### Centrality analysis on Rio Grande do Sul

Ricardo Ruiz Sánchez

2025 - 01 - 01

### Table of contents

| Da | ata and Software Availability      | 3        |
|----|------------------------------------|----------|
|    | Datasets                           | 3        |
|    | Computational workflows            | 5        |
|    | Computational environment          | 6        |
|    | Computation steps                  | 6        |
| ı  | Select AoI                         | 7        |
| 1  | Detect flood                       | 9        |
| 2  | Obtain road network                | 10       |
| П  | Obtain routable network            | 11       |
| 3  | Transform into graph               | 13       |
| 4  | Extract difference                 | 14       |
| Ш  | Analysis Centrality and Resilience | 15       |
| 5  | Origin-Destination matrix          | 17       |
| 6  | Calculate short path               | 18       |
| 7  | Calculate connectivity             | 19       |
|    | 7.1 RQ1                            | 19<br>19 |
| 8  | Calculate redundancy               | 20       |
| J  | 8.1 RQ3                            | 20       |
| Re | eferences                          | 21       |

### **Data and Software Availability**

This document is written following the Reproducibility paper guidelines for the AGILE conference 2025 (Belliard et al. 2019). The following flowchart explains the methodology to analyse the centrality and resilience of the road network and healthcare facilities in the core metropolitan area of Rio Grande do Sul.

- 1. Select Area of Interest (AOI) includes importing the flood extent, municipalities and the road network affecting the core metropolitan area of Porto Alegre. We name core metropolitan area to the 9 municipalities in the urban dense human settlement that intersects with the municipality of Porto Alegre.
- 2. **Obtain routable network** created the two output post-disaster and pre-disaster network. Firstly, OpenRouteService is used to transform the OpenStreetMap data into a routable graph named pre-disaster network. Extracting the difference between the flood extent obtained in the previous lane with the pre-disaster network generated the post-disaster network. Both road networks are graphs, which allow to use the extension pgrotuing.
- 3. Analysis centrality and resilience is carried out calculating shortest paths with the inputs weighted and regular origin-destination. While calculating connectivity using the edge betweenness indicator provides results to answer the 1st and 2nd research question, calculating the lack of redundancy with alternative paths provides results to answer the third research question.

#### **Datasets**

The table 1 summaries the initial data from which intermediate and final results are derived. The section link includes the origin of the data, so third parties to reuse. In addition, the public github repository with open data license also provide the data of the study.

The total built-up volume weighted the sampling of the origin and destination and is accessible via the following DOI:10.2905/AB2F107A-03CD-47A3-85E5-139D8EC63283. The degree of urbanization determined the urban dense settlement analysed contained the 9 municipalities that comprises the studied area named core metropolitan area and is accessible via the following DOI:10.2905/A0DF7A6F-49DE-46EA-9BDE-563437A6E2BA.Similarly, the subset of the flood is derived from the cheias\_rhguaiba\_2024\_db\_v11.gpkg accesible



Figure 1: Fig.1 Flowchart

in the DOI:10.5281/zenodo.11164049. For the hospitals, we used the dataset Hospitals\_com\_Leitos\_de\_UTIs\_no\_RS.geojson that included the bed capacity and is accessible via the DOI:10.7303/syn32211006.1. The location of the healthcare facility is obtained using the WFS provided by "Secretaria Estadual da Saúde/DGTI"

Table 1: Table 1: Original raw datasets

| Data                                                                      | Description                             | Link                 |  |  |
|---------------------------------------------------------------------------|-----------------------------------------|----------------------|--|--|
| GHSL-Built-V                                                              | total built-up volume in m <sup>3</sup> | GHSL-Built-V         |  |  |
| GHSL-SMOD                                                                 | Degree of Urbanisation                  | GHSL-SMOD            |  |  |
| cheias_rhguaiba_2024_db_v1                                                | 1. Hologo extent obtained on the        | Flood extent         |  |  |
|                                                                           | 29th April, 2024                        |                      |  |  |
| ETLCNES_SR_RS_21_12_t                                                     | Hospital data                           |                      |  |  |
|                                                                           | facilities                              |                      |  |  |
| Hospitais_com_Leitos_de_UTIst_inocliRGeschojabhacare facilities Hospitals |                                         |                      |  |  |
|                                                                           | with ICU                                |                      |  |  |
| geoBoundaries-BRA-ADM2                                                    | It contains subnational                 | Administrative units |  |  |
|                                                                           | administrative boundaries in            |                      |  |  |
|                                                                           | Brazil                                  |                      |  |  |
| OpenStreetMap data                                                        | It represents the road network in       | OSM data             |  |  |
|                                                                           | the region of Sul, in Brazil            |                      |  |  |

### **Computational workflows**

| Lane                              | Activity                                  | Time |
|-----------------------------------|-------------------------------------------|------|
| Select Area of<br>Interest (AOI)  | Flood extent:                             | Xs   |
| Select Area of<br>Interest (AOI)  | Obtain road network                       | Xs   |
| Obtain routable network           | Transform into graph: Convert into graph  | Xs   |
| Obtain routable network           | Transform into graph: Export geometry     | Xs   |
| Obtain routable network           | Extract difference: Subset flood extent   | Xs   |
| Obtain routable network           | Extract difference: Post-disaster network | Xs   |
| Analyse centrality and resilience | Weighted OD                               | Xs   |

| Lane                              | Activity                                                 | Time |
|-----------------------------------|----------------------------------------------------------|------|
| Analyse centrality and resilience | Regular OD                                               | Xs   |
| Analyse centrality and resilience | Calculate connectivity: RQ1:<br>C.Metropolitan scale     | Xs   |
| Analyse centrality and resilience | Calculate connectivity: RQ2: Intracity<br>Scale          | Xs   |
| Analyse centrality and resilience | Calculate resilience: RQ3: Resilience-lack of redundancy | Xs   |

#### **Computational environment**

- PostgreSQL 15.3 is used from the docker file container that includes the extension Post-GIS 16-3.4-v2024.03.17 and perouting 3.5.
- The libraries that includes the study analysis, visualization and creation of this documentation is available with the renv file.
- The study required a CPU Intel(R) Core(TM) i5-4300U CPU @ 1.90 GHz with 15 Gi model HP EliteBook 820 G1.
- QGIS Version 3.38 'Grenoble'
- RStudio 2023.06.1+524 "Mountain Hydrangea"
- openrouteservice:v8.0.0 used following the described docker file container instructions

#### **Computation steps**

This Quarto book describes the detailed steps carried out for this use case in three chapters that contains the workflow described in the Fig 1 with 8 activities.

# Part I Select Aol

### 1 Detect flood

### 2 Obtain road network

# Part II Obtain routable network

## 3 Transform into graph

### 4 Extract difference

# Part III Analysis Centrality and Resilience

## 5 Origin-Destination matrix

## 6 Calculate short path

# 7 Calculate connectivity

- 7.1 RQ1
- 7.2 RQ2

## 8 Calculate redundancy

### 8.1 RQ3

### References

Belliard, Frederique, Rusne Sileryte, Anita Graser, Karl Broman, Marta Teperek, Carlos Granell, Barbara Hofer, et al. 2019. "AGILE Reproducible Paper Guidelines." https://doi.org/10.17605/OSF.IO/CB7Z8.