Problem Formulation

$$\begin{split} & \min_{x(\cdot),\,u(\cdot),\,z(\cdot),\,s(\cdot),\,s^e} \qquad \int_0^T l(x(\tau),u(\tau),z(\tau),p) + \frac{1}{2}s(\tau)^\top Z s(\tau) + z_s^\top \,|s(\tau)| \,\mathrm{d}\tau \,+ \\ & \qquad \qquad m(x(T),z(T),s(T),p) + \frac{1}{2}s(T)^\top Z^e s(T) + z_s^{e\top} \,|s(T)| \\ & \mathrm{s.t.} \qquad \qquad x(0) - \bar{x}_0 = 0, \\ & \qquad \qquad f_{\mathrm{impl}}(x(t),\dot{x}(t),u(t),z(t),p) = 0, \qquad \qquad t \in [0,T), \\ & \qquad \qquad \underline{h} \leq h(x(t),u(t),p) + J_{\mathrm{sh}}s_{\mathrm{h}} \leq \bar{h}, \qquad \qquad t \in [0,T), \\ & \qquad \qquad \underline{x} \leq J_{\mathrm{bx}}x(t) + J_{\mathrm{sbx}}s_{\mathrm{bx}}(t) \leq \bar{x}, \qquad \qquad t \in [0,T), \\ & \qquad \qquad \underline{u} \leq J_{\mathrm{bu}}u(t) + J_{\mathrm{sbu}}s_{\mathrm{bu}}(t) \leq \bar{u}, \qquad \qquad t \in [0,T), \\ & \qquad \qquad \underline{g} \leq Cx(t) + Du(t) + J_{\mathrm{sg}}s_{\mathrm{g}} \leq \bar{g}, \qquad \qquad t \in [0,T), \\ & \qquad \qquad s(t) \geq 0, \qquad \qquad t \in [0,T) \end{split}$$

Hereby:

- $x \in \mathbb{R}^{n_x}$ state vector
- $u \in \mathbb{R}^{n_u}$ control vector
- $z \in \mathbb{R}^{n_z}$ algebraic state vector
- $s \in \mathbb{R}^{n_s}$ slack variables, which are concatenated as $s = (s_{\text{bu}}, s_{\text{bx}}, s_{\text{g}}, s_{\text{h}})$
- $s^e \in \mathbb{R}^{n_s}$ terminal slack variables, which are concatenated as $s^e = (s_{bx}^e, s_g^e, s_h^e)$
- $p \in \mathbb{R}^{n_p}$ parameters

1 Dynamics

The function $f_{\text{impl}}: \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \times \mathbb{R}^{n_p} \to \mathbb{R}^{n_x+n_z}$ describes the dynamics as a fully implicit DAE. We offer to discretize F with a classic implicit Runge-Kutta (irk) or a structure exploiting implicit Runge-Kutta method (irk_gnsf).

Additionally, we offer an explicit Runge-Kutta integrator (erk), which can be used with explicit ODE models, i.e. models of the form

$$f_{\text{expl}}(x, u, p) = \dot{x}$$

Mathematical Expression	string identifier	data type
$f_{\rm impl}$ respectively $f_{\rm expl}$	dyn_expr_f	CasADi expression
-	$ $ dyn_type	string (explicit or implicit)

2 Cost

There are different acados modules to model the cost functions.

• $l: \mathbb{R}^{n_x} \times \mathbb{R}^{n_u} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Lagrange objective term.

• $m: \mathbb{R}^{n_x} \times \mathbb{R}^{n_z} \to \mathbb{R}$ is the Mayer objective term.

to decide which one is used set $cost_type$ for l, $cost_type_e$ for m.

Cost module: auto

Set cost_type to auto (default). Hereby we detect if the cost function specified is a linear least squares term and transcribe it in the corresponding form. Otherwise, it is formulated using the external cost module. Note: slack penalties are optional and will be detected form the expressions in future versions.

