Exercice 1 - Troisième année - *

- 1. Décrire (en termes de suite) l'espace $\ell^p = \mathcal{L}^p(\mathbb{N}, \mathcal{P}(\mathbb{N}), \mu_d)$ où μ_d est la mesure de dénombrement et $1 \leq p \leq +\infty$. Montrer que dans ce cas $\ell^p \subset \ell^q$ si $1 \leq p < q \leq +\infty$, et que l'inclusion est stricte.
- 2. Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré avec $\mu(\Omega) < +\infty$. Si $1 \le p < q \le +\infty$, montrer l'inclusion $\mathcal{L}^p(\Omega) \supset \mathcal{L}^q(\Omega)$. Si $\Omega = [0, 1]$ muni de la tribu des boréliens et de la mesure de Lebesgue, montrer que l'inclusion est stricte.
- 3. Montrer que si $p \neq q$, les espaces $\mathcal{L}^p(\mathbb{R})$ et $\mathcal{L}^q(\mathbb{R})$ ne sont pas comparables.
- 4. Donner un exemple de fonction dans $L^p([0,1])$ pour tout $p \ge 1$, mais pas dans $L^{\infty}([0,1])$.

Exercice 2 - Troisième année - *

Soit f une fonction complexe, mesurable sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

- 1. Soit $1 \leq \alpha < \beta < \infty$. On suppose que $f \in L^{\alpha}(\mathbb{R}) \cap L^{\beta}(\mathbb{R})$. Montrer que pour tout $p \in [\alpha, \beta]$, on a $|f|^{p} \leq |f|^{\alpha} + |f|^{\beta}$. En déduire que $\{p \in [1, +\infty[, f \in L^{p}(\mathbb{R})\} \text{ est un intervalle de } \mathbb{R}$.
- 2. Montrer que l'application $p \mapsto ||f||_p$ est continue sur son domaine de définition.

Exercice 3 - Troisième année - **

- 1. Soit $f \in L^2([0,1])$ et soit, pour $x \in [0,1]$, $F(x) = \int_{[0,x]} f d\lambda$. Montrer que $\lim_{x \to 0} \frac{F(x)}{\sqrt{x}} = 0$.
- 2. Soit $g \in L^2([0, +\infty[)$ et soit, pour $x \in [0, +\infty[], G(x) = \int_{[0,x]} g d\lambda$. Montrer à l'aide de l'inégalité de Cauchy-Schwarz sur un intervalle [a, x] avec a bien choisi que $\lim_{x \to +\infty} \frac{G(x)}{\sqrt{x}} = 0$.

Exercice 4 - Translation - Troisième année - **

Pour $1 \le p < +\infty$, soit $\tau_a : L^p(\mathbb{R}) \to L^p(\mathbb{R})$ définie par $\tau_a(f)(x) = f(x-a)$. Démontrer que, pour tout $f \in L^p(\mathbb{R})$, on a $\lim_{a\to 0} \|\tau_a(f) - f\|_p = 0$. On pourra commencer par le cas où f est une fonction continue à support compact

Exercice 5 - Produit de convolution - Troisième année - ***

Soit f, g deux fonctions mesurables sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On définit, lorsqu'il existe, le produit de convolution de f et g par :

$$f \star g(x) = \int_{\mathbb{R}} f(x - y)g(y)dy.$$

1. Soit $p \in [1, +\infty]$ et q l'exposant conjugué de p. Montrer que si $f \in L^p(\mathbb{R})$ et $g \in L^q(\mathbb{R})$, alors $f \star g$ existe partout, est borné avec

$$||f \star g||_{\infty} \le ||f||_p ||g||_q.$$

- 2. On suppose que $f, g \in L^1(\mathbb{R})$. Montrer que $f \star g$ est définie presque partout, appartient à $L^1(\mathbb{R})$ et vérifie $||f \star g||_1 \leq ||f||_1 ||g||_1$.
- 3. Soit $1 et <math>f \in L^1(\mathbb{R}), g \in L^p(\mathbb{R})$. En écrivant

$$|f(x-y)||g(y)| = |f(x-y)|^{1/p}|g(y)||f(x-y)|^{1/q}$$

montrer que $f \star g$ existe p.p, est dans $L^p(\mathbb{R})$ et satisfait

$$||f \star g||_p \le ||f||_1 ||g||_p$$
.

Exercice 6 - Dualité - Troisième année - *

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré, $p \in [1, +\infty[$ et soit $g \in L^q(\Omega)$, où q est l'exposant conjugué de p. Soit $T: L^p(\Omega) \to \mathbb{C}$ définie par $T(f) = \int_{\Omega} f\overline{g}d\mu$.

- 1. Montrer que T est définie et continue. Montrer que $||T|| \le ||g||_q$.
- 2. En utilisant la fonction f définie par $f(x) = g(x)|g(x)|^{q-2}$ si $g(x) \neq 0$, f(x) = 0 sinon, montrer qu'en fait $||T|| = ||g||_q$.

Si vous trouvez une erreur, une faute de frappe, etc... dans ces exercices, merci de la signaler à geolabo@bibmath.net Venez poursuivre le dialogue sur notre forum :

http://www.bibmath.net/forums