

# **CONTENTS**

01 주제 소개



02 데이터 소개 03 데이터 분석

04 분석 활용 예시











01

# 平和 全洲















\* 프로그래밍



\* 휴대성





# 주제 선정 배경











컴퓨터를 잘 알지 못하는 사람들도 합리적으로 노트북을 구매할 수 있게 도와 주기 위함



# 노트북 가격과 구성요소 데이터를 이용해 가성비 좋은 노트북을 찾기 위한 모델을 만들어보고 더 나아가 활용해보자!













# **가성비의 개념 정의**

\* 예측가 : 노트북 시중가격의 부품 성능 별 가중치를 고려한 모델 예측값



시 중 가 < 예측 가 시 중 가 > 예측 가

가성비가 <mark>좋다</mark> 가성비가 좋지 않다

囨















가성비가 좋은 노트북 중 개인의 선호에 맞춘 기능으로 필터링하여 노트북 추천!

















# 새롭게 출시될 노트북의 적정 가격 제시

새롭게 출시된 혹은 출시 될 모델의 성능을 바탕으로 모델에 적합하여 적정 가격 제시!

# 02

# 田の田 4개







#### 데이터 분석 '분석 활용 '한계 및 이이



⟨⇒ ⇒ C www. DANAWA .com 노트북 가격 비교 사이트 〈다나와〉





#### 〈다나와〉 노트북 정보 크롤링



| 제조회사            | LG전자 (제조사 웹사이트 바로가기)   | 등록년월            | 2017년 09월         |
|-----------------|------------------------|-----------------|-------------------|
| CPU 제조사         | 인텔                     | CPU 종류          | 코어i3-7세대          |
| CPU 코드명         | 카비레이크                  | CPU 넘버          | i3-7100U (2.4GHz) |
| 코머 형태           | <u>듀얼 코어</u>           |                 |                   |
| 디스플레이           |                        |                 |                   |
| <u>화면 크기</u>    | <u>33.78cm(13.3인치)</u> | 화면 비율           | 와이드 16:9          |
| 해상도             | 1920×1080              |                 |                   |
| 디스플레이 특징        |                        |                 |                   |
| <u>눈부심방지</u>    |                        | 광시야각            | 0                 |
| <u>터치스크린</u>    |                        | <u>밝기자동조절</u>   |                   |
| 회전LCD           |                        | <u>베젤없음</u>     |                   |
| G-Sync          |                        | <u>슬림형 베젤</u>   |                   |
| <u>120Hz 지원</u> |                        | <u>144Hz 지원</u> |                   |
| 와이드뷰            |                        |                 |                   |
| 메모리 특징          |                        |                 |                   |
| 메모리 용량          | 4GB                    | 메모리 타입          | DDR4              |
| HDD 특징          |                        |                 |                   |
| 7200 rpm        |                        | HDD 충격 보호       |                   |
| HDD 용량          |                        |                 |                   |
| SSD 형태          |                        |                 |                   |
| SSD             |                        | mSATA           |                   |
| M.2             | 0                      | <u>eMMC</u>     |                   |

### 3000여개 노트북별 성능 및 가격 정보 데이터 구축!

\* 2016년 1월 이후 등록된 노트북만 크롤링 (2017.11.2~4)



#### 데이터 분석 '분석 활용 '한계 및 이이









- 1. 특정 변수(배터리, 어댑터 등)에서 나타난 결측값 채우기 그래도 채워지지 않은 결측값은 knnlmputation 사용
- 2. 중복으로 크롤링된 observation 삭제
- 3. 외장 그래픽 카드가 특정 모델이 아닌 observation 삭제  $(\because 점수 부여 X)$
- 4. 해상도와 모니터 크기(inch)로 DPI 변수 생성
  - \* DPI: dots per inch (단위 해상도)

총 2766개 관측값!



#### 데이터 분석 '분석 활용 '한계 및 의의







변수 탐색 - 반응변수

price\_avg: 다나와 사이트에 기재된 각종 쇼핑몰의 평균 가격



> summary(dat\$price\_avg)

Min. 1st Qu. Median Mean 3rd Qu. 888000 1219832 1348516 1573872 7947050

> 전체 데이터의 93%를 차지하는 250만원 이하 가격의 노트북만 분석 진행!

※ 실제 분석에서는 가격의 범위를 고려하여 log 취함







#### 데이터 분석 '분석 활용 '한계 및 의의







#### 변수 탐색 - 설명변수

#### 〈기본적인 정보〉

| name          | 모델명       | company        | 세조회사        |
|---------------|-----------|----------------|-------------|
| release_month | 등록 후 개월 수 | 0S             | 운영체제        |
| weight        | 무게 (kg)   | world_warranty | 전세계 a/s 서비스 |
| battery       | 배터리(Wh)   | adapter        | 어댑터 (Wh)    |

#### <처리 능력>

| CPU_company | CPU 제조회사 | CPU_score | CPU 점수 | • |
|-------------|----------|-----------|--------|---|
| core_num    | 프로세서 수   |           |        |   |

산업 표준화 지수를 차용하여 만든 CPU 성능진단 점수 (Passmark)







#### 데이터 분석 '분석 활용 '한계 및 의의



⟨⇒ ⇒ C www. DANAWA .com 노트북 가격 비교 사이트 〈다나와〉





#### 변수 탐색 - 설명변수

#### <기억잠치>

| memory     | DDR4(L) 여부    | memory_vol  | 메모리 용량 (RAM)              | 주기억  |
|------------|---------------|-------------|---------------------------|------|
| faster_HDD | 7200rpm 이삼 여부 | HDD_vol     | 하드디스크 용량                  |      |
| SSD_vol    | SSD 용량        | multireader | SD카드 삽입할 수 있는<br>매체 존재 유무 | 보조기의 |

장치

I억장치

#### <그래픽>

| Graphic_inner | 내장 그래픽카드 유무              | Graphic_outer    | 외장 그래픽카드 유무              |
|---------------|--------------------------|------------------|--------------------------|
| outerGPU_3D   | 외장 그래픽 카드<br>3D 성능 상대 점수 | outerGPU_Compute | 외장 그래픽 카드<br>연산 기능 상대 점수 |







#### 데이터 분석 '분석 활용 '한계 및 의의





⟨⇒ ⇒ C www. DANAWA .com 노트북 가격 비교 사이트 〈다나와〉





#### 변수 탐색 - 설명변수

#### <P><P><P><P>

| Monitor         | 모니터 크기 (inch)         | Anti_glare  | 눈부심방제               |
|-----------------|-----------------------|-------------|---------------------|
| Wideview        | 와이드뷰                  | Touchscreen | 터치스크린               |
| Brightness_auto | 밝기 자동 조절              | RotateLCD   | 회전LCD               |
| Refresh         | 화면 프레임 속도<br>120Hz 이상 | Dpi         | 화면 1인치 당 dots<br>개수 |







#### 데이터 분석 '분석 활용 '한계 및 의의











#### <멀EIDICI어>

| DVDrecorder     | DVD 쓰기 가능                                      | BlueRayrecorder | Blueray 쓰기 가능 |
|-----------------|------------------------------------------------|-----------------|---------------|
| multiboost      | HDD, SSD 포함 CD,<br>DVD, Blueray<br>삽입 가능 매체 유무 | bluetooth       | 블루투스          |
| USB_type        | USB 단자 종류                                      | type_C          | USB Type c 존재 |
| display_out_num | 화면 출력 종류 개수                                    | webcam          | 웹캠 존재         |







#### 데이터 분석 '분석 활용 '한계 및 이의









#### 변수 탐색 - 설명변수

#### 〈귀보드〉

| number_key     | 숫자 키보드       | convex_key    | 볼록 귀보드   |
|----------------|--------------|---------------|----------|
| mechanical_key | 기계식 키보드      | antiwater_key | 침수방지 키보드 |
| light_key      | 키보드 라이트 (백색) | RGBlight_key  | RGB 라이트  |

#### <1IE+>

| wired_lan 유선랜 fingerscan 제문인식 |
|-------------------------------|
|-------------------------------|

03

# 데이터 분석







파일

홈

공유

보기

관리

# 군집분석

















Tree



**GAM** 





## 데이터 분석

#### 분석 활용 '한계 및 의의











노트북 추천



| 통합검색 | 블로그 | 지식iN | 카페    | 이미지          | 쇼핑 🗆 | 포스트 🗇 | 웹문서 | 더보기 ▼ | 검색옵션 |
|------|-----|------|-------|--------------|------|-------|-----|-------|------|
| 정렬 ▼ | 기간▼ | 영역▼  | 옵션 유지 | <b>꺼짐</b> 켜짐 | 상세점  | 검색▼   |     |       |      |

추천검색어 🥐

저렴한노트북추천 사무용노트북추천



성능 별로 노트북을 구분해보자!



### 데이터 분석

분석 활용 '한계 및 이이









#### 비계층적 군집분석

#### K-means

- ✓ 관측값들의 평균값을 사용해 중심점(Centroid) 계산
- ✓ 평균을 사용하기 때문에 이상치에 민감
- ✓ 연속형 변수들만 사용 가능
- ✓ 변수들의 scale에 민감함



- 1개 이상의 관측값을 medoids로 설정하고 군집화
- ✓ k-means보다 이상치에 robust
- ✓ 연속형, 범주형, 혼합형 유사도 척도를 사용하여 모든 데이터 유형의 유사성을 계산 가능
- \* 수치형 데이터는 변수간 단위 차이에 영향을 많이 받으므로 변수에 가중치를 줄 것이 아니라면 반드시 정규화(표준화)필요!





# 데이터 분석

#### 분석 활용 '한계 및 의의









# 군집 개수에 따른 실루엣 값 그래프



군집이 2개일 때 치적!



### 데이터 분석

#### 분석 활용 '한계 및 이이







#### Group 1 - 군집 분석 결과

- > summary(group1\$price\_avg)
- Min. 1st Qu. Median Mean 3rd Qu. Max. 161006 780216 1141359 1167111 1455310 3935022
- > summary(group1\$CPU\_score)
  - Min. 1st Qu. Median Mean 3rd Ou. Max. 884 3275 4009 4074 4697 10110
- > summary(group1\$graphic\_outer)
- 0 1505 143
- > summary(group1\$monitor)

Min. 1st Qu. Median Mean 3rd Qu. Max. 13.3 14.0 14.4 15.6 17.3 10.1

> summary(group1\$weight)

Min. 1st Qu. Median Mean 3rd Qu. Max. 0.980 1.340 0.690 1.448 1.860 3.540

- 1. 중간값 110만원 대로 상대적으로 낮은 가격
- 2. 낮은 CPU 성능, 대부분이 듀얼 코어
- 3. 대부분 외장 그래픽카드가 없음
- 4. 최소 10.10인치부터 최대 17.30인치까지 다양한 크기
- 5. 대부분의 귀보드 관련 튜닝 기능이 적용되지 않음.
- 6. 중간값 1.3kg의 가벼운 무게



### 데이터 분석

분석 활용 '한계 및 이의









- 1. 중간값 110만원의 상대적으로 낮은 가격
- 2. 낮은 CPU 성능, 대부분이 듀얼 코어
- 3. 대부분 외장 그래픽카드가 없음
- 4. 최소 10.10인치부터 최대 17.30인치까지 다양한 크기
- 5. 대부분의 귀보드 관련 튜닝 기능이 적용되지 않음.
- 6. 중간값 1.3kg의 가벼운 무게

#### 단순 사무용/넷북/울트라북 등 중저가 제품군!





### 데이터 분석

#### 분석 활용 '한계 및 이이







#### Group 2 - 군집 분석 결과

> summary(group2\$price\_avg)

Min. 1st Qu. Median Mean 3rd Qu. Max. 399000 1024752 1345713 1616158 1880356 7947050

> summary(group2\$memory\_vol)

Min. 1st Qu. Median Mean 3rd Qu. Max. 4.00 8.00 8.00 10.84 16.00 64.00

> summary(group2\$CPU\_score)

Min. 1st Qu. Median Mean 3rd Ou. Max. 2677 5212 8140 7261 8937 14642

> summary(group2\$outerGPU\_3D)

Min. 1st Qu. Median Mean 3rd Qu. Max. 1239 2720 4068 5738 15365

> summary(group2\$weight)

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.040 2.400 2.454 2.620 1.090 5.700

- 1. 중간값 130만원의 높은 가격
- 2. 최신 고속 DDR4메모리 적용, 높은 용량의 메모리
- 3. 높은 CPU 성능, 대부분이 쿼드 코어
- 4. 대부분 외장그래픽카드 탑재, 높은 그래픽카드 성능
- 5. 중간값 15인치 이상의 대화면 적용
- 6. 중간값이 2.46kg인 무개운 노트북



### 데이터 분석

분석 활용 '한계 및 이이









- 1. 중간값 130만원의 높은 가격
- 2. 최신 고속 DDR4메모리 적용, 높은 용량의 메모리
- 3. 높은 CPU 성능, 대부분이 쿼드 코어
- 4. 대부분 외장그래픽카드 탑재, 높은 그래픽카드 성능
- 5. 중간값 15인치 이상의 대화면 적용
- 6. 중간값이 2.46kg인 무개운 노트북

#### 게임용/그래픽 작업용/워크스테이션 고성능 제품군!











## 데이터 분석

#### 분석 활용







# Clustering - 시각화







시각화를 통해 군집이 잘 나뉘었음을 알 수 있다!



### 데이터 소개 데이터 분석

분석 활용 '한계 및 이이









# 연속형 변수 간 상관관계 확인



Group 1 > cor(group1\$outerGPU\_3D,group1\$outerGPU\_Compute)
[1] 0.9904558



Group 2 > cor(group2\$outerGPU\_3D,group2\$outerGPU\_Compute)
[1] 0.9970793

| outerGPU_3D      | 외장 그래픽카드의 3D 성능 점수 |
|------------------|--------------------|
| outerGPU_Compute | 외장 그래픽카드의 연산 성능 점수 |

높은 상관관계 존재!



outerGPU\_3D 제가 후 분석 진행



## 데이터 분석

#### 분석 활용











# 각 제조회사의 빈도수 확인







| 4  | ACED     | 24  |                   |    |          |     |
|----|----------|-----|-------------------|----|----------|-----|
| 1  | ACER     |     |                   | 1  | ACER     | 24  |
| 2  | AORUS    | 5   |                   | 2  | other    | 7   |
| 3  | ASUS     | 138 |                   | 3  | ASUS     | 138 |
| 4  | DELL     | 45  |                   | 4  | DELL     | 45  |
| 5  | GIGABYTE | 88  |                   | 5  | GIGABYTE | 88  |
| 6  | HP       | 309 |                   | 6  | HP       | 309 |
| 7  | LG전자     | 64  | $\longrightarrow$ | 7  | LG전자     | 64  |
| 8  | MSI      | 76  |                   | 8  | MSI      | 76  |
| 9  | TG삼보     | 2   |                   | 9  | 레노버      | 60  |
| 10 | 레노버      | 60  |                   | 10 | 삼성전자     | 95  |
| 11 | 삼성전자     | 95  |                   | 11 | 주연테크     | 10  |
| 12 | 주연테크     | 10  |                   | 12 |          | 62  |
| 13 | 한성컴퓨터    | 62  |                   |    |          |     |

빈도의 편차가 크고 범주의 수가 매우 많음



빈도가 10보다 작은 제조회사를 묶어 'other'로 처리





파일

홈

공유

보기

관리

# 선형 회귀 모형



- > 톨계학과
- > 📜 과제











Tree



**GAM** 





## 데이터 분석

#### 분석 활용 '한계 및 이이









## \_\_\_\_ Group 1 – Train Set 적합

#### STEPWISE AN

null<-lm(logprice~1,data=train1)</pre>

```
full<-lm(logprice~battery+adapter+memory+company+release_month+
           CPU_score+core_num+monitor+anti_glare+wideview+touchscreen+
           brightness_auto+rotateLCD+memory_vol+faster_HDD+HDD_vol+
           SSD_vol+DVDrecorder+multiboost+graphic_inner+graphic_outer+graphic_memory+
           outerGPU_Compute+wired_lan+bluetooth+display_output_num+
           webcam+USB_type+Type_C+multireader+number_key+convex_key+antiwater_key+
           light_key+RGBlight_key+fingerscan+weight+world_warranty+dpi,
         data=train1) #delete OS (singularity)
step(null,scope=list(lower=null,upper=full),direction="both",trace=0)
lm.fit1<-lm(formula = logprice ~ memory_vol + company + CPU_score + weight +</pre>
              release_month + core_num + touchscreen + monitor + outerGPU_Compute +
              antiwater_key + dpi + display_output_num + memory + SSD_vol +
              number_key + Type_C + fingerscan + wideview + DVDrecorder +
              battery + HDD_vol + anti_glare + multireader + graphic_inner +
              graphic_outer, data = train1) # all variables
```

#### Check!

- OS 변수 때문에 singularity 발생
- factor의 값이 하나만 존재하는 변수는 제외하고 적합 (ex. mechanical\_key, refresh...)



