

# Space Exploration

Propulsion

☐ Mubashshir Uddin Sunny K. Bhagat☐ Varun Singh



# Content:

- Liquid Fuels:
  - Fuel Composition and types in use
  - The Cryogenics
  - Monopropellants
- Solid Propulsion:
  - Chemicals used
  - Internal structure of SRB
  - Energy Density
  - Ignition and Control



## Introduction

The Idea of propulsion:

"THROW OUT AS MUCH AS MASS FROM THE NOZZLE AT MAXIMUM VELOCITY POSSIBLE"

High mass flow rate => High chamber pressure => High exhaust velocity.

But problem is, the chamber pressure!!









# Solid Propellant





## The Process:

- These mechanism are being used from an ancient time.
- Deflagration is the main process via which the fuel is burned
- Different fuels will give different challenges and would require different constructs
- Essentially solid fuel burning rockets are channeled explosions.







# The material may include anything capable of working as an explosive



aluminium perchlorate



Black Powder



Zinc-Sulphur Prop



Candy Propellants



Double Base propellants



Composite propellants

# SRB(The Solid Rocket Booster)

- Used in various missions like the Space shuttles and the SLS program
- Simple and provide a ton of thrust
- SRB in Shuttle produced 12,000 kN of thrust
- Double the power of a single F1 rocket engine
- They can't be switched off once they have been fired





### Internal structure of SRB:







# Liquid Propellants



- Liquids are desirable because they have a reasonably **high density** and **high specific impulse** aka high speed of exhaust gases.
- Using low density fuels increases the mass of the launch vehicle.
- $\Box$  Vrms =  $\sqrt{(3kT)/m}$
- Liquid propellants have separate storage tanks one for the fuel and one for the oxidizer. They
  also have pumps, valves, a combustion chamber,
  and a nozzle.
- Their flow can be controlled.



# 3 Types:

- Petroleum based
- Cryogens
- Hypergols



#### Petroleum Based

- Refined from crude oil and a mixture of hydrocarbons.
- RP1, aka highly refined kerosene is widely used.
- ☐ They are used with an oxidiser.
- ☐ Usually produce a Sooty Exhaust but is cheap
- The soot makes exhaust glow orange and also helps in cooling

the engine.

An F1 rocket engine burning RP1 (notice the Sooty exhaust)



# Cryogens

- □ Liquefied gases stored at a very low temperature.
- Liquid hydrogen (LH<sub>2</sub>) as the fuel and liquid oxygen (LO<sub>2</sub> or LOX) as the oxidizer.



## Cryogens

- Because of the low temperatures of cryogenic propellants, they are difficult to store over long periods of time.
- Liquid Oxygen doesn't spontaneously combust so need to include extra hardware to ignite the rocket, adding complexity.
- Liquid hydrogen has a very low density (0.071 g/ml) and, therefore, requires a storage volume many times greater than other fuels.
- Liquid hydrogen delivers a specific impulse about 30%-40% higher than most other rocket fuels.

## Cryogens:

For both the space shuttle disasters
Cryogenics could also be(partially) put to blame



Two rockets
using LOX and
H2 (notice the
clear exhaust)

- Cryogens usually burn clear and do minimum damage to the environment.
- Offer simplification in the engine cooling system(regenerative cooling).
- Produce the engineering challenge of keeping the fuel tank cool





Best known liquid fuel is  $H_2(liq) + O_2(liq) = H_2O$ 

☐ Highly energetic, H<sub>2</sub>O is light so exhaust velocity is very high so high specific

impulse.

Product is non toxic.



| Fuel Type | ISp | Energy density |
|-----------|-----|----------------|
| LH2       | 455 | 8.5            |
| RP1       | 358 | 33             |

# Hypergols

- Propellants that ignite spontaneously on contact with each other and require no ignition source.
- ☐ The easy start and restart capability of hypergols make them ideal for spacecraft maneuvering systems. Can be used as an igniter.
- ☐ They do not pose the storage problems of cryogenic propellants.
- But they are highly toxic and must be handled with extreme care.



# Hypergols<sup>®</sup>



- Hypergolic fuels commonly include hydrazine, monomethyl hydrazine
   (MMH) and unsymmetrical dimethyl hydrazine (UDMH).
- ☐ The oxidizer is usually nitrogen tetroxide (NTO) or nitric acid.
- ☐ Usually mixed oxides of nitrogen (MON) is used to lower freezing point.

| Oxidizer           | Fuel                | Hypergolic | Mixture Ratio | Specific Impulse<br>(s, sea level) |
|--------------------|---------------------|------------|---------------|------------------------------------|
| Liquid Oxygen      | Liquid Hydrogen     | No         | 5.00          | 381                                |
|                    | Liquid Methane      | No         | 2.77          | 299                                |
|                    | Ethanol + 25% water | No         | 1.29          | 269                                |
|                    | Kerosene            | No         | 2.29          | 289                                |
|                    | Hydrazine           | No         | 0.74          | 303                                |
|                    | MMH                 | No         | 1.15          | 300                                |
|                    | UDMH                | No         | 1.38          | 297                                |
|                    | 50-50               | No         | 1.06          | 300                                |
| Liquid Fluorine    | Liquid Hydrogen     | Yes        | 6.00          | 400                                |
|                    | Hydrazine           | Yes        | 1.82          | 338                                |
| FLOX-70            | Kerosene            | Yes        | 3.80          | 320                                |
| Nitrogen Tetroxide | Kerosene            | No         | 3.53          | 267                                |
|                    | Hydrazine           | Yes        | 1.08          | 286                                |
|                    | ММН                 | Yes        | 1.73          | 280                                |
|                    | UDMH                | Yes        | 2.10          | 277                                |
|                    | 50-50               | Yes        | 1.59          | 280                                |

#### Fuel Rich vs Oxidiser rich

- ☐ Hydrocarbons have coking issues so their engines are oxygen rich.
- Performance is usually higher in oxidiser rich fuels.
- But oxidisers are generally corrosive and complex metallurgy.
- Mostly fuel rich mixtures are preferred.
- Fuel rich mixtures keep the engine cooler.

# MonoPropellants:

- Using single propellant which are pressure pumped.
- Simple in design(most reliable)
- Will require Catalysis
- Usually used in RCS



|                                                  | H2O2(80%)                                     | N2H4                                     | N2O                 |
|--------------------------------------------------|-----------------------------------------------|------------------------------------------|---------------------|
| Molecular mass, g/mol                            | 34.01                                         | 32.05                                    | 44                  |
| Density kg/m <sup>3</sup>                        | 1388                                          | 1020                                     | 1977.7              |
| Heat of formation (kcal/mole)                    | -44.88                                        | +12.5                                    | +15.5               |
| Physical properties                              | Liquid Colorless,<br>Burn skin &<br>flammable | Liquid Colorless<br>Toxic &<br>flammable | Colorless gas       |
| Theoretical Performance (calculated u            | sing USAF Isp for                             | Pc=7 bar, area ratio                     | =40)                |
| Specific impulse, (sec)                          | 160                                           | 191                                      | 152.7               |
| Combustion Temperature, (K)                      | 1274                                          | 896                                      | 1609                |
| Molecular weight g/mol                           | 22.677                                        | 10.717                                   | 29.342              |
| Density specific impulse kg. sec./m <sup>3</sup> | $266 \times 10^3$                             | 228x10 <sup>3</sup>                      | 222x10 <sup>3</sup> |



# THANKS

LET'S CONTINUE LATER WITH MORE INTERESTING STUFFS AND FEW MORE CALCULATIONS.