Netzwerk- und Flussprobleme Wie viel passt durch die Leitung?

Georg Mix Jan Jakob

Universität Heidelberg

30. Mai 2021

Motivation - Anwendungsbeispiel

Motivation - Anwendungsbeispiel

- Wir betrachten die Hochspannungsleitungen zwischen Köln (s) und Schweinfurt (t).
- Auf der Hochspannungsleitung zwischen Köln und Koblenz (s, a) liegt eine Störung vor, sodass dort nur noch 40 kV anstatt von 400 kV.
- Wir wollen wissen wie viel Strom wir von Köln nach Schweinfurt transportieren können.

- Wir betrachten die Hochspannungsleitungen zwischen Köln (s) und Schweinfurt (t).
- Auf der Hochspannungsleitung zwischen Köln und Koblenz (s, a) liegt eine Störung vor, sodass dort nur noch 40 kV anstatt von 400 kV.
- Wir wollen wissen wie viel Strom wir von Köln nach Schweinfurt transportieren können.

- Wir betrachten die Hochspannungsleitungen zwischen Köln (s) und Schweinfurt (t).
- Auf der Hochspannungsleitung zwischen Köln und Koblenz (s, a) liegt eine Störung vor, sodass dort nur noch 40 kV anstatt von 400 kV.
- Wir wollen wissen wie viel Strom wir von Köln nach Schweinfurt transportieren können.

Die Begriffe Netzwerk und Fluss

Definition - Netzwerk

Definition - Netzwerk

Ein s-t-Netzwerk N ist ein Tupel N = (G, c, s, t) bestehend aus:

- einem **gerichteten Graphen** $G = (V, E, \alpha, \omega)$ mit $\alpha : E \to V$ Anfangsknoten und $\omega : E \to V$ Endknoten einer Kante
- ullet $c: E
 ightarrow \mathbb{R}_+$, einer **Kapazitätsfunktion** auf den Kanten mit nicht negativen Werten
- $s, t \in V$, zwei ausgezeichneten Knoten, der **Quelle s** und der **Senke t** mit $s \neq t$

Definition - Netzwerk

Definition - Netzwerk

Ein s-t-Netzwerk N ist ein Tupel N = (G, c, s, t) bestehend aus:

- einem **gerichteten Graphen** $G = (V, E, \alpha, \omega)$ mit $\alpha : E \to V$ Anfangsknoten und $\omega : E \to V$ Endknoten einer Kante
- ullet $c: E o \mathbb{R}_+$, einer **Kapazitätsfunktion** auf den Kanten mit nicht negativen Werten
- $s, t \in V$, zwei ausgezeichneten Knoten, der **Quelle s** und der **Senke t** mit $s \neq t$

Definition - Netzwerk

Definition - Netzwerk

Ein s-t-Netzwerk N ist ein Tupel N = (G, c, s, t) bestehend aus:

- einem **gerichteten Graphen** $G=(V, E, \alpha, \omega)$ mit $\alpha: E \to V$ Anfangsknoten und $\omega: E \to V$ Endknoten einer Kante
- ullet $c: E o \mathbb{R}_+$, einer **Kapazitätsfunktion** auf den Kanten mit nicht negativen Werten
- $s, t \in V$, zwei ausgezeichneten Knoten, der **Quelle s** und der **Senke t** mit $s \neq t$.

Definition - s-t-Fluss

Ein **s-t-Fluss** ist eine Funktion $f: E \to \mathbb{R}$, die jeder Kante eines Netzwerks N eine reelle Zahl zuordnet und folgende Bedingungen erfüllt:

$$0 \le f(e) \qquad \forall e \in E$$

(Nichtnegativität)

 $({\sf Kapazit\"{a}tsbeschr\"{a}nkung})$

(Erhaltungssatz)

Dabei ist $f^+(v) = \sum_{e \in \delta^+(v)} f(e)$; $\delta^+(v) = \{e \in E : \alpha(e) = v, \omega(e) \neq v\}$ die **Flussmenge**, die aus einem Knoten $v \in V$ herausfließt und $f^-(v) = \sum_{e \in \delta^-(v)} f(e)$; $\delta^-(v) = \{e \in E : \alpha(e) \neq v, \omega(e) = v\}$ die Flussmenge, die hineinfließt.

Definition - Wert eines s-t-Flusses

Der **Wert** W_f eines s-t-Flusses f ist definiert als $W_f := f^+(s) - f^-(s)$. Dies entspricht gerade dem Gesamtfluss aus der Quelle s heraus. Außerdem gilt nach der Definition von $f: W_f = f^-(t) - f^+(t)$

Definition - maximaler s-t-Fluss

Ein Fluss f^* heißt **maximaler s-t-Fluss**, wenn er den maximalen Wert unter allen s-t-Flüssen besitzt: $W_{f^*} = \max\{W_f \mid f \text{ ist s-t-Fluss}\}$

Definition - Problem des größten Flusses

Die Aufgabe, zu einem Netzwerk N=(G,c,s,t) mit n=|V| Knoten und m=|E| Kanten einen maximalen s-t-Fluß $f^*\in\mathbb{R}^m$ zu finden, heißt **Problem des größten Flusses (max flow problem)**

Existenz - Problem des größten Flusses

Definition - maximaler s-t-Fluss

Ein Fluss f^* heißt **maximaler s-t-Fluss**, wenn er den maximalen Wert unter allen s-t-Flüssen besitzt: $W_{f^*} = \max\{W_f \mid f \text{ ist s-t-Fluss}\}$

Definition - Problem des größten Flusses

Die Aufgabe, zu einem Netzwerk N=(G,c,s,t) mit n=|V| Knoten und m=|E| Kanten einen maximalen s-t-Fluß $f^*\in\mathbb{R}^m$ zu finden, heißt **Problem des größten Flusses (max flow problem)**

Existenz - Problem des größten Flusses

Definition - maximaler s-t-Fluss

Ein Fluss f^* heißt **maximaler s-t-Fluss**, wenn er den maximalen Wert unter allen s-t-Flüssen besitzt: $\mathcal{W}_{f^*} = \max\{\mathcal{W}_f \mid f \text{ ist s-t-Fluss}\}$

Definition - Problem des größten Flusses

Die Aufgabe, zu einem Netzwerk N=(G,c,s,t) mit n=|V| Knoten und m=|E| Kanten einen maximalen s-t-Fluß $f^*\in\mathbb{R}^m$ zu finden, heißt **Problem des größten Flusses (max flow problem)**

Existenz - Problem des größten Flusses

Definition - maximaler s-t-Fluss

Ein Fluss f^* heißt **maximaler s-t-Fluss**, wenn er den maximalen Wert unter allen s-t-Flüssen besitzt: $W_{f^*} = \max\{W_f \mid f \text{ ist s-t-Fluss}\}$

Definition - Problem des größten Flusses

Die Aufgabe, zu einem Netzwerk N=(G,c,s,t) mit n=|V| Knoten und m=|E| Kanten einen maximalen s-t-Fluß $f^*\in\mathbb{R}^m$ zu finden, heißt **Problem des größten Flusses (max flow problem)**

Existenz - Problem des größten Flusses

Bestimmung maximaler Flüsse - Theoretische Betrachtungen

Bestimmung maximaler Flüsse - Theoretische Betrachtungen

Anwendungsbeispiel

Was ist eine (möglichst kleine) obere Schranke des Gesamtflusses?

Anwendungsbeispiel

Was ist eine (möglichst kleine) obere Schranke des Gesamtflusses?

Definition - Schnitt

Ein **Schnitt** (S, T) in einem Graphen $G = (V, E, \alpha, \omega)$ teilt die Knoten in zwei Partitionen $S, T \subset V$. i.e. $V = S \cup T$, $S \cap T = \emptyset$ und $S, T \neq \emptyset$

Definition - s-t-Schnitt

Ein Schnitt (S, T) mit $s \in S$ und $t \in T$.

Definition - Kapazität des Schnittes (S, T

$$c(S,T) := \sum_{e \in (S,T)} c(e)$$

$$S = \{s, a, b, c, d, e\}, T = \{t\}$$

b

so

e

t

a

100

C

$$c(S, T) = 200 + 50$$

Definition - Schnitt

Ein **Schnitt** (S, T) in einem Graphen $G = (V, E, \alpha, \omega)$ teilt die Knoten in zwei Partitionen $S, T \subset V$. i.e. $V = S \cup T$, $S \cap T = \emptyset$ und $S, T \neq \emptyset$

Definition - s-t-Schnitt

Ein Schnitt (S, T) mit $s \in S$ und $t \in T$.

Definition - Kapazität des Schnittes (S, T

$$c(S,T) := \sum_{e \in (S,T)} c(e)$$

$$S = \{s, a, b, c, d, e\}, T = \{t\}$$

b

so

e

t

a

100

C

$$c(S,T) = 200 + 50$$

Definition - Schnitt

Ein **Schnitt** (S,T) in einem Graphen $G=(V,E,\alpha,\omega)$ teilt die Knoten in zwei Partitionen $S,T\subset V$. i.e. $V=S\cup T, S\cap T=\emptyset$ und $S,T\neq\emptyset$

Definition - s-t-Schnitt

Ein Schnitt (S, T) mit $s \in S$ und $t \in T$.

Definition - Kapazität des Schnittes (S, T)

$$c(S,T) := \sum_{e \in (S,T)} c(e)$$

$$S = \{s, a, b, c, d, e\}, T = \{t\}$$

b

so

a

100

C

a

100

C

$$c(S,T)=200+50$$

Definition - Schnitt

Ein **Schnitt** (S,T) in einem Graphen $G=(V,E,\alpha,\omega)$ teilt die Knoten in zwei Partitionen $S,T\subset V$. i.e. $V=S\cup T, S\cap T=\emptyset$ und $S,T\neq\emptyset$

Definition - s-t-Schnitt

Ein Schnitt (S, T) mit $s \in S$ und $t \in T$.

Definition - Kapazität des Schnittes (S, T)

$$c(S,T) := \sum_{e \in (S,T)} c(e)$$

$$S = \{s, a, b, c, d, e\}, T = \{t\}$$

b

so

e

t

a

100

C

b

so

c

c

c

d

so

c

c

d

so

c

so

$$c(S, T) = 200 + 50$$

Nettofluss über die Knoten eines Schnittes:

$$f^+(S) - f^-(S) := \sum_{v \in S} f^+(v) - f^-(v)$$

Nettofluss über die Kanten des Schnittes

$$f(S,T) - f(T,S) := \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e)$$

Nettofluss über die Knoten eines Schnittes:

$$f^+(S) - f^-(S) := \sum_{v \in S} f^+(v) - f^-(v)$$

Nettofluss über die Kanten des Schnittes

$$f(S,T)-f(T,S) := \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e)$$

Nettofluss über die Knoten eines Schnittes:

$$f^+(S) - f^-(S) := \sum_{v \in S} f^+(v) - f^-(v)$$

Nettofluss über die Kanten des Schnittes:

$$f(S,T)-f(T,S) := \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e)$$

Nettofluss über die Knoten eines Schnittes:

$$f^+(S) - f^-(S) := \sum_{v \in S} f^+(v) - f^-(v)$$

Nettofluss über die Kanten des Schnittes:

$$f(S,T)-f(T,S) := \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e)$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

Beweis:

$$\mathcal{W}_f = f^-(t) - f^+(t) = f^+(s) - f^-(s)$$
 (Einfluss = Ausfluss)
$$= \sum_{v \in S} f^+(v) - f^-(v)$$
 (Erhaltungssatz)
$$= \sum_{e \in (S,T)} f(e) + \sum_{e \in (S,S)} f(e) - \sum_{e \in (S,S)} f(e) - \sum_{e \in (T,S)} f(e)$$

$$= f(S,T) - f(T,S)$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = f(S, T) - f(T, S) \le c(S, T)$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

• Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = \underbrace{f(S,T)}_{\leq c(S,T)} - \underbrace{f(T,S)}_{\geq 0} \leq c(S,T)$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

• Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = f(S, T) - f(T, S) \le c(S, T)$$

Beschränktheit des Flusses

$$\max(\mathcal{W}_f) \leq \min(c(S, T))$$

• Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

• Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = f(S, T) - f(T, S) \le c(S, T)$$

Beschränktheit des Flusses

$$\max(\mathcal{W}_f) \leq \min(c(S, T))$$

Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = f(S, T) - f(T, S) \le c(S, T)$$

• Beschränktheit des Flusses

$$\max(\mathcal{W}_f) \leq \min(c(S,T))$$

Lemma

Sei f ein zulässiger s-t-Fluss und (S, T) ein s-t-Schnitt, mit

$$W_f = c(S, T)$$

Dann ist f ein maximaler s-t-Fluss und (S, T) ein minimaler s-t-Schnitt.

Gesamtfluss ist gleich dem Nettofluss über die Knoten/Kanten eines Schnitts

$$W_f = f^+(S) - f^-(S) = f(S, T) - f(T, S)$$

Nettofluss über die Knoten/Kanten eines Schnitts ist kleiner als die Kapazität des Schnitts

$$f^+(S) - f^-(S) = f(S, T) - f(T, S) \le c(S, T)$$

• Beschränktheit des Flusses

$$\max(\mathcal{W}_f) \leq \min(c(S,T))$$

Lemma

Sei f ein zulässiger s-t-Fluss und (S, T) ein s-t-Schnitt, mit

$$W_f = c(S, T)$$

Dann ist f ein maximaler s-t-Fluss und (S, T) ein minimaler s-t-Schnitt.

Ist der Fluss maximal?

Residualnetzwerk

Definition - Residualnetzwerk

Für einen s-t-Fluss f im Netzwerk N=(G,c,s,t) definieren wir das **Residualnetzwerk** $N_f:=(G_f,c_f,s,t)$ mit **Residualgraph** $G_f=(V,E_f,\alpha',\omega')$ und **Residualkapazität** $c_f:E_f\to\mathbb{R}_{>0}$ wie folgt:

- Für alle $e \in E$ mit f(e) < c(e) existiert $+e \in E_f$ mit $\alpha'(+e) = \alpha(e)$, $\omega'(+e) = \omega(e)$ und $c_f(+e) = c(e) f(e)$
- Für alle $e \in E$ mit f(e) > 0 existiert $-e \in E_f$ mit $\alpha'(-e) = \omega(e)$, $\omega'(-e) = \alpha(e)$ und $c_f(-e) = f(e)$

Residualnetzwerk

Definition - Residualnetzwerk

Für einen s-t-Fluss f im Netzwerk N=(G,c,s,t) definieren wir das **Residualnetzwerk** $N_f:=(G_f,c_f,s,t)$ mit **Residualgraph** $G_f=(V,E_f,\alpha',\omega')$ und **Residualkapazität** $c_f:E_f\to\mathbb{R}_{\geq 0}$ wie folgt:

- Für alle $e \in E$ mit f(e) < c(e) existiert $+e \in E_f$ mit $\alpha'(+e) = \alpha(e)$, $\omega'(+e) = \omega(e)$ und $c_f(+e) = c(e) f(e)$
- Für alle $e \in E$ mit f(e) > 0 existiert $-e \in E_f$ mit $\alpha'(-e) = \omega(e)$, $\omega'(-e) = \alpha(e)$ und $c_f(-e) = f(e)$

Flussnetzwerk

Residualnetzwerk

Residualnetzwerk

Definition - Residualnetzwerk

Für einen s-t-Fluss f im Netzwerk N=(G,c,s,t) definieren wir das **Residualnetzwerk** $N_f:=(G_f,c_f,s,t)$ mit **Residualgraph** $G_f=(V,E_f,\alpha',\omega')$ und **Residualkapazität** $c_f:E_f\to\mathbb{R}_{\geq 0}$ wie folgt:

- Für alle $e \in E$ mit f(e) < c(e) existiert $+e \in E_f$ mit $\alpha'(+e) = \alpha(e)$, $\omega'(+e) = \omega(e)$ und $c_f(+e) = c(e) f(e)$
- Für alle $e \in E$ mit f(e) > 0 existiert $-e \in E_f$ mit $\alpha'(-e) = \omega(e)$, $\omega'(-e) = \alpha(e)$ und $c_f(-e) = f(e)$

Flussnetzwerk b 60/500 e 50/50 40/100 50/50 50/200

Residualnetzwerk b 440 60 100 50 50 50 150 50

Augmenting Path Theorem

augmentierender/flussvergrößernder Weg: Ein s-t-Weg P im Residualnetzwerk G_f

Residualkapazität des Weges P:

$$\Delta P := \min_{r \in P} c_f(r)$$

Augmenting Path Theorem

Sei f ein zulässiger s-t-Fluss in G. Dann gilt

f ist ein maximaler Fluss \Leftrightarrow es existiert kein augmentierender Weg in G_f

Augmenting Path Theorem

augmentierender/flussvergrößernder Weg: Ein s-t-Weg P im Residualnetzwerk G_f

Residualkapazität des Weges P:

$$\Delta P := \min_{r \in P} c_f(r)$$

Augmenting Path Theorem

Sei f ein zulässiger s-t-Fluss in G. Dann gilt:

f ist ein maximaler Fluss \Leftrightarrow es existiert kein augmentierender Weg in G_f

Beweis Augmenting Path Theorem (1)

f ist ein maximaler Fluss \Leftrightarrow es existiert kein augmentierender Weg in G_f

" \Rightarrow " Klar, wenn ein augmentierender Weg existiert kann f nicht maximal sein

"\(= \)" Idee: Wir geben einen
$$s$$
- t -Schnitt (S, T) an mit $\mathcal{W}_f = c(S, T)$
 $S = \{v \in V : \text{ es existiert ein } s$ - v -Weg in $G_f\}, \qquad T = V \setminus S$

$$\mathcal{W}_f = c(S,T) \Leftrightarrow \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e) = \sum_{e \in (S,T)} c(e)$$

Es genügt zu zeigen, dass

$$f(e) = c(e) \quad \forall e \in (S, T)$$
 (1)

$$f(e) = 0 \qquad \forall e \in (T, S) \tag{2}$$

Beweis Augmenting Path Theorem (1)

f ist ein maximaler Fluss \Leftrightarrow es existiert kein augmentierender Weg in G_f

" \Rightarrow " Klar, wenn ein augmentierender Weg existiert kann f nicht maximal sein

"\(= \)" Idee: Wir geben einen
$$s$$
- t -Schnitt (S, T) an mit $\mathcal{W}_f = c(S, T)$ $S = \{v \in V : \text{ es existiert ein } s$ - v -Weg in $G_f\}, \qquad T = V \setminus S$

$$\mathcal{W}_f = c(S,T) \quad \Leftrightarrow \quad \sum_{e \in (S,T)} f(e) - \sum_{e \in (T,S)} f(e) = \sum_{e \in (S,T)} c(e)$$

Es genügt zu zeigen, dass:

$$f(e) = c(e) \quad \forall e \in (S, T)$$
 (1)

$$f(e) = 0 \qquad \forall e \in (T, S) \tag{2}$$

Beweis Augmenting Path Theorem (2)

f ist ein maximaler Fluss \Leftrightarrow es existiert kein augmentierender Weg in G_f

$$f(r) = c(e) \qquad \forall e \in (S, T)$$
 (1)

$$f(r) = 0 \qquad \forall e \in (T, S) \tag{2}$$

Beweis durch Widerspruch:

- (1) Sei f(e) < c(e) für ein $e \in (S, T)$. Dann wäre $+e \in G_f$ mit $\alpha'(+e) \in S$ und $\alpha'(+e) \in T$.
 - **Widerspruch** zu $\omega'(+e)$ ist nicht von *s* erreichbar.
- (2) Sei f(e) > 0 für ein $e \in (T, S)$. Dann wäre $-e \in G_f$ mit $\alpha'(-e) \in S$ und $\omega'(-e) \in T$. Widerspruch zu $\omega'(-r)$ ist nicht von s erreichbar.

Bestimmung maximaler Flüsse - Algorithmen

Bestimmung maximaler Flüsse - Algorithmen

Algorithmus von Ford und Fulkerson

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

Initialisierung des Flusses

> Flussnetzwerk aktualisieren

- 2: Bestimme das Residualnetzwerk Gf
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- 4: $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) + \Delta P \quad \forall + e \in P$
- 6: aktualisiere G_f

▷ Bestimmung des neuen Residualnetzwerks

▶ Abbruchbedingung: Augmenting Path Theorem

7: end while

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0},\ s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

⊳ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere Gf

▷ Bestimmung des neuen Residualnetzwerks

▶ Abbruchbedingung: Augmenting Path Theorem

7: end while

Residualnetzwerk

⊳ Flussnetzwerk aktualisieren

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{\geq 0}$, $s, t \in V, s \neq t$

Output: ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk Gf
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- 4: $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 5: aktualisiere Gf

- ▷ Abbruchbedingung: Augmenting Path Theorem
 - ▷ Bestimmung des neuen Residualnetzwerks

7: end while

Flussnetzwerk

Residualnetzwerk

▷ Initialisierung des Flusses

> Flussnetzwerk aktualisieren

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- ▷ Abbruchbedingung: Augmenting Path Theorem

4: $f(e) + \Delta P \quad \forall + e \in P$ 5: $f(e) - \Delta P \quad \forall - e \in P$

▷ Flussnetzwerk aktualisieren

6: aktualisiere Gf

▷ Bestimmung des neuen Residualnetzwerks

7: end while

7. Cita Willic

Flussnetzwerk Residualnetzwerk

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0},\ s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

Initialisierung des Flusses

> Flussnetzwerk aktualisieren

- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
 - $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
 - aktualisiere G_f

▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

7: end while

Flussnetzwerk

Residualnetzwerk

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- 4: $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere G_f

- Dantin
 - ▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

7: end while

Flussnetzwerk

Residualnetzwerk

> Flussnetzwerk aktualisieren

▷ Initialisierung des Flusses

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{>0}$, $s, t \in V, s \neq t$ Output: ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
 - $f(e) + \Delta P \quad \forall + e \in P$
- $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere G_f
- 7: end while
- > Flussnetzwerk aktualisieren ▶ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0},\ s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

Residualnetzwerk

- 2: Bestimme das Residualnetzwerk Gf
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
 - $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- : aktualisiere G_f

▷ Flussnetzwerk aktualisieren
 ▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

Destinii

7: end while

5 • 60 60 10 160 t

100

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk G_{ℓ}
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere G_f
- 7: end while

- ▷ Initialisierung des Flusses
- ▷ Abbruchbedingung: Augmenting Path Theorem
 - > Flussnetzwerk aktualisieren
 - ▷ Bestimmung des neuen Residualnetzwerks

Flussnetzwerk b 10/500 e 0/50 10/60 50/50 a 0/100 C

Residualnetzwerk b 500 e 50 d 10 160 t 10 160

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{>0}$, $s, t \in V, s \neq t$ Output: ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
 - $f(e) + \Delta P \quad \forall + e \in P$
- $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere G_f

- ▷ Abbruchbedingung: Augmenting Path Theorem
 - > Flussnetzwerk aktualisieren ▶ Bestimmung des neuen Residualnetzwerks

7: end while

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{>0}$, $s, t \in V, s \neq t$ Output: ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f do
 - $f(e) + \Delta P \quad \forall + e \in P$
- $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere Ge

- > Flussnetzwerk aktualisieren
- ▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

end while

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- 4: $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere G_f

- Initialisierung des Flusses
- ▷ Abbruchbedingung: Augmenting Path Theorem
 - ⊳ Flussnetzwerk aktualisieren
 - ▷ Bestimmung des neuen Residualnetzwerks

7: end while

Flussnetzwerk b 60/500 e 50/50 a 0/100 C

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
 - $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere G_f

7: end while

- ▷ Abbruchbedingung: Augmenting Path Theorem
 ▷ Flussnetzwerk aktualisieren
 - ▷ Bestimmung des neuen Residualnetzwerks

Flussnetzwerk b 60/500 e 60/300 5 0/50 50/50 50/200

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{>0}$, $s, t \in V, s \neq t$ Output: ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- ▷ Initialisierung des Flusses
- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f do
 - $f(e) + \Delta P \quad \forall + e \in P$
- $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere Ge
- end while

- > Flussnetzwerk aktualisieren
- ▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0}$, $s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk Gr
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- 4: $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere G_f

- ⊳ Flussnetzwerk aktualisieren
- ▷ Bestimmung des neuen Residualnetzwerks

▷ Abbruchbedingung: Augmenting Path Theorem

7: end while

100

▷ Initialisierung des Flusses

Residualnetzwerk

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G = (V, E, \alpha, \omega)$, Kapazitätsfunktion $c : E \to \mathbb{R}_{>0}$, $s, t \in V, s \neq t$ Output: ein maximaler s-t-Fluss

1: $f(e) = 0 \quad \forall e \in E$

▷ Initialisierung des Flusses

- 2: Bestimme das Residualnetzwerk Ge
- 3: **while** \exists ein augmentierender Weg P in G_f **do**
- $f(e) + \Delta P \quad \forall + e \in P$
 - $f(e) \Delta P \quad \forall -e \in P$
- aktualisiere G_f

- ▷ Abbruchbedingung: Augmenting Path Theorem > Flussnetzwerk aktualisieren
 - ▶ Bestimmung des neuen Residualnetzwerks

7: end while

Algorithm 1 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph $G=(V,E,\alpha,\omega)$, Kapazitätsfunktion $c:E\to\mathbb{R}_{\geq 0},\ s,t\in V,s\neq t$ **Output:** ein maximaler s-t-Fluss

- 1: $f(e) = 0 \quad \forall e \in E$
- 2: Bestimme das Residualnetzwerk G_f
- 3: **while** \exists ein augmentierender Weg in G_f **do**
- $f(e) + \Delta P \quad \forall + e \in P$
- 5: $f(e) \Delta P \quad \forall -e \in P$
- 6: aktualisiere Gf
- 7: end while

- Initialisierung des Flusses
- ▷ Abbruchbedingung: Augmenting Path Theorem
 - ⊳ Flussnetzwerk aktualisieren
 - ▷ Bestimmung des neuen Residualnetzwerks

Flussnetzwerk b 110/500 e 50/50 50/60 d d 50/50 90/200

Korrektheitsanalyse

Wenn der Ford-Fulkerson Algorithmus terminiert, ist der maximale s-t-Fluss gefunden.

Laufzeitanalyse

Algorithm 18 Algorithmus von Ford und Fulkerson

Input: gerichteter Graph G = (V, E)

Anwendungen von Flussnetzwerken

Anwendungen von Flussnetzwerken

Anwendungen

Flussnetzwerke haben ein sehr breites Anwendungsgebiet! Versuch einer Klassifizierung:

- Offensichtliche Problemstellungen, die sich mit Flussnetzwerken modellieren lassen
- Umformung bzw. Rückführung von Problemen auf Flussnetzwerke
- Dienen der Lösung anderer Problemstellungen der kombinatorischen Optimierung

Die **Schwierigkeit in der Praxis** liegt in der geeigneten Modellierung des Problems und / oder der Rückführung des Problems auf ein Flussnetzwerk!

Offensichtliche Anwendungen

- Infrastruktur, Versorgungsnetze
 - Waserfluss in Rohrnetzwerken ohne Speicher
 - Stromtransport in Elektrizitätsnetzen
 - Versendung von Datenpaketen in Firmennetzwerken
 - Ölpipelines
- Transportprobleme
- Airline scheduling
- Netzwerkanalyse

Die **Schwierigkeit in der Praxis** liegt in der geeigneten Modellierung des Problems. Nicht alle Transportprobleme lassen sich mit Flussnetzwerken lösen! :(

