Réseaux temps réel : Profibus

Jérôme Ermont

3SN - SEMBIIOT

Plan

En bref

Accès au bus

Profil de communication DP

Exercices

Domaine d'applications

Profibus en bref

- Standard (EN 50170 et EN 50254) pour la communication d'applications industrielles
 - Permet l'interconnexion d'équipements provenant de différents constructeurs
- Offre différents protocoles (profils) de communication :
 - o DP: Decentralized Periphery
 - FMS : Fieldbus Message Specification
- Utilise différentes technologies physiques :
 - o RS-485, IEC 1158-2, Fibre optique, ...

Architecture protocolaire

DP: Utilise Direct Data Link Mapper (DDLM)

FMS : Utilise Lower Layer Interface (LLI) pour les services FMS avec la couche liaison \rightarrow Interconnexion entre applis

Accès au bus

- ullet Bus multi-maître ullet interconnexion de plusieurs automates avec leurs périphériques associés sur un seul bus
- Le maître contrôle la communication avec ses périphériques lorsqu'il obient l'autorisation (obtention d'un jeton)
- Les esclaves → les périphériques :
 - ∘ les E/S, les contrôleurs, les capteurs, ...
 - $\circ~$ pas d'accès direct au bus \to autorisation par le maître pour émettre et recevoir (polling)

Méthode d'accès au bus

• La couche FDL (Fieldbus Data Link)

- Jeton circulant entre les maîtres
- Polling entre les maîtres et les esclaves

Le jeton circulant

- Autorise la communication entre un maître et ses esclaves pendant une durée déterminée
- ullet Anneau logique o Séquence : adresses croissantes des maîtres
- Au démarrage d'une station maître :
 - o insertion logique dans l'anneau
 - o suppression des stations maîtres défaillantes ou éteintes
- Durée maximale de circulation du jeton dans l'anneau logique :
 - Target Rotation Time (T_{TR}) : configuré à l'initialisation
 - \circ Real Rotation Time (T_{RR})
 - \circ Une station ne peut émettre que si $T_{RR} < T_{TR}$

Gestion de la circulation du jeton

Format des trames

SD4 DA SA

Fonctionnement

- Les maîtres :
 - o lecture périodique des données fournies par les esclaves
 - o écriture périodique des données vers les esclaves
 - Temps de cycle de scrutation de bus < Temps de cycle de l'automate (généralement 10ms)
- Esclaves : Périphériques (E/S, Disques, Equipements de mesures, Actionneurs)
 - o Emission et réception de données
 - Quantité de données dépend du périphérique (au max 246 octets)
- Au max. 126 équipements (maîtres ou esclaves) connectés au bus
- A la configuration des systèmes :
 - Nombre de stations
 - Affectation des adresses de stations aux adresses E/S
 - Consistance des données d'E/S
 - Format des messages de diagnostic
 - Paramètres de bus utilisés

Communication périodique entre un maître et les esclaves

- Ordre de scrutation → utilisateur
- 3 phases de communication :
 - phase de d'acquisition des paramètres
 - phase de configuration
 - phase de transfert de données
- Durant les phases d'acquisition et de configuration, mise en conformité entre les maîtres et les esclaves :
 - o type des données, format, longueur
 - o nombre de données
 - $\circ \rightarrow$ protection d'erreur

• Phase de transfert de données :

Communication acyclique

- Données de contrôle et de configuration, alarmes
- Transmise en même temps que les données cycliques
- Esclaves découpés en modules → position dans la trame identifie le module
- Découpage en slot et index :

• Un système de tapis roulant utilisant un système PROFIBUS :

• Topologie du système :

- Configuration :
 - 8 esclaves interrogés cycliquement
 - Service de communication SRD
 - o Quantité de données fixe : 8 octets
 - o Débit : 500 kBit/s
 - L'overhead induit par le monitoring du bus et le traitement des esclaves est constant : L_O=500 bit-times.
- Contrainte : le temps de réaction maximal du système est T_{max} =50 ms

- 1. a. Calculez la longueur L_F d'une trame de données en nombre d'octets.
 - Les trames sont émises sur le support en utilisant la norme de codage RS232 (11 bits au total), déduisez-en la longueur d'une trame en nombre de bits.
 - c. Combien de temps faut-il pour effectuer une communication suivant le service SRD?
- 2. Calculez le temps minimal de scrutation du bus nécessaire afin d'interroger tous les esclaves. La limite imposée par le temps maximal de réaction est-elle dépassée?

- 3. Le maître attend la réponse de l'esclave pendant une durée T_{SL}. Quand ce délai expire, le maître considère que la transmission a échoué et le message est envoyé à nouveau (au plus 2 fois). Quelle valeur doit-on choisir pour la durée T_{SL} de manière à respecteur la contrainte du temps de réaction maximal T_{max} dans le pire des cas? Pire des cas : 2 transmissions erronées suivies d'une transmission correcte au 3ème essai.
- 4. Le tapis roulant doit être étendu d'une longueur totale de 1000m. Quel problème se produit-il alors sur le bus? (A 1200m, le débit est de 93,75 kb/s)

Exercice II: Un système multi-maîtres

Topologie :

- Configuration :
 - o 2 maîtres (1 et 4) controlent 2 ou 3 esclaves
 - \circ Utilisation du service SRD (T_{SRD} = 1,6 ms)
 - \circ Temps d'acquisition, de traitement et de passage du jeton est constant : $T_{Tok} = 1$ ms
- Construisez la séquence des messages qui circulent sur le bus.
 Calculez le real rotation time.

Exercice III : Un système multi-maîtres possédant une station de contrôle

• Topologie :

- la configuration des maîtres et des esclaves est la même que précédemment (SRD, durées)
- 8 est une station de contrôle qui communique avec 1 et 4 :
 - service SDN (T_{SDN}=6,5 ms)
 - o messages de faible priorité
- Le Target-rotation-time est de T_{TR}=10 ms

Exercice III : Un système multi-maîtres possédant une station de contrôle

Configuration des messages :

Messages	Temps de traitement	Priorité
$M_{12}, M_{13}, M_{45}, M_{46}, M_{47}$	$T_{SRD}=1,6$ ms	élevée
M ₁₈ , M ₄₈ , M ₈₁ , M ₈₄	T _{SDN} =6,5 ms	faible
M_{Tok}	T _{Tok} =1 ms	-

• Messages en attente d'émission :

 $\circ \ \ \mathsf{Maître} \ 1 : \mathsf{M}_{12}, \ \mathsf{M}_{13}, \ \mathsf{M}_{18}$

 $\circ \ \, \text{Maître 2}: \, M_{45}, \, M_{46}, \, M_{47}, \, M_{48}$

Maître 8 : M₈₁, M₈₄

 Construisez la séquence des messages en tenant compte des priorités des messages. Quel est le T_{RR} résultant?