```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.tree import DecisionTreeRegressor
from \ sklearn.ensemble \ import \ Random ForestRegressor
from sklearn import metrics
from sklearn.metrics import mean_absolute_error,mean_squared_error,r2_score
from \ sklearn.metrics \ import \ accuracy\_score, confusion\_matrix
from google.colab import drive
drive.mount('/content/drive')
     Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).
df=pd.read_csv('/content/data.csv',encoding='unicode_escape')
```

df.head()

	stn_code	sampling_date	state	location	agency	type	so2	no2	rspm	spm	location_monitoring
0	150.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	4.8	17.4	NaN	NaN	
1	151.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	3.1	7.0	NaN	NaN	
2	152.0	February - M021990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.2	28.5	NaN	NaN	
3	150.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Residential, Rural and other Areas	6.3	14.7	NaN	NaN	
4	151.0	March - M031990	Andhra Pradesh	Hyderabad	NaN	Industrial Area	4.7	7.5	NaN	NaN	

```
df.shape
```

(21513, 13)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21513 entries, 0 to 21512
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype				
0	stn_code	12441 non-null	float64				
1	sampling_date	21513 non-null	object				
2	state	21513 non-null	object				
3	location	21513 non-null	object				
4	agency	12015 non-null	object				
5	type	20902 non-null	object				
6	so2	20976 non-null	float64				
7	no2	21112 non-null	float64				
8	rspm	20372 non-null	float64				
9	spm	11789 non-null	float64				
10	<pre>location_monitoring_station</pre>	20476 non-null	object				
11	pm2_5	0 non-null	float64				
12	date	21512 non-null	object				
dtyp	dtypes: float64(6), object(7)						

memory usage: 2.1+ MB

We can see so many null values are present in some columns

```
df.isnull().sum()
#there are alot of null values present in dataset
     stn_code
                                        9072
     sampling_date
     state
                                           0
     location
                                           0
     agency
                                        9498
                                        611
     type
                                        537
     so2
     no2
                                        401
                                       1141
     rspm
                                       9724
     spm
     {\tt location\_monitoring\_station}
                                       1037
     pm2_5
                                      21513
     date
                                          1
     dtype: int64
```

df.describe()

	stn_code	so2	no2	rspm	spm	pm2_5	\blacksquare
count	12441.000000	20976.000000	21112.000000	20372.000000	11789.000000	0.0	ıl.
mean	430.090025	7.178304	22.099697	79.188999	200.260378	NaN	
std	187.203952	6.913635	12.576709	36.526545	86.085966	NaN	
min	95.000000	0.900000	2.600000	3.000000	8.000000	NaN	
25%	234.000000	4.000000	12.200000	54.000000	139.000000	NaN	
50%	462.000000	5.000000	20.000000	76.000000	184.000000	NaN	
75%	580.000000	8.000000	30.000000	98.000000	252.000000	NaN	
max	758.000000	228.000000	334.900000	538.000000	1082.000000	NaN	

```
df.nunique()
#these are all the unique values present in dataFrame
```

```
stn_code
                                    50
{\tt sampling\_date}
                                 3366
state
                                    1
location
                                    25
agency
                                    4
type
                                     6
                                   416
so2
                                   720
no2
                                   497
rspm
                                   725
spm
location_monitoring_station
                                    74
pm2_5
                                    0
date
                                 3364
dtype: int64
```

df.columns

Here stn_code is Station code sampling_data is data for sample collection state=indian state location= location of sample collection agency type= type of area so2=sulphur dioxide concentration no2=nitrogen dioxide concentration rspm=respirable suspended particulate matter concentration spm = suspended particulate matter location_monitoring_station,pm2_5= particulate matter 2.5 date=date

Data Visualization

```
sns.pairplot(data=df)
```


df['state'].value_counts()
#viewing count of values present in the state column

Andhra Pradesh 21513 Name: state, dtype: int64

plt.figure(figsize=(15,6))
plt.xticks(rotation=90)
df.state.hist()
plt.xlabel('state')
plt.ylabel('frequencies')
plt.plot()

