

## REPORT DOCUMENT

|                                                                                |                                          |                                                                                                         |                     |                 |
|--------------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------------------------------|---------------------|-----------------|
| 1a REPORT SECURITY CLASSIFICATION<br>Unclassified                              | 1b                                       | 3 DISTRIBUTION/AVAILABILITY OF REPORT                                                                   |                     |                 |
| 2a SECURITY CLASSIFICATION AUTHORITY<br>SEP 15 1992                            | 2b DECLASSIFICATION/DOWNGRADING SCHEDULE |                                                                                                         |                     |                 |
| 4 PERFORMING ORGANIZATION REPORT NUMBER(S)<br>15                               |                                          | 5 MONITORING ORGANIZATION REPORT NUMBER(S)                                                              |                     |                 |
| 6a NAME OF PERFORMING ORGANIZATION<br>NIST                                     | 6b OFFICE SYMBOL<br>(if applicable)      | 7a NAME OF MONITORING ORGANIZATION<br>ONR                                                               |                     |                 |
| 8c ADDRESS (City, State, and ZIP Code)                                         |                                          | 7b ADDRESS (City, State, and ZIP Code)<br>Code 1131<br>800 N. Quincy Street<br>Arlington, VA 22217-5000 |                     |                 |
| 8a. NAME OF FUNDING/SPONSORING<br>ORGANIZATION<br>ONR                          | 8b. OFFICE SYMBOL<br>(if applicable)     | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER<br>N00014-90-F-0011                                     |                     |                 |
| 8c. ADDRESS (City, State, and ZIP Code)                                        |                                          | 10. SOURCE OF FUNDING NUMBERS                                                                           |                     |                 |
|                                                                                |                                          | PROGRAM<br>ELEMENT NO                                                                                   | PROJECT<br>NO       | TASK<br>NO      |
|                                                                                |                                          |                                                                                                         |                     | WORK UNIT<br>NO |
| 11. TITLE (Include Security Classification)<br>Twin Quintuplets in CVD Diamond |                                          |                                                                                                         |                     |                 |
| 12. PERSONAL AUTHOR(S)<br>D. Shechtman, A. Feldman, J.L. Hutchison             |                                          |                                                                                                         |                     |                 |
| 13a. TYPE OF REPORT<br>Interim                                                 | 13b. TIME COVERED<br>FROM _____ TO _____ | 14. DATE OF REPORT (Year, Month, Day)<br>1992-Aug-26                                                    | 15. PAGE COUNT<br>6 |                 |
| 16. SUPPLEMENTARY NOTATION                                                     |                                          |                                                                                                         |                     |                 |

|                  |                                                                                   |           |                                                                                             |  |
|------------------|-----------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------|--|
| 17. COSATI CODES | 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) |           |                                                                                             |  |
| FIELD            | GROUP                                                                             | SUB-GROUP | This document has been approved for public release and sale: its distribution is unlimited. |  |
|                  |                                                                                   |           |                                                                                             |  |
|                  |                                                                                   |           |                                                                                             |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)<br><br>The atomic structure of twin quintuplets in a chemical vapor deposited (CVD) diamond film was investigated by high resolution transmission electron microscopy (HRTEM). We conclude that the twin quintuplets have two main morphologies. The first consists of four $\Sigma=3$ twin boundaries and one $\Sigma=81$ twin boundary. The $\Sigma=81$ twin boundary contains the dislocations needed to accommodate a $7.35^\circ$ misfit angle between a set of $\{111\}$ planes on opposite sides of the boundary. In the second case, the $7.35^\circ$ misfit angle is accommodated by two or more grain boundaries that are tilted slightly more than the $70.53^\circ$ tilt of a $\Sigma=3$ boundary. These grain boundaries and the conventional diamond lattice twin boundaries are the only types of boundaries that we have observed in CVD diamond. |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|

92 9 24 017

DEFENSE TECHNICAL INFORMATION CENTER

|                                                                                                                                                                                  |                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT<br><input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS | 21. ABSTRACT SECUR<br>Unclassified |
| 22a. NAME OF RESPONSIBLE INDIVIDUAL                                                                                                                                              | 22b. TELEPHONE (Include area code) |

13  
9225792

OFFICE OF NAVAL RESEARCH

Contract N00014-90-F-0011

R&T Project No. IRMT 025

TECHNICAL REPORT No. 15

TWIN QUINTUPLETS IN CVD DIAMOND

D. Shechtman\*, A. Feldman, J.L Hutchison\*\*

submitted to

Proceedings of the SPIE

National Institute of Standards and Technology

Ceramics Division

Gaithersburg, MD 20899



August 26, 1992

DTIC QUALITY INSPECTED 3

Reproduction in whole or in part is permitted for  
any purpose of the United States Government

This document has been approved for public release  
and sale; its distribution is unlimited

\*Visiting scientist at the Johns Hopkins University and at NIST from the Technion, Israel.

