【实验目的】

- 1、世一步熟悉分光计的调整方法
- 2. 测量三棱镜顶用, 观察示灯色散现家
- 3. 掌握最小偏回用的测量方法
- 4. 测定核镜玻璃对汞灯某单色光的折射率

【实验原理】(电学、光学画出原理图)

1. 反射法测量三棱镜项角 原理在"分光计刷调整与使用"实验中已经介绍。 三棱镜顶角 ∠A = 1 ∠左I - ∠右I | + | ∠左I - ∠右I | 4

2.最小偏向角测量原理如右图,不放三棱镜时用望远镜观察入射光线,

读取读数据前面口数据为 001、001.

将三棱镜如右图所示效置,使入射光战(平行光管射出的平行光)在光常面AB射入,在光学面AC射出。望远镜从毛根癌面BC底边出发,沿道时打方向旋转,找到青晰的永单色光,说明已经找到了折射光路。此时转动载彻平台,至不单色光在某一位置突然向反向移动,此处即为该单色光最小偏向角的位置。记录下此时的分类对读数 OminI, OminI.

(2)

(3)

3.折射率测量原理

如右上图, 光筏入射后在光学面AB、AC分割发生折射, 在AC面折射出。

有
$$\delta = (i-r) + (i'-r')$$
 . 当 $i=i'$ 所有 $r'=r'$, 故 $\delta_{min} = 2(i-r)$

又
$$r+r'=2r=\angle A$$
 , 因此 $r=\pm\angle A$

因此折射字
$$n = \frac{\sin i}{\sin c} = \frac{\sin \frac{\Delta + \delta min}{2}}{\sin \Delta A}$$

【实验内容】(重点说明)

1. 分光计的调整

为哪已在"分光计时调整与使用"实验中学习。

2. 反射去测量三棱镜顶角

同上。填写表1(见[数据处理])

3.测定三棱镜对汞单色光 λ=546.0 nm (绿光) 们最小偏向角

如 [实验原理] 2. 中放置三楼镜, 转动栽物台, 改变入射角, 获得最小偏向角, 记录 OminI 和 OminI i 然后移去三楼镜, 读取 OoI 和 Oou, 代入②式 Smin = ±(|OminI - OoI|+|OminI - OoI|)

计算出最小偏向用,填写表2.

4. 计算三棱镜汞灯各单色光的折射率以及绘制色微曲成

分别测量 $\lambda = 404.7 \text{ nm}$ (紫)、 $\lambda = 435.8 \text{ nm}$ (蓝)、 $\lambda = 546.0 \text{ nm}$ (绿)、 $\lambda = 577.1 \text{ nm}$ (黄) 单色光阳 δ min,由 ⑥式 $\delta = \frac{\sin \frac{4+8 \text{min}}{3}}{\sin \frac{4}{3}}$

计算三棱镜对其附折射率,填写表3,并缓制 n-n关系曲战。

【实验器材及注意事项】

实验器材: 汞灯、三极镜、分光计

在意事项:①三棱镜易碎,应轻拿轻放

- ② 反射法测量三棱镜顶角杆,三棱镜附顶角龙在平台中心偏上防止看不到反射光
- ②应将欲逢宽度调节为 1mm 左右以城小误差,同时保证完度足够用于观测

	- 4.1 s.l. Smil - 1 de 4-2 - 7 de
表 1	反射法测三棱镜顶角
1	スタリム

	X = 1237/4/3—1240/2/3						
实验	左		右		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		
次数	一一窗	田 窗	1 窗	窗	$\angle A = \frac{1}{4}(\angle \pm_{\mathrm{I}} - \angle \pm_{\mathrm{I}} + \angle \pm_{\mathrm{II}} - \angle \pm_{\mathrm{II}})$		
1	71°2'	251°2'	331°7'	131°1'	59°59'		
2	98°51'	276°50'	338°58'	158°51'	59°58′		
3	127°7'	307°10'	7°12'	187°9'	59°59'		
4	105°12'	285°13'	345°14'	165°8'	60°1′		
5	67°53'	247°52'	307°57'	127°51'	60°0′		
6	86°31'	266°32'	326°32'	146°25'	60°2'		

测量结果为:

$$\overline{\angle A} = \frac{1}{6} \sum_{i=1}^{6} \angle A_i = 60^{\circ}0'$$

表 2 三棱镜对汞单色光 λ=546.0 nm 的最小偏向角

实验 次数	$\theta_{min~I}$	$ heta_{min\;\Pi}$	$ heta_{ exttt{0 I}}$	$ heta_{ exttt{0}}$ II	$ heta_{min~ ext{I}} - heta_{0~ ext{I}} $	$ heta_{min~\Pi} - heta_{0~\Pi} $	δ_{min}
1	197°29'	17°32'			53°56'	53°58'	53°57'
2	197°30'	17°33'	,		53°57'	53°59'	53°58'
3	197°30'	17°33'	1 40000'	2220241	53°57'	53°59'	53°58'
4	197°30'	17°33'	143°33'	323°34'	53°57'	53°59'	53°58'
5	197°30'	17°33'	-1		53°57'	53°59'	53°58'
6	197°31'	17°34'			53°58'	54°0'	53°59'

测量结果为:

$$\overline{\delta_{min}} = \frac{1}{6} \sum_{i=1}^{6} \delta_{min \ i} = 53^{\circ} 58'$$

表 3 三棱镜对汞灯各单色光的最小偏向角和折射率

波长 λ/nm	∠A	δ_{min}	$n=rac{\sinrac{\angle A+\delta_{min}}{2}}{\sinrac{\angle A}{2}}$
404.7 (紫)	60°0'	57°29'	1.710
435.8 (蓝)		55°51'	1.695
546.0 (绿)		53°58'	1.677
577.1 (黄)		53°35'	1.673

由柯西色散公式

$$n = a + \frac{b}{\lambda^2} + \frac{c}{\lambda^4}$$

用 MATLAB 拟合得:

```
Linear model:

myfit(x) = a + b*(x^{-2}) + c*(x^{-4})

Coefficients (with 95% confidence bounds):

a = 1.681 (1.42, 1.943)

b = -9396 (-1.345e+05, 1.157e+05)

c = 2.297e+09 (-1.153e+10, 1.613e+10)
```

即,

$$n = 1.681 + \frac{9396 \text{ nm}^2}{\lambda^2} + \frac{2.297 \times 10^9 \text{ nm}^4}{\lambda^4}$$

绘制色散曲线如下:

【误差分析】

- 1. 最核心的误差来源于难以寻找确切的最小扁向角。如右图所示,我们领在光线的转折点,已处读取数据,但实际上转动载物台时很难保证光战恰好停在 B处,导致 Smin 测量略偏大.
- AB
- 2. 实验过程中发现,细微转动望远镜,时,游标盘并未随之转动,这是由于望远镜与转座、刻度盘间固定不紧导致的,这会使得望远镜、转座、刻度盘在一定范围内松动,导致测量不准.
- 3. 光娥有约 1mm 附宽度,这会带来一定误差.

【实验心得及思考题】

思考题 1.

如[实验原理]所示,如右图开始 旋转望远镜,直至看到汞单色发线。

转动载初平台, 同时望远镜随之旋转, 如右图 2 , 发视转折点时, 此处即为 8min 时位置.

思表题2

如右图,不放三棱镜所读出角度 0。 效上三棱镜,观察到折射出射光线角度 0。 和反射光线角度 02

由于
$$n = \frac{\sin i}{\sin r} = \frac{\sin i'}{\sin r'}$$
 ,且 $r+r'=\angle A$, $|0_2-0_0|=|0_0^2-i-Y$, $i=Y$ $|0_0-0_1|=i-r+i'-r'=i+i'-\angle A$ 由上述各式可推得:

6

$$n = \left| \frac{1}{\sin A} \right| \cdot \sqrt{\sin^2 \left(\frac{90^\circ - \frac{10z - 00}{2}}{2} \right) + \sin^2 \left(\frac{90 - 01}{2} \right) + 2\cos A \sin \left(\frac{90^\circ - \frac{10z - 00}{2}}{2} \right) \sin i'}$$

$$= \left| \frac{1}{\sin A} \right| \cdot \sqrt{\cos^2 \frac{0z - 00}{2} + \sin^2 \left(\frac{90 - 01}{2} \right) + 2\cos A \cos \frac{10z - 00}{2} \sin \left(\frac{A + 10o - 01}{2} \right) - \frac{10z - 00}{2}}$$

代入 LA, Oo, O1, O2 即阿尔得n.

【数据记录及草表】

2.
$$0 \min I$$
 $0 \min I$ $0 i$ $0 i$ $|0 \min I - 0 i|$ $|0 \min I - 0 i|$