ゼミ用ノート 会田先生の資料"Rough path analysis:An Introduction"

基礎工学研究科システム創成専攻 学籍番号 29C17095 百合川尚学

2018年5月9日

目次

0.1	導入	1
0.2	連続性定理	5
0.3	Young 積分	19
0.4	The notion of rough path	20
.1	notation	22
.2	テンソル積	22
.3	テンソル積の内積	30
.4	クロスノルム	30

0.1 導入

以下,d次元ベクトル $x \in \mathbb{R}^d$ と (m,d) 行列 $a \in \mathbb{R}^m \otimes \mathbb{R}^d$ について,成分を込めて表現する場合は $x = (x^1, \cdots, x^d)$, $a = (a^i_j)_{1 \leq i \leq m, 1 \leq j \leq d}$ と書く.また T > 0 を固定し $C^1 = C^1([0,T] \to \mathbb{R}^d)$ とおく. (端点においては片側微分を考える.) 区間 $[s,t] \subset [0,T]$ の分割を $D = \{s = t_0 < t_1 < \cdots < t_N = t\}$ で表現し,分割の全体を $\delta[s,t]$ とおく. $|D| \coloneqq \max_{1 \leq i \leq N} |t_i - t_{i-1}|$ とし,

$$\sum_{D} = \sum_{i=1}^{N}$$

と略記する.

定理 0.1.1 (Riemann-Stieltjes 積分). $[s,t] \subset [0,T]$ とし, $D \in \delta[s,t]$ についてのみ考えるとき,任意の $x \in C^1$, $f \in C(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して次の極限が存在する:*1

$$\lim_{|D|\to 0} \sum_{D} f(x_{s_{i-1}})(x_{t_i} - x_{t_{i-1}}) \in \mathbb{R}^m.$$

 s_{i-1} は区間 $[t_{i-1},t_i]$ に属する任意の点であり、極限は s_{i-1} の取り方に依らない.

証明. 各 x^j は C^1 -級であるから、平均値の定理より $\sum_D f(x_{s_{i-1}})(x_{t_i}-x_{t_{i-1}})$ の第k成分を

$$\sum_{i=1}^{d} \sum_{D} f_{j}^{k}(x_{s_{i-1}})(x_{t_{i}}^{j} - x_{t_{i-1}}^{j})$$

 $^{^{*1}}$ 極限の存在を保証する条件としては、f の有界性と微分可能性は必要ない.

$$= \sum_{i=1}^d \sum_D f_j^k(x_{s_{i-1}}) \dot{x}_{\xi_i}^j(t_i - t_{i-1}), \quad (^{\exists} \xi_i \in [t_{i-1}, t_i])$$

と表現できる. 各 j,k について

$$\lim_{|D| \to 0} \sum_{D} f_j^k(x_{s_{i-1}}) \dot{x}_{\xi_i}^j(t_i - t_{i-1})$$

は通常の連続関数の Riemann 積分

$$\int_{s}^{t} f_{j}^{k}(x_{u}) \dot{x}_{u}^{j} du$$

に収束する.

定義 0.1.2 $(C^1$ -級のパスに対する汎関数). $x \in C^1$ と $f \in C(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して, $[s,t] \subset [0,T]$ における Riemann-Stieltjes 積分を I で表現する:

$$I_{s,t}(x) = \int_{s}^{t} f(x_u) dx_u := \lim_{|D| \to 0} \sum_{D} f(x_{t_{i-1}})(x_{t_i} - x_{t_{i-1}}),$$

$$\left[\int_{s}^{t} f(x_u) dx_u \right]^{k} = \sum_{j=1}^{d} \int_{s}^{t} f_j^{k}(x_u) dx_u^{j}, \quad (k = 1, \dots, m).$$

ただし $D \in \delta[s,t]$ のみを考える.

 C^1 は次で定めるノルム $\|\cdot\|_{C^1}$ により Banach 空間となる:

$$||x||_{C^1} := \sup_{t \in [0,T]} |x(t)| + \sup_{t \in [0,T]} |\dot{x}(t)|.$$

定理 0.1.3 ($\|\cdot\|_{C^1}$ に関する連続性). $[s,t] \subset [0,T]$ とし, C^1 には $\|\cdot\|_{C^1}$ でノルム位相を入れる.このとき, $C^1 \ni x \longmapsto I_{s,t}(x) \in \mathbb{R}^m$ は連続である.

証明. C^1 の第一可算性により点列連続性と連続性は一致するから, $x^n \longrightarrow x$ のとき $I_{s,t}(x^n) \longrightarrow I_{s,t}(x)$ が従うことを示せばよい.

$$M := \sup_{u \in [s,t]} |f(x_u)| < \infty$$

を定めれば

$$\left| \int_{s}^{t} f(x_{u}^{n}) dx_{u}^{n} - \int_{s}^{t} f(x_{u}) dx_{u} \right| = \left| \int_{s}^{t} f(x_{u}^{n}) \dot{x}_{u}^{n} du - \int_{s}^{t} f(x_{u}) \dot{x}_{u} du \right|$$

$$\leq \int_{s}^{t} \left| f(x_{u}^{n}) \dot{x}_{u}^{n} - f(x_{u}^{n}) \dot{x}_{u} \right| du + \int_{s}^{t} \left| f(x_{u}^{n}) \dot{x}_{u} - f(x_{u}) \dot{x}_{u} \right| du$$

$$\leq M \| x^{n} - x \|_{C^{1}} (t - s) + \sup_{u \in [s,t]} \left| f(x_{u}^{n}) - f(x_{u}) \right| \| x \|_{C^{1}} (t - s)$$

$$(1)$$

が成り立つ. いま,任意に $\epsilon > 0$ を取れば,或る $\epsilon > \delta > 0$ が存在して $v,w \in x([s,t]), |v-w| < \delta$ なら $|f(v)-f(w)| < \epsilon$ を満たす(一様連続). すなわち $||x^{(n)}-x||_{C^1} < \delta$ なら

$$\sup_{t \in [s,t]} \left| f(x_t^n) - f(x_t) \right| < \epsilon$$

が成立する. $\|x^n-x\|_{C^1} \longrightarrow 0$ の仮定より,或る自然数 N が存在して $\|x^n-x\|_{C^1} < \delta (n>N)$ が満たされるから, $(1)<\epsilon[M(t-s)+\|x\|_{C^1}(t-s)]$ (n>N) が成り立ち $I_{s,t}(x^n) \longrightarrow I_{s,t}(x)$ が従う.

定義 0.1.4 (p-variation). $(V, \|\cdot\|)$ をノルム空間とし,[0, T] 上の V 値写像 x と $[s, t] \subset [0, T]$ に対して p-variation (p > 0) を次で定める:

$$||x||_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} ||x_{t_i} - x_{t_{i-1}}||^p \right\}^{1/p}.$$

特に、 $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と表記する. また $p\geq 1$ として、線型空間 $B_{p,T}(V)$ を

$$B_{p,T}(V) := \left\{ x : [0,T] \longrightarrow V ; \quad x_0 = 0, \ x : \text{continuous}, \|x\|_p < \infty \right\}$$

により定める.

次の結果によれば、 $0 に対し <math>B_{p,T}(V)$ を定めても零写像のみの空間でしかない.

定理 0.1.5~(0 に対して有界 <math>p-variation なら定数). $x:[0,T] \longrightarrow V$ を連続写像とする. このとき, $p \in (0,1)$ に対し $\|x\|_p < \infty$ が成り立つなら x は定数写像である.

証明. $t \in [0,T]$ を任意に取り固定する. このとき全ての $D \in \delta[0,t]$ に対して,

$$||x_{t} - x_{0}|| \leq \sum_{D} ||x_{t_{i}} - x_{t_{i-1}}|| \leq \max_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{1-p} \sum_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{p}$$

$$\leq \max_{D} ||x_{t_{i}} - x_{t_{i-1}}||^{1-p} ||x||_{p}$$

が成り立ち, x の一様連続性から右辺は $|D| \rightarrow 0$ で 0 に収束し, $x_t = x_0$ が従う.

定理 0.1.6 (p-variation o p に関する単調減少性). V をノルム空間とするとき, x: $[0,T] \longrightarrow V$ に対して $1 \le p \le q$ なら $||x||_p \ge ||x||_q$ が成立する. 特に $B_{p,T}(V) \subset B_{q,T}(V)$ が従う.

証明. $(\sum_i |a_i|^p)^{1/p} \leq \sum_i |a_i| (a_i \in \mathbb{R}, p \geq 1)$ により、任意の $x \in B_{p,T}(V)$ と $D \in \delta[0,T]$ に対し

$$\left[\sum_{D} \left(\left\| x_{t_{i}} - x_{t_{i-1}} \right\|^{p} \right)^{q/p} \right]^{p/q} \leq \sum_{D} \left\| x_{t_{i}} - x_{t_{i-1}} \right\|^{p}$$

が満たされ $||x||_q \le ||x||_p$ が成立する.

 $p \ge 1$ の場合, Minkowski の不等式によれば, 任意の $D \in \delta[s,t]$ に対し

$$\left\{ \sum_{D} \left\| (x_{t_{i}} + y_{t_{i}}) - (x_{t_{i-1}} + y_{t_{i-1}}) \right\|^{p} \right\}^{1/p} \leq \left\{ \sum_{D} \left\| x_{t_{i}} - x_{t_{i-1}} \right\|^{p} \right\}^{1/p} + \left\{ \sum_{D} \left\| y_{t_{i}} - y_{t_{i-1}} \right\|^{p} \right\}^{1/p} \\
\leq \left\| x \right\|_{p,[s,t]} + \left\| y \right\|_{p,[s,t]}$$

が成り立ち $\|x+y\|_{p,[s,t]} \le \|x\|_{p,[s,t]} + \|y\|_{p,[s,t]}$ を得る.

定理 0.1.7. V が Banach 空間のとき, $B_{p,T}(V)$ は $\|\cdot\|_p$ をノルムとする Banach 空間である.

証明. 完備性を示す.

第一段 $(x^n)_{n-1}^{\infty} \subset B_{p,T}(V)$ を Cauchy 列とすれば、任意の $\epsilon > 0$ に対して或る $n_{\epsilon} \in \mathbb{N}$ が存在し

$$\|x^{n}-x^{m}\|_{p} = \left\{ \sup_{D \in \delta[0,T]} \sum_{D} \left\| \left(x_{t_{i}}^{n}-x_{t_{i}}^{m}\right) - \left(x_{t_{i-1}}^{n}-x_{t_{i-1}}^{m}\right) \right\|^{p} \right\}^{1/p} < \epsilon, \quad (n, m > n_{\epsilon})$$

を満たす. いま, 任意の $t \in [0,T]$ に対して [0,T] の分割 $D = \{0 \le t \le T\}$ を考えれば

$$||x_t^n - x_t^m|| < \epsilon, \quad (n, m > n_\epsilon)$$

が得られ、V の完備性より或る $x_t \in \mathbb{R}^d$ が存在して

$$\|x_t^n - x_t\| < \epsilon \quad (n > n_{\epsilon})$$

を満たす.この収束はtに関して一様であるから, $t \mapsto x_t$ は0出発かつ連続である.

第二段 $\|x^n-x\|_p\longrightarrow 0\ (n\longrightarrow\infty)$ を示す. 前段によれば、任意の $D\in\delta[0,T]$ に対し

$$\sum_{D} \left\| (x_{t_{i}}^{m} - x_{t_{i}}^{n}) - (x_{t_{i-1}}^{m} - x_{t_{i-1}}^{n}) \right\|^{p} < \epsilon^{p}, \quad (n, m > n_{\epsilon})$$

が成り立っている. D はせいぜい有限個の分割であるから, $m \longrightarrow \infty$ として

$$\sum_{D} \left\| (x_{t_i} - x_{t_i}^n) - (x_{t_{i-1}} - x_{t_{i-1}}^n) \right\|^p < \epsilon^p, \quad (n > n_{\epsilon})$$

が従い、D の任意性より $||x^n - x||_p < \epsilon (n > n_\epsilon)$ を得る.

定理 0.1.8. $p \ge 1$ とする. また $x_0 = 0$ を満たす $x \in C^1$ の全体が作る線形空間を \tilde{C}^1 とおく.

- (1) $x \in C^1$ ならば $\|x\|_p < \infty$ が成り立つ. ただちに、 $\|\cdot\|_p$ は \tilde{C}^1 においてノルムとなる.
- (2) \tilde{C}^1 において、 $\|\cdot\|_{C^1}$ で導入する位相は $\|\cdot\|_p$ で導入する位相より強い.

証明.

p=1 の場合 平均値の定理より、任意の $D \in \delta[0,T]$ に対し

$$\sum_{D} \left| x_{t_i} - x_{t_{i-1}} \right| \le \sum_{D} \| x \|_{C^1} \left(t_i - t_{i-1} \right) = \| x \|_{C^1} T < \infty$$

が成り立ち $||x||_1 < \infty$ が従う.

p>1 の場合 q を p の共役指数とする. 任意の $D \in \delta[0,T]$ に対し、Hölder の不等式より

$$\sum_{D} |x_{t_{i}} - x_{t_{i-1}}|^{p} = \sum_{D} \left| \int_{t_{i-1}}^{t_{i}} \dot{x}_{u} \, du \right|^{p} \leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{t_{i-1}}^{t_{i}} |\dot{x}_{u}|^{q} \, du \right)^{p/q}$$

$$\leq \sum_{D} (t_{i} - t_{i-1}) \left(\int_{0}^{T} ||x||_{C^{1}}^{q} \, du \right)^{p/q} = ||x||_{C^{1}}^{p} T^{p}$$

が成立し、 $||x||_n < \infty$ が従う.

以上より、 $p \ge 1$ ならば $||x||_p \le T ||x||_{C^1}$ ($x \in C^1$) が成り立ち (2) の主張を得る.

次節の考察対象は主に定理 0.1.3 と定理 0.1.8 に関係する.定理 0.1.3 によれば, C^1 に $\|\cdot\|_{C^1}$ でノルム位相を導入した場合, $f \in C(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対して $C^1 \ni x \longmapsto I_{s,t}(x)$ は連続である.一方で定理 0.1.3 によれば,0 出発 C^1 -パス空間 \tilde{C}^1 に $\|\cdot\|_p$ でノルム位相を導入した場合, $\tilde{C}^1 \ni x \longmapsto I_{s,t}(x)$ が連続であるという保証はない.しかし,次節以後の結果により, $1 \le p < 3$ かつ $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ が満たされているなら $\tilde{C}^1 \ni x \longmapsto I_{s,t}(x)$ は或る意味での連続性を持つ.

