Лекция 21.

Условный локальный экстремум функции многих переменных

Ранее мы рассматривали понятие локального экстремума функции. Теперь наша цель - рассмотреть более общее понятие условного локального экстремума и способы его отыскания. В точке локального экстремума функция принимает значение, которое больше (меньше) значений этой функции во всех точках некоторой окрестности. Однако довольно часто в практических задачах требуется отыскать точку, в которой данная функция принимает значение, большее (или меньшее) её значений не во всей окрестности этой точки, а лишь в некоторой её части, точки которой удовлетворяют специальным условиям (так называемым условиям связи). Эти условия связи обычно задают набором уравнений.

Пример. Требуется найти экстремум функции $f(x, y) = x^2 - y^2$ на прямой L: y = 2x. Таким образом, переменные x и y связаны между собой уравнением: y - 2x = 0.

Эта задача легко решается. Достаточно подставить равенство y = 2x в выражение для функции. Получим:

$$g(x) = x^2 - 4x^2 = -3x^2.$$

Так как полученная функция всюду отрицательна, кроме точки 0, где она равна 0, то очевидно, что $x_0 = 0$ — точка её максимума (даже не локального, а глобального). Однако исходная функция $f(x,y) = x^2 - y^2$ в точке (0;0) не имеет локального экстремума, в чём нетрудно убедиться.

Сформулируем теперь общее понятие условного экстремума. Пусть в некоторой области $G \subseteq \mathbb{R}^{n+m}$ задана функция n+m переменных $f(x_1,\ldots,x_n,y_1,\ldots,y_m)$ и система уравнений:

$$\begin{cases}
F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \\
\dots \dots \dots \\
F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0
\end{cases}$$
(1)

Определение 1. Условным локальным экстремумом функции f при условиях связи (1) называется точка $M_0(x_1^0,\dots,x_n^0,y_1^0,\dots,y_m^0)$ такая, что её координаты удовлетворяют условиям связи (1), и существует окрестность точки M_0 , в пределах которой значение функции $f(M_0)$ является наибольшим (наименьшим) среди её значений во всех точках этой окрестности, которые удовлетворяют условиям связи (1).

Рассмотрим задачу об отыскании условного локального экстремума функции $f(x_1,...,x_n,y_1,...,y_m)$ при условиях связи (1).

Необходимые условия существования условного локального экстремума

Выясним, каковы необходимые условия существования условного локального экстремума в рассматриваемой точке M_0 .

Для решения этого вопроса будем предполагать, что все функции в левых частях системы (1) дифференцируемы в некоторой окрестности рассматриваемой точки M_0 , их частные производные по переменным (y_1, \dots, y_m) непрерывны в самой точке M_0 , и якобиан $\frac{D(F_1,...,F_m)}{D(y_1,...,y_m)} \neq 0$ в точке M_0 . Таким образом, выполнены все условия теоремы о существовании системы неявных функций, и следовательно, для любых положительных чисел $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_m$ найдётся окрестность точки $x^0 = (x_1^0, \ldots, x_n^0)$, в которой единственным

образом определён набор
$$m$$
 дифференцируемых неявных функций:
$$\begin{cases} y_1 = \varphi_1(x_1,...,x_n) \\ \dots \dots \\ y_m = \varphi_m(x_1,...,x_n) \end{cases}$$
 определяемых системой функциональных уравнений (1) и удовлетворяющих неравенствам:

 $|y_1 - y_1^0| < \varepsilon_1, |y_2 - y_2^0| < \varepsilon_2, \dots, |y_m - y_m^0| < \varepsilon_m.$

Подставив равенства (2) в функцию $f(x_1, ..., x_n, y_1, ..., y_m)$, мы сведём нашу задачу к задаче об отыскании обычного локального экстремума функции

$$f(x_1, ..., x_n, \varphi_1(x_1, ..., x_n), ..., \varphi_m(x_1, ..., y_n)) \equiv \Phi(x_1, ..., x_n)$$
 (3)

 $f(x_1, \dots, x_n, \varphi_1(x_1, \dots, x_n), \dots, \varphi_m(x_1, \dots, y_n)) \equiv \Phi(x_1, \dots, x_n)$ (3) в точке $x^0 = (x_1^0, \dots, x_n^0)$. Необходимые условия для этого нам известны. А именно, если в точке x^0 имеется локальный экстремум функции $\Phi(x_1, ..., x_n)$, то её дифференциал в этой точке равен нулю при любых достаточно малых приращениях переменных, то есть имеем равенство:

$$d\Phi = \Phi'_{x_1} dx_1 + \ldots + \Phi'_{x_n} dx_n = 0$$

(все частные производные вычислены в точке N_0). Далее, в силу тождества (3) и инвариантности формы записи первого дифференциала, имеем равенство:

$$d\Phi = df = f_{x_1}^{'} dx_1 + \dots + f_{x_n}^{'} dx_n + f_{y_1}^{'} dy_1 + \dots + f_{y_m}^{'} dy_m = 0.$$
 (4)

В равенстве (4) дифференциалы $dy_i = d\varphi_i$ ($i=1,\ldots,m$) — дифференциалы найденных неявных функций. Они могут быть выражены через дифференциалы $dx_1, ..., dx_n$ в виде их линейных комбинаций следующим образом. При подстановке неявных функций $\varphi_1(x), \dots, \varphi_m(x)$ в систему уравнений связи (1) в некоторой окрестности точки x^0 возникает система тождеств:

$$\begin{cases}
F_1(x_1, \dots, x_n, \varphi_1(x), \dots, \varphi_m(x)) \equiv 0 \\
\dots \dots \dots \\
F_m(x_1, \dots, x_n, \varphi_1(x), \dots, \varphi_m(x)) \equiv 0
\end{cases}$$
(5)

возникает система тождеств:
$$\begin{cases} F_1(x_1,\ldots,x_n,\varphi_1(x),\ldots,\varphi_m(x)) \equiv 0 \\ \ldots \ldots \ldots \\ F_m(x_1,\ldots,x_n,\varphi_1(x),\ldots,\varphi_m(x)) \equiv 0 \end{cases}$$
 (5) Дифференцируя эти тождества, получаем линейную систему:
$$\begin{cases} \frac{\partial F_1}{\partial x_1} dx_1 + \ldots + \frac{\partial F_1}{\partial x_n} dx_n + \frac{\partial F_1}{\partial y_1} dy_1 + \ldots + \frac{\partial F_1}{\partial y_m} dy_m = 0 \\ \ldots \ldots \ldots \\ \frac{\partial F_m}{\partial x_1} dx_1 + \ldots + \frac{\partial F_m}{\partial x_n} dx_n + \frac{\partial F_m}{\partial y_1} dy_1 + \ldots + \frac{\partial F_m}{\partial y_m} dy_m = 0 \end{cases}$$
 (6) (Напомним, что все частные производные вычислены в точке x^0). В силу наложенного

(Напомним, что все частные производные вычислены в точке χ^0). В силу наложенного ранее условия $\frac{D(F_1,...,F_m)}{D(V_1,...,V_m)} \neq 0$ система (6) имеет единственное решение относительно дифференциалов $dy_1 = d\varphi_1, \ldots, dy_m = d\varphi_m$.

То есть каждый из дифференциалов dy_1, \dots, dy_m представляется в виде некоторой линейной комбинации дифференциалов dx_1, \dots, dx_n . Подставляя эти линейные комбинации в равенство (4) и приводя подобные члены, получим уравнение вида:

$$A_1 dx_1 + \ldots + A_n dx_n = 0.$$

(Можно отметить, что полученные константы A_1, \ldots, A_n – это просто частные производные в точке x^0 вышеупомянутой функции $\Phi(x_1,...,x_n)$). Отсюда получаем, что необходимыми условиями локального условного экстремума при описанных условиях является равенство нулю указанных констант, то есть равенства:

$$A_1 = A_2 = \dots = A_n = 0. (7)$$

Итак, мы можем сформулировать следующее

Утверждение (Необходимые условия условного локального экстремума). Если система (1) уравнений связи удовлетворяет (по отношению к переменным y_1, \ldots, y_m) в окрестности точки $M_0(x_1^0,...,x_n^0,y_1^0,...,y_m^0)$ условиям теоремы о существовании системы дифференцируемых неявных функций, то необходимыми условиями для существования условного локального экстремума у функции $f(x_1,...,x_n,y_1,...,y_m)$ в точке M_0 являются равенства (7), получаемые из уравнения (4) и системы (6). Поэтому в описанных условиях для отыскания n+m координат точки возможного экстремума следует решить систему из n+m уравнений:

$$\begin{cases} A_1 = A_2 = \dots = A_n = 0 \\ F_1(x_1, \dots x_n, y_1, \dots, y_m) = 0 \\ \dots \dots \dots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0 \end{cases}$$

Метод неопределённых множителей Лагранжа

Рассмотрим теперь метод, предложенный Лагранжем для отыскания локального условного экстремума. Этот метод, как мы увидим ниже, позволяет вывести и необходимые, и достаточные условия для существования условного локального экстремума рассматриваемой функции в данной точке M_0 . В предыдущих рассмотрениях задачи о существовании условного экстремума мы опирались на то, что переменные y_1, \ldots, y_m являются неявными функциями от x_1, \ldots, x_n , задаваемыми уравнениями связи (1). В методе Лагранжа отсутствует (в явном виде) представление y_1, \ldots, y_m как функций от x_1, \ldots, x_n , то есть происходит симметризация переменных, они становятся равноправными.

