Introduction

Modelling parallel systems

Linear Time Properties

state-based and linear time view definition of linear time properties invariants and safety

liveness and fairness

Regular Properties

Linear Temporal Logic

Computation-Tree Logic

Equivalences and Abstraction

Liveness LF2.6-1

"liveness: something good will happen."

"event a will occur eventually"

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

"event a will occur eventually"

e.g., termination for sequential programs

"event a will occur infinitely many times"

e.g., starvation freedom for dining philosophers

"whenever event **b** occurs then event **a** will occur sometimes in the future"

e.g., every waiting process enters eventually its critical section

liveness

liveness

• Two philosophers next to each other never eat at the same time.

liveness

• Two philosophers next to each other never eat at the same time.

invariant

liveness

• Two philosophers next to each other never eat at the same time.

invariant

• Whenever a philosopher eats then he has been thinking at some time before.

liveness

• Two philosophers next to each other never eat at the same time.

invariant

 Whenever a philosopher eats then he has been thinking at some time before.

safety

liveness

• Two philosophers next to each other never eat at the same time.

invariant

- Whenever a philosopher eats then he has been thinking at some time before.

 safety
- Whenever a philosopher eats then he will think some time afterwards.

liveness

 Two philosophers next to each other never eat at the same time

invariant

• Whenever a philosopher eats then he has been thinking at some time before. safety

 Whenever a philosopher eats then he will think some time afterwards liveness

15/189

liveness

• Two philosophers next to each other never eat at the same time.

invariant

- Whenever a philosopher eats then he has been thinking at some time before.

 safety
- Whenever a philosopher eats then he will think some time afterwards.

 liveness
- Between two eating phases of philosopher i lies at least one eating phase of philosopher i+1.

liveness

• Two philosophers next to each other never eat at the same time.

 Whenever a philosopher eats then he has been thinking at some time before.

safety

 Whenever a philosopher eats then he will think some time afterwards.

liveness

• Between two eating phases of philosopher i lies at least one eating phase of philosopher i+1.

safety

LF2.6-FORMAL

many different formal definitions of liveness have been suggested in the literature many different formal definitions of liveness have been suggested in the literature

here: one just example for a formal definition of liveness

Definition of liveness properties

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over **AP** can be extended to an infinite word in **E**

Definition of liveness properties

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

E is called a liveness property if each finite word over **AP** can be extended to an infinite word in **E**, i.e., if

$$pref(E) = (2^{AP})^+$$

recall: pref(E) = set of all finite, nonempty prefixes of words in E

Definition of liveness properties

Let E be an LT property over AP, i.e., $E \subseteq (2^{AP})^{\omega}$.

 \boldsymbol{E} is called a liveness property if each finite word over \boldsymbol{AP} can be extended to an infinite word in \boldsymbol{E} , i.e., if

$$pref(E) = (2^{AP})^+$$

Examples:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often
- whenever a process has requested its critical section then it will eventually enter its critical section

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

• each process will eventually enter its critical section

LF2.6-EX-LIVENESS

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

• each process will eventually enter its critical section

 $E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$ $\forall i \in \{1, \dots, n\} \ \exists k \geq 0. \ \textit{crit}_i \in A_k$

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its critical section infinitely often

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \stackrel{\infty}{\exists} k \geq 0. \ \textit{crit}_i \in A_k$$

Examples for liveness properties

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

An LT property E over AP is called a liveness property if $pref(E) = (2^{AP})^+$

Examples for $AP = \{wait_i, crit_i : i = 1, ..., n\}$:

- each process will eventually enter its critical section
- each process will enter its crit. section inf. often
- whenever a process is waiting then it will eventually enter its critical section

$$E = \text{ set of all infinite words } A_0 A_1 A_2 \dots \text{ s.t.}$$

$$\forall i \in \{1, \dots, n\} \ \forall j \geq 0. \ \textit{wait}_i \in A_j \\ \longrightarrow \exists k > j. \ \textit{crit}_i \in A_k$$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

Recall: safety properties, prefix closure

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property iff $\forall \sigma \in (2^{AP})^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in pref(\sigma)$ s.t. $\{\sigma' \in E : A_0 \ A_1 \dots A_n \in pref(\sigma')\} = \varnothing$

