### УДК 004.896:004.932:004.421.2

# ПОСТРОЕНИЕ СЕГМЕНТИРОВАННОЙ ЛОКАЛЬНОЙ КАРТЫ ДЛЯ ПЛАНИРОВАНИЯ МАРШРУТА ДВИЖЕНИЯ БЕСПИЛОТНЫХ НАЗЕМНЫХ ТРАНСПОРТНЫХ СРЕДСТВ НА ОСНОВЕ СИСТЕМЫ ДВУХМЕРНОГО КРУГОВОГО ОБЗОРА

### А. В. Молчанов<sup>1</sup>

В работе рассматривается метод картирования окружающего пространства вокруг беспилотного наземного транспортного средства, основанный на системе двухмерного кругового обзора, работающей за счёт четырёх предварительно откалиброванных стереокамер и объединения изображений с них в одно — так называемую локальную карту. Дальнейшее применение инструментов машинного и глубокого обучений позволяет выделить на карте проходимые и непроходимые области и использовать эту информацию для осуществления автономной навигации.

# Введение

Одним из элементов или даже концепцией при разработке беспилотных наземных транспортных средств (далее - EHTC) является их восприятие окружающего пространства, которое служит основой для безопасного и эффективного передвижения подобного рода транспортных средств как по просторным и безлюдным складским помещениям, так и по тесным городским улицам, переполненным людьми.

Для решения этой задачи используются различные типы сенсоров, включая радары, видеокамеры и лидары, однако традиционные методы картирования зачастую требуют значительных вычислительных ресурсов, а также не всегда обеспечивают достаточный уровень детализации в режиме реального времени [1], что является критической проблемой для любого вида беспилотного транспорта, управляет которым большую часть времени не человек, а компьютер.

<sup>1 432027,</sup> Ульяновск, ул. Северный Венец, 32, УлГТУ, e-mail: ydx-ayrtom@yandex.ru

Одним из возможных решений данной проблемы является использование *системы двухмерного кругового обзора*, которая может работать за счёт разного количества камер и позволяет получать довольно точные и детализированные данные о пространственном окружении транспортного средства без необходимости сложной и дорогостоящей во всех отношениях обработки *трёхмерных облаков точек* с лидара.

Однако при таком подходе ключевой проблемой является *сегментация* полученных данных и выделение на них значимых объектов, таких как препятствия, люди, дорожные знаки с разметками и зоны, пригодные для передвижения. В данном случае, без надёжного и устойчивого алгоритма сегментации невозможно построение корректной *сегментированной локальной карты* на основе системы двухмерного кругового обзора, что, в свою очередь, затрудняет эффективное, а что самое главное безопасное планирование маршрута движения БНТС.

**Актуальность** этого исследования обусловлена растущими требованиями к автономным транспортным системам, нуждающимся в достаточно точных и вычислительно эффективных алгоритмах восприятия окружающей их среды для повышения безопасности и эффективности транспортной инфраструктуры подобного рода.

Робототехнический 3D-симулятор *Webots* [2] и Python-фреймворк *Robot Operating System* (ROS 2) [3] было решено выбрать для разработки и тестирования всего решения в целом из-за их доступности, технических возможностей и активного сообщества.

# Калибровка виртуальных видеокамер

Поскольку система двухмерного кругового обзора, устройство которой будет более подробно описано в следующей главе, полностью завязана на данные, поступающие от четырёх отдельных виртуальных *стереокамер*, то правильно было бы, перед началом какой-либо обработки этих данных, устранить в них любые возможные искажения, которые, применительно как к электронным оптическим системам, каковыми и являются большинство современных камер, так и к их продукту – RGB-изображениями, могут иметь следующую природу:

1. Радиальная дисторсия, которая изгибает прямые линии на изображении от («подушкообразная») или к («бочкообразная») его центру и задаётся следующими формулами по модели Брауна-Конради [4]:

$$x_{distorted} = x \left( 1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6 \right) (1)$$

$$y_{distorted} = y \left( 1 + k_1 * r^2 + k_2 * r^4 + k_3 * r^6 \right) (2)$$

где:  $X_{distorted}$ ,  $Y_{distorted}$  — координаты с учётом искажения; x, y — нормализованные координаты точки (в системе координат камеры, где z=1); r — расстояние от *оптического центра* камеры (чем дальше точка от центра изображения, тем сильнее искажения);  $k_1 - k_3$  — нелинейные коэффициенты радиальной дисторсии;

 Тангенциальная дисторсия, которая наклоняет вертикальные и горизонтальные линии на изображении, искажая таким образом перспективу. Задаётся следующими формулами по модели Брауна-Конради:

$$x_{distorted} = x + \left[ 2 p_{1xy} + p_2 (r^2 + 2x^2) \right] (3)$$

$$y_{distorted} = y + \left[ p_1 (r^2 + 2y^2) + 2 p_2 xy \right] (4)$$

где:  $p_1$ ,  $p_2$  — нелинейные коэффициенты тангенциальной дисторсии;

3. Другие виды и типы искажений [5], которые ввиду идеальных условий и данных в симуляторе не будут эмулироваться в данной работе.

