

Dual Spaces and the Riesz Representation Theorem If X is a normed space over \mathbb{K} , then a linear map from X into \mathbb{K} is called a linear functional on X.

We denote by X^* the collection of all *bounded* linear functionals on X, i.e. $X^* = B(X, \mathbb{K})$; we equip X^* with the norm

$$\|f\|_{X^*}=\sup_{\|x\|=1}|f(x)|\quad \text{ for each } f\in X^*,$$
 The space X^* is called the dual (space) of X.

Example 12.1 Take $X = \mathbb{R}^n$. Then if $e^{(j)}$ is the jth coordinate vector, we have $\mathbf{x} = \sum_{j=1}^{n} x_j \mathbf{e}^{(j)}$, and so if $f: \mathbb{R}^n \to \mathbb{R}$ is linear, then

$$f(\mathbf{x}) = f\left(\sum_{j=1}^{n} x_j e^{(j)}\right) = \sum_{j=1}^{n} x_j f(e^{(j)});$$

if we write y for the element of \mathbb{R}^n with $y_j = f(e^{(j)})$, then we can write this as

$$f(\mathbf{x}) = \sum_{j=1}^{n} x_j y_j = (\mathbf{x}, \mathbf{y}).$$
 (12.1)

So with any $f \in (\mathbb{R}^n)^*$ we can associate some $y \in \mathbb{R}^n$ such that (12.1) holds; since

$$|f(\mathbf{x})| \le ||\mathbf{y}||_{\ell^2} ||\mathbf{x}||_{\ell^2}$$
 and $|f(\mathbf{y})| = ||\mathbf{y}||_{\ell^2}^2$,

it follows that

$$||f||_{(\mathbb{R}^n)^*} = ||\mathbf{y}||_{\ell^2}.$$

In this way $(\mathbb{R}^n)^* \equiv \mathbb{R}^n$.

Lemma 12.3 If H is a Hilbert space over \mathbb{K} and $y \in H$, then the map $f_y \colon H \to \mathbb{K}$ defined by setting

$$f_{y}(x) = (x, y)$$
 (12.2)

is an element of H^* with $||f_y||_{H^*} = ||y||_H$.

Note that this shows in particular that $||x|| = \max_{||y||=1} |(x, y)|$.

Theorem 12.4 (Riesz Representation Theorem) *If H is a Hilbert space, then* for every $f \in H^*$ there exists a unique element $y \in H$ such that

$$f(x) = (x, y) for all x \in H; (12.3)$$

and $||y||_H = ||f||_{H^*}$. In particular, the Riesz map $R: H \to H^*$ defined via (12.2) by setting $R(y) = f_y$ maps H onto H^* .

Note if H is real, then R is a bijective linear isometry and $H \equiv H^*$.

Proof Let K = Ker f; since f is bounded this is a closed linear subspace of H (Lemma 11.12). We claim that K^{\perp} is a one-dimensional linear subspace of H. Indeed, given $u, v \in K^{\perp}$ we have

$$f(f(u)v - f(v)u) = f(u)f(v) - f(v)f(u) = 0,$$
 (12.4)

since f is linear. Since $u, v \in K^{\perp}$, it follows that $f(u)v - f(v)u \in K^{\perp}$, while (12.4) shows that $f(u)v - f(v)u \in K$. Since $K \cap K^{\perp} = \{0\}$, it follows that

$$f(u)v - f(v)u = 0,$$

and so u and v are linearly dependent.

Therefore we can choose $z \in K^{\perp}$ such that ||z|| = 1, and use Proposition 10.4 to decompose any $x \in H$ as

$$x = (x, z)z + w$$
 with $w \in (K^{\perp})^{\perp} = K$,

where we have used Lemma 10.5 and the fact that K is closed to guarantee that $(K^{\perp})^{\perp} = K$. Thus

$$f(x) = (x, z) f(z) = (x, \overline{f(z)}z),$$

and setting $y = \overline{f(z)}z$ we obtain (12.3).

To show that this choice of y is unique, suppose that

$$(x, y) = (x, \hat{y})$$
 for all $x \in H$.

