In [1]:

```
import quandl
import pandas as pd
import numpy as np
```

In [2]:

```
df = quandl.get("WIKI/FB")
```

In [3]:

```
df.head()
```

Out[3]:

	Open	High	Low	Close	Volume	Ex- Dividend	Split Ratio	Adj. Open	Adj. High	Adj. Low	Adj. Close
Date											
2012- 05-18	42.05	45.00	38.00	38.2318	573576400.0	0.0	1.0	42.05	45.00	38.00	38.2318
2012- 05-21	36.53	36.66	33.00	34.0300	168192700.0	0.0	1.0	36.53	36.66	33.00	34.0300
2012- 05-22	32.61	33.59	30.94	31.0000	101786600.0	0.0	1.0	32.61	33.59	30.94	31.0000
2012- 05-23	31.37	32.50	31.36	32.0000	73600000.0	0.0	1.0	31.37	32.50	31.36	32.0000
2012- 05-24	32.95	33.21	31.77	33.0300	50237200.0	0.0	1.0	32.95	33.21	31.77	33.0300
4											•

In [4]:

```
df.isnull().sum()
```

Out[4]:

0pen	0
High	0
Low	0
Close	0
Volume	0
Ex-Dividend	0
Split Ratio	0
Adj. Open	0
Adj. High	0
Adj. Low	0
Adj. Close	0
Adj. Volume	0
dtype: int64	

```
In [5]:
```

```
df = df[['Adj. Close']]
```

In [6]:

```
df.head()
```

Out[6]:

Adj. Close

Date	
2012-05-18	38.2318
2012-05-21	34.0300
2012-05-22	31.0000
2012-05-23	32.0000
2012-05-24	33.0300

In [11]:

```
forecast = 30
```

In [12]:

```
df['Prediction'] = df[['Adj. Close']].shift(-forecast)
```

In [13]:

```
df.tail()
```

Out[13]:

Adj. Close Prediction

Date		
2018-03-21	169.39	NaN
2018-03-22	164.89	NaN
2018-03-23	159.39	NaN
2018-03-26	160.06	NaN
2018-03-27	152.19	NaN

```
In [33]:
X = np.array(df.drop(['Prediction'], axis = 1))
X = X[:-forecast]
print(X)
[[ 38.2318]
 [ 34.03
 [ 31.
          ]
 [171.5499]
 [175.98]
 [176.41 ]]
In [34]:
y = np.array(df['Prediction'])
y = y[:-forecast]
print(y)
[ 30.771 31.2
                  31.47 ... 159.39 160.06 152.19 ]
In [16]:
from sklearn.model_selection import train_test_split
In [17]:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
In [18]:
from sklearn.linear_model import LinearRegression
In [19]:
model = LinearRegression()
In [20]:
model.fit(X_train, y_train)
Out[20]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fal
In [21]:
model.score(X_train, y_train)
Out[21]:
0.9799397219389175
In [22]:
from sklearn.metrics import classification_report
```

```
In [23]:
predict = model.predict(X test)
In [24]:
print(classification_report(predict, y_test))
ValueError
                                           Traceback (most recent call last)
<ipython-input-24-e6e856185e7c> in <module>
----> 1 print(classification_report(predict, y_test))
~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in classific
ation_report(y_true, y_pred, labels, target_names, sample_weight, digits, ou
tput dict)
            ....
   1850
   1851
-> 1852
            y_type, y_true, y_pred = _check_targets(y_true, y_pred)
   1853
            labels_given = True
   1854
~\Anaconda3\lib\site-packages\sklearn\metrics\classification.py in _check_ta
rgets(y_true, y_pred)
            # No metrics support "multiclass-multioutput" format
     86
     87
            if (y_type not in ["binary", "multiclass", "multilabel-indicato
r"]):
---> 88
                raise ValueError("{0} is not supported".format(y_type))
     89
            if y_type in ["binary", "multiclass"]:
     90
ValueError: continuous is not supported
In [25]:
score = model.score(X_test, y_test)
print("score: ", score)
score: 0.9821570952330557
In [26]:
from sklearn import svm
In [30]:
clf = svm.SVR(kernel = 'rbf', C = 1e3, gamma = 0.1)
In [31]:
clf.fit(X_train, y_train)
Out[31]:
SVR(C=1000.0, cache size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.1,
    kernel='rbf', max iter=-1, shrinking=True, tol=0.001, verbose=False)
```

In [32]: score1 = clf.score(X_test, y_test) print("score1: ", score1) score1: 0.9771320911240383 In []: