

N - SeA
(D, F, P) F - Set of subsets of D
Probability spore. P-fen : 5->R
probability spore, 51. i)—iii)
$P(AUB) = P(A) + P(B) - P(A \cap B) \forall A, B \in \mathcal{F}.$
Inclusion-exclusion principle
Inclusion - exclusion principle $P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{i \in i} P(A_i \cap A_i)$
+ T P(Ai, nAi, nAi,)
1 Lizziz & n
Exercise: Show / holds.
Exercise: Thow I holds.
Ex: Roll of a die.
Ex: Roll of a die. $\Omega = \{1,2,3,4,5,6\}$. F -set of cell subsets
ef J2
$P(\{i\}) = p(\{i\}) = P(\{G\}) = \frac{1}{6}$
P({1,7,3}) = 3 P(A) YACF.
Lt JL 13 fahite, to spenty Pit 15
If N 13 finite, to spenty P 77 15 enough to spenty the prob. of every autome
P(u) twEl.
$\mathcal{O} = \{ v_1, u_2,, v_k \}.$
P(w,) + P(wz) + - + P(wk) =

Q; What of JZ is orforte? Exi Flop a with bentol 184 heads. Count the number of flops. F - Set of all subsets of J2 P(kk3) = P(k) = P(takes k flops to get let H) $1 = P(\Omega) = P(\omega) + \frac{2}{2}P(k) = P(\omega) + \frac{1}{2k}$ P(a) 20. P(ever number of tosses) = $\frac{20}{5}$ P(2k) = $\frac{20}{5}$ $\frac{1}{2}$ k ≈ 1 \approx $P(A) = \sum P(a) + A \in F.$ Random Vondobles Defi A random variable is a function $X: \mathcal{N} \longrightarrow \mathbb{R}$ Bx: Roll 2 doce. X, = value of last doe X2 = 11- 2nd doe 1/2 = Sum of the dite

Defi: let X be a RV. The probabilistics of X is the collection of probabilistics $P(X \in B)$ for "reasonable" sets $B \subseteq R$.

Definited X be a RV. It a few of substress $P(X=B) = \int HADX + BCR,$ ne soy f is a density for (PSF) for X. $P(X \in B) = \int f(x) dx$ $\frac{\beta(x)}{\beta(x)} = \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \int_{-\infty}$ Q: When $\delta f = a = dex dy fen^2$ i) f > 0 ii) $P(x \in (-\infty, \infty)) = \int f(x) dx = 1$. Bx: That of a PV which is newton disense, nor has a daysty. Defil W X be a RV. It's cdf Fx(+) $F_X(t) := P(X \le t) \quad \forall t \in \mathbb{R}$ Check If X has density fx/H to $F_{x}(t) = f_{x}(t).$

EXIA PV Z has the normal distr with
parameters M, or, Z~N/M, or) of
A hos donsoly (t-m)? - 252
011
f ₂ (H)=
The case when MIO, 5=1 called The
Standard normal
The case when $M \geq 0$, $\sigma = 1$ called the standard normal $\frac{t^2}{\sqrt{70}}$
Is Iz a densty?
$f_2>0$, $\int f_2(t) dt = 1$.
Change of von - M=0,0=1.
$\frac{\chi^2}{-\frac{1}{2}}$
$\int \frac{1}{\sqrt{2u}} e^{-\frac{x^2}{2}} dx = 1.$
0 000
Exercise.
T, A, A, V, I, E, I, A,
Exi A RV X has the exponential dostr
of poron & II II has derected
$f(1) = \begin{cases} \lambda e^{-\lambda t}, t \geq 0 \\ 0, t \leq 0 \end{cases}$
70
- $ -$

Independence
<u> </u>
Deli: Ererts A,B are indep of P(A 11B) = P(A) P(B)
$P(A \cap B) = P(A) P(B)$
Defi Everts A, Ar,, An indep of.
P(A: NAizn NAix) = P(Ai,) · m. P(Aix)
∀ i, ∠iz ∠ ∠ik
Def: RVs X1, X2, one indep of + i,202-cik + B1, B2-, B2 CR
H into H Buba B. (P
the events $X_i \in B_1$, $X_i \in B_2$,, $X_i \in B_k$ one independent.
me independent
Rmhi A,,, An indep 15 not the Some as saying Ai, A; indep + i+J
Some as soying A: A- undon H T+J
Exercise: find such as example.

Exi X, X, -, Xn - indep Bernoulli (P)
Sn = X, + Xr+u+ Xn - Bink n, p)

Cheeli,

Expertation
Delij let X be a doserete RV.
Defin let X be a doserete RV. The expected value of X, BX is defensed as
$EX:= \angle + P(X=+)$
t possible values of X.
Is X has density f, then
$Ex_1 = \int t f(t) dt$
Thui (The weak law of longe numbers).
let X,, X2, X3, be independent, identically
dostrobuted (i.d). Pls.
Suppose M= EX; exists (2 05 februte)
rupese / - L/ Cays (2 0) (2000)
$S_n = X_1 + X_2 + w + X_n$
- Nf

Sn - average value

Sn P > M ch probability.

 $\forall \xi > 0$ $P(|\xi_n - \mu| > \xi) \longrightarrow 0$

Thm: Suppose N, M, --, X are Pros defined on The Serve sp. Then $\begin{array}{c} X_n \xrightarrow{a.s.} X & \Longrightarrow X_n \xrightarrow{P} X & \Longrightarrow X_n \xrightarrow{A} X \\ X_n \xrightarrow{P} X & \Longrightarrow X & \Longrightarrow X_n \xrightarrow{P} X & \Longrightarrow X_n \xrightarrow{P$ Exercise: Por oney suplocation not indicated, Sh the implication & Jolge.