4. Sod's Test Problems: The Shock Tube Problem

Assumptions Initial Conditions Regions of Flow Sod's Test Number 1 Initial Conditions Discretisation **Sod's Test Number 2 Initial Conditions Discretisation** Test 1 Lax-Friedrichs **MacCormack** Richtmyer Test 2 **Lax-Friedrichs MacCormack with Artificial Viscosity Richtmyer with Artificial Viscosity** Conclusion

This set of problems was introduced in the paper by Gary Sod in 1978 called "A Survey of Several Finite Difference Methods for Systems of Non-linear Hyperbolic Conservation Laws"

4.1. Assumptions

1D Infinitely long tube Inviscid fluid

4.2. Initial Conditions

At t=0 the diaphragm is instantaneously removed (this is done experimentally using a a thin sheet of metal and a small explosion bursts the diaphragm)

4.3. Regions of Flow

The bursting of the diaphragm causes a 1D unsteady flow consisting of a steadily moving \mathbf{shock} - A Riemann Problem.

1 discontinuity is present

The solution is self-similar with 5 regions

Region 1 & 5 - left and right sides of initial states

Region 2 - expansion or rarefaction wave (x-dependent state)

Regions 3 & 4 - steady states independent of x within the region (uniform)

Contact line between 3 and 4 separates fluids of different entropy (but they have the same pressure and velocity) i.e. it's an invisible line - e.g. two fluids one side with water and the other with dye - contact line is moving.

$$p_3 = p$$

$$u_3 = u_4$$

4.4. Sod's Test Number 1

Unknowns:

Pressure

Velocity

Speed of sound

Density

Entropy

Mach Number

Can also use Euler Equations in Primitive Form with:

Pressure

Velocity

Density

Vector notation for the Euler Equations with Primitive Variables, p,u,
ho

4.4.1. Initial Conditions

$$\mathbf{V}(x,0) = \left\{ egin{array}{ll} \mathbf{V}_L & x < 0 \ \mathbf{V}_R & x \geq 0 \end{array}
ight.$$

$$\mathbf{V}_L = egin{bmatrix}
ho_L \ u_L \ p_L \end{bmatrix} = egin{bmatrix} 1kg/m^3 \ 0m/s \ 100kN/m^2 \end{bmatrix}$$

$$\mathbf{V}_R = egin{bmatrix}
ho_R \ u_R \ p_R \end{bmatrix} = egin{bmatrix} 0.125kg/m^3 \ 0m/s \ 10kN/m^2 \end{bmatrix}$$

Everything is quiet until you break the diaphragm (u=0)

The pressure ratio is 10

4.4.2. Discretisation

N = 50 points in [-10m, 10m]

 $\Delta x = 20 \text{m} / 50 = 0.4 \text{m}$

Initial CFL = 0.3

Initial wave speed = 374.17m/s

Timestep Δt = 0.4(0.4/374.17) = 4.276 $\times 10^{-4}$

http://www.thevisualroom.com/sods_test_problem.html

$$\Delta t/\Delta x = 1.069 \times 10^{-3}$$

Solution at t = 0.01s (in about 23 timesteps)

Now the problem is described, the numerical schemes can be applied.

4.5. Sod's Test Number 2

Unknowns are same as Test Number 1

4.5.1. Initial Conditions

$$\mathbf{V}_L = egin{bmatrix}
ho_L \ u_L \ p_L \end{bmatrix} = egin{bmatrix} 1kg/m^3 \ 0m/s \ 100kN/m^2 \end{bmatrix}$$

$$\mathbf{V}_R = egin{bmatrix}
ho_R \ u_R \ p_R \end{bmatrix} = egin{bmatrix} 0.01kg/m^3 \ 0m/s \ 1kN/m^2 \end{bmatrix}$$

Pressure ratio is 100 - this test is harder

4.5.2. Discretisation

N = 50 points in [-10m, 15m] $\Delta x = 25\text{m}/50 = 0.5\text{m}$ Initial CFL = 0.3 Initial wave speed = 374.17m/s $\text{Timestep } \Delta t = 0.3(0.5/374.17) = 4.01 \times 10^{-4}$ $\Delta t/\Delta x = 8.02 \times 10^{-4}$

Solution at t = 0.01s (in about 25 timesteps)

Now the problem is described, the numerical schemes can be applied.

4.6. Test 1

4.6.1. Lax-Friedrichs

Pressure has a jump due to shockwave Solution has numerical dissipation Odd-even decoupling is present (staircase pattern)

Burgers Equation simulated all the important features of the Euler Equations

4.6.2. MacCormack

Similar to inviscid Burgers Overshoot in pressure, speed of sound, density, entropy is bad Lax-Friedrichs is better than MacCormack

4.6.3. Richtmyer

Less overshooting than MacCormack Undershoot in pressure is bad Overshoot in velocity is bad

4.7. Test 2

4.7.1. Lax-Friedrichs

Diffusion Odd-even decoupling Speed of sound very diffused

4.7.2. MacCormack with Artificial Viscosity

Smaller amplitude of oscillations even in Test 2 Small number of points - is a hard test for numerical scheme (coarse mesh) Overshoot in velocity

4.7.3. Richtmyer with Artificial Viscosity

Nice result - better than MacCormack Smaller about of overshoot

No oscillations in density - negative density might result in mass not being conserved

4.8. Conclusion

Conclusions from Burgers Equation apply to Euler Equations This is the usefulness of the model equations