Chris Merrill CS325 11/8/2017

Homework Assignment 6

NOTE: ALL CODE IS INCLUDED AT THE BOTTOM OF THIS FILE

- 1. Shortest Paths using LP: (7 points) Shortest paths can be cast as an LP using distances dv from the source s to a particular vertex v as variables.
 - We can compute the shortest path from s to t in a weighted directed graph by solving.

```
\label{eq:continuous} \begin{aligned} max \ dt \\ subject \ to \\ ds &= 0 \\ dv - du \leq w(u,v) \ \ for \ all \ (u,v) \Box E \end{aligned}
```

• We can compute the single-source by changing the objective function to $\max \sum_{v \in V} dv$

Use linear programming to answer the questions below. Submit a copy of the LP code and output.

a) Find the distance of the shortest path from G to C in the graph below.

To compute the length of the shortest path from G to C in a weighted directed graph we can use:

```
 \begin{array}{ll} \text{Maximize} & d_c \\ \text{Subject To} & d_g = 0 \\ & d_v - d_u \leq I_{u \to v} \text{ for every edge } u \to v \\ \end{array}
```

I used LINDO to carry out the calculation (see attached code and output) and found that:

Shortest Path from G to C = 16

b) Find the distances of the shortest paths from G to all other vertices.

Using the same method as in a, the shortest paths to all remaining points are:

```
G \rightarrow A = 7

G \rightarrow B = 12

G \rightarrow C = 16

G \rightarrow D = 2

G \rightarrow E = 19

G \rightarrow F = 17

G \rightarrow H = 3
```


2. <u>Product Mix</u>: (7 points) Acme Industries produces four types of men's ties using three types of material. Your job is to determine how many of each type of tie to make each month. The goal is to maximize profit, profit per tie = selling price - labor cost - material cost. Labor cost is \$0.75 per tie for all four types of ties. The material requirements and costs are given below.

Material	Cost per yard	Yards available per month
Silk	\$20	1,000
Polyester	\$6	2,000
Cotton	\$9	1.250

Product Information	Type of Tie					
Troduct information	Silk = s	Poly = p	Blend1 = b	Blend2 = c		
Selling Price per tie	\$6.70	\$3.55	\$4.31	\$4.81		
Monthly Minimum units	6,000	10,000	13,000	6,000		
Monthly Maximum units	7,000	14,000	16,000	8,500		

Matarial	Type of Tie						
Material Information in yards	Silk Polyester		Blend 1 (50/50)	Blend 2 (30/70)			
Silk	0.125	0	0	0			
Polyester	0	0.08	0.05	0.03			
Cotton	0	0	0.05	0.07			

type	selling price	labor	material	profit per tie	
silk s	6.7	0.75	2.5	3.45	
poly p	3.55	0.75	0.48	2.32	
blend1 b	4.31	0.75	0.75	2.81	
blend2 c	4.81	0.75	0.81	3.25	

Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What are the optimal numbers of ties of each type to maximize profit? Include a copy of the code and output.

I used LINDO to solve the following (see attached code and output):

Maximize	3.45s + 2.32p + 2.81b + 3.25c	
Subject To	0.125s ≤ 1000	(1000 yards of Silk available each month)
	$0.08s + 0.05b + 0.03c \le 2000$	(2000 yards of Polyester available each month)
	0.05b + 0.07c ≤ 1250	(1250 yards of Cotton available each month)
	s ≤ 7000	(Silk has a monthly max of 7000 units)
	s ≥ 6000	(Silk has a monthly min of 6000 units)
	p ≤ 14000	(Polyester has a monthly max of 14000 units)
	p ≥ 10000	(Polyester has a monthly min of 10000 units)
	b ≤ 16000	(Cotton blend 1 has a monthly max of 16000 units)
	b ≥ 13000	(Cotton blend 1 has a monthly min of 13000 units)
	c ≤ 8500	(Cotton Blend 2 has a monthly max of 8500 units)
	c ≥ 6000	(Cotton Blend 2 has a monthly min of 6000 units)

