WIPO PCT

PCT/JP03/08067

26.06.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2002年 6月26日

出 願 番 号 Application Number:

特願2002-186419

[ST. 10/C]:

[JP2002-186419]

出 願 人
Applicant(s):

東洋紡績株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年 7月31日

【書類名】

特許願

【整理番号】

CN02-0493

【提出日】

平成14年 6月26日

【あて先】

特許庁長官

【国際特許分類】

D01F 6/74

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

霧山 晃平

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

村瀬 浩貴

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

中村 宗敦

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

阿部 幸治

【発明者】

【住所又は居所】

滋賀県大津市堅田二丁目1番1号 東洋紡績株式会社

総合研究所内

【氏名】

松岡 豪

【特許出願人】

【識別番号】

000003160

【氏名又は名称】

東洋紡績株式会社

【代表者】

津村 準二

【手数料の表示】

【予納台帳番号】 000619

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【物件名】 図面 1

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 耐久性に優れるポリベンザゾール繊維

【特許請求の範囲】

【請求項1】 温度80℃相対湿度80%雰囲気下で700時間暴露した後の引 張強度保持率が85%以上であること特徴とするポリベンザゾール繊維。

【請求項2】 繊維中に塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることを特徴とする請求項1記載のポリベンザゾール繊維。

【請求項3】 繊維中にp-フェニレンジアミン、m-フェニレンジアミン、あるいはその混合物から選択される塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることを特徴とする請求項1記載のポリベンザゾール繊維。

【請求項4】 X線子午線回折半値幅因子が0.3°/GPa以下であることを 特徴とする請求項3記載のポリベンザゾール繊維。

【請求項5】 分子配向変化による弾性率減分Erが30GPa以下であることを特徴とする請求項3記載のポリベンザゾール繊維。

【請求項6】 繊維の破断強度が1GPa以上であることを特徴とする請求項1 記載のポリベンザゾール繊維。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、高温かつ高湿度下に暴露されたときに優れた耐久性を有するポリベンザゾール繊維に関するものである。

[0002]

【従来の技術】

高強度、高耐熱性を有する繊維として、ポリベンゾオキサゾール若しくはポリベンゾチアゾールまたはこれらのコポリマーから構成されるポリベンザゾール繊維が知られている。

[0003]

通常、ポリベンザゾール繊維は、上記ポリマーやコポリマーと酸溶媒を含むドープを紡糸口金より押し出した後、凝固性流体(水、または水と無機酸の混合液

[0004]

この様にして製造されるポリベンザゾール繊維は上記に記載した通り、強度などの力学特性に優れ、かつ耐熱性も高いため、種々の用途に使用されているが、近年、さらに性能の向上が望まれており、特に、高温かつ高湿度下に長時間暴露された場合であっても強度を充分に維持することができるポリベンザゾール繊維が強く望まれている。

[0005]

【発明が解決しようとする課題】

そこで、本発明は上記事情に着目してなされたものであり、その目的は、高温かつ高湿度下に長時間暴露されることによる強度低下の小さいポリベンザゾール繊維を提供せんとすることである。

[0006]

【課題を解決するための手段】

本発明者らは、塩基性有機化合物、なかでも、pーフェニレンジアミン、mーフェニレンジアミン、あるいはその混合物から選択される塩基性有機化合物を、モノマーあるいはその縮合物の形で糸中に付与することで、高温かつ高湿度下に長時間暴露された場合であっても強度低下が起こりにくくなることを見出し、本発明を完成するに至った。

[0007]

すなわち本発明は、下記の構成からなる。

- 1. 温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が85%以上であること特徴とするポリベンザゾール繊維。
- 2. 繊維中に塩基性有機化合物をモノマーあるいは縮合物の形で含んでいること を特徴とする上記1記載のポリベンザゾール繊維。
- 3. 繊維中にpーフェニレンジアミン、mーフェニレンジアミン、あるいはその 混合物から選択される塩基性有機化合物をモノマーあるいは縮合物の形で含んで

いることを特徴とする上記1記載のポリベンザゾール繊維。

- 4. X線子午線回折半値幅因子が.0.3°/GPa以下であることを特徴とする上記3記載のポリベンザゾール繊維。
- 5. 分子配向変化による弾性率減分Erが30GPa以下であることを特徴とする請求項3記載のポリベンザゾール繊維。
- 6. 繊維の破断強度が1GPa以上であることを特徴とする上記1記載のポリベンザゾール繊維。

以下、本発明を詳述する。

[0008]

ポリベンザゾール繊維とは、ポリベンザゾールポリマーよりなる繊維をいい、 ポリベンザゾール(以下、PBZともいう)とは、ポリベンゾオキサゾール(以 下、PBOともいう)ホモポリマー、ポリベンゾチアゾール(以下、PBTとも いう)ホモポリマーおよびPBOとPBTのランダム、シーケンシャルあるいは ブロック共重合ポリマー等をいう。

[0009]

PBZポリマーに含まれる構造単位としては、好ましくはライオトロピック液晶ポリマーから選択される。当該ポリマーは構造式 (a)~(f)に記載されているモノマー単位から成る。

[0010]

【化1】

$$- \bigvee_{0}^{N} \bigvee_{0}^{N} (a)$$

$$-\langle N \rangle = \langle N \rangle$$
 (b)

$$-\langle s \rangle$$
 (c)

$$-\langle S \rangle = \langle S \rangle$$
 (d)

[0011]

ポリベンザゾール繊維は、PBZポリマーを含有するドープより製造されるが、当該ドープを調製するための好適な溶媒としては、クレゾールやそのポリマーを溶解しうる非酸化性の酸が挙げられる。好適な非酸化性の酸の例としては、ポリリン酸、メタンスルホン酸および高濃度の硫酸あるいはそれらの混合物が挙げられる。中でもポリリン酸及びメタンスルホン酸、特にポリリン酸が好適である

[0012]

ドープ中のポリマー濃度は好ましくは少なくとも約7重量%であり、より好ましくは少なくとも10重量%、特に好ましくは少なくとも14重量%である。最大濃度は、例えばポリマーの溶解性やドープ粘度といった実際上の取り扱い性により限定される。それらの限界要因のために、ポリマー濃度は通常では20重量%を越えることはない。

[0013]

本発明において、好適なポリマーまたはコポリマーとドープは公知の方法で合成される。例えばWolfeらの米国特許第4,533,693号明細書(1985.8.6)、Sybert らの米国特許第4,772,678号明細書(1988.9.22)、Harrisの米国特許第4,847,350号明細書(1989.7.11)またはGregoryらの米国特許第5,089,591号明細書(1992.2.18)に記載されている。要約すると、好適なモノマーは非酸化性で脱水性の酸溶液中、非酸化性雰囲気で高速撹拌及び高剪断条件のもと約60℃から230℃までの段階的または一定昇温速度で温度を上げることで反応させられる。

[0014]

このようにして得られるドープを紡糸口金から押し出し、空間で引き伸ばしてフィラメントに形成される。好適な製造法は先に述べた参考文献や米国特許第5,034,250号明細書に記載されている。紡糸口金を出たドープは紡糸口金と洗浄バス間の空間に入る。この空間は一般にエアギャップと呼ばれているが、空気である必要はない。この空間は、溶媒を除去すること無く、かつ、ドープと反応しない溶媒で満たされている必要があり、例えば空気、窒素、アルゴン、ヘリウム、二酸化炭素等が挙げられる。

[0015]

紡糸後のフィラメントは、過度の延伸を避けるために洗浄され溶媒の一部が除去される。そして、更に洗浄され、適宜水酸化ナトリウム、水酸化カルシウム、水酸化カリウム等の無機塩基で中和され、ほとんどの溶媒は除去される。ここでいう洗浄とは、ポリベンザゾールポリマーを溶解している鉱酸に対し相溶性であり、ポリベンザゾールポリマーに対して溶媒とならない液体に繊維またはフィラメントを接触させ、ドープから酸溶媒を除去することである。好適な洗浄液体としては、水や水と酸溶媒との混合物がある。フィラメントは、好ましくは残留鉱

[0016]

本発明に係るポリベンザゾール繊維の第一の特徴は、繊維中に塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることであり、これにより、温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が85%以上を達成できる。ここでいう塩基性有機化合物は、例えば芳香族アミンのように塩基性を示す有機化合物であれば特に限定されることはない。

[0017]

塩基性有機化合物を付与する場合、糸中の水分率が20%以下になる履歴を一度も与えることなしに塩基性有機化合物を付与することが好ましい。糸中の水分率が20%以下になる履歴を一度でも与えてしまうと、繊維表面の細孔が細くなり、繊維表面が緻密になってしまうため、塩基性有機化合物を糸内部まで付与することが難しくなる。具体的な付与方法としては、製造工程において紡糸口金からドープを押し出した後から乾燥するまでの間でガイドオイリング方式、シャワリング方式、ディップ方式などで付与する方法、あるいは、糸を乾燥させずに巻き取って、塩基性有機化合物の溶液に浸漬して付与する方法などが挙げられるが、高温かつ高湿度下に長時間暴露した後の強度保持率を維持するためには、糸を乾燥させずに巻き取って、塩基性有機化合物の溶液に長時間浸漬して付与することが好ましい。

[0018]

本発明に係るポリベンザゾール繊維の第二の特徴は、繊維中にpーフェニレンジアミン、mーフェニレンジアミン、あるいはその混合物から選択される塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることであり、これにより、温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が85%以上、好ましくは90%以上を達成できる。他の塩基性有機化合物でも高温かつ高湿度下に長時間暴露されることによる強度低下を抑制する効果はある

[0019]

フェニレンジアミンを付与する場合も、上記に述べた塩基性化合物を付与する場合と同様、糸中の水分率が20%以下になる履歴を一度も与えることなしに付与することが好ましい。糸中の水分率が20%以下になる履歴を一度でも与えてしまうと、繊維表面の細孔が細くなり、繊維表面が緻密になってしまうため、フェニレンジアミンを糸内部まで付与することが難しくなる。具体的な付与方法として、紡糸口金からドープを押し出した後から乾燥するまでの間でガイドオイリング方式、シャワリング方式、ディップ方式により付与する方法、あるいは、糸を乾燥させずに巻き取って、フェニレンジアミン水溶液に浸漬して付与する方法などが挙げられるが、高温かつ高湿度下に長時間暴露した後の強度保持率を維持するためには、糸を乾燥させずに巻き取って、フェニレンジアミン水溶液に長時間浸漬して付与することが好ましく、さらに好ましくはチーズ染色方式により長時間処理を行い、フェニレンジアミンを糸内部に十分に付与するのが良い。

[0020]

p-フェニレンジアミンとm-フェニレンジアミンの配合比は<math>p-フェニレンジアミン: $m-フェニレンジアミン=4:6\sim0:10$ であること、すなわちp-フェニレンジアミンに対して<math>m-フェニレンジアミンの方が多いことが好ましい。

pーフェニレンジアミンはmーフェニレンジアミンと比較して水中での酸化縮合が格段に進みやすく水中ですぐに縮合度が上がってしまうため、フェニレンジアミン縮合物が繊維内部のボイド中に入りにくくなり、ボイド中をフェニレンジアミン縮合物で十分に満たし安定化させることが困難になり、その結果、温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が85%以上を達成することが困難となる場合がある。mーフェニレンジアミンの酸化縮合が進みにくい性質を利用して、pーフェニレンジアミンに対してmーフェニレ

従って、さらに好ましくは、p-フェニレンジアミン: m-フェニレンジアミン=3:7~1:9である。

[0021]

本発明に係るポリベンザゾール繊維の第三の特徴は、X線子午線回折半値幅因子が0.3°/GPa以下、分子配向変化による弾性率減分Erが30GPa以下であることである。ポリベンザゾール繊維は上記に述べたようにドープから溶媒を除去することにより製造されるためボイドの発生が不可避であり、繊維中にボイド由来の欠陥構造が存在する。そのため、繊維が破断に至る過程でこの欠陥部分に応力集中が起こり、性能が十分に発揮できず破断してしまう。

該破断について少し説明を加える。繊維中にボイドが存在すると、変形を加えたときにボイド自体が変形の変化しろの役目を果たす。そのためボイドの存在は結晶の回転やせん断方向への変形を助長する。この変化がある限界を超えたとき、繊維の破断に至るのである。今回この問題を解決する方法も鋭意検討した結果、繊維中に含んでいるpーフェニレンジアミン、mーフェニレンジアミン、あるいはその混合物から選択される塩基性有機化合物をモノマーあるいは縮合物がボイドを埋める補強効果により繊維構造内部の欠陥構造を低減させることができた。該効果はX線子午線回折半値幅因子や分子配向変化による弾性率減分Erとして表現できることも鋭意検討の結果判明した。

[0022]

繊維内部における塩基性有機化合物の化学的な作用については明確には分かっていない。単純に、塩基性有機化合物のモノマーあるいは縮合体がポリベンザゾール繊維中のミクロボイド間に満たされているため、高温かつ高湿度下に長時間暴露されても外からの水蒸気がPBZ分子に到達しにくくなり強度低下が起こりにくくなるのか、あるいは、ポリベンザゾール繊維中に残留している鉱酸あるい

はその縮合物が水分により解離して放出した水素イオンを塩基性物質が捕捉して 系内を中性化することにより強度低下を抑制しているのか、あるいは、共役長の 長い塩基性有機化合物の縮合体が何らかの理由により繊維中で発生したラジカル を捕捉して系内を安定化させることにより強度低下を抑制しているのか、などが 推定されるが、本発明はこの考察に拘束されるものではない。

[0023]

このようにして得られたポリベンザゾール繊維は、温度80℃相対湿度80% 雰囲気下といった高温高湿の環境下でも700時間暴露した後の引張強度保持率が85%以上、好ましくは90%といった耐久性に優れたものとなる。

また得られた繊維の破断強度は1GPa以上、好ましくは2.75GPa以上、更に好ましくは4.10GPa以上といった優れた強度のものとなる。

[0024]

【実施例】

以下に実例を用いて本発明を具体的に説明するが、本発明はもとより下記の実施例によって制限を受けるものではなく、前後記の主旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術範囲に含まれる。

[0025]

(高温かつ高湿度下における強度低下の評価方法)

高温かつ高湿度下における強度低下の評価は、直径10cmの樹脂ボビンに繊維を巻き付けた状態で恒温恒湿器中、高温かつ高湿度保管処理した後、サンプルを取り出し、室温下で引張試験を実施、高温かつ高湿度保管処理前の強度に対する処理後の強度保持率で評価を行った。なお、高温高湿度下での保管試験にはヤマト科学社製Humidic Chamber 1G43Mを使用し、恒温恒湿器中に光が入らないよう完全に遮光して、80℃、相対湿度80%の条件下にて700時間処理を実施した。

[0026]

強度保持率は、高温高湿度保管前後の引張強度を測定し、高温高湿度保管試験 後の引張強度を高温高湿度保管試験前の引張強度で割って100を掛けて求めた 。なお、引張強度の測定は、JIS-L1013に準じて引張試験機(島津製作所製、型式AG-50KNG)にて測定した。

[0027]

(フィラメント中の残留リン酸濃度、ナトリウム濃度の評価方法)

フィラメント中の残留リン濃度は、試料をペレット状に固めて蛍光X線測定装置(フィリップスPW1404/DY685)を用いて測定し、ナトリウム濃度は中性子活性化分析法で測定した。

[0028]

水分率は、乾燥前重量: W_0 (g)、乾燥後重量: W_1 (g) から、下記の計算式に従って算出した。なお、乾燥は 200 C1 時間の条件で実施した。

(式) 水分率(%) = $(W_0 - W_1) / W_1 \times 100$

[0029]

(X線半値幅因子Hwsの測定方法)

図 1 の様な繊維に張力を付与する装置を作成し、リガク製ゴニオメーター(Ru-200 X線発生機,RAD-rAシステム)にのせ、(0010)回折線幅の応力依存性を測定した。出力 40 k V × 100 m A で運転し、銅回転ターゲットから Cu Ka線を発生させた。

回折強度はフジフィルム社製イメージングプレート(フジフィルム FDL UR-V)上に記録した。回折強度の読み出しは、日本電子社製デジタルミクロルミノグラヒィー(PIXsysTEM)を用いた。得られたピークプロファイルの半値幅を精度良く評価するため、ガウス関数とローレンツ関数の合成を用いてカーブフィッティングを行った。さらに得られた結果を繊維にかけた応力に対してプロットした。データ点は直線に並ぶがその傾きから半値幅因子(Hws)を評価した。評価例を図2に示す。

[0030]