#the visualization shows us the count of states present in the dataset


```
df['type'].value_counts()
     Residential, Rural and other Areas
                                            7509
     Residential and others
                                            5515
     Industrial Area
                                            2864
     Industrial Areas
                                           2275
     Sensitive Area
                                           1457
     Sensitive Areas
                                            1282
     Name: type, dtype: int64
plt.figure(figsize=(15,6))
plt.xticks(rotation=90)
df.type.hist()
plt.xlabel('type')
plt.ylabel('frequencies')
plt.plot()
```

#the visualisation shows us the count of types in data

counts of residential areas are higher

```
df['agency'].value_counts()
```

Andhra Pradesh State Pollution Control Board 10835
Andhra Pradesh Pollution Control Board 610
National Environmental Engineering Research Institute 569
Andhra Pradesh State Pollution Control Bo 1
Name: agency, dtype: int64

```
plt.figure(figsize=(15,6))
plt.xticks(rotation=90)
df.agency.hist()
plt.xlabel('Agency')
plt.ylabel('frequencies')
plt.plot()
```



```
plt.figure(figsize=(30,10))
plt.xticks(rotation=90)
sns.barplot(x='state',y='so2',data=df);
```



```
plt.rcParams['figure.figsize']=(30,10)
df[['so2','state']].groupby(['state']).mean().sort_values(by='so2').plot.bar(color='purple')
plt.show()
```


Here we can see clearly which has highest sulphur dioxide in the air in increasing order

```
plt.figure(figsize=(30,10))
plt.xticks(rotation=90)
sns.barplot(x='state',y='no2',data=df);
```

```
We can see west bengal has highest level of no2 followed by Delhi
df[['no2','state']].groupby(['state']).mean().sort_values(by='no2').plot.bar(color='blue')
plt.show()
plt.figure(figsize=(30,10))
plt.xticks(rotation=90)
sns.barplot(x='state',y='rspm',data=df);
#delhi has higher rspm level compared to other states
df[['rspm','state']].groupby(['state']).mean().sort_values(by='rspm').plot.bar(color='orange')
plt.show()
plt.figure(figsize=(30,10))
plt.xticks(rotation=90)
sns.barplot(x='state',y='spm',data=df);
```


We can see Delhi has highest level of spm in air

```
plt.figure(figsize=(30,10))
plt.xticks(rotation=90)
sns.barplot(x='state',y='pm2_5',data=df);
```


df[['pm2_5','state']].groupby(['state']).mean().sort_values(by='pm2_5').plot.bar(color='brown')
plt.show()

So Delhi has highest level of pm2_5

→ Checking all null values in data

```
nullvalues=df.isnull().sum().sort_values(ascending=False)
```

nullvalues

pm2_5	21513
spm	9724
agency	9498
stn_code	9072
rspm	1141
<pre>location_monitoring_station</pre>	1037
type	611
so2	537
no2	401
date	1
sampling_date	0
state	0
location	0
dtype: int64	

null_value_percentage=(df.isnull().sum()/df.isnull().count()*100).sort_values(ascending=False)
#count(returns non-NAN values)

null_value_percentage

pm2_5	100.000000
spm	45.200576
agency	44.150049
stn_code	42.169851
rspm	5.303770
location_monitoring_station	4.820341
type	2.840143
so2	2.496165
no2	1.863989
date	0.004648
sampling_date	0.000000
state	0.000000
location	0.000000
dtype: float64	

missing_data_percentage=pd.concat([nullvalues,null_value_percentage],axis=1,keys=['Total','Percent'])

Concatenated total null values and its percentage of missing values for furthur imputation or column detection

missing_data_percentage

	Total	Percent	
pm2_5	21513	100.000000	ılı
spm	9724	45.200576	
agency	9498	44.150049	
stn_code	9072	42.169851	
rspm	1141	5.303770	
location_monitoring_station	1037	4.820341	
type	611	2.840143	
so2	537	2.496165	
no2	401	1.863989	
date	1	0.004648	
sampling_date	0	0.000000	
state	0	0.000000	
location	0	0.000000	

```
df.drop(['agency'],axis=1,inplace=True)
df.drop(['stn_code'],axis=1,inplace=True)
df.drop(['date'],axis=1,inplace=True)
df.drop(['sampling_date'],axis=1,inplace=True)
df.drop(['location_monitoring_station'],axis=1,inplace=True)
```

