

三维音频技术与应用

李军锋

中国科学院声学研究所

三维音频基础

三维音频基础

ITD & ILD

HRTF

三维音频基础

■ 音频信号分类

●前后可分

三维音频重放技术

基于双耳感知 的3D音频重放 技术 Dummy head experimental trial Binaural technology 多通路3D音频 重放技术 Yamaha 11.2 Dolby 9.1 Dolby 5.1 NHK 22.2 基于物理声场 Loudspeaker 的3D音频重放 Virtual 技术 Listening **Ambisonics** Wavefield synthesis

三维音频基础理论与方法—传统方法

- □电话
 - 单通道
 - 0.3~3.4kHz
- □立体声
 - 双通道
 - ~22.05kHz
- □5.1环绕声
 - 5.1通道
 - ~48kHz

三维音频基础理论与方法—传统方法

□立体声

□立体声原理

● 正弦法则

$$\frac{\sin \varphi}{\sin \varphi_0} = \frac{w_L - w_R}{w_L + w_R}$$

$$\frac{\tan \varphi}{\tan \varphi_0} = \frac{w_L - w_R}{w_L + w_R}$$

三维音频基础理论与方法—传统方法

- □5.1环绕声
 - 前后左右声像 (√)
 - 上下声像 (×)

三维音频基础理论与方法——双耳技术

三维音频基础理论与方法——双耳技术

□ 问题描述

Assume:

$$\begin{aligned} e_L(z) &= H_{LL}(z) s_L(z) + H_{RL}(z) s_R(z), \\ e_R(z) &= H_{LR}(z) s_L(z) + H_{RR}(z) s_R(z), \\ e(z) &= \begin{bmatrix} e_L(z) & e_R(z) \end{bmatrix}^T, \\ s(z) &= \begin{bmatrix} s_L(z) & s_R(z) \end{bmatrix}^T, \\ H(z) &= \begin{bmatrix} H_{LL}(z) & H_{RL}(z) \\ H_{LR}(z) & H_{RR}(z) \end{bmatrix}, \end{aligned}$$

Then:

$$e(z) = H(z)C(z)s(z).$$

$$C(z) = H^{-1}(z)e^{j\omega\Delta}.$$

三维音频基础理论与方法——双耳技术

□ 串声消除方法

- Least-Squares Approximation
- Stereo Diploe & OSD (Southampton)
- RACE (Ambiphonic)
- BACCH (Princeton)

英国南开普敦大学 Nelson教授 Takeu

http://www.marantz.jp

Takeuchi博士

美国ambiophonics公司 Ralph Glasgal

http://www.ambiophonics.org/index.html

美国普林斯顿大学 Choueiri教授

http://www.cambridgemechatronics.com/

三维音频基础理论与方法—波场合成

□ 惠更斯 (Huygens) 原理

当波行进时,波前上的每一点都可视为新的点波源,以其为圆心或球心,各自发出圆形波或球面波。

三维音频基础理论与方法—波场合成

$$p(\mathbf{s}) = \left| z - z_1 \right| \iint_S p(\mathbf{r}) \frac{1 + jk |\mathbf{r} - \mathbf{s}|}{2\pi |\mathbf{r} - \mathbf{s}|^3} \cdot e^{-jk|\mathbf{r} - \mathbf{s}|} dS$$

三维音频基础理论与方法—波场合成

□ EU项目 (CARROUSO)

Sonic emotion 公司 (http://www2.sonicemotion.com/)
IOSONO公司 (http://www.iosono-sound.com/home/)

三维音频基础理论与方法—多通道方法

Dolby 5.1

Dolby 9.1

Yamaha 11.2

NHK 22.2

三维音频基础理论与方法—多通道方法

BBC, NHK and OBS will test Super Hi-Vision during Olympics opening and closing ceremonies and select events.

□ 耳机重放

Fig.1 Block diagram of the proposed sound image externalization system for headphone reproduction.

□ 双耳技术

基于双耳技术的重放系统

□声像距离重建

■ 声像距离重建是三维声信号重放的重要部分。将基于镜像法的混响合成融入 方镜像法的混响合成融入 波长合成技术中,实现了 声像感知距离的重建

图 DRR 与距离和反射系数之间的关系

□ WFS重放

24通道WFS重放系统

三维音频 WAENC 2012 RWTH Aachen University September 4th - 6th, 2012

Home

Committees

Call for Papers

Program

Keynote Talks

Papers and Authors

Tuesday, Sep. 4th

Wednesday, Sep. 5th

Thursday, Sep. 6th

Social Events

Satellite Workshop

Keynote Talks

Tue., S 09:15	ep. 4th	Peter Kroon Media Signal Processing in Cell Phones – What is so Smart about it?
rue., S 19:45	ep. 4th	Peter Jax Signal Enhancement for Future High-Resolution Spatial Audio Formats
Tue., S	ep. 4th	Jan Skoglund Interactive Audio in a Web-Based World
rue., S 16:30	ep. 4th	Bernd Geiser Paths toward HD-Voice Communication
Wed., 8 09:00	Sep. 5th	Patrick Naylor Acoustic Signal Processing in Noise: It's Not Getting Any Quieter
Thu., S 09:00	ep. 6th	Richard Heusdens Distributed Signal Processing: Application to MVDR Beam-Forming
Fla., S	ep. 6th	Henning Puder Optimized Directional Processing in Hearing Aids with Integrated Spatial Noise Reduction

谢 谢!

