Taller de Sistemas de Información Geográficos Empresariales

Clase 2

Motivación

Agenda

- Aplicaciones Empresariales
- Middleware
- Plataformas de Desarrollo Empresarial
 - .NET Framework
 - Java EE
- SOA y ESB
- Escenarios de Integración

Taller de Sistemas de Información Geográficos Empresariales

- Una Aplicación Empresarial es una aplicación de software desarrollada para administrar las operaciones, activos y recursos de una empresa
- Algunos ejemplos:
 - Contabilidad
 - Seguimiento de envíos
 - Servicio al cliente
 - Nómina de empleados

- Las aplicaciones empresariales tienen en general las siguientes características:
 - Involucran persistencia de datos
 - Se manejan grandes cantidades de datos
 - Existen varias interfaces de usuario, para distintos tipos de usuario
 - En general se deben integrar con otras aplicaciones
 - Se accede a los datos de forma concurrente

- El proceso de desarrollo de una aplicación empresarial involucra al menos:
 - Programadores de aplicaciones
 - Administradores de base de datos
 - Diseñadores de interfaz de usuario
 - Integradores de aplicaciones

- La creación y mantenimiento de las aplicaciones presenta varias complejidades:
 - Administración
 - Mantenibilidad
 - Escalabilidad
 - Interoperabilidad
 - Seguridad
 - Confiabilidad
 - Accesibilidad y Usabilidad
 - Internacionalización

Arquitectura en Capas (Layers)

- "Layers" es un estilo arquitectónico que comúnmente se utiliza para las Aplicaciones Empresariales
- En este esquema las capas más altas utilizan servicios definidos por las capas más bajas
- Esta división lógica entre capas de funcionalidad pueda basarse en distintas responsabilidades

Layer N

Layer J
Layer J-1
Layer 1

Arquitectura en Capas (Layers)

- Tres capas comúnmente presentes en una Aplicación Empresarial son las capas de:
 - Presentación
 - Proveer servicios, presentar información, manejar pedidos de usuarios
 - Lógica de Negocio
 - Reglas que gobiernan los procesos de negocio objetivo de la aplicación
 - Datos
 - Comunicación con bases de datos, sistemas de mensajería, etc.

Especifica la distribución física del sistema

Monolithic Code

Arquitectura Física (Tiers)

Arquitectura Física (Tiers)

 Integración de Aplicaciones Empresariales (EAI) es la tarea de hacer que aplicaciones desarrolladas de forma independiente trabajen de forma conjunta con el fin de compartir datos y procesos de negocio

Integración de Aplicaciones

- Al integrar Aplicaciones Empresariales surgen varios desafíos:
 - Las redes no son confiables
 - Las redes son lentas
 - Las aplicaciones son diferentes
 - a nivel de lenguajes de programación, formato de datos, etc
 - El cambio en las aplicaciones es inevitable

Integración de Aplicaciones

- Históricamente se han utilizado distintos enfoques para la integración:
 - Transferencia de archivos
 - Base de datos compartida
 - Invocación de procedimientos remotos
 - Comunicación sincrónica
 - Mensajería
 - Comunicación asincrónica

Taller de Sistemas de Información Geográficos Empresariales

Middleware

Middleware

Middleware es una capa de software distribuida, situada entre el sistema operativo y las aplicaciones, diseñado para manejar la heterogeneidad y complejidad inherente a los sistemas distribuidos

Middleware

El rol principal del middleware es facilitar la tarea de diseñar, programar, y administrar aplicaciones distribuidas, proveyendo un ambiente de programación distribuido simple, consistente e integrado.

Evolución Middleware

Semantic Management of Middleware. Ramesh Jain. Amit Sheth. Springer 2006.

