

PLANO DE ENSINO

DADOS DA DISCIPLINA		
SIGLA	NOME	
ADS201	Sistemas Operacionais e IOT	
CURCOC		

CURSOS

ANÁLISE E DESENVOLVIMENTO DE SISTEMAS (ADS)

CARGA HORÁRIA

TEÓRICA	PRÁTICA	ATIVIDADES EXTRACLAS SE	TOTAL
40 hrs	40 hrs	hrs	80 hrs

EMENTA

Aspectos básicos do sistema operacional (S0), monotarefa, multitarefa, monousuário e multiusuário. Aspectos de gerenciamento de processos e gerenciamento de usuários. Registradores. Paginação. Administração e instalação do SO. O SO como servidor. Internet of Things (IoT), visão geral e conceitos. Origem e taxonomia. Dispositivos e tecnologias. Integração de tecnologias. Introdução aos sistemas embarcados. Introdução à programação em Arduino. Arquiteturas. Comunicação. Segurança. Aspectos positivos e negativos. Casos de uso. Aplicações práticas.

OBJETIVOS

Estabelecer condições de processo ensino aprendizagem que maximize a possibilidade de os estudantes desenvolverem as **COMPETÊNCIAS** inerentes aos **CONHECIMENTOS** explicitados no conteúdo programático e os **OBJETIVOS INSTRUCIONAIS** explicitados abaixo nas **COMPETÊNCIAS ESPECÍFICAS DA DISCIPLINA**, além de contribuir para o desenvolvimento de atitudes positivas em relação à importância e relevância desta disciplina para a formação profissional do estudante.

Competências específicas da disciplina:

- 1. C4 Tomar decisões e inovar, com base no conhecimento do funcionamento e das características técnicas de hardware e da infraestrutura de software dos sistemas de computação consciente dos aspectos éticos, legais e dos impactos ambientais decorrentes;
- 2. C9 Adequar-se rapidamente às mudanças tecnológicas e aos novos

ambientes de trabalho

3. C3 - Resolver problemas usando ambientes de programação.

	CONTEÚDO PROGRAMÁTIC	O IoT
UNIDADE	DESCRIÇÃO	HORAS
	Aspectos básicos do sistema operacional	
1	 Monotarefa x Multitarefa 	8
	 Monousuário x Multiusuário 	
	IOT	
2	Visão geral	2
	Taxonomia	
	Aspectos de gerenciamento	
3	 Gerenciamento de processos 	8
	 Gerenciamento de usuários 	
	Internet das coisas parte 1	
4	Blocos funcionais	
	 Arquitetura de sistemas IoT 	6
	 Computação em Névoa 	
	 Computação em Nuvens 	
5	Administração e instalação do sistema operacional	
	 Sistemas de arquivos 	8
	 Partições: primária, estendida, unidades lógicas 	
6	Internet das coisas parte 2	
	 Machine to machine 	
	 IoT power line communication 	4
	● IoT na indústria 4.0	
	● IoT e Big data	
7	Registradores	4
8	Arquitetura de Sistemas Embarcados	4
	MicrontroladoresInterfaces de entrada e saída	

	Interfaces de ComunicaçãoArduino		
9	Paginação	4	
	Introdução à programação no Arduino		
	Estrutura sequencial		
10	 Estrutura condicional 	6	
	 Estrutura de repetição 		
	Principais funções		
	O sistema Operacional como servidor	8	
11	Portas e serviços		
	Servidores		
	Comunicação na lot		
	Conectividade		
12	 Comunicações tradicionais móveis 	4	
	● Tecnologia Rádio		
	Operadores de IoT		
	Segurança na lot		
12	 Segurança no dispositivo 	4	
13	 Segurança na conexão 		
	Segurança na nuvem		
	Estudos de caso		
	Power line comunication	4	
14	 Estação meterológica 		
14	Controle de aquecimento central		
	 Controle de eletrodomésticos 		
	Smart Cities		
15	Projetos práticos	8	
	TOTAL	80 horas	

METODOLOGIA DE ENSINO

- Aulas teóricas
- Aulas práticas em laboratório

ATIVIDADE EXTRACLASSE

Em consonância com o artigo 2º, inciso II da RESOLUÇÃO Nº 3/2007, do Ministério da

Educação/Conselho Nacional de Educação que dispõe sobre procedimentos a serem adotados para complementar as horas aulas (HA), a carga horária da disciplina é integrada pelas seguintes atividades extraclasse práticas supervisionadas:

- Atividades em laboratórios
- Atividades pesquisa em biblioteca
- Iniciação científica
- Trabalhos domiciliares individuais e em grupo
- Outras atividades no caso das licenciaturas

SISTEMA DE AVALIAÇÃO

De acordo com a programação explicitada neste plano e em consonância com o Regimento Interno da

Instituição, serão oferecidos **100 pontos**:

- 1ª Etapa: 40 pontos;
- 2ª Etapa: 40 pontos mais a **Prova Multidisciplinar (PMD)** de 20 pontos;
- Prova Supletiva: mediante requerimento formal à secretaria acadêmica para quem perdeu uma das avaliações, realizada ao final do semestre com conteúdo integral;
- Prova Final: para estudantes que obtiveram nota igual ou superior a 30 e inferior a 60 nas duas etapas de avaliação;
- O estudante será considerado aprovado se obtiver aproveitamento igual ou superior a 60% e frequência igual ou superior a 75%.

1º etapa: 40 pontos [trabalhos individuais e em equipe e atividades práticas]

2º etapa: 40 pontos [trabalhos, relatórios de visitas técnicas e apresentação de trabalho]

3ª etapa: 20 pontos [prova multidisciplinar]

REFERÊNCIAS BIBLIOGRÁFICAS

BÁSICA

- 1. COELHO, Pedro. A Internet das Coisas Introdução Prática. Lisboa: FCA, 2017.
- 2. DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. **Sistemas Operacionais**. São Paulo, 2005.
- 3. MAGRANI, Eduardo. A Internet das Coisas. Rio de Janeiro: FGV, 2018.
- TANENBAUM, Andrew S.; WOODHULL, Albert S.; TORTELO, João (Trad.). Sistemas operacionais: projetos e implantações. 3. ed. Porto Alegre: Bookman, 2008. 990 p
- 5. MONK, Simon; LASCHUK, Anatólio (Trad.). Programação com arduino: começando com sketches. Porto Alegre: Bookman, 2017. 182 p. (Série Tekne). ISBN 9788582604465. Português. IoT- novo capítulo sobre interenet das coisas;

'Atualizado para novos modelos e software de Adruino".

COMPLEMENTAR

- 1. OLSEN, Diogo Roberto. **Sistemas Operacionais**. Curitiba: Editora do Livro Técnico, 2010.
- OLIVEIRA, Rômulo Silva de; CARISSIMI, Alexandre da Silva; TOSCANI, Simão Sirineo. Sistemas Operacionais. Instituto de Informática da UFRGS. Porto Alegre: Bookman, 2010.
- 3. SILBERCHATZ, Abraham. **Fundamentos de sistemas operacionais**. 8.ed. Rio de janeiro: LTC, 2011.
- 4. MCEWEN, Adrian; CASSIMALLY, Hakim. Designing the Internet of Things. West Sussex, UK: John Wiley & Sons, 2014.
- 5. WHITE, Elecia. **Making embedded systems**. Sebastopol, CA: OReilly, 2011. 370 p. ISBN 9781449302146. Inglês.

PERIÓDICOS

- https://iot.ieee.org/articles-publications.html IEEE Internet of things
- https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8856 IEEE Transactions on Automation Science and Engineering

APROVAÇÃO				
Aprovado em	/			
Professor Responsável	Hermes Nunes Pereira Junior e Vinícius Martins Almeida			
Gestor do Curso/Gestor disciplinas UNI (*)	Maria Vanderléa de Queiroz			
Pró-reitor Acadêmico	Per Christian Braathen			