Marginal Space Learning

Adrian Barbu

3D Object Detection

- Find the 3D bounding box of the object of interest
- Supervised learning using PBT and features
- 9 parameter search space Ω :
 - Center $\mathbf{x} = (x,y,z)$
 - Scale $s = (s_1, s_2, s_3)$
 - Orientation $\theta = (\theta_1, \theta_2, \theta_3)$

Computational Challenge

Problem:

- 9 parameter search space too large ~ 10¹³ locations
- Cascade or PBT not fast enough
 - Would take 1-3 months to find the solution!

But:

- What we want is a single location out of 10¹³
 - Needle in the haystack
 - $p(x,s,\theta|I)$ is very peaked
 - Like a black dot on a large white board

Marginal Space Learning

Intuition

- Probability mass $p(x,y|I), (x,y) \in \Omega$ is usually sparse (concentrated at very few locations)
- Can learn a marginal probability

$$P(y|I) = \int_{\Omega_x} P(x, y|I) dx$$

Focus on locations with large P(y|I)

Advantages

- Search space is greatly reduced
- Global optimum typically still in search space

Marginal Space Learning for 3D Detection

Training the MSL Classifiers for the LV

- Level 1: Location (x,y,z)
 - 323 volumes, 4-fold cross-validation
 - Positives: true LV center location in each volume
 - Plus perturbed \pm 1 pixel
 - About 10k positives
 - Negatives: random locations (x,y,z) at distance at least 20 from LV center
 - About 500k negatives
 - 3D Haar features and 3D integral image
 - 10k Haar features
 - Cascade with 2 levels:
 - 99.2% detection rate
 - 0.17% false alarm rate

Training MSL

- From the location detector:
 - Best 100 candidates (x_i, y_i, z_i) are kept
- Level 2: Location and orientation $(x,y,z,\theta_1,\theta_2,\theta_3)$
 - Angle space discretized in 1000 combinations
 - Each of the 100 candidates
 - Is appended each of the 1000 angle combinations
 - Obtain 100k candidates $(x,y,z,\theta_1,\theta_2,\theta_3)$
 - Positives:
 - Candidates that are close to the LV parameters $(x^{LV}, y^{LV}, z^{LV}, \theta_1^{LV}, \theta_2^{LV}, \theta_3^{LV})$
 - Negatives
 - Candidates that are far from the LV parameters
 - PBT with 4 levels
 - Steerable features

Steerable Features

- Features at different locations on a 3D grid
 - E.g. 11x11x11 grid= 1331 locations
 - Rotated, scaled and translated by the object parameters
- At each location different feature types:
 - Gradient $g_x, g_y, g_z, ||g||$
 - Intensity
 - Combinations of the above
 - Sum, product, quotient, etc
 - Dot product of gradient direction and sample direction
 - Total 71 feature types
- Totally 91k features

Training MSL

- From level 2:
 - Best 50 candidates $(x,y,z,\theta_1,\theta_2,\theta_3)$ are kept
- Level 3: position, orientation and scale $(x,y,z,\theta_1,\theta_2,\theta_3,s_1,s_2,s_3)$

- Each of the 50 candidates $(x,y,z,\theta_1,\theta_2,\theta_3)$ from Level 2
 - Is appended each of the 1000 scale combinations
 - Obtain 50k candidates $(x,y,z,\theta_1,\theta_2,\theta_3,s_1,s_2,s_3)$
- Positives:
 - Candidates that are close to the LV parameters
- Negatives
 - Candidates that are far from the LV parameters
- PBT with 5 levels
 - Steerable features

Four Chamber Heart Segmentation

Heart Segmentation

- LV Endocardium
- LV Epicardium
- Left Atrium
- Aortic Trunk
- Right Ventricle
- Right Atrium

Heart Segmentation

More details:

- MSL to detect the location of each chamber
- Learning based boundary model
- PCA shape model

Performance:

- Working on 323 volumes with 4-fold cross-validation
- Mean error 1.3mm (1mm voxel size)
- 1 sec/volume
- 6 orders of magnitude faster than brute force search

Heart Tracking

- Initialization by segmentation
- Appearance model using MSL
- Local search of parameters

Full Body Parsing

- Marginal Space Learning
 - Cross-section detection
 - Landmark Detection
 - Organ Detection and Segmentation
- Cross-section detector:
 - Detect three salient cross-sections
 - Connected in a network for robustness

Landmark Detection

- Detect salient and important body landmarks
 - Aortic arch
 - Bronchial Bifurcation
 - Lung tips
 - Vessel bifurcations
 - Humerus heads
 - Lumbar vertebrae
 - Соссух
 - Pubic symphysis tip
 - Front corners of the hip bone
- Connected in a network for robustness

Organ Segmentation

- Marginal Space Learning
- Organs:
 - Four heart chambers
 - Liver
 - Kidneys
 - Spleen
 - Prostate
 - Bladder

- 2D X-Ray
- Detect Flexible Guidewire
- Model both shape and appearance

- Marginal Space Learning Model gradually longer curves
- Hierarchical, part based model
- Joint model for shape and appearance

- Marginal Space Learning
 - Hierarchical model
 - Detect curves with more and more parameters
 - Curves are constructed from simpler curves from previous levels
- Level 1: Oriented Points
 - Parameters (x,y,θ)
 - Probabilistic Boosting Tree with Haar features

Features

- Feature = a number obtained from the image through a predefined procedure
- Haar features
 - Sum of pixels in a rectangle
 - Can be computed efficiently using the integral image
 - Parameters: type, location (x,y) and size (dx,dy)
 - Are chosen to be invariant to brightness
 - E.g. feature: (1,10,20,15,30) type 1, location (10,20), size (15,30)
- Can easily obtain 100k features
- Other types of features exist:
 - Steerable features
 - Features obtained from different filters

(0.9, 0.5)

(0,0)c

- Level 2: Short Curves
 - Length 32-80
 - Polynomial model from 2 segments
 - PBT with many types of shape/appearance features
 - Curvature
 - Statistics of gaps

Y

 (x_1,y_1,θ_1)

 (x_2, y_2, θ_2)

- Level 3: Long Curves
 - Additive long curve cost
 - Use short curve probabilities
 - Dynamic programming

Evaluation

- Two error measures:
 - Missed detection percentage of the guidewire that was not detected
 - False detection percentage of the result that is not guidewire

Results

Results on 700 images (73 sequences):

- Missed detection 19.0%
- False detection 5.6%
- 1-2 seconds/frame

Results

Results

Conclusion

- Marginal Space Learning
 - A computational solution for detection in high dimensional parameter spaces
 - Detects in marginal spaces of increasing dimension
 - Good detection rate in marginal space:
 - True location usually not lost
 - Otherwise, still quite close
 - Small false alarm (e.g. 0.1%) in marginal space
 - Greatly reduce search in full space (e.g. 1000 times smaller space)
 - Great speedup (e.g. 1000 times faster)
 - Training
 - Each level is trained using candidates from previous level