Relations for Discrete Cash Flows with End-of-Period Compounding

Sample Cash Flow Diagram	Relation	Factor Notation and Formula) Nbe
d d d d d d d d d d d d d d d d d d d	E = p(F/P, h)	u(i+1) = (n,i,q/A)	punoduio	d
	b = F(P/F, in)	$\frac{1}{n(i+1)} = (n, i, T/q)$		Junomy
	(Sec. 2.1)			
W W - V V	(w, A/q)A = q	$\frac{1 - n(i+1)}{n(i+1)i} = (ni_{i}h/q)$	P/A Present	
# E-# Z I	$(n.i.q/\Lambda)q = \Lambda$	$\frac{u(i+1)i}{1-u(i+1)} = (u,i,q/h)$	d/V	
7	(Sec. 2.2)	1/2	Capital recovery	
1 - 2 1 0	$(n,i,\mathbb{A}/\mathbb{A})\mathbb{A}=\mathbb{A}$	$\frac{1-\sqrt{i+1}}{i}=(n,i,A\backslash T)$	F/A Compound	
V V-V V	$(mi_*A/A)A = A$	$\frac{i}{1 - n(i+1)} = (n, i, 7/\hbar)$	amount A/F	
	(5.228)	1-u(t+1)	Sinking fund	
9t 9 1 t t 1 0	$(wir \mathcal{O}/d)\mathcal{O} = \mathcal{O}d$	$\frac{1 - ni - n(i+1)}{n(i+1)!} = (n,i,O/q)$	9/ ⁹ d	Arithmetic fnaiberD
	$(n.i.\partial/A)\partial = A$	$\frac{n}{1-^n(t+1)}-\frac{1}{i}=(n.i.D/A)$	Present	
	(Sec. 2.5)	$1 - {}^{n}(i+1) \qquad i = (n, i, O \setminus A)$ (Variation only)	D\ ₀ A mrotinU series	
(S+1) ¹ V (S+1) ¹ V (S+1) ¹ V	! ≠ 8	$\frac{8-i}{\left[\left(\frac{i+1}{\delta+1}\right)-1\right]^{1}V} = {}^{\delta}d$	S pue 1V/8d	ointemoed fneibard
	1 = 8	$\frac{1}{i+1} i V$	Present	
s d	(Sec. 2.6)	(Gradient and base A ₁)		