ES 340 - lecture 33 - Dec 02
6.5 Backtracking
assume an algorithm constructing a solution in stages;
at every stage there are several options
idea: · choose any option and proceed until reaching a "dead-end"
· then "back-track" to the portet where the most vecent
chorce was made
· mark this choice as "dead-end" and pick alternak
doice
option 1 option 2 option 3
option 1 option 2 Option)
option(.(option!2
option 1.1.1 1.1.2 1.1.3 If all of 1.1.1.,
dead-end lead to dead-ends
wark 1.1 as dead-end check 1.2 next
~> q. DFS!
· use this technique of solutions can be considered as extending
"partial solutions" and when you can quickly check for
dead-ends
marking a branch as "dead-end" is called pruning.

Example 54 Sudoku. Example 55 Turnpike Reconstruction Problem (application in reconstruction of DNA sequences) given: a multi-set of distances $D = \{d_1, d_2, \ldots, d_{\tilde{e}}\}$ (wulti-set = set with repetitions /multiplicative) where $Z = \frac{N(N-1)}{2}$ for some Nfask: find N numbers x,,..., xN ER such that D is the multi-set of distances between two numbers x_i , x_j , for all i,j, $1 \le i < j \le N$. always set $x_1 = 0$, $x_1 < x_2 < x_3 < \dots < x_N$. Example 56 e.g., D= {1,2,2,2,3,3,4,5,5,6,7,8,16} $2 = 1Dl = 15 = \frac{6.5}{2}$ m> N=6 and goal. find 6 "points" x,, ..., xe 1.1 7 8 D X4 X5

