Let's talk about visual clarity

With Lucy & Freya

Let's talk about visual clarity

With Lucy & Freya

(and David)

Resources

- Weissgerber et al. (2015). Beyond bar and line graphs: time for a new data presentation paradigm.
 PLoS biology, doi: 10.1371/journal. Pbio.1002128
- Weissgerber et al. (2019). Reveal, don't conceal: transforming data visualization to improve transparency. *Circulation*, doi: 10.1161/CIRCULATIONAHA.118.037777
- Midway (2020). Principles of effective data visualization. *Patterns*, doi: 10.1016/j.patter.2020.100141
- Hehman & Xie (2021). Doing better data visualization. *Advances in Methods and Practices in Psychological Science*, doi: 10.1177/25152459211045334.

Some principles for visualising data ...

- 1. Show the data
- 2. But don't show too much
- 3. Uncertainty is important
- 4. And so is colour
- 5. Consider your audience
- 6. Get another opinion!

Less may be more

Less may be more Ferret ◆ 1 ▲ 2 ■ 3 + 4 ⋈ 5 ※ 6 - 7 - 8 Viral quantity (log₁₀) Viral quantity (log₁₀) Drug 1 2 Drug 1 2

⁴ Day

Less may be more

Quantiles can be misleading

Summarising your data (e.g. "detonator plots") can remove information

Fig. 1. Anscombe's quartet. In all four data sets depicted, the mean of x is 9, the variance of x is 11, the mean of y is 7.5, the variance of y is 4.12, and the correlation between x and y is .82. Important features of the data are hidden unless the individual observations are visualized.

 X_4

 X_3

Keep it simple

Canada's most heavily-policed cities (x per 100,000)

Keep it simple

Hehman & Xie, 2021

- Categorical / qualitative

- Categorical / qualitative
- Continuous
 - Diverging

- Categorical / qualitative
- Continuous
 - Diverging
 - Sequential
 - Single hue

- Categorical / qualitative
- Continuous
 - Diverging
 - Sequential
 - Single hue
 - Multi-hue

Bonus: Viridis

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

Bonus: Viridis

https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html

Weissgerber et al., 2019 (using Color Oracle) https://colororacle.org

Color brewer:

https://colorbrewer2.org

Not color blind safe

Color blind safe

Color blind safe

As seen by someone with:

Normal color vision

The most common form of color blindness (deuteranopia)

A little diversion: I love maps

- Background should be distinct
- Beware blue
- Keep track of scale, projection + aggregation
- And all of the other rules apply too

A little diversion: You love maps

A little diversion: We love maps

A little diversion: We love maps!!

Consider your audience!

Consider your audience!

Finally, if in doubt ...

Finally, if in doubt ...

... get another opinion!

... and reconsider that pie chart!

In summary ...

- Show the data
- 2. But keep it simple
- 3. Uncertainty is important
- 4. And so is colour
- 5. Consider your audience
- 6. Get another opinion!

~ Let's compare notes ~

