Resilient Federated Learning Framework

Course: "Preparação de Dissertação | Estágio"

Supervisor: Prof. Mário Luís Pinto Antunes

Co-supervisor: Rui Aguiar

21-01-2025

Introduction

- AI is becoming increasingly used daily
- Sensitive/distributed data is a challenge
- **Solution**: Federated Learning
- Robustness and Resilience are critical

Resilience

The ability of the system to maintain its performance and convergence, even in the presence of node failures, delays, and other adversities

Motivation

Challenges in FL:

- Node failure and dynamic networks
- Non-iid data, communication overhead and reliable model aggregation
- Existing works lack modularity and resilience

Expected Outcomes:

- Open Source Framework
- Scientific Publication
- Dissertation Document

Background

Centralized Machine Learning

Machine Learning Taxonomy organized by the learning method

Advantages:

- No communication overhead
- Resource efficient
- Easier to implement and monitor

Drawbacks:

- Data privacy concerns
- Single point of failure
- Scalability issues

Background Distributed Machine Learning

- Data vs Model Parallelism
- Centralized vs Decentralized Optimization
- Synchronous vs Asynchronous Scheduling

Horizontal vs Vertical Model Parallelism

Decentralized Optimization

Background Federated Learning

Subset of Distributed Learning where:

- Data cannot be shared
- Designed to work in a distributed manner
- Can have security mechanisms

Categories of FL:

- Horizontal FL
- Vertical FL
- Federated transfer learning

Background Communication Protocols

Summary and Comparison

Protocol	Scalability	Fault Tolerance	Security	Suitability
MPI	Limited	No built-in support	None	Low, lacks fault tolerance and scalability
MQTT	Moderate	Moderate	TLS, mTLS, role-based	Moderate, suitable for smaller FL systems
Kafka	High	High	TLS, mTLS, role-based	High, but latency can hinder synchronization
Zenoh	High	High	TLS	High, but limited ecosystem maturity

Related Work

Systematic Literature Review

RQ₁

How can Federated Learning frameworks be designed to ensure robustness against node failures across dynamic network environments?

RQ₂

What communication layer architectures are most suitable for supporting fault-tolerant and resilient Federated Learning under dynamic network conditions?

Systematic Literature Review Process

Related Work

Systematic Literature Review

Comparison of the Papers obtained previously

Ref	Fault Tolerance	Elasticity	Scalability	Security	Evaluation	Code	Compliance
[9]	✓	X	Not tested	✓	X	X	33%
[10]	\checkmark	X	1000	\checkmark	\checkmark	X	66%
[13]	\checkmark	\checkmark	10000	X	\checkmark	X	66%
[14]	\checkmark	X	400	\checkmark	X	X	50%
[16]	\checkmark	X	1000	\checkmark	X	\checkmark	66%
[17]	\checkmark	X	600	X	\checkmark	X	50%
[21]	\checkmark	\checkmark	64	X	\checkmark	\checkmark	83%
[22]	\checkmark	X	10	X	\checkmark	\checkmark	66%
Total:	100%	25%	87.5%	50%	62.5%	37.5%	

Related Work

Other Frameworks

Summary of Federated Learning Frameworks

Framework	Key Features	Limitations
HeteroFL	Supports heterogeneous client models Static batch normalization	Lack of customization Focus on heterogeneity
CoCoFL	Partial neural network freezing Quantization	Out of the box solution Lack of flexibility
Flower	Framework agnostic Customizable and scalable	Not a complete solution Requires additional components
TFF	Seamless integration with TensorFlow Supports dynamic client participation	Restricted to TensorFlow Fixed communication layer

Requirements and Architecture

System Analysis and Comparison

Qualitative comparison of the proposed solution with existing solutions

Solution	Resilience	Modularity	Analysis	Code and Documentation	Compliance
[10]	X	X	✓	X	25%
[13]	\checkmark	X	\checkmark	X	50%
[17]	X	X	\checkmark	X	25%
[21]	\checkmark	X	\checkmark	✓	75%
[22]	X	X	\checkmark	\checkmark	50%
HeteroFL	✓	X	✓	✓	75%
\mathbf{CoCoFL}	\checkmark	X	\checkmark	\checkmark	75%
Flower	X	\checkmark	X	\checkmark	50%
TTF	✓	X	X	✓	50%
Proposed	✓	✓	✓	✓	100%

Requirements and Architecture

Proposed Solution

SWOT analysis

	Helpful	Harmful			
	Strengths	Weaknesses			
Internal	Resilient, highly modular and easy to use	Validation is limited to the simulation environment			
External	Opportunities	Threats			
	Easy to extend and integrate with other systems	Scalability may be limited			

Communication Layer is critical to ensure Resilience

Proposed system architecture

Task Name	2024				2025					
lask Name	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
▼ Scope										
Objectives										
Background										
▼ Related Work										
Systematic Literature Review								_	_	
Existing Solutions							Wo	rk n	lan	
▼ Proposed Solution										
Requirements										
System Architecture										
Technologies										
SWOT Analysis										
▼ Pre Dissertation										
Outline										
Draft										
Review										
▼ Dissertation										
Outline										
Draft										
Review										M
Code Implementation										
Documentation									M	
Experiments										
Paper							M)		

Conclusion

Work done:

- Motivation, objectives, and preliminary progress toward a resilient and modular FL framework
- Work plan outlined with tasks and milestones

Future work:

 Respect the timeline and achieve the milestones outlined in the work plan

Impact:

- Enhance FL applicability in diverse scenarios
- Promote innovation in privacy-preserving distributed learning

