${\bf Mini\text{-}Test}\ 1$

Name:	ben giftakis	Email: benjamin.giftakis001@umb.edu
1 (50		
`	points) Check the correct answer.	on Classical Acc
(a	(10 points) You can conclude proposition 2 4 using True False	reflexivity.
(b	(10 points) The proof of an implication P → Q is a fund P to produce a proof of the proposition Q. True False	ction that uses a proof of the proposition
(c	(10 points) If E has type Nat.eqb m n = true, then True False	E can be applied to a goal $m = n$.
(d	(10 points) If X is an inductively defined type or proposi then destruct foo will finish any proof or subgoal.	tion with no constructors and $foo: X$,
	○ False	
(e	<pre>(10 points) The type Inductive foo := bar: fo in Coq.</pre>	$00 \rightarrow foo.$ is an invalid type definition
,	points) Give the type of each of the following Coq express not have a type.	sions, or write "ill typed" if an expression
(a	(5 points) forall (x : nat) (y : Prop), x \rightarrow	у
ill type	ed	
(b	(5 points) forall (X Y : Prop), X \rightarrow Y	
prop		
cor	points) For each of the following propositions, check "not e logic, without additional axioms), "induction" if it is proposed without using induction and without additional lengths.	vable only using induction, or "easy" if it
(a	(4 points) exists s, In 3 (s ++ [1;2;3]) ○ Easy ○ Induction ○ Not Provable	
(h	(4 points) forall s, In 3 (s ++ [1;2;3])	
(D	Easy Induction	

○ Not Provable
(c) (4 points) forall n, n = S n
Easy
○ Induction
○ Not Provable
(d) (4 points) forall n, n + \emptyset = n
○ Easy
○ Induction
○ Not Provable
(e) (4 points) forall $\{A: Type\}$ (l:list A), $l = [] \setminus / exists \times l'$, $l = \times :: l'$
○ Easy
○ Induction
O Not Provable
4. (20 points) Complete each proof. Your proof cannot use auto nor intuition .
(a) P, Q: Prop
H : P \/ Q
H0 : ~ Q
(1/1)
P
(b) forall (A:Type) (l:list A), $l = [] \rightarrow l = []$
(c) forall (A:Type) (x:A). $[x] = [x]$.

Page 2

(d) $H : P \rightarrow Q$ $H0 : P \setminus / \sim P$ $\sim P \setminus / Q$	(1/1)	