

243 Jubug-Ri, Yangji-Myeon, Yongin-Si, Gyeonggi-Do, Korea 449-822 Tel: +82-31-323-6008 Fax: +82-31-323-6010 http://www.ltalab.com

ENUSTECH

Dates of Tests: October 6~ 25, 2012 Test Report S/N: LR500111210L Test Site: LTA CO., LTD

CERTIFICATION OF COMPLIANCE

FCC ID IC APPLICANT TT2JAK 6329A-JAK ENUSTECH

Equipment Class : Digital Transmission System (DTS)

Manufacturing Description : WLAN USB Dongle

Manufacturer:ENUSTECHModel Name:Multishare 1.0Test Device Serial No.::Identical prototype

Rule Part(s) : FCC Part 15.247 Subpart C; ANSI C-63.4-2003

RSS-210 and ISSUE No.:8 Date:2010

Frequency Range : 2412MHz ~ 2462MHz

Max. Output Power : Max 12.84dBm - Conducted (802.11b)

Max 11.69dBm - Conducted (802.11g)

Max 11.90dBm - Conducted (802.11n_20MHz)
Max 12.30dBm - Conducted (802.11n_40MHz)

Data of issue : October 26, 2012

This test report is issued under the authority of:

The test was supervised by:

Kyu-Hyun Lee, Manager

Jung-Moo Her, Test Engineer

This test result only responds to the tested sample. It is not allowed to copy this report even partly without the allowance of the test laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

NVLAP LAB Code.: 200723-0

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. PRODUCT INFORMATION	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TECHNICAL CHARACTERISTICS TEST	6
3.2.1 6dB BANDWIDTH	6
3.2.2 PEAK OUTPUT POWER	20
3.2.3 POWER SPECTRAL DENSITY	29
3.2.4 BAND – EDGE & SPURIOUS	38
3.2.5 FIELD STRENGTH OF HARMONICS – Transmitter	59
3.2.6 FIELD STRENGTH OF HARMONICS – Receiver	65
3.2.7 AC CONDUCTED EMISSIONS	70
APPENDIX	
APPENDIX TEST EQUIPMENT USED FOR TESTS	73
inition in the second s	, 5

1. General information

1-1 Test Performed

Company name : LTA Co., Ltd.

Address : 243, Jubug-ri, Yangji-Myeon, Youngin-Si, Kyunggi-Do, Korea. 449-822

Web site : http://www.ltalab.com
E-mail : chahn@ltalab.com
Telephone : +82-31-323-6008
Facsimile +82-31-323-6010

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

1-2 Accredited agencies

LTA Co., Ltd. is approved to perform EMC testing by the following agencies:

Agency	Country	Accreditation No.	Validity	Reference
NVLAP	U.S.A	200723-0	2013-09-30	ECT accredited Lab.
RRL	KOREA	KR0049	2013-04-24	EMC accredited Lab.
FCC	U.S.A	610755	2014-04-27	FCC filing
FCC	U.S.A	649054	2013-04-13	FCC CAB
VCCI	JAPAN	R2133(10m), C2307	2014-06-21	VCCI registration
VCCI	JAPAN	T-2009	2013-12-23	VCCI registration
VCCI	JAPAN	G-563	2015-05-28	VCCI registration
IC	CANADA	5799A-1	2015-06-21	IC filing

2. Product Information

2-1 Applicant

Company name : ENUSTECH

Address : Dui Bldg., 6F, Gaepo-dong, 1196-2, Gangnam-gu, Seoul 135-240, Korea

Tel / Fax : +82-70-7547-7562 / +82-2-3452-3603

2-2 Equipment Under Test (EUT)

Trade name : ENUSTECH

Model name : Multishare 1.0

Date of receipt : October 5, 2012

EUT condition : Pre-production, not damaged

Antenna type : Chip antenna with Max. 2.87 dBi gain

Frequency Range : 2412MHz ~ 2462MHz

RF output power : Max 12.84dBm - Conducted (802.11b)

Max 11.69dBm - Conducted (802.11g)

Max 11.90dBm - Conducted (802.11n_20MHz)

Max 12.30dBm - Conducted (802.11n_40MHz)

