2

1

vertebrate and an invertebrate.

Claims

2	1.	A method for identifying a compound which is capable of inhibiting a
3	pathogen in a eu	karyotic organism said method comprising
4		(a) exposing theast two different eukaryotic organisms, at least one of
₂ 5	said organisms b	eing a non-rodent, to a single pathogen in the presence of at least one
$\binom{5}{6}$	candidate compo	ound; and
7		(b) identifying a compound that inhibits said pathogen in each of said
8	eukaryotic organ	isms.
1	2.	The method of claim 1, wherein said pathogen is a bacterium.
1	3.	The method of claim 2, wherein said bacterium is <i>Pseudomonas</i>
2	aeruginosa.	
1	4.	The method of claim 2, wherein said bacterium is Pseudomonas
2	aeruginosa UCE	BPP-PA14.
1	5.	The method of claim 1, wherein said eukaryotic organisms includes a
2	vertebrate and a	plant.
1	6	The method of claim 1, wherein said eukarvotic organism includes a

7. The method of claim 1, wherein said eukaryotic organism includes a plant

and an invertebrate.

17.

1

1

1		8.	The method of claim 5 or claim 6, wherein said vertebrate is a mammal.
1		9.	The method of claim 6 or claim 7, wherein said invertebrate is a nematode.
1 2	Caenorha	10. bditis.	The method of claim 9, wherein said nematode is a member of the genus
1		11.	The method of claim 5 or claim 7, wherein said plant is a member of the
2	genus Ara	bidopsi	s.
1		12.	The method of claim 1, wherein each of said eukaryotic organisms is a
2	plant.		
1		13.	The method of claim 1, wherein each of said eukaryotic organisms is a
2	vertebrate		
1		14.	The method of claim 1, wherein each of said eukaryotic organisms is an
2	invertebra	te.	
1		15.	The method of claim 14, wherein said invertebrate is an insect.
1		16.	The method of claim 15, wherein said insect is a lepidopteran.

The method of claim 16, wherein said lepidopteran is Galleria or Plutella.

1	18. The method of claim 14, wherein said insect is a dipteran.
1	19. The method of claim 19, wherein said dipteran is <i>Drosophila</i> .
1	20. The method of claim 1, wherein said method utilizes the nematode fast
2	killing assay.
1	21. The method of claim 20, wherein said nematode fast killing assay involve
2	the use of a C. elegans having a P-glycoprotein mutation.
1	22. A method for identifying a compound which is capable of inhibiting a
2	pathogen in a non-rodent eukaryotic host organism, comprising
_3	(a) exposing said a non-roderit eukaryotic host organism to a single pathogen in
/4	the presence of at least one candidate compound; and
5	(b) identifying a compound that inhibits the pathogen in said eukaryotic host
6	organism.
1	23. The method of claim 22, wherein said pathogen is a bacterium.
1	24. The method of claim 23, wherein said bacterium is <i>Pseudomonas</i>
2	aeruginosa UCBPP-PA14.
1	25. The method of claim 22, wherein said non-rodent eukaryotic host
2	organism is a nematode.
1	26. The method of claim 25, wherein said nematode is Caenorhabditis
2	elegans.
000	-70-

-	1	27. The method of claim 25, wherein said non-rodent eukaryotic organism is a
	2	plant.
outo	7	28. The method of claim 27, wherein said plant is <i>Arabidopsis</i> .
07/	1	29. The method of claim 22, wherein said method utilizes the nematode fast
	2	killing assay.
parau	1	30. The method of claim 29, wherein said nematode fast killing assay involves
o W	2	the use of a C. elegans having a P-glycoprotein mutation.
₫ M		
	1	31. A method for identifying a pathogenic virulence factor, comprising
	2	(a) identifying a pathogen which is capable of infecting at least two different
	3	eukaryotic organisms, at least one of said organisms being a non-rodent;
	4	(b) generating a mutant of said pathogen;
	5	(c) exposing each of said organisms to said mutated pathogen;
w Q	6	(d) determining whether said mutated pathogen is capable of causing disease in
real lines	7	each of said organisms, a reduction of disease in both of said organisms relative to that
	8	caused by said wild-type pathogen indicating a mutation in said pathogenic virulence factor;
	9	and
	10	(e) using said mutation as a marker for identifying said pathogenic virulence
	11	factor.
	1	32. A method for mutating a pathogenic virulence factor, comprising
	2	(a) identifying a pathogen which is capable of infecting at least two different
	3	eukaryotic organisms, at least one of said organisms being a non-rodent;

1

36.

1	(b) generating a mutant of said pathogen;
2	(c) exposing each of said organisms to said mutated pathogen; and
3	(d) determining whether said mutated pathogen is capable of causing disease in
4	each of said organisms, a reduction of disease in both of said organisms relative to that
5	caused by said wild-type pathogen indicating a mutation in said pathogenic virulence factor.
1	33. A method of reducing the virulence of a pathogen, comprising
2	(a) identifying a pathogen which is capable of infecting at least two different
3	eukaryotic organisms, at least one of said organisms being a non-rodent;
4	(b) generating a mutant of said pathogen;
5	(c) exposing each of said organisms to said mutated pathogen; and
6	(d) determining whether said mutated pathogen is capable of causing disease in
7	each of said organisms, a reduction of disease in both of said organisms relative to that
8	caused by said wild-type pathogen indicating a reduction in said pathogen virulence.
1	34. A method for identifying a pathogenic virulence factor, comprising
2	(a) selecting a pathogen which is capable of infecting an insect;
3	(b) generating a mutant of said pathogen;
4	(c) exposing said insect to said mutated pathogen; and
5	(d) determining whether said mutated pathogen is capable of causing
6	disease on said insect, a reduction of disease on said insect relative to that caused by said
7	wild-type pathogen indicating a mutation in said pathogenic virulence factor.
,	who-type pathogen moreating a mutation in said pathogenic virulence factor.
1	35. The method of claim 34, wherein identification of said mutation is used as a
2	marker for identifying said pathogenic virulence factor.

The method of claim 34, wherein said insect is a moth or a fly.

1		37.	The method of claim 34, wherein said pathogen is a bacterium.
1		38.	The method of claim 37, wherein said bacterium is a member of the genus
2	Pseudomo	nas.	
1		39.	The method of claim 34, wherein said pathogen is a fungus.
1		40.	The method of claim 39, wherein said fungus is a member of the genus
2	Fusarium.		
1		41.	The method of claim 34, further comprising calculating an LD ₅₀ of a
2	pathogen.		
1		42.	The method of claim 34, further comprising testing said mutated pathoger
2	in a mouse	mort	ality assay.
1		43.	The method of claim 36, wherein said moth is Galleria mellonella.
1		44.	The method of claim 36, wherein said moth is <i>Plutella xylostella</i> .
1		45.	The method of claim 36, wherein said fly is <i>Drosophila melanogaster</i> .