Crayons

Mirko recently got N crayons as a gift. The color of each crayon is a combination of three primary colors: red, green and blue. The color of the ith crayon is represented with three integers: R_i for the red, G_i for the green and B_i for the blue component. The difference between the ith and the jth crayon is $max(|R_i - R_j|, |G_i - G_j|, |B_i - B_j|)$. The colorfulness of a subsequence of crayons is equal to the largest difference between any two crayons in the subsequence.

Mirko needs a subsequence with K crayons with the smallest colorfulness for his drawing. The subsequence does not have to be consecutive. Find it!

Input

The first line of input contains integers N and K ($2 \le K \le N \le 100\ 000$). The ith of the following N lines contains three integers R_i, G_i and B_i ($0 \le R_i$, G_i, B_i ≤ 255)

Output

The first line of output should contain the smallest colorfulness of a subsequence with K crayons. The following K lines should contain the R, G and B values of the colors of the crayons in the subsequence, in any order. Any subsequence that yields the smallest colorfulness will be accepted.

Sample input

Sample output

2 2	3
132	132
264	264
32	2
3 3 4	3 3 4
164	112
112	
5 3	2
664	627
627	415
313	626
415	
626	