Lecture Three

Section 3.1 – Inner Products

Definition

An *inner product* on a real vector space V is a function that associates a real number $\langle u, v \rangle$ with each pair of vectors in V in such a way that the following axioms are satisfies for all vectors u, v, and w in V and all scalars k.

1. $\langle u, v \rangle = \langle v, u \rangle$ Symmetry axiom

2. $\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$ Additivity axiom

3. $\langle ku, v \rangle = k \langle u, v \rangle$ Homogeneity axiom

4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = 0$ **Positivity axiom**

A real vector space with an inner product is called a *real inner product space*.

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \boldsymbol{u} \cdot \boldsymbol{v} = u_1 v_1 + u_2 v_2 + \cdots + u_n v_n$$

This is called the *Euclidean inner product* (or the *standard inner product*)

Definition

If V is a real inner product space, then the norm (or length) of a vector \vec{v} in V is denoted by $\|\vec{v}\|$ and is defined by

$$\|\vec{v}\| = \sqrt{\langle \vec{v}, \vec{v} \rangle}$$

And the *distance* between two vectors is denoted by d(u, v) and is defined by

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

1

A vector of norm 1 is called a unit vector.

Theorem

If u and v are vectors in a real inner product space V, and if k is a scalar, then:

- a) $\|\mathbf{v}\| \ge 0$ with equality iff $\mathbf{v} = 0$
- $b) \quad ||kv|| = |k| ||v||$
- c) d(u, v) = d(v, u)
- d) $d(u, v) \ge 0$ with equality iff u = v

Although the Euclidean inner product is the most important inner product on \mathbb{R}^n , there are various applications in which is desirable to modify it by weighing each term differently. More precisely, if w_1, w_2, \ldots, w_n are positive real numbers, which we will call weighs, and if $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and are vectors in \mathbb{R}^n , then it can be shown that the formula

$$\langle u, v \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \dots + w_n u_n v_n$$

Defines an inner product on R^n that we call the *weighted Euclidean inner product* with weights $w_1, w_2, ..., w_n$

Example

Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$ be vectors in \mathbb{R}^2 , verify that the weighted Euclidean inner product $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$ satisfies the four inner product axioms.

Solution

Axiom 1:
$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2 = 3v_1u_1 + 2v_2u_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$

Axiom 2: $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = 3(u_1 + v_1)w_1 + 2(u_2 + v_2)w_2$
 $= 3(u_1w_1 + v_1w_1) + 2(u_2w_2 + v_2w_2)$
 $= 3u_1w_1 + 3v_1w_1 + 2u_2w_2 + 2v_2w_2$
 $= (3u_1w_1 + 2u_2w_2) + (3v_1w_1 + 2v_2w_2)$
 $= \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
Axiom 3: $\langle \mathbf{k}\mathbf{u}, \mathbf{v} \rangle = 3(\mathbf{k}u_1)v_1 + 2(\mathbf{k}u_2)v_2$
 $= k(3u_1v_1 + 2u_2v_2)$
 $= k\langle \mathbf{u}, \mathbf{v} \rangle$

Axiom 4:
$$\langle \mathbf{v}, \mathbf{v} \rangle = 3v_1v_1 + 2v_2v_2$$

= $3v_1^2 + 2v_2^2 \ge 0$
 $v_1 = v_2 = 0$ iff $\mathbf{v} = \mathbf{0}$

Exercises Section 3.1 – Inner Products

1. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (1, 1), v = (3, 2), w = (0, -1), and k = 3. Compute the following.

a)
$$\langle u, v \rangle$$

c)
$$\langle u+v, w \rangle$$

$$e)$$
 $d(u, v)$

b)
$$\langle kv, w \rangle$$

$$d$$
) $\|\mathbf{v}\|$

$$f$$
) $\|\mathbf{u} - k\mathbf{v}\|$

2. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (1, 1), v = (3, 2), w = (0, -1) and k = 3. Compute the following for the weighted Euclidean inner product $\langle u, v \rangle = 2u_1v_1 + 3u_2v_2$.

a)
$$\langle u, v \rangle$$

c)
$$\langle u+v, w \rangle$$

$$e)$$
 $d(u, v)$

b)
$$\langle kv, w \rangle$$

$$d$$
) $||v||$

$$f$$
) $\|\mathbf{u} - k\mathbf{v}\|$

3. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (3, -2), v = (4, 5), w = (-1, 6), and k = -4. Verify the following.

a)
$$\langle u, v \rangle = \langle v, u \rangle$$

d)
$$\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$$

b)
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

e)
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$$

c)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

4. Let $\langle u, v \rangle$ be the Euclidean inner product on R^2 , and let u = (3, -2), v = (4, 5), w = (-1, 6), and k = -4. Verify the following for the weighted Euclidean inner product $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2$

a)
$$\langle u, v \rangle = \langle v, u \rangle$$

d)
$$\langle k\mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{v} \rangle$$

b)
$$\langle u+v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

$$e$$
) $\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{0} \rangle = 0$

c)
$$\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$$

5. Let $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$. Show that the following are inner product on \mathbb{R}^3 by verifying that the inner product axioms hold. $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 5u_2v_2$

6. Show that the following identity holds for the vectors in any inner product space

$$\|\mathbf{u} + \mathbf{v}\|^2 + \|\mathbf{u} - \mathbf{v}\|^2 = 2\|\mathbf{u}\|^2 + 2\|\mathbf{v}\|^2$$

7. Show that the following identity holds for the vectors in any inner product space

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = \frac{1}{4} \left(\|\boldsymbol{u} + \boldsymbol{v}\|^2 - \|\boldsymbol{u} - \boldsymbol{v}\|^2 \right)$$

8. Prove that $||k\vec{v}|| = |k| ||\vec{v}||$

Section 3.2 – Angle and Orthogonality in Inner Product Spaces

Cosine Formula

If u and v are nonzero vectors that implies $\Rightarrow \cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \cdot \|\vec{v}\|} \rightarrow \theta = \cos^{-1} \left(\frac{\langle u, v \rangle}{\|u\| \cdot \|v\|} \right)$ $-1 \le \frac{u \cdot v}{\|u\| \cdot \|v\|} \le 1$

Example

Let R^4 have the Euclidean inner product. Find the cosine angle θ between the vectors u = (4, 3, 1, -2) and v = (-2, 1, 2, 3).

Solution

$$\|\mathbf{u}\| = \sqrt{4^2 + 3^2 + 1^2 + (-2)^2} = \underline{\sqrt{30}}$$

$$\|\mathbf{v}\| = \sqrt{(-2)^2 + 1^2 + 2^2 + 3^2} = \sqrt{18} = \underline{3\sqrt{2}}$$

$$\langle \mathbf{u}, \mathbf{v} \rangle = 4(-2) + 3(1) + 1(2) - 2(3) = \underline{-9}$$

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \cdot \|\mathbf{v}\|}$$

$$= -\frac{9}{3\sqrt{30}\sqrt{2}}$$

$$= -\frac{3}{\sqrt{60}}$$

$$= -\frac{3}{2\sqrt{15}}$$

Theorem – Cauchy-Schwarz Inequality

If \vec{v} and \vec{w} are vectors in a real inner product space V, then

$$\|\langle u, v \rangle\| \leq \|u\| . \|v\|$$

The following two alternative forms of the Cauchy-Schwarz inequality are useful to know:

$$\langle u,v\rangle^2 \leq \langle u,u\rangle\langle v,v\rangle$$

$$\langle u, v \rangle^2 \le ||u||^2 . ||v||^2$$

5

Theorem

If $u \ v$ and w are vectors in a real inner product space V, and if k is any scalar, then

a)
$$||u+v|| \le ||u|| + ||v||$$

(Triangle inequality for vectors)

b)
$$d(u,v) \le d(u,w) + d(w,v)$$

(Triangle inequality for distances)

Proof (a)

$$\|u + v\|^{2} = \langle u + v, u + v \rangle$$

$$= \langle u, u \rangle + 2 \langle u, v \rangle + \langle v, v \rangle$$

$$\leq \langle u, u \rangle + 2 |\langle u, v \rangle| + \langle v, v \rangle$$

$$\leq \langle u, u \rangle + 2 ||u|| ||v|| + \langle v, v \rangle$$

$$= ||u||^{2} + 2 ||u|| ||v|| + ||v||^{2}$$

$$= (||u|| + ||v||)^{2}$$

$$||u + v||^{2} \leq (||u|| + ||v||)^{2}$$

$$||u + v|| \leq ||u|| + ||v||$$

Definition

Two vectors \mathbf{u} and \mathbf{v} in an inner product space are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$

Example

The vectors $\mathbf{u} = (1, 1)$ and $\mathbf{v} = (1, -1)$ are orthogonal with respect to the Euclidean inner product on \mathbb{R}^2 , since

$$u \cdot v = 1(1) + 1(-1) = 0$$

They are not orthogonal with the respect to the weighted Euclidean inner product

$$\langle \boldsymbol{u}, \boldsymbol{v} \rangle = 3u_1v_1 + 2u_2v_2$$
, since

$$\langle u, v \rangle = 3(1)(1) + 2(1)(-1) = 1 \neq 0$$

$$U = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \quad and \quad V = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \text{ are orthogonal, since}$$
$$U \cdot V = 1(0) + 0(2) + 1(0) + 1(0) = 0$$

Definition

If W is a subspace of an inner product space V, then the set of all vectors are orthogonal to every vector in W is called the *orthogonal complement* of W and is denoted by the symbol W^{\perp}

Theorem

If *W* is a subspace of an inner product space *V*, then:

- a) W^{\perp} is a subspace of V.
- **b**) $W \cap W^{\perp} = \{0\}$

Proof

a) Let set W^{\perp} contains at least the zero vector, since $\langle \mathbf{0}, \mathbf{w} \rangle = 0$ for every vector \mathbf{w} in W. We need to show that W^{\perp} is closed under addition and scalar multiplication.

Suppose that u and v are vectors in W^{\perp} , so every vector w in W we have $\langle u, w \rangle = 0$ and $\langle v, w \rangle = 0$

$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle = 0 + 0 = 0$$
 Closed under addition

$$\langle ku, w \rangle = k \langle u, w \rangle = k(0) = 0$$
 Closed under scalar multiplication

Which proves that u + w and ku are in W^{\perp}

b) If \mathbf{v} is any vector in both W and W^{\perp} , then \mathbf{v} is orthogonal to itself; that is, $\langle \mathbf{v}, \mathbf{v} \rangle = 0$. It follows from the positivity axiom for inner products that $\mathbf{v} = 0$

Theorem

If W is a subspace of a finite-dimensional inner product space V, then the orthogonal complement of W^{\perp} is W; that is

$$\left(W^{\perp}\right)^{\perp} = W$$

7

Let W be the subspace of R^6 spanned by the vectors

$$w_1 = (1, 3, -2, 0, 2, 0),$$
 $w_2 = (2, 6, -5, -2, 4, -3)$
 $w_3 = (0, 0, 5, 10, 0, 15),$ $w_4 = (2, 6, 0, 8, 4, 18)$

Find a basis for the orthogonal complement of W.

Solution

The Space W is the same as the row space of the matrix

$$A = \begin{bmatrix} 1 & 3 & -2 & 0 & 2 & 0 \\ 2 & 6 & -5 & -2 & 4 & -3 \\ 0 & 0 & 5 & 10 & 0 & 15 \\ 2 & 6 & 0 & 8 & 4 & 18 \end{bmatrix} \xrightarrow{rref} \begin{bmatrix} 1 & 3 & 0 & 4 & 2 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The solution

Definition

A collection of vectors in \mathbb{R}^n (or inner space) is called orthogonal if any 2 are perpendicular.

$$v_i.v_j = v^Tv = \begin{cases} 0 & for \ i \neq j \ (orthogonal \ vectors) \\ 1 & for \ i = j \end{cases}$$
 (unit vectors)

Theorem

If $v_1, ..., v_m$ are nonzero orthogonal vectors, then they are linearly independent.

Definition

A vector \mathbf{v} is called normal if $||\mathbf{v}|| = 1$

A collection of vectors v_1, \ldots, v_m is called orthonormal if they are orthogonal and each $||v_i|| = 1$. An orthonormal basis is a basis made up of orthonormal vectors.

8

Q rotates every vector in the plane through the angle θ .

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$Q^{-1} = \frac{1}{\cos^2 \theta + \sin^2 \theta} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= Q^T$$

The dot product $(\cos\theta\sin\theta - \sin\theta\cos\theta = 0)$, the columns are orthogonal.

They are unit vectors because $\cos^2 \theta + \sin^2 \theta = 1$. Those columns give an orthonormal basis for the plane \mathbb{R}^2 .

We have: $QQ^T = I = Q^TQ$ (This type is called *rotation*)

Exercises Section 3.2 – Angle and Orthogonality in Inner Product **Spaces**

1. Which of the following form orthonormal sets?

a)
$$(1,0), (0,2)$$
 in \mathbb{R}^2

b)
$$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

c)
$$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^2

d)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right), \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$
 in \mathbb{R}^3

e)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right), \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$$
 in \mathbb{R}^3

f)
$$\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, -\frac{2}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$$
 in \mathbb{R}^3

2. Find the cosine of the angle between u and v.

a)
$$u = (1, -3), v = (2, 4)$$

e)
$$\mathbf{u} = (1, 0, 1, 0), \quad \mathbf{v} = (-3, -3, -3, -3)$$

b)
$$u = (-1, 0), v = (3, 8)$$

$$f)$$
 $u = (2, 1, 7, -1), v = (4, 0, 0, 0)$

c)
$$\mathbf{u} = (-1, 5, 2), \quad \mathbf{v} = (2, 4, -9)$$

c)
$$u = (-1, 5, 2), v = (2, 4, -9)$$
 g) $u = (1, 3, -5, 4), v = (2, -4, 4, 1)$

d)
$$\mathbf{u} = (4, 1, 8), \quad \mathbf{v} = (1, 0, -3)$$

h)
$$\mathbf{u} = (1, 2, 3, 4), \quad \mathbf{v} = (-1, -2, -3, -4)$$

3. Find the cosine of the angle between A and B.

a)
$$A = \begin{pmatrix} 2 & 6 \\ 1 & -3 \end{pmatrix}$$
 $B = \begin{pmatrix} 3 & 2 \\ 1 & 0 \end{pmatrix}$

c)
$$A = \begin{pmatrix} 9 & 8 & 7 \\ 6 & 5 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & 4 \\ -1 & 3 \end{pmatrix}$$
 $B = \begin{pmatrix} -3 & 1 \\ 4 & 2 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & -2 & 7 \\ 6 & -3 & 4 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & -2 & 3 \\ 6 & 5 & -4 \end{pmatrix}$

4. Determine whether the given vectors are orthogonal with respect to the Euclidean inner product.

a)
$$\mathbf{u} = (-1, 3, 2), \quad \mathbf{v} = (4, 2, -1)$$

a)
$$u = (-1, 3, 2), v = (4, 2, -1)$$
 d) $u = (-4, 6, -10, 1), v = (2, 1, -2, 9)$

b)
$$u = (a, b), v = (-b, a)$$

e)
$$\mathbf{u} = (-4, 6, -10, 1), \quad \mathbf{v} = (2, 1, -2, 9)$$

c)
$$u = (-2, -2, -2), v = (1, 1, 1)$$

5. Do there exist scalars k and l such that the vectors u = (2, k, 6), v = (l, 5, 3), and w = (1, 2, 3) are mutually orthogonal with respect to the

Euclidean inner product?

Let \mathbb{R}^3 have the Euclidean inner product. For which values of k are \mathbf{u} and \mathbf{v} orthogonal?

a)
$$\mathbf{u} = (2, 1, 3), \quad \mathbf{v} = (1, 7, k)$$

b)
$$u = (k, k, 1), v = (k, 5, 6)$$

- 7. Let V be an inner product space. Show that if u and v are orthogonal unit vectors in V, then $\|\boldsymbol{u} - \boldsymbol{v}\| = \sqrt{2}$
- Let **S** be a subspace of \mathbb{R}^n . Explain what $(\mathbf{S}^{\perp})^{\perp} = \mathbf{S}$ means and why it is true. 8.
- The methane molecule CH_4 is arranged as if the carbon atom were at the center of a regular 9. tetrahedron with four hydrogen atoms at the vertices. If vertices are placed at (0, 0, 0), (1, 1, 0), (1, 0, 1) and (0, 1, 1) - (note) that all six edges have length $\sqrt{2}$, so the tetrahedron is regular). What is the cosine of the angle between the rays going from the center $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ to the vertices?
- 10. Determine if the given vectors are orthogonal.

$$x_1 = (1, 0, 1, 0), \quad x_2 = (0, 1, 0, 1), \quad x_3 = (1, 0, -1, 0), \quad x_4 = (1, 1, -1, -1)$$

Which of the following sets of vectors are orthogonal with respect to the Euclidean inner

a)
$$\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right) \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right) \left(-\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)$$

b)
$$\left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right)$$
 $\left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right)$ $\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right)$

- **12.** Consider vectors $\vec{u} = (2, 3, 5)$ $\vec{v} = (1, -4, 3)$ in \mathbb{R}^3
 - a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine between \vec{u} and \vec{v}
- **13.** Consider vectors $\vec{u} = (1, 1, 1)$ $\vec{v} = (1, 2, -3)$ in R^3
 - a) $\langle \vec{u}, \vec{v} \rangle$ b) $\|\vec{u}\|$ c) $\|\vec{v}\|$
- d) Cosine θ between \vec{u} and \vec{v}
- **14.** Consider vectors $\vec{u} = (1, 2, 5)$ $\vec{v} = (2, -3, 5)$ $\vec{w} = (4, 2, -3)$ in \mathbb{R}^3
 - a) $\langle \vec{u}, \vec{v} \rangle$
- g) Cosine α between \vec{u} and \vec{v}
- b) $\langle \vec{u}, \vec{w} \rangle$ e) $\|\vec{v}\|$
- h) Cosine β between \vec{u} and \vec{w} i) Cosine θ between \vec{v} and \vec{w}

- c) $\langle \vec{v}, \vec{w} \rangle$
- f) $\|\vec{w}\|$
- $(\vec{u} + \vec{v}) \cdot \vec{w}$

15. Consider polynomial f(t) = 3t - 5; $g(t) = t^2$ in P(t)

a) $\langle f, g \rangle$ b) ||f|| c) ||g|| d) Cosine between f and g

16. Consider polynomial f(t) = t + 2; g(t) = 3t - 2; $h(t) = t^2 - 2t - 3$ in P(t)

a) $\langle f, g \rangle$ d) ||f||b) $\langle f, h \rangle$ e) ||g||

g) Cosine α between f and g

h) Cosine β between f and h

c) $\langle g, h \rangle$

i) Cosine θ between g and h

17. Suppose $\langle \vec{u}, \vec{v} \rangle = 3 + 2i$ in a complex inner product space V. Find:

a) $\langle (2-4i)\vec{u}, \vec{v} \rangle$ b) $\langle \vec{u}, (4+3i)\vec{v} \rangle$ c) $\langle (3-6i)\vec{u}, (5-2i)\vec{v} \rangle$ d) $\|\vec{u}, \vec{v}\|$

Find the Fourier coefficient c and the projection $c\vec{v}$ of $\vec{u} = (3+4i, 2-3i)$ along $\vec{v} = (5+i, 2i)$ in C^2

Suppose $\vec{v} = (1, 3, 5, 7)$. Find the projection of \vec{v} onto W or find $\vec{w} \in W$ that minimizes $\|\vec{v} - \vec{w}\|$, where W is the subspace of R^4 spanned by:

a) $\vec{u}_1 = (1, 1, 1, 1)$ and $\vec{u}_2 = (1, -3, 4, -2)$

b) $\vec{v}_1 = (1, 1, 1, 1)$ and $\vec{v}_2 = (1, 2, 3, 2)$

20. Suppose $\{\vec{u}_1, \vec{u}_2, ..., \vec{u}_n\}$ is an orthogonal set of vectors. Prove that (*Pythagoras*)

 $\|\vec{u}_1 + \vec{u}_2 + \dots + \vec{u}_n\|^2 = \|\vec{u}_1\|^2 + \|\vec{u}_2\|^2 + \dots + \|\vec{u}_n\|^2$

Suppose *A* is an orthogonal matrix. Show that $\langle \vec{u}A, \vec{v}A \rangle = \langle \vec{u}, \vec{v} \rangle$ for any $\vec{u}, \vec{v} \in V$

Suppose *A* is an orthogonal matrix. Show that $\|\vec{u}A\| = \|\vec{u}\|$ for every $\vec{u} \in V$

Section 3.3 – Gram-Schmidt Process

Definition

A set of two or more vectors in a real inner product space is said to be *orthogonal* if all pairs of distinct vectors in the set are orthogonal. An orthogonal set in which each vector has norm 1 is said to be *orthonormal*.

Theorem

1. If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal basis for an inner product space V, and if u is any vector in V, then

$$\boldsymbol{u} = \frac{\left\langle \boldsymbol{u}, \boldsymbol{v}_{1} \right\rangle}{\left\| \boldsymbol{v}_{1} \right\|^{2}} \boldsymbol{v}_{1} + \frac{\left\langle \boldsymbol{u}, \boldsymbol{v}_{2} \right\rangle}{\left\| \boldsymbol{v}_{2} \right\|^{2}} \boldsymbol{v}_{2} + \cdots + \frac{\left\langle \boldsymbol{u}, \boldsymbol{v}_{n} \right\rangle}{\left\| \boldsymbol{v}_{n} \right\|^{2}} \boldsymbol{v}_{n}$$

2. If $S = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis for an inner product space V, and if u is any vector in V, then

$$\boldsymbol{u} = \langle \boldsymbol{u}, \boldsymbol{v}_1 \rangle \boldsymbol{v}_1 + \langle \boldsymbol{u}, \boldsymbol{v}_2 \rangle \boldsymbol{v}_2 + \cdots + \langle \boldsymbol{u}, \boldsymbol{v}_n \rangle \boldsymbol{v}_n$$

Proof

1. Since $S = \{v_1, v_2, ..., v_n\}$ is a basis for V, every vector \boldsymbol{u} in V can be expressed in the form

$$\boldsymbol{u} = c_1 \boldsymbol{v}_1 + c_2 \boldsymbol{v}_2 + \cdots + c_n \boldsymbol{v}_n$$

Let show that $c_i = \frac{\langle u, v_i \rangle}{\|v_i\|^2}$ for i = 1, 2, ... n

$$\begin{split} \left\langle \boldsymbol{u}, \, \boldsymbol{v}_{i} \right\rangle &= \left\langle c_{1} \boldsymbol{v}_{1} + c_{2} \boldsymbol{v}_{2} + \cdots + c_{n} \boldsymbol{v}_{n}, \, \boldsymbol{v}_{i} \right\rangle \\ &= c_{1} \left\langle \boldsymbol{v}_{1}, \, \boldsymbol{v}_{i} \right\rangle + c_{2} \left\langle \boldsymbol{v}_{2}, \, \boldsymbol{v}_{i} \right\rangle + \cdots + c_{n} \left\langle \boldsymbol{v}_{n}, \, \boldsymbol{v}_{i} \right\rangle \end{split}$$

Since S is an orthogonal set, all of the inner products in the last equality are zero except the i^{th} , so we have

$$\langle \boldsymbol{u}, \boldsymbol{v}_i \rangle = c_i \langle \boldsymbol{v}_i, \boldsymbol{v}_i \rangle = c_i \| \boldsymbol{v}_i \|^2$$

The Gram-Schmidt Process

To convert a basis $\{u_1, u_2, ..., u_r\}$ into an orthogonal basis $\{v_1, v_2, ..., v_r\}$, perform the following computations:

Step 1:
$$v_1 = u_1$$

Step 2:
$$v_2 = u_2 - \frac{\langle u_2, v_1 \rangle}{\|v_1\|^2} v_1$$

Step 3:
$$v_3 = u_3 - \frac{\langle u_3, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_3, v_2 \rangle}{\|v_2\|^2} v_2$$

Step 4:
$$v_4 = u_4 - \frac{\langle u_4, v_1 \rangle}{\|v_1\|^2} v_1 - \frac{\langle u_4, v_2 \rangle}{\|v_2\|^2} v_2 - \frac{\langle u_4, v_3 \rangle}{\|v_3\|^2} v_3$$

To convert the orthogonal basis into an orthonormal basis $\{q_1, q_2, q_3\}$, normalize the orthogonal

basis vectors. $|\mathbf{q}_i| = \frac{\mathbf{r}_i}{\|\mathbf{v}_i\|}$

$$\boldsymbol{q}_i = \frac{\boldsymbol{v}_i}{\left\|\boldsymbol{v}_i\right\|}$$

Example

Assume that the vector space R^3 has the Euclidean inner product. Apply the Gram-Schmidt process to transform the basis vectors

$$\vec{u}_1 = (1, 1, 1) \quad \vec{u}_2 = (0, 1, 1) \quad \vec{u}_3 = (0, 0, 1)$$

Into the orthogonal basis $\{v_1, v_2, v_3\}$, and then normalize the *orthogonal* basis vectors to obtain an orthonormal basis $\{q_1, q_2, q_3\}$

Solution

$$v_1 = u_1 = (1, 1, 1)$$

$$v_{2} = u_{2} - \frac{\langle u_{2}, v_{1} \rangle}{\|v_{1}\|^{2}} v_{1}$$

$$= (0, 1, 1) - \frac{0 + 1 + 1}{1^{2} + 1^{2} + 1^{2}} (1, 1, 1)$$

$$= (0, 1, 1) - \frac{2}{3} (1, 1, 1)$$

$$=\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$$

$$\begin{aligned} \mathbf{v}_{3} &= \mathbf{u}_{3} - proj_{\mathbf{v}_{2}} \mathbf{u}_{3} \\ &= \mathbf{u}_{3} - \frac{\left\langle \mathbf{u}_{3}, \mathbf{v}_{1} \right\rangle}{\left\| \mathbf{v}_{1} \right\|^{2}} \mathbf{v}_{1} - \frac{\left\langle \mathbf{u}_{3}, \mathbf{v}_{2} \right\rangle}{\left\| \mathbf{v}_{2} \right\|^{2}} \mathbf{v}_{2} \\ &= (0, 0, 1) - \frac{0 + 0 + 1}{1^{2} + 1^{2} + 1^{2}} (1, 1, 1) - \frac{0 + 0 + \frac{1}{3}}{\left(\frac{2}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2}} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{\frac{1}{3}}{2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= (0, 0, 1) - \frac{1}{3} (1, 1, 1) - \frac{1}{2} \left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\ &= \left(0, -\frac{1}{2}, \frac{1}{2}\right) \end{aligned}$$

$$q_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{(1, 1, 1)}{\sqrt{3}}$$
$$= \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

$$q_{2} = \frac{v_{2}}{\|v_{2}\|} = \frac{\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\sqrt{\left(\frac{2}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2} + \left(\frac{1}{3}\right)^{2}}}$$
$$= \frac{\left(-\frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)}{\frac{\sqrt{6}}{3}}$$
$$= \left(-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$$

$$q_{3} = \frac{v_{3}}{\|v_{3}\|} = \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\sqrt{0^{2} + \left(-\frac{1}{2}\right)^{2} + \left(\frac{1}{2}\right)^{2}}}$$
$$= \frac{\left(0, -\frac{1}{2}, \frac{1}{2}\right)}{\frac{\sqrt{2}}{2}}$$
$$= \left(0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

Gram-Schmidt Process (Orthonormal)

Suppose $\vec{v}_1, ..., \vec{v}_n$ linearly independent in \mathbb{R}^n , construct n orthonormal $\vec{u}_1, ..., \vec{u}_n$ that span the same space: span $\left\{\vec{u}_1, ..., \vec{u}_k\right\} = \operatorname{span}\left\{\vec{v}_1, ..., \vec{v}_k\right\}$

Step 1: Since \vec{v}_i are linearly independent $(\neq 0)$, so $\|\vec{v}_1\| \neq 0$ (to create a normal vector)

Let
$$|\vec{u}_1| = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \vec{q}_1$$
, then $|\vec{u}_1| = 1$ since \vec{u}_1 is orthonormal and span $\{\vec{u}_1\} = span\{\vec{v}_1\}$
 $\vec{w}_1 = \vec{v}_1 \implies \vec{v}_1 = |\vec{w}_1| |\vec{u}_1|$

$$\begin{aligned} \textit{Step 2:} \ \vec{w}_2 &= \vec{v}_2 - \left(\vec{v}_2 \bullet \vec{q}_1\right) \vec{q}_1 \\ \Rightarrow \ \vec{w}_2 &= \vec{v}_2 - \frac{\vec{v}_2 \bullet \vec{u}_1}{\left\|\vec{v}_1\right\|} \vec{v}_1 \qquad \left(\vec{w}_2 \perp \vec{u}_1\right) \\ \vec{v}_2 &= \left\|\vec{w}_2\right\| \vec{u}_2 + \left(\vec{v}_2 \bullet \vec{u}_1\right) \vec{u}_1 \qquad \vec{w}_2 = \left\|\vec{w}_2\right\| \vec{u}_2 \\ \hline \vec{q}_2 &= \frac{\vec{w}_2}{\left\|\vec{w}_2\right\|} \end{aligned}$$

Step 3:
$$\vec{w}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{q}_1) \vec{q}_1 - (\vec{v}_3 \cdot \vec{q}_2) \vec{q}_2$$

$$\vec{q}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|}$$

	$\vec{q}_1 = \frac{\vec{v}_1}{\left\ \vec{v}_1\right\ }$
$\vec{w}_2 = \vec{v}_2 - (\vec{v}_2 \cdot \vec{q}_1) \vec{q}_1$	$\vec{q}_2 = \frac{\vec{w}_2}{\left\ \vec{w}_2\right\ }$
$\vec{w}_3 = \vec{v}_3 - (\vec{v}_3 \cdot \vec{q}_1) \vec{q}_1 - (\vec{v} \cdot \vec{q}_2) \vec{q}_2$	$\vec{q}_3 = \frac{\vec{w}_3}{\left\ \vec{w}_3\right\ }$
$\vec{w}_n = \vec{v}_n - (\vec{v}_n \cdot \vec{q}_1) \vec{q}_1 - (\vec{v}_n \cdot \vec{q}_2) \vec{q}_2 - \dots - (\vec{v}_n \cdot \vec{q}_{n-1}) \vec{q}_{n-1}$	$\vec{q}_n = \frac{\vec{w}_n}{\left\ \vec{w}_n\right\ }$

Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of

$$\vec{v}_1 = (1, 1, 0, 0) \quad \vec{v}_2 = (0, 1, 1, 0) \quad \vec{v}_3 = (1, 0, 1, 1)$$

Solution

Step 1:
$$\vec{q}_1 = \frac{\vec{v}_1}{\|\vec{v}_1\|} = \frac{(1, 1, 0, 0)}{\sqrt{1^2 + 1^2 + 0 + 0}}$$
$$= \frac{(1, 1, 0, 0)}{\sqrt{2}}$$
$$= \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right)$$

Step 2:
$$\vec{w}_2 = \vec{v}_2 - (\vec{v}_2 \cdot \vec{q}_1) \vec{q}_1$$

$$= (0, 1, 1, 0) - \left[(0, 1, 1, 0). \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) \right] \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right)$$

$$= (0, 1, 1, 0) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right)$$

$$= (0, 1, 1, 0) - \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right)$$

$$= \left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right)$$

$$\|\vec{w}_2\| = \sqrt{\left(-\frac{1}{2} \right)^2 + \left(\frac{1}{2} \right)^2 + 1} = \sqrt{\frac{3}{2}} = \frac{\sqrt{3}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{6}}{2} \vec{v}$$

$$\vec{q}_2 = \frac{\vec{w}_2}{\|\vec{w}_2\|} = \frac{\left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right)}{\frac{\sqrt{6}}{2}}$$

$$= \frac{2}{\sqrt{6}} \left(-\frac{1}{2}, \frac{1}{2}, 1, 0 \right)$$

$$= \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0 \right)$$

Step 3:
$$\vec{v}_3 \cdot \vec{q}_1 = (1, 0, 1, 1) \cdot \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0\right) = \frac{1}{\sqrt{2}}$$

$$\vec{v}_3 \cdot \vec{q}_2 = (1, 0, 1, 1) \cdot \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0\right) = -\frac{1}{\sqrt{6}} + \frac{2}{\sqrt{6}} = \frac{1}{\sqrt{6}}$$

$$\vec{w}_3 = \vec{v}_3 - \left(\vec{v}_3 \cdot \vec{q}_1\right) \vec{q}_1 - \left(\vec{v} \cdot \vec{q}_2\right) \vec{q}_2$$

$$= (1, 0, 1, 1) - \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0, 0 \right) - \frac{1}{\sqrt{6}} \left(-\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}, 0 \right)$$

$$= (1, 0, 1, 1) - \left(\frac{1}{2}, \frac{1}{2}, 0, 0 \right) - \left(-\frac{1}{6}, \frac{1}{6}, \frac{2}{6}, 0 \right)$$

$$= \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1 \right)$$

$$\vec{q}_3 = \frac{\vec{w}_3}{\|\vec{w}_3\|} = \frac{1}{\sqrt{\left(\frac{2}{3}\right)^2 + \left(-\frac{2}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + 1^2}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1 \right)$$

$$= \frac{1}{\sqrt{\frac{21}{9}}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1 \right)$$

$$= \frac{3}{\sqrt{21}} \left(\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, 1 \right)$$

$$= \left(\frac{2}{\sqrt{21}}, -\frac{2}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{3}{\sqrt{21}} \right)$$

QR-Decomposition

Problem

If A is an $m \times n$ matrix with linearly independent column vectors, and if Q is the matrix that results by applying the Gram-Schmidt process to the column vectors of A, what relationship, if any, exists between A and Q?

To solve this problem, suppose that the column vectors of A are $u_1, u_2, ..., u_n$ and the orthonormal column vectors of Q are $q_1, q_2, ..., q_n$.

$$\begin{aligned} & \mathbf{u}_{1} = \left\langle \mathbf{u}_{1}, \mathbf{q}_{1} \right\rangle \mathbf{q}_{1} + \left\langle \mathbf{u}_{1}, \mathbf{q}_{2} \right\rangle \mathbf{q}_{2} + \dots + \left\langle \mathbf{u}_{1}, \mathbf{q}_{n} \right\rangle \mathbf{q}_{n} \\ & \mathbf{u}_{2} = \left\langle \mathbf{u}_{2}, \mathbf{q}_{1} \right\rangle \mathbf{q}_{1} + \left\langle \mathbf{u}_{2}, \mathbf{q}_{2} \right\rangle \mathbf{q}_{2} + \dots + \left\langle \mathbf{u}_{2}, \mathbf{q}_{n} \right\rangle \mathbf{q}_{n} \\ & \vdots & \vdots & \vdots & \vdots \\ & \mathbf{u}_{n} = \left\langle \mathbf{u}_{n}, \mathbf{q}_{1} \right\rangle \mathbf{q}_{1} + \left\langle \mathbf{u}_{n}, \mathbf{q}_{2} \right\rangle \mathbf{q}_{2} + \dots + \left\langle \mathbf{u}_{n}, \mathbf{q}_{n} \right\rangle \mathbf{q}_{n} \\ & R = \begin{bmatrix} \left\langle \mathbf{u}_{1}, \mathbf{q}_{1} \right\rangle & \left\langle \mathbf{u}_{2}, \mathbf{q}_{1} \right\rangle & \dots & \left\langle \mathbf{u}_{n}, \mathbf{q}_{1} \right\rangle \\ & 0 & \left\langle \mathbf{u}_{2}, \mathbf{q}_{2} \right\rangle & \dots & \left\langle \mathbf{u}_{n}, \mathbf{q}_{2} \right\rangle \\ & \vdots & \vdots & \vdots & \vdots \\ & 0 & 0 & \dots & \left\langle \mathbf{u}_{n}, \mathbf{q}_{n} \right\rangle \end{aligned}$$

The equation A = QR is a factorization of A into the product of a matrix Q with orthonormal column vectors and an invertible upper triangular matrix R. We call it the QR-decomposition of A.

Theorem

If A is an $m \times n$ matrix with linearly independent column vectors, then A can be factored as

$$A = OR$$

Where Q is an $m \times n$ matrix with orthonormal column vectors, and R is an $n \times n$ invertible upper triangular matrix.

Find the QR-decomposition of

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

Solution

The column vectors of are

$$\boldsymbol{u}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \boldsymbol{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

From the previous example

$$\begin{aligned} & \boldsymbol{q}_1 = \left(\frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}, \ \frac{1}{\sqrt{3}}\right) & \boldsymbol{q}_2 = \left(-\frac{2}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}, \ \frac{1}{\sqrt{6}}\right) \, \boldsymbol{q}_3 = \left(0, \ -\frac{1}{\sqrt{2}}, \ \frac{1}{\sqrt{2}}\right) \\ & \boldsymbol{R} = \begin{bmatrix} \left\langle \boldsymbol{u}_1, \boldsymbol{q}_1 \right\rangle & \left\langle \boldsymbol{u}_2, \boldsymbol{q}_1 \right\rangle & \left\langle \boldsymbol{u}_3, \boldsymbol{q}_1 \right\rangle \\ & \boldsymbol{0} & \left\langle \boldsymbol{u}_2, \boldsymbol{q}_2 \right\rangle & \left\langle \boldsymbol{u}_3, \boldsymbol{q}_2 \right\rangle \\ & \boldsymbol{0} & \boldsymbol{0} & \left\langle \boldsymbol{u}_3, \boldsymbol{q}_3 \right\rangle \end{bmatrix} \\ & = \begin{bmatrix} (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} & \boldsymbol{0} + (1)\frac{1}{\sqrt{3}} + (1)\frac{1}{\sqrt{3}} & \boldsymbol{0} + \boldsymbol{0} + (1)\frac{1}{\sqrt{3}} \\ & \boldsymbol{0} & \boldsymbol{0} \left(\frac{-2}{\sqrt{6}}\right) + (1)\frac{1}{\sqrt{6}} + (1)\frac{1}{\sqrt{6}} & \boldsymbol{0} \left(\frac{-2}{\sqrt{6}}\right) + \boldsymbol{0} \frac{1}{\sqrt{6}} + (1)\frac{1}{\sqrt{6}} \\ & \boldsymbol{0} & \boldsymbol{0} + (0)\frac{-1}{\sqrt{2}} + (1)\frac{1}{\sqrt{2}} \end{bmatrix} \\ & = \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{pmatrix} \cdot \begin{pmatrix} \frac{3}{\sqrt{3}} & \frac{2}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$A = Q \qquad R$$

Calculus: Applying the Gram-Schmidt Process

We can apply the Gram-Schmidt orthogonalization procedure to generate some polynomials that are orthonormal on the interval $x \in [-1, 1]$ with inner product

$$\langle p, q \rangle = \int_{-1}^{1} p(x)q(x)dx$$

Example

Apply the Gram-Schmidt orthonormalization process to the basis $B = \{1, x, x^2\}$ in P_2 using the inner product

Solution

$$B = \left\{1, x, x^2\right\} = \left\{\vec{u}_1, \vec{u}_2, \vec{u}_3\right\}$$

$$\vec{v}_1 = \vec{u}_1 = 1$$

$$\left\langle\vec{v}_1, \vec{v}_1\right\rangle = \int_{-1}^{1} dx$$

$$= x \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= x$$
 $= 2$

$$\langle \vec{u}_2, \vec{v}_1 \rangle = \int_{-1}^{1} x \, dx$$

$$= \frac{1}{2} x^2 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$= 0$$

$$\vec{v}_2 = x - \frac{0}{2}(1)$$

$$\boldsymbol{v}_2 = \boldsymbol{u}_2 - \frac{\left\langle \boldsymbol{u}_2, \, \boldsymbol{v}_1 \right\rangle}{\left\| \boldsymbol{v}_1 \right\|^2} \boldsymbol{v}_1$$

$$=x$$

$$\left\langle \vec{v}_{2}, \ \vec{v}_{2} \right\rangle = \int_{-1}^{1} x^{2} dx$$
$$= \frac{1}{3} x^{3} \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= \frac{2}{3} \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$

$$\left\langle \vec{u}_3, \ \vec{v}_1 \right\rangle = \int_{-1}^{1} x^2 \ dx$$
$$= \frac{1}{3} x^3 \Big|_{-1}^{1}$$
$$= \frac{2}{3} \Big|_{-1}^{1}$$

$$\left\langle \vec{u}_3, \ \vec{v}_2 \right\rangle = \int_{-1}^{1} x^3 \ dx$$
$$= \frac{1}{4} x^4 \begin{vmatrix} 1 \\ -1 \end{vmatrix}$$
$$= 0 \end{vmatrix}$$

$$\vec{v}_3 = x^2 - \frac{3}{2}(x)(0) - \frac{1}{2}\frac{2}{3}$$
$$= x^2 - \frac{1}{3}$$

$$\begin{split} \left\langle \vec{v}_3, \ \vec{v}_3 \right\rangle &= \int_{-1}^{1} \left(x^2 - \frac{1}{3} \right)^2 \, dx \\ &= \int_{-1}^{1} \left(x^4 - \frac{2}{3} x^2 + \frac{1}{9} \right) \, dx \\ &= \left(\frac{1}{5} x^5 - \frac{2}{9} x^3 + \frac{1}{9} x \right) \Big|_{-1}^{1} \\ &= \frac{1}{5} - \frac{2}{9} + \frac{1}{9} + \frac{1}{5} - \frac{2}{9} + \frac{1}{9} \\ &= \frac{8}{45} \Big| \end{split}$$

$$\vec{q}_1 = \frac{1}{\sqrt{2}}$$

$$\vec{q}_1 = \frac{\vec{v}_1}{\left\|\vec{v}_1\right\|}$$

$$\vec{q}_2 = \frac{x}{\sqrt{2/3}}$$
$$= \frac{\sqrt{3}}{\sqrt{2}}x$$

$$\vec{q}_2 = \frac{\vec{v}_2}{\left\|\vec{v}_2\right\|}$$

$$\vec{q}_{3} = \sqrt{\frac{45}{8}} \left(x^{2} - \frac{1}{3} \right)$$

$$= \frac{3\sqrt{5}}{\sqrt{8}} \left(x^{2} - \frac{1}{3} \right)$$

$$\vec{q}_3 = \frac{\vec{v}_3}{\left\| \vec{v}_3 \right\|}$$

 $v_3 = u_3 - \frac{v_2}{\|v_2\|^2} \langle u_3, v_2 \rangle - \frac{v_1}{\|v_1\|^2} \langle u_3, v_1 \rangle$

Exercises Section 3.3 – Gram-Schmidt Process

Use the Gram-Schmidt process to find an *orthonormal* basis for the subspaces of \mathbb{R}^m .

1.
$$u_1 = (1, -3), u_2 = (2, 2)$$

2.
$$u_1 = (1, 0), u_2 = (3, -5)$$

5.
$$\{(1, 1, 1), (0, 2, 1), (1, 0, 3)\}$$

6.
$$\{(2, 2, 2), (1, 0, -1), (0, 3, 1)\}$$

7.
$$\{(1, -1, 0), (0, 1, 0), (2, 3, 1)\}$$

10.
$$\{(0, 2, -1, 1), (0, 0, 1, 1), (-2, 1, 1, -1)\}$$

11.
$$u_1 = (1, 0, 0), u_2 = (3, 7, -2), u_3 = (0, 4, 1)$$

12.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 2, 4, 5), \quad \vec{u}_3 = (1, -3, -4, -2)$$

13.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

14.
$$u_1 = (0, 2, 1, 0), \quad u_2 = (1, -1, 0, 0), \quad u_3 = (1, 2, 0, -1), \quad u_4 = (1, 0, 0, 1)$$

Use the Gram-Schmidt process to find an orthogonal basis for the subspaces of R^m .

16.
$$\{(1, -2, 2), (2, 2, 1), (2, -1, -2)\}$$

17.
$$\{(1, 0, 0), (1, 1, 1), (1, 1, -1)\}$$

18.
$$\{(4, -3, 0), (1, 2, 0), (0, 0, 4)\}$$

20.
$$\{(0, 1, 1), (1, 1, 0), (1, 0, 1)\}$$

21.
$$\{(1, 2, -2), (1, 0, -4), (5, 2, 0), (1, 1, -1)\}$$

22.
$$\{(-3, 1, 2), (1, 1, 1), (2, 0, -1), (1, -3, 2)\}$$

23.
$$\{(2, 1, 1), (0, 3, -1), (3, -4, -2), (-1, -1, 3)\}$$

24.
$$\vec{u}_1 = (1, 1, 0, -1), \quad \vec{u}_2 = (1, 3, 0, 1), \quad \vec{u}_3 = (4, 2, 2, 0)$$

25.
$$\vec{u}_1 = (1, 1, 1, 1), \quad \vec{u}_2 = (1, 1, 2, 4), \quad \vec{u}_3 = (1, 2, -4, -3)$$

26.
$$\{(3, 4, 0, 0), (-1, 1, 0, 0), (2, 1, 0, -1), (0, 1, 1, 0)\}$$

27. Find the QR-decomposition of

$$a) \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$b) \begin{bmatrix} 3 & 5 \\ -4 & 0 \end{bmatrix}$$

$$c) \begin{bmatrix} 1 & 2 \\ 0 & 1 \\ 1 & 4 \end{bmatrix}$$

$$d) \begin{bmatrix} 1 & 2 & 1 \\ 1 & 1 & 1 \\ 0 & 3 & 1 \end{bmatrix}$$

$$e) \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

28. Verify that the Cauchy-Schwarz inequality holds for the given vectors using the Euclidean inner product

$$u = (0, -2, 2, 1), v = (-1, -1, 1, 1)$$

Apply the Gram-Schmidt *orthonormalization* process in $C^0[-1, 1]$ spanned by the functions, using the inner product

29.
$$f_1(x) = x + 2$$
, $f_2(x) = x^2 - 3x + 4$

30.
$$f_1(x) = x$$
, $f_2(x) = x^3$, $f_3(x) = x^5$

31.
$$f_1(x) = 1$$
, $f_2(x) = x$, $f_3(x) = \frac{1}{2}(3x^2 - 1)$

32.
$$f_1(x) = 1$$
, $f_2(x) = \sin \pi x$, $f_3(x) = \cos \pi x$

33.
$$f_1(x) = \sin \pi x$$
, $f_2(x) = \sin 2\pi x$, $f_3(x) = \sin 3\pi x$

Section 3.4 – Orthogonal Matrices

Definition

A square matrix A is said to be orthogonal if its transpose is the same as its inverse, that is, if

$$A^{-1} = A^T$$

or, equivalently, if

$$AA^T = A^T A = I$$

Example

The matrix
$$A = \begin{pmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{pmatrix}$$

Solution

$$A^{T}A = \begin{pmatrix} \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ \frac{6}{7} & \frac{2}{7} & -\frac{3}{7} \end{pmatrix} \begin{pmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Example

The matrix
$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Solution

$$A^{T} A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Theorem

The following are equivalent for $n \times n$ matrix A.

- a) A is orthogonal.
- **b**) The row vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.
- c) The column vectors of A form an orthonormal set in \mathbb{R}^n with the Euclidean inner product.

Theorem

- a) The inverse of an orthogonal matrix is orthogonal
- b) A product of orthogonal matrices is orthogonal
- c) If A is orthogonal, then det(A) = 1 or det(A) = -1

Theorem

If A is an $n \times n$ matrix, then the following are equivalent

- a) A is orthogonal.
- **b**) ||Ax|| = ||x|| for all **x** in R^n .
- c) $Ax \cdot Ay = x \cdot y$ for all x and y in R^n .

Let u_1 and u_2 be the unit vectors along the x- and y-axes and unit vectors u_1' and u_2' along the x' and y'-axes.

The new coordinates (x', y') and the old coordinates (x, y) of a point P will be related by

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = P^{-1} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = P^{-1} \begin{bmatrix} x \\ y \end{bmatrix} \qquad P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$P^{-1} = P^{T} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$\sin \theta$$
 $\cos \theta$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\rightarrow \begin{cases} x' = x\cos\theta + y\sin\theta \\ y' = -x\sin\theta + y\cos\theta \end{cases}$$

These are sometimes called the *rotation equations*.

Use the form $\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$ to find the new coordinates of the point Q(2, 1) if the

coordinate axes of a rectangular coordinate system are rotated through an angle of $\theta = \frac{\pi}{4}$.

Solution

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\frac{\pi}{4} & \sin\frac{\pi}{4} \\ -\sin\frac{\pi}{4} & \cos\frac{\pi}{4} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
$$= \begin{bmatrix} \frac{3}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{bmatrix}$$

The new coordinates of Q are $(x', y') = \left(\frac{3}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

Show that the matrix is orthogonal

1.
$$A = \begin{bmatrix} \frac{4}{5} & 0 & -\frac{3}{5} \\ -\frac{9}{25} & \frac{4}{5} & -\frac{12}{25} \\ \frac{12}{25} & \frac{3}{5} & \frac{16}{25} \end{bmatrix}$$

2.
$$A = \begin{vmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{vmatrix}$$

Determine if the matrix is orthogonal. For those that is orthogonal find the inverse.

$$3. \quad \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

4.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

8.
$$\begin{vmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
4.
$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
5.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$$
6.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
7.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
7.
$$\begin{bmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{bmatrix}$$
8.
$$\begin{bmatrix} 0 & 1 & \frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$
9.
$$\begin{bmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$
11.
$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \\ \frac{1}{2} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \end{bmatrix}$$
12.
$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{\sqrt{3}} & -\frac{1}{2} & 0 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 1 \\ 0 & \frac{1}{\sqrt{3}} & 0 & 1 \\ 0 & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \end{bmatrix}$$

$$5. \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

6.
$$\begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix}$$

9.
$$\begin{vmatrix} \sqrt{2} & \sqrt{6} & \sqrt{3} \\ 0 & -\frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{vmatrix}$$

12.
$$\begin{vmatrix} 0 & \frac{1}{\sqrt{3}} & -1 \\ 0 & \frac{1}{\sqrt{3}} & 0 \end{vmatrix}$$

$$7. \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

6.
$$\left[\sin\theta - \cos\theta\right]$$

$$7. \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

$$10. \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{pmatrix}$$

28

Find a last column so that the resulting matrix is orthogonal

$$\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \cdots \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & \cdots \end{bmatrix}$$

Determine if the given matrix is orthogonal. If it is, find its inverse

$$\begin{bmatrix} \frac{1}{9} & \frac{4}{5} & \frac{3}{7} \\ \frac{4}{9} & \frac{3}{5} & -\frac{2}{7} \\ \frac{8}{9} & -\frac{2}{5} & \frac{3}{7} \end{bmatrix}$$

- 15. Prove that if A is orthogonal, then A^T is orthogonal.
- 16. Prove that if A is orthogonal, then A^{-1} is orthogonal.
- 17. Prove that if A and B are orthogonal, then AB is orthogonal.
- 18. Let Q be an $n \times n$ orthogonal matrix, and let A be an $n \times n$ matrix. Show that $\det(QAQ^T) = \det(A)$

19. Let
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 3 & 4 \\ 7 & -5 & 2 \end{pmatrix}$$

- a) Is matrix A an orthogonal matrix?
- b) Let B be the matrix obtained by normalizing each row of A, find B.
- c) Is B an orthogonal matrix?
- d) Are the columns of B orthogonal?

Section 3.5 – Least Squares Analysis

The use to *best* fit data, we will use results about orthogonal projections in inner product spaces to obtain a technique for fitting a line or other polynomial.

Fitting a Curve to Data

The common problem is to obtain a mathematical relationship between 2 variables *x* and *y* by *fitting* a curve to points in the *xy*-plane.

Some possibility of fitting the data

Least Squares Fit of a Straight Line

Recall that a system of equations Ax = y is called inconsistent if it does not have a solution. Suppose we want to fit a straight line y = mx + b to the determined points $(x_1, y_1), ..., (x_n, y_n)$

If the data points were collinear, the line would pass through all n points and the unknown coefficients m and b would satisfy the equations

$$y_{1} = mx_{1} + b$$

$$y_{2} = mx_{2} + b$$

$$\vdots \quad \vdots \quad \vdots$$

$$y_{n} = mx_{n} + b$$

$$\Rightarrow \begin{bmatrix} x_{1} & 1 \\ x_{2} & 1 \\ \vdots & \vdots \\ x_{n} & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix} = \begin{bmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n} \end{bmatrix}$$

$$A \quad \mathbf{x} = \mathbf{y}$$

The problem is to find m and b that minimize the errors is some sense.

Least Square Problem

Given a linear system Ax = y of m equations in n unknowns, find a vector x that minimizes ||y - Ax|| with respect to the Euclidean inner product on R^m . We call such as x a least squares solution of the system, we call ||y - Ax|| the least squares error.

$$A\mathbf{x} = \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_m \end{pmatrix}$$

The term "least square solution" results from the fact the minimizing $\|\mathbf{y} - A\mathbf{x}\| = e_1^2 + e_2^2 + \dots + e_m^2$

Example

Find the sums of squares of the errors of (2, 4), (4, 8), (6, 6)

Solution

$$4 = 2m + b \implies 4 - 2m - b = e_1$$

$$8 = 4m + b \implies 8 - 4m - b = e_2$$

$$6 = 6m + b \implies 6 - 6m - b = e_3$$

$$e_1^2 + e_2^2 + \dots + e_m^2 = (4 - 2m - b)^2 + (8 - 4m - b)^2 + (6 - 6m - b)^2$$

The least squares problem for this example to find the values m and b for which $e_1^2 + e_2^2 + \ldots + e_m^2$ is a minimum.

Theorem

If A is an $m \times n$ matrix, the equation Ax = y has a solution if and only if y is in the column space of A.

$$y - Ax = e$$

Ax is a vector that is in the column space of A. For this A the column space is a plane is R^m

y is a vector, not in the column space of A (otherwise Ax = y has an exact solution)

e is the error vector, the difference between y and Ax

The length $\|e\|$ is a minimum exactly when $e \perp CS(A)$

Best Approximation *Theorem*

If CS(A) is a finite dimensional subspace of an inner product space, and if y is a vector in V, then $proj_{CS(A)} y$ is the best approximation to y from CS(A) is the sense that

$$\left\| \mathbf{y} - proj_{CS(A)} \mathbf{y} \right\| < \left\| \mathbf{y} - CS(A) \right\|$$

For every vector \mathbf{w} in CS(A) that is different from $proj_{CS(A)} \mathbf{y}$

Theorem

For every linear system Ax = y, the associated normal system

$$A^T A \mathbf{x} = A^T \mathbf{y}$$

Is consistent, and all solutions are least squares solutions of Ax = y

If the columns of A are linearly independent, then A^TA is invertible so has a unique solution \bar{x} . This solution is often expressed theoretically as

z in CS(A) & z = Aw

$$(A^T A)^{-1} A^T A \overline{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{y}$$
$$\overline{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{y}$$

Proof

Let the vector \overline{x} is a least squares solution to $Ax = y \iff (y - A\overline{x}) \perp CS(A)$

$$(\mathbf{y} - A\overline{\mathbf{x}}) \cdot \mathbf{z} = 0 \qquad \qquad \mathbf{z} \text{ in } CS(\mathbf{y} - A\overline{\mathbf{x}}) \cdot A\mathbf{w} = 0$$

$$A^{T}(\mathbf{y} - A\overline{\mathbf{x}}) \cdot \mathbf{w} = 0$$

$$A^{T}(\mathbf{y} - A\overline{\mathbf{x}}) = 0$$

$$A^{T}(\mathbf{y} - A\overline{\mathbf{x}}) = 0$$

$$A^{T}\mathbf{y} - A^{T}A\overline{\mathbf{x}} = 0$$

$$A^{T}\mathbf{y} = A^{T}A\overline{\mathbf{x}}$$

Theorem

If A is an $m \times n$ matrix, then the following are equivalent

- a) A has linearly independent column vectors.
- **b**) $A^T A$ is invertible.

Example

Find the equation of the line that best fits the given points in the least-squares sense.

$$(40, 482), (45, 467), (50, 452), (55, 432), (60, 421)$$

Solution

Let y = mx + b be the equation of the line that best fits the given points. Then

$$\begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$$

Where
$$A = \begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix}$$
 $\mathbf{x} = \begin{pmatrix} m \\ b \end{pmatrix}$ $\mathbf{y} = \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$

Using the normal equation formula: $A^T A x = A^T y$

$$\begin{pmatrix} 40 & 45 & 50 & 55 & 60 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 40 & 1 \\ 45 & 1 \\ 50 & 1 \\ 55 & 1 \\ 60 & 1 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 40 & 45 & 50 & 55 & 60 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 482 \\ 467 \\ 452 \\ 432 \\ 421 \end{pmatrix}$$

$$\begin{pmatrix} 12,750 & 250 \\ 250 & 5 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 111,970 \\ 2,255 \end{pmatrix}$$

$$\begin{array}{l}
X = A^{-1}B \\
\binom{m}{b} = \frac{1}{1250} \binom{5}{-250} \binom{5}{12,750} \binom{111,970}{2,255} \\
= \binom{-3.12}{607}
\end{array}$$

Thus y = -3.12x + 607

Given the system equation:
$$\begin{cases} x_1 - x_2 = 4 \\ 3x_1 + 2x_2 = 1 \\ -2x_1 + 4x_2 = 3 \end{cases}$$

- a) Find the least-squares solution of the linear system Ax = y
- b) Find the orthogonal projection of y on the column space of A
- c) Find the error vector and the error

Solution

a)
$$A = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix}$$
 $x = \begin{pmatrix} m \\ b \end{pmatrix}$ $y = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$

$$A^{T} A x = A^{T} y$$

$$\begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 14 & -3 \\ -3 & 21 \end{pmatrix} \begin{pmatrix} m \\ b \end{pmatrix} = \begin{pmatrix} 1 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix} m \\ b \end{pmatrix} = \frac{1}{285} \begin{pmatrix} 21 & 3 \\ 3 & 14 \end{pmatrix} \begin{pmatrix} 1 \\ 10 \end{pmatrix} = \begin{pmatrix} \frac{51}{285} \\ \frac{143}{285} \end{pmatrix}$$

$$X = A^{-1} B$$

$$= \begin{pmatrix} \frac{17}{95} \\ \frac{143}{285} \end{pmatrix}$$

Thus y = 0.1789x + 0.5018

b) The orthogonal projection of y on the column space of A

$$Ax = \begin{pmatrix} 1 & -1 \\ 3 & 2 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} \frac{17}{95} \\ \frac{143}{285} \end{pmatrix} = \begin{pmatrix} -\frac{92}{285} \\ \frac{439}{285} \\ \frac{94}{57} \end{pmatrix}$$

c)
$$y - Ax = \begin{pmatrix} 4 \\ 1 \\ 3 \end{pmatrix} - \begin{pmatrix} -\frac{92}{285} \\ \frac{439}{285} \\ \frac{94}{57} \end{pmatrix} = \begin{pmatrix} \frac{1232}{285} \\ -\frac{154}{285} \\ \frac{4}{3} \end{pmatrix}$$

The error:
$$\|\mathbf{y} - A\mathbf{x}\| = \sqrt{\left(\frac{1232}{285}\right)^2 + \left(-\frac{154}{285}\right)^2 + \left(\frac{4}{3}\right)^2} \approx 4.556$$

Exercises Section 3.5 – Least Squares Analysis

- 1. Find the equation of the line that best fits the given points in the least-squares sense.
 - a) $\{(0, 2), (1, 2), (2, 0)\}$
 - b) $\{(1, 5), (2, 4), (3, 1), (4, 1), (5, -1)\}$
 - c) $\{(0, 1), (1, 3), (2, 4), (3, 4)\}$
 - d) $\{(-2, 0), (-1, 0), (0, 1), (1, 3), (2, 5)\}$
- 2. Find the orthogonal projection of the vector \mathbf{u} on the subspace of \mathbf{R}^4 spanned by the vectors
 - a) $\mathbf{u} = (-3, -3, 8, 9); \quad \mathbf{v}_1 = (3, 1, 0, 1), \quad \mathbf{v}_2 = (1, 2, 1, 1), \quad \mathbf{v}_3 = (-1, 0, 2, -1)$
 - b) $\mathbf{u} = (6, 3, 9, 6); \quad \mathbf{v}_1 = (2, 1, 1, 1), \quad \mathbf{v}_2 = (1, 0, 1, 1), \quad \mathbf{v}_3 = (-2, -1, 0, -1)$
 - c) $\mathbf{u} = (-2, 0, 2, 4); \quad \mathbf{v}_1 = (1, 1, 3, 0), \quad \mathbf{v}_2 = (-2, -1, -2, 1), \quad \mathbf{v}_3 = (-3, -1, 1, 3)$
- 3. Find the standard matrix for the orthogonal projection P of \mathbb{R}^2 on the line passes through the origin and makes an angle θ with the positive x-axis.
- 4. Hooke's law in physics states that the length x of a uniform spring is a linear function of the force y applied to it. If we express the relationship as y = mx + b, then the coefficient m is called the spring constant.

Suppose a particular unstretched spring has a measured length of 6.1 *inches*.(i.e., x = 6.1 when y = 0). Forces of 2 pounds, 4 pounds, and 6 pounds are then applied to the spring, and the corresponding lengths are found to be 7.6 inches, 8.7 inches, and 10.4 inches. Find the spring constant.

- 5. Prove: If A has a linearly independent column vectors, and if b is orthogonal to the column space of A, then the least squares solution of Ax = b is x = 0.
- 6. Let A be an $m \times n$ matrix with linearly independent row vectors. Find a standard matrix for the orthogonal projection of \mathbb{R}^n onto the row space of A.

- 7. Let W be the line with parametric equations x = 2t, t = -t, z = 4t
 - a) Find a basis for W.
 - b) Find the standard matrix for the orthogonal projection on W.
 - c) Use the matrix in part (b) to find the orthogonal projection of a point $P_0(x_0, y_0, z_0)$ on W.
 - d) Find the distance between the point $P_0(2, 1, -3)$ and the line W.
- 8. In R^3 , consider the line l given by the equations x = t, t = t, z = tAnd the line m given by the equations x = s, t = 2s 1, z = 1Let P be the point on l, and let Q be a point on m. Find the values of t and t that minimize the distance between the lines by minimizing the squared distance $\|P Q\|^2$
- **9.** Determine whether the statement is true or false.
 - a) If A is an $m \times n$ matrix, then $A^T A$ is a square matrix.
 - b) If $A^T A$ is invertible, then A is invertible.
 - c) If A is invertible, then $A^T A$ is invertible.
 - d) If Ax = b is a consistent linear system, then $A^T Ax = A^T b$ is also consistent.
 - e) If Ax = b is an inconsistent linear system, then $A^T Ax = A^T b$ is also inconsistent.
 - f) Every linear system has a least squares solution.
 - g) Every linear system has a unique least squares solution.
 - h) If A is an $m \times n$ matrix with linearly independent columns and **b** is in R^m , then Ax = b has a unique least squares solution.