

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

Online Shoppers Purchasing Intention Dataset

Gruppo composto da: Marmaglio Simone Mazzotti Giulia

Ottobre 2021

Indice

1	Intr	roduzione 3
	1.1	Descrizione del problema
	1.2	Dataset e features
	1.3	Obiettivo
2	Pre	-processing 5
	2.1	Manipolazione dei dati
	2.2	Eliminazione dei dati
		2.2.1 Istanze doppie
		2.2.2 Outliers
3	Ana	disi dei dati 7
4	Fea	ture Selection 9
	4.1	Correlazione
	4.2	Select K Best
	4.3	Recursive Feature Elimination
	4.4	Scelta
5	Ges	tione dei dati
	5.1	SMOTE Oversampling
	5.2	Sampling combinato
6	Mo	delli 15
	6.1	Hyperparameter tuning
	6.2	Valutazione dei modelli
	6.3	Addestramento dei modelli
		6.3.1 Support Vector Machines
		6.3.2 Gaussian Naive Bayes
		6.3.3 Adaboost
		6.3.4 Extreme Gradient Boosting
		6.3.5 Random Forest Classifier
		6.3.6 Neural Nets
	6.4	Conclusioni
7	Pos	sibili miglioramenti: feature expansion, selection e Optuna 26
	7.1	Calcolo della media
	7.2	Duration vs Bounce Rates
		7.2.1 Administrative Duration
		7.2.2 Informational Duration
		7.2.3 Product Related Duration
	7.3	Feature selection
	7.4	Risultati ottenuti
	7.4 - 7.5	Optuna
	7.6	Conclusioni

1 Introduzione

Il seguente progetto sviluppa nel modo più adeguato possibile la definizione dei modelli di apprendimento relativamente al problema descritto nel *Paragrafo 1.1*, come visto e studiato durante il corso di Machine Learning and Data Mining.

1.1 Descrizione del problema

Il problema trattato nel corrente progetto di Machine Learning e Data Mining si occupa di analizzare diverse informazioni relative al comportamento di clienti che acquistano online. La raccolta delle informazioni a disposizione è stata effettuata da *Google Analytics*, un servizio web che consente, di analizzare dettagliate statistiche sui visitatori di un sito web. In particolare, conserva le informazioni relative alle sessioni di acquisto/non acquisto in una pagina di e-commerce.

I dati coinvolti hanno permesso di determinare opportuni modelli di apprendimento nell'ambito del marketing, questi hanno il fine ultimo di *predirre* il potenziale acquisto di un cliente in seguito alla visita della pagina di e-commerce considerata.

1.2 Dataset e features

Il dataset si compone complessivamente di 12330 istanze aventi ciascuna 18 features.

Feature	Tipo	Descrizione		
Adnimistrative	Intero	numero di pagine di tipo amministrazione visitate		
Administrative Duration	Float	tempo speso dall'utente in pagine di tipo		
Administrative_Duration	гюа	Administrative		
Informational	Intero	numero di pagine di tipo informativo visitate		
Informational Duration	Float	tempo speso dall'utente in pagine di tipo		
informational_Duration	rioat	Informational		
ProductRelated	Intero	numero di pagine relative al prodotto visitate		
ProductRelated Duration	Float	tempo speso dall'utente in pagine di tipo		
1 Toductiverated_Duration	Float	ProductRelated		
BounceRates	Float	percentuale di sessioni in cui la pagina		
Douncertates		è stata l'unica della sessione		
ExitRates	Float	percentuale di sessioni in cui la pagina		
Exititates		è stata l'ultima della sessione		
PageValues	Float	valore della pagina in base al contributo fornito		
SpecialDay	Float	vicinanza del giorno della sessione con un giorno festivo		
Month	Object	mese nella quale è effettuata la sessione		
OperatingSystems	Intero	sistema operativo utilizzato		
Browser	Intero	browser utilizzato		
Region	Intero	traffic type		
TrafficType	Intero	tipo di traffico registrato		
VisitorType	Object	tipo di visitatore, returning, new o other		
Weekend	Bool	visita della pagina nel fine settimana		
Revenue	Bool	acquisto effettuato		

1.3 Obiettivo

L'obiettivo dei modelli definiti è quello di prevedere l'acquisto di un prodotto in una determinata pagina di e-commerce sulla base delle features a disposizione.

2 Pre-processing

2.1 Manipolazione dei dati

Al fine di allenare adeguatamente ogni modello, tutte le features sono state ridefinite nel dominio degli interi. In particolare, le variabili **Month** e **VisitorType**, di tipo *Object* sono state ridefinite mediante il metodo **get_dummies**. Questo ha permesso di generare un DataFrame con nomi di colonna fittizi formati concatenando il nome di colonna originale e ogni valore univoco per la colonna.

2.2 Eliminazione dei dati

Mediante opportune funzioni è stato possibile garantire l'assenza di *missing values* nel dataset a disposizione. Sono comunque state rimosse istanze in quanto: doppie o outliers.

2.2.1 Istanze doppie

Per la rimozione di istanze tra loro uguali e quindi potenzialmente ridondanti per le valutazioni effettuate nei passi successivi, è stata utilizzata la funzione drop_duplicates. Sono state rimosse 125 istanze doppie ed è stato mantenuto il primo elemento di ciascuna, in modo tale da evitare la rimozione completa e quindi il rischio di non includere informazioni rilevanti.

2.2.2 Outliers

Si è scelto di rimuovere *evidenti* elementi outliers a partire dall'osservazione delle distribuzioni di dati in relazione alle prime sei features.

Figura 1: Distribuzione istanze prima della rimozione di outliers

Vista la distribuzione non uniforme delle istanze, un'attenta osservazione ha permesso di individuare i principali valori anomali nella feature $ProductRelated_Duration$. Pertanto, si è scelto di rimuovere le istanze per cui il valore di tale feature superasse soglia 15000.

3 Analisi dei dati

Si è osservato un importante sbilanciamento del dataset: le istanze classificate negativamente sono risultate molte più rispetto alle istanze classificate positivamente. In particolare, solo il 16% delle sessioni registrate sono terminate con un acquisto effettivo. La problematica di sbilanciamento del dataset è stata opportunamente gestita effettuando nel *Paragrafo 5* operazioni di sampling.

Figura 2: Classificazione delle istanze

In Figura 4 sono riportate le distribuzioni dei dati in base alle feature indicate.

Figura 3: Distribuzione dati

I seguenti grafici permettono di analizzare in modo più approfondito la tipologia delle sessioni registrate. Si nota che una grande maggioranza di utenti si identifica in visitatori returning, che avrebbero quindi avviato una sessione di potenziale acquisto in un secondo momento. Inoltre, il grafico relativo ai mesi di acquisto evidenzia che i mesi di Maggio e Novembre sono i preferiti per informarsi relativamente ad alcuni prodotti.

Figura 4: Informazioni aggiuntive

4 Feature Selection

Il processo di **feature selection** ha permesso di ridurre il numero di variabili di input al fine di definire un modello ottimizzandone le prestazioni. Di fatto, riducendo il numero di features si riduce di conseguenza la complessità computazionale e aumentano le performance complessive.

In questa analisi sono state valutate tre diverse tecniche per effettuare questa operazione.

4.1 Correlazione

Il **coefficiente di correlazione** è un valore compreso tra -1 e 1 e viene utilizzato per quantificare il modo nella quale cambiano due variabili, l'una rispetto all'altra. I valori positivi indicano l'esistenza di una correlazione lineare positiva, i valori negativi indicano una correlazione negativa, il valore 0 indica assenza di correlazione.

Sulla base dei valori di correlazione individuati e con un'adeguato utilizzo delle metriche RMSE ed R-squared, sono state selezionate con questo metodo le features: 'Administrative', 'ProductRelated', 'ProductRelated_Duration', 'BounceRates', 'ExitRates', 'PageValues', 'Month_Nov', 'VisitorType_New_Visitor', 'VisitorType_Returning_Visitor', in quanto:

- Presentano *tutte* un valore di correlazione, rispetto alla variabile target 'Revenue', maggiore di 0.1.
- Utilizzando le metriche sopra indicate, individuano i valori migliori:
 - RMSE (= indice di distanza tra i valori predetti e quelli osservati, da minimizzare): 0.29
 - R_squared (= percentuale della varianza della variabile indipendente rispetto alla variabile indipendente, da massimizzare): 0.38

Figura 5: Correlazione tra le features

4.2 Select K Best

Data una score function, la tecnica **Select K Best** permette di selezionare le prime K features con score più alto.

Le funzioni utilizzate per questo progetto sono:

- χ^2 = calcola la statistica χ^2 per ciascuna feature di X e y. Ottenendo uno score piccolo, significa che y è indipendente dalla feature in esame, un valore alto indica invece che esiste una certa relazione tra la feature ed il valore target.
- F-statistic= sfrutta la regressione lineare per confrontare le varianze di ciascuna feature rispettivamente alla variabile target. Quindi, utilizza l'esito come criterio per individuare le features utili al compito di classificazione delle istanze rispetto al target.

Utilizzando le due score function appena descritte e scegliendo come valore K il valore 5, si ottengono rispettivamente:

- 'Administrative_Duration', 'Informational_Duration', 'ProductRelated', 'ProductRelated Duration', 'PageValues'
- 'ProductRelated', 'ProductRelated_Duration', 'BounceRates', 'ExitRates', 'PageValues'

4.3 Recursive Feature Elimination

RFE è un algoritmo di selezione delle feature molto noto, in quanto facile da configurare e dall'esito efficace: permette di selezionare le features più rilevati nella predizione del valore target. Per effettuare questa operazione è necessario definire il modello con la quale si esegue l'analisi di predizione, nel progetto corrente è stato scelto un classificatore *Random Forest*. L'esito ottenuto è il seguente

RANKING OF FEATURES [1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 12 6 15 11 13 7 4 1 8 9 5 14 2]

TOP RANKED FEATURES 'Administrative', 'Administrative_Duration', 'Informational', 'Informational_Duration', 'ProductRelated', 'ProductRelated_Duration', 'BounceRates', 'ExitRates', 'PageValues', 'OperatingSystems', 'Browser', 'Region', 'TrafficType', 'Month_Nov'

Figura 6: Ranking features

4.4 Scelta

Si è scelto di mantenere la selezione di features ottenuta sfruttando il coefficiente di correlazione, in quanto sia esaustivo dal punto di vista di significato che completo considerando la relazione con la variabile target.

Figura 7: Distribuzione delle istanze per le features selezionate

Figura 8: Distribuzione delle istanze per le features selezionate

5 Gestione dei dati

Visto lo sbilanciamento del dataset per quanto riguarda le due classi target, si è deciso di procedere con operazioni di sampling al fine di ottenere un insieme di istanze più completo e coerente. Dal momento che l'obiettivo è quello di prevedere il potenziale acquisto durante una sessione è necessario aumentare le istanze classificate in modo positivo, per minimizzare il numero di falsi positivi risultanti dalle previsioni. Si sono adottate due diverse tecniche.

Figura 9: Percentuale di sbilanciamento del dataset

5.1 SMOTE Oversampling

La prima tecnica utilizzata per il bilanciamento delle classi è **SMOTE**, ovvero **Synthetic Minority Oversampling Technique**, ed è tra le più comunemente utilizzate allo scopo. In particolare, risolve il problema **sovracampionando** gli esempi nella classe di minoranza, in modo casuale. La sua implementanzione prevede l'uso di un algoritmo **K-Nearest Neighbors**: sceglie dati casuali della classe minoritaria (in questo caso, **True**), imposta i K vicini più prossimi da tali osservazioni e definisce questi come **dati sintetici**. Tali dati sono creati tra dati casuali e i vicini dell'istanza selezionata, in modo casuale.

In particolare, si è usata la tecnica **SMOTENC**, che prende in <mark>considerazione l'esistenza di variabili categoriche</mark>.

Figura 10: Bilanciamento delle istanze mediante il metodo SMOTENC

5.2 Sampling combinato

È interessante notare che metodi di Sampling delle istanze del dataset possono essere combinati, in questo progetto viene utilizzata la tecnica combinazione del metodo *SMOTE* (*Paragrafo 5.1*) con il metodo di *Undersampling randomico*. Questo permette di bilanciare il dataset a disposizione eliminando *randomicamente* tante istanze della classe maggioritaria fino ad arrivare ad un numero uguale alle istanze della classe minoritaria.

Si tratta di un metodo definibile come <u>naive</u> in quanto non prevede nessuna assunzione relativamente alla forma dei dati e non utilizza euristiche di alcun tipo. In questo modo, l'implementazione è più facile e veloce da eseguire, preferibile in casi con un grande numero di istanze.

La combinazione delle due tecniche descritte prevede l'applicazione del metodo *SMOTE* sulla classe minoritaria e quindi un *Undersampling* sulla classe maggioritaria.

