Exercices de remédiations

(nombres rationnels et triangles égaux)

Exercice 1: Exercice type 3 du DS

$$A = \frac{4}{7} - \frac{-6}{21} = \frac{4}{7} + \frac{6}{21} = \frac{4 \times 3}{7 \times 3} + \frac{6}{21} = \frac{12 + 6}{21} = \frac{18}{21} = \frac{3 \times 6}{3 \times 7} = \boxed{\frac{6}{7}}$$

$$B = \frac{5}{14} \div \frac{25}{12} = \frac{5}{14} \times \frac{12}{25} = \frac{\cancel{5} \times 1 \times 3 \times 4}{2 \times 7 \times \cancel{5} \times 5} = \frac{1 \times 3 \times \cancel{2} \times 2}{\cancel{2} \times 7 \times 5} = \boxed{\frac{6}{35}}$$

$$C = \frac{3}{4} - \frac{7}{5} \times \frac{6}{8} = \frac{3}{4} - \frac{7 \times 6}{5 \times 8} = \frac{3}{4} - \frac{7 \times \cancel{2} \times 3}{5 \times \cancel{2} \times 4} = \frac{3}{4} - \frac{21}{20} = \frac{3 \times 5}{4 \times 5} - \frac{21}{20} = \frac{15 - 21}{20} = \frac{-6}{20} = \boxed{\frac{-3}{10}}$$

Exercice 2 : Exercice type 3 : Notion de partage

a) Asma prend une part : $\boxed{\frac{1}{4}}$ (Gâteau coupé en 4 parts égales)

Béa prend le tiers d'une part : $\frac{1}{4} \times \frac{1}{3} = \boxed{\frac{1}{12}}$

Cédric prend une part ET demie : $\frac{1}{4} + \frac{1}{8} = \frac{2}{8} + \frac{1}{8} = \boxed{\frac{3}{8}}$. (Moitié d'une part : $\frac{1}{4} \times \frac{1}{2} = \frac{1}{8}$)

Parts en fraction du gâteau partagé : $\frac{1}{4} + \frac{1}{12} + \frac{3}{8} = \frac{1 \times 6}{4 \times 6} + \frac{1 \times 2}{12 \times 2} + \frac{3 \times 3}{8 \times 3} = \frac{6 + 2 + 9}{24} = \boxed{\frac{17}{24}}$

Reste du gâteau à partager : $1 - \frac{17}{24} = \frac{24}{24} - \frac{17}{24} = \boxed{\frac{7}{24}}$

Après avoir calculé la répartition entre les différentes personnes, nous avons suffisamment d'éléments pour déterminer s'il reste assez de gâteau pour constituer une part.

Il reste $\frac{7}{24}$ et une part vaut $\frac{1}{4}$. Comme $\left[\frac{7}{24} > \frac{6}{24}\right] = \frac{1 \times 6}{4 \times 6}$. On peut en conclure qu'<u>il reste assez de gâteau pour constituer une part</u>.

b) David prend la moitié du reste : $\frac{7}{24} \times \frac{1}{2} = \boxed{\frac{7}{48}}$.

Reste = Gâteau - (Asma + Béa + Cédric + David)
=
$$1 - \left(\frac{1}{4} + \frac{1}{12} + \frac{3}{8} + \frac{7}{48}\right)$$

= $1 - \left(\frac{12}{4 \times 12} + \frac{4}{48} + \frac{3 \times 6}{8 \times 6} + \frac{7}{48}\right)$
= $1 - \left(\frac{12 + 4 + 18 + 7}{48}\right)$
= $\frac{48}{48} - \frac{41}{48} = \boxed{\frac{7}{48}}$

Partage équitable du reste (pour 4 personnes) : $\frac{7}{48} \times \frac{1}{4} = \boxed{\frac{7}{192}}$

Au final, chacun a reçu :

Asma :
$$\frac{1}{4} + \frac{7}{192} = \frac{1 \times 48}{4 \times 48} + \frac{7}{192} = \frac{48 + 7}{192} = \boxed{\frac{55}{192}}$$

Béa:
$$\frac{1}{12} + \frac{7}{192} = \frac{1 \times 12}{12 \times 12} + \frac{7}{192} = \frac{12 + 7}{192} = \boxed{\frac{19}{192}}$$

Cédric :
$$\frac{3}{8} + \frac{7}{192} = \frac{3 \times 24}{8 \times 24} + \frac{7}{192} = \frac{72 + 7}{192} = \boxed{\frac{79}{192}}$$

David:
$$\frac{7}{48} + \frac{7}{192} = \frac{7 \times 4}{48 \times 4} + \frac{7}{192} = \boxed{\frac{35}{192}}$$

Exercice 3: Exercice type 1 et 2 du DS:

a) Démontrer que les triangles AED, BFE et DCF sont égaux.

On sait que :

•
$$AE = BF = CD$$
 (d'après l'énoncé)

$$AC = AB = BC$$

•
$$AD = CF = EB$$
 (car $\triangle ABC$ est équilatéral : $AD + DC = AE + EB = CF + FB$) $AD + DC = AE + DC = CF + DC$

•
$$\widehat{CAB} = \widehat{ACB} = \widehat{ABC} = 60^{\circ}$$
 (car $\triangle ABC$ est équilatéral)

Or : d'après la propriété du cours : si deux triangles ont un angle de même mesure compris entre deux côtés respectivement de même longueur, alors ils sont égaux.

Donc les triangles \triangle AED, \triangle BFE, \triangle DCF sont égaux.

b) On sait que les triangles \triangle AED, \triangle BFE, \triangle DCF sont égaux.

Or d'après la définition du cours : des triangles sont égaux lorsque leurs côtés sont deux à deux de même longueur.

Donc le triangle $\ ^{\Delta}$ DEF est équilatéral.