Performance Analysis for Projection-Correction Methods in Motion Deblurring Problems

Sara Casadio, Enrico Ferraiolo, Giovanni Maria Savoca

Alma Mater Studiorum - University of Bologna Master's Degree in Computer Science

June 19, 2025

Problem Description

- The project analyzes the performance of two Projection-Correction algorithms for reconstructing medical images affected by motion blur.
- The studied algorithms are:
 - Diffusion Posterior Sampling (DPS)
 - Regularization by Denoising with Diffusion (RED-Diff)
- Both methods are based on pre-trained diffusion models.
- Objective: evaluate the effectiveness of these methods in recovering degraded images.

Approach to the Problem

- Objective: Analyze the performance of Projection-Correction methods
 DPS and RED-Diff for motion blur removal on medical images
- Phase 1: Dataset preprocessing (128x128)
- Phase 2: Data augmentation to increase dataset diversity
- Phase 3: Training on medical data
- Phase 4: Simulation of motion blur and its removal to test the quality of the model
- Phase 5: Implementation and comparison of Projection-Correction methods: DPS and RED-Diff
- Phase 6: Quantitative evaluation of performance using metrics such as PSNR and SSIM

Dataset

• We use the "Mayo Clinic CT Dataset" of low-dose CT scans.

Figure 1: Examples of CT slices from the Mayo Clinic dataset

Conversion Pipeline

Before applying augmentations, each image is converted using:

- Grayscale: single channel via transforms.Grayscale(num_output_channels=1)
- ② Resize: to 128×128 pixels using bicubic interpolation
- **Output** Normalization: values scaled to [-1, 1] using mean 0.5 and std 0.5

```
base_transform = transforms.Compose([
    transforms.Grayscale(1),
    transforms.Resize((128,128), interpolation=Image.BICUBIC),
    transforms.ToTensor(),
    transforms.Normalize([0.5], [0.5]),
])
```

Data Augmentation: Types

For each clean image, we apply the following transformations:

- Fixed rotations: ±5° via rotate_fixed()
- Horizontal flip: horizontal_flip()
- Gaussian noise: mean 0, std 10 via add_gaussian_noise()
- Salt-and-pepper noise: probability 2% via add_salt_pepper()
- Brightness adjustment: factor 1.2 via change_brightness()
- Contrast adjustment: factor 1.3 via change_contrast()

Repository Organization

- raw_data/: directory containing CT slice images (train/, test/)
- checkpoints/: saved model weights (*.pth)
- main.ipynb: main script for training and evaluation
- utils.py: module with utility functions (dataset, model, checkpoint I/O)
- result/: output images, plots, and metrics
- report/: report materials (media/, chapters/)

Diffusion Model Architecture

- Model Type: UNet2DModel from HuggingFace Diffusers library
- Task: Denoising diffusion probabilistic model for grayscale image generation
- Input/Output:
 - Input channels: 1
 - Output channels: 1
 - Sample size: 128×128 pixels

UNet Architecture Configuration

Block Configuration:

- Layers per block: 2
- Block output channels: (64, 128, 256)
- Dropout rate: 0.1

Downsampling Path:

- DownBlock2D \rightarrow DownBlock2D \rightarrow AttnDownBlock2D
- Progressive feature extraction with attention in the deepest layer

Upsampling Path:

- AttnUpBlock2D \rightarrow UpBlock2D \rightarrow UpBlock2D
- Symmetric architecture with attention mechanism

Diffusion Schedulers

- Training Scheduler: DDPMScheduler
 - Number of timesteps: 1000
 - Used for forward diffusion process during training
 - Adds noise progressively over 1000 steps
- Inference Scheduler: DDIMScheduler
 - Number of timesteps: 1000
 - Deterministic sampling process
 - Used for image generation and inverse problems
 - Shares beta schedule with DDPM scheduler

Model Optimization

- Optimizer: Adam
 - Learning rate: 1×10^{-4} • Weight decay: 1×10^{-5}
- Loss Function: Mean Squared Error MSE
 - Compares predicted noise with actual noise
 - Standard objective for diffusion models
- Performance Optimizations:
 - Model compilation with torch.compile
 - Mixed precision training with GradScaler
 - Cosine annealing learning rate scheduler

Architecture Summary

- Total Parameters: 15.722.625
- Key Features:
 - Attention mechanisms in deepest layers for better feature learning
 - Symmetric U-Net design for optimal information flow
 - Dropout regularization to prevent overfitting
 - Grayscale-optimized with single channel processing

Training Pipeline

- Objective: Train a denoising diffusion model (DDIM U-Net) on grayscale images
- Main Components:
 - Data Augmentation
 - OataLoader
 - Model Compilation
 - Training loop with mixed-precision

Compiling the Model

- Why: optimize the model for better performance
- Usage:

```
model = torch.compile(model)
```

• Benefits: improved batch throughput

Mixed-Precision with AMP

- GradScaler amd autocast:
 - GradScaler for scaling gradients
 - autocast for automatic mixed precision
- Reduce memory usage and speed up training

Training Loop

- Start the training model.train()
- For each epoch:
 - Move images to GPU (if available)
 - Generate noise and timesteps
 - Compute noise prediction on the input data
 - Prediction + MSE loss
 - Optimization + scheduler.step()
- Save samples to visualize the model performance during training
- Compute and log average losses
- Save model weights each epoch

Checkpointing

- Validation:
 - model.eval() to set the model to evaluation mode
- Checkpoint:
 - Save the model weights to a .pth file
 - Update loss, PSNR and SSIM history in history.txt
- Monitor train vs validation loss over epochs aswell as PSNR and SSIM between the generated and original images
 - For each epoch sample 10 images from the validation set and compute the metrics

Epochs Validation

Metrics:

- PSNR: Peak Signal-to-Noise Ratio
- SSIM: Structural Similarity Index

Sample Generation:

- Pure noise sampling using DDIM scheduler
- Validation reconstruction:
 - Add noise to clean validation images
 - Model predicts and removes the noise

• Quality Assessment:

- PSNR range: 20-40 dB (higher = better reconstruction)
- SSIM range: 0-1 (closer to 1 = better similarity)
- Average metrics computed over 5-10 validation samples

Monitoring Produced Samples

• Pure Noise Sampling:

- Tests model's ability to generate images from noise that are similar to the training data
- Uses DDIM scheduler for iterative denoising
- Saves generated images as epoch_{epoch}.png

Validation Reconstruction:

- Adds noise to clean validation images
- Model predicts and removes the noise
- Direct assessment of denoising performance
- Saves reconstructed images as reconstructed_{epoch}.png

History Tracking:

- All metrics saved to history.txt
- Enables trend analysis and model comparison

Plots

- Loss Monitoring:
 - Training vs Validation Loss curves over epochs
 - MSE loss
- Quality Metrics Visualization:
 - PSNR trends with average values
 - SSIM trends with average values
 - Both metrics computed on validation reconstructions
 - Useful to track model performance

Comprehensive Monitoring

Comprehensive Monitoring:

- Three-panel subplot: Loss, PSNR, SSIM (as shown in the Figure 2)
- Data read from history.txt file
- Enables performance trend analysis

Figure 2: Training Loss, PSNR, and SSIM trends over epochs

Generated Samples from Pure Noise

- Samples generated from pure noise using the trained model
- Visualized to assess the model's generative capabilities
- Useful for understanding the model's learned features
- Figure 3 shows 10 generated samples to assess the model's performance

Generated Samples Visualization

Figure 3: 10 generated samples from pure noise using the trained model at epoch 81.

Loading Checkpoints

Checkpoint Structure:

- Model state dictionary
- Optimizer state dictionary
- Current epoch number for resuming training
- Naming: ddim_unet_epoch81.pth
- load_checkpoint() utility function

DPS: Diffusion Posterior Sampling

- DPS is a method for solving inverse problems using pre-trained diffusion models
- Key idea: combine data fidelity with diffusion model prior during reverse sampling
- Modifies the standard DDIM reverse process to incorporate measurement consistency

DPS - Overview

Algorithm Overview:

- Start with noisy initialization $x_T \sim \mathcal{N}(0, I)$
- ② For each timestep t: predict x_0 using UNet
- **3** Apply posterior correction: $x_0^{post} = x_0^{pred} + \gamma_t \cdot K^T (y Kx_0^{pred})$
- Continue DDIM step with corrected x_0^{post}

Posterior Correction Weight:

$$\gamma_t = \frac{\sigma_{prior}^2}{\sigma_y^2 + \sigma_{prior}^2}$$

where $\sigma_{prior}^2 = 1 - \alpha_t$ and σ_y is measurement noise

Implementation of DPS

Algorithm Steps:

- \bigcirc Initialize x_t with random noise
- 2 Predict noise $\epsilon_{\theta}(x_t, t)$ using UNet
- **3** Compute $x_0^{pred} = \frac{x_t \sqrt{1 \alpha_t} \epsilon_{\theta}}{\sqrt{\alpha_t}}$
- Apply DPS correction with gradient step
- Update to next timestep using DDIM

RED-Diff: Regularization by Denoising Diffusion

- RED-Diff is an optimization-based method for solving inverse problems using diffusion models
- Key idea: combine data fidelity loss with regularization from denoising diffusion priors
- Uses gradient-based optimization to reconstruct images by minimizing combined objective

RED-Diff - Overview

Algorithm Overview:

- **1** Initialize reconstruction μ from adjoint operation: $\mu = K^T(y)$
- ② For each timestep t: sample noise and create noisy version x_t
- **Outpute** data fidelity loss: $\mathcal{L}_{obs} = \frac{1}{2\sigma_v^2} \|K(\mu) y\|^2$
- Compute regularization loss using diffusion model guidance
- \odot Update μ using gradient descent on combined loss

Combined Objective:

$$\mathcal{L} = \mathcal{L}_{obs} + \lambda \cdot w_t \cdot \mathcal{L}_{reg}$$

where w_t is a time-dependent weighting strategy

Implementation of RED-Diff

Algorithm Steps:

- Initialize $\mu \leftarrow K^T(y)$ with gradient enabled
- ② Sample noise $\epsilon \sim \mathcal{N}(\mathsf{0},I)$ and create $\mathsf{x_t} = \sqrt{lpha_t}\mu + \sqrt{1-lpha_t}\epsilon$
- **9** Predict noise $\epsilon_{\theta}(x_t, t)$ using UNet
- **o** Compute regularization loss: $\mathcal{L}_{reg} = w_t \cdot \|\epsilon_{\theta} \epsilon\|^2$
- lacktriangledown Update μ using Adam optimizer on total loss
- Repeat for all timesteps in reverse order

Weighting Strategies: linear, sqrt, square, log, clip, const

Image Degradation

- Library: IPPy
- Degradation Type: Motion Blur
- Implementation: Linear operator approach
- Purpose: Create realistic inverse problems for model evaluation

Motion Blur Configuration

- Operator: operators.Blurring
- Parameters:
 - Image shape: (128×128) pixels
 - Kernel type: "motion"
 - Motion angle: 45°
 - Kernel sizes tested: [5,7,9,11,13,15] pixels
- Criteria:
 - 5 images per kernel size for statistical reliability
- Mathematical Model:

$$y = K(x) + n \tag{1}$$

where K is the blur operator, x is the clean image, and n is noise

Evaluation Methodology

- Dataset: Validation set from the before-mentioned dataset
- Degradation: Motion blur with varying kernel sizes
- Methods Compared:
 - DPS (Diffusion Posterior Sampling)
 - RED-Diff (Regularization by Denoising)
- Evaluation Metrics:
 - PSNR (Peak Signal-to-Noise Ratio) in dB
 - SSIM (Structural Similarity Index)

Metric Computation Process

- For each test image:
 - 1 Load ground truth image x_{gt}
 - 2 Apply motion blur: $y = K(x_{gt})$
 - ORECONSTRUCT USING DPS: $x_{dps} = DPS(y, K)$
 - Reconstruct using RED-Diff: $x_{red} = RED-Diff(y, K)$
 - **5** Compute metrics: $PSNR(x_{gt}, x_{rec})$, and $SSIM(x_{gt}, x_{rec})$

PSNR

Figure 4 shows the PSNR values for both methods across different kernel sizes.

Figure 4: PSNR values for DPS and RED-Diff across different kernel sizes.

Figure 5 illustrates the SSIM values for both methods across different kernel sizes.

Figure 5: SSIM values for DPS and RED-Diff across different kernel sizes.

Performance Analysis

Trend Analysis:

- Both methods show performance degradation with larger kernels, even though the RED-Diff method generally outperforms DPS.
- PSNR and SSIM correlate with blur severity

Results - Qualitative Analysis

Qualitative Assessment:

- Side-by-side comparisons: Original \rightarrow Blurred \rightarrow Reconstructed
- Visual quality correlation with quantitative metrics
- Edge preservation and artifact analysis

Key Findings:

- RED-Diff better preserves fine details
- RED-Diff shows less artifacts compared to DPS
- RED-Diff keeps consistent performances across different kernel sizes
- DPS is more sensitive to kernel size variations, as shown in the PSNR and SSIM results
- Visual Results: To better understand the performance of both methods, we will show visual results for both DPS and RED-Diff a visual comparison had been conducted and reported on kernel size equal to 7 in the next slides.

Visual Results Summary - DPS

Figure 6 presents visual comparisons of the original, blurred, and reconstructed images for both methods for kernel size 7 using DPS.

Figure 6: Visual results for DPS.

Visual Results Summary - RED-Diff

Figure 7 presents visual comparisons of the original, blurred, and reconstructed images for both methods for kernel size 7 using RED-Diff.

Figure 7: Visual results for RED-Diff.

Scaling to 256x256

- We explored training at a larger target size of 256×256 pixels.
- ullet Due to hardware and Colab limits, full 256 imes 256 training proved very slow.
- We expect comparable results at 256×256 because:
 - Model architecture and training pipeline remain the same.
- \bullet If 256 \times 256 runs underperform, we can still approach 128 \times 128-level results by:
 - Leveraging our robust data augmentation to enrich the larger-scale inputs.
- \bullet The implementation is flexible, so once faster hardware or longer runtimes are available, we can re-run full 256 \times 256 experiments with minimal changes.

Thank you for your attention