Ejercicio 1. Mostrar que, dado un k fijo, la función constante f(x) = k puede definirse usando las funciones iniciales y composición (sin usar recursión primitiva).

$$I_{k}(x) = S(S(...(m(x)))...) = S^{(k)} \circ m$$

Ejercicio 2. Probar que las siguientes funciones son primitivas recursivas, mostrando que pueden obtenerse a partir de las funciones iniciales usando composición y/o recursión primitiva:

Observaciones: Se asume que $f_4(x,0) = 1$. $x - y = \begin{cases} x - y & \text{si } y \leq x \\ 0 & \text{si } y > x \end{cases}$

$$\begin{cases} I(x, 0) = I_{1}(x) & (x+y) = x+1+1+...+1 \\ I_{1}(x, t+1) = g(I_{1}(x, t), x, t) & g(F, x, t) = S(I_{1}(F, x, t)) \end{cases}$$

$$\begin{cases} 2(x,0) = J_0(x) & (x,y) = x+x+..+x \\ 2(x,t+1) = g(f_2(x,t),x,t) & g(F,x,t) = f_1(M_1^3(F,x,t),N_2^3(F,x,t)) \end{cases}$$

$$f_3(x,0) = I_1(x) \qquad (x^{y}) = \overline{x} \cdot x \cdot x$$

$$\begin{cases} \{3(x,0) = 1i(x) & (x') = x \cdot x \cdot \dots \cdot x \end{cases}$$

$$\begin{cases} \{3(x,t+1) = y(\{3(x,t),x,t\} & , y(F,x,t) = \{2(u^3(F,x,t),u^3(F,x,t)\} \end{cases}$$

$$\int_{\mathcal{A}} (x,0) = I_1(x) \qquad x^{x}$$

$$\int_{4}(x,0) = I_{1}(x)$$

$$\chi = \int_{4}(x,t+1) = g(\int_{4}(x,t), x,t)$$

$$\chi = \int_{3}(\int_{4}(x,t+1) - \int_{3}(\int_{4}(x,t), x,t) - \int_{4}(f,x,t) - \int_{4}(f,x,$$

$$g_{1}(x,0) = I_{0}(x) \quad (x=1)$$

$$g_{1}(x,0) = f_{0}(x)$$
 $(x=1)$
 $g_{1}(x,t+1) = g_{1}(x,t), x, t)$ $g_{1}(x,t) = u_{3}(x,t)$

$$g_2(x,0) = I(x)$$
 $(x-y) = x-1 = -1$

$$g_2(\infty,t+1) = g(g_2(\infty,t), \infty,t)$$
, $g(G,\infty,t) = g_1(u_3(G,\infty,t))$

```
Podeno una a como un'x \le y, forque \alpha(x-y) = \{0 : cc\}
A poth de \alpha(x) are roughly \alpha(x).

(x,y) = \alpha(x-y). (x,y) = \alpha(x-y). (x,y) = \alpha(x-y). (x,y) = \alpha(x-y). (x,y) = \alpha(x-y).
 \min (x, 7) = \alpha(x-7) \cdot x + \alpha(\alpha(x-7)) \cdot y
Ejercicio 3. Sea C_i la clase de funciones iniciales, es decir, aquella que contiene a:
      n(x) = 0
                s(x) = x + 1 u_i^n(x_1, \dots, x_n) = x_i para cada n \in \mathbb{N} e i \in \{1, \dots, n\}
y sea C_c la (mínima) clase que extiende a C_i y se encuentra cerrada por composición, i.e., si
f, g_1, \dots g_m están en C_c, entonces h(x_1, \dots, x_n) = f(g_1(x_1, \dots, x_n), \dots, g_m(x_1, \dots, x_n)) también
a. Demostrar que para toda f: \mathbb{N}^n \to \mathbb{N}, f está en \mathcal{C}_c sii existe k \geq 0 tal que, o bien sucede
   f(x_1, ..., x_n) = k, o bien para algún i fijo, se tiene f(x_1, ..., x_n) = x_i + k.
b. Mostrar que existe una función primitiva recursiva que no está en C_c.
a) Lo bocomo por inducción estructural
   m(x) = 0, k = 0 \int s(x) = x + 1, k = 1 \int u_{i}^{*}(\overline{x}) = x; k = 0 \int
   Sen f:N" -N , h:N" -N EC, 91,..., k:N" -N EC.
```

gra: $f(\bar{x}) = k$ or for algun i figs, so time $f(\bar{x}) = x_i + k$ $\begin{cases}
(\overline{x}) = h\left(\frac{1}{2}, (\overline{x}), -\frac{1}{2}, \frac{1}{2}, (\overline{x})\right)
\end{cases}$ Dotay hy g, k cumplen HI for pertences a Cc. => $h(g_i(\bar{x}), ..., g_k(\bar{x})) = K \Rightarrow h(g_i(\bar{x}), ..., g_k(\bar{x})) = x_i + k$, i fig. 1) $L(g_i(\bar{x}), -g_K(\bar{x})) = K$ $f(\bar{x}) = f(y(\bar{x}), y(\bar{x})) = k \Rightarrow f(\bar{x}) = k$ Z) $h(y_i(\bar{x}), ..., y_k(\bar{x})) = y_i(\bar{x}) + k$ $f(\overline{x}) = h(g_i(\overline{x}), \dots, g_k(\overline{x})) = g_i(\overline{x}) + k$ tenens de mezs 2 opriore: 2.1) g; (x) = k' $\Rightarrow \{(\overline{x}) = h(g_i(\overline{x}), \dots, g_k(\overline{x})) = g_i(\overline{x}) + k = k' + k = k'' \}$ $2.2) g_i(x) = \chi_{i+k'}$ $\Rightarrow \{(\overline{x}) = h(g_i(\overline{x}), \dots, g_k(\overline{x})) = g_i(\overline{x}) + k = x_i + k' + k = x_i + k'' \}$ Lugs por inducción, feto en C. Es IK 30/ B(X)=K a f(X) = X; +K. b) f(x) = x = 1 er l.R. pers no pertener a co porque no la polé sorregion Solo Mands composición.

Ejercicio 4. Llamamos predicado a cualquier función $p: \mathbb{N}^n \to \{0,1\}$, escribimos $p(a_1,\ldots,a_n)$ en
lugar de $p(a_1, \ldots, a_n) = 1$ y decimos, informalmente, en ese caso, que " $p(a_1, \ldots, a_n)$ es verdadero".
Mostrar que los predicados \leq , \geq , $=$, \neq , $<$ y $>$: $\mathbb{N}^2 \to \{0,1\}$ están en cualquier clase PRC .

En eta porta vonn una mucho
$$\alpha(x) = \begin{cases} 1 & x=0 \\ 0 & \infty \end{cases}$$
 definido en punto 2.

$$x \leqslant y = \alpha (x = y) \left(x \ge y = \alpha (y = x) \right) \quad x = y = (x \leqslant y) \cdot (y \leqslant x) \left(x \ne y = \alpha (x = y) \right)$$

$$x < y = \alpha(x \ge y) / x \ge y = \alpha(x \le y)$$

Ejercicio 5. Sea \mathcal{C} una clase PRC, sean $f_1, \ldots, f_k, g : \mathbb{N}^n \to \mathbb{N}$ funciones en \mathcal{C} y sean también $p_1, \ldots, p_k : \mathbb{N}^n \to \{0, 1\}$ predicados disjuntos en \mathcal{C} (i.e., no sucede $p_i(a_1, \ldots, a_n) = p_j(a_1, \ldots, a_n) = 1$ con $i \neq j$ para ningún $(a_1, \ldots, a_n) \in \mathbb{N}^n$). Mostrar que también está en \mathcal{C} cualquier función h que cumpla:

$$h(x_1, ..., x_n) = \begin{cases} f_1(x_1, ..., x_n) & \text{si } p_1(x_1, ..., x_n) \\ \vdots & & \\ f_k(x_1, ..., x_n) & \text{si } p_k(x_1, ..., x_n) \\ g(x_1, ..., x_n) & \text{si no} \end{cases}$$

Observar que h que da completamente determinada por este esquema.

Et vol point
$$h(X) = \begin{bmatrix} K \\ E \\ i = 1 \end{bmatrix} + g(x) \cdot K \begin{pmatrix} E \\ E \\ i = 1 \end{pmatrix}$$

Como la ruma, mult, ox, fi, si y todo lo que une eta en c, h e comporteix de coron en c => h eta en c.

