ICPC TEMPLATE

AC mountain(ac 山岳险天下)

2019年11月4日

目录

1	一切的开始	3
	1.1 宏定义	3
	1.2 快速读	4
	1.3 对拍	4
2	数据结构	5
	2.1 BIT	5
3	图论	6
	3.1 最短路	6
	3.1.1 floyd	6
	3.2 网络流	8
4	数学	13
	4.1 BSGS	
	4.2 扩展中国剩余定理	14
	4.2.1 值在 int128 以内	14
	4.2.2 值在 int128 以外	15
	4.3 扩展卢卡斯	16
	4.4 fft	17
	4.5 fwt	19
	4.6 polya	19
	4.7 大素数	20
	4.8 线性基	23
	4.9 洲阁筛	24
	4.10 计算素数 k 次幂前缀和	24
	4.11 自然幂数和	26
	4.12 组合数打表	27
	4.13 杜教筛	28
	4.14 二次剩余	29
	4.14.1 $\Re x^2 = a(mod p) \dots $	29
	4.15 高精度	31

目录 2

	4.16 反素数	 . 34
	4.16.1 求小于 n 并且因子个数最多的那个数	 . 34
	4.17 高斯消元	 . 34
	4.18 高斯消元解异或方程	 . 36
	4.19 矩阵类(快速幂)	 . 37
	4.20 类欧几里得	 . 38
	4.21 牛顿迭代	 . 38
	4.22 母函数	 . 39
	4.22.1 莫比乌斯反演	 . 39
	4.23 斐波那契广义循环节	 . 40
	4.24 无名小定理	 . 43
	4.25 自然常数	 . 43
	4.26 欧拉常数	 . 44
	4.27 错排公式	 . 44
	4.28 伯努利数	 . 44
	4.29 自然幂数和	 . 44
	4.30 Catalan	 . 44
	4.31 pick 定理	 . 44
	4.32 正多边形外接圆半径	 . 44
	4.33 Fibonacci	 . 44
۳	计算几何	45
Э	5.1 处理平面内所有直线围成的所有多边形	
	5.1 发程十四的///自己线回风的///有夕起///	 . 40
6	字符串	50
	6.1 kmp	 . 50
	6.2 SA	 . 51
	6.3 回文树 1	 . 53
	6.4 回文树 2	 . 54
7	· 杂项	55
1	- ボ - グ - 7.1 - 退火	
	7.2 博弈	
	7 9 1 Deals	E 6
	7.2.1 Bash	
	7.2.2 Wythoff	 . 56
	7.2.2 Wythoff	 . 56
	7.2.2 Wythoff	 . 56 . 56
	7.2.2 Wythoff 7.2.3 Fibonacci's Game 7.2.4 staircase nim 7.2.5 anti-nim	 . 56 . 56 . 56
	7.2.2 Wythoff 7.2.3 Fibonacci's Game 7.2.4 staircase nim 7.2.5 anti-nim 7.2.6 约数博弈	 . 56 . 56 . 56 . 57
	7.2.2 Wythoff 7.2.3 Fibonacci's Game 7.2.4 staircase nim 7.2.5 anti-nim 7.2.6 约数博弈 7.2.7 约数和倍数博弈	 . 56 . 56 . 57 . 57
	7.2.2 Wythoff 7.2.3 Fibonacci's Game 7.2.4 staircase nim 7.2.5 anti-nim 7.2.6 约数博弈 7.2.7 约数和倍数博弈 7.2.8 Chomp 博弈	 . 56 . 56 . 57 . 57 . 57
	7.2.2 Wythoff 7.2.3 Fibonacci's Game 7.2.4 staircase nim 7.2.5 anti-nim 7.2.6 约数博弈 7.2.7 约数和倍数博弈	 . 56 . 56 . 57 . 57 . 57

1 一切的开始
8 DP 60 8.1 背包 60 8.1.1 01 背包 60 8.1.2 完全背包 62 8.1.3 多组背包 63 8.1.4 分组背包 64 8.1.5 树形依赖背包 64
1 一切的开始
1.1 宏定义
by 杜教
#include <bits stdc++.h=""> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define="" (int="" for="" i="n-1;i" per(i,a,n)="" 注意范围[a.n)="">=a;i)//注意范围[a.n-1] #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; mt19937 mrand(random_device{}()); const ll mod=1000000007; int rnd(int x) { return mrand() % x;} ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;} //</int,int></int></n;i++)></bits>
set(CMAKE_CXX_FLAGS "\${CMAKE_CXX_FLAGS} -02 -Dzerol -Wall")
<pre>#ifdef ONLINE_JUDGE #define assert(condition) if (!(condition)) { int x = 1, y = 0; cout << x / y << endl; }</pre>

3 #endif

1 一切的开始 4

1.2 快速读

```
inline char nc() {
       static char buf[100000], *p1 = buf, *p2 = buf;
       return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1++;
   }
4
   template <typename T>
   bool rn(T& v) {
       static char ch;
      while (ch != EOF && !isdigit(ch)) ch = nc();
      if (ch == EOF) return false;
      for (v = 0; isdigit(ch); ch = nc())
          v = v * 10 + ch - '0';
      return true;
13
14
   template <typename T>
   void o(T p) {
16
       static int stk[70], tp;
17
       if (p == 0) { putchar('0'); return; }
       if (p < 0) { p = -p; putchar('-'); }</pre>
19
      while (p) stk[++tp] = p % 10, p /= 10;
20
      while (tp) putchar(stk[tp--] + '0');
   }
```

- 需要初始化
- 需要一次读入
- 不支持负数

```
const int MAXS = 100 * 1024 * 1024;
char buf[MAXS];

template<typename T>

inline bool read(T& x) {

    static char* p = buf;
    x = 0;

    while (*p && !isdigit(*p)) ++p;

    if (!*p) return false;

    while (isdigit(*p)) x = x * 10 + *p++ - 48;

    return true;

}

fread(buf, 1, MAXS, stdin);
```

1.3 对拍

2 数据结构 5

```
#!/usr/bin/env bash
   g++ -o r main.cpp -02 -std=c++11
   g++ -o std std.cpp -02 -std=c++11
   while true; do
      python gen.py > in
      ./std < in > stdout
      ./r < in > out
      if test $? -ne 0; then
          exit 0
      fi
10
      if diff stdout out; then
11
          printf "AC\n"
12
      else
13
          printf "GG\n"
14
          exit 0
15
      fi
16
   done
```

• 快速编译运行

```
#!/bin/bash
property #!/bin/bash
the state of the st
```

2 数据结构

2.1 BIT

```
}
14
       int query(int x)
15
16
           int ans = 0;
17
           for(;x;x-=lowbit(x))ans+=a[x];
           return ans;
19
20
       void update(int x,int v)
21
       {
           for(;x<sz;x+=lowbit(x))</pre>
23
               a[x] += v;
       }
25
   }bit;
```

3 图论

3.1 最短路

3.1.1 floyd

```
for (int k = 1; k <= n; k++) {
   for (int i = 1; i <= n; i++) {
     for (int j = 1; j <= n; j++) {
        f[i][j] = min(f[i][j], f[i][k] + f[k][j]);
     }
}
</pre>
```

• 找最小环

```
int val[maxn + 1] [maxn + 1]; // 原图的邻接矩阵
   int floyd(const int &n) {
     static int dis[maxn + 1][maxn + 1]; // 最短路矩阵
     for (int i = 1; i <= n; ++i)</pre>
      for (int j = 1; j <= n; ++j) dis[i][j] = val[i][j]; // 初始化最短路矩阵
     int ans = inf;
     for (int k = 1; k <= n; ++k) {</pre>
      for (int i = 1; i < k; ++i)</pre>
        for (int j = 1; j < i; ++j)
          ans = std::min(ans, dis[i][j] + val[i][k] + val[k][j]); // 更新答案
      for (int i = 1; i <= n; ++i)</pre>
        for (int j = 1; j \le n; ++j)
12
          dis[i][j] = std::min(
13
             dis[i][j], dis[i][k] + dis[k][j]); // 正常的 floyd 更新最短路矩阵
14
```

```
15  }
16  return ans;
17 }
```

• 利用 floyd 的 dp 思路求解

```
int dp[maxn][maxn][maxn];
   int w[maxn];
   int s[maxn];
   bool cmp(int a,int b)
   {
       return w[a] < w[b];</pre>
   }
   rep(i,1,n+1)
   {
       rep(j,1,n+1)
10
11
          scanf("%d",&dp[i][j][0]);
12
           rep(k,1,n+1)
14
               dp[i][j][k] = 1e9;
           }
16
        }
       s[i] = i;
18
   }
19
   sort(s+1,s+n+1,cmp);
   rep(k,1,n+1)
22
       rep(i,1,n+1)
23
24
           rep(j,1,n+1)
25
26
               dp[i][j][k] = min(dp[i][j][k-1], dp[i][s[k]][k-1] + dp[s[k]][j][k-1]);
27
           }
       }
29
   }
30
```

• 传递闭包已知一个有向图中任意两点之间是否有连边,要求判断任意两点是否连通。

```
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
if (f[i][k]) f[i] = f[i] & f[k];</pre>
```

3.2 网络流

• dinic

```
const int maxn = 4e3+100;
    const int maxm = 1e5+100;
   const int inf = 0x7f7f7f7f;
   typedef struct Dinic
   {
6
       typedef struct Edge
           int u,v,w,nxt;
       } Edge;
       int head[maxn],hcnt;
11
       int dep[maxn];
       int cur[maxn];
       Edge e[maxm];
       int S,T,N;
15
       void init()
16
          memset(head,-1,sizeof head);
18
           hcnt = 0;
19
           S = T = N = 0;
20
       }
21
       void adde(int u,int v,int w)
22
23
           e[hcnt].u = u,e[hcnt].v = v,e[hcnt].w = w;
24
           e[hcnt].nxt = head[u];head[u] = hcnt++;
           e[hcnt].u = v,e[hcnt].v = u,e[hcnt].w = 0;
           e[hcnt].nxt = head[v];head[v] = hcnt++;
       }
       int bfs()
30
           rep(i,0,N)
31
           {
32
              dep[i] = inf;
33
34
           queue<int> q;
35
           q.push(S); dep[S] = 0;
           while(!q.empty())
37
              int u = q.front();q.pop();
              for(int i = head[u];~i;i = e[i].nxt)
                  int v = e[i].v, w = e[i].w;
42
                  if(w > 0 && dep[u] + 1 < dep[v])</pre>
43
```

```
{
44
                      dep[v] = dep[u] + 1;
45
                      if(v == T)
46
47
                          return 1;
                      }
49
                      q.push(v);
50
                  }
51
              }
           }
53
           return dep[T] != inf;
55
       int dfs(int s,int mw)
           if(s == T) return mw;
           for(int i = cur[s];~i;i=e[i].nxt)
60
               cur[s] = i;
61
               int v = e[i].v,w=e[i].w;
62
              if(w <= 0 || dep[v] != dep[s] + 1)</pre>
64
                  continue;
65
66
              int cw = dfs(v,min(w,mw));
               if(cw <= 0)</pre>
                  continue;
               e[i].w -= cw;
               e[i^1].w += cw;
              return cw;
72
           }
           return 0;
74
       }
75
       11 dinic()
76
77
           ll res = 0;
           while(bfs())
79
              rep(i,0,N)
                  cur[i] = head[i];
               while(int d = dfs(S,inf))
86
                  res += 111 * d;
88
           }
89
```

```
return res;

Dinic;
```

• MCMF1

int ret=0; mark[x]=1;

