AIND Classical Planning Project

Franz Williams

Experiment Results

Problem 1:

- 2 cargos (C1, C2), 2 planes (P1, P2), and 2 airports (JFK, SFO)
- Initial state: At(C1, SFO); At(C2, JFK); At(P1, SFO); At(P2, JFK)
- Goal: At(C1, JFK); At(C2, SFO)
- Action count: 20

Search	Heuristic	Plan Length	Expansions	Goal Tests	New Nodes	Time (s)
breadth_first_search	-	6	43	56	178	0.0073
depth_first_graph_search	-	20	21	22	84	0.0036
uniform_cost_search	-	6	60	62	240	0.0121
<pre>greedy_best_first_graph_search</pre>	h_unmet_goals	6	7	9	29	0.0018
<pre>greedy_best_first_graph_search</pre>	h_pg_levelsum	6	6	8	28	0.2250
<pre>greedy_best_first_graph_search</pre>	h_pg_maxlevel	6	6	8	24	0.1546
<pre>greedy_best_first_graph_search</pre>	h_pg_setlevel	6	6	8	28	0.6094
astar_search	h_unmet_goals	6	50	52	206	0.0099
astar_search	h_pg_levelsum	6	28	30	122	0.5239
astar_search	h_pg_maxlevel	6	43	45	180	0.5519
astar_search	h_pg_setlevel	6	33	35	138	1.4153

Problem 2:

- 3 cargos (C1-C3), 3 planes (P1-P3), and 3 airports (JFK, SFO, and ATL)
- Initial state: At(C1, SFO); At(C2, JFK); At(C3, ATL); At(P1, SFO); At(P2, JFK); At(P3, ATL)
- Goal: At(C1, JFK); At(C2, SFO); At(C3, SFO)
- Action count: 72

Search	Heuristic	Plan Length	Expansions	Goal Tests	New Nodes	Time (s)
breadth_first_search	-	9	3343	4609	30503	2.1669
depth_first_graph_search	-	619	624	625	5602	3.3154
uniform_cost_search	-	9	5154	5156	46618	3.4485
<pre>greedy_best_first_graph_search</pre>	h_unmet_goals	9	17	19	170	0.0197
<pre>greedy_best_first_graph_search</pre>	h_pg_levelsum	9	9	11	86	4.5951
<pre>greedy_best_first_graph_search</pre>	h_pg_maxlevel	9	27	29	249	7.1148
<pre>greedy_best_first_graph_search</pre>	h_pg_setlevel	9	9	11	84	15.3752
astar_search	h_unmet_goals	9	2467	2469	22522	2.3143
astar_search	h_pg_levelsum	9	357	359	3426	124.6904
astar_search	h_pg_maxlevel	9	2887	2889	26594	727.5697
astar_search	h_pg_setlevel	9	1037	1039	9605	1397.4360

Problem 3:

- 4 cargos, 2 planes, and 4 airports (JFK, SFO, ATL, ORD)
- Initial state: At(C1, SFO); At(C2, JFK); At(C3, ATL); At(C4, ORD); At(P1, SFO); At(P2, JFK)
- Goal: At(C1, JFK); At(C2, SFO); At(C3, JFK); At(C4, SFO)
- Action count: 88

Search	Heuristic	Plan Length	Expansions	Goal Tests	New Nodes	Time (s)
breadth_first_search	-	12	14663	18098	129625	11.0925
<pre>greedy_best_first_graph_search</pre>	h_unmet_goals	15	25	27	230	0.0386

Search	Heuristic	Plan Length	Expansions	Goal Tests	New Nodes	Time (s)
<pre>greedy_best_first_graph_search</pre>	h_pg_levelsum	14	14	16	126	11.0574
astar_search	h_unmet_goals	12	7388	7390	65711	9.0639
astar_search	$h_pg_levelsum$	12	369	371	3403	293.1146

Problem 4:

- 5 cargos, 2 planes, and 4 airports (JFK, SFO, ATL, ORD)
- Initial state: At(C1, SFO); At(C2, JFK); At(C3, ATL); At(C4, ORD); At(C5, ORD); At(P1, SFO); At(P2, JFK)
- Goal: At(C1, JFK); At(C2, SFO); At(C3, JFK); At(C4, SFO); At(C5, JFK)
- Action count: 104

Search	Heuristic	Plan Length	Expansions	Goal Tests	New Nodes	Time (s)
breadth_first_search	-	14	99736	114953	944130	151.2396
<pre>greedy_best_first_graph_search</pre>	h_unmet_goals	18	29	31	280	0.0623
<pre>greedy_best_first_graph_search</pre>	h_pg_levelsum	17	17	19	165	19.3828
astar_search	h_unmet_goals	14	34330	34332	328509	57.4568
astar_search	h_pg_levelsum	15	1208	1210	12210	1342.2847

Analysis

When running the 5 algorithms (breadth-first, greedy best-first with h_unmet_goals and h_pg_levelsum, and A* with h_unmet_goals and h_pg_levelsum) across each of the 4 problems, the following average number of nodes were expanded: Problem 1 (20 actions): 26.8, Problem 2 (72 actions): 1238.6, Problem 3 (88 actions): 4481.8, and Problem 4 (104 actions): 27064. As the number of actions increases with each problem, the number of node expansions seems to increase either polynomially or exponentially. Similarly, across the 4 problems, the following average run times were observed: Problem 1: 0.15358s, Problem 2: 26.7573s, Problem 3: 64.8734s, Problem 4: 314.085s. Run time seems to increase polynomially with the number of actions in the problem domain. breadth_first_search will always be optimal if the path cost is non-decreasing. astar_search with h_unmet_goals was also optimal in each of the 4 problems. depth_first_graph_search was non-optimal in the first two problems, and would most likely be non-optimal in the other two problems if attempted.

Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?

In a restricted domain, greedy_best_first_graph_search with h_unmet_goals would be the most optimal algorithm based on Problem 1's results. breadth_first_search is also a potential choice if optimality is a requirement.

Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)

In larger domains, greedy_best_first_graph_search with h_unmet_goals would likely be a good choice based on run time. If the problem is largely decomposable, greedy_best_first_graph_search with h_pg_levelsum may also work well.

Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?

If an optimal plan is required, astar_search with h_unmet_goals should be used. A* will be optimal as long as the heuristic used is admissible. With respect to time, A* had similar performance to, or outperformed the always-optimal breadth_first_search when using the h_unmet_goals heuristic.