www.sakshieducation.com

(ECE) ELECTRONICS AND COMMUNICATION ENGINEERING INSTRUCTIONS TO CANDIDATES

- Candidates should write their Hall Ticket Number only in the space provided at the top left hand corner of this page, on
 the leaflet attached to this booklet and also in the space provided on the OMR Response Sheet. BESIDES WRITING,
 THE CANDIDATE SHOULD ENSURE THAT THE APPROPRIATE CIRCLES PROVIDED FOR THE
 HALL TICKET NUMBERS ARE SHADED USING H.B. PENCIL ONLY ON THE OMR RESPONSE
 SHEET. DO NOT WRITE HALL TICKET NUMBER ANY WHERE ELSE.
- 2. Immediately on opening this Question Paper Booklet, check:
 - (a) Whether 200 multiple choice questions are printed (50 questions in Mathematics, 25 questions in Physics, 25 questions in Chemistry and 100 questions in Engineering)
 - (b) In case of any discrepancy immediately exchange the Question paper Booklet of same code by bringing the error to the notice of invigilator.
- 3. Use of Calculators, Mathematical Tables and Log books is not permitted.
- Candidate must ensure that he/she has received the Correct Question Booklet, corresponding to his/her branch of Engineering.
- 5. Candidate should ensure that the booklet Code and the Booklet Serial Number, as it appears on this page is entered at the appropriate place on the OMR Response Sheet by shading the appropriate circles provided therein using H.B. pencil only. Candidate should note that if they fail to enter the Booklet Serial Number and the Booklet Code on the OMR Response Sheet, their Answer Sheet will not be valued.
 - Candidate shall shade one of the circles 1, 2, 3 or 4 corresponding question on the OMR Response Sheet using H.B. Pencil only. Candidate should note that their OMR Response Sheet will be invalidated if the circles against the question are shaded using Black / Blue ink pen / Ball pen / any other pencil other than H.B. Pencil or if more than one circle is shaded against any question.
- 7. One mark will be awarded for every correct answer. There are no negative marks.
- 8. The OMR Response Sheet will not be valued if the candidate:
 - (a) Writes the Hall Ticket Number in any part of the OMR Response Sheet except in the space provided for the purpose.
 - (b) Writes any irrelevant matter including religious symbols, words, prayers or any communication whatsoever in any part of the OMR Response Sheet.
 - (c) Adopts any other malpractice.
- 9. Rough work should be done only in the space provided in the Question Paper Booklet.
- 10. No loose sheets or papers will be allowed in the examination hall.
- 11. Timings of Test: 10.00 A.M. to 1.00 P.M.
- 12. Candidate should ensure that he / she enters his / her name and appends signature on the Question paper booklet, leaflet attached to this question paper booklet and also on the OMR Response Sheet in the space provided. Candidate should ensure that the invigilator puts his signature on this question paper booklet, leaflet attached to the question paper booklet and also on the OMR Response Sheet.
- 13. Before leaving the examination hall candidate should return both the OMR Response Sheet and the leaflet attached to this question paper booklet to the invigilator. Failure to return any of the above shall be construed as malpractice in the examination. Question paper booklet may be retained by the candidate.
- 14. This booklet contains a total of 32 pages including Cover page and the pages for Rough Work.

(ECE)

Note: (1) Answer all questions.

- (2) Each question carries I mark. There are no negative marks.
- (3) Answer to the questions must be entered only on OMR Response Sheet provided separately by completely shading with H.B. Pencil, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.
- (4) The OMR Response Sheet will be invalidated if the circle is shaded using ink / ball pen or if more than one circle is shaded against each question.

MATHEMATICS

1. If
$$A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, then $A^4 = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$

- (1) 3I
- (2) 9I
- (3) 271
- (4) 81I
- 2. If $A = \begin{bmatrix} 0 & 2 & 1 \\ -2 & 0 & -2 \\ -1 & x & 0 \end{bmatrix}$ is a skew symmetric matrix, then the value of x is
 - (1) 1
- (2) 2
- (3) 3
- (4)
- 3. What is the number of all possible matrices with each entry as 0 or 1 if the order of matrices is 3×3
 - (1) 64
- (2) 268
- (3) 512
- (4) 256

- 4. If $A = \begin{bmatrix} 1 & i & -i \\ i & -i & 1 \\ -i & 1 & i \end{bmatrix}$, then |A| = 1
 - (1) 1
- (2) 2
- (3)
- (4) 4

_	The solution of a syster		2	2- 0 1 1	6	1 2 in
5	The solution of a syster	n of linear equation	ons $2x - v +$	-3z = 9.x + v + 1	z = 0, x - y	+ 2 = 2 18
J.	The solution of a system	II OI IIIIOUI Oquati	J.10 /			

- (1) x = -1, y = -2, z = -3
- (2) x = 3, y = 2, z = 1

(3) x = 2, y = 1, z = 3

(4) x=1, y=2, z=3

6. If
$$\frac{1}{x^2 + a^2} = \frac{A}{x + ai} + \frac{B}{x - ai}$$
 then $A =$ ______, $B =$ ______.

- (1) $\frac{1}{2ai}$, $-\frac{1}{2ai}$ (2) $-\frac{1}{2ai}$, $\frac{1}{2ai}$ (3) $\frac{1}{ai}$, $-\frac{1}{ai}$

7. If
$$\frac{2x+4}{(x-1)^3} = \frac{A_1}{(x-1)^2} + \frac{A_2}{(x-1)^2} + \frac{A_3}{(x-1)^3}$$
 then $\sum_{i=1}^3 A_i$ is equal to

- (1) A,
- (2) 2A₂
- (3) 4A,

8. The period of the function
$$f(x) = |\sin x|$$
 is

- (1) π
- (2) 2π
- (3) 3π

- (1) 1
- (2) 0
- (3) 2

- (1) $\frac{\sqrt{5}+1}{4}$ (2) $\frac{\sqrt{5}+1}{2}$
- (3) $\frac{\sqrt{5}-1}{2}$

11. If
$$A+B+C = \pi$$
, then $\sin 2A + \sin 2B + \sin 2C =$

(1) 4 cosA sinB cosC

(2) 4 sinA cosB sinC

(3) 4 cosA cosB cosC

(4) 4 sinA sinB sinC

12. The principal solution of
$$Tanx = 0$$
 is

(1) $x = n\pi, n \in \mathbb{Z}$

(2) x=0

(3) $x=(2n+1) \pi/2, n \in \mathbb{Z}$

(4) $x = n\pi + \alpha, n \in \mathbb{Z}$

	The value of Tan-1	(2) Ton-1/2	1 ic
13.	The value of Tan	(Z) + 1an (3	112

14. If the sides of a right angle triangle are in A.P., then the ratio of its sides is

- (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5
- (4) 4:5:6

15. The value of
$$r.r_1.r_2.r_3$$
 is

- (1) Δ^2

16.
$$\frac{1}{r1} + \frac{1}{r2} + \frac{1}{r3} =$$

- (1) $\frac{1}{r}$ (2) $\frac{1}{2r}$
- $(3) \quad \frac{1}{R}$

17. If
$$a=6$$
, $b=5$, $c=9$, then the value of angle A is

- (1) cos⁻¹ (2/9)
- (2) cos⁻¹ (2/5)
- (3) $\cos^{-1}(7/9)$
- (4) $\cos^{-1}(1/3)$

