Problem 1

$$\frac{dy}{dt} = \frac{e^{y^2}}{t}$$

$$1 \le t \le 2 \qquad y(1) = 0$$

$$1 \le t \le 2$$

$$3\xi_{H} = 3\xi + h f(\xi_{9})$$
 where $f(\xi_{9}) = \frac{y^{2}}{\xi}$
 $3\xi_{H} = 3\xi + h f(\xi_{9})$ where $f(\xi_{9}) = \frac{y^{2}}{\xi}$
 $3\xi_{H} = 3\xi + h f(\xi_{9})$ where $f(\xi_{9}) = \frac{y^{2}}{\xi}$
 $3\xi_{H} = 3\xi + h f(\xi_{9})$ where $f(\xi_{9}) = \frac{y^{2}}{\xi}$
 $3\xi_{H} = 3\xi + h f(\xi_{9})$ where $f(\xi_{9}) = \frac{y^{2}}{\xi}$

$$y_{2} = y_{1} + 0.5 f(t_{1}, y_{1})$$

$$= 0.5 + 0.5 \frac{e^{(0.5)^{2}}}{(1.5)}$$

$$= 0.5 + 0.5 \frac{e^{(0.5)^{2}}}{(1.5)}$$

$$\frac{dy}{dt} = 2ty + t \quad 0 \le t \le 1, \quad y(0) = 1$$

(a)
$$y_{e+1} = y_e + h f(t_i, y_i)$$

 $y_{e+1} = y_e + h [2t_i y_i + t_i]$

$$y_2 = y_1 + 0.25 [2+1,y_1+1,]$$

$$= 1 + 0.25 [2(0.25)(1) + 0.25]$$
 $y_2 = 1. 1875$

$$\frac{dy}{dt} = 2ty + t$$

$$\frac{dy}{dt} = 2ty = t$$

Then
$$e^{-t^2} \frac{dy}{dt} - 2t e^{-t^2} \frac{dy}{dt} = te^{-t^2}$$

$$\frac{d}{dt}\left(e^{-t^2}y\right) = te^{-t^2}.$$

$$=\frac{1}{2}\int 2te^{-t^2}dt$$

$$e^{-t^2}$$
 e^{-t^2}
 $f^2 = -\frac{1}{2}e^{-t^2}$

IC
$$y(0) = 1$$
 $1 = \frac{1}{2} + C_1$ $\frac{3}{2} = C_1$

$$y = -\frac{1}{2} + \frac{3}{2} e^{+2}$$

$$y = \left(3e^{+2} - 1\right)$$

Las the Lapschitz constant.

$$M = \max_{t \in [0,1]} |y''(x)|$$

$$\frac{\partial f}{\partial y} = 2 + \frac{\partial f}{\partial x} = 2$$

$$\frac{\partial f}{\partial y} = 2 + \frac{\partial f}{\partial x} = 2$$

Recall:

$$= y'' = 2y + 2ty' + 1.$$

$$= 2y + 2t \left[2ty + t \right] + 1.$$

$$= 2y + 4t^2y + 2t^2 + 1.$$

$$y'' = 3 \left(2 + 4t^2 \right) + 2t^2 + 1.$$

However,
$$y = \left(\frac{3e^{+2}-1}{2}\right)$$

Then
$$y'' = (3e^{+2}-1)(2+4+2)+2+2+1$$

y" is an increasing fun.

$$|y''|_{\max} = (3e-1)(2+4) + 2+1$$

$$t \in [0,1]$$

$$= 3(3e-1) + 3$$

$$M = 9e$$

$$|y_2 - y(0.5)| \le 0.25 (9e) \left[e^{2[0.5-0]} \right]$$

(d)
$$|y_2 - y(0.5)| = |1.1875 - (3e^{-1})|$$

Problem 3 = See class notes!

$$\frac{dy}{dt} = t - y^2 \quad 1 \le t \le 3 \quad y(1) = 0$$

$$y_{e+1} = y_e + h f(t,y) + h^2 f'(t,y)$$

Note
$$f(t,y) = t - y^2$$

 $f'(t,y) = \frac{\partial f}{\partial t} = 1 - 2y \cdot y'$
 $= 1 - 2y \left[t - y^2 \right]$
 $f'(t,y) = 1 - 2y \cdot t + 2y^3$

Then,
$$y_{e+1} = y_e + \frac{1}{1!} \left[t_i - y_i^2 \right] + \frac{1}{2!} \left[1 - 2y_i + t_i + 2y_i^3 \right]$$

$$y_0$$
 y_1 y_2 y_3 y_4 y_5 y_6 y_6

$$y_1 = y_0 + 0.5 \left(\frac{1}{10} - \frac{y_0^2}{2} \right) + \left(\frac{0.5}{2} \right)^2 \left(1 - 2y_0 y_1 + 2y_0^3 \right)$$

I'm going to consider the Modified-Euler m/d

$$y_{e+1} = y_e + h\left[\frac{k_1 + k_2}{2}\right]$$
, where

where
$$f(t,y) = \frac{e^{y}}{2t}$$
 and $1 \le t \le 3$, $y(1) = 0$

$$y_0$$
 y_1 y_2 y_3 y_4

1 1.5 2 2.5 3

to t_1 t_2 t_3 t_4

$$y_{01} = y_0 + h \left[\frac{k_1 + k_2}{2} \right]$$

$$k_1 = f(f_0, y_0) \quad \text{and} \quad k_2 = f\left(f_0 + h, y_0 + h, k_1 \right)$$

Step	K	k ₂	y,
1	0.5	0.4280	0.2320
2	0.4204	0.3890	0 • 4344
3	0.3860	8.3F45	0.6245
4	0·3F35	0.3751	0.8116

* method 2

Wid-Point method

$$y_{e+1} = y_e + h_{k_2}$$
, $k_1 = f(t_i, y_e)$
 $k_2 = f(t_i + h_2)$, $y_e + h_2 k_1$

Step	k,	K ₂	y.
Ť	0.5	0.4533	0.2266
2	0.4181	0.3979	0.4256
3	0.3826	0.3742	0.6127
4	0.3691	5.3680	0.7967