Message Oriented Middleware

 Los MOMs proveen comunicación asincrónica a través de mensajes, utilizando colas de mensajes para su almacenamiento temporal

Message Oriented Middleware

- El principal objetivo de un MOM es transportar mensajes desde el equipo remitente al equipo receptor de una manera confiable
- Algunos Patrones de Mensajería
 - Point to point
 - Request Response
 - Request Callback
 - Publish Subscribe

Application Servers

- Los servidores de aplicaciones proveen mecanismos para manejar toda o la mayoría de las interacciones entre los componentes de una aplicación distribuida
- Proveen varias tecnologías de middleware (MOMs, etc) junto con el concepto de contenedor, que brinda un entorno de ejecución para los componentes de una aplicación

Application Servers

- En general se puede encontrar soporte para seguridad, transacciones, administración de aplicaciones y recursos, y balanceo de carga
- Proveen una solución completa para la construcción e integración de aplicaciones empresariales

Web Services

 Un Web Service es una aplicación de software identificada por una URI, cuyas interfaces y formas de acceso pueden ser definidas, descriptas y descubiertas como artefactos XML, y soporta la interacción directa con otros componentes de software utilizando mensajes basados en XML, intercambiados a través de protocolos basados en internet

http://www.w3.org/TR/ws-desc-reqs/#definitions

Primera Generación de WS

SOAP

- Provee una forma estándar de estructurar mensajes utilizando XML
- Define mecanismos para utilizar distintos protocolos de transporte para el envío de mensajes
- Especifica un modelo de procesamiento que indica cómo se deben procesar los mensajes


```
<?xml version="1.0"?>
<soap:Envelope</pre>
       xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
       soap:encodingStyle="http://www.w3.org/2001/12/soap-
       encoding">
       <soap:Header>
       </soap:Header>
       <soap:Body>
              <soap:Fault> ... </soap:Fault>
       </soap:Body>
</soap:Envelope>
```


WSDL

- Lenguaje basado en XML que permite describir la interfaz y otras características de un Web Service
- Un documento WSDL puede dividirse en dos partes:
 - descripción abstracta
 - descripción concreta

WSDL

- La descripción abstracta describe de forma general la estructura de la interfaz del Web Service, que incluye operaciones, parámetros y tipos de datos abstractos
- La descripción concreta asocia a una descripción abstracta una dirección de red concreta, un protocolo de comunicación y estructuras de datos concretas

UDDI

- Especificación que provee una forma estándar de publicar y descubrir Web Services
- UDDI define
 - un modelo de datos para almacenar información de servicios y negocios
 - dos interfaces para utilizar el registro UDDI
 - Inquiry
 - > Publish

Developing Java Web Services. Ramesh Nagappan, Robert Skoczylas, Rima Patel Sriganesh. Wiley Publishing. 2003.

Segunda Generación de WS

- Surgen como forma de abordar problemáticas comunes en contextos empresariales
- □ Se les conoce como WS-*
- Cada una aborda una problemática específica:
 - Seguridad, Transacciones, Mensajería, etc

WS-BPEL

- Web Services Business Process Execution Language es un lenguaje para "orquestar" Web Services
- WS-BPEL es un lenguaje de flujo basado en XML para la especificación formal de procesos de negocio y protocolos de interacción de negocio

Mensajería – WS-Addressing

- WS-Addressing (WS-A) provee un mecanismo estándar para direccionar mensajes y Web Services
- Define dos construcciones básicas
 - endpoint reference
 - Address, Reference Parameters, Metadata
 - addressing properties
 - To, From, ReplyTo, FaultTo,
 - Action, MessageID, RelatesTo
 - ReferenceParameters

Metadata – WS-Policy

- Define un modelo abstracto, independiente del dominio, que permite describir características, requerimientos y capacidades de un Web Service
- Delega a otras especificaciones la definición de políticas particulares a un dominio.
 - WS-SecurityPolicy
 - WS-ReliableMessagingPolicy

Transacciones en WS

- Transacción Atómica: WS-AtomicTransaction
 - Propiedades ACID
 - Corta Duración
 - Ambiente seguro
 - Diseñado principalmente para dar soporte a la interoperabilidad
- Actividad de Negocio: WS-BusinessActivity
 - Larga Duración
 - Se define un mecanismo de compensación

WS-Security

- Define un conjunto de extensiones SOAP para brindar seguridad a nivel de mensaje
- Se especifica cómo:
 - utilizar XML Signature en mensajes SOAP
 - utilizar XML Encryption en mensajes SOAP
 - incluir Tokens de Seguridad en mensajes SOAP

