数学分析 (III)

Contents

Ι	笔记		5
13	多元	函数的极限和连续	7
	13.1	欧氏空间	7
		13.1.1 欧氏空间及其基本定理	7
		13.1.2 点集拓扑	8
	13.2	多元函数与向量函数的极限	8
		13.2.1 累次极限	8
	13.3	多元连续函数	9
		13.3.1 多元复合向量函数连续性定理	9
		13.3.2 集合连通性	10
		13.3.3 连续函数性质	10
		13.3.4 同胚映射	11
14	タ규	微分学	13
14			13
	14.1		13
			13
			14
			15
			16
	149		
	14.2		18
		14.2.1 导数的四则运算	
		14.2.2 复合函数的求导法	
		14.2.3 高阶偏导数	20
		14.2.4 复合函数的高阶偏导数	21

	14.2.5 一阶微分的形式不变性与高阶微分	21
II	习题	23
1	多元函数的极限和连续	25
	1.1 例题	25
	1.9 习斯	25

Part I

笔记

Chapter 13

多元函数的极限和连续

- 1. 欧氏空间 \mathbb{R}^n
- 2. 多元函数与向量函数的极限
- 3. 多元连续函数

13.1 欧氏空间

- 欧氏空间及其基本定理
- 点集拓扑

13.1.1 欧氏空间及其基本定理

定理 13.1.1 (完备性). 欧氏空间 \mathbb{R}^n 是完备的,即任意 Cauchy 序列的极限在 \mathbb{R}^n 内。

定理 13.1.2 (闭集套定理). 递减且直径趋于 0 的非空闭集套 $\{F_k\}$ 的极限集是一个点。

证明 在 F_k 中任取 x_k ,则 $|x_{k'}-x_{k''}|< \mathrm{diam}(F_{k'})$ 是 Cauchy 序列,设 $x_0=\lim_{k\to\infty}x_k$,因为 F 都是闭集,因此该极限就是极限集,且由直径趋于 0 得到 x_0 唯一.

定理 13.1.3 (聚点原理 (Bolzano-Weierstrass 定理)). \mathbb{R}^n 任意有界点列存在收敛子列. 等价形式是 \mathbb{R}^n 任意有界无穷集合存在聚点.

证明 每个分量存在收敛子列,依次取子列即可.

定理 13.1.4 (有限覆盖定理). 有界闭集等价于紧集.

证明

1. 必要性:对任意 $E \subset \mathbb{R}^n$, $\{U(0,k)\}_{k\in\mathbb{N}}$ 是一个开覆盖,于是存在有界子覆盖,因此 E 是有界集合.

假设存在 $x_0 \in E', x_0 \notin E$, 任取 $x \neq x_0, x \in E$, 则

$$\bigcup_{x \in E} U(x, r_x) \supset E \quad r_x = \frac{1}{2} |x - x_0|$$

于是存在

$$\bigcup_{k=1}^{K} U(x_k, r_{x_k}) \supset E$$

取 $r_K = \min\{r_k\}_{1 \le k \le K}$,则

$$U(x_0, r_K) \cap \left\{ \bigcup_{k=1}^K U(x_k, r_{x_k}) \right\} = \emptyset$$

矛盾。

2. 充分性: 假设存在 E 的一个开覆盖,其任意有限个开集不能覆盖 E ,对 E 的每个分量不断二分,利用闭集套定理,容易得到矛盾.

13.1.2 点集拓扑

见实变函数的相关章节。

13.2 多元函数与向量函数的极限

• 累次极限

13.2.1 累次极限

定义 13.2.1. $z = f(x,y) : E \to \mathbb{R}$ 在 $N_0((x_0,y_0),\delta_0) \subset E(\delta_0 > 0)$ 内,对每个固定的 $y \neq y_0$, $\lim_{x \to x_0} f(x,y) = \phi(y)$ 存在,且 $\lim_{y \to y_0} \phi(y) = A$,称 A 为 f(x,y) 趋于 (x_0,y_0) 先 x 后 y 的累次极限,记为

$$A = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

命题 13.2.1 (累次极限和极限的关系). 累次极限都存在的时候极限可能不存在,如

$$f(x,y) = \begin{cases} 0 & xy = 0\\ 1 & xy \neq 0 \end{cases}$$

13.3. 多元连续函数

则 $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = \lim_{y\to 0} \lim_{x\to 0} f(x,y) = 1$,而 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在. 极限存在的时候累次极限不一定存在,如

$$f(x,y) = \begin{cases} (x+y)\sin\frac{1}{x}\sin\frac{1}{y} & xy \neq 0\\ 0 & xy = 0 \end{cases}$$

9

则 $\lim_{(x,y)\to(0,0)}f(x,y)=0$,而 $\lim_{x\to 0}f(x,y),\lim_{y\to 0}f(x,y)$ 都不存在,因此累次极限也就无从讨论.

上述反例的问题出在累次极限的第一个趋近下极限可能不存在,我们能证明,若极限本身存在,且第一个趋近下的极限存在,则累次极限存在且等于极限.即下面的定理。

定理 13.2.1 (累次极限等于极限的情况). f(x,y) 在 $N_0((x_0,y_0),\delta_0)$ 上有定义,且

- 1. $\lim_{(x,y)\to(x_0,y_0)} f(x,y) = A, A \in \mathbb{R} \text{ or } \infty$
- 2. 对 $U_0(y_0, \delta_0)$ 内固定的 $y \neq y_0$, 极限 $\lim_{x \to x_0} f(x, y) = \phi(y)$ 存在.

则

$$\lim_{y \to y_0} \phi(y) = A$$

证明 对 $A \in \mathbb{R}$, $\forall \varepsilon > 0, \exists \delta \in (0, \delta_0)$, 当 $(x, y) \in N_0((x_0, y_0), \delta)$ 时

$$|f(x,y) - A| < \frac{\varepsilon}{2}$$

因为第一个趋近下极限存在,在上式两边令 $x \to x_0$,则

$$|\phi(y) - A| \le \frac{\varepsilon}{2} < \varepsilon$$

证毕.

13.3 多元连续函数

- 多元复合向量函数连续性定理
- 集合连通性
- 连续函数性质
- 同胚映射

13.3.1 多元复合向量函数连续性定理

定理 13.3.1 (多元复合向量函数连续性定理). $y = f(x) = (f_1(x), \dots, f_m(x)) : E \to \mathbb{R}^m$ 连续, $g(y) = (g_1(y), \dots, g_l(y))$ 在 f(E) 上连续,则 g(f(x)) 在 E 上连续.

