

Correcting unwanted variation in RNA sequencing data derived from a multi-centre study of leukemia

Anna Quaglieri

3rd PhD Student

Walter and Eliza Hall Institute of Medical Research

ABACBS Conference 2018

CBF-AML

Diagnosis

Chemotherapy

60%Long term remission

40% Relapse

Are there **genes**, observed at diagnosis, associated with different **outcomes**?

56
Long term remission

20 Relapse

56
Long term remission

20 Relapse

From Australia and Canada Sequenced in 3 batches across 2.5 years

56 Long term

remission

20

Relapse

From **Australia** and **Canada**Sequenced in **3 batches** across 2.5 years

From Bone Marrow or Blood

56 Long term remission

20

Relapse

From Australia and Canada Sequenced in 3 batches across 2.5 years

From Bone Marrow or Blood

Two fusion types

But wait! There is more...

Tumour content

Tumour content

That's why we looked towards RUV! Removing Unwanted Variation

JA. Gagnon-Bartsch, L. Jacob, T. Speed

library(ruv)

ruv::RUV4

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Log2 gene expression matrix

m samples n genes

Factor of interest: Gene-wise comparison of Relapse vs Long Remission patients

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Matrix with Unwanted Variation estimated directly from the data

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

Estimated using Negative Control genes

$$Y_{mxn} = X_{mxp}\beta_{pxn} + W_{mxk}\alpha_{kxn} + \epsilon_{mxn}$$

$$\beta_{NC} = 0$$

Can we adjust for tumour content?

Let's investigate what the columns of W pick up...

Bone Marrow Blast (%) vs W columns

Tissue - BM - Blood

Only Australian samples Only Canadian samples

Bone Marrow Blast (%) vs W columns

Both cohorts

RUV-4 adjusts for tumour content

PUV-4 adjusts for tumour content

Adjustment available for all samples

- PUV-4 adjusts for tumour content
- Adjustment available for all samples
- Parameter RUV-4 adjusts for other sources of heterogeneity

- RUV-4 adjusts for tumour content
- Adjustment available for all samples
- PUV-4 adjusts for other sources of heterogeneity
- Found some promising genes previously associated with sensitivity to chemotherapy are identified among the top DE genes.

Challenges 😌

- RUV-4 is challenging, more choices to make when using it!
- Small cohort size once you account for all the heterogeneity
- More research is required to assess the improvement provided by RUV-4 as well as the reproducibility of the signature in an independent cohort

Thanks to...

Terry Speed

Ian Majewski

Edward Chew

