

Department of Computer Science

CSE 4820: Wireless and Mobile Security

17. Z-Wave Security

Dr. Abdullah Aydeger

Location: Harris Inst #310

Email: aaydeger@fit.edu

Outline

Z-wave Security

Recall: Z-Wave

- Low-energy, mesh-networking protocol
- Predominately used in home automation (locks, garage door openers, thermostats)
 - Over 100 million products in use in homes
- <u>Proprietary</u> design by Sigma Systems and governed by standards established by Z-Wave Alliance
 - Does not share details of protocol outside of NDA (nondisclosure agreement)
 - Controls all fabrication and delivery of Z-Wave chips to product manufacturers

Recall: Z-Wave Protocol Stack

 Uses structured protocol stack

Recall: Z-Wave Network Layer: Inclusion

- Involves configuring the controller in inclusion mode (allowing it to accept new nodes) by pressing a <u>physical button</u> or choosing a menu item, and pressing a button on the new node to <u>initiate an inclusion exchange</u>
- When the new node initiates the inclusion process, it sends a Z-Wave node information frame using homeID of 0x00000000 and nodeID of 0x00 and a brodcast dest NodeID
 - <u>Discloses the capabilities of the new device</u> to the controller, which, in turn, allocates a NodeID to the new device for subsequent use on the network and <u>updates routing</u> tables to accommodate <u>packet delivery to the new node</u>

Z-Wave Network Topology

- Nodes in a Z-Wave have a 1-byte NodeID, which must be <u>different</u> than every other node <u>in the network</u>
- Nodes in a Z-Wave network have a 4-byte HomeID, assigned by the controller at the time of inclusion
- Nearby networks must have <u>different</u>
 HomeIDs

Recall: Z-Wave Security

- Uses AES-OFB (Output Feedback Mode) to provide data confidentiality on the network
 - Conserve the amount of payload content transmitted in Z-Wave frames while being NIST (National Institute of Standards and Technology) approved
- AES CBC-MAC (cipher block chaining message authentication code) for data integrity protection
- CLASS_SECURITY command; key exchange process to derive keys

Recall: Z-Wave Key Exchange Process

Recall: Z-Wave Key Exchange's Solution

- Low power inclusion mode
 - Controller and secure device transmit using <u>minimal power</u>
 <u>capabilities</u>
 - Require no more than <u>3 feet apart</u> to complete the process
 - Also infrequent practice of adding new devices
 - Results in less opportunity for the attacker

Z-Wave Key Derivation

- After the K_n (network key) is established, the device generates two additional keys K_c (packet encryption) and K_m (message auth key)
 - Kc (packet encryption) = AES-ECB_{kn}(Password_c)
 - K_m (message auth key) = AES-ECB_{kn}(Password_m)
- Where Password_c and Password_m are <u>static values</u> across all Z-Wave devices
- However, if we <u>observe</u> Kn and we know Password_c and Password_m, we can compute the packet encryption and message auth keys

11/3/22

Z-Wave Key Establishment Attack

- We can force the key establishment process to establish a new K_n if we missed the original key establishment
 - Similar to an IEEE 802.11 Deauth

Z-Wave Key Establishment: Solution

- In response to the flawed S_0 Key Establishment and Pairing Process, SI Labs (i.e., Z-Wave Alliance) responded with a S_2 Key Establishment
- Removed the null temporal key
- Each devices has a DSK [device specific key] 16 byte key
- Key exchanged using <u>Diffie Hellman</u> key exchange protocol
- · Removed issues with man-in-the-middle
 - Are we safe now?

https://community.silabs.com/s/topic/0TO1M000000qHcQWAU/zwave?language=en_US&tabset-178da=2

Z-Wave Key Exchange

S2 Z-Wave Rollback Attack

- An attacker jams the node info or responds prior to the node
- Provides node info that device only supports flawed S₀ pairing

Mitigating Eavesdropping in Z-Wave

- As in any wireless technology, attacker can always capture the traffic (aka eavesdropping)
 - Useless if confidentiality and integrity of the data is ensured
- Unfortunately, the use of encryption in Z-Wave is optional
 - Switch to a <u>vendor</u> that <u>offers</u> network confidentiality and integrity control

Injection Attacks in Z-Wave

- If no encryption, attacker can capture and replay the packets
- Injection is also done if the device is in the Z-Wave network
 - To be in the network, Z-Wave inclusion needed
 - Does it solve this problem?
 - Attacker can spoof the address and inject any packet

https://github.com/joswr1ght/killerzee

Scapy-Radio Framework

- Modified version of Scapy to support
 - Zwave
 - Zigbee
 - 802.15.4
- Works with software defined radios (SDR)

	Balint Seeber Removed deprecated fur	nction from Wireshark dissector f1240ab on Apr 1, 2016	12 commits
	gnuradio	Removed deprecated function from Wireshark dissector.	7 years ago
	scapy	disables xbee for the moment	8 years ago
	utils/Zwave	Add copyright stuff	8 years ago
	wireshark/scapy-radio	Removed deprecated function from Wireshark dissector.	7 years ago
	.hgignore	initial import of scapy-radio	8 years ago
	README.md	Add note about GNU Radio 3.7.5 in README	8 years ago
	install.sh	Bugfix on installation script	8 years ago

Introduction

This tool is a modified version of scapy that aims at providing an quick and efficient pentest tool with RF capabilities.

It includes:

- · A modified version of scapy that can leverage GNU Radio to handle a SDR card
- . GNU Radio flow graphs (GRC files) we have build that allows full duplex communication
- GNU Radio blocks we have written to handle several protocols

Thankyou. Questions?

Dr. Abdullah Aydeger