

Trabajo Final Visión por Computadora II CEIA 2025 - Coh17

- Agustina Quirós (agustinaqr@gmail.com)
- Agustín de la Vega (delavega.agus@gmail.com)
- Florentino Arias (florito.arias@gmail.com)

Tabla de contenidos

- O1 Problema a Resolver
- O2 Exploración y
 - Comprensión de los datos
 - 03 Balance del Dataset

- 04 Experimentos
 - 05 Conclusiones

01

Dataset Elegido y Problema a Resolver

Dataset Elegido

El dataset utilizado para este trabajo se denomina **PlantVillage Dataset**, fue obtenido de la plataforma Kaggle.

LINK

Problema a Resolver

Entrenar modelos de visión por computadora que identifiquen y clasifiquen hojas de plantas a partir de imágenes, para detectar si están sanas o enfermas y, en este último caso, de qué enfermedad se trata, ayudando a los agricultores a tomar medidas preventivas y reducir pérdidas.

ď

Exploración y Comprensión de los datos

Contenido de las carpetas del dataset PlantVillage

Data Explorer

2.18 GB

- ▶ □ color
- grayscale
- segmented

- Cada carpeta contiene un conjunto de carpetas, nombradas siguiendo el patrón:
 - NombrePlanta[_(alguna_aclaracion)]__Nombre_enfermedad[_(alguna_aclaracion)] o NombrePlanta[_(alguna_aclaracion)] healthy.
- Cada planta tiene una carpeta healthy y una o más carpetas relacionadas a enfermedades (una carpeta corresponde a una sola enfermedad).
- Cada subcarpeta en la carpeta 'color' tiene su correspondiente subcarpeta en 'grayscale' y en 'segmented'.
- La cantidad de imágenes dentro de cada carpeta es variable (hay carpetas que tienen cerca de 300 y otras que tienen más de 1000).

,"

Tamaño promedio de imagen: 256.0 x 256.0

Variedades

Clases

ı"

Balance del Dataset

Data Augmentation y Class Weight

- Queremos evitar los problemas que podría traernos el desbalance de datos (5500 contra 152).
- Los modelos podrían inclinarse hacia las clases más grandes.
- El objetivo es aumentar la variabilidad y balancear el dataset.
- Normalizamos las imágenes.
- Aplicamos transformaciones aleatorias.
- Aplicamos pesos a las clases.

Probamos con las siguientes transformaciones:

- Rotaciones
- Desplazamientos
- Zoom
- Volteo horizontal y vertical

Damos pesos a las clases:

class_weight='balanced' compensa las clases minoritarias **dándole más peso al error** cuando se equivoca con ellas.

Experimentos

Dividimos el dataset para entrenar y evaluar correctamente

Train (80%): se usa para ajustar los pesos del modelo.

Validation (20%): se usa durante el entrenamiento para ver si el modelo está generalizando o solo "memorizando" el train.

```
train_datagen = ImageDataGenerator(
    rescale=1./255,
    rotation_range=40,
    width_shift_range=0.2,
    height_shift_range=0.2,
    shear_range=0.2,
    zoom_range=0.2,
    horizontal_flip=True,
    validation_split=0.2 # 20%
para validación
)
```

```
# Generadores
train generator = train datagen.flow from directory(
    path de trabajo,
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode='categorical',
    subset='training'
val generator = train datagen.flow from directory(
    path de trabajo,
    target_size=IMG_SIZE,
    batch size=BATCH SIZE,
    class mode='categorical',
    subset='validation'
```

Creamos una red convolucional básica con 3 capas Conv2D seguidas de MaxPooling2D.

