AD-A061 854 ARGONNE NATIONAL LAB ILL F/G 1/5
AIRPORT VICINITY AIR POLLUTION MODEL ABBREVIATED VERSION USER*S--ETC(U) SEP 78 L A CONLEY. D M ROTE DOT-FA71WA1-223 FAA-RD-78-111 UNCLASSIFIED NL 1 of 2 AD A061854

Report No. FAA-RD-78-111

00

AD A 0 61

DOC FILE COPY

OF POWERST.

AIRPORT VICINITY AIR POLLUTION MODEL ABBREVIATED VERSION USER'S GUIDE

L.A. Conley D.M. Rote
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

September 1978 Final Report

Document is available to the U.S. public through the National Technical Information Service, Springfield, Virginia 22161.

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Systems Research & Development Service
Washington, D.C. 20590

78 12 04.056

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1 Est pp 70 111	Government Accession No.	3. Recipient's Catalog No.	
FAA-RD 78-111			
4. Title and Subtitle		5 Report Date	
AIRPORT VICINITY AIR POLLUTIO	IN MODEL	// September 1978	
ABBREVIATED VERSION USER'S GU		6 Performing Organization Code	
		8. Performing Organization Report	No.
2. Author(s)			
.A. Conley D.M. Rote			
2. Performing Organization Name and Address		10. Work Unit No. (TRAIS)	
Argonne National Laboratory			
9700 South Cass Avenue	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11. Contract or Grant No.	10
Argonne, Illinois 60439	(15 DOT-FA71WA 1-223 N	
		13 Type of Bepart and Period Cov	ered
12. Sponsoring Agency Name and Address		(1)	
U.S. Department of Transporta		Final Repert	
Federal Aviation Administrati		14. Spansaring Agency Code	
Systems Research and Developm	ent Service	ARD-550	
Washington, D.C. 20590			
15. Supplementary reses		- 1125 01	
		2/	
16 Abstract			
National Laboratory for Agency Agreement DOT-F Vicinity Air Pollution	A71WA1-223. This version of the Model Abbreviated Version, pro	e model, Airport vides a 'first-	
Agency Agreement DOT-F. Vicinity Air Pollution guess! estimate of an	Model Abbreviated Version, pro airport air pollution distribut ion than is described in Report	vides a "first- ion based on more	20
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an general input informat the model's primary for The user must en as a basis for describ	Model Abbreviated Version, pro airport air pollution distribut ion than is described in Report	vides a "first- ion based on more No. FAA-RD-75-230, an coordinate system cide whether to use	35
Agency Agreement DOT-F. Vicinity Air Pollution guess! estimate of an ageneral input informat the model's primary for The user must en as a basis for describ, supplied default value facilities. The estimate of individual receptor low from area and line type member of a source type modeling period of air, support services, and	Model Abbreviated Version, pro airport air pollution distribut ion than is described in Report rm. stablish a right-handed Cartesi ing an airport layout, then de	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each f a one one-hour ies, airport ground-	20 35 °
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an a general input informat the model's primary for The user must est as a basis for describ supplied default value facilities. The estimate of individual receptor los from area and line type member of a source type modeling period of air support services, and each receptor location The document pre fundamental to the AVA flow diagrams essentia card data input to the	Model Abbreviated Version, prosirport air pollution distribution than is described in Report of the control of	wides a "first- ion based on more No. FAA-RD-75-230, an coordinate system cide whether to use reraft and airport omputed for selected of pollutant emissions levels due to each f a one one-hour ies, airport ground- are tabulated for retical considerations well as program Required sequential ith substitution	35
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an a general input informat the model's primary for The user must est as a basis for describ supplied default value facilities. The estimate of individual receptor los from area and line type member of a source type modeling period of air support services, and each receptor location The document prefundamental to the AVA flow diagrams essentia card data input to the options for program comprogram listing are pre-	Model Abbreviated Version, prosirport air pollution distribution than is described in Report of the control of	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each f a one one-hour ies, airport groundare tabulated for retical considerations well as program Required sequential ith substitution ple problem and a	35
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an a general input informat the model's primary for The user must en as a basis for describ supplied default value facilities. The estimate of individual receptor lon from area and line type member of a source type modeling period of air. support services, and each receptor location The document profundamental to the AVA flow diagrams essentia card data input to the options for program con program listing are profundation. The document profundamental to the AVA flow diagrams essentia card data input to the options for program con program listing are profundamental to the AVA Airport Vicinity	Model Abbreviated Version, prosirport air pollution distribution than is described in Report rm. stablish a right-handed Cartesing an airport layout, then destapplicable to the types of air pollutant concentrations are coations based on the dispersion e sources. Pollutant emission e are tabulated. The results coraft arrival-departure activitairport access vehicle roadways and pollutant species. essents a discussion of the theory hodel Abbreviated Version as 1 to understanding the theory. program is illustrated along winstants. Additionally, an example of the control o	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each f a one one-hour ies, airport groundare tabulated for retical considerations well as program Required sequential ith substitution ple problem and a	
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an a general input informat the model's primary for The user must en as a basis for describ supplied default value facilities. The estimate of individual receptor lon from area and line type member of a source type modeling period of air. support services, and each receptor location The document profundamental to the AVA flow diagrams essentia card data input to the options for program con program listing are profused. Airport Vicinity Air Follution	Model Abbreviated Version, prosirport air pollution distribution than is described in Report rm. stablish a right-handed Cartesing an airport layout, then destapplicable to the types of air pollutant concentrations are coations based on the dispersion e sources. Pollutant emission e are tabulated. The results coraft arrival-departure activitairport access vehicle roadways and pollutant species. essents a discussion of the theory program is illustrated along winstants. Additionally, an examovided. 18. Distribution Document is through the	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each fa one one-hour ies, airport groundare tabulated for retical considerations well as program Required sequential ith substitution uple problem and a Statement available to the U.S. put a National Technical Information is available to the U.S. put a National Technical Informatical i	ubli
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an general input informat the model's primary for The user must en as a basis for describ supplied default value facilities. The estimate of individual receptor lon from area and line type member of a source type modeling period of air support services, and each receptor location The document pre fundamental to the AVA flow diagrams essentia card data input to the options for program co program listing are pre 17. Key Words Airport Vicinity Air Follution Modeling	Model Abbreviated Version, prosirport air pollution distribution than is described in Report rm. stablish a right-handed Cartesing an airport layout, then destapplicable to the types of air pollutant concentrations are coations based on the dispersion e sources. Pollutant emission e are tabulated. The results coraft arrival-departure activitairport access vehicle roadways and pollutant species. essents a discussion of the theory program is illustrated along winstants. Additionally, an examovided. 18. Distribution Document is through the	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each f a one one-hour ies, airport groundare tabulated for retical considerations well as program Required sequential ith substitution ple problem and a	ubli
Agency Agreement DOT-F. Vicinity Air Pollution guess' estimate of an a general input informat the model's primary for The user must en as a basis for describ supplied default value facilities. The estimate of individual receptor lon from area and line type member of a source type modeling period of air. support services, and each receptor location The document profundamental to the AVA flow diagrams essentia card data input to the options for program con program listing are profundament Vicinity Air Follution	Model Abbreviated Version, prosirport air pollution distribution than is described in Report rm. stablish a right-handed Cartesing an airport layout, then destapplicable to the types of air pollutant concentrations are coations based on the dispersion e sources. Pollutant emission e are tabulated. The results coraft arrival-departure activitairport access vehicle roadways and pollutant species. essents a discussion of the theory program is illustrated along winstants. Additionally, an examovided. 18. Distribution Document is through the	an coordinate system cide whether to use reraft and airport computed for selected of pollutant emissions levels due to each fa one one-hour ies, airport groundare tabulated for retical considerations well as program Required sequential ith substitution uple problem and a Statement available to the U.S. put a National Technical Information is available to the U.S. put a National Technical Informatical i	ubli

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

033 550

Du

METRIC CONVERSION FACTORS

	ļ		£ 7				37	4.5				3 e			8 =	ĸ	. 1	iz.	F				1	
. Messeres	1	nches inches		miles			samue inches	square miles	9048			pounds	short tons		fluid ounces	piets	and a	cubic feet	cubic yards			Fabrenheit :	temperature	22 002
tions from Metric	Moltiphy by LENGTH	8.0	33	9.0		AREA	91.0	2.5	2.5	MASS (weight)		2.2	12	VOLUME	0.03	2.1	8 %	35	1.3		TEMPERATURE (exact)	9/5 (then	add 32)	22 3
Approximate Conversions from Metric Mossures	Wer Yer Ken	millimeters centimeters	meters	k i lameters		1	square centimeters	square meters	hectares (10,000 m²)			grams	tormes (1000 kg)		millitiers	liters	litters	cubic meters	cubic meters		TEMP	Celsius	temperature	200
	1	E 5	E 1	. 5			78~	· "5	2			. 2	-		Ĕ	-		· Te	~			ů		* 01-1
z	22 12 0	2 61		1	21	91		1	**	E1	111			01		•		L	9		S	•		E 1
171	rintelal	rilii	""	'l' ,	""	rj-r	' '	1.1.	ןיין'	ויויוין	'l'	"	111	וייין	1111	"	3 1'	""	" "	"!"	1	1.1.1.1	111	1 mc
	į		5	5 &	5		7	5%	Z.	,		•	r .		Ē	Ē	Ē.		-	_ Te	T _E		ů	. 236.
	1. fil.			centimeters cm				are meters	square meters m² square kilometers km²	i		5 sues6	tonnes					libers	liters	Cubic maters	cubic meters m3		Celsius	temperature ables, see 185 Misc. Pub., 286,
101010 M 1110 M 111010101	1	LENGTH		Centimeters	kilometers	AREA		square meters	re kilometers	hectares		28 grams		VOLUME		miffiliters					0.76 cubic meters m ³	RATURE (exact)	sne sne	subtracting temperature 32) 32) 32) 32) 32) 32) 32) 32) 32) 32)
Appleximent conversions to mellic measures	1	LENGTH	s -2.5 centimeters	30 centimeters	kilometers	AREA	7 9	0.09 square maters	square meters square kilometers	MASS (weight)		,	6.0		milliliters	ns 15 miffilitærs	milliliters		96'0	3.8		TEMPERATURE (exact)	5/9 (after Celsius	temperature subtracting temperature 22) 12) 12) 12) 12) 13) 13) 14) 15) 15) 15) 15) 16) 16) 16) 16

TABLE OF CONTENTS

												Page
1.	Intro	oduction										3
2.	Formu	ulas for Concentration Calculations										5
	2.4					:		:	:	 		5 5 11 12 13 14
3.	Descr	ription of Input Data										17
4.	Desci	ription of Default Data										25
5.	Examp	ple Problem										32
	5.1 5.2 5.3 5.4 5.5	Introduction	De	ck.	 •	:	•	•				32 32 34 36 37
Refe	erence	es										41
Appe	end ix	A Concentration Conversions									,	A-1
Арре	endix	B Flow Diagrams Main Function CAVL Subroutine QMOD Function TRAN									B.	3-1 -16 -29 -33
Appe	endix	C FORTRAN listing of the AVAP Model, Abbreviated Version Program										C-1

NTIS	White Section
DDC	Buff Section
UNANNOUNC	50 02
JUSTIFICATIO	ON
DISTRIBUTIO	M/AVAILABILITY CODES
DIST.	AIL. and of C. S.
_	

1 INTRODUCTION

The Airport Air Pollution Model, Abbreviated Version was developed at Argonne National Laboratory and executed on the IBM 360 Model 195 within a core region of 250K bytes while utilizing less than one minute of computer time. The FORTRAN coded program is yet another version of the Airport Air Pollution (AVAP) Model modified to provide a first-guess estimate of an airport air pollution distribution.

This document discusses the theoretical considerations fundamental to the model, describes data input requirements for using the program, and illustrates the use of model by presenting an example problem. Therefore, users of the document should be technical personnel concerned with using the computer code for assessing air pollution impacts of commercial and general aviation airports. For more comprehensive studies, the model's primary form should be used.

In Section 2, the collection of formulas that form the basis of the computer program are presented. Detailed descriptions are to be found for area source and line source dispersion formulas. Although they are not used in this abbreviated version of AVAP, the Gaussian plume formula for a point source, the Carson-Moses plume rise formula, and the Briggs formula for estimating stack downwash effects are presented.

Section 3 provides guidelines for preparation of the input data. The formats and meanings of the input parameters are given along with their relative card position in the input sequence. Almost all of the input parameters that appear in this section havedefault values. Those that do not have default values are marked in Table 3.1. with the asterisk (*) character.

Section 4 provides a description and a table of the default values of the input parameters. All of the default values appear in the BLOCK DATA subprogram of the computer program; all or some of them can be changed by the appropriate data-card insertion.

Section 5 presents a complete example problem that details the resultant output from the model. Appendix A illustrates the conversion of pollutant concentration units and Appendix B gives the program flow diagrams of selected computational modules.

A complete listing of the FORTRAN coded program is found in Appendix C.

2 FORMULAS FOR CONCENTRATION CALCULATIONS

The formulas presented in this section will apply to both forms of the AVAP Model except that Point Source calculations are not required when using the abbreviated version. They form an outline of the most basic set of equations for concentration calculations but are not to be regarded as the complete set that covers all practical conditions of application. The user of the AVAP Model should consult the references quoted in this document for more complete descriptions.

2.1 DISPERSION COEFFICIENTS σ_y and σ_z

The dispersion coefficients σ_y and σ_z (miles) indicate the amount the pollutant plume has spread (dispersed) after leaving its source. To avoid unrealistic behavior of the σ functions at very high and very low wind speeds, the following formulas are used:

$$\sigma_{\mathbf{v}} \equiv \sigma_{\mathbf{v}}(\mathbf{T}) = \operatorname{Max} \sigma_{\mathbf{v}\mathbf{T}}(\mathbf{T}), \sigma_{\mathbf{v}\mathbf{x}}(\mathbf{x}),$$
 (1)

and
$$\sigma_z \equiv \sigma_z(T) = \text{Max} \left[\sigma_{zT}(T), \sigma_{zx}(x)\right],$$
 (2)

where x is the downwind distance and T = x/u is the travel time. In Eqs. (1) and (2), $\sigma_{yT}(T)$ and $\sigma_{zT}(T)$ denote the travel-time-dependent dispersion coefficients. Curves of $\sigma_{yT}(T)$ for different Turner stability classes are displayed in Figure 2.1. Turner's original values—for two-hour sampling time have been converted to one-hour sampling time by multiplication with the factor (1/2)^{0.2} = 0.87. No conversion factor for sampling time is applied to the $\sigma_{zT}(T)$ values which are plotted in Figure 2.2. Figures 2.3 and 2.4 show the downwind-distance-dependent dispersion coefficients $\sigma_{yx}(x)$ and $\sigma_{zx}(x)$ derived from curves in Turner's Workbook—for 10-minute sampling time, by multiplying the original $\sigma_{yx}(x)$ values by $(60/10)^{\cdot 2}$ and the original $\sigma_{zx}(x)$ values by $(20/10)^{\cdot 2}$. In doing so we have assumed that the vertical dispersion coefficient is insensitive to sampling times beyond 20 minutes, as suggested by Slade.

2.2 POINT SOURCE DISPERSION EQUATIONS

The short-term average concentration χ_p at the recptor point (x,y,z) due to a point source at

Figure 2.1. Time-Dependent Horizontal Dispersion Coefficients for 1-Hour Sampling Time.

Figure 2.2. Time-Dependent Vertical Dispersion Coefficients for 1-Hour Sampling Time.

Figure 2.3. Downwind-Distance-Dependent Horizontal Dispersion Coefficients for 1-Hour Sampling Time.

Figure 2.4. Downwind-Distance-Dependent Vertical Dispersion Coefficients for 1-Hour Sampling Time.

$$X_{\mathbf{p}} = \frac{Q}{2\pi \mathbf{u}\sigma_{\mathbf{y}}\sigma_{\mathbf{z}}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{Y}}{\sigma_{\mathbf{y}}}\right)^{2}\right].$$

$$\left\{\exp \left[-\frac{1}{2} \left(\frac{\mathbf{Z}-\mathbf{H}}{\sigma_{\mathbf{z}}}\right)^{2}\right] + \exp \left[-\frac{1}{2} \left(\frac{\mathbf{Z}+\mathbf{H}}{\sigma_{\mathbf{z}}}\right)^{2}\right]\right\}.$$
(3)

where

y = crosswind distance from plume centerline,

Z = distance above ground,

u = wind speed at source height H (See Sec. 2.5).

Q = emission rate of the point source in mass per unit time,

o, = horizontal dispersion coefficient,

o = vertical dispersion coefficient

In the AVAP Model, plumes emitted from point sources are assumed to have finite initial dimensions ($\sigma_{yo} = \sigma_{zo} = 100$ ft. at the source point (0,0,H) when downwash does not appear).

If there is no interference from the ski lid, (see Sec. 2.6 for its effects) the source height is generally computed as the sum of the physical stack height h and plume rise Δh given by the Carson-Moses formula:5

$$\Delta h = A(Q_h)^{1/2}/U_S(ft), \qquad (4)$$

where:

 U_s = wind speed (mi/hr) at physical stack height,

A = 0.870 for stability classes 1 to 3,

sg1 = 0.354 for class 4,

sp = 0.222 for class 5, and

Qh = heat emission rate of the point source in Btu/hr.

Stack downwash is assumed to occur if $^{\rm U}$ s $^{\rm 2}$ 6 mph. The physical stack height h is then replaced by Briggs' modified stack height: $^{\rm 6}$

$$h' = \begin{cases} z_s + 2 & (v_s/u_s - 1.5)D_s, \\ z_s & \text{if } v_s > 1.5 & u_s, \end{cases}$$
 (5)

where:

h' = modified stack height after stack downwash,

Vs = stack effluent velocity, and

Ds = stack diameter.

Also, with stack downwash the initial plume dimensions are reassigned in the AVAP Model to simulate average city block size and building height (o $_{yo}$ = 250 ft; o $_{zo}$ = 40 ft).

For point sources with poor aerodynamic characteristics, such as vents or very short stacks on buildings, σ_{yo} is automatically assumed to be 250 ft and the building height h is used to compute σ_{zo} ($\sigma_{zo} = h/1.2$). If h is not supplied by the user the default value of 40 ft is used for σ_{zo} .

2.3 AREA SOURCE DISPERSION EQUATIONS

In the AVAP Model, two sets of dispersion equations are used for area sources. For convenience, area sources are classified as "near" sources and "far" sources depending on the relative location of the receptor and the area source.

First, the critical distance for mixing, \mathbf{x}_{c} , is computed from the mixing height value L by the equation

$$\sigma_{z}(T = x_{c}/u) = 0.47 L.$$
 (6)

If the critical distance measured upwind from the receptor is downwind of the downwind edge of the area source, the area source is defined as a "far" source. If the critical distance measured upwind from the receptor extends beyond the upwind edge of the source, the entire area source is treated as "near." There will be cases in which an area source is partitioned into a "near" and a "far" source relative to the receptor. The detailed logic for area source classification is presented in Appendix B on p. B-14.

The far area sources are treated conventionally, with the horizontal and vertical dispersions represented separately, each by an upwind virtual point source, so that at the downwind edge of the area source $\sigma_y = \sigma_{yo}$ and at the center $\sigma_z = \sigma_{zo}$. For an area source of side length d and vertical spread h, the initial Gaussian widths are given by $\sigma_{yo} = d/2.4$ and $\sigma_{zo} = h/1.2$.

For a complete discussion of the treatment of near area sources, the reader is referred to a separate report. Briefly, it is to treat the area source in such a manner that the z component is represented by an upwind virtual line segment along the wind direction instead of a single point, with the simplifying assumption that σ_y is held constant over the area source. The z - component is analytically integrated over the line segment. Therefore, for receptor locations immediately downwind of the area source, the model is expected to give more realistic concentration profiles than the conventional area source model.

The short-term average concentration χ_a at the receptor point (x,y,z), due to an area source having its geometrical center at $(0,0,Z_a)$, is given by

$$\chi_{\mathbf{a}} = \frac{Q_{\mathbf{a}} \cdot \mathbf{F}}{2\pi \sigma_{\mathbf{y}} \mathbf{d} (1-\mathbf{b})} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{y}}{\sigma_{\mathbf{y}}} \right)^{2} \right] \cdot \left\{ \exp \left[-\frac{1}{2} \left(\frac{\mathbf{z} - \mathbf{z}_{\mathbf{a}}}{\sigma_{\mathbf{z}} (\mathbf{T}_{2})} \right)^{2} \right] + \exp \left[-\frac{1}{2} \left(\frac{\mathbf{z} + \mathbf{z}_{\mathbf{a}}}{\sigma_{\mathbf{z}} (\mathbf{T}_{2})} \right)^{2} \right] \right\},$$
where,
$$\mathbf{F} = \frac{\mathbf{T}_{2}}{\sigma_{\mathbf{z}} (\mathbf{T}_{2})} - \frac{\mathbf{T}_{1}}{\sigma_{\mathbf{z}} (\mathbf{T}_{1})} \cdot \left\{ \mathbf{F}_{\mathbf{z}} \cdot \left(\frac{\mathbf{T}_{1}}{\sigma_{\mathbf{z}} (\mathbf{T}_{1}) / \sigma_{\mathbf{z}} (\mathbf{T}_{2})} \right) \right\} = \frac{\ell_{\mathbf{n}} (\sigma_{\mathbf{z}} (\mathbf{T}_{1}) / \sigma_{\mathbf{z}} (\mathbf{T}_{2}))}{\ell_{\mathbf{n}} (\mathbf{T}_{1} / \mathbf{T}_{2})}$$

If b = 1, the factor F/(1-b) in Eq. 7 should be replaced by $T_1 \ln(T_2/T_1)/\sigma_z(T_1)$.

In the above equations, T_1 denotes the sum of T_z (pseudo travel time corresponding to σ_{zo}) and the travel time from the downwind edge of the area source to the receptor, and T_2 denotes the sum of T_z and the travel time from the upwind edge of the area source to the receptor. If the receptor is inside the area source, $T_1 = 0$. σ_y is computed with a travel time so that $\sigma_y = d/2.4$ at the downwind edge of the source, or if the receptor is inside the source it is assumed to be d/2.4 at the receptor.

2.4 FINITE LINE SOURCE DISPERSION EQUATIONS

The short-term average concentration χ_{ℓ} at the receptor point (x,y,z) due to a finite line source with inclination angle θ relative to ground, aximuthal angle ϕ relative to the wind vector and its end points at (0,0,0) and $(L\cos\theta\cos\phi, L\cos\theta\sin\phi, L\sin\theta)$ is given by

$$\chi_{\ell} = \frac{q_{\ell}}{2\pi \ u \bar{\sigma}_{y} \bar{\sigma}_{z}} .J, \qquad (8)$$

with
$$J = (\sqrt{\pi}/2) \cdot A \cdot \sum_{i=1}^{2} \left\{ \exp \left(B_{i}^{2} - C_{i}^{2}\right) \left[\operatorname{erf}\left(B_{i} + L/A\right) - \operatorname{erf}\left(B_{i}\right) \right] \right\}$$

where
$$A = \sqrt{2} \, \bar{\sigma}_y \, \bar{\sigma}_z \, \left(\cos^2 \theta \, \sin^2 \phi \, \bar{\sigma}_z^2 + \sin^2 \theta \, \bar{\sigma}_y^2\right)^{-1/2}$$

$$\begin{split} \mathbf{B}_1 &= -2 \left(\mathbf{\bar{\sigma}_y} \ \mathbf{\bar{\sigma}_z} \right)^{-2} \quad .\mathbf{A}. \left[\mathbf{y} \ \cos\theta \ \sin\phi \ \mathbf{\bar{\sigma}_z}^2 + (\mathbf{Z} - \mathbf{H}) \ \sin\theta \ \mathbf{\bar{\sigma}_y}^2 \right], \\ \mathbf{B}_2 &= -2 \left(\mathbf{\bar{\sigma}_y} \ \mathbf{\bar{\sigma}_z} \right)^{-2} \quad .\mathbf{A}. \left[\mathbf{y} \ \cos\theta \ \sin\phi \ \mathbf{\bar{\sigma}_z}^2 + (\mathbf{Z} + \mathbf{H}) \ \sin\theta \ \mathbf{\bar{\sigma}_y}^2 \right], \\ \mathbf{C}_1 &= \left[\frac{\mathbf{y}^2}{2 \mathbf{\bar{\sigma}_y}^2} + \frac{(\mathbf{Z} - \mathbf{H})^2}{2 \mathbf{\bar{\sigma}_z}^2} \right]^{1/2}, \\ \mathbf{C}_2 &= \left[\frac{\mathbf{y}^2}{2 \mathbf{\bar{\sigma}_y}^2} + \frac{(\mathbf{Z} + \mathbf{H})^2}{2 \mathbf{\bar{\sigma}_z}^2} \right]^{1/2}. \end{split}$$

The above formula is applicable only under certain conditions. For a complete discussion of the various criteria and the reasons behind them, the user is referred to Refs. 8 and 9. Normally, when the line source subtends a sufficiently large angle relative to the wind vector, for example, a uniform, horizontal line with ϕ greater than 45°, the formula is used without the segmentation scheme discussed in the references mentioned above. The dispersion coefficients $\bar{\sigma}_y$ and $\bar{\sigma}_z$ are evaluated with an effective downwind distance corresponding to a point on the line that is directly upwind of the receptor. When the relative angle is very small (< 10°), the following approximation formula is used:

$$\chi_{\ell_0} = \frac{1}{2\sqrt{2\pi}} \left(\frac{q_{\ell_L}}{u} \right) \left(\bar{\sigma}_y \ \bar{\sigma}_z \right)^{-1} \exp \left[- \frac{y^2}{2\bar{\sigma}_y^2} - \frac{z^2}{2\bar{\sigma}_y^2} \right] . \tag{9}$$

Again, for a long line source, the line is divided into shorter segments, and an effective $\bar{\sigma}_y$ and $\bar{\sigma}_z$ for each segment is evaluated for the downwind distance corresponding to the midpoint of the segment. For angles between 10° and 45° Eq. 8 is used with the segmentation scheme.

2.5 WIND PROFILE LAW

To convert the wind speed measured by anemometer at a local airport (typically 30 ft above ground) to that at the physical stack height h or to that at the effective source height H we use a power law relation of the form:

$$u(Z) = u(Z_0) (Z/Z_0)^P$$
. (10)

The exponent P, as determined by DeMarrais 10, depends on the stability class and is given in Table 2.1.

Table 2.1 Exponents for Wind Profile

Stability Cl	P	
Unstable	(<3)	0.2
Neutral	(4)	0.3
Stable	(5)	0.4
Very Stable	(6)	0.5

2.6 EFFECTS OF SKY LID

The lower surface of an elevated inversion layer is referred to as the sky lid, and as a rough approximation it is assumed to act as a perfect reflector. Thus the plume would generally be reflected repeatedly from two parallel surfaces, the ground and the sky lid. If the reflected plumes from a point source are represented by multiple image sources (see Fig. 2.5), then the net concentration at the receptor can be expressed in terms of a multiple image series:

$$\chi_{\mathbf{p}} = \sum_{i=0}^{N} \chi_{\mathbf{p}i}.$$
 (11)

where χ_{po} = concentration due to original source, and χ_{pi} = concentration due to ith image source.

The above formula is used with N = 6 (i.e., three image sources below ground and three above the sky lid) when the downwind distance x of the receptor from the source is less than 2 x_c as calculated from Eq.(6). For downwind distances $x \ge 2 x_c$, the net concentration is calculated with the assumption of full mixing in the mixing layer, and

$$\chi_{\mathbf{p}} = \frac{Q}{\sqrt{2\pi} \operatorname{Lu} \sigma_{\mathbf{y}}} \exp \left[-\frac{1}{2} \left(\frac{\mathbf{y}}{\sigma_{\mathbf{y}}} \right)^{2} \right]. \tag{12}$$

gure 2.5. Multiple Reflections Between a Stable Laver and Cround Represented by Two Sets of Image Sources.

For some point sources (e.g., power plants with tall stacks), the calculated effective emission height H may be greater than the lid height, especially when the latter is small. These cases are not eliminated from consideration in the AVAP Model, but are simulated by using dispersion coefficients and plume rise for stably stratified air (stability class 5). Depending on the relative position of the lid, the physical stack height, and the computed effective stack height, the model will in some cases reassign the effective stack height or the lid height values.

For near area sources, there are no sky lid effects by definition. For far area sources, the sky lid effects are handled the same way as the point sources.

The sky lid effects on line source dispersion are handled by a simple linear interpolation scheme. For effective downwind distances (see Section 2.4 for definition) less than the critical distance $\mathbf{x_e}$, no sky lid effects are assumed; and for effective downwind distances greater than 2 $\mathbf{x_c}$ uniform vertical mixing is assumed by using the integrated expression for the Z-component. For downwind distances between $\mathbf{x_c}$ and 2 $\mathbf{x_c}$ a linear interpolation is applied to the concentration values obtained at $\mathbf{x_c}$ and 2 $\mathbf{x_c}$.

3 DESCRIPTION OF INPUT

The first six (6) cards in the data deck (see Table 3.1) are the problem title and program parameter input cards required for every application of the model.

Card 1 is a single card of input having no computational value internal to the code. It may be punched or left blank. If punched, the same will appear as the first line of printed output.

Card 2 provides at least one identifying symbol chosen from the following set:

CO - Carbon Monoxide

THC - Total Hydrocarbons

NOX - Nitrogen Oxides

PART - Total Suspended Particulate

If the card is multiply punched, the program will calculate in turn the estimates of pollutant concentrations corresponding to the specified species.

Card 3 will provide the necessary meteorological data. Of the entries made on this card, the atmospheric stability index (JSTAB) should be deduced on the basis of wind speed, cloud cover, time of the day and other isolation parameters according to the scheme outlined by Turner¹³. Then lid height (NLID), if not obtainable by processing local sounding data, is estimated on the basis of JSTAB and the monthly average afternoon maximum mixing depths (meters above surface) tabulated by Holzworth¹¹. The twelve (12) average values that are directly coded into the program (FUNCTION HMIX) apply to the Washington, D.C., region and are ordered by month (NMONTH) as follows: 400, 570, 1000, 930, 1120, 1310, 1180, 990, 980, 570, 680, and 480 (meters).

Card 4 provides an accounting of the receptors (points at which the model must estimate the pollutant concentration), the aircraft and aircraftengine types, and the airport-access vehicle roadways. The aircraft area source comprises four emission sources: (1) ground service vehicles, (2) auxiliary poweruunits, (3) aircraft taxi within the area, and (4) aircraftengine idle within the area. Therefore, an entry should exclude the aircraft area source (NACA=0) whenever the effects of all the above emission sources are suppressed. The non-aircraft area source is assigned pollutant emission levels later in the input stream, but may be excluded by setting NANA to zero (0).

Card 5 provides the indicators for user selected input. All of the punched card columns require that all corresponding card numbers, punched with all associated data, appear in the appropriate order of the input stream. For example, columns 18 and 21 are punched in order to indicate that card number 10 and card number 11 will appear in the input stream (see Table 3.1). Both of these bears entries for the number of engines with which each aircraft type is equipped, and the second bears entries that indicate the engine types.

Card 6 provides the location of specific receptor points.

The remainder of the input data deck is described in a list form in order to identify clearly those cards that are required for every application of the model and those cards that are used to over-ride program default values.

2 1 2 11 2 111	D. f
Card 7 thru Card 11	Refer to default values on page 27.
Card 12	Refer to default values on page 28.
Card 13	Refer to default values on page 30.
Card 14	Airport runway coordinates are always present.
Card 15	Refer to default values on page 30.
Card 16 thru Card 18	Refer to default values on page 29.
Card 19	Refer to default values on page 30.
Card 20 and Card 21	Airport taxiway coordinates are always present.
Card 22	Refer to default values on page 30.
Card 23 and 24	Runway apron coordinates are always present.
Card 25 thru Card 27	Refer to default values on page 30.
Card 28	Is required for access vehicle roadway coordinates.
Card 29	Is required for airport terminal area coordinates.
Card 30 and Card 31	Refer to default values on page 30.
Card 32	Refer to default values on page 31.
Card 33	Refer to default values on page 29.
Card 34	Refer to default values on page 31.
Card 35 and Card 36	Refer to default values on page 29.
Card 37	Is required for airport non-aircraft area coordinates.
Card 38	Is required for airport non-aircraft area pollutant emission level.

Note that, for the hour of interest, the user specifies the number of arriving aircraft of each type in Card 7. The number of aircraft departing during that same hour is assumed equal to the number of arrivals.

Table 3.1. Card Input Sequence

Card Type	Columns	Format	Comment
1 (1 card)* TITLE	1-80	(20A4)	Title card may be punched or left blank.
2 (1 card)*			
co	1-2	(A4)	Four fields having four columns each are provided
THC	5-7	(A4)	so that one or more pollutant species may be
NOx	9-11	(A4)	chosen for the model run.
PART	13-16	(A4)	enosen for the model fun.
3 (1 card)*			
HTAERO	1-8	F8.0	Height (feet) at which wind speed and direction
			are measured.
WSP	9-16	F8.0	Wind speed (knots).
DIR	17-24	F8.0	Wind direction (degrees).
TEMP	25-32	F8.0	Ambient temperature (degrees F).
JSTAB	33-40	18	Atmospheric stability index.
NLID	41-48	18	Lid height (tens of feet). Month of year (required whenever NLID=0).
MONTH NR	49-50 51-52	12 12	Month of year (required whenever NLID=0). Hour of day (required whenever NLID=0 and JSTAB=4).
	31-32		
4 (1 card)*		15	The total number (≤20) of receptor locations at
NSR	16-20	15	which the model must estimate pollutant levels
NACT	21-25	15	The number (≤10) of different aircraft types (B727, TØ, etc.) using airport facilities.
NENT	26-30	15	The number (≤5) of different aircraft engine types (JT8D,TPE331) with which the above aircraft are equipped.
NAVR	31-35	15	The number (≤60) of motor vehicle roadways leading into the airport.
NACA	36-40	15	l if aircraft area source is included. O otherwise.
NANA	41-45	15	1 if non-aircraft area source is included. O otherwis
5 (1 card)+			If a blank or zero appears in any column the
			default value is used.
DFAULT =	1 9	T	Card 7 data user defined.
	2 12		Card 8 data user defined.
	3 15		Card 9 data user defined.
	4 18		Card 10 data user defined.
	5 21		Card 11 data user defined.
	6 24		Card 12 data user defined.
	7 27		Card 13 data user defined.
	8 30	100	Card 15 data user defined.
	9 33 '		Card 16 data user defined.
1		sil bas	Card 17 data user defined.
	1 38-39	13	Card 18 data user defined.
1			Card 19 data user defined.
	3 44-45		Card 22 data user defined.
	4 47-48		Card 25 data user defined.
	5 50-51		Card 26 data user defined.
•	6 53-54		Card 27 data user defined.

Table 3.1. Card Input Sequence (contd.)

ard	Туре	Columns	Format	Comment
	17	56-57		Card 30 data user defined.
	18	59-60		Card 31 data user defined.
	19	62-63	and the	Card 32 data user defined.
	20	65-66	n arriva la la gra	Card 33 data user defined.
	21	68-69		Card 34 data user defined.
	22 23	71-72 74-75		Card 35 data user defined. Card 36 data user defined.
		74 75		data 50 data - dael dellined.
(NS	SR cards)	Section in the		
NRU	JSED	1-2	12	Any reference number.
XRE	ECP	3-10	F8.0	X coordinate of receptor (mi
YRE	ECP	11-18	F8.0	Y coordinate of receptor (mi
ZRE	ECP	17-26	F8.0	Height of receptor (ft
(1	card)			NACT entries of the number of arriving
NAC	C(K)	6-55	(5X, 1015)	aircraft of each type K. (Number of departures assumed to be the same as the number of arrivals).
3 (1	card)			
FLN	NDG(K)	6-55	(5X, 10F5.0)	NACT entries of time (hours) in landing mode for aircraft type K.
(1	card)			
FTK	(OF(K)	6-55	(5X, 10F5.0)	NACT entries of time (hours) in take-off mode for aircraft type K.
0 (1	card)			
	IN(K)	6-55	(5X,10I5)	NACT entries for the number of engines with which aircraft type K is equipped.
. /1	1\			
	card) GN(K)	6~55	(5X,10I5)	NACT entries for the engine type with which aircraft type K is equipped.
) (NF	ENT x 4 ca	arde)		
	I (I,J,K)		(15X, 5F10.0)	For each of the above engine types, enter an emission rate (lbs/hr) for each pollutant K (specified on card type 2). Cards 1 thru 4 for each engine type throttle setting will correspond to taxi, idle, landing and take-off modes, respectively.
3 (1	card)			
DSI		16-25	F10.0	Width (mi) of initial dispersion on runway.
HRV	W	26-35	F10.0	Height (mi) of initial dispersion on runway

Table 3.1. Card Input Sequence (contd.)

Card Type	Columns	Format	Comment
17	56-57	1	Card 30 data user defined.
18	59-60		Card 31 data user defined.
19	62-63		Card 32 data user defined.
20	65-66		Card 33 data user defined.
21	68-69		Card 34 data user defined.
22	71-72		Card 35 data user defined.
23	74-75	1	Card 36 data user defined.
6 (NSR cards)*			
NRUSED	1-2	12	Any reference number.
XRECP	3-10	F8.0	X coordinate of receptor (mi
YRECP	11-18	F8.0	Y coordinate of receptor (mi
ZRECP	17-26	F8.0	Height of receptor (ft
7 (1 card)			NACT entries of the number of arriving
NAC(K)	6-55	(5X, 10I5)	aircraft of each type K. (Number of departures assumed to be the same as the number of arrivals).
8 (1 card)			number of arrivals).
FLNDG(K)	6-55	(5X, 10F5.0)	NACT entries of time (hours) in landing mode for aircraft type K.
9 (1 card)			
FTKOF(K)	6-55	(5X, 10F5.0)	NACT entries of time (hours) in take-off mode for aircraft type K.
0 (1 card)			
NGIN(K)	6-55	(5x,1015)	NACT entries for the number of engines with which aircraft type K is equipped.
11 (1 card)			
INGN(K)	6-55	(5X,10I5)	NACT entries for the engine type with which aircraft type K is equipped.
12 (NENT x 4 ca	ards)		
EMI (I,J,K)	16-55	(15X,	For each of the above engine types,
(2,0,1,7)	10 33	5F10.0)	enter an emission rate (lbs/hr) for each pollutant K (specified on card type 2). Cards 1 thru 4 for each engine type throttle setting will correspond to taxi, idle, landing and take-off modes, respectively.
13 (1 card)			AND THE RESIDENCE OF THE PARTY
DSRW	16-25	F10.0	Width (mi) of initial dispersion on runway
HRW	26-35	F10.0	Height (mi) of initial dispersion on runway

Table 3.1. Card Input Sequence (contd.)

Card Type		Columns	Format	Comment
14 (1 car	d)*			
X1		16-25	F10.0	X coordinate of runway (mi) (Aircraft touch-down end)
Y1		26-35	F10.0	Y coordinate of runway (mi) (Aircraft touch-down end)
Z1		36-45	F10.0	Z height (ft) of runway. (Aircraft touch-down end)
X2		46-55	F10.0	X2 coordinate of opposite end point (mi)
Y2		56-65	F10.0	Y2 coordinate of opposite end point (mi)
22		66-75	F10.0	Z2 height of opposite end point (ft)
15 (1 car	(b)			
VA1		16-25	F10.0	Initial velocity of arriving aircraft (mi/h
VA2		26-35	F10.0	Final velocity of arriving aircraft (mi/hr)
VD1		36-45	F10.0	Initial velocity of departing aircraft (mi/)
VD2		46-55	F10.0	Final velocity of departing aircraft (mi/hr)
TIME		56-65	F10.0	Aircraft take-off roll-time (hrs)
TAIL		66-75	F10.0	Exhaust tail length (mi)
16 (1 car	d)			
FTAXI((K)	6-55	(5X, 10F5.0)	NACT entries of aircraft taxi speed (mi/hr) while in the gate area for each aircraft type K.
17 (1 car	(b)			
FTXII(6-55	(5X, 10F5.0)	NACT entries of aircraft inbound taxi speed (mi/hr)
18 (1 car	d)			
FTXIO((K)	6-55	(5X, 10F5.0)	NACT entries of aircraft outbound taxi speed (mi/hr)
19 (1 car	(b)			
DSTW		16-25	F10.1	Width (mi) of initial dispersion on taxiway.
HTW		26-35	F10.1	Height (mi) of initial dispersion on taxiway
20 (1 car	(b)*		To the second	
X1		16-25	F10.0	X coordinate of inbound taxiway (mi)
Y1		26-35		Y coordinate of inbound taxiway (mi)
21		36-45		Z height of inbound taxiway (ft)
X2		46-55		X2 coordinate of inbound taxiway (mi) (Airport terminal end)
Y2		56-65		Y2 coordinate of inbound taxiway (mi) (Airport terminal end)
Z.2		66-75		Z2 height of inbound taxiway (ft) (Airport terminal end)

Table 3.1. Card Input Sequence, (contd.)

Car	d Type	Columns	Format	Comment
21	(1 card)*			
	X1	16-25	F10.0	X coordinate of outbound taxiway (mi)
	Y1	26-35	F10.0	Y coordinate of outbound taxiway (mi)
	21	36-45	F10.0	Z height of outbound taxiway (ft)
	X2	46-55	F10.0	X2 coordinate of outbound taxiway (mi) (apron end)
	Y2	56-65	F10.0	Y2 coordinate of outbound taxiway (mi) (apron end)
	22	66~75	F10.0	<pre>Z2 height of outbound taxiway (ft) (apron end)</pre>
22	(1 card)			
	DSRA	16-25	F10.0	Width (mi) of initial dispersion on apror
	HRA	26-35	F10.0	Height (mi) of initial dispersion on apro
23	(1 card)*			
	X1	16-25	F10.0	X coordinate of inbound apron (mi)
	Y1	26-35	F10.0	Y coordinate of inbound apron (mi)
	Z1	36-45	F10.0	Z height of inbound apron (ft)
	X2	46-55	F10.0	X2 coordinate of inbound apron (mi)
		46-33	110.0	(from here we start the inbound taxiway)
	Y2			Y2 coordinate of inbound apron (mi) (from here we start the inbound taxiway)
	22			Z2 height of inbound taxiway (ft)
24	(1 card)*			
	X1	16-25	F10.0	X coordinate of outbound apron (mi)
	Y1	26-35	F10.0	Y coordinate of outbound apron (mi)
	Z1	36-45	F10.0	Z height of outbound apron (ft)
	X2	46-55	F10.0	X2 coordinate of outbound apron (mi)
	Y2	56-65	F10.0	Y2 coordinate of outbound apron (mi)
	Z2	66-75	F10.0	Z2 height of outbound apron (ft)
25	(1 card)	Omit if NAVR	= 0.	
	EFUH(J)	16-65	(15X,	For each of the pollutants specified on
			5F10.0)	card type 2, enter the urban automobile emission factor (gm/km) based on 25 mi/h traffic speed.
26	(1 card)	Omit if NAVR	=0.	
	EFUL(J)	16-65	(15X,	For each of the pollutants specified
	day.		5F10.0)	on card type 2, enter the urban automobi emission factor (gm/km) based on 10 mi/h traffic speed.
27	(1 card)	Omit if NAVR		
	DSAR	16-25	F10.0	Width (mi) of initial dispersion on access roadways.
	HAR	26-35	F10.0	Height (mi) of initial dispersion on access roadways.

Table 3.1. Card Input Sequence (contd.)

Car	d Type	Columns	Format	Comment
28	(NAVR car	ds)*		Access vehicle roadways:
	X1	11-20	F10.0	X coordinate of first end point (mi)
	Y1	21-30	F10.0	Y coordinate of first end point (mi)
	21	31-40	F10.0	Z coordinate of first end point (ft)
	X2	41-50	F10.0	X coordinate of second end point (mi)
	Y2	51-60	F10.0	Y coordinate of second end point (mi)
	22	61-70	F10.0	Z coordinate of second end point (ft)
	VNOON	71-78	F8.0	Average traffic volume
	IFS	79-80	12	Roadway classification: 1=congested,
	113	79-00	12	0=non-congested
29	(1 card)*	Omit if NAC	A = 0.	
	XS	16-25	F10.0	X coordinate of terminal area center (mi)
	YS	26-35	F10.0	Y coordinate of terminal area center (mi)
	STKH	36-45	F10.0	Height of terminal (ft)
	WIT	46-55	F10.0	Side length of terminal (mi)
	MII	46-33	110.0	Side length of terminal (mi)
30	(1 card)	Omit if NACA	A = 0.	Pollutant emission rate of diesel engine
				powered service vehicles.
	EFD(1)	16-25	F10.0	CO (gm/gal)
	EFD(2)	26-35	F10.0	HC (gm/gal)
	EFD(3)	36-45	F10.0	NOx (gm/gal)
	EFD(4)	46-55	F10.0	PART (gm/gal)
	EFD(5)	56-65	F10.0	SOx (gm/ga1)
31	(1 card)	Omit if NACA	A = 0.	Pollutant emission rate of gasoline
				engine powered service vehicles.
	EFG(1)	16-25	F10.0	CO (gm/mi)
	EFG(2)	26-35	F10.0	HC (gm/mi)
	EFG(3)	36-45	F10.0	NOx (gm/mi)
	EFG(4)	46-55	F10.0	PART (gm/mi)
	EFG(5)	56-65	F10.0	SOx (gm/mi)
32) Omit if NACA	A = 0.	
	SRVTIM(1,	K) 6-55		NACT entries of service vehicle operation time (min) during the aircraft service operation in the terminal area. See Page for a list of 14 modeled service vehicles
33	(1 card)	Omit if NACA	= 0.	
	KAPU(K)	6-55	(5X, 10I5)	NACT entries denoting l=the use of an auxiliary power unit: 0=no auxiliary power unit used for aircraft type K.
34	(1 card)	Omit if NACA		
	APU(J)	16-65	(15X, 5F10.0)	For each of the pollutants specified on card type 2, enter the emission factors (lb/hr) for auxiliary power units.

Table 3.1. Card Input Sequence (contd.)

Car	rd Type	Columns	Format	Comment
35	(1 card)	Omit if NACA	- 0.	
	FIDLE(K)	6-55	(5X, 10F5.0)	NACT entries of time (hr) for aircraft K engine idle.
36	(1 card)	Omit if NACA	- 0.	
	TGND(K)	6-55	(5X, 10F5.0)	NACT entries of time (min) for aircraft K gate occupancy.
37	(1 card)*	Omit if NANA	- 0.	
	XS	16-25	F10.0	X coordinate of non-aircraft area source center (mi)
	YS	26-35	F10.0	Y coordinate of non-aircraft area source center (mi)
	STKH	36-45	F10.0	Height of non-aircraft area source (ft)
	WIT	46-55	F10.0	Side length of non-aircraft area source (mi
38	(1 card)*	Omit if NANA	- 0.	
	EMIT(J)	16-65	(15X, 5F10.0)	For each of the pollutants specified on card type 2, enter the non-aircraft area source emission rate (lbs/hr)

^{*}Default values for these data are not available.

^{*}See Table 4.1, Program Default Values by Card Input Sequence Number.

4 DESCRIPTION OF DEFAULT DATA

This section describes for the user what is required as input data should the option to over-ride program constants be exericsed. Also, it lists the values of program constants (Table 4.1) as they appear in the BLOCK DATA subprogram of the computer code. All or some of the values will change whenever the appropriate card is inserted into the input stream.

The computer program is designed to model activity of ten (10) different aircraft types. These are listed in the first column of Table 4.1 (page 27) and may be replaced with types having identical, or nearly identical operational parameters, engine configurations, and ground service requirements. ments.

Operational parameters include time period values during which the aircraft-engine throttle setting is adjusted to one of the following operational modes:

- 1 Landing Aircraft touch-down to beginning of taxi on the inbound apron.
- 2 Take-off After alignment of aircraft with runway to liftoff.
- 3 Idle Arriving aircraft awaiting gate position.

These operating times are shown in Table 4.1, page 27, columns 3 and 4, and page 29, column 6, respectively. Other operational parameters presented on page 29, columns 2, 3 and 4 consider the speed of aircraft while they are in the gate area, on the inbound taxiway and on the outbound taxiway, respectively. Those that detail the average performance characteristics of all aircraft types during flight modes of operation are shown on page 30 (Card 15).

Engine configuration and their emission characteristics are assigned integer values to denote for each aircraft type, and each engine type the number of engines per aircraft and their pollutant emission rates during 4 modes of operation (Taxi, Idle, Landing and Take-off). These values are shown in Table 4.1, page 27, columns 5 and 6 respectively, with corresponding pollutant emission rate shown on page 28.

The ground serivce requirements of each aircraft type are fulfilled using fourteen (14) different pieces of motorized equipment (page 31, Card 32), all of which operate within the gate area to load and unload cargo and otherwise prepare the airplane for its next departure. It can be seen by the service times entered into the table that the equipment in use is

dependent upon the type of aircraft being serviced. The pollutant emission rates (page 30, Cards 30, 31) are presented for both diesel and gasoline engine powered equipment. Note that an auxiliary power unit will provide electrical power, whenever used (Page 29, Column 5), for the entire gate time (Page 29, Column 7) of the aircraft. Its emissions rates are shown on Page 31, Card 34.

Table 4.1. Program Default Values by Card Input Sequence

Aircraft Type	Card 7 Hourly Arrivals	Card 8 Time (hr) Landing	Card 9 Time (hr) Take-off	Card 10 Number of Engines	Card 11 Engine Type
1 (Boeing 727)	10	0.0153	0.0111	3	1 (JT8D)
2 (Douglas DC9)	10	0.0153	0.0111	2	1 (JT8D)
3 (Boeing 737)	10	0.0153	0.0111	2	1 (JT8D)
4 (Convair 580)	10	0.0153	0.0111	2	3 (A-501-D13)
5 (BAC 111)	10	0.0153	0.0111	2	4 (SPEY-511)
6 (NAMC YS11)	10	0.0153	0.0111	2	3 (A-501-D13)
7 (Beech 99)	10	0.0110	0.0111	2	2 (TPE 331)
8 (Fairchild FH-227)	10	0.0153	0.0111	2	3 (A-501-D13)
9 (Twin Otter)	10	0.0110	0.0111	2	2 (TPE 331)
10 (Piston Engine)	10	0.0110	0.0111	2	5 (320)

Table 4.1. Program Default Values by Card Input Sequence (Contd)

Card 12 Pollutant Emission Rate for Each Engine
Type During 4 Modes of Operation (lbs/hr)

		8	НС	NO.	PAET	s0 ₂
ngine Type 1	Taxi	37.0	9.0	2.0	0.5	6.0
(JT8D)	Idle	37.0	0.6	2.0	0.5	6.0
	Landing	25.6	5.6	36.3	8.9	3.2
	Take-off	0.9	7.0	133.3	21.0	9.6
ngine Type 2	Taxi	3.53	0.88	96.0	0.10	0.5
(TPE 331)	Idle	3.53	0.88	96.0	0.10	0.5
	Landing	2.58	0.24	1.69	0.38	6.0
	Take-off	0.39	0.05	3.64	0.62	1.9
Contract to the second						
ngine Type 3	Taxi	15.0	0.9	2.0	0.10	0.5
(A11. 501-D13)	Idle	15.0	0.9	2.0	0.10	0.5
	Landing	10.1	3.8	8.0	0.30	6.0
	Take-off	2.0	4.0	23.0	09.0	1.9
ngine Type 4	Taxi	0.09	0.99	1.0	0.04	9.0
(Spey 511)	Idle	0.09	0.99	1.0	0.04	9.0
	Landing	45.6	40.3	42.1	0.30	2.2
	Take-off	14.0	0.0	153.0	0.80	6.2
ngine Type 5	Taxi	11.41	0.38	0.01	0.06	0.01
(0-320)	Idle	11.41	0.38	0.01	90.0	0.01
	Landing	11.41	0.38	0.01	90.0	0.01
	Take-off	72.52	1.66	0.23	0.12	0.07

Table 4.1 (Cont'd)

Card 13 Initial dimensions of dispersion on runway.

