КЕЙС №2

Определение коэффициента диффузии паров жидкости

Диффузия — это явление переноса массы вещества из точек с повышенной концентрацией в точки с пониженной концентрацией этого вещества. В случае газов изменение концентрации приводит к изменению плотности газа, в результате чего возникающий поток частиц оказывается направленным в сторону уменьшения плотности.

Коэффициент диффузии – это количественная мера скорости диффузии, равная массе вещества, проходящего за 1 секунду через участок единичной площади при условии перепада плотности газа на 1 кг/м³, приходящийся на единицу длины.

Согласно молекулярно-кинетической теории причиной и механизмом диффузии является тепловое движение частиц, и в случае диффузии газов коэффициент диффузии зависит от внешних условий (давления и температуры) и типа газа. Если известен коэффициент диффузии и условия проведения опыта, то можно определить, например, эффективный диаметр молекулы газа. Эффективный диаметр молекулы газа — это минимальное расстояние, на которое могут сблизиться молекулы при соударении в результате их теплового движения.

Воздух содержит водяной пар. Давление воздуха, согласно закону Дальтона, равно сумме парциальных давлений сухого воздуха и водяного пара.

Относительной влажностью называется отношение парциального давления пара к давлению насыщенного пара при той же температуре.

Рассмотрим столб жидкости в капилляре поперечного сечения S на расстоянии h(t) от конца капилляра, причем конец капилляра открыт и находится под атмосферным давлением p_0 (рис. 1).

Рис. 1. Схема опыта

Над поверхностью воды давление пара постепенно становится равным давлению насыщенного пара $P_{\rm H}$ (влиянием кривизны поверхности пренебрегаем), в то время как на конце капилляра давление водяного пара равно P_0 и определяется относительной влажностью воздуха φ в лаборатории. Согласно уравнению Менделеева-Клапейрона плотность водяных паров ρ :

$$\rho = \frac{PM}{RT} \tag{1}$$

где M — молярная масса воды.

Соответственно, разность давлений пара между уровнем поверхности и концом капилляра приводит к возникновению диффузионного потока водяного пара, что приводит к испарению жидкости и уменьшению уровня водяного столба h(t). Получив зависимость высоты столба жидкости от времени, можно определить коэффициент диффузии водяных паров по формуле:

$$D = \frac{\rho_{\text{m}}RTK}{2MP_{\text{H}}(1-\varphi)}.$$
 (2)

В этой формуле $\rho_{\text{ж}}$ – плотность испаряющейся жидкости (кг/м³), Rуниверсальная газовая постоянная (R=8,307Дж/(моль·К)), T – температура в
лаборатории (K), M – молярная масса жидкости (кг/моль), $P_{\text{н}}$ – давление
насыщенного пара при данной температуре (Па), φ – влажность воздуха в
лаборатории, K – угловой коэффициент зависимости квадрата высоты
водяного столба от времени (м²/с).

Определение коэффициента взаимной диффузии водяных паров производится на установке, внешний вид которой показан-на рис. 2.

На стойке располагается панель блока приборов, на которой располагается тумблер и ручка «Подсветка капилляра», позволяющая регулировать интенсивность подсветки. Внутри блока 1, закрытого кожухом, находится микроскоп 2, под объективом которого находится капилляр, наполненный исследуемой жидкостью, и рабочий элемент 3. Температура окружающего воздуха измеряется с помощью термометра.

Рис. 2. Внешний вид установки

Рабочий элемент установки показан на рис. 3. Он состоит из емкости для жидкости 4 и штока 5. Для заправки капилляра шток выдвигается, емкость заполняется жидкостью, после чего шток задвигается обратно.

Рис. 3. Рабочий элемент

Для определения температуры и влажности в лаборатории используется психрометрическая установка (рис. 4), состоящая из сухого термометра 6 и влажного термометра 7 и психрометрическая таблица.

Рис. 4 Сухой (6) и влажный (7) термометры

Таблица 1. Психрометрическая таблица

Показания		Разно	ть показ	аний сух	кого и вл	ажного	термом	етра, °С		
сухого термометра,	0	1	2	3	4	5	6	7	8	9
°С			0	тносител	тьная вл	ажность	, %			
15	100	92	80	71	61	52	44	36	27	20
16	100	90	81	71	62	54	45	37	30	22
17	100	90	81	72	64	55	47	39	32	24
18	100	91	82	73	65	56	49	41	34	27
19	100	91	82	74	65	58	50	43	35	29
20	100	91	83	74	66	59	51	44	37	30
21	100	91	83	75	67	60	52	46	39	32
22	100	92	83	76	68	61	54	47	40	34
23	100	92	84	76	69	61	55	48	42	36
24	100	92	84	77	69	62	56	49	43	37
25	100	92	84	77	70	63	57	50	44	38
26	100	92	85	78	71	64	58	51	46	40
27	100	93	85	78	71	64	58	52	47	41
28	100	93	85	78	72	65	59	53	48	42
29	100	93	86	79	72	65	59	54	49	43
30	100	93	86	79	73	66	60	55	50	44