0.2 連続性定理

定義 0.2.1 (記号の定義). $x \in C^1$, $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ に対し次を定める.

$$\Delta_{T} := \{ (s,t) ; \quad 0 \leq s \leq t \leq T \},$$

$$X^{1} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{1} = x_{t} - x_{s} \right),$$

$$X^{2} : \Delta_{T} \longrightarrow \mathbb{R}^{d} \otimes \mathbb{R}^{d} \left((s,t) \longmapsto X_{s,t}^{2} = \int_{s}^{t} (x_{u} - x_{s}) \otimes dx_{u} \right),$$

$$\tilde{I}_{s,t}(x) := f(x_{s})X_{s,t}^{1} = f(x_{s})(x_{t} - x_{s}),$$

$$I_{s,t}(x) := f(x_{s})X_{s,t}^{1} + (\nabla f)(x_{s})X_{s,t}^{2}.$$

以降, $a,b,c,d \in \mathbb{R}^d$ に対して次の表現を使う:

$$[a \otimes b]_{j}^{i} = a^{i}b^{j},$$

$$\left[(\nabla f)(x_{s})X_{s,t}^{2} \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s}) \int_{s}^{t} \left(x_{u}^{k} - x_{s}^{k} \right) dx_{u}^{j},$$

$$\left[(\nabla f)(x_{s})(a \otimes b) \right]^{i} = \sum_{j,k=1}^{d} \partial_{k} f_{j}^{i}(x_{s})a^{k}b^{j},$$

$$\left[(\nabla^{2}f)(x_{s})(a \otimes b \otimes c) \right]^{i} = \sum_{j,k,\nu=1}^{d} \partial_{\nu}\partial_{k} f_{j}^{i}(x_{s})a^{\nu}b^{k}c^{j},$$

$$\left[(\nabla^{3}f)(x_{s})(a \otimes b \otimes c \otimes d) \right]^{i} = \sum_{j,k,\nu=1}^{d} \partial_{\nu}\partial_{\nu}\partial_{k} f_{j}^{i}(x_{s})a^{\nu}b^{\nu}c^{k}d^{j}.$$

定理 0.2.2. $[s,t] \subset [0,T], \ x \in C^1, \ f \in C^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m))$ とする. $D \in \delta[s,t]$ に対し

$$\tilde{I}_{s,t}(x,D) \coloneqq \sum_{D} \tilde{I}_{t_{i-1},t_i}(x), \quad J_{s,t}(x,D) \coloneqq \sum_{D} J_{t_{i-1},t_i}(x)$$

を定めるとき,次が成立する:

$$I_{s,t}(x) = \lim_{|D| \to 0} \tilde{I}_{s,t}(x,D) = \lim_{|D| \to 0} J_{s,t}(x,D).$$

証明. 第一の等号は $I_{s,t}(x)$ の定義によるから,第二の等号を証明する.まず,

$$I_{s,t}(x) = \int_{s}^{t} f(x_{u}) dx_{u}$$

$$= \int_{s}^{t} f(x_{s}) + f(x_{u}) - f(x_{s}) dx_{u}$$

$$= \int_{s}^{t} f(x_{s}) dx_{u} + \int_{s}^{t} \int_{0}^{1} (\nabla f)(x_{s} + \theta(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes \dot{x}_{u}\right) d\theta du$$

$$= f(x_{s})X_{s,t}^{1} + (\nabla f)(x_{s})X_{s,t}^{2}$$

$$+ \int_{s}^{t} \int_{0}^{1} \{(\nabla f)(x_{s} + \theta(x_{u} - x_{s})) - (\nabla f)(x_{s})\} \left(X_{s,u}^{1} \otimes \dot{x}_{u}\right) d\theta du$$

$$= J_{s,t}(x) + \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u}\right) dr d\theta du$$

が成り立つ. $[0,T] \ni t \mapsto x_t$ の連続性より、最下段式中の $x_s + r(x_u - x_s)$ $(0 \le r \le 1, s \le u \le t)$ は或るコンパクト集合 K に含まれ、f が C^2 -級関数であるから

$$M := \sum_{i,j,k,\nu} \sup_{x \in K} \left| \partial_{\nu} \partial_{k} f_{j}^{i}(x) \right|$$

として *M* < ∞ を定めれば

$$\left| \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) dr d\theta du \right|$$

$$\leq \int_{s}^{t} \int_{0}^{1} \int_{0}^{\theta} \left| (\nabla^{2} f)(x_{s} + r(x_{u} - x_{s})) \left(X_{s,u}^{1} \otimes X_{s,u}^{1} \otimes \dot{x}_{u} \right) \right| dr d\theta du$$

$$\leq M \int_{s}^{t} |X_{s,u}^{1}|^{2} |\dot{x}_{u}| du$$

$$\leq M \|x\|_{C^{1}}^{3} \int_{s}^{t} (u - s)^{2} du$$

が出る. 特に $D \in \delta[s,t]$ に対して

$$\sum_{D} \int_{t_{i-1}}^{t_i} (u - t_{i-1})^2 du \le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - t_{i-1}) du$$

$$\le \sum_{D} |D| \int_{t_{i-1}}^{t_i} (u - s) du \le \frac{1}{2} (t - s)^2 |D| \longrightarrow 0 \quad (|D| \longrightarrow 0)$$

が成立するから,

$$\left|I_{s,t}(x)-J_{s,t}(x,D)\right|\leq \sum_{D}\left|I_{t_{i-1},t_{i}}(x)-J_{t_{i-1},t_{i}}(x)\right|\longrightarrow 0\quad (|D|\longrightarrow 0)$$

定義 0.2.3 (control function). 関数 $\omega:\Delta_T\longrightarrow [0,\infty)$ が連続かつ任意の $s\leq u\leq t$ に対して

$$\omega(s, u) + \omega(u, t) \le \omega(s, t) \tag{2}$$

を満たすとき, ω を control function と呼ぶ.

式 (2) から $\omega(t,t) = 0$ ($\forall t \in [0,T]$) が従う. つまり control function は対角線上で 0 になる.

定義 0.2.4 (ノルム空間値写像の p-variation). $(V,\|\cdot\|)$ をノルム空間, p>0 とする. このとき連続写像 $\psi:\Delta_T\longrightarrow V$ に対する p-variation を

$$\|\psi\|_{p,[s,t]} := \left\{ \sup_{D \in \delta[s,t]} \sum_{D} \|\psi_{t_{i-1},t_i}\|^p \right\}^{1/p}, \quad ((s,t) \subset [0,T])$$

で定める. 特に $\|\cdot\|_{p,[0,T]}$ を $\|\cdot\|_p$ と書く.

定理 0.2.5 (p-variation が定める control function). $(V,\|\cdot\|)$ をノルム空間, p>0 とする. $\|\psi\|_p<\infty$ かつ $\psi_{t,t}=0$ ($\forall t\in[0,T]$) を満たす連続写像 $\psi:\Delta_T\longrightarrow V$ に対して,

$$\omega: \Delta_T \ni (s,t) \longmapsto \|\psi\|_{p,[s,t]}^p$$

により定める ω は control function である.

証明. $\|\psi\|_p < \infty$ の仮定より ω は $[0,\infty)$ 値であるから,以下では式 (2) と連続性を示す.

第一段 ω が式 (2) を満たすことを示す. 実際,任意に $D_1 \in \delta[s,u], D_2 \in \delta[u,t]$ を取れば

$$\sum_{D_1} \left\| \psi_{t_{i-1},t_i} \right\|^p + \sum_{D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p = \sum_{D_1 \cup D_2} \left\| \psi_{t_{i-1},t_i} \right\|^p \le \left\| \psi \right\|_{p:[s,t]}^p$$

が成り立つ。左辺の D_1,D_2 の取り方は独立であるから、それぞれに対し上限を取れば

$$\left\|\psi\right\|_{p:[s,u]}^p + \left\|\psi\right\|_{p:[u,t]}^p \leq \left\|\psi\right\|_{p:[s,t]}^p$$

が従う.

第二段 任意の $[s,t] \subset [0,T]$ について *2 ,

$$\lim_{h \to +0} \omega(s, t+h) = \inf_{h > 0} \omega(s, t+h), \qquad \lim_{h \to +0} \omega(s-h, t) = \inf_{h > 0} \omega(s-h, t),$$

$$\lim_{h \to +0} \omega(s, t-h) = \sup_{h > 0} \omega(s, t-h), \qquad \lim_{h \to +0} \omega(s+h, t) = \sup_{h > 0} \omega(s+h, t)$$

が成立する. 実際 $\omega(s,t+h)$ について見れば、これは下に有界かつ $h\to +0$ に対し単調減少であるから極限が確定し下限に一致する. 残りの三つも同様の理由で成立する.

^{*2} 下段の二式については s < t と仮定する. また上段についても, t = T 或は s = 0 の場合を除く必要がある.

第三段 任意の $s \in [0,T)$ に対し、 $(s,T] \ni t \mapsto \omega(s,t)$ の左連続性を示す.ここでは

$$\tilde{\omega}(s,t) := \begin{cases} \lim_{h \to +0} \omega(s,t-h), & (s < t), \\ 0, & (s = t), \end{cases} \quad (\forall (s,t) \in \Delta_T)$$

で定める \tilde{a} が優加法性を持ち、かつ

$$\|\psi_{s,t}\|^p \le \tilde{\omega}(s,t), \quad (\forall (s,t) \in \Delta_T)$$

を満たすことを示す. 実際これが示されれば, 任意の $D \in \delta[s,t]$ に対し

$$\sum_{D} \left\| \psi_{t_{i-1},t_i} \right\|^p \leq \sum_{D} \tilde{\omega}(t_{i-1},t_i) \leq \tilde{\omega}(s,t)$$

が成立し $\omega(s,t) \leq \tilde{\omega}(s,t)$ が従い、 $\omega(s,t) \geq \omega(s,t-h)$ ($\forall h > 0$) と併せて

$$\omega(s,t) = \tilde{\omega}(s,t) = \lim_{h \to +0} \omega(s,t-h)$$

を得る. いま, 任意に s < u < t を取れば, 十分小さい $h_1, h_2 > 0$ に対して

$$\omega(s, u - h_1) + \omega(u, t - h_2) \le \omega(s, t - h_2)$$

が満たされ, $h_1 \longrightarrow +0$, $h_2 \longrightarrow +0$ として

$$\tilde{\omega}(s, u) + \tilde{\omega}(u, t) \leq \tilde{\omega}(s, t)$$

が成り立つから $\tilde{\omega}$ は優加法性を持つ. また, もし或る $(u,v) \in \Delta_T$ に対して

$$\|\psi_{u,v}\|^p > \tilde{\omega}(u,v)$$

が成り立つと仮定すると (u = v なら両辺 0 になるから u < v である)

$$\|\psi_{u,v}\|^p > \tilde{\omega}(u,v) \ge \omega(u,v-h) \ge \|\psi_{u,v-h}\|^p$$
, $(\forall h > 0)$

となる. 一方 ψ の連続性より $\|\psi_{u,v-h}\|^p \longrightarrow \|\psi_{u,v}\|^p$ $(h \longrightarrow +0)$ が従い矛盾が生じる. 同様にして、任意の $t \in (0,T]$ に対し $[0,t) \ni s \longmapsto \omega(s,t)$ の右連続性も出る.

第四段 任意の $t \in [0,T)$ に対して次を示す:

$$\lim_{h\to+0}\omega(t,t+h)=\inf_{h>0}\omega(t,t+h)=0.$$

第一の等号は前段より従うから、第二の等号を背理法により証明する. いま

$$\inf_{h>0}\omega(t,t+h)=:\delta>0$$

と仮定すれば、 ψ の連続性より或る h_1 が存在して

$$\|\psi_{t,t+h}\|^p = \|\psi_{t,t+h} - \psi_{t,t}\|^p < \frac{\delta}{8}, \quad (\forall h < h_1)$$
 (3)

が成立する. ここで任意に $h_0 < h_1$ を取り固定する. 一方で $\omega(t, t + h_0) \ge \delta$ より

$$\sum_{i=1}^{N} \left\| \psi_{\tau_{i-1},\tau_i} \right\|^p > \frac{7\delta}{8}$$

を満たす $D = \{t = \tau_0 < \tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ が存在し、(3) と併せて

$$\sum_{i=2}^{N} \|\psi_{\tau_{i-1},\tau_{i}}\|^{p} > \frac{7\delta}{8} - \|\psi_{t,\tau_{1}}\|^{p} > \frac{7\delta}{8} - \frac{\delta}{8} = \frac{3\delta}{4}$$

を得る. また, $\omega(t,\tau_1) \ge \delta$ より或る $D' \in \delta[t,\tau_1]$ が存在して

$$\sum_{D'} \left\| \psi_{t_{i-1},t_i} \right\|^p > \frac{3\delta}{4}$$

を満たすから、 $D' \cup \{\tau_1 < \cdots, \tau_N = t + h_0\} \in \delta[t, t + h_0]$ に対して

$$\omega(t, t + h_0) > \sum_{D'} \|\psi_{t_{i-1}, t_i}\|^p + \sum_{i=2}^N \|\psi_{\tau_{i-1}, \tau_i}\|^p > \frac{3\delta}{2}$$

が従うが、 $h_0 < h_1$ の任意性と単調減少性により

$$\delta = \inf_{h>0} \omega(t, t+h) = \inf_{h_1 > h > 0} \omega(t, t+h) \ge \frac{3\delta}{2}$$

となり矛盾が生じる. 同様にして

$$\lim_{h \to +0} \omega(t - h, t) = 0, \quad (\forall t \in (0, T])$$

も成立する.

第五段 任意に $s \in [0,T)$ を取り固定し、 $[s,T) \ni t \mapsto \omega(s,t)$ が右連続であることを示す.

$$\lim_{h \to +0} \omega(s, t+h) \le \omega(s, t) \tag{4}$$

を示せば、第二段より逆向きの不等号も従い右連続性を得る。任意に $h,\epsilon>0$ を取れば、

$$\omega(s, t+h) - \epsilon \le \sum_{p} \|\psi_{t_{i-1}, t_i}\|^p$$

を満たす $D \in \delta[s, t+h]$ が存在し,

$$D_1 := \{t_0 < \dots < t_k\} = [s, t] \cap D, \quad D_2 := D \setminus (D_1 \cup \{t_{k+1}\})$$

とおくと

$$\omega(s, t + h) - \epsilon \leq \sum_{i=1}^{k} \|\psi_{t_{i-1}, t_i}\|^p + \|\psi_{t_k, t_{k+1}}\|^p + \sum_{D_2} \|\psi_{t_{i-1}, t_i}\|^p$$

$$= \sum_{i=1}^{k} \|\psi_{t_{i-1}, t_i}\|^p + \|\psi_{t_k, t}\|^p + \|\psi_{t_k, t_{k+1}}\|^p - \|\psi_{t_k, t}\|^p + \sum_{D_2} \|\psi_{t_{i-1}, t_i}\|^p$$

$$\leq \omega(s, t) + \omega(t, t + h) + \|\psi_{t_k, t_{k+1}}\|^p - \|\psi_{t_k, t}\|^p$$

が成り立つ. ψ の一様連続性より $\|\psi_{t_k,t_{k+1}}\|^p \longrightarrow \|\psi_{t_k,t}\|^p$ $(h \longrightarrow +0)$ が成り立つから

$$\lim_{h \to +0} \omega(s, t+h) - \epsilon \le \omega(s, t), \quad (\forall \epsilon > 0)$$

が従い (4) が出る.同様に (0,t] $\ni s \mapsto \omega(s,t)$ $(\forall t \in (0,T])$ の左連続性も成立する. 第六段 ω の $(s,t) \in \Delta_T$ における連続性を示す. $h,k \geq 0$ とする.

(A) (s,t) を基準に第一象限の点について

$$\begin{aligned} |\omega(s,t) - \omega(s+h,t+k)| \\ &\leq |\omega(s,t) - \omega(s+h,t)| + |\omega(s+h,t) - \omega(s+h,t+k)| \\ &= |\omega(s,t) - \omega(s+h,t)| + \omega(s+h,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s+h,t)| + \omega(s,t+k) - \omega(s+h,t) \\ &\leq |\omega(s,t) - \omega(s+h,t)| + |\omega(s,t+k) - \omega(s,t)| + |\omega(s,t) - \omega(s+h,t)| \end{aligned}$$

が成り立つ. 前段までに示した左右の連続性より,近づけ方に依らず $h,k \longrightarrow +0$ とすれば、左辺をいくらでも 0 に近づけることができる.

