

Mobile Information Systems

Lecture 03: Location & Networks

© 2015-20 Dr. Florian Echtler Bauhaus-Universität Weimar <florian.echtler@uni-weimar.de>

Networks: Overview

- Basics (continued)
 - Multiplexing, multiple access methods
- Examples
 - Bluetooth (WPAN)
 - 802.11x WiFi (WLAN)
 - GSM/UMTS/LTE (WWAN)

Networks: multiplexing

- RF spectrum is a precious shared resource (see US frequency allocation chart)
- Allocated band has to be shared among many different transmitters without interference
 - → requires multiple access method

Networks: multiple access (1)

- Time-division multiple access (TDMA)
 - Static: "timeslots"
 - One single transmitter active per slot
 - Requires clock synchronization in advance
 - Dynamic: carrier-sense multiple access/collision avoidance (CSMA/CA)
 - Listen if channel idle, then transmit (carrier sense)
 - (Optional) Request to send/clear to send (RTS/CTS)
 - \rightarrow "hidden node problem" (X \leftrightarrow Ap \leftrightarrow Y)
 - Transmit and wait for acknowledgement (collision detection during transmission almost impossible)

Networks: "hidden node problem"

- Nodes X and Y can communicate with AP
- X/Y cannot receive each others' transmissions
- If both transmit simultaneously:
 - → Collision/Interference
 - → AP receives garbage
- Solution: Nodes "request to send", AP gives "clear to send" (drawback?)

Networks: multiple access (2)

- Frequency-division multiple access (FDMA)
 - Simplest case: one frequency slot per transmission → receiver must be able to cover multiple slots
 - Complex variant: OFDMA (orthogonal ...)
 - Simultaneous transmission of multiple low-bandwidth signals on "orthogonal" sub-channels
 - WDMA (wavelength ...) → different light colours in optical transmission

Networks: multiple access (3)

- Code-division multiple access (CDMA)
 - Spread-spectrum method: uses wider spectrum than required for actual signal bandwidth
 - Multiple different modulation codes → allow separation of signals on same carrier
 - Frequency-hopping spread spectrum (FHSS)
 - → code is pseudo-random sub-channel sequence
 - Direct-sequence spread spectrum (DSSS)
 - → code is high-rate pseudo-random bit sequence

Networks: multiple access (4)

Assumption: transmitters T1 – T9, all using same signal bandwidth

Networks: summary

- Wireless networks need multiple access method
 - Timeslot-based: TDMA
 - Frequency-based: FDMA
 - Encoding-based: CDMA
- Mostly on lowest two levels of ISO/OSI model

Standards: ISO/OSI model

Standards: Bluetooth (1)

- Wireless personal area network (WPAN)
- Complex protocol stack across all layers
- Current specification (v5.2): 3256 pages (!)
- Air interface:
 - 2.4 GHz ISM band, up to 3 Mbit/s data rate
 - 80 channels á 1 MHz (or 40 * 2 MHz)
 - Adaptive frequency hopping (AFH), also known as frequency-hopping spread spectrum (FHSS)

Standards: Bluetooth (2)

- Two *incompatible* sub-specifications:
 - "Classic" Bluetooth
 - Used by headsets, mice, keyboards, ...
 - Bluetooth Low Energy (BTLE/BLE), since v4.0
 - Used by sensors, wearables, ...
 - Mesh support since v5.0
- Devices can support one or both standards
 - Most mobiles & laptops since ~ 2011 support both

Standards: **WiFi** (1)

- Wireless local area network
- Based on 802.11x standards family
- Also in 2.4 and 5 GHz ISM band
 - Interference with Bluetooth possible
 - Minimized with BT/WiFi integrated transceivers
 - WiFi can be used as high-speed data link layer for Bluetooth connections
- Data rates of up to ~ 10 GBit (in theory), in real-world scenarios up to ~ 1 GBit

Standards: **WiFi** (2)

