MECH 10 - Lab 06 Series Circuits

Name: Cayce Beames Date: September 16, 2019 Professor Steven Gillette

Abstract

In this lab, I built 5 circuits according to the schematic diagram below. Each circuit consisted of a number of resistors connected in-line with each other. The marked values of the components were noted and measured with error rates calculated. I calculated and measured the current and voltage drops across the components and further calculated the error rates between the calculated and expected values. I lastly built a circuit using a transistor and LED, which demonstrated that voltage drops occur across all components, not just resistors.

Introduction Learning Objectives

- Build series circuits as per a schematic diagram
- Measure electrical values using a digital voltmeter
- Use Ohm's Law to validate field measurements
- Use a data table and schematic diagrams to capture field measurements

Notes:

- 1. Take all voltage measurements relative to ground (unless otherwise stated)
- 2. Record relevant measurements and calculation results in data tables
- 3. Record all measured values on the circuit schematics
- 4. Use all available precision in calculations, round off answers to 3 significant figures

Materials

Quantity	Description		
1	Global Specialties Circuit Trainer		
1	Digital multimeter (DMM)		
	Circuit 1 & 2		
3	Resistors between 200Ω and $5K\Omega$		
	Circuit 3		
1	$10K \Omega$ potentiometer		
	Circuit 4		
1 each	R1-1K		
	R2 - 1.8K		
	R3 - 2.7K		
	$R4-3.9K \Omega$		
	Circuit 5		
1	LED		
1	$R1-180 \Omega$		
1	$R2-4.7K \Omega$		
1	Q1 - 2N4401		

Procedure – Series Circuits

SDG 02/15 Page 1 of 13

Circuit 1

- 1. Selected resistors for circuit 1 & 2 according to the materials chart above. Measured each resistance value using a DMM. Created a data table that shows:
 - **a.** Expected resistance values (from resistor color codes)
 - **b.** Measured resistance values (from DMM measurements)
 - **c.** % Error the difference between expected and measured values

Resistor Expected & Measured Values					
	R _{exp} (Ohm) R _{meas} (Ohm) % Error				
R1	1.00E+03	980.00E+00	2.00%		
R2	4.70E+03	4.73E+03	-0.64%		
RT	RT 5.70E+03 5.72E+03 -0.35%				

2. Recorded *all measured values* directly on the circuit schematics as I encountered them in this lab.

See Attachment A – Signature and Lab Notes for schematic.

- 3. Built Circuit 1 *without the voltage source connected* (i.e. left the circuit power supply leads disconnected)
- 4. *Calculated* R_T , the total series resistance of the circuit using expected resistor values.
- 5. *Measured* R_T and compare the measured value to the expected value using the %Error formula.
- 6. Set the trainer power supply to 10V. Record the V_S , the supply voltage to three significant figures.
- 7. *Calculated I_T*, the expected circuit current using Ohm's Law, V_S , and R_{Texp} .
- 8. *Measured I_T* using the DMM as an ammeter. Recorded the value.
- 9. Calculated the % Error between expected and measured I_T values.

10. Used Ohm's Law, I_{Texp} and resistor expected values to *calculate the voltage drop* across each resistor. Recorded data in tables.

SDG 02/15 Page 2 of 13

11. *Measured the voltage drop* across each resistor and compared with the expected value with the % Error formula. Showed in data tables and on the circuit schematic.

Resistor Voltage Drops			
	V_{rexp}	V_{rmeas}	% Error
R1	1.75	1.720	-1.96%
R2	8.25	8.260	0.17%
V T	10.00	9.990	-0.10%

Circuit 2

12. Repeated the procedures used for Circuit 1 on Circuit 2. Recorded values in data table(s) and compared expected to measured values.

Circuit 3

13. Wired Circuit 3 as per the schematic diagram. The potentiometer in this circuit served as a variable voltage divider, allowing me to split the DC voltage into any ratio.

