ECN 7060, Cours 7

William McCausland

2022-10-18

Quatre racines de $x^4 = 1$

Le module et l'argument (l'angle) d'un nombre complexe

Multiplication des nombres complexes

Des expansions des fonctions $exp(\cdot)$, $cos(\cdot)$, $sin(\cdot)$

$$e^{i\theta} = \sum_{k=0}^{\infty} (i\theta)^{k}/k! = 1 + i\theta + (i\theta)^{2}/2 + (i\theta)^{3}/3! + (i\theta)^{4}/4! + (i\theta)^{5}/6! + (i\theta)^{6}/6!$$

$$= 1 - \theta^{2}/2 + \theta^{4}/4! - \theta^{6}/6! \dots$$

$$+ i \left[\theta - \theta^{2}/3! + i\theta^{5}/5! \dots \right]$$

$$\cos \theta = 1 - \theta^{2}/2 + \theta^{4}/4! - \theta^{6}/6! \dots$$

$$\sin \theta = 0 - \theta^{3}/3! + \theta^{5}/5 \dots$$

L'extension de deux définitions

- 1. Une fonction $Z: \Omega \to \mathbb{C}$ est une variable aléatoire si $\Re(Z)$ et $\Im(Z)$ le sont.
- 2. Si $Z: \Omega \to \mathbb{C}$ est une variable aléatoire, $E[Z] \equiv E[\Re(Z)] + iE[\Im(Z)]$.

La fonction caractéristique ϕ

- Comme la fonction de répartition F, ϕ est une autre représentation de la loi d'une v.a. qui existe et qui est unique.
- Si X est une v.a. la fonction caractéristique $\phi_X \colon \mathbb{R} \to \mathbb{C}$ est définie par

$$\phi_X(t) \equiv E[e^{itX}].$$

- Applications :
 - Calcul des moments (mais moins convenable que la fonction génératrice des moments)
 - L'opération de convolution versus l'opération de multiplication, pour la somme des v.a. indépendantes.
 - Utilisée pour prouver le théorème central limite
 - Inférence quand les moments n'existent pas.

Aparté sur la convolution

- Soit X et Y deux v.a. indépendantes, soit Z = X + Y.
- ▶ Dénotez F_x , F_y , F_z les fonctions de répartition de X, Y, Z.
- On peut écrire

$$F_z(z) = P(X + Y \le z) = \int_{\mathbb{R}} F_x(z - y) dF_y(y).$$

ightharpoonup Si la densité f_y de Y existe,

$$F_z(z) = \int_{\mathbb{R}} F_x(z-y) f_y(y) dy.$$

ightharpoonup Si la densité f_X de X existe aussi,

$$f_z(z) = \int_{\mathbb{R}} f_x(z-y) f_y(y) dy \equiv f_x * f_y.$$

• $f_x * f_y$ est la convolution de f_x et f_y .

Aparté sur les fonctions paires et impaires

- ▶ Une fonction $f: \mathbb{R} \to \mathbb{R}$ est
 - ▶ paire si f(-x) = f(x) pour $x \in \mathbb{R}$,
 - impaire si f(-x) = -f(x) pour $x \in \mathbb{R}$.
- ▶ Soit g, g_1 , g_2 des fonctions paires; h, h_1 , h_2 , impaires.
- Fonctions paires :
 - ightharpoonup cos x, x^i pour i pair
 - $ightharpoonup g_1 + g_2$, g_1g_2 , h_1h_2 , h_1/h_2 , $g \circ h$, $h \circ g$, h'.
- ► Fonctions impaires :
 - ightharpoonup sin x, x^i pour i impair
 - $h_1 + h_2$, gh, g/h, h/g, $h_1 \circ h_2$, g'
- ▶ Pour une fonction f arbitraire, $f = g_f + h_f$ ou
 - $ightharpoonup g_f(x) \equiv (f(x) + f(-x))/2$ est paire et
 - ► $h_f(x) \equiv (f(x) f(-x))/2$ est impaire.

Propriétés de la fonction caractéristique

- 1. $\phi_X(0) = E[e^0] = 1$, peut importe *X*.
- 2. $|\phi_X(t)| = |E[e^{itX}]| \le E[|e^{itX}|] = 1$.
- 3. Si X et Y sont indépendantes,

$$\phi_{X+Y}(t) = E[e^{it(X+Y)}] = E[e^{itX}e^{itY}] = E[e^{itX}]E[e^{itY}]$$
$$= \phi_X(t)\phi_Y(t).$$

- 4. $\phi(t) = E[\cos tX] + iE[\sin tX]$, par linéarité de l'espérance.
- 5. Pour X réelle,
 - a. $\Re(\phi(t)) = E[\cos tX]$ est paire.
 - b. $\Im(\phi(t)) = E[\sin tX]$ est impaire.
- 6. Pour X symétrique (F(-x) = 1 F(x)) au points de continuité), ϕ est réelle.

La fonction caractéristique comme un film

Fonction caractéristique d'une loi U(a,b)

$$\phi(t) = E[e^{itX}] = E[\cos tX + i\sin tX] = \frac{1}{b-a} \int_a^b \cos tx + i\sin tx \, dx$$

$$\phi(t) = \frac{1}{t(b-a)} \left[\sin tx - i\cos tx\right]_a^b = \frac{1}{it(b-a)} \left[\cos tx + i\sin tx\right]_a^b$$

$$\phi(t) = \frac{e^{itb} - e^{ita}}{it(b-a)}$$

$$ightharpoonup$$
 Cas spécial $a=-\theta$, $b=\theta$:

$$\phi(t) = \frac{e^{it\theta} - e^{-it\theta}}{2it\theta} = \frac{\cos t\theta - \cos t\theta + i\sin t\theta + i\sin t\theta}{2it\theta} = \frac{\sin \theta t}{\theta t}.$$

$$ightharpoonup$$
 Cas spécial, $a=-1$, $b=1$:

$$\phi(t) = \frac{\sin t}{t} \equiv \operatorname{sinc}(t).$$

La fonction sinc

```
t = seq(-6*pi, 6*pi, length.out = 200)
plot(t, sin(t)/t, type='1')
lines(t, 1/abs(t), col='red')
```


Cas discret

1. X = x, une constante

$$\phi_X(t) = E[e^{itx}] = e^{itx}.$$

2. $X \sim \text{Bern}(p)$

$$\phi_X(t) = (1-p) + pe^{it}.$$

3. Bernoulli avec valeurs arbitraires

$$X = egin{cases} x_0 & ext{avec probabilité} (1-p), \ x_1 & ext{avec probabilité} p. \end{cases}$$

$$\phi_X(t) = E[e^{itX}] = (1-p)e^{itx_0} + pe^{itx_1}.$$

4. Cas spécial p = 1/2, $x_0 = -\theta$, $x_1 = \theta$

$$\phi_X(t) = (e^{-i\theta t} + e^{i\theta t})/2 = \cos \theta t.$$

5. $X \sim \text{Po}(\lambda)$ $\phi_X(t) = \exp[\lambda(e^{it} - 1)].$

Cas discret, illustrations

Illustration, cas Bernoulli avec valeurs $x_0 = 1$ et $x_1 = 6$

Voici le code pour les trois prochaines figures:

```
t = seq(-2*pi, 2*pi, length.out = 200)
x0 = 1; x1 = 6; p = 0.25
phi = (1-p)*exp(complex(imaginary=t*x0))
phi = phi + p*exp(complex(imaginary=t*x1))

cercle = exp(complex(imaginary=t))
```

Trajet dans le cercle unitaire

```
plot(Re(phi), Im(phi), type='l', xlim=c(-1,1), ylim=c(-1,1)
lines(Re(cercle), Im(cercle), col='red')
```


Partie réelle

Partie imaginaire

Illustration, cas Poisson, $\lambda = 2$

Voici le code pour les trois prochaines figures:

```
t = seq(-2*pi, 2*pi, length.out = 200)
lambda = 2
phi = exp(lambda*(exp(complex(imaginary = t))-1))
```

Trajet dans le cercle unitaire

```
plot(Re(phi), Im(phi), type='l', xlim=c(-1,1), ylim=c(-1,1)
lines(Re(cercle), Im(cercle), col='red')
points(0, 0, col='blue', pch=20)
```


Partie réelle

Partie imaginaire

Fonction caractéristique d'une loi N(0,1)

▶ Puisque sin(tx) est impair et $e^{-x^2/2}$ est pair,

$$\phi(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos tx \cdot e^{-x^2/2} dx.$$

► Dérivée par rapport à *t* :

$$\phi'(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} -\sin tx \cdot x e^{-x^2/2} dx$$

Intégration par parties, $u = -\sin tx$, $dv = xe^{-x^2/2} dx$, $du = -t \cos tx$, $v = -e^{-x^2/2}$, donne

$$\phi'(t) = [uv]_{-\infty}^{\infty} - \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} t \cos tx \cdot e^{-x^2/2} dx = -t\phi(t).$$

La solution de l'équation différentielle $\log \phi(0) = 0$, $\frac{d \log \phi(t)}{dt} = \frac{\phi'(t)}{\phi(t)} = -t$ est $\log \phi(t) = \int_0^t -s \, ds = -t^2/2$.

• Alors
$$\phi(t) = e^{-t^2/2}$$
.

Fonction caractéristique d'une loi $N(\mu, \sigma^2)$

Si $X \sim N(0,1)$ et $Y = \mu + \sigma X$ alors $Y \sim N(\mu, \sigma^2)$ et

$$\phi_Y(t) = E[e^{i(\mu + \sigma X)t}] = e^{i\mu t}E[e^{i(t\sigma)X}] = e^{i\mu t}\phi_X(\sigma t) = e^{i\mu t}e^{-\sigma^2t^2/2}$$

La densité de Y, en y, est :

$$f_Y(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(y-\mu)^2}{\sigma^2}\right].$$

Pour $\mu=0$, la densité a la même forme fonctionnelle, en y, que $\phi_Y(t)$, en t.

Continuité de la fonction caractéristique

$$|\phi_{\mathsf{x}}(t+h) - \phi_{\mathsf{x}}(t)| = \left| \int (e^{i(t+h)\mathsf{x}} - e^{it\mathsf{x}}) \mu(d\mathsf{x}) \right|$$

$$\leq \int \left| e^{i(t+h)\mathsf{x}} - e^{it\mathsf{x}} \right| \mu(d\mathsf{x}).$$

Deux bornes qui ne dépend pas de t

$$\left|e^{i(t+h)x}-e^{itx}\right| \leq h|x|, \qquad \left|e^{i(t+h)x}-e^{itx}\right| \leq 2.$$

Selon la deuxième, (convergence dominée)

$$\lim_{h\downarrow 0} E\left[\left|e^{i(t+h)X} - e^{itX}\right|\right] = E\left[\lim_{h\downarrow 0}\left|e^{i(t+h)X} - e^{itX}\right|\right]$$

Selon la première,

$$E\left[\lim_{h\downarrow 0}\left|e^{i(t+h)X}-e^{itX}\right|\right]=E[0]=0.$$

Arc et corde

Dérivée de la fonction caractéristique

- Soit X une variable aléatoire, $\phi(t)$ sa fonction caractéristique.
- ▶ Résultat : si $E[|X|^k] < \infty$, alors

