МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Институт №8 «Компьютерные науки и прикладная математика» Кафедра 806 «Вычислительная математика и программирование»

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицам. Метод Гаусса.

Выполнил: А. Е. Максимов

Группа: М8О-407Б-19

Преподаватель: А. Ю. Морозов

1 Условие

Цель работы: Научиться использовать GPU для классификации и кластеризации изображений. Использование константной памяти и одномерной сетки потоков.

Вариант на "два". Быстрое транспонирование матрицы.

Необходимо реализовать транспонирование матрицы с бесконфликым использованием разделяемой памяти и объединением запросов к глобальной памяти.

Ограничения:

- $w*h < 10^8$
- \bullet все данные выводить с точностью 10^{-10}

2 Программное и аппаратное обеспечение

Характеристики графического процессора:

- Compute capability: 7.5
- Наименование: NVIDIA GeForce GTX 1660 Ti
- Графическая память: 6143mb
- Константная память: 64kb
- Разделяемая память: 48kb
- Количество регистров на блок: 65536
- Максимальное количество потоков на блок: (1024, 1024, 64)
- Максимальное количество блоков: (2147483647, 65535, 65535)
- Количество мультипроцессоров: 6

Характеристики системы:

- Процессор: «Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz 2.59 GHz»
- Память: 16,0 ГБ встроенной памяти ноутбука
- \bullet SSD: «Hynix BC511 NVMe SK hynix 512GB »

Программное обеспечение:

- OC: «Windows 10 Домашняя x64»
- Текстовый редактор: «Notepad++»
- Компилятор: «nvcc: Cuda compilation tools, release 12.0, V12.0.76»

3 Метод решения

Для решения лабораторной работы я использовал двумерный буфер-массив в разделяемой памяти. Поскольку его размерность создавала бы конфликты памяти, одно из измерений буфера было увеличено на 1 для создания смещения данных в банках памяти.

Основным элементом алгоритма являются своевременные синхронизации нитей блока для оптимизации обращений к глобальной памяти, а также аккуратная работа с индексами внутри цикла сдвигов. Благодаря качественной проработке кода, проблем с лабораторной не возникло.

4 Результаты

Замеры времени работы CPU и ядер с различными конфигурациями.

Данные представлены квадратными таблицами размера n * n.

Конфигурация	n = 10, mc	n = 100, MC	$n = 10^3$, MC	$n = 10^4$, MC
CPU	0.0	0.0	7.197	960.349
(1, 1)(1, 32)	0.0177	0.1030	11.8879	1026.7545
(1, 1)(32, 32)	0.0061	0.0164	1.2451	135.2888
(1, 32)(1, 32)	0.0081	0.0347	0.4669	73.1074
(1, 32)(32, 32)	0.0072	0.0081	0.1124	12.8184
(32, 32)(1, 32)	0.0081	0.0102	0.1649	71.0662
(32, 32)(32, 32)	0.05641	0.0553	0.1085	9.0114
(32, 256)(32, 32)	0.4157	0.4150	0.4643	9.5252
(256, 256)(32, 32)	3.2843	3.2829	3.2767	9.9075

5 Профилировка Nsight Compute

Конфигурация ядра — (32, 32)(32, 32), размер выходных данных — $n * m = 10^6$.

Конфликты банков памяти

```
C:\Users\cerma\Desktop\MAI\4c\ΠΓΠ\lab4>ncu --metrics
l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_ld.sum,
l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_st.sum,
smsp__sass_average_branch_targets_threads_uniform.pct,
dram__sectors_read.sum,dram__sectors_write.sum,
l1tex__t_requests_pipe_lsu_mem_global_op_st.sum
a.exe <test2.txt
==PROF== Connected to process 16500 (C:\Users\cerma\Desktop\MAI\4c\PGP\lab4\a.exe)
==PROF== Profiling "kernel" -0: 0%....50%....100% -4 passes
152.7266235 ms
==PROF== Disconnected from process 16500
[16500] a.exe@127.0.0.1
kernel(double *,double *,int,int) (32,32,1)x(32,32,1),Context 1,Stream 7,Device
0,CC 7.5
Section: Command line profiler metrics
Metric Name
                                                         Metric Unit Metric
Value
dram__sectors_read.sum
                                                              sector
                                                                          250a181
dram__sectors_write.sum
                                                                          249a902
                                                              sector
l1tex__data_bank_conflicts_pipe_lsu_mem_shared_op_ld.sum
                                                                                0
11tex__data_bank_conflicts_pipe_lsu_mem_shared_op_st.sum
                                                                                0
11tex__t_requests_pipe_lsu_mem_global_op_st.sum
                                                             request
                                                                           32a000
smsp__sass_average_branch_targets_threads_uniform.pct
                                                                           99,49
```

Как показывают метрики $data_bank_conflicts$ - во время выполнения программы не возникают конфликты банков памяти.

