T.C.

KIRIKKALE
ÜNİVERSİTESİ
BİLGİSAYAR
MÜHENDİSLİĞİ

AĞ OPTİMİZASYONU

DR. EVRENCAN ÖZCAN

DERS İÇERİĞİ

- AĞ OPTİMİZASYONUNA GİRİŞ
 - OPTİMİZASYON KAVRAMI
 - TEMEL ŞEBEKE KAVRAMLARI
 - ŞEBEKE OPTİMİZASYONUNUN UYGULAMA ALANLARI
- MİNİMUM YAYILAN AĞAÇ PROBLEMİ
- EN KISA YOL PROBLEMİ
- MAKSİMUM AKIŞ PROBLEMİ
- PROJE YÖNETİMİ
 - KRİTİK YOL METODU (CPM)
 - PROJE DEĞERLENDİRME VE GÖZDEN GEÇİRME TEKNİĞİ (PERT)
 - PROJE PLANLAMASINDA ZAMAN-MALİYET İLİŞKİSİ

MAKSİMUM AKIŞ PROBLEMİ

- Birçok sistem, her bir düğüm üzerinden taşınan malzeme/bilgi miktarını kısıtlayan kapasiteye sahip dallar içeren bir şebeke olarak modellenebilir.
- Bu durumlarda genellikle bir başlama noktasından (kaynak) bir bitiş noktasına (batak) maksimum miktarda akışın sağlanması amaçlanır. Bu tip problemler Maksimum Akış Problemleri olarak adlandırılır.
- Problemin doğrusal programlama modeli verildikten sonra, çözümünde sıklıkla kullanılan Düğüm Etiketleme ve Ford - Fulkerson Algoritmaları açıklanacaktır.

DOĞRUSAL PROGRAMLAMA

TANIM

DOĞRUSAL: MODELDE KULLANILAN BÜTÜN MATEMATİKSEL FONKSİYONLARIN <u>LİNEER</u> OLDUĞUNU,

PROGRAMLAMA: ÇÖZÜMÜN BULUNMASI İÇİN YAPILACAK FAALİYETLERİN AKIŞ SIRASINI İFADE EDER.

DOĞRUSAL PROGRAMALAMA: EN YAYGIN OLARAK SINIRLI MİKTARDAKİ KAYNAKLARIN ÇEŞİTLİ FAALİYETLERE EN UYGUN (YANİ OPTİMAL) ŞEKİLDE PAYLAŞTIRILMASINA YÖNELİK PROBLEMLERDE KULLANILIR.

DOĞRUSAL PROGRAMLAMA

- Doğrusal Programlama, sınırlı kaynakların kullanımım optimum kılmak için tasarlanmış bir matematiksel modelleme yöntemidir.
- Askerlik, endüstri, tarım, ulaştırma, ekonomi, sağlık sistemleri, hatta davranış bilimleriyle sosyal bilimler gibi alanlarda başarılı doğrusal programlama uygulamaları vardır.
- Yöntemin kullanışlılığı bilgisayar yazılımlarındaki gelişmelerle daha da artmıştır.
- Gerçekte, doğrusal programlama, hesaplamalardaki yüksek verimliliğiyle, tamsayılı, doğrusal olmayan ve stokastik programlama gibi başka tip yöneylem araştırması modellerinin çözüm algoritmalarının geliştirilmesinin de temelini oluşturmuştur.

DOĞRUSAL PROGRAMLAMA MODELİNİN KURULMASI

- Burada, bir doğrusal programlama modelinin temel elemanları iki değişkenli basit bir örnekle açıklanacaktır.
- Elde edilen sonuçlar genel doğrusal programlama probleminin çözümü ve yorumu için kesin fikirler oluşturacaktır.

Örnek (BM LTD. ŞTİ.)

	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

- Ayrıca, yapılan bir pazar araştırmasından da, günlük iç cephe boya talebinin en çok 2 ton olduğu belirlenmiştir.
- Yine aynı araştırmadan, günlük iç cephe boya talebinin günlük dış cephe boya talebinden fazla olduğu ve bu fazlalığın günde en çok 1 ton olduğu saptanmıştır.
- BM Ltd. Şti., günlük kârını maksimum kılacak şekilde, dış ve iç cephe boyaların optimum üretim miktarlarını belirlemek istemektedir.

