gey, M. Hackstein, J. Jolie, U. Köster, T. Malkiewicz, T. Materna, M. Pfeiffer, M. Ramdhane, JM. Régis, W. Rother, T. Thomas, N. Warr, D. Wilmsen, J. Le Bloas, N. Pillet
2013Ru10	PRVCA	88,	024320	P. Ruotsalainen, C. Scholey, R. Julin, K. Hauschild, K. Kaneko, B.S. Nara Singh, R. Wadsworth, D.G. Jenkins, T.S. Brock, P.T. Greenlees, J. Henderson, U. Jakobsson, P. Jones, S. Juutinen, S. Ketelhut, M. Leino, N.M. Lumley, P.J.R. Mason, P. Nieminen, M. Nyman, I. Paterson, P. Peura, M.G. Procter, P. Rahkila, J. Sarén, J. Sorri, J. Uusitalo
2013Ru11	PRLTA	111,	112502	D. Rudolph, U. Forsberg, P. Golubev, L.G. Sarmiento, A. Yakushev, LL. Andersson, A. Di Nitto, Ch. E. Düllmann, J.M. Gates, K.E. Gregorich, C.J. Gross, F.P. Heßberger, RD. Herzberg, J. Khuyagbaatar, J.V. Kratz, K. Rykaczewski, M. Schädel, S. øAberg, D. Ackermann, M. Block, H. Brand, B.G. Carlsson, D. Cox, X. Derkx, K. Eberhardt, J. Even, C. Fahlander, J. Gerl, E. Jäger, B. Kindler, J. Krier, I. Kojouharov, N. Kurz, B. Lommel, A. Mistry, C. Mokry, H. Nitsche, J.P. Omtvedt, P. Papadakis, I. Ragnarsson, J. Runke, H. Schaffner, B. Schausten, P. Thörle-Pospiech, T. Torres, T. Traut, N. Trautmann, A. Türler, A. Ward, D.E. Ward, N. Wiehl
2013Rz01 2013Sa43	PRVCA EPJAA	87, 49,	031305 109	T. Rzaca-Urban, W. Urban, A.G. Smith, I. Ahmad, A. Syntfeld-Każuch J. Sauvage, B. Roussiére, J. Genevey, S. Franchoo, A.N. Andreyev, N. Barré, A. Ben Braham, C. Bourgeois, JF. Clavelin, H. De Witte, D.V. Fedorov, V.N. Fedoseyev, L.M. Fraile, X. Grave, G. Huber, M. Huyse, P. Kilcher, U. Köster, P. Kunz, S.R. Lesher, B.A. Marsh, I. Mukha, J. Oms, M.G. Porquet, M. Seliverstov, I. Stefanescu, K. Van de Vel, P. Van Duppen, YU.M. Volkov, A. Wojtasiewicz
2013Sa65	PRVCA	88,	064611	P. Salvador-Castineira, T. Brys, R. Eykens, FJ. Hambsch, A. Moens, S. Oberst-
2013Se03	PYLBB	719,	362	edt, G. Sibbens, D. Vanleeuw, M. Vidali, C. Pretel M.D. Seliverstov, T.E. Cocolios, W. Dexters, A.N. Andreyev, S. Antalic, A.E. Barzakh, B. Bastin, J. Büscher, I.G. Darby, D.V. Fedorov, V.N. Fedoseyev, K.T. Flanagan, S. Franchoo, S. Fritzsche, G. Huber, M. Huyse, M. Keupers, U. Köster, Yu. Kudryavtsev, B.A. Marsh, P.L. Molkanov, R.D. Page, A.M. Sjodin, I. Stefan, J. Van de Walle, P. Van Duppen, M. Venhart, S.G. Zemlyanoy

2013Sh30	PRVCA	88,	024310	D. Shubina, R.B. Cakirli, Yu. A. Litvinov, K. Blaum, C. Brandau, F. Bosch, J.J. Carroll, R.F. Casten, D.M. Cullen, I.J. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, C. Kozhuharov, R. Knöbel, J. Kurcewicz, N. Kuzminchuk, S.A. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, Z. Patyk, W.R. Plass, A. Prochazka, M.W. Reed, M.S. Sanjari, C. Scheidenberger, M. Steck, Th. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, P.M. Walker, H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yam-
2013Sn02	PRVCA	88,	031303	aguchi, C. Zhou J. Snyder, T. Baumann, G. Christian, R.A. Haring-Kaye, P.A. DeYoung, Z. Koh- ley, B. Luther, M. Mosby, S. Mosby, A. Simon, J.K. Smith, A. Spyrou, S. Stephenson, M. Thoennessen
2013St25	PRVCA	88,	054304	J. Stanja, Ch. Borgmann, J. Agramunt, A. Algora, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, T.E. Cocolios, L.M. Fraile, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, G. Simpson, F. Wienholtz, R.N. Wolf, K. Zuber
2013Su04	JUPSA	82,	024202	T. Sumita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, R. Sakai, A. Yoneda, A. Yoshida, H. Hasebe, K. Katori, N. Sato, Y. Wakabayashi, Si. Mitsuoka, Si. Goto, M. Murakami, Y. Kariya, F. Tokanai, K. Mayama, M. Takeyama, T. Moriya, E. Ideguchi, T. Yamaguchi, H. Kikunaga, J. Chiba, K. Morita
2013Su07	PRVCA	87,	024312	J. Su, W.P. Liu, N.C. Shu, S.Q. Yan, Z.H. Li, B. Guo, W.Z. Huang, S. Zeng, E.T. Li, S.J. Jin, X. Liu, Y.B. Wang, G. Lian, Y.J. Li, Y.S. Chen, X.X. Bai, J.S. Wang, Y.Y. Yang, R.F. Chen, S.W. Xu, J. Hu, S.Z. Chen, S.B. Ma, J.L. Han, P. Ma, Q. Hu, J.B. Ma, X.G. Cao, S.L. Jin, Z. Bai, K. Yang, F.D. Shi, W. Zhang, Z. Chen, L.X. Liu, Q.Y. Lin, X.S. Yan, X.H. Zhang, F. Fu, J.J. He, X.Q. Li, C. He, M.S. Smith
2013Su13	ARISE	77,	32	G. Suliman, S. Pommé, M. Marouli, R. Van Ammel, H. Stroh, V. Jobbágy,
2013Su23	NIMBE	317,	756	J. Paepen, A. Dirican, F. Bruchertseifer, C. Apostolidis, A. Morgenstern H. Suzuki, T. Kubo, N. Fukuda, N. Inabe, D. Kameda, H. Takeda, K. Yoshida, K. Kusaka, Y. Yanagisawa, M. Ohtake, H. Sato, Y. Shimizu, H. Baba, M. Kurokawa, T. Ohnishi, K. Tanaka, O.B. Tarasov, D. Bazin, D.J. Morrissey, B.M. Sherrill, K. Ieki, D. Murai, N. Iwasa, A. Chiba, Y. Ohkoda, E. Ideguchi, S. Go, R. Yokoyama, T. Fujii, D. Nishimura, H. Nishibata, S. Momota, M. Lewitowicz, G. DeFrance, I. Celikovic, K. Steiger
2013Tr09	PRLTA	111,	262501	V. Tripathi, S.L. Tabor, A. Volya, S.N. Liddick, P.C. Bender, N. Larson, C. Prokop, S. Suchyta, PL. Tai, J.M. VonMoss
2013Uj01	PRLTA	110,	032501	P. Ujic, F. de Oliveira Santos, M. Lewitowicz, N.L. Achouri, M. Assié, B. Bastin, C. Borcea, R. Borcea, A. Buta, A. Coc, G. de France, O. Kamalou, J. Kiener, A. Lepailleur, V. Meot, A. Pautrat, M.G. Saint Laurent, O. Sorlin, M. Stanoiu,
2013Uu01	PRVCA	87,	064304	V. Tatischeff J. Uusitalo, J. Sarén, S. Juutinen, M. Leino, S. Eeckhaudt, T. Grahn, P.T. Greenlees, U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, AP. Leppänen, M. Nyman, J. Pakarinen, P. Rahkila, C. Scholey, A. Semchenkov, J. Sorri, A. Steer, M. Venhart
2013Va10	PRVCA	87,	064303	A. Vancraeyenest, C.M. Petrache, D. Guinet, P.T. Greenlees, U. Jakobsson, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, M. Nyman, P. Peura, P. Rahkila, P. Ruotsalainen, J. Saren, C. Scholey, J. Sorri, J. Uusitalo, P. Jones, C. Ducoin, P. Lautesse, C. Mancuso, N. Redon, O. Stezowski, P. Désesquelles, R. Leguillon, A. Korichi, T. Zerrouki, D. Curien, A. Takashima
2013Va12	PRLTA	111,	061102	J. Van Schelt, D. Lascar, G. Savard, J.A. Clark, P.F. Bertone, S. Caldwell, A. Chaudhuri, A.F. Levand, G. Li, G.E. Morgan, R. Orford, R.E. Segel, K.S. Sharma, M.G. Sternberg
2013Ve03	PRVCA	87,	054307	D. Verney, B. Tastet, K. Kolos, F. Le Blanc, F. Ibrahim, M.C. Mhamed, E. Cottereau, P.V. Cuong, F. Didierjean, G. Duchêne, S. Essabaa, M. Ferraton, S. Franchoo, L.H. Khiem, C. Lau, JF. Le Du, I. Matea, B. Mouginot, M. Niikura, B. Roussière, I. Stefan, D. Testov, JC. Thomas
2013Vo10	PRLTA	111,	122501	A. Voss, M.R. Pearson, J. Billowes, F. Buchinger, B. Cheal, J.E. Crawford, A.A. Kwiatkowski, C.D.P. Levy, O. Shelbaya

2013Wi06	NATUA	498,	346	F. Wienholtz, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, S. George, F. Herfurth, J.D. Holt, M. Kowalska, S. Kreim, D. Lunney, V. Manea, J. Menendez, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Schwenk, J. Si
2013Wo05	IJMPD	349,	123	monis, J. Stanja, K. Zuber R.N. Wolf, F. Wienholtz, D. Atanasov, D. Beck, K. Blaum, Ch. Borgmann, F. Herfurth, M. Kowalska, S. Kreim, Yu. A. Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, K. Zuber and Prv- Com GAu January 2015
2013Wo06	PRLTA	110,	041101	R.N. Wolf, D. Beck, K. Blaum, Ch. Böhm, Ch. Borgmann, M. Breitenfeldt, N. Chamel, S. Goriely, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, F. Wienholtz, K. Zuber
2013Wr01	PRVCA	87,	031303	C. Wrede, S.K.L. Sjue, A. García, H.E. Swanson, I. Ahmad, A. Algora, VV. Elomaa, T. Eronen, J. Hakala, A. Jokinen, V.S. Kolhinen, I.D. Moore, H. Penttilä, M. Reponen, J. Rissanen, A. Saastamoinen, J. Äystö
2013Ya03	APJLA	766,	8	X.L. Yan, H.S. Xu, Yu. A. Litvinov, Y.H. Zhang, H. Schatz, X.L. Tu, K. Blaum, X.H. Zhou, B.H. Sun, J.J. He, Y. Sun, M. Wang, Y.J. Yuan, J.W. Xia, J.C. Yang, G. Audi, G.B. Jia, Z.G. Hu, X.W. Ma, R.S. Mao, B. Mei, P. Shuai, Z.Y. Sun, S.T. Wang, G.Q. Xiao, X. XU, T. Yamaguchi, Y. Yamaguchi, Y.D. Zang, H.W. Zhao, T.C. Zhao, W. Zhang, W.L. Zhan
2013Yo02	PRLTA	110,	192501	D.T. Yordanov, D.L. Balabanski, J. Bieroń, M.L. Bissell, K. Blaum, I. Budincevic, S. Fritzsche, N. Frömmgen, G. Georgiev, Ch. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, W. Nörtershäuser, J. Papuga, S. Schmidt
2013Yu07	PRLTA	111,	222501	A.T. Yue, M.S. Dewey, D.M. Gilliam, G.L. Greene, A.B. Laptev, J.S. Nico, W.M. Snow, F.E. Wietfeldt
				2014
2014Al03	PRVCA	90	015500	I D. All I THE TWO C. H. I.
		89	ロロうついと	LB Albert and The EXO Collaboration
2014An10	PRVCA	89, 90,	015502 044312	J.B. Albert, and The EXO Collaboration A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart
2014An10	PRVCA	90,	044312	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart
	PRVCA NUPAB PRVCA			A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart R. Arnold, and The NEMO-3 Collaboration A. Astier, T. Konstantinopoulos, MG. Porquet, M. Houry, R. Lucas, Ch. Theisen
2014An10 2014Ar08	PRVCA NUPAB	90, 925,	044312	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart R. Arnold, and The NEMO-3 Collaboration A. Astier, T. Konstantinopoulos, MG. Porquet, M. Houry, R. Lucas, Ch. Theisen K. Auranen, J. Uusitalo, S. Juutinen, U. Jakobsson, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, R. Julin, J. Konki, M. Leino, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey,
2014An10 2014Ar08 2014As02	PRVCA NUPAB PRVCA	90, 925, 89,	044312 25 034310	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart R. Arnold, and The NEMO-3 Collaboration A. Astier, T. Konstantinopoulos, MG. Porquet, M. Houry, R. Lucas, Ch. Theisen K. Auranen, J. Uusitalo, S. Juutinen, U. Jakobsson, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, R. Julin, J. Konki, M. Leino, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze J.C. Batchelder, N.T. Brewer, C.J. Gross, R. Grzywacz, J.H. Hamilton, M. Karny, A. Fijalkowska, S.H. Liu, K. Miernik, S.W. Padgett, S.V. Paulauskas,
2014An10 2014Ar08 2014As02 2014Au03	PRVCA NUPAB PRVCA PRVCA	90, 925, 89, 90,	044312 25 034310 024310	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart R. Arnold, and The NEMO-3 Collaboration A. Astier, T. Konstantinopoulos, MG. Porquet, M. Houry, R. Lucas, Ch. Theisen K. Auranen, J. Uusitalo, S. Juutinen, U. Jakobsson, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, R. Julin, J. Konki, M. Leino, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze J.C. Batchelder, N.T. Brewer, C.J. Gross, R. Grzywacz, J.H. Hamilton, M. Karny, A. Fijalkowska, S.H. Liu, K. Miernik, S.W. Padgett, S.V. Paulauskas, K.P. Rykaczewski, A.V. Ramayya, D.W. Stracener, M. Wolinska-Cichocka Ch. Böhm, Ch. Borgmann, G. Audi, D. Beck, K. Blaum, M. Breitenfeldt, R.B. Cakirli, T.E. Cocolios, S. Eliseev, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, J. Stanja, M. Wang, R.N. Wolf,
2014An10 2014Ar08 2014As02 2014Au03 2014Ba18	PRVCA NUPAB PRVCA PRVCA	90, 925, 89, 90,	044312 25 034310 024310 054321	A.N. Andreyev, S. Antalic, D. Ackermann, T.E. Cocolios, J. Elseviers, S. Franchoo, S. Heinz, F.P. Heßberger, S. Hofmann, M. Huyse, J. Khuyagbaatar, B. Kindler, B. Lommel, R. Mann, R.D. Page, P. Van Duppen, M. Venhart R. Arnold, and The NEMO-3 Collaboration A. Astier, T. Konstantinopoulos, MG. Porquet, M. Houry, R. Lucas, Ch. Theisen K. Auranen, J. Uusitalo, S. Juutinen, U. Jakobsson, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, R. Julin, J. Konki, M. Leino, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze J.C. Batchelder, N.T. Brewer, C.J. Gross, R. Grzywacz, J.H. Hamilton, M. Karny, A. Fijalkowska, S.H. Liu, K. Miernik, S.W. Padgett, S.V. Paulauskas, K.P. Rykaczewski, A.V. Ramayya, D.W. Stracener, M. Wolinska-Cichocka Ch. Böhm, Ch. Borgmann, G. Audi, D. Beck, K. Blaum, M. Breitenfeldt, R.B. Cakirli, T.E. Cocolios, S. Eliseev, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, D. Lunney, V. Manea, E. Minaya Ramirez, S. Naimi,

2014Br19	PRLTA	113,	232501	K.W. Brown, R.J. Charity, L.G. Sobotka, Z. Chajecki, L.V. Grigorenko, I.A. Egorova, Yu. L. Parfenova, M.V. Zhukov, S. Bedoor, W.W. Buhro, J.M. Elson, W.G. Lynch, J. Manfredi, D.G. McNeel, W. Reviol, R. Shane, R.H. Showal-
2014Bu06	PRVCA	90,	014317	ter, M.B. Tsang, J.R. Winkelbauer, A.H. Wuosmaa I. Budincevic, J. Billowes, M.L. Bissell, T.E. Cocolios, R.P. de Groote, S. De Schepper, V.N. Fedosseev, K.T. Flanagan, S. Franchoo, R.F. Garcia Ruiz, H. Heylen, K.M. Lynch, B.A. Marsh, G. Neyens, T.J. Procter, R.E. Rossel, S. Rothe, I. Strashnov, H.H. Stroke, K.D.A. Wendt
2014Ca03	PRLTA	112,	092501	R.J. Carroll, R.D. Page, D.T. Joss, J. Uusitalo, I.G. Darby, K. Andgren, B. Cederwall, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P.T. Greenlees, B. Hadinia, P.M. Jones, R. Julin, S. Juutinen, M. Leino, AP. Leppänen, M. Nyman, D. O'Donnell, J. Pakarinen, P. Rahkila, M. Sandzelius, J. Sarén, C. Scholey, D. Seweryniak, J. Simpson
2014Ca13	JPGPE	40,	075101	N. Casali, S.S. Nagorny, F. Orio, L. Pattavina, J.W. Beeman, F. Bellini, L. Cardani, I. Dafinei, S. Di Domizio, M.L. Di Vacri, L. Gironi, M.B. Kosmyna, B.P. Nazarenko, S. Nisi, G. Pessina, G. Piperno, S. Pirro, C. Rusconi, A.N. Shekhovtsov, C. Tomei, M. Vignati
2014Ca46	JPGPE	41,	075204	L. Cardani, L. Gironi, N. Ferreiro Iachellini, L. Pattavina, J.W. Beeman, F. Bellini, N. Casali, O. Cremonesi, I. Dafinei, S. Di Domizio, F. Ferroni, E. Galashov, C. Gotti, S. Nagorny, F. Orio, G. Pessina, G. Piperno, S. Pirro, E. Previtali, C. Rusconi, C. Tomei, M. Vignati
2014Ch47	PRVCA	90,	044302	J. Chen, I. Ahmad, J.P. Greene, F.G. Kondev
2014Cr02	PRVCA	89,	041303	H.L. Crawford, P. Fallon, A.O. Macchiavelli, R.M. Clark, B.A. Brown, J.A. Tostevin, D. Bazin, N. Aoi, P. Doornenbal, M. Matsushita, H. Scheit, D. Steppenbeck, S. Takeuchi, H. Baba, C.M. Campbell, M. Cromaz, E. Ideguchi, N. Kobayashi, Y. Kondo, G. Lee, I.Y. Lee, J. Lee, K. Li, S. Michimasa, T. Motobayashi, T. Nakamura, S. Ota, S. Paschalis, M. Petri, T. Sako, H. Sakurai, S. Shimoura, M. Takechi, Y. Togano, H. Wang, K. Yoneda
2014De41	PYLBB	738,	453	M. Del Santo, Z. Meisel, D. Bazin, A. Becerril, B.A. Brown, H. Crawford, R. Cyburt, S. George, G.F. Grinyer, G. Lorusso, P.F. Mantica, F. Montes, J. Pereira, H. Schatz, K. Smith, M. Wiescher
2014Di08	PYLBB	736,	533	J. Diriken, N. Patronis, A.N. Andreyev, S. Antalic, V. Bildstein, A. Blazhev, I.G. Darby, H. De Witte, J. Eberth, J. Elseviers, V.N. Fedosseev, F. Flavigny, Ch. Fransen, G. Georgiev, R. Gernhauser, H. Hess, M. Huyse, J. Jolie, Th. Kröll, R. Krücken, R. Lutter, B.A. Marsh, T. Mertzimekis, D. Muecher, F. Nowacki, R. Orlandi, A. Pakou, R. Raabe, G. Randisi, P. Reiter, T. Roger, M. Seidlitz, M. Seliverstov, K. Sieja, C. Sotty, H. Tornqvist, J. Van De Walle, P. Van Duppen,
2014Dr02	PRVCA	89,	064309	D. Voulot, N. Warr, F. Wenander, K. Wimmer M.C. Drummond, D. O'Donnell, R.D. Page, D.T. Joss, L. Capponi, D.M. Cox, I.G. Darby, L. Donosa, F. Filmer, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, A. Lopez-Martens, A.K. Mistry, P. Nieminen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, B. Saygi, C. Scholey, J. Simpson, J. Sorri, A. Thornthwaite, J. Uusitalo
2014Ei01	PRVCA	89,	064318	M. Eibach, T. Beyer, K. Blaum, M. Block, Ch. E. Düllmann, K. Eberhardt, J. Grund, Sz. Nagy, H. Nitsche, W. Nörtershäuser, D. Renisch, K.P. Rykaczewski, F. Schneider, C. Smorra, J. Vieten, M. Wang, K. Wendt
2014Fe01	PYLBB	728,	191	R. Ferrer, N. Bree, T.E. Cocolios, I.G. Darby, H. De Witte, W. Dexters, J. Diriken, J. Elseviers, S. Franchoo, M. Huyse, N. Kesteloot, Yu. Kudryavtsev, D. Pauwels, D. Radulov, T. Roger, H. Savajols, P. Van Duppen, M. Venhart
2014Fi01	PRVCA	89,	014617	R.B. Firestone, Zs. Revay, T. Belgya
2014Ga09	ARISE	87,	122	E. Garcia-Torano, V. Peyres Medina, E. Romero, M. Roteta
2014Ga20	PRLTA	113,	082501	A.T. Gallant, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A. Grossheim, R. Klawitter, A.A. Kwiatkowski, K.G. Leach, A. Lennarz, T.D. Macdonald, B.E. Schultz, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, B.A. Brown, A. Magilligan, J.D. Holt, J. Menéndez, J. Simonis, A. Schwenk, J. Dilling

2014Ha04	PRVCA	89,	024618	H. Haba, M. Huang, D. Kaji, J. Kanaya, Y. Kudou, K. Morimoto, K. Morita, M. Murakami, K. Ozeki, R. Sakai, T. Sumita, Y. Wakabayashi, A. Yoneda, Y. Kasamatsu, Y. Kikutani, Y. Komori, K. Nakamura, A. Shinohara, H. Kiku-
2014Ha38	NIMAE	747,	41	naga, H. Kudo, K. Nishio, A. Toyoshima, K. Tsukada H. Hayashi, M. Shibata, M. Asai, A. Osa, T.K. Sato, M. Koizumi, A. Kimura, M. Oshima
2014Hu02	PRVCA	89,	014606	A.M. Hurst, R.B. Firestone, B.W. Sleaford, N.C. Summers, Zs. Révay, L. Szent-miklósi, M.S. Basunia, T. Belgya, J.E. Escher, M. Krticka
2014Hu07	ARISE	87,	112	M. Hult, T. Vidmar, U. Rosengard, G. Marissens, G. Lutter, N. Sahin
2014Io01	PRVCA	90,	014323	M. Ionescu-Bujor, A. Iordachescu, N. Marginean, R. Lica, D. Bucurescu, F. Brandolini, D. Deleanu, D. Filipescu, I. Gheorghe, D. Ghita, T. Glodariu, R. Marginean, N.H. Medina, C. Mihai, A. Negret, L. Stroe, C.A. Ur
2014Ka22	PRVCA	89,	051302	A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V.S. Kolhinen, M. Reponen, J. Rissanen, A. Saastamoinen, V. Sonnenschein, J. Äystö
2014Ka23	PRVCA	89,	054312	Z. Kalaninová, S. Antalic, A.N. Andreyev, F.P. Heßberger, D. Ackermann, B. Andel, L. Bianco, S. Hofmann, M. Huyse, B. Kindler, B. Lommel, R. Mann, R.D. Page, P.J. Sapple, J. Thomson, P. Van Duppen, M. Venhart
2014Kh04	PRLTA	112,	172501	J. Khuyagbaatar, A. Yakushev, C.E. Düllmann, D. Ackermann, LL. Andersson, M. Asai, M. Block, R.A. Boll, H. Brand, D.M. Cox, M. Dasgupta, X. Derkx, A. Di Nitto, K. Eberhardt, J. Even, M. Evers, C. Fahlander, U. Forsberg, J.M. Gates, N. Gharibyan, P. Golubev, K.E. Gregorich, J.H. Hamilton, W. Hartmann, RD. Herzberg, F.P. Heßberger, D.J. Hinde, J. Hoffmann, R. Hollinger, A. Hübner, E. Jäger, B. Kindler, J.V. Kratz, J. Krier, N. Kurz, M. Laatiaoui, S. Lahiri, R. Lang, B. Lommel, M. Maiti, K. Miernik, S. Minami, A. Mistry, C. Mokry, H. Nitsche, J.P. Omtvedt, G.K. Pang, P. Papadakis, D. Renisch, J. Roberto, D. Rudolph, J. Runke, K.P. Rykaczewski, L.G. Sarmiento, M. Schädel, B. Schausten, A. Semchenkov, D.A. Shaughnessy, P. Steinegger, J. Steiner, E.E. Tereshatov, P. Thörle-Pospiech, K. Tinschert, T. Torres De Heidenreich, N. Trautmann, A. Türler, J. Uusitalo, D.E. Ward, M. Wegrzecki, N. Wiehl, S.M. Van Cleve, V. Yakusheva
2014Ko14	PRLTA	112,	242501	N. Kobayashi, T. Nakamura, Y. Kondo, J.A. Tostevin, Y. Utsuno, N. Aoi, H. Baba, R. Barthelemy, M.A. Famiano, N. Fukuda, N. Inabe, M. Ishihara, R. Kanungo, S. Kim, T. Kubo, G.S. Lee, H.S. Lee, M. Matsushita, T. Motobayashi, T. Ohnishi, N.A. Orr, H. Otsu, T. Otsuka, T. Sako, H. Sakurai, Y. Satou, T. Sumikama, H. Takeda, S. Takeuchi, R. Tanaka, Y. Togano, K. Yoneda
2014Ko17	PRVCA	89,	064315	G.T. Koldste, B. Blank, M.J.G. Borge, J.A. Briz, M. Carmona-Gallardo, L.M. Fraile, H.O.U. Fynbo, J. Giovinazzo, B.D. Grann, J.G. Johansen, A. Jokinen, B. Jonson, T. Kurturkian-Nieto, J.H. Kusk, T. Nilsson, A. Perea, V. Pesudo, E. Picado, K. Riisager, A. Saastamoinen, O. Tengblad, JC. Thomas, J. Van de Walle
2014Kr04	PYLBB	731,	97	K. Kreim, M.L. Bissell, J. Papuga, K. Blaum, M. De Rydt, R.F. Garcia Ruiz, S. Goriely, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nortershauser, M.M. Rajabali, R. Sanchez Alarcon, H.H. Stroke, D.T. Yordanov
2014Kr09	PRVCA	90,	024301	S. Kreim, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, T.E. Cocolios, A. Gottberg, F. Herfurth, M. Kowalska, Yu. A. Litvinov, D. Lunney, V. Manea, T.M. Mendonca, S. Naimi, D. Neidherr, M. Rosenbusch, L. Schweikhard, Th. Stora, F. Wienholtz, R.N. Wolf, K. Zuber and PrvCom GAu February 2015
2014Ku23	EPJAA	50,	135	T. Kurtukian-Nieto, J. Benlliure, KH. Schmidt, L. Audouin, F. Becker, B. Blank, I.N. Borzov, E. Casarejos, F. Farget, M. Ferández-Ordóñez, J. Giovinazzo, D. Henzlova, B. Jurado, K. Langanke, G. Martínez-Pinedo, J. Pereira, O. Yordanov
2014Kw04	PRVCA	89,	045502	A.A. Kwiatkowski, T. Brunner, J.D. Holt, A. Chaudhuri, U. Chowdhury, M. Eibach, J. Engel, A.T. Gallant, A. Grossheim, M. Horoi, A. Lennarz, T.D. Macdonald, M.R. Pearson, B.E. Schultz, M.C. Simon, R.A. Senkov, V.V. Simon, K. Zuber, J. Dilling
2014Lo10	EPJAA	50,	132	A. Lopez-Martens, K. Hauschild, K. Rezynkina, O. Dorvaux, B. Gall, F. Déchery, H. Faure, A.V. Yeremin, M.L. Chelnokov, V.I. Chepigin, A.V. Isaev, I.N. Izosimov, D.E. Katrasev, A.N. Kuznetsov, A.A. Kuznetsova, O.N. Malyshev, A.G. Popeko, E.A. Sokol, A.I. Svirikhin, J. Piot, J. Rubert

