Ферма + Coq: ВТФ из глобальной нормализации через параметр покрытия

Мы представляем прочтение рукописи Г. Л. Деденко в терминах глобальной нормализаиии. Постулируется единый вещественный множитель o > 1, обслуживающий все предполагаемые контрпримеры к уравнению Ферма

$$x^n + y^n = z^n \qquad (n > 2),$$

и связанный с показателем степени п через тождество покрытия

$$pow(o, n) = 2 \cdot INR(n).$$

В рамках принципа максимального покрытия (тот же самый о покрывает в точности $n \in \{1,2\}$ и никакие другие показатели), доказательство показывает, что o=2, и что $\mathrm{pow}(2,n)=2\cdot\mathrm{INR}(n)$ может выполняться только для $n\in\{1,2\}$. Следовательно, любое предполагаемое решение с n>2 приводит к противоречию, и Великая теорема Ферма (ВТФ) доказана.

Что формализовано в Coq.

• Предикат покрытия:

Definition covers_with (o:R) (n:nat) := pow o n = 2 * INR n.

- Гипотезы глобальной нормализации (как допущения секции):
 - normalization_gt1: 1 < o.
 - maximum_coverage: covers_with(o,1) и covers_with(o,2), и $\forall n$, covers with $(o,n) \Rightarrow n \in \{1,2\}$.
 - normalization_equation: если n > 2 и $x^n + y^n = z^n$ в \mathbb{N} , то covers with(o, n).
- Следствия в Сод:
 - normalization_parameter_is_two: o = 2 (из pow(o, 1) = 2).
 - normalization_forces_small_exponent: нет решений для n>2.
- Конкретная реализация o=2: covers_two_one, covers_two_two, и covers_two_only_small доказывают, что o=2 действительно удовлетворяет максимальному покрытию.
- Связки и рост: covers_two_nat, INR_two_mul_nat, и леммы pow2_gt_linear, pow3_gt_linear, pow_eq_linear_positive устанавливают, что $2^n=2n$ влечёт $n\in\{1,2\}$.
- Чётность и параметризация (только мотивация): над \mathbb{R} и \mathbb{Z} , sum_diff_from_parameters_R/Z, parity_condition_Z показывают чётность $z \pm x$ для $z := m^n + p^n$, $x := m^n p^n$; это не используется в финальном противоречии.

Мотивация и доказательство. Точка зрения с параметром покрытия включает в себя более раннюю формулировку с явным основанием. Хотя поведение $f(n) = (2n)^{1/n}$ мотивирует, почему o=2 является выбором «полного покрытия», доказательство опирается только на формальные гипотезы выше и элементарные леммы о росте, а не на априорный постулат $\Gamma H(2)$.

Рис. 1: Формальный конвейер: глобальная нормализация $(o > 1) \Rightarrow \mathrm{BT}\Phi$ (Coq).

Пакет включает:

- FLT.v: Разработка на Coq (без Admitted); доказательства компилируются.
- Блок-схема рассуждений (рисунок выше).
- Пояснительные PDF (EN/RU), обновлённые до прочтения с параметром покрытия.

Для дальнейшего чтения:

- Реконструкция доказательства Ферма (ResearchGate) RU
- Формализация и обсуждение EN