Introdução ao Método de Monte Carlo com R e python

MSc. Marcelo Amanajás Pires, Doutorando em Física no CBPF (Centro Brasileiro de Pesquisas Físicas)

12/12/19

Sumário

- 1 Introdução
- 2 Experimentos Computacionais: exemplos, 2012-2019
- 3 Introdução panorâmica ao R e Python
- 4 Método de Monte Carlo: passo a passo através de exemplos
- 6 Considerações Finais

Introdução

Pilares da Ciência Moderna

A simulação computacional constitui um dos três modos de produção de conhecimento científico:

Pilares da Ciência Moderna

Exemplo: a saga do emaranhamento em dinâmicas de qubits em cadeias com algoritmos de passeios quânticos via estados extendidos:

- Proposta computacional: I. Carneiro et al, Entanglement in coined quantum walks on regular graphs, NJP. 2005.
- **Desenvolvimento da teoria**: G. Abal et al, Quantum walk on the line: Entanglement and nonlocal initial conditions, PRA, **2006**.
- Confirmação experimental: Qi-Ping Su et at, Experimental demonstration of quantum walks with initial superposition states, npj QI, 2019.

Experimentos computacionais

Possibilitam:

- i) validar novos algoritmos antes de aplicar em dados empirícos. Ex: Pires MA et al, JTB, 2014.
- ii) simular experimentos que não podemos realizar diretamente tais como aqueles epidemiológicos que envolvem humanos. Ex: Pires MA & Crokidakis N, Physica A, 2017;
- iii) tratar problemas sem solução analítica. Exemplo: ferromagnetismo de Ising em 3D, dinâmicas de muitas variáveis fortemente acopladas; Pires MA et al, JSTAT, 2018
- iv) desenvolver mecanismos para explicar fenômenos observados empiricamente. Ex: Pires MA & Queiros SMD, PLoS One, 2019.
 - v) simular novos materiais com propriedades exóticas, ...;

Mas o que é o Método de Monte Carlo?

Método de Monte Carlo: definição

 O Método de Monte Carlo refere-se à utilização de números aleatórios para resolver numericamente um problema com teor probabilístico.

• Tal método foi desenvolvido na década de 1940 por Ulam, Metropolis e von Neumann quando estavam em Los Alamos nos Estados Unidos, mas o nome é uma referência a Monte Carlo, um dos distritos de Monâco. Curiosamente há registros que Fermi na década de 1930 já havia desenvolvido tal método de modo independente.

THE BEGINNING of the MONTE CARLO METHOD

Cuidado ao pesquisar Monte Carlo no google

Método de Monte Carlo: exemplos de aplicações

• Ciência e engenharia de materiais: Difusão em materiais com forma geométrica arbitrária, Magnetismo,

 Nanociência e nanotecnologia: Formação de filmes finos e nanoestruturas, ...

• Fenomênos coletivos em Economia, Sociologia, ...

• Fenomênos coletivos em Biologia: epidemiologia, ecologia, genética, microbiologia, ...

Exemplos recentes, 2012 - 2019

Método de Monte Carlo (M.M.C): exemplos de aplicações, 2014

Contents lists available at ScienceDirect

Journal of Theoretical Biology

journal homepage: www.elsevier.com/locate/yjtbi

Modeling the functional network of primary intercellular Ca²⁺ wave propagation in astrocytes and its application to study drug effects

Marcelo Pires ^{a,b}, Frank Raischel ^{a,c}, Sandra H. Vaz ^{d,e}, Andreia Cruz-Silva ^{d,e}, Ana M. Sebastião ^{d,e}, Pedro G. Lind ^{a,f,*}

- a Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1649-003 Lisboa, Portugal
- ^b Departamento de Física, Universidade Federal do Amapá, Jardim Marco Zero, 68903-419 Macapá/AP, Brazil
- ^c Centro de Geofisica, Instituto Dom Luiz, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- ^d Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- e Unidade de Neurociências, Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- f Institute für Physik and ForWind, Carl-von-Ossietzky Universität Oldenburg, DE-26111 Oldenburg, Germany

M.M.C.: possibilitou testar a acurácia do meu novo algoritmo para então depois usarmos nos dados experimentais das neurocientistas.

