The QR factorization and Least-Squares Systems

- Orthogonality
- The Gram-Schmidt and Modified Gram-Schmidt processes.

Text: 5.2.7, 5.2.8

- Least-squares systems. Text: 5.3
- The Householder QR and the Givens QR. Text: 5.1, 5.2.

Orthogonality - The Gram-Schmidt algorithm

- 1. Two vectors u and v are orthogonal if (u, v) = 0.
- 2. A system of vectors $\{v_1,\ldots,v_n\}$ is orthogonal if $(v_i,v_j)=0$ for $i\neq j$; and orthonormal if $(v_i,v_j)=\delta_{ij}$
- 3. A matrix is orthogonal if its columns are orthonormal
- Notation: $V = [v_1, \ldots, v_n] ==$ matrix with column-vectors v_1, \ldots, v_n .

IMPORTANT: From now on, we will reserve the term unitary for square matrices. The term 'orthonormal matrix' is not used. Even 'orthogonal' is often used for square matrices.

<u>Problem:</u> Given $X=[x_1,\ldots,x_n]$, compute $Q=[q_1,\ldots,q_n]$ which is orthonormal and s.t. $\mathrm{span}(Q)=\mathrm{span}(X)$.

7-2 Csci 5304 – October 15, 2013

ALGORITHM: 1. Classical Gram-Schmidt

- 1. For j = 1, ..., n Do:
- 2. Set $\hat{q} := x_i$
- 3. Compute $r_{ij} := (\hat{q}, q_i)$, for $i = 1, \dots, j-1$
- 4. For i = 1, ..., j 1 Do:
- 5. Compute $\hat{q} := \hat{q} r_{ij}q_i$
- 6. EndDo
- 7. Compute $r_{ij}:=\|\hat{q}\|_2$,
- 8. If $r_{ij} = 0$ then Stop, else $q_i := \hat{q}/r_{ij}$
- 9. EndDo
- ightharpoonup All n steps can be completed iff x_1, x_2, \ldots, x_n are linearly independent.

➤ Lines 5 and 7-8 show that

$$x_j = r_{1j}q_1 + r_{2j}q_2 + \ldots + r_{jj}q_j$$

▶ If $X=[x_1,x_2,\ldots,x_n]$, $Q=[q_1,q_2,\ldots,q_n]$, and if R is the $n \times n$ upper triangular matrix

$$R = \{r_{ij}\}_{i,j=1,...,n}$$

then the above relation can be written as

$$X = QR$$

- ightharpoonup R is upper triangular, Q is orthogonal. This is called the QR factorization of X.
- What is the cost of the factorization when $X \in \mathbb{R}^{m \times n}$?

Another decomposition:

A matrix X, with linearly independent columns, is the product of an orthogonal matrix Q and a upper triangular matrix R.

7-5 _____ Csci 5304 – October 15, 2013

The operations in lines 4 and 5 can be written as $\hat{q} := ORTH(\hat{q}, q_i)$

Where ORTH(x,q) denotes the operation of orthogonalizing a vector x against a unit vector q.

➤ Better algorithm: Modified Gram-Schmidt.

ALGORITHM: 2. Modified Gram-Schmidt

- 1. For $j = 1, \ldots, n$ Do:
- 2. Define $\hat{q} := x_j$
- 3. For i = 1, ..., j 1, Do:
- 4. $r_{ij} := (\hat{q}, q_i)$
- $\hat{q} := \hat{q} r_{ij}q_i$
- 6. EndDo
- 7. Compute $r_{jj}:=\|\hat{q}\|_2$,
- 8. If $r_{ij} = 0$ then Stop, else $q_i := \hat{q}/r_{ij}$
- 9. EndDo

Only difference: inner product uses the accumulated subsum instead of original \hat{q}

7-6 ______ Csci 5304 – October 15, 2013

➤ Modified Gram-Schmidt algorithm is much more stable than classical Gram-Schmidt in general. [A few examples easily show this].

Suppose MGS is applied to A yielding computed matrices \hat{Q} and \hat{R} . Then there are constants c_i (depending on (m,n)) such that

$$egin{aligned} A + E_1 &= \hat{Q}\hat{R} & \|E_1\|_2 \leq c_1 \ \underline{\mathrm{u}} \ \|A\|_2 \ \|\hat{Q}^T\hat{Q} - I\|_2 \leq c_2 \ \underline{\mathrm{u}} \ \kappa_2(A) + O((\underline{\mathrm{u}}\,\kappa_2(A))^2) \end{aligned}$$

for a certain perturbation matrix \boldsymbol{E}_1 , and there exists an orthonormal matrix \boldsymbol{Q} such that

$$A + E_2 = Q\hat{R}$$
 $||E_2(:,j)||_2 \le c_3 \mathrm{u} \, ||A(:,j)||_2$

for a certain perturbation matrix E_2 .

-7 ______ Csci 5304 – October 15, 2013 7-8 _____ Csci 5304 – October 15, 2013

> An equivalent version:

ALGORITHM: 3. Modified Gram-Schmidt - 2 -

1. For j = 1, ..., n Do:

2. Compute $r_{ij} := \|\hat{x}_i\|_2$,

3. If $r_{ij} = 0$ then Stop, else $q_j := \hat{x}_j/r_{jj}$

4. For i = j + 1, ..., n, Do:

 $5. r_{ii} := (x_i, q_i)$

 $6. x_i := x_i - r_{ji}q_j$

7. EndDo

8. EndDo

➤ Does exactly the same computation as previous algorithm, but in a different order.

9 ______ Csci 5304 – October 15, 2013

$$\hat{q}_3 = x_3 - (x_3,q_1)q_1 = egin{pmatrix} 1 \ 0 \ -1 \ 4 \end{pmatrix} - 2 imes egin{pmatrix} rac{1}{2} \ rac{1}{2} \ rac{1}{2} \ rac{1}{2} \end{pmatrix} = egin{pmatrix} 0 \ -1 \ -2 \ 3 \end{pmatrix}$$

$$\hat{q}_3 = \hat{q}_3 - (\hat{q}_3, q_2)q_2 = egin{pmatrix} 0 \ -1 \ -2 \ 3 \end{pmatrix} - (-1) imes egin{pmatrix} rac{1}{2} \ rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \end{pmatrix} = egin{pmatrix} rac{1}{2} \ -rac{1}{2} \ 2.5 \end{pmatrix}$$

$$\|\hat{q}_3\|_2 = \sqrt{13}
ightarrow q_3 = rac{\hat{q}_3}{\|\hat{q}_3\|_2} = rac{1}{\sqrt{13}} egin{pmatrix} rac{rac{1}{2}}{-rac{1}{2}} \ -2.5 \ 2.5 \end{pmatrix}$$

Example: Orthonormalize the system of vectors:

$$X = [x_1, x_2, x_3] \; = \; egin{pmatrix} 1 & 1 & 1 \ 1 & 1 & 0 \ 1 & 0 & -1 \ 1 & 0 & 4 \end{pmatrix}$$

Answer:

$$q_1 = egin{pmatrix} rac{1}{2} \ rac{1}{2} \end{pmatrix} \; ; \quad \hat{q}_2 = x_2 - (x_2, q_1) q_1 = egin{pmatrix} 1 \ 1 \ 0 \ 0 \end{pmatrix} - 1 imes egin{pmatrix} rac{1}{2} \ rac{1}{2} \ rac{1}{2} \ rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ \end{pmatrix} ; \quad q_2 = egin{pmatrix} rac{1}{2} \ rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ -rac{1}{2} \ \end{pmatrix}$$

For this example: compute Q^TQ .

➤ Result is the identity matrix.

Recall: For any orthogonal matrix Q, we have

$$Q^TQ=I$$

(In complex case: $Q^HQ = I$).

