Importing Pandas and Numpy library-

```
In [1]: import numpy as np
import pandas as pd
```

1. Read csv file-

```
In [2]: file=pd.read_csv("D:\\Downloads\\Heart.csv")
```

2. Read first and last 5 rows-

n [6]:	fil	e.head(5)														
t[6]:		Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
	0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
	1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
	2 3 67 1 asyn		asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes		
	3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
	4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
	file.tail(5)															
	file	e.tail(5)														
[7]: rt[7]:	file	e.tail(5) Unnamed:0	Age	e Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca	Thal	AHD
	file 298	Unnamed: 0			ChestPain typical	RestBP	Chol 264	Fbs 0	RestECG 0	MaxHR 132	ExAng 0	Oldpeak	Slope 2		Thal	AHD Yes
		Unnamed: 0	45	5 1	typical											
	298	Unnamed: 0 3 299	45	5 1	typical asymptomatic	110	264	0	0	132	0	1.2	2	0.0	reversable	Yes
	298 299	Unnamed: 0 3 299 3 300	45 68 57	5 1 3 1 7 1	typical asymptomatic asymptomatic	110 144	264 193	0	0	132 141	0	1.2	2	0.0	reversable reversable	Yes Yes

3. Summary of the file

In [8]:	file.describe()														
Out[8]:		Unnamed: 0	Age	Sex	RestBP	Chol	Fbs	RestECG	MaxHR	ExAng	Oldpeak	Slope	Ca		
	count	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	303.000000	299.000000		
	mean	152.000000	54.438944	0.679868	131.689769	246.693069	0.148515	0.990099	149.607261	0.326733	1.039604	1.600660	0.672241		
	std	87.612784	9.038662	0.467299	17.599748	51.776918	0.356198	0.994971	22.875003	0.469794	1.161075	0.616226	0.937438		
	min	1.000000	29.000000	0.000000	94.000000	126.000000	0.000000	0.000000	71.000000	0.000000	0.000000	1.000000	0.000000		
	25%	76.500000	48.000000	0.000000	120.000000	211.000000	0.000000	0.000000	133.500000	0.000000	0.000000	1.000000	0.000000		
	50%	152.000000	56.000000	1.000000	130.000000	241.000000	0.000000	1.000000	153.000000	0.000000	0.800000	2.000000	0.000000		
	75%	227.500000	61.000000	1.000000	140.000000	275.000000	0.000000	2.000000	166.000000	1.000000	1.600000	2.000000	1.000000		
	max	303.000000	77.000000	1.000000	200.000000	564.000000	1.000000	2.000000	202.000000	1.000000	6.200000	3.000000	3.000000		

4. Shape of file-

```
In [9]: file.shape
Out[9]: (303, 15)
```

5. Name of all attributes-

6. Datatypes of each attribute-

In [12]:	file.dtypes	
Out[12]:	Unnamed: 0 Age Sex ChestPain	int64 int64 int64 object
	RestBP Chol Fbs RestECG MaxHR ExAng Oldpeak Slope Ca Thal AHD dtype: object	int64 int64 int64 int64 int64 float64 int64 float64 object

7. Rename a column (MaxHR -> MaxHRNew)-

Out[19]:		Unnamed: 0	Age	Sex	ChestPain	RestBP	Chol	Fbs	RestECG	MaxHRNew	ExAng	Oldpeak	Slope	Ca	Thal	AHD
	0	1	63	1	typical	145	233	1	2	150	0	2.3	3	0.0	fixed	No
	1	2	67	1	asymptomatic	160	286	0	2	108	1	1.5	2	3.0	normal	Yes
	2	3	67	1	asymptomatic	120	229	0	2	129	1	2.6	2	2.0	reversable	Yes
	3	4	37	1	nonanginal	130	250	0	0	187	0	3.5	3	0.0	normal	No
	4	5	41	0	nontypical	130	204	0	2	172	0	1.4	1	0.0	normal	No
	298	299	45	1	typical	110	264	0	0	132	0	1.2	2	0.0	reversable	Yes
	299	300	68	1	asymptomatic	144	193	1	0	141	0	3.4	2	2.0	reversable	Yes
	300	301	57	1	asymptomatic	130	131	0	0	115	1	1.2	2	1.0	reversable	Yes
	301	302	57	0	nontypical	130	236	0	2	174	0	0.0	2	1.0	normal	Yes
	302	303	38	1	nonanginal	138	175	0	0	173	0	0.0	1	NaN	normal	No

