Spectrum

Let \mathbf{k} be a spherically complete non-archimedean field which is algebraically closed and $A = \mathbf{k}[T]$. We want to consider the "analytic structure" on $\mathbf{mSpec}\,A$. However, unlike the complex case, the set $\mathbf{mSpec}\,A$ is totally disconnected with respect to the topology induced by the absolute value on \mathbf{k} (??). To overcome this difficulty, Berkovich uses multiplicative semi-norms to "fill in the gaps" between the points in $\mathbf{mSpec}\,A$, leading to the notion of the spectrum of a Banach ring.

We first consider the local model. Hence we should consider the Tate algebra $\mathbf{k}\{T\}$ instead of the polynomial ring $\mathbf{k}[T]$. Yang: The maximal ideal of $\mathbf{k}\{T\}$ corresponding to the point in the disk $\{a \in \mathbf{k} : a \leq 1\}$. Yang: Closed or open disk?

1 Definition

Definition 1. Let R be a Banach ring. The *spectrum* $\mathcal{M}(R)$ of R is defined as the set of all multiplicative semi-norms on R that are bounded with respect to the given norm on R. For every point $x \in \mathcal{M}(R)$, we denote the corresponding multiplicative semi-norm by $|\cdot|_x$. We equip $\mathcal{M}(R)$ with the weakest topology such that for each $f \in R$, the evaluation map $\mathcal{M}(R) \to \mathbb{R}_{\geq 0}$, defined by $x \mapsto |f|_x = f(x)$, is continuous.

Definition 2. Let $\varphi : R \to S$ be a bounded ring homomorphism of Banach rings. The *pullback* map $\mathcal{M}(\varphi) : \mathcal{M}(S) \to \mathcal{M}(R)$ is defined by $\mathcal{M}(\varphi)(x) = x \circ \varphi : f \mapsto |\varphi(f)|_x$ for each $x \in \mathcal{M}(S)$.

Proposition 3. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, let \mathcal{P}_x be the kernel of the multiplicative semi-norm $|\cdot|_x$. Then \mathcal{P}_x is a closed prime ideal of R, and $x \mapsto \mathcal{P}_x$ defines a continuous map from $\mathcal{M}(R)$ to Spec(R) equipped with the Zariski topology.

Proof. Yang: To be completed

Definition 4. Let R be a Banach ring. For each $x \in \mathcal{M}(R)$, the completed residue field at the point x is defined as the completion of the residue field $\kappa(x) = \operatorname{Frac}(R/\wp_x)$ with respect to the multiplicative norm induced by the semi-norm $|\cdot|_x$, denoted by $\mathcal{H}(x)$.

Definition 5. Let R be a Banach ring. The *Gel'fand transform* of R is the bounded ring homomorphism

$$\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x), \quad f \mapsto (f(x))_{x \in \mathcal{M}(R)},$$

where the norm on the product $\prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is given by the supremum norm.

Proposition 6. The Gel'fand transform $\Gamma: R \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ of a Banach ring R factors through the uniformization R^u of R, and the induced map $R^u \to \prod_{x \in \mathcal{M}(R)} \mathcal{H}(x)$ is an isometric embedding. Yang: To be checked.

Date: October 26, 2025, Author: Tianle Yang, My Homepage

Theorem 7. Let R be a Banach ring. The spectrum $\mathcal{M}(R)$ is a nonempty compact Hausdorff space.

Proof. Yang: To be continued.

Lemma 8. Let $\{K_i\}_{i\in I}$ be a family of completed fields. Consider the Banach ring $R=\prod_{i\in I}K_i$ equipped with the product norm. The spectrum $\mathcal{M}(R)$ is homeomorphic to the Stone-Čech compactification of the discrete space I.

Remark 9. The Stone-Čech compactification of a discrete space is the largest compact Hausdorff space in which the original space can be densely embedded. Yang: To be checked.

Proposition 10. Let K/k be a Galois extension of complete fields, and let R be a Banach k-algebra. The Galois group $\operatorname{Gal}(K/k)$ acts on the spectrum $\mathcal{M}(R \widehat{\otimes}_k K)$ via

$$g\cdot x: f\mapsto |(1\otimes g^{-1})(f)|_x$$

for each $g \in \operatorname{Gal}(K/k)$, $x \in \mathcal{M}(R \widehat{\otimes}_k K)$ and $f \in R \widehat{\otimes}_k K$. Moreover, the natural map $\mathcal{M}(R \widehat{\otimes}_k K) \to \mathcal{M}(R)$ induces a homeomorphism

$$\mathcal{M}(R\widehat{\otimes}_k K)/\operatorname{Gal}(K/k) \xrightarrow{\sim} \mathcal{M}(R).$$

Yang: To be checked.

2 Examples

Example 11. Let $(\mathbf{k}, |\cdot|)$ be a complete valuation field. The spectrum $\mathcal{M}(\mathbf{k})$ consists of a single point corresponding to the given absolute value $|\cdot|$ on \mathbf{k} . Yang: To be checked.

Example 12. Consider the Banach ring $(\mathbb{Z}, \|\cdot\|)$ with $\|\cdot\| = |\cdot|_{\infty}$ is the usual absolute value norm on \mathbb{Z} . Let $|\cdot|_p$ denote the p-adic norm for each prime number p, i.e., $|n|_p = p^{-v_p(n)}$ for each $n \in \mathbb{Z}$, where $v_p(n)$ is the p-adic valuation of n. The spectrum

$$\mathcal{M}(\mathbb{Z}) = \{|\cdot|_{\infty}^{\varepsilon} : \varepsilon \in (0,1]\} \cup \{|\cdot|_{p}^{\alpha} : p \text{ is prime}, \alpha \in (0,\infty]\} \cup \{|\cdot|_{0}\},$$

where $|a|_p^{\infty} := \lim_{\alpha \to \infty} |a|_p^{\alpha}$ for each $\alpha \in \mathbb{Z}$ and $|\cdot|_0$ is the trivial norm on \mathbb{Z} . Yang: To be checked.

Spectrum of Tate algebra in one variable Let **k** be a complete non-archimedean field, and let $A = \mathbf{k}\{T/r\}$. We list some types of points in the spectrum $\mathcal{M}(A)$.

For each $a \in \mathbf{k}$ with $|a| \le r$, we have the *type I* point x_a corresponding to the evaluation at a, i.e., $|f|_{x_a} := |f(a)|$ for each $f \in A$. For each closed disk $E = E(a, s) := \{b \in \mathbf{k} : |b - a| \le s\}$ with center $a \in \mathbf{k}$ and radius $s \le r$, we have the point $x_{a,s}$ corresponding to the multiplicative semi-norm defined by

$$|f|_{x_E} := \sup_{b \in E(a,s)} |f(b)|$$

for each $f \in A$. If $s \in |\mathbf{k}^{\times}|$, then the point x_E is called a type II point; otherwise, it is called a type III point.

Let $\{E^{(s)}\}_s$ be a family of closed disks in **k** such that $E^{(s)}$ is of radius s, $E^{(s_1)} \subseteq E^{(s_2)}$ for any $s_1 < s_2$ and $\bigcap_s E^{(s)} = \emptyset$. Then we have the point $x_{\{E^{(s)}\}}$ corresponding to the multiplicative semi-norm defined

3

by

$$|f|_{x_{\{E^{(s)}\}}} := \inf_{s} |f|_{x_{E^{(s)}}}$$

for each $f \in A$. Such a point is called a type IV point.

Yang: To be completed.

Proposition 13. Let **k** be a complete non-archimedean field, and let r > 0 be a positive real number. Consider the Tate algebra $\mathbf{k}\{r^{-1}T\}$ equipped with the Gauss norm. The points in the spectrum $\mathcal{M}(\mathbf{k}\{r^{-1}T\})$ can be classified into four types as described above. Yang: To be checked

Proof. Yang: To be completed.

Proposition 14. Let **k** be a complete non-archimedean field, and let r > 0 be a positive real number. Consider the Tate algebra $\mathbf{k}\{r^{-1}T\}$ equipped with the Gauss norm. The completed residue fields of the four types of points in the spectrum $\mathcal{M}(\mathbf{k}\{r^{-1}T\})$ are described as follows:

- For a type I point x_a with $a \in \mathbf{k}$ and $|a| \leq r$, the completed residue field $\mathcal{H}(x_a)$ is isomorphic to \mathbf{k} .
- For a type II point $x_{a,s}$ with $a \in \mathbf{k}$ and $s \in |\mathbf{k}^{\times}|$, the completed residue field $\mathcal{H}(x_{a,s})$ is isomorphic to the field of Laurent series over the residue field $\mathcal{k}_{\mathbf{k}}$, i.e., $\mathcal{k}_{\mathbf{k}}((t))$.
- For a type III point $x_{a,s}$ with $a \in \mathbf{k}$ and $s \notin |\mathbf{k}^{\times}|$, the completed residue field $\mathcal{H}(x_{a,s})$ is isomorphic to a transcendental extension of $\mathcal{K}_{\mathbf{k}}$ of degree one.
- For a type IV point $x_{\{E^{(s)}\}}$, the completed residue field $\mathcal{H}(x_{\{E^{(s)}\}})$ is isomorphic to a transcendental extension of $\mathcal{K}_{\mathbf{k}}$ of infinite degree.

Yang: To be checked.

Example 15. The completed residue field $\mathcal{H}(x_a)$ for a type I point x_a with $a \in \mathbf{k}$ and $|a| \leq r$ is isomorphic to \mathbf{k} . Yang: To be complete.