

PROJECT

Electrooculography (EoG)-based Assistive Speller Device

EE4501 – Biomedical Instrumentation and Signal Processing

Prof. Vinod A Prasad, Electrical Engineering Dept., IIT Palakkad

Introduction

World report on disability 2011

- 15% has some sort of disability
- 7% (73 million) is suffering from severe to extreme motor disability
- Severe motor disability
 - ALS
 - Stroke

Amyotrophic Lateral Sclerosis
(ALS): Progressive
neurodegenerative disease that
affects nerve cells (motor neurons)
in the brain and the spinal cord.

Communication – A Major Hurdle for patients

- Patient unable to express their feelings and ideas
- Difficult for nurses and family members to understand their needs

Human-Computer Interaction (HCI)

- Interface between a person and a computer
- Bio-signal electroencephalography (EEG), electrooculography (EOG), electromyography (EMG)
- Signal processed in the Computer and output interfaced with Assistive Technology

EEG

EOG

EMG

Assistive Spellers (in Research Labs)

EPOC+ (hardware)

- Collect **EEG** signal
- Cost ~\$1000 (SGD)

P300 Speller (software)

- Process brain wave
- Type out the message

Project objective

Design and Implement a low-cost EOG speller as a cheaper alternative for people who sustain severe motor disability.

Scope

Researching, designing and developing an EOG based speller comprising of:

- Signal classification (eye movement direction classification)
- On-Screen Virtual keyboard development and interfacing with classified output
- Demonstration of working of the speller

Assessment: 30% weight

EoG Signal – Characteristics and Measurement

- Measure as the potential difference between cornea and retina of the eye
- 2 pairs of surface electrode capture horizontal and vertical eye movements
- 1 surface electrode is used as a reference point
- Electrode Signal amplitude: 15 to 200 microvolts
- Frequency range: 0 to 30 Hz

Related work

No	Research	Year	Publish	Type of equipment used in the experiment	Phrase typed			Total number of Subject used		Average speed (letter per min)		Average accuracy		
4	An Electrooculogram based Assistive Communication System with Improved Speed and Accuracy Using Multi- Directional eye Movements	2012	Nanyang Technological University, School of Computer Engineering	Surface Electrodes, gUSB amplifier and computer	"The Foo TI 2	1 2 3 4	1 E O L	2 A T C	U C	4	5	6 7 sp F V Q	7 0000 Y X	8 enter W Z
						6	3		353	e.	7		9	0 back

Self-design virtual Keyboard

Related work

Silver chloride O. W. F. B.		
Electrooculography Based iOS Controller for Individuals with Quadriplegia or Neurodegenerative Disease Internationa Conference on Healthcare Healthcare Internationa A S D F	TYUIOP GHJKL VBNM 🕸	89%

iOS keyboard

Related work

No	Research	Year	Publish	Type of equipment used in the experiment		Phrase typed	numb	er of	Avera	etter	Ave	erage
2	Interface with a speller using EOG Glasses	2016	IEEE Internationla Conference o System,Man and Cyberneti	JINS MEME glasses and	M	QRST TZ 1./7 (a) . (a) . (b) . (c)	1234		1 2 5 7 8	D (b)	3 9	4 6 0
					Self-design keyboard							

Hardware - Electrodes

- Ag/AgCl Electrocardiography (ECG) surface electrodes
- Inexpensive
- Easily available on the market
- Slight difference in signal due to different skin impedance

Signal Waveform Patterns and Detection

Relationship between eye movements ,the detected EOG signals, and intention output.

System Overview

Arduino - Eye movement classification

- Look up then back to looking straight
- Look down then back to looking straight
- Look right then back to looking straight
- Look left then back to looking straight
- 5. Blink

Arduino - Bluetooth

Up Left	:	1
Up	:	2
Up Right	:	3
Left	:	4
Blink	:	5
Right	:	6
Down Left	:	7
Down	:	8
Down Right	:	9

Virtual Keyboard - Qwerty Keyboard

The cursor can be moved towards left/right/up/down based on EoG signal