Solution (Optimal # of Ties to Maximize Profit):

Type	# to Make	Value
Silk	7000	\$24,150
Polyester	13625	\$31,610
Blend 1	13100	\$36,811
Blend 2	8500	\$27,625
	ΤΩΤΔΙ÷	\$120 196

3. Transshipment Model (7 points)

This is an extension of the transportation model. There are now intermediate transshipment points added between the sources (plants) and destinations (retailers). Items being shipped from a Plant (p_i) must be shipped to a Warehouse (w_j) before being shipped to the Retailer (r_k) . Each Plant will have an associated supply (s_i) and each Retailer will have a demand (d_k) . The number of plants is n, number of warehouses is q and the number of retailers is m. The edges (i,j) from plant (p_i) to warehouse (w_j) have costs associated denoted cp(i,j). The edges (j,k) from a warehouse (w_j) to a retailer (r_k) have costs associated denoted cw(j,k).

The graph below shows the transshipment map for a manufacturer of refrigerators. Refrigerators are produced at four plants and then shipped to a warehouse (weekly) before going to the retailer.

Below are the costs of shipping from a plant to a warehouse and then a warehouse to a retailer. If it is impossible to ship between the two locations an X is placed in the table.

cost	W1	W2	W3
P1	\$10	\$15	X
P2	\$11	\$8	X
P3	\$13	\$8	\$9
P4	Х	\$14	\$8

cost	R1	R2	R3	R4	R5	R6	R7
W1	\$5	\$6	\$7	\$10	Х	Х	Х

W2	Х	Х	\$12	\$8	\$10	\$14	Х
W3	Х	Х	Х	\$14	\$12	\$12	\$6

The tables below give the capacity of each plant (supply) and the demand for each retailer (per week).

	P1	P2	Р3	P4
Supply	150	450	250	150

	R1	R2	R3	R4	R5	R6	R7
Demand	100	150	100	200	200	150	100

Your goal is to determine the number of refrigerators to be shipped plants to warehouses and then warehouses to retailers to minimize the cost. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What are the optimal shipping routes and minimum cost. Include a copy of the code and output.

I used LINDO to solve the following (see attached code and output):

Minimize 10P1W1 + 15P1W2 + 11P2W1 + 8P2W2 + 13P3W1 + 8P3W2 + 9P3W3 + 14P4W2 +

8P4W3 + 5W1R1 + 6W1R2 + 7W1R3 + 10W1R4 + 12W2R3 + 8W2R4 + 10W2R5 +

14W2R6 + 14W3R4 + 12W3R5 + 12W3R6 + 6W3R7

Subject To P1W1 + P2W1 + P3W1 - W1R1 - W1R2 - W1R3 - W1R4 ≥ 0

P1W2 + P2W2 + P3W2 + P4W2 - W2R3 - W2R4 - W2R5 - W2R6 ≥ 0

P3W3 + P4W3 - W3R4 - W3R5 - W3R6 - W3R7 ≥ 0

 $P1W1 + P1W2 \le 150$

 $P2W1 + P2W2 \le 450$

 $P3W1 + P3W2 + P3W3 \le 250$

P4W2 + P4W3 ≤ 150

W1R1 ≥ 100

W1R2 ≥ 150

W1R3 + W2R3 ≥ 100

W1R4 + W2R4 + W3R4 ≥ 200

W2R5 + W3R5 ≥ 200

W2R6 + W3R6 ≥ 150

W3R7 ≥ 100

The first 3 constraints assure that the refrigerators shipped from each plant are \geq 0. The next three constraints assure that the refrigerators shipped from each plant are less than or equal to the available supply. The final seven constraints assure that the demands are met.