Ejercicio 6. a. Demostrar que el predicado $par(x) = \begin{cases} 1 & \text{si } x \text{ es par} \\ 0 & \text{si no} \end{cases}$ está en toda clase PRC.

for
$$(0) = 1$$

for $(t+1) = g(for(t), t)$, $g(f,t) = d(f)$

b. Demostrar que la función f(x) = |x/2| está en toda clase PRC.

$$\frac{1}{b}(0) = 0$$

$$\frac{1}{b}(t+1) = g(\frac{1}{b}, t), \quad g(F,t) = \begin{cases} F & \text{if } f^{(t)}(t) \\ F+1 & \text{if } f^{(t)}(t) \end{cases}$$

c. Sea \mathcal{C} una clase PRC, y sean $f: \mathbb{N}^n \to \mathbb{N}$ y $g_1, g_2: \mathbb{N}^{n+2} \to \mathbb{N}$ funciones en \mathcal{C} . Mostrar que también está en \mathcal{C} cualquier h que cumpla:

$$h(x_1, \dots, x_n, t) = \begin{cases} f(x_1, \dots, x_n) & \text{si } t = 0\\ g_1(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 1\\ g_2(x_1, \dots, x_n, k, h(x_1, \dots, x_n, t - 1)) & \text{si } t = 2 \cdot k + 2 \end{cases}$$

Observar que h que da completamente determinada por este esquema.

La Reculins sons algo conscids y lits

$$h(\bar{x},0) = f(\bar{x}) \int \sqrt{BELLISIMD} = CASD BASE$$

$$h(\overline{x}, t+1) = g(h(\overline{x}, 0), \overline{x}, t)$$
 Vone a total de meter ag, y a gr en g

$$g(H, \overline{X}, t) = \begin{cases} g_1(\overline{X}, k_1(t), H), & \text{if } f^{\alpha}(t) \\ g_2(\overline{X}, k_2(t), H), & \text{cc} \end{cases}$$

$$t = 2k + 1 = k$$

BELLISIMO PASO RECURSIVO

Ejercicio 7. Sea \mathcal{C} una clase PRC y sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado en \mathcal{C} . Mostrar que también están en \mathcal{C} las siguientes funciones:

$$\operatorname{cantidad}_p(x_1,\ldots,x_n,y,z) = |\{t \mid y \le t \le z \land p(x_1,\ldots,x_n,t)\}|$$

Observación: pueden usarse los operadores acotados (mín, Σ , \forall , \exists) vistos en la teórica.

control
$$p(\bar{x}, y, z) = \sum_{i=y}^{z} P(\bar{x}, i)$$

$$todos_p(x_1, \dots, x_n, y, z) = \begin{cases} 1 & \text{si } (\forall t : y \le t \le z) p(x_1, \dots, x_n, t) \\ 0 & \text{si no} \end{cases}$$

$$Followp(\bar{x}, y \neq) = (\forall t) \leq z [t < y \lor P(\bar{x}, t)]$$

alguno_p
$$(x_1, \dots, x_n, y, z) = \begin{cases} 1 & \text{si } (\exists t : y \le t \le z) p(x_1, \dots, x_n, t) \\ 0 & \text{si no} \end{cases}$$

alguns
$$\rho(\bar{X}, 7, z) = (J_t) \leq z \left[t \geq \gamma \wedge \rho(\bar{X}, t) \right]$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} \min\{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} & \text{si existe tal t} \\ \text{si no} \end{cases}$$

$$\max_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} \max\{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} & \text{si existe tal t} \\ 0 & \text{si no} \end{cases}$$

$$\max_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} \max\{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} & \text{si existe tal t} \\ \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} \max\{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} & \text{si existe tal t} \\ \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\min_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,y,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si no} \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ z+1 & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t \mid y \leq t \leq z \land p(x_1,\ldots,x_n,t)\} \\ u & \text{si } t \end{cases}$$

$$\lim_{p}(x_1,\ldots,x_n,z) = \begin{cases} u & \text{si } \{u\} = \{t$$

$$t \le x$$

$$\operatorname{resto}(x,y) = x \operatorname{mod} y \qquad \qquad \chi = \chi \text{. sciet. } (\chi,\chi) + \operatorname{rot. } (\chi,\chi) \Rightarrow \operatorname{int. } (\chi,\chi) = \chi - \chi \text{. sciet. } (\chi,\chi)$$

Nexto
$$(x, y) = x - y$$
. coefents (x, y)

$$\operatorname{divide}(x,y) = \begin{cases} 1 & \text{si } x \text{ divide a } y \\ 0 & \text{si no} \end{cases}$$

divide
$$(x,y) = (\exists t) \langle y [t,x=y]$$

$$\begin{aligned} & \text{primo}(x) = \begin{cases} 1 & \text{sit is es un número primo} \\ 0 & \text{sit no} \end{cases} \\ & p^{\text{primo}}(x) = k \left(\frac{|f|}{2} \right) \leq k \left[\frac{|f|}{2} \leq k \right] \left[\frac{|f|}{2} \leq k \right] \right] \\ & \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text{primo}(x) = k \text{ sit } k \text{ es primo y bay sido } n-1 \text{ primos positives toesores que } k \end{aligned}$$

$$& \text$$

Ejercicio 11. Demostrar que toda clase PRC se encuentra cerrada por recursion mutua. Es decir, dada C , una clase PRC y dadas f_1 , f_2 , g_1 y g_2 funciones en C , mostrar que también están en C las funciones h_1 y h_2 que cumplen:
$h_1(x_1, \dots, x_n, t) = \begin{cases} f_1(x_1, \dots, x_n) & \text{si } t = 0 \\ g_1(h_1(x_1, \dots, x_n, t - 1), h_2(x_1, \dots, x_n, t - 1), x_1, \dots, x_n, t) & \text{si no} \end{cases}$
$h_2(x_1, \dots, x_n, t) = \begin{cases} f_2(x_1, \dots, x_n) & \text{si } t = 0 \\ g_2(h_2(x_1, \dots, x_n, t - 1), h_1(x_1, \dots, x_n, t - 1), x_1, \dots, x_n, t) & \text{si no} \end{cases}$
Observar que h_1 y h_2 quedan completamente determinadas por el esquema de recursión mutua.
$H(\bar{x},t) = [h,(\bar{x},t), h_2(\bar{x},t)]$
$\Rightarrow h_1(\bar{x},t) = H(\bar{x},t)[1] \text{g.} h_2(\bar{x},t) = H(\bar{x},t)[2]$
$\mathcal{H}(\bar{X}, \circ) = \left[\left\{ \iota(\bar{X}), \left\{ \iota_{2}(\bar{X}) \right\} \right] \right]$
$H(\overline{x},t+1) = g(H(\overline{x},t),\overline{x},t), g(H,\overline{x},t) = \left[g(H[1],H[2],\overline{x},t),g(H[2],H[1],\overline{x},t)\right]$
Ejercicio 12. Sea C_{i+p} la clase de funciones que extiende a la clase de funciones iniciales C_i con la función codificadora de pares $\langle \cdot, \cdot \rangle : \mathbb{N}^2 \to \mathbb{N}$ y las observadoras $l, r : \mathbb{N} \to \mathbb{N}$ y sea C_{Ack} la (mínima) clase que incluye a C_{i+p} y se encuentra cerrada por composición y por iteración de funciones unarias, i.e., si $f : \mathbb{N} \to \mathbb{N}$ está en C_{Ack} , entonces también está $h(n, x) = f^{(n)}(x)$ (recordar que $f^{(n)} = f \circ f \circ \cdots \circ f$). Oue cambia meter a $< \cdots > .$ I(z) y r(z) enlas iniciales?
Que cambia meter a $<.,.>$, $ (z)$ y $ (z)$ enlas iniciales? No se las podia obtener con recursion/composicion y listo?
grog: Toda fie CACK re probe obtera mediante comprisión / recursión de C;
La horemor par inducción
CB: C:, ⟨·,·>, l(·) y r(·) ~m PR
PI:
· COMPOSICION : PR. for definion
· ITERACION;
$h(x,n) = {\binom{n}{x}}(x)$
h(x,0) = x
h(x,t+1) = g(h(x,t),x,t) , g(h,x,t) = f(H)
La pude excribin mondo solo companición y recursión /
=) CAGR C PR]

