

The Effect of Local Learning Rules on Memory

By: The Unsupervised Minds

Table of contents

01 Introduction & Literature Review

- **Question & Hypotheses**
- 03 Method & Results

04 Conclusion

Why Study Working Memory?

 Enables intelligent behaviors, like planning, reasoning, and sequencing, without explicit instruction.

Temporarily holds and manipulates information.

Integrates sensory, spatial, and temporal signals.

Literature Grounding

Hebbian Learning

"Neurons that fire together, wire together" — original local plasticity rule

Recurrent Neural Networks (RNNs)

- Capture sequential information
- Well-suited for modeling brain-like behavior

Hopfield Networks

- Introduced attractor dynamics in RNNs
- Laid foundation for memory stability

Empirical Evidence

- Primacy = long-term, Recency = short-term
- How local rules shape functionally relevant attractors

Research Question

Core Problem

Biological Basis

- Brain = vast network of interconnected neurons
- Learning → changes in synaptic strength

Computational Model

- Use Recurrent Neural Networks (RNNs) to simulate neural self-organization
- RNNs can autonomously generate sequences of activity

Focus of This Study

How do different local learning rules (Hebbian, anti-Hebbian) shape a network's

- Synaptic organization
- Attractor landscape

Converging Rules

Different learning rules tend to follow a general trajectory, ultimately producing similar solutions for a given task.

Hypotheses

Diverging Rules

Each learning rule follows a distinct path, resulting in different yet plausible network configurations and solutions.

Initial Condition Sensitive

The effectiveness and outcome of a learning rule depend strongly on the initial state of the network.

$$au rac{dr}{dt} = -r + F(w \cdot r + I_{
m ext})$$

20 -

25 -

Recall Performance Comparison of Different Learning Rules

Conclusion

What We Learned from Local Learning Rules

Local learning rules shape neural connectivity in distinct ways

Working Memory How Hebbian and anti-Hebbian rules lead to different:

- Firing rate dynamics
- Final synaptic structures

Supports **Hypothesis 2**:

 Different rules lead to different outcomes in simple memory tasks

Supports Hypothesis 3:

- The initial state of the network strongly affects memory formation
- Mirrors the primacy effect in cognitive psychology

Implications & Future Work

Contact us:

fahimehmirsamou2000@gmail.com t.taleei@gmail.com parsa.gharavi@aisa.solutions / pargar23@gmail.com

marzieh.alidaadi@gmail.com

