

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE/GRAAD 12

MATHEMATICS P1/WISKUNDE V1

NOVEMBER 2014

MEMORANDUM

MARKS: 150 *PUNTE: 150*

This memorandum consists of 22 pages. *Hierdie memorandum bestaan uit 22 bladsye*.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- Consistent accuracy applies in all aspects of the marking memorandum.

LET WEL:

- Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk slegs die EERSTE poging.
- Volgehoue akkuraatheid is DEURGAANS op ALLE aspekte van die memorandum van toepassing.

1.1.1	(m 2)(4 + m) 0	
1.1.1	(x-2)(4+x) = 0	$\checkmark x = 2$
	x = 2 or $x = -4$	
		$\checkmark x = -4$
		(2)
1.1.2	$3x^2 - 2x - 14 = 0$	✓ standard
		form/standaardvorm
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	a 2a	
	$2+\sqrt{(2)^2-4(2)(-14)}$	✓ substitution into
	$x = \frac{2 \pm \sqrt{(-2)^2 - 4(3)(-14)}}{2(3)}$	correct formula/
	2(3)	substitusie in
	$2 \pm \sqrt{172}$	korrekte formule
	$=\frac{2\pm\sqrt{172}}{6}$	
	0	
	$x = 2,52 \text{ or/}of \ x = -1,85$	✓✓ answers/
		antwoorde
		(4)
	OR/OF	
	0 1 14 1	1
	$x^{2} - \frac{2}{3}x + \frac{1}{9} = \frac{14}{3} + \frac{1}{9}$	✓ for adding $\frac{1}{9}$ on
	3 9 3 9	,
	$(1)^2$ 43	both sides/tel $\frac{1}{9}$
	$\left(x-\frac{1}{3}\right)^2 = \frac{43}{9}$	9
	(3) 9	by aan beide kante
	$1 \sqrt{43}$	
	$x - \frac{1}{3} = \pm \frac{\sqrt{43}}{3}$	
	3 3	1 1 1/42
	$\therefore x = \frac{1 \pm \sqrt{43}}{3}$	$\checkmark x = \frac{1 \pm \sqrt{43}}{3}$
	$\therefore x = \frac{3}{3}$	3
	x = 2.52 or/of $x = -1.85$	
	$\lambda = 2.32 \text{Oi/Oj} \lambda = -1.03$	✓✓answers
		(4)

NSC/NSS – Memorandum		
	$y = \frac{x-3}{2}$ $3x^{2} - 5x\left(\frac{x-3}{2}\right) = 24 + 16\left(\frac{x-3}{2}\right)$ $3x^{2} - \frac{5x^{2} - 15x}{2} = 24 + \frac{16x - 48}{2}$	✓ substitution/substitusie
	$ 2 \times 2:6x^{2} - 5x^{2} + 15x = 48 + 16x - 48 $ $ x^{2} - x = 0 $ $ x(x-1) = 0 $ $ x = 0 \text{ or } x = 1 $ $ y = -\frac{3}{2} \text{ or } y = -1 $	✓ simplification/ vereenvoudiging ✓ standard form / standard vorm ✓ factors/faktore ✓ x- values/x- waardes ✓ y-values/y-waardes (6)
1.3	$(x-1)(x-2) < 6$ $x^{2} - 3x + 2 < 6$ $x^{2} - 3x - 4 < 0$ $(x+1)(x-4) < 0$	✓ standard form/ standaardvorm ✓ factorisation/faktorisering
	OR/OF $-1 < x < 4 \text{ or } x \in (-1; 4)$	✓ critical values in the context of inequality / kritiese waardes in die konteks van die ongelykheid ✓ notation/notasie (4)
1.4	$-k-4 \ge 0$ $k \le -4$	√-k-4≥0 ✓ answer/antwoord (2) [21]

2.1	T 02	✓23	(1)
	$T_4 = 23$		(1)
2.2	$T_{251} = a + (n-1)d$	$\checkmark a = 2$ and $d = 7$ \checkmark subst. into correct	
	=2+(251-1)(7)	formula /subt. in	
	=1752	korrekte formule	
		√ 1752	(3)
2.3	$\sum_{i=1}^{251} (7x_i - 5)$	✓ general term/	
	$\sum_{n=1}^{2n} (7n-5)$	algemene term	
		✓ complete answer	(2)
	OR/OF	/volledige antwoord	(2)
		✓ general term/	
	$\sum_{p=0}^{250} (7p+2)$	algemene term	
	$\sum_{p=0}^{\infty} (P - P)$	✓ complete answer /	
		volledige antwoord	(2)
2.4	$S_n = \frac{n}{2} [a+l]$		
	$S_n = \frac{251}{2} [2 + 1752]$	(and atitudi an / 4:4-	
	$S_n = \frac{1}{2} [2 + 1/32]$	✓ substitution/substitu	isie
	= 220127	✓ 220127	(2)
	OR/OF		
	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$		
	$=\frac{251}{2}[2(2)+(251-1)(7)]$	✓ substitution/substitu	usie
	= 220127	✓ 220127	(2)
2.5	The new series/ <i>Die nuwe reeks</i> is $16 + 44 + 72 + + 1752$	d d concreting navy	
		✓✓ generating new series divisible by 4/	
	16 + 28(n-1) = 1752	vorming van nuwe red	eks
	1736 = 28(n-1)	deelbaar deur 4	
	62 = n - 1	$ \checkmark T_n = 1752 $	
	n = 63	√ 63	(4)
	OR/OF		
	$2+9+\underline{16}+23+30+37+\underline{44}+51++\underline{1752}$	$\checkmark T_3$ is divisible by $4/4$	/
	T_3 is divisible by /is deelbaar deur 4	-	
l I	Then T_7 , T_{11} , T_{15} ,, T_{251} are divisible by 4, thus each 4 th	is deelbaar deur 4 ✓identifying terms	
	term is divisible by 4.	divisible by 4/	
	Daarna is T_7 , T_{11} , T_{15} ,, T_{251} deelbaar deur 4, d.w.s. elke 4 ^{de}	identifiseer terme	
	term is deelbaar deur 4.	deelbaar deur 4	
	2-1		
	∴ number of terms divisible by 4 will be = $\frac{251-3}{4}+1=63$	✓ reasoning/redener	ing
	2-1	✓ reasoning/redener	ing (4)

Position of terms divisible by 4: 3; 7; 11;; 247; 251 $T_n = 4n - 1 = 251$ 4n = 252 n = 63	✓✓ generating sequence involving position of terms/vorming van reeks i.t.v. posisie van terme $✓ T_n = 251$ $✓ 63$ (4)
	[12]

3.1.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\checkmark p + 15 = 2$ $\checkmark p = -13$ (2)
	OR/OF $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	✓ first differences/ eerste verskille
	p+11 = -2 $p = -13$	$\checkmark p = -13 \tag{2}$
3.1.2	2a = 2 $a = 1$	$\checkmark a = 1$
	3a+b=-6 $3(1)+b=-6$ $b=-9$	✓ b = -9
	$a+b+c=-1$ $1-9+c=-1$ $c=7$ $T_n = n^2 - 9n + 7$ \mathbf{OR}/\mathbf{OF}	✓ c = 7 $✓ answer/antwoord$ (4)
	$T_{n} = T_{1} + (n-1)d_{1} + \frac{(n-1)(n-2)d_{2}}{2}$ $= -1 + (n-1)(-6) + \frac{(n-1)(n-2)(2)}{2}$ $= -1 - 6n + 6 + \frac{2n^{2} - 6n + 4}{2}$ $= n^{2} - 9n + 7$	✓ formula/formule ✓ substitution of first and second differences/substitusie van eerste en tweede verskille ✓ simplification/vereenvoudiging ✓ answer/antwoord (4)

OR/OF

$$T_0 = 7 = c$$

$$2a = 2$$
 : $a = 1$

$$3a+b=-6 \quad \therefore b=-9$$

$$T_n = n^2 - 9n + 7$$

OR/OF

$$a = \frac{1}{2}(2) = 1$$

: $T - n^2 + k$

$$T_n = n^2 + bn + c$$

$$T_1 = -1 : 1 + b + c = -1 : \dots (1)$$

$$T_1 = -1$$
 : $1+b+c = -1$ (1)
 $T_2 = -7$: $4+2b+c = -7$ (2)

$$(2)-(1): 3+b=-6$$

sub in (1): c = 7

$$T_n = n^2 - 9n + 7$$

✓ *c*-value/*c-waarde*

✓a-value/a-waarde

✓ b-value/b-waarde

✓answer/antwoord

(4)

✓a-value/a-waarde

✓ *b*-value/*b*-waarde

✓ *c*-value/*c-waarde*

✓answer/antwoord

(4)

3.1.3	The sequence of first differences is/Die reeks van eerste		
	verskille is:		
	-6;-4;-2;0;		
	-6+(n-1)(2)=96	\checkmark - 6+(<i>n</i> - 1)(2)	- 96
	n = 52	$\checkmark 52$	_ 70
	∴ two terms are/twee terme is:	32	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$		
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	√ 2 243	
	253	√ 2 339	(4)
	OR/OF		
	The sequence of first differences is/Die reeks van eerste		
	verskille is:		
	-6; -4; -2; 0;		
	The formula for the sequence of first differences/Die formule		
	vir die reeks van eerste verskille is $T_n = 2n - 8$	$\sqrt{2n-8} = 96$	
	1^{st} difference/ I^{ste} verskil: $2n - 8 = 96$	$\frac{1}{2}$ $\frac{2}{1}$ $\frac{2}{1}$ $\frac{1}{2}$ $\frac{1}$	
	2n = 104		
	n = 52	√52	
	∴two terms are/twee terme is:		
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	√ 2 243	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	√ 2 339	(4)
	$I_{53} = 33 - 9(33) + 7 = 2339$		
	OR/OF		
	$T_n - T_{n-1} = 96$	$\checkmark T_n - T_{n-1} = 96$	
	$\left[(n^2 - 9n + 7) - \left[(n-1)^2 - 9(n-1) + 7 \right] = 96 \right]$		
	$n^2 - 9n + 7 - n^2 + 2n - 1 + 9n - 9 - 7 = 96$		
	2n = 106		
	n = 53	√ 53	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	√ 2 243	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	✓2 339	(4)
	33		
	OR/OF		
	$T_{n+1} - T_n = 96$	$\int T_{n+1} - T_n = 96$	
	$[(n+1)^2 - 9(n+1) + 7] - [n^2 - 9n + 7] = 96$		
	$n^2 + 2n + 1 - 9n - 9 + 7 - n^2 + 9n - 7 = 96$		
	2n = 104		
	n = 52	√ 52	
	$T_{52} = 52^2 - 9(52) + 7 = 2243$	√ 2 243	
	$T_{53} = 53^2 - 9(53) + 7 = 2339$	√ 2 339	
			(4)

3.2.1	$T_{12} = 16 \left(\frac{1}{4}\right)^{12-1}$ = $\frac{1}{4^9}$ or 4^{-9} or $\frac{1}{2^{18}}$ or 2^{-18}	✓ $a = 16$ and $r = \frac{1}{4}$ ✓ subst. into correct formula/ subt in
	$=\frac{4^9}{4^9}$ or 4^9 or $\frac{2^{18}}{2^{18}}$ or 2^{18}	korrekte formule ✓ answer/antwoord (3)
3.2.2	$S_{10} = \frac{16\left(1 - \left(\frac{1}{4}\right)^{10}\right)}{1 - \frac{1}{4}}$	✓ substitution into correct formula /substitusie in korrekte formule
	= 21,33	✓ answer/antwoord (2)
	OR/OF	
	$S_{10} = \frac{16\left(\left(\frac{1}{4}\right)^{10} - 1\right)}{\frac{1}{4} - 1}$	✓ substitution into correct formula /substitusie in
	4	korrekte formule
	= 21,33	✓ answer/antwoord (2)
3.3	$\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)\left(1+\frac{1}{99}\right)$	✓ improper fractions/ onegte breuke
	$= \left(\frac{3}{2}\right)\left(\frac{4}{3}\right)\left(\frac{5}{3}\right)\left(\frac{6}{3}\right)\left(\frac{100}{99}\right)$	$\checkmark \left(1 + \frac{1}{99}\right) \text{ or } \left(\frac{100}{99}\right)$
	$=\left(\frac{100}{2}\right)$	
	= 50	✓✓ answer/antwoord (4)
	OR/OF	
	$\left(1 + \frac{1}{2}\right)\left(1 + \frac{1}{3}\right)\left(1 + \frac{1}{4}\right)\left(1 + \frac{1}{99}\right)$ $T_1 = \left(1 + \frac{1}{2}\right) = \frac{3}{2}$	$\checkmark \left(1 + \frac{1}{99}\right)$
	$I_1 = \left(1 + \frac{1}{2}\right) = \frac{1}{2}$	✓ giving the first
	$T_2 = \frac{3}{2} \left(1 + \frac{1}{3} \right) = \frac{3}{2} \times \frac{4}{3} = 2$	three terms / gee die eerste drie terme
	$T_3 = 2\left(1 + \frac{1}{4}\right) = 2 \times \frac{5}{4} = \frac{5}{2}$	
	$\frac{3}{2}$, 2, $\frac{5}{2}$ is an arithmetic sequence with $a = \frac{3}{2}$ and $d = \frac{1}{2}$	
	$\therefore T_{98} = \frac{3}{2} + (98 - 1)\frac{1}{2}$	
	$=\frac{100}{2}=50$	✓✓answer
	2	/antwoord (4) [19]

4.1	p=1	✓p value /waarde
	q=1	✓q value /waarde
		(2)
4.2	$0 = \frac{2}{x+1} + 1$ $-x - 1 = 2$	$\checkmark 0 = \frac{2}{x+1} + 1$
	x = -3	$\checkmark x = -3 \tag{2}$
	OR/OF	(-)
	Reflect (0; 3) across $y = -x$ to get T(-3; 0) x = -3 Reflekteer (0; 3) om $y = -1$ om T(-3; 0) te kry	✓ reflect across/reflekteer om $y = -x$
	x = -3	$\checkmark x = -3 \tag{2}$
4.3	Shifting g five units to the left shifts $(-1; 0)$ five units to the left.	✓ answer/antwoord (1)
4.4	x = -6	
4.4	$\frac{2}{x+1} + 1 = x$	✓ equating both graphs/stel grafieke gelyk
	$2 + x + 1 = x^2 + x$	
	$x^2 = 3$	$\checkmark x^2 = 3$
	$\therefore x = \sqrt{3} \text{ since at S}, x > 0$	$\checkmark x = \sqrt{3} \text{ and } y = \sqrt{3}$
	$y = \sqrt{3} = 1,73$ $OS^{2} = x^{2} + y^{2} = 3 + 3 = 6$	\checkmark OS $^2 = 6$
	$\therefore OS = \sqrt{6} = 2,45 \text{ units/} eenhede$	✓ answer/antwoord (5)
	OR/OF	

	Translate g one unit down and one unit to the	
	right/Transleer g een eenheid af en een eenheid na regs	
	The new equation/Die nuwe vergelyking: $p(x) = \frac{2}{x}$	$\checkmark p(x) = \frac{2}{x}$
	Therefore the image of S is $S'(\sqrt{2}; \sqrt{2})/$	
	Daarom is die beeld van S nou $S'(\sqrt{2};\sqrt{2})$	✓✓ coord. of/koörd. van S'
	Now translate p back to g/T ransleer p terug na g : $S(\sqrt{2}-1;\sqrt{2}+1)$	✓coord. of/koörd. van S
	$OS^{2} = (\sqrt{2} - 1)^{2} + (\sqrt{2} + 1)^{2} = 2 - 2\sqrt{2} + 1 + 2 + 2\sqrt{2} + 1$	
	$\therefore OS = \sqrt{6} = 2,45 \text{ units/} eenhede$	✓ answer/antwoord (5)
4.5	k < 3 will give roots with opposite signs/	$\checkmark k < 3$ (1)
	k < 3 sal wortels met teenoorgestelde tekens gee	[11]
	<u>I</u>	[**]

QUESTION 5

5.1 $y = \log_a x$ $-1 = \log_a \frac{1}{3}$ \checkmark subt. $\left(\frac{1}{3}; -1\right)$ $a^{-1} = \frac{1}{3}$ $a = \left(\frac{1}{3}\right)^{-1}$ $a = \left(\frac{1}{3}\right)^{-1}$ $a = 3$ $a $
$a = \left(\frac{1}{3}\right)^{-1}$ $\therefore a = 3$ $5.2 h: x = \log_3 y$ $\therefore y = 3^x$ $5.3 g(x) = -\log_3 x$ (2) $\checkmark \text{ swop } x \text{ and } y/ruil \ x \text{ en } y$ $\checkmark \text{ answer/antwoord}$ (2)
$a = \left(\frac{1}{3}\right)^{-1}$ $\therefore a = 3$ $5.2 h: x = \log_3 y$ $\therefore y = 3^x$ $5.3 g(x) = -\log_3 x$ (2) $\checkmark \text{ swop } x \text{ and } y/ruil \ x \text{ en } y$ $\checkmark \text{ answer/antwoord}$ (2)
$a = \left(\frac{1}{3}\right)^{-1}$ $\therefore a = 3$ $5.2 h: x = \log_3 y$ $\therefore y = 3^x$ $5.3 g(x) = -\log_3 x$ (2) $\checkmark \text{ swop } x \text{ and } y/ruil \ x \text{ en } y$ $\checkmark \text{ answer/antwoord}$ (2)
$\therefore a = 3$ 5.2 $h: x = \log_3 y$ $\therefore y = 3^x$ $5.3 g(x) = -\log_3 x$ $\checkmark \text{swop } x \text{ and } y/\text{ruil } x \text{ en } y$ $\checkmark \text{ answer/antwoord}$ (2)
$\therefore a = 3$ 5.2 $h: x = \log_3 y$ $\therefore y = 3^x$ $5.3 g(x) = -\log_3 x$ $\checkmark \text{swop } x \text{ and } y/\text{ruil } x \text{ en } y$ $\checkmark \text{ answer/antwoord}$ (2)
$\therefore y = 3^{x}$ $\sqrt{\text{answer/antwoord}}$ $5.3 \qquad g(x) = -\log_{3} x$ $\sqrt{\text{answer/antwoord}}$ (1)
$g(x) = -\log_3 x$
5.3 $g(x) = -\log_3 x$ $\checkmark \text{answer/antwoord}$ (1)
$g(x) = \log_3 \frac{1}{x} $ \text{answer/antwoord}
OR/OF
$a(x) = \log_{x} x$
$g(x) = \log_{\frac{1}{3}} x$ <pre> \square \text{answer/antwoord} </pre>
OR/OF
$x = 3^{-y} $ answer/antwoord (1)
OR/OF
$x = \left(\frac{1}{3}\right)^{y}$ \(\sigma\text{answer/antwoord}\)
OR/OF
$(0;\infty)$
✓ answer/antwoord (1)
$5.5 \qquad \log_3 x = -3$
$x = 3^{-3}$ \checkmark exponential form/
✓ simplification/vereenvoudiging
$x \ge \frac{1}{27} $ $\checkmark \text{answer/antwoord} $ (3)

6.1	$4x^2 - 6 = 0$	✓ y = 0
	$x^2 = \frac{3}{2}$	
	$x^2 = \frac{1}{2}$	
	x = 1,22 (x - coordinate of S is positive)	\checkmark 1,22 (2)
6.2	(0;-6)	$\begin{array}{ c c c c }\hline \checkmark 1,22 & (2)\\\hline \checkmark 0 & \end{array}$
		√ −6 (2)
6.3.1	QT = f(x) - g(x)	✓✓ correct formula/
	$=2\sqrt{x}-(4x^2-6)$ or $=2\sqrt{x}-4x^2+6$	korrekte formule ✓ substitution/substitusie
		\checkmark substitution/substituste (3)
6.3.2	1_	
	$QT = 2x^{\overline{2}} - 4x^2 + 6$	
	Deravitive of QT = $x^{\frac{-1}{2}} - 8x = 0$	✓ derivative/afgeleide
		✓ derivative equal to 0/
	$\frac{1}{\sqrt{x}} = 8x$	afgeleide gelyk aan 0
	•	3 1
	$x^{\frac{3}{2}} = \frac{1}{8}$ or $\frac{1}{x} = 64x^2$	$\sqrt{x^{\frac{3}{2}}} = \frac{1}{8}$
		8
	$(1)^{\frac{2}{3}}$	
	$x = \left(\frac{1}{8}\right)^{\frac{2}{3}}$	
	$(1)^2$ 1	
	$x = \left(\frac{1}{2}\right)^2 \text{ or } x^3 = \frac{1}{64}$	
		✓ x-value/x-waarde
	$x = \frac{1}{4} = 0.25$	▼ x-value/x-waarae
	T I	
	Max/Maks QT = $2\left(\frac{1}{4}\right)^{\frac{1}{2}} - 4\left(\frac{1}{4}\right)^{2} + 6$	✓ substitution/substitusie
	3 (75) 1 1	✓answer/antwoord (6)
	$= 6\frac{3}{4} = 6{,}75 \text{units/}eenhede$	[13]

		T
7.1	$A = P(1-i)^{n}$ $72 500 = 145 000 (1-i)^{5}$ $i = 1 - \sqrt[5]{\frac{72500}{145000}}$ $= 0,1294$ $\therefore \text{ Rate of interest/} Rentekoers \text{ is } 12,94 \% \text{ p.a./}p.j.$ $\mathbf{OR/}OF$	✓ substitution/substitusie ✓ writing in terms of <i>i</i> herskryf in terme van <i>i</i> ✓ answer/antwoord (3)
	$\left(1-i\right)^5 = \frac{1}{2}$	✓ substitution/substitusie
	$(1-i)^5 = \frac{1}{2}$ $\therefore i = 1 - \left(\frac{1}{2}\right)^{\frac{1}{5}}$	✓ writing i.t.o <i>i</i>
	$i = 0.1294$ $\mathbf{P}_{\text{total}} = \mathbf{S}_{\text{intermed}}^{\text{figure}} \mathbf{P}_{\text{total}} = \mathbf{I}_{\text{total}}^{\text{figure}} \mathbf{P}_{\text{total}}^{\text{figure}} \mathbf{P}$	
7.2.1	\therefore Rate of interest/ <i>Rentekoers</i> is 12,94 % p.a./p.j.	✓answer (3)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $500\ 000 = \frac{x \left[1 - \left(1 + \frac{0,12}{12}\right)^{-240}\right]}{\frac{0,12}{12}}$	✓ $i = \frac{0.12}{12}$ ✓ $n = 240$ ✓ substitution into correct formula
	$x = \frac{500000 \times \frac{0,12}{12}}{\left[1 - \left(1 + \frac{0,12}{12}\right)^{-240}\right]}$ $x = R5505,43$	✓ answer/antwoord (4)

7.2.2	$P = \frac{x \left[1 - (1+i)^{-n}\right]}{i}$ $500000 = \frac{6000 \left[1 - \left(1 + \frac{0.12}{12}\right)^{-n}\right]}{\frac{0.12}{12}}$ $\frac{500000}{6000} \times 0.01 = 1 - (1.01)^{-n}$ $(1.01)^{-n} = 1 - \frac{5}{6}$	✓6000 ✓ substitute into correct formula/substitusie in korrekte formule
	$-n = \frac{\log \frac{1}{6}}{\log 1{,}01}$ $n = 180{,}07$ ∴ Melissa settles the loan in 181 months	✓ use of logs/gebruik van logs
7.2.3	Samuel	✓ answer/antwoord (4) ✓ Samuel
	He is paying off his loan over a longer period thus more interest will be paid./Hy betaal sy lening oor 'n langer tydperk af, dus sal hy meer rente betaal.	✓ reason/rede (2)
	OR/OF	
	Samuel He will pay/ <i>Hy betaal</i> R5505,43 × 240 – R500 000 =	✓Samuel ✓reason/rede
	R821 303,20 She will pay between/Su and tuggen B580 000 and/or	(2)
	She will pay between/Sy sal tussen R580 000 and/en R586 000,00 betaal.	[13]

8.1
$$f(x+h) = (x+h)^{3} = (x^{2} + 2xh + h^{2})(x+h)$$

$$= x^{3} + x^{2}h + 2x^{2}h + 2xh^{2} + h^{2}x + h^{3}$$

$$= x^{3} + 3x^{2}h + 3xh^{2} + h^{3}$$

$$f(x+h) - f(x) = x^{3} + 3x^{2}h + 3xh^{2} + h^{3} - x^{3}$$

$$= 3x^{2}h + 3xh^{2} + h^{3}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{3x^{2}h + 3xh^{2} + h^{3}}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^{2} + 3xh + h^{2})}{h}$$

$$\checkmark \text{ formula / formule}$$

$$\checkmark \text{ subst. into formula / subst. in formule}$$

$$\checkmark \text{ factorization / faktorisering}$$

OR/OF

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(x+h)^2 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)(x^2 + 2xh + h^2) - x^3}{h}$$

$$= \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h}$$

$$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2)$$

$$= 3x^2$$

 $= \lim_{h \to 0} (3x^2 + 3xh + h^2)$

OR

✓ formula/formule

✓answer/antwoord

✓ subst. into formula/subst. in formule

(5)

(5)

- ✓ simplifying/vereenvoudiging
- ✓ factorization/faktorisering
- ✓answer/antwoord

$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	✓ formula/formule
$= \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h}$	✓ subst. into formula/subst. in formule
$= \lim_{h \to 0} \frac{(x+h-x)(x^2+2xh+h^2+x^2+xh+x^2)}{h}$	✓ factorization/faktorisering
$= \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h}$	
$= \lim_{h \to 0} \left(3x^2 + 3xh + h^2 \right)$ $= 3x^2$	✓ simplifying/vereenvoudiging ✓ answer/antwoord (5)

0.0	244) 2	//
8.2	$f'(x) = 4x + 2x^3$	$\checkmark 4x$
		$\checkmark 2x^3$
		(2)
8.3	$y = x^{12} - 2x^6 + 1$	✓ simplification/vereenvoudiging
	$\frac{dy}{dx} = 12x^{11} - 12x^5$	✓ derivative/afgeleide
	$=12x^5(x^6-1)$	✓ factors/faktore
	$=12x^5\sqrt{y}$	(3)
8.4	$f(x) = 2x^3 - 2x^2 + 4x - 1$	
	$f'(x) = 6x^2 - 4x + 4$	✓ first derivative/eerste afgeleide ✓ second derivative/tweede
	f''(x) = 12x - 4	afgeleide
	f is concave up when/is konkaaf op as $f''(x) > 0$	$\checkmark f''(x) > 0$
	$\therefore 12x - 4 > 0$	
	12x > 4	
	$x > \frac{1}{3}$	$\checkmark x > \frac{1}{3} \tag{4}$
	3	3
		[14]

9.1	$f'(x) = 3x^2 - 8x - 3 = 0$ $(3x+1)(x-3) = 0$	✓ derivative/afgeleide ✓ derivative/ afgeleide = 0 ✓ factors/faktore
	$x = -\frac{1}{3}$ or $x = 3$	✓ x-values/waardes
	$y = \frac{500}{27}$ (or $y = 18\frac{14}{27}$ or 18,52) $y = 0$	✓✓ each y- values/elke y-waarde
	Turning points are/ <i>Draaipunte is</i> $\left(-\frac{1}{3}; \frac{500}{27}\right)$ and (3;0)	(6)
9.2		
	$(-\frac{1}{3};18,52)$ 18 $(-2;0)$ $(3;0)$	✓ x-intercepts/afsnitte ✓ y-intercept/afsnit ✓ turning points/ draaipunte ✓ shape/vorm
9.3	_1	_1 (4)
7.3	$x < \frac{-1}{3}$ or $0 < x < 3$	$\checkmark x < \frac{-1}{3}$
	OR	✓ both critical points/ beide kritieke-punte
	$(-\infty; -\frac{1}{3}) \cup (0;3)$	✓ notation/notasie (3)

10.1	l + 2h = 40	
	l = 40 - 2h	✓answer (1)
10.2	2b + 2h = 100	$\checkmark 2b + 2h = 100$
	b = 50 - h	$\checkmark b = 50 - h$
	V = lbh	✓volume formula
	V = h(40 - 2h)(50 - h)	(3)
10.3	$V = (50h - h^2)(40 - 2h)$	
	$V = 2h^3 - 140h^2 + 2000h$	✓ simplifying/vereenvoudig
	$V' = 6h^2 - 280h + 2000 = 0$	✓ derivative / afgeleide
	$h = \frac{280 \pm \sqrt{(-280)^2 - 4(6)(2000)}}{2(6)}$	
	$h \neq 37,86 \text{ or } h = 8,80$	✓✓h-values in any form /
	∴ for a box as large as possible, $h = 8,80 \text{cm}$ vir die grootste moontlike boks = $8,80 \text{cm}$	h-waardes in enige vorm ✓ answer/antwoord (5)
		[9]

11.1.1	$P(\text{male/manlik}) = \frac{83}{180}$ or 0,46 or 46,11%	✓answer/antwoord	(1)
11.1.2	P(not game park/nie wildreservaat) = 1 - P(game park/wildreservaat) = $1 - \frac{62}{180}$ = $\frac{59}{90}$ or 0,66 or 65,56% OR/OF	$\checkmark 1 - \frac{62}{180}$ \checkmark answer/antwoord	(2)
	P(not game park/nie wildreservaat) $= \frac{98}{180} + \frac{20}{180}$ $= \frac{118}{180}$ $= \frac{59}{90} \text{ or } 0,66 \text{ or } 65,56\%$	$\sqrt{\frac{98}{180} + \frac{20}{180}}$ ✓ answer/antwoord	(2)

11.2

Events are independent if /Gebeure is onafhanklike indien

 $P(male) \times P(home) = P(male and home)$

 $P(manlik) \times P(huis) = P(manlik\ en\ huis)$

$$P(\text{male/manlik}) = \frac{83}{180}$$

and/en P(home/huis) = $\frac{20}{180}$ or 0,11 or 11,11%

 $P(\text{male}/\text{manlik}) \times P(\text{home}/\text{huis})$

$$= \frac{83}{180} \times \frac{20}{180}$$

$$=\frac{83}{1620}$$

$$= 0.05123$$
 or 5.12%

P(male and home/manlik en huis)

$$=\frac{13}{180}$$

$$= 0.07222...$$
 or 7.22%

Therefore $P(male) \times P(home) \neq P(male and home)$

Dus $P(manlik) \times P(huis) \neq P(manlik en huis)$

Thus the events are not independent./Dus is die gebeure nie onafhanklik nie

OR/OF

	Home/Huis	Not Home/	
		Nie huis	
M	13	70	83
F	7	90	97
	20	160	180

P(female/*vroulik*) × P(not home/nie *huis*)

$$=\frac{97}{180} \times \frac{160}{180}$$

$$=\frac{194}{405}$$

$$= 0,479012345...$$
 or $47,90\%$

P(female and not home/vroulik en nie-huis)

$$=\frac{90}{180}$$

$$= 0.5$$
 or 50%

Therefore $P(female) \times P(not home) \neq P(female and not home)$

Thus the events are not independent.

Dus $P(vroulik) \times P(nie-huis) \neq P(vroulik en nie-huis)$

Dus is die gebeure nie onafhanklik nie.

✓
$$P(m) \times P(h)$$
 and their values/*en hulle* waardes

✓
$$P(m \text{ and}/en h)$$
 value/waarde

✓ conclusion/afleiding (4)

✓
$$P(f) \times P(\text{not } h)$$
 and their values/*en hulle* waardes

✓
$$P(f \text{ and}/en \text{ not } h)$$
 value/waarde

[7]

12.1.1	$26 \times 25 \times 24 \times 23 \times 22$	$\checkmark 26 \times 25 \times 24 \times 23 \times 22$	
12.1.1	= 7 893 600	✓ 7 893 600	(2)
	- 7 893 000	V / 893 000	(2)
	OR/OF		
	OK/OF		
	261 261	/formula/formula	
	$^{26}P_5 = \frac{26!}{(26-5)!} = \frac{26!}{21!} = 7893600$	✓ formula/formule ✓ answer/antwoord	(2)
	(26-5)! 21!	▼ answer/aniwoora	(2)
12.1.2	$24 \times 23 \times 22$	✓ 24×23×22	
	= 12 144	✓ 12 144	
			(2)
12.2.1	7×6×5×4×3×2×1	✓ product/produk	
	= 5 040	√5 040 T	(2)
12.2.2	$(3\times2\times1)(5\times4\times3\times2\times1)$	✓3×2×1	
	= 720	✓5×4×3×2×1	
		√ 720	
	OR/OF	7.20	(3)
			(5)
	The five 'units' can be parked in $5\times4\times3\times2\times1$ ways./ <i>Die</i>	✓5×4×3×2×1	
	vyf 'eenhede' kan op $5\times4\times3\times2\times1$ maniere geparkeer	5/(1/(5/(2/(1	
	word.		
	The three silver cars can be parked in $3\times2\times1$ ways./ <i>Die</i>	√3×2×1	
	drie silwer motors kan op $3\times2\times1$ maniere parkeer word.	7 3/2/1	
	So there are $(3\times2\times1)(5\times4\times3\times2\times1) = 720$ ways to park	√ 720	
	the cars./Dus is daar $(3\times2\times1)(5\times4\times3\times2\times1) = 720$ ways to park	120	(3)
	maniere om die motors te parkeer.		(3)
	maniere om die motors te parkeer.		
	OR/OF		
	OR/OF		
	Suppose for the moment the 2 silver core are at one		
	Suppose for the moment the 3 silver cars are at one		
	end./Veronderstel die drie silwer motors is op die punt.		
	The 3 cars can be arranged in $3 \times 2 \times 1 = 6$ ways./Die 3		
	motors kan op $3 \times 2 \times 1 = 6$ maniere gerangskik word.		
	For each of them the remaining four cars can be arranged		
	in $4\times3\times2\times1=24$ ways./Die 4 oorblywende motors kan op		
	$4 \times 3 \times 2 \times 1 = 24$ maniere rangskik word.	(6 24 144	
	So $6 \times 24 = 144$ ways if all 3 cars at one end./Dus is daar	$\checkmark 6 \times 24 = 144$	
	$6 \times 24 = 144$ maniere as die 3 motors op die punt is.		
	Together, the silver cars can only occupy 5 different		
	positions amongst the 7 positions.		
	./Saam kan die silwer motors slegs 5 verskillende posisies	(
	hê tussen die 7 moontlike posisies.	√5 × 144	
	\therefore Total ways/ <i>Totale getal maniere</i> = $5 \times 144 = 720$	√ 720	(3)
			[9]