6. Prestabilization.

Assume that $sr(B) < \infty$. By Theorem 4.4 (a), $wh(GL_nB) = K_1(A, B)$ for $n \ge sr(B)$. By Theorem 4.7, the kernel of

(6.1)
$$wh: GL_nB \to K_1(A, B)$$

is $E_n(A, B)$ when $n \ge srB) + 1$. But what about the kernel of (6.1) in the case n = sr(B)? First we state know results without proofs. We start with the case n = 1. By Section 2, the kernel of (6.1) is $[GL_1D, GL_1D]$ when B = A = D is a division ring and n = 1 = sr(D). The same proof gives that the kernel of (6.1) is $[GL_1A, GL_1A]$ when B = A is a local ring and n = 1 = sr(A).

When $B = A = M_2(\mathbf{Z}/2\mathbf{Z})$ and $n = \operatorname{sr}(A) = 1$, the kernel of (6.1) is bigger than $[\operatorname{GL}_1 A, \operatorname{GL}_1 A]$. In fact the kernel is

$$E_2(\mathbf{Z}/2\mathbf{Z}) = SL_2(\mathbf{Z}/2\mathbf{Z}) = GL_2(\mathbf{Z}/2\mathbf{Z})$$

where the subgroup

$$[\operatorname{GL}_1 A, \operatorname{GL}_1 A] = [\operatorname{GL}_2(\mathbf{Z}/2\mathbf{Z}), \operatorname{GL}_2(\mathbf{Z}/2\mathbf{Z})]$$

has index 2.

When B = A is the subring of all upper triangular matrices in $M_2(\mathbf{Z}/2\mathbf{Z})$ and $n = 1 = \operatorname{sr}(A)$, then $[\operatorname{GL}_1 A, \operatorname{GL}_1 A]$ also has index 2 in the kernel.

The following theorem covers the last two examples.

Theorem 6.2 (Vaserstein [V9]). Suppose that A/rad(A) is the direct product of matrix rings over division rings. Then for any ideal B of A

$$K_1(A, B) = GL_1B/\tilde{E}_1(A, B)$$

where $\tilde{E}_1(A, B)$ is the subgroup of GL_1B generated by all $(1 + ab)(1 + ba)^{-1}$ with $a \in A, b \in B$, and $1 + ab \in GL_1B$.

Theorem 6.3 (Vaserstein [V128]). Under the conditions of Theorem 6.2, assume that A has no $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ nor $M_2(\mathbb{Z}/2\mathbb{Z})$ as a factor ring. Then

$$K_1A = GL_1A/[GL_1A, GL_1A].$$

It is still an open problem whether

$$K_1(A, B) = GL_1B/\tilde{E}_1(A, B)$$

whenever sr(B) = 1. Here is what is known for any such B:

Theorem 6.4 (Menal–Moncasi [MM] in the case B = A, Magurn-Vaserstein [MV] in general). If sr(B) = 1, then

$$K_1(A, B) = GL_1B/W_1(A, B)$$

where $W_1(A, B)$ is the subgroup of GL_1B generated by all $(b + b' + bab')(b + b' + b'ab)^{-1}$ with $b, b' - 1 \in B, a \in A$, and $b + b' + bab' \in GL_1B$.

Besides examples above, here is another additional condition on B which guarantees (Magurn–Vaserstein [MV]) that $W_1(A, B) = \tilde{E}_1(A, B)$:

(6.5) for every
$$\binom{1+b}{a} \in \operatorname{Un}_2 B$$
, there is $t \in \operatorname{GL}_1 B$ such that $a+t(1+b) \in \operatorname{GL}_1 B$.

The condition (6.5) with B = A is known as the unit 1-stable range condition. If on top of this condition,

(6.6) for any $x, y \in A$ there is $a \in GL_1A$ such that $1 + ax, a - y \in GL_1A$, then [MV]

$$W_1(A, B) = \tilde{E}_1(A, B) = [GL_1A, GL_1B].$$

The last statement with B = A was also proved in [G] where the condition (6.6) was written in the following form:

for any $x, x' \in A$ there is $a \in GL_1A$ such that $x + 1/a, x' + a \in GL_1A$.

Theorem 6.12 below together with Theorem 6.4 give the following

Corollary 6.7. If sr(A) = 1 and (6.6) holds then $K_1(A, B) = [GL_1A, GL_1B]$ for every ideal B of A.

Now we outline some results with $n \geq 2$.

Theorem 6.8 (Vaserstein [V9], [V73, Theorem 11]). Assume that A is finitely generated as module over the centre whose space of maximal ideals is a finite union of subspaces of dimension $\leq d$. Then

$$K_1(A, B) = GL_{d+1}B/\tilde{E}_{d+1}(A, B)$$

where $\tilde{\mathbf{E}}_{d+1}(A,B)$ is the subgroup of $\mathrm{GL}_{d+1}B$ generated by the mixed commutator subgroup $[\mathbf{E}_{d+1}A,\mathrm{GL}_{d+1}B]$ and all matrices $(1_{d+1}+XY)(1_{d+1}+YX)^{-1}$ with $X\in \mathbf{M}_nB,\,Y=\begin{pmatrix} y&0\\0&1_d \end{pmatrix},\,y\in A,1_{d+1}+XY\in\mathrm{GL}_nA.$

Theorem 6.9 (Bass [B1] in the case n = 1, Vaserstein [V73] in the case n = 2, van der Kallen [vdK] in the case $n \geq 3$). Assume that A is commutative and sr(A) = n. Then

$$K_1(A, B) = GL_n B/\tilde{E}_n(A, B)$$

where $\tilde{E}_n(A, B)$ is defined as in Theorem 6.8.

A proof (in case B = A) involves covering $E_{n+1}(A)$ by XX'X where X, X' are as in the previous section but with additional conditions on the three factors.

Theorem 6.10 (Magurn–Vaserstein [MV]). Let A be a Banach algebra and $n = \operatorname{sr}(A) < \infty$. Then

$$K_1(A, B) = GL_n B/V_n(A, B)$$

where $V_n(A, B)$ is the subgroup of GL_nB generated by $(1_n + xy)(1_n + yx)^{-1}$ with $x \in M_nB$, $y \in M_nA$ and $1_n + xy \in GL_nA$.

The conclusion of Theorem 6.10 was obtained in [MV] also for other classes of rings. For example, this conclusion was obtained under the following condition (twofold n-stable rank condition):

given unimodular (n+1)-rows (c,d) and (c',d') over A (where $d,d' \in A$) there is an n-row c'' over A such that both c+dc'' and c'+d'c'' are unimodular.

This condition is stronger than the condition $\operatorname{sr}(A) \leq n$. But it follows from the condition of Theorem 6.8 when $n \geq 3, d+1$. On the other hand, it is unknown whether the conclusion can be obtained just under the stable rank condition $\operatorname{sr}(A) = n < \infty$.

The case of commutative ring with sr(A) = 2 is of special interest because such A includes the rings of integers in number fields and, more generally, the ring of S-integers in global fields called Dedekind rings of arithmetic type by Bass-Milnor-Serre who computed $SK_1(A, B)$ for the latter rings A.

This group $SK_1(A, B)$ is always a factor group of the torsion subgroup μ of GL_1A . If B" is another nonzero ideal of A and $B' \subset B$, then the induced homomorphism $SK_1(A, B') \to SK_1(A, B)$ is surjective (this is because the ring B/B' is finite hence sr(B/B') = 1), The group $SK_1(A, B)$ is trivial unless A is the ring of integers in a totally imaginary number field and $B \neq A$ is a small (with respect to inclusions) nonzero ideal of A in which case $SK_1(A, B)$ is isomorphic to the torsion subgroup of GL_1A for sufficiently small B.

