Ejercicio 7 práctica test de Hipótesis

Un fabricante de estaciones de trabajo de computadora está probando un nuevo proceso de ensamble automatizado. El proceso actual tiene una tasa de defectos de 5%. En una muestra de 400 estaciones de trabajo ensambladas con el nuevo proceso, 15 tenían defecto. ¿Se puede concluir que el nuevo proceso tiene una tasa menor de defectos? Calcule el p-valor.

Solución:

$$X_i \sim B(1, p)$$

p=P(estación de trabajo ensamblada con el nuevo proceso es defectuosa)

con lo cual, $X = \sum_{i=1}^{n} X_i$ = cantidad de estaciones de trabajo ensambladas con el nuevo proceso, entre 400, con defectos

$$X \sim B(400, p)$$

Defino las hipótesis:

H₀: p=0,05 vs H₃: p<0,05 test unilateral por izquierda

Estadístico de prueba:

$$Z = \frac{\widehat{p} - 0.05}{\sqrt{\frac{0.05(1 - 0.05)}{400}}} \approx N(0.1) \text{ si } H_0 \text{ es verdadera}$$

Utilizo el TCL, ya que el n es suficientemente grande.

Región de rechazo:

Rechazo H_0 a favor de H_a si: $z_{observado} < -z_{\alpha}$

No rechazo H_0 : $z_{observado} \ge -z_{\alpha}$

Como en este ejercicio no nos dan un α específico debemos decidir a partir del p-valor, para ello debemos calcular $z_{observado} = \frac{(15/400)-0.05}{\sqrt{\frac{(0.05)(1-(0.05))}{400}}} = \frac{-0.0125}{0.0109} = -1.146$

p-valor=P (Rechazo H₀ con el valor observado del estadístico de prueba) =

 $P(Z<-1,146)\cong \Phi(-1,146)=0,1251$, por lo tanto, el p-valor es aproximadamente 0,1251

Regla de decisión a partir del p-valor:

Si p-valor $\leq \alpha$, rechazo H_0 (para cualquier α que sea \geq que el p-valor voy a poder rechazar H_0)

Si p-valor > α , no rechazo H₀

Región de rechazo Región de no rechazo

p-valor ≤ α , rechazo H₀ p-valor > α

Conclusión:

Si p-valor $\leq \alpha$, rechazo H₀ (para cualquier α que sea \geq que el p-valor ($\cong 0.1251$) voy a poder rechazar H₀) es decir, que puedo afirmar que el nuevo proceso tiene una tasa menor de defectos. Sin embargo, para poder rechazar Ho es necesario un p-valor chico, en este problema nos dió bastante grande.

Por ejemplo, si considerara que α =0,05, en este caso p-valor > α , no rechazaría H₀, es decir, no puedo afirmar que el nuevo proceso tiene una tasa menor de defectos.