On Identifiability in Transformers

Yejoon Lee

Apr 25, 2022

Featured Papers

• Brunner et al., 2020, On Identifiability In Transformers, ICLR

ON IDENTIFIABILITY IN TRANSFORMERS

Gino Brunner^{1*}, Yang Liu^{2*}, Damián Pascual^{1*}, Oliver Richter¹,

Massimiliano Ciaramita³, Roger Wattenhofer¹

Departments of ¹Electrical Engineering and Information Technology, ²Computer Science ETH Zurich, Switzerland

³Google Research, Zurich, Switzerland

- Preliminaries:
 - Transformer
 - BERT

Possible questions (in case you're not familiar with transformer)

Q. Isn't all of this only limited to one specific model, transformer, compared to post-hoc methods (LIME, SHAP, gradient-based, etc)? A. Yes...

Q. Is transformer that important?

YES

GTC 2022 Keynote with NVIDIA CEO Jensen Huang

Okay. But..

- Q. Why don't we just use post-hoc methods?
- A. Good. However, ML practitioners are tempted to use attention as interpretation. Plus, post-hoc methods have downsides.

A woman is throwing a frisbee in a park,

Table of Contents

- Transformer & BERT
- On Identifiability in Transformers
- Follow-up works

Transformer-based Language Models

- Transformer (Vaswani et al., 2017) is originally composed of encoder and decoder.
- However, so-called "transformer-based language models" often have different structures.
 - BERT (*Devlin et al., 2019*) : **encoder-only**
 - GPT-2 (Radford et al, 2019): decoder-only
 - T5 (Raffel et al., 2020): encoder and decoder
- Self-attention makes transformer a transformer. On Identifiability in Transformers uses BERT for experiments.
- ⇒ Let's look at the self-attention in BERT *Disclaimer: This presentation does not fully address neither Transformer nor BERT.

BERT produces a representation of words

- BERT is essentially a stacked BERT layers.
- Each layer receives embedding as an input and produces new embedding as an output. (embedding = vector representation of the word)
- BERT is short for Bidirectional Encoder Representations from Transformers

Each block represents d-dimensional vector; d known as embedding dimension

Layer of BERT (= encoder of Transformer)

Essence is *Multi-Head Attention*.

Query, Key, and Value

Single-Head Self-Attention

https://www.youtube.com/watch?v=5T38-2J5CcY

Why
$$\textit{self}\text{-attention?}$$
 : query and key/value comes from the same embedding
$$A = \text{softmax}\left(\frac{QK^T}{\sqrt{d}}\right)$$
 This formula itself is the alignment model (scaled dot-product attention)
$$E_{new} = AV$$

E: embedding; (d_s, d) where d_s denotes the length of input and d denotes the embedding dimension

$$Q: Query; (d_s, d)$$
 $K: Key; (d_s, d)$
 $V: Value; (d_s, d)$
 $A: Attention weight; (d_s, d_s)$

 W^Q , W^K , W^V are the trainable weights.

Single-Head Self-Attention

Multi-Head Self-Attention

https://www.youtube.com/watch?v=5T38-2J5CcY

1. for ith head of **total h heads**,

$$Q_{i} = EW_{i}^{Q}$$

$$K_{i} = EW_{i}^{K}$$

$$V_{i} = EW_{i}^{V}$$

$$A_{i} = \operatorname{softmax}\left(\frac{Q_{i}K_{i}^{T}}{\sqrt{d_{q}}}\right)$$

$$O_{i} = A_{i}V_{i}$$

$$E_{i} = O_{i}W_{i}^{H}$$

$$2.E_{new} = \sum_{i=1}^{h} E_i$$

E: embedding;
$$(d_s, d)$$

Q: Query; (d_s, d_q) , $d_q = d/h$
 $K: Key$; (d_s, d_q)
 $V: Value$; (d_s, d_v) , $d_v = d/h$
A: Attention weight; (d_s, d_s)
 $W_i^H: trainable weight$; (d_v, d)

 W_i^Q , W_i^K , W_i^V , W_i^H are the trainable weights.

Multi-Head Self-Attention

Attention used for interpretation in BERT

Different attention weights for each head and each layer.

ex) BERT-base has 12 heads and 12 layers => 144 different attention weights

On Identifiability in Transformers

Contents

- Attention Identifiability
- Token Identifiability
- Token Mixing

Attention Identifiability

• Attention weights of an attention head are *identifiable* if they can be uniquely determined from the head's output.

• Jain and Wallace, 2019, Attention is Not Explanation had questioned the identifiability of attention.

Attention weights are **NOT** identifiable

- If the sequence length (d_s) is larger than the attention head dimension (d_v) , attention is **not** unique.
 - Is this a special case? No. For BERT-base, $d_{\mathcal{S}}$ could reach up to 512, while d_{v} equals 64.

Theoretical proof based on basic linear algebra.

• Proposes *effective attention*, which is part of the attention that actually affects the model output.

Token Identifiability

- Attention from the later layers are obtained from the new embedding, not the original input.
- If we were to use this attention to interpret the original input, we should ask:

Is token identifiable?

=> Can we recover the original input from its embedding?

Tokens are mostly identifiable

(Look at the solid and dotted lines)

Token identifiability rate remains high throughout all the layers.

Token Mixing

How much of the original input is still contained in the embedding?

• Proposes hidden token attribution, which is a gradient-based method.

Tokens are strongly mixed yet preserves some identity information

In the last layers, 30% of the tokens are **not** the highest contributor to their hidden embedding. => Quite high!

Ex) (Input: "Now almost done") The word "done" is **not** the highest contributor to the embedding of "done" in the last layers, by 30% chance.

Follow-up Works

Follow-up Works

- Bhardwaj et al., 2021, More Identifiable yet Equally Performant Transformers for Text Classficiation, ACL – Attention identifiability
 - Attention weights are more identifiable than previously claimed.
 - A variant of encoder layer which provides identifiability
- Pascual et al., 2021, Telling BERT's Full Story: from Local Attention to Global Aggregation, NAACL – Token mixing
 - Distinction between local attention and global aggregation
 - More research on token mixing
- Sun et al., 2021, Effective Attention Sheds Light On Interpretability, Findings of ACL *Effective attention*
 - Interpretation based on effective attention vs raw attention

Thank You