Assignment3

November 13, 2022

1 Imports

```
import numpy as np
import pandas as pd
from scipy import signal
import cv2
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import confusion_matrix
from sklearn.metrics import classification_report, accuracy_score
from sklearn.svm import SVC
```

2 Data Collection, Preprocessing and Cleansing

2.1 Reading in data

2.1.1 Climbing down

```
[2]: path = "Climbing_down_stairs/CL"
     Climbing_down = []
     for i in range(1, 51):
         df = pd.read_csv(path +f"{i}" + "/Accelerometer.csv" )
         df = df.rename(columns={ df.columns[2]: "ACCELEROMETER Z (m/s<sup>2</sup>)",df.

¬columns[3]: "ACCELEROMETER Y (m/s²)",
                                  df.columns[4]: "ACCELEROMETER X (m/s²)"
         df = df[['seconds_elapsed', 'ACCELEROMETER X (m/s²)',
        'ACCELEROMETER Y (m/s<sup>2</sup>)', 'ACCELEROMETER Z (m/s<sup>2</sup>)']]
         df1 = pd.read_csv(path +f"{i}" + "/Gyroscope.csv" )
         df1 = df1.rename(columns={ df1.columns[2]: "GYROSCOPE Z (rad/s)", df1.

¬columns[3]: "GYROSCOPE Y (rad/s)",
                                  df1.columns[4]: "GYROSCOPE X (rad/s)"
                                                                             })
         df1 = df1[['time', 'seconds_elapsed', 'GYROSCOPE X (rad/s)',
        'GYROSCOPE Y (rad/s)', 'GYROSCOPE Z (rad/s)']]
         df1.drop(['time', 'seconds_elapsed'], axis=1, inplace=True)
         Climbing = pd.concat([df, df1], axis = 1).values.tolist()
```

2.1.2 Standing up

```
[3]: path = "standing_up/Stand"
     Standing = []
     for i in range(1, 51):
         df = pd.read_csv(path +f"{i}" + "/Accelerometer.csv" )
         df = df.rename(columns={ df.columns[2]: "ACCELEROMETER Z (m/s<sup>2</sup>)",df.

→columns[3]: "ACCELEROMETER Y (m/s²)",
                                   df.columns[4]: "ACCELEROMETER X (m/s<sup>2</sup>)"
         df = df[['seconds_elapsed', 'ACCELEROMETER X (m/s²)',
        'ACCELEROMETER Y (m/s<sup>2</sup>)', 'ACCELEROMETER Z (m/s<sup>2</sup>)']]
         df1 = pd.read_csv(path +f"{i}" + "/Gyroscope.csv" )
         df1 = df1.rename(columns={ df1.columns[2]: "GYROSCOPE Z (rad/s)", df1.

¬columns[3]: "GYROSCOPE Y (rad/s)",
                                   df1.columns[4]: "GYROSCOPE X (rad/s)"
                                                                             })
         df1 = df1[['time', 'seconds_elapsed', 'GYROSCOPE X (rad/s)',
        'GYROSCOPE Y (rad/s)', 'GYROSCOPE Z (rad/s)']]
         df1.drop(['time', 'seconds_elapsed'], axis=1, inplace=True)
         Stand = pd.concat([df, df1], axis = 1 , join='inner').values.tolist()
         Standing.append(Stand)
```

2.1.3 Walking

2.1.4 Rowing

```
rowing = [rowing.rename(columns={ rowing.columns[0]: "seconds_elapsed"}).values.

→tolist()]
```

2.1.5 Climbing up

2.1.6 Create data list

The data is sorted by it class, with the order: walking, rowing, climbing down, climbing up and standing

```
[7]: #All data [walking, rowing, climbing_down, climbing_up, standing]
data = [walking, rowing, Climbing_down, climbing_up, Standing]
```

2.2 Removing start and end period

Some activities are more prown to wrong values at the beginning and end, because you have to move the phone to start/stop the recording. Therefore are the first five and last five seconds ignored for these activities

```
[8]: for i in [0, 1, 3]:
    for j in range(len(data[i])):
        data[i][j] = data[i][j][10:-10]
```

2.3 Windowing

For activities that are not instance based, the data has to be windowed. For walking a window size of 2 minutes is chosen and for rowing and climbing up a window size of 1 minute, because they have less data overall. A overlap of 80% is chosen (seemed to work best after testing different overlaps)

```
windows.append(window)
    window_number += 1
    end_index += int((1 - overlap) * window_length[i])
data[i] = windows
```

2.4 Spectrogram

To extract the frequency information over time from the data, spectograms are created

2.5 Binning

To keep as much information of the spectrograms as possible, but without having to much features, a semi high bin number is chosen. Testing and comparing different numbers of bins and its results showed that 45 in each axis seems to be a good mix between these two requirements

2.6 Feature selection

As features only the binned spectrograms for all values (acceleration x, acceleration y, acceleration z, gyroscope x, gyroscope y and gyroscope z) are chosen. This is enough to achieve a sufficient

accuracy with a Random Forest and SVM model

2.7 Creating labels

```
[13]: data_list = []
labels_list = []

for cls_number in range(len(data_features)):
    for i in range(len(data_features[cls_number])):
        data_list.append(data_features[cls_number][i])
        labels_list.append(cls_number)
```

2.8 Normalization

Sligthly improves testing accuracy of SVM by 0.5~% and has no effect on testing accuracy of the Random Forest model

```
[14]: scaler = StandardScaler()
data_list = scaler.fit_transform(data_list)
```

2.9 Create training and test data

A 70/30 split is chosen, which means that 70% of the data is used for training and 30% for testing

```
[15]: xtrain, xtest, ytrain, ytest = train_test_split(data_list, labels_list,_u test_size=0.30, random_state=42)
```

3 ML models

3.1 Random forest

```
cm = confusion_matrix(ytest, ypred)
cr = classification_report(ytest, ypred)

print('Confusion Matrix:', cm, sep='\n', end='\n\n\n')
print('Test Statistics:', cr, sep='\n', end='\n\n\n')

print('Testing Accuracy:', accuracy_score(ytest, ypred))
```

Average Cross Validation Score from Training: 1.0

Confusion Matrix:

[[1	35	0	0	0	0]
[0	33	0	0	0]
[0	0	13	0	0]
[0	0	0	24	0]
[0	0	0	0	13]]

Test Statistics:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	135
1	1.00	1.00	1.00	33
2	1.00	1.00	1.00	13
3	1.00	1.00	1.00	24
4	1.00	1.00	1.00	13
accuracy			1.00	218
macro avg	1.00	1.00	1.00	218
weighted avg	1.00	1.00	1.00	218

Testing Accuracy: 1.0

3.2 SVM

```
cr = classification_report(ytest, ypred)
print('Confusion Matrix:', cm, sep='\n', end='\n\n\n')
print('Test Statistics:', cr, sep='\n', end='\n\n\n')
print('Testing Accuracy:', accuracy_score(ytest, ypred))
```

Average Cross Validation Score from Training: 0.9980392156862745

Confusion Matrix:

[[1	35	0	0	0	0]
	0	33	0	0	0]
	0	0	13	0	0]
	0	0	0	24	0]
[0	0	0	0	13]]

Test Statistics:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	135
1	1.00	1.00	1.00	33
2	1.00	1.00	1.00	13
3	1.00	1.00	1.00	24
4	1.00	1.00	1.00	13
accuracy			1.00	218
macro avg	1.00	1.00	1.00	218
weighted avg	1.00	1.00	1.00	218

Testing Accuracy: 1.0

4 Results

4.1 Choosing overlap for windowing

An overlap of 80% is chosen, because it has the best training (k-cross validation) accuracy of the ones with a 100% testing accuracy for both models

```
[18]: import matplotlib.pyplot as plt

overlaps = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

results_rf = [100, 100, 98.7, 100, 100, 100, 98.7, 100, 100]

results_sym = [92.8, 94.6, 96.2, 98.8, 97.8, 100, 99.2, 97.4, 100, 100]
```

```
plt.plot(overlaps, results_svm, label='SVM')
plt.plot(overlaps, results_rf, label='Random Forest')
plt.xlabel("Overlap in %")
plt.ylabel("Testing accuracy in %")
plt.title("Comparison of different overlap sizes")
plt.legend()
plt.show()
```


4.2 Choosing binning size

45 bins per axis are chosen, because it has the best training (k-cross validation) accuracy of the ones with a 100% testing accuracy for both models

```
[19]: import matplotlib.pyplot as plt

binning_size = [5, 10, 15, 20, 25, 30, 35, 40, 45, 50]
    results_rf = [98.6, 99.5, 100, 100, 100, 100, 100, 100, 100]
    results_svm = [95.0, 96.8, 97.2, 98.2, 99.5, 98.6, 98.6, 100, 100, 100]

plt.plot(binning_size, results_svm, label='SVM')
    plt.plot(binning_size, results_rf, label='Random Forest')
    plt.xlabel("Number of bins (per axis)")
```

```
plt.ylabel("Testing accuracy in %")
plt.title("Comparison of different binning sizes")
plt.legend()
plt.show()
```


5 Data visualization (binned spectrograms)

```
[20]: import numpy as np
import matplotlib.pyplot as plt

%matplotlib inline
cmap=plt.cm.bone
cmap.set_under(color='k', alpha=None)
```

C:\Users\Timmy\AppData\Local\Temp\ipykernel_15620\3670946234.py:6:
MatplotlibDeprecationWarning: You are modifying the state of a globally
registered colormap. This has been deprecated since 3.3 and in 3.6, you will not
be able to modify a registered colormap in-place. To remove this warning, you
can make a copy of the colormap first. cmap = mpl.cm.get_cmap("bone").copy()
 cmap.set_under(color='k', alpha=None)

5.1 Walking

5.1.1 Accelerometer x

[21]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][0][0]),cmap=cmap)

[21]: <matplotlib.collections.QuadMesh at 0x1b064f8ce20>

5.1.2 Accelerometer y

[22]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][1][2]),cmap=cmap)

[22]: <matplotlib.collections.QuadMesh at 0x1b04ab0ebe0>

5.1.3 Accelerometer z

[23]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][2][2]),cmap=cmap)

[23]: <matplotlib.collections.QuadMesh at 0x1b04ab80a30>

5.1.4 Gyroscope x

[24]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][3][2]),cmap=cmap)

[24]: <matplotlib.collections.QuadMesh at 0x1b04abf68e0>

5.1.5 Gyroscope y

[25]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][4][2]),cmap=cmap)

[25]: <matplotlib.collections.QuadMesh at 0x1b04ac6b820>

5.1.6 Gyroscope z

[26]: plt.pcolormesh(np.log10(data_spectrograms_binned[0][0][5][2]),cmap=cmap)

[26]: <matplotlib.collections.QuadMesh at 0x1b04ace1490>

5.2 Rowing

5.2.1 Accelerometer x

[27]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][0][2]),cmap=cmap)

[27]: <matplotlib.collections.QuadMesh at 0x1b064f455e0>

5.2.2 Accelerometer y

[28]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][1][2]),cmap=cmap)

[28]: <matplotlib.collections.QuadMesh at 0x1b064f452e0>

5.2.3 Accelerometer z

[29]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][2][2]),cmap=cmap)

[29]: <matplotlib.collections.QuadMesh at 0x1b0664af190>

5.2.4 Gyroscope x

[30]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][3][2]),cmap=cmap)

[30]: <matplotlib.collections.QuadMesh at 0x1b066523160>

5.2.5 Gyroscope y

[31]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][4][2]),cmap=cmap)

[31]: <matplotlib.collections.QuadMesh at 0x1b06658cb20>

5.2.6 Gyroscope z

[32]: plt.pcolormesh(np.log10(data_spectrograms_binned[1][0][5][2]),cmap=cmap)

[32]: <matplotlib.collections.QuadMesh at 0x1b0665feb20>

5.3 Climbing down

5.3.1 Accelerometer x

[33]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][0][2]),cmap=cmap)

[33]: <matplotlib.collections.QuadMesh at 0x1b0666726a0>

5.3.2 Accelerometer y

[34]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][1][2]),cmap=cmap)

[34]: <matplotlib.collections.QuadMesh at 0x1b0666e6520>

5.3.3 Accelerometer z

[35]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][2][2]),cmap=cmap)

[35]: <matplotlib.collections.QuadMesh at 0x1b0666fe580>

5.3.4 Gyroscope x

[36]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][3][2]),cmap=cmap)

[36]: <matplotlib.collections.QuadMesh at 0x1b0667c5e20>

5.3.5 Gyroscope y

[37]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][4][2]),cmap=cmap)

[37]: <matplotlib.collections.QuadMesh at 0x1b066838c40>

5.3.6 Gyroscope z

[38]: plt.pcolormesh(np.log10(data_spectrograms_binned[2][0][5][2]),cmap=cmap)

[38]: <matplotlib.collections.QuadMesh at 0x1b0666360a0>

5.4 Climbing up

5.4.1 Accelerometer x

[39]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][0][2]),cmap=cmap)

[39]: <matplotlib.collections.QuadMesh at 0x1b066921af0>

5.4.2 Accelerometer y

[40]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][1][2]),cmap=cmap)

[40]: <matplotlib.collections.QuadMesh at 0x1b0669945b0>

5.4.3 Accelerometer z

[41]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][2][2]),cmap=cmap)

[41]: <matplotlib.collections.QuadMesh at 0x1b066a09130>

5.4.4 Gyroscope x

[42]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][3][2]),cmap=cmap)

[42]: <matplotlib.collections.QuadMesh at 0x1b066a71e50>

5.4.5 Gyroscope y

[43]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][4][2]),cmap=cmap)

[43]: <matplotlib.collections.QuadMesh at 0x1b066ae5a00>

5.4.6 Gyroscope z

[44]: plt.pcolormesh(np.log10(data_spectrograms_binned[3][0][5][2]),cmap=cmap)

[44]: <matplotlib.collections.QuadMesh at 0x1b066b5a7f0>

5.5 Standing

5.5.1 Accelerometer x

[45]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][0][2]),cmap=cmap)

[45]: <matplotlib.collections.QuadMesh at 0x1b066ac3a00>

5.5.2 Accelerometer y

[46]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][1][2]),cmap=cmap)

[46]: <matplotlib.collections.QuadMesh at 0x1b066c371f0>

5.5.3 Accelerometer z

[47]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][2][2]),cmap=cmap)

[47]: <matplotlib.collections.QuadMesh at 0x1b066ca7e80>

5.5.4 Gyroscope x

[48]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][3][2]),cmap=cmap)

[48]: <matplotlib.collections.QuadMesh at 0x1b066d1ad90>

5.5.5 Gyroscope y

[49]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][4][2]),cmap=cmap)

[49]: <matplotlib.collections.QuadMesh at 0x1b066d8cb20>

5.5.6 Gyroscope z

[50]: plt.pcolormesh(np.log10(data_spectrograms_binned[4][0][5][2]),cmap=cmap)

[50]: <matplotlib.collections.QuadMesh at 0x1b066df77f0>

