C. Classification and definition of mentoring impact indicators by dimensions and evaluation type

ID	Indicator name	Definition	Evaluation type	Impact dimension
1	Organizational climate	Institutional environment perceived by students in terms of equity, support, and conditions for development in STEM, in an environment that values diversity, promotes inclusion and collaboration among students, and guarantees their physical and emotional safety [1][2][3]	Qualitative	Institutional/Contextual
2	Vocational interest	Level of attraction and motivation of students toward a future career or profession in STEM fields [1][2][4]	Qualitative	Vocational/Occupational
3	Scientific identity	Recognition by students of themselves as part of a scientific or technological community, promoting their identification with their field of study [1][2][3]	Cualitativo	Psychological/Emotional
4	Mentoring support networks	Formal or informal support actions between peers, mentors, institutions, and educational communities, in the decision of students, especially women, to pursue careers in computer science [1][2][3]	Mixed	Participation/Social
5	Institutional awareness	Recognition within the institution of gender gaps and commitment to correcting them through initiatives led by female professors who combine teaching and outreach roles [1][2][3]	Qualitative	Institutional/Contextual
6	Empowerment	Increased capacity for action, decision-making, and personal agency among women in STEM contexts, promoting female representation in the field, providing relevant knowledge, and sharing job opportunities [1][2][3]	Qualitative	Psychological/Emotional
7	Motivation	Internal energy that drives students to take an interest in, dedicate themselves to, and persevere in STEM activities or careers, involves learning about these areas [1][2][3][5][4]	Qualitative	Psychological/Emotional
8	Student satisfaction	Degree of satisfaction expressed by students regarding training or mentoring experiences, where a high level of satisfaction is reported [1][2][3][5][4]	Qualitative	Perceptual/Actitudinal
9	Leadership development	Driving and decision-making skills expressed and assessed through instruments or activities [2]	Quantitative	Vocational/Occupational
10	Enrollment rate	Proportion of female students enrolled in STEM academic programs [1][3]	Quantitative	Academic/Educational
11	Availability of resources	Availability and effective use of materials, spaces, mentoring, and technology, highlighting the importance of support and resources, such as tutoring programs, scholarships, and access to technology and educational resources, to facilitate the educational process for students [1][2][3]	Quantitative	Institutional/Contextual
12	Participation	Number or proportion of students who attend, complete, or participate in intervention activities, referring to participation as active involvement [1][2][3][5][4]	Quantitative	Participation/Social
13	Academic performance	Quantifiable learning outcomes, such as grades, assessments, or academic achievements, including the number of students who graduate [4]	Quantitative	Academic/Educational

	Retention in	Retention of female students in academic programs without dropouts, through strategies	Quantitative	Academic/Educational
14	academic programs	that strengthen female inclusion in STEM areas, thereby contributing to improved		
		retention [2][5]		
15	Completion rate	Proportion of students who successfully complete a program or intervention, also	Quantitative	Academic/Educational
		measured by the number of students who graduate [1][2][4]		
16	Self-efficacy	Belief in one's own ability to perform tasks and overcome challenges in academic or	Qualitative	Psychological/Emotional
		professional settings [2][3]		
	Sense of belonging	The degree to which a person feels accepted, valued, and part of the academic or	Qualitative	Psychological/Emotional
17		professional environment in STEM, including institutional commitment, which refers to		
		the degree of attachment or identification with the university to which they belong. It also		
		considers how students view their field of study and their perception that the field is a		
		possible and accessible space for women [1][2][3]		

References

- [1] W. G. De Lima, S. B. Sassi, M. Fernanda, A. F. N. Costa, A. L. Casagrande, and C. Maciel, "Fomento à Equidade de Gênero nas Áreas STEAM: Experiências Formativas do Projeto Meninas Digitais de Mato Grosso Palavras-chave Equidade de gênero, STEM/STEAM, Meninas Digitais CEUR Workshop Proceedings (CEUR-WS.org)," CEUR Workshop Proc, vol. 3321, pp. 53–64, 2022, Accessed: May 26, 2025. [Online]. Available: https://ceurws.org/Vol-3321/paper6.pdf
- [2] A. García-Holgado, S. Segarra-Morales, A.-B. González-Rogado, and F. J. García-Peñalvo, "Definition and Implementation of W-STEM Mentoring Network," *CEUR Workshop Proc*, vol. 3321, pp. 32–41, 2022, Accessed: May 26, 2025. [Online]. Available: https://ceurws.org/Vol-3321/paper4.pdf
- [3] E. Hernández-Leal, G. P. Gasca-Hurtado, and M. Clara Gómez-Álvarez, "Experience in the creation of the JUMI Community: Achievement after two years," *CEUR Workshop Proc*, vol. 3607, 2023, Accessed: May 27, 2025. [Online]. Available: https://ceur-ws.org/Vol-3607/paper6.pdf
- [4] M. B. Portillo, J. Castro Ramírez, M. M. Cross, K. R. Brenes, and T. C. Huang, "Challenging the gender gap in STEM with Python and Data Science: case of the National Technical University de Costa Rica," *CEUR Workshop Proc*, vol. 3872, 2024, Accessed: May 27, 2025. [Online]. Available: https://ceur-ws.org/Vol-3872/paper9.pdf
- [5] G. Costa, A. García-Holgado, and P. P. Alvarez, "Hack4women: In search of a framework," *CEUR Workshop Proc*, vol. 3872, 2024, Accessed: May 27, 2025. [Online]. Available: https://ceur-ws.org/Vol-3872/paper4.pdf