Tutorial Completo - Observações com SPARC4

Maria Clara Cavalcante Siviero

Abril 2025

Informações Gerais

Noites de observação:

6-9 de maio 2024, *4 noites:* Gabriel Pampolha e Natan de Isídio. Logsheets:

6-9 de junho 2024, 4 noites: Maria Clara Siviero, Gabriel Pampolha e Juan Maldonado.

Logsheets: 6JUN24, 7JUN24, 8JUN24, 9JUN

Staralt: JUN/2024

27-30 de abril de 2025 *4 noites:* Maria Clara Siviero, Gabriel Pampolha, Juan Maldonado e Thiago

Bueno.

Logsheets: 27ABR2025, 28ABR2025, 29ABR2025, 30ABR2025

Staralt: ABRIL/2025

23-26 de julho de 2025 4 noites:

Logsheets: Staralt:

Links Úteis

- Condições meteorológicas do OPD
- Finders APR/JUL 2025
- Vídeo tutorial 9 de junho
- SPARC4 Observer Guide
- Tabela de tempo para flats
- SPARC4 Pipeline
- Acesso VPN às observações remotas do OPD
- Schedule OPD

Computadores

1. Centaurus:

- Terminal com três janelas:
 - Visualização de imagens no IRAF
 - Execução da pipeline de foco
 - Backup contínuo dos dados

2. **S4GUI**:

- S4GUI. Configurações: nome do objeto, sufixo, tempo/número de exposições
- Guider Setup

3. Autoguider:

- Autoguider: Sistema de guiagem
- Aladin

4. **TCSPD**:

- Controle do telescópio:
 - Calibrações (bias, flat, foco)
 - Gerenciamento do domo
 - Ajustes de apontamento

1 Procedimento de Calibração

1.1 Preparação Inicial

- 1. Destravar o telescópio:
 - ullet No TCSPD, acessar UTILS \to UNLOCK TELESCOPE
 - Em **FIXED POSITIONS** clicar em **FLAT-FIELD** para posicionar o telescópio (Figura 1). Isso é feito para otimizar tempo e começar as imagens de flat logo após o bias.

Figura 1: Destravar telescópio no TCSPD.

2. Na tela S4GUI:

- Registrar observadores
- Inserir ID do projeto (P-019)

1.2 Bias

- 1. Na aba **ZERO** da tela S4GUI:
 - Adicionar sufixo Bias no filename (Figura 2)
 - Definir 300 exposições¹

 $^{^{1}\}mathrm{O}$ tempo de exposição para o bias é padronizado em 0,00001s.

Figura 2: Bias.

2. Verificação no Centaurus:

É sempre recomendável conferir as imagens - na 1ª janela do terminal digitar: $\verb|displatest|$

1.3 Flat

1. No TCSPD:

- Acessar CALIBRATION
- Ligar lâmpada fraca (Figura 3)

Figura 3: Lâmpada.

2. Na tela S4GUI (aba **DFLAT**):

- Definir sufixo para filename (Figura 4)
- Usar tempos de exposição tabelados $(50\times24,\,8\times150,\,8\times150,\,10\times120)^2$

²O tempo de exposição e a quantidade de imagens para cada banda são fixos segundo o modo (convencional), frequência (1 MHz) e ganho (gain 2) especificados para esse tipo de observação (ver Tabela de tempo para flats)

• Clicar em **SET** e **START**

Figura 4: Flat.

- 3. Em caso de travamento:
 - RESUME \rightarrow ABORT \rightarrow Repetir processo

Assim como realizado com o bias, é possível conferir as imagens de flat no Centaurus.

2 Procedimento de Observação

2.1 Preparação do Campo

- 1. Na computador Autoguider:
 - Abrir o Aladin e buscar a galáxia alvo (Figura 5)
 - $\bullet \ \ File \rightarrow Load \ \ instrument \ \ FOV \rightarrow Load \ \ it \rightarrow sparc4_fov \rightarrow SUBMIT \ \ (Figuras \ \ 6 \ e \ \ 7) \\$
 - Selecionar campo próximo mas fora do FOV para calibração (Figura 8)
 - Selecione uma estrela centrada nesse campo.

Figura 5: Galáxia alvo no Aladin.

Figura 6: Seleção do FOV da SPARC4.

Figura 7: FOV da Sparc4.

2. No TCSPD:

- \bullet Acessar a aba $\bf POINTING$
- Registrar como star-field (sugestão)
- Inserir coordenadas (RA e DEC) da estrela selecionada

2.2 Finalização dos Flats

1. No TCSPD:

- ullet Desligar lâmpada: **CALIBRATION** o desativar
- Abrir domo: $\mathbf{DOME} \to \mathbf{OPEN}$ (Figura 9)

Figura 8: Campo para o ajuste de foco.

Figura 9: Controle de abertura do domo.

- 2. Retornar à aba **POINTING**:
 - Executar PRECESS
 - ullet Clicar em **POINT**
 - Confirmar aviso WORKING AREA IN (telescópio pronto)

2.3 Ajuste de Foco

- 1. Na tela S4GUI (aba **FOCUS**):
 - Nomear objeto: star-field
 - Definir sufixo para imagens (sugestão focus1, Figura 10)
 - Configurar: 1 exposição de 5s para todas bandas
 - $\bullet \ \mathbf{SET} \to \mathbf{START}$

Figura 10: Apontamento do campo para o foco.

