高考数学备考之放缩技巧

证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:

一、裂项放缩

例 1. (1) 、求
$$\sum_{k=1}^{n} \frac{2}{4k^2 - 1}$$
 的值; (2) 、求证: $\sum_{k=1}^{n} \frac{1}{k^2} < \frac{5}{3}$.

解析: (1) 、因为
$$\frac{2}{4n^2-1} = \frac{2}{(2n-1)(2n+1)} = \frac{1}{2n-1} - \frac{1}{2n+1}$$
,所以 $\sum_{k=1}^{n} \frac{2}{4k^2-1} = 1 - \frac{1}{2n+1} = \frac{2n}{2n+1}$

(2)
$$\sqrt{\frac{1}{n^2}} < \frac{1}{n^2 - \frac{1}{4}} = \frac{4}{4n^2 - 1} = 2\left(\frac{1}{2n - 1} - \frac{1}{2n + 1}\right)$$
, 所以

$$\sum_{k=1}^{n} \frac{1}{k^2} < 1 + 2 \left(\frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1} \right) = 1 + \frac{2}{3} - \frac{2}{2n+1} < \frac{5}{5}$$

奇巧积累:

(1)
$$\frac{1}{n^2} < \frac{1}{n^2 - \frac{1}{4}} = \frac{4}{4n^2 - 1} = 2\left(\frac{1}{2n - 1} - \frac{1}{2n + 1}\right)$$

(2)
$$\frac{1}{C_{n+1}^{1}C_{n}^{2}} = \frac{2}{(n+1)n(n-1)} = \frac{1}{n(n-1)} - \frac{1}{n(n+1)}$$

(3)
$$T_{r+} = C_{n}^{r} \cdot \frac{1}{n^{r}} = \frac{n!}{r!(n-r)} \cdot \frac{1}{n^{r}} < \frac{1}{r!} < \frac{1}{r(r-1)} = \frac{1}{r-1} - \frac{1}{r} (r \ge 2)$$

(4)
$$\left(1 + \frac{1}{n}\right)^{n} < 1 + 1 + \frac{1}{2 \times 1} + \frac{1}{3 \times 2} + \cdots + \frac{1}{n(n-1)}$$

(5)
$$\frac{1}{2^{k}(2^{k}-1)} = \frac{1}{2^{k}-1} - \frac{1}{2^{k}}$$

(6)
$$\frac{1}{\sqrt{n+2}} = \frac{2}{2\sqrt{n+2}} < \frac{2}{\sqrt{n+\sqrt{n+2}}} = \sqrt{n+2} - \sqrt{n}$$
;

$$2(\sqrt{n+1} - \sqrt{n}) = \frac{2}{\sqrt{n+\sqrt{n+1}}} < \frac{2}{2\sqrt{n}} = \frac{1}{\sqrt{n}} = \frac{2}{2\sqrt{n}} < \frac{2}{\sqrt{n-1+\sqrt{n}}} = 2(\sqrt{n} - \sqrt{n-1})$$

(7)
$$\left(\frac{2}{2n+1} - \frac{1}{2n+3} \right) \cdot \frac{1}{2^n} = \frac{1}{(2n+1) \cdot 2^{n-4}} - \frac{1}{(2n+3) \cdot 2^n}$$

(8)
$$\frac{1}{k(n+1-k)} = \left(\frac{1}{n+1-k} + \frac{1}{k}\right) \cdot \frac{1}{n+1}; \frac{1}{n(n+1+k)} = \frac{1}{1+k} \left(\frac{1}{n} - \frac{1}{n+1+k}\right)$$

(9)
$$\frac{n}{(n+1!)} = \frac{1}{n!} - \frac{1}{(n+1)}$$

(10).
$$\frac{1}{\sqrt{n}} < \sqrt{2}(\sqrt{2n+1} - \sqrt{2n-1}) - \frac{2\sqrt{2}}{\sqrt{2n+1} + \sqrt{2n-1}} - \frac{2}{\sqrt{n+\frac{1}{2}} - \sqrt{n-\frac{1}{2}}}$$

(11)
$$\frac{2^{k}}{(2^{k}-1)^{2}} = \frac{2^{k}}{(2^{k}-1)(2^{k}-1)} < \frac{2^{k}}{(2^{k}-1)(2^{k}-2)}$$

$$= \frac{2^{k-1}}{(2^{k}-1)(2^{k-1}-1)} = \frac{1}{2^{k-1}-1} - \frac{1}{2^{k}-1}(k \ge 2)$$

(12)
$$\frac{1}{\sqrt{n^3}} = \frac{1}{\sqrt{n(n-1)(n+1)}} = \left(\frac{1}{\sqrt{n(n-1)}} - \frac{1}{\sqrt{n(n+1)}}\right) \cdot \frac{1}{\sqrt{n+1} - \sqrt{n-1}}$$
$$= \left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}\right) \cdot \frac{\sqrt{n+1} + \sqrt{n-1}}{2\sqrt{n}} < \frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n+1}}$$

(13)
$$2^{k+1} = 2 \cdot 2^k = (3-1) \cdot 2^k > 3 \Rightarrow 3(2^k-1) > 2^k \Rightarrow \frac{1}{2^k-1} < \frac{2^k}{3}$$

(14)
$$\frac{k+2}{k!+(k+1)!+(k+2)} = \frac{1}{(k+1)!} - \frac{1}{(k+2)!}$$

(15)
$$\frac{1}{\sqrt{n(n+1)}} < \sqrt{n} - \sqrt{n-1} (n \ge 2)$$

(16)
$$\frac{\sqrt{j^2+1} - \sqrt{j^2+1}}{j-j} = \frac{j^2 - j^2}{(j-j)(\sqrt{j^2+1} + \sqrt{j^2+1})} = \frac{j+j}{(\sqrt{j^2+1} + \sqrt{j^2+1})} < 1$$

例 2. (1)、求证:
$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots + \frac{1}{(2n-1)^2} > \frac{7}{6} - \frac{1}{2(2n-1)} (n \ge 2)$$
;

(2)、求证:
$$\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \cdots + \frac{1}{4n^2} < \frac{1}{2} - \frac{1}{4n}$$
;

(3) 、求证:
$$\frac{1}{2} + \frac{1 \cdot 3}{2 \cdot 4} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} + \cdots + \frac{1 \cdot 3 \cdot 5 \cdot \cdots (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n} < \sqrt{2n+1} - 1$$
;

(4)、求证:
$$2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<\sqrt{2}(\sqrt{2n+1}-1);$$

解析: (1)、因为
$$\frac{1}{(2n-1)^2} > \frac{1}{(2n-1)\cdot(2n+1)} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 2n-1 & 2n+1 \end{pmatrix}$$
, 所以

$$\sum_{i=1}^{n} \frac{1}{(2i-1)^{2}} > 1 + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2n+1} \right) > 1 + \frac{1}{2} \left(\frac{1}{3} - \frac{1}{2n-1} \right)$$

(2)
$$\frac{1}{4} + \frac{1}{16} + \frac{1}{36} + \cdots + \frac{1}{4n^2} = \frac{1}{4} \left(1 + \frac{1}{2^2} + \cdots + \frac{1}{n^2} \right) < \frac{1}{4} \left(1 + 1 - \frac{1}{n} \right)$$

(3) 、先运用分式放缩法证明出
$$\frac{1 \cdot 3 \cdots \cdot (2n-1)}{2 \cdot 4 \cdots \cdot (2n)} < \frac{1}{\sqrt{2n+1}}$$

再结合
$$\frac{1}{\sqrt{n+2}} = \frac{2}{2\sqrt{n+2}} < \frac{2}{\sqrt{n+\sqrt{n+2}}} = \sqrt{n+2} - \sqrt{n}$$
 进行裂项 , 最后就可以得到答案 .

(4)
$$\hat{\int} \frac{1}{\sqrt{n}} > 2 (\sqrt{n+1} - \sqrt{n}) = \frac{2}{\sqrt{n+1} + \sqrt{n}}$$

所以容易经过裂项得到
$$2(\sqrt{n+1}-1)<1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}$$

再证
$$\frac{1}{\sqrt{n}} < \sqrt{2} (\sqrt{2n+1} - \sqrt{2n-1}) - \frac{2\sqrt{2}}{\sqrt{2n+1} + \sqrt{2n-1}} - \frac{2}{\sqrt{n+\frac{1}{2} + \sqrt{n-\frac{1}{2}}}}$$
 而由均值不等式

知道这是显然成立的,所以
$$1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}<\sqrt{2}(\sqrt{2n+1}-1)$$

例 3. 求证:
$$\frac{6n}{(n+1)(2n+1)} \le 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} < \frac{5}{3}$$
.

解析: 一方面, 因为
$$\frac{1}{n^2} < \frac{1}{n^2 - \frac{1}{4}} = \frac{4}{4n^2 - 1} = 2\left(\frac{1}{2n - 1} - \frac{1}{2n + 1}\right)$$
. 所以

$$\sum_{k=1}^{n} \frac{1}{k^{2}} < 1 + 2\left(\frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{2n-1} - \frac{1}{2n+1}\right) = 1 + \frac{2}{3} - \frac{2}{2n+1} < \frac{5}{5}$$

另一方面:

$$1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} > 1 + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \cdots + \frac{1}{n(n+1)}$$

$$= 1 - \frac{1}{n+1} = \frac{n}{n+1}$$

当 n =1 时,
$$\frac{6n}{(n+1)(2n+1)} = 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2}$$
,

当 n = 2 时,
$$\frac{6n}{(n+1)(2n+1)} < 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2}$$
,

当 n ≥3 时,
$$\frac{n}{n+1} > \frac{6n}{(n+1)\cdot(2n+1)}$$
,

所以综上有:
$$\frac{6n}{(n+1)(2n+1)} \le 1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{n^2} < \frac{5}{3}$$
.

例 4. (2008 年全国一卷) 设函数 $f(x) = x - x \ln x$. 数列 $\{a_n\}$ 满足: $0 < a_1 < 1$, $a_{k+} = f(a_k)$.

解析: 由数学归纳法可以证明 {a_n}是递增数列,

故若存在正整数 m ≤ k, 使 a_m ≥ b, 则 a_{k →} > a_k ≥ b. 若 a_m < b(m ≤ k),

则由 0 < a₁ ≤a_m < b < 1知:

$$a_m \ln a_m \le a_1 \ln a_m < a_1 \ln a_1 < a_1 \ln b < 0$$
, $a_{k+} = a_k - a_k \ln a_k = a_1 - \sum_{m=1}^k a_m \ln a_m$

因为
$$\sum_{m=1}^{k} a_m \ln a_m < k(a_1 \ln b)$$
 于是 $a_{k+1} > a_1 + k a_1 \ln b \ge a_1 + (b_1 - a_1) = b$.

解析: 首先可以证明: (1+x) ≥1+nx

$$n^{m+1} = n^{m+1} - (n-1)^{m+1} + (n-1)^{m+1} - (n-2)^{m+1} + \cdots + 1 - 0$$

$$= \sum_{k=1}^{n} \left[k^{m+1} - (k-1)^{m+1} \right]$$

所以要证:n^{m+} < (m +1)S_n < (n +1)^{m+} −1

$$\sum_{k=1}^{n} \left[k^{m+1} - (k-1)^{m+1} \right] < (m+1) \sum_{k=1}^{n} k^{m} < (n+1)^{m+1} - 1$$

只要证: =
$$(n + 1)^{m+1} - n^{m+1} + n^{m+1} - (n - 1)^{m+1} + \cdots + 2^{m+1} - 1^{m+1}$$

= $\sum_{k=1}^{n} \{k+1\}^{m+1} - k^{m+1}\}$

故只要证:
$$\sum_{k=1}^{n} k^{m+1} - (k-1)^{m+1} < (m+1)\sum_{k=1}^{n} k^{m} < \sum_{k=1}^{n} (k+1)^{m+1} - k^{m+1}$$

即等价于:
$$1 + \frac{m+1}{k} < \left(1 + \frac{1}{k}\right)^{m+1}, 1 - \frac{m+1}{k} < \left(1 - \frac{1}{k}\right)^{m+1}$$

而正是成立的,所以原命题成立.

例 6. 已知
$$a_n = 4^n - 2^n$$
, $T_n = \frac{2^n}{a_1 + a_2 + \cdots + a_n}$, 求证: $T_1 + T_2 + \cdots + T_n < \frac{3}{2}$.

