Grid Graphs, Gorenstein Polytopes, and Domino Stackings

Matthias Beck (San Francisco State)

math.sfsu.edu/beck

Joint with Christian Haase (FU Berlin) & Steven Sam (MIT)

arXiv:0711.4151

"The hardest thing being with a mathematician is that they always have problems."

Tendai Chitewere

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d, i.e., the vertices of \mathcal{P} are in \mathbb{Z}^n

 $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$ (discrete volume of P)

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d, i.e., the vertices of \mathcal{P} are in \mathbb{Z}^n

 $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$ (discrete volume of P)

Ehrhart's Theorem (1962) $L_{\mathcal{P}}(t)$ is a polynomial in $t \in \mathbb{N}$.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d, i.e., the vertices of \mathcal{P} are in \mathbb{Z}^n

 $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$ (discrete volume of P)

Ehrhart's Theorem (1962) $L_{\mathcal{P}}(t)$ is a polynomial in $t \in \mathbb{N}$. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}},$$

where h(z) is a polynomial, the Ehrhart h-vector of \mathcal{P} .

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d, i.e., the vertices of \mathcal{P} are in \mathbb{Z}^n

 $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$ (discrete volume of P)

Ehrhart's Theorem (1962) $L_{\mathcal{P}}(t)$ is a polynomial in $t \in \mathbb{N}$. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}},$$

where h(z) is a polynomial, the Ehrhart h-vector of \mathcal{P} .

(Serious) Open Problem Classify Ehrhart polynomials/h-vectors.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d, i.e., the vertices of \mathcal{P} are in \mathbb{Z}^n

 $L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$ (discrete volume of P)

Ehrhart's Theorem (1962) $L_{\mathcal{P}}(t)$ is a polynomial in $t \in \mathbb{N}$. Equivalently,

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h(z)}{(1-z)^{d+1}},$$

where h(z) is a polynomial, the Ehrhart h-vector of \mathcal{P} .

(Serious) Open Problem Classify Ehrhart polynomials/h-vectors.

(Easier) Open Problem Construct and study special classes of lattice polytopes.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Some sample problems

Find \mathcal{P} for which the Ehrhart h-vector h(z) is palindromic.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Some sample problems

- Find \mathcal{P} for which the Ehrhart h-vector h(z) is palindromic.
- For which \mathcal{P} is the Ehrhart h-vector h(z) unimodal, i.e., $h_0 \leq \cdots \leq h_{i-1} \leq h_i \geq h_{i+1} \geq \cdots \geq h_d$?

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

Some sample problems

- lacksquare Find ${\mathcal P}$ for which the Ehrhart h-vector h(z) is palindromic.
- For which \mathcal{P} is the Ehrhart h-vector h(z) unimodal, i.e., $h_0 \leq \cdots \leq h_{j-1} \leq h_j \geq h_{j+1} \geq \cdots \geq h_d$?
- ▶ Study Ehrhart h-vectors of special classes, e.g., simplicial polytopes.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

 ${\mathcal P}$ is Gorenstein if there is a $k\in {\mathbb N}$ such that $L_{{\mathcal P}^\circ}(t)=L_{{\mathcal P}}(t-k)$ for all $t \ge k$ and $L_{\mathcal{P}^{\circ}}(t) = 0$ for 0 < t < k. We call k the index of \mathcal{P} .

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# (t\mathcal{P} \cap \mathbb{Z}^n)$$

 ${\mathcal P}$ is Gorenstein if there is a $k\in {\mathbb N}$ such that $L_{{\mathcal P}^\circ}(t)=L_{{\mathcal P}}(t-k)$ for all $t \geq k$ and $L_{\mathcal{P}^{\circ}}(t) = 0$ for 0 < t < k. We call k the index of \mathcal{P} .

Examples

the unit cube $\square=[0,1]^d$ with $L_\square(t)=(t+1)^d$ and $L_{\square^\circ}(t)=(t-1)^d$

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

 ${\mathcal P}$ is Gorenstein if there is a $k\in {\mathbb N}$ such that $L_{{\mathcal P}^\circ}(t)=L_{{\mathcal P}}(t-k)$ for all $t \geq k$ and $L_{\mathcal{P}^{\circ}}(t) = 0$ for 0 < t < k. We call k the index of \mathcal{P} .

Examples

- the unit cube $\square=[0,1]^d$ with $L_\square(t)=(t+1)^d$ and $L_{\square^\circ}(t)=(t-1)^d$
- the standard simplex $\Delta = \operatorname{conv} \{0, \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d\}$ with $L_{\Delta}(t) = \binom{t+d}{d}$ and $L_{\Delta^{\circ}}(t) = \binom{t-1}{d}$

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

 \mathcal{P} is Gorenstein if there is a $k \in \mathbb{N}$ such that $L_{\mathcal{P}^{\circ}}(t) = L_{\mathcal{P}}(t-k)$ for all $t \geq k$ and $L_{\mathcal{P}^{\circ}}(t) = 0$ for 0 < t < k. We call k the index of \mathcal{P} .

