Day-12 Quiz-DataScience-Training

Welcome to the Python Programming Quiz! This quiz tests your knowledge of daily learnings. Please read the instructions carefully before starting the quiz.

Instructions and Rules

- Time Limit: You have 20 minutes to complete the quiz.
- Number of Questions: The quiz consists of 20 multiple-choice questions.
- Scoring: Each correct answer is worth 1 point. There is no negative marking for incorrect answers.
- Single Attempt: You are allowed only one attempt to complete the quiz.
- Required Fields: All questions are mandatory. You must answer each question to submit the quiz.
- Resources: This is a closed-book guiz. Do not use any external resources, including books, notes, or the internet.
- **Honesty:** Please answer the questions honestly and to the best of your ability. Cheating or dishonesty will result in disqualification.
- Environment: Ensure you are in a quiet environment where you can concentrate without interruptions.
- Technical Issues: In case of technical issues, please contact the quiz administrator immediately.
- Retakes: There are no retake opportunities for this quiz. Ensure you are prepared before starting.

Good luck, and do your best!

*		auestion
	 	 4

1. Email *

1. What is Ensemble Learning? *				
Μ	ark only one oval.			
	a) A single machine learning model			
	b) A technique that uses multiple models to improve performanc			
	c) A data preprocessing method			
	d) A type of neural network			
2.	Which of the following is NOT an ensemble method? *			
	Which of the following is NOT an ensemble method? * ark only one oval.			
	_			
	ark only one oval.			
	ark only one oval. a) Bagging			

4.	3. What is the primary advantage of using ensemble methods? *
	Mark only one oval.
	a) Reducing data size
	b) Enhancing the interpretability of models
	c) Improving model accuracy and robustness
	d) Simplifying the model
5.	4. Which ensemble method involves training multiple models on different subsets of the data and averaging their * predictions?
	Mark only one oval.
	a) Boosting
	b) Bagging
	c) Stacking
	d) Blending

6.	5. Which ensemble method focuses on training models sequentially, where each model tries to correct the errors * of the previous one?
	Mark only one oval.
	a) Bagging
	b) Boosting
	c) Stacking
	d) Voting
7.	6. What is the primary purpose of Principal Component Analysis (PCA)? * Mark only one oval.
	a) Data classification
	b) Data clustering
	c) Dimensionality reduction
	d) Data normalization

8.	7. Which of the following best describes the first principal component in PCA? *				
	Mark only one oval.				
	a) The component with the least variance b) The component orthogonal to all others d) The component with the smallest eigenvalue				
	d) The component with the highest variance				
9.	8. What is the primary mathematical tool used in PCA to find the principal components? *				
	Mark only one oval.				
	Mark only one oval. a) Logistic regression				
	a) Logistic regression				
	a) Logistic regression b) Eigen decomposition				

10.	9. Which of the following is a crucial step in preparing data for PCA? *				
	Mark only one oval. a) Normalizing the data				
	b) Encoding categorical variables				
	c) Applying decision trees				
	d) Removing outliers				
11.	10. How do you handle missing values in the dataset before applying PCA? *				
	Mark only one oval.				
	a) Ignore the missing values				
	b) Replace them with zeros				
	c) Impute missing values with mean or median				
	d) Remove entire dataset				

11. What is the purpose of using a standard scaler before applying PCA? *				
Mark only one oval.				
a) To increase the variance of the data				
b) To standardize features by removing the mean and scaling to unit variance				
c) To normalize the data to the range [0, 1]				
d) To reduce the dimensionality of the data				
3. 12. Which of the following statements is true about feature scaling in ensemble methods?				
12. Which of the following statements is true about feature scaling in ensemble methods?				
Mark only one oval.				
Mark only one oval.				
Mark only one oval. a) Feature scaling is always necessary				
Mark only one oval. a) Feature scaling is always necessary b) Feature scaling is never necessary				

14.	13. How do you choose the number of principal components to retain in PCA? *				
	Mark only one oval.				
	a) By keeping all components				
	b) By selecting components with the highest eigenvalues				
	c) By choosing components that explain a cumulative variance above a certain threshold				
	d) By random selection				
15.	14. What is a key step in the workflow of implementing a Random Forest model? *				
	Mark only one oval.				
	a) Splitting the dataset				
	b) Calculating eigenvalues				
	c) Performing PCA				
	d) Applying LSTM				

16.	6. 15. What is the primary parameter to tune in PCA to control the number of components				
Mark only one oval.					
	a) n_estimators				
	b) max_depth				
	c) n_components				
	d) learning_rate				
17. 16. What does the confusion matrix represent in the context of digit classification					
	Mark only one oval.				
	a) The variance of principal components				
	b) The true and predicted classes of digits				
	c) The clustering of digit images				
	d) The dimensionality of the dataset				

18.	8. 17. Which of the following is a disadvantage of ensemble method:			
	Mark only one oval.			
	a) Increased variance			
	b) Increased bias			
	c) Higher computational cost			
	d) Lower accuracy			
	18. What is a common use case for the AdaBoost algorithm? *			
19.				
19.	18. What is a common use case for the AdaBoost algorithm? * Mark only one oval.			
19.				
19.	Mark only one oval.			
19.	Mark only one oval. a) Dimensionality reduction			
19.	Mark only one oval. a) Dimensionality reduction b) Classification problems			

20.	19. Which of the following best describes the Gradient Boosting algorithm? *				
	Mark only one oval.				
	a) A method that combines weak learners sequentially to create a strong learner				
	b) A method that applies gradient descent to logistic regression				
	c) A method that combines strong learners in parallel to create a weak learner				
	d) A method that only works with decision trees				
21.	20. What is the primary difference between AdaBoost and Gradient Boosting? *				
	Mark only one oval.				
	a) AdaBoost builds models sequentially; Gradient Boosting builds them in parallel				
	b) AdaBoost uses only decision trees; Gradient Boosting can use any model				
	b) AdaBoost is used for regression; Gradient Boosting is used for classification				
	d) AdaBoost assigns weights to misclassified samples; Gradient Boosting uses gradients				

This content is neither created nor endorsed by Google.

Google Forms