$$\phi^{(j)}(t) = E[(iX)^j e^{itX}], \ 0 \le j \le k$$

- ▶ Preuve par induction : fixons k et supposons que $E[|X|^k] < \infty$.
 - $E[(iX)^0 e^{itX}] = E[e^{itX}] = \phi(t) = \phi^{(0)}(t)$, alors vrai pour j = 0.
 - Supposez que $\phi^{(j-1)}(t) = E[(iX)^{j-1}e^{itX}].$
 - $|(iX)^j e^{itX}| = |i|^j |X|^j |e^{itX}| = |X|^j$
 - $ightharpoonup E[|X|^k] < \infty \Rightarrow E[|X|^j] < \infty$
- Génération des moments :

$$\phi^{(j)}(0) = i^j E[X^j]$$

Attention : $\phi_X(t) = \exp(-\gamma |t|)$ pour X Cauchy symétrique avec paramètre d'échelle γ , n'est pas différentiable à t = 0.

Propriétés de la fonction $(\sin \theta t)/t = \theta \operatorname{sinc}(\theta t)$

- 1. Pour $\theta = 0$, $(\sin \theta t)/t \equiv 0$.
- 2. Pour $\theta \neq 0$, $t = k\pi/\theta$, $k = \pm 1, \pm 2, \ldots$

$$\frac{\sin \theta t}{t} = 0.$$

3. Pour
$$\theta \neq 0$$
,

$$\lim_{t \to 0} rac{\sin heta t}{t} = rac{\lim_{t \to 0} heta \cos heta t}{\lim_{t \to \infty} 1} = heta$$
 $\lim_{t \to \infty} rac{\sin heta t}{t} = 0.$

4. Pour $\theta \neq 0$, la fonction est paire :

$$\frac{\sin\theta(-t)}{-t} = \frac{\sin\theta t}{t}$$

5. Lemme 11.1.3 du livre,
$$\lim_{T \to \infty} \int_{-T}^{T} \frac{\sin \theta t}{t} dt = \begin{cases} \pi & \theta > 0 \\ 0 & \theta = 0 \\ -\pi & \theta < 0 \end{cases}$$

La fonction $\theta \operatorname{sinc}(\theta t) = (\sin \theta t)/t$

sin(t)

Théorème d'inversion I

Le théorème : Soit μ une mesure borélienne, $\phi(t)$ sa fonction caractéristique. Si $-\infty < a < b < \infty$ et $\mu(\{a\}) = \mu(\{b\}) = 0$,

$$\mu([a,b]) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt$$

Puisque

$$\left| \frac{e^{-ita} - e^{-itb}}{it} \right| = \left| \int_a^b e^{-itr} \, dr \right| \le \int_a^b \left| e^{-itr} \right| \, dr = b - a < \infty$$

l'intégral entre -T et T est fini.

Par Fubini,

$$\int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \int_{\mathbb{R}} e^{itx} \,\mu(dx) \,dt$$

$$= \int_{\mathbb{R}} \int_{-T}^{T} \frac{e^{it(x-a)} - e^{it(x-b)}}{it} \,dt \,\mu(dx).$$

Théorème d'inversion II

La partie imaginaire de l'intégrand est impair, l'intégral est réel,

$$\lim_{T \to \infty} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{\infty} \frac{\sin t(x-a)}{t} - \frac{\sin t(x-b)}{t} dt \, \mu(t) dt = \int_{\mathbb{R}} \int_{-\infty}^{T} \frac{e^{-ita} - e^{-itb}}{t} \phi(t) dt = \int_{\mathbb{R}} \int_{\mathbb{R}}^{\infty} \sin t(x-a) - \sin t(x-b) \, \mu(dx).$$

La valeur de l'intégral est

$$\frac{1}{2}(\mu(\{a\}) + \mu(\{b\}) + \mu((a,b)).$$

La dualité en cas de $\phi_X(t)$ intégrable

Théorème d'inversion spécial quand $\phi_X(t)$ est intégrable :

X a une densité

$$f_X(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itx} \phi_X(t) dt.$$

Unicité de la fonction caractéristique

- ▶ Théorème d'unicité $\mathcal{L}(X) = \mathcal{L}(Y) \Leftrightarrow \phi_X(t) = \phi_Y(t)$
- ightharpoonup \Rightarrow de la définition de la fonction caractéristique en termes de μ

