Database Systems, Even 2020-21

ER Diagram

Representing Cardinality Constraints in ER Diagram

- We express cardinality constraints by drawing either a directed line (→), signifying one or an undirected line (—), signifying many between the relationship set and the entity set
- One-to-one relationship between an *instructor* and a *student*
 - A student is associated with at most one instructor via the relationship advisor.
 - A student is associated with at most one department via stud_dept
- One-to-many relationship between an instructor and a student
 - An instructor is associated with several (including 0) students via advisor
 - A student is associated with at most one instructor via advisor.
- In a *many-to-one* relationship between an *instructor* and a *student*
 - an instructor is associated with at most one student via advisor
 - and a student is associated with several (including 0) instructors via advisor
- In a many-to-many relationship between an instructor and a student
 - An instructor is associated with several (possibly 0) students via advisor
 - A student is associated with several (possibly 0) instructors via advisor

Roles

- Entity sets of a relationship need not be distinct
- Each occurrence of an entity set plays a *role* in the relationship
- They specify how **employee** entities interact via the **works-for** relationship set
- Roles are indicated in ER diagrams by labeling the lines that connect diamonds to rectangles
- Role labels are optional, and are used to clarify semantics of the relationship
 - The labels "manager" and worker are called roles
 - Similarly, the labels course_id and prereq_id are called roles

ID

name

tot cred

Participation of an Entity Set in a Relationship Set

Total participation (indicated by double line): Every entity in the entity set participates in at least one relationship in the relationship set student instructor

ID

name

salary

- Participation of **student** in **advisor** relation is total
- Every **student** must have an associated **instructor**
- Participation of *loan* in *borrower* is total
- Every *loan* must have a *customer* associated to it via *borrower*
- Partial participation: Some entities may not participate in any relationship in the relationship set
 - Participation of *instructor* in *advisor* is partial
 - Participation of *customer* in *borrower* is partial

advisor

Complex Constraints for Cardinality Limits

- A line may have an associated minimum and maximum cardinality, shown
 in the form *I..h*, where *I* is the minimum and *h* the maximum cardinality
 - A minimum value of 1 indicates total participation
 - A maximum value of 1 indicates that the entity participates in at most one relationship

 instructor
 - A maximum value of *indicates no limit
 - Example: Instructor can advise 0 or more students
 - A student must have 1 advisor; cannot have multiple advisors

Cardinality Constraints on Ternary Relationship

- At most one arrow can be out of a ternary (or greater degree) relationship to indicate a cardinality constraint
- For example, an arrow from proj_guide to instructor indicates each student has at most one guide for a project
- If there is more than one arrow, there are two ways of defining the meaning:
 - For example, a ternary relationship **R** between **A**, **B** and **C** with arrows to **B** and **C** could mean
 - Each A entity is associated with a unique entity from B and C or
 - Each pair of entities from (A, B) is associated with a unique C entity, and each pair (A, C) is associated with a unique B
 - Each alternative has been used in different formalisms
 - To avoid confusion we outlaw more than one arrow

ER Diagram with a Ternary Relationship:

Binary Vs. Non-Binary Relationships

- Some relationships that appear to be non-binary may be better represented using binary relationships
 - Example: A ternary relationship *parents*, relating a child to his/her father and mother, is best replaced by two binary relationships, *father* and *mother*
 - Using two binary relationships allows partial information (for example only mother being know)
 - But there are some relationships that are naturally non-binary
 - Example: proj_quide

Converting Non-Binary Relationships to Binary Form

- In general, any non-binary relationship can be represented using binary relationships by creating an artificial entity set
 - Replace **R** between entity sets **A**, **B** and **C** by an entity set **E**, and three relationship sets are:
 - R_△, relating E and A
 - o **R**_B, relating **E** and **B**
 - o R_C, relating **E** and **C**
 - Create a special identifying attribute for *E*

 - Create a special identifying attribute for EAdd any attributes of R to EFor each relationship (a_i, b_i, c_i) in R, create

 A new entity e_i in the entity set EAdd (e_i, a_i) to R_A Add (e_i, b_i) to R_B Add (e_i, c_i) to R_C

Converting Non-Binary Relationships to Binary Form

- Also need to translate constraints
 - Translating all constraints may not be possible
 - There may be instances in the translated schema that cannot correspond to any instance of R
 - \circ Alert: Add constraints to the relationships R_A , R_B , and R_C to ensure that a newly created entity corresponds to exactly one entity in each of entity sets A, B, and C
 - We can avoid creating an identifying attribute by making *E* a *weak entity* set identified by the three relationship sets

Design Issues

Use of entity sets vs. attributes

 Choice mainly depends on the structure of the enterprise being modeled, and on the semantics associated with the attribute in question

Use of entity sets vs. relationship sets

Possible guideline is to designate a relationship set to describe an action that occurs between entities

Binary versus N-ary relationship sets

 Although it is possible to replace any nonbinary (N-ary, for N > 2) relationship set by a number of distinct binary relationship sets, a N-ary relationship set shows more clearly that several entities participate in a single relationship

Placement of relationship attributes

ER Diagram

Thank you for your attention...

Any question?

Contact:

Department of Information Technology, NITK Surathkal, India

6th Floor, Room: 13

Phone: +91-9477678768

E-mail: shrutilipi@nitk.edu.in