Examples

- lacksquare the unit cube $\Box=[0,1]^d$ with $L_\Box(t)=(t+1)^d$ and $L_{\Box^\circ}(t)=(t-1)^d$
- the standard simplex $\Delta = \operatorname{conv} \{0, \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_d\}$ with $L_{\Delta}(t) = {t+d \choose d}$ and $L_{\Delta^{\circ}}(t) = {t-1 \choose d}$
- ▶ the Birkhoff polytope

$$\left\{ \left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right) \in \mathbb{R}^{n^2}_{\geq 0} : \begin{array}{c} \sum_j x_{jk} = 1 \text{ for all } 1 \leq k \leq n \\ \sum_k x_{jk} = 1 \text{ for all } 1 \leq j \leq n \end{array} \right\}$$

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

 \mathcal{P} is Gorenstein if and only if the Ehrhart h-vector h(z) of \mathcal{P} is palindromic (this is a nice exercise if one knows the Ehrhart-Macdonald reciprocity theorem).

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

 \mathcal{P} is Gorenstein if and only if the Ehrhart h-vector h(z) of \mathcal{P} is palindromic (this is a nice exercise if one knows the Ehrhart-Macdonald reciprocity theorem).

Remark The Gorenstein property has an extension to Cohen-Macaulay algebras.

 $\mathcal{P} \subset \mathbb{R}^n$ – lattice polytope of dimension d

$$L_{\mathcal{P}}(t) := \# \left(t \mathcal{P} \cap \mathbb{Z}^n \right)$$

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h(z)}{(1-z)^{d+1}}$$

 \mathcal{P} is Gorenstein if and only if the Ehrhart h-vector h(z) of \mathcal{P} is palindromic (this is a nice exercise if one knows the Ehrhart-Macdonald reciprocity theorem).

Remark The Gorenstein property has an extension to Cohen-Macaulay algebras.

Goal Construct classes of Gorenstein polytopes.

Suggested Tools

- ► LattE macchiato (http://www.math.ucdavis.edu/~latte/)
- barvinok (http://freshmeat.net/projects/barvinok/)
- ehrhart (http://icps.u-strasbg.fr/Ehrhart/program/program.html)

Suggested Tools

- ► LattE macchiato (http://www.math.ucdavis.edu/~latte/)
- barvinok (http://freshmeat.net/projects/barvinok/)
- ehrhart (http://icps.u-strasbg.fr/Ehrhart/program/program.html)
- Normaliz (ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/)
- ► 4ti2 (www.4ti2.de)

Suggested Tools

- ► LattE macchiato (http://www.math.ucdavis.edu/~latte/)
- barvinok (http://freshmeat.net/projects/barvinok/)
- ehrhart (http://icps.u-strasbg.fr/Ehrhart/program/program.html)
- Normaliz (ftp://ftp.mathematik.uni-osnabrueck.de/pub/osm/kommalg/software/)
- ► 4ti2 (www.4ti2.de)
- polymake (http://www.math.tu-berlin.de/polymake/)

A perfect matching of a graph G is a subset $M \subseteq E(G)$ such that every vertex of G is incident with exactly one edge of M.

A perfect matching of a graph G is a subset $M \subseteq E(G)$ such that every vertex of G is incident with exactly one edge of M.

More generally, a magic labelling (with sum t) is a function $E(G) \to \mathbb{Z}_{\geq 0}$ such that for each vertex v, the sum of the labels of the edges incident to v equals t.

A perfect matching of a graph G is a subset $M \subseteq E(G)$ such that every vertex of G is incident with exactly one edge of M.

More generally, a magic labelling (with sum t) is a function $E(G) \to \mathbb{Z}_{\geq 0}$ such that for each vertex v, the sum of the labels of the edges incident to v equals t.

Thus perfect matchings are magic labellings of sum t=1.

A perfect matching of a graph G is a subset $M \subseteq E(G)$ such that every vertex of G is incident with exactly one edge of M.

More generally, a magic labelling (with sum t) is a function $E(G) \to \mathbb{Z}_{\geq 0}$ such that for each vertex v, the sum of the labels of the edges incident to v equals t.

Thus perfect matchings are magic labellings of sum t=1.

The perfect matching polytope associated to a graph G is the convex hull in $\mathbb{R}^{E(G)}$ of the incidence vectors of all perfect matchings of G.

