Devoir de Mathématiques n°4

KÉVIN POLISANO MP*

Jeudi 8 octobre 2009

RÉSULTATS PRÉLIMINAIRES

1. a) $P \in GL_n(\mathbb{C})$, on sépare partie réelle et imaginaire de chaque coefficient P = R + iJ.

b)
$$A = PBP^{-1} \Leftrightarrow AP = PB \Leftrightarrow A(R+iJ) = (R+iJ)B \Leftrightarrow (AR-RB) + i(AJ-JB) = 0.$$

En identifiant il vient AR = RB et AJ = JB. Ainsi on a pour tout $t \in \mathbb{C}$:

$$(AR - RB) + t(AJ - JB) = 0 \Leftrightarrow A(R + tJ) = (R + tJ)B$$

c) On considère la fonction polynomiale définie de \mathbb{R} dans \mathbb{R} par $t \mapsto \det(R + tJ)$.

S'il n'existait aucun t tel que $\det(R+tJ) \neq 0$ alors la fonction serait identiqument nulle sur \mathbb{R} et donc sur \mathbb{C} aussi. Absurde puisque $\det(R+iJ) \neq 0$ (P inversible). Donc il existe $t_0 \in \mathbb{R}$ tel que $\det(R+t_0J) \neq 0$. Notons $Q = R+t_0J$ qui est dans \mathcal{M}_n et inversible et qui vérifie AQ = QB soit en multipliant à droite par l'inverse :

$$A = QBQ^{-1}$$

- 2. a) Classique : le degré est impair donc les limites infinies sont distinctes, et comme la fonction polynomiale associée est continue, on conclut par le théorème des valeurs intermédiaires.
- b) Les éventuelles valeurs propres de A sont racines du polynôme caractéristique $\det(A-XI_n)$ de degré n. Si n était impair, d'après a) il admettrait une racine réelle donc A possèderait une valeur propre réelle. Donc nécesairement si A vérifie (P_A) alors n est pair.

PARTIE I

A.1.a) On doit avoir $s_1(e_1) = e_1$ et $s_1(e_2) = -e_2$ d'où :

$$S = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

b) On multiplie matriciellemnt $M(0,1)S_1$ et on obtient S_2 la matrice de $u \circ s_1$ dans la base canonique :

$$S_2 = M(0,1)S_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

Devoir de Mathématiques n°4 Kévin Polisanc

On a $S_2^2 = I_2$ donc $s_2 = u \circ s_1$ est une symétrie, vérifiant $s_2(e_1) = e_2$ et $s_2(e_2) = e_1$. Dans le plan défini par (e_1, e_2) cela revient géométriquement à échanger e_1 et e_2 soit d'effectuer une symétrie par rapport à la première bissectrice. Donc $s_2 = u \circ s_1$ est la symétrie par rapport à $\text{Vect}(e_1 + e_2)$ parallèlement à $\text{Vect}(e_1 - e_2)$.

$$u \circ s_1 = s_2 \Leftrightarrow u = s_2 \circ s_1$$

A.2 Je traite directement la question c) étant plus générale, a) et b) en découlent.

c) Soit b l'endomorphisme canoniquement associé à B. En utilisant l'indication, voyons si on peut compléter e_1 en une base (e_1, e'_2) dans laquelle b est représenté par la matrice M(0, 1). On doit donc avoir $b(e_1) = e'_2$ et $b(e'_2) = -e_1$. C'est en effet le cas puisque :

$$b(e_1) = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = e_2' \text{ et } b(e_2') = B \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} \alpha^2 - \beta^2 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} = -e_1$$

La matrice passage de la base canonique à cette nouvelle base est :

$$Q = \begin{pmatrix} 1 & \alpha \\ 0 & \beta \end{pmatrix}$$

On a alors $M(0,1) = Q^{-1}BQ$.

d) On a vu en A.1 que $M(0,1) = S_2S_1$ que l'on peut encore écrire $M(0,1) = Q(Q^{-1}S_2Q)(Q^{-1}S_1Q)Q^{-1}$ d'où :

$$B = (Q^{-1}S_2Q)(Q^{-1}S_1Q)$$

Et $(Q^{-1}S_2Q)^2 = Q^{-1}S_2^2Q = Q^{-1}I_2Q = I_2$, de même $(Q^{-1}S_1Q)^2 = I_2$, donc B est la composée de deux symétries.

