# Sprint 3 - Agility Design Document December 3rd, 2020

# Sprint 3 - Agility Design Document

# **Table of Contents**

| 1. EX | KECUTIVE SUMMARY                              | 3  |
|-------|-----------------------------------------------|----|
| 1.1   | Project Overview                              | 3  |
| 1.2   | Purpose and Scope of this Specification       | 3  |
| 2. PR | RODUCT/SERVICE DESCRIPTION                    | 3  |
| 2.1   | Product Context                               | 3  |
| 2.2   | User Characteristics                          | 3  |
| 2.3   | Assumptions                                   | 3  |
| 2.4   | Constraints                                   | 3  |
| 2.5   | Dependencies                                  | 3  |
| 3. RE | EQUIREMENTS                                   | 4  |
| 3.1   | Functional Requirements                       | 4  |
| 3.2   | Security                                      | 5  |
| 3.2   | 2.1 Protection                                | 5  |
| 3.2   | 2.2 Authorization and Authentication          | 5  |
| 3.3   | Portability                                   | 5  |
| 4. RE | EQUIREMENTS CONFIRMATION/STAKEHOLDER SIGN-OFF | 5  |
| 5. SY | YSTEM DESIGN                                  | 5  |
| 5.1   | Algorithm                                     | 5  |
| 5.2   | System Flow                                   | 6  |
| 5.3   | Software                                      | 6  |
| 5.4   | Hardware                                      | 6  |
| 5.5   | TEST PLAN                                     | 7  |
| 5.6   | Task List/Gantt Chart                         | 8  |
| 5.7   | Staffing Plan                                 | 8  |
| 5.8   | Sensor Data                                   | 9  |
| 5.9   | Brock Code                                    | 10 |

# 1. Executive Summary

#### 1.1 Project Overview

This project is the Agility leg of the triathlon. The goal of this leg is to get our Sphero robot to follow the zig-zag pattern around and not hit any of the bottles. It then needs to go up and over the ramp, once over it must make a turn and follow the straight away, knocking down the pins at the end. The intended audience is our classmates in CS-104 and Professor Eckert.

### 1.2 Purpose and Scope of this Specification

#### In scope

This document addresses requirements related to phase 3 of Project A:

- The program we create is designed to follow the path in Howard Hall
- The software is designed to run on smooth surfaces

#### **Out of Scope**

- The program will not work on leg 1 or leg 2 of the triathlon
- The robot will not run on sand

# 2. Product/Service Description

#### 2.1 Product Context

The product (our program) relies on the Sphero Edu app to run its code. The program also relies on a connected Sphero robot in order for the program to run. The program relies on the app and the robot in order to exist. The app and robot can run other code, but our code can not run on other apps or different brands of robot. This is the third of three sprints we will have done.

#### 2.2 User Characteristics

- 1. Computer Science Professor: Has experience using the robot in the past, has expertise in the field
- 2. Student: Limited experience in the field, has an interest in learning the field, has a background of using technology throughout their life
- 3. Child: No experience in the field, has an interest in technology, has a background using technology almost their whole life

### 2.3 Assumptions

- Test room in Howard Hall availability
- Sphero Edu app is available to run create our code on
- Robot is available and in possession of the group
- Assume that we have enough expertise to get the program running well

#### 2.4 Constraints

- Restricted to remote work instead of collaborating in person
- Restricted to certain times to test in Howard Hall

#### 2.5 Dependencies

- Algorithm needs to be complete before creating a flowchart
- Flowchart needs to be complete before programming the robot
- Program needs to have at least one line of code before the robot can move

