Obyčejný graf

Obyčejný graf je dvojice G = (U, H), kde U je konečná množina uzlů (vrcholů) a $H \subseteq \{\{u, v\} : u, v \in U \land u \neq v\}$ je (konečná) množina hran. O hraně $h = \{u, v\}$ říkáme, že je incidentní s uzly u a v nebo že je mezi uzly u a v, spojuje uzly u a v a podobně.

Sled

Je-li G=(U, H) obyčejný graf, definujeme sled mezi uzly u, v

o délce n jako posloupnost $(u=w_0, h_1, w_1, h_2, ..., w_{n-1}, h_n, w_n=v)$

takovou, že

$$w_0, w_1, ..., w_n \in U, h_1, h_2, ..., h_n \in H$$

a

$$h_i = \{w_{i-1}, w_i\}, 1 \le i \le n.$$

Sled mezi uzly *u* a *v* o délce *n* je tedy posloupnost, ve které se střídají uzly a hrany, začínající uzlem *u*, končící uzlem *v* a obsahující *n* hran, přičemž sousední uzly v posloupnosti jsou spojeny mezi nimi ležící hranou. Ve sledu se mohou opakovat jak uzly tak hrany. Každý uzel je sled délky 0.

Tah

Je-li G=(U,H) obyčejný graf, potom tahem mezi uzly u,v o délce n rozumíme sled $(u=w_0,h_1,w_1,h_2,\ldots,w_{n-1},h_n,w_n=v)$ takový, že platí $i\neq j\Rightarrow h_i\neq h_i, 1\leq i,j\leq n$.

Je-li navíc $w_0 = w_n$, pak se tento tah nazývá uzavřený.

Tah mezi uzly *u* a *v* o délce *n* je tedy sled mezi uzly *u*, *v* o délce *n*, kde se mohou opakovat uzly, ale všechny hrany jsou různé.

Cesta

Je-li G=(U, H) obyčejný graf, potom cesta mezi uzly u, v o délce n je sled $(u=w_0, h_1, w_1, h_2, \dots, w_{n-1}, h_n, w_n=v)$ mezi uzly u, v takový, že platí $i \neq j \Rightarrow w_i \neq w_j, 0 \leq i, j \leq n$.

- Cesta mezi uzly *u* a *v* o délce *n* je tedy sled mezi uzly *u*,*v* o délce *n*, v němž jsou všechny uzly různé.
- Snadno se dokáže, že v grafu G existuje cesta mezi uzly
 u a v, právě když mezi těmito uzly existuje sled.

Definice

Graf G = (U, H) se nazývá diskrétní, resp. úplný, jestliže $H = \emptyset$, resp.

$$H = \{\{u, v\} : u, v \in U \land u \neq v\} .$$

Kružnice

Je-li G=(U,H) obyčejný graf, kružnice v grafu G o délce n je sled $(w_0,h_1,w_1,h_2,\ldots,w_{n-1},h_n,w_n)$ takový, že platí $i\neq j\Rightarrow w_i\neq w_i, 0\leq i, j\leq n-1 \wedge w_0=w_n.$

Kružnice v grafu G o délce n je tedy uzavřený tah, kde jsou všechny uzly různé s výjimkou prvního a posledního uzlu. Protože G je obyčejný graf, platí n > 2.

Věta 1

Nechť obyčejný graf G=(U, H) obsahuje dvě různé kružnice

$$C_1 = (u_0, g_{1,} u_1, g_2, u_2, ..., u_{p-1}, g_p, u_p = u_0)$$
 a
 $C_2 = (v_0, h_{1,} v_1, h_2, v_2, ..., v_{q-1}, h_q, v_q = v_0),$

kde $u_0=v_0$, $u_1=v_1$, $h_1=g_1$. Potom tento graf obsahuje i kružnici C_3 neobsahující hranu $h_1=g_1$.

Důkaz

Nechť r je největší index takový, že $u_0 = v_0$, $u_1 = v_1$, ..., $u_r = v_r$. Zřejmě $1 \le r \le \min\{p-1, q-1\}$ protože kružnice C_1 a C_2 jsou různé a graf G je obyčejný. Nechť s, t jsou nejmenší indexy takové, že

$$r < s$$
, $r < t$, $u_s = v_t$, $u_i \ne v_j$, $r < i < s$, $r < j < t$.

