#### 5. 불 대수

## 논리회로

부경대 컴퓨터 인공지능공학부 최필주

### 목차

- 기본 논리식의 표현
- 불 대수 법칙
- 논리회로의 논리식 변환
- 논리식의 회로 구성
- 불 대수식의 표현 형태
- 불 대수 법칙을 이용한 논리식의 간소화

# 기본 논리식의 표현

● AND, OR, NOT을 이용하여 표현

| AND   | OR    | NOT                     |
|-------|-------|-------------------------|
| 곱셈(・) | 덧셈(+) | $\mathrm{bar}(\bar{A})$ |

여

| 출력 F = 1인 조건                                 | 논리식의 표현                   |
|----------------------------------------------|---------------------------|
| A = 0 and $B = 1$                            | $F = \bar{A}B$            |
| A = 0  or  B = 1                             | $F = \bar{A} + B$         |
| (A = 0  and  B = 1)  or  (A = 1  and  B = 0) | $F = \bar{A}B + A\bar{B}$ |

# 기본 논리식의 표현

• 출력 F = 1인 입력의 표현식

| 1입력 | 논리식     |  | 2입 | 력는 | 드리식          |   | 3입력 논리식 |   |    |   |                   |   |
|-----|---------|--|----|----|--------------|---|---------|---|----|---|-------------------|---|
| 입력  | 출력      |  | 입  | 력  | 출력           |   |         |   | 입력 |   | 출력                |   |
| A   | F       |  | A  | В  | F            |   |         | A | В  | С | F                 |   |
| 0   | $ar{A}$ |  | 0  | 0  | $ar{A}ar{B}$ | _ |         | 0 | 0  | 0 | $ar{A}ar{B}ar{C}$ |   |
| 1   | A       |  | 0  | 1  | $ar{A}B$     |   |         | 0 | 0  | 1 | $ar{A}ar{B}C$     |   |
|     |         |  | 1  | 0  | $Aar{B}$     |   |         | 0 | 1  | 0 | ĀBĒ               |   |
|     |         |  | 1  | 1  | AB           |   |         | 0 | 1  | 1 | ĀBC               | _ |
|     |         |  |    |    |              |   |         | 1 | 0  | 0 | $Aar{B}ar{C}$     |   |
|     |         |  |    |    |              |   |         | 1 | 0  | 1 | $A\overline{B}C$  |   |
|     |         |  |    |    |              |   |         | 1 | 1  | 0 | $AB\bar{C}$       |   |
|     |         |  |    |    |              |   |         | 1 | 1  | 1 | ABC               |   |
|     |         |  |    |    |              |   |         |   |    |   |                   |   |

- 불 대수 공리(Postulate)
  - P1: A = 0 or A = 1
  - P2~P7

| 곱셈(AND)                         | 덧셈(OR)                  |
|---------------------------------|-------------------------|
| $P2: 0 \cdot 0 = 0$             | P4: $0 + 0 = 0$         |
| P3: $1 \cdot 1 = 1$             | P5: $1 + 1 = 1$         |
| P6: $1 \cdot 0 = 0 \cdot 1 = 0$ | P7: $1 + 0 = 0 + 1 = 1$ |

- 불 대수 기본 법칙
  - 이중부정의 법칙:  $\overline{\overline{A}} = A$
  - 동일/보원/항등 법칙

|             | 곱셈(AND)                          | 덧셈(OR)                 |
|-------------|----------------------------------|------------------------|
| 동일 법칙       | $A \cdot A = A$                  | A + A = A              |
|             | $(0 \cdot 0 = 0, 1 \cdot 1 = 1)$ | (0+0=0, 1+1=1)         |
| 보원 법칙       | $A \cdot \bar{A} = 0$            | $A + \overline{A} = 1$ |
| _ 포펀 급역<br> | $(1 \cdot 0 = 0 \cdot 1 = 0)$    | (1+0=0+1=1)            |
| 항등 법칙       | $A \cdot 0 = 0 \cdot A = 0$      | A + 0 = 0 + A = A      |
|             | $A \cdot 1 = 1 \cdot A = A$      | A+1=1+A=1              |

- 불 대수 기본 법칙
  - 교환/결합/분배 법칙

|      | 곱셈(AND)                 | 덧셈(OR)           |
|------|-------------------------|------------------|
| 교환법칙 | $A \cdot B = B \cdot A$ | A + B = B + A    |
| 결합법칙 | (AB)C = A(BC)           | (A+B)+C=A+(B+C)  |
| 분배법칙 | A + BC = (A + B)(A + C) | A(B+C) = AB + AC |

- 불 대수 기본 법칙
  - 드모르간의 법칙

| 곱셈(AND)                                       | 덧셈(OR)                                             |
|-----------------------------------------------|----------------------------------------------------|
| $\overline{AB} = \overline{A} + \overline{B}$ | $\overline{A+B} = \overline{A} \cdot \overline{B}$ |

- Bar를 쪼갤 때: 덧셈 → 곱셈, 곱셈 → 덧셈
- 일반식

|     | 내용                                                                                               |                                                                                             |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| 2항  | $\overline{A+B} = \overline{A} \cdot \overline{B}$                                               | $\overline{AB} = \overline{A} + \overline{B}$                                               |  |  |  |  |
| 3항  | $\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$                          | $\overline{ABC} = \overline{A} + \overline{B} + \overline{C}$                               |  |  |  |  |
| 4항  | $\overline{A+B+C+D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$     | $\overline{ABCD} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$               |  |  |  |  |
| 일반식 | $\overline{A_1 + A_2 + \dots + A_n} = \overline{A_1} \cdot \overline{A_2} \cdots \overline{A_n}$ | $\overline{A_1 A_2 \cdots A_n} = \overline{A_1} + \overline{A_2} + \cdots + \overline{A_n}$ |  |  |  |  |

#### ● 드모르간의 정리 예제

$$\overline{A+B}+C=\overline{(A+B)}\overline{C}=(A+B)\overline{C}=A\overline{C}+B\overline{C}$$

$$\overline{\overline{A} + B} + \overline{C \cdot D} = \overline{\overline{A} + B} \cdot \overline{\overline{C} \cdot D} = (\overline{A} + B)CD = \overline{A}CD + BCD$$

$$\overline{(A+B)\cdot \overline{C}\cdot \overline{D} + E + \overline{F}} = \overline{(A+B)\cdot \overline{C}\cdot \overline{D}}\cdot \overline{E}\cdot \overline{F} = (\overline{A+B}+\overline{C}+\overline{D})\cdot \overline{E}\cdot F$$
$$= (\overline{A}\cdot \overline{B} + C + D)\cdot \overline{E}\cdot F = \overline{A}\overline{B}\overline{E}F + C\overline{E}F + D\overline{E}F$$

$$\overline{AB}(CD + \overline{E}F)(\overline{AB} + \overline{CD}) = \overline{AB} + \overline{(CD + \overline{E}F)} + \overline{(\overline{AB} + \overline{CD})}$$

$$= AB + (\overline{CD}\overline{E}F) + \overline{AB}\overline{CD}$$

$$= AB + (\overline{C} + \overline{D})(E + \overline{F}) + ABCD$$

$$= AB + \overline{C}E + \overline{C}F + \overline{D}E + \overline{D}F + ABCD$$

- 불 대수 기본 법칙
  - 흡수의 법칙

| 곱셈(AND)               | 덧셈(OR)                 |
|-----------------------|------------------------|
| A(A+B)=A              | A + AB = A             |
| $A(\bar{A} + B) = AB$ | $A + \bar{A}B = A + B$ |

- 불 대수 기본 법칙
  - 합의의 법칙

| 곱셈(AND)                                              | 덧셈(OR)                               |
|------------------------------------------------------|--------------------------------------|
| $(A + B)(B + C)(\bar{A} + C) = (A + B)(\bar{A} + C)$ | $AB + BC + \bar{A}C = AB + \bar{A}C$ |