\*\* University of Oxford, England

# Twin quintuplets in CVD diamond

D. Shechtman\*

Technion, Haifa, Israel

J.L. Hutchison

University of Oxford, UK

A. Feldman

National Institute of Standards and Technology

## ABSTRACT

The atomic structure of twin quintuplets in a chemical vapor deposited (CVD) diamond film was investigated by high resolution transmission electron microscopy (HRTEM). We conclude that the twin quintuplets have two main morphologies. The first consists of four  $\Sigma=3$  twin boundaries and one  $\Sigma=81$  twin boundary. The  $\Sigma=81$  twin boundary contains the dislocations needed to accommodate a  $7.35^\circ$  misfit angle between a set of  $\{111\}$  planes on opposite sides of the boundary. In the second case, the  $7.35^\circ$  misfit angle is accommodated by two or more grain boundaries that are tilted slightly more than the  $70.53^\circ$  tilt of a  $\Sigma=3$  boundary. These grain boundaries and the conventional diamond lattice twin boundaries are the only types of boundaries that we have observed in CVD diamond.

## 1. INTRODUCTION

The defect structure of chemical vapor deposited (CVD) diamond has been studied in recent years as the technology to grow diamond has developed<sup>1-7</sup>. Most of these defects were found to be twins of well defined orders,  $\Sigma=3, 9, 27$  and  $81$ . Analyses by transmission electron microscopy (TEM) and by high resolution TEM (HRTEM) have revealed the fine structure of the twins and has shed light on their formation and their role in the growth of CVD diamond<sup>8-10</sup>. In addition to cataloging the types of twins observed, several authors have examined formations typical of twin interactions. Among these are twin quintuplets which have been found both near the center of grain cross-sections and at the periphery of grains. It is the purpose of this article to define some of the crystallographic parameters of these twin quintuplets and to describe how these defects influence the growth and morphology of CVD diamond.

## 2. EXPERIMENTAL

The film used in this study was prepared by microwave plasma CVD. Details of the deposition have been described previously and will not be discussed here<sup>8</sup>. The film was placed

---

\*Visiting scientist at the Johns Hopkins University and at NIST

between TEM grids and thinned by ion milling for the HRTEM study. The high resolution transmission electron microscope used has a point resolution of 0.16 nm. All of the diamond grains studied were tilted so as to align a [110] direction parallel to the electron beam. Under this condition, each part of the diamond specimen contained two {111} planes and one (002) plane in an edge-on position relative to the electron beam axis. Atomic resolution images were recorded at 500K magnification close to the Scherzer defocus.

### 3. RESULTS AND DISCUSSION

#### 3.1 Diffraction from twins

A diffraction pattern from a multiply-twinned diamond crystal is shown in Figure 1. The pattern is composed of five diffraction pattern sets, each with a [110] zone axis. The discrete patterns are rotated 70.53° relative to one another. This results from the rigid structural characteristic of the diamond lattice which allows only five sets of twins to exist in each [110] zone. There is, however, some slack in this rigidity which we discuss below. An analysis of the diffraction pattern from one pair of  $\Sigma=3$  related twins in CVD diamond has been given elsewhere<sup>8</sup>.

#### 3.2 Twin quintuplets

The twins, whose boundaries are observed in an edge-on position, are in most cases present throughout the specimen. The twinning frequency is small at the center of the grain and higher toward the periphery of the grain. The twins intersect one another to form  $\Sigma=3$  boundaries and boundaries of higher order, namely  $\Sigma=9$ ,  $\Sigma=27$  and  $\Sigma=81$ <sup>9,10</sup>. In some cases more than two twins intersect and an important case is that of five intersecting twins which we call a twin quintuplet. It has been suggested<sup>9</sup> that a twin quintuplet is an important nucleation site for new planes in CVD diamond, but not all twin quintuplets serve such a central role. Our observations indicate that in addition to the main twin quintuplets near the center of a grain that may manifest themselves in the 'final morphology of the crystal, there are numerous secondary twin quintuplets. Several of these can be found in each [110] section of a diamond crystal.