(B) (s,t) を基準に第三象限の点について

$$\begin{aligned} |\omega(s,t) - \omega(s-h,t-k)| \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s-h,t-k)| \\ &= |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s-h,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + \omega(s-h,t) - \omega(s,t-k) \\ &\leq |\omega(s,t) - \omega(s-h,t)| + |\omega(s-h,t) - \omega(s,t)| + |\omega(s,t) - \omega(s,t-k)|, \end{aligned}$$

が成り立つ. (A) と同じく $h,k \longrightarrow +0$ として左辺は 0 に収束する.

(C) $((h_n,k_n))_{n=1}^{\infty}$ を第一象限から (0,0) に近づく任意の点列とするとき,

$$\lim_{n\to\infty}\omega(s-h_n,t+k_n)=\omega(s,t),\quad \lim_{n\to\infty}\omega(s+h_n,t-k_n)=\omega(s,t)$$

が成り立つことを示す. これが示されれば

$$\lim_{h,k\to+0}\omega(s-h,t+k)=\omega(s,t),\quad \lim_{h,k\to+0}\omega(s+h,t-k)=\omega(s,t)$$

が従い、(A)(B) と併せて ω の連続性が出る. 背理法で証明する. いま,

$$\alpha := \lim_{n \to \infty} \omega(s - h_n, t + k_n) > \omega(s, t)$$

と仮定して $\epsilon \coloneqq \alpha - \omega(s,t)$ とおく. $\lim_{t' \downarrow t} \omega(s,t') = \omega(s,t)$ より

$$0 \le \omega(s, t') - \omega(s, t) < \frac{\epsilon}{3}$$

を満たす t' > t が存在し、また $\lim_{s'\uparrow s} \omega(s',t') = \omega(s,t')$ より

$$0 \le \omega(s', t') - \omega(s, t') < \frac{\epsilon}{3}$$

を満たす s' < s も存在する. このとき或る n で $s' \le s - h_n$, $t + k_n \le t'$ かつ

$$|\omega(s-h_n,t+k_n)-\alpha|<\frac{\epsilon}{3}$$

が成立し、特に $(s-h_n,t+k_n) \subset (s',t')$ より

$$\omega(s - h_n, t + k_n) \le \omega(s', t')$$

となるはずであるが,一方で

$$\omega(s',t') < \frac{2}{3}\epsilon + \omega(s,t) = \alpha - \frac{\epsilon}{3} < \omega(s-h_n,t+k_n)$$

が従い矛盾が生じる. よって

$$\lim_{n\to\infty}\omega(s-h_n,t+k_n)=\omega(s,t)$$

でなくてはならず、同様にして $\lim_{n\to\infty} \omega(s+h_n,t-k_n) = \omega(s,t)$ も得られる.

定理 0.2.6 (control function の例). 以下の関数 $\omega: \Delta_T \longrightarrow [0,\infty)$ は control function である.

(1)
$$\omega: (s,t) \longmapsto \|X^1\|_{p:[s,t]}^p, \quad (p \ge 1, x \in B_{p,T}(\mathbb{R}^d)).$$

(2) $\omega: (s,t) \longmapsto \|X^2\|_{p:[s,t]}^p, \quad (p \ge 1, x \in C^1).$

(2)
$$\omega: (s,t) \longmapsto \|X^2\|_{p:[s,t]}^p, \quad (p \ge 1, x \in C^1).$$

行列 $a=(a^i_j)$ のノルムは $|a|=\sqrt{\sum_{i,j}|a^i_j|^2}$ として考える.

定理 0.2.7.

- $\omega:(s,t) \longmapsto X^1_{s,t} = x_t x_s$ は連続であるから、前定理より ω は control function である.
- 任意の $[s,t]\subset [0,T]$ に対して $\left\|X^2\right\|_{p:[s,t]}^p<\infty$ を示せば、あとは上と同じ理由により定理の 主張が得られる. 実際, 任意の分割 $D = \{s = t_0 < \cdots < t_N = t\}$ に対し

$$\begin{aligned} \left\| X_{t_{i-1},t_{i}}^{2} \right\| & \leq \left| \int_{t_{i-1}}^{t_{i}} (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \, du \right| \\ & \leq \int_{t_{i-1}}^{t_{i}} \left| (x_{u} - x_{t_{i-1}}) \otimes \dot{x}_{u} \right| \, du \\ & \leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1-1/p} \\ & \leq \left\| x \right\|_{C^{1}}^{2} \left\{ \int_{t_{i-1}}^{t_{i}} (u - s) \, du \right\}^{1/p} \left\{ \int_{s}^{t} (u - s) \, du \right\}^{1-1/p} \end{aligned}$$

が成り立つから,

$$\sum_{D} \|X_{t_{i-1},t_i}^2\|^p \le \sum_{D} \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p-1} \int_{t_{i-1}}^{t_i} (u-s) \, du$$

$$= \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p-1} \int_{s}^{t} (u-s) \, du = \|x\|_{C^1}^{2p} \left\{ \frac{1}{2} (t-s)^2 \right\}^{p}$$

により $\|X^2\|_{p:[s,t]}^p < \infty$ が従う.

補題 0.2.8. ω を Δ_T 上の control function とする. $D = \{s = t_0 < t_1 < \dots < t_N = t\}$ について, $N \ge 2$ の場合或る $1 \le i \le N - 1$ が存在して次を満たす:

$$\omega(t_{i-1}, t_{i+1}) \le \frac{2\omega(s, t)}{N - 1}.\tag{5}$$

証明. (会田先生のテキスト.)

定理 $0.2.9~(1 \le p < 2$ の場合の連続性定理). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m)),~0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\|X^1\|_p$$
, $\|Y^1\|_p \le R$, $\|X^1 - Y^1\|_p \le \epsilon$

なら、或る定数 C = C(p,R,f) が存在し、任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 0.2.10 (p-variation による閉球上の Lipschitz 連続性). $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x,y \in C^1$ と $f \in C_b^2(\mathbb{R}^d,L(\mathbb{R}^d \to \mathbb{R}^m)), \ 0 < R < \infty$ を任意に取る.このとき,

$$\|X^1\|_p$$
, $\|Y^1\|_p \le R$

なら、或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C ||X^1 - Y^1||_p$$
.

証明 (系 0.2.10). 定理 0.2.9 において, $\epsilon = \left\| X^1 - Y^1 \right\|_p (x \neq y)^{*3}$ として証明が通る.

証明 (定理 0.2.9). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\omega(\alpha,\beta) = \left\| X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| Y^1 \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p} \left\| X^1 - Y^1 \right\|_{p,[\alpha,\beta]}^p, \quad ((\alpha,\beta) \in \Delta_T)$$

で定めれば、定理 0.2.6 により $1 \le p$ の下で ω は control function である.

第二段 任意に [s,t] の分割 $D=\{s=t_0<\cdots< t_N=t\}$ $(N\geq 2)$ を取れば、補題 0.2.8 より (5) を満たす $t_{(0)}$ が存在する.ここで、 $D_{-0}\coloneqq D,\ D_{-1}\coloneqq D\setminus\{t_{(0)}\}$ と定める. $N\geq 3$ ならば D_{-1} についても (5) を満たす $t_{(1)}$ が存在するから, $D_{-2}\coloneqq D_{-1}\setminus\{t_{(1)}\}$ と定める.この操作を繰り返せば $t_{(k)},D_{-k}$ $(k=0,1,\cdots,N-1)$ が得られ,

$$\tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(y,D)
= \sum_{k=0}^{N-2} \left[\left\{ \tilde{I}_{s,t}(x,D_{-k}) - \tilde{I}_{s,t}(x,D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y,D_{-k}) - \tilde{I}_{s,t}(y,D_{-k-1}) \right\} \right]
+ \left\{ \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right\}$$
(6)

と表現できる.

第三段 式 (6) について、次を満たす定数 C_1 が存在することを示す:

$$|(6)| \le \epsilon C_1 \tag{7}$$

 $^{^{*3}}$ x=y なら $\|X^1-Y^1\|_p=0$ かつ $I_{s,t}(x)=I_{s,t}(y)$ が成り立つ.

見やすくするために $t_k = t_{(k)}$ と書き直せば,

$$\begin{split} & \left\{ \tilde{I}_{s,l}(x,D_{-k}) - \tilde{I}_{s,l}(x,D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,l}(y,D_{-k}) - \tilde{I}_{s,l}(y,D_{-k-1}) \right\} \\ & = \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} X_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & = \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} X_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & + \left\{ f(x_{l_k}) - f(x_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 - \left\{ f(y_{l_k}) - f(y_{l_{k-1}}) \right\} Y_{l_k,l_{k+1}}^1 \\ & = \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & - \int_0^1 (\nabla f) (y_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) Y_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) X_{l_{k-1},l_k}^1 \otimes \left(X_{l_k,l_{k+1}}^1 - Y_{l_k,l_{k+1}}^1 \right) d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 d\theta \\ & + \int_0^1 (\nabla f) (x_{l_{k-1}} + \theta(x_{l_k} - x_{l_{k-1}})) \left(X_{l_{k-1},l_k}^1 - Y_{l_{k-1},l_k}^1 \right) \otimes Y_{l_k,l_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1},l_k}) \otimes Y_{l_k,l_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1},l_k}) \otimes Y_{l_k,l_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1},l_k}) \otimes Y_{l_k,l_{k+1}}^1 dr d\theta^{*4} \\ & + \int_0^1 \int_0^1 (\nabla^2 f) (y_{l_{k-1}} + \theta(y_{l_k} - y_{l_{k-1},l_k}) \otimes Y_{l_{k$$

が成り立つ. 補題 0.2.8 より

$$\begin{aligned} \left| X_{t_{k-1},t_{k}}^{1} \right|, \left| Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} \right|, \left| Y_{t_{k},t_{k+1}}^{1} \right| \leq \omega(t_{k-1},t_{k+1})^{1/p} \leq \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p}, \\ \left| X_{t_{k-1},t_{k}}^{1} - Y_{t_{k-1},t_{k}}^{1} \right|, \left| X_{t_{k},t_{k+1}}^{1} - Y_{t_{k},t_{k+1}}^{1} \right| \leq \epsilon \omega(t_{k-1},t_{k+1})^{1/p} \leq \epsilon \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p} \end{aligned}$$

が満たされ,また

$$\left|X_{0,t_{k-1}}^{1}-Y_{0,t_{k-1}}^{1}\right| \leq \epsilon \omega(0,t_{k-1})^{1/p} \leq \epsilon \omega(0,T)^{1/p} \leq \epsilon \left(2R^{p}+1\right)^{1/p}$$

でもあるから、

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)| + \sum_{i,j,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\nu \partial_k f_j^i(x)|$$
(8)

 $x_0 = y_0$ の仮定より $x_{t_{k-1}} - y_{t_{k-1}} = X_{0,t_{k-1}}^1 - Y_{0,t_{k-1}}^1$ が成り立つ.

と定めて

$$\begin{split} & \left| \left\{ \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right\} - \left\{ \tilde{I}_{s,t}(y, D_{-k}) - \tilde{I}_{s,t}(y, D_{-k-1}) \right\} \right| \\ & \leq M \left| X_{t_{k-1}, t_k}^1 \right| \left| X_{t_k, t_{k+1}}^1 - Y_{t_k, t_{k+1}}^1 \right| \\ & + M \left| X_{t_{k-1}, t_k}^1 - Y_{t_{k-1}, t_k}^1 \right| \left| Y_{t_k, t_{k+1}}^1 \right| \\ & + M \left| X_{0, t_{k-1}}^1 - Y_{0, t_{k-1}}^1 \right| \left| Y_{t_{k-1}, t_k}^1 \right| \left| Y_{t_k, t_{k+1}}^1 \right| \\ & + M \left| X_{t_{k-1}, t_k}^1 - Y_{t_{k-1}, t_k}^1 \right| \left| Y_{t_{k-1}, t_k}^1 \right| \left| Y_{t_k, t_{k+1}}^1 \right| \\ & \leq \epsilon M \left[2 + 2 \left(2R^p + 1 \right)^{1/p} \right] \left(\frac{2\omega(s, t)}{N - k - 1} \right)^{2/p} \\ & \leq \epsilon M \left[2 + 2 \left(2R^p + 1 \right)^{1/p} \right] 2^{2/p} \left(2R^p + 1 \right)^{2/p} \left(\frac{1}{N - k - 1} \right)^{2/p} \end{split}$$

を得る.

$$C_1' := M \left[2 + 2 \left(2R^p + 1 \right)^{1/p} \right] 2^{2/p} \left(2R^p + 1 \right)^{2/p}$$

とおけば

$$|(6)| \le \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1} \right)^{2/p} < \epsilon C_1' \zeta \left(\frac{2}{p} \right)$$

が成立し,p<2 より $\zeta(2/p)<\infty$ であるから $C_1\coloneqq C_1'\zeta(2/p)$ とおいて (7) が従う. 第四段 $x_0=y_0$ の仮定により $x_s-y_s=X_{0,s}^1-Y_{0,s}^1$ が成り立ち

$$\begin{aligned} \left| \tilde{I}_{s,t}(x) - \tilde{I}_{s,t}(y) \right| &= \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f) (y_s + \theta(x_s - y_s)) \left[\left(X_{0,s}^1 - Y_{0,s}^1 \right) \otimes Y_{s,t}^1 \right] d\theta \right| \\ &\leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ &\leq M \epsilon \omega(s,t)^{1/p} + M \epsilon \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ &\leq \epsilon M \left[(2R^p + 1)^{1/p} + (2R^p + 1)^{2/p} \right] \end{aligned}$$

が従う.ここで $C_2 \coloneqq M\left[(2R^p+1)^{1/p}+(2R^p+1)^{2/p}\right]$ とおく. 第五段 第二段と第三段より,任意の $D\in\delta[s,t]$ に対し

$$\left|\tilde{I}_{s,t}(x,D)-\tilde{I}_{s,t}(y,D)\right|\leq \epsilon(C_1+C_2)$$

が成立し、定理 0.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

定理 0.2.11 $(2 \le p < 3$ の場合の連続性定理). $2 \le p < 3$ とし, $x_0 = y_0$ を満たす $x, y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m)), \ 0 < \epsilon, R < \infty$ を任意に取る.このとき,

$$\begin{split} & \left\| \left\| X^1 \right\|_p, \left\| \left| Y^1 \right\|_p, \left\| X^2 \right\|_{p/2}, \left\| \left| Y^2 \right\|_{p/2} \leq R < \infty, \\ & \left\| \left| X^1 - Y^1 \right\|_p, \left\| \left| X^2 - Y^2 \right| \right|_{p/2} \leq \epsilon \end{split}$$

なら、或る定数 C = C(p, R, f) が存在し、任意の $0 \le s \le t \le T$ に対して次が成立する:

$$\left|I_{s,t}(x)-I_{s,t}(y)\right|\leq \epsilon C.$$

系 0.2.12. $1 \le p < 2$ とし, $x_0 = y_0$ を満たす $x, y \in C^1$ と $f \in C_b^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$, $0 < R < \infty$ を任意に取る.このとき,

$$||X^1||_p$$
, $||Y^1||_p$, $||X^2||_{p/2}$, $||Y^2||_{p/2} \le R$

なら、或る定数 C = C(p, R, f) が存在して次を満たす:

$$|I_{0,T}(x) - I_{0,T}(y)| \le C(||X^1 - Y^1||_p + ||X^2 - Y^2||_{p/2}).$$

証明 (系 0.2.12). 定理 0.2.11 において, $\epsilon = \|X^1 - Y^1\|_p + \|X^2 - Y^2\|_{p/2}$ $(x \neq y)$ として証明が通る.

証明 (定理 0.2.12). $[s,t] \subset [0,T]$ とする.

