

# Machine Learning EN.601.475/675

DR. PHILIP GRAFF

## Logistic Regression

FROM REGRESSION TO CLASSIFICATION

#### Classification

Data: 
$$\{(\mathbf{x}_i, y_i)\}_{i=1}^N$$
  $\mathbf{x}_i \in \mathbb{R}^M$   $y_i \in L$  L is a set of labels

$$\mathbf{x}_i \in \mathbb{R}^M$$

$$y_i \in L$$

Learn: a mapping from **x** to discrete value y

 $\circ$  f(x) = y

#### **Examples:**

- Spam classification
- Document topic classification
- Identifying faces in images

## Binary Classification

ightharpoonup We'll focus on binary classification:  $y_i \in \{0,1\}$ 

sometimes... 
$$y_i \in \{-1, 1\}$$

Usually easy to generalize to multi-class classification

#### Different Definition

## Fitting a function to data

Fitting: Optimization, what parameters can we change?

Function: Model, loss function

Data: Data/model assumptions? How we use data?

ML Algorithms: minimize a function on some data

#### Evaluation

$$Accuracy = \frac{N_{correct}}{N}$$

Other measurements appropriate for some tasks

• Ex. we care more about certain types of mistakes

#### Regression

#### Least squares regression

Outputs real number for each example

It seems that classification should be easier!

Let's use regression for classification

- Learn least squares regression model f<sub>w</sub>(x)=y
  - $\circ$   $f_w(x)=w^Tx$
- If y>0, predict "True (1)"
- o If y≤0 predict "False (0)"

## Regression for Classification

 $f_w(x)=0$  partitions the input space into two class specific regions

Linear decision boundary



### Regression for Classification

Mismatch between regression loss and classification

- Classification: accuracy
- We don't care about large vs. small values of output

#### Outliers problematic

 Prediction of 42 for example is fine for purposes of classification, bad for regression

We need output to be either 1 or 0

#### Machine Learning

## Fitting a function to data

Fitting: Solve for w given y and x

Function: Regression uses squared loss

Bad match for our task!

Data: assume dependent variable linear combination of independent variables

Our loss function doesn't match classification goals

## Logistic Function

Quick fix: apply a function to the output that gives the desired value

**Logistic function**:

$$g_{\alpha}(x) = \frac{1}{1 + e^{-\alpha x}}$$

- Outputs are between 0 and 1
- ightharpoonup Scaling parameter  $\alpha$
- Most outputs are close to 1 or 0



## Logistic Function

$$g_{\alpha}(x) = \frac{1}{1 + e^{-\alpha x}}$$



$$\alpha = 0.3$$



$$\alpha = 1$$



$$\alpha = 5$$

### Logistic Regression

We can combine the logistic function and our regression model

$$g(\mathbf{w}^T \mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Notice: as  $\mathbf{w}^T \mathbf{x}$  becomes:

- Large: output closer to 1
- Small: output closer to 0

#### Probabilistic View

In regression we modeled probability of the output – Likelihood Probability of the example and classification?

- $\circ$  p(x,y)?
- Since we know x, we want to maximize y
- $\circ p(x,y) = p(x|y)p(y) = p(y|x)p(x)$
- Since p(x) is fixed:

$$\underset{y=0,1}{\operatorname{argmax}} (p(x|y)p(y)) = \underset{y=0,1}{\operatorname{argmax}} (p(y|x))$$

## Why?

We can now write the distribution as

$$p_{\mathbf{w}}(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

Which implies that 
$$p_{\mathbf{w}}(y=0|\mathbf{x}) = \frac{e^{-\mathbf{w}^T\mathbf{x}}}{1+e^{-\mathbf{w}^T\mathbf{x}}}$$

The odds of the event is then 
$$\frac{p_{\mathbf{w}}(y=1|\mathbf{x})}{p_{\mathbf{w}}(y=0|\mathbf{x})} = e^{\mathbf{w}^T\mathbf{x}}$$

And the log-odds are 
$$\log\left(\frac{p_{\mathbf{w}}(y=1|\mathbf{x})}{p_{\mathbf{w}}(y=0|\mathbf{x})}\right) = \mathbf{w}^T\mathbf{x}$$

#### Generalized Linear Models

#### Decision boundary/surface

- An n-1 dimensional hyper-plane that separates the data into two groups
- These are linear functions of x, even though logistic is not linear

#### Generalized linear models

A linear model whose output is passed through non-linear function

#### Hypothesis class

Linear decision boundaries

#### Discriminative Model

We just care about p(y|x) so we can *discriminate* between classes

How does this differ from what we have done before?

