Estimation

Thomas H. Jørgensen

2024

Introduction

•0

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.

Plan for today

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.
- Reading guide:
 - 1. What are the main research questions?
 - 2. What is the (empirical) motivation?

3. What are the central mechanisms in the model?

4. What is the simplest model in which we could capture these?

Introduction

- Blundell, Pistaferri and Saporta-Eksten (2018): "Children, Time Allocation and Consumption Insurance"
 - Unitary model Combines US data.
- Reading guide:
 - 1. What are the main research questions?
 - How do couples allocate time and consumption when having children?
 - How does children affect couples abilities to smooth consumption?
 - 2. What is the *(empirical)* motivation?

3. What are the central mechanisms in the model?

4. What is the *simplest model* in which we could capture these?

Introduction

0

Empirical Motivation: Siminski and Yetsenga (2022)

Australian time-use data on panel of couples!

Fig. 1.—Relative domestic work time by relative wage. Each point represents 1 percentile of the female-to-male relative wage distribution among heterosexual couples. A color version of this figure is available online.

Outline

- Model and Mechanisms
- - Data
 - First Step: MRS
 - Second Step: SMM

 Write out the recursive formulation of the model States Choices (transitions)

Model Overview

Choices:

```
H_{i,t}: work hours, j \in \{1,2\} (2=woman)
L_{i,t}: leisure hours, j \in \{1,2\}
T_{i,t}: Parenting hours, j \in \{1, 2\} (child care)
C_t: Household consumption
```

States:

```
A_{+}: wealth
F_{i,t}: permanent income shock, j \in \{1, 2\}
u_{i,t}: transitory income shock, j \in \{1, 2\}
ε: vector of 5 unobserved time-fixed taste-shifters.
(only allow for \varepsilon_{L_2}, wife's leisure, using two-point, fnt 27)
z_t: child (50/50 prob. at age 28, young for 10years)
```

State Transitions

Budget

$$A_{t+1} = (1+r)[A_t + \mathcal{T}(z_t, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) - C_t]$$

where joint taxation gives

$$\mathcal{T}(z_{t}, H_{1,t}W_{1,t} + H_{2,t}W_{2,t}) = \chi_t(b(z_t) + H_{1,t}W_{1,t} + H_{2,t}W_{2,t})^{1-\mu_t}$$

with $b(z_t)$ being a consumption floor.

Hours worked are

$$H_{j,t} = \overline{L} - L_{j,t} - T_{j,t}$$

Wages are

$$\log W_{j,t} = x'_{j,t} \beta_W^j + F_{j,t} + u_{j,t}$$
$$F_{j,t} = F_{j,t-1} + v_{j,t}$$

• Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{\left[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)\right]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where, for $x \in \{C, L_1, L_2, T_1, T_2\}$,

$$\tilde{\phi}_{x}(z_{t},\varepsilon_{t}) = \phi_{x}^{nk} + \phi_{x}^{k}z_{t} + \varepsilon_{x,t}$$

are taste-shifters.

(only $var(\varepsilon_{L_2,t}) > 0$ so irrelevant in all other)

• Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

 $\eta>0$ is the consumption Frisch elasticity $(1/\eta \text{ is the CRRA})$ $\gamma(z_t)$ is cost of work (for women) $\varphi_x\in(0,1)$ is the curvature wrt x. (Governs how sensitive x is to e.g. wage changes.)

Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where they claim that $ho_x < 1$ is the complementarity $(
ho_x > 0)$ / substitutability $(
ho_x < 0)$ between men and women (This is not true, I think. If $\phi_{x_1} = \phi_{x_2} = \phi_x$, then that is the elasticity of subs.)

Utility is

$$\begin{split} &\exp(\tilde{\phi}_{C}(z_{t},\varepsilon_{t}))\frac{[C_{t}-\gamma(z_{t})\mathbf{1}(H_{2,t}>0)]^{1-1/\eta}}{1-1/\eta} \\ &-\frac{1}{1-\rho_{L}}\left[\exp(\tilde{\phi}_{L_{1}}(z_{t},\varepsilon_{t}))L_{1,t}^{1-1/\varphi_{L_{1}}}+\exp(\tilde{\phi}_{L_{2}}(z_{t},\varepsilon_{t}))L_{2,t}^{1-1/\varphi_{L_{2}}}\right]^{1-\rho_{L}} \\ &-\frac{1}{1-\rho_{T}}\left[\exp(\tilde{\phi}_{T_{1}}(z_{t},\varepsilon_{t}))T_{1,t}^{1-1/\varphi_{T_{1}}}+\exp(\tilde{\phi}_{T_{2}}(z_{t},\varepsilon_{t}))T_{2,t}^{1-1/\varphi_{T_{2}}}\right]^{1-\rho_{T}} \end{split}$$

where

interpreting the last part as "home production of children"