Width = DSRW = 0.030 miles Height = HRW = 0.002 miles

Card 15 Runway parameters for arrival and departure aircraft.

VA1 = Runway - arrival initial velocity = 145 (mi/hr)
VA2 = Runway - arrival final velocity = 25 (mi/hr)
VD1 = Runway - departure initial velocity = 0.0 (mi/hr)
VD2 = Runway - departure final velocity = 180 (mi/hr)
TIME = Take-off roll time = .0111 (hrs)

TAIL = Exhaust tail length = .8523 (mi)

Card 19 Initial dimensions of dispersion on taxiway.

Width = DSTW = 0.030 (mi) Height = HTW = 0.002 (mi)

Card 22 Initial dimensions of dispersion on runway apron.

Width = DSRA = 0.095 (mi) Height = HRA = 0.002 (mi)

Card 25
Urban automobile pollutant emission factors (gm/km) based on 25 (mi/hr) traffic speed.

CO = 32.36, HC = 4.75, $NO_{x} = 3.46$, PART = 0.19, $SO_{x} = 0.11$

Card 26
Urban automobile pollutant emission factors (gm/km) based on 10 (mi/hr) traffic speed.

CO = 70.18, HC = 8.62, NO_x = 2.86, PART = 0.19, SO_x = 0.11

Card 27 Initial dimensions of dispersion on access roadway.

Width = DSAR = 0.0095 (mi) Height = HAR = 0.001 (mi)

Card 30 Pollutant emission factor for diesel engine powered service vehicles in (gm/gal).

CO = 126.6, HC = 21.9, $NO_{x} = 185.82$, PART = 5.9, $SO_{x} = 0.0$

Card 31 Pollutant emission factor for gasoline engine powered service vehicles in (gm/mi).

CO = 138.81, HC = 21.35, $NO_x = 9.32$, PART = 0.85, $SO_x = 0.0$

Table 4.1 (Cont'd)

Aircraft Type	Card 16 Speed (mi/hr) Gate area taxi	Card 17 Speed (mi/hr) Inbound taxi	Card 18 Speed (mi/hr) Outbound taxi	Card 33 APU use flags	Time (hr)	Card 36 Time (min Gate occupancy
1 (Boeing 727)	10	15	12	1	.033	52.
2 (Douglas DC9)	10	15	12	1	.033	52.
3 (Boeing 737)	10	15	12	1	.033	52.
4 (Conviar 580)	10	15	12	1	.033	52.
5 (BAC 111)	10	15	12	0	.033	52.
6 (NAMCO YS 11)	10	15	12	0	.033	52.
7 (Beech 99)	10	15	12	0	.033	52.
8 (Fairchild FH 227)	10	15	12	0	.033	52.
9 (Twin Otter)	10	15	12	0	.033	52.
10 (Piston Engine)	10	15	12	0	.033	52.

Table 4.1 (Cont'd)

Card 34 Pollutant emission factors for auxiliary power units in (lbs/hr). CO = 2.82, HC = 0.11, $NO_x = 1.24$, PART = 0.0, $SO_x = 0.0$

Card 32. Minutes of Service Vehicle Operation While Servicing Aircraft Type I

		Aircraft Type								23 - 120 22 - 0		
Vehicle Type	1* 727	2* DC9	3 * 737	4* C5	5 BAC	6 YS	7 B9	8 FH	9 TO	10 GA		
1 Tractor	66	48	85	55	50	50	0	0	0	0		
2 Belt Loader	28	15	30	0	25	25	0	0	0	0		
3 Container Loader	6 .	0	0	0	0	0	0	0	0	0		
4 Cabin Service	12	0	15	0	0	0	0	0	0	0		
5 Lavatory Truck	15	15	15	10	10	10	5	5	5	0		
6 Water Truck	0	10	0	10	10	10	5	5	5	0		
7 Food Truck	17	17	20	10	10	10	0	0	0	0		
8 Fuel Truck	20	15	15	10	20	20	10	10	10	0		
9 Tow Tractor	10	5	5	5	5	5	0	0	0	0		
10 Conditioner	0	0	0	0	0	0	0	0	0	C		
Transporting and Diesel Engines	0	0	0	0	0	0	0	0	0	0		
2 Ground Power Transporting and Gasoline Engines	0	0	0	0	0	0	0	0	0	(
13 Ground Power Unit Diesel Engine	0	0	0	0	0	0	0	0	0	C		
14 Transporter	3	0	0	0	0	0	0	0	0	C		

^{*}Also serviced by an Auxiliary Power Unit (APU)

5 EXAMPLE PROBLEM

5.1 INTRODUCTION

In order to clarify the procedure for using the AVAP Model Abbreviated Version, a "first-guess" estimate of pollutant concentration is presented for the example airport-layout shown in Figure 5.1. It is instructive to state that the locations of line type sources (runway, taxiway, apron, access roadway) are specified by the coordinates at their edge (from end to end), but the locations of airport terminal and non-aircraft area sources are specified by the coordinates at their center. Since aircraft movement on the runway is almost always into the wind (given as 180 degrees) the pattern of runway-apron-taxiway usage emerges. The pattern, for the airport-layout shown, is clockwise starting from the northern most point of the runway (landing aircraft touch-down). The input coordinates must be ordered to preserve this pattern. Therefore, all aircraft prepared for departure are queued before take-off on Apron 2 (outbound).

In this example, of the ten different aircraft types for which the Abbreviated Version is internally coded, seven are considered. They are listed with their associated engine type as follows:

(Boeing 727 & 737, Douglas DC9) JT8D turbofan engine (Beech 99) TPE 331 turboprop engine (Convair 580, NAMC YS11) All. 501-D13 turboprop engine (Small Piston Engine aircraft) Ø320 small piston engine

5.2 STATEMENT OF THE PROBLEM

GIVEN: Two pollutant species: Carbon Monoxide and Oxides of Nitrogen

Height of aerovane 10 ft
Wind speed 13 knots
Wind direction 180 degrees
Ambient temperature 36 degrees F

Stability index

Lid height 0 (Uses coded table from Holzworth)

Figure 5.1 Example Airport-Layout

Receptor locations

Aircraft types

10 (Use defaults provided for these types)

Engine types

4 (Use defaults provided for these types)

Motor vehicle roadways

5 (End-point coordinates in miles)

Aircraft area source

1 (Center coordinates in miles)

Non-aircraft area source

1 (Center coordinates in miles)

Runway end-point coordinates in miles.

Apron end-point coordinates in miles.

The "first-guess" estimate of pollutant concentration at receptors

1, 2, and 3 due to the following three source categories:

1. Aircraft Area Sources

FIND:

Service vehicles used in the terminal area.

Auxiliary Power Units used in the terminal area.

Aircraft taxi while in the terminal area.

Aircraft-engine idle while in the terminal area.

2. Non-Aircraft Area-Line Sources

Taxiway end-point coordinates in miles.

Trial area source Access vehicle roadways

3. Aircraft Line Sources

Runway (Landing & Take-off)
Taxiways (Inbound & Outbound)
Aprons (Inbound, Outbound Queuing)

Note that the estimates are based on aircraft arrival counts entered on Card-type 7, roadway traffic counts entered on Card-type 28, and trial area source emissions entered on Card-type 38.

5.3 SUMMARY OF THE PROBLEM

The AVAP Model Abbreviated Version requires at least twelve input cards. Depending upon the number of receptor points, number of access vehicle roadways and choice of default values, there may be more. The format for each card is given in Table 3.1. Table 5.1 lists the input for the sample problem; Table 5.2 lists the results. Note that a descriptive list of program values starts the table of results. Also note

that a tabulation of pollutant emission levels for each area and line type source is provided. The micrograms-per-cubic-meter notation, as seen in the concentrations tabulation, is used for Total Suspended Particulates (PART) if it is one of the pollutants being modeled.

36
Table 5.1 Input for Example Problem

SHULL MODEL TEST	JAN. 1577	EXAMPLE	1				
CO NGX							
10. 13.	180.	36.	4	0 3	15	AFT DATA	
CENTREL CARD	3 10	4 5	1	1			
CLAULT 1							
1 .44452	6.562						
2 .590 1.51	6.562						
3 .315 .925	6.562						
1/6 / 8	2 1	0 2	1	0 0	11		
RUNHAY COORD .	.524	1.338		10.	.616	.063	10.
TAXINAY COUND 1	.473	.091		10.	. 310	. 124	10.
TAXIBAY CUURE 2	.376	.801		10.	.430	1.240	10.
APREN CUCKE 1	.616	.063		10.	.413	.091	10.
APAUN COURT 2	24	1.338		10.	.438	1.240	10.
FIIADRAY 1 .0	736 1.085	3 5.		.1938	1.0679	5 5.	500. 0
KUADKAY 2 .1	938 1.061	5 5.		.1751	.7353	5.	400. 0
RUAPRAY 3 .1	781 .735	3 5.		.0406	.534	5.	300. 0
COLLEGE 4 .C	406 .534	3 5.		. 3936	.4376	5.	425. 0
RUADRAY 5 .0	94 .438	5.		.281	.528	5.	550. 0
ALC AREA	.399	. 153		11.	.017		
NEN-3/L AREA	.106	.288		16.	.3		
NCN-4/C EMIS	793.8	0.0		0.0	0.0	0.0	

Table 5.2 Results of Example Problem

```
SHURT HUTFL TEST JAN. 1977 FXAMPLE 1
POLLUTANT CHOICE
                                                           (1)
                                                                               NIX
AIRPIRT PARAMETERS:
                                                        NUMBER OF RECEPTORS_____
                                                        NUMBER OF RUNWAYS_____
                                                        NUMBER OF TAXIWAYS_____
                                                        NUMBER OF APRONS___
                                                       SUMMER OF TERMINAL AREAS
                                                       NUMBER OF SERVICE VEHICLE TYPES

NUMBER OF ACCESS VEHICLE POADWAYS

NUMBER OF AIRPORT NON-AIRCEAFT AREA SCUPCES-----
        3 RECEPTUR COOPDINATES (X,Y,Z):
            ARRIVAL ACTIVITY FOR AIRCRAFT TYPES 1 THROUGH 10 7 6 2 1 0 2 1 0 0 11
                                    LANDLES TIME
TAK - JEF TIME
                                                   2.00
                          1 37.00
                            2 37.00
                                                    2.00
                            3 25.60
                                                   36.30
                            4 6.00
                                                 123.30
                                                     0.46
                           1 3.53
                                  3.50
                                                      0.46
                            3 2.58
                                                     1.09
                                0.39
                                                        3.54
                                                     2.00
                           1 15.00
                            2 15.00
                                                      2.00
                            3 10.10
                                                       8.00
                            4 2.00
                                                    23.00
                           1 60.00
                                                   1.00
                            2 60.00
                            3 45.60
                                                   42.10
                                                 153.00
                            4 14.00
                                                   0.01
                            1 11.41
                            2 11.41
                           3 11.41
                                                   0.01
                           4 72.52
                                                      0.23
- 1)-PIINT COOPDINATES OF HENKAYS
               0.52430 1.55530 10.00000
                                                                                       0.61600 (.06300 10.00000
" I WALL PARAMETERS:
        1+3.30305 25.30030
                                                                                     180.00100
                                                                                                                  C. C111C
                                                                                                                                             0.08523
                                                                (.6
| 145.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 | 10.0 |
 (111111) 52-11
```

Table 5.2 Results of Example Problem (contd.)

```
END-POINT COCRDINATES OF TAXIBAYS
     0.47300
              0.09130 10.00000
                                    0.37600
                                              0.72400 10.00000
E 40-PULLY COORDINATES OF TAXIMAYS
     0.37600 0.80100 10.00000
                                              1.24000 10.00000
                                    0.43800
HINIZITAL AND VENTICAL SPREAD:
   LUVALYS
            0.01250
                        0.00167
                        0.00167
            0.01250
   TAKE VAYS
             0.09500
                        0.00200
   1041 45
0.61000 0.06300 0.00189
                                    0.47300
                                              0.09100
                                                        0.00189
CAD-PITAL COMPDINATES OF APPONS
      1.52.00 1.43800 0.00189 0.43800
                                             1.24000
                                                         0.00189
   PILLUTANT FMISSION FACTORS -- 25MPH UREAN AUTOMORILE TRAFFIC:
    32.56 3.46
   PILL ITANT EMISSION FACTORS -- 10 MPH URBAN AUTCHOBILE TRAFFIC:
    11.18 2.85
 4)-2)14 CONSTNATES, TRAFFIC INTENSITIES, AND INDICATORS OF ACCESS VEHICLE ROADWAYS
         1.07
                 1.09
                             5.00
                                       0.19
                                                  1.07
                                                            5.00
                                                                    500.00
                                                                              0
                  1.07
         0.19
                             5.00
                                       0.18
                                                            5.00
                                                                    400.00
                                                  0.74
                                                                              0
                             5.00
         1.19
                   2.14
                                        0.04
                                                  0.53
                                                            5.00
                                                                    300.00
                                                                              0
                   0.53
                             5.00
                                       0.09
                                                            5.00
                                                                    425.00
                                                  0.44
                                                                              0
         . 7.
                   0.44
                             5.00
         7.1.
                                       0.28
                                                  0.53
                                                            5.00
                                                                    550.00
                                                                              0
   PULL ITAME FAISSION FACTORS (DIESEL ENGINE) GM/GAL
   .1 = 127.00
   1 1 V
             145.02
   PILL HEAT PRISSION FACTORSIGNSCLINE ENGINE I GM/MI
            138.21
   1 =
               9.32
   114 -
   PARTIE V-PICE - HOSPATION TIME (MIN.):
. (7" ()
             66.0 44.0 05.0 55.0 50.0 50.0
                                              0.0 0.0
                                                       0.0 0.0
self . )
              7-. 1 15. 6 36. 6 0.6 25. 3 25. 6
7. 1 0.6 0.0 0.0 0.0 0.0 0.0
17. 0 0.0 15. 6 0.0 0.0 0.0
                                              0.0 0.0
                                                       0.0 0.0
                                              0.0
                                                  0.0
                                                            0.0
                                                       0.0
                                             0.0 0.0
1 .v f . .
                                                        0.0
                                                            0.0
              15.0 15.0 15.0 10.0 10.0 10.0
                                              5.0 5.0
                                                        5 . C
                                                             0.0
               0.6 10.0 0.0 10.6 10.0 10.0
 ALL IKY
                                              5.0
                                                   5.0
                                                        5.0
                                                             0.0
 111 500
              17.1 17.0 20.0 10.0 10.0 10.0
                                             0.0 0.0 0.0
                                                            0.0
· Fig Tex
The File
Limiter
              20.0 15.0 15.0 10.0 20.0 20.0 10.0 10.0 10.0
                                                             0.0
              17.0 5.0 75.0 5.0 5.0 5.0
                                             0.0
                                                             0.0
                                                  0.0
                                                       0.0
               127 41.7
                 0.02 (000.033)00.033 (00.033000.033000.033000.033000.033000.033000.033000.03300
            ((x.Y).HFICHT.WIDTH)
       .1 - 1 + .2 te 10 1c . C 1 10C
                                    0.30030
```

Table 5.2 Results of Example Problem (contd.)

**	*******	*****	******	****	****	
*						
*	POLLUTANT	EMISSION	RATE (PO	UNDSI	*	1
*						
*		CO	NUX		*	
*	AIRCRAFT LANDING	19.8	23.5			į
4	AIRCRAFT TAKE-OFF	20.6	62.3		ti ti	
*	INBOUND APRON	18.1	0.9		*	
*	DUTBOUND QUEUING	198.8	10.3			
	1430UND TAXIWAY	79.6	4.1		*	
*	DITBUUND TAXINAY	68.9	3.6		*	
*	SERVICE VEHICLE	265.0	8.8		*	
	AJX. POWER UNIT	44.0	19.3			
	TERM. AREA TAXI	14.4	0.7		*	
*	TERM AREA ENG. IDLE	61.5	3.2		•	
*	AIRCHAFT AREA	384.9	32.0			
	NU 1-AIRCRAFT AREA	793.8	0.0		*	
*	ACCESS VEHICLE					
*	1	7.0	0.7		*	
*	2	15.3	1.6		*	
*	3	8.4	0.9		*	
*	4	5.4	0.6		*	
*	5	13.1	1.4		*	
*	*******	*****	*****	*****	*******	

Table 5.2 Results of Example Problem (contd.)

DOLLHTANT	CONCENTRATIONS	:	M/CM=MICROGRAMS	PER	CUBIC	METER
is () [[I I I I I I I I I I I	C. MCC. ILWITCH	•	HILCH-LICHTON WIND			

RECEPTOR 1

COORDINATES (0.444, 0.452)

	(C(PPM)	NOX (PPM)
AIRCRAFT AREA	0.0	0.0
NUN-AIRCRAFT AREA-LINES	0.171	0.0
AIRCRAFT LINE	0.303	0.010
TOTAL	0.475	0.010

POLL JIANT CENCENTRATIONS : M/CM=MICEOGRAMS PER CUBIC METER

RECEPTOR 2

CHORDINATES (0.590, 1.510)

		CC(PPM)	NOX (PPM)
	ALASSAFT AREA	0.039	0.002
	VIN - MECRAFT AREA-LINES	0.030	0.000
t	ALKCRAFT LINE	0.015	0.043
	TOTAL	0.144	0.045

POLLUTANT CONCENTRATIONS : M/CM=MICROGRAMS PER CUBIC METER

RECEPTOR 3

COORDINATES (C.375, 0.925)

+		(C(PPM)	NOX (PPM)
·	Alec-Aft AcEA	1.413	0.072
*	A 3N - MICCOART APPA-LINES	0.192	0.000
*	AIRCHAFT LINE	0.410	0.013
*	TATAL	2.015	0.084

REFERENCES

- I. T. Wang, L. A. Conley, D. M. Rote, "Airport Vicinity Air Pollution Model User Guide," Report No. FAA-RD-75-230, prepared for U.S. Dept. of Transportation, Federal Aviation Administration (1975).
- D. B. Turner, "A diffusion Model for An Urban Area," J. Appl. Meteorological 3. No. 999-AP-26 (1967).
- D. B. Turner, "Workbook of Atmospheric Dispersion Estimates," U.S. Dept. of Health, Education, and Welfare, U.S. Public Health Service Publication No. 999-AP-26 (1967).
- D. H. Slade, Ed., "Meteorology and Atomic Energy," TID-24190 (1968).
- J. E. Carson and H. Moses, "The Validity of Currently Popular Plume Rise Formulas," Proc. USAEC Meteorological Information Meeting, Held at Chalk River Nuclear Laboratories, September 11-14, 1967, AECL-2787, I-20 (1967).
- G. A. Briggs, "Diffusion Estimation for Small Emissions," Air Resources Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, Tennessee (1973).
- D. M. Rote, "Airea Source Modeling," Report being prepared for the U.S. Air Force (1975).
- D. M. Rote, I. T. Wang, L. E. Wangen, R. W. Hecht, R. R. Cirillo, and J. Pratapas, "Airport Vicinity Air Pollution Study", Report No. FAA-RD-73-113, prepared for U.S. Dept. of Transportation, Federal Aviation Administration (1973).
- I. T. Wang and D. M. Rote, "A Finite Line Source Dispersion Model for Mobile Source Air Pollution." Journal of Air Pollution Control Association, 25, 730-733 (1975).
- G. A. DeMarrais, "Wind-Speed Profile at Brookhaven National Laboratory", J. Meteorol., 16, 181-190 (1959).
- G. C. Holzworth, "Estimates of Mean Maximum Mixing Depths in the Contiguous United States, "Monthly Weather Review", 92, 235-242 (1964).

A-1 APPENDIX A

CONCENTRATION CONVERSIONS

Concentration $(\mu g/m^3) = 1.22 \times 10^4 \frac{P}{T} \cdot MW \cdot \text{concentration (ppm)}$ where

P = pressure in atmospheres,

T = absolute temperature (°K)

MW = molecular weight

Example: NO₂

P = 1 atm

 $T = 77^{\circ}F \equiv 25^{\circ}C \equiv 273 + 25 = 298^{\circ}K$

MW = 14 + 32 = 46

Concentration $(\mu g/m^3) = 1.22 \times 10^4 \times \frac{1}{298} \times 46 \times \text{concentration (ppm)}$ = 1883 x concentration (ppm)

for $T = 32^{\circ}F$,

Concentration $(\mu g/m^3) = 2056 \times concentration (ppm)$

Note that for a pollutant class like THC or NO_X , it is customary to convert from ppm to $\mu g/m^3$ by representing the class in terms of a single pollutant such as CH_4 or NO_2 . Consequently, under the same conditions as given above (T = 32°F),

THC Concentration $(\mu g/m^3)$ (treated as CH_4) =

$$\frac{1.22 \times 10^4 \times 1 \times 16}{273} = 715 \times \text{THC conc. (ppm)}$$

and

 NO_{x} Concentration ($\mu g/m^{3}$) (treated as NO_{2}) = 2056 x NO_{x} conc. (ppm)

APPENDIX B

FLOW DIAGRAMS

FUNCTION CAVL

Purpose:

To compute the coupling coefficient due to a line source of arbitrary spatial orientation, at the receptor.

Input:

XW1, YW1, ZW1; XW2, ZW2-	-End-point coordinates of line source (mi) (X-axis chosen to
	be along wind vector).
XR, YR, ZR	-Receptor coordinates (mi).
WS; JSTAB; HLID; XZ; SUDOY; SUDOZ	-Wind speed (mi/hr); Stability;
	Mixing height (ft); Critical
	distance for vertical mixing
	(mi); Pseudo downwind distance
	for horizontal spread of line
	source (mi); Pseudo downwind
	distance for vertical spread
	of line source (mi).
COEF1; COEF2-	-Constant coefficients used in
	the line source dispersion
	equations.

Output:

Procedure:

- 1. Test whether the receptor is located with respect to the line source such that the concentration is completely negligible.
- 2. If angle between wind vector and line is sufficiently small, and line source is sufficiently long, a flag is set for the line to be segmented. Each segment is then treated as an individual line.
- 3. Compute effective downwind distance.
- 4. Compute horizontal and vertical dispersion coefficients, using external function routines SIGY and SIGZ.
- 5. Compute the Z-component of the dispersion expression.

- Test whether the line source has a uniform density. If it is a runway used for aircraft arrival or departure (nonuniform line density), subroutine QMOD is called.
- 7. Compute and output the concentration for the given receptor.

Functions Called:

SIGY, SIGZ

Subroutine Called:

QMOD

Special Function Called:

ERF (X)

SUBROUTINE QMOD

Purpose:

To compute the linear distribution (in (Length)⁻¹) of pollutant along runway due to aircraft emission during landing or takeoff.

Input:

- YS1 ----- Distance along runway measured from the tip of exhaust plume near the starting end of runway.
- TAIL ----- Length or penetration of the exhaust plume of aircraft at rest.
- DL ----- Total length of the smoke slug on the runway.
- A ----- Acceleration (or deceleration) of the aircraft.
- V12 ----- Initial Velocity, V1, squared.
- VS ----- Average velocity of the exhaust particles relative to the air mass in the tail or exhaust plume.
- WS2 ----- Wind speed squared.
- WSC ----- 2*(Wind Speed)*(-cosine of angle between runway and wind vector).
- RR ----- A/G, where A is the acceleration of the aircraft and G is the normalization constant for line density.

Output:

QL

Procedure:

- 1. Convert the quantity YS1 to the distance measured from the physical end of runway, i.e., XS1.
- 2. Use the line density formula to compute QL(1/Length).

SUBROUTINE QMOD

SUBROUTINE QMOD (Continued)

SUBROUTINE QMOD (Continued)

FUNCTION TRAN

Purpose:

To compute the coupling coefficient at the receptor point due to a point or area source.

Input:

- 1. Meteorological parameters: wind speed; stability; mixing height; critical distance for mixing.
- Source parameters: horizontal and vertical spreads; pseudo transport times corresponding to the horizontal and vertical spreads; area source flags: KSTAB, NRFLAG, and IBACK.
- Receptor parameters: downwind and crosswind distances; receptor height.

Output:

Point or area source coupling coefficient: TRAN.

Procedure:

- If the effective stack height exceeds the height of the sky lid, then stability index is reassigned according to the current hourly atmospheric stability and the source flag KSTAB computed in PLUME.
- 2. For point source and area source with source flag NRFLAG = 0, compute the travel time for z dispersion from the center and that for y dispersion from the downwind edge of the source.
- 3. For sources with NRFLAG = 0 the effects of ground and sky lid are treated by the image method. Up to 6 terms are included in the coupling coefficient.
- 4. For area source with NRFLAG = 1, the travel times from the downwind and upwind edges of the area sources are determined on the basis of receptor location relative to the area source. These plus the pseudo travel time T_z due to the Z-spread are used to compute the Z-dispersion coefficients $\sigma_z(T_1)$ and $\sigma_z(T_2)$.
- 5. For area source with NRFLAG = 1, the y-dispersion coefficient $\sigma_y(TT)$ is determined on the basis of the pseudo travel time T_y due to the y-spread and the travel time from the downwind edge to the receptor.
- 6. The coupling coefficient for area source with NRFLAG = 1 is then computed using the integrated expression for 'near' source.

7. If the source flag IBACK is 1, part of the area source is to be treated as "near" and part as "far" area sources. When both contributions to the coupling coefficient are computed and summed, IBACK is then set to 0.

Functions Called:

