$12n_{0224} \ (K12n_{0224})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9.65958 \times 10^{65}u^{40} + 1.97140 \times 10^{66}u^{39} + \dots + 1.18987 \times 10^{68}d - 9.62857 \times 10^{67}, \\ &1.07299 \times 10^{66}u^{40} + 1.97354 \times 10^{66}u^{39} + \dots + 1.18987 \times 10^{68}c + 6.68255 \times 10^{67}, \\ &- 1.37658 \times 10^{65}u^{40} - 4.47424 \times 10^{65}u^{39} + \dots + 1.06596 \times 10^{68}b - 6.96533 \times 10^{67}, \\ &5.90486 \times 10^{65}u^{40} + 1.83524 \times 10^{66}u^{39} + \dots + 4.26385 \times 10^{68}a - 3.18493 \times 10^{67}, \\ &u^{41} + 2u^{40} + \dots - 512u^2 - 512 \rangle \\ &I_2^u &= \langle u^3a^2 + 5u^3a + 2a^2u - 4u^2a - 4u^3 + 11au + 4u^2 + d - 8a - 10u + 8, \\ &u^3a^2 + 3u^3a + a^2u - 2u^2a - 2u^3 + 4au + 2u^2 + c - 4a - 4u + 4, -a^2u^2 + b + 2a - 2, \\ &4u^3a^2 - 2a^2u^2 - 6u^3a + a^3 + 10a^2u + 3u^2a + 2u^3 - 2a^2 - 15au - u^2 + 3a + 5u - 1, \ u^4 - u^3 + 3u^2 - 2u + 10u +$$

$$\begin{split} I_1^v &= \langle c,\ d-v-1,\ b,\ a-1,\ v^2+v+1 \rangle \\ I_2^v &= \langle a,\ d,\ c-v,\ b-1,\ v^2-v+1 \rangle \\ I_3^v &= \langle a,\ d+1,\ c+a,\ b-1,\ v-1 \rangle \\ I_4^v &= \langle a,\ a^2d-c^2v-2ca+cv+a-v,\ dv+1,\ c^2v^2+2cav-v^2c+a^2-av+v^2,\ b-1 \rangle \end{split}$$

- * 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 58 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.

 $\begin{array}{l} I_1^u = \langle 9.66 \times 10^{65} u^{40} + 1.97 \times 10^{66} u^{39} + \dots + 1.19 \times 10^{68} d - 9.63 \times 10^{67}, \ 1.07 \times 10^{66} u^{40} + 1.97 \times 10^{66} u^{39} + \dots + 1.19 \times 10^{68} c + 6.68 \times 10^{67}, \ -1.38 \times 10^{65} u^{40} - 4.47 \times 10^{65} u^{39} + \dots + 1.07 \times 10^{68} b - 6.97 \times 10^{67}, \ 5.90 \times 10^{65} u^{40} + 1.84 \times 10^{66} u^{39} + \dots + 4.26 \times 10^{68} a - 3.18 \times 10^{67}, \ u^{41} + 2u^{40} + \dots - 512u^2 - 512 \rangle \end{array}$

