Clustering Credit Card Customer

Data preparation

Import library

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    import warnings
    warnings.filterwarnings("ignore")

%matplotlib inline

In [104]: ds = pd.read_csv('BankChurners.csv')
    ds.head()
```

Out[104]:

	CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Category	Months_
0	768805383	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	Blue	
1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	Blue	
2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	Blue	
3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	Blue	
4	709106358	Existing Customer	40	M	3	Uneducated	Married	60 <i>K</i> -80K	Blue	

5 rows × 23 columns

```
In [4]: ds.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10127 entries, 0 to 10126
        Data columns (total 23 columns):
        # Column
        Non-Null Count Dtype
            CLIENTNUM
        10127 non-null int64
         1 Attrition Flag
       10127 non-null object
         2 Customer Age
        10127 non-null int64
         3 Gender
        10127 non-null object
         4 Dependent_count
        10127 non-null int64
            Education Level
        10127 non-null object
         6 Marital Status
       10127 non-null object
         7 Income Category
        10127 non-null object
         8 Card Category
        10127 non-null object
            Months on book
        10127 non-null int64
         10 Total_Relationship_Count
        10127 non-null int64
         11 Months Inactive 12 mon
        10127 non-null int64
         12 Contacts Count 12 mon
        10127 non-null int64
         13 Credit Limit
        10127 non-null float64
         14 Total Revolving Bal
        10127 non-null int64
         15 Avg_Open_To_Buy
```

10127 non-null float64

```
16 Total_Amt_Chng_Q4_Q1
10127 non-null float64
17 Total_Trans_Amt
10127 non-null int64
18 Total_Trans_Ct
10127 non-null int64
19 Total_Ct_Chng_Q4_Q1
10127 non-null float64
20 Avg_Utilization_Ratio
10127 non-null float64
21 Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_I nactive_12_mon_1 10127 non-null float64
22 Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_I nactive_12_mon_2 10127 non-null float64
422 Naive_Bayes_Classifier_Attrition_Flag_Card_Category_Contacts_Count_12_mon_Dependent_count_Education_Level_Months_I nactive_12_mon_2 10127 non-null float64
4dtypes: float64(7), int64(10), object(6)
```

memory usage: 1.8+ MB

In [6]: ds = ds.iloc[:,1:-2]
ds

Out[6]:

Months_Inactive_12_mon	Contacts_Count_12_mon	Credit_Limit	Total_Revolving_Bal	Avg_Open_To_Buy	Total_Amt_Chng_Q4_Q1	Total_Trans_Amt Tot
1	3	12691.0	777	11914.0	1.335	1144
1	2	8256.0	864	7392.0	1.541	1291
1	0	3418.0	0	3418.0	2.594	1887
4	1	3313.0	2517	796.0	1.405	1171
1	0	4716.0	0	4716.0	2.175	816
2	3	4003.0	1851	2152.0	0.703	15476
2	3	4277.0	2186	2091.0	0.804	8764
3	4	5409.0	0	5409.0	0.819	10291
3	3	5281.0	0	5281.0	0.535	8395
2	4	10388.0	1961	8427.0	0.703	10294

K Means

```
In [8]: corr = ds.corr()
sns.heatmap(corr, square=True)
```

Out[8]: <AxesSubplot:>


```
RangeIndex: 10127 entries, 0 to 10126
         Data columns (total 18 columns):
              Column
                                       Non-Null Count Dtype
              Attrition Flag
                                       10127 non-null object
              Customer Age
                                       10127 non-null int64
              Gender
                                       10127 non-null object
                                       10127 non-null int64
              Dependent count
              Education Level
                                       10127 non-null object
              Marital Status
                                       10127 non-null object
              Income Category
                                       10127 non-null object
             Card Category
                                       10127 non-null object
             Months on book
                                       10127 non-null int64
             Total Relationship Count
                                      10127 non-null int64
          10 Months Inactive 12 mon
                                       10127 non-null int64
          11 Contacts Count 12 mon
                                       10127 non-null int64
          12 Credit Limit
                                       10127 non-null float64
          13 Total Revolving Bal
                                       10127 non-null int64
          14 Avg_Open_To_Buy
                                       10127 non-null float64
          15 Total Amt Chng Q4 Q1
                                       10127 non-null float64
          16 Total Trans Amt
                                       10127 non-null int64
          17 Total Trans Ct
                                       10127 non-null int64
         dtypes: float64(3), int64(9), object(6)
         memory usage: 1.4+ MB
In [12]: X = ds.iloc[:,[16,17]].values
```

These are the attributes that I will be using to seperate the client into cluster:

- Total_Trans_Amt Total amount of transactions made in the last year.
- Total Trans Ct Number of transactions made in the last year.

In [10]: ds.info()

<class 'pandas.core.frame.DataFrame'>

Out[72]: array([1, 1, 1, ..., 2, 2, 2])

```
In [72]: kmeans = KMeans(n_clusters = 3, init = 'k-means++', random_state = 42)
y_kmeans = kmeans.fit_predict(XX)
y_kmeans
```

```
In [73]: plt.scatter(XX[y_kmeans == 0, 0], XX[y_kmeans == 0, 1], s = 10, c = 'red', label = 'Cluster 1')
    plt.scatter(XX[y_kmeans == 1, 0], XX[y_kmeans == 1, 1], s = 10, c = 'purple', label = 'Cluster 2')
    plt.scatter(XX[y_kmeans == 2, 0], XX[y_kmeans == 2, 1], s = 10, c = 'salmon', label = 'Cluster 3')
    plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s = 100, c = 'skyblue', label = 'Centroids')
    plt.title('Total Transactions Amount VS Total No Of Transactions')
    plt.ylabel('Total_Trans_Amt')
    plt.legend()
    plt.show
    plt.savefig("Credit_Card_Kmeans.png", dpi=300)
```



```
In [74]: score = silhouette_score(XX, kmeans.labels_, metric = 'euclidean')
print(score)
```

DBSCAN

Option 1: Plot all eps

In [99]: from sklearn.cluster import DBSCAN

from sklearn.neighbors import NearestNeighbors

from kneed import KneeLocator

```
In [100]: fig = plt.figure(figsize=(20, 10))
    fig.subplots_adjust(hspace=.5, wspace=.2)
    i= 1
    for x in range(10, 0, -1):
        eps = 1/(11-x)
        db= DBSCAN(eps=eps, min_samples=8).fit(XX)
        core_samples_mask= np.zeros_like(db.labels_, dtype=bool)
        core_samples_mask[db.core_sample_indices_] = True
        labels = db.labels_
        ax = fig.add_subplot(2, 5, i)
        ax.text(1, 4, "eps = {}".format(round(eps, 2)), fontsize=25, ha="center")
        sns.scatterplot(XX[:,0], XX[:,1], hue=["cluster-{}".format(x) for x in labels])
        i+= 1
```

-


```
In [101]: db= DBSCAN(eps=0.13, min_samples=8).fit(XX)
    labels = db.labels_
    fig = plt.figure(figsize=(5, 5))
    sns.scatterplot(XX[:,0], XX[:,1], hue=["cluster-{}".format(x) for x in labels])
    plt.title('Total Transactions Amount VS Total No Of Transactions')
    plt.xlabel('Total_Trans_Amt')
    plt.ylabel('Total_Trans_Ct')
    plt.legend()
    plt.savefig("Credit_Card_DBSCAN(1).png", dpi=300)
```

Total Transactions Amount VS Total No Of Transactions


```
In [107]: clusters = db.labels_
    ds['cluster'] = clusters
    DBSCAN1 = ds.groupby('cluster')['CLIENTNUM'].sum()
```

Option 2: Knee knee locater

```
In [89]: nearest_neighbors= NearestNeighbors(n_neighbors=11)
    neighbors = nearest_neighbors.fit(XX)
    distances, indices = neighbors.kneighbors(XX)
    distances = np.sort(distances[:,10], axis=0)
    i= np.arange(len(distances))
    knee = KneeLocator(i, distances, S=1, curve='convex', direction='increasing', interp_method='polynomial')
    fig = plt.figure(figsize=(5, 5))
    plt.plot(distances)
    plt.xlabel("Points")
    plt.ylabel("Distance")
```

Out[89]: Text(0, 0.5, 'Distance')

0.07243625486760386

<Figure size 360x360 with 0 Axes>


```
In [91]: db= DBSCAN(eps=distances[knee.knee], min_samples=8).fit(XX)
labels = db.labels_
    fig = plt.figure(figsize=(5, 5))
    sns.scatterplot(XX[:,0], XX[:,1], hue=["cluster-{}".format(x) for x in labels])
    plt.title('Total Transactions Amount VS Total No Of Transactions')
    plt.xlabel('Total_Trans_Amt')
    plt.ylabel('Total_Trans_Ct')
    plt.legend()
    plt.savefig("Credit_Card_DBSCAN(2).png", dpi=300)
```

Total Transactions Amount VS Total No Of Transactions

From all the clustering model that has been conducted, DBSCAN option 1 is the most suitable clustering model for this type of dataset. Its able to distinguish the cluster correctly and can be seperated into 4 cluster. Cluster 0 is credit card client that is low spender, Cluster 1 is credit card client that is medium spender and Cluster 2 is credit card client that is high spender.

Updated dataset with no of cluster:

In [108]:	ds.head(10)											
Out[108]:		CLIENTNUM	Attrition_Flag	Customer_Age	Gender	Dependent_count	Education_Level	Marital_Status	Income_Category	Card_Category	Months_	
	0	768805383	Existing Customer	45	М	3	High School	Married	60 <i>K</i> -80K	Blue		
	1	818770008	Existing Customer	49	F	5	Graduate	Single	Less than \$40K	Blue		
	2	713982108	Existing Customer	51	М	3	Graduate	Married	80 <i>K</i> -120K	Blue		
	3	769911858	Existing Customer	40	F	4	High School	Unknown	Less than \$40K	Blue		
	4	709106358	Existing Customer	40	M	3	Uneducated	Married	60 <i>K</i> -80K	Blue		
	5	713061558	Existing Customer	44	М	2	Graduate	Married	40 <i>K</i> -60K	Blue		
	6	810347208	Existing Customer	51	М	4	Unknown	Married	\$120K +	Gold		
	7	818906208	Existing Customer	32	М	0	High School	Unknown	60 <i>K</i> -80K	Silver		
	8	710930508	Existing Customer	37	М	3	Uneducated	Single	60 <i>K</i> -80K	Blue		
	9	719661558	Existing Customer	48	М	2	Graduate	Single	80 <i>K</i> -120K	Blue		
	10 rows × 24 columns											

No of customer with each cluster:

In []: