Fundamentals of Calculus

Mathematics for Al

August 21, 2022

Our Goal

- composition of functions;
- behavior of a function from its derivative;
- Iinear and quadratic approximations;
- 4 functions of more than one variable.

Real Function of a Real Variable

Function

A function f is a rule that assigns to each element $x \in D_f$ exactly one value, f(x).

Polynomials

Polynomial

A function P is a polynomial if

$$P(x) = a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0}$$

where n is a nonnegative integer and the coefficients a_n, \ldots, a_0 are constants. The domain of any polynomial is the real line.

Approximation of a Function

Question

How to approximate a function?

- \bullet P is (a, f(a)) and Q is (x, f(x));
- 2 slope of secant line through P and Q is $\frac{\Delta f}{\Delta x} = \frac{f(x) f(a)}{x a}$;
- 3 consider the $\frac{f(x)-f(a)}{x-a}$ as $x \to a$.b

Limit

$$f(x) = \frac{\sin x}{x}$$

X	$\frac{\sin x}{x}$	X	sin x
1	0.841470985	-1	0.841470985
0.5	0.958851077	-0.5	0.958851077
0.1	0.998334166	-0.1	0.998334166
0.05	0.999583385	-0.05	0.999583385
0.01	0.999983333	-0.01	0.999983333
0.005	0.999995833	-0.005	0.999995833
0.001	0.999999833	-0.001	0.999999833
$x \rightarrow 0^+$	$f(x) \rightarrow 1$	$x \rightarrow 0^-$	$f(x) \rightarrow 1$

Limit

Figure: Graph of $f(x) = \frac{\sin x}{x}$

Limit

Limit

Let f(x) be defined for all x near c but not necessarily at c. The limit of f(x) as x approaches c is L,

$$\lim_{x\to c} f(x) = L,$$

if |f(x) - L| becomes arbitrarily small when x is sufficiently close to c but not equal to c.

Given f(x) = |x|, what is $\lim_{x\to 0} |x|$?

One-Sided Limits

Derivative

Question

How to approximate a function?

- \bullet P is (a, f(a)) and Q is (x, f(x));
- 2 slope of secant line through P and Q is $\frac{\Delta f}{\Delta x} = \frac{f(x) f(a)}{x a}$;
- 3 consider the limit $f'(a) = \lim_{x \to a} \frac{f(x) f(a)}{x a}$.

Derivative

Derivative

If the limit

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

exists,

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

and f is **differentiable** at x = a.

Tangent Line

Tangent Line

Assume f is differentiable at x = a. The **tangent line** to the graph of f at point P = (a, f(a)) is the line through P and slope f'(a):

$$y - f(a) = f'(a)(x - a).$$

What is the equation of the tangent line to the graph of $f(x) = x^2$ at x = 0?

Linear Approximation

Linear Approximation

Assume f'(a) exists. The linear approximation of f at (a, f(a)) is

$$\ell(x) = f(a) + f'(a)(x - a).$$

What is the linear approximation of $f(x) = x^2$ at x = 5?

Quadratic Approximation

Quadratic Approximation

Assume f'(a) and f''(a) exist. The quadratic approximation of f at (a, f(a)) is

$$q(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^{2}.$$

Taylor Polynomials

Taylor Polynomials

Assume the first n derivatives of f exist at x = a. The nth order polynomial approximation of f at point (a, f(a)) is

$$p_n(x) = \sum_{i=0}^n \underbrace{f^{(i)}(a)}_{i!} (x-a)^{i}$$

Behavior of f from f' and f''

Question

How to predict the graph of $f = x^3 - 12x$ based on f' and f''?

(1)
$$f(x) = x(x^2 - 12) = 0$$
 $\Rightarrow x = 0$ or $x = \pm \sqrt{12} = \pm 2\sqrt{3}$
(2) $f'(x) = 3x^2 - 12 = 0$ $\Rightarrow x^2 = 4 \Rightarrow x = \pm 2$
(3) $f''(x) = 6x$

f'70 = fincening f'<0 = findecreasing f'20

Behavior of f from f'

Behavior of f from f'

- if a is a local maximizer or minimizer, then f'(a) = 0;
- 2) if f' > 0, then f increases;
- 3 if f' < 0, then f decreases:
- 4 if f'' > 0, then f is concave up;
- \bullet if f'' < 0, then f is concave down.

Composition of Functions

Composition of Functions

Given two functions f and g, the composite function $f \circ g$ is defined as

$$(f \circ g)(x) = f(g(x)).$$

Given $f(x) = x^2$ and g(x) = x - 3, determine $f \circ g$ and $g \circ f$.

The Chain Rule

Question

What is the derivative of $F(x) = \sqrt{x^2 + 1}$?

The Chain Rule

If g is differentiable at x and f is differentiable at g(x), then the composite function $F = f \circ g$ is differentiable at x and F' is

$$F'(x) = f'(g(x))g'(x).$$

$$F'(x) = \frac{1}{2} (x^2 + 1)^{-1/2} \cdot 2x = \frac{x}{\sqrt{x^2 + 1}}$$

Moving Forward

• • • •

Real Function of Two Variables

Real Function of Two Variables

$$f: D_f \subseteq \mathbb{R}^2 \to \mathbb{R}$$
$$f = f(x, y)$$

- linear approximation?
- maxima and minima?

Partial Derivatives

Partial Derivatives

$$f: D_f \subseteq \mathbb{R}^2 \to \mathbb{R}$$

$$f_{x} \equiv \frac{\partial f}{\partial x}$$

$$f_y \equiv \frac{\partial f}{\partial y}$$

What are f_x and f_y for $f(x,y) = x^3y^5$?

$$f_x = 3x^2 y^5$$

$$f_3 = 5y^4 x^3$$

The Gradient

The Gradient

$$f: D_f \subseteq \mathbb{R}^2 \to \mathbb{R}$$

$$\nabla f = \langle f_x, f_y \rangle$$

Maxima and Minima

Maxima and Minima

If (a, b) is a local maximizer or minimizer, then $\nabla f(a, b) = 0$.

Linear Approximation

Linear Approximation of $g:D_g\subseteq\mathbb{R} o\mathbb{R}$

Assume g'(a) exists. The linear approximation of g at (a, g(a)) is

$$\ell(x) = g(a) + g'(a)(x - a).$$

Linear Approximation of $f:D_f\subseteq\mathbb{R}^2\to\mathbb{R}$

Assume \underline{f} is differentiable at (a, b). The linear approximation of f at (a, b, f(a, b)) is

$$L(x,y) = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b).$$

Coffee Break

alexandra. gomes @ kaust. edn. sa

?