Consequence: For an $n \times n$ orthogonal matrix

$$Q^{-1} = Q^T$$
 . (Q is unitary)

Application: another method for solving linear systems.

$$Ax = b$$

A is an $n \times n$ nonsingular matrix. Compute its QR factorization.

lacksquare Multiply both sides by $Q^T o Q^T Q R x = Q^T b o R x = Q^T b$

Method:

- **Compute the QR factorization of** A, A = QR.
- **Solve the upper triangular system** $Rx = Q^Tb$.
- **∠** Cost??

7-13 _____ Csci 5304 – October 15, 2013

- ➤ Question: Close in what sense?
- **Least-squares approximation: Find** ϕ such that $\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$, & $\sum_{j=1}^m |\phi(t_j) \beta_j|^2 = \text{Min}$
- Translated in linear algebra terms: find 'best' approximation vector to a vector b from linear combinations of vectors f_i , $i = 1, \ldots, n$, where

$$b = egin{pmatrix} eta_1 \ eta_2 \ eta \ eta_m \end{pmatrix}, \quad f_i = egin{pmatrix} \phi_i(t_1) \ \phi_i(t_2) \ eta \ \phi_i(t_m) \end{pmatrix}$$

 \blacktriangleright We want to find $x=\{\xi_i\}_{i=1,\dots,n}$ such that

$$\left\|\sum_{i=1}^n \xi_i f_i - b
ight\|_2$$
 Minimum

Least-Squares systems

▶ Given: an $m \times n$ matrix n < m. Problem: find x which minimizes:

$$\|b-Ax\|_2$$

➤ Good illustration: Data fitting.

Typical problem of data fitting: We seek an unknwon function as a linear combination ϕ of n known functions ϕ_i (e.g. polynomials, trig. functions). Experimental data (not accurate) provides measures β_1, \ldots, β_m of this unknown function at points t_1, \ldots, t_m . Problem: find the 'best' possible approximation ϕ to this data.

$$\phi(t) = \sum_{i=1}^n \xi_i \phi_i(t)$$
 , s.t. $\phi(t_j) pprox eta_j, j=1,\ldots,m$

14 _____ Csci 5304 - October 15, 2013

Define

$$F=[f_1,f_2,\ldots,f_n],\quad x=egin{pmatrix} oldsymbol{\xi}_1\ oldsymbol{\xi}_n \end{pmatrix}$$

- ▶ We want to find x to minimize $||b Fx||_2$.
- ▶ Least-squares linear system. F is $m \times n$, with m > n.

THEOREM. The vector x_* minimizes $||b - Fx||_2$ if and only if it is the solution of the normal equations:

$$F^T F x = F^T b$$

Illustration of theorem: x^* is the best approximation to the vector b from the subspace $span\{F\}$ if and only if $b-Fx^*$ is \perp to the whole subspace span $\{F\}$. This in turn is equivalent to $F^T(b - Fx^*) = 0$ Normal equations.

Csci 5304 - October 15, 2013

1) Approximations by polynomials of degree one:

$$ightharpoonup \phi_1(t) = 1, \phi_2(t) = t.$$

$$F = egin{pmatrix} 1.0 & -1.0 \ 1.0 & -0.5 \ 1.0 & 0 \ 1.0 & 0.5 \ 1.0 & 1.0 \end{pmatrix}$$

$$F = egin{pmatrix} 1.0 & -1.0 \ 1.0 & -0.5 \ 1.0 & 0 \ 1.0 & 0.5 \end{pmatrix} \qquad egin{pmatrix} F^T F = egin{pmatrix} 5.0 & 0 \ 0 & 2.5 \end{pmatrix} \ F^T b = egin{pmatrix} 0.9 \ -0.15 \end{pmatrix}$$

Best approximation is $\phi(t) = 0.18 - 0.06t$.

Example:

Points: $|t_1 = -1| |t_2 = -1/2| |t_3 = 0| |t_4 = 1/2| |t_5 = 1|$ Values: $|\beta_1 = 0.1| |\beta_2 = 0.3| |\beta_3 = 0.3| |\beta_4 = 0.2| |\beta_5 = 0.0|$

Csci 5304 - October 15, 2013

2) Approximation by polynomials of degree 2:

- $\phi_1(t) = 1, \phi_2(t) = t, \phi_3(t) = t^2.$
- **>** Best polynomial found:

$$0.3085714285 - 0.06 \hspace{0.1cm} \times t \hspace{0.1cm} - 0.2571428571 \hspace{0.1cm} \times t^{2}$$

Use of the QR factorization

Problem: $Ax \approx b$ in least-squares sense

A is an $m \times n$ (full-rank) matrix. Let

$$A = QR$$

the QR factorization of A and consider the normal equations:

$$A^TAx = A^Tb \
ightarrow \ R^TQ^TQRx = R^TQ^Tb \
ightarrow \ R^TRx = R^TQ^Tb
ightarrow Rx = Q^Tb$$

 $(R^T \text{ is an } n \times n \text{ nonsingular matrix}).$ Therefore, $x = R^{-1}O^Th$

Csci 5304 - October 15, 2013

Also observe that for any vector w

$$w = QQ^Tw + (I - QQ^T)w$$

and that $w = QQ^Tw$ \perp $(I - QQ^T)w$ \rightarrow

Pythagoras theorem:

$$\|w\|_2^2 = \|QQ^Tw\|_2^2 + \|(I-QQ^T)w\|_2^2$$

$$||b - Ax||^{2} = ||b - QRx||^{2}$$

$$= ||(I - QQ^{T})b + Q(Q^{T}b - Rx)||^{2}$$

$$= ||(I - QQ^{T})b||^{2} + ||Q(Q^{T}b - Rx)||^{2}$$

$$= ||(I - QQ^{T})b||^{2} + ||Q^{T}b - Rx||^{2}$$

Min is reached when 2nd term of r.h.s. is zero.

Another derivation:

- ightharpoonup Recall: $\operatorname{span}(Q) = \operatorname{span}(X)$
- ▶ So $||b Ax||_2$ is minimum when $b Ax \perp \text{span}\{Q\}$
- ➤ Therefore solution x must satisfy $Q^T(b-Ax)=0$ →

$$Q^T(b-QRx)=0
ightarrow Rx=Q^Tb$$
 $x=R^{-1}Q^Tb$

Method:

- Compute the QR factorization of A, A = QR.
- Compute the right-hand side $f = Q^T b$
- Solve the upper triangular system Rx = f.
- x is the least-squares solution
- \blacktriangleright As a rule it is not a good idea to form A^TA and solve the normal equations. Methods using the QR factorization are better.
- Total cost??
- Using matlab find the parabola that fits the data in previous example in L.S. sense [verify that the result found is correct.

Householder QR

➤ Householder reflectors are matrices of the form

$$P = I - 2ww^T,$$

where w is a unit vector (a vector of 2-norm unity)

Geometrically, Px represents a mirror image of x with respect to the hyperplane $\operatorname{span}\{w\}^{\perp}$.

7-25 Csci 5304 – October 15, 2013

Problem 1: Given a vector $x \neq 0$, find w such that

$$(I-2ww^T)x=\alpha e_1,$$

where α is a (free) scalar.

Writing $(I - \beta vv^T)x = \alpha e_1$ yields

$$\beta(v^T x) \ v = x - \alpha e_1. \tag{1}$$

- ▶ Desired w is a multiple of $x \alpha e_1$, i.e., we can take $v = x \alpha e_1$
- **To** determine α we just recall that

$$\|(I-2ww^T)x\|_2 = \|x\|_2$$

As a result: $|\alpha| = \|x\|_2$, or $\alpha = \pm \|x\|_2$

A few simple properties:

- ullet P is symmetric (real for w real) It is also unitary (for real w)
- ullet In the complex case $P=I-2ww^H$ is Hermitian and unitary.
- ullet P can be written as $P=I-eta vv^T$ with $eta=2/\|v\|_2^2$, where v is a multiple of w. [storage: v and eta]
- Px can be evaluated $x \beta(x^Tv) \times v$ (op count?)
- ullet Similarly: $PA = A vz^T$ where $z^T = eta * v^T * A$
- ightharpoonup NOTE: we work in \mathbb{R}^m , so all vectors are of length m, P is of size $m \times m$, etc.

-26 _____ Csci 5304 - October 15, 2013

- ► Should verify that both signs work, i.e., that in both cases we indeed get $Px = \alpha e_1$ [exercise]
- ▶ Which sign is best? To reduce cancellation, the resulting $x \alpha e_1$ should not be small. So, $\alpha = -\text{sign}(\xi_1) \|x\|_2$.

$$v=x+ ext{sign}(oldsymbol{\xi}_1)\|x\|_2e_1$$
 and $eta=2/\|v\|_2^2$

$$v=egin{pmatrix} \hat{\xi}_1\ \xi_2\ dots\ oldsymbol{\xi}_{m-1}\ oldsymbol{\xi}_m \end{pmatrix} \quad ext{with} \quad \hat{\xi}_1=egin{cases} oldsymbol{\xi}_1+\|x\|_2 ext{ if } oldsymbol{\xi}_1>0\ oldsymbol{\xi}_1-\|x\|_2 ext{ if } oldsymbol{\xi}_1\leq 0 \end{cases}$$

\triangleright OK, but will yield a negative multiple of e_1 if $\xi_1 > 0$.

 $extstyle \triangle$.. Show that $(I-eta vv^T)x=lpha e_1$ when $v=x-lpha e_1$ and $lpha=\pm \|x\|_2$.

➤ Equivalent to showing that

$$x-(eta x^T v)v=lpha e_1 \leftrightarrow x-lpha e_1=(eta x^T v)v$$

but recall that $v=x-\alpha e_1$ so we need to show that

$$eta x^T v = 1$$
 i.e., that $rac{2x^T v}{\|x - lpha e_1\|_2^2} = 1$

- ▶ Denominator = $||x||_2^2 + \alpha^2 2\alpha e_1^T x = 2(||x||_2^2 \alpha e_1^T x)$
- lacksquare Numerator $=2x^Tv=2x^T(x-lpha e_1)=2(\|x\|_2^2-lpha x^Te_1)$

Numerator/ Denominator = 1. Done

7-29 _____ Csci 5304 - October 15, 2013

```
function [v,bet] = house (x)
%% computes the householder vector for x
m = length(x);
v = [1 : x(2:m)]:
sigma = v(2:m)' * v(2:m);
if (sigma == 0)
   bet = 0;
else
   xnrm = sqrt(x(1)^2 + sigma);
   if (x(1) <= 0)
      v(1) = x(1) - xnrm;
   else
      v(1) = -sigma / (x(1) + xnrm);
   bet = 2 / (1+sigma/v(1)^2);
   v = v/v(1):
end
```

Alternative:

- ightharpoonup Define $\sigma = \sum_{i=2}^m \xi_i^2$.
- ▶ Always set $\hat{\xi}_1 = \xi_1 ||x||_2$. Update OK when $\xi_1 \leq 0$
- ▶ When $\xi_1 > 0$ compute \hat{x}_1 as

$$\|\hat{\xi}_1 = \xi_1 - \|x\|_2 = rac{\xi_1^2 - \|x\|_2^2}{\xi_1 + \|x\|_2} = rac{-\sigma}{\xi_1 + \|x\|_2}$$

So:
$$\hat{\xi}_1=egin{cases} rac{-\sigma}{\xi_1+\|x\|_2} & ext{if } \xi_1>0 \ \xi_1-\|x\|_2 & ext{if } \xi_1\leq0 \end{cases}$$

- ▶ It is customary to compute a vector v such that $v_1 = 1$. So v is scaled by its first component.
- ▶ If σ is zero, procedure will return v = [1; x(2:m)] and $\beta = 0$.
- **➤** Matlab function:

Problem 2: Generalization.

Given an m imes n matrix X, find w_1, w_2, \ldots, w_n such that $(I-2w_nw_n^T)\cdots(I-2w_2w_2^T)(I-2w_1w_1^T)X=R$ where $r_{ij}=0$ for i>j

- First step is easy : select w_1 so that the first column of X becomes αe_1
- ightharpoonup Second step: select w_2 so that x_2 has zeros below 2nd component.
- ightharpoonup etc.. After k-1 steps: $X_k \equiv P_{k-1} \dots P_1 X$ has the following shape:

-31 ______ Csci 5304 - October 15, 2013

7-32 Csci 5304 – October 15, 20

$$X_k = egin{pmatrix} x_{11} & x_{12} & x_{13} & \cdots & \cdots & x_{1n} \ & x_{22} & x_{23} & \cdots & \cdots & x_{2n} \ & x_{33} & \cdots & \cdots & x_{3n} \ & & \ddots & \ddots & \ddots & \vdots \ & & x_{kk} & \cdots & \vdots \ & & x_{k+1,k} & \cdots & x_{k+1,n} \ & & & \vdots & \vdots & \vdots \ & & x_{m,k} & \cdots & x_{m,n} \end{pmatrix}.$$

- ightharpoonup To do: transform this matrix into one which is upper triangular up to the k-th column...
- > ... while leaving the previous columns untouched.

7-33 Csci 5304 – October 15, 2013

ALGORITHM : 4. Householder QR

- 1. For k = 1 : n do
- 2. $[v,\beta] = house(X(k:m,k))$
- 3. $X(k:m,k:n) = (I \beta vv^T)X(k:m,k:n)$
- 4 If (k < m)
- 5 X(k+1:m,k) = v(2:m-k+1)
- 6 end
- 7 end
- ➤ In the end:

$$X_n = P_n P_{n-1} \dots P_1 X = \text{upper triangular}$$

▶ To leave the first k-1 columns unchanged w must have zeros in positions 1 through k-1.

$$P_k = I - 2w_k w_k^T, \quad w_k = rac{v}{\|v\|_2},$$

where the vector \boldsymbol{v} can be expressed as a Householder vector for a shorter vector using the matlab function house,

$$v = egin{pmatrix} 0 \ house(X(k:m,k)) \end{pmatrix}$$

ightharpoonup The result is that work is done on the (k:m,k:n) submatrix.

7-34 _____ Csci 5304 – October 15, 2013

Yields the factorization:

$$X = QR$$

where

$$Q = P_1 P_2 \dots P_n$$
 and $R = X_n$

MAJOR difference with Gram-Schmidt: Q is $m \times m$ and R is $m \times n$ (same as X). The matrix R has zeros below the n-th row. Note also : this factorization always exists.

Cost of Householder QR? Compare with Gram-Schmidt

Question: How to obtain $X=Q_1R_1$ where $Q_1=$ same size as X and R_1 is $n\times n$ (as in MGS)?

7.35 Csci 5304 – October 15, 2013

7-36 Csci 5304 – October 15, 2013

Answer: simply use the partitioning

$$X = \left(egin{array}{cc} Q_1 & Q_2 \end{array}
ight) \left(egin{array}{cc} R_1 \ 0 \end{array}
ight) &
ightarrow & X = Q_1 R_1 \end{array}$$

- > Referred to as the "thin" QR factorization (or "economysize QR" factorization in matlab)
- \blacktriangleright How to solve a least-squares problem Ax=b using the Householder factorization?
- Answer: no need to compute Q_1 . Just apply Q^T to b.
- This entails applying the successive Householder reflections to b

Algorithm: At step k, active matrix is X(k:m,k:n). Swap k-th column with column of largest 2-norm in X(k): m, k:n). If all the columns have zero norm, stop.

Practical Question: how to implement this ???

