Lecture 16: Kernel Regression

Instructor: Prof. Shuai Huang
Industrial and Systems Engineering
University of Washington

Limitations of linear regression model

• A global model that generalizes local data points to a central model

How far is it from linear regression to nonlinear regression?

• Let's look at the simple linear regression problem $y=\beta_0+\beta_1x$. Let's further simplify it by assuming that we know the mean of y is zero, so is the mean of x. This will lead to the model as $y=\beta_1x$ and the estimator of β_1 as

$$\beta_1 = \frac{(\sum_{i=1}^n x_i y_i)}{\sum_{i=1}^n x_i^2}.$$

• Thus, when we try to make prediction on a new data point with a given x^* , the prediction y^* will be

$$y^* = x^* \frac{(\sum_{i=1}^n x_i y_i)}{\sum_{i=1}^n x_i^2}.$$

This could be further reformed as:

$$y^* = \sum_{i=1}^n y_i \frac{x_i}{\sum_{i=1}^n x_i^2} x^*,$$

which is equivalent with

$$y^* = \sum_{i=1}^n y_i \frac{x_i x^*}{n S_x^2}.$$

Generalize this insights into development of nonlinear models

• We then pursue a generalized family of model, defined as:

$$y^* = \sum_{n=1}^N y_n w(x_n, x^*).$$

- Here, $w(x_n, x^*)$ is the weight that characterizes the similarity between x^* and the existing data points, x_n for $n=1,2,\ldots,N$.
- Roughly speaking, there are two types of similarity metric.
- One is the K-nearest neighbor (KNN) smoother:

$$w(x_n, x^*) = \begin{cases} \frac{1}{k}, & \text{if } x_n \text{ is one of the } k \text{ nearest neighbors of } x^* \\ 0, & \text{if } x_n \text{ is NOT in the } k \text{ nearest neighbors of } x^* \end{cases}.$$

Another is the kernel smoother:

$$w(x_n, x^*) = \frac{K(x_n, x^*)}{\sum_{n=1}^{N} K(x_n, x^*)}.$$

Some examples of the kernel functions

Kernel function	Mathematical form	Parameters
Linear	$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \boldsymbol{x}_i^T \boldsymbol{x}_j$	null
Polynomial	$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \left(\boldsymbol{x}_i^T \boldsymbol{x}_j + 1\right)^q$	q
Gaussian radial basis	$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = e^{-\gamma \ \boldsymbol{x}_i - \boldsymbol{x}_j\ ^2}$	$\gamma \geq 0$
Laplace radial basis	$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = e^{-\gamma \ \boldsymbol{x}_i - \boldsymbol{x}_j\ }$	$\gamma \geq 0$
Hyperbolic tangent	$K(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\boldsymbol{x}_i^T \boldsymbol{x}_j + b)$	b
Sigmoid	$K(\mathbf{x}_i, \mathbf{x}_j) = \tanh(a\mathbf{x}_i^T\mathbf{x}_j + b)$	a, b
Bessel function	$K(\mathbf{x}_i, \mathbf{x}_j)$ $= \frac{bessel_{v+1}^n(\sigma \mathbf{x}_i - \mathbf{x}_j)}{(\mathbf{x}_i - \mathbf{x}_j)^{-n(v+1)}}$	σ, n, v
ANOVA radial basis	$K(\mathbf{x}_i, \mathbf{x}_j) = \left(\sum_{k=1}^n e^{-\sigma(x_i^k - x_j^k)}\right)^d$	σ, d

R lab

- Download the markdown code from course website
- Conduct the experiments
- Interpret the results
- Repeat the analysis on other datasets