

Mulțimea numerelor reale reprezintă reuniunea dintre mulțimea numerelor raționale și cele iraționale, notată cu \mathbb{R} .

Este evident că toate mulțimile studiate sunt submulțimi ale mulțimii numerelor reale:

NCZCQCR

Mulțimea numerelor iraționale se obține prin \mathbb{R} - \mathbb{Q} .

- 1. Din punct de vedere geometric, mulțimea numerelor reale reprezintă o dreaptă căreia i se asociază un punct numit origine corespunzător valorii 0 și un sens de parcurgere corespunzător numerelor pozitive, iar sensul opus corespunzător numerelor negative.
- 2.Mulțimea numerelor reale este infinită în ambele sensuri: pozitivă și negativă $(-\infty, \infty)$, unde:
- -∞ se citește " minus infinit"
- +∞ se citeşte "plus infinit" sau infinit

Relatia de ordine

Oricum am alege două numere a și b reale, există cel puțin una din relațiile a > b sau $a \le b$, astfel, oricare două numere reale pot fi comparate.

Astfel (\mathbb{R} , \leq) este o mulțime total ordonată în raport cu relația de ordine " \leq " (mai mic sau egal). Proprietățile relației " \leq ":

- 1. Oricare ar fi $a \in \mathbb{R}$, avem $a \le a$
- 2. Oricare ar fi a, $b \in \mathbb{R}$, dacă $a \le b$ și $b \le a$, atunci a = b
- 3. Oricare ar fi a, b, $c \in \mathbb{R}$, dacă $a \le b$ și $b \le c$, atunci $a \le c$
- Relația de ordine este compatibilă cu adunarea şi înmulțirea numerelor reale în sensul că:
 - 1) Dacă a, b, c $\in \mathbb{R}$ și $a \le b$, atunci $a + c \le b + c$ și reciproc
 - 2) Dacă a, b, c $\in \mathbb{R}$ şi $a \le b$, atunci: $a \cdot c \le b \cdot c$ dacă c > 0 şi $a \cdot c \ge b \cdot c$ dacă c < 0 şi reciproc
- 5. Dacă a, b, c, $d \in \mathbb{R}$ şi $a \le b$, $c \le d$ atunci: $a + c \le b + d$

Valoarea absolută, valoare maximă, valoare minimă partea întreagă și partea fracționară

Numărul pozitiv notat |x| reprezintă **valoarea absolută** a numărului real x și este definit astfel:

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

ex: $|-7| = 7$ $|3| = 3$ $|0| = 0$

Obs:

- 1. Valoarea absolută se mai numește și modulul numărului respectiv
- Din punct de vedere geometric, valoarea absolută semnifică distanța pe axa reală dintre cele două numere

Fie a, $b \in \mathbb{R}$,atunci prin max (a,b) notăm **maximul** dintre numerele reale a și b definit astfel:

$$\max (a,b) = \begin{cases} a, daca \ a \ge b \\ b, daca \ a < b \end{cases}$$
ex:
$$\max (-2, -3) = -2$$

$$\max (-5, |5|) = |5| = 5$$

Fie a, b $\in \mathbb{R}$, atunci prin min (a,b) notăm **minimul** dintre numerele reale a și b definit astfel: min $(a,b) = \begin{cases} a, daca \ a \le b \\ b, daca \ a > b \end{cases}$

Intervale de numere reale

Fie a şi b numere reale cu $a \le b$

Notăm cu [a;b] mulțimea $\{x \in \mathbb{R} \mid a \le x \le b\}$. Acest interval se numește **interval închis** cu extremitățile a, b.

Notăm cu (a;b) mulțimea $\{x \in \mathbb{R} | a < x < b\}$ Acest interval se numește **interval deschis** cu extremitățile a, b.

Obs. Intervalele deschise spre deosebire de cele închise nu-și conțin extremitățile.

ex.
$$[-1;4] = (-1;4) \cup \{-1;4\}$$

Notăm cu (a,b] mulțimea $\{x \in \mathbb{R} | a \le x \le b\}$. Acest interval se numește **interval semideschis** cu extremitățile a, b deschis la stânga și închis la dreapta.

Notăm cu [a,b) mulțimea $\{x \in \mathbb{R} | a \le x \le b\}$.. Acest interval se numește interval semideschis cu extremitățile a,b, închis la stânga și deschis la dreapta.

Intervalele de forma: (a;b); [a;b]; [a,b); (a,b] cu a și b date explicit se numesc intervale mărginite.

Intervalele de forma:

 $(a; +\infty)$ adică mulțimea $\{x | x \in \mathbb{R}, x > a\}$

 $(-\infty; a]$ adică mulțimea $\{x | x \in \mathbb{R}, x \le a\}$

 $[a,+\infty)$ adică mulțimea $\{x \mid x \in \mathbb{R}, x \ge a\}$

 $(-\infty, a)$ adică mulțimea $\{x \mid x \in \mathbb{R}, x < a\}$

 $(-\infty, +\infty)$ adică mulțimea $\{x \mid x \in \mathbb{R}\}$

se numesc intervale nemărginite.