第一段 $\omega: \Delta_T \longrightarrow [0, \infty)$ を

$$\begin{split} \omega(\alpha,\beta) &= \left\| \left\| X^1 \right\|_{p,[\alpha,\beta]}^p + \left\| \left| Y^1 \right| \right\|_{p,[\alpha,\beta]}^p + \left\| \left| X^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2} + \left\| \left| Y^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2} \\ &+ \epsilon^{-p} \left\| \left| X^1 - Y^1 \right| \right\|_{p,[\alpha,\beta]}^p + \epsilon^{-p/2} \left\| \left| X^2 - Y^2 \right| \right\|_{p/2,[\alpha,\beta]}^{p/2}, \quad ((\alpha,\beta) \in \Delta_T) \end{split}$$

で定めれば、定理 0.2.6 により $2 \le p$ の下で ω は control function である.

第二段 $D \in \delta[s,t]$ に対し、定理 0.2.9 の証明と同様にして $t_{(k)}, D_{-k}$ を構成すれば

$$J_{s,t}(x,D) - J_{s,t}(y,D)$$

$$= \sum_{k=0}^{N-2} \left[\left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right]$$

$$+ \left\{ J_{s,t}(x) - J_{s,t}(y) \right\}$$
(9)

と表現できる.

第三段 $J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1})$ を変形する. 以降 $t_k = t_{(k)}$ と書き直せば

$$\begin{split} J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \\ &= J_{t_{k-1},t_k}(x) + J_{t_k,t_{k+1}}(x) - J_{t_{k-1},t_{k+1}}(x) \\ &= f(x_{t_{k-1}})X^1_{t_{k-1},t_k} + f(x_{t_k})X^1_{t_k,t_{k+1}} - f(x_{t_{k-1}})X^1_{t_{k-1},t_{k+1}} \\ &+ (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_k} + (\nabla f)(x_{t_k})X^2_{t_k,t_{k+1}} - (\nabla f)(x_{t_{k-1}})X^2_{t_{k-1},t_{k+1}} \end{split}$$

$$= \{f(x_{t_k}) - f(x_{t_{k-1}})\} X_{t_k,t_{k+1}}^1 \\ + (\nabla f)(x_{t_{k-1}}) X_{t_{k-1},t_k}^2 + (\nabla f)(x_{t_k}) X_{t_k,t_{k+1}}^2 - (\nabla f)(x_{t_{k-1}}) X_{t_{k-1},t_{k+1}}^2 \\ = \int_0^1 \{(\nabla f)(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) - (\nabla f)(x_{t_{k-1}})\} X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 d\theta \\ + (\nabla f)(x_{t_{k-1}}) X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 \\ + (\nabla f)(x_{t_{k-1}}) X_{t_{k-1},t_k}^2 + (\nabla f)(x_{t_k}) X_{t_k,t_{k+1}}^2 - (\nabla f)(x_{t_{k-1}}) X_{t_{k-1},t_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta \\ + (\nabla f)(x_{t_k}) X_{t_k,t_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta \\ + \{(\nabla f)(x_{t_k}) - (\nabla f)(x_{t_{k-1}})\} X_{t_k,t_{k+1}}^2 \\ = \int_0^1 \int_0^\theta (\nabla f)(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 dr d\theta \\ + \int_0^1 (\nabla^2 f)(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes X_{t_k,t_{k+1}}^1 d\theta d\theta$$

を得る.

第四段 式 (9) について,次を満たす定数 C_1 が存在することを示す:

$$|(9)| \le \epsilon C_1. \tag{10}$$

実際,前段の結果より

$$\begin{split} &\{J_{s,t}(x,D_{-k})-J_{s,t}(x,D_{-k-1})\}-\{J_{s,t}(y,D_{-k})-J_{s,t}(y,D_{-k-1})\}\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k,t_{k+1}}}^{1}dr\,d\theta\\ &+\int_{0}^{1}(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes X_{t_{k,t_{k+1}}}^{1}d\theta\\ &-\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k,t_{k+1}}}^{1}dr\,d\theta\\ &-\int_{0}^{1}(\nabla^{2}f)(y_{t_{k-1}}+\theta(y_{t_{k}}-y_{t_{k-1}}))Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k,t_{k+1}}}^{1}d\theta\\ &=\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\,dr\,d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k},t_{k+1}}^{1}\,dr\,d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}\left\{(\nabla^{2}f)(x_{t_{k-1}}+r(x_{t_{k}}-x_{t_{k-1}}))-(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))\right\}\\ &X_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}\,dr\,d\theta\\ &+\int_{0}^{1}\int_{0}^{\theta}(\nabla^{2}f)(y_{t_{k-1}}+r(y_{t_{k}}-y_{t_{k-1}}))\left(X_{t_{k-1},t_{k}}^{1}-Y_{t_{k-1},t_{k}}^{1}\right)\otimes Y_{t_{k-1},t_{k}}^{1}\otimes Y_{t_{k},t_{k+1}}^{1}\,dr\,d\theta\\ &+\int_{0}^{1}\left(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))X_{t_{k-1},t_{k}}^{1}\otimes \left(X_{t_{k},t_{k+1}}^{2}-Y_{t_{k},t_{k+1}}^{1}\right)\,d\theta\\ &+\int_{0}^{1}\left\{(\nabla^{2}f)(x_{t_{k-1}}+\theta(x_{t_{k}}-x_{t_{k-1}}))-(\nabla^{2}f)(y_{t_{k-1}}+\theta(y_{t_{k}}-y_{t_{k-1}}))\right\} \end{aligned}$$

$$\begin{split} X_{t_{k-1},t_k}^1 \otimes Y_{t_k,t_{k+1}}^2 \, d\theta \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_k,t_{k+1}}^2 \, d\theta \\ = & \int_0^1 \int_0^\theta (\nabla^2 f) (x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes X_{t_{k-1},t_k}^1 \otimes \left(X_{t_k,t_{k+1}}^1 - Y_{t_k,t_{k+1}}^1 \right) \, dr \, d\theta \\ + & \int_0^1 \int_0^\theta (\nabla^2 f) (x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_k,t_{k+1}}^1 \, dr \, d\theta \\ + & \int_0^1 \int_0^\theta \int_0^1 (\nabla^3 f) (y_{t_{k-1}} + r(y_{t_k} - y_{t_{k-1}}) + u(x_{t_{k-1}} + r(x_{t_k} - x_{t_{k-1}}) - y_{t_{k-1}} - r(y_{t_k} - y_{t_{k-1}})) \right) \\ & \left\{ \left(X_{0,t_{k-1}}^1 - Y_{0,t_{k-1}}^1 \right) + r \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \right\} \otimes X_{t_{k-1},t_k}^1 \otimes Y_{t_{k-1},t_k}^1 \otimes Y_{t_k,t_{k+1}}^1 \, du \, dr \, d\theta \\ + & \int_0^1 \int_0^\theta (\nabla^2 f) (y_{t_{k-1}} + r(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_{k-1},t_k}^1 \otimes Y_{t_k,t_{k+1}}^1 \, dr \, d\theta \\ + & \int_0^1 (\nabla^2 f) (x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}})) X_{t_{k-1},t_k}^1 \otimes \left(X_{t_{k-1},t_k}^2 - Y_{t_k,t_{k+1}}^2 \right) \, d\theta \\ + & \int_0^1 (\nabla^3 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}}) + r(x_{t_{k-1}} + \theta(x_{t_k} - x_{t_{k-1}}) - y_{t_{k-1}} - \theta(y_{t_k} - y_{t_{k-1}})) \right) \\ & \left\{ \left(X_{0,t_{k-1}}^1 - Y_{0,t_{k-1}}^1 \right) + \theta \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes X_{t_{k-1},t_k}^1 \otimes Y_{t_k,t_{k+1}}^2 \, dr \, d\theta \right. \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_k,t_{k+1}}^1 \, dr \, d\theta \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_k,t_{k+1}}^1 \, dr \, d\theta \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_{k-1},t_k}^1 \, dr \, d\theta \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{t_{k-1},t_k}^1 \right) \otimes Y_{t_{k-1},t_k}^1 \, dr \, d\theta \\ + & \int_0^1 (\nabla^2 f) (y_{t_{k-1}} + \theta(y_{t_k} - y_{t_{k-1}})) \left(X_{t_{k-1},t_k}^1 - Y_{$$

が成り立つから,

$$M := \sum_{i,j} \sup_{x \in \mathbb{R}^d} |f_j^i(x)| + \sum_{i,j,k} \sup_{x \in \mathbb{R}^d} |\partial_k f_j^i(x)|$$

$$+ \sum_{i,i,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\nu \partial_k f_j^i(x)| + \sum_{i,i,k,\nu} \sup_{x \in \mathbb{R}^d} |\partial_\omega \partial_\nu \partial_k f_j^i(x)|$$

$$(11)$$

とおいて

$$\begin{split} \left| \left\{ J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right\} - \left\{ J_{s,t}(y,D_{-k}) - J_{s,t}(y,D_{-k-1}) \right\} \right| \\ &\leq M \left| X_{t_{k-1},t_k}^1 \right| \left| X_{t_{k-1}$$

と定めれば

$$|(9)| \leq \sum_{k=0}^{N-2} \epsilon C_1' \left(\frac{1}{N-k-1}\right)^{3/p} < \epsilon C_1' \zeta\left(\frac{3}{p}\right)$$

が成立し、p < 3 より $\zeta(3/p) < \infty$ であるから $C_1 := C_1'\zeta(3/p)$ とおいて (10) が出る. 第五段 $x_0 = y_0$ の仮定により

$$\begin{aligned} & \left| J_{s,t}(x) - J_{s,t}(y) \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq \left| f(x_s) X_{s,t}^1 - f(x_s) Y_{s,t}^1 \right| + \left| f(x_s) Y_{s,t}^1 - f(y_s) Y_{s,t}^1 \right| \\ & \quad + \left| (\nabla f)(x_s) X_{s,t}^2 - (\nabla f)(x_s) Y_{s,t}^2 \right| + \left| (\nabla f)(x_s) Y_{s,t}^2 - (\nabla f)(y_s) Y_{s,t}^2 \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + \left| \int_0^1 (\nabla f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^1 \, d\theta \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + \left| \int_0^1 (\nabla^2 f)(y_s + \theta(x_s - y_s))(x_s - y_s) \otimes Y_{s,t}^2 \, d\theta \right| \\ & \leq M \left| X_{s,t}^1 - Y_{s,t}^1 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^1 \right| \\ & \quad + M \left| X_{s,t}^2 - Y_{s,t}^2 \right| + M \left| X_{0,s}^1 - Y_{0,s}^1 \right| \left| Y_{s,t}^2 \right| \\ & \leq \epsilon M \omega(s,t)^{1/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{1/p} \\ & \quad + \epsilon M \omega(s,t)^{2/p} + \epsilon M \omega(0,s)^{1/p} \omega(s,t)^{2/p} \\ & \leq \epsilon M \left[\omega(0,T)^{1/p} + 2\omega(0,T)^{2/p} + \omega(0,T)^{3/p} \right] \\ & \leq \epsilon M \left[\left(2R^p + 2R^{p/2} + 2 \right)^{1/p} + 2\left(2R^p + 2R^{p/2} + 2 \right)^{2/p} + \left(2R^p + 2R^{p/2} + 2 \right)^{3/p} \right] \end{aligned}$$

が従う. ここで最下段の ϵ の係数を C_2 とおく.

第六段 以上より、任意の $D \in \delta[s,t]$ に対し

$$\left|J_{s,t}(x,D) - J_{s,t}(y,D)\right| \le \epsilon (C_1 + C_2)$$

が成り立ち、定理 0.2.2 により $|D| \longrightarrow 0$ として

$$\left|I_{s,t}(x) - I_{s,t}(y)\right| \le \epsilon (C_1 + C_2)$$

が出る.

系 0.2.13 (パスが 0 出発なら f の有界性は要らない). 定理 0.2.9 と定理 0.2.11 について, $x,y\in \tilde{C}^1$ ならば $f\in C^2(\mathbb{R}^d,L(\mathbb{R}^d\to\mathbb{R}^m))$ として主張が成り立つ.

証明. $x_0 = 0$ なら

$$\|X^1\|_p \le R \quad \Rightarrow \quad |x_t| \le R \quad (\forall t \in [0, T])$$

が成り立つから、式 (8) と (11) において $\sup_{x \in \mathbb{R}^d}$ を $\sup_{|x| < 9R}$ に替えればよい.

0.3 Young 積分

補題 0.3.1. $x \in C^1$, $f \in C^2(\mathbb{R}^d, L(\mathbb{R}^d \to \mathbb{R}^m))$ とする.

(1) $1 \le p < 2$ の場合, 或る control function ω が存在して

$$\left|X_{s,t}^{1}\right| \le \omega(s,t)^{1/p}, \quad (0 \le \forall s \le \forall t \le T)$$

を満たすとき,ある定数 C = C(p, f) があり

$$|I_{s,t}(x)| \le C\left(\omega(s,t)^{1/p} + \omega(s,t)^{2/p}\right).$$

が成立する.

(2) $2 \le p < 3$ の場合, 或る control function ω が存在して

$$\left|X_{s,t}^{1}\right| \le \omega(s,t)^{1/p}, \quad \left|X_{s,t}^{2}\right| \le \omega(s,t)^{2/p}, \quad (0 \le \forall s \le \forall t \le T)$$

を満たすとき,ある定数 C = C(p, f) があり

$$\left|I_{s,t}(x)\right| \le C\left(\omega(s,t)^{1/p} + \omega(s,t)^{2/p} + \omega(s,t)^{3/p}\right).$$

が成立する.

証明.

(1) $D = \{s = t_0 < \dots < t_N = t\} \ (N \ge 2)$ に対し、補題 0.2.8 により存在する i を取り $D_{-1} \coloneqq D \setminus \{i\}$ と書く、補題 0.2.8 の添数を除く作業を続けて D_{-k} $(k = 1, \dots, N-1)$ を構成する.

$$M := \max_{\substack{t \in [0,T]\\1 \le i \le m\\1 \le j,k \le d}} \left| \partial_k f^i_j(x_t) \right|, \quad M' := \max_{t \in [0,T]} |f(x_t)|$$

とおけば $M,M'<\infty$ であり, $\left|X_{t_i,t_{i+1}}^1\right|\leq \omega(t_i,t_{i+1})^{1/p}\leq \omega(t_{i-1},t_{i+1})^{1/p}$ と補題 0.2.8 により

$$\begin{split} \left| \tilde{I}_{s,t}(x,D) - \tilde{I}_{s,t}(x,D_{-1}) \right| &= \left| \tilde{I}_{t_{i-1},t_{i}}(x) + \tilde{I}_{t_{i},t_{i+1}}(x) - \tilde{I}_{t_{i-1},t_{i+1}}(x) \right| \\ &\leq \left| \left\{ f(x_{t_{i}}) - f(x_{t_{i-1}}) \right\} X_{t_{i},t_{i+1}}^{1} \right| \\ &\leq \left| \left\{ \int_{0}^{1} (\nabla f)(x_{t_{i-1}} + \theta(x_{t_{i}} - x_{t_{i-1}})) \ d\theta \right\} X_{t_{i-1},t_{i}}^{1} \otimes X_{t_{i},t_{i+1}}^{1} \right| \\ &\leq md^{2}M \left| X_{t_{i},t_{i+1}}^{1} \right|^{2} \\ &\leq md^{2}M \left(\frac{2\omega(s,t)}{N-1} \right)^{2/p} \end{split}$$

が成立する. 同様に

$$\left| \tilde{I}_{s,t}(x, D_{-k}) - \tilde{I}_{s,t}(x, D_{-k-1}) \right| \le md^2 M \left(\frac{2\omega(s, t)}{N - k - 1} \right)^{2/p}, \quad (k = 0, \dots, N - 2)$$

が成り立ち $(D_{-0} = D)$

$$\begin{split} \left| \tilde{I}_{s,t}(x,D) - f(x_s) X_{s,t}^1 \right| &\leq \sum_{k=0}^{N-2} \left| \tilde{I}_{s,t}(x,D_{-k}) - \tilde{I}_{s,t}(x,D_{-k-1}) \right| \\ &\leq m d^2 M (2\omega(s,t))^{2/p} \sum_{k=0}^{N-2} \left(\frac{1}{N-k-1} \right)^{2/p} \\ &\leq m d^2 M (2\omega(s,t))^{2/p} \zeta \left(\frac{2}{p} \right) \end{split}$$

が従う. いま, 仮定より p < 2 であるから $\zeta(2/p) < \infty$ であり, 定理 0.2.2 より

$$\left|I_{s,t}(x)\right| \le M'\omega(s,t)^{1/p} + md^2M(2\omega(s,t))^{2/p}\zeta\left(\frac{2}{p}\right)$$

を得る.