Пусть по-прежнему задана функция n+m переменных $f(x_1,...,x_n,y_1,...,y_m)$ и система уравнений (или условий) связи (1). Требуется найти необходимые и достаточные условия для существования в данной точке $M_0(x_1^0,...,x_n^0,y_1^0,...,y_m^0)$ условного локального экстремума функции $u=f(x_1,...,x_n,y_1,...,y_m)$ при данных условиях связи.

Для решения этой задачи предлагается рассмотреть специальную функцию.

Определение 2. *Функцией Лагранжа* рассматриваемой задачи называется функция n+2m переменных

$$L(x,y;\lambda) = L(x,y;\lambda_1,...,\lambda_m) = f(x,y) + \lambda_1 F_1(x,y) + ... + \lambda_m F_m(x,y),$$
 где $x = (x_1,...,x_n), \ y = (y_1,...,y_m), \ \lambda = (\lambda_1,...,\lambda_m), \ \lambda_j \in \mathbb{R}, \ j = 1,...,m.$

Необходимые условия условного экстремума

Будем предполагать, как и выше, что функции $f(x,y), F_1(x,y), \dots, F_m(x,y)$ дифференцируемы в окрестности точки $M_0(x_1^0,\dots,x_n^0,y_1^0,\dots,y_m^0)$. Заметим, что тогда функция Лагранжа также дифференцируема. Будем (как и выше) предполагать также, что частные производные функций $F_1(x,y),\dots,F_m(x,y)$ по переменным (y_1,\dots,y_m) непрерывны в самой точке M_0 , и якобиан $\frac{D(F_1,\dots,F_m)}{D(y_1,\dots,y_m)} \neq 0$ в точке M_0 .

Пусть в точке M_0 у функции f(x,y) имеется условный экстремум при условиях связи (1). Выясним, каким обязательным условиям должны удовлетворять в этом случае её координаты.

В силу сделанных выше предположений мы по-прежнему располагаем равенствами (4) и (6). Умножим каждое из равенств (6) на произвольные (пока неопределённые) постоянные множители $\lambda_1, \ldots, \lambda_m$. Полученные после этого умножения равенства сложим почленно с равенством (4). В результате получим соотношение:

$$\sum_{i=1}^{n} (f_{x_{i}}^{'} + \sum_{k=1}^{m} \lambda_{k}(F_{k})_{x_{i}}^{'}) dx_{i} + \sum_{j=1}^{m} (f_{y_{j}}^{'} + \sum_{k=1}^{m} \lambda_{k}(F_{k})_{y_{j}}^{'}) dy_{j} =$$

$$= L_{x_{1}}^{'} dx_{1} + \dots + L_{x_{n}}^{'} dx_{n} + L_{y_{1}}^{'} dy_{1} + \dots + L_{y_{m}}^{'} dy_{m} = 0.$$

Подберём $\lambda^0=(\lambda^0_1,\dots,\lambda^0_m)$ так, чтобы все коэффициенты при dy_j в последнем соотношении равнялись нулю $(j=1,\dots,m)$. Это означает, что набор $\lambda^0=(\lambda^0_1,\dots,\lambda^0_m)$ должен быть решением системы:

$$\begin{cases} L_{y_1}^{'} = f_{y_1}^{'} + \sum_{k=1}^{m} \lambda_k (F_k)_{y_1}^{'} = 0, \\ \dots \dots \dots \dots \dots \\ L_{y_m}^{'} = f_{y_m}^{'} + \sum_{k=1}^{m} \lambda_k (F_k)_{y_m}^{'} = 0. \end{cases}$$

В силу наложенного выше условия, что $\frac{D(F_1,...,F_m)}{D(y_1,...,y_m)} \neq 0$ в точке M_0 , такой набор постоянных $\lambda^0 = (\lambda^0_1,\ldots,\lambda^0_m)$ определяется из системы единственным образом. После подстановки набора $\lambda^0 = (\lambda^0_1,\ldots,\lambda^0_m)$ в функцию Лагранжа получаем:

$$dL = \sum_{i=1}^{n} (f_{x_i}^{'} + \sum_{k=1}^{m} \lambda_k^{0} (F_k)_{x_i}^{'}) dx_i = 0,$$

