

Measuring intracluster light with machine learning

Louisa Canepa,

Sarah Brough, Francois Lanusse, Mireia Montes, Nina Hatch

What is ICL?

What is ICL?

- Diffuse, low surface brightness light in the centres of galaxy clusters
- Made up of stars that are not bound to any particular galaxy

But what is it?

- Produced by tidal stripping and merging of galaxies
- Traces the history of interactions within the cluster (e.g. Rudick+11)
- Despite this, there's a lot we don't know...
 - Progenitors and formation mechanisms?
 - Relationship with cluster properties?

How do we measure it?

- Measure the ICL fraction
- How to separate the ICL from the BCG?
- Not standardised and generally hard to scale :(

Surface brightness cut (e.g. Montes+21)

Composite model (e.g. Martinez-Lombilla+23)

Multi-galaxy fitting (e.g. Jimenez-Teja+16)

Wavelet decomposition (e.g. Ellien+21)

... + machine learning?

Why machine learning?

- Big data is coming, and we have better things to do than ultrarepetitive measurement tasks
- Machine learning is an option that could help
 - High throughput
 - Flexible
 - Can be applied to many problems with some understanding of its capabilities
- But there are some hurdles to applying ML to astronomy

The Model

The Model

- We need a LOT of training data
- Not feasible to manually measure thousands of clusters
- Use transfer learning!

Large dataset (50 000 examples)

This data will look a bit different to real data, and measurements will be sub-optimal

Finetuning dataset (~100 examples)

Manually measure the real, deep cluster images

Results – training dataset

Mean Absolute Error (MAE) = 0.00511

Results – before finetuning

MAE = 0.0163

K-fold cross-validation

- We only have 101 finetuning samples, or ~20 samples for testing
- Train the model k times, reserving different data for testing each time

Results – after finetuning

Larger samples!

- Now we're closer to taking advantage of LSST amounts of data
- 500 samples in seconds on a GPU, or a couple of minutes on CPU
- This allows us to easily collate much larger samples (and expand easily!)

Larger samples!

Summary

Bring on the data! Stay tuned for the paper! l.canepa@unsw.edu.au lpcan.github.io **Ipcan**