A.3 Puisque $\alpha^2 + \beta^2 = 1$, le point de coordonnées (α, β) est sur le cercle unité, il existe donc $\theta \in [0, 2\pi[$ tel que $\alpha = \cos(\theta)$ et $\beta = \sin(\theta)$. La matrice $M(\alpha, \beta)$ est alors une matrice de rotation (d'angle θ). En s'inspirant de la question A.1 on peut considérer la symétrie s_1 suivante :

$$S_1 = \begin{pmatrix} \sin(\theta) & -\cos(\theta) \\ -\cos(\theta) & -\sin(\theta) \end{pmatrix}$$

On a bien $S_1^2 = I_2$ et :

$$M(\alpha, \beta)S_1 = \begin{pmatrix} \sin(2\theta) & -\cos(2\theta) \\ -\cos(2\theta) & -\sin(2\theta) \end{pmatrix}$$

Et on a $(M(\alpha,\beta)S_1)^2 = I_2$ d'où $M(\alpha,\beta)S_1 = S_2$ soit encore $M(\alpha,\beta) = S_2S_1$.

 $M(\alpha, \beta)$ est la composée de deux symétries.

A.4 On a cette fois $\alpha^2 + \beta^2 = a^2 \neq 0$ soit $\left(\frac{\alpha}{a}\right)^2 + \left(\frac{\beta}{a}\right)^2 = 1$. On se ramène ainsi à la question précédente, puis on compose par l'homothétie $x \mapsto ax$.

A.5.a) On calcule le polynôme caractéristique de A qui est $X^2 - (a+d)X + (ad-bc)$ de discriminant $\Delta = (a+d)^2 - 4(ad-bc)$. A n'a pas de valeur propre réelle si et seulement si :

$$\Delta < 0 \Leftrightarrow (a+d)^2 < 4(ad-bc)$$

Devoir de Mathématiques n°4 Kévin Polisano

b) Calculons maintenant le polynôme caractéristique de $M(\alpha, \beta)$: $X^2 - 2\alpha X + (\alpha^2 + \beta^2)$.

Posons $2\alpha = a + d$ et $\alpha^2 + \beta^2 = ad - bc$ (soit $\alpha = \frac{a+d}{2}$ et $\beta = \frac{1}{2}\sqrt{4(ad - bc) - (a + d)^2} > 0$) de sorte que A et $M(\alpha, \beta)$ ait même polynôme caractéristique donc mêmes valeurs propres. Puisque celui-ci est séparablement scindé sur \mathbb{C} , A et $M(\alpha, \beta)$ sont diagonalisable sur \mathbb{C} donc s'écrivent $A = PDP^{-1}$ et $M(\alpha, \beta) = Q^{-1}DQ$. Ainsi $A = (PQ)M(\alpha, \beta)(PQ)^{-1}$ donc A et $M(\alpha, \beta)$ sont semblables dans $\mathcal{M}_n(\mathbb{C})$, et d'après la première question préliminaire le sont dans \mathcal{M}_n .

- c) On a d'après a) $\det(A) > \left(\frac{a+d}{2}\right)^2 \ge 0$.
- d) Puisque $M(\alpha, \beta)$ est la composée de 2 symétries et une homothétie, A qui lui est semblable aussi en décomposant comme en 2.d).

A.6 On procède comme en 4. en divisant par $\alpha^2 + \beta^2$ on obtient une matrice de rotation, donc $M(\alpha, \beta)$ est la composée d'une rotation et d'une homothétie.

B.1 Le polynôme $X^2-1=(X+1)(X-1)$ qui est séparablement scindé, est un polynôme annulateur de B, donc B est diagonalisable dans \mathcal{M}_p . Les valeurs propres sont parmi les racines de ce polynôme à savoir ± 1 . Donc en ordonnant la matrice diagonale à laquelle B est semblable de façon à avoir que des 1 dans les premières colonnes puis -1, on obtient bien $Q^{-1}BQ$ de la forme voulue.

B.2 Je n'ai pas trouvé de méthode pour déterminer P donc j'y suis allé à tâtons, j'ai commencé par chercher P sous la forme d'une matrice diagonale par blocs de la forme $P = \begin{pmatrix} kI_p & 0 \\ 0 & k'I_p \end{pmatrix}$

dont l'inverse est $P^{-1} = \begin{pmatrix} \frac{1}{k}I_p & 0 \\ 0 & \frac{1}{k'}I_p \end{pmatrix}$. Mais lors du produit $P^{-1}AP$ le premier bloc n'était jamais nul. Donc j'ai ensuite cherché P sous la forme d'une matrice triangulaire par bloc de la forme $P = \begin{pmatrix} I_p & kI_p \\ 0 & I_p \end{pmatrix}$ dont l'inverse se voit facilement $P^{-1} = \begin{pmatrix} I_p & -kI_p \\ 0 & I_p \end{pmatrix}$. En effectuant le produit j'obtiens :

$$P^{-1}AP = \begin{pmatrix} (2-k)B & (-k^2 + 4k - 5)B \\ B & (k-2)B \end{pmatrix}$$

Pour éliminer les blocs diagonaux je prends k = 2 et j'obtiens (par chance) ce qu'il faut.

B.3 Ici il faut trouver une matrice U inversible de sorte que :

$$U^{-1}(P^{-1}AP)U = (PU)^{-1}A(PU) = \begin{pmatrix} 0 & -Q^{-1}BQ \\ Q^{-1}BQ & 0 \end{pmatrix}$$

On voit sans trop de mal qu'il faut prendre $U = \begin{pmatrix} Q & 0 \\ 0 & Q \end{pmatrix}$.

Devoir de Mathématiques n°4 Kévin Polisano

PARTIE II

A.1 Le polynôme $X^2 + 1$ est annulateur de A et ne possède pas de racines réelles.

- A.2 a) EA se déduit de A en échangeant les lignes i et j, et $(EA)E^{-1}$ en échangeant les colonnes i et j de EA.
- b) $E = I_n + (\alpha 1)E_{ii}$ et $E^{-1} = I_n + (\frac{1}{\alpha} 1)E_{ii}$. EA se déduit de A en multipliant par α la ligne i. Et $(EA)E^{-1}$ en multipliant par $\frac{1}{\alpha}$ la colonne i de EA.
- c) Ici on multiplie par la matrice de transvection $E = I_n + \alpha E_{ij}$ d'inverse $E^{-1} = I_n \alpha E_{ij}$. Ainsi on obtient EA en effectuant $L_i \leftarrow L_i + \alpha E_{ij}$ puis à partir de EA on obtient EAE^{-1} en effectuant $C_i \leftarrow C_i C_j E_{ij}$.
- A.3 a) Supposons que $\forall i \ge 2, A_{i,1} = 0$ et notons $A_{1,1} = \lambda \ne 0$ car $A^2 = -I_n$. On a alors :

$$Ae_1 = C_1 = \lambda e_1$$

Et e_1 serait vecteur propre réel de A, absurde par hypothèse. Donc il existe $i \ge 2$ tel que $A_{i,1} \ne 0$.

- b) On se sert des 3 opérations élémentaires présentées en A.2. On commence par échanger les lignes 2 et i pour avoir $A_{i,1} = \alpha$ à l'endroit voulu. Puis on effectue $L_2 \leftarrow \frac{1}{\alpha}L_2$ pour obtenir 1. Enfin on met les autres coefficients de la première colonne égaux à 0 en utilisant ce 1 via l'opération $L_j \leftarrow L_j a_{j,1}L_2$. Etant donné qu'à chaque opération on transforme la matrice : $M \leftarrow EME^{-1}$ on obtient bien à la fin $A' = PAP^{-1}$.
- c) La première colonne de A' est ainsi e_2 , i.e $Ae_1 = e_2$. Pour connaître la deuxième colonne on multiplie à gauche par $A: A^2e_1 = Ae_2$ et comme $A^2 = -I_n$ il vient $Ae_2 = -e_1$.
- B.1 Supposons que A possède une valeur propre réelle λ . Alors on aurait

$$\frac{1}{\beta}(A - \alpha I_n)(X) = \frac{1}{\beta}(AX - \alpha X) = \frac{\lambda - \alpha}{\beta}X$$

