CS1200 Module-1: Discrete Structures Z: set of integers 3
Quick Recap: P, 9 \(\mathbb{Z} \) and p \(\tau \). Se \(\mathbb{Z} \) We say that \(\mathbb{P} \) divides \(9 \) if there is some \(\mathbb{N} \) and ways to say some \(\mathbb{N} \)
Defn: A positive integer, greater than 1, is Called a prime number (or just prime) Op divides 9 Op divides 9 Op is divisible by P
Examples: 2,3,5,7,,17,19,,29,31, Examples: 2,3,5,7,,17,19,,29,31, (4) o is a multiple of P
Defn: A pair of primes P & q (where P(q)) is called [twin primes] if q-P=2. Suepds a proof
Theorem: There are infinitely many primes. (Module-2)
NO ONE Knows how to prove this Certification (French mathematician)
Frother fascinating conjecture about primes: Groldbach's Conjecture: Every even positive integer, greater than 2, is the sum of two (not necessarily distinct) primes. (Rosen 695)
(Rosen 264) (Rosen 695) (Rosen 695) (ITOT-1783) (ITOT-1783) (ITOT-1783) (ITOT-1783) (ITOT-1783)
proved by Harald le 1 positive in 2013 Conjectured that every odd integer (75) Sum of two primes then lis sum of 3 primes This would be true.

CS1200 Module-1: Discrete Structures
So far, we have seen a theorem and two conjectures— (without proof) (which may or may NOT be) true
but all of them are about prime numbers, and more generally about natural numbers.
Are there any other interesting theorems (conjectures)
YES! MANY! Are they all about natural numbers? NO.
To discuss other theorems (conjectures (NOT about natural numbers), we need other mathematical creatures
Sots & Relations of objects. Scalled elements/members
We have discuss a couple of sets so far: N natural #s Z integers
We have also discussed some subsets of IN:
D set of prime numbers = {2,3,5,7,}
C:= set of composite numbers = {4,6,8,9,10,}
A set- A is a subset Note that PCIN and CEIN. of a set B if
every element of A Diagram is an element of B. Venn Diagram Venn Diagram Venn Diagram Answer: Just 0 & 1.

CS1200 Module-1: Discrete Structures Observe that P and C have NO common element. Two sets A and B are disjoint if they have NO common element In general, two sets may have common elements. A B depends on in depends on what You care about Swmon Example: $S:=\{0,3,6,9,12,15,...\} \rightarrow \text{all multiples}$ elements T:= {0,4,8,12,16,20,24,...} -> all multiples SnT:= Observe that S& Thave common 80,12,24, elements - for example: 0, 12, 24, Question: A, B: sets where two (or more) Definition what does The Intersection of A and B, denoted by ANB, it mean is the set that contains those elements which are members of both A and B. for two sets to be Answer: It should be "empty", right? disjoint? Notation: Ø OR {}: EMPTY SET/NULL SET JAR & Bare disjoint, what Two sets A&B are Wisjoint if ANB=0. can we say about their intersection?

CS1200 Module-1: Discrete Structures	6
Back to our example: S:= {0,3,6,9,12,15	-,} ->all nultiples of 3 (in N)
T:= {0,4, 8,12,16,2	0,24,} > all multiples
S/ T-S	In our example,
S S-T SNT T-S	the universe (U) is N.
Question: What are some other sets that we can al	serve in the above
Venn Diagram?	ultiples of 4 (in IN)
either	es of 3
OR are down or (or of both)	10 10 10
Question: How should are denote all of Intuitively it makes sense to use:	(1) S-T SIT (2) T-S TIS
The union of A and B, denoted by AUB, is the set that contains those elements which are members of A or members of both).	3 StT? Makes sense definitely, but we will Not use t Instead [SUT].
OK MONDERS of D (or memocis of said	

CS1200 Module-1: Discrete Structures observable Question: Have we wissed and other sets in the example Venn Diaglam! Answer: YES (1) Natural numbers that are NOT multiples of 3 (2) Natural numbers that are NOT multiples of 4 Question: How should we denote these sets? Answer: We can use set difference, right? Let's write down some definitions: (eyes solling emoji) Set Difference >I find this confusing! As per Rosen: difference of A and B, denoted by A-B (or A \B), is the set containing those elements that are in A I will generally say "A minus B".

w.r.t. Complement of a set (wieth respect to a given universe) A: some set (subset of U) The Complement of A (w. r.t. U), denoted by A, is the set U-A. [one of two mutually leting one of the meanings: counterpart parts)