## 1 Flip-Flop (FF), Bistabile Trigger

#### 1.1 Einteilung der Flip-Flop



## 1.2 Basis-RS-Flip-Flop

#### 1.2.1 RS-FF in NOR-Realisierung



| A  | В | NOR: AVB | -                       |
|----|---|----------|-------------------------|
| »O | 0 | 1        | Contraction of the last |
| 0  | 1 | 0        | -                       |
| 1  | 1 | 0        |                         |









## Flip-Flop

Der Flip-Flop (bistabile Kippstufe) ist der Grundbaustein für Sequenzielle Schaltungen.

- · bestehen aus Gatter (elementarische, kombinatorische Schaltungen)
- · haben üblicherweise 2 Eingangsvaniablen und
  - 1 Ausgangsvariable
- · haben um Ausgang zwei stabile Zustände
- · können die Information 1 Bit (1 oder 0) speichern.
- " über entsprechende Eingänge, kähnen die Flip-Flops gesetzt (1 gespeichert) oder rückgesetzt (O gespeichert) werden.

Sequenziell: die lagische Aufgabe wird nicht nur anhand der aktuellen Bedingungen sondern auch in Abhängigkeit der vorhengen Bedingungen gelöst.



<sup>1</sup>t: nächster 2eitpunkt

## zu 1.1. Einteilung der Flip-Flops

Mit Ausnahme des ungetaleteten RS-Flip-Flop sind alle bistabilen Kippstufen taletgesteuert.

Flankengesteuerte / Zustandsgesteuerte Flip-Flops sind getaktete Flip-Flops, die in Abhängigkeit von den vorbereiteten Eingängen mit der positiven bzw. negativen Flanke / Zustand des Taktes gesetzt oder rückgesetzt werden.

Der Ausgangszustand des Flankengesteuerten /Zustandsgesteuerten Flip-Flops kann sich nur mit der schaltenden Flanke/dem Zustand andern.

Abhängig von der eingesetzten Technologie ändert sich das Ausgangssig nal des Flip-Flops nach einer Kurzen Verzögerungszeit in Bezug auf die Taktflanke / Taktzustand. Der Ausgangszustand bleibt für eine Taktperiode, bis zur nächsten

## Zustandsfolgetabelle

#### S R Q $^{1}Q$ speichern ' } löschen } setzen × } unzulässig

#### Kurzform

| S  | R | <sup>1</sup> Q |
|----|---|----------------|
| 0. | 0 | Q              |
| 0  | 1 | 0              |
| 1  | 0 | 1              |
| 1  | 1 | X              |

## Charakteristische Gleichung



Nebenbedingung: R & S = 0

## Synthesetabelle

| Q | <sup>1</sup> Q | S | R |
|---|----------------|---|---|
| 0 | 0              | 0 | 0 |
|   |                | 0 | 1 |
| 0 | 1              | 1 | 0 |
|   |                |   |   |
| 1 | 0              | 0 | 1 |
|   |                |   |   |
| 1 | 1              | 0 | 0 |
|   |                | 1 | 0 |

## Kurzform

| Q | <sup>1</sup> Q | S | R |
|---|----------------|---|---|
| 0 | 0              | 0 | × |
| 0 | 1              | 1 | 0 |
| 1 | 0              | 0 | 1 |
| 1 | 1              | X | 0 |







## Zustandsdiagramm



## Schaltsymbol



### 1.2.2 RS-FF in NAND-Realisierung



## Zustandsfolgetabelle

|                        | $^{1}\overline{Q}$ | $^{1}Q$ | Q  | $\overline{R}$ | $\bar{S}$ |
|------------------------|--------------------|---------|----|----------------|-----------|
| una lacore             | ×                  | ×       | 0  | 0              | 0         |
| unzulässig             | X.                 | ×       | 1  | 0              | 0         |
| setzen                 | 0'                 | 1       | 0  | 1              | 0         |
| 50,201                 | 0                  | 1       | 1  | 1              | 0         |
| l'oschen<br>rücksetzen | 1                  | 0       | 0  | 0              | 1         |
| nücksetzen             | 1                  | 0       | 1  | 0              | 1         |
| speichern              | 1                  | 0       | 0  | 1              | 1         |
| Space                  | 0                  | 1       | 1. | 1              | 1         |

## Kurzform

| $\bar{S}$ | $\overline{R}$ | $^{1}Q$ |
|-----------|----------------|---------|
| 0         | 0              | ×       |
| 0         | 1              | 1       |
| 1         | 0              | 0       |
| 1         | 1              | Q       |



## Schaltsymbol

$$\frac{\overline{s}}{\overline{R}}$$
  $\frac{\overline{o}}{\overline{o}}$   $\frac{\overline{o}}{\overline{o}}$ 

## 1.2.3 Anwendung des RS-FF für einen prellfreien Schalter



#### 1.2.4 RS-FF mit besonderem Schaltverhalten

## Ziel: Verhinderung der verbotenen Zustände durch ein vorgeschaltetes Schaltnetz



#### **RS-FF mit Setzvorrang**

#### Zustandstabelle

| S | R | S | R' |  |
|---|---|---|----|--|
| 0 | 0 | 0 | 0  |  |
| 0 | 1 | 0 | 1  |  |
| 1 | 0 | 1 | 0  |  |
| 1 | 1 | 1 | 0  |  |



$$s' = s$$

$$\overline{s}' = \overline{s}'$$

$$\begin{array}{c|c} R' & \overline{R} \\ \hline 0 & 1 \\ \hline 0 & 0 \\ \end{array}$$

$$R' = \overline{S}R$$

$$\overline{R}' = \overline{S}R$$

#### Schaltung

#### Schaltsymbol





ungetaktete Flip-Flops reagieren auf jede Anderung der Eingängeparameler sofort

## 1.3 Flip-Flop mit Taktsteuerung

## 1.3.1 Taktzustandsgesteuerte Einspeicher-Flip-Flop

# 1.3.1.1 Taktzustandsgesteuertes RS-FF [Zustandsänderung nur synchron mit

#### Taktsignal



#### Beispiel-Signalverlauf





## 1.3.2 Taktzustandsgesteuerte Zweispeicher-Flip-Flop (Master-Slave-FF)

#### 1.3.2.1 RS-Master-Slave-FF

