COMP9414: Artificial Intelligence

Lecture 5b: Language Models

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

COMP9414 Language Models 1

Probabilistic Language Models

- Based on statistics derived from large corpus of text/speech
 - ▶ Brown Corpus (1960s) 1 million words
 - ▶ Penn Treebank (1980s) 7 million words
 - ▶ North American News (1990s) 350 million words
 - ► IBM 1 billion words
 - ► Google, Facebook & Microsoft Trillions of words
- Contrary to view that language ability based on (innate) knowledge
- Idea is language ability can be learnt ... with enough data ...

COMP9414 Language Models

This Lecture

- Part of Speech Tagging
 - n-gram Models
 - Hidden Markov Models
 - ▶ Viterbi Algorithm
- Word Sense Disambiguation
 - ► Mutual Information
 - ► Class-Based Models

UNSW
©W. Wobcke et al. 2019–2022

COMP9414 Language Models 3

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	coord. conjunction	and, or	RB	adverb	extremely
CD	cardinal number	one, two	RBR	adverb, comparative	never
DT	determiner	a, the	RBS	adverb, superlative	fastest
EX	existential there	there	RP	particle	up, off
FW	foreign word	noire	SYM	symbol	+, %
IN	preposition or sub- conjunction	of, in	TO	"to"	to
JJ	adjective	small	UH	interjection	oops, oh
JJR	adject., comparative	smaller	VB	verb, base form	fly
JJS	adject., superlative	smallest	VBD	verb, past tense	flew
LS	list item marker	1, one	VBG	verb, gerund	flying
MD	modal	can, could	VBN	verb, past participle	flown
NN	noun, singular or mass	dog	VBP	verb, non-3sg pres	fly
NNS	noun, plural	dogs	VBZ	verb, 3sg pres	flies
NNP	proper noun, sing.	London	WDT	wh-determiner	which, that
NNPS	proper noun, plural	Azores	WP	wh-pronoun	who, what
PDT	predeterminer	both, lot of	WP\$	possessive wh-	whose
POS	possessive ending	's	WRB	wh-adverb	where, how
PRP	personal pronoun	he, she			

UNSW ©W. Wobcke et al. 2019–2022

Part of Speech Tagging

- The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN other/JJ topics/NNS ./.
- There/EX are/VBP 70/CD children/NNS there/RB
- Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN 's/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

COMP9414 Language Models 5

Why is this Hard?

Ambiguity, e.g. back

- earnings growth took a back/JJ seat
- a small building in the back/NN
- a clear majority of senators back/VBP the bill
- Dave began to back/VB toward the door
- enable the country to buy back/RP debt
- I was twenty-one back/RB then

Probabilistic Formulation

- Events: Occurrence of word w, occurrence of a word with tag t
- Given sequence of words w_1, \dots, w_n , choose t_1, \dots, t_n so that $-P(t_1, \dots, t_n | w_1, \dots, w_n)$ is maximized
- Apply Bayes' Rule
 - $P(t_1,\cdots,t_n|w_1,\cdots,w_n) = \frac{P(w_1,\cdots,w_n|t_1,\cdots,t_n).P(t_1,\cdots,t_n)}{P(w_1,\cdots,w_n)}$
 - Therefore maximize $P(w_1, \dots, w_n | t_1, \dots, t_n) . P(t_1, \dots, t_n)$

COMP9414 Language Models

Unigram Model

Maximize $P(w_1, \dots, w_n | t_1, \dots, t_n) . P(t_1, \dots, t_n)$

- Apply independence assumptions
 - $P(w_1, \dots, w_n | t_1, \dots, t_n) = P(w_1 | t_1) \dots P(w_n | t_n)$
 - Probability of word w generated by t independent of context
 - $P(t_1, \cdots, t_n) = P(t_1) \cdots P(t_n)$
 - Probability of tag sequence independent of order
- Estimate probabilities

UNSW

- P(w|t) = #(w occurs with tag t) / #(words with tag t)
- P(t) = #(words with tag t) / # words
- Choose tag sequence that maximizes $\Pi P(t_i|w_i)$
- Chooses most common tag for each word
- Accuracy around 90% but still ≈1 word wrong in every sentence!

7

UNSW

11

Markov Chain

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - ▶ $P(S_{i+1}|S_i)$ specifies dynamics (stationary if same for each i)
- Independence assumptions
 - $P(S_{i+1}|S_0,\cdots,S_i) = P(S_{i+1}|S_i)$
 - ► Transition probabilities dependent only on current state S_i independent of history to reach that state S_0, \dots, S_{i-1}
 - ▶ The future is independent of the past, given the present

Language Models

Hidden Markov Models

- Bayesian network
 - \triangleright $P(S_0)$ specifies initial conditions
 - $ightharpoonup P(S_{i+1}|S_i)$ specifies dynamics
 - $ightharpoonup P(O_i|S_i)$ specifies "observations"
- Independence Assumptions
 - $P(S_{i+1}|S_0,\dots,S_i) = P(S_{i+1}|S_i)$ (Markov Chain)
 - $P(O_i|S_0,\cdots,S_{i-1},S_i,O_0,\cdots,O_{i-1})=P(O_i|S_i)$
 - ▶ Observations (words) depend only on current state (tag)

Bigram Model

Maximize $P(w_1, \dots, w_n | t_1, \dots, t_n).P(t_1, \dots, t_n)$

- Apply independence assumptions (Markov assumptions)
 - $P(w_1,\cdots,w_n|t_1,\cdots,t_n)=\Pi P(w_i|t_i)$
 - ▶ Observations (words) depend only on states (tags)
 - $P(t_1, \dots, t_n) = P(t_n|t_{n-1}) \dots P(t_1|\phi)$, where $\phi = \text{start}$
 - ▶ Bigram model: state (tag) depends only on previous state (tag)
- Estimate probabilities
 - $P(t_i|t_i) = \#((t_i,t_i) \text{ occurs})/\#(t_i \text{ starts a bigram})$
 - ► Choose tag sequence that maximizes $\Pi P(w_i|t_i).P(t_i|t_{i-1})$
 - ▶ Parts of speech generated by finite state machine

UNSW ©W. Wobcke et al. 2019–2022

COMP9414 Language Models

Markov Model for POS Tagging

Transition probabilities define stationary distribution

COMP9414

COMP9414 Language Models 12 COMP9414 Language Models 14

Hidden Markov Model for POS Tagging

UNSW
©W. Wobcke et al. 2019–2022

COMP9414 Language Models 13

Computing Probabilities

Example

w	P(w ART)	P(w N)	P(w P)	P(w V)
a	0.36	0	0	0
flies	0	0.025	0	0.076
flower	0	0.063	0	0.05
like	0	0.012	0	0.1

P(flies/N like/V a/ART flower/N) =

= P(N|start).P(flies|N).P(V|N).P(like|V).P(ART|V).P(a|ART).P(N|ART).P(flower|N)

 $= 0.29 \times 0.025 \times 0.43 \times 0.1 \times 0.65 \times 0.36 \times 1 \times 0.063$

Most likely sequence, even though P(flies/V) > P(flies/N)

COMP9414 Language Models

Viterbi Algorithm

- 1. Sweep forward (one word at a time) saving only the most likely sequence (and its probability) for each tag t_i of w_i
- 2. Select highest probability final state
- 3. Follow chain backwards to extract tag sequence

15

Word Sense Disambiguation

Example

I should have changed that stupid lock and made you leave your key, if I'd known for just one second you'd be back to bother me.

 $lock = \cdots$ $leave = \cdots$ $second = \cdots$ $back = \cdots$

COMP9414 Language Models 17

Windows

Consider co-occurrences in a window about w

W ₁			147			142
<i>w</i> 1			VV			vv_n

- Senses of word should co-occur with classes of "related" words
- Choose sense s of w to maximize $P(w \text{ as } s | w_1, \dots, w_n)$
- Apply Bayes' Rule
 - Maximize $\frac{P(w_1, \dots, w_n | w \text{ as } s).P(w \text{ as } s)}{P(w_1, \dots, w_n)}$
- Apply independence assumptions
 - $P(w_1, \dots, w_n | w \text{ as } s) = \prod P(w_i | w \text{ as } s)$
- Estimate probabilities: $P(w_i|w \text{ as } s)$
 - \blacktriangleright #(w_i in n-word window around w as s)/#(windows on w as s)

Simple (Made Up) Example

COMP9414

Word	bridge/structure	bridge/dental	any window
teeth	1	10	300
suspension	200	1	2000
the	5500	180	500 000
dentist	2	35	900
TOTAL	5651	194	501 500

P(bridge/structure) = 5651/501500 = 0.0113

 $P(\text{bridge/dental}) = 194/501\ 500 = 3.87\ \text{x}\ 10^{-4}$

 $P(\text{teeth}|\text{bridge/structure}) = 1/5651 = 1.77 \text{ x } 10^{-4}$

P(teeth|bridge/dental) = 10/194 = 0.052

bridge/dental preferred if window contains 'teeth'

COMP9414 Language Models

Mutual Information

UNSW

$$MI(x,y) = \log_2 \frac{P(x,y)}{P(x).P(y)}$$

$$MI(sense(w_1), w_2) = \log_2 \frac{N.\#(sense(w_1), w_2)}{\#(sense(w_1)).\#(w_2)}$$

where *N* is the size of the corpus

- MI = 0: sense(w_1) and w_2 are conditionally independent
- MI < 0: $sense(w_1)$ and w_2 occur together less than randomly
- MI > 0: $sense(w_1)$ and w_2 occur together more than randomly
- Adding mutual information is equivalent to assuming independence
- Choose sense s for $w = \arg\max_{s \in senses(w)} \sum_{w_i \in window(w)} MI(s, w_i)$

19

Class-Based Methods

- Use predefined "sense classes", e.g. WordNet, Wikipedia
 - ▶ lock \rightarrow *Mechanical Devices* \leftarrow tool, crank, cog, \cdots
 - ▶ lock \rightarrow *Body Part* \leftarrow hair, eyes, hands, \cdots
- Calculate counts for word senses by adding those for words
- Take all P(w as s) to be just P(s), i.e. $P(\mathbf{any} \text{ word with sense } s)$
- Advantages
 - ► Reduces space and time complexity
 - ► Reduces data sparsity
 - ► Allows unsupervised learning

UNSW

©W. Wobcke et al. 2019-2022

COMP9414

Language Models

21

Conclusion

- Statistical (and neural network) models perform well on many tasks
 - ► Part-of-speech tagging
 - ▶ Word sense disambiguation
 - ► Control of traditional parser
 - ▶ Probabilistic parsing
- Problems
 - ▶ Unrealistic simplifying assumptions (that seem to work)
 - ▶ Requirement for very large amount of (labelled) text
 - ► Sparsity of word occurrences in (even large) text corpora
 - ► Changes in word usage over time (e.g. *Senator* Obama)