Optimal Shipping Routes:

150 from P1 \rightarrow W1

200 from P2 → W1

250 from P2 \rightarrow W2

150 from P3 → W2

100 from P3 \rightarrow W3

150 from P4 → W3

100 from W1 \rightarrow R1

150 from W1 → R2

130 110111 VV1 -7 K2

100 from W1 \rightarrow R3

200 from W2 \rightarrow R4

200 from W2 \rightarrow R5

150 from W3 → R6

100 from W3 → R7

Total Minimum Cost: \$17,100.00

4: A Mixture Problem (9 points)

Veronica the owner of Very Veggie Vegeria is creating a new healthy salad that is low in calories but meets certain nutritional requirements. A salad is any combination of the following ingredients: Tomato, Lettuce, Spinach, Carrot, Smoked Tofu, Sunflower Seeds, Chickpeas, Oil

Each salad must contain:

- At least 15 grams of protein
- At least 2 and at most 8 grams of fat
- At least 4 grams of carbohydrates
- At most 200 milligrams of sodium
- At least 40% leafy greens by mass.

The nutritional contents of these ingredients (per 100 grams) and cost are

Ingredient	Energy (Cal)	Protein (grams)	Fat (grams)	Carbohydrate (grams)	Sodium (mg)	Cost (100g)
Tomato	21	0.85	0.33	4.64	9.00	\$1.00
Lettuce	16	1.62	0.20	2.37	28.00	\$0.75
Spinach	40	2.86	0.39	3.63	65.00	\$0.50
Carrot	41	0.93	0.24	9.58	69.00	\$0.50
Sunflower Seeds	585	23.4	48.7	15.00	3.80	\$0.45
Smoked Tofu	120	16.00	5.00	3.00	120.00	\$2.15
Chickpeas	164	9.00	2.6	27.0	78.00	\$0.95
Oil	884	0	100.00	0	0	\$2.00

Part A: Determine the combination of ingredients that minimizes calories but meets all nutritional requirements. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. What is the cost of the low-calorie salad?

I used LINDO to solve the following (see attached code and output):

Minimize 21T + 16L + 40S + 41C + 585SS + 120ST + 164CP + 884O

Subject To $0.85T + 1.62L + 2.86S + 0.93C + 23.4SS + 16ST + 9CP \ge 15$ (at least 15g of protein)

> $0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 1000 \ge 2$ (at least 2g of fat) $0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 1000 \le 8$ (at most 8g of fat) 4.64T + 2.37L + 3.63S + 9.58C + 15SS + 3ST + 27CP >= 4(at least 4g of carbs)

 $9T + 28L + 65S + 69C + 3.8SS + 120ST + 78CP \le 200$ (at most 200mg of sodium) 0.6L + 0.6S - 0.4T - 0.4C - 0.4SS - 0.4ST - 0.4CP - 0.40O >= 0(40% leafy greens by mass)

Optimal Solution:

58.584g of Lettuce 87.822g of Smoked Tofu

Total Calories: 114.7541 Total Cost: \$2.33

Part B: Veronica realizes that it is also important to minimize the cost associated with the new salad. Unfortunately, some of the ingredients can be expensive. Determine the combination of ingredients that minimizes cost. Formulate the problem as a linear program with an objective function and all constraints. Determine the optimal solution for the linear program using any software you want. How many calories are in the low-cost salad?

I used LINDO to solve the following (see attached code and output):

Minimize 1T + 0.75L + 0.5S + 0.5C + 0.45SS + 2.15ST + 0.95CP + 20

Subject To $0.85T + 1.62L + 2.86S + 0.93C + 23.4SS + 16ST + 9CP \ge 15$ (at least 15g of protein)

> $0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 1000 \ge 2$ (at least 2g of fat) $0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 1000 \le 8$ (at most 8g of fat) 4.64T + 2.37L + 3.63S + 9.58C + 15SS + 3ST + 27CP >= 4(at least 4g of carbs)

 $9T + 28L + 65S + 69C + 3.8SS + 120ST + 78CP \le 200$ (at most 200mg of sodium) (40% leafy greens by mass)