(配向変化因子の測定方法)

図1の様な繊維に張力を付与する装置をリガク製小角X線散乱装置に取り付け、(200)回折点の方位角方向のピークの拡がりを測定し、配向変化に起因する弾性率Er を測定した。図3に配向変化($<sin^2 \phi>$)の測定例を示す。

配向変化 $< s i n^2 \phi >$ は(200)回折強度の方位角プロファイル I (ϕ) から下記の式を用いて計算した。なお、方位角の原点は子午線上を $\phi = 0$ とした。

【数1】

$$<\sin^{2}\phi>=\frac{\int_{0}^{\pi/2}I(\phi)\sin^{3}\phi d\phi}{\int_{0}^{\pi/2}I(\phi)\sin\phi d\phi}$$

[0032]

ノーソルトの提案した理論(Polymer 21, pl199 (1980))に従えば、繊維全体の歪み (ϵ) は結晶の伸び (ϵ c) と回転の寄与 (ϵ r) の合成として記述できる。 $\epsilon = \epsilon$ c + ϵ r

 ε に は結晶弾性率E c と応力 σ を用いて、 ε r は上で < s i $n^2\phi>$ を σ の関数として測定した結果(図3)を利用して、 ε を以下の式の様に書き直し、算出することが出来る。ここで ϕ 0 は応力 0 の時の配向角、 ϕ は応力 σ の時の配向角を表す。

$$\varepsilon = \sigma / E c + (< c o s \phi > / < c o s \phi o > - 1)$$
[0 0 3 3]

配向変化に起因する弾性率減分Erは下記の式で定義する。なお、右辺第2項の括弧の内側は、 ϵ の $\sigma=0$ における接線の傾きである。

[0034]

【数2】

$$Er = Ec - \left(\frac{d\epsilon}{d\sigma}\Big|_{\sigma=0}\right)^{-1}$$

[0035]

(実施例1)

30℃のメタンスルホン酸溶液で測定した固有粘度が30dL/gのポリパラフェニレンベンゾビスオキサゾール14重量%と五酸化リン含有率84.3%のポリリン酸から成る紡糸ドープを紡糸温度175℃で孔径0.18mm、孔数166のノズルから押し出してフィラメントとした後、適当な位置で収束させてマルチフィラメントにするように配置された第1洗浄浴中に浸漬し、凝固させた。紡糸ノズルと第1洗浄浴の間のエアギャップには、より均一な温度でフィラメントが引き伸ばされるようにクエンチチャンバーを設置した。クエンチ温度は60℃とした。その後、ポリベンザゾール繊維中の残留リン濃度が5000ppm以下になるまで水洗し、乾燥させずにフィラメントを紙管に巻き取った。なお、巻取速度は200m/分、紡糸延伸倍率は40とし、フィラメントの巻き量は1500mとした。このようにして巻き取ったフィラメントの単糸繊度は1.5dpf(denier/filament)、その直径は11.5μmであり、水分率は50%であった。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水にアミノグアニジン炭酸水素塩30g溶解して得られた浴中に常温(20℃)で3時間浸漬した後、浴から糸を取り出して80℃にて4時間乾燥した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は3800ppm、ナトリウム濃度は2300ppm、Na/Pモル比は0.82であった。また、高温高湿度保管後の強度保持率は86%であった

[0036]

(実施例2)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに樹脂ボビンに巻き取った。巻き取った糸の水分率は50%で

[0037]

(実施例3)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水に、m-フェニレンジアミン2.8gとp-フェニレンジアミン1.2gを溶解した液を図4に示す装置に入れ、巻き取った糸を入れて常温(20℃)で24時間液を循環した後、さらに装置内の液を純水に置換して常温(20℃)で1時間かけて循環した。その後、装置から糸を取り出して80℃にて4時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は1900pm、ナトリウム濃度は760pm、Na/Pモル比は0.54であった。また、高温高湿度保管後の強度保持率は90%であった。

[0038]

(実施例4)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水に、m-フェニレンジアミン2.8gとp-フェニレ

ンジアミン1.2gを溶解した液を図4に示す装置に入れ、巻き取った糸を入れて常温(20℃)で48時間液を循環した後、さらに装置内の液を純水に置換して常温(20℃)で1時間かけて循環した。その後、装置から糸を取り出して80℃にて4時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は1200ppm、ナトリウム濃度は290ppm、Na/Pモル比は0.33であった。また、高温高湿度保管後の強度保持率は92%であった。

[0039]

(実施例5)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を 1% Na O H 水溶液で 1 O 秒間中和し、その後 3 O 秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は 5 O %であった。 1 2 L の水に、m - フェニレンジアミンを 4 g 溶解した液を図 4 に示す装置に入れ、巻き取った糸を入れて常温(2 O $\mathbb C$)で 4 8 時間液を循環した後、さらに装置内の液を純水に置換して常温(2 O $\mathbb C$)で 1 時間かけて循環した。その後、装置から糸を取り出して 8 O $\mathbb C$ にて 4 時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は 1 4 O O p p m、ナトリウム濃度は 2 8 O p p m、Na/Pモル比は 0 . 2 7 であった。また、高温高湿度保管後の強度保持率は 9 5 %であった。

[0040]

(実施例6)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は5

[0041]

(実施例7)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水に、m-フェニレンジアミン2.8gとp-フェニレンジアミン1.2gを溶解した液を図4に示す装置に入れ、巻き取った糸を入れて常温(20℃)で24時間液を循環した後、さらに装置内の液を0.01mo1/1のNaOH水溶液に置換して常温(20℃)で1時間かけて循環した。その後、装置から糸を取り出して80℃にて4時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は1400ppm、ナトリウム濃度は1300ppm、Na/Pモル比は1.25であった。また、高温高湿度保管後の強度保持率は93%であった。

[0042]

(実施例8)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水に、m-フェニレンジアミン2.8gとp-フェニレンジアミン1.2gを溶解した液を図4に示す装置に入れ、巻き取った糸を入れて80℃で8時間液を循環した後、さらに装置内の液を純水に置換して常温(20℃)で1時間かけて循環した。その後、装置から糸を取り出して80℃にて4時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は900pm、ナトリウム濃度は200pm、Na/Pモル比は0.30であった。また、高温高湿度保管後の強度保持率は92%であった。

[0043]

(実施例9)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を乾燥させずに多孔質樹脂ボビンに巻き返した。巻き返した糸の水分率は50%であった。12Lの水に、m-7エニレンジアミン2. 8 g と p -7エニレンジアミン1. 2 g を溶解した液を図4 に示す装置に入れ、巻き取った糸を入れて常温(20%)で2 4 時間液を循環した後、さらに装置内の液を純水に置換して常温(20%)で1 時間かけて循環した。その後、装置から糸を取り出して80%にて 4 時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は1700 p p m、ナトリウム濃度は0 p p m、N a /P モル比は0であった。また、高温高湿度保管後の強度保持率は89%であった。

[0044]

(比較例1)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

[0045]

(比較例2)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、水分率が10%になるまで乾燥させて樹脂ボビンに巻き取った。12Lの水にアミノグアニジン炭酸水素塩30g溶解して得られた浴中に常温(20C)で3時間浸漬した後、浴から糸を取り出して80Cにて4時間乾燥した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は4000ppm、ナトリウム濃度は2400ppm、Na/Pモル比は0.81であった。また、高温高湿度保管後の強度保持率は78%であった。

[0046]

(比較例3)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を 1% N a O H 水溶液で 1 O 秒間中和 し、その後 3 O 秒間水洗した後、水分率が 1 O %になるまで乾燥させて多孔質樹脂ボビンに巻き取った。 1 2 L の 水に、m ーフェニレンジアミン 2 . 8 g と p ーフェニレンジアミン 1 . 2 g を溶解した液を図 4 に示す装置に入れ、巻き取った糸を入れて常温(2 O $\mathbb C$)で 2 4 時間液を循環した後、さらに装置内の液を純水に置換して常温(2 O $\mathbb C$)で 1 時間かけて循環した。その後、装置から糸を取り出して 8 O $\mathbb C$ にて 4 時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊

維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は3600ppm、ナトリウム濃度は2200ppm、Na/Pモル比は0.82であった。また、高温高湿度保管後の強度保持率は79%であった。

[0047]

(比較例4)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

[0048]

