Advancing Pneumonia Diagnosis

with Deep Learning

Ron Lodetti Jr. March 15, 2024

Overview

- Business Problem
- Data & Methods
- Modeling
- Evaluation
- Conclusions

Business Problem

Stakeholder:

Children's Hospital

Context:

- Increase in demand for pneumonia diagnoses
- Limited availability of radiologist
- Inconsistent diagnoses from GPs

Business Problem

How can we enhance the **efficiency and accuracy** of diagnosing pediatric pneumonia?

Summary

Source

Guangzhou Women and Children's Medical Center

Method

Neural networks

Findings

Correctly Identifies:

- 97% Pneumonia Cases
- 96% All Cases

Data

Chest X-Rays

- 5,863 images
- Ages: 1-5 Years

Normal

Pneumonia

Data

Chest X-Rays

- 5,863 images
- Ages: 1-5 Years

Metrics

Cost of False Negative is high!

Metrics

Accuracy

Percentage of All Cases identified correctly.

Sensitivity

Percentage of Pneumonia Cases identified correctly.

Model Iteration

Neural Network

- Baseline
- Many Models
- Pretrained ResNet50

Evaluation

Conclusion

<u>Best model</u>

Correctly Identifies:

- 97% Pneumonia Cases
- 96% All Cases

Recommendation:

Incorporate model into diagnosis workflow.

Conclusion

Limitations

- X-Ray Images are from one hospital
- Selected for High Quality
- Computational Resources

Next Steps

- **Encourage** use of chest X-rays.
- Improve Model using in-house X-rays.
- Create New Model for bacterial vs viral pneumonia cases.

Thank you!

Email:

ron.lodetti@gmail.com

Github:

@rlodetti

Linkedin:

@ronlodetti

