2009-2010 学年第二学期工科 高等数学 (2-2) 期中试题

一、填空题 $(5 \times 6 \% = 30 \%)$

- 1. 向量 $\vec{a} = -4\vec{i} + 3\vec{j} + 8\vec{k}$,向量 \vec{b} 的三个方向角均相等且为锐角,则 $\Pr \vec{j}_{\vec{b}}\vec{a} = \underline{\hspace{1cm}}$.
- 2. 曲线 $\begin{cases} x^2 + z^2 4z = 0 \\ y = 0 \end{cases}$ 绕 z 轴旋转所得的旋转曲面的方程是______.
- 3. 设函数 z = f(u,v) 有连续的二阶偏导数,其中 $u = x^2 + y^2, v = xy$,则 $\frac{\partial^2 z}{\partial x \partial y}$
- 4. 函数 $u = \ln \sqrt{x^2 + y^2 + z^2}$ 在 (1, 2, -2) 处的最大变化率是______,对应方向的方向余弦是_______.
- 5. 改变二次积分 $\int_0^1 dy \int_0^{\sqrt{1-y}} f(x,y) dx$ 的积分次序得_______.
- 二、选择题(4×4分=16分)
- 1. 设直线 L: $\begin{cases} x+3y+2z+1=0\\ 2x-y-10z+3=0 \end{cases}$, 平面 $\pi:4x-2y+z-2=0$,则直线 L ()
- (A) 垂直于平面 π ; (B) 在平面 π 上; (C) 平行于平面 π ; (D) 与平面 π 斜交.
- 2. 函数 f(x,y)在点 (x_0,y_0) 处偏导数存在是 f(x,y) 在该点可微的(
 - (A) 充分非必要条件; (B) 必要非充分条件; (C) 充要条件; (D) 非充分非必要条件.
- 3. 设 f(x) 是连续的奇函数, g(x) 是连续的偶函数,区域 $D = \{(x,y) | 0 \le x \le 1, -\sqrt{x} \le y \le \sqrt{x}\}$,则下列结论正确的是(
 - (A) $\iint\limits_{D} f(y)g(x)dxdy = 0;$ (B) $\iint\limits_{D} f(x)g(y)dxdy = 0;$
 - (C) $\iint_D [f(x) + g(y)] dx dy = 0$; (D) $\iint_D [f(y) + g(x)] dx dy = 0$.

1

- 4. 下列说法正确的是 ()
 - (A) 两向量 \vec{a} 与 \vec{b} 平行的充要条件是存在唯一的实数 λ , 使得 \vec{a} = $\lambda \vec{b}$;
- (B) 二元函数 z = f(x, y) 的两个二阶偏导数 $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 z}{\partial y^2}$ 在区域 D 内连续,则在该区域内两个二阶混合偏导必相等;

- (C) 二元函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的充分条件;
- (D) 二元函数 z = f(x, y) 的两个偏导数在点 (x_0, y_0) 处连续是函数在该点可微的必要条件.
- 三、计算题 (6+18+9+9=42 分)
- 1. 求直线 $\begin{cases} 2x 4y + z = 0 \\ 3x y 2z 9 = 0 \end{cases}$ 在平面 4x y + z = 1 内的投影直线的方程. (6 分)

- 2. $(2+6+10=18\, 分)$ 设 Γ 为空间曲线 $\begin{cases} z=x^2+y^2 \\ x+y+2z-2=0 \end{cases}$ 求 (1) Γ 在 xoy 平面内的投影曲线;
 - (2) Γ 在点(-1,-1,2)处切线方程与法平面方程;(3) 原点到 Γ 的最长和最短距离.

3. 计算 $\iint_{D} \frac{x+y}{x^2+y^2} dxdy$, $D: x^2+y^2 \le 1$ 且 $x+y \ge 1$. (9分)

4. 计算由 $z = \sqrt{2 - x^2 - y^2}$ 和 $z = x^2 + y^2$ 围成的空间体的体积. (9分)

四、证明题 (6+6=12分)

1. 设
$$2\sin(x+2y-3z) = x+2y-3z$$
, 证明: $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 1$.

2. 设
$$\Omega(t)$$
: $x^2 + y^2 + z^2 \le t^2$, $t > 0$, $F(t) = \iint_{\Omega(t)} f(x^2 + y^2 + z^2) dx dy dz$, 其中 f 为连续函数,
$$f(1) = 1$$
,证明: $F'(1) = 4\pi$.