Théorème de continuité

- Soit $\mu, \mu_1, \mu_2, \ldots$ des mesures boréliennes, $\phi, \phi_1, \phi_2, \ldots$, leurs fonctions caractéristiques. Alors μ_n converge en loi à μ ssi $\phi_n(t) \to \phi(t), \ t \in \mathbb{R}$.
- Par la définition de convergence en loi et la continuité des fonctions $\cos xt$ et $\sin xt$ en x pour t donné, si μ_n converge en loi à μ , $\phi_n(t) \to \phi(t)$ pour $t \in \mathbb{R}$.
- L'autre direction est plus difficile.

La notation petit-o de Landau

Soit $f: \mathbb{R} \to \mathbb{R}$, $g: \mathbb{R} \to \mathbb{R}$.

- $f(x) \in o(g(x))$ veut dire $\lim_{x\to\infty} f(x)/g(x) = 0$.
- Autrement dit :
 - f(x) = o(g(x)).
 - ▶ f est négligeable devant g asymptotiquement.
 - ▶ *g* est prépondérant devant *f* asymptotiquement.

Soit $f: \mathbb{N} \to \mathbb{R}$, $g: \mathbb{N} \to \mathbb{R}$.

- $ightharpoonup f(n) \in o(g(n))$ veut dire $\lim_{n \to \infty} f(n)/g(n) = 0$.
- ightharpoonup Si $f(n) \in o(n^{-1})$,

 - $\blacktriangleright \lim_{n\to\infty} [nf(n)]^i = 0, i \in \mathbb{N},$

 - $ightharpoonup [f(n)]^i \in o(n^{-i}), [f(n)]^i \in o(n^{-1}).$

Théorème centrale limite I

▶ Supposez que
$$X_1, X_2, ...$$
, sont iid, avec moyenne 0, variance 1.

Soit
$$Y_n = \sqrt{n} \frac{1}{n} \sum_{k=1}^n X_k$$
. La fonction caractéristique de Y_n est

Solit
$$Y_n = \sqrt{n \frac{t}{n}} \sum_{k=1}^n X_k$$
. La fonction caracteristique de Y_n est
$$\phi_n(t) = \phi_X^n \left(\frac{t}{\sqrt{n}}\right) = \left[1 + \frac{it}{\sqrt{n}} E[X_1] + \frac{1}{2} \left(\frac{it}{\sqrt{n}}\right)^2 E[X_1^2] + o(n^{-1})\right]^n$$

• Avec
$$E[X_1] = 0$$
, $E[X_1^2] = 1$,

$$\phi_n(t) = \left(1 - \frac{1}{2} \frac{t^2}{n}\right)$$

$$\phi_n(t) = \left(1 - \frac{1}{2n} + o(n^{-1})\right)$$

$$\log \phi_n(t) = n \log \left(1 - \frac{1}{2} \frac{t^2}{n} + o(n^{-1})\right) = n$$

$$\log \phi_n(t) = n \log \left(1 - \frac{1}{2} \frac{t^2}{n} + o(n^{-1}) \right) = n \left(-\frac{1}{2} \frac{t^2}{n} + o(n^{-1}) \right)$$
$$\log \phi_n(t) \to -\frac{t^2}{2}$$

 $\phi_n(t) \to e^{-t^2/2}$.

Avec
$$E[X_1] = 0$$
, $E[X_1^2] = 1$,
$$\phi_n(t) = \left(1 - \frac{1}{2} \frac{t^2}{n} + o(n^{-1})\right)^n.$$

$$\left(\frac{1}{n} + o(n^{-1}) \right)$$
.

Théorème centrale limite II

- Si Y est une variable aléatoire N(0,1), sa fonction caractéristique est $\phi(t) = e^{-t^2/2}$.
- Puisque $\phi_n(t) \to \phi(t)$, $\mathcal{L}(Y_n) \Rightarrow \mathcal{L}(Y)$.