(比較例5)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を 1% Na O H水溶液で 1 O 秒間中和 し、その後 3 O 秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は 5 O %であった。 5 O g の水に、m-7 エニレンジアミン 2 . 8 g と p-7 エニレンジアミン 1 . 2 g を溶解して調製した液に巻き取った糸を 6 O 秒間接触させ、その後、 8 O $\mathbb C$ にて 4 時間乾燥した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は 4 6 O O p p m、ナトリウム濃度は 3 3 O 0 p p m、Na/Pモル比は 0 . 9 7 であった。また、高温高湿度保管後の強度保持率は 8 1 % であった。

(比較例 6)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗 し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を1%NaOH水溶液で10秒間中和し、その後30秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は50%であった。12Lの水に、p-7ェニレンジアミン4gを溶解した液を図4に示す装置に入れ、巻き取った糸を入れて常温(20 $^{\circ}$)で48時間液を循環した後、さらに装置内の液を純水に置換して常温(20 $^{\circ}$)で1時間かけて循環した。その後、装置から糸を取り出して80 $^{\circ}$ にて4時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は1400 $^{\circ}$ pm、ナトリウム濃度は320 $^{\circ}$ pm、Na/Pモル比は0.31であった。また、高温高湿度保管後の強度保持率は83%であった。

[0050]

(比較例7)

ポリベンザゾール繊維中の残留リン濃度を5000ppm以下になるまで水洗 し乾燥させずにフィラメントを紙管に巻き取るところまでは実施例1と同様に行った。

巻き取った糸を 1% N a O H 水溶液で 1 O 秒間中和し、その後 3 O 秒間水洗した後、乾燥させずに多孔質樹脂ボビンに巻き取った。巻き取った糸の水分率は 5 O %であった。 1 2 L の水に、m - フェニレンジアミン 1 . 2 g と p - フェニレンジアミン 2 . 8 g を溶解した液を図 4 に示す装置に入れ、巻き取った糸を入れて常温(2 O $\mathbb C$)で 4 8 時間液を循環した後、さらに装置内の液を純水に置換して常温(2 O $\mathbb C$)で 1 時間かけて循環した。その後、装置から糸を取り出して 8 O $\mathbb C$ にて 4 時間乾燥した。なお、液の循環は液中に空気を供給しながら実施した。得られた糸の繊維中の残留リン濃度、ナトリウム濃度を測定した結果、リン濃度は 1 2 O O 1 p m、ナトリウム濃度は 1 2 O 1 p m、N a 1 P モル比は 1 2 を で 1 で 1 で 1 で 1 で 1 で 1 で 1 で 1 の 1 で 1

[0051]

以上の結果を表1にまとめる。表1より明らかなように、比較例と比べ、実施 例のポリベンザゾール繊維は高温高湿度下に暴露した後の強度保持率が非常に高 いことがわかる。

[0052]

【表1】

	木洗,中	中和、中和後水洗条件	水洗条件						,							
	8	中和	中名後	高新中一大道子	金銭の人	Na/P	極機	発展を発展を	Hws	ů		処理条件	# :			
_	NaOH	時間				また比	_				•			調	克提前外	を
	## ##	4	\$	mdd	mdd		G P	*	₽ db \	GP.	K.	民命比	処理時間	ړ	半分半	
実施例1	1%	10	30	3800	2300	0.82	5.8	98	0.25	24	アミハケアニジン皮酸水素塩	ı	国権区	8	30x	2500ррш
実施例2	18	10	30	3600	2000	0.75	5.8	87	027	22	3-73/-1,2,4-41/71/-14	1	3時回	8	50%	2500ррт
実施例3	1%	10	30	1900	760	0.54	5.8	. 06	0.18	21	マーフェニレンジブミン/m-フェニレンジブミン	3/7	24時間	22	50%	330ppm
聚糖倒4	18	10	30	1200	290	0.33	5.7	82	0.13	11	P-7エニレングアミン/m-7エニレングアミン	3/7	48時間	82	50%	330ppm
実施例5	*	10	30	1400	280	0.27	5.7	95	020	21	くらて、ゲベリニュC−m/どうび、ゲベリニュC−q	01/0	48時間	20	20%	330ppm
災難倒6	1%	10	30	1200	360	0.40	5.7	93	0.22	24	レーフェニレングアミン/m-フェニレングアミン	2/8	48時間	8	50%	330ppm
奖施例7	¥.	10	30	1400	1300	1.25	5.7	93	0.15	18	CEL.ベイリニエレーW/CEL.ゲイイニエレーロ	3/7	24時間	20	50%	330ppm
実施例8	1%	01	30	900	200	0.30	5.3	95	0.20	24	CZL.4:17=1C-m/4:2L,4:17=1C-d	3/7	国 世 8	8	50%	330ррш
実施例9	-	0	0	1700	0	0	5.5	88	0.19	0Z	マーフェニレング・アミン/mーフェニレング・アミン	3/7	24時間	82	50%	330ppm
比較例1	1%	10	30	4700	3300	0.95	0.0	82	0.36	36	1	1	1	ı	,	ι
比較例2	18	10	30	4000	2400	0.81	5.8	78	0.37	40	アミリゲアニジン改融水楽塩	-	回独の	02	10%	2500ррш
比较例3	1%	10	30	3600	2200	0.82	5.9	79	0.39	36	たまだななまた-m/だまだななユエピーq	3/7	24時間	20	10%	330ppm
比較例4	1%	10	30	4400	3200	0.98	5.9	81	0.35	37	ピーフェニレングアジ/mーフェーレンテアジ	- 3/7	60 1	20	20%	330ppm
比較例5	1%	10	30	4600	3300	76.0	5.6	81	0.37	42	ピーフェー・カー・フェー・カー・フェー・ロ	3/7	60	50	50%	%
比較例6	7%	10	30	1400	320	0.31	5.6	83	0.31	32	ピーフェレッション・コーフェー・コート・コート・コート・コート・コート・コート・コート・コート・コート・コー	10/0	48時間	20	20%	330ррт
比較例7	1%	10	30	1200	240	0.27	5.7	84	0.32	34	ジャブニング・アシノm-フェーマ	1/3	48時間	20	50%	330ppm

[0053]

本発明によると、高温かつ高湿度下に長時間暴露された場合であっても強度を 充分に維持することができるポリベンザゾール繊維を提供できるため、産業用資 材として実用性を高め利用分野を拡大する効果が絶大である。即ち、ケーブル、 電線や光ファイバー等のテンションメンバー、ロープ、等の緊張材、耐弾材等の 耐衝撃用部材、手袋等の耐切創用部材、ベルト、タイヤ、靴底、ロープ、ホース 、等のゴム補強材、等広範にわたる用途に使用可能である。

[0054]

【発明の効果】

本発明によると、高温高湿度条件において高い耐久性を有するポリベンザゾー ル繊維を提供することを可能とした。

【図面の簡単な説明】

- 【図1】繊維に張力を付与してX線回折を測定する装置例の概要図
- 【図2】半値幅因子(Hws)の評価例
- 【図3】配向変化(<s i $n^2\phi>$)の測定例
- 【図4】チーズ染色装置例の概要図

【符号の説明】

1:処理層、2:処理液、3:綾巻きされた未乾燥糸、4:透水性がある多孔質

ボビン、5:ボビンの栓、6:処理液循環ポンプ

【書類名】

図面

【図1】

【図2】

【図3】

【書類名】要約書

【要約】

【課題】 高温かつ高湿度下に長時間暴露されることによる強度低下の小さいポリベンザゾール繊維を提供することを目的とする。

【解決手段】 温度80℃相対湿度80%雰囲気下で700時間暴露した後の引張強度保持率が85%以上であること特徴とするポリベンザゾール繊維であって、具体的には、繊維中に塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることを特徴とする上記記載のポリベンザゾール繊維、あるいは、繊維中にpーフェニレンジアミン、mーフェニレンジアミン、あるいはその混合物から選択される塩基性有機化合物をモノマーあるいは縮合物の形で含んでいることを特徴とする上記記載のポリベンザゾール繊維。

特願2002-186419

出願人履歴情報

識別番号

[000003160]

1. 変更年月日

1990年 8月10日

[変更理由]

新規登録

住 所 名

大阪府大阪市北区堂島浜2丁目2番8号

東洋紡績株式会社

2. 変更年月日 [変更理由]

2003年 4月 9日

名称変更

住所変更

住 所

大阪府大阪市北区堂島浜2丁目2番8号

氏 名

東洋紡績株式会社