

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S2 (WST02) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2023

Question Paper Log Number P72073A

Publications Code WST02_01_MS_2301

All the material in this publication is copyright

© Pearson Education Ltd 2023

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:

'M' marks

These are marks given for a correct method or an attempt at a correct method. In Mechanics they are usually awarded for the application of some mechanical principle to produce an equation. e.g. resolving in a particular direction, taking moments about a point, applying a suvat equation, applying the conservation of momentum principle etc.

The following criteria are usually applied to the equation.

To earn the M mark, the equation

- (i) should have the correct number of terms
- (ii) be dimensionally correct i.e. all the terms need to be dimensionally correct
- e.g. in a moments equation, every term must be a 'force x distance' term or 'mass x distance', if we allow them to cancel 'g' s.

For a resolution, all terms that need to be resolved (multiplied by sin or cos) must be resolved to earn the M mark.

M marks are sometimes dependent (DM) on previous M marks having been earned. e.g. when two simultaneous equations have been set up by, for example, resolving in two directions and there is then an M mark for solving the equations to find a particular quantity – this M mark is often dependent on the two previous M marks having been earned.

'A' marks

These are dependent accuracy (or sometimes answer) marks and can only be awarded if the previous M mark has been earned. E.g. M0 A1 is impossible.

'B' marks

These are independent accuracy marks where there is no method (e.g. often given for a comment or for a graph)

A few of the A and B marks may be f.t. – follow through – marks.

3. General Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through

- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.

Question Number	Scheme		
1 (a)	Po(isson) with $(\lambda =)4$		
- ()			B1 (1)
(b)	Pairs of s	shoes (are sold) singly/randomly/independently/at a constant (average) rate	B1
			(1)
(c) (i)	X = num	ber of sales per hour $\Rightarrow X \sim Po(4)$	
	P(X > 4)	$)=1-P(X\leqslant 4)$	M1
	= 0.3712		A1
(ii)	('0.371	η ³	M1
(11)		<i>'</i>	
	= 0.0511	47 0.05115 or awrt 0.0511	A1 (4)
(4)	U · 2 _	'A' U · 2 > 'A'	(4)
(d)		$^{1}4'$ $H_{1}: \lambda > ^{1}4'$	B1ft
		$P(X \le 6)$ or $P(X \ge 9) = 1 - P(X \le 8) = 0.0214$	M1
	= 0.1107	<u> </u>	A1
	Not sign	ificant/Do not reject H ₀ /Not in the critical region	M1
	There is	insufficient evidence of an <u>increase</u> in <u>sales</u> following the appearance of the	dA1
	advert/m	anager's belief is not supported.	u/ 11
		N	(5)
	D1	Notes Notes	(5) Total 11
(a)	B1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4)	
(a) (b)	B1 B1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales).	
(b)	B1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments.	
` /	B1 M1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$	
(b)	B1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments.	
(b) (c) (i)	B1 M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371	
(b) (c) (i) (ii)	B1 M1 A1 M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³	
(b) (c) (i)	B1 M1 A1 M1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1	
(b) (c) (i) (ii)	B1 M1 A1 M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a)	
(b) (c) (i) (ii)	B1 M1 A1 M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1	Total 11
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR	Total 11
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$	Total 11
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft M1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and 7 – no $P(X \ge 9)$	Total 11
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft M1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and 7 – no needed but do not allow contradicting non contextual comments. The comparison of the	Total 11 context neir p-
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ needed but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be in the point of the	Total 11 context neir p-
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft M1 A1 M1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ needed but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be it a correct ft conclusion in context.	Total 11 context neir p- mplied by
(b) (c) (i) (ii)	B1 M1 A1 M1 A1 B1ft M1 A1	For Po or Poisson and 4 must be seen in part (a). Do not allow P(4) For one of the given assumptions in context (must have context of shoes or sales). Ignore extraneous non-contradictory comments. For writing or using $P(X > 4) = 1 - P(X \le 4)$ awrt 0.371 'part (i)' ³ 0.05115 or awrt 0.0511 (Calculator gives 0.051132) Both hypotheses correct. Must be in terms of λ or μ ft their λ from part (a) Must be attached to H_0 and H_1 For writing or using $P(X \ge 7) = 1 - P(X \le 6)$ If a CR approach is taken then award M1 for $P(X \ge 9) = 1 - P(X \le 8)$ written or used This mark may be implied by a correct p -value or CR awrt 0.111 or CR $X \ge 9$ Any correct ft statement consistent with their p -value and 0.05 or their CR and $7 - no$ needed but do not allow contradicting non contextual comments. The comparison of the value and the significance level is not counted as a non contextual statement. May be in the point of the	Total 11 context neir p- mplied by

Question Number	Scheme Marks					Marks
2 (a)	20, 20, 20 20, 20, 50 (×3) 20, 50, 50 (×3) 50, 50, 50			B2		
						(2)
(b)	a = 30 and b = 40			B1 (1)		
	40	12	27			(1)
(c)	$p^3 = \frac{49}{800}$	$\frac{15}{10}$	or $q^3 = \frac{27}{8000}$	<u>_</u>		M1
	17		or $q^3 = \frac{27}{8000}$ and $q = \frac{3}{20}$			
	$p = \frac{1}{20}$ (0.85)	and $q = \frac{1}{20}$ (0.15)		A1
						(2)
(d)	[P(30)]=	= 3×" p	p^2 "×" q "	$[P(40)] = 3 \times "$	p "×" q^2 "	M1 M1
	2601	_	, 459			
	$c = {8000}$)	$d = \frac{459}{8000}$			A1
						(3)
	M		20	50		B1 M1
(e)	P(M =	<i>m</i>)	$\frac{3757}{4000}$	243		Alft
			4000	4000		(2)
				No	tes	(3) Total 11
			Il 4 correct com	binations		
(a)	B2		or 3 correct con		of the given combinations	
(b)	B1		= 30 and $b = 4$		of the given combinations	
(c)	M1	Eitne	$p^3 = \frac{4913}{8000} c$	or $q = \frac{1}{8000}$		
	A1	-	.850e and $q =$			
(d)	M1	[P(30	$0)] = 3 \times (\text{their})$	$(p)^2 \times (\text{their } q)$	or $[P(40)] = 3 \times (\text{their } p) \times (\text{their } q)^2$	
(4)					nust be using their values from part (c)	
		[P(30	$0)] = 3 \times (\text{their})$	$(p)^2 \times (\text{their } q)$	and $[P(40)] = 3 \times (\text{their } p) \times (\text{their } q)^2$	
	M1	or us	se of sum of pi	robabilities = 1	i.e. $c + d = \frac{153}{400}$	
	A1	For c	$c = \frac{2601}{2000} (= 0.3)$	25125) and	$d = \frac{459}{2000} (= 0.057375)$	
(e)	A1 For $c = \frac{2601}{8000} (= 0.325125)$ and $d = \frac{459}{8000} (= 0.057375)$ B1 For 20 and 50 only (ignore notation used for M)					
(c)	DI			27		
	M1	Eithe	$\frac{4913}{8000} + \text{their}$	c or $\frac{27}{8000}$ +	their d	
		for ft	answers only	values will ne	ed to be checked	
		For =	$\frac{3757}{4000}$ oe and -	243 oe		
	A1ft					
					and <i>d</i> but $P(M = 20) + P(M = 50)$ must	sum to 1
			ble is not requ nd b are reverse		= 40 and $b = 30$ – this will mean $p = 0.15$	and $a = 0.85$
	NB				is said to the minimum p 0.15	
		$c = \frac{1}{8}$	$\frac{459}{8000} d = \frac{2601}{8000}$			

(ii) $ P(1 < X < 5) = F $ or $P(X = 2) + P(X = 2) = 0.111 $ Do not reject How There is insuffice claim/not enough failing the bound	Scheme	Marks		
(ii) $P(X \ge 4) = 1 - P(X \le 5) = P(X \le 2) + P(X \le 2) = 0.1$ (b) $H_0: p = 0.1$ $X \sim B(50, 0.1)$ $P(X \le 2) = 0.111$ Do not reject H_0 . There is insuffic claim/not enough failing the bound $P(X = 0) = \begin{bmatrix} {}^nC_0 \\ 0.9^{44} = 0.00969. \\ 0.9^{4$				
(ii) $ P(1 < X < 5) = F $ or $P(X = 2) + P(X = 2) = 0.111 $ Do not reject How There is insuffice claim/not enough failing the bound	$P(X \ge 4) = 1 - P(X \le 3) = 1 - 0.9872$			
(ii) or $P(X = 2) + P(X = 2)$ (b) $H_0: p = 0.1$ $X \sim B(50, 0.1)$ $P(X \le 2) = 0.111$ Do not reject H_0 . There is insuffic claim/not enough failing the bound $P(X = 0) = \begin{bmatrix} {}^{n}C_0 \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for writing for writing M 1 awrt M 2. (b) B1 Both M 3 Both M 4 awrt M 5 B1 awrt M 6 B1 awrt M 7 awrt M 8 B1 awrt M 9 by M 9 by M 1 awrs M 1 awrs M 1 awrs M 2 by M 3 by M 4 awrs M 5 by M 5 and M 5 corrections M 6 by M 7 and M 8 by M 9 by M 9 by M 1 awrs M 1 awrs M 2 by M 3 by M 4 awrs M 5 by M 5 and M 5 corrections M 6 by M 1 awrs M 5 by M 5 and M 6 corrections M 8 by M 9 by M 1 awrs M 1 awrs M 1 awrs M 2 corrections M 3 by M 4 awrs M 5 awrs M	= 0.0128 awrt 0.0128			
(ii) or $P(X = 2) + P(X = 2)$ (b) $H_0: p = 0.1$ $X \sim B(50, 0.1)$ $P(X \le 2) = 0.111$ Do not reject H_0 . There is insuffic claim/not enough failing the bound $P(X = 0) = \begin{bmatrix} {}^{n}C_0 \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for writing for writing M 1 awrt M 2. (b) B1 Both M 3 Both M 4 awrt M 5 B1 awrt M 6 B1 awrt M 7 awrt M 8 B1 awrt M 9 by M 9 by M 1 awrs M 1 awrs M 1 awrs M 2 by M 3 by M 4 awrs M 5 by M 5 and M 5 corrections M 6 by M 7 and M 8 by M 9 by M 9 by M 1 awrs M 1 awrs M 2 by M 3 by M 4 awrs M 5 by M 5 and M 5 corrections M 6 by M 1 awrs M 5 by M 5 and M 6 corrections M 8 by M 9 by M 1 awrs M 1 awrs M 1 awrs M 2 corrections M 3 by M 4 awrs M 5 awrs M	$P(X \le 4) - P(X \le 1) = 0.9984 - 0.7361$	A1		
(b) $H_0: p = 0.1$ $X \sim B(50, 0.1)$ $P(X \leqslant 2) = 0.111$ Do not reject H_0 . There is insuffic claim/not enough failing the bound $P(X = 0) = \begin{bmatrix} {}^nC_0 \\ 0.9^{44} = 0.00969. \\ $	(X=3) + P(X=4) = 0.1937 + 0.0574 + 0.0112	M1		
$X \sim B(50,0.1)$ $P(X \leqslant 2) = 0.111$ Do not reject H_{0} There is insuffic claim/not enough failing the bound $E(x)$ (c) $X \sim B(n,0.1)$ at $P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \end{bmatrix}$ $n = 44$ (a) (i) $M1$ for write $M1$ for $M1$ f	= 0.2623 awrt 0.262			
$X \sim B(50,0.1)$ $P(X \leqslant 2) = 0.111$ Do not reject H_{0} There is insuffic claim/not enough failing the bound $P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \\ 0.9^{44} = 0.00$		(4)		
$P(X \le 2) = 0.111$ Do not reject H ₀ . There is insuffic claim/not enough failing the bound of the second of the	$H_1: p < 0.1$	B1		
Do not reject H ₀ . There is insuffice claim/not enough failing the bound C and C are considered as C and C are consi				
Do not reject H ₀ . There is insuffice claim/not enough failing the bound $C(x)$ and $C(x)$ are $C(x)$ and $C(x)$ and $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ and $C(x)$ are $C(x)$ are $C(x)$ are $C(x)$ are $C(x)$ are $C(x)$ and $C(x)$ are C	7 or $CR X \leq 1$	B1		
There is insuffice claim/not enough failing the bound failing the bound failing the bound $A = 0.00969$. (a) (i) M1 for write $A = 0.00969$. (ii) M1 for write $A = 0.00969$. (iii) M1 for write $A = 0.00969$. (b) B1 south $A = 0.00969$. A1 awrte 0.00969 . A2 awrte 0.00969 . A3 awrte 0.00969 . A4 awrte 0.00969 . A5 awrte 0.00969 . A6 corresponded to the correct of 0.00969 . A1 Correct of 0.00969 . A2 Correct of 0.00969 . A3 Correct of 0.00969 . A4 Correct of 0.00969 . A5 correct of 0.00969 . A6 correct of 0.00969 . A7 Correct of 0.00969 . A8 Correct of 0.00969 .	Not in the critical region	M1		
claim/not enough failing the bound failing the bound failing the bound $X \sim B(n, 0.1)$ at $P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for write or for write or for A1 awrt 0. (b) B1 Both h B1 awrt 0. A correspond to the series of the ser	ent evidence to suggest that this result supports the managing <u>director's</u>	, 1,11		
$P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for writh or for writh	claim/not enough evidence to suggest that this result supports the managing director's claim/not enough evidence to suggest a reduction in the probability of a tennis ball failing the bounce test			
$P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for writh or for writh		(4)		
$P(X = 0) = \begin{bmatrix} {}^{n}C_{0} \\ 0.9^{44} = 0.00969. \\ n = 44 \end{bmatrix}$ (a) (i) M1 for write or for write or for A1 awrt 0. (b) B1 Both has B1 awrt 0. A1 awrt 0. A2 correct needed awrt 0. A3 correct needed awrt 0. A4 Correct No hyp. (c) M1 For rectangle are also a second awre awre awre awre awre awre awre awre	and we reject H_0 if $P(X = 0) < 0.01$			
(a) (i) M1 for write A1 awrt 0. (ii) M1 for write or for write or for A1 awrt 0. (b) B1 Both h B1 awrt 0. A correct needed walue a May be mark. A1 Correct No hyp. (c) M1 For rect.	$\times 0.1^{0} \times 0.9^{n} [< 0.01]$	M1		
(a) (i) M1 for write A1 awrt 0. (ii) M1 for write or for write or for A1 awrt 0. (b) B1 Both h B1 awrt 0. A correct needed walue a May be mark. A1 Correct No hyperical or for the correct or for the	$ (< 0.01] n > \frac{\ln 0.01}{\ln 0.9} \Rightarrow n > 43.7 $	M1		
A1 awrt 0.	<u>'</u>	A1		
A1 awrt 0.		(3)		
A1 awrt 0.	Notes	Total 11		
(ii) M1 for wri or for A1 awrt 0. (b) B1 Both h B1 awrt 0. A correct needed walue a May be mark. A1 Correct No hyp (c) M1 For rec	ting or using $P(X \geqslant 4) = 1 - P(X \leqslant 3)$			
(11) M1 or for A1 awrt 0. (b) B1 Both h B1 awrt 0. A correct needed walue a May be mark. A1 Correct No hyp. (c) M1 For rect.				
A1 awrt 0. (b) B1 Both h B1 awrt 0. A correction needed M1 value a May be mark. A1 Correct No hyp (c) M1 For rection For O. Ear O.	or for writing or using $P(X=2) + P(X=3) + P(X=4)$			
(b) B1 Both h B1 awrt 0. A correct needed walue a May be mark. A1 Correct No hyp. (c) M1 For record.				
M1 awrt 0. A correct needed value a May be mark. A1 Correct No hyp (c) M1 For rec				
M1 A correct needed value a May be mark. A1 Correct No hyp (c) M1 For rect Representation of the correct No hyperite and the correct No hype				
M1 needed value a May be mark. A1 Correct No hyperical control of the mark. (c) M1 For recommendation of the mark of the mark.	112 or $CR \leq 1$			
(c) M1 For rec	ect ft statement consistent with their p –value and 0.05 or their CR and 2– no co but do not allow contradicting non contextual comments. The comparison of the nd the significance level is not counted as a non contextual statement. The implied by a correct ft conclusion in context. Must have a p -value or CR to accomment to the conclusion of the conclusion in context.	eir <i>p</i> -		
For 0	t conclusion in context which must be not rejecting H_0 . Must use underlined wootheses then $A0$	vords (oe).		
For 0	ognising $P(X=0)=0.9^n$			
NII	$9^{44} (= 0.00969)$ or $0.9^{43} (= 0.01077)$ or rearranging to $n > \frac{\ln 0.01}{\ln 0.9}$ (A)	llow=)		
A1 Cao SC Use of	rt 43.7 implies M1M1 (Allow $n = $ awrt 43.7 for M1M1)			

Question Number		Marks		
4 (a)	$\frac{9}{20}$			B1 (1)
(b)	(21k-k)	$\times \frac{\pi}{20} = 1$		M1
	$k = \frac{1}{\pi} *$			A1*
	Г	1 7 11		(2)
(c) (i)	E(X) =	$=\frac{1}{2}(k+21k) = \frac{11}{\pi}$		B1
(ii)	Var(X)	$=\frac{1}{12}\big(21k-k\big)^2$	or $Var(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 dx - \left(\frac{11}{\pi}\right)^2$	M1
		$=\frac{100}{3\pi^2}$		A1
				(3)
(d)	E(A) = x	$\tau E(X^2) + 4E(X) + \frac{4}{\pi}$	$E(A) = \int_{k}^{21k} f(x)(A) dx = \int_{k}^{21k} \frac{\pi}{20} (\pi) (x^2 + \frac{4}{\pi}x + \frac{4}{\pi^2}) dx$	M1
	$E(X^2) =$	$=\frac{100}{3\pi^2} + \left(\frac{11}{\pi}\right)^2 = \frac{463}{3\pi^2}$	$E(A) = \frac{\pi}{20} \left(\pi \right) \left(\frac{x^3}{3} + \left(\frac{4}{\pi} \right) \frac{x^2}{2} + \frac{4}{\pi^2} x \right)$	M1
	$E(A) = \frac{1}{2}$	$\frac{463}{3\pi} + \frac{44}{\pi} + \frac{4}{\pi}$	sub limits $\frac{21}{\pi}$ and $\frac{1}{\pi}$	M1
	= -	$\frac{607}{3\pi}$	= awrt 64.4	A1
			Notes	(4) Total 10
(a)	B1	0.45oe cao	Notes	1011110
(b)	M1	0.1000 000	angle = 1 Any equivalent rearrangement, allow $20k$ instead	and of $(21k-k)$
(-)	A1*		correct solution must be seen	(======================================
(c)(i)	B1	oe must be in terms of π	(isw after correct answer seen)	
(ii)	M1	M1 use of $\frac{(b-a)^2}{12}$ or $Var(X) = \int_{\frac{1}{\pi}}^{\frac{21}{\pi}} \frac{\pi}{20} x^2 dx - \left(\frac{11}{\pi}\right)^2$		
	A1	for $\frac{100}{3\pi^2}$ oe must be in ter	rms of π (isw after correct answer seen)	
	SC	If both final answers are g	given in terms of k , score B1M1A0 for (c)(i) 11 k and (c)(i	i) $\frac{100}{3}k^2$
	1		$\nabla V^2 + 4V + 4$) or for setting we connect integral (ignor	e limits)
(d)	M1	for expanding $E(A) = E$	$\pi X^2 + 4X + \frac{4}{\pi}$ or for setting up correct integral (ignor	,
(d)		`	$\frac{\pi X + 4X + \frac{\pi}{\pi}}{E(X^2)}$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2 f	
(d)	M1 M1	Valid method for finding		
(d)		Valid method for finding or for integration of their	$E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2f	$\widetilde{C}(x)$
(d)	M1	Valid method for finding or for integration of their	$E(X^2)$ i.e. use of $Var(X) + E(X)^2$ or integration of x^2f $f(x)A$ with at least one $x^n \to x^{n+1}$	$\widetilde{C}(x)$

Question Number		Scheme		
5 (a)	$X \sim \text{Po}(5)$			
	P(<i>X</i> ≤5)	= 0.6160 awrt 0.616	M1 A1	
			(2)	
(b)	<i>X</i> ∼ B(4	,"0.616")	B1ft	
	P(X < 2)	$= P(X \leqslant 1)$	M1	
	$=0.384^4$	$+4 \times 0.616 \times 0.384^{3}$	M1	
	= 0.1612	26 awrt 0.161	A1	
			(4)	
(c)		number of defects per x meters		
	$X \sim N$	$\left(\frac{x}{16}, \frac{x}{16}\right)$	B1	
		$P(X < 26) = P\left(Z < \frac{25.5 - \frac{x}{16}}{\sqrt{\frac{x}{16}}}\right) = 0.5398$		
	$\frac{25.5 - \frac{x}{16}}{\frac{1}{4}\sqrt{x}} = 0.1$ $\frac{1}{16}x + \frac{1}{40}\sqrt{x} - 25.5 = 0 \Rightarrow \sqrt{x} = 20 (\text{or } \sqrt{x} = -20.4)$		B1 M1 A1ft	
	$\frac{1}{16}x + \frac{1}{40}$	$\frac{1}{2}\sqrt{x} - 25.5 = 0 \rightarrow \sqrt{x} = 20 \text{(or } \sqrt{x} = -20.4\text{)}$	M1	
	$(\sqrt{x})^2 = 1$		M1	
	x = 400		A1	
()	3.54	Notes P(Y < 5)	Total 14	
(a)	M1	For writing or using $P(X \le 5)$		
	A1	awrt 0.616 For $X \sim B(4,0.616)$ Follow through their part (a).		
(b)	B1ft	May be implied by a correct ft expression for the 2 nd M1		
	M1	For writing or using $P(X \le 1)$ (May be implied by 2^{nd} M1)		
	M1	For = $[{}^{4}C_{0}](1-p)^{4} + {}^{4}C_{1} \times p \times (1-p)^{3}$ 0		
	A1	awrt 0.161 correct answer on its own scores 4 out of 4		
(c)	B1 For $X \sim N\left(\frac{x}{16}, \frac{x}{16}\right)$ May be implied by values in standardisation.			
	M1	For use of a continuity correction either 25.5 or 26.5 (Allow 24.5)		
	B1	$z = \pm 0.1$ Allow calculator value if seen $\pm 0.0999(2986)$		
	M1	Standardising using either 24.5 or 25 or 25.5 or 26 or 26.5 and equate to a <i>z</i> value. Follow through their mean and variance		
	A1ft	A correct equation with compatible signs ft their mean and variance provided mean		
	M1	For solving their 3 term equation by factorising, completing the square or use of for May be implied by -20.4 , otherwise if answer is incorrect working must be shown.		
		For correct squaring of both sides. May be implied by 416[.16] from correct equation		
	M1	This mark may be scored prior to solving a 3TQ, e.g. $\left(25.5 - \frac{x}{16}\right)^2 = \left(\frac{1}{40}\sqrt{x}\right)^2$.		
		Do not award if squaring each individual term		
	A1	x = 400 only. This is dependent upon all previous marks in (c).		
	i .	Use of $X \sim N\left(\frac{x}{16}, \frac{15x}{256}\right)$ leading to $x = 400$ scores max B0M1B1M1A0M1M		

Number		Scheme	Marks		
6 (a)	$[F(k) = 1 \Rightarrow] ak + bk^2 = 1 \Rightarrow ak = 1 - bk^2 *$				
			(1)		
(b)	f(x) = a	B1			
	E(X) =	$\int_0^k \left(ax + 2bx^2 \right) dx \left[= \frac{6}{5} \right] \Rightarrow \left[\frac{ax^2}{2} + \frac{2bx^3}{3} \right]_0^k \left[= \frac{6}{5} \right]$	M1		
	$\frac{ak^2}{2} + \frac{2k}{2}$		dM1, A1		
		$20bk^3 = 36$			
	15k(1-b)	$(bk^2) + 20bk^3 = 36$	M1		
	$5bk^3 = 3$	6-15k*	A1*		
			(6)		
(c)		$= \int_0^k \left(ax^2 + 2bx^3 \right) dx \Rightarrow \left[\frac{ax^3}{3} + \frac{bx^4}{2} \right]_0^k$	M1		
		$=\frac{ak^3}{3} + \frac{bk^4}{2} - \frac{36}{25} = \frac{22}{75}$	dM1 A1		
	$10ak^{3} + 1$	$15bk^4 = 52$			
	$10k^{2}(1-$	$(-bk^2) + 15bk^4 = 52$	M1		
	$5bk^4 = 5$	$52-10k^2*$	A1*		
			(5)		
(d)	$\frac{1}{k} = \frac{36}{52}$	$\frac{-15k}{-10k^2}$	M1		
	$5k^2 - 36$	k + 52 = 0	A1		
	(k-2)(3)	5k - 26) = 0	M1		
	k = 2	A1			
			(4)		
(e)	'40'b = 3	$36 - 30' \Rightarrow b = \frac{3}{20} \qquad \text{or} \qquad 80'b = 52 - 40' \Rightarrow b = \frac{3}{20}$ $1 \Rightarrow a = \frac{1}{5}$	B1ft		
	$2a + \frac{3}{5} =$	$= 1 \Rightarrow a = \frac{1}{5}$	B1ft		
(a)	B1*	Notes Answer is given so no incorrect working can be seen	Total 18		
(b)	B1	For a correct expression for $f(x)$ (may be implied by a correct expression for $E(X)$			
	M1	For an attempt to integrate x f(x) (Ignore limits) at least one ($x^n \to x^{n+1}$). F.t. th f(x) must be a changed expression from F(x) so integrating x F(x) is M0			
		Dependent on the previous M mark. For equating to $\frac{6}{5}$ and substitution of k			
	dM1	(no need to see substitution of lower limit 0).			
	A1	For a correct equation any form			
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation			
	A1*	Answer is given so no incorrect working can be seen			

(c)	M1	For an attempt to integrate x^2 f(x) (Ignore limits) at least one $(x^n \to x^{n+1})$ F.t. their f(x) x^2 F(x) is M0			
	dM1	Dependent on previous M mark. For substitution of correct limits and subtraction of $\frac{36}{25} = \frac{22}{75}$			
	A1	For a correct equation any form			
	M1	For substitution of $ak = 1 - bk^2$ oe into their equation			
	A1*	Answer is given so no incorrect working can be seen			
(d)	M1	For solving simultaneously to set up an equation in <i>k</i> only			
	A1	For a correct 3 term quadratic			
	M1	For solving their 3 term quadratic by factorising, completing the square or using formula. $k = 5.2$ implies M1A1M1			
	A1	2 only cao. Correct answer on its own scores 4 out of 4			
(e)	B1ft	For $b = \frac{3}{20}$ ft their k $b = \frac{36-15k}{5k^3}$ Common ft answer is $b = \frac{-525}{8788} = \text{awrt} - 0.0597$ coming from choosing $k = 5.2$			
	B1ft	For $a = \frac{1}{5}$ ft their k and their b $a = \frac{1 - bk^2}{k}$ Common ft answer is $a = \frac{85}{169}$ = awrt 0.503 coming from choosing $k = 5.2$			