Week 4-1

Introduction to the Arithmetic Logic Unit (ALU)

- The digital processor is fundamental to the modern digital computer
 - General purpose
 - Programmable
 - Tasks and problems are encoded into algorithms, which get executed as programs
- Partitioned into:
 - Control Unit
 - Finite state machine (PLA, random logic, etc.)
 - Counters
 - Arithmetic Logic Unit (ALU)
 - Memory Unit
 - Input/Output (I/O)

- The digital processor is fundamental to the modern digital computer
 - General purpose
 - Programmable
 - Tasks and problems are encoded into algorithms, which get executed as programs
- Partitioned into:
 - Control Unit
 - Sends commands to other units to execute programs
 - Arithmetic Logic Unit (ALU)
 - Bit-sliced datapath (adder, multiplier, shifter, comparator, etc.)
 - Memory Unit
 - Input/Output (I/O)

- The digital processor is fundamental to the modern digital computer
 - General purpose
 - Programmable
 - Tasks and problems are encoded into algorithms, which get executed as programs
- Partitioned into:
 - Control Unit
 - Sends commands to other units to execute programs
 - Arithmetic Logic Unit (ALU)
 - Performs computations
 - Addition, subtraction, comparison, etc.
 - Memory Unit
 - Random Access Mem. (RAM), Read-Only Mem. (ROM), Buffers, Registers
 - Input/Output (I/O)

- The digital processor is fundamental to the modern digital computer
 - General purpose
 - Programmable
 - Tasks and problems are encoded into algorithms, which get executed as programs
- Partitioned into:
 - Control Unit
 - Sends commands to other units to execute programs
 - Arithmetic Logic Unit (ALU)
 - Performs computations
 - Addition, subtraction, comparison, etc.
 - Memory Unit
 - Stores data
 - Stores program
 - Input/Output (I/O)
 - Interconnect (switches, arbiters, bus)

- The digital processor is fundamental to the modern digital computer
 - General purpose
 - Programmable
 - Tasks and problems are encoded into algorithms, which get executed as programs
- Partitioned into:
 - Control Unit
 - Sends commands to other units to execute programs
 - Arithmetic Logic Unit (ALU)
 - Performs computations
 - Addition, subtraction, comparison, etc.
 - Memory Unit
 - Stores data
 - Stores program
 - Input/Output (I/O)
 - Interface with sensors, humans, and other electronic systems

The Datapath

4b = μ Controller

8b = Video (each RGB)

16b = Audio

32/64b = CPU

1024b = filter, encryption

The x86 Datapath

AMD Bulldozer (launched in 2011 on 32nm CMOS technology)

Custom design is necessary for ALU and UHP logic

The Arithmetic Logic Unit (ALU)

The Arithmetic Logic Unit (ALU) is the part of the CPU performs various arithmetic and logic operations

- Additions and subtractions on data
- Multiplication and division on data
- Boolean logic such as AND, OR, XOR, etc.
- Bit-shifts (left/right, arithmetic/logical)
- Bit-rotations (left/right)
- Evaluate conditions
 - Subtract (A B) and check if result is
 - zero (if A == B?)
 - negative (A < B)
 - positive (A > B)
- Calculate:
 - Addresses for program counter
 - Branch targets
 - Math functions (e.g. sine, exp, etc.)

Week 4-2

The Half and Full Adders

The Half-Adder (HA)

Half-adder

A	В	Carry (C _o)	Sum (S)
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Α	В	Carry (C _o)
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	Sum (S)
0	0	0
0	1	1
1	0	1
1	1	0

C_o: carry-out

Result of A+B: C_oS

The Full Adder (FA)

Full-adder

A	В	Carry-in (C _I)	Carry (C _o)	Sum (S)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

C_o: carry-out

Result of A+B: C_oS

$$C_0 = \overline{A} \cdot (B \cdot C_I) + A \cdot (B + C_I)$$
$$S = A \oplus B \oplus C_I$$

$$C_O = (B \cdot C_I) + A \cdot (B + C_I)$$

If $C_O = 0$, $S = \overline{C_O} \cdot (A + B + C_I)$
If $C_O = 1$, $S = C_O \cdot A \cdot B \cdot C_I$

There is a flexibility in how to implement full adder:

- C_o and S generated using independent logic gates
 - More area and power consumption (delay?)
- Some logic for generating C_o and S are shared
 - Lesser area and power consumption (delay?)