## 데이터 소개 데이터 분석

분석 활용 '한계 및 이이









### Group 1 – Train Set 가정 확인

```
> shapiro.test(residuals(lm.fit1))
        Shapiro-Wilk normality test
data: residuals(lm.fit1)
W = 0.98609, p-value = 7.321e-09
> bptest(lm.fit1)
        studentized Breusch-Pagan test
data: lm.fit1
BP = 115.18, df = 35, p-value = 1.76e-10
> dwtest(lm.fit1)
        Durbin-Watson test
data: lm.fit1
DW = 1.9518, p-value = 0.2105
alternative hypothesis: true autocorrelation is greater than 0
```

#### Check!

- 1. 정규성 만쪽 X
- 2. 등분산성 만쪽 X
- 3. 독립성 만쪽 0 (노트북들 간의 독립성)



### 데이터 분석

분석 활용 '한계 및 이이









#### Group 1 – Test Set

```
> yhat.lm<-predict(lm.fit1,newdata=test1)</pre>
```

- > mean((yhat.lm-test1[,"logprice"])^2)
- [1] 0.03077082
- > sqrt(mean((yhat.lm-test1[,"logprice"])^2))
- [1] 0.1754161
- > var(yhat.lm)/var(test1\$logprice)
- [1] 0.8796989

변동(분산)을 얼마나 잘 설명하는 가

#### Check!

- 1. MSE: 0.03077082
- 2. RMSE: 0.1754161
- 3. 설명력: 0.879689



독립성 0

#### 데이터 소개

### 데이터 분석

#### 분석 활용 '한계 및 이이

data: lm.fit2

DW = 2.0305, p-value = 0.6534









# Group 2 – Train Set 적합 & 가정 확인

#### STEPWISE AN

```
null<-lm(logprice~1,data=train2)</pre>
full<-lm(logprice~battery+adapter+memory+company+release_month+CPU_company+
           CPU_score+monitor+anti_glare+wideview+touchscreen+graphic_memory+
           brightness_auto+rotateLCD+memory_vol+faster_HDD+HDD_vol+
           SSD_vol+DVDrecorder+multiboost+graphic_inner+graphic_outer+
           outerGPU_Compute+wired_lan+bluetooth+display_output_num+
           webcam+USB_type+Type_C+multireader+number_key+convex_key+antiwater_key+
           light_key+RGBlight_key+fingerscan+OS+weight+world_warranty+dpi,
         data=train2)
step(null,scope=list(lower=null,upper=full),direction="both",trace=0)
lm.fit2<-lm(formula = logprice ~ battery + memory_vol + company + OS +</pre>
              CPU_score + fingerscan + SSD_vol + release_month + CPU_company +
              outerGPU_Compute + antiwater_key + number_key + monitor +
              display_output_num + RGBlight_key + dpi + memory + graphic_inner +
              Type_C + DVDrecorder + faster_HDD + multiboost + wideview +
              brightness_auto + HDD_vol + light_key + multireader, data = train2)
```

```
> shapiro.test(residuals(lm.fit2))
       Shapiro-Wilk normality test
                                        점규섬 X
data: residuals(lm.fit2)
W = 0.97984, p-value = 4.255e-08
> bptest(lm.fit2)
       studentized Breusch-Pagan test
                                        등분산성 X
data: lm.fit2
BP = 73.163, df = 42, p-value = 0.002044
> dwtest(lm.fit2)
       Durbin-Watson test
```



#### 분석 활용 '한계 및 이이









```
> yhat.lm2<- predict(lm.fit2,newdata=test2)</pre>
```

- > mean((yhat.lm2-test2[,"logprice"])^2)
- [1] 0.01964755
- > sqrt(mean((yhat.lm2-test2[,"logprice"])^2))
- [1] 0.1401697
- > var(yhat.lm2)/var(test2\$logprice)
- [1] 0.909529

#### Check!

- 1. MSE: 0.01964755
- 2. RMSE: 0.1401697
- 3. 설명력: 0.909529









공유

보기

관리











**Cluster Analysis** 



**Linear Regression** 





**Random Forest** 



**Boosting** 



**GAM** 



### 분석 활용 '한계 및 이이









### Group 1 – Train Set



#### Check!

- Tree의 Node를 몇 개로 했을 때 cross validation 에러가 가장 작을까?
- ⇒ Deviance가 가장 낮은

Tree의 노드 개수는 10개 (가지치기 X)



### 분석 활용 '한계 및 의의









### Group 1 – Test Set



#### Check!

1. MSE: 0.05853857

2. RMSE: 0.2419475

3. 설명력: 0.706084



분석 활용 '한계 및 이이









Group 2 – Train Set, Tree



#### Check!

- Tree의 Node를 몇 개로 했을 때 cross validation 에러가 가장 작을까?
- ⇒ Deviance가 가장 낮은 Tree의 노드 개수는 11개 (가지치기 X)



### 분석 활용 '한계 및 의의









#### Check!

1. MSE: 0.043546419

2. RMSE: 0.2087204

3. 설명력: 0.8152141



- 🗆 ×

파일

홈

공유

보기

관리

랜덤 포레스트



- > 톨계학과
- > 📜 과제



**Cluster Analysis** 



**Linear Regression** 



Tree



Boosting



**GAM** 



#### 데이터 소개

## 데이터 분석

#### 분석 활용 '한계 및 이이









### Group 1

```
set.seed(10)
rf.fit1<-randomForest(train1[,-46],train1$logprice,ntree=500,mtry=15)
yhat.rf1<-predict(rf.fit1,newdata=test1)</pre>
          15개 변수를 선택하여 500개의 나무(숲) 생성
   > yhat.rf1<-predict(rf.fit1,newdata=test1)</pre>
   > mean((yhat.rf1-test1[,"logprice"])^2)
    [1] 0.01634308
   > sqrt(mean((yhat.rf1-test1[,"logprice"])^2))
    [1] 0.1278401
   > var(yhat.rf1)/var(test1$logprice)
    [1] 0.7978367
```

#### Check!

매우 정확한 예측력!

1. MSE: 0.01634308

2. RMSE: 0.1278401

3. 설명력: 0.7978367

나소 떨어지는 설명력!



#### 데이터 소개

## 데이터 분석

#### 분석 활용 '한계 및 이이









```
set.seed(10)
rf.fit2<-randomForest(train2[,-46],train2$logprice,ntree=500,mtry=15)
yhat.rf2<-predict(rf.fit2,newdata=test2)</pre>
```

15개 변수를 선택하여 500개의 나무(숲) 생성

```
> mean((yhat.rf2-test2[,"logprice"])^2)
[1] 0.01607958
> sqrt(mean((yhat.rf2-test2[,"logprice"])^2))
[1] 0.1268053
> var(yhat.rf2)/var(test2$logprice)
[1] 0.7555339
```

#### Check!

매우 정확한 예측력!

1. MSE: 0.01607958°

2. RMSE: 0.1268053

3. 설명력: 0.7555339





#### 분석 활용 '한계 및 이이









### Group 1 – Parameter Tuning I

```
fitControl<-trainControl(method="cv", number=5, returnResamp = "all")</pre>
set.seed(1234) # tuning shrinkage & interaction.depth
bt.tuning<-train(logprice~., data=newtrain1, method="qbm".distribution="qaussian".
             trControl=fitControl, verbose=F,
             tuneGrid=data.frame(.n.trees=9000, .shrinkage=rep(c(0.03,0.04),2),
                                .interaction.depth=c(2,3,3,2), .n.minobsinnode=10))
> bt.tuning
                                                                   0.03 or 0.04
                                      shrinkage
Stochastic Gradient Boosting
1123 samples
                                      Interaction.depth 21H or 31H
  40 predictor
                                       (각 트리 별 노드 개수)
No pre-processing
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 899, 899, 898, 898, 898
Resampling results across tuning parameters:
                                                               4개의 조합!
  shrinkage interaction.depth RMSE
                                         Rsquared
  0.03
                              0.1341533 0.9170641 0.09363054
  0.03
                              0.1324395 0.9190405 0.09019787
  0.04
                              0.1339208 0.9173988 0.09288106
                               0.1313284 0.9205778 0.08918176
Tuning parameter 'n.trees' was held constant at a value of 9000
Tuning
 parameter 'n.minobsinnode' was held constant at a value of 10
RMSE was used to select the optimal model using the smallest value.
The final values used for the model were n.trees = 9000, interaction.depth = 3,
 shrinkage = 0.04 and n.minobsinnode = 10.
```

#### Check!

- 최적의 노드 개수: 3개
- 수렴속도: 0.04
- caret 패키제의 파라미터 튜닝 함수를

통해 얻은 값

※ 트리의 개수와 노드 안 최소 데이터 수는 고정



분석 활용 '한계 및 이이









Group 1 – Parameter Tuning II



Check!

- 최적의 반복 횟수 (나무 개수): 5032개
- gbm 함수 내의 cv.folds 옵션 사용



#### 데이터 소개

## 데이터 분석

#### 분석 활용 '한계 및 이이









### Group 1

boost1<- gbm(logprice~.,data=newtrain1,distribution="gaussian",n.trees=best.tree, shrinkage=0.04,interaction.depth=3)

앞에서 parameter tuning 과정을 통해 도출한 parameter 사용

```
> mean((yhat.bt-test1[,"logprice"])^2)
[1] 0.011375
> sqrt(mean((yhat.bt-test1[,"logprice"])^2))
[1] 0.1066536
> var(yhat.bt)/var(test1$logprice)
[1] 0.9503649
```

#### Check!

1. MSE: 0.011375

2. RMSE: 0.1066536

3. 설명력: 0.9503649

예측력가 모두 뛰어남!



#### 분석 활용 '한계 및 이이









Group 2 – Parameter Tuning I

#### 아까와 같은 방식으로!

#### > bt.tuning

Stochastic Gradient Boosting

684 samples 42 predictor

No pre-processing

Resampling: Cross-Validated (5 fold)

Summary of sample sizes: 545, 548, 547, 548, 548 Resampling results across tuning parameters:

| shrinkage | interaction.depth | RMSE      | Rsquared  | MAE        |
|-----------|-------------------|-----------|-----------|------------|
| 0.03      | 2                 | 0.1142316 | 0.8970404 | 0.07925605 |
| 0.03      | 3                 | 0.1160836 | 0.8940164 | 0.07888228 |
| 0.04      | 2                 | 0.1152775 | 0.8949871 | 0.07961852 |
| 0.04      | 3                 | 0.1166560 | 0.8926084 | 0.08022632 |

Tuning parameter 'n.trees' was held constant at a value of 9000 Tuning

parameter 'n.minobsinnode' was held constant at a value of 10 RMSE was used to select the optimal model using the smallest value. The final values used for the model were n.trees = 9000, interaction.depth = 2, shrinkage = 0.03 and n.minobsinnode = 10.

#### Check!

- 최적의 노드 개수: 2개
- 수렴속도: 0.03
- ※ 트리의 개수와 노드 안 최소 데이터 수는 고정



분석 활용 '한계 및 이이









Group 2 – Parameter Tuning II



#### Check!

- 최적의 반복 횟수 (나무 개수): 6658개
- gbm 함수 내의 cv.folds 옵션 사용



#### 분석 활용 '한계 및 이이









boost2<- gbm(logprice~.,data=newtrain2,distribution="gaussian",n.trees=best.tree, shrinkage=0.03, interaction. depth=2)

앞에서 parameter tuning 과정을 통해 도출한 parameter 사용

```
> mean((yhat.bt-test2[,"logprice"])^2)
[1] 0.01112946
> sqrt(mean((yhat.bt-test2[,"logprice"])^2))
[1] 0.1054963
> var(yhat.bt)/var(test2$logprice)
Γ11 0.9343957
```

#### Check!

1. MSE: 0.01112946

2. RMSE: 0.1054963

3. 설명력: 0.9343957

예측력과 모두 뛰어남!







#### 분석 활용 '한계 및 이이









#### Group 1

```
Call: gam(formula = logprice ~ s(battery) + s(adapter) + memory + company +
    s(release_month) + s(CPU_score) + core_num + s(monitor) +
    anti_glare + wideview + touchscreen + brightness_auto + rotateLCD +
    s(memory_vol) + faster_HDD + HDD_vol + s(SSD_vol) + DVDrecorder +
    multiboost + graphic_inner + graphic_outer + graphic_memory +
    s(outerGPU_Compute) + wired_lan + bluetooth + display_output_num +
    webcam + USB_type + Type_C + multireader + number_key + convex_key +
    antiwater_key + light_key + RGBlight_key + fingerscan + s(weight) +
    world_warranty + s(dpi), data = train1)
Deviance Residuals:
              10 Median
```

-0.48116 -0.09950 -0.00204 0.09337 0.87725

(Dispersion Parameter for gaussian family taken to be 0.0242)

Null Deviance: 245.8223 on 1122 degrees of freedom Residual Deviance: 25.1894 on 1040 degrees of freedom AIC: -909.4742

Number of Local Scoring Iterations: 14

\* 연속형 변수에 모두 Smoothing Function 적용

| Anova for Parametric  | ree. | oct c  |         |          |           |            | Anova for Nonparamet | tric Ef | fe | cts     |           |   |
|-----------------------|------|--------|---------|----------|-----------|------------|----------------------|---------|----|---------|-----------|---|
| Allova for Parametric |      |        | Moon Co | E value  | Dn (+ E)  |            | ·                    | Npar D  | f  | Npar F  | Pr(F)     |   |
| - (h-++)              |      |        | Mean Sq | F value  |           |            | (Intercept)          |         |    |         |           |   |
| s(battery)            |      |        | 14.051  |          | < 2.2e-16 |            | s(battery)           |         | 3  | 4.4019  | 0.0043660 | , |
| s(adapter)            | 1    |        | 0.308   |          | 0.0003782 |            | s(adapter)           |         | 3  |         | 0.2266665 |   |
| memory                | 1    |        | 1.659   |          | 3.837e-16 |            | memory               |         | -  | 1       | 0.220000  |   |
| company               |      | 51.921 | 5.769   |          | < 2.2e-16 |            | company              |         |    |         |           |   |
| s(release_month)      | 1    | 3.978  | 3.978   |          | < 2.2e-16 |            | s(release_month)     |         | 2  | 6 7245  | 0.0001706 |   |
| s(CPU_score)          |      | 77.650 |         |          | < 2.2e-16 |            | s(CPU_score)         |         |    |         | 2.584e-08 |   |
| core_num              | 1    | 7.864  | 7.864   |          | < 2.2e-16 |            |                      |         | 2  | 12.930/ | 2.3646-00 | • |
| s(monitor)            | 1    | 2.213  | 2.213   |          | < 2.2e-16 |            | core_num             |         |    | 2 4052  | 0.0001517 |   |
| anti_glare            | 1    | 7.025  | 7.025   | 290.0550 | < 2.2e-16 | ***        | s(monitor)           |         | 3  | 2.1853  | 0.0881517 |   |
| wideview              | 1    | 2.759  | 2.759   | 113.9134 | < 2.2e-16 | ***        | anti_glare           |         |    |         |           |   |
| touchscreen           | 1    | 2.952  | 2.952   | 121.8875 | < 2.2e-16 | ***        | wideview             |         |    |         |           |   |
| brightness_auto       | 1    | 0.680  | 0.680   | 28.0791  | 1.421e-07 | ***        | touchscreen          |         |    |         |           |   |
| rotateLCD             | 1    | 0.713  | 0.713   | 29.4517  | 7.132e-08 | ***        | brightness_auto      |         |    |         |           |   |
| s(memory_vol)         | 1    | 11.162 | 11.162  | 460.8577 | < 2.2e-16 | 常常常        | rotateLCD            |         |    |         |           |   |
| faster_HDD            | 1    | 0.405  | 0.405   | 16.7405  | 4.617e-05 | <b>常常常</b> | s(memory_vol)        |         | 3  | 3.9278  | 0.0083985 | , |
| HDD_vol               | 3    | 0.519  | 0.173   | 7.1478   | 9.406e-05 | ***        | faster_HDD           |         |    |         |           |   |
| s(SSD_vol)            | 1    | 3.094  | 3.094   | 127,7611 | < 2.2e-16 | ***        | HDD_vol              |         |    |         |           |   |
| DVDrecorder           | 1    | 1.707  | 1.707   | 70.4861  | < 2.2e-16 | ***        | s(SSD_vol)           |         | 3  | 3.5681  | 0.0137475 | , |
| multiboost            | 1    | 0.032  | 0.032   | 1.3047   | 0.2536200 |            | DVDrecorder          |         |    |         |           |   |
| graphic_inner         | 1    | 0.375  | 0.375   | 15,5030  | 8.786e-05 | ***        | multiboost           |         |    |         |           |   |
| graphic_outer         | 1    | 0.842  | 0.842   | 34.7494  | 5.063e-09 | ***        | graphic_inner        |         |    |         |           |   |
| graphic_memory        | ī    | 0.440  | 0.440   |          | 2.211e-05 |            | graphic_outer        |         |    |         |           |   |
| s(outerGPU_Compute)   | 1    | 0.413  | 0.413   | 17.0405  | 3.952e-05 | ***        | graphic_memory       |         |    |         |           |   |
| wired_lan             | ī    | 0.351  | 0.351   |          | 0.0001486 |            | s(outerGPU_Compute)  |         | 3  | 2.9658  | 0.0311562 | , |
| bluetooth             | ī    | 0.015  | 0.015   |          | 0.4240676 |            | wired_lan            |         |    |         |           |   |
| display_output_num    | 3    | 1.484  | 0.495   |          | 7.349e-13 | ***        | bluetooth            |         |    |         |           |   |
| webcam                | 1    | 0.020  | 0.020   |          | 0.3578494 |            | display_output_num   |         |    |         |           |   |
| USB_type              | 2    | 0.349  | 0.174   |          | 0.0007817 | ***        | webcam               |         |    |         |           |   |
| Type_C                | 1    | 2.099  | 2.099   |          | < 2.2e-16 |            | USB_type             |         |    |         |           |   |
| multireader           | 1    | 0.038  | 0.038   |          | 0.2121688 |            | Type_C               |         |    |         |           |   |
| number_key            | 1    | 0.631  | 0.631   |          | 3.930e-07 | ***        | multireader          |         |    |         |           |   |
| convex_key            | 1    | 0.001  | 0.001   |          | 0.8553057 |            | number_key           |         |    |         |           |   |
| antiwater_key         | 1    | 1.435  | 1.435   |          | 3.232e-14 | ***        | convex_key           |         |    |         |           |   |
| light_kev             | 1    | 0.133  | 0.133   |          | 0.0194314 |            | antiwater_key        |         |    |         |           |   |
| RGBlight_key          | 1    | 0.133  | 0.133   |          | 0.5086773 |            | light_key            |         |    |         |           |   |
|                       | 1    | 1.149  | 1.149   |          | 9.748e-12 | ***        | RGBlight_key         |         |    |         |           |   |
| fingerscan            | - 1  | 1.149  | 1.149   | 47.4314  | 9.7480-12 |            | £1                   |         |    |         |           |   |
|                       |      |        |         |          |           |            |                      |         |    |         |           |   |

