

Voting ensemble LSTM을 이용한 중환자실 EMR 폐렴 환자 생존예측

Mortality prediction for ICU EMR pneumonia patients using Voting ensemble LSTM

김수현^{1,2}, 이수현 ^{1,2,\$}, 고가연 ^{1,2,\$}, 안홍렬 ^{1,2,*}

Suhyun Kim^{1,2}, Suhyeon Lee ^{1,2,\$}, Gayoun Koh^{1,2,\$} and Hongryul Ahn ^{1,2,*}

- 1. 수원대학교 데이터과학부
- 2. 수원대학교 창업지원단 DS&ML 센터
- \$: These authors contributed equally

Motivation

의료 빅데이터는 4차 산업혁명 빅데이터 분야의 핵심 응용 분야이다. 본 연구에서는 의료 빅데이터의 하나인 MIMIC III 데이터에서 중환자실 폐렴 환자의 생존을 예측하는 시계열 머신러닝 모델을 연구한다.

중환자실 환자의 생존 예측 머신러닝 모델은 중환자실 환자의 위급 알람 서비스로 활용될 수 있으며, 환자의 생존율 향상과 새로운 의료 비즈니스 시장 개척에 이용될 수 있다.

MIMIC-III

MIMIC-III (Medical Information Mart for Intensive Care III)은 2001년부터 2012년까지 Beth Israel Deaconess Medical Center의 **중환자실**에 머물렀던 4만 명 이상의 환자의 전자 의무 기록(EMR: Electronic Medical Record) 데이터를 익명화해서 배포한 대규모 공개 데이터베이스다 [1].

Materials

1. 데이터 샘플 선택. MIMIC-III 데이터를 사용 신청하여 다운로드 받은 후, 폐렴(Pneumonia)과 관련된 ICD-9 질병 코드를 가진 환자 7799명의 데이터를 선별하였다 [2]. 각 환자는, 중환자실 입원 상태에 있다가 생존 또는 사망하여 퇴원하게 되며, 환자의 생존/사망 퇴원을 예측하는 것이 목표이다.

[그림1] 전체환자 (46520명) 중 폐렴환자 비율

[그림2] 폐렴환자 (7799명) 중 생존/사망 퇴원 비율

2. 데이터 정형화. 폐렴 환자 7799명의 각 환자에 대해서 사망/퇴원 기준일로부터 10일 사이에 발생한 4069 종류의 의료 이벤트 아이템의 측정 값을 가공하여 정형화 데이터셋을 생성한다. 이데이터셋은 (sample X timepoint X item)의 3차원 행렬 구조이며, 각 원소는 해당 의료이벤트가 발생하였으면 1, 아니면 0인 one-hot 값을 가진다.

[그림3] 한 환자의 10일치 의료 이벤트 시계열 데이터 예시. 한 명의 환자의 시계열 데이터는 (item X timepoint)의 2차원 행렬로 정형화 된다. 이차원 행렬에서 행은 의료 이벤트 아이템이며(4069종), 열은 사망/생존 퇴원 기준일로부터 10일의 시점(D-10부터 D-1까지)을 나타낸다. 그림의 검정색 칸은 해당 날에 이벤트가 발생되었음(1)을 의미하고 흰색 칸은 이벤트가 발생하지 않았음(0)을 의미한다.

Methods

폐렴 환자 생존 예측 Voting ensemble LSTM 모델. 우리의 머신러닝 모델은 3차원 정형 시계열 데이터셋을 입력으로 받아서 폐렴 환자의 생존/사망 퇴원을 예측한다. 이 모델의 핵심 아이디어는 기본 LSTM 모델 50개를 Voting ensemble 방법을 통하여 결합하여 학습/예측함으로써, 정확성을 향상시키는 것이다.

[그림4] 폐렴 환자 생존/사망 예측을 위한 Voting ensemble LSTM 모델의 구조 [3]. 기본 LSTM은 10개의 시계열 유닛을 가지며, 기본 LSTM 모델 50개가 Voting ensemble로 연결되어 최종 모델을 형성한다.

Results

Result 1) 여러 종류의 기본 LSTM 모델 구조에 대한 정확도 비교

[그림 5] 실험에 사용한 LSTM 기본 모델 예시. 1개 층의 LSTM 모델 (왼쪽). 3개 층의 LSTM 모델 (오른쪽).

[그림6] LSTM 층, Epoch, Activation 등 LSTM 구조, 파라미터를 바꿔보며 최적의 구조 탐색

Result 2) 다른 모델들과의 예측 정확도 비교

Bayes Forest ensemble LSTM [그림7] 다른 모델들과의 예측 정확도 비교.
Non-Time Series (회색) vs Time Series Model Accuracy (연빨강) vs. Voting ensemble LSTM (진빨강)

Non-Time series보다 Time series 적용한 모델이 대체적으로 예측 정확도가 더 좋고, 시계열 중에서도 Voting ensemble LSTM의 예측 정확도가 가장 좋았다.

Result 3) 폐렴 환자의 생존/사망 예측에 영향력이 큰 TOP 8 의료 이벤트

실험 방법. 하나의 실험 의료 아이템을 선택하고, 이 의료 아이템에 대한 값을 무작위로 섞어 랜덤 데이터를 만든 후, 머신러닝 모델에 넣어 폐렴환자의 사망여부를 예측하고, 원래 데이터와 랜덤 데이터의 MSE loss값의 차이를 계산하여 폐렴환자의 사망여부에 영향을 미치는 TOP 8 아이템을 조사하였다.

ITEMS	∆MSE	폐렴과의 상관관계
White Blood Cells (백혈구)	0.022	높은 백혈구 수치는 폐렴의 특징이다. 백혈구 수치는 폐렴의 심각성을 진단하고 결정하는 데 도움을 주기 위해 사용한다.
Phosphate (인산염)	0.015	급성 신장 손상이 있으면서 경미하거나 중간정도의 획득 폐렴으로 입원한 환자들은 신장이 건강한 폐렴 환자들보다 퇴원 후 사망할 위험이 높다는 연구결과가 있다.
Calcium (칼슘)	0.012	비타민D가 결핍되어 폐렴에 걸린 환자들은 칼슘의 흡수 능력이 떨어졌을 확률이 높다.
Chloride (염소)	0.011	혈액 내 염소 농도 검사. 고염소혈증은 신장 질환, 저염소혈증은 만성폐질환을 동반할 수 있다.
PT (프로트롬빈 시간)	0.01	ICU의 COVID-19 관련 폐렴 환자가 안정적인 COVID-19환자에 비해 통계적으로 PT(Prothrombin time)가 길다. 폐렴 환자의 심각한 급성 호흡곤란 증후군의 조기 예후 지표로 사용한다.
Urea Nitrogen (혈액 요소질소)	0.009	신장기능이상을 측정하기 위해서 검사하는 항목이다. 급성 신장 손상이 있으면서 경미하거나 중간정도의 획득 폐렴으로 입원한 환자들은 신장이 건강한 폐렴 환자들보다 퇴원 후 사망할 위험이 높다는 연구결과가 있다.
MCHC (평균 혈구내 헤모글로블린 농도)	0.009	높은 Mean Corpuscular Hemoglobin(MCH) 수준은 만성폐쇄성질환(COPD) 및 폐섬유증을 포함한 폐질환과 관련이 있다.
RDW (적혈구 용적 분포 폭 치)	0.008	적혈구 분포 폭(RDW)은 지역사회 후천성 폐렴(CAP)의 결과와 관련이 있다 CAP는 전 세계적으로 주요 사망원인이다.

[표 1] 폐렴환자의 생존/사망에 영향력이 큰 TOP 8 의료 이벤트 아이템. MSE loss 값의 차이(ΔMSE)가 클 수록 해당 아이템이 폐렴 환자의 생존/사망 예측에 영향력이 크다는 것을 의미한다. 가장 오른쪽 열은 결과 의료 아이템과 폐렴의 상관관계에 대한 문헌 조사 결과이다.

Conclusions

- 1. 의료 EMR 데이터를 활용하여 폐렴환자의 생존예측을 하였을 때 약 75% 내외의 정확도로 생존을 예측할 수 있었으며, Non-Time series보다 Time series 적용한 모델이 대체적으로 예측 정확도가 더 높고, 시계열 중에서도 Voting ensemble LSTM의 예측 정확도가 가장 높았다.
- 2. 모델에 가장 영향력 있는 ITEM들을 조사해봤을 때, 폐렴과 높은 상관관계를 띄는 것을 알 수 있었다. 즉, ITEM에 따른 환자의 사망 예측 모델을 통해 폐렴환자의 치료에 효과적으로 이용 가능할 것으로 기대된다.
- 3. 추후 Adaboost ensemble 등의 Boosting 알고리즘을 적용해서 성능을 더 높일 수 있을 것 같다.

References

- [1] Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific data. 2016 May 24;3(1):1-9.
- [2] 폐렴 관련 ICD-9코드. 486 (Pneumonia), 5070 (Pneumonitis due to inhalation of food or vomitus), 48241 (Methicillin susceptible pneumonia due to Staphylococcus aureus)
- [3] Understanding LSTM Networks, colah.github.io.