A Beginner's Guide to Variational Inference

Haziq Jamil
PhD (LSE), MSc (LSE), BSc MMORSE (Warw)

5 December 2018

UBD Interview Seminar

https://haziqj.ml

Outline

Introduction

Idea

Comparison to EM

Mean-field distributions

Coordinate ascent algorithm

2 Examples

Univariate Gaussian Gaussian mixtures

Discussion

Exponential families
Zero-forcing vs Zero-avoiding
Quality of approximation
Advanced topics

• Consider a statistical model where we have observations $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.

- Consider a statistical model where we have observations $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$I := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z} = p(\mathbf{y})$$

- ► Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- ▶ Bayesian posterior analysis p(z|y) = p(y,z)/p(y)

- Consider a statistical model where we have observations. $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$I := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z} = p(\mathbf{y})$$

- Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- Bayesian posterior analysis p(z|y) = p(y,z)/p(y)
- Variational inference approximates the "posterior" p(z|y) by a tractably close distribution in the Kullback-Leibler sense.

- Consider a statistical model where we have observations $\mathbf{y} = (y_1, \dots, y_n)$ and also some latent variables $\mathbf{z} = (z_1, \dots, z_m)$.
- Want to evaluate the intractable integral

$$I := \int p(\mathbf{y}|\mathbf{z})p(\mathbf{z})\,\mathrm{d}\mathbf{z} = p(\mathbf{y})$$

- ► Frequentist likelihood maximisation $\arg \max_{\theta} \log p(\mathbf{y}|\theta)$
- ▶ Bayesian posterior analysis p(z|y) = p(y,z)/p(y)
- Variational inference approximates the "posterior" $p(\mathbf{z}|\mathbf{y})$ by a tractably close distribution in the Kullback-Leibler sense.
- Advantages:
 - Computationally fast
 - ► Convergence easily assessed
 - Works well in practice

In the literature

• Well known in machine learning, slowly encroaching other fields.

In the literature

Google Scholar results for 'variational inference'

- Well known in machine learning, slowly encroaching other fields.
- Applications (Blei et al., 2017):
 - Computer vision and robotics (image denoising, tracking, recognition)
 - ► Natural language processing and speech recognition (topic modelling)
 - Social statistics (probit models, latent class models, variable selection)
 - Computational biology (phylogenetic hidden Markov models, population genetics, gene expression analysis)
 - ► Computational neuroscience (autoregressive processes, hierarchical models, spatial models)

Recommended texts

- D. M. Blei et al. (2017). "Variational Inference: A Review for Statisticians". J. Am. Stat. Assoc, 112.518, pp. 859–877
- C. M. Bishop (2006). Pattern Recognition and Machine Learning.

 Springer
- K. P. Murphy (2012). Machine Learning: A Probabilistic Perspective.
 The MIT Press
- M. J. Beal (2003). "Variational algorithms for approximate Bayesian inference". PhD thesis. Gatsby Computational Neuroscience Unit, University College London
- HJ (Oct. 2018). "Regression modelling using priors depending on Fisher information covariance kernels (I-priors)". PhD thesis. London School of Economics and Political Science

$$p(\mathbf{z}|\mathbf{y})$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

Minimise Kullback-Leibler divergence (using calculus of variations)

$$\mathsf{KL}(q\|p) = -\int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z})} q(\mathsf{z}) \, \mathsf{dz}.$$

• **ISSUE**: KL(q||p) is intractable.

• Let q(z) be some density function to approximate p(z|y).

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$\begin{aligned} \log p(\mathbf{y}) &= \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y}) \\ &= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) \, \mathrm{d}\mathbf{z} \\ &= \mathcal{L}(q) + \mathsf{KL}(q \| p) \\ &\geq \mathcal{L}(q) \end{aligned}$$

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- \mathcal{L} is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.
- Note that

$$ightharpoonup \mathcal{L}(q) = \mathsf{E}_{\mathsf{z} \sim q}[\log p(\mathsf{y}, \mathsf{z})] + H[q(\mathsf{z})];$$
 and

$$\log p(\mathbf{y}) = \log p(\mathbf{y}, \mathbf{z}) - \log p(\mathbf{z}|\mathbf{y})$$

$$= \int \left\{ \log \frac{p(\mathbf{y}, \mathbf{z})}{q(\mathbf{z})} - \log \frac{p(\mathbf{z}|\mathbf{y})}{q(\mathbf{z})} \right\} q(\mathbf{z}) d\mathbf{z}$$

$$= \mathcal{L}(q) + \mathsf{KL}(q||p)$$

$$\geq \mathcal{L}(q)$$

- ullet L is referred to as the "lower-bound", and it serves as a surrogate function to the marginal.
- Maximising $\mathcal{L}(q)$ is equivalent to minimising $\mathsf{KL}(q\|p)$.
- Note that
 - $ightharpoonup \mathcal{L}(q) = \mathsf{E}_{\mathsf{z} \sim q}[\log p(\mathsf{y}, \mathsf{z})] + H[q(\mathsf{z})];$ and
 - ▶ Equality in the bound when $q(\mathbf{z}) \equiv p(\mathbf{z}|\mathbf{y})$, and $\mathsf{KL}(q||p)$ vanishes

Comparison to the EM algorithm

- In addition to latent variables z, typically there are unknown parameters θ to be estimated.
 - ightharpoonup Frequentist estimation: θ is fixed
 - ▶ Bayesian estimation: $\theta \sim p(\theta)$ is random

Comparison to the EM algorithm

- In addition to latent variables z, typically there are unknown parameters θ to be estimated.
 - \blacktriangleright Frequentist estimation: θ is fixed
 - ▶ Bayesian estimation: $\theta \sim p(\theta)$ is random

Variational inference/Bayes	(Variational) EM algorithm
GOAL : Posterior densities for (\mathbf{w}, θ)	GOAL : ML/MAP estimates for θ
Variational approximation for latent variables and parameters $q(\mathbf{w}, \theta) \approx p(\mathbf{w}, \theta \mathbf{y})$	Variational approximation for latent variables only $q(\mathbf{w}) \approx p(\mathbf{w} \mathbf{y})$
Priors required on θ	Priors not necessary for θ
Derivation can be tedious	Derivation less tedious
Inference on $ heta$ through (approximate) posterior density $q(heta)$	Asymptotic distribution of θ not well studied; standard errors for θ not easily obtained

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

• Under this restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}_{[j]}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for
$$j \in \{1, ..., m\}$$
.

Factorised distributions (Mean-field theory)

- Maximising \mathcal{L} over all possible q not feasible. Need some restrictions, but only to achieve tractability.
- Suppose we partition elements of z into M disjoint groups $z = (z_{[1]}, \dots, z_{[M]})$, and assume

$$q(\mathsf{z}) = \prod_{j=1}^M q_j(\mathsf{z}_{[j]}).$$

• Under this restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}_{[j]}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

 In practice, these unnormalised densities are of recognisable form (especially if conjugacy is considered).

• The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{\lceil k \rceil}$, $k \in \{1, \dots, M | k \neq j\}$.

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, \dots, M | k \neq j\}$.
- One way around this to employ an iterative procedure.

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, \dots, M | k \neq j\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{z})] - \mathsf{E}_q[\log q(\mathbf{z})].$$

- The optimal distributions are coupled with another, i.e. each $\tilde{q}_j(\mathbf{z}_{[j]})$ depends on the optimal moments of $\mathbf{z}_{[k]}$, $k \in \{1, \dots, M | k \neq j\}$.
- One way around this to employ an iterative procedure.
- Assess convergence by monitoring the lower bound

$$\mathcal{L}(q) = \mathsf{E}_q[\log p(\mathbf{y}, \mathbf{z})] - \mathsf{E}_q[\log q(\mathbf{z})].$$

Algorithm 4 CAVI

- 1: **initialise** Variational factors $q_i(\mathbf{z}_{[i]})$
- 2: while $\mathcal{L}(q)$ not converged do
- for $j = 1, \ldots, M$ do 3:
- $\log q_i(\mathbf{z}_{[i]}) \leftarrow \mathsf{E}_{-i}[\log p(\mathbf{y}, \mathbf{z})] + \mathsf{const.}$ ⊳ from (1) 4:
- end for 5:
- $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{y},\mathsf{z})] \mathsf{E}_q[\log q(\mathsf{z})]$
- 7. end while
- 8: return $\tilde{q}(z) = \prod_{i=1}^{M} \tilde{q}_i(z_{[i]})$

- Introduction
- 2 Examples
- 3 Discussion

• GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N} \left(\mu_0, (\kappa_0 \psi)^{-1} \right)$ $\psi \sim \Gamma(a_0, b_0)$ Priors $i = 1, \dots, n$

• GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N}\left(\mu_0, (\kappa_0 \psi)^{-1}\right)$ $\psi \sim \Gamma(a_0, b_0)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi | \mathbf{y})$ with the mean-field approximation

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

• GOAL: Bayesian inference of mean μ and variance ψ^{-1}

$$y_i \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \psi^{-1})$$
 Data $\mu | \psi \sim \mathsf{N} \left(\mu_0, (\kappa_0 \psi)^{-1} \right)$ $\psi \sim \Gamma(a_0, b_0)$ Priors $i = 1, \dots, n$

• Substitute $p(\mu, \psi|\mathbf{y})$ with the mean-field approximation

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

• From (1), we can work out the solutions

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$$

• From (1), we can work out the solutions

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

 $q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$

• From (1), we can work out the solutions

$$\begin{split} \log \tilde{q}_{\mu}(\mu) &= \mathsf{E}_{\psi}[\log p(\mathbf{y}|\mu,\psi)] + \mathsf{E}_{\psi}[\log p(\mu|\psi)] + \mathsf{const.} \\ \log \tilde{q}_{\psi}(\psi) &= \mathsf{E}_{\mu}[\log p(\mathbf{y}|\mu,\psi)] + \mathsf{E}_{\mu}[\log p(\mu|\psi)] + \log p(\psi) \\ &+ \mathsf{const.} \end{split}$$

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, \ldots, m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi)$$

• From (1), we can work out the solutions

$$\tilde{q}_{\mu}(\mu) \equiv N\left(\frac{\kappa_0 \mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n) \, \mathsf{E}_q[\psi]}\right)$$

- GOAL: Bayesian inference of mean μ and variance ψ^{-1}
 - Under the mean-field restriction, the solution to $\arg\max_q \mathcal{L}(q)$ is

$$\tilde{q}_j(\mathbf{z}^{(j)}) \propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{y}, \mathbf{z})]\right)$$
 (1)

for $j \in \{1, ..., m\}$.

$$q(\mu, \psi) = q_{\mu}(\mu)q_{\psi}(\psi).$$

• From (1), we can work out the solutions

$$ilde{q}_{\mu}(\mu) \equiv \mathsf{N}\left(rac{\kappa_0\mu_0 + nar{y}}{\kappa_0 + n}, rac{1}{(\kappa_0 + n)\,\mathsf{E}_q[\psi]}
ight) \;\;\; \mathsf{and} \;\;\; ilde{q}_{\psi}(\psi) \equiv \Gamma(ilde{a}, ilde{b})$$

$$\tilde{a} = a_0 + \frac{n}{2}$$
 $\tilde{b} = b_0 + \frac{1}{2} \operatorname{E}_q \left[\sum_{i=1}^n (y_i - \mu)^2 + \kappa_0 (\mu - \mu_0)^2 \right]$

Comparison of solutions

Variational posterior

$$\begin{split} \psi &\sim \Gamma\left(a_0 + \frac{n}{2}, b_0 + \frac{1}{2}c\right) \\ c &= \mathsf{E}\left[\sum_{i=1}^n (y_i - \mu)^2 + \kappa_0(\mu - \mu_0)^2\right] \end{split}$$

 $\mu \sim N\left(\frac{\kappa_0\mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n) F[ub]}\right)$

True posterior

$$\begin{split} \mu|\psi &\sim \mathsf{N}\left(\frac{\kappa_0\mu_0 + n\bar{y}}{\kappa_0 + n}, \frac{1}{(\kappa_0 + n)\psi}\right)\\ \psi &\sim \Gamma\left(a_0 + \frac{n}{2}, b_0 + \frac{1}{2}c'\right)\\ c' &= \sum_{n=0}^{n} (y_i - \bar{y})^2 + \frac{\kappa_0}{\kappa_0 + n}(\bar{y} - \mu_0)^2 \end{split}$$

- $Cov(\mu, \psi) = 0$ by design in VI solutions.
- For this simple example, it is possible to decouple and solve explicitly.
- VI solutions leads to unbiased MLE if $\kappa_0 = \mu_0 = a_0 = b_0 = 0$.

Gaussian mixture model (Old Faithful data set)

• Let $x_i \in \mathbb{R}^d$ and assume $x_i \stackrel{\mathsf{iid}}{\sim} \sum_{k=1}^K \pi_k \, \mathsf{N}_d(\boldsymbol{\mu}_k, \boldsymbol{\Psi}_k^{-1})$ for $i = 1, \dots, n$.

Gaussian mixture model

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ are observed along with $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Gaussian mixture model

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ are observed along with $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Gaussian mixture model

$$\begin{split} & \rho(\mathbf{x}, \mathbf{z}, \boldsymbol{\pi}, \boldsymbol{\mu}, \boldsymbol{\Psi}) \\ &= p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\Psi}) p(\mathbf{z}|\boldsymbol{\pi}) \\ & \times p(\boldsymbol{\pi}) p(\boldsymbol{\mu}|\boldsymbol{\Psi}) p(\boldsymbol{\Psi}) \\ &= p(\mathbf{x}|\mathbf{z}, \boldsymbol{\mu}, \boldsymbol{\Psi}) p(\mathbf{z}|\boldsymbol{\pi}) \\ & \times \mathsf{Dir}_{K}(\boldsymbol{\pi}|\alpha_{01}, \dots, \alpha_{0K}) \\ & \times \prod_{k=1}^{K} \mathsf{N}_{d}(\boldsymbol{\mu}_{k}|\mathbf{m}_{0}, (\kappa_{0}\boldsymbol{\Psi}_{k})^{-1}) \\ & \times \prod_{k=1}^{K} \mathsf{Wis}_{d}(\boldsymbol{\Psi}_{k}|\mathbf{W}_{0}, \nu_{0}) \end{split}$$

- Introduce $\mathbf{z}_i = (z_{i1}, \dots, z_{iK})$, a 1-of-K binary vector, where each $z_{ik} \sim \text{Bern}(\pi_k)$.
- Assuming $\mathbf{z} = \{\mathbf{z}_1, \dots, \mathbf{z}_n\}$ are observed along with $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$,

$$p(\mathbf{x}|\mathbf{z},\boldsymbol{\mu},\boldsymbol{\Psi}) = \prod_{i=1}^n \prod_{k=1}^K \mathsf{N}_d(\mathbf{x}_i|\boldsymbol{\mu}_k,\boldsymbol{\Psi}_k^{-1})^{z_{ik}}.$$

Variational inference for GMM

Assume the mean-field posterior density

$$egin{aligned} q(\mathsf{z},\pi,\mu,\Psi) &= q(\mathsf{z})q(\pi,\mu,\Psi) \ &= q(\mathsf{z})q(\pi)q(\mu|\Psi)q(\Psi). \end{aligned}$$

Algorithm 5 CAVI for GMM

details

- 1: initialise Variational factors q(z), $q(\pi)$ and $q(\mu, \Psi)$
- 2: **while** $\mathcal{L}(q)$ not converged **do**
- 3: $q(z_{ik}) \leftarrow \text{Bern}(\cdot)$
- 4: $q(\pi) \leftarrow \mathsf{Dir}_K(\cdot)$
- 5: $q(\mu|\Psi) \leftarrow \mathsf{N}_d(\cdot,\cdot)$
- 6: $q(\Psi) \leftarrow \mathsf{Wis}_d(\cdot, \cdot)$
- 7: $\mathcal{L}(q) \leftarrow \mathsf{E}_q[\log p(\mathsf{x},\mathsf{z},\pi,\mu,\Psi)] \mathsf{E}_q[\log q(\mathsf{z},\pi,\mu,\Psi)]$
- 8: end while
- 9: $\mathsf{return}\ ilde{q}(\mathsf{z}, \pi, \mu, \Psi) = ilde{q}(\mathsf{z}) ilde{q}(\pi) ilde{q}(\mu | \Psi) ilde{q}(\Psi)$

Final thoughts on variational GMM

- Similar algorithm to the EM, and therefore similar computational time.
- Can extend to mixture of bernoullis a.k.a. latent class analysis.
- PROS:
 - ▶ Automatic selection of number of mixture components.
 - ► Less pathological special cases compared to EM solutions because regularised by prior information.
 - ▶ Less sensitive to number of parameters/components.
- CONS:
 - Hyperparameter tuning.

- Introduction
- 2 Examples
- 3 Discussion

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (1),

$$\begin{aligned} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{aligned}$$

is also in the same exponential family.

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (1),

$$\begin{split} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{split}$$

is also in the same exponential family.

C.f. Gibbs conditional densities.

 For the mean-field variational method, suppose that each complete conditional is in the exponential family:

$$p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y}) = h(\mathbf{z}^{(j)}) \exp \left(\eta_j(\mathbf{z}_{-j},\mathbf{y}) \cdot \mathbf{z}^{(j)} - A(\eta_j)\right).$$

• Then, from (1),

$$\begin{split} \tilde{q}_{j}(\mathbf{z}^{(j)}) &\propto \exp\left(\mathsf{E}_{-j}[\log p(\mathbf{z}^{(j)}|\mathbf{z}_{-j},\mathbf{y})]\right) \\ &= \exp\left(\log h(\mathbf{z}^{(j)}) + \mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)} - \mathsf{E}[A(\eta_{j})]\right) \\ &\propto h(\mathbf{z}^{(j)}) \exp\left(\mathsf{E}[\eta_{j}(\mathbf{z}_{-j},\mathbf{y})] \cdot \mathbf{z}^{(j)}\right) \end{split}$$

is also in the same exponential family.

- C.f. Gibbs conditional densities.
- ISSUE: What if not in exponential family? Importance sampling or Metropolis sampling.

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Non-convexity of ELBO

- CAVI only guarantees converges to a local optimum.
- Multiple local optima may exist.

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when p(z|y) is close to zero, unless q(z) is also close to zero (*zero-forcing*).
- What about other measures of closeness?

Zero-forcing vs Zero-avoiding

• Back to the KL divergence:

$$\mathsf{KL}(q\|p) = \int \log rac{q(\mathsf{z})}{p(\mathsf{z}|\mathsf{y})} q(\mathsf{z}) \, \mathsf{dz}$$

- KL(q||p) is large when $p(\mathbf{z}|\mathbf{y})$ is close to zero, unless $q(\mathbf{z})$ is also close to zero (zero-forcing).
- What about other measures of closeness? For instance,

$$\mathsf{KL}(p\|q) = \int \log rac{p(\mathsf{z}|\mathsf{y})}{q(\mathsf{z}|\mathsf{y})} p(\mathsf{z}|\mathsf{y}) \, \mathsf{dz}.$$

- This gives the Expectation Propagation (EP) algorithm.
- It is zero-avoiding, because KL(p||q) is small when both p(z|y) and q(z) are non-zero.

— p(z)

— p(z) — q(z)

End

— p(z) — q(z)

Distortion of higher order moments

• Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- ullet Approximating $p(\mathbf{z})$ by $q(\mathbf{z})=q_1(z_1)q_2(z_2)$ yields

$$ilde{q}_1(z_1) = \mathsf{N}(z_1|\mu_1,\psi_{11}^{-1})$$
 and $ilde{q}_2(z_2) = \mathsf{N}(z_2|\mu_2,\psi_{22}^{-1})$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

Distortion of higher order moments

- Consider $\mathbf{z} = (z_1, z_2)^{\top} \sim \mathsf{N}_2(\boldsymbol{\mu}, \boldsymbol{\Psi}^{-1})$, $\mathsf{Cov}(z_1, z_2) \neq 0$.
- ullet Approximating $p(\mathbf{z})$ by $q(\mathbf{z})=q_1(z_1)q_2(z_2)$ yields

$$ilde{q}_1(z_1) = \mathsf{N}(z_1|\mu_1,\psi_{11}^{-1}) \ \ \mathsf{and} \ \ ilde{q}_2(z_2) = \mathsf{N}(z_2|\mu_2,\psi_{22}^{-1})$$

and by definition, $Cov(z_1, z_2) = 0$ under \tilde{q} .

• This leads to underestimation of variances (widely reported in the literature—Zhao and Marriott, 2013).

Quality of approximation

 Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).

Quality of approximation

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.

Quality of approximation

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?

Quality of approximation

- Variational inference converges to a different optimum than ML, except for certain models (Gunawardana and Byrne, 2005).
- But not much can be said about the quality of approximation.
- Statistical properties not well understood—what is its statistical profile relative to the exact posterior?
- Speed trumps accuracy?

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - ▶ Used for Bayesian logistic regression as follows:

$$I = \int \operatorname{expit}(x^{\top}\beta)p(\beta) \, \mathrm{d}\beta \geq \int f(x^{\top}\beta,\xi)p(\beta) \, \mathrm{d}\beta.$$

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - ▶ Used for Bayesian logistic regression as follows:

$$I = \int \operatorname{expit}(x^{\top}\beta)p(\beta) \, \mathrm{d}\beta \geq \int f(x^{\top}\beta,\xi)p(\beta) \, \mathrm{d}\beta.$$

- Stochastic variational inference
 - Use ideas from stochastic optimisation—gradient based improvement of ELBO from subsamples of the data.
 - Scales to massive data.

Advanced topics

- Local variational bounds
 - ▶ Not using the mean-field assumption.
 - ▶ Instead, find a bound for the marginalising integral \mathcal{I} .
 - ▶ Used for Bayesian logistic regression as follows:

$$I = \int \exp it(x^{\top}\beta)p(\beta) d\beta \ge \int f(x^{\top}\beta,\xi)p(\beta) d\beta.$$

- Stochastic variational inference
 - Use ideas from stochastic optimisation—gradient based improvement of ELBO from subsamples of the data.
 - Scales to massive data.
- Black box variational inference
 - ▶ Beyond exponential families and model-specific derivations.

End

Thank you!

References I

- Beal, M. J. (2003). "Variational algorithms for approximate Bayesian inference". PhD thesis. Gatsby Computational Neuroscience Unit, University College London.
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
- Blei, D. M. (2017). "Variational Inference: Foundations and Innovations". URL:
 - https://simons.berkeley.edu/talks/david-blei-2017-5-1.
- Blei, D. M., A. Kucukelbir, and J. D. McAuliffe (2017). "Variational Inference: A Review for Statisticians". *Journal of the American Statistical Association*, 112.518, pp. 859–877.
- Gunawardana, A. and W. Byrne (2005). "Convergence theorems for generalized alternating minimization procedures". *Journal of Machine Learning Research* 6, pp. 2049–2073.

References II

- Kass, R. and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795.
- Murphy, K. P. (2012). *Machine Learning: A Probabilistic Perspective*. The MIT Press.
- Jamil, H. (Oct. 2018). "Regression modelling using priors depending on Fisher information covariance kernels (I-priors)". PhD thesis. London School of Economics and Political Science.
- Zhao, H. and P. Marriott (2013). "Diagnostics for variational Bayes approximations". arXiv: 1309.5117.

4 Additional material

The variational principle
The EM algorithm
Laplace's method
Solutions to Gaussian mixture

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

```
Functions p: \theta \mapsto \mathbb{R} (standard calculus)
Functionals \mathcal{H}: p \mapsto \mathbb{R} (variational calculus)
```

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\operatorname{arg\,max}_{\theta} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

The variational principle

 Name derived from calculus of variations which deals with maximising or minimising functionals.

Functions
$$p: \theta \mapsto \mathbb{R}$$
 (standard calculus)
Functionals $\mathcal{H}: p \mapsto \mathbb{R}$ (variational calculus)

Using standard calculus, we can solve

$$\underset{\theta}{\operatorname{arg\,max}} p(\theta) =: \hat{\theta}$$

e.g. p is a likelihood function, and $\hat{\theta}$ is the ML estimate.

Using variational calculus, we can solve

$$\operatorname{arg\,max}_{p} \mathcal{H}(p) =: \tilde{p}$$

e.g. \mathcal{H} is the entropy $\mathcal{H} = -\int p(x) \log p(x) dx$, and \tilde{p} is the entropy maximising distribution.

Comparison to the EM algorithm

- In addition to latent variables z, typically there are unknown parameters θ to be estimated.
 - \blacktriangleright Frequentist estimation: θ is fixed
 - ▶ Bayesian estimation: $\theta \sim p(\theta)$ is random
- Consider θ fixed. Maximising the (marginal) log-likelihood directly

$$\underset{\theta}{\operatorname{arg \, max}} \log \left\{ \int p(\mathbf{y}|\mathbf{z}, \theta) p(\mathbf{z}|\theta) \, d\mathbf{z} \right\}$$

is difficult. However, if somehow the latent variables were known, then the problem may become easier.

- Given initial values $\theta^{(0)}$, the EM algorithm cycles through
 - ► **E-step**: Compute $Q(\theta|\theta^{(t)}) := \mathsf{E}_{\mathsf{z}}[\log p(\mathsf{y},\mathsf{z}|\theta) \,|\, \mathsf{y},\theta^{(t)}]$
 - ▶ **M**-step: $\theta^{(t+1)} \leftarrow \arg \max_{\theta} Q(\theta|\theta^{(t)})$

back 25 / 23

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2{\it Q}({\bf f})$ being the negative Hessian of ${\it Q}$ evaluated at $\tilde{\bf f}$.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{\bf f}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Laplace's method

• Interested in $p(\mathbf{f}|\mathbf{y}) \propto p(\mathbf{y}|\mathbf{f})p(\mathbf{f}) =: e^{Q(\mathbf{f})}$, with normalising constant $p(\mathbf{y}) = \int e^{Q(\mathbf{f})} d\mathbf{f}$. The Taylor expansion of Q about its mode $\tilde{\mathbf{f}}$

$$Q(\mathbf{f}) \approx Q(\tilde{\mathbf{f}}) - \frac{1}{2}(\mathbf{f} - \tilde{\mathbf{f}})^{\top} \mathbf{A}(\mathbf{f} - \tilde{\mathbf{f}})$$

is recognised as the logarithm of an unnormalised Gaussian density, with ${\bf A}=-{\sf D}^2 Q({\bf f})$ being the negative Hessian of Q evaluated at $\tilde{{\bf f}}$.

• The posterior $p(\mathbf{f}|\mathbf{y})$ is approximated by $N(\tilde{\mathbf{f}}, \mathbf{A}^{-1})$, and the marginal by

$$p(\mathbf{y}) \approx (2\pi)^{n/2} |\mathbf{A}|^{-1/2} p(\mathbf{y}|\mathbf{\tilde{f}}) p(\mathbf{\tilde{f}})$$

• Won't scale with large *n*; difficult to find modes in high dimensions.

