La continuité

Cours

Sommaire

- La notion de continuité
- Les fonctions continues et les suites
- **III** Le théorème des valeurs intermédiaires

La notion de continuité

La continuité d'une fonction donne une indication sur la représentation graphique d'une fonction : celle-ci est tracée « sans lever le stylo ». Autrement dit, la courbe de la fonction est en un seul morceau.

DÉFINITION

Continuité d'une fonction en un réel

Soit f une fonction définie sur un intervalle I et a un réel de I .

On dit que $\,f\,$ est continue en $\,a\,$ si $\,\lim_{x
ightharpoonup a} f(x) = f(a)\,$.

en a

en a

EXEMPLE

La fonction partie entière n'est pas continue en chaque valeur entière.

DÉFINITION

Continuité sur un intervalle

Soit f une fonction définie sur un intervalle $\,I\,.$

On dit que f est continue sur I si f est continue en tout réel a de I .

EXEMPLE

La fonction carré est une fonction continue sur $\,\mathbb{R}\,$.

PROPRIÉTÉ

Soit $\,f\,$ une fonction dérivable sur un intervalle $\,I\,$.

Alors f est continue sur I .

COROLLAIRE

Continuité des fonctions usuelles

- Les fonctions polynômes sont continues sur $\,\mathbb{R}\,.$
- La fonction exponentielle est continue sur $\,\mathbb{R}\,$.
- La fonction racine carrée est continue sur $[0; +\infty[$.
- La fonction valeur absolue est continue sur $\,\mathbb{R}\,$.
- ullet Toute fonction définie sur un intervalle I et obtenue par opérations de fonctions continues sur I est continue sur I .
- En particulier les fonctions rationnelles sont continues sur tout intervalle inclus dans leur ensemble de définition.
- Soit f une fonction continue sur un intervalle I à valeurs dans un intervalle J et g une fonction continue sur J . Alors la composée $g\circ f$ est continue sur I .

EXEMPLE

Soit h la fonction définie sur $\mathbb R$ par $h(x)=\mathrm e^{x^2+5x}$.

On a:

$$h=g\circ f$$
 avec $f(x)=x^2+5x$ et $g(x)=\mathrm{e}^x$

- ullet La fonction f est continue sur ${\mathbb R}$ et à valeurs dans ${\mathbb R}$.
- La fonction g est continue sur $\mathbb R$.

Par composition, la fonction $\,h\,$ est continue sur $\,\mathbb{R}\,$.

Les fonctions continues et les suites

On peut également utiliser les suites pour caractériser le fait qu'une fonction est continue en un réel. La propriété en résultant a des applications dans la détermination des limites des suites définies par récurrence.

PROPRIÉTÉ

Soit (u_n) une suite réelle appartenant à un intervalle I et f une fonction continue sur l'intervalle I .

Si la suite (u_n) converge vers un réel ℓ de I , alors la suite $(f(u_n))$ converge vers $f(\ell)$.

EXEMPLE

Soit $\left(v_{n}
ight)$ la suite définie pour tout entier naturel non nul $\,n\,$ par :

$$v_n = \sin\left(\frac{1}{n}\right)$$

Pour tout entier $\,n\in\mathbb{N}^{\star}$, on a :

$$v_n = f(u_n)$$
 avec $u_n = rac{1}{n}$ et $f(x) = \sin(x)$

- La suite (u_n) converge vers 0.
- La fonction sinus est continue sur $\mathbb R$.

On en déduit que la suite $\,(v_n)\,$ converge vers $\,f(0)\,$.

Or
$$f(0) = \sin(0) = 0$$
.

Donc la suite (v_n) converge vers 0.

PROPRIÉTÉ

Soit f une fonction continue sur un intervalle I et à valeurs dans le même intervalle.

Soit (u_n) une suite définie par $\,u_{n+1}=f(u_n)\,$ à partir d'un certain rang.

Si la suite (u_n) converge vers un réel ℓ , alors ℓ vérifie :

$$f(\ell) = \ell$$

EXEMPLE

Soit f la fonction définie sur I=[0;1] par $f(x)=-x^2+2x$, et soit (u_n) la suite définie sur

 \mathbb{N} par:

$$egin{cases} u_0 = 0.5 \ u_{n+1} = f(u_n) ext{ pour tout } \ n \in \mathbb{N} \end{cases}$$

La fonction f est la restriction à l'intervalle I d'une fonction polynôme du second degré dont la parabole représentative est orientée « vers le bas ».

Le sommet de la parabole a pour abscisse $\frac{-2}{2\times(-1)}$, soit 1.

La fonction $\,f\,$ est donc croissante sur l'intervalle $\,I=[0;1]$.

De plus f(0) = 0 et f(1) = 1 .

La fonction f est donc à valeurs dans I .

On admet que la suite (u_n) converge vers un réel ℓ .

Alors ℓ vérifie $f(\ell)=\ell$.

Donc $\ell = 0$ ou $\ell = 1$.