Время выполнения

```
C:\Users\cerma\Desktop\MAI\4c\ΠΓΠ\lab4>ncu --set full a.exe <tests\test1000x1000.txt ==PROF== Connected to process 22004 (C:\Users\cerma\Desktop\MAI\4c\PGP\lab4\a.exe) ==PROF== Profiling "kernel" -0: 0%....50%....100% -31 passes 629.9649048 ms
```

==PROF== Disconnected from process 22004

[22004] a.exe@127.0.0.1

kernel(double *,double *,int,int) (32,32,1)x(32,32,1),Context 1,Stream 7,Device 0,CC 7.5

Section: GPU Speed Of Light Throughput

10 01110	Metric Value
nsecond	1,43
cycle	150a295
%	51,41
%	51,41
usecond	104,99
%	57,12
%	29,16
cycle	140a224,08
%	26,42
]	nsecond nsecond cycle % usecond

Section: GPU Speed Of Light Roofline Chart

INF The ratio of peak float (fp32) to double (fp64) performance on this device is 32:1. The kernel achieved 0% of

this device's fp32 peak performance and 0% of its fp64 peak performance. See the Kernel Profiling Guide

(https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#roofline) for more details on roofline analysis.

Section: Compute Workload Analysis

Metric Name	Metric Unit	Metric Value
Executed Ipc Active	inst/cycle	1,13
Executed Ipc Elapsed	inst/cycle	1,06
Issue Slots Busy	%	28,24
Issued Ipc Active	inst/cycle	1,13
SM Busy	%	28,24

INF ALU is the highest-utilized pipeline (23.4%) based on active cycles, taking into account the rates of its different instructions. It executes integer and logic operations. It is well-utilized should not be a bottleneck.

Section: Memory Workload Analysis

Metric Name	Metric Unit	Metric Value
Memory Throughput	Gbyte/second	146,02
Mem Busy	%	29,16
Max Bandwidth	%	51,41
L1/TEX Hit Rate	%	60,33
L2 Hit Rate	%	75,02
Mem Pipes Busy	%	10,85

Section: Memory Workload Analysis Tables

._____

Section: Scheduler Statistics

-----Metric Name Metric Unit Metric Value -----% One or More Eligible 28,65 Issued Warp Per Scheduler 0,29 % No Eligible 71,35 Active Warps Per Scheduler 7,91 warp Eligible Warps Per Scheduler 1,19 warp _____

Section: Warp State Statistics

Metric Name Metric Unit Metric Value

Warp	Cycles Per Issued Instruction	cycle	27,60
Warp	Cycles Per Executed Instruction	cycle	27,63
Avg.	Active Threads Per Warp		31,96
Avg.	Not Predicated Off Threads Per Warp		27,77

Section: Instruction Statistics			
Metric Name			Metric Value
Avg. Executed Instructions Per S	Scheduler	inst	39a565,08
Executed Instructions		inst	3a798a248
Avg. Issued Instructions Per Sch	neduler	inst	
Issued Instructions		inst 	3a802a088
Section: Launch Statistics			
Metric Name	Metric Unit	1	Metric Value
Block Size			1a024
Function Cache Configuration		Cacl	hePreferNone
Grid Size			1a024
Registers Per Thread	register/thread		46
Shared Memory Configuration Size	e Kbyte		32,77
Driver Shared Memory Per Block	byte/block		0
Dynamic Shared Memory Per Block	byte/block		0
Static Shared Memory Per Block	Kbyte/block		8,45
Threads	thread		1a048a576
Waves Per SM			42,67
Section: Occupancy			
Metric Name	Metric Unit Metr		

Block Limit SM

block 16

Block Limit Registers	block	1
Block Limit Shared Mem	block	3
Block Limit Warps	block	1
Theoretical Active Warps per SM	warp	32
Theoretical Occupancy	%	100
Achieved Occupancy	%	98,38
Achieved Active Warps Per SM	warp	31,48

INF This kernel's theoretical occupancy is not impacted by any block limit.

Section: Source Counters	Section:	Source	Counters
--------------------------	----------	--------	----------

Metric Name	Metric Unit	Metric Value
D 1 T D	0/	0.00
Branch Instructions Ratio	%	0,08
Branch Instructions	inst	295a912
Branch Efficiency	%	99,49
Avg. Divergent Branches		10,42

6 Выводы

Разделяемая память является очень нужным и сложным в освоении инструментом CUDA. Наибольшие проблемы с ней заключаются в оптимизации обращений и избегании конфликтов при обращении к банкам памяти. Однако, поскольку разделяемая память - вторая по скорости после регистров, невозможно избежать её использования, ведь при правильном использовании она даёт кратную выгоду по времени относительно простого обращения к глобальной памяти.

Сложность алгоритма O(w * h).

Список литературы

- [1] $CUDA\ C++\ Programming\ Guide$ URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#
- [2] Manual for the NVIDIA Nsight Compute Command Line Interface
 URL: https://docs.nvidia.com/nsight-compute/NsightComputeCli/index.
 html