dBq = 10 log (1) Escercias Sdiller p= 10 (dBp/20) Question 1: a) 1 Wett -> dBn dBm = 10 · koy (0,001) = 30 dBm V b) -10d Bm -2 Woltes P= 10 (-10/10) = 0,1 W () P=10(3/10) _1,99~~ ~ mW d) JBW = 10 log (015 / 1000) = - 33 dBW V 1) IBm = 10log (So) = 16,98 ~ 77 dBm 2 1) mw = 10(-10/10) = 0,01 mW V a) dBW = 10 log(0.1) = -10 dBW V N = 10(-6/10) = 0,25 W Ps = Px · 10 - att/10 allertier 2: Ott = 10 log (Fe)

a) 10 mW attenution 0,59 dB/len 50 km aughin 2: Oktomation totale =0,59.50=29,5 PS=10.102915/10-01611 mW B=R.10 (and/10 b) 10 mW angl 30 dB ott 8,89 dB/km Sokn Re = 10.10 (30/10) = 10000 mW-> 10 W attemption totale = 0,50.50 = 29,5 dB Ps = 10000 , 10-29,5/10 = 11 mW 1 de liste printé est un bit ojorté à la fin des données et qui nont la somme des lists de données sur un lit, ains s'un voulore inpoire de liste droup on souva que la données ent erronée.

12	a fréquence de Nyquist dans le contexte du théorème de Shannon-Nyquist.
\$ > 2·	
	a plage de fréquences audibles pour un être humain ?
	- 20 K H2
. Quel est le	taux d'échantillonnage typique pour la musique ?
47,716/4	£
	al a une fréquence maximale de 500 Hz, quelle est la fréquence d'échantillonnage minimale le théorème de Shannon-Nyquist?
2. Fmas	4= 1600 Hz
e. Expliquez signaux.	l'importance de la fréquence d'échantillonnage dans le contexte du traitement numérique des
c'estim	portant your recuperor in mossimum of improvations
. Si un signal	l continu a une largeur de bande de 3100 Hz, quelle est la fréquence d'échantillonnage minimale ur représenter précisément le signal selon le théorème de Nyquist?
In woins	6200 HZ
<u> </u>	
lueshion	. 7'.
	es largeurs de bande passante typiques pour le téléphone, la télévision, et les normes Ethernet DBase-T, 1000Base-T, et 10000Base-T.
.obuse 1, 10	
	· · · 200Hz - 3,4 KHZ
telipho	ne: 300Hz-3,4 KHz
leilipho eleirion	L: GMHZ
telépho elemention 1845e-T	L: GMHZ

16.2.2 Fonction de Gauss intégrale

La fonction

$$G(x) = \int_{-\infty}^{x} g(x') dx'$$
 (16.6)

est appelée fonction de Gauss intégrale (fig. 16.1). Elle exprime la probabilité pour que la variable réduite x' ait une valeur comprise entre $-\infty$ et x.

16.2.3 Fonction de Gauss intégrale complémentaire

Il est souvent plus utile de connaître la probabilité de dépassement $\operatorname{Prob}(x'>x)$, c'est-à-dire la probabilité pour que la variable gaussienne réduite x' dépasse un seuil situé à x. Elle se réduit de la densité de probabilité p(x') par une intégration

$$\operatorname{Prob}(x' > x) = \int_{x}^{\infty} p(x') dx' = \int_{x}^{\infty} g(x') dx'$$
 (16.7)

Éléments sous droits

516

SYSTÈMES DE TÉLÉCOMMUNICATIONS

En comparant avec (16.6), on remarque que

$$\int_{x}^{\infty} g(x') dx' = 1 - G(x) = G_{c}(x)$$
 (16.8)

 $G_c(x)$ est appelée fonction de Gauss intégrale complémentaire (fig. 16.1). Ses valeurs, par décades successives, sont représentées dans la figure 16.2.