```
In [2]: import pandas as pd
         from chembl webresource_client.new_client import new_client
In [3]: target = new client.target
         target query = target.search('CHEMBL313')
         targets = pd.DataFrame.from dict(target query)
         targets
Out[3]:
             cross_references
                               organism
                                                pref_name score species_group_flag target_chembl_id
                                                                                                            target_components
                                                                                                                                 target_type tax_id
                                                                                                           [{'accession': 'P31652',
                                                                                                                                     SINGLE
                                                 Serotonin
                                   Rattus
                                                             14.0
                                                                                           CHEMBL313
                                                                                                                                              10116
          0
                           []
                                                                                False
                              norvegicus
                                                transporter
                                                                                                         'component descriptio...
                                                                                                                                    PROTEIN
                                               Monoamine
                                               transporters;
                                                                                                           [{'accession': 'P31652',
                                                                                                                                 SELECTIVITY
                                   Rattus
                                                             11.0
                                                                                       CHEMBL2094252
                                                                                                                                              10116
          1
                                                                                False
                              norvegicus
                                               serotonin &
                                                                                                         'component_descriptio...
                                                                                                                                     GROUP
                                                 dopamine
                                               Monoamine
                                               transporters;
                                                                                                           [{'accession': 'P31652',
                                   Rattus
                                                                                                                                 SELECTIVITY
          2
                                                             11.0
                                                                                False
                                                                                       CHEMBL2096672
                                                                                                                                              10116
                              norvegicus
                                         Norepinephrine &
                                                                                                         'component_descriptio...
                                                                                                                                     GROUP
                                                    serot...
         selected_target = targets.target_chembl_id[0]
         selected target
Out[4]:
          'CHEMBL313'
In [5]: activity = new_client.activity
         res = activity.filter(target_chembl_id=selected_target).filter(standard_type="IC50")
         df = pd.DataFrame.from_dict(res)
In [7]: print(len(res))
        1680
         df.head()
In [11]:
```

Out[11]:		action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	assay_
	0	None	None	32389	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	
	1	None	None	32393	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	
0	None	None	32520		CHEMBL806971	Binding affinity at serotonin transporter from	В	None		
	3	None	None	33547	П	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	
	4	None	None	33628	П	CHEMBL806971	Binding affinity at serotonin transporter from	В	None	

5 rows × 46 columns

In [15]: df.tail()

out[15]:		action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession	a
	1675	{'action_type': 'INHIBITOR', 'description': 'N	None	24966872		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	
	1676	{'action_type': 'INHIBITOR', 'description': 'N	None	24966873		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	
	1677	{'action_type': 'INHIBITOR', 'description': 'N	None	24966874		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	
	1678	{'action_type': 'INHIBITOR', 'description': 'N	None	24966875		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	
	1679	{'action_type': 'INHIBITOR', 'description': 'N	None	24966876		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	
Į	5 rows	× 46 columns								
	4								I	

In [20]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1680 entries, 0 to 1679
Data columns (total 46 columns):

	columns (total 46 columns)		
#	Column	Non-Null Count	Dtype
0	action_type	29 non-null	object
1	activity_comment	23 non-null	object
2	activity_id	1680 non-null	int64
3	activity_properties	1680 non-null	object
4	assay_chembl_id	1680 non-null	object
5	assay_description	1680 non-null	object
6	assay_type	1680 non-null	object
7	assay_variant_accession	0 non-null	object
8	assay_variant_mutation	0 non-null	object
9	bao_endpoint	1680 non-null	object
10	bao_format	1680 non-null	object
11	bao_label	1680 non-null	object
12	canonical_smiles	1680 non-null	object
13	data_validity_comment	17 non-null	object
14	data_validity_description	17 non-null	object
15	document_chembl_id	1680 non-null	object
16	document_journal	1677 non-null	object
17	document_year	1680 non-null	int64
18	ligand_efficiency	1115 non-null	object
19	molecule_chembl_id	1680 non-null	object
20	molecule_pref_name	164 non-null	object
21	<pre>parent_molecule_chembl_id</pre>	1680 non-null	object
22	pchembl_value	1523 non-null	object
23	potential_duplicate	1680 non-null	int64
24	qudt_units	1669 non-null	object
25	record_id	1680 non-null	int64
26	relation	1657 non-null	object
27	src_id	1680 non-null	int64
28	standard_flag	1680 non-null	int64
29	standard_relation	1657 non-null	object
30	standard_text_value	0 non-null	object
31	standard_type	1680 non-null	object
32	standard_units	1669 non-null	object
33	standard_upper_value	0 non-null	object
34	standard_value	1657 non-null	object
35	target_chembl_id	1680 non-null	object
36	target_organism	1680 non-null	object

```
1680 non-null
         37 target pref name
                                                       object
         38 target tax id
                                        1680 non-null
                                                       object
         39 text value
                                        0 non-null
                                                       object
                                        0 non-null
                                                       object
         40 toid
         41 type
                                        1680 non-null object
                                       1626 non-null object
         42 units
         43 uo units
                                       1669 non-null object
         44 upper value
                                        0 non-null
                                                       obiect
                                       1657 non-null object
         45 value
        dtypes: int64(6), object(40)
        memory usage: 603.9+ KB
In [22]: df.columns
Out[22]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay variant mutation', 'bao endpoint',
                 'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                'document year', 'ligand efficiency', 'molecule chembl id',
                 'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                 'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                'standard_value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtype='object')
In [25]: df2 = df.dropna(subset=["standard value", "canonical smiles"])
         df2
In [27]:
```

Out[27]:

•	action_type	activity_comment	activity_id	activity_properties	assay_chembl_id	assay_description	assay_type	assay_variant_accession as
0	None	None	32389	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None
1	None	None	32393	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None
2	None	None	32520	0	CHEMBL806971	Binding affinity at serotonin transporter from	В	None
3	None	None	33547	D	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None
4	None	None	33628	D	CHEMBL806971	Binding affinity at serotonin transporter from	В	None
•••	•••							
1675	{'action_type': 'INHIBITOR', 'description': 'N	None	24966872		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None
1676	{'action_type': 'INHIBITOR', 'description': 'N	None	24966873		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None
1677	{'action_type': 'INHIBITOR', 'description': 'N	None	24966874		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None
1678	{'action_type': 'INHIBITOR', 'description': 'N	None	24966875		CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None

Table Chember Chembe	ant_accession a								
<pre>In [30]: len(df2.canonical_smiles.unique())</pre>	None								
Out[30]: 1370	<pre>len(df2.canonical_smiles.unique())</pre>								
<pre>In [34]: df2_nr = df2.drop_duplicates(subset="canonical_smiles", keep="first").reset_index(drop=True)</pre>									

