Can coding reduce fragmentation in deduplicated storage systems?

Yun-Han Li, Jin Sima, <u>Ilan Shomorony</u> and Olgica Milenkovic

UIUC ECE

- Identify and remove duplicated "chunks" in data storage
- Used in data centers and cloud storage

- Identify and remove duplicated "chunks" in data storage
- Used in data centers and cloud storage

- Identify and remove duplicated "chunks" in data storage
- Used in data centers and cloud storage

Chunk store:

- Identify and remove duplicated "chunks" in data storage
- Used in data centers and cloud storage

В

Urs Niesen, "An Information-Theoretic Analysis of Deduplication", 2017 Lou, Farnoud, "Data Deduplication with Random Substitutions", 2022

Chunk store:

- Identify and remove duplicated "chunks" in data storage
- Used in data centers and cloud storage

В

Files are fragmented across the chunk store

Need to read longer stretches of memory (or make jumps)

How do we optimally arrange the chunk store?

□ Files are fragmented across the chunk store

How do we optimally arrange the chunk store?

Files are fragmented across the chunk store

- How do we optimally arrange the chunk store?
- Can we reduce fragmentation by adding redundancy back?

Files are fragmented across the chunk store

- How do we optimally arrange the chunk store?
- Can we reduce fragmentation by adding redundancy back?
- Can coding help?

File model

- $lue{}$ Undirected graph G(V,E) where chunks are nodes
- Files are paths on the graph

- \square Set of files: $F_t = \{\text{all paths of length} \leq t\}$
- Goal: Find a "good" linear storage for all chunks

File model

- $lue{}$ Undirected graph G(V,E) where chunks are nodes
- Files are paths on the graph

- \square Set of files: $F_t = \{\text{all paths of length} \leq t\}$
- Goal: Find a "good" linear storage for all chunks

New metric for fragmentation

lacksquare Stretch of a file graph G: $S = \min_x \max_f \operatorname{stretch}(f,x)$

New metric for fragmentation

- lacksquare Stretch of a file graph G: $S = \min_x \max_f \operatorname{stretch}(f,x)$
- Using r redundant chunks: $S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{can have } r \text{ redundant chunks}}} S(r) = \min_{\substack{x \ \text{$

 $\begin{tabular}{lll} \square Using r redundant chunks: & $S(r) = \min_x \max_f \ \operatorname{stretch}(f,x) \\ & \searrow \\ & \subset \\ &$

Does coding help?

[1] Li, Sima, S., Milenkovic, "Reducing Fragmentation in Data Deduplication Systems via Partial Repetition and Coding"

No redundancy: coding doesn't help

- Lemma: Every chunk has a unique minimal recovery set
- \square Hall's marriage condition \Longrightarrow perfect matching exists

No redundancy: coding doesn't help

coded storage

- Lemma: Every chunk has a unique minimal recovery set
- \square Hall's marriage condition \Longrightarrow perfect matching exists

No redundancy: coding doesn't help

- Lemma: Every chunk has a unique minimal recovery set
- \square Hall's marriage condition \Longrightarrow perfect matching exists
- Fragmentation can only improve!

Coding with one redundant chunk

Coding for deduplication

- $lue{}$ Worst-case stretch metric S(r)
 - Coding can help, but not too much
 - lacksquare Computing S(r) is NP-hard in general
 - Special classes of file graphs [1]
- Probabilistic file model? [2,3]
 - Average-case stretch
- Different fragmentation metrics?
 - Jump metric [1]

- [1] Li, Sima, \$., Milenkovic, "Reducing Fragmentation in Data Deduplication Systems via Partial Repetition and Coding"
- [2] Coffey, Klimesh, "Fundamental limits for information retrieval", 2003
- [3] Niesen, "An Information-Theoretic Analysis of Deduplication", 2017