Author: Pavel Kocourek

4. Differentiability

- Derivative of a function
- · Local approximation of a function

Reference: Chapter 5 in Craw's book

4.1. Definition and Basic Properties

• **Definition:** Let $U \subseteq \mathbb{R}$ be an open set and $f: U \to \mathbb{R}$. We say that function f is differentiable at $x_0 \in U$ if

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. The limit, if it exists, is written as $f'(x_0)$. We say that f is differentiable in U if it is differentiable at each $a \in U$.

• Intuition: If function f has derivative at x_0 , then it can be locally approximated by its tangent

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0)$$

- Exercise:
 - 1. Is the definition equivalent to the following?

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- 2. Find the derivative of $f(x) = x^2$ using the definition of the derivative.
- 3. Let f and g be functions differentiable at $a \in \mathbb{R}$. Using the definition of the derivative, find the formula for $(f+g)'(x_0)$.
- 4. Let f and g be functions differentiable at $a \in \mathbb{R}$. Using the definition of the derivative, find the formula for $(fg)'(x_0)$.
- **Transform** Proposition: If $f:U\to\mathbb{R}$ is differentiable at $x_0\in U$, then f is continuous at x_0 .
- **Proposition:** Let $f:U\to\mathbb{R}$ be differentiable at $x_0\in U$, and let $g:V\to\mathbb{R}$ be differentiable at $y_0=f(x_0)$. Then $g\circ f$ is differentiable at a and $(g\circ f)'(x_0)=g'(y_0)\cdot f'(x_0)$.

- **Exercise:** Consider a function $f:U\to\mathbb{R}$ that has nonzero derivative at $x_0\in U$. Define $y_0 = f(x_0)$.
 - 1. Show that there exists a neighborhood N of x_0 such that there exists inverse function f^{-1} to the function $f|_N$ (the restriction of f to N).
 - 2. Use the fact that $(f^{-1} \circ f)(x) = x$ for all $x \in N$ to find a formula for $(f^{-1})'(y_0).$
- **Exercise:** Find the derivative of the function $f(x) = \sqrt{x^2 1}$.
- \Re Exercise: Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0)=0. Show that f is continuous and differentiable everywhere except at x = 0. At x = 0 the function is continuous, but not differentiable.

4.2. l'Hôpital's rule

I I'Hôpital's rule: Let f and g be functions such that $f(x_0) = g(x_0) = 0$ and both $\lim_{x\to x_0} \frac{f(x)}{g(x)} \neq 0. \text{ Then}$ $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$ 3. Loth functions are differentiable at x_0 , with $g'(x_0) \neq 0$. Then

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{f'(x_0)}{g'(x_0)}.$$

4.3. Lottle-o and Big-O Notation

- Definition:
 - Little-o Notation: We say that

$$f(x) = o(g(x))$$
 as $x \to a$

when

$$\frac{f(x)}{g(x)} \to 0$$
 as $x \to a$.

o Big-O Notation: We say that

$$f(x) = O(g(x))$$
 as $x \to a$

when $\frac{f(x)}{g(x)}$ is bounded on some neighborhood of a (with the exception of point aitself).

• f Exercise: Let f be continuous at x_0 . Which of the following statements are true (find a proof or a contraexamle):

a.
$$f(x) = f(x_0) + O(1)$$
 as $x \to x_0$

b.
$$f(x) = f(x_0) + O(x - x_0)$$
 as $x \to x_0$

4.4. Rolle and the Mean Value Theorem

- **Rolle's Theorem:** Let f be continuous on [a, b] and differentiable on (a, b), and suppose that f(a) = f(b). Then f'(c) = 0 for some $c \in (a, b)$.
- **Exercise:** A function $f: \mathbb{R} \to \mathbb{R}$ is differentiable and its derivative is never 0. Show that f is invertible.
- The Mean Value Theorem: Let f be continuous on [a,b] and differentiable on (a,b). Then

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

for some $c \in (a, b)$.

• Equivalently: f(b) = f(a) + (b - a)f'(c).

- **Exercise:** Consider a function $f: \mathbb{R}_+ \to \mathbb{R}$ such that f(0) = 0 and $f'(x) \ge 1$ for all $x \ge 0$. Show that f(x) > x for all $x \ge 0$.
- **Exercise:** Considef a neihborhood N of a point $a \in \mathbb{R}$ and function $f: N \to \mathbb{R}$ that is differentiable with f'(x) bounded.
 - a. Show that

$$f(x) = f(a) + O(x - a)$$
 as $x \to a$.

b. If in addition f'(x) is continuous at a, then

$$f(x) = f(a) + (x - a)f'(a) + o(x - a)$$
 as $x \to a$.

4.5. Taylos's Theorem

• **Second Mean Value Theorem:** Let f be twice differentiable on [a, b]. Then,

$$f(b) = f(a) + (b - a)f'(a) + \frac{1}{2}(b - a)^2 f''(c),$$

for some $c \in (a, b)$.

• **Taylor's Theorem:** Let f be (n + 1)th differentiable on [a, x]. Then,

$$f(x) = P_n(x) + R_n(x),$$

where $P_n(x)$, the Taylor polynomial of degree n about a, and $R_n(x)$, the corresponding remainder, are given by

$$P_n(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots \frac{f^{(n)}(a)}{n!}(x - a)^n,$$

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - a)^{n+1},$$

where c is some point between a and x.

• **Exercise:** Write down the second-order approximation of the function $f(x) = e^x$ about x = 0.

4.6. Additional Exericeses

- 1. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 \sin\left(\frac{1}{x}\right)$ for $x \neq 0$ and f(0) = 0. Show that f is differentiable, but the derivative f'(x) is not continuous at x = 0.
- 2. Let f be a function differentiable at x_0 . Which of the following statements are true (find a proof or a contraexamle):

a.
$$f(x) = f(x_0) + (x - x_0)f'(x_0) + O(x - x_0)$$
 as $x \to x_0$

b.
$$f(x) = f(x_0) + (x - x_0)f'(x_0) + O((x - x_0)^2)$$
 as $x \to x_0$

c.
$$f(x) = f(x_0) + (x - x_0)f'(x_0) + o(x - x_0)$$
 as $x \to x_0$

3. Find
$$\lim_{x\to 1} \frac{\log x^2}{\log(x+1)-\log(2)}$$

4. Write down the second-order approximation of the function $f(x) = \log(x)$ about 1.