The rank-deficient case

- **Result of Householder QR:** Q_1 and R_1 such that $Q_1R_1 =$ X. In the rank-deficient case, can have $\operatorname{span}\{Q_1\} \neq$ $span\{X\}$ because R_1 may be singular.
- ➤ Remedy: Householder QR with column pivoting. Result will be:

$$A\Pi = Q \begin{pmatrix} R_{11} & R_{12} \\ 0 & 0 \end{pmatrix}$$

- ▶ R_{11} is nonsingular. So rank(X) = size of $R_{11} = rank(Q_1)$ and Q_1 and X span the same subspace.
- \blacktriangleright Π permutes columns of X.

Properties of the QR factorization

Consider the 'thin' factorization A = QR, (size(Q) = [m,n] = size (A)). Assume $r_{ii} > 0$, $i = 1, \ldots, n$

- 1. When A is of full column rank this factorization exists and is unique
- 2. It satisfies:

$$\operatorname{span}\{a_1,\cdots,a_k\}=\operatorname{span}\{q_1,\cdots,q_k\},\quad k=1,\ldots,n$$

- 3. R is identical with the Cholesky factor G^T of A^TA .
- ➤ When A in rank-deficient and Householder with pivoting is used, then

$$Ran\{Q_1\} = Ran\{A\}$$

Givens Rotations

Matrices of the form

$$G(i,k, heta) = egin{pmatrix} 1 & \dots & 0 & & \dots & 0 & 0 \ dots & \ddots & dots &$$

with $c = \cos \theta$ and $s = \sin \theta$

ightharpoonup represents a rotation in the span of e_i and e_k .

7-41 _____ Csci 5304 - October 15, 2013

Orthogonal projectors and subspaces

Notation: Given a supspace $\mathcal X$ or $\mathbb R^m$ define

$$\mathcal{X}^{\perp} = \{y \mid y \perp x, \quad orall \; x \; \in \mathcal{X}\}$$

- ightharpoonup Let $Q=[q_1,\cdots,q_r]$ an orthonormal basis of $\mathcal X$
- How would you obtain such a basis?
- ▶ Then define orthogonal projector $P = QQ^T$

Properties

- (a) $P^2 = P$ (b) $(I P)^2 = I P$
- (c) $Ran(P) = \mathcal{X}$ (d) Ran(I P) = Null(P)
- (e) $Null(P) = \mathcal{X}^{\perp}$ (= Ran(I P))
- ▶ Note that (b) means that I P is also a projector

Main idea of Givens rotations | consider y = Gx then

$$egin{aligned} y_i &= c * x_i + s * x_k \ y_k &= -s * x_i + c * x_k \ y_j &= x_j \quad ext{for} \quad j
eq i, k \end{aligned}$$

ightharpoonup Can make $y_k = 0$ by selecting

$$s=x_k/t; \quad c=x_i/t; \quad t=\sqrt{x_i^2+x_k^2}$$

- This is used to introduce zeros in the first column of a matrix A (for example G(m-1,m), G(m-2,m-1) etc..G(1,2))..
- ➤ See text for details

7-42 _____ Csci 5304 – October 15, 2013

Proof. (a), (b) are trivial

(c): Clearly $Ran(P)=\{x|\ x=QQ^Ty,y\in\mathbb{R}^m\}\subseteq\mathcal{X}.$ Any $x\in\mathcal{X}$ is of the form $x=Qy,y\in\mathbb{R}^m.$ Take $Px=QQ^T(Qy)=Qy=x.$ Since $x=Px,x\in Ran(P)$ so $\mathcal{X}\subset Ran(P).$ In the end $\mathcal{X}=Ran(P).$

(d): Need to show inclusion both ways.

- $x \in Null(P) \leftrightarrow Px = 0 \leftrightarrow (I P)x = x \rightarrow x \in Ran(I P)$
- $x \in Ran(I-P) \leftrightarrow \exists y \in \mathbb{R}^m | x = (I-P)y \rightarrow Px = P(I-P)y = 0 \rightarrow x \in Null(P)$

 $\begin{array}{l} \textbf{(e):} \ \ x \in \mathcal{X}^{\perp} \leftrightarrow (x,y) = 0, \forall y \in \mathcal{X} \leftrightarrow (x,Qz) = \\ 0, \forall z \in \mathbb{R}^r \leftrightarrow (Q^Tx,z) = 0, \forall z \in \mathbb{R}^r \leftrightarrow Q^Tx = 0 \leftrightarrow \\ QQ^Tx = 0 \leftrightarrow Px = 0 \end{array}$

Orthogonal decomposition

Result: Any $x \in \mathbb{R}^m$ can be written in a unique way as

$$x=x_1+x_2, \quad x_1 \ \in \ \mathcal{X}, \quad x_2 \ \in \ \mathcal{X}^\perp$$

- ightharpoonup Just set $x_1=Px, \quad x_2=(I-P)x$
- ightharpoonup In other words $\mathbb{R}^m=P\mathbb{R}^m\oplus (I-P)\mathbb{R}^m$ or $\mathbb{R}^m=Ran(P)\oplus Ran(I-P)$ $\mathbb{R}^m=Ran(P)\oplus Null(P)$
- ightharpoonup Can complete basis $\{q_1,\cdots,q_r\}$ into orthonormal basis of \mathbb{R}^m , q_{r+1},\cdots,q_m
- $igwedge \{q_{r+1},q_{r+2},\cdots,q_m\} = extbf{basis of } \mathcal{X}^\perp.
 ightarrow \ dim(\mathcal{X}^\perp) = m-r.$

7-45 _____ Csci 5304 - October 15, 2013

Express the above with bases for \mathbb{R}^m :

$$[\underbrace{u_1,u_2,\cdots,u_r}_{Ran(A)},\underbrace{u_{r+1},u_{r+2},\cdots,u_m}_{\pmb{Null}(\pmb{A^T})}]$$

and for \mathbb{R}^n

$$[\underbrace{v_1,v_2,\cdots,v_r}_{oldsymbol{Ran}(oldsymbol{A^T})},\underbrace{v_{r+1},v_{r+2},\cdots,v_n}_{Null(oldsymbol{A})}]$$

▶ Observe $u_i^T A v_j = 0$ for i > r or j > r. Therefore

$$egin{aligned} oldsymbol{U}^T A V &= R = egin{pmatrix} C & 0 \ 0 & 0 \end{pmatrix}_{m imes n} & C \in \mathbb{R}^{r imes r} & \longrightarrow \ oldsymbol{A} &= oldsymbol{U} R V^T \end{aligned}$$

➤ General class of URV decompositions

Four fundamental supspaces - URV decomposition

Let $A \in \mathbb{R}^{m \times n}$ and consider $\mathrm{Ran}(A)^{\perp}$ Property 1: $\mathrm{Ran}(A)^{\perp} = Null(A^T)$

Proof: $x \in \text{Ran}(A)^{\perp}$ iff (Ay, x) = 0 for all y iff $(y, A^Tx) = 0$ for all y ...

Property 2:
$$\operatorname{Ran}(A^T) = Null(A)^{\perp}$$

- **Take** $\mathcal{X} = \operatorname{Ran}(A)$ in orthogonal decomposition
- ➤ Result:

$$\mathbb{R}^m = Ran(A) \oplus Null(A^T) egin{array}{ll} & ext{4 fundamental subspaces} \ Ran(A) & Null(A), \ \mathbb{R}^n = Ran(A^T) \oplus Null(A) & Ran(A^T) & Null(A^T) \ \end{array}$$

-46 _____ Csci 5304 – October 15, 2013

- > Far from unique.
- \triangle Show how you can get a decomposition in which C is lower (or upper) triangular, from the above factorization.
- ► Can select decomposition so that *R* is upper triangular
- \rightarrow URV decomposition.
- \triangleright Can select decomposition so that R is lower triangular
- \rightarrow **ULV** decomposition.
- ightharpoonup SVD = special case of URV where R= diagonal
- How can you get the ULV decomposition by using only the Householder QR factorization (possibly with pivoting)? [Hint: you must use Householder twice]