解析:
$$S_n = a_1 + a_2 + \cdots + a_n = 4^1 + 4^2 + \cdots + 4^n - (2^1 + 2^2 + \cdots + 2^n)$$

$$= \frac{4(1-4^{n})}{1-4} - \frac{2(1-2^{n})}{1-2} = \frac{4}{3}(4^{n}-1) + 2(1-2^{n})$$

所以:
$$T_n = \frac{2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{3 \cdot 2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{2^n}{4(4^n - 1) + 2(1 - 2^n)} = \frac{2^n}{4^n + 2(1 - 2^n)$$

$$= \frac{3}{2} \cdot \frac{2^{n}}{2(2^{n})^{2} - 3 \cdot 2^{n} + 1} = \frac{3}{2} \cdot \frac{2^{n}}{(2 \cdot 2^{n} - 1) \cdot (2^{n} - 1)} = \frac{3}{2} \cdot \left(\frac{1}{2^{n} - 1} - \frac{1}{2 \cdot 2^{n} - 1}\right) = \frac{3}{2} \left(\frac{1}{2^{n} - 1} - \frac{1}{2^{n+1} - 1}\right)$$

从而:
$$T_1 + T_2 + \cdots + T_n = \frac{3}{2} \left(1 - \frac{1}{3} + \frac{1}{3} - \frac{1}{7} + \cdots + \frac{1}{2^n - 1} - \frac{1}{2^{n+1} - 1} \right) < \frac{3}{2}$$

二、函数放缩

例 8. 求证:
$$\frac{\ln 2 + \ln 3 + \ln 4}{2 + 3} + \cdots + \frac{\ln 3^{n}}{3^{n}} < 3^{n} - \frac{5n + 6}{6} (n \in N^{*}).$$

解析: 先构造函数有 $\ln x \le x - 1 \Rightarrow \frac{\ln x}{x} \le 1 - \frac{1}{x}$, 从而

$$\frac{\ln 2}{2} + \frac{\ln 3}{3} + \cdots + \frac{\ln 3^{k}}{3^{k}} < 3^{k} - 1 - \left(\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{3^{k}}\right)$$

$$> \frac{5}{6} + \left(\frac{3}{6} + \frac{3}{9}\right) + \left(\frac{9}{18} + \frac{9}{27}\right) + \cdots + \left(\frac{3^{n-4}}{2 \cdot 3^{n-4}} + \frac{3^{n-4}}{3^n}\right) = \frac{5n}{6}$$

所以:
$$\frac{\ln 2}{2} + \frac{\ln 3}{3} + \frac{\ln 4}{4} + \cdots + \frac{\ln 3^n}{3^n} < 3^n - 1 - \frac{5n}{6} = 3^n - \frac{5n+6}{6}$$

例 9. 求证: 当
$$\alpha \ge 2$$
时, $\frac{\ln 2^{\alpha}}{2^{\alpha}} + \frac{\ln 3^{\alpha}}{3^{\alpha}} + \cdots + \frac{\ln n^{\alpha}}{n^{\alpha}} < \frac{2n^2 - n - 1}{2(n + 1)} (n \ge 2).$

解析: 构造函数 $f(x) = \frac{\ln x}{x}$, 得到 $\frac{\ln n^{\alpha}}{n^{\alpha}} \le \frac{\ln n^{2}}{n^{2}}$, 再进行裂项 $\frac{\ln n^{2}}{n^{2}} \le 1 - \frac{1}{n^{2}} < 1 - \frac{1}{n(n+1)}$, 求和后可以得到答案.

函数构造形式:ln x ≤ x −1 ,ln n α ≤ n α −1(α ≥ 2).

例 10. 求证:
$$\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n+1} < \ln(n+1) < 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$
.

解析: 提示:
$$\ln (n + 1) = \ln \frac{n + 1}{n + 1} = \ln \frac{n + 1}{n} + \ln \frac{n}{n - 1} + \cdots + \ln 2$$

当然本题的证明还可以运用积分放缩

如图, 取函数
$$f(x) = \frac{1}{x}$$
.

从而:
$$\frac{1}{n} \cdot i < \int_{n-1}^{n} \frac{1}{x} dx = \ln x \Big|_{n-1}^{n} = \ln n - \ln (n-i)$$

取 i = 1, 有:
$$\frac{1}{n} < \ln n - \ln (n - 1)$$
,

所以有
$$\frac{1}{2} < \ln 2$$
, $\frac{1}{3} < \ln 3 - \ln 2$, \cdots , $\frac{1}{n} < \ln n - \ln (n-1)$, $\frac{1}{n+1} < \ln (n+1) - \ln n$.

相加后可以得到:
$$\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n+1} < \ln (n+1)$$

另一方面:
$$S_{ABDE} > \int_{1}^{n} \frac{1}{x} dx$$
. 从而有

$$\frac{1}{n-i} i > \int_{n-i}^{n} \frac{1}{x} dx = \ln \frac{n}{n-i} = \ln n - \ln (n-i) \int_{n-i}^{1} i > \int_{n-i}^{n} \frac{1}{x} = \ln x \Big|_{n-i}^{n} = \ln n - \ln (n-i)$$

取 i =1, 有:
$$\frac{1}{n-1} > \ln n - \ln (n-1)$$
 所以有: $\ln (n+1) < 1 + \frac{1}{2} + \cdots + \frac{1}{n}$.

所以综上有:
$$\frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n+1} < \ln (n+1) < 1 + \frac{1}{2} + \cdots + \frac{1}{n}$$
.

例 11. 求证:
$$\left(1+\frac{1}{2!}\right)\left(1+\frac{1}{3!}\right)$$
: $\cdot\left(1+\frac{1}{n!}\right)$ < e和 $\left(1+\frac{1}{9}\right)\left(1+\frac{1}{81}\right)$: $\cdot\left(1+\frac{1}{3^{2^{n}}}\right)$ < \sqrt{e} .

函数构造形式:
$$\ln(x+1)>2-\frac{3}{x+1}(x>0) \Rightarrow \frac{1+\ln(1+x)}{x}>\frac{3}{1+x}(x>0)$$
 (加强命题)

例 13. 证明:
$$\frac{\ln 2}{3} + \frac{\ln 3}{4} + \frac{\ln 4}{5} + \cdots + \frac{\ln n}{n+1} < \frac{n(n-1)}{4} (n > 1, n \in N^*).$$

解析: 构造函数 f(x)=ln(x-1)-(x-1)+1(x>1), 求导可以得到:

$$f'(x) = \frac{1}{x-1} - 1 = \frac{2-x}{x-1}$$

令 f (x)>0,有1<x<2;令f(x)<0,有x>2.

所以 $f(x) \le f(2) = 0$, 所以 $\ln(x-1) \le x-2$, 令 $x = n^2 + 1$, 有: $\ln n^2 \le n^2 - 1$.

所以
$$\frac{\ln n}{n+1} \le \frac{n-1}{2}$$
, 所以 $\frac{\ln 2}{3} + \frac{\ln 3}{4} + \frac{\ln 4}{5} + \cdots + \frac{\ln n}{n+1} < \frac{n(n-1)}{4} (n > 1, n \in N^*)$.

例 14. 已知
$$a_1 = 1$$
 , $a_{n+1} = \left(1 + \frac{1}{n+n^2}\right) a_n + \frac{1}{2^n}$. 证明: $a_n < e^2$.

解析: 因为
$$a_1 = 1$$
 , $a_{n+1} = \left(1 + \frac{1}{n+n^2}\right) a_n + \frac{1}{2^n} \ge 1$.

所以:
$$a_{n+} = \left(1 + \frac{1}{n(n+1)}\right) a_n + \frac{1}{2^n} < \left(1 + \frac{1}{n(n+1)} + \frac{1}{2^n}\right) a_n$$
.

然后两边取自然对数 ,可以得到: $\ln a_{n+1} < \ln \left(1 + \frac{1}{n(n+1)} + \frac{1}{2^n}\right) + \ln a_n$.

然后运用 $\ln(1+x) < x$ 和裂项可以得到答案

放缩思路 :
$$a_{n+1} \le \left(1 + \frac{1}{n^2 + n} + \frac{1}{2^n}\right) a_n \Rightarrow \ln a_{n+1} \le \ln \left(1 + \frac{1}{n^2 + n} + \frac{1}{2^n}\right) + \ln a_n$$

$$\Rightarrow \ln a_{n+1} \le \ln a_n + \frac{1}{n^2 + n^2} + \frac{1}{2^n}$$

于是:
$$\ln a_{n+1} - \ln a_n \le \frac{1}{n^2 + n} + \frac{1}{2^n}$$

所以:
$$\sum_{k=1}^{n-1} (\ln a_{k+1} - \ln a_{k}) \le \sum_{k=1}^{n-1} \left(\frac{1}{k+k^2} + \frac{1}{2^k} \right) \Rightarrow \ln a_n - \ln a_1 \le 1 - \frac{1}{n} + \frac{\left(1 - \frac{1}{2}\right)^{n-1}}{1 - \frac{1}{2}}$$

$$=2-\frac{1}{n}-\frac{1}{2^n}<2$$

即: $\ln a_n - \ln a_1 < 2 \Rightarrow a_n < e^2$.

注:题目所给条件 $\ln(1+x) < x(x>0)$ 为一有用结论,可以起到提醒思路与探索放缩方向的作用;当然,本题还可用结论 $2^n > n(n-1)(n \ge 2)$ 来放缩:

$$a_{n} + = \left(1 + \frac{1}{n + n^{2}}\right) a_{n} + \frac{1}{2^{n}} \le \left(1 + \frac{1}{n(n-1)}\right) a_{n} + \frac{1}{n(n-1)}$$

$$\Rightarrow a_{n} + 1 \le \left(1 + \frac{1}{n(n-1)}\right) a_{n} + 1.$$

对上述不等式两边取对数得:

$$\ln (a_{n+} +1) - \ln (a_{n} +1) \le \ln \left(1 + \frac{1}{n(n-1)}\right) < \frac{1}{n(n-1)}$$

$$\Rightarrow \sum_{k=1}^{n-4} \left[n(a_{k+} +1) - \ln (a_{k} +1) \right] < \sum_{k=1}^{n-4} \frac{1}{k(k-1)} \Rightarrow \ln (a_{n+} +1) - \ln (a_{1} +1) < 1 - \frac{1}{n} < 1$$

即: $\ln (a_n + 1) < 1 + \ln 3 \Rightarrow a_n < 3e - 1 < e^2$.

例 15. 已知函数 f (x)= xln x. 若 a > 0, b > 0, 证明: f (a)+(a + b)ln 2 ≥ f (a + b)- f (b).

解析: 设函数 g(x) = f(x) + f(k - x)(k > 0)

$$\therefore$$
 f (x) = x ln x

$$\therefore g(x) = x \ln x + (k - x) \ln (k - x)$$

$$\therefore 0 < x < k$$

g'(x)=
$$\ln x + 1 - \ln (k - x) - 1 = \ln \frac{x}{k - x}$$

令 g (x)>0 , 则有
$$\frac{x}{k-x}$$
 >1⇒ $\frac{2x-k}{k-x}$ >0⇒ $\frac{k}{2}$ < x < k

函数 g(x)在 $\left[\frac{k}{2}, k\right]$ 上单调递增,在 $\left[0, \frac{k}{2}\right]$ 上单调递减.

$$g(x)$$
的最小值为 $g(\frac{k}{2})$, 即总有 $g(x) \ge g(\frac{k}{2})$.

$$\overline{fm} g\left(\frac{k}{2}\right) = f\left(\frac{k}{2}\right) + f\left(k - \frac{k}{2}\right) = k \ln \frac{k}{2} = k (\ln k - \ln 2) = f(k) - k \ln 2$$

$$g(x) \ge f(k) - k \ln 2$$
, 即 $f(x) + f(k-x) \ge f(k) - k \ln 2$.

$$f(a)+f(b) \ge f(a+b)-(a+b)\ln 2$$
. 即: $f(a)+(a+b)\ln 2 \ge f(a+b)-f(b)$

例 16. 已知函数 f(x)是在 $(0, +\infty)$ 上处处可导的函数,若 $x \cdot f(x) > f(x)$ 在 x > 0 上恒成立.

(2) 、当
$$x_1 > 0$$
, $x_2 > 0$ 时,证明: $f(x_1) + f(x_2) < f(x_1 + x_2)$;

(3)、已知不等式 ln (x +1)< x 在 x € (-1,0) (0, +∞) 时恒成立.

求证:
$$\frac{\ln 2^2 + \ln 3^2}{2^2 + 3^2} + \cdots + \frac{\ln (n+1)^2}{(n+1)^2} > \frac{n}{2(n+1)(n+2)}$$
 (n ∈ N^{*}).

解析:(1) 、因为 g (x)= $\frac{x \cdot f(x) - f(x)}{x^2} > 0$,所以函数 g(x)= $\frac{f(x)}{x}$ 在(0, $\stackrel{+\infty}{\longrightarrow}$)上是增函数;

(2) 、因为 g(x)= $\frac{f(x)}{x}$ 在(0, $\frac{1}{x}$)上是增函数,所以:

$$\frac{f(x_1)}{x_1} < \frac{f(x_1 + x_2)}{x_1 + x_2} \Rightarrow f(x_1) < \frac{x_1}{x_1 + x_2} \cdot f(x_1 + x_2)$$

$$\frac{f(x_2)}{x_2} < \frac{f(x_1 + x_2)}{x_1 + x_2} \Rightarrow f(x_2) < \frac{x_2}{x_1 + x_2} \cdot f(x_1 + x_2)$$

将上述两式相加后可以得到: $f(x_1) + f(x_2) < f(x_1 + x_2)$;

(3)、(方法一) 因为:

$$\frac{f(x_1)}{x_1} < \frac{f(x_1 + x_2 + \dots + x_n)}{x_1 + x_2 + \dots + x_n} \Rightarrow f(x_1) < \frac{x_1}{x_1 + x_2 + \dots + x_n} \cdot f(x_1 + x_2 + \dots + x_n)$$

$$\frac{f(x_2)}{x_2} < \frac{f(x_1 + x_2 + \cdots + x_n)}{x_1 + x_2 + \cdots + x_n} \Rightarrow f(x_2) < \frac{x_2}{x_1 + x_2 + \cdots + x_n} \cdot f(x_1 + x_2 + \cdots + x_n)$$

,,

$$\frac{f(x_{k})}{x_{k}} < \frac{f(x_{1} + x_{2} + \cdots + x_{k})}{x_{1} + x_{2} + \cdots + x_{k}} \Rightarrow f(x_{k}) < \frac{x_{k}}{x_{1} + x_{2} + \cdots + x_{k}} \cdot f(x_{1} + x_{2} + \cdots + x_{k})$$

将上述不等式相加后可以得到 : $f(x_1) + f(x_2) + \cdots + f(x_n) < f(x_1 + x_2 + \cdots + x_n)$

所以:
$$x_1 \ln x_1 + x_2 \ln x_2 + \cdots + x_n \ln x_n < (x_1 + x_2 + \cdots + x_n) \ln (x_1 + x_2 + \cdots + x_n)$$

令
$$x_n = \frac{1}{(1+n)^2}$$
, 有:

$$-\left(\frac{\ln 2^{2}}{2^{2}} + \frac{\ln 3^{2}}{3^{2}} + \cdots + \frac{\ln (n+1)^{2}}{(n+1)^{2}}\right) < \left(\frac{1}{2^{2}} + \frac{1}{3^{2}} + \cdots + \frac{1}{(n+1)^{2}}\right) \cdot \ln \left(\frac{1}{2^{2}} + \frac{1}{3^{2}} + \cdots + \frac{1}{(n+1)^{2}}\right)$$

$$<\left(\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{(n+1)^{2}}\right)\cdot\ln\left(\frac{1}{1\times 2}+\frac{1}{2\times 3}+\cdots+\frac{1}{n(n+1)}\right)<\left(1-\frac{1}{n+1}\right)\cdot\left(\frac{1}{2}-\frac{1}{n+2}\right)$$

$$=-\frac{n}{2(n +1 (n +2))}$$

故:
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \cdots + \frac{\ln (n+1)^2}{(n+1)^2} > \frac{n}{2(n+1)(n+2)} (n \in N^*)$$

(方法二):
$$\frac{\ln (n+1)^2}{(n+1)^2} > \frac{\ln (n+1)^2}{(n+1)(n+2)} \ge \frac{\ln 4}{(n+1)(n+2)} = \ln 4 \left(\frac{1}{n+1} - \frac{1}{n+2} \right)$$

所以:
$$\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \cdots + \frac{\ln (n+1)^2}{(n+1)^2} > \ln 4 \cdot \left(\frac{1}{2} - \frac{1}{n+2}\right) = \frac{\ln 4}{2(n+2)}$$

又 ln 4 >1 >
$$\frac{1}{1+n}$$
,所以: $\frac{\ln 2^2}{2^2} + \frac{\ln 3^2}{3^2} + \cdots + \frac{\ln (n+1)^2}{(n+1)^2} > \frac{n}{2(n+1)(n+2)} (n \in N^*)$

三、分式放缩

姐妹不等式:
$$\frac{b}{a} > \frac{b+m}{a+m}$$
 (b > a > 0, m > 0)和 $\frac{b}{a} < \frac{b+m}{a+m}$ (a > B > 0, m > 0)

记忆口诀:"小者小,大者大"

解释:看b,若b小,则不等号是小于号 ,反之则反之 .

例 17. 姐妹不等式:
$$(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\cdots\left(1+\frac{1}{2n-1}\right)>\sqrt{2n+1}$$
 和

$$\left(1-\frac{1}{2}\right)\left(1-\frac{1}{4}\right)$$
·· $\left(1-\frac{1}{2n}\right)<\frac{1}{\sqrt{2n+1}}$ 也可以表示成为 $\frac{2\cdot 4\cdot 6\cdots\cdot 2n}{1\cdot 3\cdot 5\cdots\cdot (2n-1)}>\sqrt{2n+1}$ 和

1 3 5 :
$$(2n-1)$$
 $< \frac{1}{\sqrt{2n+1}}$

解析: 利用假分数的一个性质 b b + m (b > a > 0, m > 0)可得:

$$\frac{2}{1} \cdot \frac{4}{3} \cdot \frac{6}{5} \cdot \cdots \cdot \frac{2n}{2n-1} > \frac{3}{2} \cdot \frac{5}{4} \cdot \frac{7}{6} \cdot \cdots \cdot \frac{2n+1}{2n} = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdot \cdots \cdot \frac{2n-1}{2n} \cdot (2n+1)$$

$$\Rightarrow \left(\frac{2}{1} \cdot \frac{4}{3} \cdot \cdots \cdot \frac{2n}{2n-1}\right)^2 > 2n+1.$$

即:
$$(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)\cdots\left(1+\frac{1}{2n-1}\right)>\sqrt{2n+1}$$
.

四、分类放缩

例 18. 求证:
$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2^n - 1} > \frac{n}{2}$$
.

解析:

$$1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{2^{n} - 1} > 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{2^{3}} + \frac{1}{2^{3}} + \frac{1}{2^{3}} + \frac{1}{2^{3}}\right) + \cdots + \left(\frac{1}{2^{n}} + \frac{1}{2^{n}} + \frac{1}{2^{n}} + \cdots + \frac{1}{2^{n}}\right)$$

$$-\frac{1}{2^n} = \frac{n}{2} + \left(1 - \frac{1}{2^n}\right) > \frac{n}{2}$$

例 19. (2004 年全国高中数学联赛加试改编) 在平面直角坐标系 xOy 中, y 轴正半轴上的点列 $\{A_n\}$ 与曲线 $y = \sqrt{2x}(x \ge 0)$ 上的点列 $\{B_n\}$ 满足 $|OA_n| = |OB_n| = \frac{1}{n}$, 直线 A_n B_n在 x 轴上的截距为 a_n . 点 B_n 的横坐标为 b_n , $n \in N^*$.

(1)、证明: 4 < a_n + < a_n, n ∈ N^{*};

(2) 、证明:存在
$$n_0$$
 ∈ N^{*} , 使得对 $\overline{\forall}$ n > n_0 都有 $\frac{b_2}{b_1} + \frac{b_3}{b_2} + \cdots + \frac{b_n}{b_{n-4}} + \frac{b_{n+1}}{b_n} < n - 2008$.

解析:(1) 、依题设有: $A_n\left(0,\frac{1}{n}\right)$, $B_n\left(b_n,\sqrt{2b_n}\right)\left(b_n>0\right)$, 由 $\left|OB_n\right|=\frac{1}{n}$ 得

$$b_n^2 + 2b_n = \frac{1}{n^2}$$
, \therefore $b_n = \sqrt{\frac{1}{n^2} + 1} - 1, n \in \mathbb{N}^*$

又直线 A_n B_n 在 x轴上的截距为 a_n 满足:

$$(a_n - 0) \cdot (\sqrt{2b_n} - \frac{1}{n}) = (0 - \frac{1}{n}) \cdot (b_n - 0), \ a_n = \frac{b_n}{1 - n\sqrt{2b_n}}$$

$$\therefore$$
 $2n^2b_n = 1 - n^2b_n^2 > 0$, $b_n + 2 = \frac{1}{n^2b_n}$

$$\therefore a_n = \frac{b_n}{1 - n\sqrt{2b_n}} = \frac{b_n (1 + n\sqrt{2b_n})}{1 - 2n^2 b_n} = \frac{1}{n^2 b_n} + \frac{\sqrt{2}}{n\sqrt{b_n}} = b_n + 2 + \sqrt{2b_n + 4}$$

$$\therefore a_n = \sqrt{\frac{1}{n^2} + 1} + 1 + \sqrt{2 + 2\sqrt{\frac{1}{n^2}} + 1}$$

显然,对于 $\frac{1}{n} > \frac{1}{n+1} > 0$,有 $4 < a_{n,+} < a_n, n \in N^*$.

(2) 、证明:设
$$c_n = 1 - \frac{b_{n+1}}{b_n}, n \in \mathbb{N}^*$$
,则 $c_n = \frac{\sqrt{\frac{1}{n^2} + 1} - \sqrt{\frac{1}{(n+1)^2} + 1}}{\sqrt{\frac{1}{n^2} - 1}}$

$$= n^{2} \left(\frac{1}{n^{2}} - \frac{1}{(n+1)^{2}} \right) \frac{\sqrt{\frac{1}{n^{2}} + 1} + 1}{\sqrt{\frac{1}{n^{2}} + 1} + \sqrt{\frac{1}{(n+1)^{2}} + 1}}$$

$$> \frac{2n+1}{\left(n+1\right)^{2}} \cdot \frac{\sqrt{\frac{1}{n^{2}}+1}+1}{2\sqrt{\frac{1}{n^{2}}+1}} - \frac{2n+1}{\left(n+1\right)^{2}} \left(\frac{1}{2} + \frac{1}{2\sqrt{\frac{1}{n^{2}}+1}}\right) > \frac{2n+1}{2(n+1)^{2}}$$

$$(2n+1)(n+2)-2(n+1)^2 = n > 0$$

$$\therefore$$
 $c_n > \frac{1}{n+2}, n \in \mathbb{N}^*$

设 S_n = c₁ +c₂ +··· +c_n, n ∈ N , 则当 n = 2 -2(k ∈ N)时,

$$S_{n} > \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2^{k} - 1} + \frac{1}{2^{k}}$$

$$= \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{2^{2} + 1} + \dots + \frac{1}{2^{3}}\right) + \dots + \left(\frac{1}{2^{k - 1}} + \dots + \frac{1}{2^{k}}\right)$$

$$> 2 \cdot \frac{1}{2^{2}} + 2^{2} \cdot \frac{1}{2^{3}} + \dots + 2^{k - 1} \cdot \frac{1}{2^{k}} = \frac{k - 1}{2}$$

所以,取 n₀ = 2⁴⁰⁰⁹ - 2,对∀n > n₀都有:

$$\left(1 - \frac{b_2}{b_1}\right) + \left(1 - \frac{b_3}{b_2}\right) + \cdots + \left(1 - \frac{b_{n+1}}{b_n}\right) = S_n > S_{n_0} > \frac{4017 - 1}{2} = 2008$$

故有
$$\frac{b_2}{b_1} + \frac{b_3}{b_2} + \cdots + \frac{b_n}{b_{n-4}} + \frac{b_{n+1}}{b_n} < n - 2008$$
 成立.

例 20.(2007 年泉州市高三质检) 已知函数 $f(x)=x^2+bx+c(b \ge 1, c \in R)$, 若 f(x)的定义域为 [-1,0], 值域也为 [-1,0]. 若数列 $\{b_n\}$ 满足 $b_n=\frac{f(n)}{n^3}(n \in N^*)$, 记数列 $\{b_n\}$ 的前 n 项和为 T_n ,问是

否存在正常数 A,使得对于任意正整数 n都有 T_n < A?并证明你的结论.

解析: 首先求出 $f(x) = x^2 + 2x$.

因此,对任何常数 A,设m是不小于 A的最小正整数,

则当
$$n > 2^{2m-2}$$
时,必有 $T_n > \frac{2m-2}{2} + 1 = m > A$.

故不存在常数 A 使 T_n < A, 对所有 n ≥ 2 的正整数恒成立.

五、迭代放缩

例 21. 设 $S_n = \frac{\sin 1!}{2} + \frac{\sin 2!}{2^2} + \cdots + \frac{\sin n!}{2^n}$,求证: 对任意的正整数 k,若 $k \ge n$ 恒有: $\left|S_{n+k} - S_n < \frac{1}{n}\right|$ 解析:

$$\begin{aligned} |S_{n+k} - S_n| &= \left| \frac{\sin(n+1)}{2^{n+k}} + \frac{\sin(n+2)}{2^{n+k}} + \dots + \frac{\sin(n+k)}{2^{n+k}} \right| \\ &\leq \left| \frac{\sin(n+1)}{2^{n+k}} + \left| \frac{\sin(n+2)}{2^{n+k}} \right| + \dots + \left| \frac{\sin(n+k)}{2^{n+k}} \right| \\ &\leq \frac{1}{2^{n+k}} + \frac{1}{2^{n+k}} + \dots + \frac{1}{2^{n+k}} \leq \frac{1}{2^n} \left(\frac{1}{2} + \frac{1}{2^2} + \dots + \frac{1}{2^k} \right) \\ &= \frac{1}{2^n} \cdot \left(1 - \frac{1}{2^k} \right) < \frac{1}{2^n} \end{aligned}$$

又
$$2^n = (1+1)^n = C_n^0 + C_n^1 + \cdots + C_n^n > n$$
 , 所以 $|S_{n+k} - S_n| < \frac{1}{n}$.

六、借助数列递推关系

例 22. 求证:
$$\frac{1}{2} + \frac{13}{24} + \frac{135}{246} + \cdots + \frac{135 \cdots (2n-1)}{246 \cdots 2n} < \sqrt{2n+1} - 1$$
.

解析: 设 $a_n = \frac{135 \cdots (2n-1)}{246 \cdots 2n}$, 则 $a_{n+} = \frac{2n+1}{2n+2} a_n \Rightarrow (2(n+1)+1) a_{n+} = a_{n+} + (2n+1) a_n$
从而 $a_{n+} = (2(n+1)+1) a_{n+} - (2n+1) a_n$

相加后就可以得到:

$$a_1 + a_2 + \cdots + a_n = (2n + 1)a_{n+} - 3a_1$$

$$< (2n + 1)a_{n+} - \frac{3}{2} < (2n + 1) \cdot \frac{1}{\sqrt{2n + 1}} - \frac{3}{2}$$

$$< \sqrt{2n + 1} - 1$$

例 23. 若
$$a_1 = 1$$
, $a_n = n + 1$, 求证: $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} \ge 2(\sqrt{n+1} - 1)$.

解析:
$$a_{n+1} a_{n+2} = n + 2 = a_n a_{n+1} + 1 = \frac{1}{a_{n+1}} = a_{n+2} - a_n$$
. 所以就有:

$$\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = \frac{1}{a_1} + a_{n+1} + a_n - a_2 - a_1 \ge 2\sqrt{a_{n+1}a_n} - a_1 = 2\sqrt{n+1} - 2.$$

七、分类讨论

例 24. 已知数列 $\{a_n\}$ 的前 n 项和 S_n 满足: $S_n = 2a_n + (-1)^n, n ≥ 1. 证明:对任意的整数 <math>m > 4$, 有

$$\frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} < \frac{7}{8}$$
.

解析: 容易得到 $a_n = \frac{2}{3} \left[2^{n-1} + (-1)^{n-1} \right]$, 由于通项中含有 $(-1)^n$, 很难直接放缩,考虑分项讨论:

于是: 、当 m > 4 且 m 为偶数时 $\frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} = \frac{1}{a_4} + \left(\frac{1}{a_5} + \frac{1}{a_6}\right) + \cdots + \left(\frac{1}{a_{m-1}} + \frac{1}{a_m}\right)$

$$<\frac{1}{2} + \frac{3}{2} \left(\frac{1}{2^3} + \frac{1}{2^4} + \dots + \frac{1}{2^{m-2}} \right) = \frac{1}{2} + \frac{3}{2} \cdot \frac{1}{4} \left(\frac{1}{2} - \frac{1}{2^{m-4}} \right) < \frac{1}{2} + \frac{3}{8} = \frac{7}{8}$$

、当 m > 4 且 m 为奇数时

$$\frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} < \frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} + \frac{1}{a_{m+1}}$$
 (添项放缩)

曲 知
$$\frac{1}{a_4} + \frac{1}{a_5} + \cdots + \frac{1}{a_m} < \frac{7}{8}$$

由 得证.

八、线性规划型放缩

例 25. 设函数 $f(x) = \frac{2x+1}{x^2+2}$. 若对一切 $x \in R$, $-3 \le af(x)+b \le 3$, 求 a −b 的最大值.

解析:由
$$\left[f(x)^{+}\frac{1}{2}\right] \cdot \left[f(1)^{-}1\right] = \frac{-(x^{+}2)^{2} \cdot (x^{-}1)^{2}}{2(x^{2} + 2)^{2}}$$
知: $\left(f(x)^{+}\frac{1}{2}\right) \cdot \left(f(1)^{-}1\right) \le 0$ 即 $-\frac{1}{2} \le f(x) \le 1$.

由此再由 f(x)的单调性可以知道 f(x)的最小值为 $-\frac{1}{2}$,最大值为 1.

因此对一切
$$x \in \mathbb{R}$$
 , $-3 \le af(x) + b \le 3$ 的充要条件是
$$\begin{cases} -3 \le -1 \\ -3 \le -1 \\ 2 \end{cases}$$
 即 a ,即 a , b 满足约束

条件,由线性规划得, a-b的最大值为 5.

九、均值不等式放缩

例 26. 设
$$S_n = \sqrt{1.2} + \sqrt{2.3} + \cdots + \sqrt{n(n+1)}$$
. 求证: $\frac{n(n+1)}{2} < S_n < \frac{(n+1)^2}{2}$.

解析: 此数列的通项为 $a_k = \sqrt{k(k+1)}k = 1,2,\dots, n$.

$$\ \, : \ \, k < \sqrt{k(k+1)} < \frac{k+k+1}{2} = k+\frac{1}{2} \ \, , \ \, : \ \, \sum_{k=1}^{n} k < S_n < \sum_{k=1}^{n} \left(k+\frac{1}{2}\right) \, ,$$

即
$$\frac{n(n+1)}{2} < S_n < \frac{n(n+1)}{2} + \frac{n}{2} < \frac{(k+1)^2}{2}$$
.

注: 、应注意把握放缩的"度":上述不等式右边放缩用的是均值不等式 $\sqrt{ab} \le \frac{a+b}{2}$,若

放成
$$\sqrt{k(k+1)} < k+1$$
, 则得 $S_k < \sum_{k=1}^{n} (k+1) = \frac{(n+1)(n+2)}{2} > \frac{(n+1)^2}{2}$, 就放过"度"了;

、根据所证不等式的结构特征来选取所需要的重要不等式,这里

$$\frac{n}{\frac{1}{1 + \frac{1}{1 + \dots + \frac{1}{1}}}} \le \sqrt[n]{a_1 a_2 \cdots a_n} \le \sqrt{\frac{a_1^2 + a_2^2 + \cdots + a_n^2}{n}}$$

其中, n = 2,3 等的各式及其变式公式均可供选用

例 27. 已知函数 $f(x) = \frac{1}{1+a \cdot 2^{bx}}$,若 $f(1) = \frac{4}{5}$,且 f(x)在 [0,1]上的最小值为 $\frac{1}{2}$,求证: $f(1) + f(2) + \cdots + f(n) > n + \frac{1}{2^{n+1}} - \frac{1}{2}$.

解析: 易求得:
$$f(x) = \frac{4^x}{1+4^x} = 1 - \frac{1}{1+4^x} > 1 - \frac{1}{2 \cdot 2^x} (x \neq 0)$$

⇒ f(1)+f(2)+···+f(n)>
$$\left(1-\frac{1}{2\times 2}\right)+\left(1-\frac{1}{2\times 2^2}\right)+···+\left(1-\frac{1}{2\times 2^n}\right)$$

$$= n - \frac{1}{4} \left(1 + \frac{1}{2} + \cdots + \frac{1}{2^{n-4}} \right) = n + \frac{1}{2^{n+1}} - \frac{1}{2}$$

例 28. 已知 a, b 为正数 , 且 $\frac{1}{a} + \frac{1}{b} = 1$,试证:对每一个 $n \in \mathbb{N}^+$,有 $(a + b)^n - a^n - b^n \ge 2^{2n} - 2^{n+1}$.

解析: 由
$$\frac{1}{a} + \frac{1}{b} = 1$$
得 ab = a +b , 又因为 $\left(a + b \left(\frac{1}{a} + \frac{1}{b}\right) = 2 + \frac{a}{b} + \frac{b}{a} \ge 4$, 故 ab = a + b ≥ 4

$$\overline{m}$$
 (a +b) = $C_n^0 a^n + C_n^1 a^{n-4} b + \cdots + C_n^r a^{n-4} b^r + \cdots + C_n^n b^n$

令 f (n)= (a +b) -a -b ,则 f (n)= C a -b + ··· + C a -b + ··· +

$$2 f(n) = C_n^1 (a^{n-1}b + ab^{n-1}) + \cdots + C_n^r (a^{n-1}b^r + a^r b^{n-1}) + \cdots + C_n^{n-1} (ab^{n-1} + a^{n-1}b)$$

$$\overline{m}$$
: $a^{n-1}b + ab^{n-1} \ge 2\sqrt{a^nb^n} \ge 2\sqrt{4^n} = 2^{n+1}$; $a^{n-1}b^n + a^nb^n \ge 2^{n+1}$; $a^{n-1}b + a^{n-1}b \ge 2^{n+1}$;

$$= (2^{n} - 2) \cdot 2^{n+1}$$

所以 f (n)≥ (2ⁿ -2)·2ⁿ , 即对每一个 n ∈ N^{*} , 有 (a +b)ⁿ - aⁿ - bⁿ ≥ 2²ⁿ - 2ⁿ⁺.

例 29. 求证: $C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n > n \cdot 2^{\frac{n-1}{2}} (n > 1, n \in N^*).$

解析: 不等式左边 = $C_n^1 + C_n^2 + \cdots + C_n^n = 2^n - 1 = 1 + 2 + 2^2 + \cdots + 2^{n-1}$

$$> n \cdot \sqrt[n]{1 \cdot 2 \cdot 2^2 \cdot \cdots \cdot 2^{n-1}} = n \cdot 2^{\frac{n-1}{2}}$$

从而原结论成立

例 30. 已知 $f(x) = e^{x} + e^{-x}$, 求证: $f(1) \cdot f(2) \cdots \cdot f(n) > (e^{n+1} + 1)^{n}$.

解析:
$$f(x_1) \cdot f(x_2) = (e^{x_1} + e^{-x_1}) \cdot (e^{x_2} + e^{-x_2}) = e^{x_1 + x_2} + \frac{1}{e^{x_1 + x_2}} + \frac{e^{x_1}}{e^{x_2}} + \frac{e^{x_2}}{e^{x_1}} > e^{x_1 + x_2} + 1$$

经过倒序相乘,再开方,就可以得到: f(1)·f(2)····f(n)>(eⁿ⁺+1)².

例 31. 已知 f (x)= x +
$$\frac{1}{x}$$
, 求证: f (1)·f (2)·····f (n)> 2^n (n + 1) .

解析:

$$\left(k + \frac{1}{k}\right)\left(2n + 1 - k + \frac{1}{2n + 1 - k}\right) = k\left(2n + 1 - k\right) + \frac{k}{2n + 1 - k} + \frac{2n + 1 - k}{k} + \frac{1}{k\left(2n + 1 - k\right)}$$

> 2(2n +1 -k)+2 , 其中: k = 1,2,3, ··· ,2n .

所以:
$$\left(k + \frac{1}{k}\right) \cdot \left(2n + 1 - k + \frac{1}{2n + 1 - k}\right) \ge 2n + 2$$

从而
$$(f(1)\cdot f(2)\cdot f(3)\cdots \cdot f(2n)^{p} > (2n+2)^{2n}$$

例 32. 若 k > 7, 求证:
$$S_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{nk-1} > \frac{3}{2}$$
.

解析:
$$2S_n = \begin{pmatrix} 1 & + & 1 \\ n & nk & -1 \end{pmatrix} + \begin{pmatrix} 1 & + & 1 \\ n & +1 & nk & -2 \end{pmatrix} + \cdots + \begin{pmatrix} 1 & + & 1 \\ nk & -1 & n \end{pmatrix}$$

因为当
$$x > 0$$
, $y > 0$ 时, $x + y \ge 2\sqrt{xy}$, $\frac{1}{x} + \frac{1}{y} \ge \frac{2}{\sqrt{xy}}$

所以
$$(x + y) \cdot \left(\frac{1}{x} + \frac{1}{y}\right) \ge 2$$
, 从而 $\begin{cases} 1 + 1 \\ x + y \end{cases} \ge \begin{cases} 4 \\ x + y \end{cases}$, 当且仅当 $x = y$ 时取到等号.

故
$$2S_n > \frac{4}{n + nk - 1} + \frac{4}{n + 1 + nk - 2} + \frac{4}{n + 2 + nk - 3} + \cdots + \frac{4}{n + nk - 1}$$

$$= \frac{4n(k - 1)}{n + nk - 1}$$

所以
$$S_n > \frac{2(k-1)}{1+k-1} > \frac{2(k-1)}{1+k} = 2 - \frac{4}{k+1} > \frac{3}{2}$$
,即: $S_n = \frac{1}{n} + \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{nk-1} > \frac{3}{2}$.

例 33. 已知 f (x)= a(x - x₁)(x - x₂), 求证: f (0)·f (1)
$$\leq \frac{a^2}{16}$$
.

解析:
$$f(0) \cdot f(1) = a^2 \left[x_1 (1 - x_1) \right] \left[x_2 (1 - x_2) \right] \le a^2 \left(\frac{x_1 + 1 - x_1}{2} \right)^2 \left(\frac{x_2 + 1 - x_2}{2} \right)^2 \le \frac{a^2}{16}$$

例 34. 已知函数 f (x)= x² -(-1) ·2 ln x (k ∈ N , k 是奇数) , 当 n ∈ N 时, 求证:

$$[f(x)]^{n-2} - f(x^{n}) \ge 2^{n}(2^{n} - 2)$$

解析: 由已知得 $f'(x) = 2x + \frac{2}{x}(x > 0)$

(1) 、当 n = 1时,左式 =
$$\left(2x + \frac{2}{x}\right) - \left(2x + \frac{2}{x}\right) = 0 = 右式$$
, 不等式成立 .

(2) 、 当 n ≥2 时, 左式 =
$$\begin{bmatrix} f'(x)^{n} - 2^{n-4} \cdot f'(x^{n}) = \left(2x + \frac{2}{x}\right)^{n} - 2^{n-4} \cdot \left(2x^{n} + \frac{2}{x^{n}}\right)$$

$$= 2^{n} \left(C_{n}^{1} x^{n-2} + C_{n}^{2} x^{n-4} + \cdots + C_{n}^{n-2} + \frac{1}{x^{n-4}} + C_{n}^{n-4} + \frac{1}{x^{n-2}}\right).$$

$$\Leftrightarrow S = C_{n}^{1} x^{n-2} + C_{n}^{2} x^{n-4} + \cdots + C_{n}^{n-2} + C_{n}^{n-2} + C_{n}^{n-4} + C_{n}^{n-$$

由倒序相加法得:
$$2S = C_n^1 \left(x^{n-2} + \frac{1}{x^{n-2}} \right) + C_n^2 \left(x^{n-4} + \frac{1}{x^{n-4}} \right) + \cdots + C_n^{n-4} \left(\frac{1}{x^{n-2}} + x^{n-2} \right)$$

$$≥ 2(C_n^1 + C_n^2 + \cdots + C_n^{n-4}) = 2(C_n^0 + C_n^1 + C_n^2 + \cdots + C_n^n - 2)$$

$$= 2(2^n - 2)$$

所以 S ≥2ⁿ -2.

综上, 当 k 是奇数, n ∈ N + 时, 所以 [f (x)] - 2ⁿ⁻⁴ · f (xⁿ)≥ 2ⁿ(2ⁿ - 2)成立.

例 35. (2007年东北三校)已知函数 $f(x) = a^x - x(a > 1)$

(1)、求函数 f(x)的最小值,并求最小值小于 0时的 a 取值范围;

(2) 令 S(n)=C_n¹f(1)+C_n²f(2)+····+C_nⁿ⁻¹f(n-1), 求证: S(n)>(2ⁿ-2)·f(
$$\frac{n}{2}$$
).

解析:(1)、由 f (x)= $a^{x} \ln a - 1$, 令 f (x)>0,即: $a^{x} \ln a > 1$.

$$\therefore a^x > \frac{1}{\ln a}, \quad X \mid a > 1, \quad x > -\log_a \ln a.$$

同理:由 f'(x) < 0得, $x < -\log_a \ln a$.

所以, f (x)在 (-∞, -log a ln a)上递减,在 (-log a ln a,+∞)上递增;

从而:
$$f(x)_{min} = f(-\log_a \ln a) = \frac{1 + \ln a}{\ln a}$$

若 f(x)_{min} <0 , 即
$$\frac{1+\ln a}{\ln a}$$
 < 0 , 则 $\ln \ln a$ < -1 , ∴ $\ln a$ < $\frac{1}{e}$

∴ a的取值范围是(0, e°)

$$(2) \cdot S(n) = C_{n}^{1}(a \ln a - 1) + C_{n}^{2}(a^{2} \ln a - 1) + \cdots + C_{n}^{n-1}(a^{n-1} \ln a - 1)$$

$$= (C_{n}^{1}a + C_{n}^{2}a^{2} + \cdots + C_{n}^{n-1}a^{n-1}) \ln a - (C_{n}^{1} + C_{n}^{2} + \cdots + C_{n}^{n-1})$$

$$= \frac{1}{2} \left[c_{n}^{1}(a + a^{n-1}) + C_{n}^{2}(a^{2} + a^{n-2}) + \cdots + C_{n}^{n-1}(a^{n-1} + a) \right] \ln a - (2^{n} - 2)$$

$$\geq a^{\frac{n}{2}}(2^{n} - 2) \ln a - (2^{n} - 2) = (2^{n} - 2) \left[a^{\frac{n}{2}} \ln a - 1 \right] = (2^{n} - 2) f^{\frac{n}{2}}(\frac{n}{2})$$

所以不等式成立 .

例 36. (2008 年江西高考试题) 已知函数
$$f(x) = \frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1+a}} + \sqrt{\frac{ax}{ax+8}} x \in (0, +\infty)$$
.

(1)、当 a = 8时, 求 f(x)的单调区间;

(2)、对任意正数 a,证明: 1 < f(x)<2.

解:(1)、当 a = 8 时, f(x)=
$$\frac{1+\sqrt{x}}{\sqrt{1+x}}$$
, 求导得: f(x)= $\frac{1-\sqrt{x}}{2\sqrt{x(1+x)^3}}$.

于是当 x ∈ (0,1 时 , f (x)≥0;而当 x ∈ 4,+∞)时 , f (x)≤0.

即 f (x)在 x ∈ (0,1 上单调递增 , 而在 x ∈ 4,+∞)中单调递减 .

(2)、对任意给定的 a > 0 , x > 0 , 由 f(x)=
$$\frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+\frac{8}{ax}}}$$

若令 b =
$$\frac{8}{ax}$$
 , 则 abx = 8

$$\overline{\text{fill}} f(x) = \frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}}$$

(一)、先证 f(x)>1.

因为
$$\frac{1}{\sqrt{1+x}} > \frac{1}{1+x}$$
 , $\frac{1}{\sqrt{1+a}} > \frac{1}{1+a}$, $\frac{1}{\sqrt{1+b}} > \frac{1}{1+b}$.

又由 2 +a +b + x $\geq 2\sqrt{2a} + 2\sqrt{bx} \geq 2\sqrt[4]{2abx} = 8$, 得: a +b + x ≥ 6 .

所以
$$f(x) = \frac{1}{\sqrt{1+x}} + \frac{1}{\sqrt{1+a}} + \frac{1}{\sqrt{1+b}} > \frac{1}{1+x} + \frac{1}{1+a} + \frac{1}{1+b}$$

$$= \frac{3+2(a+b+x)+(ab+ax+bx)}{(1+x)(1+a)(1+b)} \ge \frac{9+(a+b+x)+(ab+ax+bx)}{(1+x)(1+a)(1+b)}$$

$$= \frac{1+(a+b+x)+(ab+ax+bx)+ab}{(1+x)(1+a)(1+b)} = 1$$

(二)、再证 f(x) < 2.

由 、 式中关于 x,a,b的对称性,不妨设 x≥a≥b.则0<b≤2.

(I) 、当 a +b ≥7 ,则 a ≥5 ,所以 x ≥a ≥5 ,因为
$$\frac{1}{\sqrt{1+b}}$$
 <1 , $\frac{1}{\sqrt{1+x}}$ + $\frac{1}{\sqrt{1+a}}$ ≤ $\frac{2}{\sqrt{1+5}}$ <1.

此时 f(x)=
$$\frac{1}{\sqrt{1+x}}+\frac{1}{\sqrt{1+a}}+\frac{1}{\sqrt{1+b}}<2$$
.

(II)、当 a +b <7

由 得:
$$x = \frac{8}{ab}$$
, $\frac{1}{\sqrt{1+x}} = \sqrt{\frac{ab}{ab+8}}$.

因为:
$$\frac{1}{1+b} < 1 - \frac{b}{1+b} + \frac{b^2}{4(1+b)^2} = \left(1 - \frac{b}{2(1+b)}\right)^2$$

所以
$$\frac{1}{\sqrt{1+b}} < 1 - \frac{b}{2(1+b)}$$

同理得
$$\frac{1}{\sqrt{1+a}} < 1 - \frac{a}{2(1+a)}$$

于是:
$$f(x) < 2 - \frac{1}{2} \begin{pmatrix} a + b \\ 1+a + b \end{pmatrix} - 2\sqrt{\frac{ab}{ab+8}}$$

下面证明:
$$\frac{a}{1+a} + \frac{b}{1+b} > 2\sqrt{\frac{ab}{ab+8}}$$

因为
$$\frac{a}{1+a} + \frac{b}{1+b} \ge 2\sqrt{\frac{ab}{(1+a)(1+b)}}$$

只要证 $\frac{ab}{(1+a)(1+b)} > \frac{ab}{ab+8}$, 即 ab+8 > (1+a)(1+b) , 也即 a+b < 7 , 据 ,此为显然 .

因此 得证.故由 得 f(x)<2.

综上所述,对任何正数 a,x,皆有1<f(x)<2.

解析: 一方面:(法一)
$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1} \ge \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) > \frac{1}{2} + \frac{2}{4} = 1$$

(法二)
$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1}$$

$$=\frac{1}{2}\left[\left(\frac{1}{n+1}+\frac{1}{3n+1}\right)+\left(\frac{1}{n+2}+\frac{1}{3n}\right)+\cdots+\left(\frac{1}{3n+1}+\frac{1}{n+1}\right)\right]$$

$$=\frac{1}{2}\left(\frac{4n+2}{(3n+1)\cdot(n+1)}+\frac{4n+2}{3n(n+2)}+\cdots+\frac{4n+2}{(3n+1)\cdot(n+1)}\right)$$

$$= (2n+1) \cdot \left(\frac{1}{(2n+1)^2 - n^2} + \frac{1}{(2n+1)^2 - (n-1)^2} + \cdots + \frac{1}{(2n+1)^2 - n^2} \right)$$

$$> \frac{(2n+1)^2}{(2n+1)^2} = 1$$

另一方面:
$$\frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{3n+1} < \frac{2n+1}{n+1} < \frac{2n+2}{n+1} = 2$$
.

十、二项放缩

$$2^{n} = (1+1)^{n} = C_{n}^{0} + C_{n}^{1} + \cdots + C_{n}^{n} \ge C_{n}^{0} + C_{n}^{1} = n+1,$$

$$2^{n} \ge C_{n}^{0} + C_{n}^{1} + C_{n}^{2} = \frac{n^{2} + n + 2}{2}; \ 2^{n} > n(n-1) \ (n \ge 2)$$

例 38. 已知
$$a_1 = 1$$
, $a_n + = \left(1 + \frac{1}{n^2 + n}\right) a_n + \frac{1}{2^n}$.证明: $a_n < e^2$.

解析:
$$a_{n+1} \le \left(1 + \frac{1}{n(n-1)}\right) a_n + \frac{1}{n(n-1)} \Rightarrow a_{n+1} + 1 \le \left(1 + \frac{1}{n(n-1)}\right) (a_n + 1)$$

:
$$\ln (1 + x) < x , (x > -1)$$

⇒
$$\ln (a_{n+} + 1) \le \ln (a_n + 1) + \ln \left(1 + \frac{1}{n(n-1)}\right) < \ln (a_n + 1) + \frac{1}{n(n-1)}$$

$$\Rightarrow \ln(a_{n+} + 1) - \ln(a_n + 1) < \frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

$$\Rightarrow \sum_{k=1}^{n-1} [\ln(a_{k+1}+1) - \ln(a_{k+1})] < \sum_{k=1}^{n-1} \frac{1}{k(k-1)} \Rightarrow \ln(a_{n+1}) - \ln(a_{1}+1) < 1 - \frac{1}{n} < 1.$$

即: $\ln (a_n + 1) < 1 + \ln 3 \Rightarrow a_n < 3e - 1 < e^2$.

例 39. 设 $a_n = \left(1 + \frac{1}{n}\right)^n$, 求证:数列 $\{a_n\}$ 单调递增且 $a_n < 4$.

解析: 引入一个结论:若 0 < a < b,则 b ^{n + −} a ^{n + −} < (n + 1) ⁿ (b − a) (证明略)

整理上式得: a^{n + +} > bⁿ [(n + 1)a − nb]

(🔞)

以 a = 1 +
$$\frac{1}{n+1}$$
, b = 1 + $\frac{1}{n}$ 代入(\otimes) 式得: $\left(1 + \frac{1}{n+1}\right)^{n+1} > \left(1 + \frac{1}{n}\right)^{n}$.

即 {a, }单调递增.

以 a =1, b =1 +
$$\frac{1}{2n}$$
 代入(\otimes) 式得: 1 > $\frac{1}{2} \cdot \left(1 + \frac{1}{2n}\right)^n \Rightarrow \left(1 + \frac{1}{2n}\right)^n < 2 \Rightarrow \left(1 + \frac{1}{2n}\right)^{2n} < 4$.

此式对一切正整数 n 都成立,即对一切偶数有 $\left(1+\frac{1}{n}\right)^n < 4$,又因为数列 $\{a_n\}$ 单调递增,所以对一切正整数 n 有 $\left(1+\frac{1}{n}\right)^n < 4$.

例 40. 已知 a +b =1 , a > 0 , b > 0 , 求证: a n + b n ≥ 2 n .

解析: 因为 a + b = 1, a > 0, b > 0, 则可以认为: a_1^{-1} , b 成等差数列,设 a = 1 - d, b = 1 + d

从而:
$$a^n + b^n = \left(\frac{1}{2} - d\right)^n + \left(\frac{1}{2} + d\right)^n \ge 2^{1-n}$$
.

例 41. 设 n > 1 , n ∈ N , 求证:
$$\binom{2}{3}^n < \binom{8}{(n+1)(n+2)}$$
.

