Hugues Cassé < casse@irit.fr>

FSI - Université de Toulouse

Cours 5:
optimisations
Compilation, Optimisation
et Maîtrise du Code

Faculté
des Sciences
et d'Ingénierie

Introduction

- non nécessaires ⇒ code exécutable
- amélioration de la qualité du code
 - temps d'exécution (plus fréquent)
 - place mémoire (environnement contraint – système embarqué)
 - déterminisme du code (temps-réel)
 - etc

Note : nom des présentations en anglais \implies correspondance avec les options des compilateurs

Simplifications algébriques

A)
$$x+0=0+x=x-0=x$$

B)
$$0 - x = -x$$

C)
$$x \times 1 = 1 \times x = x / 1 = x$$

D)
$$x \times 0 = 0 \times x = 0 / x = 0$$

$$(-x) = x$$

F)
$$x + (y) = x - y$$

G)
$$x \times 2^k = x \ll k$$

1)
$$x / 2^k = x >> k$$

$$J) x << 0 = x >> 0 = x$$

K)
$$x << |\tau| = x >> |\tau| = 0$$

$$L) x^2 = x \times x$$

M)
$$x^0 = 1$$

Optimisation à lucarne

sur les quadruplets

- recherche d'un modèle de simplification algébrique
- fenêtre de quelques instructions

sur le DAG \implies insertion dans les modèles d'instructions

$$\begin{array}{cccc}
 & \cdots & \cdots & \cdots \\
 & v_3 \leftarrow 8 & (v_i \leftarrow 2^k) & \Longrightarrow & v_3 \leftarrow 8 \\
 & v_{51} \leftarrow 3 & \cdots & \cdots \\
 & v_4 \leftarrow v_1 \times v_3 & (v_j \leftarrow v_k \times v_i) & v_4 \leftarrow v_1 & << v_{51}
\end{array}$$

NOTE: $v_3 \leftarrow 8$ sera éliminée par une autre phase d'optimisation (dead-code elimination)

Cas des branchements

```
\begin{array}{lll} \operatorname{goto} \ (\mathit{I}_i) & \Longrightarrow & \lambda \\ \operatorname{label} \ (\mathit{I}_i) & & & \operatorname{if} \ \neg(v_i \ \omega \ v_j) \ \operatorname{goto} \ \mathit{I}_l \\ \operatorname{goto} \ \mathit{I}_l & & \Longrightarrow & \\ \operatorname{label} \ \mathit{I}_k & & \operatorname{label} \ \mathit{I}_k \end{array}
```

Opérations propres à une architecture

$$v_i \leftarrow v_j \times 10 \iff \begin{cases} \mathsf{ADD}\ v_i, v_j, v_j \\ \mathsf{ADD}\ v_i, v_i, v_i, \mathsf{LSL}\ \#2 \end{cases}$$

$$v_i \leftarrow v_j \times 14 \iff \begin{cases} \mathsf{ADD}\ v_i, v_j, v_j \\ \mathsf{RSB}\ v_i, v_i, v_i, \mathsf{LSL}\ \#3 \end{cases}$$

limite: temps_{code optimisé} < temps_{instruction}

Pourquoi y a-t-il de telles expressions?

- code automatiquement généré
- utilisation intensive des macro-définitions
- conservation de la lisibilité
- résultat d'optimisations précédentes

```
#define KO (1 << 10)
#define MO (KO << 10)
...
memory_size = 4 * MO;
```

Exemple: expression disponibles


```
s = 0;
p = 0;
i = 0;
while(i < 256) {
    s += t[i];
    if(s > 0)
        p += t[i];
}
```

Attention!

Optimisation:

- comme $v_1 \leftarrow 4$ (BB 3) est disponible avant BB 4
- supprimer $v_6 \leftarrow 4$
- remplacer v₆ par v₁

Attention!

Optimisation:

- comme $v_1 \leftarrow 4$ (BB 3) est disponible avant BB 4
- supprimer $v_6 \leftarrow 4$
- remplacer v₆ par v₁

Est-on sûr que c'est toujours possible?

- contre-exemple
- $v_1 \leftarrow 4$?
- Doit être disponible sur tous les chemins!