- 불 대수 법칙 진리표를 이용한 증명
  - A + BC = (A + B)(A + C)

| A B C | 좌측식         |                 | 우측식   |       |            |
|-------|-------------|-----------------|-------|-------|------------|
|       | $B \cdot C$ | $A + B \cdot C$ | A + B | A + C | (A+B)(A+C) |
| 0 0 0 | 0           | 0               | 0     | 0     | 0          |
| 0 0 1 | 0           | 0               | 0     | 1     | 0          |
| 0 1 0 | 0           | 0               | 1     | 0     | 0          |
| 0 1 1 | 1           | 1               | 1     | 1     | 1          |
| 1 0 0 | 0           | 1               | 1     | 1     | 1          |
| 1 0 1 | 0           | 1               | 1     | 1     | 1          |
| 1 1 0 | 0           | 1               | 1     | 1     | 1          |
| 1 1 1 | 1           | 1               | 1     | 1     | 1          |

- 불 대수 법칙 진리표를 이용한 증명
  - $\overline{A+B}=\overline{A}\cdot\overline{B}$

| 4 D | <b>조</b> | <u></u><br>측식    | 우측식             |                    |  |
|-----|----------|------------------|-----------------|--------------------|--|
| A B | A + B    | $\overline{A+B}$ | $ar{A}$ $ar{B}$ | $ar{A}\cdot ar{B}$ |  |
| 0 0 | 0        | 1                | 1 1             | 1                  |  |
| 0 1 | 1        | 0                | 1 0             | 0                  |  |
| 1 0 | 1        | 0                | 0 1             | 0                  |  |
| 1 1 | 1        | 0                | 0 0             | 0                  |  |

● 쌍대성의 원리

쌍대성(0↔1, '•'↔ '+')

|          | 곱셈(AND)                                                | 덧셈(OR)                               |
|----------|--------------------------------------------------------|--------------------------------------|
| 동일 법칙    | $A \cdot A = A$                                        | A + A = A                            |
| 보원 법칙    | $A \cdot \bar{A} = 0$                                  | $A + \overline{A} = 1$               |
| 항등 법칙    | $A \cdot 0 = 0 \cdot A = 0, A \cdot 1 = 1 \cdot A = A$ | A + 0 = 0 + A = A, A + 1 = 1 + A = 1 |
| 교환법칙     | $A \cdot B = B \cdot A$                                | A + B = B + A                        |
| 결합법칙     | (AB)C = A(BC)                                          | (A+B)+C=A+(B+C)                      |
| 분배법칙     | A + BC = (A + B)(A + C)                                | A(B+C) = AB + AC                     |
| 드모르간의 법칙 | $\overline{AB} = \overline{A} + \overline{B}$          | $\overline{A+B}=\bar{A}\cdot\bar{B}$ |
| 흡수의 법칙   | $A(A+B) = A, A(\bar{A}+B) = A+B$                       | $A + AB = A, A + \bar{A}B = AB$      |
| 합의의 정리   | $(A+B)(B+C)(\bar{A}+C) = (A+B)(\bar{A}+C)$             | $AB + BC + \bar{A}C = AB + \bar{A}C$ |

■ 0↔1, '•'↔ '+'로 변환하여도 등호 성립

## 논리회로 → 논리식

● 게이트를 거칠 때마다 출력을 기록



# 논리회로 → 논리식

예



# 논리식 → 논리회로

•  $\mathfrak{A}B + A\overline{B} + BC$ 



## 논리식 → 논리회로

#### ● 논리식 다양한 형태



● 입력에 따라 달라지는 출력의 논리식 표현 방법은?

|   | 입력 |   | 출력 |
|---|----|---|----|
| A | В  | С | F  |
| 0 | 0  | 0 | 0  |
| 0 | 0  | 1 | 0  |
| 0 | 1  | 0 | 1  |
| 0 | 1  | 1 | 1  |
| 1 | 0  | 0 | 1  |
| 1 | 0  | 1 | 1  |
| 1 | 1  | 0 | 0  |
| 1 | 1  | 1 | 1  |



- 곱의 합(Sum of Product, SOP)
  - Step1: AND항(곱의 항, product term)으로 구성
  - Step2: Step1의 결과를 OR항(합의 항, sum term)으로 구성

|   | 입력 |   | 출력 |
|---|----|---|----|
| A | В  | С | F  |
| 0 | 0  | 0 | 0  |
| 0 | 0  | 1 | 0  |
| 0 | 1  | 0 | 1  |
| 0 | 1  | 1 | 1  |
| 1 | 0  | 0 | 1  |
| 1 | 0  | 1 | 1  |
| 1 | 1  | 0 | 0  |
| 1 | 1  | 1 | 1  |



- 최소항(Minterm)
  - 모든 변수를 포함하는 AND항
  - 예: 변수가 *A*, *B*, *C*, *D*일 때

$$F = \overline{A}BC\overline{D} + A\overline{B}\overline{C}\overline{D} + A\overline{B}CD \leftarrow \text{minterm}$$

$$F = B + \overline{A}C + AB\overline{C}D$$

$$F = \overline{A} + B + C$$

$$F = A\overline{C}$$
non minterm

- SOm: SOP의 한 가지로 minterm의 합으로 나타내는 방법
  - 무관항도 포함함

• 2변수 최소항의 표현 방법

| A | В | 최소항          | 기호    |
|---|---|--------------|-------|
| 0 | 0 | $ar{A}ar{B}$ | $m_0$ |
| 0 | 1 | $ar{A}B$     | $m_1$ |
| 1 | 0 | $Aar{B}$     | $m_2$ |
| 1 | 1 | AB           | $m_3$ |



| 입 | 입력 |   |  |  |  |  |
|---|----|---|--|--|--|--|
| A | В  | F |  |  |  |  |
| 0 | 0  | 0 |  |  |  |  |
| 0 | 1  | 1 |  |  |  |  |
| 1 | 0  | 1 |  |  |  |  |
| 1 | 1  | 1 |  |  |  |  |

$$F(A,B) = \overline{AB} + A\overline{B} + AB$$
$$= m_1 + m_2 + m_3$$
$$= \sum m(1, 2, 3)$$

#### ● 3변수 최소항의 표현 방법

| ABC   | 최소항               | 기호    |
|-------|-------------------|-------|
| 0 0 0 | $ar{A}ar{B}ar{C}$ | $m_0$ |
| 0 0 1 | $\bar{A}\bar{B}C$ | $m_1$ |
| 0 1 0 | ĀBĒ               | $m_2$ |
| 0 1 1 | ĀBC               | $m_3$ |
| 1 0 0 | $Aar{B}ar{C}$     | $m_4$ |
| 1 0 1 | $A\overline{B}C$  | $m_5$ |
| 1 1 0 | $AB\bar{C}$       | $m_6$ |
| 1 1 1 | ABC               | $m_7$ |



| 입력    | 출력 |
|-------|----|
| ABC   | F  |
| 0 0 0 | 1  |
| 0 0 1 | 1  |
| 0 1 0 | 0  |
| 0 1 1 | 1  |
| 1 0 0 | 0  |
| 1 0 1 | 1  |
| 1 1 0 | 0  |
| 1 1 1 | 1  |

$$F(A,B,C) = \sum m(0,1,3,5,7)$$
$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

$$\overline{F}(A, B, C) = \sum m(2, 4, 6)$$
$$= \overline{A}B\overline{C} + A\overline{B}\overline{C} + AB\overline{C}$$

- 합의 곱(Product of Sum, POS)
  - Step1: OR항(합의 항, sum term)으로 구성
  - Step2: Step1의 결과를 AND항(곱의 항, product term)으로 구성



