A brief introduction to machine learning and deep learning

David Makowski

INRAE

https://www6.inrae.fr/mia-paris/Equipes/Membres/David-Makowski

Outline

- Definition & main principles
- Several extensions of linear regression
- Trees and forests
- Deep learning

Outline

- Definition & main principles
- Several extensions of linear regression
- Trees and forests
- Deep learning

Artificial intelligence Machine learning

Artificial intelligence Machine learning Supervised learning

Objective: « Learning a function that maps an input to an output based on examples of input-output pairs »

Statistical Modeling: The Two Cultures (Breiman, 2001)

$$y = f(x) + e$$

Modelling approach 1: Try to find the true f(x)

Modelling approach 2: Predict y from x as accurately as possible

Statistical Modeling: The Two Cultures (Breiman, 2001)

$$y = f(x) + e$$

Modelling approach 1: Try to find the true f(x)

Modelling approach 2: Predict y from x as accurately as possible

Two main steps

Step 1: Training

Step 2: Test

Step 1: Train an algorithm predicting Y as a function of $X_1, ..., X_p$ using a **training dataset**

Training dataset

Step 2: Assess the predictive capability of the trained algorithm using a **test dataset**

Training dataset

Q Search

- Home
- 📊 Data
- Notebooks

Data (5 MB)

Data Sources

- TestDataSet_Ma... 57 columns
- TestDataSet_W... 92 columns
- TrainingDataSet... 58 columns
- TrainingDataSet... 93 columns

French maize yield prediction (départements)

Training dataset

55 inputs 3394 yield data Algorithms

developed by the

participants

Test dataset

55 inputs 1708 yield data

Evaluation of the accuracy of the algorithms by the

organizer

Method	RMSEP (maize yield)
Random Forest (RF)	0.71 t/ha
Gradient boosting (GB)	0.70 t/ha

Model testing should be taken seriously to avoid risk of overfitting

Model testing should be taken seriously to avoid risk of overfitting

Why machine learning is powerful?

Very flexible methods

+

Computational power —— obtain accurate

+

Large datasets

Increased chance to obtain accurate predictions

Why machine learning is powerful?

Prediction error = g(Bias, Variance)

Why machine learning is powerful?

Prediction error = g(Bias, Variance)

ML is able to fing a good balance between bias and variance

Several « ML tricks »	Principle	Effect
Regularization	Add information to prevent overfitting and simplify the model	Reduce variance at the cost of a small increase of bias
Bagging	Bootstrap aggregation: average together multiple models fitted to resampled dataset	Reduce variance
Boosting	Fit a sequence of weak models to weighted versions of the data (more weight given to poorly predicted data at earlier rounds).	Reduce bias

Numerous methods available

- Regressions (standard, PLS, LASSO, Elastic net...)
- SVM
- Tree and random forest
- Gradient boosting
- Neural network
- Deep neural network
- Deep learning
- Bayesian classification

Numerous methods available

- Regressions (standard, PLS, LASSO, Elastic net...)
- SVM
- Tree and random forest
- Gradient boosting
- Neural network
- Deep neural network
- Deep learning
- Bayesian classification

Relatively easy to run these methods with specialized packages (with R or Python)

Are machine learning models « black boxes »?

This is less true than before.

Vizualisation tools:

- Importance ranking
- Partial dependence plots (PDP)
- Accumulated Local Effects (ALE) Plot

Example 1: Prediction of root biomass

https://doi.org/10.5194/essd-2021-25 Preprint. Discussion started: 29 March 2021 © Author(s) 2021. CC BY 4.0 License.

A global map of root biomass across the world's forests

Yuanyuan Huang^{1,2}, Phillipe Ciais¹, Maurizio Santoro³, David Makowski^{4,5}, Jerome Chave⁶, Dmitry Schepaschenko^{7,8,9}, Rose Z. Abramoff¹, Daniel S. Goll¹, Hui Yang¹, Ye Chen¹⁰, Wei Wei¹¹, Shilong Piao^{12,13,14}

Dataset:

10,307 in-situ measurements of the biomass of roots and shoots for individual woody plants, covering 465 species across 10 biomes.

Global maps of **forest root biomass** generated through a machine learning model (a), shoot biomass from GlobBiomass-AGB(Santoro, 2018b) (b) and Root:Shoot ratio (c).

Example 2: Map the probability of yield increase of converting "conventional tillage system" to "conservation agriculture" at the global scale

https://www.nature.com/articles/s41598-021-82375-1.pdf

Locations of the experiments included in the dataset Each experiment includes yield data for

- a conservation agriculture system
- a conventional tillage system

Locations of the experiments included in the dataset Each experiment includes yield data for

- a conservation agriculture system
- a conventional tillage system

Model input (X)

Avg. Precipitation

Avg. Evapotranspiration

Average temperature

Avg. Maximum temperature

Avg. Minimum temperature

Soil texture

Crop type (Barley, maize, soybean, wheat, rice, sorghum, cotton, sunflower)

Fertilizer utilization (Y/N)

Herbicide and pesticide application (Y/N)

Crop rotation (Y/N)

Crop residue management (Y/N)

Response (Y)

Yield gain vs. yield loss (1/0) induced by no tillage

Model input (X)

Avg. Precipitation

Avg. Evapotranspiration

Average temperature

Avg. Maximum temperature

Avg. Minimum temperature

Soil texture

Crop type (Barley, maize, soybean, wheat, rice, sorghum, cotton, sunflower)

Fertilizer utilization (Y/N)

Herbicide and pesticide application (Y/N)

Crop rotation (Y/N)

Crop residue management (Y/N)

Response (Y)

Yield gain vs. yield loss (1/0) induced by no tillage

probability of yield increase for maize with Conservation agriculture vs. Tillage

https://www.nature.com/articles/s41598-021-82375-1.pdf

https://www.nature.com/articles/s41598-021-82375-1.pdf

NT: No tillage system

R: Rotation SC: Soil cover

CA: Conservation agriculture (NT+R+SC)

https://www.nature.com/articles/s41598-021-82375-1.pdf

Main challenges in machine learning projects

- Choose a relevant question (Which Y? Which X?)
- Find reliable data
- Calibrate the hyper-parameters
- Assess prediction accuracy without bias
- Optimize computation time
- Vizualisation of output responses

Start simple

Start with two simple methods:

- Penalized linear regression (ex: LASSO)
- Random forest

Some trends

- Visualization tools (to open « the black boxes »)
- Image and text analyses (text mining, deep learning)
- Packages to streamline the development of predictive models (keras, caret, H2O...)
- Including expert knowledge in machine learning