

MRC Technical Summary Report #2242

A NEW WAY FOR CONSTRUCTING
HIGHER ORDER ACCURACY SPLINE
SMOOTHING FORMULAS

Dong-Xu Qi

Mathematics Research Center University of Wisconsin—Madison 610 Walnut Street Madison, Wisconsin 53706

July 1981

(Received June 2, 1981)

SEP 8 1981

THE RESIDENCE OF THE PARTY OF T

FILE COPY

Approved for public release Distribution unlimited

Sponsored by

U. S. Army Research Office P. O. Box 12211 Research Triangle Park North Carolina 27709

81 9 08 043

UNIVERSITY OF WISCONSIN-MADISON MATHEMATICS RESEARCH CENTER

A NEW WAY FOR CONSTRUCTING HIGHER ORDER ACCURACY SPLINE SMOOTHING FORMULAS.

DONG-XU/QI*

Technical Summary Report, #2242

In this paper the author introduces the operator $\overline{\Delta}^{(n)} := P_n(\mu)\overline{\Delta}$ with higher order accuracy for approximation to the differential operator D, where $\overline{\Delta}$ denotes centered difference operator, μ denotes averaging operator,

$$P_n(\mu) = \sum_{m=0}^{n} C_m(\mu-1)^m, C_m = -\frac{m}{2m+1} C_{m-1}, C_0 = 1$$
.

A class of new many-knot spline basis $\Omega_{k,n} := (P_n(\mu))^{2}N_k$ was suggested. The smoothing formulas

$$f_{k,n} = \frac{1}{h} \int_{-\infty}^{\infty} \Omega_{k,n} (\frac{\cdot - t}{h}) f(t) dt$$
 and $S_{k,n} f = \sum_{i=1}^{n} f_{i,n} \Omega_{k,n}$

are discussed.

AMS (MOS) Subject Classification: 41A15

Key Words: Spline, smoothing, many-knot, Higher order accuracy Work Unit Number 3 - Numerical Analysis and Computer Science

Accession For NTIS GRA&I DTIC TAB Unanmounced Justification

Distribution/ Availability Codes Avoil and/or

Special

Department of Mathematics, Jilin University, Changchun, China.

Sponsored by the United States Army under Contract No. DAAG29-88-C-8841

11/11/

SIGNIFICANCE AND EXPLANATION

I. J. Schoenberg studied B-splines and established some smoothing formulas for fitting data. In particular the smoothing approximation $S_k f = \sum_i f_i N_{i,k} \quad \text{(where $N_{i,k}$ are B-splines and f is an arbitrary function)}$ has been successfully used in curve fitting. The paper proposes a new class of spline function denoted $\Omega_{i,k}$ instead of $N_{i,k}$. The new approximation $S_{k,n} f = \sum_i f_i \Omega_{i,k} \quad \text{achieves higher order accuracy. To construct } \Omega_{i,k}, \quad \text{we first introduce the averaging operator $P_n(\mu)$, $P_n(x) = \sum_{m=0}^{n} C_m(x-1)^m$, $C_m = -\frac{m}{2m+1} C_{m-1}, C_0 = 1$, and then define <math>\Omega_{i,k} := [P_n(\mu)] N_{i,k}$. The smoothing formulas for function \$f\$ are given by $f_{k,n} = \frac{1}{h} \int_{-\infty}^{\infty} \Omega_{k,n} (\frac{-t}{h}) f dt$ and $S_{k,n} f = \sum_i f_i \Omega_{k,n}$.

The responsibility for the wording and views expressed in this descriptive summary lies with MRC, and not with the author of this report.

A NEW WAY FOR CONSTRUCTING HIGHER ORDER ACCURACY SPLINE SMOOTHING FORMULAS

Dong-Xu Qi*

The modern mathematical theory of spline approximation was introduced by I. J. Schoenberg in 1946. In the paper [6] he studied so-called "B-spline basis". A B-spline basis can be normalized in various ways. One of them is the so called normalized B-spline, see [2], denoted by $N_{i,k}$ for the B-spline function of degree k-1 having support (x_i, x_{i+k}) . The spline smoothing formula for degree k-1 to an arbitrary function f can be represented by $S_k f = \int_{i=1}^{k} f_{i,k} N_{i,k}$. This approximation has been used in curve fitting successfully [1], [4].

In order to improve accuracy of the smoothing operator S_k , the author in this paper suggests a new spline basis denoted $\Omega_{i,k,n}$ instead of $N_{i,k}$. Thus, a new way for the construction of spline smoothing formulas is introduced. I prefer calling $S_{k,n}f=\sum f_i\Omega_{i,k,n}$ a smoothing operator with grade n and order k. In here when n=0, $\Omega_{i,k,0}$ is just $N_{i,k}$ and $S_{k,0}$ is the same as S_k . Since $S_{k,n}f\in\varphi_k+\varphi_k^*$, this is a class of many-knot splines.

Concerning higher order accuracy spline smoothing formulas,

I. J. Schoenberg [1946] has already discussed in [6] and Z. S. Liang studied the many-knot spline smoothing [4]. My main attempt in this paper is to suggest a new way for constructing them.

Department of Mathematics, Jilin University, Changchun, China.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

1. The smoothing operator

Denote the centered difference operator by $\overline{\Delta}_h$, defined by

$$\overline{\Delta}_h f(x) := f(x + \frac{h}{2}) - f(x - \frac{h}{2}) .$$

For simplicity let h = 1, and $\overline{\Delta} := \overline{\Delta}_1$.

The B-spline of order $\,k\,$ with equally spaced knots are denoted by $\,N_{k}^{\,\prime}\,$ and it can be represented by

$$N_{k}(x) = \left(\overline{\Delta}p^{-1}\right)^{k} \delta(x) , \qquad (1.1)$$

$$N_{i,k}(\cdot) := N_k(\cdot - i)$$
, (1.2)

where D^{-1} is the integral operator, δ is Dirac δ -function.

It is our purpose to find a more exact difference approximation to the operator D. I would like to choose following ready-made identity.

Fact 1.1 ([5] p. 43)

$$\log(y + \sqrt{1 + y^2}) = \sqrt{1 + y^2} \sum_{m=0}^{\infty} (-1)^m \frac{2^{2m}(m!)^2}{(2m+1)!} y^{2m+1} . \qquad (1.3)$$

Fact 1.2 The following expansion

$$x = sh \times \sum_{m=0}^{\infty} C_m (ch \times -1)^m$$
 (1.4)

The same of the sa

holds. Set

$$(2m+1)!! := (2m+1)(2m-1)...3.1$$

then

$$C_m = -\frac{m}{2m+1} C_{m-1} = (-1)^m \frac{m!}{(2m+1)!!}, C_0 = 1$$
.

Proof From (1.3)

$$\log(y + \sqrt{1 + y^2}) = \sqrt{1 + y^2} \sum_{m=0}^{\infty} (-1)^m \frac{m!}{(2m+1)!!} 2^m y^{2m+1}$$
$$= \sqrt{1 + y^2} \sum_{m=0}^{\infty} c_m 2^m y^{2m+1}.$$

Let $y = sh \frac{x}{2}$, then $ch \frac{x}{2} = \sqrt{1 + y^2}$, $x = 2 \log(y + \sqrt{1 + y^2})$. Thus

$$x = 2 \text{ ch } \frac{x}{2} \sum_{m=0}^{\infty} C_m 2^m \left(\text{sh } \frac{x}{2} \right)^{2m+1}$$

$$= 2 \text{ ch } \frac{x}{2} \text{ sh } \frac{x}{2} \sum_{m=0}^{\infty} C_m \left(2 \text{ sh}^2 \frac{x}{2} \right)^m$$

$$= \text{sh } x \sum_{m=0}^{\infty} C_m (\text{ch } x - 1)^m .$$

Introduce operators E and μ_{α} defined by

$$E^{\alpha}f(x) := f(x + \alpha)$$
,
 $\mu_{\alpha}f(x) := \frac{1}{2} (f(x + \frac{\alpha}{2}) + f(x - \frac{\alpha}{2}))$, $\mu := \mu_{1}$,

and notice the relationships between those operators (see [3], p. 230)

$$E = e^{D}$$
, $ch \frac{D}{2} = \mu$,

$$2 \text{ sh } \frac{D}{2} = e^{\frac{D}{2}} - e^{-\frac{D}{2}} = E^{\frac{1}{2}} - D^{-\frac{1}{2}} = \overline{\Delta}$$
.

Use $\frac{D}{2}$ and I instead of x and 1 in (1.4)

The second secon

$$D = 2 \operatorname{sh} \frac{D}{2} \sum_{m=0}^{\infty} C_{m} (\operatorname{ch} \frac{D}{2} - 1)^{m}$$

$$= \sum_{m=0}^{\infty} C_{m} (\mu - 1)^{m} \overline{\Delta}$$

$$= \sum_{m=0}^{\infty} C_{m} (\mu - 1)^{m} \overline{\Delta} + R_{n} , \qquad (1.5)$$

where

$$R_n := 2 \text{ sh } \frac{D}{2} \sum_{m=n+1}^{\infty} C_m (\text{ch } \frac{D}{2} - 1)^m .$$
 (1.6)

Define $\overline{\Delta}^{(n)}$ as the first part of (1.5), i.e.,

$$\overline{\Delta}(n) := \sum_{m=0}^{n} C_m (\mu - I)^{m} \overline{\Delta} = P_n (\mu) \overline{\Delta}$$
,

where

$$P_{n}(\mu) = \sum_{m=0}^{n} C_{m}(\mu - 1)^{m} = \sum_{j=0}^{n} 2^{-j} \sum_{m=j}^{n} (-1)^{m-j} {m \choose j} C_{m} \sum_{i=0}^{j} {i \choose j} E^{2} \qquad (1.7)$$

In the general case, define

$$\overline{\Delta}_{h}^{(n)} := P_{n}(\mu_{h})\overline{\Delta}_{h} . \qquad (1.8)$$

This is a collection of operators approximate to D. Beyond doubt $P_n(1)=1$, $P_n(\mu)=1$.

Fact 1.3 If k is any nonnegative integer, then the sum of all coefficients of items $(\mu_h)^j$ in the expansion $(P_n(\mu_h))^k$ equals to 1. Notice (1.6), the first term in R_n for any h

$$c_{n+1}^{-1}D[\frac{1}{2!}(\frac{hD}{2})^2]^{n+1} = 2^{-3(n+1)}c_{n+1}^{-1}h^{2(n+1)}D^{2n+3}$$
 (1.9)

This implies the following:

Theorem 1.1 Assume that $f \in C^{2n+3}$. Then $\overline{\Delta}_{h}^{(n)}f(x) = Df(x) - 2^{-3(n+1)}C_{n+1}f^{(2n+3)}(\xi)h^{2(n+1)}$

where $\xi \in [x - \frac{n+1}{2}h, x + \frac{n+1}{2}h]$.

Definition We call the operator $(\overline{\Delta}_h^{(n)}D^{-1})^{\ell}$ a smoothing operator with grade n and degree ℓ .

It is to be noted that $(\overline{\Delta}_h^{(0)} D^{-1})^k$ is just as with I. J. Schoenberg's. Here it is the smoothing operator of grade 0 and degree k.

Fact 1.4 From Theorem 1.1, if $g \in P_{2n+1}$ on [a,b], then $\overline{\Delta}_h^{(n)} p^{-1} g = g$, all $x \in [a + \frac{n+1}{2}h, b - \frac{n+1}{2}h]$.

and the second second

2. A class of many-knot splines

As has been already pointed out, the B-spline $N_{\hat{k}}$ with equally spaced knots (h = 1) is the result of the O-th grade smoothing operator applied to the Dirac δ -function

$$N_{k} = (\overline{\Delta}D^{-1})N_{k-1} = (\overline{\Delta}D^{-1})^{k}\delta \qquad (2.1)$$

Now we use the smoothing operator $\overline{\Delta}^{(n)}D^{-1}$ of grade n for the δ -function repeatedly. We can define a class of spline functions which as more knots than N_k :

$$\Omega_{k,n} := (P_n(\mu))^{k} N_k \qquad (2.2)$$

and

$$\Omega_{i,k,n}(\cdot) := \Omega_{k,n}(\cdot-i)$$
.

If l = k, then $\Omega_{k,n}(x) = (\overline{\Delta}^{(n)})^k \{\frac{x-1}{(k-1)!}\}$ which has knots

$$\xi_{j}^{(n,k)} = -\frac{(n+1)k-j}{2}, j = 0,1,...,2(n+1)k, n > 0$$
.

We often take l = k if without note.

The following facts can be proved easily in the same way as the corresponding facts for $\,N_{\rm b}$.

Fact 2.1:

(1)
$$\Omega_{k,n}(x) = \Omega_{k,n}(-x);$$

(2)
$$\Omega_{k_e n}(x) = 0$$
 for all $|x| > \frac{(n+1)k}{2}$,

(3)
$$D^{m}\Omega_{k,n}(x) = (\overline{\Delta}^{(n)})^{m}\Omega_{k-m,n}(x), 0 < m < k;$$

(4)
$$D^{-m}\Omega_{k,n}(x) = (\overline{\Delta}^{(n)})^{\frac{n}{2}} \{x_{+}^{k+m-1}/(k+m-1)!\}, m > 0;$$

(5)
$$\sum_{j=-\infty}^{\infty} \Omega_{k,n}(x+j) = 1, \quad \int_{-\infty}^{\infty} \Omega_{k,n}(x) dx = 1;$$

A service of the second of the

(6)
$$\Omega_{k,n}$$
 can be represented by the convolution integral
$$\Omega_{k,n}(\cdot) = \int_{-\infty}^{\infty} \Omega_{k-1,n}(\cdot-t)\Omega_{0,n}(t)dt$$
;

(7)
$$\Omega_{k,n}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Omega_{k,n}(\xi) e^{i\xi x} d\xi$$

$$\Omega_{k,n}(\xi) = \int_{-\infty}^{\infty} e^{-i\xi x} \Omega_{k,n}(x) dx$$

$$= \left[\frac{\sin(\xi/2)}{\xi/2} P_n(\cos\frac{\xi}{2})\right]^k$$

(8) Integration by parts:

$$\int_{-\infty}^{\infty} \Omega_{k_{\ell}n}(x) f(x) dx = (\overline{\Delta}^{(n)} p^{-1})^{k} f(0).$$

From the above mentioned facts we have the following theorems:

Theorem 2.1 Assume f is a continuous function or with discontinuity of the first kind on [a,b], and is extended with period b-a to $(-\infty,\infty)$, then

$$\lim_{h \to 0} \int_{-\infty}^{\infty} \delta_h(x-t) f(t) dt = \frac{1}{2} (f(x+0) + f(x-0)) ;$$

If f is a function whose derivatives of order ℓ is continuous or is a discontinuity of the first kind on [a,b], then

$$\lim_{h \to 0} \int_{-\infty}^{\infty} \frac{d^{\ell}}{dx^{\ell}} \, \delta_{h}(x-t) f(x) dt = \frac{1}{2} (f^{(\ell)}(x+0) + f^{(\ell)}(x-0)) ,$$

where

$$\delta_h(x) := \frac{1}{h} \Omega_{k+n}(\frac{x}{h})$$

This Theorem shows that the many-knot spline function $\,\,^\delta_h\,\,$ converges weakly to the Dirac $\delta\text{-function.}$

Theorem 2.2 Given the function f, define its many-knot spline smoothing function by

$$f_{k,n} := \overline{\Delta}_h^{(n)} D^{-1} f_{k-1,n} = (\overline{\Delta}_h^{(n)} D^{-1})^k f$$
 (2.3)

Then

$$f_{k,n} = \frac{1}{h} \int_{-\infty}^{\infty} \Omega_{k,n} \left(\frac{-t}{h}\right) f(t) dt \qquad (2.4)$$

Theorem 2.3 If $f \in C^{2}(-\infty,\infty)$, then

$$\int_{-\infty}^{\infty} |f_{k_{r}n}^{(\ell)}(x)|^{2} dx \le \int_{-\infty}^{\infty} |f^{(\ell)}(x)|^{2} dx . \qquad (2.5)$$

Proof Take the derivative of order 2 for (2.4), and the integration by
parts, and notice that

$$\left|\frac{\sin x}{x}P_{n}(\cos x)\right| \le 1$$
.

If f is a discrete valued function $y_i = f(x_i)$, $x_i = x_0 + ih$, then a numerical smoothing formula is as follows:

$$s_{k,n}f := \sum_{j} y_{j} \Omega_{k,n} \left(\frac{-x_{j}}{h} \right) . \qquad (2.6)$$

Formula (2.6) can be efficiently applied to the problems of curve fitting for discrete data.

3. Examples

In this section some discussions which are helpful for applications in practice will be given.

From (2.2), with l=k, n=1, k=1,2,3,4, we show the particular representations as follows:

$$\Omega_{1,1}(x) = \begin{cases} \frac{7}{6}, & |x| < \frac{1}{2}, \\ \frac{1}{2}, & |x| = \frac{1}{2}, \\ -\frac{1}{6}, & \frac{1}{2} < |x| < 1, \\ -\frac{1}{12}, & |x| = 1, \\ 0, & |x| > 1, \end{cases}$$

$$\Omega_{2,1}(x) = \begin{cases} \frac{50}{36} - \frac{65}{36} |x|, & |x| < \frac{1}{2}, \\ \frac{42}{36} - \frac{49}{36} |x|, & \frac{1}{2} < |x| < 1, \\ -\frac{22}{36} + \frac{15}{36} |x|, & 1 < |x| < \frac{3}{2}, \\ \frac{2}{36} - \frac{1}{36} |x|, & \frac{3}{2} < |x| < 2, \\ 0, & |x| \ge 2, \end{cases}$$

$$\Omega_{3,1}(x) = \begin{cases} \frac{462}{432} - \frac{878}{432} x^2, & |x| < \frac{1}{2}, \\ \frac{858}{432} - \frac{1584}{432} |x| + \frac{706}{432} x^2, & \frac{1}{2} < |x| < 1, \\ \frac{471}{432} - \frac{810}{432} |x| + \frac{319}{432} x^2, & 1 < |x| < \frac{3}{2}, \\ -\frac{627}{432} + \frac{654}{432} |x| - \frac{169}{432} x^2, & \frac{3}{2} < |x| < 2, \\ \frac{141}{432} - \frac{114}{432} |x| + \frac{23}{432} x^2, & 2 < |x| < \frac{5}{2}, \\ -\frac{9}{432} + \frac{6}{432} |x| - \frac{1}{432} x^2, & \frac{5}{2} < |x| < 3, \\ 0, & |x| \ge 3, \end{cases}$$

$$\Omega_{4,1}^{(x)} = \begin{cases} \frac{7920}{7776} - \frac{20556}{7776} x^2 + \frac{13059}{7776} |x|^3, & |x| < \frac{1}{2} \\ \frac{8444}{7776} - \frac{3144}{7776} |x| - \frac{14268}{7776} x^2 + \frac{8867}{7776} |x|^3, & \frac{1}{2} < |x| < 1 \\ \frac{25212}{7776} - \frac{53448}{7776} |x| + \frac{36036}{7776} x^2 - \frac{7901}{7776} |x|^3, & 1 < |x| < \frac{3}{2} \\ \frac{4152}{7776} - \frac{11328}{7776} |x| + \frac{7956}{7776} x^2 - \frac{1661}{7776} |x|^3, & \frac{3}{2} < |x| < 2 \\ - \frac{22440}{7776} + \frac{28560}{7776} |x| - \frac{11988}{7776} x^2 + \frac{1663}{7776} |x|^3, & 2 < |x| < \frac{5}{2} \\ \frac{9060}{7776} - \frac{9240}{7776} |x| + \frac{3132}{7776} x^2 - \frac{353}{7776} |x|^3, & \frac{5}{2} < |x| < 3 \\ - \frac{1308}{7776} + \frac{1128}{7776} |x| - \frac{324}{7776} x^2 + \frac{31}{7776} |x|^3, & 3 < |x| < \frac{7}{2} \\ \frac{64}{7776} - \frac{48}{7776} |x| + \frac{12}{7776} x^2 - \frac{1}{7776} |x|^3, & \frac{7}{2} < |x| < 4 \\ 0, & |x| > 4 \end{cases}$$

From (2.2) the following tables are given:

Table 1:

ж	N ₁ (x)	Ω _{1,1} (x)
0	1	7 6
± 1/2	1/2	1 2
± 1		$-\frac{1}{12}$

Table 2:

		Ω _{2,1} (x)	
0	N ₂ (x)	£ = 1	£ = 2
0	1	7 6	100
$\pm \frac{1}{2}$	1/2	1 2	100 72 35 72
	2	1 1	72 14
± 1	ļ	12	$-\frac{14}{72}$
$\pm \frac{3}{2}$,		1 72

Table 3

х	N ₃ (x)	Ω _{3,1} (x)		Ω' _{3,1} (x)	
		l = 1	£ = 2	£ = 3	£ = 3
0 ± 1/2 ± 1 ± 3/2 ± 2 ± 5/2	3 4 1 2 1 8	40 48 25 48 4 48 - 1 48	270 288 156 288 8 288 12 288 1 288	1848 1728 970 1728 80 1728 105 1728 20 1728 1 1728	0 + 878 + 432 + 172 + 432 ± 147 ± 432 + 432 ± 1 + 432

Table 4

×	N ₄ (x)	Ω _{4,1} (x)			$\frac{\Omega_{4,1}^{1}(x) - \Omega_{4,1}^{n}(x)}{4}$	
		l = 1	l = 2	L = 3	2 = 4	1 = 4
0 ± 1 ± 1 ± 3 ± 2 ± 5 ± 3 ± 7 2	23 23 48 1 6 1 48	210 288 144 288 40 288 0 1 288	1392 1728 902 1728 176 1728 39 1728 8 1728 1 1728	9332 10368 5647 10368 545 10368 480 10368 26 10368 16 10368 1 10368	63360 62208 35307 62208 - 808 62208 4359 62208 256 62208 155 62208 24 62208 1 62208	0 - \frac{13704}{2592} \\ \begin{array}{cccccccccccccccccccccccccccccccccccc

From (2.6), set
$$n = 1$$
, $\ell = k$, $k = 3,4$. We obtain

$$s_{3,1}f(x_i) = y_i + \frac{5}{432} \overline{\Delta}^4 y_i$$
,

$$S_{4,1}f(x_i) = y_i + \frac{4}{7776} \overline{\Delta}^4 y_i - \frac{3}{7776} \overline{\Delta}^6 y_i$$
.

Assume four points in the plane are given:

	s ₃	,1 [£]	s _{4,1} f	
t	x(t)	y(t)	x(t)	y(t)
1.6	0.65648	1.11870	0.€1804	1.13213
1.8	0.89167	1.08685	0.83711	1.09813
2.0	1.02315	1.02315	1.00514	1.00514
2.2	1.08685	0.89167	1.09813	0.83711
2.4	1.11870	0.65648	1.13213	0.61804

Acknowledgement

I would like to thank Professor Carl de Boor for reading this paper and for his very valuable suggestions.

and the second second

REFERENCES

- [1] R. E. Barnhill and R. F. Riesenfeld, Computer Aided Geometric Design,
 Academic Press, New York-San Francisco-London, 1974.
- [2] C. de Roor, On calculating with B-splines, J. Approximation Theory, 6 (1972), 50-62.
- [3] F. B. Hildebrand, Methods of Applied Mathematics, Prentice Hall, Inc., New York, 1952.
- [4] Z. S. Liang and D. X. Qi, On the smoothing method by many-knot spline function, J. of Num. Math. of Universities of China, 2 (1979), 196-209.
- [5] I. M. Ryshik and I. S. Gradstein, <u>Tables of series</u>, <u>products</u>, and <u>integrals</u>, (Translation from the Russian), 1963.
- [6] I. J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math. 4 (1946), 45-99 and 112-141.

DXQ/jvs

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1	. 3. RECIPIENT'S CATALOG NUMBER
#2242 AD-A103	855
4. TITLE (and Subtitle) A New Way for Constructing Higher Order Accuracy	5. TYPE OF REPORT & PERIOD COVERED Summary Report - no specific reporting period
Spline Smoothing Formulas	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
Dong-Xu Qi	DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADDRESS Mathematics Research Center, University of	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS Work Unit Number 3 -
610 Walnut Street Wisconsin	Numerical Analysis and
Madison, Wisconsin 53706	Computer Science
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U. S. Army Research Office	July 1981
P.O. Box 12211	13. NUMBER OF PAGES
Research Triangle Park, North Carolina 27709	13
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
•	15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
Approved for public release; distribution unlimited.	

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

16. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Spline, smoothing, many-knot, Higher order accuracy

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
In this paper the author introduces the operator $\tilde{\Delta}$:= $P_n(\mu)\tilde{\Delta}$ with higher order accuracy for approximation to the differential operator D, where $\tilde{\Delta}$ denotes centered difference operator, μ denotes averaging operator,

$$P_n(\mu) = \sum_{m=0}^{n} C_m(\mu-1)^m, C_m = -\frac{m}{2m+1} C_{m-1}, C_0 = 1$$
.

A class of new many-knot spline basis $\Omega_{k,n} := (P_n(\mu))^k N_k$ was suggested. The

ABSTRACT (continued)

smoothing formulas
$$f_{k,n} = \frac{1}{h} \int_{-\infty}^{\infty} \Omega_{k,n} (\frac{\cdot - t}{h}) f(t) dt \text{ and } S_{k,n} f = \sum_{i=1}^{n} f_{i} \Omega_{k,n}$$

are discussed.