L'excellence au service de la nation

CONCOURS D'ENTRÉE EN 1 ^{ère} ANNEE À L'EPT					
	Session	de 2008			
allig autilitate des con	Durée : 1	5 minutes			
Epreuve de Physique					
(1) Un corps est lancé vers le l	naut, à partir d	u sol, avec une vi	tesse initiale v_0 . Il att	errit au	
sol à l' instant t égal à :					
(a) $\frac{v_0}{g}$; (b) $\frac{2v_0}{g}$;	(c) 2 gv 0	; (d) g	,		
(2) Le module de la quantité de mouvement d'un corps de masse m et de vitesse v est égale					
à: (a) $\frac{v}{m}$; (b) $\frac{m}{v}$; (c)	$\frac{mv}{2}$;	(d) mv			
(3) On observe sur une corde des ondes stationnaires constituées par des fuseaux de 16 cm et					
3 cm de large. Quelle est la valeur y de l'élongation à 8 cm d'un ventre ?					
(a) 8 cm ; (b) 16 cm	;	(c) 0 cm	; (d) 3	cm	
(4) Un diapason fait vibrer l'air d'un tuyau, où le son se propage à la vitesse de 340 m/s. La					
longueur d'onde étant de 40 cm, calculer la fréquence du diapason.					
(a) 8,5 (b) 850	(c)	13 600	(d) 6 800		
(5) Un mouvement sinusoïdal Quelle distance des deux points		1 1 0		1 m/s.	
			(1)		

(a) 5 cm (b) 2,5 cm (c) 10 cm (d) 20 cm

Dans \mathbb{R} , l'équation $\ln x = x^2 - 2$ admet :

- a) une solution.
- b) deux solutions de signes contraires.
- c) deux solutions positives.
- (15) Une équation de la tangente à la courbe représentative de la fonction exponentielle au point d'abscisse 0 est :
- a) y = x + 1

b) xe

- c) e x
- (16) Une primitive F de la fonction f définie sur \mathbb{R} par $f(x) = e^{-2x}$ est définie par :
- a) $F(x) = -\frac{1}{2}e^{-2x}$
- b) $F(x) = \frac{1}{2}e^{-2x}$

 $C)F(x) = -2e^{-2x}$

- (17) Le nombre réel $e^{-3 \ln 2}$ est égal à :
- a) $\frac{1}{9}$

b) $\frac{1}{8}$

c) - 8

- (18) $\lim_{n \to +\infty} \frac{3^n + 4^n}{2^n + 5^n} = \ell$
- a) $\ell = +\infty$

b) ℓ = -∞

- $c) \ell = 0$
- d) (=

- (19) Simplifier l'expression $B = \sqrt[3]{20 + 14\sqrt{2} + \sqrt[3]{20 14\sqrt{2}}}$.
- a) 4

b) 14

- c) 0
- d) 20
- (20) La limite de la suite : $u_n = 1 \frac{1}{5} + \frac{1}{25} \frac{1}{125} + \dots + \frac{(-1)^n}{5^n}$ $(n \ge 0)$ vaut :
- a) $\ell = \frac{5}{6}$
- b) $\ell = \frac{2}{3}$
- c) $\ell = \frac{5}{4}$

d) $\ell = \frac{5}{2}$

(6) Lorsqu'on double la longueur d'un pendule simple, la période est multipliée par :

(a) 2

(b) 4

(c) $\frac{1}{2}$

(d) $\sqrt{2}$

(7) Soit c la vitesse de la lumière dans le vide. Quelle est la vitesse de la lumière dans un milieu d'indice optique n?

(a) $\frac{c}{n}$

(b) $\frac{c}{n^{2}}$

(c) $\frac{n}{c}$

(d) nc

(8) Un rayon lumineux en provenance de l'air tombe sur un liquide d'indice optique 1,33. Pour quelle valeur de l'angle d'incidence i, le rayon réfléchi est-il orthogonal au rayon réfracté?

