Long-run Average Reward for Markov Decision Processes

Based on a paper at CAV 2017

<u>Pranav Ashok</u>¹, Krishnendu Chatterjee², Przemysław Daca², Jan Křetínský¹ and Tobias Meggendorfer¹ August 9, 2017

¹Technical University of Munich, Germany ²IST Austria

Motivation

Markov Decision Processes (MDPs) are a standard model for describing systems which display probabilistic as well as non-deterministic behaviour.

1

Motivation

Open Problem

Long-run Average Reward or Mean-payoff using Value Iteration (VI)

- · VI approaches exist for subclasses, but not for general MDPs
- Other existing approaches: Linear Programming (LP) and Strategy Iteration (SI)¹

¹Martin L. Puterman, Markov Decision Processes, 1994.

Contributions

- Disprove conjectured stopping criterion for VI²
- General solution using VI
- · Improve performance using ideas from Machine Learning

²Not covered in this talk

Markov Decision Process (MDPs)

Strategy

A strategy (or policy) gives the action to be taken at every state.

$$\pi := \{s_1 \mapsto b, s_2 \mapsto a\}$$

Strategy

A strategy (or policy) gives the action to be taken at every state.

$$\pi := \{\mathsf{s}_1 \mapsto a, \dots, \mathsf{s}_6 \mapsto a\}$$

Mean-payoff or Long-run Average Reward

$$\rho = 15 \ 35 \ 20 \ 50 \ 0 \ 10 \ 0 \ 10 \ 0 \ 10 \ \dots$$

Then, n-step average reward is given by

$$MP_n(\rho)$$
 := $\frac{1}{n} \cdot \sum_{i=1}^n \rho_i$

$$MP := \sup_{\pi} \liminf_{n \to \infty} \mathbb{E}^{\pi} [MP_n(\rho)]$$

6

Value Iteration

VI for Total Rewards (Bellman Equation)

Value Iteration

Average reward³

$$\lim_{n\to\infty}\frac{v_n(s)}{n}~\approx~v_n(s)-v_{n-1}(s)$$

³After making the MDP aperiodic

Towards a General VI: Maximal End Components (MECs)

An example MEC

Communicating MDP

Towards a General VI: Step 1 – MEC-Decomposition

Find all MECs

Towards a General VI: Step 1 – MEC-Decomposition

Find all MECs and run VI on them until ε -convergence

Towards a General VI: Step 2 – Weighted Reachability

Max. mean-payoff =
$$\sup_{\pi} p_1 \cdot \mathbf{4} + p_2 \cdot \mathbf{5} + p_3 \cdot \mathbf{10}$$

Towards a General VI: Step 2 – Weighted Reachability

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{4}{R} + p_2 \frac{5}{R} + p_3 \frac{10}{R}$$

Towards a General VI: Step 2 – Weighted Reachability

$$\frac{\text{Max. mean-payoff}}{R} = \sup_{\pi} p_1 \frac{4}{R} + p_2 \frac{5}{R} + p_3 \frac{10}{R}$$

Mean-payoff reduced to reachability: $P_{max}(\Diamond +)$

Limitations of this method

- · Whole state space is being explored
- $\boldsymbol{\cdot}$ Finding MECs on large state spaces is computationally expensive

Improvement: avoid full state-space exploration

Idea: let sampling guide us to the "important" regions

Contribution of red region to MP is potentially low

Improvement: guarantees through sampling

- Existing: BRTDP approach for reachability^{4,5}
- · Repeatedly samples paths from initial state
- Back-propagates values along the path using VI operator

⁴Bounded Real-Time Dynamic Programming, McMahan et. al., ICML '05

⁵Verification of Markov Decision Processes using Learning Algorithms, Brazdil et. al., ATVA '14

Improvement: Algorithm

- 1. Run BRTDP in search of the + state
- 2. Repeatedly collapse MECs amongst the states explored so far
- 3. While collapsing, compute their values and add special transition to + and states

Improvement: can do even more...

Improvement: can do even more...

Collapse MEC into a single state and add a special action

Final Algorithm: On-demand Value Iteration (ODV)

- 1. Sample paths like in BRTDP
- 2. When MECs are detected, collapse them but...
- 3. Don't compute MEC value until ε -convergence
- 4. Add transition with probability \propto (U-L) to ? state
- 5. Refine value of MEC only when ? encountered

Summary

We saw two methods which can be used to obtain mean-payoff with guarantees

- 1. Collapse MECs, add transitions to +/- states, run reachability
- 2. **ODV**: Run sampling, collapse on-the-go, refine MEC values on-demand

Benchmarks

Model	States	MECs	LP^1	MEC-VI ²
virus	809	1	0.19	0.05
cs_nfail4	960	176	0.7	0.18
investor	6 688	837	2.8	0.51
phil-nofair5	93 068	1	TO	6.67
rabin4	668 836	1	TO	112.38

- 1. MultiGain, Brazdil et. al. 2015.
- 2. MEC-VI: Straightforward conversion to reachability, then VI $\,$

Benchmarks

On-demand VI better by orders of magnitude depending on topology

Model	States	MEC-VI	ODV	ODV States	ODV MECs
zeroconf(40,10)	3 001 911	МО	5.05	481	3
avoid				582	3
zeroconf(300,15)	4 730 203	MO	16.6	873	3
avoid				5 434	3
sensors(2)	7 860	18.9	20.1	3 281	917
sensors(3)	77 766	2293.0	37.0	10 941	2 301