INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

Quality

Learning Objectives

Quality:

- Definition
- Dimensions
- Determinants
- Cost
- Impact

What is Quality?

- Conformance to specifications
- Fitness for use
- Value for price paid

•

$$Q = P/E$$

- Q = Quality
- P = Performance
- E = Expectations

What is Quality?

"The quality of a product or service is a customer's perception of the degree to which the product or service meets his or her expectations."

Nature of Quality

Dimensions of Quality

Determinants of Quality

Costs of Quality

Some Dimensions of Product Quality

Performance — primary characteristics (signal to noise ratio, power - time to process customer requests)

Features – secondary characteristics, special characteristics (remote control)

- Reliability Consistency of performance over time. (MTTF,MTBF,breakdowns, malfunctions)
- Serviceability Ease of repair. (speed/cost/convenience of servicing)

• Durability – useful life amount of time/use before repairs

• Appearance – aesthetics, effects on human senses

• Customer service – treatment before/during/after sale

• Safety – user protection before/during/after use

- Customer's and producer's perspectives depend on each other
- Producer's perspective:
 - production process and COST
- Customer's perspective:
 - fitness for use and PRICE
- Customer's view must dominate

Learning Objectives

Quality:

- Definition
- Dimensions
- Determinants
- Cost
- Impact

Determinants of Quality

- Quality of design products/service designed based on customers' expectations and desires.
- Quality capability of production processes processes must be capable of producing the products designed for the customers (surface finish in microns : m/cs. Tools. Measuring equipment)
- Quality of conformance refers to the degree to which the product or service design specifications are met. (capable processes can produce inferior product if not operated properly.
- Quality of customer service a superior product does not mean success; must have quality service also
- Organization quality culture superior product and service requires organization-wide focus on quality

Costs of Quality

- Scrap and rework rescheduling, repairing, retesting
- <u>Defective products in the hands of the customer</u> recalls, warranty claims, due to awareness law suits, lost business, ...
- Detecting defects inspection, testing,
- Preventing defects training, charting performance,
- Product/process redesign, supplier development,

Cost of Quality

- Cost of Achieving Good Quality
 - Prevention costs
 - costs incurred during product design
 - Appraisal costs
 - costs of measuring, testing, and analyzing
- Cost of Poor Quality
 - Internal failure costs
 - include scrap, rework, process failure, downtime, and price reductions
 - External failure costs
 - include complaints, returns, warranty claims, liability, and lost sales

Prevention Costs

- Quality planning costs
 - costs of developing and implementing quality management program
- Product-design costs
 - costs of designing products with quality characteristics
- Process costs
 - costs expended to make sure productive process conforms to quality specifications

Training costs

 costs of developing and putting on quality training programs for employees and management

Information costs

costs of acquiring and maintaining data related to quality, and development and analysis of reports on quality performance

Appraisal Costs

- Inspection and testing
 - costs of testing and inspecting materials, parts, and product at various stages and at end of process
- Test equipment costs
 - costs of maintaining equipment used in testing quality characteristics of products
- Operator costs
 - costs of time spent by operators to gather data for testing product quality, to make equipment adjustments to maintain quality, and to stop work to assess quality

Internal Failure Costs

- Scrap costs
 - costs of poor-quality products that must be discarded, including labor, material, and indirect costs
- Rework costs
 - costs of fixing defective products to conform to quality specifications
- Process failure costs
 - costs of determining why production process is producing poor-quality products

Process downtime costs

 costs of shutting down productive process to fix problem

Price-downgrading costs

 costs of discounting poorquality products—that is, selling products as "seconds"

External Failure Costs

- Customer complaint costs
 - costs of investigating and satisfactorily responding to a customer complaint resulting from a poor-quality product
- Product return costs
 - costs of handling and replacing poor-quality products returned by customer
- Warranty claims costs
 - costs of complying with product warranties

- Product liability costs
 - litigation costs resulting from product liability and customer injury
 - Lost sales costs
 - costs incurred because customers are dissatisfied with poor-quality products and do not make additional purchases

Cost of Quality

Cost of achieving good quality

Cost of **poor** quality

- Appraisal
- Prevention

- Internal failure
- External failure

Learning Objectives

Quality:

- Definition
- Dimensions
- Determinants
- Cost
- Impact

Do O&SCM and QM practices create an impact?

- Impact on the
 - Organization
 - Customers
 - Society

Analysis and Use of Quality Costs (example)

Table 1.3

Monthly Quality-Costs Information for Assembly of Printed Circuit Boards

Type of Defect	Percent of Total Defects	Scrap and Rework Costs
Insufficient solder	42	\$37,500.00 (52%)
Misaligned components	21	12,000.00
Defective components	15	8,000.00
Missing components	10	5,100.00
Cold solder joints	7	5,000.00
All other causes	5	4,600.00
Totals	100%	\$72,200.00

Quality costs

Leverage effect

Pareto analysis

Efficiency = Output/Input

 Leverage effect: Quality improvements more than pay for themselves

- Illustration:
 - Consider the manufacture of a mechanical component used in an assembly.
 - Parts are manufactured in a process at a rate of approximately 100 parts per day.
 - First-pass yield = 70% (conforming).
 - 70% of the fallout (the 30% nonconforming) can be reworked into an acceptable product, and the rest must be scrapped.

• The direct manufacturing cost = ₹30/part.

Reworked parts incur an additional processing charge = ₹6

Cost / good part = ?

Total Yield after rework = ?

The direct manufacturing cost = ₹30/part.

Reworked parts incur an additional processing charge = ₹6

Cost / good part = ((₹30*100) + (₹6*21))/91 = ₹ 34.35Total Yield after rework = 91 good parts / day

- Quality management procedures reduce the variability and thereby process fallout from 30% to 5%.
- Of the 5% fallout produced, about 70% can be reworked & 30% are scrapped

Cost / good part = ?
Total Yield after rework = ?

- Quality management led to
 - ?% reduction in manufacturing costs
 - ?% increase in productivity

- Quality management procedures reduce the variability and thereby process fallout from 30% to 5%.
- Of the 5% fallout produced, about 70% can be reworked & 30% are scrapped

Cost / good part = ((₹30*100) + (₹6*3.5))/98.5 = ₹30.67 Total Yield after rework = 98.5 good parts / day

- Quality management led to
 - 10.7% reduction in manufacturing costs
 - 8.2% increase in productivity

- Typical cost of deploying quality management procedures (Cost of doing things right)
 - 3-4 % of revenues
- Cost of doing things wrong
 - 20-35% of revenues

Quality-Cost Relationship

- Cost of quality
 - difference between price of nonconformance and conformance
 - cost of doing things wrong
 - 20 to 35% of revenues
 - cost of doing things right
 - 3 to 4% of revenues

Measuring Product Yield and Productivity

Yield=(total input)(% good units) + (total input)(1-%good units)(% reworked)

or

Y=(I)(%G)+(I)(1-%G)(%R)

where

I = initial quantity started in production

%G = percentage of good units produced

%R = percentage of defective units that are successfully reworked

Computing Product Yield

- Motor manufacturer
- Starts a batch of 100 motors.
- 80 % are good when produced
- 50 % of the defective motors can be reworked Y = (I)(%G) + (I)(1-%G)(%R)

=

Increase quality to 90% good

Y =

Computing Product Yield

- Motor manufacturer
- Starts a batch of 100 motors.
- 80 % are good when produced
- 50 % of the defective motors can be reworked

$$Y = (I)(\%G)+(I)(1-\%G)(\%R)$$

= 100(.80) + 100(1-.80)(.50) = 90 motors

Increase quality to 90% good

$$Y = 100(.90) + 100(1-.90)(.50) = 95 \text{ motors}$$

Computing Product Cost per Unit

Product Cost $= \frac{(K_d)(I) + (K_r)(R)}{Y}$

where:

 K_d = direct manufacturing cost per unit

I = input

 K_r = rework cost per unit

R = reworked units

Y = yield

Cost per Unit

Direct cost = \$30

80% good

Rework cost = \$12

50% can be reworked

$$\frac{(K_d)(I) + (K_r)(R)}{Y} =$$

Increase quality to 90% good

Cost per Unit

Direct cost = \$30

80% good

Rework cost = \$12

50% can be reworked

$$\frac{(K_d)(I) + (K_r)(R)}{Y} = \frac{\$30*100 + \$12*10}{90 \text{ motors}} = \$34.67/\text{motor}$$

Increase quality to 90% good

$$= \frac{\$30*100 + \$12*5}{95 \text{ motors}} = \$32.21/\text{motor}$$

Computing Product Yield for Multistage Processes

$$Y = (I)(\%g_1)(\%g_2) \dots (\%g_n)$$

where:

I = input of items to the production process that will result in finished products

 g_i = good-quality, work-in-process products at stage i

Multistage Yield

	Average Percentage
Stage	Good Quality
1	0.93
2	0.95
3	0.97
4	0.92

$$Y = (I)(\%g_1)(\%g_2) \dots (\%g_n)$$

Multistage Yield

	Average Percentage
Stage	Good Quality
1	0.93
2	0.95
3	0.97
4	0.92

$$Y = (I)(\%g_1)(\%g_2) \dots (\%g_n)$$

= 100 * .93 * .95 * .97 * .92 = 78.8 motors

Initial Batch Size For 100 Motors

$$1 = \frac{Y}{(\%g_1)(\%g_2) \dots (\%g_n)}$$

Initial Batch Size For 100 Motors

$$= \frac{Y}{(\%g_1)(\%g_2) \dots (\%g_n)}$$

$$= \frac{100}{100 \cdot .93 \cdot .95 \cdot .97 \cdot .92} = 126.88 \rightarrow 127$$

QPR

productivity index that includes productivity and quality costs

Direct cost = \$30

Rework cost = \$12

80% good

50% can be reworked

Initial batch size = 100

Base Case

QPR =

Case 1: Increase I to 200

QPR =

Case 2: Reduce direct cost to \$26 and rework cost to \$10

QPR =

Case 3: Increase %G to 95%

QPR =

Case 4: Decrease costs and increase %G

QPR =

Direct cost = \$30

Rework cost = \$12

80% good

50% can be reworked

Initial batch size = 100

Base Case
$$QPR = \frac{80 + 10}{100 * $30 + 10 * $12} (100) = 2.89$$

Case 1: Increase I to 200
$$\begin{array}{r}
160 + 20 \\
\text{QPR} = \frac{160 + 20}{200 * $30 + 20 * $12}
\end{array}$$
(100) = 2.89 – NO CHANGE

Case 2: Reduce direct cost to \$26 and rework cost to \$10

QPR =
$$\frac{80 + 10}{100 * $26 + 10 * $10}$$
 (100) = 3.33

Case 3: Increase %G to 95%

QPR =
$$\frac{95 + 2.5}{100 * $30 + 2.5 * $12}$$
 (100) = 3.22

Case 4: Decrease costs and increase %G

QPR =
$$\frac{95 + 2.5}{100 * $26 + 2.5 * $10}$$
 (100) = 3.71