DECODERS AND ENCODERS

STUDENTS ARE ADVISED TO WRITE DOWN THE NOTES FOR EVERY LECTURE

DECODER:

- A combinational circuit
- Converts a binary information from n-input lines to a maximum of 2ⁿ unique output lines (n-to- 2ⁿ line decoder) and one or more enable inputs.Ex: 2-to-4 line, 3-to-8 line..etc

In standard decoders, only one output line will be active at a time corresponding to the

input binary combination.

2-to-4 line decoder

Truth table				
AB	(D)	D 1	D2	\mathbb{D}_3
OO	1	0	0	0
0 1	0		6	0
	0	0		D
	0	D	0	
o = AB		D 1 =	AB	
_	15			- R'

2-to-4 line decoder with active low output & enable input

Write the truth table ,logic diagram and block diagram of 3-to-8 line decoder

Note: Unless specified, assume the output and enable input to be active high

Inputs	Outputs				
E A B C	D0 D1 D2 D3 D4 D5 D6 D7				
OXXX	0 6 0 0 0 0 0				
1000	1000000				
1001	0 1 2 0 0 0 0 0				
1010	0 0 0 0 0 0				
	00000				
1100	00000				
1101	00000100				
1110	0000000				
1 []	0 000001				

Expressions for o/p variables

Decodu with Actu In OP: - Actu (m & rable Do D1 D2 D3 D4 D5 D6 D7 DI = EABC 10

Design 3-to-8 line decoder using minimum number of:

- 1. 2-to-4 decoders with enable input and one external gate
- 2. 2-to-4 decoders with enable inputs only

Design 3-to-8 line decoder using minimum number of 2to-4 decoders only Decolo

Design 4-to-16 line decoder using minimum number of

- 1. 3-to-8 decoders with enable input and one external gate
- 2. Only 3-to-8 and 2-to-4 line decoders with enable inputs
- 3. Only 2-to-4 line decoders with enable inputs

2 Long I high

74138 IC: 3-to-8 line decoder with active low output 43 enables

74138 IC internal diagram

Design 4-to-16 decoder using minimum of 74138 ICs ONLY

Design 5-to-32 decoder with active low output using minimum of 74138 ICs and one external gate ONLY 74138 CI / WARPING 74138 PBC 10 74138

Design a full adder using 3-to-8 line decoder and external gates

Inputs			Outputs	
Α	В	C _{in}	Sum	Carry
0	0	0	0	0
0	0	1	1 _	0 -
0	1	0	1 /	0
0	1	1	0	1
1	0	0	1 —	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1/	1

Realize $f1(x,y,z) = \prod M(1,3,6,7)$ using

a. 3-to-8 line decoder with active high output and suitable gates

b. 74138 decoder and suitable gates

• Any questions?