Number of channels : 802.11b/g/n_20MHz for 11 and 802.11n_40MHz for 9

Type of Modulation : CCK, DQPSK, DBPSK for DSSS

64QAM, 16QAM, QPSK, BPSK for OFDM

Transfer Rate : 11, 5.5, 2, 1 Mbps for 802.11b

54, 48, 36, 24, 18, 12, 9, 6 Mbps for 802.11g

65/72.2, 58.5/65, 52/57.8, 39/43.3, 26/28.9, 19.5/21.7, 13/14.4, 6.5/7.2Mbps for 802.11n_20MHz/n_40MHz

Power Source : DC 5.0V by USB power

Firmware Version : V1.0.0

2-3 Tested frequency

	LOW	MID	HIGH
Frequency (MHz) for 802.11b/g/n_20MHz	2412	2437	2462
Frequency (MHz) for 802.11n_40MHz	2422	2437	2452

2-4 Ancillary Equipment

Equipment	Equipment Model No.		Manufacturer
Smart phone	SHV-E160S	R33C20PNN0R	SAMSUNG

3. Test Report

3.1 Summary of tests

FCC Part Section(s)	Parameter	Limit	Test Condition	Status (note 1)
15.247(a)	6 dB Bandwidth	> 500kHz		С
15.247(b)	Transmitter Peak Output Power	< 1Watt		С
15.247(d)	Transmitter Power Spectral Density	< 8dBm @ 3kHz	Conducted	С
15.247(d)	Band Edge & Spurious	> 20 dBc		С
15.209	Field Strength of Harmonics	Emissions	D. P. A.	С
15.109	Field Strength	-	Radiated	С
15.207	AC Conducted Emissions	Emissions	Conducted	С
15.203	Antenna requirement	-	-	С
Note 1: C=Complies NC=	=Not Complies NT=Not Tested NA=1	Not Applicable		

Note 2: The data in this test report are traceable to the national or international standards.

→ Antenna Requirement

The **ENUSTECH**, **FCC ID**: **TT2JAK** unit complies with the requirement of §15.203. The antenna type is **Chip antenna**.

The sample was tested according to the following specification:

^{*}FCC Parts 15.247; ANSI C-63.4-2003

^{*}FCC KDB Publication No. 558074 D01 DTS Meas. Guidance V01

^{*}FCC TCB Workshop 2012, April

3.2 Technical Characteristics Test

3.2.1 6 dB Bandwidth

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The bandwidth at 6dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT is operating in transmission mode at the appropriate frequencies.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 6dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 6 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz Span = 50 MHz

 $VBW = 100 \text{ kHz} (VBW \ge RBW)$ Sweep = auto

Trace = max hold Detector function = peak

Measurement Data: 802.11b

Frequency	Channel No.	Test Results(MHz)	
(MHz)	Chamlei No.	6dB Bandwidth	99% Bandwidth
2412	1	9.696	14.906
2437	6	9.696	14.906
2462	11	9.696	14.834

Measurement Data: 802.11g

Frequency	Channel No.	Test Results	(MHz)
(MHz)	Channel No.	6dB Bandwidth	99% Bandwidth
2412	1	16.498	16.425
2437	6	16.477	16.425
2462	11	16.498	16.425

Measurement Data: 802.11n_20MHz

Frequency	Channel No.	Test Results	s(MHz)
(MHz)	Channel No.	6dB Bandwidth	99% Bandwidth
2412	1	17.728	17.583
2437	6	17.764	17.583
2462	11	17.656	17.583

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Measurement Data: 802.11n_20MHz

Frequency	Channel No.	Test Results(MHz)	
(MHz)	Chamie No.	6dB Bandwidth	99% Bandwidth
2422	3	36.295	35.861
2437	6	35.883	35.947
2452	9	35.644	35.948