Limitationen der Modellierung

- Es kann nur eine Quelle und eine Senke modelliert werden.
- Modelle bei denen jede Leitung in beide Richtungen, jedoch nur in eine Richtung gleichzeitig fließen kann, kann modelliert werden mit

$$c(v, w) = c(w, v) \qquad v, w \in V$$
$$f(v, w) \cdot f(w, v) = 0$$

Die zweite Bedingung kann beim bestimmen des Flussnetzwerkes ignoriert werden, nach dem der maximale Fluss bestimmt ist, kann dieser angepasst werden, um $f(v, w) \cdot f(w, v) = 0$ zu erfüllen

$$f(v, w) = f(v, w) - \min(f(v, w), f(w, v))$$

$$f(w, v) = f(w, v) - \min(f(v, w), f(w, v))$$

Limitationen der Modellierung

- Es kann nur eine Quelle und eine Senke modelliert werden.
- Modelle bei denen jede Leitung in beide Richtungen, jedoch nur in eine Richtung gleichzeitig fließen kann, kann modelliert werden mit

$$c(v, w) = c(w, v) \qquad v, w \in V$$
$$f(v, w) \cdot f(w, v) = 0$$

Die zweite Bedingung kann beim bestimmen des Flussnetzwerkes ignoriert werden, nach dem der maximale Fluss bestimmt ist, kann dieser angepasst werden, um $f(v, w) \cdot f(w, v) = 0$ zu erfüllen.

$$f(v, w) = f(v, w) - \min(f(v, w), f(w, v))$$

$$f(w, v) = f(w, v) - \min(f(v, w), f(w, v))$$

Max-Flow-Min-Cut-Theorem

MaxFlow-MinCut-Satz

Der maximale Fluss in einem Netzwerk ist gleich der Kapazität des minimalen Schnitts:

$$\max \mathcal{W}_f = \min(c(S,T))$$

Beweis:

"

"

entspricht der Beschränktheit des Flusses.

Wir können nun analog zum Augmented Path Theorem einen s-t-Schnitt (S, T) für den maximalen Fluss f angeben.

Wie bereits bewiesen gilt für diesen Schnitt $W_f = c(S, T)$

Anwendungsbeispiel

Max Cut des Anwendungsbeispiels

Max Cut des Anwendungsbeispiels

- Dualitätsaussage zwischen Max-Flow und Min-Cut
- Dualitätssatz)
 - Formulierung des Max-Flow-Problems als lineare Optimierungsaufgabe unter Nebenbedingungen und des Min-Cut-Problems als duales Problem dazu
 - starker Dualitätssatz: Besitzen das primale Problem eine optimale Lösung, so besitzt auch das duale Problem eine optimale Lösung und die beiden Lösungen stimmen überein.

- Dualitätsaussage zwischen Max-Flow und Min-Cut
- Beweis auch möglich mittels Dualitätsaussagen aus der linearen Optimierung (starker Dualitätssatz)
 - Formulierung des Max-Flow-Problems als lineare Optimierungsaufgabe unter Nebenbedingungen und des Min-Cut-Problems als duales Problem dazu
 - starker Dualitätssatz: Besitzen das primale Problem eine optimale Lösung, so besitzt auch das duale Problem eine optimale Lösung und die beiden Lösungen stimmen überein.

- Dualitätsaussage zwischen Max-Flow und Min-Cut
- Beweis auch möglich mittels Dualitätsaussagen aus der linearen Optimierung (starker Dualitätssatz)
 - Formulierung des Max-Flow-Problems als lineare Optimierungsaufgabe unter Nebenbedingungen und des Min-Cut-Problems als duales Problem dazu
 - starker Dualitätssatz: Besitzen das primale Problem eine optimale Lösung, so besitzt auch das duale Problem eine optimale Lösung und die beiden Lösungen stimmen überein.

- Dualitätsaussage zwischen Max-Flow und Min-Cut
- Dualitätssatz)

Beweis auch möglich mittels Dualitätsaussagen aus der linearen Optimierung (starker

- Formulierung des Max-Flow-Problems als lineare Optimierungsaufgabe unter Nebenbedingungen und des Min-Cut-Problems als duales Problem dazu
- starker Dualitätssatz: Besitzen das primale Problem eine optimale Lösung, so besitzt auch das duale Problem eine optimale Lösung und die beiden Lösungen stimmen überein.