Message Queuing Telemetry Transport

Implementierung einer IoT-Anwendung auf Basis von MQTT

Maximilian Gaul, Lukas Dorner

01 07 2019

Paper

Internet of Things: A Survey on Enabling Technologies, Protocols, and Applications

- Idee, IoT-Projekte in 5 Layer aufzuteilen
 - Objects Layer: Physikalischer Sensoren und Aktuatoren, die verschiedene Funktionen übernehmen
 - Object Abstraction Layer: Transport der Daten zum n\u00e4chsten Layer, z.B. \u00fcber WiFi, Bluetooth
 - Service Management Layer: Verarbeitet und abstrahiert empfangene Daten bzw. die Hardwareplattform
 - Application Layer: Stellt den Anwendern die Daten zur Verfügung, die sie benötigen (z.B. Temperaturdaten)
 - Business Layer: Verwaltung der gesamten IoT-Applikation, Verwendung der Daten für z.B. Big Data

Projektidee im IoT-Bereich

WiFi?, Bluetooth?, MQTT?, Temperatursensor?

Viele verschiedene Hardware- und Protokollkombinationen denkbar

IoT Elements		Samples
Identification	Naming	EPC, uCode
	Addressing	IPv4, IPv6
Sensing		Smart Sensors, Wearable sensing devices, Embedded sensors, Actuators, RFID tag
Communication		RFID, NFC, UWB, Bluetooth, BLE, IEEE 802.15.4, Z-Wave, WiFi, WiFiDirect, , LTE-A
Computation	Hardware	SmartThings, Arduino, Phidgets, Intel Galileo, Raspberry Pi, Gadgeteer, BeagleBone, Cubieboard, Smart Phones
	Software	OS (Contiki, TinyOS, LiteOS, Riot OS, Android); Cloud (Nimbits, Hadoop, etc.)
Service		Identity-related (shipping), Information Aggregation (smart grid), Collaborative- Aware (smart home), Ubiquitous (smart city)
Semantic		RDF, OWL, EXI

Projektidee im IoT-Bereich

WiFi, MQTT, Temperatursensor

ESP8266 + BMP280

Raspberry Pi + Mosquitto

Projektidee im IoT-Bereich

WiFi, MQTT, Temperatursensor

- 32-Bit RISC-Controller, unterstützt 802.11 b/g/n mit bis zu 72.2Mbps
- 96 KByte RAM, 4 MB Flash
- Soft-I2C Anbindung an BMP280

- Temperatur- und Drucksensor
- 20-Bit Auflösung
- I2C-Interface

- Raspbian OS
- Mosquitto MQTT Broker & Subscriber

Implementierung von MQTT-CONNECT & MQTT-PUBLISH auf ESP8266

ESP8266 verbindet sich mit MQTT-CONNECT zum Mosquitto-Broker auf Raspi

- Protokol-Name und Version
- Art der Verbindung
- Keep-Alive
- Client ID

```
✓ MQ Telemetry Transport Protocol, Connect Command

→ Header Flags: 0x10, Message Type: Connect Command
       0001 .... = Message Type: Connect Command (1)
       .... 0000 = Reserved: 0
    Msg Len: 25
    Protocol Name Length: 4
    Protocol Name: MQTT
    Version: MOTT v3.1.1 (4)
  0... = User Name Flag: Not set
       .0.. .... = Password Flag: Not set
       ..0. .... = Will Retain: Not set
       ...0 0... = OoS Level: At most once delivery (Fire and Forget) (0)
       .... .0.. = Will Flag: Not set
       .... ..1. = Clean Session Flag: Set
       .... ...0 = (Reserved): Not set
    Keep Alive: 240
    Client ID Length: 13
    Client ID: ESP8266NETZE2
```

Implementierung von MQTT-CONNECT & MQTT-PUBLISH auf ESP8266

ESP8266 sendet Temperaturdaten mit MQTT-PUBLISH an Mosquitto-Broker auf Raspi

- QoS-Flags
- Topic
- Payload (Temperaturdaten)

Raspi & Mosquitto

Raspi & Mosquitto

Demo