

AXA CODING CHALLENGE

Arwin Esmaylzadeh

NYPD DATEN

- Daten sortiert nach Unfällen (Bike/E-Bike)
- Hohe Verletzungsrate bei Fahrräderm
- Sommer-Effekt
- Etwa gleich viel verstorben (Statistik?)

Prozentuale Verteilung

- Hohe Verletzungsrate bei Fahrrädern
- Sehr niedrige Verletzungsrate bei E-Bikes
- Sterberate etwa gleich bei beide (Statistischer Effekt)

Monatliche Fahrten

- Monatlich ca. 1.5 Mio Fahrten bei beiden
- 17.5 Mio Fahrten bei beiden
- Sommereffekt
- E-Bike auch im Herbst beliebt

Unfallquote

- Quote = Unfälle/Fahrten
- 226 Mio Fahrten in New York

 ¹https://www.nyc.gov/html/dot/html/bicyclists/bikestats.shtml
- Leider keine Unterteilung von Bikes/E-Bikes
- Annahme 113Mio Bikes/113Mio E-Bikes
- Citybike ca. 17.5 Mio Bikes/ 17.5 Mio E-Bikes
- Anteil an allen NYC Fahrten etwa 15.5%

Unterteilung Member/Casuals

- 80/20 Member/Casual
- Sommer Anteil Casuals höher
- Ansatz für Mikrotransaktionen z.B. durch Zusatversicherungen

Unfälle pro Monat Citybike

- Annahme: 15.5% Anteil an NYC Fahrten
- ≥ 15.5% der Unfälle
- Unterteilung zwischen Member & Casual

Monatliche Kosten durch Unfälle

- Annahmen :
 - 1500\$ pro Bike
 - 2500\$ pro E-Bike
 - Bike/E-Bike komplett kaputt
- 1.25 Mio \$ für Fahrräder
- 1 Mio \$ für E-Bikes
- Maximale Gesamtkosten 2.25 Mio \$

\$37,981

\$31,983 \$32,667

5

\$17,794

\$14,388

\$10,041

50000

25000

Monatliche Kosten durch Unfälle

- Annahme: 8000\$ Schaden pro Verletzung
- ~ 7 Mio \$ für Bikes
- ~ 2 Mio \$ für E-Bikes
- ~ 9 Mio \$ pot. maximale Gesamtkosten

2025

\$35,738

\$25,888

11

\$21,626

12

\$46,636

MÖGLICHE STATISCHE VERSICHERUNGEN

Schadensversicherung

- /3 Mio \$ als Versicherer
 - 2.25 Mio \$ max. Gesamtschaden
 - 0.675 Mio \$ Gewinnzuschlag
 - 0.075 Mio \$ Verwaltung/Sonstiges
- In App-Kauf Members (20\$/Jahr oder 2\$/Monat)
 - 180.000 Members (realisitsch 90.000)

https://ny1.com/nyc/all-boroughs/transit/2023/05/26/citi-bikes-celebrates-10-years-in-new-york-city

- ~1.8 Mio \$ Schaden durch Members
- 3.6(1.8) Mio \$ Einnahmen (Jahresmodell)
- 4.3(2.15) Mio \$ Einnahmen (Monatsmodell)
- In App-Kauf Casuals (1\$/Fahrt)
 - ~0.4 Mio \$ Schaden durch Casuals
 - 6.6 Mio Fahrten durch Casuals
 - Max. 6.6 Mio \$ Einnahmen
 - Realistisch: 0.66 Mio \$ (ca. 10% der Fahrten)

Unfallversicherung

- 12 Mio \$ als Versicherer
 - 9 Mio \$ max. Gesamtschaden
 - 2.7 Mio \$ Gewinnzuschlag
 - 0.3 Mio \$ Verwaltung/Sonstiges
- In App-Kauf Members (50\$/Jahr oder 5\$/Monat)
 - 180.000 Members

https://ny1.com/nyc/all-boroughs/transit/2023/05/26/citi-bikes-celebrates-10-years-in-new-york-city

