Tutorial 6

COMP 5361: Discrete Structures and Formal Languages

Mohammad Reza Davari

Concordia University

Mohammad Reza Davari 1 / 14

Outline

Introduction to Functions

2 Examples

Contents of the section

Introduction to Functions

2 Examples

Defenition

Let A and B be nonempty sets. A function f from A to B is an assignment of exactly one element of B to each element of A. We write f(a) = b if b is the unique element of B assigned by the function f to the element a of A. If f is a function from A to B, we write $f: A \to B$. In this definition we have:

- A is the domain of f.
- B is codomain of f.
- For f(a) = b, we say that b is the image of a and a is a preimage of b.
- Range/Image: The range, or image, of *f* is the set of all images of elements of *A*.

Mohammad Reza Davari 4 / 14

Defenition

- One-to-One: A function f is said to be one-to-one, or an injunction, if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f. A function is said to be injective if it is one-to-one.
- **Onto**: A function f from A to B is called onto, or a surjection, if and only if for every element $b \in B$ there is an element $a \in A$ with f(a) = b. A function f is called surjective if it is onto.
- Bijection: A function f is a bijection if it is both one-to-one and onto. We also say that such a function is bijective.

Mohammad Reza Davari 5 / 14

Strategies

Let f be $f: A \rightarrow B$,

- Showing f is injective: Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.
- Showing f is not injective: Find some elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).
- Showing f is surjective: Take an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.
- Showing f is not surjective: Find some element element $y \in B$ such that there does not exist any $x \in A$ with f(x) = y.

Mohammad Reza Davari 6 / 1

Defenition

Let f be a function whose domain and codomain are subsets of the set of real numbers then:

- **Increasing**: f is increasing if $f(x) \le f(y)$ when x < y and $x, y \in Domain.$
- Strictly Increasing: f is increasing if f(x) < f(y) when x < y and $x, y \in Domain.$
- **Decreasing**: f is increasing if $f(x) \ge f(y)$ when x < y and $x, y \in Domain.$
- Strictly Decreasing: f is increasing if f(x) > f(y) when x < y and $x, y \in Domain.$

Mohammad Reza Davari 7 / 14

Defenition

Let f be a bijection from set A to the set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

Defenition

Let f be a bijection from set A to the set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

Example

1 Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?

Defenition

Let f be a bijection from set A to the set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

Example

- Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?
- ② Let f be the function from \mathbb{R} to \mathbb{R} with $f(x) = x^2$. Is f invertible?

Mohammad Reza Davari 8 / 14

Defenition

Let f be a bijection from set A to the set B. The inverse function of f is the function that assigns to an element $b \in B$ the unique element $a \in A$ such that f(a) = b. The inverse function of f is denoted by f^{-1} .

Example

- Let $f: \mathbb{Z} \to \mathbb{Z}$ be such that f(x) = x + 1. Is f invertible, and if it is, what is its inverse?
- ② Let f be the function from \mathbb{R} to \mathbb{R} with $f(x) = x^2$. Is f invertible?
- In the example above what happens if we restrict the domain and codomain to nonnegative real numbers?

Mohammad Reza Davari 8 / 14

Function Composition

Defenition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a))$$

Function Composition

Defenition

Let g be a function from the set A to the set B and let f be a function from the set B to the set C. The composition of the functions f and g, denoted for all $a \in A$ by $f \circ g$, is defined by

$$(f\circ g)(a)=f(g(a))$$

Example

f and g be the functions from \mathbb{Z} to \mathbb{Z} defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?

Partial vs. Total Function

Defenition

A partial function f from a set A to a set B is an assignment to each element $a \in A$, called the domain of definition of f, of a unique element $b \in B$. The sets A and B are called the domain and codomain of f. respectively. We say that f is undefined for elements in A that are not in the domain of definition of f. When the domain of definition of f equals A, we say that f is a total function.

Mohammad Reza Davari

Contents of the section

Introduction to Functions

2 Examples

Examples

Example 1

Determine whether f is a function from \mathbb{R} to \mathbb{R} if:

1
$$f(x) = \frac{1}{x}$$

2
$$f(x) = \sqrt{x}$$

3
$$f(x) = \pm \sqrt{(x^2 + 1)}$$

Examples

Example 2

Determine whether each of these functions is a bijection from $\mathbb R$ to $\mathbb R$ if:

$$f(x) = -3x + 4$$

$$f(x) = -3x^2 + 7$$

3
$$f(x) = \frac{x+1}{x+2}$$

$$f(x) = \sqrt[5]{x} + 1$$

Examples

Example 3

Prove the followings:

- **1** Let $f: R \to R$ and let f(x) > 0 for all $x \in \mathbb{R}$. Show that f(x) is strictly increasing if and only if the function $g(x) = \frac{1}{f(x)}$ is strictly decreasing.
- Prove that a strictly increasing function from R to itself is one-to-one.

Mohammad Reza Davari 14 / 14