SINDy – Sparse Identification of Nonlinear Dynamics

CWI Autumn School - Scientific Machine Learning and Dynamical Systems

Urban Fasel

Imperial College London

Dynamics (assumptions)

Model structure & coefficients

$$\frac{d}{dt}\mathbf{x} = \mathbf{f}(\mathbf{x})$$

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

My work

(Flexible) flight systems

- 1. Flapping wing MAV
- 2. Renewable energy systems
- 3. Composite additive manufacturing morphing wing drones
- 4. Morphing wings
- 5. Airborne wind energy

Methods

- 1. <u>Co-design optimization</u>
- 2. Data driven modeling & control
 - DMDc, SINDyC, E-SINDy

SINDy – applications

1. Vortex shedding past a cylinder

- · Time history of POD coefficients:
 - $\dot{x} = \mu x \omega y + Axz$
 - $\dot{y} = \omega x + \mu y + Ayz$
 - $\dot{z} = -\lambda(z x^2 y^2)$

2. Shock wave dynamics 2D airfoil transonic buffet conditions

- Parametric c_{I} model for different α
 - $c_L(r,\phi) = c_0 + c_1 r + c_2 r \cos(\varphi) + c_3 r \sin(\varphi) + c_4 r^2 \cos(2\varphi) + c_5 r^2 \sin(2\varphi)$

3. Cavity flow

- Coefficients of 2 active DMD modes
 - $\dot{\alpha}_1 = \lambda_1 \alpha_1 \mu_1 \alpha_1 |\alpha_1|^2$
 - $\dot{\alpha}_5 = \lambda_5 \alpha_5 \mu_5 \alpha_5 |\alpha_5|^2$

4. Experimental measurements turbulent bluff body wake

- Statistical behavior of the CoP (learning drift and diffusion of SDE)
 - $\dot{r} = \lambda r \mu r^3 + \frac{\sigma^2}{2r} + (\sigma_0 + \sigma_1^2)w(t)$

5. Plasma dynamics (magnetohydrodynamics): 3D spheromak sim

- · Dominant POD coefficient dynamics
 - $\dot{a}_1 = 0.091a_2 + 0.009a_5$
 - $\dot{a}_2 = -0.091a_1 + 0.008a_5 0.011a_6$
 - ...

6. Experimental weakly turbulent fluid flow in a thin electrolyte layer

- Measured velocity field, identify PDE: form similar to N-S
 - $\partial_t \mathbf{u} = c_1(\mathbf{u} \cdot \nabla)\mathbf{u} + c_2\nabla^2\mathbf{u} + c_3\mathbf{u} \rho^{-1}\nabla p + \rho^{-1}\mathbf{f}$

7. Turbulent 3D channel flow (Re = 1000) Johns Hopkins database

- Identify PDEs: N-S, continuity equation, boundary conditions
 - $\partial_t \mathbf{u} = -(\mathbf{u} \cdot \nabla)\mathbf{u} 0.995\nabla p + 4.93 \cdot 10^{-5}\nabla^2 \mathbf{u}$

SINDy MPC – next generation transport aircraft control

AR20+ workshop last week at Imperial College London

Future aircraft: high aspect ratio wings

Wind tunnel flutter test: Pazy wing

Wing flutter instability regions

Nonlinear model predictive flutter control using SINDy models [5]

- 1. **Fast flutter suppression**: deflect flap synchronously to flutter vibration to counteract its effect
- 2. Slow deflection flutter control: move wing to different stability region

^[1] AR20+ workshop (2023) https://cassyni.com/s/ar20plus

^[2] Airbus ZEROe Concept https://www.airbus.com/en/innovation/low-carbon-aviation/hydrogen/zeroe

^[3] Aeroelasticity Lab D Raveh (2023) Pazy wing flutter

^[4] M Artola, N Goizueta, A Wynn, R Palacios (2021) Aeroelastic Control and Estimation with a Minimal Nonlinear Modal Description.

^[5] A Wynn, M Artola, R Palacios (2022) Nonlinear optimal control for gust load alleviation with a physics-constrained data-driven internal model

Tutorial outline

Part 1: SINDy – Sparse Identification of Nonlinear Dynamics

- ODEs and PDEs
- MATLAB and Python (PySINDy) examples
- SINDy limitations

"Vanilla" SINDy

Part 2: SINDy with control & parametric models

SINDy extensions

Part 3: Model selection

Part 4: Noise robustness: weak form & ensemble SINDy

Part 5: Your PhD project data sets

Applications

Part 1

SINDy: Learning ODEs and PDEs from time series data

ODEs

- 1. Collect time series data & compute time derivatives
- 2. Build library of nonlinear terms
- 3. Sparse regression
- ODE MATLAB & Python examples

PDEs

Challenges & limitations of "Vanilla" SINDy

Learning ODEs and PDEs from data – SINDy

Data

Dynamics (assumptions)

Model structure & coefficients

$$\frac{d}{dt}\mathbf{x} = \mathbf{f}(\mathbf{x})$$

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z$$

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{N}(\mathbf{u})$$

$$\omega_t + (\mathbf{u} \cdot \nabla)\omega = \frac{1}{Re} \nabla^2 \omega$$

SINDy

Sequential thresholded least squares algorithm

<u>Sparse regression</u>: penalised least squares

$$\rightarrow \hat{\boldsymbol{\xi}}_k = \operatorname{argmin}_{\boldsymbol{\xi}_k} \|\dot{\mathbf{X}}_k - \mathbf{\Theta}(\mathbf{X})\boldsymbol{\xi}_k\|_2^2 + \lambda \|\boldsymbol{\xi}_k\|_0$$

```
function Xi = sparsifyDynamics(Theta,dXdt,lambda,n)
% Compute Sparse regression: sequential least squares
Xi = Theta\dXdt; % Initial guess: Least-squares
% Lambda is our sparsification knob.
for k=1:10
    smallinds = (abs(Xi)<lambda); % Find small coefficients</pre>
   Xi(smallinds) = 0;
                                   % and threshold
    for ind = 1:n
                                   % n is state dimension
        biginds = ~smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
        Xi(biginds, ind) = Theta(:, biginds) \dXdt(:, ind);
    end
end
```

Sparse Regression to Solve for Active Terms in the Dynamics

SINDy

SL Brunton, JL Proctor, JN Kutz (2016) Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

MATLAB tutorial: identify ODE → https://github.com/urban-fasel

Lorenz system

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = x(\rho - z) - y$$

$$\dot{z} = xy - \beta z.$$

Data: time series x, y, z

No MATLAB installed?

- → Run the tutorials on MATLAB online: https://matlab.mathworks.com/
- → Or use PySINDy (next slide): https://github.com/dynamicslab/pysindy
- → Or Julia SciML: https://docs.sciml.ai/DataDrivenDiffEq/stable/#Package-Overview

Python tutorial – identify ODE

1. PySINDy

- SINDy python package: <u>JOSS article</u>
- GitHub: https://github.com/dynamicslab/pysindy
 - Check out the binder notebook examples!
- PySINDy lectures: notebooks and YouTube videos
 - GitHub interactive notebook
 - <u>Tutorial videos Alan Kaptanoglu</u>

2. Lorenz system ODE tutorial

- 1. Start with the <u>feature overview</u> tutorial in PySINDy to **identify the Lorenz system**
- 2. Try to identify the Rossler attractor: from pysindy.utils import rossler
 - Generate data: x train = solve ivp(rossler, ...
- Test other data sets generated from different ODEs → ODEs in PySINDy
 - Large library of chaotic systems: https://github.com/williamgilpin/dysts

PDEs

PDEs

PDE		Form	Error (no noise, noise)	Discretization
	KdV	$u_t + 6uu_x + u_{xxx} = 0$	$1\pm0.2\%, 7\pm5\%$	$x \in [-30, 30], n = 512, t \in [0, 20], m = 201$
1	Burgers	$u_t + uu_x - \epsilon u_{xx} = 0$	$0.15 \pm 0.06\%, 0.8 \pm 0.6\%$	$x \in [-8, 8], n = 256, t \in [0, 10], m = 101$
1	Schrödinger	$iu_t + \frac{1}{2}u_{xx} - \frac{x^2}{2}u = 0$	$0.25 \pm 0.01\%, 10 \pm 7\%$	$x \in [-7.5, 7.5], n = 512, t \in [0, 10], m = 401$
4	NLS	$iu_t + \frac{1}{2}u_{xx} + u ^2 u = 0$	$0.05 \pm 0.01\%, 3 \pm 1\%$	$x \in [-5, 5], n = 512, t \in [0, \pi], m = 501$
	KS	$u_t + uu_x + u_{xx} + u_{xxxx} = 0$	$1.3 \pm 1.3\%, 52 \pm 1.4\%$	$x \in [0, 100], n = 1024, t \in [0, 100], m = 251$
	Reaction Diffusion	$u_{t} = 0.1\nabla^{2}u + \lambda(A)u - \omega(A)v v_{t} = 0.1\nabla^{2}v + \omega(A)u + \lambda(A)v A^{2} = u^{2} + v^{2}, \omega = -\beta A^{2}, \lambda = 1 - A^{2}$	$0.02 \pm 0.01\%, \ 3.8 \pm 2.4\%$	$\begin{array}{l} x,y\!\!\in\!\![-10,10], n\!=\!256,\ t\!\!\in\!\![0,10], m\!=\!201\\ \text{subsample } 1.14\% \end{array}$
	Navier- Stokes	$\omega_t + (\mathbf{u} \cdot \nabla)\omega = \frac{1}{Re} \nabla^2 \omega$	$1 \pm 0.2\%$, $7 \pm 6\%$	$x \in [0, 9], n_x = 449, y \in [0, 4], n_y = 199,$ $t \in [0, 30], m = 151, \text{ subsample } 2.22\%$

PDE tutorial – Kuramoto-Sivashinsky equation

- Kuramoto-Sivashinsky equation: $u_t = -uu_x u_{xx} u_{xxxx}$
 - **Describes** e.g. chaotic dynamics of laminar flame fronts (Sivashinsky 1977) or reaction-diffusion systems (Kuramoto and Tsuzuki 1076).
 - Challenging PDE to identify, because it involves higher order partial derivatives.
- MATLAB tutorial (or PySINDy <u>PDE-FIND</u>)
 - Library 0: 14 terms in the library

Polynomials: u, u^2, u^3

■ Partial derivatives: u_x , u_{xx} , u_{xxx} , u_{xxx}

• Mixed terms: $u \cdot u_x$, $u \cdot u_{xx}$, $u^2 \cdot u_x$, ...

- Derivatives: finite difference
- Optimizer: sequentially thresholded least squares

Challenges / limitations "vanilla" SINDy

Data → how much and what quality is needed?

Library → how to choose an effective library of candidate terms?

Optimization → what algorithm/regularization to use?

Model selection → how to select models / tune hyperparameters?

MATLAB tutorial – challenges / limitations of SINDy

Additional MATLAB tutorials

- Different optimizers: STLS vs LASSO
- Different ODEs and PDEs (Roessler, Burger's)

• ..

Tutorial outline

Part 1: SINDy – Sparse Identification of Nonlinear Dynamics

- ODEs and PDEs
- MATLAB and Python (PySINDy) examples
- SINDy limitations

"Vanilla" SINDy

Part 2: SINDy with control & parametric models

SINDy extensions

Part 3: Model selection

Part 4: Noise robustness: weak form & ensemble SINDy

Part 5: Your PhD project data sets

Applications