Corrigé 6

- 1. Résoudre les équations suivantes :
 - a) $\tan x + 3 \sin^2 x \cos^2 x = 0$
 - b) $\sin^2 x + 8 \sin(2x) + 3 \cos^2 x = 10 \cot x$
 - c) $1 + 2\sin x + \cos x + 2\tan x = 0$
 - d) $2\sin^2 x + \sqrt{3}\sin(2x) 3 = 0$, $0 < x < 2\pi$
 - e) $\frac{\sin(2x)}{1-\cos x} + 2 = 2(\sin x + 2\cos x)$
 - a) $\tan x + 3 \sin^2 x \cos^2 x = 0$, $D_{\text{def}} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

L'équation ne change pas lors qu'on remplace x par $\pi+x$, on pose donc $z=\tan x$, z est défini $\forall \ x\in D_{\mathrm{def}}$.

L'équation devient : $z + \frac{3z^2}{1+z^2} - \frac{1}{1+z^2} = 0 \iff z^3 + 3z^2 + z - 1 = 0$

$$\Leftrightarrow$$
 $(z+1)(z^2+2z-1)=0$ \Leftrightarrow $(z+1)(z+1-\sqrt{2})(z+1+\sqrt{2})=0$

$$\Leftrightarrow \left\{ \begin{array}{l} z = -1 \,, \text{ ou} \\ z = -1 + \sqrt{2} \,, \text{ ou} \\ z = -1 - \sqrt{2} \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} x = -\frac{\pi}{4} + k\pi \,, \text{ ou} \\ x = \alpha + k\pi \,, \text{ ou} \\ x = \beta + k\pi \end{array} \right. \quad k \in \mathbb{Z} \,,$$

 $\operatorname{avec} \quad \alpha\,,\; \beta\,\in\,]-\tfrac{\pi}{2}\,,\tfrac{\pi}{2}\,[\,,\quad \tan\alpha=-1+\sqrt{2}\quad \text{ et } \quad \tan\beta=-1+\sqrt{2}\,.$

$$S = \left\{ -\frac{\pi}{4} + k\pi, \ \alpha + k\pi, \ \beta + k\pi, \ k \in \mathbb{Z} \right\} \subset D_{\text{def}}.$$

b)
$$\sin^2 x + 8 \sin(2x) + 3 \cos^2 x = 10 \cot x$$
, $D_{\text{def}} = \mathbb{R} \setminus \{k\pi, k \in \mathbb{Z}\}$.

L'équation ne change pas lors qu'on remplace x par $\pi+x$, on pose donc $z=\tan x\,,\ x\neq \frac{\pi}{2}+k\pi\,,\ k\in\mathbb{Z}\,.$

Le changement de variable n'est pas défini en $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, mais ces valeurs sont peut-être solution, il faut les tester dans l'équation.

$$\sin^2(\frac{\pi}{2} + k\pi) + 8\sin(\pi + 2k\pi) + 3\cos^2(\frac{\pi}{2} + k\pi) - 10\cot(\frac{\pi}{2} + k\pi) = 1 \neq 0.$$

Les valeurs $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, ne sont donc pas solution de l'équation.

On cherche des solutions différentes de $\frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, en posant $z = \tan x$.

L'équation devient :

$$\frac{z^2}{1+z^2} + 16 \frac{z}{\sqrt{1+z^2}} \frac{1}{\sqrt{1+z^2}} + \frac{3}{1+z^2} - \frac{10}{z} = 0 \quad \Leftrightarrow \quad \frac{z^2+16z+3}{1+z^2} - \frac{10}{z} = 0$$

$$\Leftrightarrow$$
 $z^3 + 6z^2 + 3z - 10 = 0 \Leftrightarrow (z - 1)(z^2 + 7z + 10) = 0$

$$\Leftrightarrow$$
 $(z-1)(z+2)(z+5) = 0$ \Leftrightarrow $z=1$ ou $z=-2$ ou $z=-5$.

