圍棋術語的分辨

0712534 陳永承 40%

0716038 郭崇瑋 20%

0716039 謝仁翔 40%

Problem

Q: 圍棋是甚麼?

A: 一種雙人遊戲, 一方執黑, 一方執白, 雙方輪流落子, 由黑方先行第一手棋。圍地較大的一方獲勝。

Q: 術語是甚麼?

A: 術語是用來形容一手棋的策略目的, 通常一種術語會對應到固定的棋型。

input:

output: 一種術語

input:

output: "長"

input:

output: "尖"

input:

output: '斷'

Data Processing: term

由左至右依序為長、尖、斷 (Label Encoding-0:長1:尖2:斷3:都不是)

Data Processing: example

$$= [0, 0, 0, 0, 0, -1, -1, 1, -1] = [1, 0, 0, 0, 0, 0, 1, 0, 0] = [2, 1, -1, 0, 1, -1, -1, 1]$$

Gathering Data

dataset

Label Encoding- 0:長 1:間 2:斷 3:都不是

	label	left_up	mid_up	right_up	left_mid	right_mid	left_down	mid_down	right_down
0	0	-1	0	0	0	1	0	-1	0
1	0	0	1	0	0	-1	0	0	1
2	0	-1	1	0	0	0	0	0	0
3	0	0	0	-1	0	1	0	0	0
4	0	0	1	0	-1	0	0	0	0
317	3	0	0	0	-1	-1	0	0	1
318	3	0	0	0	-1	0	1	1	0
319	3	0	0	1	0	-1	0	0	0
320	3	-1	1	0	1	1	0	-1	1
321	3	1	0	0	1	0	-1	1	0

Data Visualization - label

0:長 1:間 2:斷 3:都不是

Data Visualization - feature

Data Visualization 長

Data Visualization 尖

Data Visualization 斷

Data Visualization 都不是

model

- 1. Decision tree
- 2. DNN
- 3. SVM

workflow

- 1. shuffle data
- 2. train_test_split in the ratio of 7:3
- 3. build model and .fit
- 4. predict

Decision tree

scikit-learn

algorithm-gini

max_depth-not defined

Decision tree

The result:

accuarcy: 0.865979381443299

Mean Absolute Error: 0.30927835051546393

	label	recall_score	precision_score
0	0	0.852941	0.852941
1	1	0.956522	0.916667
2	2	0.904762	0.904762
3	3	0.736842	0.777778

DNN - workflow

```
shuffle train_test_split in the ratio of 7:3
```

將DNN的label擴張至1*4的array (One-hot Encoding) 在預測或訓練時, DNN會給每個類別一個分數

DNN model (Keras+Tensorflow)

We construct a neural network of three layers with epochs = 50. batch_size=1

Model: "sequential"			
Layer (type)	Output	Shape	Param #
dense (Dense)	(None,	16)	144
dense_1 (Dense)	(None,	16)	272
dense_2 (Dense)	(None,	4)	68
Total params: 484 Trainable params: 484 Non-trainable params: 0			

DNN

result

loss: 0.974406361579895 accuarcy: 0.7628865838050842

Mean Absolute Error: 0.24020116

	label	recall_score	precision_score
0	0	0.678571	0.826087
1	1	0.888889	0.857143
2	2	1.000000	0.740741
3	3	0.500000	0.578947

SVM model (scikit learn)

SVC

kernel='rbf' 投影函數轉換

懲罰係數=1

gamma='auto'=1/n-features

SVM

The result:

accuarcy: 0.7731958762886598

Mean Absolute Error: 0.44329896907216493

	label	recall_score	precision_score
0	0	0.966667	0.763158
1	1	0.923077	0.800000
2	2	0.904762	0.730769
3	3	0.150000	1.000000

conclusion

根據結果,可以看出模型在預測這三種以外的術語結果不好,原因可能是因為3*3太小,能判斷出的術語很有限。

conclusion-Data Visualization

在三者的分類上,各類有比較明確的特徵。 因此能在三者做出不錯的分類。

conclusion-Data Visualization (label=3 都不是)

在三種以外的feature中,沒有很明確的特徵對於"都不是"的資料傾向亂猜

application

在三者的預測結果不錯. 能對現況棋盤做簡單的預測

在三者(長、尖、斷)以外的分辨需要其他更具明顯的特徵

有些術語需要更大的範圍才能判斷(飛、跳), 我們可以用5*5, 7*7的尺寸判斷更多數語。

有些術語則需直接判斷座標位置才能判斷(五之五、天元)。

工作比例分配

0712534 陳永承 40%

0716039 謝仁翔 40%

0716038 郭崇瑋 20%