LAGraph Algorithms

PDF build on Thursday 11th February, 2021 at 01:57 UTC

Abstract

Theoretical documentation for LAGraph.

1 Introduction

The goal of this document is to present a notation for GraphBLAS algorithms and showcase it using important GraphBLAS algorithms.

2 The GraphBLAS

Goal The goal of GraphBLAS is to create a layer of abstraction between the graph algorithms and the graph analytics framework, separating the concerns of the algorithm developers from those of the framework developers and hardware designers. To achieve this, it builds on the theoretical framework of matrix operations on arbitrary semirings [3], which allows defining graph algorithms in the language of linear algebra [4]. To ensure portability, the GraphBLAS standard defines a C API that can be implemented on a variety of hardware including GPUs.

Data structures A graph with n vertices can be stored as a square adjacency matrix $A \in uint^{n \times n}$, where rows and columns both represent vertices of the graph and element A(i,j) contains the number of edges from vertex i to vertex j. If the graph is undirected, the matrix is symmetric.

Navigation The fundamental step in GraphBLAS is the multiplication of an adjacency matrix with another matrix or vector over a selected semiring. For example, the operation HasMember lor.land IsLocatedIn computed over the "logical or.logical and" semiring returns a matrix representing the Places where a Forum's members are located in. Meanwhile, when computed over the conventional arithmetic "plus.times" semiring, HasMember $+.\times$ IsLocatedIn also returns the number of such Persons. A traversal from a certain set of vertices can be expressed by using a boolean vector \mathbf{f} (often referred to as the frontier, wavefront, or queue) and setting true values for the elements corresponding to source vertices. For example, for Forums $\mathbf{f} \in \mathsf{bool}^{|forums|}$, \mathbf{f} lor.land HasMember returns the Persons who belong to any of the forums in \mathbf{f} . The BFS navigation step can also be captured using other semirings such as lor.first, where $\mathsf{first}(x,y) = x$; lor.second, where $\mathsf{second}(x,y) = y$; and $\mathsf{any.pair}$, where $\mathsf{any}(x,y)$ returns either x or y, and $\mathsf{pair}(x,y) = 1$ [2].

2.1 Notation

Table 1 contains the notation of GraphBLAS operations Additionally, we use D = diag(j,n) to construct a diagonal matrix $D \leftarrow \{j, j, [1, 1, ..., 1]\}$. The elements of the matrix are D(j, j) = 1 for $j \in j$.

2.1.1 Masks

Masks C < M > and w < m > are used to selectively write to the result matrix/vector. The complements of the masks can be selected with the negation symbol, denoted with: C < !M > and w < !m >, respectively.

Masks with "replace" semantics (annihilating all elements outside the mask) are denoted with

- C << M>>>
- C << !M>>>
- w << m>>
- w << !m>>

The structure of the mask is denoted with:

	$_{ m op./method}$	name	notation
mxv matrix-vector multiplication $w < m > + = A + \times u$ eWiseAdd element-wise addition $C < M > + = A \cup \{op\} v$ eWiseMult element-wise multiplication $C < M > + = A \cap \{op\} B$ extract extract submatrix $C < M > + = A \cap \{op\} B$ extract extract column vector $w < m > + = A(i, j)$ extract subvector $w < m > + = A(i, j)$ extract subvector $w < m > + = A(i, j)$ extract subvector $w < m > + = A(i, j)$ extract subvector $w < m > + = A(i, j)$ assign matrix to submatrix with mask for C $C < M > (i, j) + = A$ assign scalar to subvector with mask for w $w < m > (i, j) + = A$ assign scalar to subvector with mask for w $w < m > (i, j) + = A$ assign scalar to submatrix with submask for $C(i, j)$ $C(i, j) + m + A$ assign scalar to submatrix with submask for $C(i, j)$ $C(i, j) + m + A$ assign scalar to submatrix with submask for $C(i, j)$ $C(i, j) + m + A$ assign scalar to submatrix with submask for $C(i, j)$ $C(i, j) + m + A$ assign scalar to submatrix with submask for $C(i, j)$ $C(i, j) + m + A$ apply apply un	mxm	matrix-matrix multiplication	$C < M > + = A + . \times B$
eWiseAdd element-wise addition set union of patterns	vxm	vector-matrix multiplication	$\mathtt{w} < \mathtt{m} \! > + = \! \mathtt{u} + . \times \mathtt{A}$
eWiseAdd set union of patterns	mxv	matrix-vector multiplication	$\mathtt{w} < \mathtt{m} > + = \mathtt{A} + . \times \mathtt{u}$
eWiseMult element-wise multiplication set inion of patterns $v < m > + m \cup cp v$ eWiseMult element-wise multiplication set intersection of patterns $v < m > + m \cup cp v$ extract submatrix $v < v < m > + m \cup cp v$ extract submatrix $v < v < m > + m \cup cp v$ extract submatrix $v < v < m > + m \cup cp v$ extract row vector $v < m > + m \cup cp v$ assign matrix to submatrix with mask for $v < v < m > + m \cup cp v$ assign scalar to submatrix with mask for $v < v < m > + m \cup cp v$ assign vector to subvector with mask for $v < v < m > + m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to submatrix with submask for $v < v < m \cup cp v$ assign scalar to subvector with submask for $v < v < m \cup cp v$ apply unary operator apply apply unary operator $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > v < m \cup cp v$ $v < m > $	eWiseAdd	element-wise addition	$\mathtt{C} < \mathtt{M} \! > + = \mathtt{A} \cup [\mathtt{op}] \mathtt{B}$
		set union of patterns	$\mathtt{w} < \mathtt{m} > + = \mathtt{u} \cup [\mathtt{op}] \mathtt{v}$
extract submatrix $w < m > + m \cap op v$ extract submatrix $C < M > + m \cap op v$ extract column vector $w < m > + m \cap op v$ extract column vector $w < m > + m \cap op v$ extract column vector $w < m > + m \cap op v$ assign matrix to submatrix with mask for $C \cap (M \cap (M \cap M)) = M \cap (M \cap M)$ assign scalar to submetrix with mask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submatrix with mask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submetrix with mask for $C \cap (M \cap M) = M \cap (M \cap M)$ subassign (GxB) assign scalar to submatrix with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submatrix with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submatrix with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submetrix with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to submetrix with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to subvector with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ assign scalar to subvector with submask for $C \cap (M \cap M) = M \cap (M \cap M)$ apply apply unary operator $C \cap (M \cap M) = M \cap (M \cap M)$ The extraction of	eWiseMult	<u>-</u>	
