编号: UG016

等级: 公开

数据通信接口协议

Protocol

简介

bynavita

本《数据通信接口协议》适用于北云科技全系列产品。本手册为通用版本,请用户根据实际购买产品的型号、配置,针对不同需求选择参考阅读。

bynavita

修订状态页

日期	版本	修订说明	修订人签署	
20210126	1.0	修订改版	Ljh、zwb	
20210201	1.1	 增加 rtcm 消息, 增加星历及观测数据, 修改指令消息概述部分文字, 增加 log 指令说明, 标注 setinsaxis 为弃用(未删), 删除 setinsprofile 中 LAND_PLUS 及 marine_plus 类型 标注 pashr 为*, 标注 enuavr 为* 	Ljh	
20210205	1.2	完善星历部分,增加 canconfig、ccomconfig、j1939config 语句	Ljh	
20210205	1.3	1、增加 headingoffset 2、梳理取值范围(Ecutoff,SNRCUTOFF 未完善) 3、修改 inscalstatus 4、统一消息类型命名,统一 ASCII 及二进制格式命名	Ljh	
20210208	1.4	梳理取值范围(Ecutoff, SNRCUTOFF)	Ljh	
20210220	1.5	 删除 SETINSAXIS Pashr 增加*,仅支持组合导航设备 增加自定义消息 ID,以适配二进制消息 Corrimu 增加*,仅支持组合导航设备 增加 heading2a 	Ljh	
20210222	1. 修改 ENUAVR,insconfig 部分文字说明 2. 增加 flashdnaa		Ljh、zwb	
20210225	1.7	更改 frequencyout,disable	zwb	
20210303	1.8	更改短格式同步头 补充数据类型		
20210311	1.9	更改部分指令生效方式		
20210317	1.10	更改 workfreqs		
20210318	1.11	增加 psrvel、velsmooth、bestutm		

20210324 1	.12	修改星历及观测数据 Binary 格式偏移量	Ljh

bynavit 2 bynavita

bynavitio 目 录

	目 录.		
1	指令及	.消息格式概述	1
2	消息格]式	1
_			
	2.1 AS	SCII 格式	1
	2.1.:	.1 NMEA 格式	2
	2.1.2	.2 自定义 ASCII 格式	3
	2.	2.1.2.1 标准格式 ASCII 信息结构	3
	2.	2.1.2.2 短格式 ASCII 信息结构	5
		定义二进制格式	
	2.2.	.1 标准格式二进制信息结构	5
		.2 短格式二进制信息结构	
		据类型	
3	指令		10
	o 4 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TITLE A	4.0
		用指令	
		.1 AUTH	
	3.1.2	.2 CANCONFIG	11
	3.1.3	.3 CCOMCONFIG	11
	3.1.4	.4 DNSCONFIG	12
	3.1.	.5 DUALANTENNAPOWER	13
	3.1.0	.6 FREQUENCYOUT	13
	3.1.	.7 ICOMCONFIG	14
	3.1.8	.8 INTERFACEMODE	15

	3.1.9 IPCONFIG		
	3.1.10 J1939CONFIG		16
	3.1.11 <i>LOG</i>		17
	3.1.12 NTRIPCONFIG		18
	3.1.13 OUTPUTSOURCE		19
	3.1.14 QUALITYCHECK		19
	3.1.15 REBOOT		20
	3.1.16 RESET		
	3.1.17 SAVECONFIG		21
	3.1.18 SERIALCONFIG		21
	3.1.19 <i>SET</i>		22
	3.1.20 SETBASELINE		23
	3.1.21 TRANS		
	3.1.22 UNLOG		24
3.	.2 GNSS 指令		26
	3.2.1 ECUTOFF		26
	3.2.2 FIX		26
	3.2.3 FRESET		27
	3.2.4 GPSREFWEEK	7.5	28
	3.2.5 HEADINGOFFSET		29
	3.2.6 NMEATALKER		29
	3.2.7 <i>PJKPARA</i>		30
	3.2.8 RTKTIMEOUT		31
	3.2.9 RTKTYPE		31
	3.2.10 SAVEEPHDATA		32
	3.2.11 SETGLOIFB		32

3.2.12 SNRCUTOFF	33
3.2.13 VELSMOOTH	33
3.2.14 WORKFREQS	34
3.3 组合导航指令	
3.3.1 INSCALIBRATE*	35
3.3.2 SETALIGNMENTVEL*	36
3.3.3 SETINSPROFILE*	36
3.3.4 SETINSROTATION*	37
3.3.5 SETINSTRANSLATION*	
3.3.6 SETINSTYPE*	38
3.3.7 SETINSUPDATE*	39
4 消息(带*指令仅支持组合导航终端)	40
4.1 NMEA 格式消息	40
4.1.1 ATR	40
4.1.2 DOP	41
4.1.3 FPD	41
4.1.4 GGA	42
4.1.5 <i>GST</i>	44
4.1.6 GSV	44
4.1.7 HDT	
4.1.8 HPD	46
4.1.9 NTR	47
4.1.10 ORI	48
4.1.11 PASHR*	49
4.1.12 PTNL AVR	50
4.1.13 PTNL PIK	50

	4.1.14 RIVC	
	4.1.15 TRA	52
	4.1.16 VTG	53
	4.1.17 ZDA	54
4.	2 自定义格式消息	55
	4.2.1 BESTPOS	55
	4.2.2 BESTGNSSPOS	
	4.2.3 BESTGNSSVEL	62
	4.2.4 CORRIMUDATA*	63
	4.2.5 CORRIMUDATAS*	64
	4.2.6 HEADING	65
	4.2.7 HEADING2	67
	4.2.8 INSATT*	
	4.2.9 INSCALSTATUS*	69
	4.2.10 INSPOS*	71
	4.2.11 INSPTNLPJKS*	72
	4.2.12 INSPVA*	73
	4.2.13 INSPVAS*	74
	4.2.14 INSPVAX*	75
	4.2.15 INSSPD*	78
	4.2.16 INSSTDEV*	79
	4.2.17 INSVEL*	80
	4.2.18 MARKTIME,MARK2TIME	81
	4.2.19 <i>PSRVEL</i>	82
	4.2.20 RAWIMU*	83
	4.2.21 RAWIMUS*	85

4.2.22 RAWIMUSX*	86
4.2.23 RAWIMUX*	
4.3 配置查询	88
4.3.1 AUTHORIZATION	88
4.3.2 BYCHECK	90
4.3.3 BYCONFIG	91
4.3.4 CCOMCONFIG	91
4.3.5 COMCONFIG	92
4.3.6 FLASHDNA	93
4.3.7 FLASHDNAA	94
4.3.8 ICOMCONFIG	94
4.3.9 INSCONFIG*	95
4.3.9.1 简化格式	95
4.3.9.2 ASCII 格式	
4.3.10 IPCONFIG	102
4.3.11 IPSTATUS	103
4.3.12 LOGLIST	103
4.3.12.1 简化格式	103
4.3.12.2 ASCII 格式	105
4.3.12.3 二进制格式类型	106
4.3.13 NMEATALKER	107
4.3.14 NTRIPCONFIG	107
4.3.15 PJKPARA	108
4.3.16 REFSTATION/ REFSTATIONINFO	109
4.3.17 REFSTATIONA	110
4.3.18 RTKCONFIG	110

4.3.19 SHIFTDATUM	111
4.3.20 VERSION	
4.4 其他格式消息	
4.4.1 ENU	
4.4.2 ENUAVR*	
4.4.3 KSXT	
4.5 RTCM 格式消息	
4.5.1 RTCM 数据	
4.5.2 RTCM 数据帧结构	
4.5.3 北云设备支持 RTCM 消息类型介绍	
4.5.3.1 基准站支持 RTCM 消息类型	118
4.5.3.2 流动站支持 RTCM 消息类型	120
4.6 星历及观测数据	
4.6.1 消息内容	121
4.6.2 配置输出	
4.6.3 信息格式	
4.6.4 输出消息	
4.6.4.1 bdsephemerisb	
4.6.4.2 galephemerisb	
4.6.4.3 gpsephemb	125
4.6.4.4 gloephemerisb	
4.6.4.5 qzssephemerisb	
4.6.4.6 rangecmpb	

1 指令及消息格式概述

ynavitā 北云设备根据输入输出,区分为指令和消息。输入以完成设备操作配置的称之为指令。输 出解算结果、设备状态信息等内容的称之为消息。

指令根据使用场景不同分为通用指令、GNSS 指令及组合导航指令。消息根据消息类别分为 NMEA 格式消息、自定义格式消息、配置查询结果、其他格式消息、RTCM 格式消息,以及星 历及观测数据。

其中,对于自定义格式消息,当输入 ASCII 命令请求输出日志时,消息类型由消息名称末尾 附加的字符指示。 "A"表示消息是 ASCII, "B"表示二进制。在发出二进制命令时,输出消 息类型取决于消息的二进制头中的位格式。

2 消息格式

2.1 ASCII 格式

用户和计算机可直接查看 ASCII 信息,所有 ASCII 信息都遵循下面的一般约定:

- 1. 每条信息前导符为"#、\$或%";
- 2. 每条 LOG 信息或命令的可变长度依赖于数据量和格式;
- 3. 所有数据字段以","分隔,但有两种例外情形:
- 第一种情况是, 自定义格式消息 Header (头) 的最后一个字段后是";", 表明数 据信息的开始:
- 第二种情况是,最后一个数据字段后是"*",表明数据信息的结束。
- 4. 每条 LOG 信息结尾都有一个以"*"开始的十六进制数字和用来表示该行结束的换行 回车符,例如: *1234ABCD[CR][LF]。十六进制数字是该条 LOG 信息所有字符的 32 位 CRC 校验和, 但不包括"#"标识符和"*"及其之后的 8 位 CRC 数字。
- 5. 一个 ASCII 字符串是一个字段,该字符串以双引号所引用,例如"ASCII string"。如 果一个分隔符被双引号所应用,那么该字符串仍然是一个字段,且该分隔符将被忽略 (例如, "xxx,xxx")。在字符串中出现双引号将为非法。
- 6. 如果接收机探测到一个错误的输入信息,将返回一个出错信息。

2.1.1 NMEA 格式

NMEA 格式消息定义了接口消息的一般形式,任何接口消息都包含以下要素:

NMEA 格式消息 ASCII 信息的结构:

\$--<消息类型标识>,<数据字段>,<数据字段>,.....,<数据字段>*<校验>和><CR><LF>

表 2-1 NMEA 标准消息格式说明

字段	字段说明
\$/!	起始符(ASCII 码字符 HEX24)。消息开始的标志。
	卫星系统类别,用于区分北斗、GPS、兼容输出信息类别。
	BD-北斗
	GP-GPS
	GN-兼容
消息类型标	用于区别消息的种类和功能。固定宽度为 3 位的英文字符,建议使用大写英文字
识	母。本协议中定义参数消息、询问消息和专用消息三类消息。
,	字段分隔符(ASCII 码字符 HEX 2C)。分隔消息中多个字段。
hV	每个消息可包含多个被字段分隔符","分开的数据字段。除特殊说明外,数据字段
	中只允许使用除保留字符(表 1-2)外的可打印 ASCII 码字符。数据传输时,只有
数据字段	通过分隔符","确定数据字段在一条消息中的位置,即通过对分隔符的计数来确定
	字段位置,而不应从消息的开始对接收到的字符的总个数来计数。
*	校验和定界符。为数据内容和校验和字段的分隔符。
	校验和为消息中 "\$" 和 "*" 之间(不含符号 "\$" 和 "*")全部字符按字节异或的
校验和	结果,前 4 比特和后 4 比特的 16 进制数分别以 ASCII 码表示(0~9, A~F), 高位
	在前。
<cr><lf></lf></cr>	终止符(ASCII 码字符 HEXODOA)。标志一个消息的结束。