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property iff $\forall \sigma \in (2^{AP})^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in pref(\sigma)$ s.t. $\{\sigma' \in E : A_0 \ A_1 \dots A_n \in pref(\sigma')\} = \emptyset$

remind:

$$pref(\sigma)$$
 = set of all finite, nonempty prefixes of σ

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

Let E be an LT-property, i.e., $E \subseteq (2^{AP})^{\omega}$

$$E$$
 is a safety property
$$\forall \sigma \in \left(2^{AP}\right)^{\omega} \backslash E \ \exists A_0 \ A_1 \dots A_n \in \mathit{pref}(\sigma) \ \text{s.t.}$$

$$\left\{\sigma' \in E : A_0 \ A_1 \dots A_n \in \mathit{pref}(\sigma')\right\} = \varnothing$$
 iff $\mathit{cl}(E) = E$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

Decomposition theorem

Decomposition theorem

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

Proof:

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

 $E = SAFE \cap LIVE$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

$$E = SAFE \cap LIVE$$

Proof: Let $SAFE \stackrel{\text{def}}{=} cl(E)$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in E} pref(\sigma)$$

For each LT-property *E*, there exists a safety property *SAFE* and a liveness property *LIVE* s.t.

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

remind:
$$cl(E) = \{ \sigma \in (2^{AP})^{\omega} : pref(\sigma) \subseteq pref(E) \}$$

$$pref(\sigma) = \text{ set of all finite, nonempty prefixes of } \sigma$$

$$pref(E) = \bigcup_{\sigma \in F} pref(\sigma)$$

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE$
- **SAFE** is a safety property
- LIVE is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

LIVE $\stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$

- $E = SAFE \cap LIVE \qquad \checkmark$
- **SAFE** is a safety property
- LIVE is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE \qquad \checkmark$
- SAFE is a safety property as cl(SAFE) = SAFE
- **LIVE** is a liveness property

$$E = SAFE \cap LIVE$$

Proof: Let
$$SAFE \stackrel{\text{def}}{=} cl(E)$$

$$LIVE \stackrel{\text{def}}{=} E \cup ((2^{AP})^{\omega} \setminus cl(E))$$

- $E = SAFE \cap LIVE$
- **SAFE** is a safety property as **cl(SAFE)** = **SAFE**
- LIVE is a liveness property, i.e., $pref(LIVE) = (2^{AP})^+$

Being safe and live

Which LT properties are both a safety and a liveness property?

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

• $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^+$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E.

answer: The set $(2^{AP})^{\omega}$ is the only LT property which is a safety property and a liveness property

- $(2^{AP})^{\omega}$ is a safety and a liveness property: $\sqrt{}$
- If *E* is a liveness property then

$$pref(E) = (2^{AP})^{+}$$

$$\implies cl(E) = (2^{AP})^{\omega}$$

If E is a safety property too, then cl(E) = E. Hence $E = cl(E) = (2^{AP})^{\omega}$.

Observation

liveness properties are often violated although we expect them to hold

light 1 ||| **light 2** $\not\models$ "infinitely often *green*₁"

light 1 ||| **light 2** $\not\models$ "infinitely often *green*₁"

LF2.6-3

light 1 || light 2 $\not\models$ "infinitely often $green_1$ " although light 1 \models "infinitely often $green_1$ "

LF2.6-3

light 1 || light 2 $\not\models$ "infinitely often green₁"

interleaving is completely time abstract!

liveness property = "each waiting process will eventually enter its critical section"

 $T_{sem} \not\models$

"each waiting process will eventually enter its critical section"

 $\mathcal{T}_{sem} \not\models$

"each waiting process will eventually enter its critical section"

LF2.6-4

 $\mathcal{T}_{\mathsf{sem}} \not\models$

"each waiting process will eventually enter its critical section"

level of abstraction is too coarse!

two independent non-communicating processes $P_1 \parallel P_2$

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 P_2 P_1 ...

two independent non-communicating processes $P_1 \mid \mid P_2$

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... P_1 P_1 P_2 P_1 ... P_1 P_1 ...

