L42 : Différents types de raisonnement en

mathématiques

1 Hypothético-déductif

- Méthode de Newton (appliquée à Héron, voir le développement).
- $f \in \mathscr{C}^0([a;b])$, f(x) = x solutions?

2 Disjonction de cas

- $n \text{ (imp)pair} \implies n^2 \text{ (im)pair}.$
- $\max\{x,y\} = \frac{1}{2}(x+y+|x-y|).$

3 Analyse-synthèse

- Résolution d'une ax + by + c = 0.
- f = impaire + paire.

4 Contraposition

 $-n^2$ (im)pair $\implies n$ (im)pair.

5 Récurrence

- Un exo « guidé » sur $A^n = PD^nP^{-1}$.
- Récurrence forte (mot non dit) pour le théorème d'existence d'une décomposition en produit de facteurs premiers, ou autre.
- $\lim_{n \to +\infty} q^n = +\infty$ (q > 1), avec ING de Bernoulli.

6 Absurde

- Proposition de 6^e sur parallélisme / perpendicularité à savoir montrer (renvoie probablement aux axiomes d'Euclide).
- $-\sqrt{2} \notin \mathbb{Q}$.
- $|\mathbb{P}| = +\infty$.

7 Contre-Exemple

- $n^2 n + 41$ premier $\forall n$.
- irrationnel + irrationnel = irrationnel (écrire « penser à π » pour tendre la perche suivante : le jury se dira peut-être qu'il va piéger le candidat en lui demandant « ah oui et comment vous montrez que π est irrationnel ? » : voir le développement sur l'irrationnalité de π).
- « $\sqrt[10]{x}$ passe en dessous de $\ln x$ assez vite et reste en dessous à jamais. »