Delaunay polytopes in lattices

Mathieu Dutour

ENS/CNRS, Paris and Hebrew University, Jerusalem

A finite set of points

Some relevant perpendicular bisectors

Voronoi Polytope

Empty spheres

Delaunay polytopes

Other names

Voronoi polytope synonyms

- Dirichlet domains (lattice theory, 2-dimensional case)
- \longrightarrow Voronoi polytope (n-dimensional lattice, computational geometry)
- Thiessen polygons (geography)
- Wigner-Seitz cell (solid state physic, crystallography)
- first Brillouin zone (solid state physic, momentum space)
- domain of influence (politics)

Delaunay polytopes synonyms

- L-polytope (Voronoi in "Second memoire")
- Shallow or deep hole (in Conway-Sloane)

PLAN

- Voronoi polytopes in lattices
- II. Delaunay polytopes and hypermetrics
- III. The six-dimensional Delaunay polytopes
- IV. Beyond dimension six

Voronoi polytopesinlattices

The Voronoi polytope of a lattice

- lacktriangle Polytope $\mathcal V$ defined by inequalities $\langle x,v\rangle \leq \frac{1}{2}||v||^2$
- \mathcal{V} is polyhedral, vector v_0 such that $\langle x, v_0 \rangle = \frac{1}{2} ||v_0||^2$ is a facet are called relevant
- (Voronoi Theorem) A vector u is relevant if and only if it can not be written as u = v + w with $\langle v, w \rangle \geq 0$

- The translates v + V with $v \in L$ tiles \mathbb{R}^n
- Vertices of Voronoi polytope are center of empty spheres which defines Delaunay polytopes
- Shortest vector in L are relevant
- Only for root lattice shortest vector are all relevant vectors

Name	Nr. facets	Nr. Vertices	Nr. Orbit
A_n	n(n+1)	$2^{n+1}-2$	$\lfloor \frac{n+1}{2} \rfloor$
D_n	2n(n-1)	$2^{n} + 2n$	2
E_6	72	54	1
E_7	126	632	2
E_8	240	19440	2

A lattice with two Delaunay polytopes

- lacktriangle Take $L = \mathbb{Z}^n$
- Delaunay polytope

Name	Center	Nr. vertices	Radius
Cube	$(\frac{1}{2})^n$	2^n	$\frac{1}{2}\sqrt{n}$

- Take $D_n = \{x \in \mathbb{Z}^n | \sum_{i=1}^n x_i \text{ is even} \}$
- \longrightarrow Delaunay polytopes of D_n :

Name	Center	Nr. vertices	Radius	
Half-Cube	$(\frac{1}{2})^n$	$\frac{1}{2}2^{n}$	$\frac{1}{2}\sqrt{n}$	
Cross-polytope	$(1,0^{n-1})$	2n	1	

3-dimensional Voronoi polytopes

Geometry of numbers

 PSD_n =Cone of real symmetric positive definite $n \times n$ matrices

Correspondance between PSD_n and lattices:

lacktriangle Lattice L spanned by v_1, \ldots, v_n corresponds to

$$M_v = (\langle v_i, v_j \rangle)_{1 \le i, j \le n} \in PSD_n$$

• If L spanned by v_1', \ldots, v_n' then $(v_1', \ldots, v_n') = P(v_1, \ldots, v_n)$ with $P \in GL_n(\mathbb{Z})$ and

$$M_{v'} = PM_v{}^t P$$

• Lattices up to isometric equivalence correspond $GL_n(\mathbb{Z})$ equivalence classes in PSD_n

The partition of $PSD_2 \subset \mathbb{R}^3$

If $q(x,y) = ux^2 + 2vxy + wy^2$ then $q \in PSD_2$ if and only if $v^2 < uw$ and u > 0; we cut by the plane u + w = 1

The partition of $PSD_2 \subset \mathbb{R}^3$

The group $GL_2(\mathbb{Z})$ transform the limit form x^2 into the forms $(ax+by)^2$ with $a,b\in\mathbb{Z}$

The partition of $PSD_2 \subset \mathbb{R}^3$

 PSD_2 partition: Line: Voronoi polytope is rectangular.

