Feuille d'exercices 2

- Chapitre 2 : Intégrales généralisées. -

Exercice 1. Etudier la nature des intégrales suivantes et calculer leur valeur lorsqu'elles sont convergentes :

$$\int_{0}^{2} \frac{dx}{2-x}; \int_{0}^{4} \frac{dx}{(x-1)^{2}}; \int_{-1}^{1} \frac{dx}{\sqrt{1-x^{2}}}; \int_{0}^{4} \frac{dx}{|x-1|^{1/3}}; \int_{0}^{+\infty} x \exp\left(-x^{2}\right) dx;$$

$$\int_{3}^{+\infty} \frac{dx}{x^{2}-1}; \int_{1}^{+\infty} \frac{dx}{x(1+x^{2})}; \int_{0}^{+\infty} \frac{dx}{(1+x^{2})(4+x^{2})}; \int_{0}^{+\infty} \frac{dx}{(1+e^{x})(1+e^{-x})};$$

$$\int_{1}^{+\infty} \frac{dx}{x \ln(x)}; \int_{1}^{e} \frac{dx}{x \sqrt{\ln(x)}}; \int_{1}^{+\infty} (1+\ln(x)) x^{-x} dx; \int_{0}^{1} \frac{x-\frac{1}{2}}{\sqrt{x(1-x)}} dx;$$

$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{\tan(x)}; \int_{0}^{+\infty} e^{-x} \sin(x) dx.$$

Exercice 2. Etudier la convergence des intégrales suivantes :

$$\int_{0}^{+\infty} \sin(x) \sin(\frac{1}{x}) \, dx \, ; \int_{0}^{+\infty} \frac{\sin(x)}{x} \, dx, \quad \int_{0}^{+\infty} \sin(\frac{1}{x}) \frac{1}{x} \, dx,$$
$$\int_{0}^{+\infty} \cos(x^{2}) \, dx \, ; \int_{0}^{+\infty} \cos(\sqrt{x}) \, dx.$$

Exercice 3. Montrer que l'intégrale $\int_0^1 \frac{\ln x}{\sqrt{1-x}} dx$ est convergente et calculer sa valeur.

Exercice 4. Montrer que $\int_{-\infty}^{+\infty} \frac{\frac{\pi}{2} - \arctan(\frac{1}{x})}{1 + x^2} dx$ est convergente et calculer sa valeur.

Exercice 5. Montrer que l'intégrale $\int_1^{+\infty} \left(\left(\frac{x+1}{x} \right) \right)^{\sqrt{\sin(\frac{1}{x})}} - 1 dx$ est convergente.

Exercice 6. Montrer que $I = \int_0^{+\infty} \frac{\log(x)}{1+x^2} dx$ converge. Prouver ensuite que I = 0.

Exercice 7. 1°. Calculer $\lim_{\epsilon \to 0+} \int_{\epsilon}^{1/\epsilon} \frac{\log(x)}{x} \, dx$. 2°. L'intégrale $\int_{0}^{\infty} \frac{\log(x)}{x} \, dx$ converge-t-elle?

Exercice 8. Pour chacune des intégrales suivantes, déterminer toutes les valeurs du paramètre $\alpha \geq 0$ pour lesquelles l'intégrale est convergente.

1.
$$\int_{0}^{+\infty} \alpha \ln x dx$$

$$2. \int_0^{+\infty} \ln\left(1 + x^{\alpha}\right) dx$$

3.
$$\int_0^{+\infty} \ln(1+x^{\alpha}) - \alpha \ln x \, dx$$

$$4. \int_0^{+\infty} \frac{\sin^2(x)}{x^{\alpha}} \, dx$$

Exercice 9. 1°. Etablir la convergence de l'intégrale $I := \int_0^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$.

2°. Pour
$$\epsilon > 0$$
, on pose $I_{\epsilon} := \int_{\epsilon}^{+\infty} \frac{e^{-t} - e^{-2t}}{t} dt$. Montrer que $I_{\epsilon} = \int_{\epsilon}^{2\epsilon} \frac{e^{-t}}{t} dt$. 3°. Déterminer $\lim_{\epsilon \to 0^{+}} I_{\epsilon}$, et en déduire la valeur exacte de I .

Exercice 10. On définit la fonction gamma d'Euler:

$$\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$$
.

- 1. Montrer que l'intégrale généralisée $\Gamma(x)$ converge si, et seulement si, x > 0.
- 2. Trouver une relation de récurrence entre $\Gamma(x+1)$ et $\Gamma(x)$.
- 3. En déduire la relation $\Gamma(n+1) = n!$ pour tout $n \in \mathcal{N}$. En ce sens la fonction gamma généralise la notion de factorielle aux réels positifs.
- 4. Montrer que Γ est continue sur $\mathcal{R}_{>0}$.

Exercice 11. On veut montrer l'égalité

$$\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}.$$

- 1. Montrer que l'intégrale généralisée ci-dessus est semi-convergente.
- 2. Soit $f: \left[0, \frac{\pi}{2}\right] \to \mathcal{R}$ une fonction continue et de classe C^1 sur $\left[0, \frac{\pi}{2}\right]$. Montrer, en utilisant une intégration par parties, que

$$\lim_{n \to +\infty} \int_{0}^{\frac{\pi}{2}} f(t) \sin(nt) dt = 0.$$

3. Pour $n \in \mathcal{N}$ on pose

$$J_n := \int_0^{\pi/2} \frac{\sin((2n+1)x)}{\sin x} dx.$$

- (a) Montrer que pour tout n cette intégrale généralisée est convergente.
- (b) Etablir la relation

$$\sin((2n+1)x) - \sin((2n-1)x) = 2\sin x \cos(2nx)$$
.

- (c) En déduire que la suite $(J_n)_{n\in\mathcal{N}}$ est constante et que $J_n=\frac{\pi}{2}$ pour tout $n\in\mathcal{N}$.
- 4. Prouver, en effectuant le changement de variables adéquat, que

$$K_n := \int_0^{\pi/2} \frac{\sin((2n+1)x)}{x} dx = \int_0^{(2n+1)\pi/2} \frac{\sin t}{t} dt.$$

5. On définit la fonction

$$g\,:\,x\in]0,\frac{\pi}{2}]\quad\mapsto\quad\frac{1}{x}-\frac{1}{\sin x}\,.$$

Montrer que g se prolonge par continuité en 0 (on donnera la valeur de $g\left(0\right)$ ainsi obtenue).

6. Conclure.