

FCC RF TEST REPORT

APPLICANT

Pycom Ltd

PRODUCT NAME

sipy

MODEL NAME

SiPy 1.0

TRADE NAME

SiPy

BRAND NAME

SiPy

FCC ID

2AJMTSIPY1

STANDARD(S)

47 CFR Part 15 Subpart C

ISSUE DATE

2017-03-01

SHENZHEN MORLAB COMMUNICATIONS JECHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

OBAL SERV

DIRECTORY

TEST	REPORT DECLARATION						4
<u>1.</u> <u>T</u>	ECHNICAL INFORMATION						5
1.1	APPLICANT INFORMATION						5
1.2	EQUIPMENT UNDER TEST (EUT) DESCRIF	PTION ······					5
1.2.1							
1.3	TEST STANDARDS AND RESULTS						
1.3.1							
2. 4	7 CFR PART 15C REQUIREMENTS		<u></u>				7
QLA.	MORE MIC. AE	QLAB	MORL	Mo.	CD .	QLAB.	, OR
2.1	ANTENNA REQUIREMENT ·····						7
2.1.1							7
2.1.2	RESULT: COMPLIANT······						
2.2	NUMBER OF HOPPING FREQUENCY ·····						
2.2.1	REQUIREMENT						
2.2.2							
2.2.3							
2.2.4	TEST RESULT······						
2.3	PEAK OUTPUT POWER·····						
2.3.1	REQUIREMENT·····						
2.3.2	TEST DESCRIPTION ······						
2.3.3	TEST RESULT······						
2.4	20dB Bandwidth						14
2.4.1	DEFINITION		<u></u>				14
2.4.2	TEST DESCRIPTION						14
2.4.3	TEST PROCEDURE ······						
2.4.4	TEST RESULT······						
2.5	CARRIED FREQUENCY SEPARATION						24
2.5.1	DEFINITION						
2.5.2							
2.5.3	TEST PROCEDURE ······						
2.5.4	TEST RESULT······		<u></u>		O	<i></i>	25
2.6	TIME OF OCCUPANCY (DWELL TIME)						27

2.6.1	REQUIREMENT	27
2.6.2	Test Description ·····	27
2.6.3	TEST PROCEDURE ·······	27
2.6.4	Test Result	28
2.7	CONDUCTED SPURIOUS EMISSIONS ·····	39
2.7.1	REQUIREMENT·····	39
2.7.2	TEST DESCRIPTION	35
2.7.3	Test Procedure·····	39
2.7.4	Test Result·····	40
2.8	RESTRICTED FREQUENCY BANDS	52
2.8.1	REQUIREMENT·····	52
2.8.2	Test Description ·····	52
2.8.3	Test Procedure ·····	53
2.8.4	Test Result	53
2.9	CONDUCTED EMISSION	
2.9.1	Requirement	61
2.9.2		··· 61
2.9.3	Test Result	62
2.10	RADIATED EMISSION ·····	64
2.10.1		64
2.10.2	2 Test Description ·····	65
2.10.3	3 TEST PROCEDURE ·····	67
2.10.4	4 Test Result	67
ABIBLE	TV A CENTERAL INICORMATION	- -

Change History							
Issue Date Reason for change							
1.0	2017-03-01	First edition					
ORL	WO.	TLAE TORLE MOT SE TO TLAE TORLE ME					

TEST REPORT DECLARATION

Applicant	Pycom Ltd
Applicant Address	Registered Office 57 Avenue Road Cranleigh, Surrey GU6 7LJ UK
Manufacturer	In-Tech Electronics Ltd
Manufacturer Address	2/F Rhythm Home,119 Shazui Road, Futian, Shenzhen, Guangdong, P.R.China
Product Name	sipy
Model Name	SiPy 1.0
Brand Name	SiPy
HW Version	1.0r
SW Version	1.0
Test Standards	47 CFR Part 15 Subpart C
Test Date	2016-09-12 to 2016-09-30
Test Result	PASS

Tested by		Li Jusq 2 and	
	200	Li Jingzong	200

Reviewed by : Qiu Xianjun

Qiu Xiaojun

Approved by : Peng Huarui

1. TECHNICAL INFORMATION

Note: Provide by applicant.