Método de Monte Carlo (M.M.C): exemplos de aplicações, 2017

Physica A 467 (2017) 167-179

Dynamics of epidemic spreading with vaccination: Impact of social pressure and engagement

Marcelo A. Pires, Nuno Crokidakis*

Instituto de Física, Universidade Federal Fluminense, Niterói - Rio de Janeiro, Brazil

M.M.C.: possibilitou explorar novos cenários epidemiológicos durante dinâmicas de vacinação em situações que não são possíveis executar experimentos (por envolver humanos).

PAPER: Interdisciplinary statistical mechanics

Sudden transitions in coupled opinion and epidemic dynamics with vaccination

Marcelo A Pires^{1,2}, André L Oestereich² and Nuno Crokidakis²

M.M.C.: possibilitou desenvolver um novo mecanismo para explicar um fenômeno não-usual observado por epidemiologistas durante campanhas de vacinação

Método de Monte Carlo (M.M.C): exemplos de aplicações, 2019

RESEARCH ARTICLE

Optimal dispersal in ecological dynamics with Allee effect in metapopulations

Marcelo A. Pires 1, Sílvio M. Duarte Queirós 1,2 *

1 Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro/RJ, Brazil, 2 National Institute of Science and Technology for Complex Systems, Rio de Janeiro/RJ, Brazil

We introduce a minimal agent-based model to understand the effects of the interplay between dispersal and geometric constraints in metapopulation dynamics under the Allee

M.M.C.: possibilitou desenvolver um novo mecanismo para explicar um fenômeno coletivo observado em bactérias sob efeitos não-lineares

^{*} sdqueiro@cbpf.br

Introdução panorâmica ao R e Python

Introdução panorâmica ao R e Python

• Linux ou Windows?

Qualquer opção serve para problemas usuais. Porém, para diversos problemas na fronteira da ciência, o M.M.C. é computacionalmente pesado. Por isso, preferencialmente use o Linux nessas situações.

```
Python
                                                                                                            R
                                                                       version 3.4.4 (2018-03-15) -- "Someone to Lean On"
ype "copyright", "credits" or "license" for more information.
                                                                      opyright (C) 2018 The R Foundation for Statistical Computing
                                                                      latform: x86 64-pc-linux-gnu (64-bit)
Python 5.8.0 -- An enhanced Interactive Python.
         -> Introduction and overview of IPvthon's features.
                                                                      é um software livre e vem sem GARANTIA ALGUMA.
                                                                      ocê pode redistribuí-lo sob certas circunstâncias.
ouickref -> Ouick reference.
                                                                      Digite 'license()' ou 'licence()' para detalhes de distribulção.
        -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra detail
                                                                      é um projeto colaborativo com muitos contribuidores.
                                                                      rigite 'contributors()' para obter mais informações e
                                                                      citation()' para saber como citar o R ou pacotes do R em publicações.
                                                                      rigite 'demo()' para demonstrações, 'help()' para o sistema on-line de ajud
                                                                      u 'help.start()' para abrir o sistema de ajuda em HTML no seu navegador.
                                                                      igite 'g()' para sair do R.
```

Noções elementares de R/Python

```
Python

In [1]: thport numpy as np # NUMerical PYthon
In [2]: moeda=np.array([-1,1]) #-1=cara,1=coroa
In [3]: moeda
uut[3]: array([-1, 1])
In [4]: moeda[0] # index stars at 0
uut[4]: -1
In [5]: moeda[1]
uut[5]: 1
In [6]: 

In
```

Noções elementares de R/Python

É recomendável manter o hábito de usar type() no Python e typeof() no R.

Python \mathbf{R} moeda=np.array([-1,1]) #-1=cara,1=coroa moeda=c(-1.1) numpy.int64 11 "double" # Lembrete 2/4 # In python (and C) take care with the type of object

Sequências e cumsum (cumulative sum)

```
Python

In [1]: tmport numpy as np

In [2]: n=5

In [3]: v=np.arange(1,n+1,1) # [1,...n]

In [4]: v
Out[4]: array([1, 2, 3, 4, 5])

In [5]: np.cumsum(v)
Out[5]: array([1, 3, 6, 10, 15])

In [6]: np.sum(v)
Out[6]: 15

In [7]: [
```

Como lidar com códigos enormes?

A praticidade dos SCRIPTS

Script: um arquivo de texto contendo comandos de uma dada linguagem de programação.

Como criar um script?

- R:
 - Coloque seus comandos em um codigos.txt;
 - Mude a extensão para codigos.R;
 - No terminal digite Rscript codigos.R;
- Python:
 - Coloque seus comandos em um codigos.txt;
 - Mude a extensão para codigos.py;
 - No terminal digite python3 codigos.py;

Noções elementares de R/Python

Escrever um script para calcular a frequência de ocorrência dos elementos de um dado vetor

Python R

```
1 import numpy as np
                                                                      1 results = c(-1.1.1.1)
 2 import pandas as pd # DataFrame()
                                                                      2 print(results)
 3 import collections as cl
 5 \text{ results} = \text{np.array}(\lceil -1.1.1.1 \rceil)
                                                                      5 df = data.frame( table(results) )
6 print( 'results' results )
                                                                      6 x = as.integer( as.vector(df$results) ) # ~ unique()
                                                                      7 fa = as.integer( as.vector(dfSFreq) )
8 count = cl.Counter( results )
                                                                      8 fr = fa/sum(fa) #table(vx)/lenath(vx)
9 x = np.array( list( count.keys() ) )
10 fa = np.array( list( count.values() ) )
11 fr = 1.0*fa/np.sum(fa)
                                                                     11 print( data, frame(x,fa,fr) )
13 print( pd.DataFrame( [x,fa,fr], index=['x','fa','fr'] ).T )
 🕽 🖨 📵 marcelo@marcelo-H14BT58: ~/Área de Trabalho/unifap-dez2019/codig
 rcelo$ python3 freg-rel-step-by-step.py
                                                                     marcelo$ Rscript freq-rel-step-by-step.R
  1.0 3.0 0.75
                                                                     1 -1 1 0.25
       1.0 0.25
                                                                        1 3 0.75
```

Noções elementares de R/Python: Funções

Python

R.

```
1 import numpy as np
                                                               1 # Estimate the prob from the frequency
 2 import pandas as pd
                                                               2 obtain relative frequency = function(v) {
   import collections as cl
                                                                 df = data.frame( table(v) )
                                                                 vx = as.integer( as.vector(dfSv) ) # ~ unique()
                                                                 fa = as.integer( as.vector(dfSFreq) )
 5 # Estimate the prob from the frequency
 6 def obtain relative frequency(v):
                                                                 vfr = fa/sum(fa) #table(vx)/length(vx)
 7 count = cl.Counter( v )
                                                                 return( data.frame(vx.vfr) )
         = np.array( list( count.keys()
         = np.array( list( count.values() ) )
         = 1.0*fa/np.sum(fa)
                                                                       = c(-1,-1,-1,1,1)
11 return x,fr
                                                              11 output = obtain relative frequency( v )
12
         = np.array([-1,-1,-1,1,1])
                                                              13 print( data.frame(output$vx, output$vfr) )
14 vx. vfr = obtain relative frequency( v )
16 print( pd.DataFrame( [vx,vfr], columns=['x','fr'] ).T )
                                                              marcelo$ Rscript function-freq-rel.R
marceloS python3 function-freq-rel.py
  1.0 0.4
                                                                                0.6
                                                              marceloS
```

Noções elementares de R/Python: Loops

Python

R

Exemplo prático I: Simulação de Monte Carlo de um jogo de moedas

Python

 \mathbf{R}

```
1 # Estimate the prob from the frequency
 1 import numby as no
                                                                     2 obtain_relative_frequency = function(v) {
   import pandas as pd
                                                                     3 df = data.frame( table(v) )
   import collections as cl
                                                                        vx = as.integer( as.vector(df$v) ) # ~ unique()
                                                                        FA = as.integer( as.vector(df$Freq) )
 5 # Estimate the prob from the frequency
                                                                      6 vfr = FA/sum(FA) #table(vx)/length(vx)
6 def obtain relative frequency(v):
                                                                        return( data.frame(vx,vfr) )
   count = cl.Counter( v )
         = np.array( list( count.keys()
         = np.arrav( list( count.values() ) )
         = 1.0*FA/np.sum(FA)
                                                                    11 \text{ moeda} = c(-1,1)
   return x.fr
                                                                    12 print( c('moeda='.moeda) )
                                                                    13
13 \text{ moeda} = \text{np.array}([-1,1])
14 print('moeda=',moeda)
                                                                    15 # N jogadas de uma moeda
                                                                               = 10^5
16 # N jogadas de uma moeda
                                                                    17 results = sample(moeda,N,replace=TRUE)
          = 10**5
                                                                    18 output = obtain relative frequency( results )
18 results = np.random.choice(moeda, size=N)
19 vx, vfr = obtain_relative_frequency( results )
                                                                    20 print( data.frame(outputSvx. outputSvfr) )
21 print( pd.DataFrame( [vx,vfr], columns=['x','fr'] ).T )
                                                                     marcelo@marcelo-H14BT58: ~/Área de Trabalho/unifap-dez2019/codigos
                                                                     marcelo$ Rscript monte-carlo-moeda-advanced.R
narcelo$ python3 monte-carlo-moeda-advanced.py
                                                                     [1] "moeda=" "-1"
noeda= [-1 1]
                                                                      output.vx output.vfr
                                                                                    0.49837
   1.0 0.49869
                                                                                    0.50163
   -1.0 0.50131
                                                                     marceloS
```

• Python: np.random.choice()

R: sample()

Matplotlib

Simulação de Monte Carlo de um jogo de moedas: passo a passo

```
1 import numpy as np
 2 import pandas as pd
 3 import collections as cl
 4 from matplotlib import pylab as plt
 6 # Estimate the prob from the frequency
 7 def obtain relative frequency(v):
 8 count = cl.Counter( v )
          = np.array( list( count.keys()
          = np.arrav( list( count.values() ) )
          = 1.0*fa/np.sum(fa)
12 return x,fr
13
14
15 \text{ moeda} = \text{np.array}([-1,1])
16 print('moeda='.moeda)
18 # N jogadas de uma moeda
19 N
           = 10**5
20 results = np.random.choice(moeda, size=N)
21 vx, vfr = obtain relative frequency( results )
23 # Plot with matplotlib
24 xlabel=['cara (-1)','coroa (1)']
25 plt.bar(xlabel, vfr)
26 plt.axhline(y=1/2, color='k', linestyle='--')
27 plt.vlabel('Relative Frequency', fontsize=14)
28 plt.title('Python: Monte Carlo simulation, N=%d'%(N))
29 plt.savefig( 'moeda-N%d-from-python.png'%(N) )
30 plt.close()
```

```
1 # Estimate the prob from the frequency
 2 obtain relative frequency = function(v) {
 3 df = data.frame( table(v) )
 4 vx = as.integer( as.vector(df$v) ) # ~ unique()
 5 fa = as.integer( as.vector(dfSFreg) )
 6 vfr = fa/sum(fa) #table(vx)/lenath(vx)
 7 return( data.frame(vx,vfr) )
 9
10
11 \text{ moeda} = c(-1,1)
12 print( c('moeda=',moeda) )
14
15 # N ioaadas de uma moeda
          = 10^5
17 results = sample(moeda, N, replace=TRUE)
18 output = obtain relative frequency( results )
19
20
21 png( sprintf('moeda-N%d-from-R.png',N) )
22 title=sprintf('R: Monte Carlo simulation, N=%d'.N)
23 xlabel=c('cara (-1) ','coroa (1)')
24 barplot(output$vfr, main=title,
25 names.arg=xlabel, vlab="Relative Frequency")
26 abline(h=1/length(moeda),lty=2)
27 dev.off() # close
```

Simulação de Monte Carlo de um jogo de moedas: passo a passo

${\cal N}$ jogadas de uma moeda

Exemplo prático II: Simulação de Monte Carlo de um jogo de dados

Python

R.

```
import numpy as np
                                                               1 # Estimate the prob from the frequency
 2 import pandas as pd
                                                               2 obtain relative frequency = function(v) {
                                                                 df = data.frame( table(v) )
 3 import collections as cl
                                                                 vx = as.integer( as.vector(df$v) ) # ~ unique()
 5 # Estimate the prob from the frequency
                                                                 FA = as.integer( as.vector(dfSFreq) )
6 def obtain relative frequency(v):
                                                                 vfr = FA/sum(FA) #table(vx)/length(vx)
   count = cl.Counter( v )
                                                                 return( data.frame(vx,vfr) )
         = np.array( list( count.keys()
         = np.arrav( list( count.values() ) )
         = 1.0*fa/np.sum(fa)
11 return x.fr
                                                              11 dado = 1:6
                                                              12 print( c('dado=',dado) )
13 dado = np.arange(6)
14 print('dado='.dado)
                                                              15 # N jogadas de um dado
16 # N jogadas de um dado
                                                                        - 1045
          = 10**5
                                                              17 results = sample(dado,N,replace=TRUE)
                                                              18 output = obtain_relative_frequency( results )
18 results = np.random.choice(dado. size=N)
19 vx, vfr = obtain relative frequency( results )
                                                              20 print( data.frame(outputSvx. outputSvfr) )
21 print( pd.DataFrame( [vx,vfr] ) )
                                                               👂 🖨 🗈 marcelo@marcelo-H14BT58: ~/Área de Trabalho/unifap-dez2019/codigos/
                                                               marceloS Rscript monte-carlo-dados-advanced.R
narcelo$ python3 monte-carlo-dados-advanced.py
                                                               [1] "dado=" "1"
lado= [0 1 2 3 4 5]
                                                                output.vx output.vfr
                                                                              0.16909
  0.00000 1.00000 2.00000 3.00000 4.0000 5.00000
  0.16791 0.16603 0.16691 0.16844 0.1652 0.16551
                                                                             0.16540
                                                                             0.16654
                                                                              0.16542
```

Python

```
1 import numpy as np
 2 import pandas as pd
 3 import collections as cl
 4 from matplotlib import pylab as plt
 6 # Estimate the prob from the frequency
 7 def obtain relative frequency(v):
   count = cl.Counter( v )
          = np.array( list( count.keys()
         = np.array( list( count.values() ) )
          = 1.0*fa/np.sum(fa)
12 return x.fr
                                                            13
14 \text{ dado} = \text{np.arange}(6)
15 print('dado=',dado)
17 # N iogadas de um dado
           = 10**5
                                                            19
19 results = np.random.choice(dado, size=N)
                                                            20
20 vx, vfr = obtain relative frequency( results )
22 # Plot with matplotlib
23 plt.bar(dado, vfr)
24 plt.axhline(y=1/6, color='k', linestyle='--')
25 plt.vlabel('Relative Frequency', fontsize=14)
26 plt.title('Python: Monte Carlo simulation, N=%d'%(N))
27 plt.savefig( 'dado-N%d-from-py.png'%(N) )
```

\mathbf{R}

```
1 # Estimate the prob from the frequency
2 obtain relative frequency = function(v) {
 3 df = data.frame( table(v) )
4 vx = as.integer( as.vector(df$v) ) # ~ unique()
 5 fa = as.integer( as.vector(df$Freq) )
   vfr = fa/sum(fa) #table(vx)/lenath(vx)
   return( data.frame(vx.vfr) )
11 \text{ dado} = 1:6
12 print( c('dado='.dado) )
15 # N jogadas de uma dado
          = 10^{5}
17 results = sample(dado,N,replace=TRUE)
18 output = obtain relative frequency( results )
21 png( sprintf('dado-N%d-from-R.png',N) )
22 title=sprintf('R: Monte Carlo simulation, N=%d',N)
23 xlabel=dado
24 barplot(outputSvfr. main=title.
    names.arg=xlabel, vlab="Relative Frequency")
26 abline(h=1/length(dado),lty=2)
27 dev.off() # close
```

