BLG 311E – FORMAL LANGUAGES AND AUTOMATA SPRING 2014 QUIZ 1

Transform the incompletely specified Mealy machine below into the Moore model and reduce the states of the new machine using complete cover.

	00	01	11	10
a	a / 0	b / 0	c / 0	d / 1
b	b / 0	-/-	c / 0	-/-
c	a / 0	f / 0	c / 0	-/-
d	d / 0	-/-	e / 0	a / 0
e	e / 0	g / 0	d / 0	b / 0
f	-/-	f / 0	-/-	a / 0
g	-/-	g / 0	e / 0	c / 0

SOLUTION

Mealy → **Moore**:

	00	01	11	10	Output
a	a	b	c	d_1	0
b	b	-	c	-	0
c	a	f	c	-	0
$\mathbf{d_0}$	d_0	-	e	a	0
e	e	g	d_0	b	0
f	-	f	-	a	0
g	-	g	e	c	0
\mathbf{d}_1	d_0	-	e	a	1

a						
$\sqrt{}$	b					
(b,f) √	(a,b) √	c	_			
$(c,e),$ (a,d_1) X	(c,e) X	$(a,d_0),$ (c,e) X	$\mathbf{d_0}$	_		
(b,g), (c,d ₀), X (b,d ₁)	(c,d ₀) X	(a,e), (f,g), X (c,d ₀)	(a,b) √	e		
$(b,f),$ (a,d_1) X	$\sqrt{}$	$\sqrt{}$	V	(a,b), √ (g,f)	f	
(b,g), (c,e), X (c,d ₁)	(c,e) X	(c,e), (f,g) X	(a,c) √	(b,c), √ (d ₀ ,e)	(a,c) √	g
X	X	X	X	X	X	X

 $d_{1} \\$

Dependency graph:

Complete cover: $S_1 = \{a,b,c\}$ $S_2 = \{d_0,e,f,g\}$ $S_3 = \{b,c,f\}$ $S_4 = \{d_1\}$

Reduced State Transition Table:

	00	01	11	10	Output
S1	S1	S3	S1,S3	S4	0
S2	S2	S2	S2	S1	0
S3	S1	S2,S3	S1,S3	S1	0
S4	S2	-	S2	S1	1