- Only 2 lowest ISO/OSI layers
 - Physical layer: modulation & channel access
 - FHSS, DSSS or OFDM, depending on sub-standard, optionally + MIMO
 - Data link layer: management, e.g.
 - Announcement of SSID (Service Set ID = network name)
 - Roaming between access points
 - Encryption/authentication
- Many well-separated sub-standards
 - → easier to implement than Bluetooth

Standards: **WiFi** (3)

- Network topology: usually star (or tree)
 - central access point(s), uplink via wired network
 - mobile devices connect to APs
 - roaming possible between APs in same network
- Alternative: WiFi Direct (or WiFi P2P)
 - local point-to-point network without AP
 - supports multiple devices (> 2)
 - often buggy, not well supported

Standards: WiFi vs. Bluetooth

- Source (FU): http://www.ecnmag.com/article/2012/03/wi-fi-and-bluetooth-coexistence
- Same frequency band (2.4 GHz)
- Different modulation scheme (DSSS vs. FHSS)

Figure 3. FHSS and DSSS transmissions will collide when the FHSS transmitted hops to a portion of the operating band occupied by the DSSS transmitter.

Figure 4. With AFH, FHSS devices avoid DSSS channels to allow for improved performance for both Bluetooth and Wi-Fi devices.

Standards: WWAN - 1,2,3,4,5G

- Wireless wide area networks history:
 - 1G "C-Netz" (1985 2000): analog, FDMA, 9.6 kBit
 - 2G GSM (1991 now): digital, TDMA, ~ 200 kBit
 - 2015: phase-out beginning in some countries
 - 3G UMTS (1998 now): digital, CDMA, ~ 20 MBit
 - Hybrid circuit-switched and packet-switched network
 - 4G LTE (2009 now): digital, OFDMA, ~ 300 MBit
 - Purely IP-based, backend network less complex
 - 5G (2020 ?): digital, ~ 2 GBit, initial deployments
 - Support for IoT, campus networks, microcells, Car2Car, ...

Standards: UMTS (3G)

- Current de-facto WWAN standard
- Slowly being replaced by LTE
- Very complex hybrid between:
 - circuit-switched (~ old telephone network)
 - packet-switched (~ IP-based network)
- Most functionality/complexity hidden from user
 - Encapsulated in "baseband" module
 - Separate firmware/OS, processor, memory
 - Security/privacy issues? Nobody knows...

Standards: UMTS network schema

Standards: UMTS protocol stack

Source (FU): http://www.e-technik.org/aufsaetze vortraege/aufsaetze/trick itg mobilfunk 6 03.pdf

RF = Radio Frequency
MAC = Medium Access Control
RLC = Radio Link Control
PDCP = Packet Data Convergence Protocol
GTP-U = GPRS Tunneling Protocol - User plane

Phy = Physical layer ATM = Asychronous

ATM = Asychronous Transfer Mode AAL = ATM Adaptation Layer

UDP = User Datagram Protocol
TCP = Transmission Control Protocol

HTTP = Hypertext Transfer Protocol AP = Application RTP = Realtime Transfer Protocol AMR = Adaptive Multi-Rate SDP = Session Description Protocol

Standards: LTE (4G)

- Current de-facto WWAN standard
- Some aspects less complex than UMTS
 - Only packet-switched IP data
 - Also used for voice communication (Voice over IP)
- Most functionality still hidden from user

Standards: LTE network schema

Standards: 5G

- Future WWAN standard
- Similar to 4G in many aspects (just faster):
 - Only packet-switched IP data
 - Also used for voice communication (Voice over IP)
- Also includes sub-standards for further scenarios:
 - Campus networks (large factories), alternative to WiFi
 - Low-bandwidth, long-range mode for IoT devices
 - Microcells for home or office deployment
 - Car-to-Car communication for future mobility

Standards: Summary

- Big "families" of wireless standards
 - WPAN: Bluetooth (all 7 ISO/OSI layers → complex)
 - WLAN: 802.11x (only lowest 2 layers)
 - WWAN: UMTS, LTE, 5G (also highly complex)
 - (LoRaWAN/LPWAN: see lecture 8)
- Sometimes overlap/interference between different sub-standards
 - Bluetooth and WiFi coexistence
 - 5G nudging into WiFi space

Location: Overview

- Objects & usage scenarios
- Classes of location information
- Location determination
 - Satellite-based
 - Network-based

Where am I?