28 plt.close()

N jogadas de um dado

0.02

0.00

Exemplo prático III: Difusão via Simulação Monte Carlo do passeio aleatório

Exemplo prático III: difusão via simulação Monte Carlo do passeio aleatório

O passeio aleatório descreve uma dinâmica onde cada instante é governado por duas etapas

- E1: Sorteio de um número aleatório (jogada de uma moeda)
- E2: Deslocamento condicional: para a direita com prob=p, para a esquerda com prob=1-p.

$$\mathcal{P}(x,t+\Delta t) = p\mathcal{P}(x-l,t) + (1-p)\mathcal{P}(x+l,t) \tag{1}$$

$$l=1$$
 $\Delta t=1$

Passeio Aleatório: conexão com processos difusivos

$$\mathcal{P}(x,t+\Delta t) = p\mathcal{P}(x-l,t) + (1-p)\mathcal{P}(x+l,t)$$
 (2)

Fazendo expansões de Taylor truncadas

$$\mathcal{P} + \Delta t \frac{\partial \mathcal{P}}{\partial t} = p \left(\mathcal{P} - l \frac{\partial \mathcal{P}}{\partial x} + \frac{l^2}{2} \frac{\partial^2 \mathcal{P}}{\partial x^2} \right) + (1 - p) \left(\mathcal{P} + l \frac{\partial \mathcal{P}}{\partial x} + \frac{l^2}{2} \frac{\partial^2 \mathcal{P}}{\partial x^2} \right)$$
(3)

Temos a Equação de difusão com termo de deriva (drift)

$$\frac{\partial \mathcal{P}}{\partial t} = -v \frac{\partial \mathcal{P}}{\partial x} + D \frac{\partial^2 \mathcal{P}}{\partial x^2} \tag{4}$$

Onde

$$v = 2p - 1 \tag{5}$$

$$D = \frac{l^2}{2\Delta t} = \frac{1}{2} \tag{6}$$

Exemplo prático III: previsão teórica

Para o caso simétrico p = 1/2, temos v = 0 e

$$\frac{\partial \mathcal{P}}{\partial t} = D \frac{\partial^2 \mathcal{P}}{\partial x^2} \tag{7}$$

Através da aplicação de transformadas de Fourier encontra-se que \mathcal{P} é uma gaussiana para $t>>t_o$:

$$\mathcal{P} = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \equiv \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2}$$
 (8)

com $\sigma^2 = 2Dt^{\alpha}$ onde $\alpha = 1$ é o expoente de difusão. Isto é, temos uma conexão entre a Estatística (σ^2) com a Física (D,α) . Dado $\langle x \rangle = 0$ usamos

$$D = \frac{\langle x^2 \rangle}{2t} \quad t >> t_o \tag{9}$$

Exemplo prático III: previsão teórica

$$\mathcal{P} = \frac{1}{\sqrt{4\pi Dt}} e^{-x^2/4Dt} \equiv \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2} \quad t >> t_o$$
 (10)

com $\sigma^2 = 2Dt^{\alpha}$ onde $\alpha = 1$ é o expoente de difusão. Isto é, temos uma conexão entre a Estatística (σ^2) com a Física (D, α) . Dado $\langle x \rangle = 0$ usamos

$$D = \frac{\langle x^2 \rangle}{2t} \quad t >> t_o \tag{11}$$

Tarefa: aplicar o Método de Monte Carlo para obter:

- $P_{estimada}$ e comparar com $P_{te\acute{o}rica}$
- $D_{estimado}$ e comparar com $D_{te\acute{o}rico} = 1/2$.

