

END EVALUATION REPORT FOR GROUP 1

NOVEMBER 15, 2023
INDIAN INSTITUTE OF INFORMATION TECHNOLOGY
SRICITY, ANDHRA PRADESH

TOPIC:

Telecom Industry Churn Analysis and Predictive modelling.

ABSTRACT:

Enhancing telecom industry customer retention through predictive churn analysis and modelling.

TEAM MEMBERS:

GROUP - 1

1) Utkarsh Vaish (Lead) (S20200020309)

2) Jeswin Sam (S20200020266)

3) Avinash Saroj (S20200010027)

4) Warish (S20200010232)

DELIVERABLE 1:

Data preprocessing, feature extraction, data visualization and drawing some insights out of the data.

DELIVERABLE 2:

Model Building, predicting churn and building interactive and insightful dashboard, Deploy the model using Flask.

DATASET:

- Telecom Industry Churn Dataset
- Shape (7043, 21)

ATTRIBUTES:

customerID, gender, SeniorCitizen, Partner, Dependents, tenure, PhoneService, MultipleLines, InternetService, OnlineSecurity, OnlineBackup, DeviceProtection, TechSupport,

StreamingTV, StreamingMovies, Contract, PaperlessBilling, PaymentMethod, MonthlyCharges, TotalCharges and Churn

DATA CLEANING/ PREPROCESSING

- No Null Values in Dataset
- No outliers
- No duplicate entries
- datatype of TotalCharge changed to float from string
- TotalCharge contained 11 missing values so those rows dropped

OUTLIER ANALYSIS:

Q1 - 25^{th} percentile; Q2 - 50^{th} percentile; Q3 - 75^{th} percentile

Upper Bound (top whisker) = $Q3 + (1.5 \times IQR)$

Lower Bound (bottom whisker) = $Q1 - (1.5 \times IQR)$

$$IQR = Q3 - Q1$$

Where IQR - Interquartile Range

- 1. No outliers as visible from the plot
- 2. 50 percentile pays 35-90 RS approx.
- 3. 25 percentile pays 90-120 RS approx.

- 1. No outliers as visible from the plot
- 2. 50 percentile pays between 500 and 4000 RS approx.
- 3. 25 percentile pays 4000 8500

- 1. No outliers as visible from the plot
- 2. 50 percentile has tenure from 10-55 months appx.
- 3. 25 percentile has tenure from 55-70 months appx.

Inference from table below:

- 75 percentile Customers have tenure of 55 months or lower, pays 89.86 RS or lower per month and have total charges of 3794.73 RS or lower.
- Mean tenure, Monthly charges and Total Charges are 32.42 months, 64.79 RS, 2283.30 RS.

STATISTICS:

Stat	Tenure	Monthly Charges	Total Charges
Count	7032	7032	7032
Mean	32.422	64.798	2283.3
Std Dev	24.545	30.085	2266.771
Min	1	18.25	18.8
25 percentile	9	35.587	401.45
50 percentile	29	70.35	1397.475
75 percentile	55	89.862	3794.737
Мах	72	118.75	8684.8

FEATURE EXTRACTION:

- The churn risk is assessed with the categorization of entries into 7 separate categories namely- High Churn Risk, Moderate Churn Risk, Low Churn Risk, No Churn, Premium Customers, Occasional Churn Risk, Seasonal Churn Risk.
- New category ChurnRisk is added and Churn removed
- The churn risk assessment is made easier by mapping the risk categories to numerical scale (Magnitude of 0-6)

DATA VISUALIZATION AND INSIGHTS

• Majority of the Charges are collected from Bank transfer and Credit card payment methods.

• Men are slightly oversubscribed to the Fiber optic service as compared to women.

• More people prefer the two-year contract over one year and month-to-month contracts, hinting about the considerable number of customers with no churn.

• Majority of the customers, around 1750, has the tenure of (0-10) months

• Churn risk is considerably lower than no churn as depicted by the bar graph.

Genderwise CountPlot of ChurnRisk

• Comparing the two bar graphs tells us that the churn pattern is almost similar regardless of gender.

• There is considerable number of singles who fall into High-risk churn category (singles).

Partner wise CountPlot of ChurnRisk 2000 1750 1500 1250 750 500 Partner

- Churn is low in senior citizens as compare to youth.
- Majority of the customers are youth.

- Less churn in case of customers who do not have internet connection.
- Less churn in case of customers who have DSL connection.
- High churn risk is considerable in people using Fiber optic.

• High risk churn is significant in month-tomonth contract category as compared to oneor two-year contracts. • High risk of churn in electronic check payment method as compared to other methods.

- Churn is high at low tenure and decreases as tenure increases.
- Churn decreases with increase in total charges.
- Churn is low in senior citizens as compare to youth.

• There is high churn risk in no tech support category.

- Electronic check payment method for month to month and one year contract customers
- Credit card payment method for two years contract customers.

CORRELATION ANALYSIS:

- TotalCharges and Tenure has a good correlation of 0.83
- ChurnRisk has negative correlation with Tenure and TotalCharges

DATA TRANSFORMATION:

• Min-Max Normalization and Log transformation is applied but it does not bring any significant changes in the accuracy of prediction models.

ONE HOT ENCODING:

 Converting entries of categorical attributes into numerical values in order to feed data to model.

DATA BALANCING:

 Random Over Sampling is done to balance data so that model does not become biased towards one class.

```
Original Dataset shapeCounter({0: 4415, 5: 827, 1: 685, 6: 484, 4: 356, 2: 202, 3: 63})
Resampled datset shapeCounter({0: 4415, 5: 4415, 2: 4415, 4: 4415, 1: 4415, 6: 4415, 3: 4415})
```

MODELLING:

• Feature Selection:

Target Feature: ChurnRisk

Irrelevant Feature: Customer Id

K-Nearest Neighbours (KNN):

	precision					score	support
	9	0.9	96	0.5	54	0.69	1416
1	l	0.9	97	1.6	90	0.98	1324
2	2	0.9	99	1.6	90	1.00	1351
3	3	1.6	90	1.6	90	1.00	1324
4	1	0.9	90	1.6	90	0.95	1259
	5	0.8	36	0.9	98	0.92	1285
6	5	0.8	34	0.9	99	0.91	1313
accuracy	/					0.93	9272
macro av	5	0.9	93	0.9	93	0.92	9272
weighted av	3	0.9	93	0.9	93	0.92	9272
Confusion Ma	atrix	:					
[[766 45	5	0	133	210	257]		
[2 1322	0	0	0	0	øj		
	1351	0	0	0	01		
[0 0	0	1324	0	0	øj		
[0 0	0	0	1259	0	0]		
[20 0	2	0	0	1263	0]		
[7 0	0	0	0	0	1306]]		
Accuracy Sco	ore:	92.65	55306	298533	322		

Decision Tree Classifier:

		pre	ecisio	on	reca]	ll f1-	score	support
	(9	0.9	99	0.7	76	0.86	1416
	1	1	1.6	90	1.6	90	1.00	1324
	2	2	1.6	90	1.6	90	1.00	1351
	3	3	1.6	90	1.6	90	1.00	1324
	4	4	0.9	94	1.6	90	0.97	1259
		5	0.9	91	0.9	99	0.95	1285
	6	5	0.9	90	1.6	90	0.95	1313
acc	uracy	/					0.96	9272
macr	o av		0.9	96	0.9	96	0.96	9272
weighte	d av	5	0.9	96	0.9	96	0.96	9272
_								
Confusi	on Ma	atrix	:					
[[1071	0	0	0	78	129	138]		
[0	1324	0	0	0	0	0]		
[0	0	1351	0	0	0	0]		
[0	0	0	1324	0	0	0]		
[0 [0 [12	0	0	0	1259	0	0]		
[12	0	0	0	0	1273	0]		
[4	0	0	0	0	0	1309]]		
Accurac	y Sco	ore:	96.10	6557	377049	919		