- ightarrow relative weight on j is their absolute advantage in child production
- o if $ilde{\phi}_{\mathcal{T}_2}(z_t, arepsilon_t) > ilde{\phi}_{\mathcal{T}_1}(z_t, arepsilon_t)$ mothers has an absolute advantage

Outline

- Estimation
 - Data
 - First Step: MRS
 - Second Step: SMM

• **Zero-step calibration** of some parameters (table 2)

Estimation

- **Zero-step calibration** of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

- Zero-step calibration of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

 Second-step SMD/SMM estimation of some parameters using solution/simulation from model.

- **Zero-step calibration** of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model

Estimation

000000000000000000

- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail. It takes up a big part of the paper

- **Zero-step calibration** of some parameters (table 2)
- First-step estimation of some parameters using MRS conditions using log-linear approximations, without solving the model
- Second-step SMD/SMM estimation of some parameters using solution/simulation from model.
- I will spend some time on the first-step estimation to give some detail. It takes up a big part of the paper
- Illustrates the amount of hoops one could be willing to jump to reduce the parameter space in the SMD...

Data Sources

• Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{j,t}$, $\rightarrow w_{j,t}$ Non-durable consumption, c_t , and assets, A_t .

- Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{i,t}$, $\rightarrow w_{i,t}$ Non-durable consumption, c_t , and assets, A_t .
- American Time Use Survey (ATUS) Time used for leisure, $L_{i,t}$, and child care, $T_{i,t}$ Only for one respondent (not both partners)
 - \rightarrow Use responses of women and *impute* values for their partners:

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

- Panel Study of Income Dynamics (PSID) labor income, and hours worked, $H_{i,t}$, $\rightarrow w_{i,t}$ Non-durable consumption, c_t , and assets, A_t .
- American Time Use Survey (ATUS) Time used for leisure, $L_{i,t}$, and child care, $T_{i,t}$ Only for one respondent (not both partners) \rightarrow Use responses of women and *impute* values for their partners:

$$X_{1,t} = f(cohort_1, educ_1), X \in \{L, T\}$$

 Consumer Expenditure Survey (CEX) Non-durable consumption, c_t . (better quality than PSID)

MRS: 1

 MRS between wife's and husband's leisure can be found to give [note: nothing about ρ_L!]

$$L_2 = \left[\frac{(1-1/\phi_{L_1}) \exp(\tilde{\phi}_{L_1})}{(1-1/\phi_{L_2}) \exp(\tilde{\phi}_{L_2})} \right]^{-\phi_{L_2}} \left[\frac{W_2}{W_1} \right]^{-\phi_{L_2}} L_1^{\phi_{L_2}/\phi_{L_1}}.$$

....

 MRS between wife's and husband's leisure can be found to give [note: nothing about ρ_L!]

$$L_2 = \left[\frac{(1-1/\varphi_{L_1}) \exp(\tilde{\phi}_{L_1})}{(1-1/\varphi_{L_2}) \exp(\tilde{\phi}_{L_2})} \right]^{-\varphi_{L_2}} \left[\frac{W_2}{W_1} \right]^{-\varphi_{L_2}} L_1^{\varphi_{L_2}/\varphi_{L_1}}.$$

• Taking logs gives $(x = \log(X))$

$$\begin{split} I_2 &= -\varphi_{L_2}[\log(1-1/\varphi_{L_1}) + \tilde{\phi}_{L_1} - \log(1-1/\varphi_{L_1}) - \tilde{\phi}_{L_2}] \\ &- \varphi_{L_2}(w_2 - w_1) + \frac{\varphi_{L_2}}{\varphi_{L_1}}I_1 \end{split}$$

MRS between wife's and husband's leisure

can be found to give [note: nothing about ρ_L !]

$$L_{2} = \left[\frac{(1 - 1/\varphi_{L_{1}}) \exp(\tilde{\varphi}_{L_{1}})}{(1 - 1/\varphi_{L_{1}}) \exp(\tilde{\varphi}_{L_{1}})} \right]^{-\varphi_{L_{2}}} \left[\frac{W_{2}}{W_{1}} \right]^{-\varphi_{L_{2}}} L_{1}^{\varphi_{L_{2}}/\varphi_{L_{1}}}.$$

• Taking logs gives $(x = \log(X))$

$$I_2 = -\varphi_{L_2}[\log(1 - 1/\varphi_{L_1}) + \tilde{\phi}_{L_1} - \log(1 - 1/\varphi_{L_1}) - \tilde{\phi}_{L_2}] - \varphi_{L_2}(w_2 - w_1) + \frac{\varphi_{L_2}}{\varphi_{L_1}}I_1$$

