PORTADA

INTEGRANTES =

Liz Oriana Rodrigues Cruz 201910027010 Simón Marín Giraldo 201910050010

ESPECIFICACIONES =

```
< CFGLR-€ > →C
```

< Productions > → P

< Terminal $> \rightarrow$ T

< No Terminal > → NT

$$\rightarrow \diamond$$

Caracter Minúscula → Mi Caracter Mayúscula → Ma

INDICE =

- 1. PORTADA
- 2. RED DE AUTOMATAS
- 3. CLAUSURAS
- 4. FUNCION SIN_NOMBRE MAQUINA PILOTO LR(0)
- **5.** MAQUINA PILOTO LR(1) o LALR(1)
- 6. TABLAS M. PILOTO
- 7. AUTOMATA PILOTO

RED DE AUTOMATAS

CLAUSURAS

$$Clau(I_1) = \{I_1 - I_2 - I_6\}$$

$$Clau(S_1) = \{S_1\}$$

$$Clau(F_1) = \{F_1\}$$

$$Clau(I_2) = \{I_2 - I_6\}$$

$$Clau(S_2) = \{S_2\}$$

$$Clau(S_3) = \{S_3 - I_3 - I_4 - I_5 - I_6\}$$

$$Clau(S_4) = \{S_4\}$$

$$Clau(S_5) = \{S_5 - I_2 - I_6\}$$

$$Clau(F_2) = \{F_2\}$$

$$Clau(I_3) = \{I_3 - I_4 - I_5 - I_6\}$$

$$Clau(S_6) = \{S_6\}$$

$$Clau(S_7) = \{S_7 - I_3 - I_4 - I_5 - I_6\}$$

$$Clau(F_3) = \{F_3\}$$

$$Clau(I_4) = \{I_4 - I_5 - I_6\}$$

$$Clau(S_8) = \{S_8 - I_6\}$$

$$Clau(S_8) = \{F_4\}$$

$$Clau(F_4) = \{F_4\}$$

$$Clau(F_5) = \{F_5\}$$

$$Clau(F_5) = \{F_5\}$$

$$Clau(I_6) = \{I_6\}$$

$$Clau(F_6) = \{F_6\}$$

FUNCION SIN_NOMBRE MAQUINA PILOTO LR(0)

$$\vartheta(Q_0, Ru) = Clau[(I_1 - Ru), (I_2 - Ru), (I_6 - Ru)]$$

$$= Clau[(I_1 - Ru)] = Clau[S_1]$$

$$= S_1 \rightarrow Q_1$$

$$\begin{split} \vartheta(Q_0, NT) &= Clau[(I_1 - NT), (I_2 - NT), (I_6 - NT)] \\ &= Clau[(I_2 - NT)] = Clau[S_2] \\ &= S_2 \rightarrow Q_2 \end{split}$$

$$\begin{split} \vartheta(Q_0, Ma) &= Clau[(I_1 - Ma), (I_2 - Ma), (I_6 - Ma)] \\ &= Clau[(I_6 - Ma)] = Clau[F_6] \\ &= F_6 \rightarrow Q_3 \end{split}$$

$$\vartheta(Q_1, *) = Clau[F_1] = F_1 \rightarrow Q_4$$

$$\vartheta(Q_2, ::=) = Clau[S_3]$$

$$= \{S_3 - I_3 - I_4 - I_5 - I_6\}$$

"No podemos continuar con este método ya que al llegar a la clausura de S_3 nos damos cuenta que tiene mas de un estado lo que incumple con la condición de LR(0)"

$$Q_0 = \{ \langle I_1 - * \rangle, \langle I_2 - * \rangle, \langle I_6 - ::= \rangle \}$$

$$\vartheta(Q_0, Ru) = Clau[< \delta(I_1, Ru) - \dashv > , < \delta(I_2, Ru) - * > , < \delta(I_6, Ru) - ::= >]$$

$$= Clau[< S_1 - \dashv >]$$

$$= < S_1 - * > \to Q_1$$

$$\begin{split} \vartheta(Q_0,NT) &= Clau[\, <\delta(I_1,NT)\, -\, \dashv >\, , <\delta(I_2,NT)\, -\, *>\, , <\delta(I_6,NT)\, -\, ::=\, >\,]\\ &= Clau[\, <\, S_2\, -\, *\, >\,]\\ &=\, <\, S_2\, -\, *\, >\, \to\, Q_2 \end{split}$$

$$\theta(Q_0, Ma) = Clau[< \delta(I_1, Ma) - \dashv > , < \delta(I_2, Ma) - * > , < \delta(I_6, Ma) - ::= >]$$

