Here's the **combined syllabus** for **Artificial Intelligence (AI), Machine Learning (ML), and Neural Networks**, integrating both:

- NEC (Engineering Registration)
- m NRB (Assistant Director IT Officer)

Each topic is marked accordingly, and overlapping areas are unified while maintaining full content integrity.

✓ Combined Syllabus: Artificial Intelligence, Machine Learning & Neural Networks

Legend:

- NEC
- Ø Covered in Both

1. Introduction to AI and Intelligent Agents

- Concept of Artificial Intelligence
- Applications of AI
- Foundations of AI
- Intelligent Agents:
 - Structure
 - Properties
 - o PEAS (Performance measure, Environment, Actuators, Sensors)
 - Types: Simple Reflex, Model-Based, Goal-Based, Utility-Based
- Environment Types: Deterministic, Stochastic, Static, Dynamic, Observable, Semi-observable, Single-Agent, Multi-Agent
- Shared AI fundamentals

2. Problem Solving and Search Techniques

- Problem as State Space Search
- Problem Formulation
- Well-defined Problems
- Constraint Satisfaction Problems

Ininformed Search:

- Depth First Search
- Breadth First Search
- o Depth Limited Search
- Iterative Deepening Search
- Bidirectional Search

Informed Search:

- Greedy Best-First Search
- A* Search
- Hill Climbing
- Simulated Annealing
- Same Playing and Adversarial Search:
 - Mini-max
 - Alpha-Beta Pruning
- 🏦 Problem Decomposition and Planning
- Shared problem-solving concepts

3. Logic, Reasoning, and Knowledge Representation

- Approaches and Issues in Knowledge Representation
- Mapping
- Semantic Nets, Frames

Propositional Logic (PL):

- Syntax, Semantics, Connectives
- Tautology, Validity
- Well-formed Formula (WFF), Resolution

Predicate Logic (FOPL):

- Syntax, Semantics
- Quantifiers
- o Inference, Unification
- Resolution Refutation
- Bayesian Reasoning:
 - o Bayes' Rule
 - Bayesian Networks
 - Reasoning in Belief Networks
- **m** Logic and Reasoning
- Ø Logic-based AI

4. Natural Language Processing (NLP) and Expert Systems

- Expert Systems:
 - Architecture
 - Knowledge Acquisition
 - Declarative vs Procedural Knowledge
 - Expert System Development
- Natural Language Processing:
 - NLP Terminology
 - o NLP Understanding and Generation
 - NLP Steps
 - NLP Challenges and Applications
- Machine Vision:
 - Concepts and Stages
- Robotics (brief intro)
- Ø NLP core concepts

5. Machine Learning and Pattern Recognition

- ML Introduction & Concepts of Learning
- Types of Learning:
 - Supervised
 - Unsupervised
 - Reinforcement

Material Learning Approaches:

- Inductive (Decision Trees)
- Statistical (Naive Bayes)
- Fuzzy Learning
- o Fuzzy Inference System & Methods
- Genetic Algorithm (Operators, Encoding, Selection, Fitness, Parameters)
- **m** Machine Learning
- m Pattern Recognition

6. Artificial Neural Networks (ANN)

- Biological Neural Networks vs Artificial Neural Networks
- McCulloch-Pitts Neuron Model
- Mathematical Model
- Activation Functions
- ANN Architectures
- The Perceptron
- Learning Concepts:
 - Learning Rate
 - Gradient Descent
 - o Delta Rule
 - Hebbian Learning

- Adaline
- Multilayer Perceptron (MLP)
- 📓 Backpropagation Algorithm
- Mopfield Neural Network
- Artificial Neural Network fundamentals

Summary Table: Topic Coverage by Source **Topic Area ■** NEC **NRB Both** Introduction to AI \square \square Intelligent Agents \square X \square Problem Solving & Search Techniques \square \square \square Planning and Decomposition X \square \bigcirc \square \square \triangle Logic & Reasoning Knowledge Representation (Advanced) \square \square X **NLP** \square \square \square **Expert Systems** \square X X \triangle \square Machine Learning Pattern Recognition \square X Fuzzy Logic & Genetic Algorithms \square X X Neural Networks (ANN) \square \square Robotics & Machine Vision X X

Would you like this prepared as a **PDF syllabus sheet**, **study-friendly table**, or **PowerPoint slides** for revision or teaching purposes?