Or $\,f\,$ est croissante donc :

 $\ell \geqslant u_0$

 $\ell \geqslant 0.5$

Donc:

 $\ell = 1$

Le théorème des valeurs intermédiaires

De nombreuses équations résultant d'une modélisation mathématique sont difficiles voire impossibles à résoudre de façon exacte. Dans le cas où l'équation fait intervenir une fonction continue, le théorème des valeurs intermédiaires peut permettre de justifier l'existence de solutions.

THÉORÊME

Théorème des valeurs intermédiaires

Soit $\,f\,$ une fonction continue sur un intervalle $\,I\,$.

Soient a et b deux réels de I tels que a < b .

Pour tout réel $\,k\,$ compris entre $\,f(a)\,$ et $\,f(b)\,$, il existe au moins un réel $\,c\,$ de l'intervalle $\,I\,$ tel que : $\,f(c)=k\,$

EXEMPLE

Soit f la fonction définie sur $I=[-2;2]\,$ par $\,f(x)=x^3-3x\,$.

Comme restriction d'une fonction polynôme, $\,f\,$ est dérivable sur $\,I\,$ et, pour tout réel $\,x\,$ de $\,I\,$, on a :

$$f'(x) = 3x^2 - 3$$

 $f'(x) = 3(x^2 - 1) = 3(x - 1)(x + 1)$

On obtient donc le tableau suivant :

Pour tout réel $\,k\,$ compris entre $\,f(-2)\,$ et $\,f(2)\,$ il existe au moins un réel $\,c\in I\,$ tel que $\,f(c)=k\,$.

Donc pour tout réel $\,k \in [-2;2]$, il existe au moins un réel $\,c\,$ de $\,I\,$ tel que $\,f(c)=k\,$.

COROLLAIRE

Corollaire du théorème de valeurs intermédiaires

Soit f une fonction continue et strictement monotone sur un intervalle I .

Soient a et b deux réels de I tels que a < b .

Pour tout réel k compris entre f(a) et f(b), il existe un unique réel c de l'intervalle I tel que :

f(c) = k

EXEMPLE

Soit f la fonction exponentielle.

f est strictement croissante sur $\mathbb R$ et à valeurs dans $]0;+\infty[$.

f est continue sur $\mathbb R$.

Soit a=0 et b=2 .

Pour tout réel $\,k\,$ compris entre $\,{
m e}^0\,$ et $\,{
m e}^2\,$, il existe un unique réel $\,c\,$ de l'intervalle $\,[0;2]\,$ tel que f(c)=k.

Autrement dit, pour tout réel $\,k \in \left[1; \mathrm{e}^2
ight]$, l'équation $\,\mathrm{e}^x = k\,$ admet une unique solution sur l'intervalle [0;2].

Le corollaire du théorème des valeurs intermédiaires ne donne pas la valeur du réel c mais assure son existence.

Lorsque l'on ne sait pas résoudre l'équation $\,f(x)=k\,$, on est souvent amené à en chercher une valeur approchée.

EXEMPLE

Soit *f* la fonction exponentielle.

f est strictement croissante sur $\mathbb R$ et à valeurs dans $]0;+\infty[$.

f est continue sur $\mathbb R$.

Soient a=0 et b=2 .

Pour tout réel $\,k\,$ compris entre $\,{
m e}^0\,$ et $\,{
m e}^2\,$, il existe un unique réel $\,c\,$ de l'intervalle $\,[0;2]\,$ tel que f(c) = k.

En particulier, l'équation $e^x = 5$ admet une unique solution, c , sur l'intervalle [0;2] .

Avec un tableau de valeurs de la fonction exponentielle, on obtient :

deg	FONCTIONS	
Fonctions	Graphique	Tableau
Régler l'intervalle		
1.604	4.972884	
1.605	4.97786	
1.606	4.98284	
1.607	4.987825	
1.608	4.992816	
1.609	4.997811	
1.61	5.002811	

On en déduit :

$$e^{1,609} < e^c < e^{1,61}$$

Comme la fonction $\,f\,$ est strictement croissante, on obtient :

La valeur approchée de $\,c\,$ à $\,10^{-2}\,$ est donc :

$$c pprox 1,\!61$$

Le théorème des valeurs intermédiaires et son corollaire sont également valables sur un intervalle quelconque.

REMARQUE

On peut remplacer $\,f(a)\,$ et/ou $\,f(b)\,$ par une limite de $\,f\,$ en $\,a\,$ et/ou en $\,b\,$.

a et b peuvent être $-\infty$ et $+\infty$.

EXEMPLE

Soit f la fonction exponentielle.

f est continue et strictement croissante sur $\,\mathbb{R}\,.$

$$\lim_{x o -\infty} f(x) = 0$$
 et $\lim_{x o +\infty} f(x) = +\infty$.

Pour tout réel $\,k>0$, l'équation $\,f(x)=k\,$ admet donc une unique solution sur $\,\mathbb{R}$.

Autrement dit, tout réel $\,k>0\,$ admet un unique antécédent $\,c\in\mathbb{R}\,$ par la fonction exponentielle.