Отсюда, в силу независимости переменных $x_1, ..., x_n$, следуют равенства:

$$f'_{x_i} + \sum_{k=1}^m \lambda_k^0(F_k)'_{x_i} = 0, i = 1, ..., n.$$

Объединяя все полученные условия и присоединяя к ним систему уравнений связи (1), получим итоговую систему из n + 2m уравнений, которым при данных условиях обязаны удовлетворять координаты точки условного экстремума:

$$\begin{cases} f'_{x_1} + \sum_{k=1}^{m} \lambda_k (F_k)'_{x_1} = 0, \\ f'_{x_n} + \sum_{k=1}^{m} \lambda_k (F_k)'_{x_n} = 0, \\ f'_{y_1} + \sum_{k=1}^{m} \lambda_k (F_k)'_{y_1} = 0, \\ \dots \\ f'_{y_m} + \sum_{k=1}^{m} \lambda_k (F_k)'_{y_m} = 0, \\ F_1(x_1, \dots, x_n, y_1, \dots, y_m) = 0, \\ \dots \\ F_m(x_1, \dots, x_n, y_1, \dots, y_m) = 0. \end{cases}$$

Таким образом, каждой точке $M_0(x_1^0,\dots,x_n^0,y_1^0,\dots,y_m^0)$ условного экстремума при предположениях, перечисленных выше, соответствует единственное решение $(x_1^0,\dots,x_n^0,y_1^0,\dots,y_m^0,\lambda_1^0,\dots,\lambda_m^0)$ последней системы. Поэтому для поиска точек возможного условного экстремума следует решить эту систему и исключить из полученных решений параметры $\lambda^0=(\lambda_1^0,\dots,\lambda_m^0)$. Тогда $(x_1^0,\dots,x_n^0,y_1^0,\dots,y_m^0)$ есть координаты возможного условного экстремума.

Таким образом, мы получили совокупность *необходимых условий* (по методу Лагранжа) существования условного локального экстремума

Отметим, что полученная система представляет собой равенство нулю всех частных производных функции Лагранжа, если формально рассматривать эту функцию как функцию n+2m независимых переменных. В этом и состоит симметризация переменных в методе Лагранжа.

Пример. Найдем «подозрительные» на условный экстремум точки функции $f(x,y)=x^2-y^2$ при условии y-2x=0. Составим функцию Лагранжа:

$$L(x, y, \lambda) = x^2 - y^2 + \lambda(y - 2x).$$

Запишем необходимые условия экстремума:

$$\begin{cases} L'_{x} = 2x - 2\lambda = 0, \\ L'_{y} = -2y + \lambda = 0, \\ L'_{\lambda} = y - 2x = 0. \end{cases}$$

Отсюда $x = \lambda$, $y = \lambda/2$. Подставляем в последнее уравнение, получаем $\lambda = 0$, следовательно, единственная точка, «подозрительная» на условный экстремум, это точка M(0,0).

Достаточные условия существования условного экстремума

Рассмотрим теперь вопрос о том, каковы достаточные условия для условного локального экстремума. Пусть в точке $M_0(x_1^0, \dots, x_n^0, y_1^0, \dots, y_m^0)$ выполнены необходимые условия существования условного экстремума.

Пусть, кроме того, функция $f(x_1,...,x_n,y_1,...,y_m)$ и каждая из функций $F_j(x_1,...,x_n,y_1,...,y_m)$, (j=1,...,m), дифференцируемы в некоторой окрестности точки M_0 , и дважды дифференцируемы в самой точке M_0 .

Заметим, что в силу условий связи (1), приращения функций $\Delta f = f(x,y) - f(x^0,y^0)$ и $\Delta L = L(x,y,\lambda^0) - L(x^0,y^0,\lambda^0)$ совпадают. Поэтому наличие условного локального экстремума при условиях связи в точке M_0 у функции f(x,y) равносильно наличию (при тех же условиях связи) локального экстремума в точке M_0 у функции $L(x,y,\lambda^0)$.

