TIC	FILF	COPY	

REPORT	DOCUM	AFNTA	TION	PAGE
KEPUKI	DUCUI	VICIVIA	HUH	PAGE

Form Approved OMB No. 0704-0188

AD-A218 946		1b. RESTRICTIVE MARKINGS 3. DISTRIBUTION/AVAILABILITY OF REPORT					
AD AZ 10 340							
		NIGRADING SCHEDU	r.ĉ				
4. PERFORMI	NG ORGANIZAT	ION REPORT NUMBE	, -	5. MONITORING			
· * ,				<u> </u>	6287 PH		たし
6a. NAME OF TNEE	PERFORMING	ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGA	NIZATION	ECTE 1990
250,	RUEIL-M	<i>d ZIP Code)</i> l'Empereur [ALMAISON		7b. ADDRESS (Cit	y, State, and ZIP	Code)	WAROCE
8a. NAME OF ORGANIZ	FUNDING / SPC ATION	INSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER DAJA 45-89-M-0234			
8c. ADDRESS	(City, State, and	ZIP Code)	<u> </u>	10. SOURCE OF F			
	/			PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT ACCESSION NO.
IMPRO			ILICIDE THERM	MOELECTRIC	MATERIALS	}	
12. PERSONA	L AUTHOR(S)	Stanislas a	nd Hubert SCH	IERRER			
13a. TYPE OF	REPORT	13b. TIME CO FROM Se	overed pt89 ro Jan90	14. DATE OF REPO 1990 Jan		Day) 15. P	AGE COUNT 14
16. SUPPLEMI	NTARY NOTAT	ION					
17.	COSATI	CODES	18. SUBJECT TERMS (Continue on reverse	if necessary and	d identify by	biock number)
FIELD	GROUP	SUB-GROUP					
19 ARSTRACT	(Continue on	reverse if necessary	and identify by block n	(mhar)			•
		_	at high tempera	•	niconductin	g compo	und
			eady proposed for				
	•		o obtain pure se				*
peta			or thermoelectri				
			orated the mater				
;			ī 1250 °C and 1) 10
			phase is obtai				
1	·· -	·	Si ₂ was time co	=		or the pr	lase
	uragi aili	results in the	production or III		alloys. ntinued o	n next	page
*		LITY OF ABSTRACT	PT. DTIC USERS	21. ABSTRACT SEC			<u>. </u>
	F RESPONSIBLE			22b. TELEPHONE (I	nclude Area Code	2) 22c. OFFIC	E SYMBOL
DD Form 14	73. JUN 86		Previous editions are o	hsolete	SECURITY	CI ASSIFICATI	ON OF THIS PAGE

was were dieved

We then considered mechanical alloying, as an alternate method of producting β - Fe Si₂. This method for elaborating the compound from lower temperature must avoid the difficulties of sublimation and evaporation of the components. It also allows the optimization of β - Fe Si₂.

We compare the results of the two elaborating methods by x_1 -ray diffraction measurements. These results on β - Fe Si₂ obtained by mechanical alloying, as far we know, were original. This process now appears to be a reliable method to introduce amounts of dopant in the material. It must now be developed.

Accession For
NTIS GRA&I
DTIC TAB
Unannounced 🔲
Justification
Ву
Distribution/
Avoilability Codes
Avail and/or
Dist Special
4-1

1.500

٨	Γ
A	v

IMPROVEMENT STUDY OF IRON DISILICIDE THERMOELECTRIC MATERIALS.

Final Technical report

by

Stanislas and Hubert SCHERRER
January 1990

United States Army

EUROPEAN RESEARCH OFFICE OF THE U.S. ARMY

London

England

CONTRACT NUMBER: DAJA-89-M-0234

T.N.E.E.

Approved for Public Release; distribution unlimited

IMPROVEMENT STUDY OF IRON DISILICIDE THERMOELECTRIC MATERIALS

This study concerns the first part of the program entitled "Improvement study of iron disilicide thermoelectric materials".

In many applications at high temperature, materials for power generation must have a large figure of merit Z, a stability of surfaces with respect to oxidation, sublimation and evaporation, a low cost for elaboration. The semiconducting compound β - Fe Si₂ meets these requirements and has been already proposed for power generations. Iron disilicide is doped with cobalt to obtain the N-type material. The P-type is obtained either by manganese (used by KOMATSU commercially) or by aluminium (U. BIRKHOLZ - University of KARLSRUHE). The manganese gives a Z of around 0.5.10 K⁻¹ while aluminium is supposed to give Z = 1.5.10 K⁻¹ (400° C).

The goal of this part of the study is to obtain pure semiconducting β - Fe Si₂ phase from elemental 325 mesh iron and silicon powder under the conditions of phase diagram (fig. 1). Thermoelectric properties of this material must be a reference for later studies. At once, we elaborate the material by the same classical method as KCMATSU or U. BIRKHCLZ; the synthesis of elemental iron and silicon powder is achieved by melting at 1250° C and the transition of the metholic (α) to semiconducting (3) phase is obtained by annealing. Then, we find it is very difficult to maintain the stoichiometric composition during the α + β phase transformation. Consequently to this method it is impossible to control adjustement of the doping material. Using the competence and the experiments of our laboratory, we elaborate with success β - Fe Si₂ by mechanical alloying. This method elaborating the compound from low temperature must avoid the difficulties of sublimation, evaporation of the components and allows the optimisation of β - Fe Si₂.

Figure 1: Phase diagram of the binary system Fe-Si

I. - CLASSICAL SYNTHESIS OF PURE β IRON DISILICIDE (β - Fe Si₂). -

According to a classical process it can be obtained by annealing at 1075 K from the α metallic phase. Pure materials iron (AFMCO 39,995 %), silicon (CERAC 39,995 %) were purified in a reducing atmosphere. Then the compounds in a stoichiometric composition were melted by induction heating in a quartz ampoule under He-H₂ atmosphere. In this way we obtained the α - metallic phase of Fe Si₂ and then we must achieve the α +8 phase transformation.

After cooling to room temperature the ingot was ground in a mill. The powder was filled into a cylindrical box of 10 mm in diameter and a ram pressure (70 MPa) was applied. The samples were annealed at $450~\rm K$ under vacuum for several hours. The subsequent sintering process was performed for 3 hours at $1450~\rm K$ under a stream of He-H₂ mixture. The transition to the semiconducting phase was achieved by annealing for several days at $1075~\rm K$ under high vacuum. In the table below we show the measurement of thermoelectric power at room temperature.

N° sample	(1)	(2)	(3)	(4)	(5)
αμν/ ₀	167,3	246,5	294,3	209,6	150,4

We noted that all samples were always n-types. The time needed for the phase transition from the metallic high temperature to the semiconducting phase is found to be very sensitive to the stoichiometric composition of the material. Thus thermoelectric power changed in the same manner. Some measurements on electrical resistivity and thermal conductivity were performed. Samples had a very high resistivity about 50 m Ω .m. This value was not surprising because the samples were undoped and the thermal conductivity was found as a classical value λ = 6.95 w.m⁻¹.K⁻¹.

K-ray diffraction measurements on these samples showed that α - Fe Si2 line vanished but we noted the important presence of Fe Si lines (fig. 2).

Intensity

Figure 2: X-Ray diffraction pattern of β -FeSi₂ Sample [classical synthesis]

From the phase diagram, it seemed that it was very difficult to keep the stoichiometric composition during the $\alpha + 3$ phase transformation. Consequently to this method it is impossible to control adjustement of the doping material.

II. - PREPARATION OF PURE β IRON DISILICIDE (β Fe Si2) BY MECHANICAL ALLOYING. -

The classical preparation of β Fe βi_2 , as we saw, was time-consuming and difficult. Because of the phase diagram Fe βi or βi particles are present and therefore result in the production of inhomogeneous alloys. In addition, the high vapour pressure of aluminium (for example) at elevated temperatures makes the controlled addition of this dopant difficult in the melt. These difficulties with cast alloys led us to consider mechanical alloying as an alternate method of producing Fe βi_2 thermoelectric materials.

Mechanical alloying offers the possibility of minimizing compositional heterogeneity and grain size and of evaluating additions which are not amenable to the melting process. It is a technique in which crystalline intermetallic or elemental powders are alloyed through a sequence of collision events inside a high energy ball mill. On a macroscopic scale this process is accomplished through a repeated fracture and cold welding process. It is desirable to prepare thermoelectric materials with low thermal conductivity so that a temperature gradient can easily be maintained in a device, provided the electrical conductivity and Seebeck coefficient can be kept suitably large. Evidence suggests that mechanical alloying would produce a material with extremely small (< 1 mm) particle size which should result in a significant reduction in thermal conductivity. To achieve alloying we used a vibrating shaker and planetary types of mills with unequal success.

III. - MECHANICAL ALLOYING WITH A VIBRATORY SHAKER TYPE OF MILL. -

The Fe Si $_2$ samples were prepared from elemental 325 mesh silicon and iron powder. The amounts of each component were weighed in anargon-filled glove box to obtain a nominal composition of Fe Si $_2$ and placed in a tungsten carbide vial along with a 8 gram 10 mm diameter MC ball and sealed under argon. In the initial attempts to achieve alloying these vials were loaded into a vibratory shaker type of mill (fig. 3).

Figure 5: Tibratory shaker type of mill

K-Pay diffraction measurements taken of the powder after 1 hour of processing showed that the Si and iron lines had no change indicating alloying had not occurred. In the figure 4 cliches a and b corresponded to powder respectively taken free in the vial and aggregated on the walls of the vial. No change could be observed as on cliche c for 3 hours of processing. Many other attempts were made up to 14 hours.

In the figures 5 a, b and c for 14, 15 and 30 hours respectively some changes appeared, enlarging of X-ray lines and appearance of 3 Fe Si2 X-ray line.

It was felt that in this type of mill, insufficient energy was dissipated to cause alloying to occur.

IV. - MECHANICAL ALLOYING WITH A PLANETARY TYPE OF MILL. -

The vials filled under the same conditions as before were loaded into a planetary mill which rapidly rotates each vial and is in opposition to the primary rotation axis of the platform (fig. 6). Lome attempts were made to optimise the components mass, number of balls, and time of processing. For all the following attempts, the amounts of each component were weighed (10 gram) in an argon-filled glove box to obtain a nominal composition of Fe Si2 and placed in a tungsten carbide vial 50 ml with seven, 3 gram 10 mm diameter WC balls and sealed under argon. The platform rotates at the rate of 340 rpm and the vials at 680 rpm. X-rays diffraction measurements taken of the powder after 2 hours of processing were shown in figure 7a.

We observe the existence of :

- x Fe Si2 (quadratic): lines 1 and 3
- 3 Fe Si₂ (orthogrambic) : line 2
- Fe Si (cubic): line 4
- the line 5 shows the simultaneous presence of

a Fe Si2 and 3 Fe Si2.

After 4 hours of processing we noted in the figure 7b:

- lines 1 and 3 decrease in a significative manner
- line 2 (3 Te Siz) increases considerably
- line 4 shows the disappearance of Fe Si
- the decreasing of line 5 confirms the transformation of 3 Fe Si $_2$ in relation with α Fe Si $_2$ and Fe Si.

We think that this is a good way to obtain 3 Fe Si2.

Fig 6: Planetary type of mill

Intensity

$$\alpha$$
 - FeSi₂ = 1;3;5
 β - FeSi₂ = 2;5

FeSi = 4

Intensity

Fig 7: X-Ray diffraction pattern of mechanical alloyed samples

(a) - after 2 hours

(b) - after 4 hours

The figure 8 shows an experiment of D. S. C. (Differential Scanning Calorimetry) with powder taken after 1 hour of processing. We note that the $\alpha + 3$ transformation takes place at a lower temperature (400-500° C) than the temperature predicted by the phase diagram. This is probably due to the existence of many energetic defects in the powder which are annealed quickly. These defects favourise certainly the phase transformations.

In the figure 3a are representated the K-rays lines of the powder after one hour of grinding. Then the powder is annealed (500° 0) during one hour and the K-rays spectra are represented in figure 3b.

CONCLUSION. -

The results obtained from a planetary mill were found to be suitable to elaborate the semiconducting 3 Fe Si₂ phase. The rapidity of the process (about 2 hours of grinding and annealing) was noted.

Results about D. S. C. showed that the α + 3 phase transition was at a lower temperature due to an annealing of very energetic defects introduced during mechanical alloying.

These results on 3 Fe $\rm Si_2$ obtained by mechanical alloying, as far as we know, were original. Then this process seems a reliable method to introduce amounts of dopant in the material and must be developed.

Temperature (°C)

Figure 8 : $\alpha \rightarrow \beta$ transition observed by Differential Scanning Calorimetry

Intensity

Intensity

Figure 9: X-Ray diffraction pattern of mechanical alloyed samples

(a) one hour of ball milling

(b) same plus one hour of annealing (500°C)