40

```
namespace mincostflow {
       const int INF=0x3f3f3f3f;
       struct node {
           int to; int cap,cost; int rev;
          node(int t=0,int c=0,int _c=0,int n=0):
              to(t),cap(c),cost(_c),rev(n) {};
       }; vector<node> edge[maxn];
       void addedge(int from,int to,int cap,int cost) {
           edge[from].push_back(node(to,cap,cost,edge[to].size()));
           edge[to].push_back(node(from,0,-cost,edge[from].size()-1));
       }
       int dis[maxn];
12
       bool mark[maxn];
       void spfa(int s,int t,int n) {
           memset(dis+1,0x3f,n*sizeof(int));
          memset(mark+1,0,n*sizeof(bool));
           static int Q[maxn],ST,ED;
17
          dis[s]=0; ST=ED=0; Q[ED++]=s;
          while (ST!=ED) {
19
              int v=Q[ST]; mark[v]=0;
20
              if ((++ST)==maxn) ST=0;
21
              for (node &e:edge[v]) {
                  if (e.cap>0&&dis[e.to]>dis[v]+e.cost) {
                     dis[e.to] = dis[v] + e.cost;
                     if (!mark[e.to]) {
                         if (ST==ED||dis[Q[ST]]<=dis[e.to]) {</pre>
                             Q[ED] = e.to, mark[e.to] = 1;
                             if ((++ED)==maxn) ED=0;
                         } else {
                             if ((--ST)<0) ST+=maxn;</pre>
30
                             Q[ST] = e.to, mark[e.to] = 1;
                         }
32
                     }
                  }
34
              }
36
       } int cur[maxn];
       int dfs(int x,int t,int flow) {
           if (x==t||!flow) return flow;
39
```

```
for (int &i=cur[x];i<(int)edge[x].size();i++) {</pre>
41
              node &e=edge[x][i];
42
              if (!mark[e.to]&&e.cap) {
                  if (dis[x]+e.cost==dis[e.to]) {
                     int f=dfs(e.to,t,min(flow,e.cap));
                     e.cap-=f; edge[e.to][e.rev].cap+=f;
46
                     ret+=f; flow-=f;
                     if (flow==0) break;
                  }
              }
50
          } mark[x]=0;
           return ret;
       }
       pair<int,int> min_costflow(int s,int t,int n) {
           int ret=0,ans=0;
           int flow = INF;
           while (flow) {
              spfa(s,t,n); if (dis[t]==INF) break;
              memset(cur+1,0,n*sizeof(int));
59
              int len=dis[t],f;
60
              while ((f=dfs(s,t,flow))>0)
61
                  ret+=f,ans+=len*f,flow-=f;
           } return make_pair(ret,ans);//最大流,最小费用
63
       }
       void init(int n) {
65
           int i; for (int i = 1; i <= n; i++) edge[i].clear();</pre>
       }
   }
```

• MCMF2

```
const int maxn = 2e4+10;
   namespace MCMF {
       const int inf=0x3f3f3f3f;
       struct Edge {
          int to; int cap,cost; int rev;
          Edge(int t=0,int c=0,int _c=0,int n=0):
              to(t),cap(c),cost(_c),rev(n) {};
       };
       vector<Edge> edge[maxn];
       void adde(int from,int to,int cap,int cost)
       {
          edge[from].push_back(Edge(to,cap,cost,edge[to].size()));
          edge[to].push_back(Edge(from,0,-cost,edge[from].size()-1));
13
       }
14
```

```
int dis[maxn];
       bool mark[maxn];
       void spfa(int s,int t,int n)
19
20
           memset(dis,0x3f,sizeof dis);
21
           memset(mark,0,sizeof mark);
22
           static int Q[maxn],ST,ED;
23
           dis[s]=0; ST=ED=0; Q[ED++]=s;
           while (ST!=ED)
25
               int v=Q[ST]; mark[v]=0;
               if ((++ST)==maxn) ST=0;
               for (Edge &e:edge[v])
                  if (e.cap>0&&dis[e.to]>dis[v]+e.cost)
32
                      dis[e.to] = dis[v] + e.cost;
33
                      if (!mark[e.to])
34
                      {
                          if (ST==ED||dis[Q[ST]]<=dis[e.to])</pre>
36
                             Q[ED] = e.to, mark[e.to] = 1;
                              if ((++ED)==maxn) ED=0;
                          }
40
                          else
                          {
                              if ((--ST)<0) ST+=maxn;</pre>
                              Q[ST]=e.to,mark[e.to]=1;
                      }
46
                  }
              }
           }
49
       }
50
       int cur[maxn];
51
       int dfs(int x,int t,int flow)
       {
           if (x==t||!flow) return flow;
           int ret=0; mark[x]=1;
           for (int &i=cur[x];i<(int)edge[x].size();i++)</pre>
               Edge &e=edge[x][i];
               if (!mark[e.to]&&e.cap)
               {
60
                  if (dis[x]+e.cost==dis[e.to])
61
```

```
{
62
                     int f=dfs(e.to,t,min(flow,e.cap));
63
                     e.cap-=f; edge[e.to][e.rev].cap+=f;
64
                     ret+=f; flow-=f;
65
                     if (flow==0) break;
                 }
67
              }
69
          mark[x]=0;
          return ret;
71
       }
       pair<int,ll> mc(int s,int t,int n)
           int ret=0;
          ll ans=0;
           int flow = inf;
           while(flow)
              spfa(s,t,n); if (dis[t]==inf) break;
80
              memset(cur,0,sizeof cur);
              int len=dis[t],f;
82
              while ((f=dfs(s,t,flow))>0)
                  ret+=f,ans+=(ll)len*(ll)f,flow-=f;
          }
          return make_pair(ret,ans);//最大流,最小费用
86
       }
       void init(int n)
          for(int i = 1; i <= n; i++) edge[i].clear();</pre>
90
91
   }
92
```

4 数学

4.1 BSGS

• 用于计算方程 \$ a^x = b (% p)\$

```
int BSGS(int a,int b,int p)
{
    map<int,int > hash;
    b %= p;
    int t = (int)sqrt(p) + 1;
    for(int j = 0; j < t; j ++){
        int val = 1ll * b * fpow(a,j,p) % p;
}</pre>
```

```
hash[val] = j;
       a = fpow(a,t,p);
10
       if(!a) return b == 0 ? 1 : -1;
11
       for(int i = 0; i <= t;++i){</pre>
12
          int val = fpow(a,i,p);
13
          int j = hash.find(val) == hash.end() ? -1 : hash[val];
14
          if(j \ge 0 \&\& i * t - j > 0) return i * t - j;
15
       }
16
       return -1;
17
   }
18
```

4.2 扩展中国剩余定理

4.2.1 值在 ___int128 以内

```
typedef __int128 11;
   void exgcd(ll a,ll b,ll &x,ll &y)
   {
       if(!b){
          x = 1; y = 0;
          return ;
       exgcd(b,a % b,y,x);
      y -= a / b * x;
9
   }
10
   ll inv(ll a,ll p)
   {
12
      11 x,y;
13
       exgcd(a,p,x,y);
      if(x < 0) x += p;
16
      return x;
17
   }
   11 ex_crt()
18
   {
19
      bool flag = true;
20
      ll m1,m2,c1,c2,tmp;
21
       for(int i = 2;i <= n;++i){//m[i]为模,c[i]为余数
22
          m1 = m[i - 1]; m2 = m[i];
          c1 = c[i - 1]; c2 = c[i];
24
          tmp = gcd(m1, m2);
          if((c2 - c1) % tmp != 0) {
              flag = false;
              return -1;
29
          m[i] = m1 / tmp * m2;
30
```

```
c[i] = inv(m1 / tmp,m2 / tmp) * (c2 - c1) / tmp % (m2 / tmp) * m1 + c1;
c[i] = (c[i] % m[i] + m[i]) % m[i];

return c[n];
}
```

4.2.2 值在 ___int128 以外

37 else:

```
import sys
   def exgcd(a, b):
       if b == 0:
          return (a, 1, 0)
      q = a // b
       g, y, x = exgcd(b, a - q * b)
      y -= q * x
      return (g, x, y)
   def gcd(a, b):
10
       if b == 0:
11
          return a
       else:
13
          return gcd(b, a % b)
14
   N, lim = map(int, input().split())
   M, ans = map(int, input().split())
   f = 0
   for i in range(0, N - 1):
      m, r = map(int, input().split())
20
      A = M
      C = ((r - ans) \% m)
23
      if (ans - r) % gcd(M, m) != 0:
24
          f = 1
25
      g, x, y = exgcd(A, B)
      x = (x * C // g) \% (B // g)
27
      ans += x * M
      M *= B // g
       ans \%= M
   if ans < 0:
       ans += M
33
   if f == 1:
      ans = -1
35
      print(ans)
36
```

```
print(ans)
print ans
```

4.3 扩展卢卡斯

```
ll n, m, p;
   ll exgcd(ll a, ll b, ll &x, ll &y){
       if(!b){
          x = 1, y = 0;
          return a;
       }
       11 res = exgcd(b, a % b, x, y);
       11 t = x;
       x = y;
       y = t - a / b * y;
10
       return res;
11
   }
12
   11 fpow(ll a, ll b, ll mod){
14
       ll res = 1;
15
       while(b){
16
          if(b & 1) res = (res * a) % mod;
          a = (a * a) \% mod;
          b >>= 1;
       }
       return res;
21
22
   }
23
   ll inv(ll a, ll p){
24
       11 x, y;
25
       exgcd(a, p, x, y);
26
       if(x + p > p) return x;
27
       return x + p;
   }
29
30
   inline 11 crt(11 n, 11 mod)
       return n * (p / mod) % p * inv(p / mod, mod) % p;
33
   }
34
   11 fac(ll n, ll p, ll k){
                                //k = p^x
36
         if(!n) return 1;
37
          11 \text{ ans} = 1;
38
       for(int i = 2; i <= k;++i)</pre>
39
          if(i % p) ans = ans * i % k;
40
```

```
ans = fpow(ans, n / k, k);
41
       for(int i = 2; i <= n % k;++i)</pre>
42
           if(i % p) ans = ans * i % k;
43
       return ans * fac(n / p, p, k) % k;
44
45
46
   11 C(11 n, 11 m, 11 p, 11 k){ //k = p^x
47
          if(n < m) return 0;</pre>
48
       ll a = fac(n,p,k), b = fac(m,p,k), c = fac(n - m,p,k);
49
       11 \text{ cnt} = 0;
50
       for(ll i = p; i <= n; i *= p) cnt += n / i;</pre>
       for(ll i = p; i <= m; i *= p) cnt -= m / i;</pre>
52
       for(ll i = p; i <= n-m; i *= p) cnt -= (n - m) / i;</pre>
       return a*inv(b, k) % k * inv(c, k) % k * fpow(p, cnt, k) % k;
   }
55
56
   11 ex_Lucas()
57
   {
58
       11 t = p, ans =i;
59
               t /= i;
60
           }
61
           ans = (ans + crt(C(n, m, i, tmp), tmp))%p;
62
63
       if(t > 1) ans = (ans + crt(C(n, m, t, t), t))%p;
       return ans%p;
65
   }
66
```

4.4 fft

• 多项式快速计算

```
const double PI = acos(-1.0);
   struct Complex{
      double x, y; // 实部和虚部 x+yi
      Complex(double _x = 0.0, double _y = 0.0) {
          x = _x;
          y = _y;
      Complex operator-(const Complex &b) const {
          return Complex(x - b.x, y - b.y);
9
      Complex operator+(const Complex &b) const {
11
          return Complex(x + b.x, y + b.y);
13
       Complex operator*(const Complex &b) const {
14
          return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
15
```

```
}
   };
   /*
   * 进行 FFT 和 IFFT 前的反转变换。
   * 位置 i 和 (i 二进制反转后位置)互换
   * len 必须去 2 的幂
   */
22
   void change(Complex y[], int len){
23
      for (int i = 1, j = len / 2,k;i < len - 1;++i){
24
          if (i < j)swap(y[i], y[j]);</pre>
25
          //交换互为小标反转的元素,i<j 保证交换一次
26
          //i 做正常的+1,j 左反转类型的+1,始终保持 i 和 j 是反转的
          k = len / 2;
          while(j \ge k){
             j -= k;
30
             k >>= 1;
31
          }
32
          if (j < k) j += k;
33
34
   }
35
36
   * 做 FFT
37
   * len 必须为 2~k 形式,
   * on==1 时是 DFT, on==-1 时是 IDFT
40
   void fft(Complex y[], int len, int on) {
       change(y, len);
       for (int h = 2; h <= len; h <<= 1) {</pre>
43
          Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
44
          for (int j = 0; j < len; <math>j += h) {
45
             Complex w(1, 0);
46
             for (int k = j; k < j + h / 2; k++) {
47
                 Complex u = y[k];
                 Complex t = w * y[k + h / 2];
49
                 y[k] = u + t;
                 y[k + h / 2] = u - t;
51
                 w = w * wn;
53
             }
          }
      }
55
       if (on == -1)
57
          for (int i = 0; i < len; i++) y[i].x /= len;</pre>
   }
58
```

4.5 fwt

• 计算集合卷积

```
void fwt(ll *a, int n)
   {
       for(int d = 1;d < n;d <<= 1){</pre>
           for(int m = d << 1,i = 0;i < n;i += m){</pre>
               for(int j = 0; j < d; ++j){
                  ll x = a[i + j], y = a[i + j + d];
                  a[i + j] = (x + y), a[i + j + d] = (x - y);
                  //xor:a[i + j] = x + y,a[i + j + d] = (x - y + mod) \% mod;
                  //and:a[i + j] = x + y;
                  //or:a[i + j + d] = x + y;
              }
12
   void ufwt(ll *a, int n)
13
14
       for(int d = 1;d < n;d <<= 1){</pre>
15
           for(int m = d << 1,i = 0;i < n;i += m){</pre>
16
              for(int j = 0; j < d; ++j){
                  ll x = a[i + j], y = a[i + j + d];
18
                  a[i + j] = 1LL * (x + y) / 2, a[i + j + d] = (1LL * (x - y) / 2);
                  //xor:a[i + j] = (x + y) / 2,a[i + j + d] = (x - y) / 2;
20
                  //and:a[i + j] = x - y;
                  //or:a[i + j + d] = y - x;
              }
   void work(ll *a,ll *b, int n)
25
26
       fwt(a,n);
27
       fwt(b,n);
       for(int i = 0;i < n;++i) a[i] *= b[i];</pre>
29
       ufwt(a,n);
30
31
```

4.6 polya

• m 种颜色, n 个长度

```
const int N = 1e5 + 7;
int euler(int n) {
   int ans = n;
   for(int i = 1; i <= cnt && prime[i] * prime[i] <= n; ++i)
   if(n % prime[i] == 0) {</pre>
```

```
ans -= ans / prime[i];
              while(n % prime[i] == 0) n /= prime[i];
          }
       if(n > 1) ans -= ans / n;
10
       return ans;
11
   }
12
   int n,m;
13
   int main()
14
   {
15
       getprime();
16
       while(scanf("%d%d",&m,&n) && (n || m)){
          11 \text{ ans} = 0;
          for(int i = 1; i * i <= n;++i){</pre>
              if(n \% i == 0)
                  ans += i * i == n ? euler(i) * fpow(m,n / i) : euler(i) * fpow(m,n / i) + euler(n / i)
21
                       * fpow(m,i);
           }
22
           ans += n & 1 ? n * fpow(m,n / 2 + 1) : (fpow(m,n >> 1) + fpow(m,n / 2 + 1)) * (n >> 1);
23
           printf("%lld\n",ans / (n << 1LL));
24
       }
25
       return 0;
26
   }
27
```

4.7 大素数

• 包含分解,判断过程为 $O(n^{\frac{1}{4}})$

```
typedef long long 11;
   int pri[] = {2,3,5,7,11,13,17,19,23,29,31};
   11 minfacotr;
   ll mult(ll a, ll b, ll mod) // 大数乘法
       11 \text{ ans = 0};
       while(b)
           if (b&1)
           {
10
              ans+= a;
11
              if (ans >= mod)
                  ans -= mod;
          }
          b >>= 1;
15
           a <<= 1;
           if (a >= mod)
              a-= mod;
18
       }
19
```

```
return ans;
   11 qpow(ll x, ll n, ll mod)
23
       11 \text{ ans} = 1;
24
       while(n)
25
26
           if (n&1)
27
               ans = mult(ans, x, mod);
           x = mult(x, x, mod);
29
           n >>= 1;
30
31
       return ans;
33
   }
   bool wintness(ll n, ll a)
35
       ll p = qpow(a, n-1, n);
36
       if(p != 1)
37
           return false;
38
       11 s = n - 1;
39
       while(!(s&1)&& p == 1)
40
41
           s >>= 1;
42
           p = qpow(a, s, n);
       }
44
       if (p == 1 || p == n - 1)
           return true; typedef long long 11;
    int pri[] = {2,3,5,7,11,13,17,19,23,29,31};
   11 minfacotr;
   ll mult(ll a, ll b, ll mod) // 大数乘法
50
       11 \text{ ans} = 0;
51
       while(b)
52
       {
53
           if (b&1)
54
           {
55
               ans+= a;
               if (ans >= mod)
                  ans -= mod;
           }
           b >>= 1;
61
           a <<= 1;
           if (a >= mod)
62
               a-= mod;
63
64
       return ans;
65
```

```
}
    11 qpow(ll x, ll n, ll mod)
        11 \text{ ans} = 1;
69
        while(n)
70
71
            if (n&1)
72
               ans = mult(ans, x, mod);
73
           x = mult(x, x, mod);
           n >>= 1;
75
        }
        return ans;
    }
    bool wintness(ll n, ll a)
        ll p = qpow(a, n-1, n);
81
        if(p != 1)
82
            return false;
83
        11 s = n - 1;
84
        while(!(s\&1)\&\& p =
        return false;
86
    }
87
    bool miller_rabin(ll n) // 判断素数
    {
89
        if (n < 32)
90
            for(int i = 0; i < 11; ++i)</pre>
               if(n == pri[i])
                   return true;
            return false;
96
        for(int i = 0 ; i < 10; ++i)</pre>
97
            if(!wintness(n,pri[i]))
98
               return false;
99
        return true;
100
    }
101
    11 gcd(ll a, ll b)
    {
103
        return b ? gcd(b, a % b) : a;
    }
    ll pollard_rho(ll n, ll c) // Pollard_rho 大数分解
106
107
        11 x = rand() % n, y = x, i = 1, k = 2, d;
108
        while(1)
109
        {
           i++;
```

```
x = (mult(x, x, n) + c) \% n;
112
           d = gcd(y-x+n,n);
113
            if(d > 1 && d < n)</pre>
114
               return d;
            if(y == x)
               return n;
           if (i == k)
118
            {
119
               y = x;
120
               k <<= 1;
           }
122
123
    }
    11 fac[maxn];
125
    int cnt = 0;
    void findfactor(ll n)
127
128
        if(miller_rabin(n))
129
130
           minfacotr = min(minfacotr,n);// 求最小素数因子
            fac[++cnt] = n;//储存素数
132
            return ;
133
        }
        11 p = n;
135
        while(p >= n)
136
            p = pollard_rho(n, rand() % (n - 1) + 1);
        findfactor(p);
        findfactor(n / p);
139
    }
140
```

4.8 线性基

```
14
                      break;
                  }
15
                  val ^= d[i];
16
          return val > 0;
       }
19
       11 query_max(){ // 查询最大异或和
20
           ll ret = 0;
21
          for(int i = 63;i >= 0;--i)
              if((ret ^ d[i]) > ret)
23
                  ret ^= d[i];
           return ret; j >= 0;--j)
                  if(d[i] & (1LL << j)) d[i] ^= d[j];</pre>
           for(int i = 0;i <= 63;++i)</pre>
              if(d[i]) p[cnt++] = d[i];
       ll kth_query(ll k){ // 查询第k小值
30
           int ret = 0;
31
           if(k >= (1LL << cnt))</pre>
32
              return -1;
33
          for(int i = 63;i >= 0;--i)
34
              if(k & (1LL << i)) ret ^= p[i];</pre>
35
          return ret;
36
       }
   }
38
   L_B merge(const L_B &n1,const L_B &n2) // 暴力合并两个线性基
   {
40
       L_B ret = n1;
       for(int i = 63; i >= 0; --i)
42
           if(n2.d[i]) ret.insert(n1.d[i]);
43
       return ret;
44
   }
45
```

4.9 洲阁筛

4.10 计算素数 k 次幂前缀和

```
1 const int N = 1e6 + 7;

2 ll n,k,sqrtn;

3 int m;

4 ll a[N << 1],cnt;

5 int pos1[N],pos2[N];

6 ull g[N << 1]; // 构造函数

7 int pri[N],pcnt;

8 bool ispri[N];
```

```
void get_pri()
      for(int i = 2;i < N;++i){</pre>
11
          if(!ispri[i]) pri[++pcnt] = i;
          for(int j = 1; j <= pcnt && i * pri[j] < N;++j){</pre>
             ispri[i * pri[j]] = 1;
14
             if(i % pri[j] == 0) break;
          }
16
      }
17
   }
18
   inline int get_pos(ll x)
       return x <= sqrtn ? pos1[x] : pos2[n / x];</pre>
   }
23
    void Discretization(){ // 离散化处理
24
       for(11 i = 1, j; i \le n; i = j + 1){
25
           a[++cnt] = n / i;
26
           j = n / (n / i);
27
       reverse(a + 1,a + 1 + cnt);
29
       for(int i = 1;i <= cnt;++i)</pre>
30
           if(a[i] <= sqrtn) pos1[a[i]] = i;</pre>
31
           else pos2[n / a[i]] = i;
   }
33
    void calc_g() // 预处理构造函数
35
    {
       for(int i = 1;i <= cnt;++i) g[i] = a[i] - 1;</pre>
       for(int i = 1;i <= m;++i)</pre>
37
           for(int j = cnt; j >= 1 && a[j] >= pri[i] * pri[i];--j)
38
               g[j] -= g[get_pos(a[j] / pri[i])] - g[get_pos(pri[i] - 1)];
39
40
   ull calc_h(ll i,ll j){ // 计算递归函数
41
       if(i <= 1) return 0;</pre>
42
       ull sum = 0;
       int res;
44
       for(res = j;res <= m && pri[res] * pri[res] <= i;++res)</pre>
           for(ll o = pri[res],e = 1;o <= i;o *= pri[res],++e)</pre>
               sum += (ull)(e * k + 1) * (calc_h(i / o,res + 1) + 1);
       if(pri[res - 1] <= i)</pre>
           sum += (ull)(k + 1) * (g[get_pos(i)] - g[get_pos(pri[res - 1])]);
50
       return sum;
   }
51
   int t;
52
   int main()
53
   {
54
```

```
55
       get_pri();
       scanf("%lld%lld",&n,&k);
56
       sqrtn = (ll)sqrt(n);cnt = 0;
57
       m = upper_bound(pri + 1,pri + 1 + pcnt,sqrtn) - pri - 1;
       Discretization();
       calc_g();
60
       ull ans = (ull)(k + 1) * (g[get_pos(n)] - m);
61
       for(int i = 1;i <= m;++i)</pre>
62
           for(ll j = pri[i],e = 1;j <= n;j *= pri[i],e++)</pre>
              ans += (ull)(e * k + 1) * (calc_h(n / j,i + 1) + 1);
64
       ans++;
       printf("%ull\n",ans);
       return 0;
   }
```