- Doğrusal programlama modeli bir YA problemi olarak düşünüldüğünde üç temel elemanı olacaktır:
 - 1. Belirlenecek karar değişkenleri
 - 2. Optimum kılacağımız amaç (hedef)
 - 3. İçinde bulunduğumuz kısıtlar
- Modeli geliştirmede ilk adım, karar değişkenlerinin açıkça tanımlanmasıdır. Önce değişkenler tanımlanır; amaç fonksiyonunun ve kısıtların oluşturulması çok zor olmayacaktır

Karar değişkenleri:

- x_1 = Dış cephe boyanın günlük üretim miktarı (ton)
- $x_2 = \dot{I}\varsigma$ cephe boyanın günlük üretim miktarı (ton)

	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Amaç fonksiyonu:

• Max $Z = 5x_1 + 4x_2$

	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Kısıtlar:

$$6x_1 + 4x_2 \le 24$$
 (M1 hammaddesi için)

$$1x_1 + 2x_2 <= 6$$
 (M2 hammaddesi için)

	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Kısıtlar:

• İç cephe duvar boyasına ait talebin günde en çok 2 tonla sınırlı olması kısıtı:

$x_2 <= 2$			
- x ₂ < - Z	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Kısıtlar:

• İç cephe boyanın günlük üretiminin dış cephe boyanınkinden fazla olması ve bu fazlalılığın en çok 1 tona ulaşması kısıtı:

 $X_2 - X_1 <= 1$

2 1	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Negatif olmama Kısıtı:

$$x_2 >= 0$$

	Ton başına hammadde miktarı (ton)		Günlük maksimum kullanılabilirlik
	Dış cephe	İç cephe	(ton)
M1 hammaddesi	6	4	24
M2 hammaddesi	1	2	6
Ton başına kâr (1000 pb)	5	4	

Model:

$$\text{Max } Z = 5x_1 + 4x_2$$

Kısıtlar:

$$6x_1 + 4x_2 <= 24$$

$$x_1 + 2x_2 <= 6$$

$$-x_1 + x_2 <= 1$$

$$x_2 <= 2$$

$$x_1, x_2 >= 0$$

MAKSIMUM AKIŞ PROBLEMİ— DP MODELİ

DP modeli

 x_{ii} : i düğümünden j düğümüne akış miktarı,

 c_{ij} : i düğümünden j düğümüne akış kapasitesi ((i,j) dalında i düğümüne yakın yazılan kapasite)

$$\begin{array}{lll} \text{Maks Z=} & \sum_k x_{1k} \\ \text{S.T.} & x_{ij} & \leq c_{ij} & \text{Her } (i,j) \text{ dalı için} \\ & \sum_i x_{ik} - \sum_j x_{kj} & = 0 & k = 2,...,N-1 \\ & \sum_k x_{1k} & = \sum_k x_{kN} \\ & x_{ij} & \geq 0 & \text{Her } (i,j) \text{ dalı için} \end{array}$$

MAKSİMUM AKIŞ PROBLEMİ— DP MODELİ

 $\max z = X_{12} + X_{13} + X_{14}$

S.T.

$X_{12} \le 20$	$\{(1,2)$ bağlantısı kapasite kısıtı $\}$	$X_{34} \le 10$	(3,4)	"}
$X_{13} \le 30$	{(13) "}	$X_{35} \le 20$	(3,5)	"}
$X_{14} \le 10$	{1 <i>A</i>) "}	$X_{41} \le 0$	(41)	"}
$X_{21} \le 0$	{21) "}	$X_{43} \le 5$	(43)	" }
$X_{23} \le 40$	{2,3) "}	$X_{45} \le 20$	(4,5)	"}
$X_{25} \le 30$	{25) "}	$X_{52} \le 0$	(5,2)	" }
$X_{31} \le 0$	{31) "}	$X_{53} \le 0$	(53)	"}
$X_{32} \leq 0$	{(3,2) "}	$X_{54} \leq 0$	(5,4)	"}

$$\begin{array}{l} X_{12} + X_{32} + X_{52} - X_{21} - X_{23} - X_{25} = 0 \\ X_{13} + X_{23} + X_{43} + X_{53} - X_{31} - X_{32} - X_{34} - X_{35} = 0 \\ X_{14} + X_{34} + X_{54} - X_{41} - X_{43} - X_{45} = 0 \\ X_{12} + X_{13} + X_{14} - X_{25} - X_{35} - X_{45} = 0 \end{array}$$

$$X_{ij} \ge 0$$

{2 düğümü için akış koruma kısıtı} {3 düğümü için akış koruma kısıtı} {4 düğümü için akış koruma kısıtı} {1 düğümünden çıkan 5 düğümüne giren akışlar toplamına eşit olsun } {Negatif olmama koşulları }

Optimal Çözüm

ı	OBJEC	TIVE FUNC.VAL.
	1)	60.00000
ı	VAR.	VALUE
ı	X12	20.000000
ı	X13	30.000000
ı	X14	10.000000
ı	X21	0.000000
ı	X23	0.000000
ı	X25	20.000000
ı	X31	0.000000
ı	X32	0.000000
ı	X34	10.000000
ı	X35	20.000000
ı	X41	0.000000
ı	X43	0.000000
ı	X45	20.000000
ı	X52	0.000000
	X53	0.000000
	X54	0.000000

Etiket yapısı

Algoritmanın Adımları

Adım 1 $a_1 = \infty$ olmak üzere 1nci düğümün (kaynak) etiketini $[\infty,-]$ olarak ata. i=1 al ve Adım 2'ye git.

Adım 2

$$S_i = \begin{cases} i \text{ düğümünden direkt ulaşılabilen, etiketlenmemiş,} \\ \text{pozitif kapasiteli düğümlerin kümesi} \end{cases}$$

olarak belirle. $S_i = \{ \}$ ise Adım 4'e, değilse Adım 3'e git.

Adım 3 C_{ij} , (i, j) arkının kapasitesi olmak üzere $a_k = C_{ik} = \max_{j \in S_i} \{C_{ij}\}$

formülasyonuyla belirlenen k düğümünü $[a_k,i]$ olarak etiketle. Son düğüm etiketlenmişse, yani çıkış yolu bulunmuşsa Adım 5'e, aksi halde i=k al ve Adım 2'ye git.

Algoritmanın Adımları

- Adım 4 i=1 ise başka bir çıkış olası değildir, Adım 6'ya git. Aksi halde $r=\{i\,\mathrm{diig}\mathrm{tim}\mathrm{tinde}\,\mathrm{bir}\,\mathrm{once}\,\mathrm{etiketlenen}\,\mathrm{diig}\mathrm{tim}\}\,$ olmak üzere i düğümünü r'ye komşu olan düğümler kümesinden çıkar, i=r al ve Adım 2'ye git.
- Adım 5 $N_p = \{1, k_1, k_2, \cdots, n\}$, 1. düğümden n. düğüme p. çıkış yolunun düğümleri olarak tanımla. Daha sonra yol boyunca maksimum akışı $F_p = \min\{a_1, a_{k1}, a_{k2}, \cdots, a_n\}$ olarak tanımla. Çıkış yolu boyunca her dalın kalan kapasitesini akış yönünde F_p kadar azalt, akışın tersi yönünde ise F_p kadar artır. Etiketleri sil, i=1 al ve Adım 2'ye git.
- Adım 6 m adet çıkış yolu belirlenmişse şebekenin maksimum akışı $F = F_1 + F_2 + \cdots F_m$ olarak hesapla. Şebekedeki dalların başlangıç ve son kalan kapasiteleri arasındaki farktan dalların optimum akış miktarlarını hesapla.

