

Cortex M0+

- Both have equal compute power
- Both run simultaneously
- So far, we've only used 1

"Synchronous"

Each process has to finish before another can begin

Compute time distributed on a single-core processor

Each core is
synchronous in itself,
but performance is
effectively
asynchronous.

Compute time distributed on a two-core processor

FIFO Buffer

"Buffer"

Location that temporarily stores data in transit from one place to another

This buffer can only hold **integers**

Becomes important later

All in the timing

Cores	Approach	Speed Up	Efficiency
1	Synchronous		

Time on 1 core

Time on n cores

 $Efficiency_c = \frac{T_1}{T_c \times c} = \frac{Speedup_c}{c}$

The core is otherwise occupied until we...


```
irq
              "interrupt request"
     multicore fifo clear irq()
0
     irq set exclusive handler(...)
     irq_set_enabled(...)
2
           ... when done ...
     multicore_fifo_clear_irq()
3
```


All in the timing

Cores	Approach	Speed Up	Efficiency
1	Synchronous		
2	FIFO by value		

All in the timing

Cores	Approach	Speed Up	Efficiency
1	Synchronous		
2	FIFO by value		
2	FIFO by function		