Linear regression without correspondence

Daniel Hsu[†], Kevin Shi[†], Xiaorui Sun[‡],

[†]Columbia University, [‡]Simons Institute for the Theory of Computing

Problem definition

- hd Covariate vectors: $x_1, x_2, \ldots, x_n \in \mathbb{R}^d$
- $hd \mathsf{Responses} \colon y_1, y_2, \dots, y_n \in \mathbb{R}$
- ▶ Model:

$$y_i \ = \ ar{w}^{\scriptscriptstyle op} x_{ar{\pi}(i)} + arepsilon_i \,, \quad i \in [n]$$

- hd Unknown linear function: $ar{w} \in \mathbb{R}^d$
- ightharpoonup Unknown permutation: $ar{\pi} \in S_n$
- $extstyle ext{Measurement errors: } arepsilon_1, arepsilon_2, \dots, arepsilon_n \in \mathbb{R}$ e.g., $(arepsilon_i)_{i=1}^n$ iid from $\mathbf{N}(0, \sigma^2)$)

Examples

Multi-view geometry

▶ Unknown correspondence between keypoints

Flow cytometry

Observe the entire emission spectrum at once

Strong NP-hardness

Definition 1 (Permuted Linear System).

Given $X\in\mathbb{Z}^{n imes d},Y\in\mathbb{Q}^n$, decide if there exists a vector $w\in\mathbb{Q}^d$ and a permutation $\pi\in S_n$ such that $Xw=Y_\pi$

Proposition 1. Permuted Linear System is strongly NP-complete by a reduction from 3-Partition.

Approximation guarantee for least-squares

Definition 2 (Least-squares recovery).

Given $(x_i)_{i=1}^n$ and $(y_i)_{i=1}^n$ from $\mathbb R$, find

$$(\hat{w}_{mle}, \hat{\pi}_{mle}) \coloneqq rgmin_{w \in \mathbb{R}, \pi \in S_n} \sum_{i=1}^n \left(y_i - w x_{\pi(i)}
ight)^2$$

Theorem 1. There is an algorithm that given any inputs $(x_i)_{i=1}^n$, $(y_i)_{i=1}^n$, and $\epsilon \in (0,1)$, returns a $(1+\epsilon)$ -approximate solution to the least squares problem in time $(n/\epsilon)^{O(k)} + \operatorname{poly}(n,d)$, where $k = \dim(\operatorname{span}(x_i)_{i=1}^n)$.

Approximation algorithm

This uses the following coreset result for linear systems: **Proposition 2 (Boutsidis, Drineas, Magdon-Ismail).** Given a matrix $A \in \mathbb{R}^{n \times k}$, there exists a weighted subset of 4k rows determined by a matrix $S \in \mathbb{R}^{4k \times n}$ such that for any b, every minimizer of the subsampled linear system

$$w' \in \arg\min_{w} \|S(Aw - b)\|_2^2$$

also satisfies

$$\|Aw'-b\|_2^2 \le c$$

for c = O(n/k). Morever, there exists an efficient algorithm which returns a matrix S in time poly(n,k).

Algorithm 1 Approximation algorithm

input Covariate matrix $X=[x_1|x_2|\cdots|x_n]^{\scriptscriptstyle \top}\in\mathbb{R}^{n\times k}$; response vector $y=(y_1,y_2,\ldots,y_n)^{\scriptscriptstyle \top}\in\mathbb{R}^n$; approximation parameter $\epsilon\in(0,1)$.

- 1: Compute the matrix $S \in \mathbb{R}^{r \times n}$ from input matrix X.
- 2: Let ${\cal B}$ be the set of all permutations of y
- 3: Let $c:=1+4(1+\sqrt{n/(4k)})^2$.
- 4: **for** each $b \in \mathcal{B}$ **do**
- 5: Compute $ilde{w}_b \in \mathop{rg\min}_{w \in \mathbb{R}^k} \|[\|0]S(Xw-b)_2^2,$ and let $r_b \coloneqq \mathop{\min}_{\Pi \in \mathcal{P}_n} \|[\|0]X ilde{w}_b \Pi^{\scriptscriptstyle op} y_2^2.$
- 6: Construct a $\sqrt{\epsilon r_b}/c$ -net \mathcal{N}_b for the Euclidean ball of radius $\sqrt{cr_b}$ around \tilde{w}_b , so that for each $v \in \mathbb{R}^k$ with $\|[\|0]v \tilde{w}_{b2} \le \sqrt{cr_b}$, there exists $v' \in \mathcal{N}_b$ such that $\|[\|0]v v'_2 \le \sqrt{\epsilon r_b/c}$.
- 7: end for
- 8: **return**

$$\hat{w} \in rg \min_{w \in igcup_{b \in \mathcal{B}} \mathcal{N}_b} \min_{\Pi \in \mathcal{P}_n} \|Xw - \Pi^{\scriptscriptstyle op}y\|_2^2$$

and

$$\hat{\Pi} \in rg \min_{\Pi \in \mathcal{P}_n} \| X \hat{w} - \Pi^{\scriptscriptstyle op} y \|_2^2$$

Polynomial time recovery in the random setting

Theorem 2. Fix any $\bar{w} \in \mathbb{R}^d$ and $\bar{\pi} \in S_n$, and assume $n \geq d$. Suppose $(x_i)_{i=0}^n$ are drawn iid from $N(0, I_d)$, and $(y_i)_{i=0}^n$ satisfy

$$y_0 \ = \ ar{w}^{\scriptscriptstyle op} x_0 \, ; \qquad y_i \ = \ ar{w}^{\scriptscriptstyle op} x_{ar{\pi}(i)} \, , \quad i \in [n] \, .$$

There is an algorithm that, given inputs $(x_i)_{i=0}^n$ and $(y_i)_{i=0}^n$, returns $\bar{\pi}$ and \bar{w} with high probability.

Reduction to (random) subset sum

Given d+1 measurements and one correspondence $y_0=ar{w}^Tx_0$, for orthogonal $(x_i)_{i=0}^n$, can write:

$$egin{aligned} y_0 &= \sum_{j=1}^d \left(ar{w}^ op x_j
ight) \left(x_j^ op x_0
ight) = \sum_{j=1}^d y_{ar{\pi}^{-1}(j)} \left(x_j^ op x_0
ight) \ &= \sum_{i=1}^d \sum_{j=1}^d \mathbb{1}\{ar{\pi}(i) = j\} \cdot \underbrace{y_i \left(x_j^ op x_0
ight)}_{c_{i,j}} \end{aligned}$$

- $hd \{c_{i,j}\}$ and y_0 define a subset sum problem whose solution recovers the underlying correspondence.
- \triangleright In general $(x_i)_{i=0}^n$ are close to orthogonal; use the Moore-Penrose pseudoinverse.
- hd The one given correspondence can be brute-forced, creating d+1 subset sum instances of which only one has a solution

Solving random subset-sum instances

Proposition 3 (Lagarias and Odlyzko).

Random instances of subset sum are efficiently solvable when the $c_{i,j}$'s are independently and uniformly distributed over a large enough subinterval of \mathbb{Z} .

This relies on the following inequality which lower bounds the closeness to the target sum of incorrect solutions. **Lemma 1.** For any vector $(z_{i,j})$ which is not the correct correspondence,

$$\left|y_0 - \sum_{i,j} z_{i,j} c_{i,j}
ight| \geq rac{1}{2^{ extit{poly}(d)}} \lVert ar{w}
Vert_2$$

ightharpoonup We show this bound holds under other distributions satisfying general anticoncentration bounds and even if the $c_{i,j}$'s are not independent

Reduction to shortest vector problem

Definition 3 (Shortest vector problem).

Given a lattice basis $\mathbf{B} \subset \mathbb{R}^d$, output a lattice vector $\mathbf{B}z \in \mathbf{\Lambda}\mathbf{B}$ where

$$egin{aligned} z &= rg \min_{z \in \mathbb{Z} - \{\mathbf{0}\}} \| \mathbf{B}z \|_2^2 \end{aligned}$$

Lemma 2 (LLL Lattice Basis Reduction).

There is an efficient approximation algorithm for solving the Shortest Vector Problem with

- hd Approximation factor: $2^{d/2}$
- \triangleright Running time: $poly(d, \log \lambda(B))$

Algorithm 2 Lattice algorithm for subset sum

input Source numbers $\{c_i\}_{i\in\mathcal{I}}\subset\mathbb{R}$; target sum $t\in\mathbb{R}$; lattice parameter $\beta>0$.

1: Construct lattice basis $B \in \mathbb{R}^{(|\mathcal{I}|+2) imes (|\mathcal{I}|+1)}$ where

$$B \ := \ \left[rac{oldsymbol{I}_{|\mathcal{I}|+1}}{eta t \left| -eta c_i : i \in \mathcal{I}}
ight] \ \in \ \mathbb{R}^{(|\mathcal{I}|+2) imes(|\mathcal{I}|+1)}$$

2: Run LLL Lattice Basis Reduction to find non-zero lattice vector v of length at most $2^{|\mathcal{I}|/2} \cdot \lambda_1(B)$.

Information-theoretic lower bounds on SNR

Definition 4 (Uniform model with Gaussian noise).

Observe

$$y_i = \bar{w}^T x_{\bar{\pi}(i)} + \epsilon_i$$

where

riangleright $\epsilon_i \overset{iid}{\sim} \mathcal{N}(0,\sigma^2)$ is the measurement noise

 $hd x_i \stackrel{iid}{\sim} \mathsf{Uniform}([-1,1]^d)$ are the covariates

Definition 5 (SNR).

The signal-to-noise ratio for this model is $\|ar{w}\|_2/\sigma$

Theorem 3.If $(x_i)_{i=1}^n$ are iid draws from Uniform($[-1,1]^d$), $(y_i)_{i=1}^n$ follow the linear model with $\mathcal{N}(0,\sigma^2)$ noise, and

$$\mathit{SNR} \leq (1-2c)^2$$

for some $c \in (0,1/2)$, then for any estimator \hat{w} , there exists $\bar{w} \in \mathbb{R}^d$ such that

$$\mathbb{E} \left\| \hat{w} - ar{w}
ight\|_2 \geq c \|ar{w}\|_2$$