Chapter 5

Normalization of Database Tables

Database Systems:
Design, Implementation, and Management,
Seventh Edition, Rob and Coronel

In this chapter, you will learn:

- What normalization is and what role it plays in the database design process
- About the normal forms 1NF, 2NF, 3NF, BCNF, and 4NF
- How normal forms can be transformed from lower normal forms to higher normal forms
- That normalization and ER modeling are used concurrently to produce a good database design
- That some situations require denormalization to generate information efficiently

Database Tables and Normalization

- Normalization
 - Process for evaluating and correcting table structures to minimize data redundancies
 - Reduces data anomalies
 - Works through a series of stages called normal forms:
 - First normal form (1NF)
 - Second normal form (2NF)
 - Third normal form (3NF)

Database Tables and Normalization (continued)

- Normalization (continued)
 - 2NF is better than 1NF; 3NF is better than 2NF
 - For most business database design purposes,
 3NF is as high as we need to go in normalization process
 - Highest level of normalization is not always most desirable

The Need for Normalization

- Example: Company that manages building projects
 - Charges its clients by billing hours spent on each contract
 - Hourly billing rate is dependent on employee's position
 - Periodically, report is generated that contains information displayed in Table 5.1

The Need for Normalization (continued)

PROJ.	PROJECT	EMPLOYEE	EMPLOYEE	JOB	CHG/	HOURS	TOTAL
NUM.	NAME	NUMBER	NAME		HOUR	BILLED	CHARGE
15	Evergreen	103	June E. Arbough	Elec. Engineer	\$ 85.50	23.8	\$ 2,011.10
		101	John G. News	Database Designer	\$105.00	19.4	\$ 2,037.00
		105	Alice K. Johnson*	Database Designer	\$105.00	35.7	\$ 3,748.50
		106	William Smithfield	Programmer	\$ 35.75	12.6	\$ 450.45
		102	David H. Senior	Systems Analyst	\$ 96.75	23.8	\$ 2,302.65
				Subtotal			\$10,549.70
18	Amber Wave	114	Annelise Jones	Applications Designer	\$ 48.10	25.6	\$ 1,183.26
		118	James J. Frommer	General Support	\$ 18.36	45.3	\$ 831.71
		104	Anne K. Ramoras*	Systems Analyst	\$ 96.75	32.4	\$ 3,135.70
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	45.0	\$ 2,021.80
				Subtotal			\$ 7,172.47
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	65.7	\$ 6,793.50
		104	Anne K. Ramoras	Systems Analyst	\$ 96.75	48.4	\$ 4,682.70
		113	Delbert K. Joenbrood*	Applications Designer	\$ 48.10	23.6	\$ 1,135.16
		111	Geoff B. Wabash	Clerical Support	\$ 26.87	22.0	\$ 591.14
		106	William Smithfield	Programmer	\$ 35.75	12.8	\$ 457.60
				Subtotal			\$13,660.10
25	Starflight	107	Maria D. Alonzo	Programmer	\$ 35.75	25.6	\$ 879.45
		115	Travis B. Bawangi	Systems Analyst	\$ 96.75	45.8	\$ 4,431.15
		101	John G. News*	Database Designer	\$105.00	56.3	\$ 5,911.50
		114	Annelise Jones	Applications Designer	\$ 48.10	33.1	\$ 1,592.11
		108	Ralph B. Washington	Systems Analyst	\$ 96.75	23.6	\$ 2,283.30
		118	James J. Frommer	General Support	\$ 18.36	30.5	\$ 559.98
		112	Darlene M. Smithson	DSS Analyst	\$ 45.95	41.4	\$ 1,902.33
				Subtotal			\$17,559.82
				Total			\$48,942.09

The Need for Normalization (continued)

FIGURE 5.1

Tabular representation of the report format

Table name: RPT_FORMAT Database name: Ch05_ConstructCo

PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
▶ 15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
		101	John G. News	Database Designer	\$105.00	19.4
		105	Alice K. Johnson *	Database Designer	\$105.00	35.7
		106	William Smithfield	Programmer	\$35.75	12.6
		102	David H. Senior	Systems Analyst	\$96.75	23.8
18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
		118	James J. Frommer	General Support	\$18.36	45.3
		104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
		112	Darlene M. Smithson	DSS Analyst	\$45.95	44.0
22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
		104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
		113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
		111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
		106	William Smithfield	Programmer	\$35.75	12.8
25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
		115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
		101	John G. News *	Database Designer	\$105.00	56.3
		114	Annelise Jones	Applications Designer	\$48.10	33.1
		108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
		118	James J. Frommer	General Support	\$18.36	30.5
		112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

The Need for Normalization (continued)

- Structure of data set in Figure 5.1 does not handle data very well
- The table structure appears to work; report generated with ease
- Unfortunately, report may yield different results depending on what data anomaly has occurred

The Normalization Process

- Each table represents a single subject
- No data item will be unnecessarily stored in more than one table
- All attributes in a table are dependent on the primary key

The Normalization Process (continued)

TABLE 5.2

Normal Forms

NORMAL FORM	CHARACTERISTIC	SECTION
First normal form (1NF)	Table format; no repeating groups and PK identified	5.3.1
Second normal form (2NF)	1NF and no partial dependencies	5.3.2
Third normal form (3NF)	2NF and no transitive dependencies	5.3.3
Boyce-Codd normal form (BCNF)	Every determinant is a candidate key (special case of 3NF)	5.6.1
Fourth normal form (4NF)	3NF and no independent multivalued dependencies	5.6.2

Conversion to First Normal Form

- Repeating group
 - Derives its name from the fact that a group of multiple entries of same type can exist for any single key attribute occurrence
- Relational table must not contain repeating groups
- Normalizing table structure will reduce data redundancies
- Normalization is three-step procedure

- Step 1: Eliminate the Repeating Groups
 - Present data in tabular format, where each cell has single value and there are no repeating groups
 - Eliminate repeating groups, eliminate nulls by making sure that each repeating group attribute contains an appropriate data value

FIGURE 5.2

A table in first normal form

Table name: DATA_ORG_1NF

Database name: Ch05_ConstructCo

	PROJ_NUM	PROJ_NAME	EMP_NUM	EMP_NAME	JOB_CLASS	CHG_HOUR	HOURS
>	15	Evergreen	103	June E. Arbough	Elect. Engineer	\$84.50	23.8
- 6	15	Evergreen	101	John G. News	Database Designer	\$105.00	19.4
	15	Evergreen	105	Alice K. Johnson *	Database Designer	\$105.00	35.7
100	15	Evergreen	106	William Smithfield	Programmer	\$35.75	12.6
	15	Evergreen	102	David H. Senior	Systems Analyst	\$96.75	23.8
	18	Amber Wave	114	Annelise Jones	Applications Designer	\$48.10	24.6
	18	Amber Wave	118	James J. Frommer	General Support	\$18.36	45.3
	18	Amber Wave	104	Anne K. Ramoras *	Systems Analyst	\$96.75	32.4
	18	Amber Wave	112	Darlene M. Smithson	DSS Analyst	\$45.95	44.0
- 17	22	Rolling Tide	105	Alice K. Johnson	Database Designer	\$105.00	64.7
	22	Rolling Tide	104	Anne K. Ramoras	Systems Analyst	\$96.75	48.4
	22	Rolling Tide	113	Delbert K. Joenbrood *	Applications Designer	\$48.10	23.6
	22	Rolling Tide	111	Geoff B. Wabash	Clerical Support	\$26.87	22.0
	22	Rolling Tide	106	vVilliam Smithfield	Programmer	\$35.75	12.8
	25	Starflight	107	Maria D. Alonzo	Programmer	\$35.75	24.6
	25	Starflight	115	Travis B. Bawangi	Systems Analyst	\$96.75	45.8
	25	Starflight	101	John G. News *	Database Designer	\$105.00	56.3
	25	Starflight	114	Annelise Jones	Applications Designer	\$48.10	33.1
	25	Starflight	108	Ralph B. Washington	Systems Analyst	\$96.75	23.6
-	25	Starflight	118	James J. Frommer	General Support	\$18.36	30.5
	25	Starflight	112	Darlene M. Smithson	DSS Analyst	\$45.95	41.4

- Step 2: Identify the Primary Key
 - Primary key must uniquely identify attribute value
 - New key must be composed

- Step 3: Identify All Dependencies
 - Dependencies can be depicted with help of a diagram
 - Dependency diagram:
 - Depicts all dependencies found within given table structure
 - Helpful in getting bird's-eye view of all relationships among table's attributes
 - Makes it less likely that will overlook an important dependency

