Государственное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э.Баумана"

ОТЧЕТ

По лабораторной работе № 5 По курсу «Функциональное и логическое программирование»

Студент: Зыкин Данила

Группа: ИУ7-63

Преподаватель: Толпинская Н. Б.

```
Задание №1: Если запустить интерпретатор и ввести (setf a 2) (setf b 3) (setf c 5)
```

Что будет на экране, если вводить:

Ввод	Результат
а	2
b	3
С	5
'a	A
'(+ a c)	(+ A C)
(a)	The function A is undefined.
(eval 'a)	2

Добавив (defun a() 'b) (defun b() 4)

Что будет на экране, если вводить:

Ввод	Результат
а	2
b	3
С	5
ʻa	A
'(+ a c)	(+ A C)
(a)	В
(eval 'a)	2
(a)	В
(+ a a)	4
(+ (b) b)	7
(b b b)	Invalid number of arguments: 2

Добавив (setf a b)

Что будет на экране, если вводить:

Ввод	Результат
а	3
b	3
С	5
'a	A
'(+ a c)	(+ A C)
(a)	В
(eval 'a)	3

Добавив (setf c b)

Что будет на экране, если вводить:

Ввод	Результат
a	3
b	3
c	3
'a	A
'(+ a c)	(+ A C)
(a)	В
(eval 'a)	3

Добавив (defun a(x y) (+ x y))

Что будет на экране, если вводить:

Ввод	Результат
a	3
b	3
С	3
'a	A
'(+ a c)	(+ A C)
(a)	В
(eval 'a)	3
(a a a)	6
(a b a)	6

Добавив (defun b(x y) (setf b (+ b 1)) (* x y b))

Что будет на экране, если вводить:

a	3
b	3
(b b b)	36

Задание №2: Напишите функцию, которая вычисляет катет по гипотенузе и другому катету.

(defun katet(a b) (sqrt (- (* a a) (* b b))))

Вопросы:

1) Определение атома и представление их в памяти.

Символьные атомы - символы (идентификаторы) — набор литер (букв латинского алфавита и цифр), начинающийся с буквы;

name	Указатель на имя	
value	Указатель на значение	
function	Указатель на определение функции	
property	Список, состоящий из двухэлементных списков (<имя> <значение>)	
package	kage Указатель пакета. Позволяет разграничить область использования символьных атомов.	

2) Самоопределимые атомы.

Самоопределимые атомы — натуральные числа, дробные числа, вещественные числа, строки — последовательность символов, заключенных в двойные апострофы.

3) Локальное и глобальное определение значения атома.

Локальные значения связываются с атомом лишь на время выполнения некоторых функций. Примером могут служить функции LET-формы, которая позволяет связать символьные атомы с некоторыми значениями только на время жизни этой формы. Глобальные значения атомов могут быть установлены с помощью функции SETF. Если атом, имеющий глобальное значение, выступает в качестве формального параметра какой-либо функции, то при выполнении функции он связывается с новым значением. После этого атому возвращается прежнее глобальное значение.

4) Работа функций EVAL и QUOTE. Их совместное использование.

Функция EVAL осуществляет разбор S-выражения в соответствии со следующим алгоритмом:

- 1. S-выр атом? Да \rightarrow 2 Heт \rightarrow 7
- 2. S-выр = T? Да \rightarrow 3 Heт \rightarrow 4
- 3. Печать Т. Конец.
- 4. S-выр = Nil? Да \rightarrow 5 Heт \rightarrow 6
- 5. Печать Nil. Конец.
- 6. Печать значения S-выр, если есть. Конец.
- 7. Первый элемент S-выр ' ? Да \rightarrow 8 Heт \rightarrow 9
- 8. Ѕ-выр без символа '. Конец.

- 9. Первый элемент S-выр требует особой обработки аргументов? Да \rightarrow 12 Heт \rightarrow 10
- 10. Применение EVAL к каждому аргументу.
- 11. Применение первого элемента к аргументам. Конец.
- 12. Специальная обработка аргументов.
- 13. Применение первого элемента к аргументам. Конец.

Функция QUOTE запрещает вычисление своего аргумента.

При совместном использовании EVAL и QUOTE произойдет вычисление аргумента QOUTE. При разборе вызова QUOTE функция EVAL обнаружит ее в первом элементе вызова и в соответствии с алгоритмом своей работы вычислит значение всего S-выражения без QOUTE.