$$\begin{array}{lll} a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \\ a_7 = \begin{pmatrix} 0 \\ u \end{pmatrix} \\ a_4 = \begin{pmatrix} 1 \\ -u^2 \end{pmatrix} \\ a_5 = \begin{pmatrix} -0.00138487u^{40} - 0.00430419u^{39} + \cdots - 1.07263u + 0.0746961 \\ 0.00129140u^{40} + 0.00419737u^{39} + \cdots + 1.25599u + 0.653432 \end{pmatrix} \\ a_8 = \begin{pmatrix} u \\ u \end{pmatrix} \\ a_2 = \begin{pmatrix} -0.00138487u^{40} - 0.00430419u^{39} + \cdots - 1.07263u + 0.0746961 \\ -0.000383620u^{40} - 0.00160154u^{39} + \cdots - 0.546942u + 0.132211 \end{pmatrix} \\ a_1 = \begin{pmatrix} -0.00176849u^{40} - 0.00590573u^{39} + \cdots - 1.61957u + 0.206907 \\ -0.000383620u^{40} - 0.00160154u^{39} + \cdots - 0.546942u + 0.132211 \end{pmatrix} \\ a_{10} = \begin{pmatrix} -0.00901765u^{40} - 0.0165861u^{39} + \cdots + 12.4282u - 0.561619 \\ -0.00811817u^{40} - 0.0165681u^{39} + \cdots + 8.57387u + 0.809210 \end{pmatrix} \\ a_9 = \begin{pmatrix} -0.00756180u^{40} - 0.0140634u^{39} + \cdots + 11.9677u + 0.350233 \\ -0.00666231u^{40} - 0.0140454u^{39} + \cdots + 8.11334u + 1.72106 \end{pmatrix} \\ a_6 = \begin{pmatrix} 0.000899485u^{40} + 0.0000180094u^{39} + \cdots + 8.11334u + 1.72106 \\ -0.00666231u^{40} - 0.0140454u^{39} + \cdots + 8.11334u + 1.72106 \end{pmatrix} \\ a_{12} = \begin{pmatrix} -0.00898279u^{40} - 0.0228872u^{39} + \cdots + 6.35254u + 2.83155 \\ -0.00602820u^{40} - 0.0101798u^{39} + \cdots + 8.49552u - 2.03570 \end{pmatrix} \\ a_{11} = \begin{pmatrix} -0.00761817u^{40} - 0.0171648u^{39} + \cdots + 8.49552u - 2.03570 \\ -0.00515696u^{40} - 0.0171648u^{39} + \cdots + 7.91840u - 3.20299 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.00750642u^{40} + 0.0137245u^{39} + \cdots + 0.520985u + 10.6626$

Crossings	u-Polynomials at each crossing
c_1	$u^{41} + 50u^{40} + \dots + 8224u + 256$
c_{2}, c_{4}	$u^{41} - 8u^{40} + \dots - 8u - 16$
c_3, c_7	$u^{41} + 2u^{40} + \dots - 512u^2 - 512$
c_5,c_{11}	$u^{41} - 2u^{40} + \dots + 16u - 4$
c_6,c_8	$u^{41} + 8u^{40} + \dots - 8u - 16$
<i>c</i> ₉	$u^{41} - 10u^{40} + \dots + 2080u - 256$
c_{10}, c_{12}	$u^{41} - 12u^{40} + \dots + 344u + 16$