We can write this as

$$I_2 = K_0 + \varphi_{L_2}(w_1 - w_2) + \frac{\varphi_{L_2}}{\varphi_{L_1}}I_1 + \varphi_{L_2}(\varepsilon_1 - \varepsilon_2)$$

where $\varepsilon_1 - \varepsilon_2$ is unobserved (random) and the constant is

$$K_0 = -\varphi_{L_2}[\log(1 - 1/\varphi_{L_1}) - \log(1 - 1/\varphi_{L_1}) + \varphi_{L_1}^{nk} + \varphi_{L_1}^k z - \varphi_{L_2}^{nk} - \varphi_{L_2}^k z]$$

MRS: 1

• MRS between wife's and husband's leisure (e.q. 7, x = log(X))

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

• MRS between wife's and husband's leisure (e.g. 7, $x = \log(X)$)

Estimation

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

can give three moments to identify K_0 , φ_{L_2} and φ_{L_1} .

- Requires individual-level data on leisure and wages.
 - ... Not available in any of the data sources...

• MRS between wife's and husband's leisure (e.g. 7, $x = \log(X)$)

Estimation

$$\mathbb{E}[I_{2,t} - K_0 - \varphi_{L_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{L_2}}{\varphi_{L_1}}I_{1,t}|I_t] = 0$$

can give three moments to identify K_0 , φ_{L_2} and φ_{L_1} .

- Requires individual-level data on leisure and wages. ... Not available in any of the data sources...
- They use PSID, people with no children younger than 10 $\rightarrow L_{j,t} = \overline{L} - T_{j,t} - H_{j,t}$ observed through $H_{j,t}$. 4.160 ass.

MRS: 2

MRS between wife's leisure and consumption (e.q. 8)

Estimation

$$\mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t}$$

$$+ \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] = 0$$

where μ is "known" tax parameter and γ is household income. Can likewise give three moments to identify K_1 , η and ρ_I .

MRS between wife's leisure and consumption (e.q. 8)

Estimation

$$\begin{split} \mathbb{E}[I_{2,t} - K_1 + \varphi_{L_2} w_{2,t} - \mu \varphi_{L_2} y - \frac{\varphi_{L_2}}{\eta} c_t - \frac{\varphi_{L_2}}{\varphi_{L_1}} \rho_L (1 - \varphi_{L_1}) I_{1,t} \\ + \varphi_{L_2} \rho_L \frac{\varphi_{L_2} (1 - \varphi_{L_2})}{\varphi_{L_1} (1 - \varphi_{L_1})} \frac{W_{2,t} L_{2,t}}{W_{1,t} L_{1,t}} | I_t] &= 0 \end{split}$$

where μ is "known" tax parameter and γ is household income. Can likewise give three moments to identify K_1 , η and ρ_I .

- Requires individual-level data on leisure, wages and consumption.
- They again use PSID, people with no children younger than 10 $\rightarrow L_{j,t} = \overline{L}_{4,160 \text{ ass.}} - T_{j,t} - H_{j,t} \text{ observed through } H_{j,t}.$

MRS: 3

• MRS between wife's and husband's parental time (e.g. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t}$$

$$+ \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_3} , K_3 and ϱ_{T} .

MRS: 3

• MRS between wife's and husband's parental time (e.g. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ϱ_T .

• Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...

MRS between wife's and husband's parental time (e.q. 9)

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\mathbb{E}\left[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t} \right] + \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t \right] = 0$$

can likewise give five moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and ρ_T .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- **Solution:** Impute consumption from the CEX "into" the ATUS.
 - 1. **Estimate** avg. consumption in CEX: $\hat{C}(cohort, educ)$
 - 2. **Predict** consumption in ATUS: $c_{i,t} = \hat{C}(cohort_i, educ_i)$

MRS: 3

• MRS between wife's and husband's parental time (e.g. 9)

Estimation

$$\mathbb{E}[t_{2,t} - K_2 - \varphi_{T_2}(w_{1,t} - w_{2,t}) - \frac{\varphi_{T_2}}{\varphi_{T_1}}t_{1,t}|I_t] = 0$$

MRS between wife's parental time and consumption (e.q. 10)

$$\mathbb{E}[t_{2,t} - K_3 + \varphi_{T_2} w_{2,t} - \mu \varphi_{T_2} y - \frac{\varphi_{T_2}}{\eta} c_t - \frac{\varphi_{T_2}}{\varphi_{T_1}} \rho_T (1 - \varphi_{T_1}) t_{1,t}$$

$$+ \varphi_{T_2} \rho_T \frac{\varphi_{T_2} (1 - \varphi_{T_2})}{\varphi_{T_1} (1 - \varphi_{T_1})} \frac{W_{2,t} T_{2,t}}{W_{1,t} T_{1,t}} | I_t] = 0$$

can likewise give *five* moments to identify K_2 , φ_{T_2} , φ_{T_1} , K_3 and φ_{T} .