#### Logistic Regression Decisions

Given parameters w, how do we make predictions?

$$p_{\mathbf{w}}(y=1|\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$$

If output > 0.5, predict 1, else predict 0

In addition to prediction, we have confidence in prediction

Confidence is the probability of the prediction

#### Logistic Regression

## Fitting a function to data

**Fitting**: Solve for **w** given y and **x** 

**Function**: Generalized linear function – logistic over regression

**Data**: Assume dependent variable linear combination of independent variables, modulated by the logistic function

## Objective Function: Likelihood

#### Conditional data likelihood

$$p_{\mathbf{w}}(Y|\mathbf{X}) = \prod_{i=1}^{N} p_{\mathbf{w}}(y_i|\mathbf{x}_i)$$

$$\mathcal{L}(Y, \mathbf{X}, \mathbf{w}) = \log(p_{\mathbf{w}}(Y|\mathbf{X})) = \sum_{i=1}^{N} \log(p_{\mathbf{w}}(y_i|\mathbf{x}_i))$$

#### Logistic Regression

## Fitting a function to data

Fitting: Solve for w given y and x

**Function**: Generalized linear function – logistic over regression – conditional log likelihood

**Data**: assume dependent variable linear combination of independent variables

#### **Function Optimization**

We have a function and want to maximize/minimize it

How do we find the point at which the function reaches its max/min?

## **Function Optimization**

Take the derivative, set it equal to 0, solve!

Will this work for every function?



#### **Convex Functions**



#### Maximum Likelihood Estimation (MLE)

#### Find the value at which the likelihood is maximized

We'll talk about other options later in the semester

#### Given the conditional log likelihood

- Take the derivatives for parameters w
- Set each derivative to 0
- M equations and M variables
- Solve for w

#### Problem

No closed form (analytical) solution for w

## Convex Optimization

#### The conditional maximum likelihood is concave

• There is a *single* maximal solution

#### We can maximize using convex optimization techniques

- Its easy to optimize convex functions
- There are **many** convex optimization algorithms

#### **Gradient Descent**

First order method: needs first order derivatives

Assuming F(x) is defined and differentiable, then F(x) decreases fastest if we go from x in the direction of the gradient of F

- · Vector of partial derivatives of F:  $abla F(\mathbf{x})$
- Update:  $\mathbf{x}' = \mathbf{x} \gamma \nabla F(\mathbf{x})$
- For sufficiently small values of γ, the value of the function will get smaller
- Large γ can over-shoot
- Repeat until convergence

## **Gradient Descent**



#### Derivatives

$$\frac{\partial \mathcal{L}(Y, \mathbf{X}, \mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} (y_i - p(y_i = 1 | \mathbf{x}_i, \mathbf{w})) \mathbf{x}_i$$

- $\rightarrow$  The derivative is 0 when  $y_i = p(y_i=1 | \mathbf{x}_i, \mathbf{w})$
- Minimize the prediction error

#### **Gradient Descent Solution**

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma \frac{\partial \mathcal{L}(Y, \mathbf{X}, \mathbf{w})}{\partial \mathbf{w}}$$

$$\frac{\partial \mathcal{L}(Y, \mathbf{X}, \mathbf{w})}{\partial \mathbf{w}} = \sum_{i=1}^{N} (y_i - p(y_i = 1 | \mathbf{x}_i, \mathbf{w})) \mathbf{x}_i$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma \sum_{i=1}^{N} (y_i - p(y_i = 1 | \mathbf{x}_i, \mathbf{w})) \mathbf{x}_i$$

#### Algorithm: Logistic Regression

#### Train: given data X and Y

• Initialize w to starting value

 $p_{\mathbf{w}}(y=1|\mathbf{x}) = p(y=1|\mathbf{x}, \mathbf{w}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}}$ 

- Repeat until convergence
  - Compute the value of the derivative for x, y, and w
  - Update w by taking a gradient step

#### Predict: given an example x

Using the learned w, compute p(y|x,w)

Note: many other optimization routines available

## Gradient Based Optimization

Multiple methods available for optimizing the same objective function

- Zero order methods
- First order methods
- Second order methods
- Adaptive methods
- 0

#### Alternate Methods

#### Batch gradient descent

- Utilize the gradient of all the data
- Slow: need to consider all the data before making a single update

## **Gradient Descent**



### Stochastic Updates

Compute the gradient on a single example at a time

Instead of:

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma \sum_{i=1}^{N} (y_i - p(y_i = 1 | \mathbf{x}_i, \mathbf{w})) \mathbf{x}_i$$

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma (y_1 - p(y_1 = 1 | \mathbf{x}_1, \mathbf{w})) \mathbf{x}_1 + (y_2 - p(y_2 = 1 | \mathbf{x}_2, \mathbf{w})) \mathbf{x}_2 + \dots$$

Use one data point:

$$\mathbf{w}^{t+1} = \mathbf{w}^t + \gamma \left( y_i - p(y_i = 1 | \mathbf{x}_i, \mathbf{w}) \right) \mathbf{x}_i$$

#### Stochastic Gradient Descent



## Update Frequency



#### Regularization

Same over-fitting problems as least squares

Add regularization term to objective to favor different considerations Similar options

- $\circ$  Quadratic regularization (L<sub>2</sub>)
- L<sub>1</sub> regularization (sparse solutions)
- For each regularization we optimize new objective function with new L<sub>q</sub>(w) term subtracted from the log-likelihood

#### Summary

#### Logistic regression

- Learn p(y|x,w) directly with functional form of distribution
- Maximize the data conditional log-likelihood
- Equivalent to linear prediction
  - Decision rule is a hyper-plane
- Regularization to prevent over-fitting