Chapter 9. Type Inference

Prof. Jaeseung Choi

Dept. of Computer Science and Engineering

Sogang University

Review: Typing Rules for F-

$$\overline{\Gamma \vdash n : \text{int}} \qquad \overline{\Gamma \vdash \text{true} : \text{bool}} \qquad \overline{\Gamma \vdash \text{false} : \text{bool}} \qquad \overline{\Gamma \vdash x : \Gamma(x)}$$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 < e_2 : \text{bool}}$$

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t} \qquad \frac{\Gamma \vdash e_1 : t_1 \quad \Gamma[x \mapsto t_1] \vdash e_2 : t_2}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : t_2}$$

$$\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma[x \mapsto t_1] \vdash e_2 : t_2}{\Gamma \vdash \mathbf{let} \ x = e_1 \ \mathbf{in} \ e_2 : t_2}$$

$$\frac{\Gamma[x \mapsto t_a] \vdash e_1 : t_r \quad \Gamma[f \mapsto (t_a \to t_r)] \vdash e_2 : t_2}{\Gamma \vdash \mathbf{let} \ f \ x = e_1 \ \mathbf{in} \ e_2 : t_2} \quad \frac{\Gamma \vdash e_1 : t_a \to t_r \quad \Gamma \vdash e_2 : t_a}{\Gamma \vdash e_1 \ e_2 : t_r}$$

Review: Domains for Type

- \blacksquare The set of types (T) is defined as follow
 - We will use t to denote it $(t \in T)$
 - And τ below denotes a type variable ($\tau \in TyVar = String$)

$$\overline{\text{bool} \in T} \qquad \overline{\tau \in T}$$

$$\underline{t_1 \in T \quad t_2 \in T}$$

$$\underline{t_1 \to t_2 \in T}$$

- Type environment is a mapping from variable to type
 - We will use Γ to denote it $(\Gamma \in TyEnv = Var \rightarrow T)$

Type Inference Outline

- Step #1: Generate *type equations* (also known as *type constraints*) from the given program
 - Introduce a type variable for each sub-expression that forms the program, and construct equations with them
- Step #2: Solve the generated equations
 - If a solution is found, we can decide the type of the program
 - If such solution does not exist (i.e., some contradiction occurs), it means that the program cannot be typed in our type system

Brief Overview

- Let's first use this example to sketch the whole process
 - First, introduce type variables (τ_*) and construct type equations
 - Then, find the solution that satisfies the equations

Type Equations

$$au_r = \operatorname{int} \ \land$$
 $\operatorname{int} = \operatorname{int} \ \land$
 $au_g = au_a \to \operatorname{int} \ \land$
 $au_a = \operatorname{int} \ \land$
 $au_p = au_g \to au_r$

$$\tau_r = \text{int}$$
 $\tau_g = \text{int} \rightarrow \text{int}$
 $\tau_a = \text{int}$
 $\tau_p = (\text{int} \rightarrow \text{int}) \rightarrow \text{int}$

- Let's define function $Gen(\Gamma, e, t)$ in pattern match style
 - Generate the constraint to make e have type $t \in T$ under Γ
 - Definition of *Gen*() must be in accordance with the typing rules
 - Generated type equations are connected with conjunction
 - Have the form of $(t_1 = t_1') \wedge (t_2 = t_2') \wedge \cdots \wedge (t_n = t_n')$

$$\overline{\Gamma \vdash n : int}$$

$$\overline{\Gamma \vdash \mathbf{true} : \mathbf{bool}}$$

$$\Gamma \vdash \mathbf{false} : \mathbf{bool}$$

$$\Gamma \vdash x : \Gamma(x)$$

$$Gen(\Gamma, n, t) = (t = int)$$

$$Gen(\Gamma, true, t) = (t = bool)$$

$$Gen(\Gamma, false, t) = (t = bool)$$

$$Gen(\Gamma, x, t) = (t = \Gamma(x))$$

- Let's define function $Gen(\Gamma, e, t)$ in pattern match style
 - Generate the constraint to make e have type $t \in T$ under Γ
 - Definition of *Gen*() must be in accordance with the typing rules
 - Generated type equations are connected with conjunction
 - Have the form of $(t_1 = t_1') \wedge (t_2 = t_2') \wedge \cdots \wedge (t_n = t_n')$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}$$

$$Gen(\Gamma, e_1 + e_2, t) =$$

 $(t = int) \land Gen(\Gamma, e_1, int) \land Gen(\Gamma, e_2, int)$

$$\frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 < e_2 : \text{bool}}$$

