Homework 3

1. Plot your results and show your MATLAB program in text in your answer sheets. (1 for UG students. 1& 2 for Graduate students)

Synapse is the way neurons pass activation signal from one to another. Here we simulate synapse caused conductance change in response to a train of uniformly spread input spikes. The conductance g (in unit is described by:

$$\frac{d^2g}{dt^2} + \frac{2}{\tau} \frac{dg}{dt} + \frac{g}{\tau^2} = G_{norm} u(t)$$

Which is equivalent to the following two differential equations:

$$\frac{dz}{dt} = \frac{-z}{\tau} + G_{norm}u(t)$$

And

$$\frac{dg}{dt} = \frac{-g}{\tau} + z(t)$$

The constant G_{norm} is related to the peak conductivity g_{peak} by:

$$G_{norm} = \frac{g_{peak}}{(\frac{\tau}{e})}$$

 τ is synaptic time and e = 2.718

The impulse response is the function:

$$g(t) = G_{norm} t e^{-\frac{t}{\tau}} = \frac{g_{peak}}{(\frac{\tau}{e})} t e^{-t/\tau}$$

the peak of the conductance waveform occurs at $t=\tau$:

$$g(\tau) = g_{peak}$$

I. Write a MATLAB program that use the two first order differential equations to simulate conductance changes in response to a train of uniformly space input spikes. Model the spike input as:

$$u(t) = \begin{cases} \frac{1}{\Delta t} & when a spike occurs \\ 0 & otherwise \end{cases}$$

 Δt = input spike interval, Simulate the following four cases and turn in plots of conductance vs. time using T_{max} =500ms, dt=1 ms, and g_{peak} =0.1 μ S.

(a) Δt =50ms, τ =10ms, (b) Δt =50ms, τ =50ms, (c) Δt =10ms, τ =10ms, (d) Δt =10ms, τ =50ms. - show your answer (a) and (b)

Hint: your answer (c) and (d) shall look like the following [only grade (a) and (b)]

II. Now, we insert the synapse from the previous problem into a neuron and simulate the postsynaptic response to an input train of uniformly spaced action potentials. the differential equations describing the model are:

$$C\frac{dv}{dt} = \frac{-v}{R} - g_{ex}(v - E_{ex}) + I_{inject}$$

conductance change

$$\frac{dz}{dt} = \frac{-z}{\tau_{syn}} + \frac{g_{peak}}{\left(\frac{\tau_{syn}}{\rho}\right)} u(t)$$

$$\frac{dg_{ex}}{dt} = \frac{-g_{ex}}{\tau_{syn}} + z(t)$$

use the following parameter values in your calculation:

membrane capacitance (nF)
membrane resistance (M Ω)
resting membrane potential (mV)
action potential amplitude (mV)
spike threshold (mV)
synaptic reversal potential (mV)
synaptic time constant (ms)
peak synaptic conductance (μ S)
total simulation time (ms)
integration time step (ms)
input interspike interval (ms)

generate plots of the following quantities verse time (a) input spike train u(t), (b) synaptic conductance $g_{ex}(t)$, (c) synaptic current $I_{sync}(t)$, and (d) postsynaptic membrane voltage v(t). Hint: your u(t) and $g_{ex}(t)$, shall look like: [only grade (c) and (d)]

2. (graduate student only) III. Construct a two-neuron oscillator using reciprocal inhibition. the neurons will be modeled as leaky integrate-and-fire units with an adaptive threshold mechanism that generates firing-rate adaption and post-inhibitory rebound. the model structure in illustrated in the following diagram:

the update equations for each individual neuron are:

Remember that the input *u*(*t*) comes from spike activity of the *pre-synaptic unit*.

The parameter values for the model are:

$$C=1$$
membrane capacitance (nF) $R=10$ membrane resistance (M Ω) $V_{rest}=0$ resting membrane potential (mV) $V_{spk}=70$ action potential amplitude (mV) $\tau_{thresh}=50$ threshold time constant (ms) $E_{inh}=-15$ synaptic reversal potential (mV) $\tau_{syn}=15$ synaptic time constant (ms) $g_{peak}=0.1$ peak synaptic conductance (μ S) $T_{max}=1500$ total simulation time (ms) $\Delta t=1$ integration time step (ms)

both neurons should receive constant current injection. To break the symmetry of the model, inject slightly more current into neuron 1 then neuron 2. Specifically, inject 1.1nA into neuron 1 and 0.9 into neuron 2.

When the neuron fires an action potential, reset the membrane voltage to E_{inh} on the next time step (rather then 0) [Note: this is related to the adaptive threshold level, which can fall below zero in this model, but not below E_{inh} . We need to reset the membrane voltage to a value that is below the threshold level, hence we choose E_{inh} as the rest value.] plot your results of neuron 1, 2, threshold level as function of time from 0-1500ms.