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

6 dB Bandwidth > 500kHz

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

<u>Channel 1 802.11b mode</u> <u>6dB Bandwidth</u>

Channel 6 of 802.11b mode 6 dB Bandwidth

Channel 11 of 802.11b mode 6 dB Bandwidth

Channel 1 of 802.11g mode 6 dB Bandwidth

Channel 6 of 802.11g mode 6 dB Bandwidth

Channel 11 of 802.11g mode 6 dB Bandwidth

Channel 1 of 802.11n_20MHz mode 6 dB Bandwidth

Channel 6 of 802.11n 20MHz mode 6 dB Bandwidth

Channel 11 of 802.11n 20MHz mode 6 dB Bandwidth

Channel 3 of 802.11n 40MHz mode 6 dB Bandwidth

Channel 6 of 802.11n 40MHz mode 6 dB Bandwidth

Channel 9 of 802.11n_40MHz mode 6 dB Bandwidth

3.2.2 Peak Output Power Measurement

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April. The maximum peak output power was measured with the spectrum analyzer connected to the antenna output of the EUT. The spectrum analyzer's internal channel power integration function is used to integrate the power over a bandwidth greater than or equal to the 99% bandwidth. The EUT was operating in transmit mode at the appropriate center frequency.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 1MHz Span = auto

 $VBW = 1MHz (VBW \ge RBW)$ Sweep = auto

Detector function = peak

Measurement Data:

Mode	Frequency	Frequency Channel No.	Test Results	
Mode	(MHz)		Measured Data (dBm)	Result
	2412	1	12.84	Complies
802.11b	2437	6	12.09	Complies
	2462	11	12.43	Complies
	2412	1	11.35	Complies
802.11g	2437	6	10.87	Complies
	2462	11	11.69	Complies
	2412	1	11.90	Complies
802.11n _20MHz	2437	6	11.22	Complies
_2011212	2462	11	11.77	Complies
802.11n _40MHz	2422	3	12.00	Complies
	2437	6	11.90	Complies
	2452	9	12.30	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Peak output power < 1W

802.11b CH 1

802.11g CH 1

802.11n_20MHz CH 1

802.11n_40MHz CH 3

3.2.3 Power Spectral Density

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The peak power density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating in transmission mode at the appropriate frequencies.

The spectrum analyzer is set to:

RBW = 3 kHz Span = 300 kHz VBW = 3 kHz Sweep = 100 sec Sweep =

Measurement Data:

Mode	Frequency	Ch.	Test Results	
	(MHz)		dBm	Result
	2412	1	-19.05	Complies
802.11b	2437	6	-19.83	Complies
	2462	11	-19.18	Complies
	2412	1	-22.02	Complies
802.11b	2437	6	-23.60	Complies
	2462	11	-22.56	Complies
	2412	1	-25.41	Complies
802.11n_20MHz	2437	6	-25.60	Complies
	2462	11	-24.84	Complies
802.11n_40MHz	2422	3	-29.18	Complies
	2437	6	-29.31	Complies
	2452	9	-28.92	Complies

⁻ See next pages for actual measured spectrum plots.

Minimum Standard:

Power Spectral Density	< 8dBm @ 3kHz BW

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b Power Density Measurement CH 1

802.11g Power Density Measurement CH 1

802.11n_20MHz Power Density Measurement CH 1

802.11n_40MHz Power Density Measurement CH 3

CH 9

3.2.4 Band - edge

Procedure:

*The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance and TCB Workshop 2012, April.

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Span = 80 MHz Detector function = peak

Trace = \max hold Sweep = auto

Measurement Data: Complies

- All conducted emission in any 100kHz bandwidth outside of the spread spectrum band was at least 20dB lower than the highest inband spectral density. Therefore the applying equipment meets the requirement.
- See next pages for actual measured spectrum plots.

Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

802.11b Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement (802.11b mode)

Fraguanay	Reading [dBuV/m] P			Correction		Limits		Result		Margin	
Frequency			Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV A	' Peak		Antenna	Amp. Gain+Cable	AV /	' Peak	AV /	Peak	AV /	Peak
2389.8	37.8	50.3	Н	28.2	26.7	54.0	74.0	39.3	51.8	14.7	22.2

Band-edges in the restricted band 2483.5-2500 MHz measurement

Fraguanay	Reading			Correction	Limits	Result	Margin
Frequency	[dBuV/m]	Pol.	Factor		[dBuV/m]	[dBuV/m]	[dB]
[MHz]	AV / Peak		Antenna	Amp. Gain+Cable	AV / Peak	AV / Peak	AV / Peak
2483.5	41.8 55.6	Н	28.2	26.7	54.0 74.0	43.3 57.1	10.7 16.9

802.11g Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement (802.11g mode)

Francis	FelD: W/ma1			Correction		Limits		Result		Margin	
Frequency			Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV A	/ Peak		Antenna	Amp. Gain+Cable	AV /	' Peak	AV /	Peak	AV /	Peak
2389.8	37.1	55.8	Н	28.2	26.7	54.0	74.0	38.6	57.3	15.4	16.7

Band-edges in the restricted band 2483.5-2500 MHz measurement

Fraguanay	Reading			Correction	Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.	Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp. Gain+Cable	AV / Peak	AV / Peak	AV / Peak	
2483.5	39.6 62.3	Н	28.2	26.7	54.0 74.0	41.1 63.8	12.9 10.2	

802.11n_20MHz Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement (802.11n_20MHz mode)

Francis	Frequency [dBuV/m]				Limits		Result		Margin		
Frequency			Pol.	Factor		[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV A	' Peak		Antenna	Amp. Gain+Cable	AV /	' Peak	AV /	Peak	AV /	Peak
2389.7	36.7	54.3	Н	28.2	26.7	54.0	74.0	38.2	55.8	15.8	18.2

Band-edges in the restricted band 2483.5-2500 MHz measurement

Fraguanay	Reading			Correction	Limits	Result	Margin	
Frequency	[dBuV/m] Pol		Factor		[dBuV/m]	[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp. Gain+Cable	AV / Peak	AV / Peak	AV / Peak	
2483.5	39.9 57.8	Н	28.2	26.7	54.0 74.0	41.4 59.3	12.6 14.7	

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

802.11n_40MHz Band-edge: Conducted Measurements

Band-edges in the restricted band 2310-2390 MHz measurement (802.11n_40MHz mode)

Frequency	[dBuV/m]		, Footon			Limits [dBuV/m]		Result [dBuV/m]		Margin [dB]	
[MHz]			Pol.	Antenna	Amp. Gain+Cable	-	' Peak	-	Peak		Peak
2389.7	37.8	59.6	Н	28.2	26.7	54.0	74.0	39.3	61.1	14.7	12.9

Band-edges in the restricted band 2483.5-2500 MHz measurement

Fraguanay	Reading			Correction	Limits	Result	Margin
Frequency	[dBuV/m]	Pol.	Factor		[dBuV/m]	[dBuV/m]	[dB]
[MHz]	AV / Peak		Antenna	Amp. Gain+Cable	AV / Peak	AV / Peak	AV / Peak
2483.5	38.5 60.2	Н	28.2	26.7	54.0 74.0	40.0 61.7	14.0 12.3

Note: This EUT was tested in 3 orthogonal positions and the worst-case data was presented

 $802.11b - Low \ channel$ Frequency Range = $30 \ MHz \sim 10^{th} \ harmonic.$

 $802.11b - Mid \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

802.11b – High channel Frequency Range = $30 \text{ MHz} \sim 10^{th}$ harmonic.

802.11g - Low channel Frequency Range = 30 MHz ~ 10^{th} harmonic.

802.11g - Mid channel Frequency Range = $30 \text{ MHz} \sim 10^{th} \text{ harmonic.}$

 $802.11g-High\ channel$ Frequency Range = 30 MHz $\sim 10^{th}$ harmonic.

$802.11n_20MHz$ - Low channel Frequency Range = $30~MHz \sim 10^{th}$ harmonic.

$802.11n_20MHz - Mid \ channel$ $Frequency \ Range = 30 \ MHz \sim 10^{th} \ harmonic.$

$802.11n_20MHz - High channel$ Frequency Range = $30 \ MHz \sim 10^{th}$ harmonic.

$802.11n_40MHz$ - Low channel Frequency Range = $30~MHz \sim 10^{th}$ harmonic.

$802.11n_40MHz$ - Mid channel Frequency Range = $30~MHz \sim 10^{th}$ harmonic.

$802.11n_40MHz - High channel$ Frequency Range = $30 \ MHz \sim 10^{th}$ harmonic.