R. Kass and A. Raftery (1995). "Bayes Factors". *Journal of the American Statistical Association* 90.430, pp. 773–795, §4.1, pp.777-778.

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (density)

Comparison of approximations (deviance)

Variational solutions to Gaussian mixture model

Variational M-step

$$\begin{split} \tilde{q}(\mathbf{z}) &= \prod_{i=1}^n \prod_{k=1}^K r_{ik}^{z_{ik}}, \quad r_{ik} = \rho_{ik} / \sum_{k=1}^K \rho_{ik} \\ \log \rho_{ik} &= \mathsf{E}[\log \pi_k] + \frac{1}{2} \, \mathsf{E}\left[\log |\Psi_k|\right] - \frac{d}{2} \log 2\pi \\ &- \frac{1}{2} \, \mathsf{E}\left[(\mathbf{x}_i - \boldsymbol{\mu}_k)^\top \Psi_k (\mathbf{x}_i - \boldsymbol{\mu}_k)\right] \end{split}$$

Variational E-step

$$\begin{split} \tilde{q}(\pi_1,\dots,\pi_K) &= \mathsf{Dir}_K(\boldsymbol{\pi}|\tilde{\boldsymbol{\alpha}}), \quad \tilde{\alpha}_k = \alpha_{0k} + \sum_{i=1}^n r_{ik} \\ \tilde{q}(\boldsymbol{\mu},\boldsymbol{\Psi}) &= \prod_{k=1}^K \mathsf{N}_d\left(\boldsymbol{\mu}_k|\tilde{\boldsymbol{\mathsf{m}}}_k,(\tilde{\kappa}_k\boldsymbol{\Psi}_k)^{-1}\right) \mathsf{Wis}_d(\boldsymbol{\Psi}_k|\tilde{\boldsymbol{\mathsf{W}}}_k,\tilde{\nu}_k) \end{split}$$

Variational solutions to Gaussian mixture model (cont.)

$$\tilde{\kappa}_k = \kappa_0 + \sum_{i=1}^n r_{ik}$$

$$\tilde{\mathbf{m}}_k = \left(\kappa_0 \mathbf{m}_0 + \sum_{i=1}^n r_{ik} \mathbf{x}_i\right) / \tilde{\kappa}_k$$

$$\mathbf{W}_k^{-1} = \mathbf{W}_0^{-1} + \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \bar{\mathbf{x}}_k) (\mathbf{x}_i - \bar{\mathbf{x}}_k)^{\top}$$

$$\bar{\mathbf{x}}_k = \sum_{i=1}^n r_{ik} \mathbf{x}_i / \sum_{i=1}^n r_{ik}$$

$$\nu_k = \nu_0 + \sum_{i=1}^n r_{ik}$$

Also useful

$$E\left[(\mathbf{x}_{i} - \boldsymbol{\mu}_{k})^{\top} \boldsymbol{\Psi}_{k} (\mathbf{x}_{i} - \boldsymbol{\mu}_{k})\right] = d/\tilde{\kappa}_{k} + \nu_{k} (\mathbf{x}_{i} - \tilde{\mathbf{m}}_{k})^{\top} \tilde{\mathbf{W}}_{k} (\mathbf{x}_{i} - \tilde{\mathbf{m}}_{k})$$

$$E\left[\log \pi_{k}\right] = \sum_{i=1}^{d} \psi\left(\frac{\nu_{k} + 1 - i}{2}\right) + d\log 2 + \log|\tilde{\mathbf{W}}_{k}|$$

 $\mathsf{E}\left[\log|\Psi_k|\right] = \psi(\tilde{\alpha}_k) - \psi\left(\sum_{k=1}^K \tilde{\alpha}_k\right), \quad \psi(\cdot) \text{ is the digamma function}$