### 15CSE374 INTRODUCTION TO DATA STRUCTURES AND ALGORITHMS

Sarath tv

#### Last Lecture

• Big O for Python codes.

# Upper & Lower Bound



# Asymptotic Analysis Formal Method

- Upper Bound
- Let f(n) and g(n) be functions mapping positive integers to positive real numbers.
- We say that f(n) is O(g(n)) if there is a real constant c > 0 and an integer constant  $n_0 \ge 1$  such that
  - $f(n) \le cg(n)$ , for  $n \ge n_0$ .



# Time Complexity

$$1 < logn < n < nlogn < n^2 < n^3 < 2^n < n^n$$

 $1 < logn < n < nlogn < n^2 < n^3 < 2^n < n^n$ 

• f(x) = 2n + 3

- f(n) = O(g(n)) iff c and n0
- $f(n) \le c^*g(n)$  for every  $n \ge n0$
- First identify proper g(n).

Example
Upper Bound

#### Big Omega – Lower bound

- Lower Bound
- Let f(n) and g(n) be functions mapping positive integers to positive real numbers.
- We say that f(n) is  $\Omega(g(n))$  if there is a real constant c > 0 and an integer constant  $n_0 \ge 1$  such that
  - $f(n) \ge c *g(n)$ , for  $n \ge n_0$ .

 $1 < logn < n < nlogn < n^2 < n^3 < 2^n < n^n$  • f(x) = 2n+3

# Big $\Omega$ Example



#### How did we get those constant values...!! Is those the tightest bound possible?

Big – O (Substitution method) O(g(n)) is the set of functions with smaller or the same order of growth as g(n). For example,  $O(n^2)$  includes O(1), O(n),  $O(n\log n)$ , etc.

**Example-1** Find upper bound for f(n) = 3n + 8

**Example-1** Find upper bound for f(n) = 3n + 8

**Solution:** Let g(n)=n. If C=2, 3, 4, ...8, 9,...

| n | f(n) | g <sub>2</sub> (n) | g <sub>3</sub> (n) | g <sub>4</sub> (n) | $g_5(n)$ | g <sub>8</sub> (n) | g <sub>12</sub> (n) |
|---|------|--------------------|--------------------|--------------------|----------|--------------------|---------------------|
| 1 | 11   | 2                  | 3                  | 4                  | 5        | 8                  | 12                  |
| 2 | 14   | 4                  | 6                  | 8                  | 10       | 16                 | 24                  |
| 3 | 17   | 6                  | 9                  | 12                 | 15       | 24                 | 36                  |
| 4 | 20   | 8                  | 12                 | 16                 | 20       | 32                 | 48                  |
| 5 | 23   | 10                 | 15                 | 20                 | 25       | 40                 | 60                  |
| 6 | 25   | 12                 | 18                 | 24                 | 30       | 48                 | 72                  |
| 7 | 29   | 14                 | 21                 | 28                 | 35       | 56                 | 84                  |
| 8 | 32   | 16                 | 24                 | 32                 | 40       | 64                 | 96                  |

**Example-1** Find upper bound for f(n) = 3n + 8

**Solution:**  $3n + 8 \le 4n$ , for all  $n \ge 8$ 

$$3n + 8 \le 5n$$
, for all  $n \ge 4$ 

•••

$$3n + 8 \le 8n$$
, for all  $n > 1$ 

$$3n + 8 \le 12n$$
, for all  $n > 0$ 

**Example-2** Find upper bound for  $f(n) = n^2 + 1$ 

**Solution:** Let  $g(n)=n^2$ , let C=1, 2, 3,...

| n | f(n) | g <sub>1</sub> (n) | g <sub>2</sub> (n) | g <sub>3</sub> (n) |
|---|------|--------------------|--------------------|--------------------|
| 1 | 2    | 1                  | 2                  | 3                  |
| 2 | 5    | 4                  | 8                  | 12                 |
| 3 | 10   | 9                  | 18                 | 27                 |
| 4 | 17   | 16                 | 32                 | 48                 |
| 5 | 26   | 25                 | 50                 | 75                 |
| 6 | 37   | 36                 | 72                 | 108                |

**Example-2** Find upper bound for  $f(n) = n^2 + 1$ 

**Solution:** Let  $g(n)=n^2$ , let C=1, 2, 3,...

| n | f(n)       | g <sub>1</sub> (n) | g <sub>2</sub> (n) | g <sub>3</sub> (n) |
|---|------------|--------------------|--------------------|--------------------|
| 1 | 2          | 1                  | 2                  | 3                  |
| 2 | 5          | 4                  | 8                  | 12                 |
| 3 | 10         | 9                  | 18                 | 27                 |
| 4 | 1 <i>7</i> | 16                 | 32                 | 48                 |
| 5 | 26         | 25                 | 50                 | 75                 |
| 6 | 37         | 36                 | 72                 | 108                |

$$n^2 + 1 \le 2n^2$$
, for all  $n \ge 1$ 

$$n^2 + 1 < 3n^2$$
, for all  $n \ge 1$ 



• 
$$f(n)=n^4+100n^2+50$$



#### THANK YOU!!!!!