\* 변수 유의성

\* 함수 적용 유의성

3 4.4019 0.0043660 \*\* 3 1.4502 0.2266665

3 6.7245 0.0001706 \*\*\*

3 3.9278 0.0083985 \*\*



### 분석 활용 '한계 및 이이









#### Group 1 – Corrected GAM

```
Call: gam(formula = logprice ~ s(battery) + adapter + memory + company +
    s(release_month) + s(CPU_score) + core_num + monitor + anti_glare +
    wideview + touchscreen + brightness_auto + rotateLCD + s(memory_vol) +
    faster_HDD + HDD_vol + s(SSD_vol) + DVDrecorder + multiboost +
    graphic_inner + graphic_outer + graphic_memory + s(outerGPU_Compute) +
    wired_lan + display_output_num + USB_type + Type_C + multireader +
    antiwater_key + light_key + fingerscan + s(weight) + s(dpi),
    data = train1)
Deviance Residuals:
```

Min Median -0.462288 -0.100425 -0.001567 0.094104 0.868144

(Dispersion Parameter for gaussian family taken to be 0.0243)

Null Deviance: 245.8223 on 1122 degrees of freedom Residual Deviance: 25.5839 on 1052 degrees of freedom

AIC: -916.0225

Number of Local Scoring Iterations: 11

\* 수정한 GAM 식을 적용하여 분석

| Anova for Parametri | c Eff | ects    |         |           |           |     |
|---------------------|-------|---------|---------|-----------|-----------|-----|
|                     | Df    | Sum Sq  | Mean Sq | F value   | Pr(>F)    |     |
| s(battery)          | 1     | 13.733  | 13.733  | 564.7067  | < 2.2e-16 | *** |
| adapter             | 1     | 0.155   | 0.155   | 6.3567    | 0.0118410 | ŵ   |
| memory              | 1     | 1.854   | 1.854   | 76.2466   | < 2.2e-16 | 杂杂杂 |
| company             | 9     | 50.794  | 5.644   | 232.0694  | < 2.2e-16 | 食食食 |
| s(release_month)    | 1     | 3.889   | 3.889   | 159.9258  | < 2.2e-16 | *** |
| s(CPU_score)        | 1     | 75.254  | 75.254  | 3094.4306 | < 2.2e-16 | 杂杂杂 |
| core_num            | 1     | 7.276   | 7.276   | 299.1923  | < 2.2e-16 | 食食食 |
| monitor             | 1     | 2.369   | 2.369   | 97.4095   | < 2.2e-16 | *** |
| anti_glare          | 1     | 7.168   | 7.168   | 294.7265  | < 2.2e-16 | 杂杂杂 |
| wideview            | 1     | 2.715   | 2.715   | 111.6535  | < 2.2e-16 | *** |
| touchscreen         | 1     | 3.161   | 3.161   | 129.9629  | < 2.2e-16 | *** |
| brightness_auto     | 1     | 0.574   | 0.574   | 23.6087   | 1.360e-06 | 杂杂杂 |
| rotateLCD           | 1     | 0.470   | 0.470   | 19.3153   | 1.220e-05 | *** |
| s(memory_vol)       | 1     | 11.581  | 11.581  | 476.1932  | < 2.2e-16 | *** |
| faster_HDD          | 1     | 0.384   | 0.384   | 15.7982   | 7.528e-05 | *** |
| HDD_vol             | 3     | 0.451   | 0.150   | 6.1885    | 0.0003616 | *** |
| s(SSD_vol)          | 1     | 3.292   | 3.292   | 135.3474  | < 2.2e-16 | *** |
| DVDrecorder         | 1     | 1.552   | 1.552   | 63.8343   | 3.535e-15 | 食食食 |
| multiboost          | 1     | 0.018   | 0.018   | 0.7342    | 0.3917361 |     |
| graphic_inner       | 1     | 0.713   | 0.713   | 29.3380   | 7.533e-08 | *** |
| graphic_outer       | 1     | 1.152   | 1.152   | 47.3549   | 1.016e-11 | 食食食 |
| graphic_memory      | 1     | 0.566   | 0.566   | 23.2883   | 1.600e-06 | 食食食 |
| s(outerGPU_Compute) | 1     | 0.461   | 0.461   | 18.9451   | 1.477e-05 | *** |
| wired_lan           | 1     | 0.434   | 0.434   |           | 2.609e-05 | 音音音 |
| display_output_num  | 3     | 1.429   | 0.476   | 19.5862   | 2.325e-12 | 食食食 |
| USB_type            | 2     | 0.058   | 0.029   | 1.1983    | 0.3021264 |     |
| Type_C              | 1     | 2.054   | 2.054   |           | < 2.2e-16 | 音音音 |
| multireader         | 1     | 0.048   | 0.048   | 1.9561    | 0.1622272 |     |
| antiwater_key       | 1     | 1.457   | 1.457   |           | 2.335e-14 | *** |
| light_key           | 1     | 0.125   | 0.125   |           | 0.0236057 | ŵ   |
| fingerscan          | 1     | 1.332   | 1.332   |           | 2.792e-13 | 食食食 |
| s(weight)           | 1     | 2.035   | 2.035   |           | < 2.2e-16 | *** |
| s(dpi)              | 1     | 1.852   | 1.852   | 76.1495   | < 2.2e-16 | *** |
| Residuals           | 1052  | 25. 584 | 0.024   |           |           |     |

\* 변수 유의성

| Anova for Nonparamet | ric Effe | ects    |           |     |
|----------------------|----------|---------|-----------|-----|
|                      | Npar Df  | Npar F  | Pr(F)     |     |
| (Intercept)          |          |         |           |     |
| s(battery)           | 3        | 3.8388  | 0.0094844 | 食食  |
| adapter              |          |         |           |     |
| memory               |          |         |           |     |
| company              |          |         |           |     |
| s(release_month)     | 3        | 6.7349  | 0.0001679 | 食食食 |
| s(CPU_score)         | 3        | 12.7313 | 3.548e-08 | *** |
| core_num             |          |         |           |     |
| monitor              |          |         |           |     |
| anti_glare           |          |         |           |     |
| wideview             |          |         |           |     |
| touchscreen          |          |         |           |     |
| brightness_auto      |          |         |           |     |
| rotateLCD            |          |         |           |     |
| s(memory_vol)        | 3        | 4.3878  | 0.0044520 | **  |
| faster_HDD           |          |         |           |     |
| HDD_vol              |          |         |           |     |
| s(SSD_vol)           | 3        | 3.9333  | 0.0083297 | **  |
| DVDrecorder          |          |         |           |     |
| multiboost           |          |         |           |     |
| graphic_inner        |          |         |           |     |
| graphic_outer        |          |         |           |     |
| graphic_memory       |          |         |           |     |
| s(outerGPU_Compute)  | 3        | 4.3549  | 0.0046571 | 食食  |
| wired_lan            |          |         |           |     |
| display_output_num   |          |         |           |     |
| USB_type             |          |         |           |     |
| Type_C               |          |         |           |     |
| multireader          |          |         |           |     |
| antiwater_key        |          |         |           |     |

\* 함수 적용 유의성



### 분석 활용 '한계 및 이이









### Group 1

#### All variables

```
> mean((yhat.gam1-test1[,"logprice"])^2)
[1] 0.02462811
> sqrt(mean((yhat.gam1-test1[,"logprice"])^2))
[1] 0.1569335
> var(yhat.gam1)/var(test1$logprice)
[1] 0.8610968
```

#### Corrected

```
> mean((yhat.gam11-test1[,"logprice"])^2)
[1] 0.02508191
> sqrt(mean((yhat.gam11-test1[,"logprice"])^2))
[1] 0.1583727
> var(yhat.gam11)/var(test1$logprice)
[1] 0.8724976
```

#### Check!

- Test error가 다소 증가
- 하지만 설명력도 증가!



#### 분석 활용 '한계 및 이이









```
Call: gam(formula = logprice ~ s(battery) + s(adapter) + CPU_company +
   memory + company + s(release_month) + s(CPU_score) + core_num +
   s(monitor) + anti_glare + wideview + touchscreen + brightness_auto +
   rotateLCD + s(memory_vol) + faster_HDD + HDD_vol + refresh +
   s(SSD_vol) + DVDrecorder + multiboost + graphic_inner + graphic_outer +
   graphic_memory + s(outerGPU_Compute) + wired_lan + bluetooth +
   display_output_num + webcam + USB_type + Type_C + multireader +
   number_key + convex_key + antiwater_key + light_key + RGBlight_key +
   fingerscan + OS + s(weight) + world_warranty + s(dpi), data = train2)
Deviance Residuals:
                     Median
-0.374110 -0.070049 -0.008474 0.061154 0.473124
```

(Dispersion Parameter for gaussian family taken to be 0.0136)

Null Deviance: 86.6261 on 683 degrees of freedom Residual Deviance: 8.0764 on 595.9999 degrees of freedom

AIC: -917.1762

Number of Local Scoring Iterations: 3

\* 연속형 변수에 모두 Smoothing Function 적용

|                     | Df | Sum Sa  | Mean Sq | F value   | Pr(>F)    |     |  |
|---------------------|----|---------|---------|-----------|-----------|-----|--|
| s(battery)          | 1  |         |         | 1762,4849 |           | *** |  |
| s(adapter)          | 1  | 1.0599  | 1.0599  | 78, 2193  | < 2.2e-16 | *** |  |
| CPU_company         | 1  | 2.3714  | 2.3714  | 174.9949  | < 2.2e-16 | *** |  |
| memory              | 1  | 0.2736  | 0.2736  | 20.1893   | 8.428e-06 | *** |  |
| company             | 11 | 6.5624  | 0.5966  |           | < 2.2e-16 | *** |  |
| s(release_month)    | 1  | 0.0515  |         |           | 0.0516099 |     |  |
| s(CPU_score)        | 1  | 5.1874  | 5.1874  | 382.8023  | < 2.2e-16 | *** |  |
| core_num            | 2  | 2.3164  | 1.1582  | 85.4689   | < 2.2e-16 | *** |  |
| s(monitor)          | 1  | 0.7275  | 0.7275  | 53.6897   | 7.671e-13 | *** |  |
| anti_glare          | 1  | 0.1908  | 0.1908  | 14.0818   | 0.0001921 | 食食食 |  |
| wideview            | 1  | 0.3070  | 0.3070  | 22.6584   | 2.432e-06 | 食食食 |  |
| touchscreen         | 1  | 0.0609  | 0.0609  | 4.4965    | 0.0343775 | *   |  |
| brightness_auto     | 1  | 0.0045  | 0.0045  | 0.3317    | 0.5648510 |     |  |
| rotateLCD           | 1  | 0.0232  | 0.0232  | 1.7129    | 0.1911107 |     |  |
| s(memory_vol)       | 1  | 13.2900 | 13.2900 | 980.7402  | < 2.2e-16 | *** |  |
| faster_HDD          | 1  | 0.1911  | 0.1911  | 14.0998   | 0.0001904 | *** |  |
| HDD_vol             | 3  | 0.0657  | 0.0219  | 1.6160    | 0.1844894 |     |  |
| refresh             | 1  | 0.0758  | 0.0758  | 5.5951    | 0.0183305 | *   |  |
| s(SSD_vol)          | 1  | 1.6211  | 1.6211  | 119.6303  | < 2.2e-16 | *** |  |
| DVDrecorder         | 1  | 0.3800  | 0.3800  | 28.0399   | 1.674e-07 | 食食食 |  |
| multiboost          | 1  | 0.3846  | 0.3846  |           | 1.415e-07 | 食食食 |  |
| graphic_inner       | 1  | 0.0511  | 0.0511  | 3.7696    | 0.0526619 |     |  |
| graphic_outer       | 1  | 0.5714  | 0.5714  |           | 1.767e-10 | *** |  |
| graphic_memory      | 1  | 0.8380  |         |           | 1.756e-14 | 音音音 |  |
| s(outerGPU_Compute) | 1  | 0.0976  | 0.0976  |           | 0.0074846 | **  |  |
| wired_lan           | 1  | 0.0885  | 0.0885  |           | 0.0108614 | *   |  |
| bluetooth           | 1  | 0.0037  |         |           | 0.6024129 |     |  |
| display_output_num  | 3  | 0.3199  |         |           | 3.720e-05 | 食食食 |  |
| webcam              | 1  | 0.0323  | 0.0323  |           | 0.1233878 |     |  |
| USB_type            | 1  | 0.0050  | 0.0050  |           | 0.5442000 |     |  |
| Type_C              | 1  | 0.1268  |         |           | 0.0023165 | 食食  |  |
| multireader         | 1  | 0.0464  | 0.0464  |           | 0.0646837 |     |  |
| number_key          | 1  | 0.9040  |         |           | 1.886e-15 | *** |  |
| convex_key          | 1  | 0.0106  |         |           | 0.3776479 |     |  |
| antiwater_key       | 1  | 0.8165  | 0.8165  |           | 3.647e-14 | 食食食 |  |
| light_key           | 1  | 0.0293  | 0.0293  |           | 0.1420024 |     |  |
| RGBlight_key        | 1  | 0.1451  | 0.1451  | 10.7080   | 0.0011284 | **  |  |

\* 변수 유의성

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Npar | Df | Npar F  | Pr(F)     |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|---------|-----------|-----|
| (Intercept)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |         |           |     |
| s(battery)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         | 3.796e-08 | *** |
| s(adapter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 3  | 2.2646  | 0.07992   |     |
| CPU_company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |         |           |     |
| memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |         |           |     |
| company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |    |         |           |     |
| s(release_month)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 3  | 2.8592  | 0.03634   | *   |
| s(CPU_score)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 3  | 2.2030  | 0.08663   |     |
| core_num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |    |         |           |     |
| s(monitor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 2  | 0.8749  | 0.41743   |     |
| anti_glare                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         |           |     |
| wideview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |    |         |           |     |
| touchscreen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |         |           |     |
| brightness_auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |         |           |     |
| rotateLCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |         |           |     |
| s(memory_vol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 3  | 15.3378 | 1.265e-09 | *** |
| faster_HDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         |           |     |
| HDD_vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |    |         |           |     |
| refresh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |    |         |           |     |
| s(SSD_vol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 3  | 1.2552  | 0.28893   |     |
| DVDrecorder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |         |           |     |
| multiboost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         |           |     |
| graphic_inner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |    |         |           |     |
| graphic_outer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |    |         |           |     |
| graphic_memory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |    |         |           |     |
| s(outerGPU_Compute)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      | 3  | 18.0621 | 3.134e-11 | 食食食 |
| wired_lan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |         |           |     |
| bluetooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |         |           |     |
| display_output_num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |    |         |           |     |
| webcam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |         |           |     |
| USB_type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |    |         |           |     |
| Type_C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |    |         |           |     |
| multireader                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |    |         |           |     |
| number_key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         |           |     |
| convex_key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |    |         |           |     |
| antiwater_key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |    |         |           |     |
| light_key                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |    |         |           |     |
| a and the late of the control of the |      |    |         |           |     |

\* 함수 적용 유의성



### 분석 활용 '한계 및 이이









## Group 2 – Corrected GAM

```
Call: gam(formula = logprice ~ s(battery) + s(adapter) + CPU_company +
    memory + company + CPU_score + core_num + monitor + anti_glare +
    wideview + touchscreen + s(memory_vol) + faster_HDD + refresh +
    SSD_vol + DVDrecorder + multiboost + graphic_outer + graphic_memory +
    s(outerGPU_Compute) + wired_lan + display_output_num + Type_C +
    number_key + antiwater_key + RGBlight_key + fingerscan +
    OS + s(dpi), data = train2)
```

Deviance Residuals:

10 Median Min -0.34199 -0.07569 -0.01037 0.06810 0.44815

(Dispersion Parameter for gaussian family taken to be 0.0154)

Null Deviance: 86.6261 on 683 degrees of freedom Residual Deviance: 9.6263 on 625 degrees of freedom

ATC: -855.0973

Number of Local Scoring Iterations: 4

\* 수정한 GAM 식을 적용하여 분석

|                      |     |         |         |         |           |     | s(battery)       |
|----------------------|-----|---------|---------|---------|-----------|-----|------------------|
|                      | _   | _       |         |         |           |     | s(adapter)       |
| Anova for Parametric |     |         |         |         |           |     | CPU_company      |
|                      | Df  |         | Mean Sq |         |           |     | memory           |
| s(battery)           |     |         |         |         | < 2.2e-16 |     | company          |
| s(adapter)           | 1   | 0.8352  |         |         | 5.655e-13 | *** |                  |
| CPU_company          | 1   | 2.5814  | 2.5814  |         | < 2.2e-16 | 救救救 | CPU_score        |
| memory               | 1   | 0.3235  | 0.3235  |         | 5.528e-06 | 宗宗宗 | core_num         |
| company              | 11  | 6.7087  |         |         | < 2.2e-16 | 音音音 | monitor          |
| CPU_score            | 1   | 4.9721  |         |         | < 2.2e-16 | *** | anti_glare       |
| core_num             | 2   | 2.4812  |         |         | < 2.2e-16 | *** | wideview         |
| monitor              | 1   | 0.9877  |         |         | 5.708e-15 | *** | touchscreen      |
| anti_glare           | 1   | 0.1676  | 0.1676  |         | 0.0010260 | 音音  | s(memory_vol)    |
| wideview             | 1   | 0.3119  | 0.3119  |         | 8.099e-06 | 音音音 |                  |
| touchscreen          | 1   | 0.0444  | 0.0444  |         | 0.0901751 |     | faster_HDD       |
| s(memory_vol)        |     | 13.5014 |         |         | < 2.2e-16 | 食食食 | refresh          |
| faster_HDD           | 1   | 0.2196  |         |         | 0.0001743 | *** | SSD_vol          |
| refresh              | 1   | 0.0734  |         |         | 0.0294065 |     | DVDrecorder      |
| SSD_vol              | 1   | 1.1341  |         |         | < 2.2e-16 |     | multiboost       |
| DVDrecorder          | 1   | 0.3239  |         |         | 5.470e-06 | *** | graphic_outer    |
| multiboost           | 1   | 0.3564  |         |         | 1.890e-06 | *** |                  |
| graphic_outer        | 1   | 0.4989  |         |         | 1.940e-08 | 食食食 | graphic_memory   |
| graphic_memory       | 1   | 0.8747  | 0.8747  |         | 1.708e-13 | *** | s(outerGPU_Compu |
| s(outerGPU_Compute)  | 1   | 0.0843  | 0.0843  |         | 0.0195889 | *   | wired_lan        |
| wired_lan            | 1   | 0.0452  | 0.0452  |         | 0.0870886 |     | display_output_n |
| display_output_num   | 3   | 0.3631  |         |         | 3.740e-05 | *** | Type_C           |
| Type_C               | 1   | 0.1464  | 0.1464  |         | 0.0021426 | 常常  | number_key       |
| number_key           | 1   | 0.8393  | 0.8393  | 54.4927 | 4.999e-13 | *** |                  |
| antiwater_key        | 1   | 0.7157  | 0.7157  | 46.4657 | 2.200e-11 | 音音音 | antiwater_key    |
| RGBlight_key         | 1   | 0.2111  | 0.2111  | 13.7077 | 0.0002325 | *** | RGBlight_key     |
| fingerscan           | 1   | 0.0632  | 0.0632  | 4.1043  | 0.0431996 | *   | fingerscan       |
| os                   | 2   | 2.0873  | 1.0436  | 67.7589 | < 2.2e-16 | *** | os               |
| s(dpi)               | 1   | 0.4560  | 0.4560  | 29.6049 | 7.613e-08 | *** | s(dpi)           |
|                      | 625 | 9.6263  | 0.0154  |         |           |     | 2(44.)           |
|                      |     |         | _       |         |           |     |                  |

\* 변수 유의성

3 16.4737 2.588e-10 \*\*\*

3 16.9529 1.346e-10 \*\*\*

3 2.1254 0.09581

(Intercept)



#### 분석 활용 '한계 및 이이









#### All variables

```
> mean((yhat.gam2-test2[,"logprice"])^2)
[1] 0.01623778
> sqrt(mean((yhat.gam2-test2[,"logprice"])^2))
[1] 0.1274276
> var(yhat.gam2)/var(test2$logprice)
[1] 0.9646207
```

#### Corrected

```
> mean((yhat.gam21-test2[,"logprice"])^
[1] 0.01852431
> sqrt(mean((yhat.gam21-test2[,"logprice"])^2))
[1] 0.1361041
> var(yhat.gam21)/var(test2$logprice)
[1] 0.9715313
```

#### Check!

- Test error가 다소 증가
- 하지만 설명력도 증가!
- Group2의 경우에는 boosting보다 더 좋은 설명력을 보임











|        | 11\$ |            |             |            |            |            |               |
|--------|------|------------|-------------|------------|------------|------------|---------------|
|        |      | 선형회귀       | 의사결정나무      | 랜덤 포레스트    | Boosting   | GAM        | GAM corrected |
| G<br>R | MSE  | 0.03077082 | 0.05853857  | 0.01634308 | 0.011375   | 0.02462811 | 0.02508191    |
| 0      | RMSE | 0.1754161  | 0.2419475   | 0.1278401  | 0.1066536  | 0.1569335  | 0.1583727     |
| P<br>1 | 설명력  | 0.879689   | 0.706084    | 0.7978367  | 0.9503649  | 0.8610968  | 0.8724976     |
| GR     | MSE  | 0.01964755 | 0.043546419 | 0.01607958 | 0.01112946 | 0.01623778 | 0.01852431    |
| 0      | RMSE | 0.1401697  | 0.2087204   | 0.1268053  | 0.1054963  | 0.1274276  | 0.1361041     |
| P 2    | 설명력  | 0.909529   | 0.8152141   | 0.7555339  | 0.9343957  | 0.9646207  | 0.9715313     |

04

# 분석 활용 예시















가성비가 좋은 노트북 중 개인의 선호에 맞춘 기능으로 필터링하여 노트북 추천!





## 분석 활용

#### 한계 및 의의









### 가장 예측력이 좋았던 Boosting을 각 Group에 적합

Train과 Test로 나눴던 데이터를 다시 하나로 통합

```
set.seed(1234)
boost.cv<-gbm(formula = logprice ~ ., distribution = "gaussian", data = newgroup1,
              n.trees = 9000,cv.folds = 5,interaction.depth = 3,
              shrinkage=0.04, n. cores = 2)
best.tree<-qbm.perf(boost.cv);best.tree # 5425</pre>
boost1<-gbm(logprice~.,data=newgroup1,distribution="gaussian",n.trees=best.tree,
             shrinkage=0.04, interaction. depth=3)
set.seed(1234)
boost.cv<-gbm(formula = logprice ~ ., distribution = "gaussian", data = newgroup2,
              n.trees = 9000,cv.folds = 5,interaction.depth = 2,
              shrinkage=0.03, n. cores = 2)
best.tree<-gbm.perf(boost.cv);best.tree # 8949
boost2<- gbm(logprice~.,data=newgroup2,distribution="gaussian",n.trees=best.tree,
             shrinkage=0.03, interaction. depth=2)
```





## 분석 활용

#### 한계 및 의의









#### 잔차를 새로운 변수로 지정 : 가성비

예측값 > 실제값 이면 가성비가 좋다! (gsb > 0)

raw.group1\$gsb<-yhat.final1-raw.group1\$price\_avg good1<-filter(raw.group1,gsb>0);good1\$cluster<-1

raw.group2\$gsb<-yhat.final2-raw.group2\$price\_avg good2<-filter(raw.group2,gsb>0);good2\$cluster<-2

#### < 가성비 좋은 회사 Top 3 (Group 1) >

< 가성비 좋은 회사 Top 3 (Group 2) >

| APPLE | 삼성전자 | ACER |
|-------|------|------|
| 57%   | 54%  | 53%  |

| 주연테크 | MSI | HP  |
|------|-----|-----|
| 70%  | 59% | 56% |

Code: sort(round(table(good2\$company)/table(raw.group2\$company),2),decreasing = T)



#### 분석 활용 한계 및 의의







### good1과 good2에서 원하는 기능으로 필터링! 예시

arrange(filter(good1, weight %in% unique(sort(weight))[1:3]), desc(gsb))\$name

#### Group1 (저사양 노트북)에서 무게가 가벼운 노트북을 가성비가 높은 순서로 정렬!

```
> arrange(filter(good1,weight %in% unique(sort(weight))[1:3]),desc(gsb))$name
 [1] "ASUS 트랜스포머3 프로 T303UA-GN042T "
                                              "삼성전자 노트북9 Always NT900X3N-K517S "
 [3] "삼성전자 노트북9 Always NT900X3N-K38D "
                                             "삼성전자 노트북9 Always NT900X3Y-KD3S WIN10 "
                                             "삼성전자 노트북9 Always NT900X3Y-AD5W WIN10 "
 [5] "삼성전자 노트북9 Always NT900X3Y-KD5S WIN10 "
                                              "삼성전자 노트북9 Always NT900X3N-K39S "
    "삼성전자 노트북9 Always NT900x3N-K79W
[9] "삼성전자 노트북9 Always NT900X3Y-AD3S WIN10
                                             "삼성전자 노트북9 Always NT900X3Y-KD5S WIN8.1 "
                                             "삼성전자 노트북9 Always NT900X3Y-AD2S WIN10 "
[11] "삼성전자 노트북9 Always NT900X3Y-AD5S WIN7 "
[13] "삼성전자 노트북9 Always NT900X3N-K580
                                              "삼성전자 노트북9 Always NT900X3Y-AD5W
[15] "삼성전자 노트북9 Always NT900X3N-K79WS "
                                              "삼성전자 노트북9 Always NT900X3N-K78S
[17] "ASUS 트랜스포머3 프로 T303UA-GN051R "
                                             "ASUS 트랜스포머3 프로 T303UA-GN045R
                                             "ASUS 트랜스포머3 프로 T303UA-GN037R "
[19] "삼성전자 노트북9 Always NT900X3Y-KD3S "
[21] "삼성전자 노트북9 Always NT900X3Y-KD5W WIN10 "
                                             "삼성전자 노트북9 Always NT900x3Y-AD3S "
[23] "삼성전자 노트북9 Always NT900X3N-K79S "
                                             "삼성전자 노트북9 Always NT900x3Y-AD2S "
[25] "레노버 YOGA Book LTE W "
                                               "삼성전자 노트북9 Always NT900x3N-K28S "
[27] "삼성전자 노트북9 Always NT900x3N-K58S "
                                              "삼성전자 노트북9 Always NT900X3Y-AD5S WIN10 "
[29] "레노버 YOGA Book W
```



## 분석 활용











#### good1과 good2에서 원하는 기능으로 필터링! 예시

arrange(filter(good2,outerGPU\_Compute %in% unique(sort(outerGPU\_Compute,decreasing=T))[1]), desc(qsb))\$name

#### Group2 (고사양 노트북)에서 GPU 성능이 가장 좋은 노트북을 가성비가 높은 순서로 정렬!

```
> arrange(filter(good2,outerGPU_Compute %in% unique(sort(outerGPU_Compute,decreasing=T))[1]),desc(gsb
))$name
                                                  "HP 오멘 17-W207TX "
 [1] "ASUS ROG GL502VS-FY326 "
 [3] "GIGABYTE 판타소스 P35X v6 Dual 256 UHD Lite " "ASUS ROG GL502VS-GZ384
 [5] "ASUS ROG GL502VS-Super Edition" "GIGABYTE 판타소스 P37X V6 Dual 256 UHD Lite"
    "GIGABYTE 판타소스 P35X v6 Dual 256 UHD WIN10 " "ASUS ROG GL502VS-GZ215T "
                                                 "GIGABYTE 판타소스 P35X v6 Dual Win10 "
    "ASUS ROG GL502VS-GZ384T "
                                                 "MSI GE63VR 7RF 레이더 "
[11] "MSI GE73VR 7RF 레이더
                                                  "GIGABYTE 판단소스 P56XT UHD Dual WIN10 "
[13] "ASUS ROG GL502VS-FY007T "
[15] "GIGABYTE 판타소스 P57X v7 Dual Lite "
                                                 "HP 오멘 17-an019TX "
[17] "GIGABYTE 판타소스 P57X v7 Dual Win10 "
                                                 "한성컴퓨터 E57 BossMonster Lv.82 MUXED "
[19] "GIGABYTE 판타소스 P57X v6 Dual Lite "
                                                 "MSI GT62VR 7RE Dominator Pro "
[21] "AORUS X5 v6 "
                                                  "HP 오멘 17-W109TX "
                                                  "MSI GT72VR 7RE Dominator Pro "
[23] "ASUS ROG GL502VS-GZ429T "
```















## 새롭게 출시될 노트북의 적정 가격 제시

새롭게 출시된 혹은 출시 될 모델의 성능을 바탕으로 모델에 적합하여 적정 가격 제시!



#### 데이터 분석 데이터 소개

## 분석 활용

#### 한계 및 의의









#### 대푯값을 통한 변수 종류 나누기

사용자 맞춤형 노트북 : myown이라는 M로운 observation을 만들 예정!

#### **PART A**



\* 두 그룹 간의 차이가 존재 한다 (연속형 변수)

#### **PART B**



\* (범주형 변수) 두 그룹 간의 차이가 존재하지 않고, 0으로 동일하다

#### PART C





Group 1 Group 2

\* (범주형 변수) 두 그룹 간의 차이가 존재하지 않고, 1로 동일하다

상위 값 사용 → 선택 시 변수의 값을 1로 제정 → Default로 1 사용 개의 모든 노트북에 존재하는 기능 간주)



## 분석 활용

#### 한계 및 의의





[1] "Linux"

"none"





#### 파트 별 변수 처리 (R 적용)

사용자 맞춤형 노트북 : myown이라는 새로운 observation을 만들 예정!

"Windows"

**PART A PART B** 

```
> selection
$high_end
 [1] "battery"
                          "adapter"
                                               "memory"
 [4] "release_month"
                          "CPU_score"
                                               "core_num"
     "monitor"
                          "anti_glare"
                                               "memory_vol"
     "SSD_vol"
                          "graphic_inner"
                                               "graphic_outer"
[13] "graphic_memory"
                                               "display_output_num"
                          "outerGPU_Compute"
                                               "weiaht"
[16] "number_key"
                          "light_key"
    "dpi"
[19]
$add
    "touchscreen"
                       "brightness_auto" "rotateLCD"
                                                           "refresh"
 [5] "faster_HDD"
                       "HDD vol"
                                         "DVDrecorder"
                                                           "multiboost"
                       "antiwater_kev"
                                         "RGBlight_key"
 [9] "USB_type"
                                                           "fingerscan"
$company
 [1] "ACER"
                  "APPLE"
                               "ASUS"
                                            "DELL"
                                                          "GIGABYTE"
[6] "HP"
                  "LG전자"
                              "MSI"
                                           "other"
                                                         "레노버"
                "주연테크"
                            "한성컴퓨터"
[11] "삼성전자"
$05
                                                    운영 체제
```

제조회사



## 분석 활용

#### 한계 및 의의









#### 대푯값을 통한 변수 종류 나누기

사용자 맞춤형 노트북 : myown이라는 M로운 observation을 만들 예정!





## 분석 활용











#### 파트 별 변수 처리 (R 적용)

사용자 맞춤형 노트북 : myown이라는 M로운 observation을 만들 예정!

**PART A** 

CPU 성능

**PART B** 

USB 종류 (USB 3.1)

제조회시

삼성전자

윈도우 탑재

```
pricerange(myown)
Type high-end function: CPU_score weight
Type additional function: USB_type
which company? 삼성전자
Do you need OS installed?(exlcude Mac) Windows
 CPU_score weight battery adapter memory release_month core_num monitor anti_glare memory_
vol
1 6941.422 1.2 42.29918 46.25112
                                               11.03361
                                                               2 14.38715
                                                                                      6.816
327
  SSD_vol graphic_inner graphic_outer graphic_memory outerGPU_Compute display_output_num numb
er_key
1 213.6999
                                             0.15006
                                                            68.62185
                dpi USB_type touchscreen brightness_auto rotateLCD refresh faster_HDD HDD_vol
  light_key
 DVDrecorder multiboost antiwater_key RGBlight_key fingerscan CPU_company wideview wired_lan
bluetooth
 webcam Type_C multireader convex_key world_warranty
                                                         OS company
                                                   0 Windows 삼성전자
```



## 분석 활용

#### 한계 및 의의









## Random Forest로 가격 예측 - Bootstrap

Sampling을 여러 번 반복 → 가격을 여러 번 예측 → 예측 가격의 분포가 그려짐

#### 왜 예측력이 좋은 boosting을 두고 Random Forest를 사용했을까?

- □ 과적합 방제를 위한 parameter tuning을 반복해야 함
- 시간의 압박..



### 여러 개의 95% 신뢰구간 중 최소구간으로 가격대 설정

Bonus! 고어의 유사도를 이용하여 각 노트북과 유사도를 계산, 가장 가까운 노트북 추출!



## 분석 활용

### 한계 및 의의









&



### Random Forest로 가격대 예측 (R 활용)

<<예측 가격대>>

\$range

1328558 1394318

#### <<myown과 가까운 데이터>>

```
$similar_products
```

- [1] "ASUS 젠북3 UX390UA-GS032T "
- [3] "HP 엔비 13-ad051TU "
- "LG전자 PC그램 13Z950-GA3NK "
- "LG전자 PC그램 13Z950-GP5BML
- "LG전자 PC그램 13Z950-JOZ5 Pro
- "LG전자 PC그램 14Z950-P72BK
- [13] "LG전자 PC그램 14Z960-GA5SE
- "LG전자 PC그램 14Z960-GP70ML
- [17] "LG전자 PC그램 14Z960-GR5DL
- [19] "LG전자 PC그램 14Z960-LR10K
- [21] "LG전자 PC그램 14Z960-MF5HL

05

# 한계 및 의의







파일

홈

공유

보기

관리



- ✓ P-SAT
  - > 기 주제분석
  - > 📜 클린업&리드오프
    - 📜 प्रायानम्य

- \* 최소한의 정보로 원하는 노트북을 탐색할 수 있는 모델을 구축
- \* 추상적인 가성비의 개념을 구체적으로 정의하여 분석