Triangle: Voronoi polytope is hexagonal.

L-type domain

 $PSD_n = \bigcup_i D_i$ with D_i open convex polyhedral cones called L-type domain such that

- lacktriangle the partition is invariant with respect to $GL_n(\mathbb{Z})$
- there are finitely many orbits (called combinatorial types)

Properties

- Two lattices in the same L-type domain can be continuously deformed without changing the combinatorial structure
- If $dim(D_i) = \binom{n+1}{2}$ then D_i is called primitive (its Delaunay polytope are simplices)
- If $dim(D_i) = 1$ then D_i is called rigid
 - There exist non-simplicial L-type domain

Summary of results

dimension	1	2	3	4	5	6	7
Nr. Voronoi	1	2	5	52	179377	?	?
polytopes			Fedorov	DeSh	Engel		
Nr. primitive	1	1	1	3	222	$\geq 1.10^6$?
Voronoi			Fedorov	Delaunay	BaRy, Engel	Engel	
Nr. rigid	1	0	0	1	7	$\geq 2.10^4$?
lattices					←BaGr	DuVa	
Nr. Delaunay	1	2	5	19	138	6241	?
polytopes			Fedorov	Erdahl	Kononenko	Dutour	
				Ryshkov			
Nr. extreme	1	0	0	0	0	1	≥ 1
Delaunay						DeDu	

II. Delaunay polytopes and hypermetrics

Hypermetric inequalities

• If $b \in \mathbb{Z}^{n+1}$, $\sum_{i=0}^{n} b_i = 1$ then the hypermetric inequality is

$$H(b)d = \sum_{0 \le i < j \le n} b_i b_j d(i, j) \le 0$$

- If $b = (1, 1, -1, 0, \dots, 0)$ then H(b)=triangular inequality
- The hypermetric cone HYP_{n+1} is the set of all d such that $H(b)d \le 0$ for all b
- lacktriangle HYP_{n+1} is defined by an infinite set of inequalities

Delaunay polytopes

If \mathcal{D} is an n dimensional Delaunay polytope with center c, radius r and vertices $\{v_0, \ldots, v_N\}$ then $d(i, j) = ||v_i - v_j||^2$ satisfies

$$\sum_{i,j} b_i b_j d(i,j) = 2(r^2 - \|\sum_i b_i v_i - c\|^2) \le 0$$

i.e. Delaunay polytope \Leftrightarrow hypermetrics Moreover $\sum_i b_i v_i$ is a vertex of \mathcal{D} if and only if H(b)d=0

Delaunay polytopes

If \mathcal{D} is an n dimensional Delaunay polytope with center c, radius r and vertices $\{v_0, \ldots, v_N\}$ then $d(i, j) = ||v_i - v_j||^2$ satisfies

$$\sum_{i,j} b_i b_j d(i,j) = 2(r^2 - \|\sum_i b_i v_i - c\|^2) \le 0$$

i.e. Delaunay polytope \Leftrightarrow hypermetrics Moreover $\sum_i b_i v_i$ is a vertex of \mathcal{D} if and only if H(b)d=0

Affine basis

An affine basis of an n-dimensional polytope P is $\{v_0, \ldots, v_n\}$ such that for every vertex v of P, there is

$$b_i \in \mathbb{Z}$$
, such that $b_0 + \cdots + b_n = 1$
and $b_0 v_0 + b_1 v_1 + \cdots + b_n v_n = v$

Baranovski-Ryshkov: every Delaunay polytope of dimension ≤ 6 has an affine basis

No Delaunay polytope without affine basis is known!