4.11 自然幂数和

```
void init()
   {
   //预处理组合数
       for(int i = 0; i < N;++i){</pre>
          C[i][0] = C[i][i] = 1;
          if (i == 0)
              continue;
          for (int j = 1; j < i; ++j)
              C[i][j] = (C[i - 1][j] \% mod + C[i - 1][j - 1] \% mod) \% mod;
       }
10
   //预处理逆元
       inv[1] = 1;
       for (int i = 2; i < N; ++i)</pre>
           inv[i] = (mod - mod / i) * inv[mod % i] % mod;
14
   //预处理伯努利数
       B[0] = 1;
16
       for (int i = 1; i < N; ++i)</pre>
17
          11 \text{ ans} = 0;
           if (i == N - 1)
              break;
           for (int j = 0; j < i; ++j)
23
              ans += C[i + 1][j] * B[j];
24
              ans %= mod;
25
26
          ans *= -inv[i + 1];
          ans = (ans % mod + mod) % mod;
28
```

```
B[i] = ans;
       }
   }
31
   11 Work(int k)
33
       ll ans = inv[k + 1];
34
       11 sum = 0;
35
       for(int i=1; i<=k+1; ++i)</pre>
36
           sum += C[k + 1][i] * tmp[i] % mod * B[k + 1 - i] % mod;
38
           sum %= mod;
       }
40
       ans *= sum;
       ans %= mod;
       return ans;
   }
44
   int main()
45
46
       int t;
47
       init();
       scanf("%d", &t);
49
       while(t--)
50
       {
51
           int k;
           scanf("%lld %d", &n, &k);
53
           n \%= mod;
           tmp[0] = 1;
           for(int i = 1; i < N; ++i)</pre>
               tmp[i] = tmp[i - 1] * (n + 1) % mod;
           printf("%lld\n", Work(k));
59
       return 0;
60
   }
61
```

4.12 组合数打表

```
1  11 f[N],inv[N];
2  inline 11 C(11 a,11 b){return a < 0 || b < 0 || a < b ? 0 : f[a] * inv[b] % mod * inv[a - b] % mod;}
3  void get_table(int index)
4  {
5     f[0] = inv[0] = 1;
6     for(int i = 1;i <= index;++i) f[i] = f[i - 1] * i % mod;
7     inv[index] = fpow(f[index],mod - 2);
8     for(;index;--index)
9     inv[index - 1] = inv[index] * index % mod;</pre>
```

10 }

4.13 杜教筛

```
const int N = 4e6 + 7;
   const int mod = 1e9 + 7;
   int prime[N],cnt;
   11 g[N],phi[N];
   bool isprime[N];
   11 n,m;
   inline 11 gao(11 x)
   {
       x \%= mod;
       return (x + 1) % mod * x % mod * inv2 % mod;
10
11
   void get_phi() // 预处理phi或者Mobius,n^(2/3)的前缀和
12
   {
13
      phi[1] = 1;
14
      for(int i = 2;i < N;++i){</pre>
          if(!isprime[i]){
               prime[++cnt] = i;
17
               phi[i] = i - 1;
          }
19
          for(int j = 1; j <= cnt && i * prime[j] < N;++j)</pre>
          {
            isprime[i * prime[j]] = 1;
            if(i % prime[j] == 0){
23
               phi[i * prime[j]] = phi[i] * prime[j];
24
               break;
25
            }
26
            phi[i * prime[j]] = phi[i] * (prime[j] - 1);
27
         }
28
      }
29
      for(int i = 1; i < N; ++i) g[i] = (g[i - 1] + phi[i] * i % mod) % mod;
30
   }
31
32
   inline ll cal(ll x) //
   {
34
       x \%= mod;
36
       return x * (2 * x + 1) % mod * (x + 1) % mod * inv6 % mod;
   }
37
   map<ll ,11>mp; // 存已到达情况
38
   ll solve(ll pos) // 递归
39
   {
40
       if(pos < N) return g[pos];</pre>
41
```

```
if(mp[pos]) return mp[pos];
42
       ll res = cal(pos),last;
       for(11 i = 2;i <= pos;i = last + 1){</pre>
44
           last = pos / (pos / i);
          res = ((res - (gao(last) - gao(i - 1)) * solve(pos / i) % mod) % mod + mod) % mod;
46
47
       mp[pos] = res;
48
       return res;
49
   }
50
   11 work(ll pos)
51
   {
52
       11 last,ans = 0;
53
       for(ll i = 1;i <= pos;i = last + 1){</pre>
           last = pos / (pos / i);
           ans = (ans + (last - i + 1) \% mod * solve(pos / i) \% mod) \% mod + mod;
           ans %= mod;
       }
       return (ans + pos) % mod * inv2 % mod;
59
   }
60
   int main()
61
   {
62
       get_phi();
63
       scanf("%11d%11d",&n,&m);
64
       printf("%lld\n",((work(m) - work(n - 1)) % mod + mod) % mod);
       return 0;
66
   }
67
```

4.14 二次剩余

4.14.1 \mathbf{R} $x^2 = a \pmod{p}$

```
1 struct T{
2     ll p, d;
3 };
4 ll w;
5 //二次域乘法
6 T multi_er(T a, T b, ll m)
7 {
8     T ans;
9     ans.p = (a.p * b.p % m + a.d * b.d % m * w % m) % m;
10     ans.d = (a.p * b.d % m + a.d * b.p % m) % m;
11     return ans;
12 }
13 //二次域上快速幂
14 T power(T a, ll b, ll m)
15 {
```

```
T ans;
16
       ans.p = 1;
       ans.d = 0;
18
       while(b){
19
          if(b & 1)
20
          ans = multi_er(ans, a, m);
21
          b >>= 1;
22
          a = multi_er(a, a, m);
23
       }
24
       return ans;
25
   }
26
   //求勒让德符号
   11 Legendre(ll a, ll p)
       return qpow(a, (p-1)>>1, p);
31
   11 mod(l1 a, l1 m)
32
33
       a %= m;
34
       if(a < 0) a += m;</pre>
35
       return a;
36
   }
37
   11 Solve(ll n,ll p)
   {
39
       if(p == 2) return 1;
40
       if (Legendre(n, p) + 1 == p)
          return -1;
       ll a = -1, t;
       while(true) {
44
           a = rand() % p;
45
46
   int main()
47
   {
48
       int t;
49
       scanf("%d", &t);
50
       while(t--){
51
           int n, p;
52
          scanf("%d %d",&n,&p);
53
          n %= p;
          int a = Solve(n, p); //x * x = n \% p
           if(a == -1) {
              puts("No root");
              continue;
          }
59
          int b = p - a;
60
          if(a > b) swap(a, b);
61
```

```
if(a == b)
62
               printf("%d\n",a);
63
           else printf("%d %d\n",a,b);
64
65
       return 0;
66
   }
67
```

高精度 4.15

36

```
struct BigInteger {
       typedef unsigned long long 11;
       static const int BASE = 100000000;
       static const int WIDTH = 8;
       vector<int> s;
       BigInteger& clean(){while(!s.back()&&s.size()>1)s.pop_back(); return *this;}
       BigInteger(11 num = 0) {*this = num;}
       BigInteger(string s) {*this = s;}
       BigInteger& operator = (long long num) {
          s.clear();
          do {
              s.push_back(num % BASE);
              num /= BASE;
          } while (num > 0);
          return *this;
       }
18
       BigInteger& operator = (const string& str) {
19
          s.clear();
20
          int x, len = (str.length() - 1) / WIDTH + 1;
21
          for (int i = 0; i < len; i++) {</pre>
22
              int end = str.length() - i*WIDTH;
23
              int start = max(0, end - WIDTH);
              sscanf(str.substr(start,end-start).c_str(), "%d", &x);
25
              s.push_back(x);
          }
          return (*this).clean();
       }
31
       BigInteger operator + (const BigInteger& b) const {
          BigInteger c; c.s.clear();
32
          for (int i = 0, g = 0; i++) {
              if (g == 0 && i >= s.size() && i >= b.s.size()) break;
34
              int x = g;
35
              if (i < s.size()) x += s[i];</pre>
```

```
if (i < b.s.size()) x += b.s[i];</pre>
              c.s.push_back(x % BASE);
              g = x / BASE;
39
          }
40
          return c;
41
       }
42
       BigInteger operator - (const BigInteger& b) const {
43
          assert(b <= *this); // 减数不能大于被减数
44
          BigInteger c; c.s.clear();
          for (int i = 0, g = 0; ; i++) {
46
              if (g == 0 && i >= s.size() && i >= b.s.size()) break;
              int x = s[i] + g;
              if (i < b.s.size()) x -= b.s[i];</pre>
              if (x < 0) \{g = -1; x += BASE;\} else g = 0;
              c.s.push_back(x);
          }
          return c.clean();
54
       BigInteger operator * (const BigInteger& b) const {
          int i, j; ll g;
56
          vector<ll> v(s.size()+b.s.size(), 0);
          BigInteger c; c.s.clear();
          for(i=0;i<s.size();i++) for(j=0;j<b.s.size();j++) v[i+j]+=ll(s[i])*b.s[j];</pre>
          for (i = 0, g = 0; ; i++) {
              if (g ==0 && i >= v.size()) break;
              11 x = v[i] + g;
              c.s.push_back(x % BASE);
              g = x / BASE;
          }
65
          return c.clean();
       BigInteger operator / (const BigInteger& b) const {
68
          assert(b > 0); // 除数必须大于0
          BigInteger c = *this; // 商:主要是让c.s和(*this).s的vector一样大
          BigInteger m;
                                  // 余数:初始化为0
          for (int i = s.size()-1; i >= 0; i--) {
72
              m = m*BASE + s[i];
              c.s[i] = bsearch(b, m);
              m -= b*c.s[i];
          }
          return c.clean();
       BigInteger operator % (const BigInteger& b) const { //方法与除法相同
          BigInteger c = *this;
80
          BigInteger m;
81
          for (int i = s.size()-1; i >= 0; i--) {
82
```

```
m = m*BASE + s[i];
               c.s[i] = bsearch(b, m);
 84
               m -= b*c.s[i];
 85
            }
 86
           return m;
        }
 88
 89
        int bsearch(const BigInteger& b, const BigInteger& m) const{
 90
            int L = 0, R = BASE-1, x;
            while (1) {
 92
               x = (L+R) >> 1;
               if (b*x \le m) {if (b*(x+1) \ge m) return x; else L = x;}
               else R = x;
           }
        BigInteger& operator += (const BigInteger& b) {*this = *this + b; return *this;}
        BigInteger& operator -= (const BigInteger& b) {*this = *this - b; return *this;}
 99
        BigInteger& operator *= (const BigInteger& b) {*this = *this * b; return *this;}
        BigInteger& operator /= (const BigInteger& b) {*this = *this / b; return *this;}
        BigInteger& operator %= (const BigInteger& b) {*this = *this % b; return *this;}
        bool operator < (const BigInteger& b) const {</pre>
104
            if (s.size() != b.s.size()) return s.size() < b.s.size();</pre>
           for (int i = s.size()-1; i >= 0; i--)
               if (s[i] != b.s[i]) return s[i] < b.s[i];</pre>
            return false;
        bool operator >(const BigInteger& b) const{return b < *this;}</pre>
        bool operator<=(const BigInteger& b) const{return !(b < *this);}</pre>
        bool operator>=(const BigInteger& b) const{return !(*this < b);}</pre>
        bool operator!=(const BigInteger& b) const{return b < *this || *this < b;}</pre>
        bool operator==(const BigInteger& b) const{return !(b < *this) && !(b > *this);}
114
    };
116
    ostream& operator << (ostream& out, const BigInteger& x) {
117
        out << x.s.back();</pre>
118
        for (int i = x.s.size()-2; i >= 0; i--) {
119
            char buf[20];
            sprintf(buf, "%08d", x.s[i]);
            for (int j = 0; j < strlen(buf); j++) out << buf[j];</pre>
        return out;
124
    }
    istream& operator >> (istream& in, BigInteger& x) {
        string s;
128
```

```
if (!(in >> s)) return in;
    x = s;
    return in;
}
```

4.16 反素数

4.16.1 求小于 n 并且因子个数最多的那个数

```
int pri[] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61};
   11 n, ans, tmp;
   const 11 INF = 0x3f3f3f3f;
   void dfs(int step, ll sum, ll num) //num 为因子个数
   {
       if(step == 16) return;
       if(num > tmp){
          ans = sum;
          tmp = num;
       if(sum > n) return ;
11
       if(num == tmp && sum < ans)//因子个数一样,选取较小的那个数
13
          ans = sum;
14
      for(int i = 1; i <= 63; ++i){</pre>
          if(n / pri[step] < sum) break;</pre>
16
          dfs(step + 1, sum *= pri[step], num * (i + 1));
       }
18
   }
19
20
   //求一个最小的正整数,使得它的因子个数为 n
   int p[16] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53};
   void dfs(int dept,ull tmp,int num)
23
24
       if(num > n) return;
25
       if(num == n \&\& ans > tmp)
26
          ans = tmp;
27
      for(int i=1; i <= 63;++i){</pre>
28
          if(ans / p[dept] < tmp)</pre>
29
              break;
30
          dfs(dept+1,tmp *= p[dept],num * (i + 1));
31
       }
32
   }
```

4.17 高斯消元

```
const int N = 307;
   int x[N],a[N][N];// x[N]解集, a[N][N]系数
   bool free_x[N];
   int gcd(int a,int b){return b ? gcd(b,a % b) : a;}
   int lcm(int a,int b){return a / gcd(b,a % b) * b;}
   int Gauss(int equ,int var)//equ个方程, var个变元
   {
      int free_x_num,i,j,row,max_r,col;//row表示行,col表示列,max_r表示列最大的行,free_x_num变元数量
      int free_index,LCM,ta,tb,temp;// free_index变元下标
      for(i = 0;i <= var;++i){</pre>
          x[i] = 0;
          free_x[i] = true;//第i个元素是否是变元
      for(row = 0,col = 0;row < equ && col < var;++row,++col){</pre>
14
          max_r = row;
          //找到col最大的行,进行交换(除法时减小误差)
16
          for(i = row + 1; i < equ; ++i) if(abs(a[i][col]) > abs(a[max_r][col])) max_r = i;
          //与第row行交换
          if(max_r != row) for(j = row; j < var + 1;++j) swap(a[row][j],a[max_r][j]);</pre>
          if(a[row][col]==0){
             //说明该col列第row行以下全是0了,则处理当前行的下一列。
             row--;
22
             continue;
23
          for(i = row + 1;i < equ;++i)//枚举被删行
25
             if(a[i][col]){
26
                LCM = lcm(abs(a[i][col]),abs(a[row][col]));
27
                ta = LCM / abs(a[i][col]);
                tb = LCM / abs(a[row][col]);
29
                if(a[i][col] * a[row][col] < 0)tb = -tb;//异号的情况是相加
                for(j = col; j < var + 1; ++j)
                    a[i][j] = a[i][j] * ta - a[row][j] * tb;
             }
          /*求解小数解,防止溢出
          for(int i = row + 1; i < equ; ++i)
             if(fabs(a[i][col]) > eps){
36
                double t1 = a[i][col]/a[row][col];
                for(int j = col; j <= var;++j) a[i][j] -= a[row][j] * t1;
38
             }*/
39
40
      for (i = row;i < equ;++i) if(a[i][col]) return -1; // 无解
41
      if (row < var){// 多解
42
          for(i = row - 1;i >= 0;--i){
             free_x_num = 0;
             for (j = 0; j < var; ++j)
                if(a[i][j] && free_x[j]) free_x_num++,free_index = j;
```

```
if (free_x_num > 1) continue; // 无法求解出确定的变元.
             temp = a[i][var];
             for (j = 0; j < var; ++j) if (a[i][j] && j != free_index) temp -= a[i][j] * x[j];</pre>
49
             x[free_index] = temp / a[i][free_index]; //求出该变元.
             free_x[free_index] = 0; //该变元是确定的.
         }
          return var - row; //自由变元有 var - row 个.
54
      for (i = var - 1; i >= 0;--i){// 唯一解
          temp = a[i][var];
56
          for (j = i + 1; j < var; ++j)
             if (a[i][j]) temp -= a[i][j] * x[j];
          if (temp % a[i][i]) return -2; // 说明有浮点数解,但无整数解.
          x[i] = temp / a[i][i];
61
      return 0;
62
   }
63
```

4.18 高斯消元解异或方程

```
int Guass_xor(int equ,int var)
   {
       int row,col;
       for(row = 0, col = 0; row < equ && col < var; ++row, ++col){</pre>
           int maxr = row;
           for(int i = row; i < equ; ++i)</pre>
              if(a[i][col] > a[maxr][col]) maxr = i;
              if(maxr != row) for(int j = col; j <= var; ++j) swap(a[maxr][j],a[row][j]);</pre>
              if(!a[row][col]){
                  row--;
                  continue;
              for(int i = row + 1; i < equ; ++i)</pre>
                  if(a[i][col])
14
                      for(int j = col; j <= var; ++j) a[i][j] ^= a[row][j];</pre>
16
       for(int i = row; i < equ; ++i) if(a[i][col]) return -1;//无可行解
       if(row < var) // 存在多解
              for(int i = row - 1; i >= 0; --i){
                  int num = 0, index;
                  for(int j = 0; j < var; ++j)
                      if(a[i][j] && vis[j]) num++, index = j;
                  if(num > 1) continue;
23
                  for(int j = 0; j < var; ++j)</pre>
24
                      if(j != index) x[index] ^= (a[i][j] && x[j]);
25
```

```
vis[index] = false;

yis[index] = false;

for(int i = var - 1; i >= 0; --i){ //唯一解

x[i] = a[i][var];

for(int j = i + 1; j < var; ++j) x[i] ^=(a[i][j] && x[j]);

return 0;

return 0;
```

4.19 矩阵类(快速幂)

```
int sz;
    struct Matrix{
       ll a[10][10];
       Matrix(){
           for(int i = 0;i < sz;++i)</pre>
               for(int j = 0; j < sz; ++j)
                  if(i == j) a[i][j] = 1;
                  else a[i][j] = 0;
       }
       void init(){
10
           memset(a,0,sizeof a);
       }
12
       void show(){
           for(int i = 0;i < sz;++i)</pre>
               for(int j = 0; j < sz; ++j)
                  dd(i),dd(j),de(a[i][j]);
16
17
       void Relation_matrix(ll *s){
18
           init();
19
           for(int i = 0;i < sz;++i){</pre>
20
               if(i + 1 < sz) a[i][i + 1] = 1;</pre>
21
               a[sz - 1][i] = s[i];
           }
23
24
       Matrix operator *(const Matrix& tmp) const{
25
           Matrix res;
           res.init();
           for(int i = 0;i < sz;++i)</pre>
               for(int j = 0; j < sz; ++j)
                  for(int k = 0; k < sz; ++k)
30
                      res.a[i][j] = (res.a[i][j] + a[i][k] * tmp.a[k][j] % mod) % mod;
31
           return res;
32
33
       Matrix operator +(Matrix tmp){
34
```

```
for(int i = 0;i < sz;++i)</pre>
              for(int j = 0; j < sz; ++j)
                  a[i][j] += tmp.a[i][j];
38
       friend Matrix fpow(Matrix a,ll b){
39
           Matrix res;
40
           while(b){
41
              if(b & 1) res = res * a;
42
              a = a * a;
              b >>= 1;
44
           }
           return res;
       }
       ll get_fib(){
           Matrix tmp;
           tmp.init();
50
           for(int i = 0;i < sz;++i)</pre>
51
               tmp.a[i][0] = 1;
52
           Matrix ans = *this;
           ans = ans * tmp;
54
           return ans.a[0][0];
55
56
57
   };
```

4.20 类欧几里得

• $\Re f(a,b,c,n) = \sum_{i=0}^{n} \lfloor \frac{a*i+b}{c} \rfloor$

```
1 11 f(11 a,11 b,11 c,11 n)
2 {
3     if(a == 0)
4        return (b / c) * (n + 1) % mod;
5     if(a >= c)
6        return (n * (n + 1) / 2 % mod * (a / c) % mod + f(a % c,b,c,n)) % mod;
7     if(b >= c)
8        return ((b / c) * (n + 1) % mod + f(a,b % c,c,n)) % mod;
9     //11 m = (a * n + b) / c % mod;
10     11 m = (n / c * a + (n % c * a + b) / c);
11     return ((m % mod) * (n % mod) % mod - f(c,c - b - 1,a,m - 1) + mod) % mod;
12 }
```

4.21 牛顿迭代

#define f(x) () //原函数

4.22 母函数

• n 个人分成任意组, 每组人数必须为素数, 有多少种分法,n < 150;

```
void solve()
   {
       memset(a, 0, sizeof a);
       for(int i = 0; i <= 160; i += 2)</pre>
           a[i] = 1;
       memset(b, 0, sizeof b);
       for(int i = 1; pri[i] <= 150;++i){</pre>
           for(int j = 0; j \le 150; ++j)
               for(int k = 0;k + j <= 150;k += pri[i])</pre>
                  b[k + j] += a[j];
           for(int j = 0; j <= 150; ++j){</pre>
11
               a[j] = b[j];
12
               b[j] = 0;
13
           }
15
       }
```

4.22.1 莫比乌斯反演

• 求有多少个数对 (x,y),满足 a x b, c y d, 且 gcd(x,y) = 1

```
void Mobius()

{
    cnt = 0;
    mu[1] = 1; sum[1] = 1;
    for(int i = 2; i < maxn; ++i){
        if(!vis[i]){
            prime[++cnt] = i;
            mu[i] = -1;
        }

    for(int j = 1; j <= cnt; ++j){
        if(i * prime[j] >= maxn) break;
    }
}
```

```
vis[i * prime[j]] = true;
              if(i % prime[j]== 0){
13
                  mu[i * prime[j]] = 0;
14
                  break;
              }
              mu[i * prime[j]] = -mu[i];
17
           sum[i] = sum[i-1] + mu[i];
19
       }
20
   }
21
   11 solve(int b, int d)
   {
23
       if(b > d) swap(b, d);
       11 \text{ ans} = 0, pos;
       for(int i = 1; i <= b; i = pos+1){</pre>
           pos = min(b / (b / i),d / (d / i));
           ans += 1LL * (b / i) * (d / i) * (sum[pos] - sum[i - 1]);
29
       return ans;
30
   }
```

4.23 斐波那契广义循环节

```
• f(n) = af(n-1) + bf(n-2) f(1) = c f(2) = d
```

```
const int N = 2;
   const 11 mod = 1000000007;
   11 fac[2][505];
   int cnt,ct;
   ll pri[6] = {2, 3, 7, 109, 167, 500000003};
   ll num[6] = {4, 2, 1, 2, 1, 1};
   struct Matrix
10
       ll m[N][N];
12
   } ;
13
14
   Matrix A;
   Matrix I = \{1, 0, 0, 1\};
   Matrix multi(Matrix a, Matrix b)
19
       Matrix c;
20
       for(int i=0; i<N; i++)</pre>
21
```

```
{
22
           for(int j=0; j<N; j++)</pre>
24
               c.m[i][j] =0;
25
               for(int k=0; k<N; k++)</pre>
26
27
                   c.m[i][j] += a.m[i][k] * b.m[k][j];
                   c.m[i][j] %= mod;
29
               }
           }
31
       }
32
       return c;
33
   }
34
   Matrix power(Matrix A,ll n)
37
       Matrix ans = I, p = A;
38
       while(n)
39
40
           if(n & 1)
41
           {
42
               ans = multi(ans,p);
43
               n--;
44
           }
           n >>= 1;
46
           p = multi(p,p);
49
       return ans;
50
   }
   ll quick_mod(ll a,ll b)
52
53
       ll ans = 1;
54
       a %= mod;
55
       while(b)
57
           if(b & 1)
           {
               ans = ans * a \% mod;
               b--;
           }
63
           b >>= 1;
           a = a * a \% mod;
64
65
       return ans;
66
67 }
```

```
ll Legendre(ll a,ll p)
69
70
        11 t = quick_mod(a,(p-1)>>1);
        if(t == 1) return 1;
72
        return -1;
73
    }
74
75
    void dfs(int dept,ll product = 1)
    {
77
        if(dept == cnt)
        {
79
            fac[1][ct++] = product;
            return;
        }
        for(int i=0; i<=num[dept]; i++)</pre>
84
            dfs(dept+1,product);
85
            product *= pri[dept];
86
87
    }
88
    bool OK(Matrix A,11 n)
90
    {
91
        Matrix ans = power(A,n);
92
        return ans.m[0][0] == 1 && ans.m[0][1] == 0 &&
              ans.m[1][0] == 0 && ans.m[1][1] == 1;
95
    }
96
    int main()
97
    {
98
        fac[0][0] = 1;
99
        fac[0][1] = 2;
100
        fac[0][2] = 500000003;
        fac[0][3] = 1000000006;
        ll a,b,c,d;
103
        while(cin>>a>>b>>c>>d)
104
        {
105
           11 t = a * a + 4 * b;
            A.m[0][0] = a;
            A.m[0][1] = b;
108
109
            A.m[1][0] = 1;
            A.m[1][1] = 0;
110
            if(Legendre(t,mod) == 1)
            {
               for(int i=0; i<4; i++)</pre>
```

```
{
114
                      if(OK(A,fac[0][i]))
115
116
                          cout<<fac[0][i]<<endl;</pre>
                          break;
118
                      }
119
                 }
120
             }
             else
             {
123
                 ct = 0;
                 cnt = 6;
                 dfs(0,1);
                 sort(fac[1],fac[1]+ct);
127
                 for(int i=0;i<ct;i++)</pre>
128
129
                      if(OK(A,fac[1][i]))
130
                          cout<<fac[1][i]<<endl;</pre>
                          break;
                      }
134
                 }
135
             }
136
         }
         return 0;
     }
139
```

