RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-based Recommendation

Pengjie Ren^{1,2}, Zhumin Chen¹, Jing Li¹, Zhaochun Ren³, Jun Ma¹, Maarten de Rijke²

¹ Shandong University, Jinan, China

² University of Amsterdam, Amsterdam, The Netherlands

³ Data Science Lab, JD.com, Beijing, China

Motivation

Table 1: Repeat ratio (%) on three benchmark datasets.

Datasets	Train	Validation	Test
YOOCHOOSE 1/4	25.52	25.51	26.02
DIGINETICA	19.94	20.06	20.49
LASTFM	20.72	20.42	20.95

- *Repeat consumption*: the patterns by which a user consumes the same item repeatedly over time, in a wide variety of domains, ranging from check-ins at the same business location to re-watches of the same video and the recency of consumption is the strongest predictor of repeat consumption.
- A repeat-explore mechanism for session-based recommendation to automatically learn the switch probabilities between repeat and explore modes.

Overview of RepeatNet

Figure 1: Overview of RepeatNet.

Framework

Given an action (e.g., clicking, shopping) session $I_S = \{i_1, i_2, ..., i_\tau, ..., i_t\}$, where i_τ refers to an item, session-based recommendation tries to predict what the next event would be,

$$P(i_{t+1}|I_S) = P(r|I_S)P(i_{t+1}|r,I_S) + P(e|I_S)P(i_{t+1}|e,I_S)$$

where r and e denote repeat mode and explore mode, respectively. Here, $P(r|I_S)$ and $P(e|I_S)$ represent the probabilities of executing in *repeat mode* and *explore mode*, respectively. $P(i_{t+1}|r,I_S)$ and $P(i_{t+1}|e,I_S)$ refer to the probabilities of recommending i_{t+1} in *repeat mode* and in *explore mode*, respectively, given I_S .

• Session encoder (GRU)

$$z_{\tau} = \sigma(W_{z}[emb(i_{\tau}), h_{\tau-1}])$$

$$r_{\tau} = \sigma(W_{r}[emb(i_{\tau}), h_{\tau-1}])$$

$$\widetilde{h_{\tau}} = \tanh(W_{h}[emb(i_{\tau}), r_{\tau} \odot h_{\tau-1}])$$

$$h_{\tau} = (1 - z_{\tau}) \odot h_{\tau-1} + z_{\tau} \odot \widetilde{h_{\tau}},$$

After the session encoder, each session I_S is encoded into $H = \{h_1, h_2, ..., h_{\tau}, ..., h_t\}$.

• Repeat-explore mechanism (soft-attention)

$$[P(r|I_S), P(e|I_S)] = \operatorname{softmax}(W_{re}^c c_{I_S}^{re})$$

$$c_{I_S}^{re} = \sum_{\tau=1}^{t} \alpha_{\tau}^{re} h_{\tau}, \qquad \alpha_{\tau}^{re} = \frac{\exp(e_{\tau}^{re})}{\sum_{\tau=1}^{t} \exp(e_{\tau}^{re})}, \qquad e_{\tau}^{re} = v_{re}^{T} \tanh(W_{re} h_{t} + U_{re} h_{\tau})$$

where h_t is the last hidden state.

Repeat recommendation decoder

$$e_{\tau}^{r} = v_{r}^{\top} \tanh(W_{r}h_{t} + U_{r}h_{\tau})$$

$$P(i \mid r, I_{S}) = \begin{cases} \frac{\sum_{i} \exp(e_{\tau}^{r})}{\sum_{\tau=1}^{t} \exp(e_{\tau}^{r})} & \text{if } i \in I_{S} \\ 0 & \text{if } i \in I - I_{S} \end{cases}$$

Explore recommendation decoder

$$f_i = \begin{cases} -\infty & \text{if } i \in I_S \\ W_e^c c_{I_S} & \text{if } i \in I - I_S \end{cases}$$
$$P(i \mid e, I_S) = \frac{\exp(f_i)}{\sum_{\tau=1}^t \exp(f_\tau)},$$

$$c_{I_S} = [h_t, c_{I_S}^e], \qquad c_{I_S}^e = \sum_{\tau=1}^t \alpha_{\tau}^e h_{\tau}, \qquad \alpha_{\tau}^e = \frac{\exp(e_{\tau}^e)}{\sum_{\tau=1}^t \exp(e_{\tau}^e)}, \qquad e_{\tau}^e = v_e^T \tanh(W_e h_t + U_e h_{\tau})$$

where c_{I_S} is a hybrid representation of session I_S , which combines with the last hidden state and attentive state.

Repeat recommendation decoder

$$e_{\tau}^{r} = v_{r}^{\top} \tanh(W_{r}h_{t} + U_{r}h_{\tau})$$

$$P(i \mid r, I_{S}) = \begin{cases} \frac{\sum_{i} \exp(e_{\tau}^{r})}{\sum_{\tau=1}^{t} \exp(e_{\tau}^{r})} & \text{if } i \in I_{S} \\ 0 & \text{if } i \in I - I_{S} \end{cases}$$

Explore recommendation decoder

$$f_i = \begin{cases} -\infty & \text{if } i \in I_S \\ W_e^c c_{I_S} & \text{if } i \in I - I_S \end{cases}$$
$$P(i \mid e, I_S) = \frac{\exp(f_i)}{\sum_{\tau=1}^t \exp(f_\tau)},$$

$$c_{I_S} = [h_t, c_{I_S}^e], \qquad c_{I_S}^e = \sum_{\tau=1}^t \alpha_{\tau}^e h_{\tau}, \qquad \alpha_{\tau}^e = \frac{\exp(e_{\tau}^e)}{\sum_{\tau=1}^t \exp(e_{\tau}^e)}, \qquad e_{\tau}^e = v_e^T \tanh(W_e h_t + U_e h_{\tau})$$

where c_{I_S} is a hybrid representation of session I_S , which combines with the last hidden state and attentive state.

