## Using several classifiers and tuning parameters - Parameters grid

From official scikit-learn documentation

Adapted by Claudio Sartori

Example of usage of the *model selection* features of scikit-learn and comparison of several classification methods.

- 1. import a sample dataset
- 2. do the usual preliminary data explorations and separate the predicting attributes from the target 'Exited'
- 3. define the models that will be tested and prepare the hyperparameter ranges for the modules
- 4. set the list of score functions to choose from
- 5. split the dataset into two parts: train and test
- 6. Loop on score functions and, for each score, loop on the model labels (see details below)
  - optimize with GridSearchCV
  - test
  - store the results
- 7. for each scoring show the ranking of the models, and the confusion matrix given by the best model
- 8. for each scoring show the confusion matrix of the prediction given by the best model

```
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
print( doc ) # print information included in the triple quotes at the beginning
```

@author: scikit-learn.org and Claudio Sartori

## 0. Initial settings

Set the random state and set the seed with np.random.seed()

Set the test set size and the number of cross valitadion splits

## 1. Import the dataset

In [3]:

| Out[3]: |   | CreditScore | Gender | Age | Tenure | Balance   | NumOfProducts | HasCrCard | IsActiveMember | EstimatedSalary | Exited |
|---------|---|-------------|--------|-----|--------|-----------|---------------|-----------|----------------|-----------------|--------|
|         | 0 | 619         | 0      | 42  | 2      | 0.00      | 1             | 1         | 1              | 101348.88       | True   |
|         | 1 | 502         | 0      | 42  | 8      | 159660.80 | 3             | 1         | 0              | 113931.57       | True   |
|         | 2 | 699         | 0      | 39  | 1      | 0.00      | 2             | 0         | 0              | 93826.63        | False  |
|         | 3 | 822         | 1      | 50  | 7      | 0.00      | 2             | 1         | 1              | 10062.80        | False  |
|         | 4 | 501         | 1      | 44  | 4      | 142051.07 | 2             | 0         | 1              | 74940.50        | False  |

# 2. Explore the data

The output of exploration is not shown here

```
In [4]:
```

#### 3. Define the models

Prepare the hyperparameter ranges for the modules

Put everything in a dictionary, for ease of use

```
In [5]:
        model lbls = ['dt' # decision tree
                     ,'nb' # gaussian naive bayes
                     ,'lp' # linear perceptron
                     ,'svc' # support vector
                     ,'knn' # k nearest neighbours
                       ,'adb' # adaboost
                       ,'rf' # random forest
        models = {
             'dt': {'name': 'Decision Tree
                    'estimator': DecisionTreeClassifier(random state=random state),
                    'param': [{'max depth': [*range(1,20)],'class weight':[None,'balanced']}],
             'nb': { 'name': 'Gaussian Naive Bayes',
                   'estimator': GaussianNB(),
                    'param': [{'var smoothing': [10**exp for exp in range(-3,-12,-1)]}]
             'lp': {'name': 'Linear Perceptron',
                    'estimator': Perceptron(random state=random state),
                    'param': [{'early stopping': [True, False], 'class weight': [None, 'balanced']}],
             'svc':{'name': 'Support Vector
                    'estimator': SVC(random state=random state),
                    'param': [{'kernel': ['rbf'],
```

```
'gamma': [1e-3, 1e-4],
                'C': [1, 10, 100],
                {'kernel': ['linear'],
                 'C': [1, 10, 100],
'knn':{'name': 'K Nearest Neighbor',
       'estimator': KNeighborsClassifier(),
       'param': [{'n neighbors': list(range(1,7))}]
'adb':{'name': 'AdaBoost
       'estimator': AdaBoostClassifier(random state=random state),
       'param': [{'n estimators': [20,30,40,50]
                 ,'learning rate':[0.5,0.75,1,1.25,1.5]}]
'rf': {'name': 'Random forest
      'estimator': RandomForestClassifier(random state=random state),
       'param': [{'max depth': [*range(4,10)]
                 ,'n estimators':[*range(10,60,10)]}]
```

#### 4. Set the list of score functions to choose from

```
In [6]: scorings = ['accuracy', 'precision_macro', 'recall_macro', 'f1_macro']
```

## 5. Split the dataset into the train and test parts

```
the *train* part will be used for training and cross-validation (i.e. for *development*)
the *test* part will be used for test (i.e. for *evaluation*)
the fraction of test data will be _ts_ (a value of your choice between 0.2 and 0.5)
```

```
In [8]:
```

### 6. Loop on scores and, for each score, loop on the model labels

The function GridSearchCV iterates a cross validation experiment to train and test a model with different combinations of paramater values

- for each parameter we have set before a list of values to test, ParametersGrid will be implicitly called to generate all the combinations
- we choose a score function which will be used for the optimization
  - e.g. accuracy\_score , precision\_score , recall\_score , f1\_score , see this page for reference
- the output is a dataframe containing
  - the set of parameters maximising the score
  - the score used for optimisation and all the test scores

#### **Steps**

- prepare an empty list clfs to store all the fitte models
- prepare an empty DataFrame which will collect the results of the fittings with each combination of parameters
  - dataframe columns are 'scoring', 'model', 'best\_params', 'accuracy', 'precision\_macro', 'recall\_macro', 'f1\_macro'
- loop

In [9]:

#### Parameters to collect

classification\_report produces a dictionary containing some classification performance measures, given the *ground truth* and the *predictions* (use the parameter output\_dict=True )

The measures are (among others):

- accuracy
- macro avg a dictionary containing:
  - precision

- recall
- f1-score
- ...

#### Loop

- repeat for all the chosen scorings
  - repeat for all the chosen classification models
    - store in clf the initialisation of GridSearchCV with the appropriate
      - o classification model
      - parameters ranges
      - scoring
      - o cross validation method cv (the same for all)
    - o fit clf with the train part of X and y
    - store in y\_pred the prediction for the test part of X
    - o append clf to clfs`
    - append y\_pred to y\_preds
    - store in variable cr the classification\_report produced with the test part of y and y\_pred
    - store in the last row of results a list containing:
      - the name of the model
      - the .best\_params\_ of clf
      - o a selection of the contents of cr
        - o 'accuracy',
        - 'macro avg''precision'
        - o 'macro avg''recall'
        - 'macro avg''f1-score'

#### Hints:

- cr is a multi-level dictionary, second level can be reached with cr['first level label']['second level label']
- to append a list as the last row of a dataframe you can use df.loc[len(df)]=[]

# 7. Display

For each scoring show the ranking of the models, and the confusion matrix given by the best model

For each scoring:

- set a scoring\_filter
- filter the results of that scoring
- display the filtered dataframe with the display() function (it allows several displays of dataframes)

In [12]:

|                                | Results for scoring "accuracy"                                   |                                          |         |       |               |               |      |          |  |  |  |
|--------------------------------|------------------------------------------------------------------|------------------------------------------|---------|-------|---------------|---------------|------|----------|--|--|--|
|                                | model                                                            | best_params                              | accurac | y pre | ecision_macro | recall_macro  | f1_r | macro    |  |  |  |
| 0                              | Decision Tree                                                    | {'class_weight': None, 'max_depth': 4}   | 0.87    | 2     | 0.800         | 0.700         |      | 0.734    |  |  |  |
| 1                              | Gaussian Naive Bayes                                             | {'var_smoothing': 1e-11}                 | 0.84    | 7     | 0.811         | 0.574         |      | 0.588    |  |  |  |
|                                | Results for scoring "precision_macro"                            |                                          |         |       |               |               |      |          |  |  |  |
|                                | model                                                            | best_params                              | accurac | y pre | ecision_macro | recall_macro  | f1_r | nacro    |  |  |  |
| 3                              | Gaussian Naive Bayes                                             | {'var_smoothing': 1e-11}                 | 0.84    | 7     | 0.811         | 0.574         |      | 0.588    |  |  |  |
| 2                              | Decision Tree                                                    | {'class_weight': None, 'max_depth': 4}   | 0.87    | 2     | 0.800         | 0.700         |      | 0.734    |  |  |  |
|                                | Results for scoring "recall_macro"                               |                                          |         |       |               |               |      |          |  |  |  |
|                                | model                                                            | best_para                                | ıms acc | uracy | precision_ma  | cro recall_ma | acro | f1_macro |  |  |  |
| 4                              | Decision Tree                                                    | {'class_weight': 'balanced', 'max_depth' | : 4}    | 0.724 | 0.649 0.      |               | .744 | 0.651    |  |  |  |
| 5                              | Gaussian Naive Bayes                                             | {'var_smoothing': 1e                     | -11}    | 0.847 | 0.            | 811 0         | .574 | 0.588    |  |  |  |
| Results for scoring "f1_macro" |                                                                  |                                          |         |       |               |               |      |          |  |  |  |
|                                | model best_params accuracy precision_macro recall_macro f1_macro |                                          |         |       |               |               |      |          |  |  |  |

|   | model                | best_params                            | accuracy | precision_macro | recall_macro | f1_macro |  |
|---|----------------------|----------------------------------------|----------|-----------------|--------------|----------|--|
| 6 | Decision Tree        | {'class_weight': None, 'max_depth': 4} | 0.872    | 0.800           | 0.700        | 0.734    |  |
| 7 | Gaussian Naive Bayes | {'var_smoothing': 1e-11}               | 0.847    | 0.811           | 0.574        | 0.588    |  |

## 8. Confusion matrices

Use the ConfusionMatrixDisplay with the best model of each scoring to compare the predictions

Repeat for every scoring:

- filter the results for the current scoring
- find the row with the best value of the scoring; this row is also the index of the corresponding
- •









