实验7、R语言中线性回归分析和方差分析

年级: 15级 专业:生信 学号:1513401013 姓名:郑磊

编号 一 二 三 四 总分 评阅人

得分

软硬件平台:

1. 硬件平台: (硬件配置) i5, 2.9HZ处理器, 16G内存, 64位操作系统

2. 系统平台: (操作系统及其版本号) Windows10 企业版

3. 软件平台: (软件系统及其版本号, 若是在线分析平台, 还需要提供URL地

址) R3.4.1 , Rstudio

一、目的要求:

- 1、理解线性回归分析,并掌握R语言中线性回归分析函数;
- 2、理解单因素方差分析,并掌握R语言中单因素方差分析。

二、实验内容:

1、不同基因表达水平之间的线性回归分析

该环节需要大家提前准备好一个基因表达谱数据,如果没有,则有授课教师提供(gds4794)。

1.1、加载数据

加载GEOquery包,读取基因表达谱数据(gds4794)。

setwd("D:/RFile/实验七")

library(GEOquery)

gds4794 <- getGEO(filename='GDS4794.soft.gz')

1.2、提取数据表

从该基因表达谱数据中提取基因表达数据表。

```
data<-Table(gds4794)
rownames(data)<-data[,1]
row.name = rownames(data)</pre>
```

1.3、随机抽样

从该数据表中随机抽取一行数据,记录对应的探针ID和基因名称。

```
n = 1
set.seed(1)
sam.row.name = sample(row.name,n,replace=F)
sam.row.name
a <- unlist(data[sam.row.name,3:67])
gene_name_a <- as.character(data[sam.row.name,2])</pre>
```

1.5、不同基因表达水平线性回归分析

gene_name_a

遍历整个基因表达谱数据表,利用R语言中的线性回归分析函数,分析其他所有基因表达水平,与1.3步随机抽取的基因表达水平之间的线性回归关系;记录斜率、截距、R2以及F检验的p.value;同时为所有p.value和相关系数值

(cor) 关联探针ID或基因名称。

```
xb = NULL
xk = NULL
xr = NULL
xp = NULL
for(i in 1:nrow(data)){
```

```
if(data[i,1] != sam.row.name){
    b <- unlist(data[i,3:67])
    Im.sol <- Im(b\sim1+a)
    suma <- summary(lm.sol)</pre>
    xb <- c(xb,lm.sol$coefficients[1])
    xk <- c(xk,lm.sol$coefficients[2])
    xr <- c(xr,suma$r.squared)
    pv <- 1-pf(suma$fstatistic[1],suma$fstatistic[2],suma$fstatistic[3])
    xp <- c(xp,pv)
  }
}
names(xb)<-data[-which(data$ID_REF==sam.row.name),1]
names(xk)<-data[-which(data$ID_REF==sam.row.name),1]
names(xr)<-data[-which(data$ID_REF==sam.row.name),1]
names(xp)<-data[-which(data$ID_REF==sam.row.name),1]
```

1.6、高相关性基因筛选

设定p.value(至少小于0.05)和相关系数R2的筛选阈值(至少大于0.25); 对1.5步计算结果进行筛选,保留符合条件的基因;对符合条件的p.value和相关 系数r所关联的基因名称进行交集运算;查看交集运算结果中是否存在非法基因 信息,如果有去除它;筛选高相关性基因的斜率和截距数据。

```
p_value = 0.01
r_cutoff = 0.65
```

```
xp2 <- xp[xp < p_value]
   xr2 <- xr[xr>r_cutoff]
   genes <- intersect(names(xp2),names(xr2))</pre>
   length(genes)
2、不同基因表达水平之间的单因素方差分析
把与所选基因表达水平相关性最高的那个基因表达数据提取出来;
两个基因的表达水平进行线性回归分析;
maxgene = unlist(data[which(data$ID_REF=="1556761_at"),3:67])
re_{m.sol} = Im(maxgene \sim 1 + a)
summary(re_lm.sol)
绘制评价回归分析结果中的四张图片;
png(file = "plot.png")
par(mfrow=c(2,2))
plot(re_lm.sol)
dev.off()
绘制表达水平的散点图和回归方程;
png(file = "plot2.png")
plot(a,maxgene,lwd=2,main="plot2")
y_mean=mean(maxgene)
abline(h=y_mean,col="blue")
x_mean=mean(a)
abline(v=x_mean,col="purple")
```

abline(re_lm.sol,col="red")

dev.off()

单因素方差分析。

aov(a~maxgene)

summary(aov(a~maxgene))

三、实验结果:

1.3

> sam. row. name

[1] "205069_s_at"

> gene_name_a

[1] "ARHGAP26"

1.6

探针ID	基因名称	斜率	截距	R2	F检验pvalue
1556761_a	AI057305	2. 627491	-10. 1503	0. 6894553	0
210252_s_ at	MADD	8. 684072	10. 91999	0. 6807879	0
230928_at	H15173	2. 260044	230928_at	0. 6586559	2. 220446e-16

2.

plot2


```
> aov(a~maxgene)
Call:
  aov(formula = a ~ maxgene)
Terms:
                 maxgene Residuals
Sum of Squares 11167.438 5030.043
Deg. of Freedom
                                63
Residual standard error: 8.935432
Estimated effects may be unbalanced
> summary(aov(a~maxgene))
           Df Sum Sq Mean Sq F value Pr(>F)
                       11167 139.9 <2e-16 ***
maxgene
            1 11167
Residuals
           63
               5030
                          80
Signif. codes:
         0.001 '**' 0.01 '*' 0.05 '.' 0.1
```

四、讨论:

1.7

在生物体中一个性状往往是由多个基因共同调控的,甚至会影响到其他性状或代谢过程,还有一些反馈调节也可能会影响到基因的表达。还有一种可能,这些基因可能调控着同一条代谢通路。

在DAVID网站处理结果

ID	Gene Name	Sp eci es	GOTERM_BP_DIRECT	GOTERM_CC_DIRECT	GOTERM_MF _DIRECT
ELA VL3	ELAV like RNA bindin g protei n 3(ELA VL3)	Ho mo sa pie ns	GO:0007399~nervous system development,GO:003015 4~cell differentiation,		GO:0000166 ~nucleotide binding,GO:0 003676~nucl eic acid binding,GO:0 003723~RN A binding,GO:0 017091~AU- rich element binding,
STH	saitoh in(ST H)	Ho mo sa pie ns		GO:0005634~nucleu s,GO:0005737~cytop lasm,	
SLC 25A 41	solute carrier family 25 mem ber 41(SL C25A 41)	Ho mo sa pie ns	GO:0006412~translation, GO:0055085~transmem brane transport,	GO:0005743~mitoch ondrial inner membrane,GO:0016 021~integral component of membrane,	GO:0003735 ~structural constituent of ribosome,