Ciencia de Datos en Astronomía

Clase 3: Astronomía Galáctica

Astronomía Galáctica

Astronomía Galáctica

Vía Láctea

Medio Interestelar

Estrellas

Discos Protoplanetarios

Exoplanetas

Vía Láctea

- Formación, estructura y evolución de la Vía Láctea.
- Dinámica y cinemática de sus componentes: bulbo, disco, brazos espirales.

Medio Interestelar

- Material (gas y polvo) que ocupa el espacio entre las estrellas, dentro de la galaxia.
- El gas es principalmente Hidrógeno.
- Temperaturas desde algunas decenas a miles de grados Kelvin.

Medio Interestelar

- Principales componentes del ISM:
 - Hidrógeno: molecular, neutral o ionizado.
 - Otras moléculas.
 - o Polvo.

Estrellas

- Objeto estelar gaseoso que se encuentra en equilibrio hidroestático.
- Su fuente de energía viene de la fusión nuclear.

Estrellas: Equilibrio hidroestático

Estrellas

Discos Protoplanetarios

- Discos de gas, polvo y materiales pesados, alrededor de estrellas jóvenes de formación reciente.
- Son la principal evidencia de formación planetaria.

Discos Protoplanetarios

Exoplanetas

- Planetas orbitando estrellas que no son el Sol.
- Actualmente se han confirmado aprox. 4000.
- El primero: 1992
- Técnicas de detección: tránsitos, velocidades radiales, imagen directa, etc.

Milky Way Galaxy

Most Known Exoplanets

Our Solar System

Newfound Exoplanet

Tránsitos

$bR_* = a\cos i$ flux flux = star + planetsecondary eclipse Increasing flux — ΔF time transit

Velocidades radiales

Tránsitos

+

Velocidades radiales

Imagen directa

Evolución Estelar

Clasificación espectral

Clase	Temperatura	Color Convencional	Masa solar (M _☉)	Radio solar (R _⊙)	Luminosidad Magnitud bolométrica	Líneas de absorción	Ejemplo
0	28 000 - 50 000 K	Azul	60	15	140 000	Nitrógeno, carbono, helio y oxígeno	48 Orionis
В	9600 - 28 000 K	Blanco azulado	18	7	20 000	Helio, hidrógeno	Rigel
Α	7100 - 9600 K	Blanco	3,1	2,1	80	Hidrógeno	Sirio A
F	5700 - 7100 K	Blanco amarillento	1,7	1,3	6	Metales: hierro, titanio, calcio, estroncio y magnesio	Canopus
G	4600 - 5700 K	Amarillo	1,1	1,1	1,2	Calcio, helio, hidrógeno y metales	El Sol
K	3200 - 4600 K	Amarillo anaranjado	0,8	0,9	0,4	Metales y óxido de titanio	Albireo A
М	1700 - 3200 K	Rojo	0,3	0,4	0,04	Metales y óxido de titanio	Betelgeuse

Diagrama Hertzsprung-Russell

- Clasificación de estrellas según Temperatura y Luminosidad.
- Indica el camino de evolución estelar según masa.

Mass (solar masses)	Time (years)	Spectral typ	
60	3 million	О3	
30	11 million	07	
10	32 million	B4	
3	370 million	A5	
1.5	3 billion	F5	
1	10 billion	G2 (Sun)	
0.1	1000s billions	M7	

Evolución estelar

Colapso de nebulosa gaseosa

Las estrellas se forman luego del **colapso gravitacional** de zonas gaseosas en el medio interestelar, luego de que hayan alcanzado ciertas condiciones de masa.

Masa de Jeans:
$$M_J = \left(\frac{5kT}{Gm}\right)^{3/2} \left(\frac{3}{4\pi\rho}\right)^{1/2}$$

El **colapso** de una nube molecular ocurre si: $\,M_{cloud} > M_{J}\,$

¿Cómo guardamos los datos astronómicos?

Imágenes astronómicas

254	107
255	165

Imágenes astronómicas

Como son arreglos numéricos de varias dimensiones (matrices), son fácilmente manipulables programando! \rightarrow Python <3

254	107
255	165

FITS: Flexible Image Transport System

FITS: Flexible Image Transport System

Header **OBJECT:** "M31" **RA:** 00:42:44.3 **DEC:** 41º16'09" **DATE:** 20190304 **TIME:** 01:04:06 FILTER: "V" **EXPTIME:** 30 **OBSERVER:** "E.Hubble"

Cubos de datos

Surveys Astronómicos

GAIA

Telescopio espacial de la ESA, lanzado el 2013. Se espera que funcione hasta el 2022.

Especialmente diseñado para realizar **Astrometría** de las estrellas de la Vía Láctea.

Misión: diseñar el catálogo 3D de objetos estelares, más grande y preciso de la historia.

Kepler

Telescopio espacial para la búsqueda de **planetas extrasolares**, usando la técnica de **tránsitos**.

Funcionó desde 2009 hasta Octubre de 2018. Tuvo una misión extendida: K2, entre 2013 y 2018.

Encontró más de **2700 candidatos** a exoplanetas. Sus datos ayudaron a estimar que, solo en la Vía Láctea, deberían haber más de **17 mil millones de planetas-Tierra**.

