Tests

```
# read in master data
  bhet_master_data <- osf_retrieve_node("vxur5")</pre>
  bhet_master_data %>%
    osf_ls_files("Master Dataset (Seasons 1-4)",
                 pattern = "csv") %>%
    osf_download(path = here("data-clean"),
                 conflicts = "overwrite")
  # read in data for Aim 1
  aim_1 <- osf_retrieve_node("qsmbr")</pre>
  aim_1 \%
    osf_ls_files("Air pollution",
      pattern = "csv") %>%
    osf_download(path = here("data-clean"),
                 conflicts = "overwrite")
Read in data
Make a table
See ?@tbl-table1 for details.
Now try for the kable version:
Another DiD table
See ?@tbl-table3 for more.
Rows: 8 Columns: 5
-- Column specification -----
Delimiter: ","
chr (5): Diagnostic, 3, 4, 5, 6
```

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Figure 1: ?(caption)

Table 1: **?(caption)**

(a)

	Potential Factor Solution							
Diagnostic	3	4	5	6				
Qexp	27936	26052	24168	22284				
Qtrue	187681	147796	123236	100316				
Qrobust	174407	139910	117082	95932.5				
Qr/Qexp	6.24	5.37	4.84	4.3				
Q/Qexp > 6	wi-Ca, ns-S, ws-Na, ws-Ca, Al, Cl, Pb	ns-S, Na, Al, Cl, Pb, Nitrate	Nitrate, ws-Na, AI, Chloride	Nitrate, ws-Na, Al				
DISP % dQ	<0.1%	<0.1%	<0.1%	<0.1%				
DISP swaps	0	0	0	0				
BS_mapping	Dust- 98.5%	Transported dust- 95%, Dust- 96.5%, Sulfur secondary- 97.5%, Mixed combustion- 96.5%	Transported dust- 86%, Mixed combustion- 87%, Dust- 86%, Lead- 55%	Transported dust- 84%, Mixed combustion- 87.5%, Dust- 81.5%, Lead- 72% Chloride- 61.5% Sulfur secondary- 98.5%				

See ?@fig-cbhp-map.

Figure 2: ?(caption)

The source profiles for the four-factor solution are presented in Figure X. The first source was identified as dust by high percentages of crustal elements like wi-Ca, Si, and wi-Mg. The second source was constituted of non-sulfate sulfur as well as secondary inorganic ions (ammonium, nitrate, and sulfate). Non-sulfate sulfur is a tracer for primary coal combustion, while secondary inorganic ions indicate a secondary source. Since coal combustion is a major source of energy in our study area, it is likely that the second source is a mixture of primary and secondary emissions that originate from coal and other sulfurous fuel combustion.

Additionally, in Figure 3 for details. the mean source contribution of the second source is higher in outdoor than personal exposure measurements. Secondary formation occurs outdoors in the presence of sunlight, so higher outdoor concentrations compared to personal exposure further support our naming the second source and sulfur secondary. The third source had high percentages of ws-Ca nd Al, which in our study region, has been found to be indicative of transported dust from dust storms that can occur in the spring. While our samples were collected during winter months only, it is possible that transported dust from previous years still remained. The fourth source was characterized by high percentages of tracers for both coal (OC, wi-K, chloride, Pb) and biomass combustion (EC, ws-K). Coal and biomass combustion is common in our study setting so this source is likely a mixture of the two combustion sources.

Another example

Rows: 16 Columns: 14
-- Column specification -----Delimiter: ","

	Personal: PM2.5	Personal: BC		
Average ATT				
ATT(AII, AII)	1.95 [-23.34, 27.23]	-0.43 [-1.67, 0.81]		
Cohort-Time ATTs				
ATT(2019, 2019)	-0.05 [-28.97, 28.87]	-0.69 [-1.84, 0.45]		
ATT(2019, 2021)	-4.31 [-41.92, 33.30]	-0.25 [-2.11, 1.62]		
ATT(2020, 2021)	23.61 [-19.88, 67.11]	-0.27 [-2.04, 1.50]		
ATT(2021, 2021)	-19.06 [-43.19, 5.07]	-0.56 [-2.46, 1.34]		

First note.

chr (14): category, type, time, substance, measure, metric, Mean_S1, GM_S1, ...

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show_col_types = FALSE` to quiet this message.

Respiratory tables

Figure 3: Google scholar metrics

			S	Season 1 Season 2		eason 2	Season 3		Season 4	
			Est.	CI	Est.	CI	Est.	CI	Est.	CI
Personal										
Filter-derived	24h PM2.5	Mean	117	[105, 129]	97	[87, 107]			84	[72, 97]
		GM	72	[65, 80]	59	[53, 65]			47	[42, 52]
	24h BC	Mean	4	[3.5, 4.4]	3.5	[2.7, 4.2]			3.7	[2.9, 4.5]
	2 2 3	GM	2.6	[2.4, 2.8]	1.9	[1.7, 2.1]			1.7	[1.5, 1.9]
Indoor										
Sensor-derived	Seasonal PM2.5	Mean			94	[84, 104]	84	[75, 94]	67	[60, 75]
		GM			71	[65, 78]	63	[57, 70]	47	[42, 52]
	24h PM2.5	Mean			69	[59, 79]			59	[49, 69]
Filter-derived		GM			45	[39, 53]			33	[27, 40]
	24h BC	Mean			2.3	[1.8, 2.8]			2.8	[2.1, 3.4]
		GM			1.6	[1.3, 2.0]			1.6	[1.3, 1.9]
Outdoor										
Sensor-derived		Mean	47	[45, 48]	55	[54, 56]	23	[22, 23]	33	[32, 34]
	Seasonal PM2.5	GM	36	[35, 37]	40	[39, 41]	33	[32, 34]	22	[22, 23]
		Mean	38	[34, 42]	38	[34, 41]			26	[24, 28]
Filter-derived		GM	33	[29, 36]	30	[28, 32]			22	[21, 24]
	Seasonal BC	Mean	1.5	[1.3, 1.6]	1.4	[1.3, 1.5]			1.2	[1.1, 1.2]
		GM	1.3	[1.1, 1.4]	1.1	[1.0, 1.2]			1	[0.9, 1.1]

Note: Est. = Estimate, CI = 95% CI, GM = Geometric Mean

_					_		
Cohort		Time	ATT	(95%CI)	_		
_	Average ATT				_		
	All	All	-0.08	(-0.15, -0.01)			
Cohort-Time ATTs							
	2019	2019	-0.11	(-0.20, -0.02)			
	2019	2021	-0.10	(-0.21, 0.00)			
	2020	2021	0.01	(-0.10, 0.13)			
	2021	2021	-0.12	(-0.22, -0.01)			

Note: Joint test that all ATTs are equal: F(3, 2579) = 1.283, p = 0.278