Lecture 14 Let G be a group. We defined a normal subgroup of G to be a subgroup H such that gHg'= H for any $g \in G$. We proved that if H is a normal subgroup of G, then G/H is a group.

The binary operation is defined to be $(g_1H)(g_2H) = g_1g_2H$. We also proved that if H is a normal subgroup of G, any left coset is also a right coset.

In fact, the converse is true.

Proposition I Suppose H is a subgroup of G such that

every left coset of H is also a right coset. Then H is a normal subgroup of Gr.

Proof: Let g & G. Then the left coset gH is also a right caset, i.e. it is of the form Hg' for some g'& G. However, as $g \in gH = Hg'$, we see that $Hg' \cap Hg \neq \emptyset$ and so So gH = Hg. Hg' = Hg

So, for any heH, gh is equal to hig for some h'EH. So ghgil E H. As this is true for any helf, we see that H is normal. Remark: Gallian's book defines normal subgroups using this property.

Notation Let Gi

Let G and H be groups.

H≤G means "H is a subgroup of

H/G mans "H is a proper

H<G means "H is a proper subgroup of G"

H d G means "H is a normal subgroup of G".

<u>Auotient</u> homomorphism

Let H & G. Consider the

function $\phi: G \to G/H$ defined by

 $\varphi(g) = gH.$

Then $\varphi(g_1g_2) = g_1g_2H$

 $=(g_1H)\cdot g_2H = \varphi(g_1)\cdot \varphi(g_2)$ So p is a group homomorphism. This homomorphism is called

the quotient homomorphism from

G to G/H.

Observe that $ker(\phi) = H$.

So, every normal subgroup is

the kernel of some homomorphism

Recall We have already seen that the kernel of a group homomorphism φ.G→ H is a normal subgroup of G. Now we see that any normal occurs as the kernel of some

homomorphism.

More about homomorphisms

Let φ: Gi → H be a group

homomorphism and let $K = \ker(\varphi)$. When is $\varphi(x) = \varphi(y)$ for $x,y \in G$? $\varphi(x) = \varphi(y) \iff \varphi(x^{-1}u) = 1$.

 $\varphi(x) = \varphi(y) \iff \varphi(x^{-1}y) = 1_{H}$ $\iff x^{-1}y \in K$

⇒ycxK ⇒ xK =yK.

Conclusions

1) Let $\psi: G \longrightarrow G/K$ be the

quotient homomorphism. We have observed that

 $\varphi(x) = \varphi(y) \iff \psi(x) = \psi(y).$

2) ϕ is a one-to-one function

 \iff $K = \{1\}.$

We define a function $\widetilde{\varphi}: G/K \longrightarrow H$ by the formula $\widetilde{\varphi}(gK) = \varphi(g)$ This is well-defined because

if $g_1K = g_2K$, then $\varphi(g_1) = \varphi(g_2)$. Observe that $\varphi \cdot \psi = \varphi$.

$$G_{K} \xrightarrow{G} H$$

Also, if $\widetilde{\varphi}(g_1K) = \widetilde{\varphi}(g_2K)$ then $\varphi(g_1) = \varphi(g_2) \Longrightarrow g_1K = g_2K$. is a one-to-one

Let
$$g_1, g_2 \in G$$
.
Then, $\mathfrak{P}(g_1g_2K) = \mathfrak{P}(g_1g_2)$

 $= \varphi(g_i) \cdot \varphi(g_i)$ $= \widetilde{\varphi}(g_1K) \cdot \widetilde{\varphi}(g_2K).$

Thus, \$\phi\$ is a group homomorphism.

\$\phi\$ is one-to-one, but it may not be a group isomorphism since it may not be onto. However, if we consider $\hat{\phi}$ as a function from G/K to Im(φ),

it becomes onto.

Thus,
$$\hat{\phi}$$
 gives a 1-1 correspondence from G_{K} to Im (ϕ) .
Let $g_{1}, g_{2} \in G$.

 $= \varphi(g_1) \cdot \varphi(g_2)$ $= \varphi(g_1K) \cdot \varphi(g_2K).$

 $\widetilde{\varphi}(g_1K \cdot g_2K) = \widetilde{\varphi}(g_1g_2K) = \varphi(g_1g_2)$

Thus & is a group isomorphism. Theorem Let $\varphi: G \rightarrow H$ be a group homomorphism and let $K = ker(\phi)$. Then the function $gK \mapsto \phi(g)$ is an isomorphism

from G/K to Im(q).

