Esercizi svolti e da svolgere sugli argomenti trattati nella lezione 20

Esercizi svolti

Es. 1. Sia dato il seguente circuito:

Trovarne l'automa corrispondente, minimizzarlo e descriverne a parole il funzionamento. Si assuma che il circuito abbia inizialmente tutti i FF resettati.

SOLUZIONE:

Le EB booleane per il circuito sono:

$$S = Q1 \overline{x}$$
 $R = x$ $T = x \oplus Q0$ $Z = x Q0$

da cui la tabella degli stati futuri è:

x Q1 Q0 (t)	SRT (t)	z(t)	Q1 Q0 (t+1)
0 0 0	0 0 0	0	0 0
0 0 1	0 0 1	0	0 0
0 1 0	1 0 0	0	1 0
0 1 1	1 0 1	0	1 0
1 0 0	0 1 1	0	0 1
1 0 1	0 1 0	1	0 1
1 1 0	0 1 1	0	0 1
1 1 1	0 1 0	1	0 1

Da ciò si ricava la tabella dell'automa (i cui stati sono chiamati come al solito S0 se Q1Q0 = 00, S1 se Q10 se

	0	1
S0	S0/0	S1/0
S1	S0/0	S1/1
S2	S2/0	S1/0
S 3	S2/0	S1/1

Osserviamo subito che S2 ed S3 sono irraggiungibili con stato iniziale S0; è facile verificare che l'automa restante è già minimo e lo possiamo rappresentare come segue:

L'automa restituisce 1 se rileva almeno due '1' di fila, cioè se all'istante t e all'istante t-1 ha ricevuto in input '1'.

Es. 2. Analizzare il seguente circuito sequenziale fino alla descrizione verbale del circuito, assumendo che all'inizio i flip flop siano impostati a q2 q1 q0 = 110.

SOLUZIONE:

Le espressioni booleana associate alle entrate dei FF e all'uscita del circuito sono:

$$T0 = x$$
 $J1 = x Q2$
 $K1 = Q2$
 $D2 = Q0 Q1$
 $z = x Q2$

Da esse si può costruire la tabella degli stati futuri

x Q2 Q1 Q0	T0	J1 K1	D2	Q2' Q1' Q0'	Z
0 0 0 0	0	0 0	0	0 0 0	0
0 0 0 1	0	0 0	0	0 0 1	0
0 0 1 0	0	0 0	0	0 1 0	0
0 0 1 1	0	0 0	1	1 1 1	0
0 1 0 0	0	0 1	0	0 0 0	0
0 1 0 1	0	0 1	0	0 0 1	0
0 1 1 0	0	0 1	0	0 0 0	0
0 1 1 1	0	0 1	1	1 0 1	0
1 0 0 0	1	0 0	0	0 0 1	0
1 0 0 1	1	0 0	0	0 0 0	0
1 0 1 0	1	0 0	0	0 1 1	0
1 0 1 1	1	0 0	1	1 1 0	0
1 1 0 0	1	1 1	0	0 1 1	1
1 1 0 1	1	1 1	0	0 1 0	1
1 1 1 0	1	1 1	0	0 0 1	1
1 1 1 1	1	1 1	1	1 0 0	1

Prendendo come configurazione iniziale quella per cui Q2 Q1 Q0 = 110, si ottiene il seguente automa che descrive il funzionamento del circuito (N.B.: alcuni stati sono irraggiungibili partendo da 110, pertanto sono omessi nell'automa):

	0	1
110	000/0	001/1
000	000/0	001/0
001	001/0	000/0

Si può notare che l'automa non è minimo, e fondere gli stati 000 e 001, ottenendo

	0	1
SO SO	S1/0	S1/1
S1	S1/0	S1/0

Cioè, questo circuito da 1 solo quando riceve in ingresso sequenze di bit del tipo 1000...0

Esercizi da svolgere

Es. 1. Analizzare il seguente circuito sequenziale.

Es. 2. Sia dato il circuito seguente e sia assuma che le uscite iniziali dei FF siano a 0.

Es. 3. Sia dato il circuito seguente e sia assuma che l'uscita iniziale del FF sia a 0.