- Requires individual-level data on child-care time, wages and consumption... Not available in any of the data sources...
- **Solution:** Impute consumption from the CEX "into" the ATUS.
 - 1. **Estimate** avg. consumption in CEX: $\hat{C}(cohort, educ)$
 - 2. **Predict** consumption in ATUS: $c_{i,t} = \hat{C}(cohort_i, educ_i)$
- Similarly for the time-use of men (as discussed above)

Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

	A. MRS Estimates			
	Leisure and Consumption (1)	Parental Time (2)		
φ_{L_1}	.211	φ_{T_1}	.115	
	(.037)		(.081)	
$arphi_{L_2}$.162	$arphi_{T_2}$.503	
	(.025)		(.201)	
ρ_L	.535	ρ_T	197	
	(.099)		(.123)	
η	.903			
	(.049)			
Observations	11,195		2,901	
	B. Preference Shifters			
	With Children	W	ithout Children	
ϕ_{L_i}	-8.925		-7.680	
	(1.108)		(1.013)	
ϕ_{L_2}	-9.397		-8.816	
	(1.036)		(1.024)	
ϕ_{T_i}	-23.993		N/A	
	(10.245)			
ϕ_{T_2}	-3.957		N/A	
	(1.201)			
$\sigma_{arepsilon_{arepsilon_{t_k}}}^2$	1.476		.700	
	(.174)		(.087)	
γ	(see table 2)		4,794	
•			(438)	
ϕ_c	.132		Normalized to	
	(.024)			

(438) Normalized to 0

Parameter Estimates

 ϕ_{L_1}

 ϕ_{L_o}

 ϕ_T

 ϕ_{T_2}

 $\sigma_{\varepsilon_{r_*}}^2$

γ

 ϕ_C

TABLE 3 Parameter Estimates

		A. MRS Estimates			
	Leisure an	nd Consun (1)	nption P	Parental Time (2)	
o_{L_1}	leisure does not respond	.211 (.037)	$arphi_{T_{\mathfrak{l}}}$.115 (.081)	
L_2	alot to wage-changes	.162 (.025)	$oldsymbol{arphi}_{T_2}$.503 (.201)	
L	'	.535 (.099)	$ ho_T$	197 (.123)	
1		.903 (.049)			
Observations		11,195		2,901	

.132

(.024)

With Children Without Children -8.925-7.680(1.108)(1.013)-9.397-8.816(1.036)(1.024)-23.993N/A (10.245)-3.957N/A (1.201)1.476 .700 (.174)(.087)(see table 2) 4,794

B. Preference Shifters

 ϕ_{L_1}

 ϕ_{L_o}

 ϕ_T

 ϕ_{T_2}

 $\sigma_{\varepsilon_{r_*}}^2$

γ

 ϕ_C

TABLE 3 Parameter Estimates

	A. MRS E	STIMATES	
Lei	sure and Consumption (1)	Pa	rental Time (2)
Child-care time of mo	(037)	$oldsymbol{arphi}_{T_{\mathrm{l}}}$.115 (.081)
reponds a bit to wag	es .162 (.025)	$oldsymbol{arphi}_{T_2}$.503 (.201)
L	.535 (.099)	$ ho_T$	197 (.123)
	.903 (.049)		
Observations	11,195		2,901

(see table 2)

.132

(.024)

With Children Without Children -8.925-7.680(1.108)(1.013)-9.397-8.816(1.036)(1.024)-23.993N/A (10.245)-3.957N/A (1.201)1.476 .700 (.174)(.087)

4,794

(438) Normalized to 0

B. Preference Shifters

TABLE 3 Parameter Estimates

	A. MRS E	STIMATES	
Leisure a	and Consumption (1)	Pa	rental Time (2)
φ_{L_1}	.211 (.037)	$arphi_{T_1}$.115 (.081)
$arphi_{L_2}$.162	$oldsymbol{arphi}_{T_2}$.503 (.201)
$ ho_{\scriptscriptstyle L}$ leisure time is complements $_{\eta}$ (enjoy time together)	(.099) .903	$ ho_T$	197 (.123)
Observations	(.049) 11,195		2,901

