Teoria dei modelli

Silvia Barbina

Scuola Estiva di Logica 2025

Indice

L	Preliminari	2
	1.1 Immersioni e immersioni elementari	3
	1.2 Teorema di Lowenheim-Skolem all'ingiù	4
2	Due Teorie	4
	2.1 Teoria degli ordini lineari	4
	2.2 Teoria dei grafi	
	2.3 Risultati per T_{dlo} e T_{rg}	
3	Tipi	7
1	Saturazione	9
5	Modello mostro	12
	5.1 Eliminazione dei quantificatori	15
	5.2 Insiemi definibili e algebrici	
3	Teorie Fortemente Minimali	18

1 Preliminari

Si lavora con un linguaggio

$$\mathcal{L} = \left\{ \{R_i\}_{i \in I}, \{f_j\}_{j \in J}, \{c_k\}_{k \in K} \right\}$$

Definizioni di base:

- 1. Una teoria è un insieme di \mathcal{L} -enunciati:
- 2. Una \mathcal{L} -struttura M è un modello della teoria T se per ogni $\sigma \in T$, $M \vDash \sigma$. Si scrive $M \vDash T$. T è coerente, o consistente, se ammette un modello.
- 3. Con Mod(T) si indica la classe di tutti i modelli tella teoria T.
- 4. Con Th(M) si indica la teoria della struttura M, ossia

$$\operatorname{Th}(M) \coloneqq \left\{\sigma: M \vDash \sigma, \sigma \text{ enunciato}\right\}.$$

5. Se T è una teoria e σ è un enunciato,

$$T \vDash \sigma$$
 per ogni $M \vDash T$

6. T è una teoria completa se per ogni enunciato σ si ha

$$T \vDash \sigma \quad o \vDash \neg \sigma.$$

7. Scriviamo $M \equiv N$, e diremo che M, N sono elementarmente equivalenti se

$$Th(M) = Th(N)$$

Alcune domande naturali:

- 1. Data T, possiamo descrivere Mod(T)? In generale, la domanda ha senso quando T è completa
- 2. Data M (struttura), Th(M) è sempre completa. Come sono fatti i modelli di Th(M)?
- 3. Come stabilire se una data teoria T è completa?
- 4. Data una struttura M, è possibile descrivere Th(M) in modo efficace? (per esempio mediante degli assiomi)

Esempio 1.1. Sia T una teoria ω -categorica, ossia avente un unico modello infinito numerabile a meno di isomorfismo. Allora

- \bullet T è completa;
- i modelli infinito numerabili di T sono tutti isomorfi;
- ullet una classificazione di $\mathrm{Mod}(T)$ si ha banalmente per T totalmente categorica.

Abusi di notazioni.

- Una struttura verrà denotata dal suo dominio M; non distinguiamo tra simboli nel linguaggio e le loro interpretazioni in M.
- Se $A \subseteq M$, definiamo un'espansione di \mathcal{L} :

$$\mathcal{L}(A) = L \cup \{ a \mid a \in A \}.$$

Una $\mathcal{L}(A)$ -formula ha parametri in A.

- Scriviamo " $\varphi \in \mathcal{L}$ " per " φ è una \mathcal{L} -formula".
- Tuple di variabili/costanti si denotano con x/a, e, occasionalmente \bar{x}/\bar{a} . |x| denota la lunghezza della tupla x (ex: $a \in M^{|a|}$)
- \bullet M, N, U, V denotano struttura e A, B, C sono sottoinsiemi del dominio di una struttura.

1.1 Immersioni e immersioni elementari

Se M, N sono due \mathcal{L} -struttura, allora

1. $f:M\to N$ è una immersione se e solo se per ogni $\varphi(x)\in\mathcal{L}$ atomica (oppure senza quantificatori) e $\forall a\in\overline{M^{|x|}}$

$$M \vDash \varphi(a) \iff N \vDash \varphi(f(a))$$

Troviamo una copia isomorfa di M dentro N.

2. $f:M\to N$ è una immersione elementare se per ogni $\varphi(x)\in\mathcal{L}$ e $\forall a\in M^{|x|}$

$$M \vDash \varphi(a) \iff N \vDash \varphi(f(a))$$

Inoltre

- 1. M è sottostruttura di N ($M \subseteq N$) se l'inclusione $i: M \to N$ è una immersione.
- 2. M è sottostruttura elementare di N ($M \leq N$) se l'inclusione $i: M \to N$ è una immersione elementare.
- 3. Una immersione biiettiva è un isomorfismo ed è, in particolare, un'immersione elementare.
- 4. Ogni immersione è iniettiva

$$M \vDash a = b \iff N \vDash f(a) = f(b)$$

Esempio 1.2. Sia $\mathcal{L}_{lo} = \{<\}$, con < simbolo di relazione binaria. Allora ($\mathbb{R}, <$) è una \mathcal{L}_{lo} -struttura, dove < è (interpretato come) l'ordine usuale sui reali.

Gli intervalli [0,1] e $[0,2] \subseteq \mathbb{R}$ sono \mathcal{L}_{lo} strutture e sono entrambi sottostrutture di \mathbb{R} . Inoltre $[0,1] \cong [0,2]$, con $x \mapsto 2x$ isomorfismo.

Ma l'inclusione $[0,1] \subseteq [0,2]$ non è elementare. Infatti, sia

$$\varphi(x): \quad \forall y \ (y < x \lor y = x)$$

allora $[0,1] \vDash \varphi(1)$ ma $[0,1] \not\vDash \varphi(1)$.

Altre osservazioni: $[0,1] \not \preceq \mathbb{R}$ e $[0,1] \not \equiv \mathbb{R}$. Però $[0,1] \equiv [0,2]$ poiché $[0,1] \cong [0,2]$.

Teorema 1.3. (Criterio di Tarski-Vaught) Per ogni sottoinsieme $A \subseteq N$, sono fatti equivalenti:

- 1. A è il dominio di una sottostruttura elementare $M \leq N$;
- 2. per ogni formula $\varphi(x) \in \mathcal{L}(A)$ con |x| = 1

$$N \vDash \exists x \ \varphi(x) \implies N \vDash \varphi(b) \text{ per qualche } b \in A$$

Definizione 1.4. Sia λ un ordinale. Allora una <u>catena di \mathcal{L} -strutture</u> è una successione $\langle M_i \mid i < \lambda \rangle$ tale che, per ogni $i < j < \lambda$, $M_i \subseteq M_j$.

L'unione della catena è la struttura M dove

- il dominio è $\bigcup_{i<\lambda} M_i$;
- c costante, allora $c^M = c^{M_i}$ per qualche $i < \lambda$;
- f funzione, $\bar{a} \in M^n$, allora $f^M(\bar{a}) = f^{M_i}(\bar{a})$ per i tale che $\bar{a} \in M_i^n$;
- R relazione, allora $R^M = \bigcup_{i < \lambda} R^{M_i}$.

1.2 Teorema di Lowenheim-Skolem all'ingiù

Teorema 1.5. Sia N una \mathcal{L} -struttura con $|N| \geq |\mathcal{L}| + \omega$, e sia $A \subseteq N$.