two independent non-communicating processes $P_1 \mid \mid P_2$

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... fair P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 ... fair P_1 P_1 ... unfair

two independent non-communicating processes $P_1 \mid \mid \mid P_2$

possible interleavings:

$$P_1$$
 P_2 P_2 P_1 P_1 P_1 P_2 P_1 P_2 P_2 P_2 P_1 P_1 ... fair P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 P_1 P_2 P_1 ... fair P_1 P_2 ... unfair

of the nondeterminism resulting from interleaving and competitions

• unconditional fairness

• strong fairness

weak fairness

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness

weak fairness

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness

- unconditional fairness, e.g.,
 every process enters gets its turn infinitely often.
- strong fairness, e.g.,
 every process that is enabled infinitely often gets its turn infinitely often.
- weak fairness, e.g.,
 every process that is continuously enabled from a certain time instance on, gets its turn infinitely often.

Fairness for action-set

we will provide conditions for

- unconditional A-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ

we will provide conditions for

- unconditional **A**-fairness of **ρ**
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \{\beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s'\}$$

we will provide conditions for

- unconditional **A**-fairness of **ρ**
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \left\{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \right\}$$

$$\stackrel{\infty}{\exists} = \text{"there exists infinitely many ..."}$$

we will provide conditions for

- unconditional A-fairness of ρ
- strong A-fairness of ρ
- weak A-fairness of ρ

using the following notations:

$$Act(s_i) = \left\{ \beta \in Act : \exists s' \text{ s.t. } s_i \xrightarrow{\beta} s' \right\}$$

$$\stackrel{\infty}{\exists} \stackrel{\cong}{=} \text{"there exists infinitely many ..."}$$

$$\stackrel{\infty}{\forall} \stackrel{\cong}{=} \text{"for all, but finitely many ..."}$$

• ρ is unconditionally **A**-fair, if

• ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$

"actions in **A** will be taken infinitely many times"

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\circ}{\exists} i \geq 0. \ A \cap Act(s_i) \neq \emptyset \quad \Longrightarrow \quad \stackrel{\circ}{\exists} i \geq 0. \ \alpha_i \in A$$

"If infinitely many times some action in **A** is enabled, then actions in **A** will be taken infinitely many times."

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

- ρ is unconditionally **A**-fair, if $\exists i \geq 0. \alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. \ A \cap Act(s_i) \neq \varnothing \quad \Longrightarrow \quad \overset{\infty}{\exists} i \geq 0. \ \alpha_i \in A$$

"If from some moment, actions in **A** are enabled, then actions in **A** will be taken infinitely many times."

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

• ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

unconditionally A-fair \implies strongly A-fair \implies weakly A-fair

- ρ is unconditionally **A**-fair, if $\stackrel{\infty}{\exists} i \geq 0$. $\alpha_i \in A$
- \bullet ρ is strongly **A**-fair, if

$$\stackrel{\infty}{\exists} i \geq 0. A \cap Act(s_i) \neq \emptyset \implies \stackrel{\infty}{\exists} i \geq 0. \alpha_i \in A$$

 \bullet ρ is weakly **A**-fair, if

$$\overset{\infty}{\forall} i \geq 0. A \cap Act(s_i) \neq \varnothing \implies \overset{\infty}{\exists} i \geq 0. \alpha_i \in A$$

unconditionally A-fair \implies strongly A-fair \implies weakly A-fair

strong A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

strong **A**-fairness is *violated* if

- no A-actions are executed from a certain moment
- A-actions are enabled infinitely many times

weak A-fairness is violated if

- no A-actions are executed from a certain moment
- A-actions are continuously enabled from some moment on

Mutual exclusion with arbiter

Mutual exclusion with arbiter

Unconditional, strongly or weakly fair?

fairness for action set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle \text{crit}_1, I, w_2 \rangle \right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

fairness for action set $A = \{enter_1\}:$ $\langle n_1, u, n_2 \rangle \rightarrow \left(\langle n_1, u, w_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle crit_1, I, w_2 \rangle\right)^{\omega}$

- unconditional A-fairness: yes
- strong **A**-fairness: **yes** ← unconditionally fair
- weak A-fairness: **yes** \leftarrow unconditionally fair

fairness for action-set
$$A = \{enter_1\}$$
:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle\right)^{\omega}$$

