

Introductory Overview Lecture CASA course (5/10/2018)

D. Freire-Obregón, PhD.

Plan for the 1st part of the CASA course

Week 0:

TS1: Introduction to CV & DL

Week 1:

- LS1: Our first NN. Different approaches.
- TS2: Fundamentals of ML & DL.

Week 2:

- LS2: Regularization is critical.
- TS3: Why regularization.

Plan for the 1st part of the CASA course

- LS3: DL on images.

TS4: DL on images.

Week 4:

- LS4: Convolutional NN.

TS5: Convolutional NN.

Plan for TS1

- Computer-Human vision overview
- Computer graphics vs. Computer Vision
- Last 20 years of papers (just the relevants)
- CV...ML or DL?
- Current state of the art
- Working with images? Feasible?

This is what the computer sees
An image is a big grid of numbers [0, 255]
e.g. 200x200x3 (3 channels RGB)

Challenge → Viewpoint variation

¿What is this? ¿A rock?¿A palm tree?

The perspective on what you see is relevant.

Other challenges:

Illumination

ATICA CULTURE OF THE STATE OF T

Deformation

Intraclass variations

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Where?

What do you see?

Which team is it? How do you know?

Not because of the people...

Let's train considering the shirt

Let's train considering the shirt

Let's train considering the shirt

Again: 1-human segmentation 2-pattern recognition

What about the Badge?? ©

Please...find one for me in the picture.

Training data!

Good luck with that

Did they win?

How do you know that?

Tell me our best shot

Pattern Recognition:

Facial expression recognition:

e-mail: info@siani.es - www.siani.es

Google Street View

Not so easy...

Computer Graphics vs Computer Vision

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Noise removal

Image enhancement

Original

Automatic Enhancement

Campus Universitario de Tafira 35017 Las Palmas de Gran Canaria e-mail: info@siani.es - www.siani.es

Image enhancement

Not real

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Image restoration

"Computer Vision describes the automatic deduction of the structure and the properties of a (possible dynamic) threedimensional world from either a single or multiple twodimensional images of the world"

Research area -> Computers perceive, process and understand visual data

Do we need to copy the human vision approach?

Is it reliable enough? Perception

Humans → See in 3D Machines → Only in 2D

Innovations

Hardware

Kinect, 2010

https://www.youtube.com/watch?v=

StQyUdeux0o

The last 20 years: Normalized cut

https://www.youtube.com/watch?v=eUhvKEC3YTc

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

The last 20 years: SIFT & Object recog.

Image is CC BY-SA 2.0

e-mail: info@siani.es - www.siani.es

The last 20 years: Face Detector

e-mail: info@siani.es - www.siani.es

The last 20 years: HoG

Image is CC0 1.0 public domain

The last 20 years: Competitions

This image is licensed under CC BY-SA 2.0; changes made

The last 20 years: Imagenet

22K categories and 14M images e.g. Animals:

- Bird
- Fish
- Mammal
- Invertebrate

Plants:

- Tree
- Flower

Food

Person

. . .

e-mail: info@siani.es - www.siani.es

The last 20 years: The Image Class. Challenge

1,000 object classes 1,431,167 images

The last 20 years: The Image Class. Challenge

1,000 object classes 1,431,167 images

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

INGENIERIA COMPUTACIONAL

CV & ML

Traditional modeling - CV (feat.ext.)+ML(class.):

Deep learning:

e-mail: info@siani.es - www.siani.es

Structure of a CV book

Structure of a DL book

Fundamentals:

Brands of ML

Evaluation

Data processing

Overfitting & underfitting

DL in practice:

CNN

RNN

Generative models

Features??

e-mail: info@siani.es - www.siani.es

Where is DL?

Figure 1.1 Artificial Intelligence, Machine Learning and Deep Learning

e-mail: info@siani.es - www.siani.es

Why DL? Why now?

- 1. Hardware:
 - 1. GPUs...NVIDIA rules!
 - 2. TPUs...10xGPUs.
- 2. Data
 - 1. A lot places with datasets available
- 3. Algorithms:
 - 1. Better activation functions
 - 2. Better optimization techniques
 - 3. Better weight-initialization methods
- 4. New wave of investment:
 - 1. $2011 \rightarrow 19M \dots 2014 \rightarrow 394M \$$

Where are we now?

Object detection Action classification Image captioning

This image is licensed under CC BY-SA 2.0; changes made

Person

This image is licensed under CC BY-SA 3.0; changes made

This image is licensed under CC BY-NC-SA 2.0; changes made

Vision as measurement device

Pollefeys et al.

Goesele et al.

e-mail: info@siani.es · www.siani.es

Vision as a source of semantic information

e-mail: info@siani.es · www.siani.es

Data everywhere

3D urban modeling

Cameras: face detection

Cameras: smile detection

Face recognition

https://www.youtube.com/watch?v=FhbMLmsCax0

Biometrics

Optical character recognition (OCR)

Digit recognition, AT&T labs

License plate readers

http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Toys & robots

Mobile visual search: Google Goggles

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

35017 Las Palmas de Gran Canaria e-mail: info@siani.es · www.siani.es

Mobile visual search: iPhone apps

Query Images

Where are we now?

https://www.youtube.com/watch?v=OoC8oH0CLGc

Transfer control: Human and machine.

Two cameras in the driver: face and back.

2 Deep NN: Raw segmentation + Object detection

Glance reading classification: 3D CNN

High level planning decisions:

- Transfer control or stop vehicle
- Decision fussion algorithm
 - Combines:
 - Risk factor at the external environment
 - Driver state (paying attention?)

Vision in supermarkets

Vision based interaction

Microsoft Kinect

Assistive technologies

Working with images

Method	Accuracy
Best from [10]	77.8 ± 1.3
Best from [23]	79.3 ± 0.0
Proposed using single crop	85.9 ± 1.4
Proposed using over-sample	86.8 ± 1.4

Table 2. Gender estimation results on the Adience benchmark. Listed are the mean accuracy \pm standard error over all age categories. Best results are marked in bold.

Method	Exact	1-off
Best from [10]	45.1 ± 2.6	79.5 ± 1.4
Proposed using single crop	49.5 ± 4.4	84.6 ± 1.7
Proposed using over-sample	50.7 ± 5.1	84.7 ± 2.2

Table 3. Age estimation results on the Adience benchmark. Listed are the mean accuracy \pm standard error over all age categories. Best results are marked in bold.

1-off means that the correct decision is the nearest neighbor to the current decision.

Working with images is hard

Credits

These slides are partially based on:

Niebles and Fei-Fei. Introduction to computer vision. Stanford AI Lab