8. Show missing values in dataset-

```
In [22]: file.isnull().sum()
Out[22]: Unnamed: 0
         Age
         Sex
                        0
         ChestPain
                        0
         RestBP
                        0
         Chol
                        0
         Fbs
         RestECG
         MaxHR
         ExAng
         0ldpeak
         Slope
                        0
         Ca
         Thal
         AHD
         dtype: int64
```

9. Mean of age of patients

```
In [24]: file['Age'].mean()
Out[24]: 54.43894389438944
```

10. Max and Min of age of patients

```
In [25]: file['Age'].max()
Out[25]: 77
In [26]: file['Age'].min()
Out[26]: 29
```

11. How many 0's is there in file?

```
In [28]: file.count(0).sum()
Out[28]: 4539
```

12. Replace Yes by 1 and No by 0 in AHD columns-

```
In [32]: file['AHD'].replace({'Yes':1,'No':0})
Out[32]: 0
                 0
          1
                 1
          2
                 1
          3
          298
                 1
          299
                 1
          300
                 1
          301
                 1
          302
         Name: AHD, Length: 303, dtype: int64
```

CREATING 'TEMPERATURE VARIATION' MODEL FOR 'JAN' MONTH

1. Importing Libraries and Reading .csv file

```
In [1]: import numpy as np
import pandas as pd

In [2]: file=pd.read_csv("C:\\Users\\hp\\Downloads\\temperatures.csv")
```

2. Reading Dataset

fil	2																	
	YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	ANNUAL	JAN-FEB	MAR-MAY	JUN-SEP	OCT-DE
C	1901	22.40	24.14	29.07	31.91	33.41	33.18	31.21	30.39	30.47	29.97	27.31	24.49	28.96	23.27	31.46	31.27	27.2
1	1902	24.93	26.58	29.77	31.78	33.73	32.91	30.92	30.73	29.80	29.12	26.31	24.04	29.22	25.75	31.76	31.09	26.4
2	1903	23.44	25.03	27.83	31.39	32.91	33.00	31.34	29.98	29.85	29.04	26.08	23.65	28.47	24.24	30.71	30.92	26.2
3	1904	22.50	24.73	28.21	32.02	32.64	32.07	30.36	30.09	30.04	29.20	26.36	23.63	28.49	23.62	30.95	30.66	26.4
4	1905	22.00	22.83	26.68	30.01	33.32	33.25	31.44	30.68	30.12	30.67	27.52	23.82	28.30	22.25	30.00	31.33	26.
112	2013	24.56	26.59	30.62	32.66	34.46	32.44	31.07	30.76	31.04	30.27	27.83	25.37	29.81	25.58	32.58	31.33	27.
113	2014	23.83	25.97	28.95	32.74	33.77	34.15	31.85	31.32	30.68	30.29	28.05	25.08	29.72	24.90	31.82	32.00	27.8
114	2015	24.58	26.89	29.07	31.87	34.09	32.48	31.88	31.52	31.55	31.04	28.10	25.67	29.90	25.74	31.68	31.87	28.2
115	2016	26.94	29.72	32.62	35.38	35.72	34.03	31.64	31.79	31.66	31.98	30.11	28.01	31.63	28.33	34.57	32.28	30.0
116	2017	26.45	29.46	31.60	34.95	35.84	33.82	31.88	31.72	32.22	32.29	29.60	27.18	31.42	27.95	34.13	32.41	29.

117 rows × 18 columns

3. Assigning variables (Dependent & Independent)

4. Splitting the data into Training and Testing data

```
In [7]: from sklearn.model_selection import train_test_split
In [8]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2)
```

5. Printing Size of Training & Testing

6. Importing & Initiating Linear Regression Model

```
In [11]: from sklearn import linear_model, metrics
In [12]: reg=linear_model.LinearRegression()
```

7. Fitting the Model and Displaying Regression Coefficients

8. Creating the Model

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sb

In [16]: plt.title("Temperature prediction")
   plt.xlabel("Year")
   plt.ylabel("Temperature")
   plt.scatter(x_train, y_train, color='red')
   plt.plot(x_train, reg.predict(x_train), color='blue')
```

9. Plotting the Model

10. Importing metrics library and creating predict variable

```
In [17]: import sklearn.metrics as metrics
In [18]: y_predict=reg.predict(x_test)
```

11. Calculating the Performance metrics MAE, MSE, RMSE, R-Squared, Adjusted R-Squared

```
mse=metrics.mean squared error(y test, y predict)
In [23]:
         mae=metrics.mean absolute error(y test, y predict)
         rmse=np.sqrt(mse)
         r2=metrics.r2_score(y_test, y_predict)
         n=len(x test)
         adjusted r2=((1-r2)*(n-1)/(n-1-1))
         print("MAE:",mae)
         print("MSE:", mse)
         print("RMSE:", rmse)
         print("R-Squared:", r2)
         print("Adjusted R-Squared:", adjusted r2)
         MAE: 0.5311430565253427
         MSE: 0.4321235802333869
         RMSE: 0.6573610729525949
         R-Squared: 0.083148146062207
         Adjusted R-Squared: 0.9585269382076926
```

CREATING 'TEMPERATURE VARIATION' MODEL FOR 'FEB' MONTH

1. Importing & Initiating Linear Regression Model

```
In [11]: from sklearn import linear_model, metrics
In [12]: reg=linear_model.LinearRegression()
```

2. Fitting the Model and Displaying Regression Coefficients

3. Creating the Model

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sb

In [16]: plt.title("Temperature prediction")
   plt.xlabel("Year")
   plt.ylabel("Temperature")
   plt.scatter(x_train, y_train, color='red')
   plt.plot(x_train, reg.predict(x_train), color='blue')
```

4. Plotting the Model

Out[16]: [<matplotlib.lines.Line2D at 0x19b1c9e7370>]

5. Importing metrics library and creating predict variable

```
In [17]: import sklearn.metrics as metrics
In [18]: y_predict=reg.predict(x_test)
```

6. Calculating the Performance metrics MAE, MSE, RMSE, R-Squared, Adjusted R-Squared

```
In [19]: mse=metrics.mean_squared_error(y_test, y_predict)
    mae=metrics.mean_absolute_error(y_test, y_predict)
    rmse=np.sqrt(mse)
    r2=metrics.r2_score(y_test, y_predict)
    n=len(x_test)
    adjusted_r2=((1-r2)*(n-1)/(n-1-1))
    print("MAE:",mae)
    print("MSE:", mse)
    print("RMSE:", rmse)
    print("R-Squared:", r2)
    print("Adjusted R-Squared:", adjusted_r2)
```

MAE: 0.6204868628773595 MSE: 0.6959224488139789 RMSE: 0.8342196646051799 R-Squared: 0.17740203448548264

Adjusted R-Squared: 0.8599887821288136

CREATING 'TEMPERATURE VARIATION' MODEL FOR 'MAR' MONTH

1. Importing & Initiating Linear Regression Model

```
In [11]: from sklearn import linear_model, metrics
In [12]: reg=linear_model.LinearRegression()
```

2. Fitting the Model and Displaying Regression Coefficients

3. Creating the Model

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sb

In [16]: plt.title("Temperature prediction")
   plt.xlabel("Year")
   plt.ylabel("Temperature")
   plt.scatter(x_train, y_train, color='red')
   plt.plot(x_train, reg.predict(x_train), color='blue')
```

4. Plotting the Model

Out[16]: [<matplotlib.lines.Line2D at 0x2697124b370>]

5. Importing metrics library and creating predict variable

```
In [17]: import sklearn.metrics as metrics
In [18]: y_predict=reg.predict(x_test)
```

6. Calculating the Performance metrics MAE, MSE, RMSE, R-Squared, Adjusted R-Squared

```
mse=metrics.mean squared error(y test, y predict)
In [19]:
         mae=metrics.mean absolute error(y test, y predict)
         rmse=np.sqrt(mse)
         r2=metrics.r2 score(y_test, y_predict)
         n=len(x test)
         adjusted_r2=((1-r2)*(n-1)/(n-1-1))
         print("MAE:",mae)
         print("MSE:", mse)
         print("RMSE:", rmse)
         print("R-Squared:", r2)
         print("Adjusted R-Squared:", adjusted r2)
         MAE: 0.7664045190432921
         MSE: 0.8709650898493626
         RMSE: 0.9332551043789488
         R-Squared: -0.2574417882078337
```

CREATING 'TEMPERATURE VARIATION' MODEL FOR 'APR MONTH

Adjusted R-Squared: 1.3145982331263715

1. Importing & Initiating Linear Regression Model

```
In [11]: from sklearn import linear_model, metrics
In [12]: reg=linear_model.LinearRegression()
```

2. Fitting the Model and Displaying Regression Coefficients

3. Creating the Model

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sb

In [16]: plt.title("Temperature prediction")
    plt.xlabel("Year")
    plt.ylabel("Temperature")
    plt.scatter(x_train, y_train, color='red')
    plt.plot(x_train, reg.predict(x_train), color='blue')
```

4. Plotting the Model

5. Importing metrics library and creating predict variable

```
In [17]: import sklearn.metrics as metrics
In [18]: y_predict=reg.predict(x_test)
```

6. Calculating the Performance metrics MAE, MSE, RMSE, R-Squared, Adjusted R-Squared

```
In [19]: mse=metrics.mean_squared_error(y_test, y_predict)
    mae=metrics.mean_absolute_error(y_test, y_predict)
    rmse=np.sqrt(mse)
    r2=metrics.r2_score(y_test, y_predict)
    n=len(x_test)
    adjusted_r2=((1-r2)*(n-1)/(n-1-1))
    print("MAE:",mae)
    print("MSE:", mse)
    print("RMSE:", rmse)
    print("R-Squared:", r2)
    print("Adjusted R-Squared:", adjusted_r2)
```

MAE: 0.6141904741678816 MSE: 0.6047906867346705 RMSE: 0.777682896002394 R-Squared: 0.388308992678045

Adjusted R-Squared: 0.6394951440184076

CREATING 'TEMPERATURE VARIATION' MODEL FOR 'MAY' MONTH

1. Importing & Initiating Linear Regression Model

```
In [11]: from sklearn import linear_model, metrics
In [12]: reg=linear_model.LinearRegression()
```

2. Fitting the Model and Displaying Regression Coefficients

```
In [13]: model=reg.fit(x_train,y_train)
In [14]: print(model.intercept_,model.coef_)
[14.36622931] [[0.00979527]]
```

3. Creating the Model

```
In [15]: import matplotlib.pyplot as plt
import seaborn as sb

In [16]: plt.title("Temperature prediction")
    plt.xlabel("Year")
    plt.ylabel("Temperature")
    plt.scatter(x_train, y_train, color='red')
    plt.plot(x_train, reg.predict(x_train), color='blue')
```

4. Plotting the Model

```
Out[16]: [<matplotlib.lines.Line2D at 0x154708c7370>]
```


5. Importing metrics library and creating predict variable

```
In [17]: import sklearn.metrics as metrics
In [18]: y_predict=reg.predict(x_test)
```

6. Calculating the Performance metrics MAE, MSE, RMSE, R-Squared, Adjusted R-Squared

```
In [19]: mse=metrics.mean_squared_error(y_test, y_predict)
    mae=metrics.mean_absolute_error(y_test, y_predict)
    rmse=np.sqrt(mse)
    r2=metrics.r2_score(y_test, y_predict)
    n=len(x_test)
    adjusted_r2=((1-r2)*(n-1)/(n-1-1))
    print("MAE:",mae)
    print("MSE:", mse)
    print("RMSE:", rmse)
    print("R-Squared:", r2)
    print("Adjusted R-Squared:", adjusted_r2)
```

MAE: 0.5782658022605768 MSE: 0.6713851636923708 RMSE: 0.8193809637112464

R-Squared: -0.04407723246399753

Adjusted R-Squared: 1.0915352884850884