- Örnek(Taha, 8th Ed.)
- Aşağıdaki şebekenin 1 düğümünden 5 düğümüne olan maksimum akış miktarını belirleyin.


```
Adım 1
              a_1 = \infty ata, 1. düğümü [\infty, -] ile etiketle, i = 1 al.
Adım 2
            S_1 = \{2,3,4\} \neq \{\}
             a_k = C_{1k} = \max_{i \in S_1} \{C_{12}, C_{13}, C_{14}\} = \max_{i \in S_2} \{20,30,10\} = 30 = C_{13} \implies k = 3 \text{ ve}
Adım 3
              a_k = a_3 = C_{13} = 30. 3. důğümü [30,1] ile etiketle, i = k = 3 al ve
              Adım 2 'ye git
Adım 2
             S_3 = \{4,5\} \neq \{\} (1 düğümü etiketli, 2. düğüme giden kapasite sıfır)
Adım 3
            a_k = C_{3k} = \max_{i \in \mathcal{I}_3} \{C_{34}, C_{35}\} = \max_{i \in \mathcal{I}_3} \{10, 20\} = 20 = C_{35} \implies k = 5 ve
              a_k = a_5 = C_{35} = 20. 5. düğümü [20,3] ile etiketle, k = 5 düğümü çıkış
              düğümü olduğundan Adım 5 'ye git
              N_1 = \{1,3,5\}, F_1 = \min\{a_1, a_3, a_5\} = \min\{\infty, 30, 20\} = 20. Cikis yolu
Adım 5
              boyunca kalan kapasiteler
                   • (C_{13}, C_{31}) = (30 - 20, 0 + 20) = (10, 20) ve
                  • (C_{35}, C_{53}) = (20 - 20, 0 + 20) = (0, 20)
                                             [20,3]
[∞,-]
```

[30,1]

```
Adım 1
             a_1 = \infty ata, 1. düğümü [\infty, -] ile etiketle, i = 1 al.
Adım 2
           S_1 = \{2,3,4\} \neq \{\}
            a_k = C_{1k} = \max_{l \in S_1} \{C_{12}, C_{13}, C_{14}\} = \max_{l \in S_1} \{20,10,10\} = 20 = C_{12} \implies k = 2 \text{ ve}
Adım 3
              a_k = a_2 = C_{12} = 20. 2. důgůmů [20,1] ile etiketle, i = k = 2 al ve
              Adım 2 'ye git
             S_2 = \{3,5\} \neq \{\} (1 düğümü etiketli)
Adım 2
            a_k = C_{2k} = \max_{i \in S_3} \{C_{23}, C_{25}\} = \max_{i \in S_3} \{40, 30\} = 40 = C_{23} \implies k = 3 ve
Adım 3
              a_k = a_3 = C_{23} = 40. 3. důğümü [40,2] ile etiketle, i = k = 3 al ve
              Adım 2 'ye git
Adım 2
             S_3 = \{4\} \neq \{\} (1 ve 2 düğümleri etiketli, 5 düğümüne giden kap. sıfır)
            a_k = C_{3k} = \max_{i \in S} \{C_{34}\} = \max_{i \in S} \{10\} = 10 = C_{34} \implies k = 4 ve
Adım 3
              a_k = a_4 = C_{34} = 10. 4. důgůmů [10,3] ile etiketle, i = k = 4 al ve
              Adım 2 'ye git
                                              [10,3]
                [∞,-]
```

```
S_4 = \{5\} \neq \{\} (1 ve 3 düğümleri etiketli)
Adım 2
Adım 3 a_k = C_{4k} = \max_{i \in S_4} \{C_{45}\} = \max_{i \in S_4} \{20\} = 20 = C_{45} \implies k = 5 ve
             a_k = a_5 = C_{45} = 20. 5. düğümü [20,4] ile etiketle, k = 5 düğümü çıkış
             düğümü olduğundan Adım 5 'ye git
             N_2 = \{1,2,3,4,5\}, F_2 = \min\{a_1, a_2, a_3, a_4, a_5\} = \min\{\infty, 20, 40, 10, 20\} = 10.
Adım 5
             Çıkış yolu boyunca kalan kapasiteler
                 • (C_{12}, C_{21}) = (20 - 10, 0 + 10) = (10, 10),
                 • (C_{23}, C_{32}) = (40 - 10, 0 + 10) = (30, 10),
                 • (C_{34}, C_{43}) = (10 - 10.5 + 10) = (0.15) ve
                 • (C_{45}, C_{54}) = (20 - 10, 0 + 10) = (10, 10)
                         [10,3]
[∞,-]
                                           [20,4]
```

```
Adım 1 a_1 = \infty ata, 1. düğümü [\infty, -] ile etiketle, i = 1 al. Adım 2 S_1 = \{2,3,4\} \neq \{ } Adım 3 a_k = C_{1k} = \max_{j \in S_1} \{C_{12}, C_{13}, C_{14}\} = \max_{j \in S_1} \{10,10,10\} = 10 = C_{12} \implies k = 2 \text{ (Keyfi seçim yapıldı) ve } a_k = a_2 = C_{12} = 10 . 2. düğümü <math>[10,1] ile etiketle, i = k = 2 al ve Adım 2 'ye git Adım 2 S_2 = \{3,5\} \neq \{ } \{1 düğümü etiketli) Adım 3 a_k = C_{2k} = \max_{j \in S_2} \{C_{23}, C_{25}\} = \max_{j \in S_2} \{30,30\} = 30 = C_{23} \implies k = 3 \text{ (Keyfi seçim yapıldı) ve } a_k = a_3 = C_{23} = 30 . 3. düğümü <math>[30,2] ile etiketle, i = k = 3 al ve Adım 2 'ye git Adım 2 S_3 = \{\} (1 ve 2 düğümleri etiketli, 4 ve 5 düğümülerine giden kapasiteler sıfır). Geriye dönüş için Adım 4 'e git.
```


Adım 4 3. düğümdeki [30,2] etiketi hemen önceki düğümü r=2 olarak verecektir. 3. düğümü göz ardı etmek için çarpı koyarak çıkar. i=k=2 al ve Adım 2 'ye git.

Adım 2 $S_2 = \{5\} \neq \{\}$ (1 ve 3 düğümleri etiketli)

Adım 3 $a_k=C_{2k}=\max_{j\in\mathcal{S}_2}\{C_{25}\}=\max_{j\in\mathcal{S}_2}\{30\}=30=C_{25} \Rightarrow k=5 \quad \text{ve}$ $a_k=a_5=C_{25}=30 \ . \ 5. \ \text{düğümü [30,2] ile etiketle, } \ k=5 \ \text{düğümü çıkış}$ düğümü olduğundan Adım 5 'ye git

Adım 5 $N_3 = \{1,2,5\}, F_3 = \min\{a_1, a_2, a_5\} = \min\{\infty, 10,30\} = 10$. Çıkış yolu boyunca kalan kapasiteler

- $(C_{12}, C_{21}) = (10 10, 10 + 10) = (0, 20)$ ve
- $(C_{25}, C_{52}) = (30-10,0+10) = (20,10)$


```
Adım 1 a_1 = \infty ata, 1. düğümü [\infty, -] ile etiketle, i = 1 al. Adım 2 S_1 = \{3, 4\} \neq \{\} (2. düğüme giden kapasite sıfır) Adım 3 a_k = C_{1k} = \max_{j \in S_1} \{C_{13}, C_{14}\} = \max_{j \in S_1} \{10, 10\} = 10 = C_{13} \Rightarrow k = 3 (Kayfı seçim yapıldı) ve a_k = a_3 = C_{13} = 10. 3. düğümü [10, 1] ile etiketle, i = k = 3 al ve Adım 2 'ye git

Adım 2 S_3 = \{2\} \neq \{\} (1 düğümü etiketli, 4 ve 5. düğümlere giden kap. sıfır) Adım 3 a_k = C_{3k} = \max_{j \in S_3} \{C_{32}\} = \max_{j \in S_3} \{10\} = 10 = C_{32} \Rightarrow k = 2 ve a_k = a_2 = C_{32} = 10. 2. düğümü [10, 3] ile etiketle, i = k = 2 al ve Adım 2 'ye git
```


ITERASYON 4

Adım 2
$$S_2 = \{5\} \neq \{\}$$
 (1 ve 3 düğümleri etiketli)

Adım 3
$$a_k = C_{2k} = \max_{j \in S_2} \{C_{25}\} = \max_{j \in S_2} \{20\} = 20 = C_{25} \Rightarrow k = 5$$
 ve $a_k = a_5 = C_{25} = 20$. 5. düğümü [20,2] ile etiketle, $k = 5$ düğümü çıkış düğümü olduğundan Adım 5 'ye git