(a) 52°

(b) 0°

 $(c) 90^{\circ}$

(d) 19°

(9) L'impédance Z d'une portion de circuit comportant une inductance L et une résistance R en série est égale à :

(a) $Z = \sqrt{R^2 + (L\omega)^2}$

(b) $R + L\omega$

(c) $\frac{L \omega}{R}$

(d) $\frac{R}{L \omega}$

L'excellence au service de la nation

CONCOURS D'ENTRÉE EN 1ère ANNEE À L'EPT

Session 2010

Durée: 45 minutes

Epreuve de Physique

Question 1 Un ascenseur de 300 kg démarre avec une accélération de 2 $m \cdot s^{-2}$. On donne $g = 9.8 \, m \cdot s^{-2}$. Quelle est la tension du câble qui le soutient quand l'ascenseur commence à monter?

a) 2 940

b) 3 540

c) 2 340

d) 600

Question 2 Un projectile est lancé (on prendra: $g = 10 \, m \cdot s^{-2}$) avec une vitesse $v_0 = 5 \, m / s$ d'un point O situé au sol. Pour atteindre un point A situé au sol a une distance $d = 1,25 \, m$ du point O, l'angle de tir doit être égal à :

a) 15°

b) 30°

c) 45°

d) 60°

Question 3 : Quel est en newtons le module de la force nécessaire pour arrêter sur 50 m, un véhicule de 800 kg qui se déplace à la vitesse de 72 km/h sur une route horizontale ?

a) 800

b) 3 200

c) 57 600

d) 1 600

Quel est ne newtons la force exercée sur le sol d'un ascenseur par un homme de 75 kg dans les cinq cas suivants (Questions 4 à 8)? On prendra $g = 9.8 \text{ m} \cdot \text{s}^{-2}$.

Question 4: L'ascenseur est au repos.

a) 0

b) 75

c) 735

d) 720

Objection 5: L'ascenseur monte avec une vitesse constante de 2 m/s.

d) 712 a) 735 b) 0 c) 980 Question 6: L'ascenseur descend avec une vitesse constante de 3 m/s. b) 750 c) 0 d) 712 a) 735 Question 7: L'ascenseur monte avec une accélération constante de 1,5 m/s. a) 900 b) 735 c) 847,5 d) 622,5 Question 8: L'ascenseur monte avec une accélération constante de 1,5 m/s. a) 750 b) 800 c) 847,5 d) 622,5 Question 9 : Donner la bonne réponse concernant la vitesse de vibration sinusoïdale d'équation $X = A \sin(\omega t + \varphi)$. c) $-A\omega\cos(\omega t + \varphi)$ a) 0 b) $A \omega \cos(\omega t + \varphi)$ Question 10: Quel est en µm la longueur donde de la lumiere utilisee avec les fentes d'Young écartées de 0,8 mm, qui donnent une interfrange i = 0,304 mm sur un écran placé à 0,5 m des fentes? a) 0,486 b) 0,304 c) 0,203 d) 0,605 Question 11 : Quel est en nF la capacité équivalente des trois condensateurs suivants montés en série $C_1 = 2 nF$, $C_2 = 4 nF$ et $C_3 = 8 nF$: b) 64 c) 1,14 d) 0,875 a) 14 Question 12 : Quel est en nF la capacité équivalente des trois condensateurs suivants montés en parallèle $C_1 = 2 nF$, $C_2 = 4 nF$ et $C_3 = 8 nF$: b) 64 c) 1,14 d) 0,875 a) 14 Question 13 : Quel est l'unité internationale d'une différence de potentiel électrique :

b) Ampère A

b) Ampère A

a) Ohm Ω

a) Ohm Ω

c) Volt V

c) Volt V

d) Watt W

d) Watt W

Question 15 : Quel est l'unité internationale de l'énergie électrique :

- a) Ohm Ω
- b) Ampère A
- c) Volt V
- d) Watt W

Question 16 : Quel est l'unité internationale de la quantité d'électricité :

- a) Watt W
- b) Coulomb C c) Ampère A
- d) Kilowatt-heure KWh

Question 17 : Quelle est en mètre par seconde la vitesse d'un électron soumis à une différence de potentiel de 4 550 V?

