T7. Procesado analógico de la señal con amplificadores operacionales.

Procesado de la señal con AO

- Objetivos.
- 1 Introducción.
- **Amplificador Operacional.**
- **Aplicaciones no-lineales.**
- **Aplicaciones lineales.**

Objetivos

- Entender el funcionamiento de un amplificador operacional.
- Conocer algunas de las aplicaciones del amplificador operacional.
- Resolver circuitos que contienen estos amplificadores.

Introducción

- Trabajar directamente con transistores es relativamente complicado (en circuitos algo complejos).
- Un dispositivo hecho con transistores, llamado <u>Amplificador</u> operacional (AO), permite realizar múltiples funciones de forma sencilla:
 - » Permite realizar funciones (suma, derivada, integral, etc.) de forma muy sencilla.
 - » Cada bloque (función) puede conectarse a otro sin que se afecten mútuamente.

Introducción

Antes de comenzar con el AO, veamos distintos tipos de

fuentes:

- » Fuentes ideales.
- » Fuentes reales.
- » Fuentes controladas:

Fuente de tensión gobernada por corriente

Modelización de una fuente de tensión o corriente

Fuente de tensión gobernada por tensión

Fuente de corriente gobernada por corriente

Fuente de corriente gobernada por tensión

Introducción

- Las fuentes controladas suelen usarse en modelos de dispositivos.
 - » Ej: Transistor bipolar.

Amplificador Operacional

Amplificador Operacional

- Esquema del AO:
 - » Activo: necesita alimentación externa.
 - » 5 terminales:

 - 1 salidas.
 - 2 de alimentación: +V_{cc}, -V_{cc}.
 - ${
 m f V}_{\rm cc+}$ ha de ser mayor que ${
 m V}_{\rm cc-}$

Vo sortida

+Vcc9

Amplificador Operacional

Función del AO:

- » La salida máxima es V_{cc+}.
- » La salida mínima es V_{cc-}.
- » Entre V_{cc} y V_{cc} , la salida es: $V_0 = \mu \cdot (V_+ V_-)$

$$V_o = \mu \cdot (v_+ - v_-)$$

Vp, entrada no inversora

Vn, entrada inversora

» μ es muy grande.

Amplificador Operacional

£ Ejemplo de AO:

- $V_{cc+} = 15V, V_{cc-} = -15V.$
- » μ =10⁵.
- » Determinar (V₊-V₋) máximo en la zona lineal.

$$V_o = \mu \cdot (V_+ - V_-) \implies (V_+ - V_-)_{\text{max}} = 15V / 10^5 = 0.15mV$$

Amplificador Operacional

Circuito equivalente (zona lineal):

Parámetro	Nombre	Valores habituales	Valores ideales
μ	Ganancia en bucle abierto	$10^5 - 10^7$	∞
R _i	Resistencia de entrada	$10^6 - 10^{13} \Omega$	8
R _o	Resistencia de salida	$10-100 \Omega$	0
±Vcc	Tensión de alimentación	±15V	±15V *

Amplificador operacional

- Características principales del AO ideal:
 - » $R_i \rightarrow \infty$, por tanto no pasa corriente por la entrada + ni por la -.
 - El circuito al que se conecte no se verá afectado.
 - » R_o = 0, por tanto la salida es como una fuente de tensión ideal.
 - La salida no se verá afectada al conectar otro circuito a la salida.
 - Lo que conecte a la salida sólo verá una fuente de tensión.
- Consecuencia: Cada circuito formado por un AO será un bloque funcional.
 - » Los bloques podrán interconectarse sin que vean modificadas su función.

Bloque comparador:

- » Si $V_+>V_- \rightarrow V_o=V_{cc+}$.
- » Si $V_+ < V_- \rightarrow V_o = V_{cc}$.

- Para trabajar en la zona lineal, se realiza una <u>realimentación</u> negativa (de la salida a la entrada -).
 - » Así se consigue que la salida no se sature.
 - » Esta realimentación es estable: Si V₀ aumenta, -μ-∆Vₙ haría disminuir la salida y viceversa.
 - » Si la salida no se satura, $V_+-V_-=V_o/\mu \rightarrow V_-=V_+$.
- Por tanto, para resolver circuitos con AO en aplicaciones lineales (realim. negativa) utilizaremos la condición V₂=V₊.
- n la zona lineal, el amplificador es como un componente lineal.
 - » Por tanto, pueden usarse los principios del tema0 para componentes lineales: superposición, Thevenin, etc.
 - » También puede aplicarse Laplace.

- Amplificador no-inversor:
 - » Función: Amplifica la señal de entrada. El factor de amplificación se fija por las resistencias del circuito.

Amplificador no-inversor

Amplificador inversor:

» Función: Amplifica la señal de entrada cambiando el signo. El factor de amplificación se fija por las resistencias del circuito.

Amplificador inversor

Sabemos que
$$I_n = 0 \implies i_{R1} = i_{R2}$$

$$V_+ = 0 \implies V_- = V_+ = 0$$

$$\implies i = (V_S - 0) / R_1$$

$$\implies V_O = 0 - i \cdot R_2 = -\frac{R_2}{R_1} \cdot V_S$$

- Conversor tensión/corriente (o de transconductancia):
 - » Función: Tiene una salida de corriente (por la rama de realimentación) proporcional a la tensión de entrada.
 - » Un ejemplo es el amplificador inversor, tomando i como la señal de salida i₀).

$$i_0 = i = \frac{1}{R_1} \cdot V_S$$

Amplificador inversor

- Conversor corriente/tensión (o de transimpedancia):
 - » Función: Proporciona una salida de tensión proporcional a la corriente de entrada.

Sabemos que
$$I_n = 0 \implies i_{R2} = i_S$$

$$V_{\scriptscriptstyle +} = 0 \implies V_{\scriptscriptstyle -} = V_{\scriptscriptstyle +} = 0$$

$$\Rightarrow V_O = 0 - i_S \cdot R_2 = -R_2 \cdot i_S$$

- Bloque sumador (inversor):
 - » Función: Proporciona una tensión de salida que es suma de dos términos, cada uno proporcional a una entrada de tensión.

» Si $R_F = R_1 = R_2$, entonces $V_O = -(V_{S1} + V_{S2})$

- Bloque sumador (inversor): (cont.)
 - » Fácilmente se puede extrapolar el resultado para n entradas.

$$V_O = -\sum_{i=1}^n \frac{R_F}{R_i} \cdot V_i$$

departamen

Aplicaciones lineales

Bloque restador:

» Función: Proporciona una tensión de salida que es resta de dos términos, cada uno proporcional a una entrada de tensión.

bloque restador.

» Si $R_1=R_2=R_3=R_4$, entonces $V_0=(V_2-V_1)$

» Puede hacerse también por el principio de superposición,

- Bloque derivador (inversor):
 - » Función: Proporciona una tensión de salida que es proporcional a la derivada de la tensión de entrada.

Bloque integrador:

» Función: Proporciona una tensión de salida que es proporcional a la integral de la tensión de entrada.

Sabemos que
$$i_r = V_i / R$$

$$\Rightarrow C \cdot \frac{d(0 - V_O)}{dt} = V_i / R$$

$$\Rightarrow V_O = -\frac{1}{R \cdot C} \cdot \int_{-\infty}^{t} V_i(\tau) \cdot d\tau$$

Bloque seguidor:

» Función: Proporciona una tensión de salida que es igual a la entrada.

- » Utilidad: Si V_S fuese un punto de tensión de un circuito, podemos aplicar esta tensión a otro circuito sin que el inicial se vea afectado.
- » Ej: Sistema de adquisición de datos:

Filtros activos:

» Los filtros pasivos los hemos visto en el tema anterior:

Filtros Pasivos

Inconvenientes:

- Al conectarlos entre sí se ven influenciados unos a otros.
- Un circuito con muchos polos requeriría un circuito complejo a resolver.
- Ganancia máxima 1 (= 0 dB).

- Filtros activos: (cont.)
 - » Ventajas:
 - Para conseguir un número alto de polos y/o ceros, se puede conseguir conectando bloques básicos.
 - Se consiguen ganancias mayores a 1.
 - » Ganancias vs ω para filtros ideales:

- Filtros activos: (cont.)
 - » Los filtros reales pueden tener una forma como la siguiente:
 - Pendiente finita.
 - Bandas pasante y de rechazo no planas.

Filtros activos: (cont.)

Filtros activos: (cont.)

$$|H(j\omega)| = \frac{H_o}{\sqrt{1 + \varepsilon^2 C_n^2 \left(\frac{\omega}{\omega_c}\right)}}$$

N	$\mathbf{B}_{\mathbf{n}}\left(\mathbf{s}\right)$	
1	$\frac{s}{\omega_0} + 2.863$	
2	$\frac{s^2}{\omega_o^2} + 1.425 \frac{s}{\omega_o} + 1.516$	
3	$\left(\frac{s}{\omega_o} + 0.626\right) \left(\frac{s^2}{\omega_o^2} + 0.626 \frac{s}{\omega_o} + 1.142\right)$	

- Filtros activos: (cont.)
 - » Celdas de Sallen Key:

$$H_s = \frac{H_0}{sRC + 1}$$

$$\omega_o = \frac{1}{RC} \qquad i \qquad H_0 = 1 + \frac{R_B}{R_A}$$

$$H_s = \frac{H_0}{R^2 C^2 s^2 + RCs(3 - H_0) + 1}$$

donde
$$R_1=R_2=R$$
 i $C_1=C_2=C$

