IN THE CLAIMS:

Please cancel claims 1-15, without prejudice, and add claims 25-46 as follows:

1-15. (canceled)

16. (amended) A method for detecting hydrogenous materials comprising the steps of:

- a. directing a stream of fast neutrons from a neutron source toward a target;
- b. detecting the time when said stream of fast neutrons is emitted from said neutron source:
- c. measuring a portion of said stream of fast neutrons that is backscattered from hydrogen in said target after a time delay beginning when said stream of fast neutrons is emitted from said source; and
 - d. communicating said measurement to a user.
- 17. (original) The method as recited in claim 16, wherein said measuring occurs after said time delay and only during a window.
- 18. (original) The method as recited in claim 16, further comprising the step of pulseheight discriminating said measurement.
- 19. (original) The method as recited in claim 18, wherein said discriminating is performed using an upper level discriminator setting.

20. (original) The method as recited in claim 16, wherein said target comprises an

explosive.

21. (original) The method as recited in claim 16, wherein said explosive is a land mine.

22. (original) The method as recited in claim 16, wherein said explosive is unexploded

ordinance.

23. (original) The method as recited in claim 16, wherein said target is contraband

narcotics.

24. (original) The method as recited in claim 16, wherein said target is biological tissue.

A method for detecting hydrogenous materials, comprising: 25. (new)

a. interrogating a target with neutrons from a neutron source and providing a

timing signal indicative of the interrogating;

receiving neutrons scattered from said target with a neutron sensor and b.

producing a neutron count signal dependent on the amount of hydrogenous material

present in said target; and

c. based on said timing signal, enabling said neutron sensor after a time

delay to discriminate against detecting fast neutrons that have not been scattered from

hydrogenous materials in the target.

Preliminary Amendment

26. (new) The method of claim 25 wherein said neutron sensor is enabled during a

window and disabled after said window.

27. (new) The method of claim 25 further comprising discriminating against

neutrons having energies above a predetermined level as detected by the neutron sensor.

28. (new) The method of claim 25 further comprising spatially resolving said

neutron count signal.

29. (new) A method comprising:

a. providing a stream of fast neutrons directed toward a target;

b. providing at least one sensing head comprising a neutron sensor and a

neutron shield positioned such that a portion of said stream of fast neutrons is

backscattered from said target to said neutron sensor;

c. disabling said neutron sensor during a time delay beginning at the time

said stream of fast neutrons is emitted from said neutron source; and

d. enabling said neutron sensor after said time delay to produce a neutron

count signal dependent on the amount of hydrogenous material present in said target.

30. (new) The method of claim 29 wherein said enabling is for a window, the

method further comprising disabling said neutron sensor after said window.

Preliminary Amendment

- 31. (new) The method of claim 29 further comprising processing said neutron count signal with a pulse-height analyzer having at least one pulse-height discriminator setting.
- 32. (new) The method of claim 31 wherein said at least one pulse-height discriminator setting is an upper level discriminator setting.
- 33. (new) The method of claim 29 further comprising spatially resolving said neutron count signal so that the spatial location of said target can be determined.
- 34. (new) The method of claim 33 wherein said resolving is with a collimating material.
- 35. (new) The method of claim 33 wherein said resolving is with a coded-array aperture.
- 36. (new) The method of claim 29 wherein providing said stream of fast neutrons includes providing a neutron source selected from the group consisting of a fission source, an (alpha, n) source, a (gamma, n) source, and combinations thereof.
 - 37. (new) The method of claim 36 wherein said neutron source comprises ²⁵²Cf.
- 38 (new) The method of claim 29 wherein providing said stream of fast neutrons includes pulsing a neutron source.

39. (new) The method of claim 29 wherein providing said stream of fast neutrons includes providing a neutron sensor comprising a material selected from the group consisting of ³He. ¹⁰B. ⁶Li, and combinations thereof.

40. (new) The method of claim 29 wherein said neutron sensor is selected from the group consisting of a ³He gas-proportional counter, a ¹⁰BF₃ gas-proportional counter, a scintillating glass containing ⁶Li, a scintillating glass containing ¹⁰B, a scintillating plastic containing ⁶Li, a scintillating plastic containing ¹⁰B, a scintillating crystal containing ⁶Li, a scintillating crystal containing ¹⁰B, and combinations thereof.

- 41. (new) The method of claim 29 wherein said neutron shield comprises a material selected from the group consisting of ¹⁰B, ⁶Li, and combinations thereof.
- 42. (new) The method of claim 29 further comprising supporting said sensing head away from a vehicle with an extension arm
- 43. (new) The method of claim 29 further comprising communicating said neutron count signal to a user interface.
 - 44. (new) The method of claim 16 wherein said time delay is at least about 70ns.
 - 45. (new) The method of claim 25 wherein said time delay is at least about 70ns.

46. (new) The method of claim 29 wherein said time delay is at least about 70ns.

47.(new) A system for detecting hydrogenous materials comprising:

a time-tagged neutron source for directing a stream of fast neutrons toward a target; and

means for measuring a portion of said stream of fast neutrons that is backscattered from

said target after a time delay beginning when said stream of fast neutrons is emitted from said

source to produce a neutron count signal dependent on the amount of hydrogenous material in

said target.

48. (new) The system of claim 47 wherein said means for measuring comprises a

neutron sensor and a control system comprising a timing circuit, wherein said timing circuit

disables said neutron sensor when said stream of fast neutrons is emitted from said neutron

source and enables said neutron sensor after said time delay.

49. (new) The system of claim 48 wherein said timing circuit enables said neutron

sensor after said time delay during a window and disables said neutron sensor after said window.

50. (new) The system of claim 48 wherein said neutron sensor and said neutron

source are contained within a neutron shield.

51. (new) The system of claim 47 further comprising a user interface including

means for communicating said neutron count signal to a user.

Preliminary Amendment