Question Number	Answer		Mark
3(a)(i)	The uncertainty would be 0.05 cm		
C(W)(1)	Or resolution would be 0.1 cm	(1)	
	• The percentage uncertainty would be about 1% (which is small)	(1)	2
	Allow MP1 for correct uncertainty as seen in a calculation.		
	Accept uncertainty as full resolution (0.1 cm) giving percentage uncertainty of 2%		
	for MP2		
3(a)(ii)	Max TWO from		
S(a)(II)	Attach a marker to the spring		
	Or use a set square between ruler and spring		
	Or ensure ruler is close to spring	(1)	
	View the scale at right angles	(1)	
	• Ensure the ruler is at zero at the support	(1)	
	• Ensure the ruler is vertical using a set square	(1)	2
2(b)(i)	Number of decimal places veries (fault 44, W - 4)	(1)	1
3(b)(i)	• Number of decimal places varies (for both W and l)	(1)	1
3(b)(ii)	• The student should check the value at $W = 0.39 \text{ N}$, $l = 12 \text{ cm}$	(1)	
	• As it is furthest from the line of best fit	(1)	2
3(b)(iii)	• W in the range of 0.22 to 0.24 (N)	(1)	1
3(c)(i)	• Use of density of modelling clay = density water $\times W_1 / (W_1 - W_2)$	(1)	
	• Density of modelling clay = 1700 kg m ⁻³	(1)	2
	Example of calculation		
	Density of modelling clay = $1000 \text{ kg m}^{-3} \times 0.65 \text{ N} / (0.65 \text{ N} - 0.27 \text{ N})$		
	Density of modelling clay = 1710 kg m^{-3}		
3(c)(ii)	Calculation of relevant limit of density of modelling clay from (c)(i)	(1)	
	Conclusion consistent with calculated limit/range	(1)	
	Ç		
	Example of calculation		
	Limit of density = $1710 \times 1.04 = 1778 \text{ kg m}^{-3}$		
	As this is above value 1760 kg m ³ then it could be polymer clay		
	OR		
		(1)	
	• Calculation of percentage difference (from 1760 kg m ⁻³)	(1) (1)	2
	 Conclusion based on comparison of the percentage difference and 4 % 	(1)	
	Example of calculation		
	Percentage difference = $(1760 \text{ kg m}^{-3} - 1710 \text{ kg m}^{-3}) / 1760 \text{ kg m}^{-3} \times 100\% = 2.8 \%$		
	As this is less than 4 % then it could be polymer clay		
	Allow e.c.f. from 3(c)(i)		
	Total for question 3		12