	B. Prefere	NCE SHIFTERS
	With Children	Without Children
ϕ_{L_i}	-8.925	-7.680
	(1.108)	(1.013)
ϕ_{L_2}	-9.397	-8.816
	(1.036)	(1.024)
ϕ_{T_1}	-23.993	N/A
	(10.245)	
ϕ_{T_2}	-3.957	N/A
	(1.201)	
$\sigma_{\varepsilon_{t_t}}^2$	1.476	.700
	(.174)	(.087)
γ	(see table 2)	4,794
•	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(438)
ϕ_C	.132	Normalized to 0
	(.024)	

References

TABLE 3 PARAMETER ESTIMATES

Leisure and Consumption

(1)

A. MRS Estimates

Parental Time (2)

		(-)		(=)
φ_{L_1}		.211 (.037)	$arphi_{T_1}$.115 (.081)
$arphi_{L_2}$.162 (.025)	$arphi_{T_2}$.503
ρ_L child-care time is	sublements	.535	$ ho_T$	197 (.123)
η		.903		(.123)
Observations	1	(.049) 1,195		2,901
		B. Prefe	RENCE SHIFTERS	
	With	Children	With	out Children
ϕ_{L_i}		8.925		-7.680
ϕ_{L_2}		1.108) 9.397		(1.013) -8.816
		1.036) 3.993		(1.024) N/A
$oldsymbol{\phi}_{T_{\mathbf{i}}}$	(1	0.245)		
ϕ_{T_2}		3.957 1.201)		N/A
$\sigma^2_{arepsilon_{t_k}}$		1.476		.700
γ	(see	(.174) table 2)		(.087) 4,794
ϕ_{c}		.132		(438) Normalized to 0

(.024)

References

TABLE 3 Parameter Estimates

	A. MRS E	A. MRS Estimates			
:	Leisure and Consumption (1)	Parental Time (2)			
ρ_{L_1}	.211 (.037)	$oldsymbol{arphi}_{T_{\mathrm{i}}}$.115 (.081)		
$\mathcal{O}L_2$.162 (.025)	$arphi_{T_2}$.503 (.201)		
c_L	.535	$ ho_T$	197 (.123)		
CRRA =1/0.903=1.11			()		
Observations	11,195		2,901		

B. Preference Shifters With Children Without Children ϕ_{L_1} -8.925-7.680(1.108)(1.013) ϕ_{L_o} -9.397-8.816(1.036)(1.024)-23.993 ϕ_T N/A (10.245)-3.957N/A ϕ_{T_2} (1.201) $\sigma_{\varepsilon_{r_*}}^2$ 1.476 .700 (.174)(.087)(see table 2) 4,794 γ (438)Normalized to 0 .132 ϕ_C (.024)

 ϕ_C

TABLE 3 PARAMETER ESTIMATES

A. MRS Estimates

L	eisure and Consumption (1)	Parental Time (2)		
$arphi_{L_{i}}$.211 (.037)	$arphi_{T_1}$.115 (.081)	
$arphi_{L_t}$.162 (.025)	$arphi_{T_2}$.503	
ρ_L	.535 (.099)	$ ho_T$	197 (.123)	
1	.903 (.049)		(122)	
Observations	11,195		2,901	
	B. Preferen	CE SHIFTERS	8	
_	With Children	With	out Children	
b_{L_i} children decrease the b_{L_i} value of leisure	(1.108) -9.397 (1.036)		-7.680 (1.013) -8.816 (1.024)	
∂τ _ι ∂τ ₁	-23.993 (10.245) -3.957		N/A N/A	
2 Et _e	(1.201) 1.476 (.174)		.700 (.087)	
((see table 2)	4,794		

.132

(.024)

(438)Normalized to 0 References

A MRS FSTIMATES

Parameter Estimates

TABLE 3 Parameter Estimates

	A. MRS E	STIMATES	
Ī	eisure and Consumption (1)	Parental Time (2)	
φ_{L_1}	.211	$arphi_{T_1}$.115
	(.037)		(.081)
$arphi_{L_{t}}$.162	$arphi_{T_2}$.503
	(.025)		(.201)
$ ho_L$.535	$ ho_T$	197
	(.099)		(.123)
η	.903		
	(.049)		
Observations	11,195		2,901
	B. Preference Shifters		
_	With Children	Witl	nout Children
ϕ_{L_i}	-8.925		-7.680
	(1.108)		(1.013)
ϕ_{L_2}	-9.397		-8.816
	(1.036)		(1.024)
ϕ_{T_i} women have a large a	-23.993		N/A
women have a large a	(10.2,10)		
ϕ_{T_a} advantage in child-car	e -3.957		N/A
<u> </u>	(1.201)		
$\sigma_{\varepsilon_{t_{*}}}^{2}$	1.476		.700
	(.174)		(.087)
γ	(see table 2)		4,794
			(438)
$\phi_{\scriptscriptstyle C}$.132		Normalized to 0
	(.024)		