Luego una capa Dense (512 neuronas), Dropout para regularización, y Dense final para clasificación (softmax para multiclase).

```
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', input shape=(IMG SIZE[0], IMG SIZE[1], 3)),
    MaxPooling2D(2, 2),
    Conv2D(64, (3, 3), activation='relu'),
   MaxPooling2D(2, 2),
    Conv2D(128, (3, 3), activation='relu'),
    MaxPooling2D(2, 2),
    Flatten(),
    Dense(512, activation='relu'),
    Dropout (0.5),
    Dense(num classes, activation='softmax') # num classes definido por
flow from directory
])
model.compile(
    optimizer=Adam(learning rate=0.001),
    loss='categorical crossentropy',
    metrics=['accuracy']
```

```
early_stop = EarlyStopping(monitor='val_loss', patience=3)
history = model.fit(
    train_generator,
    epochs=30,
    validation_data=val_generator,
    callbacks=[early_stop]
)
```


	precision	recall	f1-score	support	
TomatoLate_blight	0.01	0.02	0.01	126	
Tomato healthy	0.02	0.02	0.02	124	
Grape healthy	0.00	0.00	0.00	55	
Orange Haunglongbing (Citrus greening)	0.03	0.03	0.03	329	
Strawberryhealthy	0.02	0.02	0.02	221	
Apple healthy	0.01	0.01	0.01	91	
GrapeBlack_rot	0.04	0.04	0.04	425	
PotatoEarly_blight	0.01	0.01	0.01	200	
Cherry_(including sour) healthy	0.03	0.04	0.04	381	
Corn_(maize)Common_rust_	0.03	0.03	0.03	190	
<pre>GrapeEsca_(Black_Measles)</pre>	0.01	0.01	0.01	354	
Raspberryhealthy	0.02	0.02	0.02	335	
TomatoLeaf_Mold	0.02	0.02	0.02	280	
TomatoSpider_mites Two-spotted_spider_mite	0.11	0.11	0.11	1071	
Pepper,_bellBacterial_spot	0.02	0.03	0.02	74	
Corn_(maize)healthy	0.03	0.03	0.03	318	
			0.05	40040	
accuracy			0.05	10849	
macro avg	0.03	0.03	0.03	10849	
weighted avg	0.05	0.05	0.05	10849	

Dividimos el dataset para entrenar y evaluar correctamente

Train (70%): se usa para ajustar los pesos del modelo.

Validation (15%): se usa durante el entrenamiento para ver si el modelo está generalizando o solo "memorizando" el train.

Test (15%): se guarda para el final. El modelo no lo ve hasta después de entrenar. Evalúa el rendimiento **real**, como si lo usáramos en producción.

```
# PARÁMETROS Y PREPROCESAMIENTO
IMG SIZE = (128, 128)
BATCH_SIZE = 32
datagen = ImageDataGenerator(
    rescale=1./255,
    rotation range=40,
    width shift range=0.2,
    height shift range=0.2,
    shear range=0.2,
    zoom range=0.2,
    horizontal flip=True,
    vertical flip=True,
    fill mode='nearest'
```

```
train generator = datagen.flow from directory(
    "dataset dividido/train",
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode= 'categorical'
val generator = datagen.flow from directory(
    "dataset dividido/val",
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode= 'categorical'
test generator = test datagen.flow from directory(
    "dataset dividido/test",
    target size=IMG SIZE,
    batch size=BATCH SIZE,
    class mode= 'categorical',
    shuffle=False
```

```
# CLASS WEIGHTS
class_weights =
compute class weight (
    class_weight="balanced",
classes=np.unique(train_generator.c
lasses),
   y=train_generator.classes
class weights =
dict(enumerate(class_weights))
```

```
model = Sequential([
    Conv2D(32, (3, 3), activation='relu', kernel regularizer=12(0.001), input shape=(128, 128, 3)),
    BatchNormalization(),
    MaxPooling2D(2, 2),
    Conv2D(64, (3, 3), activation='relu', kernel regularizer=12(0.001)),
    BatchNormalization(),
    MaxPooling2D(2, 2),
    Conv2D(128, (3, 3), activation='relu', kernel regularizer=12(0.001)),
    BatchNormalization(),
    MaxPooling2D(2, 2),
    GlobalAveragePooling2D(),
    Dense (256, activation='relu', kernel regularizer=12 (0.001)),
    Dropout (0.5),
    Dense(num classes, activation ± softmax')
])
model.compile(
    optimizer=Adam(learning rate⊕.001),
    loss='categorical crossentropy',
    metrics=[
        'accuracy',
        tf.keras.metrics.Precision(name + precision'),
        tf.keras.metrics.Recall(name = recall'),
        tf.keras.metrics.AUC(name = auc')
    ])
```