Implementing the Full Adder (FA)

dual problems

$$C_0 = (B \cdot C_I) + A \cdot (B + C_I)$$

 $S = A \oplus B \oplus C_I$

C_O is a majority operation:

Look at A, B and C₁ and set C₀ to:

- '1' if two or more inputs are '1'
- '0' if two or more inputs are '0'

Set S to:

'1' if inputs have odd number of '1' (even number of '0')

'0' if inputs have odd number of '0' (even number of '1')

- M1 ON: inputs have even number of '1'
- M2 ON: if inputs have even number of '0'
- Highly symmetric schematic enables symmetric layout (PDN and PUN have same graphs)
- Inverters improve drive

Week 4-3

The Ripple-Carry Adder

Adding Two *N*-bit Numbers

- Ripple carry adder (RCA)
 - The full adder at each bit position needs to wait for carry from right
 - Carry "ripples" from C_I to C_O of the MSB
 - Critical path delay is from C_I to C_O or S of the MSB (how to improve?)

Week 4-4

Optimizing the Carry Chain

Adding Two *N*-bit Numbers

- Ripple carry adder (RCA)
 - The full adder at each bit position needs to wait for carry from right
 - Carry "ripples" from C_I to C_O of the MSB
 - Critical path delay is from C_I to C_O or S of the MSB (how to improve?)

Implementing the Full Adder (FA)

dual problems

$$C_0 = (B \cdot C_I) + A \cdot (B + C_I)$$

 $S = A \oplus B \oplus C_I$

C_O is a majority operation:

Look at A, B and C₁ and set C₀ to:

- '1' if two or more inputs are '1'
- '0' if two or more inputs are '0'

Set S to:

'1' if inputs have odd number of '1' (even number of '0')

'0' if inputs have odd number of '0' (even number of '1')

- M1 ON: inputs have even number of '1'
- M2 ON: if inputs have even number of '0'
- Highly symmetric schematic enables symmetric layout (PDN and PUN have same graphs)
- Inverters improve drive

The Full Adder (FA)

Ā	\overline{B}	$\overline{C_I}$	$\overline{C_0}$	\overline{S}
1	1	1	1	1
1	1	0	1	0
1	0	1	1	0
1	0	0	0	1
0	1	1	1	0
0	1	0	0	1
0	0	1	0	1
0	0	0	0	0

Α	В	Carry-in (C _I)	Carry (C _o)	Sum (S)
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

If all inputs to the FA are active high (low), then all outputs are active high (low)

A 2-bit Ripple Carry Adder

A 2-bit Ripple Carry Adder

Week 4-5

The Manchester Carry Chain

Adding Two *N*-bit Numbers

- Ripple carry adder (RCA)
 - The full adder at each bit position needs to wait for carry from right
 - Carry "ripples" from C_I to C_O of the MSB
 - Critical path delay is from C_I to C_O or S of the MSB (how to improve?)

Overcoming the Long Carry Delay

$$C_{0} = (B \cdot C_{I}) + A \cdot (B + C_{I})$$

$$C_{0} = (A + B) \cdot C_{I} + A \cdot B$$

$$C_{0} = (A \oplus B) \cdot C_{I} + A \cdot B$$

Local inputs Local inputs guaranteeing guaranteeing $C_0 = C_1$ $C_0 = 1$

Generate, $G = A \cdot B$ Propagate, $P = A \oplus B$

$$C_O = P \cdot C_I + G$$

$$S = P \oplus C_I = G \cdot C_I + P \cdot \overline{C_I}$$

Adder can be composed of 3 stages:

- Compute G and P at each bit position from the corresponding A and B bits (Setup)
- 2. Compute C_{i} at every bit position (Carry Propagate)
- 3. Compute **S** at every bit position (Sum)

The Manchester Carry Chain

 C_i : Carry-in of bit position i

- Pass transistor implementation
- 2*N* transistors (*N* is number of bits of adder)
- Suffers from V_{TN} drop

The Manchester Carry Chain

- Dynamic logic implementation
- 5*N* transistors (*N* is number of bits of adder)
 - Might require footer NMOS
- Higher power consumption
- Inverters provide buffer to drive fanout

Overcoming the Long Carry Delay

$$C_{0} = (B \cdot C_{I}) + A \cdot (B + C_{I})$$

$$C_{0} = (A + B) \cdot C_{I} + A \cdot B$$

$$C_{0} = (A \oplus B) \cdot C_{I} + A \cdot B$$

Local inputs Local inputs guaranteeing guaranteeing $C_0 = C_1$ $C_0 = 1$

Generate, $G = A \cdot B$ Propagate, $P = A \oplus B$

$$C_O = P \cdot C_I + G$$

$$S = P \oplus C_I = G \cdot C_I + P \cdot \overline{C_I}$$

Adder can be composed of 3 stages:

- 1. Compute **G** and **P** at each bit position from the corresponding **A** and **B** bits (Setup)
- 2. Compute C_{i} at every bit position (Carry Propagate)
- 3. Compute **S** at every bit position (Sum)

Week 4-6

The Carry-Skip (Carry-Bypass) Adder

The Carry-skip / Carry-bypass Adder

- Critical path is activated if P are all '1'
- Since P are pre-computed, additional logic can be introduced to forward C_1 of the chain to C_1 of an intermediate FA

The Carry-skip / Carry-bypass Adder

- Critical path is activated if P are all '1'
- Since P are pre-computed, additional logic can be introduced to forward C_{l} of the chain to C_{l} of an intermediate FA
- Need bypass multiplexer

Bypass in The Manchester Carry Chain

 C_i : Carry-in of bit position i

Add only a single bypass transistor

Critical Path Delay (M-bits per Stage, Total N-bits)

 t_{setup} : delay of setup

 t_{carry} : delay of 1-bit of carry

 t_{mux} : delay of multiplexer (mux)

 t_{sum} : delay of sum

 $t_{add,bypass} = t_{setup} + Mt_{carry} + (N/M)t_{mux} + (M-1)t_{carry} + t_{sum}$

final stage

Delay Comparison (Carry-skip vs Ripple Carry)

The carry-skip adder will be faster than the ripple carry of *N* larger than 4~8 bits.

Week 4-7

The Carry-Select Adder

The Carry-select Adder

- Critical path is activated if P are all '1'
- The intermediate FAs need to wait for the correct C₁ to arrive to return the correct result
- Compute results for both possibility of C₁
- Select the correct result to output once C_1 is known

The Carry-select Adder

- Critical path is activated if P are all '1'
- The intermediate FAs need to wait for the correct C_I to arrive to return the correct result
- Compute results for both possibility of C₁
- Select the correct result to output once C_1 is known

The Carry-select Adder without Duplicating Sum

CG2027 Sem I AY21/22 Transistor-level Digital Circuits 38

Linear Carry-select Adder (M-bits/stage, Total N-bits)

 t_{setup} : delay of setup

 t_{carry} : delay of 1-bit of carry

 t_{mux} : delay of multiplexer (mux)

 t_{sum} : delay of sum

$$t_{add,carry-select} = t_{setup} + Mt_{carry} + (N/M)t_{mux} + t_{sum} \label{eq:tadd_carry}$$

Square Root Carry-select Adder (P stages, Total N-bits)

Delay Comparison (Carry-select vs Ripple Carry)

The carry-select adder is more advantageous as **N** becomes very large

CG2027 Sem I AY21/22 Transistor-level Digital Circuits 41

Week 4-8

Shifters

Bit Shifting Operations

Original bit pattern:	A_5	A_4	A_3	A_2	A_1	A_0
Left shift (by one bit):	A_4	A_3	A_2	A_1	A_0	0
Left shift (by three bits):	A_2	A_1	A_0	0	0	0
Logical shifts						
Right shift (by one bit):	0	A_5	A_4	A_3	A_2	A_1
Right shift (by three bits):	0	0	0	A_5	A_4	A_3
Arithmetic shifts						
Right shift (by one bit):	A_5	A_5	A_4	A_3	A_2	A_1
Right shift (by three bits):	A_5	A_5	A_5	A_5	A_4	A_3

Bit Shifting Operations - Rotations

Original bit pattern: A_5 A_4 A_3 A_2 A_1 A_0 Left rotate (by one bit): A_4 A_3 A_2 A_1 A_0 A_5 Left rotate (by three bits): A_2 A_1 A_0 A_5 A_4 A_3 Right rotate (by one bit): A_0 A_5 A_4 A_3 A_2 A_1 Right rotate (by three bits): A_2 A_1 A_0 A_5 A_4 A_3 A_2 A_1 Right rotate (by three bits): A_2 A_1 A_0 A_5 A_4 A_3

Bit rotations (or *circular shifts*) are like bit shift operations. Bits are not dropped when they get shifted past the extreme ends but are instead shifted to the opposite extreme end in a wrapped around manner.

Shifter Circuits

The shifter circuitry is usually a specially designed multiplexer

The Binary Shifter

The Barrel Shifter

The Logarithmic Shifter

One-hot code wastes resources (e.g., I/O pins, wiring)

Optimized if shift count corresponds to the number of bits to shift by

Shift count: C_5 C_4 C_3 C_2 C_1 C_4 Shift by: C_5 C_4 C_5 C_4 C_5 C_5 C_6 C_7 C_8 C_9 C_9

The Logarithmic Shifter

The Logarithmic Shifter

Complementary signals for all control bits are needed

Reduced wiring complexity and area overhead