Here we have dropped some columns which had around half of null values and those which were not that important

```
df.isnull().sum()
#now checking the null values
                      0
     state
     location
                      0
     type
                    611
                    537
     so2
     no2
                    401
     rspm
                  1141
                  9724
     spm
     pm2_5
                 21513
     dtype: int64
```

df.head()

```
\blacksquare
           state
                  location
                                                      type so2
                                                                no2 rspm
                                                                             spm pm2_5
0 Andhra Pradesh Hyderabad Residential, Rural and other Areas
                                                           4.8
                                                                17.4
                                                                      NaN
                                                                            NaN
                                                                                   NaN
                                                                                           Ш
1 Andhra Pradesh Hyderabad
                                              Industrial Area 3.1
                                                                 7.0
                                                                      NaN
                                                                            NaN
                                                                                   NaN
2 Andhra Pradesh Hyderabad Residential, Rural and other Areas
                                                            6.2 28.5
                                                                      NaN
                                                                            NaN
                                                                                   NaN
3 Andhra Pradesh Hyderabad Residential, Rural and other Areas
                                                            6.3
                                                                                   NaN
                                                                14.7
                                                                      NaN
                                                                            NaN
4 Andhra Pradesh Hyderabad
                                              Industrial Area 4.7
                                                                 7.5 NaN
                                                                            NaN
                                                                                   NaN
```

```
df['location']=df['location'].fillna(df['location'].mode()[0])
df['type']=df['type'].fillna(df['type'].mode()[0])
#imputation of null values for categorical data
df.fillna(0,inplace=True)
\hbox{\tt\#replaced null values with 0 in numerical data}
df.isnull().sum()
     state
     location
                  0
     type
                  0
     so2
                  0
     no2
     rspm
                  0
     spm
```

df

pm2_5

dtype: int64

0

	state	location	type	so2	no2	rspm	spm	pm2_5	\blacksquare
0	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	4.8	17.4	0.0	0.0	0.0	ılı
1	Andhra Pradesh	Hyderabad	Industrial Area	3.1	7.0	0.0	0.0	0.0	
2	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.2	28.5	0.0	0.0	0.0	
3	Andhra Pradesh	Hyderabad	Residential, Rural and other Areas	6.3	14.7	0.0	0.0	0.0	
4	Andhra Pradesh	Hyderabad	Industrial Area	4.7	7.5	0.0	0.0	0.0	

Now we can see there are no null values in data

→ CALCULATE AIR QUALITY INDEX FOR SO2 BASED ON FORMULA

```
21512 Andhra Pradesh Ananthapur Residential, Rural and other Areas 0.0 0.0 0.0 0.0
def cal_S0i(so2):
 si=0
 if so2<=40:
   si=so2*(50/40)
 elif (so2>40 and so2<=80):
   si=50+(so2-40)*(50/40)
 elif (so2>80 and so2<=380):
   si=100+(so2-80)*(100/300)
 elif (so2>380 and so2<=800):
   si=200+(so2-380)*(100/420)
 elif (so2>800 and so2<=1600):
   si=300+(so2-800)*(100/800)
 elif(so2>1600):
   si=400+(so2-1600)*(100/800)
 return si
df['S0i']=df['so2'].apply(cal_S0i)
data=df[['so2','SOi']]
data.head()
        so2
              S0i
                     丽
     0 4.8 6.000
     1 3.1 3.875
     2 6.2 7.750
     3 6.3 7.875
      4 4.7 5.875
```

→ CALCULATE AIR QUALITY INDEX FOR NO2 BASED ON FORMULA

```
def cal_Noi(no2):
   ni=0
    if(no2<=40):
    ni= no2*50/40
    elif(no2>40 and no2<=80):
    ni= 50+(no2-40)*(50/40)
    elif(no2>80 and no2<=180):
    ni= 100+(no2-80)*(100/100)
    elif(no2>180 and no2<=280):
    ni= 200+(no2-180)*(100/100)
    elif(no2>280 and no2<=400):
    ni= 300+(no2-280)*(100/120)
    else:
    ni= 400+(no2-400)*(100/120)
    return ni
df['Noi']=df['no2'].apply(cal_Noi)
data= df[['no2','Noi']]
data.head()
```

```
no2 Noi

1 7.0 8.750
2 28.5 35.625
3 14 7 18 375
```

