Московский государственный технический университет им. Н.Э. Баумана Факультет «Информатика и системы управления» Кафедра «Автоматизированные системы обработки информации и управления»

Отчет по лабораторной работе № 2

«Изучение библиотек обработки данных.»

По курсу «Технологии машинного обучения»

	исполнитель) :
	Коционова А. А Группа ИУ5-6	
"_	"2019 1	Γ.
I	ПРЕПОДАВАТЕЛЬ) :
	Гапанюк Ю. Е	Ξ.
"	_"2019 1	г.

Москва 2019

Цель лабораторной работы: изучение библиотек обработки данных Pandas и PandaSQL.

Часть 1

Выполните первое демонстрационное задание "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments

Условие задания

- https://nbviewer.jupyter.org/github/Yorko/mlcourse_open/blob/master/jupyter_englis-h/assignments-demo/assignment01-pandas-uci-adult.ipynb?flush-cache=true

Набор данных можно скачать здесь - https://archive.ics.uci.edu/ml/datasets/Adult

```
In []:
import numpy as np
import pandas as pd
pd.set_option('display.max.columns', 100)
import warnings
warnings.filterwarnings('ignore')
import io
import requests
In [6]:
data = pd.read_csv('../Downloads/adult.data.csv')
data.head()
Out[6]:
```

	ag e	workel ass	fnlw gt	educati on	educati on-num	marit al- status	occupat ion	relations hip	race	sex	capit al- gain	capit al- loss	s- per- wee k	nativ e- count ry	sal ar y
0	39	State- gov	7751 6	Bachel ors	13	Never- marrie d	Adm- clerical	Not-in- family	Whi te	Male	2174	0	40	Unite d- States	<= 50 K
1	50	Self- emp- not-inc	8331 1	Bachel ors	13	Marrie d-civ- spouse	Exec- manager ial	Husband	Whi te	Male	0	0	13	Unite d- States	<= 50 K
2	38	Private	2156 46	HS- grad	9	Divorc ed	Handler s- cleaners	Not-in- family	Whi te	Male	0	0	40	Unite d- States	<= 50 K

	ag e	workel ass	fnlw gt	educati on	educati on-num	marit al- status	occupat ion	relations hip	race	sex	capit al- gain	capit al- loss	hour s- per- wee k	nativ e- count ry	sal ar y
3	53	Private	2347 21	11th	7	Marrie d-civ- spouse	Handler s- cleaners	Husband	Blac k	Male	0	0	40	Unite d- States	<= 50 K
4	28	Private	3384 09	Bachel ors	13	Marrie d-civ- spouse	Prof- specialty	Wife	Blac k	Fema le	0	0	40	Cuba	<= 50 K

1. How many men and women (sex feature) are represented in this dataset?

```
In [7]:
data['sex'].value_counts()
Out[7]:
Male     21790
Female     10771
Name: sex, dtype: int64
```

2. What is the average age (age feature) of women?

```
In [8]:
data.loc[data['sex'] == 'Female', 'age'].mean() #как бы по пересечению строки
и столбца смотрим
Out[8]:
36.85823043357163
```

3. What is the proportion of German citizens (native-country feature)?

```
In [9]:
float((data['native-country'] == 'Germany').sum()) / data.shape[0]
Out[9]:
0.004207487485028101
```

4-5. What are mean value and standard deviation of the age of those who recieve more than 50K per year (salary feature) and those who receive less than 50K per year?

```
In [11]:
ages1 = data.loc[data['salary'] == '>50K', 'age']
ages2 = data.loc[data['salary'] == '<=50K', 'age']
print("The average age of the rich: {0} +- {1} years, poor - {2} +- {3} years
.".format(
    round(ages1.mean()), round(ages1.std(), 1),
    round(ages2.mean()), round(ages2.std(), 1)))</pre>
The average age of the rich: 44 +- 10.5 years, poor - 37 +- 14.0 years.
```

6. Is it true that people who receive more than 50k have at least high school education? (education - Bachelors, Prof-school, Assoc-acdm, Assoc-voc, Masters or Doctorate feature)

7. Display statistics of age for each race (race feature) and each gender. Use groupby() and describe(). Find the maximum age of men of Amer-Indian-Eskimo race.

```
In [14]:
for (race, sex) in data.groupby(['race', 'sex']):
    print("Race: {0}, sex: {1}".format(race, sex))
    #print(sub df['age'].describe())
```

8. Among whom the proportion of those who earn a lot(>50K) is more: among married or single men (marital-status feature)? Consider married those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absent or Married-AF-spouse), the rest are considered bachelors.

```
In [18]:
data.loc[(data['sex'] == 'Male') &
     (data['marital-status'].isin(['Never-married',
                                   'Separated',
                                   'Divorced',
                                   'Widowed'])), 'salary'].value_counts()
Out[18]:
<=50K 7552
>50K
        697
Name: salary, dtype: int64
In [19]:
data.loc[(data['sex'] == 'Male') &
    (data['marital-status'].str.startswith('Married')), 'salary'].value coun
ts()
Out[19]:
<=50K 7576
>50K
       5965
Name: salary, dtype: int64
In [20]:
```

```
data['marital-status'].value counts()
Out[20]:
Married-civ-spouse
                     14976
Never-married
                     10683
                       4443
Divorced
Separated
                      1025
Widowed
                       993
Married-spouse-absent
                       418
Married-AF-spouse
                         23
Name: marital-status, dtype: int64
```

9. What is the maximum number of hours a person works per week (hoursper-week feature)? How many people work such a number of hours and what is the percentage of those who earn a lot among them?

10. Count the average time of work (hours-per-week) those who earning a little and a lot (salary) for each country (native-country). What will these be for Japan?

Часть 2¶

Выполните следующие запросы с использованием двух различных библиотек - <u>Pandas</u> и <u>PandaSQL</u>:

- один произвольный запрос на соединение двух наборов данных
- один произвольный запрос на группировку набора данных с использованием функций агрегирования

Сравните время выполнения каждого запроса в Pandas и PandaSQL.

```
In [0]:
import pandas as pd
import pandasql as ps

In [1]:
pd.__version__

Out[3]:
'0.23.4'

In [5]:
android_devices = pd.read_csv('../AndroidML/android_devices.csv')
user_device = pd.read_csv('../AndroidML/user_device.csv')
user_usage = pd.read_csv('../AndroidML/user_usage.csv')

In [6]:
android_devices.head()
Out[6]:
```

	Retail Branding	Marketing Name	Device	Model
0	NaN	NaN	AD681H	Smartfren Andromax AD681H
1	NaN	NaN	FJL21	FJL21
2	NaN	NaN	T31	Panasonic T31
3	NaN	NaN	hws7721g	MediaPad 7 Youth 2
4	3Q	OC1020A	OC1020A	OC1020A

```
In [7]:
user_device.head()
Out[7]:
```

	use_id	user_id	platform	platform_version	device	use_type_id
0	22792	26090	:	10.2	:Db7 2	2
U	22782	26980	ios	10.2	iPhone7,2	2
1	22783	29628	android	6.0	Nexus 5	3
2	22784	28473	android	5.1	SM-G903F	1
3	22785	15200	ios	10.2	iPhone7,2	3
4	22786	28239	android	6.0	ONE E1003	1

```
In [8]:
user_usage.head()
Out[8]:
```

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id
0	21.97	4.82	1557.33	22787
				,
1	1710.08	136.88	7267.55	22788
2	1710.08	136.88	7267.55	22789
3	94.46	35.17	519.12	22790
4	71.59	79.26	1557.33	22792

Сравнение JOIN

Out[29]:

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	platform	device
0	21.97	4.82	1557.33	22787	android	GT-I9505
1	1710.08	136.88	7267.55	22788	android	SM-G930F
2	1710.08	136.88	7267.55	22789	android	SM-G930F
3	94.46	35.17	519.12	22790	android	D2303
4	71.59	79.26	1557.33	22792	android	SM-G361F

То же самое на pandasql

```
In [33]:
%%timeit
result2 = ps.sqldf("""SELECT A.*, B.user_id, B.platform, B.device
FROM user_usage AS A
LEFT JOIN user_device AS B
ON A.USE_ID=B.USE_ID""",globals())
26.4 ms ± 1.84 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [32]:
result2.head()
Out[32]:
```

	outgoing_mins_per_month	outgoing_sms_per_month	monthly_mb	use_id	user_id	platform	device
0	21.97	4.82	1557.33	22787	12921.0	android	GT- I9505
1	1710.08	136.88	7267.55	22788	28714.0	android	SM- G930F
2	1710.08	136.88	7267.55	22789	28714.0	android	SM- G930F
3	94.46	35.17	519.12	22790	29592.0	android	D2303
4	71.59	79.26	1557.33	22792	28217.0	android	SM- G361F

Таким образом PANDASQL сработал в 6 раз медленее чем PANDAS на джойнах

Сравнение GROUP BY

```
In [59]:
%%timeit
result11 = result1.astype(str).groupby("platform")['platform'].count()
2.75 ms \pm 141 \mus per loop (mean \pm std. dev. of 7 runs, 100 loops each)
In [56]:
result11
Out[56]:
platform
android
          157
             2
ios
            81
Name: platform, dtype: int64
In [60]:
%%timeit
result21 = ps.sqldf('''SELECT count(*), platform
        FROM result2
        GROUP BY platform
    ''', globals())
18.4 ms \pm 1.03 ms per loop (mean \pm std. dev. of 7 runs, 100 loops each)
In [58]:
result21
Out[58]:
   count(*)
           platform
 0 81
           None
 1 157
           android
 2 2
           ios
```

Таким образом PANDASQL сработал вновь в 6 раз медленее чем PANDAS на группировке