Crossings	Riley Polynomials at each crossing
c_1	$y^{41} - 110y^{40} + \dots + 25092608y - 65536$
c_2, c_4	$y^{41} - 50y^{40} + \dots + 8224y - 256$
c_3, c_7	$y^{41} + 30y^{40} + \dots - 524288y - 262144$
c_5,c_{11}	$y^{41} + 12y^{40} + \dots + 344y - 16$
c_{6}, c_{8}	$y^{41} - 10y^{40} + \dots + 2080y - 256$
<i>c</i> ₉	$y^{41} + 50y^{40} + \dots - 663040y - 65536$
c_{10}, c_{12}	$y^{41} + 36y^{40} + \dots + 135968y - 256$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.280189 + 0.954581I		
a = 0.590964 - 0.259086I		
b = 0.419345 + 0.622257I	1.60252 - 4.55290I	4.51064 + 8.08001I
c = 0.0474799 - 0.0430603I		
d = 1.033380 + 0.229578I		
u = -0.280189 - 0.954581I		
a = 0.590964 + 0.259086I		
b = 0.419345 - 0.622257I	1.60252 + 4.55290I	4.51064 - 8.08001I
c = 0.0474799 + 0.0430603I		
d = 1.033380 - 0.229578I		
u = -0.942111 + 0.024266I		
a = 0.91333 - 1.27170I		
b = -0.627424 + 0.518765I	-0.87865 + 4.07350I	1.48942 - 7.36111I
c = -0.499993 + 0.079611I		
d = -0.315261 + 0.806428I		
u = -0.942111 - 0.024266I		
a = 0.91333 + 1.27170I		
b = -0.627424 - 0.518765I	-0.87865 - 4.07350I	1.48942 + 7.36111I
c = -0.499993 - 0.079611I		
d = -0.315261 - 0.806428I		
u = -0.100000 + 0.892301I		
a = 0.541244 + 0.141055I		
b = 0.730090 - 0.450883I	-1.46086 + 1.42227I	-3.88823 - 3.83998I
c = 0.004841 + 0.674193I		
d = -0.587647 + 0.795464I		
u = -0.100000 - 0.892301I		
a = 0.541244 - 0.141055I		
b = 0.730090 + 0.450883I	-1.46086 - 1.42227I	-3.88823 + 3.83998I
c = 0.004841 - 0.674193I		
d = -0.587647 - 0.795464I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -0.687957 + 0.421229I			
a = 0.457946 + 0.040164I			
b = 1.167000 - 0.190055I	-2.43397 + 0.55461I	-3.61478 + 1.21885I	
c = -0.728909 + 0.390845I			
d = -0.849961 + 0.066792I			
u = -0.687957 - 0.421229I			
a = 0.457946 - 0.040164I			
b = 1.167000 + 0.190055I	-2.43397 - 0.55461I	-3.61478 - 1.21885I	
c = -0.728909 - 0.390845I			
d = -0.849961 - 0.066792I			
u = -0.586118 + 0.499909I			
a = 0.841488 - 0.427556I			
b = -0.055470 + 0.479911I	3.14860 + 0.97270I	10.27133 - 0.16493I	
c = 0.061137 - 1.346250I			
d = 0.633993 + 0.071971I			
u = -0.586118 - 0.499909I			
a = 0.841488 + 0.427556I			
b = -0.055470 - 0.479911I	3.14860 - 0.97270I	10.27133 + 0.16493I	
c = 0.061137 + 1.346250I			
d = 0.633993 - 0.071971I			
u = 0.757570 + 0.057431I			
a = 1.57773 - 1.54774I			
b = -0.677009 + 0.316853I	-0.834104 - 1.057860I	1.84303 - 1.72199I	
c = 0.629935 + 0.107949I			
d = 0.369651 - 0.357039I			
u = 0.757570 - 0.057431I			
a = 1.57773 + 1.54774I			
b = -0.677009 - 0.316853I	-0.834104 + 1.057860I	1.84303 + 1.72199I	
c = 0.629935 - 0.107949I			
d = 0.369651 + 0.357039I			

		Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
	u =	0.748122 + 0.099272I		
	a =	0.452596 - 0.009005I		
	b =	1.208600 + 0.043942I	-0.52179 - 2.81355I	3.88749 + 5.15717I
	c =	0.532023 - 0.239529I		
	d =	0.043520 + 0.421796I		
	u =	0.748122 - 0.099272I		
	a =	0.452596 + 0.009005I		
	b =	1.208600 - 0.043942I	-0.52179 + 2.81355I	3.88749 - 5.15717I
	c =	0.532023 + 0.239529I		
	d =	0.043520 - 0.421796I		
,	u = -	-0.004283 + 0.652626I		
	a =	0.629363 - 0.061738I		
	b =	0.573765 + 0.154381I	0.70242 - 2.36927I	-0.82941 + 4.59716I
	c = -	-0.00038 - 2.68044I		
_	d =	0.006876 - 0.589549I		
,	u = -	-0.004283 - 0.652626I		
	a =	0.629363 + 0.061738I		
	b =	0.573765 - 0.154381I	0.70242 + 2.36927I	-0.82941 - 4.59716I
	c = -	-0.00038 + 2.68044I		
		0.006876 + 0.589549I		
		-0.076846 + 0.625583I		
	a =	0.695357 - 0.090908I	_	
	b =	0.413943 + 0.184853I	0.85500 + 1.57570I	0.179374 + 0.776646I
	c =	0.282886 + 0.791726I		
_		0.74226 + 1.57829I		
		-0.076846 - 0.625583I		
	a =	0.695357 + 0.090908I		
	b =	0.413943 - 0.184853I	0.85500 - 1.57570I	0.179374 - 0.776646I
	c =	0.282886 - 0.791726I		
_	d =	0.74226 - 1.57829I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
\overline{u}	= -0.01326 + 1.47518I			
a	= -1.81673 + 0.02079I			
b	= -1.55037 - 0.00630I	-5.83509 - 1.34899I	-0.977007 + 0.716014I	
c	= 1.42698 + 0.86838I			
d	= 0.490726 + 0.727578I			
\overline{u}	= -0.01326 - 1.47518I			
a	= -1.81673 - 0.02079I			
b	= -1.55037 + 0.00630I	-5.83509 + 1.34899I	-0.977007 - 0.716014I	
c	= 1.42698 - 0.86838I			
d	= 0.490726 - 0.727578I			
u	= 0.45410 + 1.44756I			
a	= -1.59641 - 0.64255I			
\boldsymbol{b}	= -1.53907 + 0.21697I	-4.95290 + 7.65933I	2.00000 - 5.62562I	
c	= 1.49469 - 0.92353I			
d				
-	= 0.45410 - 1.44756I			
a	= -1.59641 + 0.64255I			
b	= -1.53907 - 0.21697I	-4.95290 - 7.65933I	2.00000 + 5.62562I	
c	= 1.49469 + 0.92353I			
d				
u :				
a				
b	=-0.230214	1.25610	8.53770	
c	= 1.50297			
-	=-0.0988292			
u	0.0000 00000			
a:			_	
b	0.0000000000-00	-6.34261 + 3.42138I	0	
c				
\underline{d}	= 0.784306 - 0.583648I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.35061 - 1.53639I		
a = 0.443886 - 0.289097I		
b = 0.581850 + 1.030240I	-6.34261 - 3.42138I	0
c = 1.88732 + 0.49585I		
d = 0.784306 + 0.583648I		
u = -0.51610 + 1.49655I		
a = 0.446462 - 0.321741I		
b = 0.474223 + 1.062390I	-5.66064 - 9.73522I	0. + 7.05049I
c = -1.68030 - 1.21373I		
d = -0.511523 - 1.269150I		
u = -0.51610 - 1.49655I		
a = 0.446462 + 0.321741I		
b = 0.474223 - 1.062390I	-5.66064 + 9.73522I	0 7.05049I
c = -1.68030 + 1.21373I		
d = -0.511523 + 1.269150I		
u = -1.62020 + 0.13077I		
a = 0.381574 + 0.008996I		
b = 1.61926 - 0.06175I	-8.89854 + 0.19005I	0
c = -0.47751 + 2.12520I		
d = -0.63777 + 3.15512I		
u = -1.62020 - 0.13077I		
a = 0.381574 - 0.008996I		
b = 1.61926 + 0.06175I	-8.89854 - 0.19005I	0
c = -0.47751 - 2.12520I		
d = -0.63777 - 3.15512I		
u = 1.59450 + 0.33027I		
a = 0.382027 - 0.022906I		
b = 1.60824 + 0.15639I	-8.54414 - 6.61454I	0
c = -0.39612 + 2.13768I		
d = -0.28184 + 3.24036I		

