- 1. koncepcja architektury Brooks?a (wyjaśnić pojęcie poziomu kompetencji);
- 2. budowa modułu w architekturze Subsumption;
- 3. pojęcie (def.) nawigacji reaktywnej + problemy związane z określaniem funkcji odwzorowującej;
- 4. sterownik oparty na logice rozmytej (architektura sterownika);
- 5. pojęcie (def.) ?podstawowego? problemu planowania ruchu;
- 6. pojęcie (def.) przestrzeni konfiguracyjnej;
- 7. pojęcie (def.) siatki punktów decyzyjnych;
- 8. metody planowania trasy (w tym: ideologia klasyfikacji);
- 9. metoda Grafu Widzialności (koncepcja);
- 10. metoda zmodyfikowanego Grafu Widzialności (koncepcja).

1. koncepcja architektury Brooks'a (wyjaśnić pojęcie poziomu kompetencji);

Architektura równoległa, silnie związana z robotyką behawioralna. Jej głównym założeniem jest dekompozycja na sterowania lokomocją na moduły o różnym stopniu skomplikowania. Każdy z modułów niezależnie generuje sygnał sterujący. Ponadto każdy z modułów posiada poziom kompetencji. Pozwala to nadpisywać sygnał sterujące modułów podrzędnych. Takie rozwiązanie ma na celu umożliwić poruszanie się robota nawet gdy moduły o skomplikowanych algorytmach jak planowanie trasy przestaną odpowiadać bądź nie nadążają wykonywać obliczeń w czasie rzeczywistym.

2. budowa modułu w architekturze Subsumption;

Architektura Subsumption uwzględnia warstwy - poziomy kompetencji - modułów. Zasada działa jest bardzo podobna jak w architekturze Brooks'a.

Każdy z modułów pracuje niezależnie generując sygnał sterujący. Ich wyniki mogą być nawet sprzeczne. Moduł przetwarzający wszystkie wyjścia decyduje, które jest najbardziej trafne i to te zostaje wykorzystane do sterowania robotem. Warstwy na wyższym poziomie kompetencji mogą blokować(subsumować) te na niższym.

5. pojęcie (def.) ?podstawowego? problemu planowania ruchu;

Zakłada, że:

- robot jest jedynym poruszającym się obiektem w przestrzeni roboczej oraz ignoruje się jego właściwości dynamiczne
- ogranicza się ruch robota do bezkontaktowego brak interakcji mechanicznej robot
 przeszkoda
- robot jest sztywnym obiektem poruszającym się swobodnie przeszkody są jedynymi ograniczeniami ruchu robota
- geometria robota oraz przeszkód są dokładnie znane
- lokalizacją przeszkód jest dokładnie znana

6. pojęcie (def.) przestrzeni konfiguracyjnej;

Polega na reprezentowaniu robota jako punktu w przestrzeni oraz odpowiednim odwzorowaniu przeszkód w tej przestrzeni. Odwzorowanie przeszkód polega na powiększeniu ich kształtu (tworząc obszar zabroniony) w taki sposób by robot traktowany jako punkt nie był w stanie nawiązać fizycznej interakcji z przeszkodą.

7. pojęcie (def.) siatki punktów decyzyjnych;

Siatką decyzyjną nazywamy układ przestrzenny punktów decyzyjnych które określają sposób poruszania się w przestrzeni roboczej. Przez punkty decyzyjne rozumie się pozycję robota w przestrzeni roboczej, dla których istnieje prosty sposób określenia działania prowadzącego do osiągnięcia stanu sąsiedniego

9. metoda Grafu Widzialności (koncepcja);

Opiera się na umieszczeniu w przestrzeni konfiguracyjnej wierzchołków grafu przy krawędziach przeszkód. Krawędzie grafu przeprowadzone są przez te wierzchołki by nie przeciąć żadnej przeszkody. Wagą krawędzi jest odległość.

10. metoda zmodyfikowanego Grafu Widzialności (koncepcja).

Ze względu na całkujące się błędy pozycji wynikające np z poślizgów kół czy nieuwzględnionej nierówności terenu wykorzystuje się zmodyfikowaną metodę grafu widzialności. Graf tworzony jest w ten sam sposób jednak do określania najkrótszej ścieżki w grafie na krawędziach które są widoczne tworzone są sztuczne punkty przez które należy przejść by dotrzeć do faktycznego wierzchołka. W ten sposób robot nie kieruje się bezpośrednio na krawędź obiektu a na jego ścianę po której dąży aż do natrafienia na krawędź. W ten sposób aktualizowana jest jego pozycja - sposób ten nazywamy nawigacja auto-korekcyjną.