On donne : $e=-1.6\cdot 10^{-19}$ C et $m=9.1\cdot 10^{-28}$ g

- a) $2 \cdot 10^7 \, m/s$
- b) 0
- c) $16 \cdot 10^{14} \, m/s$
- d) $4 \cdot 10^7 \, m/s$

Question 18: L'impédance complexe d'un circuit RL série est :

- a) jRL
- b) R + jL c) $R + jL\omega$
- d) jL o

Question 19:

La période T d'un pendule compose de masse m, de moment d'inertie I, ayant un facteur b désignant la distance qui sépare le centre de gravité de l'axe de rotation est :

a)
$$T = 2\pi \sqrt{\frac{mgb}{I}}$$

b)
$$T = 2\pi \sqrt{\frac{I}{mgb}}$$
 c) $T = 2\pi \sqrt{\frac{I}{I}}$ d) $T = 2\pi \sqrt{\frac{b}{g}}$

c)
$$T = 2\pi \sqrt{\frac{l}{l}}$$

d)
$$T = 2\pi \sqrt{\frac{b}{g}}$$

Question 20 : Quel angle critique (seuil de disparation du rayon réfracte) correspond au passage de la lumière du verre (indice de réfraction 1,54) à l'eau (indice de réfraction 1,33).

- a) 60°
- c) 30°
- d) 15°

L'excellence au service de la nation

CONCOURS D'ENTRÉE EN 1ère ANNEE À L'EPT

Session de 2012

		<u> Duree</u> : 45 minu	ites	
	E	preuve de Phys	ique	
(1) L'équatio	on horaire d'un mobile s	ur une trajectoire	rectiligne est : x	$=3t^2-t.$
x(m), t(s)	pour les questions 1, 2,	et 3.		
Question 1:	La vitesse instantanée à	t = 0 est:		
A : 0	B:2		C:-2	D:-1
Question 2:	La vitesse moyenne ent	re t = 0 et t = 1 s	est:	
A:3	B:6		C : 2	D : 4
voiture peut	Sachant que les réflexes freiner a raison de 5 m quand il roule à 36 km/	s^{-2} ; quelle sera		
A: 12,8	B: 6,4	C:		D:8
une vitesse a	Une boule décrit une transplaire constante de 1 radiale de l'accélération	20 tours par minu		
A:79	B:31	C: 240	D:99	
Une roue en	rotation passe de 1800	tours/min à 1200	tours/min en 2 s	(questions 6 et 7).
Question 6:	Quelle est en <i>radians</i>	s ⁻² le module de l	accélération ang	ulaire?
A: 15,7	B: 12,2	C:	22,2	D: 31,4
Question 7:	Quelle est le nombre de	tours effectué pen	dant ces deux sec	condes ?
A	В	С	D	
			(D. 1. D. 1	1 1 1

10

20

70

60

<u>Question 8</u>: Un objet glisse sans frottement sur un plan incliné. Il démarre avec une vitesse nulle et parcourt 7,20 m durant la troisième seconde. Quelle est en degrés la valeur, par rapport à l'horizontale, de l'angle du plan incliné ? $g = 9.8 \, m. \, s^{-2}$.

 \mathbf{A}

В

C

D

17

34

54

28

Question 9: On remplace un oscillateur harmonique de période T constitué d'un ressort de raideur k par un autre ressort de raideur 4k et de période T'.

Α

В

C

D

T' = T

T' = 2T

T' = 4T

 $T'=\frac{7}{2}$

Question 10 : Donner en mètres la longueur d'onde dans l'eau d'un son de fréquence 256 Hz, sachant que la célérité du son dans l'eau est de 1 500 m/s.

Α

В

C

D

6,35

5,98

11,43

0,167

<u>Question 11</u>: Quel est en volts le potentiel électrique au centre d'un carré de 1 m de côté dont les sommets sont occupés par les charges :

$$q_1 = 10^{-8} C$$
; $q_2 = 2.10^{-8} C$; $q_3 = -10^{-8} C$; $q_4 = 3.10^{-8} C$. On donne $\frac{1}{4\pi \varepsilon_0} = 9.10^9 \, SI$

A

В

C

D

240

120

360

636

Question 12 : Quel est en joules l'énergie électrique emmagasinée dans un condensateur de capacité $6\,\mu F$ soumis à une d.d.p de 10 V ?

