SCASI: Wheat

Table of Contents

Load the working packages	
Load the data	1
Overview of the data	2
Extract data per crops	2
Descriptive statistics	2
Yield accorss treatments	2
Yield accorss locations	3
Yield accorss locations and treatments	4
Factorial analysis	7
Posthoc test	
Best treatment per location	9
For every woreda, what are the 3 best treatment?	

Load the working packages

```
library(AgroR)
library(tidyverse)
library(agricolae)
library(lme4)
library(emmeans)
library(reshape)
library(reshape2)
library(car)
```

Load the data

```
setwd("~/Code/R/SCASI")
library(tidyverse)
library(skimr)

df <- readxl::read_excel("./input/SCASI_Field_Trials_Data_2022ALL_20230409_Ad
ama_v2.xlsx",sheet = "MergePart2Part1")
# First rows
#knitr::kable(head(df))

# Convert to factor
df$Rep <- as.factor(df$Rep)
df$Treatment <- as.factor(df$Treatment)
df$Woreda <- as.factor(df$Woreda)</pre>
```

Overview of the data

Number of observations and variables:

```
## [1] 709 153
```

Extract data per crops

```
# Wheat
wheat <- df %>% filter(Plot_crop=="Wheat")
```

Descriptive statistics

Yield accorss treatments

```
yield_trt_summary<- wheat %>% group_by(Treatment) %>% summarize(across(.cols
= c(GY_kg_ha,SY_kg_ha),list(min=min,max=max,mean=mean,sd=sd),na.rm=T,.names =
"{.fn}_{.col}"))
knitr::kable(yield_trt_summary)
```

Treat ment	min_GY _kg_ha	max_GY _kg_ha	mean_G Y_kg_ha	sd_GY_ kg_ha	min_SY _kg_ha	max_SY _kg_ha	mean_S Y_kg_ha	sd_SY_ kg_ha
1	216	3300	931.32	642.21	100	3280	1649.4	830.54
2	352	4800	1108.5	831.25	400	7200	2105.6	1322
3	390	5200	2159.2	1113.9	500	11033	4151.3	2292.4
4	300	4500	2019.2	1037.8	500	11893	3839.6	2108.1
5	380	4920	1933.3	1080.5	500	9666.7	3623.9	1952.6
6	58.416	4700	1396.4	893.81	186.14	5700	2571.4	1398
7	320	5000	1495.4	1067.5	400	6000	2658.7	1523.9
8	420	4235	1842.3	982.31	1000	6500	3338.1	1596.6

```
#yield trt summary
```

```
#with(wheat, desc(Treatment, GrainYield, ylab = "Grain Yield ", xlab = "Treat
ment", ylim = NA))
```

#boxplot

Yield accorss locations

yield_location<- wheat %>% group_by(Woreda) %>% summarize(across(.cols = c(GY
_kg_ha,SY_kg_ha),list(min=min,max=max,mean=mean,sd=sd),na.rm=T,.names = "{.fn
}_{.col}"))

knitr::kable(yield_location)

Wor eda	min_GY _kg_ha	max_GY _kg_ha	mean_G Y_kg_ha	sd_GY_ kg_ha	min_SY _kg_ha	max_SY _kg_ha	mean_S Y_kg_ha	sd_SY_ kg_ha
Bibu gn	300	5000	1848.3	1113.9	100	5000	1680.9	997.82
Bure Zuri a	58.416	3350	1326.3	786.23	186.14	7550	3219.8	1667.6
Leka Dule cha	216	5200	1801.5	1206.5	712	11893	4036	2043.4

```
#yield trt summary
```

#with(wheat, desc(Treatment, GrainYield, ylab = "Grain Yield ", xlab = "Treat
ment", ylim = NA))

#boxplot

Yield accorss locations and treatments

Summary table

yield_location_trt<- wheat %>% select(GY_kg_ha, SY_kg_ha, Woreda,Treatment) %
>% group_by(Woreda,Treatment) %>% summarize(across(.cols = c(GY_kg_ha, SY_kg_ha),list(min=min,max=max,mean=mean,sd=sd),na.rm=T,.names = "{.fn}_{.col}"))

`summarise()` has grouped output by 'Woreda'. You can override using the
`.groups` argument.

knitr::kable(yield_location_trt)