The core of a twin quintuplet is a line defect called a quintuplet axis. In a main quintuplet, the quintuplet axis frequently propagates from the center of the diamond crystal to its surface. This axis is usually viewed in an end-on position in the HRTEM images. At the surface, the quintuplet axis emerges as the apex of a five sided pyramid. The sides of this pyramid are usually {111} planes. A maximum number of twelve main quintuplet axes can form at the center of a diamond crystal, thus, creating an icosahedrally shaped diamond crystal<sup>8</sup>. The icosahedron is not perfectly regular because of the 7.35° misfit angle. In some instances a quintuplet axis does not emerge from the surface of the grown crystal, thus remaining a local internal phenomenon.

A discussion of the crystallography of the twin quintuplets follows. Because the twinning angle of a  $\Sigma=3$  boundary is 70.53°, there can be no more than four  $\Sigma=3$  boundaries in a twin quintuplet. Thus, an angle of 7.35° would remain between {111} planes in a pair of the twins, and this angle we call a misfit angle because it results in a noncoherent twin boundary. Our observations indicate that the lattice deals with this misfit in one of two ways.

Twin Quintuplet Type I: In this case the misfit angle creates a  $\Sigma=81$  twin boundary which is a fourth order twin boundary; the twinning angle is  $77.88^\circ$ . The  $\Sigma=81$  twin boundary contains the dislocations needed to accommodate the  $7.35^\circ$  misfit angle between a set of  $\{111\}$  planes on opposite sides of the boundary. This case has been documented previously<sup>9,10</sup>, where it was shown that the boundary thus formed can transform into a  $\Sigma=3$  boundary by emitting a series of dislocations<sup>9</sup>. An example of a Type I twin quintuplet is given in Figure 2. The inset illustrates the misfit angle that forms the  $\Sigma=81$  boundary. In addition, the  $\{111\}$  planes near the quintuplet axis are marked. An example of a similar twin quintuplet can be seen at the upper left corner of the micrograph (marked with a circle). The orientation and crystallographic character of both examples are identical.

Twin Quintuplet Type II: This case differs from Type I in that the  $7.35^\circ$  misfit angle does not result in a  $\Sigma=81$  boundary. Instead, the misfit is accommodated by more than one of the quintuplet boundaries to form grain boundaries whose tilt angles are slightly more than the  $70.53^\circ$  tilt angle of a  $\Sigma=3$  twin boundary. Because the misfit angle of one of these boundaries does not have a determined value, we consider the boundary to be non-crystallographic. In Figure 3, the  $7.35^\circ$  misfit angle is divided so as to create two non-crystallographic boundaries. These form between the crystallite pairs (B,C) and (A,E). The other boundaries, between the pairs (A,B), (D,E) and (C,D), are of the  $\Sigma=3$  type. The inset in Figure 3 illustrates the twin quintuplet and the division of the misfit angle. Several  $\{111\}$  plane traces are also marked on the micrograph. Near mirror symmetry is clearly observed on the two sides of the (A,B)  $\Sigma=3$  boundary. This symmetry is probably caused by nearly identical strain patterns on both sides of the (A,B) twin boundary. The characteristic shape that emerges from this type of twin quintuplet is rather abundant in CVD diamond crystals. Thus, the (A,B)  $\Sigma=3$  twin boundary is not only a crystallographic mirror plane for the neighboring twins, but also a morphological near mirror plane for the characteristic "Coat of Arms" shape outlined by the high order twins on both of its sides.

In addition to the situation discussed above, we have observed a misfit angle divided into three parts in other micrographs containing twin quintuplets.

#### 4. CONCLUSION

Atomic resolution electron microscopy of a CVD diamond film was used to determine the crystallography and morphology of twin quintuplets. Two basic types of twin quintuplet centers were revealed and the twin boundaries around them studied. The first type consists of four  $\Sigma=3$  twin boundaries and one  $\Sigma=81$  twin boundary. The  $\Sigma=81$  twin boundary contains the dislocations needed to accommodate a  $7.35^\circ$  misfit angle between a set of  $\{111\}$  planes on opposite sides of the boundary. In the second type, the  $7.35^\circ$  misfit angle is accommodated by two or more grain boundaries that are tilted slightly more than the  $70.53^\circ$  tilt of a  $\Sigma=3$  boundary.

#### 5. ACKNOWLEDGEMENT

This work was supported in part by the Office of Naval Research.

