Apunts de teoria de la probabilitat

ALEIX TORRES I CAMPS

Anna de Mier (anna.de.mier@upc.edu), Guillem Perearnau i Sonia Perez

$\mathbf{\acute{I}ndex}$

1	Espais de probabilitat	2
	1.1 Motivació	. 2
	1.2 Experiments i probabilitat	. 2
	1.3 La probabilitat condicionada	. 3
	1.4 Independència	
	1.5 Espais productes	. 5
	1.6 Lemes de Borel-Cantelli	. 5
2	Variables aleatòries	6
	2.1 Definició i distribució	. 6
	2.2 Moments d'una v.a	. 6
	2.3 Vectors de v.a	. 8
	2.4 Independència de v.a.'s	. 8
	2.5 Covariància i (una) llei dels grans nombres	. 8
3	V.a Discretes	9
	3.1 Funció de probabilitat, esperança i independència	. 9
	3.2 Funció generadora de probabilitat	
4	V.a Contínues	10
5	Funcions característiques i famílies exponencials	10
G	Convergència de veriables alectòries	10

1 Espais de probabilitat

1.1 Motivació

L'objectiu de la teoria de la probabilitat és trobar models per a fenònems que depenen de l'atzar (no deterministes), cada realització d'un fenomen en direm experiment, del qual n'obtindrem un resultat. A més, tindrem els successos (observables) que son totes les preguntes raonables que ens podem fer.

1.2 Experiments i probabilitat

Definició 1. Un experiment és un parell (Ω, \mathscr{A}) on Ω és un conjunt i $\mathscr{A} \subset \mathscr{P}(\Omega)$ tal que:

- 1. $\emptyset \in \mathscr{A}$
- $2. \ A \in \mathscr{A} \implies A^c \in \mathscr{A}$
- 3. Si $\{A_n\}_{n\geq 1}$ és una col·lecció numerables d'elements de $\mathscr{A}\implies\bigcup_{n\geq 1}A_n\in\mathscr{A}$

Exemple 1. Uns quants exemples...

Volem una funció que assigni probabilitats de successos, és a dir, $P: \mathscr{A} \to \mathbb{R}$. Llavors definim:

Definició 2. Un espai de probabilitat és una terna (Ω, \mathcal{A}, P) on:

- 1. (Ω, \mathscr{A}) és un experiment.
- 2. $P: \mathscr{A} \to \mathbb{R}$ tal que: $P(\emptyset) = 0$, $P(A) \ge 0$, $\forall A \in \mathscr{A}$. Si $\{A_n\}_{n \ge 1}$ és una col·lecció de successos dos a dos dijunts $\implies P(\bigcup_{n \ge 1} A_n) = \sum_{n \ge 1} P(A_n)$.
- 3. $P(\Omega) = 1$.

Per tant, la probabilitat és una mesura a (Ω, \mathcal{A}) normalitzada a 1. A P se l'anomena funció de probabilitat.

Exemple 2. Espia discret, si Ω és numerable i $\mathscr{A} = \mathscr{P}(\Omega)$. Si $\Omega = \{w_1, w_2, w_3, \ldots\}$ prenem $\sum_{i \geq 1} p_i = 1$ (amb $p_i \geq 0$) i definim $\mathscr{P}(A) = \sum_{w_i \in A} P(\{w_i\})$, alleugerint la notació podem fer servir $P(\{w_i\}) = P(w_i) = p_i$.

Exemple 3. Espai clàssic, és un éspai discret amb $|\Omega| = N$ i $p_i = 1/N$. Çassos favorables entre cassos possibles": $P(A) = \frac{|A|}{N}$.

Exemple 4. Espais clàssics amb monedes o daus, tot ben repartit.

Exemple 5. Durada d'un mòbil? $\Omega = (0, \infty)$ o bé, (0, L]. Si $\mathscr{A} = \mathscr{P}(\Omega)$ sabem que no podem assignar-hi una mesura. Però com ens interessen els intervals com (a, b), agafe, la σ -àlgebra que conté tots els intervals (oberts). Aquí apareixen els burelians $\mathcal{B} = \sigma(I)$ i podem agafar la mesura de Lebesque a \mathbb{R} . En resum, $\Omega = (0, L)$, $B = \sigma(I)$ i $P(B) = \frac{\mu(B)}{L}$. On $\mu(B)$ és la seva mesura de Lebesgue. Tot i així, no és realistic perquè és massa uniforme.

Proposició 3. Propietats d'espais de probabilitat. Siqui (Ω, \mathcal{A}, P) :

- 1. Per $r \geq 2$, si $A_1, \ldots, A_r \in \mathcal{A}$, $A_i \cap A_j = \emptyset$ si $i \neq j$ llavors $P(\bigcup_{i=0}^r a_i) = \sum_{i=1}^r P(A_i)$
- 2. $Si\ A, B \in \mathscr{A}\ i\ A \subset B \implies P(B \setminus A) = P(B) P(A)\ i\ P(A) \le P(B)$.
- 3. $P(A^c) = 1 P(A), \forall A \in \mathcal{A}$
- 4. (Designaltat de Boole) Si $A_1, \ldots, A_r \in \mathscr{A} \implies P(\bigcup_{i=1}^r A_i) \leq P(A_1) + \cdots + P(A_r)$

Demostració.