SDG 02/15 Page 3 of 13

14. Set the potentiometer to approximately mid position and measured the voltage to ground at the wiper (middle terminal). Rotated the pot and noted the change in voltage. Recorded the minimum and maximum voltage values.

$$V_{min}$$
 0.3v V_{max} 9.70v

Circuit 4

- 15. Built Circuit 4 *without the voltage source connected* (i.e. left the circuit power supply leads disconnected)
- 16. *Calculated* R_T , the total series resistance of the circuit using expected resistor values.
- 17. *Measured* R_T and compared the measured value to the expected value using the %Error formula.
- 18. *Calculated I_T*, the expected circuit current using Ohm's Law, V_S , and R_{Texp} .
- 19. *Measured I_T* using the DMM as an ammeter and compared the measured value to the expected value using the %Error formula.
- 20. Calculated V_{R1} , V_{R2} , V_{R3} , V_{R4} using Ohm's Law and I_{Texp} and resistor expected values. Recorded in a data table.
- 21. *Measured V_{R1}, V_{R2}, V_{R3}, V_{R4}* and compared the measured value to the expected value using the %Error formula.

Circuit 4 Resistor Expected & Measured Values					
R _{meas} % R _{exp} (Ohm) (Ohm) Error					
R1	1.00E+03	980.00E+00	2.00%		
R2	1.80E+03	1.78E+03	1.11%		
R3	2.70E+03	2.68E+03	0.74%		
R4	3.90E+03	3.97E+03	- 1.79%		
RT	9.40E+03	9.44E+03	0.43%		
Circuit Supply Voltage Vs 10.0 Circuit Total Resistance & Current					
	Total Resistance	% Error			
R _{Texp}	9.40E+03 Ω	0.43%			
R _{tmeas}	9.44E+03 Ω		Ť		
Техр	1.06E-03 Amp	-0.36%			
Tmeas	1.06E-03				

SDG 02/15 Page 4 of 13

Resistor Voltage Drops			
	V_rexp	V_{rmeas}	% Error
R1	1.06E+00	1.040	- 2.24%
R2	1.91E+00	1.880	- 1.82%
R3	2.87E+00	2.830	- 1.47%
R4	4.15E+00	4.190	0.99%
V T	10.00E+00	9.950	- 0.50%

Circuit 5

22. Built circuit 5. Set power supply voltage to 5V \pm .2. Recorded the source voltage V_S .

 V_{S} 5.05V R_{1} 179 Ω

23. Activated the transistor base using a digital switch in the lower left side of the trainer.

 V_{LED} 41.5 mV

24. Demonstrated working circuit to the instructor for signature. (See Attachment A – Lab Notes and Signature for signature)

 V_{R1} 2.91V

25. Measured V_{LED} , V_{R1} , and V_{CE}

VCE **63.0mV**

26. Added $V_{\text{LED}},\,V_{\text{R1}},$ and V_{CE} and recorded the value as V_{T}

 $V_T \overline{4.88V}$

27. Compared V_T with V_S using the % Error formula

1%

Circuit 5			
Source & Component Voltage Drops			
V _{LED}	1.91E+00		
V _{R1}	2.91E+00		
V CE 63.00E-03			
V _{total} 4.88E+00			
V _{source} 4.93E+00			
% Error 1.0%			

SDG 02/15 Page 5 of 13

Formulas

$$E = IR, I = \frac{E}{R}, R = \frac{E}{I}$$

$$\%Error = \frac{measured - \exp{ected}}{\exp{ected}} x100\%$$

Where;

E = voltage (Volts)
I = current (Amperes)
R = circuit resistance (Ohms)

Where;

%Error = % change between measured and expected values

measured = a value taken from direct measurementexpected = a value taken from component or processspecifications

SDG 02/15 Page 6 of 13

Critical Thinking

1. Circuits 1, 2, 3 & 4 are all considered "voltage divider" circuits. Explain the advantages and disadvantages of using voltage dividers to reduce DC voltages.

Voltage dividers are useful because they are able to deliver specific required voltage to a portion of a circuit easily. A potential disadvantage of a voltage divider circuit is that it requires additional current that is absorbed by resistors resulting in heat. This requires more total power for the circuit to deliver the appropriate current to the divided circuit components.