Сара	Qué hace	Por qué se usa
Conv2D	Detecta patrones como bordes, manchas, texturas	Es la base del análisis visual
BatchNormalization	Normaliza la salida de la conv. para estabilizar el entrenamiento	Acelera y mejora el aprendizaje
MaxPooling2D	Reduce el tamaño de la imagen (submuestreo)	Hace que el modelo sea más rápido y generalice
GlobalAveragePooling 2D	Promedia cada mapa de activación	Reemplaza Flatten() con menos parámetros, evita overfitting
Dense(256)	Red neuronal completamente conectada	Toma las características extraídas y aprende combinaciones
Dropout(0.5)	Apaga aleatoriamente neuronas durante entrenamiento	Obliga a la red a no depender de neuronas específicas
Dense(num_classes) + softmax	Capa de salida que da la probabilidad de cada clase	Clasifica entre todas las clases

```
# CALLBACKS
early stop = EarlyStopping(monitor='val loss', patience=5, restore best weights=True)
reduce lr = ReduceLROnPlateau(monitor='val loss', factor=0.5, patience=2, min lr=1e-6)
checkpoint = ModelCheckpoint("mejor modelo.h5", save best only=True, monitor="val loss")
history = model.fit(
   train generator,
   epochs=50,
   validation data=val generator,
    callbacks=[early stop, reduce lr, checkpoint],
   class weight=class weights
```


Resultados de las métricas

Tomatohealthy	0.64	0.99	0.78	240	
accuracy			0.95	8179	
macro avg	0.94	0.95	0.94	8179	
weighted avg	0.96	0.95	0.95	8179	

Transfer Learning

VGG16

- 16 Capas
- 138M params
- Año 2014

ResNet50

- 50 Capas
- 25.6M params
- Año 2015

EfficientNetB5

- 55 capas
- 30M params
- Año 2019

Transfer Learning

Transfer Learning- EfficientNetB5

Metrica/Modelo	Train Inicial	Tuneo Hyperparams
Accuracy	96.61%	97.31%
F1-Score	96.51%	97.32%

Clases con peor f1-score

- 5 clases: ~ 88%
- 2 clases: ~90%
- **3** clases: ~93%

Transfer Learning - ResNet50

Metrica/Modelo	Train Inicial	Tuneo Hyperparams
Accuracy	98.44%	98.45%
F1-Score	98.43%	98.46%

Clases con peor f1-score

- Potato_healthy | Grape_Black_rot | Grape_Esca_(Black_Measles): ~ 90%
- Corn_(maize)__Northern_Leaf_Blight | Tomato___Early_blight: 95%
 - Apple__Apple_scab, Peach__healthy | Tomato__Late_blight: 97%

Transfer Learning - VGG16

Metrica/Modelo	Train Inicial	Tuneo Hyperparams
Test Accuracy	97.37%	99.63%
F1-Score	97.34%	99.63%

Clases con peor f1-score

Corn_(maize)__Cercospora_leaf_spot Gray_leaf_spot (513 imagenes): 96%

05

Conclusiones

Conclusiones

Modelo custom

- Versión inicial es una implementación muy básica. No cuenta con la capacidad para generalizar.
- V2 es una **versión más robusta**, incorpora mejoras en su arquitectura en el balanceo de clases e introduce capas de BatchNormalization. No son suficientes para utilizar el modelo en un ambiente productivo.

Transfer Learning

- Incorporan conocimiento adquirido de millones de imágenes. Requiere menor volumen de datos que el entrenamiento del modelo propio.
- VGG16, aunque sea la arquitectura más simple de los modelos base, es con diferencia la que mejor performa. 99.6% de accuracy, excelente balance de clases.
- Las otras dos arquitecturas resultan mejores que la propia, pero igualmente cuentan con un leve desbalance de clases. Podrían conseguirse mejores resultados si se entrena una "Cabeza" con más capas o se mejora el data augmentation y/o balance de clases.

FIN - MUCHAS GRACIAS