Localisation

Algèbre avancée

Question 1/11

Propriétés des modules projectifs de A un anneau local

Réponse 1/11

Tout module projectif de type fini est libre Ce résultat reste vrai même si P n'est pas de type fini (Kaplansky)

Question 2/11

A est local

Réponse 2/11

A est local s'il possède un unique idéal maximal

Question 3/11

Propriétés de (x_1, \dots, x_n) si $(\overline{x_1}, \dots, \overline{x_n})$ est une base de $M/\mathfrak{m}M$ en tant que A/\mathfrak{m} -espace vectoriel pour (A, \mathfrak{m}) un anneau local et M un module de type fini

Réponse 3/11

C'est une famille génératrice de M en tant que A-module

Question 4/11

Corps résiduel

Réponse 4/11

$$\mathbb{k} = A/\mathfrak{m}$$
 est le corps résiduel de (A, \mathfrak{m}) local

Question 5/11

Localisé de A en \mathfrak{p}

Réponse 5/11

Si \mathfrak{p} est un idéal premier de A, le localisé de A en \mathfrak{p} est $A_{\mathfrak{p}} = S^{-1}A$ pour $S = A \setminus \mathfrak{p}$

Question 6/11

CNS pour que A soit local d'idéal maximal I

Réponse 6/11

$$A^{\times} = A \setminus I$$

Question 7/11

Propriétés du localisé de A en \mathfrak{p}

Réponse 7/11

C'est un anneau local d'idéal maximal
$$\mathfrak{m} = \left\{ \frac{a}{s} \in A_{\mathfrak{p}}, a \in \mathfrak{p}, s \notin \mathfrak{p} \right\} \text{ et}$$
$$A_{\mathfrak{p}}/\mathfrak{m} \cong \operatorname{Frac}(A)$$

Question 8/11

$S^{-1}A$

Réponse 8/11

Anneau
$$A \times S/\sim$$
 où $(a,s) \sim (a',s')$ si et seulement s'il existe $t \in S$ tel que
$$t(sa'-s'a)=0$$

Question 9/11

Lemme de Nakayama

Réponse 9/11

Si (A, \mathbf{m}) est un anneau local et M est un A-module de type fini tel que $\mathbf{m}M = M$ alors $M = \{0\}$

Question 10/11

S est une partie multiplicative de A

Réponse 10/11

$$1 \in S$$
 et si $(x, y) \in S^2$ alors $xy \in S$

Question 11/11

PU de l'anneau des fractions A un anneau, S une partie multiplicative de A

Réponse 11/11

Soit $\varphi: A \to S^{-1}A$ le morphisme canonique, alors pour tout anneau B et tout morphisme $\psi: A \to B$ tel que $\psi(S) \subseteq B^{\times}$, il existe un unique morphisme d'anneaux $\widetilde{\psi}$ tel que

$$A \xrightarrow{\psi = \widetilde{\psi} \circ \varphi} B$$

$$A \xrightarrow{\varphi} \xrightarrow{\psi} \widetilde{\psi} \xrightarrow{\widetilde{\psi}} B$$