## Тепловое расширение тел

## Уровень 1

1. Температурный коэффициент линейного расширения α при изменении длины от  $l_0$  до l нагретого на  $\Delta t$  тела равен:

a)  $\alpha = 1/1_0 \Delta t$ ;

δ)  $\alpha=1/1_0\Delta t$ ;

B)  $\alpha = (1-1_0)/1\Delta t$ ;  $\Gamma$ )  $\alpha = (1-1_0)/1\Delta t$ .

**2.** Изменение длины тела  $\Delta l$  при изменении его температуры от  $t_{_0}$ =0°C до tравно:

a)  $\Delta l = l_0 \alpha t$ ;

 $\delta$ )  $\Delta l = l_0 \alpha(t-t_0)$ ;

B)  $\Delta l = l_0 (1 + \alpha t)$ ;  $\Gamma$ )  $\Delta l = l_0 (1 + \alpha (t - t_0))$ .

3. Единицей измерения в системе СИ коэффициента линейного расширения является:

a) °C:

б)  ${}^{\circ}C^{-1}$ ; в) м; г) м $^{-1}$ .

4. Укажите верное соотношение коэффициента линейного расширения α и коэффициента объемного расширения В:

δ)  $\beta$ =2 $\alpha$ ; в)  $\beta$ =3 $\alpha$ ; г)  $\beta$ =4 $\alpha$ . a)  $\beta = \alpha$ ;

**5.** [12] Графиком зависимости удлинения  $\Delta l$  тела от изменения его температуры  $\Delta t$  является (рис. 1):

a) 1;

б) 2;

в) 3;

г) 4.



Рис.1

# Уровень 2.

1. [11] Стальная линейка при 15°С имеет длину 1м. На сколько изменится ее длина при понижении температуры до -35°C?

2. [11] Железный стержень при 273К имеет длину 40см. Определите температуру, при которой он удлинится на 4мм. (562, 5K)

- **3.** [9] Определить длину алюминиевого стержня при нуле градусов Цельсия, если при температуре 20°C его длина равна 100,5мм. Коэффициент линейного расширения алюминия равен  $2,5\cdot10^{-5}$  °C<sup>-1</sup>. (1м)
- **4.** [1] Латунный сосуд при нагревании увеличился в объеме на n=0,6%. Найти увеличение температуры  $\Delta t$  сосуда, если коэффициент линейного расширения латуни  $2 \cdot 10^{-5} \, ^{\circ}\text{C}^{-1}$ . (300°C)
- **5.** [13] При  $t_0$ =0°C длина стальной линейки 30,000см. Определите температуру, при которой длина линейки 30,024см. (0,16°C)

## Уровень 3

- **1.** [13] При изготовлении некоторых точных приборов необходимо обеспечить постоянство разности длин двух стержней при изменении температуры. Какие длины должны иметь железный и медный стержни при  $0^{\circ}$ С, чтобы разность  $\Delta l$  их длин не зависела от температуры и оставалась равной 10см. (24см, 34см)
- **2.** [9] Определить коэффициент линейной зависимости объема от температуры при изобарическом нагревании 50г водорода, взятого при давлении  $100\Pi a. (2m^3/K)$
- **3.** [13] Как должны относится длины  $l_1$  и  $l_2$  двух стержней из материалов с различными коэффициентами линейного расширения  $\beta_1$  и  $\beta_2$ , чтобы при любой температуре разность длин стержней оставалась постоянной?  $(\frac{l_1}{l_2} = \frac{\beta_2}{\beta_1})$
- **4.** [13] Два одинаковых стальных моста должны быть построены один на севере, другой на юге. Каковы должны быть при 0°C зазоры, компенсирующие удлинение моста при изменении температуры, если на юге возможны колебания от -10°C до +50°C, а на севере от -50°C до +20°C? При 0°C длина моста  $1_0$ =100м, коэффициент линейного расширения стали  $10^{-5}$  °C $^{-1}$ . (0,02; 0,05)
- **5.** [12] При температуре 0°C длина стержня 1000мм, при температуре 100°C 1002мм, при температуре красного каления 1011,6мм. Определите температуру красного каления. (580°C)

## Уровень 4

**1.** [13] Коэффициент объемного расширения воды для трех интервалов температур:

$$\begin{split} &\alpha_1 = -3.3 \cdot 10^{-5} \,^{\circ}\text{C}^{-1} \ (0 \le t_1 \le 4 \,^{\circ}\text{C}), \\ &\alpha_2 = 4.8 \cdot 10^{-5} \,^{\circ}\text{C}^{-1} \ (4 \le t_2 \le 10 \,^{\circ}\text{C}), \\ &\alpha_3 = 1.5 \cdot 10^{-4} \,^{\circ}\text{C}^{-1} \ (10 \le t_3 \le 20 \,^{\circ}\text{C}). \end{split}$$

Найти объем воды V при температуре 15°C, если при температуре t' = 1°C объем  $V' = 10^3 \, \text{см}^3$ . (1001 cм<sup>3</sup>)

**2.** [13] Сообщающиеся сосуды заполнены жидкостью, имеющей температуру  $\mathbf{t}_1$ . При нагревании жидкости в одном из сосудов до температуры  $\mathbf{t}_2$  уровень жидкости в этом сосуде установился на высоте H, а в другом — на высоте h. Найти коэффициент объемного расширения жидкости.

$$(\beta = \frac{H - h}{ht_2 - Ht_1})$$

- **3.** [13] Найти объем шарика ртутного термометра, если известно, что при температуре  $t_0$ =0°C ртуть заполняет только шарик, а между делениями 0 и 100°C объем канала равен 3мм<sup>3</sup>. Коэффициент объемного расширения ртути  $\alpha = 1.8 \cdot 10^{-4} \, ^{\circ}\text{C}^{-1}$ , коэффициент линейного расширения стекла  $\beta = 8 \cdot 10^{-6} \, ^{\circ}\text{C}^{-1}$ . (193мм<sup>3</sup>)
- **4.** [12] Квадратная алюминиевая пластина при температуре  $400^{\circ}$ С имеет размеры  $10 \times 10$ см. Каковы размеры этой пластины при температуре  $0^{\circ}$ С?  $(9,9 \times 9,9 c_{M})$
- **5.** [12] При температуре  $t_0$ =0°C длина алюминиевого стержня 50см, а железного на 0,5см больше. Сечение стержней одинаковы. При какой температуре будут одинаковы длины стержней? (776°C)

## Уровень 5

**1.** [11] Железная цистерна высотой 4м и диаметром 8м при 0°C заполнена нефтью так, что не доходит до краев цистерны на 10см. При какой температуре нефть заполнит весь объем цистерны. (300К)

- **2.** [6] Латунная шкала ртутного барометра градуирована при температуре  $0^{\circ}$ С. Каково истинное давление, если при температуре  $20^{\circ}$ С барометр показывает давление 101,0 кПа? Расширением стекла пренебречь.  $(100,7\kappa\Pi a)$
- **3.** [1] В кварцевый литровый сосуд диаметра 6см до половины налили воду, а затем положили шар из эбонита, имеющий объем  $100\text{cm}^3$ . На какую высоту  $\Delta h$  поднимется уровень воды при изменении температуры от  $10^{\circ}\text{C}$  до 70? Коэффициент линейного расширения эбонита  $\alpha_s = 8 \cdot 10^{-5} \, ^{\circ}\text{C}$ , коэффициент объемного расширения воды  $\alpha_s = 3 \cdot 10^{-4} \, ^{\circ}\text{C}$ . Тепловым расширением кварца пренебречь. (0,37cm)
- **4.** [1] При температуре 0°C длины алюминиевого и железного стержней  $l_{0_a}$  =50см и  $l_{0_m}$  =50,05см. Сечения стержней одинаковы. При какой температуре  $t_1$  длины стержней и при какой температуре  $t_2$  их объемы будут одинаковы? Коэффициент линейного расширения алюминия равен 2,4·10<sup>-7</sup>°C<sup>-1</sup> и коэффициент линейного расширения железа равен 1,2·10<sup>-7</sup>°C<sup>-1</sup>. (27,8°C, 83,4°C)
- **5.** [6] Каким будет изменение площади поверхности  $\Delta S$  алюминиевой сферы радиусом 60см, если ее температура возрастет от 20°C до 200°C? (1,14м)