Probability Theory

Вероятностная модель эксперимента со случайными исходами. Операции над событиями и операции на множествами. Примеры (1)

Конечное число исходов: $\Omega = \{w_1, ..., w_n\}$ - пространство элементарных событий. w_i - элементарное событие **Событие** - подмножество пространства элементарных событий

Конечное вероятностное пространство. Свойства вероятности. Классическое определение вероятности (2)

$$\begin{array}{l} |\Omega| = N \\ p_i \geq 0, \sum p_i = 1 \\ P(A) = \sum\limits_{w_i \in A} p_i \text{ - A probability} \end{array}$$

Свойства.....

Классическое определение вероятности

$$p_1 = \dots = p_i = \dots = p_N$$
$$P(A) = \frac{|A|}{N}$$

Условная вероятность. Мотивировка, определение и свойства (3)

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Свойства:

Все тривиальные

Формула полной вероятности. Формула и теорема Байеса. Примеры (4)

Формула полной вероятности

 A_i - дизьюнктное объединение дает все пространство.

$$P(B) = \sum P(B|A_i)P(A_i)$$

Тривиально

Формула Байеса

$$P(A) > 0, P(B) > 0 \Rightarrow P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Теорема Байеса

$$\Sigma = \bigsqcup A_i, P(B) > 0$$

$$P(A_k|B) = \frac{P(B|A_k)P(A_k)}{\sum P(B|A_i)P(A_i)}$$

Независимые события. Мотивировка и определение. Попарная независимость и независимость в совокупности (5)

A, В независимы $\Leftrightarrow P(A \cap B) = P(A)P(B)$

Что равносильно тому что P(A|B) = P(A)

События независимы в совокупности $\Leftrightarrow \forall 1 \leq i_1 < i_2 < ... < i_k \leq nP(\bigcap A_i) = \prod P(A_i)$

Попарная независимость слабее независимости в совокупности

ТООО: Пример

Независимость при фиксированном к слабее независимости в совокупности

ТООО: Пример

Схема Бернулли. Полиномиальная схема (6)

п независимых подбрасываний несбалансированной монеты

$$w = (x_1, ...x_n), x_i \in \{1, 0\}$$

$$\Sigma = \{w\}$$

$$P(w) = p^{\sum x_i} (1-p)^{n-\sum x_i}$$

Корректность.

$$\sum_{k=0}^{n} P(w) = \sum_{k=0}^{n} P(A_k) = \sum_{k=0}^{n} \binom{n}{k} p^k (1-p)^{n-k} = (1+1-p)^n$$

$$B_k = \{w | x_k = 1\}$$
 независимы.

Набор вероятностей $\{P(A_1), ..., P(A_n)\}$

Полиномиальная схема

Модель: не монетка, а игральная кость с неравномерными гранями. п независимых подбрасываний Ну все то же самое, что и со схемой Бернулли.

Теорема Эрдеша (7)

Теорема Рамсея

 $\forall k, m \exists n(k,m)$, такое что для любого графа на n вершинах существует либо клика на k вершинах, либо пустой подграф на вершинах.

R(k,m) - наименьшее такое n.

Теорема Эрдеша:

$$R(k,k) > 2^{k/2}$$

Берем набор из k вершин, вероятность того, что он полный или пустой равна $2^{1-\binom{k}{2}}$. Вероятность, что хоть какой то набор таков меньше суммы по всем наборам. Т.е. если $\binom{n}{k} 2^{1-\binom{k}{2}} < 1$, то существует граф, для которого нет такого графа.

В частности это верно для $n = 2^{k/2}$

Теоремы Пуассона и Прохорова (8)

Теорема Пуассона

$$np_n \to \lambda > 0$$

$$np_n \to \lambda > 0$$

$$P(S_n = k) \to \frac{\lambda^k e^{-\lambda}}{k!}$$

Теорема Прохорова

$$\sum_{k=0}^{\infty} |P(S_n = k) - \frac{\lambda^k e^{-\lambda}}{k!}| \le \frac{\min\{2, \lambda\}}{n} 2\lambda$$

Локальная теорема Муавра-Лапласа (9)

$$x = \frac{k - np}{\sqrt{npq}}, T$$
 - фиксированное число

Если $n \to \infty$, k меняется таким образом, что $|x| \le T \Rightarrow P(S_n = k) \sim \frac{1}{\sqrt{2\pi npq}} e^{-x^2/2}$ равномерно по х.

Интегральная теорема Муавра-Лапласа, оценка на скорость сходимости. Задача о театре (10)

Вероятностное пространство. Условная вероятность. Независимые события (11)

Колмогоровское определение вероятности

 Σ - пространство элементарных событий

F - множество случайных событий 2^{Σ}

P - мера на F, такая что $P(\Sigma) = 1$

Последовательность независимых событий - если взять любой конечный набор, он будет независим.

Лемма Бореля-Кантелли. Закон нуля и единицы (12)

 $A_1, A_2, ...$, - события. B - событие "наступило бесконечное число событий из $A_1, ...$ "

1. Если $\sum P(A_i)$ конечна, то P(B)=0

 $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$. Отсюда очевидно первый пункт

Второй. ТОДО

Следствие: закон 0 и 1: если A_i независимы в совокупности, то либо P(B)=0, либо P(B)=1

Случайная величина. Распределение с.в. Свойства функций распределения (13)

С.в - функция из сигмы в R.

$$F_{\xi}(x) = P(\xi \le x)$$

Свойства

- 1. $0 \le F_{\xi} \le 1$
- 2. F_{ε} не убывает.
- 3. предел на минус беск. равен 0, предел на + беск равен 1
- 4. Непрерывность справа
- 5. $F_{\xi+c}(x) = F_{\xi}(x-c)$ 6. $F_{c\xi}(x) = F_{\xi}(\frac{x}{c})$

Дискретное, непрерывное и абсолютно непрерывное распределения. Свойства (14)

Дискретная с.в. $\xi: \Sigma \to \{y_1, y_2, ..\}$ - не более, чем счетно

Тогда функция распределения устроена ступеньками. Распределение полностью определяется величинами $P(\xi=y_k)$ Непрерывная с.в.

 $\forall x \in \mathbb{R}P_{\xi}(\{x\}) = 0$, что равносильно непрерывности слева ф. р.

Абсолютно непрерывное распределение

Если существует $p_{\xi}(t):R \to R$ (плотность) - измеримая функция, т.ч. $F_{\xi}(x)=\int_{-\infty}^{x}p(t)dt$

- 1. $P_{\xi}(A)=\int p(t)$, так как это равенство верно на лучах на минус беск., то верно и на полуинтервалах, тогда по единственности продолжения меры на полуинтервалах верно и на всех Борелевских мн-вах.
 - 2. Плотность больше/равна нулю почти везде (так как плотность измеримая ф-ция)
 - 3. Интеграл плотности по R равен 1.
 - 4. Плотность равна производной ф.р. почти везде

Примеры вероятностных распределений (15)

- 1. Биномиальные распределения: $\xi \sim Binom(n,p) \Leftrightarrow P(\xi=k) = \binom{n}{k} p^k (1-p)^{n-k}$
- 2. Распределение Пуассона: $P(\xi=k)=\frac{\lambda^k e^{-\lambda}}{k!}$ 3. Геометрическое распределение: $P(\xi=k)=p(1-p)^{k-1}$
- 4. Дискретное равномерное распределение: $\{y_1, ..., y_n\}$

$$P(\xi = y_k) = \frac{1}{n}$$

- 5. Непрерывное равномерное распрделение $p_{\xi}(t) = \frac{1}{b-a} 1_{[a,b]}(t)$
- 6. Нормальное распределение: $p_{\xi}(t) = \frac{1}{\sigma \sqrt{2\pi}} e^{-(t-a)^2/2\sigma^2}$
- 6'. Стандартное нормальное распределение: $p_{\xi}(t)=rac{1}{\sigma\sqrt{2\pi}}e^{-t^2/2}$
- 7. Экспоненциальное распределение: $p_{\xi}(t) = \lambda e^{-\lambda t} 1_{[0,+\infty)}(t)$

Совместные распределения. Совместное распределение независимых с.в. (16)

```
\xi: \Sigma \to R^n
P_{\xi_1}(B) = P_{\xi}(B \times R^{n-1})
```

То есть совместная мера определяет все одномерные меры, но не наоборот (например, подбрасывания монетки могут быть зависимыми или нет).

Случайные величины независимы, если $\forall A_1,...,A_n \in R$ события $\xi_1 \in A_1,...,\xi_2 \in A_2,...$ независимы

Теорема: $\xi_1,...,\xi_n$ независимы $\Leftrightarrow P_{\xi} = \bigotimes P_{\xi_i}$ - произведение мер.

Совместная функция распределения (тривиально)

Совместная плотность распределения: ф.р. - это инетграл по п-мерной мере Лебега

Следствие с.в. независимы $\Leftrightarrow F_{\xi}(x_1,..,x_n) = F_{\xi_1}(x_1)...F_{\xi_n}(x_n)$

Вправо: пользуемся теоремой

Влево: функция распределения однозначно определяет меру на ячейках, значит у нее единственное продолжение, и это равенство верно для P_{ξ} , дальше теорема.

Следствие: $\xi_1,...,\xi_n$ - абсолютно непрерывные с.в., тогда ξ_i независимы $\Leftrightarrow p_\xi(t_1,..,t_n)=p_{\xi_1}(t_1)...p_{\xi_n}(t_n)$.

По абсолютной непрерывности ТООО

Свертки мер. Свертки мер, имеющих плотность (17)

TODO

Распределение суммы независимых случайных величин. Примеры (18)

 ξ,η - независимые случайные величины $\Rightarrow P_{\xi+\eta} = P_{\xi} * P_{\eta}$

 $\xi + \eta \in A \Leftrightarrow (\xi, \eta) \in B \subset R^2$

 $P_{\xi+\eta}(A) = P_{(\xi,\eta)}(B) = \int_{R^2} 1_B(x,y) dP_{\xi,\eta}(x,y) = \int_{R^2} 1_A(x+y) dP_{\xi,\eta}(x,y) = \int_{R^2} 1_A(x+y) dP_{\xi}(x) dP_{\eta}(y)$, последнее равенство по теореме Фубини

Мат ожидание. Свойства (19)

 $E_{\xi} = \int_{\Sigma} \xi(w) dP(w).$

Свойства

- 1. $E\xi < +\infty \Leftrightarrow E_{|\xi|} < +\infty$
- 2. Линейность (линейность интеграла по мере)
- 3. $P(\xi \ge 0) = 1 \Rightarrow E_{\xi} \ge 0$
- 4. $P(\xi \ge \eta) = 1 \Rightarrow E_{\xi} \ge E_{\eta}$
- 5. $E = \int_{R} x dP(x)$ из пункта 6.

6. $E_{f(\xi_1,...,\xi_n)} = \int_{R^n} f(x_1,...,x_n) dP_{\xi_1,...,\xi_n}(x_1,...,x_n)$ IIIar 1: $f = 1_A \Rightarrow E_{1_A} = \int_{\Sigma} 1_A dP(w) = P_{\xi_1,...,\xi_n}(A) = \int_{R^n} 1_A dP_{\xi_1,...,\xi_n}(x_1,...,x_n)$

Шаг 2: Для простых функций все верно по линейности

(16)

(16)

(16)

(16)

(16)

(16)

(16)

(16)

(16)