哈工大 2006 年秋季学期

《集合论与图论》试题

本试题满分90,平时作业分满分10分。

一、(10分,每小题1分)判断下列各命题真伪(真命题打"√	"号,假命题	打"×"号):
1. 从{1, 2, 3}到{4, 5}共有9个不同的映射。	()
2. 从{1, 2, 3}到{4, 5}共有5个不同的满射。	()
3. 从{4,5}到{1,2,3}共3个不同的单射。	()
4. 集合{1, 2,, 10}上共有 2 ¹⁰⁰ 个不同的二元关系。	()
5. 如果 A 为可数集,则 2 ^A 也是可数集合。	()
6. 欧拉图中没有割点。	()
7. 有向图的每一条弧必在某个强支中。	()
8. P为正整数, Kp 的顶点连通度为 P-1。	()
9. (P, P) 连通图至少有 2 个生成树。	()
10. 每个有 2 个支的不连通图, 若每个顶点的度均大于或等于	2,则该图至/	少有2个圈。
	()
二、(20分,每小题2分)计算题。对每一小题给出计算结果	:	
1. {1,2, ···, n}上有多少个反自反且对称的二元关系?	()
(122156780)		
2. 把置换 (123456789) 分解成循环置换的乘积。	()
(5/9413826)		
3. 计算下面两个图 G_1 和 G_2 的色数。	()
G1: G2:		
(答: G ₁ 的色数为,	G_2 的色数为)
<u> </u>		
4. 设 X 为集合, R 为 X 上的偏序关系,计算 $\bigcup R^i$ 等于什么。	, ()
i=1		
5. 求下面的有向图 D 的邻接矩阵和可达矩阵。		
D=:	()
6. 一个有向图 $D=(V, A)$ 满足什么条件是 V 到 V 的一个映射的	的图?()
7. P个顶点的无向连通图 G 的邻接矩阵中至少有多少个 1?	()
8. 设 X 为 n 个元素的集合, X 上有多少个二元运算?	()
9. 9个学生,每个学生向其他学生中的3个学生各送一张贺年	年卡。确定能	否使每个学

生收到的卡均来自其送过卡的相同人? 为什么?

10. 某次会议有 100 人参加,每人可以是诚实的,也可能是虚伪的。已经知道下面两项事实:(1) 这 100 人中至少有一人是诚实的;(2) 任两人中至少有一人是虚伪的。问这 100 人中有多少人是诚实的?

三、(12分,每小题6分)

1. 设 A、B、C 和 D 都为非空集合。证明:

 $(A \times C) \setminus (B \times D) = [(A \mid B) \times (C \setminus D)] \cup [(A \setminus B) \times C]$

2. 设 X 为有穷集合, $g,f:X\to X$,g of $=I_x$ 。证明:f 和 g 都为——对应且 $g=f^{-1}$ 。 举例说明,当 X 为无穷集时,上述结论不成立。

四、(12分,每小题6分)

- 1. 证明:每个平面图G = (V, E),如果G是偶图,则 $\exists v \in V$,使得 $\deg v \le 3$ 。
- 2. 设T = (V, A) 为具有 P 个顶点的二元树,T 有 n_2 个出度为 2 的顶点。求 T 的叶子数

 n_0 •

五、(12分,每小题6分)

- 1. 下图是否是一个哈密顿图?证明你的结论。
- 2. 设G = (V, E) 为一个连通图,e 为 G 的一条边。证明:e 是 G 的桥当且仅当 e 在 G 的每个生成树中。

六、(12分,每小题6分)

- 1. $\mathcal{Y} X = \{a, b, c, d\}, R = \{(a, b), (b, c), (c, a)\}, \mathcal{X} \mathcal{R}^+ \mathcal{R}^- \mathcal{R}$
- 2. 给出等价关系、等价类的定义。等价关系与集合的划分之间有何联系? 七、(12分,每小题6分)
- 1. 设 $N = \{1, 2, 3, L\}$ 。用对角线法证明 $\{f \mid f: N \rightarrow \{0, 1\}\}$ 是不可数集合。
- 2. 证明: 平面图的欧拉公式。

哈工大 2006 年科季学期

《集合论与图论》试题参考答案

- 一、1、5、6、7、9为假; 4、8、10题为真。
- $\equiv 1.2^{\frac{n(n-1)}{2}}$; 2. (15) (2 7 8)(3 9 6); 3. 3, 2; 4. R;

 $6. \forall v \in V$, od(v) = 1 ; 7. 2(P-1) ; 8. n^{n^2} ; 9. 否,因为不存在 9(奇数)个项点的 3—正则图;10. 1人诚实

三、1.[证] 设 $(x,y) \in (A \times C) \setminus (B \times D)$,则 $(x,y) \in A \times C$,且 $(x,y) \in B \times D$,于是, $x \in A$ 、 $y \in C$ 、 $x \in B$ 但 $y \in D$ 或 $x \in B$ 或 $y \in D$ 。 if $x \in B$,则 $x \in A \setminus B$, $y \in C$,故 $(x,y) \in (A \setminus B) \times C \subseteq$ 右 边 ; if $y \in D$,则 $y \in C$ 。 若 $x \in B$,则 $(x,y) \in (A \setminus B) \times C \subseteq A$ 边 ; if $y \in D$,则 $y \in C$ 。 若 $x \in B$,则

反之,设(x,y) \in 右。if (x,y) \in $(AI B) <math>\times (C \setminus D)$,则 $x \in A$, $x \in B$, $y \in C$, $y \in D$, $(x,y) \in A \times C$, $(x,y) \in B \times D$, $(x,y) \in \Xi$; if $(x,y) \in (A \setminus B) \times C$,则 $x \in A$, $x \in B$, $y \in C$,故 $(x,y) \in A \times C$,且 $(x,y) \in B \times D$, $(x,y) \in \Xi$ 。

2. [证] 恒等映射 I_x 是一一对应,也是单射,也是满射。由 $gof = I_x$,故 f 是单射,g 是满射。又 $|X|<\infty$,故 f 和 g 均为一一对应,从而 $g=f^{-1}$ 。

令 $X = \{1,2,3,L\}, f,g:N \to N$ 。 定义如下: f(n) = n+1, $\forall n \in N$; g(1) = 1, g(n) = n-1, n > 1 。 于是, gof(1) = 1, gof(n) = g(n+1) = n , n > 1 。 所以 $gof = I_x$, 但 f = g 均不是一一对应, $g \neq f^{-1}$ 。

四、1.[证] 如果结论不成立,那么 $\forall v \in V$, $\deg v \geq 4$,从而 $4p \leq 2q$ 。又偶图中无三角形,故每个面上至少4条边。于是 $4f \leq 2q$,从而 $p+f \leq q$,矛盾。

2.[证] 设出度为 1 的顶点数为 n_1 ,则 $p=n_2+n_1+n_0$ 入度之和为 p-1,出度之和为 $2n_2+n_1$,于是 $n_2+n_1+n_0-1=2n_2+n_1$,从而 $n_0=n_2+1$ 。

五、1. 该图不是哈密顿图。如果是哈氏图,则有哈圈 C。于是,边 28 在 C 上,否则 $6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 6$ 为 C 的边构成的圈,不可能;但 28 在 C 上,则 23、89 不在 C 上,从而 43、39 在 C 上。411 不在 C 上,119 在 C 上,9 有三边在 C 上矛盾。

或如下证明: 去掉点 2, 4, 6, 9 四个点, 有 5 个分支, 故不是哈氏图。

2. \Rightarrow 否则 G 有一生成树不含边 e,但 G-e 不连通,矛盾。 \leftarrow 设边 e 在 G 的每个生成树中,则 G-e 无生成树,从而不连通。

 \uparrow 1. $R^+ = \{(a,b), (b,c), (c,c), (a,c), (b,a)(c,b), (a,a), (b,b), (c,c)\}$

2. X 上二元关系 \cong 如果是自反的,对称且传递的,则称 \cong 为 X 上等价关系。 $\forall x \in X$,集合 $[x] = \{y \mid y \in X, x \cong y\}$ 称 \cong 的一个等价类。 X 上每个等价关系的所有等价类之集是 X 的一个划分,X 的每个划分确定 X 上一个等价关系,其等价类之集为该划分。

七、1.[证]如果从 N 到{0, 1}的所有映射之集可数,则可排成无重复项的无穷序列 f_1, f_2, f_3 ,L 。每个函数 f_i 确定了一个 0,1 序列 a_{i1}, a_{i2}, a_{i3} ,L 。构造序列 b_1, b_2, b_3 ,L , $b_i = 1$, if $a_{ii} = 0$; 否则 $b_i = 0$ 。该序列对应的函数 $f(i) = b_i$, $i \in N$,不为 f_1, f_2 ,L 任一个,矛盾。

2. [证] if f = 1,则为树,结论成立。if 对 $f \ge 1$ 时结论成立,则设 G 有 f + 1 个面。从 G 中去掉一个内部面上一条边得 G'。在 G'中有 p - (q - 1) + (f - 1) = 2, p - q + f = 2。

五、2.的简单证明: if 存在哈密顿圈,则(a)28 不在 C 上,那么 6、7、8、9、10、6 是 C 上的圈,不可能; (b)28 在 C 上,则 $23 \in C$, $89 \in C$, $611 \in C$, \therefore 119 、 39 、 $109 \in C$ 矛盾。