Combo 3

July 3, 2024

1 Teorema 5: Godel vence a Neumann

1.1 Enunciado

Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \Sigma^*$ es Σ -computable, entonces f es Σ -recursiva.

1.2 Demostración

Sea \mathcal{P}_0 un programa que compute a f. Primero veremos que f es $(\Sigma \cup \Sigma_p)$ -recursiva. Note que

$$f = E_{*1}^{n,m} \circ \left[T^{n,m} \circ \left[p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right],p_1^{n,m},...,p_{n+m}^{n,m},C_{\mathcal{P}_0}^{n,m} \right]$$

donde cabe destacar que $p_1^{n,m},...,p_{n+m}^{n,m}$ son las proyecciones respecto del alfabeto $\Sigma \cup \Sigma_p$, es decir que tienen dominio $\omega^n \times (\Sigma \cup \Sigma_p)^{*m}$. Esto nos dice que f es $(\Sigma \cup \Sigma_p)$ -recursiva. O sea que el Teorema de Independencia del Alfabeto nos dice que f es Σ -recursiva ya que f es Σ -mixta y $(\Sigma \cup \Sigma_p)$ -mixta.

2 Teorema 6: Caracterización de conjuntos efectivamente computables

2.1 Enunciado

Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes

- (a) S es Σ -efectivamente computable
- (b) $S y (\omega^n \times \Sigma^{*m}) S$ son Σ -efectivamente enumerables

Nota: haga solo $(b)\Rightarrow (a).$ La prueba de este resultado está al final de la Guía 3

2.2 Demostración de $(b) \Rightarrow (a)$

 $(b)\Rightarrow (a)$. Si $S=\emptyset$ o $S=\omega^n\times \Sigma^{*m}$ es claro que se cumple (a). O sea que podemos suponer que S no es ni $\omega^n\times \Sigma^{*m}$ ni el conjunto vacio. Sea \mathbb{P}_1 un procedimiento efectivo que enumere a S y sea \mathbb{P}_2 un procedimiento efectivo que enumere a $(\omega^n\times \Sigma^{*m})-S$ (como S y $\omega^n\times \Sigma^{*m}$ son Σ -efectivamente computables, entonces su diferencia lo es). Es facil ver que el siguiente procedimiento computa el predicado $\chi_S^{\omega^n\times \Sigma^{*m}}$:

Etapa1 Darle a la variable T el valor 0.

Etapa2 Realizar \mathbb{P}_1 con el valor de T como entrada para obtener de salida la upla $(\vec{y}, \vec{\beta})$.

Etapa3 Realizar \mathbb{P}_2 con el valor de T como entrada para obtener de salida la upla $(\vec{z}, \vec{\gamma})$.

Etapa4 Si $(\vec{y}, \vec{\beta}) = (\vec{x}, \vec{\alpha})$, entonces detenerse y dar como dato de salida el valor 1. Si $(\vec{z}, \vec{\gamma}) = (\vec{x}, \vec{\alpha})$, entonces detenerse y dar como dato de salida el valor 0. Si no suceden ninguna de las dos posibilidades antes mencionadas, aumentar en 1 el valor de la variable T y dirigirse a la Etapa 2.