The proof uses the class field theory (norm residue symbols and the uniqueness of the reciprocity law) and a description of $SK_1(A, B)$ via Mennicke symbols. The Mennicke symbol $[]: Um_2B \to SK_1(A, B)$ is defined (for any commutative B) by

$$\begin{bmatrix} a \\ b \end{bmatrix} = \operatorname{wh} \begin{pmatrix} a & * \\ b & * \end{pmatrix} \in \operatorname{SK}_1(A, B)$$

where $\begin{pmatrix} a & * \\ b & * \end{pmatrix} \in SL_2B$. When $sr(B) \leq 2$ (e.g., sr(A) = 2), the group $SK_1(A, B)$ consists of the symbols. For any commutative A, the symbols enjoy the following relations (discovered by Mennicke, Newman, Lam):

(MS1)
$$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b+xa \end{bmatrix} = \begin{bmatrix} a+yb \\ b \end{bmatrix}$$

for
$$\begin{bmatrix} a \\ b \end{bmatrix} \in \operatorname{Um}_2 B, x \in B, y \in A;$$

$$(\mathbf{MS2}) \quad \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a \\ b' \end{bmatrix} = \begin{bmatrix} a \\ bb' \end{bmatrix} \text{ and } \begin{bmatrix} a \\ b \end{bmatrix} \begin{bmatrix} a' \\ b \end{bmatrix} = \begin{bmatrix} aa' \\ b \end{bmatrix} \text{ for all } \begin{bmatrix} a \\ b \end{bmatrix}, \begin{bmatrix} a' \\ b \end{bmatrix}, \begin{bmatrix} a \\ b' \end{bmatrix} \in \mathrm{Um}_2 B$$

(some of these relation follows from others).

Bass-Milnor-Serre proved the triviality of $SK_1(A, B)$ for most of Dedekind rings of arithmetic type using the above relations (Mennicke also did this partially in an unpublished paper). However to prove that $SK_1(A, B)$ is nontrivial and compute it, they needed to

show that the relations are defining. For this purpose, they proved and used Theorem 6.6 with $n = \operatorname{sr}(A) = 2$ for Dedekind rings A.

Theorem 6.11. Let A be a commutative ring with 1 and $sr(A) \leq 2$ (e.g., A is a Dedekind ring). Then for any ideal B of A the group $SK_1(A, B)$ has a presentation with the generating set Um_2B and defining relations (MS1), (MS2).

Proof. It has two ingradients:

by Theorem 6.6, the group $SK_1(A, B)$ is the orbits of the group $\tilde{E}_2(A, B)$ on the set Um_2B ;

computations of [BMS] or (in more detail) of [B2, Chapter VI] proving [MS1] and [MS2] for any commutative ring A and some computations for more special rings A (namely, Noetherian domains of Krull dimension ≤ 1 and for Dedekind rings).

The only thing we need to add is the following lemma which allows to use (MS2) to write a product of Mennicke symbols as a single symbol.

Lemma 6.12. Let A, B be as in Theorem 6.11. Let $\begin{pmatrix} a_1 \\ b_1 \end{pmatrix}, \begin{pmatrix} a_2 \\ b_2 \end{pmatrix} \in \mathrm{Um}_2 B$.

Then there are $c_1, c_2, d_1, d_2 \in B$ such that

$$b_1 + d_1(a_1 + c_1b_1) = b_2 + d_2(a_2 + c_2b_2).$$

Proof. It is clear that $Aa_1 + Aa_2 + Ab_1b_2 = A$. Since $sr(A) \leq 2$, there is $c \in A$ such that $A(a_1 + c_3b_1b_2) + A(a_2 + c_4b_1b_2) = A$. We set $c_1 = c_3b_2 \in B$ and $c_2 = c_4b_1 \in B$. Then $A(a_1 + c_1b_1) + A(a_2 + c_2b_2) = A$. We write $d_3(a_1 + c_1b_1) + d_4(a_2 + c_2b_2) = 1$ with $d_3, d_4 \in A$ and set $d_1 = (b_2 - b_1)d_3 \in B$ and $d_2 = (b_1 - b_2)d_4 \in B$. Then

$$b_1 + d_1(a_1 + c_1b_1) = b_2 + d_2(a_2 + c_2b_2)$$

QED.

