Homework 2

B00401062 羅文斌

- 2.46
 - 1. This is not a good design choice because $500*1 + 300*10 + 100*3 = 3800 \le (500*0.75*1 + 300*10 + 100*3)*1.1 = 4042.5$

2.
$$3800 \div (500 * 1 * 0.5 + 300 * 10 + 100 * 3) = 107.04\%$$

 $3800 \div (500 * 1 * 0.1 + 300 * 10 + 100 * 3) = 113.43\%$

- 2.47
 - 1. 0.7 * 2 + 0.1 * 6 + 0.2 * 3 = 2.6

2.
$$\frac{1}{0.7*x+0.1*6+0.2*3} = \frac{1}{2.6} * 1.25 \implies x = 1.26$$

3.
$$\frac{1}{0.7*x+0.1*6+0.2*3} = \frac{1}{2.6} * 1.50 \implies x = 0.76$$

• 3.12

$$62_8 * 12_8 = 110010_2 * 1010_2$$

	Step	Multiplier	Multiplicand	Product
0	Initial value	00101 0	000000110010	000000000000
1	$1: 0 \Rightarrow \text{No operation}$	00101 0	000000110010	000000000000
1	2: Shift left Multiplicand	00101 0	000001100100	000000000000
1	3: Shift right Multiplier	00010 1	000001100100	000000000000
2	$1a: 1 \Rightarrow Prod = Prod + Mcand$	00010 1	000001100100	000001100100
2	2: Shift left Multiplicand	00010 1	000011001000	000001100100
2	3: Shift right Multiplier	00001 0	000011001000	000001100100
3	$1: 0 \Rightarrow \text{No operation}$	00001 0	000011001000	000001100100
3	2: Shift left Multiplicand	00001 0	000110010000	000001100100
3	3: Shift right Multiplier	000001	000110010000	000001100100
4	$1a: 1 \Rightarrow Prod = Prod + Mcand$	000001	000110010000	000111110100
4	2: Shift left Multiplicand	000001	001100100000	000111110100
4	3: Shift right Multiplier	00000	001100100000	000111110100
5	$1: 0 \Rightarrow \text{No operation}$	00000	001100100000	000111110100
5	2: Shift left Multiplicand	00000	011001000000	000111110100
5	3: Shift right Multiplier	00000	011001000000	000111110100
6	$1: 0 \Rightarrow \text{No operation}$	00000 0	011001000000	000111110100
6	2: Shift left Multiplicand	00000 0	110010000000	000111110100
6	3: Shift right Multiplier	00000 0	110010000000	000111110100

• 3.14

- Hardware: There are 3 cycles in each iteration: add (step 1a), shift (step 2 & 3), check stopping criterion. Therefore, total time units = 3 * 8 * 4 = 96.
- Software: There are 5 cycles in each iteration: decide to add or not (step 1), add (step 1a), shift left multiplicand (step 2), shift right multiplier (step 3), check stopping criterion. Therefore, total time units = 5 * 8 * 4 = 160.

• 3.18 $74_8 \div 21_8 = 111100_2 \div 10001_2$

	Step	Quotient	Divisor	Remainder
0	Initial value	000000	010001000000	000000111100
1	1: $Rem = Rem - Div$	000000	010001000000	101111111100
1	2b: Rem $< 0 \Rightarrow +$ Div, sll Q, Q0 = 0	000000	010001000000	000000111100
1	3: Shift Div right	000000	001000100000	000000111100
2	1: $Rem = Rem - Div$	000000	001000100000	111000011100
2	2b: Rem $< 0 \Rightarrow +$ Div, sll Q, Q0 = 0	000000	001000100000	000000111100
2	3: Shift Div right	000000	000100010000	000000111100
3	1: $Rem = Rem - Div$	000000	000100010000	111100101100
3	2b: Rem $< 0 \Rightarrow +$ Div, sll Q, Q0 = 0	000000	000100010000	000000111100
3	3: Shift Div right	000000	000010001000	000000111100
4	1: $Rem = Rem - Div$	000000	000010001000	111110110100
4	2b: Rem $< 0 \Rightarrow +Div$, sll Q, Q0 = 0	000000	000010001000	000000111100
4	3: Shift Div right	000000	000001000100	000000111100
5	1: $Rem = Rem - Div$	000000	000001000100	111111111000
5	2b: Rem $< 0 \Rightarrow +$ Div, sll Q, Q0 = 0	000000	000001000100	000000111100
5	3: Shift Div right	000000	000000100010	000000111100
6	1: $Rem = Rem - Div$	000000	000000100010	000000011010
6	2a: Rem $\ge 0 \Rightarrow$ sll Q, Q0 = 1	000001	000000100010	000000011010
6	3: Shift Div right	000001	000000010001	000000011010
7	1: $Rem = Rem - Div$	000001	000000010001	000000001001
7	2a: Rem $\ge 0 \Rightarrow$ sll Q, Q0 = 1	000011	000000010001	000000001001
7	3: Shift Div right	000011	000000001000	000000001001

• 3.27

Half precision is represented as $x = (-1)^{\text{sign}} \times (1 + \text{fraction}) \times 2^{\text{exponent-bias}}$. In the case of -1.5625×10^{-1} , $-1.5625_{10} \times 10^{-1} = -0.15625_{10} \times 10^{0} = -0.00101_{2} \times 2^{0} = -1.01_{2} \times 2^{-3}$. Therefore, the sign bit is 1, the fraction bits are 0100000000, and the exponent bits are $(-3 + 15)_{10} = 12_{10} = 01100_{2}$. Therefore, the half precision representation of -1.5625×10^{-1} is 1011000100000000.