Data Extraction

Data

- Data to be extracted has the extension *.out
- Can be opened using textpad
- Data to be extracted:

No.	Data Name	Unit
1	File Name	.dat
2	OOIP	STB
3	OGIP	SCF
4	RF	%
5	Vg/Vo	rbb/rbb
6	HC/Aquifer	rbbl/rbbl
7	Cumm. Oil Prod.	MSTB
8	Cumm. Water Prod.	MSTB
9	Cumm. Gas Prod.	MMSCF
10	GOR	SCF/STB
11	Water Cut	%
12	Well Length	ft
13	Total Grid	
14	Well Location	

Start Open *.out file e.g. M_01.out Read the Corresponding **Parameters** Store the extracted parameters in Excel All the *.out files in the Folder have been read? Stop

Flowchart

- Each run of the program will extract the parameter values
- Store them and append them in the excel file

Data locations to be extracted in *.out files

Example for files M_01_1.out in Sample Data-1

WARNING!!!

- Because the data is timeseries data

 there will be repeated values of the same parameter BUT different date
- This is going to be tricky because there are cases where:
 - The value of a parameter is extracted on the END of DATE → RF WARNING-1
 - 2. The value of a parameter is extracted before its value becomes zero or NA → GOR and WC WARNING-2

Program Structure

- To ease finding the extracted parameter, the program may implement the following structure:
 - IF "KEYWORD" = True → Extract the parameter value
 - IF "KEYWORD" = True and "THE LAST DATE" = True → Extract the parameter value
 - IF "KEYWORD" = True and "KEYWORD" = False → Extract the former parameter

1. File Name

```
Command-line Arguments: -f D:\Dropbox\Sample Out File\M_01_1.dat
-wd D:\Dropbox\Sample Out File
-log
-wait
```

2. OOIP

4594	Hydrocarbo	on Reservoir Information (inclu	ding subgrids))
4595	reservoir	pore volume:	17997.	rbbl
4596	total gas	in place:	9.68233E+06	SCF
4597	free gas :	in place:	8.31224E+06	SCF
4598	solution (gas in place:	1.37009E+06	SCF
4599	total oil	in place:	1408.4	STB
4600	total wate	er in place:	9129.9	STB
4601	gas cap to	o oil zone volume ratio:	2.9806	rbb/rbb
4602	hydrocarbo	on to aquifer volume ratio:	1.1592	rbbl/rbbl

3. OGIP

4594 4595	Hydrocarbon Reservoir Information (increservoir pore volume:	luding subgrids) _rbbl
4596	total gas in place:	9.68233E+06	SCF
4597	free gas in place:	8.31224E+06	SCF
4598	solution gas in place:	1.37009E+06	SCF
4599	total oil in place:	1408.4	STB
4600	total water in place:	9129.9	STB
4601	gas cap to oil zone volume ratio:	2.9806	rbb/rbb
4602	hydrocarbon to aquifer volume ratio:	1.1592	rbbl/rbbl

4. RF WARNING-1

11623	Percentage Recovery	
11624	Stock Tank Oil	11.746
11625	STO as a % of Mobile Oil	16.119
11626	Total Gas	43.798
11627	Water	.00188

There are several values of RF in the file, use the LAST DATE as the marker to extract the actual RF

NOTE: If different files have different end of date

the program should be able to automatically
detect the LAST DATE

Test the program on Sample data-2

5. Vg/Vo

4594	Hydrocarbon Reservoir Informati	on (including subgrids)	
4595	reservoir pore volume:	17997.	rbbl
4596	total gas in place:	9.68233E+06	SCF
4597	free gas in place:	8.31224E+06	SCF
4598	solution gas in place:	1.37009E+06	SCF
4599	total oil in place:	1408.4	STB
4600	total water in place:	9129.9	STB
4601	gas cap to oil zone volume rati	o: 2.9806	rbb/rbb
4602	hydrocarbon to aquifer volume r	atio: 1.1592	rbbl/rbbl

6. HC/Aquifer

4594		Hydrocarbon Reservoir Information	(including subgrids)
4595		reservoir pore volume:	17997.	rbbl
4596		total gas in place:	9.68233E+06	SCF
4597		free gas in place:	8.31224E+06	SCF
4598		solution gas in place:	1.37009E+06	SCF
4599		total oil in place:	1408.4	STB
4600		total water in place:	9129.9	STB
4601		gas cap to oil zone volume ratio:	2.9806	rbb/rbb
4602		hydrocarbon to aquifer volume ratio	o: 1.1592	rbbl/rbbl
		-		

