

Figure 39.4: The red space curve $f(t) = (\cos(t), \sin(t), t)$.

2. When $E = \mathbb{R}^2$ and $F = \mathbb{R}^3$, a function $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$ defines a parametric surface. Letting $\varphi = (f, g, h)$, its Jacobian matrix at $a \in \mathbb{R}^2$ is

$$J(\varphi)(a) = \begin{pmatrix} \frac{\partial f}{\partial u}(a) & \frac{\partial f}{\partial v}(a) \\ \frac{\partial g}{\partial u}(a) & \frac{\partial g}{\partial v}(a) \\ \frac{\partial h}{\partial u}(a) & \frac{\partial h}{\partial v}(a) \end{pmatrix}.$$

See Figure 39.5. The Jacobian matrix is $J(f)(a) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 2u & 2v \end{pmatrix}$. The first column is the vector tangent to the pink u-direction curve, while the second column is the vector tangent to the blue v-direction curve.

3. When $E = \mathbb{R}^3$ and $F = \mathbb{R}$, for a function $f : \mathbb{R}^3 \to \mathbb{R}$, the Jacobian matrix at $a \in \mathbb{R}^3$ is

$$J(f)(a) = \left(\frac{\partial f}{\partial x}(a) \frac{\partial f}{\partial y}(a) \frac{\partial f}{\partial z}(a)\right).$$

More generally, when $f: \mathbb{R}^n \to \mathbb{R}$, the Jacobian matrix at $a \in \mathbb{R}^n$ is the row vector

$$J(f)(a) = \left(\frac{\partial f}{\partial x_1}(a) \cdots \frac{\partial f}{\partial x_n}(a)\right).$$

Its transpose is a column vector called the *gradient* of f at a, denoted by $\operatorname{grad} f(a)$ or $\nabla f(a)$. Then, given any $v \in \mathbb{R}^n$, note that

$$Df(a)(v) = \frac{\partial f}{\partial x_1}(a) v_1 + \dots + \frac{\partial f}{\partial x_n}(a) v_n = \operatorname{grad} f(a) \cdot v,$$