

Background

- NTP fuels under development
 - W-60vol%UO₂ CERMET
 - W coated UO₂ spherical kernels
 - W coolant channel, perimeter, face clad
 - Inherent stability of W clad in hot H₂
 minimize fuel erosion and fission product release during NTP operation
- HIP Manufacture Advantages
 - Near net-shape
 - Full scale
 - High density
 - Existing industrial base

331 and 7 channel fuel samples

HIP Furnace

Problem & Objective

- Fuel Element Constraints
 - Fully encapsulated fuel kernels
 - Long length
 - Numerous coolant channels
 - Integral claddings
 - Limited to refractory alloys (Nb, Ta, Mo)
 - Powder metallurgical constraints
- Develop a sub-scale and full-scale
 HIP cans that can be used to
 fabricate NTP fuel elements for
 process development and fuel
 element evaluation.

61 channel cermet fuel element concept (ANL-200 reference)

Consolidation

- Powder Characteristics
 - Appropriate coarse, medium and fine grain distribution
 - Green packing density drives shrinkage/dimensional tolerance
- Sinter Temperature
 - 80% of powder melting temperature
- Pressure
 - >15 ksi for consolidation onset
- Atmosphere
 - Compatible with can: argon
- Time
 - T /P ramp rates and hold times influence microstructure

Consolidation process

Ternary phase diagram

HIP Can Design

Design features

- Complex hexagonal can/mandrel geometry
- 19-61 channels
- 50-100 cm length
- Perimeter clad
- Coolant channel & face clad

Design constraints

- 10-20% shrinkage
- Channels must not bow or twis
- Sufficient flow area for viable powder fill

HIP Can Manufacture

CNC milling

- Specialized techniques for Nb
- Time consuming
- Expensive (time and materials)

Water jet machining

- Iterative development process
- Non-specialized techniques
- Significant time reduction
- Sufficient dimensional tolerance
- Minimal material waste
- Minor milling required

CNC sheet metal break

- Axial tolerance difficult to achieve
- Tolerance variation proportional to length

Water-Jet

Material Optimization

Water-jet cut niobium HIP can components (43 min prod. Time)

Can component fit-checks

Integral Clad

Coolant channel clad

- Vacuum plasma spray (VPS)
- W onto Mo mandrel rods
- Thickness uniformity and adhesion
- Completed through a Phase I SBIR
 by Plasma Processing Inc. (PPI)

W coated Mo rods (EL-form)

Perimeter Clad

- Electro (EL)-form
- W onto a graphite mandrel
- High density and hermiticity
- Developed under same PPI effort

External W clads (VPS)

Can Assembly

- Can wall welded
- Mandrel rods stacked between spacer grids
- Enclose mandrel in wall
- Can top welded to can
- Vacuum leak check

61 Channel Full Size HIP Can

7 Channel Subscale HIP Can

Weld in a argon glove box

Fill & Close-Out

- Can surface cleaned
- Can weighed and measured
- Can vibratory filled in a glove box
- Filled can weighed
- Can evacuated
- Fill tube crimped
- Seam weld and fill tube excess cut

61 channel near full scale HIP can: filled and closed out

HIP Operations

- HIP can placed in can jig
- Jig placed in HIP furnace
- HIP schedule initiated
- Remove jig
- Weigh and measure can

HIP Jig

Jig in furnace

Subscale Can Removal

Results

2013 HIP Trials

- Circular 7 channel W-ZrO₂
- Hex 61 channel, near full length W-ZrO₂: Fail
- Circular slug W-dUO, x 2
- Hex 7 channel W-dUO₂
- Hex 61 channel, full length W-ZrO₂: Fail

Failure Analysis

- Wall cracking observed at can base
- Significant reduction in ductility of HIP can coupons when compared to control samples
- SEM/EDS revealed significant C embrittlement
- Nb can interaction with graphite jig or furnace

W-dUO2 filled HIP can

Failed HIP can

Conclusions

- HIP is viable for NTP fuel cermet fabrication
- Fundamental mechanisms are well understood
- Difficulty to meet NTP engine requirements proportional to length
- Design optimization highly iterative
- Significant opportunity for process and design improvement

Recommendations for Future Work

- Develop mitigation strategy to prevent Nb-C interaction
 - Mandrel coating?
 - Sacrificial getter foil?
- 19 channel Rover/NERVA geometry
 - Develop HIP can design
 - Fabricate prototype
 - Fabricate fuel element
- Optimize can designs
 - Finalize can geometry based on nominal green powder packing density
 - Establish fuel dimensional tolerance and NDE requirements
- Investigate methods for W can fabrication
 - Water jet of W sheet
 - VPS?
 - EL-forming?
 - Additive Manufacture?
 - Dip & HIP?

Acknowledgements

- The authors would like to thank Daniel Cavender, Brad Anders, Dave Vermillion and Jim Martin of NASA MSFC; Scott Odell of Plasma Processes Inc.
- Funding was provided by the "Advanced Exploration Systems – Nuclear Cryogenic Propulsion Stage" project.
- The opinions expressed in this presentation are those of the author and do not necessary reflect the views of NASA or any NASA Project.