0.6L + 0.6S - 0.4T - 0.4C - 0.4SS - 0.4ST - 0.4CP - 0.40O >= 0

Optimal Solution:

83.2298g of Spinach 9.6083g of Sunflower Seeds 115.2364g of Chick Peas

Total Cost: \$1.55

Total Calories: 278.488171

LINDO Code and Output for each problem:

Problem 1 Part A Code

max dc st dg = 0dg - de <= 7 dd - dg <= 2 $dh - dg \le 3$ da - dh <= 4 db - dh <= 9 de - db <= 10 db - da <= 8 dd - de <= 9 de - dd <= 25 $dd - dc \le 3$ df - dd <= 18 $dc - db \le 4$ $dc - df \le 3$ db - df <= 7df - da <= 10 da - df <= 5 de - df <= 2 end

Problem 1 Part A Output

LP OPTIMUM FOUND AT STEP 0

OBJECTIVE FUNCTION VALUE

1) 16.00000

VARIABLE	VALUE	REDUCED COST
DC	16.000000	0.000000
DG	0.000000	0.000000
DE	0.000000	0.000000
DD	0.000000	0.000000
DH	3.000000	0.000000
DA	4.000000	0.000000
DB	12.000000	0.000000
DF	13.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

```
2)
      0.000000
                    1.000000
3)
      7.000000
                    0.000000
4)
      2.000000
                    0.000000
5)
      0.000000
                    1.000000
6)
      3.000000
                    0.000000
7)
      0.000000
                    1.000000
8)
      22.000000
                    0.000000
9)
      0.000000
                    0.000000
10)
       9.000000
                    0.000000
11)
      25.000000
                     0.000000
12)
      19.000000
                     0.000000
13)
       5.000000
                    0.000000
       0.000000
14)
                    1.000000
15)
       0.000000
                    0.000000
16)
       8.000000
                    0.000000
17)
       1.000000
                    0.000000
18)
      14.000000
                     0.000000
19)
      15.000000
                     0.000000
```

NO. ITERATIONS= 0

Problem 1 Part B Code

```
max da + db + dc + dd + de + df + dh
st
dg = 0
dg - de <= 7
dd - dg \le 2
dh - dg \le 3
da - dh <= 4
db - dh <= 9
de - db <= 10
db - da <= 8
dd - de <= 9
de - dd <= 25
dd - dc <= 3
df - dd <= 18
dc - db <= 4
dc - df \le 3
db - df <= 7
df - da <= 10
da - df <= 5
de - df <= 2
end
```

Problem 1 Part B Output

LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

1) 76.00000

VARIABLE	VALUE	REDUCED COST
DA	7.000000	0.000000
DB	12.000000	0.000000
DC	16.000000	0.000000
DD	2.000000	0.000000
DE	19.000000	0.000000
DF	17.000000	0.000000
DH	3.000000	0.000000
DG	0.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2)	0.000000	7.000000	
3)	26.000000	0.000000	
4)	0.000000	1.000000	
5)	0.000000	6.000000	
6)	0.000000	3.000000	
7)	0.000000	2.000000	
8)	3.000000	0.000000	
9)	3.000000	0.000000	
10)	26.000000	0.000000	
11)	8.000000	0.000000	
12)	17.000000	0.000000	
13)	3.000000	0.000000	
14)	0.000000	1.000000	
15)	4.000000	0.000000	
16)	12.000000	0.000000	
17)	0.000000	2.000000	
18)	15.000000	0.000000	
19)	0.000000	1.000000	

NO. ITERATIONS= 2

Problem 2 Code

max 3.45s + 2.32p + 2.81b + 3.25c st 0.125s <= 1000

0.08p + 0.05b + 0.03c <= 2000

0.05b + 0.07c <= 1250

s <= 7000

s >= 6000

p <= 14000

p >= 10000

b <= 16000

b >= 13000

c <= 8500

c >= 6000

end

Problem 2 Output

LP OPTIMUM FOUND AT STEP 2

OBJECTIVE FUNCTION VALUE

1) 120196.0

VARIAE	BLE VALUE	REDUCED COST
S	7000.000000	0.000000
Р	13625.000000	0.000000
В	13100.000000	0.000000
С	8500.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

