Análisis II – Análisis matemático II – Matemática 3.

Segundo Cuatrimestre de 2025

Machete

1. Práctica 1

Definición 1. Una curva $\mathcal{C} \subset \mathbb{R}^n$ es un conjunto de puntos en el espacio que puede describirse mediante un parámetro que varía de forma continua en un intervalo de la recta real. Más precisamente, \mathcal{C} es una curva si existen funciones continuas $x_1(t), x_2(t), \ldots, x_n(t)$ definidas en algún intervalo [a, b], tales que un punto $\mathbf{y} = (y_1, \ldots, y_n) \in \mathcal{C}$ si y solo si existe $t \in [a, b]$ tal que:

$$(y_1,\ldots,y_n)=\big(x_1(t),\ldots,x_n(t)\big).$$

Llamemos $\sigma:[a,b]\to\mathbb{R}^n$ a la función

$$\sigma(t) = (x_1(t), x_2(t), \dots, x_n(t)).$$

Entonces, \mathcal{C} es la imagen de [a,b] bajo σ , y a σ se le llama una **parametrización** de \mathcal{C} .

Definición 2. Una curva \mathcal{C} se dice **abierta y simple** si admite una parametrización inyectiva. Una curva \mathcal{C} se dice **cerrada y simple** si existe una parametrización $\sigma : [a, b] \to \mathbb{R}^n$ tal que:

- σ es inyectiva en [a,b), es decir, $\sigma(t_1) \neq \sigma(t_2)$ para todo $t_1,t_2 \in [a,b)$ con $t_1 \neq t_2$.
- σ es continua en [a, b].
- $\sigma(a) = \sigma(b)$, es decir, el punto inicial coincide con el punto final.
- La imagen de σ , definida como $\{\sigma(t): t \in [a,b]\}$, es exactamente \mathcal{C} .

Geométricamente, esto significa que la curva no se cruza a sí misma (excepto en el punto inicial y final, que coinciden), y su trayectoria forma un lazo cerrado.

Definición 3. Si \mathcal{C} es una curva cerrada, simple y suave, una parametrización $\sigma:[a,b]\to\mathbb{R}^n$ se dice **regular** si cumple:

- σ es inyectiva en [a,b).
- La imagen de σ es \mathcal{C} .
- $\sigma \in C^1([a,b])$, es decir, σ es continuamente diferenciable en [a,b].
- $\sigma(a) = \sigma(b)$.
- $\sigma'(a) = \sigma'(b)$.
- $\sigma'(t) \neq \mathbf{0}$ para todo $t \in [a, b]$.

2. Práctica 2

Definición 2.1. Una superficie paramétrica (superficie a secas para nosotros) es un conjunto de puntos del espacio que puede describirse por medio de dos parámetros continuos. Más precisamente, $S \subseteq \mathbb{R}^3$ es una superficie si existen funciones continuas x(u,v), y(u,v), z(u,v) definidas en un dominio elemental $D \subset \mathbb{R}^2$ tales que $(x,y,z) \in S$ si y sólo si existe $(u,v) \in D$ con x = x(u,v), y = y(u,v), z = z(u,v). En este caso, llamamos a $T: D \to \mathbb{R}^3$ dada por T(u,v) = (x(u,v),y(u,v),z(u,v)) una parametrización

Con el fin de que T no describa una porción de la superficie $\mathcal S$ más de una vez, sólo admitiremos parametrizaciones que Sean inyectivas salvo a lo sumo en un número finito de curvas suaves del dominio de los parámetros.

Proposición 2.1. Sea S una superficie. Si existe una parametrización $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ inyectiva, diferenciable en $(u_0, v_0) \in D$ tal que los vectores derivados $T_u(u_0, v_0)$, $T_v(u_0, v_0)$ no son paralelos y son no nulos, el plano Π_0 por $P_0 = T(u_0, v_0)$ que determinan estos dos vectores derivados es tangente a S en P_0 .

Proposición 2.2. Si S es una superficie que tiene una parametrización $T: D \subset \mathbb{R}^2 \to \mathbb{R}^3$ inyectiva, C^1 , con $T_u \times T_v \neq 0$ para todo $(u, v) \in D$, se tiene que S es suave. A una parametrización T que verifique estas propiedades la llamamos "regular".

3. Práctica 3

Definición 1. Una **región** D se dice que es de tipo 3 si puede ser descrita tanto como una región de tipo 1 como de tipo 2. Es decir, D puede ser descrita como:

$$D = \{(x, y) \mid a \le x \le b, \phi_1(x) \le y \le \phi_2(x)\}$$

y también como:

$$D = \{(x, y) \mid c \le y \le d, \psi_1(y) \le x \le \psi_2(y)\}.$$

Teorema 2. Sea $\mathbf{F} = (P, Q)$ un campo vectorial de clase C^1 definido en un abierto Ω de \mathbb{R}^2 y sea C una curva en el plano, cerrada, simple, orientada positivamente y diferenciable por trozos, que encierra una región D de tipo III que queda contenida en Ω . Entonces,

(1)
$$\oint_{C_{+}} (P dx + Q dy) = \iint_{D} \left(\frac{\partial Q}{\partial x}(x, y) - \frac{\partial P}{\partial y}(x, y) \right) dx dy.$$