Econ C103: Game Theory and Networks Module I (Game Theory): Lecture 11

Instructor: Matt Leister

Fall 2019, UC Berkeley

Readings:

 Diamond, Douglas and Philip Dybvig. "Bank Runs, Deposit Insurance, and Liquidity", Journal of Political Economy, 1983.

- Two firms i and j compete by producing quantities $q_i \in \mathbb{R}$ and $q_j \in \mathbb{R}$, resp., under price function $P(q_i, q_j) = (a + \omega) b(q_i + q_j)$, a, b > 0, $\omega \sim \mathcal{N}(0, \sigma^2)$. Marginal cost of production is c > 0.
- Each firm k=i,j observes signal $\theta_k=\omega+\varepsilon_k,\,\varepsilon_k\sim\mathcal{N}(0,1/\gamma_k);$ ε_k is the noise in k's signal θ_k . The "state space" is $\{(\omega,\varepsilon_i,\varepsilon_j)\},$ $\gamma_k\in\mathbb{R}_+$ is the "precision" of k's signal; $\gamma_k=0$ is "no information".
- Each firm maximizes profit given their signal, and the other firm's production strategy $s_k : \mathbb{R} \mapsto \mathbb{R}$, a function of t_k .
- Player *i*'s Bayesian updating yields the following expectations (similar for *j*'s expectations; *feel free to take these next expressions as given*):

 - ullet $\mathbb{E}\left[heta_j| heta_i
 ight]=\mathbb{E}\left[t_j|t_i
 ight]/e_j=e_it_i$, so $\mathbb{E}\left[t_j|t_i
 ight]=e_ie_jt_i$

where:

$$e_i \equiv \sqrt{\frac{\sigma^2}{\sigma^2 + \gamma_i^{-1}}} \in [0, 1],$$
 $t_i \equiv e_i \theta_i.$

• For firm i, given s_j and upon observing t_i , her optimal production is:

$$s_i^*(t_i) = \operatorname*{argmax}_{q_i}((a + \mathbb{E}[\omega|t_i]) - b(q_i + \mathbb{E}[s_j(t_j)|t_i]))q_i - cq_i.$$

- First-order condition: $a + \mathbb{E}[\omega|t_i] 2bq_i b\mathbb{E}[s_j(t_j)|t_i] c = 0$.
- Solving for q_i gives firm i's best response:

$$s_i^*(t_i) = \frac{a + e_i t_i - b \mathbb{E}[s_j(t_j)|t_i] - c}{2b}.$$

• Assume j uses linear strategy $s_j(t_j) = \alpha_j + \beta_j t_j$. Then:

$$\mathbb{E}[s_j(t_j)|t_i] = \alpha_j + \beta_j \mathbb{E}[t_j|t_i] = \alpha_j + \beta_j e_i e_j t_i.$$

This gives firm i's optimal strategy:

$$s_i^*(t_i) = \frac{a + e_i t_i - b(\alpha_j + \beta_j e_i e_j t_i) - c}{2b},$$

which implies:

$$\alpha_i^* = \frac{a - b\alpha_j - c}{2b},$$

$$\beta_i^* = \frac{e_i - b\beta_j e_i e_j}{2b}.$$

 β_i^* decreasing in e_j : better information of competition \Rightarrow less responsive to private information (learning ω is high $\Rightarrow j$ also learns ω is high $\Rightarrow q_j$ increases \Rightarrow price and marginal revenue decrease!).

Similarly for j...

$$\begin{array}{lll} \alpha_i^* &=& (a-b\alpha_j^*-c)/(2b); & \alpha_j^* &=& (a-b\alpha_i^*-c)/(2b), \\ \beta_i^* &=& (e_i-b\beta_j^*e_ie_j)/(2b); & \beta_j^* &=& (e_j-b\beta_i^*e_je_i)/(2b). \end{array}$$

Solving this system yields:

$$\begin{array}{lll} \alpha_k^* & = & \frac{a-c}{3b}, \ \forall k=i,j\\ \beta_i^* & = & \frac{e_i(2-e_j^2)}{b(4-e_i^2e_j^2)},\\ \beta_j^* & = & \frac{e_j(2-e_i^2)}{b(4-e_i^2e_j^2)}. \end{array}$$

$$\alpha_i^* = \frac{a-c}{3b},$$

$$\beta_i^* = \frac{e_i(2-e_j^2)}{b(4-e_i^2e_i^2)}.$$

- α_k^* corresponds to the PNE in the Cournot Duopoly.
- β_i^* increasing in e_i : better information \Rightarrow optimal strategy more responsive to private information.
- β_i^* decreases in e_j : better information of competition $(e_j \uparrow) \Rightarrow$ less responsive to private information $(\beta_i^* \downarrow) \Rightarrow \beta_j^* \uparrow \Rightarrow \beta_i^* \downarrow \dots$! Players' information use become interdependent in equilibrium...

Figure: Information use: $\beta = \text{slope}$ of strategy to private signal.

• In the figure, $e_i = 0.75$, and $e_j \in [0,1]$ (the x-axis). Equilibrium β_i^* (black line) decreases in e_j , at an increasing rate as e_j increases; in contrast, β_i^* when β_i is held fixed (dashed lines) has a fixed slope.

Diamond-Dybvig (1983) bank-run model

- Three periods t = 1, 2, 3. A unit measure of consumers deposit wealth in a bank at t = 1; consumption occurs in t = 2, 3.
- Measure θ values consumption only in t=2 (type A), measure $1-\theta$ values consumption in both t=2,3 (type B):

where $u(\cdot)$ is twice continuously differentiable, increasing and concave, and $0<\rho<1$. So, types A's have greater need.

- Bank holds 1 unit of liquidity (money); withdrawals at t=2 and t=3 yield consumption value 1 and R>1, respectively.
- Consumption type is private information to each consumer $i \in [0,1]$; the "state" determines which consumers are of types A/B. BUT, on aggregate measure θ is of type A (so, no aggregate risk!).

Diamond-Dybvig (1983) bank-run model

- Socially efficient consumption allocation has $c_3^A = 0$ and $c_2^B = 0$.
- If the bank could require only type A's withdraw in period t=2, then bank's budget constraint becomes:

$$\theta c_2^A + (1 - \theta)(c_3^B/R) = 1 \Leftrightarrow c_3^B = \frac{(1 - \theta c_2^A)R}{1 - \theta}.$$

• Planner's problem then solves:

$$\max_{c_2^A \geq 0} \theta u(c_2^A) + (1-\theta)\rho u(\frac{(1-\theta c_2^A)R}{1-\theta}).$$

First-order condition for efficient c_2^{A*} :

$$u'(c_2^{A*}) = R\rho u'(\frac{(1-\theta c_2^{A*})R}{1-\theta}) = R\rho u'(c_3^{B*}).$$

If R
ho>1 then $c_3^{B*}>c_2^{A*}$, and type B's prefer to wait (greater c_3^B).

Diamond-Dybvig (1983) bank-run model

- So, if $R\rho > 1$ and bank promises c_2^{A*} to any consumer withdrawing at t=2, then it is a BNE for type A's to withdraw at t=2, type B's at t=3, which yields efficient consumption profile (c_2^{A*}, c_3^{B*}) .
- Bank-run BNE: also assume that $R
 ho \in (1, R\bar{
 ho}]$, where $R\bar{
 ho}$ satisfies:

$$u'(1) = \bar{R\rho}u'(R).$$

Then, $1 < c_2^{A*} < c_3^{B*}$ (while $\theta c_2^A + (1 - \theta)(c_3^B/R) = 1$ still holds).

- What if type B's believe all consumers will withdraw at t = 2?
- ullet Then, all consumer "run to the bank", but only first $1/c_2^{Ast}$ consume!
- Two "sunspot" BNE:
 - lacktriangle an efficient (liquid) BNE, in which only type A withdraws in t=2, and
 - ② a bank-run (illiquid) BNE, in which all consumers withdraw in t = 2.