Processing KO data

Step 1. Data normalization

Input files (required): Example:

map of the KO combinations files/geneIndex.csv
map of gene indices to original gene name files/geneNames.csv

3 list of lower matrix NaN gene indices
4 list of upper matrix NaN gene indices
5 files/nan_lower_gene_index.csv
6 files/nan_upper_gene_index.csv

5 raw data file for each condition data/ 15C.csvand data/ No Treatment.csv

Script: 1_normalize_data.R

Libraries required: amap, gplots, extrafont, optparse

Usage:

Rscript 1_normalize_data.R -d [data directory path] -f [files directory path] -o [output directory path] -r [number of replicates] -w [number of wildtype matrix]

Example:

Rscript 1_normalize_data.R -d /Users/violahalder/Desktop/GitHub_GI_Analysis/data -f /Users/violahalder/Desktop/GitHub_GI_Analysis/files -o /Users/violahalder/Desktop/GitHub_GI_Analysis/output -r 3 -w 15

Expected output files: Example:

normalized data for each condition and replicate output/allData.csv

2 average normalized data output/avgData.csv

3 heatmap of average normalized data output/ 15C_ODfull.pdf & output/

No Treatment_ODfull.pdf

Step 2. EPS (Genetic Interaction score) calculation

Script (jupyer notebook): 2_calculate_genetic_interaction.ipynb Packages required: numpy, pandas

User-defined variables: Definition:

1 cdn which condition to process (15C or No Treatment)

2 num_reps number of replicates3 main_dir main directory path

Expected output file:

An Excel file per condition, with R+1 number of sheets, where R=number of replicates; last sheet is for average data.

Every sheet has the following columns: Gene_X, Gene_Y, Fitness_X, Fitness_XY, Fitness_YX, EPS_XY, EPS_YX

Average sheet has two additioinal columns - Average_Fitness_XY_Fitness_YX & Average_EPS_XY_EPS_YX

Example: 15C_fitness_and_eps.xlsx & No Treatment_fitness_and_eps.xlsx

Step 3. Run t-test to get p-values and check significant data for heatmaps

Script (jupyer notebook): 3_run_ttest.ipynb Packages required: numpy, pandas, scipy

	User-defined variables:	Definition:
1	cdn	which condition to process (15°C or No Treatment)
2	num_reps	number of replilcates
3	main_dir	main directory path
4	Pval_cutoff	Change between 0.05, 0.01, or 0.001 depending of level of
		significance wanted
5	Eps_cutoff_pos	positive interaction eps cutoff; update the value as needed
6	Eps_cutoff_neg	Negative interaction eps cutoff; update the value as needed

Expected output files:

- i. Excel files containing p-value data for the following comparisons:
 - a) experimental vs actual XY
 - b) experimental vs actual_YX
 - c) actual_XY vs actual_YX

experimental = Fitness_X * Fitness_Y

actual_XY = Fitness_XY

actual YX = Fitness YX

Examples:

output/cdn1_pvalue_exp_vs_actual_XY.csv output/cdn1_pvalue_exp_vs_actual_YX.csv output/cdn1_pvalue_actual_XY_vs_YX.csv

ii. Excel file containing compiled data of above files

Example: output/15C pvalue compiled.csv & No Treatment pvaluue compiled.csv

Step 4. Generate heatmaps

Script (jupyer notebook): 4_generate_fitness_GI_significant_heatmap.ipynb

Packages required: numpy, pandas, scipy, seaborn

	User-defined variables:	Definition:
1	cdn	which condition to process (15°C or No Treatment); can process both to generate hierarchical clustering
3	main_dir	main directory path

	Expected output files:	Example:
1	Fitness heatmap per	15C_Fitness_Score_heatmap.png & No
	condition	Treatment_Fitness_Score_heatmap.png
2	Genetic interaction	15C_Genetic_Interaction_heatmap.png & No
	heatmap per condition	Treatment_Genetic_Interaction_heatmap.png
3	Significant data	15C_Significant_data_heatmap.png & No
	heatmap per condition	Treatment_Significant_data_heatmap.png
4	All_condition fitness	All_cdn_Fitness_Score_clustermap.png
	hierarchical clustering	
5	All_condition genetic	All_cnd_Genetic_Interaction_clustermap.png
	interaction hierarchical	
	clustering	
6	Single deletion Fitness	Single_Deletion_Fitness_Score_heatmap.png
	score heatmap	