

Dr. Sarah Wang

Duane Long

Department of Chemical Engineering

University of Minnesota Duluth

• Reference:

Textbook: An introduction to error analysis: the study of uncertainties in physical measurements by J. R. Taylor (QA275.T38 1982)

• • Presentation Outline

- Objective
 - Why Worry About Uncertainty?
- How to Calculate and Express Uncertainty
 - Error Presentation
 - Significant Figure, Rounding
 - Error Origination
 - Human, Fixed, Random
 - Fixed Error: Propagation
 - Random Error: Calibration
 - Experimental Procedure

• • Why Worry About Uncertainty?

No measurement is free from error

 Engineers are responsible for reporting reliability of data

Ethical consequences

How?

Answer Three Questions

- What is a rational way of estimating uncertainty in measurements?
- 2. How do you calculate propagation of this uncertainty into the measurand?
- 3. How do you present the results?

• • Expressing Uncertainty

Significant Figures

Rounding

• • Significant Figures

- Significant Figures
 - 6.02, 0.596, 0.000610

- Multiplication & Division
 - Retain the significant figures of the lesser value

- Addition + Subtraction
 - Retain the precision of the lesser value

• • Rounding

- Significant figures limited by the resolution or precision of the measurement
- When the figure ends in '5' choose the even round value (up or down)
- Fixed uncertainty estimated as ±½ the precision

Least Count vs Readability

- Least Count?
 - 10 psi
- Readability?
 - 1 to 2 psi

Systematic (Fixed) Uncertainty Input Precision

For an analog readout, unless other data is available, uncertainty is the readability divided by square root of 12

$$u_z = \frac{\delta_x}{\sqrt{12}}$$
 readability

Analog vs Digital Meters

Readability does not apply to digital meters.

Unless other data is available, precision is the least count.
Uncertainty is half of precision. \pm 0.05 psi

• • Estimating Uncertainty

Origin of Uncertainty

- Human Error
- Systematic or Fixed Error
- 3. Random Error

Output Precision

Output = Y, Inputs are: A, B, C

e.g.: Output, Re =
$$Du\rho/\mu$$

= $(Q/t)D\rho/\mu$

3 Cases of Output Precision Propagation of error

$$Y = A \pm B \pm C$$
 $\Delta Y = \sqrt{(\Delta A)^2 + (\Delta B)^2 + (\Delta C)^2}$

$$Y = ABC$$

$$\frac{\Delta Y}{Y} = \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2 + \left(\frac{\Delta C}{C}\right)^2}$$

$$Y = A^{\alpha}$$
 $\frac{\Delta Y}{Y} = \left| \alpha \left(\frac{\Delta A}{A} \right) \right|$

Combination Cases of Output Precision

$$Y = AB^2 = AC; C = B^2$$

$$\frac{\Delta Y}{Y} = \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta C}{C}\right)^2} \qquad \frac{\Delta C}{C} = 2\left(\frac{\Delta B}{B}\right)$$

$$\frac{\Delta Y}{Y} = \sqrt{\left(\frac{\Delta A}{A}\right)^2 + 4\left(\frac{\Delta B}{B}\right)^2}$$

Uncertainty for Complex Equations

$$Y = f(A, B)$$

$$\Delta Y = \sqrt{\left(\frac{\partial f}{\partial A}\Delta A\right)^{2} + \left(\frac{\partial f}{\partial B}\Delta B\right)^{2}}$$

- Previous examples are derived from this
- Work by hand or
- MathCAD can help solve

• • Combined uncertainties

 Random uncertainty with systematic uncertainty

$$u_i = \sqrt{u_{ir}^2 + u_{is}^2}$$

Calibration and Experimental Uncertainty

Single Point Calibration

Multi-point CalibrationLinear Regression

Standard Error Single-point Calibration

i.e., measuring a single point multiple times

o Sample mean

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Standard Deviation $\sigma = \left[\frac{1}{n-1} \cdot \sum_{i} (x_i - \bar{x})^2\right]^{1/2}$

Standard error of mean

$$\sigma_x = \frac{\sigma}{n^{1/2}}$$

• Estimate of
$$x = y = \bar{x} \pm \sigma_x$$

• • • Multi-point Line Fit Linear Regression

$$\hat{y}_i = m \cdot x_i + c$$

$$m = \frac{\sum_i \left[(x_i - \bar{x}) \cdot (y_i - \bar{y}) \right]}{\sum_i (x_i - \bar{x})^2}$$

$$c = \bar{y} - (m \cdot \bar{x})$$

$$R = \frac{\sum_{i} \left[(x_i - \overline{x}) \cdot (y_i - \overline{y}) \right]}{\left\{ \left[\sum_{i} (x_i - \overline{x})^2 \right] \cdot \left[\sum_{i} (y_i - \overline{y})^2 \right] \right\}^{1/2}}$$

• • Multi-point Line Fit, cont. Linear Regression

 Estimates for uncertainty (Standard Error of regression) for the fit of y upon x: $S_{yx} = \left[\left(\frac{1}{n-2} \right) \cdot \sum_{i} (y_i - \hat{y}_i)^2 \right]^{1/2}$

$$S_{yx} = \left[\left(\frac{1}{n-2} \right) \cdot \sum_{i} (y_i - \hat{y}_i)^2 \right]^{1/2}$$

the slope:

$$S_{m} = \frac{S_{yx}}{\left[\sum_{i} (x_{i} - \bar{x})^{2}\right]^{1/2}}$$

and the intercept:

$$S_c = S_{yx} \cdot \left[\frac{\sum_i x_i^2}{n \cdot \sum_i (x_i - \overline{x})^2} \right]^{1/2}$$

• Uncertainty in average measurement determined from linear regression calibration $U_y = \frac{S_{yx}}{m} \sqrt{\frac{1}{k} + \frac{1}{n} + \frac{(\bar{y}_0 - \bar{y})^2}{m^2 s^2 (n-1)}}$

• Where n is the number of calibration readings, k is the number of measurements, m is the slope, \bar{y}_0 is the average of the measurements, \bar{y} is the average of the calibration readings, and s^2 is the sample variance of the x-variable.

• • • Weighted Multi-point Line Fit with Uncertainty

Linear Regression when the error distribution changes with y -error distribution is weighted

$$m = \frac{\left(\sum w_{i}\right)\left(\sum w_{i}x_{i}y_{i}\right) - \left(\sum w_{i}x_{i}\right)\left(\sum w_{i}y_{i}\right)}{\left(\sum w_{i}\right)\left(\sum w_{i}x_{i}^{2}\right) - \left(\sum w_{i}x_{i}\right)^{2}}$$

$$c = \frac{\left(\sum w_{i} x_{i}^{2}\right)\left(\sum w_{i} y_{i}\right) - \left(\sum w_{i} x_{i}\right)\left(\sum w_{i} x_{i} y_{i}\right)}{\left(\sum w_{i}\right)\left(\sum w_{i} x_{i}^{2}\right) - \left(\sum w_{i} x_{i}\right)^{2}}$$

$$w_i = 1/u^2 = 1/(u_r^2 + u_f^2)$$

• • Example

$$\sigma_x = \frac{\sigma}{n^{1/2}} = s$$

Experimental results for the specific heat of air.

T/K	500	600	700	
$c_p / (J g^{-1} K^{-1})$	1.0296	1.0507	1.0743	
$s / (J g^{-1} K^{-1})$	0.0022	0.0032	0.0046	
$u_r / (J g^{-1} K^{-1})$	0.0013	0.0018	0.0027	
$u_f / (J g^{-1} K^{-1})$	0.0001	0.0001	0.0001	
$u / (J g^{-1} K^{-1})$	0.0013	0.0019	0.0027	
W	620000	290000	140000	2

24

• • Experimental Procedure

- Identify the data reduction equation or sequence of calculation steps.
- Collect (or estimate) a data point: x₁, x₂, x₃,
 ... x_n.
- 3. Estimate the uncertainties in each variable: Δx_1 , Δx_2 , Δx_3 , ... Δx_n .
- 4. Calculate the predicted mean value, y.

• • Experimental Procedure

- 5. Calculate the uncertainty of the predicted mean value according to the error propagation equation, ∆y.
- Identify the variables with the largest contribution to uncertainty
- 7. Modify your experimental technique to reduce the larger uncertainties.
- 8. Take the rest of the data and repeat these steps if necessary.

• • Present the Results

- Predicted value ± Uncertainty (odds)
 - $y \pm \Delta y$ (95% confidence)
- Significant figures
 - Report uncertainty with <u>only</u> one significant figure.
 - Precision in the predicted mean value is determined from the uncertainty
 - Example, compare
 - 123.456 \pm 0.123 should be reported as follows
 - 123.4 ± 0.1

• • Summary

- How to Calculate and Express Uncertainty
 - Error Presentation
 - Significant Figures, Rounding
 - Error Origination
 - Human, Fixed, Random
 - Fixed Error: Propagation
 - Random Error: Calibration

• • The End

- Next week's lecture
 - Technical Writing
 - Peer Proofreading
 - Each lab partner brings a hard copy of a draft report, i.e., two for each group.