1.1. Direction fields.

Here we shall focus on a geometric/qualitative technique for finding solutions.

A general 1st order one can be represented by the general form: $\left|\frac{dy}{dt} = f(t,y)\right|$. (*)

If a function y(t) is some solution to (*) passing through the point (t_1,y_1) , where $y_1 = y(t_1)$, then the operation to (*) passing the through the point (t_1,y_1) , where $y_1 = y(t_1)$, then the operation to (*) passing the through the point (t_1,y_1) , where $y_1 = y(t_1)$, then the operation to (*) passing the through the point (t_1,y_1) , where $y_1 = y(t_1)$, then the operation to (*) passing the through the point (*) passing (*) the point (*) passing (*) and (*) passing (*) the passing (*) passing (*) the passing (*) passing (*) and (*) passing (*) passing (*) and (*) passing (*)

If we were to read this equation (* *) with meaning,
then it soup:

the slope of the solution function at the point (t,,),) is equal to $f(t_1, y_1)$.

This gives us also the slope of the line tangent to the solution function at (t_1, J_1) .

Since, we do not know the solution function, we can instead draw the targent line at (t_i, y_i) [for a line, we need a point = (t_i, y_i) and a slope = $f(t_i, y_i)$].

of course this line is tangent to the solution function at (tist,).

If we change the point, the target will change as well.

The way, the solution is known-below

is its graph y tangent with slope (tr, yr)

(tr, yr)

- tangent with slope flt,, yr)

to yr)

A shetch of the targent lines (also called mini-targents) is a main tool for visualiting solutions to ODEs. It is called a slipe of a direction field.

Sketching a direction field is best done using computers.

Starting at any point of the ty-plane and flowing through the field gives a picture of a solution through that points enabling the learner to discuss properties of a particular solution.

Examples

(16)

- (A) Using technology: geogebra.org/m/Z Gee Gabp (stope field viewer).
- (B) Slope fields by head (a very tedious job of course). We will start with simple examples: $\frac{dy}{dt} = f(t,y)$
 - 1) dy = cost. = we know the solutions to this obe.

 They are: y = sint + C.

Since f(t,y) = cost depends only on t, then the

Values of dy do not change for a fixed value of E.

e-g: of At the points (0,y), dy dt (0,y) = cos 0 = 1, for all y.

At the points $(\frac{\pi}{2}, y)$, $\frac{dy}{dt}|_{(\frac{\pi}{2}, 0)} = \cos \frac{\pi}{2} = 0$, for all y

At the points (-1, y), dy = cos(-1) = 0, for all y

At the points (T,y), dy = ws(T) = cos(T) = -1, frall y

(17)

Here plots book indeed look like sine functions

Vortical Vortical translates of each other.

This is true for any ODE of the form dy aft.).

2) $\frac{dy}{dt} = 5y$. From a previous example, we expect the solutions to take the form $y = Ce^{5t}$. Here f(t,y) = 5y = f(y) if the values of $\frac{dy}{dt}$ do not change at the changes, but for a given fixed value of y.

 $\begin{array}{c}
\underline{e} \cdot \underline{g} : (t, 0) \longrightarrow \frac{dy}{dt} = 0, \quad \forall \quad t \\
(t, 1) \longrightarrow \frac{dy}{dt} = 5, \quad \forall \quad t \\
(t, 2) \longrightarrow \frac{dy}{dt} = 10, \quad \forall \quad t
\end{array}$ $\begin{array}{c}
(t, -1) \longrightarrow \frac{dy}{dt} = -5, \quad \forall y \\
(t, -1) \longrightarrow \frac{dy}{dt} = -10, \quad \forall y \\
dt$

these plots book indeed like Ce (C>0, C<0)
for C=0, we obtain y=0, which is the t-axis.

These solutions are vertical translates of each other. This is the case for any ode of the form $\frac{dy}{dt} = f(y)$. We also notice that one solution is y=0 (a horizontal solution); for this solution $\frac{dy}{dt}=0$ is y does not change. We call it an equilibrium solution

(3) Other Examples of equilibrium solutions: y

(a)
$$\frac{dy}{dt} = y - 1 = 0 \Rightarrow y = 1$$
 is equilibrium

(b) dy = (y+1)(2-y)=0=) y=-1 and y=2 are equilibrium

(c)
$$\frac{dy}{dt} = \cos y = 0 = 0 = 0 = \pm \frac{\pi}{2} + 2k\pi$$