Polyhedrality of HYP_n

- $lacktriangleq HYP_n$ is polyhedral as union of L-type domain
- (Lovasz) if H(b) defines a facet then $|b_i| \leq \frac{2^n}{\binom{2n}{n}} n!$

Combinatorial types of n-dimensional Delaunay polytope P correspond to faces F of HYP_{n+1}

One defines rank(P) = dim Frank(P) is the number of degree of freedom

- $rank(P) = \binom{n+1}{2}$, then P is a simplex
- \bullet rank(P) = 1, then P is an extreme Delaunay polytope

We are interested in extreme Delaunay polytopes (their only degree of freedom is homotheties and rotations)

3-simplex

Hypermetric Vectors

Pyramid

Hypermetric Vectors (-1, 0, 1, 1)

3-Prism

Hypermetric Vectors

$$(-1,0,1,1)$$

$$(-1, 1, 0, 1)$$

Cube

Hypermetric Vectors

$$(-1,0,1,1)$$

$$(-1, 1, 0, 1)$$

$$(-1, 1, 1, 0)$$

$$(-2, 1, 1, 1)$$

$$H(-2, 1, 1, 1)=H(-1, 0, 1, 1)+H(-1, 1, 0, 1)+H(-1, 1, 1, 0)$$

Octahedron

Hypermetric Vectors

$$(-1,0,1,1)$$

 $(0,-1,1,1)$

Combinatorial types

dim	Nr of types		Computing time
2	2	Fedorov	
3	5	Fedorov	23s
4	19	Erdahl-Ryshkov	52s
5	138	Kononenko	5m
6	6241	Dutour	50h

III. The six-dimensional Delaunaypolytopes

Cut cone

The cut-semi-metric δ_S on n+1 points can be interpreted as square distance on the one dimensional Delaunay polytope α_1 which is extreme

We denote CUT_{n+1} the cone generated by all δ_S

- ullet $CUT_{n+1} \subset HYP_{n+1}$ for all n
- ullet $CUT_{n+1} = HYP_{n+1}$ if $n \le 5$
- no other extreme Delaunay polytope in dimension lower than 5
- But $CUT_7 \neq HYP_7 \Rightarrow$ there is an extreme six-dimensional Delaunay polytope

Facets of HYP_7 and CUT_7

Baranovski has found 14 orbits of facets of HYP_7 Method: direct proof that others are redundant We have another proof of this result

First 10 orbits are also facet of CUT_7 . CUT_7 has 36 orbits of facets, 26 of which are non-hypermetric.

The Schläfli polytope

Root lattices E_6 and E_8 :

$$E_6 = \{x \in E_8 : x_1 + x_2 = x_3 + \dots + x_8 = 0\}$$

 $E_8 = \{x \in \mathbb{Z}^8 \cup (\frac{1}{2} + \mathbb{Z})^8 \text{ and } \sum_i x_i \in 2\mathbb{Z}\}$

 E_6 has unique Delaunay polytope called Schläfli polytope (which is identified to Schläfli graph)

- 27 vertices
- Symmetry group has size 51840 transitive on vertices
- Schläfli polytope is extreme
- 26 orbits of affine basis (DGL), which gives 26 orbits of extreme rays in HYP_7 .

The cone CUT_7 has hyp facet and non-hyp facet

The cone HYP_7 contains CUT_7

Take a non-hypermetric facet $p(x) \ge 0$ of CUT_7 and define

$$C_p = \{d \in HYP_7 \text{ such that } p(d) \leq 0\}$$

Eliminate redundant inequalities by linear programming

Find non-cut extreme ray (which is Schläfli)

6241 six-dimensional Delaunays

rank	Nr. in HYP_7	Nr. in CUT_7			
21	1(simplex)	0	11	686	325
20	9	1	10	417	183
19	30	2	9	218	83
18	95	8	8	108	35
17	233	28	7	52	13
16	500	95	6	21	3
15	814	241	5	8	0
14	1092	434	4	4	0
13	1145	527	3	2	0
12	984	481	2	1	0
			1	1(Schläfli)	0

Method of enumeration

Isomorphy test, general theory

Associate to each face

- 1. Some invariants
- 2. A graph that encode its combinatorial properties

Isomorphy test, specific methods

Let F a face of HYP_7 :

- If F contains a Schläfli extreme ray e_S . e_S correspond to an affine basis of Schläfli polytope and every hypermetric incidence H(b) to another vertex in Schläfli polytope. $\Rightarrow F$ embedded as a subgraph of Schläfli graph.
- If F is generated by $\delta_{S_1}, \ldots, \delta_{S_N}$. Every δ_{S_i} is extended as a cut on the set of vertices and the set of cutset is the combinatorial structure.

Isomorphy test, specific methods

Let F a face of HYP_7 :

- If F contains a Schläfli extreme ray e_S . e_S correspond to an affine basis of Schläfli polytope and every hypermetric incidence H(b) to another vertex in Schläfli polytope. $\Rightarrow F$ embedded as a subgraph of Schläfli graph.
- If F is generated by $\delta_{S_1}, \ldots, \delta_{S_N}$. Every δ_{S_i} is extended as a cut on the set of vertices and the set of cutset is the combinatorial structure.

IV. Beyonddimensionsix

The known extreme Delaunay polytopes

Name	dimension	Nr. vertices	Equality	section of
Schläfli	6	27	yes	E_8
Gosset	7	56	no	E_8
	16	512	no	BarnesWall
B_{15}	15	135	yes	BarnesWall
	22	275	yes	Leech
	23	552	no	Leech

Extreme Delaunay polytope appear as section of higher dimensional lattices.

Computing methods

Given $d_{ij} = ||v_i - v_j||^2$ a distance vector,

- One can compute the Gram matrix $\langle (v_i v_0), (v_j v_0) \rangle$
- Test if d is non-degenerate
- lacktriangle Compute the sphere S(c,R) around the v_i
- \bullet $d \in HYP_{n+1}$ if and only if there is no b such that

$$||b_0v_0 + \dots + b_nv_n - c|| < R$$

(i.e. Closest Vector Problem)

• Find the b such that H(b)d = 0 is also a CVP

Bounding method

Lower bound

- Every incidence H(b)d = 0 correspond to a vertex $b_0v_0 + \cdots + b_nv_n$ of a Delaunay polytope P
- The number N of vertices satisfies

$$N \geq n + 1 + corank(P)$$

$$\geq n + 1 + {n+1 \choose 2} - rank(P)$$

- Extreme Delaunay polytopes have at least $\binom{n+2}{2} 1$ vertices
- If they have exactly $\binom{n+2}{2} 1$ vertices, then the corresponding extreme ray of HYP_{n+1} are simplicial for which adjacency computation is easy

8-dimensional extreme Delaunay

 B_{15} satisfies the equality bound.

We can compute its adjacent extreme rays: 77 of them correspond to a 8-dimensional extreme Delaunay polytope with f-vector

(79, 1268, 7896, 23520, 36456, 29876, 11364, 1131)

It has a symmetry group of size 322560 not transitive on vertices

There are three orbits of vertices:

- a vertex
- 64-vertices: the 7-half-cube
- 14 vertices: the 7-cross polytope

Infinite sequence of extreme Delaunay

- If n even, $n \ge 6$, there is a n-dimensional extreme Delaunay ED_n formed with 3 layers of D_{n-1} lattice
 - a vertex
 - \bullet the n-1 half-cube
 - lacktriangle the n-1 cross-polytope
 - n=6: Schläfli polytope
 - n=8: the 8-dimensional one
- If n odd, $n \ge 7$, there is a n-dimensional extreme Delaunay ED_n formed with 4 layers of previous lattice
 - a vertex
 - lacktriangle the ED_{n-1} extreme Delaunay
 - lacktriangle the ED_{n-1} extreme Delaunay
 - a vertex
 - n=7: Gosset polytope

Coordinates of M_n

Vertices of ED_n for n even in \mathbb{R}^n .

a vertex

$$(\frac{1}{2},\ldots,\frac{1}{2},\sqrt{\frac{n-2}{2}})$$

the Half-Cube vectors

$$(x_1,\ldots,x_{n-1},0)$$

with $\sum_{i=1}^{n-1} x_i$ even.

the cross polytope vectors

$$(\frac{1}{2}, \dots, \frac{1}{2}, -\sqrt{\frac{n-2}{2}}) \pm e_i$$

with $1 \le i \le n-1$.

Thank You