Tracing the evolution of non-typhoidal Salmonella: Is a new superbug emerging?

Presented by

Oliver Cliff

Complex Systems Research Group

Why salmonella in NSW?

- > 93.8 million cases and 155,000 deaths each year globally
 - More cases in Australia than anywhere else
 - Most fatal airborne disease in Australia
- S. Typhimuriam (STM) is the dominant subspecies of non-typhoidal salmonellosis
- Drivers of their evolution remain poorly understood

- Nine consecutive seasons of instances in NSW
 - 1st January 2008 to 31st December 2016
- 17,107 isolates of STM
 - 99.3% of all STM found from human cases in NSW over 3,287 days
- Genotyped through MLVA
 - MLVA = Multiple-Locus Variable-number tandem repeat (VNTR) Analysis
 - Allows for more diversity of strains to be identified
 - 1675 unique MLVAs identified

Tandem repeats

MLVA profile and fragment sizes

3 9 8 9 523 / 162 223 306 359 523

Number of tandem repeats

Fragment sizes

MLVA profile and fragment sizes

Fragment sizes

MLVA profile and fragment sizes

Dataset: STM in NSW 2008-2016

MLVA isolates as a complex network

- Considered as a complete graph
 - 1675 nodes (unique isolates)
 - Edge weights are inverse of pairwise MLVA distance
- Get closeness centrality of MLVA isolate in network
- Cluster isolates
 - Partition (linkage) clusters
 - Overlapping clusters
- Study evolution (incidence) of global network and individual clusters

- Edge weights
 - Inverse of Manhattan distance (L1-norm)

 χ

- Edge weights
 - Inverse of Manhattan distance (L1-norm)

$\boldsymbol{\mathcal{X}}$	3	9	8	9	2	12
ν	3	10	8	8	2	12

- Edge weights
 - Inverse of Manhattan distance (L1-norm)

$\boldsymbol{\mathcal{X}}$	3	9	8	9	2	12
y	3	10	8	8	2	12
d(x, y)	0	+1	0	-1	0	0

- Edge weights
 - Inverse of Manhattan distance (L1-norm)

> Closeness centrality
$$C(x) = \frac{1}{\sum_{y} d(x, y)}$$

Closeness centrality of MLVA profiles

Global network properties

Path length and prevalence ($\rho \approx 0.7$ at ~ 100 days)

> Path length: average distance to all other nodes

Global network properties

Clustering coefficient and prevalence ($\rho \approx 0.7$ at ~ 50 days)

Clustering coefficient: how close a node is to being a clique (complete graph)

Global network properties

Small world coefficient and prevalence ($\rho \approx 0.6$ at ~300 days)

Small world coefficient: ratio of clustering to path length

Closeness centrality of MLVA profiles

- > Black line traces binned averages
- Colours denote distance to most prevalent node
- Higher centrality correlates to higher prevalence

Linkage (partitioning) approach

Overlapping approach

Incidence-Centrality plot (partitioning clusters)

Incidence-Centrality plot (overlapping clusters)

Temporal evolution of clusters