4.24 无名小定理

- 1. $\c x = gcd(\sum_{i=1}^{n_1} C(n,i))$
- 当 n 是素数是 x = n (根据 1.)
- 当 n 有多个素因子 x = 1(根据 1.)
- n 只有一个素因子, 答案为该素因子 (根据 1.)
- 当 a > b , gcd(a,b) = 1, 那么 $gcd(a^m b^m, a^n b^n) = a^{gcd(m,n)} b^{gcd(n,m)}$
- $(n+1)*lcm(\sum_{i=0}^{n}C(n,i))=lcm(\sum_{i=1}^{n+1}i)$
- 判断组合数 C(n,m) 的奇偶性, 当 n & m == m 为奇数, 反之就是偶数.
- 三角形求圆半径: 边长为 a, b, c 的三角形面积为 S, 则外接圆半径为 a*b*c/(4S), 内切圆半径为 2S/(a+b+c)

4.25 自然常数

e = 2.7182818284590452353602874713526624

4.26 欧拉常数

C = 0.57721566490153286060651209

4.27 错排公式

$$D_1 = 0$$

$$D_2 = 1$$

$$D_n = (n-1)(D_{n-1} + D_{n-2})$$

4.28 伯努利数

$$F_0 = 1, F_n = _{i=0}^{n-1}C(n,i)F_i$$

4.29 自然幂数和

$$\sum_{i=1}^{n} i^k = \frac{1}{k+1} \sum_{i=1}^{k+1} C(k+1,i) * F_{k+1-i} * (n+1)^i$$

4.30 Catalan

1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012...
$$h(n) = h(n-1) \times (4 \times n2) / (n+1) h(n) = C(2n,n) / (n+1) (n=0,1,2,...)$$

$$\$h(n) = c(2n,n) - c(2n,n-1) (n=0,1,2,...)$$

$$\$$$

- 将 n + 2 边形沿弦切割成 n 个三角形的不同切割数
- n+1个数相乘,给每两个元素加上括号的不同方法数
- n 个节点的不同形状的二叉树数
- 从 n * n 方格的左上角移动到右下角不升路径数

4.31 pick 定理

计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为: 2*S = 2*a + b - 2,其中 a 表示多边形内部的点数,b 表示多边形边界上的点数,S 表示多边形的面积.

4.32 正多边形外接圆半径

$$R = \frac{a}{2\sin(\frac{pi}{n})}$$

4.33 Fibonacci

- -F(n+m) = F(n+1)F(m) + F(n)F(m-1)
- $F(n)^2 = (-1)^{n+1} + F(n-1)F(n+1)$
- 前 n 项有 [²ⁿ/₃] 个奇数项
- 如果 fib(k) 能被 x 整除,则 fib(k*i)都可以被 x 整除。
- f(0)+f(1)+f(2)+...+f(n)=f(n+2)-1
- f(1) + f(3) + f(5) + f(2n-1) = f(2n)
- f(2) + f(4) + f(6) + f(2n) = f(2n+1) 1

```
• [f(0)]^2 + [f(1)]^2 + [f(n)]^2 = f(n) * f(n+1)

• f(0) - f(1) + f(2) - [f(n+1)] + f(n)

• f(n) = (-1)^n * [f(n+1) - f(n)] + 1

• f(n+m) = f(n+1) * f(m) + f(n) * f(m-1)

• [f(n)]^2 = (-1)^{n-1} + f(n-1) * f(n+1) * f(2n-1) = [f(n)]^2 - [f(n-2)]^2

• 3f(n) = f(n+2) + f(n-2)

• \$f(2n-2m-2)[f(2n)+f(2n+2)] = f(2m+2) + f(4n-2m) [n>m>=-1, \exists n>=1] \$

• Fn = \frac{1}{\sqrt{5}} * (\frac{1+\sqrt{5}}{2}) - \frac{1}{\sqrt{5}} (\frac{1\sqrt{5}}{2})
```

5 计算几何

5.1 处理平面内所有直线围成的所有多边形

```
const int MAXN=1e6+10;
   const double eps=1e-8;
   const double pi=acos(-1.0);
    const 11 INF=0x3f3f3f3f3f3f3f3f3f;
   inline int dcmp(double x){
       if(fabs(x)<eps) return 0;</pre>
       return (x>0? 1: -1);
9
   inline double sqr(double x){ return x*x; }
   struct Point{
       double x,y;
       Point() { x=0,y=0; }
       Point(double _x,double _y):x(_x),y(_y){}
       void input(){ scanf("%lf%lf",&x,&y); }
       void output(){ printf("%.2f %.2f\n",x,y); }
       friend istream &operator >>(istream &os,Point &b){
           os>>b.x>>b.y;
20
          return os;
21
22
       friend ostream &operator <<(ostream &os,Point &b){</pre>
          os<<b.x<<' '<<b.y;
24
           return os;
25
26
       bool operator ==(const Point &b)const{
           return (dcmp(x-b.x)==0\&dcmp(y-b.y)==0);
       }
       bool operator !=(const Point &b)const{
           return !((dcmp(x-b.x) == 0\&\&dcmp(y-b.y) == 0);
       }
32
```

```
bool operator <(const Point &b)const{</pre>
          return (dcmp(x-b.x)==0? dcmp(y-b.y)<0 : x<b.x);
      }
      double operator ^(const Point &b)const{ //叉积
          return x*b.y-y*b.x;
      }
38
      double operator *(const Point &b)const{ //点积
39
          return x*b.x+y*b.y;
40
      }
      Point operator +(const Point &b)const{
42
          return Point(x+b.x,y+b.y);
      }
      Point operator -(const Point &b)const{
          return Point(x-b.x,y-b.y);
      }
      Point operator *(double a){
          return Point(x*a,y*a);
49
      Point operator /(double a){
          return Point(x/a,y/a);
53
      double len2(){ //长度平方
          return sqr(x)+sqr(y);
      }
      double len(){ //长度
          return sqrt(len2());
      }
      double polar(){ //向量的极角
          return atan2(y,x); //返回与x轴正向夹角(-pi~pi]
61
      Point change_len(double r){ //转化为长度为r的向量
          double l=len();
64
          if(dcmp(1)==0) return *this; //零向量
          return Point(x*r/l,y*r/l);
66
      }
      Point rotate_left(){ //逆时针旋转90度
68
          return Point(-y,x);
      Point rotate_right(){ //顺时针旋转90度
          return Point(y,-x);
      Point rotate(Point p,double ang){ //绕点p逆时针旋转ang度
          Point v=(*this)-p;
          double c=cos(ang),s=sin(ang);
          return Point(p.x+v.x*c-v.y*s,p.y+v.x*s+v.y*c);
      }
78
```

```
Point normal(){ //单位化, 逆时针旋转90°
           return Point(-y/len(),x/len());
       }
81
    };
82
83
    inline double cross(Point a,Point b){ //叉积
84
       return a.x*b.y-a.y*b.x;
85
    }
86
    inline double dot(Point a, Point b){ //点积
88
       return a.x*b.x+a.y*b.y;
    }
90
    double rad(Point a, Point b){ //两个向量的夹角
       return fabs(atan2(fabs(cross(a,b)),dot(a,b)));
94
    }
95
96
    bool is_parallel(Point a, Point b){ //判断向量是否平行
97
       double p=rad(a,b);
       return dcmp(p)==0||dcmp(p-pi)==0;
99
    }
100
    struct Line{
       Point s,e;
103
       Line(){}
104
       Line(Point _s,Point _e):s(_s),e(_e){} //两点确定直线
       Line(Point p,double ang){ //一个点和斜率(弧度制)确定直线
106
           s=p;
107
           if(dcmp(ang-pi/2)==0){
108
              e=s+Point(0,1);
           }
           else{
              e=s+Point(1,tan(ang));
           }
       }
114
       Line(double a,double b,double c){ //ax+by+c=0
           if(dcmp(a)==0){
116
              s=Point(0,-c/b);
              e=Point(1,-c/b);
           }
119
           else if(dcmp(b)==0){
120
              s=Point(-c/a,0);
              e=Point(-c/a,1);
           else{
```

```
s=Point(0,-c/b);
125
              e=Point(1,(-c-a)/b);
126
           }
127
128
       void input(){
           s.input();
130
           e.input();
132
       void adjust(){
133
           if(e<s) swap(e,s);</pre>
       }
135
       double polar(){ //极角
           return atan2(e.y-s.y,e.x-s.x); //返回与x轴正向夹角(-pi~pi]
       }
138
       double angle(){ //倾斜角
139
           double k=atan2(e.y-s.y,e.x-s.x);
140
           if(dcmp(k)<0) k+=pi;</pre>
141
           if(dcmp(k-pi)==0) k-=pi;
           return k;
143
144
       Point operator &(const Line &b)const{ //求两直线交点
145
           Point res=s;
146
           double t=((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e));
147
           res.x+=(e.x-s.x)*t;
           res.y+=(e.y-s.y)*t;
149
           return res;
       }
151
    };
153
    double polygon_area(vector<Point> p){ //多边形的有向面积, 加上绝对值就是面积 正值表示输入点按照逆时针
154
        否则为顺时针
       int n=p.size(); double area=0;
       for(int i=1;i<n-1;i++) area+=cross(p[i]-p[0],p[i+1]-p[0]);</pre>
156
       return fabs(area/2);
    }
158
    struct PSLG{ //平面直线图 处理平面内所有直线围成的所有多边形 传入直线交点之间的每条线段
160
       struct Edge{
161
           int from, to;
           double ang;
163
           Edge(){ ang=from=to=0; }
164
165
           Edge(int s,int t,double a){ from=s,to=t,ang=a; }
       };
166
       int n,m,face_cnt; //平面个数 包括外面最大的多边形
167
       double area[MAXN]; //每个多边形面积
168
       Point point [MAXN]; //平面内所有的点
169
```

```
vector<Edge>edge;
170
        vector<int>G[MAXN];
        vector<vector<Point> >face;
172
        int vis[2*MAXN],left[2*MAXN],pre[2*MAXN]; //left表示这条边的左侧属于哪个面
        void Init(){
174
           face.clear();
           edge.clear();
176
           for(int i=0;i<n;i++) G[i].clear();</pre>
           n=m=0;
       }
179
       PSLG(){ Init(); }
180
                                               //需要建立反向边帮助寻找下一条边
       void AddEdge(int from, int to){
          edge.pb(Edge(from,to,(point[to]-point[from]).polar()));
          edge.pb(Edge(to,from,(point[from]-point[to]).polar()));
          m=edge.size();
          G[from].pb(m-2);
185
          G[to].pb(m-1);
186
       }
187
        void Build(){
188
           for(int u=0;u<n;u++){</pre>
189
               int d=G[u].size();
190
               for(int i=0;i<d;i++)</pre>
191
                  for(int j=i+1;j<d;j++)</pre>
192
                      if(edge[G[u][i]].ang>edge[G[u][j]].ang)
                          swap(G[u][i],G[u][j]);
194
               for(int i=0;i<d;i++) pre[G[u][(i+1)%d]]=G[u][i]; //从u出发的i条边顺时针旋转的第一条边是pre[i]
           }
           face_cnt=0; memset(vis,0,sizeof(vis));
197
           for(int u=0;u<n;u++){</pre>
198
               for(int i=0;i<G[u].size();i++){</pre>
199
                  int e=G[u][i];
200
                  if(!vis[e]){
201
                      face_cnt++;
202
                      vector<Point> polygon;
203
                      while(1){
204
                         vis[e]=1;
205
                         left[e]=face_cnt;
                          int from=edge[e].from;
                          polygon.pb(point[from]);
                                           //逆时针旋转最多的一条边即为顺时针转动的第一条边
                          e=pre[e^1];
                          if(e==G[u][i]) break;
211
                      face.pb(polygon);
212
                 }
213
214
           }
215
```

```
for(int i=0;i<face_cnt;i++) area[i]=polygon_area(face[i]);</pre>
        }
        vector<pair<double,int> >tmp[MAXN];
218
        void Insert(Line *line,int m){
219
            for(int i=0;i<m;i++){</pre>
220
               for(int j=i+1;j<m;j++){</pre>
221
                   if(!is_parallel(line[i].e-line[i].s,line[j].e-line[j].s)){
                       Point inter=line[i]&line[j];
                       point[n++]=inter;
                       tmp[i].pb({dot(inter-line[i].s,line[i].e-line[i].s),n-1});
225
                       tmp[j].pb({dot(inter-line[j].s,line[j].e-line[j].s),n-1});
                   }
               }
               sort(tmp[i].begin(),tmp[i].end());
               for(int j=1;j<tmp[i].size();j++) AddEdge(tmp[i][j-1].se,tmp[i][j].se);</pre>
            }
231
           Build();
232
        }
233
    }pslg;
234
235
    Line line[MAXN];
236
    int main(void){
238
        int n; scanf("%d",&n);
        for(int i=0;i<n;i++) line[i].input();</pre>
240
        pslg.Insert(line,n);
        sort(pslg.area,pslg.area+pslg.face_cnt);
        printf("%d %.6f %.6f\n",pslg.face_cnt-1,pslg.area[pslg.face_cnt-2],pslg.area[0]);
        int q; scanf("%d",&q);
244
        while(q--){
245
            int p; scanf("%d",&p);
246
            if(p>=pslg.face_cnt) puts("Invalid question");
247
                   printf("%.6f\n",pslg.area[pslg.face_cnt-p-1]);
248
        return 0;
    }
251
```

