MULTIPROGRAMMED SERVER

Performance Evaluation of Computer System and Networks

Califano Tommaso • Ramacciotti Nicola • Suma Gabriele

Master's degree in Computer Engineering, 1st year Year 2023/24, fall term

Table of contents

01

02

03

Overview

Objectives and key performance indexes

Model

Theoretical model, assumptions and factors

Implementation

Omnet++ model and verification tests

04

Data Analysis

05

Conclusions

Calibration and simulations scenarios

01 Overview

Overview

Objectives:

- ☐ <u>Throughput</u>
- Utilization

Key performance indexes:

- Throughput: the number of completed transactions per unit of time.
- <u>Utilization</u>: the time percentage during which each node is busy.

O2 Model

Model

Factors

Assumptions

Finite number of clients = number of jobs within the system.

Infinite queue size

Service centers:
exponential distributed
service time with a
different rate and FIFO
order processing.

03 Implementation

Omnet++ Model

Verification

Continuity Test

Second Config

p1 = 0.35

 μ_{CPU} = 1000

p2 = 0.41

 $\mu_{HDD} = 250$

 $\mu_{WS} = 75$

Number of clients = 40

First Config

p1 = 0.35

 $\mu_{CPU} = 1000$

p2 = 0.40

 $\mu_{HDD} = 250$

 $\mu_{WS} = 75$

Number of clients = 40

Confidence level: 95%

Verification

Consistency Test

Common Values

$$p1 = 0.35$$

$$\mu_{CPU} = 1000$$

$$p2 = 0.40$$

$$\mu_{HDD} = 250$$

$$\mu_{WS} = 75$$

- 20 Clients
- 40 Clients

Confidence level: 95%

O4
Data Analysis

Calibration Warm-up evaluation

Repetitions

The experiment was based on 100 repetitions

Gathered data

All data were analyzed with time average function

Final Value

500s warm-up period

Calibration Simulation Time

Simulation Scenarios: p1 vs p2

Simulation Scenarios: μ_{HDD} and p1

Simulation Scenarios: μ_{WS} and p1

Confidence Interval

We have omitted the representation of confidence intervals due to their negligible size.

O5Conclusions

Conclusions

First Scenario

Situation

- Vast amount of local computations.
- Minimal interaction with Web Servers.

In the model

p2 is expected to be high due to the significant load on the local server.

Solution

Increase μHDD to improve the throughput of the system.

Second Scenario

Situation

- Minimal local processing.
- Relies on cloud-based computations.

In the model

p2 is likely to be low due to the high volume of requests to the remote web-server.

Solution

Increase the μ WS to boost the throughput of the system.

Thanks!

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