На Рисунке 1 ниже представлена сцена для калибровки виртуальных видеокамер. В левой части изображения можно наблюдать дерево характеристик (горизонтальный угол обзора, ширина и высота изображения, искажения объектива, фокусное расстояние, оптический центр и др.) узла под названием «camera\_front\_left», который представляет собой объект стереокамеры, расположенной в левой части 3D-модели беспилотного автомобиля, и из которого исходят три оси X, Y и Z (см. Рис. 1). Расположение оставшихся трёх камер, а также углы их обзора можно определить по усечённой форме камеры (англ. camera frustum) в виде пирамид.



Рис. 1. Сцена №1 в Webots

### Эмуляция конкретной модели используемых камер

Реальная конкретная модель камер, используемая в решении – ZED 2 от Stereolabs [6], которая обладает следующими ключевыми для данной работы характеристиками:

Таблица 1. Характеристики реальной стереокамеры модели ZED 2

| Характеристика                | Значение                 |
|-------------------------------|--------------------------|
| Горизонтальный угол обзора    | 110°                     |
| Вертикальный угол обзора      | 70°                      |
| Выходное разрешение           | 2 x (1920x1080) @ 30 FPS |
| · ·                           | 2 x (1280x720) @ 60 FPS  |
| Фокусное расстояние           | 528 пикселей (НD720)     |
| Минимальное значение глубины  | 0.3 м                    |
| Максимальное значение глубины | 20 м                     |

Для их симуляции и быстрого применения одновременно к нескольким узлам объектов видеокамер в Webots, был написан специальный Pythonскрипт вместе с конфигурационным файлом для него, представленном в следующем Листинге 1:

```
# DEF-наименования объектов типа Camera в Webots
devices name: [
'camera front left depth',
'camera front left',
'camera front depth',
'camera front',
'camera front right depth',
'camera front right',
'camera rear depth',
'camera rear',
# Учитывать значения горизонтального и вертикального углов обзора
use fov values: True
horizontal fov: 110 # Градусы
vertical fov: 70
image width: 1305 # Пиксели
# Пересчитываются при use fov values: True
image height: 640 # Пиксели
focal length: 457 #
# Упрощённая модель искажения Брауна-Конради
distortion center: [0.45, 0.55]
                                       \# 0.0 \le x, y \le 1.0
radial_distortion: [0.25, -0.25] # k1, k2
tangential distortion: [0.005, -0.005] # p1, p2
# Для стереокамер с объектом типа RangeFinder в Webots
min range: 0.3 # Metpu
max range: 20.0 #
```

Листинг 1. Характеристики виртуальной стереокамеры модели ZED 2

Исполнение скрипта перезаписывает файл с описанием Webots-сцены, применяя таким образом указанные в конфиге параметры к узлам из списка devices\_name (см. Лист. 1). Такой подход позволяет не только сократить время на задание всех этих параметров вручную для того, чтобы добиться желаемого результата, но и предоставляет возможность сэмулировать конкретную модель камеры, которую планируется использовать, а также внести в её идеальные данные описанные ранее искажения объектива и перспективы по «упрощённой» модели Брауна-Конради. Упрощённая она по тому, что в Webots (см. Рис. 2) отсутствует третий коэффициент  $k_3$  радиальной дисторсии:



Рис. 2. Применённые параметры правой виртуальной стереокамеры модели ZED 2

Напротив, и в области обзора каждого из статичных устройств расположены шахматные доски (см. Рис. 1), которые начинают двигаться относительно них при запуске симуляции. В это время видеокамеры фиксируют патерны калибровки в различных положениях и на основе известных размеров и геометрических преобразований подбирают свои внутренние параметры (фокусное расстояние, оптический центр и описанные выше коэффициенты дисторсий), а также учитывают их впоследствии при устранении искажений на новых изображениях. Так работает «Новая гибкая технология калибровки камеры» [7], теоретическая основа которой была предложена ещё в 1999 году китайскоамериканским учёным в области компьютерного зрения Цзэнцзю Чжаном.

В данной работе, для калибровки виртуальных видеокамер была взята её готовая реализация из самой популярной и открытой библиотеки компьютерного зрения OpenCV [8]. В Листинге 2 и на Рисунке 3 ниже представлен конечный результат работы калибровочного модуля.

```
%YAML:1.0
---
image_resolution: !!opencv-matrix
...
data: [ 640, 1305, 4 ] # image_height, image_width, channels (depth)
camera_matrix: !!opencv-matrix
...
# fx, 0., cx, 0., fy, cy, ...
data: [ 455.40140577414064, 0., 652., 0.,
455.40140577414064, 319.5,
0., 0., 1. ]
distortion_coefficients: !!opencv-matrix
...
# k1, k2, p1, p2, k3
data: [ 0.094175197313633899, -0.029941689611480013,
-0.0019921223506874112, 0.0028732521915666043, 0. ]
```

Листинг 2. Подобранные OpenCV параметры одной из виртуальных камер



Рис. 3. Искажённое (сверху) и результирующее (снизу) изображения

# Система двухмерного кругового обзора

На Рисунке 4 ниже представлен вид сверху на сцену для формирования системы двухмерного кругового обзора, а на следующем за ним Рисунке 5 – итоговый результат. Виртуальные размеры напольной шахматной доски – 20x25 метров, её одной клетки – 1.25 метра, квадрата с четыремя окружностями внутри – 5 метров.