- ~7 Mio \$ Schaden durch Members
- 9 Mio \$ Einnahmen (Jahresmodell)
- 10.8 Mio \$ Einnahmen (Monatsmodell)
- In App-Kauf Casuals (5\$/Fahrt)
 - ~1.6 Mio \$ Schaden durch Casuals
 - 6.6 Mio Fahrten durch Casuals
 - Max. 33 Mio \$ Einnahmen
 - Realistisch: 3.3 Mio \$ (ca. 10% der Fahrten)
- Kombi-Paket möglich z.B. 14 Mio \$ als Versicher
- 60\$/Jahr bzw 6\$/Monat
- Beachtung von Steigerung der Fahrten/Jahr (ca. 6% jährlich)

Tag/Nacht Problematik

- Wintermonate erhöht
- Erwägung von zusätzlichen Versicherung ?!

11

E-Bikes prozentual mehr Unfälle nachts

Regen/Niederschlag

- Regen -> Kleiner Effekt
- Niederschlagsmenge –> Kleiner Effekt
- Genauere Untersuchung wäre nützlich

Route tracken

Mögliche Hotspots finden

IDEE EINES SAFETY SCORES

Faktoren

- Startort/Zielort(etwas schwer vorherzusagen)
 - Innenstadt (viel Verkehr)
 - Nähe von Hotspots
 - Unsichere Orte ausfindig machen
- Startzeit
 - Rushhour?
 - Tag/Nacht
 - Sommer/Winter
- Wetter
 - Sonne?
 - Regen?
 - Nebel?
- Fahrzeugtyp
- Stadtplanung
 - Baustellen
 - Neue Radspuren

Potentielle Gewichtung

- Startort (g_ort = 0.25)
 - 0 = ungefährlich, 100 = gefährlich (Ermittlung durch Daten)
- Startzeit (g_zeit = 0.25)
 - Jahreszeit und Tageszeitabhängig
 - 0 = ungefährlich, 100 = gefährlich
- Wetter (g_wetter = 0.1)
 - Wetterabhänig zwischen 0 und 100
- Fahrzeugtyp (g_typ = 0.2)
 - Bike und E-Bike (andere Typen möglich)
- Stadtplanung (g_stadt = 0.2)
 - Beachtung von Baustellen
 - Fahrradpsuren
 - Vorhersagen für Zukunft

Safety Score = $g_{ort} \times Ort + g_{eit} \times Zeit + g_{wetter} \times Wetter + g_{typ} \times Typ + g_{stadt} \times Jahr$

MÖGLICHE DYNAMISCHE VERSICHERUNGEN

Schadensversicherung

- In App-Kauf Members
 - Safety-Score für Member ermitteln (über Daten)
 - Werte von 0 100
 - Linearer Ansatz:
 - Safety Score = 0 (15\$/Jahr)
 - Safety Score = 100 (30\$/Jahr)
 - Exponentieller Ansatz auch möglich

Unfallversicherung

- 12 Mio \$ als Versicherer
 - 9 Mio \$ max. Gesamtschaden
 - 2.7 Mio \$ Gewinnzuschlag
 - 0.3 Mio \$ Verwaltung/Sonstiges
- In App-Kauf Members (50\$/Jahr oder 5\$/Monat)
 - 180.000 Members

https://ny1.com/nyc/all-boroughs/transit/2023/05/26/citi-bikes-celebrates-10-years-in-new-york-city

- ~7 Mio \$ Schaden durch Members
- 9 Mio \$ Einnahmen (Jahresmodell)
- 10.8 Mio \$ Einnahmen (Monatsmodell)
- In App-Kauf Casuals (5\$/Fahrt)
 - ~1.6 Mio \$ Schaden durch Casuals
 - 6.6 Mio Fahrten durch Casuals
 - Max. 33 Mio \$ Einnahmen
 - Realistisch: 3.3 Mio \$ (ca. 10% der Fahrten)