Solutions to $I_1^u \qquad \sqrt{-1}(\text{vol} + \sqrt{-1}CS) \text{Cusp} :$	shape
u = 1.59450 - 0.33027I	
a = 0.382027 + 0.022906I	
b = 1.60824 - 0.15639I - 8.54414 + 6.61454I	0
c = -0.39612 - 2.13768I	
d = -0.28184 - 3.24036I	
u = -0.23388 + 1.65276I	
a = -1.52839 + 0.26544I	
$b = -1.63512 - 0.11031I \qquad -9.70458 - 3.47853I$	0
c = -2.35058 + 0.06091I	
d = -1.275640 - 0.091209I	
u = -0.23388 - 1.65276I	
a = -1.52839 - 0.26544I	
$b = -1.63512 + 0.11031I \qquad -9.70458 + 3.47853I$	0
c = -2.35058 - 0.06091I	
d = -1.275640 + 0.091209I	
u = 0.86658 + 1.51028I	
a = -1.140130 - 0.820998I	
$b = -1.57759 + 0.41592I \qquad -12.2320 + 15.1490I$	0
c = 1.38502 - 2.89598I	
d = 0.08526 - 2.95483I	
u = 0.86658 - 1.51028I	
a = -1.140130 + 0.820998I	
$b = -1.57759 - 0.41592I \qquad -12.2320 - 15.1490I$	0
c = 1.38502 + 2.89598I	
d = 0.08526 + 2.95483I	
u = -0.78943 + 1.61251I	
a = -1.175700 + 0.706741I	
$b = -1.62479 - 0.37558I \qquad -13.5026 - 8.6555I$	0
c = -2.01798 - 2.64036I	
d = -0.74497 - 2.73152I	

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.78943 - 1.61251I		
a = -1.175700 - 0.706741I		
b = -1.62479 + 0.37558I	-13.5026 + 8.6555I	0
c = -2.01798 + 2.64036I		
d = -0.74497 + 2.73152I		
u = -0.64330 + 1.72758I		
a = -1.231740 + 0.552038I		
b = -1.67606 - 0.30300I	-14.7932 - 7.9945I	0
c = 0.70493 + 3.45324I		
d = -0.14309 + 3.02959I		
u = -0.64330 - 1.72758I		
a = -1.231740 - 0.552038I		
b = -1.67606 + 0.30300I	-14.7932 + 7.9945I	0
c = 0.70493 - 3.45324I		
d = -0.14309 - 3.02959I		
u = 0.48873 + 1.82349I		
a = -1.264400 - 0.401956I		
b = -1.71830 + 0.22835I	-15.6167 + 1.2657I	0
c = -1.55696 + 3.30101I		
d = -0.64880 + 2.90927I		
u = 0.48873 - 1.82349I		
a = -1.264400 + 0.401956I		
b = -1.71830 - 0.22835I	-15.6167 - 1.2657I	0
c = -1.55696 - 3.30101I		
d = -0.64880 - 2.90927I		

II.
$$I_2^u = \langle u^3 a^2 + 5 u^3 a + \dots - 8a + 8, \ u^3 a^2 + 3 u^3 a + \dots - 4a + 4, \ -a^2 u^2 + b + 2a - 2, \ 4u^3 a^2 - 6u^3 a + \dots + 3a - 1, \ u^4 - u^3 + 3u^2 - 2u + 1 \rangle$$

