Sprawozdanie: Badanie wpływu parametrów na transmitancje podstawowych członów dynamiki.

Nazwisko i Imię prowadzącego kurs: Dr inż. Marlena Drąg

Wykonawca:	
Imię i Nazwisko	Jakub Kolasa
Nr indeksu, wydział	249012, W4
Termin zajęć	Wt, 15:15-16:55

1. Cele ćwiczenia

Celem pierwszego ćwiczenia jest zbadanie własności podstawowych członów dynamiki, oraz wpływu parametrów. Celem drugiego ćwiczenia jest wykonanie identyfikacji parametrów modelu Kupfmüllera.

2. Badanie wpływu parametrów na odpowiedzi skokowe podstawowych członów dynamiki.

Badanymi członami są:

- 1. Szeregowe połączenie dwóch członów inercyjnych
- 2. Szeregowe połączenie członu całkującego oraz inercyjnego
- 3. Szeregowe połączenie członu różniczkującego oraz inercyjnego

Schemat Simulink na którym przeprzeprowadzono badania

Symulacje przeprowadzono dla skoku od wartości 0 do wartości 1.

2.1. Człon inercyjny

Badany człon jest połączeniem szeregowym dwóch podstawowych członów inercyjnych.

Transmitancja członu:
$$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$$

Dla wszystkich przypadków T₁=2, K=2.

Badanie odpowiedzi członu na skok dla różnych wartości parametrów

Obserwacje i wnioski:

Układ najszybciej stabilizuje się dla T₂=0.

Im większa wartość T₂ tym układ stabilizuje się dłużej.

2.2. Człon całkujący

Badany człon jest połączeniem szeregowym członu całkującego oraz członu inercyjnego.

Transmitancja członu:
$$G(s) = \frac{K}{T_1 s(T_2 s + 1)}$$

Dla wszystkich przypadków T₁=2, K=2.

Obserwacje i wnioski:

Dla T_2 =0 przebieg od początku ma formę funkcji liniowej. Jest to idealny człon całkujący.

Im więsze T₂ tym potrzeba więcej czasu po jakim przebieg będzie miał formę funkcji liniowej.

2.3. Człon różniczkujący

Badany człon jest połączeniem szeregowym członu różniczkującego oraz członu inercyjnego.

Transmitancja członu:
$$G(s) = \frac{T_d s}{(T_2 s + 1)}$$

Dla wszystkich przypadków $T_d=2$.

Badanie odpowiedzi członu na skok dla różnych wartości parametrów

Obserwacje i wnioski:

Dla T_2 dążącego do 0 przebieg czasowy przedstawia impuls. Jest to idealny człon różniczkujący

Im więsze T₂ tym przebieg osiąga niższe wartości oraz dłużej się stabilizuje.

3. Identyfikacja parametrów modelu Kupfmüllera

Identyfikacja parametrów została przedstawiona w załączniku. Porównanie czasowe modelu dokładnego i przyblizonego.

Transmitancja modelu rzeczywistego: $G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}$

Transmitancja modelu Kupfmüllera: $G(s) = \frac{K}{(Ts + 1)} e^{-sT_0}$

Obserwacje i wnioski:

Przebieg otrzymany przy pomocy transmitancji modelu Kupfmüllera stabilizuje się wolniej niż rzeczywisty badany obiekt. Jednak niektórych przypadkach błąd ten jest bardzo mały.