2014Lu07	PRVCA	89,	044326	Y.X. Luo, J.O. Rasmussen, J.H. Hamilton, A.V. Ramayya, E. Wang, Y.X. Liu, C.F. Jiao, W.Y. Liang, F.R. Xu, Y. Sun, S. Frauendorf, J.K. Hwang, S.H. Liu, S.J. Zhu, N.T. Brewer, I.Y. Lee, G.M. Ter-Akopian, Yu. Oganessian, R. Donan-
2014Ly01	PRXHA	4,	011055	gelo, W.C. Ma K.M. Lynch, J. Billowes, M.L. Bissell, I. Budincevic, T.E. Cocolios, R.P. De Groote, S. De Schepper, V.N. Fedosseev, K.T. Flanagan, S. Franchoo, R.F. Garcia Ruiz, H. Heylen, B.A. Marsh, G. Neyens, T.J. Procter, R.E. Rossel, S. Rothe, I. Strashnov, H.H. Stroke, K.D.A. Wendt
2014Ma21	PRVCA	89,	044318	T.D. Macdonald, B.E. Schultz, J.C. Bale, A. Chaudhuri, U. Chowdhury, D. Frekers, A.T. Gallant, A. Grossheim, A.A. Kwiatkowski, A. Lennarz, M.C. Simon,
2014Mi12	NDSBA	120,	56	V.V. Simon, J. Dilling K. Miernik, C.J. Gross, R. Grzywacz, M. Madurga, A.J. Mendez II, K.P. Rykaczewski, D.W. Stracener, E.F. Zganjar
2014Mi16	PRVCA	90,	034311	K. Miernik, K.P. Rykaczewski, C.J. Gross, R. Grzywacz, M. Madurga, D. Miller, J.C. Batchelder, N.T. Brewer, C.U. Jost, K. Kolos, A. Korgul, C. Mazzocchi, A.J. Mendez II, Y. Liu, S.V. Paulauskas, D.W. Stracener, J.A. Winger, M. Wolinska-Cichocka, E.F. Zganjar
2014Mo02	PRVCA	89,	014324	A.I. Morales, G. Benzoni, A. Gottardo, J.J. Valiente-Dobón, N. Blasi, A. Bracco, F. Camera, F.C.L. Crespi, A. Corsi, S. Leoni, B. Million, R. Nicolini, O. Wieland, A. Gadea, S. Lunardi, M. Górska, P.H. Regan, Zs. Podolyák, M. Pfützner, S. Pietri, P. Boutachkov, H. Weick, J. Grebosz, A.M. Bruce, J. Alcántara Núñez, A. Algora, N. Al-Dahan, Y. Ayyad, N. Alkhomashi, P.R.P. Allegro, D. Bazzacco, J. Benlliure, M. Bowry, M. Bunce, E. Casarejos, M.L. Cortes, A.M.D. Bacelar, A.Y. Deo, G. de Angelis, C. Domingo-Pardo, M. Doncel, Zs. Dombradi, T. Engert, K. Eppinger, G.F. Farrelly, F. Farinon, E. Farnea, H. Geissel, J. Gerl, N. Goel, E. Gregor, T. Habermann, R. Hoischen, R. Janik, S. Klupp, I. Kojouharov, N. Kurz, S. Mandal, R. Menegazzo, D. Mengoni, D.R. Napoli, F. Naqvi, C. Nociforo, A. Prochazka, W. Prokopowicz, F. Recchia, R.V. Ribas, M.W. Reed, D. Rudolph, E. Sahin, H. Schaffner, A. Sharma, B. Sitar, D. Siwal, K. Steiger, P. Strmen, T.P.D. Swan, I. Szarka, C.A. Ur, P.M. Walker, HJ. Wollersheim
2014Mo15	PRLTA	113,	022702	A.I. Morales, J. Benlliure, T. Kurtukián-Nieto, KH. Schmidt, S. Verma, P.H. Regan, Z. Podolyák, M. Górska, S. Pietri, R. Kumar, E. Casarejos, N. Al-Dahan, A. Algora, N. Alkhomashi, H. Álvarez-Pol, G. Benzoni, A. Blazhev, P. Boutachkov, A.M. Bruce, L.S. Cáceres, I.J. Cullen, A.M.D. Bacelar, P. Doornenbal, M.E. Estévez Aguado, G. Farrelly, Y. Fujita, A.B. Garnsworthy, W. Gelletly, J. Gerl, J. Grebosz, R. Hoischen, I. Kojouharov, N. Kurz, S. Lalkovski, Z. Liu, C. Mihai, F. Molina, D. Mücher, B. Rubio, H. Shaffner, S.J. Steer, A. Tamii, S. Tashenov, J.J. Valiente-Dobón, P.M. Walker, H.J. Wollersheim, P.J. Woods
2014Na10	PRLTA	112,	142501	T. Nakamura, N. Kobayashi, Y. Kondo, Y. Satou, J.A. Tostevin, Y. Utsuno, N. Aoi, H. Baba, N. Fukuda, J. Gibelin, N. Inabe, M. Ishihara, D. Kameda, T. Kubo, T. Motobayashi, T. Ohnishi, N.A. Orr, H. Otsu, T. Otsuka, H. Sakurai, T. Sumikama, H. Takeda, E. Takeshita, M. Takechi, S. Takeuchi, Y. Togano, K. Yoneda
2014Ne15	PRVCA	90,	042501	D.A. Nesterenko, S. Eliseev, K. Blaum, M. Block, S. Chenmarev, A. Dörr, C. Droese, P.E. Filianin, M. Goncharov, E. Minaya Ramirez, Yu. N. Novikov, L. Schweikhard, V.V. Simon
2014Or04	PRLTA	112,	222501	S.E.A. Orrigo, B. Rubio, Y. Fujita, B. Blank, W. Gelletly, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, L. Cáceres, R.B. Cakirli, H. Fujita, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Grévy, O. Kamalou, H.C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A.M. Rogers, G. Susoy, C. Stodel, T. Suzuki, A. Tamii, J.C. Thomas
2014Pa45	PRVCA	90,	034321	J. Papuga, M.L. Bissell, K. Kreim, C. Barbieri, K. Blaum, M. De Rydt, T. Duguet, R.F. Garcia Ruiz, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M.M. Rajabali, R. Sánchez, N. Smirnova, V. Somà, D.T. Yordanov

2014Pe02	PRVCA	89,	024316	P. Peura, C. Scholey, D.T. Joss, S. Juutinen, R. Julin, T. Bäck, B. Cederwall, P.T. Greenlees, U. Jakobsson, P. Jones, D.S. Judson, S. Ketelhut, M. Labiche, M. Leino, M. Nyman, D. O'Donnell, R.D. Page, P. Rahkila, P. Ruotsalainen, M. Sandzelius, P.J. Sapple, J. Sarén, J. Simpson, J. Thomson, J. Uusitalo, H.V. Wetking.
2014Po02	ARISE	87,	315	H.V. Watkins S. Pommé, E. García-Torano, M. Marouli, M.T. Crespo, V. Jobbagy, R. Van Ammel, J. Paepen, H. Stroh
2014Po05	PRVCA	90,	014311	M. Pomorski, M. Pfützner, W. Dominik, R. Grzywacz, A. Stolz, T. Baumann, J.S. Berryman, H. Czyrkowski, R. Dabrowski, A. Fijalkowska, T. Ginter, J. Johnson, G. Kaminski, N. Larson, S.N. Liddick, M. Madurga, C. Mazzocchi, S. Mianowski, K. Miernik, D. Miller, S. Paulauskas, J. Pereira, K.P. Rykaczewski, S. Suchyta
2014Ra07	PRVCA	89,	034320	G. Randisi, A. Leprince, H. Al Falou, N.A. Orr, F.M. Marqués, N.L. Achouri, JC. Angélique, N. Ashwood, B. Bastin, T. Bloxham, B.A. Brown, W.N. Catford, N. Curtis, F. Delaunay, M. Freer, E. de Góes Brennand, P. Haigh, F. Hanappe, C. Harlin, B. Laurent, JL. Lecouey, A. Ninane, N. Patterson, D. Price, L. Stuttgé, J.S. Thomas
2014Ra20	JPGPE	41,	115104	M.M. Rajabali, R. Grzywacz, S.N. Liddick, C. Mazzocchi, J.C. Batchelder, T. Baumann, C.R. Bingham, I.G. Darby, T.N. Ginter, S.V. Ilyushkin, M. Karny, W. Królas, P.F. Mantica, K. Miernik, M. Pfützner, K.P. Rykaczewski, D. Weisshaar, J.A. Winger
2014Ra.1	JLTPA to b	e pd		P.CO. Ranitzsch, C. Hassel, M. Wegner, S. Kempf, A. Fleischmann, C. Enss,
2014Ri01	PYLBB	732,	305	L. Gastaldo, A. Herlert, K. Johnston and arXiv 1409. 0071v1 K. Riisager, O. Forstner, M.J.G. Borge, J.A. Briz, M. Carmona-Gallardo, L.M. Fraile, H.O.U. Fynbo, T. Giles, A. Gottberg, A. Heinz, J.G. Johansen, B. Jonson, J. Kurcewicz, M.V. Lund, T. Nilsson, G. Nyman, E. Rapisarda,
2014Sa46	PYLBB	736,	137	P. Steier, O. Tengblad, R. Thies, S.R. Winkler A. Sanetullaev, M.B. Tsang, W.G. Lynch, Jenny Lee, D. Bazin, K.P. Chan, D. Coupland, V. Henzl, D. Henzlova, M. Kilburn, A.M. Rogers, Z.Y. Sun, M. Youngs, R.J. Charity, L.G. Sobotka, M. Famiano, S. Hudan, D. Shapira, W.A. Peters, C. Barbieri, M. Hjorth-Jensen, M. Horoi, T. Otsuka, T. Suzuki, Y. Utsuno
2014Sc09	PRVCA	90,	012501	B.E. Schultz, M. Brodeur, C. Andreoiu, A. Bader, A. Chaudhuri, U. Chowdhury, A.T. Gallant, A. Grossheim, R. Klawitter, A.A. Kwiatkowski, K.G. Leach, A. Lennarz, T.D. Macdonald, J. Lassen, H. Heggen, S. Raeder, A. Teigelhöfer, J. Dilling
2014Se12 2014Sh14	PRVCA PYLBB	89, 735,	057302 327	G.W. Severin, L.D. Knutson, P.A. Voytas, E.A. George P. Shuai, H.S. Xu, X.L. Tu, Y.H. Zhang, B.H. Sun, M. Wang, Yu. A. Litvinov, K. Blaum, X.H. Zhou, J.J. He, Y. Sun, K. Kaneko, Y.J. Yuan, J.W. Xia, J.C. Yang, G. Audi, X.L. Yan, X.C. Chen, G.B. Jia, Z.G. Hu, X.W. Ma, R.S. Mao, B. Mei, Z.Y. Sun, S.T. Wang, G.Q. Xiao, X. Xu, T. Yamaguchi, Y. Yamaguchi, Y.D. Zang, H.W. Zhao, T.C. Zhao, W. Zhang, W.L. Zhan
2014Sh25	PRVCA	90,	032501	P.D. Shidling, D. Melconian, S. Behling, B. Fenker, J.C. Hardy, V.E. Iacob, E. McCleskey, M. McCleskey, M. Mehlman, H.I. Park, B.T. Roeder
2014Si.A	PrvCom	GAu	Jul	B. Singh S. Sadaya, B. Tringthi, V. Sudarshan, S.V. Sharma, D.V. Dujari, B. Dalit
2014So17	JPGPE	41,	125103	S. Sodaye, R. Tripathi, K. Sudarshan, S.K. Sharma, P.K. Pujari, R. Palit, S. Mukhopadhyay
2014Su07	PRVCA	89,	034317	S. Suchyta, S.N. Liddick, C.J. Chiara, W.B. Walters, M.P. Carpenter, H.L. Crawford, G.F. Grinyer, G. Gürdal, A. Klose, E.A. McCutchan, J. Pereira, S. Zhu
2014Ta29	PYLBB	738,	223	J. Taprogge, A. Jungclaus, H. Grawe, S. Nishimura, Z.Y. Xu, P. Doornenbal, G. Lorusso, E. Nácher, G.S. Simpson, PA. Söderström, T. Sumikama, H. Baba, F. Browne, N. Fukuda, R. Gernhäuser, G. Gey, N. Inabe, T. Isobe, H.S. Jung, D. Kameda, G.D. Kim, YK. Kim, I. Kojouharov, T. Kubo, N. Kurz, Y.K. Kwon, Z. Li, H. Sakurai, H. Schaffner, K. Steiger, H. Suzuki, H. Takeda, Zs. Vajta, H. Watanabe, J. Wu, A. Yagi, K. Yoshinaga, G. Benzoni, S. Bönig, K.Y. Chae, L. Coraggio, A. Covello, JM. Daugas, F. Drouet, A. Gadea, A. Gargano, S. Ilieva, F.G. Kondev, T. Kröll, G.J. Lane, A. Montaner-Pizá, K. Moschner, D. Mücher, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Zs. Podolyák, A. Wendt

2014Ta.A 2014Un01 2014Va04 2014Wa09	JPCSD ARISE PRVCA PRLTA	533, 87, 89, 112,	012043 92 064310 132502	J. Taprogge, A. Jungclaus, G. Simpson M.P. Unterweger, R. Fitzgerald Z. Varga, A. Nicholl, K. Mayer F. Wamers, J. Marganiec, F. Aksouh, Yu. Aksyutina, H. Alvarez-Pol, T. Aumann, S. Beceiro Novo, K. Boretzky, M.J.G. Borge, M. Chartier, A. Chatillon, L.V. Chulkov, D. Cortina-Gil, H. Emling, O. Ershova, L.M. Fraile, H.O.U. Fynbo, D. Galaviz, H. Geissel, M. Heil, D.H.H. Hoffmann, H.T. Johansson, B. Jonson, C. Karagiannis, O.A. Kiselev, J.V. Kratz, R. Kulessa, N. Kurz, C. Langer, M. Lantz, T. Le Bleis, R. Lemmon, Yu. A. Litvinov, K. Mahata, C. Muntz, T. Nilsson, C. Nociforo, G. Nyman, W. Ott, V. Panin, S. Paschalis, A. Perea, R. Plag, R. Reifarth, A. Richter, C. Rodriguez-Tajes, D. Rossi, K. Riisager, D. Savran, G. Schrieder, H. Simon, J. Stroth, K. Summerer, O. Tengblad,
2014Xu07	PRLTA	113,	032505	H. Weick, C. Wimmer, M.V. Zhukov Z.Y. Xu, S. Nishimura, G. Lorusso, F. Browne, P. Doornenbal, G. Gey, HS. Jung, Z. Li, M. Niikura, PA. Söderström, T. Sumikama, J. Taprogge, Zs. Vajta, H. Watanabe, J. Wu, A. Yagi, K. Yoshinaga, H. Baba, S. Franchoo, T. Isobe, P.R. John, I. Kojouharov, S. Kubono, N. Kurz, I. Matea, K. Matsui, D. Mengoni, P. Morfouace, D.R. Napoli, F. Naqvi, H. Nishibata, A. Odahara, E. Sahin, H. Sakurai, H. Schaffner, I.G. Stefan, D. Suzuki, R. Taniuchi, V. Werner
2014Ya19	JPGPE	41,	105104	H. Yang, L. Ma, Z. Zhang, L. Yu, G. Jia, M. Huang, Z. Gan, T. Huang, G. Li, X. Wu, Y. Fang, Z. Wang, B. Gao, W. Hua
2014Ya.A 2014Zh03	PrvCom PRVCA	Hwj 89,	Jul 014308	XinLiang Yan Z.Y. Zhang, Z.G. Gan, L. Ma, L. Yu, H.B. Yang, T.H. Huang, G.S. Li, Y.L. Tian, Y.S. Wang, X.X. Xu, X.L. Wu, M.H. Huang, C. Luo, Z.Z. Ren, S.G. Zhou, X.H. Zhou, H.S. Xu, G.Q. Xiao
				2015
2015Ah03 2015Ah04 2015Ak02	PRVCA PRVCA PRVCA	91, 92, 91,	044310 024313 031301	I. Ahmad, J.P. Greene, F.G. Kondev, S. Zhu I. Ahmad, R.R. Chasman, J.P. Greene, F.G. Kondev, S. Zhu A. Akber, M.W. Reed, P.M. Walker, Yu. A. Litvinov, G.J. Lane, T. Kibédi, K. Blaum, F. Bosch, C. Brandau, J.J. Carroll, D.M. Cullen, I.J. Cullen, A.Y. Deo, B. Detwiler, C. Dimopoulou, G.D. Dracoulis, F. Farinon, H. Geissel, E. Haettner, M. Heil, R.S. Kempley, R. Knöbel, C. Kozhuharov, J. Kurcewicz, N. Kuzminchuk, S. Litvinov, Z. Liu, R. Mao, C. Nociforo, F. Nolden, W.R. Plaß, Zs. Podolyák, A. Prochazka, C. Scheidenberger, D. Shubina, M. Steck, Th. Stöhlker, B. Sun, T.P.D. Swan, G. Trees, H. Weick, N. Winckler, M. Winkler, P.J. Woods, T. Yamaguchi
2015Al20 2015An05	PRLTA EPJAA	115, 51,	102502 41	K. Alfonso, for the CUORE Collaboration S. Antalic, F.P. Heßberger, D. Ackermann, S. Heinz, S. Hofmann, B. Kindler,
				J. Khuyagbaatar, B. Lommel, R. Mann
2015Ar07	PYLBB	745,	79	S. Arzumanov, L. Bondarenko, S. Chernyavsky, P. Geltenbort, V. Morozov, V.V. Nesvizhevsky, Yu. Panin, A. Strepetov
2015At03	PRLTA	115,	232501	D. Atanasov, P. Ascher, K. Blaum, R.B. Cakirli, T.E. Cocolios, S. George, S. Goriely, F. Herfurth, HT. Janka, O. Just, M. Kowalska, S. Kreim, D. Kisler, Y.A. Litvinov, D. Lunney, V. Manea, D. Neidherr, M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz, R.N. Wolf, K. Zuber
2015At.A 2015Au01	PrvCom PRVCA	GAu 91,	Apr 024324	D. Atanasov K. Auranen, J. Uusitalo, S. Juutinen, U. Jakobsson, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzán, R. Julin, J. Konki, M. Leino, J. Pakarinen, J. Parta- nen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, S. Stolze
2015Ba11 2015Ba49	NUPAB PYLBB	935, 750,	52 176	A.S. Barabash C. Babcock, H. Heylen, J. Billowes, M.L. Bissell, K. Blaum, P. Campbell, B. Cheal, R.F. Garcia Ruiz, C. Geppert, W. Gins, M. Kowalska, K. Kreim, S.M. Lenzi, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, D.T. Yordanov
2015Be07 2015Be13	PYLBB ARISE	743, 102,	526 74	E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo D.E. Bergeron, R. Fitzgerald

2015Be32	PYLBB	751,	107	G. Benzoni, A.I. Morales, H. Watanabe, S. Nishimura, L. Coraggio, N. Itaco, A. Gargano, F. Browne, R. Daido, P. Doornenbal, Y. Fang, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, PA. Söderström, T. Sumikama, J. Wu, Z.Y. Xu, R. Yokoyama, H. Baba, R. Avigo, F.L. Bello Garrote, N. Blasi, A. Bracco, F. Camera, S. Ceruti, F.C.L. Crespi, G. de Angelis, MC. Delattre, Zs. Dombradi, A. Gottardo, T. Isobe, I. Kuti, K. Matsui, B. Melon, D. Mengoni, T. Miyazaki, V. Modamio-Hoybjor, S. Momiyama, D.R. Napoli, M. Niikura, R. Orlandi, H. Sakurai, E. Sahin, D. Sohler, R. Taniuchi, J. Taprogge, Zs. Vajta, J.J. Valiente-Dobón, O. Wieland, M. Yalcinkaya
2015Bl02	EPJAA	51,	8	B. Blank, JC. Thomas, P. Ascher, L. Audirac, A. Bacquias, L. Cáceres, G. Canchel, L. Daudin, F. de Oliveira Santos, F. Didierjean, M. Gerbaux, J. Giovinazzo, S. Grévy, T. Kurtukian Nieto, I. Matea, F. Munoz, M. Roche, L. Serani, N. Smirnova, J. Souin
2015Ca09	PRVCA	92,	014327	L. Cáceres, A. Lepailleur, O. Sorlin, M. Stanoiu, D. Sohler, Zs. Dombrádi, S.K. Bogner, B.A. Brown, H. Hergert, J.D. Holt, A. Schwenk, F. Azaiez, B. Bastin, C. Borcea, R. Borcea, C. Bourgeois, Z. Elekes, Zs. Fülöp, S. Grévy, L. Gaudefroy, G.F. Grinyer, D. Guillemaud-Mueller, F. Ibrahim, A. Kerek, A. Krasznahorkay, M. Lewitowicz, S.M. Lukyanov, J. Mrázek, F. Negoita, F. de Oliveira, YuE. Penionzhkevich, Zs. Podolyák, M.G. Porquet, F. Rotaru, P. Roussel-Chomaz, M.G. Saint-Laurent, H. Savajols, G. Sletten, J.C. Thomas, J. Timàr, C. Timis, Zs. Vajta
2015Ch56	PRVCA	92,	044308	R. Chapman, A. Hodsdon, M. Bouhelal, F. Haas, X. Liang, F. Azaiez, Z.M. Wang, B.R. Behera, M. Burns, E. Caurier, L. Corradi, D. Curien, A.N. Deacon, Zs. Dombrádi, E. Farnea, E. Fioretto, A. Gadea, F. Ibrahim, A. Jungclaus, K. Keyes, V. Kumar, S. Lunardi, N. Marginean, G. Montagnoli, D.R. Napoli, F. Nowacki, J. Ollier, D. O'Donnell, A. Papenberg, G. Pollarolo, MD. Salsac, F. Scarlassara, J.F. Smith, K.M. Spohr, M. Stanoiu, A.M. Stefanini, S. Szilner, M. Trotta, D. Verney
2015Ch57	PRVCA	92,	044330	J. Chen, F.G. Kondev, I. Ahmad, M.P. Carpenter, J.P. Greene, R.V.F. Janssens, S. Zhu, D. Ehst, V. Makarashvili, D. Rotsch, N.A. Smith
2015Ch58	PRVCA	92,	045803	U. Chowdhury, K.G. Leach, C. Andreoiu, A. Bader, M. Brodeur, A. Chaudhuri, A.T. Gallant, A. Grossheim, G. Gwinner, R. Klawitter, A.A. Kwiatkowski, A. Lennarz, T.D. Macdonald, J. Pearkes, B.E. Schultz, J. Dilling
2015Ci06	PRVCA	92,	014622	A.A. Ciemny, W. Dominik, T. Ginter, R. Grzywacz, Z. Janas, M. Kuich, C. Mazzocchi, M. Pfützner, M. Pomorski, F. Zarzynski, D. Bazin, T. Baumann, A. Bezbakh, B.P. Crider, M. Cwiok, S. Go, G. Kaminski, K. Kolos, A. Korgul, E. Kwan, S. Liddick, K. Miernik, S.V. Paulauskas, J. Pereira, K. Rykaczewski, C. Sumithrarachchi, Y. Xiao
2015Co02	ARISE	99,	46	S.M. Collins, A.K. Pearce, K.M. Ferreira, A.J. Fenwick, P.H. Regan, J.D. Keightley
2015Cz01	PRVCA	92,	014328	M. Czerwinski, T. Rzaca-Urban, W. Urban, P. Baczyk, K. Sieja, B.M. Nyakó, J. Timár, I. Kuti, T.G. Tornyi, L. Atanasova, A. Blanc, M. Jentschel, P. Mutti, U. Köster, T. Soldner, G. de France, G.S. Simpson, C.A. Ur
2015Da12	PRLTA	115,	132502	H.M. David, J. Chen, D. Seweryniak, F.G. Kondev, J.M. Gates, K.E. Gregorich, I. Ahmad, M. Albers, M. Alcorta, B.B. Back, B. Baartman, P.F. Bertone, L.A. Bernstein, C.M. Campbell, M.P. Carpenter, C.J. Chiara, R.M. Clark, M. Cromaz, D.T. Doherty, G.D. Dracoulis, N.E. Esker, P. Fallon, O.R. Gothe, J.P. Greene, P.T. Greenlees, D.J. Hartley, K. Hauschild, C.R. Hoffman, S.S. Hota, R.V.F. Janssens, T.L. Khoo, J. Konki, J.T. Kwarsick, T. Lauritsen, A.O. Macchiavelli, P.R. Mudder, C. Nair, Y. Qiu, J. Rissanen, A.M. Rogers, P. Ruotsalainen, G. Savard, S. Stolze, A. Wiens, S. Zhu
2015De22	PYLBB	748,	199	H.M. Devaraja, S. Heinz, O. Beliuskina, V. Comas, S. Hofmann, C. Hornung, G. Münzenberg, K. Nishio, D. Ackermann, Y.K. Gambhir, M. Gupta, R.A. Henderson, F.P. Heßberger, J. Khuyagbaatar, B. Kindler, B. Lommel, K.J. Moody, J. Maurer, R. Mann, A.G. Popeko, D.A. Shaughnessy, M.A. Stoyer, A.V. Yeremin

2015Di03	PYLBB	744,	137	T. Dickel, W.R. Plaß, S. Ayet San Andres, J. Ebert, H. Geissel, E. Haettner, C. Hornung, I. Miskun, S. Pietri, S. Purushothaman, M.P. Reiter, AK. Rink, C. Scheidenberger, H. Weick, P. Dendooven, M. Diwisch, F. Greiner, F. Heiße, P. Kröbel, W. Lipport, L. D. Moore, L. Pobieleinen, A. Prochegle, M. Renien
				R. Knöbel, W. Lippert, I.D. Moore, I. Pohjalainen, A. Prochazka, M. Ranjan, M. Takechi, J.S. Winfield, X. Xu
2015Do01	ARISE	96,	83	S.F. Dorsett, K.S. Krane
2015Ei01	PRVCA	92,	045502	M. Eibach, G. Bollen, M. Brodeur, K. Cooper, K. Gulyuz, C. Izzo, D.J. Morrissey, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.A. Valverde, A.C.C. Villari
2015El03	PRLTA	115,	062501	S. Eliseev, K. Blaum, M. Block, S. Chenmarev, H. Dorrer, Ch. E. Düllmann, C. Enss, P.E. Filianin, L. Gastaldo, M. Goncharov, U. Köster, F. Lautenschläger, Yu. N. Novikov, A. Rischka, R.X. Schüssler, L. Schweikhard, A. Türler
2015Et01	PRVCA	91,	064317	A. Étilé, D. Verney, N.N. Arsenyev, J. Bettane, I.N. Borzov, M.C. Mhamed, P.V. Cuong, C. Delafosse, F. Didierjean, C. Gaulard, N. Van Giai, A. Goasduff, F. Ibrahim, K. Kolos, C. Lau, M. Niikura, S. Roccia, A.P. Severyukhin,
				D. Testov, S. Tusseau-Nenez, V.V. Voronov
2015Fi07	PRXHA	5,	011018	D.A. Fink, T.E. Cocolios, A.N. Andreyev, S. Antalic, A.E. Barzakh, B. Bastin, D.V. Fedorov, V.N. Fedosseev, K.T. Flanagan, L. Ghys, A. Gottberg, M. Huyse, N. Imai, T. Kron, N. Lecesne, K.M. Lynch, B.A. Marsh, D. Pauwels, E. Rapisarda, S.D. Richter, R.E. Rossel, S. Rothe, M.D. Seliverstov, A.M. Sjödin,
2015Fl01	PRVCA	91,	034310	C. Van Beveren, P. Van Duppen, K.D.A. Wendt F. Flavigny, D. Pauwels, D. Radulov, I.J. Darby, H. De Witte, J. Diriken,
20131101	TRVCA	91,	034310	D.V. Fedorov, V.N. Fedosseev, L.M. Fraile, M. Huyse, V.S. Ivanov, U. Köster, B.A. Marsh, T. Otsuka, L. Popescu, R. Raabe, M.D. Seliverstov, N. Shimizu, A.M. Sjödin, Y. Tsunoda, P. Van den Bergh, P. Van Duppen, J. Van de Walle, M. Venhart, W.B. Walters, K. Wimmer
2015Ga24	PRVCA	92,	021301	J.M. Gates, K.E. Gregorich, O.R. Gothe, E.C. Uribe, G.K. Pang, D.L. Bleuel,
				M. Block, R.M. Clark, C.M. Campbell, H.L. Crawford, M. Cromaz, A. Di Nitto, Ch. E. Düllmann, N.E. Esker, C. Fahlander, P. Fallon, R.M. Farjadi, U. Forsberg, J. Khuyagbaatar, W. Loveland, A.O. Macchiavelli, E.M. May, P.R. Mudder, D.T. Olive, A.C. Rice, J. Rissanen, D. Rudolph, L.G. Sarmiento, J.A. Shusterman, M.A. Stavar, A. Wigne, A. Valvachev, H. Nitsahe
2015Ga38	ЕРЈАА	51,	136	man, M.A. Stoyer, A. Wiens, A. Yakushev, H. Nitsche L.P. Gaffney, J. Van de Walle, B. Bastin, V. Bildstein, A. Blazhev, N. Bree, J. Cederkäll, I. Darby, H. De Witte, D. DiJulio, J. Diriken, V.N. Fedosseev, Ch. Fransen, R. Gernhäuser, A. Gustafsson, H. Hess, M. Huyse, N. Kesteloot, Th. Kröll, R. Lutter, B.A. Marsh, P. Reiter, M. Seidlitz, P. Van Duppen,
2015Gl03	PRVCA	92,	042501	D. Voulot, N. Warr, F. Wenander, K. Wimmer, K. Wrzosek-Lipska B.E. Glassman, D. Pérez-Loureiro, C. Wrede, J. Allen, D.W. Bardayan, M.B. Bennett, B.A. Brown, K.A. Chipps, M. Febbraro, C. Fry, M.R. Hall, O. Hall, S.N. Liddick, P. O'Malley, W. Ong, S.D. Pain, S.B. Schwartz,
2015Gr05	PRVCA	91,	032501	P. Shidling, H. Sims, P. Thompson, H. Zhang J. Grinyer, G.F. Grinyer, M. Babo, H. Bouzomita, P. Chauveau, P. Delahaye, M. Dubois, R. Frigot, P. Jardin, C. Leboucher, L. Maunoury, C. Seiffert,
				J.C. Thomas, E. Traykov
2015Gr14	PRVCA	92,	045503	J. Grinyer, G.F. Grinyer, M. Babo, H. Bouzomita, P. Chauveau, P. Delahaye, M. Dubois, R. Frigot, P. Jardin, C. Leboucher, L. Maunoury, C. Seiffert, J.C. Thomas, E. Traykov
2015Gu09	PRVCA	91,	055501	K. Gulyuz, J. Ariche, G. Bollen, S. Bustabad, M. Eibach, C. Izzo, S.J. Novario,
2015He27	PRVCA	92,	044310	M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, A.A. Valverde A. Herzán, S. Juutinen, K. Auranen, T. Grahn, P.T. Greenlees, K. Hauschild,
201311027	TRVCA	72,	044310	U. Jakobsson, P. Jones, R. Julin, S. Ketelhut, M. Leino, A. Lopez-Martens, P. Nieminen, M. Nyman, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Sarén, C. Scholey, J. Sorri, J. Uusitalo
2015He28	PRVCA	92,	044311	H. Heylen, C. Babcock, J. Billowes, M.L. Bissell, K. Blaum, P. Campbell, B. Cheal, R.F. Garcia Ruiz, Ch. Geppert, W. Gins, M. Kowalska, K. Kreim, S.M. Lenzi, I.D. Moore, R. Neugart, G. Neyens, W. Nörtershäuser, J. Papuga, D.T. Yordanov