2. Calculate Circuit 4 resistor voltage drops if all the resistors were changed to 10K Ω ? Calculate the expected total current.

Circuit 4					
Resistor Expected & Measured Values					
R _{meas} % R _{exp} (Ohm) (Ohm) Error					
R1	10.00E+03	10.00E+03	0.00%		
R2	10.00E+03	10.00E+03	0.00%		
R3	10.00E+03	10.00E+03	0.00%		
R4	10.00E+03	10.00E+03	0.00%		
RT	40.00E+03	40.00E+03	0.00%		
Circuit	Supply Voltage				
V s	10.0				
Circuit	t Total Resistance &	& Current	Ī		
	Total Resistance	% Error			
R Texp	40.00E+03 Ω	0.00%			
R _{tmeas}	40.00E+03 Ω				
I техр	250.00E-06 Amp	0.00%			
I _{Tmeas}	250.00E-06				
Resist	or Voltage Drops		%		
	V_{rexp}	V_{rmeas}	% Error		
R1	2.50E+00	2.500	0.00%		
R2	2.50E+00	2.500	0.00%		
R3	2.50E+00	2.500	0.00%		
R4	2.50E+00	2.500	0.00%		
V_{T}	10.00E+00	10.000	0.00%		

SDG 02/15 Page 7 of 13

 $250\mu A$ which is approximately $810~\mu A$ less than the original components in the $1K\Omega$ range.

Conclusions

This lab was a great introduction to series circuit evaluations and understanding the relationship between resistance and current relative to voltage in a series circuit. This lab also served as a proof of Kirchhoff's Voltage law that states "The algebraic sum of all voltages in a loop must equal zero." I expect that this principle will be explored again in upcoming parallel and series parallel circuit labs.

SDG 02/15 Page 8 of 13

Learning Objectives

- · Build series circuits as per a schematic diagram
- · Measure electrical values using a digital voltmeter
- Use Ohm's Law to validate field measurements
- · Use a data table and schematic diagrams to capture field measurements

Notes:

- 1. Take all voltage measurements relative to ground (unless otherwise stated)
- 2. Record relevant measurements and calculation results in data tables
- 3. Record all measured values on the circuit schematics
- 4. Use all available precision in calculations, round off answers to 3 significant figures

Materials

Quantity	Description
1	Global Specialties Circuit Trainer
1	Digital multimeter (DMM)
	Circuit 1 & 2
3	Resistors between 200Ω and $5K\Omega$
	Circuit 3
1	10K Ω potentiometer
	Circuit 4
1 each	R1 – 1K
	R2 – 1.8K
	R3 – 2.7K
	R4 – 3.9K Ω
	Circuit 5
1	LED
1	R1 – 180 Ω
1	R2 – 4.7K Ω
1	Q1 - 2N4401

Procedure - Series Circuits

Circuit 1

- Select resistors for circuit 1 & 2 according to the materials chart above. Measure each resistance value using a DMM. Create a data table that shows;
 - a. Expected resistance values (from resistor color codes)
 - b. Measured resistance values (from DMM measurements)
 - c. % Error the difference between expected and measured values
- 2. Record *all measured values* directly on the circuit schematics as you encounter them in this lab.
- 3. Build Circuit 1 without the voltage source connected (i.e. leave the circuit

SDG 02/15

Page 1 of 4

SDG 02/15 Page 9 of 13

power supply leads disconnected)

- 4. Calculate R_T , the total series resistance of the circuit using expected resistor values.
- 5. *Measure* R_T and compare the measured value to the expected value using the %Error formula.
- 6. Set the trainer power supply to 10V. Record the V_S, the supply voltage to three significant figures.
- 7. Calculate I_T , the expected circuit current using Ohm's Law, V_S , and R_{Texp} .
- 8. Measure I_T using the DMM as an ammeter. Record the value.
- 9. Calculate the % Error between expected and measured I_T values.
- 10. Use Ohm's Law, I_{Texp} and resistor expected values to *calculate the voltage drop* across each resistor. Record your data in tables.
- 11. Measure the voltage drop across each resistor and compare with the expected value with the % Error formula. Show in data tables and on the circuit schematic.