13.3.2 集合连通性

连通性的定义和结论见复变函数相关章节(在复变函数里是 \mathbb{R}^2 的情形,与 \mathbb{R}^n 没有本质区别)

13.3.3 连续函数性质

在 \mathbb{R} 上,闭区间上的连续函数存在最大、最小值,可以理解为:闭区间上的连续函数的值域是闭区间,这个结论推广到 \mathbb{R}^n 的情形,首先闭区间对应 \mathbb{R}^n 的紧集,因此我们先证明:连续的向量函数把紧集映到紧集。

定理 13.3.2. $E \subset \mathbb{R}^n$ 为紧集,向量函数 $\mathbf{u} = \mathbf{f}(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}^m$ 连续,则 $\mathbf{f}(E)$ 是 \mathbb{R}^m 中 紧集。

证明 假设存在 $\{x_k\} \subset E$ 使得 $|\lim_{k\to\infty} f(x_k)| = +\infty$,由 E 紧性,存在子序列 $\{x_{k_j}\}$ 使得 $\lim_{j\to\infty} x_{k_j} = x_0 \in E$,又 f 连续,于是 $\lim_{j\to\infty} f(x_{k_j}) = f(x_0)$,因此 f(E) 是紧集. 任取 f(E) 的聚点 u_0 ,则存在 $\{x_k'\} \subset E$ 使得 $\lim_{k\to\infty} f(x_k') = u_0$,由紧性,存在收敛子列 $\{x_{k_j}'\}$ 使得 $\lim_{j\to\infty} x_{k_j}' = x_0' \in E$,由 f(x) 在 x_0' 连续,有

$$\boldsymbol{u}_0 = \lim_{j \to \infty} \boldsymbol{f}(\boldsymbol{x}'_{k_j}) = \boldsymbol{f}(\boldsymbol{x}'_0) \in \boldsymbol{f}(E)$$

接下来考虑 m=1 的特例, 就得到:

推论 13.3.1 (最值定理). 设 $E \subset \mathbb{R}^n$ 为紧集, f(x) 在 E 连续, 则 f(E) 是 \mathbb{R} 上的紧集, 于是 f(x) 在 E 上取到最大、最小值。

 \mathbb{R} 上连续函数在区间上具有介质性质,该性质成立的充要条件是值域是一个区间,区间在 \mathbb{R}^n 中对应连通集合,因此先证明:连续的向量函数把连通集映到连通集。

定理 13.3.3. $E \subset \mathbb{R}^n$ 是连通集,向量函数 f(x) 在 E 上连续,则 f(E) 是 \mathbb{R}^m 上的连通集.

证明 设 $u_1, u_2 \in f(E) \subset \mathbb{R}^m$,则存在 $x_1, x_2 \in E$ 使得

$$\boldsymbol{u}_j = \boldsymbol{f}(\boldsymbol{x}_j) \quad j = 1, 2$$

由于 E 连通,则存在连接 $\boldsymbol{x}_1, \boldsymbol{x}_2$ 的道路 $\boldsymbol{h}(t), t \in [0,1]$,容易看出 $\boldsymbol{f}(\boldsymbol{h}(t))$ 是 $\boldsymbol{f}(E)$ 中连接 $\boldsymbol{u}_1, \boldsymbol{u}_2$ 的一条道路,说明 $\boldsymbol{f}(E)$ 是 \mathbb{R}^m 中的连通集。

于是考虑 m=1 的特例就得到

13.3. 多元连续函数 11

推论 13.3.2 (介值定理). $E \subset \mathbb{R}^n$ 是连通集, u = f(x) 在 E 连续, $u_1, u_2 \in f(E), u_1 < u_2$, 对 $\forall c \in (u_1, u_2)$, 存在 $\xi \in E$ 使得

$$f(\boldsymbol{\xi}) = c$$

 \mathbb{R} 中在闭区间上连续的函数一致连续,推广到 \mathbb{R}^n ,即在紧集上连续的函数一致连续。

定理 13.3.4 (一致连续定理). $E \subset \mathbb{R}^n$ 是紧集,若向量函数 f(x) 在 E 上连续,则在 E 一致连续。

证明 否则,假设 f 在 E 不一致连续,则存在两个序列 $\{x_n\}, \{x_n'\} \subset E$ 和 $\varepsilon_0 > 0$ 使得

$$|oldsymbol{x}_n - oldsymbol{x}_n'| < rac{1}{n} \quad |oldsymbol{f}(oldsymbol{x}_n) - oldsymbol{f}(oldsymbol{x}_n')| \geq arepsilon_0 \quad orall n \in \mathbb{N}$$

因为 E 是有界闭集,则 $\{x_n\}$ 存在收敛子列 $\{x_{n_k}\}$ 且极限在 E 内,记 $\lim_{k\to\infty}x_{n_k}=x_0\in E$,则

$$|\boldsymbol{x}_{n_k} - \boldsymbol{x}'_{n_k}| < \frac{1}{n_k}$$

于是

$$\lim_{k\to\infty} \boldsymbol{x}'_{n_k} = \lim_{k\to\infty} (\boldsymbol{x}_{n_k} + (\boldsymbol{x}'_{n_k} - \boldsymbol{x}_{n_k})) = \lim_{k\to\infty} \boldsymbol{x}_{n_k} = \boldsymbol{x}_0$$

与 $|f(\mathbf{x}_{n_k}) - f(\mathbf{x}'_{n_k})| \ge \varepsilon_0$ 矛盾.

13.3.4 同胚映射

定义 13.3.1 (同胚映射). $f(x): E \to f(E)$ 是连续的一一对应且其逆映射也连续,则称 f 为 $E \to f(E)$ 的同胚映射. 也称为变换。

Chapter 14

多元微分学

14.1 偏导数与全微分

14.1.1 偏导数

定义 14.1.1. 设函数 $u=f(\boldsymbol{x})=f(x_1,x_2,\cdots,x_n)$ 在区域 $D\subset\mathbb{R}^n$ 有定义, $\boldsymbol{x}_0=(x_1^0,\cdots,x_n^0)$,对 $1\leq i\leq n$,若一元函数

$$f(x_1^0,\cdots,x_{i-1}^0,x_i,x_{i+1}^0,\cdots,x_n^0)$$

在 x_i^0 处的导数存在,则称 $f(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处关于 x_i 可偏导,导数可记为

$$\frac{\partial f(\boldsymbol{x}_0)}{\partial x_i} \quad f'_{x_i}(\boldsymbol{x}_0) \quad \frac{\partial u}{\partial x_i} \bigg|_{\boldsymbol{x}_0}$$

若 f(x) 在 D 内的每一点都关于 x_i 可偏导,将其偏导数记为

$$\frac{\partial f(\boldsymbol{x})}{\partial x_i}$$
 $f'_{x_i}(\boldsymbol{x})$ $\frac{\partial u}{\partial x_i}$

14.1.2 方向导数

定义 14.1.2. u = f(x) 在区域 $D \subset \mathbb{R}^n$ 上有定义, $x_0 \in D$, $v = (\cos \theta_1, \cdots, \cos \theta_n)$ 为一方向,如果

$$\lim_{t\to 0+0} \frac{f(\boldsymbol{x}_0+t\boldsymbol{v})-f(\boldsymbol{x}_0)}{t}$$

存在,称该极限为 f(x) 在 x_0 处沿 v 的**方向导数**,记为 $\frac{\partial f(x_0)}{\partial v}$ 或 $\frac{\partial u}{\partial v}\Big|_{x_0}$.

