Partial Least Squares Regression - PLS

Analisi Statistica dei Dati Multidimensionali¹

¹Corso di Laurea in Scienze Statistiche e Attuariali

Facoltà di Scienze Economiche e Aziendali Università degli Studi del Sannio

Modelli di base

- Si consideri il modello lineare in termini matriciali $\mathbf{Y}_{(n,c)} = \mathbf{X}_{(n,p)} \mathbf{B}_{(p,c)} + \mathbf{E}_{(n,c)}$ dove \mathbf{B} contiene i c coefficienti di regressione e \mathbf{E} termine residuale del modello
- T = XW matrice degli score tramite la matrice dei pesi W
- Si consideri inoltre il modello Y = TQ^T + E dove Q è una matrice di coefficienti di regressione per T ed E termine residuale.
- Una volta calcolate le Q il precedente modello equivale a Y = XB + E (con B = WQ^T) che può essere considerato come un modello regressivo predittivo.
- Una matrice necessaria per una descrizione completa del PLS è la matrice ${\bf P}$ dei fattori del modello ${\bf X}={\bf T}{\bf P}^T+{\bf F}$ con ${\bf F}$ matrice residuale

Notazione e criterio

- Indichiamo con E₀ = X e F₀ = Y le matrici centrate e normalizzate rispetto alla metrica dei pesi D
- Sia allora A il numero di componenti prescelte k = 1, ..., A
- Siano $\mathbf{t} = \mathbf{E}_{k-1}\mathbf{w}$ e $\mathbf{u} = \mathbf{F}_{k-1}\mathbf{q}$ le combinazioni lineari colonne delle matrici centrate \mathbf{E}_{k-1} e \mathbf{F}_{k-1} associate rispettivamente ai vettori dei pesi \mathbf{w} e \mathbf{p}
- La covarianza fra t e u si scrive come il prodotto scalare rispetto alla metrica dei pesi D

$$cov(\mathbf{t}, \mathbf{u}) = (\mathbf{t}, \mathbf{u})_{\mathbf{D}} = \mathbf{w}^T \mathbf{E}_{k-1}^T \mathbf{D} \mathbf{F}_{k-1} \mathbf{q}$$

• $var(\mathbf{t}) = \|\mathbf{t}\|_{\mathbf{D}}^2 = \mathbf{t}^T \mathbf{D} \mathbf{t}$ norma quadratica rispetto alla metrica dei pesi **D**

Passo k

Il passo k dell'algoritmo si può separare concettualmente in due parti. La prima parte fornisce le componenti
 t_k = E_{k-1}w_k e u_k = F_{k-1}q_k attraverso i pesi ottimali w_k e q_k. La seconda parte aggiorna la matrice dei predittori e delle risposte E_k e F_k come residui della regressione su t_k

Calcolo dei pesi	$\operatorname{argmax}_{(\mathbf{w}_k,\mathbf{q}_k)}\operatorname{cov}(\mathbf{t},\mathbf{u}) = \mathbf{w}_k^T \mathbf{E}_{k-1}^T \mathbf{D} \mathbf{F}_{k-1} \mathbf{q}_k$
2. Calcolo dei residui	$ \mathbf{E}_{k} = \mathbf{E}_{k-1} - \mathbf{P}_{\mathbf{t}_{k}} \mathbf{E}_{k-1} \\ \mathbf{F}_{k} = \mathbf{F}_{k-1} - \mathbf{P}_{\mathbf{t}_{k}} \mathbf{F}_{k-1} $

dove $\mathbf{P}_{\mathbf{t}_k} = \frac{\mathbf{t}_k \mathbf{t}_k^T \mathbf{D}}{var(\mathbf{t}_k)} = \frac{\mathbf{t}_k \mathbf{t}_k^T \mathbf{D}}{\mathbf{t}_k^T \mathbf{D} \mathbf{t}_k} = \mathbf{t}_k (\mathbf{t}_k^T \mathbf{D} \mathbf{t}_k)^{-1} \mathbf{t}_k^T \mathbf{D}$ è l'operatore di proiezione **D**-ortogonale sul sottospazio di \mathbf{t}_k