Indeed, under the conditions of Lemma 6.12,

$$\begin{bmatrix} a_i \\ b_i \end{bmatrix} = \begin{bmatrix} a_i + c_i b_i \\ b_i \end{bmatrix} = \begin{bmatrix} a_i + c_i b_i \\ b_i + d_i (a_i + c_i b_i) \end{bmatrix}$$

by (MS1) for i = 1, 2, hence

$$\begin{bmatrix} a_1 \\ b_1 \end{bmatrix} \begin{bmatrix} a_2 \\ b_2 \end{bmatrix} = \begin{bmatrix} (a_1 + c_1b_1)(a_2 + c_2b_2) \\ b_i + d_i(a_i + c_ib_i) \end{bmatrix}$$

by (MS2) for i = 1, 2.

Example 6.13. [B2, p.338,714] Let $A = \mathbf{R}[x,y]/(x^2 + y^2 - 1)\mathbf{R}[x,y]$, the ring of polynomial functions on the cicle $x^2 + y^2 = 1$. Then A is a Dedikind ring (so $\mathrm{sr}(A) = 2$) and $\mathrm{SK}_1 A = \mathbf{Z}/2\mathbf{Z}$. This is shown in [B2] using the Mennicke symbols.

It is not clear whether $\dot{E}_2 A = E_2 A$ for this A. However if we enlage A to the ring A' of all real-valued continuous (or smooth) functions, then A' is not Noetherian but sr(A') = 2 and as mentioned in Section 3,

$$\mathrm{SK}_1A' = \mathrm{SL}_nA')/\mathrm{E}_nA' = \pi_1(\mathrm{SL}_n\mathbf{R}) = \mathbf{Z}/2\mathbf{Z} \text{ for } n \geq 3,$$
 while $\mathrm{SL}_2A'/\mathrm{E}_2A' = \pi_1(\mathrm{SL}_2\mathbf{R}) = \mathbf{Z}$ so $\tilde{\mathrm{E}}_2A' \neq \mathrm{E}_2A'.$

Note that for any subring A with 1 in any global field, $\operatorname{sr}(A) \leq 2$ and every nonzero ideal B of A is of finite index. Therefore, the principal convergence subgroups $\operatorname{SL}_n B$ with $B \neq 0$ are normal subgroups of finite index in $\operatorname{SL}_n A$ $(n \geq 2)$.

Moreover, it is not difficult to show that for $n \geq 3$ the subgroup $E_n(A, B)$ with $B \neq 0$ are also normal subgroups of finite index and that every subgroup H of finite index in SL_nA contains a normal subgroup of finite index and hence some $E_n(A, B)$ with $B \neq 0$. Therefore triviality of $SL_nB/E_n(A, B)$ for all B is equivalent to the "yes" answer to the following congruence subgroup problem: Does every subgroup of finite index in SL_nA contains SL_nB for some $B \neq 0$? Thus, Bass-Milnor-Serre solved the congruence subgroup problem for SL_nA , $n \geq 3$. The answer is negative when A is the integers in a totally imaginary number field and positive otherwise (the later case was also done by Mennicke).

Later Serre solved the problem for SL_2A , and Vaserstein showed that $E_2(A, B) = \tilde{E}_2(A, B)$ for all B if GL_1A is infinite. If GL_1A is finite, then $E_2(A, B)$ has infinite index in SL_2A for sufficiently small nonzero ideal B of A. In characteristic 0, the total number of exceptions is finite; in positive characteristic, the exceptions are B = A = F[x] with finite field F.

Geometric insight. Let use connect by an edge every two matrices which can be obtained from each other by a row addition operation. So we obtain a graph. The group E_nA is the connected component of 1_n in GL_nA . Stabilization means any two matrices in GL_nA which can be connected in $GL_{n+1}A$, can be connected in GL_nA . Proofs involve "defermations" of paths. Prestabilization means that any two matrices in GL_nA which can be connected in $GL_{n+k}A$, can be connected by short (four or five edges) segments, each segment starts and finish in GL_nA . Proofs also involve "deformations" of paths.

We conclude this section with the observation that the condition (6.6) by itself implies that the group $\tilde{\mathrm{E}}_n(A,B)$ defined in Theorem 6.8 coincides with the mixed commutator subgroup $[\mathrm{GL}_1A,\,\mathrm{GL}_nB]$ for every ideal B of A and every $n\geq 1$.