设 $f(\mathbf{x})$ 在 \mathbf{x}_0 处关于 x_i 的偏导数 $\frac{\partial f(\mathbf{x}_0)}{\partial x_i}$ 存在并等于 A ,若记 \mathbf{v}_i 是第 i 个分量为 1 的单位向量,则 $\frac{\partial f(\mathbf{x}_0)}{\partial \mathbf{v}_i} = A$.

14.1.3 全微分

定义 14.1.3. 设函数 $f(x) = f(x_1, \dots, x_n)$ 在区域 $D \subset \mathbb{R}^n$ 上有定义,记 $\Delta x = (\Delta x_1, \dots, \Delta x_n)$,称为自变量的全增量. 设 $x = x_0 + \Delta x$,若存在仅依赖 x_0 的常数 A_i 使得

$$\Delta f(\boldsymbol{x}_0) = f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) - f(\boldsymbol{x}_0) = \sum_{i=1}^n A_i \Delta x_i + o(|\Delta \boldsymbol{x}|) \quad |\Delta \boldsymbol{x}| \to 0$$

则称 $f(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处可微,并称 $\sum_{i=1}^n A_i \Delta x_i$ 为 $f(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处的全微分,记为 $\mathrm{d} f(\boldsymbol{x}_0)$. 当 x_i 是自变量时,定义 $\mathrm{d} x_i = \Delta x_i$,于是 $f(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处的全微分可以记为

$$\mathrm{d}f(\boldsymbol{x}_0) = \sum_{i=1}^n A_i \mathrm{d}x_i$$

定理 14.1.1. f(x) 在区域 $D \subset \mathbb{R}^n$ 有定义,在 \mathbf{x}_0 处可微,微分记为 $\mathrm{d} f(\mathbf{x}_0) = \sum_{i=1}^n A_i \mathrm{d} x_i$,则

- 1. f(x) 在 x_0 处连续;
- 2. $f(\mathbf{x})$ 关于 x_i 可偏导,且 $\frac{\partial f(\mathbf{x}_0)}{\partial x_i} = A_i$.

证明

1. 记 $\Delta x = x - x_0$,则 $x \to x_0$ 等价于 $\Delta x \to 0$,即 $\Delta x_i \to 0, \forall i (1 \le i \le n)$,于是

$$\lim_{\Delta \boldsymbol{x} \to \boldsymbol{0}} [f(\boldsymbol{x}_0 + \Delta \boldsymbol{x}) - f(\boldsymbol{x}_0)] = \lim_{\Delta \boldsymbol{x} \to \boldsymbol{0}} \left[\sum_{i=1}^n A_i \Delta x_i + o(|\Delta \boldsymbol{x}|) \right] = 0$$

即 f(x) 在 x_0 处连续.

2. 对任意固定的 i , 当 $j \neq i$ 时, 令 $x_j = x_j^0$, 即 $\Delta x_j = 0$, 此时

$$\Delta \boldsymbol{x} = (0, \cdots, \Delta x_i, 0, \cdots, 0) \quad |\Delta \boldsymbol{x}| = |\Delta x_i|$$

于是

$$\lim_{\Delta x_i \to 0} \frac{f(x_1^0, \dots, x_{i-1}^0, x_i^0 + \Delta x_i, x_{i+1}^0, \dots, x_n^0) - f(\boldsymbol{x}_0)}{\Delta x_i}$$

$$= \lim_{\Delta x_i \to 0} \left(A_i + \frac{o(|\Delta x_i|)}{\Delta x_i} \right)$$

$$= A_i$$

从而 $f(\boldsymbol{x})$ 关于 x_i 可偏导,且 $\frac{\partial f(\boldsymbol{x}_0)}{\partial x_i} = A_i$,证毕.

上诉定理说明当 f(x) 在 x_0 处可微时,有

$$df(\mathbf{x}_0) = \sum_{i=1}^n \frac{\partial f(\mathbf{x}_0)}{\partial x_i} dx_i$$

显然可偏导和可微在多元函数的情形下是不等价的,但是我们有定理:

定理 14.1.2. f(x) 在 $D \subset \mathbb{R}^n$ 上有定义, $x_0 \in D$,设 f(x) 在 x_0 的邻域 $U(x_0, \delta_0)$ 内存在各个偏导数,并且这些偏导数在 x_0 处连续,则 f(x) 在 x_0 处可微.

证明繁琐, 略. 可见课本 P47-P49.

根据课本习题第一章第十五题,这个条件可以弱化为: 有 n-1 个偏导数在 x_0 处连续.

若 f(x) 在区域 D 上关于自变量的各个分量都具有连续偏导数,称 $f(x) \in C^1(D)$,也称**连续可**微.

定理 14.1.3. f(x) 在区域 $D \subset \mathbb{R}^n$ 有定义,在 x_0 处可微,则 f(x) 在 x_0 处沿 $\mathbf{v} = (\cos \theta_1, \cdots, \cos \theta_n)$ 的方向导数为

$$\frac{\partial f(\boldsymbol{x}_0)}{\partial \boldsymbol{v}} = \sum_{i=1}^n \frac{\partial f(\boldsymbol{x}_0)}{\partial x_i} \cos \theta_i$$

证明 由可微性和方向导数定义,得到

$$\lim_{t \to 0+0} \frac{f(\boldsymbol{x}_0 + t\boldsymbol{v}) - f(\boldsymbol{x}_0)}{t} = \lim_{t \to 0+0} \frac{\sum_{i=1}^n \frac{\partial f(\boldsymbol{x}_0)}{\partial x_i} t \cos \theta_i + o(|t|)}{t} = \sum_{i=1}^n \frac{\partial f(\boldsymbol{x}_0)}{\partial x_i} \cos \theta_i$$

证毕.

14.1.4 梯度

由上一小节的结论,当 f(x) 在 $x_0 \in \mathbb{R}^n$ 处可微时,f(x) 沿任意方向 $v = (\cos \theta_1, \cdots, \cos \theta_n)$ 的方向导数为

$$\frac{\partial f(\boldsymbol{x}_0)}{\partial \boldsymbol{v}} = \sum_{i=1}^n \frac{\partial f}{\partial x_i} \cos \theta_i$$

当 f(x) 在 x_0 的 n 个偏导数不全为零时,对模长确定的方向向量(不妨设模长为 1,即单位方向向量)f(x) 沿方向

$$\mathbf{v}_0 = \frac{1}{\sqrt{\sum_{i=1}^n \left(\frac{\partial f(\mathbf{x}_0)}{\partial x_i}\right)^2}} \left(\frac{\partial f(\mathbf{x}_0)}{\partial x_1}, \cdots, \frac{\partial f(\mathbf{x}_0)}{\partial x_n}\right)$$

的方向导数达到最大值,因此向量 $\left(\frac{\partial f(\boldsymbol{x}_0)}{\partial x_1}, \cdots, \frac{\partial f(\boldsymbol{x}_0)}{\partial x_n}\right)$ 是 $f(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处方向导数达到最大的方向,同时它的模就是该方向的方向导数,于是我们引进梯度的定义.

定义 14.1.4. 设 f(x) 在 x_0 处可微,则称向量

$$\left(\frac{\partial f(\boldsymbol{x}_0)}{\partial x_1}, \cdots, \frac{\partial f(\boldsymbol{x}_0)}{\partial x_n}\right)$$

为 f(x) 在 x_0 处的梯度,记为 $\operatorname{grad} f(x_0)$,即

$$\operatorname{grad} f(\boldsymbol{x}_0) = \left(\frac{\partial f(\boldsymbol{x}_0)}{\partial x_1}, \cdots, \frac{\partial f(\boldsymbol{x}_0)}{\partial x_n}\right)$$

设 f,g 均是可微函数,则从定义容易推出梯度有以下性质:

- 1. $\operatorname{grad} C = \mathbf{0}$;
- 2. $\forall \alpha, \beta \in \mathbb{R}, \operatorname{grad}(\alpha f + \beta g) = \alpha \operatorname{grad} f + \beta \operatorname{grad} g$;
- 3. $\operatorname{grad}(f \cdot g) = f \cdot \operatorname{grad} g + g \cdot \operatorname{grad} f$;
- 4. grad $\frac{f}{g} = \frac{1}{g^2} (g \cdot \operatorname{grad} f f \cdot \operatorname{grad} g) (g \neq 0)$.

从梯度的定义可以看出,当 f(x) 在 x_0 处可微时,f(x) 沿方向 v 的方向导数可以简单记成 $\frac{\partial f(x_0)}{\partial v} = \operatorname{grad} f(x_0) \cdot v$.

14.1.5 向量函数的导数与全微分

定义 14.1.5. 向量函数 $u = f(x) = (f_1(x), \dots, f_m(x))^T$ 在区域 $D \subset \mathbb{R}^n$ 上有定义, $x_0 \in D, \Delta x = (\Delta x_1, \dots, \Delta x_n)^T$ 为 x 在 x_0 处的全增量,如果存在 $m \times n$ 矩阵

$$\boldsymbol{A} = (A_{ij})$$

使得 $|\Delta x| \to 0$ 时

$$\Delta \boldsymbol{f}(\boldsymbol{x}_0) = (\Delta f_1(\boldsymbol{x}_0), \cdots, \Delta f_m(\boldsymbol{x}_0))^T$$

$$= \boldsymbol{A} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{pmatrix} + \begin{pmatrix} \alpha_1(|\Delta \boldsymbol{x}|) \\ \vdots \\ \alpha_m(|\Delta \boldsymbol{x}|) \end{pmatrix}$$

其中 \boldsymbol{A} 中的元素仅依赖于 \boldsymbol{x}_0 而不依赖于 $\Delta \boldsymbol{x}$,对于 $\forall j (1 \leq j \leq m)$, $\alpha_j(|\Delta \boldsymbol{x}|)$ 依赖于 $\Delta \boldsymbol{x}$,并且满足 $\lim_{|\Delta \boldsymbol{x}| \to 0} \frac{\alpha_j(|\Delta \boldsymbol{x}|)}{|\Delta \boldsymbol{x}|} = 0$,则称 $\boldsymbol{f}(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处可微或可导,矩阵 \boldsymbol{A} 称为

f(x) 在 x_0 处的 Fréchet 导数,记作 $f'(x_0)$ 或 D $f(x_0)$; $A\Delta x$ 称为 f(x) 在 x_0 处的全 微分,记作 d $f(x_0)$,即

$$\mathrm{d} \boldsymbol{f}(\boldsymbol{x}_0) = \boldsymbol{A} \Delta \boldsymbol{x} = \boldsymbol{f}'(\boldsymbol{x}_0) \Delta \boldsymbol{x} = \mathrm{D} \boldsymbol{f}(\boldsymbol{x}_0) \Delta \boldsymbol{x}$$

若规定 $\mathrm{d}\boldsymbol{x} = \Delta\boldsymbol{x}$,则有 $\mathrm{d}\boldsymbol{f}(\boldsymbol{x}_0) = \boldsymbol{f}'(\boldsymbol{x}_0)\mathrm{d}\boldsymbol{x}$.

下面讨论如何判断一个向量函数的可微性,以及当它可微时,如何求它的导数.

定理 14.1.4. 设 D 是 \mathbb{R}^n 中的区域, $\mathbf{x}_0 \in D$,向量函数 $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$ 在 D 上有定义,则 $\mathbf{f}(\mathbf{x})$ 在 \mathbf{x}_0 处可微的充分必要条件是对于 $\forall j (1 \leq j \leq m)$, $f_j(\mathbf{x})$ 在 \mathbf{x}_0 处可微,记

$$\mathbf{A} = \left(\frac{\partial f_i(\mathbf{x}_0)}{\partial x_j}\right)_{m \times n}$$

则当 f(x) 在 x_0 处可微时,有

$$\mathrm{d} oldsymbol{f}(oldsymbol{x}_0) = oldsymbol{A} \mathrm{d} oldsymbol{x} \quad ext{or} \quad oldsymbol{f}'(oldsymbol{x}_0) = oldsymbol{A}$$

证明

1. 必要性: 设 f(x) 在 x_0 可微, 从而存在 $m \times n$ 矩阵 (A_{ii}) 使得当 $|\Delta x| \to 0$ 时有

$$\Delta \boldsymbol{f}(\boldsymbol{x}_0) = \begin{bmatrix} \Delta f_1(\boldsymbol{x}_0) \\ \vdots \\ \Delta f_m(\boldsymbol{x}_0) \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^n A_{1i} \Delta x_i \\ \vdots \\ \sum_{i=1}^n A_{mi} \Delta x_i \end{bmatrix} + \begin{bmatrix} \alpha_1(|\Delta \boldsymbol{x}|) \\ \vdots \\ \alpha_m(|\Delta \boldsymbol{x}|) \end{bmatrix}$$

其中 $\alpha_j(|\Delta x|)$ 依赖于 Δx ,且 $\lim_{|\Delta x|\to 0} \frac{\alpha_j(|\Delta x|)}{|\Delta x|} = 0$,比较上式两边向量的分量,得到: 当 $|\Delta x|\to 0$ 时

$$\Delta f_j(\boldsymbol{x}_0) = \sum_{i=1}^n A_{ji} \Delta x_i + \alpha_j(|\Delta \boldsymbol{x}|)$$

由多元函数可微定义可知, $f_i(x)$ 在 x_0 处可微,且

$$A_{ji} = \frac{\partial f_j(\boldsymbol{x}_0)}{\partial x_i}$$

2. 充分性: 设对 $\forall j (1 \leq j \leq m)$, $f_j(\boldsymbol{x})$ 在 \boldsymbol{x}_0 处可微,则

$$\Delta f_j(\boldsymbol{x}_0) = \sum_{i=1}^n \frac{\partial f_j(\boldsymbol{x}_0)}{\partial x_i} \Delta x_i + \alpha_j(|\Delta \boldsymbol{x}|)$$

其中
$$\alpha_j(|\Delta x|)$$
 依赖于 Δx ,且 $\lim_{|\Delta x| \to 0} \frac{\alpha_j(|\Delta x|)}{|\Delta x|} = 0$,因此

$$\Delta \boldsymbol{f}(\boldsymbol{x}_0) = (\Delta f_1(\boldsymbol{x}_0), \cdots, \Delta f(\boldsymbol{x}_0))^T$$

$$= \left(\frac{\partial f_i(\boldsymbol{x})}{\partial x_j}\right)_{m \times n} \begin{pmatrix} \Delta x_1 \\ \vdots \\ \Delta x_n \end{pmatrix} + \begin{pmatrix} \alpha_1(|\Delta \boldsymbol{x}|) \\ \vdots \\ \alpha_m(|\Delta \boldsymbol{x}|) \end{pmatrix}$$

其中 $\alpha(|\Delta x|)$ 满足 $\lim_{|\Delta x|\to 0} \frac{\alpha(|\Delta x|)}{|\Delta x|} = \mathbf{0}$,由定义 $\mathbf{f}(x)$ 在 \mathbf{x}_0 处可微,且 $\mathbf{f}'(\mathbf{x}_0) = \mathbf{A}$,证毕.

当向量函数 $\mathbf{f}(\mathbf{x}) = (f_1(\mathbf{x}), \cdots, f_m(\mathbf{x}))^T$ 中的每个分量函数在 \mathbf{x}_0 处均可微时,矩阵 $\mathbf{A} = \mathbf{f}'(\mathbf{x}_0)$ 称为 $\mathbf{f}(\mathbf{x})$ 在 \mathbf{x}_0 处的雅可比矩阵,记为 $\mathbf{J}_{\mathbf{f}}(\mathbf{x}_0)$. 特别地,当 $\mathbf{f}(\mathbf{x}_0)$ 是 n 为向量函数时, \mathbf{A} 是 $n \times n$ 矩阵,此时 $\mathbf{J}_{\mathbf{f}}(\mathbf{x}_0)$ 的行列式称为 $\mathbf{f}(\mathbf{x})$ 在 \mathbf{x}_0 处的雅可比行列式,记为

$$|\boldsymbol{f}'(\boldsymbol{x}_0)|$$
 or $\frac{\partial (f_1, \dots, f_n)}{\partial (x_1, \dots, x)n}\Big|_{\boldsymbol{x}_0}$

当 $f_j(\mathbf{x})$ 的各个偏导数都在 \mathbf{x}_0 处连续, $f_j(\mathbf{x})$ 在 \mathbf{x}_0 处可微,因此 $\mathbf{f}(\mathbf{x})$ 在 \mathbf{x}_0 处可微. 另外,若对于 $\forall j (1 \leq j \leq m)$, $f_j(\mathbf{x})$ 的各个偏导数在区域 D 上连续,称 $\mathbf{f}(\mathbf{x})$ 在 D 上是 C^1 的,记为 $\mathbf{f}(\mathbf{x}) \in C^1(D)$. 特别地,我们称 \mathbb{R}^n 中区域 $D \to \Omega$ 的变换 $\mathbf{y} = \mathbf{f}(\mathbf{x})$ 是 C^1 的,如果 $\mathbf{f}(\mathbf{x}) \in C^1(D)$, $\mathbf{f}^{-1}(\mathbf{y}) \in C^1(\Omega)$.

利用向量函数导数的记号,对一个多元函数 f(x) , 当它可微时

$$f'(\boldsymbol{x}) = \left(\frac{\partial f(\boldsymbol{x})}{\partial x_1}, \cdots, \frac{\partial f(\boldsymbol{x})}{\partial x_n}\right) = \operatorname{grad} f(\boldsymbol{x})$$
 (14.1)

14.2 多元函数求导法

14.2.1 导数的四则运算

多元函数四则运算的导数和一元函数相同.

14.2.2 复合函数的求导法

复合函数的导数和一元函数相同.

推论 14.2.1. 设 D, Ω 为 \mathbb{R}^n 中的区域, $\mathbf{y} = \mathbf{f}(\mathbf{x})$ 是 $D \to \Omega$ 的 C^1 变换,则对 $\forall \mathbf{x} \in D$ 有

$$(\boldsymbol{f}^{-1})'(\boldsymbol{y})\cdot \boldsymbol{f}'(\boldsymbol{x}) = \boldsymbol{E}$$

其中 y = f(x); 对于 $y \in \Omega$, 有

$$f'(x) \cdot (f^{-1})(y) = E$$

其中 $x = f^{-1}(y)$. 特别地, 当 y = f(x) 时

$$(f^{-1})'(y) = [f'(x)]^{-1}$$

其中 E 是 $n \times n$ 单位矩阵, $[f'(x)]^{-1}$ 为 f'(x) 的逆矩阵.

下面的推论是多元复合函数求偏导数的基础:

推论 14.2.2. 设函数 $f(u) = f(u_1, \dots, u_m)$ 在区域 $\Omega \subset \mathbb{R}^m$ 上有定义,且在 $u_0 = (u_1^0, \dots, u_m^0)^T \in \Omega$ 处可微,设向量函数

$$\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x}) = (u_1(\boldsymbol{x}), \cdots, u_m(\boldsymbol{x}))^T$$

在区域 $D \subset \mathbb{R}^n$ 上有定义,在 $\mathbf{x}_0 = (x_1^0, \dots, x_n^0) \in D$ 处可微,且 $\mathbf{u}_0 = u(\mathbf{x}_0)$,则对于 $\forall i (1 \leq i \leq n)$, $f(\mathbf{u}(\mathbf{x}))$ 在 \mathbf{x}_0 处关于 x_i 可偏导,且

$$\frac{\partial f(\boldsymbol{u}(\boldsymbol{x}_0))}{\partial x_i} = \sum_{j=1}^m \left(\frac{\partial f(\boldsymbol{u}_0)}{\partial u_j}, \frac{\partial u_j(\boldsymbol{x}_0)}{\partial x_i} \right)$$

证明 由 14.1得到

$$(f(\boldsymbol{u}(\boldsymbol{x})))'|_{\boldsymbol{x}=\boldsymbol{x}_0} = \left(\frac{\partial f(\boldsymbol{u}(\boldsymbol{x}_0))}{\partial x_1}, \cdots, \frac{\partial f(\boldsymbol{u}(\boldsymbol{x}_0))}{\partial x_n}\right)$$

