

Art of Problem Solving

2010 China National Olympiad

China National Olympiad 2010

Day 1	
1	Two circles Γ_1 and Γ_2 meet at A and B . A line through B meets Γ_1 and Γ_2 again at C and D repsectively. Another line through B meets Γ_1 and Γ_2 again at E and F repsectively. Line CF meets Γ_1 and Γ_2 again at P and Q respectively. M and N are midpoints of arc PB and arc QB repsectively. Show that if $CD = EF$, then C, F, M, N are concyclic.
2	Let k be an integer ≥ 3 . Sequence $\{a_n\}$ satisfies that $a_k=2k$ and for all $n>k$, we have $a_n=\begin{cases} a_{n-1}+1 & \text{if } (a_{n-1},n)=1\\ 2n & \text{if } (a_{n-1},n)>1 \end{cases}$
	Prove that there are infinitely many primes in the sequence $\{a_n - a_{n-1}\}$.
3	Given complex numbers a, b, c , we have that $ az^2 + bz + c \le 1$ holds true for any complex number $z, z \le 1$. Find the maximum value of $ bc $.
Day 2	
1	Let $m,n \ge 1$ and $a_1 < a_2 < \ldots < a_n$ be integers. Prove that there exists a subset T of $\mathbb N$ such that $ T \le 1 + \frac{a_n - a_1}{2n+1}$
	and for every $i \in \{1, 2,, m\}$, there exists $t \in T$ and $s \in [-n, n]$, such that $a_i = t + s$.
2	There is a deck of cards placed at every points A_1, A_2, \ldots, A_n and O , where $n \geq 3$. We can do one of the following two operations at each step: 1) If there are more than 2 cards at some points A_i , we can withdraw three cards from that deck and place one each at A_{i-1}, A_{i+1} and O . (Here $A_0 = A_n$ and $A_{n+1} = A_1$); 2) If there are more than or equal to n cards at point O , we can withdraw n cards from that deck and place one each at A_1, A_2, \ldots, A_n . Show that if the total number of cards is more than or equal to $n^2 + 3n + 1$, we can make the number of cards at every points more than or equal to $n + 1$ after finitely many steps.

 $\verb|www.artofproblemsolving.com/community/c5233|$

Contributors: Lei Lei, hxy09

Art of Problem Solving

2010 China National Olympiad

3 Suppose $a_1, a_2, a_3, b_1, b_2, b_3$ are distinct positive integers such that

$$(n+1)a_1^n + na_2^n + (n-1)a_3^n|(n+1)b_1^n + nb_2^n + (n-1)b_3^n$$

holds for all positive integers n. Prove that there exists $k \in N$ such that $b_i = ka_i$ for i = 1, 2, 3.

www.artofproblemsolving.com/community/c5233

Contributors: Lei Lei, hxy09