$$Gen(\Gamma, e_1 < e_2, t) =$$

$$(t = bool) \land Gen(\Gamma, e_1, int) \land Gen(\Gamma, e_2, int)$$

- Let's define function $Gen(\Gamma, e, t)$ in pattern match style
 - Generate the constraint to make e have type $t \in T$ under Γ
 - Definition of *Gen()* must be in accordance with the typing rules
 - Generated type equations are connected with conjunction
 - Have the form of $(t_1 = t_1') \wedge (t_2 = t_2') \wedge \cdots \wedge (t_n = t_n')$

$$\frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : t \quad \Gamma \vdash e_3 : t}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : t}$$

$$\frac{\Gamma \vdash e_1 : t_1 \quad \Gamma[x \mapsto t_1] \vdash e_2 : t_2}{\Gamma \vdash \mathbf{let} \, x = e_1 \, \mathbf{in} \, e_2 : t_2}$$

$$Gen(\Gamma, if e_1 then e_2 else e_3, t) =$$
 $Gen(\Gamma, e_1, bool) \land$
 $Gen(\Gamma, e_2, t) \land$
 $Gen(\Gamma, e_3, t)$

$$Gen(\Gamma, let x = e_1 in e_2, t) =$$
 $Gen(\Gamma, e_1, \tau) \wedge Gen(\Gamma[x \mapsto \tau], e_2, t)$
(τ is a newly generated type variable)

- Let's define function $Gen(\Gamma, e, t)$ in pattern match style
 - Generate the constraint to make e have type $t \in T$ under Γ
 - Definition of *Gen*() must be in accordance with the typing rules
 - Generated type equations are connected with conjunction
 - Have the form of $(t_1=t_1') \wedge (t_2=t_2') \wedge \cdots \wedge (t_n=t_n')$

$$\frac{\Gamma[x \mapsto t_a] \vdash e_1 : t_r \quad \Gamma[f \mapsto (t_a \to t_r)] \vdash e_2 : t_2}{\Gamma \vdash \mathbf{let} f \ x = e_1 \mathbf{in} \ e_2 : t_2}$$

$$\frac{\Gamma \vdash e_1 : t_a \to t_r \quad \Gamma \vdash e_2 : t_a}{\Gamma \vdash e_1 \ e_2 : t_r}$$

Gen(
$$\Gamma$$
, let $f x = e_1$ in e_2 , t) =
Gen($\Gamma[x \mapsto \tau_a], e_1, \tau_r$) \wedge
Gen($\Gamma[f \mapsto (\tau_a \to \tau_r)], e_2, t$)

 $(\tau_a \text{ and } \tau_r \text{ are new type variables})$

$$Gen(\Gamma, e_1 e_2, t) = Gen(\Gamma, e_1, \tau_a \to t) \wedge Gen(\Gamma, e_2, \tau_a)$$

 $(\tau_a$ is a new type variable)

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

$$Gen(\phi, \mathbf{let} f g = 1 + g 2 \mathbf{in} f, \tau_p) = ?$$

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

let f
$$\frac{g}{\tau_g}$$
 = $\frac{1 + g}{\tau_r}$ $\frac{2}{\tau_a}$ in f

$$Gen(\phi, \mathbf{let}\,f\,g = 1 + g\,2\,\mathbf{in}\,f, \tau_p) = \\ Gen(\{g \mapsto \tau_g\}, 1 + g\,2, \tau_r) \wedge Gen(\{f \mapsto (\tau_g \to \tau_r)\}, f, \tau_p) = \\$$

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

let f
$$\frac{g}{\tau_g}$$
 = 1 + $\frac{g}{\tau_r}$ in f

$$\begin{split} \operatorname{Gen}(\phi, \operatorname{let} f \ g &= 1 + g \ 2 \ \operatorname{in} f, \tau_p) = \\ \operatorname{Gen}(\{g \mapsto \tau_g\}, 1 + g \ 2, \tau_r) \wedge \operatorname{Gen}(\{f \mapsto (\tau_g \to \tau_r)\}, f, \tau_p) &= \\ (\tau_r &= \operatorname{int}) \wedge \operatorname{Gen}(\{g \mapsto \tau_g\}, 1, \operatorname{int}) \wedge \operatorname{Gen}(\{g \mapsto \tau_g\}, g \ 2, \operatorname{int}) \wedge (\tau_p = \tau_g \to \tau_r) = \end{split}$$

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

$$Gen(\phi, \mathbf{let} f g = 1 + g 2 \mathbf{in} f, \tau_p) =$$

$$Gen(\{g \mapsto \tau_g\}, 1 + g 2, \tau_r) \land Gen(\{f \mapsto (\tau_g \to \tau_r)\}, f, \tau_p) =$$

$$(\tau_r = \mathbf{int}) \land Gen(\{g \mapsto \tau_g\}, 1, \mathbf{int}) \land Gen(\{g \mapsto \tau_g\}, g 2, \mathbf{int}) \land (\tau_p = \tau_g \to \tau_r) =$$

$$(\tau_r = \mathbf{int}) \land (\mathbf{int} = \mathbf{int}) \land Gen(\{g \mapsto \tau_g\}, g, \tau_a \to \mathbf{int}) \land Gen(\{g \mapsto \tau_g\}, 2, \tau_a) \land$$

$$(\tau_p = \tau_g \to \tau_r) =$$

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

let f
$$\frac{g}{\tau_g}$$
 = $\frac{1 + g}{\tau_r}$ $\frac{2}{\tau_a}$ in f

$$\begin{split} &Gen\big(\phi, \mathbf{let}\,f\;g=1+g\;2\;\mathbf{in}\,f,\tau_p\big)=\\ &Gen(\{g\mapsto\tau_g\},1+g\;2,\tau_r)\land Gen(\{f\mapsto(\tau_g\to\tau_r)\},f,\tau_p)=\\ &(\tau_r=\mathrm{int})\land Gen(\{g\mapsto\tau_g\},1,\mathrm{int})\land Gen(\{g\mapsto\tau_g\},g\;2,\mathrm{int})\land(\tau_p=\tau_g\to\tau_r)=\\ &(\tau_r=\mathrm{int})\land(\mathrm{int}=\mathrm{int})\land Gen(\{g\mapsto\tau_g\},g,\tau_a\to\mathrm{int})\land Gen(\{g\mapsto\tau_g\},2,\tau_a)\land\\ &(\tau_p=\tau_g\to\tau_r)=\\ &(\tau_r=\mathrm{int})\land(\mathrm{int}=\mathrm{int})\land(\tau_g=\tau_a\to\mathrm{int})\land(\tau_a=\mathrm{int})\land(\tau_p=\tau_g\to\tau_r) \end{split}$$

- Let's run $Gen(\Gamma, e, t)$ and see which type equations are generated from the previous example
 - Start by introducing type variable τ_p for the whole program

let f
$$\frac{g}{\tau_g}$$
 = $\frac{1 + g}{\tau_r}$ $\frac{2}{\tau_a}$ in f

$$\begin{split} &Gen\big(\phi, \mathbf{let}\,f\;g=1+g\;2\;\mathbf{in}\,f,\tau_p\big)=\\ &Gen(\{g\mapsto\tau_g\},1+g\;2,\tau_r)\land Gen(\{f\mapsto(\tau_g\to\tau_r)\},f,\tau_p)=\\ &(\tau_r=\mathrm{int})\land Gen(\{g\mapsto\tau_g\},1,\mathrm{int})\land Gen(\{g\mapsto\tau_g\},g\;2,\mathrm{int})\land(\tau_p=\tau_g\to\tau_r)=\\ &(\tau_r=\mathrm{int})\land(\mathrm{int}=\mathrm{int})\land Gen(\{g\mapsto\tau_g\},g,\tau_a\to\mathrm{int})\land Gen(\{g\mapsto\tau_g\},2,\tau_a)\land\\ &(\tau_p=\tau_g\to\tau_r)=\\ &(\tau_r=\mathrm{int})\land(\mathrm{int}=\mathrm{int})\land(\tau_g=\tau_a\to\mathrm{int})\land(\tau_a=\mathrm{int})\land(\tau_p=\tau_g\to\tau_r) \end{split}$$

Type Inference Outline

- Step #1: Generate *type equations* (also known as *type constraints*) from the given program
 - Introduce a type variable for each sub-expression that forms the program, and construct equations with them
- Step #2: Solve the generated equations
 - If a solution is found, we can decide the type of the program
 - If such solution does not exist (i.e., some contradiction occurs), it means that the program cannot be typed in our type system

This time, we will discuss with a running example first and then describe the actual algorithm

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \ \land$$
 $\operatorname{int} = \operatorname{int} \ \land$
 $au_g = au_a \to \operatorname{int} \ \land$
 $au_a = \operatorname{int} \ \land$
 $au_p = au_g \to au_r$

Substitution

(starts from empty map)

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$au_r = \operatorname{int} \ \land$ $\operatorname{int} = \operatorname{int} \ \land$ $au_g = au_a \to \operatorname{int} \ \land$ $au_a = \operatorname{int} \ \land$ $au_p = au_a \to au_r$

$$\tau_r \mapsto \text{int}$$

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \ \land$$
 $\operatorname{int} = \operatorname{int} \ \land$
 $au_g = au_a \to \operatorname{int} \ \land$
 $au_a = \operatorname{int} \ \land$
 $au_p = au_g \to au_r$

$$\tau_r\mapsto \mathrm{int}$$
 int = int is just ignored

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \wedge \\ \operatorname{int} = \operatorname{int} \wedge \\ au_g = au_a \to \operatorname{int} \wedge \\ au_a = \operatorname{int} \wedge \\ au_p = au_g \to au_r \\$$

$$\tau_r \mapsto \text{int}$$
 $\tau_g \mapsto \tau_a \to \text{int}$

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \wedge \\ \operatorname{int} = \operatorname{int} \wedge \\ au_g = au_a \to \operatorname{int} \wedge \\ au_a = \operatorname{int} \wedge \\ au_p = au_g \to au_r$$

$$\tau_r \mapsto \text{int}$$
 $\tau_g \mapsto \text{int} \to \text{int}$
 $\tau_a \mapsto \text{int}$
with int

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \ \land$$
 $\operatorname{int} = \operatorname{int} \ \land$
 $au_g = au_a \to \operatorname{int} \ \land$
 $au_a = \operatorname{int} \ \land$
 $au_p = au_g \to au_r$

$$\tau_r \mapsto \text{int}$$
 $\tau_g \mapsto \text{int} \to \text{int}$
 $\tau_g \text{ replaced}$
 $\tau_a \mapsto \text{int}$
 $\tau_g \text{ with int} \to \text{int}$
 $\tau_p \mapsto (\text{int} \to \text{int}) \to \text{int}$

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \wedge \\ \operatorname{int} = \operatorname{int} \wedge \\ au_g = au_a \to \operatorname{int} \wedge \\ au_a = \operatorname{int} \wedge \\ au_p = au_g \to au_r$$

$$\tau_r \mapsto \operatorname{int}$$
 $\tau_g \mapsto \operatorname{int} \to \operatorname{int}$
 $\tau_a \mapsto \operatorname{int}$
 $\tau_p \mapsto (\operatorname{int} \to \operatorname{int}) \to \operatorname{int}$

- We will construct a substitution (mapping from τ to T)
 - Let's move the equations from the left to right side, one by one
 - The final substitution we obtain is the solution of the equations

Type Equations

$$au_r = \operatorname{int} \ \land$$
 $\operatorname{int} = \operatorname{int} \ \land$
 $au_g = au_a \to \operatorname{int} \ \land$
 $au_a = \operatorname{int} \ \land$
 $au_p = au_g \to au_r$

Substitution

$$\tau_r \mapsto \text{int}$$
 $\tau_g \mapsto \text{int} \to \text{int}$
 $\tau_a \mapsto \text{int}$
 $\tau_p \mapsto (\text{int} \to \text{int}) \to \text{int}$

This is the inferred type of the program

Application of Substitution

- Before describing the actual algorithm, let's define a function that applies a substitution to a type $(t \in T)$
 - Recall that substitution is a mapping from type variable to type $(s \in Subst = TyVar \rightarrow T)$
 - App(s,t) returns a new type t' with the substitution applied
 - App(s, bool) = bool
 - App(s, int) = int
 - $App(s,\tau) = \begin{cases} \text{If } \tau \in Dom(s) : s[\tau] \\ \text{Otherwise} : \tau \end{cases}$
 - $App(s, t_1 \rightarrow t_2) = App(s, t_1) \rightarrow App(s, t_2)$

Application of Substitution

■ Let's consider some examples

- Ex) $App(\{\tau_1 \mapsto \text{bool}\}, \tau_2)) = ?$
- Ex) $App(\{\tau_1 \mapsto \text{int}\}, \text{bool})) = ?$
- Ex) $App(\{\tau_1 \mapsto \text{bool}, \tau_2 \mapsto \text{int}\}, \tau_2)) = ?$
- Ex) $App(\{\tau_1 \mapsto \text{int}, \tau_2 \mapsto \text{bool}\}, \text{bool} \rightarrow (\tau_1 \rightarrow \tau_3)) = ?$

Application of Substitution

■ Let's consider some examples

- Ex) $App({\tau_1 \mapsto \text{bool}}, \tau_2)) = \tau_2$
- Ex) $App(\{\tau_1 \mapsto \text{int}\}, \text{bool})) = \text{bool}$
- Ex) $App(\{\tau_1 \mapsto \text{bool}, \tau_2 \mapsto \text{int}\}, \tau_2)) = \text{int}$
- Ex) $App(\{\tau_1 \mapsto \text{int}, \tau_2 \mapsto \text{bool}\}, \text{bool} \to (\tau_1 \to \tau_3)) = \text{bool} \to (\text{int} \to \tau_3)$

- Now, let's define the algorithm to solve type equations
 - It describes the previous process of constructing substitution
- We will define two functions: Unify() and Extend()
- $Unify(t_1 = t_2, s)$ must merge a new equation $t_1 = t_2$ into the current substitution s and return a new substitution
 - It first applies the current substitution s to t_1 and t_2 , and then calls Extend() with them
 - $Unify(t_1 = t_2, s) = Extend(App(s, t_1) = App(s, t_2), s)$
- $Extend(t_1 = t_2, s)$ is the actual function that moves the equation to the substitution

- Let's define $Extend(t_1 = t_2, s)$ in pattern match style
 - Extend(int = int, s) = s
 - Extend(bool = bool, s) = s
 - $Extend((t_x \to t_y) = (t_x' \to t_y'), s) =$ $Unify(t_y = t_y', Extend(t_x = t_x', s))$ If both sides are functions
 - $Extend(\tau = t, s) = Extend(t = \tau, s) =$

```
If t is \tau : s
Else if \tau occurs in t: error
Otherwise : s'[\tau \mapsto t], where s' is s with \tau replaced into t
```

• Extend(*, s) = error

Other cases like int = bool , int = $(t_x \rightarrow t_y)$, ...

- Let's examine some tricky cases in $Extend(t_1 = t_2, s)$
 - $Extend(\tau = t, s) =$ $\begin{cases}
 \text{If } t \text{ is } \tau : s \\
 \text{Else if } \tau \text{ occurs in } t : \text{ error} \\
 \text{Otherwise } : s'[\tau \mapsto t], \text{ where } s' \text{ is } s \text{ with } \tau \text{ replaced into } t
 \end{cases}$
 - Ex) $Extend(\tau_1 = \tau_1, \{\tau_f \mapsto (\tau_1 \to int)\}) = \{\tau_f \mapsto (\tau_1 \to int)\}$ (nothing to update)
 - Ex) $Extend(\tau_1 = (int \rightarrow \tau_1), \{\tau_f \mapsto (\tau_1 \rightarrow int)\}) = type\ error$ (Such form is not supported in current type system)
 - Ex) $Extend(\tau_1 = bool, \{\tau_f \mapsto (\tau_1 \to int)\}) = \{\tau_f \mapsto (bool \to int), \tau_1 \mapsto bool\}$

- Let's examine some tricky cases in $Extend(t_1 = t_2, s)$
 - Extend $((t_x \to t_y) = (t'_x \to t'_y), s) =$ Unify $(t_y = t'_y, Extend(t_x = t'_x, s))$
 - Note that it's not $Extend(t_y = t'_y, Extend(t_x = t'_x, s))$
 - Recall the definition of Unify() in the previous page
 - It will apply the substitution obtained from $Extend(t_x = t'_x, s)$
 - Ex) *Extend*($(\tau_1 \to \tau_2) = (\text{int} \to \tau_1), \{\}) = ?$

- Let's examine some tricky cases in $Extend(t_1 = t_2, s)$
 - Extend $((t_x \to t_y) = (t'_x \to t'_y), s) =$ Unify $(t_y = t'_y, Extend(t_x = t'_x, s))$
 - Note that it's not $Extend(t_y = t'_y, Extend(t_x = t'_x, s))$
 - Recall the definition of Unify() in the previous page
 - It will apply the substitution obtained from $Extend(t_x = t'_x, s)$
 - Ex) $Extend((\tau_1 \to \tau_2) = (int \to \tau_1), \{\}) = Unify(\tau_2 = \tau_1, Extend(\tau_1 = int, \{\})) = Unify(\tau_2 = \tau_1, \{\tau_1 \mapsto int\}) = Extend(\tau_2 = int, \{\tau_1 \mapsto int\}) = \{\tau_1 \mapsto int, \tau_2 \mapsto int\}$

Overall Algorithm

- Now we can put all the things together and define the overall type inference algorithm as follow
- Review the previous running example (Exercise #1) and confirm how this algorithm is applied
 - In other words, run TypeInfer(let f g = 1 + g 2 in f)

```
TypeInfer(E) = \\ let (t_1 = t_1') \land (t_2 = t_2') \dots \land (t_n = t_n') = Gen(\phi, E, \tau_p) \\ let s_1 = Unify(t_1 = t_1', \phi) \\ let s_2 = Unify(t_2 = t_2', s_1) \\ \dots \\ let s_n = Unify(t_n = t_n', s_{n-1}) \\ s_n[\tau_p] // This is the final type of program <math>E
```

■ TypeInfer(let f g = g 1 in f)=?

 $\blacksquare TypeInfer(let f g = g 1 in f) = ?$

$$Gen(\phi, \mathbf{let} f g = g \ 1 \ \mathbf{in} f, \tau_p) = \\ Gen(\{g \mapsto \tau_g\}, g \ 1, \tau_r) \land Gen(\{f \mapsto (\tau_g \to \tau_r)\}, f, \tau_p) = \\ Gen(\{g \mapsto \tau_g\}, g, \tau_a \to \tau_r) \land Gen(\{g \mapsto \tau_g\}, 1, \tau_a) \land (\tau_p = \tau_g \to \tau_r) = \\ (\tau_g = \tau_a \to \tau_r) \land (\tau_a = \mathbf{int}) \land (\tau_p = \tau_g \to \tau_r)$$

 $\blacksquare TypeInfer(let f g = g 1 in f) = ?$

Type Equations

$$\tau_g = (\tau_a \to \tau_r) \land
\tau_a = \text{int } \land
\tau_p = (\tau_g \to \tau_r)$$

Substitution

$$\tau_g = \text{int} \to \tau_r$$
 $\tau_a = \text{int}$
 $\tau_p = (\text{int} \to \tau_r) \to \tau_r$

The solution may contain unresolved type variables, as shown in this case

More Exercises

- Consider the extended version of F- language that supports recursive function and anonymous function
 - How should we define *Gen*() for the following cases?

$$Gen(\Gamma, \text{let rec } f \ x = e_1 \text{ in } e_2, t) = ?$$

$$Gen(\Gamma, \text{fun } x \rightarrow e, t) = ?$$

- Run type inference for various examples
 - TypeInfer(let f x = x + 1 in f true)
 - TypeInfer(fun g -> g g < 1)
 - • •

 $\blacksquare TypeInfer(\text{let f } x = x + 1 \text{ in f true}) = ?$

Type Equations

$$\tau_r = \text{int } \wedge$$
 $\tau_x = \text{int } \wedge$
 $\text{int} = \text{int } \wedge$
 $(\tau_x \to \tau_r) = (\tau_a \to \tau_p) \wedge$
 $\tau_a = \text{bool}$

 $\blacksquare TypeInfer(let f x = x + 1 in f true) = ?$

let f
$$\frac{x}{\tau_x} = \frac{x+1}{\tau_r}$$
 in f $\frac{\text{true}}{\tau_a}$

Type Equations

$$au_r = \operatorname{int} \wedge \\ au_x = \operatorname{int} \wedge \\ \operatorname{int} = \operatorname{int} \wedge \\ (au_x \to au_r) = (au_a \to au_p) \wedge \\ au_a = \operatorname{bool}$$

Substitution

$$au_r = \mathrm{int}$$
 $au_x = \mathrm{int}$
 $au_a = \mathrm{int}$
 $au_p = \mathrm{int}$
Encounter $\mathrm{int} = \mathrm{bool}$

Type error!

 $\blacksquare TypeInfer(fun g \rightarrow g g < 1) = ?$

Type Equations

$$au_p = au_g
ightarrow au_r
ightharpoonup au_r = au_0
ightharpoonup au_n
ightharpo$$

 $\blacksquare TypeInfer(fun g \rightarrow g g < 1) = ?$

fun
$$g \rightarrow g g < 1$$

$$\tau_g \qquad \qquad \tau_r$$

Type Equations

$$au_p = au_g
ightarrow au_r
ightharpoonup au_r = au_0
ightharpoonup au_n
ightharpo$$

$$\tau_p = (\tau_a \to \text{int}) \to \text{bool}$$
 $\tau_r = \text{bool}$
 $\tau_g = (\tau_a \to \text{int})$