 ${\bf Ejercicio~11.}$ Demostrar que toda clase PRC se encuentra cerrada por recursión mutua. Es decir,

b) Observar que en \mathcal{C}_{Ack} se tienen las funciones codificadoras de n-tuplas y sus observadoras.
Observator (1)
c) Demostrar que si $f: \mathbb{N}^n \to \mathbb{N}$ y $g: \mathbb{N}^{n+2} \to \mathbb{N}$ pertenecen a la clase \mathcal{C}_{Ack} y h se obtiene mediante el esquema de recursión primitiva a partir de f y g , entonces la función $s: \mathbb{N}^{n+1} \to \mathbb{N}$ definida por $s(\overline{x}, y) = \langle \overline{x}, y, h(\overline{x}, y) \rangle$ también pertenece a la clase \mathcal{C}_{Ack} .
$h(\bar{x},0) = h(\bar{x})$
$\int \mathbb{A}(\bar{x},t+1) = g(\mathbb{A}(\bar{x},t),\bar{x},t)$
$9 \times 9: S(\overline{X}, 7) = \langle \overline{X}, 7, h(\overline{X}, 7) \rangle \in C_{ACK}$
Esto vale porque <*,*,*> pertenece a C_{Ack} y h(X,y) pertenece a C_{Ack} por haberlo conseguido mediante composicion/recursion de funciones que tambien pertenecian a C_{Ack} (f y g).
d) Concluir que $PR \subset \mathcal{C}_{Ack}$ y, por lo tanto, coinciden.
gra: Todo función que re puede conquir mediente comprisción/recurrim de ci E CACK?

Ejercicio 13. Considerar la codificación de secuencias finitas de números naturales dada por $[a_1,\ldots,a_n]=\prod_{i=1}^n \operatorname{nprimo}(i)^{a_i}$, donde nprimo es la función definida en el Ejercicio 8. a. Mostrar que la codificación dada forma una biyección entre el conjunto de secuencias finitas que no terminan en cero y los números naturales mayores que cero. grg: $\forall [a_{1,-}, a_{m}]$ no terminada en o J! II mbrimo (i) Por un teoreno de algebra, Z=P, K, Pn y era decomprición en primo er único . (Tobo K; Zo)

La listo en borisonte en decomprición » lons no puedo meter Os a desecho I! lito pro codo pro y codo nos tre una unio listo. b. Determinar qué valor codifica la secuencia vacía y mostrar que las siguientes funciones están en toda clase PRC: • $|\cdot|: \mathbb{N} \to \mathbb{N}$ tal que $|[a_1, \dots, a_n]| = n$ (longitud) • $\cdot [i] : \mathbb{N} \to \mathbb{N}$ tal que $[a_1, \dots, a_n][i] = \begin{cases} a_i & \text{si } 1 \leq i \leq n \\ 0 & \text{si no} \end{cases}$ (observador) \bullet $[\cdot]:\mathbb{N}\to\mathbb{N}$ tal que [x] es la lista con único elemento x(creación) $\bullet \ \cdot \circ \cdot : \mathbb{N}^2 \to \mathbb{N} \text{ tal que } [a_1, \dots, a_n] \circ [b_1, \dots, b_m] = [a_1, \dots a_n, b_1, \dots b_m]$ (concatenación) • sub: $\mathbb{N}^3 \to \mathbb{N}$ tal que sub($[a_1, \ldots, a_n], i, j$) = $[a_i, \ldots, a_j]$ (sublista) • /m/ = min divide (nPrins(t), ≥) ~ (Ft') ≤ m [t'>t ~ divide (t', n)]

t ≤ m

 $t \leq m$ $t \leq m$

Tomamos una secuencia cualquiera [x1,...,xn,0...,0] y la codificamos como la tupla <[x1,...,xn],#0>. Esto está buenardo, pero pero pero nosotros queremos tener una biyección con los naturales. Para eso nos alcanza con tener una biyección con las tuplas (porque las tuplas son biyectivas con los naturales). El tema con nuestra codificación berreta es que no hay ninguna lista que le corresponda a los pares de la forma <0,x>. Igual lo bueno es que podemos arreglar esto re isi, nomas tenemos que cambiar la tupla de <[x1,...,xn],#0> a <[x1,...,xn]-1,#0> y ya estamos para salir a las pistas rey.

