MATH1332: Minor Thesis Presentation

Identifying Optimal Set of Pairwise Interaction Terms by SP-FSR Algorithm and Empirical Comparison with Other Methods

Yong Kai Wong

30 May 2018

Background

- A motivating example: do gene interactions help predict cancer type?
- How to determine interactions in high dimensions optimally?
- Focus on pairwise interaction terms (no quadratic terms)
- Given *p* features with 2-way pairwise interaction terms, the number of possible features is

$$p + \binom{p}{2} = \frac{p(p+1)}{2}$$

 SP-FSR algorithm [Aksakalli and Malekipirbazari, 2016] shows excellent performance in feature selection. Can we utilise it to identify interaction terms?

Organisation of the presentation

- Basic terminology
- Earlier and current methods to identify pairwise interaction terms
- SP-FSR algorithm for interaction identification
- Experimental setup and results
- Oiscussion
- Conclusion

Notations and terminology

- Y: response feature
- X_j : explanatory feature j for j = 1, 2, ...p
- Model formulation:

$$g(Y) = \beta_0 + \sum_{j=1}^{p} \beta_j X_j + \sum_{i < j} \beta_{i:j} X_j X_i$$

• A precise definition [Lim and Hastie, 2018, p.1]:

"When a function $f(x_1, x_2)$ cannot be expressed as $h_1(x_1) + h_2(x_2)$ for some functions h_1 and h_2 , we say that there is an interaction in f between x_1 and x_2 ."

Introduction of "hierarchy"

Terminology: hierarchy

Lim and Hastie [2018] define:

Hierarchy	Description						
Strong	Interactions are only among pairs of						
	nonzero main effects						
Weak	Each interaction has only one of its main						
	effects present						
Anti-hierarchical	Interactions are only among pairs of main						
	effects that are not present						
Pure interaction	No main effects present; only interactions						

Terminology: an example of hierarchy

Consider three explanatory features: $\mathbf{X} = \{X_1, X_2, X_3\}$

- Strong hierarchy: $\{X_1, X_2, X_1X_2\}$
- ② Weak hierarchy: $\{X_1, X_1X_2, X_1X_3\}$
- **3** Anti-hierarchical: $\{X_2, X_1X_3\}$
- **9** Pure interaction: $\{X_2X_3, X_1X_3, X_1X_2\}$

In practice, how do we know? How can we detect?

Main methods to identify pairwise interaction terms

- Statistical hypothesis test [Cox, 1984]
- Regularisation, e.g. LASSO
- Wrapper Feature Selection [Kohavi and John, 1997]

Statistical hypothesis test: an example

Considers two models:

1
$$g(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

Run hypothesis on test on $\beta_{1:2} = 0$.

Regularisation

- Let $I(y_i; \beta)$ be the **negative** log-likelihood contribution
- Elastic-net [Friedman et al., 2010]

$$\arg\min_{\beta} \frac{1}{n} \sum_{i=i}^{n} I(y_i; \beta) + \lambda [(1-\alpha) \parallel \beta \parallel_2^2 / 2 + \alpha \parallel \beta \parallel_1]$$

• glinternet [Lim and Hastie, 2018]: group-based LASSO ($\alpha=1$) by imposing additional constraints on $\beta_{k:j}$ and β_{j}

Wrapper feature selection

Extending feature selection by including interaction terms

- SFFS: Sequential (Floating) Forward Selection [Pudil et al., 1994]
- SFBS: Sequential (Floating) Backward Selection [1994]
- GA: Genetic Algorithm [Siedlecki and Sklansky, 2011]
- SP-FSR [2016]

SP-FSR algorithm

- Introduced by Aksakalli and Malekipirbazari [2016]
- Based on Simultaneous Perturbation Stochastic Approximation [Spall, 1992]
- Refined by Yenice et al. [2018]
- Pseudo gradient descent method on the loss function
- spFSR package is now available in R [Aksakalli et al., 2018]

SP-FSR algorithm to identify interactions

- Assume a strong hierarchy
- Simplified version of **two-step SP-FSR** algorithm:
- Identify the optimal set of k main effects using SP-FSR
- ② Search k', number of interactions from k main effects with SP-FSR
 - ullet k and k' can be determined via grid search or automatically

Experimental setup

- Datasets with binary Y: Ionosphere and Sonar
- Source: Lichman [2013]
- 80-20 training/test split
- Model: logistic regression
- Evaluation: AUC, AIC, and BIC
- Assume strong hierarchy
- Methods: GA, SFFS, SP-FSR, glinternet
- Run on 6 to 12 random seeds

Experimental results: Sonar dataset

Summary statistics

- n = 208, p = 60
- Baseline test AUC: 0.6059524
- Baseline train AIC and BIC: 122.0000 and 312.1976
- SFFS tends to run into errors
- Test AUC, Train AUC, AIC, and BIC are mean values

Method	Count	Test AUC	Train AUC	k	k'	AIC	BIC
GA	12	0.6117063	1.0000000	22.00000	110.416667	243.3333	622.6892
SFFS	6	0.6257937	0.9647436	11.66667	7.166667	118.3868	180.2271
SP-FSR	12	0.6810516	1.0000000	16.41667	65.500000	133.0000	340.3466
glinternet	12	0.7367063	1.0000000	45.75000	82.833333	277.5137	678.4358

Experimental results: Ionosphere dataset

Summary statistics

- n = 351, p = 33
- Baseline test AUC: 0.8294574
- Baseline train AIC and BIC: 101.0075 and 224.7115
- SFFS tends to run into errors
- Test AUC, Train AUC, AIC, and BIC are mean values

Method	Count	Test AUC	Train AUC	k	k'	AIC	BIC
GA	12	0.7678366	0.9813844	15.83333	59.416667	517.8325	795.2571
SFFS	6	0.8207005	0.9580975	8.50000	5.666667	155.8369	211.0186
SP-FSR	12	0.8432386	0.9797910	12.08333	28.416667	138.3111	245.3394
glinternet	12	0.9109963	0.9913929	27.16667	37.833333	206.9426	443.4357

AUC performance on lonosphere dataset 0.90 -0.85 -Test AUC 0.75 -0.70 -

SP-FSR

alinternet

Method

SFFS

GΑ

Conclusion and Future works

Conclusion

 In identifying interactions, SP-FSR trails behinds glinterent in terms of accuracy measures, but it selects a smaller model on average based on information criteria.

Future works

- Extend experiment to continuous and multinomial Y
- Include assessment of underlying assumptions?
- Include quadratic and higher-order terms
- Include overidentification mechanism

Acknowledgement

- Dr Vural Aksakalli (VA) as my supervisor and mentor
- VA, Dr Babak Abbasi, and Zeren D. Yenice for spFSR package
- Zeren D. Yenice, Niranjan Adhikari, Vural Aksakalli, Dr Alev Taskin Gumus, and Babak Abbasi for their previous works on SP-FSR algorithm

References I

- Vural Aksakalli and Milad Malekipirbazari. Feature selection via binary simultaneous perturbation stochastic approximation. Pattern Recognition Letters, 75(Supplement C):41 47, 2016. ISSN 0167-8655. doi: $\label{eq:https:/doi.org/10.1016/j.patrec.2016.03.002} \text{URL} \\ \text{http://www.sciencedirect.com/science/article/pii/S0167865516000702}.$
- Vural Aksakalli, Babak Abbasi, and Yong Kai Wong. spFSR: Feature Selection and Ranking by Simultaneous Perturbation Stochastic Approximation, 2018. https://www.featureranking.com/, https://arxiv.org/abs/1804.05589.
- D. R. Cox. Interaction. *International Statistical Review / Revue Internationale de Statistique*, 52(1):1–24, 1984. URL http://www.jstor.org/stable/1403235.

References II

- Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear models via coordinate descent. *Journal of Statistical Software, Articles*, 33(1):1–22, 2010. ISSN 1548-7660. doi: $10.18637/\mathrm{jss.v033.i01}$. URL https://www.jstatsoft.org/v033/i01.
- R. Kohavi and G.H. John. Wrappers for feature subset selection. *Artificial Intelligence*, 1(2):273–324, 1997.
- M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.
- Michael Lim and Trevor Hastie. *glinternet: Learning Interactions via Hierarchical Group-Lasso Regularization*, 2018. URL https://CRAN.R-project.org/package=glinternet. R package version 1.0.7.

References III

- P. Pudil, F. J. Ferri, J. Novovicova, and J. Kittler. Floating search methods for feature selection with nonmonotonic criterion functions. In Proceedings of the 12th IAPR International Conference on Pattern Recognition, Vol. 3 - Conference C: Signal Processing (Cat. No.94CH3440-5), volume 2, pages 279–283 vol.2, Oct 1994. doi: 10.1109/ICPR.1994.576920.
- W. Siedlecki and J. Sklansky. A Note on Genetic Algorithm for Large-Scale Feature Selection, pages 88–107. 2011. doi: 10.1142/9789814343138_0005. URL https: //www.worldscientific.com/doi/abs/10.1142/9789814343138_0005.
- James C. Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. *IEEE*, 37(3):322–341, 3 1992.
- Zeren D. Yenice, Niranjan Adhikari, Yong Kai Wong, Vural Aksakalli, Alev Taskin Gumus, and Babak Abbasi. Spsa-fsr: Simultaneous perturbation stochastic approximation in feature selection and ranking. 2018. URL https://arxiv.org/abs/1804.05589.