$$a_{3} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} a \\ a^{2}u^{2} - 2a + 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a^{2}u^{2} - u^{2}a + 2a - 2 \\ -a^{2}u^{2} - u^{2}a + 2a - 2 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a^{3}a^{2} - 3u^{3}a - a^{2}u + 2u^{2}a + 2u^{3} - 4au - 2u^{2} + 4a + 4u - 4 \\ -u^{3}a^{2} - 5u^{3}a - 2a^{2}u + 4u^{2}a + 4u^{3} - 11au - 4u^{2} + 8a + 10u - 8 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2u^{3}a - a^{2}u + 2u^{2}a + 2u^{3} - 6au - 2u^{2} + 4a + 6u - 4 \\ -4u^{3}a - 2a^{2}u + 4u^{2}a + 4u^{3} - 13au - 4u^{2} + 8a + 12u - 8 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2u^{3}a - a^{2}u + 2u^{2}a + 2u^{3} - 7au - 2u^{2} + 4a + 6u - 4 \\ -4u^{3}a - 2a^{2}u + 4u^{2}a + 4u^{3} - 13au - 4u^{2} + 8a + 12u - 8 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{3}a^{2} + a^{2}u^{2} - u^{3}a - 2a^{2}u + 4u^{2}a + a^{2} - 2au - 2u^{2} + 6a - 4 \\ -u^{3}a^{2} - u^{3}a - 2a^{2}u + 3u^{2}a + a^{2} - 2au - 2u^{2} + 7a - 6 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3}a^{2} + a^{2}u^{2} - 2a^{2}u + 3u^{2}a + a^{2} - 2u^{2} + 5a - 4 \\ -2u^{3}a^{2} - 3u^{3}a - 3u^{3}a + \dots + 9a - 8 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^3 + 4u^2 12u + 6$

Crossings	u-Polynomials at each crossing
c_1	$u^{12} + 8u^{11} + \dots - 10u + 1$
c_2, c_4, c_6 c_8	$u^{12} - 4u^{10} + \dots + 2u + 1$
c_3, c_7, c_{10} c_{12}	$(u^4 - u^3 + 3u^2 - 2u + 1)^3$
c_5,c_{11}	$(u^4 - u^3 + u^2 + 1)^3$
<i>C</i> 9	$u^{12} - 8u^{11} + \dots + 10u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_9	$y^{12} - 8y^{11} + \dots - 78y + 1$
c_2, c_4, c_6 c_8	$y^{12} - 8y^{11} + \dots + 10y + 1$
c_3, c_7, c_{10} c_{12}	$(y^4 + 5y^3 + 7y^2 + 2y + 1)^3$
c_5, c_{11}	$(y^4 + y^3 + 3y^2 + 2y + 1)^3$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.395123 + 0.506844I		
a = 0.837889 + 0.280931I		
b = 0.072869 - 0.359716I	0.21101 + 1.41510I	1.82674 - 4.90874I
c = 0.394185 + 0.517164I		
d = 0.577230 + 0.415041I		
u = 0.395123 + 0.506844I		
a = 0.492884 - 0.048733I		
b = 1.009230 + 0.198659I	0.21101 + 1.41510I	1.82674 - 4.90874I
c = -1.39293 + 0.39378I		
d = -2.82169 + 1.21168I		
u = 0.395123 + 0.506844I		
a = -2.51225 - 4.92832I		
b = -1.082100 + 0.161058I	0.21101 + 1.41510I	1.82674 - 4.90874I
c = 0.20850 - 1.92463I		
d = -0.459158 - 0.186039I		
u = 0.395123 - 0.506844I		
a = 0.837889 - 0.280931I		
b = 0.072869 + 0.359716I	0.21101 - 1.41510I	1.82674 + 4.90874I
c = 0.394185 - 0.517164I		
d = 0.577230 - 0.415041I		
u = 0.395123 - 0.506844I		
a = 0.492884 + 0.048733I	0.04404 4.44540.7	4.000=44.000=4.
b = 1.009230 - 0.198659I	0.21101 - 1.41510I	1.82674 + 4.90874I
c = -1.39293 - 0.39378I		
d = -2.82169 - 1.21168I		
u = 0.395123 - 0.506844I		
a = -2.51225 + 4.92832I	0.01101 1.415101	1 00004 + 4 000047
b = -1.082100 - 0.161058I	0.21101 - 1.41510I	1.82674 + 4.90874I
c = 0.20850 + 1.92463I		
d = -0.459158 + 0.186039I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.10488 + 1.55249I		
a = 0.439878 + 0.246240I		
b = 0.730940 - 0.968963I	-6.79074 + 3.16396I	-1.82674 - 2.56480I
c = -1.56704 + 1.28737I		
d = -0.641253 + 1.089290I		
u = 0.10488 + 1.55249I		
a = 0.432622 - 0.214254I		
b = 0.856215 + 0.919282I	-6.79074 + 3.16396I	-1.82674 - 2.56480I
c = 1.82916 + 0.51793I		
d = 0.824626 + 0.377943I		
u = 0.10488 + 1.55249I		
a = -1.69102 - 0.14308I		
b = -1.58715 + 0.04968I	-6.79074 + 3.16396I	-1.82674 - 2.56480I
c = -0.47187 - 4.91028I		
d = -0.47976 - 3.28982I		
u = 0.10488 - 1.55249I		
a = 0.439878 - 0.246240I		
b = 0.730940 + 0.968963I	-6.79074 - 3.16396I	-1.82674 + 2.56480I
c = -1.56704 - 1.28737I		
d = -0.641253 - 1.089290I		
u = 0.10488 - 1.55249I		
a = 0.432622 + 0.214254I		
b = 0.856215 - 0.919282I	-6.79074 - 3.16396I	-1.82674 + 2.56480I
c = 1.82916 - 0.51793I		
d = 0.824626 - 0.377943I		
u = 0.10488 - 1.55249I		
a = -1.69102 + 0.14308I		
b = -1.58715 - 0.04968I	-6.79074 - 3.16396I	-1.82674 + 2.56480I
c = -0.47187 + 4.91028I		
d = -0.47976 + 3.28982I		

