Московский Государственный Университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики

Отчёт по практичекому заданию в рамках курса «Суперкомпьютерное моделирование и технологии»

Выполнил: Зайцев Игорь Олегович, 624 группа

Постановка и описание задачи

Требовалось написать программу, численно решающую на трехмерной области следующее дифференциальное уравнение:

$$\frac{\partial^2 u}{\partial t^2} = \Delta u$$

С начальными условями:

$$u|_{t=0} = \varphi(x, y, z),$$

 $\frac{\partial u}{\partial t}\Big|_{t=0} = 0,$

И краевыми условиями первого рода по х, z и второго рода по у.

Требовалось реализовать параллельое вычисление с блочным разбиением и использованием MPI и орепMP, и провести исследование параллельных характеристик на CK bluegene и polus.

Для аппроксимации исходного уравнени используется следующая разностная схема:

$$\frac{u_{ijk}^{n+1} - 2u_{ijk}^n + u_{ijk}^{n-1}}{\tau^2} = \Delta_h u^n$$

Обмен данными между узлами реализован следующим образом: перед вычислением следующих значений в своем блоке, каждый узел обменивается со своими 6-ю соседями в пространственной сетке значениями на прилегающих к ним граням.

Эти значения на гранях, полученные от соседних блоков, будут использованы при вычислении новых значений на гранях самого блока.

После вычисления новых значений, каждый блок вычисляет максимальную ошибку на своих точках, и посылает их 0-му узлу, который находит среди них максимальную – итоговую ошибку по всем заданным точкам.

Результаты на Bluegene

Число точек по осям	Число процессоров	Погрешно сть	Базовое время	Базовое ускорение	Гибридное время	Гибридное ускорение	База / Гибрид
128	64	1.28e-4	4.550	1	1.834	1	2.48
128	128	1.28e-4	2.343	1.94	0.975	1.88	2.4
128	256	1.28e-4	1.199	3.79	0.521	3.52	2.3
256	64	1.08e-5	35.759	1	14.072	1	2.54
256	128	1.08e-5	18.106	1.97	7.196	1.95	2.51
256	256	1.08e-5	9.09	3.93	3.636	3.87	2.5
512	64	7.24e-7	283.115	1	110.046	1	2.57
512	128	7.24e-7	142.467	1.98	55.499	1.98	2.57
512	256	7.24e-7	71.326	3.97	27.81	3.96	2.56

Результаты на Polus

Число точек по осям	Число процессоров	Погрешность	Время	Ускорение
128	10	1.28e-4	3.601	1
128	20	1.28e-4	2.863	1.26
128	40	1.28e-4	1.490	2.41
256	10	1.08e-5	28.24	1
256	20	1.08e-5	15.352	1.84
256	40	1.08e-5	9.625	2.93
512	10	7.24e-7	205.957	1
512	20	7.24e-7	120.656	1.7
512	40	7.24e-7	64.317	3.2

Графики приближенного решения, реальной функции, графики ошибки

Графики даны для срезов, демонстрирующих наибольшую ошибку, для случая с 64-мя точками по пространственным осям и с 32-мя точками по временной оси