#### 6. REFERENCES

1. B.E. Williams and J.T. Glass, *J. Mater. Res.* 4, 373 (1989)

2. J. Narayan, J. Mater. Res. 5, 2414 (1990)
3. B.E. Williams, J.T. Glass, R.F. Davis, K. Kobashi and K.L. More, Proc. 1st Int. Symp. Diamond and Diamond Like Films, J.P. Dismukes, editor 202 (1989).
4. G-H.M. Ma, Y.H. Lee and J.T. Glass, J.Mater. Res. 5, 2367 (1990).
5. J. Narayan, A.R. Srivatsa, M. Peters S. Yokota and K.V. Ravi, Appl. Phys. Lett. 53, 1823(1988).
6. B.E. Williams, H.S. Kong and J.T. Glass, J. Mater. Res. 5, 801(1990).
7. K. Kobashi, K. Nishimura, K. Miyata, Y. Kawate, J.T. Glass and B.E. Williams, SPIE Diamond Optics, 969, 159(1988).
8. D. Shechtman, E.N Farabaugh, L.H. Robins, A. Feldman and J.L. Hutchison, SPIE Vol. 1534 Diamond optics IV (1991).
9. D. Shechtman, J.L Hutchison, L.H. Robins, E.N. Farabaugh, and A. Feldman, to be published.
10. D. Shechtman, A. Feldman, M.D. Vaudin, and J.L Hutchison, to be published.



Fig. 1. A diffraction pattern taken from a whole diamond crystal is composed of five twin diffraction variations.



Fig. 2. A Type I twin quintuplet. The misfit angle creates a  $\Sigma=81$  twin boundary.



Fig. 3. A Type II twin quintuplet. In this example the misfit angle is divided into two grain boundaries. Between the points marked \* a series of high order twin boundaries form a "Coat of Arms" shape, characteristic of Type II.

## Distribution List

Mr. James Arendt  
Hughes Aircraft Company  
8433 Fallbrook Avenue 270/072  
Canoga Park, CA 91304  
(838) 702-2890

Mr. Larry Blow  
General Dynamics  
1525 Wilson Blvd., Suite 1200  
Arlington, VA 22209  
(703) 284-9107

Mr. Ellis Boudreaux  
Code AGA  
Air Force Armament Laboratory  
Eglin AFB, FL 32542

Dr. Duncan W. Brown  
Advanced Technology Materials, Inc.  
7 Commerce Drive  
Danbury, CT 06810-4131

Dr. Mark A. Cappelli  
Stanford University  
Mechanical Engineering Department  
Stanford, CA 94305  
(415) 723-1745

Dr. R. P. H. Chang  
Materials Science & Engineering Dept.  
2145 Sheridan Road  
Evanston, IL 60208  
(312) 491-3598

Defense Documentation Center  
Cameron Station  
Alexandria, VA 22314  
(12 copies)

Dr. Bruce Dunn  
UCLA  
Chemistry Department  
Los Angeles, CA 90024  
(213) 825-1519

Dr. Al Feldman  
Leader, Optical Materials Group  
Ceramics Division  
Materials Science & Engineering Lab  
NIST  
Gaithersburg, MD 20899  
(301) 975-5740

Dr. John Field  
Department of Physics  
University of Cambridge  
Cavendish Laboratory  
Madingley Road  
Cambridge CB3 OHE  
England  
44-223-3377333 Ext. 7318

Dr. William A. Goddard, III  
Director, Materials and Molecular  
Simulation Center  
Beckman Institute  
California Institute of Technology  
Pasadena, CA 91125  
(818) 356-6544 Phone  
(818) 568-8824 FAX

Dr. David Goodwin  
California Institute of Technology  
Mechanical Engineering Dept.  
Pasadena, CA 91125  
(818) 356-4249

Dr. Kevin Gray  
Norton Company  
Goddard Road  
Northboro, MA 01532  
(508) 393-5968

Mr. Gordon Griffith  
WRDC/MLPL  
Wright-Patterson AFB, OH 45433

Dr. H. Guard  
Office of Chief of Naval Research  
(ONR Code 1113PO)  
800 North Quincy Street  
Arlington, VA 22217-5000

Dr. Alan Harker  
Rockwell Int'l Science Center  
1049 Camino Dos Rios  
P.O. Box 1085  
Thousand Oaks, CA 91360  
(805) 373-4131

Mr. Stephen J. Harris  
General Motors Research Laboratories  
Physical Chemistry Department  
30500 Mound Road  
Warren, MI 48090-9055  
(313) 986-1305 Phone  
(313) 986-8697 FAX  
E-mail: SHARRIS@GMR.COM

Mr. Rudolph A. Heinecke  
Standard Telecommunication  
Laboratories, Ltd.  
London Road  
Harlow, Essex CM17 9MA  
England  
44-279-29531 Ext. 2284