Principal função

Python

 \mathbf{R}

```
inport numpy as np
from matplotlib import pylab as plt # para figuras

## Para obter 1 amostra de um randon walk

## Para obter 1 amostra de um randon walk

## Societa for a mathematical form for a mathematical for a mathematica
```

```
1
2 # Para obter 1 amostra de um random walk
3 one_random_walk <- function(nsteps=5) {
4 xo = 0
5 moeda =c(-1,1)
6 alldx = sample(moeda, size=nsteps, replace=TRUE)
7 trajectory = c(xo, cumsum(alldx)) # concatenate
8 return( trajectory)
9)
10
11 tmax = 10
12 x_t = one_random_walk(tmax)
```

Python

R

```
1 import numpy as np
 2 from matplotlib import pylab as plt # para figuras
 4 # Para obter 1 amostra de um random walk
 5 def one random walk(nsteps=5):
    xo = 0
    moeda = [-1,1]
    alldx = np.cumsum(np.random.choice(moeda,size=nsteps))
    trajectory = np.concatenate( (xo,alldx), axis=None)
    return trajectory
11
12 tmax=10
13 x t = one random walk(tmax)
14
15 plt.plot(x t.'o-')
16 plt.axhline(y=0, color='k', linestyle='--')
17 plt.xlabel('t', fontsize=16)
18 plt.ylabel('x', fontsize=16)
19 plt.title('Python')
20 namefig='one-random-walk-tmax%d-from-py.png'%(tmax)
21 plt.savefig(namefig)
22 plt.close()
```

```
2 # Para obter 1 amostra de um random walk
 3 one random walk <- function(nsteps=5) {
 4 \times 0 = 0
 5 moeda =c(-1.1)
   alldx = sample(moeda, size=nsteps, replace=TRUE)
   trajectory = c(xo, cumsum(alldx)) # concatenate
 8 return( trajectory )
9 }
10
11 tmax = 10
12 x t = one random walk(tmax)
14 namefig=sprintf('one-random-walk-tmax%d-from-R.png',tmax)
15 png(namefig)
16 plot(x_t,col='blue',type='o',xlab=' ',ylab=' ')
17 mtext(side=1,line=2.5,cex=2,'t')
18 mtext(side=2,line=2.5,cex=2,'x')
19 mtext(side=3,line=0.1,cex=2,'R')
20 abline(h=0.ltv=2)
21 dev.off() # close
```

Uma trajetória (amostra) do passeio aleatório

Difusão a partir de uma fonte localizada na origem $x_o = 0$.

 n_s trajetórias (amostras) do passeio aleatório obtidas via método de Monte Carlo.

Python R

```
19 # Monte Carlo simulation of random walks
21 # Monte Carlo simulation of random walks
             = 10**2
22 tmax
                                                                     20 tmax
                                                                                  = 10^2
23 nsamples = 10**5
                                                                     21 \text{ nsamples} = 10^5
24 many x t = [one random walk(tmax) for samp in range(nsamples)] 22 many x t = replicate(nsamples, random walk(tmax))
25 x at tmax = [elem[-1] for elem in many x t]
                                                                     23 x at tmax = many x t[tmax,]
26 vx, vfr = obtain relative frequency( x at tmax )
                                                                     24 output
                                                                                  = obtain relative frequency( x at tmax )
29 # Plot and save
                                                                     27 # Plot and save
30 plt.plot(vx, vfr,'o', label='Monte Carlo')
                                                                     28 nameout=sprintf('random-walk%d-pxt-nsamples%d-from-
31 plt.xlabel(r'SxS'
                                                                       R.png', tmax, nsamples)
32 plt.vlabel(r'SP t(x)S ' )
                                                                     29 png(nameout)
33 plt.title('t=%d'%(tmax) )
                                                                     31 plot(outputSvx.outputSvfr.tvpe='p'.pch=16.col='blue'.xlab=''.vlab='')
35 # Theoretical distribution
                                                                     32 mtext(side=1.cex=1.9.line=2.6.expression(x)
        = np.arange(-tmax/2.tmax/2+1.1)
                                                                     33 mtext(side=2.cex=1.5.line=2.4.expression(P[t](x)) )
37 \text{ pref} = \frac{2}{(\text{np.sgrt}(2*np.pi*tmax))}
                                                                     34 mtext(side=3.cex=1.9.line=0.1.sprintf('t=%d'.tmax) )
        = (vx**2)/(2*tmax)
39 vprob = pref*np.exp(-up)
                                                                     36 # Theoretical distribution
40 plt.plot(vx.vprob. 'r-'. linewidth=2. label='Analytical')
                                                                              = seq(-tmax.tmax.1)
41 plt.legend()
                                                                     38 pref = 2/( sqrt(2*pi*tmax) )
                                                                             = (x^2)/(2*tmax)
43 nameout=('random-walk%d-pxt-nsamples%d-from-py.png')%
                                                                     40 vprob = pref*exp(-up)
  (tmax, nsamples)
                                                                     41 lines(x, vprob, lty=1, col='red')
44 plt.savefig( nameout )
                                                                     43 legend('topright',bty='n', legend=c('Monte Carlo','Analytical'),
45 plt.close()
                                                                     44 col=c('blue', 'red'), lty=c(NA,1), pch=c(16,NA))
                                                                     45 dev.off()
```

