Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

Module			Fin Plate	
MainMe	odule		Shear Connection	
Connectivity			C	folumn flange-Beam web
Shear(l	(N)*			50.0
	Su	pporting Sect	ion	
	Supportin	ng Section		PBP 300X88
	Material *			E 250 (Fe 410 W)A
т	Ultimate strer	ngth, fu (MPa)		410
	Yield Streng	th , fy (MPa)		230
$(B-t)$ α	Mass	87.97	Iz(cm4)	184247000.0
4 t	Area(cm2) -	11210.0	Iy(cm4)	59834300.0
ZZ D	A			
	D(mm)	301.7	rz(cm)	128.2
R ₁	B(mm)	307.8	ry(cm)	73.1
В	t(mm)	12.4	Zz(cm3)	1221390.0
Y	T(mm)	12.3	Zy(cm3)	388790.0
	FlangeSlope	90	Zpz(cm3)	1360490.0
	R1(mm)	1.52	Zpy(cm3)	388790.0
	R2(mm)	0.0		
	Su	ipported Secti	on	
	Supported Section		NPB 180x90x18.8	
	Material *		E 250 (Fe 410 W)A	
т—	Ultimate strength, fu (MPa)		410	
		th , fy (MPa)		230
$(B-t)$ α	Mass	18.8	Iz(cm4)	13170000.0
4	Area(cm2) -	2390.0	Iy(cm4)	1007600.0
ZZ D	A			
	D(mm)	180.0	rz(cm)	74.2
-R ₂	B(mm)	91.0	ry(cm)	20.5
В	t(mm)	5.3	Zz(cm3)	146330.0
· ·	T(mm)	8.0	Zy(cm3)	22140.0
	FlangeSlope	90	Zpz(cm3)	166410.0
	R1(mm)	0.9	Zpy(cm3)	22140.0
	R2(mm)	0.0		
		Bolt Details		
Diameter(mm)*		[12.0, 16.0, 20.0, 24.0, 30.0, 36.0]		
Grade *			[3.6, 4.6, 4.8	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]
Type *			Bearing Bolt	
Bolt hole			Standard	
Slip factor	(- /			0.3
Type of edges			a - Sheared or hand flame cut	

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0	
Are the members exposed to corrosive influences	False	
Weld Details		
Weld Type	Fillet	
Type of weld fabrication	Shop Weld	
Material grade overwrite (MPa) Fu	410.0	

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_u b \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{410 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 34.12$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.49 * 16.0 * 5.3 * 410}{1.25}$ $= 34.12$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (34.12, 34.12)$ = 34.12	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{50.0^{2} + 50.0^{2}}}{34.12}$ $= 3$	4	
No of Columns		2	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 16.0 = 40.0$	40	Pass
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ $= \min(32 * 5.3, \ 300 \ mm)$ $= 300$	40	Pass
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 16.0 = 40.0$	90	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * 5.3, \ 300 \ mm)$ = 300	90	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = $1.7 * 18.0 = 30.6$	35	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	35	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *6.0 * \sqrt{\frac{250}{230}}$ $= 74.88$	35	Pass
Capacity (KN)	33603.39	34124.15	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 180.0 = 108.0$	160	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 180.0 - 2 * (8.0 + 0.9 + 10)$ $= 162.2$	160	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n c - 1) * p_{min})$ $= 2 * 30.6 + (2 - 1) * 40.0$ $= 111.2$	120.0	Pass
Min.Plate Thickness (mm)	$t_w = 5.3$	6.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{160 * 6.0 * 230}{\sqrt{3} * 1.1}$ $= 69.53$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (160 - (2 * 18.0)) * 6.0 * 410$ $= 228.78$)
Block Shear Capacity in Shear (V_db) (kN)		182.8	
Shear Capacity (V_d) (kN)	50.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(69.53, 228.78, 182.8)$ $= 69.53$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	
Tension Yielding Capacity (kN)			
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (120.0 - 2 * 18.0) * 6.0 * 4}{1.25}$ $= 148.78$	10
Block Shear Capacity in Tension (T_db) (kN)		182.8	
Tension Capacity (kN)	50.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(150.55, 148.78, 182.8)$ $= 148.78$	Pass
Moment Capacity (kNm)	3.25	6.42	Pass
Interaction Ratio	≤ 1	$\frac{3.25}{6.42} + \frac{50.0}{148.78} = 0.84$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness \ of \ Thicker \ part$ $= Max(12.3, 12.3) = 12.3$ $IS800: 2007 \ cl.10.5.2.3 \ Table 21,$ $t_{w_{min}} = 5$	5	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(12.3, 12.3) = 6.0$ $t_{w_{max}} = 6.0$	5	Pass
Weld Strength (kN/mm)	$R_w = \sqrt{(T_{wh} + A_{wh})^2 + (T_{wv} + V_{wv})^2}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{3250000.0 * 75.0}{562500.0}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{3250000.0 * 0.0}{562500.0}$ $V_{wv} = \frac{V}{l_w} = \frac{50000.0}{300}$ $A_{wh} = \frac{A}{l_w} = \frac{50000.0}{300}$ $R_w = \sqrt{(433.33 + 166.67)^2 + (0.0 + 166.67)^2}$ $= 622.72$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3.5 * 410}{\sqrt{3}} * 1.25$ $= 662.8$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View