In [37]: df2_nr

٦		4	Г	\supset	\neg	٦	
J	и	ı.	П	0	/	- 1	

•	action_type	activity_comment	activity_id	activity_properties	$as say_chembl_id$	$as say_description$	assay_type	assay_variant_accession	n a:
0	None	None	32389	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	è
1	None	None	32393	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	ē
2	None	None	32520	О	CHEMBL806971	Binding affinity at serotonin transporter from	В	None	Э
3	None	None	33547	0	CHEMBL804187	Inhibition of [3H]peroxitine binding to rat co	В	None	ē
4	None	None	33628	0	CHEMBL806971	Binding affinity at serotonin transporter from	В	None	9
•••									
1365	{'action_type': 'INHIBITOR', 'description': 'N	None	23295742	[{'comments': None, 'relation': '=', 'result_f	CHEMBL4840616	Inhibition of serotonin transporter expressed	В	None	è
1366	{'action_type': 'INHIBITOR', 'description': 'N	None	23295743	[{'comments': None, 'relation': '=', 'result_f	CHEMBL4840616	Inhibition of serotonin transporter expressed	В	None	j
1367	{'action_type': 'INHIBITOR', 'description': 'N	None	24708348	[{'comments': None, 'relation': '=', 'result_f	CHEMBL5109316	Displacement of [3H]-5HT from rat SERT express	В	None	j
1368	{'action_type': 'INHIBITOR', 'description': 'N	None	24966872	[]	CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	9

	action_type	activity_comment	activity_id	activity_properties	assay_cnembi_id	assay_description	assay_type	assay_variant_accession	a
1369	{'action_type': 'INHIBITOR', 'description': 'N	None	24966873	D	CHEMBL5217326	Inhibition of serotonin transporter in rat bra	В	None	

1370 rows × 46 columns

In [41]: df2_nr.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1370 entries, 0 to 1369
Data columns (total 46 columns):

Data	columns (total 46 columns)	:	
#	Column	Non-Null Count	Dtype
0	action_type	25 non-null	object
1	activity_comment	0 non-null	object
2	activity_id	1370 non-null	int64
3	activity_properties	1370 non-null	object
4	assay_chembl_id	1370 non-null	object
5	assay_description	1370 non-null	object
6	assay_type	1370 non-null	object
7	assay_variant_accession	0 non-null	object
8	assay_variant_mutation	0 non-null	object
9	bao_endpoint	1370 non-null	object
10	bao_format	1370 non-null	object
11	bao_label	1370 non-null	object
12	canonical_smiles	1370 non-null	object
13	data_validity_comment	12 non-null	object
14	data_validity_description	12 non-null	object
15	document_chembl_id	1370 non-null	object
16	document_journal	1367 non-null	object
17	document_year	1370 non-null	int64
18	ligand_efficiency	919 non-null	object
19	<pre>molecule_chembl_id</pre>	1370 non-null	object
20	molecule_pref_name	68 non-null	object
21	<pre>parent_molecule_chembl_id</pre>	1370 non-null	object
22	pchembl_value	1244 non-null	object
23	<pre>potential_duplicate</pre>	1370 non-null	int64
24	qudt_units	1370 non-null	object
25	record_id	1370 non-null	int64
26	relation	1370 non-null	object
27	src_id	1370 non-null	int64
28	standard_flag	1370 non-null	int64
29	standard_relation	1370 non-null	object
30	standard_text_value	0 non-null	object
31	standard_type	1370 non-null	object
32	standard_units	1370 non-null	object
33	standard_upper_value	0 non-null	object
34	standard_value	1370 non-null	object
35	target_chembl_id	1370 non-null	object
36	target_organism	1370 non-null	object

```
37 target pref name
                                        1370 non-null
                                                       object
         38 target tax id
                                       1370 non-null
                                                       object
         39 text value
                                        0 non-null
                                                       object
         40 toid
                                        0 non-null
                                                       object
         41 type
                                        1370 non-null object
                                                       object
         42 units
                                       1328 non-null
                                       1370 non-null object
         43 uo units
         44 upper value
                                       0 non-null
                                                       object
         45 value
                                       1370 non-null object
        dtypes: int64(6), object(40)
        memory usage: 492.5+ KB
In [45]: df2_nr .columns
Out[45]: Index(['action type', 'activity comment', 'activity id', 'activity properties',
                 'assay chembl id', 'assay description', 'assay type',
                 'assay variant accession', 'assay_variant_mutation', 'bao_endpoint',
                 'bao format', 'bao label', 'canonical smiles', 'data validity comment',
                'data validity description', 'document chembl id', 'document journal',
                'document year', 'ligand efficiency', 'molecule chembl id',
                 'molecule pref name', 'parent molecule chembl id', 'pchembl value',
                 'potential duplicate', 'qudt units', 'record id', 'relation', 'src id',
                 'standard flag', 'standard relation', 'standard text value',
                 'standard type', 'standard units', 'standard upper value',
                 'standard_value', 'target_chembl_id', 'target_organism',
                'target_pref_name', 'target_tax_id', 'text_value', 'toid', 'type',
                'units', 'uo units', 'upper value', 'value'],
               dtype='object')
```

Data pre-processing of the bioactivity data

Combine the 3 columns (molecule_chembl_id,canonical_smiles,standard_value) and bioactivity_class into a DataFrame

```
In [49]: selection = ['molecule_chembl_id','canonical_smiles','standard_value']
    df3 = df2_nr[selection]
    df3
```

1 CHEMBL19226 O=: 2 CHEMBL162006 3 CHEMBL19203 O=: 4 CHEMBL351215 1365 CHEMBL4851065 N# 1366 CHEMBL4864918 N#		molecule_chembl_id	canonical_smiles	standard_value
	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.4
	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2cccc2N1CCN1CCC(Cc2c[nH]c3c	35.0
	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.0
	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.8
	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.0
	•••			
	1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	4.2
	1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	0.53
	1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	740.0
	1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	8.2
	1369	CHEMBL5220872	O=C(c1ccc(Cl)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	17.0

1370 rows × 3 columns

Labeling compounds as either being active, inactive or intermediate

The bioactivity data is in the IC50 unit. Compounds having values of less than 1000 nM will be considered to be active while those greater than 10,000 nM will be considered to be inactive. As for those values in between 1,000 and 10,000 nM will be referred to as intermediate.

```
In [53]: bioactivity_threshold = []
for i in df3.standard_value:
    if float(i) >= 10000:
        bioactivity_threshold.append("inactive")
    elif float(i) <= 1000:
        bioactivity_threshold.append("active")
    else:
        bioactivity_threshold.append("intermediate")</pre>
```

```
In [57]: bioactivity_class = pd.Series(bioactivity_threshold, name='class')
    df5 = pd.concat([df3, bioactivity_class], axis=1)
    df5
```

Out[57]:	r	molecule_chembl_id	canonical_smiles	standard_value	class
	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.4	active
	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2cccc2N1CCN1CCC(Cc2c[nH]c3c	35.0	active
	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.0	active
	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.8	active
	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.0	active
	•••				
	1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	4.2	active
	1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	0.53	active
	1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	740.0	active
	1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	8.2	active
	1369	CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	17.0	active

1370 rows × 4 columns

```
In [65]: df5.to_csv('Serotonin_03_bioactivity_data_curated.csv', index=False)
In [67]: df = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\Serotonin\Serotonin_03_bioactivity_data_curated.csv")
df
```

	molecule_chembl_id	canonical_smiles	standard_value	class
C	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.40	active
1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	35.00	active
2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.00	active
3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.80	active
4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.00	active
•••				
1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	4.20	active
1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	0.53	active
1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	740.00	active
1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	8.20	active
1369	CHEMBL5220872	O=C(c1ccc(Cl)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	17.00	active