- Python: list comprehension [dosomething for i in range(n)]
- R: replicate(n, dosomething)

Distribuição de probabilidades $P_t(x) = (4\pi Dt)^{-1/2} e^{-x^2/4Dt}$

$$D_{estimated} = \frac{\langle x^2 \rangle}{2t} = \frac{\sum_x x^2 P_t(x)}{2t}$$
 e $D_{analytical} = 0.5$ $t >> t_o$

```
30 # To obtain D from Monte Carlo simulation of random walks
34 # To obtain D from Monte Carlo simulation of random walks
                                                                     31 D from random walk = function(nsteps,n samp){
35 def D from random walk(nsteps,ns):
36 many x t = [one random walk(nsteps) for sample in range(ns)]
                                                                      33
                                                                          manv x t = replicate(n samp.random walk(nsteps) )
37 x at tmax = [elem[-1] for elem in many x t]
                                                                      34
                                                                                    = manv x t[nsteps.1
                                                                      35
   vx, vfr = obtain relative frequency( x at tmax )
                                                                           output = obtain relative frequency( v )
   x2 = np.sum((vx**2)*vfr)
                                                                           x2 = sum( (output$vx^2)*output$vfr )
    D = x2/(2*tmax)
                                                                           D = x2/(2*nsteps)
                                                                      39
43
    return D
                                                                          return( D )
                                                                      42
46 tmax = 10**2
47 \text{ nsamples} = 10**5
                                                                      44 tmax = 10^2
48 print( D from random walk(tmax.nsamples) )
                                                                      45 \text{ nsamples} = 10^5
                                                                      46 print( D from random walk(tmax.nsamples) )
  🗎 🗈 marcelo@marcelo-H14BT58: ~/Área de Trabalho/unifap-dez2019/codigo:
 arcelo$ python3 random-walk-D-minimal.py
                                                                       marcelo$ Rscript random-walk-D-minimal.R
 50194680000000001
                                                                       11 0.4999232
```

Tal como em um experimento de laboratório, precisamos repetir nosso experimento computacional n_{exp} vezes para obter um conjunto de D que permitam obter a média e erro estatístico.

R: usar mapply

Considerações Finais

Considerações Finais

- Os experimentos computacionais consolidaram-se como o terceiro grande pilar da ciência moderna.
- O método de Monte Carlo é extremamente útil em problemas de teor probabilístico. Novas aplicações tem sido divulgadas com grande frequência no arxiv e muitas outras ainda estão por serem descobertas.

- [1] N. Metropolis, "The beginning of the Monte Carlo method." Los Alamos Science 15.584 (1987): 125-130.
- [2] H.S. Eugene, and G. Ahlers. "Introduction to Phase Transitions and Critical Phenomena." Physics Today 26 (1973): 71.
- [3] K. Binder, et al. "Monte Carlo simulation in statistical physics." Computers in Physics 7.2 (1993): 156-157.

piresma@cbpf.br