AI COLLEGE: RECOMMENDATION SYSTEM INHWAN I FF

Session-based Recommendation with Graph Neural Networks

CONTENTS

- 1. Introduction
- 2. Model Overview
- 3. Session Graphs
- 4. Attention and Session Embeddings
- 5. Datasets and Results

AUTHORS

Shu Wu

Liang Wang

Yuyuan Tang

Xing Xie

Yanqiao Zhu

Tieniu Tan

SESSION-BASED RECOMMENDATION

Previously visited items

Item to be recommended

- ▶ 단기간에 유저가 선택한 아이템의 순서에 따라 다음 아이템을 추천
- ▶ 유저 고유의 정보는 반영하지 않음

SESSION-BASED RECOMMENDATION

- Session-based Recommendation은 시계열 문제이므로, RNN (LSTM, GRU 등) 을 활용한 모델이 많이 등장
 - 그러나 이 모델들의 hidden vector는 유저 벡터로 간주되는데,
 하나의 짧은 세션 만으로 유저의 특성을 담아내기는 어려움
 - ▶ 또한 RNN 모델은 연속적이지 않은 아이템 간의 관계를 포착하기 어려움
- ▶ 이를 해결하기 위해 그래프를 이용한 GNN 모델 또한 시도되어 왔음
- ▶ 이 논문에서는 그래프와 RNN, 그리고 Attention을 이용한 모델 소개

INPUT / OUTPUT OF MODEL

- ▶ 모든 아이템을 모은 집합을 $V=\{v_i\}_{i=1}^m$ 라고 하자. 그리고 각 아이템 v_i 의 벡터 표현 $\mathbf{v}_i\in\mathbb{R}^d$ 를 초기화하자.
- ▶ 한 유저가 하나의 세션 s에서 클릭한 아이템을 순서대로 $s=[v_{s,1},v_{s,2},...,v_{s,n}]\ (v_{s,i}\in V)$ 라고 할 때, SR의 목표는 다음 아이템 $v_{s,n+1}$ 을 예측하는 것이다.
- > 논문의 모델은 세션 s를 입력으로 받았을 때, 다음 아이템의 예측 확률 벡터 $(y_i)_{i=1}^m$ 를 출력한다.

SESSION GRAPH MODELING

▶ 세션의 아이템을 이용하여 그래프를 생성한다

(image source : https://sxkdz.github.io/research/SR-GNN/)

NODE REPRESENTATION LEARNING

▶ 그래프를 이용하여 아이템들의 벡터 표현을 얻는다.

SESSION REPRESENTATION GENERATING

> Attention을 이용하여 세션의 벡터 표현을 얻는다.

MAKING RECOMMENDATION

▶ 아이템과 세션의 표현을 이용하여 최종 확률 벡터를 산출한다.

CONSTRUCTING SESSION GRAPHS

 \triangleright 임의의 세션 s는 다음과 같이 directed graph 로 표현할 수 있다.

$$s = [v_1, v_2, v_3, v_2, v_4]$$

$$v_1$$

$$v_2$$

$$v_3$$

CONNECTING MATRIX OF GRAPHS

- Directed graph는 각 점에서 나가는 선의 도착점과, 각 점으로 들어오는 선의 출발점을 이용하여 행렬로 표현할 수 있다.
- 또한 하나의 점에서 연결된 선이 여러개일 경우 전체 선의 갯수로 나눠 normalize 시켜준다.

▶ 이 행렬을 $A_s \in \mathbb{R}^{n \times 2n}$, 행렬의 i열을 $A_{i,s:} \in \mathbb{R}^{1 \times 2n}$ 로 표기한다.

LEARNING ITEM EMBEDDINGS ON GRAPHS

- ▶ 세션 $S = [v_1, ..., v_n]$ 의 벡터 표현 $\mathbf{v}_i \in \mathbb{R}^d$ 을 어떻게 학습시킬 것인가?
 - ▶ 세션 그래프의 연결 행렬과 GRU-like한 순전파를 이용한다!

$$\begin{aligned} \mathbf{a}_{s,i}^t &= \mathbf{A}_{s,i:} \left[\mathbf{v}_1^{t-1}, \dots, \mathbf{v}_n^{t-1} \right]^\top \mathbf{H} + \mathbf{b}, \\ \mathbf{z}_{s,i}^t &= \sigma \left(\mathbf{W}_z \mathbf{a}_{s,i}^t + \mathbf{U}_z \mathbf{v}_i^{t-1} \right), & \text{Reset gate} \\ \mathbf{r}_{s,i}^t &= \sigma \left(\mathbf{W}_r \mathbf{a}_{s,i}^t + \mathbf{U}_r \mathbf{v}_i^{t-1} \right), & \text{Update gate} \\ \widetilde{\mathbf{v}_i^t} &= \tanh \left(\mathbf{W}_o \mathbf{a}_{s,i}^t + \mathbf{U}_o \left(\mathbf{r}_{s,i}^t \odot \mathbf{v}_i^{t-1} \right) \right), & \text{Candidate} \\ \mathbf{v}_i^t &= \left(1 - \mathbf{z}_{s,i}^t \right) \odot \mathbf{v}_i^{t-1} + \mathbf{z}_{s,i}^t \odot \widetilde{\mathbf{v}}_i^t. & \text{Final representation} \end{aligned}$$

CF. GRU STRUCTURE

(image source : https://excelsior-cjh.tistory.com/185)

CF. GRU STRUCTURE

$$g_t = tanh(x_t U_g + (h_{t-1} \odot r_t) W_g)$$

$$h_t = (1 - z_t) \odot g_t + z_t \odot h_{t-1}$$

$$x_t = A_{s,i:}[v_1^{t-1}, ..., v_n^{t-1}]^T \mathbf{H} + \mathbf{b}, \quad h_t = \mathbf{v}_i^{t-1}$$

를 대입하면 논문의 수식을 얻을 수 있다.

(image source : https://excelsior-cjh.tistory.com/185)

LEARNING ITEM EMBEDDINGS ON GRAPHS

- 세션의 각 아이템의 벡터 표현을 이용하여 세션의 벡터 표현을 구한다.
 - ▶ Local Embedding : 마지막으로 클릭한 아이템의 벡터 표현

$$\mathbf{s}_l = \mathbf{v_n}$$

Global Embedding: Attention 구조를 이용하여, 세션의 각 아이템이 세션의 벡터 표현에 각각 영향력을 발휘하도록 한다.

$$\alpha_i = \mathbf{q}^T \sigma(\mathbf{W}_1 \mathbf{v}_n + \mathbf{W}_2 \mathbf{v}_i + \mathbf{c})$$
: attention value

$$\mathbf{s}_g = \sum_{i=1}^n \alpha_i \mathbf{v}_i$$

ATTENTION MECHANISM

- ▶ Attention mechanism의 핵심 아이디어
 - 순차적인 데이터를 입력으로 받아서 결과값을 예측할 때, 해당 시점에서 예측해야할 값과 연관이 있는 입력 부분을 좀 더 집중(attention)해서 본다.

세션의 global embedding을 학습할 때, 실제 다음 아이템의 예측에 가장 큰 영향을 준 아이템에 가중치를 주어 학습할 수 있다!

HYBRID EMBEDDING AND RECOMMENDATION

▶ 세션의 local/global embedding을 연결하여 hybrid embedding 산출

$$\mathbf{s}_h = \mathbf{W}_3[\mathbf{s}_l; \mathbf{s}_g]$$

▶ 세션 S 의 다음 아이템 예측을 위한 확률 벡터 \hat{y} 는 세션 벡터와 전체 아이템의 벡터 표현을 내적하여 구한다.

$$\hat{\mathbf{z}} = (\hat{\mathbf{z}}_i) = (\mathbf{s}_h^T \cdot \mathbf{v}_i)_{i=1}^m$$

$$\hat{\mathbf{y}} = softmax(\hat{\mathbf{z}})$$

모델의 손실 함수는 크로스 엔트로피를 이용한다.

DATASETS

- Datasets
 - Yoochoose from RecSys Challenge 2014
 - Diginetica from CIKM Cup 2016
- Data Structure

session_id user_id item_id timeframe eventdate

Data Augmentation

$$s = [v_1, ..., v_n]$$

$$\vdots$$

$$([v_1], v_2)$$

$$\vdots$$

$$([v_1, v_2], v_3)$$

$$\vdots$$

$$([v_1, v_2, ..., v_{n-1}], v_n)$$

RESULTS

Method	Yoochoose 1/64		Yoochoose 1/4		Diginetica	
	P@20	MRR@20	P@20	MRR@20	P@20	MRR@20
POP	6.71	1.65	1.33	0.30	0.89	0.20
S-POP	30.44	18.35	27.08	17.75	21.06	13.68
Item-KNN	51.60	21.81	52.31	21.70	35.75	11.57
BPR-MF	31.31	12.08	3.40	1.57	5.24	1.98
FPMC	45.62	15.01	_	_	26.53	6.95
GRU4REC	60.64	22.89	59.53	22.60	29.45	8.33
NARM	68.32	28.63	69.73	29.23	49.70	16.17
STAMP	68.74	29.67	70.44	30.00	45.64	14.32
SR-GNN	70.57	30.94	71.36	31.89	50.73	17.59

EXPERIMENT

epoch: 13

start training: 2020-01-30 02:51:51.908625

[0/7195] Loss: 4.1552

[1440/7195] Loss: 4.1679

[2880/7195] Loss: 4.1507

[4320/7195] Loss: 3.6669

[5760/7195] Loss: 3.7158

Loss:28188.936

start predicting: 2020-01-30 02:56:55.770174

Best Result:

Recall@20: 51.4542 MMR@20: 17.8041

Run time: 4484.156018 s

RELATION BETWEEN NLP AND RS

- Attention은 자연어처리에서 처음 도입 (GRU + Attention)
 (Neural Machine Translation by Jointly Learning to Align and Translate, 2014)
- RNN 이 가지는 한계를 극복하기 위해 attention만으로 순차적 데이터를 모델링한 Transformer의 도입 (Attention Is All You Need, 2017)
- ▶ 양방향 Transformer 구조를 통해 더 깊은 구조를 학습한 BERT 모델 (BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 2019)

RELATION BETWEEN NLP AND RS

- Session-based Recommendation + GRU + Attention = SR-GNN
- Session-based Recommendation + Transformer
 (Behavior Sequence Transformer for E-commerce Recommendation in Alibaba, 2019)
- Session-based Recommendation + BERT
 (BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer, 2019)

RELATION BETWEEN NLP AND RS

- Session-based Recommendation + GRU + Attention = SR-GNN
- Session-based Recommendation + Transformer
 (Behavior Sequence Transformer for E-commerce Recommendation in Alibaba, 2019)
- Session-based Recommendation + BERT
 (BERT4Rec: Sequential Recommendation with Bidirectional Encoder Representations from Transformer, 2019)

and more…?

감사합니다!