1

В

~

D

 3.10^{-4}

 3.10^{-3}

 6.10^{-1}

Question 13 : Deux résistances de 100 Ω chacune sont montées en parallèle. La résistance équivalente est égale a :

A

В

C 2.2mm

D

100 Ω

50 Ω

200 Ω

150 Ω

Question 14 : Deux inductances 0,1 H et 0,2 H sont placées en série. Elles sont équivalentes à une inductance de :

Concours	d'Entrée	aux Ecoles	Polyttec	hnianes
Concours	a Linee &	aux Ecoles	1 Orytec	minderes

Physique

A

В

C

D

0,06 H

0,1 H

0,3 H

0,2 H

Question 15 : Dans un circuit RLC série, soit φ le déphasage entre la tension et le courant. A la résonance :

A

В

C

D

 $sin \varphi = 1$

 $cos\varphi = 1$

 $cos\varphi = 0$

 $tg\varphi = 0$

Question 16 : Dans un circuit RLC série, soit φ le dephasage entre la tension et le courant. On appelle facteur de puissance :

A

В

C

D

 $sin\varphi$

cosφ

 $cos^2 \varphi$

tgφ

Question 17 : Quelle sera la vitesse en m/s des électrons émis par une cathode incandescente lorsqu'ils atteindront l'anode, si la tension appliquée entre l'anode et la cathode est égale à 200 V ?

Α

B

C

D

 $8,4.10^{6}$

 7.10^{13}

 6.10^{6}

 3.10^{15}

Question 18 : L'induction magnétique dans un solénoïde est égale à B. Sachant que la longueur du solénoïde est égale à L et qu'il comporte N spires, quelle est l'intensité du courant dans le solénoïde ?

Α

P

-

D

 $I = \mu_0 BNL$

 $I = \mu_0 B/NL$

 $I = BL/\mu_0 N$

 $I = BN/\mu_0 L$

Question 19 : On branche un condensateur de capacité $C=20~\mu F$ sur un réseau de courant alternatif de 50 Hz, 220 V. Quelle sera l'intensité du courant traversant le condensateur ?

A

В

C

D

69 A

1,38 A

0,22 A

30 A

Question 20 : Dans l'expérience des fentes de Young, soient a la distance entre les deux fentes, λ la longueur d'onde et D la distance entre l'écran et les fentes. L'interfrange est :

A

В

 \mathbf{C}

D

 $a/\lambda D$

 $D/\lambda a$

 aD/λ

 $\lambda D/a$

L'excellence au service de la nation

CONCOURS D'ENTRÉE EN 1ère ANNEE À L'EPT

Session du 22 JUIN 2013

<u>Durée</u>: 45 minutes

	Epr	euve de Physique	
On donne g =	9.8 m/s^2 , $c = 3.10^8$	m/s $e = 1,6.10^{-1}$	9 C $h = 6,62.10^{-34}$ J.s
Question 1: Les	équations horaires du p	oint mobile M sont don	mées par: $\begin{cases} x = A \cos \omega t \\ y = B \sin \omega t \end{cases} A \neq B$
La trajectoire	du point M est :		-
a) un cercle	b) une hyperbole	c) une droite	d) une ellipse
2 rad/s ² . Sach		rvalle de temps $\Delta t = 5$	ération angulaire constante de s, il tourne d'un angle de 100 l commencé à tourner ?
a) 8,75	b) 7,5	c) 10	d) 5
Question 3 : Qu	elle est l'unité internatio	onale du travail d'une fo	rce:
a) Watt	b) Joule	c) Kgm	d) N/s
Question 4: Question 7: Question 9: Question 4: Question 6: Questi	el est le module de la rés	sultante de deux forces	perpendiculaires de 30 N et de
a) 70 N	b) 10 N	c) 50 N	d) 20 N
Question 5 : Da	ns le système internation	nale le moment d'inertie	d'un solide s'exprime en :
a) gm²	b) kgm²	c) gms ⁻¹	d) kgm²s⁻¹
Question 6: La	vitesse de la lumière dan	s le vide est:	uza n
a) 340 m/s	b) 300 km/s	c) 300 000 km/s	d) 300 000 m/s

