## **CSE 436 Digital Integrated Circuits**

## Ersel Celal Eren 1901042673

## **HW1** Report

This is the Magic Layout screenshot of inverter with  $4\lambda/2\lambda$  PMOS and NMOS transistors and tap.





This is the plotting of v(in) and v(out) for  $4\lambda/2\lambda$  inverter.



For the  $4\lambda/2\lambda$  inverter, High-to-low delay, at 1.25 V(in) is 2.05e-09, at 1.25 V(out) is 2.05264e-09. So, the result is 2.64e-12, which is 2.64 picoseconds.



For the  $4\lambda/2\lambda$  inverter, Low-to-high delay, at 1.25 V(in) is 6.15009e-09, at 1.25 V(out) is 6.17245e-09. So, the result is 2.236e-08 seconds, which is 22.36 picoseconds.

This is the Magic Layout screenshot of inverter with  $8\lambda/2\lambda$  PMOS and  $4\lambda/2\lambda$  NMOS transistors and tap.





This is the plotting of v(in) and v(out) for  $8\lambda/2\lambda$  inverter.



For the  $8\lambda/2\lambda$  inverter, High-to-low delay, at 1.25 V(in) is 2.05004e-09, at 1.25 V(out) is 2.05448e-09. So, the result is 4.44 picoseconds.



For the  $8\lambda/2\lambda$  inverter, low-to-high delay, at 1.25 V(in) is 6.15e-09, at 1.25 V(out) is 6.16095e-09. So, the result is 10.95 picoseconds.

In low-to-high delay we can see that delay of  $8\lambda/2\lambda$  inverter is smaller and in high-to-low delay is little bit bigger then  $4\lambda/2\lambda$  inverter.