TECHNOLOGY FUNDAMENTALS FOR BUSINESS ANALYTICS

Jason Kuruzovich

Agenda

- Lab 3
- Missing Data
- Recoding Data/Feature Creation
- Cross Validation
- Lab 5
- Introduction to Kaggle Scripts

Lab 3 Solutions

Missing Data

What are some reasons data might be missing?

Why might missing data be a problem?

What are some reasons data might be missing?

- Missing data can be random
 - Perhaps there is a field where people can put their income in, but it is optional
- Missing data can be linked to the missing value itself
 - Perhaps people with high or low income may be unwilling to report income data
- Missing data can be linked to other observed predictors
 - Demographics may lead people not to answer

Why might missing data be a problem?

"Missing data is a problem because nearly all standard statistical methods presume complete information for all the variables included in the analysis."

http://www.bu.edu/sph/files/2014/05/Marinatech-report.pdf

Missing Data Example

Happiness (DV)	Gender	Age	City	Location
9	M	30	Troy	NA
3	NA	31	Boston	Urban
2	F	23	NA	Country
5	M	NA	New York	Urban

For the above example, all records would be dropped if one did an analysis of happiness as a DV with the variety of other independent variables for common models like regression

Missing Data and Languages

- Languages have a specific way of encoding that data is missing
 - R <-NA is.na()</p>
 - Python (NaN or None) isnull()

How do we deal with missing data?

Simple Solutions (Ignores some data)

- Listwise deletion. Drop records from analysis with missing fields
 - Good: easy (most models will do automatically)
 - Bad: can't generate predictions where missing, loss of much data
- Create alternate model
 - Good: easy
 - Bad: may need multiple models & there may be some information in missing data that is ignored

How do we deal with missing data?

Data Imputation

 Mean imputation. Easiest solution is to replace each missing value with the mean of the observed value.

Advanced Techniques

 Conditional mean imputation, multiple imputations, & maximum likelihood models use data of known variables to predict the appropriate variable for the missing data

How do we deal with missing data?

- Missing data can limit the ability to incorporate useful data into predictive models
- When doing scientific analysis, there are higher hurdles and one can't do it to improve results
- In applied analytics, we can more easily try data imputation techniques if it enables us to do prediction

Recoding Data/Feature Extraction

What is a feature?

Feature Extraction in Data Mining

- We have talked about standard data types (string, integer, factor, etc.)
- However, many ways to extract/create new features from data
- Features are variables likely to be meaningful for data modeling
- Feature extraction and feature selection (which features to include in model) go together

What are we looking for in "good features"?

[When we perform feature selection, which will we select?]

Is "name" likely to be a good feature in the titanic dataset? Why?

What can we get out of the name field? (Take some time and just open the CSV in Excel)

Feature Selection

- Redundant or irrelevant features can often be disregarded from analyses
- We want encodings of the data that predict the outcome of interest

For a long time, batting average was the most common feature of interest

Slugging percentage represented a new feature

https://en.wikipedia.
org/wiki/Slugging_percen

 Who are the first onto the lifeboats of the Titanic?

The age variable could be recoded to the following

This could be integer or.

- child = 1 if age <18
- child = 0 if age >=18

factor variable [let's call it stage]

- stage = "child" if age <18
- stage = "adult" if age >=18

The age variable could be recoded to the following

Factor variable is more flexible to handle multiple categories

- stage = "infant" if age <= 2
- stage = "child" if age >2 and age <=12"
- stage = "teen" if age >12 and <18"
- stage = "adult" if age >=18

Modeling Sales -> Imagine we want

- Date ->
 - Year (factor)
 - Month (factor)
 - Day of week (factor)
 - Weekend (binary)
 - End of month (binary)
 - Week in month (factor)

For a long time, batting average was the most common feature of interest

Slugging percentage represented a new feature

https://en.wikipedia.
org/wiki/Slugging_percen

Factor Variables in R

- R takes care of the process of dummy coding variables automatically
- Dummy coding is necessary for categorical and (usually) ordinal variables
- Assigns a binary indicator (dummy variable) to indicate group membership
- For n exclusive categories (i.e., you can only be member of 1 category), you need n-1 dummy variables
- Categories << N preferred

Dummy Coding Example

Color	C1	C2
Red	1	0
Blue	0	1
Red	1	0
Yellow	0	0
Yellow	0	0
Blue		

Feature Extraction in Unstructured Data

Generating Features...

Conditional statements

Subset/recode string

In either case, regular expressions can be useful

Recoding with Regular Expressions

- Regular expressions allow us to substitute based on particular patterns
- Works in a variety of languages (Python/R)
- For example, we may want to remove the cabin number and just use the area code of the ship
 - Example: A343 should be recoded to A
 - We can substitute a blank space for all numbers

Regular Expressions

- . The dot matches any single character.
- \n Matches a newline character (or CR+LF combination).
- \t Matches a tab (ASCII 9).
- \d Matches a digit [0-9].
- \D Matches a non-digit.
- \w Matches an alphanumberic character.
- \W Matches a non-alphanumberic character.
- \s Matches a whitespace character.
- \S Matches a non-whitespace character.
- \ Use \ to escape special characters. For example, \. matches a dot, and \\ matches a backslash.
- ^ Match at the beginning of the input string.
- \$ Match at the end of the input string.
- [0-9] All numbers
- [a-z] All letters

Regular Expressions

- Return true if a pattern is found in a string, for inclusion as a separate variable
- Substitute for a value in a string, to combine like entities or to remove unnecessary ones

Cross Validation/Sampling Procedure

Sampling Procedures [Cross Validation]

- Used to prevent overfitting of model and/or improving fit
- Many Different Types
 - Holdout Method
 - K-fold Cross Validation
 - Repeated random sub-sampling validation (small n)
 - Leave-one-out cross-validation (small n)

2 Fold Cross Validation/Holdout Method

- For each fold, we randomly assign data points to two sets d_0 and d_1 , so that both sets are equal size (this is usually implemented by shuffling the data array and then splitting it in two). We then train on d_0 and test on d_1 , followed by training on d_1 and testing on d_0 .
- This has the advantage that our training and test sets are both large, and each data point is used for both training and validation on each fold.

Example: 2 Fold Cross Validation/Holdout Method

Titanic Dataset (Goal is to predict survival)

- Split sample randomly [DF₁, DF₂]
- Using DF₁ train survival model use the model to predict survival in the DF₁ sample
- Using DF₂ train survival model use the model to predict survival in the DF₁ sample

K-Fold Cross Validation

- Data divided into k subsets
- One of the subsets is the test set, the other k-1 sets are the training set
- The average error across k trials is computed

5 Fold Cross Validation

We can increase K to N

Leave-one-out cross-validation

Cross Validation

- 2-fold, 5-fold, N-fold cross validation
- Just different degrees of the same process
- Allows you to run models on subsets of the population

Sampling Procedures [Cross Validation]

- Used to prevent overfitting of model
- Many Different Types
 - Holdout Method
 - K-fold Cross Validation
 - Repeated random sub-sampling validation (small n)
 - Leave-one-out cross-validation (small n)

2 Fold Cross Validation/Holdout Method

- For each fold, we randomly assign data points to two sets d_0 and d_1 , so that both sets are equal size (this is usually implemented by shuffling the data array and then splitting it in two). We then train on d_0 and test on d_1 , followed by training on d_1 and testing on d_0 .
- This has the advantage that our training and test sets are both large, and each data point is used for both training and validation on each fold.

5 Fold Cross Validation

Leave-one-out cross-validation

Sampling Procedures [Cross Validation]

- Used to prevent overfitting of model
- Many Different Types
 - Holdout Method
 - K-fold Cross Validation
 - Repeated random sub-sampling validation (small n)
 - Leave-one-out cross-validation (small n)

2 Fold Cross Validation/Holdout Method

- For each fold, we randomly assign data points to two sets d_0 and d_1 , so that both sets are equal size (this is usually implemented by shuffling the data array and then splitting it in two). We then train on d_0 and test on d_1 , followed by training on d_1 and testing on d_0 .
- This has the advantage that our training and test sets are both large, and each data point is used for both training and validation on each fold.

5 Fold Cross Validation

Leave-one-out cross-validation

Lab 5

Kaggle

Post a "note" in Lab 5 with code for feature creation