Exercise 7. Let (X, \mathcal{A}, μ) be a finite measure space, and let f be an \mathcal{A} -measurable real- or complex-valued function on X.

- (a) Show that f belongs to $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu)$ if and only if:
 - (i) f belongs to $\mathcal{L}^p(X, \mathcal{A}, \mu)$ for each p in $[1, +\infty)$ and
 - (ii) $\sup\{\|f\|_p : 1 \le p < +\infty\}$ is finite.
- (b) Show that if these conditions hold, then $||f||_{\infty} = \lim_{p \to +\infty} ||f||_p$.

Proof. A function $f: X \to \mathbb{R}$ can verify $\sup\{\|f\|_p, 1 \le p < +\infty\} < +\infty$ without being bounded: for example, let $X = \mathbb{R}$, $\mathscr{A} = \mathscr{B}(\mathbb{R})$, μ be the point mass $\mu(A) = 1 \iff 0 \in A$, and

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} n & \text{if } x = 1/n \text{ for } n \in \mathbb{N}_+ \\ 0 & \text{otherwise} \end{cases}$$

Then f is measurable, and $\int_{\mathbb{R}} |f|^p d\mu = 0$ for all $p \in [1, +\infty)$. However, f(1/n) = n for all $n \in \mathbb{N}$ so f is not bounded.

Therefore, for this exercise, we take $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu, \mathbb{R})$ to be the \mathbb{R} -vector space of \mathscr{A} -measurable functions $X \to \mathbb{R}$ that are essentially bounded; and, replacing \mathbb{R} with \mathbb{C} in the previous sentence, we define $\mathscr{L}^{\infty}(X, \mathscr{A}, \mu, \mathbb{C})$.

(a) Let $f \in \mathscr{L}^{\infty}(X, \mathscr{A}, \mu)$. For all $p \in [1, +\infty)$, f^p is \mathscr{A} -measurable as the composition of \mathscr{A} -measurable functions on their respective domains; and f^p is essentially bounded. Let N be a locally μ -null set where f^p is not bounded. Since $\mu(X)$ is finite, we have $\mu(N \cap X) = \mu(N) = 0$. From this we deduce that

$$\int_X |f|^p \,\mathrm{d}\mu = \int_{X-N} |f|^p \,\mathrm{d}\mu$$

and, since f^p is bounded on X-N, this integral is finite. Therefore $f\in \mathscr{L}^p(X,\mathscr{A},\mu)$ for all $1\leq p<+\infty$.

The set $M = \{x \in X \mid |f(x)| > ||f||_{\infty}\}$ is locally μ -null since $f \in \mathcal{L}^{\infty}(X, \mathcal{A}, \mu)$. Since $\mu(X)$ is finite, $\mu(M) = 0$, and

$$\int_{X} |f|^{p} d\mu = \int_{X-M} |f|^{p} d\mu \le ||f||_{\infty}^{p} \cdot \mu(X)$$
 so that
$$||f||_{p} \le ||f||_{\infty} \cdot \mu(X)^{1/p}$$

- If $\mu(X) = 1$, then we get $||f||_p \le ||f||_{\infty}$
- If $\mu(X) > 1$, the function $p \mapsto \mu(X)^{1/p}$ is nonnegative and non-increasing; we get $||f||_p \le ||f||_\infty \cdot \mu(X)$

• If $\mu(X) < 1$, the function $p \mapsto \mu(X)^{1/p}$ is nonnegative and non-decreasing; we get $||f||_p \le ||f||_{\infty}$

Therefore, $P = \{ ||f||_p, 1 \le p < \infty \}$ is a nonempty subset of \mathbb{R} that is bounded above, so $\sup P$ exists and is finite.

Conversely, suppose that f verifies (i) and (ii), and suppose that f is not essentially bounded. Let $M > \sup P$, there exists $N = \{x \in X \mid |f| > M\}$ such that $\mu(N) > 0$. Then

$$\int_X |f|^p d\mu \ge M^p \cdot \mu(N)$$
$$\|f\|_p > \sup P \cdot \mu(N)^{1/p}$$
$$\sup P > \sup P \cdot \mu(N)^{1/p}$$

This last inequality holds for any value of $p \in [1, +\infty)$. Using a disjunction of the cases $\mu(N) < 1$, $\mu(N) = 1$, and $\mu(N) > 1$, we always arrive at $\sup P > \sup P$, which is impossible. Therefore f is essentially bounded.

(b) Let $f \in \mathscr{L}^{\infty}(X, \mathscr{A}, \mu)$. Since $\mu(X)$ is finite, f is bounded almost everywhere; let N be a μ -null set where f is not bounded. There exists $\{f_n\}_{n\in\mathbb{N}}$ a nondecreasing sequence of simple functions converging simply to f on X-N. For all n, f_n is bounded. Let us note

$$f_n(x) = \sum_{i=0}^k a_i \chi_{A_i}(x)$$
 with $|a_1| > |a_2| > \dots > |a_k|$

Then, for all $p \in [1, +\infty)$, we deduce from (a) that f_n^p is integrable, and, since the A_i are pairwise disjoint, we get

$$\int_X |f_n|^p d\mu = \int_X \sum_{i=0}^k |a_i|^p \chi_{A_i} d\mu$$

From this we deduce

$$\int_{X} |a_1|^p \chi_{A_1} d\mu \le \qquad \int_{X} |f_n|^p d\mu \le \qquad \int_{X} |a_1|^p \chi_{X} d\mu$$
$$|a_1|^p \mu(A_1) \le \qquad \int_{X} |f_n|^p d\mu \le \qquad |a_1|^p \mu(X)$$

Since for all x > 0 $\lim_{p \to +\infty} x^{1/p} = 1$, we deduce that

$$\lim_{n \to +\infty} ||f_n||_p = |a_1| = ||f_n||_{\infty}$$
 (1)

The sequence $\{\|f_n\|_{\infty}\}_{n\in\mathbb{N}}$ of real numbers is nondecreasing and bounded above by $\|f\|_{\infty}$, and therefore converges to λ such that $0 \le \lambda \le \|f\|_{\infty}$.

Let $\varepsilon > 0$, and suppose that $\lambda < \|f\|_{\infty} - \varepsilon$. Since f is bounded on X - N, there exists $x \in X - N$ such that $|f(x) - \|f\|_{\infty}| < \varepsilon/3$. By convergence of $\{f_n(x)\}$ to f(x), there exists $M \in \mathbb{N}$ such that $|f_n(x) - f(x)| < \varepsilon/3$ for all n > M. Then, for n > M, we have $|f_n(x) - \|f\|_{\infty}| < 2\varepsilon/3$. Taking the limit as n reaches $+\infty$, we get $\varepsilon < |\lambda - \|f\|_{\infty}| \le 2\varepsilon/3$, which is a contradiction. Therefore

$$\lim_{n \to +\infty} \|f_n\|_{\infty} = \|f\|_{\infty} \tag{2}$$

Last, we have $|||f_n||_p - ||f||_p| \le ||f_n - f||_p$. Since $f_n \le f$ and f is bounded, the dominated convergence theorem allows us to conclude that

$$\lim_{n \to +\infty} ||f_n - f||_p = 0 \tag{3}$$

For all n and all p, the following inequality stands:

$$\begin{aligned} \left| \|f\|_{p} - \|f\|_{\infty} \right| &\leq \left| \|f\|_{p} - \|f_{n}\|_{p} \right| \\ &+ \left| \|f_{n}\|_{p} - \|f_{n}\|_{\infty} \right| \\ &+ \left| \|f_{n}\|_{\infty} - \|f\|_{\infty} \right| \end{aligned}$$

Let $\varepsilon > 0$. From (2), there exists $N_1 \in \mathbb{N}$ such that $\left| \|f_{N_1}\|_{\infty} - \|f\|_{\infty} \right| < \varepsilon$. From (1), there exists $P_1 \in \mathbb{N}$ such that $\left| \|f_{N_1}\|_p - \|f_{N_1}\|_{\infty} \right| < \varepsilon$ for all $p \geq P_1$. From (3), there exists $P_2 \in \mathbb{N}$ such that $\left| \|f\|_p - \|f_{N_1}\|_p \right| < \varepsilon$ for all $p \geq P_2$. Therefore, for all $p \geq \max(P_1, P_2)$, we have

$$\left| \|f\|_p - \|f\|_{\infty} \right| < 3\varepsilon$$

so that $\lim_{p\to\infty} \|f\|_p = \|f\|_{\infty}$