- unconditional A-fairness:
- strong **A**-fairness:
- weak A-fairness:

fairness for action-set
$$A = \{enter_1\}$$
:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, I, \operatorname{crit}_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: no
- strong A-fairness: **yes** \leftarrow A never enabled
- weak **A**-fairness: **yes** ← strongly **A**-fair

fairness for action-set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness:
- strong A-fairness:
- weak A-fairness:

fairness for action-set $A = \{enter_1\}$:

$$\langle n_1, u, n_2 \rangle \rightarrow \left(\langle w_1, u, n_2 \rangle \rightarrow \langle w_1, u, w_2 \rangle \rightarrow \langle n_1, I, \text{crit}_2 \rangle \right)^{\omega}$$

- unconditional A-fairness: no
- strong **A**-fairness: **no**
- weak A-fairness: yes

fairness for action set
$$A = \{enter_1, enter_2\}$$
:
$$(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle)^{\omega}$$

- unconditional A-fairness:
- strong **A**-fairness:
- weak A-fairness:

fairness for action set
$$A = \{enter_1, enter_2\}$$
:

$$\left(\langle n_1, u, n_2 \rangle \rightarrow \langle n_1, u, w_2 \rangle \rightarrow \langle n_1, u, crit_2 \rangle\right)^{\omega}$$

- unconditional A-fairness: yes
- strong **A**-fairness: **yes**
- weak **A**-fairness: **yes**

Action-based fairness assumptions

Action-based fairness assumptions

Let T be a transition system with action-set Act. A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

Action-based fairness assumptions

Let T be a transition system with action-set Act. A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly **A**-fair for all $A \in \mathcal{F}_{weak}$

Let T be a transition system with action-set Act.

A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly **A**-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly **A**-fair for all $A \in \mathcal{F}_{weak}$

 $FairTraces_{\mathcal{F}}(T) \stackrel{\mathsf{def}}{=} \{trace(\rho) : \rho \text{ is a } \mathcal{F}\text{-fair execution of } T\}$

A fairness assumption for T is a triple

$$\mathcal{F} = (\mathcal{F}_{ucond}, \mathcal{F}_{strong}, \mathcal{F}_{weak})$$

where \mathcal{F}_{ucond} , \mathcal{F}_{strong} , $\mathcal{F}_{weak} \subseteq 2^{Act}$.

An execution ρ is called \mathcal{F} -fair iff

- ρ is unconditionally **A**-fair for all $A \in \mathcal{F}_{ucond}$
- ρ is strongly A-fair for all $A \in \mathcal{F}_{strong}$
- ρ is weakly **A**-fair for all $A \in \mathcal{F}_{weak}$

If T is a TS and E a LT property over AP then:

$$T \models_{\mathcal{F}} E \stackrel{\mathsf{def}}{\iff} FairTraces_{\mathcal{F}}(T) \subseteq E$$

Example: fair satisfaction relation

fairness assumption \mathcal{F}

- no unconditional fairness condition
- strong fairness for $\{\alpha, \beta\}$
- no weak fairness condition

fairness assumption \mathcal{F}

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \emptyset$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

$$\leftarrow \mathcal{F}_{weak} = \emptyset$$

 $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often b" ?

fairness assumption ${\mathcal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

$$\leftarrow \mathcal{F}_{\textit{weak}} = arnothing$$

$$\mathcal{T}\models_{\mathcal{F}}$$
 "infinitely often b " ? answer: **no**

fairness assumption ${\mathcal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

$$\leftarrow \mathcal{F}_{\textit{weak}} = arnothing$$

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b " ? answer: **no**

fairness assumption ${\mathcal F}$

- no unconditional fairness condition $\leftarrow \mathcal{F}_{ucond} = \varnothing$
- strong fairness for $\{\alpha, \beta\}$ $\leftarrow \mathcal{F}_{strong} = \{\{\alpha, \beta\}\}$
- no weak fairness condition

$$\leftarrow \mathcal{F}_{\mathsf{weak}} = arnothing$$

actions in $\{\alpha, \beta\}$ are executed infinitely many times

fairness assumption \mathcal{F}

$$ullet$$
 strong fairness for $lpha$

• weak fairness for
$$\beta$$

$$\leftarrow \mathcal{F}_{\textit{strong}} = \{\{\alpha\}\}$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

 $\models_{\mathcal{F}}$ "infinitely often b"?

fairness assumption \mathcal{F}

- \bullet strong fairness for α
- weak fairness for *β*

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}\$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}\$$

 $T \models_{\mathcal{F}}$ "infinitely often b"? answer: **no**

fairness assumption \mathcal{F}

- \bullet strong fairness for α
- weak fairness for *β*

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

$$\leftarrow \mathcal{F}_{\mathsf{weak}} = \{\{oldsymbol{eta}\}\}$$

 $T \models_{\mathcal{F}}$ "infinitely often \overline{b} "? answer: **no**

fairness assumption \mathcal{F}

- ullet strong fairness for lpha
- weak fairness for **B**

$$\leftarrow \mathcal{F}_{strong} = \{\{\alpha\}\}\$$

$$\leftarrow \mathcal{F}_{weak} = \{\{\beta\}\}$$

Example: fair satisfaction relation

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b "

fairness assumption \mathcal{F}

• strong fairness for β

$$\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}\$$

LF2.6-12A

- no weak fairness assumption
- no unconditional fairness assumption

$$\mathcal{T} \models_{\mathcal{F}}$$
 "infinitely often b "

fairness assumption \mathcal{F}

• strong fairness for β

- $\leftarrow \mathcal{F}_{strong} = \{\{\beta\}\}\$
- no weak fairness assumption
- no unconditional fairness assumption

fairness assumptions should be as weak as possible

LF2.6-13

LF2.6-13


```
enter red enter green green
```

```
enter red enter green green green
```

fairness assumption \mathcal{F} :

$$\mathcal{F}_{ucond} = ?$$

$$\mathcal{F}_{strong} = ?$$

 $\mathcal{F}_{weak} = ?$

red red

LF2.6-13

enter red enter green green

enter red enter green red green

 A_1 = actions of light 1

 A_2 = actions of light 2

fairness assumption \mathcal{F} :

$$\mathcal{F}_{ucond} = ?$$

$$\mathcal{F}_{strong} = ?$$

 $\mathcal{F}_{weak} = ?$

light 1 ||| light 2 $\models_{\mathcal{F}} E$

LF2.6-13

$$A_1$$
 = actions of light 1 A_2 = actions of light 2

fairness assumption \mathcal{F} :

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \varnothing$

$$\mathcal{F}_{weak} = \{A_1, A_2\}$$

light 1
$$\parallel \parallel$$
 light 2 $\models_{\mathcal{F}} E$

$$T = T_1 \parallel$$
 Arbiter $\parallel T_2 \parallel$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

$$T = T_1 \parallel \text{Arbiter} \parallel T_2$$

T₁ and T₂ compete to communicate with the arbiter by means of the actions *enter*₁ and *enter*₂, respectively

LF2.6-15

LT property **E**: each waiting process eventually enters its critical section

$$T \not\models E$$

LF2.6-15

LT property **E**: each waiting process eventually enters its critical section

```
fairness assumption \mathcal{F}
\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset
```

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$
 $\mathcal{F}_{weak} = \{\{enter_1\}, \{enter_2\}\}$

does $T \models_{\mathcal{F}} E$ hold ?

LF2.6-15

LT property **E**: each waiting process eventually enters its critical section

```
fairness assumption \mathcal{F}
\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset
\mathcal{F}_{weak} = \big\{ \{enter_1\}, \{enter_2\} \big\}
```

does $\mathcal{T} \models_{\mathcal{F}} \mathbf{E}$ hold ? answer: **no**

LF2.6-15

LT property *E*: each waiting process eventually enters its critical section

fairness assumption
$$\mathcal{F}$$

$$\mathcal{F}_{ucond} = \mathcal{F}_{strong} = \emptyset$$

$$\mathcal{F}_{weak} = \big\{ \{enter_1\}, \{enter_2\} \big\}$$

 $T \not\models_{\mathcal{F}} E$

as **enter**₂ is not enabled in $\langle \text{crit}_1, I, w_2 \rangle$

LF2.6-16

E: each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = ?$$
 $\mathcal{F}_{strong} = ?$
 $\mathcal{F}_{ueak} = ?$

