

Incremental Few-Shot Meta-Learning via Indirect Discriminant Alignment

Qing Liu, Orchid Majumder, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto

Incremental meta-learning -- Use knowledge learned from new tasks to enhance the base model in an *incremental* fashion (w/o access to old task data) to get an improved meta-learner.

New method: Indirect discriminant alignment -- Align the old and the new discriminants using "class anchors" from the old task τ , while processing only data from the new task τ . IDA $_{\mathcal{E}}(\phi_{\mathrm{new}}|\phi_{\mathrm{old}};\mathcal{C}_{\mathrm{old}}) = \mathbb{E}_{x\sim\mathcal{E},\tau'}\big[\mathrm{KL}(f_{\mathrm{old}}^{\tau'}(y|\phi_{\mathrm{old}}(x)||f_{\mathrm{old}}^{\tau'}(y|\phi_{\mathrm{new}}(x)))\big]$

New dataset: DomainImageNet -- Introduce larger domain gap between old tasks and new tasks and test how this may affect incremental meta-learning.

Incremental Few-Shot Meta-Learning via Indirect Discriminant Alignment

Qing Liu, Orchid Majumder, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto

Base Meta-Training

Incremental Meta-Training

Meta-Testing

Incremental Few-Shot Meta-Learning via Indirect Discriminant Alignment

Qing Liu, Orchid Majumder, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto

Meta-learning with episodic sampling:

$$L(w; \mathcal{D}) = \frac{1}{N^{\tau}} \sum_{\tau} \frac{1}{|\mathcal{D}_{\tau}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\tau}} -\log p_w^{\tau}(y_i | x_i)$$
$$= \frac{1}{N^{\tau}} \sum_{\tau} \frac{1}{|\mathcal{D}_{\tau}|} \sum_{(x_i, y_i) \in \mathcal{D}_{\tau}} -\log f_w^{\tau}(y_i | \phi_w(x_i))$$

 $\mathcal{D}_{ au}$: meta-training task

 $\phi_w(\cdot)$: backbone (embedding) function

 $f_w(\cdot)$: classification head (discriminant) function

Incremental learning based on distillation:

$$L(w; \mathcal{D} \cup \mathcal{E}) = L(w; \mathcal{E}) + L(w; \mathcal{D})$$

$$\simeq L(w; \mathcal{E}) + L(w_0; \mathcal{D}) + \delta w^T H(w_0; \mathcal{D}) \delta w$$

$$\simeq L(w; \mathcal{E}) + \lambda \mathbb{E}_{x \sim \mathcal{D}} \text{KL}(p_{w_0}(y|x)||p_w(y|x))$$

 \mathcal{D} : old dataset

 ${\mathcal E}$: new dataset

 w_0 : base model weight

 \vec{w} : incremental model weight

Incremental few-shot meta-learning:

Key idea: aligning the old and new discriminants using "class anchors" from the old task t, while processing only data from the new task t+1

$$IDA_{\mathcal{E}}(\phi_{\text{new}}|\phi_{\text{old}}; \mathcal{C}_{\text{old}}) = \mathbb{E}_{x \sim \mathcal{E}, \tau'}[KL(f_{\text{old}}^{\tau'}(y|\phi_{\text{old}}(x))||f_{\text{old}}^{\tau'}(y|\phi_{\text{new}}(x)))]$$

$$w_{t+1} = \arg\min_{w_{t+1}} L(w_{t+1}; \mathcal{E}) + \lambda IDA_{\mathcal{E}}(\phi_{w_{t+1}}|\phi_{w_t}; \mathcal{C}_t)$$

 $\mathcal{C}_{\mathrm{old}}$: class anchors from old training data

 $\phi_{
m old}$: old embeddings $\phi_{
m new}$: new embeddings

 $f_{
m old}$: discriminant based on old class anchors

Incremental Few-Shot Meta-Learning via Indirect Discriminant Alignment

Qing Liu, Orchid Majumder, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto

MiniImageNet:

Orig. Split	IML Split	# of classes
Meta-training	Old classes	32
	New classes (Round I)	16
	New classes (Round II)	16
Meta-testing	Unseen classes	20

DomainImageNet:

IML Split	# of classes	Domain of classes
Old classes	32	Natural categories
	32	Man-made categories
New classes	32	Natural categories
	32	Man-made categories
Unseen classes	20	Natural categories
	20	Man-made categories

Table 6: Results of 5-shot 5-way classification accuracy on MiniImageNet using PN [35] with 2 rounds of incremental meta-training, where each round consists of an 16 new classes.

Model	Incremental - Round I		Incremental - Round II			
Model	Old classes	New classes	Unseen	Old classes	New classes	Unseen
	(32)	(16)	classes (20)	(32+16)	(16)	classes (20)
NU	91.17 ± 0.18	65.60 ± 0.39	68.60 ± 0.33	82.25 ± 0.37	71.45 ± 0.38	68.60 ± 0.33
FT	80.70 ± 0.31	87.67 ± 0.37	67.45 ± 0.37	76.03 ± 0.36	90.72 ± 0.23	70.57 ± 0.32
DFA	87.69 ± 0.26	88.43 ± 0.36	68.20 ± 0.36	80.69 ± 0.38	91.27 ± 0.21	71.19 ± 0.37
IDA	87.30 ± 0.25	89.56 ± 0.20	72.08 ± 0.36	$\textbf{84.21} \pm \textbf{0.30}$	93.25 ± 0.17	$\textbf{75.15} \pm \textbf{0.35}$
PAR	93.94 ± 0.05	93.09 ± 0.06	72.10 ± 0.13	93.03 ± 0.06	95.58 ± 0.05	75.27 ± 0.13

Table 4: Results of 5-shot 5-way classification accuracy on different sets of DomainImageNet using PN [35] and different IML methods.

	Old classes	New classes	Unseen	Unseen	Unseen
Model	from old domain (32)	from new domain (32)	classes from	classes from	classes from
			old domain	new domain	both domains
			(20)	(20)	(40)
NU	86.94 ± 0.22	49.14 ± 0.36	57.66 ± 0.38	51.72 ± 0.32	59.59 ± 0.35
FT	64.42 ± 0.35	84.80 ± 0.28	50.72 ± 0.38	$\textbf{71.16} \pm \textbf{0.32}$	65.44 ± 0.40
DFA	65.12 ± 0.35	83.95 ± 0.29	51.33 ± 0.38	70.46 ± 0.33	65.52 ± 0.40
IDA	81.26 ± 0.27	82.06 ± 0.30	59.32 ± 0.39	70.61 ± 0.32	$\boxed{\textbf{70.36} \pm \textbf{0.36}}$
PAR	87.44 ± 0.22	88.77 ± 0.25	58.59 ± 0.37	74.46 ± 0.32	74.02 ± 0.37