WS-Trust

- WS-Trust es una especificación que extiende WS-Security y provee:
 - métodos para la expedición, renovación y validación de tokens de seguridad
 - formas para establecer, evaluar y administrar relaciones de confianza

WS-Trust

Microsoft Corporation. Web Service Security Scenarios, Patterns, and Implementation Guidance for Web Services Enhancements (WSE) 3.0. 2005. http://msdn.microsoft.com/en-us/library/aa480545.aspx

Especificaciones de WS

- Actualmente la tecnología de Web Services está basada en un gran número de especificaciones que:
 - en general, son propuestas por la industria
 - Microsoft, IBM, Oracle, etc.
 - son estandarizadas por distintas organizaciones
 - > W3C, OASIS, etc.
 - son implementadas por distintos proveedores
 - Apache, JBoss, Sun, Microsoft, IBM, Oracle, etc.

Web Services REST

- REST (REpresentational State Transfer)
 - Estilo arquitectónico para sistemas de hipermedia distribuidos
 - Todo es tratado como recursos que se identifican por URIs
 - Toma ventaja de los verbos HTTP
 - GET, POST, PUT, DELETE

Web Services REST

- La intención de una llamada a un RESTful Service, se obtiene del verbo HTTP
 - GET (recuperar), DELETE (eliminar)...

Verbo HTTP	Significado en términos de CRUD (Create, Read, Update, Delete)
POST	Crear un nuevo recurso a partir de los datos de la solicitud.
GET	Leer un recurso.
PUT	Actualizar un recurso a partir de los datos de la solicitud.
DELETE	Eliminar un recurso.

 De este modo las URIs actúan como identificadores de recursos y los métodos HTTP como verbos que especifican operaciones sobre los mismos

Verbo HTTP / URI	Significado en términos de CRUD
POST emps	Crear un nuevo empleado a partir de los datos de la solicitud.
GET emps	Leer una lista de todos los empleados.
GET emps?id=27	Leer el empleado 27.
PUT emps	Actualizar la lista de empleados con los datos de la solicitud.
DELETE emps	Eliminar la lista de empleados.
DELETE emps?id=27	Eliminar el empleado 27.

Taller de Sistemas de Información Geográficos Empresariales

Plataformas de Desarrollo Empresarial

.NET Framework

- Es un Framework desarrollado por Microsoft, disponible en plataforma Windows
- Incluye
 - Una biblioteca de clases orientada al programador a fin de facilitar los problemas típicos de programación
 - Una maquina virtual que administra la ejecución de programas escritos para esta plataforma

.NET Framework

- La biblioteca de clases provee una gran variedad de funcionalidades, entre las que se incluyen
 - Interfaz de usuario
 - Acceso a datos
 - Conectividad
 - Aplicaciones web
 - Seguridad

.NET Framework

- Los programas escritos para el framework .NET ejecutan en un ambiente de software que administra los requerimientos de dicho programa
- Este ambiente de ejecución, se denomina
 Common Language Runtime

Common Language Runtime

- Otros servicios que provee
 - Seguridad
 - Manejo de memoria
 - Control de excepciones
 - Performance

.Net Framework

- 1. ASP.NET
- 2. AJAX
- 3. WPF
- 4. Silverlight
- 5. WCF
- 6. WS*
- 7. Workflow Foundation
- 8. Datatypes
- Datasets
- 10. ADO.NET
- 11. LINQ
- 12. ORM (NHibernate)
- 13. Membership
- 14. SQL Server

- Definición de Sun Microsystems
 - Java Platform, Enterprise Edition 5 (Java EE 5) define el estándar para el desarrollo de aplicaciones empresariales distribuidas, basadas en componentes, utilizando un modelo de múltiples capas

Independencia del proveedor

- La plataforma promueve la construcción de sistemas independientes de la plataforma
 - Heredado de Java
- La especificación es abierta, puede ser implementada por cualquier proveedor
- Este deberá cumplir dicho estándar
 - Hay procesos de certificación
 - No implica que sólo debe soportar lo que el estándar establece