Image source (ODbL): http://www.openstreetmap.org/export#map=19/50.97309/11.32747

Location: Objects & Usage

- I want to know the location of ...
 - myself (i.e. my own mobile device)
 - a static object (e.g. a building, a network server)
 - a moving object (e.g. vehicle, other mobile device)
 - some combination of the above
- I need it for ...
 - location-based services (e.g. nearest restaurants)
 - data delivery (network route to device)
 - navigation (physical route to target)

Location: Classes (1)

- Geographic (latitude, longitude) given in:
 - Degrees, hours, minutes, seconds (outdated)
 - Fraction of degrees (N 50.972921, W 11.326795)
- Topological (street address)
 - Many levels of detail possible
 - Europe, Germany, Weimar, Karl-Haußknecht-Str. 7
- Cell-based (ID of network cell)
 - MAC address & SSID of WLAN access point
 - ID number of current cell tower

Location: Classes (2)

- Mapping between classes:
 - Topological → geographic: "geocoding"
 - E.g. map view: finding coordinates for street address
 - Usually graph database augmented with coordinates
 - Geographic → topological: "reverse geocoding"
 - "What address am I currently at?"
 - Requires "spatial index" on database → see GIS lecture
 - Cell ID → geographic/topological
 - Needs separate DB containing coordinates/addresses for access points & cell towers

Location: Methods

- Several types of "location providers" available in modern mobile devices
- Tradeoff: Accuracy ↔ battery consumption

Method	Рго	Contra
Satellites	+ Very accurate (~ 1 m)	Works only outsideHigh power draw
WLAN cells	+ Lower power draw	- less accurate (~ 10 m)
Cell towers	+ No (additional) power draw	- quite inaccurate (~ 100 – 1000 m)

Location: Terminology

Location: GPS (satellite-based)

- 4 major satellite-based location systems:
 - GPS (USA), GLONASS (RU), Galileo (EU), BeiDou (CN)
 - Only Galileo under civilian control, others military
- Following slides refer to GPS
 - Based on signal time-of-flight (TOF)
 - Very similar for GLONASS/Galileo/BeiDou
- Most modern mobile devices support at least GPS & GLONASS
- Galileo & BeiDou to be completed in 2020 (?)

Location: GPS, simplified

Measure signal runtime

Calculate distance to satellite

Intersect resulting circles (spheres)

Location: GPS – facts

Image source (PD): https://en.wikipedia.org/wiki/Global Positioning System#/media/File:ConstellationGPS.gif

- 32 satellites in operation, altitude ~ 20 000 km
- Equipped with high-precision atomic clocks (relativity!)

Location: GPS – facts (2)

- Signal characteristics:
 - Coarse/Acquisition (C/A) and Precision (P) code
 - Frequency bands 1575.42 MHz & 1227.60 MHz, effective bitrate 50 bits/second
 - Very low signal-to-noise-ratio (SNR) due to distance
- Contents of signal data:
 - Satellite clock & orbital data ("ephemeris"), required for position calculation
 - Constellation data ("almanac"), used to quickly "lock" onto satellite signal + improve precision

Location: GPS – extensions

- "Assisted" GPS (aGPS)
 - Almanac can be "side-loaded" via data connection
 - Improves time to first fix (TTFF) & precision
- Differential GPS
 - Add one or more stationary receivers
 - Use known position offset to improve accuracy of moving receivers

Location: GPS – coordinate systems

Image source (FU): https://en.wikipedia.org/wiki/...China_coordinate_system_misalignment.png

- Widely used: 1984 World Geodetic System (WGS-84)
 - Mapping from latitude/longitude to actual location on Earth
- Exception: China (uses GCJ-02, intentionally shifted vs. WGS)
 - Adds multiple sine waves as offset, for "security reasons"
 - Satellite images use WGS, street data uses GCJ → mismatch
 - Warning: Hongkong/Macau use WGS-84!