Вид, представленный на Рисунке 5 называют видом с высоты птичьего полёта (англ. Bird's-Eye View — BEV). Визуальный эффект вытягивания высоких объектов на нём, например, бочек (см. Рис. 5), возникает от того, что применяемое в системе гомографическое преобразование корректно работает только для низких объектов, лежащих на одной плоскости с нулевым уровнем (землёй), в то время как высокие объекты выступают над этой плоскостью. При проецировании такая высота не учитывается и объекты как бы отбрасываются на землю, но со смещением от реальной точки основания.



Рис. 4. Спена №2 в Webots



Рис. 5. Итоговый результат работы системы двухмерного кругового обзора

Формирование же самого единого изображения из четырёх отдельных осуществляется по следующему алгоритму:

- 1. Видеокамеры попарно располагаются таким образом, чтобы каждые две смежные из них хотя бы частично захватывали одну из угловых областей, помеченных на Рисунке 4 выше. Так, например, для левой и передней камеры это будет левая верхняя область, а для задней и правой нижняя правая. Обводка вокруг 3D-модели автомобиля на всё том же Рисунке 4 это «слепая» зона, которая не покрывается обзором камер;
- 2. Для каждого из устройств, по четырём ключевым точкам выбираемым вручную, рассчитывается так называемая *матрица проекции*, которая преобразует исходное перспективное изображение (верхнее окно на Рисунке 6 ниже) в него же, но с видом сверху:



Рис. 6. Результат применения проекционной матрицы (нижнее окно)

3. Затем для каждой пары смежных видеокамер на этих изображениях находится та самая перекрывающаяся область через вызов методов cv2.bitwise\_and и cv2.bitwise\_not, после чего из неё создаётся бинарная маска через вызов методов cv2.threshold и cv2.dilate. На Рисунке 7 ниже и далее до конца данной главы в качестве примеров будут представлены сторонние изображения из документации к оригинальной работе [9], на которой была основана описываемая уже здесь система двухмерного кругового обзора:





Рис. 7. Пример перекрывающейся области (слева) и её бинарной маски (справа)

4. Через применение методов cv2.findContours и cv2.approxPolyDP на всё тех же изображениях находятся контуры за пределами перекрывающейся области и относятся к той или иной камере. Для каждого пикселя в общей части двух изображений рассчитывается расстояние до двух найденных ранее полигонов через вызов метода cv2.pointPolygonTest и его вес по следующей формуле:

$$w = d_B^2 / \left( d_A^2 + d_B^2 \right)$$
 (5)

где:  $d_A$ ,  $d_B$  — расстояния до полигона A (например, передняя камера) и полигона B (например, левая камера). Если пиксель составляет переднее изображение, то расстояние от него до полигона B будет больше, увеличивая таким образом общее значение веса. Пиксели за пределами общей части будут иметь веса равные 0 для левой камеры и 1 для передней;

5. Используя описанную выше информацию о весах каждого пикселя в перекрывающейся и неперекрывающейся областях изображений с любых двух смежных камер, составляется весовая матрица G, значения которой лежат в диапазоне от 0 до 1 и которая представлена на следующем Рисунке 8 вместе с контурами (полигонами), упомянутыми ранее:



Рис. 8. Полигон А, полигон В и весовая матрица G

Объединённое итоговое изображение с видом сверху для левой и передней видеокамер может быть получено как:

fusedImage = frontImage \* G + (1 - G) \* leftImage (6) где: frontImage, leftImage - исходные изображения с соответствующих камер после применения к ним матриц проекции (см. Рис. 6).

По аналогии шаги 3-6 проделываются для переднего и правого, правого и заднего, заднего и левого устройств, что на выходе даёт четыре весовые матрицы G0-G3, которые вместе с четыремя масками перекрывающихся областей M0-M3 объединяются в два единых изображения формата RGBA (см. Рис. 9) для дальнейшей репродукции итогового результата:



Рис. 9. Объединённые маски М и веса G

6. В заключение и при необходимости, на итоговом изображении двухмерного кругового обзора (см. Рис. 5) производится устранение различий в яркости и цветовом балансе.

## Сегментированная локальная карта

На Рисунке 10 ниже представлена сцена для отладки и тестирования сегментированной локальной карты, а также алгоритмов планирования маршрута движения БНТС. Данный мир представляет из себя испытательный полигон с препятствиями в виде пластиковых бочек.

Задача эго-автомобиля в режиме автономного управления доехать до конца полигона, развернуться с использованием задней передачи в свободной от препятствий зоне и вернуться обратно, попутно со всем этим объезжая бочки. Сигналы светофора и знаки дорожного движения при этом никак не учитываются, однако, если нужно, могут быть использованы для проверки работоспособности и точности прочих алгоритмов.



Рис. 10. Сцена №3 в Webots

# FastSeg и YOLO11

Сама по себе, построенная локальная карта (см. Рис. 11 ниже) бесполезна, если речь идёт именно о беспилотном наземном транспортном средстве, потому что компьютер не может просто взять и поехать по ней, как это может сделать человек, — его нужно этому научить.

FastSeg — это легковесная модель сегментации, предназначенная для быстрого выделения объектов на изображениях и основанная на архитектуре типа encoder-decoder [10].

В контексте данного проекта, FastSeg используется для выделения проходимых (условная дорога) и непроходимых (всё остальное кроме дороги) для автомобиля областей на изображениях с камер кругового обзора, а также препятствий (см. Рис. 12), что является ключевым шагом при построении сегментированной локальной карты.



Рис. 11. Вид сверху в симуляторе (слева) и построенная локальная карта (справа)



Рис. 12. Обычная (слева) и сегментированная (справа) локальная карта

Во введении данной статьи было упомянуто, что «без надёжного и устойчивого алгоритма сегментации невозможно построение корректной сегментированной локальной карты на основе системы двухмерного кругового обзора, что, в свою очередь, затрудняет эффективное, а что самое главное безопасное планирование маршрута движения БНТС».

Использование такой модели *глубокого обучения*, как FastSeg, решает обе эти проблемы, поскольку *свёрточные нейронные сети*, каковой она и является, в задачах сегментации и *детекции* уже довольно давно превзошли классические подходы *машинного обучения* как по надёжности, так и по устойчивости [11].

Другая серьёзная проблема, с которой учёные и разработчики борются теперь — это данные, их качество, а с недавних пор ещё и количество [12]. В этой работе, данную проблему было решено обойти стороной и собрать небольшое количество (100 изображений с каждой из используемых стереокамер) только тех данных, которые обе модели будут «видеть» на постоянной основе. Иными словами, FastSeg и *YOLO11* (о ней ниже) были намеренно переобучены и делали свои предсказания только на тех изображениях на которых и обучались. Такой подход позволил сосредоточиться на разработке, отладке и тестировании алгоритмов, а не на комплексном, трудоёмком и как следствие затратном по времени процессе сборки и формирования достаточно репрезентативных датасетов.

YOLO – это целое семейство моделей глубокого обучения для детекции объектов на изображениях и видео в режиме реального времени [13]. Основной принцип работы модели любой версии (в том числе и одиннадцатой) из семейства заключается в однократном проходе изображения через свёрточную нейронную сеть, что обеспечивает высокую скорость обнаружения объектов при приемлемой точности.

В контексте данного проекта, yololln (n — nano — самая легковесная модель) используется для распознавания препятствий вокруг эго-автомобиля, что позволяет учитывать их при сегментации локальной карты (см. тонкие линии до бочек в прямоугольниках на Рис. 12) и планировании маршрута движения.

Несмотря на то, что FastSeg уже и так был обучен сегментировать пластиковые бочки (см. Рис. 12 выше), это работает медленнее и плохо поддаётся масштабированию на другие виды препятствий из-за дополнительных временных затрат на их отдельное выделение (см. Рис. 13) в процессе разметки собранных данных, которая, к слову, производилась в веб-приложении CVAT [14].

Обучение обеих моделей производилось с использованием бесплатных мощностей платформы *Kaggle* [15] и её сервиса под названием «*Kaggle Notebook*».



Рис. 13. Пример кадра из набора обучающих данных для модели FastSeg

# Планирование маршрута движения БНТС

Сразу стоит отметить, что на момент написания данной статьи, какиелибо алгоритмы планирования маршрута движения БНТС не были интегрированы и не обеспечивают его автономное движение по испытательному полигону в Webots с использованием сегментированной локальной карты, а стрелки и дистанция (крупные цифры) до текущей точки пути на карте (см. Рис. 12), это лишь визуализация заранее записанных виртуальных GPS-координат и движение по ним. Мелкие цифры возле центра каждой из пластиковых бочек — это визуализация информации о расстоянии от виртуальных стереокамер до каждого из препятствий, которая берётся из карт глубины (см. Рис. 14), по одной с каждой камеры:





Рис. 14. Карта глубины (снизу) с передней стереокамеры в Webots

Несмотря на это, готовая реализация одного глобального и двух локальных планировщиков маршрута движения *Mercedes-Benz Sprinter* всё же присутствует в решении, однако в том его модуле, который не будет затронут в данной статье. Он включает в себя библиотеку для ROS 2 под названием *SLAM Toolbox* [16], которая предназначена для построения *глобальной карты*, а также фреймворк *Nav2* [17], предназначенный для автономной навигации и содержащий в себе упомянутые ранее алгоритмы, описание которых представлено далее.

### NavFn Planner

NavFn Planner (Navigation Function Planner, далее – NFP) [18] является классическим глобальным планировщиком на 2D-сетке формата Оссирансу Grid и Costmap (см. левую часть на Рис. 15 ниже), в случае с Nav2.

Основа NFP по умолчанию — это реализация одного из вариантов алгоритма *Dijkstra* для поиска кратчайшего, но грубого пути от текущей позиции робота на глобальной карте до цели, причём без учёта его динамики и кинематики. Именно поэтому для этих целей он обычно используется вкупе с *локальным планировщиком*, который уже и обеспечивает движение по построенному NFP маршруту с учётом ограничений платформы. Описание двух из таких локальных планировщиков можно найти ниже по тексту.

С математической точки зрения, Navigation Function Planner c Dijkstra «под капотом» работает следующим образом:

- 1. Создаётся граф G=[V,E], где: V (вершины графа) все проходимые для робота ячейки глобальной карты, которые имеют стоимость 0 и, следовательно, не содержат в себе препятствия (ячейки со стоимостью, например, 100 и более); E рёбра графа между соседними ячейками (4 прямых и 4 диагональных). Через такой параметр данного планировщика как  $allow\_unknown$  (True по умолчанию), можно добавлять в V ячейки карты с неизвестной стоимостью, в которых по тем или иным причинам непонятно что находится область, по которой можно проехать, или препятствие;
- 2. Вес w ребра между двумя соседними вершинами (клетками сетки)  $u = (x_1, y_1)$  и  $v = (x_2, y_2)$  задаётся как:

$$w(u, v) = d(u, v) * (1 + \alpha * c(v)) (7)$$

где: d(u,v) — евклидово расстояние между ячейками  $(1-для прямых, \sqrt{2}-для диагональных); 1$  — базовый множитель чистого движения без препятствий;  $\alpha$  — коэффициент, который определяет насколько сильно робот будет избегать потенциально опасных ячеек с высокой стоимостью. Регулируется через такой параметр фреймворка как  $cost\_scaling\_factor$  (10.0 по умолчанию); c(v) — стоимость клетки из Costmap (см. Рис. 15), в которую планируется переход;

- 3. Все узлы  $v \in V$  графа G добавляются в приоритетную очередь Q в порядке возрастания значения g(v), которое формируется для каждой из свободных ячеек глобальной карты по следующей логике:
  - g(s)=0 накопленная стоимость перехода от старта s до него же (не путать со стоимостью ячейки и со стоимостью перехода из текущей ячейки в соседнюю!),
  - $g(v) = \infty$  начальная накопленная стоимость перехода от старта s до всех остальных ячеек;
- 4. Пока Q не пуста, извлекаем из неё вершину u с минимальной q(u), которая находится ближе всего к старту s;
- 5. Рассматриваем все смежные (соседние) и проходимые вершины  $v \in adj(u)$ , в которые можно попасть из u за один шаг;
- 6. Считаем новую стоимость qn перехода из u в v:

$$qn = q(u) + w(u, v)$$
 (8)

- где: g(u) накопленная стоимость перехода от старта S до текущей ячейки u с учётом всех предыдущих шагов; w(u,v) стоимость перехода из текущей ячейки u в соседнюю к ней проходимую ячейку v С учётом стоимости второй из Costmap (не путать со стоимостью ячейки и с накопленной стоимостью всего пути!);
- 7. Если gn (новая стоимость всего маршрута от старта s до следующей в нём точки v) меньше g(v) (ранее посчитанной стоимости всего маршрута от старта s до следующей в нём точки v), то:
  - 1) в Q заменяем g(v) на gn, поскольку теперь мы можем добраться до v за меньшую стоимость,
  - 2) запоминаем, что предок V это U, чтобы по достижению целевой точки всего глобального пути можно было добраться от неё до старта S и построить конечный вариант наиболее оптимального пути,
  - 3) поскольку значение g(v) в Q теперь стало меньше, обновляем приоритет очереди для v, показывая тем самым, что теперь от старта s до точки v можно добраться по более короткой траектории;
- 8. Возвращаемся к пункту 4.

Альтернатива Dijkstra при использовании NavFn Planner – это алгоритм  $A^*$ , переключение на который осуществляется через такой параметр данного планировщика как *use astar* (False по умолчанию).

С математической точки зрения, Navigation Function Planner с A\* «под капотом» работает следующим образом:

- 1. Аналогично Dijkstra, создаётся граф G = (V, E) (см. пункт 1 в предыдущем списке);
- 2. Вес w ребра между двумя соседними вершинами (клетками сетки)  $u=(x_1,y_1)$  и  $v=(x_2,y_2)$  задаётся как простое евклидово расстояние d(u,v) между ними (1- для прямых,  $\sqrt{2}-$  для диагональных), без учёта штрафа  $(1+\alpha*c(v))$ , как это делается в Dijkstra, потому что если сильно увеличить вес ребра за счёт него, но не учесть этого в эвристике h(v) (см. пункт 3), то она может перестать обладать двумя ключевыми свойствами допустимостью и монотонностью, первое из которых гарантирует, что A\* найдёт оптимальный путь за счёт того, что эвристика никогда не будет переоценивать реальную минимальную стоимость пути  $h_{truth}(v)$  от текущей вершины v до цели:

$$h(v) \le h_{truth}(v)$$
 (9)

, пропуская таким образом лучшие решения из-за их неоправданно завышенной оценки.

Монотонность же в свою очередь гарантирует, что для каждого ребра (u,v) графа G, эвристика h(u) будет удовлетворять следующему условию:

$$h(u) \le c(u,v) + h(v) (10)$$

где: C(u,v) – равная весу ребра стоимость перехода из текущей ячейки u в соседнюю к ней проходимую ячейку v; h(v) – эвристическая оценка от вершины v до цели (см. пункт 3).

Формула (10) означает, что переход из u в v и дальнейшее движение от неё должно быть дороже по стоимости, чем двигаться напрямую с точки зрения эвристики — это и есть монотонность, которая предотвращает уменьшение приоритета f = g + h (см. пункт 3) при перемещении по графу и, как следствие, исключает повторное рассмотрение его предыдущих узлов.

Если же всё-таки попытаться учесть этот штраф  $(1+\alpha*c(v))$  при расчёте веса w ребра, то скорректировать эвристику h(v) будет довольно сложно, что может привести к потере оптимальности всего алгоритма  $A^*$  в целом. Если же оставить вес ребра равным чистому расстоянию d(u,v), не учитывая штраф, то эвристика будет правильной, но планировщик при этом может начать приближаться к потенциально опасным зонам;

3. Как и в случае очереди Q для Dijkstra, формируется приоритетная очередь O, которая содержит в себе значения так называемой функции приоритета f(v) в порядке их возрастания:

$$f(v) = g(v) + h(v)$$
(11)

где: g(v) в начале работы алгоритма формируется по тем же правилам, что и в Dijkstra (см. пункт 3 в предыдущем списке); h(v) — эвристическая функция, которая позволяет оценить стоимость перехода от ячейки v до целевой точки пути g по следующим основным метрикам:

$$h(v) = \sqrt{\left(x_{v} - x_{g}\right)^{2} + \left(y_{v} - y_{g}\right)^{2}} (12) - eвклидова$$

$$h(v) = \left|x_{v} - x_{g}\right| + \left|y_{v} - y_{g}\right| (13) - манхэттенская$$

$$h(v) = max\left(\left|x_{v} - x_{g}\right|, \left|y_{v} - y_{g}\right|\right) (14) - диагональная$$

4. Оставшиеся пункты 4-8 работы алгоритма  $A^*$  будут отличаться от аналогичных им пунктов 4-8 работы алгоритма Dijkstra только тем, что работа будет вестись не с Q, а с Q, и новая стоимость gn перехода из u в v будет рассчитываться не по (8), а по следующей формуле:

$$gn = g(u) + w(u, v)$$
(15)

Какой из двух описанных выше алгоритмов выбрать зависит от: 1) размерности сетки (Dijkstra обходит карту полностью), 2) её сложности (эвристика  $A^*$  в виде евклидового расстояния может ошибочно проигнорировать нужный нам путь) и, как следствие, 3) производительности («звёздочка» быстрее).



Рис. 15. Глобальный путь (изгибающаяся линия слева), построенный NFP

### **Regulated Pure Pursuit**

Regulated Pure Pursuit (далее – RPP) [19] является «регулируемой» в плане линейных скоростей версией исходного локального планировщика Pure Pursuit, устроенного следующим образом:

- 1. На вход подаётся список точек пути P, представленный их двумерными координатами X, Y и полученный от NFP;
- 2. Определяется ближайшая к текущему месторасположению робота точка  $p_r$  на траектории (см. Рис. 16), а от неё так называемая точка упреждения (англ. lookahead point)  $p_l$  по следующим формулам:

$$dist(p_i) = \sqrt{(x_r - x_i)^2 + (y_r - y_i)^2}$$
(16)

$$p_l = p_i \in P, \begin{cases} dist(p_{i-1}) < L \\ dist(p_i) \ge L \end{cases}$$
 (17)

где: L — дистанция упреждения (<u>англ</u>. *lookahead distance*) между двумя точками, задаваемая в параметрах алгоритма;

3. Преобразовав координаты точки упреждения в систему координат робота, вычисляем кривизну траектории k как:

$$k = \frac{2y_l}{L^2}$$
 (18)

где:  $y_1$  – поперечная координата в системе координат робота;



Рис. 16. Геометрия нахождения кривизны траектории

4. Рассчитывается управляющее воздействие в виде линейной скорости  $V_t$  как максимум из двух следующих эвристик:

$$v_t' = \begin{cases} v_t \, npu \, k > T_k, \\ \frac{v_t}{r_{min} k} \, npu \, k \leq T_k \end{cases}$$
 (19) – эвр. кривизны (англ. curvature)

$$v_t = \begin{bmatrix} v_t \frac{\alpha d_O}{d_{prox}} npu d_O \leq d_{prox}, \\ v_t npu d_O > d_{prox} \end{bmatrix}$$
 (20) — эвр. сближения (англ. proximity)

где:  $r_{min}$  — минимально допустимый для робота радиус поворота;  $T_k$  — минимальный порог кривизны траектории, с которого начинает применяться первая эвристика;  $\alpha \leq 1.0$  — множитель усиления второй эвристической функции (чем он выше, тем быстрее робот снижает свою скорость вблизи препятствий);  $d_O$  — текущее расстояние до препятствия;  $d_{prox}$  — минимальное расстояние до препятствий, с которого начинает применяться вторая эвристика;

5. Рассчитывается управляющее воздействие в виде угловой скорости по следующей формуле:

$$\omega_t = v_t k$$
 (21)

