Problem

In $\triangle ABC, AB = AC$. E is the midpoint of AB. Extend AB to D such that BD = BA. Prove: CD = 2CE.

Solution

Method 1:

Extend CE to F such that CE = EF. Since AE = EB and $\angle 1 = \angle 2, \triangle AEC \cong \triangle BEF$.

Thus, $\angle 3 = \angle F, \angle 4 = \angle A, BF = AC$. Since AB = AC = BD, therefore BF = BD. $\angle DBC = \angle A + \angle ACB = \angle A + \angle ABC$ or $\angle FBC = \angle 4 + \angle ABC = \angle A + \angle ABC$.

Thus, $\angle DBC = \angle FBC$. Since $BC = BC, \triangle FBC \cong \triangle DBC$. Therefore CF = CD.

Since CE = EF = 1/2CF = 1/2CD, CD = 2CE.

${\bf Method}\ 2:$

Extend CE to F such that CE = EF. Since AE = EB and $\angle 1 = \angle 2, \triangle AEF \cong \triangle BEC$.

Thus, $\angle 3 = \angle F, \angle 4 = \angle CBE, AF = BC$. Since AB = AC = BD, AC = BD. $\angle DBC = \angle CAB + \angle ACB = \angle CAB + \angle ABC$. $\angle CAF = \angle CAB + \angle 4 = \angle CAB + \angle ABC$.

Thus, $\angle DBC = \angle CAF$. Since AF = BC, AC = BD, so $\triangle FAC \cong \triangle CBD$.

 $\label{eq:condition} \text{Therefore } CF = CD.$ Since CE = EF = 1/2CF = 1/2CD, CD = 2CE.