▼ Function to calculate rspm individual pollutant index(rpi)

```
def cal_RSPMI(rspm):
   rpi=0
    if(rpi<=30):
    rpi=rpi*50/30
    elif(rpi>30 and rpi<=60):
    rpi=50+(rpi-30)*50/30
    elif(rpi>60 and rpi<=90):
    rpi=100+(rpi-60)*100/30
    elif(rpi>90 and rpi<=120):
    rpi=200+(rpi-90)*100/30
    elif(rpi>120 and rpi<=250):
    rpi=300+(rpi-120)*(100/130)
    rpi=400+(rpi-250)*(100/130)
    return rpi
df['Rpi']=df['rspm'].apply(cal_RSPMI)
data= df[['rspm','Rpi']]
data.head()
# calculating the individual pollutant index for rspm(respirable suspended particualte matter concentration)
         rspm Rpi
                     噩
          0.0
              0.0
                     th
      1
          0.0
              0.0
     2
          0.0
              0.0
     3
          0.0
              0.0
          0.0 0.0
```

▼ Function to calculate spm individual pollutant index(spi)

```
def cal_SPMi(spm):
    spi=0
    if(spm<=50):
    spi=spm*50/50
    elif(spm>50 and spm<=100):
    spi=50+(spm-50)*(50/50)
    elif(spm>100 and spm<=250):
    spi= 100+(spm-100)*(100/150)
    elif(spm>250 and spm<=350):
    spi=200+(spm-250)*(100/100)
    elif(spm>350 and spm<=430):
    spi=300+(spm-350)*(100/80)
    else:
    spi=400+(spm-430)*(100/430)
    return spi
df['SPMi']=df['spm'].apply(cal_SPMi)
data= df[['spm','SPMi']]
data
# calculating the individual pollutant index for spm(suspended particulate matter)
```


▼ function to calculate the air quality index (AQI) of every data value

```
def cal_aqi(si,ni,rspmi,spmi):
    aqi=0
    if(si>ni and si>rspmi and si>spmi):
     aqi=si
    if(ni>si and ni>rspmi and ni>spmi):
     aqi=ni
    if(rspmi>si and rspmi>ni and rspmi>spmi):
    aqi=rspmi
    if(spmi>si and spmi>ni and spmi>rspmi):
    aqi=spmi
    return aqi
df['AQI']=df.apply(lambda x:cal_aqi(x['SOi'],x['Noi'],x['Rpi'],x['SPMi']),axis=1)
data= df[['state','SOi','Noi','Rpi','SPMi','AQI']]
data.head()
# Caluclating the Air Quality Index.
                          SOi
                                           SPMi
                                                     AQI
                                                           \blacksquare
                 state
                                 Noi Rpi
      0 Andhra Pradesh 6.000 21.750
                                       0.0
                                             0.0 21.750
                                                           11.
      1 Andhra Pradesh 3.875
                                8.750
                                       0.0
                                             0.0
                                                   8.750
```

```
2 Andhra Pradesh 7.750 35.625
                                0.0
                                      0.0
                                          35.625
3 Andhra Pradesh 7.875 18.375
                                0.0
                                      0.0 18.375
4 Andhra Pradesh 5.875 9.375 0.0
                                      0.0
                                           9.375
```

```
def AQI_Range(x):
    if x<=50:
        return "Good"
    elif x>50 and x<=100:
        return "Moderate'
    elif x>100 and x<=200:
        return "Poor"
    elif x>200 and x<=300:
        return "Unhealthy"
    elif x>300 and x<=400:
        return "Very unhealthy"
    elif x>400:
        return "Hazardous"
df['AQI_Range'] = df['AQI'] .apply(AQI_Range)
```

Using threshold values to classify a particular values as good, moderate, poor, unhealthy, very unhealthy and Hazardous

B

```
state
                  location
                                   type so2
                                              no2 rspm spm pm2_5
                                                                       S0i
                                                                              Noi Rpi SPMi
                                                                                                 AQI AQI_Range
                             Residential,
          Andhra
                  Hyderabad
                              Rural and
                                         4.8 17.4
                                                    0.0
                                                         0.0
                                                                0.0 6.000 21.750
                                                                                   0.0
                                                                                          0.0 21.750
                                                                                                           Good
         Pradesh
                             other Areas
df['AQI_Range'].value_counts()
# These are the counts of values present in the AQI_Range column.
                        9569
     Good
     Poor
                        7728
     Unhealthy
                        2391
     Moderate
                        1214
     Very unhealthy
                        494
                        117
     Hazardous
     Name: AQI_Range, dtype: int64
      Pradesh Hyuerapau
                                              ı.:
                                                    U.U U.U
                                                                 U.U J.013
                                                                                          U.U
                                                                                                           Guuu
                                   Area
Splitting datasets into dependent and independent columns
X=df[['SOi','Noi','Rpi','SPMi']]
Y=df['AQI']
X.head()
                  Noi Rpi SPMi
          SOi
                                    \blacksquare
      0 6.000 21.750
                       0.0
                             0.0
      1 3.875
                8.750
                       0.0
                             0.0
      2 7.750
              35.625
                       0.0
                             0.0
               18.375
      3 7.875
                       0.0
                             0.0
      4 5.875
                9.375
                       0.0
                             0.0
Y.head()
     0
          21.750
           8.750
          35.625
     2
     3
          18.375
     4
           9.375
     Name: AQI, dtype: float64
X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.2,random_state=70)
print(X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
     (17210, 4) (4303, 4) (17210,) (4303,)
model=LinearRegression()
model.fit(X_train,Y_train)
      ▼ LinearRegression
      LinearRegression()
#predicting train
train_pred=model.predict(X_train)
#predicting test
test_pred=model.predict(X_test)
RMSE_train=(np.sqrt(metrics.mean_squared_error(Y_train,train_pred)))
RMSE_test=(np.sqrt(metrics.mean_squared_error(Y_test,test_pred)))
print("RMSE TrainingData=",str(RMSE_train))
print("RMSE TestData=",str(RMSE_test))
print(" "*50)
print('RSquared value on train:',model.score(X_train,Y_train))
print('RSquared value on test:',model.score(X_test,Y_test))
     RMSE TrainingData= 8.471301234133257
     RMSE TestData= 8.693070764997394
     RSquared value on train: 0.9912502073532862
     RSquared value on test: 0.9910676832328311
```

▼ Decision Tree

```
DT=DecisionTreeRegressor()
DT.fit(X_train,Y_train)
     ▼ DecisionTreeRegressor
     DecisionTreeRegressor()
#predicting train data
train_preds=DT.predict(X_train)
#predicting test data
test_preds=DT.predict(X_test)
RMSE_train=(np.sqrt(metrics.mean_squared_error(Y_train,train_preds)))
RMSE_test=(np.sqrt(metrics.mean_squared_error(Y_test,test_preds)))
print("RMSE TrainingData:",str(RMSE_train))
print("RMSE TestData:",str(RMSE_test))
print("_"*50)
print('RSquared value on train:',DT.score(X_train,Y_train))
print('RSquared value on test:',DT.score(X_test,Y_test))
     RMSE TrainingData: 2.9293122876993506e-14
     RMSE TestData: 2.8597277713457774
     RSquared value on train: 1.0
     RSquared value on test: 0.9990333548595991
```

▼ Random Forest Regressor

```
RF=RandomForestRegressor()
RF.fit(X_train,Y_train)
     * RandomForestRegressor
     RandomForestRegressor()
#predicting train
train_preds1=RF.predict(X_train)
#predicting test
test_preds1=RF.predict(X_test)
RMSE_train=(np.sqrt(metrics.mean_squared_error(Y_train,train_preds1)))
RMSE_test=(np.sqrt(metrics.mean_squared_error(Y_test, test_preds1)))
print("RMSE Training data=",str(RMSE_train))
print("RMSE test data=",str(RMSE_test))
print("_"*50)
print("RSquared value on train:",RF.score(X_train,Y_train))
print("RSquared value on test:",RF.score(X_test,Y_test))
     RMSE Training data= 0.5858593870179347
     RMSE test data= 2.587444829506389
     RSquared value on train: 0.9999581510759694
     RSquared value on test: 0.9992086658959392
```

classification Algorithms

```
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
```

```
X2=df[['S0i','Noi','Rpi','SPMi']]
Y2=df['AQI_Range']
#Splitting the data into independent and dependent columns for classification

X_train2,X_test2,Y_train2,Y_test2= train_test_split(X2,Y2,test_size=0.3,random_state=70)
#Splitting data into training and testing data
```

▼ Logistic Regression

```
#fitting the model on train data
LogR=LogisticRegression().fit(X_train2,Y_train2)
#predict on train
train_preds2=LogR.predict(X_train2)
#accuracy on train
print("model accuracy on train is : ",accuracy_score(Y_train2, train_preds2))
#predict on test
test_preds2=LogR.predict(X_test2)
#accuracy on test
print("Model accracy on test is:",accuracy_score(Y_test2,test_preds2))
print("_"*50)
#kappa score
print('KappaScore is:',metrics.cohen_kappa_score(Y_test2,test_preds2))
     model accuracy on train is : 0.8298691812205325
     Model accracy on test is: 0.8289432909823365
     KappaScore is: 0.730569028901523
LogR.predict([[727,327.55,78.2,100]])
     array(['Good'], dtype=object)
LogR.predict([[2.7,45,35.16,23]])
     array(['Good'], dtype=object)
LogR.predict([[10,2.8,82,20]])
     array(['Poor'], dtype=object)
LogR.predict([[500,32.6,78,34.67]])
     array(['Good'], dtype=object)
```

decision tree classifier

```
#fit the model in train data
DT2= DecisionTreeClassifier().fit(X_train2,Y_train2)

#predict on train
train_preds3=DT2.predict(X_train2)
#accuracy on train
print("model accuracy on train is : ",accuracy_score(Y_train2, train_preds3))

#predict on test
test_preds3=DT2.predict(X_test2)
#accuracy on test
print("model accuracy on test is : ",accuracy_score(Y_test2, test_preds3))
print("_"*50)

#kappa score
print('Kappa score is:',metrics.cohen_kappa_score(Y_test2,test_preds3))

model accuracy on train is : 1.0
model accuracy on test is : 0.9998450573287884
```

Kappa score is: 0.999765627181698

Random forest classifier

```
#fit the model on train data
RF=RandomForestClassifier().fit(X_train2,Y_train2)
#predict on train
train_preds4 = RF.predict(X_train2)
#accuracy on train
print("Model accuracy on train is: ", accuracy_score(Y_train2, train_preds4))
#predict on test
test_preds4 = RF.predict(X_test2)
#accuracy on test
print("Model accuracy on test is: ", accuracy_score(Y_test2, test_preds4))
print('-'*50)
# Kappa Score
print('KappaScore is: ', metrics.cohen_kappa_score(Y_test2,test_preds4))
    Model accuracy on train is: 1.0
     Model accuracy on test is: 0.9990703439727301
     KappaScore is: 0.9985937380160507
```

K Nearest neighbor classifier

```
#fit the model on train data
KNN = KNeighborsClassifier().fit(X train2,Y train2)
#predict on train
train_preds5 = KNN.predict(X_train2)
#accuracy on train
print("Model accuracy on train is: ", accuracy_score(Y_train2, train_preds5))
#predict on test
test_preds5 = KNN.predict(X_test2)
#accuracy on test
print("Model accuracy on test is: ", accuracy_score(Y_test2, test_preds5))
print('-'*50)
# Kappa Score
print('KappaScore is: ', metrics.cohen_kappa_score(Y_test2,test_preds5))
     Model accuracy on train is: 0.9968125373530778
     Model accuracy on test is: 0.9953517198636505
     KappaScore is: 0.9929644493575164
KNN.predict([[7.4,47.7,78.182,100]])
# Predictions on random values
     array(['Poor'], dtype=object)
KNN.predict([[1,1.2,3.12,0]])
# Predictions on random values
     array(['Good'], dtype=object)
KNN.predict([[3,2,9.12,10]])
     array(['Good'], dtype=object)
```

So we can see KNNclassifier is predicting accurately