SIGY, SIGZ

APPENDIX C

FORTRAN LISTING OF THE AVAP MODEL ABBREVIATED VERSION

(00000001
	REAL *4 TITLE 1(20) .TITLE (10)	00000002
	REAL *4 NAME (10)	00000003
	REAL*8 SRNAME (14) , NAUT (5)	00000004
	INTEGER OUTPUT, DFAULT(23)	00000005
	DIMENSION EMIT(5,2)	00000006
	DIMENSION IKA(10), IKB(10)	00000007
	DIMENSION SDY(2)	80000008
C	FMIT CONTAINS FIVE POLLUTANT EMISSION PATES FOR TWO APEA SOUPCES	00000009
	DIMENSION XRECP(20), YRECP(20), ZRECP(20), NRUSED(20)	00000010
	DIMENSION CCN(10)	00000011
	OIMENSION XA(7), YA(7), ZA(7), XB(7), YB(7), ZB(7)	00000012
	CIMENSION PIXY(2), EMLN(5), EMTF(5)	00000013
	DIMENSION CCUP(20).TERM(5).EMTXI(5).EMTXQ(5).	00000014
	- RWICL(5,2),EMID(5),EAPU(5)	00000015
	DIMENSION ALSC(60,6)	00000016
	DIMENSION ALSE(60.6)	00)00017
	rimension plltnt(5), SRVHF(14)	00000018
	DIMENSION CWS(2), DWS(2), CWR(20), DWR(20), RECDAT(4,5,20)	00000019
	DIMENSION HEFF(5) KSTAB(5)	00000000
	COMMON/DEFLT/NAC(10), FLNGG(10), FTKOF(10), NGIN(10), INGN(10),	00000020
	1FM1(5,4,5),CSRW,HRW, FTAXI(10),	00000022
	2FTXII(10),FTXID(10).DSTW.HTW.DSRA.HRA.EFUH(5).EFUL(5).CSAR.HAR.	00000023
	3SPVTIM(10,141,KAPU(10),APU(5),FIDLE(10),TGND(10),DFAULT	00000024
		0 0000025
	COMMON/DELTA/DELY.DELZ CCMMON/FUEL/FFD(5).EFG(5)	00000025
	CCMMCN/LN/DL, XW1, YW1, ZW1, XW2, YW2, ZW2, COEF1, COEF2, VA1, VA2, VC1, VD2,	
	-C,TIME, VA12, VA22, VD12, VC22, WS2, WSC, JAD, SNAN, CSAN, V1, V2, V12, V22,	82000000
	-TAIL, VS, RR, SP	00000029
	CCMMON/EN1/IAEC	00000030
	CCMMON/LOC/DW,CW	00000031
	CCMMON/MET/NS,WO, JSTAB, HLID, TEMP, XL, SUDOY, SUDOZ	00000032
	CC4MUN/PL4/XS(5), YS(5), STKH(5), WIT(5)	00000033
	(CMMON/POL/NPT, [J(5)	000 10034
	CCMMCN/RECPT/HRECPT, HTAFRO, ZRECPG	00000035
	CCMMON/RISE/ZSS	00000036
	CCMMGN/SEUDO/TXT,TYT,TZT	00000037
	CCMMON/SERVHL/SRNAME	00000038
	CCMMON/XTRAN/WSMO.NCALM.SQTOPI	00000039
	CATA NAME/'CO ','THC ','NOX ','PART','SOX ',5*'	00000040
	DATA NAUT/'CC(PPM) ', 'THC(PPM)', 'NOX(PPM)', 'PT(M/CM)', 'SO2(PPM)'/	00000041
	CATA BLANK! '/	00000042
	CATA SQ2PI /2.5066283 /	00000043
C	CONVE CONVERTS LBS/MI**3 INTO MICRO GM/M**3	00000044
	CATA CONVF/.10882139/	00000045
	DATA CUN/1250.,666.,2054.,1.,2854.,5*1./	00300046
	INPUT = 5	00003047
	OUTPUT = 6	00000048
	REAU(INPUT, 17) TITLE1	00000049
	READ(INPUT,19) (TITLE(I), I=1,10)	00000050
	WRITE (OUTPUT-17) TITLE1	00000051
	WRITE(CUTPUT,31)(TITLE(1),1=1,10)	00000052
	17 FCRMAT(20A4)	00000053

```
00000054
  19 CRMATILIOA4)
    SCAN THE POLLUTANT SPECIFICATION CARD.
                                                                            00000055
                                                                            00000056
      NPI = 0
                                                                            00000057
      1 = 1
                                                                            00000058
      1 = 1
                                                                            00000059
      IFLAG = 1
  500 IF (NAME(I). FQ. TITLE(L)) GO TO 502
                                                                            00000060
                                                                            00000061
  505 L = L+1
      IF(1.16.10) GO TO 500
                                                                            00000062
      1 = 1+1
                                                                            00000063
                                                                            00000064
      If (1.67.10) GO TO 501
                                                                            00000065
      1 = 1
                                                                            00000066
      SC 10 500
  501 IF(IFLAG.FO.1) 60 TO 503
                                                                            00000067
                                                                            00000068
      Gr TG 504
  502 IF(TITLE(L).EQ. BLANK) GO TO 505
                                                                            00000069
                                                                            00000070
      NET = NET+1
                                                                            00000071
      IFLAG = 0
  506 IJ(NPT) = 1
                                                                            00000072
      IF (NPT.56.1) GG TC 510
                                                                            00000073
      IF(IJ(NPT).EQ.IJ(NPT-1)) GO TO 507
                                                                            00000074
                                                                            00000075
  510 CENTINUE
                                                                            00000076
      1F(1.1T.10) GO TO 505
                                                                            00000077
      GC TL 504
                                                                            00000078
  503 WEITE (CUTPUT.508) (TITLE(1). I=1.10)
                     FREDR----POLLUTANT NAME NOT FOUND 1.1044)
                                                                            00000079
  SOR CCHMAT(1H1.
                                                                            08000000
      GL TC 504
  507 WRITE (CUIPUT, 509) TITLE (L)
                                                                            00000081
  509 FERMAT (1H1, 1
                    DUPLICATE POLLUTANT REQUEST
                                                                            00000082
                                                       . . A41
                                                                            00000083
      NPI = NF1-1
                                                                            00000084
      GC TO 506
                                                                            00000085
  504 CENTINUE
                                                                            00000086
      1 TX! = 2
                                                                            00000087
      15VH = 14
                                                                            88000000
      1. FAY = 1
                                                                            00000089
      NAPE = 2
                                                                            00000090
      PEAU HEIGHT OF AEFOVANE FOR WIND MEASUPEMENT
      READ(INPUT, 4713) HTAFRO, NSP, DIR, TEMP, JSTAB, NLID, NMONTH, NR
                                                                            00000091
 4713 FCPMAT(4F8.0.218,212)
                                                                            00000092
      READ (INPUT, 12) NSP, NACT, NENT, NAVP, NACA, NANA
                                                                            00000093
    SELECT DEFAULT OPTIONS.
                                                                            00000094
                                                                            00000095
                                                                            00000096
      " FAL (INPUT, 1) (DEAULT(I), I=1,23)
(
                                                                            00000097
      PEAC FECEPTER COORDINATES X.Y. IN MILES. Z IN FEET.
                                                                            8900000
      FAC (INPUT, 4711) (NEUSEC (N), XRECP(N), YRECP(N), ZRECP(N), N=1, NSR)
                                                                            00000099
                                                                            00000100
      CC 2263 K1=1.4
      TC 2263 IL = 1, NPT
                                                                            00000101
                                                                            20100000
      K2 = IJILLI
                                                                            00000103
      CC 2263 K3=1.NSR
2253 PECCATIKI.K2. K31=0.0
                                                                            00000104
      TEN = TEMP
                                                                            00000105
                                                                            00000106
      M[ = 610
      15 = #SP#1.15
                                                                            00000107
                                                                            00000108
      JSTABE = JSTAB
```

```
C.. FUNCTION HMIX WILL RETURN A VALUE FOR MIXING DEPTH
                                                                                00000109
      HLIU = NI ID*10
                                                                                00000110
       IF (HLIC.EQ. Q. Q) HLID=HMIX (JSTABB, NMCNTH, NR, WS)
                                                                                00000111
      WRITE (OUTPUT, 34) NSR, NRWY, NTXI, NAPR, NACA, NACT, NENT, NSVP, NAVR, NANA 00000112
      WRITE (DUTPUT, 9711) NSR, (XRECP(N), YRECP(N), ZRECP(N), N=1, NSR)
       WRITE (DUTPUT, 9744) (NPUSED(N), N=1, NSR)
                                                                                00000114
       WRITE (CUTPUT, 9734) HTAFRO, WS, DIR, TEMP, JSTAB, HLID
                                                                                00000115
     COMPUTE SINE AND COSINE OF THE WIND ANGLE
                                                                                00000116
      WCRAC = WD* . 01745
                                                                                00000117
       SINWE = SIN(WERAD)
                                                                                81100000
       CCSWD=COS(WDPAD)
                                                                                00000119
       A=WS*SINWD
                                                                                00000120
       B=WS*C(SWD
                                                                                00000121
       HL=HL 10 + 0.47/5280.
                                                                                00000122
      05=0.
                                                                                00000123
       KL=2
                                                                                00000124
       TX=0.
                                                                                00000125
       TY=0.
                                                                                00000126
      TZ=0.
                                                                                00000127
       CALL PSEUDO (DS. A. B. TX. TY, TZ. DX. DY, JSTAB, HL, KL)
                                                                                00000128
       XL=WS*TZ
                                                                                00000129
       W52 = W5*W5
                                                                                00000130
       WAN = 270.-WD
                                                                                000 10131
       WAN = WAN+3.1415927/180.
                                                                                00000132
       CSAN = COS(WAN)
                                                                                00000133
       SNAM= SIN(WAN)
                                                                                00100134
C . .
     INPUT AIRCRAFT ARRIVAL AND DEPARTURE ACTIVITY BY TYPE .
                                                                                00000135
                                                                                00000136
       IF (DFAULT(1) . NE . O)
                                                                                00000137
      IRFAD(INPUT, 5) (NAC(I), I=1, NACT)
                                                                                00000138
      WRITE (OUTPUT. 580) NACT, (MACK), K=1, NACT)
                                                                                00000139
  580 FORMAT(1x, ARRIVAL ACTIVITY FOR AIRCRAFT TYPES 1 THROUGH +, 13
                                                                                00000140
      -,3X,1013)
                                                                                00000141
C ..
                                                                                00000142
( .. INPUT TIME (HOUF) SPENT IN LANDING MODE.
                                                                                00000143
C ..
                                                                                00000144
       IF (OFAULT(2).NE.O)
                                                                                00000145
      IFFAC(INPUT, 25) (FLNDG(I), I=1, NACT)
                                                                                00000146
       WRITE (DUTPUT, 597) (FLADG(1), I=1, NACT)
                                                                                00000147
C ..
                                                                                00000146
( .. INPLI TIME (HOUR) SPENT IN TAKE-CFF MODE.
                                                                                00000149
                                                                                00000150
                                                                                00000151
       IF (DFAULT (3) . NE . O)
      IREAC(INPUT. 25) (FTKOF(I), I=1, NACT)
                                                                                00000152
       WRITE (OUTPUT, 598) (FTKOF(1), [=1, NACT)
                                                                                00000153
                                                                                00000154
( .. INFUT THE NUMBER OF ENGINES USED WITH EACH AIRCRAFT TYPE.
                                                                                00000155
                                                                                00000156
...
                                                                                00000157
       IF (CFAULT (4) . NE . O)
                                                                                00000158
      1PEAL(INPUT.5)(NGIN(I), I=1, NACT)
                                                                                00000159
C .. INPUT THE ENGINE TYPE INCEX OF THE ABOVE ENGINES.
                                                                                00000160
                                                                                00000161
       IF (DFAULT(5).NE.O)
                                                                                00000162
                                                                                00000163
      IFFAT (INPUT. 5) (INGN(I), I=1, NACT)
```

```
00000164
( .. INPUT FOR THE SPECIFIED POLLUTANT(S), THE EMISSION RATE(LB/HP)
                                                                              00000165
C. . OF FACH AIRCEAFT ENGINE TYPE FOR THE FOLLOWING FOUR (4) MODES
                                                                              00000166
( .. CF CPERATION: 1. TAXI, 2. IDLE, 3. LANDING, 4. TAKE-OFF.
                                                                              00000167
      IF(CFAULT(6).FQ.0) GC TO 446
                                                                              00000168
C ..
                                                                              00000169
      OC 445 I=1, NENT
                                                                              00000170
      DC 445 J=1.4
                                                                              00000171
  445 REAU (INPUT. 3) (EMI(I, J. IJ(K)) . K=1, NPT)
                                                                              27100000
  446 CENTINUE
                                                                              00000173
      15 = 5
                                                                              00000174
                                                                              00000175
      IF(0FAULT(6).FQ.0) GO TO 447
                                                                              00000176
      15 = NENT
                                                                              00000177
                                                                              00000178
C
                                                                              00000179
  447 00 448 1 = 1,15
      OC 446 J = 1.4
                                                                              00000180
      WRITE (CUTPUT, 150) (J, (EMI(I, J, IJ(K)), K=1, NPT))
                                                                              18100000
  442 CENTINUF
                                                                              00000182
                                                                              00000183
C.. INPUT INITIAL DIMENSIONS OF RUNWAY WIDTH AND HEIGHT.
                                                                              00000184
                                                                              00000185
C ..
      IF (OF AULT (7) . NE . O)
                                                                              00000186
     IPFARITNOUT, 3231 DSRW. HFW
                                                                              00000187
      TERM = DSPW/2.4
                                                                              88100000
      HRW = HRW/1.2
                                                                              00000189
      KL = 0
                                                                              00000190
                                                                              00000191
      CALL PSEUDCIDSRM, A, B, TX1, TY1, TZ1, DX, DY, JSTAB, HRW, KL)
       SLUDY = WS * TX1
                                                                              00000192
      SUBLIZ = WS * TZ1
                                                                              00000193
C. . I'PUT FUNWAY CCORDINATES.
                                                                              00000194
                                                                              00000195
      PEAD(INPUT, 1244) X1, Y1, Z1, X2, Y2, Z2
                                                                              00000196
       A-11E (CUTPUT, 9715) X1, Y1, Z1, X2, Y2, Z2
                                                                              00000197
      21 = 21/5280.
                                                                              00000198
      12 = 12/5280.
                                                                              00000199
      PLNX = X2
                                                                              00000200
      LLNY = YZ
                                                                              00000201
( ...
                                                                              00000202
C.. INPUT FUNWAY PAFAMETERS: INITIAL AND FINAL VELOCITIES DURING
                                                                              00000203
C.. ARFIVAL AND CEPARTURE, TAKE-OFF ROLL TIME, AND EXHAUST TAIL LENGTH. 00000204
C.. THESE VALUES WILL DEFAULT AS FOLLOWS*
                                                                              00000205
           VAI = PUNWAY-ARRIVAL INITIAL VELOCITY = 145 MILES/HOUR.
C ..
                                                                              00300206
r ..
           VAZ = RUNWAY-ARRIVAL FINAL VELOCITY
                                                   = . 25 MILES/HOUR.
                                                                              00000207
C ..
           VET = FUNWAY-DEPARTURE INITIAL VELOCITY= 0 MILES/HOUR.
                                                                              00000208
           VL2 = FUNWAY-DEPARTUPE FINAL VELCCITY = 180 MILES/HOUR.
                                                                              00000209
C ..
          TIME = TAKE-OFF ROLL TIME
C . .
                                                   = .01111 HOUFS.
                                                                              00000210
r ..
          TAIL = FXAUST TAIL LENGTH
                                                    = .8523 MILES.
                                                                              00000211
                                                                              00000212
      IF (LFAULT(8).NE.D)
                                                                              00000213
     1FFAC(!NPUT, 1244) VA1, VA2, VC1, VC2, TIME, TAIL
                                                                              00000214
      WHITE (FUTPUT, 5721) VAL, VAZ, VD1, VD2, TIME, TAIL
                                                                              00000215
      IFITAIL .LE . C) TAIL = 20 . / 5280 .
                                                                              00000216
      VA12 = VA1*VA1
                                                                              00000217
      V122 = VA2+VA2
                                                                              00000218
```

```
VC12 = VD1*VD1
                                                                              00000219
                                                                              00000220
      VD22 = VD2*VD2
C
                                                                              00000221
                                  COMPUTE RUNKAY EMISSIONS
                                                                              00000222
                                                                              00000223
C
      DC 42 L = 1.NPT
                                                                              00000224
                                                                              00000225
      J = [](L)
                                                                              00000226
      FMLN(J) = 0.0
                                                                              00000227
      FMTF(J) = 0.0
      TERM(J) = 0.0
                                                                              00000228
      EMIXI(J) = 0.0
                                                                              00000229
      EMTX0(J ) = 0.0
                                                                              00000230
      FMIC(J) = 0.0
                                                                              00700231
      FAPUIJI = C.O
                                                                              00000232
      DE 42 K = 1. NACT
                                                                              00000233
      THENG = NAC (K) * NGIN(K)
                                                                              00000234
      EMLN(J) = Tr ENG*FLNDG(K)*EMI(INGN(K),3,J) + EMLN(J)
                                                                              00000235
                                                                              00000236
   42 EMTF(J) = TNENG*FTKOF(K) * EMILINGN(K),4, J) + EMTF(J)
                                                                              00000237
C
      DC 8412 TACC = 1.2
                                                                              00000238
      DC 821 M = 1.NSR
                                                                              00000239
      1R = 2RECP(M)/5280.
                                                                              00000240
      CALL LINE(XPFCP(M), YRECP(M), ZR, X1, Y1, Z1, X2, Y2, Z2, CUP)
                                                                              00000241
 5901 FCFMAT(1HO, 11, 1X, 13(E9.3, 1X))
                                                                              00000242
      CTUPP = CUP *CCNVF/WS
                                                                              00000243
      DE 821 LL = 1.NPT
                                                                              00000244
      J = [J[[]]
                                                                              00000245
      ENSL = FMLN(J)
                                                                              00000246
      IF(IACC.EQ.2) EMSL = EMTF(J)
                                                                              00000247
      PECDAT(3.J.M) = RECDAT(3.J.M) + COUPP*EMSL
                                                                              00000248
      RECEAT(4.J.M) = KECDAT(4.J.M) + COUPP*EMSL
                                                                              00000249
  621 CENTINUE
                                                                              00000250
                                                                              00000251
 8412 CENTINUE
                                                                              00000252
                                 TAXIWAYS AS LINE SOURCES.
                                                                              00000253
                                                                              00000254
                                                                              00000255
C.. INPUT AIRCRAFT TAXI SPEEDS(MI/HR) IN THE TERMINAL AREA, ON THE
C.. INSCUND TAXIWAY, AND EN THE OUTBOUND TAXIWAY RESPECTIVILY.
                                                                              00000256
                                                                              00000257
      IF(DFAULT(9).NE.O)
     LRFAD(INPUT, 25)(FTAXI(I), I=1, NACT)
                                                                              00000258
                                                                              00000259
      IF (UFAULT (10) .NE.O)
     1 R F AD ( 1 N P UT , 25) ( FT X I I ( I ) , I = 1 , N A C T )
                                                                              00000260
      IFICFAULT(111).NE.O)
                                                                              00000261
     IFFAL (INPUT, 25) (FTX IO(I), I=1, NACT)
                                                                              00000262
      WRITE (CUTPUT, 592) (FTAXI(1), I=1, NACT)
                                                                              00000263
      WPITE (OUTPUT, 593) (FTXII(I), I=1, NACT)
                                                                              00000264
      WRITE (CUTPUT.594) (FTX[G(I], I=1, NACT)
                                                                              00000265
                                                                              00000266
C
C .. I VPLT INITIAL DIMENSIONS OF TAXINAY WICTH AND HEIGHT.
                                                                              00000267
                                                                              00000268
                                                                              00000269
      IF (DFAULT(121.NE.C)
                                                                              00000270
     IRFAULINPUT. 3231 USTW. HTW
      DSTW = DSTW/2.4
                                                                              00000271
                                                                              00000272
      HTW = HTW/1.2
      *L = 0
                                                                              00000273
```

```
CALL PSEUDOIPSTW. A. B. TX2 . TY2 . TZ2 . DX . DY . JSTAB . HTW . KL )
                                                                              00000274
       SLDOY = WS*TX2
                                                                              00000275
       SUDIZ = WS*TZZ
                                                                              00000276
       [ A )C = 0
                                                                              00000277
      CC b26 11X = 1.NTXI
                                                                              00000278
C .. INPUT TAXIWAY LINE COGRDINATES.
                                                                              00000279
                                                                              00000280
      FFAC (INFUT, 1244) X1, Y1, Z1, X2, Y2, Z2
                                                                              00000281
       WRITE (OUTPUT, 9716) X1, Y1, Z1, X2, Y2, Z2
                                                                              00000282
       11 = 21/5280.
                                                                              00000283
       22 = 22/5280.
                                                                              00000284
      xxs0 = (x1-x2)**2
                                                                              00000285
      YYS = (Y1-Y2)**2
                                                                              00000286
      TIXL = SQRT (XXSQ+YYSQ)
                                                                              00000287
                                                                              00000288
(
      TMTAXI = 0.0
                                                                              00000289
(
                                                                              00000290
                      COMPUTE TAXI EMISSIONS
                                                                              00000291
(
                                                                              00000292
      OF 8413 11 = 1, NPT
                                                                              00000293
      J = []([])
                                                                              00000294
       OF 41 K = 1 . NACT
                                                                              00000295
      INFRG = NAC(K) * NGIN(K)
                                                                              00000296
       -NTX = TNENG * EMILINGNIK),1,J)
                                                                              00000297
                                                                              00000298
                                                                              00000299
      FT1 = 1/FIXII(K)
                                                                              00000300
      TTE = 1/FTXIC(K)
                                                                              00000301
      FMIXII = FMTX*DTXL
                                                                              00000302
       IF(ITX.=Q.1) EMTXI(J) = FMTXI[*PT] + EMTXI(J)
                                                                              00000303
       IF(ITX.EQ.2) EMTXC(J) = EMTXII*RTO + EMTXC(J)
                                                                              00000304
   41 CENTINUE
                                                                              00000305
       OF 8413 M = 1.NSR
                                                                              00000306
      Zo = ZEF(P(M)/5280.
                                                                              00000307
      CALL LINE (XPECP(M), YRECP(M), ZR, X1, Y1, Z1, X2, Y2, Z2, CUP)
                                                                              00000308
      COUPF = CUP+CONVF/WS
                                                                              00000309
       IF (ITA.FC.1) FMTAXI = FMTXI(J)
                                                                              00000310
       IF(ITX.FO.2) EMTAXI = FMTXO(J)
                                                                              00000311
      PECCAT(3, J.M) = RECDAT(3, J.M) + COUPP *EMTAXI
                                                                              00000312
      PECIAT(4,J.M) = RECDAT(4,J.M) + COUPP *EMTAXI
                                                                              00000313
 8413 CENTINUE
                                                                              00000314
                                                                              00000315
  826 CENTINUE
                                                                              00000316
         CUTPOUND APPON QUEUING AS LINE SOURCES
                                                                              00000317
                                                                              00000318
C .. I TOUT IN IT IAL CIMENSIONS OF APRON WINTH AND HEIGHT.
                                                                              00000319
                                                                              00000320
      IF ( FAULT (13) .NE. 0)
                                                                              00000321
     IFEAT (INPUT. 323) DSRA, HEA
                                                                              00000322
      WPITE (CUTPUT. 9719) [SKW, HPW, ESTW. HTW, DSRA, HRA
                                                                              00000323
      TSHA = CSHA/2.4
                                                                              00000324
      HOA = HPA/1.2
                                                                              00000325
      KL = 0
                                                                              00000326
      CALL FERUECOSKA, A, B. TX3, TY3, TZ3, DX, CY, JSTAB, HRA, KL)
                                                                              00000327
      SLOLY = WS*TX3
                                                                              00000328
```

```
00000329
      SUDGZ = WS+TZ3
      FACT1 = 0.0
                                                                             00000330
      EACT2 = 0.0
                                                                             00000331
      TADC = 0
                                                                             00000332
      DC 43 1 = 1.NACT
                                                                             00000333
                                                                             00000334
      EFACT = NAC(I)
      IKA(1) = .5*FFACT+.5
                                                                             00000335
      IKB(1) = EFACT-IKA(1)
                                                                             00000336
      FACTI = EACTI + IKA(I)
                                                                             00000337
   43 EACT2 = EACT2 + IKB(I)
                                                                             00000338
      RCT1 = (FACT1/180. + 1./60.)
                                                                             00000339
      RCT2 = (FACT2/180. + 1./60.)
                                                                             00000340
                                                                             00000341
C ..
C .. INPUT AIRPORT APRON COORDINATES.
                                                                             00000342
                                                                             00000343
      READ(INPUT, 1244)(XA(N), YA(N), ZA(N), XB(N), YB(N), ZB(N), N=1,2)
                                                                             00000344
      DC 124 N=1.2
                                                                             00000345
      SQXY = (XA(N)-XB(N)) **2 + (YA(N)-YB(N)) **2
                                                                             00000346
      RTXY(N) = SQRT(SQXY)
                                                                             00000347
      ZA(N) = ZA(N)/5280.
                                                                             00000348
      ZE(N) = ZB(N)/5280.
                                                                             00000349
  124 CENTINUE
                                                                             00000350
                                                                             00000351
      Dr 827 L=1,2
                                                                             00000352
      DISP = 300./5280.
                                                                             00000353
      SM1 = 1.
                                                                             00000354
      SA2 = 1.
                                                                             00000355
      XI = XA(L)
                                                                             00000356
      YI = YA(L)
                                                                             00000357
      ZI = ZALLI
                                                                             00000358
      x2 = xB(L)
                                                                             00000359
      Y2 = YB(L)
                                                                             00000360
                                                                             00000361
      22 = ZB(L)
      WRITE (CUTPUT, 9717) X1, Y1, Z1, X2, Y2, Z2
                                                                             00000362
      IFIL.EQ.11 GC TO 820
                                                                             00000363
      CSI = DISP* (YB(L)-YA(L))/RTXY(L)
                                                                             00000364
      ETA = DISP*(XB(L)-XA(L))/PTXY(L)
                                                                             00000365
      CSI = ABS(CSI)
                                                                             00000366
      FTA = ABS(ETA)
                                                                             00000367
      XC = XB(L)-FUNX
                                                                             00000368
      YC = YB(L)-PUNY
                                                                             00000369
                                                                             00000370
      IF(XC.NF.O) SN1 = XC/ABS(XC)
      IFIYC . NE . O) SN2 = YC/ABS(YC)
                                                                             00000371
      x1 = x1 + SN1*CSI
                                                                             00000372
      Y1 = Y1 + SN2*FTA
                                                                             00000373
      x2 = x2 + SN1*CSI
                                                                             00000374
      Y2 = Y2 + SA2*ETA
                                                                             00000375
  820 CENTINUE
                                                                             00000376
       CO 823 M=1.NSR
                                                                             00000377
      Crup(M) = 0.0
                                                                             00000378
      ZR = ZFFCP(M1/5280.
                                                                             00000379
      CALL LINE (XPECP(M), YRECP(M), ZR, XI, YI, ZI, X2, Y2, Z2, CUP)
                                                                             00000380
      CCUP(M) = CUP*CONVF/WS
                                                                             00000381
  H23 CENTINUE
                                                                             00000382
                                                                             00000383
```

```
00000384
      CC 8414 LL=1.NPT
                                                                               00000385
      J = 1J((L)
                                                                               00000386
      CHIOL(J,1) = 0.0
      DC 44 K =1 . NACT
                                                                               00000387
                                                                               00000388
      IFIL.EC.1)
     1 FMRIDL = NAC(K) * NGIN(K) * EMI(INGN(K),1,J) * PTXY(L)/FTXII(K)
                                                                              00000389
      PCT = (IKA(K)*POT1 + IKB(K)*POT2)
                                                                               00000390
      IF(L.EC.2)FMRIDL = NGIN(K) * EMILINGN(K),2,J) * ROT
                                                                               00000391
   44 PHILL(J.L) = EMRIPL + PHIDL(J.L)
                                                                               00000392
                                                                               00000393
                                                                               00000394
      TT 6414 M=1.NSH
      RECLAT(3, J, M) = RECDAT(3, J, M) + COUP(M) * RWIDL(J, L)
                                                                               00000395
      WECEAT(4, J, M) = RECDAT(4, J, M) + COUP(M) * RWIDL(J+L)
                                                                               00000396
                                                                              00000397
 1414 CENTINUE
                                                                               00000398
  27 CCATINUE
                                                                              00000399
                     ACCESS VEHICLE ROADWAYS AS LINE SOURCES
                                                                              00000400
                                                                              00000401
                                                                               00000402
      IF (NAVE . EQ. C) GO TO 301
C.. IMPET AUTOMOBILE EMISSION FACTORS (GM/KM)
                                                                               00000403
                                                                               00100404
                                                                               00000405
      IF (DFAULT(14) .NF.O)
     1 R F A D ( IN PUT, 3) (E F UH ( I J ( I ) ) , I = 1 , NPT)
                                                                              00070406
      IF (DFAULT (15) .NE. 0)
                                                                               00000407
     1 SEAD (INPUT, 3) (SEUL(IJ(I)), I=1, NPT)
                                                                              00000408
      wFITE (CUTPUT, 773) (EFUH(IJ(I)), I=1, NPT)
                                                                              00000409
      WFI1E (CUTPUT, 774) (EFUL([J(I)), J=1, NPT)
                                                                              00000410
                                                                              00000411
C. INPUT INITIAL CIMENSIONS OF ROACHAY WICTH AND HEIGHT.
                                                                              00000412
                                                                              00000413
      IF (CFAULT (16).NE.O)
     INEAC (INPUT. 323) CSAP, HAF
                                                                              00000414
                                                                              00000415
      TSAF = 1 SAF /2.4
      411 = HAF/1.2
                                                                               00030416
                                                                              00000417
      CALL FSEUDO ( SAR, A, B, TXA, TYA, TZA, DX, DY, JSTAB, HAP, KL)
                                                                              00000418
      SLULY = WS * TX4
                                                                              00000419
      SLELZ = WS * TZA
                                                                              00000420
                                                                              00000421
C.. IMPUT ACCESS VEHICLE POADWAY COOPDINATES.
                                                                              00000422
                                                                               00000423
      . FITF ([UTPUT, 9735]
                                                                               00000424
                                                                               00000425
       L 828 W=1. NAVR
      PEAL(IMPUT, 311) XI, YI, ZI, XZ, YZ, ZZ, VNOCN, IFS
                                                                              00000426
      "HITE (CUTPUT, 9725) X1, Y1, Z1, X2, Y2, Z2, VNOCN, IFS
                                                                              00000427
      21 = 21/3280.
                                                                              00000428
                                                                              00000429
      12 = 12/5280.
      x50 = (x1-x2) ** 2
                                                                              00000430
                                                                              00000431
      YSU = (Y1-Y21**2
                                                                              00000432
       TVL = SOPT(XSC+YSQ)
      1400 = 0
                                                                               00000433
                                                                              00000434
                                                                              00100435
      OF 024 M=1.15P
                                                                              00000436
      ZF = ZFFCP[M]/5280.
                                                                              00000437
      CALL (INF(XRECP(M), YRECP(M), ZR, X1, Y1, Z1, X2, Y2, Z2, CUP)
                                                                              00000438
      TRUPINI = CUP*CHNVF/WS
```



```
824 CENTINUE
                                                                             00000439
                                                                             00000440
      CC 8415 LL=1.NPT
                                                                             00000441
      J = 1J(1L)
                                                                             00000442
      EFUEL = FFUH(J)
                                                                             000000443
      IF(IFS.EQ.1) EFUEL = EFUL(J)
                                                                             00000444
      ALSF(N.J) = VNOON+DVL +EFUEL +1.609/453.59
                                                                             00000445
(
                                                                             00000446
                                                                             00000447
      DO 8415 M=1.NSR
      RECDAT(2,J,M) = RECDAT(2,J,M) + COUP(M) +ALSE(N,J)
                                                                             00000448
      RECDAT(4,J,M) = RECDAT(4,J,M) + COUP(M)*ALSF(N,J)
                                                                             00000449
 8415 CENTINUE
                                                                             00000450
  828 CCNTINUE
                                                                             00000451
  301 CCNTINUF
                                                                             00000452
      IFINACT.EQ.C) GO TO 3402
                                                                             00000453
                                                                             00000454
C
                     TERMINAL APPA AS AREA SOURCE
C
                                                                             00000455
C .. ATTRIBUTABLE EMISSIONS ARE THE FOLLOWING:
                                                                             00000456
         1. SEPVICE VEHICLES (14 TYPES)
                                                                             00000457
         2. AUXILIARY POWER UNITS
                                                                             00000456
0
         3. AIRCPAFT WHILE IN THE INBOUND TAXI MODE
                                                                             00030459
         4. AIRCRAFT WHILE ENGINE THROTTLE IS SET TO IDLE
                                                                             00000460
C
                                                                             00000461
                                                                             00000462
      TN = 1273.+5.*(TEMP-32.)/9.)/273.
                                                                             00000463
      NRELPT = NSF
                                                                             00000464
      ZRECPG = HTAFRO
                                                                             00000465
      SCTUPI = SOPPI
                                                                             00000466
                                                                             00000467
(
      NSRC = NANA + NACA
                                                                             00000468
      1F(NSFC.EQ.01 GO TO 3402
                                                                             00000469
                                                                             00000470
C.. INPUT AREA SOURCE COORDINATES AND THE INITIAL DIMENSIONS OF WIDTH
                                                                             00000471
C .. AND HEIGHT.
                                                                             00000472
                                                                             00000473
                                                                             00000474
      1F (NACA. EQ. 0) GO TO 116
      PEAD(INPUT, 441) XS(11, YS(1), STKH(11, WIT(1)
                                                                             00000475
      wit(1) = WIT(1)/2.0
                                                                             00000476
                                                                             00000477
C .. 1. SFRVICE VEHICLES IN THE TERMINAL AREA
                                                                             00000478
                                                                             00000479
C.. IMPUT PULLUTANT EMISSION FACTORS FOR BOTH DIESFLIGM/GAL) AND
                                                                             00000480
C .. GASCLINE (GM/MI) ENGINES.
                                                                             00000481
                                                                             00000482
                                                                             00000483
      IFICFAULT(17).NE.OI
                                                                             00000484
     1 RF40 (INPUT, 3) (FFD(IJ(I)), I=1, NPT)
                                                                             00000485
      IF (DFAULT (18) . NE . O)
                                                                             00300486
     1READ(INPUT, 3) (EFG(IJ(I)), [=1,NPT)
                                                                             00000487
      WRITE (GUTPUT, 574) (NAME(IJ(I)), EFD(IJ(I)), I=1, NPT)
                                                                             00000488
      WRITE (UUTPUT, 575) (NAME (IJ(I)), EFG (IJ(I)), I=1, NPT)
  574 FORMATITS, POLLUTANT EMISSION FACTORS(DIESEL ENGINE) GM/GAL'./.
                                                                             00000489
                                                                             00000490
     1(75, A4, "= ",F10.211
                                                                             00000491
  575 FORMATITS. POLLUTANT EMISSION FACTORSIGASOLINE ENGINE) GM/MI. . /.
     1(75,A4,'= ',F10.2))
                                                                             00000492
                                                                             00000493
      DE 443 1 = 1. NSVR
```

```
00000494
      SPVHF (11) = C.O
                                                                              00000495
C.. INPUT SERVICE VEHICLE OPERATION TIME (MIN)
                                                                              00000496
                                                                              00000497
      IF(DFAULT(19).NE.O)
                                                                              00000498
     LEEAU (INPUT. 251(SEVTIM(J. 1). J=1, NACT)
                                                                              00000499
                                                                              00000500
      OC 410 J=1. MACT
                                                                              00000501
  410 SRVHR(I) = SEVHR(I) + SEVTIM(J,I)*NAC(J)/60.
                                                                              00000502
  443 CENTINUE
                                                                              00020503
      WPITE (OUTPUT, 772)
                                                                              00330504
      00 411 1=1.14
                                                                              00000505
      WRITE (LUTPUT, 415) SPNAMF(1), (SPVTIM(J,1), J=1, NACT)
                                                                              00000506
  411 CENTIMUE
                                                                              00000507
                                                                              00000508
                                                                              00000509
      Cleset = 0.0
                                                                              00000510
      GSULN = 0.0
                                                                              00000511
      I = TIVJI
                                                                              00000512
      CALL GIFEME (1, SRVHR, IUNII, PLLTNI, DIESEL, GSOLN, NPT)
                                                                              00000513
                                                                              00000514
C .. 2. AUXILIARY PLWER UNITS IN THE TERMINAL AREA
                                                                              00000515
                                                                              00000516
C.. INPUT APE USE FLAGS AND APU POLLUTANT FMISSION HATE.
                                                                              00000517
                                                                              00000518
      1F(( FAULT (20) .NE.0)
                                                                              00000519
     18 E AU ( INPUT. 5) (KAPU( 1) , I = 1 , NAC. T)
                                                                              00000520
      IF(CFAULT(21).NF.O)
                                                                              00000521
     12 FAL (1NPUT, 3) (APU(1J(1)), 1=1, NPT)
                                                                              00000522
                                                                              00000523
C... MISSIONS FROM ATROPATT WHILE IN THE INBOUND TAXE MODE
                                                                              00000524
                                                                              00000525
                                                                              00000526
1 ... LMISSIONS FROM AIRCRAFT WHILE ENGINE THROTTLE IS SET TO IDLE.
                                                                              00000527
                                                                              00000528
.. I HOLT TIME (HOURS) SPENT IN IDLE MODE, AND GATE OCCUPANCY TIME (MIN). 00000529
                                                                              00000530
      "FILEFAULT (22) .NE.O)
                                                                              00000531
     1 - FAT ( IN. PUT . 25) ( FICLE( I ) . I = 1 . NACT)
                                                                              00000532
      WELLE (COTPUT. 595) (FINLE (1). I=1.NACT)
                                                                              00000533
      15 (1 FAULT (23) . NE . 0)
                                                                              00000534
     1 - EAL (INPUT . 25) (TGND(1) . I=1 . NACT)
                                                                              00000535
                                                                              00000536
    111 LL=1.NPT
                                                                              00000537
      1 = 13(11)
                                                                              00000538
      IMPINT = 2*WIT(1)
                                                                              00000539
      TILE K=1 . NACT
                                                                              00000540
      11.T = TONE (K)/60.
                                                                              00000541
      EMILIAN = MAC(KI*NGIN(KI*FIDLF(KI*EMILINGN(K),2,1) + EMID(J)
                                                                              00000542
      TE-M(J) = NAC(K)*NGIN(K)*EMI(INGN(K),1,J)*TMPLNT/FTAXI(K)+TERM(J) 00000543
      -AFE(J) = AFU(J)*NAC(K)*GTCT*KAPU(K) + EAPU(J)
                                                                              00000544
  II CENTIME
                                                                              00000545
                                                                              00000546
            TOTAL "MISSIONS IN THE TERMINAL AREA. . EMIT(J. 1)
                                                                              00303547
                                                                              00000548
```

```
111 FMIT(J.1) =
                     PLLINT(J) + TERM(J) + FMID(J) + FAPU(J)
                                                                             00000549
  116 CENTINUE
                                                                             00000550
      IF(NANA.EQ. 0) GO TO 115
                                                                              00000551
                                                                             00000552
C.. INPLT AIPPURT NON-AIRCRAFT AREA SOURCE COURDINATES, THE INITIAL
                                                                             00000553
C.. DIMENSIONS OF WIGHT AND HEIGHT, AND THE POLLUTANT EMISSION RATE.
                                                                             00000554
                                                                             00000555
                                                                             00000556
      IFINACA. EQ. OI N=1
                                                                             00000557
      REACTINPUT, 441) XSINI, YSINI, STKHINI, WITINI
                                                                             00000558
      WRITE(OUTPUT.9714) XS(N), YS(N), STKH(N), WIT(N)
                                                                             00000559
                                                                             00000560
      READ(INPUT.3)(EMIT(IJ(J).#).J=1.NPT)
      WITIND . WITIN1/2.0
                                                                             00000561
                                                                             00000562
                                                                             00000563
  115 CENTINUE
                                                                             00000564
      DC 211 N=1.NSPC
      CHSINI=XSINI+COSHC-YSINI+SINHD
                                                                             00000565
      CHSINI =- XSINI +SINWD-YSINI +COSWD
                                                                             00000566
      DC 212 N=1.NRECPT
                                                                             00000567
      DWR(N)=-XRECP(N)+SINWD-YFECP(N)+COSWD
                                                                             00000568
      CHRINI=XFECPINI+COSHD-YFECPINI+SINHC
                                                                             00000569
                                                                             00000570
      CENTINUE
                                                                             00000571
      1F(NSFC.EQ.C) GO TO 3402
          2402 NS=1.NSRC
                                                                             00000572
      0.0
                                                                             00000573
      HEFF (NS) *STEH (NS)
                                                                             00000574
      KSTABINS1 = 0
      IF (HEFF (NS) . CT. HL ID) KSTAF (NS) = 1
                                                                             00000575
                                                                             00000576
      WSMDINS
                                                                             00000511
      DLZ=2. *STKH(NS)/(2.4*5280.)
                                                                             00000578
      755.2. *WIT(NS)/2.4
                                                                             00000579
      K1 .0
                                                                             00000580
      AMOD .A
                                                                             00000581
      AMODEL.
      CALL PSEUDOLISS.AMOD.BMOD.TX.TY.TZ.DX.DY.JSTAB.DLZ.KL)
                                                                             00000582
                                                                             00000583
      KSTABS=KSTAB(NS)
      HEFFS=HEFF(NS)
                                                                             00000584
                                                                             00000585
      DELY=DSS+2.4
                                                                             00000586
      DELZ=DLZ+2.4
                                                                             00000587
      TXT=TX
      TYTETY
                                                                             00000588
      TZT=TZ
                                                                             00000589
      HINIT*ZRECPG
                                                                             00000590
                                                                             00000591
      CO 2409 NR=1.NRECPT
                                                                             00000592
      STWIT = WITENSI
                                                                             00000593
      DW=DWHIND)-DWSINS)
                                                                             00000594
      CH*CWF (NF)-CWS(NS)
      HPECPT . ZPECP(NR)
                                                                             00000595
                                                                             00000596
      PFA=1.
      IFIDW.LE.-MITINSII GO TO 2409
                                                                             00000597
                                                                             00000598
      NRFLAG=0
                                                                             00000599
      I BACK .O
                                                                             00000600
       !FILW.LE.WITINS!) GO TO 231
      IF ((DWR(NR)-XL).GE.(DWS(NS)+WIT(NS))) GO TO 241
                                                                             00000601
                                                                             20300000
  231 IF ( COWF (NR )-XL) . LT. ( COWS (NS) - WIT (NS) ) ) GO TO 232
                                                                             00000603
      PFA= (Ch-XL+WIT(NS))/(2.*WIT(NS))
```

```
00000604
         DWS5= ( ( WS(KS) - W[T(NS)] + (DWR(KF) - X1))/2.
                                                                                                                                                                                                   00000605
          HE'NI (NE)-TWSS
          "11(NS)=((DWF(N2)-XL)-(DWS(NS)-WIT(NS)))/2.
                                                                                                                                                                                                   00000606
                                                                                                                                                                                                   00 100607
          1 HACK = 1
                                                                                                                                                                                                   80300000
          31 10 241
                                                                                                                                                                                                   00000609
  17 VEFLAGEL
                                                                                                                                                                                                   00000610
         OFA=1.
          PERFORM AREA SOURCE DISPERSION CALCULATIONS BY FUNCTION
                                                                                                                                                                                                   00000611
          "THAN".
                                                                                                                                                                                                   00 100612
141 TEMETEAN INS, KSTANS, HEEFS, NEFLAG, I HACKI *CLAVE
                                                                                                                                                                                                   00000613
          A111N51=5TK11
                                                                                                                                                                                                   00000614
             METEMODEA
                                                                                                                                                                                                   00000615
          " : :40 tt = 1.601
                                                                                                                                                                                                   00000616
                                                                                                                                                                                                   00000617
         *1 = 13(11)
          1 x 2 1 = 1
                                                                                                                                                                                                   00000061H
                                                                                                                                                                                                   00000619
          1 F ( ( A ( A . F G . U ) | 1 x P 1 = 2
          1+ (1.5+0.50.2) 1x2T = NS
                                                                                                                                                                                                   00000620
         THE FACE STOFFT IR NE . SUM OVER ALL CONTRIBUTIONS FROM
                                                                                                                                                                                                   15900000
         ANIA SI HELLS.
                                                                                                                                                                                                   00000622
         FELLAT (TAPL, KO, NR) = FECT AT (TXPT, KP, MF) + FMIT (KP, NS) *TEM
                                                                                                                                                                                                   00100623
        REGISTIA.KO.NE) -PEC DATIA, KO.NEI + FMITIKP. NSIETEM
                                                                                                                                                                                                   00330624
 40 66 1111 05
                                                                                                                                                                                                   00000625
          1: (13:(K.Ew.11 GO TC 232
                                                                                                                                                                                                   60000626
      1 1 1 1 1 LE
                                                                                                                                                                                                   00000627
           1 51151
                                                                                                                                                                                                   00000628
BULLIANT CO.
                                                                                                                                                                                                   95900600
                                                                                                                                                                                                   00000630
      TITYER I CHACEPTRATIONS FROM MICEC-GRAMS PER CURIC METER INTO
                                                                                                                                                                                                   000 10631
        WINELS SILLIEN.
                                                                                                                                                                                                   00100632
          1 5: J=1 ... CE
                                                                                                                                                                                                   00000633
                                                                                                                                                                                                   00000634
            5 5 LL = 1 . 1 2 T
                                                                                                                                                                                                   00000635
          : " + !J(LI)
          16 58 1=1.4
                                                                                                                                                                                                   00000634
          COLAT (K. MAH. J) = RECOAT (K. NOP. J) + TN/CON(NOP)
                                                                                                                                                                                                   00000637
        LINUT CALCULATED POLLUTANT CONCENTRATIONS
                                                                                                                                                                                                   00000639
          AFITE (CHIELT. 20) (NAME(IJ(LL)).LL=1.NPT)
                                                                                                                                                                                                   00000439
   " - - C + MAT(11-1.///.1x,79('*')./.1x.'*'.180.'*'./.
                                                                                                                                                                                                   000003640
       000000641
       ?!+C, ***, /, 1x. *** ,31x,5(A4,6X) )
                                                                                                                                                                                                   00000642
          (T90.1=1.0010) 155.10910 )-114.
                                                                                                                                                                                                   00000643
  TO SCHOOL THE TREE . TREE . T. IX. . ATRERAFT LANCING
                                                                                                                                        1,4x,5([10.1] )
                                                                                                                                                                                                   00000644
   PARTITION TO THE CONTROL OF THE CONT
                                                                                                                                                                                                   00000645
                                                                                                                                         4,4x,5(F10.1))
          AFITE ( TIPUT. 24) (FMTF([J(J)]. J=1. NPT)
                                                                                                                                                                                                   00000646
   A STRUATION THE . TRC . " . . . . IX. " A SHCRAFT TAKE-OFF
                                                                                                                                        1,4x,5(F10.1) }
                                                                                                                                                                                                   00000647
         - 5 11 ( 11 14 17 , 2 ) ( WWIFT ( 1 J ( J ) , 1 ) , J= 1 , NPT )
                                                                                                                                                                                                   00000648
          (THA. 1=L. (S. (L)L1) | (SAI L(1)(J).2).J=1.NPT)
                                                                                                                                                                                                   00000649
          ASSESSION ON BELLEVILLE TELEVILLE TO A PER A PER
                                                                                                                                         1,4x,5(F10.1) )
                                                                                                                                                                                                   00000650
           # 1919 ( - 11001,27) ( MTX1(1J(J)) .J=1.MPT)
                                                                                                                                                                                                   00000651
         . - 111 ( - 11001.45) (F#1xF(1J(J)) .J=1.NPT)
                                                                                                                                                                                                   00000652
  1,4x,5(f10.1)1
                                                                                                                                                                                                   12900003
  27 38 37 ( ) 34, 140, 141, 7.1x, 14 148CUAT TAXIWAY
                                                                                                                                         ',4X,5(F10.1) )
                                                                                                                                                                                                   00000654
         00000655
     1194.1=L. ((LL)L1)UGA3) (35. 10010).1=1.4P1)
                                                                                                                                                                                                   000000656
                                                                                                                                                                                                   00010657
        00000655
```

```
13 FCRMAT(1H+, T80, "* ", /, LX, "* TERM. AREA TAXI
                                                                                00000659
                                                        '.4X.5(F10.1))
                                                                                00000660
      WRITE (CUTPUT, 15) (FMID(IJ(J)), J=1, NPT)
                                                                                00000661
   15 FCRMAT(1H+, T80, '**, /, 1x, '* TERM AREA FNG. IDLE', 3x, 5(F10.1))
                                                                                29900000
      WRITE (OUTPUT, 29) (EMIT(IJ(J), 1), J=1, NPT)
                                                                                00000663
   29 FCRMAT(1H+, T80, '*', /, 1x, '* AIRCRAFT AREA , 9x, 5(F10.1) )
                                                                                00000664
      WRITE (CUTPUT. 30) (EMIT([J(J], 2], J=1, NPT)
                                                                                00000665
   30 FORMAT(1H+, 160, '*', /, 1x. '* NON-AIRCRAFT APEA", 5x, 5(F10.1) )
                                                                                00100666
   32 FCRMAT(1H+, T80, ***, /, 1x, ** SERVICE VFHICLE*, 7x, 5(F10.1) )
                                                                                00000667
      IF(NAVE.FQ.0) GO TO 1001
                                                                                83300600
                                                                                00000669
      WF1TE(6.33)
   33 FCRMAT(1H+, T80, '*', /, 1x, " ACCESS VEHICLE")
                                                                                00700670
      CC 37 N=1.NAVR
                                                                                00000671
      RRITE (CUTPUT. 35) N, (ALSE (N, IJ(J)) , J=1, NPT)
                                                                                00000672
   35 FCPMAT(1H+, T80, "*", /, 1X, "*", 16X, 13, 4X, 5(F10.1) )
                                                                                00000673
   37 CENTINUE
                                                                                00000674
      WRITE (CUTPUT, 381
                                                                                00000675
   38 FCHMAT(1H+, T80, "+", /, 1x, 79( ** ), //)
                                                                                00000676
      WRITE (CUTPUT, 1000)
                                                                                00000677
 1000 FERMAT (1H1)
                                                                                00000678
 1001 CENTINUE
                                                                                00000679
      or 10 N=1.ASR
                                                                                08300000
      KRITE(EUTPUT,81) NRUSED(N),XPECP(N),YRECP(N),(NAUT(IJ(J)),J=1,NPT)G0000681
   31 FURMATE 1x,79(***),/,1x,***,T80,***,/,
                                                                                000 10682
     11x, ***, 9x, *PCLLUTANT CONCENTRATIONS : M/CM=MICROGRAMS PER CURIC MECOODO683
     -TER', T80, ***, /, 1X, ** * T80,
                                                                                00000684
     2'*',/,1x,'*',19x,'RECEPTCR',14,T80,'*',/,1x,'*',T80,'*',/,1X
                                                                                00000685
      3 .***,19x. CCCRDINATES (*,F7.3,*,*,F7.3,*)*,T80,***,/,2(1x,***,T800C)00686
     4. *** , /) , 1x , *** , 31x , 5(A6, 2X) )
                                                                                00000687
      WRITE (CUTPUT, 83) (RECDAT(1, IJ(L), N), L=1, NFT)
                                                                                88300000
      FCHMAT(1H+, T80, ***, /, 1x, ** AIRCRAFT LINE *, 11x, 5(f10.3) )
                                                                                00000689
      WRITE (CUTPUT, 84) (RECDAT(2, IJ(L), N), L=1, NPT)
                                                                                00000690
   83 FCRMAT(1H+, T80, ***, /, 1X, ** AIRCRAFT AREA *, 11X, 5(F10.3) )
                                                                                00000691
      WRITE (( UTPUT . 82) ( RECDAT ( 3 . I J ( L ) . N ) . L = 1 . NPT)
                                                                                00000692
   84 FCRMAT(1H+.T80. ** . /. 1X. ** NCN-AIRCRAFT APEA-LINES . 2X. 5(F10.31)
                                                                                00000693
                                                                                00000694
      WRITE (OUTPUT, 85) (FECOAT(4, IJ(L), N), L=1, NPT)
                                                                                00000695
   65 FCRMAT(1H+, T80, '*', /, 1x, '*', 12x, 'TOTAL', 9x, 5(F10.3))
      WEITE (CUTPUT, 38)
                                                                                00000696
   16 CENTINUE
                                                                                00000697
C..... INPUT FCFMATS ...
                                                                                00000698
                                                                                00000699
 4711 FCRMAT(12.3F8.0)
                                                                                000000700
                                                                                00000701
   12 FCRMAT(15X, 615)
                                                                                00000702
    5 FCRMAT(5X,1515)
                                                                                00000703
    1 FCRMAT(6x,2313)
                                                                                00000704
   25 FCRMAT(5x,15F5.0)
                                                                                00000705
    * FERMAT(15x,5F10.0)
  323 FCPMAT(15x, 2F10.0)
                                                                                00000706
                                                                                00300707
 1244 + CPMAT(15x, 6F10.0)
  311 FCFMAT(10x,6F10.0,F8.C,12)
                                                                                00000708
  415 FCRMAT(1x.48.5x.10F5.1)
                                                                                20100000
  441 FCPMAT(15X,4F10.0)
                                                                                00000710
                                                                                00000711
                                                                                00000712
   31 FCKMATCIX, PCLLUTANT CHOICE
                                             . . 10A41
                                                                                00000713
   34 FCRMAT(1x. "AIRPORT PAPAMETEPS: "./.
```

```
1124. MIMBER OF RECEPTORS.
                                                                             00000714
    2311 - 1.14. /. T24. NUMBER OF FUNWAYS ..
                                                                             00000715
    173( - 1).14.7.124. "NUMBER OF TAXIMAYS".
                                                                             00000716
    4 12( -1) .14 . / . T24 . " NUMPER OF APPONS" .
                                                                             00300717
                                   TERMINAL AREAS ..
    1 341 - 1.14. / . 12 4. NUMBER OF
                                                                             00300718
    EZEL "1.14./.TZ4, "NUMBER OF AIRCRAFT TYPES".
                                                                             00000719
    1261 - 11.14.7.724. "NUMBER OF
                                   AIRCRAFT ENGINE TYPES.
                                                                             00000720
    4141. 1).14./.T24. NUMBER OF SERVICE VEHICLE TYPES.
                                                                             00000721
    SIST . 1.14. /. 124. NUMBER OF ACCESS VEHICLE ROADWAYS'.
                                                                             00000722
    1171 - 1.14. 1.124. "NUMBER OF ATRPERT NON-ATREBAT AREA SCURCES".
                                                                             00000723
    c7(*-*).141
                                                                             00000724
 592 FERMATITE, TAXL SPEED
                                 ·. T20.1056.11
                                                                             00000725
 543 FERNATURE . TRUBUNG SPEED
                                 1,120,10F6.11
                                                                             00000726
    ECRNATUTE ... THOUNT SPEED .. TZC. 10F6.11
                                                                             00000727
 SOS FERNATUTZ. TELL TIME
                                 1.120.10F7.51
                                                                             00000728
 THE SEFENTITE . "LANDING TIME
                                 .,T20.10F7.51
                                                                             00000729
 SON FERNALLTZ . TAKE - OFF TIME
                                 1,120,10F7.51
                                                                             00000730
 541 FERMATITS. AIRCRAFT OPERATION SPEED (MI/HR). AND TIME (HR)!)
                                                                             00000731
     FORMAT(128.11.5(F6.2.2X1)
                                                                             00000732
 150
 571 * FEMATITS. 'NUMBER OF ENGINES PER AIRCRAFT', T40, 15151
                                                                             00000733
 570 HERNATUTS, 'AIRCRAFT ENGINE TYPES", T40, 1515)
                                                                             00000734
    FIREATITE . " ALXILIARY POWER UNIT FLACS" . T40 . 15151
                                                                             00000735
 112 STRAATITS, SERVICE VEHICLE OPERATION TIMELMIN. 1:1)
                                                                             00000736
 AND ECANAPETS, PRILLITANT EMISSION FACTORS-- 25MPH URBAN AUTOMOBILE TRADODO0737
    [ FIL : 1./. T5. 5F6.21
                                                                             00000738
 774 HERMA (15. PELLUTANT EMISSION FACTORS-- 10 MPH URBAN AUTOMOBILE TROCCOCT39
    1AFF16: 1./.15.5F 5.21
                                                                             00000740
    + CAMATELA. FEWAWAY PARAMETERS: . . . (15,8F10.51)
                                                                             00000741
    * CHMATTIA. " FERTZONTAL AND VERTICAL SPREAD: " . / . T5. "RUNWAYS " .
                                                                             00000742
    12410.5./.15, 'TAKINAYS'.2110.5./.15. APPONS ..2410.51
                                                                             00000743
  II - CHEATELY, 14. " SECEPTOR COORDINATES (X.Y.Z): "./.
                                                                             00000744
                                                                             00000745
    1(75.316.411
.74. * FENALLIX, * 150 , 26131
-73. *CAPAT(1x. AF )VANE HI IGHT = ... F6.1. FT. .. 3x. WIND SPEED = .. F6.2.00000747
    1. MPH. . 3x . " NIN .: DIPECTION = ".F4.O." CECREES". /. IX, "AMBIENT TEMPEPAOOOO748
    TILGE = 1.64.1.1 F CEGREES 1.2X. STABLETY CLASS INCEX = 1.11..2X, LICODDO749
    > FFICHT = ". Ff . 1 , * FT . *)
                                                                             00000750
1714 FERMATILIX. . AREA SOUPCES!(X.Y). FEICHT. WIFTH) ./. (T5.4F10.5))
                                                                             00000751
                                                                             00000752
    (0.642) TAMATE
    FF 4MAT(2+0.0)
                                                                             00000753
971: FERNATILIX. FNE-POINT COCREINATES OF RUNWAYS . . . (T5.6F10.51)
                                                                             00000754
971: FERNATULA, FIND-POINT CHOPCINATES OF TAXIMAYS . . . (T5. 6F10.5))
                                                                             00000755
9/11 FERNATULA. FNE-POINT CEOPDINATES OF APPONS . . . (15.6F10.51)
                                                                             00000756
9735 CONATCIX. FRE-PRINT COLFDINATES. TRAFFIC INTENSITIES, AND INDICATORODO757
    I AS CH ACCESS VEHICLE ROADWAYS')
                                                                             00000758
    * [ .MA1(15. 7510.2.15)
                                                                             00000759
 250 FIRMATISEB.C.
                                                                             00000760
     1 C 6 M LT (15 53.01
                                                                             00000761
     8767
                                                                             00000762
                                                                             00000763
```



```
HLOCK CATA
                                                                                                                                                00000764
           INTEGER DEAULT(23)
                                                                                                                                                00330765
           REAL . B SRNAME (14)
                                                                                                                                                00000766
           CCMMON/SERVHL/SRNAME
                                                                                                                                                00000767
                                                                                                                                                00000768
           COMMUNICATION TO THE TOTAL CONTROL TO THE TOTAL CONTROL TO THE COMMUNICATION TO THE TOTAL CONTROL TO THE TOTAL CON
                                                                                                                                                00000769
         1EMI(5.4.5). DSRW. HRW. FTAXI(10).
                                                                                                                                                00000170
         ZETXLICIOI, FTXIOCIOI, OSTW. HTW. DSRA. HRA. EFUH(5), FFUL(5), CSAR, HAR.
                                                                                                                                                00000771
          35RVTIM(10.14), KAPU(10), APU(5), FIDLE(10), TGND(10), DFAULT
                                                                                                                                                00000772
           CCMMON/FUFL/EFD(5). EFG(5)
                                                                                                                                                00000773
           CCMMGN/LN/CL.XWI.YWI.ZWI.XWZ.YWZ.ZWZ.COFF1.COFF2.VAI.VAZ.VOI.VDZ.
                                                                                                                                                00000774
         -C.TIMF, VAIZ. VAZZ. VOIZ. VBZZ. WSZ. WSC. JAE. SNAN. CSAN, VI. VZ. VIZ, VZZ,
                                                                                                                                                00000775
          -TAIL . VS . RR . SP
                                                                                                                                                00000776
           FATA NAC/10+10/
                                                                                                                                                00000777
           CATA FUNDG/6*.0153..011..0153..011..C11/
                                                                                                                                                00000776
           CATA FIKOF/10+.0111/
                                                                                                                                                00000779
           CATA NGIN/3.902/
                                                                                                                                                00000780
           EATA INGN/1.1.1.3.4.3.2.3.2.5/
                                                                                                                                                00000761
           CATA +M1/37..3.53.15..60..11.41.37..3.53.15..60..11.41.
                                                                                                                                                00000782
                                                                                                                                                000 20783
          -25.6,2.58,10.1,45.6,11.41,6.,.39,2.,14.,72.52,9.,.88,6.,66...38
          -,9.,.68,6.,66...38,5.6,.24,3.8,40.3,,38,.4,.05,.4,0.0,1.66,
                                                                                                                                                00000784
          -2.,.96,2.0,1.,.01,2.,.96,2.,1.,.01,36.3,1.69,8.,42.1,.01,
                                                                                                                                                00000765
          -133.3.3.64.23..153...23..5..1..1..04..06..5..1..1..04..06.
                                                                                                                                                00000786
          -6.8,.38,.3,.3,.06.21.,.62,.6,.8,.12,.9,.5,.5,.6,.61..9,.5,.5,
                                                                                                                                                00000787
                                                                                                                                                00000788
          -.6..01.3.2..5..9.2.2..01.8.6.1.9.1.9.6.2..07/
                                                                                                                                                00100789
           DATA [SRW. HFW/. 03 .. 002/
                                                                                                                                                00000790
           CATA VAL. VAZ. VD1. VD2. TIME. TAIL/145., 25., 0.0, 180...0111..08523/
                                                                                                                                                12700000
           "ATA FTAX 1/10+10./
                                                                                                                                                00000792
           DATA FTX11/10*15./
                                                                                                                                                00000793
                                                                                                                                                00000794
           DATA FTX10/10+12./
                                                                                                                                                00000755
           DATA DSTW.HTW/.03..002/
                                                                                                                                                00000796
           00000797
                                                                                                                                                89700000
           CATA FFUH/32.36.4.75.3.46..19..11/
                                                                                                                                                00000799
           TATA EFUL/70.16.8.62.2.86..19..11/
                                                                                                                                                00000800
                                                                                                                                                00000801
           CATA (SAF. HAR/. 0095. . 001/
                                                                                                                                                00000802
           LATA FF0/126.6.21.9.185.82.5.9.0.0/
                                                                                                                                                00000803
                                                                                                                                                00000804
            DATA FEG/138.81.21.35.9.32..85.0.0/
                                                                                                                                                23800000
                                                                                                                                                00000800
            )ATA SKYTIM/66.,48.,85.,55.,50.,50.,4*0.0,28.,15.,30.,C.O.
                                                                                                                                                00000807
                                                                                                                                                00000808
                                    25.,25.,4*0.0,6.,9*0.0,12.,0.,15.,7*0.0,
                                                                                                                                                00000809
                                    15.,15.,15.,10.,10.,10.,5.,5.,5.,0.0,
                                                                                                                                                00000810
                                    0.,10.,0.,10.,10.,10.,5.,5.,5.,0.0,
                                    17.,17.,20.,10.,10.,10.,0.,0.,0.,0.,0.,
                                                                                                                                                00000811
                                                                                                                                                00000812
                                    20.,15.,15.,10.,20.,20.,10.,10.,10.,10.,0.0,
                                                                                                                                                00000813
                                    10.,5.,5.,5.,5.,5.,44*0,3.,9*0./
                                                                                                                                                00010814
F .. NAME THE 14 SERVICE VEHICLE TYPES.
                                                                                                                                                00000815
                                                                                                                                                00000816
```