1370 rows × 4 columns

Out[67]:

```
In [70]: df_no_smiles = df.drop(columns='canonical_smiles')
In [73]: smiles = []
for i in df.canonical_smiles.tolist():
    cpd = str(i).split('.')
    cpd_longest = max(cpd, key = len)
    smiles.append(cpd_longest)

smiles = pd.Series(smiles, name = 'canonical_smiles')

In [75]: df_clean_smiles = pd.concat([df_no_smiles,smiles], axis=1)
    df_clean_smiles
```

	molecule_chembl_id	standard_value	class	canonical_smiles
0	CHEMBL18501	1.40	active	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c
1	CHEMBL19226	35.00	active	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c
2	CHEMBL162006	761.00	active	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1
3	CHEMBL19203	0.80	active	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3
4	CHEMBL351215	102.00	active	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1
•••				
1365	CHEMBL4851065	4.20	active	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=
1366	CHEMBL4864918	0.53	active	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5
1367	CHEMBL5175117	740.00	active	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc
1368	CHEMBL5220371	8.20	active	O=C(c1ccc(F)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)
1369	CHEMBL5220872	17.00	active	O=C(c1ccc(Cl)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F

1370 rows \times 4 columns

Out[75]:

Calculate Lipinski descriptors

Christopher Lipinski, a scientist at Pfizer, came up with a set of rule-of-thumb for evaluating the druglikeness of compounds. Such druglikeness is based on the Absorption, Distribution, Metabolism and Excretion (ADME) that is also known as the pharmacokinetic profile. Lipinski analyzed all orally active FDA-approved drugs in the formulation of what is to be known as the Rule-of-Five or Lipinski's Rule.

The Lipinski's Rule stated the following:

Molecular weight < 500 Dalton Octanol-water partition coefficient (LogP) < 5 Hydrogen bond donors < 5 Hydrogen bond acceptors < 10

```
In [79]: import numpy as np
from rdkit import Chem
from rdkit.Chem import Descriptors, Lipinski
```

Calculate descriptors

```
In [84]: # Inspired by: https://codeocean.com/explore/capsules?query=tag:data-curation
         def lipinski(smiles, verbose=False):
             moldata= []
             for elem in smiles:
                 mol=Chem.MolFromSmiles(elem)
                 moldata.append(mol)
             baseData= np.arange(1,1)
             i=0
             for mol in moldata:
                 desc MolWt = Descriptors.MolWt(mol)
                 desc MolLogP = Descriptors.MolLogP(mol)
                 desc NumHDonors = Lipinski.NumHDonors(mol)
                 desc_NumHAcceptors = Lipinski.NumHAcceptors(mol)
                 row = np.array([desc_MolWt,
                                  desc MolLogP,
                                  desc_NumHDonors,
                                  desc NumHAcceptors])
                 if(i==0):
                      baseData=row
                 else:
                     baseData=np.vstack([baseData, row])
                 i=i+1
             columnNames=["MW","LogP","NumHDonors","NumHAcceptors"]
             descriptors = pd.DataFrame(data=baseData,columns=columnNames)
```

return descriptors

In [87]: df_lipinski = lipinski(df_clean_smiles.canonical_smiles)
 df_lipinski

Out[87]:

	MW	LogP	NumHDonors	NumHAcceptors
0	477.605	5.31370	1.0	3.0
1	489.616	5.43740	1.0	3.0
2	407.504	5.98300	0.0	2.0
3	457.599	5.39930	1.0	3.0
4	399.578	6.13740	0.0	2.0
•••				
1365	477.568	4.69148	1.0	6.0
1366	491.595	5.08158	1.0	6.0
1367	583.685	4.47470	5.0	6.0
1368	445.941	5.17410	2.0	2.0
1369	462.396	5.68840	2.0	2.0

1370 rows × 4 columns

Combine DataFrames

In [95]: df_lipinski

Out[95]:		MW	LogP	NumHDonors	NumHAcceptors
	0	477.605	5.31370	1.0	3.0
	1	489.616	5.43740	1.0	3.0
	2	407.504	5.98300	0.0	2.0
	3	457.599	5.39930	1.0	3.0
	4	399.578	6.13740	0.0	2.0
	•••	•••	•••		
	1365	477.568	4.69148	1.0	6.0
	1366	491.595	5.08158	1.0	6.0
	1367	583.685	4.47470	5.0	6.0
	1368	445.941	5.17410	2.0	2.0

2.0

2.0

1370 rows × 4 columns

1369 462.396 5.68840

In [97]: df_lipinski.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1370 entries, 0 to 1369
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	MW	1370 non-null	float64
1	LogP	1370 non-null	float64
2	NumHDonors	1370 non-null	float64
3	NumHAcceptors	1370 non-null	float64

dtypes: float64(4)
memory usage: 42.9 KB

In [99]: df_lipinski.describe()

_			
\cap	114	1 00 1	
\cup	uч	22	

	MW	LogP	NumHDonors	NumHAcceptors
count	1370.000000	1370.000000	1370.000000	1370.000000
mean	358.400109	4.277567	0.734307	2.997810
std	92.309515	1.352354	0.921018	1.281148
min	159.232000	-0.968500	0.000000	1.000000
25%	291.438000	3.371600	0.000000	2.000000
50%	359.147500	4.233850	1.000000	3.000000
75%	424.972000	5.146900	1.000000	4.000000
max	952.075000	10.314500	12.000000	13.000000

In [102... df

\cap		+	г	1	0	1	
U	u	L	ш	Т	U	\angle	

	molecule_chembl_id	canonical_smiles	standard_value	class
0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.40	active
1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	35.00	active
2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.00	active
3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.80	active
4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.00	active
•••				
1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	4.20	active
1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	0.53	active
1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	740.00	active
1368	CHEMBL5220371	O=C(c1ccc(F)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	8.20	active
1369	CHEMBL5220872	O=C(c1ccc(Cl)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	17.00	active

1370 rows × 4 columns

In [104... df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1370 entries, 0 to 1369 Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	<pre>molecule_chembl_id</pre>	1370 non-null	object
1	canonical_smiles	1370 non-null	object
2	standard_value	1370 non-null	float64
3	class	1370 non-null	object
		4 . 4	

dtypes: float64(1), object(3)

memory usage: 42.9+ KB

ut[106		standard_value
	count	1.370000e+03
	mean	9.394356e+03
	std	1.033348e+05
	min	3.000000e-02
	25%	4.713500e+01
	50%	4.970000e+02
	75%	2.237500e+03

max

combine the 2 DataFrame

3.600000e+06

```
In [205... df_combined = pd.concat([df,df_lipinski], axis=1)
```

In [207... df_combined

\sim		4	г.	\neg	\sim	\neg	
U	u	τ	ш	Z	U	/	

	molecule_chembl_id	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	NumHA
0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.40	active	477.605	5.31370	1.0	
1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	35.00	active	489.616	5.43740	1.0	
2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.00	active	407.504	5.98300	0.0	
3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.80	active	457.599	5.39930	1.0	
4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.00	active	399.578	6.13740	0.0	
•••								
1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	4.20	active	477.568	4.69148	1.0	
1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	0.53	active	491.595	5.08158	1.0	
1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	740.00	active	583.685	4.47470	5.0	
1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	8.20	active	445.941	5.17410	2.0	
1369	CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	17.00	active	462.396	5.68840	2.0	

1370 rows × 8 columns

1370 rows × 8 columns

In [210...

df_combined.head()

Out[210		molecule_chembl_id	canonical_smiles	standard_value	class	MW	LogP	NumHDonors	NumHAccepto
	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	1.4	active	477.605	5.3137	1.0	
	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	35.0	active	489.616	5.4374	1.0	
	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	761.0	active	407.504	5.9830	0.0	
	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	0.8	active	457.599	5.3993	1.0	
	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	102.0	active	399.578	6.1374	0.0	
	4								-
Tn [212	dҒ	combined info()							