Что оригинальный алгоритм, что его разновидности могут использоваться для следования локальному пути роботами со всенаправленным (англ. omnidirectional) движением, однако они будут ограничены в выполнении боковых перемещений; роботами с дифференциальным (англ. differential) приводом, которые могут следовать по любой голономной (свободной от кинематических ограничений) траектории, но что самое главное, RPP может использоваться для следования локальному пути роботами с кинематикой Акерманна (автомобильной кинематикой), что было подтверждено на практике (см. Рис. 17):





Рис. 17. RPP следует пути от NFP в виде линии с точкой (lookahead point) на конце

### **Model Predictive Path Integral**

Model Predictive Path Integral (далее – MPPI) [20] является преемником алгоритма TEB [21], а также MPC [22], и так называемым локальным контроллером, работающим на основе предсказания и оптимизации движения в режиме реального времени, а также точного следования маршруту с учётом препятствий и кинематических ограничений.

Так же, как и для Regulated Pure Pursuit, глобальную траекторию для MPPI строит NavFn Planner, в то время как локальный планировщик работает в пределах заданного окна вокруг текущего положения робота следующим образом:

- 1. Генерируется набор управляющих воздействий (линейные и угловые скорости) путём добавления к ним случайного шума из гауссовского распределения. Каждая пара таких скоростей это последовательность действий алгоритма длиной в Т шагов вперёд (так называемый горизонт планирования, который задаётся параметрами time\_steps и model\_dt);
- Эти действия прогоняются через динамическую модель робота с учётом его кинематики, на выходе выдавая множество траекторий движения;
- 3. Каждая из полученных траекторий оценивается по следующей формуле:

$$S_i = \sum_{t=0}^{T} c\left(x_t^i, u_t^i\right) (22)$$

где:  $S_i$  – cmoumocmb i-ой траектории;  $X_t^i$  – coctoяние на шаге t для траектории i;  $u_t^i$  – управляющее воздействие на этом шаге; c – один из множества так называемых критиков или функций стоимости (учёт кинематики и препятствий, следование цели, отклонения от пути и т. д.);

4. Лучшее управляющее воздействие из всех отбирается с использованием функции *softmax* следующим образом:

$$\delta u = \frac{\sum_{i=1}^{N} \exp\left(-\frac{1}{\lambda} S_{i}\right) * \epsilon_{i}}{\sum_{i=1}^{N} \exp\left(-\frac{1}{\lambda} S_{i}\right)}$$
(23)

где:  $\delta u$  — величина корректировки крайнего управляющего воздействия;  $\epsilon_i$  — шум;  $\lambda$  — значение параметра *temperature*, регулирующего чувствительность алгоритма к стоимости (чем ближе к нулю, тем больше принимаются во внимание траектории с меньшей стоимостью);

5. Полученная корректировка используется на следующей итерации, влияя на уровень генерируемого шума и, как следствие, на очередной набор из линейных и угловых скоростей.

На практике (см. Рис. 18), готовая реализация Model Predictive Path Integral Controller из фреймворка Nav2, с грамотно подобранными параметрами, так же, как и RPP, неплохо показала себя, задев всего одно препятствие из 33-х на протяжении всего маршрута движения виртуального БНТС по испытательному полигону (см. Рис. 10).



Рис. 18. MPPI следует пути от NFP на участке глобальной карты (слева)

Помимо роботов с кинематикой Акерманна, МРРІ также поддерживает всенаправленных и дифференциальных роботов, что задаётся таким параметром алгоритма как *motion model*.

Основной недостаток данного локального планировщика, который особенно сильно проявляется на более слабом железе, — это его высокая вычислительная сложность O(N \* T) из-за массового сэмплирования десятков, а то и сотен траекторий движения и их оценивания, где: N — количество траекторий, T — временной горизонт планирования. Для сравнения, сложность RPP — O(1) из-за минимального объёма логики управления, отсутствия оптимизации и моделирования движения, а также простой структуры эвристик.

### Заключение

В рамках данной работы был разработан метод, который позволяет на основе системы двухмерного кругового обзора строить сегментированную локальную карту и планировать по ней маршрут движения беспилотного наземного транспортного средства [23].

В процессе была подготовлена виртуальная среда симуляции с возможностью калибровки используемых в ней стереокамер; на основе данных с них была разработана система двухмерного кругового обзора, а затем построена сегментированная локальная карта с применением инструментов машинного и глубокого обучений.

Объединение предложенных готовых алгоритмов планирования маршрута движения БНТС с форматом построенной локальной карты — это та задача, которую только предстоит выполнить, хотя большая часть наработок по ней уже в том или ином виде присутствует в данном, а также в сторонних решениях собственной разработки.

Дальнейшие возможные исследования могут быть направлены на интеграцию предложенного подхода с трёхмерными системами кругового обзора и разработку гибридных моделей [24], сочетающих в себе различные источники данных для повышения качества картирования и навигации беспилотных наземных, а может быть и не только, транспортных средств.