1. En els cassos finits, per r < k, cal agafar $A_k = \emptyset$, ja que així, com que $P(\emptyset) = 0$, $P(\bigcup_{1 \le n \le r}) = P(\bigcup_{1 \le n} A_n) = \sum_{1 \le n} P(A_n) = \sum_{1 \le n \le r} P(A_n)$.

- 2. Primer de tot $B \setminus A \in \mathcal{A}$, ja que $B \setminus A = (B^c \cup A)^c \in \mathcal{A}$. Després, reordenant el fet que P(A) + $P(B \setminus A) = P(B)$, ens queda el que volíem. Com les propietats són positives, la desigualtat es demostra automàticament.
- 3. De $P(A) + P(A^c) = P(\Omega) = 1$ obtenim l'expressió de l'enunciat.
- 4. Ho anem a fer per inducció sobre r. Clarament per r=1 és cert, suposem que ho és per r-1, anem a veure-ho per a un r arbitrari. Sigui $B=(\bigcup_{i=1}^{r-1}A_i)\bigcap A_r$, llavors $P(\bigcup_{i=1}^rA_i)=P((\bigcup_{i=1}^{r-1}A_i)\bigcup A_r)=P((\bigcup_{i=1}^{r-1}A_i)\bigcup (A_r-B_r))=P((\bigcup_{i=1}^{r-1}A_i))+P(A_r-B_r)=[\text{per hipòtesi i per 2}] \leq P(A_1)+\cdots+P(A_{r-1})+P(A_r)$ que és la desigualtat de Boole.

Proposició 4. Successions monòtones:

$$\dot{S}i \ A \in \mathscr{A}, \ i \geq 1 \ i \ A_1 \subset A_2 \subset A_3 \subset \cdots, \ aleshores \ P(\bigcup_{i \geq 1} A_i) = \lim_{i \to \infty} P(A_i). \\
Si \ A \in \mathscr{A}, \ i \geq 1 \ i \ A_1 \supset A_2 \supset A_3 \supset \cdots, \ aleshores \ P(\bigcap_{i \geq 1} A_i) = \lim_{i \to \infty} P(A_i).$$

Demostració. Fem $B_1 = A_1, B_2 = A_2 \setminus A_1, B_3 = A_3 \setminus A_2, \dots$ Aleshores, $B_i \cap B_j = \emptyset$ per $i \neq j$ i $A_i = \bigcup_{i=1}^i B_i$. Per tant:

$$P(\bigcup_{n\geq 1} A_n) = P(\bigcup_{n\geq 1} B_n) = \sum_{n\geq 1} P(B_i) = \lim_{N\to\infty} \sum_{n=1}^{N} P(B_n) = \lim_{N\to\infty} P(A_N)$$

L'altre és demostra passant al complementari.

Teorema 5. Siguin $A_1, \ldots, A_r \in \mathscr{A}$. Per $I \subset [r]$, posem: $A_I = \bigcap_{i \in I} A_i$ i $S_k = \sum_{I \subset [r] \mid |I| = k} P(A_I)$. Aleshores,

$$P(\bigcup_{i=1}^{r} A_i) = \sum_{k=1}^{r} (-1)^{k+1} S_k$$

Demostració. Per inducció, el cassos r=1,2 són fàcils. Aleshores, pel cas inducctiu fa falta el cas r-1 i el cas 2.

Proposició 6. Designaltats de Bonferroni. Signi $M_T = \sum_{k=1}^T (-1)^{k+1} S_k$. Aleshores, si:

- 1. $T ext{ és senar } \Longrightarrow P(\bigcup_{i=1}^r A_i) \leq M_T.$ 2. $T ext{ és parell } \Longrightarrow P(\bigcup_{i=1}^r A_i) \geq M_T.$

Demostració. La demostració per inducció és semblant a l'anterior.

La probabilitat condicionada 1.3

Sigui (Ω, \mathcal{A}, P) un espai de probabilitat. Prenem $B \in \mathcal{A}$ amb P(B) > 0. Volem recalcular la probabilitat P dels successos sabent que ha passat B.

Definició 7. Si $B \in \mathcal{A}$ amb P(B) > 0 i $A \in \mathcal{A}$, la probabilitat de A condicionada a B és

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Observació 8.

- 1. P(A|B), a priori, pot ser major o menor a P(A).
- 2. Fixat B, $P_B: \mathscr{A} \to \mathscr{R}$ definida com $P_B(A) = \frac{P(A \cap B)}{P(B)}$, dona una funció de probabilitat en (Ω, \mathscr{A}) . (També ho és en $(\Omega, \mathscr{A}_B = \{A \cap B : A \in \mathscr{A}\})$).

Sigui ara B_1, \dots, B_n una partició de Ω (amb $B_i \in \mathcal{A}$ i P(B) > 0). Llavors, la llei de les probabilitats totals és

$$P(A) = P(A \cap \Omega) = P(A \cap (\bigcup B_i)) = P(\bigcup (A \cap B_i)) = \sum_{i=1}^n P(A \cap B_i) = \sum_{i=1}^n P(A|B_i)P(B_i)$$

Exemple 6. Ruïna del jugador (Huygens S.XVII). Sigui J un jugador que comença amb un capital de $k \ge 1$, el seu objectiu és arribar a $N \ge k$ i s'arruina si arriba a 0. En cada torn guanya 1 amb probabilitat 1/2 i perd 1 amb probabilitat 1/2.

Sigui B = "a la 1a jugada, +1 $R_k =$ "s'ha arruinat amb capital inicial k". Aleshores,

$$P(R_k) = P(R_k|B)P(B) + P(R_k|B^c)P(B^c) = \frac{1}{2}P(R_{k+1}) + \frac{1}{2}(R_{k-1})$$

Definint $p_k = P(R_k)$, aleshores, obtenim l'equació de recurréncia: $p_k = \frac{1}{2}p_{k+1} + \frac{1}{2}p_{k-1}$ amb $p_0 = 1$ i $p_N = 0$.

Per resoldre'l, fem $\frac{1}{2}(p_k - p_{k-1}) = \frac{1}{2}(p_{k+1} - p_k)$, definim $b_k = p_k - p_{k-1}$ que per la própia recurrència es compleix que $p_k = p_{k-t} + tb_{k-t+1}$. I veien que la solució és $p_k = 1 - \frac{k}{N}$ que es pot comprovar per inducció.

Pregunta: Qui era (Ω, \mathcal{A}, P) ?

Proposem $\Omega = \{w_1, w_2, w_3, \ldots\}$: $w_i \in \{0, 1\}\}$, a cada successió li associem un real (no és injectiva, però només es repeteix en alguns racionals). $P(A) = \mu(\phi(A))$ on μ és la mesura de Lebesgui a [0, 1] i phi passa de (w_1, w_2, \ldots) a $0.w_1w_2\ldots$, llavors \mathscr{A} és el conjunt de conjunts que van a parar a borelians per phi)

Teorema 9. Bayes.
$$P(B_i|A) = \frac{P(A|B_i)P(B_i)}{P(A)} = \frac{P(A|B_i)P(B_i)}{\sum P(A|B_i)P(B_i)}$$

Demostració. Bé del fet que $P(A \cap B_i) = P(B_i \cap A)$ i escrivint la definició de probabilitat condicionada de dues maneres diferents. I després, utilitzant el lemma de les probabilitats totals.

1.4 Independència

R.Durret "Aquí acaba la teoria de la mesura i comença la probaibilitat".

Definició 10. En (Ω, \mathcal{A}, P) ", dos scuccessos $A, B \in \mathcal{A}$ són independents si $P(A \cap B) = P(A) \cdot P(B)$.

Observació 11. Si
$$P(B) > 0$$
, $P(A|B) = \frac{P(A \cup B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$.

Exercici: Proveu que el conjunt buit i el total son independents amb qualsevol altre succés.

Demostració. La probabilitat del buit sempre és 0 i si intersequem quelcom amb el buit sempre el dona el buit, per tant, sempre es compleix que $0 = P(\emptyset)P(A) = P(\emptyset \cap A) = 0$.

Com que la probabilitat del total és 1, succeix el següent:
$$P(A)P(\Omega) = P(A) = P(A \cap \Omega)$$
.

Exercici: Proveu que si A i B són independents \implies que amb o sense complementaris també ho són.

Demostraci'o. Només cal comprovar que A^c i B són independents, perquè veure que A i B^c són independents és el raonament simétric i per obtenir que A^c i B^c cal fer el mateix raonament dues vegades.

Simplement fem
$$P(A^c)P(B) = (1 - P(A))P(B) = P(B) - P(A)P(B) = P(B) - P(A \cap B) = P(A^c \cap B)$$
. \square

Definició 12. Si $\{A_i\}_{i\in I}$ és una col·lecció de successis, són independts si $\forall J\subseteq I,\ |J|<\infty,\ P(\bigcap_{j\in J}A_j)=\prod_{i\in K}P(A_j).$

1.5 Espais productes

Tenim $(\Omega_1, \mathscr{A}_1, P_1)$ i $(\Omega_2, \mathscr{A}_2, P_2)$ dos espais de probabilitat. Volem un espai en $\Omega_1 \times \Omega_2$ tal que $P(A_1 \times A_2) = P_1(A_1)P_2(A_2)$ ($\forall A_i \in \mathscr{A}_i$ per i=1,2). La teoria de la mesura ens diu que es pot... I la σ -àlgebra. Com volem garantir que hi hagi $\mathscr{A}_1 \times \mathscr{A}_2 = \{A_1 \times A_2 : A_i \in \mathscr{A}_i, i=1,2\}$. Tot i així, això no tñe perquè ser un σ -àlgebra. Llavors agafem la més petita que ho contingui. Com a \mathscr{A} agafem $\sigma(\mathscr{A}_1 \times \mathscr{A}_2)$ és a dir, la generada. La probabilitat ? Volem que $P(A_1 \times A_2) = P(A_1)P(A_2)$.

Definició 13. Una àlgebra i una premesura són una σ -àlgebra i un mesura (respectivament, però només garanteix la unió finita i la suma finita.

Teorema 14. Teorema d'extensió. Sigui p_0 una premesura en una álgebra \mathcal{A}_0 . Aleshores existeixen una σ -àlgebra $\mathcal{A}^* \subset \sigma(\mathcal{A}_0)$ i una mesura p^* tal que p^* coincideix amb p_0 en \mathcal{A}_0 . A més, si p_0 és finita, p és única. Com s'aplica?

 $\mathscr{A}_0 = \{A \subset \Omega_1 \times \Omega_2 | \text{ on } A \text{ és unió finita d'elements de } \mathscr{A}_1 \times A_2 \}$. (Caldria comprovar que és àlgebra i la unió es pot prendre disjunta i finita).

Exemple 7. Problema de l'agulla del comte Buffon (s. XVIII). I es pregunta, quina és la probabilitat que l'agulla talli alguna de les línies?

Sigui d la distància del punt mig a la recta més propera i sigui α l'angle amb la vertical. Aleshores, la longitud del catet $\frac{l}{2}\sin\alpha$. Tallarà si $d\leq\frac{l}{2}\sin\alpha$.

Així que com a espai mostral podem agafar $\Omega = [0, \pi) \times [0, \frac{L}{2}]$ la primera correspon a α i la segona a d. Amb la mesura de Lebesgue (volem uniformitat). Que finalment, calculem l'àrea sota la curva $l/2 \sin \alpha$ i dividim pel total, dona $\frac{2l}{L\pi}$.

1.6 Lemes de Borel-Cantelli

Sigui (Ω, \mathcal{A}, P) un espai de probabilitat i siguin $\{A_n\}_{n\geq 1}$ una col·lecció numerable de succesos.

Definició 15. Sigui $\limsup A_n = \bigcap_{n\geq 1} \bigcup_{k\geq n} A_k$ i $\liminf A_n = \bigcup_{n\geq 1} \bigcap_{k\geq n} A_k$. Són d' $\mathscr A$ perquè fem interseccions i unions numerables.

Nota 8. Si $w \in \Omega$ i $w \in \limsup A_n \iff \forall n \geq 1, \ w \in \bigcup_{k \geq n} A_k \iff \forall n \geq 1 \exists k \geq n, \ w \in A_k \iff w \text{ pertany a infifnits dels } A_n.$

Nota 9. Fent el mateix amb \liminf , $tenim\ w \in \liminf A_n \iff w$ pertany a tots els A_n a partir d'algun en endavant.

Nota 10. Queda clar que $\liminf A_n \subseteq \limsup A_n$.

Lema 16. (Borel-Cantelli 1) Si $\sum_{n>1} P(A_n) < \infty$, aleshores $P(\limsup A_n) = 0$.

 $\begin{array}{l} Demostraci\'o. \ \ \text{Volem fitar}\ P(\limsup A_n) = P(\bigcap_{n\geq 1}\bigcup_{k\geq n}A_k) = [\text{Succesions mon\`otones}] = \lim_{n\to\infty}P(\bigcup_{k\geq n}A_k) \leq \lim_{n\to\infty}\sum_{k\geq n}P(A_k) = 0, \ \text{perqu\`e}\ \text{la cua d'una s\'erie convergent tendeix a } 0. \end{array}$

Pregunta natural: Què passa si $\sum_{n\geq 1} P(A_n) = \infty$?

Lema 17. (Borel-Cantelli 2) Si $\sum_{n\geq 1} P(A_n) = \infty$ i els $\{A_n\}_{n\geq 1}$ són independents (dos a dos és suficient) $\implies P(\limsup A_n) = 1$.

 $\begin{array}{l} \textit{Demostraci\'o.} \quad P((\limsup A_n)^c) = P(\bigcup_{n \geq 1} \bigcap_{k \geq n} A_k^c). \text{ Fixem-nos que aix\'o \'es el mateix que } \liminf A_k^c \text{ i que els successos estan encaixats } \bigcap_{k \geq 1} A_k^n \subseteq \bigcap_{k \geq 2} A_k^c \subseteq \cdots. \text{ Llavors, per la proposici\'o de successos encaixats tenim que la igualtat anterior \'es igual a = <math>\lim_{n \to \infty} P(\bigcap_{k \geq n} A_k^c)$, fent servir de nou la proposici\'o dels successos encaixats tenim que $P(\bigcap_{k \geq n} A_k^c) = \lim_{r \to \infty} P(\bigcap_{k = n} A_k^c) = [ind.] = \lim_{r \to \infty} \prod_{k = n}^r (1 - P(A_k)) \leq \lim_{r \to \infty} \prod_{k = n}^r e^{-P(A_k)}$ (Utilitzem que $1 - x \leq e^{-x}$, per $x \geq 0$). Finalment, l'últim terme és = $\lim_{r \to \infty} e^{-\sum_{k = n}^r P(A_k)} = 0$. Per tant, com que cada un dels $P(\bigcup_{k \geq n} A_k^c) = 0$, $\lim_{n \to \infty} P(\bigcap_{k \geq n} A_k^c) = 0$.

2 Variables aleatòries

2.1 Definició i distribució

Definició 18. L'aplicació $X: \Omega \to \mathbb{R}$ és una variable aleatória si $\forall B \in \mathscr{B}(\mathbb{R})$, es té que $X^{-1}(B) \in \mathscr{A}$ (on \mathscr{B} són els borelians).

Observació 19. X $v.a. \iff X$ és mesurable respecte $(\mathbb{R}, \mathscr{B})$.

Observació 20. X $v.a. \iff \forall a \in \mathbb{R}, X^{-1}((-\infty, a]) \in A.$

Notació: Escriurem $P(X \in B) = P(X^{-1}(B)) = P(\{w \in \Omega : X(w) \in B\})$. Igualment $P(X \ge x), P(X = x), P(X > x), \dots$

Definició 21. La funció de distribució (acumulada) d'una v.a. X és $F_X : \mathbb{R} \to [0,1]$ que envia $x \mapsto P(X \le x) = P(\{w \in \Omega : X(w) \le x\})$.

Exemple 11. La variable indicadora del succés $A \in \mathscr{A}$ és $\mathbb{I}_A : \Omega \to \mathbb{R}$ que envia $w \in \Omega$ a 1 si $w \in A$ i 0 altrament. Llavors, la funció indicadora $F_{\mathbb{I}_A}$ és igual a $P(x \leq x_0) = 0$ fins arribar a $x_0 = 0$. A partir de llavors, entre [0,1) la funció de distribució acumulada és 1 - P(A) i, a partir de A és igual a 1.

Proposició 22. Si X és v.a. F_x satisfà:

- i) F_x és creixent.
- ii) $\lim_{x\to+\infty} F(x) = 1$, $\lim_{x\to-\infty} F(x) = 0$.
- iii) F_X és contínua per la dreta $(\lim_{h\to 0^+} F_X(x+h) = F_X(x))$

Demostració.

- i) Si $x_1 \le x_2$ $F_X(x_1) = P(X \le x_1) = P(\{w \in \Omega : X(w) \le x_1\}) \le P(\{w \in \Omega(w) : X(w) \le x_2\}) = F_X(x_2)$
- ii) Quan fem $\lim_{x\to +\infty} F(x) = \lim_{x\to +\infty} P(X \le x) = \lim_{x\to +\infty} P(\{w \in \Omega : X(w) \le x\}) = P(\Omega) = 1$ i el mateix quan x tendeix a menys infinit, el conjunt tendeix a \emptyset , per tant, té probabilitat 0.
- iii) Sigui $\{h_n\}_{n\geq 1}$ una successió decreixent tal que $h_n\to 0^+$, llavors: $\lim_{n\to\infty} F_X(x+h_n)=\lim_{n\to\infty} P(\{w\in\Omega:X(w)\leq x+h_n\})=P(\bigcap_{n\geq 1}\{w\in\Omega:X(w)\leq x+h_n\})=P(\{w\in\Omega:X(w)\leq x\})=F_X(x)$.

Nota 12. Si $F : \mathbb{R} \to [0,1]$ tal que satisfaci i), ii) i iii), aleshores existeix (Ω, \mathcal{A}, P) i $X : \Omega \to \mathbb{R}$ v.a. tal que $F_X = F$.

Definició 23. Si tenim una v.a. X indueix una funció de probabilitat P_X en $(\mathbb{R}, \mathcal{B})$, llavors $p_X(B) = P(X \in B)$ $\forall B \in \mathcal{B}$, l'anomenarem llei de X o mesura de probabilitat induïda per X.

2.2 Moments d'una v.a.

Una de les característiques més notables d'una variable aleatória és la mitjana aritmética dels valors que pren, si X pren només valors $\{a_1, \dots, a_r\}$, la "mitjana" sera $\sum_{i=1}^r a_i P(X=a_i)$. Més generalment es considera l'esperança.

Definició 24. L'esperança de X es defineix com:

$$\mathbb{E}[X] = \int_{\Omega} X dp$$

Sempre i quan existeixi i sigui finita o convergeix absolutament.

Proposició 25. Propietats de $\mathbb{E}[X]$ (heredades de l'integral):

- 1. Si X = c, llavors $\mathbb{E}[X] = c$.
- 2. Si $X = \mathbb{I}_A$, llavors $\mathbb{E}[X] = P(A)$

- 3. Si $X \leq Y$, llavors $\mathbb{E}[X] \leq \mathbb{E}[Y]$. (X, Y s'on v.a. en el mateix espai de probabilitat).
- 4. $\mathbb{E}[X]$ és lineal.

Observació 26. Si $f: \mathbb{R} \to \mathbb{R}$ i f(X) és una v.a. (mesurable), aleshores $\mathbb{E}[f(X)]$ vol dir $\int_{\Omega} f(X) dp$ (si convergeix absolutament).

Una variable aletoria interessant és quan tenim una v.a. X i considerem la v.a. $X - \mathbb{E}[X]$. Aquesta segona direm que està centrada en el 0, perquè quan calculem l'esperança $\mathbb{E}[X - \mathbb{E}[X]] = \mathbb{E}[X] - \mathbb{E}[\mathbb{E}[X]] = 0$, dona 0 (utilitzant linealitat i esperança d'una constant). Una altra que no sempre dona 0 i és una mesura de com d'allunyada està una variable aleatória de la seva esperança és la següent:

Definició 27. La variancia de X és

$$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

si existeix. La seva arrel quadrada positiva és la desviació típica (o estàndar).

Proposició 28. Propietats de la variància:

- 1. $\operatorname{Var}[X] = \mathbb{E}[X^2] \mathbb{E}[X]^2$
- 2. Var[c] = 0
- 3. Var[c + X] = Var[X]
- 4. $Var[cX] = c^2 Var[X]$

Demostració.

- 1. $\operatorname{Var}[X] = \mathbb{E}[X^2 \mathbb{E}[X]^2 2X\mathbb{E}[X]] = [X^2] + [X]^2 2\mathbb{E}[X]\mathbb{E}[X] = [X^2] [X]^2$.
- 2. Perquè $c \mathbb{E}[c] = c c = 0$
- 3. Perquè $\mathbb{E}[X+c]=[X]+c$ i $X+c-\mathbb{E}[X+c]=X+c-\mathbb{E}[X]-c=X-\mathbb{E}[X].$
- 4. Com que $\operatorname{Var}[cX] = \mathbb{E}[(cX)^2] \mathbb{E}[cX]^2$, per linealitat de l'esperança, $= c^2 \mathbb{E}[X^2] c^2 \mathbb{E}[X]^2 = c^2 \operatorname{Var}[X]$.

Definició 29. El moment k-éssim de X és $\mathbb{E}[X^k]$ i el moment k-éssim centrat és $\mathbb{E}[(X - \mathbb{E}[X])^k]$ si existeixen i son absolutament convergents..

Observació 30. $(\int_{\Omega} |X|^k)^{\frac{1}{k}}$ és una norma en els espais L_p .

Proposició 31. Algunes designaltats heredades:

- 1. Cauchy-Schwartz: $Si \exists \mathbb{E}[X^2], \mathbb{E}[Y^2] < \infty \implies E[XY]^2 \leq \mathbb{E}[X^2]E[Y^2]$
- $2. \ \, H\ddot{o}lder: \ \, Si \, \, \mathbb{E}[|X|^p], \mathbb{E}[|Y|^q] < \infty \ \, amb \, \, p > 1 \ \, i \, \, \frac{1}{p} + \frac{1}{q} = 1. \ \, Llavors \, \, \mathbb{E}[|XY|] \leq \mathbb{E}[|X|^p]^{\frac{1}{p}} \mathbb{E}[|Y|^q]^{\frac{1}{q}}.$
- 3. Minkowski: Si $\mathbb{E}[|X|^p], \mathbb{E}[|Y|^p] < \infty$, per $p \ge 1$. Llavors $\mathbb{E}[|X+Y|^p]^{\frac{1}{p}} \le \mathbb{E}[|X|^p]^{\frac{1}{p}} + \mathbb{E}[|Y|^p]^{\frac{1}{p}}$.

Proposició 32. Desigualtat pròpies de la T.Prob:

- 1. Markov: X v.a. $X \ge 0$, $a \in \mathbb{R}$ amb a > 0. Llavors $P(X \ge a) \le \frac{\mathbb{E}[X]}{a}$
- 2. Txebixev: Sigui X una v.a. amb $\mathbb{E}[X] = \mu < \infty$, $\operatorname{Var}[X] = \sigma^2 < \infty$. Llavor $\forall b \colon P(|X \mu| \ge b) \le \frac{\sigma^2}{b^2}$.

Demostració.

- 1. Sigui $A = \{w \in \Omega : X(w) \ge a\}$, aleshores tenim que $a\mathbb{I}_A \le X$, perquè per un mateix resultat pertanyent a A segur que $X(a) \ge a$, per altres resultats que no pertanyen a $a, X \ge 0$ que ens ho assegura l'enunciat. Llavors tenim $\mathbb{E}[X] \ge \mathbb{E}[a\mathbb{I}_A] = aP(A) = aP(X \ge a)$, passant dividint l'a tenim la desigualtat de Markov.
- 2. Tenim que $P(|X \mu| \ge b) = P((X \mu)^2 \ge b^2) \le \frac{\mathbb{E}[(X \mu)^2]}{b^2} = \frac{\sigma^2}{b^2}$, que és la fita de Txebixev.

2.3 Vectors de v.a.

En un mateix espai (Ω, \mathcal{A}, P) tenim diverses v.a. X_1, X_2, \cdots, X_n que volem estudiar conjuntament.