		set intersection of patterns	$\mathtt{w} < \mathtt{m} > + = \mathtt{u} \cap [\mathtt{op}] \mathtt{v}$
extract row vector extract subvector extract subvector $w < m > + = A(i, \cdot)$ assign matrix to submatrix with mask for C assign scalar to submatrix with mask for C assign vector to subvector with mask for C assign scalar to submatrix with mask for C assign scalar to subvector with mask for C assign scalar to subvector with mask for C assign scalar to submatrix with submask for $C(i,j) = C(i,j) = C(i,j$	extract	extract submatrix	(, 3)
extract row vector extract subvector $w < m > + = A(1, :)$ extract subvector $w < m > + = A(1, :)$ assign matrix to submatrix with mask for C assign vector to subvector with mask for C assign vector to subvector with mask for C assign matrix to submatrix with mask for C assign vector to subvector with mask for C assign matrix to submatrix with submask for $C(1, j)$ $C(1, j) < m > + = 8$ subassign (GxB) assign scalar to submatrix with submask for $C(1, j)$ $C(1, j) < m > + = 8$ assign vector to subvector with submask for $C(1, j)$ $C(1, j) < m > + = 8$ apply apply unary operator $C < m > + = A(1, :)$ $C(1, j) < m > + = 8$ $C(1, j) < m > + = 8$ apply apply unary operator $C < m > + = A(1, :)$ $C(1, j) < m > + = 8$ $C(1, j) < m > + = 1$ $C(1, j) < m$			(. 5 /
assign matrix to submatrix with mask for C assign scalar to submatrix with mask for C assign vector to subvector with mask for W assign vector to subvector with mask for W w <m> (1) + = 8 w <m> (2) + = 8 w <m> (3) + = 8 w <m> (1) + = 8 w</m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m></m>			,
$ assign & assign scalar to submatrix with mask for C \\ assign vector to subvector with mask for W \\ assign scalar to subvector with mask for W \\ assign scalar to subvector with mask for W \\ w < m > (i) + = u \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + = s \\ w < m > (i) + m > m = s \\ w < m > + = s \\ w < m > $		extract subvector	$\mathtt{w} < \mathtt{m} > + = \mathtt{u}(\mathtt{i})$
assign vector to subvector with mask for w assign vector to subvector with mask for w w < m > (i) + = u assign scalar to subvector with mask for w w < m > (i) + = s w < m >	assign	~	
assign vector to subvector with mask for w assign vector to subvector with mask for w assign scalar to subvector with mask for w assign matrix to submatrix with submask for v assign scalar to submatrix with submask for v assign vector to subvector with submask for v and v assign vector to subvector with submask for v and v assign vector to subvector with submask for v and v are v as v and v and v are v as v and v and v are v		assign scalar to submatrix with mask for C	\ . · • /
$subassign (GxB) \begin{tabular}{lllllllllllllllllllllllllllllllllll$		assign vector to subvector with mask for ${\tt w}$	$\mathtt{w} < \mathtt{m} > (\mathtt{i}) + = \mathtt{u}$
subassign (GxB)		assign scalar to subvector with mask for \boldsymbol{w}	$\mathtt{w} < \mathtt{m} > (\mathtt{i}) + = \mathtt{s}$
subassign (GXB) assign vector to subvector with submask for $w(i)$ assign scalar to subvector with submask for $w(i)$ $w(i) < m > + = u$ $w(i) < m > + = s$ applyapply unary operator $C < M > + = f(()A)$ $w < m > + = f(()u)$ selectapply select operator $C < M > + = A < f(()A, k) >$ $w < m > + = u < f(()u, k) >$ reduce matrix to column vector reduce matrix to scalar reduce vector to scalar $w < m > + = [+A]$ $s + = [+A]$ transpose $C < M > + = A'$ kroneckerKronecker multiplication $C < M > + = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < {i, j, x}$ $w < {i, x}$ extractTuplesextract index/value arrays ${i, j, x} < A$ ${i, x} < u$ dupduplicate matrix duplicate vector $C < A$ $w < u$ extractElementextract scalar element $S = A(i, j)$ $S = u(i)$	subassign (GxB)	· · · · · ·	· · - /
assign vector to subvector with submask for $w(i)$ assign scalar to subvector with submask for $w(i)$ $w(i) < m > + = u$ $w(i) < m > + = s$ apply apply unary operator $ \begin{array}{c} C < M > + = f(()A) \\ w < m > + = f(()u) \\ w < m > + = f(u) \\ w < m > + = f(u) \\ u < f(u) < m > + = f(u) \\ u < f(u) < m >$		· · · · · · · · · · · · · · · · · · ·	· · · · · ·
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		assign vector to subvector with submask for $w(i)$	$\mathtt{w}(\mathtt{i}) < \mathtt{m} \! > + = \! \mathtt{u}$
apply apply unary operator $ w < m > + = f(()u) $ select apply select operator $ C < M > + = A < f(()A, k) > \\ w < m > + = u < f(()u, k) > $ $ reduce matrix to column vector \\ reduce matrix to scalar \\ reduce vector to scalar s + = [+A] \\ s + = [+u] transpose transpose transpose C < M > + = A' \\ kronecker Kronecker multiplication C < M > + = kron(A, B) \\ new \\ new \\ new \\ new \\ new vector \\ u = TYPEPRECISION(n, m) \\ u = TYPEPRECISION(n) \\ vector from tuples \\ vector from tuple$		assign scalar to subvector with submask for $\mathtt{w}(\mathtt{i})$	$\mathtt{w}(\mathtt{i}) < \mathtt{m} > + = \mathtt{s}$
selectapply select operator $C < M>+ = A < f(()A, k)>$ $w < m>+ = u < f(()u, k)>$ reduce matrix to column vector $w < m>+ = [+A]$ $s+=[+A]$ $s+=[+u]$ reduce vector to scalar $s+=[+A]$ $s+=[+u]$ transpose $C < M>+ = A'$ kroneckerKronecker multiplication $C < M>+ = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < {i, j, x}$ $w < {i, x}$ extractTuplesextract index/value arrays ${i, j, x} < A$ ${i, x} < u$ dupduplicate matrix duplicate vector $C < A$ $w < u$ extractElementextract scalar element $S = A(i, j)$ $S = u(i)$ setFlementset element $C(i, j) = S$	annly	apply unary operator	$\mathtt{C} < \mathtt{M} > + = \mathtt{f}(()\mathtt{A})$
reduce matrix to column vector $w < m > + = u < f(()u, k) >$ reduce matrix to scalar $s + = [+A]$ reduce vector to scalar $s + = [+A]$ reduce vector to scalar $s + = [+A]$ transpose transpose $c < M > + = A$ kronecker Kronecker multiplication $c < M > + = A$ kronecker Kronecker multiplication $c < M > + = A$ new matrix $c < M > + = A$ new matrix $c < M > + = A$ new vector $c < M > + = A$ well solution $c < M > + = A$ $c < M > + A$ c	<u>α</u>	apply unary operator	$\mathtt{w} < \mathtt{m} > + = \mathtt{f}(()\mathtt{u})$
reduce matrix to column vector reduce matrix to scalar reduce vector to scalar transpose transpose kronecker Kronecker multiplication rew matrix new new vector new matrix from tuples vector from tuples vector from tuples extractTuples extractTuples duplicate matrix duplicate matrix duplicate vector extractElement set element reduce matrix to column vector	select	apply select operator	
reducereduce watrix to scalar reduce vector to scalar $s+=[+A]$ $s+=[+u]$ transposetranspose $C < M > + = A'$ kroneckerKronecker multiplication $C < M > + = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < - \{i, j, x\}$ $w < - \{i, x\}$ extractTuplesextract index/value arrays $\{i, j, x\} < - A$ $\{i, x\} < - u$ dupduplicate matrix duplicate vector $C < - A$ $w < - u$ extractElementextract scalar element $s = A(i, j)$ $s = u(i)$ setElementset element			$\mathtt{w} < \mathtt{m} > + = \mathtt{u} < \mathtt{f}(()\mathtt{u},\mathtt{k}) >$
reduce vector to scalar $s+=\stackrel[+u]$ transpose transpose $C < M>+=A'$ kronecker Kronecker multiplication $C < M>+=kron(A,B)$ new matrix $new \ vector$ new vector $u=TYPEPRECISION(n,m)$ build $matrix \ from \ tuples$ $vector \ from \ fr$	reduce		
transposetranspose $C < M > + = A'$ kroneckerKronecker multiplication $C < M > + = kron(A, B)$ newnew matrix new vector $A = TYPEPRECISION(n, m)$ $u = TYPEPRECISION(n)$ buildmatrix from tuples vector from tuples $C < - \{i, j, x\}$ $w < - \{i, x\}$ extractTuplesextract index/value arrays $\{i, j, x\} < - A$ $\{i, x\} < - u$ dupduplicate matrix duplicate vector $C < - A$ we uextractElementextract scalar element $S = A(i, j)$ $S = u(i)$ setFlementset element $S = A(i, j) = S$		reduce matrix to scalar	
kronecker Kronecker multiplication $C < M > + = kron(A, B)$ new new matrix new vector $A = TYPEPRECISION(n, m)$ build matrix from tuples vector from tuples $C < - \{i, j, x\}$ extractTuples extract index/value arrays $\{i, j, x\} < - A$ $\{i, x\} < - u$ dup duplicate matrix duplicate vector $C < - A$ we number of the property of the propert		reduce vector to scalar	$\mathtt{s}+=[+\mathtt{u}]$
new new matrix new vector $A = TYPEPRECISION(n,m)$ build matrix from tuples vector from tuples $C <-\{i,j,x\}$ extractTuples extract index/value arrays $\{i,j,x\}<-A$ dup duplicate matrix duplicate wector $C<-A$ extractElement extractElement $S = A(i,j)$ setFlement set element $C(i,j) = s$	transpose	transpose	$\mathtt{C}<\mathtt{M}>+=\mathtt{A}$ '
newnew vector $u = \text{TYPEPRECISION}(n)$ build	kronecker	Kronecker multiplication	$\mathtt{C} < \mathtt{M} \! > + = \! \mathtt{kron}(\mathtt{A},\mathtt{B})$
newnew vector $u = \text{TYPEPRECISION}(n)$ build	new	new matrix	$A = TYPEPRECISION(\mathtt{n},\mathtt{m})$
build vector from tuples $w < -\{i, x\}$ extractTuples extract index/value arrays $\{i, j, x\} < -A$ dup duplicate matrix duplicate vector $C < -A$ extractElement extractElement $s = A(i, j)$ $s = u(i)$ setElement set element $C(i, j) = s$		new vector	
build vector from tuples $w < -\{i, x\}$ extractTuples extract index/value arrays $\{i, j, x\} < -A$ dup duplicate matrix duplicate vector $C < -A$ extractElement extractElement $s = A(i, j)$ $s = u(i)$ setElement set element $C(i, j) = s$	build	matrix from tuples	C <- {i, j, x}
extractTuples extract index/value arrays $\{i,x\}<-u$ dup duplicate matrix duplicate vector $C<-A$ extractElement extract scalar element $s = A(i,j)$ $s = u(i)$ setElement $c(i,j) = s$			
extractTuples extract index/value arrays $\{i,x\}<-u$ dup duplicate matrix duplicate vector $C<-A$ extractElement extract scalar element $s = A(i,j)$ $s = u(i)$ setElement $c(i,j) = s$	extractTuples	extract index/value arrays	$\{\mathtt{i},\mathtt{j},\mathtt{x}\}{\leftarrow} \mathtt{A}$
$\begin{array}{c} \text{dup} & \text{duplicate vector} & \text{w<- u} \\ \\ \hline \text{extractElement} & \text{extract scalar element} & \text{s = A(i,j)} \\ \text{s = u(i)} \\ \\ \hline \text{SetElement} & \text{set element} \\ \end{array}$			
	dup	duplicate matrix	C<- A
		duplicate vector	w<- u
	extractElement	extract scalar element	
Selflement selement			$\mathtt{s}=\mathtt{u}(\mathtt{i})$
$\mathtt{w}(\mathtt{i}) = \mathtt{s}$	setElement	set element	
			$\mathtt{w}(\mathtt{i})=\mathtt{s}$