Dr. Kelvin Higa  
Code 3854  
Naval Weapons Center  
China Lake, CA 93555-6001

Dr. Curt E. Johnson  
Code 3854  
Naval Weapons Center  
China Lake, CA 93555-6001  
(619) 939-1631

Dr. Larry Kabacoff (Code R32)  
Officer in Charge  
Naval Surface Weapons Center  
White Oak Laboratory  
10901 New Hampshire  
Silver Spring, MD 20903-5000

Mr. M. Kinna  
Office of Chief of Naval Research  
(ONR Code 225)  
800 North Quincy Street  
Arlington, VA 22217-5000

Dr. Paul Klocek  
Texas Instruments  
Manager, Advanced Optical Materials Br.  
13531 North Central Expressway  
P.O. Box 655012, MS 72  
Dallas, TX 75268  
(214) 995-6865

Ms. Carol R. Lewis  
Jet Propulsion Laboratory  
4800 Oak Grove Drive  
Mail Stop 303-308  
Pasadena, CA 91109  
(818) 354-3767

Dr. J.J. Mecholsky, Jr.  
University of Florida  
Materials Science & Engineering Dept.  
256 Rhines Hall  
Gainesville, FL 32611  
(904) 392-1454

Dr. Russell Messier  
202 Materials Research Laboratory  
Pennsylvania State University  
University Park, PA 16802  
(814) 865-2326

Mr. Mark Moran  
Code 3817  
Naval Weapons Center  
China Lake, CA 93555-6001

Mr. Ignacio Perez  
Code 6063  
Naval Air Development Cen.  
Warminster, PA 18974  
(215) 441-1681

Mr. C. Dale Perry  
U.S. Army Missile Command  
AMSMI-RD-ST-CM  
Redstone Arsenal, AL 35898-5247

Mr. Bill Phillips  
Crystallume  
125 Constitution Drive  
Menlo Park, CA 94025  
(415) 324-9681

Dr. Rishi Raj  
Cornell University  
Materials Science & Engineering Dept.  
Ithaca, NY 14853  
(607) 255-4040

Dr. M. Ross  
Office of Chief of Naval Research  
(ONR Code 1113)  
800 North Quincy Street  
Arlington, VA 22217-5000

Dr. Rustum Roy  
102A Materials Research Laboratory  
Pennsylvania State University  
University Park, PA 16802  
(814) 863-7040 FAX

Dr. James A. Savage  
Royal Signals & Radar Establishment  
St. Andrews Road  
Great Malvern, Worcs WR14.3PS  
England  
01-44-684-895043

Mr. David Siegel  
Office of Chief of Naval Research  
(ONR Code 213)  
800 North Quincy Street  
Arlington, VA 22217-5000

Dr. Keith Snail  
Code 6520  
Naval Research Laboratory  
Washington, DC 20375  
(202) 767-0390

Dr. Y. T. Tzeng  
Auburn University  
Electrical Engineering Department  
Auburn, AL 36849  
(205) 884-1869

Dr. Terrell A. Vanderah  
Code 3854  
Naval Weapons Center  
China Lake, CA 93555-6001  
(619) 939-1654

Dr. George Walrafen  
Howard University  
Chemistry Department  
525 College Street NW  
Washington, DC 20059  
(202) 806-6897/6564

Mr. Roger W. Whatmore  
Plessey Research Caswell Ltd.  
Towcester Northampton NN128EQ  
England  
(0327) 54760

Dr. Charles Willingham  
Raytheon Company  
Research Division  
131 Spring Street  
Lexington, MA 02173  
(617) 860-3061

Dr. Robert E. Witkowski  
Westinghouse Electric Corporation  
1310 Beulah Road  
Pittsburgh, PA 15235  
(412) 256-1173

Dr. Aaron Wold  
Brown University  
Chemistry Department  
Providence, RI 02912  
(401) 863-2857

Dr. Walter A. Yarbrough  
260 Materials Research Laboratory  
Pennsylvania State University  
University Park, PA 16802  
(814) 865-2326

Mr. M. Yoder  
Office of Chief of Naval Research  
(ONR Code 1114SS)  
800 North Quincy Street  
Arlington, VA 22217-5000

Dr. Robert Pohanka (Code 1131)  
Office Of Naval Research  
800 N. Quincy Street  
Arlington, VA 22217

Dr. David Nelson (Code 1113)  
Office Of Naval Research  
800 N. Quincy Street  
Arlington, VA 22217

Dr. Robert W. Schwartz (Code 38505)  
Naval Weapons Center  
China Lake, CA 93555