b)
$$s_{1}(t) = \sqrt{\frac{1}{4} - 1t}$$
 $-\tau_{1} \le t \le T_{1}$
 $T = 1$ and $T = 4\tau_{1}$
 $\Rightarrow \alpha(tt) = \sqrt{\frac{1}{4} - 1t}$ $-\frac{1}{4} \le t \le T_{2}$
 $-\frac{1}{4} \times t \le -\frac{1}{4}$ $\frac{1}{4} \times t \le T_{2}$
 $\alpha_{0} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} + \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}{4} - \frac{1}{4} + \frac{1}{4} - \frac{1}{4} - \frac{1}{4} \times t = \frac{1}{4}$
 $\alpha_{1} = \frac{1}{4} - \frac{1}$

- (1.2) d) The observation is that as N increases error both the maximum absolute error and mean squared error decreases and when N is sufficiently large becomes very close to 0
- 1.3) b) When we try to use "Fourier Coeff"
 when N=100*T when T=1, 100, 1000,
 the Fourier coefficients decrease in
 magnitude and become nearly o as
 T > 0
- 1.3) c) As N is increased from 10 to 50,100,1000, we find that the error decreases and the resulting wive is almost some as the original wive
- 1.4) c). The first wive is even function.

 so we expect the results to contain only real coefficients as symmetry with x-axis means sine teams are not present and so pensures real values
 - So we expect the results to also contain complex coefficients as symmetry about origin means is in (keet) are present causing complex values