FORMULA SHEET

DATA

gravitational constant $G = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2}$

acceleration of free fall $g = 9.81 \text{ m s}^{-2}$

FORMULAE

uniformly accelerated motion $v = v_0 + at$

$$x = x_0 + v_0 t + \frac{1}{2} a t^2$$

$$x - x_0 = \frac{1}{2} (v_0 + v) t$$

$$v^2 = v_0^2 + 2a(x - x_0)$$

Newton's 2^{nd} Law F = ma

maximum static frictional force $f_{s \text{ max}} = \mu_s N$

kinetic frictional force $f_k = \mu_k N$

Momentum of a particle: $\mathbf{p} = m\mathbf{v}$

Impulse-Momentum Theory $\Delta p_{x} = p_{fx} - p_{ix} = J_{x}$

impulse of a constant force $J = F\Delta t$

impulse of a variable force $J_{x} = \int_{t_{i}}^{t_{f}} F_{x}(t) dt$

Conservation of Momentum for an

Isolated System:

 $\mathbf{P}_{\mathrm{f}} = \mathbf{P}_{\mathrm{i}}$

Newton's 2nd Law for Impulse

 $\sum \mathbf{F} = \frac{d\mathbf{p}}{dt}$

Kinetic Energy $K = \frac{1}{2}mv^2$

Work Energy Theorem $W_{\text{total}} = \Delta K$

Gravitational Potential Energy: $U_g = mg\Delta y$ (y positive upward)

Elastic Potential Energy: $U_s = \frac{1}{2}kx^2 \ (x_e = 0)$

Work done by gravitational force: $W_g = -\Delta U_g$

$$T=2\pi \int_{\frac{\pi}{g}}^{\frac{\pi}{g}}$$

ENG1004 Engineering Physics 1

Work done by spring force:
$$W_s = -\Delta U_s$$

Force and Potential Energy:
$$F = -\frac{dU}{dx}; \ U = -\int_{x_0}^{x} F(x) dx$$

Conservation of Energy:
$$U_1 + K_1 + W_{nc} = U_2 + K_2$$

Circular force
$$F = \frac{mv^2}{r}$$

average power
$$P_{\text{average}} = \frac{\Delta W}{\Delta t}$$

instantaneous power
$$P_{\text{instantaneous}} = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt} = \overrightarrow{F} \cdot \overrightarrow{v}$$

$$\Gamma_{
m instantatheous} = \prod_{\Delta t \to 0} \frac{1}{\Delta t} = \frac{1}{{
m d}t} = \Gamma \cdot 0$$

Rotational Kinematics
$$\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$$

$$\theta = \theta_0 + \overline{\omega}t$$
$$\omega = \omega_0 + \alpha t$$

$$\overline{\omega} = \frac{1}{2} (\omega + \omega_0)$$

$$\theta = \theta_0 + \overline{\omega}t$$

$$\omega^2 = \omega_0^2 + 2\alpha [\theta - \theta_0]$$

$$\theta - \theta_0 = \frac{1}{2} [\omega_0 + \omega] t$$

Linear Speed $v = r\omega$

Tangential acceleration:
$$a_{tan} = r\alpha$$

Radial acceleration:
$$a_{rad} = r\omega^2$$

Kinetic energy of rigid body
$$KE = \frac{1}{2}Mv_{\text{c.m}}^2 + \frac{1}{2}I_{\text{c.m}}\omega^2$$

Angular momentum of rigid body $L = I\omega$

Moment of Inertia:
$$I = \sum_{i} m_{i} r_{i}^{2}$$

Parallel Axis Theorem
$$I_p = I_{cm} + Md^2$$

Moment of Inertia of objects of different shapes

Object	Location of axis	Moment of Inertia
Thin Hoop (mass M , radius R_0)	Through centre	MR_0^{-2}
Thin Hoop (mass M , radius R_0 , width w)	Through central diameter	$\frac{1}{2}MR_0^2 + \frac{1}{2}Mw^2$
Solid Cylinder (radius R_0)	Through centre	$\left \frac{1}{2}MR_0^2\right $
Hollow Cylinder (inner radius R_1 , outer radius R_2)	Through centre	$\frac{1}{2}M\left(R_1^2+R_2^2\right)$
Uniform Sphere (radius R_0)	Through centre	$\frac{2}{5}MR_0^2$
Long uniform rod (length <i>l</i>)	Through centre	$\frac{1}{12}Ml^2$
Long uniform rod (length <i>l</i>)	Through end	$\frac{1}{3}Ml^2$
Rectangular Thin Plate (length <i>l</i> , width <i>w</i>)	Through centre	$\frac{1}{12}M\left(l^2+w^2\right)$

Defining equation for simple

$$a = -\omega^2 x$$

harmonic motion

Speed of a wave

$$v = f\lambda$$

Velocity of transverse wave on stretched string

$$v = \sqrt{\frac{F_T}{\mu}}$$
 where $\mu = \frac{m}{l}$, F_T : tension

General representation of a travelling wave

$$D(x,t) = A \sin(kx \pm \omega t + \phi)$$

Wavelength of n^{th} harmonic frequency for a resonant length l

$$\lambda_n = \frac{2l}{n}, \quad n = 1,2,3,...$$

ENG1004 Engineering Physics 1

Condition for constructive interference, for a double slit with separation distance d

$$d \sin \theta = m\lambda$$
, $m = 0,1,2,3...$

Condition for destructive interference, for a double slit with separation distance d

$$d\sin\theta = \left(m + \frac{1}{2}\right)\lambda, \quad m = 0,1,2,3...$$

Small angle approximation

$$\sin \theta \approx \theta$$
; $\tan \theta \approx \theta$

Condition for minima in diffraction pattern of single slit with width D

$$D\sin\theta = m\lambda, \quad m = \pm 1, \pm 2, \pm 3, \dots$$