

Universidade Federal da Paraíba Centro de Ciências Exatas e da Natureza Graduação em Estatística

Comparação de Desempenho e Adequação de três processos para séries temporais INAR

Paulo Manoel da Silva Junior

Paulo Manoel da Silva Junior

Comparação de Desempenho e Adequação de três processos para séries temporais INAR

Trabalho de Conclusão de Curso apresentado ao Curso de Graduação em Estatística do Centro de Ciências Exatas e da Natureza da Universidade Federal da Paraíba (UFPB), como requisito para obtenção do grau de Bacharel em Estatística.

Orientador: Prof^a. Dr^a. Tatiene Correia de Souza

Agradecimentos

Em algum momento da minha vida parei de prestar atenção no presente e passei a viver na ansiedade de um futuro melhor. "Preocupado com uma única folha, você não verá a árvore. Preocupado com uma única árvore você não perceberá toda a floresta. Não se preocupe com um único ponto. Veja tudo em sua plenitude sem se forçar."— Takuan Sōhō. Obrigado Eraldo do passado por decidir mudar.

Meu maior agradecimento é pra mainha e painho, Dona Adeilda e Seu Everaldo. Mãe obrigado por todo o carinho infindável que a senhora me proporciona. Pai obrigado por trabalhar tão duro por nós. Obrigado aos dois pelos valores ensinados, isso nenhuma escola ou universidade poderia me ensinar.

Meu sincero obrigado, em especial, ao professor Marcelo por aceitar me orientar nessa etapa final da graduação. Ao professor Tablada e a professora Everlane, pelo suporte durante minha participação na tutoria e na pesquisa científica, projetos esses na qual só agregaram positivamente na minha vida e carreira. Professora Gilmara, obrigado pela paciência, por toda educação e prestatividade como coordenadora desse curso. Por fim, e não menos importante a todos os professores na qual eu pude ter a oportunidade de ser aluno.

Paulin, Eltin, Arthur, Gleyce, nossos dias resolvendo listas e mais listas de exercícios valeram a pena. A troca de conhecimento que tivemos durante essa jornada foi fundamental na formação da pessoa que sou hoje.

Resumo

Este trabalho aborda o uso da aprendizagem de máquina na tentativa de prever o próximo dia de compra de clientes a partir do histórico de compras. Os dados foram obtidos de uma distribuidora da Paraíba que fornece uma vasta variedade de produtos de diferentes departamentos, descartáveis, químicos, papelarias, equipamentos de proteção. Diante do cenário competitivo e da explosão de dados no mercado, a inteligência comercial tornou-se essencial para antecipar desafios e identificar oportunidades. O estudo abrange a coleta e análise do histórico de compras, além da utilização de segmentação de clientes. Diferentes algoritmos, como Redes Neurais Artificiais, Máquinas de Vetores de Suporte e Florestas Aleatórias, são avaliados em busca dos melhores resultados. Os objetivos incluem extrair informações relevantes, realizar análise exploratória, segmentar clientes e avaliação de modelos e técnicas do campo da aprendizagem de máquina. Espera-se que os resultados contribuam para personalizar estratégias do setor comercial.

Palavras-chave: Aprendizagem de máquina, Inteligência de Mercado, Segmentação RFV, Regressão.

Abstract

This study explores the application of machine learning techniques to predict the next purchase day of customers based on their purchase history. The data was obtained from a company distributor in Paraíba, that provides a wide variety of products from different departments, including disposables, chemicals, stationery, and protective equipment. Given the competitive landscape and the data explosion in the market, business intelligence has become crucial for anticipating challenges and identifying opportunities. The research encompasses the collection and analysis of purchase histories, as well as the utilization of customer segmentation. Various algorithms, such as Artificial Neural Networks, Support Vector Machines, and Random Forests, are evaluated to attain optimal results. Objectives include extracting relevant information, conducting exploratory analysis, segmenting customers, and assessing models and techniques within the field of machine learning. The anticipated outcome is to enhance the personalization of commercial strategies.

Keywords: Machine learning, Business Intelligence, RFV Segmentation, Regression.

Lista de tabelas

Tabela 1 –	Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha =$	
	$0,3 \in \lambda = 1,5$	26
Tabela 2 –	Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha =$	
	$0,5$ e $\lambda = 2$	27
Tabela 3 –	Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha =$	
	$0,7$ e $\lambda = 2,5$	27
Tabela 4 –	Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha =$	
	$0,1 e \lambda = 5. \dots $	28
Tabela 5 –	Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha =$	
	$0,9 \in \lambda = 4.\dots$	29
Tabela 6 –	Estatísticas descritivas da série temporal da população desocupada na	
	região metropolitana do Rio de Janeiro, de março de 2002 à fevereiro	
	de 2016, em milhares	32
Tabela 7 –	Estimativas dos parâmetros da térie temporal de desocupados na região	
	metropolitana do Rio de Janeiro, de março de 2002 à fevereiro de 2016,	
	em milhares	33
Tabela 8 –	Valores estimados x valores verdadeiros para a série de população	
	desocupada na região metropolitana do Rio de Janeiro, de março de	
	2015 à fevereiro de 2016, em milhares	36
Tabela 9 –	Medidas de qualidade do ajuste para as estimação da série de população	
	desempregada na região metropolitana do Rio de Janeiro, de acordo	
	com o horizonte de previsão	37
Tabela 10 –	Valores previstos para a série da população desocupada na região me-	
	tropolitana do Rio de Janeiro, de março de 2016 à fevereiro de 2017,	
	em milhares	41

Lista de ilustrações

30 32
32
32
35
35
38
39
40
40
42
42

Sumário

1	INTRODUÇAO	10
1.1	Objetivos	11
1.1.1	Objetivo Geral	11
1.1.2	Objetivos Específicos	11
2	REFERENCIAL TEÓRICO	12
2.1	Processo INAR	12
2.1.1	Operador thinning binomial	12
2.1.1.1	Propriedades do operador thinning binomial	13
2.1.2	Processo INAR(1)	14
2.1.2.1	Propriedades do Processo INAR(1)	14
2.2	Distribuições associadas	15
2.2.1	Processo Poisson INAR(1)	15
2.2.2	Processo Geométrica INAR(1)	15
2.2.3	Processo Binomial Negativa INAR(1)	16
2.3	Métodos de Estimação	
2.3.1	Estimadores de Mínimos Quadrados Condicionais	17
2.3.2	Estimadores de Máxima Verossimilhança Condicional	17
2.4	Previsão do Processo INAR(1)	21
2.4.1	Média da distribuição condicional um passo a frente	21
2.5	Medidas de Qualidade do Ajuste	21
3	METODOLOGIA	2 3
3.1	Estudo de Simulação de Monte Carlo	2 3
3.1.1	Simulação de Monte Carlo para comparar o desempenho dos estima-	
	dores	24
4	SIMULAÇÃO	26
4.1	Simulações de Monte Carlo	26
5	RESULTADOS	31
5.1	Análise Exploratória	31
5.2	Estimação de Parâmetros	33
5.3	Ajuste do Modelo	34
5.4	Previsão	40
6	CONSIDERAÇÕES FINAIS	4 4

REFERÊNCIAS																											45	;
-------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----	---

1 Introdução

As séries temporais com dados inteiros não negativos, conhecidas como séries de contagem, ou pontos de contagem, são comuns em diversas áreas, como finanças, epidemiologia, seguros e telecomunicações. Exemplos típicos incluem o número de chamadas telefônicas por hora, a quantidade de novos clientes inadimplentes por dia, a quantidade de seguros vendidos a cada semana, acidentes por dia ou casos de doenças por semana. Por sua natureza discreta, essas séries desafiam a aplicação direta de modelos clássicos como os AR, MA, ARMA ou ARIMA, os quais pressupõem variáveis contínuas e normalmente distribuídas (CAMERON; TRIVEDI, 1998).

Como alternativa aos modelos tradicionais, surgiram os chamados modelos autorregressivos para dados inteiros não negativos, notadamente os processos INAR (Integer value autorregresive), que respeitam a estrutura discreta da variável ao incorporar um operador de redução. A formulação original do processo INAR(1) foi introduzida inicialmente por Al-Osh e Alzaid (1987) e McKenzie (1985), sendo baseado no operador thinning binomial proposto por steutel1979, o qual permite definir processos autorregressivos respeitando a natureza discreta da variável.

Modelos INAR são particularmente atrativos por possibilitarem a incorporação de dependência temporal entre observações, algo que é essencial em séries de contagem. No modelo INAR(1), essa dependência é representada por meio do operador thinning binomial, denotado por $\alpha \circ X_{t-1}$, onde $\alpha \in [0,1]$ representa a taxa de retenção da série. O termo de inovação, denotado por ϵ_t , por outro lado, representa a contribuição probabilistica que é adicionada ao processo a cada instante do tempo. Geralmente, ele é modelado por uma distribuição discreta, sendo a distribuição Poisson a mais utilizada. Essa escolha facilita as análises e resultados, mas a escolha dessa distribuição traz uma limitação que deve ser levada em consideração, pois, ela pressupõe que a média e variância são iguais. Essa pressuposição em muitos casos não é verdadeira, pois, é observado em muitos casos que a variabilidade é maior ou menor do que a média McKenzie (2003).

Nas últimas décadas, os processos INAR têm se mostrado úteis em diversas aplicações práticas. (PEDELI; KARLIS, 2011) propuseram uma versão bivariada do modelo INAR(1) para descrever o número diário de transações financeiras em bolsas de valores, considerando a correlação entre pares de séries de contagem. Em outro contexto, (FO-KIANOS; TJøSTHEIM, 2009) utilizaram modelos baseados em INAR para modelar a frequência de chamados de emergência em serviços hospitalares, com foco na dependência temporal e na sobredispersão dos dados. Já (ZHANG; WANG; ZHU, 2019) aplicaram modelos INAR para analisar séries mensais de casos de tuberculose na China, evidenciando a adequação do modelo em contextos epidemiológicos. Tais aplicações reforçam a

relevância da modelagem de séries de contagem com sobredispersão e motivam a utilização de distribuições alternativas à poisson, tais como a binomial negativa e a geométrica.

1.1 Objetivos

1.1.1 Objetivo Geral

Este trabalho tem como objetivo analisar o desempenho de dois estimadores dos parâmetros do processo poisson, binomial negativa e geométrica INAR(1), utilizando os estimadores de mínimos quadrados condicionais e máxima verossimilhança condicional. Como um segundo objetivo desejamos propor e comparar os mesmos dados as três distribuições consideradas, usando os métodos de estimação. E um terceiro objetivo é aplicar a dados reais de uma série de contagem. Os estudos de desempenho são feitos por meio de simulações de Monte Carlo, que serão realizadas usando a linguagem R (R, Core Team, 2025).

Para alcançar esse objetivo geral, estabelecem-se os seguintes objetivos específicos:

1.1.2 Objetivos Específicos

- 1. Conduzir estudos de simulação, variando cenários de parâmetros, a fim de comparar os estimadores dos modelos analisados;
- 2. Avaliar o desempenho dos modelos utilizando medidas de qualidade de ajuste;
- 3. Aplicar os modelos a dados reais de uma série extraída do sistema gerenciador de séries temporais sob a jurisprudência do Banco Central do Brasil;
- Comparar os resultados dos modelos estatísticos com os métodos de estimação propostos.

2 Referencial Teórico

2.1 Processo INAR

A relevância dos modelos INAR pode ser destacada a partir de algumas de suas principais características:

- Respeito à natureza discreta dos dados: O modelo em questão assegura que tanto os valores ajustados, quanto as previsões permaneçam dentro do conjunto dos inteiros não negativos, refletindo adequadamente a essência dos dados de contagem.
- Depêndencia temporal adequada: Diferentemente dos modelos lineares clássicos, os processos INAR descrevem a correlação entre observações sucessivas por meio do operador de thinning, baseado na convolução binomial. Esse mecanismo representa de maneira mais realista a influência de eventos passados sobre as contagens futuras.
- Flexibilidade na escolha da distribuição: Os termos de inovação do modelo podem seguir diferentes distribuições, como Poisson, binomial negativa ou geométrica, o que amplia a sua capacidade de lidar com padrões de dispersão e variabilidade frequentemente observados em séries de contagem.
- Interpretação intuitiva dos parâmetros: O coeficiente autorregressivo pode ser entendido como a fração média de eventos do período anterior que permanece no presente, enquanto o termo de inovação capta a ocorrência de novos eventos independentes.
- Base teórica consolidada: Os processos INAR contam com uma formulação estatística bem estruturada, contemplando condições de estacionariedade, funções de autocorrelação e resultados assintóticos para estimadores.

2.1.1 Operador thinning binomial

Uma séria temporal pode ser definida como: Seja $Y_t, t \in Z$ uma série temporal. Dizemos que $\{Y_t, t \in Z\}$ é um processo autoregressivo, AR(1) se satisfaz a equação recursiva

$$Y_t = \alpha Y_{t-1} + \epsilon_t$$

Onde $\alpha \in R$ e a sequência $\{\epsilon_t, t \in R\}$ chamada de ruído branco, é uma coleção de variáveis aleatórias não correlacionadas, onde a média e variância dependem da distribuição.

Como em muitos casos $\alpha \in R$, para uma série temporal de valores inteiros não negativos não é admitido esta representação, mesmo que seja considerado uma distribuição de valores inteiros não negativos para ϵ_t , Y_t não será, necessariamente um valor inteiro.

Na literatura uma das formas de obter modelos que garantem que Y_t seja um valor inteiro não negativo é utilizar um operador conveniente para garantir que as variáveis aleatórias assumam valores inteiros não negativos. Utilizaremos o operador thinning binomial, proposto por (STEUTEL; HARN, 1979).

Definição 1: Seja Y uma variável aleatória não negativa que assume valores inteiros e seja $\alpha \in [0,1]$. O operador *thinning* binomial é definido como:

$$\alpha \circ Y = \sum_{i=1}^{Y} N_i,$$

Em que as variáveis aleatórias $N_i^{\prime s}$ são independentes e identicamente distribuídas (i.i.d.), com distribuição Bernoulli de parâmetro α . As variáveis $N_i^{\prime s}$ são chamadas de séries de contagem de $\alpha \circ Y$.

2.1.1.1 Propriedades do operador thinning binomial

Sejam X e Y variáveis aleatórias não negativas assumindo valores inteiros. Sejam α e β constantes que pertencem aos reais no intervalo [0,1] e suponha que a série de contagem de $\alpha \circ Y$ é independente da série de contagem de $\beta \circ X$ são independentes de X e de Y. Então:

- 1. $0 \circ Y = 0$
- 2. $1 \circ Y = Y$
- 3. $\alpha \circ (\beta \circ Y) \stackrel{d}{=} (\alpha \beta) \circ Y$
- 4. $\alpha \circ (Y + X) \stackrel{d}{=} (\alpha \circ Y) + (\beta \circ X)$
- 5. $E(\alpha \circ Y) = \alpha E(Y)$
- 6. $Var(\alpha \circ Y) = \alpha^2 Var(Y) + \alpha(1 \alpha)E(Y)$

em que $X\stackrel{d}{=}Y$ significa que X e Y têm a mesma distribuição.

As demonstrações destas propriedades, bem como de outras do operador thinning binomial já foram demonstradas e podem ser encontradas em Gomes (2009), Barcelos (2008) e Silva (2005).

2.1.2 Processo INAR(1)

A partir do que foi definido sobre o operador *thinning* binomial, é possível definir o processo autoregressivo de valores inteiros de ordem um, INAR(1), que foi proposto por (AL-OSH; ALZAID, 1987) e (MCKENZIE, 1985).

Definição 2: Um processo estocástico discreto de valores inteiros não negativos $\{Y_t, t \in Z\}$ é dito ser um processo INAR (1), se satisfaz a seguinte equação de recursão

$$Y_t = \alpha \circ Y_{t-1} + \epsilon_t, \tag{2.1}$$

em que $\alpha \in (0,1)$, $\{\epsilon_t, t \in Z\}$ é uma sequência de variáveis aleatórias i.i.d. de valores inteiros não negativos tal que $E(\epsilon_t) = \mu_{\epsilon}$, $Var(\epsilon_t) = \sigma_{\epsilon}^2$ e ϵ_t é independente de Y_s para s < t.

O processo INAR (1) pode ser interpretado da seguinte forma: Y_t representa a população de habitantes remanescentes em uma região no caso de migração no tempo t. $\alpha \circ Y_{t-1}$ representa os habitantes daquela região que permaneceram naquela região no tempo t-1, ϵ_t representa os novos habitantes que chegaram para morar naquela região no tempo t e $Y_{t-1} - \alpha \circ Y_{t-1}$ a quantidade de habitantes que saíram daquela região.

De acordo com Du e Li (1991) e Latour (1998) se $\alpha < 1$. então o processo INAR(1) é estacionário. Consideraremos aqui apenas quando $\alpha < 1$, caracterizando assim um processo estacionário.

Segue algumas propriedades do processo INAR(1) em que a adequação acontece de acordo com a distribuição de ϵ_t

2.1.2.1 Propriedades do Processo INAR(1)

Seja $\{Y_t, t \in Z\}$ um processo INAR(1), com $\mu_{\epsilon} = E(\epsilon_t)$ e $\sigma_{\epsilon}^2 = Var(\epsilon_t)$. Então, $\{Y_t, t \in Z\}$ satisfaz as seguintes propriedades:

- 1. $E(Y_t) = \frac{\mu_{\epsilon}}{1-\alpha}$
- 2. $Var(Y_t) = \frac{\sigma_{\epsilon}^2 + \alpha \mu_{\epsilon}}{1 \alpha^2}$
- 3. $E(Y_t|Y_{t-1}) = \alpha Y_{t-1} + \mu_{\epsilon}$
- 4. $Var(Y_t|Y_{t-1}) = \alpha(1-\alpha)Y_{t-1} + \sigma_{\epsilon}^2$
- 5. $Cov(Y_t, Y_{t+j}) = \alpha^j Var(Y_t)$, para $j \in N$
- 6. $\rho_Y(h) = Corr(Y_t, Y_{t+h}) = \alpha^h$, para $h \in N$

2.2 Distribuições associadas

2.2.1 Processo Poisson INAR(1)

Considere $\{Y_t, t \in Z\}$ um processo INAR(1), ou seja, um processo em que Y_t satisfaz a equação 2.1.

Quando $\{\epsilon_t, t \in Z\}$ é um conjunto de variáveis aleatórias independentes com distribuição poisson de parâmetro λ , então $\{Y_t, t \in Z\}$ é chamado de processo poisson INAR(1). E nesse caso, a média e variância são iguais. Ou seja, $\mu_{\epsilon} = \sigma_{\epsilon}^2 = \lambda$.

Seja $\{Y_t, t \in Z\}$ um processo poisson INAR(1) então, considerando as propriedades do operador thinning binomial que foram apresentadas na seção 2.1.2.1 e também que temos um processo estacionário, ou seja, a média e variância permanecem constantes ao longo do tempo. É possível encontrar as seguintes propriedades.

1.
$$E(Y_t) = \frac{\lambda}{1-\alpha}$$

2.
$$Var(Y_t) = \frac{\lambda}{1-\alpha}$$

3.
$$E(Y_t|Y_{t-1}) = \alpha Y_{t-1} + \lambda$$

4.
$$Var(Y_t|Y_{t-1}) = \alpha(1-\alpha)Y_{t-1} + \lambda$$

5.
$$Cov(Y_t, Y_{t+j}) = \alpha^j Var(Y_t)$$
, para $j \in N$

6.
$$\rho_Y(h) = Corr(Y_t, Y_{t+h}) = \alpha^h$$
, para $h \in N$

2.2.2 Processo Geométrica INAR(1)

Conforme sugerido por (MCKENZIE, 1986) em processos INAR(1) podem ser utilizados a distribuição Geométrica e Binomial Negativa, sendo assim.

Considere $\{Y_t, t \in Z\}$ um processo INAR(1), ou seja, um processo em que Y_t satisfaz a equação (2.1). Quando $\epsilon_t, t \in Z$ é um conjunto de variáveis aleatórias independentes com distribuição geométrica parametrizada pela média, então $\{Y_t, t \in Z\}$ é chamado de processo geométrica INAR(1). E nesse caso, temos os seguintes resultados:

Para uma distribuição geométrica com em 0,1,2,3,...

$$P(X = k) = (1 - p)^k p, \quad k = 0, 1, 2, 3, \dots$$

Parametrizando pela média, temos os seguintes resultados.

•
$$p = \frac{1}{1+\mu}$$

•
$$P(X = k) = \frac{\mu^k}{(\mu+1)^{k+1}}$$

- $E(X) = \mu$
- $Var(X) = \frac{\mu}{(\mu+1)^2}$

A distribuição aqui foi parametrizada pela média e $k \in 0, 1, 2, 3, ...$ As propriedades do processo seguem abaixo:

1.
$$E(Y_t) = \frac{\mu}{1-\alpha}$$

2.
$$Var(Y_t) = \frac{\alpha\mu + \frac{\mu}{(\mu+1)^2}}{(1-\alpha)^2}$$

3.
$$E(Y_t|Y_{t-1}) = \alpha Y_{t-1} + \mu$$

4.
$$Var(Y_t|Y_{t-1}) = Y_{t-1}\alpha(1-\alpha) + \frac{\mu}{(\mu+1)^2}$$

5.
$$Cov(Y_t, Y_{t+j}) = \alpha^j \left(\frac{\alpha\mu + \frac{\mu}{(\mu+1)^2}}{(1-\alpha^2)}\right)$$
, para $j \in N$

6.
$$\rho_Y(h) = Corr(Y_t, Y_{t+h}) = \alpha^h$$
, para $h \in N$

2.2.3 Processo Binomial Negativa INAR(1)

Considere $\{Y_t, t \in Z\}$ um processo INAR(1), ou sejam um processo em que Y_t satisfaz a equação (2.1). Quando $\epsilon_t, t \in Z$ é um conjunto de variáveis aleatórias independentes com distribuição binomial negativa parametrizada pela média, então $\{Y_t, t \in Z\}$ é chamado de processo binomial negativa INAR(1). Temos os seguintes resultados, considerando uma distribuição parametrizada pela média:

$$p = \frac{\mu}{\sigma^2}$$

$$P(x = k) = \binom{k + \frac{\mu^2}{\sigma^2 - \mu} - 1}{k} \left(1 - \frac{\mu}{\sigma^2}\right)^k \left(\frac{\mu}{\sigma^2}\right)^{\frac{\mu^2}{(\sigma^2 - \mu)}}$$

$$r = \frac{\mu^2}{\sigma^2 - \mu}$$

$$E(X) = \mu$$

$$Var(X) = \sigma^2$$

A distribuição foi parametrizada pela média, e as propriedades do processo segue abaixo:

1.
$$E(Y_t) = \frac{\mu}{1-\alpha}$$

2.
$$Var(Y_t) = \frac{\alpha\mu + \sigma^2}{1 - \alpha^2}$$

3.
$$E(Y_t|Y_{t-1}) = \alpha Y_{t-1} + \mu$$

4.
$$Var(Y_t|Y_{t-1}) = y_{t-1}\alpha(1-\alpha) + \sigma^2$$

5.
$$Cov(Y_t, Y_{t+j}) = \alpha^j \left(\frac{\alpha \mu + \sigma^2}{1 - \alpha^2}\right), \quad \text{para } j \in N$$

6.
$$\rho_Y(h) = Corr(Y_t, Y_{t+h}) = \alpha^h$$
, para $h \in N$

2.3 Métodos de Estimação

2.3.1 Estimadores de Mínimos Quadrados Condicionais

Seja $Y_1, Y_2, Y_3, ..., Y_n$ uma amostra do processo INAR(1) dado na equação (2.1). Estamos interessados em estimar o vetor de parâmetros $\theta = (\alpha, \lambda)$. Sabemos que:

$$E(Y_t|Y_{t-1}) = \alpha Y_{t-1} + \lambda = g(\theta, Y_{t-1})$$

Considere a função,

$$Q_n(\theta) = \sum_{t=2}^{n} [Y_t - g(\theta, Y_{t-1})]^2$$

Os estimadores de mínimos quadrados condicionais (MQC) de α e λ são os valores de α e λ que minimizam $Q_n(\theta)$. Depois de derivar $Q_n(\theta)$ em relação a α e λ e sendo igualhada as duas derivadas a zero, obtemos que os estimadores de MQC de α e λ são dados por:

$$\widehat{\alpha}_{MQC} = \frac{\sum_{t=2}^{n} Y_t Y_{t-1} - \frac{1}{n-1} \sum_{t=2}^{n} Y_t \sum_{t=2}^{n} Y_{t-1}}{\sum_{t=2}^{n} Y_{t-1}^{n} Y_{t-1}^{2} - \frac{1}{n-1} \left(\sum_{t=2}^{n} Y_{t-1}\right)^{2}}$$
(2.2)

$$\hat{\lambda}_{MQC} = \frac{1}{n-1} \left(\sum_{t=2}^{n} Y_t - \hat{\alpha}_{MQC} \sum_{t=2}^{n} Y_{t-1} \right)$$
 (2.3)

2.3.2 Estimadores de Máxima Verossimilhança Condicional

Para o estimador de máxima verossimilhança condicional (MVC), a distribuição deve ser levada em consideração, por isso, teremos funções diferentes, a depender da distribuição associada.

1. Processo Poisson

Para o estimador de máxima verossimilhança condicional, temos que $Y_t = \alpha \circ Y_{t-1} + \epsilon_t$, em que $\epsilon_t \sim \text{Poisson}(\lambda_t)$

O operador thinning binomial: $\alpha \circ Y = \sum_{K=0}^{y} B_{K}$, $B_{K} \sim \text{Bernoulli } (\alpha)$. Logo, $\alpha \circ Y \sim \text{Binomial } (\gamma, \alpha)$

A função de log-verossimilhança é dada por:

$$l(\alpha, \lambda) = \sum_{t=2}^{T} ln \ P(Y_t | Y_{t-1})$$

A probabilidade de transição: $P(y_t|y_{t-1})$ é:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = P(\alpha \circ Y_{t-1} + \epsilon_t | Y_{t-1} = y_{t-1})$$
$$= P(\alpha \circ Y_{t-1} + \epsilon_t = y_t)$$

Em que $\alpha \circ Y_{t-1} \sim \text{Binomial } (y_{t-1}, \alpha) \text{ e } \epsilon_t \sim \text{Poisson } (\lambda), \text{ com } X \perp Y, \text{ então},$

$$P(X + Y) = \sum_{j=0}^{k} P(X = j, Y = k - j)$$
$$= \sum_{j=0}^{k} P(X = j)P(Y = k - j)$$

Note que, $0 \le j \le n$ e $0 \le j \le k$. Logo, $0 \le j \le min(n.k)$

Logo,

$$P(X + Y = k) = \sum_{j=0}^{\min(n,k)} = P(x = j)P(Y = k - j)$$
$$= \sum_{j=0}^{\min(n,k)} \binom{n}{j} \alpha^{j} (1 - \alpha)^{n-j} \frac{e^{-\lambda} \lambda^{k-j}}{(k-j)!}$$

Portanto, a função de log-verossimilhança de um processo poisson INAR (1) é dado por:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = \sum_{j=0}^{\min(y_{t-1}, y_t)} {y_{t-1} \choose j} \alpha^j (1 - \alpha)^{y_{t-1} - j} \frac{e^{-\lambda_t} \lambda_t^{y_t - j}}{(y_t - j)!}$$

$$l(\alpha, \lambda) = \sum_{t=2}^{T} ln \left(\sum_{j=0}^{Min(y_t, y_{t-1})} {y_{t-1} \choose j} \alpha^j (1 - \alpha)^{y_{t-1} - j} \frac{e^{-\lambda t} \lambda t^{y_t - j}}{(y_t - j)!} \right)$$

2. Processo Geométrica

Para o estimador de máxima verossimilhança condicional, temos que $Y_t = \alpha \circ Y_{t-1} + \epsilon_t$, em que $\epsilon_t \sim$ Geométrica (k_t, μ_t)

O operador thinning binomial: $\alpha \circ Y = \sum_{K=0}^{y} B_{K}$, $B_{K} \sim \text{Bernoulli } (\alpha)$.

A função de log-verossimilhança é dada por:

$$l(\alpha, \mu) = \sum_{t=2}^{T} ln \ P(Y_t = y_t | Y_{t-1} = y_{t-1})$$

A probabilidade de transição: $P(y_t|y_{t-1})$ é:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = P(\alpha \circ Y_{t-1} + \epsilon_t | Y_{t-1} = y_{t-1})$$
$$= P(\alpha \circ Y_{t-1} + \epsilon_t = y_t)$$

Em que $\alpha \circ Y_{t-1} \sim \text{Binomial } (y_{t-1}, \alpha) \text{ e } \epsilon_t \sim \text{Geométrica } (k, \mu), \text{ com } X \perp Y, \text{ então},$

$$P(X + Y) = \sum_{j=0}^{k} P(X = j, Y = k - j)$$
$$= \sum_{j=0}^{k} P(X = j)P(Y = k - j)$$

Note que, $0 \le j \le n$ e $0 \le j \le k$. Logo, $0 \le j \le min(n.k)$

Logo,

$$P(X+Y=k) = \sum_{j=0}^{\min(n,k)} = P(x=j)P(Y=k-j)$$
$$= \sum_{j=0}^{\min(n,k)} \binom{n}{j} \alpha^j (1-\alpha)^{n-j} \frac{\mu^{k-j}}{(\mu+1)^{k-j+1}}$$

Portanto, a função de log-verossimilhança de um processo geométrica INAR (1) parametrizado por μ é dado por:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = \sum_{j=0}^{\min(y_{t-1}, y_t)} {y_{t-1} \choose j} \alpha^j (1 - \alpha)^{y_{t-1} - j} \frac{\mu^{y_t - j}}{(\mu + 1)^{y_t - j + 1}}$$

$$l(\alpha, \mu) = \sum_{t=2}^{T} ln \left(\sum_{j=0}^{Min(y_t; y_{t-1})} {y_{t-1} \choose j} \alpha^j (1-\alpha)^{y_{t-1}-j} \frac{\mu^{y_t-j}}{(\mu+1)^{y_t-j+1}} \right)$$

3. Processo Binomial Negativa

Para o estimador de máxima verossimilhança condicional, temos que $Y_t = \alpha \circ Y_{t-1} + \epsilon_t$, em que $\epsilon_t \sim$ Binomial negativa (r_t, P_t)

O operador thinning binomial: $\alpha \circ Y = \sum_{K=0}^{y} B_{K}$, $B_{K} \sim \text{Bernoulli } (\alpha)$.

A função de log-verosssimilhança é dada por:

$$l(\alpha, \mu, \sigma^2) = \sum_{t=2}^{T} ln \ P(Y_t = y_t | Y_{t-1} = y_{t-1})$$

A probabilidade de transição: $P(y_t|y_{t-1})$ é:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = P(\alpha \circ Y_{t-1} + \epsilon_t | Y_{t-1} = y_{t-1})$$
$$= P(\alpha \circ Y_{t-1} + \epsilon_t = y_t)$$

Em que $\alpha \circ Y_{t-1} \sim$ Binomial (y_{t-1}, α) e $\epsilon_t \sim$ Bin. Negativa (r, p), com $X \perp Y$, então,

$$P(X + Y) = \sum_{j=0}^{k} P(X = j, Y = k - j)$$
$$= \sum_{j=0}^{k} P(X = j)P(Y = k - j)$$

Note que, $0 \le j \le n$ e $0 \le j \le k$. Logo, $0 \le j \le min(n.k)$

Logo,

$$\begin{split} P(X+Y=k) &= \sum_{j=0}^{\min(n,k)} = P(x=j)P(Y=k-j) \\ &= \sum_{j=0}^{\min(n,k)} \binom{n}{j} \alpha^{j} (1-\alpha)^{n-j} \binom{k-j+\frac{\mu^{2}}{\sigma^{2}-\mu}-1}{k-j} \left(1-\frac{\mu}{\sigma^{2}}\right)^{k-j} \left(\frac{\mu}{\sigma^{2}}\right)^{\frac{\mu^{2}}{(\sigma^{2}-\mu)}} \end{split}$$

Portanto, a função de log-verossimilhança de um processo INAR (1) com distribuição binomial negativa, parametrizada por μ e σ^2 é dada por:

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = \sum_{j=0}^{\min(y_{t-1}, y_t)} {y_{t-1} \choose j} \alpha^j (1 - \alpha)^{y_{t-1} - j} {y_t - j + \frac{\mu^2}{\sigma^2 - \mu} - 1 \choose y_t - j}$$
$$\left(1 - \frac{\mu}{\sigma^2}\right)^{y_t - j} \left(\frac{\mu}{\sigma^2}\right)^{\frac{\mu^2}{(\sigma^2 - \mu)}}$$

$$P(Y_t = y_t | Y_{t-1} = y_{t-1}) = \sum_{j=0}^{\min(y_{t-1}, y_t)} {y_{t-1} \choose j} \alpha^j (1 - \alpha)^{y_{t-1} - j} {y_t - j + \frac{\mu^2}{\sigma^2 - \mu} - 1 \choose y_t - j}$$
$$\left(1 - \frac{\mu}{\sigma^2}\right)^{y_t - j} \left(\frac{\mu}{\sigma^2}\right)^{\frac{\mu^2}{(\sigma^2 - \mu)}}$$

A função final de log-verossimilhança de um processo com distribuição binomial negativa é dada por:

$$l(\alpha, \mu, \sigma^{2}) = \sum_{t=2}^{T} \left(\sum_{j=0}^{Min(y_{t}, y_{t-1})} {y_{t-1} \choose j} \alpha^{j} (1 - \alpha)^{y_{t-1} - j} {y_{t} - j + \frac{\mu^{2}}{\sigma^{2} - \mu}} - 1 \right)$$
$$\left(1 - \frac{\mu}{\sigma^{2}} \right)^{y_{t} - j} \left(\frac{\mu}{\sigma^{2}} \right)^{\frac{\mu^{2}}{(\sigma^{2} - \mu)}} \right)$$

2.4 Previsão do Processo INAR(1)

Considere a série Y_1, \dots, Y_t uma amostra do processo INAR (1). Tomando como verdadeiro a premissa de que conhecemos a série até o tempo t, estamos interessados em fazer a previsão de Y_{t+1} .

O valor de k que minimiza o erro quadrático médio condicional (EQMC), dado por,

$$E\left[\left(Y_{t+1}-k\right)^2|Y_t\right]$$

é a esperança de Y_{t+1} dado Y_t , ou seja, $k=E\left[Y_{t+1}|Y_t\right]$, e usaremos para fazer a previsão de Y_{t+1} .

2.4.1 Média da distribuição condicional um passo a frente

Como foi observado na seção 2.4, a esperança condicional de Y_{t+1} dado Y_t minimiza o EQMC. Assim, podemos usar esta esperança como previsão de Y_{t+k} dado que conhecemos a série até Y_t . Em sua tese de doutorado, Freeland (1998), demonstrou que:

$$E(Y_{t+k}|Y_t) = \alpha^k Y_t + \mu_{\epsilon} \frac{1 - \alpha^k}{1 - \alpha}$$

Substituindo k por 1, temos que:

$$E\left(Y_{t+1}|Y_t\right) = \alpha Y_t + \mu_{\epsilon} \tag{2.4}$$

Usaremos esta expressão para realizar a previsão de Y_{t+1} dado que conhecemos Y_t . Deve-se notar que esta expressão não é necessariamente um número inteiro. Logo, devemos transformar esta esperança para ser um inteiro não negativo, nesse caso o valor mais próximo do número inteiro, e será denotado por \hat{Y}_{t+1} .

2.5 Medidas de Qualidade do Ajuste

Na parte do estudo em que será estimado os parâmetros da série, e consenquentemente verificar o desempenho dos métodos de estimação usaremos o viés e o Erro Quadrático Médio (EQM). Considere um conjunto de K simulações de Monte Carlo de amostras de tamanho n do processo INAR(1) e seja $\hat{\theta}^{(i)}$ a estimativa de θ na i-ésima repetição, então o EQM simulado e o viés simulado de $\hat{\theta}$ são dados respectivamente por:

$$EQM(\hat{\theta}) = \frac{1}{K} \sum_{i=1}^{K} (\hat{\theta}^{(i)} - \theta)^{2}$$

$$vies(\hat{\theta}) = \theta - \hat{\theta}^*$$

em que $\hat{\theta}^*$ é a estimativa média de θ , ou seja, $\hat{\theta}^* = \frac{1}{K} \sum_{i=1}^K \hat{\theta}^{(i)}$.

Na segunda parte do estudo, onde faremos a estimativa dos valores utilizando os parâmetros encontrados, usaremos o erro médio absoluto (MAE), a raiz do erro quadrático médio (RMSE) e o erro médio percentual (MPE), para avaliar o desempenho dos preditores. Estas medidas podem ser encontradas já sendo utilizadas em trabalhos, como em Mahmoudi, Rostami e Roozegar (2018) para a previsão 1 passo à frente. O MAE, o RMSE e MPE, que são respectivamente:

$$MAE = \frac{1}{n} \sum_{t=1}^{n} |Y_t - \hat{Y}_t|$$
 (2.5)

RMSE =
$$\sqrt{\frac{1}{n} \sum_{t=1}^{n} (Y_t - \hat{Y}_t)^2}$$
 (2.6)

$$MPE = \left(\frac{\sum_{t=1}^{n} y_t - \hat{y}_t}{y_t}\right) \times \frac{100}{n}$$
(2.7)

em que \hat{y}_t é o valor estimado para y no tempo t.

3 Metodologia

Nesta seção descrevem-se os procedimentos metodológicos, no qual as simulações de Monte Carlo, bem como as estimações de parâmetros e previsões do processo INAR(1), foram realizadas utilizando a linguagem de programação **R**. O R, Core Team (2025) é amplamente empregado em análises estatísticas e modelagem de séries temporais devido à sua flexibilidade e à disponibilidade de diversos pacotes especializados.

Foram geradas séries temporais de contagem com diferentes distribuições de erro (Poisson, Binomial Negativa e Geométrica), seguindo a estrutura do modelo INAR(1). Para cada série simulada, os parâmetros do modelo foram estimados pelos métodos de (MQC) e (MVC). Com base nos parâmetros estimados, foram realizadas previsões de um passo à frente, permitindo avaliar o desempenho preditivo de cada método.

Para a estimação via máxima verossimilhança condicional, utilizou-se o pacote optimx Nash (2014), que fornece funções de otimização robustas e flexíveis para minimizar ou maximizar funções arbitrárias, incluindo funções de log-verossimilhança complexas. Dessa forma, todas as etapas da análise, desde a geração das séries até a estimação dos parâmetros e avaliação das previsões, foram realizadas de maneira automatizada e reprodutível, garantindo a consistência e confiabilidade dos resultados obtidos. Todos os códigos podem ser encontrados em minha página no meu github.

3.1 Estudo de Simulação de Monte Carlo

A experimentação de monte carlo significa o uso de valores aleatórios para a estimação de alguma função de uma distribuição de probabilidade. Um problema que não possui um componente estocástico pode ser colocado como um problema com um componente que pode ser identificado como a esperança de uma função de uma variável aleatória (VA). Isso pode ser feito através da decomposição de uma função densidade de probabilidade. O problema é então resolvido pela estimação do valor esperado por meio do uso de uma amostra aleatória da distribuição da Variável Aleatória.

A simulação de Monte Carlo é uma técnica estatística amplamente utilizada para investigar o comportamento de estimadores ou processos estocásticos por meio da repetição de experimentos aleatórios. O método consiste na geração de amostras aleatórias sucessivas, baseadas em distribuições probabilísticas previamente definidas, permitindo a análise empírica da variabilidade dos resultados. Segundo (KROESE et al., 2014), essa abordagem é particularmente útil quando soluções analíticas são impraticáveis ou inexistentes, sendo aplicada em diversas áreas como estatística, física, engenharia e finanças. No campo da inferência estatística, a simulação de Monte Carlo se destaca por fornecer um arcabouço

robusto para a avaliação de propriedades assintóticas e de pequeno porte amostral dos estimadores, como viés, consistência, eficiência e erro quadrático médio, sendo especialmente valiosa em modelos complexos ou não lineares (RUBINSTEIN; KROESE, 2016).

Neste trabalho, utilizou-se a simulação de Monte Carlo com o objetivo de estudar o comportamento dos estimadores do modelo INAR(1) sob as três distribuições de inovação. Foram geradas milhares de réplicas de séries temporais sintéticas, com variações sistemáticas nos parâmetros de interesse, permitindo avaliar empiricamente a qualidade das estimativas e a acurácia das previsões obtidas pelos métodos de estimação considerados.

3.1.1 Simulação de Monte Carlo para comparar o desempenho dos estimadores

A simulação tem como objetivo comparar o desempenho dos dois estimadores, (MQC) e (MVC) para os parâmetros α e λ do processo INAR(1), utilizando as três distribuições que vamos comparar. Para isso, foram geradas 5000 amostras do processo INAR(1), em que cada uma delas foi gerada de acordo a Equação 2.1. Para cada amostra gerada calculamos as estimativas de $\hat{\alpha}_{MQC}$, $\hat{\alpha}_{MVC}$, $\hat{\lambda}_{MQC}$ e $\hat{\lambda}_{MVC}$ com tamanhos amostrais n de 50, 100, 300 e 500. Para cada parâmetro, $\hat{\alpha}$ e $\hat{\lambda}$ de α e λ , respectivamente, calculamos a estimativa média, o viés e o erro quadrático médio, no caso da distribuição binomial negativa, utilizamos o parâmetro de variabilidade σ^2 .

Ou seja, para cada cenário, geraram-se séries temporais com tamanho fixo n e repetição R=5000 de simulações.

$$X_t = \alpha \circ X_{t-1} + \epsilon_t, \quad t = 1, 2, \cdots, n$$

A escolha dos valores de parâmetros para a simulação de monte carlo baseia-se na literatura consolidada sobre processos INAR(1). Para o coeficiente autorregressivo, foram adotados os valores $\alpha \in \{0.3, 0.5, 0.7\}$, que representam dependência temporal fraca, moderada e forte, respectivamente (JUNG; TREMAYNE, 2003; FREELAND; MCCABE, 2004). Esta configuração é amplamente utilizada em estudos de simulação por proporcionar cobertura adequada do espaço paramétrico relevante, evitando valores extremos que podem causar instabilidade numérica (BU; MCCABE; HADRI, 2008).

Para os parâmetros das distribuições de inovação, foram selecionados $\mu \in \{1.5, 2.5\}$ para a média, valores que se situam no intervalo recomendado por (WEISS, 2008) como representativo da maioria das aplicações empíricas em dados de contagem. A parametrização pela média facilita a comparação direta entre as distribuições com a distribuição de Poisson $\mu = \lambda$.

Ainda foram utilizados duas outras combinações de parâmetros, para observar a influência fraca ou forte de α , ou seja, o quanto a informação anterior afeta de maneira

direta o valor da próxima observação, logo, foi acrescentado cenário em que $\alpha=0,1$ e $\lambda=5$ e o cenário em que $\alpha=0,9$ e $\lambda=4$.

Os tamanhos de amostra quando n=500 proporciona boa aproximação assintótica. O número de 5.000 replicações de Monte Carlo segue a recomendação de (MACKINNON, 2007) para estudos comparativos, garantindo erro padrão suficientemente baixo para conclusões estatísticas robustas com custo computacional razoável.

4 Simulação

4.1 Simulações de Monte Carlo

Nos cenários simulados, observa-se que, de forma geral, os estimadores apresentam melhor desempenho à medida que o tamanho amostral aumenta. Para todos os modelos considerados (Poisson, Binomial Negativa e Geométrica), o viés tende a se aproximar de zero conforme o tamanho da amostra aumenta, indicando consistência dos estimadores. Essa mesma tendência pode ser comprovada pela redução do EQM, que se torna cada vez menor, evidenciando maior precisão nas estimativas a medida que o tamanho de amostra aumenta.

Tabela 1 – Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha = 0, 3$ e $\lambda = 1, 5$.

	Estimativa dos Parâmetros											
Amastra		Pois	sson]	Binomial	Negativa			Geor	nétrica	
Amostra	$\widehat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\widehat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$	$\widehat{\alpha}_{MQC}$	$\widehat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$	$\widehat{\alpha}_{MQC}$	$\widehat{\lambda}_{MQC}$	$\widehat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$
n = 50	0,2611	1,5777	0,2789	1,5396	0,2609	1,5760	0,2780	1,5488	0,2617	1,5826	0,2987	1,5029
n = 100	0,2780	1,5458	0,2867	1,5272	0,2827	1,5339	0,2981	1,5243	0,2802	1,5355	0,3000	1,4936
n = 300	0,2926	1,5148	0,2957	1,5082	0,2926	1,5135	0,2932	1,5126	0,2926	1,5162	0,2993	1,5018
n = 500	0,2970	1,5055	0,2989	1,5014	0,2956	1,5074	0,2964	1,5057	$0,\!2967$	1,5081	0,3005	1,4998
						Viés						
n = 50	-0,0389	0,0777	-0,0211	0,0396	-0,0391	0,0760	-0,0220	0,0488	-0,0383	0,0826	-0,0013	0,0029
n = 100	-0,0220	0,0458	-0,0133	0,0272	-0,0173	0,0339	-0,0109	0,0243	-0,0198	0,0355	0,0000	-0,0064
n = 300	-0,0074	0,0148	-0,0043	0,0082	-0,0074	0,0135	-0,0068	0,0126	-0,0074	0,0162	-0,0007	0,0018
n = 500	-0,0030	0,0055	-0,0011	0,0014	-0,0044	0,0074	-0,0036	0,0057	-0,0033	0,0081	0,0005	-0,0002
	•				erro qu	ıadrático	médio					
n = 50	0,0202	0,1178	0,0193	0,1115	0,0202	0,1335	0,0168	0,1169	0,0195	0,1679	0,0079	0,1020
n = 100	0,0105	0,0600	0,0091	0,0532	0,0101	0,0625	0,0084	0,0553	0,0104	0,0815	0,0040	0,0510
n = 300	0,0034	0,0193	0,0028	0,0165	0,0033	0,0201	0,0027	0,0176	0,0035	0,0275	0,0013	0,0169
n = 500	0,0020	0,0115	0,0017	0,0098	0,0021	0,0126	0,0017	0,0110	0,0021	0,0164	0,0008	0,0097

Fonte: Elaboração própria

No primeiro cenário, os quais os resultados estão na Tabela 1, em que $\alpha=0,3$ e $\lambda=1,5$ as estimativas obtidas por MQC e por MVC se mostraram próximas do valor verdadeiro, especialmente para $n\geq 300$, mostrando de maneira direta que os estimadores $\widehat{\alpha}_{MQC}$, $\widehat{\lambda}_{MQC}$, $\widehat{\alpha}_{MVC}$ e $\widehat{\lambda}_{MVC}$ são consistentes¹. O viés foi ligeiramente maior para amostras pequenas, em que (n=50), mas reduziu de forma consistente com o aumento da amostra. Entre os modelos, a distribuição geométrica apresentou os menores valores de EQM, sugerindo maior eficiência nesse caso específico.

Um estimador é consistente quando, à medida que o tamanho da amostra aumenta, ele converge em probabilidade para o valor verdadeiro do parâmetro que está sendo estimado. Em outras palavras, $\hat{\theta}_n \stackrel{P}{\longrightarrow} \theta$ quando $n \to \infty$.

Tabela 2 –	Estimativas	dos parâmetros,	viés e erro	quadrático	médio	quando	$\alpha=0,5$ e	
	$\lambda = 2$.							

	Estimativa dos parâmetros											
Amostra		Pois	sson			Binomial	Negativa			Geor	nétrica	
Amostra	$\widehat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$
n = 50	0,4491	2, 1913	0,4833	2,0558	0,4473	2,2061	0,4762	2,0977	0,4494	2, 1879	0,4983	1,9948
n = 100	$0,\!4750$	2,0953	0,4923	2,0270	0,4745	2,0914	$0,\!4865$	2,0471	0,4744	2,1054	0,5008	2,0007
n = 300	0,4899	2,0352	0,4971	2,0068	0,4911	2,0352	0,4933	2,0267	0,4890	2,0424	0,4990	2,0028
n = 500	0,4946	2,0213	0,4985	2,0059	0,4950	2,0195	$0,\!4966$	2,0135	0,4944	2,0201	0,4997	1,9991
						viés						
n = 50	-0,0509	0,1913	-0,0167	0,0558	-0,0527	0,2061	-0,0238	0,0977	-0,0506	0,1879	-0,0017	-0,0052
n = 100	-0,0250	0,0953	-0,0077	0,0270	-0,0255	0,0914	-0,0135	0,0471	-0,0256	0,1054	0,0008	0,0007
n = 300	-0,0101	0,0352	-0,0029	0,0068	-0,0089	0,0352	-0,0067	0,0267	-0,0110	0,0424	-0,0010	0,0028
n = 500	-0,0054	0,0213	-0,0015	0,0059	-0,0050	0,0195	-0,0034	0,0135	-0,0056	0,0201	-0,0003	-0,0009
					erro qı	ıadrático	médio					
n = 50	0,0189	0,3246	0,0119	0,2044	0,0197	0,3768	0,0122	0,2527	0,0192	0,4300	0,0045	0,1710
n = 100	0,0089	0,1493	0,0055	0,0938	0,0088	0,1624	0,0060	0,1180	0,0089	0,1983	0,0022	0,0839
n = 300	0,0029	0,0482	0,0017	0,0301	0,0029	0,0553	0,0021	0,0432	0,0029	0,0639	0,0007	0,0285
n = 500	0,0017	0,0300	0,0010	0,0183	0,0017	0,0312	0,0012	0,0240	0,0017	0,0373	0,0004	0,0166

Fonte: Elaboração própria

No segundo cenário, no qual temos os parâmetros $\alpha=0,5$ e $\lambda=2$, e os resultados expressos na Tabela 2, o padrão observado se manteve: maior dispersão para amostras pequenas e convergência para os valores verdadeiros a medida que o tamanho da amostra aumentava. O viés para o parâmetro α foi negativo na maioria dos casos, mas de uma pequena magnitude, enquanto o parâmetro λ apresentou tendência de superestimação para amostras menores. Destaca-se que, para esse cenário, os estimadores de MV novamente se mostraram ligeiramente superiores em termos de EQM, sobretudo na distribuição geométrica mais uma vez.

Tabela 3 – Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha=0,7$ e $\lambda=2,5$.

	Estimativa dos parâmetros											
Amostra		Pois	son]	Binomial	Negativa			Geor	métrica	
Amostra	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\widehat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$
n = 50	0,6408	2,9617	0,6901	2,5688	0,6376	2,9772	0,6798	2,6551	0,6417	2,9543	0,6994	2,4925
n = 100	0,6699	2,7388	0,6953	2,5319	0,6672	2,7638	0,6874	2,6062	0,6676	2,7545	0,6991	2,4981
n = 300	0,6899	2,5789	0,6981	2,5117	0,6901	2,5805	0,6946	2,5435	0,6904	2,5784	0,6997	2,5017
n = 500	0,6934	2,5528	0,6988	2,5080	0,6931	2,5557	0,6949	2,5399	0,6936	2,5550	0,6998	2,5041
						viés						
n = 50	-0,0592	0,4617	-0,0099	0,0688	-0,0624	0,4772	-0,0202	0,1551	-0,0583	0,4543	-0,0006	-0,0075
n = 100	-0,0301	0,2388	-0,0047	0,0319	-0,0328	0,2638	-0,0126	0,1062	-0,0324	0,2545	-0,0009	-0,0019
n = 300	-0,0101	0,0789	-0,0019	0,0117	-0,0099	0,0805	-0,0054	0,0435	-0,0096	0,0784	-0,0003	0,0017
n = 500	-0,0066	0,0528	-0,0012	0,0080	-0,0069	0,0557	-0,0051	0,0399	-0,0064	0,0550	-0,0002	0,0041
					erro qu	adrático	médio					
n = 50	0,0159	1,2336	0,0018	0,2511	0,0158	1,0589	0,0066	0,4843	0,0200	0,3592	0,0126	0,2439
n = 100	0,0063	0,4322	0,0020	0,1431	0,0068	$0,\!4821$	0,0030	0,2366	0,0067	0,5354	0,0008	$0,\!1256$
n = 300	0,0019	0,01319	0,0007	0,0487	0,0019	$0,\!1386$	0,0012	0,0884	0,0020	$0,\!1568$	0,0003	0,0419
n = 500	0,0011	0,0773	0,0004	0,0279	0,0011	0,0816	0,0012	0,0790	0,0011	0,0893	0,0002	0,0244

Fonte: Elaboração própria

O terceiro cenário, com $\alpha = 0, 7$ e $\lambda = 2, 5$, os resultados podem ser encontrados na Tabela 3, os resultados mais uma vez reforçam a hipótese de melhora da estimativa a

medida que o tamanho da amostra aumenta. O parâmetro α foi subestimado nas amostras em que $n \leq 100$, mas essa diferença desaparece progressivamente a medida em que o tamanho da amostra aumente, o que já fica evidente em n=300 e n=500. Já para λ , houve uma tendência inicial de superestimação, com valores se aproximando do valor verdadeiro à medida em que o tamanho da amostra crescia. Mais uma vez, as estimativas via MVC apresentou valores de EQM menor do que as estimativas usando MQC.

Tabela 4 – Estimativas dos parâmetros, viés e erro quadrático médio quando $\alpha=0,1$ e $\lambda=5.$

-					Estimativa	a dos parâr	netros					
Amostra		Pois	sson			Binomial	Negativa			Geom	étrica	
Alliostia	$\widehat{\alpha}_{MQC}$	$\widehat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\widehat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\widehat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$
n = 50	0,1004	4,9950	0,1077	4,9545	0,1017	4,9899	0,1045	4,9819	0,0972	5,0075	0,1091	4,9407
n = 100	0,0964	5,0148	0,1002	4,9940	0,0967	5,0172	0,0980	5,0111	0,0965	5,0168	0,1041	4,9754
n = 300	0,0963	5,0213	0,0973	5,0156	0,0973	5,0137	0,0977	5,0120	0,0955	5,0283	0,1017	4,9942
n = 500	0,0979	5,0107	0,0985	5,0074	0,0979	5,0105	0,0977	5,0115	0,0970	5,0195	0,1009	4,9981
						viés						
n = 50	0,0004	-0,0050	0,0077	-0,0455	0,0017	-0,0101	0,0045	-0,0181	-0,0028	0,0075	0,0091	-0,0593
n = 100	-0,0036	0,0148	0,0002	-0,0060	-0,0033	0,0172	-0,0020	0,0111	-0,0035	0,0168	0,0041	-0,0246
n = 300	-0,0037	0,0213	-0,0027	0,0156	-0,0027	0,0137	-0,0023	0,0120	-0,0045	0,0283	0,0017	-0,0058
n = 500	-0,0021	0,0107	-0,0015	0,0074	-0,0021	0,0105	-0,0023	0,0115	-0,0030	0,0195	0,0009	-0,0019
					erro qua	adrático mé	edio					
n = 50	0,0110	0,4470	0,0130	0,5071	0,0111	0,4807	0,0114	0,4936	0,0111	0,9609	0,0036	0,6929
n = 100	0,0071	0,2656	0,0076	0,2830	0,0071	0,2885	0,0071	0,2870	0,0071	0,5320	0,0018	0,3683
n = 300	0,0031	0,1120	0,0031	0,1130	0,0031	0,1186	0,0030	0,1147	0,0031	0,1993	0,0006	0,1190
n = 500	0,0020	0,0698	0,0020	0,0701	0,0020	0,0758	0,0019	0,0718	0,0020	0,1227	0,0003	0,0714

Fonte: Elaboração própria

No quarto cenário, em que $\alpha=0,1$ e $\lambda=5$, os resultados encontram-se na Tabela 4, verifica-se uma particular estabilidade mesmo em tamanhos amostrais reduzidos. As estimativas de α ficaram bastante próximas do valor verdadeiro, e o viés foi praticamente nulo já a partir de n=100. Para o parâmetro λ , o viés foi ligeiramente positivo, mas de magnitude pequena. O EQM também se mostrou bastante reduzido nesse cenário, sugerindo maior facilidade de estimação quando os parâmetros assumem esses valores.

Por fim, no cenário mais extremo, com $\alpha=0,9$ e $\lambda=4$, os resultados estão descritos na Tabela 5, e conforme observado indicam maior dificuldade em obter boas estimativas em amostras pequenas. O viés em λ foi substancial para n=50, mas reduziu gradualmente em amostras maiores. O EQM também foi elevado nesse caso, sobretudo na distribuição geométrica com n=50, refletindo maior instabilidade. Contudo, o resultado de convergência se manteve e no caso em que n=500 as estimativas já se aproximam consideravelmente dos valores verdadeiros e observamos que para α via MVC, o EQM é praticamente zero, independente do tamanho da amostra.

Tabela 5 –	Estimativas	dos parâmetros,	, viés e erro	quadrático	médio	quando	$\alpha = 0,9$ e
	$\lambda = 4$.						

_	Estimativa dos parâmetros											
Amostra		Pois	sson		В	inomial l	Negativa			Geor	nétrica	
Amostia	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\hat{\lambda}_{MVC}$	$\hat{\alpha}_{MQC}$	$\hat{\lambda}_{MQC}$	$\hat{\alpha}_{MVC}$	$\widehat{\lambda}_{MVC}$
n = 50	0,8806	4,6253	0,8973	4,0770	0,8809	4,6211	0,9065	4,3938	0,8546	5,4839	0,9000	3,9802
n = 100	0,8857	4,5137	0,8984	4,0517	0,8850	4,5393	0,9032	4,1635	0,8729	4,9787	0,9000	3,9913
n = 300	0,8927	4,2786	0,8994	4,0178	0,8921	4,3020	0,9015	4,0217	0,8892	4,4178	0,8998	4,0051
n = 500	0,8944	4,2136	0,8996	4,0105	0,8943	4,2225	0,9004	4,0733	0,8930	4,2787	0,9000	4,0029
						viés						
n = 50	-0,0194	0,6253	-0,0027	0,0770	-0,0191	0,6211	0,0065	0,3938	-0,0454	1,4839	0,0000	-0,0198
n = 100	-0,0143	0,5137	-0,0016	0,0517	-0,0150	0,5393	0,0032	0,1635	-0,0271	0,9787	0,0000	-0,0087
n = 300	-0,0073	$0,\!2786$	-0,0006	0,0178	-0,0079	0,3020	0,0015	0,0217	-0,0108	0,4178	-0,0002	0,0051
n = 500	-0,0056	0,2136	-0,0004	0,0105	-0,0057	0,2225	0,0004	0,0733	-0,0070	$0,\!2787$	0,0000	0,0029
					erro qua	adrático i	médio					
n = 50	0,0019	1,9345	0,0005	0,5100	0,0018	1,8906	0,0010	1,8287	0,0066	7,7092	0,0002	0,5542
n = 100	0,0011	1,3793	0,0002	$0,\!2789$	0,0011	1,4687	0,0006	0,7740	0,0027	3,8210	0,0001	0,2771
n = 300	0,0005	0,7112	0,0001	0,1127	0,0005	0,7348	0,0002	0,2791	0,0008	1,2659	0,0000	0,0968
n = 500	0,0003	$0,\!4846$	0,0000	0,0688	0,0003	0,5139	0,0002	$0,\!2555$	0,0004	0,7191	0,0000	0,0573

Fonte: Elaboração própria

De modo geral, os resultados das simulações apontam que tanto MQC, quanto a MVC são consistentes, mas a MVC tende a apresentar menor EQM, principalmente observando a distribuição geométrica. Além disso o aumento do tamanho amostral reduz de forma significativa tanto o viés quanto a variabilidade das estimativas, confirmando as propriedades assintóicas dos estimadores.

Outro resultado que ganha proeminência refere-se ao desempenho do estimador via MVC em comparação ao mesmo via MQC. Analisando o EQM no quinto cenário, cujos resultados estão apresentados na Tabela 5, verifica-se que, para n = 50, considerando a distribuição de inovação geométrica, o EQM de $\hat{\lambda}_{MQC}$ foi de 7,7092, enquanto para $\hat{\lambda}_{MVC}$ obteve-se 0,5542, representando uma redução de aproximadamente 92,81%. No terceiro cenário, conforme mostrado na Tabela 3, para n = 50 e distribuição de inovação Poisson, o EQM de $\hat{\lambda}_{MQC}$ foi de 1,2236, contra 0,2511 para $\hat{\lambda}_{MVC}$, correspondendo a uma redução de aproximadamente 79,48%. Esses resultados reforçam a superioridade do método de estimação via MVC, particularmente quando se aproxima de um, situação em que há uma dependência temporal mais acentuada na série.

Figura 1 – Análise do EQM na simulação de monte carlo para $\hat{\lambda}$ quando $\lambda=4$ e $\alpha=0.9$.

Fonte: Elaboração Própria

Em análise dos resultados apresentados na Figura 1, observa-se que o método de MVC demonstra consistentemente menores valores de EQM em comparação ao método de MQC, em que todas as distribuições de inovação (poisson, binomial negativa e geométrica) e tamanhos amostrais, com destaque para a superioridade do MVC em amostras menores (n = 50), onde se registram reduções de até 92,81% no EQM para o parâmetro λ na distribuição geométrica, reforçando a maior precisão e robustez do estimador MVC especialmente em contextos de forte dependência temporal, em que α está próximo de 1.

5 Resultados

A análise da população desocupada constitui um ponto central nos estudos sobre o mercado de trabalho, especialmente em grandes centros urbanos. Na Região Metropolitana do Rio de Janeiro, essa temática ganha relevância pela expressiva concentração populacional, pela diversidade de atividades econômicas e pelas constantes transformações socioconômicas que impactam diretamente a empregabilidade. A dinâmica da desocupação na região reflete não apenas flutuações conjunturais da economia, mas também fatores ligados à informalidade. Assim, o estudo de séries temporais sobre a população desocupada permite identificar padrões, tendências e variações sazonais, contribuindo para uma compreensão mais aprofundada da realidade do mercado de trabalho e para a formulação de estratégias de enfrentamento desse desafio social.

A série temporal utilizada neste trabalho foi obtida no Sistema Gerenciador de Séries Temporais (SGS) do Banco Central do Brasil, que disponibiliza dados econômicos e sociais de diferentes regiões do país. O horizonte de tempo considerado corresponde ao período de março de 2002 a fevereiro de 2016, permitindo uma análise abrangente de mais de uma década sobre o comportamento da população desocupada na Região Metropolitana do Rio de Janeiro. Esse intervalo possibilita observar tanto os efeitos de ciclos econômicos de crescimento quanto os reflexos de crises e instabilidades, oferecendo uma visão consistente da evolução da desocupação nesse espaço geográfico. A escala de unidade da série temporal utilizada é de mil.

5.1 Análise Exploratória

A Série temporal mensal referente a população desocupada na região metropolitana do Rio de Janeiro tem o horizonte de tempo iniciando em março de 2002 e finalizando em fevereiro de 2016, totalizando um quantitativo de 168 observações. De acodo com os resultados expressos na Tabela 6, em que os valores indicam uma tendência central em torno da média de 366 unidades de milhares da população descoupada, ou seja, a média da população desempregada na região metropolitana do Rio de Janeiro era de 366.000 habitantes. A leve diferença entre a média e a mediana, sugere uma assimetria positiva, como é observado ainda na Tabela 6, com valor de 0,18. A série apresenta dispersão significativa, onde o desvio padrão foi de 95,26 unidades. A curtose de 2,25 indica uma distribuição platicúrtica, ou seja, em que se tem caudas menos pesadas e menor concentração de valores extremos em comparação à distribuição normal. O que sugere que, embora a série seja relativamente estável, existem períodos em que os valores se afastam da média, possivelmente motivadas por uma crise no setores empregatícios.

Tabela 6 – Estatísticas descritivas da série temporal da população desocupada na região metropolitana do Rio de Janeiro, de março de 2002 à fevereiro de 2016, em milhares.

Estatística	Valor
Observações	168
Média	365,77
Mediana	357,50
Desvio Padrão	$95,\!26$
Coeficiente de Variação	26,04%
Mínimo	174
Máximo	589
Assimetria	0,18
Curtose	2,25

Fonte: Elaboração própria

Figura 2 – Série temporal da população desocupada na região metropolitana do Rio de Janeiro, de março de 2002 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

De acordo com a Figura 2, podemos analisar que o valor em que no recorte de tempo é observado a maior quantidade de pessoas desocupadas na região metropolitana no Rio de Janeiro é no mês de Abril de 2004, o quantitativo de 589 unidades. Já a menor quantidade no número de desocupados na região metropolitana do Rio de Janeiro se deu em agosto de 2014, onde o valor foi de 174 unidades.

Pode-se observar que, até pouco antes de 2010, os valores da série temporal permaneceram acima da média, indicando níveis relativamente elevados de desocupação. No entanto, ao longo dos anos subsequentes, nota-se uma tendência de queda na população

desocupada na região metropolitana do Rio de Janeiro, refletindo a melhoria gradual das condições do mercado de trabalho e a maior absorção da força de trabalho pelos setores econômicos locais.

5.2 Estimação de Parâmetros

A estimação dos parâmetros foi realizada por meio de dois métodos estatísticos: mínimos quadrados condicionais (MQC) e máxima verossimilhança condicional (MVC). O parâmetro α representa o coeficiente de dependência temporal, mensurando a influência da observação no tempo t-1 sobre a observação no tempo t. No contexto específico desta análise da população desocupada da Região Metropolitana do Rio de Janeiro, o parâmetro α reflete o grau de persistência do desemprego, indicando em que medida o contingente de população desocupada em um determinado mês é influenciado pela quantidade de pessoas desocupadas no mês imediatamente anterior. O parâmetro λ representa a taxa de chegada de novos eventos na série temporal, correspondendo, no presente estudo, ao fluxo de entrada de novas unidades populacionais no contingente de desocupados. As estimativas dos parâmetros α e λ serão denotadas por $\hat{\alpha}$ e $\hat{\lambda}$, respectivamente.

No método de MQC, o parâmetro de dependência temporal (α) foi estimado em 0,9471, enquanto o parâmetro de intensidade do processo (λ) apresentou valor estimado de 17,8003. Os valores divergentes estimados por Máxima Verossimilhança Condicional, refletem a diferente maneira de cada modelo capturar a dependência temporal, estimando valores diferentes para α e a variabilidade da série, valores bem diferentes para λ .

Tabela 7 – Estimativas dos parâmetros da térie temporal de desocupados na região metropolitana do Rio de Janeiro, de março de 2002 à fevereiro de 2016, em milhares.

MQC		MVC						
		Poisson		Bin. Negativa		Geométrica		
$\widehat{\alpha}$	$\hat{\lambda}$	$\hat{\alpha}$	$\hat{\lambda}$	$\hat{\alpha}$	$\hat{\lambda}$	$\hat{\alpha}$	$\hat{\lambda}$	
0,9471	17,8003	0,7705	82,477	0,8724	85,436	0,8819	41,6999	

Fonte: Elaboração própria

De acordo com a Tabela 7, pode se observar, que a estimativa para o parâmetro α apresenta valores elevados em todos os métodos, variando de 0,7705 a 0,9471, indicando alta persistência, ou influência, do desemprego. Isso significa que 77% à 95% do contigente de desocupados em um mês influencia diretamente no quantitativo do mês seguinte. Já o parâmetro λ varia significativamente entre os métodos e distribuições consideradas, de 17,8 à 85,4. A estimação via MQC produz a menor estimativa de 17,8 enquanto a Binomial Negativa via MVC resulta na maior de 85,4. Essa variação reflete as diferenças de pressuposição distributiva dos métodos.

A escolha do modelo mais adequado foi realizado a partir dos critérios de informação AIC e BIC, amplamente utilizados na literatura por penalizarem a complexidade do modelo e permitirem um equilíbrio entre qualidade do ajuste e parcimônia. Esses critérios são fundamentais para evitar tanto o sobreajuste (overfitting) quanto a subestimação da estrutura dos dados, sendo, portanto, ferramentas importantes no processo de seleção de modelos. No presente estudo, os resultados apontaram que, entre as distribuições consideradas para as inovações do processo INAR(1), o modelo com distribuição Geométrica apresentou os menores valores de AIC(1658,94) e BIC(1665,19), destacando-se como a melhor opção para representar a série temporal analisada. As demais distribuições, Poisson com valor de AIC(2295,03) e BIC(2301,28) e a Binomial Negativa com valor de AIC(1729,66) e BIC(1739,04).

5.3 Ajuste do Modelo

Após a seleção do modelo, foi realizada a análise de diagnóstico por meio dos resíduos de pearson. A Figura 3 apresenta a evolução de acordo com o tempo dos resíduos, no qual observa que estes oscilam em torno de zero, aparentemente sem tendência, o que é um indício de ausência de viés sistemático. Além disso, a variabilidade dos resíduos se mantém aproximadamente constante ao longo do tempo, indicando que não há sinais de possível heterocedasticidade.

A Figura 4 exibe a função de autocorrelação dos resíduos. Nota-se que a maioria das autocorrelações se encontra dentro das bandas de confiança, não havendo padrão de dependência temporal persistente. Esse resultado é reforçado pelo teste de Ljung-Box, o qual teve um resultado de $\chi^2=15,87$ com 10 graus de liberdade e um p-valor de 0,1034. Como o p-valor é superior ao nível de significância de 5%, não rejeitamos a hipótese nula de que os resíduos são não correlacionados, ou seja, a uma confiança de 95% não existe evidências estatísticas para rejeitar a hipóstese de que os resíduos não são independentes. Dessa forma, conclui-se que os resíduos do modelo selecionado apresentam comportamento que respeitam as pressuposições para a validade das inferências. Logo, o modelo pode ser considerado adequado para fins de previsão.

Figura 3 – Análise de resíduos da série da série modelada referente população desocupada na região metropolitana do Rio de Janeiro, de abril de 2002 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

Figura 4 – Gráfico de autocorrelação dos resíduos da série da série modelada referente população desocupada na região metropolitana do Rio de Janeiro, de abril de 2002 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

A etapa de estimação dos valores foi utilizada a técnica de validação walk-forward. Esse procedimento consiste em ocultar valores da série, reestimar os parâmetros a cada passo e comparar os resultados estimados com os valores reais observados, permitindo avaliar o desempenho do modelo em diferentes horizontes de previsão. Dessa forma é possível verificar não apenas a capacidade de ajuste do modelo, mas também sua capacidade de generalização em cenários futuros.

De maneira geral, os resultados mostraram um desempenho satisfatório em horizontes curtos, especialmente na previsão de um passo à frente, onde o valor estimado esteve muito próximo do valor verdadeiro. Contudo, à medida que o horizonte de previsão se alonga(3, 6 e 12 passos), os erros acumulados tornam-se mais evidentes, com os resíduos apresentando maior magnitude e indicando dificuldade do modelo em capturar oscilações mais bruscas da série. Ainda assim, o exercício mostrou-se relevante para validar empiricamente o modelo escolhido, evidenciando suas potencialidades e limitações no contexto das previsões.

Tabela 8 – Valores estimados x valores verdadeiros para a série de população desocupada na região metropolitana do Rio de Janeiro, de março de 2015 à fevereiro de 2016, em milhares.

Período	fev/16	jan/16	dez/15	nov/15	out/15	set/15	ago/15	jul/15	jun/15	mai/15	abr/15	mar/15
Valor Real	297	299	299	353	359	376	299	337	305	292	301	280
h = 1	305											
h = 3	353	353	353									
h = 6	327	324	320	316	311	305						
h =12	328	325	321	317	312	307	301	294	286	277	267	256

Fonte: Elaboração própria

Os resultados descritos na Tabela 8, mostram que o modelo apresentou bom desempenho em horizontes curtos, com destaque para os valores estimados considerando o horizonte de um passo à frente (h=1), em que o valor estimado foi de 305, bastante próximo do valor verdadeiro que foi de 297. Para horizontes maiores, entretanto, observouse um afastamento considerável: no caso de três passos à frente (h=3), as estimativas permaneceram constantes em 353, enquantos os valores variaram entre 297 à 299. Já em horizontes mais longos, como (h=12), a discrepância se acentua - por exemplo, em setembro/2015 o modelo previu 307, enquanto o valor verdadeiro foi de 376, todavia no mês anterior de agosto, o valor verdadeiro foi de 299 e o modelo previu 301. Esses resultados reforçam que o modelo com inovação geométrica é mais eficiente para curto prazo, porém, apresenta limitações em capturar oscilações expressivas da série em períodos mais longos.

O erro médio absoluto (MAE), definido na Equação 2.5 é representado como a média das diferenças absolutas entres os valores observados y_t e os valores estimados \hat{y}_t . De forma análoga, a raiz do erro quadrático médio (RMSE) apresentado na Equação 2.6, corresponde à raiz quadrada da média dos erros ao quadrado, sendo uma medida sensível a grandes discrepâncias entre os valores observados e os valores estimados. E por fim, o erro

médio percentual (MPE), definido na Equação 2.7, é expresso como a média percentual dos erros, permitindo avaliar o viés médio dos valores estimados em termos relativos, com a finalidade de verificar se houve alguma subdispersão ou sobredispersão.

Tabela 9 – Medidas de qualidade do ajuste para as estimação da série de população desempregada na região metropolitana do Rio de Janeiro, de acordo com o horizonte de previsão.

h	MAE	RMSE	MPE
1	8,00	8,00	2,69%
3	$54,\!67$	$54,\!67$	$18,\!33\%$
6	$38,\!67$	42,19	$11,\!37\%$
12	30,67	$34,\!83$	9,40%

Fonte: Elaboração própria

A Tabela 9 apresenta as métricas de análise da qualidade do ajuste, o MAE, RMSE e o MPE obtidas para diferentes horizontes de previsão, permitindo avaliar quantitativamente a acurácia do modelo selecionado. Nota-se que, para o horizonte de um passo à frente (h = 1), o modelo apresentou desempenho bastante satisfatório, com erros médios absolutos e a raiz do erro quadrático médio em 8, o que confirma a boa capacidade preditiva no curto prazo.

No caso de (h=1), e em (h=3) conforme o resultado na Tabela 9, tanto o MAE, quanto o RMSE assumem o mesmo valor, em (h=1) isso acontece pelo fato de que só há uma única observação estimada a ser considerada, logo, não há diferença entre elevar ao quadrado ou tomar o valor absoluto. Já no caso em que (h=3) isso acontece pelo motivo de acontecer pouca dispersão entre os erros. Nos dois casos foi verificado um MPE positivo no horizonte igual a 1, sendo de 2,69% e no horizonte 3 de 18,33%, indica que, em média, o modelo apresenta uma superestimação leve nos valores estimados.

No horizonte, em que (h = 12), tanto o MAE, quando o RMSE diminuem, sendo respectivamente, 30,67 e 34,83 e o MPE de 9,40% sugere que o modelo mantém uma superestimação moderada. A redução das métricas nesse horizonte mostram que o modelo consegue capturar a estrutura de longo prazo da série.

À medida que o horizonte aumenta, observa-se um crescimento dos erros, reflexo da maior incerteza inerente a previsões de médio e longo prazo. O caso de (h=3) merece destaque, pois, apresentou os maiores valores de erro médio absoluto e erro quadrático médio, indicando a dificuldade do modelo em capturar variações bruscas nesse intervalo. Por outro lado, para horizontes mais extensos, como (h=6) e (h=12), os erros se mantiveram com valores relativamente menores do que em (h=3), sugerindo que, embora a previsão ainda esteja distante dos valores reais, o modelo conseguiu estabilizar seu desempenho. Esses resultados reforçam a adequação do modelo com distribuição de inovação geométrica para previsões de curto prazo, ao passo que evidencia limitações em

horizontes mais longos, especialmente quando a série apresenta mudanças abruptas.

Utilizou-se o teste de dispersão, implementado na função dispersiontest do pacote AER. Esse teste tem como hipótese nula a equidispersão, ou seja, a variância e a média serem iguais. E como resultado, obteve-se uma estatística de teste z=11,12, e um p - valor com resultado $<2,2\times10^{-16}$, logo, ao nível de significância de 5% existe evidências estatísticas para rejeitar a hipóstese nula de uma equidispersão dos dados. Como resultado referente a função, o valor de dispersão foi de 24,6615 o que indica uma sobredispersão, ou seja, quando a variância é bem maior do que a média, o que reforça o resultado do AIC e BIC considerando a distribuição de inovação poisson apresentar os piores valores, em comparação com as demais distribuições de inovação abordadas.

Figura 5 – Análise de resíduos do modelo estimado para a estimativa dos valores referente a série da população desocupada na região metropolitana do Rio de Janeiro, de setembro de 2015 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

Figura 6 – Análise de resíduos do modelo estimado para a estimativa dos valores referente a série da população desocupada na região metropolitana do Rio de Janeiro, de fevereiro de 2015 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

As Figuras 5 e 6 apresentam a análise dos resíduos para os horizontes de seis e doze meses à frente, respectivamente. Observa-se que, no horizonte de seis passos, os resíduos iniciais são positivos e elevados (indicando que o modelo está superestimando nestas observações), chegando a aproximadamente 70 unidades em setembro de 2015, mas ao longo do período passam a assumir valores negativos, indicando uma subestimação das observações verdadeiras nos meses mais recentes. Já no horizonte de doze passos, a discrepância se mantém elevada em diversos períodos, com destaque para setembro de 2015, quando os resíduos chegam próximo de 70 unidades, refletindo a dificuldade do modelo em acompanhar oscilações bruscas da série.

As Figuras 7 e 8 exibem a comparação entre os valores verdadeiros e as predições realizadas pelo modelo nos horizontes de seis e doze meses. No horizonte de seis meses, nota-se que as previsões seguem uma tendência suavizada e crescente, enquanto os dados reais apresentam flutuações mais intensas, sobretudo entre setembro e outubro de 2015, quando o modelo subestima picos importantes da série. No horizonte de doze meses, o comportamento é ainda mais evidente: o modelo mantém uma trajetória quase linear de crescimento, enquanto os valores observados revelam variações acentuadas e não capturadas, evidenciando a limitação do modelo para previsões de longo prazo.

Figura 7 – Valor verdadeiro x valore estimado para a série de população desocupada na região metropolitana do Rio de Janeiro, de setembro de 2015 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

Figura 8 – Valor verdadeiro x valores estimado para a série de população desocupada na região metropolitana do Rio de Janeiro, de fevereiro de 2015 à fevereiro de 2016, em milhares.

Fonte: Elaboração Própria

5.4 Previsão

A aplicação prática do modelo INAR(1), com distribuição geométrica - selecionada mediante os critérios de AIC e BIC como a mais adequada à estrutura dos dados - na série

temporal analisada permitiu gerar previsões para um horizonte de 12 meses, com início no mês de março de 2016 a fevereiro de 2017. A previsão, que constitui um dos principais objetivos da análise de séries temporais, fornece insights valiosos para o planejamento estratégico e a tomada de decisões, permitindo antever tendências e comportamentos futuros com base no comportamente histórico da série e na dependência temporal, modelado pelo parâmetro α do processo INAR(1). A previsão foi realizada conforme a Equação 2.4, sabendo que o número considerado é o inteiro mais próximo. Ou seja, a estimação será o inteiro mais próximo, através do média da distribuição condicional.

Tabela 10 – Valores previstos para a série da população desocupada na região metropolitana do Rio de Janeiro, de março de 2016 à fevereiro de 2017, em milhares.

Período	Previsão
mar/2016	304
abr/2016	310
mai/2016	315
jun/2016	319
jul/2016	323
ago/2016	327
set/2016	330
out/2016	333
nov/2016	335
dez/2016	337
jan/2017	339
fev/2017	341

Fonte: Elaboração própria

Com base nos resultados da previsão de 12 meses à frente do modelo INAR(1), observa-se um padrão de crescimento consistente, porém com taxa de incremento decrescente ao longo do horizonte de predição. A previsão inicia em março de 2016 com 304 unidades de finaliza em fevereiro de 2017 com 341 unidades, representando assim um aumento de 37 unidades (aproximadamente 12%) ao longo do período de doze meses.

Analisando a trajetória da predição, na Figura 9 e na Figura 10, verifica-se que os incrementos mensais seguem uma tendência de suavização progressiva: onde nos primeiros meses é observado variações mais acentuadas (por exemplo do mês de março a abril de 2016 a diferença de 6 unidades, entre os meses de abril e maio de 2016 a diferença foi de 5 unidades), que caiu gradualmente, sendo nos últimos meses observado um incremento de apenas 2. Este comportamento é característico de processos INAR(1), onde o componente autorregressivo garante que as previsões convirjam suavemente para um nível de equilíbrio de longo prazo.

Figura 9 – Valores previstos para a série da população desocupada na região metropolitana do Rio de Janeiro, de março de 2016 à fevereiro de 2017, em milhares.

Fonte: Elaboração Própria

Figura 10 – Detalhado valores previstos para a série da população desocupada na região metropolitana do Rio de Janeiro, de março de 2016 à fevereiro de 2017, em milhares.

Fonte: Elaboração Própria

A previsão de 341 unidades para fevereiro de 2017 representa o ponto de estabilização

da série indicando que, segundo o modelo, a série atingiria um patamar próximo a este valor na ausência de choques externos significativos. O intervalo com confiança de 95% para estas previsões situa-se aproximadamente entre 303 e 350 unidades, indicando que, embora a trajetória central aponte para um crescimento gradual, mas lento, existe uma margem de incerteza significativa associada às previsões de longo prazo. Esta amplitude considerada refleta a variabilidade intríseca do processo autorregressivo de contagem e da acumulação de incerteza característica de previsões em um multiperíodo, o que reforça a importância de ter um monitoramento contínuo e atualizações sequenciais do modelo conforme novas observações são disponibilizadas.

Os valores previstos pelo modelo para a população desocupada na região metropolitana no Rio de Janeiro, para o período de março de 2016 à fevereiro de 2017, acende um sinal de alerta por causa da tendência de crescimento, mesmo que lenta, mas gradual no número de desocupados. Esse comportamento sugere um cenário de piora progressiva no mercado de trabalho ao longo do horizonte previsto, com implicações significativas para políticas públicas de emprego e renda. A previsão é de que a desocupação ultrapassaria a marca de 340 mil pessoas, no início de 2017, o que evidência a necessidade de intervenções estratégicas direcionadas à geração de empregos e ao estímulo econômico na região, uma vez que tais níveis podem acentuar pressões sociais e reduzir o poder de consumo das famílias. Acrescenta-se, a persistência do crescimento mês e mês a qual reforça a importância do monitoramento contínuo e da adoção de medidas que antecipem e mitiguem os efeitos negativos deste quadro.

6 Considerações finais

O presente trabalho teve como finalidade avaliar a adequação das distribuições de inovação ao processo INAR(1), utilizando simulação de monte carlo e uma aplicação com dados reais, para estimar os parâmetros e fazer a previsão de novos valores para a série. Pode-se dizer que, com os resultados obtidos dos modelos avaliados, as técnicas mostraram-se eficazes para realizar as estimativas dos parâmetros α e λ do processo, apresentando resultados satisfatórios para a série temporal considerada. Apesar dos desafios iniciais, relacionados as suposições sobre os resíduos, para que tenhamos a possibilidade de realizar a previsão de novos valores, a suposição de independência dos resíduos foi validada, possibilitando assim a utilização da previsão. Além disso, os resultados das propriedades assintóticas dos estimadores foram validadas, o que traz uma maior confiabilidade aos estimadores tanto via MQC, como via MVC.

Os resultados obtidos neste estudo evidenciam a robustez e consistência dos estimadores de máxima verossimilhança condicional (MVC) para parâmetros INAR(1), conforme demonstrado nas simulações de monte carlo. Mesmo em amostras de tamanho reduzido, os estimadores apresentaram propriedades assintóticas satisfatórias, com viés reduzido e erro quadrático médio convergindo para zero à medida que o tamanho amostral aumentava, reforçando a confiabilidade do método para inferência em contextos de dependência temporal, principalmente, em que a dependência temporal é forte, ou seja, em que α se aproxima de um.

A flexibilidade do modelo INAR(1) em incorporar diferentes distribuições de inovação - como a poisson, binomial negativa e geométrica - mostrou-se uma vantagem significativa, permitindo melhor adequação aos dados empíricos conforme suas particularidades. A seleção da distribuição mais apropriada, conduzida pelos critérios de informação como AIC e BIC, contribuiu para uma modelagem mais precisa e contextualmente relevante, adaptando-se à dispersão e a estrutura probabílistica inerente à serie analisada.

Por fim, destaca-se a importância de ampliar a aplicação de processos INAR em estudos futuros, dada sua capacidade de preservar a natureza discreta e não negativa das séries de contagem, como a série mensal da população desocupada na região metropolitana do Rio de Janeiro, no período de março de 2002 à fevereiro de 2016, conforme analisada neste estudo. O acompanhamento contínuo desse indicador, aliado à modelagem adequada, oferece subsídios valiosos para o planejamento e execução de políticas públicas e para a compreensão da dinâmica do mercado de trabalho, especialmente em regiões metropolitanas com complexidades socioeconômicas como a do Rio de Janeiro.

Referências

- AL-OSH, M. A.; ALZAID, A. A. First-order integer-valued autoregressive (inar(1)) process. *Journal of Time Series Analysis*, v. 8, n. 3, p. 261–275, 1987.
- BARCELOS, B. I. Teste da raiz unitária Dickey-Fuller no modelo INAR(1). Dissertação (Mestrado) Universidade Federal do Espírito Santo, 2008.
- BU, R.; MCCABE, B.; HADRI, K. Maximum likelihood estimation of higher-order integer-valued autoregressive processes. *Journal of Time Series Analysis*, Wiley Online Library, v. 29, n. 6, p. 973–994, 2008.
- CAMERON, A. C.; TRIVEDI, P. K. Regression Analysis of Count Data. [S.l.]: Cambridge University Press, 1998.
- DU, J. G.; LI, Y. The integer-valued autoregressive (inar(p)) model. *Journal of Time Series Analysis*, v. 12, n. 2, p. 129–142, 1991.
- FOKIANOS, K.; TJøSTHEIM, D. Poisson autoregression. *Journal of the American Statistical Association*, v. 104, n. 488, p. 1430–1439, 2009.
- FREELAND, R. K. Statiscial analysis of discrete time series with application to the analysis of workers compensation claims data. Tese (Doutorado) University of British Columbia, 1998.
- FREELAND, R. K.; MCCABE, B. P. M. Analysis of low count time series data by Poisson autoregression. *Journal of Time Series Analysis*, Wiley Online Library, v. 25, n. 5, p. 701–722, 2004.
- GOMES, K. S. Modelagem INAR(p) para previsão de índices de qualidade do ar. Dissertação (Mestrado) Universidade Federal do Espírito Santo, 2009.
- JUNG, R. C.; TREMAYNE, A. R. Testing for serial dependence in time series models of counts. *Journal of Time Series Analysis*, Wiley Online Library, v. 24, n. 1, p. 65–84, 2003.
- KROESE, D. P. et al. Why the monte carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, Wiley, v. 6, n. 6, p. 386–392, 2014.
- LATOUR, A. Existence and stochastic structure of a non-negative integer-valued autoregressive process. *Journal of Time Series Analysis*, v. 19, n. 4, p. 439–455, 1998.
- MACKINNON, J. G. Bootstrap hypothesis testing. In: *Handbook of Statistics*. [S.l.]: Elsevier, 2007. v. 26, p. 183–213.
- MAHMOUDI, E.; ROSTAMI, M.; ROOZEGAR, R. A new integer-valued ar(1) process based on power series thinning operator. *Communications in Statistics Simulation and Computation*, v. 47, n. 10, p. 2895–2906, 2018.
- MCKENZIE, E. Some simple models for discrete variate time series. Water Resources Bulletin, v. 21, n. 4, p. 645–650, 1985.

Referências 46

MCKENZIE, E. Autoregressive moving-average processes with negative binomial and geometric marginal distributions. *Advances in Applied Probability*, v. 18, n. 3, p. 679–705, 1986.

MCKENZIE, E. Discrete variate time series. In: FINKENSTÄDT, B.; ROOTZÉN, H. (Ed.). Seminar on Stochastic Analysis, Random Fields and Applications III. [S.l.]: Springer, 2003. p. 305–312.

NASH, J. C. optimx: Extended Replacement and Comparison of Optimization Methods. [S.l.], 2014. Disponível em: https://CRAN.R-project.org/package=optimx.

PEDELI, X.; KARLIS, D. A bivariate inar(1) model for count time series. *Statistical Modelling*, v. 11, n. 1, p. 35–53, 2011.

R, Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2025. Disponível em: https://www.R-project.org/.

RUBINSTEIN, R. Y.; KROESE, D. P. Simulation and the Monte Carlo Method. 3. ed. [S.l.]: John Wiley & Sons, 2016.

SILVA, I. M. M. d. Contributions to the analisys of discrete-valued time series. Tese (Doutorado) — Universidade Federal do Rio Grande do Norte, 2005.

STEUTEL, F. W.; HARN, K. van. Discrete analogues of self-decomposability and stability. *The Annals of Probability*, v. 7, n. 5, p. 893–899, 1979.

WEISS, C. H. Thinning operations for modeling time series of counts—a survey. *AStA Advances in Statistical Analysis*, Springer, v. 92, n. 3, p. 319–341, 2008.

ZHANG, J.; WANG, M.; ZHU, F. Modeling monthly tuberculosis incidence with inar models. *Statistics in Medicine*, v. 38, n. 11, p. 1953–1966, 2019.