| Lagrangian density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\frac{2}{3}t_2\;\omega_{_{K}\lambda}^{~_{K}\lambda}\;\omega_{_{K}\lambda}^{~_{\lambda}\prime}+\frac{1}{3}t_2\;\omega_{_{K}\lambda}^{~_{\lambda}\prime}\;\omega_{_{K}\lambda}^{~_{K}\lambda}+f^{\alpha\beta}\;\tau_{_{\alpha\beta}}+\omega_{_{\alpha\beta\chi}}^{\alpha\beta\chi}\;\sigma_{_{\alpha\beta\chi}}^{-\frac{1}{2}}r_3\partial_{_{i}}\omega_{_{K}\lambda}^{_{K}\lambda}\partial_{_{i}}\omega_{_{\lambda}}^{\alpha}-$                                                                              |
| $r_5\partial_i\omega^{\kappa\lambda}_{\kappa}\partial^i\omega_{\alpha}^{\alpha} + rac{2}{3}r_2\partial^\beta\omega^{\thetalpha}_{\kappa}\partial_\theta\omega_{\beta}^{\kappa} - rac{1}{3}r_2\partial_\theta\omega_{\beta}^{\kappa}\partial_\kappa\omega^{lphaeta}$                                                                                                                                                                                                                                       |
| $rac{2}{3} r_2  \partial_{	heta} \omega_{lphaeta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $rac{1}{2}r_3\partial_	heta\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda}+r_5\partial_	heta\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda}-rac{1}{2}r_3\partial_lpha\omega_\lambda^{lpha}\partial_\kappa\omega^{\kappa\lambda	heta}-$                                                                                                                                                                                                                                              |
| $r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta} + r_3\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + 2r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\ \theta} -$                                                                                                  |
| $\frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} + \frac{1}{6}t_2\partial^{\alpha}f^{\lambda}_{\kappa}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{3}t_2\omega_{_{I}\theta\kappa}\partial^{\kappa}f^{_{I}\theta} - \frac{2}{3}t_2\omega_{_{I}\kappa\theta}\partial^{\kappa}f^{_{I}\theta} -$                                                                                                                                                                           |
| $\frac{1}{3}t_2\ \omega_{\theta IK}\ \partial^{\kappa} f^{I\theta} + \frac{2}{3}t_2\ \omega_{\theta KI}\ \partial^{\kappa} f^{I\theta} - \frac{1}{6}t_2\ \partial^{\alpha} f^{\lambda}\ \partial^{\kappa} f_{\lambda\alpha} - \frac{1}{6}t_2\ \partial_{\kappa} f_{\theta}^{\ \lambda}\ \partial^{\kappa} f_{\lambda}^{\ \theta} +$                                                                                                                                                                         |
| $rac{1}{6}t_2\partial_\kappa f^\lambda_{\theta}\partial^\kappa f_\lambda^{\theta} + rac{1}{3}r_2\partial_\kappa \omega^{lphaeta	heta}\partial^\kappa \omega_{lphaeta	heta} + rac{2}{3}r_2\partial_\kappa \omega^{	hetalphaeta}\partial^\kappa \omega_{lphaeta	heta}^{	hetalpha}$                                                                                                                                                                                                                         |
| $rac{2}{3} r_2  \partial^{eta} \omega_{,}^{\ lpha \lambda}  \partial_{\lambda} \omega_{lpha eta}^{\ \ \prime} + rac{2}{3} r_2  \partial^{eta} \omega_{,}^{\ \lambda lpha}  \partial_{\lambda} \omega_{lpha eta}^{\ \ \prime} - 4  r_3  \partial^{eta} \omega_{,}^{\ \lambda lpha}  \partial_{\lambda} \omega_{lpha eta}^{\ \ \prime} -$                                                                                                                                                                   |
| $\tfrac{1}{2}  r_3  \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + r_5  \partial_\alpha \omega_\lambda^{\ \alpha}_{\ \ \theta}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} + \tfrac{1}{2}  r_3  \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa} - r_5  \partial_\theta \omega_\lambda^{\ \alpha}_{\ \ \alpha}  \partial^\lambda \omega^{\theta \kappa}_{\ \ \kappa}$ |

| $^{\#2}_{11}$                                                | 0                                        | 0                                                        | 0                                                         | 0                              | 0                             | 0                           | 0                       |
|--------------------------------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|--------------------------------|-------------------------------|-----------------------------|-------------------------|
| $t_{1}^{\#1}{}_{lpha}$ 1                                     | 0                                        | 0                                                        | 0                                                         | 0                              | 0                             | 0                           | 0                       |
| $\sigma_{1}^{\#2}{}_{\alpha} t_{1}^{\#1} \alpha t_{1}^{\#2}$ | 0                                        | 0                                                        | 0                                                         | 0                              | 0                             | 0                           | 0                       |
| $\sigma_{1^{-}\alpha}^{\#1}$                                 | 0                                        | 0                                                        | 0                                                         | $\frac{2}{k^2 (r_3 + 2 r_5)}$  | 0                             | 0                           | 0                       |
| $\tau_{1}^{\#1}_{\alpha\beta}$                               | $-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$  | $\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$      | 0                              | 0                             | 0                           | 0                       |
| $\sigma_{1}^{\#2}$                                           | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$ | $\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$     | $-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$ | 0                              | 0                             | 0                           | 0                       |
| $\sigma_{1}^{\#1}_{\alpha\beta}$                             | $\frac{1}{k^2 (2 r_3 + r_5)}$            | $-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$                 | $\frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)}$                   | 0                              | 0                             | 0                           | 0                       |
|                                                              | $\sigma_{1}^{\#1} + \alpha \beta$        | $\sigma_1^{\#_2} + \alpha \beta$                         | $	au_1^{\#1} \dagger^{lphaeta}$                           | $\sigma_{1}^{\#_1} +^{\alpha}$ | $\sigma_{1}^{\#2} +^{\alpha}$ | $\tau_{1}^{\#1} +^{\alpha}$ | $t_1^{\#2} + ^{\alpha}$ |





 $\sim$ 

 $\tau_{1}^{\#1}{}^{\alpha} == 0$ 

 $t_1^{\#2}\alpha == 0$ 

 $^{\circ}$ 

 $\sigma_{1}^{\#2\alpha} == 0$ 

 $\sigma_1^{\#2}\alpha\beta == 0$ 

 $\tau_1^{\#1}{}^{\alpha\beta} + ik$ 

#

SO(3) irreps

Source constraints

П

3 1 1

 $\sigma_{0}^{\#1} == 0$ 

 $\tau_{0}^{\#1} == 0$ 

 $\tau_{0}^{#2} == 0$ 

3 5 5 25

 $\sigma_{2}^{\#1}\alpha\beta\chi == 0$ 

 $\tau_{2+}^{\#1}\alpha\beta==0$ 

Total #:





## Unitarity conditions

 $r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 || r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 ||$ 

 $r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$