

Matemática Discreta

Licenciatura em Ciências da Computação 21/05/2024

Segundo Teste

Nome: Número:

- 1. Justifique se as seguintes afirmações são verdadeiras ou falsas.
 - (a) Se a_1, a_2, b_1, b_2 são inteiros tais que $a_1 \mid b_1$ e $a_2 \mid b_2$ então $a_1 a_2 \mid b_1 b_2$.
 - (b) O último dígito de 3^{20951} é 1.
 - (c) Se $a, b \in \mathbb{Z}$, $n \in \mathbb{N}$ e se m.d.c.(b, n) = 1, então a congruência $ax \equiv b \pmod{n}$ tem uma única solução módulo n.
 - (d) Se n > 2 e $(n-1)! \equiv 1 \pmod{n}$ então n não é primo.
- a) Verdadeiso.

Como as lbs então existe cse \mathcal{K} tal que $b_1 = a_3c_1$ as lbs então existe $c_2 \in \mathcal{K}$ tal que $b_2 = a_2c_2$ logo $b_1b_2 = a_1a_2(c_1c_2)$ e pretanto $a_1a_2 \mid b_1b_2$.

6) Falso

Temas que $3^2 = -1$ (mod 10) a que $20951 = 2 \times 10475 + 1$ logo $(3^2)^{10475} \equiv (-1)^{10475}$ (mod 10), ou seja, $3^{20950} \equiv -1$ (mod 20) e $10^{20951} \equiv -3$ (mod 10). Pertanto $10^{20951} \equiv 10^{20951} \equiv 10^{2$

c) Falso.

(onsideremos a congruência $2x \equiv 1 \pmod{2}$. Temos que $m \cdot d \cdot c (1,2) = 1$. No entanto a congruência não tem solução pois $2 \times 2x - 1$, qualque que seja $x \in \mathbb{Z}$, uma vez que 2x - 1 é um número impar.

d) Verdadeiro.

Suponhamos, por redução ao absendo, que $\exists n \in \mathbb{N}$ com n > 2, $(n-4)! \equiv 1$ (mod n) e $n \in \mathbb{R}$ primo.

Se n é poimo entre pelo Tecerra de Wilson, $(n-1)! \equiv -1 \pmod{n}$ logo $1 \equiv -1 \pmod{n}$, ou seja, $n \mid 2$ o que é absurde.

2. Apresente a solução geral da equação diofantina 42x + 33y = 201.

3. Apresente e demonstre o critério de divisibilidade por 4.

4. Use o Teorema Chinês dos Restos para determinar a solução geral do sistema de congruências lineares

$$\begin{cases} 7x \equiv 1 \pmod{3} \\ 2x \equiv 4 \pmod{14} \\ x \equiv 3 \pmod{5} \end{cases}$$

e verifique que a maior solução negativa que encontrou é de facto solução do sistema.

```
O sistema não pade see resolvido pelo TCR tal como este apresentado.
   7x = 1 \pmod{3} = 2 \pmod{3}
              (=) x = 1 (mod 3), pois 3/62
   2x = 4 (mod 14) (=) x = 2 (mod 7), lei do carte
 Portanto, o sistema proposto é equivalente a
     \chi \equiv 1 \pmod{3}
\chi \equiv 2 \pmod{7}
                                 3,7 e 5 são números primos
     (mod 5)
                                logo são primos enter si.
 O TCR gasante que este sistema tem esma énica solução
módulo N = 3x7x5 = 105.
  n_1 = 3 q_1 = 1 N_1 = 35
                                  3521 \equiv 1 \pmod{3}
                                                         ×<sub>1</sub> = −1
  v_2 = 7 a_2 = 2 N_2 = 15
                                   15 x2 = 2 (mod7)
                                                         x2 = 1
  N_3 = 5  a_3 = 3  a_3 = 21  a_1 x_3 = 1 (mods)
                                                         ×3 = 1
 O TCR diz-nos ainda que
     x_0 = N_2 \alpha_1 x_1 + N_2 \alpha_2 x_2 + N_3 \alpha_3 x_3 =
        = 35 \times 1 \times (-1) + 15 \times 2 \times 1 + 21 \times 3 \times 7 = -35 + 30 + 63 = 58
é solução particular do sistema
  A solução genal é então dada por 158+105t | tez].
  A maior solução negativa é 58-205 = -47
 Temos 7 x (-47) -1 = -330 e 3 | -330 V
           2 \times (-47) - 4 = -98 e 14|-98
           -47-3 = -50 e 5 | -50
```

5. Seja $\phi: \mathbb{N} \longrightarrow \mathbb{N}$ a função de Euler. Justifique que se n é impar então $\phi(2n) = \phi(n)$.

Se n é impar então m.d. c. (2, n) = 1. Logo sabemos que $\beta(2n) = \beta(2)\beta(n)$. Ora $\beta(2) = 2-1 = 1$. Logo $\beta(2n) = \beta(n)$.

Esta recipicado que -47 é, le facto, solução do sistema.