Fie $a \in \mathbb{R}$.

 $A = \{x \in \mathbb{R} / |x| < a\} = (-a, a)$

 $B=\{x\in\mathbb{R}\mid |x|\leq a\}=[-a,a]$

 $C = \{x \in \mathbb{R} / x > a\} = (-\infty, -a) \cup (a, \infty)$

 $D=\{x\in\mathbb{R}/x\geq a\}=(-\infty,-a]\cup[a,\infty)$

Obs: Intervalele sunt mulțimi asupra cărora se pot aplica toate operațiile studiate în capitolul mulțimi, ca rezultat obținându-se tot intervale de numere reale sau mulțimi vide.

Operatii cu numere reale

Adunarea

Prin adunarea a două numere reale se obține un al treilea număr real notat cu s = a + b unde s reprezintă **suma**, iar a și b termenii sumei.

Proprietățile adunării numerelor reale:

- 1. Comutativitatea: a+b=b+a, a, $b \in \mathbb{R}$
- 2. Asociativitatea: (a+b)+c=a+(b+c), a, b, $c \in \mathbb{R}$
- 3. Elementul neutru: a+0=0+a=a, $a \in \mathbb{R}$
- 4. Există elementul opus: a+(-a)=(-a)+a=0

Astfel se poate defini scăderea:

Prin scăderea a două numere reale a, b se obține un al treilea număr natural numit **diferență** iar a scăzător și b descăzut, definit astfel: d = a - b = a + (-b)

Inmultirea

Prin înmulțirea a două numere reale a,b numiți **factori** se obține un al treilea număr real p numit **produs** și definit astfel: $p = a \cdot b$

Proprietățile produsului numerelor reale:

- 1. Comutativitatea: oricare a, $b \in \mathbb{R}$, $a \cdot b = b \cdot a$
- 2. Asociativitatea: oricare a, b, $c \in \mathbb{R}$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- 3. Distributivitatea față de adunare: oricare a, b, $c \in \mathbb{R}$ $a \cdot (b+c) = a \cdot b + a \cdot c$
- 4. Există elementul 1 numit element neutru cu proprietatea că oricare a $\in \mathbb{R}$, atunci $a \cdot 1 = 1 \cdot a = 1$
- 5. Există elementul invers oricărui număr real notat cu $\frac{1}{a}$ astfel: oricare $a \in \mathbb{R}$, există- $a \in \mathbb{R}$ astfel încât $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$

Ridicarea la putere cu exponent număr întreg:

Dacă a este un număr real, iar n un număr natural astfel încât $n \neq 0$ și $n \neq 1$ atunci: $a^n = \underbrace{a \cdot a \dots a}_{n \neq 1}$, unde a este baza iar n exponentul

Obs:

- 1. Oricare ar fi $a \in \mathbb{R}^*$, $a^0 = 1$
- Oricare ar fi a∈ R*, a¹ =a

Proprietăți:

- 1. Dacă $a \in \mathbb{R}$ și m, $n \in \mathbb{R}$, atunci $a^m \cdot a^n = a^{m+n}$
- 2. Dacă $a \in \mathbb{R}$ și m, $n \in \mathbb{R}$, atunci $(a^m)^n = a^{m \cdot n}$
- 3. Puterea produsului este egală cu produsul puterilor $(a_1 \cdot a_2 \cdot \dots \cdot a_i)^n = a_1^n \cdot a_2^n \cdot \dots \cdot a_i^n$, oricare a_1 ,
 - $a_2,...,a_n\in\mathbb{R},\,n\in\mathbb{R}$
- 4. Dacă $a \in \mathbb{R}^*$, m, $n \in \mathbb{R}$, atunci $a^m : a^n = a^{m-n}$
 - 5. Dacă $a \in \mathbb{R}^*$, $n \in \mathbb{R}$ atunci $a^{-n} = \frac{1}{a^n}$

Partea Intreaga. Partea fractionara.

Partea întreagă a unui număr real x, notată [x] este cel mai mare număr întreg mai mic sau egal cu x.

x-[x] se notează cu $\{x\}$ și se numește **partea fracționară** a lui x . $\{x\}=x-[x]$ Exemplu:

$$[2,3] = 2$$
 $[-4,37] = -5$ $[-4,37] = -4,37 - (-5) = 6,63$ $\{2,3\} = 0,3$

Observație:

- 1) Dacă $k \in \mathbb{R}$, $x \in \mathbb{R}$ și $k \le x < k+1, \lceil x \rceil = k$
- 2) $0 \le \{x\} < 1$ oricare ar fi $x \in \mathbb{R}$
- 3) Dacă $\{x\} < 0.5$, atunci rotunjirea la unități a lui x este[x].
- 4) Dacă $0.5 \le \{x\}$, atunci rotunjirea la unități a lui x este[x]+1