CS 188: Artificial Intelligence

Search with other Agents II

Instructor: Anca Dragan

University of California, Berkeley

[These slides adapted from Dan Klein and Pieter Abbeel]

Minimax Implementation (Dispatch)

```
def value(state):
                     if the state is a terminal state: return the state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is MIN: return min-value(state)
def max-value(state):
                                                          def min-value(state):
   initialize v = -\infty
                                                              initialize v = +\infty
   for each successor of state:
                                                              for each successor of state:
```

v = min(v, value(successor))

return v

v = max(v, value(successor))

return v

Minimax Example

Minimax Efficiency

O How efficient is minimax?

- Just like (exhaustive) DFS
- o Time: O(b^m)
- Space: O(bm)
- Example: For chess, $b \approx 35$, $m \approx 100$
 - Exact solution is completely infeasible
 - But, do we need to explore the whole tree?

Resource Limits

Game Tree Pruning

Minimax Example

Alpha-Beta Pruning

- General configuration (MIN version)
 - o We're computing the MIN-VALUE at some node *n*
 - We're looping over *n*'s children
 - o *n*'s estimate of the childrens' min is dropping
 - Who cares about *n*'s value? MAX
 - o Let *a* be the best value that MAX can get at any choice point along the current path from the root
 - o If *n* becomes worse than *a*, MAX will avoid it, so we can stop considering *n*'s other children (it's already bad enough that it won't be played)

MAX MIN MAX MIN

MAX version is symmetric

Alpha-Beta Implementation

α: MAX's best option on path to rootβ: MIN's best option on path to root

```
def max-value(state, \alpha, \beta):
    initialize v = -\infty
    for each successor of state:
        v = \max(v, value(successor, \alpha, \beta))
        if v \ge \beta return v
        \alpha = \max(\alpha, v)
    return v
```

```
\label{eq:continuous_state} \begin{split} & \text{def min-value(state }, \alpha, \beta): \\ & \text{initialize } v = +\infty \\ & \text{for each successor of state:} \\ & v = \min(v, \text{value(successor, } \alpha, \beta)) \\ & \text{if } v \leq \alpha \text{ return } v \\ & \beta = \min(\beta, v) \\ & \text{return } v \end{split}
```

Alpha-Beta Pruning Properties

- This pruning has no effect on minimax value computed for the root!
- Values of intermediate nodes might be wrong
 - o Important: children of the root may have the wrong value
 - o So the most naïve version won't let you do action selection
- Good child ordering improves effectiveness of pruning
- With "perfect ordering":
 - o Time complexity drops to $O(b^{m/2})$
 - o Doubles solvable depth!
 - o Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

Alpha-Beta Quiz

Alpha-Beta Quiz 2

Alpha-Beta Quiz 2

Resource Limits

- Problem: In realistic games, cannot search to leaves!
- Solution: Depth-limited search
 - o Instead, search only to a limited depth in the tree
 - Replace terminal utilities with an evaluation function for nonterminal positions
- Example:
 - o Suppose we have 100 seconds, can explore 10K nodes / sec
 - So can check 1M nodes per move
 - \circ α- β reaches about depth 8 decent chess program
- Guarantee of optimal play is gone
- More plies makes a BIG difference
- Use iterative deepening for an anytime algorithm

Video of Demo Limited Depth (2)

Video of Demo Limited Depth (10)

Evaluation Functions

Evaluation Functions

Evaluation functions score non-terminals in depth-limited search

- Ideal function: returns the actual minimax value of the position
- In practice: typically weighted linear sum of features:

$$Eval(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

o e.g. $f_1(s)$ = (num white queens – num black queens), etc.

Evaluation for Pacman

Video of Demo Thrashing (d=2)

Why Pacman Starves

A danger of replanning agents!

- o He knows his score will go up by eating the dot now (west, east)
- o He knows his score will go up just as much by eating the dot later (east, west)
- There are no point-scoring opportunities after eating the dot (within the horizon, two here)
- o Therefore, waiting seems just as good as eating: he may go east, then back west in the next round of replanning!

Video of Demo Thrashing -- Fixed (d=2)

Video of Demo Smart Ghosts (Coordination)

Video of Demo Smart Ghosts (Coordination) – Zoomed In

Evaluation Functions

Depth Matters

- Evaluation functions are always imperfect
- The deeper in the tree the evaluation function is buried, the less the quality of the evaluation function matters
- An important example of the tradeoff between complexity of features and complexity of computation

Other Game Types

• What if the game is not zero-sum, or has multiple players?

- o Terminals have utility tuples
- Node values are also utility tuples
- o Each player maximizes its own component
- Can give rise to cooperation and competition dynamically...

Uncertain Outcomes

Worst-Case vs. Average Case

Idea: Uncertain outcomes controlled by chance, not an adversary!

Why not minimax?