- First normal form describes tabular format in which:
 - All key attributes are defined
 - There are no repeating groups in the table
 - All attributes are dependent on primary key
- All relational tables satisfy 1NF requirements
- Some tables contain partial dependencies
 - Dependencies based on only part of the primary key
 - Sometimes used for performance reasons, but should be used with caution
 - Still subject to data redundancies

Conversion to Second Normal Form

- Relational database design can be improved by converting the database into second normal form (2NF)
- Two steps

- Step 1: Write Each Key Component on a Separate Line
 - Write each key component on separate line,
 then write original (composite) key on last line
 - Each component will become key in new table

- Step 2: Assign Corresponding Dependent Attributes
 - Determine those attributes that are dependent on other attributes
 - At this point, most anomalies have been eliminated

- Table is in second normal form (2NF) when:
 - It is in 1NF and
 - It includes no partial dependencies:
 - No attribute is dependent on only portion of primary key

Conversion to Third Normal Form

- Data anomalies created are easily eliminated by completing three steps
- Step 1: Identify Each New Determinant
 - For every transitive dependency, write its determinant as PK for new table
 - Determinant
 - Any attribute whose value determines other values within a row

- Step 2: Identify the Dependent Attributes
 - Identify attributes dependent on each determinant identified in Step 1 and identify dependency
 - Name table to reflect its contents and function

- Step 3: Remove the Dependent Attributes from Transitive Dependencies
 - Eliminate all dependent attributes in transitive relationship(s) from each of the tables that have such a transitive relationship
 - Draw new dependency diagram to show all tables defined in Steps 1–3
 - Check new tables as well as tables modified in Step 3 to make sure that each table has determinant and that no table contains inappropriate dependencies

- A table is in third normal form (3NF) when both of the following are true:
 - It is in 2NF
 - It contains no transitive dependencies

Improving the Design

- Table structures are cleaned up to eliminate troublesome initial partial and transitive dependencies
- Normalization cannot, by itself, be relied on to make good designs
- It is valuable because its use helps eliminate data redundancies

Improving the Design (continued)

- Issues to address in order to produce a good normalized set of tables:
 - Evaluate PK Assignments
 - Evaluate Naming Conventions
 - Refine Attribute Atomicity
 - Identify New Attributes
 - Identify New Relationships
 - Refine Primary Keys as Required for Data Granularity
 - Maintain Historical Accuracy
 - Evaluate Using Derived Attributes

Improving the Design (continued)

Improving the Design (continued)

Surrogate Key Considerations

- When primary key is considered to be unsuitable, designers use surrogate keys
- Data entries in Table 5.3 are inappropriate because they duplicate existing records
 - Yet there has been no violation of either entity integrity or referential integrity

Surrogate Key Considerations (continued)

Duplicate Entries in the Job Table 5.3						
JOB_CODE	JOB_DESCRIPTION	JOB_CHG_HOUR				
511	Programmer	\$35.75				
512	Programmer	\$35.75				

The Boyce-Codd Normal Form (BCNF)

- Every determinant in table is a candidate key
 - Has same characteristics as primary key, but for some reason, not chosen to be primary key
- When table contains only one candidate key, the 3NF and the BCNF are equivalent
- BCNF can be violated only when table contains more than one candidate key

The Boyce-Codd Normal Form (BCNF) (continued)

- Most designers consider the BCNF as special case of 3NF
- Table is in 3NF when it is in 2NF and there are no transitive dependencies
- Table can be in 3NF and fails to meet BCNF
 - No partial dependencies, nor does it contain transitive dependencies
 - A nonkey attribute is the determinant of a key attribute

The Boyce-Codd Normal Form (BCNF) (continued)

The Boyce-Codd Normal Form (BCNF) (continued)

TABLE		Sample	Data	for a	BCNF	Conversion
5 4	- //	SCHOOL SECTION				

STU_ID	STAFF_ID	CLASS_CODE	ENROLL_GRADE
125	25	21334	A
125	20	32456	С
135	20	28458	В
144	25	27563	С
144	20	32456	В

The Boyce-Codd Normal Form (BCNF) (continued)

Fourth Normal Form (4NF)

- Table is in fourth normal form (4NF) when both of the following are true:
 - It is in 3NF
 - Has no multiple sets of multivalued dependencies
- 4NF is largely academic if tables conform to following two rules:
 - All attributes must be dependent on primary key, but independent of each other
 - No row contains two or more multivalued facts about an entity

Fourth Normal Form (4NF) (continued)

