普通高等教育"十一五"国家级规划教材

随机数学

(A)

标准化作业

吉林大学公共数学中心 2024.02

第一次作业

院(系)	班级	学号	姓名	_
一、填空题				
1. 袋中装有 2 约为	工4白共6只乒乓球,	从中任取2只,则耳	取得 1 只红球 1 只白球的	J概率
	重复投5次,则正、	反面都至少出现 2 <i>次</i>	、 的概率	
3. 已知事件 <i>A</i> 和	印 B 满足 $P(AB) = P(\overline{A})$	\overline{B}), $\mathbb{H} P(A) = 0.4$,	则 <i>P</i> (<i>B</i>) =	
4. 设 A 与 B	是两个互不相容的	的随机事件,且了	P(A) = 0.4, $P(B) = 0.5$,则
$P(\overline{A} \overline{B}) = \underline{\hspace{1cm}}$.				
5. 甲乙两个射手	- 独立地射击同一目标	,他们击中目标的概	既率分别是 0.8 和 0.6.若	每人
射击一次,目标被	击中的概率为	·		
6. 两个相互独立	的事件 A 和 B 都不发	生的概率是 $\frac{1}{9}$,且 A	A 发生 B 不发生和 A 不发	生B
发生的概率相等,	则 $P(A) =$			
7. 在4重伯努利	引试验中,已知事件 A	至少出现一次的概	率为 0.5,则在一次试验	中A
出现的概率为	·			
8. 考虑抛物线	$y = x^2 + Bx + C, \sharp \oplus$	B和C 分别是将一村	收骰子连着掷两次先后出	现的
点数,求抛物线与x	轴没有交点的概率为_	·		
二、选择题				
1. 下列等式不同	戊立的是 ()			
$(A) A = AB \bigcup$	$A\overline{B}$.	(B) $A-I$	$B = A\overline{B}$.	
(C) $(AB)(A\overline{B})$	$=$ Φ .	(D) (A-	$B) \bigcup B = A.$	
2. 设 <i>A,B,C</i> 是	司一个实验的三个事件	‡ ,则事件(<i>A</i> ∪ <i>B</i>)(<i>A</i>	$\cup \overline{B}$)($\overline{A} \cup B$) 可化简为()
(A) $A \cup B$.	(B) A-B.	(C) AB	. (D) $\boldsymbol{\Phi}$.	
3. 设随机事件 A	$A \cap B$ 互不相容,则(().		
$(A) P(\overline{AB}) = 0$; .	(B) $P(\overline{A})$	$\bar{\beta}$) $\neq 0$	
(C) $P(A \cup \overline{B}) =$	=P(A);.	(D) <i>P</i> (<i>A</i>	$\bigcup \overline{B}) = P(\overline{B}).$	
4 设事件 4 R A	~	^で 相互独立的充分心	S.要条件是 ()。	

	(A) AB和BC独立. (B) A	$\bigcup B$ 和 $B \bigcup C$	独立			
	(C) A-B和C独立. (D)	A-B 和 $B-C$	C独立.			
	5. 设有 4 张卡片分别标以数字 1,	2, 3, 4, 今年	任取一张;	设事件 A 为	取到1或2	2,事
件上	3 为取到 1 或 3,则事件 <i>A</i> 与 <i>B</i> 是()				
	(A) 互不相容. (B) 互为为	付立. (C) 相互独	立. (D)	互相包含.	
	6. 设每次试验成功的概率为 $p(0 <$	p < 1),则重复	夏进行试验〕	直到第 <i>n</i> 次	才取得成功	的概
率力	A ()					
	(A) $p (1-p)^{n-1}$. (B) $np (1-p)^{n-1}$	$(C)^{n-1}$.	(n-1)p (1-	$(-p)^{n-1}$.	(1-p)	$)^{n-1}$.
	7. 独立地投了3次篮球,每次投口	中的概率为 0.3	B,则最可能	段中的次数	女为 ()
	(A) 0 (B) 1 (C) 2	(D) 3.				
	8. 设 A, B 为随机事件, 若 0 < P	(A) < 1, 0 < P	C(B) < 1,则 A	$P(A \mid B) > 1$	$P(A \mid \overline{B})$ 的	充要
条件	‡是()					
	(A) $P(B A) > P(B \overline{A})$.	(B)	$P(B \mid A) < $	$P(B \mid \overline{A})$.		
	(C) $P(\overline{B} A) > P(B \overline{A})$.	(D)	$P(\overline{B} \mid A) <$	$P(B \mid \overline{A})$.		
	三、计算题					

1. 随机地向半圆 $0 < y < \sqrt{2ax - x^2}$ (a > 0) 内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,求原点与该点的连线与x轴夹角小于 $\frac{\pi}{4}$ 的概率.

2. 仪器中有三个元件, 它们损坏的概率都是 0. 2, 并且损坏与否相互独立. 当一个元件持	员
坏时, 仪器发生故障的概率为0.25,当两个元件损坏时,仪器发生故障的概率为0.6,当三个	个
元件损坏时,仪器发生故障的概率为 0.95, 当三个元件都不损坏时,仪器不发生故障.求	:
(1) 仪器发生故障的概率;(2) 仪器发生故障时恰有二个元件损坏的概率.	

- 3. 学生做一道有四个选项的单项选择题,如果他不知道正确答案就随机猜测。现从卷面上看到学生此次选择题做对了,试求在以下两种情况下学生确实知道正确答案的概率。
 - (1) 学生知道正确答案和胡乱猜测的概率为 1/2.
 - (2) 学生知道正确答案的概率为 0.2。

4. 在 100 件产品中有 10 件次品;现在进行 5 次放回抽样检查,每次随机地抽取一件产品,求下列事件的概率:(1)抽到 2 件次品;(2)至少抽到 1 件次品.

四、证明题

设 $0 < P(A) < 1, 0 < P(B) < 1, P(A|B) + P(\overline{A}|\overline{B}) = 1$,证明事件 A 与 B 相互独立.

第二次作业

院(系)______ 班级_____ 学号_____ 姓名_____

一、填空题

- 1. 一实习生用一台机器接连独立地制造 3 个同种零件,第i 个零件是不合格产品的概率为 $p_i = \frac{1}{i+1}$ (i=1,2,3),X 表示 3 个零件中合格的个数,则 $P\{X=2\} = \underline{\hspace{1cm}}$.
 - 2. 设随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < -1, \\ 0.4, -1 \le x < 1, \\ 0.8, 1 \le x < 3, \\ 1, & x \ge 3. \end{cases}$$

则 X 的分布律为_____.

- 3. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}, & 0 \le x < 1, \\ 1 e^{-x}, & x \ge 1, \end{cases}$
- - 4. 设随机变量 X,Y 服从同一分布, X 的概率密度函数为

$$f(x) = \begin{cases} \frac{3}{8}x^2, & 0 < x < 2, \\ 0, & \sharp \Xi, \end{cases}$$

设 $A = \{X > a\}$ 与 $B = \{Y > a\}$ 相互独立,且 $P\{A \cup B\} = \frac{3}{4}$,则 $a = \underline{\hspace{1cm}}$.

- 5. 设随机变量 X 服从参数 θ = 1 的指数分布,则 P{2 < X < 3| X ≥ 1} = _____.
- 6. 设随机变量 X 服从 $N(2,\sigma^2)$,且 $P\{2 < X < 4\} = 0.3$,则 $P\{X < 0\} =$ ______.
- 7. 设随机变量 X 服从正态分布 N(0,1) , 对给定的 $\alpha(0<\alpha<1)$, 数 u_{α} 满足 $P\{X>u_{\alpha}\}=\alpha$, 若 $P\{|X|< x\}=\alpha$, 则 x 等于________.
 - 8. 设随机变量 X 服从正态分布 $N(\mu,\sigma^2)(\sigma>0)$, 其分布函数为 F(x), 则有

 $F(\mu + \sigma x) + F(\mu - \sigma x) = \underline{\hspace{1cm}}$

二、选择题

1. 设随机变量 X 的概率密度为 f(x), 且有 f(-x) = f(x), F(x)为 X 的分布函数,则 对于任意实数a,有(

(A) $F(-a)=1-\int_a^a f(x)dx$.