2)	125.000000	0.000000	
3)	0.000000	29.000000	
4)	0.000000	27.200001	
5)	0.000000	3.450000	
6)	1000.000000	0.000000	
7)	375.000000	0.000000	
8)	3625.000000	0.000000	
9)	2900.000000	0.000000	
10)	100.000000	0.000000	
11)	0.000000	0.476000	
12)	2500.000000	0.000000	

NO. ITERATIONS= 2

Problem 3 Code

min 10P1W1 + 15P1W2 + 11P2W1 + 8P2W2 + 13P3W1 + 8P3W2 + 9P3W3 + 14P4W2 + 8P4W3 + 5W1R1 + 6W1R2 + 7W1R3 + 10W1R4 + 12W2R3 + 8W2R4 + 10W2R5 + 14W2R6 + 14W3R4 + 12W3R5 + 12W3R6 + 6W3R7 st P1W1 + P2W1 + P3W1 - W1R1 - W1R2 - W1R3 - W1R4 >= 0 P1W2 + P2W2 + P3W2 + P4W2 - W2R3 - W2R4 - W2R5 - W2R6 >= 0 P3W3 + P4W3 - W3R4 - W3R5 - W3R6 - W3R7 >= 0 P1W1 + P1W2 <= 150 P2W1 + P2W2 <= 450 P3W1 + P3W2 + P3W3 <= 250 P4W2 + P4W3 <= 150 W1R1 >= 100 W1R2 >= 150 W1R3 + W2R3 >= 100 W1R4 + W2R4 + W3R4 >= 200W2R5 + W3R5 >= 200 W2R6 + W3R6 >= 150 W3R7 >= 100 end

Problem 3 Output

LP OPTIMUM FOUND AT STEP 13

OBJECTIVE FUNCTION VALUE

1) 17100.00

VARIABLE	VALUE	REDUCED COST
P1W1	150.000000	0.000000
P1W2	0.000000	8.000000
P2W1	200.000000	0.000000
P2W2	250.000000	0.000000
P3W1	0.000000	2.000000
P3W2	150.000000	0.000000
P3W3	100.000000	0.000000
P4W2	0.000000	7.000000
P4W3	150.000000	0.000000
W1R1	100.000000	0.000000
W1R2	150.000000	0.000000
W1R3	100.000000	0.000000
W1R4	0.000000	5.000000
W2R3	0.000000	2.000000
W2R4	200.000000	0.000000
W2R5	200.000000	0.000000
W2R6	0.000000	1.000000

W3R4	0.000000	7.000000
W3R5	0.000000	3.000000
W3R6	150.000000	0.000000
W3R7	100.000000	0.000000

ROW SLACK OR SURPLUS DUAL PRICES

RUW	SLACK OR SC	JKPLU3	DUAL PRICE	2
2)	0.000000	-11.00	0000	
3)	0.000000	-8.000	0000	
4)	0.000000	-9.000	0000	
5)	0.000000	1.000	0000	
6)	0.000000	0.000	0000	
7)	0.000000	0.000	0000	
8)	0.000000	1.000	0000	
9)	0.000000	-16.00	0000	
10)	0.000000	-17.00	00000	
11)	0.000000	-18.00	00000	
12)	0.000000	-16.00	00000	
13)	0.000000	-18.00	00000	
14)	0.000000	-21.00	00000	
15)	0.000000	-15.00	00000	

