Searching for Subspace Trails and Truncated Differentials

March 5th, 2018

Horst Görtz Institute for IT Security Ruhr-Universität Bochum

Gregor Leander, Cihangir Teczan, and Friedrich Wiemer

RUB

Structural Attacks

Invariant Subspaces

Invariant Subspaces [Lea+11] (Crypto 2011)

Let U be a subspace of \mathbb{F}_2^n , and $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U+a \xrightarrow{F} U+b$, if

$$\exists a: \exists b: F(U+a) = U+b$$

Main Idea

Structural Attacks

Subspace Trail Cryptanalysis

Subspace Trail Cryptanalysis [GRR16] (Last Year's FSE)

Let U, V be subspaces of \mathbb{F}_2^n , and $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. We write $U \stackrel{F}{\to} V$, if

$$\forall a: \exists b: F(U+a) \subseteq V+b$$

We restrict ourselves to essential subspace trails.

Main Idea

The Problem

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

1

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are 2^n possibilities.

Can't we just activate a single S-box and check to what this leads us?

1

How to search efficiently for Subspace Trails?

Security against Subspace Trails?

Given the round function $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ of an SPN cipher, prove the resistance against subspace trail attacks!

Main problem: Too many possible starting points.

Already for initially one-dimensional subspaces there are 2^n possibilities.

Can't we just activate a single S-box and check to what this leads us?

The short answer is: No!¹

¹The long answer is this talk.

Outline

Outline

- 1 Motivation
- 2 Intuition
- 3 Algorithm

Subspace Complement

If *U* is a subspace of \mathbb{F}_2^n , we denote by U^{\perp} it's *complement*:

$$U^{\perp} := \left\{ u \in \mathbb{F}_2^n \mid \forall x \in U : \langle x, u \rangle = 0 \right\}$$

Derivative

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. We denote the *derivative of F in direction u* by

$$\Delta_u(F)(x) := F(x) + F(x+u)$$

Linear Structure

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then (α, u) is called a *linear structure*, if

$$\exists c \in \mathbb{F}_2 : \forall x \in \mathbb{F}_2^n : \langle \alpha, \Delta_u(F)(x) \rangle = c$$

Lemma

Let $U \stackrel{F}{\rightarrow} V$ be a subspace trail. Then

$$\forall u \in U : \operatorname{Im}(\Delta_u(F)) \subseteq V.$$

Proof

Let $U \stackrel{F}{\rightarrow} V$, then for every $u \in U$

$$x \in U+x \xrightarrow{F} F(x) \in V+b$$
,

$$x + u \in U + x \xrightarrow{F} F(x + u) \in V + b$$
,

implying
$$F(x) + F(x + u) \in V$$
.

Definition

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$. A truncated differential of probability one is a pair of affine subspaces U+s and V+t, s. t.

$$\forall u \in U : \forall x \in \mathbb{F}_2^n : \Delta_{u+s}(F)(x) \in V + t$$

■ Direct consequence from Lemma 1:

Link: Subspaces Trails are Truncated Differentials with probability one

Let $U \xrightarrow{F} V$ be a subspace trail. Then U+0 and V+0 are a truncated differential with probability one.

Approach to the Algorithm

SPN Structure

Easy parts

- Given a starting subspace, computing the trail is easy.
- The effect of the linear layer *P* to a subspace *U* is clear:

$$U \stackrel{P}{\rightarrow} P(U)$$

How to reduce the number of starting points?

Two possibilities, depending on the S-box S.

Observation

For an S-box S and $U \xrightarrow{S} V$, because of the above lemma,

$$\forall x, \forall u \in U : \Delta_u(F)(x) \in V$$

$$\Rightarrow \forall \alpha \in V^{\perp} : \forall x, \forall u \in U : \langle \alpha, \Delta_u(F)(x) \rangle = 0.$$

Thus, V^{\perp} consists of the linear structures of S.

Theorem

Let $F: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ be an S-box layer that applies k S-boxes with no non-trivial linear structures in parallel. Then every essential subspace trail $U \overset{F}{\to} V$ is of the form

$$U=V=U_1\times\cdots\times U_k,$$

where $U_i \in \{\{0\}, \mathbb{F}_2^n\}$.

Algorithm

- Simply activate single S-boxes
- Compute resulting subspace trail

Complexity

Linear in the number of S-boxes.

In particular, in this case, bounds from activating single S-boxes are optimal.

This approach is independent of the S-box, i. e. any S-box without linear structures behaves the same with respect to subspace trails.

Algorithm

- Simply activate single S-boxes
- Compute resulting subspace trail

Complexity

Linear in the number of S-boxes.

In particular, in this case, bounds from activating single S-boxes are optimal.

This approach is independent of the S-box, i. e. any S-box without linear structures behaves the same with respect to subspace trails.

The problem with S-boxes that have linear structures

Subspace trails through S-box layers with *one*-linear structures are not necessarily a direct product of subspaces (see e.g. Present).

Observation

If $U_1 \stackrel{F}{\to} U_2$ is a subspace, then for any $V_1 \subseteq U_1$ there exists a $V_2 \subseteq U_2$, s. t. $V_1 \stackrel{F}{\to} V_2$:

$$\begin{array}{ccc} U_1 & \stackrel{F}{\longrightarrow} & U_2 \\ & & & & & & & & \\ & & & & & & & & \\ V_1 & \stackrel{F}{\longrightarrow} & V_2 & & & & \\ \end{array}$$

Complexity (Size of W)

For an S-box layer $F: \mathbb{F}_2^{kn} \to \mathbb{F}_2^{kn}$ with k S-boxes, each n-bit: $|\mathbb{W}| = k \cdot 2^n$

Algorithm Idea

- Find a good set \mathbb{W} , s. t. for any possible subspace trail over the S-box layer $U \xrightarrow{F} V$, there is an element $W \in \mathbb{W}$ s. t. $\{W\} \subseteq V$.
- Compute the subspace trails for any starting point $W \in \mathbb{W}$.

Results No linear structures

SPN ciphers with S-boxes without linear structures

Cipher	r_e	d	r_d	d
AES	2	32	2	32
Anubis	2	104	_	_
Klein	3	60	2	32
Kuznyechik	1	8	1	8
Prince	2	16	2	16
Qarma	2	36	2	36

ResultsOne-linear structures

SPN ciphers with S-boxes with linear structures

LS				
Cipher	r_e	d	r_d	d
Ascon	3	298	1	125
Gift	3	60	3	60
Keccak	2	546	1	169
Present	3	43	3	63
Pride	2	31	2	34
Qarma	2	36	2	36
Serpent	2	88	2	62
Skinny64	5	48	5	48
Skinny128	5	96	5	96

SPN ciphers with S-boxes with linear structures

	LS				No LS			
Cipher	r_e	d	r_d	d	r_e	d	r_d	d
Ascon	3	298	1	125	3	310	1	155
Gift	3	60	3	60	2	16	2	16
Keccak	2	546	1	169	2	1290	1	270
Present	3	43	3	63	2	16	2	16
Pride	2	31	2	34	2	56	1	40
Qarma	2	36	2	36	2	36	2	36
Serpent	2	88	2	62	2	100	2	68
Skinny64	5	48	5	48	4	48	4	48
Skinny128	5	96	5	96	5	96	5	96