因此,分别考虑该级数奇次项和偶次项构成的两个幂级数 $\sum_{k=1}^{\infty} \frac{2^{2k-1}}{2k-1} x^{2k-1}$ 和 $\sum_{k=1}^{\infty} \frac{4^{2k}}{2k} x^{2k}$.

容易求得幂级数 $\sum_{k=1}^{\infty} \frac{2^{2k-1}}{2k-1} x^{2k-1}$ 的收敛半径 $R_1 = \frac{1}{2}$,而幂级数 $\sum_{k=1}^{\infty} \frac{4^{2k}}{2k} x^{2k}$ 的收敛半径 $R_2 = \frac{1}{4}$,则原幂级数收敛半径为 $\frac{1}{4}$.

当 $x=\pm\frac{1}{4}$ 时, $\sum_{k=1}^{\infty}\frac{2^{2k-1}}{2k-1}x^{2k-1}$ 收敛, $\sum_{k=1}^{\infty}\frac{4^{2k}}{2k}x^{2k}$ 发散,则原幂级数发散,故原幂级数收敛域为 $(-\frac{1}{4},\frac{1}{4})$.

【例 2】 设幂级数 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 x=0 收敛, 在 x=2 发散,则该幂级数收敛域为

解 由于幂级数 $\sum_{n=1}^{\infty} a_n (x-1)^n$ 在 x=0 处收敛,在 x=2 处发散,由阿贝尔定理知 当 |x-1| < |0-1|,即 |x-1| < 1,原幂级数收敛;当 |x-1| > |2-1|,即 |x-1| > 1,原幂级数发散,则该幂级数收敛域为[0,2).

【例 3】 设 $\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$ 在 x=-2 处条件收敛,则 $\sum_{n=1}^{\infty} n^2 (x-a)^n$ 在 $x=\ln\frac{1}{2}$ 处

(A) 绝对收敛.

(B) 条件收敛.

(C) 必发散.

(D) 敛散性由 a 确定.

解 应选(A).

显然 $\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$ 的收敛半径为 1. 由 $\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$ 在 x=-2 处条件收敛知,a=-3 或 a=-1,但 a=-3 与 $\sum_{n=1}^{\infty} \frac{(x-a)^n}{n}$ 在 x=-2 处条件收敛矛盾,则 a=-1. 而 $\sum_{n=1}^{\infty} n^2 (x-a)^n = \sum_{n=1}^{\infty} n^2 (x+1)^n$ 的收敛半径为 1,收敛区间为(-2,0),又 $\ln \frac{1}{2} \in (-2,0)$,则 $\sum_{n=1}^{\infty} n^2 (x-a)^n$ 在 $x=\ln \frac{1}{2}$ 处绝对收敛.

题型二 将函数展开为幂级数

常用方法:

1) 直接展开法

2) 间接展开法

一般都是用间接展开法.

【例1】 将下列函数展开为 x 的幂级数.

$$(1)f(x) = \frac{3x}{2+x^2};$$

$$(2) f(x) = \frac{12 - 5x}{6 - 5x - x^2};$$

$$(3) f(x) = \arctan \frac{1+x}{1-x};$$

$$(4) f(x) = \arctan x - \ln \sqrt{1 + x^2};$$

$$(5) f(x) = \frac{1}{4} \ln \frac{1+x}{1-x} + \frac{1}{2} \arctan x - x;$$

(6)
$$f(x) = \ln(1 - x - 2x^2)$$
;

$$(7) f(x) = \ln(1 + x + x^2 + x^3 + x^4).$$

解

$$(1) f(x) = \frac{3x}{2} \cdot \frac{1}{1 + \frac{x^2}{2}} = \frac{3x}{2} \sum_{n=0}^{\infty} (-1)^n (\frac{x^2}{2})^n = \sum_{n=0}^{\infty} \frac{(-1)^n 3x^{2n+1}}{2^{n+1}}, x \in (-\sqrt{2}, \sqrt{2}).$$

$$(2) f(x) = \frac{6}{x+6} - \frac{1}{x-1} = \frac{1}{1+\frac{x}{6}} + \frac{1}{1-x} = \sum_{n=0}^{\infty} (-1)^n (\frac{x}{6})^n + \sum_{n=0}^{\infty} x^n$$

$$=\sum_{n=0}^{\infty}\left(\frac{(-1)^n}{6^n}+1\right)x^n, x\in(-1,1).$$

$$(3)f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, x \in (-1,1).$$

$$f(x) - f(0) = \int_0^x f'(t) dt = \sum_{n=0}^\infty \int_0^x (-1)^n t^{2n} dt = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1},$$

又
$$f(0) = \arctan 1 = \frac{\pi}{4}$$
,则 $f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$, $x \in [-1,1)$.

(4)
$$\arctan x = \int_0^x \frac{\mathrm{d}t}{1+t^2} = \int_0^x (\sum_{n=0}^\infty (-1)^n t^{2n}) \, \mathrm{d}t = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1},$$

$$\ln \sqrt{1+x^2} = \frac{1}{2}\ln(1+x^2) = \frac{1}{2}\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^{2n}}{n},$$

则
$$f(x) = x \arctan x - \ln \sqrt{1 + x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{2n+1} - \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{2n}}{n}$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+1)(2n+2)}, x \in [-1,1].$$

(5)
$$f(x) = \frac{1}{4}(\ln(1+x) - \ln(1-x)) + \frac{1}{2}\arctan x - x$$

$$f'(x) = \frac{1}{4} \left(\frac{1}{1+x} + \frac{1}{1-x} \right) + \frac{1}{2(1+x^2)} - 1 = \frac{1}{1-x^4} - 1 = \sum_{n=1}^{\infty} x^{4n},$$

$$f(x) = \int_0^x f'(t) dt + f(0) = \int_0^x \left(\sum_{n=1}^\infty t^{4n} \right) dt = \sum_{n=1}^\infty \frac{x^{4n+1}}{4n+1}, x \in (-1,1).$$

$$(6) f(x) = \ln[(1+x)(1-2x)] = \ln(1+x) + \ln(1-2x)$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n} + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-2x)^n}{n}$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1}[1+(-2)^n]x^n}{n}, x \in [-\frac{1}{2}, \frac{1}{2}).$$

$$(7) f(x) = \ln(1 + x + x^2 + x^3 + x^4) = \ln\frac{1 - x^5}{1 - x} = \ln(1 - x^5) - \ln(1 - x)$$

$$= \sum_{n=1}^{\infty} \frac{(-1)^{n-1} (-x^5)^n}{n} - \sum_{n=1}^{\infty} \frac{(-1)^{n-1} (-x)^n}{n}$$

$$= -\sum_{n=1}^{\infty} \frac{x^{5n}}{n} + \sum_{n=1}^{\infty} \frac{x^n}{n}, x \in [-1, 1).$$

【例2】 将下列函数在指定点处展开为幂级数.

(1)
$$f(x) = \sin x \, \text{\'et} \, x = \frac{\pi}{4} \, \text{\'et};$$
 (2) $f(x) = \frac{1}{x^2 + 3x + 2} \, \text{\'et} \, x = 1 \, \text{\'et};$

(3)
$$f(x) = \frac{1}{(x+2)^2}$$
 $£ x = -1$ $£.$

(1)
$$f(x) = \sin x = \sin[(x - \frac{\pi}{4}) + \frac{\pi}{4}] = \frac{\sqrt{2}}{2} [\sin(x - \frac{\pi}{4}) + \cos(x - \frac{\pi}{4})]$$

$$=\frac{\sqrt{2}}{2}\left[\sum_{n=0}^{\infty}\frac{(-1)^n(x-\frac{\pi}{4})^{2n+1}}{(2n+1)!}+\sum_{n=0}^{\infty}\frac{(-1)^n(x-\frac{\pi}{4})^{2n}}{(2n)!}\right],x\in(-\infty,+\infty).$$

$$(2) f(x) = \frac{1}{(x+1)(x+2)} = \frac{1}{x+1} - \frac{1}{x+2} = \frac{1}{2+(x-1)} - \frac{1}{3+(x-1)}$$
$$= \frac{1}{2} \cdot \frac{1}{1+\frac{x-1}{2}} - \frac{1}{3} \cdot \frac{1}{1+\frac{x-1}{2}}$$

$$=\frac{1}{2}\sum_{n=0}^{\infty}(-1)^{n}(\frac{x-1}{2})^{n}-\frac{1}{3}\sum_{n=0}^{\infty}(-1)^{n}(\frac{x-1}{3})^{n}$$

$$= \sum_{n=0}^{\infty} (-1)^n \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}}\right) (x-1)^n \quad (-1 < x < 3).$$

$$(3) f(x) = -\left(\frac{1}{x+2}\right)' = -\left(\frac{1}{1+(x+1)}\right)' = -\left(\sum_{n=0}^{\infty} (-1)^n (x+1)^n\right)'$$

$$= -\sum_{n=1}^{\infty} (-1)^n n(x+1)^{n-1} \quad (-2 < x < 0).$$

【例 3】 将 $f(x) = x^2 \ln(1+x)$ 展开为 x 的幂级数,并求 $f^{(n)}(0)(n > 2)$.

解
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n}, x \in (-1,1),$$
则

$$f(x) = x^2 \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n+2}}{n}$$

于是 $x^n(n>2)$ 项系数 $a_n=\frac{(-1)^{n-3}}{n-2}=\frac{(-1)^{n-1}}{n-2}$,从而有 $\frac{f^{(n)}(0)}{n!}=\frac{(-1)^{n-1}}{n-2}$,即 $f^{(n)}(0)=\frac{(-1)^{n-1}n!}{n-2}$.

【例 】 设
$$f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0 \\ 1, & x = 0 \end{cases}$$
,求 $f^{(n)}(0)$.

解 由于
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$$
,则 $f(x) = \frac{\sin x}{x} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}$

于是
$$a_{2n} = \frac{(-1)^n}{(2n+1)!} = \frac{f^{(2n)}(0)}{(2n)!}$$
,从而 $f^{(2n)}(0) = \frac{(-1)^n}{2n+1}$.
又 $a_{2n+1} = 0$,从而 $f^{(2n+1)}(0) = 0$.

级数求和常见的是两种问题,幂级数求和及常数项级数求和.

1) 幂级数求和的方法:

利用已有的几个展开式($\frac{1}{1+x}$, e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^a$) 以及幂级数的性质 (有理运算,逐项求导,逐项积分)来求幂级数的和函数:

2) 常数项级数求和的方法:

求常数项级数的和最常用的方法是借助于幂级数求和. 常见的求和级数形式为 $\sum_{n=0}^{\infty} a_n b^n$,此时,考虑相应的幂级数 $\sum_{n=0}^{\infty} a_n x^n$,并求出其和函数 S(x),则 $\sum_{n=0}^{\infty} a_n b^n = S(b)$.

【例1】 求下列幂级数的和函数

$$(1)\sum_{n=1}^{\infty}\frac{x^n}{n(n+1)}.$$

$$(1)\sum_{n=1}^{\infty}\frac{x^n}{n(n+1)}.$$

$$(2)\sum_{n=1}^{\infty}\frac{2n-1}{2^n}x^{2n-2}.$$

(3)
$$\sum_{n=0}^{\infty} \frac{n^2+1}{2^n n!} x^n$$

$$(3) \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n. \qquad (4) \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1}.$$

₩ (1) 易求得该幂级数收敛域为[-1,1].

当0 < |x| < 1时,

$$S(x) = \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)} = \sum_{n=1}^{\infty} \frac{x^n}{n} - \sum_{n=1}^{\infty} \frac{x^n}{n+1} = -\ln(1-x) - \frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{n+1}}{n+1}$$
$$= -\ln(1-x) - \frac{1}{x} \left[-\ln(1-x) - x \right] = 1 + (\frac{1}{x} - 1) \ln(1-x).$$

$$S(-1) = \lim_{x \to (-1)^+} S(x) = 1 + \lim_{x \to (-1)^+} \left(\frac{1}{x} - 1\right) \ln(1 - x) = 1 - 2\ln 2$$

$$S(1) = \lim_{x \to 1^{-}} S(x) = 1 + \lim_{x \to 1^{-}} \left(\frac{1}{x} - 1\right) \ln(1 - x) = 1 + \lim_{x \to 1^{-}} (1 - x) \ln(1 - x) = 1$$

故
$$S(x) = \begin{cases} 1 + (\frac{1}{x} - 1)\ln(1 - x), & -1 \leqslant x < 1 \text{ 且 } x \neq 0 \\ 0, & x = 0 \\ 1, & x = 1 \end{cases}$$

【注】 本题用到 $\sum_{n=1}^{\infty} \frac{x^n}{n} = -\ln(1-x)$,这是一个常用的结论,望读者记住.

(2)
$$\lim_{n\to\infty} \sqrt[n]{|u_n|} = \lim_{n\to\infty} \frac{\sqrt[n]{2n-1}}{2} = \frac{1}{2}$$
,则 $R = \sqrt{2}$. 当 $x = \pm\sqrt{2}$ 时,原级数为 $\sum_{n=1}^{\infty} \frac{2n-1}{2}$

发散.则原级数收敛域为 $(-\sqrt{2},\sqrt{2})$.

$$\diamondsuit S(x) = \sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2}, x \in (-\sqrt{2}, \sqrt{2}). \stackrel{\text{def}}{=} x = 0 \text{ ft}, S(x) = \frac{1}{2}.$$

当 $0 < |x| < \sqrt{2}$ 时,

$$S(x) = \sum_{n=1}^{\infty} \frac{2n-1}{2^n} x^{2n-2} = \left(\sum_{n=1}^{\infty} \frac{x^{2n-1}}{2^n}\right)' = \left(\frac{1}{x} \sum_{n=1}^{\infty} \frac{x^{2n}}{2^n}\right)' = \left(\frac{1}{x} \sum_{n=1}^{\infty} \left(\frac{x^2}{2}\right)^n\right)'$$

$$= \left(\frac{1}{x} \cdot \frac{\frac{x^2}{2}}{1 - \frac{x^2}{2}}\right)' = \left(\frac{x}{2 - x^2}\right)' = \frac{2 + x^2}{(2 - x^2)^2}$$

故
$$S(x) = \frac{2+x^2}{(2-x^2)^2}, x \in (-\sqrt{2},\sqrt{2}).$$

$$(3) \sum_{n=0}^{\infty} \frac{n^2 + 1}{2^n n!} x^n = \sum_{n=0}^{\infty} \frac{n^2 + 1}{n!} (\frac{x}{2})^n = \sum_{n=1}^{\infty} \frac{n}{(n-1)!} (\frac{x}{2})^n + \sum_{n=0}^{\infty} \frac{(\frac{x}{2})^n}{n!}$$

$$= \sum_{n=2}^{\infty} \frac{1}{(n-2)!} (\frac{x}{2})^n + \sum_{n=1}^{\infty} \frac{1}{(n-1)!} (\frac{x}{2})^n + e^{\frac{x}{2}}$$

$$= \frac{x^2}{4} e^{\frac{x}{2}} + \frac{x}{2} e^{\frac{x}{2}} + e^{\frac{x}{2}} = (\frac{x^2}{4} + \frac{x}{2} + 1) e^{\frac{x}{2}}, x \in (-\infty, +\infty).$$

(4) 易求得该级数收敛域为 $(-\infty, +\infty)$.

$$S(x) = \sum_{n=0}^{\infty} (-1)^n \frac{n+1}{(2n+1)!} x^{2n+1} = \left(\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+2}\right)'$$

$$= \left(\frac{x}{2} \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}\right)' = \left(\frac{x}{2} \sin x\right)'$$

$$= \frac{1}{2} (\sin x + x \cos x), x \in (-\infty, +\infty).$$

【例 2】 求下列常数项级数的和.

$$(1)\sum_{n=2}^{\infty}\frac{1}{(n^2-1)2^n};$$

$$(2)\sum_{n=0}^{\infty}\frac{(-1)^n(n^2-n+1)}{2^n}.$$

(4) (1) 令
$$S(x) = \sum_{n=2}^{\infty} \frac{x^n}{n^2 - 1}, x \in (-1,1),$$
则

$$\begin{split} S(x) &= \frac{1}{2} \sum_{n=2}^{\infty} \frac{x^n}{n-1} - \frac{1}{2} \sum_{n=2}^{\infty} \frac{x^n}{n+1} = \frac{x}{2} \sum_{n=2}^{\infty} \frac{x^{n-1}}{n-1} - \frac{1}{2x} \sum_{n=2}^{\infty} \frac{x^{n+1}}{n+1} \\ &= \frac{x}{2} \left[-\ln(1-x) \right] - \frac{1}{2x} \left[-\ln(1-x) - x - \frac{x^2}{2} \right] \\ &= \frac{2+x}{4} + \frac{1-x^2}{2x} \ln(1-x) \quad (\mid x \mid < 1, x \neq 0) \,, \end{split}$$

故
$$\sum_{n=2}^{\infty} \frac{1}{(n^2 - 1)2^n} = S(\frac{1}{2}) = \frac{5}{8} - \frac{3}{4} \ln 2.$$

$$(2) \qquad \sum_{n=0}^{\infty} \frac{(-1)^n (n^2 - n + 1)}{2^n} = \sum_{n=2}^{\infty} n(n-1)(-\frac{1}{2})^n + \sum_{n=0}^{\infty} (-\frac{1}{2})^n$$

$$\sum_{n=0}^{\infty} (-\frac{1}{2})^n = \frac{1}{1 + \frac{1}{2}} = \frac{2}{3}$$

令
$$S(x) = \sum_{n=2}^{\infty} n(n-1)x^n, x \in (-1,1)$$
,则
$$S(x) = x^2 \sum_{n=2}^{\infty} n(n-1)x^{n-2} = x^2 (\sum_{n=0}^{\infty} x^n)'' = x^2 (\frac{1}{1-x})'' = \frac{2x^2}{(1-x)^3},$$

$$\sum_{n=2}^{\infty} n(n-1)(-\frac{1}{2})^n = S(-\frac{1}{2}) = \frac{4}{27}$$
 故 $\sum_{n=2}^{\infty} \frac{(-1)^n (n^2 - n + 1)}{2^n} = \frac{2}{3} + \frac{4}{27} = \frac{22}{27}.$

【例 3】 求幂级数 $\sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$ 的和函数.

解一阶线性微分方程 $S'(x) + S(x) = e^x$ 得 $S(x) = Ce^{-x} + \frac{1}{2}e^x$.

由
$$S(0) = 1$$
 知 $C = \frac{1}{2}$. 则 $S(x) = \frac{e^x + e^{-x}}{2}$.

【例 4】 设
$$a_n = \int_0^{n\pi} x \mid \sin x \mid dx (n = 1, 2, \dots)$$
,求极限 $\lim_{n \to \infty} \left(\frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{2^n} \right)$.

$$a_n = \int_0^{n\pi} x \mid \sin x \mid dx \quad (x = n\pi - t)$$

$$= \int_0^{n\pi} (n\pi - t) \mid \sin t \mid dt = n\pi \int_0^{n\pi} |\sin t| dt - a_n$$

 $S(x) + S'(x) = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots = e^x$

$$a_n = \frac{n\pi}{2} \int_0^{n\pi} |\sin t| \, \mathrm{d}t = \frac{n^2 \pi}{2} \int_0^{\pi} \sin t \, \mathrm{d}t = n^2 \pi$$

$$\lim_{n \to \infty} \left(\frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{2^n} \right) = \pi \lim_{n \to \infty} \left(\frac{1^2}{2} + \frac{2^2}{2^2} + \dots + \frac{n^2}{2^n} \right) = \pi \sum_{n=1}^{\infty} \frac{n^2}{2^n}.$$

$$\diamondsuit S(x) = \sum_{n=1}^{\infty} n^2 x^n$$
,则

$$\sum_{n=1}^{\infty} nx^{n} = x \sum_{n=1}^{\infty} nx^{n-1} = x \left(\sum_{n=1}^{\infty} x^{n} \right)' = x \left(\frac{1}{1-x} \right)' = \frac{x}{(1-x)^{2}}$$

$$S(x) = \sum_{n=1}^{\infty} n^2 x^n = x \left(\sum_{n=1}^{\infty} n x^n \right)' = x \left(\frac{x}{(1-x)^2} \right)' = \frac{x+x^2}{(1-x)^3}$$

故
$$\lim_{n\to\infty} \left(\frac{a_1}{2} + \frac{a_2}{2^2} + \dots + \frac{a_n}{2^n}\right) = \pi S(\frac{1}{2}) = 6\pi.$$

【例 5】 设
$$a_1 = a_2 = 1$$
, $a_{n+1} = a_n + a_{n-1}$ $(n = 2, 3, \cdots)$, 试证 $\sum_{n=1}^{\infty} a_n x^{n-1}$ 在 $|x| < \frac{1}{2}$ 处 必收敛, 并求其和函数.

解 由
$$a_1=a_2=1$$
 及 $a_{n+1}=a_n+a_{n-1}$ 知 $\{a_n\}$ 单调增,即 $a_{n+1}>a_n$,则
$$a_{n+1}=a_n+a_{n-1}< a_n+a_n=2a_n< 2^2a_{n-1}< \cdots < 2^{n-1}a_2=2^{n-1}$$

从而有
$$a_n < 2^{n-2} (n = 4,5,\cdots)$$
,于是 $|a_n x^{n-1}| < 2^{n-2} |x^{n-1}| = \frac{1}{2} |(2x)^{n-1}|$.

由于级数 $\sum_{n=1}^{\infty}(2x)^{n-1}$ 在 |2x|<1,即 $|x|<\frac{1}{2}$ 时绝对收敛,则级数 $\sum_{n=1}^{\infty}a_nx^{n-1}$ 在 $|x|<\frac{1}{2}$ 处收敛.

$$\diamondsuit$$
 $S(x) = \sum_{n=1}^{\infty} a_n x^{n-1} (x \in (-\frac{1}{2}, \frac{1}{2})), 则$

$$S(x) = 1 + x + \sum_{n=3}^{\infty} a_n x^{n-1} = 1 + x + \sum_{n=2}^{\infty} a_{n+1} x^n = 1 + x + \sum_{n=2}^{\infty} (a_n + a_{n-1}) x^n$$

= 1 + x + x[S(x) - a₁] + x²S(x) = 1 + (x + x²)S(x),

解得
$$S(x) = \frac{1}{1 - x - x^2}$$
, $|x| < \frac{1}{2}$.

【注】 类似的

设 $a_0=1$, $a_1=0$, $a_{n+1}=\frac{1}{n+1}(na_n+a_{n-1})(n=1,2,3,\cdots)$, S(x) 为幂级数 $\sum_{n=0}^{\infty}a_nx^n$ 的和函数.

(
$$I$$
)证明幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的收敛半径不小于 1;

(
$$[[]]$$
) 证明 $(1-x)S'(x)-xS(x)=0$ ($x\in (-1,1)$),并求 $S(x)$ 的表达式.

第三节 傅里叶级数

一、考试内容要点精讲

1. 傅里叶系数与傅里叶级数

设函数 f(x) 是周期为 2π 的周期函数,且在 $[-\pi,\pi]$ 上可积,则称

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx$$
 $(n = 0, 1, 2, \dots)$
 $b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx$ $(n = 1, 2, \dots)$

为 f(x) 的傅里叶系数,称级数

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

为 f(x) 以 2π 为周期的傅里叶级数,记作

$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

2. 收敛定理(狄利克雷)

设 f(x) 是 $[-\pi,\pi]$ 上的分段单调函数,除有限个第一类间断点外都是连续的,则 f(x)的傅里叶级数在 $[-\pi,\pi]$ 上处处收敛,且收敛于

$$1) f(x)$$
,

当
$$x$$
为 $f(x)$ 的连续点.

2)
$$\frac{f(x^{-}) + f(x^{+})}{2}$$
, 当 $x 为 f(x)$ 的间断点.

当
$$x$$
为 $f(x)$ 的间断点.

3)
$$\frac{f(-\pi^+) + f(\pi^-)}{2}$$
, $\qquad \qquad \exists x = \pm \pi$.

3. 周期为 2π 的函数的展开

$$a_n = \frac{1}{2} \int_0^{\pi} f(x) \cos nx \, dx, \qquad n = 0, 1, 2, \dots,$$

$$n = 0, 1, 2, \cdots$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, \mathrm{d}x, \qquad n = 1, 2, \cdots.$$

$$n=1,2,\cdots$$

① f(x) 为奇函数

$$a_n = 0$$
,

$$n = 0, 1, 2, \dots,$$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, \mathrm{d}x,$$

$$n=1,2,\cdots$$

② f(x) 为偶函数

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \qquad n = 0, 1, 2, \dots,$$

$$n = 0, 1, 2, \cdots$$

$$b_n = 0$$
,

$$n = 1, 2, \cdots$$

③ 在[0,π]上展为正弦或展为余弦

(1) 展为正弦

$$a_n = 0,$$
 $n = 0, 1, 2, \dots,$

$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, \mathrm{d}x, \qquad n = 1, 2, \dots.$$