Random forest Classifier:

	pre	cisio	on	reca]	ll f1-	score	support
0		0.9	99	0.7	77	0.87	1416
1		1.6	90	1.6	90	1.00	1324
2		1.6	90	1.0	90	1.00	1351
3		1.6	90	1.0	90	1.00	1324
4		0.9	94	1.0	90	0.97	1259
5		0.9	90	1.6	90	0.95	1285
6		0.9	93	1.6	90	0.96	1313
accuracy	,					0.96	9272
macro avg		0.9	97	0.9	97	0.96	9272
weighted avg		0.9	97	0.9	96	0.96	9272
Confusion Ma	trix:						
[[1095 0	1	0	80	141	99]		
[0 1324	0	0	0	0	0]		
[0 0 [0 0 [0 0 [2 0	1351	0	0	0	0]		
[0 0	0	1324	0	0	0]		
[0 0	0	0	1259	0	0]		
[2 0	0	0	0	1283	0]		
[4 0	0	0	0	0	1309]]		
Accuracy Sco	re:	96.47	732528	304141	L5		

Logistic Regression:

	precision				score	support
0	0.5	52	0.2	4	0.33	1416
1	0.9	96	0.9	9	0.98	1324
2	0.6	8	0.9	9	0.81	1351
3	0.4	19	0.9	4	0.64	1324
4	0.7	77	0.8	4	0.81	1259
5	0.6	90	0.0	0	0.00	1285
6	0.6	50	0.6	2	0.61	1313
accuracy					0.66	9272
macro avg	0.5	0.58		0.66		9272
weighted avg	0.5	0.58		6	0.60	9272
Confusion Mat				_		
[[345 43	84 193		1	474]		
[0 1310	0 0	0	0	14]		
L 5	L334 17	0	0	0]		
	78 1246	0	0	0]		
L		1061	0	10]		
-	63 1074	38	0	60]		
[217 5	259 12	0	0	820]]		
Accuracy Scor	re: 65 96	520363	222126			

Support Vector Machine:

	pre			ecision		recall f1-s		score	support
	0			0.44		0.01		0.01	1416
		1	l	0.8	7	1.0	0	0.93	1324
		2	2	0.6	9	0.9	5	0.80	1351
		3	3	0.6	6	0.7	3	0.70	1324
		4	1	0.5	0	0.7	6	0.61	1259
		-	5	0.5	7	0.6	4	0.60	1285
		6	5	0.4	.3	0.3	6	0.39	1313
	aco	curacy	/					0.63	9272
		o avg	_	0.60		0.63		0.58	9272
wei	ghte	ed av	3	0.60		0.63		0.57	9272
Con	fusi	ion Ma	atrix	:					
]]	8	105	88	68	616	253	278]		
]	2	1318	0	0	0	0	4		
	0	0	1280	71	0	0	0]		
[[[0	0	82	970	0	272	0]		
[0	0	54	0	955	0	250]		
[0	0	26	265	82	826	86]		
[8	93	313	90	242	100	467]]		
Acc	urac	y Sco	ore:	62.81	27696	528990	51		

Naive Bayes:

			precision			recal	l f1-	score	support
		(9	0.78		0.19		0.30	1416
		1	l	0.7	75	1.0	0	0.85	1324
		2	2	0.6	51	0.9	0	0.73	1351
		3	3	0.8	39	0.9	9	0.93	1324
		4	1	0.6	52	0.9	6	0.75	1259
		-	5	0.5	59	0.2	8	0.38	1285
		6	5	0.5	58	0.5	0	0.53	1313
	aco	curacy	/					0.68	9272
		o av	_	0.69		0.69		0.64	9272
wei	ghte	ed av	5	0.69		0.68		0.64	9272
Con	fusi	ion Ma	atrix	:					
]]	265	238	75	6	399	113	320]		
[0	1318	0	0	0	0	6]		
[5	0	1216	52	71	0	7]		
[[0	0	0	1310	14	0	0]		
]	0	0	51	0	1208	0	0]		
[3	137	382	112	148	363	140]		
[66	76	262	0	115	144	650]]		
Accuracy Score:			68.27	68.27006039689387					

• Both the Decision Tree as well as Random Forest classifier is giving approximately same accuracy score but due to Random Forest being an ensemble technique and a more computationally expensive algorithm, we are going with **Decision Tree (96.11%)** to finally train our model.

MODEL DEPLOYMENT:

- Saving the model using Pickle
- Deploying the model using Flask.

Power BI Dashboard:

CONCLUSION:

• This analysis can be helpful in increasing revenue of the company by attracting new customers (by seeing trends) and avoiding contract terminations (ChurnRisk).

THANK YOU