

CLAIMS

1. A process for the preparation of poly(silyl ester)s comprising a structural unit of the formula (I)

5



(I)

wherein each  $R_4$  and  $R_5$  may be hydroxyl or may be  
10 independently selected from hydrogen, alkyl, cycloalkyl,  
aryl, alkoxy, aryloxyl,  $-L'-SiR_1R_2-$ ,  $-L'-SiR_4R_5R_{10}$ ,  
 $-L'-(SiR_4R_5L')_n-SiR_1R_2-$ , alkenyl, alkynyl, aralkyl or  
15 aralkyloxy radicals optionally substituted by one or more  
substituents independently selected from the group  
comprising alkyl, alkoxy, aralkyl, aralkyloxy, hydroxyl,  
aryl, aryloxyl, halogen, amino (preferably, tertiary  
amino) or amino alkyl radicals, or each  $R_4$  and/or  $R_5$  may  
20 independently be an  $-O-Z(O)-L-$  group, where  $R_{10}$  is defined  
as is  $R_7$  below,

20

wherein each  $R_1$  and  $R_2$  may independently represent  
hydrogen, hydroxyl, alkyl, cycloalkyl, alkenyl, alkynyl,  
alkoxy,  $-L'-SiR_4R_5R_{10}$ , aryl, aryloxyl, aralkyl or  
25 aralkyloxy radical optionally substituted by one or more  
substituents independently selected from the group  
comprising alkyl, alkoxy, aralkyl, aralkyloxy, aryl,  
aryloxyl, halogen, hydroxyl, amino (preferably, tertiary

amino) or amino alkyl radicals, or each R<sub>1</sub> and/or R<sub>2</sub> may independently be an -O-Z(O)-L- group,

wherein L represents a hydrocarbyl or substituted hydrocarbyl group, wherein said substituted hydrocarbyl is substituted by one or more substituents independently selected from the group comprising alkyl, cycloalkyl, carboxyl, substituted carboxyl, alkoxy, aralkyl, aralkyloxyl, aryl, aryloxyl, hydroxyl, halogen, amino or amino alkyl radicals, or a polymer,

L' represents O, S, or NR<sub>6</sub>, L-(NR<sub>6</sub>-L)<sub>p</sub> (where p = 1 to 10), where R<sub>6</sub> is defined as is R<sub>7</sub> below, or L,

each n independently represents a number of -Si(R<sub>4</sub>)(R<sub>5</sub>)-L'- groups from 0 to 1000,

and y represents a number of silyl ester repeat units from 2 to 100000,

20

which process comprises the step of reacting;

a polyacid of formula (II)



25

(II)

wherein Z(O)OH represents the acid moiety attached to L, m is an integer from 2 to 100000, and L is as defined above,

with a polyacyloxsilyl derivative of formula (III)



5

(III)

wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub>, R<sub>5</sub>, L' and n are as defined above, except R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and R<sub>5</sub> in (III) are -O-Z(O)-R<sub>8</sub>, where R<sub>8</sub> is defined as is R<sub>7</sub> below, when the equivalent group in 10 (I) is -O-Z(O)-L-, and R<sub>7</sub> is a hydrogen atom, an aralkyl, aryl, alkenyl, alkynyl, or alkyl group optionally substituted with one or more substituents selected from the equivalent substituents as defined for R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and 15 R<sub>5</sub> above,

and R<sub>3</sub> is the group -O-Z(O)-R<sub>9</sub>, where R<sub>9</sub> is defined as is R<sub>7</sub> above,

20 whilst removing the formed acid group(s) of formula (IV) and (V) and (VI),

R<sub>7</sub> Z(O)OH (IV),

25 R<sub>9</sub> Z(O)OH (V),

R<sub>8</sub> Z(O)OH (VI),

from the system.

2. A process according to claim 1, wherein y is 2 to 1000.
3. A process according to either of claims 1 and 2, wherein R<sub>4</sub> and R<sub>5</sub> each independently represent an alkyl, an alkoxy, an aryl, an hydroxyl group or an -L'- $(SiR_4R_5L')_n-SiR_1R_2-$  group, wherein L', R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and R<sub>5</sub> are as defined in claim 1.
4. A process according to claim 3, wherein n = 0-100.
5. A process according to claim 3, wherein n = 0-10.
6. A process according to claim 3, wherein n is 0 or 1.
7. A process according to any preceding claim, wherein R<sub>4</sub> and R<sub>5</sub> in formula (III) are each independently selected from the group comprising an alkyl group, an hydroxyl group, an alkoxy group or an -L'- $(SiR_4R_5L')_n-SiR_1R_2-$  group, wherein L', R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and R<sub>5</sub> are as defined in claim 1.
8. A process according to claim 7 wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and R<sub>5</sub> each independently represent an alkyl group, branched or linear.
9. A process according to any preceding claim, wherein L' represents O.
10. A process according to any preceding claim, wherein Z represents C, POH, P or S=O, more preferably C.

11. A process according to claim 1, wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub>, R<sub>5</sub> and R<sub>8</sub> are each independently selected from the group comprising methyl, ethyl, propyl, isopropyl, isobutyl, n-butyl, sec-butyl, t-butyl, phenyl, and vinyl.  
5
12. A process according to claim 11, wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub> and R<sub>5</sub> are selected from the group consisting of methyl, ethyl, isopropyl, phenyl, and vinyl.  
10
13. A process according to claim 11, wherein R<sub>1</sub>, R<sub>2</sub>, R<sub>4</sub>, R<sub>5</sub> and R<sub>8</sub> are methyl.
14. A process according to any preceding claim, wherein R<sub>6</sub> is methyl.  
15
15. A process according to any preceding claim, wherein the groups R<sub>1</sub> and R<sub>2</sub> are the same.  
20
16. A process according to any preceding claim, wherein the groups R<sub>7</sub> and R<sub>9</sub> are the same.
17. A process according to claim 16, wherein R<sub>7</sub> and R<sub>9</sub> are alkyl.  
25
18. A process according to claim 16, wherein R<sub>7</sub> and R<sub>9</sub> are methyl.
19. A process according to claim 1, wherein the polyacid of formula (II) is a polycarboxylic acid.  
30
20. A process according to claim 19, wherein the polycarboxylic acid is a dicarboxylic acid.

21. A process according to any preceding claim, wherein L represents an alkyl, aryl, alkenyl, alkynyl, or aralkyl radical, or a polymer, preferably comprising 1 to 10000 carbon atoms.  
5
22. A process according to claim 1, wherein L represents -(CH<sub>2</sub>)<sub>n</sub>-, and n is an integer between 1 and 10, preferably between 2 and 8, more preferably between 4 and 6, most preferably 4.  
10
23. A process according to claim 20, wherein the dicarboxylic acid is selected from adipic acid, oxalic acid, succinic acid, glutaric acid, phthalic or isophthalic or terephthalic acids, di-lactic acid, and rosinous dicarboxylic acids.  
15
24. A process according to claim 1, wherein the polyacyloxsilyl derivatives of formula (III) are selected from tetraisopropyl-1,3-diacetoxydisiloxane, tetramethyl-1,3-diacetoxydisiloxane, dimethyldiacetoxysilane, diethyldiacetoxysilane, diphenyldiacetoxysilane, vinylmethyldiacetoxysilane, methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, phenyltriacetoxysilane, tetraacetoxysilane, (butanoic acid, 1,3,5-triethyl-1,3,5-tripropyl-1,5-trisiloxanediyl ester), (1,5-trisiloxanediol, 1,3,5-triethyl-1,3,5-tripropyl-, dipropanoate), (2-silanaphthalen-2-ol, 1,2,3,4-tetrahydro-2-(7-hydroxy-1,1,3,3,5,5,7,7-octamethyltetrasiloxanoxy)-, diacetate), (2-silanaphthalen-2-ol, 1,2,3,4-tetrahydro-2-(5-hydroxy-1,1,3,3,5,5-

hexamethyltrisiloxanoxy)-, diacetate), (2-silanaphthalen-2-ol, 1,2,3,4-tetrahydro-2-(3-hydroxy-1,1,3,3-tetramethyldisiloxanoxy)-, diacetate), (1,9-pentasiloxanediol, 1,3,5,7,9-pentamethyl-1,3,5,7,9-pentavinyl-, diacetate),  
5 (1,7-tetrasiloxanediol, 1,3,5,7-tetraethenyl-1,3,5,7-tetramethyl-, diacetate), (1,7-tetrasiloxanediol, 1,1,3,3,5,5,7,7-octaethyl-, diacetate),  
(1,5-trisiloxanediol, 1,3,5-triethenyl-1,3,5-trimethyl-, diacetate), (heptasiloxane, 1,1,1,13-tetraacetoxy-3,3,5,5,7,7,9,9,11,11,13,13-dodecamethyl), (1,5-trisiloxanediol, 1,3,5-triethyl-1,3,5-trimethyl-, diacetate), (1,5-trisiloxanediol, 1,1,3,3,5,5,-hexaethyl-, dibutyrate), (1,5-trisiloxanediol, 1,1,3,3,5,5-hexaethyl-,  
10 dipropionate), (1,5-trisiloxanediol, 1,3,5-triethyl-1,3,5-tripropyl-, diacetate), (1,5-trisiloxanediol, 1,1,3,3,5,5-hexaethyl-, diacetate), (1,1,1,7-tetrasiloxanetetrol, 3,3,5,5,7,7-hexamethyl-,  
15 triacetate), (1,5-trisiloxanediol, 1,1,3,5,5-pentamethyl-3-vinyl-, diacetate), (1-tetrasiloxanol, 7-acetyl-1,1,3,3,5,5,7,7-octamethyl-, acetate),  
(1-pentasiloxanol, 9-acetyl-1,1,3,3,5,5,7,7,9,9-decamethyl-, acetate; pentasiloxanol, 9-acetyl-1,1,3,3,5,5,7,7,9,9-decamethyl-, acetate),  
20 (1,9-pentasiloxanediol, decamethyl-, diacetate), (1,5-trisiloxanediol, hexamethyl-, diacetate),  
(1,17-nonasiloxanediol, octadecamethyl-, diacetate),  
(1,15-octasiloxanediol, hexadecamethyl-, diacetate),  
25 (1,7,13-heptasiloxanetriol, tridecamethyl-, triacetate), (1,1,7-tetrasiloxanetriol, 1,3,3,5,5,7,7-heptamethyl-, triacetate), (1,13-heptasiloxanediol, tetradecamethyl-, diacetate),

(1,7-tetrasiloxanediol, 1,1,3,3,5,5,7,7-octamethyl-, diacetate), ditert-butyldiacetotoxysilane, and ditert-butoxydiacetoxysilane.

- 5 25. A process according to any preceding claim, wherein the reaction is carried out in a suitable solvent.
26. A process as claimed in claim 25, wherein the solvent is selected from pentane, cyclopentane, hexane, cyclohexane, heptane, toluene, xylene, benzene, mesitylene, ethylbenzene, octane, decane, decahydronaphthalene, diethyl ether, diisopropyl ether, diisobutyl ether, N,N-dimethylformamide, N-methylpyrrolidone, N,N-dimethylacetamide, and mixtures thereof.
27. A process according to either of claims 25 and 26, wherein the solvent forms a heterogeneous low boiling azeotrope with the distilled acid product.
28. A process according to any preceding claim, wherein the molar ratio of the reactive groups present in the polyacyloxysilyl derivative:acid is between 1:100 and 100:1.
29. A process according to any preceding claim, wherein the solvent, where present, is at least 10 wt% of the total reaction mix at the start of the reaction.
- 30 30. A process according to any preceding claim, wherein the molecular weight is in the range 1000 to 1000000 kD.

31. A process according to claim 30, wherein the molecular weight is in the range 1000 to 100000 kD.
32. A process according to claim 30, wherein the molecular weight is in the range 1000 to 10000 kD.  
5
33. A process according to any preceding claim, wherein m is 2.
- 10 34. A process according to any preceding claim, wherein each R<sub>4</sub> and R<sub>5</sub> may be hydroxyl or may be independently selected from alkyl, aryl, alkoxy, aryloxy, -L'-SiR<sub>1</sub>R<sub>2</sub>-, -L'-(SiR<sub>4</sub>R<sub>5</sub>L')<sub>n</sub>-SiR<sub>1</sub>R<sub>2</sub>-, alkenyl, alkynyl, aralkyl or aralkyloxy radicals optionally substituted by one or more substituents independently selected from the group comprising alkyl, alkoxy, aralkyl, aralkyloxy, hydroxyl, aryl, aryloxy, halogen, amino (preferably, tertiary amino) or amino alkyl radicals, or R<sub>4</sub> or R<sub>5</sub> may  
15 independently be an -O-C(O)-L- group;  
20 wherein each R<sub>1</sub> and R<sub>2</sub> may independently represent hydrogen, hydroxyl, alkyl, alkenyl, alkynyl, alkoxy, aryl, aryloxy, aralkyl or aralkyloxy radical optionally substituted by one or more substituents independently selected from the group comprising alkyl, alkoxy, aralkyl, aralkyloxy, aryl, aryloxy, halogen, hydroxyl, amino (preferably, tertiary amino) or amino alkyl radicals, or R<sub>1</sub> or R<sub>2</sub> may  
25 independently be an -O-C(O)-L- group;  
30 wherein L represents a hydrocarbyl or substituted hydrocarbyl group, wherein said substituted

hydrocarbyl is substituted by one or more substituents independently selected from the group comprising alkyl, alkoxy, aralkyl, aralkyloxyl, aryl, aryloxyl, hydroxyl, halogen, amino or amino alkyl radicals, or a polymer with pendant acid groups; and

L' represents O, S, or NR<sub>6</sub>, where R<sub>6</sub> is defined as is R<sub>7</sub>, or L.

10

35. A process according to any one of claims 1 to 34 which includes the additional step of incorporating the polymer in a film or coating composition.

15 36. A process for the preparation of poly(silyl ester)s as hereinbefore described and with reference to the examples and figure.

20 37. A film or coating comprising a polymer as prepared or obtainable by a process as defined in any of claims 1 to 34.

25 38. A poly(silyl ester) prepared or obtainable by a process as defined in any one of claims 1 to 34.

39. A coating or film composition comprising a poly(silyl ester) as prepared or obtainable by a process in accordance with any of claims 1 to 34.

30 40. A poly(silyl ester) comprising the repeating group (I) as defined in claims 1 to 34, and wherein L is a polylactic acid or substituted polylactic acid

residue or a rosin or substituted rosin residue of a polycarboxylic acid.

41. A coating or film composition comprising a poly(silyl ester) according to claim 40.  
5
42. A coating or film composition according to claim 39 or 41 wherein the composition is an antifouling coating or film composition.  
10
43. A coating or film composition according to claim 39 or 41 wherein the composition is suitable for use in medical and/or veterinary applications to provide controlled release of a bioactive substance.  
15
44. A film or coating comprising a poly(silyl ester) according to claim 40.  
20
45. An implantable medical and/or veterinary device having a coating comprising a coating or film composition according to claims 39, 41 or 43.