1.1 Applicant Information

Company:	Pycom Ltd
Address:	Registered Office 57 Avenue Road Cranleigh, Surrey GU6 7LJ UK

1.2 Equipment under Test (EUT) Description

Brand Name:	SiPy
Trade Name:	SiPy
Model Name:	SiPy 1.0
Frequency Range:	The frequency range used is 2402MHz – 2480MHz (79 channels, at intervals of 1MHz); The frequency block is 2400MHz to 2483.5MHz.
Modulation Type:	Bluetooth: FHSS (GFSK(1Mbps), π/4-DQPSK(EDR 2Mbps), 8-DPSK(EDR 3Mbps))
Bluetooth Version:	2.1+EDR
Antenna Type:	Ceramic Antenna
Antenna Gain:	0.5 dBi

NOTE:

The EUT is a sipy, it contains Bluetooth Module operating at 2.4GHz ISM band; the frequencies allocated for the Bluetooth Module is F(MHz)=2402+1*n (0<=n<=78). The lowest, middle, highest channel numbers of the Bluetooth Module used and tested in this report are separately 0 (2402MHz), 39 (2441MHz) and 78 (2480MHz).

The EUT connected to the serial port of the computer with a serial communication cable, we use the dedicated software to control the EUT into the test mode, and then use MT8852B base station to control the EUT continuous transmission.

For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

1.2.1 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version	Software Version		
01	1.0r	1.0		

1.3 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

. 32		
No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
MOR	(10-1-15 Edition)	CRIAL MORL MC AE

Test detailed items/section required by FCC rules and results are as below:

No.	Section in CFR 47	Description	Test Date	Result
1	15.203	Antenna Requirement	N.A	PASS
2	15.247(a)	Number of Hopping Frequency	Sep 12, 2016	PASS
3	15.247(b)	Peak Output Power	Sep 12, 2016	PASS
4	15.247(a)	20dB Bandwidth	Sep 12, 2016	PASS
5	15.247(a)	Carrier Frequency Separation	Sep 12, 2016	PASS
6	15.247(a)	Time of Occupancy (Dwell time)	Sep 13, 2016	PASS
7	15.247(d)	Conducted Spurious Emission	Sep 13, 2016	PASS
8	15.247(d)	Restricted Frequency Bands	Sep 28, 2016	PASS
9	15.209 15.247(d)	Radiated Emission	Sep 22, 2016	PASS
10	15.207	Conducted Emission	Sep 22, 2016	PASS

NOTE: The tests were performed according to the method of measurements prescribed in ANSI C63.10-2013 and DA-00-705.

1.3.1 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	2LAB	NORL	4	NO.	VB III.	
Relative Humidity (%):	30 -60	MO.	3	2LAB	,OR	A. B.	Mo.
Atmospheric Pressure (kPa):	86-106	ORL	Mo		~B	ALAP	

2. 47 CFR PART 15C REQUIREMENTS

2.1 Antenna requirement

2.1.1 Applicable Standard

According to FCC 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1.2 Result: Compliant

The EUT has a permanently and irreplaceable attached antenna. Please refer to the EUT internal photos.

2.2 Number of Hopping Frequency

2.2.1 Requirement

According to FCC §15.247(a)(1)(iii), frequency hopping systems operating in the 2400MHz to 2483.5MHz bands shall use at least 15 hopping frequencies.

2.2.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.2.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW ≥ 1% of the span

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize

2.2.4 Test Result

The Bluetooth Module operates at hopping-on test mode; the frequencies number employed is counted to verify the Module's using the number of hopping frequency.

A. Test Verdict:

Test Mode	Frequency Block (MHz)	Measured Channel Numbers	Min. Limit	Refer to Plot	Verdict
GFSK	2400 - 2483.5	79	15	Plot A	PASS
π/4-DQPSK	2400 - 2483.5	79	15	Plot B	PASS
8-DPSK	2400 - 2483.5	79	15	Plot C	PASS

B. Test Plots:

(Plot A: GFSK)

(Plot B: $\pi/4$ -DQPSK)

(Plot C: 8- DPSK)

2.3 Peak Output Power

2.3.1 Requirement

According to FCC §15.247(b)(1), for frequency hopping systems that operates in the 2400MHz to 2483.5MHz band employing at least 75 hopping channels, the maximum peak output power of the intentional radiator shall not exceed 1Watt. For all other frequency hopping systems in the 2400MHz to 2483.5MHz band, it is 0.125Watts.

2.3.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Power meter and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.3.3 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the module. The lowest, middle and highest channel were tested by power meter.

2.3.3.1 GFSK Mode

A. Test Verdict:

Channel	Frequency (MHz)		d Output Power	Limit		Verdict	
		dBm	W	dBm	W		
0	2402	0.08	0.0010	AB	ORLA.	PASS	
39	2441	2.03	0.0016	20.97	0.125	PASS	
78	2480	3.80	0.0024	ORL	ALC MIC	PASS	

2.3.3.2 π /4-DQPSK Mode

B. Test Verdict:

Channel	Frequency (MHz)		ed Output Power	Li	mit	Verdict
		dBm	W	dBm	W	
0 44	2402	1.78	0.0015	.0	LAF	PASS
39	2441	3.75	0.0024	20.97	0.125	PASS
78	2480	5.51	0.0036		NB C	PASS

2.3.3.3 8-DPSK Mode

C. Test Verdict:

Channel	Frequency (MHz)		ed Output Power	L	imit	Verdict
		dBm	W	dBm	W	
0 11	2402	2.14	0.0016	1	, as	PASS
39	2441	4.01	0.0025	20.97	0.125	PASS
78	2480	5.73	0.0037	0	S. C.	PASS

2.4 20dB Bandwidth

2.4.1 Definition

According to FCC $\S15.247(a)(1)$, the 20dB bandwidth is known as the 99% emission bandwidth, or 20dB bandwidth (10*log1% = 20dB) taking the total RF output power.

2.4.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.4.3 Test Procedure

Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.4.4 Test Result

The Bluetooth Module operates at hopping-off test mode. The lowest, middle and highest channels are selected to perform testing to record the 20dB bandwidth of the Module.

2.4.4.1 GFSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 0.9415MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0	2402	0.9373	Plot A
39	2441	0.9397	Plot B
78	2480	0.9415	Plot C

B. Test Plots:

(Plot A: Channel = 2402 @ GFSK)

(Plot B: Channel = 2441 @ GFSK)

(Plot C: Channel = 2480 @ GFSK)

2.4.4.2 $\pi/4$ -DQPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.317MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
0 10	2402	1.305	Plot D
39	2441	1.317	Plot E
78	2480	1.316	Plot F

B. Test Plots:

(Plot D: Channel = 2402 @ $\pi/4$ -DQPSK)

(Plot E: Channel = 2441 @ $\pi/4$ -DQPSK)

(Plot F: Channel = 2480 @ $\pi/4$ -DQPSK)

2.4.4.3 8-DPSK Mode

A. Test Verdict:

The maximum 20dB bandwidth measured is 1.314MHz according to the table below.

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Refer to Plot
O MOTO	2402	1.314	Plot G
39	2441	1.308	Plot H
78	2480	1.308	Plot I

B. Test Plots:

(Plot G: Channel = 2402 @ 8-DPSK)

(Plot H: Channel = 2441 @ 8-DPSK)

(Plot I: Channel = 2480 @ 8-DPSK)

2.5 Carried Frequency Separation

2.5.1 Definition

According to FCC §15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

2.5.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.5.3 Test Procedure

The EUT must have its hopping function enabled. Use the following spectrum analyzer settings

Span = wide enough to capture the peaks of two adjacent channels

Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span

Video (or Average) Bandwidth (VBW) ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

2.5.4 Test Result

The Bluetooth Module operates at hopping-on test mode. For any adjacent channels (e.g. the channel 39 and 40 as showed in the Plot A), the Module does have hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of the hopping channel (refer to section 0), whichever is greater. So, the verdict is PASSING

(Plot A: GFSK)

(Plot B: π/4-DQPSK)

(Plot C: 8-DPSK)

2.6 Time of Occupancy (Dwell time)

2.6.1 Requirement

According to FCC §15.247(a) (1) (iii), frequency hopping systems in the 2400 - 2483.5MHz band shall use at least 15 non-overlapping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

2.6.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.6.3 Test Procedure

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 31.6 second period (79 channel * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

2.6.4 Test Result 2.6.4.1 GFSK Mode

A. Test Verdict:

DH	Pulse	Number of	Average Time of	Average Time of	Limit	
Packet	Width	pulse in 3.16	Occupancy in 3.16	Occupancy in 31.6		Verdict
Packet	(msec)	seconds	seconds (sec)	seconds (sec)	(sec)	
DH1	0.38	30	0.0114	0.114	OB	PASS
DH3	1.60	19	0.0304	0.304	0.4	PASS
DH5	2.90	12	0.0348	0.348	-RL	PASS

B. Test Plots:

(Plot A: DH1 @ GFSK)

(Plot B: DH3 @ GFSK)

(Plot C: DH5 @ GFSK)

2.6.4.2 $\pi/4$ -DQPSK Mode

A. Test Verdict:

DII	Pulse	Number of	Average Time of	Average Time of	Linait	
DH Packet	Width	pulse in 3.16	Occupancy in 3.16	Occupancy in 31.6	Limit (sec)	Verdict
racket	(msec)	seconds	seconds (sec)	seconds (sec)	(360)	
DH1	0.40	31	0.0124	0.124	, oR	PASS
DH3	1.60	17	0.0272	0.272	0.4	PASS
DH5	2.90	11 of	0.0319	0.319		PASS

B. Test Plots:

(Plot D: DH1 @ π/4-DQPSK)

(Plot E: DH3 @ π/4-DQPSK)

(Plot F: DH5 @ π/4-DQPSK)

2.6.4.3 8-DPSK mode

A. Test Verdict:

_							
	DH	Pulse	Number of	Average Time of	Average Time of	Limit	
Packet	Width	pulse in 3.16	Occupancy in 3.16	Occupancy in 31.6		Verdict	
N	racket	(msec)	seconds	seconds (sec)	seconds (sec)	(sec)	
	DH1	0.38	31	0.01178	0.1178	A.V	PASS
58	DH3	1.65	17	0.02805	0.2805	0.4	PASS
	DH5	2.90	11	0.03190	0.3190	ORL	PASS

B. Test Plots:

(Plot G: DH1 @ 8-DPSK)

(Plot H: DH3 @ 8-DPSK)

(Plot I: DH5 @ 8-DPSK)

2.7 Conducted Spurious Emissions

2.7.1 Requirement

According to FCC §15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.7.2 Test Description

A. Test Setup:

The Bluetooth Module of the EUT is coupled to the Spectrum Analyzer (SA) and the Bluetooth Service Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the SS, and is set to operate under test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5).

2.7.3 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

2.7.4 Test Result

The Bluetooth Module operates at hopping-off test mode. The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

2.7.4.1 GFSK Mode

A. Test Verdict:

	Eroguenev	Measured Max.		Limi	t (dBm)	
Channel	Frequency (MHz)	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(IVITZ)	Emission (dBm)		Level	-20dBc Limit	
0	2402	-32.49	Plot A.1	-2.01	-22.01	PASS
39	2441	-50.78	Plot B.1	0.03	-19.97	PASS
78	2480	-39.14	Plot C.1	1.33	-18.67	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot A.1: Channel = 0, 30MHz to 25GHz @ GFSK Mode)

(Channel = 0, Band edge @ GFSK Mode)

(Channel = 0, Band edge with hopping on @ GFSK Mode)

(Plot B.1: Channel = 39, 30MHz to 25GHz @ GFSK Mode)

(Plot C.1: Channel = 78, 30MHz to 25GHz @ GFSK Mode)

(Channel = 78, Band edge @ GFSK Mode)

(Channel = 78, Band edge with hopping on @ GFSK Mode)

2.7.4.2 π /4-DQPSK Mode

A. Test Verdict:

	Fraguency	Measured Max.	sured Max.		Limit (dBm)		
Channel	Frequency (MHz)	Out of Band	Refer to Plot	Carrier	Calculated	Verdict	
	(IVITZ)	Emission (dBm)		Level	-20dBc Limit		
0	2402	-32.37	Plot D.1	-2.94	-22.94	PASS	
39	2441	-35.59	Plot E.1	-2.77	-22.77	PASS	
78	2480	-39.12	Plot F.1	1.84	-18.16	PASS	

