In [30]:

```
import os
import pandas as pd
import numpy as np
```

In [31]:

```
os.chdir("T:\\My Dir\\Downloads\\916e0d48-7-dataset\\dataset")
print(os.listdir())
test = pd.read_csv('test.csv')
train = pd.read_csv('train.csv')
```

['test.csv', 'train.csv']

In [32]:

1 test.head(2)

Out[32]:

	patient_id	name_of_drug	review_by_patient	drug_approved_by_UIC	number_of_times_prescr
0	163740	Mirtazapine	"I've tried a few antidepressants over th	28-Feb-12	
1	39293	Contrave	"Contrave combines drugs that were used for al	5-Mar-17	
4					

In [33]:

1 train.head(2)

Out[33]:

	patient_id	name_of_drug	use_case_for_drug	review_by_patient	effectiveness_rating	drug_a
0	206461	Valsartan	Left Ventricular Dysfunction	"It has no side effect, I take it in combinati	9	
1	95260	Guanfacine	ADHD	"My son is halfway through his fourth week of	8	
4						•

```
In [34]:
```

```
test.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10760 entries, 0 to 10759
Data columns (total 7 columns):
    Column
                                Non-Null Count Dtype
                                -----
0
    patient_id
                                10760 non-null int64
1
    name_of_drug
                                10760 non-null object
2
    review by patient
                                10760 non-null object
                                10760 non-null object
3
    drug_approved_by_UIC
    number_of_times_prescribed 10760 non-null
4
                                                int64
5
    use_case_for_drug
                                10760 non-null
                                                object
    effectiveness_rating
                                10760 non-null
dtypes: int64(3), object(4)
memory usage: 588.6+ KB
In [35]:
   train.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 32165 entries, 0 to 32164
Data columns (total 8 columns):
    Column
#
                                Non-Null Count Dtype
    _____
_ _ _
                                -----
                                                ----
    patient id
0
                                32165 non-null int64
    name_of_drug
1
                                32165 non-null object
2
    use_case_for_drug
                                32165 non-null object
    review_by_patient
 3
                                32165 non-null object
```

dtypes: float64(1), int64(3), object(4)

number_of_times_prescribed 32165 non-null int64

effectiveness_rating

drug_approved_by_UIC

memory usage: 2.0+ MB

base score

Merging text columns

In [36]:

4

5

6

7

```
train['review_by_patient'] = train['review_by_patient'] + train['use_case_for_drug'] +
  test['review_by_patient'] = test['review_by_patient'] + test['use_case_for_drug'] + test
3
4
  from gensim.parsing.preprocessing import preprocess documents
5
6
  t1 = preprocess_documents(train['review_by_patient'])
  t2 = preprocess_documents(test['review_by_patient'])
```

32165 non-null int64

32165 non-null object

32165 non-null float64

In [37]:

```
1 11 = []
 2 for i in t1:
    s1 = ''
 3
4
    for j in i:
       s1 = s1 + j + ' '
 5
 6
    11.append(s1)
7 | 12 = []
8
9
   for i in t2:
    s2 = ''
10
     for j in i:
11
       s2 = s2 + j + ' '
12
13
     12.append(s2)
14 train['review_by_patient'] = 11
   test['review_by_patient'] = 12
15
```

Tfidf for vectorizing the text column

In [38]:

```
from sklearn.feature_extraction.text import TfidfVectorizer

reg = TfidfVectorizer()
text = train['review_by_patient']
test_text = test['review_by_patient']
text_to_vector = reg.fit_transform(text)
test_text_to_vector = reg.transform(test_text)
Y = train['base_score']
```

Normalizing the train column

In [42]:

```
from numpy import linalg as LA
 2
   t = text_to_vector.toarray()
   l = [LA.norm(i) for i in t]
   for i in range(len(1)):
 6
 7
     for j in k:
       if l[i] == j:
8
9
         l[i] = k.index(j) + 1
10
  train['new column'] = 1
   X_train = train[['effectiveness_rating', 'number_of_times_prescribed', 'new_column']]
12 X_train
```

Out[42]:

	effectiveness_rating	number_of_times_prescribed	new_column
0	9	27	1.0
1	8	192	1.0
2	5	17	1.0
3	9	37	1.0
4	2	43	1.0
32160	9	89	1.0
32161	6	0	1.0
32162	9	25	1.0
32163	8	22	1.0
32164	2	35	1.0

32165 rows × 3 columns

In [43]:

```
1  k = []
2  for i in train['new_column']:
3    if i not in k:
4        k.append(i)
5    k
```

Out[43]:

```
[1.0,
0.9999999999999999,
1.00000000000000002,
0.999999999999999,
0.999999999999999,
1.00000000000000004,
0.999999999999999,
0.9999999999999994]
```

Normalizing the test column

In [44]:

Out[44]:

	effectiveness_rating	number_of_times_prescribed	new_column
0	10	22	4
1	9	35	1
2	4	13	1
3	7	21	1
4	2	44	1
10755	1	2	2
10756	1	18	1
10757	10	43	2
10758	8	7	1
10759	9	46	1

10760 rows × 3 columns

In [51]:

```
1  k = []
2  for i in test['new_column']:
3    if i not in k:
4        k.append(i)
5    k
```

Out[51]:

```
[4, 1, 2, 3, 5, 6, 7]
```

Model - GradientBoostingRegressor

In [52]:

```
from sklearn.ensemble import GradientBoostingRegressor

reg1 = GradientBoostingRegressor(max_depth = 8, n_estimators = 1400)
reg1.fit(X_train,Y)
reg1.feature_importances_

Out[52]:
array([0.49013426, 0.50986574, 0. ])

In [53]:
```

In [74]:

1 pred = reg1.predict(X_test)

```
import csv

with open('prediction_with_basescore.csv', 'w', newline='') as file:
    writer = csv.writer(file)
    writer.writerow(['patient_id','base_score'])
    for i in range(len(list(pred))):
        writer.writerow([test["patient_id"][i],pred[i]])
```

In [55]:

```
pred1 = reg1.predict(X_train)

from sklearn.metrics import r2_score

score = r2_score(Y,pred1)
score
```

Out[55]:

0.999999997791362

Q. use the input to predict the base score of a certain drug in a provided case.

In [75]:

```
1 result = pd.read_csv('prediction_with_basescore.csv')
2 result.head(11)
```

Out[75]:

	patient_id	base_score
0	163740	8.757196
1	39293	8.745033
2	208087	5.952282
3	23295	5.994917
4	97013	5.361564
5	213376	7.475084
6	79865	8.358950
7	27607	6.127480
8	60341	2.234841
9	141462	6.485981
10	50229	4.980475

In []:

1