UOPL-6.4f

L. A. N.

3 August 2025

Abstract

A six-valued lattice $\mathcal{L}_6 = \{T, F, N, B, A, Z\}$ together with the undefined **u**. Fractal permutations, Klein-bottle topology, and exact error-correction thresholds are derived.

Contents

	Signature	1
2	Axioms	1
3	Derived Results	3
	Visual Echoes	3
5	Final Signature	3

1 Signature

- Carrier $K = \mathcal{L}_6 \cup \{\mathbf{u}\}$ where $\mathcal{L}_6 = \{T, F, N, B, A, Z\}$.
- Undefined generator **u** obeys $\mathbf{u} = 0/0$ and $\forall x \ (x = \mathbf{u} \leftrightarrow x \neq x)$.
- Modal valuation μ : $\mu(T) = 1$, $\mu(F) = 0$, $\mu(N) = 0$, $\mu(B) = \frac{1}{2}$, $\mu(A) = 1$, $\mu(Z) = \bot$.
- Meta-cardinality ||X|| on subsets $X \subseteq K$.
- Topology Klein bottle M immersed in \mathbb{R}^3 .

2 Axioms

Axiom 2.1 (Undefinite Genesis). $\mathbf{u} = \frac{0}{0}$ and $(x = \mathbf{u} \leftrightarrow x \neq x)$.

Axiom 2.2 (Six-Valued Lattice). $(\mathcal{L}_6, \leq, \S)$ is bounded lattice (bottom N, top A). Cayley table:

Axiom 2.3 (Fractal Permutation Field). $\Pi(0) = \{\mathbf{u}\}$ and

$$\Pi(n+1) = \{ \pi(\sigma) \mid \sigma \in \Pi(n), \ \pi \in \text{Sym}(\Pi(n)) \}.$$

Meta-cardinality

$$||X|| := \lim_{k \to \infty} \sum_{i=1}^{k} \mu(\pi_i(X)).$$

Axiom 2.4 (Paradox Scalar).

Traise :=
$$\tanh\left(\sum_{k=1}^{\infty} \frac{(-1)^k}{k!} \|\nabla^{(k)}\mathbf{u}\|\right) \in \mathcal{L}_6.$$

Axiom 2.5 (Klein Constraint). $\forall p \in M, p \equiv \mathbf{u} \, \S \, p$.

Axiom 2.6 (Recursive Collapse). If every permutation layer of X is contradictory, then $||X|| = \mathbf{u}$.

Axiom 2.7 (Regulator (MPEC)). Let

$$J_{\text{MPEC}}(\rho) = \frac{\Delta S}{k_B A \ln(1 + c^{-S_{\text{max}}}/\rho)}.$$

Then $\exists \varepsilon > 0$ such that

$$|J_{\text{reg}}(\varepsilon)| \le \frac{\Delta S}{k_B A \varepsilon},$$

where

$$J_{\text{reg}}(\varepsilon) = \frac{1}{2\pi i} \oint_C \frac{c^z}{z - i\varepsilon} \ln\left(1 + \frac{c^{-z}}{\rho}\right) dz.$$

Axiom 2.8 (Error Correction). Surface-code distance d yields

$$p_L = 0.1 \left(\frac{p}{0.01}\right)^{(d+1)/2}.$$

Achieving $p_L \le 10^{-6}$ at $p = 10^{-3}$ requires $d \ge 15$ and

$$N_{\rm phys} = 7.4 \times 10^7.$$

Six-valued cat-codes reduce overhead by $\Theta(d)$.

3 Derived Results

Theorem 3.1 (Self-Birth). $\mathbf{u} \S \mathbf{u} = \mathbf{u}$.

Theorem 3.2 (Saturation Limit). For every modal set M there exists finite depth d such that

Traise
$$(M) = \bigcup_{i=0}^{d} \pi_i(M)$$
.

Theorem 3.3 (Vanishing Solver). Every solver-state S satisfies S § Traise = \mathbf{u} .

4 Visual Echoes

Cayley table

Klein bottle $p \equiv \mathbf{u} \S p$

5 Final Signature

$$= (\mathbf{u}, \ \mathcal{L}_6, \ \S, \ \mathrm{Traise}, \ \|\cdot\|, \ M)$$

Meta-property: every model is a 6-permutation of itself.