2015Hu02	PRVCA	91,	024322	P. Humby, A. Simon, C.W. Beausang, T.J. Ross, R.O. Hughes, J.T. Burke, R.J. Casperson, J. Koglin, S. Ota, J.M. Allmond, M. McCleskey, E. McCleskey,
2015Hu07	PRVCA	92,	034615	A. Saastamoinen, R. Chyzh, M. Dag, K. Gell, T. Tarlow, G. Vyas A.M. Hurst, R.B. Firestone, L. Szentmiklósi, B.W. Sleaford, M.S. Basunia, T. Belgya, J.E. Escher, M. Krticka, Zs. Révay, N.C. Summers
2015Je02	NIMAE	795,	268	M. Jeskovský, D. Frekers, A. Kovácik, P.P. Povinec, P. Puppe, J. Stanícek, I. Sýkora, F. Simkovic, J.H. Thies
2015Ka24	PRVCA	92,	014321	Z. Kalaninová, S. Antalic, F.P. Heßberger, D. Ackermann, B. Andel, B. Kindler, M. Laatiaoui, B. Lommel, J. Maurer
2015KaZX 2015Kh09	JUPSC PRLTA	6, 115,	030106 242502	D. Kaji, K. Morimoto, Y. Wakabayashi, M. Takeyama, M. Asai J. Khuyagbaatar, A. Yakushev, Ch. E. Düllmann, D. Ackermann, LL. Andersson, M. Block, H. Brand, D.M. Cox, J. Even, U. Forsberg, P. Golubev, W. Hartmann, RD. Herzberg, F.P. Heßberger, J. Hoffmann, A. Hübner, E. Jäger, J. Jeppsson, b. Kindler, J.V. Kratz, J. Krier, N. Kurz, B. Lommel, M. Maiti, S. Minami, A.K. Mistry, C.M. Mrosek, I. Pysmenetska, D. Rudolph, L.G. Sarmiento, H. Schaffner, M. Schädel, B. Schausten, J. Steiner, T. Torres De Heidenreich, J. Uusitalo, M. Wegrzecki, N. Wiehl, V. Yakusheva
2015Ko06	ARISE	95,	143	K. Kossert, K. Bokeloh, R. Dersch, O. Nahle
2015Ko09	ARISE	99,	59	K. Kossert
2015Ko19	PRVCA	92,	054318	A. Korgul, K.P. Rykaczewski, R. Grzywacz, C.R. Bingham, N.T. Brewer, A.A. Ciemny, C.J. Gross, C. Jost, M. Karny, M. Madurga, C. Mazzocchi, A.J. Mendez II, K. Miernik, D. Miller, S. Padgett, S.V. Paulauskas, D.W. Stracener, M. Wolinska-Cichocka
2015Ko23	JUPSA	84,	054201	Y. Kojima, K. Kosuga, Y. Shima, A. Taniguchi, H. Hayashi, M. Shibata and Prv-Com SNa March 2016
2015Kr02	ARISE	97,	12	K.S. Krane
2015La19	PRVCA	92,	025502	A.T. Laffoley, C.E. Svensson, C. Andreoiu, G.C. Ball, P.C. Bender, H. Bidaman, V. Bildstein, B. Blank, D.S. Cross, G. Deng, A. Diaz Varela, M.R. Dunlop, R. Dunlop, A.B. Garnsworthy, P.E. Garrett, J. Giovinazzo, G.F. Grinyer, J. Grinyer, G. Hackman, B. Hadinia, D.S. Jamieson, B. Jigmeddorj, D. Kisliuk, K.G. Leach, J.R. Leslie, A.D. MacLean, D. Miller, B. Mills, M. Moukaddam, A.J. Radich, M.M. Rajabali, E.T. Rand, J.C. Thomas, J. Turko, C. Unsworth, P. Voss
2015Li20	PRVCA	91,	064309	A.A. Lis, C. Mazzocchi, W. Dominik, Z. Janas, M. Pfützner, M. Pomorski, L. Acosta, S. Baraeva, E. Casarejos, J. Duénas-Díaz, V. Dunin, J.M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel, A. Gorshkov, G. Kaminski, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, I. Mukha, C. Nociforo, A.K. Ordúz, S. Pietri, A. Prochazka, A.M. Sánchez-Benítez, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y. Tanaka, H. Weick, J.S. Winfield
2015Li24	PRVCA	92,	014326	H.J. Li, B. Cederwall, T. Bäck, C. Qi, M. Doncel, U. Jakobsson, K. Auranen, S. Bönig, M.C. Drummond, T. Grahn, P. Greenlees, A. Herzán, R. Julin, S. Juutinen, J. Konki, T. Kröll, M. Leino, C. McPeake, D. O'Donnell, R.D. Page, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, P. Ruotsalainen, M. Sandzelius, J. Sarén, B. Saygi, C. Scholey, J. Sorri, S. Stolze, M.J. Taylor, A. Thornthwaite, J. Uusitalo, Z.G. Xiao
2015Li33	PRVCA	92,	024319	S.N. Liddick, W.B. Walters, C.J. Chiara, R.V.F. Janssens, B. Abromeit, A. Ayres, A. Bey, C.R. Bingham, M.P. Carpenter, L. Cartegni, J. Chen, H.L. Crawford, I.G. Darby, R. Grzywacz, J. Harker, C.R. Hoffman, S. Ilyushkin, F.G. Kondev, N. Larson, M. Madurga, D. Miller, S. Padgett, S.V. Paulauskas, M.M. Rajabali, K. Rykaczewski, D. Seweryniak, S. Suchyta, S. Zhu

2015Lo04	PRLTA	114,	192501	G. Lorusso, S. Nishimura, Z.Y. Xu, A. Jungclaus, Y. Shimizu, G.S. Simpson, PA. Söderström, H. Watanabe, F. Browne, P. Doornenbal, G. Gey, H.S. Jung, B. Meyer, T. Sumikama, J. Taprogge, Zs. Vajta, J. Wu, H. Baba, G. Benzoni, K.Y. Chae, F.C.L. Crespi, N. Fukuda, R. Gernhäuser, N. Inabe, T. Isobe, T. Ka-
2015Lo08	PRVCA	92,	024304	jino, D. Kameda, G.D. Kim, YK. Kim, I. Kojouharov, F.G. Kondev, T. Kubo, N. Kurz, Y.K. Kwon, G.J. Lane, Z. Li, A. Montaner-Pizá, K. Moschner, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Zs. Podolyák, H. Sakurai, H. Schaffner, P. Schury, S. Shibagaki, K. Steiger, H. Suzuki, H. Takeda, A. Wendt, A. Yagi, K. Yoshinaga R. Lozeva, A. Odahara, CB. Moon, S. Nishimura, P. Doornenbal, H. Naïdja, F. Nowacki, PA. Söderström, T. Sumikama, G. Lorusso, J. Wu, Z.Y. Xu, H. Baba, F. Browne, R. Daido, JM. Daugas, F. Didierjean, Y. Fang, T. Isobe, I. Kojouharov, N. Kurz, Z. Patel, S. Rice, H. Sakurai, H. Schaffner, L. Sinclair, H. Watanabe, A. Yagi, R. Yokoyama, T. Kubo, N. Inabe, H. Suzuki, N. Fukuda,
				D. Kameda, H. Takeda, D.S. Ahn, D. Murai, F.L. Bello Garrote, E. Ideguchi, T. Ishigaki, H.S. Jung, T. Komatsubara, Y.K. Kwon, S. Morimoto, M. Niikura, H. Nishibata, I. Nishizuka, T. Shimoda, K. Tshoo
2015Lu13	PYLBB	750,	356	M.V. Lund, M.J.G. Borge, J.A. Briz, J. Cederkäll, H.O.U. Fynbo, J.H. Jensen, B. Jonson, K.L. Laursen, T. Nilsson, A. Perea, V. Pesudo, K. Riisager, O. Teng-
2015Ma30	PRVCA	91,	045504	blad S. Malbrunot-Ettenauer, T. Brunner, U. Chowdhury, A.T. Gallant, V.V. Simon, M. Brodeur, A. Chaudhuri, E. Mané, M.C. Simon, C. Andreoiu, G. Audi, J.R.C. López-Urrutia, P. Delheij, G. Gwinner, A. Lapierre, D. Lunney,
2015Ma37	PRVCA	91,	051302	M.R. Pearson, R. Ringle, J. Ullrich, J. Dilling L. Ma, Z.Y. Zhang, Z.G. Gan, H.B. Yang, L. Yu, J. Jiang, J.G. Wang, Y.L. Tian, Y.S. Wang, S. Guo, B. Ding, Z.Z. Ren, S.G. Zhou, X.H. Zhou, H.S. Xu,
2015Ma54	PRVCA	92,	041302	G.Q. Xiao A. Matta, D. Beaumel, H. Otsu, V. Lapoux, N.K. Timofeyuk, N. Aoi, M. Assié, H. Baba, S. Boissinot, R.J. Chen, F. Delaunay, N. de Sereville, S. Franchoo, P. Gangnant, J. Gibelin, F. Hammache, Ch. Houarner, N. Imai, N. Kobayashi, T. Kubo, Y. Kondo, Y. Kawada, L.H. Khiem, M. Kurata-Nishimura, E.A. Kuzmin, J. Lee, J.F. Libin, T. Motobayashi, T. Nakamura, L. Nalpas, E. Yu. Nikolskii, A. Obertelli, E.C. Pollacco, E. Rindel, Ph. Rosier, F. Saillant, T. Sako, H. Sakurai, A.M. Sánchez-Benitez, J-A. Scarpaci, I. Stefan, D. Suzuki, K. Takahashi, M. Takechi, S. Takeuchi, H. Wang, R. Wolski, K. Yoneda
2015Ma60	PRVCA	92,	054304	D.A. Matters, N. Fotiades, J.J. Carroll, C.J. Chiara, J.W. McClory, T. Kawano, R.O. Nelson, M. Devlin
2015Ma61	PRVCA	92,	054317	C. Mazzocchi, K.P. Rykaczewski, R. Grzywacz, P. Baczyk, C.R. Bingham, N.T. Brewer, C.J. Gross, C. Jost, M. Karny, A. Korgul, M. Madurga, A.J. Mendez II, K. Miernik, D. Miller, S. Padgett, S.V. Paulauskas, A.A. Sonzogni, D.W. Stracener, M. Wolinska-Cichocka
2015Ma.A 2015Me01	PrvCom PRLTA	GAu 114,	Jan 022501	V. Manea Z. Meisel, S. George, S. Ahn, J. Browne, D. Bazin, B.A. Brown, J.F. Carpino, H. Chung, R.H. Cyburt, A. Estradé, M. Famiano, A. Gade, C. Langer, M. Matos, W. Mittig, F. Montes, D.J. Morrissey, J. Pereira, H. Schatz, J. Schatz, M. Scott, D. Shapira, K. Smith, J. Stevens, W. Tan, O. Tarasov, S. Towers, K. Wimmer, J.R. Winkelbauer, J. Yurkon, R.G.T. Zegers
2015Me08	PRLTA	115,	162501	Z. Meisel, S. George, S. Ahn, D. Bazin, B.A. Brown, J. Browne, J.F. Carpino, H. Chung, A.L. Cole, R.H. Cyburt, A. Estradé, M. Famiano, A. Gade, C. Langer, M. Matos, W. Mittig, F. Montes, D.J. Morrissey, J. Pereira, H. Schatz, J. Schatz, M. Scott, D. Shapira, K. Smith, J. Stevens, W. Tan, O. Tarasov, S. Towers,
2015Me.A	ThMichig	an		K. Wimmer, J.R. Winkelbauer, J. Yurkon, R.G.T. Zegers Z. Meisel

201514.01	DDMCA	0.1	01.4201	
2015Mo01	PRVCA	91,	014301	F. Molina, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, A. Algora, J. Benlliure, P. Boutachkov, L. Cáceres, R.B. Cakirli, E. Casarejos, C. Domingo-Pardo, P. Doornenbal, A. Gadea, E. Ganioglu, M. Gascón, H. Geissel, J. Gerl, M. Górska, J. Grebosz, R. Hoischen, R. Kumar, N. Kurz, I. Kojouharov, L. Amon Susam, H. Matsubara, A.I. Morales, Y. Oktem, D. Pauwels, D. Pérez-Loureiro, S. Pietri, Zs. Podolyák, W. Prokopowicz, D. Rudolph, H. Schaffner, S.J. Steer, J.L. Tain, A. Tamii, S. Tashenov, J.J. Valiente-Dobón, S. Verma, H-
2015Mo20	EULEE	111,	52001	J. Wollersheim A.I. Morales, G. Benzoni, N. Al-Dahan, S. Vergani, Zs. Podolyák, P.H. Re-
		,		gan, T.P.D. Swan, J.J. Valiente-Dobón, A. Bracco, P. Boutachkov, F.C.L. Crespi, J. Gerl, M. Górska, S. Pietri, P.M. Walker, HJ. Wollersheim
2015Mo.A	PrvCom	Hwj	Nov	M. Mougeot
2015Mu13	PRLTA	115,	202501	I. Mukha, L.V. Grigorenko, X. Xu, L. Acosta, E. Casarejos, A.A. Ciemny, W. Dominik, J. Duènas-Dìaz, V. Dunin, J.M. Espino, A. Estradè, F. Farinon, A. Fomichev, H. Geissel, T.A. Golubkova, A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knöbel, S. Krupko, M. Kuich, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel, C. Mazzocchi, C. Nociforo, A.K. Ordúz, M. Pfützner, S. Pietri, M. Pomorski, A. Prochazka, S. Rymzhanova, A.M. Sánchez-Benìtez, C. Scheidenberger, P. Sharov, H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka, M. Takechi, Y.K. Tanaka, H. Weick, M. Winkler, J.S. Winfield, M.V. Zhukov
2015My03	PRLTA	114,	013003	E.G. Myers, A. Wagner, H. Kracke, B.A. Wesson
2015My03 2015NiZZ	JUPSC	6,	030062	I. Nishizuka, T. Sumikama, F. Browne, A.M. Bruce, S. Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, PA. Söderström, H. Watanabe, J. Wu, Z.Y. Xu, A. Yagi, H. Baba, N. Chiga, R. Carrol, R. Daido, F. Didierjean, Y. Fang, N. Fukuda, G. Gey, E. Ideguchi, N. Inabe, T. Isobe, D. Kameda, I. Kojouharov, N. Kurz, T. Kubo, S. Lalkovski, Z. Li, R. Lozeva, H. Nishibata, A. Odahara, Zs. Podolyák, P.H. Regan, O.J. Roberts, H. Sakurai, H. Schaffner, G.S. Simpson, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, V. Werner,
2015Pf01	PRVCA	92,	014316	O. Wieland M. Pfützner, W. Dominik, Z. Janas, C. Mazzocchi, M. Pomorski, A.A. Bezbakh,
20131101	TRVCA	92,	014310	M.J.G. Borge, K. Chrapkiewicz, V. Chudoba, R. Frederickx, G. Kaminski, M. Kowalska, S. Krupko, M. Kuich, J. Kurcewicz, A.A. Lis, M.V. Lund, K. Miernik, J. Perkowski, R. Raabe, G. Randisi, K. Riisager, S. Sambi, O. Tengblad, F. Wenander
2015Ro10	PRLTA	114,	202501	M. Rosenbusch, P. Ascher, D. Atanasov, C. Barbieri, D. Beck, K. Blaum, Ch. Borgmann, M. Breitenfeldt, R.B. Cakirli, A. Cipollone, S. George, F. Herfurth, M. Kowalska, S. Kreim, D. Lunney, V. Manea, P. Navrátil, D. Neidherr, L. Schweikhard, V. Somà, J. Stanja, F. Wienholtz, R.N. Wolf, K. Zuber
2015Ro20	ЕРЈАА	51,	153	T. Roy, G. Mukherjee, N. Madhavan, T.K. Rana, S. Bhattacharya, Md. A. Asgar, I. Bala, K. Basu, S.S. Bhattacharjee, C. Bhattacharya, S. Bhattacharya, S. Bhattacharyya, J. Gehlot, S.S. Ghugre, R.K. Gurjar, A. Jhingan, R. Kumar, S. Muralithar, S. Nath, H. Pai, R. Palit, R. Raut, R.P. Singh, A.K. Sinha, T. Varughese
2015Sc13	EPJAA	51,	89	F. Schneider, T. Beyer, K. Blaum, M. Block, S. Chenmarev, H. Dorrer, Ch. E. Düllmann, K. Eberhardt, M. Eibach, S. Eliseev, J. Grund, U. Köster, Sz. Nagy, Yu. N. Novikov, D. Renisch, A. Türler, K. Wendt
2015Sh16	PRVCA	91,	047304	Y.P. Shen, W.P. Liu, J. Su, N.T. Zhang, L. Jing, Z.H. Li, Y.B. Wang, B. Guo, S.Q. Yan, Y.J. Li, S. Zeng, G. Lian, X.C. Du, L. Gan, X.X. Bai, J.S. Wang, Y.H. Zhang, X.H. Zhou, X.D. Tang, J.J. He, Y.Y. Yang, S.L. Jin, P. Ma, J.B. Ma, M.R. Huang, Z. Bai, Y.J. Zhou, W.H. Ma, J. Hu, S.W. Xu, S.B. Ma, S.Z. Chen, L.Y. Zhang, B. Ding, Z.H. Li
2015So23	PRVCA	92,	051305	PA. Söderström, S. Nishimura, Z.Y. Xu, K. Sieja, V. Werner, P. Doornenbal, G. Lorusso, F. Browne, G. Gey, H.S. Jung, T. Sumikama, J. Taprogge, Zs. Vajta, H. Watanabe, J. Wu, H. Baba, Zs. Dombradi, S. Franchoo, T. Isobe, P.R. John, YK. Kim, I. Kojouharov, N. Kurz, Y.K. Kwon, Z. Li, I. Matea, K. Matsui, G. Martínez-Pinedo, D. Mengoni, P. Morfouace, D.R. Napoli, M. Niikura, H. Nishibata, A. Odahara, K. Ogawa, N. Pietralla, E. Sahin, H. Sakurai, H. Schaffner, D. Sohler, I.G. Stefan, D. Suzuki, R. Taniuchi, A. Yagi, K. Yoshinaga

2015St14	ЕРЈАА	51,	117	K. Steiger, S. Nishimura, Z. Li, R. Gernhäuser, Y. Utsuno, R. Chen, T. Faestermann, C. Hinke, R. Krücken, M. Kurata-Nishimura, G. Lorusso, Y. Miyashita,
2015Ta12	PRVCA	91,	044322	N. Shimizu, K. Sugimoto, T. Sumikama, H. Watanabe, K. Yoshinaga M.J. Taylor, D.M. Cullen, M.G. Procter, A.J. Smith, A. McFarlane, V. Twist, G.A. Alharshan, L.S. Ferreira, E. Maglione, K. Auranen, T. Grahn, P.T. Greenlees, K. Hauschild, A. Herzan, U. Jakobsson, R. Julin, S. Juutinen, S. Ketelhut, J. Konki, M. Leino, A. Lopez-Martens, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, S. Rinta-Antila, P. Ruotsalainen, M. Sandzelius, J. Saren, C. Scholey, J. Sorri, S. Stolze, J. Uusitalo, M. Doncel
2015Ta13	PRVCA	91,	054324	J. Taprogge, A. Jungclaus, H. Grawe, S. Nishimura, P. Doornenbal, G. Lorusso, G.S. Simpson, PA. Söderström, T. Sumikama, Z.Y. Xu, H. Baba, F. Browne, N. Fukuda, R. Gernhäuser, G. Gey, N. Inabe, T. Isobe, H.S. Jung, D. Kameda, G.D. Kim, YK. Kim, I. Kojouharov, T. Kubo, N. Kurz, Y.K. Kwon, Z. Li, H. Sakurai, H. Schaffner, K. Steiger, H. Suzuki, H. Takeda, Zs. Vajta, H. Watanabe, J. Wu, A. Yagi, K. Yoshinaga, G. Benzoni, S. Bönig, K.Y. Chae, L. Coraggio, A. Covello, JM. Daugas, F. Drouet, A. Gadea, A. Gargano, S. Ilieva, F.G. Kondev, T. Kröll, G.J. Lane, A. Montaner-Pizá, K. Moschner, D. Mücher, F. Naqvi, M. Niikura, H. Nishibata, A. Odahara, R. Orlandi, Z. Patel, Zs. Podolyák, A. Wendt
2015Ut02	PRVCA	92,	034609	V.K. Utyonkov, N.T. Brewer, Yu. Ts. Oganessian, K.P. Rykaczewski, F. Sh. Abdullin, S.N. Dmitriev, R.K. Grzywacz, M.G. Itkis, K. Miernik, A.N. Polyakov, J.B. Roberto, R.N. Sagaidak, I.V. Shirokovsky, M.V. Shumeiko, Yu. S. Tsyganov, A.A. Voinov, V.G. Subbotin, A.M. Sukhov, A.V. Sabelnikov, G.K. Vostokin, J.H. Hamilton, M.A. Stoyer, S.Y. Strauss
2015Va05	PRVCA	91,	037301	A.A. Valverde, G. Bollen, K. Cooper, M. Eibach, K. Gulyuz, C. Izzo, D.J. Morrissey, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.C.C. Villari
2015Va08	PRLTA	114,	232502	A.A. Valverde, G. Bollen, M. Brodeur, R.A. Bryce, K. Cooper, M. Eibach, K. Gulyuz, C. Izzo, D.J. Morrissey, M. Redshaw, R. Ringle, R. Sandler,
2015Va10	PRVCA	92,	014325	S. Schwarz, C.S. Sumithrarachchi, A.C.C. Villari C. Van Beveren, A.N. Andreyev, A.E. Barzakh, T.E. Cocolios, D. Fedorov, V.N. Fedosseev, R. Ferrer, M. Huyse, U. Köster, J. Lane, V. Liberati, K.M. Lynch, B.A. Marsh, T.J. Procter, D. Radulov, E. Rapisarda, K. Sandhu,
2015Vo05	PRVCA	91,	044307	M.D. Seliverstov, P. Van Duppen, M. Venhart, M. Veselsky A. Voss, F. Buchinger, B. Cheal, J.E. Crawford, J. Dilling, M. Kortelainen, A.A. Kwiatkowski, A. Leary, C.D.P. Levy, F. Mooshammer, M.L. Ojeda, M.R. Pearson, T.J. Procter, W. Al Tamimi
2015Wa06	PRLTA	114,	041101	A. Wallner, M. Bichler, K. Buczak, R. Dressler, L.K. Fifield, D. Schumann, J.H. Sterba, S.G. Tims, G. Wallner, W. Kutschera
2015Wa28	PRVCA	92,	034317	E.H. Wang, A. Lemasson, J.H. Hamilton, A.V. Ramayya, J.K. Hwang, J.M. Eldridge, A. Navin, M. Rejmund, S. Bhattacharyya, S.H. Liu, N.T. Brewer, Y.X. Luo, J.O. Rasmussen, H.L. Liu, H. Zhou, Y.X. Liu, H.J. Li, Y. Sun, F.R. Xu, S.J. Zhu, G.M. Ter-Akopian, Yu. Ts. Oganessian, M. Caamano, E. Clément, O. Delaune, F. Farget, G. de France, B. Jacquot
2015Wi02	NIMAE	769,	65	K. Wimmer, D. Barofsky, D. Bazin, L.M. Fraile, J. Lloyd, J.R. Tompkins, S.J. Williams
2015Wi.A	PrvCom	GAu	Jan	F. Wienholtz
2015Wr02	PRVCA	92,	044327	J. Wrzesinski, G.J. Lane, K.H. Maier, R.V.F. Janssens, G.D. Dracoulis, R. Broda, A.P. Byrne, M.P. Carpenter, R.M. Clark, M. Cromaz, B. Fornal, T. Lauritsen, A.O. Macchiavelli, M. Rejmund, B. Szpak, K. Vetter, S. Zhu
2015Xu14	CPCHC	39,	104001	X. Xu, M. Wang, YH. Zhang, HS. Xu, P. Shuai, XL. Tu, Y.A. Litvinov, XH. Zhou, BH. Sun, YJ. Yuan, JW. Xia, JC. Yang, K. Blaum, RJ. Chen, XC. Chen, CY. Fu, Z. Ge, ZG. Hu, WJ. Huang, DW. Liu, YH. Lam, XW. Ma, RS. Mao, T. Uesaka, GQ. Xiao, YM. Xing, T. Yamaguchi, Y. Yamaguchi, Q. Zeng, XL. Yan, HW. Zhao, TC. Zhao, W. Zhang, WL. Zhan
2015Ya13	EPJAA	51,	88	H.B. Yang, Z.Y. Zhang, J.G. Wang, Z.G. Gan, L. Ma, L. Yu, J. Jiang, Y.L. Tian, B. Ding, S. Guo, Y.S. Wang, T.H. Huang, M.D. Sun, K.L. Wang, S.G. Zhou, Z.Z. Ren, X.H. Zhou, H.S. Xu, G.Q. Xiao

2015YaZW	JUPSC	6,	030019	A. Yagi, A. Odahara, R. Daido, Y. Fang, H. Nishibata, R. Lozeva, CB. Moon, S. Nishimura, P. Doornenbal, G. Lorusso, PA. Söderström, T. Sumikama, H. Watanabe, T. Isobe, H. Baba, H. Sakurai, F. Browne, Z. Patel, S. Rice, L. Sinclair, J. Wu, Z.Y. Xu, R. Yokoyama, T. Kubo, N. Inabe, H. Suzuki, N. Fukuda,
2015YoZX	JUPSC	6,	030021	D. Kameda, H. Takeda, D.S. Ahn, D. Murai, F.L. Bello Garrote, J.M. Daugas, F. Didierjean, E. Ideguchi, T. Ishigaki, H.S. Jung, T. Komatsubara, Y.K. Kwon, C.S. Lee, P.S. Lee, S. Morimoto, M. Niikura, I. Nishizuka, T. Shimoda, K. Tshoo R. Yokoyama, E. Ideguchi, G. Simpson, M. Tanaka, S. Nishimura, P. Doornnbal, PA. Söderström, G. Lorusso, Z. Xu, J. Wu, T. Sumikama, N. Aoi, H. Baba, F. Bello, F. Browne, R. Daido, Y. Fang, N. Fukuda, G. Gey, S. Go, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, T. Komatsubara, T. Kubo, I. Kuti, Z. Li, M. Matsushita, S. Michimasa, CB. Moon, H. Nishibata, I. Nishizuka, A. Odahara, Z. Patel, S. Rice, E. Sahin, L. Sinclair, H. Suzuki, H. Takeda, J. Taprogge, Z. Vajta, H. Watanabe, A. Yagi
2015Za13 2015ZaZY	MTRGA JPCSD	52, 630,	280 012011	S.L. Zafonte, R.S. Van Dyck Jr G.S. Zahn, F.A. Genezini
				2016
2016Ab03 2016Ag03	PYLBB NIMAE	759, 807,	64 69	K. Abe, for the XMASS Collaboration J. Agramunt, J.L. Tain, M.B. Gómez Hornillos, A.R. Garcia, F. Albiol, A. Algora, R. Caballero-Folch, F. Calvino, D. Cano-Ott, G. Cortés, C. Domingo-Pardo, T. Eronen, W. Gelletly, D. Gorelov, V. Gorlychev, H. Hakala, A. Jokinen, M.D. Jordan, A. Kankainen, V. Kolhinen, L. Kucuk, T. Martinez, P.J.R. Mason, I. Moore, H. Penttilä, Zs. Podolyák, C. Pretel, M. Reponen, A. Riego, J. Rissanen, B. Rubio, A. Saastamoinen, A. Tarifeno-Saldivia, E. Valencia
2016Ai01 2016Al03	ARISE PRLTA	110, 116,	59 072501	P.M. Aitken-Smith, S.M. Collins M. Alanssari, D. Frekers, T. Eronen, L. Canete, J. Dilling, M. Haaranen,
				J. Hakala, M. Holl, M. Jeskovský, A. Jokinen, A. Kankainen, J. Koponen, A.J. Mayer, I.D. Moore, D.A. Nesterenko, I. Pohjalainen, P. Povinec, J. Reinikainen, S. Rinta-Antila, P.C. Srivastava, J. Suhonen, R.I. Thompson, A. Voss, M.E. Wieser
2016Al10	PRVCA	93,	044325	M.F. Alshudifat, R. Grzywacz, M. Madurga, C.J. Gross, K.P. Rykaczewski, J.C. Batchelder, C. Bingham, I.N. Borzov, N.T. Brewer, L. Cartegni, A. Fijalkowska, J.H. Hamilton, J.K. Hwang, S.V. Ilyushkin, C. Jost, M. Karny, A. Korgul, W. Krolas, S.H. Liu, C. Mazzocchi, A.J. Mendez, K. Miernik, D. Miller, S.W. Padgett, S.V. Paulauskas, A.V. Ramayya, D.W. Stracener, R. Surman, J.A. Winger, M. Wolinska-Cichocka, E.F. Zganjar
2016As01	NUPAB	946,	171	K. Asakura, A. Gando, Y. Gando, T. Hachiya, S. Hayashida, H. Ikeda, K. Inoue, K. Ishidoshiro, T. Ishikawa, S. Ishio, M. Koga, S. Matsuda, T. Mitsui, D. Motoki, K. Nakamura, S. Obara, M. Otani, T. Oura, I. Shimizu, Y. Shirahata, J. Shirai, A. Suzuki, H. Tachibana, K. Tamae, K. Ueshima, H. Watanabe, B.D. Xu, H. Yoshida, A. Kozlov, Y. Takemoto, S. Yoshida, K. Fushimi, T.I. Banks, B.E. Berger, B.K. Fujikawa, T. O'Donnell, L.A. Winslow, Y. Efremenko, H.J. Karwowski, D.M. Markoff, W. Tornow, J.A. Detwiler, S. Enomoto, M.P. Decowski
2016Be11	PRVCA	93,	045502	P. Belli, R. Bernabei, V.B. Brudanin, F. Cappella, V. Caracciolo, R. Cerulli, D.M. Chernyak, F.A. Danevich, S. d'Angelo, A. Di Marco, A. Incicchitti, M. Laubenstein, V.M. Mokina, D.V. Poda, O.G. Polischuk, V.I. Tretyak, I.A. Tupitsyna
2016Br01	PRVCA	93,	025503	M. Brodeur, C. Nicoloff, T. Ahn, J. Allen, D.W. Bardayan, F.D. Becchetti, Y.K. Gupta, M.R. Hall, O. Hall, J. Hu, J.M. Kelly, J.J. Kolata, J. Long, P. O'Malley, B.E. Schultz

2016Ca15	PRVCA	93,	034307	R.J. Carroll, R.D. Page, D.T. Joss, D. O'Donnell, J. Uusitalo, I.G. Darby, K. Andgren, K. Auranen, S. Bonig, B. Cederwall, M. Doncel, M.C. Drummond, S. Eeckhaudt, T. Grahn, C. Gray-Jones, P.T. Greenlees, B. Hadinia, A. Herzan, U. Jakobsson, P.M. Jones, R. Julin, S. Juutinen, J. Konki, T. Kroll, M. Leino, AP. Leppanen, C. McPeake, M. Nyman, J. Pakarinen, J. Partanen, P. Peura, P. Rahkila, J. Revill, P. Ruotsalainen, M. Sandzelius, J. Saren, B. Saygi, C. Scholey, D. Seweryniak, J. Simpson, J. Sorri, S. Stolze, M.J. Taylor, A. Thornthwaite
2016Ca22	EPJAA	52,	124	L. Canete, A. Kankainen, T. Eronen, D. Gorelov, J. Hakala, A. Jokinen, V.S. Kolhinen, J. Koponen, I.D. Moore, J. Reinikainen, S. Rinta-Antila
2016Ca25	PRLTA	117,	012501	R. Caballero-Folch, C. Domingo-Pardo, J. Agramunt, A. Algora, F. Ameil, A. Arcones, Y. Ayyad, J. Benlliure, I.N. Borzov, M. Bowry, F. Calvino, D. Cano-Ott, G. Cortes, T. Davinson, I. Dillmann, A. Estrade, A. Evdokimov, T. Faestermann, F. Farinon, D. Galaviz, A.R. Garcia, H. Geissel, W. Gelletly, R. Gernhauser, M.B. Gomez Hornillos, C. Guerrero, M. Heil, C. Hinke, R. Knöbel, I. Kojouharov, J. Kurcewicz, N. Kurz, Yu. A. Litvinov, L. Maier, J. Marganiec, T. Marketin, M. Marta, T. Martinez, G. Martinez-Pinedo, F. Montes, I. Mukha, D.R. Napoli, C. Nociforo, C. Paradela, S. Pietri, Zs. Podolyák, A. Prochazka, S. Rice, A. Riego, B. Rubio, H. Schaffner, Ch. Scheidenberger, K. Smith, E. Sokol, K. Steiger, B. Sun, J.L. Tain, M. Takechi, D. Testov, H. Weick, E. Wil-
2016Ca33	PRVCA	94,	024314	son, J.S. Winfield, R. Wood, P. Woods, A. Yeremin L. Capponi, J.F. Smith, P. Ruotsalainen, C. Scholey, P. Rahkila, K. Auranen, L. Bianco, A.J. Boston, H.C. Boston, D.M. Cullen, X. Derkx, M.C. Drummond, T. Grahn, P.T. Greenlees, L. Grocutt, B. Hadinia, U. Jakobsson, D.T. Joss, R. Julin, S. Juutinen, M. Labiche, M. Leino, K.G. Leach, C. McPeake, K.F. Mulholland, P. Nieminen, D. O'Donnell, E.S. Paul, P. Peura, M. Sandzelius, J. Saren, B. Saygi, J. Sorri, S. Stolze, A. Thornthwaite, M.J. Taylor, J. Uusitalo
2016Ca.1	JLTPA	184,	952	N. Casali, A. Dubovik, S. Nagorny, S. Nisi, F. Orio, L. Pattavina, S. Pirro, K. Schäffner, I. Tupitsyna, A. Yakubovskaya
2016Ce02	PRLTA	116,	162501	I. Celikovic, M. Lewitowicz, R. Gernhäuser, R. Krücken, S. Nishimura, H. Sakurai, D.S. Ahn, H. Baba, B. Blank, A. Blazhev, P. Boutachkov, F. Browne, G. de France, P. Doornenbal, T. Faestermann, Y. Fang, N. Fukuda, J. Giovinazzo, N. Goel, M. Górska, S. Ilieva, N. Inabe, T. Isobe, A. Jungclaus, D. Kameda, YK. Kim, Y.K. Kwon, I. Kojouharov, T. Kubo, N. Kurz, G. Lorusso, D. Lubos, K. Moschner, D. Murai, I. Nishizuka, J. Park, Z. Patel, M. Rajabali, S. Rice, H. Schaffner, Y. Shimizu, L. Sinclair, PA. Söderström, K. Steiger, T. Sumikama, H. Suzuki, H. Takeda, Z. Wang, H. Watanabe, J. Wu, Z. Xu
2016Ch11	PRVCA	93,	034610	P.A. Chodash, J.T. Burke, E.B. Norman, S.C. Wilks, R.J. Casperson, S.E. Fisher, K.S. Holliday, J.R. Jeffries, M.A. Wakeling
2016Co01	ARISE	108,	143	S.M. Collins, A.V. Harms, P.H. Regan
2016De15	PYLBB	758,	26	F. de Grancey, A. Mercenne, F. de Oliveira Santos, T. Davinson, O. Sorlin, J.C. Angeique, M. Assie, E. Berthoumieux, R. Borcea, A. Buta, I. Celikovic, V. Chudoba, J.M. Daugas, G. Dumitru, M. Fadil, S. Grevy, J. Kiener, A. Lefebvre-Schuhl, N. Michel, J. Mrazek, F. Negoita, J. Okolowicz, D. Pantelica, M.G. Pellegriti, L. Perrot, M. Ploszajczak, G. Randisi, I. Ray, O. Roig, F. Rotaru, M.G. Saint Laurent, N. Smirnova, M. Stanoiu, I. Stefan, C. Stodel, K. Subotic
2016De.A 2016Du10	ThBordea PRLTA	ux 116,	172501	A. de Roubin, updates provisional values given in 2015Ma. A M.R. Dunlop, C.E. Svensson, G.C. Ball, G.F. Grinyer, J.R. Leslie, C. Andreoiu, R.A.E. Austin, T. Ballast, P.C. Bender, V. Bildstein, A. Diaz Varela, R. Dun- lop, A.B. Garnsworthy, P.E. Garrett, G. Hackman, B. Hadinia, D.S. Jamieson, A.T. Laffoley, A.D. MacLean, D.M. Miller, W.J. Mills, J. Park, A.J. Radich, M.M. Rajabali, E.T. Rand, C. Unsworth, A. Valencik, Z.M. Wang, E.F. Zganjar

2016Du13	PRVCA	93,	062801	R. Dunlop, V. Bildstein, I. Dillmann, A. Jungclaus, C.E. Svensson, C. Andreoiu, G.C. Ball, N. Bernier, H. Bidaman, P. Boubel, C. Burbadge, R. Caballero-Folch, M.R. Dunlop, L.J. Evitts, F. Garcia, A.B. Garnsworthy, P.E. Garrett, G. Hackman, S. Hallam, J. Henderson, S. Ilyushkin, D. Kisliuk, R. Krucken, J. Lassen, R. Li, E. MacConnachie, A.D. MacLean, E. McGee, M. Moukaddam, B. Olaizola, E. Padilla-Rodal, J. Park, O. Paetkau, C.M. Petrache, J.L. Pore, A.J. Radich, P. Ruotsalainen, J. Smallcombe, J.K. Smith, S.L. Tabor, A. Teigelhofer, J. Turko, T. Zidar
2016Dz01	ARISE	109,	345	T. Dziel, A. Listkowska, Z. Tyminski
2016Ei01	PRVCA	94,	015502	M. Eibach, G. Bollen, K. Gulyuz, C. Izzo, M. Redshaw, R. Ringle, R. Sandler, A.A. Valverde
2016Fe04	ARISE	109,	151	A.J. Fenwick, K.M. Ferreira, S.M. Collins
2016Fi07	PYLBB	758,	407	P. Filianin, S. Schmidt, K. Blaum, M. Block, S. Eliseev, F. Giacoppo, M. Goncharov, F. Lautenschlaeger, Yu. Novikov, K. Takahashi
2016Fo16	PYLBB	760,	293	U. Forsberg, D. Rudolph, C. Fahlander, P. Golubev, L.G. Sarmiento, S. Aberg, M. Block, Ch. E. Düllmann, F.P. Hessberger, J.V. Kratz, A. Yakushev
2016Ga24	ARISE	109,	314	E. García-Torano, V. Peyrés, M. Roteta, A.I. Sánchez-Cabezudo, E. Romero, A. Martíinez Ortega
2016Ga.1	PRVCA to l	•		A.T. Gallant et al
2016Gu02	PRLTA	116,	012501	K. Gulyuz, G. Bollen, M. Brodeur, R.A. Bryce, K. Cooper, M. Eibach, C. Izzo, E. Kwan, K. Manukyan, D.J. Morrissey, O. Naviliat-Cuncic, M. Redshaw, R. Ringle, R. Sandler, S. Schwarz, C.S. Sumithrarachchi, A.A. Valverde, A.C.C. Villari
2016Gu.A	PrvCom	FGK	Sep	L.A. Gurgi et al.
2016Ha.A	PrvCom	FGK	_	D.J. Hartley
2016Но13	PRVCA	94,	021303	S.S. Hota, S.K. Tandel, P. Chowdhury, I. Ahmad, M.P. Carpenter, C.J. Chiara, J.P. Greene, C.R. Hoffman, E.G. Jackson, R.V.F. Janssens, B.P. Kay, T.L. Khoo, F.G. Kondev, S. Lakshmi, S. Lalkovski, T. Lauritsen, C.J. Lister, E.A. Mc-Cutchan, K. Moran, D. Peterson, U. Shirwadkar, D. Seweryniak, I. Stefanescu, Y. Toh, S. Zhu
2016Ho.A	Th-Heidelb	erg		M.J. Höcker
2016Hu.A	B-Bruges			W.J. Huang
2016Is03	PRVCA	93,	014303	L.W. Iskra, R. Broda, R.V.F. Janssens, C.J. Chiara, M.P. Carpenter, B. Fornal, N. Hoteling, F.G. Kondev, W. Krolas, T. Lauritsen, T. Pawlat, D. Seweryniak, I. Stefanescu, W.B. Walters, J. Wrzesinski, S. Zhu
2016Ju.A	PrvCom	FGK		A. Jungclaus et al.
2016Ka13	JUPSA	85,		D. Kaji, K. Morimoto, H. Haba, E. Ideguchi, H. Koura, K. Morita
2016Ka15	PRVCA	93,	041304	A. Kankainen, L. Canete, T. Eronen, J. Hakala, A. Jokinen, J. Koponen, I.D. Moore, D. Nesterenko, J. Reinikainen, S. Rinta-Antila, A. Voss, J. Aysto
2016Kl04	PRVCA	93,	045807	R. Klawitter, A. Bader, M. Brodeur, U. Chowdhury, A. Chaudhuri, J. Fallis, A.T. Gallant, A. Grossheim, A.A. Kwiatkowski, D. Lascar, K.G. Leach, A. Lennarz, T.D. Macdonald, J. Pearkes, S. Seeraji, M.C. Simon, V.V. Simon, B.E. Schultz, J. Dilling
2016Kn02	PYLBB	754,	288	R. Knöbel, M. Diwisch, F. Bosch, D. Boutin, L. Chen, C. Dimopoulou, A. Dolinskii, B. Franczak, B. Franzke, H. Geissel, M. Hausmann, C. Kozhuharov, J. Kurcewicz, S.A. Litvinov, G. Martinez-Pinedo, M. Matos, M. Mazzocco, G. Münzenberg, S. Nakajima, C. Nociforo, F. Nolden, T. Ohtsubo, A. Ozawa, Z. Patyk, W.R. Plaß, C. Scheidenberger, J. Stadlmann, M. Steck, B. Sun, T. Suzuki, P.M. Walker, H. Weick, MR. Wu, M. Winkler, T. Yamaguchi
2016Kn03	ЕРЈАА	52,	138	R. Knöbel, M. Diwisch, H. Geissel, Yu. A. Litvinov, Z. Patyk, W.R. Plaß, C. Scheidenberger, B. Sun, H. Weick, F. Bosch, D. Boutin, L. Chen, C. Dimopoulou, A. Dolinskii, B. Franczak, B. Franzke, M. Hausmann, C. Kozhuharov, J. Kurcewicz, S.A. Litvinov, M. Matos, M. Mazzocco, G. Münzenberg, S. Nakajima, C. Nociforo, F. Nolden, T. Ohtsubo, A. Ozawa, J. Stadlmann, M. Steck, T. Suzuki, P.M. Walker, M. Winkler, T. Yamaguchi

2016Ko05	PRVCA	93,	014613	N. Kobayashi, T. Nakamura, Y. Kondo, J.A. Tostevin, N. Aoi, H. Baba, R. Barthelemy, M.A. Famiano, N. Fukuda, N. Inabe, M. Ishihara, R. Kanungo, S. Kim, T. Kubo, G.S. Lee, H.S. Lee, M. Matsushita, T. Motobayashi, T. Ohnishi,
2016Ko11	PRLTA	116,	102503	N.A. Orr, H. Otsu, T. Sako, H. Sakurai, Y. Satou, T. Sumikama, H. Takeda, S. Takeuchi, R. Tanaka, Y. Togano, K. Yoneda Y. Kondo, T. Nakamura, R. Tanaka, R. Minakata, S. Ogoshi, N.A. Orr, N.L. Achouri, T. Aumann, H. Baba, F. Delaunay, P. Doornenbal, N. Fukuda, J. Gibelin, J.W. Hwang, N. Inabe, T. Isobe, D. Kameda, D. Kanno, S. Kim, N. Kobayashi, T. Kobayashi, T. Kubo, S. Leblond, J. Lee, F.M. Marqués, T. Motobayashi, D. Murai, T. Murakami, K. Muto, T. Nakashima, N. Nakatsuka, A. Navin, S. Nishi, H. Otsu, H. Sato, Y. Satou, Y. Shimizu, H. Suzuki, K. Takahashi, H. Takeda, S. Takeuchi, Y. Togano, A.G. Tuff, M. Vandebrouck, K. Yoneda
2016Ko24	PRVCA	93,	064324	A. Korgul, K.P. Rykaczewski, R.K. Grzywacz, C.R. Bingham, N.T. Brewer, C.J. Gross, A.A. Ciemny, C. Jost, M. Karny, M. Madurga, C. Mazzocchi, A.J. Mendez, K. Miernik, D. Miller, S. Padgett, S.V. Paulauskas, M. Piersa, D.W. Stracener, M. Stryjczyk, M. Wolinska-Cichocka, E.F. Zganjar
2016Ko.A	P-Adelaide		Sept	F.G. Kondev
2016Ko.B	PrvCom	FGK	Oct	F.G. Kondev
2016Kw.A	PrvCom	GAu	Apr	A.A. Kwiatkowski
2016La.A	PrvCom	Hwj	Aug	D. Lascar
2016Li01	NIMAE	808,	117	L.L. Liu, X.L. Huang, M.X. Kang, G.C. Chen, J.M. Wang, L.Y. Jiang
2016Lo01	PRVCA	93,	014316	R. Lozeva, H. Naïdja, F. Nowacki, J. Dudek, A. Odahara, CB. Moon, S. Nishimura, P. Doornenbal, JM. Daugas, PA. Söderström, T. Sumikama, G. Lorusso, J. Wu, Z.Y. Xu, H. Baba, F. Browne, R. Daido, Y. Fang, T. Isobe, I. Kojouharov, N. Kurz, Z. Patel, S. Rice, H. Sakurai, H. Schaffner, L. Sinclair, H. Watanabe, A. Yagi, R. Yokoyama, T. Kubo, N. Inabe, H. Suzuki, N. Fukuda, D. Kameda, H. Takeda, D.S. Ahn, D. Murai, F.L. Bello Garrote, F. Didierjean, E. Ideguchi, T. Ishigaki, H.S. Jung, T. Komatsubara, Y.K. Kwon, P. Lee, C.S. Lee, S. Morimoto, M. Niikura, H. Nishibata, I. Nishizuka
2016Ly01	PRVCA	93,	014319	K.M. Lynch, T.E. Cocolios, J. Billowes, M.L. Bissell, I. Budincevic, T. Day Goodacre, R.P. de Groote, G.J. Farooq-Smith, V.N. Fedosseev, K.T. Flanagan, S. Franchoo, R.F. Garcia Ruiz, H. Heylen, R. Li, B.A. Marsh, G. Neyens, R.E. Rossel, S. Rothe, H.H. Stroke, K.D.A. Wendt, S.G. Wilkins, X. Yang
2016Ma05 2016Ma50	PRVCA PRLTA	93, 117,	014310 092502	C.M. MacDonald, R.J. Cornett, C.R.J. Charles, X.L. Zhao, W.E. Kieser M. Madurga, S.V. Paulauskas, R. Grzywacz, D. Miller, D.W. Bardayan, J.C. Batchelder, N.T. Brewer, J.A. Cizewski, A. Fijalkowska, C.J. Gross, M.E. Howard, S.V. Ilyushkin, B. Manning, M. Matos, A.J. Mendez, II, K. Miernik, S.W. Padgett, W.A. Peters, B.C. Rasco, A. Ratkiewicz, K.P. Rykaczewski, D.W. Stracener, E.H. Wang, M. Wolinska-Cichocka, E.F. Zganjar
2016Ma.1	PRVCA to b	e pd		V. Manea et al
2016Ma.A	PrvCom	GAu	Feb	M. MacCormick
2016Me07	PRVCA	93,	035805	Z. Meisel, S. George, S. Ahn, D. Bazin, B.A. Brown, J. Browne, J.F. Carpino, H. Chung, R.H. Cyburt, A. Estradé, M. Famiano, A. Gade, C. Langer, M. Matos, W. Mittig, F. Montes, D.J. Morrissey, J. Pereira, H. Schatz, J. Schatz, M. Scott, D. Shapira, K. Sieja, K. Smith, J. Stevens, W. Tan, O. Tarasov, S. Towers, K. Wimmer, J.R. Winkelbauer, J. Yurkon, R.G.T. Zegers
2016Mo07	PRVCA	93,	034328	A.I. Morales, G. Benzoni, H. Watanabe, S. Nishimura, F. Browne, R. Daido, P. Doornenbal, Y. Fang, G. Lorusso, Z. Patel, S. Rice, L. Sinclair, PA. Soderstrom, T. Sumikama, J. Wu, Z.Y. Xu, A. Yagi, R. Yokoyama, H. Baba, R. Avigo, F.L. Bello Garrote, N. Blasi, A. Bracco, F. Camera, S. Ceruti, F.C.L. Crespi, G. de Angelis, MC. Delattre, Zs. Dombradi, A. Gottardo, T. Isobe, I. Kojouharov, N. Kurz, I. Kuti, K. Matsui, B. Melon, D. Mengoni, T. Miyazaki, V. Modamio-Hoyborg, S. Momiyama, D.R. Napoli, M. Niikura, R. Orlandi, H. Sakurai, E. Sahin, D. Sohler, H. Shaffner, R. Taniuchi, J. Taprogge, Zs. Vajta, J.J. Valiente-Dobon, O. Wieland, M. Yalcinkaya

2016Na02	PRVCA	93,	014308	E. Nacher, B. Rubio, A. Algora, D. Cano-Ott, J.L. Tain, A. Gadea, J. Agramunt, M. Gierlik, M. Karny, Z. Janas, E. Roeckl, A. Blazhev, R. Collatz, J. Doring, M. Hellstrom, Z. Hu, R. Kirchner, I. Mukha, C. Plettner, M. Shibata,
2016Or03	PRVCA	93,	044336	K. Rykaczewski, L. Batist, F. Moroz, V. Wittmann, J.J. Valiente-Dobon S.E.A. Orrigo, B. Rubio, Y. Fujita, W. Gelletly, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, B. Blank, L. Caceres, R.B. Cakirli, E. Ganioglu, M. Gerbaux, J. Giovinazzo, S. Grevy, O. Kamalou, H.C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A.M. Rogers, G. Susoy, C. Stodel, T. Suzuki, A. Tamii,
2016Or08	PRVCA	94,	044315	J.C. Thomas S.E.A. Orrigo, B. Rubio, W. Gelletly, B. Blank, Y. Fujita, J. Giovinazzo, J. Agramunt, A. Algora, P. Ascher, B. Bilgier, L. Caceres, R.B. Cakirli, G. de France, E. Ganioglu, M. Gerbaux, S. Grevy, O. Kamalou, H.C. Kozer, L. Kucuk, T. Kurtukian-Nieto, F. Molina, L. Popescu, A.M. Rogers, G. Susoy, C. Stodel,
2016Pa01	PYLBB	753,	182	T. Suzuki, A. Tamii, J.C. Thomas Z. Patel, Zs. Podolyák, P.M. Walker, P.H. Regan, PA. Söderström, H. Watanabe, E. Ideguchi, G.S. Simpson, S. Nishimura, F. Browne, P. Doornenbal, G. Lorusso, S. Rice, L. Sinclair, T. Sumikama, J. Wu, Z.Y. Xu, N. Aoi, H. Baba, F.L. Bello Garrote, G. Benzoni, R. Daido, Zs. Dombrádi, Y. Fang, N. Fukuda, G. Gey, S. Go, A. Gottardo, N. Inabe, T. Isobe, D. Kameda, K. Kobayashi, M. Kobayashi, T. Komatsubara, I. Kojouharov, T. Kubo, N. Kurz, I. Kuti, Z. Li, H.L. Liu, M. Matsushita, S. Michimasa, CB. Moon, H. Nishibata, I. Nishizuka, A. Odahara, E. Sahin, H. Sakurai, H. Schaffner, H. Suzuki, H. Takeda, M. Tanaka, J. Taprogge, Zs. Vajta, F.R. Xu, A. Yagi, R. Yokoyama
2016Pe14	PRVCA	94,	024319	C. Petrone, J.M. Daugas, G.S. Simpson, M. Stanoiu, C. Plaisir, T. Faul, C. Borcea, R. Borcea, L. Caceres, S. Calinescu, R. Chevrier, L. Gaudefroy, G. Georgiev, G. Gey, O. Kamalou, F. Negoita, F. Rotaru, O. Sorlin, J.C. Thomas
2016Qu01	ARISE	109,	172	F.G.A. Quarati, P. Dorenbos, X. Mougeot
2016Re01	PYLBB	752,	296	J. Refsgaard, O.S. Kirsebom, E.A. Dijck, H.O.U. Fynbo, M.V. Lund, M.N. Portela, R. Raabe, G. Randisi, F. Renzi, S. Sambi, A. Sytema, L. Willmann, H.W. Wilschut
2016Re02	PYLBB	752,	311	M.W. Reed, G.J. Lane, G.D. Dracoulis, F.G. Kondev, M.P. Carpenter, P. Chowdhury, S.S. Hota, R.O. Hughes, R.V.F. Janssens, T. Lauritsen, C.J. Lister, N. Palalani, D. Seweryniak, H. Watanabe, S. Zhu, W.G. Jiang, F.R. Xu
2016Re14	PRVCA	94,	024619	F. Renzi, R. Raabe, G. Randisi, D. Smirnov, C. Angulo, J. Cabrera, E. Casarejos, Th. Keutgen, A. Ninane, J.L. Charvet, A. Gillibert, V. Lapoux, L. Nalpas, A. Obertelli, F. Skaza, J.L. Sida, N.A. Orr, S.I. Sidorchuk, R. Wolski, M.J.G. Borge, D. Escrig
2016Sc.A	PrvCom	SNa	Feb	P. Schury et al very preliminary
2016So.A	PrvCom	FGK	Apr	PA. Söderström et al
2016Su10	PYLBB	756,	323	J. Su, W.P. Liu, N.T. Zhang, Y.P. Shen, Y.H. Lam, N.A. Smirnova, M. Mac-Cormick, J.S. Wang, L. Jing, Z.H. Li, Y.B. Wang, B. Guo, S.Q. Yan, Y.J. Li, S. Zeng, G. Lian, X.C. Du, L. Gan, X.X. Bai, Z.C. Gao, Y.H. Zhang, X.H. Zhou, X.D. Tang, J.J. He, Y.Y. Yang, S.L. Jin, P. Ma, J.B. Ma, M.R. Huang, Z. Bai, Y.J. Zhou, W.H. Ma, J. Hu, S.W. Xu, S.B. Ma, S.Z. Chen, L.Y. Zhang, B. Ding, Z.H. Li, G. Audi
2016Ub01	PYLBB	754,	323	E. Uberseder, G.V. Rogachev, V.Z. Goldberg, E. Koshchiy, B.T. Roeder, M. Alcorta, G. Chubarian, B. Davids, C. Fu, J. Hooker, H. Jayatissa, D. Melconian, R.E. Tribble
2016Ur03	PRVCA	94,	011302	W. Urban, U. Koster, M. Jentschel, P. Mutti, B. Markisch, T. Rzaca-Urban, Ch. Bernards, Ch. Fransen, J. Jolie, T. Thomas, G.S. Simpson
2016Va01	JPGPE	43,	025102	C. Van Beveren, A.N. Andreyev, A.E. Barzakh, T.E. Cocolios, R.P. de Groote, D. Fedorov, V.N. Fedosseev, R. Ferrer, L. Ghys, M. Huyse, U. Köster, J. Lane, V. Liberati, K.M. Lynch, B.A. Marsh, P.L. Molkanov, T.J. Procter, E. Rapisarda, K. Sandhu, M.D. Seliverstov, P. Van Duppen, M. Venhart, M. Veselský
2016Wa16	PRVCA	93,	054301	Z.M. Wang, A.B. Garnsworthy, C. Andreoiu, G.C. Ball, P.C. Bender, V. Bildstein, D.S. Cross, G. Demand, R. Dunlop, L.J. Evit ts, P.E. Garrett, G. Hackman, B. Hadinia, S. Ketelhut, R. Krucken, K.G. Leach, A.T. Laffoley, D. Miller, M. Moukaddam, J. Pore, A.J. Radich, M.M. Rajabali, C.E. Svensson, A. Tan, E. Tardiff, C. Unsworth, A. Voss, P. Voss

2016Wa19	PYLBB	760,	641	H. Watanabe, G.X. Zhang, K. Yoshida, P.M. Walker, J.J. Liu, J. Wu, P.H. Regan, PA. Soderstrom, H. Kanaoka, Z. Korkulu, P.S. Lee, S. Nishimura, A. Yagi, D.S. Ahn, T. Alharbi, H. Baba, F. Browne, A.M. Bruce, R.J. Carroll, K.Y. Chae, Zs. Dombradi, P. Doornenbal, A. Estrade, N. Fukuda, C. Griffin, E. Ideguchi, N. Inabe, T. Isobe, S. Kanaya, I. Kojouharov, F.G. Kondev, T. Kubo, S. Kubono, N. Kurz, I. Kuti, S. Lalkovski, G.J. Lane, C.S. Lee, E.J. Lee, G. Lorusso, G. Lotay, CB. Moon, I. Nishizuka, C.R. Nita, A. Odahara, Z. Patel, V.H. Phong, Zs. Podolyak, O.J. Roberts, H. Sakurai, H. Schaffner, C.M. Shand, Y. Shimizu, T. Sumikama, H. Suzuki, H. Takeda, S. Terashima, Zs. Vajta, J.J. Valiente-Dobon, Z.Y. Xu
2016We07	NATUA	533,	47	L. v. d. Wense, B. Seiferle, M. Laatiaoui, J.B. Neumayr, HJ. Maier, HF. Wirth, C. Mokry, J. Runke, Kl. Eberhardt, C.E. Dullmann, N.G. Trautmann, P.G. Thirolf
2016We.A	PrvCom	HWJ	Nov	A. Welker et al
2016Wu.A	PrvCom	FGK	Sep	J. Wu et al
2016Xi.A	PrvCom	WgM	Jul	Y.M. Xing
2016Xu10	PRLTA	117,	182503	X. Xu, P. Zhang, P. Shuai, R.J. Chen, X.L. Yan, Y.H. Zhang, M. Wang, Yu. A. Litvinov, H.S. Xu, T. Bao, X.C. Chen, H. Chen, C.Y. Fu, S. Kubono, Y.H. Lam, D.W. Liu, R.S. Mao, X.W. Ma, M.Z. Sun, X.L. Tu, Y.M. Xing, J.C. Yang, Y.J. Yuan, Q. Zeng, X. Zhou, X.H. Zhou, W.L. Zhan, S. Litvinov, K. Blaum, G. Audi, T. Uesaka, Y. Yamaguchi, T. Yamaguchi, A. Ozawa, B.H. Sun, Y. Sun, A.C. Dai, F.R. Xu
2016Ya.A	PrvCom	SNa	Apr	A. Yagi updates 2015Ya.1
2016Zh.A	PrvCom	WgM	May	P. Zhang et al
				2017
2017Ma.A	PrvCom	GAu	Feb	V. Manea, updates provisional values given in 2015Ma. A
2017Mo.A	PrvCom	GAu	Feb	M. Mougeot, updates provisional values given in 2015Ma. A