Team Name: MalWhere

Project Title: Al-powered Cybersecurity System

1. Introduction

With the increasing number of cyber threats, detecting anomalies, malware, and phishing attempts is crucial to securing digital environments. Our project leverages Azure Al services to develop a robust cybersecurity system capable of detecting network intrusions, malware, and phishing attempts in real time.

2. Problem Statement

Cyber threats such as network intrusions, malware infections, and phishing attacks pose a significant risk to organizations. Existing solutions often struggle with scalability, real-time detection, and false positives. Our Al-powered system addresses these challenges using advanced anomaly detection, text analytics, and computer vision techniques.

3. Objectives

- Anomaly Detection (NIDS): Identifies abnormal activities in network traffic logs.
- Malware Detection: Detects malicious files and programs.
- Phishing Detection: Identify phishing emails and malicious URLs.
- Cybersecurity Awareness Chatbot: Educates users about cybersecurity threats, best practices, and real-time threat detection guidance.

4. Solution Overview

Our Al-powered cybersecurity system utilizes Azure Al services to analyze and classify network traffic, files, and emails in real-time. The system consists of four main components:

4.1 Anomaly Detection (NIDS)

- Packet Capture: The system captures live network packets using Scapy, continuously monitoring both incoming and outgoing traffic.
- **Feature Extraction:** It extracts key packet features such as source and destination IP, port, protocol, and size for further analysis.
- Machine Learning Classification: A RandomForestClassifier, trained on the USTCTFC2016 dataset, is used to classify packets as benign or malicious based on extracted features.
- Threat Detection: The system detects malware-infected traffic in real time, enhancing network security by identifying suspicious behavior early.

4.2 Malware Detection

- Feature Extraction: Extracts key features from Portable Executable
 (PE) files using the pefile library.
- ML-Based Classification: Sends extracted features to a deployed API, which uses a Random Forest Classifier for malware detection.
- Backend Processing: Implements a FastAPI-based backend to handle predictions and return classification results.
- Cloud-Hosted Model: Utilizes a trained Random Forest model stored in Google Drive for classifying files as malware or safe.
- **Automated Scanning:** Runs a **monitoring service** that continuously scans new files in the user's **Downloads folder** for potential threats.

4.3 Phishing Detection

- Automated Email Scanning: Continuously monitors incoming emails for potential phishing threats without user intervention.
- Smart Email Categorization: Differentiates between important, safe, and unsafe emails to enhance inbox security.
- Threat Logging & Analysis: Maintains detailed logs of flagged emails, allowing security teams to review potential phishing attempts.

• User Security Recommendations: Provides actionable steps to help users safeguard themselves from phishing threats.

4.4 ChatBot

- Al-Powered Responses: Utilizes Azure OpenAl's GPT-4 for advanced natural language understanding and contextual cybersecurity guidance.
- **Incident Assistance:** Helps users handle security incidents by providing step-by-step solutions and best practices.
- **Security Best Practices:** Advises users on password security, multi-factor authentication (MFA), and safe browsing habits.
- **24/7 Cybersecurity Support:** Provides round-the-clock assistance for cybersecurity-related queries and concerns.
- **Vulnerability Awareness:** Educates users on common cyber threats and offers guidance on securing systems against exploits.

5. Technologies and Tools

- Azure Al Services: Azure OpenAl (GPT-4, Codex, DALL-E), Azure Anomaly Detector, Azure Cognitive Services (Text Analytics, Computer Vision)
- Visual Studio Code and Render: For training and deploying detection models.
- Machine Learning Stack: Python, Jupyter Notebook, TensorFlow/PyTorch, Scikit-learn.
- **PE File Analysis:** pefile for extracting features.
- Scapy: captures live network packets from a specified interface

6. Deployment Guide

- 1. Set up Azure Storage and Al Services.
- 2. Deploy Al models using Azure Machine Learning.
- 3. Add a credentials.json file in phishingDetection folder.
- 4. Add this env file in fishingDetection folder
 - a. AZURE_OPENAI_ENDPOINT

- b. AZURE_API_KEY
- C. FETCH_EMAILS_URL
- d. AZURE_OPENAI_DEPLOYMENT
- 5. Add this env file in ChatBot folder
 - a. AZURE_OPENAI_ENDPOINT
 - b. AZURE_API_KEY
 - C. AZURE OPENAI DEPLOYMENT
- 6. Run the FastAPI server for malware classification:

uvicorn server:app --host 0.0.0.0 --port 8000

7. Run the file monitoring script:

python MalwareDetectionInFiles/detectMalware.py

8. Run the network packet monitoring script:

python networkIntrusion/demo.py

9. **Run the Email Fetching file for access to fetching user email:** python phishingDetection/emailFetching.py

10. Run the Phishing Detection file:

python phishingDetection/server.py

11. Run the ChatBot Server file:

chatbot server.py-> uvicorn server:app --host 127.0.0.1 --port 8000

- 12. Deploy the application on Azure App Service or a cloud-based platform.
- 13. Monitor and refine model performance over time.

8. Testing and Evaluation

- **Dataset Used:** Public cybersecurity datasets.
- Metrics Evaluated:
 - Accuracy & Precision: Measures the correctness of threat detection.
 - **Recall:** Ensure the threat doesn't go undetected.
 - o Inference Time: Ensure real-time detection capabilities.
- **Testing Results:** Evaluation performed using standard cybersecurity datasets.

9. Challenges Faced

- Handling imbalanced datasets for anomaly detection.
- Reducing false positives in phishing detection.
- Ensuring real-time processing without performance bottlenecks.

10. Ethical Considerations

- Bias Mitigation: Ensuring fair and unbiased Al decision-making.
- **Data Privacy & Compliance:** Following GDPR and Microsoft Responsible Al guidelines.
- **Explainability:** Providing clear reasons for threat detection to end-users.

11. Future Improvements

- Expanding dataset coverage for improved accuracy.
- Enhancing phishing detection with advanced deep learning techniques.
- Implementing blockchain-based threat intelligence sharing.

12. Conclusion

Our Al-powered cybersecurity system is innovative in detecting network intrusions, malware, and phishing threats. By integrating Azure Al services and machine learning-based malware detection, our solution enables organisations to enhance their security posture with real-time, Al-driven threat detection.