

1
2
3
4
5
6 PATENT APPLICATION
7
8

9 Docket No.: D387
10
11
12

13 Inventor(s): Gee L. Lui and Kuang Tsai
14
15
16
17

18 Title: Data Aided Symbol Timing Tracking System for Precoded
19 Continuous phase Modulated Signals
20
21
22

23 SPECIFICATION
24
25
26
27
28

29 Statement of Government Interest
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894

Field of the Invention

The invention relates to the field of continuous phase modulation communications systems. More particularly, the present invention relates to symbol time tracking for continuous phase modulations communications systems, such as Gaussian minimum shift keying communications systems having small bandwidth time products.

Background of the Invention

In synchronous digital data communication systems, the carrier phase and symbol timing of the received signal must be acquired and tracked by the receiver in order to respectively demodulate the received signal and to recover the transmitted data from the received signal. Typically, receivers require carrier phase tracking for signal demodulation and symbol time tracking for data detection for generating received data streams.

Continuous phase modulation (CPM) provides a class of digital phase modulation signals that have a constant envelope. The spectral occupancy of a CPM signal can be controlled or tailored to the available bandwidth of a transmission channel. The constant envelope CPM signals allow saturated power amplifier operation for maximum power efficiency. The use of CPM signals in communications systems can potentially achieve significant improvement in both power and spectral efficiency over other conventional modulation

1 techniques, at the cost of a moderate increase in receiver
2 complexity. Bit error rate reduction has been achieved using
3 trellis CPM demodulation with ideal synchronization. There is a
4 continuing need to develop hardware implementation of the symbol
5 time and carrier phase synchronizers that provides required
6 tracking functions for the coherent CPM receiver. Often, symbol
7 time tracking and carrier phase tracking limit the performance of
8 CPM systems.

9

10 A particular type of CPM system is a Gaussian minimum shift
11 keying (GMSK) system where a data sequence is precoded and the
12 precoded data symbols are used for continuous phase modulation. The
13 GMSK received signals are filtered using Laurent filters and
14 samplers for providing data samples subject to trellis demodulation
15 for generating an estimate of the data sequence. Carrier phase
16 tracking loops are used for demodulating the received signal by
17 tracking the carrier phase, and symbol time tracking loops are used
18 for synchronized sampling of Laurent matched filter signals for
19 generating the data samples that used to generate estimates of the
20 transmitted bit stream using trellis demodulation. These carrier
21 phase and symbol time tracking loops are often referred to as
22 synchronizer. These synchronizers often lose track during noisy
23 communications.

24

25 A binary continuous phase modulation signal can be described
26 by complex envelop equations.

27
28

$$\begin{aligned}
 z(t) &= \operatorname{Re}(z_b(t)e^{j2\pi f_c t}) \\
 z_b(t) &= \sqrt{2E_b / T} e^{j\phi(t, \alpha)} \\
 \phi(t, \alpha) &= \pi h \int_{-\infty}^t \sum_{n=0}^{N-1} \alpha_n f(t - nT) dt \\
 &= \pi h \sum_{n=0}^{N-1} \alpha_n g(t - nT)
 \end{aligned}$$

The term $z_b(t)$ is called the complex envelope of the CPM signal, f_c is the carrier frequency, E_b is the bit energy, T is the bit duration, and N is the transmitted data length in bits, $\alpha = (\alpha_0 \alpha_1 \dots \alpha_{N-1},) \alpha_i \in \{\pm 1\}$, represents one of 2^N equally probable data sequences. The parameter h is the modulation index, $f(t)$ is the pulse response of the smoothing filter in the CPM modulator, and $g(t)$ is the CPM phase response defined in terms of the $f(t)$ pulse response.

$$g(t) = \int_{-\infty}^t f(s) ds$$

The pulse response $f(t)$ is limited to the time interval $[0, LT]$ for some integer L and having the properties that $f(t) = f(LT-t)$ and $f(LT) = 1$. The pulse amplitude modulation (PAM) representation of signal CPM envelope is well known. Laurent has shown that the complex envelope $z_b(t)$ can be expressed as a double summation.

$$z_b(t) = \sqrt{2E_b / T} \sum_{k=0}^{2^{L-1}-1} \sum_{n=0}^{N-1} a_{k,n} h_k(t - kT)$$

In this PAM representation of the baseband CPM signal envelope, also referred to as the Laurent decomposition, the $a_{k,n}$ values are known as pseudo data symbols and are related to the modulated data symbols generally by a pseudo data symbol equation.

$$a_{k,n} = \exp(jh\pi[\sum_{m=0}^n \alpha_m - \sum_{i=0}^{L-1} \alpha_{n-i} \beta_{k,i}])$$

In the pseudo data symbol equation, for all k , $0 \leq k \leq 2^{L-1}$, $\beta_{k,0}=0$ and β_{ki} is a 0 or 1 digit in the binary expansion of $k = \sum_{i=1}^{L-1} 2^{i-1} \beta_{k,i}$. These pseudo data symbols take on values in the set $\{\pm 1, \pm j\}$ when the modulation index h equals 1/2. In general, the first two pseudo data symbols, $a_{0,n}$ and $a_{1,n}$ can be written in an expanded form.

$$a_{0,n} = \exp(j\pi h \sum_{m=0}^n \alpha_m) = a_{0,n-1} J^{\alpha_n}, \quad a_{0,-1} = 1, \quad J = e^{j\pi h}$$

$$a_{1,n} = a_{0,n-L} J^{\alpha_n} J^{\alpha_{n-2}} J^{\alpha_{n-3}} \dots J^{\alpha_{n-L+1}}$$

The set of pulse functions $\{h_k(t)\}$, termed Laurent pulse functions, have a real value and are finite in duration, and are formed by an $h_k(t)$ equation.

$$h_k(t) = \prod_{i=0}^{L-1} c(t + iT + (\beta_{k,i} - 1)Lt)$$

where

$$c(t) = \begin{cases} \sin(\pi h - \pi h g(|t|)) / \sin(\pi h), & |t| \leq LT \\ 0, & \text{elsewhere} \end{cases}$$

Among these $h_k(t)$ pulses, most of the signal energy is carried by the principal Laurent pulse $h_0(t)$, which has a duration of $L+1$ bit times. Another property of the principal Laurent pulse $h_0(t)$ is that it is symmetrical about $t=(L+1)T/2$. The principal Laurent function $h_0(t)$ output provides a gross estimate of the transmitted symbol sequence. These properties of the principal Laurent pulse function $h_0(t)$ have not yet been exploited in developing the error signals for the symbol time and carrier phase tracking loops. These and other disadvantages are solved or reduced using the invention.

1
2 Summary of the Invention
3

4 An object of the invention is to provide data aided symbol
5 timing tracking in continuous phase modulation communication
6 systems.
7

8 Another object of the invention is to provide data aided
9 symbol timing tracking in a Gaussian minimum shift keying
10 communications systems.
11

12 Yet another object of the invention is to provide data aided
13 carrier phase tracking in continuous phase modulation communication
14 systems.
15

16 Still another object of the invention is to provide data aided
17 carrier phase tracking in a Gaussian minimum shift keying
18 communications systems.
19

20 Still another object of the invention is to provide data aided
21 carrier phase synchronizers and symbol time synchronizers in
22 Gaussian minimum shift keying communications systems using
23 principal Laurent responses for generating carrier phase and symbol
24 time errors.
25
26
27

28 ///

1 The present invention is directed to data aided
2 synchronization in digital carrier phase and symbol timing
3 synchronizers applicable to precoded continuous phase modulation
4 (CPM) signal formats, such as in Gaussian minimum shift keying
5 (GMSK) communications systems having, for example, a modulation
6 index of 1/2 with a bandwidth time product (BT) of 1/5. The
7 imbedded synchronizers enable simple implementations for data
8 demodulation for CPM signals, such as GMSK signals with small BT
9 values. Data aided tracking is applied in one form to symbol time
10 tracking, and in another form, to carrier phase tracking. An
11 advantage of the proposed data aided symbol timing synchronizer is
12 the combination of both symbol timing tracking and data
13 demodulation functions into an integrated process obviating the
14 need for a separate data demodulator in the receiver. For example,
15 for GMSK signals with BT values of 1/3 and larger, the data
16 demodulation performance in the symbol timing synchronizer can
17 provide optimum performance. An advantage of the data aided carrier
18 phase synchronizer is the combination of both carrier phase
19 tracking and data demodulation functions into one integrated
20 process obviating a need for separate data demodulator in the
21 receiver. For example, for GMSK signals with BT values of 1/3 and
22 larger, the data demodulation performance provided by the carrier
23 phase synchronizer can also be optimum.