Mathematical Expression	string identifier	data type
$\overline{ }$	cost_expr_ext_cost	CasADi expression
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	cost_expr_ext_cost_e	CasADi expression
\overline{z}	cost_Z	double
z_s	cost_z	double
$Z^{ m e}$	cost_Z_e	double
$z_s^{ m e}$	cost_z_e	double

Cost module: external

Set cost_type to ext_cost.

Mathematical Expression	string identifier	data type
l	cost_expr_ext_cost	CasADi expression
m	cost_expr_ext_cost_e	CasADi expression
Z	cost_Z	double
z_s	cost_z	double
$Z^{ m e}$	cost_Z_e	double
$z_s^{ m e}$	cost_z_e	double

Cost module: linear least squares

Set cost_type to linear_ls.

The Lagrange cost term has the form

$$l(x, u, z) = \left\| \underbrace{V_x x + V_u u + V_z z}_{y} - y_{\text{ref}} \right\|_{W}$$

with matrices V_x, V_u, V_z, W of appropriate dimensions.

Similarly, the Mayer cost term has the form

$$m(x, u, z) = \left\| \underbrace{V_x^{\text{e}} x}_{y^{\text{e}}} - y_{\text{ref}}^{\text{e}} \right\|_{W^{\text{e}}}$$

with matrices $V_x^{\rm e}, W^{\rm e}$ of appropriate dimensions.

type
ble

Cost module: nonlinear least squares

Set $cost_type to nonlinear_ls$.

The cost function has the same form as in the linear least squares module.

The only difference is that y, respectively y^e are defined as CasADi expressions, instead of the matrices V_x, V_u, V_z , respectively V_x^e

Mathematical Expression	string identifier	data type
y	cost_expr_y	CasADi expression
W	cost_W	double
$y_{ m ref}$	cost_y_ref	double
y^{e}	cost_expr_y_e	CasADi expression
$y_{ m ref}^{ m e}$	cost_y_ref_e	double
Z	cost_Z	double
$ z_s $	cost_z	double
$Z^{ m e}$	cost_Z_e	double
$z_s^{ m e}$	cost_z_e	double

3 Path Constraints

Mathematical Expression	string identifier	data type
\bar{x}_0	constr_x0	double
J_{bx}	constr_Jbx	double
\underline{x}	constr_lbx	double
$\frac{x}{\bar{x}}$	$constr_ubx$	double
$J_{ m bu}$	${\tt constr_Jbu}$	double
\underline{u}	constr_lbu	double
\bar{u}	$constr_ubu$	double
C	constr_C	double
D	constr_D	double
g	constr_lg	double
$\frac{g}{\bar{g}}$	constr_ug	double
h	constr_expr_h	CasADi expression
$rac{\underline{h}}{ar{h}}$	$constr_lh$	double
\bar{h}	$constr_uh$	double
$J_{ m sbx}$	constr_Jsbx	double
$J_{ m sbu}$	constr_Jsbu	double
$J_{ m sg}$	$constr_Jsg$	double
$J_{ m sbx}$	constr_Jsh	double

4 Terminal Constraints

Mathematical Expression	string identifier	data type
$J_{ m bx}$	constr_Jbx_e	double
$\underline{x}^{\mathrm{e}}$	constr_lbx_e	double
\bar{x}^{e}	constr_ubx_e	double
C^{e}	constr_C_e	double
$rac{ar{g}^{ m e}}{ar{g}^{ m e}}$	constr_lg	double
$ar{ar{g}}^{ m e}$	constr_ug	double
$h^{ m e}$	constr_expr_h_e	CasADi expression
$rac{ar{h}^{ m e}}{ar{h}^{ m e}}$	constr_lh_e	double
$ar{h}^{ m e}$	constr_uh_e	double
$J_{ m sbx}$	constr_Jsbx	double
$J_{ m sg}^{ m e}$	constr_Jsg_e	double
$J_{ m sbx}^{ m e}$	constr_Jsh_e	double