用矩阵形式表示,得到

$$f'(\boldsymbol{u}(\boldsymbol{x}_{0}))\boldsymbol{u}'(\boldsymbol{x}_{0})$$

$$=\begin{pmatrix} \frac{\partial u_{1}(\boldsymbol{x}_{0})}{\partial x_{1}} & \frac{\partial u_{1}(\boldsymbol{x}_{0})}{\partial x_{2}} & \cdots & \frac{\partial u_{1}(\boldsymbol{x}_{0})}{\partial x_{n}} \\ \frac{\partial u_{2}(\boldsymbol{x}_{0})}{\partial x_{1}} & \frac{\partial u_{2}(\boldsymbol{x}_{0})}{\partial x_{2}} & \cdots & \frac{\partial u_{2}(\boldsymbol{x}_{0})}{\partial x_{n}} \\ \vdots & \vdots & & \vdots \\ \frac{\partial u_{m}(\boldsymbol{x}_{0})}{\partial x_{1}} & \frac{\partial u_{m}(\boldsymbol{x}_{0})}{\partial x_{2}} & \cdots & \frac{\partial u_{m}(\boldsymbol{x}_{0})}{\partial x_{n}} \end{pmatrix}$$

$$=\left(\sum_{j=1}^{m} \left(\frac{\partial f(\boldsymbol{u}_{0})}{\partial u_{j}} \cdot \frac{\partial u_{j}(\boldsymbol{x}_{0})}{\partial x_{1}}\right), \cdots, \sum_{j=1}^{m} \left(\frac{\partial f(\boldsymbol{u}_{0})}{\partial u_{j}} \cdot \frac{\partial u_{j}(\boldsymbol{x}_{0})}{\partial x_{n}}\right)\right)$$

又因为 $(f(\boldsymbol{u}(\boldsymbol{x})))'|_{\boldsymbol{x}=\boldsymbol{x}_0} = f'(\boldsymbol{u}(\boldsymbol{x}_0))\boldsymbol{u}'(\boldsymbol{x}_0)$, 比较分量即得,证毕.

此处的 $\mathbf{u}(\mathbf{x})$ 在 \mathbf{x}_0 处可微可以减弱成在 \mathbf{x}_0 处存在各个偏导数. 但 $f(\mathbf{u})$ 在 \mathbf{u}_0 处可微不能减弱成存在各个偏导数,例如

$$f(u,v) = \begin{cases} 1 & uv \neq 0 \\ 0 & uv = 0 \end{cases} (u,v) \in \mathbb{R}^2$$

令 u, v = t , 则 g(t) = f(t, t) 在 t = 0 处不连续不可导.

上述推论给出的求导公式称为链锁法则. 对二元形式,设 z=f(u,v), u=u(x,y), v=v(x,y) 都是可微函数,则

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}$$

若给出的函数有形式 z = f(u(x, y), v(x, y)), 可以用下列记号

$$\frac{\partial z}{\partial x} = f_1' \frac{\partial u}{\partial x} + f_2' \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = f_1' \frac{\partial u}{\partial y} + f_2' \frac{\partial v}{\partial y}$$

其中 f_i' 指的是 f 对第 i 个变量求偏导数.

14.2.3 高阶偏导数

设 $f(\mathbf{x}) = f(x_1, \dots, x_n)$ 在区域 $D \subset \mathbb{R}^n$ 上具有各个偏导数. 由定义,其每个偏导数 $\frac{\partial f(\mathbf{x})}{\partial x_i}$ 作为 D 上的 n 元函数,若它们仍具有各个偏导数,称它们的偏导数为 $f(\mathbf{x})$ 的 二阶偏导数. 类似定义更高阶偏导数.

当
$$\partial \left(\frac{\partial f(\mathbf{x})}{\partial x_i}\right) / \partial x_k$$
 存在时,将其记为 $\frac{\partial^2 f(\mathbf{x})}{\partial x_k \partial x_i}$, $f''_{x_k x_i} f''_{ki}(x)$. 附加一此条件可以使真险偏异数的值对求异顺序无关。

定理 14.2.1. 设函数 f(x) 在区域 $D \subset \mathbb{R}^n$ 上有定义, $x_0 \in D$,且对于 $1 \leq j < k \leq n$, $f''_{kj}(x), f''_{jk}(x)$ 在 $U(x_0, \delta)$ 内存在,且在 x_0 处连续,则二者相等.

证明 不妨设 j=1, k=2,记 $\boldsymbol{x}=(x,y,\boldsymbol{x}'), \boldsymbol{x}_0=(x_0,y_0,\boldsymbol{x}_0')$,对充分小的 $\Delta x, \Delta y$,考虑

$$I(\Delta x, \Delta y) := \frac{f(x_0 + \Delta x, y_0 + \Delta y, \mathbf{x}'_0) - f(x_0 + \Delta x, y_0, \mathbf{x}'_0)}{\Delta x \Delta y} - \frac{f(x_0, y_0 + \Delta y, \mathbf{x}'_0) - f(\mathbf{x}_0)}{\Delta x \Delta y}$$

记

$$g(x) = f(x, y_0 + \Delta y, \mathbf{x}'_0) - f(x, y_0, \mathbf{x}'_0)$$
$$h(y) = f(x_0 + \Delta x, y, \mathbf{x}'_0) - f(x_0, y, \mathbf{x}'_0)$$

则由一元函数微分中值定理得到

$$I(\Delta x, \Delta y) = \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x \Delta y} = \frac{g'(x_0 + \theta_1 \Delta x)}{\Delta y}$$
$$= \frac{f'_x(x_0 + \theta_1 \Delta x, y_0 + \Delta y, \mathbf{x}'_0) - f'_x(x_0 + \theta_1 \Delta x, y_0, \mathbf{x}'_0)}{\Delta y}$$
$$= f''_{yx}(x_0 + \theta_1 \Delta x, y_0 + \theta_2 \Delta y, \mathbf{x}'_0)$$

其中 $0 < \theta_1, \theta_2 < 1$, 同理得到

$$I(\Delta x, \Delta y) = f_{xy}''(x_0 + \theta_4 \Delta x, y_0 + \theta_3 \Delta y, \mathbf{x}_0')$$

联立两式,利用它们在 x_0 处的连续性,令 $\Delta x, \Delta y \rightarrow 0$,得到

$$f_{yx}''(\boldsymbol{x}_0) = f_{xy}''(\boldsymbol{x}_0)$$

14.2.4 复合函数的高阶偏导数

没有一般性的公式,需要逐次求出.

14.2.5 一阶微分的形式不变性与高阶微分

定义 14.2.1. $D \subset \mathbb{R}^n$ 是区域,函数 f(x) 在 $x \in D$ 处可微,即

$$df(\mathbf{x}) = \sum_{i=1}^{n} \frac{\partial f(\mathbf{x})}{\partial x_i} dx_i$$

若 $\frac{\partial f}{\partial x_i}$ 仍是可微函数,称

$$\sum_{i=1}^{n} \left(\sum_{k=1}^{n} \frac{\partial^{2} f(\boldsymbol{x})}{\partial x_{k} \partial x_{i}} dx_{k} \right) dx_{i}$$

为 f(x) 的二阶微分,记为 $d^2 f(x)$. 归纳地得到 $d^k f(x) = d(d^{k-1} f(x))$.

若形式地记 $\mathrm{d}f(\boldsymbol{x}) = \left(\sum_{i=1}^n \mathrm{d}x_i \frac{\partial}{\partial x_i}\right) f(\boldsymbol{x})$,当 $f(\boldsymbol{x})$ 的每个 k 阶偏导数都连续,可以用容易记忆的方法记成

$$d^k f(\boldsymbol{x}) = \left(\sum_{i=1}^n dx_i \frac{\partial}{\partial x_i}\right)^k f(\boldsymbol{x})$$

特别地,对二元函数 f(x,y),若各个 k 阶导数都存在且连续,则

$$d^{k} f(x,y) = \left(dx \frac{\partial}{\partial x} + dy \frac{\partial}{\partial y}\right)^{k} f(x,y) = \sum_{j=0}^{k} C_{k}^{j} \frac{\partial^{k} f(x,y)}{\partial x^{k-j} \partial y^{j}} dx^{k-j} dy^{j}$$

命题 14.2.1 (一阶微分的形式不变性). 设 $f(\mathbf{u}) = f(u_1, \dots, u_m)$ 在区域 $D \subset \mathbb{R}^m$ 上可微,则 $f(\mathbf{u})$ 的微分 $\mathrm{d}f(\mathbf{u}) = f'(\mathbf{u})\mathrm{d}\mathbf{u}$,此时 \mathbf{u} 是自变量.

设 $u = (u_1(x), \cdots, u_m(x))^T$ 是区域 $\Omega \subset \mathbb{R}^n$ 上的可微向量函数,且 $u(\Omega) \subset D$,则

$$df(\boldsymbol{u}(\boldsymbol{x})) = f'(\boldsymbol{u}(\boldsymbol{x}))\boldsymbol{u}'(\boldsymbol{x})d\boldsymbol{x}$$

因为 $\mathrm{d} \pmb{u} = (u_1'(\pmb{x})\mathrm{d} \pmb{x}, \cdots, u_m'(\pmb{x})\mathrm{d} \pmb{x})^T = \pmb{u}'(\pmb{x})\mathrm{d} \pmb{x}$, 因此 \pmb{u} 是中间变量时

$$df(\boldsymbol{u}) = f'(\boldsymbol{u}(\boldsymbol{x}))\boldsymbol{u}'(\boldsymbol{x})d\boldsymbol{x} = f'(\boldsymbol{u})d\boldsymbol{u}$$

因为二阶以上的微分不再具有形式不变性,因此多元函数情形也没有高阶微分的形式不变性.

Part II

习题

Chapter 1

多元函数的极限和连续

1.1 例题

题目 1.1.1 (p33-4). 证明: 不存在 $\mathbb{R} \to \mathbb{R}^2$ 的同胚映射.

证明 否则,设 f(x) 是同胚,取 $E = \mathbb{R} \setminus \{0\}$, $f(E) = \mathbb{R}^2 \setminus \{f(0)\}$,则 E 是 \mathbb{R} 的不连通集,f(E) 是 \mathbb{R}^2 的连通集,但连续函数 f^{-1} 把 f(E) 映到 E ,矛盾.

1.2 习题

题目 1.2.1 (1). 证明 \mathbb{R}^n 中两点间的距离满足三角不等式: $\forall x, y, z \in \mathbb{R}^n$, 成立 $|x-z| \leq |x-y| + |y-z|$.

证明 设 $\boldsymbol{x} = (x_1, \dots, x_n)$, $\boldsymbol{y}, \boldsymbol{z}$ 同理, 则即证

$$\sqrt{(x_1-z_1)^2+\cdots+(x_n-z_n)^2} \le \sqrt{(x_1-y_1)^2+\cdots+(x_n-y_n)^2} + \sqrt{(y_1-z_1)^2+\cdots+(y_n-z_n)^2}$$

令 $p_i = x_i - y_i, q_i = y_i - z_i$, 则上式等价于

$$\sqrt{(p_1 + q_1)^2 + \dots + (p_n + q_n)^2} \le \sqrt{p_1^2 + \dots + p_n^2} + \sqrt{q_1^2 + \dots + q_n^2}$$

$$\iff p_1 q_1 + \dots + p_n q_n \le (p_1^2 + \dots + p_n^2)(q_1^2 + \dots + q_n^2)$$

由 Cauchy 不等式,上式成立,证毕.

题目 1.2.2 (2). 若 $\lim_{k\to\infty} |x_k| = +\infty$,则称 \mathbb{R}^n 中的点列 $\{x_k\}$ 趋于 ∞ . 现在设点列 $\{x_k = (x_1^k, \cdots, x_n^k)\}$ 趋于 ∞ ,试判断下列命题是否正确.

1. 对 $\forall i (1 \leq i \leq n)$, 序列 $\{x_i^k\}$ 趋于 ∞ ;

2. $\exists i_0 (i \leq i_0 \leq n)$, 序列 $\{x_{i_0}^k\}$ 趋于 ∞ .

证明

- 1. 错误,如 $\mathbf{x}_k = (k, 0, \dots, 0)$,则 $\lim_{k \to \infty} |\mathbf{x}_k| = +\infty$,但对 $\forall i (2 \le i \le n)$, $\{x_i^k\}$ 趋于 ∞ 不成立.
- 2. 错误,如 $\mathbf{x}_k = (k + (-1)^k k, k (-1)^k k, 0, \dots, 0)$,则 $\lim_{k \to \infty} |\mathbf{x}_k| = +\infty$,但 $\{x_1^k\}, \{x_2^k\}$ 广义极限不存在, $\lim_{k \to \infty} x_i^k = 0, \forall i (3 \le i \le n)$.

题目 1.2.3 (3). 求下列集合的聚点集

1.
$$E = \left\{ \left(\frac{q}{p}, \frac{q}{p}, 1 \right) \in \mathbb{R}^3 : (p, q) = 1, q ;$$

2.
$$E = \left\{ \left(\ln \left(1 + \frac{1}{k} \right)^k, \sin \frac{k\pi}{2} \right) : k = 1, 2, \dots \right\};$$

3.
$$E = \left\{ \left(r \cos \left(\tan \frac{\pi}{2} r \right), r \sin \left(\tan \frac{\pi}{2} r \right) \right) \in \mathbb{R}^2 : 0 \le r \le 1 \right\}$$
.

解

1.
$$E' = \{(x, x, 1) : x \in [0, 1]\}$$
;

2.
$$E' = \{(1,0), (1,-1), (1,1)\}$$
;

3.
$$E' = \{(x, y) : x^2 + y^2 = 1\}$$

题目 1.2.4 (4). 求下列集合的内部、外部、边界及闭包:

1.
$$E = \{(x, y, z) \in \mathbb{R}^3 : x > 0, y > 0, z = 1\}$$
;

2.
$$E = \{(x, y) \in \mathbb{R}^2 : x > 0, x^2 + y^2 - 2x > 1\}$$
;

解

1.
$$E^{\circ} = \emptyset, (E^{c})^{\circ} = \mathbb{R}^{3} \setminus \{(x, y, 1) : x, y \ge 0\}$$

$$\partial E = \{(x, y, 1) : x, y \ge 0\}$$

$$\overline{E} = \partial E$$

2.
$$E^{\circ} = E, (E^{c})^{\circ} = \mathbb{R}^{3} \setminus \{(x, y) : x \geq 0, x^{2} + y^{2} - 2x \geq 1\}$$

$$\partial E = \{(x, y) : x = 0, y^{2} \geq 1\} \cup \{(x, y) : x > 0, x^{2} + y^{2} - 2x = 1\}$$

$$\overline{E} = \{(x, y) : x \geq 0, x^{2} + y^{2} \geq 1\}$$

1.2. 习题 27

题目 1.2.5 (5). 设 $\{(x_k, y_k)\} \subset \mathbb{R}^2$ 是一个点列,判断如下命题是否为真: 点列 $\{(x_k, y_k)\}$ 在 \mathbb{R}^2 中有聚点的充分必要条件是 $\{x_k y_k\}$ 在 \mathbb{R} 中有聚点.

