Exercise sheet 1

Descriptive Set Theory

Academic year 2023-24

1. Prove that the following are Polish subspaces of the Baire space ω^{ω} :

$$A = \{x \in \omega^{\omega} \mid x \text{ has infinite range}\}\$$

$$B = \{x \in \omega^{\omega} \mid x^{-1}(n) \text{ is infinite, for every } n \in \omega\}.$$

In contrast, show that

$$C = \{x \in \omega^{\omega} \mid x \text{ is not surjective}\}\$$

$$D = \{x \in \omega^{\omega} \mid x \text{ has finite range}\}\$$

are not Polish. (Use the fact that in a Polish space X, if $A \subseteq X$ is F_{σ} and both dense and codense, then A is not G_{δ} .)

- 2. Let $2^{(\omega^{<\omega})}$ be endowed with the product over the countable index set $\omega^{<\omega}$ of the discrete topology on $2 = \{0,1\}$. Let $\operatorname{Tr} \subseteq 2^{(\omega^{<\omega})}$ be the set consisting of all characteristic functions of trees on ω . Show that Tr is closed in $2^{(\omega^{<\omega})}$ and thus it is a Polish space. Show also that the set $\operatorname{PTr} \subseteq \operatorname{Tr}$ of (the characteristic functions of) pruned trees is G_{δ} and thus Polish as well. Finally, prove that $\operatorname{Tr} \setminus \operatorname{PTr}$ is *not* a Polish space.
- 3. Let

$$\mathcal{L} = \{ R_i \mid i < I \} \cup \{ f_j \mid j < J \} \cup \{ a_k \mid k < K \}$$

with $I, J, K \leq \omega$ be an at most countable first-order language, and let M be a countable \mathcal{L} -structure. Without loss of generality, we may assume that the domain of M is ω itself. Prove that the group of automorphisms $\operatorname{Aut}(M)$ of M is a Polish subgroup of S_{∞} .

4. Consider the Polish space $X = \omega^{\omega \times \omega} \times \omega$. Let Gp be the space of those $(f,a) \in X$ such that $\langle \omega, f, a \rangle$ is a group with operation f and neutral element a.

- (a) Prove that Gp is a Polish subspace of X.
- (b) Prove that the subspace of **Gp** consisting of Abelian groups is Polish, and similarly for the subspace of non-Abelian groups.
- (c) Prove that the subspace of **Gp** consisting of Archimedean groups is Polish.
- 5. Suppose that d is an ultrametric on a space X. Prove the following statements:
 - (a) If $d(x, z) \neq d(y, z)$, then $d(x, y) = \max\{d(x, z), d(y, z)\}$ ("all triangles are isosceles with legs longer than or equal to the basis").
 - (b) The "open" balls $B_d(x,\varepsilon) = \{y \in A^\omega \mid d(x,y) < \varepsilon\}$ and the "closed" balls $B_d^{cl}(x,\varepsilon) = \{y \in A^\omega \mid d(x,y) \le \varepsilon\}$ are both clopen.
 - (c) If $y \in B_d(x, \varepsilon)$, then $B_d(y, \varepsilon) = B_d(x, \varepsilon)$ ("all elements of an open ball are centers of it").
 - (d) If two open (closed) balls intersect, then one is contained in the other one.