In [212... df_combined.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1370 entries, 0 to 1369 Data columns (total 8 columns):

	•	•	
#	Column	Non-Null Count	Dtype
0	<pre>molecule_chembl_id</pre>	1370 non-null	object
1	canonical_smiles	1370 non-null	object
2	standard_value	1370 non-null	float64
3	class	1370 non-null	object
4	MW	1370 non-null	float64
5	LogP	1370 non-null	float64
6	NumHDonors	1370 non-null	float64
7	NumHAcceptors	1370 non-null	float64

dtypes: float64(5), object(3)

memory usage: 85.8+ KB

In [214... df_combined.describe()

Out[214...

	standard_value	MW	LogP	NumHDonors	NumHAcceptors
count	1.370000e+03	1370.000000	1370.000000	1370.000000	1370.000000
mean	9.394356e+03	358.400109	4.277567	0.734307	2.997810
std min	1.033348e+05	92.309515	1.352354	0.921018	1.281148
	3.000000e-02	159.232000	-0.968500	0.000000	1.000000
25%	4.713500e+01	291.438000	3.371600	0.000000	2.000000
50%	4.970000e+02	359.147500	4.233850	1.000000	3.000000
75% max	2.237500e+03	424.972000	5.146900	1.000000	4.000000
	3.600000e+06	952.075000	10.314500	12.000000	13.000000

Convert IC50 to pIC50

To allow IC50 data to be more uniformly distributed, we will convert IC50 to the negative logarithmic scale which is essentially -log10(IC50).

This custom function pIC50() will accept a DataFrame as input and will:

Take the IC50 values from the standard_value column and converts it from nM to M by multiplying the value by 10 Take the molar value and apply - log10 Delete the standard_value column and create a new pIC50 column

```
In [217... # https://github.com/chaninlab/estrogen-receptor-alpha-qsar/blob/master/02_ER_alpha_R05.ipynb

import numpy as np

def pIC50(input):
    pIC50 = []

    for i in input['standard_value_norm']:
        molar = i*(10**-9) # Converts nM to M
        pIC50.append(-np.log10(molar))

    input['pIC50'] = pIC50
    x = input.drop('standard_value_norm', 1)
```

```
return x
          df combined.standard value.describe()
In [219...
Out[219...
           count
                    1.370000e+03
                    9.394356e+03
           mean
                    1.033348e+05
           std
                    3.000000e-02
           min
                    4.713500e+01
           25%
           50%
                    4.970000e+02
           75%
                    2.237500e+03
                    3.600000e+06
           max
           Name: standard_value, dtype: float64
In [221...
          -np.log10( (10**-9)* 100000000 )
Out[221...
          1.0
           -np.log10( (10**-9)* 10000000000 )
In [223...
Out[223...
           -1.0
          def norm_value(input):
In [225...
              norm = []
              for i in input['standard_value']:
                  if i > 100000000:
                     i = 100000000
                   norm.append(i)
              input['standard_value_norm'] = norm
              x = input.drop('standard_value', axis=1)
               return x
```

We will first apply the norm_value() function so that the values in the standard_value column is normalized.

In [227...

df_norm = norm_value(df_combined)
df_norm

Out[227...

	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	standa
0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	active	477.605	5.31370	1.0	3.0	
1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	active	489.616	5.43740	1.0	3.0	
2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	active	407.504	5.98300	0.0	2.0	
3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	active	457.599	5.39930	1.0	3.0	
4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	active	399.578	6.13740	0.0	2.0	
•••						•••		
1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	active	477.568	4.69148	1.0	6.0	
1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	active	491.595	5.08158	1.0	6.0	
1367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	active	583.685	4.47470	5.0	6.0	
1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	active	445.941	5.17410	2.0	2.0	
1369	CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	active	462.396	5.68840	2.0	2.0	

1370 rows × 8 columns

In [229...

df_norm.standard_value_norm

```
Out[229...
                     1.40
                    35.00
           1
           2
                   761.00
           3
                     0.80
           4
                   102.00
                    . . .
                     4.20
           1365
           1366
                     0.53
           1367
                   740.00
                     8.20
           1368
           1369
                    17.00
           Name: standard_value_norm, Length: 1370, dtype: float64
          df_norm.standard_value_norm.describe()
In [236...
Out[236...
           count
                    1.370000e+03
                    9.394356e+03
           mean
           std
                    1.033348e+05
                    3.000000e-02
           min
                    4.713500e+01
           25%
           50%
                    4.970000e+02
           75%
                    2.237500e+03
                    3.600000e+06
           max
           Name: standard_value_norm, dtype: float64
          print(df_norm.columns)
In [238...
         Index(['molecule_chembl_id', 'canonical_smiles', 'class', 'MW', 'LogP',
                 'NumHDonors', 'NumHAcceptors', 'standard_value_norm'],
               dtype='object')
          df_final = df_norm.drop('standard_value_norm', axis=1)
In [259...
          df_final
```

$\overline{}$		4	г	\neg	г	\cap	
U	u	L	L	4	D	y	

	molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC!
	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	active	477.605	5.31370	1.0	3.0	8.8538
	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	active	489.616	5.43740	1.0	3.0	7.4559
	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	active	407.504	5.98300	0.0	2.0	6.1186
	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	active	457.599	5.39930	1.0	3.0	9.0969
	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	active	399.578	6.13740	0.0	2.0	6.9914
	•••								
1	365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	active	477.568	4.69148	1.0	6.0	8.3767
1	366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	active	491.595	5.08158	1.0	6.0	9.2757
1	367	CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	active	583.685	4.47470	5.0	6.0	6.1307
1	368	CHEMBL5220371	O=C(c1ccc(F)c(Cl)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	active	445.941	5.17410	2.0	2.0	8.0861
1	369	CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	active	462.396	5.68840	2.0	2.0	7.7695

1370 rows × 8 columns

4

In [264...

df_final.pIC50.describe()

Out[264...

count 1370.000000 6.493037 mean std 1.267606 2.443697 min 5.650257 25% 50% 6.303647 75% 7.326662 10.522879 max

Name: pIC50, dtype: float64

In [271...

df_final.columns

Removing the 'intermediate' bioactivity class

Here, we will be removing the intermediate class from our data set.

Out[275...

	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors	pIC!
	O CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	active	477.605	5.31370	1.0	3.0	8.8538
	1 CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	active	489.616	5.43740	1.0	3.0	7.4559
2	2 CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	active	407.504	5.98300	0.0	2.0	6.1186
	3 CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	active	457.599	5.39930	1.0	3.0	9.0969
	4 CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	active	399.578	6.13740	0.0	2.0	6.9914
•								
136	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	active	477.568	4.69148	1.0	6.0	8.3767
136	6 CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	active	491.595	5.08158	1.0	6.0	9.2757
136	7 CHEMBL5175117	O=C(/C=C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C=C/c1cc	active	583.685	4.47470	5.0	6.0	6.1307
136	8 CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	active	445.941	5.17410	2.0	2.0	8.0861
136	9 CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	active	462.396	5.68840	2.0	2.0	7.7695

1009 rows × 8 columns

df_2class.to_csv('Serotonin_04_bioactivity_data_3class_pIC50.csv')

