160 Ptas.

Canarias 165 pts.

DAR FORMA AL SONIDO: LA ENVOLVENTE

LOS SECRETOS DEL DISCO EN CODIGO MAQUINA

Valor numérico de las operaciones lógicas

SOFTWARE

Sir Fred, un valeroso caballero made in Spain

SOLICITUD DE NUMEROS ATRASADOS

SIN EL RECARGO DEL IVA

Oferta válida hasta el 28 de febrero de 1986.

Deseo recibir en mi domicilio, **sin el recargo del IVA**, los siguientes números atrasados de **Microhobby AMSTRAD**, al precio de **150** ptas. cada uno

Nota:

Por razones administrativas no podemos admitir solicitudes de envío de números sueltos con pago mediante tarjeta de crédito. Los pedidos contra-reembolso se incrementarán en 75 ptas. de gastos de envío.

		Trans.
NOMBRE		EDAD
APELLIDOS		
CIUDAD	PF	ROVINCIA
		PROFESION
¿ERES SUSCRIPTOR DE M	NICROHOBBY AMSTRAD?	N.º DE SUSCRIPTOR (si la recuerdas)
Marco con una (x) en el Talón bancario adju	casillero correspondiente la for nto a nombre de HOBBY PRESS	rma de pago que más me conviene. , S. A.
	re de HOBBY PRESS, \$. A., N.º.	
/ Contra reembolso.		Firmo
6		

Jefe de Publicidod Cancha Gutiérrez Publicidad Barcelono Jasé Galán Cartes Tel: (93) 303 10 22/313 71 62

Secretaria de Dirección Marisa Cagarra

> **Suscripciones** M.º Rosa Ganzález M.º del Mar Calzada

Redacción, Administración y Publicidad La Granja, 39

Palígana Industrial de Alcobendas Tel.: 654 32 11 Telex: 49 480 HOPR

> **Dto. Circulación** Carlos Perapadre

Distribución Caedis, S. A. Valencia, 245 Barcelona

Imprime ROTEDIC, S. A. Crta. de Irún. Km. 12,450 (MADRID) Fotocomposición Navacamp, S.A. Nicalás Marales, 38-40

Fotomecánica GROF Ezequiel Salana, 16 Depósito Logal: M-28468-1985

Derechas exclusivas de la revista COMPUTING with the AMSTRAD

Representante para Argentina, Chile, Uruguay y Paraguay, Cio. Americano de Ediciones, S.R.L. Sud América 1.532 Tel.: 21 24 64. 1209 BUENOS AIRES (Argentina).

M. H. AMSTRAD no se hace necesariamente salidaria de las apiniones vertidas par sus colabaradares en las artículas firmadas. Reservadas todas las derechas.

Se solicitará contral OJD

Primeros 6 pasos

Cantinuamas examinando en detalle las operaciones lógicas, como una compleja orden Basic, expresando un cancepto de alto nível, se convierte en un númera que para el **Amstrad** se transforma en cierto a falsa, 1 à 0.

10 Sonido

Estudiamos esta semana como podemos dar forma al sonido producido por el **Amstrad**, así como a controlar su volumen, mediante la envolvente de sanido.

12 Primeros repasos

Sinopsis del artículo del número 2 de **AMSTRAD** SEMANAL: aprendienda a hacer programas y a editarlos.

Análisis 70

Buscar una cadena en otra seria complicado a no ser por el comando INSTR. Análisis lo explica.

Vive la grandiosa oventura de Sir Fred, un caballero de la Tabla Redanda hecha en España.

20 Serie Oro

Explicor de que va el programa serío estrapear la sorpresa. Animo y ¡orriba!

24 ProgramAcción

Los camandos basic de gestión del disco tienen sus equivalentes en lenguoje máquina. Os mostromos las rutinas para que padáis usarlas en vuestros programas.

Código 28 Máquina

Las instrucciones de intercambio de datos entre registras son de uso común en un programa en máquina. Estudiamos como usarlas en profundidod.

Director Editorial
Jasé I. Gómez-Centurión
Director Ejecutivo
Victor Prieto
Subdirector
José Mario Díoz
Redactara Jefe
Morto Garcío
Diseña
José Flores

Colabaradores
Francisco Portolo, Pedro Sudón
Miguel Sepúlveda,
Francisco Martin,
Jesús Alonso, Pedro S. Pérez
Amalia Gámez
Juon J. Mortínez,
David Sapuerto, Alberto Suñer,

David Sapuerta, Alberto Suñer, Eduardo R. Velasca Secretaria Redaccián Carmen Santomaria

Fatagrafía Corlos Condel

Corlos Condel Jovier Martínez **Portada**

M. Borco

Jovier Igual, J. Pons, F. L. Frontán, J. Septien, Pejo, J. J. Moro, Luigi Pérez

> Edita HOBBY PRESS S.A.

Presidente María Andrino Cansejera Delegado Jasé I. Gómez-Centurián

Jefe de Publicidad Concho Gutiérrez Publicidod Barcelona José Golán Cortes Tel: (93) 303 10 22/313 71 62

Secretaria de Dirección Marisa Cogorro

Suscripcianes M.º Rosa Ganzólez M.ª del Mor Calzado

Redacción, Administración y Publicidad La Granja, 39

Polígano Industriol de Alcobendos Tel.: 654 32 11 Telex: 49 480 HOPR

> **Dto. Circulacián** Carlas Perapadre

DistribuciónCoedis, S. A. Valencio, 245
Barcelono

Imprime
ROTEDIC, S. A. Crto. de Irún.
Km. 12,450 (MADRID)
Fotocompasicián
Navacomp, S.A.
Nicolós Morales, 38-40
Fotomecánica

GROF Ezequiel Salono, 16 **Depósita Legal:** M-28468-1985

Derechos exclusivos de la revista COMPUTING with the AMSTRAD

Representante paro Argentina, Chile, Uruguay y Paroguay, Cia. Americona de Ediciones, S.R.L. Sud Américo 1.532. Tel.: 21 24 64. 1209 BUENOS AIRES (Argentina).

M. H. AMSTRAD no se hoce necesariomente solidorio de las opiniones vertidas por sus colaboradores en los orticulos firmados. Reservados todos los derechos.

Se salicitoré control OJD

MICROHOBBY

A Sumario

Año II • Número 25 • 18 de Febrero ol 24 de Febrero de 1986 160 ptas. (incluido I.V.A.) Canarias, 155 ptas + 10 ptas sobretasa aérea Ceuta y Melilla, 155 ptas.

5 Primera plana

Apple Farth. CP/M para Macintosh. El Smalltalk ya existe paro PCS.

Primeros 6 pasos

Continuamos examinando en detalle las aperaciones lógicas, como una campleja orden Basic, expresanda un concepto de alto nivel, se convierte en un número que para el **Amstrad** se transforma en cierto o falso, 1 ó 0

10 Sonido

Estudiamas esta semana como podemos dar formo ol sanido producido por el **Amstrad**, así cama a controlar su volumen, mediante la envolvente de sonida.

12 Primeros repasos

Sinopsis del ortículo del número 2 de **AMSTRAD** SEMANAL: aprendiendo a hacer programas y a editarlos.

Análisis 🚺

Buscar una cadeno en otra sería complicado o no ser por el comanda INSTR. Análisis lo explica.

18 Mr. Joystick

Vive la grandiosa aventura de Sir Fred, un caballero de la Tabla Redanda hecho en España.

20 Serie Oro

Explicar de que va el programa sería estropear la sorpresa. Animo y ¡arriba!

24 ProgramAcción

Los comandas basic de gestión del disco tienen sus equivalentes en lenguaje máquino. Os mostramos las rutinas para que podáis usarlas en vuestros pragramas.

Código 28 Máquina

Las instruccianes de intercambio de dotos entre registros son de uso común en un programa en máquina. Estudiamos como usarlos en profundidad.

AMSTRAD ESPAÑA APUESTA POR EL PCW8256

El Scala del hotel Meliá Castilla fue de nuevo el escenario escogido por Indescomp para anunciar a bombo y platillo las buenas nuevas acerca del ordenador que, sorprendemente, «amenaza» con convertirse en la estrella de Amstrad para el difícil y competitivo campo de la gestión, de los llamados ordenadores serios.

sólo se puede calificar como de masas, y probablemente no seamos capaces de transmitir al lectar la enorme multitud que se congregó en el Scala del Meliá Castilla: dentro, unas 1.100 personas, y, desgraciadamente, unas 300 fuera, imposibilitadas para entrar; materialmente, no cabía un alfiler. Esta vez se contá con un invitado de excepción en las salas del Meliá: Alan Sugar, chairman y Gran Jefe de Amstrad se presentó en España para apayar can su presencia el espaldarazo al PCW8256.

José Luis Domínguez, presidente de Indescomp, habló a los asistentes describiendo detalladamente la ascendente trayectoria de su compañía y de los productos Amstrad, cosa que nadie, hoy por hoy, puede negar: Amstrad es número 1 en Euro-

Domínguez explicó que la estrategia de su compañía y la de Amstrad sigue siendo la misma de siempre: ofrecer a las consumidares un ordenador llave en mano, lista para funcionar inmediatamente y al mínimo precio posible, esto es, 129.900 ptas. La idea subyacente está muy clara: aumentar el sector del mercado accesible a la informática, en general, y a **Amstrad** en particular.

Nuestros lectores recordarán que vaticinamos que el 8256 tendría software de utilidades y lenguajes a muy largo plazo; pues bien, tenemos la satisfacción de confesar que nos equivacamos completamente.

El PCW8256 va a tener soft de to-

do tipo, y en cantidad.

¿Ejemplos? Microsoft Multiplán, Dbasell, toda la caterva de lenguajes y utilidades de Nevada y Digital Research (PASCAL/MT+, DR GRA-PAH, DR DRAW, etc) y, lo que es más prometedor, todos rondarán las 15.000 ptas de precio y algunos ya están en la calle, como Multiplán.

Un programa del que es preciso hacer un aparte es un generador de bases de datos, el BORIAR situado en este margen de precio y cuyo equivalente IBM PC cuesta ciento y muchas mil pesetas.

Se espera que en un plazo de 2 ó 3 semanas todo esto, o gran parte, esté dispanible, según fuentes de la

propia Indescamp.

Jasé Luis Domínguez explicó también a sus distribuidores que el relanzamiento del PCW obedece, entre otras cosas, a la posibilidad de convertir unos meses de malas ventas en unos de muy buenas ventas, gracias al ofrecimiento al pública de un buen equipo.

Para apoyar sus intenciones con algo más que palabras, Domínguez mostró a la gente un resumen audiovisual de unas de las campañas de publicidad más masivas que se han echo nunca, verdaderamente impresionante.

El costa de la campaña oscilará entre unos 180 millones de pesetas, y abarcará radio, periódicas, televisión, etc. La imagen del PCW estará en todas partes, según José Luis.

Después de la parte seria de la reunión, llegó la diversión y la ale-

gría: se sortearon muchas cosas, algunas más grandes, atras más pequeñas, religiosamente entregadas por Alan Sugar y Jasé Luis Domín-

Entre las grandes, una furganeta, así, como suena, para algún distri-

Entre las pequeñas, 7 ordenadores y 500.000 ptas. de publicidad gratis en la agencia de publicidad Arge, creadora de la campaña para el 8256.

También el pública recogió con agrado (se lo juro) revistas e incluso suscripciones de regalo a AMSTRAD SEMANAL (para gran sorpresa de la redacción de la misma) y Amstrad User. Los maliciosos que sugieran que esa es imposible, recuerden que en un ambiente festivo y popular como el de la fiesta uno se siente inclinado a ser tolerante, ¡qué diablos! Para remachar el clavo, Martes y trece tuva una actuación tan buena y caústica como siempre, y así, entre plato y plato, se fue pasando el ra-

Hablando de platos, aquí tienen el menú de la cena:

Pastel del chip. Diskette de mariscos. Software de escalpines flameante. Soufle helado al Locoscript. Café con Sugar. Bebidas hasta 256K. Periféricos.

Bramas aparte, el PCW8256, alias el Deseado, como Fernando VII, ya está entre nosotros, arropado con un plantel de software más que suficiente y a unos precios que creemas no exagerar al calificarlos de revolu-

MAS LENGUAJES

os sistemas pequeños tienen derecho a paseer sistemas de desarrollo de software, como por ejemplo el SkyFarth creada par ·Tosch.

Esta implementación del lenguaje Forth, de momento sólo existe para el Apple II, e incluye un editor de código fuente que a la vez, como en tados los sistemas Forth, es también el compilador. Esto permite crear, depuror y corregir programas rápido-

Los programas, una vez finalizados, pueden salvarse en el disco como cádigo objeto y/o overlays.

En el paquete se incluye también un ensamblador completa y utilidades para la depuración de programas, junto con un programa de runtime que permite al código del compilador ejecutarse sin la presencia del propio compilador.

SkyForth puede manejar aritmética en coma flotante, enteros de 32-bits, estructuras de datos en forma de lista y gráficos basados en

ventanas.

CP/M PARA MACINTOSH

a empresa narteamericana IQ Software camercializa para el Mac de 128 Kbytes el sistema operativo CP/M-68K.

IQ soft incluye, junto con el DOS, el compilador de C de Digital Research y el Macro Ensamblador.

La emulación del CP/M 2.2 (sistema aperativo del Amstrad), también está dispanible, pero requiere al «Fat Mac», el de 512 K para poder eiecutarse.

Las discas usados por el CP/M-68K na san compatibles can el resto de

discos del Mac.

malltalk es un lenguaje de programación orientado a objetos, basada en ventanas y «popup» menús (los típicos menús en los que uno escoge un ítem desplazándose por él mediante las tedas del cursor o algo porecido).

rimera

LENGUAJE

SMALLTALK

ARA PCs

Software Systems ha creado paro IBM PC y compatibles el Method, una versión del Smalltalk 80 que viene con un compilador, un depuradar

ma un sistema de desarrolla, y requiere un PC con 512 Kbytes de RAM y dos unidades de disca de 360 Kbytes.

Se encuentran también en desarrallo versiones para el Apple II y sistemas basados en el 68000 de Moto-

NACE UN LENGUAJE DE PROGRAMACION

🕑 a empresa americana LUCID Software Corp. ha creada y comercializado un nuevo lenguaje de programación de alta nivel específicamente diseñado para aplicaciones de negacios. El recién nacido, llamado LUCID, está basado en el lenguaje de programación C, pero no tiene declaraciones de variables-tipo.

LUCID posee 188 funciones incluidas que le permiten, entre otras cosas, manejar la entrada/salida del ordenador, acceder a ficheros secuenciales y aleatorios, manipular cadenas alfanuméricas y funciones matemáticas.

El lenguaje funciona bajo las sistemas aperativas MS-DOS, PC/IX, UNIX y XENIX. Par ahora, no existe una versión CP/M.

Hasta tal punto está pensado este lenguaje para negocios, que puede leer datas directamente de las programas dBASEII y dBASEIII, e inter-cambiarlas con Latus 1-2-3, Simphony y Framework.

En cuanto a los precios, oscilan entre 300 y 400 dólares, según el ordenador y el sistema aperativo.

OPERACIONES BOOLEANAS

Todos los ordenadores realizan sus funciones trabajando internamente con ceros y unos (sistema binario). Vamos a intentar ver de una forma clara y detallada una serie de operaciones que actúan directamente sobre la representación binaria de cualquier número. Se trata de los «operadores lógicos».

n el artículo anterior vimos cómo podíamos relacionar dos o más condiciones mediante una serie de nuevas palabrejas. El que ahora les hablemos de OR, ANDZ, NOT y XOR no debe sonarles ya a chino y seguro que

IF A < B OR B > C THEN...

será una instrucción que no le causará ningún problema cuando se la encuentre dentro del listado de un programa.

Pero esta no es la única utilización de los operadores lógicos.

Operaciones lógicas con números: álgebra de Boole

Hasta ahora solamente hemos realizado con los números las clásicas operaciones aritméticas a las que todos ya estamos acostumbrados. Suponemos que ya serán capaces de decirle a su Amstrad que haga cualquier suma, por muy larga que sea, y que evaluar la fórmula del «interés simple» no tendrá ningún

Existen otra serie de operaciones que quizá se apartan de los conceptos clásicos que tenemos sobre cómo podemos manipular un número, o una serie de ellos. Se trata de las «operaciones lógicas», también llomadas «BOOLEANAS» por pertenecer al Algebra de Boole. ¡No se asuste con el nombre¿Y, cuáles son sus características?

Vamos a verlas. Dentro del Algebra de Boole sólo vamos a poder utilizar como operando dos valores diferentes «ceros» y «unos». La solución también será de este estilo -no es bueno salirse de las normas—.

Es decir, vamos a realizar unas operaciones lógicas sobre unos operandos binarios —cero o uno— que nos van a dar resultados también binarios. Sólo esos valores.

No es muy difícil observar la semejanza que hay con el sistema binario de numeración en el que representamos cualquier número decimal como una sucesión de ceros y unos. Una suma de números binarios se haría sumando las cifras binarias (o bits) de cada uno de los órdenes (o columnas) correspondientes.

Pues estas operaciones lágicas se harían de una forma muy parecida. El Amstrad pasaria primeramente los operadores a binario -en realidad ya los tiene así en la memoriay después operaría con las cifras binarias (o bits) de las columnas que se correspondan.

Por eso podemos decir que estos operadores lógicos actúan directamente sobre cada uno de los bits que forman parte de los operandos.

Pero hasta ahora no hemos visto nada sobre qué es lo que hace cada una de estas operaciones. Vayamos por partes.

Operador AND

La primera de las palabras clave que vimos en el capítulo anterior fue AND. Empecemos también ahora con este operador.

La operación AND entre dos bits nos do como resultado 1 cuando ambos bits son 1. En cualquier otro caso, el valor que nos devuel-

Según esta definición podemos construirnos una tabla de verdad semejante a las que vimos en el artículo anterior. Inténtelo. Recuerde, solamente nos dará 1 cuando los dos operandos sean 1.

Por si lo cree oportuno, echando un vistazo o la figura 1 comprobará si coincide con la suya. Esperamos que así haya sido.

Veámoslo ahora en la práctica. Nuestra tarea va a consistir en realizar la operación lógica:

12 AND 6

Si tiene prisa par conocer el resultada, teclee:

PRINT 12 AND 6

y en la pantalla aparecerá la solución: 4.

¿Cómo ha ocurrido esto? Primero pasemos a binario ambos números.

12 = 1100

У

6 = 0110

Sería muy interesante que ahora nosotros hiciéramos de ordenador y calculáramos el resultado de la operación. Cojemos estos números binarios y los escribimos en un papel como si se tratara de una operación aritmética clásica:

1100

AND

0110

y a continuación calculamos la solución operando con los dos bits (o cifras binarias) de cada una de las columnos.

Con la ayuda de la Tabla de Verdad de esta operación AND no le habrá sido muy difícil encontrar que:

0100

es el resultado correcto. Pero este número binario ¿a qué decimal es equivalente? Si lo desarrolla comprobará que nuestro ordenador manual nos dará un número que, si no se ha equivocado, ha de coincidir con el 4 que nos dio nuestro Amstrad.

Intente hacer manualmente varios de estos ejemplos y después compruebe si los resultados son correctos utilizando el ordenador para obtenerlos.

¿Qué le parece si ahora hacemos un programita que nos muestre gráficamente cómo funciona todo esto? Vamos a ello.

Lo primero que hace es pedirnos los valores de los operandos —líneos 50 y 60. En la 80 calcula el resultado de la operación AND hecho entre los dos volores enteros que le hemos dado.

Los líneos 90 y 120 nos muestran gráficomente en la pantalla el método que habíamos seguido en el caso de realizar esta operación manualmente.

En la 90 calculamos e imprimimos una cadena de 8 dígitos binarios que representan el valor del primer operando (contenido en la variable **«operando 1»**). Lo hacemos por medio de la función BIN\$ con dos parámetros.

Primeros pasos

El primero contiene el valor entero que queremos transformar y el segundo, el número de caracteres que van a formar la parte de la cadena.

¡Ojo con el uso de esta función! Deberá tener mucho cuidado al utilizarla y no olvidor que nos devuelve un volor que es una «cadena de caracteres» y que por tonto no podremos hacer operaciones matemáticas con dicho valor.

Del mismo modo actuamos en la línea 100, pero esta vez con el segundo operando — **«operando2»**—.

En la línea 120 imprimimos por un lado la cadena de dígitos binarios (BINS) que representa el volor de la voriable **«resultada»** y a continuación el valor decimal del mismo.

Creemos que después de hacer unos cuontos ejemplos con este Programa no tendrá ninguna duda a la hora de hacer esta nueva operación. No olvide que AND solomente nos da 1 cuando ambos operandos son 1.

Operador OR

Con su permiso vamos a pasar al siguiente operador. OR es una operación lógica que nos da cero cuandos los dos operandos tienen el valor 0. En cualquier otro caso el result ad o se-

Basta, por tanto, que uno de los operandos sea 1 para que el valor que obtengamos con la operación sea también 1. No se puede decir que sea muy complicado, ¿verdad?

Esta definición la tiene resumida en la tabla II, donde podemos encontrar el resultado viendo los operandos que vamos a utilizar.

¿Sigue todavía con ganas de hacer de ordenador? La experiencia precedente no ha sido muy pesada e imaginamos que no tendrá inconveniente en volver a repetirla.

Vamos a realizar la operación lógica:

12 OR 6

Si como en el caso anterior teclea:

PRINT 12 OR 6

la respuesta es inmediata: 14.

Pero hemos quedado que primero lo vamos a hacer manualmente. ¡Ya haremos trabajor después al **Amstrad**!

Ya habíamos calculado antes los números binorios correspondientes a los operandos, por tonto tenemos un trabajo menos, 12 = 1100

6 = 0110

A continuación formamos la operación en el modo tradicional:

1100

OR

0110

y calculamos el resultado operando los dos dígitos binarios de cada una de las columnas conforme a los valores dados en la tabla II.

Y sin ningún problema sacaríamos el resul-

1110

que resulta ser el binario correspondiente al número 14 que calculó el Amstrad. No cabe duda que nuestro ordenador ha sido mucho más rápido pero es conveniente repetir unas cuantas veces este proceso para comprender la filosofía de estas operaciones lógicas. Hágamos caso y pruebe varios ejemplos. Los valores de los operandos se los dejamos a su elección.

Y una vez que ya sea un maestro en el manejo de esta operación, pese a ver el Programa II que le permitirá comprobar si los resultados obtenidos anteriormente son válidos o tiene que seguir practicando.

Su estructura es muy semejante a la del Programa I con la diferencia que ahora empleamos otra operación. Seguimos utilizando la función BIN\$ para representar con una «cadena» de dígitos binarios todos los valores decimales. ¡No olvide que es una cadena!

La siguiente operación lógica de la que nos vamos a ocupar es NOT. ¿Qué es lo que hace?

Operador NOT

El operador NOT aplicado a un digito binario (o bit) invierte el valor que tiene dicho dígito. O sea, si vale 1 lo transforma en 0 o viceversa. Así de sencillo. Su Tabla de Verdad será también muy sencilla, puede comprobarlo en la tabla III.

Y, ¿cómo actúa sobre un número entero?. Paciencia. Para verlo vamos a emplear el mismo método que hemos seguido hasta ahora: hacerlo manualmente. Por ejemplo, vamos a calcular:

NOT 6

El número binario equivalente es: 6 = 0110 (ya lo teníamos antes)

	code ANDO 1	OPERANDO 2	RESULTADO
AND	OPEKANDO I	0	0
	0	1	0
_	0	0	0
-			
-			

TABLA 1

Y ahora nos toca a nosotros el trabajo de cambiar ceros por unos y unos por ceros. Lue-

NOT 6 = 1001

Esto es lo que en Algebra de Boole llamamos calcular el «complemento a 2»de un número cualquiera.

Con el Programa III lo verá mucho más gráficamente. El Amstrad supone que cada número entero está representado por 16 dígitos binarios, por eso verá que en este Programa así los representamos. No se asuste que no es para tanto.

Suponemos que, vistos los anteriores, el seguirlo no le será nada difícil.

Con una pequeña regla práctica le podemos decir que el operador nos transforma un número entero siguiendo una sencilla formulita:

NOT 6 = -(6+1) = -7

Le recomendamos que pruebe que así ocurre con varios números ejecutando el Programa III: el Amstrad nunca falla, no lo olvide.

Y la última operación lógica que podemos realizar con nuestro ordenador es XOR. Como cualquier operación booleana solamente opera con dígitos binarios —ceros y unos— y su resultado también es una cifra binaria.

Este operador nos da «uno» cuando los operandos a los que afecta son diferentes: el primero es 1 y el segundo es 0 o viceversa.

En el momento que ambos operandos sean iguales — bien «unos» o bien «ceros», el resultado de la operación es 0.

Modo de hacerlo. ¿Seguimos con el método del ordenador manual? Sí, ¿verdad?

Y, ¿para qué cambiar de números? Volvemos con nuestros viejos conocidos 6 y 12 y a ver lo que sale.

12 = 11006 = 0110

Volvemos a colocar las cifras binarias como para una operación tradicional:

1100

XOR

0110

y el resultado será: 1010.

Hemos operado los dos bit que se encuentran en la misma columna conforme la definición dada para esta operación y sólo obtenemos el valor 1 cuando ambos kit son diferentes.

Si queremos, podemos hallar el número decimal equivalente al resultado: 10.

Cuando domine el mecanismo de esta operación teclee:

PRINT 12 XOR 6

y el ordenador calculará el valor 10 un poco más rápido que si nosotros lo hacemos manualmente.

La Tabla de Verdad de este operador podemos encontrarla en la tabla IV. Compruebe, si le parece, que está de acuerdo con la definición que hemos dado de la operación.

Como para los demás operadores lógicos, a continuación les damos un pequeño programa para que con el intente despejar las posi-

OR	OPERANDO 1	OPERANDO 2	RESULTADO
OK.	0	0	0
_	0	1	1
_	1	11	

TABLA II

ble dudas — grandes o pequeñas — que todavía pueda tener.

Aunque no le contemos cómo funciona no tendrá ningún problema en seguirlo, ¿verdad?

Bueno, ya hemos hecho un pequeño recorrido por todos los operadores lógicos, pero, ¿para qué vale todo esto?

Teclee:

PRINT «PEPE» = «JUAN»

y se encontrará con la sorpresa de que el ordenador no le da ningún mensaje de error sintáctico sino que el valor 0 aparece en la pan-

Después de la instrucción PRINT tenemos la relación.

«PEPE» = «JUAN»

¿se cumple esta condición? Es evidente que no, ya que estamos comparando dos literales que son constantes y distintos. ¿Y el cero que ha salido en la pantalla?

La explicación a todo esto es muy sencillo. El ordenador primero ha evaluado si la condición se cumple o no. Cuando no se cumple, como en este caso, la evaluación da como resultado el cero que aparece en la pantalla. ¿Y si se cumple? Compruébelo usted mismo con:

PRINT **«PEPE»** < > **«JUAN»**Ahora que la condición se cumple -«JUAN» es siempre distinto de «PEPE»en la pantalla aparece -1. Vamos a sacar conclusiones.

Cuando la condición es falsa, su evaluación da como resultado 0, que es una sucesión de bits iguales a 0. Sin embargo, si la condición es verdadera tenemos un —1 en la pantalla (−1 es una sucesión de bits en la que todos son iguales a 1). ¿Va comprendiendo?

Esto quiere decir que cuando relacionábamos dos condiciones, en el artículo anterior, por medio de algún operador lógico en realidad lo que estábamos haciendo era comprobar si se cumplía cada una de las condiciones dándonos como resultado 0 ó -1 como hemos visto— y después realizábamos cualquier operación lógica con los resultados de ambas evaluaciones.

El Programa V nos dará una clara visión del camino seguido.

Vomos a seguirlo. En la línea 30 el Ams**trad** nos informa de su nombre, por si hubiera dudas. Mediante la línea 40 nos pregunta por el nuestro y el valor que le damos lo almacena en la variable «nombre\$».

NOT	OPERANDO	RESULTADO
-	0	0
		TARIA III

A llegar a la línea 50 nos encontramos algo nuevo. ¿Cómo funciona? La primero que hace es evaluar la condición que hay entre las paréntesis.

nambre\$ = «AMSTRAD»

Si se cumple —el nombre que hemos metido par el teclado es el mismo— el programa meterá en la variable «condición» un —1. En casa que no se cumpla meterá un 0 como ya vimos.

En la siguiente línea --60- preguntamos si existe «condición» a su valor es 0.

IF condicion THEN... ELSE... mira si el valor de la variable «condición» es 0 o es distinto de 0 (-1 por ejemplo).

Si es distinto de cero (o lo que es lo mismo, si la condición se cumple) el programa continuará por las instrucciones que sigan a THEN.

Si es igual a cera (en este caso la condición no se ha cumplido) seguiremos por la rama del ELSE. ¿Verdad que no es tan complicado como parece? Vista cómo se evalúan las condiciones vomos a intentor aplicar alguno de estas operadores lógicos.

Este pequeño programa nos va a preguntar por dos números y va a intentar imprimirnos el más pequeño de los dos. Observemos cómo la hace.

Metemos los das númeras en las variables «númerol» y «número2» por media de las instrucciones INPUT de las líneas 30 y 40. Hasta aquí todo en orden.

La línea 50 es la del lía. La primera que vamos a hacer es calcular el valor de los paréntesis.

El primero es:

númerol AND númerol < número2

Hagamos de ordenador. Si se cumple la condición que númerol < número2, la evaluación de esta condición es —1 (o una sucesión de bits con valor 1).

Si hacemos un AND de «número 1» con -1, el resultado de la operación es «númerol». Puede emplear el Programa 1 para verlo.

PROGRAMAS

- 10 REM PROGRAMA I 20 CLS 30 PRINT TAR(10): "OPERADOR LOGICO A
- 50 INPUT "VALOR DEL PRIMER OPERANDO
- : ".operando1 60 INPUT "VALOR DEL SEGUNDO OPERAND 0: ".operando2 70 PRINT
- 80 resultado=operando: AND operando
- 90 PRINT TAB(15); BIN\$ (operando1,8) 100 PRINT TAB(10); "AND"; TAB(15); BIN \$(operando2.8)
- 110 PRINT TAB(15); "----120 PRINT TAB(15);BIN\$(resultado,8) =":resultado
- 10 REM PROGRAMA II 20 CLS 30 PRINT TAB(10); "OPERADOR LOGICO O
- 50 INFUT "VALOR DEL PRIMER OPERANDO
- : ",operando! 60 INPUT "VALOR DEL SEGUNDO OPERAND
- 0: ".operando2 70 FRINT
- 80 resultado operandol OR operando2 90 PRINT TAB(15);8IN\$(operando1,8) 100 PRINT TAB(10);"OR";TAB(15);BIN\$ (operando2,8)
- 110 PRINT TAB(15): "----" 120 PRINT TAB(15):BIN\$(resultado,8) =":resultado
- 10 REM PROGRAMA III 30 PRINT TAB(10): "OPERADOR LOGICO N 40 PRINT
- 50 INFUT "VALOR DEL OPERANDO: ".ope rando 60 PRINT
- Par tanta, si se cumple que número 1 < número2, el valor del primer paréntesis es el contenido de «número 1». Pero no se cumplirá la condición del segundo paréntesis:
- Si número 1 < número 2 es VERDADERO número1 > = número2 es FALSO y su evaluación será 0.

Al hacer en el segundo paréntesis AND de un número can «cero», el resultado es evidentemente 0.

Si sumomos los valores obtenidos nos quedará algo así como:

númerol + 0

o la que es igual:

número 1 Luego si se cumple que

menor tal y como queríamos.

númerol < número2 el programa nos imprime el valor del número 70 resultado=NOT operando

80 FRINT TAB(5); "NOT": TAB(10); 81N\$(operando, 16)
90 PRINT TAB(10):"

100 PRINT TAB(10); RIN\$(resultado, 16

- 10 REM PROGRAMA IV 20 CLS
- 30 PRINT TAB(10): "OPERADOR LOGICO X OR"
- 40 PRINT
- 50 INFUT "VALOR DEL PRIMER OPERANDO
- : ".operandol
 60 INPUT "VALOR DEL SEGUNDO OPERAND
- 0: ",operando2 70 PRINT
- 80 resultado=operandol XOR operando
- 90 PRINT TAB(15):RIN\$(operando1.8) 100 PRINT TAB(10): "XOR": TAB(15); BIN
- \$(operando2,8) 110 PRINT TAB(15):"----"
 120 PRINT TAB(15):FIN\$(resultado,8)
- =":resultado
- 10 REM PROGRAMA V
- 20 CLS 30 PRINT"ME LLAMO AMSTRAD, Y TU";
- 40 INPUT nombre\$
- 50 condicion=(nombre\$="AMSTRAD")
- 60 IF condicion THEN PRINT"TENEMOS EL MISMO NOMBRE" ELSE PRINT"NO SOMO S TOCAYOS"
- 10 REM PROGRAMA VI
- 20 DLS
- 30 INPUT "FRIMER NUMERO: ".numero1 40 INPUT "SEGUNDO NUMERO: ",numero2
- 50 PRINT "EL NUMERO MENOR ES: "; (num erol AND numerol numero2) + (numero2
- AND numero1>=numero2)

TABLA IV

Le sugerimos como trabajo personal ver qué paso si

númerol > número2

Bueno, lo dejamos por el momento. Na alvide que cualquier aperador lágica que actúa sabre números nos da como resultado un valar numérica. ¿De acuerdo? Hasta pranto.

ESCRIBIENDO NUESTROS PROPIOS PROGRAMAS

asta ahora, nos hemos limitado a darle o la máquina una instrucción codo vez. Sin embargo, a poco compleja que seo lo tarea que pretendemos realizar, será necesario dividirla en porte y darle al AMS-TRAD muchas instrucciones. Por ejemplo, supongamos que queremos que aparezca en la pantalla el siguiente mensaje:

> **PROGRAMAR** ES **FACIL**

Con nuestro método «paso-a-paso» tendríamos que teclear:

PRINT «PROGRAMAR» [ENTER]

PRINT **«ES»** [ENTER]
PRINT **«FACIL»** [ENTER]

Rápidamente se ve que de esta forma no funciona, porque cada instrucción sucesiva aparece en la pantalla «entre medias». Lo que necesitamos es darle al micro tres instrucciones tales como:

- 1. Escribe «programar»
- 2. Escribe «es»
- 3. Escribe «fácil»

en secuencia, de modo que el ordenador las ejecute sin detenerse a proguntar qué queremos que haga después.

Un programa es una secuencia de instrucciones

Tal secuencia de instrucciones es llamada PROGRAMA y, como podéis ver, va numerada en orden creciente, para que el micro pueda saber a donde debe dirigir su atención primero. Ahora puede comenzar nuestro programa, tecleando:

10 PRINT «PROGRAMA» [ENTER]

Hemos elegido para numerar la primera instrucción el número 10 en lugar del 1. En la práctica de la programación, se suelen numerar las líneas de 10 en 10 por razones que más tarde os parecerán obvias. Llamamos al número de una instrucción su NUMERO DE LI-NEA. EL ORDENADOR NO EJECUTA INME-DIATAMENTE LA INSTRUCCION. Ningún «PROGRAMAR» aparece en la pantalla. Esta reacción inesperada se debe al número de línea, el cual le informa a la máquina que lo que siga no debe ser obedecido ahora, sino atesorado ciudadosamente en la memoria junto con el resto de las instrucciones que vengan después, si existen, para ser ejecutadas conjuntamente en el mamento aportuno.

Acabamos, pues, de descubrir que todo ordenador posee dos MODOS DE OPERA-CION, uno, llamado MODO INMEDIATO, en el cual la orden es obedecida en cuanto se pulsa [ENTER] y un segundo, conocido como MO-DO PROGRAMA, en el que las instrucciones se depositan en memoria, esperando pacientemente a cobrar vida. Este es el que nos interesa. Ahora, por favor, teclead:

20 PRINT «ES» [ENTER] 30 PRINT «FACIL» [ENTER]

y, en modo directo, CLS [ENTER], para borrar

Todo nuestro texto ha desaparecido, pero no hay que preocuparse demasiado. Existe un comando Basic que nos mostrará en pantolla nuestro programa completo, lo que se llama el LISTADO del mismo. Para verlo y creerlo: LIST [ENTER]

y debería aparecer el programa número 1.

De sabios es rectificar

En previsión de algún posible «despiste» en éste o posteriores programas, vamos a ver cómo podríamos corregirlo. Trataremos de alterarlo para escribir:

> **PROGRAMAR** SIMPLE

Pues bien, el métado más simple de todos (y tosco) es ¡teclearla de nuevo! La nueva versión reemplazará a la antigua en la memoria del AMSTRAD, y eso es todo; para demostrarlo, teclése: 30 PRINT «SIMPLE» [ENTER] a continuación LIST [ENTER] y, ¡haps!, tenemos el programa. Como prueba

Primeros repasos

final y decisiva, RUN [ENTER] mostrará en la pantalla:

> **PROGRAMAR** SIMPLE

Hay formas más safisticadas de corregir (EDITAR) una línea, pera las revisaremos posteriormente. De mamento, éste será nuestra métado «antierrores».

Naturalmente, si nos percatamos de un error de escritura MIENTRAS introducimos una línea de programa, usaríamas la tecla DEL para borrarlo, siguiendo a partir de ese punto hasta finalizar con ENTER la instrucción.

Supongamos que de nuevo queremos alterar el programa para que produzca como salido:

PROGRAMAR ES BASTANTE SIMPLE

Obviamente, necesitamos una nueva línea de programa entre la 20 y la 30, que podemos probar con:

25 PRINT **«BASTANTE»** [ENTER]

Vamos a bregar ahora con algo completamente diferente (programa número 2). El efecto es bastonte impresionante, ¿verdad?

Hasta este momento, nuestros programas se limitaban a copiar en la pantalla el contenido entrecomillado de las líneas; aqui, con la adición de una más, la cantidad de out put (sdida en pantalla) se incrementa considerablemente, y lo único que hemos hecho es ordenar al AMSTRAD que repita una y otra vez la misma secuencia de operaciones instrucción 40; «vete a la línea 10», (en inglés GOTO 10).

Si la salida del programa va demasiado rápida, podemos detenerla pulsando, la tecla ESC; el programa continuará ejecutándose a la pulsación de cualquier otra tecla excepto ESC, en cuyo caso se detendría, devolviéndonos el cantrol.

PROGRAMAS

- REM * FROGRAMA 1 * 10 PRINT"PROGRAMAR" 20 PRINT"ES"
 - 30 PRINT"SIMPLE"

REM * PROGRAMA 2 * 10 PRINT "ME"

20 PRINT "DIVIERTE" 30 PRINT "PROGRAMAR"

40 GDTO 10

Los bucles: 1.º clave de la programación

Lo que sucede en el interior del ordenadar es lo siguiente: ME (línea 10)

DIVERTE (linea 20) PROGRAMAR (linea 30)

y entonces llega a la línea 40 que le ordena volver a repetir el ciclo, observad cómo al «acabarse» la pantalla, el AMSTRAD, él solito, hace sitio para más texto por el expeditivo procedimiento de subir hacia arriba el exis-

AMPLIA LAS POSIBILIDADES DE TU AMSTRAD

AKISTRAD

GAUTO INCESCOMP

Avda. del Mediterraneo, 9. Tela. 433 45 43 - 433 48 78. 29007 MADRID Delegación Cataluña: Tarragena, 116 - Tel. 325 10 SC. 08015 RARCELONA

DAR FORMA AL SONIDO

En nuestro último encuentro estuvimos viendo cómo conseguir que el Amstrad produzca sencillos sonidos utilizando una versión muy básica del comando SOUND.

fácil comprender por qué:

SOUND 1,200,100,5 produce una nota de volumen 5, por el canal A con un tono 200, durante un segundo.

Estamos seguros de que ha sido así, pero nuestra insistencia es debida a que usaremos esta nota en porticular como base pora nuestra exploración de la envolvente de volumen del **Amstrad**.

Y, se preguntará, ¿qué es una envolvente de volumen?

Concepto de envolvente

Cuondo introducimos en el ordenador: SOUND 1,200,100,5

seremos recompensados con uno nota bastante sonora. Observe que el sonido no varía mientras duro la nota.

El problemo es que en la vida real los notas no permanecen con el mismo nivel de sonido. Su volumen sube o boja mientras las estamos oyendo. Nosotros no podemos conseguir este efecto con el simple comando SOUND que hemos usodo hasta el momento.

La noto comienza con un nivel 5 y permonece en él hosto que deja de sonor un segundo después. No obstante, utilizando una envolvente de volumen definida previamente podemos hacer que la nota cambie de nivel mientros suena.

Así que vamos a definir la envolvente de volumen con:

ENV 1,5,2,20

No se preocupe si por el momento no comprende esta instrucción, ocepte solomente que este comando define una envolvente de volumen a lo que a partir de ahora nos referiremos como la número 1.

Escuchemos el efecto que produce en una nota teclenado:

SOUND 1,200,100,5,1

Hemos podido escuchar que la nota se hace más y más alto. Sigue sonando durante un segundo pero ahora el volumen varía. Él comando es el mismo que habíamos utilizado anteriormente excepto que hemos añadido un 1 al final para decirle al micro que utilice la envolvente definida previamente como la número 1.

Disponemos de hasta 15 envolventes

Podemos definir hasta 15 de estas envolventes, numerados del 1 al 15. Una vez definidas, podemos llamarlas añadiendo el número opropiodo al final de nuestro sencillo comando de sonido. Entonces el **Amstrad** reproduce la nota variando el nivel de ocuerdo con la envolvente de volumen especificada.

Antes que entremos en los meconismos de cómo se define una envolvente de volumen, queremos primero odmitir que la semana pasada les dijimos algo que puede considerorse como una pequeña mentira.

Recordará que escribimos que el parámetro de volumen podía variar desde 0 a 7 y que tenía un volor por defecto de 4. Bueno, esto es cierto, pero sólo cuando no utilizomos la envolvente de volumen.

Si la utilizamos, el porámetro de volumen puede varior realmente desde 0 (silencio) o 15 (nivel máxima). No hay diferencio en la intensidad absoluta de máximo volumen, un parómetro de volumen de valor 7 sin envolvente nos do el mismo nivel que uno de 15 con una envolvente

Justamente por ello, cuando especificamos una envolvente, el rango del parómetro volumen puede tener 16 volores en lugar de los 8 que utilizamos habitualmente.

Mostramos este nuevo rango de los valores de los parámetros en la figura 1.

De este modo podemos definir hasta 15 envolventes de volumen y, añadiendo el número apropiado al final del comando SOUND, podemos usarlas para varior la intensidad de una nota mientras está sonando. Nuestra pregunta es, ¿cómo definiremos una envolvente de volumen?

Análisis del comando ENV

La respuesta es fácil: utilizando el comando ENV. Esta nueva instrucción tiene un as-

pecto feroz al poder estar seguida de hasta 16 parámetros.

Cuondo conseguimos conocerlo, sin emborgo, no es tan fiero como parecía. El secreto está en no dejarle ver que le tenemos miedo.

Oigamos de nuevo los efectos que produce la envolvente 1. A menos que la hayamos redefinido o tengamos desconectado el Ams**trad**, podemos encontrarla guardada en nuestro micro, pero para estar seguros tecleemos:

ENV 1,5,2,20

Observe que el comando ENV no praduce ningún sonido por sí mismo. Podemos teclearlo hasta que se nos congestione la cara por el esfuerzo pero, a pesar de ello, el Amstrad permanecerá mudo. Todo lo que hace la envolvente de volumen es (cuando se le pide) influir en el comando SOUND. Este es el que hace ruido. Si no nos cree, teclee:

SOUND 1,200,100,5,1 y oirá una nota que ha sido afectada por la

envolvente de volumen.

Si escucha con atención, podrá oír claramente cinco cambios de intensidad durante el segundo que está sonando la nota. El volumen de ésta se incrementa en intervalos de 2 unidades y cada intervalo dura 20 centésimos de segundo.

Es muy importante hacer que la subida o caída de volumen causada por la envolvente no sea progresiva. Se lleva a cabo en escalones. Formalmente diremos que el cambio es discre-

to, no continuo.

Vamos a examinar detalladamente la envolvente 1. Su forma más general es:

ENV N,P,Q,R es decir, el comando envolvente seguido de

cuatro parámetros.

Todo lo que hace N es «etiquetar» la envolvente definiéndola con un número comprendido entre 1 y 15. Hay una envolvente 0 pero es la definida por defecto, lo mismo que su duración fijada en dos segundos en un volumen que es el del parámetro normal de la instrucción SOUND.

El parámetro P especifica al micro en cuántos escalones queremos que evolucione la nota. Puede haber hasta 127 de estos intervalos. En su envolvente de volumen 1 hay 5

El parámetro Q dice al **Amstrad** el incremento o decremento en intensidad que tiene que variar en cada escalón. El volumen inicial se toma del parámetro correspondiente en el comando SOUND. En el caso de la envolvente 1 el volumen aumenta 2 unidades por cada escalón de la envolvente. El valor del parámetro Q puede variar entre -128 y 127.

Finalmente el parámetro R decide la duración de cada uno de los escalones en los que está dividida la envolvente. Se mide en centésimas de segundo y puede tener un rango de valores camprendido entre 0 y 255.

La tabla II es una recapitulación de todos estos parámetros y sus rangos correspondien-

La figura 1 representa los efectos de: SOUND 1,200,100,5

vistos de un modo gráfico.

Como podemos ver, el nivel de volumen permanece igual durante todo el segundo que dura la nota.

Ahora probemos con nuestra envolvente fovorito:

ENV 1,5,2,20

(si es que hemos apagado el **Amstrad** o redefinido la envolvente) y

SOUND 1,200,100,5,1

La figura II nos presento lo que ocurre. La envolvente provoca que el volumen de la nota se incremente durante el segundo que sueno.

Hay cinco escalanes y cada uno dura 20 centésimos de segundo. Cada etapa provoca un incremento de dos unidodes en el volumen, el resultado al final de todos los escalones es que el volumen aumenta de 7 a 15 en el segundo que suena la nota.

A continuación vamos a realizar un cambio y definiremos otra envolvente de volumen con:

ENV 2,5,1,20

Podemos «oírlo» en acción introduciendo: SOUND 1,200,100,5,2

Llamamos a la envolvente de volumen 2 con el parámetro del final del comando SOUND. Esta vez la intensidad de la nota aumenta también, pero como el parámetro Q es 1, no consique el mismo nivel que antes.

A propósito, la envolvente de volumen número 1 sigue guardada en la memoria del Amstrad. Podemos comprobarlo por noso-

tros mismos tecleando: SOUND 1,200,100,5,1

y obtendremos el mismo resultado que antes.

Con la envolvente podemos variar el volumen

La envolvente de volumen no sirve siempre para hacer que el volumen aumente. Tombién podemos hacerle disminuir. Si no se lo cree defina una nueva envolvente con:

ENV 3,5,-1,20

y llámela con:

SOUND 1,200,100,5,3

Ahora el volumen se decrementa uno en cada escalón conforme avanza el tiempo. Mientros decrementamos el volumen, pruebe:

ENV 4,5,-2,20

SOUND 1,200,100,5,4

Parece una campana, **¿verdad?** Observe que el parámetro de volumen del comando SOUND —la cuarta cifra— es 14. Quiere decir que la envolvente de volumen comienza por debajo del volumen máximo y va disminuyendo de 2 en 2 en cada etapa.

Intente definir algunas envolventes propias y vea los efectos que puede crear. Es muy divertido y, mientros se entretiene, puede encontrarle algún que otro efecto extroño.

En los ejemplos anteriores hemos usodo siempre el comando SOUND con una duración de 1 segundo. Del mismo modo, siempre le hemos dividido en 5 etapas, cada una de los cuales tiene una duración de 20 centésimas de segundo.

En otras palabras, los 5 escalones de la envolvente de volumen suman un segundo, que es la duración del comando SOUND. Podríamos preguntarnos qué ocurre si la duración de SOUND fuese más larga o mós corto que el tiempo que hoce folta para todos los escalones de la envolvente de volumen. Veamos.

Definomos una nueva versión de la envolvente 1 con:

ENV 1,5,2,10

De nuevo hay 5 etapas, cada una de ellas con una duración de 10 centésimas de segundo de modo que la envolvente dura 0.5 segundos. El tiempo que necesita una envolvente de volumen se obtiene de multiplicar P×R, el número de escalones por el tiempo que duro cada uno de ellos.

A continuación veamos qué ocurre cuando tecleomos:

SOUND 1,200,100,5,1

que le dice al **Amstrad** que toque durante un segundo.

Como podemos escuchar la nota alcanza rápidamente el volumen máximo y se mantiene en este nivel hasta que finaliza el comando SOUND. Dicho de otro modo, la envolvente sólo afecto a la nota durante el tiempo que abarca la misma (P×R). La nota continúa durante todo el tiempo especificado en SOUND, sonando can el volumen alcanzado cuando terminó la envolvente.

Veamos qué ocurre en el caso contrario, volviendo a definir la envolvente 2 con:

ENV 2,5,1,20

que tiene 5 etopas con una duración totol de un segundo.

Ahora produciremos un sonido que dure medio segundo y escucharemos la que ocurre. Teclee:

SOUND 1,200,100,5,2

y oiremos cómo corta a las primeras de cambio a nuestra pobre envolvente. Si quiere obtener el efecto completo utilice:

SOUND 1,200,100,5,2

Aparte de las discrepancias entre la duración de la envolvente de volumen y la del comando SOUND que le llama, puede presentarse otro problema. ¿Qué ocurre si hay demasiados escalones en la envolvente?

Probándolo se verá. Mientras ENV 1.10.2.20

espera 10 escalones con una duración de un quinto de segundo cada uno de ellos y nece-

Tabla 1: Rango de parámetros del camando SOUND.

				Volu		
	Canol	Tano	Duracián	Sin envolvente	Can envalvente	Envolvente de volumen
	1=A	0	1	0	0	0
Ranga	2 = B	A	A	A	A	A
- 3	4-C	4095	32767	7	15	15
es es como de de primer.				4	12	0

Tabla II: Rangas de parametra para el camanda ENV.

Parámetra	Número N	Númera de escolones en seccián P	Combio de volumen por escalón Q	Longitud de cado escolon R
Rango	0 A 15	0 A 127	-128 A 127	0 A 255

Figura 1: SOUND 1, 200, 100, 5

Figura II: SOUND 1, 200, 100, 5, 1.

Tabla III: Parámetros para los cinca secciones de envolvente de sanida.

sita dos segundos para completar su trabajo, por desgracia

SOUND 1,200,100,5,1

sólo dura un segundo, así que la envolvente de volumen solamente tendrá cinco etapas.

El caso contrario, en el que sólo vamos a tener 2 etapas en la envolvente de volumen, lo ilustramos con los siguientes comandos:

ENV 1,2,2,20

SOUND 1,200,100,5,1

Como podremos escuchar, obtendremos dos escalones ocupando 40 centésimas de segundo y la nota mantiene el volumen final durante las 60 centésimas restantes.

Echemos de nuevo una ojeada a la tabla 1. Observe que cuando usamos una envolvente, el parámetro de volumen puede tener un rango de valores comprendidos entre 0 y 15. Hasta aquí, todos los ejemplos han sido elegidos para que los parámetros permanezcan dentro de este rango.

¿Qué pasa si la envolvente de volumen ha intentado sacarlos fuera de rango?

Definamos una envolvente con:

ENV 5,5,3,20

Aumenta el volumen en escalones de 3 unidades cada vez. Vamos a considerar el efecto que produce esta envolvente sobre un comando SOUND semajante a:

SOUND 1,200,100,5.5

El volumen inicial es 5. La primera etapa de la envolvente lo convertirá en 8, la segunda en 11 y la tercera en 14. Pero, ¿qué ocurre cuando la cuarta intenta darle un valor de 17 que está fuera de rango? Inténtelo y verá qué pasa.

El volumen es cíclico

Como podemos escuchar el **Amstrad** es una máquina astuta y, en vista que le hemos invitado a hacer una travesura, llega solamente a 15. Oímos cómo el volumen vuelve a empezar de nuevo en 0 como si se tratara de un **«cuentakilómetros»**, pasando de golpe de una intensidad muy alta al silencio otra vez.

También puede ocurrir de otra forma. La envolvente definida por:

ENV 6,5,-3,20

disminuye en tres la intensidad de volumen de cada escalón. Cuando somos malvados y le hacemos trabajar con el comando:

SOUND 1,200,100,5,6

el volumen pasa de 5 a 2 y entonces, antes de que se salga del rango, **«da la vuelta del cuentakilómetros»**, se coloca en 14 y sigue decreciendo atra vez. Pruébelo y lo verá.

Por ahora debemos sentirnos bastante cómodos con la existencia de la envolvente de volumen. Pero también debemos ser conscien-

PROGRAMAS

```
10 REM PROGRAMA I
CO REM ENVOLVENTE DE VOLUMEN
30 DIM p(5),q(5),r(5)
40 WHILE -1
50 MODE 1
60 INPUT "Numero de secciones en la envolvente de volumen? ",secciones 70 IF secciones: 1 OR secciones)5 TH
 EN CLS: GOTO AG
90 FOR bucle-1 TO secciones
100 LOCATE 3,5:PRINT"Seccion"bucle
110 LOCATE 3,8:PRINT"Numero de esca
 120 | OCATE 30.8: INPUT "",p(bucle)
130 IF p(bucle) (0 OR p(bucle) >127 T
HEN LOCATE 30,8:PRINT SPACE (8):GOT
 140 LOCATE 3,13:FRINT"Altura de cad
140 CDCATE 30,13:INPUT "",q(bucle)
150 LOCATE 30,13:INPUT "",q(bucle)
160 IF q(bucle)(-128 OR q(bucle)>12
7 THEN LOCATE 30,13:FRINT SPACE*(8)
 170 LOCATE 3,18:PRINT"Tiempo de pau
180 LOCATE 30.18:INPUT "",r(bucle)
190 IF r(bucle)<0 OR r(bucle)>255 T
HEN LOCATE 30.18:PRINT SPACE$(8):60
 200 LOCATE 14,23:PRINT"FULSA ESPACI
210 WHILE INFEY(47)=-1:WEND:CLS
220 WHILE INFEY$1"":WEND
220 WHILE INNEY*
230 NFXT bucle
240 ENV i,p(i),q(i),r(i),p(2),q(2),
r(2),p(3),q(3),r(3),p(4),q(4),r(4),
p(5),q(5),r(5)
250 duracion=p(i)*r(i)+p(2)*r(2)*p(
3)*r(3)+p(4)*r(4)+p(5)*r(5)
260 SDIND 1,200,duracion,5,1
        duracion$=RIGHT$(STR$(duracion)
.LEN(STR$(duracion))-1)
290 FRINT"SOUND 1,200,";duracion$;"
 300 FOR bucle 1 TO secciones
 300 bucles=RIGHT*(STR*(bucle),1)
310 bucles=RIGHT*(STR*(bucle),1)
320 FRINT*O(";bucle*;") ";q(bucle)
 T40 FRINT"R(";bucle*;") ";r (bucle)
```

tes de alguna de sus limitaciones. Una de ellas es que hasta aquí sólo podemos usar la envolvente para que el volumen de una nota aumente o disminuya.

760 LOCATE 14,23: PRINT "PULSA ESPACI

T70 WHILE INFEY(47) -1:WEND:CLS IBO WEND

En la vida real, sin embargo, las notas a veces hacen las dos cosas, creciendo gradualmente su intensidad para luego decaer y desvanecer en la lejanía. Con su actual forma:

ENV N,P,Q,R

nuestra envolvente de volumen no puede hacerlo. Y una vez más debemos confesarles que solamente hemos dicho la verdad a medias.

La verdadera definición de la envolvente de volumen no es:

ENV N,P,Q,R

sino que es en realidad:

ENV N,P1,Q1,R1,P2,Q2,R2 P3,Q3,R3,P4,Q4,R4, P5,Q5,R5

En lugar de nuestro simpatiquillo ENV con cuatro parámetros, nos hemos encontrado con

un enorme monstruo con 16 números detrás. No obstante no nos demos por vencidos ni sintamos miedo, con un poco de paciencia veremos que es bastante más sencillo de lo que parece.

En lo que hemos hecho hasta ahora sólo hemos utilizado una parte de los parámetros de la envolvente de volumen. Cada envolvente puede tener hasta cinco secciones que afectan a un mismo comando SOUND de manera distinta.

Por el momento solamente hemos utilizado la primera sección como referencia hacia aquéllos que poseen una disposición nerviosa.

Cada una de las cinco secciones de la envolvente de volumen funciona exactamente de la misma manera que la primera, sobre la que nos hemos estado concentrando. Todo lo que tenemos que hacer cuando queramos comprender una envolvente es tratar cada una de estas cinco secciones como hemos dicho anteriormente.

La única diferencia es que en lugar de P, Q, y R, la primera sección tiene los parámetros P1, Q1 y R1, la segunda P2, Q2, y R2 y así sucesivamente. La figura III nos muestra cómo se relacionan los parámetros con las secciones.

Aunque podemos tener cinco secciones en la envolvente de sonido, como es evidente por todo lo dicho anteriormente, no es obligatorio utilizarlas todos.

Vamos a definir una envolvente que subirá el volumen, luego lo bajará y de nuevo lo volverá a incrementar.

Lo podemos hacer con:

ENV 1,5,2,20,5,-2,20,5,2,20

Aquí la primera sección de la envolvente tiene cinco escalanes y el volumen aumenta en cada uno de ellos dos unidades. La segunda sección hace lo contrario ya que en cada uno de sus cinco escalones el volumen disminuye en 2 unidades. Dejamos que imagine lo que ocurre en la tercera sección:

SOUND 1,200,300,5,1

nos permitirá escuchar esta envolvente a la que hemos dividido en tres partes. Observe que hemos alargado la duración del comando SOUND a tres segundos. Nos aseguramos así que todas la secciones tengan una oportunidad de sonar.

Y esto es todo lo que hay sobre la envolvente de volumen. Aunque parezca difícil no lo es con tal que vayamos analizando sección por sección. Todo lo que necesitamos en un poco de práctica que nos familiarice con ella y es aquí cuando aparece el Programa I.

Ejecútelo y se encontrará con que le permitirá crear sus propias envolventes de sonido y escuchar los resultados. Después de una hora más o menos descubrirá que lo comprende completamente.

Y hasta puede que esté esperando con ilusión el artículo de la semana que viene sobre envolventes de tono.

Análisis Busqueda con Instr

Autor: Fco. Javier Barceló T.

AMSTRAD Análisis estudia esta semana un comando muy útil a la hora de buscar determinados datos dentro de un archivo en disco o cinta. Este comando es INSTR. Veámoslo en el programa. Para mayor simplicidad, el programa incluye los datos en sentencias DATA, simulando los registros de un archivo.

10-40 Comentarios.

50-80 Lee las líneas de DATA y las asigna a las cadenas A\$(1) a A\$(5).

90 Borra la pantalla, y establece el modo de pantalla en 80 caracteres.

100 Pregunta el dato a buscar, lo almacena en la variable B\$, calcula la longitud de B\$ y da su valor a BL.

120 Pregunta la posición desde la que tiene que buscar B\$ en A\$ y la almacena en B.

130 Inicia el bucle de búsqueda del dato. 140 Selecciona el valor de X.

150 A partir de la posición de búsqueda dada (B), busca en la cadena origen [A\$ (X)] el dato dado anteriormente (B\$) Esta función produce un valor numérico (E). Si no encuentra el dato dicho valor será 0, y si lo encuentra el valor será igual a la posición dentro de la cadena origen [A\$ (X)] que ocupe en 1.º carácter del dato que se busca (B\$).

160 Si no ha encontrado el dato de la cadena (E=0), va a la línea 240 para continuar el bucle principal.

170 Comentario.

180 Si ha encontrado el dato (E < > 0), indica la cadena en que lo ha encontrado, y la posición dentra de dicha cadena donde empieza el dato buscado (E).

190 Imprime una línea en blanco.

200 Imprime la cadena donde ha encontrado el dato [A\$ (X)].

210 Imprime espacios hasta la posición donde empieza el dato encontrado en la cadena anterior, y luego imprime flechas señalando el dato encontrado.

220 Imprime una línea en blanco.

230 Da a I\$ el valor «encontrado». Ver línea 260.

240 Fin del bucle principal.

250 Comentarios.

260 Si IS no tiene el valor «encontrado» imprime que no ha encontrado el dato. En el momento que encuentre el dato, pasará por la línea 230, y por tanto na imprimirá nada.

270 Pregunta si se quiere hacer otra búsqueda. Almacena la respuesta en R\$.

280 Si respondemos S, anula el valor de 1\$ y vuelve al principio para empezar otra vez. 290 \$i la respuesta es N, acaba el progra-

ma. Si se ha dado por error un valor distinto e S y de N, vuelve a la línea 270 para volver a preguntar.

300 Camentarios.

310, 320, 330, 340 y 350 Datos de las cadenas A\$ donde se realiza la búsqueda. Si se le da —par ejempla— como posición de búsqueda 4, y encuentra lo que se busca 2 posiciones después, el valor que devuelve no es 2 sino 6, es decir, la posición absoluta de dicho dato dentro de la cadena. Si no lo encuentra, devuelve el valor 0. Las únicas limitaciones de esta instrucción son que no busca espacios en blanco, (siempre que se intenta, da el valor 0), y que si damos un data en mayúsculas y ese dato está en minúsculas, no la reconace.

...descubre el N.º 3

ya esta en Tru quiosco

CARNIVAL

Si te gusta el tiro al blanco, con este programa podrás practicar sin necesidad de salir de casa. Si tienes buena puntería obtendrás disparos gratis.

BLOCKER

Demuestra tu habilidad esquivando las paredes y a tus enemigos. Cuantos más destruyas, más aparecerán ante ti.

SPACE

Al cargar este programa aparecerá ante ti un batallón de alienígenas. Tu misión es destruirlos, pero cuidado, su intención es eliminarte lo antes posible.

HAUNTED

En este caso debes coger todos los puntos que aparecen en el laberinto. ¡Atención!, los fantasmas están enfadados e intentarán deshacerse de ti a toda costa.

VAMPIRO

Es un programa en el cual pueden participar dos jugadores. La misión de cada uno será pintar las lápidas de un color distinto. La destrucción del enemigo significa la victoria.

SPLIT

Es una rutina en código máquina, que te permitirá siete colores en pantalla en MODO 1, en el cual normalmente sólo se pueden utilizar cuatro.

Si no lo encontrara en su quiosco, solicitelo directamente a nuestra editorial.

Paseo de la Castellana, 268. 28046 Madrid. Tel. (91) 733 25 99

COMPUTE:

La mejor selección de programas de juegos y utilidades, publicados en la revista de mayor difusión de ordenadores de Europa. Ahora reproducidos en cassette, en auténtica exclusiva mundial.

SIR FRED

Sir Fred, el diestro espadachín, entra en la dura contienda del mundo del sotfware, bajo el emblema de Made in Spain. Los oponentes son fuertes y poderosos, sus armas: el dinero, la fama y una gran experiencia, el campo de batalla; el Reino Unido, una empresa de titanes.

na gran canmoción se ha apaderado de la villa de Castlecity: todos están pendientes de la arrogante figura del caballero, que, desafiando a la guardia del castillo, pretende raptar a la princesa Margaret.

Sir Fred no es un hombre precisamente guapo; rasgas morunas, piernas cortas y resistentes, prominente barriga que le cuelga por encima del cinturón y un considerable apéndice nasal, que, de no llevar la cabeza

muy alta, puede hacer que nuestro héroe pierda el equilibrio.

Pero ¿qué tiene que ver el valeroso caballero, con España?

Pocas personas conocen su turbulento pasado.

Sir Fred, nació en una pequeña aldea de Burgos, donde su padre ostentaba el título de condestable mayor del reino.

De la familia de los Pérez de Sotillejo, como hijo primogénito, su padre eligió un nombre digno de la grandeza y arraigo de la casa, quedando para la historia como Don Leoncio Pérez de Sotillejo.

Con ese nombre, cualquier mortal estaría eternamente agradecido a su progenitor y Leoncio, de hecho lo estuvo, hasta que llegó a Madrid, donde los villanos de la capital se mofaron tanto, que nuestro caballero decidio emprender una nueva vida en un país diferente, para dejar de ser el hazmerreír del reino.

De esta forma, Leoncio reniega de su nombre y se embarca hacia las costas inglesas, donde aparece como Sir Fred Pérez de Sotillejo y Villareal, que viste mucho más.

Lo único que no ha traicionada, es el escudo heráldico de su familia; un león rampante con una espada entre los dientes, sobre campo de gules y plata, enseña que Sir Fred ostenta con orgullo y defiende allá donde va.

El propósito de su viaje, raptar a la mujer más bella de la nobleza británica, la princesa Margaret.

Can estas antecedentes, una arrogante figura se adentra en los bosques que radean al misterioso castillo. En la maleza, criaturas diabólicas nos acechan, Sir Fred salta, trepa, corre y nada, combate y se oculta, acercándose a los infranqueables muras.

Experta espa dachín, estoqueará a guardianes y vigilantes, en su paso por los corredores del castillo, hasta canseguir apoderarse de Margaret y regresar con ella a su tierra natal, para dejar constancia de su gran hazaña.

Mr. Joystick

Nas encantramos ante un pragrama que se basa en la archicanocida idea del caballero que rescata a una princesa; menas mal que esta aventura se puede ambientar en lugares y decoradas diferentes, porque si no, habría como veinte o treinta programas iguales.

Nuestra héroe, puede: cojer objetos, batirse a espada, correr, saltar, andar, trepar, nadar, bucear y marir, farmanda una amplia gama de mavimientos y posibilidades, las cuales debemos utilizar en las distintas pantallas del juego.

Tado tratado con unos gráficos aceptables, inundados de rojo, en los cuales la más destacable es la anima-

ción del personaje central, que aunque de reducida dimensiones, ajecuta una gran variedad de movimientos.

Es importante reseñar la diversidad de pantallas que incluye el juego, cada una con sus elementas características, agua, murallas, escaleras, lianas, abstáculas y terraplenes, que nos obligan a exprimir al máximo las distintas modalidades de movimiento que permite dan Leancio Pérez de Satillejo, más canocido en el mundo del software camo el simpar Sir Fred.

CAZA DE ALTURA

Caza de altura es un juego de mucha acción, que contiene una idea clásica tratada con gran originalidad y acierto en el manejo de los gráficos.

Pragrama realizado por René Rodríguez Lleonart

I programa sólo funciona con joystick; el autor no ha previsto el empleo del teclado para manejar el programa, pensando sin duda en la comodidad que ofrece el joystick y en que todo el mundo tiene uno (!).

Aunque esto último tal vez no sea muy realista, el lector interesado no encontrará dificultad en adaptarlo, haciendo uso de la tabla de rutinas principales que René ha incluido en su comentario del programa.

Descripción:

El juego consiste en cazar el máximo número de patos que podamos en un tiempo determinado o hasta que se nos acaben las balas. Al empezar disponemos de 6 disparos que se incrementan cada vez que conseguimos destruir alguno de los huevos que los patos sueltan al pasar ante el edificio que nos encontramos.

Nuestro movimiento en el edificio lo controlamos mediante un ascensor que nos permite subir y bajar a velocidad normal o bajar hasta la base con caída libre (sin peligro para nuestra integridad física). Si nos quedamos sin munición termina el juego.

VARIABLES PRINCIPALES

Pres Número de disparos disponibles. Tem Tiempo que queda para finolizar. Dalt Coordenada «y» de la pistala en todo mamento. Ocell Toma valores 0 ó 1 para determinar si hay a no un pato en pantolla. Ou Igual que la onterior pero para las huevas. Coordenadas del pato Ocx,ocy Coordenadas del huevo Ох,оу Puntos acumulados. Pun Récard de puntuación. Rec

a\$,b\$,c\$,d\$,t,g,Wariables auxiliares.

Coordenada «x» de lo

ESTRUCTURA DEL PROGRAMA

1-1000	Inicializaciones y dibuja de lo pantalla.
1000-1100	Bucle principal del programa.
1110-1150	Mensajes finales del pragroma. Nueva partida.
1199-1230	Cantral del mavimiento del ascensar.
1399-1470	Movimiento de la bala y de detección de chaques.
1599-1620	Mueve el pata si na ha sida cazado.
1799-1810	Mueve el hueva hasta que es destruida.
1999-2010	Escribe la puntuación en pantalla.
2199-2210	Lanza un hueva aleatoriamente.
2399-2420	Creo un poto o una loturo aleatoria.
2799-2820	Determina si la que se ha cazado es un pata a un hueva y actualiza las
	variables carrespondientes.
2999-3010	Retardo de tiempo.
3199-3230	Mueve el pato cuanda ha sida cazada.
399-4005	Actualiza el tiempa y la escribe en pantalla.
4099-4110	Escribe el tiempo que queda.
4199-4210	Escribe los puntas que llevamas.
4299-4310	Escribe el récord de puntuación.
4399-4410	Barra las puntas de la partida anterior.

2 REM ===== RENE RODRIGUEZ LLEONART 3 REM ===== FRESENTA 4 REM ===== ==== 5 REM ===== EDIF1 ==== 6 REM ===== ==== 7 REM ===== SEPTEMBRE 1.985 8 REM ===== 3=== 10 MODE 0 11 INK 1,15:INK 2,26:INK 6,13:INK 7 ,2:INK B,11:INK 9,7:INK 10,16:INK 1 1,24: INK 12,11,16: INK 13,18: INK 14, 23: INK 15,8 12 PAPER 7:PEN 3:CLS:PAPER #2,5:PAP ER #3.5 13 RANDOMIZE TIME:pres=6:tem=51:EVE RY 100,3 GDSUB 4000 14 WINDOW #1,1,5,1,25: PAPER #1,5:CL S#1:WINDOW #1,3,5,1,25:WINDOW#4,7,2 0,19,22:PAPER#4,7 15 SYMBOL AFTER 143 16 SYMBOL 144.0,251,251,251,0,223,2 23,223 17 SYMBOL 145,0,240,240,240,0,208,2 08,208 18 SYMBOL 146,240,240,240,240,240,2 40,240,240 19 PRINT CHR\$(22)"1" 20 FOR t=1 TO 2:FOR g=1 TO 25:LOCAT E t,g:PRINT CHR\$(144):NEXT:NEXT 30 FOR t=1 TO 22 STEP 7:FOR q=0 TO 3:LOCATE 6,t+q:PEN 5:PRINT CHR\$(146) CHR\$(8); : PEN 3: PRINT CHR\$(145): NEX T: NEXT 31 LOCATE 1,1 40 MOVE 68.0:DRAW 154,0,7:MOVE 68,2 :DRAW 154,2,7 60 GOSUB 4400 62 WINDOW #3,6,20,1,3:CLS#3:FEN #3, 3:FOR t=1 TO 45:PRINT#3,CHR\$(144);: NEXT:LOCATE#3.1,1:PRINT#3,CHR\$(22)" 1";:PEN #3,2:LOCATE #3,3,1:PRINT#3, "Pres":LOCATE#3,9,1:PRINT#3,"Time": PRINT#3, CHR\$ (22) "0" 63 GOSUB 2000 65 PEN 2: PRINT CHR\$ (22) "1": LOCATE 1

======

Serie Oro

```
,4:PRINT"R":PRINT"E":PRINT"C":PRINT
"O":FRINT"R":FRINT"D"
66 GDSUB 4300
100 SYMBOL 147,0,3,2,3,3,7,7,2
110 SYMBOL 148,15,12,12,12,12,8,0,0
120 SYMBOL 149,0,0,1,0,0,0,0,0
130 SYMBOL 150,0,128,128,192,128,0,
128,0
140 SYMBOL 151,192,64,0,0,0,0,0,0
150 SYMBOL 152, 2, 7, 6, 4, 6, 7, 7, 0
160 SYMBOL 153,0,0,1,3,1,0,0,0
170 SYMBOL 154,0,0,0,0,0,0,0,7
180 SYMBOL 155,0,0,128,112,0,0,0,0
190 SYMBOL 156,0,0,0,128,240,240,0,
O.
200 SYMBOL 157,0,0,0,8,8,0,0,0
210 SYMBOL 158,0,15,14,4,0,8,0,0
220 SYMBOL 159,7,7,7,3,1,0,0,0
230 SYMBOL 160,0,0,0,4,2,1,0,0
240 SYMBDL 161,128,128,192,224,240,
240,56,56
250 SYMBOL 162,0,0,0,0,0,0,192,192
260 SYMBOL 163,24,24,24,0,0,0,0,0
270 SYMBOL 164,192,192,192,0,0,0,0,
Õ.
280 SYMBOL 165,0,0,0,216,0,0,0,0
290 SYMBOL 166,0,0,0,0,254,182,0,0
300 SYMBOL 167,0,28,81,126,30,30,0,
0
310 SYMBOL 168,0,0,0,128,0,0,4,2
320 SYMBOL 169,0,65,126,30,30,0,0,0
330 SYMBOL 170,0,0,128,0,0,4,2,0
340 SYMBOL 171,0,3,3,0,0,0,0,0
350 SYMBOL 172,0,0,14,22,38,102,102
, 1
360 SYMBOL 173,0,0,0,0,0,0,8,40
400 PRINT#1, CHR$ (22) "1": LOCATE #1,2
,22
410 PEN#1,10:PRINT#1,CHR$(147)CHR$(
150) CHR$ (8) CHR$ (8); : PEN#1, 11: PRINT#
1, CHR$ (148) CHR$ (151) CHR$ (8) CHR$ (8);
:PEN#1,12:PRINT#1,CHR$(149)
420 LOCATE #1,2,23
430 PEN#1,13:PRINT#1,CHR$(152)CHR$(
155) CHR$ (8) CHR$ (8); : PEN#1, 14: PRINT#
1, CHR$ (153) CHR$ (156) CHR$ (8) CHR$ (8):
:PEN#1,9:PRINT#1,CHR$(154);:PEN#1,1
```

O:PRINT#1,CHR\$(157)CHR\$(8);:PEN#1,1 1200 IF JOY(0)=4 THEN IF ou=1 THEN 5: PRINT#1, CHR\$ (158) EVERY 10,2 GOSUB 1800 ELSE ELSE GOT 440 LOCATE#1,2,24 0 1210 445 PEN #1,8:PRINT#1,CHR\$(159)CHR\$(1205 EVERY 10,1 GOSUB 1600: WHILE da 161) CHR\$ (8) CHR\$ (8); : PEN #1,7: PRINT# 1t<23:DI:LOCATE #1,1,1:PRINT#1," ": d 1, CHR\$ (160) CHR\$ (162) alt=dalt+1:EI:WEND: v=REMAIN (1)+REM 450 LOCATE#1,3,25 AIN (2):SOUND 2,1150,20,7:GOTO 1230 460 PEN#1,8:PRINT#1,CHR\$(163)CHR\$(B)::PEN#1,7:PRINT#1,CHR\$(164)CHR\$(B) 1210 IF (JOY(0)=1 OR JOY(0)=17) AND ::PEN#1,10:PRINT#1,CHR\$(165)CHR\$(8) dalt>3 THEN LOCATE#1,2,25:PEN#1,6: ::PEN#1,6:FRINT#1,CHR\$(166)" ";:PRI PRINT#1," "CHR\$(143):dalt=dalt-1:SDUND 2,1140 NT#1, CHR\$ (143) ,21,2 ELSE IF(JOY(0)=2 DR JDY(0)=18 490 LOCATE #1,1,1:PRINT#1,CHR\$(27)")AND dalt<23 THEN LOCATE #1,1,1:FRI NT#1," 999 dalt=22 ":dalt=dalt+1:SOUND 2,1150,21 ,2 ELSE GOSUB 3000 ==== d 230 RETURN 1399 REM======disparar========= 1400 SOUND 4,794,5,7: VX=6 1030 WHILE pres>0 AND Tem>0 1410 GOSUB 1600: EVERY 10,2 GOSUB 16 GOSUB 1200: REM mou 1050 OO: IF ou=1 THEN GOSUB 1800: EVERY 10 re ascensor .1 GOSUB 1800 1060 IF JOY (0) >15 THEN 1420 WHILE NOT(((VX=OCX DR VX=OCX+1 IF (dalt-1) MOD 7<4 THEN SOUND 1,12) AND dalt=ocy)OR(vx=ox AND dalt=oy 00,5:pres=pres-1:GDSUB 2000 ELSE GD))AND ∀x≤20. SUB 1400 ELSE GOSUB 3000 1430 DI:PEN O:vx=vx+1:LOCATE vx-1,d IF oce11>0 THEN GO 1070 alt:PRINT" "CHR\$(171):ET SUB 1600 ELSE GOSUB 2400 1440 WEND 1075 IF ou=1 THEN GOSUB 1445 V=REMAIN (1)+REMAIN (2) 1800 ELSE IF bcx<19 THEN GDSUB 220 1450 IF VXK20 THEN GOSUB 2800 ELSE \circ LOCATE vx.dalt:PRINT" ":pres=pres-1 1100 WEND: \vee =REMAIN (1)+REMAIN (2)+R :GDSUB 2000 EMAIN (3) 1110 FOR t=pres TO 1 STEP-1:pun=pun 1470 RETURN +15:pres=pres-1:GOSUB 2000:GOSUB 42 1599 REM =======moure ocell===== 00:SOUND 4,300,5:FOR g=1 TO 300:NEX T: NEXT 1600 IF oce11=2 THEN 3200 1120 PEN#4, 2:LOCATE#2, 1, 5:IF rec<=p 1605 PEN 5:n=(n+2)MOD 4 un THEN IF rec=pun THEN PRINT#4," L 1610 IF ocx>7 THEN LOCATE ocx,ocy:P O IGUALASTE" ELSE rec=pun:PRINT#4," RINT" "::ocx=ocx-1:LOCATE ocx,ocy:P RINT CHR\$(22)"1"CHR\$(167+n);:PEN 1: ERES EL MEJOR": ELSE PRINT#4, " No es Record" PRINT CHR\$(B)CHR\$(168+n)CHR\$(22)"0" 1125 WINDOW#5,1,1,13,24:PAPER #5,5: ELSE LOCATE ocx.ocy:PRINT" ";:oce1 PEN#5,3:FOR t=13 TO 24:LOCATE#5,1,t 1=0 :PRINT#5, CHR\$ (144); :NEXT 1620 RETURN 1799 REM =======moure ou====== 1130 PRINT#4," Joystick ":CHR\$(243):PRINT#4," para sequir" **===** 1140 IF JOY(0)=8 THEN pun=0:pres=6: 1800 IF oyk22 DR (byk24 AND oxk14) tem=51:CLS#4:GOSUB 4000:GOSUB 4400: THEN PEN 4:LOCATE ox, oy:PRINT" "CHR \$(10)CHR\$(8)CHR\$(171):oy=oy+1 ELSE GOSUB 4200:GOSUB 4300:GOSUB 2000:EV ERY 100,3 GOSUB 4000:GOTO 1030 ELSE IF ou=1 THEN ou=0:LDCATE ox.oy:PRIN T 11 11 1140 1150 END 1810 RETURN 1999 REM=======puntuacio====== 1199 REM======moure ascensor====== ====

2000 DI:b\$=STR\$(pres):LOCATE #3,6-L EN(bs), 2: PEN#3, 3: PRINT#3, CHR\$ (144); :PEN#3,2:PRINT#3,MID\$(b\$,2):EI 2010 RETURN 2199 REM========llencar ou======= ==== 200 IF RND(1)<0.2 THEN SOUND 2,850 ,5:oy=ocy+1:ox=ocx:PEN 4:LOCATE ox, py:PRINT CHR\$(171);:ou=1 2210 RETURN 2399 REM========crear ocell===== 2400 ocy=INT((RND(1)*10)+4):ocx=20 2410 LOCATE ocx, ocy: PEN 5: PRINT CHR \$(22)"1"CHR\$(167);:PEN 1:PRINT CHR\$ (8) CHR\$ (168) CHR\$ (22) "0":oce11=1 2420 RETURN 2799 REM=======explosio====== 2800 SDUND 1,1300,5: IF DALT=ocy THE N oce11=2:pun=pun+50:pres=pres-1 EL BE LOCATE vx,oy:PRINT" ":ou=0:pres= pres+1:oy=25 2810 GOSUB 2000:GOSUB 4200 2820 RETURN 2999 REM========Retard======= 3000 FOR t=1 TO 30:NEXT:RETURN 3199 REM=======mort============ 3200 IF ocy<22 DR (ocy<24 AND ocx<1 4) THEN PEN 5:LOCATE ocx, ocy:PRINT" "CHR\$(10)CHR\$(8)CHR\$(172);:PEN 1:F RINT CHR\$(22)"1"CHR\$(8)CHR\$(173)CHR \$(22)"0":ocy=ocy+1 ELSE LOCATE ocx, DCY:PRINT" ":GDSUB 2400 3205 ou=1 3230 RETURN

Serie Oro

3999 REM=======temps========= 4000 tem=tem=1:GDSUR 4100 4005 RETURN 4099 REM======print tempsour====== 4100 c\$=STR\$(tem):LOCATE#3,13-LEN(c \$),2:PRINT#3,MID\$(c\$,2);:IF tem<11</p> THEN SOUND 4,200,5 : IF tem=9 THEN F EN#3,3:PRINT#3,CHR\$(8)CHR\$(8)CHR\$(1 44):PEN#3,2 4110 RETURN 4199 REM======print punts====== 4200 as=STRs(pun):LDCATE#2,8-LEN(as),2:PRINT#2,MID\$(a\$,2); 4210 RETURN 4299 REM=======print record====== 4300 PRINT CHR\$(22)"1":PEN 2:d\$=STR \$(rec):LOCATE 1,13:FOR t=1 TO LEN(d \$):FRINT MID\$(d\$,t,1):NEXT:PRINT CH R\$(22)"0" 4310 RETURN 4399 REM======borra punts====== ==== 4400 WINDOW #2,14,20,23,25:CLS#2:PE N #2,3:FOR t=1 TO 21:PRINT#2,CHR\$(1 44);:NEXT:PEN#2,2 4410 RETURN

Sólo para adictos.

DESCUBRE CADA MES TODOS LOS SECRETOS DE TUS JUEGOS FAVORITOS

HOBBY PRESS Para gente inquieta.

Gestión del disco en lenguaje máquina

Tados sabemas salvar y gravar programas en cinta o disco con los conocidos comandos SAVE, LOAD, y también conocemos cómo abrir ficheros para introducir u obtener datos desde el disco o el cassette.

Ahora bien, seguro que muchos de nosotros nos habremos preguntado alguna vez, cómo hacer tado lo dicho anteriormente desde código máquina.

uando hayáis terminado de leer este artículo estamos seguros de que estas preguntas quedarán resueltas, y seréis capaces de salvar y corgar programos ya sea en Basic o Binarios, sin ningun problema, des-

Estudiaremos paso a paso cada uno de los comandos de manejo de disco y cassette desde Basic y confeccionaremos dichos comandos en lenguaje máquina, aprovechándonos por supuesta de las grandes posibilidades que nos ofrece el firmware de nuestro ordenador.

Cómo se hace un SAVE en máquina

Veremos en primer lugar la forma de salvar un programa en Basic. Para salvar un programa de este tipo ejecutaríamos la instrucción: SAVE" PROGRAMA

Vamos a ver pues cuál sería la rutina en código máquina capaz de producir el mismo efecto.

El programa número uno nos muestra cómo hacerlo, así pues vamos a intentar explicar cada paso y cuáles son las llamadas que se hacen al firmware.

#BC8C Abre canaly buffer para efectuar SAVE. Antes de llamar a esta rutina debemos tener en cuenta los parámetros que necesita para producir los efectos deseados. Estos son los siguientes:

B Longitud del nombre del programa. HL Dirección donde se encuentra el nombre.

DE Dirección del buffer de 2 K.

#BC98 Pasa el contenido del buffer de 2 K directamente al cassette o disco. Los parámetros necesarios son los siguientes:

HL Contiene la dirección donde se encuentra almacenado el programa.

DE Longitud del programa.

BC Dirección de entrada si queremos que se ejecute automáticamente con RUN"PRO-GRAMA.

A Contiene el tipo de programa.

O Programa Basic

Programa Basic protegido

2 Programa en código máquina

#BC8F Cierra el canal de SAVE y pasa el último buffer al cassette o disco. No necesita condiciones de entrada.

Si nos fijamos en la rutina que efectúa la funciones de SAVE, podemos ver que en primer lugar introducimos en el registro B el valor 6, que es el número de caracteres que tiene el nombre del programa 'Programa', a continuación apuntamos el registro HL a la dirección NAME, que es donde se encuentra situado el nombre del programa, y luego cargamos en DE la dirección del Buffer de SAVE, que hemos colocado en la dirección #A900, y con estos datos llamamos a la rutina #BC8C.

A continuación debemos introducir la dirección de inicio del programa en el registro HL, como hemos dicho que se trataba de un programa Basic, la dirección de inicio de éste es siempre la dirección #170, por lo tanto car-garemos dicho varlo en HL. Seguidamente debemos calcular la longitud de dicho programa. Para obtener este dato, en primer lugar cargamos DE con el valor que se encuentra en la dirección #AE83, la cual nos indica dónde termina el programa Basic, por lo tanto si a esta dirección de final de programa le restamos la dirección de inicio que era #170, ob-

tendremos la longitud total del programa basic.

Este proceso se efectúa de la siguiente forma:

> LD HL,#170 LD DE,(#AE83) EX DE,HL SBC HL,DE EX DE,HL

A continuación deberemos cargar en BC el punto de entrada del programa, pero dado que es un programa Basic, no será necesario introducir ningún valor por lo que hemos cargado BC con cero.

Por último deberemos introducir en el registro A el tipo de programa. Si queremos salvarlo como Basic protegido, dicho valor será uno, de lo contrario deberá ser cero.

Ahora llamomos a la rutino del firmware que posa el contenido del buffer a cassette o disco, y finalmente cerramos el canal de SAVE llamando a #BC8F.

Comando SAVE para ficheros binarios

Para efectuar un SAVE de un programa en código móquina deberemos seguir el mismo camino mencionado anteriormente, teniendo en cuenta las siguientes modificaciones.

En primer lugar, la dirección de inicio de programa no será ya la #170, sino la dirección de donde se encuentra ubicado nuestro programa, asimismo la longitud del programa será la correspondiente a nuestro programa en memorio que podemos calcular de la formo siguiente:

(Dirección final - Dirección inicial) + 1 y por último el valor con que deberemos cargor el acumulador será 2 ya que éste es el correspondiente a un programa tipo binario.

El programa número dos muestra un ejemplo de SAVE para un programa tipo binario.

Si queremos que un programa salvado en código móquina se ejecute automáticamente cuando se carga con la instrucción RUN'', deberemos introducir en el registro BC, la dirección de ejecución de dicho programa.

El comando Basic que efectúa este segundo programa es el siguiente:

SAVE''Programa'', B, & 6000, & 500, & 6000

El equivalente del comando LOAD

Vamos a ver a continuación cómo podemos simular el comando LOAD desde un programa en código máquina. Veremos en primer lugar cuáles son las direcciones del firmware que utilizaremos para dicha rutina.

#BC77 Abre canal para LOAD y lee el primer bloque. Los condiciones de entrada de-

Program Acción

B Debe contener la longitud del nombre del programa.

HL Contiene la dirección donde está situada la cadena de caracteres que componen el nombre.

DE Contiene la dirección del buffer de 2 k para efectuar la lectura.

#BC83 Coloca el programa directamente en la zona de memoria que va a ocupar dicho programa. Los parámetros de entrada son los siguientes:

HL Debe contener la dirección de memoria donde vo a ir el programa. Dicha dirección debe estar en la RAM.

dene esidi eli la KAMI.

El primer programo simula el comando Basic:

LOAD"PROGRAMA

con el que cargaremos un programa ya sea en Basic o código móquina, desde cinta o disco.

Si el programa que deseamos cargar es un programa confeccionado en Basic, la dirección que debe contener el registro doble HL, será la #170, puesto que en dicha dirección es donde empiezan todos los programas Basic.

Para cargar un programa en código máquina deberemos cargar en HL, la dirección inicial donde debe ir dicho programa.

Para simular la instrucción Basic:

LOAD" "

deberemos indicar a la correspondiente rutina del firmware, que la longitud del nombre debe ser cero, para ello, antes de llomar a la dirección #BC77, deberemos cargar en el registro B el valor cero que indicará que la longitud de la cadena que forma el nombre, es nula. Asimismo no hará falta cargar en HL la dirección donde se encuentra dicha cadena de caroceteres.

Un ejemplo de actuación de este comando lo podemos ver en el segundo programa que trata de la sentencia LOAD.

Otra forma de ejecutar la carga de un programa des de Basic, es deso bilitan do bs mensajes que se afrecend urantel a cargad el mismo.

Para ello deberemos llamar a la rutina situada en el firmware que se encorgorá de ello. Dicha rutina es la que se explica a continuación:

#BC6B desabilita mensajes en pantalla. No aparecen tampoco los mensajes de error. Los parámetros en entrada son los siguientes:

A 0 para habilitar mensajes

A cuolquier valor distinto de 0 para desabilitarlos.

Por lotanto el programa que simula esta sentencia Basic, corgará el programa 'progra-

ma' sin darnos ningún tipo de mensajes durante su carga. Esto se consigue cargando en el acumulador el valor 255 y llamando seguidamente a la rutina del firmware #BC6B.

De la misma forma colocando las siguientes líneas:

LD A,255 CALL #BC6B

al principio del programa SAVE''PROGRA-MA'', conseguiremos desabilitar mensajes durante la grabación de programas.

El último programa nos muestra cómo efectuar la sentencia Basic siguiente:

LOAD"!"

esto lo conseguimos desabilitando los mensajes y además cargando en el registro B el valor O que indicará que la cadena de caracteres que forman el nombre del programa está vacía, y por lo tanto cargará el primer programa que encuentre en la cinta. Esto último no es posible hacerlo para efectuar la carga desde disco, ya que como sabéis para efectuar un LOAD desde disco necesitamos indicar el nombre del programa.

COLABORADORES

MICROMANIA

Ha decidido ampliar su plantilla de colaboradores.

Para formar parte de ella sóla te pedimas das casas, que tenga conocimientas de Código Máquina y buenas ideas.

Los conocimientos de Código Máquina podrán ser de Spectrum, Amstrad, Commodore o MSX. Cualquiera de ellos es válido.

Si crees que reúnes las condiciones quizás tú seas una de las personas que estamos buscando. Envíamos una carto con tus datos personales y teléfono de contacto:

MICROMANIA

Calle la Gronja, 39 Polígono Industrial de Alcobendas Madrid

Indicando en el sobre

«REFERENCIA COLABORADORES»

ENSAMBLADOR / CARGADOR BASIC

PROGRAMA 1

		28	1		
A000		38		DRG	MAGGG
m899	0408	48		LD	8.8
A002	212240	58		LO	HL . NAME
A905	1188A9	60		LD	DE.#A988
A888	CDSCBC	70		EALL	#BCBC
A888	217001	88		LO	HL, #1~0
ARRE	ED58834E	99		LD	DE #AE83)
A012	EB	100		EX	OE,HL
A813	ED52	110		S8C	HL, DE
A815	83	120		EX	DE,HL
A816	010000	136		LD	BC.0
4819	3E00	140		LD	A,0
A018	CD98BC	150		CALL	#8098
ABIE	CDOFBC	100		CALL	#BC8F
A621	C5	170		RET	
11022	98474F47	FRA	NKHIF :	DEEM	*PRDGRAMA*

ETIQUETAS

NAME A822

PROGRAMA 2

		10	· OFFICE III	VODIO II	
		28	1		
A888		36		DRG	MARRO
A888	3A20A0	40		LD	A. (LNAME)
A003	47	50		LD	8.A
6884	2123A0	60		LD	HL , NAME
A607	E0582CA8	70		LD	DE, (BUFFER)
ABBB	CDSCSC	B0		CALL	#BCBC
ABBE	2A2EA8	98		LD	HL, (DIEINI)
ABIL	ED583848	100		FD	
4615	ED4832A8	110		LO	8C.(ENTRA)
A819	34 J4A8	120		LD	A.(TIPD)
218A	009680	130		CALL	
ABIF	CDBF8C	140		CALL	#BCBF
A022	E 9	1 5-B		RET	
A023	50524F47	160	PINTE:	DEFM	
me 28	88	170	LNAMF:	DEFB	
402C	BBAP	1 3 9	BUFFER:		MA988
A02E	9849	1 66	DIRINI 1		
A830	8885	200	LONG:		#500
A832	8868	210	ENTRA:	DEFW	N 2006
m034	0.2	220	TIPO:	DEF®	2

ETIQUETAS

BUFFER A02C PIRINI A02E ENTRA A032 LINTE A02B LONG A030 NAME A023 TIPD A034

PROGRAMA 3

		10	I L OHD . L	KARAMAN	W-4
		20	:		
A000		38		DPG	WA888
A000	3A18A8	40		LD	A, (LNAME)
A883	47	50		LD	8.A
4884	2119AB	50		LD	HL, NAME
A887	E0502340	70		LD	DE.(BUFF)
B00A	CD778C	80		CALL	M&C77
ABBE	2A21A8	98		LD	HL. (DIREC)
A011	CD838C	100		CALL	MBCB3
AB14	CD7ABC	110		CALL	#8C7A
A017'	C9	120		RET	
818A	8.0	130	LNAME:	DEFB	8
A019	50524F47	148	NAME:	DEFM	"FROGRAMA"
A821	8888	160	DIREC:	DEFW	M3888

ETIQUETAS

BUFF A823 DIREC A821 LIMANE A818

PROGRAMA 4

		10	; LBGD""		
		28	1		
A888		39		DRG	#H688
A000	0000	40		LD	8.0
A002	EDSB13AB	58		LD	DE,(SUFF)
A88A	CD778C	68		CALL	#BC77
A889	2A1546	78		LD	HL, (OIREC)
ABBC	CD83BC	80		CALL	48083
ABBF	CD7A8C	68		CALL	#8C7A
A012	C9	100		RET	
A013	98A9	110	BUFF:	DEFM	MA988
ARTE	0000	1 20	DIDEC.	DEDI	MAGGG

ETIQUETAS

SUFF A013 DIREC A015

PROGRAMA 5

			10	:LOAD"	PROGRA	AM+4
			20	:		
Α	666		30		DPB	March B B
A	000	SEFF	40		LD	H, 255
A	965	CD488C	58		CALL	MEC4B
Α	005	0460	60		LD	B.0
A	687	ED581844	~0		LD	DE . BUFF 1
A	999	0D77B0	88		CALL	#BC 77
A	BOE	ZA LAMB	99		L D	HL . KDIREE !
A	811	CD838C	100		CHLL	#BC83
A	014	CD7ABC	1:0		CALL	#BC7A
A	017	Co	1.26		RET	
A	818	98A9	1.30	BUFFI	PERM	#H288
	0.10	0000	1.00	DIRECT.	D.C.C.L.	*****

ETIQUETAS

BLFF H018 DIPEC H01H

PROGRAMAS

```
10 REM * PROGRAMA 1*
20 FOR N=&A000 TO &A02A
30 READ A:SUMA=SUMA+A
40 POKE N.A
50 NEXT
60 IF SUMA(>&117A THEN PRINT "ERROR
EN DATAS"
70 DATA 6.8,33,34,160,17,0
80 OATA 167,205,140,188,33,112,1
90 DATA 237,91,131,174,235,237,82
100 DATA 235,1,0,0,62,0,205
110 DATA 152,188,205,143,188,201,80
120 DATA 82,79,71,82,65,77,65
```

```
18 REM * PROGRAMA 2 *
20 FOR N=&A000 TO &A035
30 READ A:SUMA=SUMA+A
40 POKE N.A
50 NEXT
60 IF SUMA</br>
70 DATA 58,43,160,71,33,35,160
80 DATA 237,91,44,160,205,140,188
90 DATA 24,46,160,237,91,48,160
100 DATA 237,75,50,160,58,52,160
110 DATA 205,152,188,205,143,188,20
11
120 DATA 80,82,79,71,82,65,77
130 DATA 65,8,0,169,0,6
```

10	REM * PROGRAMA 3 *
20	FOR N=&A000 TO &A025
30	READ A: SUMA=SUMA+A
40	POKE N.A
50	NEXT
60	IF SUMA (>&F68 THEN PRINT "ERROR
EΝ	DATAS*
70	DATA 58,24,160,71,33,25,160
80	DATA 237,91,35,160,205,119,188
90	DATA 42,33,160,205,131,188,205
10	0 DATA 122,188,201,8,80,82,79
11	0 OATA 71,82,65,77,65,0,128
12	0 DATA 0,169,0,0,0,0,0

```
10 REM *PROGRAMA 4 *
20 FOR N=&A000 TO &A017
30 READ A:SUMA=SUMA+A
40 POKE N.A
50 NEXT
60 IF SUMA<>&AE1 THEN PRINT *ERROR
EN DATA 6.0.237,91,19,160,205
80 DATA 119,188,42,21,160,205,131
90 DATA 188,205,122,188,201,0,169
100 DATA 0,128,0.0,0,0
```

```
10 REM * PROGRAMA 5 *
20 FOR N=&A000 TO &A01C
30 REAO A:SUMA=SUMA+A
40 POKE N.A
50 NEXT
60 IF SUMA(>&E1C THEN PRINT "ERROR
EN OATAS"
70 DATA 62.255,205,107,188,6,0
80 DATA 42,26,160,205,131,188,205
100 DATA 122,188,201,0,169,0,128
```


INSTRUCCIONES DE CAMBIO TRANSFERENCIA Y BUSQUEDA

Hoy empezaremos la descripción de otro gran bloque de instrucciones, que son las llamadas de cambio, transferencia y búsqueda. Dada su extensión, las dividiremos en tres apartados diferentes. En el primero trataremos las instrucciones de cambio, en otro hablaremos de las de transferencia y por último el que tratará las de búsqueda.

lizando las instrucciones de cambio, que como su nombre indica, realizan un intercambio de contenidos entre diferentes registros.

La primera de las instrucciones con la que nos encontramos se representa de la siguiente forma:

EX DE, HL

Tras su ejecución los dos bytes de los registros dobles DE y HL se cambian entre sí.

Así pues si cargamos DE y HL con las posiciones indicadas a continuación:

LD HL, #7000 LD DE, #5000

después de la ejecución de EX DE, HL, el contenido de HL será #5000, y el del registro DE será #7000.

En el primer programa que hemos preparado podemos ver una aplicación práctica. Cargamos el registro doble DE con la dirección #7000 y HL con la dirección #7001, luego colocamos en la primera posición el código de la letra 'A', y en la segunda el código de la letra 'a'. Luego pasamos a un bucle que se repetirá 26 veces, en el cual se llama en primer lugar a la rutina de imprimir, la cual

nos pintará en pantalla una letra mayúscula, luego hacemos EX DE,HL y volvemos a llamar a la rutina de impresión, y ahora ésta nos pintará una letra minúscula, y por último volvemos a intercambiar los contenidos de los registros DE y HL para que cuando se vuelva a repetir el bucle nos imprima otra mayúscula.

De este modo obtendremos en pantalla un abecedario doble constituido uno por letras mayúsculas y el otro por letras minúsculas.

Tenemos dos intrucciones más utilizando los registros dobles IX e IY:

EX DE,IX EX DE,IY

que actúan exactamente de la misma forma que la descrita anteriormente, pero como es lógico, utilizando los registros correspondientes.

Antes de pasar a describir la próxima instrucción de cambio, hablaremos de los registros alternativos que posee el microprocesador Z80.

Hasta ahora hemos estado trabajando con los registros, AF, HL, DE, BC, IX, IY, pero el Z80 además tiene la capacidad de trabajar con los registros alternativos, que para diferenciarlos de los ordinarios se le coloca un apóstrofe. Así pues estos registros alternativos serán:

AF' HL' DE' BC'

Ahora bien, el microprocesador sólo puede trabajar con los registros normales, así pues éstos se podrán utilizar como almacén, para en un momento determinado poder recu-

perar unos valores guardados anteriormente.

Ahora podemos ya pasar a describir la siguiente instrucción de cambio que se representan así:

EX AFF, AF'

Después de la ejecución de esta instrucción los dos bytes del registro AF pasan al registro AF' y los dos bytes de este último pasan al primero.

Así pues si el contenido de AF fuera #200 y el contenido de AF' fuera #7000, una vez ejecutado EX AF,AF' obtendríamos el valor #7000 en el registro doble AF y AF' contendría #200.

Dicha instrucción podríamos utilizarla, si por ejemplo tenemos un valor en el acumulador que queremos recuperar más tarde, entonces lo que haremos es ejecutar EX AF,AF' y cuando queramos recuperar ese valor deberemos ejecutar de nuevo la misma instrucción.

En el programa números dos podemos ver un ejemplo de utilización, hemos cargado el acumulador con el valor 49, y luego lo hemos pasado al registro alternativo AF'.

Deberemos tener mucho cuidado en el uso de los registros alternativos, ya que si llamamos a rutinas del firmware, estos registros se corromperán, ya que el sistema operativo del ordenador los utiliza para sus propias rutinas.

Por este motivo deberemos recuperar los valores almacenados en los registros alternativos, antes de llamar a cualquier rutina que utilice llamadas al firmware.

La instrucción que estudiaremos a continuación es: EXX

Su ejecución produce un intercambio entre los registros normales y los alternativos. Así pues los dos bytes de los pares BC, DE y HL son intercambiados respectivamente por los bytes de los pares BC', DE' y HL'.

Deberemos tener cuidado al ejecutarla, ya que como hemos dicho anteriormente, si llamamos a cualquiera de las rutinas del firmware, se corromperán los valores que habíamos guardado en los registros alternativos.

Podemos ver un ejemplo de actuación de esta instrucción en el programa número tres. En primer lugar damos unos valores a los registros dobles BC, DE y HL y luego los pasamos a los registros alternativos, para recuperarlos más tarde cuando sean necesarios.

Estas instrucciones podríamos utilizarlas, si en un momento determinado deseamos saltar a una rutina

determinada, pero preservando todos los registros. Entonces dicha rutina debería tener la siguiente estructura:

> ENTRADA A LA RUTINA EX AF,AF' EXX

RESTO DE LA RUTINA

EXX EX AF,AF' SALIDA DE LA RUTINA

Debo volver a insistir que dentro de esta rutina no puede haber ninguna llamada al firmware, ya que si la hubiera se corromperían los registros alternativos y perderíamos la información almacena da en ellos.

Previamente a la explicación de la próxima instrucción de cambio repasaremos brevemente el funcionamiento del STAK que utiliza el microprocesador para su funcionamiento interno.

Sabemos que éste es utilizado para guardar direcciones de memoria hacia las cuales debe saltar el control de programa cuando éste se encuentra con una instrucción RET.

La forma en que se almacenan esas direcciones de memoria, es semejante a la forma en que nosotros podríamos almacenar una serie de bandejas en una caja. Pondríamos en primer lugar la bandeja número 1 seguida de la número 2 y así sucesivamente hasta llegar a la bandeja número 10 por ejemplo. Una vez almacenadas éstas, cuando queremos recuperarlas, la primera que cogeremos será la bandeja que hemos almacenado en último lugar, o sea el número 10, seguida de la número 9 y así sucesivamente hasta llegar a la número 1 que es la primera que hemos almacenado.

El STACK o PILA, funciona exactamente de la misma forma, por lo tanto cuando se quiere recuperar un dato, se recupera en primer lugar el último que se ha almacenado.

Veamos ahora cómo se representa la última de las instrucciones de cambio:

EX (SP), HL

su ejecución produce un intercambio de los dos bytes superiores del STACK por los dos bytes del registro doble HL.

Por las explicaciones dadas anteriormente y observando la actuación de la anterior instrucción, podemos hacernos una idea de las consecuencios catostróficas que podrío ocarrerar el mal uso de dicha instrucción.

Esto es así debido a que con EX (SP), HL se alteron los dos bytes superiores del stack que el microprocesador toma como retorno de uno rutina. Si estos bytes se modifican injustificadamente, el retorno se produce en uno dirección en la cuol el micro no encuentro nada y por lo tanto se quedaró colgado sin remisión.

Esta último instrucción es aplicable también con los registros dables IX e IY, de la forma que indicamos a continuación:

EX (SP), IX

EX (SP), IY

éstas actúan exactamente igual que la anteriormente comentada pero lógicamente los dos bytes superiores del STACK, se intercombiarán respectivamente por los dos bytes de los registros IX e IY.

Debido al manejo de la PILA por el sistema operativo del ordenador, las anteriores instrucciones únicamente las podremos utilizar en programas construidos en su totalidad en código máquino, yo que si intentáramos volver al Basic, el sistema se bloquearío.

En el progromo número cuotro se muestro un ejemplo de actuación de EX (SP), HL. En primer lugar corgamos en HL con la dirección de la rutina NAME y luego mediante la anterior instrucción, pasomos ese valor al STACK, con lo que el micro cuondo encuentre un RET, soltará inmediotomente a lo rutino NAME, y luego volverá al progroma principal que nos imprimirá una B en pantalla, y se quedaró en ese lugar colgado en un bucle infinito, ya que no podemos retornar al Basic.

El último programo es similar ol anterior, únicomente que en éste repetimos el proceso tres veces, una con cada una de los instrucciones siguientes:

> EX (SP),HL EX (SP),IX EX (SP),IY

cado uno de los procesos nos imprimirá en pantalla un número, con lo que al final del programo tendremos en pantalla los tres número de cado uno de los procesos y un último número que es imprimido al volver al programo principal.

GRAFICO 1

ı					4 10 10		
ı			20				
l	A000		30		DRG	MA000	
ı	A000	110070	40		LD	DE, #7000	
ı	A003	210170	50		LD	HL, #7001	
Į	A886	3E61	60		LD	A.97	
١	A008	12	70		LD	(DE),A	
ì	A009	3E41	80		LD	A,65	
ļ	A008	77	98		LD	(HL),A	
ı	A00C	961A	100		LD	B,26	
ı	ABBE	CD1 9A8	110	BUC:	CALL	PINTA	
ı	A011	EB	129		EX	DE,HL	
	A012	CD1 9A0	130		CALL	PINTA	
1	A815	EB	140		EX	DE,HL	
l	A016	10F6	150		DJNZ	BUC	
	A018	C9	160		RET		
ì	A019	7E	170	PINTA:	LD	A,(HL)	
۱	ABIA	CD5ABB	180		CALL	#BB5A	
١	A010	34	190		INC	(HL)	
	ABIE	C9	200		RET		

ETIQUETAS

BUC ADDE PINTA AD19

		10 ;PR0	GRAMA-2	
		20 :		
A000		30	ORG	#A000
A000	3E31	40	LD	A,49
A002	08	50	EX	AF,AF'
A003	C9	68	RET	

		10 20	,PROGRAMA-3	
ABI	10	30	ORG	#A000
ABI		40	LD	BC, #4000
ABI	3 210020	50	LD	HL, #2000
ABI	6 110070	60	LD	DE,#7000
AR	9 09	78	EXX	
ABI	9A C9	80	RET	

ı			10	:PROGR	AMA-4		
ı			20				
ı	A000		30		DRG	#A000	
7	A999	CDBAAB	40		CALL	RUTI	
١	A003	3E42	50		LD	A, "B"	
ı	A885	CD5ABB	60		CALL	#885A	
1	ABBB	18FE	70	INF1:	JR	INFI	
	ABBA	210FA0	80	RUT1:	LD	HL,NAME	
ı	ABBD	E3	90		EX	(SP),HL	
	ABBE	C9	100		RET		
	ABBF	E3	110	NAME:	EX	(SP).HL	
	A010	C9	120		RET		

ETIQUETAS

INFI A008 NAME A00F RUTI A004

ı			10	:PROGRA	MA-5	
١			20	;		
ı	A000		30		ORG	#A000
ı	A888	CD0AA0	49		CALL	RUT
ł	A883	3E34	50		LD	A, "4"
	A885	CD5ABB	60		CALL	#BB5A
	A008	1 BFE	70	INFI:	JR	INFI
	ABBA	218FA8	89	RUT:	LD	HL, NAME
	ABBD	E3	98		EX	(SP),HL
	ABBE	C9	100		RET	
	ABBF	3E31	110	NAME:	LD	A,"1"
	A811	CD5A88	120		CALL	#885A
	A014	DD211BA0	130			
	ABIB	DDE3	140		EX	(SP), (X
		C9				
	A018	3E32	160	NAME1:	LD	A,"2"
	ABID	CD5ABB	170		CALL	#885A
	A828	FD2127A8	180		LD	
	A024	FDE3	190		EX	(SP),IY

A026 C9 200 RET
A027 3E33 210 NAME2: LD A, "3"
A029 CD5A88 220 CALL M885A
A02C E3 230 EX (SP),HL
A020 C9 240 RET

ETIQUETAS

INFI A008 NAME A00F NAME: A018 NAME2 A027 RUT A00A

PROGRAMAS

10 REM * PPDGRAMA 1 *
20 FDR N=&A000 TD &A01F
30 READ A:SUMA-SUMA+A
40 POKE N.A
50 NEXT
60 IF SUMA<0.ADA3 THEN PRINT "ERROR
EN DATAS"
70 DATA 17.0.112.33.1.112.62
80 DATA 205.25.160.235.205.25.160
100 DATA 235.16.246.201.126.205.98
110 DATA 187.52.201.187.253.33.39

18 REM * PROGRAMA 2 *
28 FOR N=&A008 TO &A005
30 READ A:SUMA=SUMA+A
40 POKE N.A
58 NEXT
50 IF SUMA()&I40 THEN PRINT "ERROR
EN DATAS"
70 DATA 62.49,8.201,0,0.8

10 REM * PROGRAMA 3 *
20 FOR N-&A000 TD &A000
30 READ A:SUMA-SUMA+A
40 POKE N.A
50 NEXT
60 IF \$UMA()&2A5 THEN PRINT "ERPOR
EN DATAS"
70 DATA 1.0,64,33.0,32.17
80 DATA 0,112,217.201,0.0.0

10 REM > PROGRAMA 4 *
20 FDR N*&A080 TO &A011
30 READ A:SUMA*SUMA*A
40 POKE N.A
50 NEXT
60 IF SUMA()&917 THEN PRINT "ERROR
EN DATAS"
70 DATA 205,10,160,62,66,205,90
80 DATA 187,24,254,33.15,160,227
90 DATA 201,227,201,0,0,0

18 REM * PROGRAMA 5 *
28 FOR N-&A000 TD &A02E
30 READ A:SUMA=SUMA+A
40 POKE N:A
50 NEXT
60 IF SUMA<>&:80E THEN PRINT "ERROR
FN DATAS"
70 DATA 205,10,160,62,52,205,90
80 DATA 187,24,254,33.15,160.227
90 DATA 201,62,49,205,90,187,221
100 DATA 33,27,160,221,227,201,62
110 DATA 50,205,90,187,253,33,39
120 DATA 160,253,227,201,62,51,205
130 DATA 90.:87,227,201,0,0

MICROI

C/ Duque de Sesto, 50. 28009 Madrid Tel.: (91) 275 96 16/274 53 80 (Metro O'Donell o Goya)

SOFTWARE: por cada programa GRATIS ¡¡1 BOLIGRAFO CON RELOJ DE CUARZO!!

HYPER SPORTS	2.300 ptas.
TORNADO LOW LEVEL	1.950 ptas.
EXPLODING FISTT	2.300 ptas.
JUMP JET	2.495 ptas.
ZORRO	2.600 ptas.
SABREWULF	1.650 ptas.
GHOSTBUSTERS	1.950 ptas.
GYROSCOPE	2.300 ptas.
HYGHWAY ENCOUNTER	1.750 ptas.
HIGHWAY ENCOUNTER DISCO	3.300 ptas.

DYNAMITE DAN	2.100 ptas.
RAID OVER MOSCOW	2.300 ptas.
THEY SOLD A MILLION	2.500 ptas.
FIGHTER PILOT	1.975 ptas.
MASTER OF T. LAMP	1.950 ptas.
NIGHTSHADE	1.950 ptas.
HACKER	1.950 ptas.
SUPER TEST	2.300 ptas.
MAPGAME	
TONADO LOW LEVEL DISCO	3.300 ptas.

JOYSTICK QUICK SHOTT II.. 2.295 ptas.
JOYSTICK QUICK SHOT V ... 2.595 ptas.

PC-COMPATIBLE IBM 256 K MONITOR FOSFORO VERDE 2 BOCAS DISKETTE 360 K SOLO ¡¡243.900!!

TAPA METACRILATO PARA TECLADO 111.900 ptas.!!

UNIDAD DISKETTE 5.25"

jj45.900 ptas.!!

(incluido controlador)

LAPIZ OPTICO

IMPRESORA MARGARITA ij**49.900** ptas.!!

CASSETTE ESPECIAL ORDENADOR 5.295 ptas.

PRECIOS SUPER-EXCEPCIONALES PARA AMSTRAD CPC-472 Y CPC-6128 ¡¡LLAMANOS, TE ASOMBRARAS!! /

IMPRESORAS ii20% DTO. SOBRE P.V.P.!!

SINTETIZADOR DE VOZ Y AMPLIFICADOR: 7.900 ptas. MODULADOR TV 8.400 ptas.

INTERFACE DISCO 5 1.4" 5.300 ptas.

CINTA C-15 ESPECIAL ORDENADOR 85 ptas. DISKETTE 3" 990 ptas.

UNIDAD DE DISCO 3" CON CONTROLADOR: 49.900 ptas.

Libros:
Curso autodidáctico Basic I 2.525 ptas.
Curso autodidáctico Basic II 2.525 ptas.
Programando con Amstrad 2.195 ptas.
Juegos sensacionales Amstrad 1.950 ptas.
Hacia la Inteligencia Artific. 1.295 ptas.
Música y sonidos con Amstrad 995 ptas.

Pedidos contra reembolso sin ningún gasto de envio. Tels. (91) 275 96 16/274 53 80, o escribiendo a Micro-1. C/Duque de Sesto, 50. 28009 Madrid

S in duda alguna

A través de esta sección se pretende resolver, en la medida de la posible, todas las posibles dudas que «atormenten» a todas las personas interesadas en el mundo del AMSTRAD, sean o no poseedores de uno y, si lo son, se encuentren en cualquier nivel de destreza en su manejo.

Semanalmente, aparecen en estas páginas las consultas de la mayor cantidad de usuarios posible; ello redundará en un mejor servicio y en un contacto más estrecho entre todos nosotros a través de la revista.

SIN DUDA ALGUNA está abierta a todos.

En el Banco de pruebas, referente al PCW 8256 hay una frase que dice: «poder usar cualquier programa que funcione bajo el mismo sistema operativo o sea el CP/M y que esté en igual formato de 3 pulgadas». ¿Esta significa entances que puede usar cualquier programa con el mismo CP/M y en 3 pulgadas, de otro ordenador?

Carlos Veja Sancho

Por desgracia, la respuesta es sí y no. Depende del programa: al estar en 3 pulgadas y carrer bajo CP/M, sí.

Pero, si el programa está especialmente adaptado a las características de consola del otro ordenador, habría que readaptarlo al Amstrad.

Las mayores o menores dificultades de este último proceso dependen de muchos factores, y no se puede asegurar que siempre le sea factible al usuario.

Me dirijo a la sección de Sin duda

En el MICROHOBBY AMSTRAD número 5, en la página 5 dice que estudiaba la medida de ampliar la memoria del CPC 464. ¿Me podrían decir si ya se ha ampliado?

¿Podrían decirme también si las radiaciones que emite el monitor sobre el ordenador cuando están uno enfrente de otro, pueden perjudicar a la cinta que esté en el cassette? Se lo digo porque es que ya me ha pasado, y no sé si es por culpa del cabezal o de las radiaciones.

Jesús Alegría

1) Como comentábamos en Sin duda alguna en su momento, existen en Inglaterra ampliaciones de memoria, hasta 256 K, para la serie CPC. En España, que nosotros sepa-

2) Probablemente se deba al cabezal. Las «radiaciones» emitidas por el monitor del Amstrad no pueden perjudicar a la cinta.

−¿La versión del Dr. Logo que acompaña a este ordenador es la misma que la que posee el modelo 664 o está ampliada aprovechando la mayor cantidad de memoria disponible? Lo digo porque se suministra en el mismo disco que el sistema operativo CP/M 2.2.

–¿Es posible que por causa de un decreto de homologación se modifique en un futuro inmediato el teclado del CPC-6128 con el fin de adaptarse a las lenguas peninsulares?

1) Con el 6128 vienen dos versiones de LOGO, una, adaptada al 128, con muchos más comandos y capaz de usar más memoria. La segunda es análoga a la del CPC664. 2) El **Amstrad** 6128 deberá adap-

tarse, como todas las máquinas, a las normas de homologación que entrarán en vigor, salvo nuevas prórrogas, dentro de aproximadamente 5 meses.

¿Dónde se puede conseguir el libro de Firmware del Amstrad?, o ¿lo podrían publicar en su revista?

También quisiera saber cómo utilizar los comandos HIMEN y ME-MORY a la hora de mezclar en un programa Basic y código máquina, y si se pueden presentar problemas al hacer éste.

Esperando que me resuelvan estas dudas, se despide de ustedes. Antonio Sánchez Tejero (Granada)

Indescomp vende el libro de Firmware del Amstrad..

No, no lo podemos publicar en nuestra revista debido a su gran extensión, y a que se trata de una publicación sometida al copyrigth.

2) El comando HIMEM nos da el valor de la posición más alta de memoria resevada al Basic.

El comando MEMORY altera dicha posición, y se suele utilizar para reservar espacio en la memoria a rutinas de código máquina.

Amstrad I deas

AMSTRAD Semonal comunica a todos sus lectores la apertura de una nueva sección dedicada a recoger las mejores ideas que exploten al máximo las posibilidades del ordenador. materializadas en programas claros y cortos (máximo 25 líneas). Los mejores de entre todos ellos serán publicados con el nombre de su autor en la revista, recibiendo como premio, gratuitamente en su domicilio los cuatro primeros números de nuestra cinta mensual. Los programos enviados deberán incluir:

 Cinta de cassette con el programa o programas grabados.

 Explicación detallada del funcionamiento y propósito del programa, mecanografiado a 2 espacios o con letra clara.

Es imprescindible indicar en el sobre claramente: AMSTRAD IDEAS. La dirección es:

Hobby Press, S. A. La Granja, 39

Poligono Industrial de Alcabendas. Madrid

Clases de Informática sobre AMSTRAD

Exclusivamente individuales.

Ordenadores AMSTRAD y periféricas

Los mejores precias

Saftware a la medida

ZURBANO, 4 🕿 410 47 63 **28010 MADRID**

ESCUELA de INFORMATICA APLICADA

"Mister Chip"

CENTRO HOMOLOGADO Y COLABORADOR DEL INEM

· CURSO de INICIACION

(6 meses)

Diploma: PROGRAMADOR BASIC-1

INFORMATICA BASICA

(96 horas)

Diploma: PROGRAMADOR EN BASIC

• PROGRAMACION AVANZADA

(110 horas)

Diploma: MASTER EN PROGRAMACION

Dirigido a mayores de 12 años.

CIUDAD de los PERIODISTAS. Avda. Herrera Oria, 171 bajo Frente al Instituto N. Herrera Oria. Tels.: 201 64 09 - 201 93 85

> TODAS LAS CLASES SON PRACTICAS. CCN ORDENADORES AMSTRAD O SPECTRUM

¡Operación cambio!

Valoramos:

Tu AMSTRAD 464 en 50.000 ptas. Un Spectrum + en 30.000 ptos. Amstrad CPC 664 en 70.000 ptos.

En lo compra del AMSTRAD CPC 6128 o PCW 8256.

Consulte para monitor colar.

Precios especiales en impresoras y accesorios.

🕿 Tardes 270 34 97.

TE OFRECEMOS EL NUEVO PLAN GENERAL CONTABLE CON I.V.A.

Contabilidad CPC 664 y CPC 6128

Contabilidad PCW 8256

13.900 ptas. 37.500 ptas.

Disponemos de un equipo de software a tu servicio. Hacemos programas a medida.

RECUERDA: —Damos solución a la pequeña y mediana empresa.

Torres Quevedo, 34

Tel. 967/22 79 44

02003 ALBACETE

DATA BECKER APUESTA FUERTE POR AMSTRAD

Ofrece una colección muy interesante de augerencias, ideas y soluciones para la programación y utilización de su CPC-464: Desde la estructura del hardware, sistema de funcionamiento - Tokens Basic, dibujos con el joystick, aplicaciones de ventanas en pantalla y otros muchos interesantes programas como el procesamiento de datos, edifor de sonidos, generador de caracteres, monitor de código máquina hasta listados de interesantes juegos CPC-464 Consajoa y Trucos. 283 páge. P.V.P. 2.200, ptas. Ofrece una colección muy interesante

Escnto para alumnos de los últimos cursos de EGB y de 8UP, este libro contiene muchos programas para resolver problemas y de aprendizaje, descritos de una forma muy compleja y lácil de comprender. Teorema de Pritágoras, progresiones geométincas, escritura cafrada, crecumento exponencial, verbos riregulares, igualdades cuadrábicas movimiento pendular, estructura de moléculas, cálculo de interés y muchas cosas más cosas más

CPC-464 El libro del colegio 380

PEEKS, POKES y CALLS se utilizan para introducir al lector de una forma ácilmente accesible al sistema operativo y al lenguaje máquina del CPC Proporciona además muchas e interesantes posibilidades de aplicación y programación de su CPC

PEEKS y POKES del CPC 464/6128. 180 pág. P.V.P. 1.600,- ptes.

ca técnica y programación del Procesa-dor Z80 son los temas de este libro. Es un libro de estudio y de consulta imprescindible para todos aquellos que poseen un Commodore 128. CPC, MSX u otros ordenadores que trabajan con el Procesador 280 y descan programar en lenguaje máquina.

El Procesador 280, 550 pág. P.V.P. 3,600,- ptss.

El LIBRO DEL FLOPPY del CPC lo explica lodo sobre la programación con discos y la gestión relativa de licheros mediante el lioppy DDI-1 y la unidad de discos incorporada del CPC 664 6128 La presente obra, un auténtico stándart, representa una ayuda incomparable tanto para el que dese iniciarse en la programación con discos cómo para el más curtido programación de ensamblados. Especialmente interesante resulta èl listado exhaustivamente comentado del DOS y los muchos programas de ejemplo, entre los que se incluye un completo paquete de estitón de licherosmoleto. EI LIBRO DEL FLDPPY del CPC lo completo paquete de gestión de tiche-

El Libro del Floppy del CPC. 353 pág. P.V.P. 2.800,- ptae.

Dominar CP/M por fin! Desde explica-"Dominar CP:M por Int I Desde explica-ciones básicas para almacanar nume-ros, la profección confira la escintura, o ASCII, hasta la aplicación de programas auxiliares de CP M. asi como «CP:M interno» para avanzados, cada usuano del CPC rapidamente encontrará las ayudas e informaciones necesanas, para el trabajo con CP:M Este libro tiene en cuenta las versiones CP:M 2.2. así como CP:M Plus (3.0), para el AMSTRAD CPC 464, CPC 664 y CPC 6128

CP/M. El libro de ejercicios para CPC. 260 pág. P.V.P. 2.800,- ptas

TEXTOMAT 8.800 ptas.

¡El procesador de textos más vendido en Alemania, ahora también disponible para

FERRE-MORET I.C. TUESTIN B. ENILO 23. Tel. 218 02 93 BOLETIN DE PEDIDO

Desert Magner 300 plas. [] Adjunto cheque [] Reembolso más gastos del mismo.

Gastos envio 300 plas. [] Adjunto cheque

M ercado común

Con el objeto de fomentar las relaciones entre los usuarios de AMSTRAD, MERCADO COMUN te ofrece sus páginas para publicar los pequeños anuncios que relacionados con el ordenadar y su mundo se ajusten al formato indicado a continuación.

En MERCADO COMUN tienen cabida, anuncios de ventos, compras, clubs de usuarios de AMSTRAD, programadores, y en general cualquier clase de anuncio que pueda servir de utilidad o nuestros lectores.

Envíanos tu anuncia mecanografiado a: HOBBY PRESS, S.A.

AMSTRAD SEMANAL.

Apartado de correos 54.062 28080 MADRID

¡ABSTENERSE PIRATAS!

Vendo consola vídeo-juego marca Intellivision, nuevo (del 6-1-85) con 6 cartuchos de juegos: fútbol, baloncesto, tenis, boxeo, space battle, triple action y adaptador para TV. 15.000 ptas. Eulogio Marzo. C/ Lérida, 9 - 1.°-2.° Sant Vicenç dels horts (Barcelona) Tel. (93) 656 39 78.

Poseedor de Amstrad CPC-464 desearía contactar con usuarios del mismo ordenador para el cambio de programas, tanto de juegos como de utilidades. Tengo más de 100 programas entre juegos y utilidades. Les ruego manden lista. Escribir a: Fernando Martínez Martínez. C/ Alicante, 7 - 3.º A. 30003 Murcia.

Desearía contactar con usuarios del **Amstrad**, para intercambio de programas, información e ideas. Escribir o llamar a: Claudio Rivero Armas. C/ Antonio Collado, 19. 35015 Las Palmas (Gran Canaria). Tel. (928) 31 23 98.

............

Urgente vendo **Amstrad** CPC 664 con monitor en color 2 discos originales con CP/M, logo, base de datos, etc., y manual en español. Garantía oficial **Amstrad** España a estrenar. Todo por 110.000 pts. Tel. (91) 206 75 21.

Desearía intercambiar programas comerciales para Amstrad CPC 464/664/6128. Estoy interesado también en relacionarme personalmente con usuarios de Amstrad en Málaga. Interesados escribir a John Stubbs Cruz. C/ Mirador «Albion». Urb. «Cerrado de Calderón». 29018 Málaga. Aquellos residentes en Málaga pueden llamar al Tel. 29 15 74. Gracias.

Desearía contactar con usuarios del 464/664/6128 para intercambio de programas. Llamar de 10 a 11 de la noche o escribir a: Julián Calero. C/ Cataluña, 16-5.º izada. Basauri (*Vizcaya*). Tel. (94) 440 46 88.

Vendo Amstrad CPC-664, monitor fósforo verde, unidad de discos, garantía Amstrad España (6 meses), comprado el 11-9-85, manuales español e inglés, dos discos originales de regalo (C/PM, logo, procesador de textos, random files, diseñador de gráficos, puzzle, animal, vegetal y mineral). Y además regalo disco contabilidad (PCAN o ENERAL contable, P.V.P.: 14.500 pts.). Todo por 95.000 pts. Razón: Aurelio Sanchis Llopis. C/ San Pacual, 4. Genovés (Valencia). Tel. (96) 227 67 22.

Desearía contactar con propietarios de CPC 664 y CPC 6128 para formar un club de usuarios en Zaragoza y provincias limítrofes. Mariano de la Iglesia. Tel. (976) 56 01 07. Zaragoza.

Amstrad 664/6128 desearía intercambio de programas en disco o cinta, utilidades o juegos.

Amstrad 664/6128 desearía intercambio de programas en disco o cinta, utilidades o juegos. Manuel Díaz Fernández. C/Foncalada, 11 - 1.º dcha. 33002 Oviedo. Tel. 21 14 17.

Me gustaría intercambiar programas, juegos, ideas, etc., con usuarios del CPC 464 que vivan en Burgos. Llamar por la tarde al Tel. 26 06 89. Preguntar por Javier.

Intercambio programas comerciales de todo tipo para Amstrad 464, 664 y 6128: juegos, utilidades y copiones. Por favor adjuntar lista. Prometo contestar a todos. F.º Manuel Gijón Romero. C/ San Pío X, 4 - 2.º B. 18007 Granada. Tel. (958) 12 70 31. Preguntar por Francis.

Vendo Amstrad CPC-464 monitor f/verde, joystick, más de 40 programas y mauales en español, por sólo 45.000 pts. Idem y además una unidad de disco y programas, por 87.000 pts. Tel. (91) 796 15 46. Llamar de 9-13 h. preguntar por Ignacio. Madrid.

Vendo Amstrad 464 verde 50.000. Disco con controlador 45.000. Todo por 90.000. Garantía 4 meses. Con manuales, libros, y 20 juegos y utilidades, los mejores. Tel. 888 58 41. José Luis. Cenas. Madrid.

Desearía contactar con usuarios del Amstrad CPC 6128 para intercambio, de ideas, comentarios, etc. Tengo algunos programas interesantes. A ser posible de Madrid. Carlos. Tel. (91) 233 05 74 (comidas o cenas).

Vendo, cambio programas para **Amstrad** CPC 664. Interesados escribir a Juan Mucientes Rasilla. C/ Nicaragua, 14-5.° C. 15005 La Coruña.

HOBBY PRESS, S.A.

Apartado de Correos N.º 232 ALCOBENDAS (Madrid)

o que nos traslada al mano-flipper del mejor casino osibilidad de creación de ones, etc. P.V.P.: CASSET-SCO 2.900 pts.

JUMP JET

Te enquentios of los mandos de fonce y Air antifica una perioda interiodad de se gar del partavianos. (Esperional versión autopor vuelo-combate). P.V.P. GASSETTE 2.200 pts. DISCO 2.900 pts.

ZEDIS II

Critical desentation for the P. P.O., para 6 appropriate mas avangana. P.V.P.: CAS-ETTE 1,333 pts. DISCO 2,830 ats.

MUSIC MAESTRO

El más completo programa de música creado para el AMSTRAO. Permite crear sonidos, esta filia y convertir to ardenadar en la major de música". P.V.P. CASSÉTIE 2.200 pts. DISCO 2.900 pts.

SYSTEM X

Ampliación del languaje Bosic. Conjunto de 30 nuevos instrucciones (fill, circle, protec) para ayudar en la programación, P.V.P. CASSETTE 2.200 pt. DISCO 2.900 pts.

PAZAZZ

Programo que permite de una monera semcitla la creación de partallas con gráficos, dotarles de movimiento, acompañados de músico P.V.P.: DISCO 2 900 pts.

ODDJOB

La mejor utilidad para el mejor conocimien to 191 disco. (Copias de disco, Disk map, Disk track, esoter, etc.), P.V.P.: DISCO 2.600 pts

SYCLONE 2

Programa de utilità di programa de utilità di programa de segundana (1000-ups) a cestinal velocidades (bandas), P.V.P. CASSETTE 1,800 pm. DISCO 2.555 ++

TRANSMAT

Pasar tos mejores programas de cinho o disco ya no es problema. Con transmun te proceso será fázil v sencillo F.V.P.; Lis-CO 2.600 pts.

OTROS PROGRAMAS EN STOCK

MINI OFFICE	P.V.P. CASS, 3,200 pts. P.V.P. DIS. 3,900 pts.
WORLD CUP FOOTBALL	P.V.P. CASS. 1.800 pts.
BATLE FOR MIDWAY	P.V.P. CASS, 1,800 pts.
FIGHTER PILOT	P.V.P. CASS. 2.200 pts.
SURVIVOR	P.V.P. CASS: 1.800 pts.
MOON BUGGY	P.V.P. CASS. 1.800 pts.
TECHNICIAN TED	P.V.P. CASS, 1.800 pts.
FRUITY FRANK	P.V.P. CASS. 1.800 pts.
DATABASE	P.V.P. CASS, 2,100 pts.
ICON TURTLE GRAPHICS	P.V.P. CASS. 2,400 pts.
TASCOPY Y TASPRINT	P.V.P. CASS. 2,600 pts.
FORE EDITOR	PWP PASS 1 ann ste

DRAUGHTSMAN

Sofisher to programa de dibujo que permite trator la pantalla del AMS TRAD como un sencillo tablero del libujo, sus resultados son expataculo res P.V.P.: CASSETTE 4.500 pts. DISCO 5.200 pts.

ENVIENOS A MICROBYTE AS.

P.º Castellana, 179, 1.º - 28046 Madrid

Nombre
A.º Hidos
Dirección
Población
D.P. Telétono

D.P. Telélano

ENVIOS GRATIS

JUEGO C D Precio TOTAL

PRECIO TOTAL PESETAS

Incluyo talon nominativo Contra-Reembolso

Pedidos por teléfono 91 - 442 54 33 / 44

SOLICITION OF CINTAS DE PROGRAMAS

	SOLICITOD DE CITATO D	I I VO O IVININO
	Oferta válida hasta el 28 de	febrera de 1986.
M	este cupón en un sobre cerrado a la misma dirección.	en revistas 1 al 4 inclusive). icadas en revistas 5 al 8 inclusive). is publicadas en revistas 9 al 12 inclusive). aramas publicados en revistas 13 al 16 inclusive).
	NOMBRE	EDAD
Con el o	APELLIDOS	
ciones entre	DOMICILIO	
MERCADO C	DOMICILIO	8 h A 1/14 1 A 1 A
nas para pub	CIUDAD	PROVINCIA
que relaciona	C. POSTAL TELEFONO	PROFESION
mundo se aju	¿ERES SUSCRIPTOR DE MICROHOBBY AMSTRADS	N.° DE SUSCRIPTOR (si lo recuerdas)
	Marco con una (x) en el casillero correspondien	
En MERCAL	☐ Talán bancario adjunto a nombre HOBBY PI	RESS, S. A.

N.º DE SUSCRIPTOR (si lo recuerdas) rma de pago que más me conviene. Firma y fecha:

anuncios de 🔲 Giro Postal a nombre de HOBBY PRESS, S. A., N.º usuarios de A y en general que pueda servir de utilidad a nuestros

Envíanos tu anuncio mecanografiado a: HOBBY PRESS, S.A.

AMSTRAD SEMANAL.

Apartado de correas 54.062 **28080 MADRID :ABSTENERSE PIRATAS!**

Vendo consola vídeo-juego marca Intellivision, nuevo (del 6-1-85) con 6 cartuchos de juegos: fútbol, baloncesto, tenis, boxeo, space battle, triple action y adaptador para TV. 15.000 ptas. Eulogio Marzo. C/ Lérida, 9 -1.º-2.ª. Sant Vicenç dels horts (Barcelona) Tel. (93) 656 39 78.

Poseedor de Amstrad CPC-464 desearía contactar con usuarios del mismo ordenador para el cambio de programas, tanto de juegos como de utilidades. Tengo más de 100 programas entre juegos y utilidades. Les ruego manden lista. Escribir a: Fernando Martínez Martínez. C/ Alicante, 7 3.º A. 30003 Murcia.

Desegría contactar con usuarios del **Amstrad**, para intercambio de programas, información e ideas. Escribir o llamar a: Claudio Rivero Armas. Cl Antonio Collado, 19. 35015 Las Palmas (Gran Canaria). Tel. (928) 31 23 98.

.

Desegría contactar con usuarios del 464/664/6128 para intercambio de programas. Llamar de 10 a 11 de la noche o escribir a: Julián Calero. C/ Cataluña, 16-5.° izqda. Basauri (Vizcaya). Tel. (94) 440 46 88.

Vendo Amstrad CPC-664, monitor fósforo verde, unidad de discos, garantía Amstrad España (6 meses), comprado el 11-9-85, manuales español e inglés, dos discos originales de regalo (C/PM, logo, procesador de textos, random files, diseñador de gráficos, puzzle, animal, vegetal y mineral). Y además regalo disco contabilidad (PCAN o ENERAL contable, P.V.P.: 14.500 pts.). Todo por 95.000 pts. Razón: Aurelio Sanchis Llopis. C/ San Pacual, 4. Genovés (Valencia). Tel. (96) 227 67 22.

Desearía contactar con propietarios de CPC 664 y CPC 6128 para formar un club de usuarios en Zaragoza y provincias limítrofes. Mariano de la Iglesia. Tel. (976) 56 01 07. Zaragoza.

Amstrad 664/6128 desearía intercambio de programas en disco o cinta, utilidades o juegos. Granada. Tel. (958) 12 70 31. Preguntar por Francis.

Vendo Amstrad CPC-464 monitor f/verde, joystick, más de 40 programas y mauales en español, por sólo 45.000 pts. ldem y además una unidad de disco y programas, por 87.000 pts. Tel. (91) 796 15 46. Llamar de 9-13 h. preguntar por Ignacio. Madrid.

Vendo Amstrad 464 verde 50.000. Disco con controlador 45.000. Todo por 90.000. Garantía 4 meses. Con manuales, libros, y 20 juegos y utilidades, los mejores. Tel. 888 58 41. José Luis. Cenas. Madrid.

Desegria contactor con usuarios del Amstrad CPC 6128 para intercambio, de ideas, comentarios, etc. Tengo algunos programas interesantes. A ser posible de Madrid. Carlos. Tel. (91) 233 05 74 (comidas o cenas).

Vendo, cambio programas para Amstrad CPC 664. Interesados escribir a Juan Mucientes Rasilla. C/ Nicaragua, 14-5.° C. 15005 La Coruña.

ARGO NAVIS

P P CASSET TE 2.2 M. DISGO 2 and ph.

JUMP JET

TERMS SECTION OF THE PROPERTY OF THE PROPERTY

ZEDIS L

FONT EDITOR

SETTE 1 000 pts (USCO 2,600 pts.

ROCK RAID

MUSIC MAESTRO

P.V.P.: CASSETTE 2.200 pts. DISCO 2.500 pts

SYSTEM, X

CASSETTE 2.200 pts. DISCO 2.900 pts.

WIZARD'S LAIR

C 27 PVP CASSETTE 1 200 pts. DIS-

PAZAZZ

música. P.V.P.: DISCO 2,900 pts.

ODDJOB

(Copias de disco, Disk map, Disk track, sector, etc.) P.V.P.: DISCO 2.600 pts.

MACADAM FLIPPER

TE 2.200 rts. DISCO 2.900 pts.

SYCLONE 2

P.V.P.: CASSETTE 1.800 pts. DISCD 2.500 pts.

TRANSMAT

Hosping rendered P.V.P. DIS CO 2.600 ms

OTROS PROGRAMAS EN STOCK

MINI OFFICE			3 200 pts
	PVP	DIS	3 900 pls
WORLD GUP FOOTBALL	P.V.P	CASS	1,800 pts
BATLE FOR MIDWAY	PVP	CASS	1.800 pis
FIGHTER PILOT	PVP	CASS	2.200 pls
SURVIVOR	P.V.P.	CASS	1 800 pts
MOON BUGGY	PVP	CASS	1 800 pis
TECHNICIAN TED	P.V.P.	CASS	1 800 pts
FRUITY FRANK	PVP	CASS	1 800 pls
DATABASE	BA 6	CASS	2 100 pts
LOGO TURTLE GRAPHICS	PVP	CASS	2 400 pts
TASCOPY Y TASPRINT	PVP	CASS	2 600 pts

PVP CASS 1 900 pts

DRAUGHTSMAN

PVP CASSETTE 4,500 OF DISCO 5.200 pls.

ENVIENOS A MICROBYTE AS.

P.º Castellana, 179, 1.º - 28046 Madrid Nombre

Apellidos Direction Población DP Telefono **ENVIDS GRATIS** TOTAL JUEGO C 0 Precio

PRECIO TOTAL PESETAS

ncluyo talon nominativo Contra-Reembolso

Pedidos por teléfono 91 - 442 54 33 / 44

TRIO DE ASES.

STORE tenemos los últimas novedades de este otoño. Desde el Spectrum de 128K al QL en español. Desde el nuevo AMSTRAD CPC 6128 a las últimas novedades mundiales en periféricos. Ven a vernos. Podrás comprobarlo personalmente. Y no olvides pedir tu tarjeta del CLUB SINCLAIR STORE, con la que conseguirás el 10% de descuento en tus próximas compras.

QL

- 128K RAM
- Procesador de 32 bits
- Teclado profesional en costellono
- 2 Microdrives incorporados
- Color y alta resolución
- Saftware incluído:
 - Tratamiento de textos
 - Base de datos
 - Hoja electrónica de cálculo
 - Gráficos
 - * GARANTIA INVESTRONICA

AMSTRAD CPC 6128

- 128K RAM
- 48K ROM
- Unidad de disco de 3*
- Teclado profesional en castellano
- Monitor color o fósforo verde
- Sistema operativo:

AMS-DOS CP/M 2.2 y CP/M Plus.

- DR. LOGO
- Se entrega con dos discos de las sistemas operativos y Dr. LOGO y un disco con 6 programas de obsequio.
- Manuales en castellano
- GARANTIA OFICIAL AMSTRAD **ESPAÑA**

SPECTRUM 128

- 128K RAM
- Teclado con caracteres españoles
- Teclado adicional para editor programas o textos, controlar juegos o como calculadora
- Editor de pantalla permanente
- Admite el software del Spectrum y Spectrum + Salida RS 232 y RED ZX
- Conectores: T.V., monitor RGB, cassette, microdrive, etc.
- Facilidad de conexión a diversos instrumentos musicoles.
- Manuales en castellano
- GARANTIA INVESTRONICA

BRAVO MURILLO, 2 (aparc. gratuita en C/. Magallanes, 1). Tel.: 446 62 31 DIEGO DE LEON, 25 (aparc. gratuito en C/. Núñez de Balboa, 114). Tel.: 261 88 01 MADRID AVDA. FELIPE II, 12. Tel.: 431 32 33 MADRID