Table 1: GraphBLAS operations and methods based on [1]. Notation: Matrices and vectors are typeset in bold, starting with uppercase (A) and lowercase (u) letters, respectively. Scalars including indices are lowercase italic (k, i, j) while arrays are lowercase bold italic (x, i, j). + and \times are the addition and multiplication operators forming a semiring and default to conventional arithmetic + and \times operators. + is the accumulator operator.

```
• C < \{M\} >
```

•
$$C < !\{M\} >$$

•
$$w < \{m\} >$$

•
$$w < !\{m\} >$$

Combining structure and replace semantics is possible:

```
• C << {M}>>>
```

Initializing scalars, vectors, and matrices (GraphBLAS methods):

```
• s = fp64()
```

•
$$w = fp32(n)$$

•
$$A = uint16(m, n)$$

3 Algorithms

LAGraph [5] implements graph algorithms using the GraphBLAS C API [6]. Here are a few algorithms that could be included in this document:

Algorithm 1: BFS / Levels variant.

Algorithm 2: BFS / Parents variant.

```
Input: A, n, startVertex

1 Function ParentsBFS

2 | f(startVertex) = 0

3 | for level = 1 to n - 1 do

4 | s < f >= f

5 | f <<!s>>= f any.firstj1 A
```

Algorithm 3: Direction Optimizing (push/pull) BFS.

```
Input: A, A', n, startVertex

1 Function DirectionOptimizingBFS

2 | f(startVertex) = T

3 | for level = 1 to n - 1 do

4 | s < f >= level

5 | if Push(A, f) then

6 | | f <<!s>>= fA

7 | else

8 | | f <<!s>>= A'f
```

Algorithm 4: Multi-source breadth-first search.

```
Data: ...
Result: ...

1 Function MSBFS

2 | Frontier = diag(sources, n)

3 | for level = 1 to n-1 do

4 | Seen < Frontier >= level

5 | Frontier <<!Seen >>= Frontier any.pair A
```

Algorithm 5: All-pairs shortest distance (on undirected, unweighted graphs) [7].

```
Data: ...
    Result: ...
 1 Function APD(A, n, deg)
         \mathtt{Z}=\mathtt{A}
         {\tt Z} += {\tt A} + . \times {\tt A}
 3
         B = \{ \langle Z, offdiag \rangle \} //  use the pattern as a Boolean matrix
 4
         if A == B then
 5
          return A
 6
         \mathtt{T} = APD(\mathtt{B},\mathtt{n},\mathtt{deg})
 7
         X = T + . \times A
 8
         {\tt Tscaled} = {\tt T} + . \times {\tt diag}(() {\tt deg})
 9
         {\tt Xfiltered} = {\tt X} < {\tt X}, {\tt X} < {\tt Tscaled} >
10
         return (2 \times T) MINUS Xfiltered
11
12 Function APD(A)
         deg = [+A]
13
         \mathtt{Distance} = APD(\mathtt{A}, \mathtt{n}, \mathtt{deg})
14
         sp = [+Distance]
15
```

Algorithm 6: Betweenness centrality.

```
1 Function MSBFS
      // The NumSp structure holds the number of shortest paths for each node and starting
         vertex discovered so far.
      // Initialized to source vertices.
      NumSp < -\{s, [1, 1, ..., 1]\}
      // The Frontier holds the number of shortest paths for each node and starting vertex
          discovered so far.
      // Initialized to source vertices.
      Frontier < NumSp>= A(s,:)
      d = 0
      // The Sigmas matrices store frontier information for each level of the BFS phase.
      // BFS phase (forward sweep)
 5
      do
         // Sigmas[d](:,s) = d^{th} level frontier from source vertex s
         Sigmas[d] = bool(n, nsver)
 6
         Sigmas[d](:,:) = Frontier
                                                                        // Convert matrix to Boolean
 7
         NumSp = NumSp + Frontier
                                                                            // Accumulate path counts
         \texttt{Frontier} << \texttt{NumSp}>>= \texttt{A'} + . \times \texttt{Frontier}
                                                                                    // Update frontier
 9
      while nvals(Frontier) > 0
10
      NumSpInv = fp32(n, nsver)
11
      {\tt NumSpInv} = 1.0\,{\tt DIV}\,{\tt NumSp}
12
      BCU = fp32(n, nsver)
13
      BCU(:) = 1.0
                                                // Make BCU dense, initialize all elements to 1.0
14
      W = fp32(n, nsver)
15
      // Tally phase (backward sweep)
      for i = d - 1 downto 0 do
16
         W << Sigmas[i] >>= NumSpInv DIV BCU
17
         \mathbb{W} \ll \operatorname{Sigmas}[i-1] >>= \mathbb{A} + . \times \mathbb{W} // Add contributions by successors and mask with that
18
          BFS level's frontier.
        \mathtt{BCU} += \mathtt{W} 	imes \mathtt{NumSp}
19
      // Row reduce BCU and subtract nsver from every entry to account for 1 extra value
         per BCU row element
      delta = [+BCU]
20
      delta MINUS = nsver
21
```

