Chapitre 5 : Premières notions de fonction

Contenus	Capacités attendues
• Fonctions réelles définies sur un intervalle	• Comparer $f(a)$ et $f(b)$ numériquement ou graphiquement.
ou une réunion d'intervalles réels.	• Résoudre graphiquement ou algébriquement une équation
• Tracer la courbe représentative d'une fonction.	ou une inéquation du type $f(x) = k$, $f(x) < k$, $f(x) \ge k$.
• Croissance, décroissance, monotonie sur un	• Relier représentation graphique et tableau de variations.
intervalle, tableau de variations.	• Déterminer graphiquement les extremums d'une fonction
• Signe d'une fonction sur un intervalle,	sur un intervalle.
tableau de signes.	• Exploiter un logiciel de géométrie dynamique
• Maximum, minimum d'une fonction sur	• Modéliser un problème à l'aide des fonctions.
un intervalle.	

Démonstrations:

 \square Étudier la position relative des courbes d'équation y=x, $y=x^2$ et $y=x^3$ pour $x\geq 0$.

I Vocabulaire et applications :

1 Le vocabulaire :

a Notion de fonction réelle :

Définition 1.

Une fonction réelle f définie sur un intervalle I est un objet mathématiques qui à tout $x \in I$ lui associe un nombre réel noté

Remarque 1. Le nombre f(x) est obtenu grâce à une transformation de la variable x.

Exercice 1. Transformer les protocoles de calculs suivants à l'aide d'une écriture fonctionnelle :

- 1. **Exemple**: Pour tout x dans l'intervalle [0;4] la fonction f le multiplie par 3 et lui soustrait 5:
- Pour tout $x \in [0; 4], f(x) = 3x 5.$
- 2. Pour tout x dans l'intervalle [2;7] la fonction g le multiplie par 1 et lui ajoute 2:
- 3. Pour tout x dans l'intervalle]-3;-1] la fonction h le multiplie par 0 et lui ajoute 12 :
-
- 4. Pour tout x dans l'intervalle $]0;+\infty[$ la fonction k le met au carré et lui ajoute -1 :
-
- 5. Pour tout x dans l'intervalle $]-\infty;+\infty[=\mathbb{R}$ la fonction m le duplique en deux, elle met le premier au cube, puis elle met le second au carré, enfin elle ajouter les deux ensemble :
- 6. Pour tout x dans l'intervalle $[0; +\infty[$ = \mathbb{R}^+ la fonction n lui ajoute 1 et prend la racine carrée de cette somme.
-

b Notion de l'image d'un nombre par une fonction :
Définition 2.
Soit f une fonction définie sur un intervalle I.
Pour tout $a \in I$ on note $f(a)$
Exemple 1.
1. Si pour tout $x \in \mathbb{R}$, $f(x) = 3x - 5$. Alors l'image de 4 par la fonction f est : $f(4) = \dots$
2. Si pour tout $x \in \mathbb{R}$, $f(x) = x^2 - 1$. Alors l'image de 2 par la fonction f est :
3. Si pour tout $x \in \mathbb{R}$, $f(x) = x^3$. Alors l'image de -1 par la fonction f est $: \dots = \dots$
4. Si pour tout $x \in \mathbb{R}^+$, $f(x) = \sqrt{x}$. Alors l'image de 49 par la fonction f est :
c Notion d'antécédent d'un nombre par une fonction :
Définition 3.
Soit f une fonction définie sur un intervalle I.
Pour tout $y \in \mathbb{R}$ nous dirons que y admet un antécédent par la fonction f si il existe
$tel\ que:\dots\dots\dots$
Exemple 2.
1. Si pour tout $x \in \mathbb{R}$, $f(x) = x + 5$. Alors le nombre 10 admet un antécédent par la fonction f car :
2. Si pour tout $x \in \mathbb{R}$, $f(x) = x - 3$. Alors le nombre -3 admet un antécédent par la fonction f car :
3. Si pour tout $x \in \mathbb{R}$, $f(x) = 2x$. Alors le nombre 8 admet un antécédent par la fonction f car :
4. Si pour tout $x \in \mathbb{R}$, $f(x) = 5x + 1$. Alors le nombre 6 admet un antécédent par la fonction f car :
5. Si pour tout $x \in \mathbb{R}$, $f(x) = 7x + 9$. Alors le nombre 12 admet un antécédent par la fonction f car :
Remarque 2. Lorsque nous cherchons l'antécédent de $y \in \mathbb{R}$ par la fonction f il faudra résoudre l'équation :
f(x) = y
Remarque 3.

