Corrigé - Colle 8 (Sujet 1)

BCPST1B Année 2021-2022

23 novembre 2021

Exercice 1. Résoudre l'équation

$$4iz^{3} + 2(1+3i)z^{2} - (5+4i)z + 3(1-7i) = 0,$$

sachant qu'elle admet une racine réelle.

Solution de l'exercice 1. Soit x une racine réelle, i.e.

$$4ix^3 + 2(1+3i)x^2 - (5+4i)x + 3(1-7i) = 0.$$

Les parties réelle et imaginaire du membre de gauche doivent être nulles. Ainsi,

$$2x^2 - 5x + 3 = 0$$
 et $4x^3 + 6x^2 - 4x - 21 = 0$.

Il est facile de résoudre la première équation et de vérifier si on obtient une racine de l'autre équation. On trouve que $\frac{3}{2}$ est racine. On factorise alors le polynôme par $z-\frac{3}{2}$, et on trouve (par exemple en procédant par identification) :

$$4iz^{3} + 2(1+3i)z^{2} - (5+4i)z + 3(1-7i) = \left(z - \frac{3}{2}\right)(4iz^{2} + 2(1+6i)z + 2(-1+7i)).$$

Reste à résoudre l'équation

$$4iz^2 + 2(1+6i)z + 2(-1+7i) = 0$$

dont les solutions sont $-2 + \frac{3}{2}i$ et -1 - i.

Exercice 2. On considère la suite (u_n) définie par $u_0 = 2$ et $u_{n+1} = u_n^2$ pour tout $n \in \mathbb{N}$.

- 1. Écrire un programme Python calculant u_n pour $n \in \mathbb{N}$.
- 2. Étant donné un nombre M, écrire un programme Python renvoyant le premier entier n tel que $u_n > M$.

Solution de l'exercice 2. 1. On a

Algorithme 1 : Calcul de u_n

Entrées : Un entier n

Sorties: u_n .

- $u = u_0$;
- 2 pour k de 0 a n faire
- $u = u^2$
- 4 fin
- 5 retourner u

2. On a

$\overline{\textbf{Algorithme 2 : Premier rang pour}}$ lequel u_n dépasse M

Entrées : Un nombre M

Sorties: n le premier rang tel que $u_n > M$.

- $u = u_0$;
- n = 0;
- 3 tant que $u \leqslant M$ faire
- 4 | $u = u^2$;
- $5 \mid n = n + 1;$
- 6 fin
- 7 retourner n

Exercice 3. Soient $a, b \in]0, \pi[$. Écrire sous forme exponentielle le nombre complexe $z = \frac{1 + e^{ia}}{1 + e^{ib}}$.

Solution de l'exercice 3. On a

$$z = \frac{\left(e^{-\frac{ia}{2}} + e^{\frac{ia}{2}}\right)e^{\frac{ia}{2}}}{\left(e^{-\frac{ib}{2}} + e^{\frac{ib}{2}}\right)e^{\frac{ib}{2}}} = \frac{\cos\left(\frac{a}{2}\right)e^{\frac{ia}{2}}}{\cos\left(\frac{b}{2}\right)e^{\frac{ib}{2}}} = \frac{\cos\left(\frac{a}{2}\right)}{\cos\left(\frac{b}{2}\right)}e^{\frac{i(a-b)}{2}}.$$

De plus, $\cos\left(\frac{a}{2}\right) > 0$ et $\cos\left(\frac{b}{2}\right) > 0$ car $a, b \in]0, \pi[$ et $-\frac{\pi}{2} < \frac{a-b}{2} < \frac{\pi}{2}$ et on a donc bien obtenu l'écriture trigonométrique du complexe.

Exercice 4. On munit le plan d'un repère orthonormé direct $(0, \overrightarrow{u}, \overrightarrow{v})$.

1. Déterminer l'ensemble des points M dont l'affixe z vérifie la relation

$$\arg\left(\frac{z}{1+i}\right) = \frac{\pi}{2} \quad [2\pi].$$

2. Déterminer l'ensemble des points M dont l'affixe z vérifie la relation

$$|(1+i)z - 2i| = 2.$$

Solution de l'exercice 4. 1. On a

$$\arg\left(\frac{z}{1+i}\right) = \arg(z) - \arg(1+i) \quad [2\pi] = \arg(z) - \frac{\pi}{4} \quad [2\pi].$$

Ainsi,

$$\operatorname{arg}\left(\frac{z}{1+i}\right) = \frac{\pi}{2} \quad [2\pi] \quad \Leftrightarrow \quad \operatorname{arg}(z) = \frac{3\pi}{4} \quad [\pi].$$

Soit B un point tel que $(\overrightarrow{u}, \overrightarrow{OB}) = \frac{3\pi}{4}$ (par exemple le point d'affixe -1 + i. Alors l'ensemble recherché est la demi-droite [OB) privé du point O.

2. Factorisons par 1+i dans le module. On trouve :

$$|1+i| \left| z - \frac{2i}{1+i} \right| = 2.$$

Puisque $|1+i|=\sqrt{2}$ et $\frac{2i}{1+i}=1+i,$ ceci est équivalent à

$$|z - (1+i)| = \sqrt{2}.$$

Ainsi, l'ensemble des points M correspondants est le cercle de centre le point A(1,1) et de rayon $\sqrt{2}$.

Exercice 5. Trouver la plus grande valeur de $\sqrt[n]{n}$, $n \in \mathbb{N}^*$.

Solution de l'exercice 5. Pour x > 0, posons

$$f(x) = x^{1/x} = e^{\frac{\ln(x)}{x}}$$

de sorte que $\sqrt[n]{n} = f(n)$. f est dérivable sur l'intervalle $]0, +\infty[$ et on a

$$f'(x) = \frac{1 - \ln(x)}{x^2} e^{\frac{\ln(x)}{x}}.$$

Pour x > 0, f'(x) est du signe de $1 - \ln(x)$, donc f'(x) > 0 si $x \in]0, e[$ et f'(x) < 0 si $x \in]e, +\infty[$. Puisque 3 > e, on en déduit que la fonction f est strictement décroissante sur $[3, +\infty[$. En particulier, pour $n \ge 3$, on a $f(n) \ge f(3)$, et donc la plus grande valeur de $\sqrt[n]{n}$ est atteinte pour n = 2 ou pour n = 3. Comme $\sqrt{2} \simeq 1,41$ et $\sqrt[3]{3} \simeq 1,44$ la valeur maximale vaut $\sqrt[3]{3}$.