Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina II prova in itinere – 02 Luglio 2019

Cognome e nome:	(stampatello)
	(firma leggibile)

Matricola:

Esercizio 1*
(7 punti)

La società *Company* possiede la rete rappresentata nella figura sottostante, costituita da host fissi e mobili, switch, Access Point WiFi e router. Per poter indirizzare tutti gli utenti della rete, la società *Company* si rivolge ad un ISP, che dispone complessivamente dello spazio di indirizzamento CIDR **37.40.0.0/16**. L'ISP fornisce alla società *Company* <u>un blocco di dimensioni minime</u> sufficiente a soddisfarne le esigenze di indirizzamento, <u>a partire dagli indirizzi con numerazione più bassa</u>.

- a) Si indichino graficamente le sottoreti IP evidenziando nella figura sottostante i confini di ciascuna sottorete e si assegni a ciascuna sottorete una etichetta del tipo *NET x* (*x*=*A*, *B*, *C*, ...) seguendo l'ordine alfabetico e partendo dalle sottoreti con maggior numero di indirizzi IP usati (<u>Suggerimento</u>: fare attenzione alla presenza dei collegamenti punto-punto all'interno della rete della società *Company*).
- b) Per ciascuna sottorete si inserisca nella Tabella 1 sottostante il numero di indirizzi IP utilizzati, ivi compresi gli eventuali indirizzi IP speciali necessari nella sottorete (<u>Suggerimento</u>: fare attenzione alla presenza dei router).
- c) Si indichi di seguito il blocco CIDR assegnato alla società Company, usando la notazione decimale puntata.

37.40.0.0	,	/	21	

- d) Si effettui il piano di indirizzamento per la società *Company* usando la tecnica VLSM, **assegnando gli indirizzi alle sottoreti a partire da quelli più bassi del blocco ottenuto al punto c**). Per ciascuna sottorete, si inseriscano nella **Tabella 1** l'indirizzo di rete, la *netmask* (notazione /n) e l'indirizzo di *broadcast* diretto.
- e) Assegnare a ogni interfaccia dei router l'indirizzo più grande possibile compatibilmente con i vincoli sugli indirizzi speciali, compilando la **Tabella 2**. Si usi la notazione "*RnX*" (n=1,2,3,4,5; X=A, B, ...) per indicare l'interfaccia del router Rn verso la rete X.
- f) Scrivere nella **Tabella 3** la tabella di inoltro (**diretto e indiretto**) del router R2 <u>nel modo più compatto possibile e che minimizzi il numero di salti per raggiungere la rete di destinazione</u>. Si preveda l'utilizzo di un'opportuna rotta per indirizzare le (sotto)reti al di fuori della società *Company*.

^{*} NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

Tabella 1 (Usare la notazione decimale puntata)

Rete	Numero di indirizzi IP	Netmask	Indirizzo di rete	Ind. broadcast diretto
[NET x]	(incluso indirizzi speciali)	/n	munizzo di Tete	ind. broadcast directo
NET A	603 = 600 (host) + 1 (router) + 2 (speciali)	/22	37.40.0.0	37.40.3.255
NET B	275 = 270 (host) + 3 (router) + 2 (speciali)	/23	37.40.4.0	37.40.5.255
NET C	204 = 220 (host) + 2 (router) + 2 (speciali)	/24	37.40.6.0	37.40.6.255
NET D	123 = 120 (host) + 1 (router) + 2 (speciali)	/25	37.40.7.0	37.40.7.127
NET E	64 = 60 (host) + 2 (router) + 2 $(speciali)$	/26	37.40.7.128	37.40.7.191
NET F	16 = 13 (host) + 1 (router) + 2 (speciali)	/28	37.40.7.192	37.40.7.207
NET G	9 = 6 (host) + 1 (router) + 2 (speciali)	/28	37.40.7.208	37.40.7.223
NET H	4 = 2 (router) + 2 (speciali)	/30	37.40.7.224	37.40.7.227
NET I	4 = 2 (router) + 2 (speciali)	/30	37.40.7.228	37.40.7.231

Tabella 2 (Usare la notazione decimale puntata)

Router	Interfaccia [RnX]	Indirizzo IP e maschera /n
	R1B	37.40.5.254/23
R1	R1H	37.40.7.226/30
	R1I	37.40.7.230/30
R2	R2B	37.40.5.253/23
K2	R2E	37.40.7.190/26
	R3B	37.40.5.252/23
R3	R3E	37.40.7.189/26
K3	R3F	37.40.7.206/28
	R3G	37.40.7.222/28
	R4C	37.40.6.254/24
R4	R4D	37.40.7.126/25
	R4H	37.40.7.225/30
R5	R5A	37.40.3.254/22
	R5C	37.40.6.253/24
	R5I	37.40.7.229/30

Tabella 3 (Usare la notazione decimale puntata)

Tabella di Routing di R2

Reti [NET x, NET y, NET z]	Indirizzo IP del blocco CIDR	Indirizzo IP del next-hop
NET B	37.40.4.0/23	direct
NET E	37.40.7.128/26	direct
NET F, G	37.40.7.192/27	37.40.7.189 (R3E)
default	0.0.0.0/0	37.40.5.254 (R1B)

Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina II prova in itinere – 02 Luglio 2019

Cognome e nome: (stampatello) (firma leggibile)

Matricola:

SOLUZIONE

37.40.00000xxx.xxxxxxxx/21

Esercizio 2

(6 punti)

Si consideri il grafo in figura, che rappresenta una rete costituita da 8 router ed i costi dei relativi collegamenti.

- a) Si trovi l'albero dei cammini minimi (MST) avente come **radice il nodo B** usando l'algoritmo di *Dijkstra*, riportando nella tabella sottostante ad ogni passo e per ogni nodo *x* i valori *Dx*, *px* (*x*=*A*, *B*, ..., *H*), dove *px* è il nodo predecessore di *x* nel percorso e *Dx* è la distanza al passo corrente del nodo *x* dal nodo radice (nel caso vi sia la possibilità di aggiungere più nodi ad un determinato passo, aggiungere i nodi seguendo l'ordine alfabetico).
- b) Si disegni, nello spazio a fianco al grafo, il MST finale, indicando anche i costi dei collegamenti nel MST.
- A partire dal MST ottenuto e ipotizzando che gli stessi nodi siano le destinazioni da raggiungere, si chiede di indicare i *Distance Vector* (DV) inviati dal nodo B nei casi in cui: (1) si usi la modalità senza *Split Horizon*; (2) si usi la modalità *Split Horizon* base; (3) si usi la modalità *Split Horizon with Poisonous reverse* (attenzione: per ciascun DV inviato, si indichi il contenuto e il destinatario del DV).

Passo	Nodi nel MST	A	A	(C	Ι)	F	Ξ	I	7	(3	F	ł
		DA	ра	Dc	рс	D_D	ръ	DE	рE	D_{F}	pF	D _G	p _G	D _H	рн
0	В	1	В	10	В										
1	B, A	_	_	8	A					7	A	4	A	3	A
2	B, A, H	_	_	5	Н	8	Н			6	Н	4	A	_	_
3	, G	_	-	5	Н	8	Н			5	G	-	_	_	_
4	, C	-	-	-	-	7	C			5	G	- 1	_	-	-
5	, F	_	_	_	_	7	С	6	F	_	-	-	_	_	-
6	, E	_	_	_	_	7	C	_	-	-	-	_	-	_	-
7	, D	-	-	-	-	-	-	-	_	-	_	-	-	-	-

SOLUZIONE

a-b)

Senza Split Horizon:

DV B → A: A-1, B-0, C-5, D-7, E-6, F-5, G-4, H-3 DV B → C: A-1, B-0, C-5, D-7, E-6, F-5, G-4, H-3

Con Split Horizon base:

DV B → A: B-0

DV B → C: A-1, B-0, C-5, D-7, E-6, F-5, G-4, H-3

Con Split Horizon with Poisonous reverse:

DV B → A: A-inf, B-0, C-inf, D-inf, E-inf, F-inf, G-inf, H-inf

DV B → C: A-1, B-0, C-5, D-7, E-6, F-5, G-4, H-3

Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina II prova in itinere – 02 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 3

(5 punti)

Si consideri la configurazione di reti LAN mostrata in figura che comprende 6 LAN (A, B, C, D, E, F), 4 bridge (B_1, B_2, B_3, B_4) , un hub (H_5) e 11 host, i cui MAC address sono indicati in figura (P, Q, R, S, T, U, V, W, X, Y, Z). Lo spanning tree è evidenziato in figura con i collegamenti a tratto continuo; i collegamenti tratteggiati indicano le porte bloccate dei bridge in seguito all'esecuzione da parte dei Bridge dello Spanning Tree Protocol.

- a) Si vuole individuare lo stato della tabella di inoltro di tutti i dispositivi di interconnessione dotati di tabella di inoltro (omettendo il campo età), ipotizzando che tutte le tabelle di inoltro siano inizialmente vuote e che siano state trasmesse con successo nell'ordine solo 7 trame con le seguenti coppie MAC sorgente MAC destinazione (SA-DA): P-U, R-S, U-S, S-U, V-Z, W-U, T-V. Per ogni riga dove è specificata la coppia SA-DA trasmessa, riportare nella Tabella 1 il contenuto delle voci delle tabelle di inoltro che vengono a riempirsi.
- b) Si consideri uno stato di rete in cui i terminali S, T, W siano stati spostati connettendoli alle reti A, F, e C, rispettivamente. Determinare il nuovo stato delle tabelle di inoltro ipotizzando che siano state trasmesse nell'ordine le altre 4 trame Z-W, X-S, S-Z, T-W. Per ognuna di queste trame, utilizzando la **Tabella 2**, si riempiano le voci delle tabelle di inoltro **indicando esplicitamente con un asterisco** (*) **quali delle voci già presenti sono state variate in seguito allo scambio delle nuove trame**.
- Si specifichino quali delle trame di cui al punto b) vengono eventualmente perse per mancato aggiornamento delle tabelle di inoltro.

a) Tabella 1z

ID	В	B_1 B_2 B_3		B_2		3	E	B ₄	
P-U	P	1	P	1	P	2	P	2	
R-S	R	1	R	2	R	1	R	1	
U-S	U	1	U	2	U	2	U	1	
S-U	S	1	-	-	S	1	S	1	
V-Z	V	3	V	2	V	1	V	1	
W-U	-	-	W	1	W	2	W	2	
T-V	T	1	-	-	T	2	T	1	

b) Tabella 2

ID	В	1	B_2		\mathbf{B}_3		E	84	
Z-W	-	-	Z	2	-	-	Z	2	
X-S	X	1	X	1	X	2	X	2	
S-Z	-	-	S	1	-	-	S(*)	1 → 2	
T-W	-	-	T	2	-	-	T(*)	1 → 2	

(*) voci delle tabelle di inoltro modificate rispetto al contenuto precedente

c)	Trame Perse	(SA-DA)	:Z-W; T-W
----	-------------	---------	-----------

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

II prova in itinere – 02 Luglio 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 4 - Domande

(9 punti)

- a) Si consideri la trasmissione di un *datagram* IP avente campo dati (payload) di P = 9000 byte, che deve essere frammentato per essere trasferito attraverso una rete Ethernet con MTU = 1500 byte. Assumendo che tutti i frammenti in questione siano datagrammi IP in cui l'header abbia lunghezza minima (senza campi opzionali),
 - si indichi il numero N di datagram IP risultanti in seguito alla necessaria operazione di frammentazione;
 - si indichi per ciascun frammento il valore dei campi *Total length* (TL_i), *More-fragment-flag* (MF_i), essendo i=1, ..., N il pedice utilizzato per riferirsi al frammento i-esimo;
 - si esprima in forma parametrica, in funzione dell'indice *i* e degli altri parametri del problema, il valore del campo *Fragment offset* (OFF_i) del generico frammento *i*-esimo e si calcoli il valore numerico di OFF_i per tutti i frammenti *i*=1, ..., *N*.

(3 punti)

SOLUZIONE

• MTU = 1500 byte, header-IP = 20 byte \rightarrow ciascun datagram può contenere al massimo p = 1500-20 = 1480 byte

Numero di frammenti:
$$N = \left[\frac{P}{p}\right] = \left[\frac{9000}{1480}\right] = 7$$

• Campi TL e MF:

Frammenti i=1, 2, ..., 6: $TL_i = 1500$; $MF_i = 1$;

Frammento i=7: $TL_7 = 9000 - 6*1480 + 20 = 140$; $MF_7 = 0$;

• Campi OFF:

```
OFF<sub>i</sub> = 0 (per i=1);
OFF<sub>i</sub> = OFF<sub>(i-1)</sub> + (TL<sub>(i-1)</sub> – H)/8 (per i=2, ..., N), essendo H=20 la lunghezza dell'header

\rightarrow OFF<sub>2</sub> = 185; OFF<sub>3</sub> = 370; OFF<sub>4</sub> = 555; OFF<sub>5</sub> = 740; OFF<sub>6</sub> = 925; OFF<sub>7</sub> = 1110
```

- b) Indicare se le seguenti osservazioni sono <u>vere</u> o <u>false</u> motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE
- 1. I Link State Packet (LSP) sono inviati da un router solo ai suoi primi vicini.
- 2. Il protocollo CSMA è sempre più efficiente del protocollo ALOHA.
- 3. Nelle LAN completamente commutate (fully switched) e full duplex collisioni tra trasmissioni non sono possibili

(3 punti)

SOLUZIONE

1-FALSO. Broadcast globale

2-FALSO. Dipende da T, \tau

3-VERO

La rete domestica mostrata in figura è collegata ad Internet tramite un collegamento ad un provider. Il router R utilizza il meccanismo di *Network Address and Port Translation (NAPT o PAT)* per tradurre gli indirizzi privati della rete domestica nell'unico indirizzo pubblico fornito dal provider ed indicato in figura. Il client A ha un pacchetto IP da inviare al server 20.20.130.2. Supponendo che il client A conosca l'indirizzo IP privato del router R e abbia la tabella di ARP vuota, indicare tutti i messaggi/pacchetti che il client A invia e riceve sulla rete fino a che il pacchetto IP giunge al router R, specificando il tipo di messaggio (protocollo) e gli indirizzi a livello 2 e 3 delle trame/pacchetti.

Indicare infine, gli indirizzi IP di sorgente e destinazione del pacchetto IP inoltrato dal router R verso la destinazione finale.

SOLUZIONE

ARP Request da A MAC-sorgente: MAC-A MAC-destinazione: broadcast

ARP Reply da R a A MAC-sorgente: MAC-R MAC-destinazione: MAC-A

Pacchetto IP da A

IP-sorgente: 192.128.1.10 IP-Destinazione: 20.20.130.2 MAC-sorgente: MAC-A MAC-destinazione: MAC-R

Pacchetto IP da R a Internet IP-sorgente: 2.15.121.34 IP-Destinazione: 20.20.130.2 MAC-sorgente: MAC-R

MAC-destinazione: MAC-next hop