III.
$$I_1^v = \langle c, \ d-v-1, \ b, \ a-1, \ v^2+v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ v+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ v+1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -v - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ v \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v+1 \\ v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4v + 7

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	u^2
c_5, c_{10}	$u^2 + u + 1$
c_6	$(u+1)^2$
c_8, c_9	$(u-1)^2$
c_{11}, c_{12}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_7	y^2
c_5, c_{10}, c_{11} c_{12}	$y^2 + y + 1$
c_6, c_8, c_9	$(y-1)^2$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -0.500000 + 0.866025I		
a = 1.00000		
b = 0	1.64493 + 2.02988I	9.00000 - 3.46410I
c = 0		
d = 0.500000 + 0.866025I		
v = -0.500000 - 0.866025I		
a = 1.00000		
b = 0	1.64493 - 2.02988I	9.00000 + 3.46410I
c = 0		
d = 0.500000 - 0.866025I		

IV.
$$I_2^v = \langle a, \ d, \ c-v, \ b-1, \ v^2-v+1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} v - 1 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} v - 1 \\ -v \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4v 1

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_6, c_7 c_8, c_9	u^2
C ₄	$(u+1)^2$
c_5, c_{12}	$u^2 - u + 1$
c_{10}, c_{11}	$u^2 + u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^2$
c_3, c_6, c_7 c_8, c_9	y^2
c_5, c_{10}, c_{11} c_{12}	$y^2 + y + 1$

	Solutions to I_2^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v =	0.500000 + 0.866025I		
a =	0		
b =	1.00000	-1.64493 + 2.02988I	-3.00000 - 3.46410I
c =	0.500000 + 0.866025I		
d =	0		
v =	0.500000 - 0.866025I		
a =	0		
b =	1.00000	-1.64493 - 2.02988I	-3.00000 + 3.46410I
c =	0.500000 - 0.866025I		
d =	0		

V.
$$I_3^v = \langle a, \ d+1, \ c+a, \ b-1, \ v-1 \rangle$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_8 c_9	u-1
$c_3, c_5, c_7 \\ c_{10}, c_{11}, c_{12}$	u
c_4, c_6	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_6, c_8, c_9	y-1
c_3, c_5, c_7 c_{10}, c_{11}, c_{12}	y

Solutions to I_3^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 1.00000		
a = 0		
b = 1.00000	0	0
c = 0		
d = -1.00000		