Wor eda	Treat ment	min_GY _kg_ha	max_GY _kg_ha	mean_G Y_kg_ha	sd_GY_ kg_ha	min_SY _kg_ha	max_SY _kg_ha	mean_S Y_kg_ha	sd_SY_ kg_ha
Bibu gn	1	500	3300	1263.6	924.42	100	2200	954.55	677.29
Bibu gn	2	500	4800	1610	1256.5	400	3200	1280	871.52
Bibu gn	3	500	4000	2190.9	1021.2	500	5000	2309.1	1176.8
Bibu gn	4	300	4500	2309.1	1134.4	500	5000	2263.6	1140.4
Bibu gn	5	500	4800	2108.3	1043.1	500	3700	1983.3	854.76
Bibu gn	6	700	4700	1645.5	1175	600	4300	1463.6	1085.6
Bibu gn	7	500	5000	1616.7	1305.8	400	2500	1316.7	784.9
Bibu gn	8	1000	3500	2018.2	917.41	1000	2900	1845.5	612.15

Bur	1	300	1350	775	396.22	1000	3000	1856.3	679.77
e									
Zuri a									
Bur	2	390	1450	731.88	309.71	1130	4150	2083.1	942.46
e									
Zuri									
a Bur	3	390	3100	1876.9	916.43	1880	6900	4502.5	1878.1
e	3	370	3100	1070.7	710.15	1000	0,00	1302.3	1070.1
Zuri									
a	4	600	2250	16525	700.6	2120	7250	4020.1	15246
Bur e	4	600	3350	1652.5	788.6	2130	7350	4028.1	1534.6
Zuri									
a									
Bur	5	380	3250	1676.3	787.55	1500	7550	3962.5	1637.3
e Zuri									
a									
Bur	6	58.416	2500	1080.5	632.66	186.14	5700	2625.4	1362.4
e									
Zuri									
a Bur	7	320	2450	1210.6	672.21	1400	6000	2921.3	1422.6
e								_,	
Zuri									
a Bur	8	420	2650	1606.9	784.57	1500	6200	3779.4	1594.5
e	0	420	2030	1000.9	704.37	1300	0200	3//7.4	1374.3
Zuri									
a		215		0.1 = 0		-10	2222		
Lek	1	216	1775	815.9	495.34	712	3280	2082.9	777.37
a Dule									
cha									
Lek	2	352	2400	1200.4	659.54	1344	7200	2888.8	1708.4
a Dule									
cha									
Lek	3	1253.3	5200	2538.2	1414.7	1384	11033	5482.5	2624.7
a									
Dule cha									
Lek	4	946.67	4080	2262.7	1180	2186.7	11893	5141.4	2637.7
a	•	, 1010,	1000				11070	021211	
Dule									
cha									

Lek	5	696	4920	2116.2	1459.4	2520	9666.7	4921.1	2097.5
a									
Dule									
cha									
Lek	6	800	3225	1606.6	835.65	2200	5600	3600.5	865.61
a									
Dule									
cha									
Lek	7	600	4300	1777.2	1241.8	1800	6000	3740.7	1245.5
a									
Dule									
cha									
Lek	8	432	4235	2025.3	1313.4	2820	6500	4273.9	1225
a									
Dule									
cha									

#yield_trt_summary
#with(wheat, desc(Treatment, GrainYield, ylab = "Grain Yield ", xlab = "Treat
ment", ylim = NA))

Grain

Stover

Factorial analysis

```
# Analysis of variance
model <- lm(GY_kg_ha~ Treatment + Woreda + (Treatment:Woreda) +</pre>
              (Woreda: Rep), data=wheat)
anova(model)
## Analysis of Variance Table
##
## Response: GY_kg_ha
                     Df
                           Sum Sq Mean Sq F value
                                                     Pr(>F)
##
## Treatment
                      7
                         52485595 7497942 9.5269 1.376e-10 ***
## Woreda
                      2
                         18013080 9006540 11.4437 1.688e-05 ***
## Treatment:Woreda 14
                                   261835 0.3327
                          3665685
                                                     0.9893
                        40905303 6817551 8.6624 1.226e-08 ***
## Woreda:Rep
                      6
## Residuals
                    273 214859575
                                  787031
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Posthoc test

