

Disease Prediction

with

Microbial Profiles

Problem Statement

How can diseases be accurately predicted based on the microbial compositions found in patient samples, taking into account the complexity and variability of microbial data?

Dataset Overview

The dataset comprises of taxonomic profiles of the microbial communities present in each sample.

Taxonomic Profiling Process:

- Sample Collection: Bacterial samples are gathered from subjects.
- DNA Extraction: DNA is extracted from the bacterial cells.
- Sequencing: The extracted DNA nucleotides are sequenced - A, T, C, G.
- Database Comparison: The sequenced DNA is identified through reference

• Abundance Calculation: The relative abundance of each identified microbial species is calculated

Dataset Specification

Condition	Bacterial Profiles	Samples	Train- Validation-Test Split	
Type 2 Diabetes	606	440	80-10-10	
Cirrhosis	3,000	243	80-10-10	

Model Overview - DNN

Parameter	Value		
Neuronsper Layer	60		
Hidden Layers	15		
Activation Function	ReLU		
Dropout Layer	50%		
Output Activation	Softmax		
Optimizer	Adam		
Loss Function	Cross-Entropy		
Learning Rate	0.00025		
Batch Size	50		

Data Preprocessing for CNNs

Phylogenetic Tree Construction through the mapping our bacteria features to NCBI dataset.

Tree Traversal (postorder & level order) to rearrange taxa with common ancestors into sequential order.

Data Preprocessing for CNNs

1D mapping to 2D through the formula $ceil(\sqrt{n}) * ceil(\sqrt{n})$ and padding the empty spaces with 0

Grayscale Coloring through the abundance of bacteria by making specific ranges

Model Overview - CNN

Parameter	Value		
Activation Function	ReLU		
Dropout Rate	50%		
Output Activation	Softmax		
Optimizer	Adam		
Loss Function	BinaryCross-Entropy		
Learning Rate	0.0001		
Batch Size	32		

Model Overview - ResNet

Parameter	Value		
Activation Function	ReLU		
Dropout Layer	50%		
Output Activation	Softmax		
Optimizer	Adam		
Loss Function	BinaryCross-Entropy		
Learning Rate	0.0001		
Batch Size	32		

Model Overview - FCN

Parameter	Value		
Activation Function	ReLU		
Dropout Layer	50%		
Output Activation	Softmax		
Optimizer	Adam		
Loss Function	BinaryCross-Entropy		
Learning Rate	0.0001		
Batch Size	32		

Evaluation Metrics

Accuracy: Proportion of correctly predicted instances.

AUC (Area Under the ROC Curve) measures and plots the True Positive Rate (TPR) vs. False Positive Rate (FPR) at various thresholds. It ranges from 0 to 1, with higher values indicating better performance:

- AUC = 1: Perfect classifier.
- AUC = 0.5: No discriminative ability (random guessing).
- AUC < 0.5: Worse than random guessing (predictions are reversed).

Parameter ->	AUC		Accuracy (%)	
	Diabetes - T2	Cirrhosis	Diabetes - T2	Cirrhosis
KIA-DNN	0.76	0.90	70	88
KIA-CNN	0.81	0.95	72	91
KIA-ResNet	0.78	0.96	68	89
KIA-FCN	0.69	0.95	65	85
DeepForest	0.76	0.75	-	-
WRF	0.7890	0.8183	-	-
EPCNN	0.82	0.94	I	-
MegaR	-	-	67	88.5
MegaD	-	-	70	83.3
PopPhy	-	-	65	91

Results Discussion

- CNN models performed better overall for all datasets.
- Less complicated structures outperformed previously built complex models due to overfitting issues.
- Lower learning rates helped stop overfitting.
- Breaking down into small batches brought more efficiency & regularization.
- Our model overall performed better in terms of AUC, Accuracy as well as cost as it is much simpler to build and run
- Averaged predictions across models were useful

Future Work

- Combining Models to Make predictions using specific weights
- Getting data from reputable organizations to adjust our models according to the dataset.
- Curating bigger datasets by merging data and finding patterns in related diseases.
- Finding more relations through different bacterial families