Objective Function

Prediction loss function

$$L_{rec}(\theta) = -\frac{1}{|\mathbb{I}_{\mathbb{S}}|} \sum_{I_S \in \mathbb{I}_{\mathbb{S}}} \sum_{\tau=1}^{|I_S|} \log P(i_\tau \mid I_S)$$

Prediction loss function

$$L_{mode}(\theta) = -\frac{1}{|\mathbb{I}_{\mathbb{S}}|} \sum_{I_{S} \in \mathbb{I}_{\mathbb{S}}} \sum_{\tau=1}^{|I_{S}|} \mathbb{I}(i_{\tau} \in I_{S}) log P(r|I_{S}) + (1 - \mathbb{I}(i_{\tau} \in I_{S})) P(e|I_{S})$$

where $\mathbb{I}(i_{\tau} \in I_S)$ is an indicator function that equals 1 if $i_{\tau} \in I_S$ and 0 otherwise.

Joint training

$$L(\theta) = L_{rec}(\theta) + L_{mode}(\theta)$$

Experiments

Table 3: Experimental results (%) on the three datasets.

Methods	YOOCHOOSE			DIGINETICA			LASTFM					
	MRR Re		Rec	ecall M		RR Rec		all	MRR		Recall	
	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20	@10	@20
POP	0.26	0.30	0.81	1.33	0.18	0.20	0.53	0.89	1.09	1.26	2.90	5.26
S-POP	17.70	17.79	25.96	27.11	13.64	13.68	20.56	21.06	8.36	8.71	18.08	22.59
Item-KNN	20.89	21.72	41.56	52.35	10.77	11.57	25.04	35.75	4.48	4.85	9.77	14.84
BPR-MF	1.90	1.97	3.07	4.05	1.86	1.98	3.60	5.24	4.88	5.19	9.87	14.05
FPMC	16.59	17.50	38.87	51.86	6.30	6.95	17.07	26.53	4.58	4.99	11.67	17.68
PDP	18.44	19.15	40.03	52.98	6.75	7.24	19.57	28.77	4.86	5.05	12.11	18.09
GRU4REC	21.64	22.60	46.67	59.56	7.59	8.33	19.09	29.45	4.92	5.39	11.56	17.90
Improved-GRU4REC	28.36	29.15	57.91	69.20	13.63	14.69	33.48	46.16	9.60	10.15	20.98	29.04
GRU4REC-TOPK	29.76	30.69	58.15	70.30	13.14	14.16	31.54	45.23	7.44	7.95	15.73	22.61
NARM	28.52	29.23	58.70	69.73	15.25	16.17	33.62	49.70	10.31	10.85	22.04	29.94
RepeatNet (no repeat)	30.02	30.76	59.62	70.21	12.71	13.52	30.96	42.56	9.92	10.47	21.81	29.96
RepeatNet	30.50^{\dagger}	31.03^{\dagger}	59.76 [†]	70.71	16.90^{\dagger}	17.66 [†]	36.86^{\dagger}	47.79	11.46^{\dagger}	12.03^{\dagger}	24.18^{\dagger}	32.38^{\dagger}

Bold face indicates the best result in terms of the corresponding metric. Significant improvements over the best baseline results are marked with † (t-test, p < .05). The scores reported in (Li et al. 2017b) on the DIGINETICA dataset differ because they did not sort the session items according to the "timeframe" field, which ignores the sequential information. We run the code released by (Hidasi et al. 2016a; Tan, Xu, and Liu 2016; Hidasi and Karatzoglou 2017; Li et al. 2017b) to obtain the results of GRU4REC, Improved-GRU4REC, GRU4REC-TOPK, and NARM.

Experiments

Table 4: MRR@20 (%) of RepeatNet (with and without repeat mechanism) on repeat and non-repeat sessions.

RepeatN	Vet	With repeat	No repeat	
YOOCHOOSE	Rep Non-Rep	58.78 21.60	60.18 20.42	
DIGINTICA	GINTICA Rep Non-Rep		29.20 9.48	
LASTFM	Rep Non-Rep	41.63 4.18	32.68 5.06	

Rep: repeat sessions; Non-Rep: non-repeat sessions.

Table 5: Recall@20 (%) of RepeatNet (with and without repeat mechanism) on repeat and non-repeat sessions.

RepeatN	Net	With repeat	No repeat	
YOOCHOOSE	Rep Non-Rep	97.41 61.32	93.70 61.95	
DIGINTICA Rep Non-Rep		99.09 34.58	65.18 36.73	
LASTFM	Rep Non-Rep	91.22 16.79	67.06 20.10	

Table 8: MRR@20 and Recall@20 (%) of RepeatNet with and without joint learning.

Loss	YOOC	HOOSE	LASTFM		
2000	MRR	Recall	MRR	Recall	
L_{rec}	31.03	70.71		32.38	
$L_{rec} + L_{mode}$	28.99	69.64	11.58	31.94	