Here is a relative version of (6.6):

(6.14) for every $x \in B$, $y \in A$ there is $a \in GL_1A$ such that 1 + ax, $a - y \in GL_1A$. In the case B = A the condition (6.14) coincides with the condition (6.6).

Theorem 6.15. Let A be an associative ring with 1, B an ideal of A. Assume the condition (6.14). Then $\tilde{\mathrm{E}}_n(A,B) = [\mathrm{GE}_n A,\,\mathrm{GL}_n B]$ for all $n\geq 1$.

Proof. Recall that $GE_nA = GL_1A$ E_nA is generated by elementary and diagonal matrices. Let $X = \begin{pmatrix} x & u \\ v & d \end{pmatrix} \in M_nB$, where $x \in B, d \in M_{n-1}B$. In the case n = 1, X = x and d, u, v are missing.

Let
$$y \in A$$
. Set $Y = \begin{pmatrix} y & 0 \\ 0 & 1_{n-1} \end{pmatrix}$. In the case $n=1, Y=y$
Set
$$\alpha_1 = 1_n + YX = \begin{pmatrix} 1+yx & yu \\ v & d \end{pmatrix} \in 1_n + \mathbf{M}_n B$$

and

$$\alpha_4 = 1_n + XY = \begin{pmatrix} 1 + xy & u \\ vy & d \end{pmatrix} \in 1_n + M_n B.$$

Assume that $\alpha_4 = 1_n + XY \in GL_nA$, hence $\alpha_1 = 1_n + XY \in GL_nB$. We have to prove that $\alpha_4\alpha_1^{-1} \in [GL_1A, GL_nB]$.

In the case $y \in GL_1A$, this is clear: $(1_n + XY)(1_n + YX)^{-1} = [1_n + XY, Y]$. In general case, we use the condition (6.9). We apply (6.9) to x, y above. When $n \geq 2$, these $x \in B, y \in A$ are arbitrary (e.g., when n = 2, take u = x, v = -yx, d = -yx). When n = 1, there is a condition on x, y, namely, $1+xy \in GL_1A$, so the condition (6.14) can be relaxed.

By (6.14), there is $a \in GL_1A$ such that 1 + ax, $a - y \in GL_1A$.

Set $\varepsilon_1 = \begin{pmatrix} 1 & -(1+ax)^{-1}au \\ 0 & 1_{n-1} \end{pmatrix}$. By (6.9), there are $\delta_1, \delta_2 \in \operatorname{GL}_1 A$ such that $\delta_1 + \delta_2 = 0$

$$\varepsilon_{1} = [\delta_{1}, \begin{pmatrix} 1 & u \\ 0 & 1_{n-1} \end{pmatrix}] [\delta_{2}, \begin{pmatrix} 1 & u \\ 0 & 1_{n-1} \end{pmatrix}] \in [GL_{1}A, GL_{n}B].$$
Set $\alpha_{2} = \alpha_{1}\varepsilon_{1} = \begin{pmatrix} 1 + yx & (y - a)(1 + xa)^{-1}u \\ v & d - v(1 + xa)^{-1}au \end{pmatrix}$ We used that
$$y - (1 + yx)(1 + ax)^{-1}a = y(1 + xa)(1 + xa)^{-1} - (1 + yx)a(1 + xa)^{-1}$$

$$= (y - a)(1 + xa)^{-1}.$$

Set

$$\alpha_3 = \begin{pmatrix} (1+xa)(y-a)^{-1} & 0 \\ 0 & 1_{n-1} \end{pmatrix} \alpha_2 \begin{pmatrix} (1+ax)^{-1}(y-a) & 0 \\ 0 & 1_{n-1} \end{pmatrix}$$
$$= \begin{pmatrix} 1+xy & u \\ -v(1+ax)^{-1}(a-y) & d-v(1+ax)^{-1}au \end{pmatrix} = \alpha_2 \varepsilon_2,$$

where

$$\varepsilon_2 = [\alpha_2^{-1}, (1+xa)(y-a)^{-1}](1+xa)(y-a)^{-1}(1+ax)^{-1}(y-a)$$
$$= [\alpha_2^{-1}, (1+xa)(y-a)^{-1}][1+xa, a][1+xa, (y-a)^{-1}] \in [GL_1A, GL_nB].$$