Attention!

Optimisation:

- comme v₁ ← 4 (BB 3) est disponible avant BB 4
- supprimer $v_6 \leftarrow 4$
- remplacer v₆ par v₁

Est-on sûr que c'est toujours possible?

- contre-exemple
- $v_2 \leftarrow v_i \times v_1$?
- Non car *v_i* est modifié!

Analyse

Soit un CFG $G = \langle V, E, \nu, \omega \rangle$ Pour optimiser $b \in V$.

- expressions (quadruplets) disponibles en entrée de $b-IN_b$
- $IN_b \subset Q$ est un ensemble car plusieurs chemins mènent à b
- IN_b doit être complet : prendre en compte tous les chemins

Pour calculer IN_b :

- ajouter les quadruplets de $b-v_i \leftarrow e_1$
- supprimer les quadruplets affectés dans b $(v_i \leftarrow e_1, v_i \leftarrow e_2, ...)$
- suppriler les quadruplets dont un opérande est affecté dans b $(v_j \leftarrow v_i \ \omega \ v_k, \ v_k \leftarrow v_l \ \omega \ v_i, \ ...)$

Problèmes:

•• calculer pour tous les chemins pour chaque $b \in V$!

Idée : calculer tout en parallèle!

Poussons l'analyse :

- $\mathcal{D} \subseteq 2^Q$ ensemble des expressions (quadruplets)
- $IN_b \subseteq \mathcal{D}$ expressions en entrée de b
- $OUT_b \subseteq \mathcal{D}$ expressions en sortie de b
- $KILL_b \subseteq \mathcal{D}$ expressions supprimées par b
- $GEN_b \subseteq \mathcal{D}$ expression ajoutées par b

Definition

calcul des IN_v :

$$IN_b = \bigcap_{b' \in PRED(b)} OUT_b$$
 $OUT_b = (IN_b \setminus KILL_b) \cup GEN(b)$

Suite de l'exemple

$$\begin{split} \mathcal{D} &= \{ v_s \leftarrow 0, v_p \leftarrow 0, \ldots \} \\ &GEN_1 = \{ v_s \leftarrow 0, v_p \leftarrow 0, v_i \leftarrow 0 \} \\ &KILL_1 = \{ v_s \leftarrow 0, v_p \leftarrow 0, v_i \leftarrow 0, \\ &v_s \leftarrow v_5, v_p \leftarrow v_{10}, v_i \leftarrow v_1, \\ &v_5 \leftarrow v_s + v_4, v_{10} \leftarrow v_p + v_9, \\ &v_{12} \leftarrow v_i + v_{11} \} \\ &GEN_2 = \{ v_0 \leftarrow 256 \} \\ &KILL_2 = \{ v_0 \leftarrow 256 \} \\ &KILL_2 = \{ v_0 \leftarrow 256 \} \\ &GEN_3 = \{ v_1 \leftarrow 4, v_2 \leftarrow v_i \times v_1, \\ &v_3 \leftarrow v_t + v_2, v_9 \leftarrow M_{int}[v_3], \\ &v_5 \leftarrow v_s + v_4, v_s \leftarrow v_5 \} \\ &KILL_3 = \{ v_1 \leftarrow 4, v_2 \leftarrow v_i \times v_1, \\ &v_3 \leftarrow v_t + v_2, v_9 \leftarrow M_{int}[v_3], \\ &v_5 \leftarrow v_s + v_4, v_s \leftarrow v_5, \\ &v_5 \leftarrow v_s + v_4, v_s \leftarrow v_5, \\ &v_s \leftarrow 0 \} \end{split}$$

