Task 1:


```
module task_1(clk,resetn,w,z);
input clk,resetn,w;
output reg z;
reg y, Y;
parameter [3:1] q0=3'b000,
                               q1=3'b001,
                               q2=3'b010,
                               q3=3'b011,
                               q4=3'b100;
always@(w,y)
       case (y)
               q0: if (w)
               begin
               z = 0;
               Y = q1;
               end
               else
               begin
               z = 0;
               Y = q0;
               end
               q1: if (w)
               begin
               z = 0;
               Y = q1;
               end
               else
               begin
```

z = 0; Y = q2;end q2: if (w) begin z = 0; Y = q3;end else begin z = 0; Y = q0;end q3: if (w) begin z = 0; Y = q0;end else begin z = 1; Y = q4;end q4: if (w) begin z = 0; Y = q3;

end

else

```
begin

z = 0;

Y = q0;

end

endcase
```

always @ (negedge resetn, posedge clk)

if (resetn == 0) $y \le q0$;

else y<=Y;

endmodule

compilation report:

simulation report:

Task 2:

(c) state as	sign tables	100			
	Next state	outpu		T c	
Prosent	Y2 Y2	(~2W1)	com	(tws	
1 7272	101 10 1 11	4.3	11 00 0	1 30	
	02 -	0 0 1	000	0 01	
00 00	01 00 4		d	9	
 	moola	0 1 1	d @ 00	1	
01 00	00 00 0	7 - 5	10	11	
				1 1	
	1 1 1		- 1 1 2		
			-	-	
			cha	Mes	
changes	Ī	0040	+4 000	olik	
Changes		017 10	th li	- LV	
0400		017	112 04	3	
5+01		10 -7 20	The Ho	Tall	
		11 P 5	HK- IT	× 15/	
10-10			. 1	1	
11-125		0.0			
1			Name of P		
£ .	127 25/ 20				
	X g	(
		50			

Code:

module task_2(clock, reset, cash_in, purchase, present_state, next_state, cash_return);
input clock, reset;

```
input [1:0] cash_in;
output reg purchase;
output reg [1:0] cash_return, present_state, next_state;
parameter
               state0= 2'b00,
                       state1= 2'b01,
                       n = 15,
                       R0= 2'b00,
                       R5= 2'b01,
                       R10= 2'b10,
                       R15= 2'b11;
always@(posedge clock)
begin
                if(reset==1)
                begin
                       present_state = state0;
                       next_state = state0;
                end
                else
                begin
                       present_state = next_state;
                       case(present_state)
                       state0: if(cash_in == 2'b00)
                                               begin
                                                       next_state = state0;
                                                       purchase =0;
                                                       cash_return = R0;
                                               end
```

```
else if(cash_in == 2'b01)
                        begin
                                next_state = state1;
                                purchase = 0;
                               cash_return = R0;
                       end
               else if(cash_in == 2'b10)
                        begin
                                next_state = state0;
                                purchase = 1;
                               cash_return = R5;
                        end
state1: if(cash_in == 2'b00)
                        begin
                                next_state = state0;
                                purchase =0;
                               cash_return = R10;
                        end
               else if(cash_in == 2'b01)
                        begin
                                next_state=state0;
                                purchase = 1;
                               cash_return = R5;
                        end
               else if(cash_in == 2'b10)
                        begin
                                next_state=state0;
                                purchase=1;
```

cash_return = R15;

end

endcase

end

end

endmodule

compilation report:

simulation report:

