Rainfall Prediction

Machine Learning I

Tanmay Vivek Kshirsagar Sudhanshu Deshpande Shreyas Sunku Padmanabha

Objective

Predict next-day rain by training classification models on the target variable 'RainTomorrow' using the weather observations made on the current day.

Background

Predicting whether it will rain tomorrow is important for multiple reasons such as safety, agriculture, business, and personal planning. It helps make daily decisions and reduce risk of failure due to unexpected rain.

Observations were drawn from numerous weather stations. The daily observations are available from Climate Data Online - Map search.

An example of latest weather observations in Canberra: Canberra, Australian Capital Territory March 2023 Daily Weather Observations

Definitions adapted from http://www.bom.gov.au/climate/dwo/IDCJDW0000.shtml

Data source: http://www.bom.gov.au/climate/dwo/ and http://www.bom.gov.au/climate/data.

Dataset Description

- This dataset contains about 10 years of daily weather observations from many locations across Australia.
- 145,460 observations and 23 columns.
- Source: Kaggle.

```
'Date', 'Location', 'MinTemp', 'MaxTemp', 'Rainfall', 'Evaporation',
'Sunshine', 'WindGustDir', 'WindGustSpeed', 'WindDir9am', 'WindDir3pm',
'WindSpeed9am', 'WindSpeed3pm', 'Humidity9am', 'Humidity3pm',
'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm', 'Temp9am',
'Temp3pm', 'RainToday', 'RainTomorrow'],
```

Missing Data

Data Imputation

- Numerical: <u>mean</u>
- Categorical: <u>mode</u>

Feature Importance

Chi-Square - Categorical Features

```
Chi-square test
                                  results
Pearson Chi-square (15.0) =
                               1882.7416
                   p-value =
                                  0.0000
                Cramer's V =
                                 0.1151
               Chi-square test
                                  results
Pearson Chi-square (15.0) =
                               1216.6671
                   p-value =
                                  0.0000
                Cramer's V =
                                 0.0925
              Chi-square test
                                  results
Pearson Chi-square (1.0) =
                              13362.7100
                  p-value =
                                  0.0000
            Cramer's phi =
                                 0.3066
               Chi-square test
                                  results
Pearson Chi-square (48.0) =
                               3544.7902
                   p-value =
                                  0.0000
                                  0.1579
                Cramer's V =
```

SelectKBest - Numerical Features

```
['MaxTemp', 'Rainfall', 'Sunshine', 'WindGustSpeed', 'Humidity9am',
    'Humidity3pm', 'Pressure9am', 'Pressure3pm', 'Cloud9am', 'Cloud3pm',
    'Temp3pm', 'WindSpeed9am', 'Evaporation', 'WindSpeed3pm', 'MinTemp', 'Temp9am']
```

Data Distribution

Feature Handling

- Standard Scaling for numerical data
- One-hot Encoding for categorical data

MinTemp	MaxTemp	Rainfall		WindDir3pm_WSW	RainToday_No	RainToday_Yes
0.458008	0.095246	-0.278744	• • •	0.0	1.0	0.0
0.387859	-1.269075	0.623608	• • •	0.0	0.0	1.0
0.160388	0.306223	-0.278744		0.0	1.0	0.0
0.716808	-1.184684	-0.278744		0.0	1.0	0.0
0.113396	-0.143862	-0.278744	•••	0.0	1.0	0.0

Data Imbalance - SMOTE

Model Performance

Model	Accuracy	ROC AUC	Precision	Recall	F1-score
Logistic Regression	0.791484	0.866708	0.833882	0.791484	0.803847
KNN	0.735504	0.827634	0.820171	0.735504	0.756074
Decision Tree Classifier	0.782236	0.709302	0.792941	0.782236	0.786875
Random Forest Classifier	0.838496	0.853481	0.830538	0.838496	0.832982
Naive Bayes	0.624635	0.726397	0.761511	0.624635	0.656077
MLP Classifier	0.797743	0.872896	0.836366	0.797743	0.809208
XGB Classifier	0.856465	0.887170	0.849258	0.856465	0.850591

Principal Component Analysis

Model Performance after PCA

Model	Accuracy	ROC AUC	Precision	Recall	F1-score
Logistic Regression	0.781462	0.858268	0.828295	0.781462	0.794994
KNN	0.734133	0.824595	0.816726	0.734133	0.754639
Decision Tree Classifier	0.745490	0.692742	0.777388	0.745490	0.757363
Random Forest Classifier	0.812265	0.835040	0.815916	0.812265	0.813964
Naive Bayes	0.718274	0.758036	0.772822	0.718274	0.736181
MLP Classifier	0.808221	0.861895	0.829649	0.808221	0.815804
XGB Classifier	0.808960	0.859951	0.830101	0.808960	0.816454

K-Fold Cross Validation

```
k-Fold Cross Validation:
```

[0.85541827 0.85071412 0.85626842 0.87043754 0.86732034 0.87134437

0.87020348 0.86685938 0.86997676 0.87196055]

average accuracy: 0.8650503230569602

Conclusion

- We successfully build training classification models on the target variable <u>'RainTomorrow'</u> to predict next-day rain using the weather observations made on the current day.
- XGBoost Classifier model gave the best F-1 score followed by Random Forest Classifier and MLP Classifier.

Questions?

Thank You!