(B) $F(-a) = \frac{1}{2} - \int_0^a f(x) dx$.

(C) F(-a)=F(a).

(D) F(-a) = 2F(a) - 1.

2. 设 $f(x) = \sin x$, 要使 $f(x) = \sin x$ 能为某随机变量 X 的概率密度,则 X 的可能取值 的区间是(

- (A) $[\pi, \frac{3}{2}\pi]$. (B) $[\frac{3}{2}\pi, 2\pi]$. (C) $[0, \pi]$. (D) $[0, \frac{1}{2}\pi]$.

3. 设 $F_1(x)$ 和 $F_2(x)$ 分别为随机变量 X_1 和 X_2 的分布函数,为使 $F(x) = aF_1(x) - bF_2(x)$ 是 某一随机变量的分布函数,在下列给定的各组数值中应取(

(A) $a = \frac{3}{5}, b = -\frac{2}{5}$.

(B) $a = \frac{2}{3}, b = -\frac{2}{3}$.

(C) $a = \frac{1}{2}, b = \frac{2}{3}$.

(D) $a = \frac{1}{2}, b = -\frac{3}{2}$.

4. 已知连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0, \\ kx + b, & 0 \le x < \pi, \\ 1, & x \ge \pi, \end{cases}$$

则参数 k和b分别为(

(A) $k = 0, b = \frac{1}{7}$.

(B) $k = \frac{1}{\pi}, b = 0$.

(C) $k = \frac{1}{2\pi}, b = 0$.

(D) $k = 0, b = \frac{1}{2\pi}$.

5. 设随机变量 X 的分布函数和概率密度函数分别为 F(x)和f(x),则随机变量 -X 的 分布函数和概率密度函数分别为(

- (A) F(-x)和f(-x)。
- (B) F(-x)和f(x)。
- (C) $1 F(-x) \pi f(-x)$. (D) $1 F(-x) \pi f(x)$.

6. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,且 $P\{X \ge 1\} = \frac{1}{2}$, f(1) = 1,则(

(A)
$$\mu = 1, \sigma^2 = 1.$$
 (B) $\mu = 1, \sigma^2 = \frac{1}{\sqrt{2\pi}}.$

(C)
$$\mu = 1, \sigma^2 = \frac{1}{2\pi}$$
. (D) $\mu = 0, \sigma^2 = 1$.

7. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,则随着 σ^2 的增大,概率 $P\{|X - \mu| < \sigma\}$ (

(A) 单调增大.

(B) 单调减少.

(C) 保持不变.

(D) 增减性不定.

8. 设随机变量 $X \sim U(0,1), Y = kX^{\alpha}(\alpha > 0)$ 的概率密度函数为

$$f_Y(y) = \begin{cases} 2y, & 0 < y < 1 \\ 0, & 其它 \end{cases}$$
 , 则().

(A)
$$k=1, \alpha = \frac{1}{2}$$
 (B) $k=1, \alpha = 2$ (C) $k=2, \alpha = \frac{1}{2}$ (D) $k=2, \alpha = 2$

三、计算题

1. 一批产品由 9 个正品和 3 个次品组成,从这批产品中每次任取一个,取后不放回, 直到取得正品为止. 用 *X* 表示取到的次品个数,写出 *X* 的分布律和分布函数.

2. 设随机变量 X 的概率分布为

X	-2	-1	0	1	2	3
P	0.10	0.20	0.25	0.20	0.15	0.10

(1) 求 Y = -2X 的概率分布; (2) 求 $Z = X^2$ 的概率分布.

3. 设连续型随机变量X的概率密度为

$$f(x) = \begin{cases} x, & 0 \le x < 1, \\ k(2-x), & 1 \le x < 2, \\ 0, & \sharp \ \, ; \end{cases}$$

求: (1) k 的值; (2) X 的分布函数.

4. 设在一电路中,电阻两端的电压(V) 服从N(120,4),今独立测量了 5 次,试确定有 2次测定值落在区间[118,122]之外的概率.

5. 设连续型随机变量X的分布函数为

$$F(x) = \begin{cases} 0, & x \le -a, \\ A + B \arcsin \frac{x}{a}, & -a < x < a, (a > 0) \\ 1, & x \ge a, \end{cases}$$

 $F(x) = \begin{cases} 0, & x \le -a, \\ A + B \arcsin \frac{x}{a}, & -a < x < a, (a > 0) \\ 1, & x \ge a, \end{cases}$ 求:(1)常数 $A \setminus B$.(2)随机变量 X 落在 $\left(-\frac{a}{2}, \frac{a}{2}\right)$ 内的概率.(3) X 的概率密度函数.

6. 已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} ax + b, & 0 < x < 1, \\ 0, & \text{!} \# \text{!} \text{!} \text{!} \end{cases}$$

且
$$P\left\{X > \frac{1}{2}\right\} = \frac{5}{8}$$
, 求(1)常数 a,b 的值;(2) $P\left\{\frac{1}{4} < X \le \frac{1}{2}\right\}$.

7. 已知随机变量 X 的概率密度为 $f_X(x) = \frac{1}{2} e^{-|x|}, -\infty < x < +\infty, 又设 <math>Y = \begin{cases} 1, X > 0, \\ -1, X \le 0, \end{cases}$ 求: (1) Y的分布律; (2) 计算 $P\{Y > \frac{1}{2}\}$.

8. 已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2} & -1 < x < 0 \\ \frac{1}{4} & 0 \le x < 2 \\ 0 & \sharp \dot{\Xi} \end{cases}$$

求: 随机变量 $Y = X^2$ 的概率密度函数.

四、证明题

1. 设随机变量 X 服从正态分布 $N(\mu, \sigma^2)$,证明: Y = aX + b $(a \neq 0)$ 仍然服从正态分布,并指出参数.

2. 设随机变量 X 的概率分布为 $P\{X=1\}=P\{X=2\}=\frac{1}{2}$,在给定 X=i 的条件下,随机变量 Y 服从均匀分布 U(0,i) (i=1,2). 求 Y 的分布函数 $F_{Y}(y)$.

第三次作业

院(系)	班级		姓名
Pu(2N)	<i>5</i> 1.30X	チュ	<u> </u>

一、填空题

1. 设随机变量 X 与 Y 相互独立, 具有相同的分布律,

X	0	1
P	0.4	0.6

则 $\max\{X,Y\}$ 的分布律为 .

2. 设随机变量 (X,Y) 的联合分布律为

$$P\{X = m, Y = n\} = \begin{cases} \frac{1}{2^{m+1}}, m \ge n, \\ 0, m < n, \end{cases}$$

则关于 X 的边缘分布律为 $P\{X=m\}=$,关于 Y 的边缘分布律为 $P\{Y=n\}=$.

- 3. 若二维随机变量 (X,Y) 在区域 $\{(x,y)|x^2+y^2\leq R^2\}$ 上服从均匀分布,则 (X,Y) 的概率密度函数为 .
- 4. 设随机变量 X 和 Y 相互独立, X 在区间 (0,2) 上服从均匀分布, Y 服从参数为 $\lambda=1$ 的指数分布,则概率 $P\{X+Y>1\}=$ ______.
 - 5. 设随机变量 X 和 Y 相互独立且同分布,已知

- 7. 设随机变量 X 和 Y 相互独立, 且 $X \sim N(1,2)$, $Y \sim N(0,1)$, 则随机变量 Z = 2X Y + 3的概率密度为______.

8. 设 二 维 随 机 变 量 (X,Y) 服 从 正 态 分 布 N(1,0;1,1;0) , 则 $P\{XY-Y<0\}=$ _______.

二、选择题

- 1. 关于随机事件 $\{X \le a, Y \le b\}$ 与 $\{X > a, Y > b\}$ 下列结论正确的是(
 - (A) 为对立事件.
- (B) 为互斥事件.
- (C) 为相互独立事件.
- (D) $P\{X \le a, Y \le b\} > P\{X > a, Y > b\}$.
- 2. 设二维随机变量 (X,Y) 在平面区域 G 上服从均匀分布,其中 G 是由 x 轴, y 轴以及直线 y = 2x + 1 所围成的三角形域,则 (X,Y) 的关于 X 的边缘概率密度为(
 - (A). $f_x(x) = \begin{cases} 8x + 2, & -\frac{1}{2} < x < 0, \\ 0, & \text{其它.} \end{cases}$
- (B). $f_X(x) = \begin{cases} 8x + 4, & -\frac{1}{2} < x < 0, \\ 0, & 其它. \end{cases}$
- (C) $f_x(x) = \begin{cases} 4x + 2, & -\frac{1}{2} < x < 0, \\ 0, & \sharp \dot{\Xi}. \end{cases}$
- (D) $f_x(x) = \begin{cases} 4x + 4, & -\frac{1}{2} < x < 0, \\ 0, & \cancel{!} : \vec{c}. \end{cases}$
- 3. 设平面区域 G 是由 x 轴, y 轴以及直线 $x + \frac{y}{2} = 1$ 所围成的三角形域,二维随机变量 (X,Y) 在 G 上服从均匀分布,则 $f_{X|Y}(x|y) = (0 < y < 2)$
 - (A) $f_{x|y}(x|y) = \begin{cases} \frac{2}{2-y}, & 0 < x < 1 \frac{y}{2}, \\ 0, & \sharp \dot{\Xi}. \end{cases}$
 - (B) $f_{X|Y}(x|y) = \begin{cases} \frac{2}{1-y}, & 0 < x < 1 \frac{y}{2}, \\ 0, & \not\exists : \vec{\mathbb{C}}. \end{cases}$
 - (C) $f_{x|y}(x|y) = \begin{cases} \frac{1}{2-y}, & 0 < x < 1 \frac{y}{2}, \\ 0, & \not\exists \dot{\Xi}. \end{cases}$
 - (D) $f_{x|y}(x|y) = \begin{cases} \frac{1}{1-y}, & 0 < x < 1 \frac{y}{2}, \\ 0, & \sharp \dot{\Xi}. \end{cases}$
 - 4. 设二维随机变量(X,Y)的分布函数为

$$F(x, y) = A\left(\frac{\pi}{2} + \arctan x\right) \left(B + \arctan \frac{y}{2}\right)$$

则常数A和B的值依次为(

(A) $\pi^2 \pi \frac{2}{\pi}$. (B) $\frac{1}{\pi} \pi \frac{\pi}{4}$. (C) $\frac{1}{\pi^2} \pi \frac{\pi}{2}$. (D) $\frac{1}{\pi} \pi \frac{\pi}{2}$.

5. 设随机变量 X, Y相互独立且都服从参数为 2 的指数分布,则下列选项中服从参数 为21的指数分布的随机变量是(

(A) X+Y.

(B) X-Y.

(C) $\max\{X,Y\}$.

(D) $\min\{X,Y\}$.

6. 如果(X,Y)是连续型随机变量,下列条件中不是X与Y相互独立的充分必要条件的 是 (),其中x, y为任意实数.

- (A) $P\{X \ge x, Y \ge y\} = P\{X \ge x\}P\{Y \ge y\}$.
- (B) $F(x, y) = F_{y}(x)F_{y}(y)$.
- (C) $f(x, y) = f_v(x) f_v(y)$.

(D)
$$\frac{\partial^2 F(x, y)}{\partial x \partial y} = f(x, y)$$
.

7. 设随机变量 X,Y 相互独立, X 服从 N(0,1), Y 服从 N(1,1), 则(

(A) $P(X+Y \le 0) = 0.5$. (B) $P(X+Y \le 1) = 0.5$.

(C) $P(X-Y \le 0) = 0.5$. (D) $P(X-Y \le 1) = 0.5$.

8. 设 X 和 Y 是两个随机变量,且 $P(X \ge 0, Y \ge 0) = \frac{3}{7}$, $P(X \ge 0) = P(Y \ge 0) = \frac{4}{7}$,则

 $P(\max\{X,Y\} \ge 0) = ().$

(A) $\frac{2}{7}$. (B) $\frac{3}{7}$. (C) $\frac{4}{7}$. (D) $\frac{5}{7}$.

9. 设 (X,Y) 具有概率密度函数 $f(x,y) = \frac{1+\sin x \sin y}{2}e^{-\frac{x^2+y^2}{2}}$,则

- (A) (X,Y) 服从二维正态分布,且X和Y均服从一维正态分布;
- (B) (X,Y) 服从二维正态分布,但 X 和 Y 均不服从一维正态分布;

- (C) (X,Y) 不服从二维正态分布,且X和Y均不服从一维正态分布;
- (D) (X,Y) 不服从二维正态分布,但 X 和 Y 均服从一维正态分布.

三、计算题

1. 设随机变量 X 在 1, 2, 3, 4 四个数字中等可能取值,随机变量 Y 在 $1\sim X$ 中等可能 地取一整数值,求 (X,Y) 的概率分布,并判断 X 和 Y 是否独立.

求(1)(X,Y)的概率分布;(2)Z=X+Y的概率分布.

3. 设随机变量U在区间[-2,2]上服从均匀分布,令

$$X = \begin{cases} -1 & \ddot{\Xi}U \leq -1, \\ 1 & \ddot{\Xi}U > -1, \end{cases} \quad Y = \begin{cases} -1 & \ddot{\Xi}U \leq 1, \\ 1 & \ddot{\Xi}U > 1, \end{cases}$$

求(X,Y)的联合分布律.

4. 已知二维随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} ke^{-(2x+y)}, & x > 0, y > 0, \\ 0, & \sharp : \mathbb{C}. \end{cases}$$

(1) 求系数 k ; (2) 条件概率密度 $f_{x|y}(x|y)$; (3) 判断 X 和 Y 是否相互独立 ; (4) 计算概率 $P\{X<2|Y<1\}$; (5) 求 $Z=\min\{X,Y\}$ 的密度函数 $f_z(z)$.

- 5. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1, 0 < y < \infty \\ 0, & 其他. \end{cases}$
 - (1) 确定常数b.(2)求边缘概率密度函数.(3)求 $U = \max\{X,Y\}$ 的分布函数.

6. 设 (X,Y) 的概率密度 $f(x,y) = \begin{cases} 2-x-y, 0 < x < 1, 0 < y < 1, \\ 0, & 其 它 . \end{cases}$, (I) 求概率 P(X>2Y) ; (II)求 Z=X+Y 的概率密度 $f_Z(z)$.

第四次作业

院(系)	班级	学号	姓名
12 = (1 + 1)	/ ///	· ·	, — , — <u> </u>

一、填空题

1. 设随机变量 X 的分布律为

X	-2	0	2
P	0.4	0.3	0.3

 $\mathbb{H} E(X) =$, $E(X^2) =$, $E(3X^2 + 5) =$.

- 2. 设随机变量 X 服从区间 $(-\frac{\pi}{2}, \frac{\pi}{2})$ 上的均匀分布,且 $Y = \sin X$,则 $Cov(X,Y) = \underline{\hspace{1cm}}$.
 - 3. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2}\cos\frac{x}{2}, & 0 \le x \le \pi, \\ 0, & \cancel{\sharp} \dot{\Xi}. \end{cases}$$

对 X 独立重复地观察 4 次,用 Y 表示观察值大于 $\frac{\pi}{3}$ 的次数,则 $E(Y^2) =$ ______.

- 4. 设随机变量 $X \sim N(0,1), Y \sim \pi(4)$, 并且 X 与 Y 的相关系数为 0.5,则有 D(3X-2Y)=______.
- 5. 对一批圆木的直径进行测量,设其服从[a,b]上的均匀分布,则圆木截面面积的数学期望为 _____.
 - 6. 设随机变量 X 在[-1, 2]上服从均匀分布,设随机变量

$$Y = \begin{cases} 1, & X > 0, \\ 0, & X = 0, \\ -1, & X < 0, \end{cases}$$

则 D(Y) =______.