Algorithm 7: PageRank (used in Graphalytics).

```
Data: alpha constant (damping factor)
  Result: ...
1 Function PageRank
      pr(:) = 1/n
      outdegrees = [+_{i} A(:, j)]
3
      for k = 1 to numIterations do
4
         {\tt importance} = {\tt pr\,DIV\,outdegrees}
5
         importance = times(()importance, alpha)
                                                            // apply the times(()x,s) = x \cdot s operator
6
         importance = importance + . \times A
         danglingVertexRanks < !outdegrees >= pr(:)
8
         totalDanglingRank = (alpha)/(n) \times [+ danglingVertexRanks]
9
         pr = (1 - alpha)/(n) + totalDanglingRank
10
         pr = pr + importance
11
```

Algorithm 8: Algebraic Bellman-Ford.

```
1 Function SSSP

2 | d(s) = 0

3 | for k = 1 to n - 1 do

4 | d' = d \min.plus A

5 | if d' == d then break

6 | d <= d'
```

Algorithm 9: Delta-stepping SSSP.

```
Data:
```

```
A, A_H, A_L \in \mathtt{fp}(|V|, |V|)
             s, i \in uint()
             \Delta \in \mathtt{fp}()
             \mathtt{t},\mathtt{t}_{\mathtt{Req}}\in\mathtt{fp}(|\mathtt{V}|)
             t_{B_i}, e \in uint(|V|)
  1 Function DeltaStepping
                \mathtt{A_L} = \mathtt{A} < 0 < \mathtt{A} \leq \Delta >
                \mathtt{A}_{\mathtt{H}} = \mathtt{A} < \Delta < \mathtt{A} >
  3
                t(:) = \infty
  4
                t(s) = 0
  5
                while nvals(t < i\Delta \le t >) \ne 0 do
  6
                         s = 0
  7
                         t_{B_i} = t < i\Delta \le t < (i+1)\Delta >
  8
                         while t_{B_i} \neq 0 do
  9
                                  \texttt{t}_{\texttt{Req}} = \texttt{A}_{\texttt{L}} \, \texttt{'} + . \times (\texttt{t} \times \texttt{t}_{\texttt{B}_{i}})
10
                                  \mathtt{e}=\mathtt{t}<0<\mathtt{e}+\mathtt{t}_{\mathtt{B_{i}}}>
                                  \mathtt{t}_{\mathtt{B_{i}}} = \mathtt{t} < \mathtt{i}\Delta \leq \mathtt{t}_{\mathtt{Req}} < (\mathtt{i}+1)\Delta > \times (\mathtt{t}_{\mathtt{Req}} \cup [\mathtt{min}]\,\mathtt{t})
12
                               \mathtt{t}=\mathtt{t}\cup[\mathtt{min}]\,\mathtt{t}_{\mathtt{Req}}
13
                         \mathtt{t}_{\mathtt{Req}} = \mathtt{A}_{\mathtt{H}} \, {}^{\boldsymbol{\cdot}} + . \times (\mathtt{t} \times \mathtt{e})
14
                         \mathtt{t} = \mathtt{t} \cup [\mathtt{min}] \, \mathtt{t}_{\mathtt{Req}}
15
                         \mathtt{i}=\mathtt{i}+1
16
```

Algorithm 10: All-pairs shortest path (Floyd-Warshall algorithm).

Algorithm 11: FastSV algorithm.

```
1 Function FastSV
 \mathbf{2}
       n = nrows(A)
       gf = f
 3
       dup = gf
 4
       \mathtt{mngf} = \mathtt{gf}
 5
       \{i, x\} < -f
       repeat
           // Step 1: Stochastic hooking
           {\tt mngf} = {\tt mngf} \, {\tt min} \, {\tt A}
 8
           mngf = mngf second.min gf
           f(x) = f \min mngf
10
           // Step 2: Aggressive hooking
           {\tt f} = {\tt fminmngf}
11
           // Step 3: Shortcutting
           f = f \min gf
12
           // Step 4: Calculate grandparents
           \{i, x\} < -f
13
           gf = f(x)
14
           // Step 5: Check termination
           diff = dup \neq gf
15
           sum = [+_{i} diff(i)]
16
           dup = gf
17
       \mathbf{until}\ \mathtt{sum} == 0
18
```

Algorithm 12: Triangle count (Cohen's algorithm).

Algorithm 13: Triangle count (Sandia).

Algorithm 14: Triangle count (FLAME).

```
1 Function TriangleCountFlame
2 | for i = 2 to n - 1 do
3 | A<sub>20</sub> = A(i + 1 : n, 0 : i - 1)
4 | a<sub>10</sub> = A(0 : i - 1, i)
5 | a<sub>12</sub> = A(i, i + 1 : n)
6 | t + = a<sub>10</sub> + . × A<sub>20</sub> + . × a<sub>12</sub>
```

Algorithm 15: Local clustering coefficient.

Algorithm 16: *k*-truss algorithm.

```
1 Function KTruss
       C <- A
2
       nonzeros <- nvals(C)
3
       for i = 1 to n - 1 do
4
           \mathtt{C}<\mathtt{C}>=\mathtt{C}+.\mathtt{land}\,\mathtt{C}
5
            C = C < C \ge k - 2 >
6
            if nonzeros == nvals(C) then
7
               \mathbf{break}
8
9
           {\tt nonzeros} \mathrel{<{\tt -}} {\tt nvals}(C)
```

Algorithm 17: Louvain algorithm (WIP).

```
1 Function Louvain
         \mathtt{G} += \mathtt{G}'
 \mathbf{2}
         k = [+A]
 3
         m = (1)/(2)[+k]
 4
         S <- I
 5
 6
         vertices_changed <- nvals(k)</pre>
 7
         while vertices_changed > 0 \ do
 8
              for j \in range(|V|) do
 9
10
                   v = G(j,:)
                   t_q = v \; any.pair \; S
11
                   sr = S(j,:)
12
                   \mathtt{S}(\mathtt{j},:)=\mathrm{empty}
13
                   q <- k
15
                   \mathtt{q}<\mathtt{k}>\times=-\,\mathtt{k}(\mathtt{j})/\mathtt{m}
16
                   q + = v
17
18
                   \mathtt{q_1} <\! \mathtt{t_q} \! > = \mathtt{q} + . \times \mathtt{S}
19
                   \mathtt{t} = (\mathtt{q_1} == [\mathtt{max}\,\mathtt{q_1}])
20
                   while nvals(t) \neq 1 do
21
                        p = random() \times t
22
                      \mathsf{t} = (\mathsf{p} == [\max \mathsf{p}])
23
                   S(j,:) = t
24
25
                   if nvals(sr \times t) == 0 then
26
                       vertices\_changed = nvals(k)
27
                   vertices\_changed = vertices\_changed - 1
28
```

Algorithm 18: Community detection using label propagation (for undirected graphs).

References

- [1] T. A. Davis, "Algorithm 1000: SuiteSparse:GraphBLAS: Graph algorithms in the language of sparse linear algebra," ACM Trans. Math. Softw., 2019. [Online]. Available: https://doi.org/10.1145/3322125
- [2] —. (2020) User guide for SuiteSparse:GraphBLAS, version 3.3.3. https://people.engr.tamu.edu/davis/GraphBLAS.html.
- [3] J. Kepner *et al.*, "Mathematical foundations of the GraphBLAS," in *HPEC*. IEEE, 2016. [Online]. Available: https://doi.org/10.1109/HPEC.2016.7761646
- [4] J. Kepner and J. R. Gilbert, Eds., *Graph Algorithms in the Language of Linear Algebra*. SIAM, 2011. [Online]. Available: https://doi.org/10.1137/1.9780898719918
- [5] T. Mattson *et al.*, "LAGraph: A community effort to collect graph algorithms built on top of the GraphBLAS," in *GrAPL at IPDPS*, 2019. [Online]. Available: https://doi.org/10.1109/IPDPSW.2019.00053
- [6] T. G. Mattson *et al.*, "GraphBLAS C API: Ideas for future versions of the specification," in *HPEC*. IEEE, 2017. [Online]. Available: https://doi.org/10.1109/HPEC.2017.8091095
- [7] R. Seidel, "On the all-pairs-shortest-path problem in unweighted undirected graphs," J. Comput. Syst. Sci., vol. 51, no. 3, pp. 400–403, 1995. [Online]. Available: https://doi.org/10.1006/jcss.1995.1078