0.1 Cauchy 积分定理

定理 0.1 (Cauchy 定理)

设 $D \in \mathbb{C}$ 中的单连通域, $f \in H(D)$, 且 f' 在 D 中连续, 则对 D 中任意的可求长闭曲线 γ , 均有

$$\int_{\mathcal{X}} f(z) \mathrm{d}z = 0.$$

证明 由 γ 围成的域记为 G, 因为 f' 连续, 即 $\frac{\partial u}{\partial x}$, $\frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial y}$ 连续, 故可用 Green 公式. 又因 f 在 D 中全纯, 故由定理??可知 Cauchy-Riemann 方程成立. 于是由 Green 公式可得

$$\int_{\gamma} u dx - v dy = \iint_{G} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy = 0,$$
$$\int_{\gamma} v dx + u dy = \iint_{G} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy = 0.$$

由命题??, 即得

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

引理 0.1

设 f 是域 D 中的连续函数, γ 是 D 内的可求长曲线. 对于任给的 $\varepsilon > 0$, 一定存在一条 D 中的折线 P, 使得 (i) P 和 γ 有相同的起点和终点,P 中其他的顶点都在 γ 上;

(ii)
$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| < \varepsilon.$$

证明 因为 ∂D 是一个闭集, γ 是一个紧集,且两者不相交,根据定理??, $d(\gamma,\partial D)=\rho>0$. 作有界的域 G,使得 $\gamma\subset\overline{G}\subset D$. 因为 f 在紧集 \overline{G} 上连续,故由定理??(iii) 可知 f 必一致连续.于是,对任意 $\varepsilon>0$,存在 $\delta>0$,当 $z',z''\in\overline{G},|z'-z''|<\delta$ 时, $|f(z')-f(z'')|<\frac{\varepsilon}{2L}$,这里,L 是 γ 的长度. 现取 $\eta=\min(\rho,\delta)$. 在 γ 上取分点 z_0,z_1,\cdots,z_n ,使得每一个弧段 $\overline{z_{k-1}z_k}$ 的长度都小于 η ,这里, z_0,z_n 分别记为 γ 的起点和终点. 连接 z_{k-1} 和 $z_k(k=1,\cdots,n)$,就得到一条折线 P,它与 γ 有相同的起点和终点,且其他顶点都在 γ 上.由于 $|z_{k-1}-z_k|<\eta\leq\rho$,所以线段 $\overline{z_{k-1}z_k}$ 都在 D 内,即折线 P 都在 D 内.

现在估计下面的积分差, 记 $\gamma_k = \widehat{z_{k-1}z_k}, P_k = \overline{z_{k-1}z_k}$, 则有

$$\left| \int_{\gamma_{k}} f(z) dz - \int_{P_{k}} f(z) dz \right| \leq \left| \int_{\gamma_{k}} f(z) dz - f(z_{k-1})(z_{k} - z_{k-1}) \right| + \left| \int_{P_{k}} f(z) dz - f(z_{k-1})(z_{k} - z_{k-1}) \right|$$

$$= \left| \int_{\gamma_{k}} f(z) dz - \int_{\gamma_{k}} f(z_{k-1}) dz \right| + \left| \int_{P_{k}} f(z) dz - \int_{P_{k}} f(z_{k-1}) dz \right|$$

$$= \left| \int_{\gamma_{k}} (f(z) - f(z_{k-1})) dz \right| + \left| \int_{P_{k}} (f(z) - f(z_{k-1})) dz \right|.$$

当 $z \in \gamma_k$ 或 P_k 时,都有 $|z-z_{k-1}| < \eta \leq \delta$,因而 $|f(z)-f(z_{k-1})| < \frac{\varepsilon}{2L}$.对上面两个积分用长大不等式,它们都不超过 $\frac{\varepsilon}{2L}|\gamma_k|$,因而

$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| \leqslant \sum_{k=1}^{n} \left| \int_{\gamma_{k}} f(z) dz - \int_{P_{k}} f(z) dz \right| < \frac{\varepsilon}{L} \sum_{k=1}^{n} |\gamma_{k}| = \varepsilon.$$

故折线 P 完全符合定理的要求.

定理 0.2 (Cauchy-Goursat 定理 (Cauchy 积分定理))

设 $D \in \mathbb{C}$ 中的单连通域, 如果 $f \in H(D)$, 那么对 D 中任意的可求长闭曲线 γ , 均有

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

注 注意, 对于非单连通的域, 定理不一定成立. 例如, D 是除去原点的单位圆盘, $f(z) = \frac{1}{z}$ 当然在 D 中全纯, 若设 $\gamma = \{z : |z| = r < 1\}, 则由例题??知, \int_{z=0}^{z} \frac{dz}{z} = 2\pi i \neq 0.$

证明 证明分为下面三步:

(1) 先假定 γ 是一个三角形的边界.

如果 $\left| \int f(z) dz \right| = M$, 我们证明 M = 0. 连接三角形三边的中点, 把三角形分成四个全等的小三角形 (图 1),

这四个小三角形的边界分别记为 $\gamma^{(1)}, \gamma^{(2)}, \gamma^{(3)}$ 和 $\gamma^{(4)}$. 让f 沿这四个小三角形的边界积分, 从图中可以看出, 中间那个小三角形的边界被来回走了两次,f 在其上的积分恰好抵消,剩下的积分的和正好等于大三角形边界上 的积分,即

$$\int_{\gamma} f(z) dz = \int_{\gamma^{(1)}} f(z) dz + \int_{\gamma^{(2)}} f(z) dz + \int_{\gamma^{(3)}} f(z) dz + \int_{\gamma^{(4)}} f(z) dz,$$

或者

$$M = \left| \int_{\gamma} f(z) dz \right| \leq \left| \int_{\gamma^{(1)}} f(z) dz \right| + \left| \int_{\gamma^{(2)}} f(z) dz \right| + \left| \int_{\gamma^{(3)}} f(z) dz \right| + \left| \int_{\gamma^{(4)}} f(z) dz \right|.$$

因此上述四个小三角形中必有一个小三角形 Δ_1 , 它的边界记为 γ_1 , f 在其上的积分满足 $\int_{\mathcal{X}_1} f(z) dz$ $\geqslant \frac{M}{4}$. 把 Δ_1 再分成四个全等的小三角形,按照同样的推理,其中又有一个小三角形 Δ_2 ,它的边界记为 γ_2,f 在其上的积分满足 $\left|\int_{\gamma_{1}}f(z)\mathrm{d}z\right|\geqslant\frac{M}{4^{2}}$. 这个过程可以一直进行下去,我们得到一串三角形 Δ_{n} ,记它们的边界为 γ_{n} ,这串三角形具有下 列性质:

- (i) $\Delta \supset \Delta_1 \supset \cdots \supset \Delta_n \supset \cdots$;
- (ii) $\operatorname{diam}\Delta_n \to 0 (n \to \infty);$ (iii) $|\gamma_n| = \frac{L}{2^n}, n = 1, 2, \cdots,$ 这里,L 为 γ 的长度;

(iv)
$$\left| \int_{\gamma_n} f(z) dz \right| \geqslant \frac{M}{4^n}, n = 1, 2, \cdots$$

由 (i) 和 (ii), 根据 Cantor 闭集套定理, 存在唯一的 $z_0 \in \Delta_n (n=1,2,\cdots)$. 因为 D 是单连通的, 所以 $z_0 \in D$. 由 于 f 在 z_0 处全纯, 故对任意 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $0 < |z - z_0| < \delta$ 时, 成立

$$\left|\frac{f(z)-f(z_0)}{z-z_0}-f'(z_0)\right|<\varepsilon,$$

即

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \varepsilon |z - z_0|. \tag{1}$$

取 n 充分大, 使得 $\Delta_n \subset B(z_0, \delta)$, 故当 $z \in \gamma_n$ 时,(1)式成立. 显然, $z \in \gamma_n$ 时, $|z - z_0| < |\gamma_n| = \frac{L}{2^n}$. 因而, 当 $z \in \gamma_n$ 时,有