24
25 In the first form, the symbol time tracking synchronizer
26 includes a data aided symbol timing error discriminator that
27 extracts the timing error of the received CPM signal from the
28 principal Laurent amplitude modulation component by an early and

1 late gating operation followed by a multiplication of the data
2 decision to remove the data modulation in the error signal. This
3 symbol timing error signal is then tracked by a second order
4 digital loop operating at the symbol rate. In the second form, the
5 carrier phase tracking synchronizer includes a data aided phase
6 error discriminator that extracts the phase error of the received
7 CPM signal from the principal Laurent amplitude modulation
8 component by a cross correlation operation with the data decision
9 produced by a serial data demodulator. This error signal is then
10 tracked by a second order digital loop also operating at the symbol
11 rate.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 ///

1 These digital synchronizers are used to track the symbol
2 timing or carrier phase of a continuous phase modulation signal
3 received in the presence of noise with the receiver operating in a
4 data demodulation mode. These synchronizers have a nondegraded bit
5 error rate (BER) performance with reduced design complexity. The
6 GMSK signal with a BT=1/5 can be used as a typical partial response
7 CPM signal. The hardware implementation of such a GMSK receiver
8 with both synchronizers can be modeled for providing simulated BER
9 performance. With data precoding of the original data bit stream
10 prior to transmission of the CPM signal, the synchronizers can
11 function as serial demodulators that achieve absolute phase data
12 detection. The data precoding and data aided synchronization
13 approach for detecting symbol timing and carrier phase error is
14 central to providing accurate symbol time and carrier phase
15 tracking in the synchronizers with reduced design complexity. These
16 and other advantages will become more apparent from the following
17 detailed description of the preferred embodiment.

18

19

20

21

22

23

24

25

26

27

28 ///

1
2 **Brief Description of the Drawings**
3

4 **Figure 1A is a block diagram of a symbol time synchronized**
5 **data demodulator.**
6

7 **Figure 1B is a block diagram of a symbol time synchronizer.**
8

9 **Figure 2A is a block diagram of a carrier phase synchronized**
10 **data demodulator.**
11

12 **Figure 2B is a block diagram of a carrier phase synchronizer.**
13

14 **Figure 3 is a graph depicting Laurent pulse functions.**
15

16 **Figure 4 is a graph depicting an early-late gate function.**
17

18 **Figure 5 is a plot of a symbol time error discriminator curve.**
19

20 **Figure 6 is a plot of a carrier phase discriminator curve.**
21

22 **///**
23
24
25
26
27
28

1 Detailed Description of the Preferred Embodiment

2

3

4 An embodiment of the invention is described with reference to
5 the figures using reference designations as shown in the figures.
6 Referring to Figure 1A, a symbol time synchronized data demodulator
7 includes a symbol time synchronizer 10 for data demodulating an
8 $r(t)$ received signal 11 sampled by input sampler 12 using a
9 generated t_n timing signal 13. The $r(t)$ received signal 11 is a
10 combination of the transmitted signal $z_b(t)$ and noise $n(t)$ and is
11 converted into an r_n sampled input signal 14. The synchronizer 10
12 receives the sampled input signal 14 and provides a \hat{d}_n estimate 15
13 of the received data sequence of the r_n sampled input 14 as well as
14 generating a t_{mN} timing signal 17 and t_n timing signal 13. The r_n
15 sampled input 14 can be communicated to conventional Laurent
16 matched filters such as a principal Laurent matched filter 18 and a
17 secondary Laurent matched filter 19 having respective principal and
18 secondary matched filter outputs respectively sampled by samplers
19 20 and 21 for providing respective filter samples into a Viterbi
20 algorithm demodulator 22 that provides a \hat{d}_m estimate 23. The matched
21 filters 18 and 19, samplers 20 and 21, and demodulator 22 are used
22 to generate the \hat{d}_m estimate 23 of the original data sequence using
23 the symbol timing of the t_{mN} 17 timing signal generated by the
24 symbol time synchronizer 10. The filters 18, 19 samplers 20 and 21,
25 and demodulator 22 providing the \hat{d}_m data estimate 23 represents
26 conventional data demodulation.

27

28 ///

Referring to Figures 1A and 1B, and more particularly to the symbol time synchronizer of Figure 1B, a real component and an imaginary component of the r_n sampled input signal 14 are respectively isolated by an inphase component isolator 24 and a quadrature component isolator 26 respectively providing inphase and quadrature sample signals to an odd timing error detector 32 and an even timing error detector 34, that in turn, provide respective odd data and even data signals to a data demultiplexer 36 that provides the \hat{d}_n estimated data sequence 15. The odd timing error detector 32 and even timing error detector 34 receive the inphase and quadrature sampled signals that are respectively communicated to early-late gates 44a and 44b and Laurent transformers $h_D(t)$ 46a and 46b isolating principal Laurent components. The Laurent transformer outputs of the transformers 46a and 46b are sampled by samplers 47a and 47b providing transformed sampled outputs. The early-late gate outputs of the early-late gates 44a and 44b are sampled by gate samplers 48a and 48b providing gate sampled outputs, respectively. The transformer sampled outputs of the transformer samplers 47a and 47b are respectively communicated to hard limiters 50a and 50b. The gate sampled outputs of the gate samplers 48a and 48b are respectively communicated to mixers 52a and 52b. The hard limiters 52a and 52b respectively provide the odd data and even data to the data demultiplexer 36 that provides the \hat{d}_n estimated data 15. The mixers 52a and 52b respectively mix odd and even data with the gate sampled outputs of gate samplers 48a and 48b to respectively provide e_{2k+1} odd and e_{2k} even timing signals that drive a loop filter 53, that in turn, controls a voltage controlled oscillator 54 used for generating the t_n timing signal. The t_n timing signal 13

1 is further communicated to a modulo N counter 55 that provides the
2 t_{mN} timing signals as well as generating the e_{2k+1} odd and e_{2k} even
3 sampling signals that respectively control the samplers 47a and
4 47b, and, 48a and 48b. As may now be apparent, the synchronizer 10
5 operates in a timing loop extending through samplers 47ab, limiters
6 50ab, mixers 52ab, loop filter 53, VCO 54 and counter 55 for
7 synchronized generation of the odd and even data and the t_n and t_{mN}
8 timing signals, 13 and 17, respectively, while generating the \hat{d}_n
9 data estimates 15.

10
11 Referring to Figures 1A, 1B, 2A and 2B, and more particularly
12 to Figures 2A and 2B, the carrier phase synchronizer demodulator of
13 Figure 2A and specifically the carrier phase synchronizer 60 of
14 Figure 2B, the carrier phase synchronizer 60 generates a $e^{-j\hat{\theta}}$ phase
15 adjustment signal 59 for adjusting the phase of the $r(t)$ input
16 signal 11. The carrier phase synchronizer 60 also receives an $r_n e^{-j\hat{\theta}}$
17 input sample signal 61 from a carrier phase sampler 62. The $r(t)$
18 received input signal 11 and $e^{-j\hat{\theta}}$ phase adjustment signal are mixed
19 by a mixer 63 that provide an input mixed signal that is sampled by
20 a carrier phase sampler 62 at the rate of the t_n timing signal for
21 providing the $r_n e^{-j\hat{\theta}}$ sampled input signal 61 to the carrier phase
22 synchronizer 60. The $r_n e^{-j\hat{\theta}}$ input sampled signal 61 can be fed into
23 a conventional principal Laurent matched filter 64 and a secondary
24 Laurent filter 66 providing matched filters outputs respectively to
25 and sampled by matched filtered samplers 68 and 70 sampled at the
26 rate of the t_{mN} symbol timing signals for providing matched filter
27 inputs into a Viterbi algorithm demodulator 72 that generates a \hat{d}_m
28 estimate 73 of the original data sequence. The carrier phase

1 synchronizer 60 can also be used to generate the \hat{d}_n data estimate
2 15.

3

4 The carrier phase synchronizer 60 receives the t_n timing signal
5 that may originate from the symbol time synchronizer 10 in the
6 preferred form, or from a convention symbol timing tracking loop,
7 not shown. The $r_n e^{-j\theta}$ sample input signal 61 is communicated to an
8 inphase component isolator 74 and a quadrature component isolator
9 76. The inphase component output of isolator 74 and the quadrature
10 component output of isolator 76 are respectively sampled by an
11 inphase sampler 80 and a quadrature sampler 82 at the rate of the t_n
12 symbol timing signal 13 that also drives a modulo N counter 84
13 providing $2kN$ even and $(2k+1)N$ odd timing sampling signals. The
14 inphase sampler 80 provides a sampled inphase signal to an inphase
15 transformer 86 as the quadrature sampler 82 provide a sampled
16 quadrature signal to a quadrature transformer 88, providing
17 respectively inphase and quadrature transformed signals to hard
18 limiters 90a and 90b, and by cross coupling, to mixers 92b and 92a.
19 The hard limiters 90a and 90b respectively provide inphase and
20 quadrature hard limited signals to hard limiter samplers 94a and
21 94b that respectively sample at rates of the $2kN$ even and $(2k+1)N$
22 odd timing sampling signals from the modulo N counter 84. The hard
23 limiter samplers 94a and 94b respectively provide odd and even data
24 signals that are fed into a data demultiplexer 94 for generating
25 the \hat{d}_n data estimate 15. The odd data and even data are respectively
26 mixed with the quadrature and inphase transformed signals from the
27 transformers 88 and 86, respectively, by the mixer 92a and 92b, for
28 generating e_{2k+1} odd and $-e_{2k}$ even timing error signals. The $-e_{2k}$

1 timing error signal is inverted by inverter 96 for generating an e_{2k}
2 even timing signal. The e_{2k} even and e_{2k+1} odd timing error signals
3 drive a loop filter 97 that in turn controls a VCO 98 that
4 generates the $e^{-j\hat{\theta}}$ phase adjustment signal 59. As may now be
5 apparent, the carrier phase synchronizer 60 is part of a loop
6 between the $e^{-j\hat{\theta}}$ phase adjustment signal 59 and the $r_n e^{-j\hat{\theta}}$ input
7 sampled signal 61 with the loop extending through the isolators 74
8 and 76, samplers 80 and 82, transformers 86 and 88, hard limiters
9 90a and 90b, samplers 94a and 94b, mixers 92a and 92b, loop filter
10 97 and VCO 98 for providing the $e^{-j\hat{\theta}}$ phase adjustment signal 59,
11 while concurrently generating the \hat{d}_n data estimate 15.

12

13 Referring to all of the Figures, the Laurent pulse function is
14 shown in Figure 3 for the principal h_0 pulse function, the $h_1(t)$
15 secondary pulse function and the $h_2(t)$ tertiary pulse function. The inphase
16 component isolators 24 and 74 isolate the real component of
17 the r_n input signal as the quadrature component isolators 16 and 76
18 isolate the imaginary component of the r_n input signal. The inphase
19 Laurent transformers 46a and 86 isolate the energy of the principal
20 Laurent pulse component of the real component of the r_n input signal
21 as the quadrature Laurent transformers 46b and 88 isolate the
22 energy of the principal Laurent pulse component of the imaginary
23 component of the r_n input signal. The early-late gate function is
24 shown in Figure 4 for providing a digital transition in synchronism
25 with Laurent components as isolated by the isolators 24 and 26. In
26 the symbol timing synchronizer 10, the early-gates 44a and 44b
27 operate on the respective isolated real and imaginary component
28 energy for indicating the magnitude of the symbol timing error. The

1 early-late gates 44a and 44b ideally have a positive value and a
2 negative value on early and late respective sides of the center of
3 the principal Laurent pulse function. These +/- values are combined
4 with respective sides of the principal Laurent pulse function to
5 provide two equal but opposite products that ideally sum to a zero
6 magnitude error. As the principal Laurent pulse function early or
7 late shifts relative to the current timing of the +/- gate
8 function, the magnitude error increases positively or negatively.
9 The area under the principal Laurent pulse function is multiplied
10 by the gate function to produce a cross correlation of the gate
11 function and principal Laurent pulse function for generating the
12 magnitude error value that is used to adjust the timing signal to
13 be in synchronism with the current symbol time of the received
14 signal. Figure 5 shows symbol timing errors for the symbol timing
15 synchronizer 10.

16

17 The carrier phase synchronizer 60 uses the Laurent
18 transformers 86 and 88 for isolating the energy of the principal
19 Laurent pulse component for generating the magnitude of the carrier
20 phase error. The carrier phase synchronizer 60 also uses cross
21 coupled principal Laurent pulse energy for indicating the sign of
22 the carrier phase error. Figure 6 shows the carrier phase errors of
23 the carrier phase synchronizer 60.

24

25 The symbol time synchronized data demodulator includes the
26 symbol time synchronizer 10 for generating the t_n timing signal 13
27 as well as the \hat{d}_n data estimates 15. The carrier phase synchronizer
28 60 receives the t_n symbol timing signal 13 for sampling the real and

1 imaginary isolated components as well as for generating the odd and
2 even data of the \hat{d}_n data estimates 15. Hence, both of the
3 synchronizers 10 and 60 operate as serial data demodulators for
4 generating the \hat{d}_n data estimate 15. Both of the symbol timing and
5 carrier phase serial demodulators of synchronizers 10 and 60
6 operate respective modulo N counters 55 and 84 at the rate of N
7 counts per symbol period of T seconds clocked at the rate of the t_n
8 symbol timing signal 13. The complex envelope $z_b(t)$ of the CPM input
9 signal 11 is sampled at a uniform rate of N samples per symbol
10 period. These r_n samples are simultaneously applied to the Laurent
11 transformers 46a, 46b, 86, and 88 that function as data detection
12 filters.

13 In the symbol timing synchronizer 10, the early-late gates 44a
14 and 44b function as impulse response filters. At each symbol
15 decision instant of $t=KN$ sample counts, for odd values of K, i.e.,
16 $K=2k+1$, the timing error between the receiver t_n timing signal 13
17 and the timing of the received signal is formed by respectively
18 multiplying the output of the early-late gate 44a the algebraic
19 sign of the respective data detection filter, that is, the
20 transformer 46a and hard limiters 50a. For even values of K, i.e.,
21 $K=2k$, the even timing error detector 34 operates similar to the odd
22 time error detector 32. The algebraic sign of the data detection
23 filter outputs, that is, the output of the hard limiters 50a and
24 50b, is a data decision on the received data symbol for precoded
25 binary CPM received signals. The timing error formed by the
26 detectors 32 and 34 is then filtered by the loop filter 53,
27 integrated by the VCO 54, and quantized into sample counts by the
28 modulo N counter 55 to produce an adjustment to the sampling timing

1 at symbol epoch i.e., at time instants of a multiple of N counts.
2 The symbol timing signal 13 as well as the sampling signals are
3 delayed or advanced by the timing adjustment according to whether
4 the adjustment is positive or negative. No more than N most recent
5 signal samples need to be stored by the synchronizer to allow for
6 the advancing of the sampling timing at the symbol time in the
7 tracking mode.

8

9 During data demodulation, the transmitted data symbol can be
10 obtained by differentially decoding two successively received
11 pseudo data symbols $a_{0,n}$. For a CPM modulation index of $h=0.5$, the
12 data stream is precoded into a data stream d_k fed into the data
13 modulator having an input symbol stream α_k with $\alpha_k=(-1)^k d_{k-1} d_k$. The
14 pseudo data symbol $a_{0,n}$ becomes $a_{0,n}=J(n)d_n$ with $J(n)=1$ for n being
15 odd and $J(n)=j$ for n being even. Thus, with data precoding, either
16 a conventional trellis demodulator or a serial demodulator of the
17 synchronizers 10 and 60 can be used to demodulate the received CPM
18 signal without differential decoding. A CPM modem using precoding
19 can achieve a performance improvement from 0.5dB to nearly 2.0dB
20 over a modem without precoding.

21

22 Because the Laurent pulse function $h_0(t)$ is the dominant pulse
23 function in a CPM signal, the symbol timing error of the received
24 signal relative to the receiver clock can be detected by using the
25 early-late gating on the received baseband signal in conjunction
26 with serial data demodulation of the synchronizers 10 and 60. The
27 timing error is produced by respectively multiplying the data
28 decisions generated by the serial demodulation of the transformers

1 46a and 46b and the hard limiters 50a and 50b with the output of
2 the early-late gate 44a and 44b. Respective multiplication by
3 mixers 52a and 52b of the early-late gate output with hard limited
4 data decisions is needed to eliminate the data modulation so that a
5 consistent timing error can be formed. With ideal elimination of
6 the data modulation, the detected timing error is given by a
7 detection equation.

8

9

10 $D_t(\tau) = \int_0^{(L+1)T} G(s)h_0(s - \tau)ds$

11

12

13

14 The early-late gate function $G(t)$ provides an ideal timing
15 error detection curve $D_t(\tau)$ for a given CPM signal, such as a BT=1/5
16 GMSK signal.

17

18 Carrier phase error detection is formulated based on a unit
19 amplitude CPM signal received in the absence of channel noise with
20 a carrier phase offset θ . The phase offset complex signal envelope
21 is defined by an $r(t, \theta)$ equation.

22

23 $r(t, \theta) = z_b(t)e^{j\theta}$

24 $= \left\{ \sum_{k=0}^{Q-1} \sum_{n=0}^{N-1} a_{k,n} h_k(t - nT) \right\} e^{j\theta}$

25

26

27

28

When the $r(t, \theta)$ signal is applied to the transformed and hard limited serial demodulator, the demodulator output at time $t=mT$ is defined by an r_m equation.

$$\begin{aligned} r_m &= \int_{-\infty}^{\infty} r(t, \theta) h_0(t - mT) dt \\ &= \left\{ \sum_{k=0}^{Q-1} \sum_{n=0}^{N-1} a_{k,n} R_{0,k}(m - n) \right\} e^{j\theta} \\ &= J(m)d_m e^{j\theta} R_{0,0}(0) + \left\{ \sum_{k=0}^{Q-1} \sum_{\substack{n=0 \\ (n \neq m, k=0)}}^{N-1} a_{k,n} R_{0,k}(m - n) \right\} e^{j\theta} \end{aligned}$$

where

$$R_{0,k}(p) = \int_{-\infty}^{\infty} h_0(t) h_k(t + pT) dt$$

With the data d_k being equally probable, the averaged value of $d_m a_{k,n}$ is zero for all integers m , when $k \neq 0$, and also for all integers $m \neq n$ when $k=0$. Thus, with the carrier phase error θ being small and when the serial demodulators can correctly demodulate the m -th transmitted bit d_m , then, by multiplying the serial demodulated bit by the complex conjugate of $J(m)d_m$ and taking the imaginary part of the product obtains a random variant whose mean value is $D_\phi(\theta) = R_{0,0}(0)\sin(\theta) \approx R_{0,0}(0)\theta$. The randomness is due to the intersymbol interference, which is data pattern dependent.

Because both timing and carrier phase error detection use serial demodulation to provide the required data decision for error generation, the transformed and hard limited serial demodulator,

such as in the synchronizers 10 and 60, can be used for both the tracking error generation and data detection. The error signals produced at every receiver symbol time are applied to the respective loop filter 53 and 97 and voltage control oscillator 54 and 98 to adjust the sampling timing instants or the carrier phase to the received signal. Data reliability of a trellis demodulator is usually better than that of a serial demodulator such as the synchronizers 10 and 60, particularly when the signal memory span L is large. However, if L is small or if an equalizer is used in cascade with the principal Laurent pulse filter, the simple serial receiver can perform practically as well as the more complex trellis demodulator for the purpose of tracking error generation. Thus, an equivalent variation of the synchronizers 10 and 60 is to feedback the data decisions from the trellis demodulator to the error detectors, provided that the processing delay of the trellis demodulator is properly compensated for and that tracking performance is not unduly compromised by the delay.

The mean error output or discriminator characteristics of the symbol timing error and carrier phase error detectors is shown for the BT=1/5 GMSK signal, in Figure 5 and Figure 6, respectively. These characteristics are obtained by computing in random data the averaged detector output for a given error offset with the other offset error set at zero. For small errors, the linear slope of the timing error discriminator curve is about -1.5 and that of the phase error discriminator curve is about 1.0. The deviation of these characteristics from their ideal S curves, at large offset

1 errors, is attributed to the feedback of erroneous data decisions
2 caused by the intersymbol interference in the GMSK signal.

3

4 Both the symbol time synchronizer 10 and carrier phase
5 synchronizer 60 have a linear continuous time model that can be
6 implemented digitally for use in performance simulations of the
7 GMSK receiver. The linear model is appropriate because the tracking
8 error is typically small when the receiver is in a tracking mode.
9 The loop filter, used in each synchronizer 10 and 60, is of a
10 proportional and integral type with a transfer function in the form
11 of $F(s) = \alpha + \beta/s$ and the VCO transfer function in the form of K_v/s
12 where K_v is the VCO gain. The closed loop transfer function of the
13 synchronizers 10 and 60 is defined by an $H(s)$ equation.

14

15

$$H(s) = \frac{\phi_o(s)}{\phi_i(s)} = \frac{2\zeta\omega_n s + \omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$$

16

17

18

19

20

In the $H(s)$ equation, the term ζ is the damping factor and ω_n is the natural frequency of the synchronizers 10 and 60. These parameters are related to the loop filter and gain parameters by $\alpha = 2\zeta\omega_n / K_D K_v$ and $\beta = \omega_n^2 / K_D K_v$, where K_D is the slope of the error discriminator curves shown in Figures 5 and 6. The one-sided equivalent noise bandwidth of the synchronizers 10 and 60 is $B_L = (\omega_n / 8\zeta) (1 + 4\zeta^2)$. Each of the second order synchronizers 10 and 60 can be digitally implemented with the integrator $1/s$ approximated by the digital accumulator $1/(1 - z^{-1})$ where z^{-1} represents a unit bit

time delay. In a digital implementation, the natural frequency and loop bandwidth parameters should be regarded as parameters normalized by the bit rate. Using the loop parameters $K_D=1$, $K_V=1$ and $\zeta=1/\sqrt{2}$ for the carrier phase synchronizer 60 and $K_D=\sqrt{1.5}$, $K_V=1$ and $\zeta=1/\sqrt{2}$ for the symbol time synchronizer 10, the step error response of the carrier phase synchronizer 60 to a 20 degree phase step and that of the symbol time synchronizer 10 to a half bit time step are simulated and compared to the theoretical step error response. The ramp error responses for both synchronizers 10 and 60 are also simulated and compared to the theoretical ramp error responses. The dispersion of the simulated error responses from the theoretical is due to the intersymbol interference in the received signal.

The symbol time synchronizer 10 and carrier phase synchronizer 60 are characterized as providing error signals generated from quadrature Laurent pulse response components of a receiving signal modulated by symbols generated from a precoded data sequence. In the preferred form, the principal Laurent components indicates the original digital bit sequence of the precoded bit stream. The precoding functions to precondition the transmitted symbol sequence so that the principal Laurent function indicates the original data bit stream that is alternately disposed on the I and Q channels of the transmitted CPM signal.

The precoded PCM signal allows the use of the principal Laurent pulse response for extracting the sign of the symbol timing error or carrier phase error that is also the data of the original data uncoded sequence. In the symbol time synchronizer 10, the

1 early-late gates 44a and 44b will extract the magnitude of the
2 symbol timing error. The early-late gates 44a and 44b are sampled
3 at the current symbol t_n timing signal 13. As the timing of the
4 received signal 11, varies from the current timing of the timing
5 signal 13, the early-late gates 44a and 44b provide an indication
6 of the magnitude of the current timing error. The CPM signal will
7 carry the data information in one symbol time in the inphase
8 component signal and in the next symbol instance in the quadrature
9 component signal, as the data bit information content alternates
10 between the inphase and quadrature components. The timing
11 synchronizer 10 in combination with data precoding enable efficient
12 synchronization timing and data extraction at the expense of
13 requiring the use of both I & Q component signals that might
14 otherwise be used to communicate two independent data streams. The
15 loop filter 53 functions to smooth the timing error signal
16 generated by the detectors 32 and 34. The smoothed timing error
17 from the loop filter 53 then drives the VCO that in turn provides
18 the smoothly varying t_n timing clock signal. The precoded data
19 provides the sign of the timing error, and hence, the symbol timing
20 synchronizer 10 is data aided, and hence also provides an estimate
21 15 of the original data sequence.

22
23 In the carrier phase synchronizer receives the t_n timing signal
24 and the received signal r_n and operates on the phase error θ
25 generated from the $r(t, \theta)$ equation that describes the phase error.
26 The carrier phase synchronizer 60 also uses the isolated I & Q
27 principal Laurent components and determines the sign of the phase
28 error. But, rather than determining a magnitude of the phase error

1 using early-late gates, the carrier phase synchronizer drifts the
2 phase error depending on the sine of the phase error having a sign
3 that is also the original uncoded data sequence. The $\hat{\theta}$ term
4 represents the carrier phase error that is generated using cross-
5 coupling of the Laurent components generating the e_{2k} and e_{2k+1}
6 error signals with the sign of $\hat{\theta}$ indicating the direction of the
7 phase error drift.

8

9 The symbol timing synchronizer 10 and the carrier phase
10 synchronizer 60 offer an efficient mechanism for generating timing
11 and phase error signal while also providing an indication of the
12 uncoded data sequence however requiring data precoding having
13 symbol modulated on both I and Q channels. Those skilled in the art
14 can make enhancements, improvements, and modifications to the
15 invention, and these enhancements, improvements, and modifications
16 may nonetheless fall within the spirit and scope of the following
17 claims.

18

19

20

21

22

23

24

25

26

27

28 ///