(.087)

4,794

(438)Normalized to 0

Parameter Estimates

TABLE 3 PARAMETER ESTIMATES

A. MRS Estimates

j	Leisure and Consumption (1)		Parental Time (2)		
$arphi_{L_{ m i}}$.211	$arphi_{T_1}$.115		
	(.037)		(.081)		
φ_{L_q}	.162	φ_{T_2}	.503		
	(.025)		(.201)		
O_L	.535	ρ_T	197		
	(.099)		(.123)		
1	.903				
	(.049)				
Observations	11,195		2,901		
	B. Preference Shifters				
•	With Children	With	out Children		
ϕ_{L_i}	-8.925		-7.680		
	(1.108)		(1.013)		
ϕ_{L_2}	-9.397		-8.816		
	(1.036)		(1.024)		
ϕ_{T_1}	-23.993		N/A		
•	(10.245)				
ϕ_{T_2}	-3.957		N/A		
random prof shocks	(1.201)				
_r random prei. Shocks	1.476	,	.700		

(see table 2)

.132

(.024)

more varince when children (.174)

are present

 ϕ_C

TABLE 3 PARAMETER ESTIMATES

A. MRS Estimates

	Leisure and Consumption (1)	Pa	rental Time (2)
φ_{L_i}	.211	$arphi_{T_1}$.115
	(.037)		(.081)
φ_{L_q}	.162	$arphi_{T_2}$.503
	(.025)		(.201)
ρ_L	.535	ρ_T	197
	(.099)		(.123)
η	.903		
	(.049)		
Observations	11,195		2,901
	B. Preference	CE SHIFTER:	s
	With Children	With	out Children
ϕ_{L_i}	-8.925		-7.680
	(1.108)		(1.013)
ϕ_{L_2}	-9.397		-8.816
	(1.036)		(1.024)
ϕ_{T_i}	-23.993		N/A
	(10.245)		
ϕ_{T_2}	-3.957		N/A
	(1.201)		
$\sigma_{\varepsilon_{L_k}}^2$	1.476		.700
£1	(174)		(087)
γ tixed cost (in c	ons.) of wo ksee table 2) 2,900		4,794
			(438)
ϕ_C	.132		Normalized to
	(.024)		

References

TABLE 3 Parameter Estimates

	A. MRS E	MRS Estimates			
	Leisure and Consumption (1)	Parental Time (2)			
$arphi_{L_{\mathfrak{l}}}$.211 (.037)	$arphi_{T_{\mathrm{i}}}$.115 (.081)		
$arphi_{L_2}$.162 (.025)	$arphi_{T_2}$.503 (.201)		
$ ho_L$.535 (.099)	$ ho_T$	197 (.123)		
η	.903 (.049)		(1120)		
Observations	11,195				
	B. Preferen	B. Preference Shifters			
	With Children	Without Children			
$\phi_{L_{i}}$	-8.925		-7.680		
	(1.108)		(1.013)		
ϕ_{L_2}	-9.397		-8.816		
4	(1.036) -23.993		(1.024) N/A		
ϕ_{T_i}	(10.245)		N/A		
$\phi_{T_{r}}$	-3.957		N/A		
Y 12	(1.201)		11/11		
$\sigma_{\varepsilon_{t*}}^2$	1.476		.700		
-ag	(.174)		(.087)		
γ	(see table 2)		4,794		
, marg. util. of co	ons. is 13%		(438)		
higher when ch	.132		Normalized to		

References

Outline

- Model and Mechanisms
- 2 Estimation
 - Data
 - First Step: MRS
 - Second Step: SMM
- Simulations

Simulations

- Simulate transitory and permanent wage changes.
 Men and women separately
- **Transitory:** Approximate Frisch (since little income effect)
- Permanent: Approximate Marshall

Consumption and Labor Supply Responses

Age 30 response from 10% increase in wage in two models
 With child from age 28 + Without child from age 28 (elasticities)

TABLE 5

CONSUMPTION AND LABOR SUPPLY RESPONSES TO TRANSITORY AND PERMANENT SHOCKS

		Total Response					Ex	CTENSIVE VS. IN	TENSIVE M	ARGIN	
		C		H_1		H_2		E_2		H_2 Employed	
	With Kids (1)	Without Kids (2)	With Kids (3)	Without Kids (4)	With Kids (5)	Without Kids (6)	With Kids (7)	Without Kids (8)	With Kids (9)	Without Kids (10)	
Transitory: Husband Wife	.119 .130	.123 .135	.180	.222 006	076 .703	.001 .394	051 .574	.005 .280	041 .329	.006 .167	
Permanent: Husband Wife	.393 .353	.410 .375	.105 070	.116 106	296 .531	140 .304	193 .491	065 .266	170 .208	088 .086	

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Consumption response consistent with buffer-stock theory: transitory shocks have little effect
- 2. Women have larger responses than men
- 3. Children increases response for women
- 4. Extensive margin important (for women)

Leisure and Parental Time Responses

TABLE 6 Leisure and Parental Time Responses to Transitory and Permanent Shocks

	L_1			L_2	T_1	T ₂
	With Kids (1)	Without Kids (2)	With Kids (3)	Without Kids (4)	With Kids (5)	With Kids (6)
Transitory:						
Husband	230	231	003	001	095	.131
Wife	007	.006	217	309	.033	538
Permanent:						
Husband	131	120	.078	.110	067	.261
Wife	.085	.110	151	238	.058	443

Note.—Model-simulated responses for transitory and permanent shocks.

- 1. Leisure elasticities similar between men/women w/w.o. kids and compliments (same-sign cross trans ela)
- 2. Permanent \rightarrow reduction in both own leisure and child care time and opposite sign cross elasticity \rightarrow specialization.
- 3. Women have large responses on child-care time from own and male wages.

+.7%

-2.6%

Consumption Insurance

Parental time

TABLE 7 Insurance Effects

Consumption After-tax and transfers household earnings Before-tax (after-transfers) household earnings	$-3.9\% \\ -5.0\% \\ -5.6\%$		
	Husband	Wife	
Earner's average share of before-tax earnings	.66	.34	
Earner's before-tax and transfers earnings response:	-10.7%	+2.0%	
Hours	-1.0%	+3.0%	
Leisure	+1.3%	8%	

Note.—Insurance decomposition calculations based on model-simulated responses to a 10 percent permanent decline in the husband's wage.

- 1. Some consumption insurance (3.9% drop from 10% drop in wages)
- 2. Substitution effect dominates (-1% in hours worked)
- 3. Sizable cross-effect (+3% in work hours of women)
- 4. Leisure margin most active for men, parent time most for women.

Two counterfactuals with same budget effects:

- 1. unconditional child-subsidy, $b(z) \uparrow$
- 2. employment subsidy, $\gamma(z)\downarrow$

	P		LE 10 XPERIMEN	NTS					
	C (1)	H ₁ (2)	H ₂ (3)	E ₂ (4)	L ₁ (5)	L_2 (6)	T_1 (7)	T ₂ (8)	
	A. Experiment 1: Unconditional Subsidy for Families with Young Children								
Total	.6%	4%	7%	4%	.4%	.3%			
Before young children	.9%	4%	5%	2%	.4%	.4%			
With young children	1.3%	6%	-1.8%	-1.0%	.8%	.7%	.2%	1.0%	
After young children	.1%	1%	1%	1%	.1%	.1%			
Consumption equivalent utility value	.95%								
	B. Experiment 2: Employment Subsidy for Wives with Young Children							es	
Total	.1%	2%	1.9%	4.6%	.2%	5%			
Before young children	.9%	4%	5%	1%	.4%	.4%			
With young children	3%	3%	6.5%	13.1%	.3%	-1.7%	.3%	-5.6%	
After young children	.1%	1%	1%	~0%	.1%	.1%			
Consumption equivalent utility value	.17%								

Unitary model, couples jointly **choose**

- labor supply of both, $I_{i,t} \in [0, 24], j \in \{f, m\},$
- home production of both, $h_{i,t} \in [0, 24], j \in \{f, m\},\$ subject to time-constraint $T_{i,t} = l_{i,t} + h_{i,t} \le 24$

State variables

- human capital of both, $K_{i,t} \geq 0$
- child present, $n_t \in \{0, 1\}$

Toy Model II

ullet Couples care about market goods, C_t , and home produced goods, H_t , through the composite good

$$Q_t = C_t^{\omega} H_t^{1-\omega}$$

where $\omega = \omega_0 + \omega_n n_t \in (0,1)$ is the relative weight on market goods.

Home production is a (CES) function,

$$H_{t} = \left(\alpha h_{f,t}^{\frac{\sigma-1}{\sigma}} + (1-\alpha) h_{m,t}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

where $\sigma \in (0,1)$ is the elasticity of substitution and $\frac{\alpha}{1-\alpha} \in (0,1)$ is the productivity in home production of females relative to males (her absolute advantage in home production, AAH).

Toy Model II

• Household preferences over work and consumption are

$$U(T_{f,t}, T_{m,t}, Q_t) = \frac{Q_t^{1-\rho}}{1-\rho} - \nu \left(\frac{T_{f,t}^{1+\frac{1}{\epsilon_f}}}{1+\frac{1}{\epsilon_f}} + \frac{T_{m,t}^{1+\frac{1}{\epsilon_m}}}{1+\frac{1}{\epsilon_m}} \right)$$
(1)

in which the last term is the dis-utility from total work hours ($\nu > 0$) and $\epsilon_j > 0$ controls the curvature of the dis-utility. $\rho > 1$ is the constant relative risk aversion coefficient.

• There are no bequest motive and

$$V_{T+1}(n_{t+1}, K_{f,T+1}, K_{m,T+1}) = 0.$$
 (2)

Toy Model III

• The recursive formulation of the model is for t < T:

$$V_{t}(n_{t}, K_{f,t}, K_{m,t}) = \max_{l_{f,t}, h_{f,t}, l_{m,t}, h_{m,t}} U(T_{f,t}, T_{m,t}, Q_{t}) + \beta \mathbb{E}_{t}[V_{t+1}(n_{t+1}, K_{f,t+1}, K_{m,t+1})]$$
(3)

$$C_t = w_{f,t} I_{f,t} + w_{m,t} I_{m,t} + X_t$$
 (5)

$$H_{t} = \left(\alpha h_{f,t}^{\frac{\sigma-1}{\sigma}} + (1-\alpha) h_{m,t}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \tag{6}$$

$$Q_t = C_t^{\omega} H_t^{1-\omega} \tag{7}$$

$$\log w_{i,t} = \gamma_{i,0} + \gamma_{i,1} K_{i,t}, j \in \{f, m\}$$
(8)

$$K_{j,t+1} = (1 - \delta) K_{j,t} + l_{j,t} / 24, \ j \in \{f, m\}$$

$$n_{t+1} = \begin{cases} n_t + 1 & \text{with prob. } p \cdot (1 - n_t) \end{cases}$$
(10)

$$n_{t+1} = \begin{cases} n_t + 1 & \text{with prob. } p \cdot (1 - n_t) \\ n_t & \text{with prob. } 1 - p \cdot (1 - n_t) \end{cases}$$

$$(10)$$

$$T_{j,t} = I_{j,t} + h_{j,t}, j \in \{f, m\}$$
(11)

$$I_{j,t} = I_{j,t} + I_{j,t}, j \in \{t, m\}$$

$$I_{i,t} : h_{i,t} > 0, i \in \{f, m\}$$

$$(12)$$

$$I_{j,t}, h_{j,t} \ge 0, j \in \{f, m\}$$
 (12)
 $T_{i,t} \le 24, j \in \{f, m\}$ (13)

You should hand in a single zip-file with all assignments and the exam.

The zip-file should be named after your KU username (e.g. abs123) and have the following folder and file structure:

Assignment 1

Assignment_1.pdf - with text and all results

files for reproducing the results

Assignment 2\

Assignment_2.pdf - with text and all results

files for reproducing the results

Assignment 3\

Assignment 3.pdf - with text and all results

files for reproducing the results

Exam\

Exam.pdf - with text and all results

files for reproducing the results

Individual exam!

Try to answer all questions

48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments

- Try to answer all questions
 48 hours, but thought of as 2 × 9 work days
 Make sure that your computer+Python works!
 Similar flavor as assignments
- If stuck: Move on

- Try to answer all questions
 - 48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:

Move on

If dependency across questions:

Write clearly how you move forward
Often you can "easily" go back and change stuff if time

- Try to answer all questions
 - 48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:Move on
- If dependency across questions:

Write clearly how you move forward
Often you can "easily" go back and change stuff if time

Write clearly!I can only grade based on what you write!

Try to answer all questions

48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments

• If stuck:

Move on

• If dependency across questions:

Write clearly how you move forward Often you can "easily" go back and change stuff if time

- Write clearly!
 - I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!

- Try to answer all questions
 - 48 hours, but thought of as 2×9 work days Make sure that your computer+Python works! Similar flavor as assignments
- If stuck:

Move on

- If dependency across questions:
 - Write clearly how you move forward Often you can "easily" go back and change stuff if time
- Write clearly! I can only grade based on what you write!
- If unsure about how to understand the question: Write clearly what you do and why!
- Thanks for now Good luck!

References I

- Blundell, R., L. Pistaferri and I. Saporta-Eksten (2018): "Children, Time Allocation, and Consumption Insurance," *Journal of Political Economy*, 126(S1), S73–S115.
- SIMINSKI, P. AND R. YETSENGA (2022): "Specialization, ComparativeAdvantage, and the Sexual Divisionof Labor," *Journal of Labor Economics*, 40(4), 851-887.