We used that $x(1 + ax)^{-1} = (1 + xa)^{-1}x$ and

$$(a-y)^{-1}(1+yx)(1+ax)^{-1}(a-y) = 1 - x(1+ax)^{-1}(a-y),$$

hence

$$(1+xa)(a-y)^{-1}(1+yx)(1+ax)^{-1}(a-y) = 1+xy.$$

Finally, set $\varepsilon_3 = \begin{pmatrix} 1 & 0 \\ -v(1+ax)^{-1}a & 1_{n-1} \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ v & 1_{n-1} \end{pmatrix}, \delta_1 \end{bmatrix} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ v & 1_{n-1} \end{pmatrix}, \delta_2 \end{bmatrix} \in$ $[GL_1A, GL_nB]$. Then $\varepsilon_3\alpha_3=c$

Thus, $\alpha_4 \alpha_1^{-1} = \varepsilon_3 \alpha_1 \varepsilon_1 \varepsilon_2 \alpha_1^{-1} \in [GE_n A, GL_n B]$. QED.

Problems.

1. Prove that the group $K_1(A, B)/\text{wh}(GL_2(B))$ depends only on the ring B.

2. In the case BB = 0, show that GL_1B is isomorphic to the additive group B while for $n \geq 2$,

 $GL_nB/E_n(A,B) = K_1(A,B)$

is the additive group B modulo all ab - ba with $a \in A, b \in B$.

3. Show by an example that $K_1(A, B)$ may depend on A.

4. (Kervaire) Show that the Mennicke symbol has the following property:

$$\begin{bmatrix} a \\ bq \end{bmatrix} = \begin{bmatrix} b \\ aq \end{bmatrix} \text{ for any } a-1, b-1 \in B, \begin{pmatrix} a \\ b \end{pmatrix} \in \text{Um}_2 A \text{ and any } q \in B.$$

5. Show that if A is commutative and $\operatorname{sr}(A) = 2$, then for any $\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} a' \\ b' \end{pmatrix} \in \operatorname{Um}_2 A$ there are $x, x', y, y' \in A$ such that a + x(b + ya) = a' + x'(b' + y'a').

6. Let A be an associate ring with 1. Define E_nA to be a subgroup of GL_nA generated by all matrices of the form $(1_n + XY)(1_n + YX)^{-1}$ with

$$X \in \mathcal{M}_n A, Y = \begin{pmatrix} y & 0 \\ 0 & 1_{n-1} \end{pmatrix}, y \in A, 1_n + XY \in \mathcal{GL}_n A.$$

Show that:

(a) $E_n A$ contains $E_n A$;

(b) $E_n A$ contains every matrix of the form $1_n + vu$ where $v \in A^n$ is a column, u is an n-row, and uv = 0;

(c) $E_n A = E_n(A, A)$;

(d) $E_n A \subset E_{n+1} A$.

7. Let $\alpha = (\alpha_{i,j}) \in \operatorname{GL}_{n+1}A$ and $\beta = \alpha^{-1} = (\beta_{i,j}) \in \operatorname{GL}_{n+1}A$. Show that $\sum_{i+2}^{n+1} A\alpha_{i,1} = A$ if and only if $\sum_{i+2}^{n+1} A\beta_{i,1} = A.$

$$\sum_{i+2}^{n+1} A\beta_{i,1} = A$$

When A is commutative, the following stronger statement is true:

$$\sum_{i+2}^{n+1} A\alpha_{i,1} = \sum_{i+2}^{n+1} A\beta_{i,1}.$$

8. Show that the following two statements are equivalent:

(i) $\operatorname{sr}(A) \leq n$,

(ii) for every matrix $\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_{n+1}A$ (where $a \in A, c \in A^n$) there is $v \in A^n$ such that c + dv is unimodular.