Allora per ogni λ tale che $|A|+|\mathcal{L}|\leq\lambda\leq|N|$ esiste $M\preceq N$ tale che

- 1. $A \subseteq M$
- 2. $|M| = \lambda$.

2 Due Teorie

2.1 Teoria degli ordini lineari

Sia $\mathcal{L}_{lo} = \{<\}$, con < relazione binaria. Una \mathcal{L}_{lo} struttura è un ordine lineare se soddisfa

- 1. $\forall x \ \neg (x < x);$
- $2. \ \forall x,y,z \ \big[(x < y \land y < z) \implies x < z \big];$
- 3. $\forall x, y \ [x < y \lor y < x \lor x = y].$

Un ordine lineare è denso se soddisfa

- 1. $\exists x, y \ [x < y]$
- 2. $\forall x, y \ [(x < y) \implies \exists z \ (x < z \land z < y)].$

Un ordine lineare è senza estremi se

1. $\forall x$

??? (vedi Ordine lineare, Ordine denso, Ordine senza punto finale) $(T_{\rm lo}~{\rm e}~T_{\rm dlo})$

2.2 Teoria dei grafi

Sia $\mathcal{L}_{gph} = \{R\}$. Un grafo è una \mathcal{L}_{gph} -struttura che soddisfa

??? (Vedi Teoria dei grafi, Teoria dei grafi aleatori)

$$(T_{\rm gph}$$
e $T_{\rm rg})$

I modelli di $T_{\rm dlo}$ e $T_{\rm rg}$ sono necessariamente infiniti.

2.3 Risultati per T_{dlo} e T_{rg}

Definizione 2.1. Siano M,N due \mathcal{L} -strutture. Un'immersione parziale è una mappa iniettiva

$$p: dom(p) \subseteq M \to N$$

tale che

1. per ogni relazione n-aria R, $a \in dom(p)^n$

$$a \in R^M \iff p(a) \in R^N$$

2. per ogni funzione n-aria f, a, $f^M(a) \in \text{dom}(p)^n$

$$p(f^M(a)) = f^N(p(a))$$

3. per ogni costante c tale che $c^M \in dom(p)$

$$p(c^M) = c^N$$

Definizione 2.2. M,N sono <u>parzialmente isomorfe</u> se esiste una collezione $I \neq \emptyset$ di immersioni parziali tali che

- 1. se $p \in I$ e $a \in M$, esiste $\hat{p} \in I$ con $p \subseteq \hat{p}$ e $a \in \text{dom}(\hat{p})$;
- 2. $se \ p \in I \ e \ b \in M$, $esiste \ \hat{p} \in I \ con \ p \subseteq \hat{p} \ e \ b \in rng(\hat{p})$.

Lemma 2.3. (Andirivieni, o back-and-forth) Se $|M| = |N| = \omega$ e M, N sono parzialmente isomorfe via I, allora $M \cong N$.

Dimostrazione. Enumeriano M, N, dicendo

$$M = \langle a_i : i < \omega \rangle$$

$$N = \langle b_i : i < \omega \rangle$$

Definiamo induttivamente una catena $\langle p_i : i < \omega \rangle$ di immersioni parziali con $a_i \in \text{dom}(p_{i+1})$ e $b_i \in \text{rng}(p_{i+1})$.

Sia $p_0 \in I$ arbitrario. Al passo i+1, usiamo le proprietà 1. e 2. della definizione per ottenere p_{i+1} . Allora $p = \bigcup_{i \in \omega} p_i$ è l'isomorfismo cercato.

Teorema 2.4. Siano $M, N \models T_{\text{dlo}}$ con $|M| = |N| = \omega$. Allora $M \cong N$.

Dimostrazione. Se $p: M \to N$ è un'immersione parziale con $|\operatorname{dom}(p)| < \omega$ e $c \in M$, allora, per gli assiomi di T_{dlo} è possibile trovare $d \in N$ tale che $p \cup \{(c,d)\}$ è ancora un'immersione parziale.

Analogamente, se $d \in N$ e $p: M \to N$ è un'immersione parziale con $|\text{dom}(p)| < \omega$, troviamo $c \in N$ tale che $p \cup \{(c,d)\}$ è ancora un'immersione parziale.

Dunque $I = \{p : M \to N \text{ immersione parziale finita}\}$ rende $M \in N$ parzialmente isomorfe.

Per il lemma dell'andirivieni, $M \cong N$.

Corollario 2.5. $T_{\rm dlo}$ è ω -categorica.

Osservazione. Ogni teoria ω -categorica T con un modello infinito è completa. Infatti, se $M, N \vDash T$ e $\varphi \in L$ è enunciato t.c. $M \vDash \varphi$, siano $M', N' \vDash T$ con $|M'| = |N'| = \omega$, $M' \vDash M$, $N' \vDash N$ (che esistono per LW). Allora $M' \cong N'$ e, per elementarità, $N \vDash \varphi$.

Corollario 2.6. $T_{\rm dlo}$ è completa.

Teorema 2.7. T_{rg} è coerente.

Dimostrazione. Si definisce un grafo su ω come segue: per i < j, R(i,j) sse la cifra i-esima nell'espansione binaria di j è 1.

Dimostrare che
$$\langle \omega, R \rangle \vDash T_{\rm rg}$$
.

Teorema 2.8. Siano $M, N \models T_{rg}$ con $|M| = |N| = \omega$. Allora $M \cong N$.

Dimostrazione. Siano $m_0 \in M$, $n_0 \in N$. Allora $\langle m_0, n_0 \rangle$ è un'immersione parziale.

Dunque $I = \{p : M \to N \text{ immersione parziale finita}\} \neq \emptyset$.

Siano ora $p \in I$ e $m \in M$. Considero $U, V \subseteq \operatorname{rng}(p)$

$$U = \{p(a) \in \operatorname{rng}(p) \mid R(m, a)\}$$
$$V = \{p(a) \in \operatorname{rng}(p) \mid (m, a)\}$$

Dunque esiste $n \in N$ tale che, per ogni $a \in dom(p)$

$$M \vDash R(m, a) \iff R(n, p(a))$$

. . .

Corollario 2.9. $T_{\rm rg}$ è ω -categorica e completa.

Il modello numerabile Γ di $T_{\rm rg}$ si chiama grafo di Rado, o random graph.

Ogni grafo finito e ogni grafo numerabile si immerge in Γ .

Inoltre Γ è <u>ultraomogeneo</u>: ogni isomorfismo tra sottografi finiti di Γ si estende ad un automorfismo di Γ .

Anche $\langle \mathbb{Q}, \langle \rangle$ è ultraomogeneo. . . .

Definizione 2.10. Una mappa $f: \text{dom}(f) \subseteq M \to N$ si dice <u>elementare</u> se $\forall \varphi(x) \in \mathcal{L}$, $a \in \text{dom}(f)^{|x|}$

$$M \vDash \varphi(a) \iff N \vDash \varphi(f(a)).$$

Proposizione 2.11. Una mappa è elementare sse ogni sua restrizione finita lo è.

 $Dimostrazione. (\Rightarrow)$: ovvio.

