Combining extreme value theory and machine learning for novelty detection

Luca Steyn

INTRODUCTION

- Two topics:
 - >Extreme value theory
 - ➤ Novelty detection
- A new idea for multivariate extreme value theory and multivariate anomaly detection
- Brings together research from Statistics and Computer Science

What is novelty detection?

- Novelty detection is the process of identifying when new observations differ from what is expected as normal behaviour.
- Classification problem, *i.e.* normal or anomalous (positive or negative).
- Conventional classification algorithms fail to detect novel observations.
- Use a one-class classification approach ⇒ threshold a distribution representing the normal state of the system. (Is this a bad thing?)
- <u>Assumption</u>: Novel observations are scarce and differ to some extent from the observations in the normal class.

Methods to perform novelty detection

Many algorithms for novelty detection have been proposed. Broad approaches are:

- A distance-based approach
 - Modified KNN algorithm
- A domain-based approach
 - One-class support vector machines
- A reconstruction-based approach
 - Neural networks or PCA
- A probabilistic approach
 - Density estimation and thresholding

A probabilistic approach

- Let $\underline{X} \in \mathbb{R}^p$ and denote the probability density function (pdf) by $f(\underline{x}) = \frac{d}{dx} F(\underline{x})$.
- Choose a threshold t such that $F_S(t) = \int_{\underline{x}: f(\underline{x}) \ge t} f(\underline{x}) d\underline{x}$ is large, i.e. $F_S(t) = 0.9$.
- Then, a new observation \underline{x}^* is novel if $f(\underline{x}^*) < t$.

A probabilistic approach

Bimodal normal distribution

A probabilistic approach

- If a new observation is below the threshold, how much certainty do we have that this observation is anomalous?
- Extreme value theory estimates a probability that an observation is anomalous.

Extreme value theory: Fisher-Tippett theorem

• Let $\{X_1, X_2, X_3, ...\}$ be a sequence of independent and identically distributed (iid) random variables and let $M_n = \max \{X_i\}_{i=1}^n$. If sequences of constants $\{a_n\} > 0$ and $\{b_n\}$ exist such that $a_n^{-1}(M_n - b_n) \to G(x), n \to \infty$, then G(x)is necessarily the Generalized Extreme Value (GEV) distribution.

Extreme value theory: Fisher-Tippett theorem

• The GEV distribution is given by

$$G_{\gamma}(x) = \begin{cases} \exp\left\{-\left(1+\gamma x\right)^{-\frac{1}{\gamma}}\right\}, & \gamma \neq 0, \ \left(1+\gamma x\right) > 0 \\ \exp\left\{-\exp\left\{-x\right\}\right\}, & \gamma = 0, \ x \in \mathbb{R} \end{cases}$$

- Move from a non-parametric to a parametric setting (in the limit).
- Three *types* of GEV distributions: Frechét-Pareto, Gumbel, (extremal) Weibull.
- Note: $\min(X) = -\max(-X)$.

Extreme value theory:
PickandsBalkema-de Haan theorem

• The distribution F is in the domain of attraction of the GEV distribution if and only if for some auxiliary function $b(\cdot)$ and for all $1 + \gamma x > 0$, 1 - F(y + b(y)x)

$$\frac{1 - F(y + b(y)x)}{1 - F(y)} \to (1 + \gamma x)^{-1/\gamma} \text{ as } y \to \infty$$

Furthermore,

$$\frac{b(y+b(y)x)}{b(y)} \to u^{\gamma} = 1 + \gamma x$$

Extreme value theory:
PickandsBalkema-de Haan theorem

• Essentially, this theorem states that there exists a high enough threshold t such that the exceedances Z = X - t are approximately generalised Pareto (GP) distributed. Hence, for a large threshold t,

$$P(Z > z | X > t) \approx \left(1 + \gamma \frac{z}{b(t)}\right)^{-1/\gamma}$$

Example: Uniform distribution

Histogram of uniform distribution

Histogram of maximum of uniform distribution

Other problems with EVT

- The problem is multivariate
- The distribution under normal conditions is multimodal

Hence, one needs a method that transforms the data to overcome these issues.

Bimodal normal distribution

An approach based on minimum probability density

- Redefine extreme value theory in terms of minimum probability density.
- Let $E_n = \underset{\underline{X}_i; i=1,...,n}{\arg\min} \{ f(\underline{X}_i) \}$ such that $f(E_n) = \underset{i}{\min} \{ f(\underline{X}_i) \} \equiv \underset{i}{\min} Y_i$
- Assume $\underline{X} \sim N(\underline{\mu}, \Sigma)$
- It can be shown that

$$P[f(E_n) \le y] \approx 1 - \exp\{-[a_n^{-1}y]\} \equiv \text{Weibull type GEV}$$

Furthermore, we can choose $a_n = G_d^{-1}(1/n)$ where $G_d(y)$ is the known distribution of $Y = f(\underline{X})$.

An approach based on minimum probability density

• Hence, the probability that a new observation \underline{x}^* is novel is given by the probability that the density estimate at this observation $y^* = f(\underline{x}^*)$ is less than the distribution of minimum probability density, *i.e.*:

$$P(\underline{x}^* \text{ is novel}) = P(f(E_n) > y^*) \approx \exp\{-a_n^{-1}y^*\}$$

An approach based on minimum probability density

Problem: Gaussian assumption is too strict.

- Gaussian assumption leads to analytical expression of parameter estimates.
- Minimum of GMM density bounded at zero.
- Hence, density of GMM is in domain of attraction of Weibull type GEV.
- However, parameters must be estimated via maximum likelihood.

Weibull density of GMM minimum density:

Weibull density of GMM minimum density:

Weibull density of GMM minimum density:

Banknote authentication example

- Dataset: Wavelet transform of banknotes –
 variables are variance, skewness, kurtosis and entropy of Wavelet transformed image.
- There are 600 real banknotes in the training data.
- There are 162 real and 610 forged banknotes in the test set.

Banknote authentication example

- Select number of components in GMM with BIC criterion.
- Optimal was 5 Gaussian components.
- Estimate distribution of minimum density of real banknotes using Weibull GEV of minimum density.
- Use this distribution to determine probability of forged banknote on test set.

Banknote authentication example

• Results:

	Response				
Predicted	Real	Forged			
Real	162	1			
Forged	0	609			

- Clearly, the model does very well in detecting fake banknotes.
- However, very easy data.

Supervised novelty detection and Open-set Recognition

- Open-set recognition: Perform classification under the assumption that not all classes are known at training.
- Use extreme value theory to detect new classes.
- Similar concepts used for supervised novelty detection.

A new approach based on the GP distribution

- Problem: Testing set possibly contains classes not seen at training.
- Use a supervised model to classify known classes.
- Use extreme value theory to adjust predicted probabilities to account for other classes.
- Estimate the probability that an observation is from a new class not seen at training.

A new approach based on the GP distribution

Consider a model that produces $P(Y = k | \underline{x})$, k = 1, 2, ..., K

For each class:

- 1. Find the correctly classified training data $\underline{x}_{jk} = \underline{x}_j \mid (\hat{y} = k), j = 1,...n_k$
- 2. Let $\underline{\mu}_k = mean(\underline{x}_{jk})$ and compute $d_{jk} = ||\underline{x}_{jk} \underline{\mu}_k||$
- 3. Fit a GP distribution to the exceedances $Z_{jk} = D_{jk} t_k$ above a threshold t_k .

The probability that an observation \underline{x} is *not novel* with respect to class k is:

$$P(Z_k > z \mid D_k > t_k)$$
 where $Z = D - t_k$ and $D = \|\underline{X} - \underline{\mu}_k\|$.

Notice a per-class estimation strategy is followed.

A new approach based on the GP distribution

Update probabilities:

We update each class probability with

$$P^{new}\left(Y = k \left| \underline{X} = \underline{x}^* \right.\right)$$

$$= P\left(\left\{Y = k\right\} \cap \left\{Z_k > z_k\right\} \middle| \underline{X} = \underline{x}^* \right)$$

$$= P\left(Y = k \left| \underline{X} = \underline{x}^* \right.\right) \cdot P\left(Z_k > z_k \middle| Y = k, \ \underline{X} = \underline{x}^* \right.\right)$$

$$\approx P\left(Y = k \middle| \underline{X} = \underline{x}^* \right) \cdot \left(1 + \gamma_k \frac{z_k}{\sigma_k}\right)^{-\frac{1}{\gamma_k}}$$

The probability that an observation is from none of the classes is then

$$P(Y \text{ novel}) = 1 - \sum_{k} P^{new} (Y = k \mid \underline{X} = \underline{x}^*)$$

Classify as class with maximum probability.

Approach:

- Images of handwritten digits downloaded from Kaggle.
- Use 0 to 7 as known classes in training data.
- Use 0 to 9 in testing data, *i.e.* 8 and 9 are new classes.
- Fit CNN on training data and find correctly classified training data.
- Extract activations in final hidden layer for each classes' correctly classified training data.
- Use these features to estimate probability that an observation is from a new class.

Training data:

Class	0	1	2	3	4	5	6	7
Observations	3285	3728	3382	3496	3243	3054	3312	3501

CNN model:

- Two convolutional layers and four fully connected layers.
- Use ReLU activations on all hidden layers.
- SoftMax activation on output layer.
- Extract correctly classified training data on the final fully connected layer.
- Split data by class, *i.e.* 1 dataset of correctly classified training data for each class. Each dataset contains output of the ultimate hidden layer.