NO. ITERATIONS= 13

Problem 4 Part A Code

```
min 21T + 16L + 40S + 41C + 585SS + 120ST + 164CP + 884O st 0.85T + 1.62L + 2.86S + 0.93C + 23.4SS + 16ST + 9CP >= 15 0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 100O >= 2 0.33T + 0.20L + 0.39S + 0.24C + 48.7SS + 5ST + 2.6CP + 100O <= 8 4.64T + 2.37L + 3.63S + 9.58C + 15SS + 3ST + 27CP >= 4 9T + 28L + 65S + 69C + 3.8SS + 120ST + 78CP <= 200 0.6L + 0.6S - 0.4T - 0.4C - 0.4SS - 0.4ST - 0.4CP - 0.40O >= 0 End
```

Problem 4 Part A Output

LP OPTIMUM FOUND AT STEP 5

OBJECTIVE FUNCTION VALUE

1) 114.7541

VARIABLE	VALUE	REDUCED COST
T	0.000000	16.901640
L	0.585480	0.000000
S	0.000000	14.513662
С	0.000000	36.289616
SS	0.000000	408.387970
ST	0.878220	0.000000
CP	0.000000	97.551910
0	0.000000	886.404358

ROW SLACK OR SURPLUS DUAL PRICES

2)	0.000000	-7.650273
3)	2.508197	0.000000
4)	3.491803	0.000000
5)	0.022248	0.000000
6)	78.220139	0.000000
7)	0.000000	-6.010929

NO. ITERATIONS= 5

Problem 4 Part B Code

```
\begin{aligned} &\min 1\mathsf{T} + 0.75\mathsf{L} + 0.5\mathsf{S} + 0.5\mathsf{C} + 0.45\mathsf{SS} + 2.15\mathsf{ST} + 0.95\mathsf{CP} + 2\mathsf{O} \\ &\mathsf{st} \\ &0.85\mathsf{T} + 1.62\mathsf{L} + 2.86\mathsf{S} + 0.93\mathsf{C} + 23.4\mathsf{SS} + 16\mathsf{ST} + 9\mathsf{CP} >= 15 \\ &0.33\mathsf{T} + 0.20\mathsf{L} + 0.39\mathsf{S} + 0.24\mathsf{C} + 48.7\mathsf{SS} + 5\mathsf{ST} + 2.6\mathsf{CP} + 100\mathsf{O} >= 2 \\ &0.33\mathsf{T} + 0.20\mathsf{L} + 0.39\mathsf{S} + 0.24\mathsf{C} + 48.7\mathsf{SS} + 5\mathsf{ST} + 2.6\mathsf{CP} + 100\mathsf{O} <= 8 \\ &4.64\mathsf{T} + 2.37\mathsf{L} + 3.63\mathsf{S} + 9.58\mathsf{C} + 15\mathsf{SS} + 3\mathsf{ST} + 27\mathsf{CP} >= 4 \\ &9\mathsf{T} + 28\mathsf{L} + 65\mathsf{S} + 69\mathsf{C} + 3.8\mathsf{SS} + 120\mathsf{ST} + 78\mathsf{CP} <= 200 \\ &0.6\mathsf{L} + 0.6\mathsf{S} - 0.4\mathsf{T} - 0.4\mathsf{C} - 0.4\mathsf{SS} - 0.4\mathsf{ST} - 0.4\mathsf{CP} - 0.40\mathsf{O} >= 0 \\ &\mathsf{End} \end{aligned}
```

Problem 4 Part B Output

LP OPTIMUM FOUND AT STEP 3

OBJECTIVE FUNCTION VALUE

1) 1.554133

VARIABLE	VALUE	REDUCED COST
T	0.000000	1.002081
L	0.000000	0.402912
S	0.832298	0.000000
С	0.000000	0.486914
SS	0.096083	0.000000
ST	0.000000	0.405609
CP	1.152364	0.000000
0	0.000000	7.281258

ROW SLACK OR SURPLUS DUAL PRICES

2)	0.000000	-0.131261
3)	6.000000	0.000000
4)	0.000000	0.051847
5)	31.576324	0.000000
6)	55.651089	0.000000
7)	0.000000	-0.241358

NO. ITERATIONS= 3