AV312 - Lecture 16

Vineeth B. S.

Department of Avionics, Indian Institute of Space Science and Technology.

Figures from "Communication Systems" by Haykin and "An Intro. to Analog and Digital Commn." by Haykin and Moher

20th September 2016

Review of last classes

- ▶ Power spectrum for BPSK, BASK, and BFSK
- ▶ Bandwidth requirements for BASK, BPSK, and BFSK

Today's class

- QPSK
- ► Intersymbol interference
- Nyquist bandwidth and channel
- ▶ Today's scribes are Nikhil Mahesh Kumar and Rahul Kumar

Quadriphase shift keying (QPSK)

▶ For $kT \le t < (k+1)T$

$$s(t) = \sqrt{\frac{2E}{T}}\cos\left(2\pi f_c t + (2i-1)\frac{\pi}{4}\right),\,$$

where $i \in \{1, 2, 3, 4\}$

- ightharpoonup Note that the time interval T is possibly different from T_b
- A generalized version is M-ary PSK
- Recall quadrature carrier multiplexing two signals multiplexed together using quadrature carriers but no increase in bandwidth
- $> s(t) = \sqrt{\tfrac{2E}{T}} \cos\left((2i-1)\tfrac{\pi}{4}\right) \cos(2\pi f_c t) \sqrt{\tfrac{2E}{T}} \sin\left((2i-1)\tfrac{\pi}{4}\right) \sin(2\pi f_c t)$
 - Combination of two BPSK signals the bits can be chosen independently
 - A representation using vectors constellation diagram

VBS AV312 20th September 2016

QPSK - generation and detection

Recall: Digital transmission system

- Source of digital information characterized by bit duration T_b (or bit rate)
- lacktriangle Converted into a line code whose levels are represented by a_k (say -A and +A)
- ► Further transformation of *a_k* to "match" the signal to the channel (what if the channel were bandpass?)
- ightharpoonup We obtain a continuous time signal s(t) which is transmitted over the channel
- At the receiver need to convert it into a digital signal so synchronized sampling, usually at rate T_b
- ▶ A decision device decides whether 0 or 1 was transmitted
- Let us think about a baseband digital transmission system

VBS AV312 20th September 2016

An effective pulse shape p(t)

- Note that all filters and the channel are assumed to be LTI
- ▶ Let us think about a_k -s as an impulse train
- ▶ Then $s(t) = \sum_{k=-\infty}^{\infty} a_k g(t kT_b)$ since we are transmitting every T_b secs.
- $x(t) = s(t) \star h(t)$
- \rightarrow $y(t) = x(t) \star q(t)$
- ▶ $y(t) = \sum_{k=-\infty}^{\infty} a_k p(t kT_b)$, where $p(t) = g(t) \star h(t) \star q(t)$
- P(f) = G(f)H(f)Q(f)

VBS AV312 20th September 2016

An effective pulse shape p(t)

$$\underbrace{\left(a_{k}\right)}_{\begin{subarray}{c} \textbf{Overall system} \\ \textbf{characterized by} \\ \textbf{pulse spectrum} \\ P(f) \end{subarray}}_{\begin{subarray}{c} \textbf{y}(t) \\ \textbf{Sample} \\ \textbf{at time} \\ t = iT_{b} \end{subarray}}_{\begin{subarray}{c} \textbf{Decision-making} \\ \textbf{device} \\ \textbf{at time} \\ \textbf{t = iT}_{b} \end{subarray}}_{\begin{subarray}{c} \textbf{Reconstructed} \\ \textbf{version of } \{a_{k}\} \end{subarray}}$$

•
$$y(t) = \sum_{k=-\infty}^{\infty} a_k p(t - kT_b)$$
, where $p(t) = g(t) \star h(t) \star q(t)$

VBS AV312 20th September 2016

Intersymbol interference problem

- At the sampling instants $y(iT_b)$ we have $y(iT_b) = \sum_{k=-\infty}^{\infty} a_k p((i-k)T_b)$ (notation: pulse is centered at zero)
- ▶ Suppose $y_i = y(iT_b)$ and $p_i = p(iT_b)$
- $y_i = \sum_{k=-\infty}^{\infty} a_k p_{i-k}$
- We need $y_i = p_0 a_i$ for all i. Let us say that $p_0 = \sqrt{E}$
- ▶ What we have is $y_i = \sqrt{E}a_i + \sum_{k\neq i} a_k p_{i-k}$

VBS AV312 20th September 2016

Mitigation of intersymbol interference

- ▶ We have to design p(t) such that $y_i = \sqrt{E}a_i$
- \triangleright p(t) has to be designed so that P(f) has minimum bandwidth
- ▶ Designing p(t) is called pulse shaping

VBS AV312 20th September 2016

Nyquist channel

▶ If $y_i = p_0 a_i$ for every *i* then we require that

$$p_n = \begin{cases} \sqrt{E}, \text{ for } n = 0, \\ 0, \text{ otherwise.} \end{cases}$$

- Note that $p_n = p(nT_b)$
- Is it possible to get P(f)? Assuming that P(f) is bandlimited
- ▶ Consider the choice of $p(t) = sinc\left(\frac{t}{T_k}\right)$
- ▶ With $B_0 = \frac{1}{2T_L}$ we have the following optimal pulse shape $p_{opt}(t)$

- The PAM system with $P_{opt}(f)$ is called the Nyquist channel
- The bandwidth B_0 is called the Nyquist bandwidth

VBS AV312

Nyquist channel pulse shaping - issues

- ▶ The transfer function P(f) is not realizable
- Issue of timing jitter

Suppose sampling instants at which decoding is done has a jitter. Then is correct decoding possible?

VBS AV312 20th September 2016

Raised cosine pulse shaping

- ▶ The problem with sinc pulses $\frac{1}{t}$ decay
- ► How to increase the decay rate?

VBS AV312 20th September 2016

Raised cosine pulse shaping

- ▶ The problem with sinc pulses $\frac{1}{t}$ decay
- ► How to increase the decay rate?
- Damp the sinc pulse using a window function
- ► Raised cosine pulse shape (actually damped sinc pulse shape)

$$p(t) = \sqrt{E} sinc(2B_0t) \frac{cos(2\pi\alpha B_0t)}{1 - (4\alpha B_0t)^2}$$

VBS AV312 20th September 2016

Raised cosine pulse shaping

▶ The F.T of p(t) is

$$P(f) = \begin{cases} \frac{\sqrt{E}}{2B_0}, \text{ for } |f| \leq f_1, \\ \frac{\sqrt{E}}{4B_0} \left[1 + cos\left\{\frac{\pi(|f| - f_1)}{2(B_0 - f_1)}\right\} \right], \text{ for } f_1 < |f| < 2B_0 - f_1, \\ 0, \text{ o/w}. \end{cases}$$

- $\alpha = 1 \frac{f_1}{B_0}$. α is the roll-off factor.
- ▶ Bandwidth of the pulse is $2B_0 f_1$ or $B_0(1 + \alpha)$

VBS AV312 20th September 2016

Comparison

 $\blacktriangleright \text{ Let } r_b = \frac{1}{T_b}$

Scheme	Bandwidth	Power	Rate	Timing Jitter
Rectangular	r_b	95%	r_b	Robust
Sinc	$\frac{r_b}{2}$	100%	r_b	Weak
Raised cosine	$\frac{r_b}{2}(1+\alpha)$	100%	r_b	less than Rect

▶ Read about square root raised cosing pulse shaping