Et $U = \frac{1}{\beta}(A - \alpha I_n)$ possèderait aussi une valeur propre réelle, absurde puisque $U^2 = -I_n$.

B.2 D'après A.5 il existe P inversible telle que $PUP^{-1} = \text{Diag}(M(0,1), M(0,1), ..., M(0,1))$ car $U^2 = -I_n$. Or $A = \beta U + \alpha I_n$ d'où : $PAP^{-1} = \beta PUP^{-1} + \alpha I_n$ soit :

$$PAP^{-1} = \beta \text{Diag}(M(0,1), M(0,1), ..., M(0,1)) + \alpha I_n = \text{Diag}(M(\alpha, \beta), M(\alpha, \beta), ..., M(\alpha, \beta))$$

On en déduit que $\det(A) = (\det M(\alpha, \beta))^{n/2} = (\alpha^2 + \beta^2)^{n/2}$.

C.1 Soit P appartenant à ce plan, on a $P(X) = aX^i + bX^j$, et

$$u(P)(X) = (-1)^i a X^{n-1-i} + (-1)^j b X^{n-1-j}$$

Ce plan est stable ssi n-1-i=i (exclut car n est supposé pair) ou n-1-i=j (et n-1-j=i) donc

$$i + j = n - 1$$

C.2 On voit en calculant l'image des monômes par u^2 que $u^2 = -I$. On remarque aussi que la matrice A est celle qui représente u dans la base canonique. Or puisque $u^2 = -I$ on sait d'après A.5 que la matrice de u (soit A) est semblable à Diag(M(0,1), M(0,1), ..., M(0,1)).

Devoir de Mathématiques n°4 Kévin Polisano

PARTIE III

A.1 Dans \mathbb{R} on a $(x-\alpha)^2 + \beta^2 \ge \beta^2 > 0$ donc le polynôme n'a pas de racine réelle. C'est un polynôme de degré 2 possédant donc 2 racines complexes conjuguées.

A.2 Le polynôme caractéristique de A est $\prod_{k=1}^{p}((X-\alpha_k)^2+\beta_k^2)$ qui n'a pas de racine réelle d'après 1. et qui annule A en vertu du théorème de Cayley Hamilton. En revanche je n'ai pas réussi à montrer que les racines complexes étaient simples..

B.1 C'est clair car $Vect(f_1, f_2)$ est stable par l'endomorphisme associé à A.

B.2 Supposons que A' possède une valeur propre réelle λ , et soit X_1 un vecteur propre associé, si on calcule :

$$\begin{pmatrix} A' & B \\ 0 & C \end{pmatrix} \begin{pmatrix} X_1 \\ 0 \end{pmatrix} = \begin{pmatrix} AX_1 \\ 0 \end{pmatrix} = \lambda \begin{pmatrix} X_1 \\ 0 \end{pmatrix}$$

on s'aperçoit que λ est aussi valeur propre réelle de A, ce qui est contradictoire.

D'après I.A.5 A' est semblable à une certaine matrice $M(\alpha, \beta)$.

B.3 D'après la question précédente A' et $M(\alpha, \beta)$ ont même polynôme caractéristique $\chi(X) = (X - \alpha)^2 + \beta^2$ qui annule donc A' (toujours d'après le théorème de Cayley-Hamilton). Ainsi $\operatorname{Ker}(\chi(A')) = \operatorname{Ker}(0) = E$, mais $\operatorname{Ker}(\chi(A')) \subset \operatorname{Ker}(\chi(A))$ soit :

$$E \subset \operatorname{Ker}((A - \alpha I_n)^2 + \beta^2)$$