3.2.5 Field Strength of Harmonics-Transmitter

Procedure:

*The testing follows TCB Workshop 2012, April and fulfills ANSI C63.4-2003 and the guidelines in ANSI C63.10-2009 test requirement. The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

Center frequency = the worst channel

Frequency Range = 9 KHz ~ 10th harmonic.

 $RBW = 120 \text{ kHz} (9 \text{ KHz} \sim 1 \text{ GHz}) \qquad \qquad Peak:VBW \geq RBW$

= 1 MHz (1 GHz ~ 10th harmonic) Average:VBW=10Hz

Span = 100 MHz Detector function = Peak and Average

Trace = $\max \text{ hold}$ Sweep = auto

Measurement Data: Complies

- Refer to the next page.
- No other emissions were detected at a level greater than 20dB below limit.
- The three antennas were used with this EUT during the Testing.

Minimum Standard: FCC Part 15.209(a)

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F (kHz) @ 300m
0.490 ~ 1.705	24000/F (kHz) @ 30m
1.705 ~ 30	30 @ 30m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

802.11b Measurement Data: (above 1GHz)

F	Read	ding		(Correction	Lin	nits	Res	sult	ı	Л	
Frequency	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]		
[MHz]	AV / Peak			Antenna	enna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4821.4	40.9	53.8	Н	33.1	24.9	54.0	74.0	49.1	62.0	4.9	12.0	
-	-	-	-	-	-	-	-	-	-	-	_	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
Fraguency	Reading			(Correction	Lin	nits	Res	sult	Mar	gin	
Frequency	[dBuV/m]		Pol.		Factor	[dBu	[dBuV/m]		[dBuV/m]		В]	
[MHz]	AV /	' Peak		Antenna	Amp. Gain+Cable	AV /	Peak	AV /	AV / Peak		Peak	
4857.3	39.7	53.9	Н	33.1	24.9	54.0	74.0	47.9	62.1	6.1	11.9	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	_	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
Frequency	Rea	ding		(Correction	Limits		Result		Mar	gin	
rrequericy	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[d	В]	
[MHz]	AV /	' Peak		Antenna	Amp. Gain+Cable	AV /	Peak	AV /	' Peak	AV /	Peak	
4864.5	40.1	54.2	Н	33.1	24.9	54.0	74.0	48.3	62.4	5.7	11.6	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	-	-	

No other emissions were detected at a level greater than 20dB below limit.

802.11b Measurement Data: (9kHz - 30MHz)

F	Reading		(Correction	Limits	Result	Margin	
Frequency	[dBuV/m]	Pol.		Factor		[dBuV/m]	[dB]	
[MHz]	AV / Peak		Antenna	Amp.Gain+Cable	AV / Peak	AV / Peak	AV / Peak	
-	-	-	-	-				
	No em	nissions	were detec	ted at a level greater t	than 20dB below	/ limit.		
-		-	-	-				
-		-	-	-				

^{*}No emissions were detected at a level greater than 20dB below limit.

802.11g Measurement Data: (above 1GHz)

Frequency	Rea	ding		(Correction	Lin	nits	Res	sult	r	Л
rrequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[d	в]
[MHz]	AV /	' Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4838.7	37.5	51.6	Н	33.1	24.9	54.0	74.0	45.7	59.8	8.3	14.2
-	-	-	_	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	1	-
Frequency	Rea	ding		C	Correction	Lin	nits	Res	sult	Mai	gin
rrequency	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBuV/m]		[dB]	
[MHz]	AV /	' Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4864.1	36.8	50.8	Н	33.1	24.9	54.0	74.0	45.0	59.0	9.0	15.0
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	1	-	1	-
From to mot	Rea	ding		Ó	Correction	Lin	nits	Res	sult	Maı	gin
Frequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[d	в]
[MHz]	AV /	' Peak		Antenna	Amp. Gain+Cable	AV /	Peak	AV / Peak		AV /	Peak
4885.9	36.1	50.3	Н	33.1	24.9	54.0	74.0	44.3	58.5	9.7	15.5
_]	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-		-	-	-	-	1	_

No other emissions were detected at a level greater than 20dB below limit.

