Instructor:	Student Name:
Asst. Prof. Onur Kurt	
	ID:

ITU

Date:

EEF 211E: Basics of Electrical Circuits (Fall 2022)

Homework #3

Grading Policy:

- You must submit your homework assignment to the course teaching assistant (TA) before its due date. Late homework will not be accepted/graded.
- Homework should be written clearly and legibly. Your answers should show step-by-step solution of each question. Messy and illegible homework may not be graded.
- You must not ask for answers directly from any aide.
- Academic dishonesty is unacceptable. Plagiarism and cheating on the homework assignment will result in a zero grade.

Question 1-) For the circuit given in Figure below, employ superposition to determine the value of V_0 .

Question 2-) For the circuit given in Figure below, find the Thevenin equivalent between terminals a and b.

Question 3-) Determine i_0 and v_0 in the circuit shown below when R_0 is a resistor whose values are from the common standard resistor values table such that $100 \Omega \le R_0 \le 200 \Omega$. Here, ignore the tolerances of resistor values, just use the nominal resistance values. (Hint: Find the Thevenin or Norton equivalent circuit with respect to the terminals of R_0 and use it in the simulation process.)

	Res	sistors (5°	% toleran	$ce)[\Omega]$	
10	100	1.0 k	10k	100k	1.0 M
	120	1.2 k	12 k	120 k	
15	150	1.5 k	15 k	150 k	1.5 M
	180	1.8 k	18 k	180 k	
22	220	2.2 k	22 k	220 k	2.2 M
	270	2.7 k	27 k	270 k	
33	330	3.3 k	33 k	330 k	3.3 M
	390	3.9 k	39 k	390 k	
47	470	4.7 k	47 k	470 k	4.7 M
	560	5.6 k	56 k	560 k	
68	680	6.8 k	68 k	680 k	6.8 M