Estimating the Complete Sample Size from an Incomplete Poisson Sample

May 23, 2021

Outline

- 1. Our Problem
 - Estimate the Complete Sample Size N
 - Background Information
- 2. Estimators of N
 - Three kinds of MLE Based on Different Likelihoods
- 3. Asymptotic Properties of the Estimators
 - Asymptotic Bias and Variance
- 4. A Monte Carlo Simulation
 - Simulation Details
 - ► Simulation Results and Analysis

1. Our Problem

Target

Given a sample of n observations from $Poi(\lambda)$ where all observations of which X = 0 are missing, estimate the complete sample size N.

Background

Dahiya and Gross proposed the conditional maximum likelihood estimator of N in 1973 and discussed its asymptotic properties. The new estimators offer some modification.

2. Estimators of N

- ▶ Conditional ML estimator: \hat{N}_c , $\hat{\lambda}_c$
 - ightharpoonup Let $p=1-e^{-\lambda}$, q=1-p and

$$L_1(\lambda, N) = \binom{N}{n} p^n q^{N-n}, \quad L_2(\lambda) = \left(\frac{q}{p}\right)^n \prod_{x=1}^R \left(\frac{\lambda^x}{x!}\right)^{n_x}$$

 $ightharpoonup \hat{N}_c$ and $\hat{\lambda}_c$ maximize L_1 and L_2 simultaneously and satisfy

$$ar{X}^* = \hat{\lambda}_c/(1 - e^{-\hat{\lambda}_c}), \quad \hat{N}_c = \left[\sum_{x=1}^R x n_x/\hat{\lambda}_c\right] = [n/\hat{p}]$$

where
$$\bar{X^*}=S/n$$
 if $n\geq 1$ else 0, $\hat{p}=1-e^{-\hat{\lambda}_c}$, $S=\sum\limits_{x\geq 1}xn_x$.

▶ Define $G(V) = -V \ln(1 - n/V)$, $\hat{V_c} = n/\hat{p}$ is the unique solution to S = G(V), then $\hat{N_c} = [\hat{V_c}]$.

May 23, 2021 4 / 12

2. Estimators of N

- ▶ Unconditional ML estimator: \hat{N}_u , $\hat{\lambda}_u$
 - Logarithmic unconditional likelihood:

$$\mathcal{L} = \ln L = \ln \binom{N}{n} - \lambda N + S \ln \lambda$$

For fixed N,
$$\hat{\lambda}_u = S/N$$
. Define
$$\mathcal{L}_N^* = \ln\binom{N}{n} - S + S(\ln S - \ln N)$$

$$D(V) = \ln(1 - n/V)/\ln(1 - 1/V), \, V > n$$
 $\hat{N_u} = [\hat{V_u}]$ with $\hat{V_u}$ being the unique solution to $S = D(V)$.

- ▶ Limitations of \hat{N}_c and \hat{N}_u
 - ▶ If S nears n, \hat{N}_c and \hat{N}_u are large.
 - ▶ If S = n, \hat{N}_c and \hat{N}_u are not defined.

2. Estimators of N

- Modified ML estimator: \hat{N}_m , $\hat{\lambda}_m$
 - ▶ To modify the unconditional likelihood *L*, multiply it by

$$b(\lambda) = r^{\rho+1} \lambda^{\rho} e^{-r\lambda} / \Gamma(\rho+1), \quad P(N=j) = 1/N_0, \quad j=1,\ldots,N_0$$

where N_0 is a bound on N. Then the modified likelihood is given by

$$h(\lambda, N) = C(r, \rho, N_0) \cdot \binom{N}{n} e^{-\lambda(N+r)} \lambda^{S+\rho}$$

Finally we obtain $\hat{\lambda}_m = \frac{S + \rho}{N + r}$ and $\hat{N}_m = [\hat{V}_m]$, where \hat{V}_m is the unique solution of the equation

$$S + \rho = D(V, r), \quad D(V, r) = \ln(1 - n/V)/\ln(1 - 1/(V + r)).$$

May 23, 2021 6 / 12

3. Asymptotic Properties of the Estimators

Let
$$\hat{V}_{i} = N + a_{i}\sqrt{N} + b_{i} + O_{p}(1/\sqrt{N}), i = c, u, m$$

Asymptotic properties of \hat{V}_i , i = c, u, m

$$(\hat{V}_i - N)/\sqrt{N} \stackrel{.}{\sim} N(0, \sigma^2), \quad \sigma^2 = q/(p - \lambda q)$$

- lacktriangle Theoretical asymptotic bias of \hat{V}_i
 - $E(b_c) = \lambda pq/2(p \lambda q)^2$
 - $E(b_u) = (\lambda q)^2/2(p \lambda q)^2$
 - $E(b_m) = \lambda q \{\lambda q + 2(p \lambda q)(r \rho/\lambda)\}/2(p \lambda q)^2$
- ▶ Best choice of (ρ, r) for \hat{V}_m

For small
$$\lambda$$
, $E(b_m) = \frac{2}{\lambda^2}(1-\rho) - \frac{2}{\lambda}(\frac{2}{3}-r-\frac{\rho}{3}) + \frac{1}{3}-\frac{2}{3}r-\frac{\rho}{18}$ $(\rho,r)=(1,\frac{1}{3})$ is the best choice

3. Asymptotic Properties of the Estimators

Table 1: Summary

	Equation	Asymptotic Bias	Asymptotic Dis.
\hat{V}_c	S=G(V)	$\lambda pq/2(p-\lambda q)^2$	$(\hat{V}_i - N)/\sqrt{N}$
\hat{V}_u	S = D(V)	$(\lambda q)^2/2(p-\lambda q)^2$	$\dot{\sim}$ $N(0,\sigma^2),$
$\hat{V_m}$	$S+\rho=D(V,r)$	$\frac{\lambda q\{\lambda q + 2(p - \lambda q)(r - \rho/\lambda)\}}{2(p - \lambda q)^2}$	$\sigma^2 = q/(p - \lambda q)$

^{*} $p = 1 - e^{-\lambda}$, q = 1 - p

Simulation Details

1. Generate random Poisson samples for each pair (N, λ) ,

$$N = 25, 50, 100; \lambda = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 3.00, 5.00.$$

- 2. Compute \hat{V}_u , \hat{V}_c , \hat{V}_m and obtain \hat{N}_u , \hat{N}_c , \hat{N}_m
- 3. Repeat 1000 times for each pair (N, λ) , compute the simulated average bias \bar{B} and its MSE/N

$$\bar{B} = \frac{1}{1000} \sum_{i=1}^{1000} (\hat{N}_i - N)$$

$$MSE/N = \frac{1}{N \cdot 1000} \sum_{i=1}^{1000} (\hat{N}_i - N)^2$$

◆□▶◆□▶◆豊▶◆豊▶● 釣۹ペ

May 23, 2021 9 / 12

Simulation Results

Table 2: Estimated Biases and Mean Squared Errors, $\lambda \geq 0.75$

	Bias			MSE/N			
λ	Ñυ	Ñς	Ñm	Ñυ	Ñς	Ñm	σ^2
				N = 50			
0.75	2.081	3.208	-0.649	4.27670	4.64956	2.96614	2.72480
1.00	0.642	1.392	-0.496	1.87656	2.00512	1.61084	1.39221
1.25	-0.215	0.320	-0.762	0.93430	0.96484	0.88772	0.80623
1.50	-0.436	0.001	-0.688	0.53876	0.54810	0.52088	0.50462
1.75	-0.584	-0.278	-0.711	0.33368	0.33140	0.32726	0.33282
2.00	-0.361	-0.093	-0.436	0.23522	0.23686	0.23080	0.22784
3.00	-0.543	-0.459	-0.545	0.07254	0.07162	0.07226	0.06217
5.00	-0.313	-0.313	-0.313	0.00838	0.00838	0.00838	0.00702

See full table

Simulation Results

Table 3: Estimated Bias and Mean Squared Error, $\lambda < 0.75$

	Ві	as	MS	E/N			
	N						
λ	50	100	50	100			
0.1	-39.421	-73.042	31.69	54.89			
0.2	-28.292	-38.746	17.97	20.45			
0.3	-17.081	-13.289	8.97	10.70			
0.4	-7.553	-1.000	5.78	10.65			
0.5	-3.156	0.181	5.41	8.41			
0.6	-0.842	-0.085	4.89	5.58			

Result Analysis

- ▶ For $\lambda \ge 0.75$ and fixed N, the three estimators perform better as λ increases.
- For $\lambda < 0.75$, the simulated bias of \hat{N}_m is much smaller than the asymptotic bias of the other two estimators, but it is still worse than its own asymptotic bias.
- ▶ In general, the overall trends are consistent with the corresponding results in the selected paper.