Ejercicio 14. Utilicemos [] para referirnos a la codificación de secuencias dada en el punto 13.c. a. Demostrar que toda clase PRC se encuentra cerrada por recursión global (course-of-values recursión). Es decir, dada C , una clase PRC , y dada una función $f: \mathbb{N}^{n+1} \to \mathbb{N}$ en C , mostrar que la función definida como
$h(x_1,\ldots,x_n,0)=f([],x_1,\ldots,x_n)$
$h(x_1, \dots, x_n, t+1) = f([h(x_1, \dots, x_n, 0), \dots, h(x_1, \dots, x_n, t)], x_1, \dots, x_n)$
también está en C . Observar que h queda completamente determinada por el esquema de recursión global.
o coor ian quo ii quoda compretamente accommanda per er esquerma de recansien 6000an.
$H(\bar{x},o) = \left[\left\{ (LJ,\bar{x}) \right] = \left[h(\bar{x},o) \right] \qquad \left[h(\bar{x},t) \right] \qquad h(\bar{x},t+1) $ $H(\bar{x},t+1) = g(H(\bar{x},t),\bar{x},t) \qquad g(H,\bar{x},t) = H \circ \left[(H,\bar{x}) \right] $
v
$L(\bar{x}, t) = H(\bar{x}, t)[H(\bar{x}, t)]$
b. Demostrar, a partir del ítem anterior, que dada C , una clase PRC , y funciones $g_1: \mathbb{N}^n \to \mathbb{N}$, $g_2: \mathbb{N}^{n+2} \to \mathbb{N}$ en C , la función definida como
$h(x_1,\ldots,x_n,0)=g_1(x_1,\ldots,x_n)$
$h(x_1,\ldots,x_n,0)=g_1(x_1,\ldots,x_n)$ $h(x_1,\ldots,x_n,t+1)=g_2([h(x_1,\ldots,x_n,0),\ldots,h(x_1,\ldots,x_n,t)],x_1,\ldots,x_n,\underline{t})$ también está en \mathcal{C} .
también está en \mathcal{C} . Observar que h queda completamente determinada por el esquema de recursión global.
NO ES LO MISMO?

Ejercicio 15. Demostrar que toda clase PRC se encuentra cerrada por <i>recursión doble</i> . Es decir, dadas $f: \mathbb{N}^3 \to \mathbb{N}$ y $g: \mathbb{N}^4 \to \mathbb{N}$ pertenecientes a \mathcal{C} , una clase PRC, demostrar que también está en \mathcal{C} la función $h: \mathbb{N}^3 \to \mathbb{N}$ que cumple:
h(x,0,z) = f(x,0,z)
h(x, y, 0) = f(x, y, 0)
h(x, y + 1, z + 1) = g(x, y, z, h(x, y, z))
Observar que h queda completamente determinada por el esquema de recursión doble.
Si te das cuenta, para calcular h(x,y,z) siempre vas a terminar llegando a alguno de los casos base con el valor h(x, y-M, z-M) con M=min(y,z). Entonces vamos a hacer un estilo de buttom-up y vamos a agarrar ese resultado e ir consiguiendo desde ahi los h(x,y+1,z+1). Veamos que h(x,y-M+1,z-M+1) = g(x,y-M,z-M,h(x,y-M,z-M)). Por otro lado, para seguir aumentando y,z solo necesitamos aplicar g de forma iterativa hasta llegar al valor pedido. Como vimos que C está cerrado por iteración de funciones unarias, entonces si logramos escribir a h usando composición/iteracion unaria de cosas pertenecientes a C => h pertenece a C.
ariana de cosas percenecientes a c in percenece a c.
h(x,y,z) = h'(x,y,z)
$h'(x,7,2) = \left[x, y-n, z-M, f(x, 7-M, z-M)\right]$
g'(l) = [[1], [2]+1, [3]+1, g([1], [2], [3], [4])]
$h(x,y,z) = g^{(M)}(h'(x,y,z))[Y]$