18. The polar form of complex number
$$1-i$$
 is

- (1) $\sqrt{2} e^{-i\pi/4}$
- $(2) \quad \sqrt{2} \, e^{i\pi/4}$
- (3) $\sqrt{2}e^{i\pi/2}$ (4) $\sqrt{2}e^{-i\pi/2}$

19. If
$$1, \omega, \omega^2$$
 be the cube roots of unity, then the value of $2^{\omega^3} \cdot 2^{\omega^5} \cdot 2^{\omega}$ is

- (1) ω
- (2) ω^2
- (3) 1
- (4) 0

20. The intercept made on X-axis by the circle $x^2+y^2+2gx+2fy+c=0$ is

- $(1) \quad \sqrt{g^2-c}$
- (2) $\sqrt{f^2-c}$ (3) $2.\sqrt{g^2-c}$ (4) $2.\sqrt{f^2-c}$

21. If one end of the diameter of the circle
$$x^2+y^2-5x-8y+13=0$$
 is (2, 7), then the other end of the diameter is

- (1) (3, 1)
- (2) (1,3)
- (3) (-3, -1) (4) (-1, -3)

- 22. The radius of the circle $\sqrt{1+m^2}(x^2+y^2)-2cx-2mcy=0$ is
 - (1) 2c
- (2) 4c
- (3) c/2
- (4) c
- 23. The parametric equations of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are
 - (1) $x = a \sec \theta, y = b \tan \theta$
- (2) $x = b \sin\theta, y = a \cos\theta$
- (3) $x = a \cos\theta, y = b \sin\theta$
- (4) $x = a \csc\theta, y = b \cot\theta$
- 24. The equation of the directrix of the parabola $2x^2 = -7y$ is
 - (1) 8y+7=0
- (2) 8y-7=0 (3) 7y+8=0
- The condition for a straight line y = mx + c to be a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is

 - (1) c = a/m (2) $c^2 = a^2m^2 b^2$ (3) $c^2 = a^2m^2 + b^2$ (4) $c^2 = a/m$

- 26. $Lt \frac{\sqrt{5x-4}-\sqrt{x}}{x-1}$ is
 - (1). 3
- (2) 2

- 27. $\log i =$

 - $\log i =$ (i) $\pi/2$ (2) $\pi/4$
- (3) $i\pi/2$ (4) $i\pi/4$

- 28. $\frac{d}{dx}[\log_7 X] =$

- (1) $\frac{1}{x}$ (2) $X \log_7^e$ (3) $\frac{1}{x} \log_7^e$ (4) $\frac{1}{x} \log_7^e$
- 29. $\frac{d}{dx}[2\cosh x] =$
 - (1) $\frac{e^x + e^{-x}}{2}$ (2) $\frac{e^x e^{-x}}{2}$ (3) $e^x + e^{-x}$ (4) $e^x e^{-x}$

$$30. \quad \frac{d}{dx} \left[\cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) \right] =$$

- (1) $\frac{1}{1+x^2}$ (2) $\frac{-1}{1+x^2}$ (3) $\frac{2}{1+x^2}$

31. If
$$x = at^2$$
, $y = 2at$, then $\frac{dy}{dx} = \frac{1}{2}$

- (1) $\sqrt{\frac{y}{x}}$ (2) $\sqrt{\frac{x}{a}}$ (3) $\sqrt{\frac{a}{x}}$

32. The derivative of
$$e^x$$
 with respect to \sqrt{x} is

- (1) $\frac{2\sqrt{x}}{e^x}$ (2) $2\sqrt{x}e^x$ (3) $\frac{e^x}{2\sqrt{x}}$

33. The equation of the normal to the curve
$$y = 5x^4$$
 at the point $(1, 5)$ is

- (1) x + 20y = 99 (2) x + 20y = 101 (3) x 20y = 99 (4) x 20y = 101

34. The angle between the curves
$$y^2 = 4x$$
 and $x^2 + y^2 = 5$ is

- (1) $\frac{\pi}{4}$
- (2) tan-1(2)
- (3) $tan^{-1}(3)$
- $(4) \tan^{-1}(4)$

35. If
$$u = x^3y^3$$
 then $\frac{\partial^3 u}{\partial x^3} + \frac{\partial^3 u}{\partial y^3} =$
(1) $6(x^3 + y^3)$ (2) $6x^3y^3$ (3) $6x^3$

36.
$$\int \csc x dx =$$

- (1) $\log(\csc x + \cot x) + C$
- (2) $\log(\cot x/2) + C$

(3) $\log (\tan x/2) + C$

(4) $-\csc x.\cot x + C$

37.
$$\int_0^{\frac{\pi}{2}} \cos^{11} x \, dx =$$

- (1) $\frac{256}{693}$ (2) $\frac{256\pi}{693}$ (3) $\frac{\pi}{4}$

38.
$$\int f^{1}(x)[f(x)]^{n} dx =$$

(1)
$$\frac{[f(x)]^{n-1}}{n-1} + C$$
 (2) $\frac{[f(x)]^{n+1}}{n+1} + C$ (3) $n[f(x)]^{n-1} + C$ (4) $(n+1)[f(x)]^{n+1} + C$

(3)
$$n[f(x)]^{n-1} + C$$
 (4) $(n-1)^{n-1} + C$

$$\int_{0}^{n-1} + C \quad (4) \quad (n+1) [f(x)]^{n+1} + C$$

$$39. \quad \int \frac{dx}{(x+7)\sqrt{x+6}} =$$

(1)
$$Tan^{-1}(\sqrt{x+6})+C$$

(2)
$$2Tan^{-1}(\sqrt{x+6})+C$$

(3)
$$Tan^{-1}(x+7)+C$$

(4)
$$2Tan^{-1}(x+7)+C$$

40.
$$\int \tan^{-1} x \, dx =$$

(1)
$$x.Tan^{-1}x + \frac{1}{2}\log(1+x^2) + C$$
 (2) $\frac{1}{1+x^2} + C$

(2)
$$\frac{1}{1+x^2}+C$$

(3)
$$x^2.Tan^{-1}x + C$$

(4)
$$x.Tan^{-1}x - \log \sqrt{1+x^2} + C$$

41.
$$\int \frac{dx}{1+e^{-x}} =$$

(1)
$$\log (1+e^{-x}) + C$$

(3) $e^{-x} + C$

(2)
$$\log (1+e^x) + C$$

(3)
$$e^{-x} + C$$

(4)
$$e^{x} + 0$$

$$42. \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin|x| \, dx =$$

- (2) 1
- (3) 2

- 43. Area under the curve $f(x) = \sin x$ in $[0, \pi]$ is
 - (1) 4 sq. units
- (2) 2 sq. units
- (3) 6 sq. units
- (4) 8 sq. units

- 44. The order of $x^3 \frac{d^3y}{dx^3} + 2x^2 \frac{d^2y}{dx^2} 3y = x$ is
 - (1) 1
- (2) 4
- (3) 3

- 45. The degree of $\left[\frac{d^2 y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right]^{\frac{3}{2}} = a \frac{d^2 y}{dx^2}$ is
 - . (1) 4
- (2) 2
- (3) 1
- (4) 3
- The family of straight lines passing through the origin is represented by the differential equation
 - (1) ydx + xdy = 0 (2) xdy ydx = 0 (3) xdx + ydy = 0 (4) xdx ydy = 0

- The differential equitation $\frac{dy}{dx} + \frac{ax + hy + g}{hx + by + f} = 0$ is called
 - (1) Homogeneous (2) Exact
- (3) Linear
- (4) Legender
- The solution of differential equation $\frac{dy}{dx} = e^{-x^2} 2xy$ is
 - (1) $y \cdot e^{-x^2} = x + c$ (2) $y e^x = x + c$
- (3) $ye^{x^2} = x + c$ (4) y = x + c
- 49. The complementary function of $(D^3+D^2+D+1)y = 10$ is
 - (1) $C_1 \cos x + C_2 \sin x + C_3 e^{-x}$
- $(2) \quad C_1 \cos x + C_2 \sin x + C_3 e^x$
- (3) $C_1 + C_2 \cos x + C_3 \sin x$
- (4) $(C_1 + C_2 x + C_3 x^2) e^{x}$
- 50. Particular Integral of $(D-1)^4y = e^x$ is

- (1) $x^4 e^x$ (2) $\frac{x^4}{24} e^{-x}$ (3) $\frac{x^4}{12} e^x$ (4) $\frac{x^4}{24} e^x$

PHYSICS

5	force. The dimensions of B will be									
	(1)	same as that of			(2)	same as that	of pres	sure		
	(3)	same as that of	work		(4)					
52.	The	dimensional for	mula	of capacitance i	n term:	s of M. L. T and	Lis			
	(1)	$[ML^2T^2I^2]$	(2)	[ML-2T4]2]	(3)	[M ⁻¹ L ³ T ³ I]		$[M^{-1}L^{-2}T^4I^2]$		
53.	If <i>l</i> ,	m and n are the	lirecti	on cosines of a	vector,	, then				
	(1)	l+m+n=1	(2)	$l^2+m^2+n^2=$	1 (3)	$\frac{1}{l} + \frac{1}{m} + \frac{1}{n} = 1$	(4)	lmn = 1		
54.	The	angle between i+	j and	j+k is						
	(1)			90°	(3)	45°	(4)	60° ·		
55.	A par 5 ms	rticle is moving northwards. T	eastw he ave	ards with a velo	city of on in th	5 ms ⁻¹ . In 10 so is time is	econds	the velocity ch	anges to	
	(1)	$\frac{1}{\sqrt{2}}$ ms ⁻² toward	s nort	h-west	(2)	zero			0 0	
, ((3)	$\frac{1}{2}$ ms ⁻² towards	north		(4)	$\frac{1}{\sqrt{2}}$ ms ⁻² towar	rds nor	th-east		
6.	Γhe li	near momentum	ofar	article varies u		*				

- 56. The linear momentum of a particle varies with time t as $p = a+bt+ct^2$ which of the following is correct?
 - (1) Force varies with time in a quadratic manner.
 - (2) Force is time-dependent.
 - (3) The velocity of the particle is proportional to time.
 - (4) The displacement of the particle is proportional to t.
- 57. A shell of mass m moving with a velocity v suddenly explodes into two pieces. One part of mass m/4 remains stationary. The velocity of the other part is

(1) v

(2) 2v

(3) 3v/4

(4) 4v/3

	(1)	9.8 ms ⁻¹	(2)	10.2 ms ⁻¹	(3)	18.6 ms ⁻¹	(4)	19.6 ms ⁻¹	
59.	A lan	rge number of bu ground on which	illets ar	re fired in all bullets will s	directions pread is	with the same	e speed u	. The maxim	um area on
		$\frac{\pi u^2}{g^2}$	100						D)
50.	The the c	minimum stopp coefficient of fri	ing dis	tance for a capetween the t	ar of mass tyres and t	m, moving wi he road is μ, ν	th a spee will be	d v along a le	evel road, if
	(1)	$\frac{v^2}{2\mu g}$	(2)	$\frac{v^2}{\mu g}$	(3)	$\frac{v^2}{4\mu g}$	(4)	$\frac{v}{2\mu g}$	
51.	Whe	en a bicycle is in					2.3		
	(1)	In the backwar	d direc	tion on the fi	ront whee	and in the for	ward dir	ection on the	rear wheel
	(2)	In the forward	directi	on on the fro	nt wheel a	nd in the back	ward dir	ection on the	rear wheel
	(3)	In the backwar	d direc	ction on both	the front	and the rear w	heels		
	(4)	In the forward	directi	on on both t	he front ar	nd the rear wh	eels		
62.	In a	perfectly inelas	ic coll	ision, the tw	o bodies				
	(1)	strike and expl	ode		(2)	explode with	out strik	ing	
	(3)	implode and ex	plode		(4)	combine and	l move to	gether	
63.		der the action of	a const	tant force, a	particle is	experiencing	a consta	nt accelerati	on, then the
	(1)	zero	20		(2)	positive	9		
	(3)	negative			(4)	increasing u	niformly	with time	
					11-A	į ū			#//

58. The velocity of a freely falling body after 2s is

Set Code :	T2
Booklet Code :[A

								Booklet Co	de : A		
64.	Cor	sider the foll	owing tw	o statements:			27	3	20		
	A: Linear momentum of a system of particles is zero.										
	B:			system of partic							
	The					VII.		200			
	(1)	A implies B	& B imp	lies A	(2)	A does	not imply B &	B does not	imply A		
	(3)		_	es not imply A			not imply B b				
65.		engine developht of 40 m? (-	W of power. Ho	w muc	h time wi	ll it take to li	ft a mass of	200 kg to a		
	(1)	4s	(2)	5s	(3)	8s	(4)	10s			
66.	Ifa	spring has tin	ne period	T, and is cut int	o n equ	ual parts,	then the time	period will b	e -		
	(1)	$T\sqrt{n}$	(2)	$\frac{\mathrm{T}}{\sqrt{n}}$	(3)	nТ	(4)	T.			
67.	Wh	en temperatur	re increas	es, the frequenc	yofa	tuning for	rk .		45		
	(1)	increases			The State of the S		16 150				
	(2.)	decreases									
	(3)	remains san	ne								
20 68	(4)	increases or	decrease	s depending on	the m	aterials					
68.	Ifa	simple harmo	onic moti	on is represente	d by $\frac{a}{}$	$\frac{x^2x}{x^2} + \alpha x =$	0, its time pe	eriod is			

69. A cinema hall has volume of 7500 m³. It is required to have reverberation time of 1.5 seconds. The total absorption in the hall should be

(1) 850 w-m²

(2) 82.50 w-m² (3) 8.250 w-m²

70.	To al	sorb the sound	l in a hal	l which	of the following	ng are use	d			47
70.	(1)	Glasses, store			(2)	Carpets,	curtains			
	(3)	Polished surfa	aces			Platform				
71.	IfN	represents avag	adro's	number,	then the numb	er of mole	ecules in 6 gr	n of hy	drogen at h	NTP is
/1.	(1)		(2)	3N	(3)	N	(4)	N/6	Th.	
72.	The	mean translation	onal kin	etic ener	gy of a perfec	t gas mole	ecule at the to	empera	ture T K is	3
		$\frac{1}{2}kT$	(2)			$\frac{3}{2}kT$	(4)			
			194							- 5
73.	The	amount of hea	t given t	o a body	which raises	its temper	ature by 1°C			
73.	(1)	water equival		nate of Patrick Care St.	(2)	thermal	heat capacity	1		75
	(3)	specific heat			(4)	tempera	ture gradient	:		
74.	Dur	ring an adiabat	ic proce ure. The	ss, the p	ressure of a go/Cv for gas is	as is found	d to be propo	rtional	to the cub	e of its
	(1)		(2)			2	(4)	$\frac{5}{3}$		
75.	Cla	dding in the or	tical fit	er is ma	inly used to	¥.				
, ,	(1)	to protect th	e fiber	from me	chanical stres	ses		2		
	(2)		e fiber	from cor	rrosion	*				
	(3)	to protect th	e fiber f	from me	chanical stren	gth				
	(4)		e fiber	from ele	ctromagnetic	guidance	**			
							88			

Set Code :	T2
Booklet Code :	A

CHEMISTRY

76.	The	valency electro	nic co	nfiguration of I	Phosph	orous atom (At.)	No. 15) is		
		$3s^2 3p^3$		3s1 3p3 3d1		$3s^2 3p^2 3d^1$		3s1 3p2 3d2		
77.	An	element 'A' of A	t.No.12	2 combines with	h an ele	ment 'B' of At.N	o.17.	The compound	formed is	
1	(1)		(2)			covalent AB ₂		ionic AB		
78.	The	number of neut	rons p	resent in the ato	om of s	Ba ¹³⁷ is				
		56		137	-	193	(4)	.81		
79.	Hyd	rogen bonding i	n wate	er molecule is re	esponsi	ible for	1		4	
	(1)	decrease in its				increase in its degree of ionization				
	(3)	increase in its	boiling	g point	(4)					
80.	In th	e HCl molecule	, the bo	onding between	hydro	gen and chlorine	is			
	(1)	purely covalen				polar covalent		complex coor	dinate	
81.	Pota	ssium metal and	potas	sium ions					3.6	
	(1)	both react with	7		(2)	have the same	numbe	er of protons		
	(3)	both react with	chlori	ne gas	(4)	have the same electronic configuration				
82.	stand	lard flask. 10 ml	of this solutio	solution were pi	petted or ration o	water and the so out into another f of the sodium chl	lask an oride s	d made up with solution now is	ml in a distilled	
	(1)	0.1 141	(2)	1.0 101	(3)	0.5 M	(4)	0.25 M		
83.	Conc	centration of a 1.	.0 M s	olution of phos	phoric	acid in water is		12		
	(1)	0.33 N	(2)	1.0 N	(3)	2.0 N	(4)	3.0 N	•	
84.	Whic	ch of the followi	ng is a	Lewis acid?				26.0	19	
		Ammonia			(2)	Berylium chlor	ide	*		
	(3)	Boron trifluorio	de		(4)	Magnesium oxi				
	1000				14-A					

Set Code :	T2
Booklet Code:	A

							1	Set Code Booklet Code	
0.5	W/h:	h of the follow	ina cor	stitutes the com	nonen	ts of a buffer	solution'	?	
85.		Detection oble	ride ar	d potassium hyd	roxide	2			•
	(1)	Sodium acetate			. Onlia	5.			
	(2)				d			**	
	(3)	Magnesium su	pnate	and sulphuric acid calcium acetate					
	(4)	Calcium chion	de and	Calcium acctate		F			
06	Whi	ch of the follow	ing is	n electrolyte?			40		
86.		Acetic acid	(2)	Glucose	(3)	Urea	(4)	Pyridine	
87.	Calc	ulate the Stand	ard em	f of the cell, Cd	/Cd ⁺² /	/Cu ⁺² /Cu give	en that E	$^{0} Cd/Cd^{+2} = 0$.44V and
	E ₀ C	$u/Cu^{+2} = (-) 0.3$	4 V.						
	(1)	(-) 1.0 V	(2)	1.0 V	(3)	(-) 0.78 V	. (4)	0.78 V	
90	(1) (3)	H ₂ gas will be	liberat	ted on the anode ed at the anode etals will undergo	(4)	nickel will b	e deposi	ted at the cath	node
89.			(2)		(3)	Zinc	(4)	Iron	
	(1)	Cu	(2)	Li	(5)		3.6		
90.	W/h	ich of the follow	ving ca	nnot be used for	the ste	erilization of o	drinking	water?	
90.	(1)				(2)	Calcium Ox	ychlorid	e	
	(3)	Potassium Ch	loride		(4)	Chlorine wa			
	(2)	1 Otassium Cr							1 12 13
								. TI ! L	ardness i
91.	Aw	ater sample sho	wed it	to contain 1.20 n	ng/litr	e of magnesiu	m sulpha	ite. Then, its i	
91.	A w	rater sample sho	irbonat	e equivalent is		0.			19
91.	tern	vater sample sho ns of calcium ca 1.0 ppm	irbonat	to contain 1.20 n e equivalent is 1.20 ppm	ng/litr (3)	0.	m sulpha		
	(1)	ns of calcium ca	rbonat (2)	e equivalent is 1.20 ppm	(3)	0.60 ppm	(4)		3
91.	(1) Sod	ns of calcium ca 1.0 ppm la used in the L	(2) S proc	e equivalent is	(3) of wa	0.60 ppm	(4) cally.	2.40 ppm	B
	(1) Sod (1)	ns of calcium ca 1.0 ppm la used in the L- sodium bicarl	(2) S proconate	e equivalent is 1.20 ppm	(3) of wa (2)	0.60 ppm ater is, Chemi- sodium cart	(4) cally.	2.40 ppm	
	(1) Sod	ns of calcium ca 1.0 ppm la used in the L- sodium bicarl	(2) S proconate	e equivalent is 1.20 ppm	(3) of wa	0.60 ppm ater is, Chemi sodium cart	(4) cally.	2.40 ppm	
92.	(1) Sod (1) (3)	ns of calcium ca 1.0 ppm la used in the L- sodium bicarl sodium carbo	(2) S proconate	e equivalent is 1.20 ppm ess for softening	(3) of wa (2) (4) der is	0.60 ppm ater is, Chemic sodium cart sodium hyd known as	(4) cally. conate de roxide (4	2.40 ppm ecahydrate 40%)	
	(1) Sod (1) (3)	ns of calcium ca 1.0 ppm la used in the L- sodium bicarl sodium carbo	(2) S proconate nate	1.20 ppm ess for softening	(3) of wa (2) (4) der is	0.60 ppm ater is, Chemic sodium cart sodium hyd known as	(4) cally. conate de roxide (4	2.40 ppm ecahydrate 40%)	
92.	(1) Sod (1) (3)	ns of calcium ca 1.0 ppm la used in the L- sodium bicarl sodium carbo	(2) S proconate nate	e equivalent is 1.20 ppm ess for softening	(3) of wa (2) (4) der is	0.60 ppm ater is, Chemic sodium cart sodium hyd	(4) cally. conate de roxide (4	2.40 ppm ecahydrate 40%)	

