

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

Amendments to the Claims:

This listing of claims will replace all prior versions and listing of claims in this application.

Listing of Claims:

1. (Original) A process for converting oxygenate to olefins which comprises:

contacting a feedstock comprising oxygenate with a catalyst comprising a molecular sieve under conditions effective to produce a vaporous product comprising said olefins, water and unreacted oxygenate;

condensing said vaporous product to provide a liquid stream rich in said water and unreacted oxygenate, and an olefins-rich vapor stream;

introducing at least part of said liquid stream to a feed tray in a fractionation tower which provides an oxygenate-rich overhead product and a water-rich liquid bottoms product;

providing a liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate above said feed tray; and

passing said olefins-rich vapor stream through a recovery train to recover at least some of said olefins.

2. (Original) The process of claim 1 wherein said oxygenate is selected from the group consisting of methanol and ethanol.

3. (Original) The process of claim 1 wherein said oxygenate comprises methanol.

4. (Original) The process of claim 1 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is introduced at more than one level above said feed tray.

5. (Original) The process of claim 1 wherein at least two liquid, oxygenate-rich streams comprising at least about 20 wt% oxygenate, are introduced above said feed tray.

6. (Original) The process of claim 5 wherein said at least two liquid, oxygenate-rich streams comprising at least about 20 wt% oxygenate, are each introduced at a separate level above said feed tray.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

7. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises liquid.

8. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises vapor.

9. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises liquid and vapor.

10. (Original) The process of claim 3 wherein at least a portion of said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is said feedstock.

11. (Original) The process of claim 3 wherein at least a portion of said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is derived from the bottoms product of a methanol absorber tower.

12. (Original) The process of claim 11 wherein liquid methanol feedstock is introduced to the process by addition to said methanol absorber tower.

13. (Original) The process of claim 12 wherein said liquid methanol feedstock comprises at least about 95 wt% methanol.

14. (Original) The process of claim 12 wherein said liquid methanol feedstock comprises at least about 99 wt% methanol.

15. (Original) The process of claim 3 wherein at least a portion of said liquid, oxygenate- rich stream comprising at least about 20 wt% oxygenate is derived from the bottoms product of a liquid-liquid absorber.

16. (Original) The process of claim 15 wherein a first cut fractionating tower, which treats olefins-rich overhead derived from a methanol absorber tower, provides i) an olefins-rich overhead stream and ii) a methanol-rich bottoms stream which is directed to said liquid-liquid absorber.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

-
17. (Original) The process of claim 15 wherein wash water is added to said liquid-liquid absorber.
18. (Original) The process of claim 3 which further comprises treating said olefins-rich overhead from said condenser in at least one suction drum to remove liquid from said olefins-rich overhead which liquid is directed to said fractionation tower above said feed tray.
19. (Original) The process of claim 18 which further comprises compressing said olefins-rich overhead taken from said suction drum.
20. (Original) The process of claim 19 which further comprises treating said compressed olefins-rich overhead in an additional suction drum to remove liquid from said olefins-rich overhead which liquid is directed to an upstream suction drum.
21. (Original) The process of claim 20 which further comprises compressing said olefins-rich overhead taken from said additional suction drum.
22. (Original) The process of claim 21 which further comprises introducing said compressed olefins-rich overhead taken from said additional suction drum to a discharge drum whose olefins-rich overhead is directed to a methanol absorber and whose oxygenate-rich bottoms are directed to said additional suction drum.
23. (Original) The process of claim 11 wherein said bottoms product of said methanol absorber tower is directed above said feed tray in said fractionation tower.
24. (Original) The process of claim 11 wherein said bottoms product of a methanol absorber tower is directed to a suction drum whose bottoms are directed above said feed tray in said fractionation tower.
25. (Original) The process of claim 1 wherein said condenser is selected from the group consisting of quench tower, heat exchanger, flash drum, and primary fractionator.
26. (Original) The process of claim 1 wherein said condenser is a quench tower.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

27. (Original) The process of claim 1 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is provided as reflux above said feed tray.
28. (Original) The process of claim 1 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is provided above said feed tray to a reflux drum associated with said fractionation tower from which reflux drum an oxygenate-rich overhead product stream is taken.
29. (Original) The process of claim 28 wherein said feedstock comprising oxygenate comprises oxygenate-rich overhead product stream taken from said reflux drum.
30. (Original) The process of claim 1 wherein said feedstock comprising oxygenate comprises said oxygenate-rich overhead product from said fractionation tower.
31. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from the fractionation tower is taken as a liquid drawoff from any tray above said feed tray.
32. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from the fractionation tower is taken as a vapor drawoff from any tray above said feed tray.
33. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from the fractionation tower is taken as a liquid from a downstream reflux drum.
34. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from the fractionation tower is taken as a vapor from a downstream reflux drum.
35. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from the fractionation tower is taken as a liquid and vapor from a downstream reflux drum.
36. (Original) The process of claim 1 wherein at least one of the group consisting of a) at least one vapor oxygenate-rich overhead product and b) at least one liquid oxygenate-rich overhead product, is taken from said fractionation tower.
37. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from said fractionation tower is used as fuel.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

38. (Original) The process of claim 1 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate comprises liquid blowdown from a vaporizer treating said feedstock prior to said contacting of said feedstock.

39. (Original) The process of claim 1 wherein said fractionation tower comprises a condenser which is heat integrated with a vaporizer for said feedstock.

40. (Original) The process of claim 1 wherein said oxygenate-rich overhead product from said fractionation tower is contacted with said catalyst prior to said contacting with feedstock under conditions sufficient to increase the carbon content of said catalyst.

41. (Original) The process of claim 1 wherein said water-rich liquid bottoms product contains at least about 99 wt% water.

42. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains no more than about 50 wt% water.

43. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains no more than about 25 wt% water.

44. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains no more than about 15 wt% water.

45. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains no more than about 10 wt% water.

46. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains at least about 25 wt% methanol plus other oxygenates.

47. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains at least about 50 wt% methanol plus other oxygenates.

48. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains at least about 75 wt% methanol plus other oxygenates.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

49. (Original) The process of claim 1 wherein said oxygenate-rich overhead product contains at least about 90 wt% methanol plus other oxygenates.

50. (Original) The process of claim 40 wherein at least about 10 wt% of said oxygenate-rich overhead product comprises oxygenates other than methanol.

51. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises liquid.

52. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises vapor.

53. (Original) The process of claim 1 wherein said oxygenate-rich overhead product comprises liquid and vapor.

54. (Original) The process of claim 1 wherein said fractionation tower comprises packing.

55. (Original) The process of claim 1 wherein said fractionation tower comprises a fixed number of actual stages ranging from a condenser at the top as the first stage to a reboiler at the bottom as the last stage.

56. (Original) The process of claim 55 wherein said feed tray is located at about the middle of said actual stages.

57. (Original) The process of claim 56 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is introduced at or above the actual stage corresponding to about 60% wherein the first stage corresponds to about 100% and the last stage corresponds to about 0% of the actual stage position.

58. (Original) The process of claim 56 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is introduced at or above the actual stage corresponding to about 80% wherein the first stage corresponds to about 100% and the last stage corresponds to about 0% of the actual stage position.

Appl. No. 10/720,505
Atty. Docket: 2003B127
Amendment dated June 19, 2006
Reply to Office Action dated March 22, 2006

59. (Original) The process of claim 56 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is introduced at or above the actual stage corresponding to about 90% wherein the first stage corresponds to about 100% and the last stage corresponds to about 0% of the actual stage position.

60. (Original) The process of claim 56 wherein said liquid, oxygenate-rich stream comprising at least about 20 wt% oxygenate is introduced at or above the actual stage corresponding to about 96% wherein the first stage corresponds to about 100% and the last stage corresponds to about 0% of the actual stage position.

61. (Original) The process of claim 55 wherein said number of actual stages ranges from about 20 to about 100.

62. (Original) The process of claim 55 wherein said number of actual stages ranges from about 40 to about 60.

63.-106. (Withdrawn)