Transformation Matrices

CPSC 453 – Fall 2016 Sonny Chan

Today's Outline

- Transformations in matrix form
 - scalar multiplication
 - rotation / change of basis
 - translation / displacement
 - other types of transformations

Matrix Forms

of vector operations

Scalar Multiplication

in geometric form:

$$\vec{\mathbf{w}} = s\vec{\mathbf{v}}, \ s \in \mathbb{R}$$

in matrix form:

$$\left[\vec{\mathbf{w}} \right] = \mathbf{S} \left[\vec{\mathbf{v}} \right], \; \mathbf{S} \in \mathbb{R}^{2 \times 2}$$

what is **S**?

$$\mathbf{S} = \begin{bmatrix} s & 0 \\ 0 & s \end{bmatrix}$$

Our Example Clock

(as borrowed from your textbook)

Uniform Scaling

Rotation (Change of Basis)

$$[\vec{\mathbf{v}}]_A = {}^A \mathbf{R}^B [\vec{\mathbf{v}}]_B ,$$

$${}^A \mathbf{R}^B = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

Rotation by 45°

$$\mathbf{R}_{45^{\circ}} \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \qquad \mathbf{R}_{45^{\circ}} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$$

Rotation by -30°

General Transforms

What happens if we put in generic values for the matrix **M**?

$$\left[\vec{\mathbf{w}} \right] = \mathbf{M} \left[\vec{\mathbf{v}} \right],$$

$$\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

What does this matrix do?

$$\mathbf{M} = \begin{bmatrix} 0.5 & 0 \\ 0 & 1.5 \end{bmatrix}$$

Non-Uniform Scaling

What does this matrix do?

$$\mathbf{M} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$$

Shearing

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \qquad \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ y \end{bmatrix}$$

Shearing

What does this matrix do?

$$\mathbf{M} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$

Flipping

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -x \\ y \end{bmatrix}$$

Flipping

Composing Transformations

When composing transformations,

does order matter?

Order Matters!

 $\mathbf{S}_{y}\mathbf{R}_{45^{\circ}}
eq \mathbf{R}_{45^{\circ}}\mathbf{S}_{y}$

What about displacements or

translations?

Affine Transforms

Matrix multiplication gives as a linear transform:

$$x' = ax + by$$

 $y' = cx + dy$ for $\mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

For translation, we need an affine transform:

$$x' = x + u$$
 for $\begin{bmatrix} u \\ v \end{bmatrix} \in \mathbb{R}^2$

Homogeneous Coordinates

 A brilliantly convenient "trick" is to add an extra coordinate to our vectors and matrices:

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & u \\ c & d & v \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

The result multiplication gives us an affine transform:

$$x' = ax + by + u$$
$$y' = cx + dy + v$$

Hold on a second!

$$\vec{\mathbf{v}} = v_1 \hat{\mathbf{a}}_x + v_2 \hat{\mathbf{a}}_y = \begin{bmatrix} v_1 \\ v_2 \\ v_h \end{bmatrix}$$

If we want $[\vec{\mathbf{v}}]_B \Rightarrow [\vec{\mathbf{v}}]_A$, then what is v_h ?

free vectors

versus

bound vectors

Reference Frame Transformations

 Our final homogeneous transformation matrix to go between references frames A and B looks like this:

$$^{A}\mathbf{T}^{B} = \begin{bmatrix} ^{A}\mathbf{R}^{B} & \vec{\mathbf{r}}^{B/A} \\ 0 & 1 \end{bmatrix}$$

 Where free vectors and bound (position) vectors are encoded differently:

$$[\vec{\mathbf{v}}] = egin{bmatrix} v_1 \ v_2 \ 0 \end{bmatrix} \qquad \begin{bmatrix} \vec{\mathbf{r}}^{P/B} \end{bmatrix} = egin{bmatrix} r_1 \ r_2 \ 1 \end{bmatrix}$$

Things to Remember

- Operations on vectors can be encoded as matrices
- Transforms can be composed by matrix multiplication
 - order matters!
- Homogeneous coordinates allow translations to be encoded in matrix form as well
- Free vectors and bound (position) vectors must be encoded differently