Circuit 2

12. Repeat the procedures used for Circuit 1 on Circuit 2. Record your values in data table(s) and compare expected to measured values.

Circuit 3

- 13. Wire Circuit 3 as per the schematic diagram. The potentiometer in this circuit will serve as a variable voltage divider, allowing us to split the DC voltage into any ratio.
- 14. Set the potentiometer to approximately mid position and measure the voltage to ground at the wiper (middle terminal). Rotate the pot and note the change in voltage. Record the minimum and maximum voltage values.

Vmin 0.3/

Circuit 4

- 15. Build Circuit 4 *without the voltage source connected* (i.e. leave the circuit power supply leads disconnected)
- 16. Calculate R_T , the total series resistance of the circuit using expected resistor values.
- 17. *Measure* R_T and compare the measured value to the expected value using the %Error formula.
- 18. Calculate I_T , the expected circuit current using Ohm's Law, V_S , and R_{Texp} .
- 19. *Measure I_T* using the DMM as an ammeter and compare the measured value to the expected value using the %Error formula.
- 20. Calculate V_{R1} , V_{R2} , V_{R3} , V_{R4} using Ohm's Law and I_{Texp} and resistor expected values. Record in a data table.
- 21. *Measure* V_{R1} , V_{R2} , V_{R3} , V_{R4} and compare the measured value to the expected value using the %Error formula.

Circuit 5

- 22. Build circuit 5. Set your power supply voltage to 5V \pm .2. Record the source voltage V_S .
- 23. Activate the transistor base using a digital switch in the lower left side of the trainer.
- 24. Demonstrate your working circuit to the instructor or lab assistant for signature.

Vs 5.05

P, 1292

V_{LED} 41.5MV

Page 2 of 4

SDG 02/15

SDG 02/15 Page 10 of 13

25. Measure V_{LED} , V_{RI} , and V_{CE} 26. Add V_{LED} , V_{R1} , and V_{CE} and record the value as V_{T}

27. Compare V_T with V_S using the % Error formula

Formulas

$$E = IR, I = \frac{E}{R}, R = \frac{E}{I}$$

$$\%Error = \frac{measured - expected}{expected} x100\%$$

Where; E = voltage (Volts) I = current (Amperes) R = circuit resistance (Ohms)

Where; %Error = % change between measured and expected

measured = a value taken from direct measurement expected = a value taken from component or process specifications

Page 3 of 4 SDG 02/15

Page 11 of 13 SDG 02/15

SDG 02/15 Page 12 of 13

Grading Criteria

ordanig ornoria		Points Possible	Points Earned
Documentation	Abstract, introduction, experiment, data results, conclusions, attachments, clarity, spelling, grammar	10	
Circuit 1	Resistor values recorded, total resistance recorded, voltage drops recorded, expected and measured values compared	10	
Circuit 2	Total resistance recorded, voltage drops recorded, expected and measured values compared	10	
Circuit 3	Min / max voltage levels recorded	5	
Circuit 4	Total resistance, voltage drops and circuit current recorded, all expected and measured values compared	10	
Circuit 5	Vs, V _{LED} , V _{R1} , V _{CE} recorded. Total voltage drop calculated and compared with V _S using the % Error formula	5	
Critical Thinking	Questions answered completely & accurately. State conclusions drawn and lessons learned from the lab	10	
On-time submittal	Lab report is submitted in accordance with the assignment due date as posted on Canvas	5	
	Total	65	

Lab Report Format

Abstract - a summary and high-level overview of the lab and its results

Introduction - State the objectives of the laboratory and list the equipment required

Experiment - Describe the procedure used to carry out the lab

Results Data - list data taken in table or graphical format where appropriate

Conclusion - State the conclusions drawn and lessons learned from the laboratory activities.

Answer any questions found within the lab procedure.

Attachments – grading criteria, verification signatures, circuit diagrams, lab procedures & notes

SDG 02/15 Page 13 of 13