بسم الله الرحمن الرحيم

المقرر: مقدمة في بحوث العمليات (١٠٠ بحث) الفصل الدراسي ١٣٨/١٤٣٨ هـ الاختبار النهائي

الرقم الجامعي:	اسم الطالب:
الدرجة:	أستاذ المقرر:

أكتب اختيارك لرمز الإجابة الصحيحة لكل سؤال في الجدول التالي:

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1
C	A	В	D	C	A	D	C	A	D	В	C	D	A	C

30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
A	C	A	В	C	A	D	В	A	D	C	В	D	A	В

40	39	38	37	36	35	34	33	32	31
A	C	C	В	A	C	A	A	В	В

السؤال الأول:

					Supply الإمداد	لدينا جدول النقل التالي:
	1	2	1	2	40	
	2	3	4	1	45	
	3	2	2	5	35	
Demand الطلب	30	35	25	30	I	

1. الحل الأساسي الممكن المبدئي باستخدام طريقة الركن الشمالي الغربي هو:

	B 1 30 2		1 5 4 15	2	الإمداد 40 45		A 1 30 2	10 3 20	1 20	2 1 5	الإمداد 40 45
الطلب	30	35	2 5 25	30 5 30	35	الطلب	30	5 35	2 5 25	5 25 30	35
	_ D _				الإمداد		<u>C</u>				الإمداد
	25 1	15 2	1	2	40		30	10 2	_ 1	2	40
	5 <u>2</u>	20	20	1	45		2	2 5	20	1	45
	3	2	5 2	30	35		3	2	5	30 5	35
الطلب	30	35	25	30	!	الطلب	30	35	25	30	

السؤال الثاني: في جدول النقل التالي (تصغير دالة الهدف)، لدينا الحل الأساسي الممكن المعطى كما يلي:

$v_1 = v_2 = v_3 = v_4 =$	الإمداد
$u_1 = 0$ $\begin{bmatrix} 5 \\ 20 \end{bmatrix}$ $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	50
11 0 20 1 1 1 1 1 1 1 1 1	30
3 3 2 3	3
$u_2 = $ 10 30	40
3 1 3 4	1 20
$u_3 = \begin{bmatrix} 5 \end{bmatrix}$ 25	30
35 30 30 25	

2. أحد القيود الخطية للبرنامج الخطى لمسألة النقل هذه هو:

$$\mathbf{D} \quad x_{11} + x_{12} + x_{13} + x_{14} \ge 50 \qquad \mathbf{C} \quad x_{11} + x_{22} + x_{33} + x_{44} = 50 \qquad \mathbf{B} \quad x_{11} + x_{21} + x_{31} = 50 \qquad \mathbf{A} \quad x_{11} + x_{12} + x_{13} + x_{14} = 50$$

3. أحد القيود الخطية للبرنامج الخطي لمسألة النقل هذه هو:

4. تكلفة الحل الأساسى الممكن الحالى هى:

5. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم u_1, u_2, u_3 هي:

$$\mathbf{D} \begin{bmatrix} (u_1, u_2, u_3) = \\ (0, -2, -2) \end{bmatrix} \quad \mathbf{C} \begin{bmatrix} (u_1, u_2, u_3) = \\ (0, -1, -2) \end{bmatrix} \quad \mathbf{B} \begin{bmatrix} (u_1, u_2, u_3) = \\ (0, 1, -2) \end{bmatrix} \quad \mathbf{A} \begin{bmatrix} (u_1, u_2, u_3) = \\ (0, 1, 2) \end{bmatrix}$$

6. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم v_1, v_2, v_3, v_4 هي:

$$\begin{array}{c|c}
\mathbf{D} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 1, 6) & \mathbf{C} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 3, 1) & \mathbf{B} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 1, 4) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 4, 6) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 4, 6) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 4, 6) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 4, 6) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
(5, 2, 4, 6) & \mathbf{A} & (v_1, v_2, v_3, v_4) = \\
\mathbf{A} & (v_1, v_2, v_3, v_4)$$

7. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم δ_{ii} هي:

8. بعد اختبار الأمثلية ومعرفة حلقة التحوير وإجراء التحوير، فإن الحل الأساسى الممكن الجديد هو:

