Context Free Grammars

Shakir Ullah Shah

Outline

Removing Λ-Productions

Removing Unit-Productions

- Removing Useless Variables
- Normal Form of Context Free Grammars
 - Chomsky Normal Form (CNF)

Killing Λ-Productions

Λ-Productions:

In a given CFG, we call a non-terminal N null able

if there is a production $N \subseteq \Lambda$, or there is a derivation that starts at N and lead to a Λ .

- · Λ-Productions are undesirable.
- · We can replace Λ-production with appropriate FAST National University of Computer and Emerging Sciences, Peshawar Campus

Theorem 23

- If L is CFL generated by a CFG having Λ-productions, then there is a different CFG that has no Λ-production and still generates either the whole language L (if L does not include Λ) or else generate the language of all the words in L other than Λ.
- · Replacement Rule.
 - 1. Delete all Λ-Productions.
 - 2. Add the following productions:
- For every production of the X old string

Add new production of the form X ..., where right side will account for every modification of the old string that can be formed by deleting all possible subsets of null-able Non-Terminals, except that we do not allow X . Λ, to be formed if all the character in old string are null-able

Example

Consider the CFG

Old nullable New

Production Production

S ■ Xa S ■ a

 $X \longrightarrow aX \qquad X \longrightarrow a$

So the new CFG is

S ■ Xa | a

X **■** aX | bX | a | b

Example

$$X \sim Zb$$

- Null-able Non-terminals are?
- · A, B, Z and W

 $S \longrightarrow XY$

Example Contd.

X Zb

Y MbW

Z AB

 $W \ge Z$

A **A** aA | bA | Λ

B **≥** Ba | Bb | Λ

Old nullable	New
Production	Production
X Zb	X ≥ b
Y ≥ bW	Y ≥ b
Z 🔀 AB	Z 🔀 A and Z 🔀 B
W ≥ Z	Nothing new
A ≥ aA	A ≥ a
A M bA	A b

So the new CFG is

S XY

X Zb | b

Y bW | b

Z AB | A | B

W Z

A A A | bA | a | b

B Ba | Ba | a | b

Killing unit-productions

- · **Definition:** A production of the form
- Nonterminal one Nonterminal

is called a unit production.

 The following theorem allows us to get rid of unit productions:

Theorem 24:

If there is a CFG for the language L that has no

Λ-productions, then there is also a CFG for L ⁸
FAST National University of Computer and Emerging Sciences, Peshawar Campus

Proof of Theorem 24

- This is another proof by constructive algorithm.
- Algorithm: For every pair of nonterminals A and B, if the CFG has a unit production A B B, or if there is a chain

where X1, X2, ... are nonterminals, create new productions as follows:

· If the non-unit productions from B are

where s1, s2, ... are strings, we create the productions

Example

· Consider the CFG

$$A \longrightarrow B \mid b$$

$$B \subseteq S \mid a$$

The non-unit productions are

And unit productions are

Example contd.

 Let's list all unit productions and their sequences and create new productions:

S 🔀 A	gives	S ✓ b	Consider the CFG S ► A bb
S 🔀 A 🔀 B	gives	S 🔀 a	A ≥ B b B ≥ S a
A 🔀 B	gives	A ≥ a	
A MB MS	gives	A 🔀 bb	unit productions are S ☑ A
$B \subseteq S$	gives	B 🔀 bb	A ► B B ► S
B⊠S⊠A	gives	B ✓ b	5 23

· Eliminating all unit productions, the new CFG is

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from S

In general:

contains only terminals

$$S \Rightarrow \ldots \Rightarrow \chi \Delta y \Rightarrow \ldots \Rightarrow w$$

$$w \in \mathbf{L}(G)$$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

First: find all variables that can produce strings with only terminals

Round 1: $\{A \mid B\}$

S - A

Round 2: $\{A, B, S\}$

Keep only the variables that produce terminal symbols: $\{A, B, S\}$

(the rest variables are useless)

$$S \rightarrow aS \mid A \mid \&$$
 $A \rightarrow a$
 $B \rightarrow aa$
 $C \rightarrow aCb$
 $S \rightarrow aS \mid A$
 $A \rightarrow a$
 $B \rightarrow aa$

Remove useless productions

Second:Find all variables reachable from §

Use a Dependency Graph

not reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

Remove useless productions

Normal Form of Context Free Grammars

Normal Form

 To convert a grammar in normal form means "standardizing the productions without changing the resulting language".

THE CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

A → BC B and C are not start variables

 $A \rightarrow a$ a is a terminal

 $S \rightarrow \epsilon$ S is the start variable and if ϵ is in the language

Any variable A that is not the start variable can only generate strings of length > 0

THE CHOMSKY NORMAL FORM

A context-free grammar is in Chomsky normal form if every rule is of the form:

A → BC B and C are not start variable

 $A \rightarrow a$ a is a terminal

 $S \rightarrow \epsilon$ S is the start variable

- · S AS a
- · A SA | b

Is in Chomsky Normal Form. The Grammar

- · S AS ASS
- · A SA aa
- Is not; both production S ■ AS | ASS and
 A■SA | aa violate the conditions of definition.

Theorem 25

• If L is a language generated by some CFG, then there exist another CFG that generate all the non-null words of L, all of whose productions are of one of the two basic forms:

Non-Terminal string of only Non-terminals

Or

Non-Terminal one Terminal

Proof

 The proof is a constructive algorithm by converting a given CFG in a CFG of the production of designed format.

 Let us suppose in given CFG the non-terminal are S, X1, X2, X3, ... Let us also assume {a,b} are two terminals.

STEP-1

Proof Theorem 25 contd...

STEP-2

now for every previous production involving terminals, we replace each 'a' with the non-terminal A and each 'b' with B.

e.g. X3 X4aX1SbbX7a

Becomes

X3 X4AX1SBBX7A

Which is a string of solid non-terminals

X6 abaab

Becomes

Example

S ■ X1 | X2aX2 | aSb | b

S X1 | X2AX2 | ASB | B

X1 **■** X2X2 | b

X1 **■** X2X2 | B

X2 **a**X2 | aaX2

X2 AX2 | AAX2

A **∑** a

 $B \searrow b$

Theorem: Any context-free language can be generated by a context-free grammar in Chomsky normal form

"Can transform any CFG into Chomsky normal form"

Chomsky Normal Form

There are 5 steps to follow in order to transform a grammar into CNF:

- Add the a new start variable S0 and the production rule S0 \longrightarrow S.
- Eliminate the ε -rules.
- Eliminate the unary productions $A \longrightarrow B$.
- Add rules of the form Vt —> t for every terminal t and replace t with the variable Vt.
- 5. FAST National Online style computer and Engry of the cryles was campus

1. Add a new start variable

- We have to make sure that the start variable doesn't occur to the right side of some rule.
- Thus, we add a new start variable S0 and the rule S0 → S, where S is the old start variable.

2. Eliminate ε -rules

- We have to eliminate all productions of the form $A \longrightarrow \epsilon$, for A being any non-start variable.
- To do so we should remove the rule $A \longrightarrow \epsilon$ and replace every appearance of A with ϵ in all other rules.

3. Eliminate unary productions

- A unary production is a production of the form $A \longrightarrow B$ (with both A, B being variables).
- There should only be productions of the form $V1 \longrightarrow V2V3$ involving variables, thus we have to eliminate unary productions.
- To do so, we replace B in $A \longrightarrow B$ with the right parts of the rules involving B in the left part.

4. Add Vt → t and replace t withVt

- There should only be rules of the form $A \longrightarrow t$ involving terminals, thus terminals should disappear from every other rule involving more than just one single literal.
- To do so, we add a new variable Vt for every terminal t and we replace every appearance of t with Vt, except those in rules of the form $A \longrightarrow t$.

5. Transform rules to A \longrightarrow BC

- · All the rules involving only variables should be of the form $A \longrightarrow BC$. Thus we should take care of all the rules involving more than 2 variables in the right part
- For the rule $V \longrightarrow A1A2A3...An$, we start reducing the size of the right part by replacing every two variables with one new variable (resulting in the creation of n-2 new variables).

5. Transform rules to A \longrightarrow BC

 $V \longrightarrow A1A2A3A4A5A6...An$

5. Transform rules to A \longrightarrow BC

$$V \longrightarrow B1A3A4A5A6...An$$

$$B1 \longrightarrow A1A2$$

$$V \longrightarrow B2A4A5A6...An$$
 $B2 \longrightarrow B1A3$ $B1 \longrightarrow A1A2$

$$V \longrightarrow B3A5A6...An$$
 $B3 \longrightarrow B2A4$
 $B2 \longrightarrow B1A3$
 $B1 \longrightarrow A1A2$

$$V \longrightarrow B4A6...An$$

 $B4 \longrightarrow B3A5$

 $B3 \longrightarrow B2A4$

 $B2 \longrightarrow B1A3$

 $B1 \longrightarrow A1A2$

$$V \longrightarrow Bn-2An$$

$$Bn-2 \longrightarrow Bn-3An-1$$

• • •

 $B4 \longrightarrow B3A5$

 $B3 \longrightarrow B2A4$

 $B2 \longrightarrow B1A3$

 $B1 \longrightarrow A1A2$

$$S \longrightarrow CSC \mid B$$

$$C \longrightarrow 00 \mid \epsilon$$

$$B \longrightarrow 01B \mid 1$$

1. Add new start variablle

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid B$$

$$C \longrightarrow 00 \mid \epsilon$$

$$B \longrightarrow 01B \mid 1$$

2. Eliminate ε-moves

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid B$$

$$C \longrightarrow 00 \mid \epsilon$$

$$B \longrightarrow 01B \mid 1$$

2. Eliminate ε-moves

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid B \mid CS \mid SC \mid S$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid B \mid CS \mid SC \mid S-$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid B \mid CS \mid SC -$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid -B \mid CS \mid SC$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid 01B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow S$$

$$S \longrightarrow CSC \mid 01B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$SO \longrightarrow CSC \mid O1B \mid 1 \mid CS \mid SC$$

$$S \longrightarrow CSC \mid 01B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$S \longrightarrow CSC \mid 01B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow 00$$

$$B \longrightarrow 01B \mid 1$$

$$Z \longrightarrow 0$$

$$SO \longrightarrow CSC \mid Z1B \mid 1 \mid CS \mid SC$$

$$S \longrightarrow CSC \mid Z1B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow Z1B \mid 1$$

$$Z \longrightarrow 0$$

$$SO \longrightarrow CSC \mid Z1B \mid 1 \mid CS \mid SC$$

$$S \longrightarrow CSC \mid Z1B \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow Z1B \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

$$SO \longrightarrow CSC \mid ZAB \mid 1 \mid CS \mid SC$$

$$S \longrightarrow CSC \mid ZAB \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow ZAB \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

$$SO \longrightarrow CSC \mid ZAB \mid 1 \mid CS \mid SC$$

$$S \longrightarrow CSC \mid ZAB \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow ZAB \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

$$SO \longrightarrow DC \mid ZAB \mid 1 \mid CS \mid SC$$

$$S \longrightarrow DC \mid ZAB \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow ZAB \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

$$SO \longrightarrow DC \mid ZAB \mid 1 \mid CS \mid SC$$

$$S \longrightarrow DC \mid ZAB \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow ZAB \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

$$SO \longrightarrow DC \mid EB \mid 1 \mid CS \mid SC$$

$$S \longrightarrow DC \mid EB \mid 1 \mid CS \mid SC$$

$$C \longrightarrow ZZ$$

$$B \longrightarrow EB \mid 1$$

$$Z \longrightarrow 0$$

$$A \longrightarrow 1$$

Convert the following into Chomsky normal form: BAB | B | ε S0 → BC | DD | BB | AB | BA | ε, C → AB, $A \rightarrow BC \mid DD \mid BB \mid AB \mid BA$, $B \rightarrow DD$, $D \rightarrow 0$