Assignment 2.

Solutions

There are total 20 points in this assignment. 18 points is considered 100%. If you go over 18 points, you will get over 100% for this homework and it will count towards your course grade (but not over 115%).

Your solutions should contain full proofs. Bare answers will not earn you much. This assignment covers sections 2.1, 2.2, 2.3 in Bartle–Sherbert.

- (1) [2pt] Prove that there does not exist a rational number r such that $r^2 = 7$. (*Hint:* Go similarly to the proof about $r^2 = 2$, but use divisibility by 7 instead of divisibility by 2.)
 - ightharpoonup Suppose there is r=a/b with $r^2=7$ and $\gcd(a,b)=1$. Then $a^2=7b^2$. Since the right hand side is a multiple of 7, the left hand side must be a multiple of 7, too. But then a is a multiple of 7, i.e. a=7c, so $49c^2=7b^2$ and $7c^2=b^2$. Repeating argument, conclude that b=7d. This contradicts the assumption that a,b are coprime.
- (2) [5pt]
 - (a) (\sim 2.1.8a) Let x, y be rational numbers. Prove that xy, x-y are rational numbers. (*Hint:* Start by writing $x = \frac{m}{n}, y = \frac{k}{l}$, where $m, n, k, l \in \mathbb{Z}$.)
 - ightharpoonup Let $x=rac{m}{n},\ y=rac{k}{l},$ where $m,k\in\mathbb{Z},\ n,l\in\mathbb{N}.$ Then $xy=rac{mk}{nl},\ x-y=rac{ml-nk}{nl}\ (nl
 eq 0$ since n
 eq 0,l
 eq 0) are both rational.
 - (b) (2.1.8b) Let x be a rational number, y an irrational number. Prove that x + y is irrational. Prove that if, additionally, $x \neq 0$, then xy is irrational.
 - \triangleright Follows from previous item and fact that $y=(x+y)-x, \ y=(xy)/x$.
 - (c) Let x, y be irrational numbers. Is it true that x + y is always irrational? Is it true that x + y is always rational? (*Hint*: No and No.)

$$\sqrt{2} + (-\sqrt{2}) = 0 \in \mathbb{Q},$$

$$\sqrt{2} + \sqrt{2} = 2\sqrt{2} \notin \mathbb{Q}.$$

(d) Same question about xy.

> Answer to both questions is No. Examples:

$$\sqrt{2} \cdot (\sqrt{2}) = 2 \in \mathbb{Q},$$

$$\sqrt{2} \cdot \sqrt{3} = \sqrt{6} \notin \mathbb{Q}.$$

Note that the latter relies on $\sqrt{3}$, $\sqrt{6}$ being irrational numbers. To avoid that and only use irrationality of $\sqrt{2}$, which was proven in lectures, we can use $\sqrt{2} \cdot (\sqrt{2} - 1) = 2 - \sqrt{2}$.

- (3) [4pt] (2.1.9) Let $K=\{s+t\sqrt{2}\mid s,t\in\mathbb{Q}\}$. Show that K satisfies the following:
 - (a) If $x_1, x_2 \in K$ then $x_1 + x_2 \in K$ and $x_1 x_2 \in K$.

$$\triangleright$$
 Let $x_1 = s_1 + t_1\sqrt{2}$, $x_2 = s_2 + t_2\sqrt{2}$. Then

$$x_1 + x_2 = (s_1 + s_2) + (t_1 + t_2)\sqrt{2} \in K,$$

and

$$x_1x_2 = (s_1 + t_1\sqrt{2})(s_2 + t_2\sqrt{2}) = (s_1s_2 + 2t_1t_2) + (s_1t_2 + s_2t_1)\sqrt{2} \in K.$$

(b) If $x \neq 0$ and $x \in K$ then $1/x \in K$. (Hint: Get rid of irrationality in the denominator.)

 \triangleright Let $x = s + t\sqrt{2}$. Since $\sqrt{2} \notin Q$, the number $s - t\sqrt{2}$ is nonzero, and we can write

$$\frac{1}{x} = \frac{1}{s + t\sqrt{2}} = \frac{s - t\sqrt{2}}{(s + t\sqrt{2})(s - t\sqrt{2})} = \frac{s - t\sqrt{2}}{s^2 - 2t^2} = \frac{s}{s^2 - 2t^2} + \frac{-t}{s^2 - 2t^2}\sqrt{2} \in K.$$

Comment. In other words, K is a subfield of \mathbb{R} .

(4) [2pt] (2.2.4) Let $a, x \in \mathbb{R}$ and $\varepsilon > 0$. Show that $|x - a| < \varepsilon$ if and only if $a - \varepsilon < x < a + \varepsilon$. (Hint: Don't forget that "A if and only if B" means "(if A then B) AND (if B then A)".)

 \triangleright

$$\begin{aligned} |x - a| &< \varepsilon \iff \\ -\varepsilon &< x - a < \varepsilon \iff \\ a - \varepsilon &< x - a + a < \varepsilon + a, \end{aligned}$$

as required.

(5) [3pt]

(a) Let $S = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$. Find inf S and $\sup S$.

 $ightharpoonup \inf\{1-\frac{1}{n}:\ n\in\mathbb{N}\}=1-1=0$ by definition of sup. $\sup\{1-\frac{1}{n}:\ n\in\mathbb{N}\}=1$ by Archimedean property. (b) (2.3.4) Let $T=\{1-\frac{(-1)^n}{n}\mid n\in\mathbb{N}\}$. Find inf T and $\sup T$. (*Hint:* If you are not sure what's going on, try to draw this set to get an idea.)

 \triangleright Note that for all $n \in \mathbb{N}$, we have

$$\frac{1}{2} = 1 - \frac{(-1)^2}{2} \le 1 - \frac{(-1)^n}{n} \le 1 - \frac{(-1)^1}{1} = 2.$$

Since 1/2 and 2 are members of the set T, by definition of sup and inf we get $\sup T = 2$, $\inf T = 1/2$.

(6) (a) [2pt] (Part of 2.3.11) Let $S \subset \mathbb{R}$ be a bounded above set. Let $S' \subset S$ be its nonempty subset. Show that $\sup S' \leq \sup S$. (Hint: Follow the definition.)

> \triangleright For every $s \in S' \subseteq S$, $s \leq \sup S$. Therefore $\sup S$ is an upper bound for S', so $\sup S' \leq \sup S$.

(b) [2pt] (2.3.10) Show that if A and B are bounded above nonempty subsets of \mathbb{R} , then $A \cup B$ is a bounded above set and $\sup A \cup B =$ $\sup\{\sup A, \sup B\}$. (*Hint:* Follow the definition.)

 \triangleright Since for every $x \in A \cup B$, $x \in A$ or $x \in B$, it follows that $\sup \{\sup A, \sup B\}$ is indeed an upper bound of $A \cup B$, so $\sup A \cup B \le$ $\sup\{\sup A, \sup B\}.$

Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, by previous item sup $A \cup B \ge \sup A$ and $\sup A \cup B \ge \sup B$. Therefore, $\sup A \cup B = \sup \{\sup A, \sup B\}$.