# Sprint 3 - Agility Design Document

# 3. Requirements

# 3.1 Functional Requirements

| Req#       | Requirement                                                                              | Comments                                                                                                  | Priority | Date<br>Rvwd | SME<br>Reviewed /<br>Approved |
|------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|--------------|-------------------------------|
| AGILITY_01 | Robot must be placed at the start of the course                                          |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_02 | Robot must start                                                                         |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_03 | Robot must move straight for 3 feet and 3 inches                                         |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_04 | Robot must turn 90 degrees to the right                                                  |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_05 | Robot must move straight for 3 feet and 4 inches                                         |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_06 | Robot must turn 90 degrees to the left                                                   |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_07 | Robot must move straight for 3 feet and 11 inches                                        |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_08 | Robot must turn 90 degrees to the right                                                  |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_09 | Robot must move straight for 7 feet and 6 inches                                         |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_10 | While on that 7 foot 6 inch path, the robot must make a jump over a ramp                 |                                                                                                           |          | 12/2         | Approved                      |
| AGILITY_11 | Robot must make a sharp right turn immediately after finishing the 7 foot 6 inch path    |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_12 | Robot must go straight for 9 feet                                                        |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_13 | Robot must continue after that 9 feet to knock down all of the pins                      |                                                                                                           | 1        | 12/2         | Approved                      |
| AGILITY_14 | Change numbers in the program to follow the path more accurately                         | Numbers will change based on multiple factors including the floor, distance, imperfections in the course. | 2        | 12/2         | Approved                      |
| AGILITY_15 | Inspect the floor of Howard<br>Hall to check for anything that<br>would disrupt the path | The Tape on the floor of Howard Hall causes bumps in the track, important to take it into consideration.  | 2        | 12/2         | Approved                      |

## 3.2 Security

#### 3.2.1 Protection

- Locked Zoom meetings to discuss project
- Password protected computers
- Github editing locked to the members of our group
- Files sent through locked Zoom meetings

#### 3.2.2 Authorization and Authentication

No Authorization or Authentication was used for this project

### 3.3 Portability

- We used Sphero Edu for the code which is using javascript. Javascript is a very portable language per internet research.
- The program is easily uploadable to Github

# 4. Requirements Confirmation/Stakeholder sign-off

| Meeting Date | Attendees (name and role) | Comments      |
|--------------|---------------------------|---------------|
| 12/2/20      | Jordan, Chelsea, Emily    | confirmed all |

# 5. System Design

### 5.1 Algorithm

Algorithm for Agility Sprint

- 1.Place robot at start of course
- 2.Start robot
- 3.Set robot to move forward 3 feet and 3 inches
- 4.Stop robot
- 5. Turn robot 90 degrees right
- 6.Set robot to move forward 3 feet and 4 inches
- 7.Stop robot
- 8. Turn robot 90 degrees left
- 9. Set robot to move forward 3 feet and 11 inches
- 10.Stop robot
- 11. Turn robot 90 degrees to the right
- 12. Set robot to move forward 7 feet 6 inches while going over ramp
- 13.Stop robot
- 14. Robot must take sharp right turn
- 15. Set robot to move forward 9 feet
- 16. Robot must proceed to knock down all pins after 9 feet

### 5.2 System Flow



#### 5.3 Software

- Zoom: We used Zoom to communicate during the project
- Sphero Edu: We used Sphero Edu to program the robot
- Google Docs: We used Google Docs for this document and to create the algorithm, it allowed for collaboration
- Microsoft Excel: Used for the Gantt Chart
- Draw.io: Used to create the flowchart
- Github: Used to upload important files to our repository
- Text Messages: We used text to communicate during the project as well

### 5.4 Hardware

- Sphero Robot
- Jordan's Macbook Pro

# Sprint 3 - Agility Design Document

- Chelsea's Macbook Air
- Emily's Macbook AirEmily's iPhone 11

# 5.5 Test Plan

| Reason for Test<br>Case                             | Test<br>Date  | Expected Output                                 | Observed Output                                                                 | Staff Name | Pass/Fail |
|-----------------------------------------------------|---------------|-------------------------------------------------|---------------------------------------------------------------------------------|------------|-----------|
|                                                     |               |                                                 |                                                                                 |            |           |
| To start robot                                      | 12/2/202<br>0 | Robot will start                                | Robot started                                                                   | Emily      | Pass      |
| Set robot to move the first length                  | 12/2/202<br>0 | Robot will stop at the end of the first length  | Robot went too short                                                            | Emily      | Fail      |
| Set robot to move the first length                  | 12/2/202<br>0 | Robot will stop at the end of the first length  | Robot hit the bottle                                                            | Emily      | Fail      |
| Set robot to move the first length                  | 12/2/202<br>0 | Robot will stop at the end of the first length  | Robot went correct length without hitting the bottle                            | Emily      | Pass      |
| Set the robot to<br>turn 90 degrees to<br>the right | 12/2/202<br>0 | The robot will turn in the right direction      | The robot turned in the right direction                                         | Emily      | Pass      |
| Set robot to move the second length                 | 12/2/202<br>0 | Robot will stop at the end of the second length | Robot hit bottle                                                                | Emily      | Fail      |
| Set robot to move the second length                 | 12/2/202<br>0 | Robot will stop at the end of the second length | Robot went correct<br>length without hitting<br>bottle (adding delay<br>helped) | Emily      | Pass      |
| Set the robot to<br>turn 90 degrees to<br>the left  | 12/2/202<br>0 | The robot will turn in the right direction      | Robot turned in the correct direction                                           | Emily      | Pass      |
| Set robot to move the third length                  | 12/2/202<br>0 | Robot will stop at the end of the third length  | Robot went past the end of the third length                                     | Emily      | Fail      |
| Set robot to move the third length                  | 12/2/202<br>0 | Robot will stop at the end of the third length  | Robot went past the end of the third length                                     | Emily      | Pass      |
| Set robot to turn 90 degrees to the right           | 12/2/202<br>0 | The robot will turn in the right direction      | Robot turned in the correct direction                                           | Emily      | Pass      |
| Make the robot go up the ramp                       | 12/2/202<br>0 | Robot will go up the ramp                       | Robot did not even touch the ramp                                               | Emily      | Fail      |
| Make the robot go up the ramp                       | 12/2/202<br>0 | Robot will go up the ramp                       | Robot robot did not go all the way up                                           | Emily      | Fail      |
| Make the robot go up the ramp                       | 12/2/202<br>0 | Robot will go up the ramp                       | Robot landed off center                                                         | Emily      | Fail      |
| Make the robot go up the ramp                       | 12/2/202<br>0 | Robot will go up the ramp                       | Robot landed correctly                                                          | Emily      | Pass      |
| Make the sharp right turn towards the last length   | 12/2/202<br>0 | Robot will make the turn                        | Robot's turn was wide                                                           | Emily      | Fail      |

Sprint 3 - Agility Design Document

| Make the sharp right turn towards the last length | 12/2/202<br>0 | Robot will make the turn                                | Robot made the correct turn          | Emily | Pass |
|---------------------------------------------------|---------------|---------------------------------------------------------|--------------------------------------|-------|------|
| Robot will complete the final length              | 12/2/202<br>0 | Robot will go the final length and stop before the pins | Robot came up short                  | Emily | Fail |
| Robot will complete the final length              | 12/2/202<br>0 | Robot will go the final length and stop before the pins | Robot went the correct distance      | Emily | Pass |
| Robot will knock over the pins                    | 12/2/202<br>0 | Robot knocks over all the pins                          | Robot did not knock all of them down | Emily | Fail |
| Robot will knock over the pins                    | 12/2/202<br>0 | Robot knocks over all the pins                          | Robot knocked all pins down          | Emily | Pass |

### 5.6 Task List/Gantt Chart



# 5.7 Staffing Plan

| Name | Role | Responsibility | Reports To |
|------|------|----------------|------------|
|      |      |                |            |

Sprint 3 - Agility Design Document

| Jordan  | Team Leader, Staff<br>Manager, Gantt Chart<br>Manager,<br>Programmer,<br>Software Developer            | To lead and oversee overall projects, to work with team members to develop programs, algorithms, and software, contribute ideas to overall project and sprint 1 document. Create the Gantt chart. | Professor Eckert |
|---------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Emily   | Team member,<br>Software Tester, Idea<br>Contributor, Software<br>Developer,<br>Repository owner       | To work with team members to develop software/algorithms, to test robots on site (HH208), contribute ideas to the overall project.                                                                | Jordan           |
| Chelsea | Team Member,<br>Develop algorithm,<br>Idea Contributor,<br>Flowchart Developer,<br>Algorithm Developer | To work with team members to develop algorithms, develop software, and contribute ideas to the overall project and sprint 1 document. To create the flowchart.                                    | Jordan           |

# 5.8 Sensor Data



### 5.9 Block Code

