PROBLEM SET 4

DISCRETE MATHEMATICS Due: 24th of February, 2023

- 1. (a) Show that $\forall x (\emptyset \subseteq x)$.
 - (b) Show that $\forall x (x \subseteq x)$.
 - (c) Show that $\forall x (x \subseteq \emptyset \Rightarrow x = \emptyset)$.
 - (d) Show that $(x = y) \Leftrightarrow (x \subseteq y \land y \subseteq x)$ for all x, y.
- 2. (a) Show that $x \cap y \subseteq x$ for all x, y.
 - (b) Show that $x \subseteq x \cup y$ for all x, y.
 - (c) Show that $\forall x \forall y (x \cap y \subseteq x \cup y)$.
- 3. Prove that $\forall x \forall y \forall z ((x \subseteq y \land y \subseteq z) \Rightarrow x \subseteq z)$.
- 4. The difference of two sets x and y is given by $x \setminus y := \{a \mid a \in x \land a \notin y\}.$
 - (a) Show that $x \setminus y$ exists for any two sets x, y.
 - (b) Is it the case that $(x \setminus y \subseteq x)$ for any sets x, y? Prove your assertion in either case.
- 5. Recall that $A \times B := \{(a, b) \mid a \in A \land b \in B\}.$
 - (a) Show that $\forall A(A \times \emptyset = \emptyset)$.
 - (b) Is it the case that $A \times B = B \times A$ for any sets A, B? Prove your assertion in either case.
- 6. Prove that $x \subseteq \mathcal{S}(x)$ for any x.