Système d'équation

$$\begin{split} IN_{\nu} &= \emptyset \\ OUT_{\nu} &= (IN_{\nu} \setminus KILL_{\nu}) \cup GEN_{\nu} \\ IN_{1} &= OUT_{\nu} \\ OUT_{1} &= (IN_{1} \setminus KILL_{1}) \cup GEN_{1} \\ IN_{2} &= OUT_{1} \cap OUT_{5} \\ OUT_{2} &= (IN_{2} \setminus KILL_{2}) \cup GEN_{2} \\ IN_{3} &= OUT_{2} \\ OUT_{3} &= (IN_{3} \setminus KILL_{3}) \cup GEN_{3} \\ IN_{4} &= OUT_{3} \\ OUT_{4} &= (IN_{4} \setminus KILL_{4}) \cup GEN_{4} \\ IN_{5} &= OUT_{4} \cap OUT_{3} \\ OUT_{5} &= (IN_{5} \setminus KILL_{5}) \cup GEN_{5} \\ IN_{6} &= OUT_{2} \\ OUT_{6} &= (IN_{6} \setminus KILL_{6}) \cup GEN_{6} \\ IN_{\omega} &= OUT_{6} \\ OUT_{\omega} &= (IN_{\omega} \setminus KILL_{\omega}) \cup GEN_{\omega} \\ \end{split}$$

Comment le résoudre?

Theorem

(Knaster-Tarsky) Si $(A, \sqsubseteq, \sqcup, \sqcap, \top, \bot)$ est un treillis et $F : A \mapsto A$ monotone, alors il existe un point fixe $X \in A$ vérifiant F(X) = X.

- peu importe l'ordre du calcul, F convergera vers un point fixe,
- ullet pour avoir le plus petit, il faut partir de ot
- calculer $F^{n+1} = F(F^n)$ avec $F^0 = \bot$ jusqu'à atteindre ce point fixe

Application à un BB

- $(2^{\mathcal{D}}, \supseteq, \cap, \cup, \mathcal{D}, \emptyset)$ est un treillis
- F_b fonction des OUT_i , paramètre $X_i = OUT_i$, prédécesseur de b
- F_b produit un nouveau OUT_b
- $F_b(X_{1 \le i \le n}) = ((\bigcap_{1 \le i \le n} X_i) \setminus KILL_b) \cup GEN_b$ calcul de OUT_b en fonction des OUT_i
- F_b est (dé)croissant
 - $\forall X, Y, X', Y' \subseteq \mathcal{D} \land X \supseteq X' \land Y \supseteq Y'$
 - $(X \cap Y) \supseteq (X' \cap Y') \rightarrow \text{intersection décroissante}$
 - $(X \cup Y) \supseteq (X' \cup Y') \rightarrow$ union décroissante
 - \ n'est généralement pas décroissante mais $KILL_b$ constant! $X \setminus KILL_b \supseteq X' \setminus KILL_b \rightarrow$ différence décroissante

Élargissement au CFG

- $\mathcal{D}_G = 2^{\mathcal{D}^{|V|}}$ ensemble des OUT_b du CFG
- $(X_1, X_2, ...) \sqsubseteq (Y_1, Y_2, ...)$ ordre lexicographique
- $(X_1, X_2, ...) \sqcap (Y_1, Y_2, ...) = (X_1 \cap Y_1, X_2 \cap Y_2, ...)$
- $(X_1, X_2, ...) \sqcup (Y_1, Y_2, ...) = (X_1 \cup Y_1, X_2 \cup Y_2, ...)$
- $\perp = (\mathcal{D}, \mathcal{D}, ...)$
- $\top = (\emptyset, \emptyset, ...)$
- $(\mathcal{D}_G, \sqsubseteq, \sqcap, \sqcup, \perp, \top)$ est un treillis!

Élargissement à notre système d'équation

- $F_G: \mathcal{D}_G \mapsto \mathcal{D}_G$ tel que
- $F_G(OUT_1, OUT_2, ...) =$ $(F_1(OUT_1, OUT_2, ...), F_2(OUT_1, ...), ...)$
- F_G croissant dans \mathcal{D}_G car F_h croissant dans $2^{\mathcal{D}}$
- solution pour les $OUT_b =$ plus petit point fixe
 - $F_c^0 = \bot_c$
 - $F_c^{n+1} = F_c(F_c^n)$

Algorithme

```
for all b \in V do
   IN_b \leftarrow \bot; OUT_b \leftarrow \bot
end for
changed ← true
while changed do
   changed \leftarrow false
   for all b \in V do
      IN \leftarrow \bigcap_{b' \in PRED(b)} OUT_{b'}
      OUT \leftarrow (IN \setminus KILL_b) \cup
      GEN<sub>b</sub>
      if OUT \neq OUT_b then
         changed ← true
          IN_b \leftarrow IN : OUT_b \leftarrow OUT
      end if
   end for
end while
```