Training results:

	Response							
Prediction	0	1	2	3	4	5	6	7
0	3284	1	0	0	0	0	1	0
1	0	3711	0	0	1	0	0	2
2	0	2	3379	1	0	0	0	3
3	0	0	2	3493	0	0	0	0
4	0	2	0	0	3240	0	1	0
5	0	0	0	1	0	3046	0	0
6	1	3	0	0	1	8	3310	0
7	0	9	1	1	1	0	0	3496

Misclassification error:

0,156%

Training results:

Training results:

Estimate GP distribution for rescaling:

For each class:

- Use correctly classified training data.
- Find Mahalanobis distance for each observation.
- Select a high threshold.
- Estimate GP distribution of exceedances above the threshold.

Estimate GP distribution for rescaling:

Estimate GP distribution for rescaling:

Rescale class probabilities of test set:

- Extract activations on final hidden layer of test data.
- Find model predictions.
- For the predicted class, use that GP distribution to rescale probability.
- Classify to class with maximum class probability.

Results on testing set:

	Response									
Prediction	0	1	2	3	4	5	6	7	Unknown	
0	834	0	0	0	0	0	0	0	2	
1	0	918	0	0	0	0	0	0	6	
2	0	0	760	0	0	0	0	0	8	
3	0	0	0	794	0	0	0	0	23	
4	0	0	0	0	706	0	0	0	19	
5	0	0	0	0	0	682	1	0	14	
6	0	0	0	0	0	0	791	0	8	
7	0	1	2	0	0	0	0	869	22	
Unknown	13	37	33	61	123	59	33	31	1548	

<u>Test error</u>:

5.91%

Test error without rescaling:

20.08%

Perhaps a better model:

Perhaps a better model:

• Each activation in the final layer is large when an observation is from the corresponding class.

For each class:

- Find output on corresponding node of correctly classified training data.
- Fit GP distribution on peaks below a small threshold.
- Use this probability to rescale.

Perhaps a better model:

	Response									
Prediction	0	1	2	3	4	5	6	7	Unknown	
0	842	0	0	0	0	0	0	0	8	
1	0	930	0	0	0	0	0	0	8	
2	0	1	781	0	1	0	0	0	10	
3	0	0	0	768	0	0	0	0	33	
4	0	0	0	0	756	0	0	0	11	
5	0	0	0	0	0	700	1	0	28	
6	0	0	0	0	0	0	811	0	14	
7	0	0	1	0	1	0	0	846	52	
Unknown	5	25	13	87	71	41	13	54	1486	

<u>Test error</u>:

5.69%

Question: Can a regression tree be used for density estimation?

If so, can we use this model to detect anomalous observations?

Main problem: Need a valid splitting criterion to determine optimal split recursively.

Criminisi, Shotton & Konukoglu (2011) proposed the information gain with the continuous entropy of a multivariate Gaussian.

Consider splitting the root node into two decision nodes. Let the data in the root node be denoted by the set S and let the left and right decision nodes be denoted by S_L and S_R , respectively.

The information gain of this split (for the multivariate Gaussian) is then

$$I = \ln |\Sigma| - \frac{|S_L|}{|S|} \ln |\Sigma_L| - \frac{|S_R|}{|S|} \ln |\Sigma_R|.$$

This splitting criterion is used with recursive binary partitioning to grow a *density* tree.

The density estimate is obtained from the Gaussian distribution in each terminal node.

Let the leaf reached by an input x be denoted by l(x).

Then, the probability density at the input *x* is given by

$$f(x) = \frac{\pi_{l(x)}}{K} \phi(x, \mu_{l(x)}, \Sigma_{l(x)})$$
, where

K is a normalising constant, $\pi_{l(x)}$ is the proportion of observations in that node and $\phi(\cdot)$ is the multivariate Gaussian density.

The normalising constant is given as

$$K = \sum_{l} \int_{\underline{x} \in l(\underline{x})} \pi_{l} \phi(\underline{x}, \underline{\mu}_{l}, \Sigma_{l}) d\underline{x}.$$

For each leaf, its density estimates are used to estimate the GP distribution associated with the peaks below a small threshold.

This distribution is then used to detect if a new observation is anomalous.

An idea for random forests: An example

An idea for random forests:
An example

An idea for random forests: An example

$$K = \sum_{l} \int_{\underline{x} \in l(\underline{x})} \pi_{l} \phi(\underline{x}, \underline{\mu}_{l}, \Sigma_{l}) d\underline{x} \approx 0.988$$

Consequently, the density in each region is

$$f(x) = \frac{\pi_{l(x)}}{0.988} \phi(x, \mu_{l(x)}, \Sigma_{l(x)}).$$

Conclusion

- New idea for novelty detection.
- Unsupervised:
 - Estimate a density or similarity measure.
 - Perform EVT to detect anomalies.
- Supervised:
 - Estimate probabilities/scores for each well-sampled class.
 - Use EVT to rescale probabilities/scores to detect new classes.
- New connection between theoretical statistics and computer science.
- Thanks for listening!