中国科学技术大学

2010—2011学年第二学期考试试卷

考试科目 概率论与数理统计 得分 _____

	所在系 姓名	学号
	考试时间: 2011年6月4日下午2:30—4:30	使用简单计算器
填雪	空判断选择题(每题3分,答题请写在试卷上):	
1	设 A, B, C 是三个相互独立的随机事件, 且 $0 < $ 中不相互独立的是	P(C) < 1,则在下列给定的四对事件
	(A) $\overline{A+B}$ 和 C (B) \overline{AC} 和 C	
	(C) $\overline{A-B}$ 和 \overline{C} (D) \overline{AB} 和 \overline{C}	
2	2 设 A, B, C 为三个事件, 则下面等式中正确的	是
	(A) $A \cup B - B = A - B$ (B) (A)	$(A - B) \cup B = A$
	(C) $(A \cup B) - C = A \cup (B - C)$ (D) A	$\cup B = (A\bar{B}) \cup (\bar{A}B)$
3	\mathbf{G} 设 $f(x)$ 和 $g(x)$ 为两个概率密度函数,则 $af(x)$	-bg(x)也是概率密度函数的充分必要
	条件为	
4	1 随机变量 X 和 Y 不相关, 则必有	
	(A) $Var(XY) = Var(X)Var(Y)$ (B) $F(X)$	
	(C) X 和 Y 相互独立 (D) EX	
5	5 设 $\hat{ heta}_n$ 为未知参数 $ heta$ 的一个估计量, 如果 $\lim_{n o \infty} E \hat{ heta}_n$	
	(A) 无偏估计 (B) 有效估计 (C) 相合估计	(D) 渐近正态估计
6	6 在实验次数无穷大时,某个事件发生的频率就	等于其发生的概率. 该说法
	(A) 正确 (B) 错误	
7	'连续型随机变量就是取值为连续区间的随机?	变量. 该说法
	(A) 正确 (B) 错误	
8	B 设 X_1, \cdots, X_n $i.i.d \sim N(\mu, 1)$,考虑假设检验	险问题 $H_0: \mu = 0 \leftrightarrow H_1: \mu = 1, \ \mathbb{N}$
	由 μ 的极大似然估计可以得到一个水平 α 检验	法则为
	犯二型错误的概率为	
9) 设基于某组样本得到的总体均值μ的95%置信	· · · · · · · · · · · · · · · · · · ·
	著性水平下(接受或拒绝	
10)设某种产品的质量等级可以划分为"优","合	
	验方法在检验生产此产品的三家工厂的产品	没有差异这一假设时, 检验统计量的
	渐近卡方分布的自由度为	

- 二. (15分) 假设有4个罐子, 其中第k个罐子里有k-1个红球和4-k个蓝球, k=1,2,3,4. 现随机取出一个罐子, 然后不放回地从中取出两球, 求
 - (1) 取出的两个球颜色不同的概率.
 - (2) 若已知其中一个球为红球,则另外一个球也为红球的概率.
- 三. (15分) 设二维随机变量X,Y的联合概率密度函数为

$$f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x \\ 0, & \text{其他.} \end{cases}$$

- (1) 试求出X,Y的边际概率密度函数 $f_X(x)$ 和 $f_Y(y)$;
- (2) 试求Z = 2X Y的概率密度函数 $f_Z(z)$.
- (3) 试求 $P(Y \leq \frac{1}{2}|X = \frac{1}{2})$.
- 四. (10分) 设某种疾病的发病率为0.005, 现随机调查1000人, 考虑事件A="在调查的人中发病人数在3至7个人", 试
 - (1) 使用Poisson逼近方法求P(A).
 - (2) 使用中心极限定理求P(A).
- 五. (15分) 设样本 Y_1, \dots, Y_n 相互独立, $Y_i \sim N(a_i\mu, \sigma^2), i = 1, \dots, n$, 其中 a_1, \dots, a_n 为已 知不全为零的常数.
 - (1) 求 μ 和 σ^2 的极大似然估计 $\hat{\mu}$ 和 $\hat{\sigma^2}$.
 - (2) û是否为µ的无偏估计?
 - (3) $\hat{\sigma}^2$ 是否为 σ^2 的无偏估计? 若是请加以证明, 说不是请据此构造一个无偏估计.
- 六. (15分) 为了解甲乙两企业的职工工资水平, 分别从两企业各随机抽取若干名职工调查, 得如下数据(单位: 元):

甲企业	750	1060	750	1820	1140	1050	1000	
乙企业	1000	1900	900	1800	1200	1700	1950	1200

假设两个企业的工资分别服从正态分布,且总体独立而均值方差均未知. 试根据以上数据判断:

- (1) 两企业职工工资的方差是否相等($\alpha = 0.05$)?
- (2) 甲企业职工平均工资是否低于乙企业职工平均工资($\alpha = 0.05$).

附录 分布及分位数: $\Phi(0.897) = 0.815$, $u_{0.025} = 1.960$, $u_{0.05} = 1.645$, $t_{0.025}(13) = 2.16$, $t_{0.025}(14) = 2.145$, $t_{0.05}(13) = 1.771$, $t_{0.05}(14) = 1.761$, $\chi^2_{0.05}(1) = 3.841$, $\chi^2_{0.05}(2) = 5.991$, $F_{0.025}(6,7) = 5.119$, $F_{0.025}(7,6) = 5.695$.