Servidores Java EE

- Representa el ambiente en el que ejecutan los componentes Java EE
- Estos componentes se denominan componentes server-side o componentes de aplicación JEE
- Pueden tomar la forma de
 - Componentes web (JSP / Servlets / JSF)
 - Componentes de negocio (EJB)
- Estos componentes ejecutan en un runtime denominado contenedor

Servidores Java EE

Contenedores Java EE

- Los componentes web y de negocio, existen y ejecutan dentro de contenedores
- Los componentes de aplicación JEE nunca interactúan directamente entre sí
 - utilizan protocolos y métodos del contenedor para interactuar entre ellos y con servicios de la plataforma
 - este rol de intermediario le permite al contenedor inyectar servicios requeridos por los componentes

Contenedores Java EE

- Un contenedor permite a los componentes interactuar con los servicios brindados por el servidor de aplicaciones
 - Seguridad
 - Acceso a datos
 - Transacciones
 - Acceso a recursos
 - Comunicaciones

Componentes

Java EE

- Java Server Faces
- 2. Flex
- 3. Granite
- 4. AJAX
- 5. JAX-WS
- 6. WS*
- 7. jBPM
- 8. EJB3
- 9. Java Persistance API
- 10. ORM (Hibernate)
- 11. PostgreSQL

Taller de Sistemas de Información Geográficos Empresariales

Arquitecturas Orientadas a Servicios y Enterprise Service Bus

Orientación a Servicios

- Computación Orientada a Servicios
 - paradigma que basa el diseño de aplicaciones en servicios para dar soporte al desarrollo ágil y flexible de aplicaciones distribuidas en ambientes heterogéneos
- Un Servicio es una entidad de cómputo que expone una funcionalidad de negocio y es:
 - autónoma
 - independiente de la plataforma
 - puede ser descripta, publicada, descubierta y combinada

Orientación a Servicios

Principios

- Standardized Service Contracts
- Service Loose Coupling
- Service Abstraction
- Service Reusability
- Service Autonomy
- Service Statelessness
- Service Discoverability
- Service Composability

Arquitectura Orientada a Servicios

- Arquitectura Orientada a Servicios
 - forma lógica de diseñar sistemas de software para proveer servicios a través de interfaces públicas y descubribles

Service Oriented Architecture

Service Oriented Architecture

- Si bien los principios de SOA no dependen de una tecnología en particular, los Web Services se han convertido en el mecanismo preferido para su implementación
- Actualmente, la forma más común de proveer una infraestructura de integración administrable, para Web Services y SOA, es a través de un ESB

Enterprise Service Bus (ESB)

Un ESB es una plataforma de integración basada en estándares que combina mensajería, Web Services, transformación de datos, y ruteo inteligente, para conectar y coordinar de forma confiable la interacción de un gran número de aplicaciones a través de empresas con integridad transaccional

Enterprise Service Bus

Funcionalidades de ESB

- Conectividad / Adaptadores
- Transformación de Mensajes
- Ruteo Intermediario
- Flujos de Mediación
- Mensajería Asincrónica
- Monitoreo y Administración
- Otras...

Escenarios de Integración

GIS

Client Tier Presentation Layer Business Layer Tier Data Layer Database Tier DBMS DBMS

Aplicación Empresarial

Referencias

- G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions. Addison-Wesley Professional, October 2003.
- J. McGovern, O. Sims, A. Jain, and M. Little, Enterprise Service
 Oriented Architectures: Concepts, Challenges, Recommendations
- D. Chappell, Enterprise Service Bus. O'Reilly Media, Inc., July 2004.
- M. Papazoglou, Web Services: Principles and Technology, 1st ed.
 Prentice Hall, September 2007.
- G. Alonso, F. Casati, H. Kuno, and V. Machiraju, Web Services, 1st ed. Springer, October 2003.
- M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann.
 "Service-oriented computing: State of the art and research challenges", Computer, vol. 40, no. 11, pp. 38-45, 2007.
- The SOA Source Book

