CS 511, Fall 2024, Lecture Slides 13 Quantified Propositional Logic

Assaf Kfoury

September 24, 2024

Syntax of Quantified Propositional Logic (QPL)

► BNF definition of QPL – sometimes called the *logic of quantified Boolean formulas* (QBF's) :

$$\varphi ::= \bot \mid \top \mid x \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid$$

$$(\forall x \varphi) \mid (\exists x \varphi)$$

where x ranges over propositional variables. 1

We do not say propositional atoms in order to emphasize that x can be quantified as a variable.

Syntax of Quantified Propositional Logic (QPL)

▶ BNF definition of QPL – sometimes called the *logic of quantified Boolean formulas* (QBF's) :

$$\varphi ::= \bot \mid \top \mid x \mid (\neg \varphi) \mid (\varphi \land \varphi) \mid (\varphi \lor \varphi) \mid (\varphi \to \varphi) \mid$$

$$(\forall x \varphi) \mid (\exists x \varphi)$$

where x ranges over propositional variables. 1

- ► free and bound variables:
 - ightharpoonup a variable x may occur free or bound in a WFF φ
 - if x is bound in φ , then there are **zero** or more **bound** occurrences of x and **one** or more **binding** occurrences of x in φ
 - **a binding** occurrence of x is of the form " $\forall x$ " or " $\exists x$ "
 - if a binding occurrence of x occurs as $(\mathbf{Q} x \varphi)$ where $\mathbf{Q} \in \{ \forall, \exists \}$, then φ is the **scope** of the binding occurrence

We do not say propositional atoms in order to emphasize that x can be quantified as a variable.

ightharpoonup scopes of two binding occurrences " $\mathbf{Q} x$ " and " $\mathbf{Q}' x'$ " may be

```
disjoint: \cdots (\mathbf{Q}x \cdots \cdots) \cdots (\mathbf{Q}'x' \cdots \cdots) \cdots or nested: \cdots (\mathbf{Q}x \cdots (\mathbf{Q}'x' \cdots \cdots) \cdots) \cdots
```

but cannot overlap

ightharpoonup scopes of two binding occurrences " $\mathbf{Q}x$ " and " $\mathbf{Q}'x'$ " may be

disjoint:
$$\cdots$$
 ($\mathbf{Q}x \cdots \cdots$) \cdots ($\mathbf{Q}'x' \cdots \cdots$) \cdots or **nested**: \cdots ($\mathbf{Q}x \cdots (\mathbf{Q}'x' \cdots \cdots) \cdots$) \cdots

but cannot overlap

We define a function FV() which collects all the variables occurring free in a WFF. Formally:

$$\mathsf{FV}(\varphi) = \begin{cases} \varnothing & \text{if } \varphi = \bot \text{ or } \top \\ \{x\} & \text{if } \varphi = x \\ \mathsf{FV}(\varphi') & \text{if } \varphi = \neg \varphi' \\ \mathsf{FV}(\varphi_1) \cup \mathsf{FV}(\varphi_2) & \text{if } \varphi = (\varphi_1 \star \varphi_2) \text{ and } \star \in \{\land, \lor, \rightarrow\} \\ \mathsf{FV}(\varphi') - \{x\} & \text{if } \varphi = (\mathbf{Q}x \; \varphi') \text{ and } \mathbf{Q} \in \{\forall, \exists\} \end{cases}$$

Note: If x has a bound occurrence in φ , it does not follow that $x \notin FV(\varphi)$.

 $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$

- $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$
- \blacktriangleright is the WFF φ of the form:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$, equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 \, x \, (\cdots \, x \cdots) \right) \, \cdots \, \left(\mathbf{Q}_2 \, \underset{\uparrow}{x'} \, (\cdots \, \underset{\uparrow}{x'} \, \cdots) \right) \, \cdots \, ??$$

- $ightharpoonup \varphi$ is closed iff $FV(\varphi) = \varnothing$
- \blacktriangleright is the WFF φ of the form:

$$\varphi = \cdots \left(\mathbf{Q}_1 x \left(\cdots x \cdots \right) \right) \cdots \left(\mathbf{Q}_2 x \left(\cdots x \cdots \right) \right) \cdots$$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$, equivalent to:

$$\varphi' = \cdots \left(\mathbf{Q}_1 \, x \, (\cdots \, x \cdots) \right) \, \cdots \, \left(\mathbf{Q}_2 \, \underset{\uparrow}{x'} \, (\cdots \, \underset{\uparrow}{x'} \, \cdots) \right) \, \cdots \, ??$$

YES, φ and φ' are equivalent

Question: What are the advantages of φ' over φ ?

Question: Can you write a procedure to transform φ into φ' ?

Examples of wff's in QPL:

1. a **closed** wff of QPL (all occurrences of prop variables are **bound**):²

$$\varphi_1 \triangleq \forall x. (x \lor \exists y. (y \lor \neg x))$$

2. an open wff of QPL (some occurrences of prop variables are free):

$$\varphi_2 \triangleq (\varphi_1) \land (x \rightarrow y) = (\varphi_1') \land (x \rightarrow y)$$

 φ'_1 is φ_1 after renaming x and y to x' and y' (what is good about this renaming??)

Assaf Kfoury CS 511 Fall 2024 Lecture Slides 13

²Note the convention, for better readability, of using "." which is not part of the formal syntax to separate a quantifier from its scope and omit the outer matching parentheses, *i.e.*, we write $\forall x. \varphi$ instead $(\forall x. \varphi)$.

renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **disjoint** scopes

Syntax of QBF's

renaming binding occurrences " $\mathbf{Q}_1 x$ " and " $\mathbf{Q}_2 x$ " in **nested** scopes

substitution examples in $\varphi = (\forall x (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg z$ for y in φ : $\varphi[(\neg z)/y]$ or, less ambiguously, $\varphi[y:=\neg z]$ or $\varphi[y\leftarrow \neg z]$

substitution examples in $\varphi = (\forall x \ (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg z$ for y in φ : $\varphi[(\neg z)/y]$ or, less ambiguously, $\varphi[y:=\neg z]$ or $\varphi[y\leftarrow \neg z]$

substitution examples in $\varphi = (\forall x (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg z$ for x in φ : $\varphi[(\neg z)/x]$

substitution examples in $\varphi = (\forall x \ (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

substitute $\neg z$ for x in φ : $\varphi[(\neg z)/x]$ $\forall x$ \boldsymbol{x} х х x

substitution examples in $\varphi = (\forall x (\neg x \land (x \rightarrow y))) \rightarrow (\neg \neg x \lor (x \rightarrow y))$

substitute $\neg x$ for y in φ : $\varphi[(\neg x)/y]$

substitution examples in $\varphi = (\forall x \ (\neg x \land (x \to y))) \to (\neg \neg x \lor (x \to y))$

 $\varphi[(\neg x)/y]$ substitute $\neg x$ for y in φ : \boldsymbol{x} xx \boldsymbol{x} х

 \boldsymbol{x}

Syntax of QPL: substitution in general

Precise definition of substitution in general for wff's of QPL where u here is: \top , or \bot , or a propositional variable :

- Exercise: The formal definition of substitution on page 18 can be simplified if every wff is such that:
 - 1. there is at most one **binding** occurrence for the same variable,
 - 2. a variable cannot have both free and bound occurrences.

Formalize this idea.

 $\it Hint$: You first need to modify the BNF definition on page 2, so that wff's of QPL are defined simultaneously with FV().

Why Study QPL?

1. theoretical reasons:

deciding **validity of wff's in QPL** (sometimes referred to as the *QBF problem* and abbreviated as TQBF for "True QBF") is the archetype PSPACE-complete problem, just as **satisfiability of propositional wff's** (the SAT problem) is the archetype NP-complete problem.

(See vast literature relating QBF's, the wff's of QPL, to complexity classes.)

2. practical reasons:

wff's of QPL provide an alternative to propositional wff's which are often cumbersome and space-inefficient in formal modeling of systems. **trade-off:** wff's of QPL are more expressive than propositional wff's, but harder to decide their validity.

3. pedagogical reasons:

the study of wff's of QPL makes the transition from *propositional logic* to *first-order logic* a little easier.

caution: wff's of QPL are not part of first-order logic (why?), QPL and first-order logic extend propositional logic in different ways. Nonetheless:

Exercise: There is a way of embedding QPL logic into first-order logic, by introducing appropriate binary predicate symbols and . . .

Formal Proof Systems for QPL

- a natural deduction proof system for QPL is possible and consists of:
 - all the proof rules of natural deduction for propositional logic
 - **proof rules for universal quantification**: " $\forall x \in \mathbb{R}$ " and " $\forall x \in \mathbb{R}$ " (slide 22)
 - ▶ proof rules for **existential quantification**: " $\exists x \text{ E"}$ and " $\exists x \text{ I"}$ (slide 24)
- Hilbert-style proof systems are also possible (with axioms schemes and inference rules, not discussed here)
- tableaux-based proof systems are also possible (with additional expansion rules for the quantifiers, not discussed here)
- resolution-based proof systems for wff's of QPL are also possible, after transforming the wff's into conjunctive normal form (CNF) – more on wff's of QPL in CNF later
- QBF-solvers (i.e., solvers for wff's of QPL) are algorithms to decide validity of closed QBF's (validity and satisfiability of closed QBF's coincide, not open QBF's why?).

(Development of QBF-solvers is currently far behind that of SAT-solvers.)

two proof rules for universal quantification

universal quantifier elimination

$$\frac{\forall x \ \varphi}{\varphi[t/x]} \ \forall x \ \mathsf{E}$$

(where t is \top or \bot or a variable y, provided y is substitutable for x)

two proof rules for universal quantification

universal quantifier elimination

$$\frac{\forall x \ \varphi}{\varphi[t/x]} \ \forall x \ \mathsf{E}$$

(where t is \top or \bot or a variable y, provided y is substitutable for x)

universal quantifier introduction

two proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \ \varphi} \ \exists x \ \mathsf{I}$$

(where t is \top or \bot or a variable y, provided y is substitutable for x)

two proof rules for existential quantification

existential quantifier introduction

$$\frac{\varphi[t/x]}{\exists x \ \varphi} \ \exists x \ \mathsf{I}$$

(where t is \top or \bot or a variable y, provided y is substitutable for x)

existential quantifier elimination

 $(x_0 \text{ cannot occur outside its box, in particular, it cannot occur in } \chi)$

 χ

Note: Rule $(\exists x \ E)$ introduces both a **fresh** variable and an **assumption**.

 $\exists x \in$

Formal Semantics of QPL

Let \mathcal{V} be a set of propositional variables.

▶ A valuation (or interpretation or model) of V is a map $\mathcal{I}: V \to \{true, false\}$.

Formal Semantics of QPL

Let \mathcal{V} be a set of propositional variables.

- $\blacktriangleright \ \ \, \text{A valuation (or interpretation or model) of \mathcal{V} is a map $\mathcal{I}:\mathcal{V}\to\{\textit{true},\textit{false}\}$.}$
- Interpretation of wff's is by induction on the (inductive) BNF definition on page 2:

$$ightharpoonup \mathcal{I} \models \top$$
 and $\mathcal{I} \not\models \bot$

$$ightharpoonup \mathcal{I} \models x \quad \text{iff} \quad \mathcal{I}(x) = true$$

$$ightharpoonup \mathcal{I} \not\models x$$
 iff $\mathcal{I}(x) = \textit{false}$

$$ightharpoonup \mathcal{I} \models \varphi \lor \psi \quad \text{iff} \quad \mathcal{I} \models \varphi \text{ or } \mathcal{I} \models \psi$$

$$ightharpoonup \mathcal{I} \models \varphi
ightarrow \psi \quad \text{iff} \quad \mathcal{I} \models \psi \text{ whenever } \mathcal{I} \models \varphi$$

$$ightharpoonup \mathcal{I} \models \forall x \ \varphi \quad \text{iff} \quad \mathcal{I} \models \varphi[x := \top] \ \text{and} \ \mathcal{I} \models \varphi[x := \bot]$$

$$ightharpoonup \mathcal{I} \models \exists x \ \varphi \quad \text{iff} \quad \mathcal{I} \models \varphi[x := \top] \quad \text{or} \quad \mathcal{I} \models \varphi[x := \bot]$$

- For sets Δ , Γ of wff's: \mathcal{I} is a model of Δ , written $\mathcal{I} \models \Delta$, iff $\mathcal{I} \models \varphi$ for all $\varphi \in \Delta$. Δ semantically entails Γ , written $\Delta \models \Gamma$, iff every model \mathcal{I} of Δ is a model of Γ .
- Assaf Kfoury, CS 511, Fall 2024, Lecture Slides 13

Formal Semantics of QPL (continued)

Useful connections between **closed** wff's of QPL and **open** wff's of QPL (a special case of **open** wff's of QPL are the propositional WFF's):

Theorem

Let φ be a wff of QPL with free variables $FV(\varphi) = \{x_1, \dots, x_n\}$. We then have:

- $\triangleright \varphi$ is satisfiable iff the closed formula $\exists x_1 \cdots \exists x_n . \varphi$ is satisfiable.
- $ightharpoonup \varphi$ is valid iff the closed formula $\forall x_1 \cdots \forall x_n . \varphi$ is satisfiable.

Formal Semantics of QPL (continued)

Theorem

For closed wff's of QPL, the notions of truth (semantic validity),

formal deducibility, and satisfiability all coincide.

Specifically, given a **closed** wff φ , the following are equivalent statements:

- 1. φ is satisfiable.
- 2. φ is valid.
- 3. $\mathcal{I} \models \varphi$ for some valuation $\mathcal{I} : \mathcal{V} \rightarrow \{\text{true}, \text{false}\}.$
- **4.** $\mathcal{I} \models \varphi$ for every valuation $\mathcal{I} : \mathcal{V} \rightarrow \{ \text{true}, \text{false} \}.$

Because φ is closed and $FV(\varphi) = \emptyset$, the last two statements are equivalent to one:

5. $\models \varphi$ (there is no mention of a valuation \mathcal{I})

There is also a **Soundness Theorem**, a **Compactness Theorem**, and a **Completeness Theorem**, all proved as they were for the propositional logic.

Prenex Forms in QPL

1.
$$(\mathbf{Q}_1x_1 \ \varphi_1) \otimes (\mathbf{Q}_2x_2 \ \varphi_2)$$
 transformed to $\mathbf{Q}_1x_1 \ \mathbf{Q}_2x_2 \ (\varphi_1 \otimes \varphi_2)$

where $\mathbf{Q}_1, \mathbf{Q}_2 \in \{ \forall, \exists \}$ and $\otimes \in \{ \land, \lor \}$, provided

 x_1 is not free in φ_1 and x_2 is not free in φ_2 .

1a. special case of case 1 (for better QBF-solver performance):

$$(\forall x_1 \ \varphi_1) \ \land \ (\forall x_2 \ \varphi_2)$$
 transformed to $\forall x_1 \ (\varphi_1 \land \varphi_2[x_2 := x_1])$

1b. special case of case 1 (for better QBF-solver performance):

$$(\exists x_1 \ \varphi_1) \ \lor \ (\exists x_2 \ \varphi_2)$$
 transformed to $\exists x_1 \ \left(\varphi_1 \lor \varphi_2[x_2 := x_1]\right)$

- 2. $(\forall x \varphi) \to \psi$ transformed to $\exists x (\varphi \to \psi)$ provided x not free in ψ .
- 3. $(\exists x \varphi) \to \psi$ transformed to $\forall x (\varphi \to \psi)$ provided x not free in ψ .
- 4. $\varphi \to (\mathbf{Q}x \, \psi)$ transformed to $\mathbf{Q}x \, (\varphi \to \psi)$ provided x not free in φ .
- 5. $\neg(\exists x \varphi)$ transformed to $\forall x (\neg \varphi)$
- 6. $\neg(\forall x \varphi)$ transformed to $\exists x (\neg \varphi)$

Conjunctive Normal Form & Disjunctive Normal Form

ightharpoonup A wff φ of QPL is in

```
prenex conjunctive normal form (PCNF) or prenex disjunctive normal form (PDNF)
```

iff φ is in **prenex form** and its **matrix** is a CNF or a DNF, respectively.

Generally, validity/satisfiability methods for wff's of QPL (tableaux, resolution, QBF solvers, etc.) perform best on PCNF (resp. PDNF) if their counterparts for propositional wff's perform best on CNF (resp. DNF).

- ▶ QBF solvers require input wff φ be transformed into PCNF, (the **matrix** of φ is transformed into an **equisatisfiable**, rather than an **equivalent**, propositional wff to avoid exponential explosion).
- ▶ Warning: Transformation of a wff φ of QPL into a PCNF ψ (or PDNF ψ) as here defined is non-determinisitic (why?). Special methods have been developed (and are being developed) for minimizing number of quantifiers and quantifier alternations in the prenex of ψ , for improved performance of QBF-solvers.

transformation of wff's for better QBF-solver performance

- 1. introduce abbreviations for subformulas
 - **example**: consider a formula Φ of the form

$$\Phi = (\varphi \vee \psi_1) \wedge (\varphi \vee \psi_2) \wedge (\varphi \vee \psi_3)$$

• if we abbreviate (i.e., represent) φ by the fresh variable y, we can write

$$\Psi = \exists y. \ (y \leftrightarrow \varphi) \land (y \lor \psi_1) \land (y \lor \psi_2) \land (y \lor \psi_3)$$

- **exercise**: Φ and Ψ are logically equivalent
- **advantage** of Ψ over Φ : subformula φ occurs once (in Ψ) instead of three times (in Φ) for the price of two logical connectives $\{\ ``\wedge",\ ``\leftrightarrow"\ \}$ and one propositional variable $\{\ ``y"\ \}$

transformation of wff's for better QBF-solver performance

- unify instances of the same subformula
 - **example**: consider a formula Φ of the form

$$\Phi = \theta(\varphi_1, \psi_1) \wedge \theta(\varphi_2, \psi_2) \wedge \theta(\varphi_3, \psi_3)$$

• unify the three occurrences of the subformula θ , and introduce fresh variables x and y to represent the φ_i 's and the ψ_i 's, resp., to obtain:

$$\Psi = \forall x. \ \forall y. \ \left(\bigvee_{i=1,2,3} (x \leftrightarrow \varphi_i) \land (y \leftrightarrow \psi_i) \right) \ \rightarrow \ \theta(x,y)$$

- **exercise**: Φ and Ψ are logically equivalent
- for many other transformations, for better QBF-solver performance, see:
 U. Bubeck and H. Büning, "Encoding Nested Boolean Functions as QBF's", in
 J. on Satisfiability, Boolean Modeling and Computation, Vol. 8 (2012), pp. 101-116

wff's of QPL as "games"

A closed prenex wff of QPL φ can be viewed as a game between an existential player (Player \exists) and a universal player (Player \forall):

- lacktriangle Existentially quantified variables are owned by Player \exists .
- Universally quantified variables are owned by Player ∀.
- On each turn of the game, the owner of an outermost unassigned variable assigns it a truth value (true or false).
- ▶ The goal of Player \exists is to make φ be *true*.
- ▶ The goal of Player \forall is to make φ be *false*.
- A player owns a literal ℓ if $\ell = x$ or $\ell = \neg x$ for some propositional variable x and the player owns x.

wff's of QPL as "games"

A closed prenex wff of QPL φ can be viewed as a game between an existential player (Player \exists) and a universal player (Player \forall):

- \blacktriangleright Existentially quantified variables are owned by Player \exists .
- Universally quantified variables are owned by Player ∀.
- On each turn of the game, the owner of an outermost unassigned variable assigns it a truth value (true or false).
- ▶ The goal of Player \exists is to make φ be *true*.
- ▶ The goal of Player \forall is to make φ be *false*.
- A player owns a literal ℓ if $\ell = x$ or $\ell = \neg x$ for some propositional variable x and the player owns x.

If $\mathcal{V}_0 \subseteq \mathcal{V}$ is the set of propositional variables occurring in the closed prenex QBF φ , then a round of the game on φ defines a partial interpretation $\mathcal{I}: \mathcal{V}_0 \to \{\textit{true}, \textit{false}\}$, which can be extended to a (full) interpretation $\mathcal{I}: \mathcal{V} \to \{\textit{true}, \textit{false}\}$ in the obvious way.

wff's of QPL as "games"

A closed prenex wff of QPL φ can be viewed as a game between an existential player (Player \exists) and a universal player (Player \forall):

- lacktriangle Existentially quantified variables are owned by Player \exists .
- Universally quantified variables are owned by Player ∀.
- On each turn of the game, the owner of an outermost unassigned variable assigns it a truth value (true or false).
- ▶ The goal of Player \exists is to make φ be *true*.
- ▶ The goal of Player \forall is to make φ be *false*.
- A player owns a literal ℓ if $\ell = x$ or $\ell = \neg x$ for some propositional variable x and the player owns x.

If $\mathcal{V}_0 \subseteq \mathcal{V}$ is the set of propositional variables occurring in the closed prenex QBF φ , then a round of the game on φ defines a partial interpretation $\mathcal{I}: \mathcal{V}_0 \to \{\textit{true}, \textit{false}\}$, which can be extended to a (full) interpretation $\mathcal{I}: \mathcal{V} \to \{\textit{true}, \textit{false}\}$ in the obvious way.

We say: "Player \exists wins" iff $\models \varphi$ and "Player \forall wins" iff $\models \neg \varphi$.

(THIS PAGE INTENTIONALLY LEFT BLANK)