Then $(x, y - \hat{y}) = 0$ for all $x \in H$; taking $x = y - \hat{y}$ gives $||y - \hat{y}||^2 = 0$. Finally, Lemma 12.3 shows that $||y||_H = ||f||_{H^*}$. Let H be a Hilbert space over \mathbb{R} . A linear operator $A: H \to H$ is strictly positive definite if there exists $\beta > 0$ such that

$$(Au, u) \ge \beta ||u||^2, \quad \forall u \in H. \quad (1)$$

Theorem (Inverse of a positive definite operator). Let H be a real Hilbert space and A: H \rightarrow H be a strictly positive definite bonded linear operator so that (1) holds. Then, for every $f \in H$, $\exists ! u = A^{-1}f \in H$ such that

$$Au = f (2)$$

The inverse operator A^{-1} satisfies $||A^{-1}|| \le \frac{1}{\beta}$.

Proof We have $\beta ||u||^2 \le (Au, u) \le ||Au|| ||u||$. Hence

$$\beta \|u\| \le \|Au\| \tag{3}$$

and so A is 1-1. Let $(v_n=Au_n)$ be a sequence in Rang(A) such that $v_n\to v$. From $\|u_m-u_n\|\leq \frac{1}{\beta}\|Au_m-Au_n\|$, we know that (u_n) is Cauchy and so converges.

Let $u_n \to u$; then $Au_n \to Au$. Thus v = Au which shows that Range(A) is closed.

We now claim that Range(A) = H. If not, since Range(A) is closed, we could find a nonzero vector $\omega \perp \text{Range}(A)$. This is a contradiction.

Thus A is bijective. It follows from (2) and (3) that

$$||A^{-1}f|| \le \frac{1}{\beta} ||f||$$

and so $||A^{-1}|| \le \frac{1}{\beta}$.

Theorem (Lax-Milgram). Let H be a Hilbert space over the reals and let $B: H \times H \mapsto \mathbb{R}$ be a continuous bilinear functional. This means that

$$B[au + bu', v] = aB[u, v] + bB[u', v],$$

$$B[u, av + bv'] = aB[u, v] + bB[u, v'],$$

$$|B[u, v]| \le C ||u|| ||v||,$$

for some constant C and all $u, u', v, v' \in H$, $a, b \in \mathbb{R}$. In addition, assume that B is strictly positive definite, i.e., there exists a constant $\beta > 0$ such that

(4)
$$B[u,u] \geq \beta ||u||^2 \quad \text{for all } u \in H.$$

Then, for every $f \in H$, there exists a unique $u \in H$ such that

(5)
$$B[u,v] = (f,v)$$
 for all $v \in H$.

Moreover,

$$||u|| \leq \beta^{-1}||f||.$$

Proof. For every fixed $u \in H$ the map $v \mapsto B[u,v]$ is a continuous linear functional on H. By the Riesz representation theorem, there exists a unique vector, which we call $Au \in H$, such that

$$B[u,v] = (Au,v)$$
 for all $v \in H$.

We claim that A is a bounded, positive definite linear operator.

The linearity of A is easy to check. To prove that A is bounded we observe that, for every $u \in H$,

$$||Au|| = \sup_{||v||=1} |(Au, v)| = \sup_{||v||=1} |B[u, v]| \le C ||u||.$$

Hence $||A|| \leq C$.

Moreover,

$$(Au, u) = B[u, u] \ge \beta ||u||^2,$$

proving that A is strictly positive definite.

We can apply the above theorem to conclude that the equation Au = f has a unique solution $u = A^{-1}f$, satisfying $||u|| \le \beta^{-1}||f||$. By the definition of A, this provides a solution to (5).

A sequence (x_n) in a Hilbert space H converges weakly to x, if $(x_n - x, y) \to 0$, $\forall y \in H$.

Lemma Let $(H, (\cdot, \cdot), ||\cdot||)$ be a real Hilbert space and let $A: H \to H$ be a not necessarily linear operator satisfying

- (a) $(Au Av, u v) \ge c||u v||^2$ for all $u, v \in H$ (strong monotonicity);
- (b) $||Au Av|| \le L||u v||$ for all $u, v \in H$ (Lipschitz condition), where c and L are given positive constants. Then for all $w \in H$ there exists a unique $u^* \in H$ such that $Au^* = w$, i.e., A is a bijection.

We only prove existence: First we note that $c \leq L$ by using (a) and (b) together with Cauchy-Schwarz. For a fixed $w \in H$, define $B: H \to H$ by

$$Bu = u - t(Au - w), \quad t > 0, \ u \in H.$$

Note that if there is a fixed point of B then it is u^* as desired. We wish to apply the Banach Contraction Principle in (H, d).

We have for all $u, v \in H$

$$d(Bu, Bv)^{2} = \|Bu - Bv\|^{2}$$

$$= \|u - v\|^{2} - 2t(u - v, Au - Av) + t^{2}\|Au - Av\|^{2}$$

$$\leq \|u - v\|^{2} - 2tc\|u - v\|^{2} + t^{2}L^{2}\|u - v\|^{2}$$
from (a)
$$= \underbrace{(1 - 2tc + t^{2}L^{2})}_{\text{call this } m} \|u - v\|^{2}$$

$$= m\|u - v\|^{2}$$

Obviously, $m \ge 0$. We choose t to minimize m = m(t) and find that $t = \frac{c}{L^2}$. Thus the minimum value of m is

$$m = 1 - 2\frac{c^2}{L^2} + \frac{c^2}{L^2} = 1 - \frac{c^2}{L^2} \ge 0$$

since $c \leq L$. If c = L, then m = 0, so B is constant, i.e., $Bu = w_0$, so that $w_0 = u - (c/L^2)(Au - w)$. In this case A is affine, namely

$$Au = \frac{L^2}{c}(u - w_0) + w,$$

so that $u^* = w_0$.

When c < L then 0 < m < 1 so that B is a contraction and hence by the Banach Contraction Principle , B has a unique fixed point u^* .

Theorem (Nonlinear Lax–Milgram Theorem). Let H be a real Hilbert space and consider two functionals $a: H \times H \to \mathbb{R}$ and $b: H \to \mathbb{R}$ satisfying

- 1. For all $u \in H$ the map $v \mapsto a(u, v)$ is linear and continuous on H (i.e., it belongs to H^*);
- 2. $a(u, u v) a(v, u v) \ge c||u v||^2$ for all $u, v \in H$ and some c > 0;
- 3. $|a(u, w) a(v, w)| \le L||u v|| \cdot ||w||$ for all $u, v, w \in H$ and some L > 0;
- 4. b is a continuous linear functional (i.e., $b \in H^*$).

Then there exists a unique $u \in H$ such that

$$(\sharp) \qquad a(u,v) = b(v) \quad \forall v \in H.$$

Proof. By the first assumption and the Riesz Representation Theorem for all $u \in H$ there exists a unique $z \in H$ such that a(u,v)=(v,z) for all $v \in H$. So there exists an operator $A:H \to H$ defined by Au:=z. We now rewrite the second condition

$$a(u, u - v) - a(v, u - v) = (u - v, Au) - (u - v, Av)$$

$$= (u - v, Au - Av)$$

$$= (Au - Av, u - v)$$

$$\ge c||u - v||^2,$$

for all $u, v \in H$, so A satisfies condition (a) of the previous lemma. From the third assumption we have for all $u, v, z \in H$

$$|a(u, z) - a(v, z)| = |(z, Au) - (z, Av)|$$

= $|(z, Au - Av)|$
 $\leq L||u - v|| \cdot ||z||$.

Choosing z = Au - Av we see that operator A also satisfies condition (b) of Lemma above.

On the other hand, by the fourth assumption and the Riesz Representation Theorem there exists a unique w such that b(v)=(v,w) for all $v\in H$. Now (\sharp) can be written as

$$[(v, Au) = (v, w), \quad \forall v \in H] \iff Au = w,$$

so the conclusion of the theorem follows.

Theorem Let H be a real Hilbert space. Let $K \subset H$ be a nonempty closed convex set. Then for every $f \in H$ there exists a unique element $u \in K$ such that

(2)
$$|f - u| = \min_{v \in K} |f - v| = \operatorname{dist}(f, K).$$

Moreover, u is characterized by the property

(3)
$$u \in K \text{ and } (f - u, v - u) \le 0 \quad \forall v \in K.$$

Notation. The above element u is called the *projection* of f onto K and is denoted by

$$u = P_K f$$
.

Proposition Let $K \subset H$ be a nonempty closed convex set. Then P_K does not increase distance, i.e.,

$$|P_K f_1 - P_K f_2| \le |f_1 - f_2| \quad \forall f_1, f_2 \in H.$$

Proof. Set $u_1 = P_K f_1$ and $u_2 = P_K f_2$. We have

(6)
$$(f_1 - u_1, v - u_1) \le 0 \quad \forall v \in K$$

(7)
$$(f_2 - u_2, v - u_2) \le 0 \quad \forall v \in K.$$

Choosing $v = u_2$ in (6) and $v = u_1$ in (7) and adding the corresponding inequalities, we obtain

$$|u_1 - u_2|^2 \le (f_1 - f_2, u_1 - u_2).$$

It follows that $|u_1 - u_2| \le |f_1 - f_2|$.

Definition. A bilinear form $a: H \times H \to \mathbb{R}$ is said to be

(i) continuous if there is a constant C such that

$$|a(u, v)| \le C|u||v| \quad \forall u, v \in H;$$

(ii) coercive if there is a constant $\alpha > 0$ such that

$$a(v, v) \ge \alpha |v|^2 \quad \forall v \in H.$$

Theorem (Stampacchia). Assume that a(u, v) is a continuous coercive bilinear form on H. Let $K \subset H$ be a nonempty closed and convex subset. Then, given any $\varphi \in H^*$, there exists a unique element $u \in K$ such that

(10)
$$a(u, v - u) \ge \langle \varphi, v - u \rangle \quad \forall v \in K.$$

Moreover, if a is symmetric, then u is characterized by the property

(11)
$$u \in K \quad and \quad \frac{1}{2}a(u,u) - \langle \varphi, u \rangle = \min_{v \in K} \left\{ \frac{1}{2}a(v,v) - \langle \varphi, v \rangle \right\}.$$

Proof

From the Riesz–Fréchet representation theorem we know that there exists a unique $f \in H$ such that

$$\langle \varphi, v \rangle = (f, v) \quad \forall v \in H.$$

On the other hand, if we fix $u \in H$, the map $v \mapsto a(u, v)$ is a continuous linear functional on H. Using once more the Riesz-Fréchet representation theorem we find unique element in H, denoted by Au, such that $a(u, v) = (Au, v) \forall v \in H$. Clearly A is a linear operator from H into H satisfying

$$(12) |Au| \le C|u| \forall u \in H,$$

(13)
$$(Au, u) \ge \alpha |u|^2 \quad \forall u \in H.$$

Problem (10) amounts to finding some $u \in K$ such that

$$(14) (Au, v - u) \ge (f, v - u) \quad \forall v \in K.$$

Let $\rho > 0$ be a constant (to be determined later). Note that (14) is equivalent to

$$(15) \qquad (\rho f - \rho Au + u - u, v - u) \le 0 \quad \forall v \in K,$$

i.e.,

$$u = P_K(\rho f - \rho Au + u).$$

For every $v \in K$, set $Sv = P_K(\rho f - \rho Av + v)$. We claim that if $\rho > 0$ is properly chosen then S is a strict contraction. Indeed, since P_K does not increase distance, we have

$$|Sv_1 - Sv_2| \le |(v_1 - v_2) - \rho(Av_1 - Av_2)|$$

and thus

$$|Sv_1 - Sv_2|^2 \le |v_1 - v_2|^2 - 2\rho(Av_1 - Av_2, v_1 - v_2) + \rho^2|Av_1 - Av_2|^2$$

$$\le |v_1 - v_2|^2 (1 - 2\rho\alpha + \rho^2 C^2).$$

Choosing $\rho > 0$ in such a way that $1 - 2\rho\alpha + \rho^2C^2 < 1$ (i.e., $0 < \rho < 2\alpha/C^2$) we find that S has a unique fixed point.

Assume now that the form a(u, v) is also symmetric. Then a(u, v) defines a new scalar product on H; the corresponding norm $a(u, u)^{1/2}$ is equivalent to the original norm |u|. It follows that H is also a Hilbert space for this new scalar product. Using the Riesz–Fréchet theorem we may now represent the functional φ through the new scalar product, i.e., there exists some unique element $g \in H$ such that

$$\langle \varphi, v \rangle = a(g, v) \quad \forall v \in H.$$

Problem (10) amounts to finding some $u \in K$ such that

(16)
$$a(g-u, v-u) \le 0 \quad \forall v \in K.$$

u is the projection onto K of g for the new inner product a and is the unique element of K that achieves

$$\min_{v \in K} a(g - v, g - v)^{1/2}$$
.

This amounts to minimizing on K the function

$$v \mapsto a(g - v, g - v) = a(v, v) - 2a(g, v) + a(g, g) = a(v, v) - 2\langle \varphi, v \rangle + a(g, g),$$

or equivalently the function

$$v \mapsto \frac{1}{2}a(v,v) - \langle \varphi, v \rangle.$$

The Hilbert Adjoint of a Linear Operator

Theorem 13.1 Let H and K be Hilbert spaces and $T \in B(H, K)$. Then there exists a unique operator $T^* \in B(K, H)$, which we call the (Hilbert) adjoint of T, such that

$$(Tx, y)_K = (x, T^*y)_H$$
 (13.1)

for all $x \in H$, $y \in K$. Furthermore, $T^{**} := (T^*)^* = T$ and

$$||T^*||_{B(K,H)} = ||T||_{B(H,K)}.$$

Proof Let $y \in K$ and consider $f: H \to \mathbb{K}$ defined by $f(x) := (Tx, y)_K$. Then clearly f is linear and

$$|f(x)| = |(Tx, y)_K|$$

 $\leq ||Tx||_K ||y||_K$
 $\leq ||T||_{B(H,K)} ||x||_H ||y||_K.$

It follows that $f \in H^*$, and so by the Riesz Representation Theorem there exists a unique $z \in H$ such that

$$(Tx, y)_K = (x, z)_H$$
 for all $x \in H$.

We now define $T^* : K \to H$ by setting $T^*y = z$. By definition we have

$$(Tx, y)_K = (x, T^*y)_H$$
 for all $x \in H, y \in K$,

i.e. (13.1). However, it remains to show that $T^* \in B(K, H)$. First, T^* is linear since for all $\alpha, \beta \in \mathbb{K}$, $y_1, y_2 \in Y$,

$$(x, T^*(\alpha y_1 + \beta y_2))_H = (Tx, \alpha y_1 + \beta y_2)_K$$

$$= \overline{\alpha}(Tx, y_1)_K + \overline{\beta}(Tx, y_2)_K$$

$$= \overline{\alpha}(x, T^*y_1)_H + \overline{\beta}(x, T^*y_2)_H$$

$$= (x, \alpha T^*y_1 + \beta T^*y_2)_H,$$

i.e. $T^*(\alpha y_1 + \beta y_2) = \alpha T^* y_1 + \beta T^* y_2$. To show that T^* is bounded, we can write

$$||T^*y||_H^2 = (T^*y, T^*y)_H$$

$$= (TT^*y, y)_K$$

$$\leq ||TT^*y||_K ||y||_K$$

$$\leq ||T||_{B(H,K)} ||T^*y||_H ||y||_K.$$

If $||T^*y||_H \neq 0$, then we can divide both sides by $||T^*y||_H$ to obtain

$$||T^*y||_H \le ||T||_{B(H,K)}||y||_K$$

while this final inequality is trivially true if $||T^*y||_H = 0$. Thus $T^* \in B(K, H)$ with $||T^*||_{B(K,H)} \le ||T||_{B(H,K)}$.

We now show that $T^{**} := (T^*)^* = T$, from which can obtain equality of the norms of T and T^* . Indeed, if we have $T^{**} = T$, then it follows that

$$||T||_{B(H,K)} = ||(T^*)^*||_{B(H,K)} \le ||T^*||_{B(K,H)},$$

which combined with $||T^*||_{B(K,H)} \le ||T||_{B(H,K)}$ shows that

$$||T^*||_{B(K,H)} = ||T||_{B(H,K)}.$$

To prove that $T^{**} = T$, note that since $T^* \in B(K, H)$ it follows that $(T^*)^* \in B(H, K)$, and by definition for all $x \in K$, $y \in H$ we have

$$(x, (T^*)^*y)_K = (T^*x, y)_H$$
$$= \overline{(y, T^*x)_H}$$
$$= \overline{(Ty, x)_K}$$
$$= (x, Ty)_K,$$

i.e. $(T^*)^*y = Ty$ for all $y \in H$, which is exactly $(T^*)^* = T$.

Finally, we show that the requirement that (13.1) holds defines T^* uniquely. Suppose that T^* , $\hat{T}: K \to H$ are such that

$$(x, T^*y)_H = (x, \hat{T}y)_H$$
 for all $x \in H, y \in K$.

Then for each $y \in K$ we have

$$(x, (T^* - \hat{T})y)_H = 0$$
 for every $x \in H$;

this shows that $(T^* - \hat{T})y = 0$ for each $y \in K$, i.e. that $\hat{T} = T^*$.

Lemma 13.2 Let H, K, and J be Hilbert spaces, R, $S \in B(H, K)$, and $T \in B(K, J)$; then

(a)
$$(\alpha R + \beta S)^* = \overline{\alpha} R^* + \overline{\beta} S^*$$
 and

(b)
$$(TR)^* = R^*T^*$$
.

Proof (a) For any $x \in H$, $y \in K$ we have

$$(x, (\alpha R + \beta S)^* y)_H = ((\alpha R + \beta S)x, y)_K$$

$$= \alpha (Rx, y)_K + \beta (Sx, y)_K$$

$$= \alpha (x, R^* y)_H + \beta (x, S^* y)_H$$

$$= (x, \overline{\alpha} R^* y + \overline{\beta} S^* y)_H = (x, (\overline{\alpha} R^* + \overline{\beta} S^*)y)_H;$$

the uniqueness argument from Theorem 13.1 now guarantees that (a) holds.

(b) We have

$$(x, (TR)^*y)_H = (TRx, y)_J = (Rx, T^*y)_K = (x, R^*T^*y)_H,$$

and again we use the uniqueness argument from Theorem 13.1.

Definition 13.3 If H is a Hilbert space and $T \in B(H)$, then T is *self-adjoint* if $T = T^*$.

Equivalently $T \in B(H)$ is self-adjoint if and only if it is *symmetric*, i.e.

$$(x, Ty) = (Tx, y) \qquad \text{for all} \qquad x, y \in H. \tag{13.2}$$

Example Let $H = K = \mathbb{K}^n$ with its standard inner product. Then any matrix $A = (a_{ij}) \in \mathbb{K}^{n \times n}$ defines a linear map T_A on \mathbb{K}^n by mapping x to Ax, where

$$(A\mathbf{x})_i = \sum_{j=1}^n a_{ij} x_j.$$

Then we have

$$(T_A \mathbf{x}, \mathbf{y}) = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} x_j \right) \overline{y_i}$$
$$= \sum_{j=1}^n x_j \sum_{i=1}^n \overline{(\overline{a_{ij}} y_i)} = (\mathbf{x}, T_{A^*} \mathbf{y}),$$

where A^* is the Hermitian conjugate of A, i.e. $A^* = \overline{A}^T$.

Definition If H is a Hilbert space and $T \in B(H)$, then T is *self-adjoint* if $T = T^*$.

Example Consider the right- and left- shift operators $\mathfrak{s}_r : \ell^2 \to \ell^2$ and $\mathfrak{s}_l : \ell^2 \to \ell^2$, given by

$$\mathfrak{s}_r(x) = (0, x_1, x_2, \ldots)$$
 and $\mathfrak{s}_l(x) = (x_2, x_3, x_4, \ldots)$.

Both operators are linear with $\|\mathfrak{s}_r\| = \|\mathfrak{s}_l\| = 1$.

We have

$$(\mathfrak{s}_r x, y) = x_1 y_2 + x_2 y_3 + x_3 y_4 + \cdots = (x, \mathfrak{s}_r^* y);$$

so
$$\mathfrak{s}_r^* y = (y_2, y_3, y_4, ...)$$
, i.e. $\mathfrak{s}_r^* = \mathfrak{s}_l$.

Similarly for the left shift $\mathfrak{s}_l x = (x_2, x_3, x_4, \ldots)$ we have

$$(\mathfrak{s}_{l}x, y) = x_{2}y_{1} + x_{3}y_{2} + x_{4}y_{3} + \cdots = (x, \mathfrak{s}_{l}^{*}y);$$

so
$$\mathfrak{s}_{l}^{*} y = (0, y_{1}, y_{2}, ...)$$
, i.e. $\mathfrak{s}_{l}^{*} = \mathfrak{s}_{r}$.

These maps are not self-adjoint, but we do have $\mathfrak{s}_l^{**} = \mathfrak{s}_l$ and $\mathfrak{s}_r^{**} = \mathfrak{s}_r$