Data Privacy in the Digital World

Tianen "Benjamin" Liu

4/30/2020

What's Wrong with Our Data?

- ▶ 2 pieces of information for example [1]: 1) there is only 1 person in a distant town A who has a certain disease; 2) Bob is from town A and checked in to the hospital
- Oftentimes, just removing sensitive information is not enough to protect the privacy of the data
- ► The sensitive information is identifiable when linked with another data set
- ▶ 87% of individuals living in the US can be uniquely identified by using 3 data features: birth date, zip code, and gender [2]

Introduction - Differential Privacy & Synthetic Data

- ► I'm doing a survey about mental health that requires my sensitive information
- ▶ 3 options for my college to release the data set for research
 - ▶ Option 1: Just remove sensitive information
- Still not private enough. My college will modify the data set
 - Captures the characteristics of the original data set while also making my information unidentifiable

Introduction - Differential Privacy & Synthetic Data

- ► I'm doing a survey about mental health that requires my sensitive information
- ▶ 3 options for my college to release the data set for research
 - ▶ Option 1: Just remove sensitive information
 - ▶ Option 2: Release a differentially private data set
 - Option 3: Release a synthetic data set

Healthy Minds Data Set

- Thanks to Dr. Denisha Champion and WFU Counseling Center
- ► Containing students' sensitive information: demographic, mental health disease diagnosis, self evaluations...
- ▶ Important for the Counseling Center and student wellbeing

Outline

- Definition of differential privacy
- ▶ Differential privacy method 1: Laplacian noise
- Synthetic data
- ▶ Differential privacy method 2: differentially private trees
- Healthy Minds data analysis

Differential Privacy - Mathematical Definition

Notations:

- i: individual person. I: population
- ▶ d_i : the information given by person i. $D_l = d_i | i \in I$: the whole data set
- Q: the privatized query run on a data set
- $R = Q(D_I)$: the resultant modified data set released publically using Option 2 and 3. r: one data point in R.

Differential Privacy - Mathematical Definition

- Notatins:
 - Q be the privatized query run on a data set
 - Number of international student responses: 128 (true value)
 - $ightharpoonup R = Q(D_I)$ be the resultant modified data set released publically
 - Number of international student responses: 129 (128.7)

group Domestic International

Differential Privacy - Mathematical Definition

- Unidentifiability makes sure that we don't know if a person is in the data set or not
- ► Then a single answer make no difference on the probability of getting the released data set
- we have

$$Q(D_{I-me}) = Q(D_I)$$

This should hold whenever, meaning the probability of $Q(D_{I-me})$ being equal to $Q(D_{I})$ should be similar. Thus ϵ -differential privacy is defined as [3]:

$$rac{Prob(Q(D_I)=r)}{Prob(Q(D_{I\pm i})=r)} \leq \mathrm{e}^{\epsilon}$$
, for small $\epsilon \geq 0$

Differential Privacy Methods (Option 2)

Method 1: Laplacian Noise

- Add to the true answers noises drawn from the Laplace distribution: $TrueValue \pm Noise$
- Parameters: *Noise* \sim *Lap*(μ , b)

Method 1: Laplacian Noise - Count & Statistic

- Useful when releasing the count, mean, median,...
- ► Example: Query = count of international students in a data set (true count = 128)
- ► A lot of the noises are small

Method 1: Laplacian Noise - Numeric Data

- Add noise to each age and round to a whole number
- Visualization of age distribution in Undergraduate responses

Method 1: Laplacian Noise - Numeric Data

To visualize better, we use the age data from the full survey

Method 1: Laplacian Noise - Numeric Data

Utility and Privacy Trade-off

Synthetic Data (Option 3)

Method 2: Synthetic Data

- Laplacian noise only creates a synthetic column (age, for example)
- Relationship breaks due to different age values
- Need other attributes to mimic the the original data
- Synthetic Data does not guarantee differential privacy, but concern is little.

Age with Laplacian Noise	Original Age
0.089	0.164
0.011	-0.143
0.205	0.0243
	0.089 0.011

Table 1: Multinomial Regression: Mental Health Illness vs. Age

Method 2: Synthetic Data

- How do we create a synthetic data?
 - Similar to Multivariate Imputation by Chained Equations (MICE)
 - Column by column
 - ► Methods of generating new columns
 - Value constraints

Wake Forest University Healthy Minds Dataset

- Kristin Neff Self-Compassion Scale [4]
 - Q1: When I fail at something important to me I become consumed by feelings of inadequacy.
 - Q2: I try to be understanding and patient towards those aspects of my personality I don't like.
- How does the Neff Self-Compassion Scale impact Depression?
- Create a synthetic data for just Depression and Compassion
 Scale responses (denoted as Comp_Scale in models)
- Process:
 - Synthesize Depression, and use it as a predictor to synthesize Comp_Scale_Q1
 - Use both Depression and Comp_Scale_Q1 as predictors to synthesize Comp_Scale_Q2...

Method 2: Synthetic Data

► Comparison between original and synthetic data

	Depression	Comp_Scale_Q1	Comp_Scale_Q2	Comp_Scale_Q3	Comp_Scale_Q4
2	0	NA	NA	NA	NA
3	0	3	2	3	2
4	0	4	1	3	2
5	0	3	4	4	3
6	1	1	4	4	1

	Depression	Comp_Scale_Q1	Comp_Scale_Q2	Comp_Scale_Q3	Comp_Scale_Q4
2	0	NA	NA	NA	NA
3	0	4	2	3	2
4	1	4	3	3	4
5	0	1	4	5	3
6	0	4	3	3	2

Method 2: Synthetic Data - Depression vs. Comp_Scale

 Confidence intervals of logistic regression parameters using original (Model 1) and synthetic (Model 2) data set

Method 2: Synthetic Data

Does it help with our understanding of the relationship?

- Relationship between Kristin Neff Self-Compassion Scale and depression
- ► Tree model using original data (0: Not diagnosed with depression, 1: Diagnosed with depression)

"Comp_Scale_Q1": an answer to Question 1 of the Neff Compassion Scale short questions

Original data

► Synthetic data

Apply Laplacian noise on Compassion Scales (Explanatory Variable)

Method 3: Differentially Private Trees

- ▶ Take out each node and get the probability of 0 and 1 for Depression
- ► Apply Laplacian Noise on the probability of 1 and resample the response variable
- Synthetic column

Method 3: Differentially Private Trees

In the new Depression column we generated 184 Diagnosed while true number is 230. New data resulted in the same tree.

Acknowledgements

- Dr. Nicole Dalzell
- Wake Forest University URECA Center & Wake Forest Research Fellowship
- Wake Forest University Department of Mathematics & Statistics
- Dr. Denisha Champion and Wake Forest University Counseling Center

Reference

- ▶ [1] Microsoft Corporation. Differential Privacy for Everyone. 2012.
- [2] L. Sweeney. Foundations of Privacy Protection from a Computer Science Perspective. Proceedings, Joint Statistical Meeting, AAAS, Indianapolis, IN. 2000.
- ▶ [3] Christine Task. Privacy-preserving Datamining: Differential Privacy And Applications. June 2014.
- [4] Raes, F., Pommier, E., Neff, K. D., & Van Gucht, D. (2011). Construction and factorial validation of a short form of the Self-Compassion Scale. Clinical Psychology & Psychotherapy. 18, 250-255.