LF2.6-16

E: each waiting process eventually enters its crit. section

$$\mathcal{F}_{ucond} = \emptyset$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \emptyset$

LF2.6-16

E: each waiting process eventually enters its crit. sectionD: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \varnothing$

$$\begin{array}{c|c} \mathcal{T} \models_{\mathcal{F}} \mathbf{E}, \\ \mathcal{T} \not\models_{\mathcal{F}} \mathbf{D} \end{array}$$

LF2.6-16

E: each waiting process eventually enters its crit. sectionD: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \emptyset$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \emptyset$

$$\mathcal{T} \models_{\mathcal{F}} E, \\
\mathcal{T} \not\models_{\mathcal{F}} D$$

LF2.6-16

E: each waiting process eventually enters its crit. sectionD: each process enters its critical section infinitely often

$$\mathcal{F}_{ucond} = \varnothing$$
 $\mathcal{F}_{strong} = \{\{enter_1\}, \{enter_2\}\}$
 $\mathcal{F}_{weak} = \{\{req_1\}, \{req_2\}\}$

 $\mathcal{T} \models_{\mathcal{F}} \mathcal{E},$ $\mathcal{T} \models_{\mathcal{F}} \mathcal{D}$

parallelism = interleaving + fairness

```
parallelism = interleaving + fairness
should be as weak as possible
```

```
parallelism = interleaving + fairness
should be as weak as possible
```

rule of thumb:

- strong fairness for the
 - * choice between dependent actions
 - resolution of competitions

```
parallelism = interleaving + fairness
should be as weak as possible
```

rule of thumb:

- strong fairness for the
 - * choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions

```
parallelism = interleaving + fairness
should be as weak as possible
```

rule of thumb:

- strong fairness for the
 - * choice between dependent actions
 - resolution of competitions
- weak fairness for the nondetermism obtained from the interleaving of independent actions
- unconditional fairness: only of theoretical interest

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler
 or requirements for environment
- can be verifiable system properties

parallelism = interleaving + fairness

Process fairness and other fairness conditions

- can compensate information loss due to interleaving or rule out other unrealistic pathological cases
- can be requirements for a scheduler or requirements for environment
- can be verifiable system properties

liveness properties: fairness can be essential

safety properties: fairness is irrelevant

Fairness LF2.6-22

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

Fairness LF2.6-22

fairness assumption \mathcal{F} : unconditional fairness for action set $\{\alpha\}$

does $T \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Fairness LF2.6-22

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often **a**" hold ?

answer: yes as there is no fair path

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold?

answer: yes as there is no fair path

Realizability requires that each initial finite path fragment can be extended to a \mathcal{F} -fair path

fairness assumption \mathcal{F} :
unconditional fairness
for action set $\{\alpha\}$ not realizable

does $\mathcal{T} \models_{\mathcal{F}}$ "infinitely often a" hold ?

answer: yes as there is no fair path

Fairness assumption \mathcal{F} is said to be realizable for a transition system \mathcal{T} if for each reachable state \mathbf{s} in \mathcal{T} there exists a \mathcal{F} -fair path starting in \mathbf{s}

• unconditional fairness for $A \in \mathcal{F}_{ucond}$

- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

- unconditional fairness for A ∈ F_{ucond}
 → might not be realizable
- strong fairness for $A \in \mathcal{F}_{ extstyle strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

- unconditional fairness for $A \in \mathcal{F}_{ucond}$ \leadsto might not be realizable
- strong fairness for $A \in \mathcal{F}_{strong}$
- weak fairness for $A \in \mathcal{F}_{weak}$

can always be guaranteed by a scheduler, i.e., an instance that resolves the nondeterminism in ${\boldsymbol{\mathcal{T}}}$

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

If \mathcal{F} is a realizable fairness assumption for TS \mathcal{T} and \mathbf{E} a safety property then:

$$T \models E$$
 iff $T \models_{\mathcal{F}} E$

... wrong for non-realizable fairness assumptions

 \mathcal{F} : unconditional fairness for $\{\alpha\}$

E = invariant "always a"

$$T \not\models E$$
, but $T \models_{\mathcal{F}} E$