*8. 设随机变量 X 的分布函数 $F(x) = 0.2F_1(x) + 0.8F_1(2x)$,其中 $F_1(x)$ 是服从参数为 1 的指数分布的随机变量的分布函数,则期望 $E(X) = ______$.

	二、选择题		
	1. 设 <i>X</i> 是一随机变量,且 <i>E</i> (<i>X</i>)	$=\mu, D(X) = \sigma^2$	2 ($\mu,\sigma>0$ 为常数),则对于任意常数
C,业	有()		
	(A) $E[(X-C)^2] = E(X^2) - C^2$		(B) $E[(X-C)^2] = E[(X-\mu)^2]$.
	(C) $E[(X-C)^2] < E[(X-\mu)^2$].	(D) $E[(X-C)^2] \ge E[(X-\mu)^2]$.
	2. 设随机变量 X 和 Y 相互独立,		$0, Y \sim N(1,4)$, $\mathbb{M} D(XY) = ($
	(A) 6.	(B) 8.	
	(C) 14.	(D) 15.	
	3. 对于以下各数字特征都存在的	的任意两个随机	变量 X 和 Y , 如果 $E(XY) = E(X)E(Y)$,
则有	Ţ ().		
	(A) $D(XY) = D(X)D(Y)$.		(B) $D(X+Y) = D(X) + D(Y)$.
	(C) X和Y相互独立.		(D) <i>X</i> 和 <i>Y</i> 不相互独立.
	4. $\forall E(X) = \mu, D(X) = \sigma^2 > 0$,	则为使 $E(a+b)$	bX)=0, $D(a+bX)=1$,则 a 和 b 分别是
()		
	(A) $a = -\frac{\mu}{\sigma}, b = \frac{1}{\sigma}.$		(B) $a = -\frac{\mu}{\sigma}, b = \frac{\mu}{\sigma}.$
	(C) $a = -\mu, b = \sigma$.		(D) $a = \mu, b = \frac{1}{\sigma}$.
	5. 设随机变量 X 和 Y 相互独立,	且方差 $D(X)$	>0, <i>D</i> (Y)>0,则(
	(A) <i>X</i> 与 <i>X</i> + <i>Y</i> 一定相关		(B) <i>X</i> 与 <i>X</i> + <i>Y</i> 一定不相关.
	(C) X与XY一定相关.		(D) <i>X</i> 与 <i>XY</i> 一定不相关.
	6. 若随机变量 X 与 Y 满足 $Y = 1$	$-\frac{X}{2}$, $\coprod D(X)$	=2,则 $Cov(X,Y)=$ (
	(A) 1.	(B) 2.	
	(C) -1.	(D) -2.	

7. 设随机变量 $X \sim N(0,1), Y \sim N(1,4)$,且相关系数 $\rho_{xy} = 1$,则(

(A)
$$P{Y = -2X - 1} = 1$$
.

(B)
$$P{Y=2X-1}=1$$
.

(C)
$$P{Y=2X+1}=1$$
.

(D)
$$P{Y = -2X + 1} = 1$$
.

三、计算题

1. 设随机变量
$$X$$
 的概率密度为
$$f(x) = \begin{cases} ax, & 0 < x < 2, \\ cx + b, & 2 \le x < 4, \\ 0, & 其它. \end{cases}$$

已知 E(X) = 2, $P\{1 < X < 3\} = \frac{3}{4}$, 求 a, b, c 的值.

2. 设二维随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} \frac{1}{8}(x+y), & 0 \le x \le 2, 0 \le y \le 2, \\ 0, & 其 它, \end{cases}$ 求 $E(X), E(Y), \operatorname{cov}(X,Y), \rho_{XY}$ 和 D(X+Y) .

3. 设二维离散型随机变量(X,Y)的联合概率分布为

XY	-1	0	1
-1	а	0	0.2
0	0.1	b	0.2
1	0	0.1	c

其中 a,b,c 为常数,且 $E(X)=-0.2, P\{Y \le 0 | X \le 0\}=0.5$,记 Z=X+Y,求:(1)a,b,c 的值;(2) Z 的概率分布;(3) $P\{X=Z\}$.

4. 在数轴上的区间[0,a]内任意独立地选取两点M与N,求线段MN长度的数学期望和方差.

5. 已知二维随机变量 $(X,Y) \sim N(1,0,3^2,4^2,-\frac{1}{2})$,设 $Z = \frac{X}{3} + \frac{Y}{2}$. 求(1)Z 的数学期望与方差;(2)X与Z 的相关系数;(3)X与Z 是否相互独立?为什么?

6. 随机变量 X 和Y 相互独立,都服从(0,1)上的均匀分布,以 X 和Y 为边长做一个长方形,用 S 和 C 分别表示长方形的周长和面积,求 S 和 C 的相关系数.

第五次作业

院(系)	班级	学号	姓名
(元(ぶ)	近 級	子勺	灶石

一、填空题

- 1. 设随机变量 X 和 Y 的数学期望都是 2, 方差分别为 1 和 4, 而相关系数为 0.5, 则根 据切比雪夫不等式,有 $P\{|X-Y| ≥ 6\} ≤$.
- 2. 在每次试验中,事件 A 发生的可能性是 0.5,则 1000 次独立试验中,事件 A 发生的 次数在 400 次到 600 次之间的概率≥ .
- 3. 将一枚骰子重复抛掷n次,所掷出点数的算术平均值为 \bar{X}_n ,如果对于任意给定 $\varepsilon > 0$, 有 $\lim P\{|\bar{X}_n - a| < \varepsilon\} = 1$,则常数 $a = \underline{\hspace{1cm}}$.

二、选择题

1. 一射击运动员在一次射击中的环数 X 的概率分布如下:

X	10	9	8	7	6
P	0.5	0.3	0.1	0.05	0.05

则在 100 次独立射击所得总环数介于 900 环与 930 环之间的概率是()

- (A) 0.8233. (B) 0.8230.
- (C) 0.8228. (D) 0.8234.
- 2. 设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立,则根据列维一林德伯格中心极限定理,当n充分大时, $X_1 + X_2 + \cdots + X_n$ 近似服从正态分布,只要 X_i ($i = 1, 2, \cdots$)满足条件(
 - (A) 具有相同的数学期望和方差. (B) 服从同一离散型分布.

(C) 服从同一连续型分布,

- (D) 服从同一指数分布.
- 3. 设 $X_1, X_2, \dots, X_n, \dots$ 为独立同分布的随机变量序列,且 $E(X_i) = \frac{1}{2}, D(X_i) = \frac{1}{4}$, 记 $\Phi(x)$ 为标准正态分布函数,则有().

$$(A)\lim_{n\to\infty}P\left\{\frac{\sum_{i=1}^nX_i-2n}{2\sqrt{n}}\leq x\right\}=\Phi(x); \qquad (B)\lim_{n\to\infty}P\left\{\frac{\sum_{i=1}^nX_i-2n}{\sqrt{2n}}\leq x\right\}=\Phi(x);$$

$$(C)\lim_{n\to\infty} P\left\{\frac{2\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x); \qquad (D)\lim_{n\to\infty} P\left\{\frac{\sum_{i=1}^{n} X_i - n}{\sqrt{n}} \le x\right\} = \Phi(x).$$

4. 设随机变量 X_1, X_2, \dots, X_9 相互独立同分布, $E(X_i) = 1, D(X_i) = 1, i = 1, 2, \dots, 9$. 令 $S_i = \sum_{k=1}^{i} X_k$,则对于任意给定 $\varepsilon > 0$,由切比雪夫不等式可得(

(A)
$$P\{|S_9-1|<\varepsilon\}\geq 1-\frac{1}{\varepsilon^2}$$
.

(B)
$$P\{|S_9-9|<\varepsilon\}\geq 1-\frac{1}{\varepsilon^2}$$
.

(C)
$$P\{|S_9 - 9| < \varepsilon\} \ge 1 - \frac{9}{\varepsilon^2}$$

(C)
$$P\{|S_9 - 9| < \varepsilon\} \ge 1 - \frac{9}{\varepsilon^2}$$
. (D) $P\{\left|\frac{1}{9}S_9 - 1\right| < \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$.