Takové indexy existují, neboť $u_{r+1} \neq v_{r+1}$ a $u_p = v_q$. Potom sled

$$u_r$$
, g_{r+1} , u_{r+1} , ..., u_{s-1} , $u_s = v_t$, h_t , v_{t-1} , ..., v_{r+1} , h_{r+1} , v_r

je kružnice, neboť $u_i \neq v_j$ pro r < i < s, r < j < t a $u_r = v_r$. Tato kružnice zřejmě neobsahuje hranu $g_1 = h_1$.

Souvislý graf

Je-li G=(U,H) obyčejný graf, řekneme, že je souvislý, když pro libovolné uzly u, $v \in U$ existuje sled $(u=w_0,h_1,w_1,h_2,\ldots,w_{n-1},h_n,w_n=v)$.

Graf *G* je tedy souvislý, když mezi libovolnými jeho dvěma uzly existuje sled, a tedy i cesta. Například každý úplný graf je souvislý. Naopak, každý diskrétní graf s více než 1 uzlem je nesouvislý.

Podgraf, faktor

Jsou-li G=(U,H) a G'=(U',H') obyčejné grafy, řekneme, že G' je podgrafem G, když $U'\subseteq U\wedge H'\subseteq H$. Pokud navíc platí $(u,v\in U'\wedge\{u,v\}\in H)\Rightarrow\{u,v\}\in H'$, říkáme, že podgraf G' je indukovaný (množinou uzlů U'). Faktorem grafu G=(U,H) nazýváme takový jeho podgraf G'=(U',H'), pro který platí U=U'.

Červeně vyznačená část tvoří pograf grafu na obrázku, který není indukovaný množinou červených uzlů, protože neobsahuje hranu $\{u, v\}$.

Komponenta

Jsou-li G=(U,H) a G'=(U',H') obyčejné grafy, řekneme, že G' je komponentou grafu G, když G' je souvislým indukovaným podgrafem grafu G a pro libovolný obyčejný graf G''=(U'',H'') platí: $(U'\subset U'')$ a G'' je podgraf G' není souvislý.

Komponenta je tedy uzlově maximální souvislý indukovaný podgraf grafu.

Graf na obrázku má 4 komponenty.

Most

Je-li G=(U,H) obyčejný graf a $h\in H$, pak řekneme, že hrana h je mostem, když jejím odstraněním se zvýší počet komponent grafu.

Pokud je hrana $h = \{u,v\}$ mostem v G, pak (u,h,v) je jediná cesta mezi uzly u a v. Tedy po odstranění hrany h budou uzly u a v ležet v různých komponentách.

Červené hrany tvoří mosty v grafu na obrázku.

Stupeň uzlu

Je-li G=(U, H) obyčejný graf a $u \in U$, definujeme číslo $\deg(u)$, tzv. stupeň uzlu u jako počet hran incidentních s uzlem u.

Nechť G=(U,H) je obyčejný graf, |H|=m . Snadno se dokáže, že platí

$$\sum_{u \in U} \deg(u) = 2 m.$$

V celkové sumě stupňů se totiž každá hrana zřejmě započítá přesně dvakrát (jednou do stupně každého ze dvou uzlů, s nimiž je incidentní).

Jsou-li $G_1=(U_1,H_1)$ a $G_2=(U_2,H_2)$ dva obyčejné grafy a $\phi:U_1\to U_2$ bijekce mezi množinami uzlů, řekneme, že ϕ je isomorfismus G_1 na G_2 , jestliže pro každé dva uzly u, $v\!\in\! H_1$ platí

$$\{u, v\} \in H_1 \Leftrightarrow \{\phi(u), \phi(v)\} \in H_2$$

Příklad isomorfismu

Poznámka

Je-li Φ isomorfismus G_1 na G_2 , pak je Φ^{-1} isomorfismus G_2 na G_1 .

Pokud existuje isomorfismus G_1 na G_2 , říkáme, že G_1 a G_2 jsou isomorfní. Isomorfismus grafu na sebe se nazývá *automorfismus* grafu.

<u>Příklad</u>

Zřejmě existuje 6 automorfismů grafu na obrázku. Uzel c musí být zřejmě vždy zobrazen na sebe a uzly a, b, d mohou být na sebe zobrazeny libovolnou permutací nad třemi prvky.

Obyčejný graf, jehož žádný podgraf není kružnicí, se nazývá les.

Obyčejný souvislý graf, jehož žádný podgraf není kružnicí, se nazývá **strom**.

Věta 2

Nechť S = (U, H) je les, který má alespoň jednu hranu. Pak existují dva uzly $u, v \in U$ takové, že $\deg(u) = \deg(v) = 1$.

<u>Důkaz</u>

V lese existuje alespoň jedna cesta. Nechť $(u, h_1, u_1, h_2, ..., u_{n-1}, h_n, v)$ je cesta v S, která má maximální délku. Zřejmě platí $\deg(u) \ge 1$ a $\deg(v) \ge 1$. Pokud by existovala hrana $h \ne h_1$ incidentní s uzlem u, potom buď to h je incidentní s některým z uzlů $\{u_2, u_3, ..., u_{n-1}, v\}$ nebo s nějakým uzlem, který není obsažen v cestě $(u, h_1, u_1, h_2, ..., u_{n-1}, h_n, v)$. V prvním případě to znamená, že S má jako podgraf kružnici a v druhém případě existuje v S cesta délky n+1. V obou případech dostaneme spor. Podobně se dokáže tvrzení i o uzlu v.

Věta 3

Nechť G=(U,H) je obyčejný graf a |U|=n, |H|=m. Pak jsou následující podmínky ekvivalentní:

- (a) G je strom;
- (b) G je souvislý a m = n 1;
- (c) G neobsahuje jako podgraf kružnici a m = n 1;
- (d) G je souvislý a každá hrana je mostem;
- (e) mezi každou dvojicí různých uzlů v G existuje jediná cesta;
- (f) *G* neobsahuje kružnici a vznikne-li graf *G* ' přidáním libovolné hrany ke grafu *G*, *G* ' kružnici obsahuje;
- (g) G je souvislý, pro n > 2 je G neúplný a vznikne-li graf G' přidáním libovolné hrany ke grafu G, pak G' obsahuje právě jednu kružnici.

<u>Důkaz</u>

$$(a) \Rightarrow (b)$$

Pro n=1 je tvrzení zřejmé. Nechť tvrzení platí pro nějaké $n \ge 1$. Ukážeme, že pak platí i pro n+1. Buď tedy G strom s n+1 uzly. Podle Věty 2 existuje v G uzel u, který je incidentní s jediným uzlem v. Odstraněním uzlu u a hrany $\{u, v\}$ dostaneme strom G, který má n uzlů a tedy mán-1 hran. Graf G má ovšem o 1 hranu více, než graf G, tedy má n hran. Takže počet hran v grafu G je o 1 nižší než počet uzlů.

$$(b) \Rightarrow (c)$$

Nechť G je souvislý a m=n-1. Předpokládejme, že G obsahuje kružnici. Je zřejmé, že odstraněním libovolné hrany h ležící na kružnici se odstraní i tato kružnice a G přitom zůstane souvislý. Můžeme tedy odstraňovat hrany tak dlouho, dokud v grafu existují kružnice. Po odstranění všech kružnic dostaneme zřejmě strom, který má n uzlů. Protože (a) \Rightarrow (b), má tento strom n-1=m hran, . To je však spor s tím, že jsme odstranili alespoň jednu hranu.

$$(c) \Rightarrow (d)$$

Pokud není G souvislý, potom obsahuje komponenty $K_{1,}K_{2,}\ldots,K_{p}$, $p\geq 2$, které mají postupně $n_{1,}n_{2,}\ldots,n_{p}$ uzlů, neobsahují jako podgraf kružnici, a jsou tedy stromy. Proto mají postupně $n_{1}-1,n_{2}-1,\ldots,n_{p}-1$ hran (jelikož (a) \Rightarrow (b)). Protože však zřejmě $\sum_{i=1}^{p}n_{i}=n$, musel by mít graf G n-p hran, což je spor. Tedy G je souvislý.

Nechť dále existuje hrana h=(u,v), která není mostem v G. Jejím odstraněním vznikne graf G, který má stejný počet komponent jako G, a je tedy souvislý. Proto v G existuje cesta mezi uzly u a v. To však znamená, že G obsahuje kružnici, což je spor.

$$(d) \Rightarrow (e)$$

Existence cesty (jisté délky k) mezi dvěma různými uzly v G plyne ze souvislosti G. Zbývá tedy dokázat jednoznačnost. Ta je zřejmá pro cesty délky k=1 (neboť podle předpokladu je každá hrana grafu G most). Nechť tedy každá cesta délky $k \ge 1$ mezi dvěma různými uzly je jediná cesta mezi těmito uzly. Uvažujme cestu $(u_0,h_1,u_1,h_2,\ldots,u_k,h_{k+1},u_{k+1})$ délky k+1. Protože h_{k+1} je most, musí každá cesta mezi u_0 a u_{k+1} obsahovat hranu h_{k+1} . Cesta $(u_0,h_1,u_1,h_2,\ldots,h_k,u_k)$ je ovšem jediná mezi uzly u_0 a u_k dle indukčního předpokladu. Tedy i cesta $(u_0,h_1,u_1,h_2,\ldots,u_k,h_{k+1},u_{k+1})$ je jediná cesta mezi uzly u_0 a u_{k+1} . $(e) \Rightarrow (f)$

G nemůže obsahovat kružnici, protože potom by mezi libovolnými dvěma uzly této kružnice zřejmě existovaly nejméně dvě cesty. Protože však mezi každými dvěma uzly v *G* existuje cesta, vznikne zřejmě přidáním hrany mezi tyto uzly kružnice.

$$(f) \Rightarrow (g)$$

Předpokládejme, že platí podmínka (f) a G není souvislý. Potom obsahuje nejméně dvě různé neprázdné komponenty K_1 , K_2 . Nechť $u \in K_1$, $v \in K_2$. Označme G ' graf, který vznikne z grafu G přidáním hrany h = (u, v). Podle předpokladu obsahuje G ' kružnici. Z definice komponenty plyne, že hrana h je jedinou hranou mezi uzly, z nichž jeden je z komponenty K_1 a druhý z komponenty K_2 . Proto žádná kružnice nemůže obsahovat hranu h. Kružnici tedy musí obsahovat graf G, což je spor. Graf G je proto souvislý.

Pro n>2 je zřejmě graf G neúplný. Předpokládejme, že graf vzniklý z G přidáním nové hrany h obsahuje dvě různé kružnice C_1 a C_2 . Potom hrana h leží jak v kružnici C_1 , tak v kružnici C_2 . Podle Věty 1 tedy existuje kružnice, která neobsahuje hranu h. Potom ale tato kružnice leží v grafu G, což je spor.

$$(g)\Rightarrow(a)$$

Předpokládejme, že G není stromem, tedy že obsahuje kružnici. Potom n>2, takže G je neúplný. Přidáme-li do grafu G novou hranu h spojující uzly u a v, mezi kterými hrana v G není, pak dostaneme novou kružnici, neboť mezi u a v existuje cesta (délky větší než jedna) neobsahující h. Tedy graf G ' vzniklý z grafu G přidáním hrany h obsahuje nejméně dvě kružnice, což je spor.

Kostra grafu

Je-li dán obyčejný graf G = (U, H), pak jeho faktor K = (U, H') nazveme kostrou grafu G, pokud je K strom.

Každá kostra grafu *G* je tedy uzlově maximální strom obsažený jako podgraf v grafu *G*.

Následující dvě tvrzení plynou z Věty 3:

Věta 4

Nechť G je obyčejný graf. G je souvislý, právě když má kostru.

Věta 5

Nechť G=(U,H) je obyčejný graf a |U|=n. Pokud faktor K=(U,H') grafu G splňuje kterékoliv dvě z následujících podmínek, pak je kostrou grafu G:

- (a) *K* je souvislý;
- (b) |H'| = n 1;
- (c) K neobsahuje jako podgraf kružnici.

Oceněný graf

Nechť G = (U, H) je obyčejný graf. Je-li navíc dáno zobrazení $c: H \to R$, potom trojici G = (U, H, c) nazýváme **oceněným grafem**. Každé hraně h grafu G je tak přiřazeno reálné číslo c(h), které se nazývá **cenou** hrany h. Je-li G' = (U', H') podgraf grafu G, potom $c(G') = \sum_{u \in H'} c(u)$ se nazývá cenou podgrafu G'.

Minimální kostra

Nechť G = (U, H, c) je obyčejný oceněný graf. Nechť K = (U, H') je kostra grafu G. Řekneme, že K je minimální kostra grafu G, jetliže platí $c(K) \le c(L)$ pro každou kostru L grafu G.

Dále uvedeme dva algoritmy pro nalezení minimální kostry obyčejného oceněného grafu G=(U,H,c). To, že tyto algoritmy skutečně naleznou minimální kostru, vyplývá z následujících vět.

Věta 6

Nechť G=(U,H,c) je obyčejný souvislý oceněný graf a nechť $C=(v,h_1,u_1,h_2,u_2,...,u_{p-1},h_p,v),\ p\geq 3$ je kružnice v grafu G. Jestliže platí $c(h_1)>c(h_i), 2\leq i\leq p$, potom hrana h_1 není obsažena v žádné minimální kostře grafu G.

<u>Důkaz</u> Nechť M = (U, H') je minimální kostra grafu G a předpokládejme, že $h_1 \in H'$. Nechť hrana h_1 je incidentní s uzly u_1 a u_2 . Označme dále U_1 resp. U_2 množiny uzlů spojených s uzly u_1 , resp. u_2 cestou neobsahující hranu h_1 . Protože M je strom, plyne z Věty 3, že $U_1 \cap U_2 = \emptyset$ a podgrafy indukované v M podmnožinami uzlů U_1 a U_2 jsou stromy. Označme Xmnožinu všech hran vG, které jsou incidentní jak s nějakým uzlem z U_1 tak s nějakým uzlem z U_2 .

Množina hran X zřejmě obsahuje hranu h_1 a alespoň jednu další hranu h_k kružnice C, $1 < k \le p$.

Podle předpokladu, zaměníme-li v grafu hranu h_1 za hranu h_i , dostaneme lacinější kostru, což je spor.

Důsledek 7

Nechť G=(U,H,c) je obyčejný souvislý oceněný graf a nechť $C=(v,h_1,u_1,h_2,u_2,...,u_{p-1},h_p,v),\ p\geq 3$ je kružnice v grafu G. Jestliže platí $c(h_1)\geq c(h_i), 2\leq i\leq p$, potom existuje aspoň jedna minimální kostra, ve které není hrana h_1 obsažena.

Tento důsledek se vztahuje na oceněné grafy, kde ceny dvou různých hran mohou být stejné. Metodami stejnými jako v důkazu Věty 10 lze snadno dokázat, že pokud jsou všechny ceny hran grafu *G* rozdílné, existuje pouze jedna minimální kostra grafu *G*.

Kruskalův algoritmus

Je dán oceněný obyčejný souvislý graf G = (U, H, c), kde |U| = n a $H = \{h_1, h_2, ..., h_k\}$. Setřiď me hrany z H do posloupnosti $S = (s_1, s_2, ..., s_k)$ tak, že platí $c(s_i) \le c(s_j)$ pro i < j. Budeme nyní postupně vytvářet grafy $K_1 = (U, Q_1), K_2 = (U, Q_2), ..., K_{n-1}(U, Q_{n-1})$ tak, aby platilo

- (a) $Q_1 = \{s_1\}.$
- (b) Jestliže $Q_i = \{s_{j_1}, s_{j_2}, \dots, s_{j_i}\}$, kde 1 < i < n-1, $c(s_{j_1}) \le c(s_{j_2}) \le \dots \le c(s_{j_i})$, potom $Q_{i+1} = \{s_{j_1}, s_{j_2}, \dots, s_{j_i}, s_q\}$, kde s_q je hrana z posloupnosti S s nejmenším indexem q taková, že $s_q \ne s_{j_k}$, $1 \le k \le i$ a K_{i+1} neobsahuje kružnici.

Při Kruskalově algoritmu se tedy kostra vytváří postupným přidáváním předem setříděných hran počínaje hranou s nejmenší cenou. Vznikla-li by přidáním nějaké hrany kružnice, hrana "se přeskočí".

Primův algoritmus

Je dán oceněný obyčejný souvislý graf G = (U, H, c). Pro podgraf K = (V, J) grafu G, označme $K^+ = (V^+, J^+)$ graf, který vznikne z grafu K přidáním uzlu U do U a hrany U do U a přitom U je hranou nejmenší ceny s takovouto vlastností. Sestrojíme postupně grafy U je hranou následovně:

- (a) $K_1 = (\{u, v\}, \{\{u, v\}\}) \text{ kde } c((u, v)) \le c(\{u, w\}) \text{ pro všechna } w \in U.$
- (c) $K_{i+1} \stackrel{\text{def}}{=} K_i^+$ pro každé $i=1,2,\ldots,n-2$.

Primův algoritmus vyjde z libovolného uzlu a postupně se přidává vždy hrana s nejmenší cenou taková, že předchozí graf rozšíří tak, aby byl souvislý a přitom neobsahoval kružnici.

Oproti Kruskalovu algoritmu má Primův tu výhodu, že se nemusejí předem seřazovat podle vzrůstající ceny všechny hrany. Při Kruskalově algoritmu se totiž většinou hrany s vysokými cenami vůbec nevyužijí.

Algoritmus je založen na následujících tvrzeních:

Věta 8

Nechť G=(U,H,c) je obyčejný oceněný souvislý graf a $\{u,v\}\in H$ hrana taková, že $c(\{u,v\})< c(\{u,w\})$ pro každý uzel $w\in U$. Potom hrana $\{u,v\}$ leží v každé minimální kostře grafu G.

Důsledek 9

Nechť G = (U, H, c) je obyčejný oceněný souvislý graf a $\{u, v\} \in H$ hrana taková, že $c(\{u, v\}) \le c(\{u, w\})$ pro každý uzel $w \in U$. Potom existuje minimální kostra grafu G, ve které hrana $\{u, v\}$ leží.

Důsledek 10

Nechť G = (U, H, c) je obyčejný oceněný souvislý graf, $V \subseteq U$, S = (V, H') je strom a nechť tento strom je podgrafem minimální kostry grafu G. Pak existuje minimální kostra grafu G, která obsahuje S jako podgraf a navíc hranu h s nejmenší cenou takovou, že $h = \{u, v\}, u \in V, v \in U - V$.

Maticová forma Primova algoritmu

Pokud jsou ceny hran grafu G=(U,H), kde $U=\{u_1,u_2,\ldots,u_n\}$, zadány ve formě matice $\begin{vmatrix} c_{11} & c_{12} & \ldots & c_{1n} \\ c_{21} & c_{22} & \ldots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \ldots & c_{nn} \end{vmatrix},$

kde prvek na i-tém řádku a v j-tém sloupci označuje cenu hrany incidentní s uzly u_i , u_i , je možno Primův algoritmus vyjádřit v následující formě:

Krok 1: Vyškrtnou se všechny prvky v 1. sloupci a 1. řádek se označí.

Krok 2: Pokud v označených řádcích neexistuje žádný nepodtržený prvek, algoritmus končí a podtržené prvky označují hrany v minimální kostře. Jinak se vybere minimální takový prvek.

Krok 3: Je-li vybraný prvek c_{ij} , podtrhne se, označí se j-tý řádek a vymažou se nepodtržené prvky j-tého sloupce. Přechod ke Kroku 2.

Příklad

$$C_{1} = \begin{vmatrix} - & 1 & - & 4 & 1 & - & * \\ - & - & 2 & - & 1 & - & * \\ - & 2 & - & - & 2 & 3 \\ - & - & - & 4 & - & \\ - & 1 & 2 & 4 & - & 3 \\ - & - & 3 & - & 3 & - & * \end{vmatrix}$$

$$C_{2} = \begin{vmatrix} - & 1 & - & 4 & 1 & - \\ - & - & 2 & - & 1 & - \\ - & - & - & 2 & 3 \\ - & - & - & 4 & - \\ - & - & 2 & 4 & - & 3 \\ - & - & 3 & - & 3 & - \end{vmatrix}$$

$$C_{3} = \begin{vmatrix} - & 1 & - & 4 & 1 & - & * \\ - & - & 2 & - & - & - & * \\ - & - & - & - & - & 3 & * \\ - & - & - & 4 & - & 3 & * \\ - & - & 3 & - & - & - & - \end{vmatrix}$$

$$C_4 = \begin{vmatrix} - & 1 & - & 4 & 1 & - & * \\ - & - & 2 & - & - & - & * \\ - & - & - & - & - & 3 & * \\ - & - & - & 4 & - & 3 & * \\ - & - & - & - & - & - & - \end{vmatrix}$$

$$C_{5} = \begin{vmatrix} -1 & -4 & 1 & - & * \\ --2 & 2 & --- & * \\ ---2 & --- & 3 & * \\ ---4 & 4 & --- & * \\ ---4 & --- & * \end{vmatrix}$$

$$C_{6} = \begin{vmatrix} -1 & -4 & 1 & - & * \\ --2 & 2 & --- & * \\ ---2 & --- & 3 & * \\ ---2 & --- & * \\ ---2 & --- & * \\ ---2 & --- & * \end{vmatrix}$$