Soient $\alpha, \beta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, tels que $\tan \alpha = -2$ et $\tan \beta = -5$,

alors $S = \left\{ \frac{\pi}{4} + k\pi, \ \alpha + k\pi, \ \beta + k\pi, \ k \in \mathbb{Z} \right\} \subset D_{\text{def}}.$

c)
$$1 + 2 \sin x + \cos x + 2 \tan x = 0$$
, $D_{\text{def}} = \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, k \in \mathbb{Z}\}$.

Aucun des trois tests d'invariance n'étant positif, on pose $z = \tan(\frac{x}{2})$, $x \neq \pi + 2k\pi$, $k \in \mathbb{Z}$.

Le changement de variable n'est pas défini en $x = \pi + 2k\pi$, $k \in \mathbb{Z}$, mais ces valeurs sont peut-être solution, il faut les tester dans l'équation.

$$1 + 2\sin(\pi + 2k\pi) + \cos(\pi + 2k\pi) + 2\tan(\pi + 2k\pi) = 0.$$

Ces valeurs sont donc solutions. On cherche d'autres éventuelles solutions à l'aide de $z = \tan(\frac{x}{2})$.

L'équation devient :
$$1+2 \frac{2z}{1+z^2} + \frac{1-z^2}{1+z^2} + 2 \frac{2z}{1-z^2} = 0$$

$$\Leftrightarrow (1-z^2)(1+z^2) + (-z^2+4z+1)(1-z^2) + 4z(1+z^2) = 0$$

$$\Leftrightarrow -2z^2 + 8z + 2 = 0 \quad \Leftrightarrow \quad z^2 - 4z - 1 = 0 \quad \Leftrightarrow \quad z = 2 \pm \sqrt{5}.$$

Soient $\alpha, \beta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, tels que $\tan \alpha = 2 - \sqrt{5}$ et $\tan \beta = 2 + \sqrt{5}$,

alors $S = \{ \pi + 2k\pi, 2\alpha + 2k\pi, 2\beta + 2k\pi, k \in \mathbb{Z} \} \subset D_{\text{def}}.$

d)
$$2 \sin^2 x + \sqrt{3} \sin(2x) - 3 = 0$$
, $D_{\text{def}} = \mathbb{R}$.

L'équation ne change pas lorsqu'on remplace x par $\pi + x$, on pose donc $z = \tan x$, $x \neq \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$.

Le changement de variable n'est pas défini en $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, mais ces valeurs sont peut-être solution, il faut les tester dans l'équation.

$$2\sin^2(\frac{\pi}{2} + k\pi) + \sqrt{3}\sin(\pi + 2k\pi) - 3 = -1 \neq 0.$$

Les valeurs $x = \frac{\pi}{2} + k\pi$, $k \in \mathbb{Z}$, ne sont donc pas solution de l'équation.

On cherche des solutions différentes de $\,\,\frac{\pi}{2}+k\pi\,,\,\,k\in\mathbb{Z}\,,\,$ en posant $\,z=\tan x\,.$

L'équation devient :
$$2 \frac{z^2}{1+z^2} + 2\sqrt{3} \frac{z}{\sqrt{1+z^2}} \frac{1}{\sqrt{1+z^2}} - 3 = 0$$

$$\Leftrightarrow 2z^2 + 2\sqrt{3}z - 3(1+z^2) = 0 \Leftrightarrow z^2 - 2\sqrt{3}z + 3 = 0$$

$$\Leftrightarrow (z - \sqrt{3})^2 = 0 \Leftrightarrow z = \sqrt{3} \Leftrightarrow \tan x = \tan \frac{\pi}{3} \Leftrightarrow x = \frac{\pi}{3} + k\pi, \ k \in \mathbb{Z}$$

Résolution sur l'intervalle] 0, 2π [: $x = \frac{\pi}{3}$ ou $x = \frac{4\pi}{3}$, $S = \left\{\frac{\pi}{3}, \frac{4\pi}{3}\right\}$.

e)
$$\frac{\sin x \cos x}{1 - \cos x} + 1 = \sin x + 2\cos x$$
, $D_{\text{def}} = \mathbb{R} \setminus \{2k\pi, k \in \mathbb{Z}\}$.