解析: 观察 $\left(\frac{2}{3}\right)^n$ 的结构,注意到 $\left(\frac{3}{2}\right)^n = \left(1 + \frac{1}{2}\right)^n$,展开得:

$$\left(1+\frac{1}{2}\right)^{n}=1+C_{n}^{1}\cdot\frac{1}{2}+C_{n}^{2}\cdot\frac{1}{2^{2}}+C_{n}^{3}\cdot\frac{1}{2^{3}}+\cdots+C_{n}^{n}\cdot\frac{1}{2^{n}}$$

$$\geq 1 + \frac{n}{2} + \frac{n(n-1)}{8} = \frac{(n+1)(n+2)+6}{8}$$

即:
$$\left(1+\frac{1}{2}\right)^{n} > \frac{(n+1)(n+2)}{8}$$
, 命题得证.

例 42. (2008 年北京海淀 5月练习) 已知函数 y = f (x), x ∈ N , y ∈ N , 满足:

、对任意 a,b ∈ N^{*}, a ≠ b , 都有: af (a)+bf (b)> af (b)+bf (a); 、对任意 n ∈ N^{*} , 都有 f [f (n)] = 3n.

(1) 、试证明: f (x)为 N L的单调增函数; (2) 、求 f (1)+ f (6)+ f (28);

(3) 、
$$\Rightarrow$$
 a_n = f (3ⁿ), n ∈ N^{*}, 试证明: $\frac{n}{4n+2} \le \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < \frac{1}{4}$.

解析:本题的亮点很多 ,是一道考查能力的好题

(1) 、运用抽象函数的性质判断单调性

因为 af (a)+bf (b)>af (b)+bf (a), 所以可以得到: (a-b)f(a)-(a-b)f(b)>0.

不妨设 a > b, 所以, 可以得到 f(a) > f(b), 所以 f(x)为 N^* 上的单调增函数

(2) 、此问的难度较大 ,要完全解决出来需要一定的能力 !

首先我们发现条件不是很足 ,, 尝试探索看看按 (1) 中的不等式可以不可以得到什么结论 , 一发现就有思路了!

由(1) 可知: (a -b)·(f (a)- f (b))>0, 令 b = 1, a = f (1), 则可以得到

所以由不等式可以得到: 1 < f(1)<3.

又 f (1) ∈ N^{*}, 所以可以得到: f (1)= 2

接下来要运用迭代的思想 :

因为 f(1)=2, 所以: f(2)= f [f(1)]=3, f(3)= f [f(2)]=6, f(6)= f [f(3)]=9

$$f(9) = f[f(6)] = 18$$
, $f(18) = f[f(9)] = 27$, $f(27) = f[f(18)] = 54$, $f(54) = f[f(27)] = 81$

在此比较有技巧的方法就是 : 81 - 54 = 27 = 54 - 27

所以可以判断: f(28)=55

当然,在这里可能不容易一下子发现这个结论 ,所以还可以列项的方法 ,把所有项数尽可能地列出来 ,然后就可以得到结论 .

所以, 综合 有: f(1)+f(6)+f(28)=55+9+2=66.

(3) 、在解决 an b的通项公式时也会遇到困难

$$f \left[f(3^n) \right] = 3^{n+1}$$
, $f(3^{n+1}) = f \left[f(3^n) \right] = 3f(3^n) \Rightarrow a_{n+1} = 3a_n$

所以数列 $a_n = f(3^n)$, $n \in N^*$ 的方程为 $a_n = 2 \cdot 3^n$, 从而 $\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} = \frac{1}{4} \left(1 - \frac{1}{3^n}\right)$.

一方面:
$$\frac{1}{4}\left(1-\frac{1}{3^n}\right)<\frac{1}{4}$$
; 另一方面: $3^n=(1+2)^n\geq C_n^0\cdot 2^0+C_n^1\cdot 2^1=2n+1$.

所以:
$$\frac{1}{4}\left(1-\frac{1}{3^n}\right) \ge \frac{1}{4}\left(1-\frac{1}{2n+1}\right) = \frac{1}{4} \cdot \frac{2n}{2n+1} = \frac{n}{4n+2}$$
.

从而, 综上有:
$$\frac{n}{4n+2} \le \frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n} < \frac{1}{4}$$
.

例 43. 已知函数 f(x)的定义域为 [0,1] ,且满足下列条件:

- 、对于任意 x ∈[0,1] , 总有 f (x)≥3 , 且 f (1)=4;
- 、若 $x_1 \ge 0, x_2 \ge 0, x_1 + x_2 \le 1$,则有: $f(x_1 + x_2) \ge f(x_1) + f(x_2) 3$.
- (1) 、求 f (0 的值;
- (2) 、求证: f(x)≤4;
- (3) 、当 $x \in \left(\frac{1}{3^n}, \frac{1}{3^{n-1}}\right]$ (n =1,2,3,***)时,试证明: f(x)<3x+3.

解析: (1) 、令 x₁ =x₂ =0 ,由 知:对于任意 x ∈ [0,1] ,总有 f (x)≥3 , f (0) ≥3

又由 得: $f(0) \ge 2 f(0) -3$, 即 $f(0) \le 3$. f(0) = 3.

(2) 、任取 $x_1, x_2 \in [0,1]$, 且设 $x_1 < x_2$, 则: $f(x_2) = f(x_1 + (x_2 - x_1)) \ge f(x_1) + f(x_2 - x_1) - 3$.

因为 $x_2 - x_1 > 0$, 所以 $f(x_2 - x_1) \ge 3$, 即 $f(x_2 - x_1) - 3 \ge 0$.

$$f(x_1) \le f(x_2).$$

当 x ∈[0,1] 时, f(x)≤f(1)=4.

(3)、证明:先用数学归纳法证明: $f\left(\frac{1}{3^{n-4}}\right) \le \frac{1}{3^{n-4}} + 3$ (n ∈ N^{*})

、当 n =1时,
$$f\left(\frac{1}{3^0}\right) = f(1) = 4 = 1 + 3 = \frac{1}{3^0} + 3$$
,不等式成立.

、假设当 n = k 时 ,
$$f\left(\frac{1}{3^{k-4}}\right) \le \frac{1}{3^{k-4}} + 3 \quad (k \in N^*).$$

当 n = k +1 时,由 f
$$\begin{pmatrix} 1 \\ 3^{k-4} \end{pmatrix}$$
 = f $\begin{bmatrix} 1 \\ 3^k \end{bmatrix}$ + $\begin{pmatrix} 1 \\ 3^k \end{bmatrix}$ \geq f $\begin{pmatrix} 1 \\ 3^k \end{pmatrix}$ + f $\begin{pmatrix} 1 \\ 3^k \end{bmatrix}$ - 3

$$\geq f\left(\frac{1}{3^{k}}\right) + f\left(\frac{1}{3^{k}}\right) + f\left(\frac{1}{3^{k}}\right) - 6$$

得:
$$3f\begin{pmatrix} 1 \\ 3^k \end{pmatrix} \le f\begin{pmatrix} 1 \\ 3^{k-1} \end{pmatrix} + 6 \le \frac{1}{3^{k-1}} + 9 = \frac{3}{3^k} + 9 = 3\left(\frac{1}{3^k} + 3\right) \Rightarrow f\left(\frac{1}{3^k}\right) \le \frac{1}{3^k} + 3$$

即当 n = k +1 时,不等式成立.

由 可知:不等式 $f\left(\frac{1}{3^{n-1}}\right) \le \frac{1}{3^{n-1}} + 3$ 对一切正整数 n 都成立.

于是,当
$$x \in \left(\frac{1}{3^n}, \frac{1}{3^{n-1}}\right]$$
 $(n = 1, 2, 3, \cdots)$ 时, $3x + 3 > 3 \times \frac{1}{3^n} + 3 = \frac{1}{3^{n-1}} + 3 \ge f\left(\frac{1}{3^{n-1}}\right)$.

而 x ∈[0,1] , f (x)单调递增 . f
$$\left(\frac{1}{3^n}\right)$$
 < f $\left(\frac{1}{3^{n-1}}\right)$. 所以: f (x) < f $\left(\frac{1}{3^{k-1}}\right)$ < 3x + 3 .

例 44. 已知: $a_1 + a_2 + \cdots + a_n = 1$, $a_i > 0$, $i = 1,2,3,\cdots$, n.

求证:
$$\frac{a_1^2}{a_1 + a_2} + \frac{a_2^2}{a_2 + a_3} + \cdots + \frac{a_{n-1}^2}{a_{n-1} + a_n} + \frac{a_n^2}{a_n + a_1} > \frac{1}{2}$$
.

解析: 构造对偶式: 令
$$A = \frac{a_1^2}{a_1 + a_2} + \frac{a_2^2}{a_2 + a_3} + \cdots + \frac{a_{n-1}^2}{a_{n-1} + a_n} + \frac{a_n^2}{a_n + a_1}$$

$$B = \frac{a_2^2}{a_1 + a_2} + \frac{a_3^2}{a_2 + a_3} + \cdots + \frac{a_n^2}{a_{n-1} + a_n} + \frac{a_1^2}{a_n + a_1}$$

$$\mathbb{N} A - B = \frac{a_1^2 - a_2^2}{a_1 + a_2} + \frac{a_2^2 - a_3^2}{a_2 + a_3} + \cdots + \frac{a_{n,1}^2 - a_n^2}{a_{n,1} + a_n} + \frac{a_n^2 - a_1^2}{a_n + a_1}$$

$$= (a_1 - a_2) + (a_2 - a_3) + \cdots + (a_{n,1} - a_n) + (a_n - a_1) = 0$$

$$\therefore A = B$$

$$\mathbb{N} \cdot \frac{a_i^2 + a_j^2}{a_i + a_j} \ge \frac{1}{2} (a_i + a_j) (i, j = 1, 2, 3, \cdots, n)$$

$$\therefore A = \frac{1}{2} (A + B) = \frac{1}{2} \left(\frac{a_1^2 + a_2^2}{a_1 + a_2} + \frac{a_2^2 + a_3^2}{a_2 + a_3} + \cdots + \frac{a_n^2 + a_1^2}{a_n + a_1} \right)$$

$$\ge \frac{1}{4} [(a_1 + a_2) + (a_2 + a_3) + \cdots + (a_{n,1} + a_n) + (a_n + a_1)] = \frac{1}{2}$$

十一、积分放缩

利用定积分的保号性比大小

保号性是指,定义在 [a,b]上的可积函数 $f(x) \ge 0 (\le 0)$,则 $\int_a^b f(x) dx \ge 0 (\le 0)$.

例 45. 求证: $\pi^{e} < e^{\pi}$.

解析:
$$\pi^e < e^{\pi \Rightarrow} \frac{\ln \pi}{\pi} < \frac{\ln e}{e}$$

$$\frac{\ln \pi}{\pi} - \frac{\ln e}{e} = \frac{\ln x}{x} \Big|_e^{\pi} = \int_e^{\pi} d\left(\frac{\ln x}{x}\right) = \int_e^{\pi} \frac{1 - \ln x}{x^2} dx$$

当
$$x \in (e, \pi)$$
时, $\frac{1 - \ln x}{x^2} < 0$, $\frac{\pi 1 - \ln x}{x^2} dx < 0$ $\frac{\ln \pi}{\pi} < \frac{\ln e}{e}$, $\pi^e < e^{\pi}$.

利用定积分估计和式的上下界

定积分产生和应用的一个主要背景是计算曲边梯形的面积,现在用它来估计小矩形的面积和

例 46. 求证:
$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \cdots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1), (n > 1, n \in N^*).$$

解析: 考虑函数 $f(x) = \frac{1}{\sqrt{x}}$ 在区间 [, i +1](i = 1,2,3,\dots, n)上的定积分

如图,显然
$$\frac{1}{\sqrt{i}} = \frac{1}{\sqrt{i}}$$
 1 > $\int_{1}^{i+1} \frac{1}{\sqrt{x}} dx$

对 i 求和:
$$\sum_{i=1}^{n} \frac{1}{\sqrt{i}} > \sum_{i=1}^{n} \int_{1}^{i+1} \frac{1}{\sqrt{x}} dx = \int_{1}^{n+1} \frac{1}{x} dx = \left[2\sqrt{x}\right]_{1}^{n+1} = 2(\sqrt{n+1}-1)$$

$$= \left[2\sqrt{x}\right]_{1}^{n+1} = 2(\sqrt{n+1}-1)$$

解析: 考虑函数 $f(x) = \frac{1}{1+x}$ 在区间 $\left[\frac{i-1}{n}, \frac{i}{n}\right]$ (i = 1,2,3,\dots, n)上的定积分.

$$\frac{1}{n+i} = \frac{1}{n} \cdot \frac{1}{1+i} < \int_{n}^{i} \frac{1}{1+x} dx$$

$$\sum_{i=1}^{n} \frac{1}{n^{i}+i} = \sum_{i=1}^{n} \frac{1}{n^{i}} \cdot \frac{1}{1+\frac{i}{n}} < \sum_{i=1}^{n} \frac{1}{\frac{i}{n}} \frac{1}{1+x} dx = \int_{0}^{1} \frac{1}{1+x} dx = \ln (1+x)_{0}^{1} - \ln 2 < \frac{7}{10}.$$

例 48.(2003 年全国高考江苏卷) 设 a>0,如图,已知直线 l:y=ax 及曲线 $C:y=x^2$,C 上的点 Q_1 的横坐标为 $a_1(0<a_1<a)$ 从 C 上的点 $Q_n(n\ge1)$ 作直线平行于 x 轴,交直线 l 于点 P_{n+} ,再从点 P_{n+} 作直线平行于 y 轴,交曲线 C 于点 Q_{n+} . $Q_n(n=1,2,3,,)$ 的横坐标构成数列 a_n

(1) 试求 $a_n + 5 a_n$ 的关系,并求 $\{a_n\}$ 的通项公式;

(2) 当
$$a = 1, a_1 \le \frac{1}{2}$$
 时,证明 $\sum_{k=1}^{n} (a_k - a_{k+1}) a_{k+2} < \frac{1}{32}$;

(3) 当 a =1时,证明
$$\sum_{k=1}^{n} (a_k - a_k +)a_k + 2 < \frac{1}{3}$$
.

解析: (1)
$$Q_{n}(a_{n,1}, a_{n}^{2}), P_{n+1}(\frac{1}{a} a_{n}^{2}, a_{n}^{2}), Q_{n+1}(\frac{1}{a} a_{n}^{2}, \frac{1}{a^{2}} a_{n}^{4}).$$

$$a_{n+1} = \frac{1}{a} a_{n}^{2}, \qquad a_{n} = \frac{1}{a} a_{n+1}^{2} = \frac{1}{a} (\frac{1}{a} a_{n-2}^{2})^{2} = (\frac{1}{a})^{1+2} a_{n-2}^{2^{2}}$$

$$= (\frac{1}{a})^{1+2} (\frac{1}{a} a_{n-3}^{2})^{2^{2}} = (\frac{1}{a})^{1+2+2^{2}} a_{n-2}^{2^{3}} = \cdots$$

$$= (\frac{1}{a})^{1+2+2} a_{n}^{2-2} a_{n}^{2^{n+1}} = (\frac{1}{a})^{2^{n-1}-1} a_{n}^{2^{n-1}} = a(\frac{a_{1}}{a})^{2^{n-1}}$$

$$a_{n} = a(\frac{a_{1}}{a})^{2^{n-1}}.$$

(2)、证明:由 a=1 知:
$$a_{n+} = a_n^2$$
, $a_1 \le \frac{1}{2}$, $a_2 \le \frac{1}{4}$, $a_3 \le \frac{1}{16}$.
当 $k \ge 1$ 时, $a_{k+2} \le a_3 \le \frac{1}{16}$.
$$\sum_{k=1}^{n} (a_k - a_{k+1}) \cdot a_{k+2} \le \frac{1}{16} \sum_{k=1}^{n} (a_k - a_{k+1}) = \frac{1}{16} (a_1 - a_{n+1}) < \frac{1}{32}$$

(3)、证明:由(1)知,当 a=1时,
$$a_n = a_1^{2^{n-1}}$$
,因此
$$\sum_{k=1}^{n} (a_k - a_{k+1}) a_{k+2} = \sum_{k=1}^{n} (a_1^{2^{k+1}} - a_1^{2^k}) a_1^{2^{k+1}} \le \sum_{i=1}^{2^{n-1}} (a_1^i - a_1^{i+1}) a_1^{2i+2}$$
$$= (1 - a_1) a_1^2 \sum_{i=1}^{2^{n-1}} a_1^{3i} < (1 - a_1) a_1^2 \cdot \frac{a_1^3}{1 - a_1^3} = \frac{a_1^5}{1 + a_1 + a_1^2} < \frac{1}{3}.$$

奇巧积累: 将定积分构建的不等式略加改造即得"初等"证明,如:

$$\frac{1}{\sqrt{i}} > 2(\sqrt{i+1} - \sqrt{i});$$

$$\frac{1}{n+i} < \int_{\frac{1}{n}}^{\frac{1}{n}} \frac{1}{1+x} dx = \ln\left(1+\frac{i}{n}\right) - \ln\left(1+\frac{i-1}{n}\right) \frac{1}{n+i} < \int_{\frac{1}{n}+1+x}^{\frac{1}{n}} dx ;$$

$$\frac{\sin\theta_{i} - \sin\theta_{i,4}}{\sqrt{1-\sin^{2}\theta_{i,4}}} < \int_{\sin\theta_{1}}^{\sin\theta_{1}} \frac{1}{\sqrt{1-x^{2}}} dx = \theta_{i} - \theta_{i,4};$$

十二、部分放缩 (尾式放缩)

例 49. 求证:
$$\frac{1}{3+1} + \frac{1}{3 \times 2 + 1} + \cdots + \frac{1}{3 \cdot 2^{n-4} + 1} < \frac{4}{7}$$
.

解析: $\frac{1}{3+1} + \frac{1}{3 \times 2 + 1} + \cdots + \frac{1}{3 \cdot 2^{n-4} + 1} = \frac{1}{4} + \frac{1}{7} + \cdots + \frac{1}{3 \cdot 2^{n-4} + 1}$

$$< \frac{11}{28} + \frac{1}{3 \cdot 2^2} + \cdots + \frac{1}{3 \cdot 2^{n-4}} < \frac{11}{28} + \frac{1}{3 \cdot 1 - \frac{1}{2}} = \frac{47}{84} < \frac{48}{84} = \frac{4}{7}$$

解析:
$$a_n = 1 + \frac{1}{2^{\alpha}} + \frac{1}{3^{\alpha}} + \cdots + \frac{1}{n^{\alpha}} \le 1 + \frac{1}{2^2} + \frac{1}{3^2} + \cdots + \frac{1}{n^2}$$

又 $k^2 = k \cdot k > k(k-1)k ≥ 2$ (只将其中一个 k 变成 k-1 , 进行部分放缩)

十三、三角不等式的放缩

例 51. 求证 : |sin x| ≤ |x| (x ∈ R)

解析:(1)、当×=0时,

(2) 、当 $0 < x < \frac{\pi}{2}$ 时,构造单位圆,如图所示:

因为三角形 AOB的面积小于扇形 OAB的面积

所以可以得到: sin x < x ⇒ | sin x < x

、当 x < 0时, -x > 0.由(2)可知: |sin x | < |x| (3)

所以综上有 |sin x | ≤ x (x ∈ R)

十四、使用加强命题法证明不等式

- (1) 、同侧加强: 对所证不等式的同一方向 (可以是左侧,也可以是右侧)进行加强.如要证明 f(x) < A, 只要证明 f(x) < A - B(B > 0), 其中 B 通过寻找分析,归纳完成.
- 例 52. 求证: 对一切 n ∈ N^{*}, 都有 $\sum_{k=1}^{n} \frac{1}{k\sqrt{k}} < 3$.

解析:
$$\frac{1}{k\sqrt{k}} = \frac{1}{\sqrt{k^3}} < \frac{1}{\sqrt{k(k^2 - 1)}} = \frac{1}{\sqrt{(k - 1)k(k + 1)}} < \left(\frac{1}{\sqrt{(k - 1)k}} - \frac{1}{\sqrt{k(k + 1)}}\right) \cdot \frac{1}{\sqrt{k + 1} - \sqrt{k - 1}}$$
$$= \frac{1}{\sqrt{k}} \cdot \left(\frac{1}{\sqrt{k - 1}} - \frac{1}{\sqrt{k + 1}}\right) \cdot \frac{\sqrt{k + 1} + \sqrt{k - 1}}{2} < \frac{1}{\sqrt{k}} \cdot \left(\frac{1}{\sqrt{k - 1}} - \frac{1}{\sqrt{k + 1}}\right) \cdot \sqrt{\frac{2k}{2}}$$
$$= \frac{1}{\sqrt{k - 1}} - \frac{1}{\sqrt{k + 1}}$$

从而:
$$\sum_{k=\pm k\sqrt{k}}^{n} < 1 + \frac{1}{\sqrt{1}} - \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{5}} + \cdots + \frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k+1}}$$

$$<1+\frac{\sqrt{2}}{2}-\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}<3$$

当然本题还可以使用其他方法 ,如:

$$\therefore 2k = k + k > \sqrt{k(k-1)} + \sqrt{(k-1)(k-1)} = \sqrt{k-1}(\sqrt{k} + \sqrt{k-1})$$

$$\therefore \frac{1}{k\sqrt{k}} = \frac{2}{2k\sqrt{k}} < \frac{2}{\sqrt{k}\sqrt{k-1}(\sqrt{k}+\sqrt{k-1})} = \frac{2(\sqrt{k}-\sqrt{k-1})}{\sqrt{k}\sqrt{k-1}} = 2\left(\frac{1}{\sqrt{k-1}} - \frac{1}{\sqrt{k}}\right)$$

所以:
$$\sum_{k=1}^{n} \frac{1}{k\sqrt{k}} = 1 + \frac{1}{2\sqrt{2}} + \cdots + \frac{1}{n\sqrt{n}} < 1 + 2\left(\frac{1}{\sqrt{1}} - \frac{1}{\sqrt{2}}\right) + \cdots + 2\left(\frac{1}{\sqrt{n-1}} - \frac{1}{\sqrt{n}}\right)$$

$$= 1 + 2 - \frac{2}{\sqrt{n}} = 3 - \frac{2}{\sqrt{n}} < 3$$

- (2) 、异侧加强(数学归纳法)
- (3) 、双向加强: 有些不等式,往往是某个一般性命题的特殊情况 ,这时,不妨"返璞归真" ,通过双向加强还原其本来面目 ,从而顺利解决原不等式 . 其基本原理为 :

欲证明
$$A < f(x) < B$$
, 只要证明 $: A + C < f(x) < B - C(C > 0, A < B)$.

例 53. 已知数列
$$\{a_n\}$$
满足: $a_1 = 1, a_n + \frac{1}{a_n}$,求证: $\sqrt{2n-1} < a_n < \sqrt{3n-2}$ $(n > 2)$

解析:
$$a_n^2 = \left(a_{n,1} + \frac{1}{a_{n,1}}\right)^2 > a_{n,1}^2 + 2$$
,从而 $a_n^2 - a_{n,1}^2 > 2$,所以有

$$a_n^2 = (a_n^2 - a_{n-1}^2) + (a_{n-1}^2 - a_{n-2}^2) + \cdots + (a_2^2 - a_1^2) + a_1^2 > 2(n-1) + 1 = 2n-1$$

又
$$a_n^2 = \left(a_{n-1} + \frac{1}{a_{n-1}}\right)^2 < a_{n-1}^2 + 3$$
,所以 $a_n^2 - a_{n-1}^2 < 3$. 从而有

$$a_n^2 = (a_n^2 - a_{n-1}^2) + (a_{n-1}^2 - a_{n-2}^2) + \cdots + (a_2^2 - a_1^2) + a_1^2 < 3(n-1) + 1$$

所以综上有:
$$\sqrt{2n-1} < a_n < \sqrt{3n-2} (n > 2)$$

引申:已知数列
$$\{a_n\}$$
满足: $a_1 = 1, a_n + = a_n + \frac{1}{a_n}, 求证: \sum_{k=1}^n \frac{1}{a_k} \le \sqrt{2n-1}$.

解析:由上可知
$$a_n > \sqrt{2n-1} > \frac{\sqrt{2n-1} + \sqrt{2n-3}}{2}$$
.

所以:
$$\frac{1}{a_n} < \frac{1}{\sqrt{2n-1}} < \frac{2}{\sqrt{2n-1} + \sqrt{2n-3}} = \sqrt{2n-1} - \sqrt{2n-3}$$

从而:
$$\sum_{k=1}^{n} \frac{1}{a_k} < 1 + (\sqrt{3} - 1) + (\sqrt{5} - \sqrt{3}) + \cdots + \sqrt{2n-1} - \sqrt{2n-3} = \sqrt{2n-1} (n \ge 2)$$

又当 n = 1时,
$$\frac{1}{a_1}$$
 = 1, 所以综上有 $\sum_{k=1}^{n} \frac{1}{a_k} \le \sqrt{2n-1}$.

<u>同题引申:</u>(2008 年浙江高考试题) 已知数列 {a_n}, a_n ≥ 0, a₁ = 0, a_{n+} ² + a_{n+} −1 = a_n ² (n ∈ N ^{*}).

记:
$$S_n = a_1 + a_2 + \cdots + a_n$$
, $T_n = \frac{1}{1 + a_1} + \frac{1}{(1 + a_1)(1 + a_2)} + \cdots + \frac{1}{(1 + a_1)(1 + a_2)}$.

求证: 当 n ∈ N * 时 , (1) 、 $a_n < a_{n+1}$; (2) 、 $S_n > n-2$; (3) 、 $T_n < 3$.

解析: (1) 、 $a_{n+}^2 - a_n^2 = 1 - a_{n+}$,猜想 $a_n < 1$. 下面用数学归纳法证明 :

、当 n = 1时, $a_1 < 1$, 结论成立;

、假设当 n = k(k ≥1)时, a_k <1.

则 $n = k + 1(k \ge 1)$ 时, $a_{n+1}^2 + a_{n+1} = 1 + a_n^2$, 从而

$$a_{n+1}^{2} + a_{n+1} < 2 \Rightarrow a_{n+1} < 1$$
, 所以 $0 \le a_{k+1} < 1$.

所以综上有 $0 \le a_n < 1$, 故 $a_{n+1}^2 - a_n^2 > 0 \Rightarrow a_{n+1} > a_n$.