This is called the First Isomorphism theorem of group theory. Easy consequence

theory.

Easy consequence

$$|G| = |\ker(\varphi)| \cdot |\operatorname{Im}(\varphi)|$$

 $\frac{\text{Proof:}}{|\text{Im }\phi|} = |G/K| = |G|/|K|.$

Subgroups of the quotient Let G be a group and let $K \triangleleft G$. Let $\psi: G \rightarrow G_K$ be the quotient homomorphism. We want to understand the relationship between subgroups of G and subgroups of G/K.

We know that if H is a subgroup of G, Y(H) is a subgroup of G/K.

subgroups of Jamage Subgroups of J G/K Exercise Let $f: A \rightarrow B$ be a group homomorphism. Let $C \leq B$.

(1) Prove that f'(C) is

a subgroup of A.

(2) Prove that if $C \triangleleft B$, then $f^{-1}(C) \triangleleft A$.

Thus, we see that if $L \leq G/K$, then $\psi'(L)$ is a subgroup of G. Subgroups of Image Subgroups of ?

Preimage What is the relationship between these maps?

If $L \leq G/K$, then ψ'(L)= {g | g ∈ G, ψ(g) ∈ L } So if g \varphi'(L), \varphi'(g) \varepsilon L. Thus $\psi(\psi'(L)) \subseteq L$. In fact, if xeL, there always exists some geG such that $\Psi(g) = x$ as ψ is onto.

Thus, if $x \in L$, $x \in \psi(\psi'(u))$. Thus, $L \subseteq \Psi(\psi'(L))$. So L= \(\pu'(\mu). of Subgroups of I mage Subgroups of/

This composition is identity.

However, if $H \leq G$, it is not true that $\psi'(\psi(H)) = H$. Indeed, take $H = \{l_6\}$ Then, $\Psi(H) = \{1,1\}$ and $\psi^{-1}(\psi(H)) = K.$ What is $\psi'(\psi(H))$ for a general H?

Notation: Let A be a group and let B ≤ A. For any subset $S \subseteq A$, we define SB to be the set $\{s.b \mid s \in S, b \in B\} = \bigcup_{s \in S} sB$

Now, suppose C is another subgroup of A. Then, the set CB may not be a subgroup of A. Example In D3, consider the

subgroups $B = \{1, T\}$ and $C = \{1, PT\}$. Then $BC = \{1, PT, T, P^2\}$ is not a subgroup.

However, we have the following: Lemma: Let A be a group and let 13 4 A. Then for any subgroup C≤A, the set CB is a subgroup of Α. Proof: Exercise.

Returning to our original question...
Let
$$H \leq G$$
. What is $\psi'(\psi(H))$?
Let $x \in \psi'(\psi(H))$.

Then $\psi(x) \in \psi(H)$. Thus,

 $\exists h \in H \text{ such that } \Psi(x) = \Psi(h)$

 $\psi(h'x) = 1_{G/K}$. So $h'x \in \ker \psi = K$.

Thus, $x = h(h^{-1}x) \in HK$.

Thus, $\psi'(\psi(H)) \subseteq HK$.

It is easy to see that $HK \subseteq \psi'(\psi(H))$.

So $\psi'(\psi(H)) = HK$.

Exercise: Show that $HK = \langle HUK \rangle$ (Recall: For any $S \subseteq G$, $\langle S \rangle$ is the subgroup generated by S.)

So the function Subgroups of 2

G/K

J Subgroups of ? ψ'(L) ← 1L is not onto since we may have H + HK.

Exercise. Let $H \leq G$ and $K \leq G$. Show that $HK = H \iff K \subseteq H$. So we have the following situation.

If to the subgroups H and HK

ker
$$(\psi|_{H}) = \{x \mid x \in H, \psi(x) = i\} = H \cap K.$$

Rer $(\gamma)_{HK} = \{x \mid x \in HK, \gamma(x) = 1\} = K$

By the First Isomorphism theorem, H/HOK ~ W (H) and $HK_{K} \simeq \Psi(H)$ SO H/HOK ~ HK/K (Second Isomorphism Theorem) Exercise: Let G be a group.

Let H, K be <u>normal</u> subgroups of G such that $K \subseteq H$.

Then $H/K \triangle G/K$ and $(G/K)/(H/K) \sim G/H$.

(Third Isomorphism theorem)