MA 374: FE-Assignment #01

Due on Wednesday, January 27, 2016

Silvi Pandey (130123045)

PROBLEM

Write a program, using the binomial pricing algorithm, to determine the price of an European call and an European put option (in the binomial model framework) with the following data:

$$S(0) = 9 K = 10 T = 3 r = 0.06 \sigma = 0.3$$
$$u = e^{\sigma\sqrt{\Delta t} + (r - \frac{1}{2}\sigma^2)\Delta t} d = e^{-\sigma\sqrt{\Delta t} + (r - \frac{1}{2}\sigma^2)\Delta t}$$

where $\Delta t = \frac{T}{M}$, with M being the number of subintervals in the time interval [0,T]. Use the continuous compounding convention in your calculations (i.e., both in $\sim p$ and in the pricing formula).

- (1) Run your program for M = 1, 5, 10, 20, 50, 100, 200, 400 to get the initial option prices and tabulate them.
- (2) How do the values of options at time t = 0 compare for various values of M? Compute and plot graphs (of the initial option prices) varying M in steps of 1 and in steps of 5. What do you observe about the convergence of option prices?
- (3) Tabulate the values of the options at t = 0, 0.30, 0.75, 1.50, 2.70 for the case M = 20. Note that your program should check for the no-arbitrage condition of the model before proceeding to compute the prices.

SOLUTION

No-Arbitrage Condition for continuous compounding: $0 < d < exp(r\Delta t) < u$

This condition has been checked in every calculation: There is no arbitrage possible.

 $\sim p$ for continuous compounding : $\frac{e^{r\Delta t}-d}{u-d}$ $\sim q$ for continuous compounding : $\frac{u-e^{r\Delta t}}{u-d}$

 $\sim p + \sim q = 1$

Part-1

European Call:

M	Option Price
1	1.987350
5	2.122623
10	2.142532
20	2.099561
50	2.123226
100	2.119768
200	2.119670
400	2.120391

European Put:

M	Option Price
1	1.340052
5	1.475326
10	1.495234
20	1.452263
50	1.475929
100	1.472470
200	1.472372
400	1.473093

Part-2 European Call:

 $M(Given\ in\ Part-1)$ - Price of European call option Plot :

M(increased in steps of 1) - Price of European call option Plot :

M(increased in steps of 5) - Price of European call option Plot :

European Put:

M(Given in Part-1) - Price of European put option Plot :

M(increased in steps of 1) - Price of European put option Plot :

M(increased in steps of 5) - Price of European put option Plot :

Convergence in the price of option: As observed in the plot, the points of convergence are as follows:

- (1) European Call Option: M (Step of 1) = 150(approx), M (Step of 5) = 200(approx)
- (1) European Put Option : M (Step of 1) = 200(approx), M (Step of 5) = 200(approx)

Part-3

European Call:

t	Value of Option	
2.70	56.296, 42.586, 31.719, 23.106, 16.278, 10.866, 6.576, 3.176, 0.892, 0.054, 0.000	
1.50	$18.113 \;, 12.473 \;, 8.054 \;, 4.709 \;, 2.378 \;, 0.978 \;, 0.304 \;, 0.064 \;, 0.008 \;, 0.000$	
0.75	$7.151 \; , \; 4.237 \; , \; 2.241 \; , \; 1.024 \; , \; 0.389 \; , \; 0.118$	
0.30	3.559, 1.880, 0.871	
0.00	2.100	

${\bf European\ Put:}$

t	Value of Option
2.70	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
1.50	$0.001\;,0.011\;,0.071\;,0.277\;,0.760\;,1.591\;,2.685\;,3.846\;,4.901\;,5.774\;,6.471$
0.75	$0.227 \; , 0.560 \; , 1.139 \; , 1.962 \; , 2.944 \; , 3.955$
0.30	$0.831 \; , 1.481 \; , 2.319$
0.00	1.452