3 Results

3.1 Figure 1

Original Image

3.1.1 Eigen Value Decomposition

Image output using 5 eigen values

Image output using 25 eigen values

Error Image

Error Image

As No: of Eigen Values Increases the Frobenious Error Reduces. At n=180 error become 0 approximately

3.1.1 Singular Value Decomposition

Image output using 1 singular values

Error Image

Image output using 3 singular values

Error Image

Image output using 55 singular values

Error Image

Image output using 105 singular values

Error Image

As No: of Singular Values Increases the Frobenious Error Reduces. At n=180 error become 0 approximately . Singular Error for a given n, is approximately equal to Error for Eigen value decomposition.

3.2 Figure 2

Original Image

3.1.1 Eigen Value Decomposition

Image output using 1 eigen values

Error Image

Image output using 16 eigen values

Error Image

Image output using 76 eigen values

Error Image

Image output using 140 eigen values

Error Image

As No: of Eigen Values Increases the Frobenious Error Reduces but not uniformly.

3.1.1 Singular Value Decomposition

Image output using 3 singular values

Error Image

Image output using 35 singular values

Error Image

Image output using 85 singular values

Error Image

Image output using 185 singular values

Error Image

As No: of Singular Values Increases the Frobenious Error Reduces. At n = 230 error become 0 approximately .

3.2 Figure 3

Original Image

Since size of Image is large, I reduce image to gray scale and Eigen value decomposition and Singular Value decomposition is done for Selected Values. Errors are also calculated but plotting is not done

3.1.1 Eigen Value Decomposition

Image output using 10 Eigen values

Error = 313.3213

Image output using 20 Eigen values

Error = 262.9781

Image output using 40 Eigen values

Error = 216.0367

3.1.1 Singular Value Decomposition

Image output using 10 Singular values (Error = 313.321)

Image output using 20 Singular values (Error = 262.9781)

Image output using 80 Singular values (Error = 171.1420)

4 Inferences

Eigen Value decomposition and Singular Value Decomposition produce a large amount of data compression. Error between Compressed image and original image is more for smaller **N**, but as N increases error reduces exponentially.

For a given Image (Square) Singular Value Decomposition will provide finer image than Eigen Value Decomposition for a given N. More over Error curve of Singular Value decomposition is smoother than that of Eigen Value decomposition. Eigen Value decomposition cure has some local peeks.

For Non-Square Image Eigen Value decomposition of **A^TA** will give almost same error as Singular Value decomposition.