- Adım 5 $N_4 = \{1,3,2,5\}, F_4 = \min\{a_1, a_3, a_2, a_5\} = \min\{\infty,10,10,20\} = 10$. Çıkış yolu boyunca kalan kapasiteler
 - $(C_{13}, C_{31}) = (10-10,20+10) = (0,30),$
 - $(C_{32}, C_{23}) = (10-10,30+10) = (0,40) \text{ ve}$
 - $(C_{25}, C_{52}) = (20 10, 10 + 10) = (10, 20)$

- Adım 1 $a_1 = \infty$ ata, 1. düğümü $[\infty, -]$ ile etiketle, i = 1 al.
- Adım 2 $S_1 = \{4\} \neq \{\}$ (2 ve 3 düğümlerine giden kapasite sıfır)
- Adım 3 $a_k = C_{1k} = \max_{j \in S_1} \{C_{14}\} = \max_{j \in S_1} \{10\} = 10 = C_{14} \implies k = 4$ ve $a_k = a_4 = C_{14} = 10$. 4. düğümü [10,1] ile etiketle, i = k = 4 al ve Adım 2 'ye git
- Adım 2 $S_4 = \{3,5\} \neq \{\}$ (1 düğümü etiketli)
- Adım 3 $a_k = C_{4k} = \max_{j \in S_4} \{C_{43}, C_{45}\} = \max_{j \in S_2} \{15,10\} = 15 = C_{43} \implies k = 3$ ve $a_k = a_3 = C_{43} = 15$. 3. düğümü [15,4] ile etiketle, i = k = 3 al ve Adım 2 'ye git
- Adım 2 $S_3 = \{ \}$ (1 ve 4 düğümleri etiketli, 2 ve 5 düğümlerine giden kapasiteler sıfır). Geriye dönüş için Adım 4 'e git.
- Adım 4 3. düğümdeki [15,4] etiketi hemen önceki düğümü r=4 olarak verecektir. 3. düğümü göz ardı etmek için çarpı koyarak çıkar. i=k=4 al ve Adım 2 'ye git.

Adım 2 $S_4 = \{5\} \neq \{\}$ (1 ve 3 düğümleri etiketli)

Adım 3 $a_k = C_{4k} = \max_{j \in S_4} \{C_{45}\} = \max_{j \in S_4} \{10\} = 10 = C_{45} \Rightarrow k = 5 \text{ ve}$ $a_k = a_5 = C_{45} = 10 . 5. \text{ düğümü [10,4] ile etiketle, } k = 5 \text{ düğümü çıkış}$ düğümü olduğundan Adım 5 'ye git

Adım 5 $N_5 = \{1,4,5\}, F_5 = \min\{a_1, a_4, a_5\} = \min\{\infty,10,10\} = 10$. Çıkış yolu boyunca kalan kapasiteler

•
$$(C_{14}, C_{41}) = (10 - 10, 0 + 10) = (0, 10) \text{ ve}$$

•
$$(C_{45}, C_{54}) = (10 - 10, 10 + 10) = (0, 20)$$

 düğümden çıkan tüm bağlantıların kalan kapasiteleri sıfır olduğundan başka olası bir çıkış yoktur. Adım 6'ya gidilerek çözüm elde edilir.

Adım 6 :Şebekedeki maksimum akış F=F₁+F₂+...+F₅=20+10+10+10+10=60 olur. dallardaki akışlar aşağıdaki tabloda verilmiştir.

DALLARDAKİ AKIŞLAR

Bağlantı	Akış Farkları	Akış Miktarı	Yön
(1,2)	(20,0)-(0,20)=(20,-20)	20	1→2
(1,3)	(30,0)-(0,30)=(30,-30)	30	1 → 3
(1,4)	(10,0)- $(0,10)$ = $(10,-10)$	10	1→4
(2,3)	(40,0)- $(40,0)$ = $(0,0)$	0	-
(2,5)	(30,0)- $(10,20)$ = $(20,-20)$	20	2→5
(3,4)	(10,5)- $(0,15)$ = $(10,-10)$	10	3 → 4
(3,5)	(20,0)- $(0,20)$ = $(20,-20)$	20	3→5
(4,5)	(20,0)-(0,20)=(20,-20)	20	4 → 5

