Лабораторная работа №5

Работа с полиномами

Смирнов-Мальцев Егор Дмитриевич

Содержание

Цель работы	4
Задание	5
Теоретическое введение	6
Выполнение лабораторной работы	7
Выводы	13
Список литературы	14

Список иллюстраций

1	График точек, заданных матрицей D	8
2	Задание графика	8
3	Построение матрицы коэффициентов	8
4	Нахождение полинома и построение его графика	9
5	График полинома	9
6		10
7	Построение графика дома	10
8	График дома	10
9	Построение графика дома	11
10	График домика, отраженный относительно прямой $y = x$	11
11	Построение графика дома, увеличенного в 2 раза	11
12	График увеличенного дома	

Цель работы

Научиться подгонять полиномиальные кривые и выполнять различные матричные преобразования с помощью системы для математических вычислений Octave.

Задание

- Выполнить подгонку полиномиальной кривой с помощью Octave.
- Представить изображение с помощью матрицы.
- Перевернуть изображение на определённый угол.
- Отразить изображение относительно прямой.
- Выполнить преобразование делитации.

Теоретическое введение

Подгонка кривой — это построение математической функции, которая наилучшим образом соответствует имеющимся данным[@wiki:bash].

Поворот происходит путем домножения координат точки на матрицу поворота:

$$\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Дилатация (то есть расширение или сжатие) также может быть выполнено путём умножения матриц. Матричное произведение TD будет преобразованием дилатации D с коэффициентом k, где

$$\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$$

Выполнение лабораторной работы

Пусть нам нужно найти параболу по методу наименьших квадратов для набора точек, заданных матрицей

$$D = \begin{pmatrix} 1 & 1 \\ 2 & 2 \\ 3 & 5 \\ 4 & 4 \\ 5 & 2 \\ 6 & -3 \end{pmatrix}$$

В матрице заданы значения x в столбце 1 и значения y в столбце 2. Введём матрицу данных в Octave и извлечём вектора x и y. Нарисуем точки на графике.(puc. [-@fig:001], [-@fig:002])

Рис. 1: График точек, заданных матрицей D

Рис. 2: Задание графика

Построим уравнение вида $y = ax^2 + bx + c$ (рис. [-@fig:003])

Рис. 3: Построение матрицы коэффициентов

Решение по методу наименьших квадратов получается из решения уравнения $A^TAb = A^Ty$, где b – вектор коэффициентов полинома. Решим его с помощью Octave. Построим график полученной параболы (рис. [-@fig:004], [-@fig:005])

Рис. 4: Нахождение полинома и построение его графика

Рис. 5: График полинома

Для подгонки можно использовать встроенную функцию polyfit. Значения полинома P в точках, задаваемых вектором-строкой х можно получить с помощью функции polyval (рис. [-@fig:006])

Рис. 6: Построение графика исходных и подгоночных даннных

Закодируем граф-домик. Выберем путь, который проходит по каждому ребру ровно один раз. Повернем граф на 90 и 225 градусов с помощью матрицы поворота (рис. [-@fig:007], [-@fig:008])

Рис. 7: Построение графика дома

Рис. 8: График дома

Отразим граф дома относительно прямой y=x. Зададим матрицу отражения, подставив угол 45 градусов, так как именно под таким углом относительно оси абсцисс проходит прямая y=x. (рис. [-@fig:009],[-@fig:010])

Рис. 9: Построение графика дома

Рис. 10: График домика, отраженный относительно прямой y=x

Увеличим граф дома в 2 раза, используя матрицу для делитации (рис. [-@fig:011],[-@fig:012])

Рис. 11: Построение графика дома, увеличенного в 2 раза

Рис. 12: График увеличенного дома

Выводы

В результате выполнения работы научились подгонять полиномы и выполнять афинные преобразования графиком с помощью системы для математических вычислений Octave.

Список литературы