FIGURE 5.10

Tables with multivalued dependencies

Database name: Ch05_Service

Table name: VOLUNTEER_V1

	EMP_NUM	ORG_CODE	ASSIGN_NUM
•	10123	RC	1
	10123	UW	3
	10123		4

Table name: VOLUNTEER V3

	EMP_NUM	ORG_CODE	ASSIGN_NUM
•	10123	RC	1
	10123	RC	3
	10123	UW	4

Table name: VOLUNTEER_V2

	EMP_NUM	ORG_CODE	ASSIGN_NUM
•	10123	RC	
	10123	UW	
	10123		1
	10123		3
	10223		4

Fourth Normal Form (4NF) (continued)

FIGURE 5.11

A set of tables in 4NF

Table name: EMPLOYEE

	EMP_NUM	EMP_LNAME
+	10121	Rogers
+	10122	O'Leery
+	10123	Panera
+	10124	Johnson

Table name: PROJECT

		PROJ_CODE	PROJ_NAME	PROJ_BUDGET
-	+	1	BeThere	\$1,023,245.00
	+	2	BlueMoon	\$20,198,608.00
	+	3	GreenThumb	\$3,234,456.00
	+	4	GoFast	\$5,674,000.00
	+	5	GoSlow	\$1,002,500.00

Table name: ASSIGNMENT

	ASSIGN_NUM	EMP_NUM	PROJ_CODE
•	1	10123	1
	2	10121	2
	3	10123	3
	4	10123	4
	5	10121	1
	6	10124	2
	7	10124	3
	8	10124	5

_

į.	EMP_NUM	ORG_CODE
-	10123	RC
	10123	UVV
	10123	₩F

Table name: SERVICE_V1

+ UVV

+ VVF

Database name: Ch05_Service

Table name: ORGANIZATION
ORG_CODE ORG_NAME

ORG_NAME Red Cross

United Way

√Vildlife Fund

The relational diagram

Normalization and Database Design

- Normalization should be part of design process
- Make sure that proposed entities meet required normal form before table structures are created
- Many real-world databases have been improperly designed or burdened with anomalies if improperly modified during course of time
- You may be asked to redesign and modify existing databases

- ER diagram
 - Provides big picture, or macro view, of an organization's data requirements and operations
 - Created through an iterative process
 - Identifying relevant entities, their attributes and their relationship
 - Use results to identify additional entities and attributes

- Normalization procedures
 - Focus on characteristics of specific entities
 - Represents micro view of entities within ER diagram
- Difficult to separate normalization process from ER modeling process
- Two techniques should be used concurrently

Denormalization

- Creation of normalized relations is important database design goal
- Processing requirements should also be a goal
- If tables decomposed to conform to normalization requirements:
 - Number of database tables expands

Denormalization (continued)

- Joining the larger number of tables takes additional input/output (I/O) operations and processing logic, thereby reducing system speed
- Conflicts between design efficiency, information requirements, and processing speed are often resolved through compromises that may include denormalization

Denormalization (continued)

- Unnormalized tables in production database tend to suffer from these defects:
 - Data updates are less efficient because programs that read and update tables must deal with larger tables
 - Indexing is more cumbersome
 - Unnormalized tables yield no simple strategies for creating virtual tables known as views

Denormalization (continued)

- Use denormalization cautiously
- Understand why—under some circumstances—unnormalized tables are better choice

Summary

- Normalization is technique used to design tables in which data redundancies are minimized
- First three normal forms (1NF, 2NF, and 3NF) are most commonly encountered
- Table is in 1NF when all key attributes are defined and when all remaining attributes are dependent on primary key

- Table is in 2NF when it is in 1NF and contains no partial dependencies
- Table is in 3NF when it is in 2NF and contains no transitive dependencies
- Table that is not in 3NF may be split into new tables until all of the tables meet 3NF requirements
- Normalization is important part—but only part—of design process

FIGURE 5.19

Table structures based on the selected PKs

Step 3: Remove all transitive dependencies identified in Step 2 and retain all 3NF structures.

All tables are in 3NF because they are in 2NF (no partial dependencies) and they do not contain transitive dependencies.

- Table in 3NF may contain multivalued dependencies that produce either numerous null values or redundant data
- It may be necessary to convert 3NF table to fourth normal form (4NF) by
 - Splitting table to remove multivalued dependencies
- Tables are sometimes denormalized to yield less I/O which increases processing speed