Algorithme avec liste de travail

```
for all b \in V do
    IN_b \leftarrow \bot: OUT_b \leftarrow \bot
end for
wl \leftarrow \{\nu\}
while wl \neq \emptyset do
    let b \in wl; wl \leftarrow wl \setminus \{b\}
    IN \leftarrow \bigcap_{b' \in PRED(b)} OUT_{b'}
    OUT \leftarrow (IN \setminus KILL_b) \cup GEN_b
    if OUT \neq OUT_b then
        IN_b \leftarrow IN : OUT_b \leftarrow OUT
       wl \leftarrow wl \cup SUCC(b)
    end if
end while
```

Exemple (1)

$$\begin{split} IN_1 &= \emptyset \\ OUT_1 &= \{v_s \leftarrow 0, v_p \leftarrow 0, v_i \leftarrow 0\} \\ IN_2 &= OUT_1 \cap OUT_5 = OUT_1 \cap \mathcal{D} \\ OUT_2 &= \{v_s \leftarrow 0, v_p \leftarrow 0, v_i \leftarrow 0, \\ v_0 \leftarrow 256\} \\ IN_3 &= OUT_2 \\ OUT_3 &= \{v_p \leftarrow 0, v_i \leftarrow 0, v_0 \leftarrow 256, \\ v_1 \leftarrow 4, v_2 \leftarrow v_i \times v_1, \\ v_3 \leftarrow v_t + v_2, v_4 \leftarrow M_{int} [v_3], \\ v_s \leftarrow v_5\} \\ IN_4 &= OUT_3 \\ OUT_4 &= \{v_i \leftarrow 0, v_0 \leftarrow 256, \\ v_1 \leftarrow 4, v_2 \leftarrow v_i \times v_1, \\ v_3 \leftarrow v_t + v_2, v_4 \leftarrow M_{int} [v_3], \\ v_5 \leftarrow v_5, v_6 \leftarrow 4, \\ v_7 \leftarrow v_i \times v_6, v_8 \leftarrow v_t + v_7, \\ v_9 \leftarrow M_{int} [v_8], v_p \leftarrow v_{10} \} \end{split}$$

Exemple (2) $v_s \leftarrow 0; v_p \leftarrow 0; v_i \leftarrow 0$ $v_s \leftarrow 0; v_p \leftarrow 0; v_i \leftarrow 0$

$$\begin{array}{l} v_{6} \leftarrow 4 \, ; \, v_{7} \leftarrow v_{i} \times v_{6} \\ v_{8} \leftarrow v_{t} + v_{7} \, ; \, v_{9} \leftarrow M_{int} \, [v_{8}] \\ v_{10} \leftarrow v_{p} + v_{9} \, ; \, v_{p} \leftarrow v_{10} \, ; \end{array}$$

$$v_{11} \leftarrow 1; v_{12} \leftarrow v_i + v_{11}; \\ v_i \leftarrow v_{12} \text{ goto } l_0$$

...

$$OUT_{3} = \{v_{p} \leftarrow 0, v_{i} \leftarrow 0, v_{0} \leftarrow 256, \\ v_{1} \leftarrow 4, v_{2} \leftarrow v_{i} \times v_{1}, \\ v_{3} \leftarrow v_{t} + v_{2}, v_{4} \leftarrow M_{int} [v_{3}], \\ v_{s} \leftarrow v_{5}\}$$

$$IN_{4} = OUT_{3}$$

$$OUT_{4} = \{v_{i} \leftarrow 0, v_{0} \leftarrow 256, \\ v_{1} \leftarrow 4, v_{2} \leftarrow v_{i} \times v_{1}, \\ v_{3} \leftarrow v_{t} + v_{2}, v_{4} \leftarrow M_{int} [v_{3}], \\ v_{s} \leftarrow v_{5}, v_{6} \leftarrow 4, \\ v_{7} \leftarrow v_{i} \times v_{6}, v_{8} \leftarrow v_{t} + v_{7}, \\ v_{9} \leftarrow M_{int} [v_{8}], v_{p} \leftarrow v_{10}\}$$

$$IN_{5} = \{v_{i} \leftarrow 0, v_{0} \leftarrow 256, v_{1} \leftarrow 4, \\ v_{2} \leftarrow v_{i} \times v_{1}, v_{3} \leftarrow v_{t} + v_{2}, \\ v_{4} \leftarrow M_{int} [v_{3}]\}$$

$$OUT_{5} = \{v_{0} \leftarrow 256, v_{1} \leftarrow 4, \\ v_{2} \leftarrow v_{i} \times v_{1}, v_{3} \leftarrow v_{t} + v_{2}, \\ v_{4} \leftarrow M_{int} [v_{3}], v_{i} \leftarrow v_{12}\}$$

Exemple (3) $v_s \leftarrow 0$; $v_p \leftarrow 0$; $v_i \leftarrow 0$ label In $v_0 \leftarrow 256$ if $v_i > v_0$ goto l_2 $v_1 \leftarrow 4$; $v_2 \leftarrow v_i \times v_1$ $v_3 \leftarrow v_t + v_2$; $v_4 \leftarrow M_{int} [v_3]$ $v_5 \leftarrow v_5 + v_4 : v_5 \leftarrow v_5$ if $v_s < 0$ goto l_1 $v_6 \leftarrow 4: v_7 \leftarrow v_7 \times v_6$ $v_8 \leftarrow v_t + v_7$; $v_9 \leftarrow M_{int} [v_8]$ $v_{10} \leftarrow v_D + v_9$; $v_D \leftarrow v_{10}$; $v_{11} \leftarrow 1$; $v_{12} \leftarrow v_i + v_{11}$; $v_i \leftarrow v_{12} \text{ goto } l_0$ label 12

 $OUT_1 = \{v_s \leftarrow 0, v_p \leftarrow 0, v_i \leftarrow 0\}$ $OUT_5 = \{v_0 \leftarrow 256, v_1 \leftarrow 4,$ $v_2 \leftarrow v_i \times v_1, v_3 \leftarrow v_t + v_2,$ $V_4 \leftarrow M_{int} [V_3], V_i \leftarrow V_{12}$ $IN_2 = \emptyset$ $OUT_2 = \{v_0 \leftarrow 256\}$ $OUT_3 = \{v_0 \leftarrow 256, v_1 \leftarrow 4,$ $V_2 \leftarrow V_i \times V_1, V_3 \leftarrow V_t + V_2,$ $v_4 \leftarrow M_{int} [v_3], v_s \leftarrow v_5$ $OUT_4 = \{v_0 \leftarrow 256, v_1 \leftarrow 4,$ $V_2 \leftarrow V_i \times V_1, V_3 \leftarrow V_t + V_2,$ $V_4 \leftarrow M_{int} [V_3], V_5 \leftarrow V_5,$ $V_6 \leftarrow 4$, $V_7 \leftarrow V_i \times V_6$. $V_8 \leftarrow V_t + V_7, V_4 \leftarrow M_{int} [V_3],$

 $v_n \leftarrow v_{10}$

Exemple (4)

. . .

$$OUT_{3} = \{v_{0} \leftarrow 256, v_{1} \leftarrow 4, \\ v_{2} \leftarrow v_{i} \times v_{1}, v_{3} \leftarrow v_{t} + v_{2}, \\ v_{4} \leftarrow M_{int} [v_{3}], v_{s} \leftarrow v_{5}\} \\ \dots$$

$$OUT_{4} = \{v_{0} \leftarrow 256, v_{1} \leftarrow 4, \\ v_{2} \leftarrow v_{i} \times v_{1}, v_{3} \leftarrow v_{t} + v_{2}, \\ v_{4} \leftarrow M_{int} [v_{3}], v_{s} \leftarrow v_{5}, \\ v_{6} \leftarrow 4, v_{7} \leftarrow v_{i} \times v_{6}, \\ v_{8} \leftarrow v_{t} + v_{7}, v_{4} \leftarrow M_{int} [v_{3}], \\ v_{p} \leftarrow v_{10}\}$$

$$IN_{5} = \{v_{0} \leftarrow 256, v_{1} \leftarrow 4, \\ v_{2} \leftarrow v_{i} \times v_{1}, v_{3} \leftarrow v_{t} + v_{2}, \\ v_{4} \leftarrow M_{int} [v_{3}], v_{s} \leftarrow v_{5}\}$$