Exploratory Data Analysis (Chemical Space Analysis) via Lipinski descriptors

```
import seaborn as sns
sns.set(style='ticks')
import matplotlib.pyplot as plt

In [286... plt.figure(figsize=(12, 10))
numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors', 'pIC50']
for i, column in enumerate(numeric_columns, 1):
    plt.subplot(2, 3, i) # 2 rows and 3 columns for better layout
    sns.histplot(df_2class[column], kde=True, bins=20) # kde=True for kernel density estimate
    plt.title(f'Histogram of {column}')
    plt.xlabel(column)
    plt.ylabel('Frequency')
    plt.tight_layout()
    plt.show()
```


Frequency of Bioactivity Classes

```
In [292... # Set figure size
    plt.figure(figsize=(8, 6))
    # Count plot with hue
    sns.countplot(x='class', hue='class', data=df_2class, palette='viridis')
# Add Labels and title
    plt.xlabel('Bioactivity Class')
    plt.ylabel('Frequency')
    plt.title('Frequency of Bioactivity Classes')
# Show plot
    plt.show()
```

Frequency of Bioactivity Classes


```
In [297... sns.pairplot(df_2class, hue='class', palette='dark')
# Show plot
plt.show()
```



```
In [299...
sns.pairplot(df_2class, vars=['NumHDonors', 'NumHAcceptors'], hue='class', palette='muted')
# Show plot
plt.show()
```



```
numeric_columns = ['MW', 'LogP', 'NumHDonors', 'NumHAcceptors']

# Set figure size
plt.figure(figsize=(12, 10))

# Loop through numeric columns and create scatter plots
for i, column in enumerate(numeric_columns, 1):
    plt.subplot(2, 2, i) # 2 rows, 2 columns layout
    sns.scatterplot(x=df_2class[column], y=df_2class['pIC50'], hue=df_2class['class'], palette='dark')
    plt.title(f'Scatter Plot: pIC50 vs {column}')
    plt.xlabel(column)
    plt.ylabel('pIC50')
# Adjust layout
```

plt.tight_layout()
plt.show()


```
In [310...
          plt.figure(figsize=(6.6, 5.6))
          sns.scatterplot(x='MW', y='LogP', data=df_2class, hue='class', size='pIC50',palette='colorblind', edgecolor='black', alpha=0.7)
          plt.xlabel('MW', fontsize=14, fontweight='bold')
          plt.ylabel('LogP', fontsize=14, fontweight='bold')
          plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0)
          plt.show()
                                                                                                   dass
             10
                                                                                                   active
                                                                                                   inactive
                                                                                                   pIC50
              8
                                                                                                   3.0
                                                                                                   4.5
                                                                                                   6.0
                                                                                                   7.5
              6
                                                                                                   9.0
         LogP
                                                                                                   10.5
             0
                     200
                              300
                                      400
                                              500
                                                      600
                                                               700
                                                                       800
                                                                                900
```

MW

```
In [325...
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'pIC50', data = df_2class, hue = 'class', palette = 'magma')
plt.xlabel('class', fontsize=14, fontweight='bold')
```

Out[325... Text(0.5, 0, 'class')

Statistical analysis | Mann-Whitney U Test

```
In [352... # https://machinelearningmastery.com/nonparametric-statistical-significance-tests-in-python/
from numpy.random import seed
from scipy.stats import mannwhitneyu

def mannwhitney(descriptor, verbose=False):
    # Seed the random number generator for reproducibility
    seed(1)
```

```
# Select relevant columns
              selection = [descriptor, 'class']
              df = df 2class[selection]
              # Split active and inactive classes
              active = df[df['class'] == 'active'][descriptor]
              inactive = df[df['class'] == 'inactive'][descriptor]
              # Perform Mann-Whitney U test
              stat, p = mannwhitneyu(active, inactive)
              # Interpret the result
              alpha = 0.05
              interpretation = 'Same distribution (fail to reject H0)' if p > alpha else 'Different distribution (reject H0)'
              # Store results in a DataFrame
              results = pd.DataFrame({
                  'Descriptor': [descriptor],
                  'Statistics': [stat],
                  'p': [p],
                  'alpha': [alpha],
                  'Interpretation': [interpretation]
              })
              # Save results to CSV
              filename = f'mannwhitneyu {descriptor}.csv'
              results.to_csv(filename, index=False)
              return results
In [354...
          df 2class.columns
Out[354... Index(['molecule chembl id', 'canonical smiles', 'class', 'MW', 'LogP',
                  'NumHDonors', 'NumHAcceptors', 'pIC50'],
                 dtype='object')
In [357...
         mannwhitney('pIC50')
```

```
Out [357... Descriptor Statistics p alpha Interpretation

O pIC50 127428.0 2.584761e-84 0.05 Different distribution (reject H0)
```

MW

```
In [372...
plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'MW', data = df_2class,hue = 'class' , palette = 'bright')
plt.xlabel('class', fontsize=14, fontweight='bold')
plt.ylabel('MW', fontsize=14, fontweight='bold')
```

Out[372... Text(0, 0.5, 'MW')

In [377...

mannwhitney('MW')

Out[377...

	Descriptor	Statistics	р	alpha	Interpretation
0	MW	81119.5	1.068780e-07	0.05	Different distribution (reject H0)

LogP

```
In [386... plt.figure(figsize=(5.5, 5.5))
sns.boxplot(x = 'class', y = 'LogP', data = df_2class,hue = 'class' , palette = 'cividis')
plt.xlabel(' class', fontsize=14, fontweight='bold')
plt.ylabel('LogP', fontsize=14, fontweight='bold')
```

Out[386... Text(0, 0.5, 'LogP')


```
In [390... mannwhitney('LogP')

Out[390... Descriptor Statistics p alpha Interpretation
```

Descriptor Statistics p alpha Interpretation

LogP 79842.5 8.449541e-07 0.05 Different distribution (reject H0)

NumHDonors

```
In [401... plt.figure(figsize=(5.5, 5.5))
    plt.figure(figsize=(5.5, 5.5))
    sns.boxplot(x = 'class', y = 'NumHDonors', data = df_2class,hue = 'class' , palette = 'magma')
    plt.xlabel(' class', fontsize=14, fontweight='bold')
    plt.ylabel('NumHDonors', fontsize=14, fontweight='bold')
Out[401... Text(0, 0.5, 'NumHDonors')
```

<Figure size 550x550 with 0 Axes>

Statistical analysis | Mann-Whitney U Test

In [409...

mannwhitney('NumHDonors')

Out[409...

	Descriptor	Statistics	р	alpha	Interpretation
0	NumHDonors	67788.0	0.16914	0.05	Same distribution (fail to reject H0)

NumHAcceptors

Statistical analysis | Mann-Whitney U Test

In [418... mannwhitney('NumHAcceptors')

Out[418...

DescriptorStatisticspalphaInterpretation0NumHAcceptors67966.00.1794620.05Same distribution (fail to reject H0)

Box Plots pIC50 values Taking a look at pIC50 values, the actives and inactives displayed statistically significant difference, which is to be expected since threshold values (IC50 < 1,000 nM = Actives while IC50 > 10,000 nM = Inactives, corresponding to pIC50 > 6 = Actives and pIC50 < 5 =

Inactives) were used to define actives and inactives.

Lipinski's descriptors Of the 4 Lipinski's descriptors (MW, LogP, NumHDonors and NumHAcceptors), only MW, LogP exhibited difference between the actives and inactives while the other descriptors (NumHDonors and NumHAcceptors) shows statistically significant same difference between actives and inactives.

In [430...

df3 = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\Serotonin\Serotonin_04_bioactivity_data_3class_pIC50.csv")

In [432...

df3

Out[432...

	Unnamed: 0	molecule_chembl_id	canonical_smiles	class	MW	LogP	NumHDonors	NumHAccep
0	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	active	477.605	5.31370	1.0	
1	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2cccc2N1CCN1CCC(Cc2c[nH]c3c	active	489.616	5.43740	1.0	
2	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	active	407.504	5.98300	0.0	
3	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	active	457.599	5.39930	1.0	
4	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	active	399.578	6.13740	0.0	
•••								
1004	1365	CHEMBL4851065	N#Cc1ccc2[nH]cc(CCCN3CCN(c4ccc(-n5ccc6occc6c5=	active	477.568	4.69148	1.0	
1005	1366	CHEMBL4864918	N#Cc1ccc2[nH]cc(CCCCN3CCN(c4ccc(-n5ccc6occc6c5	active	491.595	5.08158	1.0	
1006	1367	CHEMBL5175117	O = C(/C = C/c1ccc(O)cc1)NCCCCN(CCCNC(=O)/C = C/c1cc	active	583.685	4.47470	5.0	
1007	1368	CHEMBL5220371	O = C(c1ccc(F)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F)	active	445.941	5.17410	2.0	
1008	1369	CHEMBL5220872	O = C(c1ccc(CI)c(CI)c1)N1CCC(CNCCCc2c[nH]c3ccc(F	active	462.396	5.68840	2.0	

1009 rows × 9 columns

df3.head()

Out[435		Unnamed: molecule_chembl_id		canonical_smiles	class	MW	LogP	NumHDonors	NumHAcceptors
	0	0	CHEMBL18501	O=S1(=O)c2cccc3cccc(c23)N1CCN1CCC(CCc2c[nH]c3c	active	477.605	5.3137	1.0	3.0
	1	1	CHEMBL19226	O=S1(=O)c2ccccc2-c2ccccc2N1CCN1CCC(Cc2c[nH]c3c	active	489.616	5.4374	1.0	3.0
	2	2	CHEMBL162006	Fc1ccc(C(OCC2CCN(Cc3ccccc3)CC2)c2ccc(F)cc2)cc1	active	407.504	5.9830	0.0	2.0
	3	3	CHEMBL19203	O=S1(=O)c2cccc3cccc(c23)N1CCCCN1CC=C(c2c[nH]c3	active	457.599	5.3993	1.0	3.0
	4	4	CHEMBL351215	c1ccc(CCN2CCC(CCOC(c3ccccc3)c3ccccc3)CC2)cc1	active	399.578	6.1374	0.0	2.0

In [437...

df3.describe()

Out[437...

	Unnamed: 0	MW	LogP	NumHDonors	NumHAcceptors	pIC50
count	1009.000000	1009.000000	1009.000000	1009.000000	1009.000000	1009.000000
mean	703.633300	361.950905	4.245717	0.769078	3.061447	6.820464
std	411.081276	93.716762	1.339763	0.958046	1.366474	1.322238
min	0.000000	163.264000	-0.968500	0.000000	1.000000	2.443697
25%	338.000000	291.438000	3.371500	0.000000	2.000000	6.142668
50%	729.000000	362.344000	4.204300	1.000000	3.000000	6.739929
75%	1059.000000	430.542000	5.081580	1.000000	4.000000	7.769551
max	1369.000000	952.075000	10.314500	12.000000	13.000000	10.522879

```
In [457...
selection = ['canonical_smiles','molecule_chembl_id']
df3_selection = df3[selection]
df3_selection.to_csv('molecule.smi', sep='\t', index=False, header=False)
```

```
In [459... with open('molecule.smi', 'r') as file:
    for _ in range(5):
```

Preparing the X and Y Data Matrices

```
In [526... X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [527... X
```

$\cap \cup +$	ΓΕ27
ou t	04/

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

In [530... X.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 6946 entries, 0 to 6945

Columns: 882 entries, Name to PubchemFP880

dtypes: int64(881), object(1)

memory usage: 46.7+ MB

In [532... X.dtypes

```
Out[532...
          Name
                           object
           PubchemFP0
                            int64
          PubchemFP1
                            int64
          PubchemFP2
                            int64
           PubchemFP3
                            int64
                            . . .
           PubchemFP876
                            int64
           PubchemFP877
                            int64
           PubchemFP878
                            int64
          PubchemFP879
                            int64
           PubchemFP880
                            int64
          Length: 882, dtype: object
          X = X.drop(columns=['Name'])
In [534...
```

$\cap \cup +$	[E2/
ou t	1 2 2 4

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••							•••			
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

Y variable

```
In [537... y = df3['class']
```

```
In [539... y = y.map({'active': 1, 'inactive': 0})
```

Split dataset

```
In [545... print("Shape of X:", X.shape)
print("Shape of y:", y.shape)
```

```
Shape of X: (6946, 881)
         Shape of v: (1009,)
In [549... X = X.iloc[:y.shape[0], :] # Trim X to match y
In [551... print("Shape of X:", X.shape)
          print("Shape of y:", y.shape)
         Shape of X: (1009, 881)
         Shape of y: (1009,)
In [554...
         from sklearn.model selection import train test split
          X train, X test, y train, y test = train test split(X, y, test size=0.3, random state=42)
         from sklearn.preprocessing import StandardScaler
In [556...
          from sklearn.ensemble import RandomForestClassifier
          from sklearn.svm import SVC
          from sklearn.linear_model import LogisticRegression
          from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
         scaler = StandardScaler()
In [558...
          X_train_scaled = scaler.fit_transform(X train)
          X test scaled = scaler.transform(X test)
         lr = LogisticRegression(max_iter=600)
In [572...
In [574...
         lr.fit(X_train, y_train)
Out[574...
                 LogisticRegression
          LogisticRegression(max_iter=600)
         y_pred_lr = lr.predict(X_test)
In [576...
          y pred lr
```

```
Out[576...
     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1,
         print(classification report(y test, y pred lr))
In [586...
           precision
                  recall f1-score
                            support
          0
              0.15
                   0.05
                        0.07
                              41
              0.87
          1
                   0.96
                        0.91
                              262
      accuracy
                        0.83
                              303
      macro avg
                        0.49
                              303
              0.51
                   0.50
    weighted avg
              0.77
                   0.83
                        0.80
                              303
In [588...
     accuracy = accuracy score(y test, y pred lr)
     print(f"Logistic Regression Model Accuracy: {accuracy * 100:.2f}%")
    Logistic Regression Model Accuracy: 83.50%
    y train pred = lr.predict(X train)
In [590...
     train accuracy = accuracy score(v train, v train pred)
     print("Training Accuracy:", train_accuracy)
    Training Accuracy: 0.8796033994334278
    cm = confusion matrix(y test, y pred lr)
In [600...
     ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Greens")
     ax.xaxis.set ticklabels(['prediction label 1', 'prediction label 2'])
     ax.yaxis.set ticklabels(['targeted label 1', 'targeted label 2' ])
```


Logistic Regression Model Accuracy: 83.50%

DecisionTreeClassifier

```
from sklearn.tree import DecisionTreeClassifier
In [623...
          DT = DecisionTreeClassifier()
          DT.fit(X_train,y_train)
```

```
Out[623...
            DecisionTreeClassifier
        DecisionTreeClassifier()
        y_pred_DT = DT.predict(X test)
In [626...
         y pred DT
Out[626...
         array([1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1,
               1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
               0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
               1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1,
               1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1,
               1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
               1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1,
               0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
               print(classification report(y test,y pred DT))
In [629...
                    precision
                               recall f1-score
                                                support
                 0
                        0.21
                                 0.27
                                          0.24
                                                    41
                        0.88
                                 0.84
                                          0.86
                 1
                                                   262
           accuracy
                                          0.77
                                                   303
          macro avg
                        0.55
                                 0.56
                                          0.55
                                                    303
       weighted avg
                        0.79
                                 0.77
                                          0.78
                                                    303
        accuracy = accuracy score(y test, y pred DT)
In [631...
         print(f"DecisionTreeClassifier Model Accuracy: {accuracy * 100:.2f}%")
       DecisionTreeClassifier Model Accuracy: 76.57%
In [657... cm = confusion matrix(y test, y pred DT)
         ax = sns.heatmap(cm, annot=True, fmt='d', cmap="magma")
```

```
ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2' ])
ax.yaxis.set_ticklabels(['targeted_label_1', 'targeted_label_2' ])
```

Out[657... [Text(0, 0.5, 'targeted_label_1'), Text(0, 1.5, 'targeted_label_2')]

DecisionTreeClassifier Model Accuracy: 76.57%

RandomForestClassifier

```
In [695... rnf = RandomForestClassifier()
rnf.fit(X_train,y_train)
```

```
Out[695...
          RandomForestClassifier
       RandomForestClassifier()
       y pred rnf = rnf.predict(X test)
In [699...
       y pred rnf
Out[699...
       array([1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1,
             1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
             1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1,
             1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0,
             1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
             print(classification report(y test,y pred rnf))
In [702...
                 precision
                           recall f1-score
                                         support
               0
                     0.23
                            0.17
                                    0.19
                                            41
                     0.88
                                    0.89
              1
                            0.91
                                            262
         accuracy
                                    0.81
                                            303
        macro avg
                     0.55
                            0.54
                                    0.54
                                            303
      weighted avg
                     0.79
                            0.81
                                    0.80
                                            303
       accuracy = accuracy_score(y_test, y_pred_rnf)
In [723...
       print(f"RandomForestClassifier Model Accuracy: {accuracy * 100:.2f}%")
      RandomForestClassifier Model Accuracy: 80.86%
      cm = confusion matrix(y test, y pred rnf)
In [719...
       ax = sns.heatmap(cm, annot=True, fmt='d', cmap="Reds")
```

```
ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2'])
ax.yaxis.set_ticklabels(['targeted_label_1', 'targeted_label_2'])
```

Out[719... [Text(0, 0.5, 'targeted_label_1'), Text(0, 1.5, 'targeted_label_2')]

RandomForestClassifier Model Accuracy: 80.86%

K-Nearest Neighbors (KNN)

```
In [732... from sklearn.neighbors import KNeighborsClassifier
    knn = KNeighborsClassifier(n_neighbors=5)
    knn.fit(X_train,y_train)
```

```
Out[732...
        KNeighborsClassifier
      KNeighborsClassifier()
      y_pred_knn = knn.predict(X test)
In [734...
      y pred knn
Out[734...
      array([1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
           1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1,
           print(classification report(y test,y pred knn))
In [736...
               precision
                       recall f1-score
                                    support
             0
                  0.25
                         0.12
                               0.16
                                       41
                  0.87
             1
                         0.94
                               0.91
                                       262
        accuracy
                               0.83
                                      303
       macro avg
                  0.56
                         0.53
                               0.54
                                       303
     weighted avg
                  0.79
                         0.83
                               0.81
                                       303
      accuracy = accuracy_score(y_test, y_pred_knn)
In [740...
      print(f"KNeighborsClassifier Model Accuracy: {accuracy * 100:.2f}%")
     KNeighborsClassifier Model Accuracy: 83.17%
      cm = confusion matrix(y test, y pred knn)
In [751...
      ax = sns.heatmap(cm, annot=True, fmt='d', cmap="RdBu")
```

```
ax.xaxis.set_ticklabels(['prediction_label_1', 'prediction_label_2' ])
ax.yaxis.set_ticklabels(['targeted_label_1', 'targeted_label_2' ])
```

Out[751... [Text(0, 0.5, 'targeted_label_1'), Text(0, 1.5, 'targeted_label_2')]

KNeighborsClassifier Model Accuracy: 83.17%

```
In [755... df3_X = pd.read_csv(r"C:\Users\manoj\OneDrive\Desktop\New folder\archive\descriptors_output.csv")
In [757... df3_X
```

\cap		+	Γ	7	Е	\neg	
U	u	L	Н	/	D	/	

	Name	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	Pubche
0	CHEMBL130478	1	1	0	0	0	0	0	0	
1	CHEMBL336538	1	1	1	0	0	0	0	0	
2	CHEMBL339995	1	1	1	0	0	0	0	0	
3	CHEMBL341437	1	1	1	0	0	0	0	0	
4	CHEMBL130098	1	1	0	0	0	0	0	0	
•••										
6941	CHEMBL253998	1	1	1	0	0	0	0	0	
6942	CHEMBL502	1	1	1	0	0	0	0	0	
6943	CHEMBL3085398	1	1	1	0	0	0	0	0	
6944	CHEMBL13045	1	1	1	0	0	0	0	0	
6945	CHEMBL417799	1	1	0	0	0	0	0	0	

6946 rows × 882 columns

In [759...

\cap	+	Γ	7		\cap	
υu	L		/	Э)	

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••										
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 881 columns

Y variable

```
In [779... Y = df3['pIC50']
```

```
Out[779...
                   8.853872
                   7.455932
           2
                   6.118615
           3
                   9.096910
           4
                   6.991400
                     . . .
                   8.376751
           1004
           1005
                   9.275724
           1006
                   6.130768
           1007
                   8.086186
           1008
                   7.769551
          Name: pIC50, Length: 1009, dtype: float64
```

Combining X and Y variable

```
In [782... dataset3 = pd.concat([df3_X,df3_Y], axis=1)
    dataset3
```

ο.	. 4- 1	г –	7.0	\neg	
Uι	ΙLΙ	/	Ö	_	

	PubchemFP0	PubchemFP1	PubchemFP2	PubchemFP3	PubchemFP4	PubchemFP5	PubchemFP6	PubchemFP7	PubchemFP8	Pubcheml
0	1	1	0	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	
2	1	1	1	0	0	0	0	0	0	
3	1	1	1	0	0	0	0	0	0	
4	1	1	0	0	0	0	0	0	0	
•••			•••				•••		•••	
6941	1	1	1	0	0	0	0	0	0	
6942	1	1	1	0	0	0	0	0	0	
6943	1	1	1	0	0	0	0	0	0	
6944	1	1	1	0	0	0	0	0	0	
6945	1	1	0	0	0	0	0	0	0	

6946 rows × 882 columns

4

In [784...

from sklearn.model_selection import train_test_split
import lazypredict
from lazypredict.Supervised import LazyRegressor

In [785...

X.shape

Out[785...

(1009, 131)

In [786...

Remove low variance features

from sklearn.feature_selection import VarianceThreshold
selection = VarianceThreshold(threshold=(.8 * (1 - .8)))
X = selection.fit_transform(X)
X.shape

```
Out[786... (1009, 131)

In [787... X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=42)

In [799... clf = LazyRegressor(verbose=0,ignore_warnings=True, custom_metric=None)
    models_train,predictions_train = clf.fit(X_train, X_train, Y_train, Y_train)
    models_test,predictions_test = clf.fit(X_train, X_test, Y_train, Y_test)

98%| 41/42 [00:37<00:00, 2.76it/s]
```

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001666 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 393
[LightGBM] [Info] Number of data points in the train set: 807, number of used features: 131
[LightGBM] [Info] Start training from score 6.800314
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      42/42 [00:37<00:00, 1.12it/s]
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
'tuple' object has no attribute ' name '
Invalid Regressor(s)
 98%| 41/42 [00:35<00:00, 2.85it/s]
```

```
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001641 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force col wise=true`.
[LightGBM] [Info] Total Bins 393
[LightGBM] [Info] Number of data points in the train set: 807, number of used features: 131
[LightGBM] [Info] Start training from score 6.800314
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

```
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
      42/42 [00:36<00:00, 1.16it/s]
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
[LightGBM] [Warning] No further splits with positive gain, best gain: -inf
```

In [802...

predictions_train

Out[802...

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
DecisionTreeRegressor	0.45	0.54	0.89	0.06
ExtraTreeRegressor	0.45	0.54	0.89	0.07
ExtraTreesRegressor	0.45	0.54	0.89	2.82
Gaussian Process Regressor	0.45	0.54	0.89	0.40
XGBRegressor	0.45	0.54	0.89	0.39
RandomForestRegressor	0.39	0.49	0.93	2.43
BaggingRegressor	0.36	0.47	0.96	0.27
HistGradientBoostingRegressor	0.29	0.40	1.01	1.96
LGBMRegressor	0.25	0.37	1.04	0.58
GradientBoostingRegressor	0.15	0.29	1.10	0.95
KNeighborsRegressor	0.12	0.26	1.12	0.12
MLPRegressor	0.09	0.23	1.14	2.93
SVR	0.06	0.21	1.16	0.43
NuSVR	0.05	0.20	1.17	0.33
LinearRegression	0.04	0.19	1.18	0.20
TransformedTargetRegressor	0.04	0.19	1.18	0.16
Ridge	0.03	0.19	1.18	0.06
RidgeCV	0.02	0.18	1.19	0.23
HuberRegressor	0.01	0.17	1.19	0.29
LinearSVR	-0.02	0.15	1.21	0.30
PoissonRegressor	-0.05	0.12	1.23	0.09

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
SGDRegressor	-0.08	0.10	1.24	0.06
OrthogonalMatchingPursuit	-0.10	0.08	1.25	0.05
AdaBoostRegressor	-0.11	0.07	1.26	0.28
TweedieRegressor	-0.11	0.07	1.26	0.06
GammaRegressor	-0.11	0.07	1.26	0.26
LassoLarsIC	-0.13	0.06	1.27	0.30
Bayesian Ridge	-0.14	0.05	1.28	0.14
OrthogonalMatchingPursuitCV	-0.18	0.01	1.30	0.10
LarsCV	-0.18	0.01	1.30	0.65
DummyRegressor	-0.19	0.00	1.31	0.04
ElasticNet	-0.19	0.00	1.31	0.04
ElasticNetCV	-0.19	0.00	1.31	10.34
LassoLarsCV	-0.19	0.00	1.31	0.30
LassoLars	-0.19	0.00	1.31	0.04
Lasso	-0.19	0.00	1.31	0.04
LassoCV	-0.19	0.00	1.31	7.85
QuantileRegressor	-0.20	-0.00	1.31	0.37
PassiveAggressiveRegressor	-0.51	-0.26	1.47	0.05
KernelRidge	-32.21	-26.81	6.90	0.10
Lars	-900536249470.28	-754171176665.39	1136412.52	0.12
RANSACRegressor	-101657568799390718492672.00	-85135060719092728070144.00	381817006489.17	1.27

In [805...

predictions_test

Out[805...

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
NuSVR	-1.76	0.04	1.34	0.21
LassoLarsIC	-1.77	0.04	1.34	0.23
PoissonRegressor	-1.79	0.03	1.35	0.09
TweedieRegressor	-1.79	0.03	1.35	0.06
GammaRegressor	-1.79	0.03	1.35	0.06
BayesianRidge	-1.81	0.02	1.35	0.31
SVR	-1.82	0.02	1.36	0.28
OrthogonalMatchingPursuit	-1.83	0.01	1.36	0.05
GradientBoostingRegressor	-1.84	0.01	1.36	0.93
LassoLarsCV	-1.89	-0.01	1.37	0.29
LassoCV	-1.89	-0.01	1.37	8.46
Lasso	-1.89	-0.01	1.37	0.05
LassoLars	-1.89	-0.01	1.37	0.05
ElasticNetCV	-1.89	-0.01	1.37	8.98
ElasticNet	-1.89	-0.01	1.37	0.04
DummyRegressor	-1.89	-0.01	1.37	0.04
LarsCV	-1.89	-0.01	1.37	0.58
HuberRegressor	-1.90	-0.01	1.38	0.28
OrthogonalMatchingPursuitCV	-1.91	-0.01	1.38	0.10
QuantileRegressor	-1.92	-0.02	1.38	0.35
RidgeCV	-1.94	-0.02	1.39	0.23

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
Model				
AdaBoostRegressor	-2.00	-0.04	1.40	0.33
LinearSVR	-2.00	-0.05	1.40	0.28
Ridge	-2.02	-0.05	1.40	0.04
LinearRegression	-2.03	-0.06	1.41	0.32
TransformedTargetRegressor	-2.03	-0.06	1.41	0.21
SGDRegressor	-2.05	-0.06	1.41	0.06
HistGradientBoostingRegressor	-2.06	-0.06	1.41	1.87
LGBMRegressor	-2.06	-0.07	1.41	0.52
MLPRegressor	-2.13	-0.09	1.43	2.98
RandomForestRegressor	-2.19	-0.11	1.44	2.46
BaggingRegressor	-2.29	-0.15	1.47	0.32
KNeighborsRegressor	-2.34	-0.16	1.48	0.06
XGBRegressor	-2.78	-0.32	1.57	0.39
ExtraTreesRegressor	-3.05	-0.41	1.63	2.81
ExtraTreeRegressor	-3.08	-0.42	1.63	0.07
PassiveAggressiveRegressor	-3.21	-0.47	1.66	0.05
DecisionTreeRegressor	-3.21	-0.47	1.66	0.07
Gaussian Process Regressor	-23.90	-7.67	4.03	0.29
KernelRidge	-74.56	-25.32	7.02	0.08
Lars	-2040877408643.06	-710753326392.45	1154436.77	0.13
RANSACRegressor	-284837215412312294293504.00	-99197040193342585962496.00	431280731910.59	1.22

Bar plot of R-squared values

```
In [811... #train["R-Squared"] = [0 if i < 0 else i for i in train.iloc[:,0] ]

plt.figure(figsize=(5, 10))
    sns.set_theme(style="whitegrid")
    ax = sns.barplot(y=predictions_train.index, x="R-Squared", data=predictions_train,palette=sns.color_palette("Spectral", len(predictions_train))

Out[811... [(0.0, 1.0)]</pre>
```


Bar plot of RMSE values

```
plt.figure(figsize=(9, 12))
sns.set_theme(style="whitegrid")
ax = sns.barplot(y=predictions_train.index, x="RMSE", data=predictions_train,palette=sns.color_palette("seismic", len(predictions_train.index, x="RMSE")
ax.set(xlim=(0, 10))
```

Out[816... [(0.0, 10.0)]

Bar plot of calculation time

In []: