Produto de Vetores

(1) Produto Escalar (ou Produto Interno)

Seja Oxyz sistema de coordenadas cartesianas ortogonais no espaço com base canônica $B = \{\vec{i}, \vec{j}, \vec{k}\}$. Sejam $\vec{u} = (x_1, y_1, z_1)$ e $\vec{v} = (x_2, y_2, z_2)$ vetores com coordenadas em Oxyz. Definimos o **produto** escalar (ou o **produto interno**) de \vec{u} e \vec{v} como sendo o <u>número real</u>

$$\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2 + z_1 z_2.$$

O produto escalar de \vec{u} e \vec{v} também costuma ser indicado por $\langle \vec{u}, \vec{v} \rangle$.

Exemplo: Dados $\vec{u} = (2, -2, 0)$ e $\vec{v} = (-1, 4, 1)$, determine:

(a)
$$\vec{u} \cdot \vec{v} = (2, -2, 0) \cdot (-1, 4, 1) = -2 - 8 + 0 = -10$$

(b)
$$\vec{u} \cdot \vec{u} = (2, -2, 0) \cdot (2, -2, 0) = 4 + 4 + 0 = 8$$

(c)
$$(\vec{u} + \vec{v}) \cdot (2\vec{u} - \vec{v}) = (1, 2, 1) \cdot (5, -8, -1) = 5 - 16 - 1 = -12$$

Propriedades do Produto Escalar

Sejam \vec{u} , \vec{v} e \vec{w} vetores no espaço e $\alpha \in \mathbb{R}$.

- $(1) \vec{\mathbf{u}} \cdot \vec{\mathbf{0}} = \mathbf{0};$
- (2) $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} = \vec{\mathbf{v}} \cdot \vec{\mathbf{u}}$ (comutativa);
- (3) $\vec{\mathbf{u}} \cdot (\vec{\mathbf{v}} + \vec{\mathbf{w}}) = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{u}} \cdot \vec{\mathbf{w}}$ (distributiva);
- (4) $\alpha(\vec{u} \cdot \vec{v}) = (\alpha \vec{u}) \cdot \vec{v} = \vec{u} \cdot (\alpha \vec{v})$ (associatividade em relação ao produto por escalar);
- (5) $\vec{u} \cdot \vec{u} \ge 0$ e, além disso, $\vec{u} \cdot \vec{u} = 0$ se, somente se, $\vec{u} = \vec{0}$;
- (6) $\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$, ou seja, $\|\vec{u}\| = \sqrt{\vec{u} \cdot \vec{u}}$.

Exemplos:

(1) Sabendo que $\|\vec{u}\| = 4$, $\|\vec{v}\| = 2$ e $\vec{u} \cdot \vec{v} = 3$, calcule $(3\vec{u} - 2\vec{v}) \cdot (-\vec{u} + 4\vec{v})$.

Solução: Temos que

$$(3\vec{u} - 2\vec{v}) \cdot (-\vec{u} + 4\vec{v}) = 3\vec{u} \cdot (-\vec{u} + 4\vec{v}) - 2\vec{v} \cdot (-\vec{u} + 4\vec{v})$$

$$= -3\vec{u} \cdot \vec{u} + 12\vec{u} \cdot \vec{v} + 2\vec{v} \cdot \vec{u} - 8\vec{v} \cdot \vec{v}$$

$$= -3||\vec{u}||^2 + 14\vec{u} \cdot \vec{v} - 8||\vec{v}||^2$$

$$= -3(4)^2 + 14(3) - 8(2)^2$$

$$= -48 + 42 - 32$$

$$= -38$$

(2) Mostre que:

(a)
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(b)
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(c)
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Solução:

(a) Temos que

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

$$= \vec{u} \cdot (\vec{u} + \vec{v}) + \vec{v} \cdot (\vec{u} + \vec{v})$$

$$= \vec{u} \cdot \vec{u} + \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$$

$$= \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(2) Mostre que:

(a)
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(b)
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(c)
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Solução:

(b) Temos que

$$\|\vec{u} - \vec{v}\|^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot (\vec{u} - \vec{v}) - \vec{v} \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} - \vec{v} \cdot \vec{u} + \vec{v} \cdot \vec{v}$$

$$= \|\vec{u}\|^2 - 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(2) Mostre que:

(a)
$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(b)
$$\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$$

(c)
$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = ||\vec{u}||^2 - ||\vec{v}||^2$$

Solução:

(c) Temos que

$$(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = \vec{u} \cdot (\vec{u} - \vec{v}) + \vec{v} \cdot (\vec{u} - \vec{v})$$

$$= \vec{u} \cdot \vec{u} - \vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{u} - \vec{v} \cdot \vec{v}$$

$$= \vec{u} \cdot \vec{u} - \vec{v} \cdot \vec{v}$$

$$= ||\vec{u}||^2 - ||\vec{v}||^2$$

Proposição (interpretação geométrica do produto escalar): Sejam \vec{u} e \vec{v} vetores não nulos e $0 < \theta < \pi$ a medida, em radianos, do ângulo formado entre \vec{u} e \vec{v} . Então

$$\vec{u} \cdot \vec{v} = ||\vec{u}||. ||\vec{v}|| \cos \theta.$$

Demonstração: Considere o triângulo *ABC* abaixo:

Aplicando a Lei dos Cossenos, obtemos $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos\theta$.

Vimos que $\|\vec{u} - \vec{v}\|^2 = \|\vec{u}\|^2 - 2 \vec{u} \cdot \vec{v} + \|\vec{v}\|^2$.

Igualando as duas equações acima, temos que

$$\|\vec{u}\|^2 - 2\vec{u}\cdot\vec{v} + \|\vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\|\|\vec{v}\|\cos\theta$$

ou seja, $\vec{u} \cdot \vec{v} = ||\vec{u}|| . ||\vec{v}|| \cos \theta$.

Observação:

Observemos que, nas condições da proposição acima, podemos deduzir

- (i) o ângulo entre \vec{u} e \vec{v} é agudo ou nulo se, e somente se, $\vec{u} \cdot \vec{v} > 0$;
- (ii) se o ângulo entre \vec{u} e \vec{v} for reto, então $\vec{u} \cdot \vec{v} = 0$;
- (iii) o ângulo entre \vec{u} e \vec{v} é obtuso ou raso se, e somente se, $\vec{u} \cdot \vec{v} < 0$.

Proposição (condição de ortogonalidade):

O vetor \vec{u} é ortogonal ao vetor \vec{v} se, e somente se, $\vec{u} \cdot \vec{v} = 0$.

Cálculo do ângulo entre dois vetores

Sejam \vec{u} e \vec{v} vetores não nulos e θ o ângulo formado por eles. Vimos que

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos \theta \Rightarrow \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$$

Essa fórmula permite calcular a medida do ângulo entre dois vetores não nulos.

Exemplo: Calcule o ângulo entre os vetores:

(a)
$$\vec{u} = (1, 1, 4) e \vec{v} = (-1, 2, 2)$$
 (b) $\vec{u} = (2, 0, -3) e \vec{v} = (1, 1, 1)$

Solução:

(a) Temos que:
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{(1,1,4) \cdot (-1,2,2)}{\sqrt{1^2 + 1^2 + 4^2} \cdot \sqrt{(-1)^2 + 2^2 + 2^2}} = \frac{-1 + 2 + 8}{\sqrt{18} \cdot \sqrt{9}} = \frac{9}{3\sqrt{2} \cdot 3} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$
. Logo, $\theta = \arccos\left(\frac{\sqrt{2}}{2}\right) = \frac{\pi}{4} \text{ rad} = 45^{\circ}$.

(b) Temos que:
$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{(2,0,-3)\cdot(1,1,1)}{\sqrt{2^2+0^2+(-3)^2}\cdot\sqrt{1^2+1^2+1^2}} = \frac{2+0-3}{\sqrt{13}\cdot\sqrt{3}} = \frac{-1}{\sqrt{39}}$$
. Logo, $\theta = \arccos\left(\frac{-1}{\sqrt{39}}\right)$.

Exercícios:

(1) Determine o valor x para que $\vec{u} \perp \vec{v}$ nos seguintes casos:

(a)
$$\vec{u} = (x, 0, 3) e \vec{v} = (1, x, 3)$$

(b)
$$\vec{u} = (-x, -1, 1) \in \vec{v} = (x, -3, 1)$$

Solução:

(a) Para que os vetores \vec{u} e \vec{v} sejam ortogonais, devemos ter $\vec{u} \cdot \vec{v} = 0$, ou seja,

$$(x,0,3)\cdot(1,x,3) = x + 0 + 9 = 0 \Rightarrow x = -9.$$

(b) Para que os vetores \vec{u} e \vec{v} sejam ortogonais, devemos ter $\vec{u} \cdot \vec{v} = 0$, ou seja,

$$(-x, -1, 1) \cdot (x, -3, 1) = -x^2 + 3 + 1 = 0 \Rightarrow x^2 = 4 \Rightarrow x = \pm 2.$$

(2) Determine \vec{u} tal que $||\vec{u}|| = \sqrt{2}$, a medida do ângulo entre \vec{u} e (1 - 1, 0) seja 45° e $\vec{u} \perp (1, 1, 0)$.

Solução: Seja $\vec{u} = (x, y, z)$.

- De $\|\vec{u}\| = \sqrt{2}$, segue que: $\sqrt{x^2 + y^2 + z^2} = \sqrt{2} \Rightarrow x^2 + y^2 + z^2 = 2$.
- Como a medida do ângulo entre \vec{u} e (1-1,0) é 45° , então

$$\cos 45^{\circ} = \frac{\vec{u} \cdot (1, -1, 0)}{\|\vec{u}\| \|(1, -1, 0)\|} \Rightarrow \frac{\sqrt{2}}{2} = \frac{(x, y, z) \cdot (1, -1, 0)}{\sqrt{2} \cdot \sqrt{2}} \Rightarrow x - y = \sqrt{2}.$$

• Como $\vec{u} \perp (1, 1, 0)$, devemos ter $\vec{u} \cdot (1, 1, 0) = 0$, ou seja,

$$(x, y, z) \cdot (1, 1, 0) = 0 \Rightarrow x + y = 0.$$

Resolvendo o sistema

$$\begin{cases} x^{2} + y^{2} + z^{2} = 2 \\ x - y = \sqrt{2} \\ x + y = 0 \end{cases} \text{ obtemos } x = \frac{\sqrt{2}}{2}, y = -\frac{\sqrt{2}}{2} \text{ e } z = \pm 1.$$

Portanto,
$$\vec{u} = (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1)$$
 ou $\vec{u} = (\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -1)$.

(3) Prove que as diagonais de um losango são perpendiculares entre si.

Solução: Recorde que um losango é um quadrilátero cujos lados têm o mesmo comprimento.

Seja ABCD um losango, com diagonais AC e DB.

Considere os vetores $\vec{u} = \overrightarrow{AB}$ e $\vec{v} = \overrightarrow{AD}$. Logo, $\vec{u} + \vec{v} = \overrightarrow{AC}$ e $\vec{u} - \vec{v} = \overrightarrow{DB}$.

Devemos mostrar que \overrightarrow{AC} é ortogonal a \overrightarrow{DB} , ou seja,

$$\overrightarrow{AC} \cdot \overrightarrow{DB} = 0.$$

Temos que:

$$\overrightarrow{AC} \cdot \overrightarrow{DB} = (\overrightarrow{u} + \overrightarrow{v}) \cdot (\overrightarrow{u} - \overrightarrow{v})$$

$$= ||\overrightarrow{u}||^2 - ||\overrightarrow{v}||^2$$

$$= 0,$$

pois,
$$\|\vec{u}\| = \|\vec{v}\|$$
.

(4) Prove que o triângulo de vértices A(2,3,1), B(2,1,-1) e C(2,2,-2) é um triângulo retângulo.

Solução: Sejam

$$\overrightarrow{AB} = (0, -2, -2),$$

$$\overrightarrow{AC} = (0, -1, -3),$$

$$\overrightarrow{BC} = (0, 1, -1),$$

vetores representando os lados do triângulo ABC.

Vamos mostrar que o produto escalar de dois desses vetores é nulo. De fato:

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = (0, -2, -2) \cdot (0, -1, -3) = 0 + 2 + 6 = 8 \neq 0$$

 $\overrightarrow{AB} \cdot \overrightarrow{BC} = (0, -2, -2) \cdot (0, 1, -1) = 0 - 2 + 2 = 0.$

Como $\overrightarrow{AB} \cdot \overrightarrow{BC} = 0$, segue que o ângulo formado por esses vetores é reto e, logo, o triângulo ABC é retângulo, com ângulo reto no vértice B.

(5) (Desigualdade de Cauchy-Schwarz) Mostre que $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| . ||\vec{v}||$.

Solução: Temos que $\vec{u} \cdot \vec{v} = ||\vec{u}||.||\vec{v}|| \cos \theta$, sendo θ a medida do ângulo entre \vec{u} e \vec{v} . Logo,

$$|\vec{u} \cdot \vec{v}| = |||\vec{u}||. ||\vec{v}|| \cos \theta|$$
$$= ||\vec{u}||. ||\vec{v}||. |\cos \theta|.$$

Como $-1 \le \cos \theta \le 1$, então $|\cos \theta| \le 1$. Portanto,

$$|\vec{u} \cdot \vec{v}| = ||\vec{u}|| \cdot ||\vec{v}|| \cdot ||\cos \theta| \le ||\vec{u}|| \cdot ||\vec{v}|| \cdot 1 = ||\vec{u}|| \cdot ||\vec{v}||,$$

ou seja, $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}|| \cdot ||\vec{v}||$.

(6) (Desigualdade Triangular) Mostre que $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$.

Solução: Temos que

$$\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + 2\,\vec{u}\cdot\vec{v} + \|\vec{v}\|^2$$

$$\leq \|\vec{u}\|^2 + 2|\vec{u}\cdot\vec{v}| + \|\vec{v}\|^2.$$

Pela Desigualdade de Cauchy-Schwarz, $|\vec{u} \cdot \vec{v}| \leq ||\vec{u}||. ||\vec{v}||.$ Logo,

$$\|\vec{u} + \vec{v}\|^{2} \leq \|\vec{u}\|^{2} + 2\|\vec{u} \cdot \vec{v}\| + \|\vec{v}\|^{2}$$

$$\leq \|\vec{u}\|^{2} + 2\|\vec{u}\| \cdot \|\vec{v}\| + \|\vec{v}\|^{2}$$

$$= (\|\vec{u}\| + \|\vec{v}\|)^{2}.$$

Portanto, $\|\vec{u} + \vec{v}\|^2 \le (\|\vec{u}\| + \|\vec{v}\|)^2 \Rightarrow \|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$.

Observações:

- (i) Essa desigualdade confirma a propriedade geométrica de que, em um triângulo, a soma dos comprimentos de dois lados ($\|\vec{u}\| + \|\vec{v}\|$) é maior do que o comprimento do terceiro lado ($\|\vec{u} + \vec{v}\|$).
- (ii) A igualdade ocorre quando \vec{u} e \vec{v} são paralelos e de mesmo sentido.

Ângulos Diretores e Cossenos Diretores de um Vetor

Seja o vetor $\vec{v} = x\vec{i} + y\vec{j} + z\vec{k}$ não nulo.

Ângulos diretores de \vec{v} são os ângulos α, β e γ que \vec{v} forma com os vetores \vec{i} , \vec{j} e \vec{k} , respectivamente.

Cossenos diretores de \vec{v} são os cossenos de seus ângulos diretores.

O cálculo dos cossenos diretores são feitos utilizando a fórmula do ângulo entre vetores:

$$\cos \alpha = \frac{\vec{v} \cdot \vec{i}}{\|\vec{v}\| \|\vec{i}\|} = \frac{(x, y, z) \cdot (1, 0, 0)}{\|\vec{v}\| \cdot 1} = \frac{x}{\|\vec{v}\|}$$

$$\cos \beta = \frac{\vec{v} \cdot \vec{j}}{\|\vec{v}\| \|\vec{j}\|} = \frac{(x, y, z) \cdot (0, 1, 0)}{\|\vec{v}\| \cdot 1} = \frac{y}{\|\vec{v}\|}$$

$$\cos \gamma = \frac{\vec{v} \cdot \vec{k}}{\|\vec{v}\| \|\vec{k}\|} = \frac{(x, y, z) \cdot (0, 0, 1)}{\|\vec{v}\| \cdot 1} = \frac{z}{\|\vec{v}\|}$$

Observação:

Os cossenos diretores de \vec{v} são as componentes do versor de \vec{v} :

$$\frac{\vec{v}}{\|\vec{v}\|} = \frac{(x,y,z)}{\|\vec{v}\|} = \left(\frac{x}{\|\vec{v}\|}, \frac{y}{\|\vec{v}\|}, \frac{z}{\|\vec{v}\|}\right) = (\cos\alpha, \cos\beta, \cos\gamma).$$

Como o versor é um vetor unitário, decorre imediatamente que:

$$\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$$

Exemplos:

(1) Calcule os ângulos diretores de $\vec{v} = (1, -1, 0)$.

Solução: Temos que $\|\vec{v}\| = \sqrt{1^2 + (-1)^2 + 0^2} = \sqrt{2}$.

Logo:

$$\cos \alpha = \frac{x}{\|\vec{v}\|} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \Rightarrow \alpha = 45^{\circ} \left(\frac{\pi}{4} \text{ rad}\right)$$

$$\cos \beta = \frac{y}{\|\vec{v}\|} = \frac{-1}{\sqrt{2}} = -\frac{\sqrt{2}}{2} \Rightarrow \beta = 135^{\circ} \left(\frac{3\pi}{4} \text{ rad}\right)$$

$$\cos \gamma = \frac{z}{\|\vec{v}\|} = \frac{0}{\sqrt{2}} = 0 \Rightarrow \gamma = 0^{\circ} \text{ (0 rad)}$$

(2) Os ângulos diretores de um vetor são α , 45° e 60°. Determine α .

Solução: Como α , 45° e 60° são ângulos diretores de um vetor, então

$$\cos^2 \alpha + \cos^2(45^\circ) + \cos^2(60^\circ) = 1.$$

Substituindo os valores de $cos(45^\circ) = \frac{\sqrt{2}}{2}$ e $cos(60^\circ) = \frac{1}{2}$, obtemos:

$$\cos^{2} \alpha + \left(\frac{\sqrt{2}}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2} = 1 \Rightarrow \cos^{2} \alpha = 1 - \frac{1}{2} - \frac{1}{4}$$

$$\Rightarrow \cos^{2} \alpha = \frac{1}{4}$$

$$\Rightarrow \cos \alpha = \pm \frac{1}{2}$$

$$\Rightarrow \alpha = 60^{\circ} \text{ ou } \alpha = 120^{\circ}.$$

(3) Obter o vetor \vec{v} , sabendo que $\|\vec{v}\| = 4$, \vec{v} é ortogonal ao eixo Oz, forma ângulo de 60° com o vetor \vec{i} e ângulo obtuso com \vec{j} .

Solução: Como \vec{v} é ortogonal ao eixo 0z, então ele é paralelo ao plano x0y e possui a forma

$$\vec{v} = (x, y, 0).$$

De $\|\vec{v}\| = 4$, segue que $\sqrt{x^2 + y^2 + 0^2} = 4 \Rightarrow \sqrt{x^2 + y^2} = 4$.

Como ele forma um ângulo de 60° com o vetor \vec{i} , então

$$\cos 60^\circ = \frac{x}{\|\vec{v}\|} \Rightarrow \frac{1}{2} = \frac{x}{4} \Rightarrow x = 2$$
.

Logo,

$$\sqrt{x^2 + y^2} = 4 \Rightarrow \sqrt{2^2 + y^2} = 4 \Rightarrow 4 + y^2 = 16 \Rightarrow y^2 = 12 \Rightarrow y = \pm 2\sqrt{3}$$
.

Tendo em vista que β (ângulo de \vec{v} com \vec{j}) é obtuso (90° < β < 180°), na igualdade $\cos \beta = \frac{y}{\|\vec{v}\|}$, o valor de y é negativo. Portanto,

$$\vec{v} = (2, -2\sqrt{3}, 0).$$

Projeção Ortogonal de um Vetor sobre Outro

Considere dois vetores \vec{u} e \vec{v} no espaço, sendo $\vec{v} \neq \vec{0}$. Tome ambos os vetores com a mesma origem 0. Sejam $\vec{u} = \overrightarrow{OA}$ e r a reta suporte de \vec{v} passando por 0 (ou seja, r é a reta paralela a \vec{v} passando por 0). Seja P a projeção ortogonal do ponto A na reta r, isto é, P é o pé da perpendicular baixada de A até a reta r.

O vetor \overrightarrow{OP} é a projeção ortogonal de \overrightarrow{u} na direção de \overrightarrow{v} e é denotado por $proj_{\overrightarrow{v}}$ \overrightarrow{u} .

Proposição (projeção ortogonal): Sejam \vec{u} vetor qualquer e $\vec{v} \neq \vec{0}$. Então, a projeção ortogonal de \vec{u} na direção de \vec{v} é o vetor dado por

$$proj_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}.$$

Demonstração: Como a $proj_{\vec{v}}$ \vec{u} é um vetor paralelo a \vec{v} , então existe $\alpha \in \mathbb{R}$ tal que $proj_{\vec{v}}$ $\vec{u} = \alpha \vec{v}$.

Seja $\vec{w} = \vec{u} - \alpha \vec{v}$. Temos que $\vec{w} \perp \vec{v}$, logo

$$\vec{w} \cdot \vec{v} = 0 \Rightarrow (\vec{u} - \alpha \vec{v}) \cdot \vec{v} = 0 \Rightarrow \vec{u} \cdot \vec{v} - \alpha (\vec{v} \cdot \vec{v}) = 0 \Rightarrow \alpha = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2}.$$

Portanto, $proj_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$.

Exemplos:

(1) Calcule a projeção ortogonal de $\vec{u} = (1, -1, 2)$ na direção de $\vec{v} = (3, -1, 1)$.

Solução: Temos que

$$proj_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$$

$$= \frac{(1,-1,2) \cdot (3,-1,1)}{\left(\sqrt{3^2 + (-1)^2 + 1^2}\right)^2} (3,-1,1)$$

$$= \frac{6}{11} (3,-1,1)$$

$$= \left(\frac{18}{11}, -\frac{6}{11}, \frac{6}{11}\right).$$

- (2) Sejam os pontos A(1,2,-1), B(-1,0,-1) e C(2,1,2).
- (a) Mostre que o triângulo ABC é retângulo em A.
- (b) Determine o ponto H, pé da altura relativa ao vértice A.

Solução:

(a) Para mostrar que o ângulo em A é reto, basta mostrar que os vetores \overrightarrow{AB} e \overrightarrow{AC} são ortogonais. Como $\overrightarrow{AB} = (-2, -2, 0)$ e $\overrightarrow{AC} = (1, -1, 3)$, temos

$$\overrightarrow{AB} \cdot \overrightarrow{AC} = -2 + 2 + 0 = 0.$$

$$\overrightarrow{BH} = (x+1, y, z+1) \text{ e } proj_{\overrightarrow{BC}} \overrightarrow{BA} = \frac{\overrightarrow{BA} \cdot \overrightarrow{BC}}{\|\overrightarrow{BC}\|^2} \overrightarrow{BC} = \frac{(2, 2, 0) \cdot (3, 1, 3)}{\left(\sqrt{3^2+1^2+3^2}\right)^2} (3, 1, 3) = \frac{8}{19} (3, 1, 3) = \left(\frac{24}{19}, \frac{8}{19}, \frac{24}{19}\right).$$

Logo,
$$(x + 1, y, z + 1) = \left(\frac{24}{19}, \frac{8}{19}, \frac{24}{19}\right) \Rightarrow x = \frac{5}{19}, y = \frac{8}{19} \in z = \frac{5}{19}$$
.

Portanto, $H\left(\frac{5}{19}, \frac{8}{19}, \frac{5}{19}\right)$.

Observação (produto escalar no plano): Todo o estudo feito em relação ao produto escalar com vetores no espaço é válido também com vetores no plano.

Considerando os vetores $\vec{u}=(x_1,y_1)$ e $\vec{v}=(x_2,y_2)$, temos:

- (a) $\vec{u} \cdot \vec{v} = x_1 x_2 + y_1 y_2$;
- (b) Validade das mesmas propriedades do produto escalar;
- (c) Se θ é o ângulo entre $\vec{u} \neq 0$ e $\vec{v} \neq 0$, então $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$;
- (d) $\vec{u} \perp \vec{v}$ se, e somente se, $\vec{u} \cdot \vec{v} = 0$;
- (e) $proj_{\vec{v}} \vec{u} = \frac{\vec{u} \cdot \vec{v}}{\|\vec{v}\|^2} \vec{v}$.