DATA SRNAME/*TRACTOR *,*BFLT LRD*,*CONT LDF*,*CAB SEP *,*LAV TRK *00000817
-,*WAT TRK *,*F000 SRV*,*FUFL TRK*,*TOW TCTR*,*CONDTNR *,*AIR STRT*00000818
-,*GPU FRNT*,*GPU PEAF*,*TRANSPTR*/

CATA KAPU/4*1.6*0/
CATA APU/2.82,.11,1.24,0.,0./
DATA F10tE/10*,033/
CATA TGNC/10*52./
CATA CF4ULT/23*0/
END

DATA CF4ULT/23*0/
END

	SLAFOUTINE GASOLNIXMIHR.XMIGAL.GAL.XMILE.PLLTNT.NPLTS.TUNIT)	00000827
C	-XMIHR=ASSUMED AVERAGE VEHICLE SPEED	00000828
-	-XMIGAL=ASSUMED MILES PER GALLON	00000829
	-GAL = GALLONS OF FUEL CONSUMED	00000830
	-IF DATA GIVEN IN VEHICLE MILES. GAL MUST BE SET FOUAL TO 0.0	00000831
	-XMILE = TOTAL MILES; SET FOUAL TO 0.0 IF USING GALLONS	00000832
-	-XPI.XCO.ETC. ARE THE EMISSIONS IN UNITS OF POUNDS OR GRAMS FOR	00000833
	-PARTICULATES. CARBON MONOXIDE, HYDROCARBONS. ETC.	00000834
	- TUNIT = O MEANS EMISSIONS IN GRAMS FLSE EMISSIONS IN POUNDS.	00000835
,		00000836
The To	DIMENSION PLLINT(5)	00000837
	CCMMUN/PCL/NPT.JJ(5)	00000838
	COMMON/FUEL/EFD(5), EF(5)	00000839
	***************	*00000840
(CASOLINE ENGINE POWERED MOTOR VEHICLE EMISSIONS ARE COMPUTED ON	00000841
	THE EASIS OF STANDARD EMISSION FACTORS AND ASSUMED SPEED	00000842
	CEPENCENCE.	00000843
		*00000844
C		00000845
	SPCU=12.5*(XMIHR)**(-0.845)	00000846
	SPHC = 7.0 = (XM IHR) **(-0.649)	00000847
	SPNC=1.0+0.01262*(XMIHP-19.6)	00000848
	4 = XM GAL #GAL	00000849
	IF(GAL.EQ.O.O) A=XMILE*XMIGAL/12.5	00000850
	CC 9 J=1.NPLTS	00000851
	1 = 11(1)	00000852
	IF(1.EC.4) FACT = A*EF(4)	00000853
	IF(1.EC.3) FACT = A*EF(3)*SPNC	00000854
	IF(1.(0.1) FACT = A*E+(1)*SPCC	00000855
	IF(1.EC.2) FACT = A*EF(2)*SPHC	00000856
	PLLINT(1) = FACT	00000857
	IF(IUNIT.NF.O) PLLTNT(1) = FACT/454.	00000858
9	CENTINUE	00070859
	PETURN	00000860
	FNU	000 30861

```
FUNCTION CAVL (XR, YR, ZR)
                                                                        00000862
   COMMON/EN/DE, XWI, YWI, ZWI, XW2, YW2, ZW2, COEFI, COFF2, VAI, VA2, VD1, VD2, 00000863
   -5, TIME, VA12, VA22, VD12, VP22, WS2, WSC, TAD, SNAN, CSAN, V1, V2, V12, V22,
                                                                        00000864
  -TAIL. VS. RR. SP
                                                                        00000865
   COMMON/MET/KS.WD. JSTAH. HL ID. TEMP. XZ. SUDOY. SUDOZ
                                                                        00000866
**************
                         *****************************
CALCULATION OF POLLUTANT CONCENTRATION DUE TO FINITE LINE SOURCE.
                                                                        89800000
*00000869
   I SUB = C
                                                                        00000870
                                                                        00000871
   NSUB=0
   1 SAC = 0
                                                                        00000872
   ( PAF = 0 .
                                                                        00000873
   CAN=0.7071
                                                                        00000874
                                                                        00000875
    FMIN= 30./528C.
    HL II M=HL 10/5280.
                                                                        00000876
INTECRUCE A GENERAL SET OF NOTATION SO THAT SAME DISPERSION CALCULATIOOGOB77
CAN BE USED FOR SMALL-ANGLE CASE WHERE LINE IS FURTHER SEGMENTED.
                                                                        00000878
                                                                        00000879
    XI=XWI
   Y1=YW1
                                                                        00000880
    21= ZW1
                                                                        13800000
    x2= Xh2
                                                                        00000882
    YZ=YWZ
                                                                        00000883
                                                                        00000884
   12= LW2
    IFIZI.GE. HLIDMI GO TO 600
                                                                        00000885
    IFIZZ.GT.HLIDMI GO TO 11
                                                                        000000886
                                                                        00000887
 11 x2=x1+(x2-x1)*(HL1DM-Z1)/(Z2-Z1)
                                                                        38800000
    Y 2= Y1+(Y2-Y1)*(HL 10M-Z1)/(Z2-Z1)
                                                                        00000889
                                                                        25800000
    22=HL 10M
   "LxY=(X2-X1)**2+(Y2-Y1)**2
                                                                        00000891
    DL1=SCRT(DLXY)
                                                                        00000892
    IF (DL1.EQ.O.AND.Z1.EQ.Z2)GO TO 600
                                                                        00000893
    PLXYZ=DLXY+(Z2-Z11**2
                                                                        00000894
    OLN=SOFT(DLXYZ)
                                                                        00000895
    IF(ISUB.NE.O) GO TO 6
                                                                        00000896
                                                                        00000897
    DINSECIN
    CSTH=CLI/DLA
                                                                        00000898
    SATH= (22-21)/CLV
                                                                        00000899
    F PUJL = Y2-Y1
                                                                        00000900
    IF (ABS(PRCJL).LT.1.F-20)PRCJL=C.
                                                                        00000901
    SNF1=PROJL/CLI
                                                                        200000902
    ASNF = AESISNFI)
                                                                        00000903
                                                                        00000904
   CENTINUE
    1 (Y1.GT.Y2) GO TO 1
                                                                        00000905
    XF=XZ
                                                                        00000906
   YF=YZ
                                                                        00000907
    XI = XI
                                                                        00000908
    YL=Y1
                                                                        00000909
    GC TO 2
                                                                        00000910
  1 x+= x1
                                                                        00000911
                                                                        00000912
    YH=Y1
    XL = X2
                                                                        00000913
                                                                        00000914
    Y1 = Y2
```

```
00000915
2 CENTINUE
TEST RECEPTOR LOCATION RELATIVE TO LINE SOURCE AND BRANCH.
                                                                          00000916
                                                                          00000917
   1F (X1-X2) 27,28,28
27 XMAX= X2
                                                                          00000918
   XMIN=X1
                                                                          00000919
   GC TO 29
                                                                          00000920
28 XMAX=X1
                                                                          00000921
   XMIN=X2
                                                                          00000922
29 IF ((XMIN-XF).GF..OO1) GO TO 500
                                                                          00000923
   XFAR=XF-XMIN
                                                                          00000924
   [ WOA = XFAR + SUDOY
                                                                          00000925
   DEDB=XFAR+SUNCZ
                                                                          00000926
   IFICHEA. IF. O. . DR. DWOH. LE. O. ) GC TO 500
                                                                          00000927
   TFAK=[WOA/WS
                                                                          00000928
   TERP=[ WOB/WS
                                                                         .00000929
   STGF=SIGY(JSTAB, TFAR)
                                                                          00000930
   SIGFL=SIGZIJSTAH, TFRRI
                                                                          00000931
   APRO=ABS(PRCJL)
                                                                          00000932
   1F(X1.GT.X2) GO TO 21
                                                                          00000933
   XA=X2
                                                                          00000934
   YA=YZ
                                                                          00000935
   11=12
                                                                          00000936
   XH=X1
                                                                          00000937
   YB=Y1
                                                                          00000938
   2P=21
                                                                          00000939
   GC TC 22
                                                                          00000940
21 x4=X1
                                                                          00000941
   VA=VI
                                                                          00000942
   ZA=Z1
                                                                          00000943
   XH=XZ
                                                                          00000944
   YP=YZ
                                                                          00)00945
   ZE=12
                                                                          00000946
22 CENTINUE
                                                                          00000947
   "FIISAC.EQ.11 GO TO 4
                                                                          00000948
   IF(YF.GT. (YH+4. *SIGF)) GC TO 500
                                                                          00000949
   IF(YR.LT.(YL-4. * SIGF)) GO TO 500
                                                                          00000950
   1F(ZF.GT.(ZZ+4.*SIGFZ)) 60 TC 500
                                                                          00000951
   1 + (ZR.LT. (Z1-4. #SIGFZ)) GO TO 500
                                                                          00000952
 CO TO 3 IF ANCLE IS SMALL
                                                                          00000953
   IF LASHF .LT. CAN .AND. ABS(SNTH) .LT. CAN) GO TO 3
                                                                          00000954
   1F(YP.GT.(YH+3. *SIGFI) GO TO 500
                                                                          00000955
   1F(YP.LT.(YL-3.*SIGF)) GC TO 500
                                                                          00000956
   1 ( (ZP.GT. (ZZ+3. *SIGFZ)) GO TO 500
                                                                          00000957
   1 F (ZF.LT. (Z1-3. * SIGFZ)) GO TO 500
                                                                          00000955
   x=x1+(YP-Y1)*(x2-X1)/(Y2-Y1)
                                                                          00000954
                                                                          03600000
   1F(X.11.XB) GC TO 333
   IFIX.GT.XAL GE TO 33
                                                                          00130961
   Y=Y+
                                                                          00000962
   GC TO 4
                                                                          00000963
SELECT X.Y VALUES ON LINE FOR SMALL ANGLE CASE
                                                                          00000964
                                                                          00000965
                                                                          00000966
   IF (XF .GT . XA) X= XA
                                                                          00000967
   Y=Y1+(X-X1)*(Y2-Y1)/(X2-X1)
                                                                          39600000
   1540 = 1
   21=21+(x-x1)*(22-21)/(x2-x1)
                                                                          00000969
```

```
00000970
   XI=X
                                                                             00000971
   YI=Y
                                                                             00000972
   x2=x8
                                                                             00000973
    Y2=YB
                                                                             00000974
    12=18
                                                                             00000975
    x=0.5*(X1+X2)
                                                                             00000976
    Y=0.5*(Y1+Y2)
                                                                             00000977
   GC TO 5
                                                                             00000978
 35 X=XA
                                                                             00000979
    Y=YA
                                                                             00000980
   GC TO 4
                                                                             18600000
333 X=XB
                                                                             00000982
    Y=YB
                                                                             00000983
 4 040=XF-X
                                                                             00000984
   0601=060
    TECISAC . FC. 11 DWD1= XR-X1
                                                                             00000985
    IF(ISAC. EQ. 1. AND. NSUB. LE. 1) DED=DWD1
                                                                             00000986
                                                                             78600000
    OMOVI = CHOI+SUDOY
                                                                             00000988
    CHOY=L WD+SUEEY
                                                                             00000989
    DNDZ=UNT +SUPEZ
   IF (ENDY .LE.C. .CR.EWEZ.LE.O..OR.DWCY1.LE.O.)GO TO 500 IF(X1.F4.X2) GO TO 44
                                                                             00000990
                                                                             00000991
    2=21+(x-x1)+(Z2-21)/(x2-x1)
                                                                             00000992
    GC TC 444
                                                                             00000993
44 2=21+(Y-Y1)*(Z2-Z1)/(Y2-Y1)
                                                                             00000994
                                                                             00000995
444 CENTINUE
CLAPUTE STANDARE DEVIATIONS.
                                                                             00000996
                                                                             00000997
    THRH=CHOY/WS
                                                                             00000998
    THEV=[WOZ/WS
    THEHI=FWFYI/WS
                                                                             00000999
                                                                             00001000
    SIGHI=SIGY(JSTAH, THRH1)
    : LEM=AMAXI (O.2+DWDY1, SIGHI)
                                                                             00001001
                                                                             00001002
    IF ( IAT . NE . C) ISAC = 1
    IFIISAC . FO. 1) FLEM = . 1 *FLFM
                                                                             00001003
                                                                             00001004
    IF (FLFM. LT. FNIN) FLEM=EMIN
FRANCH IF ANGLE IS SMALL AND LINE SCURCE IS LONG.
                                                                             00001005
    IFILAT . NE . U . AND . DLI . GT . 11 . 5 ELEMIIGE TO 55
                                                                             00001006
    IF (ASNF.LT.CAN. AND. DLI.GT.(1.5*FLEM)) GO TO 55
                                                                             00001007
                                                                             00001008
    SIGH=SIGY(JSTAB, THRH)
                                                                             00001009
    SIGV=SIGZ(JSTAE, THRV)
                                                                             00001010
    FRH= 1. 4142 # 51GH
                                                                             00001011
    DENZ=1.4142*51GV
                                                                             00001012
    1F(ASNF.11.0.1.AND. (ABS(SNTH)).LT.0.1) GO TO 45
    GC 11 445
                                                                             00001013
                                                                             00301014
 45 AFG21=-(2F-21)**2/DENZ**2
    19622=-(ZP+Z1)**2/DENZ**2
                                                                             00001015
                                                                             00001016
   GC TC 446
                                                                             00001017
445 CENTINUS
                                                                             00001018
    APG=LSTH**2*SNF 1**2*SIGV**2+SNTH**2*SIGH**2
    PARG=SCRTIAFG)
                                                                             00001019
                                                                             00001020
    A = # AF G/(1.4142*SIGH*SIGV)
                                                                             00001021
    AL=[LN+A
                                                                             00001022
    VAUT= (Ab-A1) *C21H*2NEI*21CA**5
    48621=(ZR-Z1)*SNTH*SIGH**2
                                                                             00001023
                                                                             00001024
    1PG22=-(7P+71)*SNTH*SIGH**2
```

```
BA1=-(ARG1+ARG21)/(1.4142*SIGH*SIGV*RARG)
                                                                          00001025
     HA2=-(ARG1+ARG22)/(1.4142*SIGH*SIGV*RARG)
                                                                          00001026
     ARGY 1 = AL +BA 1
                                                                          00001027
     ARGY2=AL+BA2
                                                                          00001028
     C1=(YR-Y1)**2/DENH**2+(ZF-Z1)**2/DENZ**2
                                                                          00001029
     C2=(YK-Y1)**2/DENH**2+(ZR+Z1)**2/DFNZ**2
                                                                          00001030
     ARGZ1=BA1**2-C1
                                                                          00001031
     ARGZ2=8A2**2-C2
                                                                          00001032
446 IF(ARGZI.LT.-10..AND.APGZZ.LT.-10.) GO TO 500
                                                                          00001033
     IF(ARGZ1.LT.-10.160T0 2411
                                                                          00001034
     1F(ARGZ2.LT.-10.1G0T0 2412
                                                                          00001035
     IF(DWD.GT.XZ) GO TO 100
                                                                          00001036
     FAC1=EXP(ARGZ1)
                                                                          00001037
     FAC2=EXP(AFGZZ)
                                                                          00001038
     GCTO 2414
                                                                          00)01039
2411 FAC1=C
                                                                          00701040
     FAC2=EXP(ARCZ2)
                                                                          00001041
     GCT0 2414
                                                                          00001042
2412 FAC2=0
                                                                          00001043
     FAC1=EXP(AFGZ1)
                                                                          00001044
2414 CENTINUE
                                                                          00001045
  39 CENTINUE
                                                                          00001046
 GET POLLUTANT CENSITY AND ITS GRACIENT(ID ANY).
                                                                          00201047
 MEDEL ASSUMES CENSTANT ACCELERATION (OR DE-ACCEL.) AND EMISSION ON RUOQUOID48
 LANUING AND TAKE-OFF.
                                                                          00001049
     XS12=(X-XW1)**2+(Y-YW1)**2+(Z-ZW1)**2
                                                                          00001050
     XSI=SCPT(XSI2)
                                                                          00001051
     1F(X*XW2.LT.O.DR.Y*YW2.LT.O.DR.Z*ZW2.LT.O) XST=-XST
                                                                          00001052
     CL = 1./0L
                                                                          00001053
     IF (IAD .NE. O) CALL GMOLIXSI, CL)
                                                                          00001054
  HANCH IF ANGLE IS SMALL
                                                                          00001055
     IF(ASNF.LT.O.1.ANC. (ABS(SNTH)).LT.O.1) GO TO 50
                                                                          00001056
     FJ1=FAC1*(EFF(ARGYL)-FRF(HALL)
                                                                          00001057
     FJ2=FAC2*(ERF(ARGY21-FRF(BA21)
                                                                          00001058
                                                                          00001059
     (BAF=(BAF+0.35355*CDEF1*QL*(FJ1+FJ2)/(A*SIGH*SIGV)
                                                                          00001060
     IF (CHAPO.EU.O) GO IN 49
                                                                          00001061
     IFIABSICERAFO-CBARI/CBARI.LE .. 000101 GC TO 600
                                                                          00001062
     1F(16UG.FC.0) GO TO 49
                                                                          00001063
 49 CENTINUE
                                                                          00001064
     IF (NSUB. GT. 1. AND. DLRS. GT. (. 01 +DL)) GC TO 60
                                                                          00001065
     GC 10 600
                                                                          0000106+
   SMALL-ANGLE APPRIXIMATION
                                                                          00001047
  50 ARGYY =- (YP-Y11**2/DENH**2
                                                                          00 10106
     1F(AFGYY.LT .- 10.1 GO TO 500
                                                                          0000106
                                                                          00001070
     FAC=0.5*(FAC1+FAC2)
     BRAC = [ XP (AF GYY)
                                                                          00001071
2317 CONTINUE
                                                                          00001072
     (PARD=(BAR
                                                                          00001073
     CBAF = CBAF +CCEF2 +QL *DLA FAC *BPAC / (SICH *SIGV)
                                                                          00101074
     IF (CEAFLI.FO.O) GT TO 499
                                                                          00001075
     IF(ABS((CBAF)-CBAR)/CBAR).LE..ODO10) GO TC 600
                                                                          00001076
 494 CENTINUE
                                                                          00101077
     IF (ASNF.LT.O.CO1) ASNF=0.001
                                                                          00001078
     IF (MSUB.LT.1) GO TO 600
                                                                          00301079
```