Problema di ottimizzazione

- Le soluzione sono ottenute mediante il metodo dei moltiplicatori di Lagrange.
- La funzione Lagrangiana è definita come

$$L = \mathbf{w}^T \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} - \frac{\lambda}{2} (\mathbf{w}^T \mathbf{w} - 1) - \frac{\mu}{2} (\mathbf{q}^T \mathbf{q} - 1)$$

 Differenziando L rispetto a w e q e uguagliando a zero il risultato, otteniamo il seguente sistema di equazioni normali

$$\begin{split} \frac{\partial L}{\partial \mathbf{w}} &= \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} - \lambda \mathbf{w} = 0 \\ \frac{\partial L}{\partial \mathbf{q}} &= \mathbf{Y}_{k-1}^T \mathbf{D} \mathbf{X}_{k-1} \mathbf{w} - \mu \mathbf{q} = 0 \\ \frac{\partial L}{\partial \lambda} &= -\mathbf{w}^T \mathbf{w} + 1 = 0 \\ \frac{\partial L}{\partial \mu} &= -\mathbf{q}^T \mathbf{q} + 1 = 0 \end{split}$$

 Premoltiplicando ambo i membri della prima equazione per w^T e quelli della seconda per q^T otteniamo rispettivamente

$$\mathbf{w}^{T} \mathbf{X}_{k-1}^{T} \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} - \lambda \mathbf{w}^{T} \mathbf{w} = 0$$
$$\mathbf{q}^{T} \mathbf{Y}_{k-1}^{T} \mathbf{D} \mathbf{X}_{k-1} \mathbf{w} - \mu \mathbf{q}^{T} \mathbf{q} = 0$$

e poichè $\mathbf{w}^T\mathbf{w} = \mathbf{q}^T\mathbf{q} = 1$, abbiamo

$$\mathbf{w}^T \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} = \lambda$$

 $\mathbf{q}^T \mathbf{Y}_{k-1}^T \mathbf{D} \mathbf{X}_{k-1} \mathbf{w} = \mu$

da cui risulta che $\lambda=\mu$ che risulta essere l'ottimo ricercato.

• Premoltiplicando ambo i membri della prima equazione per μ ottenendo

$$\mu \mathbf{X}_{k-1}^{\mathsf{T}} \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} - \mu \lambda \mathbf{w} = 0$$
$$\mathbf{X}_{k-1}^{\mathsf{T}} \mathbf{D} \mathbf{Y}_{k-1} \mu \mathbf{q} - \lambda^2 \mathbf{w} = 0$$

dalla seconda equazione abbiamo che

$$\mu \mathbf{q} = \mathbf{Y}_{k-1}^T \mathbf{D} \mathbf{X}_{k-1} \mathbf{w}$$

da cui sostituendo nella precedente

$$\mathbf{X}_{k-1}^{\mathsf{T}}\mathbf{D}\mathbf{Y}_{k-1}\mathbf{Y}_{k-1}^{\mathsf{T}}\mathbf{D}\mathbf{X}_{k-1}\mathbf{w} = \lambda^{2}\mathbf{w}$$

• In modo analogo, premoltiplicando ambo i membri della seconda equazione per λ e considerando dalla prima equazione sappiamo che

$$\lambda \mathbf{w} = \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q}$$

otteniamo

$$\mathbf{Y}_{k-1}^T\mathbf{D}\mathbf{X}_{k-1}\mathbf{X}_{k-1}^T\mathbf{D}\mathbf{Y}_{k-1}\mathbf{q}=\lambda^2\mathbf{q}$$

quindi i vettori soluzione ${\bf w}$ e ${\bf q}$ saranno rispettivamente quelli associati all'autovalore dominante λ^2 soluzione delle quantità

$$\begin{split} \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{Y}_{k-1}^T \mathbf{D} \mathbf{X}_{k-1} \mathbf{w} = & \lambda^2 \mathbf{w} \\ \mathbf{Y}_{k-1}^T \mathbf{D} \mathbf{X}_{k-1} \mathbf{X}_{k-1}^T \mathbf{D} \mathbf{Y}_{k-1} \mathbf{q} = & \lambda^2 \mathbf{q} \end{split}$$

Partial Least Squares Regression: Algoritmo - No missing value

Step 1

- Indichiamo con E₀ = X e F₀ = Y le matrici centrate e normalizzate rispetto alla metrica dei pesi D e k = 1;
- Sia A il numero di componenti prescelte k = 1, ..., A
- Calcoliamo i vettori soluzione w e q soluzioni dominanti delle quantità

$$\begin{array}{|c|c|} \mathbf{X}^T \mathbf{D} \mathbf{Y} \mathbf{Y}^T \mathbf{D} \mathbf{X} \mathbf{w} = \lambda^2 \mathbf{w} \\ \mathbf{Y}^T \mathbf{D} \mathbf{X} \mathbf{X}^T \mathbf{D} \mathbf{Y} \mathbf{q} = \lambda^2 \mathbf{q} \end{array}$$

- Calcoliamo gli score t₁ = Xw;
- Sia $T_1 = [t_1]$ e $P_{T_1} = T_1(T_1^T T_1)^{-1} T_1^T$ l'operatore di proiezione ortogonale sul sottospazio $Im(T_1)$
- Sia *k* = 2:

Partial Least Squares Regression: Algoritmo

Step 2

Si procede a calcolare le matrici residuali

$$\begin{split} \mathbf{X}_k = & \mathbf{X} - \mathbf{P}_{\mathsf{T}_k} \mathbf{X} = (\mathbf{I} - \mathbf{P}_{\mathsf{T}_k}) \mathbf{X} = \mathbf{P}_{\mathsf{T}_k}^{\perp} \mathbf{X} \\ \mathbf{Y}_k = & \mathbf{Y} - \mathbf{P}_{\mathsf{T}_k} \mathbf{Y} = (\mathbf{I} - \mathbf{P}_{\mathsf{T}_k}) \mathbf{Y} = \mathbf{P}_{\mathsf{T}_k}^{\perp} \mathbf{Y} \end{split}$$

 Calcoliamo i vettori soluzione w e q soluzioni dominanti rispettivamente delle quantità

$$\mathbf{X}_{k}^{T}\mathbf{D}\mathbf{Y}_{k}\mathbf{Y}_{k}^{T}\mathbf{D}\mathbf{X}_{k}\mathbf{w} = \lambda^{2}\mathbf{w}$$

 $\mathbf{Y}_{k}^{T}\mathbf{D}\mathbf{X}_{k}\mathbf{X}_{k}^{T}\mathbf{D}\mathbf{Y}_{k}\mathbf{q} = \lambda^{2}\mathbf{q}$

N.B.: da un punto di vista di efficienza computazionale si diagonalizza la matrice più piccola e si usano le formule di transizione per ottenere l'altra soluzione

Partial Least Squares Regression: Algoritmo

Step 3

- Calcoliamo i nuovi score $\mathbf{t}_k = \mathbf{X}_k \mathbf{w}_k$;
- Aggiorniamo la matrice degli scores giustapponendo per colonna i nuovi score T_k = [t₁,...,t_k];
- Calcoliamo il nuovo proiettore P_{T_k};
- Incrementiamo l'indice k: k = k + 1;
- Riprendi dallo Step 2 fino a quando sia vera la condizione k ≤ A.

Proprietà delle componenti

- Le formule d'attualizzazione delle variabili conducono alla relazione: $\langle \mathbf{t}_k, \mathbf{t}_l \rangle_{\mathbf{D}} = \langle \mathbf{t}_k, \mathbf{w}_l \rangle_{\mathbf{D}} = 0, \ \forall l > k$
- Si dimostra per ricorrenza che $\mathbf{t}_k = \mathbf{X}\mathbf{w}_k^*$ appartiene a $Im(\mathbf{X})$ spazio vettoriale generato dai predittori. Più precisamente i coefficienti \mathbf{w}_k^* saranno dati dalle relazioni:

$$\begin{aligned} \mathbf{w}_1^* = & \mathbf{w}_1 \\ \mathbf{w}_k^* = & [\mathbf{I}_p - \sum_{j=1}^{k-1} \frac{\mathbf{w}_j^* \mathbf{w}_j^{*T}}{\|\mathbf{t}_j\|_{\mathbf{D}}^2} \mathbf{X}^T \mathbf{D} \mathbf{X}] \mathbf{w}_k, \ \forall k > I \end{aligned}$$

• In termini matriciali la relazione fra \mathbf{w}_k^* e \mathbf{w}_k è pari a

$$\mathbf{W}^* = \mathbf{W}(\mathbf{P}^T \mathbf{W})^{-1}$$

Proprietà delle componenti

- Gli autovettori W sono ortonormali;
- Le componenti T sono ortogonali;
- I loadings P non sono ortogonali;
- Le componenti U non sono ortogonali;
- Le componenti T e U sono ortogonali fra loro

$$\mathbf{u}_b^T \mathbf{t}_a = 0 \text{ se } b > a$$

• I coefficienti W e P sono ortogonali fra loro

$$oxed{\mathbf{p}_b^T \mathbf{w}_a = 0 \text{ se } b > a} \ \mathbf{e} \ oxed{\mathbf{p}_b^T \mathbf{w}_a = 1 \text{ se } b = a}$$

tale che $\mathbf{P}^T\mathbf{W}$ risulta essere una matrice triangolare superiore

Proprietà delle componenti

• La non correlazione delle componenti implica che l'operatore di proiezione ortogonale $\mathbf{P}_{\mathsf{T}_A}$ sul sottospazio generato da $\mathsf{T}_A = [\mathsf{t}_1, \dots, \mathsf{t}_A]$ può scriversi

$$\mathbf{P}_{\mathsf{T}_A} = \sum_{k=1}^A \mathbf{P}_{\mathsf{t}_k}$$

che può essere anche visto come l'operatore di proiezione ortogonale su Im(X) generato dalle componenti $\mathbf{t}_1, \dots, \mathbf{t}_A$

• Nel caso particolare che A = rang(X) allora $P_{T_A} = P_X$.

- L'attualizzazione delle variabili e la non correlazione delle componenti ci consentono di scrivere più semplicemente i modelli parziali: $\hat{\mathbf{X}}_k = \mathbf{P}_{\mathbf{t}_k} \mathbf{X}$ e $\mathbf{Y}_k = \mathbf{P}_{\mathbf{t}_k} \mathbf{Y}$
- La non correlazione delle componenti consente inoltre di decomporre la varianza totale:

$$Var(\mathbf{Y}) = \sum_{j=1}^{c} Var(\mathbf{Y}^{j}) = \sum_{k=1}^{A} Var(\hat{\mathbf{Y}}_{k}) + Var(\mathbf{F}_{A})$$

come anche scrivere in modo definitivo i modelli PLS in funzione delle componenti

$$\hat{\mathbf{Y}}_{\mathcal{A}} = \mathbf{P}_{\mathsf{T}_{\mathcal{A}}}\mathbf{Y} \ \mathsf{e} \ \hat{\mathbf{X}}_{\mathcal{A}} = \mathbf{P}_{\mathsf{T}_{\mathcal{A}}}\mathbf{X}$$

• L'operatore di proiezione ortogonale P_{T_A} sul sottospazio generato da $T_A = [t_1, \dots, t_A]$ può essere anche scritto

$$\mathbf{P}_{\mathsf{T}_A} = \sum_{k=1}^{A} \mathbf{X} \frac{\mathbf{w}_k^* \mathbf{w}_k^{*T}}{\|\mathbf{t}_k\|_{\mathbf{D}}^2} \mathbf{X}^T \mathbf{D}$$

che implica che il modello PLS è lineare rispetto alle variabili predittrici iniziali

$$\hat{\mathbf{Y}}_{A} = \mathbf{X}\hat{\beta}_{A}$$

con

$$\hat{eta}_{A} = \sum_{k=1}^{A} rac{\mathbf{w}_{k}^{*} \mathbf{w}_{k}^{*}}{\|\mathbf{t}_{k}\|_{\mathbf{D}}^{2}} \mathbf{X}^{T} \mathbf{D} \mathbf{Y}$$

- Se A = rang(X) allora PLS(X, Y)=OLS(X, Y);
- PLS(X, X)=ACP(X);
- Il modello predittivo si può scrivere

$$\mathbf{Y} = \mathbf{T}\mathbf{Q}^{T} + \mathbf{E}$$

$$= \mathbf{X}\mathbf{W}^{*}\mathbf{Q}^{T} + \mathbf{E}$$

$$= \mathbf{X}\underbrace{\mathbf{W}(\mathbf{P}^{T}\mathbf{W})^{-1}\mathbf{Q}^{T}}_{=\mathbf{B}^{PLSR}} + \mathbf{E}$$

$$= \mathbf{X}\mathbf{B}^{PLSR} + \mathbf{E}$$

A sua volta **B**PLSR può essere scritto

$$\begin{split} \mathbf{B}^{\text{PLSR}} &= \mathbf{W} (\mathbf{P}^T \mathbf{W})^{-1} \mathbf{Q}^T \\ &= \mathbf{W}^* \mathbf{Q}^T \\ &= \mathbf{W}^* (\mathbf{T}^T \mathbf{T})^{-1} \mathbf{T}^T \mathbf{Y} \\ &= \mathbf{W}^* (\mathbf{W}^{*T} \mathbf{X}^T \mathbf{X} \mathbf{W}^*)^{-1} \mathbf{W}^{*T} \mathbf{X}^T \mathbf{Y} \\ &= \mathbf{W}^* \underbrace{(\mathbf{W}^{*T} \mathbf{X}^T \mathbf{X} \mathbf{W}^*)^{-1} \mathbf{W}^{*T} \mathbf{X}^T \mathbf{X}}_{=\mathbf{P}^T} \underbrace{(\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}}_{=\mathbf{B}^{\text{OLS}}} = \underbrace{\mathbf{W}^* \mathbf{P}^T \mathbf{B}^{\text{OLS}}}_{=\mathbf{H}^A_{\mathbf{WP}^{\perp}}} \\ &= \underbrace{\mathbf{H}^A_{\mathbf{WP}^{\perp}}}_{=\mathbf{H}^A_{\mathbf{WP}^{\perp}}} \mathbf{B}^{\text{OLS}} \\ &= \mathbf{H}^A_{\mathbf{WP}^{\perp}} \mathbf{B}^{\text{OLS}} \end{split}$$

- La matrice H^A_{WP[⊥]} = W(P^TW)⁻¹P^T è idempotente ma non è simmetrica ed è quindi un operatore di proiezione obliquo. Una proiezione obliqua è una proiezione su un sottospazio ma non di tipo ortogonale rispetto a questo spazio, bensì lungo qualche altra direzione.
- La matrice H^A_{WP} è quindi un operatore di proiezione obliquo sul sottospazio generato dalle colonne di W lungo la direzione ortogonale a P.

• Si può inoltre dimostrare (de Jong, 1995; Goutis, 1996) che

$$\boxed{\|\mathbf{B}^{\mathsf{PLSR}}\| = \|\mathbf{H}_{\mathbf{WP}^{\perp}}^{A}\mathbf{B}^{\mathsf{OLS}}\| \leqslant \|\mathbf{B}^{\mathsf{OLS}}\|}$$

