1. Međuispit iz Fizike 2 23.10.2009.

Teorijska pitanja

1. Prigušeno titranje

- 1.1 Izvesti rješenje jednadžbe za prigušeno titranje za slučaj slabog prigušenja (napišite jednadžbu gibanja i objasnite članove u jednadžbi; objasnite pojam slabog prigušenja i nađite rješenje jednadžbe za taj slučaj). (4 boda)
- 1.2 Definirajte logaritamski dekrement prigušenja. (1 bod)

2. Valovi

- 2.1 Izvesti valnu jednadžbu za transverzalno titranje napetog užeta duljine l, mase m, napetog silom F (nacrtati sliku s vektorima sila, objasniti aproksimacije koje se rabe pri izvodu, komentirati izvod). (3 boda)
- 2.2 Na napetom užetu s učvršćenim krajevima titra stojni val u osnovnom modu. Povećamo li masu užeta uz nepromijenjenu duljinu i napetost užeta, te zatitramo li stojni val u osnovnom modu, tada će se (zaokružite istinitu tvrdnju, <u>1 bod</u>):
 - a) promijeniti brzina širenja valova i valna duljina stojnih valova
 - b) promijeniti brzina širenja valova i povećati frekvencija titranja stojnih valova
 - c) promijeniti brzina širenja valova, a valna duljina i frekvencija titranja stojnih valova ostaje ista
 - d) promijeniti brzina širenja valova i smanjiti frekvencija titranja stojnih valova
 - e) povećati frekvencija stojnih valova, a brzina širenja i valna duljina ostat će iste
- 2.3 Longitudinalni progresivni harmonički val čija je faza jednaka $\phi = \omega t k x$ dolazi na čvrsti kraj i tamo se reflektira. Faza reflektiranog vala ima oblik: (zaokružite istinitu tvrdnju, <u>1 bod</u>)
 - a) $\phi_r = \omega t + k x$
 - b) $\phi_r = \omega t k x + \pi$
 - $\widehat{\mathbf{c}}) \quad \phi_r = \omega \, t + k \, x + \pi$
 - d) $\phi_r = \omega t k x$

Zadaci

- 1. Odredite na kojoj udaljenosti od središta homogenog štapa duljine *l* treba postaviti vodoravnu os da bi period njegovih malih titranja oko osi bio najmanji. (4 boda)
- **2.** Tijelo mase m = 10 g pričvršćeno na dvije jednake horizontalno postavljene opruge konstanti elestičnosti $k_1 = k_2 = k/2 = 0,5$ N/m klizi po podlozi uz koeficijent trenja $\mu = 0,1$. Ako se tijelo pomakne udesno za udaljenost $A_0 = 10$ cm od ravnotežnog položaja i pusti da titra, nađite njegov položaj kada se ono prvi puta zaustavi. (3 boda)

Na užetu titra stojni val. Razmak između prve i druge točke (krenuvši od početka užeta) koje titraju amplitudom 5 mm jednak je 2 cm, a između 2. i 3. koje također titraju s amplitudom 5 mm, je 7 cm. Odredite maksimalnu amplitudu tog vala. (3 boda)