Odpovídejte celou větou (na každou otázku) a každé své tvrzení řádně zdůvodněte. Dodržujte a ve svém řešení vyznačte dělení jednotlivých úloh na podúlohy.

Část A (max. zisk 20 bodů) Odpovězte jen tabulkou s číslem otázky a písmenem označujícím Vaši odpověď. Každá otázka má pouze jednu správnou odpověď. Za správnou odpověď je +5 bodů, za nevyplněnou odpověď 0 bodů a za nesprávně vyplněnou odpověď -2 body. Pokud je celkový součet bodů v části A záporný, je tento součet přehodnocen na 0 bodů.

- 1. Ať má čtvercová soustava lineárních rovnic $\mathbf{A} \cdot \mathbf{x} = \mathbf{b}$ nad \mathbb{R} alespoň jedno řešení. Potom nutně platí:
 - (a) matice A má inversi,
 - (b) soustava $(\mathbf{A} + \mathbf{E}) \cdot \mathbf{x} = \mathbf{b}$ má právě jedno řešení (kde \mathbf{E} je jednotková matice příslušných rozměrů),
 - (c) vektor **b** je lineární kombinací sloupců matice **A**,
 - (d) matice A má nulový determinant.
- 2. Ať **A** je matice typu 4×4 a $det(\mathbf{A}) = 3$. Potom platí:
 - (a) $\det(-\mathbf{A}) = -3$,
 - (b) $\det(\mathbf{A} \cdot (-\mathbf{A})) = 9$,
 - (c) $\det(3 \cdot \mathbf{A}) = 9$,
 - (d) $\det(\mathbf{A} 3\mathbf{A}) = -6$.
- 3. Ať je B uspořádaná báze lineárního prostoru \mathbb{R}^3 a \mathbf{M} ať je matice obsahující jako sloupce vektory z B (zapsané jako souřadnice vzhledem ke kanonické bázi \mathbb{R}^3). Potom $nutn\check{e}$ platí:
 - (a) rozdíl $\mathbf{M} \mathbf{E}_3$ je nulová matice,
 - (b) matice M má nenulový determinant,
 - (c) matice **M** je positivně definitní,
 - (d) sloupce matice $\mathbf{M} + \mathbf{M}$ nemohou tvořit bázi.
- 4. Ať L_1 , L_2 a L_3 jsou konečně dimensionální lineární prostory nad tělesem \mathbb{F} , $\mathbf{f}: L_1 \to L_2$ je isomorfismus a $\mathbf{g}: L_2 \to L_3$ je epimorfismus. Potom platí:
 - (a) $\dim(L_1) \leq \dim(L_3)$,
 - (b) pro libovolný vektor $\mathbf{w} \in L_3$ existuje právě jeden vektor $\mathbf{v} \in L_1$ takový, že $(\mathbf{g} \cdot \mathbf{f})(\mathbf{v}) = \mathbf{w}$,
 - (c) $\mathbf{g} \cdot \mathbf{f} : L_1 \to L_3$ je epimorfismus,
 - (d) zobrazení g je monomorfismus.

Část B (max. zisk 20 bodů) V odpovědi je třeba uvést definice uvedených pojmů a dále podrobnou a smysluplnou argumentaci, která objasňuje pravdivost uvedeného tvrzení. Za správně formulované definice je 10 bodů, za správně vedený důkaz je dalších 10 bodů.

Definujte pojem jádro a obraz lineárního zobrazení $\mathbf{f}:L_1\longrightarrow L_2$. Dokažte, že obraz lineárního zobrazení $\mathbf{f}:L_1\longrightarrow L_2$ tvoří lineární podprostor prostoru L_2 .

(Definice a znění vět pište celými oznamovacími větami. Poznámka: pojem podprostor lineárního prostoru musíte definovat také. Všechny lineární prostory jsou nad pevným tělesem \mathbb{F} .)

Část C (max. zisk 20 bodů) Kromě zřetelně označeného výsledku (tj., odpovědi celou větou) je nutné odevzdat všechny mezivýpočty a stručné zdůvodnění postupu. Postup musí být zapsán přehledně a srozumitelně. Za chybný postup není možné dostat body, ačkoli nějaké výpočty jsou odevzdány. Za numerickou chybu, ale jinak správný postup, se strhává 1 nebo 2 body. Za část výpočtu je udělen odpovídající poměrný počet bodů z dvaceti.

V závislosti na parametru a rozhodněte o průniku tří rovin

$$2x + 2ay + 2z = 2$$
, $2ax + 2y + 2z = 2$, $2x + 2y + 2az = a$,

v prostoru \mathbb{R}^3 . Připomenutí: a je reálné číslo, odpovědět byste měli celou oznamovací větou (případně celými oznamovacími větami).