Resultat

Lemma. Hvis $\{a_n\}$ er en konvergent følge av positive reelle tall som konvergerer til L, er også $\{\sqrt{a_n}\}\ konvergent$, og vi har at $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{L}$.

Proof. Merk at

$$|\sqrt{a_n} - \sqrt{L}| = \frac{|a_n - L|}{\sqrt{a_n} + \sqrt{L}} \le \frac{|a_n - L|}{\sqrt{L}}.$$

Det følger da at for $\epsilon > 0$ kan vi (siden a_n konvergerer) velge N slik at $|a_n - L| < \sqrt{L}\epsilon$ når $n \ge N$. Da er, ved ulikheten over, $|\sqrt{a_n} - \sqrt{L}| < \epsilon$ for $n \ge N$.

OPPGAVER

NB! All bruk av 5.1.10 fra Kalkulus er midlertidig forbudt.

- 1. Vis følgende grenser: (i) $\lim_{n \to \infty} \frac{n}{n+1} = 1;$ (ii) $\lim_{n \to \infty} \frac{n+3}{n^3+4} = 0;$ (iii) $\lim_{n \to \infty} \sqrt[8]{n^2+1} \sqrt[4]{n+1} = 0$ (HINT: Vis først at $\lim_{n \to \infty} \sqrt[8]{n^2+1} \sqrt[8]{n^2} = 0$); (iv) $\lim_{n \to \infty} \frac{n!}{n^n} = 0;$
- **2.** (i) Vis følgende teorem:

 "Skviseteoremet". Anta at a_n,b_n og c_n er følger med $a_n \leq b_n \leq c_n$ for alle n, og slik at $\lim_{n\to\infty} a_n = L$ og $\lim_{n\to\infty} c_n = L$. Da er også $\lim_{n\to\infty} b_n = L$;

- (ii) Finn følger a_n, b_n og c_n slik at $a_n \leq b_n \leq c_n$ og a_n og c_n konvergerer, mens b_n ikke konvergerer.
- **3.** Anta at $\{a_n\}$ er en konvergent følge av heltall. Hva kan du si om følgen?
- (i) Vis at hvis 0 < a < 2 så er $a < \sqrt{2a} < 2$;
- (ii) Vis at følgen

$$\sqrt{2}, \sqrt{2\sqrt{2}}, \sqrt{2\sqrt{2\sqrt{2}}}, \dots$$

konvergerer;

- (iii) Finn grensen av følgen.
- **5.** Vis at hvis $\lim_{n\to\infty} a_n = L$ så er

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L.$$

- **6.** Vis fra definisjonen at hvis c > 0 er et reelt tall og $\{a_n\}$ er en konvergent følge, så er $\lim_{n\to\infty} ca_n = c \lim_{n\to\infty} a_n$.
- **7.** Hvis a_n er gitt ved at $a_1 = 1$ og

$$a_{n+1} = \frac{a_n^2 + b}{2a_n}$$

for $n \ge 1$, vis at $\lim_{n \to \infty} a_n = \sqrt{b}$. (HINT: Se på $e_n = \frac{a_n}{b} - 1$.)

8*. La

$$a_n = \left(1 + \frac{1}{n}\right)^n.$$

- (i) Vis at følgen a_n er begrenset (HINT: Bruk binomialteoremet);
- (ii) Vis at følgen a_n er stigende;

Det viser seg at $\lim_{n\to\infty} a_n = 2.718281...$, som vi vanligvis skriver e.

- **9*.** Vis følgende grenser:
- (i) $\lim_{n\to\infty} \sqrt[n]{a} = 1$ for a>1 (Hint: Skriv $h=\sqrt[n]{a}-1$ og bruk binomialteoremet til å approksimere h);
 - (ii) $\lim_{n \to \infty} \sqrt[n]{n} = 1;$
 - (iii) $\lim_{n \to \infty} \sqrt[n]{n^2 + n} = 1$.
- 10. Vis at følgen $a_n = \sin \frac{n\pi}{2}$ ikke konvergerer.

11.

- (i) Vis at hvis $\lim_{n\to\infty}a_n=L$ så er også $\lim_{n\to\infty}a_{2n}=L$ og $\lim_{n\to\infty}a_{n^2}=L;$
- (ii) Lag en følge a_n slik at a_{2n} konvergerer mens a_n ikke gjør det.