Set Code :	T2
Booklet Code :	A

								Set Cod Booklet Cod	le: T2
94.	Ca	rosion of a metal is	faste	st in			50		-
9	(1)			cidulated	water (3)	distilled water (4)	de-ionised w	ater
95.	Wh	ich of the following	is a t	hermosei	nòlyma	-2			
	(1)	Polystyrene		iterinose	polynic (2		PVC		
*	(3)				(4		Urea-formaldehyde	esin	
96.	Che	mically, neoprene i	s			er _e			
		polyvinyl benzene			(2)	polyacetylene		v 1
	(3)	polychloroprene		-	(4	-	poly-1,3-butadiene	E	
100					ζ.	,	pory-1,5-outautene		•
97.	Vul	canization involves l	neating	g of raw r	ubber wi	th			
	(1)	selenium element			(2		elemental sulphur		
	(3)	a mixture of Se and	d elem	ental sul	phur (4))	a mixture of selenium	and sulphur d	ioxide
							20 20 12		
		ol largely contains	W. 69						
	(1)	a mixture of unsatu	ırated	hydrocar	bons C ₅	- C	8		×
	(2)	a mixture of benze							
	(3) (4)	a mixture of satura	ted ny	drocarbo	ns C ₁₂ - 0	C ₁₄			10
	(1)	a mixture of satura	ted fly	urocarbo	ns C ₆ - C	8	200		
99.	Whic	h of the following	gases i	s largely	resnons	ihl	e for acid-rain?	7 7	
	(1)	SO, & NO,	,	o magery	(2)		CO ₂ & water vapour		
		CO, & N,			· (4)		N, & CO,	= "	K)
		7 7		2 2	()		2002		01
100. 1	BOD	stands for							
((1)	Biogenetic Oxygen	Dema	nd .	(2)	F	Biometric Oxygen Den	nand	
((3)	Biological Oxygen	Demar	nd .	(4)		Biospecific Oxygen De		
1.0								19	
					16-A				
								40.0	

ELECTRONICS AND COMMUNICATION ENGINEERING

101. In a pn junction diode, if the junction current is zero, this means that

- (1) there is no carriers crossing the junction.
- (2) the number of majority carriers crossing the junction equals the number of minority carriers crossing the junction.
- (3) the number of holes diffusing from the p-region equals the number of electrons diffusing from the n-region.
- (4) the potential barrier has disappeared.

102. The circuit shown in Fig.1 acts as

- (1) clamper
- (2) rectifier
- (3) comparator
- (4) clipper

103. The emitter region in the pnp junction transistor is more heavily doped than the base region so that

- (1) base current will be high
- (2) the flow across the base region will be mainly because of electrons
- (3) recombinations will be increased in the base region
- (4) the flow across the base region will be mainly because of holes

104. A field-effect transistor (FET)

- (1) depends on minority-carrier flow
- (2) uses high concentration emitter junction
- (3) has a very high input resistance
- (4) uses forward-biased pn junction

105. In a half wave rectifier, the load current flows for

- (1) only for positive half cycle of input signal
- (2) the complete cycle of the input signal
- (3) more than half cycle but less than the complete cycle of input signal
- (4) less than half cycle of input signal

Set Code :	T2
Booklet Code :	A

				Set Code : 7
				Booklet Code :
106. A	A tra	nsistor is said to be in a quiescent stat	e when	i e
	1)	no currents are flowing		
,	2)	emitter-junction bias is just equal to	collect	tor-junction bias
20	3)	no signal is applied to the input		
- 3	(4)	it is unbiased		
107. 0	Com	pared to CB amplifier, the CE amplifi	ier has	
	(1)	higher current amplification	(2)	lower input resistance
	(3)	higher output resistance	(4)	lower current amplification
108. 7	The	negative output swing starts clipping f	first wh	en Q-point
	(1)	is near saturation point	(2)	is near cut-off point
((3)	has optimum value	(4)	is in the active region of the load line
109. I	Intro	oducing a resistor in the emitter of C	E ampl	lifier stabilizes the dc operating point aga
		ations in		3.0
((1)	only the β of the transistor	(2)	both temperature and β
((3)	only the temperature	(4)	neither β nor temperature
110.	Whi	ch of the following class of amplifier	s has hi	ighest among of distortion?
	(1)	class C (2) class AB	(3)	class B (4) class A
111.	Tun	ed voltage amplifiers are not used		
	(1)	in radio receivers		
	(2)	where a band of frequencies is to be	selecte	ed and amplified
	(3)	in television receivers		
	(4)	in a public-address systems		
112.	Fee	dback in a amplifier always helps to		
	(1)	increase its gain	(2)	
	(3)	decrease its input impedance	(4)	control its output
			18-A	

Set Code :	T2
Booklet Code :	A

102020	0.476/0944						
113.	An i	deal OP-AMP has					
	(1)	infinite input resistance and infinite	output	resistance			
	(2)	infinite input resistance and zero out	tput res	istance			
	(3)	zero input resistance and infinite out	tput res	istance			
	(4)	zero input resistance and zero outpu	t resista	ance			
114.	Fors	square wave generation	_ is us	ed.		×:	
	(1)	bistable multivibrator	(2)	schmitt trigger	r		
	(3)	astable multivibrator	(4)	monostable mi	ultivib	rator	
						20	
115.	Puls	e width of a collector coupled monos	table m	ultivibrator is gi	iven by	ý	- 4
		T = 0.69 RC (2) $T = 0.707 RC$				T = 1.38 RC	
	,						
116.	In se	eries resonance circuit, increasing inde	uctance	to twice its valu	ie and	reducing capaci	tance to
1.5000		its value.					
	(1)	will change the maximum value of c	urrent				
	(2)	will change the resonance frequency	,	*		4.*	
	(3)	will increase the selectivity of the c	ircuit			¥1	
	(4)	will change the impedance at resona		quency			
	06						
117.	A hi	gh Q coil has				Ø.,	
	(1)	low losses	(2)	flat response			
	(3)	high losses	(4)	large bandwidt	h ·		
	7- X		, ,				
118.	Supe	erposition theorem is based on the co	ncept o	f			
	(1)	The constant of the contract o	(3)		(4)	non-linearity	
	(-)						
119.	In th	e Thevenin equivalent circuit, V _{th} equa	als	*			
	(1)		(2)	open-circuit te	rmina	voltage	
	(3)		(4)	voltage of the	source		
	(-)		10 10 10 10 10 10 10 10 10 10 10 10 10 1				

	-
Set Code :	T2
Booklet Code :	

										_
									et Code	=
								Bookle	et Code	:
		dependent vol				impedance Z _s	$=R_s+j$	X _s deli	vers a ma	axim
(1	1)	$Z_L = R_S$	(2)	$Z_L = jX_S$	(3)	$Z_{L} = R_{S} + jX_{S}$	(4)	$Z_L = F$	$c_s - jX_s$	
121. T	he n	ninimum stand	ling wa	ives occur wh	ere reflec	tion coefficier	nt is			
		zero		unity	(3)		(4)	. o o	10	
122. In	npe	dance matching	g over	wider-frequer	ncy range	can be obtaine	d	•		
(1	•	singl stub			(2)	double stub				
(3		quarter wave to	ransfor	mer	(4)	balun				
	•	A			, ,				1.0	
123. A	los	sless line will	be dist	ortionless if t	he phase	shift				
(1)	is constant wit	h frequ	iency	(2)	varies inverse	ly with	frequer	icy	
(3)	varies directly	with fi	requency	(4)	has nothing to	lo with d	istortion	on a lossle	ess l
124. W	/hic	h of the follow	ing me	thods can be	used for r	neasuring pow	er with	out usin	g wattme	eter'
(1)	one voltmeter,	one ar	nmeter	(2)	two voltmeter	rs, two	ammete	rs	114
(3)	three voltmete	ers		(4)	three ammete	erŝ			
				o be measure	4'n n Y	OC ammeter, t	he maio	or part	of the cu	
		large currents	s are u	0 00 111040410	a using i	o unimerci, i				rrer
by	ypas	n large currents sed through a capacitor		resistor	(3)			diode		rrer
by (1	ypas) (sed through a capacitor	(2)	resistor	(3)	inductor				rrer
by (1 126. Tl	pas) o	sed through a capacitor hunt-type ohm	(2)	resistor is suited to th	(3)	inductor			10	rrei
by (1	pas he sl	sed through a capacitor	(2) meter	resistor is suited to th	(3)	inductor				rrei
by (1 126. TI (1 (2	ypas he sl	sed through a capacitor hunt-type ohm high-value resi medium-value	(2) meter istance resista	resistor is suited to the	(3) e measure	inductor				irrei
by (1 126. TI (1	he sl	sed through a capacitor hunt-type ohm high-value resi	(2) imeter istance resista	resistor is suited to the	(3) e measure	inductor				irrei
by (1 126. TI (1 (2 (3 (4	he sl	sed through a capacitor hunt-type ohm high-value resi medium-value both medium a	(2) interesting istance resistand and high stance	resistor is suited to the ance h-value resista	(3) e measure ance	inductor	(4)	diode		rrei
by (1 126. TI (1 (2 (3 (4 127. D	he sl	sed through a capacitor hunt-type ohm high-value resi medium-value both medium a low-value resis	(2) imeter istance resistand high stance	resistor is suited to the ance h-value resista	(3) e measure ance	inductor	(4)	diode		rrer
by (1 126. TI (1 (2 (3 (4 127. D	ypas he sl l l l l l l l l l l l l	seed through a capacitor hunt-type ohm high-value resimedium-value both medium a low-value resisal instruments	(2) imeter istance resistand high stance	resistor is suited to the ance h-value resista	(3) e measure ance	inductor ement of	(4)	diode		rren

Set Code :	
Booklet Code :	A

128	8. Wit	thout a spectrum analyzer, it is not poss	ible t	o determine
	(1)		(2)	
	(3)	pulse width	(4)	
129	. The	Q-meter is used to measure the electri	cal p	roperties of
	(1)	resistors only	(2)	inductors only
	(3)	coils and capacitors	(4)	capacitors only
130	. The	deflection sensitivity of a CRT depends	s inve	ersely on the
	(1)	separation between Y plates	(2)	length of the vertical deflecting plates
	(3)	deflecting voltage	(4)	distance between screen and deflecting plates
			917(5)20	
131	. The	CRO is used to measure		
	(1)	power of the signal	(2)	time period of the signal only
	(3)	amplitude and time period of the signal	(4)	spectral components of the signal
132	. Aud	io frequency oscillators, operating roug	hly in	n the
	(1)	0 Hz to 20 Hz	(2)	1 Hz to 1-MHz
	(3)	1 KHz to 1000 KHz	(4)	20 Hz to 20 KHz
133.	A no	on-triggered oscilloscope is one which		22 25
	(1)	has no sweep generator		***************************************
	(2)	can not produce a stable stationary scre	een d	isplay
100	(3)	has a continuously running time-base g		
	(4)	can display a portion of the input signal		
134.	After	r firing an SCR, the gating pulse is remo	ved.	The current in the SCR will
	(1)		(2)	rise a little and then fall to zero
	(3)	And the second s	. ,	remain the same

Set Code :	T2
Booklet Code :	A

				210 220
135	A TRIAC can	he triggered	into conduct	ion by
1.7.7.	A INIAC Can	De Hisseren	i iiito conduct	uun u

- (1) only positive voltage at either anode
- (2) positive or negative voltage at gate
- (3) positive or negative voltage at gate and positive or negative voltage at either anode
- (4) only negative voltage at either anode

136. An SCR conducts appreciable current when

- (1) anode is negative and gate is positive with respect to cathode
- (2) gate is negative and anode is positive with respect to cathode
- (3) anode and gate are both positive with respect to cathode
- (4) anode and gate both negative with respect to cathode

137.	In a th	vristor, th	ne ratio	of holding	current to	latching	current is
------	---------	-------------	----------	------------	------------	----------	------------

- (1) 0.4
- (2) 2.5
- (3) 1.0

(1) supply frequency f

(2) 3f

(3) 6f

(4) 2f

139. In BJT, the relation between
$$\alpha$$
 and β is

(1)
$$\beta = \frac{\alpha}{(\alpha+1)}$$
 (2) $\beta = \frac{\alpha}{(\alpha-1)}$ (3) $\alpha = \frac{\beta}{(\beta+1)}$ (4) $\alpha = \frac{(\beta+1)}{\beta}$

- (1) 100 Hz
- (2) 150 Hz
- (3) 250 Hz
- (4) 200 Hz

(1) 10A, 7.07A

(2) 5A, 7.07A

(3) 7.07A, 5A

(4) 5A, 10A

(ECE)

**	Set Code :	T2
	Booklet Code :	A
	177	

142.	Rese	onant mode power supplies in c	ompariso	on to s	square mode ones	
	(1)	have smaller component coun			do not cause over voltag	es
	(3)	have negligible power loss		(4)	slower in control action	·
143.		elta-connected induction motor stant V/f control mode requires				erter and operated in
	(1)	star-delta starter		(2)	no starter requires	13
	(3)	auto-transfer starter		(4)	direct online starter	
144.		message signal contains three lwidth of the AM signal is	frequenc	cies 2	KHz, 5 KHz and 10 KI	Hz respectively. The
	(1)	20 KHz (2) 5 KHz		(3)	2 KHz (4) 10	KHz
145.		rrier is simultaneously modulat esultant modulation index is	ed by two	sine		
	(1)	0.7 (2) 0.4		(3)	0.3 (4) 0.	5
146.	Indi	cate which one of the following	is not ad	vanta	ge of FM over AM.	
	(1)	lower bandwidth is required			better noise immunity is	provided
	(3)	less modulating power is requ	iired	(4)	the transmitted power is	more useful
147.	In a	low-level AM system, amplifie	rs follow	ing th	e modulated stage must	be .
	(1)	harmonic devices			nonlinear devices	
	(3)	linear devices		(4)	class C amplifier	<u> 20</u>
148.	A a	$\operatorname{And} A_{\mathfrak{m}}$ are peak amplitudes of ca	rrier and	modu	lating signal respectively	y. When $A_c = A_m$
		modulation index is 100%		(2)	modulation index is zero)
	(3)		100%	(4)	modulation index is abo	ve 100%
		The resident and the second se				3
149.	In a	SSB transmitter, one is most li	kely to fir	nd a		
	(1)	class C audio amplifier		(2)	class A R.F. output ampl	ifier
	(3)	class B R.F. amplifier	¥II .	(4)	tuned modulator	
		z: *	23	3-A	¥	(ECE)

