Part I

Repaso Analisis

1 Series

1.1 Serie Geometrica

La serie geometrica, dada por

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \dots$$

es convergente si |r| < 1 y su suma es

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$$

Si $|r| \ge 1$, la serie es divergente

1.2 Serie Armonica

La serie armonica, dada por

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

es divergente.

1.3 Teorema de divergencia convergencia

- Si la serie $\sum_{n=1}^{\infty} a_n$ es **convergente**, entonces $\lim_{n\to\infty} a_n = 0$.
- Si $\lim_{n\to\infty} a_n \neq 0$ o no existe, entonces la serie $\sum_{n=1}^{\infty} a_n$ es **divergente**.

1.4 Serie p

La serie p, dada por

$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$

es convergente si p > 1 y divergente si $p \le 1$.

1.5 Prueba por comparacion

Supongamos que $\sum a_n$ y $\sum b_n$ son series con terminos positivos.

- Si $\sum b_n$ es convergente y $a_n \leq b_n$ para toda n, entonces $\sum a_n$ tambien es convergente.
- Si $\sum b_n$ es divergente y $a_n \ge b_n$ para toda n, entonces $\sum a_n$ tambien es divergente.

1.6 Prueba por comparacion del limite

Supongamos que $\sum a_n$ y $\sum b_n$ son series con terminos positivos. Si

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

donde c es un numero finito y c > 0, entonces ambas series **convergen** o ambas **divergen**.

1.7 Series alternantes

Si la serie alternante dada por

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n$$

cumple con

- 1. $b_{n+1} \leq b_n$ para toda n
- 2. $\lim_{n\to\infty} b_n = 0$

entonces la serie es convergente.

1.8 Prueba de la razon

- 1. Si $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente (y, por lo tanto, convergente).
- 2. Si $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = L > 1$ o bien $\lim_{n\to\infty} |\frac{a_{n+1}}{a_n}| = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es **divergente**.
- 3. Si $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = 1$, la prueba de la razon no es concluyente.

1.9 Prueba de la raiz

- 1. Si $\lim_{n\to\infty} \sqrt[n]{a_n} = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es **absoluta**Seamente convergente (y, por lo tanto, convergente).
- 2. Si $\lim_{n\to\infty} \sqrt[n]{a_n} = L > 1$ o bien $\lim_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right| = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- 3. Si $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$, la prueba de la raiz no es concluyente.

Part II

Serie de Taylor

2 Serie de Taylor en terminos de (x-c)

Si la funcion de f tiene derivadas continuas de ordenes 0, 1, 2, ..., (n + 1) en un intervalo cerrado I = [a, b], entonces para cualquier c y x en I

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(c)(x-c)^{k}}{k!} + E_{(n+1)}$$

Donde $E_{(n+1)}$ es el error y esta dado de la forma

$$E_{(n+1)} = \frac{f^{(n+1)}(\xi)(x-c)^{(n+1)}}{(n+1)!}$$

Aqui ξ es un punto que se encuentra entre x y c.

3 Serie de Taylor en terminos de (x+h)

Esta forma se obtiene de reemplazar x por x+h y c por x en la formula anterior, entonces tenemos

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x)((x+h)-x)^{k}}{k!} + E_{(n+1)}$$
$$= \sum_{k=0}^{n} \frac{f^{(k)}(x)(h)^{k}}{k!} + E_{(n+1)}$$

Donde $E_{(n+1)}$ esta dato entonces por

$$E_{(n+1)} = \frac{f^{(n+1)}(\xi)((x+h)-x)^{(n+1)}}{(n+1)!}$$
$$= \frac{f^{(n+1)}(\xi)(h)^{(n+1)}}{(n+1)!}$$

Aqui ξ es un punto que se encuentra entre x y c.

Part III

Erorres

4 Errores absolutos y relativos

Cuando un numero real r es aproximado por otro \bar{r} se define el error por $r-\bar{r}$. Definimos

Error	Simbolo	Expresion
Error Absoluto	Δr	$ r-ar{r} $
Error Relativo	δr	$\frac{ r-ar{r} }{ r } = \frac{\Delta r}{r}$
Error Porcentual	-	$100 \cdot \delta r$

5 Redondeo y truncado

Redondeo Sea \tilde{r} la aproximacion por redondeo a n digitos decimales de r. Se sigue que

$$|r - \tilde{r}| \le \frac{1}{2} 10^{-n}$$

Truncado Sea \hat{r} la aproximación por truncado a n digitos decimales de r. Se sigue que

$$|r - \hat{r}| \le 10^{-n}$$

6 Digitos significativos

Diremos que el numero \bar{r} aproxima al numero r con m digitos significativos si

$$\delta r = \frac{\Delta r}{|r|} \le 5 \cdot 10^{-m} = \frac{1}{2} 10^{1-m}$$

Esto dice que el error relativo es del orden de 10^{-m} .

7 Errores en las operaciones

7.1 Error en la suma y resta

Sean $y = x_1 + x_2$, $\bar{y} = \bar{x_1} + \bar{x_2}$. Podemos ver lo siguiente: El error por la suma esta dado por

$$y - \bar{y} = (x_1 + \bar{x_1}) + (x_2 - \bar{x_2})$$

El error absoluto

$$\Delta y \le \Delta x_1 + \Delta x_2$$

El error relativo

$$\delta y = \frac{\Delta y}{|y|} \le \frac{\Delta x_1 + \Delta x_2}{|x_1 + x_2|}$$

En general si $y = \sum_{i=1}^{n} x_i$, entonces $\Delta y \leq \sum_{i=1}^{n} \Delta x_i$

Error de la multiplicacion y la divicion

Sean $y = x_1 * x_2, \bar{y} = \bar{x_1} * \bar{x_2}, z = x_1/x_2, \bar{z} = \bar{x_1}/\bar{x_2}$. Se puede decir

$$\Delta y \lessapprox \qquad |x_2|\Delta x_1 + |x_1|\Delta x_2 \qquad \quad \delta y \quad \lessapprox \frac{\Delta x_1}{|x_1|} + \frac{\Delta x_2}{|x_2|}$$

$$\delta y \lesssim \frac{\Delta x_1}{|x_1|} + \frac{\Delta x_2}{|x_2|}$$

$$\Delta z \lesssim \frac{1}{|x_2|} \Delta x_1 + \frac{|x_1|}{|x_2^2|} \Delta x_2 \qquad \delta z \lesssim \frac{\Delta x_1}{|x_1|} + \frac{\Delta x_2}{|x_2|}$$

$$\delta z \lesssim \frac{\Delta x_1}{|x_1|} + \frac{\Delta x}{|x_2|}$$

Part IV

Representacion de numeros en una computadora

Sea $\beta \in Nat, \beta > 2$, todo numero real r se puede escribir de la forma:

$$(\pm d_n d_{n-1} \dots d_1 d_0 . d_{-1} d_{-2} \dots)_{\beta}$$

donde cada d_i es un numero natural entre 0 y $\beta-1$. el valor del numero r es

$$\pm d_n \beta^n + d_{n-1} \beta^{n-1} + \dots + d_0 \beta^0 + d_{-1} \beta^{-1} + d_{-2} \beta^{-2} + \dots$$

8 Errores de redondeo en aritmetica de punto flotante

Supongamos un sistema de punto flotante (β, t, L, U) que escribirmos un numero real x de la forma

$$x = m\beta^e$$

con $1/\beta \leq |m| \leq 1$ y $L \leq e \leq U$. Sea $fl(x) = x_r = m_r \beta^e$, donde m_r es la mantisa que se obtiene redondeando a t digitos la parte fraccionaria de m, luego tenemos

$$\begin{array}{lcl} |m_r-m| & \leq & \frac{1}{2}\beta^{-t} \\ |m_r-m|\beta^e & \leq & \frac{1}{2}\beta^{-t}\beta^e \\ |\beta^e m_r-\beta^e m| & \leq & \frac{1}{2}\beta^{-t}\beta^e \end{array}$$

Y por lo tanto obtenemos la cota del error absoluto dado por

$$|x_r - x| \le \frac{1}{2}\beta^{-t}\beta^e$$

Para el **error relativo** tenemos

$$\frac{|x_r - x|}{|x|} \le \frac{\frac{1}{2}\beta^{-t}\beta^e}{|m|\beta^e} = \frac{\frac{1}{2}\beta^{-t}}{|m|} \le \frac{1}{2}\beta^{1-t}$$

pues $|m| \ge \frac{1}{\beta}$, entonces $\beta \ge \frac{1}{|m|}$.

Part V

Solucio de ecuaciones no lineales

9 Analisis de error en el metodo de Biseccion

Si el algoritmo de biseccion se aplica a una funcion continua f en un intervalo [a,b], donde f(a)f(b) < 0, entonces, despues de n pasos se habra calcuado una raiz aproximada con un error a lo mas de $(b-a)/2^{n+1}$. (pag. 82 Kincaid)

Part VI

Interpolacion polinomial

10 Forma de Newton del polinomio interpolante

Dados n+1 puntos $x_0, \dots x_n$. La forma de newton compacta para el polinomio interpolante resulta en

$$\sum_{i=0}^{n} c_i \prod_{j=0}^{i-1} (x - x_j)$$

Si utilizamos diferencias divididas, obtenemos

$$\sum_{i=0}^{n} f[x_0, \dots, x_n] \prod_{j=0}^{i-1} (x - x_j)$$

Donde la diferencia dividida esta definida sin importar la permutacion de sus argumentos, luego

$$f[x_i, \dots, x_n] = \frac{f[x_{i+1}, \dots, x_j] - f[x_i, \dots, x_{j-1}]}{x_j - x_i}$$

11 Error de interpolacion

(pag. 156 Kinkaid) Si p es el polinomio de grado a los mas n que interpola a f en los n+1 puntos $x_0, \ldots x_n$ pertenecientes a el intervalo [a,b] y ademas $f^{(n+1)}$

es continua, entonces para cada $x \in [a,b]$ existe un $\xi \in (a,b)$ tal que

$$f(x) - p(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi) \prod_{i=0}^{n} (x - x_i)$$