Perfect Matchings of Grid Graphs

The $m \times n$ grid graph $\mathcal{G}(m,n)$ has vertex set $\{(i,j) \in \mathbb{Z}^2 : 0 \leq i < n, 0 \leq i \leq n, 0 \leq n, 0 \leq i \leq n, 0 \leq n, 0$ j < m and (i, j) and (i', j') are adjacent if |i - i'| + |j - j'| = 1.

Perfect Matchings of Grid Graphs

The $m \times n$ grid graph $\mathcal{G}(m,n)$ has vertex set $\{(i,j) \in \mathbb{Z}^2 : 0 \leq i < n, 0 \leq i \leq n, 0 \leq n, 0 \leq i \leq n, 0 \leq n, 0$ j < m} and (i, j) and (i', j') are adjacent if |i - i'| + |j - j'| = 1.

T(m,n,t) — number of magic labellings of $\mathcal{G}(m,n)$ with sum t $\mathcal{P}(m,n)$ — perfect matching polytope of $\mathcal{G}(m,n)$

Perfect Matchings of Grid Graphs

The $m \times n$ grid graph $\mathcal{G}(m,n)$ has vertex set $\{(i,j) \in \mathbb{Z}^2 : 0 \leq i < n, 0 \leq i \leq n, 0 \leq n, 0$ j < m and (i, j) and (i', j') are adjacent if |i - i'| + |j - j'| = 1.

T(m,n,t) — number of magic labellings of $\mathcal{G}(m,n)$ with sum t $\mathcal{P}(m,n)$ — perfect matching polytope of $\mathcal{G}(m,n)$

The number T(m, n, 1) of perfect matchings of $\mathcal{G}(m, n)$ can be interpreted as the number of domino tilings of an $m \times n$ board.

Perfect Matchings and Ehrhart Polynomials

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
\mathcal{P}(m,n) — perfect matching polytope of \mathcal{G}(m,n)
```

Note that $T(m, n, t) = L_{\mathcal{P}(m,n)}(t)$.

Perfect Matchings and Ehrhart Polynomials

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
\mathcal{P}(m,n) — perfect matching polytope of \mathcal{G}(m,n)
```

Note that $T(m, n, t) = L_{\mathcal{P}(m,n)}(t)$.

Theorem (BHS) Assume $m \leq n$. The perfect matching polytope $\mathcal{P}(m,n)$ is Gorenstein (of index k) if and only if one of the following holds:

- (1) m = 1 and n is even (in which case \mathcal{P} is a point)
- (2) m=2 (in which case k=2 if n=2, and k=3 for n>2)
- (3) m=3 and n is even (in which case k=5)
- (4) m = n = 4 (in which case k = 4).

Perfect Matchings and Ehrhart Polynomials

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
\mathcal{P}(m,n) — perfect matching polytope of \mathcal{G}(m,n)
```

Note that $T(m, n, t) = L_{\mathcal{P}(m,n)}(t)$.

Theorem (BHS) Assume $m \leq n$. The perfect matching polytope $\mathcal{P}(m,n)$ is Gorenstein (of index k) if and only if one of the following holds:

- (1) m = 1 and n is even (in which case \mathcal{P} is a point)
- (2) m=2 (in which case k=2 if n=2, and k=3 for n>2)
- (3) m=3 and n is even (in which case k=5)
- (4) m = n = 4 (in which case k = 4).

Theorem (BHS) If $\mathcal{P}(m,n)$ is Gorenstein then $\mathcal{P}(m,n)$ has a unimodal Ehrhart h-vector.

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m,n,1) — number of domino tilings of an m 	imes n board
```

Note that T(2, n, 1) is a shift of the Fibonacci sequence.

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
```

Note that T(2, n, 1) is a shift of the Fibonacci sequence.

Klarner-Pollack (1980) For fixed m, T(m, n, 1) satisfies a linear homogeneous recurrence relation.

 $\mathcal{G}(m,n) \longrightarrow m \times n$ grid graph T(m,n,t) — number of magic labellings of $\mathcal{G}(m,n)$ with sum t T(m, n, 1) — number of domino tilings of an $m \times n$ board

Note that T(2, n, 1) is a shift of the Fibonacci sequence.

Klarner-Pollack (1980) For fixed m, T(m, n, 1) satisfies a linear homogeneous recurrence relation.

Propp (2001) This recurrence relation for T(m, n, 1) satisfies the reciprocity relation

$$T(m, n, 1) = \begin{cases} (-1)^n T(m, -n - 2, 1) & \text{if } m \equiv 2 \bmod 4, \\ T(m, -n - 2, 1) & \text{otherwise.} \end{cases}$$

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
```

The natural correspondence between perfect matchings of $\mathcal{G}(m,n)$ and domino tilings begs the question whether there is an analogous construction for magic labellings of $\mathcal{G}(m,n)$.

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
```

The natural correspondence between perfect matchings of $\mathcal{G}(m,n)$ and domino tilings begs the question whether there is an analogous construction for magic labellings of $\mathcal{G}(m,n)$. Here's one option:

A domino stacking (of height t) of an $m \times n$ rectangular board is a collection of t domino tilings piled on top of one another.

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
```

The natural correspondence between perfect matchings of $\mathcal{G}(m,n)$ and domino tilings begs the question whether there is an analogous construction for magic labellings of $\mathcal{G}(m,n)$. Here's one option:

A domino stacking (of height t) of an $m \times n$ rectangular board is a collection of t domino tilings piled on top of one another.

Note that the number of such domino stackings is $T(m, n, 1)^t$.

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
```

The natural correspondence between perfect matchings of $\mathcal{G}(m,n)$ and domino tilings begs the question whether there is an analogous construction for magic labellings of $\mathcal{G}(m,n)$. Here's one option:

A domino stacking (of height t) of an $m \times n$ rectangular board is a collection of t domino tilings piled on top of one another.

Note that the number of such domino stackings is $T(m, n, 1)^t$.

Proposition (BHS) Every magic labelling of sum t of $\mathcal{G}(m,n)$ can be realized as a domino stacking of height t of an $m \times n$ rectangular board.

```
\mathcal{G}(m,n) — m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
T(m,n,1)^t — number of domino stackings of height t of an m \times n board
```

Theorem (BHS) For fixed m and t, each of the sequences $(T(m, n, t))_{n>0}$ and $(T(m, n, 1)^t)_{n>0}$ is given by a linear homogeneous recurrence relation.

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
T(m,n,1)^t — number of domino stackings of height t of an m \times n board
```

Theorem (BHS) For fixed m and t, each of the sequences $(T(m, n, t))_{n>0}$ and $(T(m, n, 1)^t)_{n>0}$ is given by a linear homogeneous recurrence relation.

Corollary (Riordan 1962) (Fixed) powers of Fibonacci numbers can be encoded by a linear homogeneous recurrence relation.

```
\mathcal{G}(m,n) \longrightarrow m \times n grid graph
T(m,n,t) — number of magic labellings of \mathcal{G}(m,n) with sum t
T(m, n, 1) — number of domino tilings of an m \times n board
T(m,n,1)^t — number of domino stackings of height t of an m \times n board
```

Theorem (BHS) For fixed m and t, each of the sequences $(T(m, n, t))_{n>0}$ and $(T(m, n, 1)^t)_{n>0}$ is given by a linear homogeneous recurrence relation.

Corollary (Riordan 1962) (Fixed) powers of Fibonacci numbers can be encoded by a linear homogeneous recurrence relation.

Propp's reciprocity relation naturally extends to $(T(m, n, 1)^t)_{n>0}$.

ightharpoonup Do all perfect matching polytopes $\mathcal{P}(m,n)$ have unimodal Ehrhart h-vectors? (We can compute Ehrhart h-vectors up to $\mathcal{P}(4,5)$.)

- \triangleright Do all perfect matching polytopes $\mathcal{P}(m,n)$ have unimodal Ehrhart h-vectors? (We can compute Ehrhart h-vectors up to $\mathcal{P}(4,5)$.)
- ► Which higher-dimensional grid graphs have associated Gorenstein polytopes? (The k-dimensional cube graph is one example. We suspect there are not too many others.)

- \triangleright Do all perfect matching polytopes $\mathcal{P}(m,n)$ have unimodal Ehrhart h-vectors? (We can compute Ehrhart h-vectors up to $\mathcal{P}(4,5)$.)
- ► Which higher-dimensional grid graphs have associated Gorenstein polytopes? (The k-dimensional cube graph is one example. We suspect there are not too many others.)
- Do Riordan's recurrence relations for powers of Fibonacci numbers extend to $T(m, n, 1)^t$?

- \triangleright Do all perfect matching polytopes $\mathcal{P}(m,n)$ have unimodal Ehrhart h-vectors? (We can compute Ehrhart h-vectors up to $\mathcal{P}(4,5)$.)
- ► Which higher-dimensional grid graphs have associated Gorenstein polytopes? (The k-dimensional cube graph is one example. We suspect there are not too many others.)
- Do Riordan's recurrence relations for powers of Fibonacci numbers extend to $T(m, n, 1)^t$?
- ls there a recurrence relation for the number T(m, n, t) of magic labellings of $\mathcal{G}(m,n)$ with sum t when m and n are both allowed to vary?