 (\Leftarrow) : siano $\varphi(x) \in \mathcal{L}$ e $a \in M$ tali che

$$M \vDash \varphi(a) \quad \land \quad N \not\vDash \varphi(f(a))$$

Allora $f \upharpoonright \{a\}$ è finita e non elementare.

Teorema 2.12. Siano $M, N \models T_{\text{dlo}}$ (o T_{rg}), e sia $p: M \to N$ un'immersione parziale. Allora p è elementare.

Dimostrazione. In virtù della proposizione precedente, basta il caso $|p| < \omega$.

Siano $M' \leq M$, $N' \leq N$ tali che $|M'| = |N'| = \omega$ e

$$dom(p) \subseteq M'$$
$$rng(p) \subseteq N'$$

Allora per andirivieni fra M' e N', p si estende a $\pi: M' \cong N'$.

In particolare, p è elementare.

Corollario 2.13. $\langle \mathbb{Q}, < \rangle \preceq \langle \mathbb{R}, < \rangle$

3 Tipi

Tutte le strutture si intendono in un linguaggio \mathcal{L} fissato.

Definizione 3.1. Un <u>tipo</u> p(x) è un insieme di \mathcal{L} -formule le cui variabili libere sono in $x = \langle x_i : i < \lambda \rangle$, con λ cardinale.

Notazione: $p(x) \subseteq \mathcal{L}$

Definizione 3.2. Un tipo p(x) è

• soddifacibile in M se $\exists a \in M^{|x|}$ tale che

$$M \vDash \varphi(a)$$
 per ogni $\varphi(x) \in p(x)$;

scriviamo $M \vDash p(a)$, oppure $M, a \vDash p(x)$ e diciamo che a realizza p(x) in M;

- soddisfacibile se è soddisfacibile in qualche M;
- finitamente soddisfacibile in M se ogni $q(x) \subseteq p(x)$ finito è soddisfacibile in M;
- finitamente soddisfacibile se ogni $q(x) \subseteq p(x)$ finito è soddisfacibile.

Spesso si dice "consistente" invece di "soddisfacibile".

Esempio 3.3. Sia $M = \langle \mathbb{N}, < \rangle$, sia $\varphi_n(x)$ la formula "ci sono almeno n elementi < x", e sia

$$p(x) = \{ \varphi_n(x) \mid n \in \omega \}.$$

- p(x) è finitamente soddisfacibile in M.
- p(x) non è soddisfacibile in M.

Teorema 3.4. (Teorema di Compattezza) Una teoria T è coerente se e solo se è coerente ogni sottoinsieme finito di T.

Un corollario è

Teorema 3.5. (compattezza per tipi) Se p(x) è un tipo finitamente soddisfacibile, allora p(x) è soddisfacibile.

Lemma 3.6. (Lemma del diagramma) Sia $a = \langle a_i : i < \lambda \rangle$ una enumerazione della struttura M. Sia q(x) il diagramma di M:

$$q(x) = \{ \varphi(x) \in \mathcal{L} \mid M \vDash \varphi(a) \}, \quad |x| = |a| = \lambda.$$

Allora q(x) è soddisfacibile in una struttura N se e solo se esiste $\beta: M \to N$ immersione elementare.

Dimostrazione. (\Leftarrow): $N \vDash q(\beta(a))$. (\Rightarrow): Se $b \in N^{|x|}$ è tale che $N \vDash q(b)$, allora

$$\beta: a_i \mapsto b_i, \quad i < \lambda$$

è una immersione elementare. Quindi

$$M \vDash \varphi(a) \iff \varphi(x) \in q(x) \iff N \vDash \varphi(b) = \varphi(\beta(a)).$$

Se $A \subseteq M$, consideriamo i tipi in $\mathcal{L}(A)$, detti con parametri in A, o su A.

In particolare, se A = M e $p(x) \subseteq \mathcal{L}(M)$, esistono:

- 1. $a = \langle a_i : i < |M| \rangle$ enumerazzione
- 2. $q(x,z) \subseteq \mathcal{L}$

tali che p(x) = q(x, a).

Allora il lemma precedente si può enunciare come segue.

Lemma 3.7. Sia $Th(M_M)$ la teoria di M in $\mathcal{L}(M)$. Se $N \models Th(M_M)$, allora $M \preceq N$.

Teorema 3.8. Sia M una struttura e $p(x) \subseteq \mathcal{L}(M)$ un tipo finitamente soddisfacibile in M. Allora p(x) è realizzato in qualche $N \succeq M$.

Esempio 3.9. Sia $M=(0,1)\subseteq\mathbb{Q}$ una \mathcal{L}_{lo} -struttura. Siano

- 1. $a_n = 1 1/n \in M$ per $n \in \omega \setminus \{0\}$;
- 2. $p(x) = \{a_n < x : n \in \omega\}.$

Allora $p(x) \in \mathcal{L}(M)$ è finitamente sodidsfacibile in M, ma non è realizzato. Viceversa

$$\mathbb{Q}, 1 \vDash p(x)$$

e sappiamo che $M \leq \mathbb{Q}$.

Dimostrazione. (del Teorema~3.8) Siano:

- 1. a una enumerazione di M;
- 2. $p(x) = p'(x, a) \text{ con } p'(x, z) \subseteq \mathcal{L}, |z| = |a| = |M|;$
- 3. $q(z) = \{ \varphi(z) \mid M \vDash \varphi(a) \}.$

Allora $p'(x,z) \cup q(z)$ è finitamente soddisfacibile, per ipotesi. Per compattezza, esiste una struttura N e c,d tali che

$$N, c, d \vDash p'(x, z) \cup q(z)$$

e in particolare $N \vDash q(d)$ e dunque esiste $\beta: M \to N$ immersione elementare. Possiamo assumere $M \preceq N$.

Un corollario è questo importante teorema.

Teorema 3.10. (Lowenheim-Skolem all'insù) Sia $|M| \ge \omega$. Allora per ogni $\lambda \ge |M| + |\mathcal{L}|$ esiste $N \succeq M$ con $|N| = \lambda$.

Dimostrazione. Sia $x = \langle x_i : i < \lambda \rangle$ una tupla di variabili distinte, e sia

$$p(x) = \{x_i \neq x_j \mid i < j < \lambda\}.$$

Allora p(x) è finitamente soddisfacibile in M, e dunque realizzato in $N \succeq M$, con $|N| \ge \lambda$.

Per Lowenheim-Skolem all'ingiù, possiamo assumere $|N| = \lambda$.

4 Saturazione

Definizione 4.1. Sia λ un cardinale infinito. La struttura M si dice λ -satura se realizza ogni tipo $p(x) \subseteq \mathcal{L}(A)$ (per $A \subseteq M$) con

- 1. |x| = 1
- 2. p(x) è finitamente soddisfacibile in M;

 $3. |A| \leq \lambda.$

M si dice satura se è |M|-satura.

Esempio 4.2. Sia $p(x) = \{x \neq a \mid a \in M\} \subseteq \mathcal{L}(M)$:

- p(x) è finitamente soddisfacibile in M;
- p(x) non è soddisfacibile in M.

Definizione 4.3. Se $A \subseteq M$ e $b \in M^{|b|}$ allora il tipo di b su A è

$$\operatorname{tp}_{M}(b/A) := \left\{ \varphi(x) \in \mathcal{L}(A) : M \vDash \varphi(b) \right\}.$$

Osservazione. Si ha che

- 1. $\operatorname{tp}(b/A)$ è completo: se $\varphi(x) \in \mathcal{L}(A)$, si ha $M \vDash \varphi(b)$ o $M \vDash \neg \varphi(b)$;
- 2. se $A \subseteq M \preceq N$ e $b \in M^{|b|}$

$$\operatorname{tp}_{M}(b/A) = \operatorname{tp}_{N}(b/A);$$

Importante se $M \equiv N$, allora $\emptyset : M \dashrightarrow N$ è elementare.

Proposizione 4.4. Sia $f: \text{dom}(f) \subseteq M \to N$ elementare. Allora:

- 1. $M \equiv N$;
- 2. Se a enumera dom(f)

$$\operatorname{tp}(a/\emptyset) = \operatorname{tp}\left(f(a)/\emptyset\right)$$

e più in generale, se $b \in \text{dom}(f)^{|b|}$, se $A \subseteq \text{dom}(f) \cap N$ e $f \upharpoonright A = \text{Id}_A$:

$$\operatorname{tp}(b/A) = \operatorname{tp}(f(b)/A).$$

3. Se a enumera dom(f) e $p(x,a) \subseteq L(A)$ è finitamente soddisfacibile in M, allora p(x,f(a)) è finitamente soddisfacibile in N.

Infatti, se $\{\varphi_1(x,a),\ldots,\varphi_n(x,a)\}\subseteq p(x,a)$ allora

$$M \vDash \exists x \bigwedge_{i=1}^{n} \varphi_i(x, a)$$

e per elementarità di f

$$N \vDash \exists x \bigwedge_{i=1}^{n} \varphi_i(x, f(a)).$$

Teorema 4.5. Sia N tale che $|\mathcal{L}| + \omega \le \lambda \le |N|$. Sono fatti equivalenti:

- 1. $N \in \lambda$ -satura;
- 2. se $f: M \dashrightarrow N$ è mappa elementare con $|f| \le \lambda$ e $b \in M$, allora esiste $\hat{f} \supseteq f$ elementare tale che $b \in \text{dom}(\hat{f})$;

3. se $A \subseteq N$ è tale che $|A| < \lambda$ e $p(z) \subseteq \mathcal{L}(A)$ con $|z| \le \lambda$ è finitamente soddisfacibile in N, allora p(z) è soddisfacibile in N.

Dimostrazione. (1. \Rightarrow 2.): Sia f come in 2., sia $b \in M$. Sia a un'enumerazione di dom(f), e sia $p(x,a) = \operatorname{tp}_M(b/a)$.

p(x,a) è soddisfacibile in M, e dunque p(x,f(a)) è finitamente soddisfacibil e in N e $|f(a)| < \lambda$, N è λ -satura.

Dunque p(x, f(a)) è realizzato in N. Sia d tale che $N, d \models p(x, f(a))$. Allora $\hat{f} = f \cup \{(b, d)\}$ è la mappa cercata.

Corollario 4.6. Se M, N sono saturi con |M| = |N|, allora ogni mappa elementare $f: M \dashrightarrow N$ tale che |f| < |M| si estende ad un isomorfismo $\alpha: M \cong N$.

In particolare, se M, N sono saturi, Th(M) = Th(N) e |M| = |N|, allora $M \cong N$.

Corollario 4.7. Se $M \vDash T_{\text{dlo}}$ o $M \vDash T_{\text{rg}}$, allora $M \succeq \omega$ -saturo.

Ricordiamo che un <u>automorfismo</u> di una struttura M è un isomorfismo $M \to M$. Gli automorfismi di M formano un gruppo, scritto $\operatorname{Aut}(M)$.

Se $A \subseteq M$, si definisce

$$\operatorname{Aut}(M/A) := \left\{ \alpha \in \operatorname{Aut}(M) \mid \alpha \mid = \operatorname{Id}_A \right\}.$$

l'insieme degli automorfismi di M che fissano A.

Definizione 4.8. Sia λ un cardinale infinito. Una struttura N è

- 1. $\underline{\lambda}$ -universale se per ogni $M \equiv N$ con $|M| \leq \lambda$, esiste $\beta : M \to N$ immersione elementare, e universale se è |N|-universale;
- 2. λ -omogenea se ogni mappa elementare $f: N \longrightarrow N$, con $|f| < \lambda$, si estende ad $\alpha \in \operatorname{Aut}(N)$, e omogenea se è |N|-omogenea;
- 3. ultraomogenea se ogni immersione parziale finita si estende ad un automorfismo.

Teorema 4.9. Sia N tale che $|N| \ge |L|$. Sono equivalenti:

- 1. N è satura;
- $2.\ N$ è universale e omogenea.

Definizione 4.10. Sia $a \in N^{|a|}$ e sia $A \subseteq N$. Allora

1. l'orbita di a su A è

$$O_N(a/A) := \{ \alpha(a) : \alpha \in \operatorname{Aut}(N/A) \},$$

dove per definizione alpha $(a_0, \ldots, a_i, \ldots) := (\alpha(a_0), \ldots, \alpha(a_i), \ldots);$

2. $se \varphi \in \mathcal{L}(A)$,

$$\varphi(N) \coloneqq \left\{ a \in N^{|x|} : N \vDash \varphi(a) \right\}$$

è l'insieme definito da $\varphi(x)$.

Un sottoinsieme di N è definibile su A se è definito da qualche $\varphi(x) \in \mathcal{L}(A)$.

Un sottoinsieme di N è tipo-definibile su A se è nella forma

$$p(N) \coloneqq \left\{ a \in N^{|x|} \mid N \vDash p(a) \right\}$$

per qualche tipo $p(x) \subseteq \mathcal{L}(A)$.

Osservazione. Se $a, b \in N^{|a|}$ e $A \subseteq N$, allora

$$\operatorname{tp}(a/A) = \operatorname{tp}(b/A)$$

se e solo se la mappa

$$\{\langle a_i, b_i \rangle \mid i < |a|\} \cup \mathrm{Id}_A$$

è una mappa elementare $N \to N$.

Teorema 4.11. Siano N λ -omogenea, $A \subseteq N$, $|A| < \lambda$, e sia $a \in N^{|a|}$, con $|a| < \lambda$.

Sia $p(x) = \operatorname{tp}(a/A)$. Allora

$$O_N(a/A) = p(N).$$

Dimostrazione. (\subseteq) Se $b \in O_N(a/A)$ allora $b = \alpha(a)$ per $\alpha \in \operatorname{Aut}(N/A)$ e se $\varphi(x,c) \in \mathcal{L}(A)$ con c parametri,

$$N \vDash \varphi(a, c) \iff N \vDash \varphi(\alpha(a), \alpha(c))$$

 $\iff N \vDash \varphi(b, c).$

 (\supseteq) Se $N \vDash p(b)$ allora $\operatorname{tp}(b/A) = \operatorname{tp}(a/A)$ e

$$f = \{ \langle a_i, b_i \rangle : i < |a| \} \cup \mathrm{Id}_A$$

è elementare con $|f| < \lambda$.

Per λ -omogeneità, esiste $\alpha \supseteq f$, $\alpha \in \operatorname{Aut}(N)$. In particolare, $\alpha \upharpoonright A = \operatorname{Id}_A$, e dunque

$$b \in O_N(a/A)$$
.

5 Modello mostro

Sia T una teoria completa senza modelli finiti. Lavoriamo in $\mathcal{U} \models T$ tale che

- 1. \mathcal{U} è saturo;
- 2. $|\mathcal{U}| > |M|$ per ogni $M \models T$ con cui ci interessa lavorare.

Avvertimento: non ci siamo occupati dell'esistenza di un modello saturo di T.

Definizione 5.1. N è <u>debolmente</u> λ -omogeneo se per ogni $f: N \dashrightarrow N$ elementare e tale che $|f| < \lambda$, e per ogni $b \in N$, esiste $c \in N$ tale che $f \cup \{\langle b, c \rangle\}$ è elementare.

In particolare, se $N \in \lambda$ -saturo, allora

- N è debolmente λ -omogeneo;
- N è λ -universale.

Terminologia e convenzioni in \mathcal{U} .

- "vale $\varphi(x)$ ", o " $\vDash \varphi(x)$ ", se $\mathcal{U} \vDash \forall x \varphi(x)$;
- " $\varphi(x)$ è consistente" se $\mathcal{U} \vDash \exists x \ \varphi(x)$;
- un tipo p(x) è coerente/consistente se esiste $a \in \mathcal{U}^{|x|}$ tale che $\mathcal{U} \models p(a)$;
- un cardinale λ è piccolo se $\lambda < |\mathcal{U}|$;
- $|\mathcal{U}| = \kappa$;
- un modello è $M \leq \mathcal{U}$, con |M| piccola;
- A, B, C sono sottoinsiemi piccoli (ovvero di cardinalità piccola) di \mathcal{U} ;
- $\operatorname{tp}(a/A) := \operatorname{tp}_{\mathcal{U}}(a/A);$
- $O(a/A) := O_{\mathcal{U}}(a/A)$.

Altre convensioni

- se non altrimenti specificato, le tuple hanno lunghezza piccola;
- gli insiemi definibili hanno la forma $\varphi(\mathcal{U})$ per $\varphi \in \mathcal{L}(\mathcal{U})$;
- i tipi hanno parametri in insiemi piccoli
- gli insiemi tipo-definibili hanno la formula $p(\mathcal{U})$ per qualche tipo $p(x) \subseteq \mathcal{L}(A)$, A piccolo.

Se p(x), q(x) sono tipi, scriviamo

$$p(x) \Longrightarrow q(x)$$
 per $p(\mathcal{U}) \subseteq q(\mathcal{U});$
 $p(x) \Longrightarrow \neg q(x)$ per $p(\mathcal{U}) \cap q(\mathcal{U}) = \emptyset;$

Proposizione 5.2. Se $p(x) \subseteq \mathcal{L}(A)$, $q(x) \subseteq \mathcal{L}(B)$ sono tipi coerenti e tali che $p(x) \implies \neg q(x)$, allora esistono $\varphi(x)$ e $\psi(x)$ congiunzione di formule (risp. di p(x) e q(x)) tali che

$$\vDash \varphi(x) \implies \neg \psi(x)$$

Infatti, se $p(\mathcal{U}) \cap q(\mathcal{U}) = \emptyset$, allora

$$p(x) \cup q(x)$$

non è soddisfacibile in \mathcal{U} , e dunque (siccome \mathcal{U} è saturo), non è finitamente soddisfacibile.

Proposizione 5.3. Se $\alpha \in Aut(\mathcal{U})$ e $\varphi(\mathcal{U}, b)$ è un insieme definibile, allora

$$\alpha \Big[\varphi(\mathcal{U}, b) \Big] = \varphi \Big(\mathcal{U}, \alpha(b) \Big).$$

Analogamente, se $p(x,z) \subseteq \mathcal{L}$ e $b \in \mathcal{U}^{|z|}$

$$\alpha[p(\mathcal{U},b)] = p(\mathcal{U},\alpha(b)).$$

Definizione 5.4. Un insieme $D \subseteq \mathcal{U}^{\lambda}$ (per $\lambda < \kappa$) è <u>invariante</u> su $A \subseteq \mathcal{U}$ se per ogni $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$,

$$\alpha[D] = D.$$

o, equivalentemente,

$$\forall a \in D \quad O(a/A) \subseteq D.$$

Osservazione. Se $b \models \operatorname{tp}(a/A)$, allora, per omogeneità esiste $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$ tale che $\alpha(a) = b$, dunque $b \in O(a/A)$.

Quindi D è invariante se e solo se

$$\forall a \in D, \ \forall b \in \mathcal{U}, \ \ \operatorname{tp}(a/A) = \operatorname{tp}(b/A) \implies b \in D.$$

Teorema 5.5. Sia $A \subseteq \mathcal{U}$. Per ogni $\varphi(x) \in \mathcal{L}(\mathcal{U})$, sono equivalenti:

1. esiste $\psi(x) \in \mathcal{L}(A)$ tale che

$$\vDash \forall x \ [\psi(x) \iff \varphi(x)];$$

2. $\varphi(\mathcal{U})$ è invariante su A.

Notiamo che la condizione 1. dice che $\varphi(\mathcal{U})$ è definibile su A.

Osservazione. Sottoinsiemi finiti e cofiniti di \mathcal{U} sono sempre definibili.

Dimostrazione. (del Teorema 5.5) (2. \Rightarrow 1.): Siano $\varphi(x,z) \in \mathcal{L}$ e $b \in \mathcal{U}^{|z|}$ tali che $\varphi(\mathcal{U},b)$ è invariante su A.

Sia $c \models \operatorname{tp}(b/A)$. Per omogeneità, $c = \alpha(b)$ per qualche $\alpha \in \operatorname{Aut}(\mathcal{U}/A)$. Allora

$$\alpha [\varphi(\mathcal{U}, b)] = \varphi(\mathcal{U}, c)$$

me ma per invarianza $\alpha \big[\varphi(\mathcal{U},b) \big] = \varphi(\mathcal{U},b),$ e pertanto

$$\varphi(\mathcal{U},c) = \varphi(\mathcal{U},b).$$

Allora, se $q(z) := \operatorname{tp}(b/A)$

$$q(z) \implies \forall x \ [\varphi(x,b) \iff \varphi(x,z)].$$

Per saturazione/compattezza, esiste $\chi(z) \in q(z)$ tale che

$$\vDash \chi(z) \implies \forall x \ [\varphi(x,b) \iff \varphi(x,z)].$$

Allora $\varphi(\mathcal{U}, b)$ è definito da

$$\exists z \ [\chi(z) \land \psi(x,z)] \in \mathcal{L}(A).$$

5.1 Eliminazione dei quantificatori

Proposizione 5.6. Sia $\varphi(x) \in \mathcal{L}$. Sono fatti equivalenti:

1. esiste $\psi(x)$ senza quantificatori tale che

$$\vDash \forall x \ [\varphi(x) \iff \psi(x)].$$

2. per ogni immersione parziale $p: \mathcal{U} \dashrightarrow \mathcal{U}, a \in \text{dom}(p)^{|x|}$

$$\vDash \varphi(a) \iff \varphi(p(a)).$$

Dimostrazione. (1. \Rightarrow 2.): abbastanza ovvia.

