1) Assume you know the energy eigenfunctions $\Psi_i(x,t)$ of the Hamiltonian operator and you find that $\int \psi^*(x)\Psi_2 dx = 0.1$. What is the probability of observing a particle energy of $\hbar\omega_2$ at t=0?

- 2) A particle is in a state given by $\Psi(x,t)=A\big(\psi_1e^{(iE_1t/\hbar)}+3\psi_2e^{iE_2t/\hbar}\big)$ where $E_1=1~eV$ and $E_2=5~eV$ and $\psi_1~and~\psi_2$ are normalized wavefunctions.
- ____a) What is the expectation value of a large number of energy measurements of this system? Explain.

_____b) What is the most likely measurement of the energy of this system? Explain.

3) The spatial wavefunction of a particle decays monotonically to zero in a particular region of space. What can you say about the eigenenergy of the state relative to the potential energy in that region?