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \frac{\varepsilon L}{2^n}.$$
 (2)

因为 γ_n 是闭曲线,由例题??知道,有

$$\int_{\gamma_n} dz = 0, \quad \int_{\gamma_n} z dz = 0.$$

于是有

$$\int_{\gamma_n} [f(z) - f(z_0) - f'(z_0)(z - z_0)] dz = \int_{\gamma_n} f(z) dz - f(z_0) \int_{\gamma_n} dz - f'(z_0) \int_{\gamma_n} z dz + z_0 f'(z_0) \int_{\gamma_n} dz = \int_{\gamma_n} f(z) dz.$$

利用(2)式、(iii) 和长大不等式, 即得

$$\left| \int_{\gamma_n} f(z) dz \right| \leqslant \frac{\varepsilon L}{2^n} |\gamma_n| = \varepsilon \left(\frac{L}{2^n} \right)^2.$$

再由 (iv), 可得 $M \leq \varepsilon L^2$. 又因为 ε 是任意小的正数, 所以 M=0.

(2) 假定 γ 是一个多边形的边界.

从图 2可以看出, 我们可以把多边形分解成若干个三角形. 与刚才的道理一样, f 沿 γ 的积分等于沿各个三角形边界积分的和, 由 (1) 已知沿三角形边界的积分为零, 因而

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

(3) 假定 γ 是一般的可求长闭曲线.

根据引理 0.1, 在 D 内存在闭折线 P, 使得

$$\left| \int_{\gamma} f(z) dz - \int_{P} f(z) dz \right| < \varepsilon, \tag{3}$$

这里, ε 是任意事先给定的正数. 由(3)式和(2)即知

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

定理 0.3

设 D 是可求长简单闭曲线 γ 的内部, 若 $f \in H(D) \cap C(\overline{D})$, 则

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

 $\overline{\mathbf{L}}$ 这里已不再假定 f 在积分路径 γ 上全纯, 而代之以在闭域 $\overline{\mathbf{L}}$ 上连续, 条件确实是减弱了. 一般地, 证明这个定理还需要一些其他的知识, 我们这里对 γ 附加两个条件:

- (i) γ 是逐段光滑的;
- (ii) 在 D 中存在点 z_0 ,使得从 z_0 出发的每条射线与 γ 只有一个交点. 例如,凸多边形和圆盘都满足这两个条件.

证明 在所设的两个条件下,γ的方程可以写成

$$z = z_0 + \lambda(t), \ a \le t \le b.$$

记

$$p = \max\{|\lambda(t)| : a \leqslant t \leqslant b\}, \quad q = \max\{|\lambda'(t)| : a \leqslant t \leqslant b\}.$$

由于 f 在 \overline{D} 上连续, 故必一致连续, 故对任意的 $\varepsilon > 0$, 存在 $\delta > 0$, 当 $z_1, z_2 \in \overline{D}$, 且 $|z_1 - z_2| < \delta$ 时, 有 $|f(z_1) - f(z_2)| < \varepsilon$. 今取 $\delta_0 < \min(\delta, p)$, 于是 $\frac{\delta_0}{p} < 1$. 取 ρ , 使得 $1 - \frac{\delta_0}{p} < \rho < 1$. 记 γ_ρ 为曲线

$$z = z_0 + \rho \lambda(t), \ a \le t \le b,$$

则显然有 $\gamma_{\rho} \subset D$. 由Cauchy-Goursat 定理, 成立

$$\int_{\gamma_{\rho}} f(z)dz = \int_{a}^{b} f(z_{0} + \rho\lambda(t))\rho\lambda'(t)dt = 0,$$

即

$$\int_{a}^{b} f(z_0 + \rho \lambda(t)) \lambda'(t) dt = 0.$$

由于

$$|(z_0+\rho\lambda(t))-(z_0+\lambda(t))|=(1-\rho)|\lambda(t)|\leqslant (1-\rho)p<\delta_0<\delta,$$

所以

$$|f(z_0 + \lambda(t)) - f(z_0 + \rho\lambda(t))| < \varepsilon.$$

于是

$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{a}^{b} f(z_0 + \lambda(t)) \lambda'(t) dt \right| = \left| \int_{a}^{b} [f(z_0 + \lambda(t)) - f(z_0 + \rho \lambda(t))] \lambda'(t) dt \right|$$

$$\leq \int_{a}^{b} |f(z_0 + \lambda(t)) - f(z_0 + \rho \lambda(t))| |\lambda'(t)| dt < \varepsilon q(b - a).$$

由于 $\varepsilon > 0$ 是任意的, 所以

$$\int_{\gamma} f(z) \mathrm{d}z = 0.$$

定理 0.4

设 $\gamma_0, \gamma_1, \dots, \gamma_n$ 是 n+1 条可求长简单闭曲线, $\gamma_1, \dots, \gamma_n$ 都在 γ_0 的内部, $\gamma_1, \dots, \gamma_n$ 中的每一条都在其他 n-1 条的外部,D 是由这 n+1 条曲线围成的域, 用 γ 记 D 的边界. 如果 $f \in H(D) \cap C(\overline{D})$, 那么

$$\int_{\gamma} f(z) dz = 0,\tag{4}$$

这里, 积分沿 γ 的正方向进行, 并且 $\gamma = \gamma_0 + \gamma_1^- + \cdots + \gamma_n^-$.(4)式也可写为

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz + \dots + \int_{\gamma_n} f(z) dz,$$
 (5)

(5)式右端的积分分别沿 $\gamma_1, \dots, \gamma_n$ 的逆时针方向进行.

证明 如图 3所示, 我们用一些辅助线把几个"洞"连接起来, 这样,D 就被分成若干个单连通域. 由定理 0.3, 沿每个单连通域的边界的积分为零, 若干个单连通域的边界积分之和仍为零. 由于在辅助线上的积分来回各进行一次, 正好抵消, 所以总和恰好就是 γ 上的积分, 因而 (4)式成立. 而

$$\int_{\gamma} f(z)dz = \int_{\gamma_0} f(z)dz + \int_{\gamma_1^-} f(z)dz + \dots + \int_{\gamma_n^-} f(z)dz,$$

移项即得(5)式.

推论 0.1

设 γ_0 和 γ_1 是两条可求长的简单闭曲线, γ_1 在 γ_0 的内部,D 是由 γ_0 和 γ_1 围成的域. 如果 $f \in H(D) \cap C(\overline{D})$,那么

$$\int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz.$$

证明 由定理 0.4中 n=1 的情况立得.

例题 0.1 设 γ 是一可求长简单闭曲线, α ∉ γ , 试计算积分

$$\int_{\mathcal{X}} \frac{\mathrm{d}z}{z-a}.$$

解 若 a 在 γ 的外部,则因 $\frac{1}{z-a}$ 在 γ 围成的闭域上全纯,所以由 Cauchy 积分定理, $\int_{\gamma} \frac{\mathrm{d}z}{z-a} = 0$.

$$\int_{\gamma} \frac{\mathrm{d}z}{z - a} = \int_{\gamma_1} \frac{\mathrm{d}z}{z - a} = 2\pi \mathrm{i}.$$

最后的等式利用了例题??的结果.

例题 0.2 设 γ 是一可求长简单闭曲线, $a,b \notin \gamma$, 试计算积分

$$I = \int_{\gamma} \frac{\mathrm{d}z}{(z-a)(z-b)}.$$

解 上面的积分可写为

$$I = \int_{\gamma} \frac{\mathrm{d}z}{(z-a)(z-b)} = \frac{1}{a-b} \left(\int_{\gamma} \frac{\mathrm{d}z}{z-a} - \int_{\gamma} \frac{\mathrm{d}z}{z-b} \right).$$

由例题 0.1即可得

$$I = \begin{cases} 0 & , \\ \frac{2\pi i}{a-b} &$$