COMPREHENSIVE EXAM

ALGEBRA Spring 2017

Part I: Group Theory (Do 4 of the following 5 problems)

- 1. Let G be an Abelian group.
 - (a) Prove that if G is an infinite Abelian group, then G is not simple.
 - (b) Prove that a finite Abelian group, G, is simple iff |G| = p for some prime p.
- 2. Let $G = S_7$ and $\alpha = (1 \ 2 \ 3 \ 4) (5 \ 6 \ 7) \in G$ and let $\beta = (2 \ 4 \ 6 \ 7) (1 \ 3 \ 5)$.
 - (a) Find $\sigma \in G$ such that $\beta = \sigma \alpha \sigma^{-1}$.
 - (b) Prove $C_G(\alpha) = \langle \alpha \rangle$, where $C_G(\alpha)$ denotes the centralizer of α in G.
- 3. Let G be a group of order $539 = 7^2 \cdot 11$.
 - (a) Prove that G is Abelian.
 - (b) Give an example from each isomorphism class of groups of order 539.
 - (c) For each isomorphism class of groups of order 539, determine (with explanation) the number of elements of order 7.
- 4. Let G be a group.
 - (a) Prove $Z\left(G\right)\lhd G$, where $Z\left(G\right)$ denotes the center of the group G.
 - (b) Prove $\frac{G}{Z(G)} \cong \operatorname{Inn}(G)$, where $\operatorname{Inn}(G)$ denotes the group of inner automorphisms on G. (Recall: for each $a \in G$, the function $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$ is called an inner automorphism. $\operatorname{Inn}(G) = \{f_a : a \in G\}$.)
- 5. Let H and K be subgroups of G and define $HK = \{xy : x \in H \text{ and } y \in K\}$.
 - (a) Prove that HK is a subgroup of G if and only if HK = KH.
 - (b) Prove that if $H \triangleleft G$, then HK is a subgroup of G.

Part II: Ring and Field Theory (Do 4 of the following 5 problems)

- 1. Let R and S be commutative rings with unity, and let $\phi: R \to S$ by a surjective homomorphism.
 - (a) Prove that if R is a principal ideal domain, then every ideal in S is principal.
 - (b) Prove that if R is a principal ideal domain and $\ker \phi$ is a prime ideal, then S is a principal ideal domain.

- 2. An element, a, is called **nilpotent** if $a^n = 0$ for some natural number n.
 - (a) Let R be a commutative ring with unity, and let $I = \{c \in R : c \text{ is nilpotent }\}$. Prove that I is an ideal in R.
 - (b) Let R and I be as in part (a). Prove that R/I does not have any nilpotent elements.

- 3. Let K be a splitting field for some polynomial over the field F such that $Gal(K/F) \cong \mathbb{Z}_n$.
 - (a) Prove that if m|n, then there is exactly one intermediate field, E, such that [K:E]=m.
 - (b) Prove that if E is an intermediate field (between F and K), then Gal(E/F) is cyclic.

- 4. Let K be an algebraic extension field of the field F, and let D be a ring such that $F \subseteq D \subseteq K$.
 - (a) Prove that if $a \in D$, then $F(a) \subseteq D$.
 - (b) Prove that D is a field.

- 5. Let F be a field with extension field E such that $a, b \in E$ are algebraic over F. Assume the minimal polynomial of a over F has degree n and the minimal polynomial for b over F has degree m where m and n are relatively prime.
 - (a) Prove that [F(a,b):F] = mn.
 - (b) Prove that $F(a) \cap F(b) = F$.