## Список литературы

- D. J. Yeong, G. Velasco-Hernandez, J. Barry, J. Walsh, "Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review," Sensors. – 2021. – Vol. 21, No. 6. – Article 2140. – [Электронный ресурс]. – Режим доступа: https://www.mdpi.com/1424-8220/21/6/2140 (дата обращения: 12.05.2025);
- Cyberbotics: Robotics simulation with Webots [Электронный ресурс]. –
   Режим доступа: https://cyberbotics.com/ (дата обращения: 12.05.2025);
- 3. ROS: Home [Электронный ресурс]. Режим доступа: https://www.ros.org/ (дата обращения: 12.05.2025);
- D. C. Brown, "Decentering distortion of lenses," Photogrammetric Engineering. – 1966. – Vol. 32, No. 3. – P. 444–462. – [Электронный ресурс]. – Режим доступа: https://web.archive.org/web/20180312205006/https://www.asprs.org/wp-content/uploads/pers/1966journal/may/1966\_may\_444-462.pdf (дата обращения: 13.05.2025):
- Cambridge in Colour Photography Tutorials & Learning Community, "Коррекция искажений, вносимых объективом" – [Электронный ресурс]. – Режим доступа: https://www.cambridgeincolour.com/ru/tutorials-ru/lens-corrections.htm (дата обращения: 13.05.2025);
- ZED 2 AI Stereo Camera [Электронный ресурс]. Режим доступа: https://www.stereolabs.com/en-fi/products/zed-2 (дата обращения: 14.05.2025);
- Z. Zhengyou, "A Flexible New Technique for Camera Calibration" –
   [Электронный ресурс]. Режим доступа: https://www.microsoft.com/en-us/research/publication/a-flexible-new-technique-for-camera-calibration/ (дата обращения: 13.05.2025);
- 8. OpenCV Open Computer Vision Library [Электронный ресурс]. Режим доступа: https://opencv.org/ (дата обращения: 13.05.2025);
- 9. H. Yan, "Surround View System Introduction" [Электронный ресурс]. Режим доступа: https://github.com/hynpu/surround-view-system-introduction (дата обращения: 14.05.2025);
- E. Zhang, "Fast Semantic Segmentation" [Электронный ресурс]. Режим доступа: https://github.com/ekzhang/fastseg (дата обращения: 14.05.2025);
- 11. T. Merkulova, B. Jayakumar, "Evaluation framework for Image Segmentation Algorithms," 2025. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/2504.04435 (дата обращения: 14.05.2025);
- 12. K. Robison, "OpenAI cofounder Ilya Sutskever says the way AI is built is about to change," 2024. [Электронный ресурс]. Режим доступа: https://www.theverge.com/2024/12/13/24320811/what-ilya-sutskever-sees-openai-model-data-training (дата обращения: 14.05.2025);
- J. Redmon, S. Divvala, R. Girshick, A. Farhadi, "You Only Look Once: Unified, Real-Time Object Detection," – 2015. – [Электронный ресурс]. – Режим доступа: https://arxiv.org/abs/1506.02640 (дата обращения: 14.05.2025);

- CVAT: Leading Image & Video Data Annotation Platform [Электронный ресурс]. Режим доступа: https://www.cvat.ai/ (дата обращения: 14.05.2025);
- 15. Kaggle: Your Machine Learning and Data Science Community [Электронный ресурс]. Режим доступа: https://www.kaggle.com/ (дата обращения: 14.05.2025);
- 16. Macenski et al., "SLAM Toolbox: SLAM for the dynamic world," Journal of Open Source Software. 2021. 6(61). 2783. [Электронный ресурс]. Режим доступа: https://doi.org/10.21105/joss.02783 (дата обращения: 15.05.2025):
- 17. Nav2 Navigation System [Электронный ресурс]. Режим доступа: https://nav2.org/ (дата обращения: 15.05.2025);
- 18. NavFn Planner Nav2 1.0.0 documentation [Электронный ресурс]. Режим доступа: https://docs.nav2.org/configuration/packages/configuring-navfn.html (дата обращения: 24.05.2025);
- 19. S. Macenski, S. Singh, F. Martin, J. Gines, "Regulated Pure Pursuit for Robot Path Tracking," 2023. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/2305.20026 (дата обращения: 15.05.2025);
- 20. G. Williams, P. Drews, B. Goldfain, J. M. Rehg, E. A. Theodorou, "Aggressive driving with model predictive path integral control," IEEE International Conference on Robotics and Automation (ICRA). 2016. [Электронный ресурс]. Режим доступа: https://ieeexplore.ieee.org/document/7487277 (дата обращения: 15.05.2025);
- 21. teb\_local\_planner ROS Wiki [Электронный ресурс]. Режим доступа: https://wiki.ros.org/teb\_local\_planner (дата обращения: 15.05.2025);
- C. Rösmann, A. Makarow, T. Bertram, "Online Motion Planning based on Nonlinear Model Predictive Control with Non-Euclidean Rotation Groups," – 2020. – [Электронный ресурс]. – Режим доступа: https://arxiv.org/abs/2006.03534 (дата обращения: 15.05.2025);
- 23. A. Molchanov, "Surround View SegBEV" [Электронный ресурс]. Режим доступа: https://github.com/ghub-ayrtom/surround-view-segbev (дата обращения: 16.05.2025);
- 24. Z. Liu, H. Tang, A. Amini, X. Yang, H. Mao, D. Rus, S. Han, "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation," 2022. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/2205.13542 (дата обращения: 15.05.2025).