证明

- 1. 充分性不成立,如 $x_k = k, y_k = \frac{1}{k+1}$,则 $\{(x_k, y_k)\}$ 在 \mathbb{R}^2 中无聚点,而 $\{x_k y_k\}$ 有聚点 1.
- 2. 必要性不成立,如 $x_k = \frac{1}{k}, y_k = 0$,则 $\{(x_k, y_k)\}$ 在 \mathbb{R}^2 中有聚点 0,而 $\{x_k y_k\} = \{0\}$ 无聚点.

题目 1.2.6 (6). 设 $E \subset \mathbb{R}^n$, 证明

- 1. $\overline{E} = E^{\circ} \cup \partial E$;
- 2. $E' = \overline{E}'$.

证明

- 1. $E^{\circ} \subset E, \partial E \subset \overline{E}$,下证 $\overline{E} \subset E^{\circ} \cup \partial E$. 对任意 $x \in \overline{E}$,若 $x \in E'$,则 $x \in E$ 或 $x \in \partial E$;若 $x \in E$,则 $x \in E'$ 或 $x \in \partial E$. 证毕.
- 2. 先证明 $E' \subset \overline{E}'$:对任意 $x \in E'$,假设 $x \notin \overline{E}'$,则存在 $\delta > 0$ 使得 $U(x,\delta) \cap \overline{E} = \emptyset$,因为 $\overline{E} = E \cup E'$,则 $U(x,\delta) \cap E' = \emptyset$,矛盾. 下证 $\overline{E}' \subset E'$: 对任意 $x \in \overline{E}'$,假设 $x \notin E'$,则存在 $\delta > 0$ 使得 $U(x,\delta) \cap E = \emptyset$,显然与 $x \in \overline{E}'$ 矛盾,证毕.

题目 1.2.7 (7). 设 $\{A_{\lambda}\}_{{\lambda}\in\Lambda}$ 为 \mathbb{R}^n 的一族集合,证明:

- 1. 当 Γ 为有限指标集时,成立 $\overline{\bigcup_{\lambda \in \Lambda}} \subset \bigcup_{\lambda \in \Lambda} \overline{A_{\lambda}}, \bigcap_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subset \left(\bigcap_{\lambda \in \Lambda} A_{\lambda}\right)^{\circ}$;
- 2. 对任意指标集,成立 $\bigcup_{\lambda \in \Lambda} A_{\lambda}^{\circ} \subset \left(\bigcup_{\lambda \in \Lambda} A_{\lambda}\right)^{\circ}, \overline{\bigcap_{\lambda \in \Lambda} A_{\lambda}} \subset \bigcap_{\lambda \in \Lambda} \overline{A_{\lambda}}$.

证明

1.

题目 1.2.8 (8). 设 $E \subset \mathbb{R}^n$, 证明:

- 1. E' 是闭集;
- $2. \partial E$ 是闭集.

证明

- 1. 否则,存在 $x \notin E'$,且 x 是 E' 的聚点.则 x 不是 E 的聚点,即存在 $\delta_x > 0$,使 得 $U_0(x,\delta_x) \cap \emptyset$. 显然与 x 是 E' 的聚点矛盾,因此 E' 是闭集.
- 2. 否则,存在 $x_0 \notin \partial E$,且 x_0 是 ∂E 的聚点.则 x_0 是 E 的聚点,否则,存在 $\delta > 0$ 使得 $U_0(x_0,\delta) \cap E = \emptyset$,则 $x \notin \partial E$,以 $x \in U_0\left(x_0,\frac{\delta}{2}\right)$,与 x_0 是 ∂E 的聚点矛盾.因为 $x_0 \notin \partial E$,因此下列情况之一必定成立
 - (a) 存在 $\delta_0 > 0$, 使得 $U_0(x_0, \delta_0) \cap E = \emptyset$. 显然与 x_0 是 E 的聚点矛盾
 - (b) 存在 $\delta_0 > 0$,使得 $U_0(x_0, \delta_0) \cap E^c = \emptyset$.则 $x \notin \partial E, \forall x \in U_0\left(x_0, \frac{\delta_0}{2}\right)$,与 x_0 是 ∂E 的聚点矛盾.

因此 ∂E 是闭集.

题目 1.2.9 (9). 设 $E \subset \mathbb{R}^2$,记 $E_1 = \{x \in \mathbb{R} : \exists (x,y) \in E\}, E_2 = \{y \in \mathbb{R} : \exists (x,y) \in E\}$,判断下列命题是否为真.

- 1. E 为 \mathbb{R}^2 中的开 (闭) 集时, E_1, E_2 均为 \mathbb{R} 中的开 (闭) 集;
- 2. E_1, E_2 均为 \mathbb{R} 中的开 (闭) 集时,E 为 \mathbb{R}^2 中的开 (闭) 集.

证明

- 1. 当 $E \subset \mathbb{R}^2$ 是开集,则对 $\forall (x_1, x_2) \in E$,存在 $\delta > 0$ 使得 $U((x_1, x_2), \delta) \subset E$,于是 $U(x_1, \delta) \subset E_1, U(x_2, \delta) \subset E_2$,因此 E_1, E_2 均为开集. 令 $E = \left\{ (x, y) : y = \frac{1}{x}, x \in \mathbb{R} \setminus \{0\} \right\}$ 为 \mathbb{R}^2 中的闭集,则 $E_1 = \mathbb{R} \setminus \{0\}$ 是 \mathbb{R} 上的开集,此时结论不成立.
- 2. 令 $E = \{(x,y): 1 \le x^2 + y^2 < 2\}$,则 E_1, E_2 均为开集,而 E 不是开集. 令 $E = \{(x,y): 1 < x^2 + y^2 \le 2\}$,则 E_1, E_2 均为闭集,而 E 不是闭集. 因此两个命题均不成立.

题目 1.2.10 (12). $F \subset \mathbb{R}^n$ 是紧集, $E \subset \mathbb{R}^n$ 是开集,且 $F \subset E$,证明:存在开集 O ,使得 $F \subset O \subset \overline{O} \subset E$.

证明 对 $\forall x \in F$,存在 $\delta_x > 0$ 使得 $U(x, \delta_x) \subset E$,则 $\bigcup_{x \in F} U\left(x, \frac{\delta_x}{2}\right)$ 是 F 的一个开覆盖,因此存在一个有限子覆盖 $O = \bigcup_{i=1}^n U\left(x_i, \frac{\delta_{x_i}}{2}\right)$,满足 $F \subset O \subset E$.设 $O_1 = \bigcup_{i=1}^n U(x_i, \delta_{x_i})$,则 $O \subset \overline{O} \subset O_1 \subset E$,证毕.