Aucun des trois tests d'invariance n'étant positif, on pose $z = \tan(\frac{x}{2})$, $x \neq \pi + 2k\pi$, $k \in \mathbb{Z}$.

Le changement de variable n'est pas défini en $x = \pi + 2k\pi$, $k \in \mathbb{Z}$, mais ces valeurs sont peut-être solution, il faut les tester dans l'équation.

$$\frac{\sin(\pi + 2k\pi)\cos(\pi + 2k\pi)}{1 - \cos(\pi + 2k\pi)} + 1 - \sin(\pi + 2k\pi) - 2\cos(\pi + 2k\pi) = 3 \neq 0.$$

Les valeurs $x = \pi + 2k\pi$, $k \in \mathbb{Z}$, ne sont donc pas solution de l'équation.

On cherche des solutions différentes de $\pi + 2k\pi$, $k \in \mathbb{Z}$, en posant $z = \tan(\frac{x}{2})$.

L'équation devient :
$$\frac{2z}{1+z^2} \cdot \frac{1-z^2}{1+z^2} \cdot \frac{1}{1-\frac{1-z^2}{1+z^2}} + 1 - \frac{2z}{1+z^2} - 2 \cdot \frac{1-z^2}{1+z^2} = 0$$

$$\Leftrightarrow 3z^3 - 3z^2 - z + 1 = 0 \Leftrightarrow 3z^2(z - 1) - (z - 1) = 0$$

$$\Leftrightarrow (z-1)(3z^2-1)=0 \Leftrightarrow \begin{cases} z=1, \text{ ou} \\ z=\frac{\sqrt{3}}{3}, \text{ ou} \\ z=-\frac{\sqrt{3}}{3} \end{cases} \Leftrightarrow \begin{cases} \tan(\frac{x}{2})=\tan\frac{\pi}{4}, \text{ ou} \\ \tan(\frac{x}{2})=\tan(\frac{\pi}{6}, \text{ ou} \\ \tan(\frac{x}{2})=\tan(-\frac{\pi}{6}) \end{cases}$$

$$S = \left\{ \frac{\pi}{2} + 2k\pi, \frac{\pi}{3} + 2k\pi, -\frac{\pi}{3} + 2k\pi, k \in \mathbb{Z} \right\} \subset D_{\text{def}}.$$

- 2. Est-il vraiment nécessaire d'utiliser un changement de variable pour résoudre les équations suivantes?
 - a) $\sin(3x) = \cos x$

c) $\cos x = \tan x$

- b) $\frac{1}{\cos x} \cos x = \sin x$
- $d) \sqrt{3} \tan x = \frac{1}{\cos x}$
- $D_{\mathrm{def}} = \mathbb{R}$. a) $\sin(3x) = \cos x$,

Cette équation se ramène à une équation élémentaire de la façon suivante :

$$\sin(3x) = \cos x \quad \Leftrightarrow \quad \sin(3x) = \sin\left(\frac{\pi}{2} - x\right).$$

On la résout comme telle :

$$\sin(3x) = \sin\left(\frac{\pi}{2} - x\right) \quad \Leftrightarrow \quad \begin{cases} 3x = \frac{\pi}{2} - x + 2k\pi \\ \text{ou} \\ 3x = \pi - \left[\frac{\pi}{2} - x\right] + 2k\pi \end{cases} \quad k \in \mathbb{Z},$$

$$\Leftrightarrow \begin{cases} 4x = \frac{\pi}{2} + 2k\pi \\ \text{ou} \\ 2x = \frac{\pi}{2} + 2k\pi \end{cases} \Leftrightarrow \begin{cases} x = \frac{\pi}{8} + \frac{k\pi}{2} \\ \text{ou} \\ x = \frac{\pi}{4} + k\pi \end{cases}$$

$$S = \left\{ \frac{\pi}{8} + \frac{k\pi}{2}, \frac{\pi}{4} + k\pi, k \in \mathbb{Z} \right\}.$$

b) L'équation $\frac{1}{\cos x} - \cos x = \sin x$ n'a de sens que si $\cos x \neq 0$,

$$D_{\text{def}} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi , \ k \in \mathbb{Z} \right\}.$$

On peut alors amplifier les deux membres de cette équation par $\cos x$.

$$\frac{1}{\cos x} - \cos x = \sin x \quad \Leftrightarrow \quad 1 - \cos^2 x - \sin x \, \cos x = 0$$

Cette équation, après factorisation, se ramène à deux équations élémentaires :

$$\sin^2 x - \sin x \cos x = 0 \quad \Leftrightarrow \quad \sin x (\sin x - \cos x) = 0$$

 $\Leftrightarrow \quad \sin x = 0 \quad \text{ou} \quad \sin x - \cos x = 0.$

- $\sin x = 0 \quad \Leftrightarrow \quad x = k\pi, \quad k \in \mathbb{Z},$
- $\sin x \cos x = 0$ \Leftrightarrow $\frac{\sqrt{2}}{2} \sin x \frac{\sqrt{2}}{2} \cos x = 0$ \Leftrightarrow $\sin \left(x \frac{\pi}{4}\right) = 0$ \Leftrightarrow $x \frac{\pi}{4} = k\pi$ \Leftrightarrow $x = \frac{\pi}{4} + k\pi$, $k \in \mathbb{Z}$.

$$S = \left\{ \, k\pi \,, \,\, \frac{\pi}{4} + k\pi \,, \,\, k \in \mathbb{Z} \,\right\} \,\subset \, D_{\mathrm{def}} \,.$$

c) $\cos x = \tan x$, $D_{\text{def}} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

Cette équation se ramène aisément à un trinôme du deuxième degré en $\sin x$:

$$\cos x = \tan x \quad \Leftrightarrow \quad \cos x = \frac{\sin x}{\cos x} \quad \Leftrightarrow \quad \cos^2 x - \sin x = 0$$

$$\Leftrightarrow \quad \sin^2 x + \sin x - 1 = 0 \quad \Leftrightarrow \quad \sin x = \frac{-1 \pm \sqrt{5}}{2} \quad \Leftrightarrow \quad \sin x = \frac{-1 + \sqrt{5}}{2}$$
Soit $\varphi \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tel que $\sin \varphi = \frac{-1 + \sqrt{5}}{2}$, alors
$$S = \left\{ \varphi + 2k\pi, \ \pi - \varphi + 2k\pi, \ k \in \mathbb{Z} \right\} \subset D_{\text{def}}.$$

d)
$$\sqrt{3} - \tan x = \frac{1}{\cos x}$$
, $D_{\text{def}} = \mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z} \right\}$.

Cette équation se ramène à une équation trigonométrique linéaire et se résout donc comme telle :

$$\sqrt{3} - \tan x = \frac{1}{\cos x} \iff \sqrt{3} - \frac{\sin x}{\cos x} = \frac{1}{\cos x} \iff \sqrt{3} \cos x - \sin x = 1$$

$$\Leftrightarrow \frac{\sqrt{3}}{2} \cos x - \frac{1}{2} \sin x = \frac{1}{2} \iff \cos \frac{\pi}{6} \cos x - \sin \frac{\pi}{6} \sin x = \frac{1}{2}$$

$$\Leftrightarrow \cos(x + \frac{\pi}{6}) = \cos \frac{\pi}{3} \iff x + \frac{\pi}{6} = \pm \frac{\pi}{3} + 2k\pi, \quad k \in \mathbb{Z}$$

$$\Leftrightarrow x = -\frac{\pi}{2} + 2k\pi \quad \text{ou} \quad x = \frac{\pi}{6} + 2k\pi.$$

Or les valeurs $x = -\frac{\pi}{2} + 2k\pi$ n'appartiennent pas au domaine de définition.

D'où:
$$S = \left\{ \frac{\pi}{6} + 2k\pi, \quad k \in \mathbb{Z} \right\}.$$

3. Résoudre l'inéquation suivante : $1 + \frac{\sin x}{1 + \cos x} > 2(\sin x - \cos x)$

$$1 + \frac{\sin x}{1 + \cos x} > 2\left(\sin x - \cos x\right), \qquad \mathcal{D}_{def} = \left\{x \in \mathbb{R} \mid x \neq \pi + 2k\pi, \ k \in \mathbb{Z}\right\}.$$

Aucun des trois tests n'étant positif, on pose $z = \tan(\frac{x}{2})$. Ce changement de variable est défini pour tout x dans \mathcal{D}_{def} .

Et l'inéquation devient :

$$\begin{aligned} 1 + \frac{2z}{1+z^2} \cdot \frac{1}{1+\frac{1-z^2}{1+z^2}} &> 2\left(\frac{2z}{1+z^2} - \frac{1-z^2}{1+z^2}\right) \\ 1 + \frac{2z}{1+z^2} \cdot \frac{1+z^2}{2} - 2\frac{z^2 + 2z - 1}{1+z^2} &> 0 \\ \\ \frac{z^3 - z^2 - 3z + 3}{1+z^2} &> 0 \quad \Leftrightarrow \quad \frac{z^2 \left(z - 1\right) - 3\left(z - 1\right)}{1+z^2} &> 0 \end{aligned}$$

$$\frac{(z-1)(z-\sqrt{3})(z+\sqrt{3})}{1+z^2} > 0 \quad \Leftrightarrow \quad (z-1)(z-\sqrt{3})(z+\sqrt{3}) > 0$$

z	$-\infty$	$-\sqrt{3}$		1		$\sqrt{3}$	∞
z-1	_		_	0	+		+
$z-\sqrt{3}$	_		_		_	0	+
$z + \sqrt{3}$	_	0	+		+		+
$(z-1)(z-\sqrt{3})(z+\sqrt{3})$	_	0	+	0	_	0	+

$$(z-1)(z-\sqrt{3})(z+\sqrt{3}) > 0 \qquad \Leftrightarrow \qquad \begin{cases} z \in]-\sqrt{3}, \ 1[& (1) \\ \text{ou} \\ z \in]\sqrt{3}, \ \infty[& (2) \end{cases}$$

(1)
$$z \in]-\sqrt{3}, 1[$$

$$\tan(\frac{x}{2}) \in]-\sqrt{3}, 1[$$

$$-\frac{\pi}{3}+k\pi < \frac{x}{2} < \frac{\pi}{4}+k\pi$$

$$-\frac{2\pi}{3}+2k\pi < x < \frac{\pi}{2}+2k\pi$$

$$(2) \quad z \in]\sqrt{3}, \infty[$$

$$\tan(\frac{x}{2}) \in]\sqrt{3}, \infty[$$

$$\frac{\pi}{3} + k\pi < \frac{x}{2} < \frac{\pi}{2} + k\pi$$

$$\frac{2\pi}{3} + 2k\pi < x < \pi + 2k\pi$$

$$\mathcal{S} = \bigcup_{k \in \mathbb{Z}} \left(\left[-\frac{2\pi}{3} + 2k\pi, \frac{\pi}{2} + 2k\pi \right] \left[-\frac{2\pi}{3} + 2k\pi, \pi + 2k\pi \right] \right)$$