- Pour certains nombres réels $y \in \mathbb{R}$, il n'existe pas d'antécédent de y par une fonction f donnée.
- Pour certains nombres réels $y \in \mathbb{R}$, il existe plusieurs antécédents de y par une fonction f donnée.

Exe	emp	pie oi
1	. S	Figure tout $x \in \mathbb{R}, \ f(x) = x^2$.
		ceil Le nombre -5 admet-il un antécédent par la fonction f ?
		Donner les antécédents du nombre 25 par la fonction f.
2	2. S	Figure tout $x \in \mathbb{R}, \ g(x) = x^2 - 2.$
		$oxed{egin{array}{c} Le \ nombre \ -3 \ admet-il \ un \ ant\'ec\'edent \ par \ la \ fonction \ g \ ? \end{array}}$
		Donner les antécédents du nombre 7 par la fonction g.
d	E	xercices d'applications :
	erci	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$
Exe	erci	
Exe	erci	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$
Exe	erci	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$
E xe	e rci . L	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Ponner l'image de $\frac{4}{5}$ par la fonction f .
E xe	e rci . L	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$
E xe	e rci . L	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Ponner l'image de $\frac{4}{5}$ par la fonction f .
E xe	e rci . L	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Ponner l'image de $\frac{4}{5}$ par la fonction f .
Exc. 1	erci . D	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
Exc. 1	erci . D	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Ponner l'image de $\frac{4}{5}$ par la fonction f .
Exc. 1	erci . D	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
Exc. 1	erci . D	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
Exc. 1	erci . D	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
£xc 1	erci	ice 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
£xc 1	erci	Since 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
£xc 1	erci	Since 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
£xc 1	erci	Since 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .
£xc 1	erci	Since 2. Pour tout $x \in \mathbb{R}$ on défini $f(x) = (x-5)(x+5)$ et $g(x) = (x+3)^2$ Donner l'image de $\frac{4}{5}$ par la fonction f .

II Courbe représentative et lecture graphique :

1 Courbe représentative d'une fonction :

Remarque 4. Pour tracer la courbe représentative de la fonction f sur l'intervalle D nous allons faire un tableau de valeurs en piochant des valeurs de x dans l'intervalle D et en calculant f(x). Plus il y aura de valeurs plus la courbe sera précise.

Exercice 3. On nous donne ci-dessous un tableau de valeurs pour la fonction f définie sur l'intervalle [-2;2.5], les images f(x) on déjà été calculées dans ce tableau. Tracer avec les données de ce tableau deux approximations possibles de C_f .

$x \in [-2; 2.5]$	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5
f(x)	-2	-2.5	-3	-2.25	-0.5	0.5	2	1.5	2.5	3

Remarque 5. La courbe représentative C_f d'une fonction f devient précise plus on choisit un nombre important de x sur l'axe des abscisses pour ensuite calculer le nombre f(x) et obtenir un point de C_f .

Exercice 4. En vous inspirant de l'exercice 3 qui précède, tracer sur votre cahier d'exercices la courbe représentative de la fonction g sur l'intervalle [-2;2.5] sachant que :

Pour tout
$$x \in \mathbb{R}$$
, $g(x) = x^2 - x$

2 Lecture graphique avec la courbe représentative d'une fonction :

a Lire les images et les antécédents :

Trouver l'image d'un nombre x_0 par la fonction f:

- I/ Trouver le nombre x_0 sur l'axe des abscisses.
- II/ Monter ou bien descendre jusqu'à toucher la courbe $\mathcal{C}_f.$
- III/ Se déplacer horizontalement en restant à la même hauteur pour retrouver l'axe des ordonnées.
- IV/ Lire le nombre associé $f(x_0)$ qui est l'image de x_0 par la fonction f.

Trouver le(s) antécédent(s) de y_0 par f si il(s) existe(nt) :

- I/ Trouver le nombre y_0 sur l'axe des ordonnées.
- II/ Se déplacer horizontalement en restant à la même hauteur pour trouver si il existe un ou des points de C_f .
- III/ Partir des points de C_f trouvés puis monter ou bien descendre jusqu'à toucher l'axe des abscisses.
- IV/ Lire les valeurs x_0 et x_1 qui sont les antécédents de y_0 par la fonction f.

Exercice 5.

