Video Quality Assessment

Learning Progress Report

James Hsu May 16th 2025

Learning Goals and Topics

- Understand metrics of non-reference VQA and their mathematical basis
 - SRCC, KRCC, PLCC, RMSE, nonlinear four-parametric logistic regression

1. Spearman Rank-Order Correlation Coefficient (SRCC)

- Measures monotonic relationships between predicted scores and subjective Mean Opinion Scores (MOS).
- Uses rank differences:
 - ullet Given two sets of samples $X=\{x_1,x_2,\ldots,x_n\},Y=\{y_1,y_2,\ldots,y_n\}$ assign ranks to each set as $R(x_i)$ and $R(y_i)$ respectively, then compute:

$$ho=1-rac{6\sum d_i^2}{n(n^2-1)}$$

- $ullet d_i = R(x_i) R(y_i)$ is the rank difference for each pair
- lacksquare n is the number of samples
- Interpretation
 - ho = +1: Perfect positive monotonic relationship (ranks are identical)
 - m
 ho = -1: Perfect negative monotonic relationship (ranks are exactly reversed)
 - ho = 0: No monotonic relationship

1. Spearman Rank-Order Correlation Coefficient (SRCC)

- Example
 - lacksquare A set of video $V=\{v_1,v_2,\ldots,v_n\}$
 - lacksquare Each video has Mean Opinion Score (MOS) $Y=\{y_1,y_2,\ldots,y_n\}$
 - ullet Each video would generate a predict score $\hat{Y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n\}$

Video	MOS (Y)	Predicted (\hat{Y})
V1	4.5	4.8
V2	3.2	3.9
V3	2.8	2.5
V4	1.7	1.9
V5	4.0	3.7

1. Spearman Rank-Order Correlation Coefficient (SRCC)

• Step 1: Calculate d_i^2 the rank difference for each pair

Video	MOS	Rank(Y)	Predicted	Rank(Ŷ)	$d_i = R_Y - R_{\hat{Y}}$	d_i^2
V1	4.5	1	4.8	1	0	0
V5	4.0	2	3.7	3	-1	1
V2	3.2	3	3.9	2	1	1
V3	2.8	4	2.5	4	0	0
V4	1.7	5	1.9	5	0	0

■ Step 2: Calculate SRCC

$$ho = 1 - rac{6\sum d_i^2}{n(n^2-1)} = 1 - rac{6(0+1+1+0+0)}{5(25-1)} = 1 - rac{12}{120} = 0.9$$

2. Kendall Rank Correlation Coefficient (KRCC)

■ Measures pairwise ranking agreement:

$$au = rac{C-D}{inom{n}{2}}$$

- C: Concordant pairs
- lacksquare D: Discordant pairs
- n: Number of sample
- \blacksquare $\binom{n}{2}$: All possible pairs
- lacktriangledown Concordant v.s. Discordant: sample (i,j)
 - lacksquare Concordant: $x_i > x_j$ and $y_i > y_j$, or $x_i < x_j$ and $y_i < y_j$
 - lacksquare Discordant: $x_i > x_j$ but $y_i < y_j$, vice versa
- Interpretation
 - ullet au=+1: ranks are identical, au=-1: ranks are exactly reversed, au=0: No significant relationship

2. Kendall Rank Correlation Coefficient (KRCC)

- Example
 - lacksquare A set of video $V=\{v_1,v_2,\ldots,v_n\}$
 - lacksquare Each video has Mean Opinion Score (MOS) $Y=\{y_1,y_2,\ldots,y_n\}$
 - lacksquare Each video would generate a predict score $\hat{Y} = \{\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n\}$

Video	MOS (Y)	Predicted (Ŷ)
V1	4.5	4.8
V2	3.2	3.9
V3	2.8	2.5
V4	1.7	1.9
V5	4.0	3.7

2. Kendall Rank Correlation Coefficient (KRCC)

- Step 1: Compare all pairs
 - We'll compare each pair (i,j) where i < j and check whether the ordering of Y and \hat{Y} is consistent (concordant) or opposite (discordant).

Pair (i, j)	Y _i vs Y _j	Ŷ _i vs Ŷ j	Туре
(V1, V2)	4.5 > 3.2	4.8 > 3.9	Concordant
(V1, V3)	4.5 > 2.8	4.8 > 2.5	Concordant
(V1, V4)	4.5 > 1.7	4.8 > 1.9	Concordant
(V1, V5)	4.5 > 4.0	4.8 > 3.7	Concordant
(V2, V3)	3.2 > 2.8	3.9 > 2.5	Concordant

(V2, V4) $3.2 > 1.7$ $3.9 > 1.9$ Concordant (V2, V5) $3.2 < 4.0$ $3.9 > 3.7$ Discordant (V3, V4) $2.8 > 1.7$ $2.5 > 1.9$ Concordant (V3, V5) $2.8 < 4.0$ $2.5 < 3.7$ Concordant (V4, V5) $1.7 < 4.0$ $1.9 < 3.7$ Concordant	(\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	22.17	20 > 10	Compositions
(V3, V4) 2.8 > 1.7 2.5 > 1.9 Concordant (V3, V5) 2.8 < 4.0	(V2, V4)	3.2 > 1.7	3.9 > 1.9	Concordant
(V3, V5) 2.8 < 4.0 2.5 < 3.7 Concordant	(V2, V5)	3.2 < 4.0	3.9 > 3.7	Discordant
(V3, V5) 2.8 < 4.0 2.5 < 3.7 Concordant				
	(V3, V4)	2.8 > 1.7	2.5 > 1.9	Concordant
	(V3, V5)	2.8 < 4.0	2.5 < 3.7	Concordant
(V4, V5) 1.7 < 4.0 1.9 < 3.7 Concordant				
	(V4, V5)	1.7 < 4.0	1.9 < 3.7	Concordant

Ŷ_i vsŶ j

Type

Pair (i, j)

 $Y_i vs Y_j$

■ Compute KRCC (Kendall's tau)

 $au = rac{C-D}{inom{n}{2}} = rac{9-1}{10} = rac{8}{10} = 0.8$

SRCC v.s. KRCC

Aspect	SRCC	KRCC
Rank Transformation	Convert all data to ranks, then compute squared differences	Compare pairs to see which is higher
Sensitivity to Outliers	More sensitive (large d^2 has a big impact)	More stable
Value Range	[-1, 1]	[-1, 1]
Applicability	Suitable for measuring overall ranking trends	Suitable for measuring local consistency

3. Pearson Linear Correlation Coefficient (PLCC)

- Measures linear correlation between predicted scores and MOS:
 - lacksquare Given two sets of samples $X=\{x_1,x_2,\ldots,x_n\}, Y=\{y_1,y_2,\ldots,y_n\}$

$$r=rac{\sum (x_i-ar{x})(y_i-ar{y})}{\sqrt{\sum (x_i-ar{x})^2}\cdot\sqrt{\sum (y_i-ar{y})^2}}$$

- ullet $ar{x}$ and $ar{y}$: the means of X and Y
- The numerator is the covariance
- The denominator is the product of the standard deviations of X and Y
- Interpretation
 - r = 1: Perfect positive linear correlation
 - r = -1: Perfect negative linear correlation
 - r = 0: No linear correlation (nonlinear correlation may still exist)

4. Root Mean Square Error (RMSE)

Measures the average error between predicted values and subjective MOS scores:

$$ext{RMSE} = \sqrt{rac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2}$$

- y_i : Ground truth value of the i^{th} sample (MOS)
- \hat{y}_i : Model-predicted value of the i^{th} sample
- n: Number of samples
- Interpretation:
 - Smaller value → Prediction is closer to human judgment
 - Larger value → Higher prediction error, lower model accuracy
- Because of the squaring, RMSE is particularly sensitive to outliers.

Nonlinear Four-Parameter Logistic Regression

Used to align predicted scores to MOS scale before computing PLCC/RMSE:

$$f(x)=eta_2+rac{eta_1-eta_2}{1+\exp[-eta_3(x-eta_4)]}$$

- x: The predicted quality score from the model
- f(x): The mapped prediction score (used for PLCC comparison with MOS)
- β_1 : Upper asymptote (maximum limit)
- β_2 : Lower asymptote (minimum limit)
- β_3 : Slope, controls the rate of change of the curve
- β_4 : Shift, the center point of the sigmoid curve
- Why use this?
 - Model predictions (Ŷ) may differ in scale and aren't always linearly related to MOS.
 - A logistic function reshapes predictions to better match how humans perceive quality changes.
 - This improves PLCC/RMSE accuracy by reducing the impact of scale differences.

Learning & Question

- Learning: In VQA tasks, the model outputs a predicted quality score for each video. These are then compared against human-annotated MOS (Mean Opinion Scores).
 - PLCC measures correlation
 - SRCC/KRCC measure rank consistency
 - RMSE measures the actual size of prediction errors
- Question:
 - Since MOS is inherently subjective and may vary depending on the content type or domain, would it make sense to consider training separate models on domain-specific datasets (e.g., gaming, Algenerated content, animation, sports) to improve relevance and performance?
 - How much do the choice of evaluation metrics impact the final outcome or perceived quality?

Thank You