802.11g Measurement Data: (9kHz - 30MHz)

Frequency		ding V/m]	Pol.	(Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		gin B]
[MHz]	AV / Peak			Antenna	Amp.Gain+Cable	AV / Peak		ak AV / Peak		AV /	Peak
-	-	-	-			-	-	-	-	-	-
		No em	nissions	were detec	ted at a level greater t	han 20d	dB below	/ limit.			
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

^{*}No emissions were detected at a level greater than 20dB below limit.

802.11n_20MHz Measurement Data: (above 1GHz)

F	Rea	ding		(Correction	Lim	nits	Res	sult	N	ΛI
Frequency	[dBu	V/m]	Pol.		Factor	[dBuV/m]		[dBu	V/m]	[dB]	
[MHz]	AV /	' Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4848.2	35.8	49.4	Н	33.1	24.9	54.0	74.0	44.0	57.6	10.0	16.4
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Rea	ding		(Correction	Lin	nits	Res	sult	Mar	rgin
riequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]] [dB]	
[MHz]	AV /	Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV /	Peak
4886.3	35.6	49.1	Н	33.1	24.9	54.0	74.0	43.8	57.3	10.2	16.7
-	-	-	-	-	-	-	-	-	-	-	_
-	-	-	_	-	-	-	-	-	-	-	_
-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Rea	ding		(Correction	Lin	nits	Res	sult	Mar	rgin
rrequericy	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[d	B]
[MHz]	AV /	Peak		Antenna	Amp. Gain+Cable	AV /	' Peak	k AV / Peak		AV /	Peak
4921.6	35.9	49.6	Н	33.1	24.9	54.0	74.0	44.1	57.8	9.9	16.2
	-	-	-	-	-	-	-	-	-	-	-
-	-	_	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

No other emissions were detected at a level greater than 20dB below limit.

802.11n_20MHz Measurement Data: (9kHz - 30MHz)

Frequency		ding V/m]	Pol.	(Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		gin B]
[MHz]	AV / Peak			Antenna	Amp.Gain+Cable	AV / Peak		Peak AV / Peak		AV / Peak	
-	1	-	-			-	-	-	-	-	-
		No em	nissions	were detec	ted at a level greater t	than 20d	dB below	/ limit.			
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

^{*}No emissions were detected at a level greater than 20dB below limit.

802.11n_40MHz Measurement Data: (above 1GHz)

F	Read	ding		(Correction	Lin	nits	Res	sult	N	Л
Frequency	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBuV/m]		[dB]	
[MHz]	AV /	' Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4865.1	36.2	51.3	Н	33.1	24.9	54.0	74.0	44.4	59.5	9.6	14.5
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Eroguopov	Rea	ding		(Correction	Lin	nits	Res	sult	Mar	gin
Frequency	[dBu	V/m]	Pol.	Factor		[dBu	V/m]	[dBu	V/m]	[dB]	
[MHz]	AV /	' Peak		Antenna Amp. Gain+Cable		AV / Peak		AV / Peak		AV / Peak	
4908.6	35.8	50.1	Н	33.1	24.9	54.0	74.0	44.0	58.3	10.0	15.7
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
Frequency	Rea	ding		(Correction	Lin	nits	Res	sult	Mar	gin
rrequericy	[dBu	V/m]	Pol.		Factor	[dBu	V/m]	[dBu	V/m]	[d	B]
[MHz]	AV /	' Peak		Antenna	Amp. Gain+Cable	AV /	Peak	ak AV / Peak		AV /	Peak
4951.7	36.1	50.7	Н	33.1	24.9	54.0	74.0	44.3	58.9	9.7	15.1
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

No other emissions were detected at a level greater than 20dB below limit.

802.11n_40MHz Measurement Data: (9kHz - 30MHz)

Frequency		ding V/m]	Pol.	(Correction Factor		Limits [dBuV/m]		Result [dBuV/m]		gin B]
[MHz]	AV / Peak			Antenna	Amp.Gain+Cable	AV / Peak		Peak AV / Peak		AV / Peak	
-	1	-	-			-	-	-	-	-	-
		No em	nissions	were detec	ted at a level greater t	than 20d	dB below	/ limit.			
-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-

^{*}No emissions were detected at a level greater than 20dB below limit.

Radiated Emissions – WLAN mode (Worst case, B mode)

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT/Model No.: Multishare 1.0 TEST MODE: Wifi mode
Temp Humi : 23 / 46 Tested by: Ko Gun

Remarks: C.F (Correction Factor) = Antenna factor + Cable loss - Preamp gain

3.2.6 Field Strength of Harmonics - Receivers

Definition:

The field strength of emissions from intentional radiators was measured. In case of the air temperature of the test site is out of the range is $10 \text{ to } 40^{\circ}\text{C}$ before the testing proceeds the warm-up time of EUT maintain adequately

Test method : FCC Part 15.209

Frequency Range : $9 \text{ KHz} \sim 10^{\text{th}} \text{ harmonic.}$

Bandwidth : 120 kHz (F < 1 GHz) 1 MHz (F > 1 GHz)

Distance of antenna : 3 meters

Test mode : Rx mode

Result : Complies

Measurement Data:

- Refer to the next page.

- No other emissions were detected at a level greater than 20dB below limit

- It gave the worse case emissions.

Field Strength Limit

Part 15.209 LIMIT:

Frequency (MHz)	Limit (uV/m) @ 3m
0.009 ~ 0.490	2400/F(kHz)
0.490 ~ 1.705	24000/F(kHz)
1.705 ~ 30	30
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

<u>Conducted Emission – Low channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Conduceted Emission – Middle channel</u> Frequency Range = 30 MHz ~ 26.5 GHz

<u>Conduceted Emission – High channel</u> <u>Frequency Range = 30 MHz ~ 26.5 GHz</u>

Measurement Data: (30MHz $\sim 10^{th}$ harmonic.)

Frequency	Reading	9	(Correction	Limits	s	Res	ult	Margin	
Frequency	[dBuV/m	n] Pol.		Factor	[dBuV/	'm]	[dBu\	V/m]	[dB]	
[MHz]	AV / Pe		Antenna	Amp. Gain +Cable	AV / P	eak	AV /	' Peak	AV / Peak	
	N	o emissions	were detect	ted at a level greater th	an 20dB be	elow l	imit.			
Frequency	Reading		(Correction Factor	Limits		Result [dBuV/m]		Margin [dB]	
[MHz]	AV / Pe		Antenna	Amp. Gain +Cable	AV / Peak		AV / Peak		AV / Peak	
	N	o emissions	were detect	ted at a level greater th	an 20dB be	elow l	imit.			
Frequency	Reading	9	(Correction	Limits	s	Res	ult	Margin	
rrequency	[dBuV/m	n] Pol.		Factor	[dBuV/	'm]	[dBu\	//m]	[dB]	
[MHz]	AV / Pe		Antenna	Amp. Gain +Cable	AV / P	Peak	AV /	Peak	AV / Peak	
	N	o emissions	were detect	ted at a level greater th	an 20dB be	elow l	imit.		0.000 (1.00	

Measurement Data: (9kHz - 30MHz)

Frequency	Reading [dBuV/m] Pol. AV / Peak				Limits [dBuV/m]				Margin [dB]	
[MHz]			1 01.	Antenna	Amp.Gain+Cable	AV / Peak				AV / Peak
-	-	-	-	-	-	-	-	-	-	
		No em	issions	were detec	ted at a level greater t	than 20dB b	oelow	limit.		
-	-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	-	

^{*}No emissions were detected at a level greater than 20dB below limit.

3.2.7 AC Conducted Emissions

Procedure:

*The testing follows the guidelines in ANSI C63.4-2003 and ANSI C63.10-2009. The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak mode (QP) with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

Measurement Data: Complies

- See next pages for actual measured spectrum plots.
- No emissions were detected at a level greater than 20dB below limit.

Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)					
(MHz)	Quasi-Peak	Average				
0.15 ~ 0.5	66 to 56 *	56 to 46 *				
0.5 ~ 5	56	46				
5 ~ 30	60	50				

^{*} Decreases with the logarithm of the frequency

AC Conducted Emissions –WLAN – Line (Worst case, B mode)

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : Multishare 1.0 Phase : LINE

Test Mode : Wifi mode Test Power : 120 / 60

Temp./Humi. : 26 / 54 Test Engineer : Ko Gun

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

AC Conducted Emissions – PING +WLAN – Neutral (Worst case, B mode)

243 Jubug-ri, yangji-Myeon, Youngin-si, Gyeonggi-do 449-822 Korea Tel:+82-31-3236008,9 Fax:+82-31-3236010

EUT / Model No. : Multishare 1.0 Phase : NEUTRAL

Test Mode : Wifi mode Test Power : 120 / 60

Temp./Humi. : 26 / 54 Test Engineer : Ko Gun

Remarks: C.F (Correction Factor) = Insertion loss + Cable loss

APPENDIX

TEST EQUIPMENT USED FOR TESTS

	Description	Model No.	Serial No.	Manufacturer	Interval	Last Cal. Date
1	Spectrum Analyzer (~30GHz)	FSV-30	100757	R&S	1 year	2012-01-10
2	Spectrum Analyzer (~2.9GHz)	8594E	3710A04074	НР	2 year	Self-Calibration
3	Signal Generator (~3.2GHz)	8648C	3623A02597	НР	1 year	2012-03-26
4	Signal Generator (1~20GHz)	83711B	US34490456	НР	1 year	2012-03-26
5	Attenuator (3dB)	8491A	37822	НР	2 year	2012-09-22
6	Attenuator (10dB)	8491A	63196	НР	2 year	2012-09-22
7	Attenuator (30dB)	8498A	3318A10929	НР	2 year	2011-01-05
8	Test Receiver (~30MHz)	ESHS10	828404/009	R&S	1 year	2012-03-26
9	EMI Test Receiver (~7GHz)	ESCI7	100722	R&S	1 year	2012-09-22
10	RF Amplifier (~1.3GHz)	8447D	2439A09058	НР	2 year	2012-09-22
11	RF Amplifier (1~18GHz)	8449B	3008A02126	НР	2 year	2012-03-26
12	Horn Antenna (1~18GHz)	BBHA 9120D	9120D122	SCHWARZBECK	2 year	2010-12-24
13	Horn Antenna (18 ~ 40GHz)	SAS-574	154	Schwarzbeck	2 year	2010-11-25
14	Horn Antenna (18 ~ 40GHz)	SAS-574	155	Schwarzbeck	2 year	2010-11-25
15	TRILOG Antenna	VULB 9160	9160-3172	SCHWARZBECK	2 year	2012-09-20
16	Dipole Antenna	VHA9103	2116	SCHWARZBECK	2 year	2010-11-25
17	Dipole Antenna	VHA9103	2117	SCHWARZBECK	2 year	2010-11-25
18	Dipole Antenna	VHA9105	2261	SCHWARZBECK	2 year	2010-11-25
19	Dipole Antenna	VHA9105	2262	SCHWARZBECK	2 year	2010-11-25
20	Hygro-Thermograph	THB-36	0041557-01	ISUZU	1 year	2012-09-26
21	Splitter (SMA)	ZFSC-2-2500	SF617800326	Mini-Circuits	-	-
22	Power Divider	11636A	6243	НР	2 year	2012-09-22
23	DC Power Supply	6622A	3448A03079	НР	-	-
24	Frequency Counter	5342A	2826A12411	НР	1 year	2012-03-26
25	Power Meter	EPM-441A	GB32481702	НР	1 year	2012-03-26
26	Power Sensor	8481A	US41030291	НР	1 year	2012-09-22
27	Audio Analyzer	8903B	3729A18901	НР	1 year	2012-09-22
28	Modulation Analyzer	8901B	3749A05878	НР	1 year	2012-09-22
29	TEMP & HUMIDITY Chamber	YJ-500	LTAS06041	JinYoung Tech	1 year	2012-09-22
30	Stop Watch	HS-3	601Q09R	CASIO	2 year	2012-03-26
31	LISN	ENV216	100408	R&S	1 year	2012-09-22
32	UNIVERSAL RADIO COMMUNICATION TESTER	CMU200	106243	R&S	2 year	2012-06-27
33	Highpass Filter	WHKX1.5/15G-10SS	74	Wainwright Instruments	-	-
34	Highpass Filter	WHKX3.0/18G-10SS	118	Wainwright Instruments	-	-