Please check the examination details below before entering your candidate information		
Candidate surname		Other names
Pearson Edexcel Level 3 GCE	Centre Number	Candidate Number
Time 1 hour 30 minutes	Paper reference	9FM0/3C
Further Mathematics Advanced PAPER 3C: Further Mechanics 1		
		Total Marks

Candidates may use any calculator permitted by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided
 there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a numerical value of g is required, take $g = 9.8 \,\mathrm{m\,s^{-2}}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- There are 7 questions in this question paper. The total mark for this paper is 75.
- The marks for **each** question are shown in brackets
- use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.
- Good luck with your examination.

Turn over ▶

1. A van of mass 900 kg is moving along a straight horizontal road.

At the instant when the speed of the van is $v \, \text{m s}^{-1}$, the resistance to the motion of the van is modelled as a force of magnitude $(500 + 7v) \, \text{N}$.

When the engine of the van is working at a constant rate of $18 \,\mathrm{kW}$, the van is moving along the road at a constant speed $V \,\mathrm{m} \,\mathrm{s}^{-1}$

(a) Find the value of V.

(5)

Later on, the van is moving up a straight road that is inclined to the horizontal at an angle θ , where $\sin \theta = \frac{1}{21}$

At the instant when the speed of the van is $v \, \text{m s}^{-1}$, the resistance to the motion of the van from non-gravitational forces is modelled as a force of magnitude $(500 + 7v) \, \text{N}$.

The engine of the van is again working at a constant rate of 18kW.

(b) Find the acceleration of the van at the instant when v = 15

(4)

Question 1 continued

Question 1 continued

Question 1 continued	
(T _c	otal for Question 1 is 9 marks)
(10	year for Anceron 1 12 / marks)

(6)

2.	Two particles, <i>A</i> and <i>B</i> , are moving in opposite directions along the same straight line on smooth horizontal surface when they collide directly.	a
	Particle A has mass $5m$ and particle B has mass $3m$.	
	The coefficient of restitution between A and B is e , where $e > 0$	
	Immediately after the collision the speed of A is v and the speed of B is $2v$.	
	Given that A and B are moving in the same direction after the collision,	
	(a) find the set of possible values of e .	(8)

Given also that the kinetic energy of A immediately after the collision is 16% of the kinetic energy of A immediately before the collision,

- (b) find
 - (i) the value of e,
 - (ii) the magnitude of the impulse received by A in the collision, giving your answer in terms of m and v.

Question 2 continued

Question 2 continued

Question 2 continued	
	Fotal for Question 2 is 14 marks)
	Total for Question 2 is 14 marks)

3. [In this question, **i** and **j** are perpendicular unit vectors in a horizontal plane.]

A smooth uniform sphere P has mass 0.3 kg. Another smooth uniform sphere Q, with the same radius as P, has mass 0.5 kg.

The spheres are moving on a smooth horizontal surface when they collide obliquely. Immediately before the collision the velocity of P is $(u\mathbf{i} + 2\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$, where u is a positive constant, and the velocity of Q is $(-4\mathbf{i} + 3\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$

At the instant when the spheres collide, the line joining their centres is parallel to i.

The coefficient of restitution between P and Q is $\frac{3}{5}$

As a result of the collision, the direction of motion of P is deflected through an angle of 90° and the direction of motion of Q is deflected through an angle of α °

(a) Find the value of u

(8)

(b) Find the value of α

(5)

(c) State how you have used the fact that P and Q have equal radii.

(1)

Question 3 continued

Question 3 continued

Question 3 continued	
	(Total for Question 3 is 14 marks)

4.	A particle P has mass $0.5 \mathrm{kg}$. It is moving in the xy plane with velocity	$8ims^{-1}$	when it
	receives an impulse $\lambda(-\mathbf{i} + \mathbf{j}) N s$, where λ is a positive constant.		

The angle between the direction of motion of P immediately before receiving the impulse and the direction of motion of P immediately after receiving the impulse is θ°

Immediately after receiving the impulse, P is moving with speed $4\sqrt{10}\,\mathrm{m\,s^{-1}}$

Find (i) the value of λ

((ii)) the	value	of θ
١	11) uic	varuc	$o_1 o$

	(8)

Question 4 continued	
	(Total for Question 4 is 8 marks)

Figure 1

Figure 1 represents the plan view of part of a horizontal floor, where AB and BC represent fixed vertical walls, with AB perpendicular to BC.

A small ball is projected along the floor towards the wall AB. Immediately before hitting the wall AB the ball is moving with speed $v \, \text{m} \, \text{s}^{-1}$ at an angle θ to AB.

The ball hits the wall AB and then hits the wall BC.

The coefficient of restitution between the ball and the wall AB is $\frac{1}{3}$

The coefficient of restitution between the ball and the wall BC is e.

The floor and the walls are modelled as being smooth.

The ball is modelled as a particle.

The ball loses half of its kinetic energy in the impact with the wall AB.

(a) Find the exact value of $\cos \theta$.

(5)

The ball loses half of its remaining kinetic energy in the impact with the wall BC.

(b) Find the exact value of e.

(5)

Question 5 continued

Question 5 continued

Question 5 continued	
	(Total for Question 5 is 10 marks)
	(20m2-01- garaged e 15-10 marks)

Figure 2

A light elastic spring has natural length 3l and modulus of elasticity 3mg.

One end of the spring is attached to a fixed point X on a rough inclined plane.

The other end of the spring is attached to a package P of mass m.

The plane is inclined to the horizontal at an angle α where $\tan \alpha = \frac{3}{4}$

The package is initially held at the point Y on the plane, where XY = l. The point Y is higher than X and XY is a line of greatest slope of the plane, as shown in Figure 2.

The package is released from rest at *Y* and moves up the plane.

The coefficient of friction between P and the plane is $\frac{1}{3}$

By modelling P as a particle,

(a) show that the acceleration of P at the instant when P is released from rest is $\frac{17}{15}g$

(5)

(b) find, in terms of g and l, the speed of P at the instant when the spring first reaches its natural length of 3l.

(6)

Question 6 continued	

Question 6 continued

Question 6 continued	
	Total for Question 6 is 11 marks)

7. [In this question, i and j are perpendicular unit vectors in a horizontal plane.]

Figure 3

Figure 3 represents the plan view of part of a smooth horizontal floor, where AB is a fixed smooth vertical wall.

The direction of \overrightarrow{AB} is in the direction of the vector $(\mathbf{i} + \mathbf{j})$

A small ball of mass $0.25 \,\mathrm{kg}$ is moving on the floor when it strikes the wall AB.

Immediately before its impact with the wall AB, the velocity of the ball is $(8\mathbf{i} + 2\mathbf{j}) \,\mathrm{m}\,\mathrm{s}^{-1}$

Immediately after its impact with the wall AB, the velocity of the ball is $vm s^{-1}$

The coefficient of restitution between the ball and the wall is $\frac{1}{3}$

By modelling the ball as a particle,

(a) show that
$$\mathbf{v} = 4\mathbf{i} + 6\mathbf{j}$$

(6)

(b) Find the magnitude of the impulse received by the ball in the impact.

(3)

Question 7 continued

Question 7 continued

Question 7 continued		

Question 7 continued	
	(Total for Question 7 is 9 marks)
	TOTAL FOR PAPER IS 75 MARKS