(2) 、因为
$$a_{n+2}^2 - a_n^2 = 1 - a_{n+1}^2$$
,则 $a_2^2 - a_1^2 = 1 - a_2$, $a_3^2 - a_2^2 = 1 - a_3^2$ $a_{n+2}^2 - a_n^2 = 1 - a_{n+1}^2$

相加后可以得到: $a_{n+1}^2 - a_1^2 = n - (a_1 + a_2 + \cdots + a_n) \Rightarrow S_{n+1} = n - a_{n+1}^2$.

所以
$$S_n = n - 1 - a_n^2 > n - 2$$
.

(3) 、因为
$$a_{n+1}^{2} + a_{n+1} = 1 + a_{n}^{2} \ge 2a_{n}$$
,从而 $a_{n+1} + 1 \ge \frac{2a_{n}}{a_{n+1}}$,有 $\frac{1}{1 + a_{n+1}} \le \frac{a_{n+1}}{2a_{n}}$,所以有

$$\frac{1}{(1+a_3)\cdots(1+a_n)(1+a_{n+1})} \leq \frac{a_{n+1}}{2a_n} \cdot \frac{a_n}{2a_{n+1}} \cdots \cdot \frac{a_3}{2a_2} = \frac{a_{n+1}}{2^{n-1}a_2}$$

从而
$$\frac{1}{(1+a_1)(1+a_2)\cdots(1+a_n)(1+a_n)} \le \frac{a_n+1}{2^{n-1}a_2} \cdot \frac{1}{1+a_2} = \frac{a_n+1}{2^{n-1}a_2}$$

所以
$$\frac{1}{(1+a_1)(1+a_2)(1+a_3)} \le \frac{a_n}{2^{n-2}} \cdot \frac{1}{1+a_2} = \frac{a_n}{2^{n-2}}$$

则
$$T_n \le 1 + \frac{1}{1 + a_2} + \frac{a_3}{2} + \frac{a_4}{2^2} + \cdots + \frac{a_n}{2^{n-2}} < 1 + \frac{1}{1 + a_2} + \frac{1}{2} + \cdots + \frac{1}{2^{n-2}}$$

$$<\frac{2}{\sqrt{5}+1}+1+1<3$$

所以综上有 $T_n < 3$.

例 54. (2008 年陕西省高考试题) 已知数列 $\{a_n\}$ 的首项 $a_n = \frac{3}{5}$, $a_{n+1} = \frac{3a_n}{2a_n+1}$, n=12; .

(1)、 求{a_n}的通项公式;

(2)、证明:对任意的
$$x > 0$$
 , $a_n = \frac{1}{1+x} - \frac{1}{(1+x)^2} \left(\frac{2}{3^n} - x\right)$, $n = 12$;

(3)、证明:
$$a_1 + a_2 + \cdots + a_n > \frac{n^2}{n+1}$$
.

解法一: (1)、
$$a_{n+1} = \frac{3a_n}{2a_n+1}$$
 , $\frac{1}{a_{n+1}} = \frac{2}{3} + \frac{1}{3a_n}$, $\frac{1}{a_{n+1}} - 1 = \frac{1}{3} \left(\frac{1}{a_n} - 1 \right)$,

又
$$\frac{1}{a_n}$$
 $-1 = \frac{2}{3}$, $\begin{pmatrix} 1 \\ a_n \end{pmatrix}$ 是以 $\frac{2}{3}$ 为首项 , $\frac{1}{3}$ 为公比的等比数列 .

$$\therefore \frac{1}{a_n} - 1 = \frac{2}{3} \frac{1}{3^{n-1}} = \frac{2}{3}, \therefore a_n = \frac{3^n}{3^n + 2}.$$

(2)、曲(1)知
$$a_n = \frac{3^n}{3^n+2} > 0$$
,

$$\begin{split} &\frac{1}{1+x} - \frac{1}{(1+x^2)} \left(\frac{2}{^n 3} - x \right) = \frac{1}{1+x} - \frac{1}{(1+x)^2} \left(\frac{2}{3^n} + 1 - 1 - x \right) = \frac{1}{1+x} - \frac{1}{(1+x^2)} \left[\frac{1}{a} - (1+x) \right] \\ &= -\frac{1}{a_n} g \frac{1}{(1+x^2)} + \frac{2}{x} = -\frac{1}{a_n} \left(\frac{1}{1+x} - a_n \right)^2 + a_n - a_n \end{split}$$

: 原不等式成立.

(3) 由(2)知,对任意的 x>0,有:

$$a_{1} + a_{2} + \cdots + a_{n} = \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3} - x\right) + \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3^{2}} - x\right) + \cdots + \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3^{2}} - x\right) + \cdots + \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3^{2}} - x\right) + \cdots + \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3^{2}} - x\right) + \cdots + \frac{1}{1+x} - \frac{1}{(1+x)^{2}} \left(\frac{2}{3^{2}} + \frac{2}{3^{2}} + \cdots + \frac{2}{3^{n}} - nx\right).$$

$$\therefore \mathbb{R} \times = \frac{1}{n} \left(\frac{2}{3} + \frac{2}{3^2} + \dots + \frac{2}{3^n} \right) = \frac{3 \left(1 - \frac{1}{3^n} \right)}{n \left(1 - \frac{1}{3} \right)} = \frac{1}{n} \left(1 - \frac{1}{3^n} \right),$$

解法二:(1)、同解法一.

(2),
$$i \nabla f(x) = \frac{1}{1+x} - \frac{1}{(1+x)^2} \left(\frac{2}{3^n} - x \right)$$
,

$$\iiint f'(x) = -\frac{1}{(1+x)^2} - \frac{-(1+x)^2 - \left(\frac{2}{3^n} - x\right) 2(1+x)}{(1+x)^2} = \frac{2\left(\frac{2}{3^n} - x\right)}{(1+x)^2}$$

x > 0,

∴ 当
$$x < \frac{2}{3^n}$$
时,f'(x) > 0;当 $x > \frac{2}{3^n}$ 时,f'(x) < 0.

∴ 当
$$x = \frac{2}{3^n}$$
时, $f(x)$ 取得最大值 $f\left(\frac{2}{3^n}\right) = \frac{1}{1 + \frac{2}{3^n}} = a_n$. ∴ 原不等式成立 .

(3) 同解法一.

十四、经典题目方法探究

探究 1. (2008 年福建省高考改编) 求证:
$$(1+1)\begin{pmatrix} 1+1\\ 1+4 \end{pmatrix}$$
 $(1+1)\begin{pmatrix} 1+1\\ 1+4 \end{pmatrix}$ $(1+1)\begin{pmatrix} 1+1\\ 2n-1 \end{pmatrix}$ $(1+1)\begin{pmatrix} 1+1\\ 2n-1 \end{pmatrix}$

那么则有:
$$\frac{2n}{2n-1} > \frac{2n+1}{2n}$$
. 从而有: $\left(1+\frac{1}{2n-1}\right) > \left(1+\frac{1}{2n}\right)$.

$$\Leftrightarrow 1 = (1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)..\left(1+\frac{1}{2n-1}\right), \ H = \left(1+\frac{1}{2}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{6}\right)..\left(1+\frac{1}{2n}\right).$$

由
$$\left(1 + \frac{1}{2n-1}\right) > \left(1 + \frac{1}{2n}\right)$$
可知 , $I > H$.

所以:
$$||^2 > || H = (1+1)\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2n-1}\right)\left(1+\frac{1}{2n}\right)$$
$$= \frac{2\times 3\times 4\times 5\times ...\times 2n\times 2n+1}{1 2 3 4 2n-1 2n} = 2n+1$$

易知 I > 0 , 从而 I > √2n +1 .

即
$$(1+1)(1+\frac{1}{3})(1+\frac{1}{5})...(1+\frac{1}{2n-1})>\sqrt{2n+1}$$
.

证法二(函数导数法):令 f(x)=1+
$$\frac{1}{2x-1}$$
, x $\in \left(\frac{1}{2}, +\infty\right)$.

则有:
$$f(x) = -\frac{1}{(2x-1)^2} < 0$$
 对 $x \in \left(\frac{1}{2}, +\infty\right)$ 恒成立

所以
$$f(x)$$
在 $x \in \left(\frac{1}{2}, +\infty\right)$ 上单调递减 .

又因为对 $\forall n \in \mathbb{N}^*$,有 $n + \frac{1}{2} > n$,由 f(x)的递减性可知: $1 + \frac{1}{2n-1} > 1 + \frac{1}{2n}$. 其余同证法一 .

证法三 (数学归纳法):

(1) 当 n = 1 时 , 2 > $\sqrt{3}$, 不等式明显成立 ;

(2) 当 n = k 时,命题成立,即(1+1
$$\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right).\left(1+\frac{1}{2k-1}\right) > \sqrt{2k+1}$$
成立.

那么当 n = k + 1 时,由归纳假设可知:

$$(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)..\left(1+\frac{1}{2k-1}\right)\left(1+\frac{1}{2k+1}\right)>\sqrt{2k+1}\cdot\left(1+\frac{1}{2k+1}\right).$$

欲证
$$(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)..\left(1+\frac{1}{2k-1}\right)\left(1+\frac{1}{2k+1}\right) > \sqrt{2k+3}$$
 成立

比较 式,只需证
$$\sqrt{2k+1} \cdot \left(1 + \frac{1}{2k+1}\right) > \sqrt{2k+3}$$
 成立即可.

将 式两边平方化简 ,即证: $4k^2 + 8k + 4 > 4k^2 + 8k + 3$,此为显然 .

即当 n = k +1 时,不等式也成立.

由 (1) (2) 可知,对一切 n∈N*,都有
$$(1+1)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{5}\right)..\left(1+\frac{1}{2n-1}\right)>\sqrt{2n+1}$$
成立.

本题还有多种解法,这里不再详细叙述。比较以上三种解法,都是以不等式" $(2n \hat{)} > (2n-1) (2n+1)$ "为载体,通过适当的变形,突出了学生对基本数学知识的灵活运用。

探究 2. (2008 年全国二卷)设函数
$$f(x) = \frac{\sin x}{2 + \cos x}$$
.

(1)、求 f(x)的单调区间;

(2) 如果对任何 x 0 ,都有 f(x) ax ,求 a 的取值范围 .

解:(1)、f'(x) =
$$\frac{(2 + \cos x)\cos x - \sin x(-\sin x)}{(2 + \cos x)^2} = \frac{2\cos x + 1}{(2 + \cos x)^2}$$
.

当 2k
$$-\frac{2}{3} < x < 2k$$
 $+\frac{2}{3}$ (k \in **Z**) 时, $\cos x > -\frac{1}{2}$, 即 f'(x) > 0;

当 2k +
$$\frac{2}{3}$$
 < x < 2k + $\frac{4}{3}$ (k \in **Z**) 时 , $\cos x < -\frac{1}{2}$, 即 f'(x) < 0 .

因此
$$f(x)$$
 在每一个区间 $\left(2k - \frac{2}{3} \cdot 2k + \frac{2}{3}\right) (k \in \mathbf{Z})$ 是增函数,

$$f(x)$$
 在每一个区间 $\left(2k + \frac{2}{3} + \frac{4}{3}\right)$ ($k \in \mathbb{Z}$) 是减函数.

$$g'(x) = a - \frac{2\cos x + 1}{(2 + \cos x)^2} = a - \frac{2}{2 + \cos x} + \frac{3}{(2 + \cos x)^2} = 3\left(\frac{1}{2 + \cos x} - \frac{1}{3}\right)^2 + a - \frac{1}{3}$$

故当 a
$$\frac{1}{3}$$
 时 , g'(x) 0 .

又
$$g(0) = 0$$
 , 所以当 x 0 时 , $g(x)$ $g(0) = 0$, 即 $f(x)$ ax

当
$$0 < a < \frac{1}{3}$$
 时,令 $h(x) = \sin x - 3ax$,则 $h'(x) = \cos x - 3a$.

故当 x € [0 ,arccos3a)时 , h'(x) > 0 . 因此 h(x) 在 [0 ,arccos3a)上单调增加 .

故当 x ∈ (0 arccos3a) 时, h(x) > h(0) = 0, 即 sin x > 3ax.

于是,当
$$x \in (0, \arccos 3a)$$
时, $f(x) = \frac{\sin x}{2 + \cos x} > \frac{\sin x}{3} > ax$.

当 a 0 时,有 f
$$\left(-\frac{1}{2}\right) = \frac{1}{2} > 0$$
 a $\frac{1}{2}$.

因此, a 的取值范围是
$$\begin{bmatrix} 1 \\ 3 \end{bmatrix}$$
 $+\infty$

变式:若 $0 < x_i < \arccos 3a$,其中 $i = 1,2,3,\cdots$,n. 且 $0 < a < \frac{1}{3}$, $x_1 + x_2 + x_3 + \cdots + x_n = \arccos 3a$,求证:

$$\tan \frac{x_1}{2} + \tan \frac{x_2}{2} + \tan \frac{x_3}{2} + \cdots + \tan \frac{x_n}{2} > \frac{3a}{2} \arccos 3a$$

证明:容易得到 $\tan \frac{x_i}{2} = \frac{\sin x_i}{\cos x_i + 1} > \frac{\sin x_i}{2}$,由上面那个题目知道 $\sin x_i > 3ax_i$.