Contents

Задачі основного дня (16.10.2019)	1
1. «Перелік дільників»	. 1
2. «Перевірка на простоту́–1»	. 2
3. «Перевірка на простоту́–2»	
4. «Перевірка на простоту́–3»	
5. «Кількість дільників факторіала»	
6. «Дільники на проміжку–1»	
7. «Дільники на проміжку–2»	
8. «Кількість не кратних»	
9. «Піраміда»	
10. «Обернений факторіал»	
11. «Кількість лільників на проміжку»	

1 Задачі основного дня (16.10.2019)

Цей комплект задач доступний для on-line перевірки як змагання № 69 сайту ejudge.ckipo.edu.ua. Там можна побачити також повні формулювання умов (у збірнику, задля економії місця, вони скорочені).

Задача 1 «Перелік дільників»

Для натурального числа́ N, виведіть у порядку зростання всі його різні натуральні дільники.

Вхідні дані. Єдине натуральне число $N, 1 \leqslant N \leqslant 1234567891011.$ **Результати.** Послідовність усіх різних натуральних дільників, у порядку зростання. Виводити в один рядок, розділяючи пропусками.

Приклади.

Вхід	Рез-ти				
9	1 3 9				
120	1 2 3 4 5 6 8 10 12 15 20 24 30 40 60 120				

Задача 2 «Перевірка на простоту́-1»

Напишіть програму, яка знайде усі підряд, у порядку зростання, прості чи́сла у проміжку від A до B (обидві межі включно).

Вхідні дані. У єдиному рядку через пробіл задані два натуральні числа́ A та B, які є межами проміжку. Обмеження:

•
$$1 \leqslant A$$
; • $B \leqslant 10^{12}$; • $A \leqslant B \leqslant A + 100$.

Результати. Виведіть усі прості чи́сла проміжку, кожне у окремому рядку. Якщо буде введений проміжок, що не містить жодного простого числа́, слід нічого не виводити (навіть символа завершення рядка).

Вхід	Рез-ти
2 5	2
	3
	5
4 4	

Задача 3 «Перевірка на простоту́-2»

Задача відрізняється від попередньої лише обмеженнями:

•
$$1 \le A$$
; • $B \le 10^7$; • $A \le B \le A + 10^6$.

Задача 4 «Перевірка на простоту́-3»

Задача відрізняється від двох попередніх *лише* обмеженнями:

•
$$1\leqslant A$$
; • $B\leqslant 10^{10}$; • $A\leqslant B\leqslant A+10^5$.

Задача 5 «Кількість дільників факторіала»

Напишіть програму, що за заданим натуральним числом N обчислюватиме кількість дільників N! (факторіалу числа́ N).

Вхідні дані. Єдиний рядок містить одне ціле число N ($1{\leqslant}N{\leqslant}45$).

Результати. Виведіть єдине невід'ємне ціле число — знайдену кількість дільників числа N!

Примітка. При N=4, $N!=4\times 3\times 2\times 1=24$. Його дільники: 1, 2, 3, 4, 6, 8, 12, 24. Їх 8 штук.

Вхід	Рез-ти
4	8

Задача 6 «Дільники на проміжку-1»

Напишіть програму, яка знайде кількості дільників усіх підряд чисел проміжку від A до B (обидві межі включно), і виведе:

- суму цих кількостей;
- суму квадратів цих кількостей;
- суму чисел, утворених з окремо взятих цифр цих кількостей.

Вхідні дані. У єдиному рядку через пробіл задані два натуральні числа A та B: мéжі проміжку. Виконуються обмеження:

•
$$1 \le A$$
; • $B \le 10^{12}$; • $A \le B \le A + 100$.

Результати. Виведіть у одному рядку через пробіли три числа́: суму кількостей дільників чисел проміжку; суму квадратів

Вхід	Рез-ти			
119 122	27 297 18			

кількостей дільників; суму чисел, утворених з окремо взятих цифр цих кількостей.

Примітка. Число 119 має 4 дільники (1, 7, 17, 119); число 120 має 16 дільників (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120); число 121 має 3 дільника (1, 11, 121); число 122 має 4 дільники (1, 2, 61, 122). Звідки, 4+16+3+4=27 дає першу відповідь, $4^2+16^2+3^2+4^2=16+256+9+16=297$ дає другу відповідь, 4+(1+6)+3+4=18 дає третю відповідь.

Задача 7 «Дільники на проміжку-2»

Задача відрізняється від попередньої лише обмеженнями:

•
$$1 \le A$$
; • $B \le 10^7$; • $A \le B \le A + 10^6$.

Задача 8 «Кількість не кратних»

Скільки чисел у проміжку від A до B (обидві межі включно) не діляться націло ні на C, ні на D, ні на E?

Вхідні дані. У єдиному рядку через одинарні пробіли задані п'ять натуральних чисел A, B, C, D, E. Обмеження: $1 \le A \le B \le 10^{18}$; чи́сла C, D, E різні і перебувають у проміжку від 2 до 10^6 .

Результати. Виведіть єдине невід'ємне ціле число — кількість чисел у проміжку від A до B (межі включно), які не діляться націло ні на C, ні на D, ні на E.

Задача 9 «Піраміда»

Піраміда має висоту n Стандартних Будівельних Блоків (СББ), і кожен її рівень — квадрат $k \times k$ блоків, де k — номер рівня,

	Вхід			Рез-ти		
17	42	2	3	5		7

рахуючи згори. Фірма, що виготовляє СББ, продає їх лише партіями по m штук.

Напишіть програму, яка читає в один рядок через пробіл спочатку кількість бажаних рівнів піраміди n ($1 \le n \le 10^9$), потім розмір партії СББ m ($1 \le m \le 10^6$), і виводить єдине ціле число — кількість Блоків, що залишаться не використаними після побудови піраміди, якщо купити найменшу можливу кількість цілих партій.

Примітка. Піраміда з 7 рівнів має $1^2+2^2+3^2+4^2+5^2+6^2+7^2=140$ блоків; якщо купити 8 партій по 16 блоків, цих 128 блоків не вистачить;

Вхід	Рез-ти
7 16	4

тому слід купити 9 партій по 16 блоків, і з цих 144 блоків 4 залишаться зайвими.

Задача 10 «Обернений факторіал»

Напишіть програму, яка вводить одне натуральне число k ($2 \le k \le 10^9$) і знаходить, факторіал якого найменшого числа кратний цьому k.

Вхід	Рез-ти	
9	6	

Примітка. 6! = 720 ділиться на 9 націло, але жоден з менших факторіалів 1! = 1, 2! = 2, 3! = 6, 4! = 24 чи 5! = 120 не ділиться на 9 націло.

Задача 11 «Кількість дільників на проміжку»

Напишіть програму, яка знайде суму кількостей дільників усіх чисел у проміжку від A до B (обидві межі включно).

Вхідні дані. У єдиному рядку через пробіл задані два натуральні числа A та B ($1\leqslant A\leqslant B\leqslant 10^{12}$), які є межами проміжку.

Результати. Виведіть єдине число — суму кількостей дільників усіх чисел проміжку.

Вхід	Рез-ти
119 122	27

Примітка. Число 119 має 4 дільники (1, 7,

17, 119); число 120 має 16 дільників (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20,

24, 30, 40, 60, 120); число 121 має 3 дільника (1, 11, 121); число 122 має 4 дільники (1, 2, 61, 122). Звідси відповідь 4+16+3+4=27.