Location: GPS pro & contra

- Advantages
 - High accuracy, available all over the world
 - (Mostly) independent of external factors (weather)
- Disadvantages
 - Direct "line of sight" to the satellites required
 - Cold start can be very slow (several minutes)
 - Running the system is expensive → ultimately still under military control, speed/altitude restrictions
 - Civilian access can be degraded/turned off at any time ("Selective Availability" error until 2000)

Location: GPS - summary

- Based on TDOA measurements to satellites
- Very precise, but high power draw & line-of-sight required
- Under military control; Precision code not available to civilians

Location: cell-based

- Basic idea:
 - Determine unique IDs of available network cells
 - WLAN: MAC address & SSID (network name)
 - WWAN: cell tower ID number
 - Use database to lookup coordinates of cells
- Depends on:
 - Database availability & quality
 - Cell size & shape
 - Signal quality

Location: cell-based – structure

- Cell shape: circular (theory), hexagonal (planning), irregular (reality)
- Neighbouring cells use different frequencies to minimize interference
- Some cell overlap inevitable
- Cell sizes:
 - WiFi: 10 m 100 m
 - 3G/4G: 100 m 5 km
 - 2G (GSM): 100 m 35 km

Location: cell-based – parameters

- Commonly used:
 - Currently used/logged-in cell
 - Cell sector (mostly for GSM/UMTS)
 - Other available cells
- Rarely used (why?):
 - Signal strength
 - Angle of arrival
 - Time difference, round-trip time

Location: cell-based — example

Image source (ODbL): http://www.openstreetmap.org/export#map=19/50.97309/ Cell 1

Location: cell-based – example

Image source (ODbL): http://www.openstreetmap.org/export#map=19/50.97309/11.32747

Location: cell-based – example

Image source (ODbL): http://www.openstreetmap.org/export#map=19/50.97309/11.32747

Location: cell-based – issues

- ~ 99% of queries use Google location database
 - access is logged → used to improve DB, but raises privacy issues
 - Alternatives (less coverage & accuracy):
 - OpenCellID
 - Mozilla Location DB
- Not available when offline, cell DB too large
- WLAN cells can move/change quickly
 - → frequent updates required

Location: cell-based - Summary

- Less precise than GPS, but less power draw
- Quality depends mostly on ...
 - Cell size & shape
 - Database coverage & access
- Privacy issues?

Location & networks?

- Network location: used to route calls or data
- Not the same as physical location, but correlated (very similar to cell-based location)
- Examples:
 - ID of target cell (i.e. cell tower)
 - IP address of WLAN router/access point
- Problem: network location needs to be found for other devices in order to contact them
- Broadcast/multicast far too inefficient

Network: mobile IP communication

- Problem: IP relies on (mostly) static routes
- IP address has two purposes:
 - Host identification
 - Routing/location information
- Mobile devices can move to different subnets
 - → ID stays same, location changes
- Not a big problem for WLANs (... local area ...)
- ... but for WWANs (impossible to put all devices into same subnet)

Network: mobile IP communication

Network: mobile IP communication

- Solution: assign static care-of address
 - Separates identity from routing information
- Care-of address is ...
 - A valid IP address with static routing
 - Assigned to a stationary router
 - Used to communicate with mobile device
- Router acts as proxy
 - forwards data within the core network

Location & Networks: Summary

- Network location != physical location
- IP network address for identity and routing
 - → Needs internal separation, *care-of address*

The End