	(D)					(C)			((B)			(A)		
20	30]	5	20		25	35	15				25		25
10		30				10	30			15	25		5	5	30	
5			25		30						5	25	30			

السؤال الثالث: في جدول النقل التالي (تصغير دالة الهدف)، لدينا الحل الأساسي الممكن المعطى كما يلي:

	v_1	=	v_2	=	v_3	=	v_4	=	الإمداد
·· - 0		1		2		1		2	40
$u_1 = 0$	30				10				40
		2		3		4		1	4 5
$u_2 =$,	15			,	30		45
· _		3		2		2		5	25
$u_3 =$,	20		15	,			35
الطلب	3	0	35	5	25	,	3()	

9. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم u_1, u_2, u_3 هي:

$$\begin{array}{c|c}
\mathbf{D} & (u_1, u_2, u_3) = \\
 & (0, 2, 1)
\end{array}$$

$$\mathbf{C} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 2, -1) \end{array}$$

$$\mathbf{A} \qquad \begin{array}{c} (u_1, u_2, u_3) = \\ (0, 2, 3) \end{array}$$

10. عند اختبار أمثلية الحل الأساسي الممكن الحالي، ستكون قيم ٧٤, ٧٤, ٧٤ هي:

$$\mathbf{D} \left| \begin{array}{c} (v_1, v_2, v_3, v_4) = \\ (1, 2, 1, 2) \end{array} \right|$$

$$\mathbf{C} \begin{array}{|c|c|} \hline (v_1, v_2, v_3, v_4) = \\ \hline (1, 1, 1, 1) \end{array}$$

$$\mathbf{B} \begin{array}{|c|} \hline (v_1, v_2, v_3, v_4) = \\ \hline (-1, 2, 2, 2) \end{array}$$

(A)

11. عند اختبار أمثلية الحل الأساسى الممكن الحالى، ستكون قيم δ_{ii} هي:

	-1		-3
-1		-1	
-1			-5

12. بعد معرفة حلقة التحوير وإجراء التحوير، فإن الحل الأساسى الممكن الجديد هو:

(D)											
15		25									
15			30								
	35 0										

	(B)									
30	10									
	15		30							
	10	25								

	(A)	
30			10
	25		20
	10	25	

13. قيمة دالة الهدف عند الحل الأساسي الممكن الجديد هي:

D	175	\mathbf{C}	120	В	170	A	180	
---	-----	--------------	-----	---	-----	---	-----	--

14. الحل الأساسي الممكن الجديد يعتبر حل:

السؤال الرابع:

لدينا الجدول التالي في إحدى مراحل حل مسألة التخصيص (تمت تغطية الخلايا الصفرية بأقل عدد من الخطوط):

()	()	25	20	1	5	
Į	,	_()	0	-5	1	5	_
[5	()	10	15	1	0	
()	2	0	10	15	3	5	
()	2	0	5	10	()	

15. سنكمل الحل ونحصل على الجدول التالي:

(D)

		(2)		
0	0	20	15	15
10	0	0	5	20
5	0	5	10	10
0	20	5	10	35
0	20	0	5	0

(C)

0	0	20	15	15
10	5	0	5	20
5	0	5	10	10
0	20	5	10	35
0	20	0	5	0
5	0 20	5	10 10	10 35

(B)

0	0	20	15	15
0	0	0	5	10
5	0	5	10	10
0	20	5	10	35
0	20	0	5	0

(A)

0	0	20	15	15
5	0	0	5	15
5	0	5	10	10
0	20	5	10	35
0	20	0	5	0

16. في الجدول الذي اخترته في الفقرة السابقة، أقل عدد من الخطوط لتغطية القيم الصفرية هو:

D 3	
------------	--

C 5	
------------	--

В	4
---	---

A	2
1.	_

17. وبالتالي فإنه:

نتوقف، لا يوجد حل للمسألة

В	نتوقف، لدينا حل أمثل
D	وحيد

	لا نتوقف، نكمل
A	الخوارزمية

السوال الخامس:

لدينا مسألة التخصيص التالية لخمسة موظفين إلى خمس مهام ، بعد حل المسألة سنصل إلى الجدول النهائي الأمثل التالي:

الجدول النهائي بعد الوصول للحل الأمثل

	المهمة- 1	المهمة-2	المهمة-3	المهمة-4	المهمة-5
الموظف-1	0	15	0	5	15
الموظف-2	15	5	0	0	10
الموظف-3	0	5	15	0	20
الموظف-4	15	0	0	10	25
الموظف-5	20	15	5	0	0

مسألة التخصيص

	المهمة-1	المهمة-2	المهمة-3	المهمة-4	المهمة-5
الموظف-1	10	30	15	20	25
الموظف-2	30	25	20	20	25
الموظف-3	10	20	30	15	30
الموظف-4	30	20	20	30	40
الموظف-5	40	40	30	25	20

18. سيتم تخصيص الموظف الرابع لأداء

المهمة الثانية	
----------------	--

C	المهمة الرابعة
---	----------------

В	المهمة الثالثة
---	----------------

المهمة الخامسة	
----------------	--

لأداء	الخامس	المه ظف	سيتم تخصيص	10
71=0				.17

20. تكلفة التخصيص الأمثل تساوى

D 80 **C** 85 **B** 90 **A** 75

السؤال السادس:

لدينا الجدول التالي لتخصيص أربعة موظفين إلى أربع مهام:

	المهمة-1	المهمة-2	المهمة-3	المهمة-4
الموظف-1	15	10	14	11
الموظف-2	12	9	8	13
الموظف-3	14	11	15	11
الموظف-4	13	17	9	12

21. أحد القيود الخطية للبرنامج الخطي لمسألة التخصيص هذه هو:

$$\mathbf{A} \quad x_{11} + x_{22} + x_{33} + x_{44} = 1$$

22. أحد القيود الخطية للبرنامج الخطي لمسألة التخصيص هذه هو:

23. بعد حل المسألة وإيجاد الحل الأمثل، سيتم تخصيص الموظف الأول لأداء

المهمة الأولى A المهمة الثانية B المهمة الثانية

24. بعد حل المسألة وإيجاد الحل الأمثل ، سيتم تخصيص الموظف الثالث لأداء

المهمة الأولى A المهمة الثانية B المهمة الثانية ما المهمة الثانية المهمة الرابعة

25. تكلفة التخصيص الأمثل تساوي:

D 43 **C** 40 **B** 38 **A** 42

السؤال السابع:

في إحدى مسائل اتخاذ القرار الأمثل، لدينا جدول الأرباح التالي:

	حالات الطبيعة					
البدائل	S_1	S_2	S_3	S_4		
A_1	11	11	12	13		
A_2	12	12	10	14		
A_3	15	6	13	-2		

26. يعتبر هذا القرار من نوع:

ليس

القرار الأمثل وفقا لمعيار:

27. لابلاس:

28. التشاؤم:

29. التفاؤل:

C

$$A_3$$
 B
 A_2
 A
 A_1
 : 27

 C
 A_3
 B
 A_2
 A
 A_1
 : 28

 C
 A_3
 B
 A_2
 A
 A_1
 : α
 : α

$$P(S_1) = 0.25$$
 , $P(S_2) = 0.25$, $P(S_3) = 0.4$, $P(S_4) = 0.1$: الآن افترض أن

32. عندئذ يعتبر هذا القرار من نوع:

القرار الأمثل وفقا لمعيار:

C

$$A_3$$
 B
 A_2
 A
 A_1
 : 33

 C
 A_3
 B
 A_2
 A
 A_1
 : 34

 C
 A_3
 B
 A_2
 A
 A_1
 : 35

 C
 A_3
 B
 A_2
 A
 A_1
 : 35

السوال الثامن:

في إحدى مسائل اتخاذ القرار الأمثل، لدينا جدول التكاليف التالي:

	حالات الطبيعة			
البدائل	S_1	S_2	S_3	S_4
A_1	14	15	13	15
A_2	10	13	14	18
A_3	12	11	13	16

القرار الأمثل وفقا لمعيار:

C

$$A_3$$
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .36

 C
 A_3
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .37

 C
 A_3
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .38

 C
 A_3
 B
 A_2
 A
 A_1
 : $\propto = 0.8$
 .38

$$P(S_1)=0.1$$
 , $P(S_2)=0.1$, $P(S_3)=0.4$, $P(S_4)=0.4$: القرار الأمثل وفقا لمعيار: