

UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO Centro Tecnológico

Departamento de Engenharia Elétrica

Comunicação Digital

Analise de Sinais: Conversão A/D Semestre Letivo 2020/1

Prof.: Jair A. Lima Silva

PPGEE/DEL/UFES

Índice

I. Conversão A/D

- a. Amostragem
- b. Quantização
- c. Codificação

II. Codificação PCM

III. Outras Codificações

a. PWM, PPM e DM

IV. Conversão D/A

Ponto de Partida

A transformação de um sinal analógico em um sinal digital passa pelos seguintes processos:

- i. Amostragem
- ii. Quantização
- iii. Codificação

a. Amostragem

O processo de amostragem mais utilizado e recomendado em conversores A/D é o **PAM** (*Pulse Amplitude Modulation*). Neste processo o sinal analógico é discretizado tomando amostras de sua amplitude em intervalos de tempo definidos.

a. Amostragem

- Todo sinal antes de ser amostrado passa por um **filtro passa-faixa**. Este procedimento é necessário para se evitar que <u>frequências indesejáveis</u> sejam inseridas no processo de digitalização do sinal.
- Um <u>filtro passa baixas</u> com frequência de corte igual a
 4 kHz é normalmente utilizado no processamento de sinais de voz.

a. Amostragem

Teorema de Nyquist

Também chamado de Teorema da Amostragem resumidamente determina que um sinal amostrado no tempo pode ser recuperado sem distorções desde que a Taxa de **Amostragem** (f_a) seja no mínimo duas vezes maior do que a maior frequência (f_m) do sinal.

$$f_a \ge 2 \times f_m$$

$$t_a = \frac{1}{f_a}$$

$$t_a \le \frac{1}{2 \times f_m}$$

A mínima Taxa de amostragem $f_a = 2f_M$ é denominada de Taxa de Nyquist, em homenagem ao autor formulação, o Harry Nyquist.

a. Amostragem

Teorema de Nyquist

L Moral I. Conversão Analógico/Digital

a. Amostragem

Teorema de Nyquist

Exercício Exemplo

Qual é a mínima taxa de amostragem de um sinal cuja largura de banda vale 10kHz (1kHz a 11kHz)?

A taxa de amostragem deve ser, no mínimo, duas vezes a mais alta freqüência no sinal. Logo,

 $fa = 2 \times (11.000) = 22.000 \text{ amostras/segundo}$

b. **Quantização**

Depois, o sinal PAM passa pelo **processo de quantização** em que suas amostras receberão valores dentro de *N* níveis pré-fixados. Esta etapa insere um erro na resolução de amplitude também denominado **erro de quantização**.

b. **Quantização**

• O ITU é um dos órgãos normativos que define quantos níveis de quantização devem ser usados para cada aplicação.

• Se o sinal a ser digitalizado é um **sinal de voz**, por exemplo, este deve ser quantizado utilizando **256 níveis** (-127 a 127 + 0).

b. **Quantização**

Erro de Quantização

c. Codificação

- Depois de quantizado, o sinal é **codificado**.
- Cada nível de tensão será representado por uma sequência de bits, sendo o primeiro bit representante do bit de sinal.

+024	00011000	-015	10001111	+125	01 1111101
+038	00100110	-080	11010000	+110	0 1101110
+048	00110000	-050	10110010	+090	0 1011010
+039	0 0100111	+052	0 011 0 110	+088	01 011000
+026	0 0011010	+127	9 1111111	+077	0 1001101
			A		

Sinal do bit + é 0 - é 1

II. Codificação PCM

O resultado disto pode ser a codificação **PCM** do termo inglês **P**ulse **C**ode **M**odulation.

A largura de banda de um sinal PCM (B_{PCM}) é, em quantidade igual a taxa de transmissão R_b , e está relacionada à banda do sinal PAM (B_{PAM}) conforme:

$$B_{PCM} = n \times B_{PAM}$$

II. Codificação PCM

A Codificação PCM de um Sinal de Voz

A recomendação G.711 do ITU-T — "Pulse Code Modulation (PCM) of Voice Frequencies" — estabelece que o sinal de voz para telefonia, limitado em um filtro passabaixa, deve ser amostrado à taxa nominal de 8000 amostras por segundo e codificado com 8 bits por amostra. Cada sinal de voz codificado em PCM resulta, portanto, num sinal digital com taxa de bit $R_b = 64$ kbits/s.

II. Codificação PCM

Digitalização do Sinal de Voz – Sistema PCM - ITU

Taxa de Amostragem: 8 KSps

Quantização: 256 níveis

Codificação: 8 bits/amostra

Taxa de Transmissão: $8000 \times 8 = 64 \text{ Kbps}$

_MOTEL II. Codificação PCM

Na Codificação PCM de um Sinal de Áudio Digital

- Para uma boa representação, é preciso colher amostras em uma velocidade de pelo menos o dobro da frequência máxima do sinal analógico $f_a > 2f_m$
- Qualidade de áudio de CD: 44.000 Sps, com cada amostra usando 16 bits. Assim,

$$R_b = n \times f_a \times 2 = 16 \times 44000 \times 2 = 1.41 \text{ Mbps}$$

2 - gravação estéreo

III. Outras Codificações

Tarefa Extra Classe

PWM

PPM

DM

IV. Conversão D/A

- A recuperação do sinal digital deve trazer de volta os sinais da informação na forma analógica com a menor distorção possível. A conversão D/A consiste em três etapas:
- <u>Regeneração</u>: Esta etapa recupera os bits eliminando ruído e refazendo o formato original.
- <u>Decodificação</u>: Cada sequência de *n* bits reproduz o valor de tensão que recebeu no estágio de quantização dando origem a uma sinal analógico
- <u>Filtragem</u>: o sinal decodificado passa por um filtro passabaixas. O sinal analógico é então recuperado a partir desta filtragem.