## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

## MARK SCHEME for the May/June 2013 series

## 9702 PHYSICS

9702/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



|   | Page 2    | 2                                                                                                                                       | Mark Scheme                                                                                                                                                                                                                                                                 | Syllabus              | Paper                      |     |
|---|-----------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-----|
|   |           |                                                                                                                                         | GCE AS/A LEVEL – May/June 2013                                                                                                                                                                                                                                              | 9702                  | 22                         |     |
| 1 | (a) pow   | (a) power = energy / time<br>= (force × distance / time) = kg m <sup>2</sup> s <sup>-2</sup> / s<br>= kg m <sup>2</sup> s <sup>-3</sup> |                                                                                                                                                                                                                                                                             |                       | C1<br>C1<br>A1             | [3] |
|   | (b) (i)   | (C = or ar                                                                                                                              | s of $L^2$ : m <sup>2</sup> and units of $\rho$ : kg m <sup>-3</sup> and units of $v^3$ : m <sup>3</sup> $P/L^2 \rho v^3$ ) hence units of $C$ : kg m <sup>2</sup> s <sup>-3</sup> m <sup>-2</sup> kg <sup>-1</sup> m <sup>3</sup> rny correct statement of component units | $m^{-3} s^3$          | C1<br>M1<br>A1             | [2] |
|   |           | argument /discussion / cancelling leading to C having no units                                                                          |                                                                                                                                                                                                                                                                             | o units               | AI                         | [3] |
|   | (ii)      | $v^3 =$                                                                                                                                 | er available from wind = $3.5 \times 10^5 \times 100 / 55$ (= $6.36 \times 10^5 \times 100 / (55 \times 0.931 \times (25)^2 \times 1.3)$<br>9.4 m s <sup>-1</sup>                                                                                                           | 6 × 10⁵)              | C1<br>C1<br>A1             | [3] |
|   | (iii)     | not all kinetic energy of wind converted to kinetic energy of blades                                                                    |                                                                                                                                                                                                                                                                             | B1                    |                            |     |
|   | ( )       | gene<br>prod                                                                                                                            | erator / conversion to electrical energy not 100% eff<br>luced in generator / bearings etc<br>re must be cause of loss and where located)                                                                                                                                   |                       | B1                         | [2] |
| 2 | (a) force | ce = ra                                                                                                                                 | ate of change of momentum                                                                                                                                                                                                                                                   |                       | A1                         | [1] |
|   | (b) (i)   | horiz<br>verti                                                                                                                          | zontal line on graph from $t = 0$ to $t$ about 2.0 s ± ½ s zontal line at 3.5 on graph from 0 to 2 s cal line at $t = 2.0$ s to $t = 0$ or sharp step without a li zontal line from $t = 2$ s to $t = 4$ s with $t = 0$                                                     |                       | M1<br>A1<br>B1<br>B1       | [4] |
|   | (ii)      | start<br>finisl<br>horiz                                                                                                                | ght line and positive gradient<br>ting at (0,0)<br>hing at (2,16.8)<br>zontal line from 16.8<br>a 2.0 to 4.0                                                                                                                                                                |                       | M1<br>A1<br>A1<br>M1<br>A1 | [5] |
| 3 |           |                                                                                                                                         | where (all) the weight (of the body)<br>lered / seems to act                                                                                                                                                                                                                |                       | M1<br>A1                   | [2] |
|   | (b) (i)   | verti                                                                                                                                   | cal component of $T$ (= $30 \cos 40^\circ$ ) = $23 \mathrm{N}$                                                                                                                                                                                                              |                       | A1                         | [1] |
|   | (ii)      | _                                                                                                                                       | sum of the clockwise moments about a <u>point</u> equals clockwise moments (about the same point)                                                                                                                                                                           | the <u>sum</u> of the | B1                         | [1] |
|   | (iii)     | •                                                                                                                                       | ments about A): 23 × 1.2 (27.58)<br>= 8.5 × 0.60 + 1.2 × W                                                                                                                                                                                                                  |                       | M1<br>M1                   |     |
|   |           | work                                                                                                                                    | king to show $W = 19$ or answer of 18.73 (N)                                                                                                                                                                                                                                |                       | A1                         | [3] |
|   | (iv)      | (M =                                                                                                                                    | = W / g = 18.73 / 9.81 =) 1.9(09) kg                                                                                                                                                                                                                                        |                       | A1                         | [1] |

|   | Page 3  |                                                                                                                                                  | Mark Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Syllabus                                 | Paper          |     |
|---|---------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------|-----|
|   |         |                                                                                                                                                  | GCE AS/A LEVEL – May/June 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9702                                     | 22             |     |
|   |         | •                                                                                                                                                | r equilibrium) resultant force (and moment) = 0 ward force does not equal downward force / horizontal component of T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | B1             |     |
|   | nc      | not balanced by forces shown                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | B1             | [2] |
| 4 |         | apparatus: cell with particles e.g. smoke (container must be closed) diagram showing suitable arrangement with light illumination and microscope |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | B1<br>B1       | [2] |
|   |         | specks / flashes of light in random motion                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |     |
|   |         | cannot see what is causing smoke to move hence molecules smaller than smoke particles                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |     |
|   | co      | continuous motion of smoke particles implies continuous motion of molecules                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                |     |
|   | ra      | ndom r                                                                                                                                           | motion of particles implies random motion of molecu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ıles                                     | (B1)           |     |
|   |         |                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | max. 2         | [2] |
| 5 | (a) (i) |                                                                                                                                                  | τλ<br>40 / 50 = 0.8(0) m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | C1<br>A1       | [2] |
|   | (ii)    |                                                                                                                                                  | es (travel along string and) reflect at Q / wall / fixed lent and reflected waves interfere / superpose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | end                                      | B1<br>B1       | [2] |
|   | (b) (i) |                                                                                                                                                  | es labelled at P, Q and the two points at zero displaced at the three points of maximum displaced at the three points at zero displaced at the two points at zero displaced at the three points of maximum displaced at the three points at zero displaced at |                                          | B1<br>B1       | [2] |
|   | (ii)    | (1.5                                                                                                                                             | $\lambda$ for PQ hence PQ = 0.8 × 1.5) = 1.2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | A1             | [1] |
|   | (iii)   | 5 ms                                                                                                                                             | 1 / $f = 1/50 = 20 \text{ms}$<br>s is $\frac{1}{4}$ of cycle<br>zontal line through PQ drawn on Fig. 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | C1<br>A1<br>B1 | [3] |
| 6 | (a) ch  | arge =                                                                                                                                           | current × time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | B1             | [1] |
|   | (b) (i) | ) P =<br>=                                                                                                                                       | $V^2 / R$<br>(240) <sup>2</sup> / 18 = 3200 W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                          | C1<br>A1       | [2] |
|   | (ii)    | $I = \lambda$                                                                                                                                    | // R = 240 / 18 = 13.3 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                          | A1             | [1] |
|   | (iii)   | ) char                                                                                                                                           | rge = $It$ = 13.3 × 2.6 × 10 <sup>6</sup><br>= 3.47 × 10 <sup>7</sup> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | C1<br>A1       | [2] |
|   | (iv)    | num<br>num                                                                                                                                       | ber of electrons = $3.47 \times 10^7 / 1.6 \times 10^{-19}$ (= $2.17 \times 10^{-19}$ ber of electrons per second = $2.17 \times 10^{26} / 2.6 \times 10^{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $10^{26}$ ) $^{3} = 8.35 \times 10^{19}$ | C1<br>A1       | [2] |

|   | Page 4  | 1                                                                                                | Mark Scheme                                                          | Syllabus | Paper    |     |
|---|---------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------|----------|-----|
|   |         |                                                                                                  | GCE AS/A LEVEL – May/June 2013                                       | 9702     | 22       |     |
| 7 | (a) (i) |                                                                                                  | 206 and <i>X</i> = 82<br>4 and <i>Z</i> = 2                          |          | A1<br>A1 | [2] |
|   | (ii)    |                                                                                                  | s-energy is conserved<br>s on rhs is less because energy is released |          | B1<br>B1 | [2] |
|   | ` '     | not affected by external conditions/factors/environment or two examples temperature and pressure |                                                                      |          |          | [1] |