	IFIDLES.LT. (.01+DL)) GO	10 600	00001080
		1.1.01*DL1) GD TD 60	
55	NSUH = 1 . + DL 1/ELEM		00001082
	R SUH = NSUB		00001083
	SEGL + CLN/R SUR		
	1508-0		
	PELX*(X2-X1)/PSUB		00001086
	DELY* (Y2 -Y1)/FSUH		00001087
	DFLZ=122-211/RSUB		00001088
	XRS=X2-X1		00001089
	462=45-41		00001090
	745*22-21		00001091
	x2=x1		00001092
	Y2=Y1		00001093
	12-11		00001094
60	ISUR=ISUR+1		00001095
	1F(1508.FQ.1) GO TO 65		00001096
	NSUB=1.+DLRS/ELEM		00001097
	R SUR = NSUB		00001098
	SEGL*DLRS/FSUP		00001099
	DELX=XES/PSUP		00001100
	DELY=YRS/RSUH		00001101
	DELZ=ZRS/RSUR		00001102
15	CENTINUS		00001103
	KRS=XRS-PELX		00001104
	YAS=YAS-FELY		00001105
	ZRS=ZFS-DELZ		00001106
	x1=x2		00001107
	Y1=Y2		00001108
	21=22		00001109
	X2=X2+0+LX		00001110
	YZ=YZ+DELY		00001111
	12×12+0+11		00001112
	DLHS=DLHS-SFGL		00001113
	X*.5*(X1+X2)		00001114
	Y*.5*(Y1+Y2)		00001115
	1 5 . (21 . 12)		00001116
			00001117
1 10	YL * Y1		00001118
T. PORT	21 * 21		00001119
	1F 121 .1F. 72) 60 TO 10	05	00001120
	YL * Y2		00001121
	21 * 22		00001122
105	FAE3=0.5*S1GV/1COFF1*HL	IDM)	00001123
	IF (DWC .GT . 2 . * XZ) GO TO	200	00001124
	DENGL =0.4/*HL104		00001125
	DENZLZ=DENZL**2		00001126
		(SNTH)).LT.0.1) GP TC 101	00001127
	GC TO 102		00001128
101	ARGZ1 = - (ZP - ZL) + + 2/DENZE	· YOUR PROPERTY AND AND ASSESSED ASSESSED.	00001129
	48622 - 128+2L1++2/DENZL		00001130
	SC 10 103	day, 31 day 16 Menu, vacil salah casa se tau	
102	TE = XZ/NS		00001132
1101	CENHL = 1.4142+STGY(JSTAB	TL)	
	DENC -CETHANDACHELANDANE	421 **2+SNTH**2*DENHL **2	

	ARGZ1=-((YR-YL)+SNTH-(ZR-ZL)+CSTH+SNF))++2/DFNO	00001135
	ARGZZ=-((YR-YL)+SNTH-(ZR+ZL)+CSTH+SNF1)++2/DEND	00001136
103	FAC1=EXP(ARGZ1)	00001137
	FAC2=EXP(ARGZ2)	00001138
	FACI=FACI+(DMC-XZ)+(FAC3-FACI)/XZ	00001139
	FAC2=FAC2+(DWD-XZ)+(FAC3-FAC2)/XZ	00001140
	GC TO 39	00001141
200	FAC1=FAC3	00001142
	FAC2=FAC3	00001143
	GC TO 39	00001144
500	1F(DLRS.LT. (.01+DL)) GO TO 600	00001145
	IFIISAC.FQ.1.AND.NSUH.FQ.O) GO TO 55	00001146
	IFINSUB.GE.11 GO TO 60	00001147
600	(AVL=CBAP	00001148
	RETURN	00001149
	FND	00001150

	SUBROUTINE DIESFLIGAL, XMIGAL, XMILE, PLLTNT, IUNIT, NPLTS)	00001151
(GAL = TUTAL GALLONS OF DIFSEL FUEL CONSUMED: IF USING MILES. GAL	4000001152
(HE SET FOURL TO 0.0	00001153
	XMIGAL = MILES PER GALLON: CAN OMIT IF USING GALLONS	
	XMILE = MILES TRAVELED; NEED NOT BE SPECIFIED IF USING GALLONS	
	XPT. XCC. ETC. ARE THE EMISSIONS IN UNITS OF POUNDS OR GRAMS FOR	
	PARTICULATES. CARBON PONCXIDE. HYDECCARBONS. ETC	
	UNIT . O MEANS EMISSIONS IN GRAMS FLSF EMISSIONS IN POUNCS	
,	CIMENSION PLLINT(5)	00001159
	CCMMON/FUEL/EF(5) .EFG(5)	00001160
	CCMMON/PCL/NPT.JJ(5)	00001161
	E 400 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	********
	COMPUTE DIESEL ENGINE FOWERED MOTOR VEHICLE EMISSIONS.	00001163
	A=GAL	00001165
	IF(A.FC.O.O) A=XMILE/XMIGAL	00001166
	CCNFCT=1./454.	00001167
	IF (IUNIT. FQ. Q) CCNFCT=1.0	00001168
	DC 10 M=1.NPLTS	00001169
	(M)LL=1	00001170
	10 PLLINT(1)=4+FF(1)+CCNFCT	00001171
	KETUEN	00001172
		00001173

SURRUUTINE CTEUMO (IMDUR, SRVHR, IUNIT, PLLTNT, CSI, GSDLN, IDPLTS) OIMENSION (AS) CCMMON/PGL/PPT, JJ(5) COMMON/PGL/PPT, JJ(5) OATA CNSMET/1.8, 0.7.1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7.1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) COMMON/PGL/PPT, JJ(5) DATA CNSMET/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 COMMON/PGL/PPT, JJ(5) COMMON PROBLEM COMMON PURP C		CONTRACTOR OF COME AND AND COME TO THE PROPERTY OF COME AND THE	0010111
DIMENSIGN A(5)			
CCMMON/POLI/PT, JJ(5) COMMON/FULL/FFO(5).FFG(5) DATA (NSMRT/1.8, 0.7, 1.75, 3*1.5, 2.0, 1.7, 2.35, 1.75, 1.4, 2.0, 5.0, 1.57 (0001179) CSUMBOUTINE CALCULATES HOUBLY EMISSIONS IN PASSENGER GAIT ARFA RESU00301181 CFRIM (EMANOS PLACED DN GROUND SERVICE VEHICLES			
COMMON/FUEL/FFD(5).FFG(5) DATA (NSMRT/1.8,0.7,1.75,3*1.5,2.0,1.7,2.35,1.75,1.4,2.0,5.0,1.5/ 00001178) CSUHADUTINE (ALCULATES HOUHLY EMISSIONS IN PASSENGER GATE ARFA RESU00)01181 CFRJM (FMANOS PLACED ON GROUND SERVICE VEHICLES			
DATA CNSMRT/1.8,0.7,1.75,3*1.5,2.0,1.7,2.35,1.75,1.4,2.0,5.0,1.5/ 00001179			
CSUBFOUTINE (ALCULATES HOULY EMISSIONS IN PASSENGER CATE AFFA RESUDDINIBLE CFRJM (FMCNOS PLACED ON GRPUND SERVICE VEHICLES			
CSUBFOUTINE (ALCULATES HOURLY EMISSIONS IN PASSENGER GATE ARFA RESUDODO1181 C			
CFRJM (FMANDS PLACED ON GRPUND SERVICE VEHICLES	7.6		
(CALCULATE GALLONS OF DIESEL USED BY AIRSTART AND GROUND POWER VEHICODOILES OF 30 1=1.5 OCCUPANT OF THE CALLONS OF DIESEL USED BY AIRSTART AND GROUND POWER VEHICODOILES OCCUPANT OF THE CALLOND OF			
(CALCULATE GALLONS OF DIESEL USED BY AIFSTAPT AND GROUND POWER VEHIOODOI184 OC 30 1*1.5 00 PILINI(1)*0.C	-		
### DC 30 1*1.5 #### DC 30 1*1.5 ###################################			
PIEINT(I) = 0.C	(CALCULATE GALLONS OF DIESEL USED BY AIRSTART AND GROUND POWER	VEH100001184
GAL = 0.75 * S P V P (11) * 8.2 + 0.50 * S R V H P (13) * 7.1 1F (GAL = 0.0.C) GO TC 2 OSL = DSL + GAL CALL LIESFL (GAL, 0.0.0.0.PLLTNT, IUNIT, NPLTS) 2 CCNTINUE GAL = 0.5 * S R V P F (1.5) * C R S M F T (1.3) * S P V H P (1.4) * C R S M P T (1.4) OCO01191 10 GAL = GAL + S R V P * (1.5) * C R S M R T (1.3) * S P V H P (1.4) * C R S M P T (1.4) GSUL N = GSLLN + GAL GSUL R = GAL + S R V P * (1.5) * C R S M R T (1.5) 1 F (GAL + Q.0.0) GO TO 12 (ALL GAS GLEN (10., 6.0, GAL, 0.0, A.NPLIS, IUNIT) CO001195 1 = JJ (M) 2 C OLLINICID * P P L T N T (1.5) * A (1.5) 1 C CCNTINUF 2 C CNTINUF 2 C CNTINUF 2 C CNTINUF 2 C CNTINUF 2 C OLOO 1202		00 30 1*1.5	00001185
IF(GAL.EU.O.C) GO TC 2	30	PILINICI)=0.C	00001186
DSL=DSL+CAL		GAL = 0.75 * SEVER(11) * 8.2+0.50 * SEVER(13) * 7.1	00001187
CALL LISSEL (GAL, O. O. O. O. PLLTNT, LUNIT, NPLTS) 2 CCNTINUE GAL = 0.5 * SRVHF (15) * CNSMFT (13) * SRVHR (14) * CNSMFT (14) OC 10 1=1.12 O0001193 OC 10 1=1.12 O0001193 O0001195 OSULN=GSLLN+CAL O0001195 OCO01195 OCO01195 OCO01196 OCO01197 OCO01197 OCO01197 OCO01198 OCO01198 OCO01199		IF(GAL.EU.O.C) GO TC 2	00001188
2 CCNTINUE GAL *0.5*SRVPF(13)*CNSMFT(13)*SRVHR(14)*CNSMFT(14) OCO01193 OC 10 [*1.12		PSL=PSL+GAL	00001189
GAL #0.5*SRVPF(13)*CRSMFT(13)*SRVHR(14)*CRSMFT(14) OF 10 [=1.12		CALL LIESTI (GAL, O.O.O.O.PLLTNT, IUNIT, NPLTS)	00001190
DC 10 1 = 1 12 00001193	2	CENTINUE	00001191
D		CAL =0.5*SEVPF(1) +CNSMFT(13)+SEVHR(14)*CNSMFT(14)	59110000
GSGIN+GSCEN+CAL 1F(GAL.FQ.O.O) GO TO 12 CALL GASCEN (10.,6.0,GAL.O.O,A,NPLIS,IUNIT) CC 20 M=1,MPLTS 1=JJ(M) 2C OLLINI(1)+PLLINI(1)+A(1) 12 CCNIINUF 2C CNIINUF 2C OLOGO 1200 13 CCNIINUF 2C OLOGO 1200 14 CCNIINUF 2C OLOGO 1200 2C OLOGO		00 10 1*1.12	00001193
GSULN+GSLLN+CAL 00001195 11 (GAL+G-0.0) GO TO 12 00001196 (ALL GASCEN (10.,6.0,GAL+0.0,A,NPLIS,IUNIT) C0001197 CC 20 M=1,NPLTS 00001198 1=JJ(M) 00001199 CCNTINUF 00001200 CCNTINUF 00001201 CCNTINUF 00001201 CCNTINUF 00001202 CONTINUF CONTINUE C	10	GAL =GAL + SRVF S (1) *CNSMRT (1)	00001194
IF (GAL.EQ.O.O) GO TO 12 00 001196 (ALL GASCEN (10.6.0.GAL.O.O.A.NPLIS.IUNIT) COCO1197 COCO1198 I=JJ(M) 00001199 CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE CONTINUE COCO1100 COC			00001195
CALL GASTEN (10.,6.0,GAL.O.O,A,NPLIS,IUNIT) CC 20 M=1,NPLTS 1=JJ(M) CC 0LLINT(1)=PLLINT(1)+A(1) CCNTINUF 2C CATINUF 2C CATINUF 2C CATINUF 00001201 00001202		11 (uAt . 10.0.0) GO TO 12	00 101196
C 20 M=1,NPLTS			00001197
1=JJ(M) 2C OLLINT(1)=PLLINT(1)+A(1) 12 CCNTINUF 2ETURN 00001201 00001202			00001198
2C OLLINT(1)*PLLINT(1)*A(1) 12 CCNTINUF 2ETURN 00001201 00001202			00001199
12 CCNTINUF 00001201 00001202	26		00001200
DETURN 00001202	-		

```
00001204
    SUBROUTINE CUESSZIFCIN, PGGA, PGGB, PZERO, TOLL,
   I NITMAX.NFLAGI.NFLAG3.NFLAG41
                                                                           00001205
                                                                           00001206
    CCCCC
            MCC1FIED FOR PZEFO .GT.O.
                                                                           00001207
                     SEE STATEMENT 16
                                                                           00001208
                                                                           00001209
     THIS PROGRAM HAS BEEN TRANSLATED FOR THE
                                                      360/50
                                                                           00001210
     WITH FELFASE 1-A OF THE MOD-50 TRANSDECK
                                                                           00001211
                                                             JOB
                                                                           00001212
    DIMENSION PGG(50) . ERR(50)
                                                                           00001213
                                                                           00001214
    THIS SUPPOUTINE FINDS A ZERO OF THE FUNCTION FOTNIX)
                                                                           00001215
    FOTH MUST BE PEFINED BY AN EXTERNAL FUNCTION STATEMENT.
                                                                           00001216
                  PGGA AND PGGB ARE TWO INITIAL GUESSES
                                                                           00001217
                  TOLL - ALLOWABLE DEVIATION FROM ZFRO IF NFLAG4=1
                                                                           00001218
                       . ALLOWABLE CIFFERENCE BETWEEN LAST TWO PZERO
                                                                           00001219
                         VALUES IF NELAG4 = -1
                                                                           00001220
                  NITMAX . MAX NO. OF ITERATIONS
                                                                           00001221
                  NELAGS . I IF WANT PRINT OUT VIA THE SUBFOUTINE
                                                                           00001222
                  NELAGS . O IF NO PRINT CUT DESIRED
                                                                           00001223
                 INITIALLY COLF SETS NELAGI=0
                                                                           00001224
    A LIVILE CHECK OF EXCESS NO. OF ITERATIONS OCCURS, SETS NELAGI=1 00001225
                                                                           000001226
                                                                           00001227
    TELTP=APS(PCCA-PCGA)
                                                                           00001228
    NFLAGI = O
                                                                           00301229
    V11=5
                                                                           00001230
    PG-(1)=PGGA
                                                                           00001231
    er6121*PG68
                                                                           00101232
    1 = 3
                                                                           00001233
                                                                           00001234
    IARI
    1 P= 2
                                                                           00001235
    FREA = FCTN(PGGA)
                                                                           00001236
    ARESELI) HERRA
                                                                           00001237
    1F(N+1 AG4) 2+2+4
                                                                           00001238
    10 10 5
                                                                           00001239
  4 VALUE = ABS(FERA)
                                                                           00001240
    1 F ( VALUE - TOL 1 1400 . 400 . 5
                                                                           00001241
470 + wir= +66(1)
                                                                           00001242
    NITEL
                                                                           00001243
    FERHEFAFA
                                                                           00001244
    of to 100
                                                                           00001245
  S FPE=FCTN(PGGB)
                                                                           00001246
    1 F (N+LAG4) 6.6.8
                                                                           00001247
    VAL = PGG (IA) -PGG (IE)
                                                                           00001248
                                                                           00001249
    VALUE = AES(VAL)
                                                                           00001250
  * VALUE = ABSILERBY
                                                                           00001251
   IF (VALUE - TEL 1) 130.100.10
                                                                           00001252
 TO CONTINUE
                                                                           00001253
    VALUE = AHS (FOFA-FRAR)
                                                                           00001254
                                                                           00001255
    IF (VALUE -1.F -28) 75.75.15
 15 PG.(1)=PGG(1F) - FRRE*(PGG(1A)-PGG(1B))/(FRRA-ERPR)
                                                                           00001256
```

16	IFIPGG(11.LE.C.10GG(1)=.001+DELTP		00001257
	FRA=EARB		00001258
	FRR(16)=ERPP		00001259
	PCGR=PCG(1)		00001260
	1 1 + 1		00001261
	1A=1-2		00001262
	[Raj-]		00001263
	NIT=NIT+1		00001264
	IFINIT-NITMAX) 5.5.70		00001265
(00001266
	DEINT 71.NITMAX		00001267
	FCHMATCHI. 45H MAX. NO. ITER. FOR PZERO EXCEEDED. NITMAX =	15	//100001268
	NFLAGI = 1		00001269
	GC 10 100		00001270
C			00001271
	CENTINUE		00001272
200	NFLAG1=1		00001273
	GC 10 100		00001274
(00001275
- 1	1 [[[A L A G]] 80.80.101		00001276
-	J=1-1		00001277
	EHR (J)=EHRH		00001278
	PZEKO=PGGP		00001279
	GC 10 125		00001280
(00001281
101	PZF5C=PGGB		00001282
	J:[-1		00001283
	FRA(J)=EARP		00001264
104	+CHMAT (/////)		00001285
175	SECHMAN 22H M.O. JE LIERATIONS = 15 /// 1		00701286
115	SCRMATE 4X. 4H NIT .9X. EH GUESS . 16X. 6H ERROR	111	00001287
120	+CRMAT(18.2F2C.8)		00001288
1 45	LETURN		00001289
	CND		00001290