- 2. Na Centaurus ($2^{\underline{a}}$ janela):
 - Submeter o comando³:

```
python -W"ignore" /home/observer/sparc4-pipeline/tools/sparc4_focus.py
--nightdir=today --seq_suffix=focus -v
```

- A pipeline fornecerá um valor de best mean FOCUS. Inserir esse valor no TCSPD (aba ${\bf FOCUS} \to target)$
- \bullet Clicar em GO
- Verificar Focus Status para confirmação (Figura 11)

³Provavelmente esse código estará salvo no terminal, então basta acessar o comando mais recente e apertar enter.

Figura 11: Interface de ajuste do foco.

3 Configuração do Alvo Científico

- 1. Na aba **POINTING** do TCSPD:
 - Registrar nome do alvo (Figura 12)
 - Inserir coordenadas (RA/DEC)
 - $\bullet \ \mathbf{PRECESS} \to \mathbf{POINT}$

Figura 12: Configuração de apontamento.

2. Na tela S4GUI (aba **OBJECT**):

- Registrar nome do objeto (ex: NGC2966, Figura 13)
- Adicionar sufixo (ex: ngc2966)
- Preparar teste de exposição (5-10s) para avaliar a saturação

Figura 13: Objeto de ciência.

3.1 Configuração do Autoguider

- 1. No Aladin, para o 1º alvo científico:
 - Selecionar estrela brilhante no FOV da SPARC4 (área rosa, Figura 14)
 - Anotar ângulo em azul (Rotation Angle)
- 2. Do $2^{\underline{0}}$ alvo cietífico em diante:
 - Abrir o Aladin e buscar a galáxia alvo (Figura 5)
 - File \rightarrow Load instrument FOV \rightarrow Load it \rightarrow sparc4_fov \rightarrow SUBMIT (Figuras 6 e 7)
 - Selecionar estrela brilhante no FOV da SPARC4 (área rosa, Figura 14)
 - Anotar ângulo em azul (Rotation Angle)

Figura 14: Seleção de estrela guia no Aladin.

- 3. No computador S4GUI:
 - Abrir Guider Setup (Figura 15)
 - $\bullet\,$ Inserir ângulo em target
 - GO TO
 - Verificar valor de foco (referência: 17 para modo fotométrico)

• GO TO novamente

Figura 15: Configuração do guider.

4. Na tela Autoguider:

- \bullet Ativar video
- Ajustar escala de cores para melhor visualização
- Posicionar retas horizontal/vertical sob a estrela
- Ativar Guide (Figura 16)

Figura 16: Interface do Autoguider.

- 5. Em caso de problemas:
 - Desativar Guide e video
 - Habilitar EMCCD
 - Aumentar level (ex: 120)
 - Analisar gráfico

3.2 Cálculo de Tempos de Exposição

- Procedimento:
 - 1. Realizar teste na tela S4GUI (SET \rightarrow START)
 - 2. No Centaurus:
 - Rodar displateste no 1º terminal
 - Usar imexam para análise por banda (g,r,i,z)
 - Selecionar uma estrela próxima e pressionar ${\tt r}$ para plotar perfil radial (Figura ?)

Fórmula para determinação do tempo de exposição:

$$t_{galaxy} = \frac{\sim 36000 \times t_{\star}}{cont_{\star}}$$

• Onde:

- $-t_{\star}$: tempo de exposição teste (5-10s)
- $cont_{\star}$: contagem máxima da estrela
- 36000: 60% do limite de saturação (60000 ADU)

 $t_{\rm galaxy}$ será o tempo de exposição estimado para observar a galáxia em cada banda. Cada um desses valores deve ser arredondado para o divisor mais próximo de 600. Isso ocorre porque o tempo total de exposição para cada alvo deve ser de 5400 segundos (1h30min), distribuídos em 9 posições de dithering⁴ - começando na posição 3 da Figura 17, com deslocamentos para cima e para baixo até completar o ciclo.

Figura 17: Acompanhamento do dithering.

Cada posição de *dithering* requer 600 segundos de exposição total, que devem ser subdivididos entre as 4 bandas (g, r, i, z) de acordo com o nível de saturação calculado para cada uma.

1. Na tela **S4GUI**:

- Preencher os campos para cada banda (Figura 18):
 - Exptime: Inserir o tempo calculado
 - Exp: Definir o número de exposições
- SET \rightarrow START

 $^{^4}$ textit Dithering consiste em pequenos deslocamentos do apontamento do telescópio entre exposições. Esta técnica permite a remoção de artefatos como pixels defeituosos ou ruídos sistemáticos durante o processamento dos dados.

Figura 18: Interface S4GUI

3.3 Configuração de Dithering

- 1. Procedimento:
 - \bullet Desativar Guide no Autoguider
 - $\bullet\,$ No TCSPD (aba ${\bf HANDSET}):$
 - Alterar *Precise offset* em passos de 3.00 arcsec em RA e DEC (Figura 19)
 - **GO**
 - Reativar guiagem

Figura 19: Configuração de dithering

Para cada etapa de *dithering*, conferir as contagens nas imagens das 4 bandas. Repetir o procedimento da Subseção 3.3 até retornar à posição inicial de apontamento. Para um novo alvo de ciência, repetir os passos a partir da Seção 3.

Comandos Úteis no IRAF

- displatest: Visualização das últimas imagens
- imexam: Análise detalhada de pixels
 - r: Perfil radial de contagem
 - 1: Análise por linha
 - c: Análise por coluna