Domanda 1

Risposta non ancora data

Punteggio max.: 4,00

Con riferimento alla struttura riportata in figura:

A) si svolga su carta:

- la classificazione statica e cinematica;
- la risoluzione del problema statico;
- il tracciamento dei diagrammi delle caratteristiche della sollecitazione N,M,T.

B) Si risponda su terminale alle domande di controllo poste in fondo alla seguente pagina.

Domande di controllo

Riempire i campi numerici adoperando la notazione decimale (es. 0,5 oppure 0.5 ma non 1/2)

La forza normale N in corrispondenza dell'estremo A del tratto AB vale:
$q\ell$
La forza di taglio T in corrispondenza dell'estremo A del tratto AB vale:
$q\ell$
La forza normale N in corrispondenza dell'estremo D del tratto CD vale:
$q\ell$
Il momento flettente M in corrispondenza dell'estremo G del tratto GF vale, in modulo:
$q\ell^2$

Domanda **2**Risposta non ancora data
Punteggio max.: 4,00

Si studi la trave mostrata in figura usando il metodo degli spostamenti utilizzando il modello di Bernoulli-Eulero.

In particolare, si determinino l'espressione dell'abbassamento v(z), del taglio T(z) e del momento flettente M(z), nonche' le reazioni vincolari agli estremi T(0), T(l), M(0), M(l)

Domande di controllo

 $F\ell$

Riempire i campi numerici adoperando la notazione decimale (es. 0,5 oppure 0.5 ma non 1/2)

L'abbassamento $v(\ell/2)$ vale:
$F\ell^3/EI$
La forza di taglio T(0) vale:
F
Il momento M(0) vale:
$F\ell$
Il momento $M(\ell/2)$ vale, in modulo:

Domanda $\bf 3$

Risposta non ancora data

Punteggio max.: 5,00

Trave incastrata syetta a torrone.

Dati numerici

b = 10 cm

9 = 1 CM

l = 1 m

H= wo kn.cm

G=400 6Pa

0 = 200 HPa

- · Cal colore l'inerzia torrionale
- . Colcolore la rotazione dell'estremo libero
- . Determinare le tensione tanguzale mel tratto 1
- . Colcolore la tensione tangensiale mos sul tratto 5
- . Adaperanoli von Mises, Stabilire se il materiale si mantieue eutro il dominio elastico.

Inerzia torsionale:

 cm^4

Rotazione estremo libero $\Delta \theta$:

rad

Tensione tangenziale tratto 1:

MPa

Tensione tangenziale tratto 2:

MPa

Il materiale si mantiene nel dominio elastico:

 $\bigcirc \mathsf{vero}$

Ofalso

◄ Teoria

Vai a...

Risorse per Scienza delle Costruzioni -