CS 341 Automata Theory Elaine Rich Homework 14

Due: Tuesday, April 23

This assignment covers Sections 21.5 - 21.7

Note: We have skipped Rice's Theorem. So problems 4 - 5 are here just in case you're interested in learning about it. They are optional.

- 1) For each of the following languages L, state whether it is in D, SD/D or not SD. Prove your answer. Do not use Rice's Theorem. If you claim that L is not in SD, first prove that it's not in D (for practice), then prove that it's not in SD. Assume that any input of the form $\langle M \rangle$ is a description of a Turing machine.
 - a) $\{\langle M \rangle : \text{TM } M \text{ accepts exactly two strings and they are of different lengths} \}$.

Answer. Not \in SD.

Proof.

To prove that this language is not \in D:

Create a reduction R from $\langle M, w \rangle$ to $\langle M \rangle$ as follows.

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does:
 - 1.1 Erase the tape.
 - 1.2 Write w on the tape.
 - 1.3 Run M on w.
 - 1.4 If x is a or an accept.
- 2. R returns $M_{\#}$

Assume there is a machine $Oracle(\langle M \rangle)$ that decides this language. Then for any language-string pair $\langle M, w \rangle$ consider $C = oracle(R(\langle M, w \rangle))$.

If $\langle M, w \rangle \in \mathcal{H}$: $M_{\#}$ accepts exactly two strings. Oracle accepts. If $\langle M, w \rangle \notin \mathcal{H}$: $M_{\#}$ accepts no strings. Oracle rejects.

Therefore C decides H so Oracle must not exist.

To prove that this language is not \in SD:

Create a reduction R from $\langle M, w \rangle$ to $\langle M \rangle$ as follows.

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does:
 - 1.1 If x is a or an accept.
 - 1.2 Erase the tape.
 - 1.3 Write w on the tape.
 - 1.4 Run M on w.
 - 1.5 Accept.
- 2. R returns $M_{\#}$

Assume there is a machine $Oracle(\langle M \rangle)$ that decides this language. Then for any language-string pair $\langle M, w \rangle$ consider $C = oracle(R(\langle M, w \rangle))$.

If $\langle M, w \rangle \in \neg$ H: $M_{\#}$ Accepts exactly two strings and loops on all others. Oracle accepts.

If $\langle M, w \rangle \not\in \neg$ H: $M_{\#}$ Accepts all strings. Oracle rejects.

Therefore C semi-decides $\neg H$ so Oracle must not exist.

b) $\{\langle M, x, y \rangle : M \text{ accepts } xy \}.$

Answer. In SD but not in D.

Proof.

Let R be a reduction from $\langle M, w \rangle$ to $\langle M, x, y \rangle$ as follows:

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does:
 - 1.1 Erase the tape.
 - 1.2 Write w on the tape.
 - 1.3 Run M on w.
 - 1.4 Accept.
- 2. Return $\langle M_{\#}, \epsilon, \epsilon \rangle$

Assume by way of contradiction that there exists some machine $Oracle(\langle M, x, y \rangle)$ that decides whether M accepts xy. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \mathbb{H}$: $M_{\#}$ accepts all strings, so it accepts xy. Oracle accepts.

If $\langle M, w \rangle \notin H$: $M_{\#}$ accepts no strings, so it does not accept xy. Oracle rejects.

So C decides H. Therefore Oracle does not exist.

c) $\{\langle M \rangle : \text{Turing machine } M \text{ accepts all even length strings} \}.$

Answer. Not \in SD.

Proof.

This is the proof that this language is not in D:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does:
 - 1.1 Erase the tape.
 - 1.2 Write w on the tape.
 - 1.3 Run M on w.
 - 1.4 Accept.
- 2. Return $\langle M_{\#} \rangle$

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that decides whether M accepts all even length strings. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \mathbb{H}$: $M_{\#}$ accepts all strings, so it accepts all even length strings. Oracle accepts.

If $\langle M, w \rangle \notin \mathbb{H}$: $M_{\#}$ accepts no strings, so it does not accept all even length strings. Oracle rejects.

So C decides H. Therefore Oracle does not exist.

Now the proof that this language is not in SD:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}(x)$ that does:
 - 1.1 Copy the input x onto a second tape.
 - 1.2 Erase the tape.
 - 1.3 Write w on the tape.
 - 1.4 Run M on w for |x| steps.
 - 1.5 If M did not halt naturally, accept.
- 2. Return $\langle M_{\#} \rangle$.

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that decides whether M accepts all even length strings. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \neg$ H: $M_{\#}$ accepts all strings, so it accepts all even length strings. Oracle accepts. If $\langle M, w \rangle \not\in \neg$ H: $M_{\#}$ does not accept on even length strings of length less than |x|. Oracle rejects.