 $(2. \Rightarrow 1.)$: Per $a \in \mathcal{U}^{|x|}$, sia

$$qftp(a) := \{ \chi(x) \in tp(a/\emptyset) \mid \chi(x) \text{ senza quantificatori} \}$$

e sia

$$\mathcal{F} := \left\{ q(x) \mid q(x) = \text{qftp}(a) \text{ per } a \in \varphi(\mathcal{U}) \right\}.$$

Vogliamo dimostrare che

$$\varphi(\mathcal{U}) = \bigcup_{q \in \mathcal{F}} q(\mathcal{U}).$$

Per \subseteq è ovvio per definizione di \mathcal{F} .

Per \supseteq , sia $q(x) \in \mathcal{F}$, q(x) = qftp(a) e sia $b \vDash q(x)$.

Allora $a_i \mapsto b_i$ è immersione parziale, dunque per ipotesi $\vDash \varphi(b)$.

Dunque $q(\mathcal{U}) \subseteq \varphi(\mathcal{U})$, e dunque $\varphi(\mathcal{U}) \supseteq \bigcup_{q \in \mathcal{F}} q(\mathcal{U})$.

In particolare $q(x) \implies \varphi(x)$ per ogni $q(x) \in \mathcal{F}$. Allora esiste $\psi_q(x) \in q(x)$ tale che

$$\vDash \psi_a(x) \implies \varphi(x)$$

(per compattezza/saturazione).

FINIRE DIMOSTRAZIONE

Definizione 5.7. Una teoria T ha l'eliminazione dei quantificatori (q.e.) se per ogni $\varphi(x) \in \mathcal{L}$ esiste $\psi(x)$ senza quantificatori tale che

$$T \vDash \forall x \ [\varphi(x) \iff \psi(x)].$$

Se T è completa e ha q.e., il tipo di $a \in \mathcal{U}^{|a|}$ è determinato di qftp(a).

Teorema 5.8. Sia T completa senza modelli finiti. Sono fatti equivalenti:

- 1. T ha q.e.
- 2. ogni immersione parziale $p: \mathcal{U} \dashrightarrow \mathcal{U}$ è elementare;

- 3. per ogni $p: \mathcal{U} \dashrightarrow \mathcal{U}$ con $|p| < |\mathcal{U}|$ e $b \in \mathcal{U}$, esiste $\hat{p} \supseteq p$ immersione parziale con $|\hat{p}| < |\mathcal{U}|$ e $b \in \text{dom}(\hat{p})$;
- 4. per ogni $p: \mathcal{U} \dashrightarrow \mathcal{U}$ con $|p| < \omega$ e $b \in \mathcal{U}$, esiste $\hat{p} \supseteq p$ immersione parziale con $|\hat{p}| < \omega$ e $b \in \text{dom}(\hat{p})$.

Dimostrazione. (1. \Rightarrow 2.): Ogni $\varphi(x) \in \mathcal{L}$ è equivalente a $\psi(x)$ senza quantificatori, e p preserva $\psi(x)$.

 $(2. \Rightarrow 1.)$: p è immersione parziale, dunque p elementare, e dunque p preserva ogni $\varphi(x) \in \mathcal{L}$.

Dal teorema precedente, $\varphi(x)$ è equivalente a $\psi(x)$ senza quantificatori, e questo vale per ogni $\varphi(x) \in \mathcal{L}$.

 $(2. \Rightarrow 3.)$: Sia p parziale e $|p| < |\mathcal{U}|$. Allora p è elementare e per omogeneità di $\mathcal{U}, p \subseteq \alpha \in \text{Aut}(\mathcal{U})$. Pertanto è sufficiente porre $\hat{p} := p \cup \{\langle b, \alpha(b) \rangle\}$.

 $(3. \Rightarrow 2.)$ (traccia): Se $p_0 \subseteq p$, $|p_0| < \omega$, estendiamo p_0 ad $\alpha \in \text{Aut}(\mathcal{U})$ per back-and-forth. Allora p_0 è elementare.

5.2 Insiemi definibili e algebrici

Definizione 5.9. 1. $a \in \mathcal{U}$ è <u>definibile su</u> $A \subseteq \mathcal{U}$ se $\{a\}$ è definibile su A (ovvero $\varphi(\mathcal{U}) = \{a\}$ per qualche $\varphi(x) \in \mathcal{L}(A)$).

- 2. $a \in \mathcal{U}$ è <u>algebrico</u> su $A \subseteq \mathcal{U}$ se esiste $\varphi(x) \in \mathcal{L}(A)$ tale che $a \in \varphi(\mathcal{U})$ e $|\varphi(\mathcal{U})| < \omega$. (Una tale $\varphi(x)$ si <u>dice</u> <u>algebrica</u>).
- 3. La chiusura definibile di $A \subseteq \mathcal{U}$ è

$$dcl(A) = \{ a \in \mathcal{U} \mid a \ \dot{e} \ definibile \ su \ A \}.$$

4. La <u>chiusur</u>a algebrica di $A \subseteq \mathcal{U}$ è

$$acl(A) = \{ a \in \mathcal{U} \mid a \ \ \dot{e} \ \ algebrico \ su \ A \}.$$

Ovviamente $dcl(A) \subseteq acl(A)$

Esempio 5.10. Sia $T_{do} = \text{Th}(\mathbb{Z}, <)$. Si dimostra che T_{do} è assiomatizzata da

FINIRE GLI ASSIOMI.

 T_{do} è completa, ma non è ω -categorica. (ad esempio $2.\mathbb{Z} \models T_{\text{do}}$).

Considerando invece $\mathbb{Q}.\mathbb{Z} \models T_{do}$ (ovvero \mathbb{Q} copie di \mathbb{Z}): questo è un modello saturo (ovvero ω -saturo e numerabile).

Un modello mostro $\mathcal{U} \vDash T_{do}$ ha la forma $\mathcal{V}.\mathbb{Z}$, dove $\mathcal{V} \vDash T_{dlo}$ è un modello mostro.

Osservazione. Sia $p(x) \subseteq \mathcal{L}(A)$, con $|x| < \omega$.

$$|p(\mathcal{U})| \ge \omega \iff |p(\mathcal{U})| = |\mathcal{U}|.$$

In particolare, se $\varphi(x)$ non è algebrica, allora $|\varphi(\mathcal{U})| = |\mathcal{U}|$.

Infatti, sia

$$q(x) = p(x) \cup \{x \neq d \mid d \in p(\mathcal{U})\}\$$

tipo con parametri in $A \cup p(\mathcal{U})$. Allora q(x) è finitamente soddisfacibile.

Supponiamo $\omega \geq |p(\mathcal{U})| < |\mathcal{U}|$. Allora per saturazione $\mathcal{U} \vDash q(b)$ per qualche $b \in \mathcal{U}$.

Allora $\mathcal{U} \vDash p(b)$, ma $b \neq d$ per ogni $d \in p(\mathcal{U})$. Assurdo.

L'unica possibilità è che $|p|(\mathcal{U}) = |\mathcal{U}|$.

Proposizione 5.11. Per $a \in \mathcal{U}$ e $A \subseteq \mathcal{U}$ sono fatti equivalenti:

- 1. $a \in dlc(A)$;
- 2. $O(a/A) = \{a\}.$

Dimostrazione. (1. \Rightarrow 2.): Sia $\{a\}$ definito da $\varphi(x) \in \mathcal{L}(A)$, ossia $\varphi(\mathcal{U}) = \{a\}$.

Ma $\varphi(\mathcal{U})$ è invariante su A, e quindi $O(a/A) \subseteq \varphi(U) = \{a\}$.

 $(2. \Rightarrow 1.)$: $O(a/A) = \{a\}$ è definibile (da x = a) ed è invariante su A (perché è un'orbita).

Ma allora $\{a\}$ è definibile da $\varphi(x) \in \mathcal{L}(A)$, e quindi

$$a \in dlc(A)$$

Teorema 5.12. Se $a \in \mathcal{U}$ e $A \subseteq \mathcal{U}$, sono fatti equivalenti:

- 1. $a \in \operatorname{acl}(A)$;
- 2. $|O(a/A)| < \omega$;
- 3. $a \in M$ per ogni mdoello M tale che $A \subseteq M$.

Dimostrazione. (1. \Leftrightarrow 2.): è simile al caso definibile su A.

 $(1. \Rightarrow 3.)$: Se $a \in \operatorname{acl}(A)$ allora esiste $\varphi(x) \in \mathcal{L}(A)$ tale che

$$\vDash \varphi(a) \land \exists^{=n} x \ \varphi(x).$$

Allora se $M \preceq \mathcal{U}$ e $A \subseteq M$, si ha

$$M \vDash \exists^{=n} x \ \varphi(x)$$

Poiché ogni testimone di $\varphi(x)$ in M è un testimone in \mathcal{U} , $\varphi(\mathcal{U}) \subseteq M$; in particolare, $a \in M$.

 $(3. \Rightarrow 1.)$: se $a \notin \operatorname{acl}(A)$, allora $p(x) = \operatorname{tp}(a/A)$ è tale che $|p(\mathcal{U})| \geq \omega$, e dunque

$$|p(\mathcal{U})| = |\mathcal{U}|$$

e $p(\mathcal{U}) \setminus M \neq \emptyset$ per ogni modello $M \supseteq A$.

Se $b \in p(\mathcal{U}) \setminus M$, spostiamo

- b in a con $\alpha \in Aut(\mathcal{U}/A)$;
- M in $\alpha[M] \preceq \mathcal{U}$

e
$$a = \alpha(b) \notin \alpha[M]$$
.

Corollario 5.13. Vale

$$acl(A) = \bigcap \{ M \leq \mathcal{U} \mid A \subseteq M \}.$$

Proposizione 5.14. Alcune proprietà di acl(A):

- 1. carattere finito: se $a \in \operatorname{acl}(A)$ allora esiste $A_0 \subseteq A$ finito tale che $a \in \operatorname{acl}(A_0)$
- 2. $A \subseteq acl(A)$;
- 3. $A \subseteq B \implies \operatorname{acl}(A) \subseteq \operatorname{acl}(B)$;
- 4. $\operatorname{acl}\left(\operatorname{acl}(A)\right) = \operatorname{acl}(A)$.

Proposizione 5.15. Se $\beta \in Aut(\mathcal{U})$ e $A \subseteq \mathcal{U}$, allora

$$\beta \left[\operatorname{acl}(A)\right] = \operatorname{acl}\left(\beta[A]\right).$$

Dimostrazione. Sia $a \in \operatorname{acl}(A)$ algebrico per la formula $\varphi(x,b), b \in \mathcal{U}^{|b|}$.

Allora $|\varphi(\mathcal{U}, b)| < \omega$, e valgono

- 1. $\vDash \varphi(\beta(a), \beta(b));$
- 2. $|\varphi(\mathcal{U}, \beta(b))| < \omega$

poiché β è automorfismo.

Segue che $\beta(a)$ è algebrico su $\beta(b)$, e dunque

$$\beta \Big[\operatorname{acl}(A)\Big] \subseteq \operatorname{acl}\Big(\beta[A]\Big).$$

6 Teorie Fortemente Minimali

Ricordiamo che in ogni struttura M, gli insiemi finiti e cofiniti sono sempre definibili.

Definizione 6.1. Una struttura M è <u>minimale</u> se tutti i suoi sottoinsiemi definibili sono finiti o cofiniti.

- M è fortemente minimale se è minimale e ogni sua estensione elementare è minimale.
- Una teoria T coerente e senza modelli finiti è <u>fortemente minimale</u> se per ogni $\varphi(x, \overline{z}) \in \mathcal{L}$ esiste $n \in \omega$ tale che

$$T \vDash \forall \overline{z} \ \left[\exists^{\leq n} x \ \varphi(x, \overline{x}) \vee \exists^{\leq n} x \ \neg \varphi(x, \overline{x}) \right]$$

Sia ora T una teoria completa con modello mostro \mathcal{U} .

Definizione 6.2. Sia $a \in \mathcal{U}$, $B \subseteq \mathcal{U}$. Allora $a \in indipendente da <math>B$ se $a \notin acl(B)$.

 $B \ \dot{e} \ un \ insieme \ indipendente \ se \ per \ ogni \ b \in B, \ b \ \dot{e} \ indipendente \ da \ B \setminus \{b\}.$

Proposizione 6.3. Th(M) è fortemente minimale sse M è fortemente minimale.

Esempio 6.4. Sia $L = \{E\}$, con E relazione binaria. Sia M numerabile e E interpretata come relazione di equivalenza, tale che per ogni $n \in \omega \setminus \{0\}$, M contiene esattamente una classe di equivalenza di cardinalità n, e nessuna classe di cardinalità ω .

Allora M è minimale (e inoltre $\operatorname{Th}(M)$ ha q.e.) e ammette $N \succeq M$ dove E ha una classe di equivalenza infinita (e non cofinita).

Lavoriamo in T completa, fortemente minimale, con modello mostro \mathcal{U} .

Esempio 6.5. Sia K un campo, e sia $\mathcal{L}_{\mathbb{K}} = \{+, -, 0, \{\lambda\}_{\lambda \in \mathbb{K}}\}.$

Si assiomatizza un campo vettoriale V su \mathbb{K} , dove tutto è interpretato nel modo usuale (i λ sono funzioni unarie che rappresentano il prodotto per scalari): questo dà luogo a T_{VSK} .

È possibile vedere che T_{VSK} :

- è completa;
- ha q.e.;

e pertanto:

- i termini sono combinazioni lineari $\lambda_1 x_1 + \cdots + \lambda_n x_n$;
- le formule atomiche sono uguaglianze tra combinazioni lineari.

Per q.e., T_{VSK} è fortemente minimale.

Esempio 6.6. Sia $\mathcal{L}_{rng} = \{+, \cdot, -, 0, 1\}$. Allora ACF è la \mathcal{L}_{rng} -teoria che include:

- gli assiomi di gruppo abeliano;
- gli assiomi di monoide commutativo;
- gli assiomi di campo
- assiomi per la chiusura algebrica.

Sia $\chi_p \equiv [1+1+\cdots+1=0]$, dove 1 è ripetuto p volte.

- per p primo, sia $ACF_p := ACF \cup \{\chi_p\};$
- $ACF_0 := ACF \cup \{ \neg \chi_n \mid n \in \omega \}.$

È possibile mostrare che ACF_p e ACF_0 sono complete e hanno q.e.

Allora:

• le formule atomiche con parametri sono equazioni polinomiali;

• una formula atomica con una variabile e parametri in A è equivalente a p(x) = 0, dove p(x) è un polinomio nel sottocampo generato da A.

Quindi:

- le formule atomiche con parametri e una solo variabile libera definiscono insiemi finiti;
- le formule quantifier-free con una variabile e parametri definiscono insiemi finiti o cofiniti.

Per q.e., ACF_p e ACF_0 sono fortemente minimali.

FINIRE CON LE SLIDES

Lemma 6.7. (Lemma dello scambio). Siano $B \subseteq \mathcal{U}$, $a, b \in \mathcal{U} \setminus \operatorname{acl}(B)$. Allora

$$b \in \operatorname{acl}(aB) \iff a \in \operatorname{acl}(bB)$$

dove con $aB := B \cup \{a\}$.

Dimostrazione. Per assurdo, sia $a \in \operatorname{acl}(bB)$ e $b \notin \operatorname{acl}(aB)$.

Sia $\varphi(x,y) \in \mathcal{L}(B)$ tale che

$$\vDash \varphi(a,b) \wedge \exists^{\leq n} x \ \varphi(x,b)$$

per qualche $n \in \omega \setminus \{0\}$.

Consideriamo ora

$$\psi(a,y): \quad \varphi(a,y) \wedge \exists^{\leq n} x \ \varphi(x,y)$$

con $\psi(a, y) \in \mathcal{L}(aB)$.

Siccome $b \notin \operatorname{acl}(aB)$, allora $|\psi(a,\mathcal{U})| \ge \omega$, e dunque

$$|\psi(a,\mathcal{U})| = |\mathcal{U}|.$$

Inoltre, per forte minimalità, $|\neg \psi(a, \mathcal{U})| < \omega$.

Sia M un modello, $B \subseteq M$: allora $M \cap \psi(a, \mathcal{U}) \neq \emptyset$: sia quindi $c \in M \cap \psi(a, \mathcal{U})$. Allora

$$\models \psi(a,c) \land \exists^{\leq n} x \ \psi(x,c)$$

ossia $a \in \operatorname{acl}(cB)$.

Dunque $M \supseteq B$ implica $a \in M$. Per la caratterizzazione, $a \in \operatorname{acl}(B)$. Assurdo.

Definizione 6.8. Se $B \subseteq C \subseteq \mathcal{U}$, B è una base di C se

- 1. B è indipendente;
- 2. $C \subseteq \operatorname{acl}(B)$ (o, equivalentemente, se $\operatorname{acl}(B) = \operatorname{acl}(C)$).

Proposizione 6.9. Se B è un insieme indipendente e $a \notin acl(B)$, allora

$$B \cup \{a\}$$

è ancora un insieme indipendente.

Corollario 6.10. Se $B \subseteq C \subseteq \mathcal{U}$, sono fatti equivalenti:

- 1. B è una base di C;
- 2. B è un sottoinsieme indipendente massimale di C.

Teorema 6.11. (basi di sotto
insiemi di \mathcal{U}). Sia $C\subseteq\mathcal{U}$. Allora

- 1. se $B \subseteq C$ è indipendente, allora B si può estendere ad una base di C;
- 2. se $A \in B$ sono basi di C, allora |A| = |B|.

Definizione 6.12. Sia $C \subseteq \mathcal{U}$ algebricamente chiuso (ossia $C = \operatorname{acl}(C)$) e sia A una base di C.

 $Allora \dim(C) := |A| \ \dot{e} \ la \ dimensione \ di \ C$

Definizione 6.13. Se $a \notin acl(A)$, a si dice trascendente su A.

In una struttura fortemente minimale, tutti gli elementi trascendenti hanno lo stesso tipo su A.

Teorema 6.14. Sia $f: \mathcal{U} \dashrightarrow \mathcal{U}$ una mappa elementare, e siano

$$b \notin \operatorname{acl} (\operatorname{dom}(f)); \quad c \notin \operatorname{acl} (\operatorname{rng}(f)).$$

Allora $f \cup \{\langle b, c \rangle\}$ è elementare.

Dimostrazione. Sia a una enumerazione di dom(f) e sia $\varphi(x,a) \in \mathcal{L}(a)$ (con |x|=1).

Mostriamo $\vDash \varphi(b, a) \iff \varphi(c, f(a)).$

• Caso 1: $|\varphi(\mathcal{U}, a)| < \omega$. Allora $|\varphi(\mathcal{U}, f(a))| < \omega$.

Poiché $b \notin acl(A)$ e $c \notin acl(f(a))$,

$$\vDash \neg \varphi(b, a) \land \neg \varphi(c, f(a)).$$

• Caso 2: FINIRE DALLE SLIDE

Corollario 6.15. Ogni biiezione fra sottoinsiemi indipendenti di \mathcal{U} è elementare.

Ricordiamo: in qualsiasi teoria T, se $M \models T$ e $A \subseteq M$, allora $\operatorname{acl}(A) \subseteq M$. In particolare, ciascun modello è algebricamente chiuso.

Se T è fortemente minimale, questo implica che ogni modello ha una dimensione.

Teorema 6.16. Siano $M, N \leq \mathcal{U}$ tali che dim $(M) = \dim(N)$. Allora $M \cong N$.

COMPLETARE CON LA DIMOSTRAZIONE

Se T è fortemente minimale e $\lambda > |\mathcal{L}|$, allora T è λ -categorica.

Infatti: per $A \subseteq \mathcal{U}$, si ha $|\operatorname{acl}(A)| \leq |\mathcal{L}(A)| + \omega$ poiché

• ci sono al più $|\mathcal{L}(A)| + \omega$ formule

• ogni $\varphi(x) \in \mathcal{L}(A)$ ha al più finite soluzioni.

Se $|M| = \lambda > |\mathcal{L}|$, allora una base deve avere cardinalità λ . Ma ogni due modelli di dimensione λ sono isomorfi.

Morale: i modelli di una teoria fortemente minimale sono determinati a meno di isomorfismi dalla loro dimensione, dunque dalla loro cardinalità se la cardinalità è strettamente maggiore della cardinalità del linguaggio.

Teorema 6.17. Sia N un modello, $|N| \geq |\mathcal{L}|$. Sono fatti equivalenti:

- 1. N è saturo;
- 2. $\dim(N) = |N|$.

Vedi questo sito web: https://www.forkinganddividing.com/.