Кроме того, в силу системы (10), все первые частные производные функции L по переменным y_1,\ldots,y_m равны нулю при $\lambda=\lambda^0$, поэтому второй дифференциал сложной функции $L(x,y,\lambda^0)$ в точке M_0 имеет такой же вид квадратичной формы, как второй дифференциал функции *независимых* переменных. А именно:

$$d^{2}L = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \ldots + \frac{\partial}{\partial x_{n}}dx_{n} + \frac{\partial}{\partial y_{1}}dy_{1} + \ldots + \frac{\partial}{\partial y_{m}}dy_{m}\right)^{2}L.$$

Теперь ещё раз напомним, что мы ищем условный экстремум, поэтому на множестве, где осуществляется этот поиск, тождественно выполняются уравнения (1). Поэтому мы можем продифференцировать их и получить систему, аналогичную системе (6):

можем продифференцировать их и получить систему, аналогичную системе (6):
$$\begin{cases} \frac{\partial F_1}{\partial x_1} dx_1 + \ldots + \frac{\partial F_1}{\partial x_n} dx_n + \frac{\partial F_1}{\partial y_1} dy_1 + \ldots + \frac{\partial F_1}{\partial y_m} dy_m = 0, \\ \ldots \ldots \\ \frac{\partial F_m}{\partial x_1} dx_1 + \ldots + \frac{\partial F_m}{\partial x_n} dx_n + \frac{\partial F_m}{\partial y_1} dy_1 + \ldots + \frac{\partial F_m}{\partial y_m} dy_m = 0. \end{cases}$$

Поскольку якобиан $\frac{D(F_1,...,F_m)}{D(y_1,...,y_m)} \neq 0$ точке M_0 , то дифференциалы $dy_1,...,dy_m$ однозначно выражаются из системы через дифференциалы независимых переменных $dx_1,...,dx_n$ в виде их линейных комбинаций. Подставляя эти выражения во второй дифференциал функции Лагранжа, получим квадратичную форму:

$$d^2L = K(dx_1, \ldots, dx_n),$$

зависящую уже только от дифференциалов dx_1, \ldots, dx_n . Отсюда следует, что если квадратичная форма $d^2L = K(dx_1, \ldots, dx_n)$ является положительно (отрицательно) определённой, то в рассматриваемой точке M_0 имеется условный локальный минимум (максимум). Если же форма $d^2L = K(dx_1, \ldots, dx_n)$ знакопеременна, то условного экстремума в точке M_0 нет.

Примеры. 1) Для функции $f(x,y) = x^2 - y^2$ при условии y - 2x = 0 имеем: $d^2L = 2dx^2 - 2dy^2.$

Заметим, что при произвольных значениях dx и dy эта квадратичная форма является знакопеременной. Используем условие связи:

$$y - 2x = 0$$
, следовательно, $dy - 2dx = 0$.

Подставим dy=2dx в выражение для d^2L , получим $d^2L|_{dy=2dx}=2dx^2-8dx^2=-6dx^2<0$

$$d^2L|_{dy=2dx} = 2dx^2 - 8dx^2 = -6dx^2 < 0$$

при всех значениях $dx \neq 0$. Значит, найденная точка M(0,0) является точкой условного максимума.

2) Пусть задана функция f(x,y,z)=2x+2y-z. Требуется найти её условный локальный экстремум при наличии условия связи: $x^2+y^2+z^2=1$. Функция Лагранжа:

$$L(x, y, z, \lambda) = 2x + 2y - z + \lambda(x^2 + y^2 + z^2 - 1).$$

Приравнивая частные производные функции Лагранжа к нулю, получаем систему:

$$\begin{cases} 2 + 2\lambda x = 0, \\ 2 + 2\lambda y = 0, \\ -1 + 2\lambda z = 0, \\ x^2 + y^2 + z^2 - 1 = 0. \end{cases}$$

Из первых трех уравнений находим: $x=-\frac{1}{\lambda},\ y=-\frac{1}{\lambda},\ z=\frac{1}{2\lambda}$. Подставляем в последнее уравнение, получаем: $\frac{9}{4\lambda^2}=1$, то есть $\lambda=\pm\frac{3}{2}$. Получаем две точки, «подозрительные» на экстремум:

$$M_1\left(\frac{2}{3}; \frac{2}{3}; -\frac{1}{3}\right)$$
 при $\lambda^0 = -\frac{3}{2}$ и $M_2\left(-\frac{2}{3}; -\frac{2}{3}; \frac{1}{3}\right)$ при $\lambda^0 = \frac{3}{2}$.

Второй дифференциал функции Лагранжа имеет вид:

$$d^{2}L(M_{0}) = 2\lambda(dx^{2} + dy^{2} + dz^{2}).$$

Очевидно, что $d^2L(M_1)<0$, $d^2L(M_2)>0$. Значит, $M_1\left(\frac{2}{3};\frac{2}{3};-\frac{1}{3}\right)$ — точка условного локального максимума; $M_2\left(-\frac{2}{3};-\frac{2}{3};\frac{1}{3}\right)$ — точка условного локального минимума.