5. 设 $X_1, X_2, \dots, X_{1000}$ 相互独立,且都服从参数为p(0 的<math>(0-1)分布,则下列选 项不正确的是(

(A)
$$\frac{1}{1000} \sum_{i=1}^{1000} X_i \approx p$$
.

(B)
$$\sum_{i=1}^{1000} X_i \sim B(1000, p)$$
.

(C)
$$P\left\{a < \sum_{i=1}^{1000} X_i < b\right\} \approx \Phi(b) - \Phi(a)$$
.

(D)
$$P\left\{a < \sum_{i=1}^{1000} X_i < b\right\} \approx \Phi\left(\frac{b - 1000p}{\sqrt{1000p(1-p)}}\right) - \Phi\left(\frac{a - 1000p}{\sqrt{1000p(1-p)}}\right)$$

三、计算题

1. 一食品店有三种蛋糕出售, 由于售出哪一种蛋糕是随机的, 因而一只蛋糕的价格是一 个随机变量, 它取 1 元、1.2 元、1.5 元各个值的概率分别为 0.3, 0.2, 0.5, 某天该食品店出 售了300只蛋糕. 试用中心极限定理计算,这天的收入至少为395元的概率.

2. 设某种元件使用寿命(单位:小时)服从参数为 λ 的指数分布,其平均使用寿命为40小时,在使用中当一个元件损坏后立即更换另一个新的元件,如此继续下去. 已知每个元件的进价为 α 元,试求在年计划中应为购买此种元件作多少预算,才可以有95%的把握保证一年够用(假定一年按照2000个工作小时计算).

3. 一条生产线的产品成箱包装,每箱的重量是随机的. 假设平均重 50 千克,标准差为 5 千克. 如果用最大载重量为 5 吨的汽车承运,试利用中心极限定理说明每量车最多可以装 多少箱,才能保证不超载的概率大于 0.977, (Φ(2) = 0.977.)

第六次作业

院(系)______ 班级_____ 学号_____ 姓名_____

一、填空题

1. 设总体 X 的数学期望和方差都存在,且 $E(X) = \mu, D(X) = \sigma^2$. 来自总体 X 的样本

$$X_1, X_2, \dots, X_n, \quad \text{MF}\left[\frac{1}{n}\sum_{i=1}^n (X_i - \mu)^2\right] = \underline{\qquad}, \quad E\left[\frac{1}{n}\sum_{i=1}^n (X_i - \overline{X})^2\right] = \underline{\qquad}.$$

- 2. 设 X_1, X_2, X_3, X_4 是来自正态总体 $N(0,2^2)$ 的简单随机样本,记随机变量 $X = a(X_1 2X_2)^2 + b(3X_3 4X_4)^2$,则当 $a = ______$, $b = _____$ 时,统计量 X 服从 χ^2 分布,其自由度为______.
- 3. 设总体 $X \sim B(m, p), X_1, X_2, \cdots, X_n$ 是来自总体 X 的样本,样本均值为 \overline{X} ,则 $E(\overline{X}) = \underline{\hspace{1cm}}$, $D(\overline{X}) = \underline{\hspace{1cm}}$.
 - 4. 设 $X_i \sim N(\mu, \sigma^2)$, $i = 1, 2, \dots, n+1$, 是相互独立的, 记

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i, \quad S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X_n})^2,$$

$$\text{If } Y = \sqrt{\frac{n}{n+1}} \frac{X_{n+1} - \overline{X_n}}{S_n} \sim \underline{\hspace{1cm}}.$$

5. 来自总体 X 的样本 X_1, X_2, \dots, X_n ,设总体 $X \sim B(1, \frac{1}{2})$.记 $\overline{X} = \frac{1}{n} \sum_{i=1}^n X_i$,则 $P(\overline{X} = \frac{k}{n})$ ______.

二、选择题

1. 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \cdots, X_n$ 是总体 X 的样本, \overline{X} 为样本均值,记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2, \quad S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2,$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2, \quad S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2,$$

则下列随机变量中服从自由度为n-1的t分布的是()

(A)
$$\frac{\overline{X} - \mu}{S_1/\sqrt{n-1}}$$
. (B) $\frac{\overline{X} - \mu}{S_2/\sqrt{n-1}}$. (C) $\frac{\overline{X} - \mu}{S_3/\sqrt{n-1}}$. (D) $\frac{\overline{X} - \mu}{S_4/\sqrt{n-1}}$.

2 . 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \cdots, X_n$ 是来自总体 X 的简单随机样本,则

$$P\left\{\frac{|\overline{X} - \mu|}{\sigma/\sqrt{n}} < u_{0.025}\right\} = ()$$

- (A) 0.025.
- (B) 0.975.
- (C) 0.95.
- (D) 0.05.

3. 设随机变量 $X \sim t(n)$ $(n > 1), Y = \frac{1}{X^2}$,则(

- (A) $Y \sim \chi^2(n)$. (B) $Y \sim \chi^2(n-1)$. (C) $Y \sim F(1,n)$. (D) $Y \sim F(n,1)$.

4. 设 (X_1, X_2, \cdots, X_n) 为总体 $N(1, 2^2)$ 的一个样本, \overline{X} 为样本均值,则下列结论中正确的 是(

- (A) $\frac{X-1}{2\sqrt{\sqrt{n}}} \sim t(n)$.
- (B) $\frac{1}{4} \sum_{i=1}^{n} (X_i 1)^2 \sim F(n, 1)$.
- (C) $\frac{\bar{X}-1}{\sqrt{2}\sqrt{n}} \sim N(0,1)$.
 - (D) $\frac{1}{4}\sum_{i=1}^{n}(X_{i}-1)^{2} \sim \chi^{2}(n)$.

5. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 和 Y_1, Y_2, \dots, Y_n 是两个来自总体的独立的样本,它 们的样本方差分别记为 S_X^2 和 S_Y^2 ,则统计量 $T = (n-1)(S_X^2 + S_Y^2)$ 的方差DT是(

- (A) $2n\sigma^4$. (B) $2(n-1)\sigma^4$. (C) $4n\sigma^4$. (D) $4(n-1)\sigma^4$.

6. 设总体 $X \sim N(0, \sigma^2)$, \bar{X} 和 S^2 分别是容量为 n 的样本的均值和方差,则下列选项服从 自由度为 n-1 的 T 分布的随机变量是().

(A) $\frac{\sqrt{n}\overline{X}}{S}$. (B) $\frac{\sqrt{n}\overline{X}}{S^2}$. (C) $\frac{n\overline{X}}{S}$. (D) $\frac{n\overline{X}}{S^2}$.

(

7. 设总体 $X \sim N(0, \sigma^2), X_1, X_2, \dots, X_{11}$ 是来自总体的简单随机样本, $Y^2 = \frac{1}{10} \sum_{i=1}^{11} X_i^2$,则).

- (A) $X_1^2 \sim \chi^2(1)$; (B) $Y^2 \sim \chi^2(10)$; (C) $\frac{X_1}{V} \sim t(10)$; (D) $\frac{X_1^2}{V^2} \sim F(10,1)$.

8. 设 X_1, X_2, \dots, X_5 为来自正态总体 $X \sim N(1,4)$ 的简单随机样本, $\overline{X} = \frac{1}{4} \sum_{i=1}^{4} X_i$,

 $T = \sum_{i=1}^{4} (X_i - \overline{X})^2$,如果 $a = \frac{(X_5 - \overline{X})^2}{T} \sim F(1,3)$,则a = ().

(A) 2. (B) $\frac{2}{5}$. (C) $\frac{12}{5}$. (D) 1.

三、计算题

1. 设 $X \sim N\left(0,\sigma^2\right)$, X_1,X_2,\cdots,X_9 是来自总体 X 的简单随机样本,样本均值为 \bar{X} ,试 确定 σ 的值,使得 $P\{1 < \overline{X} < 3\}$ 最大.

