

# 现代密码学

# 第六讲 古典密码算法

电子科技大学 信息与软件工程学院



## 第六讲 古典密码算法



置换密码

单表代替密码算法

多表代替密码算法



## 置换 (Permutation) 密码



- 对明文字符或字符组进行位置移动的密码
- •明文的字母保持相同,但顺序被打乱了。





#### 置换密码



- 对明文字符或字符组进行位置移动的密码
- •明文的字母顺序被打乱了,但明文字母本身不变

## ATCADWTAKTAN



























### 天书 (Scytale)



- · 500 B.C., 斯巴达人在军事上用于加解密
  - 发送者把一条羊皮纸螺旋形地缠在一个圆柱形木棒上,核心思想是置换





## 第六讲 古典密码算法



置换密码

单表代替密码算法

多表代替密码算法





• 代替(Substitution)密码构造一个或多个密文字母表,然后用密文字母表中的字母或者字母组来代替明文字母或字母组,各字母或字母组的相对位置不变,但其本身的值改变了。

• 代替密码分为单表代替密码和多表代替密码



#### 字母与数字的转换



代替密码算法针对英文字母进行处理。首先将26个字母与十进制数字中的0~25一一对应,如下表所示。而这里的数的加法和乘法都定义为模26的加法和乘法。

| 字母 | a  | b  | C  | d  | e  | f  | g  | h  | i  | j  | k  | l  | m  |
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| 数字 | 0  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| 字母 | n  | 0  | p  | q  | r  | S  | t  | u  | V  | w  | X  | y  | Z  |
| 数字 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |



# 单表代替密码



# 单表代替密码可分为

- 加法密码
- 乘法密码
- 仿射密码







 $y = x + k(\bmod 26)$ 

明文: x

密文: y

密钥: k

解密:  $x = y - k \pmod{26}$ 

#### Caesar密码就是一种加法密码(k=3)

明文字母 ABCDEFGHIJKLMNOPQRSTUVWXYZ 密文字母 DEFGHIJKLMNOPQRSTUVWXYZABC

· 设明文为: LOVE

·则密文为: ORYH



#### 单表代替密码——乘法密码



$$y = kx \pmod{26}$$

明文: x

密文: y

密钥: k

解密:  $x = k^{-1}y \pmod{26}$ 

条件: (k, 26) = 1

关键在于计算  $k^{-1}$ :

方法: 扩展的欧几里得算法

若 (m,n)=1, 则存在整数  $k_1,k_2$  使得 $k_1m+k_2n=1$ 

这里 $k_1$ 就是 $m^{-1} \mod n$ ,

注意要将 k1变为正数

 $-k_1 \mod n = (n - k_1) \mod n$ 



## 单表代替密码——仿射密码



- 加密函数:  $y = ax + b \pmod{26}$
- 密钥: a,b
- 解密函数: $x = a^{-1}(y-b) \pmod{26}$
- 条件: (a,26)=1

仿射密码是乘法密码和加法密码的结合。



#### 单表替代的统计分析



#### 单表替代的特点是相同的明文被加密成相同的密文,这使得统计分析成为可能。



英文中字母出现频率是有规律的, 只要能够收集到足够多的密文,通 过统计就能够很容易地进行密码的 破译:

e: 出现频率约为0.127; t, a, o, i, n, s, h, r: 出现频 率约在0.06到0.09之间 d, l: 的出现频率约为0.04

c, u, m, w, f, g, y, p, b: 出现频率约在0.015到0.028之间



## 第六讲 古典密码算法



置换密码

单表代替密码算法

多表代替密码算法



### Vigenere (维吉尼亚) 密码





布莱斯·德·维吉尼亚 (法语: Blaise De Vigenère, 1523年8月5日-1596年),法国外交官、密码学家。

#### 明文字母



#### Vigenere (维吉尼亚) 密码。



我们先回忆前面讲过的凯撒密码,每个字母往后移动3位,相当于只有一种替换方式,而维吉尼亚怎么做的呢?也需要先选择一个词组或单词比如:hold。



|   |   |   |   |   |   |   |   |   |   | 3  | 表 2 | . 4 | Vigenere 方阵 |   |   |   |   |   |              |        |   |   |   |   |   |    |
|---|---|---|---|---|---|---|---|---|---|----|-----|-----|-------------|---|---|---|---|---|--------------|--------|---|---|---|---|---|----|
| 0 | a | ь | c | d | e | f | g | h | i | j_ | k   | 1   | m           | n | 0 | р | q | r | 8            | t      | u | v | w | x | У | 0, |
| h | Н | I | J | K | L | M | N | 0 | P | Q  | R   | s   | Т           | U | v | w | x | Y | Z            | A      | В | С | D | E | F | C  |
| 0 | 0 | P | Q | R | s | T | U | v | w | x  | Y   | z   | A           | В | С | D | E | F | G            | H<br>E | 1 | J | K | L | M | 1  |
|   |   |   |   |   |   |   |   |   |   |    |     |     |             |   |   |   |   |   |              |        |   |   |   |   |   |    |
| d | D | E | F | G | Н | 1 | J | K | L | M  | N   | 0   | P           | Q | R | S | T | U | $\mathbf{v}$ | w      | x | Y | Z | A | В | (  |



#### 多表代换密码



多表代换密码首先将明文 M分为由n个字母构成的分组 $M_1, M_2, \cdots, M_j$ ,对每个分组 $M_i$  的加密为:

$$C_i \equiv AM_i + B(\operatorname{mod} N), i = 1, 2, \cdots, j$$

其中(A,B)是密钥, A 是 $n \times n$  的可逆矩阵, 满足 gcd(|A|,N) = 1 (|A|是行列

式), 
$$B = (B_1, B_2, \cdots, B_n)^T$$
,  $C = (C_1, C_2, \cdots, C_n)^T$ ,  $M_i = (m_1, m_2, \cdots, m_n)^T$ 

对密文分组 $C_i$ 的解密为:

$$M_i \equiv A^{-1}(C_i - B) \pmod{N}, i = 1, 2, \dots, j$$



#### 例题



设 n=3, N=26,

$$A = \begin{pmatrix} 11 & 2 & 19 \\ 5 & 23 & 25 \\ 20 & 7 & 17 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

明文为 "YOUR PIN NO IS FOUR ONE TWO SIX"。 将明文分成3个字母组成的分组 "YOU RPI NNO ISF OUR ONE TWO SIX",由表1-2得

$$M_1 = \begin{pmatrix} 24 \\ 14 \\ 20 \end{pmatrix}, M_2 = \begin{pmatrix} 17 \\ 15 \\ 8 \end{pmatrix}, M_3 = \begin{pmatrix} 13 \\ 13 \\ 14 \end{pmatrix}, M_4 = \begin{pmatrix} 8 \\ 18 \\ 5 \end{pmatrix},$$

$$M_5 = \begin{pmatrix} 14 \\ 20 \\ 17 \end{pmatrix}, M_6 = \begin{pmatrix} 14 \\ 13 \\ 4 \end{pmatrix}, M_7 = \begin{pmatrix} 19 \\ 22 \\ 14 \end{pmatrix}, M_8 = \begin{pmatrix} 18 \\ 8 \\ 23 \end{pmatrix}.$$



#### 例题 (续)



#### 所以

$$C_1 = A \begin{pmatrix} 24 \\ 14 \\ 20 \end{pmatrix} \pmod{26} = \begin{pmatrix} 22 \\ 6 \\ 8 \end{pmatrix}, C_2 = A \begin{pmatrix} 17 \\ 15 \\ 8 \end{pmatrix} \pmod{26} = \begin{pmatrix} 5 \\ 6 \\ 9 \end{pmatrix}, C_3 = A \begin{pmatrix} 13 \\ 13 \\ 14 \end{pmatrix} \pmod{26} = \begin{pmatrix} 19 \\ 12 \\ 17 \end{pmatrix},$$

$$C_4 = A \begin{pmatrix} 8 \\ 18 \\ 5 \end{pmatrix} \pmod{26} = \begin{pmatrix} 11 \\ 7 \\ 7 \end{pmatrix}, C_5 = A \begin{pmatrix} 14 \\ 20 \\ 17 \end{pmatrix} \pmod{26} = \begin{pmatrix} 23 \\ 19 \\ 7 \end{pmatrix}, C_6 = A \begin{pmatrix} 14 \\ 13 \\ 4 \end{pmatrix} \pmod{26} = \begin{pmatrix} 22 \\ 1 \\ 23 \end{pmatrix},$$

$$C_7 = A \begin{pmatrix} 19\\22\\14 \end{pmatrix} \pmod{26} = \begin{pmatrix} 25\\15\\18 \end{pmatrix}, C_8 = A \begin{pmatrix} 18\\8\\23 \end{pmatrix} \pmod{26} = \begin{pmatrix} 1\\17\\1 \end{pmatrix}.$$

#### 密文为"WGI FGJ TMR LHH XTH WBX ZPS BRB"。



#### 例题 (续)



#### 解密时, 先求出

$$A^{-1} = \begin{pmatrix} 11 & 2 & 19 \\ 5 & 23 & 25 \\ 20 & 7 & 17 \end{pmatrix}^{-1} \pmod{26} = \begin{pmatrix} 10 & 23 & 7 \\ 15 & 9 & 22 \\ 5 & 9 & 21 \end{pmatrix}$$

#### 再求

$$M_1 = A^{-1} \begin{pmatrix} 22 \\ 6 \\ 8 \end{pmatrix} = \begin{pmatrix} 24 \\ 14 \\ 20 \end{pmatrix}, M_2 = A^{-1} \begin{pmatrix} 5 \\ 6 \\ 9 \end{pmatrix} = \begin{pmatrix} 17 \\ 15 \\ 8 \end{pmatrix},$$

$$M_3 = A^{-1} \begin{pmatrix} 19\\12\\17 \end{pmatrix} = \begin{pmatrix} 13\\13\\14 \end{pmatrix}, M_4 = A^{-1} \begin{pmatrix} 11\\7\\7 \end{pmatrix} = \begin{pmatrix} 8\\18\\5 \end{pmatrix},$$

$$M_5 = A^{-1} \begin{pmatrix} 23 \\ 19 \\ 7 \end{pmatrix} = \begin{pmatrix} 14 \\ 20 \\ 17 \end{pmatrix}, M_6 = A^{-1} \begin{pmatrix} 22 \\ 1 \\ 23 \end{pmatrix} = \begin{pmatrix} 14 \\ 13 \\ 4 \end{pmatrix},$$



## 例题 (续)



$$M_7 = A^{-1} \begin{pmatrix} 25 \\ 15 \\ 18 \end{pmatrix} = \begin{pmatrix} 19 \\ 22 \\ 14 \end{pmatrix}, M_8 = A^{-1} \begin{pmatrix} 1 \\ 17 \\ 1 \end{pmatrix} = \begin{pmatrix} 18 \\ 8 \\ 23 \end{pmatrix}.$$

得明文为"YOU RPI NNO ISF OUR ONE TWO SIX"。



#### 求mod26下的逆矩阵



$$A = \begin{pmatrix} 11 & 2 & 19 \\ 5 & 23 & 25 \\ 20 & 7 & 17 \end{pmatrix}$$
 |  $A | (mod 26) = -4869 (mod 26) \equiv 19$  | 因为19和26互素,所以矩阵A可逆 |  $A | ^{-1} (mod 26) \equiv 19^{-1} (mod 26) \equiv 11$ 

伴随矩阵

$$A^* = \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix} (mod26) = \begin{pmatrix} 216 & 99 & -387 \\ 415 & -193 & -180 \\ -425 & -37 & 243 \end{pmatrix} (mod26) = \begin{pmatrix} 8 & 21 & 3 \\ 25 & 15 & 2 \\ 17 & 15 & 9 \end{pmatrix}$$

逆矩阵

$$A^{-1} = |A|^{-1}A^* = 11 \times \begin{pmatrix} 8 & 21 & 3 \\ 25 & 15 & 2 \\ 17 & 15 & 9 \end{pmatrix} (mod 26) = \begin{pmatrix} 10 & 23 & 7 \\ 15 & 9 & 22 \\ 5 & 9 & 21 \end{pmatrix}$$



# 感謝聆听! xynie@uestc.edu.cn