7. Cumm. Oil Prod.

11708	Field Total			Flu	id		
11709		Oil	Gas	Water	Solvent	Polymer	Seawater
11710							
11711		(MSTB)	(MMSCF)	(MSTB)	(MMSCF)	(MLB)	(MSTB)
11712	Cumulative Production	.16543	4.2407	171e-6	NA	NA	NA
11713	Cumulative Injection	NA	0	0	NA	NA	NA
11714	Cumulative Gas Lift	NA	0	NA	NA	NA	NA
11715	Cumulative Water Influx	NA	NA	0	NA	NA	NA
11716	Current Fluids In Place	1.2437	5.5816	9.1329	NA	NA	NA
11717	Production Rates	0	0	0	NA	NA	NA
11718	Injection Rates	NA	0	0	NA	AM	NA

8. Cumm. Water Prod.

11708	Field Total	Field Total Fluid							
11709		Oil	Gas	Water	Solvent	Polymer	Seawater		
11710									
11711		(MSTB)	(MMSCF)	(MSTB)	(MMSCF)	(MLB)	(MSTB)		
11712	Cumulative Production	.16543	4.2407	171e-6	NA	NA	NA		
11713	Cumulative Injection	NA	0	0	NA	NA	NA		
11714	Cumulative Gas Lift	NA	0	NA	NA	NA	NA		
11715	Cumulative Water Influx	NA	NA	0	NA	NA	NA		
11716	Current Fluids In Place	1.2437	5.5816	9.1329	NA	NA	NA		
11717	Production Rates	0	0	0	NA	NA	NA		
11718	Injection Rates	NA	0	0	NA	AM	NA		

9. Cumm. Gas Prod.

11708	Field Total	Fluid						
11709		Oil	Gas	Water	Solvent	Polymer	Seawater	
11710								
11711		(MSTB)	(MMSCF)	(MSTB)	(MMSCF)	(MLB)	(MSTB)	
11712	Cumulative Production	.16543	4.2407	171e-6	NA	NΑ	NA	
11713	Cumulative Injection	NA	0	0	NΑ	NΑ	NA	
11714	Cumulative Gas Lift	NA	0	NA	NA	NA	NA	
11715	Cumulative Water Influx	NA	NA	0	NA	NA	NA	
11716	Current Fluids In Place	1.2437	5.5816	9.1329	NA	NΑ	NA	
11717	Production Rates	0	0	0	NΑ	NΑ	NA	
11718	Injection Rates	NA	0	0	NA	NA	NA	

10. GOR WARNING-2

			SUMMARY (fro		tine: INW	ELL) ====	=====	======	=====					
6 Simul	ation will	stop i	if there wer	re error r	_									
7 0 8 ====	Warning me	ssages.	. 0 Erro:	messages	3. 									
9														
0														
-1														
1				IMEX	T I M E	E STE	P S	U M M	ARY					
2 =====	e Step		Time	I M E X		E STE ======= Productio		U M M	======	Injection				_
2 ===== 3 Tim	ne Step		Time	IMEX				U M M	======	Injection Water	PV	Mat.	Max. C	
Tim	<u>-</u>	 :	Time		Total I	Productio	n		Total		PV Avg.	Mat. bal.		Pre

11. Water Cut WARNING-2

64 =====		===== SUMMA	RY (from subrou	tine: INW	ELL) =====								
65 Read	ding of we	ll data is com	mplete.										
66 Simu	lation wi	ll stop if the	ere were error	messages.									
67 C) Warning n	nessages.	O Error message	з.									
68 ====								=====					
69													
70													
71			IMEX	TIMI	E STE	P S	UMM.	ARY					
72 ==== 73 Ti	04			m-+-1 :	n			mo+ - 1	Injection	motal	Marr	May C	====== bongo
	me Step	Time		Total	Productio:								_
74	me step			Gas	Production Water		Wat.			PV	Mat.		
74 75		Time C U	0il			GOR.	Wat.		_	PV Avg.	Mat. bal.	Satur.	Pres
74 75 76	Size	с п	oil	Gas	Water	GOR. SCF/		Gas	Water	PV Avg. Pres.	Mat. bal.		Pres
74 75	Size	с п				GOR.	Wat. Cut			PV Avg.	Mat. bal. err.	Satur.	Pres
74 75 76 77 No. 78	Size Days IT	C U T Days yy:	oil	Gas MCF/D	Water STB/D	GOR. SCF/ STB	Wat. Cut %	Gas	Water	Avg. Pres. psia	Mat. bal. err. %	Satur.	Pres. DPMAX psia

For Water Cut: The extraction follows the same rule like GOR

12. Well Length

This must be summed up into single value

```
305
      LAYERXYZ
                 'Well-1'
      ** perf geometric data: UBA, block entry(x,y,z) block exit(x,y,z), length
306
307
                    997.500000
                                2.500000
                                           7987.752000
                                                        997.500000
                                                                     2.500000
                                                                               7992.752000
                                                                                             5.000000
                                2.500000
                                                                                             5.000000
308
          200 1 2
                    997.500000
                                           7992.752000
                                                        997.500000
                                                                     2.500000
                                                                                7997.752000
                                           7997.752000
                                                                                             5.000000
309
          200 1 3
                    997.500000
                                2.500000
                                                         997.500000
                                                                     2.500000
                                                                                8002.752000
310
                    997.500000
                                2.500000
                                           8002.752000
                                                        1000.000000
                                                                      2.500000
                                                                                 8007.658063
                                                                                              5.000000
311
          201 1 4
                    1000.000000
                                 2.500000
                                            8007.658063
                                                         1000.551666
                                                                      2.500000
                                                                                  8008.189000
                                                                                               0.765657
312
          201 1 5
                    1000.551666
                                 2.500000
                                            8008.189000
                                                         1005.000000
                                                                       2.500000
                                                                                  8010.346778
                                                                                               5.220017
313
          202 1 5
                    1005.000000
                                 2.500000
                                            8010.346778
                                                         1010.000000
                                                                       2.500000
                                                                                  8010.912085
                                                                                               5.031856
314
          203 1 5
                    1010.000000
                                 2.500000
                                            8010.912085
                                                         1015.000000
                                                                       2.500000
                                                                                  8011.477392
                                                                                               5.031856
315
                                                                       2.500000
                                                                                  8012.042699
                                                                                               5.031856
          204 1 5
                    1015.000000
                                 2.500000
                                            8011.477392
                                                         1020.000000
316
          205 1 5
                                            8012.042699
                                                                       2.500000
                                                                                               5.015935
                    1020.000000
                                 2.500000
                                                         1025.000000
                                                                                  8012.319419
                                                                                  8012.307554
317
          206 1 5
                    1025.000000
                                 2.500000
                                            8012.319419
                                                         1030.000000
                                                                       2.500000
                                                                                               5.000014
                                                                       2.500000
318
          207 1 5
                    1030.000000
                                 2.500000
                                            8012.307554
                                                         1035.000000
                                                                                  8012.295688
                                                                                               5.000014
                                                                                                                153.7225
319
                                 2.500000
                                                         1040.000000
                                                                       2.500000
                                                                                  8012.283822
                                                                                               5.000014
                    1035.000000
                                            8012.295688
320
                                                                       2.500000
                                                                                  8012.271957
          209 1 5
                    1040.000000
                                 2.500000
                                            8012.283822
                                                         1045.000000
                                                                                               5.000014
321
          210 1 5
                                 2.500000
                                            8012.271957
                                                                       2.500000
                    1045.000000
                                                         1050.000000
                                                                                  8012.260091
                                                                                               5.000014
322
          211 1 4
                                                                            0000
                                                                                  8012.248225
                                                                                               5.000014
                             Add a feature to disable this
          212 1 4
                                                                                  8012.236359
323
                                                                           0000
                                                                                               5.000014
                                                                                               5.000014
324
          213 1 4
                                                                           0000
                                                                                  8012.224494
                       parameter (well length) extraction in
                                                                                  8012.212628
                                                                                               5.000014
325
          214 1 4
                                                                           0000
326
          215 1 4
                                                                           0000
                                                                                  8012.200762
                                                                                               5.000014
                         case there is no output to be read
327
          216 1 4
                                                                           0000
                                                                                  8012.188896
                                                                                               5.000014
328
          217 1 4
                                                                           0000
                                                                                  8012.177031
                                                                                               5.000014
329
                    1085.000000
                                 2.500000
                                            8012.177031
                                                         1090.000000
                                                                       2.500000
                                                                                  8012.165165
                                                                                               5.000014
330
          219 1 4
                    1090.000000
                                 2.500000
                                            8012.165165
                                                         1095.000000
                                                                       2.500000
                                                                                  8012.153299
                                                                                               5.000014
331
          220 1 4
                    1095.000000
                                 2.500000
                                            8012.153299
                                                         1100.000000
                                                                       2.500000
                                                                                  8012.141434
                                                                                               5.000014
332
                    1100.000000
                                 2.500000
                                            8012.141434
                                                         1105.000000
                                                                       2.500000
                                                                                  8012.129568
                                                                                               5.000014
333
          222 1 3
                    1105.000000
                                 2.500000
                                            8012.129568
                                                         1110.000000
                                                                       2.500000
                                                                                  8012.117702
                                                                                               5.000014
334
          223 1 3
                    1110.000000
                                 2.500000
                                            8012.117702
                                                         1115.000000
                                                                       2.500000
                                                                                  8012.105836
                                                                                               5.000014
335
          224 1 3
                                 2.500000
                                            8012.105836
                                                                       2.500000
                                                                                  8012.093971
                                                                                               5.000014
                   1115.000000
                                                         1120.000000
336
          225 1 3
                   1120.000000
                                 2.500000
                                            8012.093971
                                                         1125.000000
                                                                       2.500000
                                                                                  8012.082105
                                                                                               5.000014
337
          226 1 3
                   1125.000000
                                 2.500000
                                            8012.082105
                                                         1130.000000
                                                                       2.500000
                                                                                  8012.070239
                                                                                               5.000014
338
                                 2.500000
                                                                       2.500000
                                                                                  8012.062573
                   1130.000000
                                            8012.070239
                                                         1132.625000
                                                                                               2.625012
220
```

Test the program on File: M_47_2994.out that doesn't contain this value

13. Total Grid

449		
450	******	
451	* SIMULATION PARAMETERS *	
452	***************************************	
453		
454		
455		
456	Number of grid blocks in x direction:	400
457	Number of grid blocks in y direction:	1
458	Number of grid blocks in z direction:	10
459	Total number of grid blocks:	4000
460		
461	Number of equations:	3
462	Number of orthogonalizations:	30
463	Maximum number of Newton iterations:	10

14. Well Location

Example from Sample Data-1 (M_01_1.out)

Values to be extracted

Loc	i	j	k
1	200	1	1
2	200	1	3
3	227	1	3

- Loc-1: the values are at 1st line
- Loc-2: the values are at 2nd line
- Loc-3: the values are at the end of array

414

415

242 1 3

243 1 3

244 1 3

245 1 3

14. Well Location

Example from Sample Data-2 (M_01_1.out)

Values to be extracted

Loc	i	j	k
1	177	1	8
2	178	1	9
3	247	1	3

- Loc-1: the values are at 1st line
- Loc-2: the values are at 2nd line
- Loc-3: the values are at the end of array

FLOW-TO 67

PLOW-TO 71

FLOW-TO 72

1.0 OPEN

1.0 OPEN

1 0 OPEN

1.0 OPEN

Sample Extracted Parameters that Stored in Excel

No.	File Name	OOIP	OGIP	RF (%)	Vg/Vo	HC/Aquifer	Cumm. Oil Prod.	Cumm. Water Prod.	Cumm. Gas Prod.	COR	Water Cut	Woll Longth (ft)	Total Grid	Grid Well Location
	(dat)	(STB)	(SCF)	NF (70)	(rbb/rbb)	(rbbl/rbbl)	(MSTB)	(MSTB)	(MMSCF)	GOR	(%)	Well Length (ft) Total Grid	Well Location	
1	NA O1 1	1400 4	0 603E+06	11 7/6	2 0006	1 1502	0.16542	1 71E 04	4 2407	57007 61	1 270	152 7225	4000	200 1 1 200 1 2 227 1 2

IDE

- Jupyter Notebook
- Spyder