НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО» ФІЗИКО-ТЕХНІЧНИЙ ІНСТИТУТ КАФЕДРА ФІЗИКИ ЕНЕРГЕТИЧНИХ СИСТЕМ

Дипломна робота

на здобуття ступеня магістра

зі спеціально	ості	105 Прикладна фізика та наноматер	ріали
(код і назва)		(код i назва)	
на тему:			
Виконав: сту	дент 6 кур	осу, групи ФФ-11мн	
	Поляцко	Антоній Костянтинович	
	((прізвище, ім'я, по батькові)	(підпис)
Науковий кер	оівник	доцент, к.фм.н. Гільчук А. В.	
	(1	посада, науковий ступінь, вчене звання, прізвище та ініціали)	(підпис)
Консультант	2, 3		
	(номер розділу)	(посада, науковий ступінь, вчене звання, прізвище та ініціали)	(підпис)
Рецензент			
	(посада,	науковий ступінь, вчене звання, прізвище та ініціали)	(підпис)
		Засвідчую, що у цій ди	пломній роботі
		немає запозичень з прац	· -
		без відповідних посила	нь.
		Студент	
		(пілпис)	

РЕФЕРАТ

Пояснювальна записка дипломної роботи за обсягом становить 13 сторінки, містить 0 таблиці та 0 рисунки. Для дослідження було використано 0 бібліографічних найменувань.

Ключові слова:.

SUMMARY

The diploma work explanatory message includes 13 pages of the text, 0 table and 0 illustrations. At the problem modern state analysis, overall 0 references were used.

Key words:.

3MICT

СКОРОЧЕННЯ ТА УМОВНІ ПОЗНАКИ
ВСТУП
РОЗДІЛ 1. Огляд літератури
1.1. qqq
РОЗДІЛ 2. Матеріали та методи
2.1. Розсіювання плоскої хвилі на сфері
2.1.1. Кутова частина рівняння
2.1.2. Радіальна частина рівняння
2.1.3. Граничні умови
2.1.4. Результати моделювання
РОЗДІЛ З. Результати досліджень
3.1. qqq
ВИСНОВКИ 1

СКОРОЧЕННЯ ТА УМОВНІ ПОЗНАКИ

qqq

$ВСТУ\Pi$

qqq

РОЗДІЛ 1.

ОГЛЯД ЛІТЕРАТУРИ

1.1. qqq

РОЗДІЛ 2.

МАТЕРІАЛИ ТА МЕТОДИ

2.1. Розсіювання плоскої хвилі на сфері

....

Рівняння Гельмгольца

$$\Delta U - \varepsilon_2 k^2 U = 0, r > a \tag{2.1}$$

$$\Delta U - \varepsilon_1 k^2 U = 0, 0 < r < a \tag{2.2}$$

Тут
$$U$$
 відповідає або E_z або H_z , $\Delta = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}$ - оператор Лапласа.

Підставимо оператор Лапласа в рівняння 2.2:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial U}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial U}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 U}{\partial\varphi^2} + \varepsilon k^2 U = 0 \tag{2.3}$$

Виконаємо розділення змінних

$$U(r,\theta,\varphi) = R(r)\Theta(\theta)\Phi(\varphi) \tag{2.4}$$

З 2.4 та 2.3 помножимо на $\frac{r^2}{R\Theta\Phi}$ маємо:

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) + \frac{1}{\Phi\sin^2\theta}\frac{d^2\Phi}{d\varphi^2} + \varepsilon k^2r^2 = 0 \qquad (2.5)$$

2.1.1. Кутова частина рівняння

Якщо домножити 2.5 на $\sin^2 \theta$, то останній доданок буде залежати тільки від φ , а решта від r та θ .

Тому цей доданок є константою, яку позначимо через $-m^2$. Отримуємо рівняння:

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d\varphi^2} \tag{2.6}$$

Причому має відбуватись $\Phi(\varphi) = \Phi(\varphi + 2\pi),$ звідки слідує:

$$\Phi(\varphi) = e^{in\varphi} \tag{2.7}$$

Підставимо 2.7 в 2.5:

$$\frac{1}{R}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \frac{1}{\Theta\sin\theta}\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right) - \frac{m^2}{\sin^2\theta} + \varepsilon k^2 r^2 = 0 \tag{2.8}$$

В рівнянні 2.8 другий та третій доданки є функціями тільки від θ , а тому є константою яку позначимо l(l+1).

$$\frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) - \frac{m^2}{\sin^2 \theta} = -l(l+1) \tag{2.9}$$

Звідки

$$\frac{1}{\Theta \sin \theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + \left(l(l+1) - \frac{m^2}{\sin^2 \theta} \right) \Theta = 0 \tag{2.10}$$

Зробимо заміну $x = \cos \theta$, тоді з 2.10:

$$\frac{d}{dx}\left[(1-x^2)\frac{d\Theta(x)}{dx}\right] + \left(l(l+1) - \frac{m^2}{1-x^2}\right)\Theta(x) = 0 \tag{2.11}$$

Рівняння 2.11 задає приєднані поліноми Лежандра

$$\Theta(x) = P_l^m(x) \tag{2.12}$$

Де $l=0,1,2...,\ m\in [-l,l]$. Добуток функцій Φ та Θ є сферичними гармоніками:

$$Y_l^m(\theta,\varphi) = C_l^m P_l^m(\cos\theta) e^{im\varphi}$$
 (2.13)

Константу C_l^m можна отримати з умови нормування:

$$\int_0^{2\pi} d\varphi \int_0^{\pi} d\theta \sin\theta \left(Y_l^m(\theta, \varphi)^* \right) Y_{l'}^{m'}(\theta, \varphi) = \delta_{l, l'} \delta_{m, m'} \tag{2.14}$$

2.1.2. Радіальна частина рівняння

З рівнянь 2.8 та 2.10 маємо:

$$\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) + \left[\varepsilon k^2 r^2 - l(l-1)\right]R = 0 \tag{2.15}$$

або

$$r^{2}\frac{d^{2}R}{dr^{2}} + 2r\frac{dR}{dr} + \left[\varepsilon k^{2}r^{2} - l(l-1)\right]R = 0$$
 (2.16)

Введемо функцію Z(r) для якої:

$$R(r) = \frac{Z(r)}{(kr)^{1/2} \varepsilon^{1/4}}$$
 (2.17)

З 2.16 та 2.17 маємо:

$$r^{2}\frac{d^{2}Z}{dr^{2}} + r\frac{dZ}{dr} + \left[\varepsilon k^{2}r^{2} - l(l + \frac{1}{2})^{2}\right]Z = 0$$
 (2.18)

Це рівняння Бесселя порядку $l+\frac{1}{2}$, розв'язками якого є функції Бесселя та Неймана: $J_{l+\frac{1}{2}}(\varepsilon kr)$ і $N_{l+\frac{1}{2}}(\varepsilon kr)$.

Остаточний розв'язок рівняння Гейльмгольца:

$$U(r,\theta,\varphi) = \sum_{k} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(kr)^{1/2} \varepsilon^{1/4}} \left(a_{klm} J_{l+\frac{1}{2}}(\varepsilon kr) + b_{klm} N_{l+\frac{1}{2}}(\varepsilon kr) \right) Y_{l}^{m}(\theta,\varphi)$$

$$(2.19)$$

При $r \to \infty \Rightarrow N_{l+\frac{1}{2}} \to \infty$ тому в області $r > a: b_{klm} = 0.$

Отже:

$$U(r,\theta,\varphi) = \sum_{k} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(kr)^{1/2} \varepsilon_{2}^{1/4}} a_{klm}^{(2)} J_{l+\frac{1}{2}}(\varepsilon_{2}kr) Y_{l}^{m}(\theta,\varphi), \text{ якщо } r > a \quad (2.20)$$

$$U(r,\theta,\varphi) = \sum_{k} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{(kr)^{1/2} \varepsilon_{1}^{1/4}} \left(a_{klm}^{(1)} J_{l+\frac{1}{2}}(\varepsilon_{1} kr) + b_{klm}^{(1)} N_{l+\frac{1}{2}}(\varepsilon_{1} kr) \right)$$
 (2.21)
$$Y_{l}^{m}(\theta,\varphi), \text{ якщо } r < a$$

2.1.3. Граничні умови

$$U|_{r\to a-0} = U|_{r\to a+0}$$

$$n_2 \frac{\partial U}{\partial r}|_{r\to a-0} = n_1 \frac{\partial U}{\partial r}|_{r\to a+0}$$
(2.22)

$$\begin{split} \frac{1}{\varepsilon_{2}^{\frac{1}{4}}}a_{klm}^{(2)}J_{l+\frac{1}{2}}(\varepsilon_{2}ka) &= \frac{1}{\varepsilon_{1}^{\frac{1}{4}}}a_{klm}^{(1)}J_{l+\frac{1}{2}}(\varepsilon_{1}ka) + b_{klm}^{(1)}N_{l+\frac{1}{2}}(\varepsilon_{1}ka) \\ \frac{n_{2}}{\varepsilon_{2}^{\frac{1}{4}}}a_{klm}^{(2)}J_{l+\frac{1}{2}}'(\varepsilon_{2}ka) &= \frac{n_{1}}{\varepsilon_{1}^{\frac{1}{4}}}\left[a_{klm}^{(1)}J_{l+\frac{1}{2}}'(\varepsilon_{1}ka) + b_{klm}^{(1)}N_{l+\frac{1}{2}}'(\varepsilon_{1}ka)\right] \end{split} \tag{2.23}$$

Приймемо амплітуду падаючої хвилі за 1 та поділимо 2 рівняння на $a_{klm}^{(2)}$. Тоді:

$$\begin{split} J_{l+\frac{1}{2}}(\varepsilon_{2}ka) &= \sqrt[4]{\frac{\varepsilon_{2}}{\varepsilon_{1}}} \left[A_{klm} J_{l+\frac{1}{2}}(\varepsilon_{1}ka) + B_{klm} N_{l+\frac{1}{2}}(\varepsilon_{1}ka) \right] \\ J_{l+\frac{1}{2}}'(\varepsilon_{2}ka) &= \frac{n_{1}}{n_{2}} \sqrt[4]{\frac{\varepsilon_{2}}{\varepsilon_{1}}} \left[A_{klm} J_{l+\frac{1}{2}}'(\varepsilon_{1}ka) + B_{klm} N_{l+\frac{1}{2}}'(\varepsilon_{1}ka) \right] \end{split} \tag{2.24}$$

Звідки знаходимо A_{klm} та B_{klm} :

$$\begin{split} A_{klm} &= \frac{\frac{n_1}{n_2} N'_{l+\frac{1}{2}}(\varepsilon_1 k a) J_{l+\frac{1}{2}}(\varepsilon_2 k a) - N_{l+\frac{1}{2}}(\varepsilon_1 k a) J'_{l+\frac{1}{2}}(\varepsilon_2 k a)}{\sqrt[4]{\frac{\varepsilon_2}{\varepsilon_1}} \frac{n_1}{n_2} \left(N'_{l+\frac{1}{2}}(\varepsilon_1 k a) J_{l+\frac{1}{2}}(\varepsilon_1 k a) - N_{l+\frac{1}{2}}(\varepsilon_1 k a) J'_{l+\frac{1}{2}}(\varepsilon_1 k a) \right)} \\ B_{klm} &= \frac{\frac{n_1}{n_2} J_{l+\frac{1}{2}}(\varepsilon_1 k a) J'_{l+\frac{1}{2}}(\varepsilon_2 k a) - J'_{l+\frac{1}{2}}(\varepsilon_1 k a) J_{l+\frac{1}{2}}(\varepsilon_2 k a)}{\sqrt[4]{\frac{\varepsilon_2}{\varepsilon_1}} \frac{n_1}{n_2} \left(N'_{l+\frac{1}{2}}(\varepsilon_1 k a) J_{l+\frac{1}{2}}(\varepsilon_1 k a) - N_{l+\frac{1}{2}}(\varepsilon_1 k a) J'_{l+\frac{1}{2}}(\varepsilon_1 k a) \right)} \end{split} \label{eq:Bklm} \end{split}$$

2.1.4. Результати моделювання

РОЗДІЛ 3.

РЕЗУЛЬТАТИ ДОСЛІДЖЕНЬ

3.1. qqq

висновки

1. qqq