北京邮电大学

本科毕业设计(论文)开题报告

学院	人工智能学院		专业	智能科学与技术		
学生姓名	罗彬慈	学号	2020212053	班级	2020219107	
指导教师姓名	李佩佩	所在单位	人工智能学院	职称	副教授	
设计(论文)题目	(中文)基于对话系统的交互式图像编辑的研究与仿真					
	(英文) Research and Simulation of Interactive Image Editing Based on					
	Conversational Systems					

1. 背景和意义

随着图像生成技术的不断发展,图像编辑作为其中的关键技术之一,应用广泛,涵盖了媒体娱乐、数字营销和智能医疗等多个领域。然而,传统的图像编辑模型存在着交互性差和生成图像质量受限的问题,迫使我们探索更先进的方法以提高图像生成的质量和用户交互性。通过深度学习和语言大模型的结合,我们有望构建一个创新的交互式图像编辑系统,为图像编辑领域带来新的可能性。

2. 研究的基本内容和拟解决的主要问题

内容一: 熟悉图像编辑技术和生成模型的相关知识

在这一部分,基本内容是深入了解图像生成领域的相关知识,包括图像编辑技术、生成模型的原理,以及语言大模型在图像编辑中的应用。这为后续交互式图像编辑系统的构建奠定了理论基础和技术背景。

内容二:分析传统图像编辑模型的限制和挑战

在这一部分,基本内容是深入研究传统图像编辑模型,识别其存在的问题,特别关注交互性和 生成图像质量的限制,为改进图像编辑技术提供方向。

内容三:设计和构建交互式图像编辑系统

在这一部分,基本内容是明确交互式图像编辑系统的设计目标和实现方式。通过考察的不同参数量的多种语言大模型,选择在性能和负载中取得平衡的大语言模型,然后设计系统的核心算法和交互界面。

内容四:评估系统性能并进行部署

在这一部分,基本内容是从多个纬度评估系统性能,包括生成图像的质量、交互系统对用户请

求的处理能力和用户体验。通过不断的改进和优化,确保系统能够满足需求,提高系统的可用性和 易用性。选择合适的方式部署系统,是系统能够提供服务。

3. 研究方法及措施

在解决上述问题的过程中,我们将采用以下研究方法和措施:

- (1) 深入调研与学习: 对深度学习和神经网络的基本原理进行学习,特别关注对抗生成模型和扩散模型等图像生成模型的详细了解。同时,调研语言大模型的最新发展。
- (2)总结与优化:分析当前图像编辑模型的创新之处和局限性,提出改进图像编辑模型的方法,以提高其性能。
- (3)语言大模型应用: 学习如何使用语言大模型,并探索其在图像编辑任务中的应用,为系统集成做好准备。
- (4) 系统构建与评估: 设计并实现一个交互式图像编辑系统,结合深度神经网络的图像生成模型和语言大模型,通过实验评估系统性能。
- 4. 研究工作的步骤与进度
- 第 1 阶段(2023.11.20 2024.12.03): 背景调研与开题准备

开始调研基于深度神经网络的图像生成模型,了解对抗生成模型(GANs)、扩散模型等的基本原理和应用领域。

准备开题报告,明确研究目标和方法。

第 2 阶段(2023.12.04 - 2023.12.17): 图像生成模型深入研究

深入研究复现的图像生成模型,理解其优点和限制,探索其在图像编辑任务中的潜在应用。

第 3 阶段(2023.12.18 - 2023.12.31):问题定义与解决思路

针对图像编辑任务,提出创新性的问题,明确解决思路。

第 4 阶段(2024.01.01 - 2024.01.14): 实验与性能评估

进行图像编辑模型的实验, 收集和分析实验结果, 识别性能瓶颈和问题。

学习语言大模型的使用方法, 为系统集成做准备。

第 5 阶段(2024.02.26 - 2024.03.10): 语言大模型与系统集成

结合语言大模型的研究,探讨如何将语言大模型与图像编辑模型相结合,构建交互式图像编辑系统。

第6阶段(2024.03.11-2024.03.24):实验与系统调优

进行实验,评估交互式图像编辑系统的性能,进行调整和改进。

第7阶段(2024.03.25-2024.04.07): 文献更新与中期报告准备

更新文献调研,将最新研究成果与自己的工作相结合,准备中期报告。

第8阶段(2024.04.08-2024.04.19): 论文撰写与最终总结

完善研究和论文撰写,确保项目完善,准备最终论文和答辩。

主要参考文献:

- [1] ACHIAM, Josh, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [2] FLORIDI, Luciano; CHIRIATTI, Massimo. GPT-3: Its nature, scope, limits, and consequences. Minds and Machines, 2020, 30: 681-694.
- [3] ROMBACH, Robin, et al. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022. p. 10684-10695.
- [4] HU, Edward J., et al. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.
- [5] ZHANG, Lvmin; RAO, Anyi; AGRAWALA, Maneesh. Adding conditional control to text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023. p. 3836-3847.
- [6] VAN HUYNH, Nguyen, et al. DeepFake: Deep dueling-based deception strategy to defeat reactive jammers. IEEE Transactions on Wireless Communications, 2021, 20.10: 6898-6914.

允许进入毕业设计(论)	文)下一阶段: 是 🗹 否 🗌	指导教师	* - 0
日期	2023年 12月 30日	签字	安佩佩

注: 可根据开题报告的长度加页