1 Definitions

Definition 1. [2] A simple graph is *connected* if there is a path between every pair of vertices.

Definition 2. [3] A topology on a set X is a collection \mathcal{T} of subsets of X having the following properties:

- (a) \emptyset and X are in \mathcal{T} .
- (b) The union of any subcollection of \mathcal{T} is in \mathcal{T} .
- (c) The intersection of the elements of any finite subcollection of \mathcal{T} is in \mathcal{T} .

2 Theorems

Theorem 1 (Jordan Curve Theorem). [?] Removing the image of a simple closed curve from \mathbb{R}^2 leaves two connected components, the bounded **inside** and the un-bounded **outside**. The inside together with the image of the curve is homeo-morphic to a closed disk.

Theorem 2 (Schönflies Theorem). [1] If J is a simple closed curve in \mathbb{R}^2 , the closure of one of the components of $\mathbb{R}^2 - J$ is homeomorphic with the unit 2-ball.

Theorem 3 (Kuratowski Theorem). [2] A simple graph is planar iff no subgraph is homeomorphic to K_5 or to $K_{3,3}$.

Theorem 4 (Tuttes Theorem). [2] Let G = (V, E) be the edge-skeleton of a triangulation of the disk and $f: V \to \mathbb{R}^2$ a strictly convex combination mapping that maps the boundary vertices to the corners of a strictly convex polygon. Then drawing straight edges between the image points gives a straight-line embedding.

Theorem 5 (Geometric Realization Theorem). [2] Every abstract simplicial complex of dimension d has a geometric realization in \mathbb{R}^{2d+1} .

Theorem 6 (Simplicial Approximation Theorem). [2] If $g: |K| \to |L|$ is continuous then there is a sufficiently large integer n such that g has simplicial approximation $f: Sd^nK \to L$.

Theorem 7 (Helley's Theorem). [2] Let F be a finite collection of closed, convex sets in \mathbb{R}^n . Every d+1 of the sets have a non-empty common intersection iff they all have a non-empty common intersection.

Theorem 8 (Nerve Theorem). [2] Let F be a finite collection of closed, convex sets in Euclidean space. Then the nerve of F and the union of the sets in F have the same homotopy type.

Theorem 9 (Brouwer's Fixed Point Theorem). [2] A continuous map $f: \mathbb{B}^{p+1} \to \mathbb{B}^{p+1}$ has at least one fixed point x = f(x).

Theorem 10 (Euler-Poincaré Theorem). [2] The Euler characteristic of a topological space is the alternating sum of its Betti numbers, $X = \sum_{p \geq 0} (-1)^p \beta_p$

Theorem 11 (Excision Theorem). [2] Let $K_0 \subseteq K$ and $L_0 \subseteq L$ be pairs of simplicial complexes that satisfy $L \subseteq K$ and $L - L_0 = K - K_0$. Then they have isomorphic relative homology groups, that is, $H_p(K, K_0) \simeq H_p(L, L_0)$ for all dimensions p.

Theorem 12 (Exact Sequence of a Pair Theorem). [2] Let K be a simplicial complex and $K_0 \subseteq K$ be a subcomplex. Then there is a long exact sequence

...
$$\to H_p(K_0) \to H_p(K) \to H_p(K, K_0) \to H_{p-1}(K_0) \to ...$$

References

- [1] Schönflies theorem.
- [2] Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American Mathematical Soc., 2010.
- [3] James R Munkres. Topology. Prentice Hall, 2000.