Math 74: Rotation Madness

Let \mathbf{E}^n denote \mathbf{R}^n with a choice of Euclidean inner product and an orientation. Let SO(n) be the subgroup of the invertible linear transformations of \mathbf{E}^n that preserve the Euclidean inner product and the orientation. Notice by choosing an orthonormal basis of \mathbf{E}^n we can view SO(n) as subset of the n by n matrices, $M_{n\times n}(\mathbf{R})$. In fact

Theorem 1 Fixing an orthonormal pairs we have

$$SO(n) = \{ A \in M_{n \times n}(\mathbf{R}) \mid AA^{tr} = I, det(A) = 1 \}.$$

Proof: $A \in SO(n)$ will will sends a positively oriented orthonormal basis to another positively oriented orthonormal basis and in particular $A^{tr}A = I$ is necessary since this is precisely this statement. Conversely any such matrix that satisfies $AA^{tr} = I$ will preserve the inner product since $Av \cdot Aw = A^{tr}Av \cdot w = v \cdot w$.

Recall a linear transformation A preserves orientation if and only if det(A) > 0. Since $det(AA^{tr}) = det(A)^2 = det(I) = 1$ we see that $det(A) = \pm 1$, and the orientation preserving condition forces the det(A) = 1.

q.e.d.

Example 1: SO(2) For any $A \in SO(2)$, since A preserves the notion of an oriented basis, we have that B is determined by what B does to single vector (by the right-hand rule). Viewing A in an orthonormal basis $\{e,e_2\}$ we see that the fact that $A(e_1) = a_{11}e_1 + a_{21}e_2$ and since the norm is preserved $a_{11}^2 + a_{12}^2 = 1$ and hence $a_{11} = \cos(\theta)$ and $a_{11} = \sin(\theta)$ for some $\theta \in [0, 2\pi)$. By the right-hand rule, $A(e_2) = -\sin(\theta)e_1 + \cos(\theta)e_2$ and as a matrix

$$A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Notice, in complete generality, we can view SO(n) as subspace of the space of n by n matrices, $M_{n\times n}(\mathbf{R})$ which is topologically \mathbf{R}^{n^2} . Notice in its subspace topology, multiplication and inversion are continuous operations (in fact via the nice rational functions learned in linear algebra). Utilizing this topology, SO(2) is in fact a very familiar topological space. Namely by the continuity of sin and cos the mapping of $S^1 = \mathbf{R}/2\pi\mathbf{Z}$ to the above matrices is bijective and continuous. Hence, since S^1 is compact and and any subspace of \mathbf{R}^{n^2} is Hausdorff, this mapping is a homeomorphism. Hence SO(2) is homeomorphic to S^1 and in a particularly natural way.

Example 2: SO(3) Notice, since we are in \mathbf{E}^3 , if we fix a point $u \in S^2$, then the notion of a right-handed rotation about this axis makes sense via the right-hand rule. We can characterize the elements of SO(3) as follows.

Theorem 2 Every $A \in SO(3)$ can described by fixing some point $u = (x, y, z) \in S^2$ and performing a right-handed rotation by some angle θ about u.

Proof: First observe we can explicitly write down the matrix that performs a right-handed rotation by an angle of θ about $u = (x, y, z) \in S^2$ via $R(u, \theta) =$

$$\begin{bmatrix} 1 + (1 - \cos(\theta))(x^2 - 1) & -zsin(\theta) + (1 - \cos(\theta))xy & y\sin(\theta) + (1 - \cos(\theta))xz \\ z\sin(\theta) + (1 - \cos(\theta))xy & 1 + (1 - \cos(\theta))(y^2 - 1) & -x\sin(\theta) + (1 - \cos(\theta))yz \\ -y\sin(\theta) + (1 - \cos(\theta))xz & x\sin(\theta) + (1 - \cos(\theta))yz & 1 + (1 - \cos(\theta))(z^2 - 1) \end{bmatrix}.$$

By inspection $R(u, \theta) \in SO(3)$.

