Intervalos de Confianza

Juan Sosa, PhD

Proporción poblacional

Modelo

$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{Ber}(\pi)$$

Intervalo de confianza (bilaterial)

$$\mathsf{IC}_{100(1-\alpha)\%}(\pi) = \hat{\pi} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}$$

Nota: Esta aproximación es apropiada para $n \geq 30$, $n\hat{\pi} \geq 5$ y $n(1-\hat{\pi}) \geq 5$.

Tamaño de muestra

$$n = \frac{(z_{1-\alpha/2})^2 \, \pi_0 (1 - \pi_0)}{ME^2}$$

donde π_0 es la proporción muestral de una de un estudio piloto (por ejemplo) y ME es el margen de error.

Media poblacional

Modelo

$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$$

Intervalo de confianza (bilaterial)

$$\mathsf{IC}_{100(1-\alpha)\%}(\mu) = \bar{x} \pm \mathsf{t}_{n-1,1-\alpha/2} \frac{s}{\sqrt{n}}$$

Nota: Para $n \geq 30$ se tiene que t $\approx N(0,1)$ y la población no tiene que ser Normal.

Tamaño de muestra

$$n = \frac{(z_{1-\alpha/2})^2 \, \sigma_0^2}{ME^2}$$

donde σ_0^2 es la varianza muestral de un estudio piloto (por ejemplo) y ME es el margen de error.

Varianza poblacional poblacional

Modelo

$$X_1, X_2, \dots, X_n \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mu, \sigma^2)$$

Intervalo de confianza (bilateral)

$$\mathsf{IC}_{100(1-\alpha)\%}\left(\sigma^{2}\right) = \left(\frac{(n-1)s^{2}}{\chi_{n-1,1-\alpha/2}^{2}}; \frac{(n-1)s^{2}}{\chi_{n-1,\alpha/2}^{2}}\right)$$

donde χ^2_{n-1} denota la distribución chi cuadrado con n-1 grados de libertad.

Diferencia de proporciones poblacional

Modelo

Poblaciones independientes:

$$X_1, X_2, \dots, X_{n_1} \overset{\text{iid}}{\sim} \mathsf{Ber}(\pi_1) \qquad Y_1, Y_2, \dots, Y_{n_2} \overset{\text{iid}}{\sim} \mathsf{Ber}(\pi_2)$$

Intervalo de confianza (bilateral)

$$\mathsf{IC}_{100(1-\alpha)\%}\left(\pi_{1}-\pi_{2}\right) = \hat{\pi}_{1} - \hat{\pi}_{2} \pm z_{1-\alpha/2} \sqrt{\frac{\hat{\pi}_{1}(1-\hat{\pi}_{1})}{n_{1}} + \frac{\hat{\pi}_{2}(1-\hat{\pi}_{2})}{n_{2}}}$$

Nota: Esta aproximación es apropiada para

$$n_1, n_2 \ge 30$$
 $n_1\hat{\pi}_1, n_1\hat{\pi}_2 \ge 5$ $n_1(1 - \hat{\pi}_1), n_2(1 - \hat{\pi}_2) \ge 5$

Diferencia de medias poblacional

Modelo

Poblaciones independientes:

$$X_1, X_2, \dots, X_{n_1} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2) \qquad Y_1, Y_2, \dots, Y_{n_2} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$$

Intervalo de confianza (bilateral) bajo homogenedidad ($\sigma_1^2 = \sigma_2^2$)

$$\mathsf{IC}_{100(1-\alpha)\%}\left(\mu_{1}-\mu_{2}\right) = \bar{x_{1}} - \bar{x}_{2} \pm t_{n_{1}+n_{2}-2,1-\alpha/2} \, s_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

donde

$$s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

es la varianza conjugada de las muestras.

Nota: Para $n \geq 30$ se tiene que t $pprox \mathsf{N}(0,1)$ y la población no tiene que ser Normal.

Diferencia de medias poblacional

Modelo

Poblaciones independientes:

$$X_1, X_2, \dots, X_{n_1} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2) \qquad Y_1, Y_2, \dots, Y_{n_2} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$$

Intervalo de confianza (bilateral) bajo heterogenedidad ($\sigma_1^2 \neq \sigma_2^2$)

$$\mathsf{IC}_{100(1-\alpha)\%}(\mu_1 - \mu_2) = \bar{x_1} - \bar{x}_2 \pm t_{\nu,1-\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

donde

$$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{1}{n_1 - 1} \left(\frac{s_1^2}{n_1}\right)^2 + \frac{1}{n_2 - 1} \left(\frac{s_2^2}{n_2}\right)^2}$$

corresponde a los grados de libertad.

Nota: Para $n \geq 30$ se tiene que t $pprox \mathsf{N}(0,1)$ y la población no tiene que ser Normal.

Cociente de varianzas poblacional

Modelo

Poblaciones independientes:

$$X_1, X_2, \dots, X_{n_1} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_1, \sigma_1^2) \qquad Y_1, Y_2, \dots, Y_{n_2} \overset{\text{iid}}{\sim} \mathsf{N}(\mu_2, \sigma_2^2)$$

Intervalo de confianza (bilateral)

$$\mathsf{IC}_{100(1-\alpha)\%}\left(\frac{\sigma_1^2}{\sigma_2^2}\right) = \left(F_{\alpha/2,n_2-1,n_1-1}\frac{s_1^2}{s_2^2}; F_{1-\alpha/2,n_2-1,n_1-1}\frac{s_1^2}{s_2^2}\right)$$

donde F_{n_2-1,n_1-1} denota la distribución F con n_2-1 grados de libertad en el numerador y n_1-1 grados de libertad en el denominador.

Distribución F (Fisher-Snedecor)

La función de densidad de una variable aleatoria F con r_1 grados de libertad del numerador y r_2 grados de libertad del denominador es:

$$f(x) = \frac{(r_1/r_2)^{r_1/2} \Gamma[(r_1 + r_2)/2] x^{(r_1/2)-1}}{\Gamma[r_1/2] \Gamma[r_2/2] [1 + (r_1 x/r_2)]^{(r_1 + r_2)/2}} \qquad x \ge 0$$

donde $\Gamma(z)=\int_0^\infty t^{z-1} \exp\{-t\}\,\mathrm{d}t$ es la función gamma.

