Dados do Plano de Trabalho								
	Estudo da modificação do caminho ótico percorrido por um feixe de speckles em um meio de vapor atômico por uma fonte secundária de luz							
Modalidade de bolsa solicitada:	PIBIC							
-	Estudo computacional da transmissão de speckles em células atômicas							

1. OBJETIVOS

OBJETIVO GERAL: Consolidar o Grupo de Física e Astronomia do Cariri, integrando o IFE/UFCA a outros centros de pesquisa nacionais e internacionais, e beneficiando pesquisadores e estudantes, ao investigar através de métodos numéricos, a propagação de speckles em um meio não-linear de vapor atômico.

OBJETIVOS ESPECÍFICOS:

- Proporcionar ao bolsista uma iniciação científica;
- Aprender técnicas de cálculo numérico;
- Compreender propagação de ondas eletromagnéticas;
- Analisar a distribuição estatística de speckles em função da dispersão do meio atômico:
- Analisar a distribuição estatística de speckles quando o meio atômico é modificado pela presença de uma fonte secundária de luz interagente;
- Participação de eventos nacionais para apresentação dos resultados;
- Publicação dos resultados do projeto em periódicos nacionais e internacionais.

2. METODOLOGIA

Inicialmente, o projeto será uma continuação do trabalho desenvolvido pelo bolsista durante os primeiros sete meses de 2019. No início de janeiro de 2019 foi realizada substituição da bolsista, assim o novo bolsista precisou retomar a revisão bibliográfica e estudos sobre métodos numéricos. Para o período que se estende de agosto de 2019 a julho de 2020, o bolsista continuará o estudo da distribuição estatística de speckles em função da dispersão de um meio de vapor atômico na presença de um segundo laser.

De modo geral, o continuará realizando revisão bibliográfica e analisando a sua análise numérica da propagação de speckles. O bolsista gerará, numericamente, uma frente gaussiana de luz laser, a transformará em um padrão de speckles, então, calculará a propagação destes através de um meio não-linear de vapor atômico, controlando a frequência do laser original, além de sua intensidade. Assim, o bolsista realizará a análise estatística desta propagação de speckles.

A previsão é que na segunda metade do período de vigência do projeto, o bolsista inicie um novo projeto, com uma análise sistemática da estatística do padrão de speckles após sua propagação em um meio de vapor atômico. Para isto, o bolsista estudará, sistematicamente, o efeito de vários parâmetros do sistema, como frequência e intensidade do laser fonte, e os níveis de absorção e dispersão do meio atômico.

O bolsista se reunirá semanalmente com o orientador e com o grupo de pesquisa para apresentar e discutir o andamento do projeto e estipular os passos seguintes.

O bolsista também participará de eventos científicos para divulgar os resultados de seu trabalho, assim como observar o trabalho de outros grupos de pesquisa, visando seu desenvolvimento científico.

3. CRONOGRAMA DE ATIVIDADES

As atividades a serem realizadas pelo estudante são:

- AT1. Revisão bibliográfica;
- AT2. Reprodução de resultados da literatura sobre propagação de speckles;
- AT3. Estudo da modificação do caminho ótico percorrido por um feixe de speckles em um meio de vapor atômico por uma fonte secundária de luz;
- AT4. Análise sistemática da distribuição estatística de speckles após meio nãolinear de vapor atômico em função da frequência e intensidade da luz laser;
 - AT5. Participação em eventos científicos;
 - AT6. Elaboração do relatório final e artigo científico.

N°	2019				2020							
_ ,	08	09	10	11	12	01	02	03	04	05	06	07
AT1	X	X				X	X					
AT2	X	X				X	X					
AT3	X	X	X	X	X							
AT4							X	X	X	X	X	X
AT5									X	X	X	X
AT6											X	X