								Set Cod	e: T2
								Booklet Cod	e : A
150.		perheterodyne uency is	receive	r with an I.F. of	150 K	Hz is tuned to a s	ignal a	at 1200 KHz. T	he image
	(1)	750 KHz	(2)	900 KHz	(3)	1650 KHz	(4)	2100 KHz	
151.	Ina	radio receiver v	vith sim	ple AGC					-0.
	(1)	an increase in	signal:	strength produce	s mor	e AGC			
	(2)	the faster the	AGC ti	me constant, the	more	accurate the out	put		
	(3)	the highest AC	GC volt	age is produced	betwe	en stations			
	(4)	the audio stag	e gain i	s normally contr	olled	by the AGC			
152.	Тор	revent overload	ling of	the last I.F. ampl	ifier i	n a receiver, one	shoul	d use	1d 90
	(1)	double conver			(2)	variable selecti			
	(3)	variable sensit	ivity		(4)	squelch		ts	
153.	One	of the main fur	nctions	of R.F. amplifie	rinas	superheterodyne	recei	ver is to	
	(1)	provide impro	ved tra	cking					
	(2)	improve the re	ejection	of the image fr	equen	су			
18.0	(3)	permit better	adjacen	t-channel reject	ion			950	
	(4)	increase the tu	ining ra	ange of the recei	ver			•	27
154.	Freq	uencies in the U	JHF ra	nge propagate by	mear	ns of			
+	(1)	sky waves	(2)	surface waves	(3)	ground waves	(4)	space waves	
155.	Whe	n electromagne	etic wa	ves travel in free	space	only one of the	follov	ving can happe	n to the
		attenuation		reflection		refraction	(4)	absorption	
156.	In P	CM system, the	quanti	zation noise depo	ends u	pon			
	(1)	the sampling r				2'		· ·	0.
	(2)			e and the numbe	rofau	antization levels	S		
	(3)	the Nyquist ra	4		•				

(ECE)

(4) the number of quantization levels

Set Code :	T2
Booklet Code :	A

157.	The	bit rate of a dig	ital com	munication sys	stem is 3	6 Mbps, the n	nodulatio	on scheme is QF	SK. The
		72 Mbps		68 Mbps	(3)	36 Mbps	(4)	18 Mbps	
	100000			60 JUNEAU SECTION			*		
158.	Whi	ch multiplexing					(4)	both FDM and	MCT
	(1)	FDM	(2)	WDM	(3)	TDM	(4)	DOIN FDIVI and	1 I DIVI
159	The	standard refere	ence ant	enna for the di	rective	gain is the	8		
157.	(1)	half-wave dip			(2)		tenna		
	(3)	infinitesimal			(4)	elementary	doublet		
	(-)		•						
160.	Yagi	antenna conta	ins						
	(1)	one reflector	and on	e director	(2)			and one direct	or
	(3)	two directors	s, no ref	lector	(4)	dipole and t	wo direc	tors	
				Ca Hartisian d	inole	with i	increase i	n length of dip	ole.
161.		radiation resis	tance o	a Hertizian u	(2)	remains unc			
15	(1)	increases	•	ad than falls	(4)	decreases	mingen		+
	(3)	attains a max	imum a	nd then rans	(+)	decreases	7		
162.	The	wavelength of	a wave	n a waveguide					
	(1)	is directly pr	oportio	nal to the grou	p veloci	ty			
	(2)	is inversely p	roporti	onal to the pha	se velo	city			
	(3)	is greater tha	n in fre	e space					
	(4)	depends on the	he wave	length dimens	ions and	the free spac	e wavele	ngth	
163	. The	guide waveler	ngth (λ _g) is related to fr				ut-off wavelen	gth (λ _c) as
	(1)	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} + \frac{1}{\lambda}$	1 2 'K	6	(2)	$\frac{1}{\lambda_g^2} = \frac{1}{\lambda^2} +$	$\frac{1}{\lambda_c^2}$		
	(3)	$\frac{1}{\lambda_c^2} = \frac{1}{\lambda_g^2} + \frac{1}{\lambda_g^2}$	$\frac{1}{\chi^2}$		(4)	$\frac{1}{\lambda^2} = \frac{1}{\lambda_c^2} +$	$\frac{1}{\lambda_g^2}$	ă	N <u>u</u> <u>.</u>
					25-A				(ECE)

									Booklet Coo	le : A
164	l. Iftl wil	ne peak trans I be increase	mitted pov	ver in a radar sy for of	stem is	increase	d by a fa	ector of	16, the maxim	num range
9	(1)	8	(2)	4	(3)	2		(4)	16	
165	. The	biggest disa	dvantage	of CW Dopple	radar i	s that				0
	(1)			nge, but not po						114
	(2)			arget position			0			
	(3)			arget velocity	-3		#			
	(4)	it does not								*
166	. Whi	ich of the fol	lowing sy	stem is an inter	rnationa	l system				20
	(1)		(2)	ATS-6	(3)	MARIS		(4)	INTELSAT	
167.	A ty	pical optical	fiber has						*	
	(1)	high refrac	tive index	core and low re	efractive	e index c	ladding			
	(2)			lex core surrou					lex cladding	
	(3)	variable ref	fractive inc	lex core with re ue at the junct	efractive	e index ir	ncreasin	g from	low value at t	he centre
	(4)			ore and high re				W 10		
168.	The	GSM standa	rd is	2 4	-					
	(1)			ar networks	(2)	second	conorot		المامية من المامية	
	(3)	_		lar networks	(4)				lular networks	5
	(5)	uma genera	ition cenu	ai networks	(4)	rourin g	enerano	on cem	ular networks	
169	The 1	2's complem	ent of 100	00 is				65		
	(1)	0111	1000	0001	(2)	1000		(4)	0101	
	(1)	0111	(2)	0001	(3)	1000	+	(4)	0101	

(3) 15

170. Which of the following is not an octal number?

(2) 101

. (1) 19

Set Code : T2

								Set Code	: T2
								Booklet Code	: A
171.	The	complete set of	only th	nose logic gate	es design	ated as univers	al gate	s is	14
. ,		NOT, OR and A			(2)				
		NOR and NAN			(4)	XOR, NOR an	dNAN	ID gates	
									E
172.	The	gates required to	o build	an half-adder	are				
	(1)	Ex-OR gate an	d NOR	gate	(2)	three NAND g			
	(3)	EX-OR gate ar	nd OR	gate	(4)	EX-OR and Al	ND gat	e	
	11								
173.		d and write capa				211			100
	(1)	Both ROM and	IRAM		(2)	RAM		V.	
	(3)	ROM			(4)	Latch			
		Lis ADC			ooo boo	resolution (in	volte) o	of	1.
174.		a-bit ADC using			age nas a	At /2n-1	(4)	V n	
	(1)	$V_R/2^n$	(2)	$V_R.2n$	(3)	$V_R/2^{n-1}$	(4)	V _R .II	
175	Ina	4-bit weighted-	resisto	r D/A conver	ter, the r	esistor value co	rrespo	nding to LSB is	s 32 kΩ.
. 75.		resistor value co					•		
		16 kΩ		8 kΩ		4 kΩ	(4)	32 kΩ	
176.	The	minimum numb	er of N	AND gates rec	uired to i	implement the B	oolean	function A + AI	B+ABC
		ual to			591				
	(1)	1	(2)	4	(3)	zero	(4)	7	
Tari Lana - 27 - 27						CARC			
177.		ch of the follow					. DC		
		Dual slope inte			2112	Flash type of A			
	(3)	Counter type of	fADC		(4)	Integrator type	e of AL	OC .	
170	Wh	en two n-bit bina		nhers are adde	ed then th	e sum will cont	ain at t	he most	
1/0.				n bits	(3)	2n bits		(n+1) bits	
	(1)	(n+2) bits	(2)	II DIIS	(3)	211 0113	(+)	(11.1) 01.0	
179.	The	8051 microcon	troller	has					
					(3)	three buses	(4)	four buses	

(1)	five	(2)	six	(3)	eight	(4)	three
181. The	8051 is an _		micro	ocontroller			
(1)	16 bit	(2)	32 bit	(3)	64 bit	(4)	8bit
182. The	8051 microc	ontroller	includes a	n instructio	n set of	oper_	ration codes.
(1)	245	(2)	255	(3)	250	(4)	260
183. The	8051 microc	ontroller	consists o	f		W.	
(1)	256 bytes R.	AM		(2)	512 bytes R	RAM	
(3)	128 bytes R	AM		(4)	64 bytes RA	AM	ti
184. The	USART accep	pts data c	haracters fi	rom the CP	U		1
(1)	in norallal fo		Per Proposition and Proposition			2.1	eerso vo
(1)	in paramer ic	ormat and	then conv	erts them ir	nto a continuo	ous serial	data stream
(2)					nto a continuo a parallel for		
7	in serial form	nat and th	hen conver	ts them into		rmat data	stream
(2)	in serial form in parallel for	nat and the	hen conver l after certa	ts them into in delay tra	a parallel for	rmat data arallel dat	stream a stream
(2) (3) (4)	in serial form in parallel for in serial form	nat and the format and mat and a	hen convert l after certa fter certain	ts them into in delay tra delay trans	a parallel for nsmits as a pa smits as a seri	rmat data arallel dat ial data st	stream a stream ream
(2) (3) (4) 85. The	in serial form in parallel for in serial form	nat and the format and mat and a	hen convert I after certa fter certain ontroller 82	ts them into in delay tra delay trans	a parallel for nsmits as a pa smits as a seri	rmat data arallel dat ial data st	stream ta stream ream accessible port
(2) (3) (4) 85. The (1)	in serial form in parallel for in serial form peripheral into three	mat and the ormat and a mat and a terface co (2)	hen convert lafter certa fter certain ontroller 82 six	ts them into in delay tra delay trans 255 has	a parallel for nsmits as a pa smits as a seri se two	rmat data arallel dat ial data st eparately	stream ta stream tream accessible port
(2) (3) (4) 85. The (1)	in serial form in parallel for in serial form peripheral into three	mat and the ormat and a mat and a terface co (2)	hen convert lafter certain fter certain ontroller 82 six	ts them into in delay tra delay trans 255 has	a parallel for nsmits as a parallel for nsmits as a seri semits as a seri two	rmat data arallel dat ial data st eparately	stream ta stream tream accessible port eight
(2) (3) (4) 185. The (1) 186. The (1)	in serial form in parallel for in serial form peripheral into three	mat and the crimat and a mat and a terface con (2) erating m (2)	hen convert lafter certain ontroller 82 six nodes of 82	ts them into in delay trans delay trans 255 has (3) 57 DMA co (3)	a parallel for nsmits as a parallel for nsmits as a seri set two ontroller 5	rmat data arallel dat ial data str eparately (4)	stream ta stream tream accessible ports eight
(2) (3) (4) 85. The (1) 86. The (1)	in serial form in parallel for in serial form peripheral into three number of op- 4	mat and the crimat and a mat and a terface con (2) erating m (2)	hen convert lafter certain ontroller 82 six nodes of 82 6	ts them into in delay trans delay trans 255 has (3) 57 DMA co (3)	sa parallel for namits as a parallel for namits and namits as a parallel for namits as a parallel for namits and namits as a parallel for namits and namits as a parallel for namits and namits and namits as a parallel for namits and nam	rmat data arallel dat ial data str eparately (4)	stream ta stream ream accessible port eight
(2) (3) (4) 85. The (1) 86. The (1)	in serial form in parallel for in serial form peripheral into three number of op- 4	mat and the primat and a mat and a terface con (2) erating m (2) dressing (2)	hen convert lafter certain ontroller 82 six nodes of 82 6 modes avai	ts them into in delay trans delay trans 255 has	sa parallel for namits as a parallel for namits and namits as a parallel for namits as a parallel for namits and namits as a parallel for namits and namits as a parallel for namits and namits and namits as a parallel for namits and nam	rmat data arallel dat ial data str eparately (4) (4)	stream ta stream ream accessible port eight
(2) (3) (4) 185. The (1) 186. The (1)	in serial form in parallel for in serial form peripheral into three number of op- 4 number of add	mat and the commat and a mat are face constant (2) erating mat (2) dressing mat (2) coccessor in	hen convert lafter certain ontroller 82 six nodes of 82 6 modes avai	ts them into in delay trans delay trans 255 has	sa parallel for namits as a parallel for namits and namits as a parallel for namits as a parallel for namits and namits as a parallel for namits and namits as a parallel for namits and namits and namits as a parallel for namits and nam	rmat data arallel data ial data streparately: (4) (4) essor (4)	stream ta stream ream accessible port eight

Set Code :	T2
Booklet Code :	A

189	A complete television signal consists	of	
	1) camera signal	(2)	sync pulses and a sound signal
	a video signal and sync pulses	(4)	a composite video signal and sound signal
190. I	nterlacing is used in TV frames to		
(avoid flicker		
((2) ensure scanning of all lines		
(produce illusion of motion		
((4) ensure scanning of all lines and	produce ill	usion of motion
191. l	in TV system, equalizing pulses are se	nt during	
	(1) horizontal blanking	(2)	horizontal retrace
	(3) serrations	(4)	vertical blanking
192. 1	In TV signals, the colour burst is used	to	
((1) interface each horizontal line	(2)	ensure the I and Q phase correctly
((3) maintain the colour sequence	(4)	synchronise colours
193.	The resolution of a TV picture is deter	rmined by	
	(1) video bandwidth	(2)	video amplification factor
. ((3) the number of frames scanned	(4)	the output of the video detector
194.	Attenuation will be more in	3.0	
((1) multi mode fibers	(2)	single mode fibers
	(3) multi mode and single mode fib	ers (4)	single mode fibers of 8 µm core diameters
195.	Star topologies are operated in		
	(1) half duplex mode only	(2)	full duplex mode only
	(3) simpley mode only	. (4)	half or full duplex mode

196.	Data	agram switching is done at the		
	(1)	data link layer	(2)	network layer
	(3)	transport layer	(4)	physical layer
197.	Whi	ich of the following reduces the	orobability o	of collision
		p-persistent	. (2)	l-persistent
	(3)	non-persistent	(4)	both I-persistent and non-persistent
				×
198.	The	multiple access technique used i	n wireless lo	ocal area network is
	(1)	CSMA	(2)	CSMA/CD
	(3)	CSMA/CA	(4)	CSMA with <i>l</i> -persistent
199.	X.25	5 is a		
	(1)	packet switching network	(2)	virtual-circuit switching network
	(3)	circuit switching network	(4)	frame relay
200.	The	ATM standard defines		**
	(1)	five layers	(2)	four layers
	(3)	three layers	(4)	seven layers
	(-)		(')	