Задания к практической работе

- 1. Определите коэффициент диффузии паров метанола (CH₃OH), значение которого должно содержать две значащие цифры.
- 2. Сравните полученное экспериментальное значение с табличной величиной и объясните возможные расхождения между этими значениями.

Таблица 2 Сводная таблица экспериментальных данных

Номер	Время t, с	Высота столбика жидкости в	Квадрат высоты столбика жидкости в
опыта		капилляре h , мм	капилляре $h^2 \cdot 10^6$, m^2
			или
			h^2 , mm^2
1	0	0	
2	60	0,25	
3	120	0,38	
4	180	0,46	
5	240	0,55	

6	300	0,60	
7	360	0,67	
8	420	0,74	
9	480	0,77	
10	600	0,81	

Таблица 3. Сводная таблица экспериментальных и табличных данных

Экспериментальные данные	Угловой коэффициент К, M^2/c Температура в лаборатории Т, К Давление насыщенного пара P_H , Па Влажность ϕ Коэффициент диффузии D, M^2/c
Табличные данные	Молярная масса вещества М, кг/моль Плотность жидкости рж, кг/м ³

- 1. Посчитайте h^2 и занесите полученные значения в таблицу 2
- 2. Подготовьте координатную плоскость для графика, выбрав удобные масштабы по оси абсцисс (время, c) и по оси ординат (h^2, M^2) .
- 3. Постройте график зависимости $h^2 = f(t)$.
- 4. Определите тангенс угла наклона прямой к горизонтальной оси (угловой коэффициент прямой К), как отношение соответствующих катетов. При этом

следует учесть, что длины катетов определяются по параллельным им осям, т.е. они представляют собой определенным физические величины. Занесите значение К в таблицу 3.

- 5. С помощью сухого термометра определите температуру, при которой выполнялся опыт. Переведите измеренную температуру в кельвины и занесите это значение в таблицу 3.
- 6. Определите влажность воздуха, используя психрометрическую установку и таблицу 1. Занесите значение влажности в таблицу 3.
- 7. По таблице 4 определите значение давления насыщенного пара $P_{\scriptscriptstyle H}$ используемой жидкости, соответствующее измеренной температуре, переведите это значение в СИ и занесите его в таблицу 3.

Таблица 4. Зависимость давления насыщенного пара метанола от температуры

t, °C	Р _н , мм рт. ст.
20	96
21	101.4
22	107.1
23	113.1
24	119.3
25	125.8
26	132.7
27	139.9

8. По таблице 5 найдите значение плотности используемой жидкости ρ и занесите это значение в таблицу 3.

Таблица 5. Плотность жидкостей

Жидкость	ρ, κ г/ м ³
метанол	792
этилацетат	902
этанол	806
уксусная кислота	1049

бензол	879
толуол	870

- 9. Зная химическую формулу вещества, посчитайте его молярную массу и занесите это значение в таблицу 3.
- 10.По формуле (2) найдите коэффициент диффузии исследуемого вещества и сравните его со значением, которое нужно найти в таблице 6. Сделайте вывод.

Таблица 6. Значения коэффициентов диффузии жидкостей

Вещество	Коэффициент диффузии, 10 ⁴ м ² /с
Воздух-метанол (14,5° С)	0,132
Воздух-вода (8,0° С)	0,239
Воздух-этилацетат (18,9° С)	0,071
Воздух-этанол (18,35° С)	0,102
Воздух-уксусная кислота (22,9° С)	0,106
Воздух- бензол (20° C)	0,077
Воздух –толуол $(16,4^{\circ} C)$	0,071

Форма протокола

Учащегося школы	-
ФИО	
Вариант №	
	иментальных и табличных ланных

Экспериментальные данные	Угловой коэффициент К, M^2/c Температура в лаборатории Т, К Давление насыщенного пара P_H , Па Влажность ϕ Коэффициент диффузии D, M^2/c
Табличные данные	Молярная масса вещества M , кг/моль Π лотность жидкости $\rho_{\text{ж}}$, $\kappa \Gamma/\text{M}^3$

График

Выводы