 $VI. \\ I_4^v = \langle a, \ -c^2v + cv + \cdots - 2ca + a, \ dv + 1, \ c^2v^2 - v^2c + \cdots + a^2 - av, \ b - 1 \rangle$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} c \\ d \end{pmatrix}$$

$$a_9 = \begin{pmatrix} c+v\\d \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -c \\ -d \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} c - 1 \\ dc - 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} c - 1 \\ dc - c \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-d^2 v^2 4c + 4$
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_4^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$v = \cdots$		
$a = \cdots$		
$b = \cdots$	-2.02988I	2.25553 + 3.87325I
$c = \cdots$		
$d = \cdots$		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{2}(u-1)^{3}(u^{12} + 8u^{11} + \dots - 10u + 1)$ $\cdot (u^{41} + 50u^{40} + \dots + 8224u + 256)$
c_2	$u^{2}(u-1)^{3}(u^{12}-4u^{10}+\cdots+2u+1)(u^{41}-8u^{40}+\cdots-8u-16)$
c_3, c_7	$u^{5}(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{3}(u^{41} + 2u^{40} + \dots - 512u^{2} - 512)$
c_4	$u^{2}(u+1)^{3}(u^{12}-4u^{10}+\cdots+2u+1)(u^{41}-8u^{40}+\cdots-8u-16)$
c_5,c_{11}	$u(u^{2}-u+1)(u^{2}+u+1)(u^{4}-u^{3}+u^{2}+1)^{3}(u^{41}-2u^{40}+\cdots+16u-4)$
c_6	$u^{2}(u+1)^{3}(u^{12}-4u^{10}+\cdots+2u+1)(u^{41}+8u^{40}+\cdots-8u-16)$
c_8	$u^{2}(u-1)^{3}(u^{12}-4u^{10}+\cdots+2u+1)(u^{41}+8u^{40}+\cdots-8u-16)$
<i>c</i> ₉	$u^{2}(u-1)^{3}(u^{12} - 8u^{11} + \dots + 10u + 1)$ $\cdot (u^{41} - 10u^{40} + \dots + 2080u - 256)$
c_{10}	$u(u^{2} + u + 1)^{2}(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{3}$ $\cdot (u^{41} - 12u^{40} + \dots + 344u + 16)$
c_{12}	$u(u^{2} - u + 1)^{2}(u^{4} - u^{3} + 3u^{2} - 2u + 1)^{3}$ $\cdot (u^{41} - 12u^{40} + \dots + 344u + 16)$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{2}(y-1)^{3}(y^{12} - 8y^{11} + \dots - 78y + 1)$ $\cdot (y^{41} - 110y^{40} + \dots + 25092608y - 65536)$
c_2, c_4	$y^{2}(y-1)^{3}(y^{12} - 8y^{11} + \dots + 10y + 1)$ $\cdot (y^{41} - 50y^{40} + \dots + 8224y - 256)$
c_3, c_7	$y^{5}(y^{4} + 5y^{3} + \dots + 2y + 1)^{3}(y^{41} + 30y^{40} + \dots - 524288y - 262144)$
c_5,c_{11}	$y(y^{2} + y + 1)^{2}(y^{4} + y^{3} + 3y^{2} + 2y + 1)^{3}$ $\cdot (y^{41} + 12y^{40} + \dots + 344y - 16)$
c_6, c_8	$y^{2}(y-1)^{3}(y^{12} - 8y^{11} + \dots + 10y + 1)$ $\cdot (y^{41} - 10y^{40} + \dots + 2080y - 256)$
<i>c</i> ₉	$y^{2}(y-1)^{3}(y^{12} - 8y^{11} + \dots - 78y + 1)$ $\cdot (y^{41} + 50y^{40} + \dots - 663040y - 65536)$
c_{10}, c_{12}	$y(y^{2} + y + 1)^{2}(y^{4} + 5y^{3} + 7y^{2} + 2y + 1)^{3}$ $\cdot (y^{41} + 36y^{40} + \dots + 135968y - 256)$