Definició 33. En (Ω, \mathcal{A}, P) , un vector aleatori (o vector de v.a. o v.a. *n*-dimensional) és

$$\overline{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$$

tal que $\forall B \in \mathscr{B}(\mathbb{R}^n)$ (borelians de \mathbb{R}^n) es té $(\overline{X})^{-1}(B) \in \mathscr{A}$.

Nota 13. Perquè \overline{X} sigui vector aleatori, n'hi ha prou si

$$(\overline{X})^{-1}((-\infty, a_1] \times (-\infty, a_2] \times \cdots \times (-\infty, a_n]) \in \mathscr{A}$$

Que és el mateix que $\bigcap_{i=1}^n X_i^{-1}((-\infty, a_i]) \in \mathcal{A}$. És a dir, que X_1, \ldots, X_n siguin v.a.

Definició 34. La funció de distribució conjunta $\overline{X} = (X_1, \dots, X_n)$ és

$$F_{\overline{X}}: \mathbb{R}^n \to [0, 1]$$

 $(x_1, \dots, x_n) \mapsto P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n)$

Que és $\{w \in \Omega : X_1(w) \le x_1, ..., X_n(w) \le x_n\}.$

Proposició 35. Propietats de les funcions de distribució $F_{(X,Y)}(x,y)$:

- 1. Si $x_1 \le x_2$ i $y_1 \le y_2$ llavors, $F_{(X,Y)}(x_1, y_1) \le F_{(X,Y)}(x_2, y_2)$.
- 2. $\lim_{(x,y)\to(-\infty,-\infty)} F_{(X,Y)}(x,y) = 0$ $i \lim_{(x,y)\to(+\infty,+\infty)} F_{(X,Y)}(x,y) = 1$.
- 3. $\lim_{y\to\infty} F_{(X,Y)}(x,y) = P(X \le x) = F_X(x)$, funció de distribució marginal.
- 4. És contínua per dalt: $\lim_{(h_1,h_2)\to(0,0)} F_{(X,Y)}(x+h_1,y+h_2) = F_{(X,Y)}(x,y)$.
- 5. Propietat dels rectangles. $P(a < X \le b, c < Y \le d) P(X \le b, Y \le c) P(X \le a, Y \le d) + P(X \le a, Y \le c)$.

Nota 14. Si $F: \mathbb{R} \to [0,1]$ tal que satisfaci 1., 2., 4. i 5. (la 3. és de regal) caracteritzen les funcions de distribució bivariades.

2.4 Independència de v.a.'s

Tenim $F_{\overline{X}}(x_1, \dots, x_n) = P(X_1 \leq x_1, \dots, X_n \leq x_n)$ que son successos d' \mathcal{A} . Si són independents, llavors és igual a producte de probabilitats $= P(X_1 \leq x_1) \cdots P(X_n \leq x_n)$, en tal cas direm que les v.a. son independets.

Definició 36. Si $\forall x_1, \dots, x_n$ es té que:

$$F_{\overline{X}}(x_1, \cdots, x_n) = F_{X_1}(x_1) \cdots F_{X_n}(x_n)$$

direm que X_1, \dots, X_n són independents.

Nota 15. Si tenim v.a. independents: $\forall B_1, \dots, B_n \in \mathcal{B}$ es té $P(X_1 \in B_1, \dots, X_n \in B_n) = P(X_1 \in B_1) \dots P(X_n \in B_n)$.

2.5 Covariància i (una) llei dels grans nombres

Sigui $\overline{X} = (X_1, \dots, X_n)$ vector aleatori, podem considerar el vector d'esperances $\mathbb{E}[\overline{X}] = (\mathbb{E}[X_1] \dots \mathbb{E}[X_n])^t$.

Definició 37. La covariància de X i Y (en el mateix espai)

$$Var(X, Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

I el coeficient de correlació (de Pearson) $\rho_{X,Y} = \text{Var}(X,Y)/\sigma_X\sigma_Y$.

Observació 38. El coeficient de correlació està sempre -1 i 1. Es pot demostrar amb Cauchy-Schwartz:

$$|\operatorname{Var}(X,Y)| \le \sqrt{\mathbb{E}[(X - \mathbb{E}[X])^2]\mathbb{E}[(Y - \mathbb{E}[Y])^2]} = \sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]} = \sigma_X\sigma_Y$$

Llavors $|\rho_{X,Y}| \leq 1$. X i Y són incorrelades si Var(X,Y) = 0.

Definició 39. La matriu de covariàncies és:

$$\operatorname{Var}(\overline{X}) = \begin{pmatrix} \operatorname{Var}[X_1] & \cdots & \operatorname{Var}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \operatorname{Var}(X_n, X_1) & \cdots & \operatorname{Var}[X_n] \end{pmatrix}$$

Alguns càlculs:

$$\operatorname{Var}(X,Y) = \mathbb{E}[XY - X\mathbb{E}[Y] - Y\mathbb{E}[X] + \mathbb{E}[X]\mathbb{E}[Y] = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Nota 16. Si X i Y independents, llavors són incorrelades ($\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$). En general, surt del teorema de Fubini. El recíproc en general no és cert.