FUNCTION HMIX(JSTAB, MON, NHP, WS)	00001291
CIMENSICN HMM(12)	00001292
DATA HMM/400.,570.,1000.,930.,1120.,1310.,1180.,990.,980.,570.,	00001293
1660.,480./	00001294
(*************************************	**00001295
C MIXING DEPTH (IN FEET) IS DETERMINED ON THE BASIS OF STABILITY CLA	\$500001296
AND HULZWOPTH TABLE OF MEAN MONTHLY MAX. MIXING CEPTHS.	00001297
· (× × × × × × × × × × × × × × × × × ×	**00001298
FFT=3.281*HMM(MCN)	00001299
GC TO (10,20,20,30,40), JSTAB	00001300
10 HM]X=1.5*HFT	00001301
RETURN	00001302
20 HMIX=HFT	00001303
RETURN	00001304
30 HMIX=HFT	00001305
IF(NHP.GE.7.AND.NHR.LE.11) HMIX=.5*(HFT+328.)	00001306
1F(NHH.GF.17.AND.NHR.LE.21) HMIX=.5*(HFT+328.)	00001307
IF(WS.GE.13.8) HMIX=HFT	00001308
KETURN	00001309
40 HM[X=325.	00001310
FETUEN	00001311
EN)	00001312

```
SUBMOUTINE LINE (XR, YP, ZR, X1, Y1, Z1, X2, Y2, Z2, CUNC)
                                                                      00001313
    COMMON/LN/PL.XW1,YW1,ZW1,XW2,YW2,ZW2,COEF1,COEF2,VA1,VAZ,VD1,VD2, 00001314
     -A,TIME,VA12.VA22.VD12.VC22.WS2.WSC.IAD.SNAN.CSAN.V1.V2.V12.V22.
                                                                      00301315
    -TAIL . VS. PR. SP
                                                                      00001316
     CCMMON/MET/WS.WD. JSTAB, HL 10, TEMP, XL, SUDDY, SUDDZ
                                                                      00001317
      CCMMON/LN1/TACC
                                                                      00001318
PREPARE GEOMETRIC AND KINEMATIC PARAMETERS FOR THE FINITE LINE
                                                                      00001320
      SCURCE DISPERSION MCCEL CAVL.
                                                                      00001321
IAD=IADL
                                                                      00001323
      11 2=(x2-x1)*(x2-x1)+(y2-y1)+(y2-y1)+(Z2-Z1)*(Z2-Z1)
                                                                      20001324
      TL=SGPT(AL2)
                                                                      00001325
      IFTIAC.FQ.O) GO TO 20
                                                                      00001326
      GE TO 11.21.1AD
                                                                      00001327
      FOR ARRIVAL, TIME IS COMPUTED.
                                                                      00001328
    1 VI=VA1
                                                                      00101329
                                                                      00001330
      VZ=VAZ
      V12= VA12
                                                                      00001331
                                                                      00001332
      V22=VA22
      TYME=2.*DL/(V1+V2)
                                                                      00001333
      GC TC 10
                                                                      00001334
      FCH CEPARTURE, OL 15 COMPUTED.
                                                                      00001335
    2 V1=VD1
                                                                      00001336
                                                                      00001337
      V2=VC2
                                                                      00001338
      V12=V012
                                                                      00001330
      V22=VE22
      TL1=.5*TIMF* (V1+V2)
                                                                      00001340
      x2=x1+(x2-X1)*CL1/DL
                                                                      00001341
      Y2=Y1+(Y2-Y1)*DL1/DL
                                                                      00001342
      CL=DL1
                                                                      00001343
      I YME = TIME
                                                                      00001344
   10 4= (V2-V1)/TYME
                                                                      00001345
                                                                      00001346
   20 xh1=0.
                                                                      00001347
      Y . 1 = 0 .
                                                                      00001346
      2 w1 = 21
      1)=1.
                                                                      00001340
                                                                      00001350
      TAU=1.
      TWUP1=2. #3.1415927
                                                                      00001351
                                                                      00001352
      SGF=SGRT(TWEPI)
      (CEF1=1./(SOF *U*TAU)
                                                                      00001353
                                                                      00001354
      CCFF2=2./(TWOPI +U+TAU)
      xw2=(x2-x1)*(SAN+(Y2-Y1)*SNAN
                                                                      00001355
      YW2=(X1-X2)*SNAN+(Y2-Y1)*CSAN
                                                                      00001356
      142=12
                                                                      00001357
      XPCP=(XP-X1)*(SAN+(YP-Y1)*SNAN
                                                                      00001358
      YRCP=(X1-XP)*SKAN+(YR-Y1)*CSAN
                                                                      00001359
                                                                      00001360
      IPCP= ZR
      IFITAL. EQ. O) GO TO 50
                                                                      00001361
                                                                      00001362
      (SA = -XH2 / DL
      WSC = 2 * WS * CSA
                                                                      00001363
                                                                      00301364
     IXT = TAIL / DL
      DX = XW2 * FXT
                                                                      00001365
```

	DY = YM2 + EXT	00001366
	XW2 = XW2 + DX	00001367
	YWZ = YWZ + CY	00001368
	XRCP = XRCP + OX	00001369
	YRCP = YRCP + DY	00001370
	VS = TAIL / TIME	00001371
	vT = V2 + VS	00001372
	SP2 = WS2 + VT + VT + WSC + VT	00001373
	SF = SQRT (SP2)	00001374
	W1 = V1 + VS	00001375
	w2 = V2 + VS	00001376
	YYI = SQFT(MS2 + WI * (WI + WSC))	00001377
	YY2 = SOFT(MS2 + M2 * (M2 + MSC))	00001378
	ARG = (YY2+ W2 + WSC/2.) / (YY1+ W1 + WSC/2.)	00001379
	G =YY2 -YY1 - WSC/2. * ALOG(ARG)	00001380
	HR = A / G	00001361
50	CONC = CAVL (XFCP, YRCP, ZRCP)	00001382
	PETURN	00001363
	CAP	00)01384

	SUBROUTINE PSEUDO(DS,U,V,TX,TY,TZ,DX,EY,MSTH,HS,NCL)	00001385
	FATERNAL SIGGA, SIGGZ	
	CEMMUN/STAHIL/NSTB, STGXO, STGZO	
	CEMMUNZWDUNZWSAVE	00001388
CA	(《西西南 化水水油 化大水水 化大水水 化水水油 化苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	***00001389
(HERIZONTAL AND VERTICAL SOURCE WIDTHS ARE CONVERTED TO PSEUDO	00001390
(TRANSPORT TIMES.	, 00001391
(4)	a 4.x. 办 4. ** ** ** ** ** ** ** ** ** ** ** ** **	***00001392
	; PP=, OC1	00001393
	100 A=1.	00001394
	R= • • • • • • • • • • • • • • • • • • •	00001395
	454 C= - 10	00001396
	?=.01	00001397
	NLL=10	00)01398
	\G=0	00001399
	N4=1	00001400
	WSAVE= SC+T (U*U+V*V)	00001401
	NST6=MST6	00001402
	! (NCL.56.2) GO TO 9	00001403
	\$16xt=6 \$	00001404
	CALL GUESS2 (SIGGX,A,B,TX,EPP,NUL,NF1,NP,N4)	00001405
	TY=IX	00001406
	9 S1G20=HS	00001407
1	CALL (UFSS2(SIGGZ,C,C,TZ,FPP,NUL,NF1,NP,N4)	00001408
	4C 7 X = U + T X	00001409
	^y=v*7y	00001410
	#FTURN	00001411
	+NO	00001412

```
SUBPOUTINE OMOD (YSI.OL)
                                                                      00001413
     CCMMON/LM/DL, XWI, YWI, ZWI, XWZ, YWZ, ZWZ, COEFI, COEFZ, VAI, VAZ, VCI, VDZ, 00001414
    -A.TIME, VALZ, VAZZ, VD12, VD22, WSZ, WSC, IAD, SNAN, CSAN, V1, V2, V12, V22,
                                                                      00001415
    -TAIL . VS. RR. SP
                                                                      00001416
    CCHMON/MET/WS. NU, JSTAR, HL 10, TEMP, XL, SUDOY, SUDOZ
                                                                      00001417
+00001418
C A MURILE SOURCE EMISSION MODEL ASSUMING CONSTANT ACCELEPATION
                                                                      00001415
+00001420
     XSI = YSI - TAIL
                                                                      00001421
     IF (XS1 .LF. -TAIL) XS1 = -TAIL + .001
                                                                      00001422
                                                                      00001423
(
                                                                      00001424
     IF (XS1 .GT. DL) XS1 = DL - .001
                                                                      00001425
     FXS1 = 0.
                                                                      00001426
     IF (XS1 .GT. (DL-TAIL)) FXS1 = XS1 - DL + TAIL
                                                                      00001427
                                                                      00001428
  30 XSIR = XSI + TAIL
                                                                      00001429
     IF (XSIH .GT. DL) XSIP = DL
                                                                      00001430
                                                                      00001431
C
     X514 = 0.
                                                                      00001432
     IF (XS1 .GT. 0) XSIA = XS1
                                                                      00001433
                                                                      00001434
(
     PCOTE = V12 + 2.*A*XSIB
                                                                      00001435
     RECTA = V12 + 2. * A * XSTA
                                                                      00001436
     VA = SORT(PCCTA) + VS
                                                                      00001437
     VP = SCPT (PCCTB) + VS
                                                                      00001438
     YA = SORT(WS2 + VA *(VA + WSC))
                                                                      00001439
     YE = SCRT(WS2 + VE *(VE + WSC))
                                                                      00001440
     1PG = (YB + VR + WSC/2.) / (YA + VA + WSC/2.)
                                                                      00001441
     GL = YH - YA - WSC/2. * ALOG(AFG)
                                                                      00001442
     QL = FR / TAIL * (FXSI / SP + CL / A)
                                                                      00001443
     PFTUPN
                                                                      00001444
     FAD
                                                                      00001445
```

FUNCTION SIGGX(THOUR)	00001446
CCMMON/STABIL/NSTB, SIGXO, SIGZC	00001447
SIGGX=SIGY(NSTB.THOUR)-SIGXO	00001448
PERSONAL RETURN	00001449
FND FND	00001450
FUNCTION SIGGE (THOUR)	00201451
CCMMON/STABIL/NSTB.SIGXO.SIGZO	00001452
SIGGZ=SIGZINSTB.THOUR)-SIGZO	00001453
H T TURN	00001454
END	00001455
	00301423
FUNCTION SIGY(J.THOUR)	00001456
CCMMON/WOUN/WSAVE	00301457
CIMENSIUN A(7).d(7)	00001458
01MENS10N C(5).D(5)	00001458
CATA (/155.,100.,68.,50.,34./, D/.91.,98.,93.,90,.93/	00301460
DATA A/2.1511.1.5454.1.060668465593665936659366/	00001461
CATA 6/.8732688261,.89031,.88866,.89138,.89138,.89138/	00001462
TATA (UNV.000621371/	00001463
[* f * f * f * d * d * d * d * d * d * d	
COMPUTE HORIZONTAL DISPERSION COFFFICIENT.	00001465
(* c * c * c * c * c * c * c * c * c *	
J=1.2.3.4.5 ARE CLASSES B.C.C.F.F	00001467
C XX ANT SIGNY APE IN MILES	00001468
155C=1HUUR*3600.	00001469
1362-11000-2000-	00001470
\$10Y=(A(J)*TSE(**R(J))*C(NV*.87	00001471
C WSAVE IS MEAN WIND SPEED UP TO TIME T.	00001472
7X=WSAVE 4THCUR*1.609	00001473
JJ=MAX0(J-1.1)	00001474
\$8000.*((LL))*(XX**D(JJ))*.000889	00001475
(.000869=(1/1669.)*(6**.2)	00001476
SIGY=AMAXI(SIGY.SIGXY)	00001477
101-101-101-101-101-101-101-101-101-101	0000147
C CISPERSION COFFFICIENTS FASED ON TURNER WORKBOOK.	0000147
C WHERE THE SIGMAS GIVEN IN THE WORKBOCK FOR	003014
TEN MINUTE SAMPLINGS AFF SCALED TO 1 HOUR	20001411
AVERAGES BY A FACTUR OF 1.43	00001482
RETURN	00001463
	00001464
estable Course of their their surpless of the State State of the State	000.1404

```
00001485
       FUNCTION SIGZIJ, THOUR)
       CEMMEN/WOUN/WSAVE
                                                                           00001486
                                                                           00001487
      DISPERISION COEF. BASED ON TURNERS WORKBOCK
(
       J=1.2.3.4.5 ARE CLASSES B.C.D.F.F
                                                                           00001488
C
       X AND SIGZ ARE IN MILES
                                                                           00001489
                                                                           00001490
       DIMENSION C (3,5), D(3,5)
       REAL TIME (7) . A(7.6) .8(7.6)
                                                                           00001491
                                                                           00001492
       DATA TIME/0.,300.,1000.,3000.,10000.,30000.,172000./
                                                                           00001493
       CATA A/.17122..27668..41219..51921..50963..47639..52140.
                                                                           00001494
              .11062,.39553,.41219,.57145,.76485,.71936,.88886,
                                                                           00001495
      1
              .01338,.16640,.41219,1.0813,1.9467,2.3901,1.8877,
                                                                           00001496
              .01338..16640..41219.2.2830.2.9850.3.8684.6.7452.
                                                                           00001497
              .01338,.16640,.41219,2.3333,5.7990,16.897,20.673,
                                                                           00001498
              .01338,.16640,.41219,5.6801,14.599,64.577,54.149/
                                                                           00001499
       PATA 8/1.2098.1.0572,.92365,.84130,.79689,.76308,.69839,
                                                                           00001500
                                                                           00001501
              1.2864,.99275,.92365,.82449,.72571,.69082,.60486,
              1.5922,1.1195,.92365,.73217,.59047,.51700,.49583,
                                                                           00001502
                                                                           00001503
              1.5922,1.1195,.92365,.63883,.53706,.45686,.33677,
              1.5922,1.1195,.92365,.63646,.46497,.29621,.21517,
                                                                           00001504
              1.5922,1.1195,.92365,.55016,.37541,.16667,.12177/
                                                                           00001505
       CATA (/110.,110.,110.,60.,60.,60.,33.,33.,40.,21.5,21.5,36.,14.,
                                                                           00001506
      114 . . 23 . 5/
                                                                           00001507
                                                                           00001508
       CATA C/1..1.09.1.07,.42,.92,.92,.80,.61,.53,.70,.56,.35,.78,.53,
      1.30/
                                                                           00001509
                                                                           00001510
      TATA CONV/.000621371/
                                                                          *00001511
      COMPUTE VERTICAL DISPERSION COEFFICIENT.
                                                                           00001512
***********************************
                                                                          *00001513
       TSEC = THOUR + 3600.
                                                                           00001514
       DC 10 N=2.7
                                                                           00001515
       IFITSEC.LE. TIME (NIIGO TO 20
                                                                           00001516
                                                                           00001517
    10 CENTINUE
                                                                           00001518
       1 F (N. GT. 7) N=7
      TIME OF TRAVEL SHOULD BE LESS THAN 172.E03 SEC APPROX. 2 DAYS
                                                                           00001519
    20 CENTINUE
                                                                           00001520
       N=N-1
                                                                           00001521
       S102=(A(J,N)*TSEC**B(J,N))*CONV
                                                                           00001522
E
        TURNER TEST EQUATION
                                                                           00001523
       $164=(1.17518*TSEC**.720121*CONV
                                                                           00001524
       XX=WSAVF*THTUR*1.609
                                                                           00001525
                                                                           00001526
       1 = 1
       IF (XX.(.T.1.) 1=2
                                                                           00001527
       IF(XX.GT.10.) I=3
                                                                           00001528
       JJ=MAXO(J-1.1)
                                                                           00001529
       $1672=(((1,JJ)*XX**D(1,JJ))*.000714
                                                                           00001530
       .COO714=(1/1609)*(20/10)**.2, ASSUMING THAT THE VERTICAL DISPER-
                                                                           00001531
       SION CCEFFICIENT IS INSENSITIVE TO SAMPLING TIMES OVER 20 MIN.
                                                                           00001532
                                                                           00001533
       102 = AMAXL (SIGZ, SIGTZ)
       PETURN
                                                                           00001534
                                                                           00001535
       ENU
```

```
FUNCTION TRAN (NS.KSTAB. HEFA, NRFLAG, IBACK)
                                                                   00001536
     CCMMON/OFLTA/CELY. DELZ
                                                                   00001537
     CEMMON/LOC/DW.CW
                                                                   00001538
     CCMMON/MET/WS,WD, JSTAB, HMIX1, TEMP, CL, SUDOY, SUDOZ
     COMMON/PL 4/XS(5), YS(5), STKH(5), WITL(5)
                                                                   00001540
     CCMMON/RECPT/HRECPA.HTAEPO.ZRECPG
                                                                   00001541
     CCMMON/SEUDC/TX.TY.TZ
                                                                   00001542
     CCMMON/XTRAN/WSMD.NCALM. SQ2PI
                                                                   00001543
     CCMMUN/WDUN/WSAVE
COMPUTE COUPLING COEFFICIENT AT RECEFTOR DUE TO POINT AND AREA
                                                                   00001546
     SCUPCE .
                                                                   00001547
IFIKSTAB.GT.OHAVE PLUME INITIALLY ABOVE LID.
                                                                   00001549
                                                                   00001550
     ZS=STKH(NS)/5280.
     HFFF=HFFA/528C.
                                                                   00001551
                                                                   00001552
     wIT=WIT1(NS)
                                                                   00001553
     JSTABT=JSTAB
                                                                   00001554
     WSAVE = WSMD
     HRECPT=HRECPA/5280.
                                                                   00001555
                                                                   00001556
     ZKEEP=HKECPT
     4001=0.
                                                                   00001557
                                                                   00001558
     ACC2=0.
                                                                   00001559
     ACD3=0.
     ACD4=C.
                                                                   00001560
                                                                   00001561
     ACD5=0.
     ADD6=C.
                                                                   00001562
                                                                   00001563
     w Jw6 = 0.
                                                                   00001564
     XL = CL
                                                                   00001565
     IFIKSTAB.GT.OIGO TO 121
                                                                   00001566
     HL10=HMIX1/5280.
                                                                   00001567
                                                                   00001568
     G0T0 140
                                                                   00001569
     JSTABT=4
 121
                                                                   00001570
      IF(KSTAB.EU.2) GOTO130
                                                                   00001571
     JSTABT=5
      CONTINUE
                                                                   00001572
 130
     HLID=1000./5280.
                                                                    00001573
                                                                   00001574
      XL=30./5280.
                                                                   00001575
  140 CENTINUE
      IF PLUME BELCW LID AND RECEPTOR ABOVE, TRAN=O.
                                                                   00001576
      IF (HRECPT.GT. HLID.AND. KSTAB. EQ. O I GOTO 76
                                                                   00001577
     IFINSAVE .LF. WJWG1 GU TO 9596
                                                                   00001578
                                                                   00001579
     DMIN=485(CW)
     TMIN=LW/WSAVF
                                                                   00001580
                                                                   00001581
  305 CENTINUE
     TT=TMIN+TY
                                                                    00001582
                                                                   00001583
      1F(11.1E.C.)G010 76
     IFINAFLAG.NE.O) GC TO 143
                                                                   00001584
     TMIN = 0.
                                                                   00001585
                                                                   00001586
     IF (DW .GF. WIT) TMIN = (DW
                                - WIT) / WSAVE
     IF(16ACK.FQ.0) GO TO 131
                                                                   00001587
     IFICH+WIT-DELY) 132,132,133
                                                                   00001588
```

132	TMIN=C.	00001589
	GC TO 131	00301590
133	TMIN=(UW+WIT-CELY)/WSAVE	00001591
131	TT = TMIN + TY	00001542
	IF(TT.LF01)TT=.01	00001593
	SY=SICY(JSTABT,TT)	00001594
	XFP = W[T + OW 1E (XHP .GF. 2.*WIT) GO TO 142	00001595
	IF (XMP .GF. 2.*WIT) GO TO 142	00001596
	CM = XHP / 2.	00001597
142	THE THE TOWN WEAVE SZESIGZ (JSTART, TTT) FDEDMIN/SY	00001598
0.30	SZ=SIGZ(JSTART.TTT)	00001599
	FOEDMINASY	00001600
	+xPL=5*ED*FD	00001601
	FCD=EXP(EXPC)	00001603
	TELO OF 3 AVILOUED 153	00001404
	TENCM=6.2831853*WSAVE*SY*SZ 71 = HEFF-ZKEEP	00001605
	Z1 = HEFF-ZKEEP	00001606
		00001607
	IF(FAPZ1.LT20.1GUTC 76	00001608
	F 1=E XP(E XP21)	00001609
	ACOL=F1*FDC/CENOM	00001610
	IF (heff-61.0.0) 60 TO 171	00001611
	ACU2=ACU1	00001612
	GCTO 172	00001613
171		00001614
	ZZ = HEFF + ZKEEP	00001615
	EXPL2=15+122/52)+(22/52))	00001616
	IF(EXP22.LT20.1GOTO 61	00001617
	E2=EXP(EXPZ2)	00001618
	ACOZ=ADC1*FZ/F1	00001619
172		00001620
	IF (HEFF. GT. HL ID/2 OF . SZ. GE. (HLIC-HEFF)/2.2) GO TO 18	00001621
	GC TO 61	00001622
18	CONTINUE	00001623
	IF(HEFF.LT.HLID) GO TO 174	00001624
	ACC3=ACO1	00001625
	ACU4 = ADC2	00001626
	GCT0 173	00001627
174	HANDER 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 - 1980 -	00001628
	23= (2.*HL1C-HFFF)-ZKFFP	00001629
	[XP/3=(5*(Z3/SZ)*(Z3/SZ))	00001630
	IF(FXPZ3.LT20.160TO el	00001631
	F 3=EXP(FXPZ3)	
	ACD3=ALD1*F3/E1	00001633
	/4= Z3+2.*ZKFEP	00001634
	(xP44=5*(Z4/SZ)*(Z4/SZ)	00001635
	1F1EXP74.1120.1G0T0 61	00001636
	F4=EXP(FXP24)	00001637
	ACD4=ACD1+E4/E1	00001638
	IF (HEFF.GT.0.0) GO TO 173	00001639
	1005=1003	00001640
	ACTE = ACT 4	00001641
	cr 11. 61	00001642
173	CCNTINUE	00001643

	75=22+2.*(HL 1D-ZKEEP)	00001644
	[XPZ5=5*(Z5/SZ)*(Z5/SZ)	00001645
	1F(EXPZ5.LT20.1G0T0 61	00)01646
	FREEXPIEXPISI	00001647
	ACD5=ADD1+F5/F1	00001648
	Z6=25+2.*ZKEEP	00001649
	EXPZ6=5*(Z6/SZ)*(Z6/SZ)	00001650
	1F(EXFZ6.LT20.1G0T0 61	00001651
	FEEL XP(EXPZC)	00001652
	ACD6=ACC1*E6/F1	0 0 0 0 1 6 5 3
	GC TC 61	00001654
153	PENOM=SQ2PI+WSAVE+SY	00001655
	ACUI=EDD/(DENOM*HLID)	00001656
61	CCNTINUE	00001657
	TRAN=ACD1+ACC2+ADD3+ACD4+ADD5+ADD6	00001658
	FETURN	00001659
143	IF(InACK.EQ.1) GO TO 144	00001660
	T2=(CW+WIT)/ WSAVE+TZ	00001661
	1F([N-WIT) 145,145,146	00001662
145	11=12	00001663
	TT=TY	00001664
	GC TO 149	00001665
146	TI=([h-mlT)/ WSAVF+TZ	00001666
	TT=(DW-WIT)/ WSAVE+TY	00001667
	CC TO 149	00)01668
144	T2=XL/ WSAVE+TZ	00)01669
	IF(DW+WIT-DELY) 147,147,148	00001670
147	11=12	00001671
	II=IY	00001672
	GC TC 149	00001673
148	T1=(DH+WIT-CFLY)/ MSAVE+TZ	00001674
	TT=(DH+WIT-CELY)/ WSAVF+TY	00001675
149	IF(T1.FQ.TZ) GC TO 150	00001676
	SZ1=SIGZ(JSTAHT.T1)	00001677
	CC TO 151	00001678
	SZ1= P(LZ/2.4	00001679
151	SZZ=SIGZ (JSTABT,TZ)	00001680
	IF(IT.EQ.TY) GO TO 152	00001681
	SY=SIGY(JSTABT, TT)	00001682
	GC TO 155	00001684
	SY=DELY/2.4	00001685
1 30	ARGY=-(CW/SY)**2/2. IF(APGY.LT20.) GO TO 76	000016
	H=ALOG(\$Z1/\$Z2)/ALOG(T1/T2)	00001667
160	F x 21 = C.	00001668
139	FX22=0.	00001689
	AGZ1=-((ZS-HRECPT)/SZ2)**2/2.	00001690
	AGZ2=-((ZS+HFFCPT)/SZ2)**2/2.	00001691
	1F(AG21.LT20) GC TC 157	00001692
	EX21=EXP(4GZ1)	00001693
157	1F(AGZZ-LT20) GC TO 158	00001694
	FXZ2=EXP(AGZ2)	00001695
154	CONTINUE	00001696
- , ,	IF((EXZ1+EXZ2).LE.O.) GO TO 76	00001697
	FXY=EXP(APGY)	00001698

	1F(ABS(B-1.).LEOL) GC TO 2	00001699
	FCNX=(T2/SZ2-T1/SZ1)/(18)	00001700
	GC TO 3	00001701
2	FCNX=T1*ALCG(T2/T11/SZ1	00001702
3	TPAN=+XY+(EXZ1+EXZ2)+FCNX/((SQ2P1++2)+SY+DELY)	00001703
	I HACK = C	00001704
	RETURN	00001705
76	TRAN= C.	00001706
	I BACK=0	00001707
	PETURN	00001708
7546	CONTINUF	00001709
	18A(N = 0	00001710
	PETUKN	00001711
	čND	00001712