

UE21CS343BB2 Topics in Deep Learning

Dr. Shylaja S S
Director of Cloud Computing & Big Data (CCBD), Centre for Data Sciences & Applied Machine Learning (CDSAML)
Department of Computer Science and Engineering shylaja.sharath@pes.edu

Ack:Aryan Sharma, Teaching Assistant

UE21CS343BB2: Topics in Deep Learning

Introduction to RNNs

- Artificial Neural Networks and Convolutional Neural Networks work very well in predicting outputs to specific sized inputs.
- Here the inputs being certain images resized to fit a particular ratio and a fixed set of classes or outputs.

- To understand its limitations, let's take an example of a use case.
- Let's say we want to translate a sentence from English to another language.
- Consider the sentence "Hello good morning" must be translated to spanish.

- The first step would be to convert the words into numbers, specifically vectors which is a format the computer can understand.
- For example Let's use One Hot Encoding.
 Hello = [1,0,0]; Good = [0,1,0]; Morning = [0,0,1].
- But in the case of there being a longer sentence we have taken an ANN with 6 input nodes. What would the rest of the nodes get as an input?

- We could zero encode it in case of a shorter input. This is okay considering our vocabulary is only 3 words.
- In real cases, if each root word in the language or at least the vocabulary in some specific case would need a vector, that would mean a vector whose dimensions are 10,000 or more!
- But, in cases of a large vocabulary (words and their respective vectors), the size of the vectors would lead to unnecessary overhead.
- Problem #1- As you can see above, ANNs cannot accept variable length inputs.

- Now let's take another example, video captioning.
- The video will be broken into individual images which are passed to the network.
- The order here becomes very important for the caption to make sense.

Introduction

Let's take more examples, consider the task of auto completion

Given the first character 'd' you want to predict the next character 'e' and so

on.

- As seen here, the sequence matters but also, the word can be anything other deep too! It can say detail, desperate, destroy or anything else after the 'd' and 'e'.
- The ANN would not be able to handle such cases.
- In ANNs, the order the input is passed into the network is arbitrary.
- Problem #2- Thus, in ANNs the sequence is not taken into consideration.

Recurrent Neurons - Memory Cells

 In the given diagram, a chunk of neural network, A, looks at some input x_t and outputs a value y_t. A loop allows information to be passed from one step of the network to the next.

Recurrent Neurons - Memory Cells

- This information is stored in the 'hidden state' which constitutes its memory and passed in the 'hidden layer'.
- A recurrent neural network can be thought of as multiple copies of the same network(A), each passing a message to a successor.

Variable-Length Input, Output Sequences

• Each rectangle is a vector and arrows represent functions (e.g. matrix multiply). Input vectors are in red, output vectors are in blue and green vectors hold the RNN's state (more on this soon).

one to one

 Vanilla mode of processing without RNN, from fixedsized input to fixed-sized output (e.g. image classification).

Variable-Length Input, Output Sequences

• Sequence output (e.g. image captioning takes an image and outputs a sentence of words).

one to many

Variable-Length Input, Output Sequences

 Sequence input (e.g. sentiment analysis where a given sentence is classified as expressing positive or negative sentiment).
 many to one

Variable-Length Input, Output Sequences

 Sequence input and sequence output (e.g. Machine Translation: an RNN reads a sentence in English and then outputs a sentence in French).

many to many

Variable-Length Input, Output Sequences

 Synced sequence input and output (e.g. video classification where we wish to label each frame of the video). Notice that in every case are no pre-specified constraints on the lengths sequences because the recurrent transformation (green) is fixed and can be applied as many times as we like.

many to many

Acknowledgements & References

- http://www.cse.iitm.ac.in/~miteshk/CS7015/Slides/Handout/Lecture14.pdf
- https://www.youtube.com/watch?v=7ZQgK_MV_t0
- https://karpathy.github.io/2015/05/21/rnn-effectiveness/

UE21CS343BB2 Topics in Deep Learning

Dr. Shylaja S S
Director of Cloud Computing & Big Data (CCBD), Centre for Data Sciences & Applied Machine Learning (CDSAML)
Department of Computer Science and Engineering shylaja.sharath@pes.edu

Ack:Aryan Sharma, Teaching Assistant