Given $A \in SO(3)$, we will first prove A must fix a non-zero vector. Recall $\det(A^{tr}) = \det(A)$ hence

$$\det((I-A)A^{tr}) = \det(I-A)\det(A^{tr}) = \det(I-A).$$

By definition

$$(I - A)A^{tr} = (A^{tr} - I) = -(I - A^{tr}),$$

and by taking the determinant we have

$$\det((I-A)A^{tr}) = -\det(I-A^{tr}) = -\det(I-A),$$

and hence det(I-A)=0. This equivalent to I-A having a nontrivial kernel, which implies there exist $v\neq 0$ such that v-Av=0, as needed.

Take any w in our fixed vector's, v's, orthogonal compliment. Note Av = v hence Aw is still orthogonal to to v. As such we may utilize a rotation, $R(v,\theta)$, about v to send Aw to w. Notice $R(v,\theta)A = B \in SO(3)$. For any $B \in SO(3)$ since B preserves the notion of an oriented basis, we have that B is determined by what B does to any pair of orthogonal vectors (by the right-hand rule). By construction $R(v,\theta)A$ preserves two vector hence, from this observation, $R(v,\theta)A = I$. In other words $A = R(v,\theta)^{-1} = R(v,-\theta)$, as needed. **q.e.d.**

Once again in its subspace topology SO(3) is a familiar space.

Theorem 3 SO(3) is homeomorphic to C^3 .

Proof: First we will construct a map Ψ from B^3 to SO(3). Let

$$\Psi(x) = \begin{cases} R(x/|x|, \pi d(0, u)) & x \neq 0 \\ I & x = 0 \end{cases}.$$

By looking at the formula for $R(u,\theta)$ from the proof of theorem 2, we find that Ψ is continuous. Now, since rotating by π clockwise around an axis is the same

as rotating by π counter-clockwise around this same axis, Ψ is constant on C^3 equivalence classes. Hence (by theorem 2.22 of Munkres) we have a bijective continuous map from C^3 to SO(3). The map is a homeomorphism since C^3 is compact and SO(3) is Hausdorff. **q.e.d.**

Recall from the first problem of our first exam told us that

$$S^3 = \{(w, x, y, z) \in \mathbf{R}^4 \mid w^2 + x^2 + y^2 + z^2 = 1, \}$$

naturally covers C^3 (notice the use of (w,x,y,z) as coordinates of \mathbb{R}^4). In problem three of the final we will explore S^3 and end up with a much better understanding of this relationship between S^3 and SO(3).

To do so it is convenient to observe that S^3 has some natural algebraic structures on it. First, we may identify R^4 with \mathbf{C}^2 via the map sending (w,x,y,z) to (w+ix,y+iz). Hence $S^3=\{(z_1,z_2)\in\mathbf{C}^2\mid |z_1|^2+|z_2|^2=1\}$. Recall if z=x+iy then $\bar{z}=x-iy$, and $|z|=\sqrt{z\bar{z}}=\sqrt{x^2+y^2}$.

We may also identify R^4 with \mathbf{H} , the quaternions, via the map sending (w,x,y,z) to w+xi+yj+zk. Recall the quaternions are the vector space with basis $\{1,i,j,k\}$, formed into a ring (in fact a division ring), via the multiplication rule, *, which satisfies

$$i * i = -1, j * j = -1, k * k = -1$$

and

$$i * j = -j * i = k, j * k = -k * j = i, k * i = -i * k = j$$

on the basis elements and is extended by linearity to all of \mathbf{H} . As with the complex numbers, we have that if q=w+xi+yj+zk then we let $\bar{q}=w-xi-yj-zk$, and $|q|=\sqrt{q\bar{q}}=\sqrt{w^2+x^2+y^2+z^2}$. Notice, by definition, S^3 is naturally equivalent to $\mathbf{U}\mathbf{H}=\{q\mid |q|=1\}$, the set of unit quaternions.