Human Detection

Purdue University - Vertically Integrated Projects

Image Processing and Analysis - Spring 2023

Robert Sego, Xilai Dai, Alex Weber, Patrick Li, Sun Ahn, Wenjing Chen

Advisors: Prof. Carla Zoltowski, Prof. Edward Delp

Members

Robert Sego Computer Engineering

Xilai Dai Computer Engineering

Alex Weber Electrical Engineering

Patrick Li Computer Engineering

Sun Ahn Computer Science

Human Detection

Generalizable Pedestrian Detection: The Elephant In The Room

"we find that existing state-of-the-art pedestrian detectors, though perform quite well when trained and tested on the same dataset, generalize poorly in cross dataset evaluation"

Taken from WIDER Pedestrian Dataset

ETH Pedestrian Dataset

- Contains frames from three kart mounted videos
- Large variety of person sizes
- People are in both background and foreground
- Limited dataset size

images	1,804
persons	12,298
persons/image	6.81

Table 2: ETH statistics

Link to dataset: Moving Obstacle Detection in Highly Dynamic Scenes (ethz.ch)

WIDER 2019 Dataset

- Two Sources: surveillance camera and dashcam
- Both are of urban environments
- Multiple Weather conditions
- Includes both training and validation datasets

	0.4.500
images	91,500
noroono	202.000
persons	292,890
persons/image	3.2
persons/image	J.Z

Table 2: WIDER 2019 Training statistics

images	5,000
persons	20,052
persons/image	4.0

Table 3: WIDER 2019 Validation statistics

Link to dataset: <u>CodaLab - Competition</u>

Eurocities Dataset

- Images from multiple sources, (mainly dash camera)
- Contains all seasons, time, and weather conditions
- Large diversity in crowd size
- Annotations of pedestrians, cyclists, motorcycle riders and people

images	47,300
persons	238,200
persons/image	5.03

Table 1: ECP statistics

Link to dataset:

https://eurocity-dataset.tudelft.nl/

IOU

$$IOU = \frac{|A \cap B|}{|A \cup B|}$$

A: ground truth box

B: model-output box

Confusion Matrix

		Actual	
		Positive	Negative
Model output Positive Negative	True Positive	False Positive	
	False Negative	True Negative	

True Positives (TP): The model predicted a label and matches correctly as per ground truth.

True Negatives (TN): The model does not predict the label and is not a part of the ground truth.

False Positives (FP): The model predicted a label, but it is not a part of the ground truth.

False Negatives (FN): The model does not predict a label, but it is part of the ground truth.

Method 1: YOLO v3

YOLOv3 Structure

Feature Pyramid Network

YOLO v3 Training Structure

13

Anchor Boxes

$$d_x = \sigma(t_x) + o_x$$

$$d_y = \sigma(t_y) + o_y$$

$$d_w = p_w e^{t_w}$$

$$d_h = p_h e^{t_h}$$

 o_x : gridcell horizontal offset

 o_y : gridcell vertical offset

 p_w : anchor box width

 p_h : anchor box height

 d_x, d_y, d_w, d_h : true bounding box coordinates and dimensions

 t_x, t_y, t_w, t_h : model outputs

Anchor Boxes - Calculation

$$a_{l} = \frac{p_{w}}{p_{h}} = \frac{b_{w} + \sigma_{w}}{b_{h} + \sigma_{h}}$$

$$a_{m} = \frac{b_{w}}{b_{h}}$$

$$a_{s} = \frac{b_{w} - \sigma_{w}}{b_{h} - \sigma_{h}}$$

 a_l : Large anchor box

 a_m : Medium anchor box

 a_s : Small anchor box

 p_w : Width of anchor box

 p_h : Height of anchor box

 b_w : Average width of ground truth bounding boxes

 b_w : Average height of ground truth bounding boxes

 σ_w : Standard deviation of the width of ground truth bounding boxes

 σ_h : Standard deviation of the height of ground truth bounding boxes

Anchor Boxes - Fitness

 j_l : minimum of normalized width and height ratios from step 2 for large anchor boxes j_m : minimum of normalized width and height ratios from step 2 for medium anchor boxes j_s : minimum of normalized width and height ratios from step 2 for small anchor boxes m_w : normalized width ratio

 m_h : normalized height ratio

 d_w : bounding box width d_h : bounding box height

 f_i : fitness score for the ith bounding box

 \bar{f} : average fitness score

Anchor Boxes - Training

 a_l : Large anchor box

 a_m : Medium anchor box

 a_s : Small anchor box

k: Random integer between -10 and 10

F: Current highest fitness score

 \bar{f}_n : Average fitness score of nth iteration

YOLOv3 Loss

$$\sum_{i=1}^{S^2} \sum_{j=1}^{B} C_{IOU} + \sum_{i=1}^{S^2} \sum_{j=1}^{B} I_{ij}^{obj} FL(C_i) + \sum_{i=1}^{S^2} \sum_{j=1}^{B} I_{ij}^{noobj} FL(C_i) + \sum_{i=1}^{S^2} \sum_{j=1}^{B} I_{ij}^{obj} FL(p_{ij}(c))$$

 C_{IOU} : Complete IOU Loss

FL: Focal Loss

 I^{obj} : 1 if ground truth contains bounding box in gridcell, 0 otherwise

 $I^{\text{noobj}}: 0$ if ground truth contains bounding box in gridcell, 1 otherwise

p(c): confidence that object is of specific class

C: confidence score of presence of an object, 0 or 1 for ground truth

CIOU Loss

$$C_{IOU} = (1 - IOU) + D_{IOU} + R_{IOU}$$

 C_{IOU} : Complete IOU Loss

IOU: Intersection over Union

 D_{IOU} : Distance Loss

 R_{IOU} : Aspect Ratio Consistency

Distance Loss

$$B_{x1} = argmin(t_x - 0.5t_w, d_x - 0.5d_w)$$

$$B_{x2} = argmax(t_x + 0.5t_w, d_x + 0.5d_w)$$

$$B_{y1} = argmin(t_y - 0.5t_h, d_y - 0.5d_h)$$

$$B_{y2} = argmax(t_y + 0.5t_h, d_y + 0.5d_h)$$

$$D_{IOU} = \frac{\sqrt{(t_x - d_x)^2 + (t_y - d_y)^2}}{\sqrt{(B_{x1} - B_{x2})^2 + (B_{y1} - B_{y2})^2}}$$

 (B_{x1}, B_{y1})

 d_x, d_y : true bounding box center

 t_x, t_y : model outputs

 D_{IOU} : Distance Loss

Aspect Ratio Consistency

$$R_{IOU} = \frac{4}{\pi} (\arctan \frac{t_w}{t_h} - \arctan \frac{d_w}{d_h})^2$$

 d_w, d_h : true bounding box and dimensions

 t_w, t_h : model outputs

 R_{IOU} : Aspect Ratio Consistency

Focal Loss

$$FL(p_t) = -\alpha (1 - p_t)^{\gamma} \log_2(p_t)$$

p: model output probability

 p_t : p if ground truth is 1, (1-p) if ground truth is 0

 γ : focusing parameter

 α_t : weighting factor parameter

Training/Validation on ETH

Results for Training Dataset

Ground Truth

Output

Results for Testing Dataset

Ground Truth

Output

Method 2: Faster R-CNN

 $p = (p_1, p_2, ... p_k)$

p = predicted class probability

k: $number\ of\ classes$

 (t_x^k, t_y^k) : top left bounding box coordinate for k class object

 (t_w^k, t_h^k) : bounding box width and height

$$t^k = (t_x^k, t_y^k, t_w^k, t_h^k)$$

SoftMax classification layer: choose which object class found

Bounding Box Regressor: Output bounding box coordinates for each object class

Pretrained Weights and Training Chart

Loss

RPN Loss

Faster RCNN Loss

$$L\left(\{p_i\},\{t_i\}\right) = \frac{1}{N_{cls}} \sum_{i} L_{cls}\left(p_i, p_i^*\right) + \lambda \frac{1}{N_{reg}} \sum_{i} p_i^* L_{reg}(t_i, t_i^*) + L_{cls}(p_i, p_i^*) + \lambda L_{reg}(t_i, t_i^*)$$

 N_{cls} : batch size

 N_{reg} : number of anchor locations

 λ : parameter coefficient (default=10)

 L_{cls} : classification loss

 L_{reg} : bounding box regression loss

i: anchor index

 p_i : output anchor object confidence

 p_i^* : ground truth object label

 t_i : output bounding box values

Training/Validation

Loss with learnable learning rate

Loss with fixed learning rate = 0.005

Results for Training Dataset

IoU threshold is 0.5

Ground truth of the ETH sample

Model output of the ETH sample

Results for Testing Dataset

Ground truth of the Wider sample

IoU threshold is 0.5

Model output of the Wider sample

Conclusion and Comparison

The WIDER 2019 dataset is a varied dataset that acts as a thorough test of a model's generalizability. The ETH dataset does provide a large variance in distance from the camera, but models trained on it do not easily detect people far in the background.

Pretrained YOLO v3 learns human detection datasets relatively quickly, but may more easily overfit than contemporary models. Faster R-CNN requires more training epochs, but generally performs better in cross-dataset evaluation.

Future Work

- Compare relevant pedestrian detectors like Pedestron and F2Dnet
- Implement later versions of YOLO and other object detectors for comparison
- Use Mean Average Precision to evaluate the effectiveness of each model
- Test on other datasets

Sources

- [1] Hasan, I., Liao, S., Li, J., Akram, S. U., & Shao, L. (2020, December 9). Generalizable Pedestrian Detection: The Elephant In The Room. arXiv. Retrieved November 13, 2022, from https://arxiv.org/pdf/2003.08799.pdf
- [2] WIDER Face & Person Challenge 2019 Track 2: Pedestrian Detection (n.d.). *CodaLab*. Retrieved November 13, 2022, from https://competitions.codalab.org/competitions/20132#learn_the_details-overview
- [3] A. Ess and B. Leibe and K. Schindler and and L. van Gool (2008, June). A Mobile Vision System for Robust Multi-Person Tracking. *IEEE Conference on Computer Vision and Pattern Recognition* (CVPR'08). *IEEE Xplore*. Retrieved November 13, 2022, from https://data.vision.ee.ethz.ch/cvl/aess/dataset/
- [4] Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. (2020). Focal Loss for Dense Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 42(2), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826

Sources

- [5] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real-time object detection with region proposal networks. *Advances in neural information processing systems*, 28. https://doi.org/10.48550/arXiv.1506.01497
- [6] Girshick, R. (2015). Fast R-CNN. In *Proceedings of the IEEE international conference on computer vision* (1440-1448). https://doi.org/10.48550/arXiv.1504.08083
- [7] Redmon, J., & Farhadi, A. (2018, April 8). *Yolov3: An incremental improvement*. arXiv.org. https://doi.org/10.48550/arXiv.1804.02767