Question 7: Une onde sonore se déplace à une fréquence de 440 Hz, quelle est sa longueur d'onde en mètre dans l'air sachant que sa vitesse est de 330 m/s?

a) 72600

b) 1,5

c) 145200

Question 8 : Si le coefficient de dilatation linéaire de l'aluminium est de 23.10-6/°C, quel est la changement de volume en cm3 d'une sphère en aluminium de 10 cm de rayon lorsqu'elle est chauffée de 0 à 100°C?

a) 6,3

b) 9.63

c) 12.6

d) 28,9

Question 9: Un objet est lancé sans vitesse initiale du haut d'un pont. On entend 8 secondes plus tard le bruit que fait l'objet en touchant le sol. Quel est en mètre la hauteur du pont?

a) 130

b) 256

c) 512

d) 124

Question 10: Une masse inconnue m est suspendue à un ressort de raideur k qui se trouve allongé de 0,098 cm. Donner en seconde la période des oscillations lorsque la masse m est écartée de sa position d'équilibre.

a) 0,628

b) 62,8

c) 1,256

Question 11 : Deux fentes de Young écartées de a = 1 mm sont éclairées par une lumière monochromatique de longueur d'onde $\lambda = 0.5 \mu m$. A quelle distance en millimètre, de l'axe de symétrie de la figure, se trouve la cinquième frange sombre sur un écran d'observation placé à la distance D = 2 m des fentes?

a) 1

b) 5,5

d) 9

Question 12: Considérons un condensateur ayant deux armatures planes, parallèles, de surface S et distantes de d dans le vide. Sa capacité est :

a) $\varepsilon_0 Sd$

b) $\varepsilon_0 \frac{S}{d}$ c) $\frac{d}{\varepsilon_0 S}$

d) $\frac{2\varepsilon_0 S}{I}$

Question 13 : L'énergie emmagasinée dans un condensateur est :

a) $\frac{1}{2}CQ^{2}$ b) $\frac{1}{2V}Q^{2}$ c) $\frac{1}{2V}Q^{2}$ d) d) $\frac{1}{2}QC$

Question 14: Lorsqu'une boite d'inductance L est parcourue par un courant i, le flux magnétique est égal à :

a) $\frac{1}{2}Li$

b) $\frac{1}{2}Li^{2}$

c) Li^2

d) Li

Question 15 : Soit Im l'amplitude de l'intensité d'un courant alternatif. Sa valeur efficace est :

a) 2I_m

b) $\frac{I_{m}}{\sqrt{2}}$

c) $I_m \sqrt{2}$ d) $\frac{I_m}{2}$

Question 16 : Dans un circuit RLC série, la pulsation de résonance est égale à :

- a) CLR
- b) $\frac{L}{C}$
- c) $\frac{1}{LC}$
- d) $\frac{1}{\sqrt{LC}}$

Question 17 : Dans un circuit RLC série, le module de l'impédance est :

- a) $R + L\omega + \frac{1}{C\omega}$ b) $\frac{R}{LC}$
- c) $\sqrt{R^2 + \left(L\omega \frac{1}{C\omega}\right)^2}$ d) $\frac{LC}{R}$

Question 18 : Calculer, en électronvolt, l'énergie d'un photon de longueur d'onde 0,6 µm.

- a) 2
- b) 3
- c) 0,5

Question 19: Les ondes sonores sont des ondes:

- a) Transversales
- b) longitudinales
- c) électromagnétiques
- d) lumineuses

Question 20 : La période T est reliée à la constante radioactive λ par la relation :

- a) $T = \frac{\ln 2}{2}$
- b) $T = \frac{\lambda}{\ln 2}$
- c) $T = \lambda \ln 2$