6 字符串

6.1 kmp

• border

```
void get_fail(int f[],char s[])

{
```

```
int j = f[0] = 0;
int n = strlen(s);
rep(i,1,n)
{
    while(j && s[i] != s[j]) j = f[j-1];
    f[i] = j += s[i] == s[j];
}
}
```

• kmp

```
void kmp(int f[],char p[],char s[])
       int n = strlen(s);
      int m = strlen(p);
      int j = 0;
      rep(i,0,n)
          while(j && s[i] != p[j]) j = f[j-1];
          if(s[i] == p[j]) j++;
          if(j == m)
10
          {
11
              cout << i - j + 2 << endl;
              j = f[j-1];
13
          }
      }
15
   }
```

6.2 SA

```
const int N=4e5+100;
   const int maxn = 2e5+100;
   const int inf=1e9+9;
   namespace SA {
       char s[N];
       int sa[N],x[N],y[N],hep[N],height[N],n,m;
      void init()
       {
          n = 0;
10
11
      void add(char c)
12
13
          // c -= 'a';
14
```

```
15
          n++;
           s[n]=c;
16
       }
17
       void Sort() {
18
           for(int i=0;i<=m;++i) hep[i]=0;</pre>
           for(int i=1;i<=n;++i) ++hep[x[i]];</pre>
20
           for(int i=1;i<=m;++i) hep[i]+=hep[i-1];</pre>
           for(int i=n;i>=1;--i) sa[hep[x[y[i]]]--]=y[i];
22
       }
       void Pre_sa() {
24
          for(int i=1;i<=n;++i) x[i]=s[i],y[i]=i;</pre>
          m=223;Sort();
          for(int w=1,p=0;m=p,p<n;w<<=1) {</pre>
              p=0;
              for(int i=1;i<=w;++i) y[++p]=n-w+i;</pre>
              for(int i=1;i<=n;++i) if(sa[i]>w) y[++p]=sa[i]-w;
30
              Sort(), swap(x,y), x[sa[1]]=p=1;
              for(int i=2;i<=n;++i)</pre>
32
                  x[sa[i]]=(y[sa[i]]==y[sa[i-1]]\&\&y[sa[i]+w]==y[sa[i-1]+w])?p:++p;
33
          }return;
34
       }
35
       11 Pre_height() {
36
           for(int i=1;i<=n;++i) x[sa[i]]=i;</pre>
37
           int k=0,res=0;
           for(int i=1;i<=n;++i) {</pre>
39
              k-=k>0;
              int j=sa[x[i]-1];
              while(i+k \le n\&\&j+k \le n\&\&s[i+k] == s[j+k]) ++k;
              height[x[i]]=k,res+=k;
43
           }return res;//直接返回height数组的和
       }
45
       ll solve()
46
47
48
           给你一个长为N的字符串, 求不同的子串的个数?
           对于一个后缀sa[i],它产生了n-sa[i]个前缀,减去height[i]个相同的前缀(与前一个比较),
50
           则产生了n-sa[i]-height[i]个子串。累加后即结果。
           */
          11 \text{ ans} = 0;
           for (int i = 1; i <= n; i++)</pre>
              ans += n + 1 - sa[i] - height[i];
           }
           return ans;
58
59
       ll gao()
60
```

```
53
```

```
6 字符串
       {
61
          Pre_sa();
62
          Pre_height();
63
          return solve();
64
65
   }
66
```

回文树 1 6.3

```
struct Pal
   {
       int ch[maxn][26],f[maxn],len[maxn],s[maxn];
       int cnt[maxn];
       int num[maxn];
       int last,sz,n;
       int newnode(int x)
          memset(ch[sz],0,sizeof(ch[sz]));
10
           cnt[sz] = num[sz] = 0, len[sz] = x;
          return sz++;
       }
       void init()
14
          sz = 0;
          newnode(0),newnode(-1);
          last = n = 0,s[0] = -1,f[0] = 1;
18
       }
19
20
       int get_fail(int u)
21
22
          while(s[n - len[u] - 1] != s[n])
23
              u = f[u];
          return u;
25
       }
26
       void add(int c)
          c -= 'a';
31
          s[++n] = c;
          int u = get_fail(last);
32
          if(!ch[u][c])
33
          {
34
              int np = newnode(len[u] + 2);
35
              f[np] = ch[get_fail(f[u])][c];
36
```

```
num[np] = num[f[np]] + 1;
               ch[u][c] = np;
38
           }
39
           last = ch[u][c];
40
           cnt[last]++;
41
       }
42
43
       void count()
44
       {
45
           for(int i = sz - 1;~i;i--)
46
           cnt[f[i]] += cnt[i];
       }
48
   } pa;
```

6.4 回文树 2

29

```
struct Palindromic_Tree {
      int son[N][26]; //转移边
      int fail[N]; //fail 指针
      int cnt[N]; //当前节点表示的回文串在原串中出现了多少次
      int num[N]; //当前节点 fail 可以向前跳多少次
      int len[N]; //当前节点表示的回文串的长度
      int S[N]; //插入的字符串
      int last; //最后一次访问到的节点, 类似 SAM
      int n; //插入的字符串长度
      long long p; //自动机的总状态数
11
      int newnode(int 1) {
         memset(son[p], 0, sizeof(son[p]));
         cnt[p] = 0;
14
         num[p] = 0;
         len[p] = 1;
16
         return p++;
      }
18
19
      void init() {
20
         p = 0;
         newnode(0);
         newnode(-1);
24
         last = 0;
         n = 0;
25
         S[n] = -1;
26
         fail[0] = 1;
27
      }
28
```

```
int get_fail(int x) {
30
         while (S[n - len[x] - 1] != S[n]) x = fail[x];
31
      }
33
34
      void add(int c) {
35
         c -= 'a';
36
         S[++n] = c;
37
         int cur = get_fail(last); //通过上一次访问的位置去扩展
         if (!son[cur][c]) { //如果没有对应的节点添加一个新节点
39
            int now = newnode(len[cur] + 2);
            fail[now] = son[get_fail(fail[cur])][c]; //通过当前节点的 fail 去扩展出新的 fail
            son[cur][c] = now;
            num[now] = num[fail[now]] + 1; //记录 fail 跳多少次
         }
         last = son[cur][c];
45
         cnt[last]++; //表示当前节点访问了一次
46
      }
47
      void count() {
48
         //如果某个节点出现一次,那么他的 fail 也一定会出现一次,并且在插入的时候没有计数
49
         for (int i = p - 1; i >= 0; i--) cnt[fail[i]] += cnt[i];
50
      }
51
   } AUT;
```

7 杂项

7.1 退火

```
#include <bits/stdc++.h>
   using namespace std;
   const int maxn = 1e5 + 10;
   const double eps = 1e-8;
   const double delta = 0.98;
   const double inf = 1e18;
   struct Point { double x, y; } p[maxn];
10
   double dis(Point A, Point B) { return sqrt((A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)); };
   double Simulate_Annea(int n)
14
   {
      Point S;
16
      S.x = S.y = 0;
17
```

```
double t = 1000;
       double res = inf;
19
       while(t > eps)
20
          int k = 0;
           for(int i = 0; i < n; i ++) if(dis(S, p[i]) > dis(S, p[k])) k = i;
23
          double d = dis(S, p[k]);
24
          res = min(res, d);
25
          S.x += (p[k].x - S.x) / d * t;
          S.y += (p[k].y - S.y) / d * t;
27
           t *= delta;
29
       return res;
   }
31
32
   int main()
33
34
       int n;
35
       scanf("%d", &n);
36
       for(int i = 0; i < n; i ++) scanf("%lf%lf", &p[i].x, &p[i].y);</pre>
       printf("%.3f\n", Simulate_Annea(n));
38
       return 0;
39
40
   }
```

7.2 博弈

7.2.1 Bash

只有一堆 n 个物品,两个人轮流从这堆物品中取物,规定每次至少取一个,最多取 m 个.最后取光者得胜. 考虑 $n=k^*(1+m)+r$ 即可 r=0,先手必败,无论先手怎么取(设取的是 a),后手都能凑出 1+m-a

7.2.2 Wythoff

有两堆火柴棍,每次可以从某一堆取至少 1 根火柴棍 (无上限),或者从两堆取相同的火柴棍数。最后取完的 是胜利者。考虑状态 (a,b) $a[i]=i^*(1+\sqrt{5})/2$ b[i]=a[i]+i; 因为有浮点数参与运算,范围过大要考虑手写高精度

7.2.3 Fibonacci's Game

有一堆个数为 n 的石子,游戏双方轮流取石子,满足: 1) 先手不能在第一次把所有的石子取完; 2) 之后每次可以取的石子数介于 1 到对手刚取的石子数的 2 倍之间(包含 1 和对手刚取的石子数的 2 倍)。先手胜当且仅当 n 不是 Fibonacci 数。

7.2.4 staircase nim

每层有若干个石子,每次可以选择任意层的任意个石子将其移动到该层的下一层。最后不能操作的人输把 所有奇数阶梯看成 N 堆石子做 nim。把石子从奇数堆移动到偶数堆可以理解为拿走石子,就相当于几个奇数堆 的石子在做 Nim。

7.2.5 anti-nim

正常的 nim 游戏是取走最后一颗的人获胜,而反 nim 游戏是取走最后一颗的人输。一个状态为必胜态,当且仅当: 1) 所有堆的石子个数为 1,且 NIM_sum (异或和) =0 2) 至少有一堆的石子个数大于 1,且 NIM_sum 0

7.2.6 约数博弈

游戏初始状态包含 1-n, 这 n 个正整数。甲乙两个人轮流玩这个游戏. 每轮游戏中,游戏者任意选择一个还存在的数, 然后删掉它和它所有的约数。第一个删掉所有数的人获胜。先手必胜反证法 - 考虑一个新的规则"不准写数字 1"。依然先手必胜证明: 如果在新规则下后写者必胜,则原游戏中的先写者写下数字 1,然后他就变成了新规则下的后写者。

7.2.7 约数和倍数博弈

游戏初始状态包含 2-n, 这 n-1 个正整数。甲乙两个人轮流玩这个游戏,每轮游戏中,游戏者任意选择一个还存在的数,然后删掉它和它所有的约数、倍数。第一个删掉所有数的人获胜。先手必败

7.2.8 Chomp 博弈

有一个 n * m 的棋盘,每次可以取走一个方格并拿掉它右边和上面的所有方格。拿掉左下角的格子 (1,1) 者输。- 除了 1*1 的棋盘,先手必败 - 对于其他大小的棋盘,先手必胜。

7.2.9 树上删边游戏

给出一个有 N 个点的树,有一个点作为树的根节点。游戏者轮流从树中删去边,删去一条边后,不与根节点相连的部分将被移走。谁无法移动谁输。叶子节点的 SG 值为 0;中间节点的 SG 值为它的所有子节点的 SG 值加 1 后的异或和。HDU 3590 N<=100 颗树,每棵数有 m<=100 个点,双方每次可以选择一棵树的一条边删去,并且把不与根相连的边一并删去,不能操作者赢先手必胜当且仅当: 1) 游戏的 SG 函数不为 0 且游戏中某个单一游戏的 SG 函数大于 1

2) 游戏的 SG 函数为 0 且游戏中没有单一游戏的 SG 函数大于 1

```
VI v[100005];
   int getsg(int x,int pre)
      int ans = 0;
      rep(i,0,v[x].size())
          if(v[x][i] != pre)
              ans ^= (1+getsg(v[x][i],x));
          }
       return ans;
   }
   int main()
13
14
       int t,n;
15
      while(scanf("%d",&t)!=EOF)
16
17
```

```
int sum = 0,ans = 0;
           while(t--)
19
20
               scanf("%d",&n);
21
               rep(i,1,n+1)
23
                   v[i].clear();
24
               }
25
               rep(i,1,n)
               {
27
                   int x,y;
                   scanf("%d%d",&x,&y);
                   v[x].push_back(y);
                   v[y].push_back(x);
               }
               int s = getsg(1,-1);
33
               if(s > 1)
34
                   ans++;
35
               sum ^= s;
36
           }
           if((sum == 0&&ans==0)||(sum!=0&&ans>=1))
38
39
               cout<<"PP"<<endl;</pre>
40
           }
           else
42
               cout<<"QQ"<<endl;</pre>
           }
       }
46
       return 0;
47
48
```

7.2.10 SG

```
1 define MAX 1005
2 /* 计算从1-n范围内的SG值。
3 Array(存储可以走的步数, Array[0]表示可以有多少种走法)
4 Array[]需要从小到大排序 */
5 /*HDU1847博弈SG函数
6 1.可选步数为1-m的连续整数, 直接取模即可, SG(x) = x % (m+1);
7 2.可选步数为任意步, SG(x) = x;
8 3.可选步数为一系列不连续的数, 用GetSG(计算) */
9 int SG[MAX], hash[MAX];
10 void GetSG(int Array[],int n = MAX-1)
11 {
```

```
memset(SG, 0, sizeof(SG));
12
       for(int i = 0; i <= n; ++i)</pre>
13
14
           memset(hash, 0, sizeof(hash));
           for(int j = 1; j <= Array[0]; ++j)</pre>
17
               if(i < Array[j])</pre>
                   break;
19
               hash[SG[i - Array[j]]] = 1;
           }
21
           for(int j = 0; j \le n; ++j)
               if(!hash[j])
               {
                   SG[i] = j;
                   break;
26
               }
       }
28
   }
29
```

S-Nim 游戏仅仅是限制了每一次从每一堆中选取的个数,依旧用 sg 函数计算即可。经典的 Nim 游戏中 sg(x)=x,所以结果就是每一堆的状态直接 xor 即可。S-Nim 游戏先计算每一堆的 sg 函数值,然后判断方法依旧是用 xor.

```
const int maxn = 10100;
    const int N = 110;
    int SG[maxn],f[N],s[maxn];
    int k,n,m,t;
    void getsg(int n,int nn)
    {
       SG[0] = 0;
       int tt = 0;
       for(int i = 1;i<=10000;i++)</pre>
           tt++;
           //memset(s,0,sizeof s);
14
           for(int j = 0;f[j] \le i \& j \le nn; j++)
           {
               s[SG[i-f[j]]] = tt;
           }
           for(int j = 0;;j++)
               if(s[j]!=tt)
20
21
               SG[i] = j;
22
               break;
23
```

```
}
       }
25
   }
26
    int main()
29
        while(scanf("%d",&k)!=EOF&&k)
30
31
            for(int i =0;i<k;i++)</pre>
32
                scanf("%d",&f[i]);
33
            sort(f,f+k);
            scanf("%d",&n);
35
            getsg(10000,k);
            for(int i = 0;i<n;i++)</pre>
                int ans = 0;
39
                scanf("%d",&m);
40
                for(int i = 0;i<m;i++)</pre>
41
                    {
42
                        scanf("%d",&t);
                        ans^=SG[t];
44
                    }
45
                    if(ans)
46
                        cout<<"W";</pre>
                    else
                        cout<<"L";
            }
            cout<<endl;</pre>
52
        }
53
   }
54
```

8 DP

8.1 背包

8.1.1 01 背包

• normal $f_i = max(f_i, f_i v + w)$ 需要按照 i 从大到小的顺序更新,确保每个物品只会选一次

```
memset(dp,0xcf,sizeof dp);
dp[0] = 0;
rep(i,0,n)

{
    cin >> v[i] >> w[i];
    per(j,v[i],m+1)
```

- 计数不超过 m 的方案数 $f_i + = f_i v$
- 删除加入物品的顺序不影响结果,假设被删除的物品是最后一次加入的,那么倒过来还原即可。 $f_{i}-=f_{i}v$ 需要按照 i 从小到大的顺序更新. 给定 ai 和 bi,表示第 i 个商店有 ai 个商品可以买,单价为 bi 元,给出 m 个询问,问用 c 元在 l~r 商店买东西的方案数一种物品的背包可以看成 $\sum_{i=0}^{a} x^{ib} = \frac{1-x^{(a+1)b}}{1-x^{b}}$,所以可以先用 (a+1)b 去做一个 01 背包 (系数为负),再除以一个 x0 的 (系数为负)01 背包。从生成函数来看, $\frac{1}{1-x^{b}} = \sum_{i=0}^{\infty} x^{bi}$,即做一遍完全背包就可以等效

然后对可逆背包的预处理,由于 $\frac{1-x^b}{1-x^{(a+1)*b}}=(1-x^b)*\sum_{i=0}^\infty x^{i*(a+1)b}$,于是反过来对 x^b 做 01 背包,对 (a+1)b 做完全背包就可以

```
int n,m;
   int a[maxn*10],b[maxn*10],f[maxn*10][maxn],g[maxn*10][maxn];
   void gao(int *dp,int w)
       per(i,w,maxn)
           dp[i] = (dp[i] - dp[i-w]+mod)%mod;
   }
   void gao2(int *dp,int w)
       rep(i,w,maxn)
           dp[i] = (dp[i] + dp[i-w]+mod)%mod;
17
   }
18
   int main(int argc, char const *argv[])
20
21
       ios_base::sync_with_stdio(false), cin.tie(0);
22
       // cout.tie(0);
23
       int T,cas;
       cin >> T;
25
       cas = 1;
       f[0][0] = 1;
       rep(i,0,maxn)
          g[0][i] = 1;
       while(T--)
30
31
```

```
prr(cas++);
32
           cin >> n >> m;
33
          rep(i,1,n+1)
34
           {
35
              cin >> a[i] >> b[i];
36
              a[i] = (a[i] + 1) * b[i];
37
          }
          rep(i,1,n+1)
39
           {
              memcpy(f[i],f[i-1],sizeof(f[i]));
41
              memcpy(g[i],g[i-1],sizeof(g[i]));
              gao(f[i],a[i]);gao2(f[i],b[i]);
              gao(g[i],b[i]);gao2(g[i],a[i]);
          }
           int ans = 0;
          rep(i,0,m)
48
              int 1,r,c;
49
              cin >> 1 >> r >> c;
50
              1 = (1+ans)%n+1;
              r = (r+ans)%n+1;
52
              if(1 > r)
53
              {
54
                  swap(1,r);
              }
              ans = 0;
              rep(i,0,c+1)
                  ans = (ans + 111*f[r][i]*g[1-1][c-i])%mod;
60
61
              printf("%d\n",ans);
62
          }
63
       }
64
       return 0;
65
   }
66
```

8.1.2 完全背包

• normal 需要按照 i 从小到大的顺序更新, 意为要么停止选, 要么接着多选一个。

```
dp[0] = 0;
rep(i,0,n)

{
    cin >> v >> w;
    rep(j,v,m+1)
}
```

```
dp[j] = max(dp[j],dp[j-v]+w);

cout << dp[m] << endl;</pre>
```

- 计数 same
- 删除 same

8.1.3 多组背包

• 二进制拆分二进制拆分,将一个物品拆成 O(logk) 个 01 背包的物品。eg:10 = 1 + 2 + 4 + 3,可以表示 1 - 10 O(nmlog(k))

```
memset(dp,0,sizeof dp);
       rep(i,0,n)
       {
           cin >> v[i] >> w[i] >> s[i];
       }
       int cnt = 0;
       rep(i,0,n)
           for(int j = 1; j < s[i]; j <<= 1)</pre>
10
              ww[cnt] = j * w[i];
              vv[cnt] = j * v[i];
               s[i] -= j;
               cnt++;
           }
15
           if(s[i])
16
17
               ww[cnt] = s[i] * w[i];
               vv[cnt++] = s[i] * v[i];
19
           }
20
21
       rep(i,0,cnt)
23
           per(j,vv[i],m+1)
           {
               dp[j] = max(dp[j],dp[j-vv[i]] + ww[i]);
           }
       cout << dp[m] << endl;</pre>
```

• 单调队列按%v 的余数分组,每组滑窗求区间最大值 O(nm),但不见得比上面快

8.1.4 分组背包

n 个物品,每个物品只能选一个,体积为 vi,种类为 ki。求总体积恰好 m 的情况下能拿走物品种类数的最大值。将所有物品按 k 分组状态: $f_{i,j,k,s}$ 表示考虑前 i 组,这一组内考虑了前 j 个物品,总体积为 k,第 i 组物品是否被选择的情况为 s 时,种类数的最大值。

8.1.5 树形依赖背包

以 1 为根的树上有 n 个节点,每个节点有一个物品,体积 vi,价值 wi。选了一个点就必须选它的父亲。求总体积不超过 m 的情况下能拿走物品总价值的最大值。

按照 DFS 的顺序进行 DP。往下搜的时候,强行将儿子选入背包中。往上回溯的时候,可以选择要这棵子树的 DP 值,或者不要。