```
# Compute the estimated marginal means
emmeans_result <- emmeans(model, ~ Treatment)</pre>
## NOTE: A nesting structure was detected in the fitted model:
##
       Rep %in% Woreda
## NOTE: Results may be misleading due to involvement in interactions
# Perform pairwise comparisons using Tukey's adjustment
pairwise_result <- pairs(emmeans_result, adjust = "tukey")</pre>
# Display the pairwise comparisons
```

knitr::kable(pairwise_result)

contrast	estimate	SE	df	t.ratio	p.value
Treatment1 - Treatment2	-213.20143	210.9984	273	-1.0104408	0.9726136
Treatment1 - Treatment3	-1278.38325	210.0544	273	-6.0859625	0.0000001
Treatment1 - Treatment4	-1107.18754	209.1061	273	-5.2948600	0.0000068
Treatment1 - Treatment5	-1022.99090	207.0419	273	-4.9409858	0.0000369
Treatment1 - Treatment6	-520.58005	210.0544	273	-2.4783105	0.2092149
Treatment1 - Treatment7	-590.91388	207.0419	273	-2.8540792	0.0863763
Treatment1 - Treatment8	-931.95126	210.5236	273	-4.4268248	0.0003656
Treatment2 - Treatment3	-1065.18182	209.5775	273	-5.0825208	0.0000189
Treatment2 - Treatment4	-893.98611	208.6270	273	-4.2850932	0.0006612
Treatment2 - Treatment5	-809.78947	207.4344	273	-3.9038333	0.0029737
Treatment2 - Treatment6	-307.37861	209.5775	273	-1.4666587	0.8244636
Treatment2 - Treatment7	-377.71245	207.4344	273	-1.8208763	0.6064152
Treatment2 - Treatment8	-718.74983	210.9984	273	-3.4064224	0.0170737
Treatment3 - Treatment4	171.19571	207.6722	273	0.8243555	0.9916272
Treatment3 - Treatment5	255.39235	206.4741	273	1.2369220	0.9201884
Treatment3 - Treatment6	757.80321	206.7129	273	3.6659688	0.0070801
Treatment3 - Treatment7	687.46937	206.4741	273	3.3295671	0.0218515
Treatment3 - Treatment8	346.43199	210.0544	273	1.6492488	0.7197609
Treatment4 - Treatment5	84.19664	205.5093	273	0.4096975	0.9999091
Treatment4 - Treatment6	586.60750	207.6722	273	2.8246803	0.0931896
Treatment4 - Treatment7	516.27367	205.5093	273	2.5121671	0.1947069
Treatment4 - Treatment8	175.23628	209.1061	273	0.8380257	0.9907561
Treatment5 - Treatment6	502.41085	206.4741	273	2.4332875	0.2296232
Treatment5 - Treatment7	432.07702	203.4829	273	2.1234075	0.4025162

Treatment5 - Treatment8	91.03964	207.0419	273	0.4397161	0.9998537
Treatment6 - Treatment7	-70.33383	206.4741	273	-0.3406424	0.9999741
Treatment6 - Treatment8	-411.37122	210.0544	273	-1.9584032	0.5120470
Treatment7 - Treatment8	-341.03738	207.0419	273	-1.6471905	0.7210522

Best treatment per location

For every woreda, what are the 3 best treatment?

Grain

```
best_comb<-yield_location_trt %>% select(Woreda, Treatment, mean_GY_kg_ha) %>
%
   group_by(Woreda) %>%
   slice_max(mean_GY_kg_ha, n=3)
knitr::kable(best_comb)
```

Woreda	Treatment	mean_GY_kg_ha
Bibugn	4	2309.091
Bibugn	3	2190.909
Bibugn	5	2108.333

Bure Zuria	3	1876.875
Bure Zuria	5	1676.250
Bure Zuria	4	1652.500
Leka Dulecha	3	2538.242
Leka Dulecha	4	2262.667
Leka Dulecha	5	2116.182

• Stover

best_comb<-yield_location_trt %>% select(Woreda, Treatment, mean_SY_kg_ha) %>
%

group_by(Woreda) %>%

slice_max(mean_SY_kg_ha, n=3)

knitr::kable(best_comb)

Woreda	Treatment	mean_SY_kg_ha
Bibugn	3	2309.091
Bibugn	4	2263.636
Bibugn	5	1983.333
Bure Zuria	3	4502.500
Bure Zuria	4	4028.125
Bure Zuria	5	3962.500
Leka Dulecha	3	5482.545
Leka Dulecha	4	5141.364
Leka Dulecha	5	4921.061