Guided Quantum Diffuison Monte Carlo for Calculating Zero Point Energies

Simon Neidhart

29. September 2021

Was ist Monte Carlo?

Berechnung der Kreiszahl π mit Zufallszahlen.

Quantenmechanik

Schrödingers Katze

Quantenmechanik

Heisenbergsche Unschärferelation

- ▶ Position und Impuls eines Teilchens können nicht gleichzeitig beliebig genau bestimmt sein.
- ➤ Ziel: Berechnen des Energieunterschiedes klassischer/quantenmechanischer Oszillator (zero point energy).

Der DQMC Algorithmus

- ▶ Lösen der Schrödinger Gleichung (hochdimensionale Differentialgleichung) mit Monte Carlo.
- ▶ Benutzen des harmonischen Oszillators zum berechnen einer "guiding" Wellenfunktion.

Untersuchte Systeme

Ethan (C_2H_6) 2-Phenylphenol ($C_{12}H_{10}O$)

Endohedrale Komplexe (z.B. $H_2@C_{60}$)

Resultate

Konvergenz der zero point Energie von H_2 @ C_{60} .

Weitere Anwendungen von Monte Carlo

- ▶ Allgemein: Berechnung von hochdimensionalen Integralen
- ► Wettervorhersage/Klimasimulationen
- ▶ Vorhersagen bei der Produktion von Windenergie
- Umgebungserkennung von Robotern mit Kamera
- ▶ Bewertung von Investment-Projekten
- ▶ Vermutlich auch Stabilitätsanalysen von Stromnetzen.