$$= Clau[< F_6 - ::= >]$$

$$= < F_6 - ::= > \to Q_3$$

$$Q_1 = \left\{ \langle S_1 - * \rangle \right\}$$

$$\vartheta(Q_1, *) = Clau[< \delta(S_1, *) - * >]$$

= $Clau[< F_1 - * >]$
= $< F_1 - * > \to Q_4$

$$Q_2 = \{ \langle S_2 - * \rangle \}$$

$$\vartheta(Q_2, ::=) = Clau[< \delta(S_2, ::=) - *]$$

= $Clau[< S_3 - * >]$
= $< S_3 - * > \to Q_5$

$$Q_5 = \left\{ \langle S_3 - * \rangle, \langle I_3 - \{ \diamond, * \} \rangle, \langle I_4 - \{ |, \diamond, * \} \rangle, \langle I_5 - Ma \rangle, \langle I_6 - \{ |, \diamond, * \} \rangle \right\}$$

$$\vartheta(Q_{5}, P) = Clau \begin{cases} <\delta(S_{3}, P) - *>, <\delta(I_{3}, P) - \{\diamond, *\}>, \\ <\delta(I_{4}, P) - \{|, \diamond, *\}>, <\delta(I_{5}, P) - Ma>, \\ <\delta(I_{6}, P) - \{|, \diamond, *\}> \end{cases}$$

$$= Clau[< S_{4} - *>]$$

$$= < S_{4} - *> \to Q_{6}$$

$$\vartheta(Q_{5},RH) = Clau \begin{bmatrix} <\delta(S_{3},RH)-*>,<\delta(I_{3},RH)-\{\diamond,*\}>,\\ <\delta(I_{4},RH)-\{|,\diamond,*\}>,<\delta(I_{5},RH)-Ma>,\\ <\delta(I_{6},RH)-\{|,\diamond,*\}> \end{bmatrix}$$

$$= Clau[]$$

$$= \to Q_{7}$$

$$\begin{split} \vartheta(Q_{5},T) &= Clau \quad \begin{bmatrix} <\delta(S_{3},T)-*>, <\delta(I_{3},T)-\{\diamond,*\}>, \\ <\delta(I_{4},T)-\{|,\diamond,*\}>, <\delta(I_{5},T)-Ma>, \\ <\delta(I_{6},T)-\{|,\diamond,*\}> \end{bmatrix} \\ &= Clau[< S_{8}-\{|,\diamond,*\}>] \\ &= < S_{8}-\{|,\diamond,*\}> \to Q_{8} \end{split}$$

$$\begin{split} \vartheta(Q_{5},NT) &= Clau \begin{bmatrix} <\delta(S_{3},NT)-*>,<\delta(I_{3},NT)-\{\diamond\,,*\,\}>,\\ <\delta(I_{4},NT)-\{\,|\,,\diamond\,,*\,\}>,<\delta(I_{5},NT)-Ma>,\\ <\delta(I_{6},NT)-\{\,|\,,\diamond\,,*\,\}> \end{bmatrix} \\ &= Clau[\;< F_{a}-\{\,|\,,\diamond\,,*\,\}>] \\ &= < F_{a}-\{\,|\,,\diamond\,,*\,\}> \to Q_{9} \end{split}$$

$$\begin{split} \vartheta(Q_{5},Ma) &= Clau \begin{bmatrix} <\delta(S_{3},Ma) - *>, <\delta(I_{3},Ma) - \{\diamond,*\}>, \\ <\delta(I_{4},Ma) - \{\mid,\diamond,*\}>, <\delta(I_{5},Ma) - Ma>, \\ <\delta(I_{6},Ma) - \{\mid,\diamond,*\}> \end{bmatrix} \\ &= Clau [< F_{6} - \{\mid,\diamond,*\}>] \\ &= < F_{6} - \{\mid,\diamond,*\}> \to Q_{10} \end{split}$$

$$\vartheta(Q_{5}, Mi) = Clau \begin{bmatrix} <\delta(S_{3}, Mi) - * > , <\delta(I_{3}, Mi) - \{ \diamond , * \} > , \\ <\delta(I_{4}, Mi) - \{ |, \diamond , * \} > , <\delta(I_{5}, Mi) - Ma > , \\ <\delta(I_{6}, Mi) - \{ |, \diamond , * \} > \end{bmatrix}$$

$$= Clau[< F_{5} - Ma >]$$

$$= < F_{5} - Ma > \rightarrow Q_{11}$$

$$Q_{6} = \{ \langle S_{4} - * \rangle \}$$

$$\vartheta(Q_{6}, \diamond) = Clau[\langle \delta(S_{4}, \diamond) - * \rangle]$$

$$= Clau[\langle S_{5} - * \rangle]$$

$$= \langle S_{5} - * \rangle \rightarrow Q_{12}$$

$$Q_{7} = \left\{ \langle S_{6} - \{ \diamond, * \} \rangle \right\}$$

$$\vartheta(Q_{7}, |) = Clau[\langle \delta(S_{6}, |) - \{ \diamond, * \} \rangle]$$

$$= Clau[\langle S_{7} - \{ \diamond, * \} \rangle]$$

$$= \langle S_{7} - \{ \diamond, * \} \rangle \rightarrow Q_{13}$$

$$Q_8 = \left\{ < S_8 - \{ \mid, \diamond, * \} >, < I_6 - \{ \mid, \diamond, * \} > \right\}$$

$$\begin{split} \vartheta(Q_8,NT) &= Clau[\, <\delta(S_8,NT) - \big\{\,|\,,\diamond\,,^*\,\big\} > \,,\, <\delta(I_6,NT) - \big\{\,|\,,\diamond\,,^*\,\big\} > \,] \\ &= Clau[\, < F_4 - \big\{\,|\,,\diamond\,,^*\,\big\} > \,] \\ &= < F_4 - \big\{\,|\,,\diamond\,,^*\,\big\} > \to Q_{14} \end{split}$$

$$\vartheta(Q_{8}, Ma) = Clau[< \delta(S_{8}, Ma) - \{ |, \diamond, * \} > , < \delta(I_{6}, Ma) - \{ |, \diamond, * \} >]
= Clau[< F_{6} - \{ |, \diamond, * \} >]
= < F_{6} - \{ |, \diamond, * \} > \to Q_{10}$$

$$Q_{12} = \{ \langle S_5 - * \rangle, \langle I_2 - * \rangle, \langle I_6 - ::= \rangle \}$$

$$\begin{split} \vartheta(Q_{12},Ru) &= Clau[\, < \delta(S_5,Ru) - {}^*> \,, < \delta(I_2,Ru) - {}^*> \,, < \delta(I_6,Ru) - ::=> \,] \\ &= Clau[\, < F_2 - {}^*> \,] \\ &= < F_2 - {}^*> \to Q_{15} \end{split}$$

$$\begin{split} \vartheta(Q_{12},NT) &= Clau[\, < \delta(S_5,NT) - {}^*> \, , < \delta(I_2,NT) - {}^*> \, , < \delta(I_6,NT) - ::=> \,] \\ &= Clau[\, < S_2 - {}^*> \,] \\ &= < S_2 - {}^*> \to Q_2 \end{split}$$

$$\vartheta(Q_{12}, Ma) = Clau[< \delta(S_5, Ma) - * > , < \delta(I_2, Ma) - * > , < \delta(I_6, Ma) - ::= >]$$

$$= Clau[< F_6 - ::= >]$$

$$= < F_6 - ::= > \to Q_3$$

$$Q_{13} = \{ \langle S_7 - \{ \diamond, * \} \rangle, \langle I_3 - \{ \diamond, * \} \rangle, \\ \langle I_4 - \{ |, \diamond, * \} \rangle, \langle I_5 - Ma \rangle, \langle I_6 - \{ |, \diamond, * \} \rangle \}$$

$$\vartheta(Q_{13}, P) = Clau \begin{bmatrix} <\delta(S_7, P) - \{\diamond, *\} > , <\delta(I_3, P) - \{\diamond, *\} > , \\ <\delta(I_4, P) - \{|, \diamond, *\} > , <\delta(I_5, P) - Ma > , \\ <\delta(I_6, P) - \{|, \diamond, *\} > \end{bmatrix}$$

$$= Clau [< F_3 - \{\diamond, *\} >]$$

$$= < F_3 - \{\diamond, *\} > \to Q_{16}$$

$$\vartheta(Q_{13},RH) = Clau \left\{ \begin{array}{l} <\delta(S_{7},RH) - \{ \diamond , * \} > , <\delta(I_{3},RH) - \{ \diamond , * \} > , \\ <\delta(I_{4},P) - \{ |, \diamond , * \} > , <\delta(I_{5},P) - Ma > , \\ <\delta(I_{6},P) - \{ |, \diamond , * \} > \end{array} \right.$$

=
$$Clau[< S_6 - { \diamond, * } >]$$

= $< S_6 - { \diamond, * } > \to Q_7$

$$\vartheta(Q_{13}, T) = Clau[\langle S_8 - \{ |, \diamond, * \} \rangle]
= \langle S_8 - \{ |, \diamond, * \} \rangle \rightarrow Q_8$$

$$\begin{array}{ll} \vartheta(Q_{13},NT) &= Clau[\, < F_a - |\, \big\{\, |\,, \diamond\,, ^*\, \big\} > \,] \\ &= < F_a - \big\{\, |\,, \diamond\,, ^*\, \big\} > \to Q_9 \end{array}$$

$$\begin{array}{ll} \vartheta(Q_{13}, Ma) &= Clau[F_6 - \{\mid, \diamond, * \} >] \\ &= \langle F_6 - \{\mid, \diamond, * \} > \to Q_{10} \end{array}$$

$$\vartheta(Q_{13}, Mi) = Clau[\langle F_5 - Ma \rangle]$$
$$= \langle F_5 - Ma \rangle \to Q_{11}$$

PARA HACER MAS SIMPLE EL AUTOMATA PRIMERO HAREMOS LAS TABLAS Y LUEGO DIBUJAMOS EL AUTOMATA COMO TAL.

$\mathbf{Q_0}$	Regla	L.A.
l ₁	C → • Ru*	*
	Ru → • NT ::= P, R	
l ₂	• NT ::= P	*
	• ∈	
l ₆	NT → • Ma	::=

Q_1	Regla	L.A.
S ₁	C → Ru • *	*

Q_2	Regla	L.A.
	Ru → NT • ::= P, R	
S ₂	NT • ::= P	*
	∈ •	

Q_3	Regla	L.A.
F ₆	NT → Ma •	::=

\mathbf{Q}_4	Regla	L.A.
F ₁	C → Ru* •	*

Q ₅	Regla	L.A.
	Ru → NT ::= • P, R	
S ₃	NT ::= ● P	*
	€ •	
	P → • RH P	
l ₃	• RH	◇ *
	• €	
	RH → • T NT	
l ₄	● NT	\land *
I ₅	T → • Mi	Ma
I ₆	NT → • Ma	\> *

Q_6	Regla	L.A.
	$Ru \rightarrow NT ::= P \bullet , R$	
S ₄	NT ::= P ●	*
	∈ •	

Q_7	Regla	L.A.
	$P \rightarrow RH \bullet \mid P$	
S ₆	RH •	◇ *
	€ •	

Q ₈	Regla	L.A.
S ₈	$RH \rightarrow T \bullet NT$	
58	NT	1 *
I ₆	NT → • Ma	\> *

Q_9	Regla	L.A.
Г	$RH \rightarrow T NT$	I ^ *
Γ _a	NT •	1 ^ .

Q ₁₀	Regla	L.A.
F ₆	NT → Ma •	

Q ₁₁	Regla	L.A.
F ₅	T → Mi •	Ma

Q ₁₂	Regla	L.A.
	Ru → NT ::= P, • R	
S ₅	NT ::= P ●	*
	€ •	
	Ru → • NT ::= P, R	
l ₂	• NT ::= P	*
	• €	
I ₆	NT → • Ma	::=

Q ₁₃	Regla	L.A.
S ₇	$P \rightarrow RH \mid \bullet P$	
	RH •	◇ *
	€ •	
	P → • RH P	
l ₃	• RH	◇ *
	• €	
I ₄	RH → • T NT	
	● NT	
I ₅	T → • Mi	Ma
I ₆	NT → • Ma	\(\dagger* \)

Q ₁₄	Regla	L.A.
F ₄	RH → T NT •	
	NT	

Q ₁₅	Regla	L.A.
	Ru → NT ::= P, R •	
F ₂	NT ::= P ●	*
	∈ •	

Q ₁₆	Regla	L.A.
	$P \rightarrow RH \mid P \bullet$	
F ₃	RH •	♦ *
	∈ •	

```
Q_0 = \{Q_1 - Ru\}, \{Q_2 - NT\}, \{Q_3 - Ma\}
Q_1 = \{Q_4 - *\}
Q_2 = \{Q_5 - ::= \}
Q_3 = \epsilon
Q_4 = \epsilon
Q_5 = \{Q_6 - P\}, \{Q_7 - RH\}, \{Q_8 - T\}, \{Q_9 - NT\}, \{Q_{10} - Ma\}, \{Q_{11} - Mi\}
Q_6 = \{Q_{12} - \diamond\}
Q_7 = \{Q_{13} - |\}
Q_8 = \{Q_{14} - NT\}, \{Q_{10} - Ma\}
Q_9 = \epsilon
Q_{10} = \epsilon
Q_{11} = \epsilon
Q_{12}=\left\{Q_{15}-Ru\right\} , \left\{Q_{2}-NT\right\} , \left\{Q_{3}-Ma\right\}
Q_{13} = \{Q_{16} - P\}, \{Q_7 - RH\}, \{Q_8 - T\}, \{Q_9 - NT\}, \{Q_{10} - Ma\}, \{Q_{11} - Mi\}\}
Q_{14} = \epsilon
Q_{15} = \epsilon
Q_{16} = \epsilon
```

AUTOMATA PILOTO

ES UN AUTOMATA DE CONDICION LR(1)