So C decides \neg H. Therefore Oracle does not exist.

d) $\{\langle M \rangle : M \text{ rejects exactly three strings that start with a} \}$

Answer. Not \in SD.

Proof.

This is the proof that this language is not in D:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}$ that does:
 - 1.1 Copy x to a second tape.
 - 1.2 Erase the tape.
 - 1.3 Write w on the tape.
 - 1.4 Run M on w.
 - 1.5 If x is a or aa oraaa, reject.
 - 1.6 Accept.
- 2. Return $\langle M_{\#} \rangle$

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that decides this language. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \mathbb{H}$: $M_{\#}$ rejects exactly three strings that start with a Oracle accepts.

If $\langle M, w \rangle \notin H$: $M_{\#}$ rejects no strings. Oracle rejects.

So C decides H. Therefore Oracle does not exist.

Now the proof that this language is not in SD:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}(x)$ that does:
 - 1.1 If x is a or aa oraaa, reject.
 - 1.2 Erase the tape.
 - 1.3 Write w on the tape.
 - 1.4 Run M on w.
 - 1.5 Reject.
- 2. Return $\langle M_{\#} \rangle$.

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that semi-decides the language. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \neg$ H: $M_{\#}$ rejects exactly three strings that start with a. Oracle accepts.

If $\langle M, w \rangle \notin \neg$ H: $M_{\#}$ rejects all strings. Oracle rejects.

So C decides \neg H. Therefore Oracle does not exist.

e) $\{\langle M_a, M_b \rangle : L(M_a) - L(M_b) = \emptyset \}.$

Answer. Not \in SD.

Proof.

This is the proof that this language is not in D:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create descriptions $\langle M_1 \rangle$ and $\langle M_1 \rangle$ of machines M_1 and M_2 where M_1 always accepts and M_2 does:
 - 1.1 Erase the tape.
 - 1.3 Write w on the tape.
 - 1.4 Run M on w.
 - 1.5 Accept.
- 2. Return $\langle M_1, M_2 \rangle$

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that decides this language. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in H$: M_2 accepts everyhing and $L(M_1) - L(M_2) = \emptyset$. Oracle accepts. If $\langle M, w \rangle \notin H$: M_2 accepts nothing and $L(M_1) - L(M_2) = \Sigma^*$. Oracle rejects.

So C decides H. Therefore Oracle does not exist.

Now the proof that this language is not in SD:

Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:

- 1. Create descriptions $\langle M_1 \rangle$ and $\langle M_1 \rangle$ of machines M_1 and M_2 where M_2 always rejects and M_1 does:
 - 1.1 Erase the tape.
 - 1.2 Write w on the tape.
 - 1.3 Run M on w.
 - 1.4 Accept.
- 2. Return $\langle M_1, M_2 \rangle$

Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that semi-decides the language. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:

If $\langle M, w \rangle \in \neg$ H: M_1 accepts nothing and $L(M_1) - L(M_2) = \emptyset$. Oracle accepts. If $\langle M, w \rangle \not\in \neg$ H: M_2 accepts everything and $L(M_1) - L(M_2) = \Sigma^*$. Oracle rejects.

So C decides \neg H. Therefore Oracle does not exist.

2)	Prove that TM _{REG} is not in SD.
	<i>Proof.</i> Let R be a reduction from $\langle M, w \rangle$ to $\langle M \rangle$ as follows:
	1. Create a description $\langle M_{\#} \rangle$ of a machine $M_{\#}(x)$ that does:
	1.1 Write x to the second tape.
	1.2 Erase the tape.
	1.3 Write w on the tape.
	1.4 Run M on w .
	1.5 If $x \in a^n b^n$ accept.
	2. Return $\langle M_{\#} \rangle$.
	Assume by way of contradiction that there exists some machine $Oracle(\langle M \rangle)$ that semi-decides the language. Then for any machine description string pair $\langle M, w \rangle$ let $C = oracle(R(\langle M, w \rangle))$. Now there are two cases:
	If $\langle M, w \rangle \in \neg$ H: $L(M_{\#}) = \emptyset$ which is regular. Oracle accepts. If $\langle M, w \rangle \notin \neg$ H: $L(M_{\#}) = a^n b^n$ which is regular. Oracle rejects.
	So C decides \neg H. Therefore $Oracle$ does not exist. \Box
3)	For any nonempty alphabet Σ , let L be any decidable language other than \emptyset or Σ^* . Prove that $L \leq_M \neg L$.
	Proof.
4)	* Do the other half of the proof of Rice's Theorem, i.e., show that the theorem holds if $P(\emptyset) = True$. (Hint: use a reduction that is not a mapping reduction.)
	Proof.
5)	* Use Rice's Theorem to prove that $\{\langle M \rangle:$ Turing machine M accepts at least two odd length strings $\}$ is not in D.
	Proof.