School of Computing and Information Systems The University of Melbourne COMP30027 MACHINE LEARNING (Semester 1, 2018)

Tutorial sample solutions: Week 12

- 1. Hidden Markov Models (HMMs) are best used when the observables are a **univariate time series**: we are just observing a single variable, which changes over time due to some factor that can be estimated from previous observations.
 - (a) Recall the two main assumptions (Markov, output independence) that are built into an HMM.
 - Markov assumption: the likelihood of transitioning into a given state depends only on the current state, and not the previous state(s) (or output(s)), i.e. $P(q_i|q_1\cdots q_{i-1})\approx P(q_i|q_{i-1})$
 - Output independence assumption: the likelihood of a state producing a certain observation (as output) does not depend on the preceding (or following) state(s) (or output(s)), i.e $P(o_i|q_1\cdots q_i,o_1\cdots o_{i-1})\approx P(o_i|q_i)$
 - (b) Could we construct the HMM in such a way to relax these assumptions? What would the model look like, and what is the major downside?
 - Well, we could have pairs of states in the conditions for our transition probability matrix *A*, and pairs of states in the conditions for our output proabability matrix *B*, but this will vastly increase the number of parameters in the model.
 - (c) Could we build an HMM for a **multivariate time series**, where we have a number of observed variables for a given (hidden) state?
 - We could represent the outputs as a tuple, again at the cost of vastly increasing the number of parameters. However, sometimes coupling the outputs like this is unnecessary; it might be possible to just generate independent HMMs for each output.
- 2. **Natural language processing** is one common application for HMMs: we have a single observation (a "word") that varies over time (a "sentence" or "document"), where each observation is associated with some property (like "part of speech").

Consider the following HMM: $\Pi[J, N, V] = [0.3, 0.4, 0.3]$

						leaves	
J	0.4	0.5	0.1	J	0.8	0.1	0.1
N	0.1	0.4	0.5	N	0.3	0.4	0.3
V	0.4	0.5	0.1	V	0.1	0.1 0.4 0.3	0.6

- (a) How might we go about obtaining the values in the matrices Π , A, and B given above, in a **supervised** context?
 - Each element a_{ij} of A is the count of how many times the state sequence i, j was observed in the labelled data, out of the number of times the state i was observed. In this case, this is a pair of part–of–speech tags.
 - Each element b_{ik} of A is the count of how many times the observation k was observed labelled with state i in the training data, out of the number of times the state i was observed. In this case, this is a word being labelled as the equivalent part–of–speech.
 - Each element π_i is the count of how many times state i was the start of an observation sequence, out of the number of observation sequences. In this case, this is where some part–of–speech starts a sentence.
- (b) Use the forward algorithm to find the probability of the "sentence" brown leaves turn.
 - See overleaf.
 - The overall probability can be obtained by summing the values in the final column: 0.002256 + 0.014499 + 0.024246 = 0.041001

α		1:brown	2:leaves	3:turn
J:	J	$\pi[J]B[J, brown]$		
		$0.3 \times 0.8 = 0.24$		
N:	N	$\pi[N]B[N, brown]$		
		$0.4 \times 0.3 = 0.12$		
V:	V	$\pi[V]B[V, brown]$		
		$0.3 \times 0.1 = 0.03$		

α	1:brown		2:leaves	3:turn
J:	0.24	$J \rightarrow J$	A[J,J]	
		0.24	$\times 0.4 = 0.096$	
		$N \rightarrow J$	A[N,J]	
		0.12	$\times 0.1 = 0.012$	
		$V \rightarrow J$	A[V,J]	
		0.03	$\times 0.4 = 0.012$	
		$\sum_{i} (\alpha_1(i)a_{iJ})b_{Jl}$	$(0.096 + 0.012 + 0.012) \times 0.1 = 0.012$	
N:	0.12	$J \rightarrow N$	A[J,N]	
		0.24	$\times 0.5 = 0.12$	
		$N \rightarrow N$	A[N,N]	
		0.12	$\times 0.4 = 0.048$	
		$V \rightarrow N$	A[V,N]	
		0.03	$\times 0.5 = 0.015$	
		$\sum_{i} (\alpha_1(i)a_{iN})b_{Nl}$	$(0.12 + 0.048 + 0.015) \times 0.4 = 0.0732$	
V:	0.03	$J \rightarrow V$	A[J,V]	
		0.24	$\times 0.1 = 0.024$	
		$N \rightarrow V$	A[N,V]	
		0.12	$\times 0.5 = 0.06$	
		$V \rightarrow V$	A[V,V]	
		0.03	$\times 0.1 = 0.003$	
		$\sum_{i} (\alpha_1(i)a_{iV})b_{Vl}$	$(0.024 + 0.06 + 0.003) \times 0.3 = 0.0261$	

α	1:brown	2:leaves		3:turn
J:	0.24	0.012	$J \rightarrow J$ $A[J,J]$	
			0.012	$\times 0.4 = 0.0048$
			$N \rightarrow J$	A[N,J]
			0.0732	$\times 0.1 = 0.00732$
			$V \rightarrow J$	A[V,J]
			0.0261	$\times 0.4 = 0.01044$
			$\sum_{i} (\alpha_2(i)a_{iJ})b_{Jt}$	$(0.0048 + 0.00732 + 0.01044) \times 0.1 = 0.002256$
N:	0.12	0.0732	$J \rightarrow N$	A[J,N]
			0.012	$\times 0.5 = 0.006$
			$N \rightarrow N$	A[N,N]
			0.0732	$\times 0.4 = 0.02928$
			$V \rightarrow N$	A[V,N]
			0.0261	$\times 0.5 = 0.01305$
			$\sum_{i} (\alpha_2(i)a_{iN})b_{Nt}$	$(0.006 + 0.02928 + 0.01305) \times 0.3 = 0.014499$
V:	0.03	0.0261	$J \rightarrow V$	A[J,V]
			0.012	$\times 0.1 = 0.0012$
			$N \rightarrow V$	A[N,V]
			0.0732	$\times 0.5 = 0.0366$
			$V \rightarrow V$	A[V,V]
			0.0261	$\times 0.1 = 0.00261$
			$\sum_{i} (\alpha_2(i)a_{iV})b_{Vt}$	$(0.0012 + 0.0366 + 0.00261) \times 0.6 = 0.024246$

- (c) Use the **Viterbi** algorithm to find the most likely state sequence for the sentence brown leaves turn.
 - See below, and overleaf.
 - The most likely tag sequence can be read right-to-left, based upon the maximum probability we've observed: in this case, 0.0144 when *turn* is a V; this value is derived from the $N \to V$ transition, so we can infer that *leaves* is an N; that in turn comes from the $J \to N$ transition, so *brown* is a J.

α		1:brown	2:leaves	3:turn
J:	J	$\pi[J]B[J, brown]$		
		$0.3 \times 0.8 = 0.24$		
N:	N	$\pi[N]B[N, brown]$		
		$0.4 \times 0.3 = 0.12$		
V:	V	$\pi[V]B[V, brown]$		
		$0.3 \times 0.1 = 0.03$		

α	1:brown		2:leaves	3:turn
J:	0.24	$J \rightarrow J$	A[J,J]B[J, leaves]	
		0.24	$\times 0.4 \times 0.1 = $ 0.0096	
		$N \rightarrow J$	A[N,J]B[J, leaves]	
		0.12	$\times 0.1 \times 0.1 = 0.0012$	
		$V \rightarrow J$	A[V,J]B[J, leaves]	
		0.03	$\times 0.4 \times 0.1 = 0.0012$	
N:	0.12	$J \rightarrow N$	A[J,N]B[N, leaves]	
		0.24	$\times 0.5 \times 0.4 = $ 0.048	
		$N \rightarrow N$	A[N,N]B[N, leaves]	
		0.12	$\times 0.4 \times 0.4 = 0.0192$	
		$V \rightarrow N$	A[V,N]B[N, leaves]	
		0.03	$\times 0.5 \times 0.4 = 0.006$	
V:	0.03	$J \rightarrow V$	A[J,V]B[V, leaves]	
		0.24	$\times 0.1 \times 0.3 = 0.0072$	
		$N \rightarrow V$	A[N,V]B[V, leaves]	
		0.12	$\times 0.5 \times 0.3 = $ 0.018	
		V o V	A[V,V]B[V, leaves]	
		0.03	$\times 0.1 \times 0.3 = 0.0009$	

	α	1:brown	2:leaves		3:turn
	J:	0.24	0.0096	$J \rightarrow J$	A[J,J]B[J, turn]
			$J \rightarrow J$	0.0096	$\times 0.4 \times 0.1 = 0.000384$
				$N \rightarrow J$	A[N,J]B[J,turn]
				0.048	$\times 0.1 \times 0.1 = 0.00048$
				$V \rightarrow J$	A[V,J]B[J,turn]
				0.018	$\times 0.4 \times 0.1 = $ 0.00072
-	N:	0.12	0.048	$J \rightarrow N$	A[J,N]B[N, turn]
			$J \rightarrow N$	0.0096	$\times 0.5 \times 0.3 = 0.00144$
				$N \rightarrow N$	A[N,N]B[N, turn]
				0.048	$\times 0.4 \times 0.3 = $ 0.00576
				$V \rightarrow N$	A[V,N]B[N, turn]
				0.018	$\times 0.5 \times 0.3 = 0.0027$
_	V:	0.03	0.018	$J \rightarrow V$	A[J,V]B[V, turn]
			N o V	0.0096	$\times 0.1 \times 0.6 = 0.000576$
				$N \rightarrow V$	A[N,V]B[V, turn]
				0.048	$\times 0.5 \times 0.6 = $ 0.0144
				$V \rightarrow V$	A[V,V]B[V, turn]
				0.018	$\times 0.1 \times 0.6 = 0.00108$
		•		•	