BASICS OF INFORMATION SYSTEM SECURITY

Wireless, IoT, and Cloud Security

Video summary

- Introduction to Cellular Networks
- Cellular Networks Generations
- Introduction to GSM 2
- GSM Security Aspects

Cellular Communication Systems

• When moving between two cells, the cellphone must handover from one BS to the other.

Cellular Communication Systems (cont'd)

(a) Perfect cellular coverage occurs if each cell is a hexagon:

- because the cells can be arranged in a honeycomb
- in practice, cellular coverage is imperfect

(b) Most cell towers use omnidirectional antennas:

- transmit in a circular pattern
- obstructions and electrical interference can attenuate a signal or cause an irregular pattern
 - o in some cases, cells overlap and in others, gaps exist with no coverage

Generations of Cellular Technologies

Telecommunications industry divides cellular technologies into four generations: 1G, 2G, 3G, and 4G (with intermediate versions labeled 2.5G and 3.5G)

Simplified Descriptions:

1G

- Began in the late 1970s, and extended through the 1980s
- Originally called cellular mobile radio telephones
- used analog signals to carry voice

2G and 2.5G

- Began in the early 1990s and continues to be used
- One standard: GSM (General System for Communications)
- The main distinction between 1G and 2G arises because 2G uses digital signals to carry voice

56 Kbps

• The label 2.5G is used for systems that extend a 2G system to include some 3G features

Generations of Cellular Technologies (cont'd)

3G and **3.5G**

- Began in the 2000s
- Focuses on the addition of higher-speed data services
- A 3G system offers download rates of 400 Kbps to 2 Mbps, and is intended to support applications such as web browsing and photo sharing
- Includes EDGE (Enhanced Data Rates for GSM Evolution)

4G and 4G LTE (Long Term Evolution)

- Began around 2008
- Higher data rate up to 20 Mbps
- Focuses on support for real-time multimedia
 - o such as a IPTV
- They include multiple connection technologies
 - o such as Wi-Fi and satellite

Generations of Cellular Technologies (cont'd)

~ 1 6 pbs

5G

- Began in the 2018 2019
- Very high speed data service (Gbps)
- Focus on low latency applications (< 1 ms)
- Focus on Massive device connectivity (Up to 100x number of connected **devices** per unit area)
- 99.999% availability.
- 90% reduction in **network** energy usage.

GSM 2 **S**

➤ Global System for Mobile Communications

- GSM is the most popular standard for mobile phones
- The GSM Association estimates 82% of the global mobile market uses this standard
- Two billion people across more than 200 countries used GSM

≻Services

• Voice Communication, Short Messaging Service, ...etc.

Architecture of GSM

Mobile Station

- ➤ Mobile Equipment
 - International Mobile Equipment Identity (IMEI)
- ➤ Subscriber Identity Module (SIM) card
 - Smart Card containing identifiers, keys and algorithms

Base Station Subsystem

➤ Base Transceiver Station (BTS)

- A cell is formed by the radio coverage of a BTS
- Provide the radio channels and handle the radio-link protocol

➤ Base Station Controller (BSC)

- Manage the radio resources for one or more BTS
- Handle channel setup and handovers
- Connect to the mobile service switching center

Network Subsystem

➤ Components in Network Subsystem

- MSC: Mobile services Switching Center
- HLR: Home Location Register
 - VLR: Visitor Location Register
 - AuC: Authentication Center
 - EIR: Equipment Identity Register

➤ Network Subsystem features

- Telephone switching function
- Subscriber profile
- Mobility management

Soch ist

GSM Basic Security Goals

- ➤ Subscriber Authentication to protect the operator against the billing fraud
- ➤ Confidentiality on the radio path
- ➤ User Anonymity
- ➤ Lower overhead introduced by security mechanisms

Gray A

GSM Security Aspects

- ➤ Subscriber authentication
 - The operator knows for billing purposes who is using the system
- ➤ Subscriber identity confidentiality
- ➤ User data confidentiality
- ➤ Key management
- ➤ Detection of compromised equipment

SIM card (Subscriber Identity Module)

- Removable from the Mobile Station
- Contain all data specific to the end user which have to reside in the Mobile Station:
 - IMSI: International Mobile Subscriber Identity (user's permanent identity)
 - PIN Personal Identity Number protecting a SIM
 - TMSI (Temporary Mobile Subscriber Identity)
 - → K_i: User's secret key
- → K_c: Ciphering key
- LAI location area identity
 - List of the last call attempts, List of preferred operators, Supplementary service data (abbreviated dialing, last short messages received,...)

Key Management Scheme

- **≻K**_i Subscriber Authentication Key
 - Shared 128 bit key used for authentication of subscriber by the operator
 - Key Storage
 - Subscriber's SIM (owned by operator, i.e. trusted)
 - Operator's Home Locator Register (HLR) of the subscriber's home network

Authentication

➤ Authentication Goals

- Subscriber (SIM holder) authentication, protection of the network against unauthorized use
- Create a session key for the next communication

➤ Authentication Scheme

- Subscriber identification: IMSI/TMSI
- Challenge-Response authentication of the subscriber
- Long-term secret key shared between the subscriber and the home network
- Supports roaming without revealing long-term key to the visited networks

Video summary

- Introduction to Cellular Networks
- Cellular Networks Generations
- Introduction to GSM
- GSM Security Aspects