- 최대항(Maxterm)
  - 모든 변수를 포함하는 OR항
  - 예: 변수가 *A*, *B*, *C*, *D*일 때

$$(\overline{A} + B + C + \overline{D})(A + B + C + D)$$
 maxterm
$$(A + B)(A + C)$$

$$A(A + C)$$

$$A$$

$$A + B$$
non maxterm

■ POM: POS의 한 가지로 maxterm의 곱으로 나타내는 방법

- 최대항 표현 방법
  - 0인 값을 표현

| A | В | 최대항                 | 기호    |
|---|---|---------------------|-------|
| 0 | 0 | A + B               | $M_0$ |
| 0 | 1 | $A + \overline{B}$  | $M_1$ |
| 1 | 0 | $\bar{A} + B$       | $M_2$ |
| 1 | 1 | $\bar{A} + \bar{B}$ | $M_3$ |



| 입력    | 출력 |
|-------|----|
| A $B$ | F  |
| 0 0   | 0  |
| 0 1   | 0  |
| 1 0   | 0  |
| 1 1   | 1  |

$$F(A,B) = (A+B)(A+\overline{B})(\overline{A}+B)$$
$$= M_0 \cdot M_1 \cdot M_2$$
$$= \prod M(0,1,2)$$

- 최소항과 최대항의 관계
  - SOP: 입력을 최소항(P)으로 → 출력 1인 최소항을 합(S)으로
  - POS: 입력을 최대항(S)로 → 출력 0인 최대항을 곱(P)으로
  - 상호 보수

|       |   |                   |          | _              |                               |       | _                      |
|-------|---|-------------------|----------|----------------|-------------------------------|-------|------------------------|
| ABC   | F | 최소항               | 기호       | $\overline{F}$ | 최대항                           | 기호    | 관계                     |
| 0 0 0 | 0 | $ar{A}ar{B}ar{C}$ | $m_0^{}$ | 1              | A + B + C                     | $M_0$ | $M_0 = \overline{m_0}$ |
| 0 0 1 | 1 | $ar{A}ar{B}C$     | $m_1$    | 0              | $A + B + \bar{C}$             | $M_1$ | $M_1 = \overline{m_1}$ |
| 0 1 0 | 1 | $ar{A}Bar{C}$     | $m_2$    | 0              | $A + \overline{B} + C$        | $M_2$ | $M_2 = \overline{m_2}$ |
| 0 1 1 | 1 | ĀBC               | $m_3$    | 0              | $A + \bar{B} + \bar{C}$       | $M_3$ | $M_3 = \overline{m_3}$ |
| 1 0 0 | 1 | $Aar{B}ar{C}$     | $m_4$    | 0              | $\bar{A} + B + C$             | $M_4$ | $M_4 = \overline{m_4}$ |
| 1 0 1 | 1 | $A\overline{B}C$  | $m_5$    | 0              | $\bar{A} + B + \bar{C}$       | $M_5$ | $M_5 = \overline{m_5}$ |
| 1 1 0 | 0 | $AB\bar{C}$       | $m_6$    | 1              | $\bar{A} + \bar{B} + C$       | $M_6$ | $M_6 = \overline{m_6}$ |
| 1 1 1 | 0 | ABC               | $m_7$    | 1              | $\bar{A} + \bar{B} + \bar{C}$ | $M_7$ | $M_7 = \overline{m_7}$ |

#### ● 최소항과 최대항의 관계 - 예시

$$F(A,B,C) = \sum m(1,2,3,4,5)$$

$$= \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{\overline{ABC}} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{\overline{ABC}} + \overline{ABC} + A\overline{BC} + A\overline{BC}$$

$$= \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}} \cdot \overline{\overline{ABC}}$$

$$= \overline{(A+B+\overline{C})(A+\overline{B}+C)(A+\overline{B}+\overline{C})(\overline{A}+B+C)}$$

$$= \overline{(A+B+C)(A+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})}$$

$$= \overline{(A+B+C)(\overline{A}+\overline{B}+C)(\overline{A}+\overline{B}+\overline{C})}$$

$$\overline{F}(A,B,C) = \sum m(0,6,7) = \overline{\prod M(0,6,7)} = \prod M(1,2,3,4,5) = \overline{\sum m(1,2,3,4,5)}$$

#### ● 최소항과 최대항의 관계 - 예시

| 입력    | 출력 |
|-------|----|
| ABC   | F  |
| 0 0 0 | 0  |
| 0 0 1 | 1  |
| 0 1 0 | 1  |
| 0 1 1 | 1  |
| 1 0 0 | 1  |
| 1 0 1 | 1  |
| 1 1 0 | 0  |
| 1 1 1 | 0  |

$$F(A, B, C) = \sum m(1, 2, 3, 4, 5)$$

$$= \overline{A}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$$

$$= \overline{\overline{A}}\overline{B}C + \overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C$$

$$= \overline{\overline{A}}\overline{B}C \cdot \overline{\overline{A}BC} \cdot \overline{\overline{A}BC} \cdot \overline{\overline{A}BC} \cdot \overline{\overline{A}BC}$$

$$= \overline{(A + B + \overline{C})(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)(\overline{A} + B + \overline{C})}$$

$$= \overline{\prod} M(1, 2, 3, 4, 5)$$

$$= \overline{\prod} M(0, 6, 7)$$

#### 예1

$$\overline{A}B\overline{C} + \overline{A}BC + A\overline{B}\overline{C} + A\overline{B}C + ABC = (\overline{A}B\overline{C} + \overline{A}BC) + (A\overline{B}\overline{C} + A\overline{B}C) + ABC$$

$$= \overline{A}B(\overline{C} + C) + A\overline{B}(\overline{C} + C) + ABC$$

$$= \overline{A}B \cdot 1 + A\overline{B} \cdot 1 + ABC$$

$$= \overline{A}B + A\overline{B} + ABC$$

$$\overline{A}B + A\overline{B} + ABC = \overline{A}B + A(\overline{B} + BC) = \overline{A}B + A(\overline{B} + B)(\overline{B} + C)$$
  
=  $\overline{A}B + A \cdot 1 \cdot (\overline{B} + C) = \overline{A}B + A\overline{B} + AC$ 

#### 예2

$$F(A, B, C) = \sum m(0, 1, 3, 5, 7)$$

$$= \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C + \overline{A}BC + A\overline{B}C + ABC$$

$$= \overline{A}\overline{B}(\overline{C} + C) + \overline{A}C(\overline{B} + B) + AC(\overline{B} + B)$$

$$= \overline{A}\overline{B} + \overline{A}C + AC$$

$$= \overline{A}\overline{B} + C(\overline{A} + A)$$

$$= \overline{A}\overline{B} + C$$

• 2변수로 나타낼 수 있는 모든 경우

| AB  | $F_0$ | $F_1$ | $F_2$    | $F_3$ | $F_4$    | $F_5$ | $F_6$    | $F_7$ | $F_8$        | $F_9$    | $F_{10}$ | $F_{11}$      | $F_{12}$ | $F_{13}$      | $F_{14}$        | $F_{15}$ |
|-----|-------|-------|----------|-------|----------|-------|----------|-------|--------------|----------|----------|---------------|----------|---------------|-----------------|----------|
| 0 0 | 0     | 0     | 0        | 0     | 0        | 0     | 0        | 0     | 1            | 1        | 1        | 1             | 1        | 1             | 1               | 1        |
| 0 1 | 0     | 0     | 0        | 0     | 1        | 1     | 1        | 1     | 0            | 0        | 0        | 0             | 1        | 1             | 1               | 1        |
| 1 0 | 0     | 0     | 1        | 1     | 0        | 0     | 1        | 1     | 0            | 0        | 1        | 1             | 0        | 0             | 1               | 1        |
| 1 1 | 0     | 1     | 0        | 1     | 0        | 1     | 0        | 1     | 0            | 1        | 0        | 1             | 0        | 1             | 0               | 1        |
| 논리식 | 0     | AB    | $Aar{B}$ | A     | $ar{A}B$ | В     | <b>†</b> | A + B | $ar{A}ar{B}$ | <b>†</b> | $ar{B}$  | $A + \bar{B}$ | Ā        | $\bar{A} + B$ | $\overline{AB}$ | 1        |

$$A \stackrel{\cdot}{\oplus} B = A \stackrel{\cdot}{\odot} B = A \stackrel{\cdot}{B} + A \stackrel{\cdot}{B}$$

■ 입력 변수 n개  $\rightarrow$  진리표의 행의 개수  $2^n$   $\rightarrow$  함수의 개수  $2^{2^n}$ 

#### • 2변수로 나타낼 수 있는 모든 경우

| 1 | AB  | $F_0$ | $F_1$ | $F_2$    | $F_3$ | $F_4$    | $F_5$ | $F_6$        | $F_7$ | $F_8$        | $F_9$       | $F_{10}$ | $F_{11}$      | $F_{12}$ | $F_{13}$      | $F_{14}$        | $F_{15}$ |
|---|-----|-------|-------|----------|-------|----------|-------|--------------|-------|--------------|-------------|----------|---------------|----------|---------------|-----------------|----------|
|   | 0 0 | 0     | 0     | 0        | 0     | 0        | 0     | 0            | 0     | 1            | 1           | 1        | 1             | 1        | 1             | 1               | 1        |
| ( | 0 1 | 0     | 0     | 0        | 0     | 1        | 1     | 1            | 1     | 0            | 0           | 0        | 0             | 1        | 1             | 1               | 1        |
| - | 1 0 | 0     | 0     | 1        | 1     | 0        | 0     | 1            | 1     | 0            | 0           | 1        | 1             | 0        | 0             | 1               | 1        |
| - | 1 1 | 0     | 1     | 0        | 1     | 0        | 1     | 0            | 1     | 0            | 1           | 0        | 1             | 0        | 1             | 0               | 1        |
| 논 | 리식  | 0     | AB    | $Aar{B}$ | A     | $ar{A}B$ | В     | $A \oplus B$ | A + B | $ar{A}ar{B}$ | $A \odot B$ | $ar{B}$  | $A + \bar{B}$ | $ar{A}$  | $\bar{A} + B$ | $\overline{AB}$ | 1        |

$$F_3 = A\overline{B} + AB = A(\overline{B} + B) = A$$

$$F_5 = \overline{A}B + AB = (\overline{A} + A)B = B$$

$$F_7 = \overline{AB} + A\overline{B} + AB = (\overline{A} + A)B + A(\overline{B} + B) = A + B$$

$$F_{10} = \overline{AB} + A\overline{B} = (\overline{A} + A)\overline{B} = \overline{B}$$

$$F_{11} = \overline{AB} + A\overline{B} + AB = (\overline{A} + A)\overline{B} + A(\overline{B} + B) = A + \overline{B}$$

$$F_{12} = \overline{A}\overline{B} + \overline{A}B = \overline{A}(\overline{B} + B)\overline{B} = \overline{A}$$

$$F_{13} = \overline{AB} + \overline{AB} + \overline{AB} + AB = \overline{A}(\overline{B} + B) + (\overline{A} + A)B = \overline{A} + B$$

$$F_{14} = \overline{A}\overline{B} + \overline{A}B + A\overline{B} = \overline{A}(\overline{B} + B) + (\overline{A} + A)\overline{B} = \overline{A} + \overline{B}$$

### Summary

- 기본 논리식의 표현
  - AND, OR, NOT  $\rightarrow$  곱셈(·), 덧셈(+), bar( $\bar{A}$ )으로 표현
- 불 대수 법칙(공리)

| 쌍대성(0↔1, '•'↔ '+' | ) |
|-------------------|---|
|-------------------|---|

|          | 곱셈(AND)                                                  | 덧셈(OR)                                     |
|----------|----------------------------------------------------------|--------------------------------------------|
| 동일 법칙    | $A \cdot A = A \ (0 \cdot 0 = 0, 1 \cdot 1 = 1)$         | A + A = A (0 + 0 = 0, 1 + 1 = 1)           |
| 보원 법칙    | $A \cdot \overline{A} = 0 \ (1 \cdot 0 = 0 \cdot 1 = 0)$ | $A + \overline{A} = 1 (1 + 0 = 0 + 1 = 1)$ |
| 항등 법칙    | $A \cdot 0 = 0 \cdot A = 0, A \cdot 1 = 1 \cdot A = A$   | A + 0 = 0 + A = A, A + 1 = 1 + A = 1       |
| 교환법칙     | $A \cdot B = B \cdot A$                                  | A + B = B + A                              |
| 결합법칙     | (AB)C = A(BC)                                            | (A+B)+C=A+(B+C)                            |
| 분배법칙     | A + BC = (A + B)(A + C)                                  | A(B+C) = AB + AC                           |
| 드모르간의 법칙 | $\overline{AB} = \overline{A} + \overline{B}$            | $\overline{A+B}=ar{A}\cdot ar{B}$          |
| 흡수의 법칙   | $A(A+B) = A, A(\bar{A}+B) = A+B$                         | $A + AB = A, A + \bar{A}B = AB$            |
| 합의의 정리   | $(A+B)(B+C)(\bar{A}+C) = (A+B)(\bar{A}+C)$               | $AB + BC + \bar{A}C = AB + \bar{A}C$       |

 $A = 0 \text{ or } A = 1, 0 중부정의 법칙: \bar{A} = A$ 

#### Summary

- 불 대수식의 표현
  - SOP: 입력( $\overline{0}1$ )을 최소항(P)으로  $\rightarrow$  출력 1인 최소항을 합(S)으로
  - POS:  $\overline{\mbox{Q}\overline{\mbox{q}}}(0\overline{1})$ 을 최대항(S)로  $\rightarrow$  출력 0인 최대항을  $\mbox{Q}(P)$ 으로
  - 최소항과 최대항의 관계(상호 보수)

| ABC   | F | 최소항               | 기호       | F | 최대항                               | 기호      | 관계                     |
|-------|---|-------------------|----------|---|-----------------------------------|---------|------------------------|
| 0 0 0 | 0 | $ar{A}ar{B}ar{C}$ | $m^{}_0$ | 1 | A+B+C                             | $M_0$   | $M_0 = \overline{m_0}$ |
| 0 0 1 | 1 | $\bar{A}\bar{B}C$ | $m_1^{}$ | 0 | $A + B + \overline{C}$            | $M_1$   | $M_1 = \overline{m_1}$ |
| 0 1 0 | 1 | $ar{A}Bar{C}$     | $m_{2}$  | 0 | $A + \overline{B} + C$            | $M_2$   | $M_2 = \overline{m_2}$ |
| 0 1 1 | 1 | ĀBC               | $m_3$    | 0 | $A + \overline{B} + \overline{C}$ | $M_3$   | $M_3 = \overline{m_3}$ |
| 1 0 0 | 1 | $Aar{B}ar{C}$     | $m_4$    | 0 | $\bar{A} + B + C$                 | $M_4$   | $M_4 = \overline{m_4}$ |
| 1 0 1 | 1 | $A\overline{B}C$  | $m_{5}$  | 0 | $\bar{A} + B + \bar{C}$           | $M_5$   | $M_5 = \overline{m_5}$ |
| 1 1 0 | 0 | $AB\overline{C}$  | $m_6^-$  | 1 | $\bar{A} + \bar{B} + C$           | $M_6$   | $M_6 = \overline{m_6}$ |
| 1 1 1 | 0 | ABC               | $m_7^-$  | 1 | $\bar{A} + \bar{B} + \bar{C}$     | $M_{7}$ | $M_7 = \overline{m_7}$ |

#### Summary

- 불 대수 법칙을 이용한 논리식의 간소화
  - 논리식의 표현
    - SOP 또는 POS로 식을 나타냄
  - 간소화
    - 공통항으로 묶음, 분배 법칙, 흡수의 법칙, 드모르간의 법칙 등 활용
  - 다음 수업에서 더 쉽게 간소화 할 수 있는 고급 방법을 배울 예정
    - 카르노맵, 퀸-맥클러스키 간소화 알고리즘 등