P8160 - Hurricane Project

Tucker Morgan - tlm2152

4/26/2022

Given Information

The following Bayesian model was suggested.

$$Y_i(t+6) = \beta_{0,i} + \beta_{1,i}Y_i(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t) + \epsilon_i(t)$$

where $Y_i(t)$ the wind speed at time t (i.e. 6 hours earlier), $\Delta_{i,1}(t)$, $\Delta_{i,2}(t)$ and $\Delta_{i,3}(t)$ are the changes of latitude, longitude and wind speed between t and t+6, and $\epsilon_{i,t}$ follows a normal distributions with mean zero and variance σ^2 , independent across t.

In the model, $\beta_i = (\beta_{0,i}, \beta_{1,i}, ..., \beta_{7,i})$ are the random coefficients associated the *i*th hurricane, we assume that

$$\boldsymbol{\beta}_i \sim N(\boldsymbol{\beta}, \boldsymbol{\Sigma})$$

follows a multivariate normal distributions with mean β and covariance matrix Σ .

We assume the following non-informative or weak prior distributions for σ^2 , β and Σ .

$$P(\sigma^2) \propto \frac{1}{\sigma^2}; \quad P(\beta) \propto 1; \quad P(\Sigma^{-1}) \propto |\Sigma|^{-(d+1)} \exp(-\frac{1}{2}\Sigma^{-1})$$

d is dimension of β .

Task 1:

Let $\mathbf{B} = (\boldsymbol{\beta}_1^\top, ..., \boldsymbol{\beta}_n^\top)^\top$, derive the posterior distribution of the parameters $\Theta = (\mathbf{B}^\top, \boldsymbol{\beta}^\top, \sigma^2, \Sigma)$. Note from given Bayesian model:

$$\epsilon_{i}(t) = Y_{i}(t+6) - \left(\beta_{0,i} + \beta_{1,i}Y_{i}(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t)\right) \stackrel{i.i.d}{\sim} N(0,\sigma^{2})$$
or
$$Y_{i}(t+6) \stackrel{i.i.d}{\sim} N(\mu_{i},\sigma^{2})$$

where $\mu_i = \beta_{0,i} + \beta_{1,i}Y_i(t) + \beta_{2,1}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t)$. Therefore,

$$f_{Y_i(t+6)}(Y_i \mid \boldsymbol{\beta}_i, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} \left[Y_i(t+6) - \left(\beta_{0,i} + \beta_{1,i}Y_i(t) + \beta_{2,i}\Delta_{i,1}(t) + \beta_{3,i}\Delta_{i,2}(t) + \beta_{4,i}\Delta_{i,3}(t)\right)\right]^2\right\}$$

We can find the posterior distribution for Θ by

$$\pi(\mathbf{B}, \boldsymbol{\beta}, \sigma^2, \Sigma \mid Y_i) \propto f_{Y_i(t+6)}(Y_i \mid \boldsymbol{\beta}, \sigma^2) \times \pi(\mathbf{B} \mid \boldsymbol{\beta}, \Sigma) \times \pi(\boldsymbol{\beta}) \times \pi(\sigma^2) \times \pi(\Sigma),$$

where $\pi(\mathbf{B} \mid \boldsymbol{\beta}, \Sigma)$ is the joint multivariate normal density of $\boldsymbol{\beta}$,

$$\pi(\mathbf{B} \mid \boldsymbol{\beta}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} \det(2\pi\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp(-\frac{1}{2}(\boldsymbol{\beta}_{i} - \boldsymbol{\beta})^{\top} \boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_{i} - \boldsymbol{\beta})).$$

So we have the following posterior distribution, from which we can derive conditional posteriors to perform Gibbs sampling.

$$\pi(\mathbf{B}, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\Sigma} \mid Y_i) \propto \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2} \left(Y_i(t+6) - \mu_i\right)^2\right\}$$
$$\times \prod_{i=1}^n \det(2\pi\boldsymbol{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}(\boldsymbol{\beta}_i - \boldsymbol{\beta})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_i - \boldsymbol{\beta})\right) \times \frac{1}{\sigma^2} \times |\boldsymbol{\Sigma}|^{-(d+1)} \exp(-\frac{1}{2}\boldsymbol{\Sigma}^{-1})$$

Rearranged,

$$\pi(\mathbf{B}, \boldsymbol{\beta}, \sigma^2, \boldsymbol{\Sigma} \mid Y_i) \propto \frac{\det(2\pi\boldsymbol{\Sigma})^{-1/2}}{\sqrt{2\pi}\sigma^3} |\boldsymbol{\Sigma}|^{-(d+1)} \exp\left(-\frac{1}{2}\boldsymbol{\Sigma}^{-1}\right) \prod_{i=1}^n \exp\left\{-\frac{1}{2\sigma^2} (Y_i(t+6) - \mu_i)^2 - \frac{1}{2}(\boldsymbol{\beta}_i - \boldsymbol{\beta})^\top \boldsymbol{\Sigma}^{-1}(\boldsymbol{\beta}_i - \boldsymbol{\beta})\right\}$$

To find the conditional posterior distributions for Gibbs sampling, we can consider:

$$\pi(\boldsymbol{\beta} \mid \mathbf{B}, \sigma^2, \Sigma, Y_i) = \frac{\pi(\boldsymbol{\beta}, \mathbf{B}, \sigma^2, \Sigma \mid Y_i)}{\pi(\mathbf{B}, \sigma^2, \Sigma)}.$$

In the equation above, $\pi(\mathbf{B}, \sigma^2, \Sigma)$ only depends on $\mathbf{B}, \sigma^2, \Sigma$, so we can focus only on the part of the joint posterior that depends on all four variables β , \mathbf{B} , σ^2 , and Σ . (Charly said this is the right idea, and we should have a summation term below to help with combining terms. I'm thinking we should look at the log distribution to convert products to sums.)

$$\pi(\boldsymbol{\beta} \mid \mathbf{B}, \sigma^2, \Sigma, Y_i) \propto \frac{1}{\sigma^2} \exp\left\{-\frac{1}{2}(\boldsymbol{\beta}_i - \boldsymbol{\beta})^\top \Sigma^{-1}(\boldsymbol{\beta}_i - \boldsymbol{\beta})\right\}$$

$$\begin{split} \propto \frac{1}{\sigma^2} \exp \Big\{ -\frac{1}{2} \Big(\boldsymbol{\beta}_i^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}_i - \boldsymbol{\beta}_i^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta} - \boldsymbol{\beta}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}_i - \boldsymbol{\beta}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta} \Big) \Big\} \\ \propto \frac{1}{\sigma^2} \exp \Big\{ \boldsymbol{\beta}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}_i - \frac{1}{2} \boldsymbol{\beta}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta} \Big\} \end{split}$$

I believe we want to expand and simplify to find a recognizable distribution, but I'm not sure what to do from here. Seems like I've made an error somewhere? Would it be easier to do Metropolis-Hastings?

The log of the posterior can be written as:

$$\log \pi(\mathbf{B}, \boldsymbol{\beta}, \sigma^2, \Sigma \mid Y_i) \propto \log f_{Y_i(t+6)}(Y_i \mid \boldsymbol{\beta}_i, \sigma^2) + \log \pi(\Theta),$$

where

$$\pi(\Theta) \propto \prod_{i=1}^{n} \det(2\pi\Sigma)^{-\frac{1}{2}} \exp(-\frac{1}{2}(\boldsymbol{\beta}_{i} - \boldsymbol{\beta})^{\top} \Sigma^{-1}(\boldsymbol{\beta}_{i} - \boldsymbol{\beta})) \times 1 \times \frac{1}{\sigma^{2}} \times |\Sigma|^{-(d+1)} \exp(-\frac{1}{2}\Sigma^{-1}).$$

Therefore,

$$\log \pi(\mathbf{B}, \boldsymbol{\beta}, \sigma^2, \Sigma \mid Y_i) \propto \sum_{i=1}^n -\frac{1}{2} \log 2\pi - \log \sigma - \frac{1}{2\sigma^2} \left(Y_i(t+6) - \mu_i \right)^2 +$$

$$\sum_{i=1}^n -\frac{1}{2} \log (\det(2\pi\Sigma)) - \frac{1}{2} (\boldsymbol{\beta}_i - \boldsymbol{\beta})^\top \Sigma^{-1} (\boldsymbol{\beta}_i - \boldsymbol{\beta}) - 2 \log \sigma - (d+1) \log |\Sigma| - \frac{1}{2} \Sigma^{-1}.$$

Using this equation, I think we could implement a similar component-wise M-H algorithm to the Example: Hierarchical Poisson Model from lecture note 9, page 45. (Charly seemed to indicate that Gibbs sampling was the right approach, not component-wise M-H.)