BASIDI QUADRATURA NUMERICA

INTUIZIONE

INTUIZIONE

INTUIZIONE

$$\int_{0}^{b} \int_{0}^{b} \left[\int_{0}^{a} \left(\int_{0}^{a} \left(\int_{0}^{b} \left(\int_{0}^$$

CAMBIO DI VARIABILE

$$\int_a^b f(x)dx$$

$$[-1,1]
i t\mapsto rac{a+b}{2}+rac{b-a}{2}t=x(t)\in [a,b]$$

$$dx = \frac{b-a}{2}dt$$

$$\int_{a}^{b} f(x) dx = rac{b-a}{2} \int_{-1}^{1} f(t) dt$$

QUADRATURA DI GAUSS

$$\int_{-1}^{1} 1 \, dx = 2 = 2 \cdot f(0)$$

$$\int_{-1}^1 x \, dx = 0 = 1 \cdot f\left(rac{-\sqrt{3}}{3}
ight) + 1 \cdot f\left(rac{\sqrt{3}}{3}
ight)$$

$$\int_0^1 x^2 dx = \frac{2}{3}$$

$$= \frac{8}{9} f(0) + \frac{5}{9} f\left(\frac{\sqrt{3}}{\sqrt{5}}\right) + \frac{5}{9} f\left(\frac{-\sqrt{3}}{\sqrt{5}}\right)$$

QUADRATURA DI GAUSS

$$\int_a^b f(x) dx pprox \sum_{i=1}^{N_q} \omega_i f(z_i)$$

Una regola di quadratura Gaussiana a n punti, è una regola di quadratura che fornisce un risultato esatto per polinomi di grado $\leq 2n-1$ mediante un'opportuna scelta dei nodi z_i e dei pesi ω_i .

NODI DI GAUSS-LEGENDRE

Number of points, n	Points, x_i		Weights, w_i	
1	0		2	
2	$\pm rac{1}{\sqrt{3}}$	±0.57735	1	
3	0		$\frac{8}{9}$	0.888889
	$\pm\sqrt{rac{3}{5}}$	±0.774597	$\frac{5}{9}$	0.55556
4	$\pm\sqrt{\frac{3}{7}-\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.339981	$\frac{18+\sqrt{30}}{36}$	0.652145
	$\pm\sqrt{\frac{3}{7}+\frac{2}{7}\sqrt{\frac{6}{5}}}$	±0.861136	$\frac{18-\sqrt{30}}{36}$	0.347855
5	0		$\frac{128}{225}$	0.568889
	$\pm\frac{1}{3}\sqrt{5-2\sqrt{\frac{10}{7}}}$	±0.538469	$\frac{322 + 13\sqrt{70}}{900}$	0.478629
	$\pm\frac{1}{3}\sqrt{5+2\sqrt{\frac{10}{7}}}$	±0.90618	$\frac{322 - 13\sqrt{70}}{900}$	0.236927