专题1函数 极限 连续

第一部分 典型例题

1. 函数极限

例 1
$$\lim_{x\to 0} \frac{\int_0^x \sum_{n=0}^\infty (-1)^n \frac{t^{2n+1}}{2^n (2n+1)!} dt - \frac{x^2}{2}}{x^3 (\sqrt[3]{1+x} - e^x)} = \underline{\hspace{1cm}}$$

 $[\frac{1}{32}]$

例 2 求
$$\lim_{x \to +\infty} \sqrt{x} \int_{x}^{x+1} \frac{dt}{\sqrt{t+\sin t + x}}$$

例 3 设
$$\sum_{k=1}^{n} a_k = 0$$
, 求 $\lim_{x \to +\infty} \sum_{k=1}^{n} a_k \sqrt{k+x}$.

[0]

例 4 设 f(x) 在 $(-\infty, +\infty)$ 上连续,试证: 对一切 x 满足 $f(2x) = f(x)e^x$ 的充分必要条件 是 $f(x) = f(0)e^x$.

【提示: 迭代取极限】

例 5 设 f(x), g(x) 在点 x = 0 附近有定义, f'(0) = a, 且 $\left| g(x) - f(x) \right| \le \frac{\ln(1+x^2)}{2+\cos x}$, $g'(0) = \underline{\qquad}$

例 6 设
$$f(x) = a_1 \ln(1+x) + a_2 \ln(1+2x) + \dots + a_n \ln(1+nx)$$
,其中 $a_k (k=1,2,\dots,n)$ 为实常数;如果当 $x \in [0,1]$ 时, $\left| f(x) \right| \leq \ln \left(1+x \right)$. 试证: $\left| a_1 + 2a_2 + \dots + na_n \right| \leq 1$.

【提示:极限的保号性】

2. 数列极限

例 7 记
$$a_n = \int_0^{+\infty} x^n e^{-x} dx$$
, $n = 0, 1, 2, \cdots$,则 $\lim_{n \to \infty} \sum_{k=1}^n \left(\frac{1}{a_k} - \frac{1}{a_{k+1}} \right) = \underline{\hspace{1cm}}$

例 8 求
$$\lim_{n\to\infty} \left(1+\sin\pi\sqrt{1+4n^2}\right)^n$$
.

[1]

 $e^{\frac{\pi}{4}}$

 $\left(e-1\right)$

例 10 设 f(x) 是周期为T(T > 0) 的连续函数,证明: $\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt = \frac{1}{T} \int_0^T f(t) dt$.

【提示:利用夹逼定理】

例 11 非负连续函数 f(x) 在 $[0,+\infty)$ 上单调减少, $a_n=\sum_{i=1}^n f(i)-\int_1^n f(x)\mathrm{d}x$, $n=1,2,\cdots$ 证明:数列 $\{a_n\}$ 收敛.

【提示:利用单调有界定理】

例 12 设
$$x_1 > 0$$
, $x_{n+1} = x_n^2 + x_n$, $n = 1, 2, \cdots$, 试计算 $\lim_{n \to \infty} \left(\frac{1}{x_1 + 1} + \frac{1}{x_2 + 1} + \cdots + \frac{1}{x_n + 1} \right)$.

例 13 设数列 $\left\{x_{n}\right\}$ 由以下关系式确定: $x_{0}=1$, $x_{n}=x_{n-1}+\frac{1}{x_{n-1}}$, $n\geq 1$. 证明该数列发散,

例 14 设
$$x_1 = \sqrt{5}$$
 , $x_{n+1} = x_n^2 - 2$, $n \ge 1$, 求 $\lim_{n \to \infty} \frac{x_1 x_2 \cdots x_n}{x_{n+1}}$.

[1]

例 15 求
$$\lim_{n\to\infty}\frac{n^{\frac{n}{2}}}{n!}$$
.

例 16 (1) 设 $x_n = \sum_{i=1}^n \frac{1}{i} - \ln(1+n)$, 讨论 $\sum_{n=1}^{\infty} \left\lceil \frac{1}{n} - \ln\left(1 + \frac{1}{n}\right) \right\rceil$ 的敛散性并证明 $\left\{x_n\right\}$ 收敛;

【收敛,1】

例 17 设数列 $\left\{x_n\right\}$ 满足关系式: $x_{n+1}=f(x_n)$,其中函数 f(x) 在 $\left[a,b\right]$ 上满足:

- (1) $a \le f(x) \le b$, $\forall x \in [a,b]$;
- (2) $\forall x_1, x_2 \in [a,b]$, 恒有 $|f(x_2) f(x_1)| \le \alpha |x_2 x_1|$, $0 < \alpha < 1$.

证明: $\forall x_1 \in [a,b]$, 有数列 $\{x_n\}$ 收敛于方程x = f(x)在[a,b]中的唯一解.

【提示:利用收敛级数的性质】

3. 无穷小与无穷大的比较

例 18 设 f(x) 在 x = 0 的某领域内连续,且当 $x \to 0$ 时, f(x) 与 x^m 为同阶无穷小. 又当 $x \to 0$ 时, $F(x) = \int_0^{x^n} f(t) dt$ 与 x^k 同阶, m 与 n 为正整数,则 k =______.

[nm+n]

例 19 对充分大的一切x,函数 1000^x , e^{3x} , $\lg x^{1000}$, $e^{\frac{x^2}{1000}}$, $x^{10^{10}}$ 中最大的是______.

 $e^{\frac{x^2}{1000}}$

4. 极限反问题

例 20 设
$$\lim_{x\to 0} \frac{\ln(1+x)-(ax+bx^2)}{\int_0^{x^2} e^{t^2} dt} = \int_e^{+\infty} \frac{dx}{x(\ln x)^2}$$
, 求常数 a , b .

[
$$a=1$$
 , $b=-\frac{3}{2}$]

5. 函数的连续性

例 21 设函数 f(x) 在区间 (0,1) 上有定义,且 $e^x f(x)$ 与 $e^{-f(x)}$ 在区间 (0,1) 上都是单调增加的函数. 证明: f(x) 在 (0,1) 上连续.

【提示:利用夹逼定理】

6. 方程求根问题

例 22 设 f(x) 在 [a,b] 上可导,且 f(a)f(b) < 0,又当 $x \in (a,b)$ 时,有 f'(x) > -f(x),

则 f(x) 在 [a,b] 上的零点个数为______.

[1]

例 23 依次求解下列问题:

- (1) 证明方程 $e^x + x^{2n+1} = 0$ 有唯一实根 x_n , $n = 0, 1, 2, \dots$;
- (2) 证明 $\lim_{n\to\infty} x_n$ 存在并求其值 A; (3) 证明当 $n\to\infty$ 时, x_n-A 与 $\frac{1}{n}$ 是同阶无穷小.

例 24 设 n 为正整数, $F(x) = \int_1^{nx} e^{-t^3} dt + \int_e^{e^{(n+1)x}} \frac{t^2}{t^4 + 1} dt$. 证明:

- (1)对于给定的 n , F(x) 有且仅有1个正的零点,记该零点为 a_n :
- (2) $\{a_n\}$ 随n的增加而严格单调减少且 $\lim_{n\to\infty}a_n=0$.

【提示:利用零点定理,0】

7. 闭区间上连续函数的性质

例 25 设 f(x) 在 [1,2] 上连续, f(x) 只取有理数值,已知 f(1)=3 ,求 f(2) .

【提示:利用最值性和介值性】

8. 连续函数应用问题

例 26 有一张所占区域为凸区域的饼放在方形的餐桌上,能否一刀将这张饼切为面积相等的两半,而刀口平行于餐桌的某条指定的边?如果可以做到,问这种切法是否唯一?

【提示:利用介值性】

例 27 两张所占区域为凸区域的饼分开摆在桌面上,能否只用一刀将每张饼都切成面积相等的两部分.

【提示:利用零点定理】

【巩固练习】

1. $\Re \lim_{x \to \infty} [(x+2)\ln(x+2)-2(x+1)\ln(x+1)+x\ln x]x$.

2. 求极限
$$\lim_{n\to\infty} n^2 \left(\arctan \frac{a}{n} - \arctan \frac{a}{n+1} \right), \quad a \neq 0$$
.

3. 设 f(x), g(x) 在 x = 0 的某一邻域U 内有定义,对任意 $x \in U$, $f(x) \neq g(x)$,

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} g(x) = a > 0 , \quad \text{If } \lim_{x \to 0} \frac{\left[f(x) \right]^{g(x)} - \left[g(x) \right]^{g(x)}}{f(x) - g(x)} = \underline{\qquad}.$$

- 4. 设 $u_1 = 1$, $u_2 = 2$, 当 $n \ge 3$ 时, $u_n = u_{n-1} + u_{n-2}$, 求 $\lim_{n \to \infty} \frac{1}{u}$
- 5. 数列 $\{x_n\}$ 满足: $0 < x_1 < \pi$, $x_{n+1} = \sin x_n$, $n = 1, 2, \cdots$.
- (1) 证明 $\lim_{n\to\infty} x_{n+1}$ 存在并求极限; (2) 计算 $\lim_{n\to\infty} \left(\frac{x_{n+1}}{x_n}\right)^{\overline{x_n^2}}$.
- 6. $\vec{x} \lim_{n \to \infty} \left(\frac{1}{a} + \frac{2}{a^2} + \dots + \frac{n}{a^n} \right), \quad a > 1.$
- 8. 正方形的木桌有四条长度一样的腿, 指定将它摆放在房间的某个位置.由于房间的地面有 些凹凸不平. 问该方桌能否在这个位置摆放稳妥, 即四条腿同时着地.

$$a^a$$

5.
$$0$$
, $e^{-\frac{1}{6}}$

3.
$$a^a$$
 4. 0 5. 0, $e^{-\frac{1}{6}}$ 6. $\frac{a}{(a-1)^2}$

7. 1

8. 提示: 利用零点定理

第二部分 强化训练

- 1. 求极限 $\lim_{x \to +\infty} \sqrt{x^2 + x + 1} \frac{x \ln(e^x + x)}{x}$. (13 届国赛预赛)
- 3. 求极限 $\lim_{x \to +\infty} \frac{\int_{1}^{x} \left[t^{2} \left(e^{\frac{1}{t}} 1 \right) t \right] dt}{x^{2} \ln \left(1 + \frac{1}{x} \right)}$. (2014 考研真题)
- 5. 求极限 $\lim_{n\to\infty}\sum_{i=1}^n\frac{e^i}{e^n+i^2}$.
- 6. 设 $x \in (-\infty, +\infty)$, 求 $\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n} \sqrt{(ne^x + i)(ne^x + i + 1)}$. (14 届国赛预赛补赛)
- 7. 求极限 $\lim_{n\to\infty} \frac{1}{n^3} \sum_{i=1}^{n} (2i-1)^2$. (14 届国赛预赛第二次补赛)
- 8. 设 n 为正整数,求 $\lim_{x\to 0} \frac{\sqrt{\frac{1+x}{1-x}}\sqrt[4]{\frac{1+2x}{1-2x}}\sqrt[6]{\frac{1+3x}{1-3x}}\cdots \sqrt[2n]{\frac{1+nx}{1-nx}}-1}{3\pi \arcsin x (x^2+1)\arctan^3 x}$. (12 届国赛决赛)
- 9. 设 $x_0 = 1$, 当 $n \ge 1$ 时, 有 $x_n = \ln(1 + x_{n-1})$, 求 $\lim_{n \to \infty} nx_n$. (13 届国赛预赛补赛)
- 10. 设 $\{a_n\}$ 满足 $a_1 > 1$, $a_{n+1}(a_n^2 1) = a_n^3$. 求: (1) $A = \lim_{n \to \infty} \frac{a_n}{\sqrt{n}}$. (2) $\lim_{n \to \infty} \frac{n}{\ln n} \left(\frac{a_n}{\sqrt{n}} A\right)$.

【参考答案】

1. 0 2.
$$n = 5$$
, $m = \frac{1}{5}$, $b = \frac{7}{5}$ 3. $\frac{1}{2}$ 4. $(a_1^{p_1} a_2^{p_2} \cdots a_m^{p_m})^{\frac{1}{p}}$

3.
$$\frac{1}{2}$$

4.
$$(a_1^{p_1}a_2^{p_2}\cdots a_m^{p_m})^{\frac{1}{p}}$$

$$5. \ \frac{e}{e-1}$$

5.
$$\frac{e}{e-1}$$
 6. $e^x + \frac{1}{2}$ 7. $\frac{4}{3}$ 8. $\frac{n}{3\pi}$ 9. 2

7.
$$\frac{4}{3}$$

8.
$$\frac{n}{3\pi}$$

10.
$$\sqrt{2}$$
, $\frac{3}{4\sqrt{2}}$