Elaborato Calcolo Numerico

Alessio Santoro (7029440) - Bro aggiungiti anche te ${\rm A.A.\ 2022/2023}$

Nota: Per gli esercizi che prevedono delle *funcion* Matlab, si specifica nella relativa risposta al quesito i file tra gli alleagti a cui essa si riferisce.

1

Si considera lo sviluppo delle funzioni f(x-h), f(x+h), f(x+2h), f(x+3h):

$$\begin{split} f(x-h) &= f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5) \\ f(x+h) &= f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5) \\ f(x+2h) &= f(x) + 2hf'(x) + \frac{4h^2}{2}f''(x) + \frac{8h^3}{6}f^{(3)}(x) + \frac{16h^4}{24}f^{(4)}(x) + O(h^5) \\ f(x+3h) &= f(x) + 3hf'(x) + \frac{9h^2}{2}f''(x) + \frac{27h^3}{6}f^{(3)}(x) + \frac{81h^4}{24}f^{(4)}(x) + O(h^5) \end{split}$$

Si sostiuiscono le espressioni così trovate nella parte sinistra dell'equaziome iniziale e si ottiene la seguente espressione:

$$-\frac{1}{4}\left[f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$-\frac{5}{6}\left[f(x)\right] +$$

$$+\frac{3}{2}\left[f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f^{(3)}(x) + \frac{h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$-\frac{1}{2}\left[f(x) + 2hf'(x) + \frac{4h^2}{2}f''(x) + \frac{8h^3}{6}f^{(3)}(x) + \frac{16h^4}{24}f^{(4)}(x) + O(h^5)\right] +$$

$$+\frac{1}{12}\left[f(x) + 3hf'(x) + \frac{9h^2}{2}f''(x) + \frac{27h^3}{6}f^{(3)}(x) + \frac{81h^4}{24}f^{(4)}(x) + O(h^5)\right]$$

Si procede a moltiplicare i coefficienti di ogni espressione e poi raccogliere i termini che contengono le derivate dello stesso ordine, una volta raccolti i temrini assumono i seguenti valori che, stando all'equazione iniziale dovranno poi essere

sommati:

$$f(x)\left[-\frac{1}{4} - \frac{5}{6} + \frac{3}{2} - \frac{1}{2} + \frac{1}{12}\right] = 0\tag{1}$$

$$f'(x) \cdot h \left[\frac{1}{4} + \frac{3}{2} - \frac{1}{2} 2 + \frac{1}{12} 3 \right] = hf'(x)$$
 (2)

$$f''(x) \cdot \frac{h^2}{2} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}4 + \frac{1}{12}9 \right] = 0 \tag{3}$$

$$f^{(3)}(x) \cdot \frac{h^3}{6} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}8 + \frac{1}{12}27 \right] = 0 \tag{4}$$

$$f^{(4)}(x) \cdot \frac{h^4}{24} \left[-\frac{1}{4} + \frac{3}{2} - \frac{1}{2}16 + \frac{1}{12}81 \right] = 0$$
 (5)

Dalle espressioni (1)...(5) e dalle proprietà degli "O-grande" di moltiplicazione per una costante segue l'asserto.

$\mathbf{2}$

La doppia precisione dello standard IEEE 754 è una rappresentazione in base binaria, in forma normalizzata (1.f) che approssima per arrotondamento e occupa 64 bit, di cui 52 dedicati alla frazione (53 alla mantissa).

Si può dunque ottenere il valore della precisione di macchina (u) dalla seguente espressione, dove: b=2 rappresenta la base, e m=53 la mantissa:

$$u = \frac{1}{2}b^{1-m} = 2^{-53}$$

Invece eps è definito dalla stessa funzione help di Matlab come la distanza tra 1.0 e il maggior valore a doppia precisione successivo disponibile, ovvero 2^{-52} . Si osserva infatti che, considerato il valore $x=1+u=1+2^{-53}\neq 1$ e sia fl la funzione di floating, allora vale che fl(x)=1, poichè $u=2^{-53}<2^{-52}=$ eps. Vi è dunque un errore di rappresentazione del valore x (ε_x), determinato dalla seguente espressione:

$$\varepsilon_x = \frac{|x - fl(x)|}{|x|} = \frac{|1 + 2^{-53} - 1|}{|1 + 2^{-53}|} = \frac{|2^{-53}|}{|1 + 2^{-53}|} < |2^{-53}| = u$$

3

La cancellazione numerica è quel fenomeno in cui, sommando in aritmetica finita due numeri quasi opposti si verifica la perdita di cifre significative. Questo è dovuto all'espressione del numero di condizionamento della somma in aritmetica finita (k) che per due valori $x \in y$ è dato da:

$$k = \frac{|x| + |y|}{|x + y|}$$

Infatti, se $x \to -y$ allora $k \to \infty$ e la somma tra x e y risulta mal condizionata.

Sia $x^* \in \mathbb{R}$ il valore di cui si ricerca la radice sesta. Per calcolarlo si definisce una funzione f(x) come segue:

$$f(x) = x^6 - x^*$$

La cui derivata è:

$$f'(x) = 6x^5$$

La funzione f(x) si annulla solo nella radice sesta di x^* , quindi avendo un'approsimazione iniziale x_0 si può applicare il metodo di Newton alla funzione f(x) per ricercarne una radice che coinciderà con il valore cercato:

$$x_{i+1} = x_i + \frac{f(x_i)}{f'(x_i)} = x_i - \frac{x_i^6 - x^*}{6x_i^5} = \frac{1}{6} \left[5x_i + \frac{x^*}{x_i} \right]$$

La function che implementa il metodo presentato è contenuta nel file radice.m:

```
function root = radice(x)
%
%
    root = radice(x)
%
%
    Questa funzione calcola la radice sesta di un valore non negativo
%
    attraverso il metodo iterativo di Newton utilizzando solo operazioni elementari
%
%
    Input:
        x: valore di cui si vuole calcolare la radice sesta
%
    Output:
        root; risultato del calcolo
if(x<0), error("Value x must be not negative"); end
if(x==0)
    root = 0;
    return;
end
root = x;
er = 1;
while(er \geq eps*(1+abs(x)))
    xi = (5*root+x/root^5)/6;
    er = abs(root - xi);
    root = xi;
end
return;
end
```

I dati sul confronto tra il risultato offerto dalla funzione e il valore x(1/6) sono contentuti nel file $4_table.txt$:

x	radice(x)	x^(1/6)	errore
1e-10	0.021544	0.021544	3.4694e-18
1.1288e-09	0.032268	0.032268	6.9389e-18
1.2743e-08	0.048329	0.048329	6.9389e-18
1.4384e-07	0.072385	0.072385	1.3878e-17
1.6238e-06	0.10841	0.10841	4.1633e-17
1.833e-05	0.16238	0.16238	0
0.00020691	0.2432	0.2432	2.7756e-17
0.0023357	0.36425	0.36425	5.5511e-17
0.026367	0.54556	0.54556	0
0.29764	0.81711	0.81711	1.1102e-16
3.3598	1.2238	1.2238	2.2204e-16
37.927	1.833	1.833	0
428.13	2.7453	2.7453	4.4409e-16
4832.9	4.1118	4.1118	8.8818e-16
54556	6.1585	6.1585	0
6.1585e+05	9.2239	9.2239	1.7764e-15
6.9519e+06	13.815	13.815	1.7764e-15
7.8476e+07	20.691	20.691	3.5527e-15
8.8587e+08	30.99	30.99	3.5527e-15
1e+10	46.416	46.416	7.1054e-15

5

Il seguente testo è cotnenuto nel file ${\tt newtonMethod.m}$ e rappresenta il metodo di Newton:

```
function [x,n] = newtonMethod(f,df, x0, tol)
%
    x = newtonMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo di Newton
%
%
%
        f: funzione di cui si ricercano le radici
%
        df: derivata della funzione f
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
    Output:
%
        x: approssimazione della radice di f
%
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
```

```
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0- fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx==0
        error("Value of derivative function is 0, invalid first approximation");
    end
    n = n+1;
    x = x0 - fx/dfx; %calcolo effettivo
end
return
end
Da qui in poi viene presentato il contenuto del file secantsMethod.m che rapp-
resenta il metodo delle secanti:
function [x,i] = secantsMethod(f, x0, x1, tol)
%
    x = secantsMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo delle secanti
%
%
    Input:
%
        f: funzione di cui si ricercano gli 0
%
        x0: prima approssimazione iniziale della radice
%
        x1: seconda approssimazione iniziale della radice
        tol: errore assoluto ammissibile
%
%
    Output:
%
        x: approssimazione della radice di f
        i: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 4, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
fx0 = feval(f,x0);
fx1= feval(f,x1);
```

Nel file 6_result.txt è contenuta la tabella dei risultati delle funzioni precedentemente mostrate:

Tolleranza	Ris. Newton	Iterazoni New	vton Ris. secanti	Iterazioni secanti
0.001	0.7390	9 8	0.739	1 4
1e-06	0.7390	9 9	0.7390	9 6
1e-09	0.7390	9 10	0.7390	9 7
1e-12	0.7390	9 10	0.7390	9 7

Per entrambi i metodi, la parte più costosa computazionalmente è la valutazione funzionale, dato che tutte le altre operazioni che vengono svolte sono operazioni elementari.

Il metodo di Newton esegue due valutazioni in ogni iterazione.

Sia n il numero di iterazioni, il costo computazionale del metodo di Newton è dato da 2(n+1).

Il metodo delle secanti esegue due valutazioni iniziali e poi una per ogni iterazione, quindi il suo costo computazionale per n iterazioni è dato da n+2.

Tolleranza	Iterazioni Newton	Costo Newton	Iterazioni secanti	Costo secanti
10^{-3}	8	16	4	6
10^{-6}	9	18	6	8
10^{-9}	10	20	6	8
10^{-12}	10	20	7	9

La seguente tabella fornisce i risultati dell'utilizzo delle funzioni precedenti per calcolare la radice della funzione $f(x) = [x - \cos(x)]^5$:

tolleranza	Newton ris.	Newton iter.	Secant ris.	Secant iter.
10e-3	0.74512	18	0.73015	26
10e-6	0.73909	49	0.73908	70
10e-9	0.73909	80	0.73909	115
10e-12	0.73909	111	0.73909	159

Dopo aver sviluppato la function modifiedNewtonMethod.m si sono riscontrati i seguenti risultati:

tolleranza	risultato Newton modificato	numero di iterazioni
1e-3	0.73909	22
1e-6	0.73909	23
1e-9	0.73909	24
1e-12	0.73909	24

Come atteso, i metodi di Newton e delle secanti sono più lenti a causa del metodo di Newton modificato, a causa della natura multipla della radice. Infatti il metodo di Newton e quello delle secanti hanno convergenza quadratica nel caso di radici a molteplicità 1, ma solo lineare nel caso di radici multiple. La modifica che abbiamo fatto, ovvero $x_{i+1} = x_i - m \cdot \frac{f(x_i)}{f'(x_i)}$, nonostante richieda che la molteplicità m della radice sia nota, ripristina la convergenza quadratica del metodo di Newton.

I rislutati sono contentuti nel file table_7.txt e si mostra di seguito il codice della funztion del metodo di Newton modificato:

```
function [x,n] = modifiedNewtonMethod(f,df, m, x0, tol)
%
%
    x = newtonMethod(f,df,x0,tol, itmax)
%
%
    Ricerca la radice di una funzione di cui è nota la derivata a partire
%
    da un approssimazione iniziale mediante il metodo di Newton
%
%
    Input:
%
        f: funzione di cui si ricercano le radici
%
        df: derivata della funzione f
%
        m: molteplicità (nota) della radice
%
        x0: approssimazione iniziale della radice
%
        tol: errore assoluto ammissibile
%
    Output:
%
        x: approssimazione della radice di f
%
        n: numero di iterazioni eseguite
%controllo valori input
if nargin ~= 5, error("Missing arguments"); end
if tol<0, error("Invalid arguments: tolerance must be non negative"); end
```

```
x = x0;
fx = feval(f,x);
dfx = feval(f,x);
x = x0- m*fx/dfx;
n = 1;
while abs(x-x0) > tol*(1 + abs(x0))
    x0 = x;
    fx = feval(f,x0);
    dfx = feval(df, x0);
    if dfx==0
        error("Value of derivative function is 0, invalid first approximation");
    \quad \text{end} \quad
    n = n+1;
    x = x0 - m*fx/dfx; %calcolo effettivo
end
return
end
```

Il codice della function è contenuto nel file mialu.m:

```
function x = mialu(A,b)
% x = mialu(A,b)
% presa in input una matrice ed un vettore calcola la soluzione del
% corrispondente sistema lineare utilizzando il metodo di fattorizzazione
% LU con pivoting parziale
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
% Output:
% x = soluzione del sistema lineare
[m,n] = size(A);
if m = n
    error("La matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
        "non è coerente con quella della matrice");
```

```
end
p = (1:n).;
for i = 1:n
    [mi, ki] = max(abs(A(i:n,i)));
    if mi == 0
        error("la matrice è singolare");
    end
    ki = ki+i-1;
    if ki>i
        A([i,ki],:) = A([ki,i],:);
        p([i,ki]) = p([ki,i]);
    A(i+1:n,i) = A(i+1:n,i)/A(i,i);
    A(i+1:n,i+1:n) = A(i+1:n,i+1:n)-A(i+1:n,i)*A(i,i+1:n);
end
x = b(p);
for i=1:n
    x(i+1:n) = x(i+1:n)-A(i+1:n,i)*x(i);
end
for i=n:-1:1
    x(i) = x(i)/A(i,i);
    x(1:i-1) = x(1:i-1)-A(1:i-1,i)*x(i);
end
return;
end
```

Un esempio di utilizzo è contenuto nel file di testo ex_8_mialu.txt:

9

Il codice della function è contenuto nel file mialdl.m:

```
function x = mialdl(A,b)
%
    x = mialdl(A,b)
%
% presa in input una matrice ed un vettore calcola la soluzione del
% corrispondente sistema lineare utilizzando il metodo di fattorizzazione
% LDL
%
% Input:
% A = matrice dei coefficienti
% b = vettore dei termini noti
%
% Output:
% x = soluzione del sistema lineare
%
[m,n] = size(A);
```

```
if m = n
    error("la matrice non è quadrata");
end
if n ~= length(b)
    error("la lunghezza del vettore dei termini noti " + ...
        "non è coerente con quella della matrice");
end
if A(1,1) <= 0
    error("la matrice non è sdp");
end
% la matrice non è memorizzata in forma compressa! (cit. libro)
A(2:n,1) = A(2:n,1)/A(1,1);
for i = 2:n
    v = (A(i,1:i-1).') .* diag(A(1:i-1,1:i-1));
    A(i,i) = A(i,i) - A(i,1:i-1)*v;
    if A(i,i) <= 0
        error("la matrice non è sdp");
    end
    A(i+1:n,i) = (A(i+1:n,i) - A(i+1:n,1:i-1) * v) / A(i,i);
end
x = b;
for i = 2:n
    x(i:n) = x(i:n) - A(i:n,i-1) * x(i-1);
end
x = x ./ diag(A);
for i = n-1:-1:1
    x(1:i) = x(1:i) - A(i+1,1:i) .* x(i+1);
end
end
Un esempio di utilizzo è contenuto nel file di testo 9_mialdl.txt:
% si genera una matice quadrata casuale
A = randi([-8,8],4)
A =
     0
           0
                 2
                      -3
                -2
    -1
           0
                      7
    -1
           5
                 5
                       6
    -3
           5
                 1
                       1
% si generano i valori di una diagonale
d = randi([5,30],4,1)
d =
    21
    20
    10
    12
```

```
\% si costruisce una matrice adeguata per la fattorizzazione LDL
A = tril(A,-1)+triu(A',1)+diag(d)
A =
    21
                -1
                      -3
          -1
    -1
          20
                5
                      5
    -1
           5
                10
                      1
    -3
           5
                 1
                      12
\% Si genera la soluzione, da confrontare dopo
x = randi([-8,8],4,1)
x =
     0
    -5
     6
    -5
% si calcolano i termini noti
b = A*x
b =
    14
   -95
    30
   -79
\% si usa la funzione per calcolare la soluzione
mialdl(A,b)
ans =
    0.0000
   -5.0000
    6.0000
   -5.0000
A = randi([-8,8],4)
A =
           7
                -4
    -4
           4
                -1
                      -5
```

-8

0

1

8

1

0 2

```
d = randi([5,30],4,1)
d =
   22
   15
   14
   30
A = tril(A,-1)+triu(A',1)+diag(d)
A =
   22
                    -8
         -4
              5
   -4
         15
               0
                    1
    5
         0
               14
                    1
   -8
          1
               1
                    30
x = randi([-8,8],4,1)
x =
   -8
    7
    7
    5
b = A*x
b =
  -209
  142
   63
  228
mialdl(A,b)
```

ans =

-8.0000 7.0000 7.0000 5.0000

La funzione è nel file functions/miaqr.m, mostrato di seguito insieme ad un esempio in cui viene applicato:

```
function [x,nr] = miaqr(A,b)
%
    [x, nr] = miaqr(A,b)
%
%
   Calcola la soluzione del sistema lineare sovradimensioanto Ax = b
%
   nel senso dei minimi quadrati e restituisce la norma del
%
   corrispondente vettore residuo
%
%
   Input:
        A: matrice dei coefficienti del sistema
%
%
       b: vettore dei termini noti
%
   Output:
        x: soluzione nel senso dei minimi quadrati
        nr: norma del vettore resiudo
%
[m,n] = size(A);
if(n>=m), errror("Il sistema non è sovradimensionato"); end
if(m~=length(b)), error("Le dimensioni della matrice e del vettore " + ...
        "non sono compatibili"); end
for i=1:n
    alfa = norm( A(i:m,i));
    if alfa==0,error("La matrice A non ha rango massimo");end
    if(A(i,i)>=0), alfa = -alfa; end
    v = A(i,i) - alfa;
    A(i,i) = alfa;
    A(i+1:m,i) = A(i+1:m,i)/v;
    beta = -v/alfa;
    A(i:m,i+1:n) = A(i:m,i+1:n)-(beta*[1;A(i+1:m,i)])*...
        ([1;A(i+1:m,i)]'*A(i:m,i+1:n));
end
for i=1:n
    v = [1; A(i+1:m,i)];
    beta = 2/(v'*v);
    b(i:end) = b(i:end) - (beta*(v'*b(i:end)))*v;
end
for i=n:-1:1
    b(i) = b(i)/A(i,i);
    b(1:i-1) = b(1:i-1)-A(1:i-1,i)*b(i);
end
x = b(1:n);
nr = norm(b(n+1:m));
return ;
end
>> A = randi([-20,20],7,4)
A =
```

```
6 -13
-6
              -1
13
     -2
         -5
              -3
-20
     2
          5
              -2
         11
              -8
-19
     -8
     10 -17
             0
-14
6
    -13
         18
              0
10
              13
     8
         11
```

>> b = randi([-20,20],7,1)

b =

12

6

-5

13 1

-6

18

>> [x,nr] = miaqr(A,b)

x =

0.5023

2.5325

1.1667

-2.1687

nr =

22.8572

>> A\b

ans =

0.5023

2.5325

1.1667

-2.1687

>> A = randi([-20,20],7,4)

A =

15 -11 -8 -16 2 14 17 -10

```
5 -13 -3 -4
4 -11 -13 4
              -10
-12
          17
     -14
              4
9
-8
    -11
           20
-1
     -3
          -3
```

>> b = randi([-20,20],7,1)

b =

-11

-16

-8 -7

-3

0 -17

>> [x,nr] = miaqr(A,b)

x =

-1.2544

0.2774

-0.6423

-0.2978

nr =

22.2472

>> A\b

ans =

-1.2544

0.2774

-0.6423

-0.2978

>>

Di seguito un esempio di applicazione di mialu per risolvere i sistemi generati da linsis:

```
[A1,A2,b1,b2]=linsis(5)
A1 =
    0.0659
             -0.4423
                        0.2073
                                  -0.5127
                                              0.3531
             -0.2493
    0.7016
                        -0.1158
                                   0.1664
                                             -0.0385
   -0.1391
             -0.4272
                        0.4168
                                   0.2575
                                             -0.0030
    0.2598
             -0.4140
                        -0.0020
                                  -0.2632
                                             -0.6674
    0.0654
             -0.2921
                        -0.6037
                                  -0.1323
                                              0.5153
A2 =
   -0.2172
             -0.0838
                        0.2868
                                  -0.3463
                                              0.3624
    0.3869
              0.1493
                        -0.0275
                                   0.3514
                                             -0.0281
             -0.3713
   -0.1833
                        0.4292
                                   0.2834
                                             -0.0016
             -0.0121
                                             -0.6569
   -0.0576
                        0.0871
                                  -0.0767
```

-0.5420

-0.0032

0.5225

- b1 =
 - -0.3287

-0.1544

-0.0139

- 0.4645
- 0.1050
- -1.0869
- -0.4475
- b2 =
 - 0.0019
 - 0.8320
 - 0.1565
 - -0.7163
 - -0.1910

mialu(A1,b1)

- ans =
 - 1.0000
 - 1.0000
 - 1.0000
 - 1.0000

1.0000

mialu(A2,b2)

ans =

1.0000

1.0000

1.0000

1.0000

1.0000

Il risltato sembra essere corretto, ma se si sottrae le soluzioni ad un vettore composto di soli 1, si può osservare l'errore nella risoluzione.

Nel sistema $A_1x=b_1$ l'errore è nell'ordine di 10^{-15} mentre nel secondo sistema $A_2x=b_2$ l'ordine di errore è di 10^{-6} .

L'errore molto maggiore nel secondo sistema è dovuto al mal condizionamento della matrice dei coefficienti.

mialu(A1,b1)-[1 1 1 1 1]'

ans =

1.0e-15 *

0 -0.1110 0 0 0.2220

mialu(A2,b2)-[1 1 1 1 1]'

ans =

1.0e-06 *

0.3523

-0.4462

-0.0989

-0.2071

-0.0116

>> cond(A1)

ans =

2.5000

>> cond(A2)

```
ans =
    1.0000e+10
>> cond(b1)
ans =
    1
>> cond(b2)
ans =
    1
>>
```

Similemente a quanto si è ottenuto per l'esercizio precedente, si può osservare come i risultati ottenuti dalla funzione miald1 siano accurati con un oridne di grandezza dell'errore di 10^{-15} per il primo sistema e 10^{-6} per il secondo. Anche in questo caso la differenza è dovuta alla differenza del condizionamento delle due matrici A_1 e A_2 .

```
[A1,A2,b1,b2] = linsis(5,1)
A1 =
    0.7625
              0.0003
                         0.1094
                                    0.0730
                                               0.1782
    0.0003
               0.7442
                                               0.1085
                         0.0084
                                    0.1772
               0.0084
                                              -0.1291
    0.1094
                         0.6419
                                    0.0332
    0.0730
               0.1772
                         0.0332
                                    0.8375
                                              -0.1198
    0.1782
               0.1085
                        -0.1291
                                   -0.1198
                                               0.8139
A2 =
    0.5197
              -0.2696
                         0.0716
                                   -0.1992
                                              -0.0102
   -0.2696
              0.4441
                        -0.0337
                                   -0.1254
                                              -0.1010
    0.0716
              -0.0337
                         0.6360
                                   -0.0092
                                              -0.1585
   -0.1992
             -0.1254
                        -0.0092
                                    0.5324
                                              -0.3310
   -0.0102
             -0.1010
                                   -0.3310
                                               0.6677
                        -0.1585
```

b1 =

1.1234

1.0385

```
0.6638
```

1.0011

0.8517

b2 =

0.1124

-0.0855

0.5063

-0.1323

0.0670

>> x1 = mialdl(A1,b1)

x1 =

1.0000

1.0000

1.0000

1.0000

1.0000

>> x2 = mialdl(A2,b2)

x2 =

1.0000

1.0000

1.0000

1.0000

1.0000

>> x1 - [1 1 1 1 1]'

ans =

1.0e-15 *

0

-0.4441

-0.1110

-0.1110 0

>> x2 - [1 1 1 1 1],

ans =

1.0e-06 *

```
0.3138
```

0.3488

0.0489

0.3518

0.2435

>>

13

Di seguito si mostra come sono stati assegnati i valori richiesti, le soluzioni trovate con la funzione \mathtt{miaqr} sono confrontate con il risultato dell'operatore \backslash .

```
>> A = [ 1 3 2; 3 5 4; 5 7 6; 3 6 4; 1 4 2 ];
>> b = [ 15 28 41 33 22 ]';
>> D = diag(1:5);
>> D1 = diag(pi*[1 1 1 1])
D1 =
                                         0
    3.1416
                    0
                              0
                                                   0
              3.1416
                              0
                                         0
                                                   0
         0
                         3.1416
                                         0
                                                   0
                    0
         0
                    0
                              0
                                   3.1416
                                                   0
         0
                    0
                              0
                                         0
                                              3.1416
>> [x,nr] = miaqr(A,b)
```

x =

3.0000

5.8000

-2.5000

nr =

1.2649

>> A\b

ans =

3.0000

5.8000

-2.5000

>> [x,nr] = miaqr(D*A,D*b)

```
x =
   -0.6026
    4.7017
    1.7584
nr =
    3.7352
>> (D*A)\(D*b)
ans =
   -0.6026
    4.7017
    1.7584
>> [x,nr] = miaqr(D1*A,D1*b)
x =
    3.0000
    5.8000
   -2.5000
nr =
    3.9738
>> (D1*A)\(D1*b)
ans =
    3.0000
    5.8000
   -2.5000
```

Si osserva come le soluzioni siano coerenti, ma la norma del vettore residuo aumenta, negli ultimi due sistemi è quasi il triplo che nel primo.

14

La funzione è contenuta nel file newton.m nella cartella 14.

```
function [x,nit] = newton(fun,jacobian,x0,tol,maxit)
%
```

```
%
    [x,nit] = newton(fun,jacobian,x0,tol,maxit)
%
%
    Utilizza il metodo di Newton per risolvere sistemi di equazioni
%
    nonlineari
%
%
    Input:
%
        fun: vettore delle funzioni del sistema
%
        jacobian: matrice jacobiana di fun
%
        x0: approssimazione iniziale
%
        tol: tolleranza aspettata
%
        maxit: numero massimo di iterazioni ammesso
%
    Output:
%
        x: approssimazione della funzione
%
        nit: numero delle iterazioni del metodo
if(nargin<4), tol = eps;</pre>
if(nargin<5), maxit = 1e3; end</pre>
if(tol<=0), error("La tolleranza deve essere positiva");</pre>
if(maxit<=0), error("Il numero di iterazioni deve essere positivo");end</pre>
x = x0;
nit = 0;
while(nit<maxit&&norm(x-x0)<=tol*(1+norm(x0)))</pre>
    x0 = x;
    fx0 = feval(fun,x0);
    jx0 = feval(jacobian,x0);
    x = x0 - fx0/jx0;
end
if(nit == maxit)
    disp("Il numero di iterazioni specificato non ha permesso " + ...
        "di raggiungere
                             la tolleranza desiderata");
end
return ;
end
15
16
function l = lagrange(x,y,xq)
% 1 = lagrange(x,y,xq)
%
%
    Implementa in modo vettoriale la forma di lagrange del polinomio
%
    interpolante di una funzione
%
```

y: valori della funzione sulle ascisse di interpolazione

x: ascisse di interpolazione

xq: punti in cui calcolare il polinomio

1: polinomio di lagrange calcolato

Input:

Output:

% %

%

%

%

%

```
n = length(x);
if n ~= length(y)
    error("il numero di punti sulle ascisse x non è coerente con" + ...
        " il numero di quelli sulle ordinate");
end
if n ~= length(unique(x))
    error("ad una stessa ascissa non possono corrispondere più punti")
end
1 = zeros(size(xq));
for k = 1:n
    Lkn = ones(size(xq));
    for j = 1:n
        if k = j
            Lkn = Lkn .* ((xq - x(j))/(x(k) - x(j)));
        end
    end
    l = l + y(k)*Lkn;
end
return;
end
17
function l = newton(x,y,xq)
    Implementa in modo vettoriale, la forma di Newton del polinomio
%
    interpolante una funzione
%
%
    Input:
%
        x: vettore contenente le ascisse di interpolazione
%
        y: valori assunti dalla funzione sulle ascisse di
%
            interpolazione
%
        xq: punti su cui si vuole calcolare la funzione
%
    Output:
%
        1: approsimazione dei valori della funzione secondo
%
            il polinomio interpolante
n = length(x);
if n ~= length(y)
    error("il numero di punti sulle ascisse x non è coerente con il numero" + ...
        " di quelli sulle ordinate");
end
if n ~= length(unique(x))
    error("ad una stessa ascissa non possono corrispondere più punti")
end
f = y; %differenze divise
for k = 1:n-1
    for r = n:-1:k+1
        f(r) = (f(r) - f(r-1)) ./ (x(r) - x(r-k));
```

```
end
end
l = ones(size(xq)) * f(n);
for k = n-1:-1:1
    l = 1 .* (xq - x(k)) + f(k);
end
end
18
function yy = hermite( xi, fi, f1i, xx )
    Implementa in modo vettoriale il polinomio interpolante di Hermite
%
%
   Input:
%
                vettore delle ascisse di interpolazione
        xi:
%
                valori assunti dalla funzione sulle ascisse
        fi:
%
                di interpolazione
%
        fii:
                valori assunti dalla derivata della funzione sulle ascisse
%
                di interpolazione
%
        xx:
                vettore di ascisse su cui si vuole calcolare il polinomio
%
    Output:
%
                valori assunti dal polinomio sui punti specificati
        yy:
n = length(xi);
if n ~= length(fi)
    error("il numero di punti sulle ascisse xi " + ...
        "non è coerente con il numero di quelli sulle ordinate fi");
end
if n ~= length(f1i)
    error("il numero di punti sulle ascisse xi non è coerente" + ...
        " con il numero di quelli sulle ordinate fi"); % ---
if n ~= length(unique(xi))
    error("le ascisse di interpolazione non sono tutte distinte");
end
x = repelem(xi, 2);
%differenze divise
f(1:2:2*n-1)=f1;
f(2:2:2*n) = f1i;
% algortimo 4.2 libro
n = length(f)/2-1;
for i = (2*n-1):-2:3
    f(i)=(f(i)-f(i-2))/(x(i)-x(i-1));
end
for j = 2:2*n-1
    for i = (2*n):-1:j+1
        f(i) = (f(i)-f(i-1))/(x(i)-x(i-j));
    end
end
```

```
%algoritmo di horner
n = length(f)-1;
yy = f(n+1)*ones(size(xx));
for i = n:-1:1
    yy = yy .* (xx-x(i))+f(i);
end
end
19
function x = chebyshev(n,a,b)
%
    Genera n+1 coordinate di Chebyschev nell'intervallo [a,b]
%
%
    Input:
%
        n: numero di coordinate da generare (n+1)
            estremo inferiore dell'intervallo
        a:
%
        b: estremo superiore dell'intervallpo
%
    Output:
%
       x: vettore contenente le coordinate
    error("il grado del polinomio deve essere maggiore di zero");
end
if a >= b
    error("l'estremo inferiore dell' intervallo non può essere " + ...
        "minore o coincidente con quello maggiore");
end
x = cos((2*(n:-1:0)+1)*pi./(2*(n+1)));
x = x * (b-a)/2 + (a+b)/2;
end
20
21
22
function yy = myspline(xi, fi, xx, type )
    Se type è uguale a 0 allora calcola la spline cubica interpolante
    naturale i punti (xi(i),fi(i)), mentre se type è diverso da O allora
%
    calcola quella not-a-knot (default)
%
    Input:
%
                vettore delle ascisse di interpolazione
        xi:
%
        fi:
                valori assunti dalla funzione nei rispettivi punti xi
%
                ascisse su cui deve essere calcolata la spline
%
                valore che stabilisce il tipo di spline da creare
       type:
```

```
%
    Output:
                valori assunti dalla spline nei rispettivi punti xx
if nargin < 3, error("argomenti essenziali assenti"); end
if nargin == 3, type = 1; end
if size(xi) ~= size(fi), error("Le quantità di dati forniti per " + ...
        "l'interpolazione non corrispondono"); end
if length(xi) ~= length(unique(xi)), error("Le ascisse di " + ...
        "interpolazione devono essere tutte distinte tra loro"); end
n = length(xi)-1;
h = zeros(1,n);
for i=1:n, h(i)=xi(i+1)-xi(i); end
phi = zeros(1,n);
xhi = zeros(1,n);
for i=1:n-1
    phi(i) = h(i)/(h(i)+h(i+1));
    xhi(i) = h(i+1)/(h(i)+h(i+1));
end
f = fi ; %differenze divise
for j = 1 : 2
    for i = n+1 : -1 : j +1
        f(i) = (f(i)-f(i-1))/(xi(i)-xi(i-j));
    end
end
f = f (3: n+1); % Calcolo le differenze divise
%definizione diagonali del sistema tridiagonale per trovare m0...mn
if type==0 %spline naturale
    a = 2*ones(n-1,1); %size n-1
    b = xhi(1:n-2);
                        % n-2
    c = phi(2:n-1);
                         % n-2
    d = 6*f;
else %spline not-a-knot
    a = [1 2-phi(1) 2*ones(n-3,1) 2-xhi(n-1) 1];%size 2+n-3+2=n+1
    b = [0 xhi(i)-phi(i) xhi(2:n-1)];
                                               % 2+n-2=n
    c = [phi(1:n-2) phi(n-1)-xhi(n-1) 0];
                                                % n-2+2 = n
    d = 6*[f(1) f f(end)];
end
%risoluzione sistema tridiagonale
dim = length(d);
m = zeros(dim, 1);
for i = 2:dim
    w = c(i-1)/a(i-1);
    a(i) = a(i)-w*b(i-1);
    d(i) = d(i)-w*d(i-1);
end
```

```
m(end) = d(end)/a(end);
for i = (dim-1):(-1):1
   m(i) = (d(i)-b(i)*m(i+1))/a(i);
end
if type == 0 %spline cubica
   m = [0 m, 0];
else % spline not-a-knot
   m(1) = m(1)-m(2)-m(3);
   m(n+1) = m(n+1)-m(n)-m(n-1);
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yy = zeros(length(xx),1);
for j = 1:length(xx)
   for i = 2:length(xi)
       if ((xx(j)>=xi(i-1) && xx(j)<=xi(i)) || xx(j)<xi(1))
           r = fi(i-1)-h(i-1)^2/6*m(i-1);
           q = (fi(i)-fi(i-1))/h(i-1)-h(i-1)/6*(m(i)-m(i-1));
           yy (j) =((xx(j)-xi(i-1))^3*m(i)+ ...
               (xi(i)-xx(j))^3*m(i-1))/(6*h(i-1))+...
               q*(xx(j)-xi(i-1))+...
               r;
           break
       end
   end
```

end