(0) Ho: Hypertension and smoking habit are independent.

H.: Hypertension and smoking habit are not independent.

	N.Smokers	Moderate Smoker	H. Smakers	Total
Hypertension	21 E = 87x69 (33.33) 180	$\frac{36}{(29.97)}$ $\frac{E_2 = 62 \times 87}{180}$	30 E ₃ : 49×87 (23,68)	87
No hypertersion	48 E = 93×69	$26 E_{2} = \frac{62 \times 93}{180}$	$19 E_{23} = \frac{93 \times 49}{180}$	93
Total	69 /	62	49	

Under Ho,
$$\chi^2 = \frac{8}{E_i} \frac{(0i-E_i)^2}{E_i} \sim \chi^2_{df}$$
.
here $df = (3-1) \times (2-1)$
 $= \frac{2}{2}$.
 $\chi^2 = \frac{(21-33.35)^2}{33.35} + \frac{(36-29.97)^2}{29.97} + \dots + \frac{(19-25.31)^2}{25.31}$
 $= 4.573 + 1.213 + 1.68 + 0.847 + 1.135 + 1.573$
 $= 11.021$

Decision Rule: Reject Hoif X Cal > x2 $\chi^2_{2,0.05} = 5.991$

Decision: Since $\chi^2_{cal}(11.021) > \chi^2_{2,0.05}$ we

have enough evidance to reject Ho. at 5% level of Significance

Conclusion: Hypertension and smoking habits are not indépendant.

	NO of Children			
Education.	0-1	2-3	over3	Total
Elementary	14	37	32	83
	E,=18.68	E = 39.84	E = 24,49	
Secondary	19	42	17	78
	21	E = 37.44	E=23.01	
College	12	17	10	39
	E3= 8.78	E3= 18.72	E3=11,505	
Total	45	96	59	
	Commen			

Ho; family: is independant of the level of education attain by the father.

His family size is not independant of the level of education

-Cation.

under Ho,
$$\chi^2 = \frac{1}{2} \left(0i - E_i\right)^2 \sim \chi^2_{df}$$

here,
$$df = (3-1) \times (3-1)$$

= $2 \times 2 = 4$

$$\chi^2 = (14-18.68)^2 + (37-39.84)^2 + \cdots + (10-11.505)^3$$
Cal 18.68 39.84

= 1.173 + 0.202 + 2.301 + 0.120 + 0.555 + 1.570 + 1.181 + 0.158 + 0.197 = 7.457

Decision Rule: Reject Ho if $\chi^2_{cal} > \chi^2_{4,0.05}$ $\chi^2_{4,0.05} = 9.488$

Decision: Since χ^2 < χ^2 < χ^2 , we don't have enough evidence to reject Ho at 5% level of Significance.

Conclusion: family size is independent of the level of education attain by the father.

03) Ho: Gender and Satisfaction are independent Hi. Grender and Satisfaction are not independat.

				f	7	1 .
-	Highly Satis	satisfied	no èclea	Dis satisf	H.dis	Total
Male	2 6=3.47	2 E 3.96	15 E = 14.85	25 E14= 27,72	55 E ₁ 5 49.01	99
Female	5 E = 3.54	6 E ₂ =4.04	15 E ₂₃ =15,15			101
Total		8	30	56	99	

under Ho, $\chi^2 = \frac{2}{5} \left(O_i - E_i \right)^2 \sim \chi^2_{df}$.

here $df = (5-1) \times (2-1) = 4$ (Both rules are violating)

Since some cells have Expected values less than, we have to join cells.

	highly satisfied Satisfied	no idea	Dissatisfied	H: dissatished	
Male	4 ' E ₁₁ =7.425	15 E12=14.85	25 € ₁₃ =27.72	55 E1=49.01	99
Female	E = 7.58	15 E ₂₂ = 15.15	31 E ₂₉ 28.28	44 E ₁₄ 50,00	101
	15	30	56	99	200

under Ho,
$$X = \sum_{i=1}^{n} \left(\frac{0 - E_i}{E_i} \right)^2 \sim \chi^2$$

here
$$df = (4-1) \times (2-1)$$

= 3×1
= $\frac{3}{2}$.

$$\chi^{2}_{(a)} = \underbrace{\frac{8}{5}(0;-6;)^{2}}_{(5;-6;)}$$

$$= \frac{(4-7.425)^{2}}{7.425} + \frac{(15-14.85)^{2}}{14.85} + \cdots + \frac{(44-50)^{2}}{50}$$

= 1.580 + 0.001 + 0.267 + 0.732 + 1.063 + 0.001 + 0.262 + 0.72

Decision Rule: Reject Hoif X cal > x 3,0.05.

Decision: Since $\chi_{3,0.05} = 7.815$ enough evidance to reject H_0 .

Conclusion: Gender and satisfaction are independent.

(06

Ho: No. of germination follows a binomial distribution:

H.: No. of germination doesn't follow a binomial distribution.

NO. of Seeds germinating	NO. of pots	$P(x=x_i)$.
O	12	12/100=0.12
1	24	24/100=0.24
2	39	39/100 = 0.39
3	22	22/100=0.22
4	3	3/100 = 0.03

100

*First of all, we have to estimate a value of Success probability (
Expected value = EPxxi' Success probability

 $= 0 \times 0.12 + 1 \times 0.24 + 2 \times 0.39 + 3 \times 0.22 + 4 \times 0.03$

= 1.8

we know, in a binomial dis, Expected value = $n \times \hat{\theta}$ $1.8 = 4 \times \hat{\theta}$. $0.45 = \hat{\theta}$

Therefore, X~ bin(4,0.45)

Now, we have to calculate the expected frequencies.

NO. of Seeds germinating		E = P(x=x) x100
germinating	4C0 × 0.45 × 0.55 = 0.092	9.2
0	4C1 x0.45 x 0.55 = 0.299	29.9
2	4C2 × 0.45 × 0.55 = 0.368	36.8
3	4C3 × 0.453 × 0.55 = 0.200	20.0
4	4C4×0.45 ×0.55° = 0.041	4.1
		1

Unde Ho,

$$X = \sum (O_i - E_i)^2 \sim X^2$$

 E_i (no of -no of -1)
Classes Parameter)

here, df = no of classe - no of parameters - 1

$$\chi^{2}_{\text{Cal}} = (12-9.2)^{2} + (24-29.9)^{2} + ... + (3-4.1)^{2}$$

$$9.2 \qquad 29.9$$

= 0.852+ 1.164+ 0.132+ 0.2+ 0.295

Decision Rule: Reject Ho if $\chi^2_{cal} > \chi^2_{3,0.05}$.

here $\chi^2_{3,0.05} = 7.815$

Decision: Since $\chi^2_{cal} < \chi^2_{3,0.05}$, we don't have enough evidence to reject Ho at 5%. level of Significance.

Conclusion: No. of germination follows a binomial distribution with with Success Proba. of 0.45.