Chapitre: Cinématique

Marc Partensky

June 18, 2020

Rappels Généraux 1

Rappels

Solides indéformables $\Leftrightarrow \forall AetB \in S \left\| \overrightarrow{AB} \right\| = cst$

On associera un repère à chaque solide

1.2 **Définitions**

Soit A apparetenant à un solide S1 en mouvement par rapport à un repère $R_O(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$:

$$*\overrightarrow{V_{A/R_O}} = (\frac{d\overrightarrow{OA}}{dt})_{R_0}$$

car O est fixe, dans $R_OetAappartenantàS_1$

$$*\overrightarrow{\Gamma_{A \in S_1/R_0}} = (\frac{d}{dt}\overrightarrow{V_{A \in S_1/R_0}})_{R_0}$$

et par extension,

$$\overrightarrow{\Gamma_{A \in S_1/R_0}} = (\frac{d^2 \overrightarrow{OA}}{dt^2})_{R_0}$$

l'accélération est en ms²

2 Dérivation vectorielle

Soit \overrightarrow{u} de $R_0(\overrightarrow{x}, \overrightarrow{y}, \overrightarrow{z})$ (repèreorthonormédirect)

$$(\frac{d\vec{u}}{dt})_{R_1} = (\frac{d\vec{u}}{dt})_{R_0} = \overrightarrow{\Omega_{0/1}} \wedge \vec{u}$$

Comme: $\vec{u} \in R_0, (\frac{d\vec{u}}{dt})_{R_0} = \vec{0}$ avec $\overrightarrow{\Omega_{0/1}}$ Vecteur taux de rotation en rad/s

- $\rightarrow i la pour norme la dériv\'e e de la position angulaire entre les rep\`eres 0 et 1.$
- $\rightarrow ilest parallèle\`{a}l'axe autour du quelle rep\`{e}re R_0 tour ne autour du rep\`{e}re R_1.$
- $\rightarrow ilapoursenslerep\`ere(\vec{x_1},\vec{x_0},\overrightarrow{\Omega_{0/1}}), soitdirect.$