(2) 展为余弦

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos nx \, \mathrm{d}x, \qquad n = 0, 1, 2, \cdots,$$

$$b_n=0, n=1,2,\cdots.$$

4. 周期为 21 的函数的展开

1)[-1,1]上展开

$$a_n = \frac{1}{l} \int_{-l}^{l} f(x) \cos \frac{n\pi x}{l} dx, \qquad n = 0, 1, 2, \dots,$$

$$b_n = \frac{1}{l} \int_{-l}^{l} f(x) \sin \frac{n\pi x}{l} dx, \qquad n = 1, 2, \dots$$

2)[-1,1]上奇偶函数的展开

①f(x) 为奇函数

$$a_n=0, \qquad n=0,1,2,\cdots,$$

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} \mathrm{d}x, \qquad n = 1, 2, \dots.$$

②f(x) 为偶函数

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx, \qquad n = 0, 1, 2, \dots,$$

$$b_n = 0, \qquad n = 1, 2, \dots.$$

- 3) 在[0,1]上展为正弦或展为余弦
- ①展为正弦

$$a_n=0, \qquad n=0,1,2,\cdots,$$

$$b_n = \frac{2}{l} \int_0^l f(x) \sin \frac{n\pi x}{l} dx, \qquad n = 1, 2, \dots.$$

② 展为余弦

$$a_n = \frac{2}{l} \int_0^l f(x) \cos \frac{n\pi x}{l} dx, \qquad n = 0, 1, 2, \dots,$$

$$b_n = 0, \qquad n = 1, 2, \dots.$$

二、常考题型的方法与技巧

题型- 有关收敛定理的问题

【例 1】 函数 $f(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 \leqslant x \leqslant \pi \end{cases}$ 在 $[-\pi, \pi]$ 上展开为傅里叶级数的和函数

$$S(x) =$$
 .

解 由收敛定理知

$$S(x) = \begin{cases} -1, & -\pi < x < 0 \\ 1, & 0 < x < \pi \\ 0, & x = 0 \\ 0, & x = \pm \pi \end{cases}$$

【例 2】 设 $f(x) = \begin{cases} -1, -\pi < x < 0 \\ 1 + x^2, 0 < x < \pi \end{cases}$,则其以 2π 为周期的傅里叶级数在 $x = \pi$ 处收敛于

鬙 由收敛定理知,在
$$x = \pi$$
 处收敛于 $\frac{f((-\pi)^+) + f(\pi^-)}{2} = \frac{-1 + (1 + \pi^2)}{2} = \frac{\pi^2}{2}$.

【例 3】 设函数 $f(x) = x^2 (0 \leqslant x \leqslant 1)$,而 $S(x) = \sum_{n=1}^{\infty} b_n \sin n\pi x (-\infty < x < +\infty)$, 其中 $b_n = 2 \int_0^1 f(x) \sin n\pi x dx (n = 1, 2, 3, \cdots)$,则 $S(-\frac{1}{2})$ 为

(A)
$$-\frac{1}{2}$$
. (B) $-\frac{1}{4}$. (C) $\frac{1}{4}$.

解 将 f(x) 在[-1,1]上作奇延拓按周期 2 展开,则

$$S(-\frac{1}{2}) = -S(\frac{1}{2}) = -\frac{1}{4}$$

故应选(B).

【例 4】 设
$$f(x) = \begin{cases} x, & 0 \leq x \leq \frac{1}{2}, \\ 2 - 2x, & \frac{1}{2} < x < 1 \end{cases}$$

 $S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos n\pi x (-\infty < x < +\infty)$

其中 $a_n = 2 \int_0^1 f(x) \cos n\pi x dx (n = 0, 1, 2, \dots), 则 S(-\frac{5}{2})$ 等于

(A)
$$\frac{1}{2}$$
. (B) $-\frac{1}{2}$. (C) $\frac{3}{4}$.

解 将 f(x) 在[-1,1]上作偶延拓按周期为 2 展开,则

$$S(-\frac{5}{2}) = S(-\frac{1}{2}) = S(\frac{1}{2}) = \frac{f(\frac{1}{2}-0) + f(\frac{1}{2}+0)}{2} = \frac{\frac{1}{2} + (2-1)}{2} = \frac{3}{4}$$
 故应选(C).

题型二 将函数展开为傅里叶级数

将函数展开为傅里叶级数分两步进行:

第一步 求出傅里叶系数,写出傅里叶级数;

第二步 根据狄利克雷收敛定理确定其傅里叶级数在哪些点处收敛于 f(x),在哪些点处不收敛于 f(x),在不收敛于 f(x) 的点处收敛于何值.

【例 1】 将 $f(x) = x^2$ 在(0, π) 上分别展开为正弦级数和余弦级数.

解 (1) 展为正弦

$$a_n = 0$$
, $b_n = \frac{2}{\pi} \int_0^{\pi} x^2 \sin nx \, dx = \frac{2\pi}{n} (-1)^{n-1} + \frac{4}{n^3 \pi} [(-1)^n - 1]$

则
$$x^2 = 2\pi \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} \sin nx - \frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \sin(2n-1)x, x \in (0,\pi).$$

(2) 展为余弦

$$b_n = 0$$
, $a_0 = \frac{2}{\pi} \int_0^{\pi} x^2 dx = \frac{2}{3} \pi^2$, $a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx dx = \frac{4}{n^2} (-1)^n$

则
$$x^2 = \frac{\pi^2}{3} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx, x \in (0,\pi).$$

【例 2】 将函数 $f(x) = 2 + |x| (-1 \le x \le 1)$ 展开为以 2 为周期的傅里叶级数,并由此求级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 的和.

釺 由于
$$f(x) = 2 + |x|$$
 为偶函数,则

$$b_n = 0 \quad (n = 1, 2, \dots)$$

$$a_0 = 2 \int_0^1 (2+x) \, dx = 5$$

$$a_n = 2 \int_0^1 (2+x) \cos n\pi x \, dx = \frac{2(\cos n\pi - 1)}{n^2 \pi^2} \qquad (n = 1, 2 \dots)$$

由收敛定理知

$$2 + |x| = \frac{5}{2} + \sum_{n=1}^{\infty} \frac{2(\cos n\pi - 1)}{n^2 \pi^2} \cos n\pi x$$
$$= \frac{5}{2} - \frac{4}{\pi^2} \sum_{n=0}^{\infty} \frac{\cos[(2n+1)\pi x]}{(2n+1)^2}, x \in [-1,1]$$

令
$$x = 0$$
,得 $2 = \frac{5}{2} - \frac{4}{\pi^2} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2}$,则

$$\sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{8}$$

215

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} + \sum_{k=1}^{\infty} \frac{1}{(2k)^2} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} + \frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n^2}$$

故
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{4}{3} \sum_{k=0}^{\infty} \frac{1}{(2k+1)^2} = \frac{\pi^2}{6}$$
.

【例 3】 设 $f(x) = 10 - x(5 \le x \le 15)$,将 f(x) 展成以 10 为周期的傅里叶级数.

承额 本题给出周期函数 f(x) 在一个周期 $5 \leqslant x \leqslant 15$ 上的表达式,但该区间不关于原 点对称,为了利用系数计算公式,将 f(x) 作周期延拓,得其在 $-5 \leqslant x \leqslant 5$ 上有表达式,此时 $a_n = \frac{1}{5} \int_{-5}^{5} f(x) \cos \frac{n\pi x}{5} \mathrm{d}x$.

由于 $f(x)\cos\frac{n\pi x}{5}$ 以 10 为周期,则

$$a_{n} = \frac{1}{5} \int_{-5}^{5} f(x) \cos \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} f(x) \cos \frac{n\pi x}{5} dx$$

$$a_{0} = \frac{1}{5} \int_{5}^{15} f(x) dx = \frac{1}{5} \int_{5}^{15} (10 - x) dx = 0,$$

$$a_{n} = \frac{1}{5} \int_{5}^{15} f(x) \cos \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \cos \frac{n\pi x}{5} dx = 0,$$

$$b_{n} = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = (-1)^{n} \frac{10}{n\pi},$$

$$M = \frac{1}{5} \int_{5}^{15} f(x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_{5}^{15} (10 - x) \sin \frac{n\pi x}{5} dx = \frac{1}{5} \int_$$

毛化:	

