ECE 203

Circuits I

Op-amps

Lecture 5-2

Chapter 4: Op Amps

Op Amp = Operational Amplifier

A complex circuit, but for our purposes, can be analyzed using simplifying assumptions.

Operational Amplifiers (Op Amps)

1941 Bell **Labs Patent**

1961

1962

1963

1979

Today

Introduction

☐ What is an Op-Amp?

- Op-Amp is short for "operational amplifier".
- It is an integrated circuit (IC) originally used to perform some mathematical operations, such as addition, subtraction, differentiation, and integration.
- That's why it is called an operational amplifier!

☐ How Op-Amps are built?

They are built using transistors in an integrated circuit.

What is an Op-Amp?

- The Op-Amp is an "active" element with a high gain that is designed to be used with other circuit elements to perform signal processing operations.
- It requires power supplies, sometimes a single supply, sometimes positive and negative supplies.
- It has two inputs and a single output.

Op-Amp Power Supply Configurations

Single-supply implementation

Dual-supply implementation

UA 741: A standard Off-The-Shelf Op-Amp

(a) A μ A741 integrated circuit has eight connecting pins. (b) The correspondence between the circles pin numbers of the integrated circuit and the nodes of the operational amplifier.

UA 741 Internal Circuit

How Can We Model Op-Amps?

- ☐ Op-Amp is an Amplifier.
- □ So the output voltage is an amplified version of the inputs

$$V_o = A_o(IN_+ - IN_-)$$

- In this equation, A_o is the amplification (or gain), IN₊ is the voltage at the non-inverting input and IN₋ is the voltage at the inverting input.
- □ V_o can be easily modeled with a "dependent voltage source"

A Circuit Model for Op-Amp

$$IN_{+}$$
 IN_{-}
 $Oout$

$$V_o = A_o(IN_+ - IN_-)$$

Another Circuit Model for Op-Amp

 An operational amplifier is modeled as a voltage-controlled voltage source.

Typical versus Ideal Op-Amp

Typical Op Amp:

- The input resistance (impedance) R_{in} is very large (practically infinite).
- 2. The voltage gain *A* is very large (practically infinite).
- 3. Output resistance is a few tens of Ohms.

Ideal Op Amp:

1. The input resistance is infinite.

- 2. The gain is infinite.
- The output resistance is zero.

Consequences of the Ideal Op-Amp

 Infinite input resistance means the current into the inputs is zero:

$$i_{-} = 0; i_{+} = 0$$

Infinite gain means the difference between v₊ and v₋ is zero:

$$v_o = A_o (v_+ - v_-)$$

 $v_+ - v_- = v_o/A_o$
If $A_o = infinity$, then:
 $v_+ - v_- = 0$
This means $v_+ = v_-$

• Zero output resistance: $R_{out} = 0$

Ideal versus Practical Op-Amp

<u>characteristic</u>	<u>ideal</u>	practical	<u>sample</u>
Bias current	0	> 0	0.012 - 80 nA
Input resistance	infinite	finite	2 - 10^6 M Ω
Output resistance	0	> 0	60 – 1 kΩ
Differential gain	infinite	finite	100-5000V/mV
Current saturation	infinite	finite	2 – 30 mA

Practical Op-Amp Datasheet

TABLE 4.1 A list of commercial op-amps and their model values

MANUFACTURER	PART NO.	A ₀ (V/V)	R_i (M Ω)	$R_o(\Omega)$	COMMENTS
National	LM324	100,000	1.0	20	General purpose, up to \pm 16 V supplies, very inexpensive
National	LMC6492	50,000	10 ⁷	150	Low voltage, rail-to-rail inputs and outputs [†]
Maxim	MAX4240	20,000	45	160	Micro-power (1.8 V supply @ 10 μ A), rail-to-rail inputs and outputs
Apex	PAo3	125,000	10 ⁵	2	High-voltage, ± 75 V and high- output current capability, 30 A. That's 2 kW!

[†]Rail-to-rail is a trademark of Motorola Corporation. This feature is discussed further in the following paragraphs.

These are some of the newer op amps

^{*}Op-amps are available that have input and/or output voltage ranges beyond the supply rails. However, these devices constitute a very small percentage of the op-amp market and will not be discussed here.

Circuit symbol for the op amp.

Non-Ideal Effects in Op-Amps

☐ For proper operation, all the inputs and output voltages are limited within the power supply range!

What is Clipping?

The output voltage of a real Op-Amp is limited to the range between certain limits that depend on the internal design of the Op-Amp. When the output voltage tries to exceed these limits, clipping occurs.

Similarly, the output current must stay within a specific range to prevent clipping at the output of Op-Amp.

An Example of Output Clipping

Output of a circuit operating in the "linear range" --- note the sinusoidal output is following a sinusoidal input signal.

Output of a circuit where the sinusoidal input signal is too large, driving the unit into the saturation region ... note the clipping at top and bottom!

Op-Amp Circuit Analysis

Basic Assumptions:

- 1) No current flowing into the V⁺ or V⁻ inputs
- 2) Since gain is infinite, V⁺ and V⁻ are approximately equal
- 3) Output resistance is zero

Op-Amp Examples

 Go to op-amp circuit examples, found in Examples 5-2.1 thru 5-2.3