(2) (1) と同様に D_{-k} $(k=1,\cdots,N-1)$ を構成する. 会田先生のノートの通りに

$$\begin{split} J_{s,t}(x,D) - J_{s,t}(x,D_{-1}) &= \left\{ \int_0^1 \int_0^\theta (\nabla^2 f) (x_{t_{i-1}} + \theta(x_{t_i} - x_{t_{i-1}})) \ dr \ d\theta \right\} X_{t_{i-1},t_i}^1 \otimes X_{t_{i-1},t_i}^1 \otimes X_{t_i,t_{i+1}}^1 \\ &+ \left\{ \int_0^1 (\nabla^2 f) (x_{t_{i-1}} + \theta(x_{t_i} - x_{t_{i-1}})) \ d\theta \right\} X_{t_{i-1},t_i}^1 \otimes X_{t_i,t_{i+1}}^2 \end{split}$$

を得る. ここで (1) の M, M' に加えて

$$M'' := \max_{\substack{t \in [0,T]\\1 \le i \le m\\1 \le j, k, v \le d}} \left| \partial_v \partial_k f_j^i(x_t) \right|$$

とおけば

$$\begin{split} \left| J_{s,t}(x,D_{-k}) - J_{s,t}(x,D_{-k-1}) \right| &\leq md^2 M \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} + md^2 M'' \left(\frac{2\omega(s,t)}{N-k-1} \right)^{1/p} \left(\frac{2\omega(s,t)}{N-k-1} \right)^{2/p} \\ &\leq md^2 (M+M'') \left(\frac{2\omega(s,t)}{N-k-1} \right)^{3/p} \end{split}$$

が成立し,会田先生のノートの通りに

$$\left| J_{s,t}(x,D) - \left(f(x_s) X_{s,t}^1 + (\nabla f)(x_s) X_{s,t}^2 \right) \right| \le 2^{3/p} m d^2 (M + M'') \zeta \left(\frac{3}{p} \right) \omega(s,t)^{3/p}$$

が従い、p < 3 の仮定より $\zeta(3/p) < \infty$ である. (1) と同じく定理 0.2.2 より

$$\left|I_{s,t}(x)\right| \leq M'\omega(s,t)^{1/p} + md^2M\omega(s,t)^{2/p} + 2^{3/p}md^2(M+M'')\zeta\left(\frac{3}{p}\right)\omega(s,t)^{3/p}$$

となる.

0.4 The notion of rough path

 $(V,\|\cdot\|)$ を \mathbb{R} -Banach 空間とする. $V^{\otimes 0}=\mathbb{R}$ とし $T(V):=igoplus_{k=0}^{\infty}V^{\otimes k}$ とおく. 各テンソル積におけるノルムを $\|\cdot\|_k$ と表す.

連続かつ有界変動なパス $x:[0,T] \longrightarrow V$ に対して次の積分

$$\int_{s}^{t} X_{s,u}^{1} \otimes dx_{u}$$

を定めたい。ただし $X^1_{s,t}=x_t-x_s$ $((s,t)\in\Delta_T)$ である。いま,細分 $D=\{s=u_0<\dots< u_n=t\}, D'=\{s=v_0<\dots< v_m=t\}\in\delta[s,t]$ に対して,共通細分を $D''=\{s=w_0< w_1\dots\leq t\}$ と表し

$$\tilde{X}_{s,w_k}^1 := X_{s,u_i}^1, \quad (u_i \le w_k \le u_{i+1}),$$

 $\hat{X}_{s,w_k}^1 := X_{s,v_i}^1, \quad (v_j \le w_k \le v_{j+1})$

により \tilde{X}^1 . \hat{X}^1 を定める. このとき

$$\begin{split} \left\| \sum_{D} X_{s,u_{i-1}}^{1} \otimes X_{u_{i-1},u_{i}}^{1} - \sum_{D'} X_{s,v_{j-1}}^{1} \otimes X_{v_{j-1},v_{j}}^{1} \right\|_{V^{\otimes 2}} \\ &= \left\| \sum_{D} X_{s,u_{i-1}}^{1} \otimes X_{u_{i-1},u_{i}}^{1} - \sum_{D''} X_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &+ \left\| \sum_{D'} X_{s,v_{j-1}}^{1} \otimes X_{v_{j-1},v_{j}}^{1} - \sum_{D''} X_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &= \left\| \sum_{D''} \tilde{X}_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} - \sum_{D''} X_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &+ \left\| \sum_{D''} \hat{X}_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} - \sum_{D''} X_{s,w_{k-1}}^{1} \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &= \left\| \sum_{D''} \left(\tilde{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right) \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &+ \left\| \sum_{D''} \left(\hat{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right) \otimes X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &\leq \sum_{D''} \left\| \tilde{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right\| \left\| X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} + \sum_{D''} \left\| \hat{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right\| \left\| X_{w_{k-1},w_{k}}^{1} \right\|_{V^{\otimes 2}} \\ &\leq \max_{k} \left\| \tilde{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right\| \left\| X_{w_{k-1},w_{k}}^{1} \right\|_{1,[s,t]} + \max_{k} \left\| \hat{X}_{s,w_{k-1}}^{1} - X_{s,w_{k-1}}^{1} \right\| \left\| X_{w_{k-1},w_{k}}^{1} \right\|_{1,[s,t]} \end{aligned}$$

が成立する.いま, $[s,t] \ni u \longmapsto X^1_{s,u}$ は一様連続であるから $|D|,|D'| \longrightarrow 0$ として右辺は 0 に収束する.従って $D_n \in \delta[s,t]$ を $|D_n| \longrightarrow 0$ $(n \longrightarrow \infty)$ を満たす細分列とすれば $\left(\sum_{D_n} X^1_{s,u_{i-1}} \otimes X^1_{u_{i-1},u_i}\right)_{n=1}^{\infty}$ は $V^{\otimes 2}$ の Cauchy 列となり $\in V^{\otimes 2}$ で収束する.別の細分列 $(D_m)_{m=1}^{\infty}$ $(|D_m| \longrightarrow 0)$ を取っても

$$\left\| \sum_{D_n} X^1_{s,u_{i-1}} \otimes X^1_{u_{i-1},u_i} - \sum_{D_m} X^1_{s,v_{j-1}} \otimes X^1_{v_{j-1},v_j} \right\|_{V^{\otimes 2}} \longrightarrow 0, \quad (n,m \longrightarrow \infty)$$

が成り立つから極限は細分列に依らず定まり、従って $\lim_{|D|\to 0}\sum_D X^1_{s,u_{i-1}}\otimes X^1_{u_{i-1},u_i}$ が確定する.ここで

$$X_{s,t}^2 = \int_s^t X_{s,u}^1 \otimes dx_u := \lim_{|D| \to 0} \sum_D X_{s,u_{i-1}}^1 \otimes X_{u_{i-1},u_i}^1$$

と定める. このとき $\Delta_T \ni (s,t) \longmapsto X_{s,t}^2 \in V^{\otimes 2}$ は連続である.

定理 0.4.1. $\Omega_p(V)$ は次で定める距離

$$d_p(X,Y) \coloneqq \max_{1 \le i \le [p]} \| X^i - Y^i \|_{p/i}$$

により完備距離空間となる.

証明. $(X^k)_{k=1}^{\infty}$ を Cauchy 列とすれば、任意の $\epsilon > 0$ に対し或る $K \in \mathbb{N}$ が存在して

$$\|X^{k,i} - X^{\ell,i}\|_{p/i} < \epsilon, \quad (\forall k, \ell > K, \ 1 \le i \le [p])$$

が成立する. よって定理 (0.1.7) より各 i に対し或る $X^i \in B_{p/i,T}(V)$ が存在して

$$\|X^{k,i} - X^i\|_{p/i} \longrightarrow 0 \quad (k \longrightarrow \infty, \ 1 \le i \le [p])$$

を満たす. $X:\Delta_T \longrightarrow T^{(n)}(V)$ を

$$X_{s,t} := (1, X_{s,t}^1, \cdots, X_{s,t}^n), \quad ((s,t) \in \Delta_T)$$

により定めれば、 X^i の連続性より X も連続である。 さらに任意の $D \in \delta[0,T]$ に対して

$$\sum_{D} \|X_{t_{i-1},t_{i}}^{k} - X_{t_{i-1},t_{i}}\|^{p} = \sum_{D} \left(\|X_{t_{i-1},t_{i}}^{k,1} - X_{t_{i-1},t_{i}}^{1} \| + \dots + \|X_{t_{i-1},t_{i}}^{k,n} - X_{t_{i-1},t_{i}}^{n} \| \right)^{p} \\
\leq (n+1)^{p} \sum_{D} \left(\|X_{t_{i-1},t_{i}}^{k,1} - X_{t_{i-1},t_{i}}^{1} \|^{p} + \dots + \|X_{t_{i-1},t_{i}}^{k,n} - X_{t_{i-1},t_{i}}^{n} \|^{p} \right) \\
\leq (n+1)^{p} \left(\|X_{t_{i-1},t_{i}}^{k,1} - X_{t_{i-1},t_{i}}^{1} \|^{p} + \dots + \|X_{t_{i-1},t_{i}}^{k,n} - X_{t_{i-1},t_{i}}^{n} \|^{p} \right)$$

が成立するから, 定理より

$$\sup_{D} \sum_{D} \left\| X_{t_{i-1},t_i}^k - X_{t_{i-1},t_i} \right\|^p \longrightarrow 0 \quad (k \longrightarrow \infty)$$

が従い X の p-variation の有界性が出る.

.1 notation

以下,零元のみの線型空間は考えない. E, E_i, F を体 \mathbb{K} 上の線形空間とするとき, $\operatorname{Hom}(E, F)$ で E から F への \mathbb{K} -線型写像の全体を表し,特に $F=\mathbb{K}$ のとき $E^\#$ と書く.また $\operatorname{Hom}^{(n)}(E_1 \times \cdots \times E_n, F)$ で $E_1 \times \cdots \times E_n$ から F への \mathbb{K} -n 重線型写像の全体を表す.また X をノルム空間と考えるときはノルムを $\|\cdot\|_X$ と書く.

.2 テンソル積

 $n \ge 2$ とする. 体 \mathbb{K} 上の線形空間の族 $(E_i)_{i=1}^n$ に対してテンソル積を定めたい.

$$\Lambda\Bigl(\bigoplus_{i=1}^n E_i\Bigr) = \left\{\,b: \bigoplus_{i=1}^n E_i \longrightarrow \mathbb{K} \,\,; \quad 有限個の \,\, e \in \bigoplus_{i=1}^n E_i \,\, を除いて \,\, b(e) = 0. \,\,\right\}$$

により \mathbb{K} -線形空間 $\Lambda\left(\bigoplus_{i=1}^n E_i\right)$ を定める。また $e=(e_1,\cdots,e_n)\in\bigoplus_{i=1}^n E_i$ に対する定義関数を

$$\mathbb{1}_{e_1,\dots,e_n}(x) = \begin{cases} 1, & x = e, \\ 0, & x \neq e \end{cases}$$

で表す. $\Lambda\left(\bigoplus_{i=1}^n E_i\right)$ の線型部分空間を

$$\Lambda_0\left(\bigoplus_{i=1}^n E_i\right)
:= \operatorname{Span}\left[\left\{\begin{array}{c} \mathbb{1}_{e_1,\dots,e_i+e_i',\dots,e_n} - \mathbb{1}_{e_1,\dots,e_i,\dots,e_n} - \mathbb{1}_{e_1,\dots,e_i',\dots,e_n}, \\ \mathbb{1}_{e_1,\dots,\lambda e_i,\dots,e_n} - \lambda \mathbb{1}_{e_1,\dots,e_i,\dots,e_n} \end{array}; \quad e_i,e_i' \in E_i, \lambda \in \mathbb{K}, 1 \le i \le n \right\}\right]$$

により定め, $b \in \Lambda\left(\bigoplus_{i=1}^n E_i\right)$ の $\Lambda_0\left(\bigoplus_{i=1}^n E_i\right)$ に関する同値類を [b] と書く. そして

$$E_1 \otimes \cdots \otimes E_n = \bigotimes_{i=1}^n E_i := \Lambda \Big(\bigoplus_{i=1}^n E_i \Big) / \Lambda_0 \Big(\bigoplus_{i=1}^n E_i \Big)$$

で定める商空間を $(E_i)_{i=1}^n$ のテンソル積と定義する.また $(e_1,\cdots,e_n)\in \bigoplus_{i=1}^n E_i$ に対し

$$e_1 \otimes \cdots \otimes e_n := [\mathbb{1}_{e_1,\cdots,e_n}]$$

により定める \otimes : $\bigoplus_{i=1}^{n} E_{i} \longrightarrow \bigotimes_{i=1}^{n} E_{i}$ をテンソル積の標準写像と呼ぶ.

定理 .2.1 (標準写像の多重線型性). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とするとき,

$$\otimes: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto e_1 \otimes \cdots \otimes e_n \in \bigotimes_{i=1}^n E_i$$

はn 重線型写像である. また次が成り立つ:

$$\bigotimes_{i=1}^{n} E_{i} = \operatorname{Span}\left[\left\{e_{1} \otimes \cdots \otimes e_{n} ; (e_{1}, \cdots, e_{n}) \in \bigoplus_{i=1}^{n} E_{i}\right\}\right].$$

$$(12)$$

証明. 任意の $1 \le i \le n$, $e_1 \in E_1, \dots, e_n \in E_n$, $e_i, e_i' \in E_i$, $\lambda \in \mathbb{K}$ に対して

$$e_{1} \otimes \cdots \otimes (e_{i} + e'_{i}) \otimes \cdots \otimes e_{n} = \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i} + e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} + \mathbb{1}_{e_{1}, \cdots, e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \end{bmatrix} + \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e'_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= e_{1} \otimes \cdots \otimes e_{i} \otimes \cdots \otimes e_{n} + e_{1} \otimes \cdots \otimes e'_{i} \otimes \cdots \otimes e_{n},$$

$$e_{1} \otimes \cdots \otimes (\lambda e_{i}) \otimes \cdots \otimes e_{n} = \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, \lambda e_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \lambda \begin{bmatrix} \mathbb{1}_{e_{1}, \cdots, e_{i}, \cdots, e_{n}} \end{bmatrix}$$

$$= \lambda (e_{1} \otimes \cdots \otimes e_{i} \otimes \cdots \otimes e_{n})$$

が成立するから \otimes は多重線型である.また任意に $u = [b] \in E \otimes F$ を取れば

$$b = \sum_{j=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}}, \quad (k_{j} = b(e_{i}^{j}, \dots, e_{n}^{j}), \ j = 1, \dots, m)$$

と表せるから,

$$u = \left[\sum_{j=1}^{m} k_{j} \mathbb{1}_{e_{i}^{j}, \dots, e_{n}^{j}}\right] = \left[\sum_{j=1}^{m} \mathbb{1}_{k_{j}e_{i}^{j}, \dots, e_{n}^{j}}\right] = \sum_{j=1}^{m} (k_{j}e_{1}^{j}) \otimes \dots \otimes e_{n}^{j}$$

が従い(12)を得る.

定理 $.2.2 (\cdots \otimes 0 \otimes \cdots$ は零ベクトル). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とし,テンソル積 $\bigotimes_{i=1}^n E_i$ を定める.このとき,或る i で $e_i = 0$ なら $e_1 \otimes \cdots \otimes e_n = 0$ が成り立つ.

証明. $e_i = 0$ のとき, $\lambda = 0$ とすれば

$$e_1 \otimes \cdots \otimes e_n = [\mathbb{1}_{e_1,\cdots,0,\cdots,e_n}] = [\mathbb{1}_{e_1,\cdots,\lambda e_i,\cdots,e_n} - \lambda \mathbb{1}_{e_1,\cdots,e_i,\cdots,e_n}] = 0$$

が成立する.

定理 .2.3 (普遍性 (universality of tensor products)). $(E_i)_{i=1}^n$ を \mathbb{K} -線形空間の族とする. このとき任意の \mathbb{K} -線型空間 V に対して, $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ ならば $T \circ \otimes \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ が満たされ,これで定める次の対応 Φ は線型同型である:

また \mathbb{K} -線型空間 U_0 と多重線型写像 $\iota: \bigoplus_{i=1}^n E_i \longrightarrow U_0$ が、任意の \mathbb{K} -線型空間 V に対し

- $(\otimes)_1$ U_0 は ι の像で生成される.
- $(\otimes)_2$ 任意の $\delta \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ に対して或る $\tau \in \operatorname{Hom}\left(U_0, V\right)$ が $\delta = \tau \circ \iota$ を満たす.

を満たすなら、(13) において $V=U_0$ とするとき $T=\Phi^{-1}(\iota)$ は線型同型である.

後半の主張により, $(E_i)_i$ のテンソル積を別の方法で導入しても,商空間を用いて導入した $\bigotimes_i E_i$ と線型同型に結ばれる.このとき,別の方法で導入したテンソル積及び標準写像を $\bigotimes_i^* E_i$, $\tilde{\otimes}$ と表せば,或る線型同型 $T: \bigotimes_i E_i \longrightarrow \bigotimes_i^* E_i$ がただ一つ存在して

$$T(e_1 \otimes \cdots \otimes e_n) = e_1 \tilde{\otimes} \cdots \tilde{\otimes} e_n$$

を満たす.特に任意の並べ替え $\varphi:\{1,\cdots,n\}\longrightarrow\{1,\cdots,n\}$ に対し

$$\bigotimes_{i=1}^{n} E_{i} \cong \bigotimes_{i=1}^{n} E_{\varphi(i)}$$

$$e_{1} \otimes \cdots \otimes e_{n} \longleftrightarrow e_{\varphi(1)} \otimes \cdots \otimes e_{\varphi(n)}$$

が成立する.

証明.

第一段 $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, V\right)$ の線型性と \otimes の多重線型性より $T \circ \otimes$ は多重線型である.

第二段 $\Phi(T_1) = \Phi(T_2)$ ならば T_1 と T_2 は $\left\{e_1 \otimes \cdots \otimes e_n \; ; \; (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i \right\}$ の上で一致する. (12) より $T_1 = T_2$ が成立し Φ の単射性が従う.

第三段 次の二段で Φ の全射性を示す。まず、 $\varphi \in \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ に対し

$$g: \bigoplus_{i=1}^n E_i \ni (e_1, \cdots, e_n) \longmapsto \varphi(\mathbb{1}_{e_1, \cdots, e_n}) \in V$$

を対応させる次の写像が全単射であることを示す:

$$F: \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^{n} E_{i}), V\right) \longrightarrow \operatorname{Map}\left(\bigoplus_{i=1}^{n} E_{i}, V\right)$$

$$\varphi \longmapsto g$$

 $F(\varphi_1)=F(\varphi_2)$ のとき,任意の $e\in \bigoplus_{i=1}^n E_i$ に対して $\varphi_1(1\!\!1_{e_1,\cdots,e_n})=\varphi_2(1\!\!1_{e_1,\cdots,e_n})$ が成り立ち,

$$\Lambda\left(\bigoplus_{i=1}^{n} E_{i}\right) = \operatorname{Span}\left[\left\{ \mathbb{1}_{e_{1},\cdots,e_{n}} ; (e_{1},\cdots,e_{n}) \in \bigoplus_{i=1}^{n} E_{i} \right\}\right]$$

であるから $\varphi_1=\varphi_2$ が従い F の単射性を得る.また $g\in \operatorname{Map}\left(\bigoplus_{i=1}^n E_i,V\right)$ に対して

$$\varphi(a) := \sum_{\substack{e \in \bigoplus_{i=1}^{n} E_i \\ a(e) \neq 0}} a(e)g(e), \quad (a \in \Lambda(\bigoplus_{i=1}^{n} E_i))$$

により φ を定めれば、 $\varphi \in \operatorname{Hom}\left(\Lambda(\bigoplus_{i=1}^n E_i), V\right)$ が満たされFの全射性が従う. 第四段 任意に $b \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, V\right)$ を取り $h \coloneqq F^{-1}(b)$ とおけば、hの線型性より

$$b(e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}) - b(e_{1}, \dots, e_{i}, \dots, e_{n}) - b(e_{1}, \dots, e'_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, e_{i} + e'_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}} - \mathbb{1}_{e_{1}, \dots, e'_{i}, \dots, e_{n}}),$$

$$b(e_{1}, \dots, \lambda e_{i}, \dots, e_{n}) - \lambda b(e_{1}, \dots, e_{i}, \dots, e_{n})$$

$$= h(\mathbb{1}_{e_{1}, \dots, \lambda e_{i}, \dots, e_{n}} - \lambda \mathbb{1}_{e_{1}, \dots, e_{i}, \dots, e_{n}})$$

が成り立ち,b の双線型性により h は $\Lambda_0(\bigoplus_{i=1}^n E_i)$ 上で 0 である.従って

$$T([b]) := h(b), \quad (b \in \Lambda(\bigoplus_{i=1}^n E_i))$$

で定める T は well-defined であり, $T \in \operatorname{Hom}\left(\bigoplus_{i=1}^n E_i, V\right)$ かつ

$$b(e_1, \cdots, e_n) = h(\mathbb{1}_{e_1, \cdots, e_n}) = (T \circ \otimes)(e_1, \cdots, e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i)$$

が満たされ Φ の全射性が得られる.

第五段 $(\otimes)_1, (\otimes)_2$ の下で $\operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right) \ni \tau \longmapsto \tau \circ \iota \in \operatorname{Hom}^{(n)}\left(\bigoplus_{i=1}^n E_i, \bigotimes_{i=1}^n E_i\right)$ は全単射 であるから, $\tau \circ \iota = \otimes$ を満たす $\tau \in \operatorname{Hom}\left(U_0, \bigotimes_{i=1}^n E_i\right)$ がただ一つ存在する.同様にして $\iota = T \circ \otimes$ を満たす $T \in \operatorname{Hom}\left(\bigotimes_{i=1}^n E_i, U_0\right)$ がただ一つ存在し,併せれば

$$\otimes = \tau \circ \iota = (\tau \circ T) \circ \otimes, \quad \iota = T \circ \otimes = (T \circ \tau) \circ \iota$$

が成り立ち, $T \mapsto T \circ \otimes$, $\tau \mapsto \tau \circ \iota$ が一対一であるから $\tau \circ T$, $T \circ \tau$ はそれぞれ恒等写像 に一致して $T^{-1} = \tau$ が従う.すなわち T は $\bigotimes_{i=1}^n E_i$ から U_0 への線型同型である.

定理 .2.4 (スカラーとのテンソル積). E を \mathbb{K} -線型空間とするとき, $\mathbb{K} \otimes E$ と E は $f(\alpha \otimes e) = \alpha e$ を満たす線型写像 $f: \mathbb{K} \otimes E \longmapsto E$ により同型となる.

証明. スカラ倍 $\iota:(\alpha,e)\mapsto \alpha e$ は双線型である. また定理.2.3 の $(\otimes)_1,(\otimes)_2$ について,

$$E = \text{Span} [\{ \alpha e ; \alpha \in \mathbb{K}, e \in E \}]$$

より $(\otimes)_1$ が得られ、かつ任意の双線型写像 $\delta: \mathbb{K} \times E \longrightarrow V$ に対し

$$f(e) := \delta(1, e), \quad (\forall e \in E)$$

で線型写像 $f: E \longrightarrow V$ を定めれば,

$$f \circ \iota(\alpha, e) = f(\alpha e) = \delta(1, \alpha e) = \alpha \delta(1, e) = \delta(\alpha, e)$$

が成り立つから (⊗)2 が満たされる.

定義 .2.5 (線型写像のテンソル積). $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とする. $f_i: E_i \longrightarrow F_i$ $(i=1,\cdots,n)$ が線型写像であるとき,

$$b: \bigoplus_{i=1}^n E_i \ni (e_1, \dots, e_n) \longmapsto f_1(e_1) \otimes \dots \otimes f_n(e_n) \in \bigotimes_{i=1}^n F_i$$

により定めるbはn重線型であり、定理.2.3 より $b=g\circ\otimes$ を満たす $g:\bigotimes_{i=1}^n E_i\longrightarrow\bigotimes_{i=1}^n F_i$ がただ一つ存在する。gを $f_1\otimes\cdots\otimes f_n$ と表記して線型写像のテンソル積と定義する。いま、

$$f_1 \otimes \cdots \otimes f_n(e_1 \otimes \cdots \otimes e_n) = f_1(e_1) \otimes \cdots \otimes f_n(e_n), \quad (\forall (e_1, \cdots, e_n) \in \bigoplus_{i=1}^n E_i)$$

が成り立つ. $F_i=\mathbb{K}$ $(i=1,\cdots,n)$ の場合は \otimes を \mathbb{K} の乗法と考える $(\bigotimes_{i=1}^n F_i=\mathbb{K})$.

定理 .2.6 (零写像のテンソル積は零写像). \mathbb{K} -線型空間の族 $(E_i)_{i=1}^n$ と $(F_i)_{i=1}^n$ と線型写像 $f_i: E_i \longrightarrow F_i \ (i=1,\cdots,n)$ について,或る f_i が零写像なら $f_1 \otimes \cdots \otimes f_n = 0$ となる.

証明. $f_i=0$ とすると,定理.2.2 より $f_1\otimes\cdots\otimes f_n$ は $\{e_1\otimes\cdots\otimes e_n\ ;\ e_i\in E_i\}$ 上で 0 となる.この空間は $\bigotimes_{i=1}^n E_i$ を生成するから $f_1\otimes\cdots\otimes f_n=0$ が従う.

定理 .2.7 (テンソル積の基底). $(E_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とし, E_i の基底を $\left(u_{\lambda_i}^i\right)_{\lambda_i\in\Lambda_i}$ とする $(i=1,\cdots,n)$. このとき $\left(u_{\lambda_1}^1\otimes\cdots\otimes u_{\lambda_n}^n\right)_{\lambda_1,\cdots,\lambda_n}$ は $\bigotimes_{i=1}^n E_i$ の基底となる.

証明.

第一段 各 $u^i_{\lambda_i}$ の生成する一次元空間を $W^i_{\lambda_i}\coloneqq \mathbb{K}u^i_{\lambda_i}$ と表し

$$V_i := \bigoplus_{\lambda_i \in \Lambda_i} W^i_{\lambda_i}, \quad (i = 1, \dots, n)$$

とおく. $\left(u^i_{\lambda_i}\right)_{\lambda_i\in\Lambda_i}$ は E_i の基底であるから、任意の $e_i\in E_i$ に対し $v_i\in V_i$ がただ一つ定まり、

$$f_i: E_i \ni e_i \longmapsto v_i \in V_i$$

により定める線型写像 fi は同型写像である. このとき, 写像のテンソル積

$$f_1 \otimes \cdots \otimes f_n : \bigotimes_{i=1}^n E_i \longrightarrow \bigotimes_{i=1}^n V_i$$

は線型同型となる. 実際, f_i の逆写像 f_i^{-1} のテンソル積

$$f_1^{-1} \otimes \cdots \otimes f_n^{-1} : \bigotimes_{i=1}^n V_i \longrightarrow \bigotimes_{i=1}^n E_i$$

によって、全ての $(e_1 \otimes \cdots \otimes e_n) \in \bigotimes_{i=1}^n E_i$ 及び $(v_1 \otimes \cdots \otimes v_n) \in \bigotimes_{i=1}^n V_i$ に対し

$$f_1^{-1} \otimes \cdots \otimes f_n^{-1} \circ f_1 \otimes \cdots \otimes f_n(e_1 \otimes \cdots \otimes e_n)$$

$$= f_1^{-1} \otimes \cdots \otimes f_n^{-1} (f_1(e_1) \otimes \cdots \otimes f_n(e_n)) = (e_1 \otimes \cdots \otimes e_n),$$

$$f_1 \otimes \cdots \otimes f_n \circ f_1^{-1} \otimes \cdots \otimes f_n^{-1} (v_1 \otimes \cdots \otimes v_n)$$

$$= f_1 \otimes \cdots \otimes f_n (f_1^{-1}(v_1) \otimes \cdots \otimes f_n^{-1}(v_n)) = (v_1 \otimes \cdots \otimes v_n)$$

が成立し、それぞれ $\bigotimes_{i=1}^n E_i$ と $\bigotimes_{i=1}^n V_i$ を生成するから

$$(f_1 \otimes \cdots \otimes f_n)^{-1} = f_1^{-1} \otimes \cdots \otimes f_n^{-1}$$

の関係を得る.