Figura 11: Bilanciamento del dataset mediante sampling combinato

6 Modelli

6.1 Hyperparameter tuning

Per l'operazione di sincronizzazione degli iperparametri si è scelto l'algoritmo grid search, implementato come segue.

```
1 def search(model, param_grid, X_train, y_train,label):
    print('\n\nTRAINING MODEL', label)
    cv_method = StratifiedKFold(n_splits=3)
    clf = GridSearchCV(
         estimator=model,
          param_grid=param_grid,
          scoring='precision',
9
          n_jobs=-1,
10
          cv=cv_method,
          verbose=0,
11
12
          return_train_score=True,
13
14
    clf.fit(X_train, y_train)
15
16
    return clf
```

6.2 Valutazione dei modelli

Ciascuna classe di modelli scelta è stata allenata sui tre dataset ottenuti mediante le operazioni di gestione dei dati, viste nel *Paragrafo 5*: dataset *NORMAL*, senza alcun bilanciamento, *SMOTE*, dataset bilanciato con il metodo di Oversampling, e *SMOTE* + *UNDER*, definito con la combinazione dei due metodi di sampling.

Le seguenti porzioni di codice riportano le funzioni impiegate per l'addestramento dei modelli e la relativa valutazione.

```
def stat_test(model, X_test, y_test,label):
    print('\n\nRISULTATI MODELLO CON DATASET', label)

#Testing the model

cfmatrix=confusion_matrix(y_true=y_test, y_pred=model.predict(X_test))

print('Confusion Matrix: ', cfmatrix)

#Defining prints for accuracy metrics of grid

print("\n**Grid search results of","**")

print("The best parameters are:",model.best_params_)

print("Best training accuracy:\t", model.best_score_)

print('Classification Report:')

print(classification_report(y_true=y_test, y_pred=model.predict(X_test)))
```

```
def confronto_mod(vet_X_train,vet_y_train,X_test,y_test, model, param_grid, label):
    clf = []
    for i in range(len(vet_X_train)):
        clf.append(search(model, param_grid, vet_X_train[i],vet_y_train[i],label[i]))

for i in range(len(clf)):
    stat_test(clf[i],X_test,y_test,label[i])

return clf
```

6.3 Addestramento dei modelli

Di seguito, per ogni modello definito, sono riportati i risultati ottenuti, si fa particolare riferimento ai valori dei parametri: **precision** e **recall**, ottenuti mediante la definizione della relativa matrice di confusione.

6.3.1 Support Vector Machines

Risultati modello con dataset normal								
Confusion	3571	58						
matrix	453	184						
Best parameters	'C': 0.1, 'g	amma':	1, 'kernel':	'rbf', 'random_state': 42				
Best training accuracy			0.80					
	Class	ification	report					
	Precision	Recall	F1-score	Support				
False	0.89	0.98	0.93	3629				
True	0.76	0.29	0.42	637				
			,					
Accuracy			0.88	4266				
Macro avg	0.82	0.64	0.68	4266				
Weighted avg	0.87	0.88	0.86	4266				

Risultati modello con dataset smote									
Confusion	3270	359							
matrix	166	471							
Best parameters	'C': 0.1, 'g	amma':	0.1, 'kernel	': 'linear', 'random_state': 42					
Best training accuracy			0.9	90					
	Cla	assification	n report						
	Precision	Recall	F1-score	Support					
False	0.95	0.90	0.93	3629					
True	0.57	0.74	0.64	637					
Accuracy			0.88	4266					
Macro avg	0.76	0.82	0.78	4266					
Weighted avg	0.89	0.88	0.88	4266					

Risultati modello con dataset $smote + under$									
Confusion	3463	166							
matrix	382	255							
Best parameters	'C': 0.1, 'g	amma':	10, 'kernel':	: 'rbf', 'random_state': 42					
Best training accuracy			0.96	3					
	Class	sification	report						
	Precision	Recall	F1-score	Support					
False	0.90	0.95	0.93	3629					
True	0.61	0.40	0.48	637					
Accuracy			0.87	4266					
Macro avg	0.75	0.68	0.70	4266					
Weighted avg	0.86	0.87	0.86	4266					

6.3.2 Gaussian Naive Bayes

Risultati m	Risultati modello con dataset normal								
Confusion	3512	117							
matrix	462	175							
Best parameters	',	var_smo	othing': 1.0)					
Best training accuracy		0.	636						
C	Classification report								
	Precision	Recall	F1-score	Support					
False	0.88	0.97	0.92	3629					
True	0.60	0.27	0.38	637					
Accuracy			0.83	4266					
Macro avg	0.74	0.62	0.65	4266					
Weighted avg	0.84	0.86	0.84	4266					

Risultati modello con dataset smote								
3172	457							
259	378							
,,	var_smoo	othing': 1.0						
	0	.83						
Classification report								
Precision	Recall	F1-score	Support					
0.92	0.87	0.90	3629					
0.45	0.59	0.51	637					
		0.83	4266					
0.69	0.73	0.71	4266					
0.85	0.83	0.84	4266					
	3172 259 (lassification Precision 0.92 0.45	3172 457 259 378 0 Classification report Precision Recall 0.92 0.87 0.45 0.59 0.69 0.73	3172 457 259 378 0.83 *lassification report Precision Recall F1-score 0.92 0.87 0.90 0.45 0.59 0.51 *0.83 0.69 0.73 0.71					

Risultati modello con dataset $smote + under$							
Confusion	3412 217						
matrix	365	272					
Best parameters	,,	var_smoo	othing': 1.0				
Best training accuracy		0	.84				
C	${\it llassification}$	report					
	Precision	Recall	F1-score	Support			
False	0.90	0.94	0.92	3629			
True	0.56	0.43	0.48	637			
Accuracy			0.86	4266			
Macro avg	0.73	0.68	0.70	4266			
Weighted avg	0.85	0.86	0.86	4266			

6.3.3 Adaboost

Risultati modello con dataset normal							
Confusion	3480	149					
matrix	319	318					
Best parameters	'algorithm	': 'SAMI	ME.R', 'lear	rning_rate': 0.01, 'n_estimators': 500,			
Dest parameters	'random_state': 42						
Best training accuracy				0.73			
		Classifi	cation repo	rt			
	Precision	Recall	F1-score	Support			
False	0.92	0.96	0.94	3629			
True	0.68	0.50	0.58	637			
Accuracy			0.89	4266			
Macro avg	0.80	0.73	0.76	4266			
Weighted avg	0.88	0.89	0.88	4266			

Risultati modello con dataset smote								
Confusion	3290	339						
matrix	166	471						
Best parameters	'algorithm	: 'SAMI	ME.R', 'lear	rning_rate': 1.0, 'n_estimators': 1000,				
Dest parameters	'random_state': 42							
Best training accuracy				0.92				
		Classifi	cation repo	rt				
	Precision	Recall	F1-score	Support				
False	0.95	0.91	0.93	3629				
True	0.58	0.74	0.65	637				
Accuracy			0.88	4266				
Macro avg	0.77	0.82	0.79	4266				
Weighted avg	0.90	0.88	0.89	4266				

${ m Risultati\ modello\ con\ dataset\ } smote + under$							
Confusion	3273	356					
matrix	165	472					
Best parameters	'algorithm	: 'SAMI	ME.R', 'lear	rning_rate': 1.0, 'n_estimators': 1000,			
Dest parameters	'random_state': 42						
Best training accuracy				0.87			
	Classification report						
	Precision	Recall	F1-score	Support			
False	0.95	0.90	0.93	3629			
True	0.57	0.74	0.64	637			
Accuracy			0.88	4266			
Macro avg	0.76	0.82	0.79	4266			
Weighted avg	0.89	0.88	0.88	4266			

6.3.4 Extreme Gradient Boosting

Risultati modello con dataset normal							
Confusion	3349	280					
matrix	292	345					
Best parameters	'algorithm	: 'SAMI	ME', 'base_	_estimator': DecisionTreeClassifier(),			
Dest parameters	'learning_	'learning_rate': 0.001, 'n_estimators': 1000, 'random_state': 42					
Best training accuracy				0.58			
		Classific	ation repor	t			
	Precision	Recall	F1-score	Support			
False	0.92	0.92	0.92	3629			
True	0.55	0.54	0.55	637			
Accuracy			0.87	4266			
Macro avg	0.74	0.73	0.73	4266			
Weighted avg	0.86	0.87	0.87	4266			

Risultati modello con dataset smote						
Confusion	3211	418				
matrix	239	398				
Best parameters	'algorithm	: 'SAMI	ME', 'base_	estimator': DecisionTreeClassifier(),		
Dest parameters	'learning	_rate': 0	0.01, 'n_est	imators': 1000, 'random_state': 42		
Best training accuracy				0.88		
	Classification report					
	Precision	Recall	F1-score	Support		
False	0.93	0.88	0.91	3629		
True	0.49	0.62	0.55	637		
Accuracy		4266				
Macro avg	0.71	0.75	0.73	4266		
Weighted avg	0.86	0.85	0.85	4266		

${f Risultati\ modello\ con\ dataset\ }smote\ +\ under$						
Confusion	3188	441				
matrix	208	429				
Best parameters	'algorithm	: 'SAMI	ME', 'base_	_estimator': DecisionTreeClassifier(),		
Dest parameters	'learnin	ig_rate':	0.1, 'n_es	timators': 50, 'random_state': 42		
Best training accuracy				0.81		
	Classification report					
	Precision	Recall	F1-score	Support		
False	0.94	0.88	0.91	3629		
True	0.49	0.67	0.57	637		
Accuracy			0.85	4266		
Macro avg	0.72	0.78	0.74	4266		
Weighted avg	0.87	0.85	0.86	4266		

6.3.5 Random Forest Classifier

Risultati modello con dataset normal						
Confusion	3505	124				
matrix	299	338				
Best parameters	'criterion':	'gini', 'r	nax_depth	': 5,'n_estimators': 100,		
Dest parameters		'n_jobs'	= -1, 'rand	om_state': 42		
Best training accuracy			0.78			
Classification report						
	Precision	Recall	F1-score	Support		
False	0.92	0.97	0.94	3629		
True	0.73	0.53	0.62	637		
Accuracy		4266				
Macro avg	0.83	0.75	0.78	4266		
Weighted avg	0.89	0.90	0.89	4266		

Risultati modello con dataset smote						
Confusion	3276	354				
matrix	185	452				
Best parameters	'criterion':	'gini', 'r	\max_{depth}	': 25,'n_estimators': 100,		
Dest parameters		'n_jobs'	= -1, 'range	dom_state': 42		
Best training accuracy			0.91			
Classification report						
	Precision	Recall	F1-score	Support		
False	0.95	0.90	0.92	3629		
True	0.56	0.71	0.63	637		
Accuracy	0.87 4266					
Macro avg	0.75	0.81	0.78	4266		
Weighted avg	0.89	0.87	0.88	4266		

Digultati modelle con detecet emete i under						
$egin{array}{cccccccccccccccccccccccccccccccccccc$						
Confusion	3272	357				
matrix	159	478				
Best parameters	'criterion':	'entropy	r' , $\max_{\epsilon} d\epsilon$	epth': 25,'n_estimators': 100,		
Dest parameters		'n_job	s' = -1, 'ra	ndom_state': 42		
Best training accuracy			3.0	37		
	Cla	is sificatio	n report			
	Precision	Recall	F1-score	Support		
False	0.95	0.90	0.93	3629		
True	0.57	0.75	0.65	637		
Accuracy			0.88	4266		
Macro avg	0.76	0.83	0.79	4266		
Weighted avg	0.90	0.88	0.89	4266		

6.3.6 Neural Nets

Risultati modello con dataset normal							
Confusion	3476	153					
matrix	285	352					
Best parameters	'alpha': 0.	01, 'hidd	en_layer_s	sizes': 150, 'learning_rate': 'invscaling',			
Dest parameters	'max_	iter' = 30	00, 'momen	tum': 0.9, 'validation_fraction': 0.1			
Best training accuracy				0.74			
		Classif	ication repo	rt			
	Precision	Recall	F1-score	Support			
False	0.92	0.96	0.94	3629			
True	0.70	0.55	0.62	637			
Accuracy			0.90	4266			
Macro avg	0.81	0.76	0.78	4266			
Weighted avg	0.89	0.89	0.89	4266			

Risultati modello con dataset smote					
Confusion	3225	404			
matrix	148	352			
Post navamatars	'alpha': 0.	01, 'hidd	en_layer_s	sizes': 150, 'learning_rate': 'invscaling',	
Best parameters	'max_	iter' = 30	00, 'momen	tum': 0.9, 'validation_fraction': 0.1	
Best training accuracy				0.89	
		Classif	ication repo	rt	
	Precision	Recall	F1-score	Support	
False	0.96	0.89	0.92	3629	
True	0.55	0.77	0.64	637	
Accuracy			0.87	4266	
Macro avg	0.75	0.83	0.78	4266	
Weighted avg	0.90	0.87	0.88	4266	

${f Risultati\ modello\ con\ dataset\ smote\ +\ under}$						
Confusion	3253	376				
matrix	159	478				
Best parameters	'alpha': 0.	01, 'hidd	en_layer_s	sizes': 150, 'learning_rate': 'invscaling',		
Dest parameters	'max_	iter' = 20	00, 'momen	tum': 0.9, 'validation_fraction': 0.1		
Best training accuracy				0.86		
		Classif	ication repo	ort		
	Precision	Recall	F1-score	Support		
False	0.95	0.90	0.92	3629		
True	0.56	0.75	0.64	637		
Accuracy			0.87	4266		
Macro avg	0.76	0.82	0.78	4266		
Weighted avg	0.89	0.87	0.88	4266		

6.4 Conclusioni

Il valore di *accuracy*, evidenziato per ognuno dei modelli allenati, rappresenta la valutazione delle performance presa in considerazione. In generale, non si è ottenuto nessun modello più performante rispetto agli altri. Il valore massimo è stato ottenuto con i metodi ensemble e con le reti neurali, che trovano i loro punti di forza nella robustezza e nelle buone prestazioni ottenute complessivamente.

Inoltre, quasi tutti i modelli individuati, vedono il valore di *accuracy* della fase di training inferiore rispetto a quello della fase di testing; si può concludere che non si hanno situazioni di *overfitting* rispetto ai dati con la quale vengono addestrati i modelli.

L'aspetto non positivo del dataset utilizzato, lo sbilanciamento dei dati, si nota ampiamente nella matrice di confusione riportata per ciascuno dei modelli. Mentre si ha una buona classificazione delle istanze negative, circa gli utenti che non hanno effettuato un acquisto, i modelli ottenuti tendono a sovrastimare la presenza di istanze positive. Queste indicano gli utenti che hanno effettuato un acquisto nella sessione registrata: ottenere Falsi Positivi è quindi potenzialmente svantaggioso. Queste osservazioni sono confermate dai valori di precision e recall, "riassunti" quindi dal valore F1-Score, che rappresenta la media armonica delle prime due. Esso tende ad essere maggiore per le istanze negative, ad indicare una buona classificazione di queste, e molto minore per le istanze positive, a significare che di tutte le istanze classificate positivamente dal modello, una buona percentuale non è predetta in modo adeguato.

In particolare, l'addestramento senza l'implementazione di tecniche di balancing dei dati porta a modelli con accuracy inferiore sul training set, mentre è maggiore sul test set. Oltre a ciò, si può notare che per la classificazione delle istanze positive la precision è maggiore rispetto ai modelli ottenuti con il bilanciamento dei dati. Tuttavia, per questi ultimi aumentano i valori di recall ed F1-Score.

Sono riportati nelle seguenti tabelle i risultati complessivi analizzati per la valutazione delle performance di ciascun modello.

NORMAL						
	SVM	GNB	AB	EGB	RFC	NN
Training accuracy	80%	64%	73%	58%	78%	74%
Test accuracy	88%	83%	89%	87%	90%	90%
Precision	76%	60%	68%	55%	73%	70%
Recall	29%	27%	50%	54%	53%	55%
F1-Score	42%	38%	58%	55%	62%	62%

SMOTE						
	SVM	GNB	\mathbf{AB}	EGB	RFC	NN
Training accuracy	90%	83%	92%	88%	91%	89%
Test accuracy	88%	83%	88%	85%	87%	87%
Precision	57%	45%	58%	49%	56%	55%
Recall	74%	59%	74%	62%	71%	77%
F1-Score	64%	51%	65%	55%	63%	64%

$SMOTE\ e\ UNDERSAMPLING$						
	SVM	GNB	AB	EGB	RFC	NN
Training accuracy	96%	84%	87%	81%	87%	86%
Test accuracy	87%	86%	88%	85%	88%	87%
Precision	61%	56%	57%	49%	57%	56%
Recall	40%	43%	74%	67%	75%	75%
F1-Score	48%	48%	64%	57%	65%	64%

7 Possibili miglioramenti: feature expansion, selection e Optuna

Per un'ulteriore analisi, sono state generate, sulla base di quelle esistenti, nuove features al fine di addestrare nuovamente i modelli. Per l'addestramento è stato usato il framework Optuna al fine di ottenere una rete neurale ottimizzata.

7.1 Calcolo della media

In primo luogo, è stato calcolato il valore medio delle features relative alle tipologie di pagine visitate rispetto al tempo speso su esse.

- Administrative_Duration = mean_Adm; tempo medio dell'utente speso su una pagina di tipo Administrative
- Informational_Duration = mean_Info; tempo medio dell'utente speso su una pagina di tipo Informational
- ProductRelated_Duration ProductRelated Product Related Product Related

Date le feature ottenute, che, per ogni istanza valutano il valore medio, si possono potenzialmente ottenere gruppi di utenti coerenti rispetto al tempo speso sulle diverse tipologie pagine.

7.2 Duration vs Bounce Rates

Confrontando le features di Duration relative a ciascuna tipologia di pagina con il valore Bounce è stato implementato il metodo KMeans. In particolare, sono state individuate tre nuove features: Un-interested customers, Target customers e General customers. Vengono riportati i parametri utilizzati per la ricerca del numero ottimale di clusters. Le tre diverse categorie sono state definite in questo modo in quanto si ipotizza che a parità di tempo speso sulla pagina, sessioni con Bounce Rate superiore, non tendano a terminare con un acquisto.

Il valore di clusters varia sulla base del valore individuato mediante l'elbow method.

La classe di appartenenza risultante dell'istanza è stata, per ciascuna delle tre features, mantenuta in una nuova feature, rispettivamente introdotta come Cust_Admin, Cust_Info e Cust_PR. Infine è stata definita la nuova feature come valore medio delle tre appena introdotte.

7.2.1 Administrative Duration

7.2.2 Informational Duration

7.2.3 Product Related Duration

7.3 Feature selection

Unendo al dataset originario le feature introdotte nei paragrafi precedenti, si è implementato il seguente pseudocodice, mediante la quale sono state selezionate le feature con la quale sono stati ottenuti i valori ottimali per le metriche RMSE ed R_squared.

```
1 F_min_RMSE =[]
2 F_max_R = []
```

```
3 min_RMSE = 1
4 \text{ max}_R = 0
5 for j in range(1, X. shape[1]):
    for primo in range(0, X.shape[1]-1):
         if j+primo<=X.shape[1]:</pre>
       #if j!=1 and primo!=1:
           lista = []
10
           for i in range(primo,j+primo-1):
11
12
             lista.append(X.columns.values[i])
13
14
           for i in range(primo+j-1, X. shape[1]):
15
             lista_cop = lista_copia(lista)
16
17
             lista_cop.append(X.columns.values[i])
18
             X_f=X[lista_cop]
19
             y_pred = cross_val_predict(classifier_pipeline, X_f, y, cv=cv)
20
21
             RMSE = round(sqrt(mean_squared_error(y,y_pred)),5)
22
             R_sq = round(r2_score(y,y_pred),5)
             if RMSE<min_RMSE:</pre>
23
               min_RMSE = RMSE
24
               F_min_RMSE = lista_cop
25
26
27
             if R_sq>max_R:
               max_R = R_sq
               F_{max_R} = lista_{cop}
```

Si sono ottenuti valori ottimali per: ['ProductRelated_Duration', 'BouceRates', 'ExitRates', 'PageValues', 'Month_Nov']

7.4 Risultati ottenuti

Dopo aver effettuato la forward feature selection descritta e dopo aver verificato le migliori prestazioni dalla combinazione di ciò che è stato ottenuto, si è notato che non si ottengono feature diverse da quelle già considerate per i diversi modelli di apprendimento.

7.5 Optuna

Le features selezionate con il metodo descritto al *Paragrafo 8.3* sono state utilizzate per la restrizione del dataset originario con la quale è stato implementato il framework Optuna. Sono stati allenati diversi modelli e tra essi è stato estratto il migliore in termini di ottimizzazione di una funzione obiettivo. Di seguito sono riportati i risultati ottenuti per il dataset a disposizione.

Co	Confusion matrix					
(training set)						
	F	Τ				
F	5023	685				
T	187	879				

Accuracy	87%
Precision	56%
Recall	82%
F1-Score	66%

Confusion matrix							
(training set)							
	F	Τ					
F	5023	685					
T	187	879					

Accuracy	87%
Precision	56%
Recall	82%
F1-Score	66%

number	value	activity	batch	batch	hidden	hidden	max dropout	max hidden
		regularizer	norm	size	activation	layers	$\overline{\text{rate}}$	units
6	87.39	True	True	64	selu	3	0.015	524
9	86.57	False	True	16	selu	4	0.38	130
0	86.34	True	False	32	relu	1	0.58	822
2	85.87	False	True	64	relu	5	0.11	191
1	85.75	False	False	32	relu	2	0.007	151
3	85.69	False	True	16	swish	8	0.32	476
4	85.58	False	True	32	selu	5	0.25	980
7	85.40	True	False	32	selu	5	0.15	895
8	85.17	True	True	8	relu	10	0.08	806
5	85.05	False	True	8	elu	3	0.18	563

Optimization History Plot

Hyperparameter Importances

Parallel Coordinate Plot

7.6 Conclusioni

Dall'analisi di questo dataset si è potuto riscontrare che lo sbilanciamento delle classi è un fattore negativo per l'addestramento dei modelli. Questo problema persiste anche con l'utilizzo di operazioni di feature selection e class balancing effettuato con il framework Optuna. Tuttavia, si è potuto riscontrare un leggero miglioramento nell'accuracy, anche se rimane basso il valore di precision, quindi alto il valore dei falsi positivi individuati.

Secondo il nostro ragionamento un buon sito di e-commerce dovrebbe sottostimare la quantità di vendite, per avere una previsione più cauta, soprattutto in termini di potenziali incassi.