On considère une fonction G définie sur $\mathbb R$ dont on donne une représentation graphique ci-dessous :

- 1. Combien d'antécédents ont les nombres suivants : $\{-1; 0; 2; 2.8\}$.
- 2. Donner l'image de -1.5 et l'image de 2 par la fonction G.
- 3. Donner un antécédent de −1 qui soit strictement négatif.
- ${\it 4. \ Comparer \ les \ nombres \ suivants:}$

$$\square$$
 $G(1)$... $G(1.5)$

$$\Box G(0) \ldots G(-2.5)$$

Définition 5. Soient f une fonction définie s — La fonction f est sur I s	$sur \ \mathbb{R} \ et \ I \ un \ intervalle \ r\'eel.$ $si \ldots \ldots si$
— La fonction f est sur I s	si
Exemple 4. $ ho$	
Exercice 6. Par lecture graphique donner le sa	$signe \ de \ la \ fonction \ g.$
Exercice 7. Par lecture graphique donner le sa	$i_1,\dots,i_m,i_m,i_m,i_m,i_m,i_m,i_m,i_m,i_m,i_m$

•	•	•	•	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	 	•	•	•	•	•	•	•		•	•	•	•	•	 •	•	•	•	•	 •	•	•	•	•	 •	
	•	•	•	•	•		 •	•	•	•	•							 	•	•		•	•				•	•				 •	•					•	•	•			

c Résolution d'équations et d'inéquations :

Résoudre avec un graphique l'équation f(x) = k:

- I/ Trouver le nombre k sur l'axe des ordonnées.
- II/ Se déplacer horizontalement en restant à la même hauteur pour trouver si il existe un ou des points de C_f .
- III/ Partir des points de C_f trouvés puis monter ou bien descendre jusqu'à toucher l'axe des abscisses.
- IV/ Lire les valeurs x_1 , x_2 et x_3 qui sont solutions de l'équation de f(x)=k.

Résoudre avec un graphique l'inéquation $f(x) \le k$:

- I/ Trouver le nombre k sur l'axe des ordonnées.
- II/ Se déplacer horizontalement en restant à la même hauteur pour trouver si il existe un ou des points de C_f .
- III/ Colorier la partie de \mathcal{C}_f qui est en dessous de la droite d'équation y=k.
- IV/ Lire les valeurs x_1 et x_2 et donner la réponse sous forme d'intervalle.

Exemple 5.

1. Résoudre graphiquement l'équation f(x) = 1.5:

.....

2. Résoudre graphiquement l'inéquation $f(x) \leq 1.5$:

.....

.....

Exercice 8.		
Résoudre graphiquement l'équation $g(x) = 0.5$:		
		1
		\mathcal{C}_g
		J
Résoudre graphiquement l'inéquation $g(x) < 0.5$:		
	• • • • •	
Exercice 9.		
	Résoudre graphiqueme	$nt\ l'\acute{e}quation\ h(x)=1:$
	<u> </u>	,
\uparrow \mathcal{C}_h		
	Résoudre graphiqueme	nt l'inéquation $h(x) \ge 1$:
44444444		
III Variations et extremums :		
1 Variation d'une fonction sur un int		
Définition 6. Soient f une fonction définie sur \mathbb{R}	et I un intervalle réel.	
— La fonction f est sur I si		
— La fonction f est sur I si		
Remarque 6.		

 $\square \ \ \textit{Un fonction est croissante sur un intervalle I si elle garde le même ordre au départ qu'à l'arrivée.}$

 $\square \ \ \textit{Un fonction est décroissante sur un intervalle I si elle change l'ordre entre le départ et l'arrivée.}$

Exemple 6.					
\mathcal{C}_f					
					•••
Exemple 7.					
			· · · · · · · · · · · · · · · · · · ·		
			1		$ \mathcal{C}_g $
			0 \ 1	I	
			\		
Exercice 10.					
		i courbe représe			ιh
	donner le table	au de variation d	le la fonction	n h.	
\uparrow c_h					
J					
					•••
					• • •

Exercices 20 ,22 et 23 p.185

0	T 4	11	c .		• 4 11	
7.	Extremums	d'line	tonetion	cuir un	intervalla	2 '

Définition 7. Soient f une fonction définie sur \mathbb{R} , I un intervalle réel et $x_1, x_2 \in I$.
— La fonction f admet un
— La fonction f admet un

Exemple 8.

Exemple 9.

			 	 		 	 								 	 	 	 								•	

Exercice 40 p.188 - Exercice 33 et 36 p.187