EPITA /	InfoS3
NIONA .	

Prénom:

Novembre 2018

Groupe :

Contrôle Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

	*	
Exercice 1. Questions de cours (QCM sans points négatifs – 5 points)		
Q1.	Le dopage permet d'augmenter la conductiv	vité du semi-conducteur b- FAUX
Q2.	On désigne les 2 types de dopage par les let a- Aux types d'ions injectés dans le semi-cob- Ce sont les initiales des électroniciens que C- Aux charges des porteurs de charges en d- A rien du tout	onducteur ui ont découvert les semi-conducteurs
Q3.	On utilise l'élément semi-conducteur de si valence. Si on le dope avec du phosphore, é valence, quel est le type de dopage : a- Dopage P Dopage N	
Q4.	Un matériau semi-conducteur ayant un dopage de type N présente : a- un défaut d'électrons dans sa structure cristaline un surnombre d'électrons dans sa structure cristaline	
Q5.	Quel modèle permet la représentation la m (a) Le modèle idéal b- Le modèle à seuil	oins précise de la diode : c- Le modèle réel d- Les trois modèles sont équivalents

Q6.Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle à seuil de la diode :

- Q7. Lorsqu'une diode est bloquée, elle se comporte comme :
 - a- une résistance nulle

c- un générateur de tension idéal

(b) un interrupteur ouvert

- d- une bobine
- Q8. La résistance dynamique d'une diode :
 - a- s'exprime en Siemens.
 - b- permet de considérer que la diode est équivalente à cette résistance lorsqu'elle est passante.
 - c est en général très faible.
 - d- est en général très élevée.
- **Q9.** Soit le circuit ci-contre, dans lequel on considère la diode D idéale :

Que vaut la tension aux bornes de D si E=10V, $R=100\Omega$.

a- 0 V

c- 1 kV

(b) 10 V

d- 0,1 V

Soit le circuit ci-contre :

- Q10. Quel type de porte logique réalise ce montage?
 - a- ET
- c- NON ET
- (b) OU
- d- NON OU

Exercice 2. Révisions SUP (4 points)

Soit le circuit suivant, dans lequel E_1 , E_3 , I_1 , I_2 et les R_i sont connus. Les générateurs sont indépendants. En utilisant la méthode de votre choix, déterminer la tension U.

En utilisant le théorème de Millman, on obtant:

$$U = \frac{\frac{E_{1}}{R_{1}} - \frac{E_{3}}{R_{3}} - I_{1} + I_{2}}{\frac{A}{R_{1}} + \frac{A}{R_{3}}}$$

=
$$V = \frac{R_3 E_1 - R_1 E_3 + R_1 R_3 (I_2 - I_1)}{R_1 + R_3}$$

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0=0.7V$. Pour les questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R_1=10k\Omega$, $R_2=10\Omega$ et E=10V, montrer que la diode est bloquée. Quelle est alors l'intensité du courant qui traverse R_2 ?

Supposons pur la diode est passaute.

$$E_{i}$$
 E_{i}
 E_{i}

2. Si $R_1=50\Omega$, $R_2=100\Omega$ et E=10V, montrer que la diode est passante. Déterminer alors l'intensité du courant qui la traverse.

Exercice 4. Caractéristique de transfert (6 points)

Soit le circuit suivant :

On souhaite tracer la caractéristique U = f(V).

On utilisera le modèle à seuil pour modéliser la diode; et on appellera $V_{\mathcal{O}}$ sa tension de seuil.

1. Donner l'expression de U si la diode est passante.

2. Donner l'expression de U si la diode est bloquée.

3. Pour quelles valeurs de V la diode est-elle bloquée?

4. Tracer U = f(V).

5. On considère maintenant que le générateur de tension V est un générateur de tension sinusoïdale $v(t) = V \cdot \sqrt{2} \cdot \sin(\omega t)$. On donne $V \cdot \sqrt{2} = 30 \ V$, $E = 15 \ V$ et $V_0 = 0.6 \ V$. Tracer la courbe u(t).