Proposició 40. Es té que:

- 1. Var(c, X) = 0
- 2. Var(aX + bY, Z) = a Var(X, Z) + b Var(Y, Z)
- 3. $\operatorname{Var}(X+Y) = \operatorname{Var}[X] + \operatorname{Var}[Y] + 2\operatorname{Var}(X,Y)$
- 4. Si X_1, \dots, X_n són 2 a 2 incorrelades, llavors $\operatorname{Var}[\sum_i X_i] = \sum_i \operatorname{Var}[X_i]$.

Teorema 41. Llei (feble) dels grans nombres. Siguin X_1, \dots, X_n, \dots v.a.'s tal que totes tenen la mateixa esperança μ i variància σ^2 constants. A més, dues a dues incorrelades. Sigui $\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$ la mitjana mostral, aleshores tenim, $\mathbb{E}[\overline{X}_m] = \mu$ i $\mathrm{Var}[\overline{X}_n] = \frac{1}{n^2} \mathrm{Var}[X_1 + \dots + X_n] = \frac{\sigma^2}{n}$. Ara, per Txebishev tenim $P(|\overline{X}_n - \mu| \ge \epsilon) \le \frac{\mathrm{Var}[[X]_n]}{\epsilon^2} = \frac{\sigma^2}{n\epsilon^2}$. Llavors

$$\lim_{n \to \infty} P(|\overline{X}_n - \mu| \ge \epsilon) = 0$$

3 V.a Discretes

Sigui (Ω, \mathcal{A}, p) un espai de probabilitat.

Definició 42. La $v.a. X : \Omega \to \mathbb{R}$ és discreta si $\Im X$ és finita o numerable.

A partir d'ara les v.a. són totes discretes.

3.1 Funció de probabilitat, esperança i independència

Posem Im $(X) = \{a_1, a_2, a_3, \dots\}$ i $\Omega = \bigcup_{n>1} \{w \in \Omega : X(w) = a_n\}$. Per tant:

$$1 = \sum_{n \ge 1} P(w \in \Omega : X(w) = a_n) = \sum_{n \ge 1} P(X = a_n)$$

Sigui $B \in \mathcal{B}$, aleshores escriurem $P(X^{-1}(B)) = P(X \in \mathcal{B}) = \sum_{a_i \in B} P(X = a_i)$, o bé també, $P_X(B)$ que s'anomena la llei de X (és una probabilitat en $(\mathbb{R}, \mathcal{B})$), queda determinada per $\{a_1, a_2, \dots\}$ i $P(X = a_i)$, que és la funció de probabilitat de X (només per v.a. discretes).

Podem escriure la funció de distribució com:

$$F_X(x) = P(X \le x) = \sum_{a_i \le x} P(X = a_i)$$

I també podem reescriure l'esperança d'una variable discreta com:

$$\mathbb{E}[X] = \sum_{n \ge 1} a_n P(X = a_n) = \sum_{x \in \text{Im } X} x P(X = x)$$

Sempre que convergeixi absolutament. Si g(X) és v.a., llavors

$$\mathbb{E}[g(X)] = \sum_{x \in \text{Im} X} g(x) P(X = x)$$

Independència, X, Y v.a. discretes:

$$X, Y$$
 són independents $\iff F_{X,Y}(x,y) = F_X(x)F_Y(y), \forall x,y \in \mathbb{R}$

A més, podem caractaritzar la independéncia amb la funció de probabilitat:

$$X, Y$$
 són independents $\iff P(X = x, Y = y) = P(X = x)P(Y = y), \forall x, y \in \mathbb{R}$

INDICACIÓ: Començar fixant només una variable $P(X=x,Y\leq y)=P(X=x)P(Y\leq y).$

Proposició 43. Si X, Y són v.a. discretes, aleshores són incorrelades (Var(X, Y) = 0).

Demostració.

$$\mathbb{E}[XY] = \sum_{u \in \mathrm{Im}XY, u \neq 0} uP(XY = u) = \sum_{x \in \mathrm{Im}X, x \neq 0} \sum_{\frac{u}{x} \in \mathrm{Im}Y, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x}) = \sum_{x \in \mathrm{Im}X, u \neq 0} uP(X = x, Y = \frac{u}{x$$

$$\sum_{x \in \operatorname{Im}X, x \neq 0} \sum_{\frac{u}{x} \in \operatorname{Im}Y, u \neq 0} u P(X = x) P(Y = \frac{u}{x}) = \sum_{x \in \operatorname{Im}X, x \neq 0} x P(X = x) \sum_{\frac{u}{x} \in \operatorname{Im}Y, u \neq 0} \frac{u}{x} P(Y = \frac{u}{x}) = \mathbb{E}[X] \mathbb{E}[Y]$$

3.2 Funció generadora de probabilitat

Definició 44. Una v.a. és de recompte si Im $X \subseteq \{0, 1, 2, 3, \dots\}$.

- 4 V.a Contínues
- 5 Funcions característiques i famílies exponencials
- 6 Convergència de variables aleatòries