- Worst case reasoning is too conservative
- Need average case reasoning

Expectimax Search

- Why wouldn't we know what the result of an action will be?
 - o Explicit randomness: rolling dice
 - o Unpredictable opponents: the ghosts respond randomly
 - o Unpredictable humans: humans are not perfect
 - o Actions can fail: when moving a robot, wheels might slip
- Values should now reflect average-case (expectimax) outcomes, not worst-case (minimax) outcomes
- Expectimax search: compute the average score under optimal play
 - o Max nodes as in minimax search
 - o Chance nodes are like min nodes but the outcome is uncertain
 - Calculate their expected utilities
 - o I.e. take weighted average (expectation) of children
- Later, we'll learn how to formalize the underlying uncertain-result problems as Markov Decision Processes

Video of Demo Minimax vs Expectimax (Min)

Video of Demo Minimax vs Expectimax (Exp)

Expectimax Pseudocode

```
def value(state):
                     if the state is a terminal state: return the state's utility
                     if the next agent is MAX: return max-value(state)
                     if the next agent is EXP: return exp-value(state)
def max-value(state):
                                                          def exp-value(state):
   initialize v = -\infty
                                                              initialize v = 0
   for each successor of state:
                                                              for each successor of state:
       v = max(v, value(successor))
                                                                  p = probability(successor)
                                                                  v += p * value(successor)
   return v
                                                              return v
```

Expectimax Pseudocode

```
def exp-value(state):
    initialize v = 0
    for each successor of state:
        p = probability(successor)
        v += p * value(successor)
    return v
```


$$v = (1/2)(8) + (1/3)(24) + (1/6)(-12) = 10$$

Expectimax Example

Expectimax Pruning?

Depth-Limited Expectimax

What Probabilities to Use?

In expectimax search, we have a probabilismodel of how the opponent (or environment will behave in any state

Model could be a simple uniform distribution (ron a die)

 Model could be sophisticated and require a great deal of computation

 We have a chance node for any outcome out of our control: opponent or environment

o The model might say that adversarial actions are likely!

 For now, assume each chance node magically comes along with probabilities that specify the distribution over its outcomes

Having a probabilistic belief about another agent's action does not mean that the agent is flipping any coins!

Quiz: Informed Probabilities

- Let's say you know that your opponent is actually running a depth 2 minimax, using the result 80% of the time, and moving randomly otherwise
- Question: What tree search should you use?

Answer: Expectimax!

- To figure out EACH chance node's probabilities, you have to run a simulation of your opponent
- This kind of thing gets very slow very quickly
- Even worse if you have to simulate your opponent simulating you...
- ... except for minimax and maximax, which have the nice property that it all collapses into one game tree

This is basically how you would model a human, except for their utility: their utility might be the same as yours (i.e. you try to help them, but they are depth 2 and noisy), or they might have a slightly different utility (like another person navigating in the office)

Modeling Assumptions

The Dangers of Optimism and Pessimism

Dangerous Optimism

Assuming chance when the world is adversarial

Dangerous Pessimism

Assuming the worst case when it's not likely

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax Pacman		
Expectimax Pacman		

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

Assumptions vs. Reality

	Adversarial Ghost	Random Ghost
Minimax	Won 5/5	Won 5/5
Pacman	Avg. Score: 483	Avg. Score: 493
Expectimax	Won 1/5	Won 5/5
Pacman	Avg. Score: -303	Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble Ghost used depth 2 search with an eval function that seeks Pacman

[Demos: world assumptions (L7D3,4,5,6)]

Video of Demo World Assumptions Random Ghost – Expectimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Minimax Pacman

Video of Demo World Assumptions Adversarial Ghost – Expectimax Pacman

Video of Demo World Assumptions Random Ghost – Minimax Pacman

Mixed Layer Types

- o E.g. Backgammon
- Expectiminimax
 - Environment is an extra "random agent" player that moves after each min/max agent
 - Each node
 computes the
 appropriate
 combination of its
 children

Example: Backgammon

- Dice rolls increase *b*: 21 possible rolls with 2 dice
 - o Backgammon ≈ 20 legal moves
 - o Depth $2 = 20 \times (21 \times 20)^3 = 1.2 \times 10^9$
- As depth increases, probability of reaching a given search node shrinks
 - So usefulness of search is diminished
 - So limiting depth is less damaging
 - o But pruning is trickier...
- Historic AI: TDGammon uses depth-2 search + very good evaluation function + reinforcement learning: world-champion level play
- 1st AI world champion in any game!

Utilities

Utilities

- Utilities are functions from outcomes (states of the world) to real numbers that describe an agent's preferences
- Where do utilities come from?
 - o In a game, may be simple (+1/-1)
 - o Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- We hard-wire utilities and let behaviors emerge
 - o Why don't we let agents pick utilities?
 - o Why don't we prescribe behaviors?