第二段 $\bigotimes_{i=1}^n V_i$ と $\bigoplus_{\lambda_1,\cdots,\lambda_n} W^1_{\lambda_1} \otimes \cdots \otimes W^n_{\lambda_n}$ が線型同型であることを示す. 先ず

$$g: \sum_{j} (v_1^j \otimes \cdots \otimes v_n^j) \longmapsto \sum_{j} (v_1^j (\lambda_1) \otimes \cdots \otimes v_n^j (\lambda_n))_{\lambda_1, \cdots, \lambda_n}$$

により線型写像 $g: \bigotimes_{i=1}^n V_i \longrightarrow \bigoplus_{\lambda_1,\cdots,\lambda_n} W^1_{\lambda_1} \otimes \cdots \otimes W^n_{\lambda_n}$ を定める. また

$$\iota_{\lambda_i}: W^i_{\lambda_i} \longrightarrow V_i, \quad (\lambda_i \in \Lambda_i, \ i = 1, \cdots, n)$$

を次の標準単射として定める:

$$\iota_{\lambda_i}(u)(\lambda) = \begin{cases} u, & (\lambda = \lambda_i), \\ 0, & (\lambda \neq \lambda_i), \end{cases} \quad (\lambda \in \Lambda_i, \ u \in W^i_{\lambda_i}).$$

 ι_{λ_i} は線型であるから $\iota_{\lambda_1}\otimes \cdots \otimes \iota_{\lambda_n}: W^1_{\lambda_1}\otimes \cdots \otimes W^n_{\lambda_n} \longrightarrow \bigotimes_{i=1}^n V_i$ を定義出来て,

$$h: w \longmapsto \sum_{\lambda_1, \dots, \lambda_n} \iota_{\lambda_1} \otimes \dots \otimes \iota_{\lambda_n} (w(\lambda_1, \dots, \lambda_n))$$

により線型写像 $h:W^1_{\lambda_1}\otimes\cdots\otimes W^n_{\lambda_n}\longrightarrow \bigotimes_{i=1}^n V_i$ が定めれば $g^{-1}=h$ が成り立つ. 実際,

$$g \circ h(w) = g\left(\sum_{\lambda_1, \dots, \lambda_n} \iota_{\lambda_1} \otimes \dots \otimes \iota_{\lambda_n} (w(\lambda_1, \dots, \lambda_n))\right)$$
$$= \sum_{\lambda_1, \dots, \lambda_n} g (\iota_{\lambda_1} \otimes \dots \otimes \iota_{\lambda_n} (w(\lambda_1, \dots, \lambda_n)))$$
$$= w$$

が任意の $w \in \bigoplus_{\lambda_1, \cdots, \lambda_n} W^1_{\lambda_1} \otimes \cdots \otimes W^n_{\lambda_n}$ に対して成立し、かつ任意の $v_1 \otimes \cdots \otimes v_n$ に対し

$$h \circ g(v_1 \otimes \cdots \otimes v_n) = \sum_{\lambda_1, \dots, \lambda_n} \iota_{\lambda_1} \otimes \cdots \otimes \iota_{\lambda_n} (v_1(\lambda_1) \otimes \cdots \otimes v_n(\lambda_n))$$

$$= \sum_{\lambda_1, \dots, \lambda_n} \iota_{\lambda_1} (v_1(\lambda_1)) \otimes \cdots \otimes \iota_{\lambda_n} (v_n(\lambda_n))$$

$$= \left(\sum_{\lambda_1 \in \Lambda_1} \iota_{\lambda_1} (v_1(\lambda_1))\right) \otimes \cdots \otimes \left(\sum_{\lambda_n \in \Lambda_n} \iota_{\lambda_n} (v_n(\lambda_n))\right)$$

$$= v_1 \otimes \cdots \otimes v_n$$

が成り立つから $g^{-1} = h$ が従う. よって g は線型同型である.

第三段 いま, $g\circ f_1\otimes\cdots\otimes f_n$ によって $\bigotimes_{i=1}^n E_i$ と $\bigoplus_{\lambda_1,\cdots,\lambda_n}W^1_{\lambda_1}\otimes\cdots\otimes W^n_{\lambda_n}$ は同型に対応し,

$$w_{\lambda_1,\dots,\lambda_n}(\nu_1,\dots,\nu_n) := \begin{cases} u_{\lambda_1}^1 \otimes \dots \otimes u_{\lambda_n}^n, & (\lambda_1,\dots,\lambda_n) = (\nu_1,\dots,\nu_n), \\ 0, & (\lambda_1,\dots,\lambda_n) \neq (\nu_1,\dots,\nu_n) \end{cases}$$

として w_{λ1,...,λn} を定めれば

$$u_{\lambda_1}^1 \otimes \cdots \otimes u_{\lambda_n}^n \xrightarrow{g \circ f_1 \otimes \cdots \otimes f_n} w_{\lambda_1, \cdots, \lambda_n}$$

が成り立つ. $(w_{\lambda_1,\cdots,\lambda_n})$ の一次独立性から $(u^1_{\lambda_1}\otimes\cdots\otimes u^n_{\lambda_n})_{\lambda_1,\cdots,\lambda_n}$ の一次独立性が従う.

定理 .2.8 (結合律). $(E_i)_{i=1}^n$ を \mathbb{K} -線型空間の族とし, $k \in \{1,\cdots,n-1\}$ を任意に取る. このとき,次の対応関係を満たす F は線型同型である:

証明.

第一段
$$n$$
 重線型写像 $f: \bigoplus_{i=1}^n E_i \longrightarrow \left(\bigotimes_{i=1}^k E_i\right) \bigotimes \left(\bigotimes_{i=k+1}^n E_i\right)$ を

$$f(e_1, \dots, e_n) = (e_1 \otimes \dots \otimes e_k) \otimes (e_{k+1} \otimes \dots \otimes e_n), \quad (\forall (e_1, \dots, e_n) \in \bigoplus_{i=1}^n E_i)$$

により定めれば、定理.2.3 より

$$F: (e_1 \otimes \cdots \otimes e_n) \longmapsto (e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n)$$

を満たす線型写像 $F: \bigotimes_{i=1}^n E_i \longrightarrow \left(\bigotimes_{i=1}^k E_i\right) \bigotimes \left(\bigotimes_{i=k+1}^n E_i\right)$ が存在する:

$$\bigoplus_{i=1}^{n} E_{i}$$

$$\otimes \downarrow \qquad \qquad f$$

$$\bigotimes_{i=1}^{n} E_{i} \xrightarrow{F} \left(\bigotimes_{i=1}^{k} E_{i}\right) \bigotimes \left(\bigotimes_{i=k+1}^{n} E_{i}\right)$$

以降はFの逆写像を構成しFが全単射であることを示す.

第二段 $u_{k+1} \in E_{k+1}, \dots, u_n \in E_n$ を固定し

$$\Phi_{u_{k+1},\cdots,u_n}(e_1,\cdots,e_n) := e_1 \otimes \cdots e_k \otimes u_{k+1} \otimes \cdots \otimes u_n$$

によってn 重線型 $\Phi_{u_{k+1},\cdots,u_n}: \bigoplus_{i=1}^k E_i \longrightarrow \bigotimes_{i=1}^n E_i$ を定めれば、定理.2.3 より

$$G_{u_{k+1},\dots,u_n}(e_1\otimes\dots\otimes e_k)=e_1\otimes\dots e_k\otimes u_{k+1}\otimes\dots\otimes u_n$$

を満たす線型写像 $G_{u_{k+1},\cdots,u_n}: \bigotimes_{i=1}^k E_i \longrightarrow \bigotimes_{i=1}^n E_i$ が存在する.

第三段 任意の $v \in \bigotimes_{i=1}^k E_i$ に対して

$$\Psi_{v}: \bigoplus_{i=k+1}^{n} E_{i} \ni (u_{k+1}, \cdots, u_{n}) \longmapsto G_{u_{k+1}, \cdots, u_{n}}(v)$$

を定めれば、 Ψ_{ν} はn 重線型であるから、定理.2.3 より

$$H_{\nu}(u_{k+1} \otimes \cdots \otimes u_n) = \Psi_{\nu}(u_{k+1}, \cdots, u_n)$$

を満たす線型写像 $H_v: \bigotimes_{i=k+1}^n E_i \longrightarrow \bigotimes_{i=1}^n E_i$ が存在する.

$$\bigoplus_{i=k+1}^{n} E_{i}$$

$$\bigotimes_{i=k+1}^{n} E_{i} \xrightarrow{\Psi_{v}} \bigotimes_{i=1}^{n} E_{i}$$

いま, $v \mapsto \Psi_v$ は線型であり、かつ Ψ_v と H_v は線型同型で結ばれているから $v \mapsto H_v$ の線型性が従う.

第四段 H_v の線型性と $v \mapsto H_v$ の線型性より

$$\Gamma: \left(\bigotimes_{i=1}^k E_i\right) \times \left(\bigotimes_{i=k+1}^n E_i\right) \ni (v, w) \longmapsto H_v(w)$$

により定める Γ は

$$\Gamma(e_{1} \otimes \cdots \otimes e_{k}, e_{k+1} \otimes \cdots \otimes e_{n}) = H_{e_{1} \otimes \cdots \otimes e_{k}} (e_{k+1} \otimes \cdots \otimes e_{n}))$$

$$= \Psi_{e_{1} \otimes \cdots \otimes e_{k}} (e_{k+1}, \cdots, e_{n}))$$

$$= G_{e_{k+1}, \cdots, e_{n}} (e_{1} \otimes \cdots \otimes e_{k}))$$

$$= \Phi_{e_{k+1}, \cdots, e_{n}} (e_{1}, \cdots, e_{k}))$$

$$= e_{1} \otimes \cdots \otimes e_{n}$$

$$(14)$$

を満たす双線型であり、定理.2.3より

$$\left(\bigotimes_{i=1}^{k} E_{i}\right) \times \left(\bigotimes_{i=k+1}^{n} E_{i}\right)$$

$$\otimes \downarrow \qquad \qquad \Gamma$$

$$\left(\bigotimes_{i=1}^{k} E_{i}\right) \otimes \left(\bigotimes_{i=k+1}^{n} E_{i}\right) \xrightarrow{G} \bigotimes_{i=1}^{n} E_{i}$$

を可換にする線型写像 G が存在する. この G は F の逆写像である. 実際, (14) より

$$F \circ G ((e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n)) = F (\Gamma(e_1 \otimes \cdots \otimes e_k, e_{k+1} \otimes \cdots \otimes e_n))$$
$$= F(e_1 \otimes \cdots \otimes e_n)$$
$$= (e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n)$$

かつ

$$G \circ F (e_1 \otimes \cdots \otimes e_n) = G ((e_1 \otimes \cdots \otimes e_k) \otimes (e_{k+1} \otimes \cdots \otimes e_n))$$
$$= \Gamma (e_1 \otimes \cdots \otimes e_k, e_{k+1} \otimes \cdots \otimes e_n)$$
$$= e_1 \otimes \cdots \otimes e_n$$

が得られ $F^{-1} = G$ が従う.

.3 テンソル積の内積

.4 クロスノルム

 $\mathbb{K}=\mathbb{R}$ または $\mathbb{K}=\mathbb{C}$ と考える. 以下では $n(\geq 2)$ 個の Banach 空間で構成するテンソル積におけるクロスノルムを考察する.

定義 .4.1 (クロスノルム).
$$\mathbb{K}$$
-Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ において

$$\alpha(x_{1} \otimes \cdots \otimes x_{n}) \leq \|x_{1}\|_{X_{1}} \|x_{2}\|_{X_{2}} \cdots \|x_{n}\|_{X_{n}}, \qquad (x_{i} \in X_{i}, i = 1, \cdots, n), (15)$$

$$\sup_{\substack{v \in \bigotimes_{i=1}^{n} X_{i} \\ v \neq 0}} |x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}(v)| \leq \|x_{1}^{*}\|_{X_{1}^{*}} \|x_{2}^{*}\|_{X_{2}^{*}} \cdots \|x_{n}^{*}\|_{X_{n}^{*}} \alpha(v), \qquad (x_{i}^{*} \in X_{i}^{*}, i = 1, \cdots, n) (16)$$

を満たすようなノルム $\alpha: \bigotimes_{i=1}^n X_i \longrightarrow [0,\infty)$ をクロスノルム (cross norm) と呼ぶ.

定理 .4.2. \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ に対するテンソル積 $\bigotimes_{i=1}^n X_i$ 上のクロスノルム α は次 を満たす:

$$\alpha(x_{1} \otimes \cdots \otimes x_{n}) = \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}, \qquad (x_{i} \in X_{i}, i = 1, \cdots, n),$$

$$\|x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}\|_{(\bigotimes_{i=1}^{n} X_{i}, \alpha)^{*}} = \|x_{1}^{*}\|_{X_{1}^{*}} \cdots \|x_{n}^{*}\|_{X_{n}^{*}}, \qquad (x_{i}^{*} \in X_{i}^{*}, i = 1, \cdots, n).$$

証明. 先ず, Hahn-Banach の定理と式 (16) より

$$\| x_{1} \|_{X_{1}} \cdots \| x_{n} \|_{X_{n}} = \sup_{\| x_{1}^{*} \|_{X_{1}^{*} \leq 1}} |\langle x_{1}, x_{1}^{*} \rangle| \cdots \sup_{\| x_{n}^{*} \|_{X_{n}^{*} \leq 1}} |\langle x_{n}, x_{n}^{*} \rangle|$$

$$= \sup_{\| x_{i}^{*} \|_{X_{i}^{*} \leq 1}} |x_{1}^{*} \otimes \cdots \otimes x_{n}^{*} (x_{1} \otimes \cdots \otimes x_{n})|$$

$$\leq \sup_{\| x_{i}^{*} \|_{X_{i}^{*} \leq 1}} \| x_{1}^{*} \|_{X_{1}^{*}} \cdots \| x_{n}^{*} \|_{X_{n}^{*}} \alpha(x_{1} \otimes \cdots \otimes x_{n})$$

$$= \alpha(x_{1} \otimes \cdots \otimes x_{n})$$

$$= \alpha(x_{1} \otimes \cdots \otimes x_{n})$$

が成り立ち定理の主張の第一式を得る. またこの結果より

$$\begin{aligned} \left\| x_1^* \right\|_{X_1^*} \cdots \left\| x_n^* \right\|_{X_n^*} &= \sup_{\|x_1\|_{X_1} \le 1} \left| \langle x_1, x_1^* \rangle \right| \cdots \sup_{\|x_n\|_{X_n} \le 1} \left| \langle x_n, x_n^* \rangle \right| \\ &= \sup_{\|x_1\|_{X_1} \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (x_1 \otimes \cdots \otimes x_n) \right| \\ &\leq \sup_{\alpha(x_1 \otimes \cdots \otimes x_n) \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (x_1 \otimes \cdots \otimes x_n) \right| \\ &\leq \sup_{\alpha(v) \le 1} \left| x_1^* \otimes \cdots \otimes x_n^* (v) \right| \\ &= \left\| x_1^* \otimes \cdots \otimes x_n^* \right\|_{(\bigotimes_{i=1}^n X_i, \alpha)^*} \end{aligned}$$

が成立し主張の第二式も得られる.

以下, 実際クロスノルムが存在することを示す.

定義 .4.3 (インジェクティブノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ に対し

$$\epsilon(v) := \sup_{\substack{\|x_i^*\|_{X_i^*} \le 1\\ i=1,\dots,n}} \left| x_1^* \otimes \dots \otimes x_n^*(v) \right|, \quad (v \in \bigotimes_{i=1}^n X_i)$$

により定める ϵ をインジェクティブノルム (injective norm) と呼ぶ.

定理 .4.4 (インジェクティブノルムは最小のクロスノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ において,インジェクティブノルムは最小のクロスノルムである.

証明.

第一段 ϵ が $\bigotimes_{i=1}^n X_i$ 上のノルムであることを示す。 劣加法性と同次性は $x_1^* \otimes \cdots \otimes x_n^*$ の線型性より 従う。 $v=0 \Leftrightarrow \epsilon(v)=0$ については、v=0 なら任意の $x_1^* \otimes \cdots \otimes x_n^*$ について $x_1^* \otimes \cdots \otimes x_n^*$ について $x_1^* \otimes \cdots \otimes x_n^*$ が成り立ち $\epsilon(v)=0$ が出る。 逆に $v\neq 0$ とするとき,定理.2.1 より

$$v = \sum_{i=1}^{m} x_1^j \otimes \cdots \otimes x_n^j, \quad (x_i^j \in X_i, \ j = 1, \cdots, m, \ i = 1, \cdots, n)$$

と表現できるが、定理.2.2 より $x_i^1 \neq 0$ $(i=1,\cdots,n)$ と仮定できる. x_1^1 について、もし全ての $2 \leq j \leq m$ に対し $x_i^j = x_1^l$ が満たされているなら、 $\hat{x}_1^* \in X_1^*$ を

$$\langle x_1^1, \hat{x}_1^* \rangle = \| x_1^1 \|_{X_1}, \quad \| \hat{x}_1^* \|_{X_1^*} = 1$$

を満たすように選ぶ (Hahn-Banach の定理). $x_1^j \neq x_1^1$ を満たす j がある場合,

$$L_1 := \text{Span} \left[\left\{ x_1^j ; 2 \le j \le m, x_1^1 \ne x_1^j \right\} \right]$$

により閉部分空間を定めれば x_1^1 と L_1 との距離 d_1 は正であり、Hahn-Banach の定理より

$$\langle x_1, \hat{x}_1^* \rangle = 0 \ (\forall x_1 \in L_1), \quad \langle x_1^1, \hat{x}_1^* \rangle = d_1 > 0, \quad \left\| \hat{x}_1^* \right\|_{X_1^*} = 1$$

を満たす $\hat{x}_i^* \in X_i^*$ を取ることができる. 同様に $\hat{x}_i^* \in X_i^*$ $(i=2,\cdots,n)$ を選べば

$$\hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* (x_1^j \otimes \cdots \otimes x_n^j) = \begin{cases} \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* (x_1^1 \otimes \cdots \otimes x_n^1), & (x_i^j = x_i^1, \ i = 1, \cdots, n), \\ 0, & (\text{o.w.}), \end{cases}$$

 $(j=2,\cdots,m)$ が満たされるから

$$0 < \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* (x_1^1 \otimes \cdots \otimes x_n^1) \le |\hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^* (v)| \le \epsilon(v)$$

が成立し、対偶により $\epsilon(v) = 0 \Rightarrow v = 0$ が従う.