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot D.1: Channel = 0, 30MHz to 25GHz @ π /4-DQPSK)

(Channel = 0, Band edge $@\pi/4$ -DQPSK)

(Channel = 0, Band edge with hopping on $@\pi/4$ -DQPSK)

(Plot E.1: Channel = 39, 30MHz to 25GHz @ $\pi/4$ -DQPSK)

(Plot F.1: Channel = 78, 30MHz to 25GHz $@\pi/4$ -DQPSK)

(Channel = 78, Band edge $@\pi/4$ -DQPSK)

(Channel = 78, Band edge with hopping on @ $\pi/4$ -DQPSK)

2.7.4.3 8-DPSK Mode

A. Test Verdict:

	Fraguenay	Measured Max.		Lim	it (dBm)	
Channel	Frequency	Out of Band	Refer to Plot	Carrier	Calculated	Verdict
	(MHz)	Emission (dBm)		Level	-20dBc Limit	
0	2402	-32.46	Plot G.1	-4.25	-24.25	PASS
39	2441	-35.62	Plot H.1	-2.00	-22.00	PASS
78	2480	-38.82	Plot I.1	-0.08	-20.08	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot G.1: Channel = 0, 30MHz to 25GHz @ 8-DPSK)

(Channel = 0, Band edge @ 8-DPSK)

(Channel = 0, Band edge with hopping on @ 8-DPSK)

(Plot H.1: Channel = 39, 30MHz to 25GHz @ 8-DPSK)

(Plot I.1: Channel = 78, 30MHz to 25GHz @ 8-DPSK)

(Plot I.1: Channel = 78, Band edge @ 8-DPSK)

(Plot I.1: Channel = 78, Band edge with hopping on @ 8-DPSK)

2.8 Restricted Frequency Bands

2.8.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.8.2 Test Description

A. Test Setup:

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the Bluetooth Module of the EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under non hopping-on test mode transmitting 339 bytes DH5, 679 bytes 2DH5 and 1021 bytes 3DH5 packages at maximum power. For the Test Antenna:

Horn Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Please reference ANNEX A(1.5).

2.8.3 Test Procedure

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 KHz for f < 1GHz

VBW = 3 MHz for peak and 10Hz for average

Sweep = auto

Detector function = peak

Trace = max hold

Allow the trace to stabilize.

2.8.4 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands.

The measurement results are obtained as below:

 $\label{eq:energy} E \left[dB\mu V/m \right] = \!\! U_R + A_T + A_{Factor} \left[dB \right] \!\! ; \, AT = \!\! L_{Cable \, loss} \left[dB \right] \!\! - \!\! G_{preamp} \left[dB \right]$

AT: Total correction Factor except Antenna

UR: Receiver Reading

Gpreamp: Preamplifier Gain AFactor: Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal

polarity, and only the worse test condition (vertical) was recorded in this test report.

2.8.4.1 GFSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Orianner	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
ORL O	2390.00	PK	43.65	-33.63	32.56	42.58	74	Pass
OLAL	2390.00	AV	32.58	-33.63	32.56	31.51	54	Pass
78	2489.23	PK	43.48	-33.18	32.50	42.80	74	Pass
78	2489.23	AV	32.40	-33.18	32.50	31.72	54	Pass

(Plot A1: Channel = 0 PEAK @ GFSK)

(Plot A2:Channel = 0 AVERAGE @ GFSK)

(Plot B1: Channel = 78 PEAK @ GFSK)

(Plot B2: Channel = 78 AVERAGE @ GFSK)

2.8.4.2 π /4-DQPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Criamion	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	vordiot
0 ,,00	2390.00	PK	43.83	-33.63	32.56	42.76	74	Pass
O NE	2390.00	AV	32.57	-33.63	32.56	31.50	54	Pass
78	2489.23	PK	42.91	-33.18	32.5	42.23	74	Pass
78	2489.23	AV	32.42	-33.18	32.5	31.74	54	Pass

(Plot C1: Channel = 0 PEAK @ $\pi/4$ -DQPSK)

(Plot C2: Channel = 0 AVERAGE @ $\pi/4$ -DQPSK)

(Plot D1: Channel = 78 PEAK @ $\pi/4$ -DQPSK)

(Plot D2: Channel = 78 AVERAGE@ π/4-DQPSK)

2.8.4.3 8-DPSK Mode

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
Onamici	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	verdict
0	2390.00	PK	43.18	-33.63	32.56	42.11	74	Pass
0	2390.00	AV	32.52	-33.63	32.56	31.45	54	Pass
78	2489.23	PK	42.79	-33.18	32.5	42.11	74	Pass
78	2489.23	AV	32.44	-33.18	32.5	31.76	54	Pass

(Plot E1: Channel = 0 PEAK @ 8-DPSK Mode)

(Plot E2: Channel = 0 AVERAGE @ 8-DPSK Mode)

(Plot F1:Channel = 78 PEAK @ 8-DPSK Mode)

(Plot F2:Channel = 78 AVERAGE @ 8-DPSK Mode)

2.9 Conducted Emission

2.9.1 Requirement

According to RSS-GEN section 8.8, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a 50μ H/ 50Ω line impedance stabilization network (LISN).

Frequency range	Conducted Limit (dBµV)	Conducted Limit (dBµV)			
(MHz)	Quai-peak	Average			
0.15 - 0.50	66 to 56	56 to 46			
0.50 - 5	56	46			
5- 30	60	50			

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz

2.9.2 Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.10:2013

The factors of the site are calibrated to correct the reading. During the measurement, the Bluetooth EUT is activated and controlled by the Bluetooth Service Supplier (SS) via a Common Antenna, and is set to operate under hopping-on test mode transmitting 339 bytes DH5 packages at maximum power.

B. Equipments List:

Please reference ANNEX A(1.5)

2.9.3 Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is EUT + Link.

Note: The test voltage is AC 120V/60Hz.

(Plot A: L Phase)

NO.	Fre.	Emission Le	Emission Level (dBµV)		Limit (dBµV)		Verdict
110.	(MHz)	Quai-peak	Average	Quai-peak	Average	line	vordiot
21.A.	0.15	45.40	31.82	66	56	D.S.	PASS
2	0.455	41.17	41.03	57.29	47.29	NORL.	PASS
3	1.085	31.56	24.19	56	46	Ø	PASS
4	1.86	26.48	16.39	56	46	Line	PASS
5	2.305	29.63	24.13	56	46	-QLAB	PASS
6	20.77	25.80	22.29	60	50	0.	PASS

(Plot B: N Phase)

NO.	Fre.	Emission Le	evel (dBµV)) Limit (dBμV)		Power-	Verdict
110.	(MHz)	Quai-peak	Average	Quai-peak	Average	line	Voluiot
1,5	0.15	62.35	32.40	66	56	OR	PASS
2	0.505	35.50	25.28	56	46	QLA!	PASS
3	0.59	40.67	28.00	56	46	l in a	PASS
4	3.73	31.77	25.23	56	46	Line	PASS
5	12.36	22.86	15.42	60	50	aB III	PASS
6	21.03	23.24	18.05	60	50	ORL	PASS

2.10 Radiated Emission

2.10.1 Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3 110
88 - 216	150	3 1145 1065 110
216 - 960	200	3
Above 960	500	3

Note:

- For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.10.2 Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The RF absorbing material used on the reference ground plane and on the turntable have a maximum height (thickness) of 30 cm (12 in) and have a minimum-rated attenuation of 20 dB at all frequencies from 1 GHz to 18 GHz. Test site have a minimum area of the ground plane covered with RF absorbing material as specified in Figure 6 of ANSI C63.4: 2014.

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10:2013. For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10:2013.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Place the test antenna at 3m away from area of the EUT, while

keeping the test antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The test antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final test antenna elevation shall be that which maximizes the emissions. The test antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.5).

2.10.3 Test Procedure

Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

2.10.4 Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

GFSK Mode:

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 0)

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 39)

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ GFSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ GFSK, channel 78)

2.10.4.2 π /4-DQPSK Mode:

B. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 0)

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 39)

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @ π/4-DQPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @ π/4-DQPSK, channel 78)

2.10.4.3 8-DPSK Mode:

C. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 0

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 0)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 0)

Plot for Channel = 39

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 39)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 39)

Plot for Channel = 78

(30MHz to 25GHz, Antenna Horizontal @8-DPSK, channel 78)

(30MHz to 25GHz, Antenna Vertical @8-DPSK, channel 78)

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Department:	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Responsible Test Lab Manager:	Mr. Su Feng
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

1.3 Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2013 and CISPR Publication 22; the FCC registration number is 695796.

1.4 Maximum measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Number of Hopping Frequency	±5%
Peak Output Power	±2.22dB
20dB Bandwidth	±5%
Carrier Frequency Separation	±5%
Time of Occupancy (Dwell time)	±5%
Conducted Spurious Emission	±2.77 dB
Restricted Frequency Bands	±5%
Radiated Emission	±2.95dB

Conducted Emission	±2.44dB
--------------------	---------

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

1.5 Test Equipments Utilized

1.5.1 Conducted Test Equipments

Cond	Conducted Test Equipment									
No.	Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due				
1	Spectrum Analyzer	MY45101810	E4407B	Agilent	2016.06.02	2017.06.01				
2	Power Splitter	NW521	1506A	Weinschel	2016.06.02	2017.06.01				
3	Attenuator 1	(N/A.)	10dB	Resnet	2016.06.02	2017.06.01				
4	Attenuator 2	(N/A.)	3dB	Resnet	2016.06.02	2017.06.01				
5	EXA Signal Analzyer	MY53470836	N9010A	Agilent	2015.12.07	2016.12.06				
6	RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A				
7	Coaxial cable	CB02	RF02	Morlab	N/A	N/A				
8	SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A				

1.5.2 Conducted Emission Test Equipments

Cond	Conducted Emission Test Equipments									
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal. Due				
1	Receiver	US44210471	E7405A	Agilent	2016.06.02	2017.06.01				
2	LISN	812744	NSLK 8127	Schwarzbeck	2016.06.02	2017.06.01				
3	Service Supplier	100448	CMU200	R&S	2016.06.02	2017.06.01				
4	Pulse Limiter (20dB)	9391	VTSD 9561-D	Schwarzbeck	2016.06.02	2017.06.01				
5	Coaxial cable(BNC) (30MHz-26GHz)	CB01	EMC01	Morlab	N/A	N/A				

1.5.3 Auxiliary Test Equipment

Auxi	liary Test Equipmen	t ORLA	MOLE. WE	LAB OR	LA	NI NI
No.	Equipment Name	Model No.	Brand Name	Manufacturer	Cal.Date	Cal.Due Date
1	Computer	T430i	Think Pad	Lenovo	N/A	N/A

1.5.4 Radiated Test Equipments

Radiated Test Equipments							
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date	
1,0	System Simulator	GB45360846	8960-E5515C	Agilent	2016.06.02	2017.06.01	
2	Receiver	MY54130016	N9038A	Agilent	2016.06.02	2017.06.01	
3	Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.07.05	2017.07.04	
4	Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2016.07.05	2017.07.04	
5	Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2016.07.05	2017.07.04	
6	Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2016.07.05	2017.07.04	
7.6	Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A	
8	Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A	
9	Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A	
10	1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2016.07.05	2017.07.04	
11	18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2016.07.05	2017.07.04	

1.5.5 Climate Chamber

Climate Chamber			S INC. AE	ORLA" III	Dies Wes	
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Climate Chamber	2004012	HL4003T	Yinhe	2016.03.25	2017.03.24

1.5.6 Vibration Table

100	Vibra	ation Table	MORE	ME AE	ORLAL MORL	Me	AB
	No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	1	Vibration Table	N/A	ACT2000-S015L	CMI-COM	2016.03.25	2017.03.24

1.5.7 Anechoic Chamber

Anechoic Chamber			ELAE MOR	Me	AB -RLA	MORI
No.	Equipment Name	Serial No.	Type	Manufacturer	Cal.Date	Cal.Due Date
10	Anechoic Chamber	N/A	9m*6m*6m	Changning	2016.03.25	2017.03.24

***** END OF REPORT *****