Optimisation : expressions disponibles

$$\begin{split} IN_1 &= \emptyset \\ IN_2 &= \emptyset \\ IN_3 &= \{v_0 \leftarrow 256\} \\ IN_4 &= \{v_0 \leftarrow 256, v_1 \leftarrow 4, \\ v_2 \leftarrow v_i \times v_1, v_3 \leftarrow v_t + v_2, \\ v_4 \leftarrow M_{int} [v_3], v_s \leftarrow v_5\} \\ IN_5 &= \{v_0 \leftarrow 256, v_1 \leftarrow 4, \\ v_2 \leftarrow v_i \times v_1, v_3 \leftarrow v_t + v_2, \\ v_4 \leftarrow M_{int} [v_3], v_s \leftarrow v_5\} \\ IN_6 &= \emptyset \end{split}$$

extraction d'invariant

extraction d'invariant

chaînes utilisation-définition

- Quels quadruplets définissent un registre?
- définition des registres quel que soit le chemin
- $\mathcal{D} \subset Q$ quadruplets du programme
- $KILL_b = \{ v \leftarrow e \in \mathcal{D} \mid \exists v \leftarrow e' \in b \}$
- $GEN_b = \{v \leftarrow e \mid v \leftarrow e \in b\}$
- $IN_b = \bigcup_{b' \in PRED(b)} OUT_b$ définition quels que soient les chemins
- $OUT_b = (IN_b \setminus KILL_b) \cup GEN_b$
- $v_i \leftarrow v_j \omega \ v_k$ dans b est invariant \iff toutes les définitions de v_j et v_k dans IN_b sont hors de la boucle
- treillis $(2^{\mathcal{D}}, \subseteq, \cup, \cap, \emptyset, \mathcal{D})$

Optimisation: extraction d'invariant

$$IN_3 = \{v_i \leftarrow v_k, v_j \leftarrow v_k, ...\}$$

Optimisation : extraction d'invariant

 $IN_3 = \{v_i \leftarrow v_k, v_j \leftarrow v_k, ...\}$ $v_1 \leftarrow 4$ invariant (par définition)

Optimisation : extraction d'invariant

 $IN_3 = \{v_i \leftarrow v_k, v_j \leftarrow v_k, ...\}$ $v_1 \leftarrow 4$ invariant (par définition) $IN_3 = IN_3 \cup \{v_1 \leftarrow 4\}$

Optimisation: extraction d'invariant

 $IN_3 = \{v_i \leftarrow v_k, v_j \leftarrow v_k, ...\}$ $v_1 \leftarrow 4$ invariant (par définition) $IN_3 = IN_3 \cup \{v_1 \leftarrow 4\}$ $v_2 \leftarrow v_i \times v_1$ invariant car $v_1 \leftarrow 4$ et $v_i \leftarrow 0$ sont hors boucle!

Optimisation: extraction d'invariant

 $IN_3 = \{v_i \leftarrow v_k, v_j \leftarrow v_k, ...\}$ $v_1 \leftarrow 4$ invariant (par définition) $IN_3 = IN_3 \cup \{v_1 \leftarrow 4\}$ $v_2 \leftarrow v_i \times v_1$ invariant car $v_1 \leftarrow 4$ et $v_i \leftarrow 0$ sont hors boucle!

 $v_{10} \leftarrow v_j + v_9$ non-invariant car v_j défini par :

- $v_j \leftarrow 0$ hors boucle
- $v_j \leftarrow v_{10}$ dans la boucle

Calcul de domination

- $\forall b, b' \in V$, $b \ dom \ b' \iff \forall p \in \nu \to^* b' \implies b \in p$
- $IN_b =$ ensemble des dominants de $b \implies b \ dom \ b' \iff b \in IN_{b'}$
- $\mathcal{D} = 2^{V}$
- $KILL_b = \emptyset$
- $GEN_b = \{b\}$ un BB se domie lui-même
- $IN_b = \bigcap_{b' \in PRED(b)} OUT_{b'}$
- treillis $(2^V, \supseteq, \cap, \cup, V, \emptyset)$

Calcul de vivacité

- $\mathcal{D} = \mathcal{V}$ registres virtuels du programme
- v dans b est vivante s'il y a une utilisation de v dans les chemins partant de de b
- astuce : parcourir G en arrière
- $KILL_b = \{ v \in \mathcal{V} \mid v \leftarrow e \in b \}$
- $GEN_b = \{v \in \mathcal{V} \mid v' \leftarrow f(v) \in b\}$
- $IN_b = \bigcup_{b' \in SUCC(b)} OUT_{b'}$ v vivante quel que soit le chemin
- test de vivacité de $v : \forall b \in V, alive(v, b) \iff v \in IN_b$
- treillis $(2^{\mathcal{V}}, \subseteq, \cup, \cap, \emptyset, \mathcal{V})$

Construction de treillis

- ordre plat sur $\mathcal{S}: \langle \mathcal{S} \cup \{\bot, \top\}, \sqsubseteq, \cup, \cap, \bot, \top \rangle$ treillis! $\forall x \in \mathcal{S} \cup \{\bot, \top\}, \bot \sqsubseteq x \land x \sqsubseteq \top$
- soit 2 treillis $\langle S_A, \sqsubseteq_A, \sqcup_A, \sqcap_A, \top_A, \bot_A \rangle$ et $\langle S_B, \sqsubseteq_B, \sqcup_B, \sqcap_B, \top_B, \bot_B \rangle$ alors $\langle S_A \times S_B, \sqsubseteq, \sqcup, \sqcap, (\top_A, \top_B), (\bot_A, \bot_B) \rangle$ treillis! $\forall (a,b), (a',b') \in S_A \times S_B$,
 - $(a,b) \sqsubseteq (a',b') \iff (a \neq a' \land a \sqsubseteq_A a') \lor (a = a' \land b \sqsubseteq_A b')$
 - $\bullet \ (a,b) \sqcup (a',b') = (a \sqcup_A a',b \sqcup_B b')$
 - $(a,b) \sqcap (a',b') = (a \sqcap_A a', b \sqcap_B b')$
- soit un treillis $\langle \mathcal{S}, \sqsubseteq, \sqcup, \sqcap, \top, \bot \rangle$ et un ensemble \mathcal{X} , $\langle \mathcal{F} = 2^{\mathcal{X} \to \mathcal{S}}, \sqsubseteq^*, \sqcup^*, \sqcap^*, \lambda x. \top, \lambda x. \bot \rangle$ treillis $\forall f_1, f_2 \in \mathcal{F}$,
 - $f_1 \sqsubseteq f_2 \iff \forall x \in \mathcal{X}, f_1 \sqsubseteq^* f_2$
 - $f_1 \sqcup^* f_2 = \lambda x. f_1(x) \sqcup f_2(x), f_1 \sqcap^* f_2 = \lambda x. f_1(x) \sqcap f_2(x)$

Bilan : optimisation

Optimisation:

- = transformation de programme
- qui conserve la sémantique du programme
- qui vérifie certaines conditions
- condition = propriétés obtenues par des analyses du programme

Analyse du programme (analyse statique) :

- propriété = { ensemble de valeurs possibles }
- analyser tous les chemins en parallèle
- usage d'un treillis

 méthode de calcul et preuve de terminaison

Bilan : Analyse Itérative de Flot de Donnée

- définition du domaine \mathcal{D}
- définition de $KILL_b$ et GEN_b $OUT_b = (IN_b \setminus KILL_b) \cup GEN_b$
- sens de parcours du CFG
 - en avant : $IN_b = \sqcup_{b' \in PRED(b)} OUT_b$
 - en arrière : $IN_b = \sqcup_{b' \in SUCC(b)} OUT_b$
- agrégation au niveau des chemins
 - sur au moins un des chemins (analyse MAY)
 - $\sqcup = \cup \implies (\mathcal{D}, \subseteq, \cup, \cap, \emptyset, \mathcal{D})$
 - sur tous les chemins (analyse MUST)
 - $\sqcup = \cap \implies (\mathcal{D}, \supseteq, \cap, \cup, \mathcal{D}, \emptyset)$

Bilan : on sait tout faire?

- Non!
- problème : ensemble infinis \mathbb{N} , \mathbb{Z} , \mathbb{R} , ...

```
int sum(int n) {
  int s = 0;
  while(n > 0) {
    s += n;
    n--;
  }
  return s;
```

Valeurs de s ou n?

• ensembles abstraits ⇒ *Interprétation Abstraite* (Cousot, 1978)

Optimisation des sous-programmes

- tail call optimization appel de sous-programme en fin ⇒
 branchement simple
- inlining remplacement d'un appel par le code du sous-programme
 - dirigé par inline
 - taille du sous-programme < seuil
- leaf routine optimization simplification des sous-programme ne faisant pas d'appel
 - SP constant ⇒ FP non utilisé
 - pas de sauvegarde du LR
- recursion elimination remplacement par une boucle si possible (langages fonctionnels – OCAML)

Pipeline : ré-ordonnancement des instructions

Version 1

- (a) LDR R_1 , [FP, #4]
- (b) LDR R_2 , [FP, #16]
- (c) ADD R_3, R_1, R_2
- (d) LDR R_4 , [FP, #20]
- (e) SUB R_5 , R_3 , R_4
- (f) STR R_5 , [FP, # 8]
- (g) LDR R_6 , [FP, #16]
- (h) CMP $R_6, \#0$
- (i) BNE l_3

Version 2

- (a) LDR R_1 , [FP, #4]
- (b) LDR R_2 , [FP, #16]
- (d) LDR R_4 , [FP, #20]
- (g) LDR R_6 , [FP, #16]
- (c) ADD R_3, R_1, R_2
- (h) CMP $R_6, \#0$
- (e) SUB R_5 , R_3 , R_4
- (f) STR R_5 , [FP, # 8]
- (i) BNE l_3

Exécution dans le pipeline pipeline: (b) (g) (h) Version 1 (16 cycles) Version 2 (13 cycles) (a) (b) (d) (g) (c) (h) (e)

Ordonnancement par liste

- graphe de dépendance (DAG)
- sélection d'une instruction après ses dépendances
- sélection en largeur d'abord

Table de réservation

FE	DE	EX	ME	WB
(a)				
(b)	(a)			
(d)	(b)	(a)		
(g)	(d)	(b)	(a)	
(c)	(g)	(d)	(b)	(a)
(h)	(c)	(g)	(d)	(b)
(e)	(h)	(c)	(g)	(d)
(f)	(e)	(h)	(c)	(g)
(i)	(f)	(e)	(h)	(c)
	(i)	(f)	(e)	(h)
		(i)	(f)	(e)
			(i)	(f)
				(i)

Extraction de parallélisme

processeur superscalaire

- dans l'ordre
- dans le désordre (reorder buffer)

VLIW (Very Long Instruction Word)

• instructions parallèles groupées en bundle

Plus il existe de parallélisme

 \implies efficacité de fonctionnement – ILP (Instruction Level

Parallelism)

⇒ augmenter la taille des blocs

Augmentation du parallélisme

Superbloc:

- agréger des blocs proche
- ullet bloc suivant une sélection \Longrightarrow dupliqué sur chaque branche

Déroulage de boucle :

- dupliquer une boucle N fois
- si taille inconnue, ajouter boucle pour itération restantes

Attention: augmentation de la taille du programme \implies inefficacité du cache d'instruction

Cache d'instruction

- conflit si 2 blocs de code correspondant à la même ligne de cache
- blocs proche ne font pas de conflit
- rapprocher les blocs / fonctions dont l'exécution est proche
- précharger un bloc avant son exécution (instruction spéciale
 augmentation de la taille du code)

NOTE : toute optimisation réduisant la taille du code améliore le cache d'instruction

Cache de donnée

Transformations de boucle (grands tableaux) :

- fusion de boucle
- tiling
- restructuration

Analyse complexes:

• dépendances inter-itérations