第二段 ϵ がクロスノルムであることを示す。 先ず Hahn-Banach の定理より

$$\epsilon(x_{1} \otimes \cdots \otimes x_{n}) = \sup_{\substack{\|x_{i}^{*}\|_{X_{i}^{*}} \leq 1 \\ i=1,\cdots,n}} \left| x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}(x_{1} \otimes \cdots \otimes x_{n}) \right|$$

$$= \sup_{\|x_{1}^{*}\|_{X_{1}^{*}} \leq 1} \left| \langle x_{1}, x_{1}^{*} \rangle \right| \cdots \sup_{\|x_{n}^{*}\|_{X_{n}^{*}} \leq 1} \left| \langle x_{n}, x_{n}^{*} \rangle \right|$$

$$= \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}, \quad (\forall x_{i} \in X_{i}, i = 1, \cdots, n)$$

が成り立つ. また0でない $x_i^* \in X_i^*$, $(i = 1, \dots, n)$ に対しては

$$|x_{1}^{*} \otimes \cdots \otimes x_{n}^{*}(v)| \leq ||x_{1}^{*}||_{X_{1}^{*}} \cdots ||x_{n}^{*}||_{X_{n}^{*}} \left[\frac{x_{1}^{*}}{||x_{1}^{*}||_{X_{1}^{*}}} \otimes \cdots \otimes \frac{x_{n}^{*}}{||x_{n}^{*}||_{X_{n}^{*}}} \right](v)$$

$$\leq ||x_{1}^{*}||_{X_{1}^{*}} \cdots ||x_{n}^{*}||_{X_{n}^{*}} \epsilon(v)$$

が成立し、或る i で x_i^* が零写像のときは定理.2.6 より $x_1^* \otimes \cdots \otimes x_n^* = 0$ が満たされ、

$$\|x_1^* \otimes \cdots \otimes x_n^*\|_{(\bigotimes_{i=1}^n X_i, \epsilon)} \le \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}$$

を得る.

第三段 ϵ が最小のクロスノルムであることを示す. α を任意のクロスノルムとすれば

$$\left|x_1^* \otimes \cdots \otimes x_n^*(v)\right| \le \left\|x_1^*\right\|_{X_1^*} \cdots \left\|x_n^*\right\|_{X_n^*} \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が成り立つから、特に $\left\|x_i^*\right\|_{X_i^*} \le 1$, $(i=1,\cdots,n)$ の範囲で \sup を取れば

$$\epsilon(v) \le \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が従い ϵ の最小性が出る.

定義 .4.5 (プロジェクティブノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ に対し、定理.2.3 により

により線型同型 Φ が定まる. これを用いて

$$\pi(v) := \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \le 1}} \left|\Phi^{-1}(b)(v)\right|, \quad (v \in \bigotimes_{i=1}^{n} X_{i})$$

により定める π をプロジェクティブノルム (projective norm) と呼ぶ.

定理 .4.6 (プロジェクティブノルムは最大のクロスノルム). \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積 $\bigotimes_{i=1}^n X_i$ 上にプロジェクティブノルム π を導入する. このとき式 (15) を満たす任意のセミノルム p に対し $p \le \pi$ が成立する. 特に π は最大のクロスノルムである.

証明.

第一段 π がノルムであることを示す. $v \neq 0$ とすれば、定理.4.4 の証明と同様にして

$$0 < \left| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^*(v) \right|, \quad \left\| \hat{x}_i^* \right\|_{X_i^*} = 1, \quad (i = 1, \cdots, n)$$

を満たす $\hat{x}_i^* \in X_i^*$ $(i = 1, \dots, n)$ が存在する.

$$b(x_1, \dots, x_n) := \langle x_1, \hat{x}_1^* \rangle \dots \langle x_n, \hat{x}_n^* \rangle, \quad (x_i \in X_i, i = 1, \dots, n)$$

により n 重線型写像 b を定めれば, $\|b\|_{L^{(n)}(\bigoplus_{i=1}^n X_i,\mathbb{K})} \leq \|x_1^*\|_{X_*^*} \cdots \|x_n^*\|_{X_*^*} = 1$ かつ

$$0 < \left| \hat{x}_1^* \otimes \cdots \otimes \hat{x}_n^*(v) \right| = \left| \Phi^{-1}(b)(v) \right| \le \pi(v)$$

が成立する. $\pi(0) = 0$ と劣加法性及び同次性は $\Phi^{-1}(b)$ の線型性より従う.

第二段 π がクロスノルムであることを示す. 先ず、任意の $x_i \in X_i$ 、 $(i=1,\cdots,n)$ に対して

$$\pi(x_{1} \otimes \cdots \otimes x_{n}) = \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \leq 1}} \left| \Phi^{-1}(b)(x_{1} \otimes \cdots \otimes x_{n}) \right|$$

$$\leq \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \leq 1}} \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}$$

$$= \|x_{1}\|_{X_{1}} \cdots \|x_{n}\|_{X_{n}}$$

が成立する. また 0 でない $x_i^* \in X_i^*$, $(i = 1, \dots, n)$ に対し

$$b(x_1,\dots,x_n) := \frac{x_1^*}{\|x_1^*\|_{X_1^*}} (x_1) \dots \frac{x_n^*}{\|x_n^*\|_{X_n^*}} (x_n), \quad (x_i \in X_i, \ i = 1,\dots,n)$$

により $\|b\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i,\mathbb{K}\right)} \le 1$ を満たす有界 n 重線型 b を定めれば、 π の定義より

$$\left|\Phi^{-1}(b)(v)\right| \le \pi(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が成り立つ. 一方で写像のテンソル積の定義より

$$\Phi^{-1}(b) = \frac{x_1^*}{\|x_1^*\|_{X_1^*}} \otimes \cdots \otimes \frac{x_n^*}{\|x_n^*\|_{X_n^*}} = \frac{1}{\|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}} x_1^* \otimes \cdots \otimes x_n^*$$

が満たされるから

$$|x_1^* \otimes \cdots \otimes x_n^*(v)| \le ||x_1^*||_{X_1^*} \cdots ||x_n^*||_{X_n^*} \pi(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i)$$

が従う. 定理.2.6 より上式は $x_i^* = 0$ の場合も込めて成立するから

$$\|x_1^* \otimes \cdots \otimes x_n^*\|_{(\bigotimes_{i=1}^n X_i, \pi)^*} \le \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}$$

が得られる.

第三段 p を (15) を満たすセミノルムとし、 $v \in \bigotimes_{i=1}^{n} X_{i}$ を任意に取れば

$$p(v) = \phi_v(v), \quad |\phi_v(u)| \le p(u) \quad (\forall u \in \bigotimes_{i=1}^n X_i)$$

を満たす $\phi_{\nu} \in (\bigotimes_{i=1}^{n} X_{i}, \pi)^{*}$ が存在する (Hahn-Banach の定理).

$$\begin{aligned} |(\phi_{v} \circ \otimes)(x_{1}, \cdots, x_{n})| &= |\phi_{v}(x_{1} \otimes \cdots \otimes x_{n})| \\ &\leq p(x_{1} \otimes \cdots \otimes x_{n}) \\ &\leq ||x_{1}||_{X_{1}} \cdots ||x_{n}||_{X_{n}}, \quad (\forall x_{i} \in X_{i}, i = 1, \cdots, n) \end{aligned}$$

が成り立つから $\|\phi_{\nu}\circ\otimes\|_{L^{(n)}\left(\bigoplus_{i=1}^{n}X_{i},\mathbb{K}\right)}\leq 1$ が従い, π の定義より

$$p(v) = \phi_v(v) = \Phi^{-1}(\phi_v \circ \otimes)(v) \le \pi(v)$$

が得られる.

$$\pi(v) = \inf \left\{ \sum_{i=1}^{n} ||x_1||_{X_1} \cdots ||x_n||_{X_n} ; v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j \right\}.$$

証明.

第一段 $x_1 \otimes \cdots \otimes x_n$ 上のセミノルム λ を次で定める:

$$\lambda(v) := \inf \left\{ \sum_{i=1}^{n} \|x_1\|_{X_1} \cdots \|x_n\|_{X_n} \; ; \quad v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j \right\}, \quad (\forall v \in \bigotimes_{i=1}^{n} X_i).$$

このとき λ が式 (15) かつ $\lambda \ge \pi$ を満たせば、定理.4.6 より $\lambda = \pi$ が従う.

第二段 λ がセミノルムであることを示す. 実際,任意に $u,v \in \bigotimes_{i=1}^{n} X_i$ を取り,

$$u = \sum_{i=1}^{m} x_1^j \otimes \cdots \otimes x_n^j, \quad v = \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k$$

を一つの表現とすれば、λの定め方より

$$\lambda(u+v) \le \sum_{j=1}^m x_1^j \otimes \cdots \otimes x_n^j + \sum_{k=1}^r a_1^k \otimes \cdots \otimes a_n^k$$

が成り立つ. 右辺を移項して

$$\lambda(u+v) - \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k \le \lambda(u) \le \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j$$

かつ

$$\lambda(u+v)-\lambda(u) \leq \lambda(v) \leq \sum_{k=1}^r a_1^k \otimes \cdots \otimes a_n^k$$

が従い λ の劣加法性を得る. また任意の $0 \neq \alpha \in \mathbb{K}, v \in \bigotimes_{i=1}^{n} X_{i}$ に対し

$$v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j$$

を一つの分割とすれば

$$\alpha v = \sum_{j=1}^{m} \left(\alpha x_1^j \right) \otimes \cdots \otimes x_n^j$$

は αν の一つの分割となるから

$$\lambda(\alpha v) \leq \sum_{j=1}^{m} \left\| \alpha x_{1}^{j} \right\|_{X_{1}} \cdots \left\| x_{n}^{j} \right\|_{X_{n}} = |\alpha| \sum_{j=1}^{m} \left\| x_{1}^{j} \right\|_{X_{1}} \cdots \left\| x_{n}^{j} \right\|_{X_{n}}$$

が成立し、v の分割について下限を取れば $\lambda(\alpha v) \leq |\alpha|\lambda(v)$ が従う. 逆に

$$\alpha v = \sum_{k=1}^{r} a_1^k \otimes \cdots \otimes a_n^k$$

とすれば

$$\lambda(v) \le \sum_{k=1}^{r} \left\| \frac{1}{\alpha} a_{1}^{k} \right\|_{X_{1}} \cdots \left\| a_{n}^{k} \right\|_{X_{n}} = \frac{1}{|\alpha|} \sum_{k=1}^{r} \left\| a_{1}^{k} \right\|_{X_{1}} \cdots \left\| a_{n}^{k} \right\|_{X_{n}}$$

が成り立ち $|\alpha|\lambda(\nu) \leq \lambda(\alpha\nu)$ が従う. $\nu = 0$ なら $\nu = 0 \otimes \cdots \otimes 0$ より $\lambda(\nu) = 0$ が満たされ

$$\lambda(\alpha v) = |\alpha|\lambda(v), \quad (\forall \alpha \in \mathbb{K}, \ v \in \bigotimes_{i=1}^n X_i)$$

が得られる.

第三段 λ が式 (15) を満たすことを示す. 実際 λ の定め方より

$$\lambda(x_1 \otimes \cdots \otimes x_n) \leq ||x_1||_{X_1} \cdots ||x_n||_{X_n}, \quad (\forall x_i \in X_i, i = 1, \cdots, n)$$

が成り立つ.

第四段 $\lambda \geq \pi$ を示す. いま、任意に $v \in \bigotimes_{i=1}^{n} X_i$ を取り、次の分割を持つとする:

$$v = \sum_{j=1}^{m} x_1^j \otimes \cdots \otimes x_n^j.$$

 $\|b\|_{L^{(n)}\left(\bigoplus_{i=1}^n X_i,\mathbb{K}\right)} \leq 1$ を満たす $b \in L^{(n)}\left(\bigoplus_{i=1}^n X_i,\mathbb{K}\right)$ と式 (17) の Φ に対し

$$\left| \Phi^{-1}(b)(v) \right| \le \sum_{j=1}^{m} \left| \Phi^{-1}(b)(x_1^j \otimes \dots \otimes x_n^j) \right|$$

$$= \sum_{j=1}^{m} \left| b(x_1^j, \dots, x_n^j) \right| \le \sum_{j=1}^{m} \left\| x_1^j \right\|_{X_1} \dots \left\| x_n^j \right\|_{X_n}$$

が成り立つから, bに無関係に

$$\left|\Phi^{-1}(b)(v)\right| \le \lambda(v)$$

が満たされ

$$\pi(v) = \sup_{\substack{b \in L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K}) \\ \|b\|_{L^{(n)}(\bigoplus_{i=1}^{n} X_{i}, \mathbb{K})} \le 1}} \left| \Phi^{-1}(b)(v) \right| \le \lambda(v)$$

が従う.

定理 .4.8. $\bigotimes_{i=1}^n X_i$ を \mathbb{K} -Banach 空間の族 $(X_i)_{i=1}^n$ のテンソル積とする. このとき $\bigotimes_{i=1}^n X_i$ 上の任意のノルム α に対し次が成立する:

$$\alpha$$
 がクロスノルム \Leftrightarrow $\epsilon \leq \alpha \leq \pi$.

証明. (⇒) はすでに示したから (←) を示す。実際、任意の $x_i \in X_i$ 、 $(i=1,\cdots,n)$ に対して $\alpha(x_1 \otimes \cdots \otimes x_n) \leq \pi(x_1 \otimes \cdots \otimes x_n) \leq \|x_1\|_{X_1} \cdots \|x_n\|_{X_n}$

が成立し、また任意の $x_i^* \in X_i^*$, $(i=1,\cdots,n)$ に対して

$$\begin{aligned} \left| x_1^* \otimes \cdots \otimes x_n^*(v) \right| &\leq \left\| \left| x_1^* \otimes \cdots \otimes x_n^* \right| \right\|_{\left(\bigotimes_{i=1}^n X_i, \epsilon\right)^*} \epsilon(v) \\ &\leq \left\| \left| x_1^* \right| \right\|_{X_1^*} \cdots \left\| \left| x_n^* \right| \right\|_{X_n^*} \alpha(v), \quad (\forall v \in \bigotimes_{i=1}^n X_i) \end{aligned}$$

が満たされ $\|x_1^* \otimes \cdots \otimes x_n^*\|_{(\bigotimes_{i=1}^n X_i, \alpha)^*} \le \|x_1^*\|_{X_1^*} \cdots \|x_n^*\|_{X_n^*}$ が得られる.