2. 设总体 X 的概率密度为

$$f(x) = \begin{cases} 2\cos 2x, & 0 < x < \frac{\pi}{4}, \\ 0, & \not\exists : \dot{\Xi}, \end{cases}$$

 X_1, X_2, \dots, X_n 为总体 X 的样本,求样本容量 n,使 $P\{\min(X_1, X_2, \dots, X_n) < \frac{\pi}{12}\} \ge \frac{15}{16}$.

3. 设 X_1, X_2, \dots, X_8 是来自正态总体 N(0, 0.2) 的样本,试求 k,使 $P\left\{\sum_{i=1}^8 X_i^2 < k\right\} = 0.95$.

- 4. (a) 设 X_1, X_2, \cdots, X_n 是取自正态总体 $X \sim N(\mu, \sigma^2)$ 的一个样本,样本均值为 \overline{X} ,样本方差为 S^2 ,求 $E(\overline{X}), D(\overline{X}), E(S^2), D(S^2)$.
- (b) 如果总体服从泊松分布 $P(\lambda)$, X_1, X_2, \cdots, X_n 是来自总体的简单随机样本,样本均值为 \overline{X} ,样本方差为 S^2 ,计算 $E(\overline{X})$, $D(\overline{X})$, $E(S^2)$.

5. 设总体 X 服从正态分布 $N(-1,\sigma^2)$, $\sigma > 0$, X_1, X_2, \cdots, X_n 为总体 X 的简单随机样本 , 对于统计量 $T_1 = \frac{1}{n} \sum_{i=1}^n X_i$ 和 $T_2 = \frac{1}{n-1} \sum_{i=1}^{n-1} X_i + \frac{1}{n} X_n$,比较 $E(T_1)$ 和 $E(T_2)$ 以及 $D(T_1)$ 和 $D(T_2)$ 的大小关系.

6. 已知二维随机变量 (X,Y) 服从二维正态分布 $N(0,1,2^2,3^2,0)$, 判断 $F = \frac{9X^2}{4(Y-1)^2}$ 服从的概率分布.

第七次作业

院(系)	班级	学号	姓名

一、填空题

- 1. 设总体 X 服从参数为 λ 的泊松分布,其中 $\lambda > 0$ 为未知, X_1, X_2, \cdots, X_n 为来自总体 X 的样本,则 λ 的矩估计量为 $\hat{\lambda}$ =
- 2. 设总体 X 在区间 $[\theta,2]$ 上服从均匀分布, $\theta < 2$ 为未知参数;从总体 X 中抽取样本 X_1, X_2, \cdots, X_n ,则参数 θ 的矩估计量为 $\hat{\theta} =$ ______.
- 3. 设总体 $X \sim \pi(\lambda), X_1, X_2, \cdots, X_n$ 是来自总体 X 的样本,则未知参数 λ 的最大似然估计量为 $\hat{\lambda} =$ ______.
- 4. 该总体 $X \sim N(\mu, \sigma^2)$,一组样本值为 x_1, x_2, \dots, x_n ,其平均值 x = 9.0,若参数 μ 的置信水平为 0.9 的双侧置信区间的下限为 7.8,则置信上限为______.
- 5. 设总体 $X \sim N(\mu, 3^2)$,要使未知参数 μ 的置信水平为 0.95 的置信区间的长度 $L \leq 2$,样本容量 n 至少为______.

二、选择题

1. 设 X_1, X_2, \dots, X_n 为来自总体X的简单随机样本,总体X的分布律为

X	-1	0	1
P	θ	$1-2\theta$	θ

其中 $\theta > 0$ 未知,则未知参数 θ 的矩估计量为 ()

(A)
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
.

(B)
$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$
.

(C)
$$\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} X_i$$
.

(D)
$$\hat{\theta} = \frac{1}{2n} \sum_{i=1}^{n} X_i^2$$

2. 设 X_1, X_2, \cdots, X_n 为来自总体X的简单随机样本, \overline{X} 为样本均值,则总体方差的无偏估计量为()

$$(\mathbf{A}) \ \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \overline{X} \right)^2.$$

(B)
$$\frac{1}{n} \sum_{i=1}^{n} [X_i - E(X)]^2$$
 ($E(X)$ 未知).

(C)
$$\frac{1}{n-1}\sum_{i=1}^{n}\left(X_{i}-\overline{X}\right)^{2}.$$

$$(\mathbf{D}) \frac{1}{n-1} \sum_{i=1}^{n} \left[X_i - E(X) \right]^2 (E(X) 未知).$$

- 3. 设 x_1, x_2, \dots, x_n 为总体 $X \sim N(\mu, \sigma^2)$ 的样本观察值,则 σ^2 的最大似然估计值为 $\sigma^2 =$ ()
 - (A) $\frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$.

(B) $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^k, k = 1, 2, \dots$

(C) $\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$.

- (D) $\frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$.
- 4. 设总体 $X \sim N(\mu,4)$, μ 未知, X_1,X_2,\cdots,X_9 为总体 X 的样本,测得样本均值为 x=9 , 则参数 μ 的置信水平为 0.90 的置信区间为 (
 - (A) $\left(9 \frac{2}{3}u_{0.05}, 9 + \frac{2}{3}u_{0.05}\right)$. (B) $\left(9 \frac{1}{3}u_{0.05}, 9 + \frac{1}{3}u_{0.05}\right)$.

 - (C) $\left(9 \frac{2}{3}u_{0.1}, 9 + \frac{2}{3}u_{0.1}\right)$. (D) $\left(9 \frac{1}{3}u_{0.1}, 9 + \frac{1}{3}u_{0.1}\right)$.
- 5. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 σ^2 已知, 则总体均值 μ 的置信区间长度 L 与置信度 $1-\alpha$ 的关系是(
 - (A) 当 $1-\alpha$ 缩小时, L 缩短.

(B) 当 $1-\alpha$ 缩小时, L 增大.

(C) 当 $1-\alpha$ 缩小时, L 不变.

(D) 以上说法都不对.

三、计算题

1. 设总体 X 具有概率分布

X	1	2	3
P	θ^2	$2\theta(1-\theta)$	$(1-\theta)^2$

其中 $\theta(0<\theta<1)$ 是未知参数,已知来自总体X的样本值为1, 2, $1.求\theta$ 的矩估计值和最大 似然估计值.

2. 设某种元件的使用寿命 X 的概率密度为 $f(x;\theta) = \begin{cases} 2e^{-2(x-\theta)}, & x \geq \theta, \\ 0, & x < \theta. \end{cases}$

其中 $\theta>0$ 为未知参数,又设 x_1,x_2,\cdots,x_n 是X的一组样本观测值,求参数 θ 的最大似然估计值.

3. 设总体 X 的分布函数为

$$F(x; \beta) = \begin{cases} 1 - (\frac{1}{x})^{\beta}, x > 1, \\ 0, & x \le 1. \end{cases}$$

其中参数 $\beta > 1$ 是未知参数,又 X_1, X_2, \cdots, X_n 为来自总体 X 的随机样本,(1)求 X 的概率密度函数 $f(x; \beta)$;(2)求参数 β 的矩估计量;(3)求参数 β 的最大似然估计量.

四、证明题

1. 设总体 X 的均值 $\mu=E(X)$ 及方差 $\sigma^2=D(X)>0$ 都存在, μ 与 σ^2 均未知, X_1,X_2,\cdots,X_n 是 X 的样本, 试证明不论总体 X 服从什么分布,样本方差 $S^2=\frac{1}{n-1}\sum_{i=1}^n \left(X_i-\overline{X}\right)^2$ 都是总体方差 $\sigma^2=D(X)$ 的无偏估计.

2. 设总体 X 的概率密度函数为 $f(x;\theta) = \begin{cases} \frac{6x}{\theta^3}(\theta-x), & 0 < x < \theta \\ 0, & 其它 \end{cases}$

来自总体 X 的简单随机样本.求参数 θ 的矩估计量 $\hat{\theta}$ 并求其方差 $D(\hat{\theta})$.

3. 设总体
$$X$$
 的概率密度函数为 $f(x;\theta) = \begin{cases} \frac{1}{2\theta}, & 0 < x < \theta \\ \frac{1}{2(1-\theta)}, & \theta \le x < 1, & X_1, X_2, \cdots, X_n 是 \\ 0, & 其它 \end{cases}$

来自总体 X 的简单随机样本, \overline{X} 是样本均值. 判断 $4\overline{X}^2$ 是否为 θ^2 的无偏估计量,说明理由。

4. 设
$$X_1,X_2,\cdots,X_n$$
 为来自正态总体 $N(\mu,\sigma^2)$ 的一组简单随机样本,记 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,
$$S^2=\frac{1}{n-1}\sum_{i=1}^n (X_i-\overline{X})^2$$
,统计量 $T=\overline{X}^2-\frac{1}{n}S^2$,证明 T 是 μ^2 的无偏估计量.

第八次作业

险(妥)	工厂人工	兴旦	姓夕	
院(系)	班级	子丂	姓名	

一、填空题

1. 设总体 $X \sim N(\mu, \sigma^2), X_1, X_2, \dots, X_n$ 是来自 X 的样本,记

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i, Q^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$
,

当 μ 和 σ^2 未知时,则检验假设 H_0 : $\mu = \mu_0$ 所使用统计量是_____。

- 2. 在假设检验中,对于给定的显著性水平 α ,则犯第一类错误的概率为____。
- 3. 设总体 $X \sim N(\mu, \sigma^2)$, μ 已知,给定显著性水平 α ,假设 $H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 > \sigma_0^2$ 的拒绝域为_____。
- 4. 设 $X_i(i=1,2,\cdots,n)$ 是来自总体 $X\sim N(\mu,\sigma^2)$ 的容量为n 的简单随机样本,方差 σ^2 已知,检验假设 $H_0:\mu=\mu_0,H_1:\mu\neq\mu_0$,检验统计量为 $u=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}\sim N(0,1)$,在显著性水平 α 下,拒绝域为

二、选择题

- 1. 在假设检验中,原假设 H_0 ,备择假设 H_1 ,则()为犯第二类错误。
- (A) *H*₀为真,接受*H*₁.
- (B) H₀不真,接受H₀.
- (C) H₀为真, 拒绝H₁.
- (D). H₀不真, 拒绝 H₀.
- 2. 设总体 $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$, 检验假设 $H_0: \sigma_1^2 = \sigma_2^2$, $H_1: \sigma_1^2 \neq \sigma_2^2$, $\alpha = 0.10$,从 X 中抽取容量 $n_1 = 12$ 的样本,从 Y 中抽取容量 $n_2 = 10$ 的样本,算得 $S_1^2 = 118.4$, $S_2^2 = 31.93$,正确的检验方法与结论是()。
 - (A) 用t 检验法, 临界值 $t_{0.05}(17) = 2.11$, 拒绝 H_0 .
 - (B) 用 F 检验法,临界值 $F_{0.05}(11,9) = 3.10$, $F_{0.95}(11,9) = 0.34$,拒绝 H_0 .
 - (C) 用 F 检验法, 临界值 $F_{0.95}(11,9) = 0.34$, $F_{0.05}(11,9) = 3.10$, 接受 H_0 .
 - (D) 用 F 检验法, 临界值 $F_{001}(11,9) = 5.18$, $F_{099}(11,9) = 0.21$, 接受 H_0 .

3. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知,假设 $H_0: \mu = \mu_0$ 的拒绝域为 $t \leq -t_\alpha$,则备择假设 H_1 为()。

- (A) $\mu \neq \mu_0$. (B) $\mu > \mu_0$. (C) $\mu < \mu_0$. (D) $\mu \leq \mu_0$.

4.设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, 假设检验 $H_0: \mu \le 1, H_1: \mu > 1(\alpha = 0.05)$, 则拒绝域为 ().

- (A) $|\bar{X} 1| \ge u_{0.05}$.
- (B) $\bar{X} \ge 1 + t_{0.05} (n-1) \frac{S}{\sqrt{n}}$.
- (C) $|\bar{X} 1| \ge t_{0.05} (n-1) \frac{S}{\sqrt{n}}$. (D) $\bar{X} \le 1 t_{0.05} (n-1) \frac{S}{\sqrt{n}}$.

5. 对正态总体的数学期望进行假设检验 $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0$,如果在显著性水平 0.05 下接受原假设 H_0 ,那么在显著性水平0.01下(

(A) 必接受 H_o.

(B) 可能接受,也可能拒绝 H_0 .

(C) 必拒绝 H₀.

(D) 不接受,也不拒绝 H_0 .

三、计算题

1. 某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重 X (单位 kg)是一个 随机变量,它服从正态分布 $N(\mu,\sigma^2)$,当机器工作正常时,其均值为0.5kg,根据经验知标 准差为0.015 kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡 萄糖中随机地抽取9袋,称得净重为

 $0.497 \quad 0.506 \quad 0.518 \quad 0.524 \quad 0.498 \quad 0.511 \quad 0.520 \quad 0.515 \quad 0.512$ 试在显著性水平 $\alpha = 0.05$ 下检验机器工作是否正常.

2.	设某次	考试的考生	成绩服	从正态分布,	从中随机抽取	36	位考生的成绩	, 拿	算得平均
成绩为	66.5分,	标准差为	15 分,	问在显著性水	$ \nabla \Psi \alpha = 0.05 \text{T} $,是	否可以认为这	次ラ	考试全体
考生的	平均成绩	为 70 分?	并给出	检验过程.					

3. 设有甲,乙两种零件,彼此可以代用,但乙种零件比甲种零件制造简单,造价低,经过试验获得抗压强度(单位: kg/cm^2)为

甲种零件: 88, 87, 92, 90, 91,

乙种零件: 89, 89, 90, 84, 88.

假设甲乙两种零件的抗压强度均服从正态分布,且方差相等,试问两种零件的抗压强度有无显著差异(取 α = 0.05)?

4. 某无线电厂生产的一种高频管,其中一项指标服从正态分布 $N(\mu, \sigma^2)$,从一批产品中抽取 8 只,测得该指标数据如下:

66, 43, 70, 65, 55, 56, 60, 72,

- (1) 总体均值 $\mu = 60$, 检验 $\sigma^2 = 8^2$ (取 $\alpha = 0.05$);
- (2) 总体均值 μ 未知时,检验 $\sigma^2 = 8^2$ (取 $\alpha = 0.05$).

综合练习一

一、填空题

1. 设 A, B 是 同 一 个 试 验 中 的 两 个 事 件 ,且 P(A) = 0.61, P(A - B) = 0.22 ,则 $P(\overline{AB}) = \underline{\hspace{1cm}}$ 。

- 2. 抛掷两颗均匀的骰子,已知两颗骰子点数之和为 7 点,则其中一颗为 1 点的概率为。
- 3. 设连续型随机变量 X 的分布函数在某区间的表达式为 $\frac{1}{x^2+1}$,其余部分为常数,写出此分布函数的完整表达式
 - 4. 设二维随机变量 (X, Y) 在区域 D 上服从均匀分布, D 由曲线

 $y = \frac{1}{x}$, y = 0, x = 1, $x = e^2$ 所围成,则(X,Y) 关于 X 的边缘概率密度在 x = e 点的值为

5. 设随机变量 X_1, X_2, \cdots, X_n 相互独立,并且服从同一个分布,期望为 μ ,方差为 σ^2 ,

令
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
,则 $D(\overline{X}) = \underline{\hspace{1cm}}$ 。

6. 设总体 $X\sim N(\mu,\sigma^2)$, 从总体 X 中抽取样本 X_1,X_2,\cdots,X_n ,样本均值为 \overline{X} ,样本方差为 S^2 , μ 和 σ^2 均未知,则 σ^2 的置信水平为 $1-\alpha$ 的置信区间为_______。

二、单项选择题

- 1. 设A、B、C三个事件两两相互独立,则A、B、C相互独立的充要条件是()。
- (A) A与BC独立 (B) AB与A $\bigcup C$ 独立 (C) AB与AC独立 (D) A $\bigcup B$ 与A $\bigcup C$ 独立
- 2. 设F(x)为随机变量X的分布函数,在下列概率中可表示为F(a)-F(a-0)的是 ()。
- (A) $P\{X \le a\}$ (B) $P\{X > a\}$ (C) $P\{X = a\}$ (D) $P\{X \ge a\}$
 - 3. 设两个相互独立的随机变量 X 与Y 分别服从正态分布 N(0,1) 和N(1,1),则()。

(A)
$$P\{X+Y \le 0\} = \frac{1}{2}$$
 (B) $P\{X+Y \le 1\} = \frac{1}{2}$

(C)
$$P\{X-Y \le 0\} = \frac{1}{2}$$
 (D) $P\{X-Y \le 1\} = \frac{1}{2}$

- 4. 在假设检验中,原假设 H_0 ,备择假设 H_1 ,则()称为第二类错误。

 - (A) H_0 为真,接受 H_1 (B) H_0 不真,接受 H_0
 - (C) H_0 为真, 拒绝 H_1 (D) H_0 不真, 拒绝 H_0
- 5. 设随机变量 *X* 的数学期望 E(X) = 100, 方差 D(Y) = 10, 则由切比雪夫不等式

$$P\{80 < X < 120\} \ge ($$
).

- (A) 0.025 (B) 0.5 (C) 0.96 (D) 0.975

- 6. 设 X_1, X_2, X_3 是来自总体 $N(\mu, \sigma^2)$ 的一个样本,其中 μ 为已知, σ^2 为未知,则 下列各式中不是统计量的为()。

(A)
$$X_2 - 2\mu$$
 (B) $\mu X_1 + X_3 e^{X_2}$ (C) $\max(X_1, X_2, X_3)$ (D) $\frac{1}{\sigma^2}(X_1 + X_2 + X_3)$

三、按照要求解答下列各题

- 1. 在电报通讯中,发送端发出的是由"•"和"-"两种信号组成的序列。由于受到随 机干扰,接收端收到的是"•"和"-"及"不清"三种信号组成的序列。假设发送"•" 和 "-"的概率分别为 0.7 和 0.3; 在已知发送 "•"时,接收到 "•"、"-"和 "不清"的 概率分别为 0.8、0.1 和 0.1; 在已知发送 "-"时,接收到 "•"、"-"和"不清"的概率 分别为 0.2、0.7 和 0.1。
 - 求 (1) 接收到信号 "•"、"-"和"不清"的概率;
 - (2) 在接收到信号"不清"的条件下,发送信号为"-"的概率。

2. 设连续型随机变量 X 的分布函数为 $F(x) = A + B \arctan x$, $-\infty < x < +\infty$, 求(1)常数 $A \times B$;(2)随机变量 X 落在(-1,1) 内的概率;(3) X 的概率密度函数。

3. 已知随机变量 X 和Y 的概率分布分别为

X	-1	0	1
р	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Y	0	1
р	$\frac{1}{2}$	$\frac{1}{2}$

并且 $P\{XY=0\}=1$ 。

(1) 求二维随机变量(X,Y)的概率分布(只写出计算结果表格); (2) 判别 X 和 Y 是 否相互独立。

4. 已知随机变量 X、 Y 分别服从 X (1,0,9,16, $-\frac{1}{2}$),设 $Z = \frac{X}{3} + \frac{Y}{2}$ 。 求(1) Z 的数学期望与方差; (2) X 与Z 的相关系数;(3) X 与Z 是否相互独立? 为什么?

5. 设总体 X 的概率密度为 $f(x) = \begin{cases} \sqrt{\theta}x^{\sqrt{\theta}-1}, & 0 \le x \le 1, \\ 0, & 其他, \end{cases}$ $\theta > 0$ 为未知参数,

 X_1, X_2, \cdots, X_n 是来自总体 X 的样本,求 θ 的矩估计量和最大似然估计量。

四、按照要求解答下列各题

1. 已知随机变量 X 的概率密度为

$$f(x) = \begin{cases} e^{-x}, & x > 0, \\ 0, & x \le 0. \end{cases}$$

求随机变量 $Y = X^2$ 的概率密度。

2. 设总体 X 在 $\left(0, \theta\right)$ 内服从均匀分布, $X_1, X_2, \cdots, X_n \ (n \geq 2)$ 是取自总体 X 的样本,已知 θ 的两个无偏估计量为 $\hat{\theta}_1 = 2\overline{X}, \ \hat{\theta}_2 = \frac{n+1}{n} \max(X_1, X_2, \cdots, X_n)$,判别 $\hat{\theta}_1$ 与 $\hat{\theta}_2$ 哪个更有效?

综合练习二

- (A) 不相关的充分非必要条件 (B) 不相关的必要非充分条件
- (C) 不相关的充分必要条件 (D) X 和Y 相互独立的充分必要条件

5. 设 $X_1, X_2, \cdots X_n$ 是来自总体 $X^{\sim} N(\mu, \sigma^2)$ 的样本,其中 μ 已知, σ 未知,则下列不是统计量的是().

$$\text{(A)} \quad \max_{1 \leq k \leq n} X_k \qquad \text{(B)} \quad \frac{1}{n} \sum_{k=1}^n X_k - \mu \qquad \text{(C)} \quad \min_{1 \leq k \leq n} X_k \qquad \text{(D)} \quad \sum_{k=1}^n \frac{X_k}{\sigma}$$

6. 设 X_1, X_2, \cdots, X_n 是取自总体 X 的一个样本, \overline{X} 为样本均值,则下列样本函数中不是总体 X 期望 μ 的无偏估计量是().

(A)
$$\overline{X}$$
 (B) $X_1 + X_2 - X_3$ (C) $0.2X_1 + 0.3X_2 + 0.5X_3$ (D) $\sum_{i=1}^{n} X_i$

三、按照要求解答下列各题

1. 已知甲、乙两箱中装有同种产品,其中甲箱中装有 2 件合格品和 2 件次品,乙箱中仅装有 2 件合格品,现从甲箱中随机地取出 2 件放入乙箱,求:(1)乙箱中次品数 X 的概率分布;(2)从乙箱中任取一件是次品的概率.

2. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2}e^{-|x|} (-\infty < x < \infty)$. 求: (1) X 的分布函数; (2) D(X).

3. 某箱装有 100 件产品,其中一、二和三等品分别为 80、10 和 10 件,现从中随机抽取一件,记

$$X_i = \begin{cases} 1, & 抽到i 等品, \\ 0, & 其他, \end{cases}$$
 $i=1, 2, 3,$

求: (1) 随机变量 (X_1, X_2) 的概率分布 (只写出分布表); (2) $Cov(X_1, X_2)$.

4. 某厂检验保温瓶的保温性能,在保温瓶中灌满沸水,24 小时后测定其保温温度为 T, $T \sim N(62,5^2)$,若独立进行两次抽样测试,各次分别抽取 20 只和 12 只,样本均值分别 为 $\overline{T}_1,\overline{T}_2$,求样本均值 \overline{T}_1 与 \overline{T}_2 的差的绝对值大于 1^0C 的概率. ($\mathbf{\Phi}(\sqrt{\frac{3}{10}})=0.7088$)

5. 设总体 $X\sim N(1,2^2)$, X_1,X_2,\cdots,X_9 是从总体取的样本. \overline{X},S^2 分别为样本均值和样本方差,求 $E(S^2)$ 、 $D(S^2)$ 及 $E[(\overline{X}S^2)^2]$.

四、解答下列各题

- 1. 设随机变量 (X,Y) 的概率密度 $f(x,y) = \begin{cases} Cx, & 0 < x < 1, \ 0 < y < 2, \\ 0, & 其他 \end{cases}$
- (1) 求常数 C; (2) 求 $P\{X+Y>1\}$; (3) 求 X与 Y的边缘概率密度,并判断 X与 Y是否相互独立.

2. 设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{\theta} x^{\frac{1-\theta}{\theta}}, & 0 < x < 1 \\ 0, & 其他, \end{cases}$, 其中 $\theta(\theta > 0)$ 是未知参数,

又 X_1, X_2, \cdots, X_n 为取自总体X的样本,求 θ 的矩估计量和最大似然估计量.