注释①: 一条消息能传输长度最多为 1024 个字节, 在 "\$" 和<CR><LF>间最多为 10 21 个字节(不含校验定界符 "*"与校验和)。

表 2-2 保留字符

保留字符	十六进制	十进制	含义
<cr></cr>	OD	13	回车——消息定界符结束
<lf></lf>	OA	10	换行

\$	24	36	参数消息定界符开始
*	2A	42	校验和字段定界符
,	2C	44	数据字段定界符
	5C	92	预留
۸	5E	94	用十六进制表示的编码定界符
~	7E	126	预留
	7F	127	预留

2.1.2 自定义 ASCII 格式

自定义 ASCII 格式消息信息格式定义了接口格式消息的一般形式,任何接口格式消息都包含以下要素:

消息结构:

header; data field..., data field.... *xxxxxxxx[CR][LF]

2.1.2.1 标准格式 ASCII 信息结构

示例 1:

#BESTPOSA,COM3,0,0.0,FINESTEERING,1975,393343.000,00000000,0000,757;

示例 1 说明:

ID	示例	描述		
0	#BESTPOSA	数据 ID		
1	СОМЗ	输出数据的串口		
2	0	本消息的第几条,0表示只有一条		
3	0.0	接收机 CPU 空闲率(%)		
4	FINESTEERING	固定 FINESTEERING		
5	1975	GPSWeek 自 1980.1.6 至当前的星期数(GPS 时间)		
6	393343.000	自本周日 00:00:00 至当前的秒数 (GPS 时间)		
7	00000000	固定填 0		
8	0000	预留		
9	757	接收机软件版本		

示例 2:

#HEADINGA,COM3,0,0,FINESTEERING,1975,394129.000,000000000,0000,757;

示例 2 说明:

ID	示例	描述
0	#HEADINGA	数据 ID
1	сомз	输出数据的串口
2	0	本消息的第几条,0表示只有一条
3	0.0	接收机 CPU 空闲率(%)
4	FINESTEERING	固定 FINESTEERING
5	1975	GPSWeek 自 1980.1.6 至当前的
	1973	星期数(GPS 时间)
6	393343.000	自本周日 00:00:00 至当前的秒数
	393343.000	(GPS 时间)
7	00000000	固定填 0
8	0000	预留
9	757	接收机软件版本

ASCII 信息 Header (头) 结构:

header;data field...,data field...*xxxxxxxx[CR][LF]

ASCII 信息 Header(头)结构的描述如下表:

表 2-3 ASCII 信息 Header(头)结构说明

ID	字段	类型	描述	可选输 入字段
0	Sync	Char	同步字符, ASCII 信息始终以一个"#"字符开始	N
1	Message	Char	本手册中log 或命令的ASCII名称	N
2	Port	Char	产生log 信息的接口名称。字符串由接口名称加以x 的后缀组成,x 是1-31 的数字,则用来表示虚拟接口。若未指示虚拟接口,则假定虚拟接口为 0。	Y
3	Sequence #	Long	用于多条log 输出。这是一个从N-1 到0 的递减数字, 0 意味着最后1 条。多数log 信息同一时间只有1 条, 这种情况该值为 0。	N
4	% Idle Tim e	Float	处理器空闲时间的最小百分比,每秒计算 1 次。	Y
5	Time Statu	Enum	GPS 时间质量。当前取值Unknown 或Fine,前者	Υ

	S		表明接收机还未能计算出准确的 GPS 时间。	
6	Week	Ulong	GPS 周数	Y
7	Seconds	GPSec	GPS 周内秒,精确到 ms。	Υ
8	Receiver St atus	Ulong	8 位十六进制的数字,用来表示各种硬件和软件部分的状态。	Υ
9	Reserved	Ulong	预留	Υ
10	Receiver s/w Versio n	Ulong	0 - 65535 的值用来表示接收机固件的创建号。	Υ
11	;	Char	该字符表示 Header(头)结束	N

2.1.2.2 短格式 ASCII 信息结构

短格式 ASCII 信息 Header (头) 结构:

short header; data field..., data field..., data field...*xxxxxxxx[CR][LF]

短格式 ASCII 信息 Header(头)结构的描述如下表:

ID 字段 类型 描述 短格式 ASCII 信息始终以一个"%"字符开始 1 % Char 2 本手册中log 或命令的短格式ASCII名称 Message Char Week Ushort GNSS 周数 4 Seconds **GPSec** GNSS 周内秒,精确到 ms。 5 Char 该字符表示短格式 Header (头) 结束

表 2-4 短格式 ASCII 信息 Header(头)结构说明

2.2 自定义二进制格式

二进制消息是严格的机器可读格式。当传输的数据量相当高时,该格式更优。 由于二进制 数据相对于 ASCII 数据,体量要小得多。较小的消息大小允许由接收方的通信端口发送和接收 更大数量的数据。

2.2.1 标准格式二进制信息结构

所有标准格式二进制消息的结构遵循这里所指出的一般约定:

1、基本格式:

Header: 2 个同步字节加上一般长为 26 字节的头信息。长度可变,可扩展。长度始终需要查验。

数据:可变。

CRC: 4 字节。

2、两个同步字节始终是:

表 2-5 二进制格式同步字节说明

Byte	说明	十六进制	十进制
第一个	固定	AA	170
第二个	固定	44	68

- 3、CRC 为 32 位 CRC(CRC 算法请参阅 32 位 CRC), 它对所有数据包括报头执行。
- 4、标准 Header(头)如下表所示:

表 1-6 二进制格式信息标准 Header(头)结构说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	Sync	十六进制 0xAA	Char	1	0
2	Sync	十六进制 0x44	Char	1	1
		bit 0-3=保留,默认为 0			
		bit 4=消息格式			
		0=保留			
		1=二进制格式			
	Wha	bit 5-6=保留,默认为 0	laVI		
3	协议类型	bit 7-8=二进制格式类型	Char	1	2
		01=保留			
		10=标准格式二进制			
		11=短格式二进制			
		00=保留			
		(此处为 0x12)			
4	Header 长度	Header 长度	UChar	1//	3
5	消息 ID	消息 ID 号	Ushort	2	4
6	消息类型	bit 0-4=测量源 1	Char	1	6

	bit 5-6=格式 00=二进制 01=自定义 ASCII 10=简化格式, NMEA 11=预留 bit 7=响应位		by	navi	ts
		0=原始消息 1=响应消息			
7	端口	见下表:表 1-7 详细端口标识符说明	UChar	1	7
8	消息长度	消息主体的字节长度,不 包括 header 和 CRC	Ushort	2	8
9	序列号	用于多条 log 输出。这是一个从 N-1 到 0 的递减数字, 0 意味着最后 1 条。多数 log 信息同一时间只有 1 条, 这种情况该值为0。	Ushort	2	10
10	空闲时间	空闲时间 处理器空闲时间的最小百分比,每秒计算1次。		nav	12
11	时间质量	当前取值 Unknown 或 Fine,前者表明接收机还未能计算出准确的 GPS 时间。	Enum	1	13
12	周数	GNSS 周数	Ushort	2	14
13	周内秒数	GNSS 周内秒,精确到 ms。	GPSec	4	16
14	8 位十六进制的数字, 用来 接收机状态 表示各种硬件和软件部分 的状态。		Ulong	4	20
15	预留	预留	Ushort	2	24
16	接收机固件版本	0 - 65535 的值用来表示接收机固件的创建号。	Ushort	2	26

表 1-7 详细端口标识符说明

ID	端口名称	十六进制数值	十进制数值	描述
0	NO_PORTS	0	0	TO AVIL
	COM1	1	1	COM1 端口

COM2	2	2	COM2 端口
COM3	3	3	COM3 端口
THISPORT	4	4	当前端口
FILE	5	5	存入文件的端口
ALL_PORTS	6	6	所有端口
ETH1			网络
IMU			IMU
ICOM1			ICOM1 端口
ICOM2	11-75		ICOM2 端口
ICOM3			ICOM3 端口
ICOM4			ICOM4 端口
NCOM1			NCOM1 端口
NCOM2			NCOM2 端口
NCOM3			NCOM3 端口
CCOM1			CCOM1 端口
CCOM2	14-5		CCOM2 端口
CCOM3	1716		CCOM3 端口
MCOM1			MCOM1 端口
MCOM2			MCOM2 端口
MCOM3			MCOM3 端口
MCOM4			MCOM4 端口

2.2.2 短格式二进制信息结构

bynavitz 所有短格式二进制消息的结构遵循这里所指出的一般约定:

1、基本格式:

Header: 2个同步字节加上 10字节的头信息。

数据:可变。

2、两个同步字节始终是:

耒	2-8	二进制格式同步字节说明
100		

Byte	说明	十六进制	十进制
第一个	固定	AA	170
第二个	固定	44	68

- 3、CRC 为 32 位 CRC(CRC 算法请参阅 32 位 CRC),它对所有数据包括报头执行。
- 4、短格式 Header(头)如下表所示:

表 1-9 二进制格式信息短格式 Header(头)结构说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	Sync	十六进制 0xAA	Char	19	0
2	Sync	十六进制 0x44	Char	1	1
		bit 0-3=保留,默认为 0			
		bit 4=消息格式			
		0=保留			
		1=二进制格式			
		bit 5-6=保留, 默认为 0			
3	3 协议类型	bit 7-8=二进制格式类型	Char	naWi	2
		01=保留	hV		
		10=标准格式二进制			
		11=短格式二进制			
		00=保留			
	(此处为 0x13)				
4	消息长度	消息主体的字节长度,不包	Uchar	1	2
4	月芯 区反	括 header 和 CRC	UCIIAI	l I	3
5	消息 ID	消息 ID 号	Ushort	2	4
6	周数	GNSS 周数	Ushort	2	6
7	周内秒数	GNSS 周内秒,精确到 ms。	GPSec	4	8

2.3 数据类型

表 2-10 字段类型

类型	二进制字节数	描述
Int	4	整型
Float	4	单精度浮点(±3.4E38)

Double	8	双精度浮点(±1.7E308)
Long	4	长整型(-2147483648~+2147483647)
Ulong	4	无符号长整型(+0~+4294967295)
Short	2	短整型(-32768~+32767)
Ushort	2	无符号短整型(+0~+65535)
Char	1	字符(-128~+127)
UChar	1	无符号字符(+0~+255)
Enum	4	枚举类型
String	n	字符串
Hex	n	十六进制
HexUlong	4	十六进制格式的无符号整数(+0~+4294967295)
	4	这种类型有两种不同的格式,这取决于您是否请求二进
GPSec		制或 ASCII 格式输出。 对于二进制,输出以毫秒为单
GPSEC		位,是一个长整型。 对于 ASCII,输出以秒为单位,是
		浮点类型

3 指令

3.1 通用指令

3.1.1 **AUTH**

授权指令,保存重启生效。

格式:

AUTH Switch [AUTHSTR]

示例:

AUTH ADD E40F99631670CA4F205EB67FE0D2B048

ID	示例	格式	描述
1	AUTH	AUTH	授权指令标识
2	ADD	Switch	ADD,增加授权

			REMOVE,清除授权
3	E40F99631670CA4F205EB67FE0D2B048	AUTHSTR	授权码,清除授权此项为空

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.2 CANCONFIG

配置 CAN 端口的硬件参数。保存重启生效。

格式:

CANCONFIG PORT SWITCH [SPEED]

示例:

CANCONFIG CAN2 ON 500K

说明:

ID	示例	格式		描述
1	CANCONFIG	CANCONFIG		配置 CAN 端口的硬件参数标识
_	CAN2	PORT	CAN1	端口(目前仅支持 CAN2)
_	CANZ		CAN2	编口(日前汉文符 CAN2)
3	ON	SWITCH	ON	设置端口为打开
	UN	SWILCH	OFF	设置端口为关闭
4	500K	[SPEED]		物理 CAN 端口速度(位每秒)(默认=500K)

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.3 CCOMCONFIG

将 CAN 通信端口绑定到 J1939 节点(参见 3.1.9), 并为通过 CCOM 端口发送和接收的消息指定 CAN 协议、PGN、优先级和地址。保存重启生效。

格式:

ynavitz CCOMCONFIG PORT NODE PROTOCOL [PGN [PRIORITY [ADDRESS]]]

示例:

CCOMCONFIG CCOM1 NODE1 CAN10 0 6 18

说明:

ID	示例	格式	描述
1	CCOMCONFIG	CCOMCONFIG	CCOM配置标识
2	CCOM1	[PORT]	端口号,可为CCOM1、CCOM2、CCOM3、CCOM4
3	NODE1	[NODE]	节点名称(要使用的J1939 节点,可将CCOM端口绑定到与节点关联的CAN名称/地址。)
4	CAN10	[PROTOCOL]	协议名称,目前支持CAN10 与J1939
5	0	[PGN]	参数组编号(由J1939 协议定义的任何有效的PGN,通过 这个CCOM端口传输的所有消息都将包含这个PGN值, 只有带有此PGN的消息将在此CCOM端口上接收)
6	6	[PRIORITY]	优先级(传输消息的默认CAN消息优先级,优先级 0 是最高优先级)
5	18	[ADDRESS]	地址

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.4 DNSCONFIG

配置以太网的 DNS 服务器。

格式:

DNSCONFIG NumDNSServers IP

示例:

DNSCONFIG 1 192.168.1.5			
说明:			h/nav-
ID	示例	格式	描述
1	DNSCONFIG	DNSCONFIG	配置以太网的 DNS 服务器标识
2	1	NumDNSServer	0, DNS 服务器数量,设置为 0 时不需要设置 IP 地址
	I	S	1,1个 DNS 服务器
3	192.168.1.5	IP	主 DNS 服务器的地址

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.5 DUALANTENNAPOWER

双天线模式控制。不带参数时作用为查询当前配置。

格式:

DUALANTENNAPOWER [Switch]

示例:

说明:

D	UALANTENNAPOWER OF	15	
说	明:		
ID	示例	格式	描述
1	DUALANTENNAPOWER	DUALANTENNAPOWER	双天线模式控制标识
			ON, 开启双天线
2	OFF	Switch	OFF, 关闭双天线
			为空,不带参数为查询双天线状态

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.6 FREQUENCYOUT

配置输出脉冲信号。

格式:

ynavitz FREQUENCYOUT Switch [PluseWidth Period Edge] Instance

FREQUENCYOUT ENABLE 20000000 100000000 POSITIVE 1 FREQUENCYOUT DISABLE 1

ID	示例	格式	描述
1	FREQUENCYOUT	FREQUENCYOU T	配置输出脉冲信号标识
2	ENABLE	Switch	DISABLE,关闭脉冲信号输出,其后 PulseWidth、Pe

			riod、Edge 参数为空,仅配置 Instance 字段即可,
		41-75	详见示例
			ENABLE, 使能脉冲信号输出
3	2000000	PulseWidth	脉冲宽度,10ns 为单位,占空比=plusewidth / peri
3	2000000	Pulsewiath	od, 脉宽不能比周期大
4	10000000	周期,10ns 为单位,最大频率为 20MHz,最小频率	
4	100000000	Period	为 1Hz
5	DOCITIVE		POSITIVE,输出上升沿有效
5	POSITIVE Edge	NEGATIVE,輸出下降沿有效	
	1	Instance	0, EVENT_OUT(X1 该信号未引出)
6			1, PPS

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.7 ICOMCONFIG

配置以太网传输层/应用层。

格式:

ICOMCONFIG Port Protocol Endpoint

示例:

ICOMCONFIG ICOM1 TCP: 2000

说明:

ID	示例	格式	描述
1	ICOMCONFIG	ICOMCONFIG	配置以太网传输层/应用层标识
2	ICOM1	Port	接口名称,ICOM1/2/3/4
		Protocol	DISABLED, 关闭网络服务
3	ТСР		TCP, 使用 TCP
			UDP, 使用 UDP
	2000 Endpoin		主机:端口号,若主机字段为空,则设备作为服务器监
4		2000 Endpoint	听设置的端口号,若不为空则作为客户端,主动连接
4			设置的地址(注意:Protocol 和 Endpoint 字段间必
			须添加空格)

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.8 INTERFACEMODE

设置串口输入输出格式。

格式:

INTERFACEMODE x1 U1 U2

示例:

INT	INTERFACEMODE COM1 BYNAV BYNAV				
说明:					
ID	示例	格式	描述		
1	INTERFACEMODE	INTERFACEMODE	串口输入输出格式标识		
2	COM1	x1	串口号,可为 COM1、COM2、COM3		
	3 BYNAV U1	AUTO:自动识别输入数据格式(控制指令+差分数据)			
		U1	输入 BYNAV: NMEA0183 格式		
3			协议 RTCM: RTCM 格式 类型		
	palie		LOG: 北云自定义调试信息格式		
			FPGA:录制原始观测数据,数据量大		
			AUTO:整机用作基站可同时输出 NMEA0183 数据和差分数据,整机用作流动站时效果等同 BYNAV		
		BYNAV U2 协	输出 BYNAV: NMEA0183 格式		
4	BYNAV		协议 RTCM: RTCM 格式 类型		
	_{byna}		LOG: 北云自定义调试信息格式		
			FPGA:录制原始观测数据,数据量大		

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.9 IPCONFIG

配置以太网静态或动态 TCP/IP 参数。

格式:

IPCONFIG [InterfaceName] AddressMode [IPAddress [Netmask [Gateway]]]

示例:

IPCONFIG ETHA STATIC 192.168.8.151 255.255.0.0 192.168.8.1

说明:

ID	示例	格式	描述
1	IPCONFIG	IPCONFIG	配置以太网参数标识
2	ETHA	InterfaceName	以太网接口的名称(默认 ETHA)
2	3 STATIC	AddressMode	DHCP,使用动态 IP 地址
3			STATIC,使用静态 IP 地址
4	192.168.8.151	IPAddress	IP 地址(默认 192.168.8.151)
5	255.255.0.0	Netmask	子网掩码(默认 255.255.0.0)
6	192.168.8.1	Gateway	网关 (默认 192.168.8.1)

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.10 J1939CONFIG

使用此命令配置 CAN J1939 网络级参数(名称等)。保存重启生效。

格式:

J1939CONFIG NODE PORT [CAN ADDR]

示例:

亦例: J1939 说明:	CONFIG NODE	1 CAN1	AA	
ID	示例	:	格式	描述
1	J1939CONFIG	J1939	CONFIG	配置CAN J1939 网络级参数标识
2	NODE1	N	IODE	节点名称(要使用的J1939 节点,可将CCOM端口绑定 到与节点关联的CAN名称/地址。)
3	CAN1	PORT	CAN1	端口(目前仅支持CAN2)
4	0	[CAN	I_ADDR]	CAN地址,默认 0x0

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

3.1.11 LOG

从设备请求消息输出。

可以使用触发消息的不同方法请求输出多种不同类型的消息。每个消息都可以定向输出至设备 的任意端口。ontime 触发选项要求添加周期参数。

格式:

LOG [port] message ONNEW

LOG [port] message ONCHANGED

LOG [port] message ONTIME period [offset [hold]]

LOG [port] message ONNEXT

LOG [port] message ONCE

LOG [port] message ONMARK

示例:

LOG COM1 GPGGA ONTIME 1 0.5 hold

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

ID	示例	格式		描述
1	LOG	LOG	请求输出消	息标识
2	COM1	[port]	端口	Dy
3	GPGGA	message	消息类型	
			ONNEW	不输出当前消息,但在消息更新时输出(不一定有更改)
			ONCHAN	输出当前消息,然后在消息更改时继续输出
	CNITINAT	TDICCED	GED	
4	ONTIME	TRIGGER	ONTIME	按时间间隔输出
			ONNEXT	只输出下一条消息
			ONCE	仅输出当前消息(默认)。如果当前没有消息,则在可

			用时输出下一条消息。
			ONMARK 在 MARK1 检测到脉冲时输出
5	103/1	period	当 trigger 为 ONTIME 时,该字段有效,为消息输出周期,单位为
3		periou	秒。如果输入的值低于最小测量周期,则命令将被拒绝。
6	0.5	[offset]	当 trigger 为 ONTIME 时,该字段有效,时间偏移量,需小于 per
0	0.5	[UIISEL]	iod,设置后输出时刻为 period+offset 时刻
7	hold	[hold]	hold: unlog 指令无法停止; nohold: unlog 指令可以停止

3.1.12 NTRIPCONFIG

配置 NTRIP 连接。

格式

NTRIPCONFIG [PORT] [TYPE] [PROTOCOL] [ENDPOINT] [MOUNTPONIT] [USER NAM E] [PASSWORD] [BINDINTERFACE]

示例:

NTRIPCONFIG NCOM1 CLIENT V1 192.168.1.88:8888 NTRIP BYNAV BYNAV ALL

说明

ID	示例	格式	描述
1	NTRIPCONFIG	NTRIPCONFIG	NTRIP 配置指令
2	NCOM1	PORT	NTRIP 端口 (NCOM1/NCOM2)
		DISABLED	
3	CLIENT	SERVER	NTRIP 连接类型 (ntrip_server 未经测试,暂不对外使用)
	_aV	CLIENT	(101)
4	V1	PROTOCOL	NTRIP 协议类型(V1/V2),默认 V1
5	192.168.1.88:8888	ENDPOINT	NTRIP 连接 IP 及端口号
6	NTRIP	MOUNTPOINT	NTRIP 连接挂载点
7	BYNAV	USER NAME	用户名
8	BYNAV	PASSWORD	密码
9	ALL	BINDINTERFAC E	绑定端口,固定为 ALL

注: 此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.13 OUTPUTSOURCE

设置输出解算结果数据来源,保存重启生效,不带参数时作用为查询当前配置。

受 OUTPUTSOURCE 影响的输出消息有:

BESTGNSSPOS、BESTPOS、BESTXYZ、HEADING、GGA、GSV、RMC、ZDA、DOP、 ORI、AVR、VTG、FPD、HPD、NTR、TRA、ATR、HDT、GST、PSATHPR、PTNLAVR、 PTNLPJK、KSXT。

格式:

OUTPUTSOURCE [RAW/KF/INS/ARTK]

示例:

OUTPUTSOURCE RAW

说明:

说明:			
ID	示例	格式	描述
1	OUTPUTSOURCE	OUTPUTSOURCE	设置输出解算结果数据来源
			RAW: 原始 RTK 解算结果
,	RAW	[RAW/KF/INS/AR	KF: KF 滤波后 RTK 解算结果
	KAVV	TK]	INS: INS 解算结果*(仅支持组合导航产品)
			ARTK: 测绘模式解算结果

bynavitz 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.14 QUALITYCHECK

OC 引擎,解算时启用新的引擎来对 RTK 结果进行验证,在遮挡环境下 RTK 初始化时,能够避 免错误固定解或更早固定。但也会带来额外的计算负担,对于组合导航系列产品,目前不建议 开启定向 QC。保存重启生效。不带参数时作用为查询当前配置。

格式:

QUALITYCHECK [POS/ORI] [Switch]

示例:

QUALITYCHECK POS ON

说明:

ID	示例	格式	描述
1	QUALITYCHECK	QUALITYCHECK	QC 引擎标识,不带参数时作用为查询当前配置
2	POS	POS/ORI	POS,定位 QC 引擎
2	PU3	PO5/ORI	ORI, 定向 QC 引擎
3	ON	Switch	ON, 打开
3	ON	Switch	OFF, 关闭

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.15 REBOOT

程序重新加载。

格式:

REBOOT

示例:

REBOOT

说明:

ID	示例	格式	描述
1	REBOOT	REBOOT	程序重新加载指令标识
3.1	.16 RESET		
重届	3指令,重新加载上一次保存的配置。		

3.1.16 RESET

格式:

RESET

示例:

RESET

ID	示例	格式	描述
1	RESET	RESET	重启指令标识
3.1	.17 SAVECONFIG		

3.1.17 SAVECONFIG

保存当前配置到 FLASH 中。

格式:

SAVECONFIG

示例:

SAVECONFIG

说明:

ID	示例	格式	描述
1	SAVECONFIG	SAVECONFIG	保存当前配置指令标识

bynavitz

3.1.18 SERIALCONFIG

设置串口波特率。

格式:

SERIALCONFIG x1 x2

示例:

示例: SERIAL 说明:	CONFIG COM1 1	9200	bynavitā
ID	示例	格式	描述
1	SERIALCONFIG	SERIALCONFIG	串口波特率标识
2	COM1	x1	串口号,可为 COM1、COM2、COM3
3	19200	x2	波特率,支持 4800、9600、19200、38400、5760 0、115200、230400、460800、576000、921600

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.19 **SET**

设置接收机工作相关参数。保存重启生效。

目前可用[OPTION]参数为

OBSFREQ 观测量频度,最低 2Hz (解算频度与观测量频度一致,无需设置 PVTFREQ)

FPGARAWFREQ 原始数据输出频度,最低 1Hz

PJKPARA PJK 投影参数,具体查看 0

SHIFTDATUM 坐标系平移参数, X, Y, Z

格式:

SET [OPTION] [PARA]

示例:

SET OBSFREQ 2

SET FPGARAWFREQ 10

SET SHIFTDATUM 0 0 0

ID	示例	格式	描述
1	SET	SET	设置接收机工作相关参数标识
	OBSFREQ	OBSFREQ	观测量频度,最低 2Hz(解算频度与观测量频度一致,无需设置 PVTFREQ)
2	FPGARAWFREQ	FPGARAWFREQ	原始数据输出频度,最低 1Hz
	SHIFTDATUM	SHIFTDATUM	坐标系平移参数, X, Y, Z
	PJKPARA	PJKPARA	投影参数,具体查看 0
	2	obsfreq	观测量频度,最低 2Hz
3	10	fpgarawfreq	原始数据输出频度,最低 1Hz
3	000	XYZ	坐标系平移参数, X, Y, Z
	6378245 298.3	xxxx.xx xx.xx x.	投影参数,详见0

0 0 0 500000 0.	xxx x.xxx x.x x.x
99923 EHT	[x.x XXX]

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.1.20 SETBASELINE

设置基线约束长度,保存重启生效。不带参数时作用为查询当前配置。

格式:

SETBASELINE [SWITCH] [基线长度 m] [余量 m]

示例:

SETBASELINE ON 1 0.03

说明:

ID	示例	格式	描述
1	SETBASELINE	SETBASELINE	设置基线约束标识
	ON	SWITCH	ON 设置基线约束长度
2			OFF 关闭基线约束长度
3	1	[基线长度 m]	基线长度 m(支持范围 0.1-100, 根据实际基线长度
ر	1		设置)
4	0.3	[余量 m]	余量 m

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。
3.1.21 TRANS

设置串口数据透传。

格式:

TRANS ON x1 x2

TRANS ON COM1 COM2

说明:

ID	示例	格式	描述
1	TRANS ON	TRANS ON	串口数据透传标识
2	COM1	x1	串口号,可为 COM1、COM2、COM3
3	COM2	x2	串口号,可为 COM1、COM2、COM3

口 关闭串口数据透传。

推荐输入:

TRANS OFF (仅支持大写)

3.1.22 **UNLOG**

关闭端口的消息输出。

格式:

UNLOG x1 U

示例:

UNLOG COM3 GPGGA

说明:

ID	示例	格式	描述
1	UNLOG	UNLOG	关闭端口输出标识
2	сомз	x1	串口号,可为 COM1、COM2、COM3、ICOM1、IC OM2、ICOM3、ICOM4、CCOM1、CCOM2、NCOM 1、NCOM2
3	GPGGA	U	输出的消息

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

口 关闭当前端口的消息输出。

格式:

UNLOG U

示例:

UNLOG GPGGA

说明:

ID	示例	格式	描述
1	UNLOG	UNLOG	关闭端口输出标识
2	GPGGA	U	输出的消息

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

口 关闭端口所有数据输出。

格式:

UNLOGALL x1

示例:

UNLOGALL COM1

说明:

ID	示例	格式	描述
1	UNLOGALL	UNLOGALL	关闭端口所有输出标识
2	COM1	x1	串口号,可以为 COM1、COM2、COM3

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

口 关闭所有端口输出,包括基准站模式下的差分数据输出。

推荐输入:

UNLOGALL

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2 GNSS 指令

3.2.1 ECUTOFF

bynavitz 设置最低参与解算卫星仰角门限(°),保存重启生效。不带参数时作用为查询当前配置。

格式:

ECUTOFF [仰角门限°] navita

示例:

ECUTOFF 5

说明:

ID	示例	格式	描述
1	ECUTOFF	ECUTOFF	设置最低参与解算卫星仰角门限(°)标识
2	5	[仰角门限°]	仰角门限°,取值范围 0-90°,默认 5°

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.2 FIX

设置基站坐标。

格式:

FIX [AUTO/POSITION/NONE]

AUTO 将最近一次定位结果作为基准站坐标

POSITION 设置基准站坐标(纬经高)为指定值,当纬经高参数均为0时,其作用等同于 **FIX NONE**

bynavitz NONE 清除基站坐标,之后会将首次定位结果当作基准站坐标

FIX AUTO

FIX POSITION 28.234042909 112.888089727 91.0662

FIX NONE

说明:

ID	示例	格式	描述
1	FIX	FIX	设置基站坐标标识
	AUTO	AUTO	将最近一次定位结果作为基准站坐标
7	POSITION	POSITIO	设置基准站坐标(纬经高)为指定值,当纬经高参数均
2		N	为 0 时,其作用等同于 FIX NONE
	NONE	NONE	清除基站坐标,之后会将首次定位结果当作基准站坐标
3	28.234042909	(B)	设置基准站坐标(纬度)为指定值
4	112.888089727	[L]	设置基准站坐标(经度)为指定值
5	91.0662	(H)	设置基准站坐标(高程)为指定值

bynavit Z 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.3 FRESET

带参数为清除配置指令。

不带参数为恢复默认出厂设置。如果当前为基准站模式,则恢复基准站默认配置,如果当 前为流动站模式,则恢复流动站默认配置。

格式:

FRESET [OPTION]

示例:

FRESET STANDARD

ID	示例	格式	描述
1	FRESET	FRESET	恢复默认配置(清除参数)标识
2	STANDARD	STANDARD	清除所有星历、历书、GLONASS 修正参数

		1
EPHALM	EPHALM	清除所有星历和历书
GPSALMANAC	GPSALMANAC	清除 GPS 历书
GPSEPHEM	GPSEPHEM	清除 GPS 星历
GLOALMANAC	GLOALMANAC	清除 GLONASS 历书
GLOEPHEM	GLOEPHEM	清除 GLONASS 星历
QZSSALMANC	QZSSALMANC	清除 QZSS 历书
QZSSEPHEMERI QZSSEPHEMER 法股 QZSS	清除 QZSS 星历	
S	IS	/
BDSALMANAC	BDSALMANAC	清除北斗历书
BDSEPHEMERIS	BDSEPHEMERI	清除北斗星历
BD3EFI IEMERIS	S	捐除礼子生 加
IONUTC	IONUTC	清除电离层参数
GLOIFB	GLOIFB	清除 GLONASS 频间差校准参数
BATCHTEST	BATCHTEST	恢复批量测试默认配置

3.2.4 GPSREFWEEK

设置 GPS 参考周,保存重启生效。不带参数时作用为查询当前配置。 格式:

GPSREFWEEK [WEEKNUM]

示例:

GPSREFWEEK 2553

说明:

ID	示例	格式	描述
1	GPSREFWEEK	GPSREFWEE K	设置 GPS 参考周标识
2	2553	[WEEKNUM]	GPS 参考周数

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.5 HEADINGOFFSET

添加航向和俯仰偏移值。

bynavitz 未修改的航向值表示从天线到主天线连线矢量与真北的夹角,顺时针方向为正。在某些安装 中,可能无法放置探测器天线在所需的位置,例如匹配车辆的前向方向。

格式:

bynavitz HEADINGOFFSET headingoffsetindeg [pitchoffsetindeg]

HEADINGOFFSET 0 0

说明:

ID	示例	格式	描述
1	HEADINGOFFSET	HEADINGOFFSET	添加航向和俯仰偏移值标识
2	0	headingoffsetindeg	航向偏移值,单位°, -180.0 - 180.0
3	0	[pitchoffsetindeg]	俯仰偏移值,单位°, -90.0 - 90.0

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.6 NMEATALKER

设置 NMEA 输出消息头,即 GGA/RMC/ZDA 等消息头(GPGGA/GPRMC/GPZDA),保 存重启生效。

格式:

NMEATALKER [AUTO/GP//BD]

示例:

NMEATALKER AUTO

ID	示例	格式	描述
1	NMEATALKER	NMEATALKER	设置 NMEA 输出消息头标识
	bynav	AUTO	仅 GPS 系统则设置为 GP,仅北斗系统则设置为 BD,多系统则设置为 GN
2	AUTO	GP	设置为 GP
		BD	设置为 BD

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.7 PJKPARA

□ 设置 PJK 投影参数。

格式:

SET PJKPARA xxxx.xx xx.xx x.xxx x.xxx x.x x.x [x.x XXX]

示例:

bynavitz SET PJKPARA 6378245 298.3 0 0 0 500000 0.99923 EHT

说明:

ID	示例	格式	描述
1	SET PJKPARA	SET PJKPARA	设置 PJK 投影参数标识
2	6378245	XXXX.XX	椭球长半轴,单位: m
3	298.3	xx.xx	扁率倒数
4	0	x.xxx	原点纬度,单位:度
5	0	x.xxx	中央子午线,单位: 度
6	0	x.x	北偏移, 单位: m
7	500000	x.x	东偏移,单位: m
8	0.99923	x.x	比例因子
9	EHT	XXX	EHT: 椭球高; GHT: 海拔高

bynavita 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.8 RTKTIMEOUT

设置差分龄期(s),保存重启生效,不带参数时作用为查询当前配置。该指令保存重启生 效。

格式:

RTKTIMEOUT [DIFFAGE]

示例:

RTKTIMEOUT 35

说明:

ID	示例	格式	描述
1	RTKTIMEOUT	RTKTIMEOUT	设置差分龄期(s)标识
2	25	[DIEEVCE]	差分龄期,默认配置为 30,建议配置为<60 的数值,支持
	2 35 [DIFFAGE]		范围 0-500

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.9 RTKTYPE

设置接收机工作模式,流动站: ROVER,基准站 BASE。不带参数时作用为查询当前配 置。保存重启生效。

格式:

RTKTYPE [ROVER/BASE]

示例:

RTKTYPE ROVER

ID	示例	格式	描述
1	RTKTYPE	RTKTYPE	设置接收机工作模式标识
2	ROVER	[ROVER/BASE]	流动站:ROVER,基准站 BASE

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

3.2.10 SAVEEPHDATA

保存当前使用星历

格式:

SAVEEPHDATA

SAVEEPHDATA

说明:

ID	示例	格式	描述
1	SAVEEPHDATA	SAVEEPHDATA	保存当前使用星历标识

3.2.11 SETGLOIFB

对于不播发 GLO 频间差修正消息 1230 的基站接收机,可通过此指令,新添加通过另外 方式标校的基站接收机的 GLO 频间差,来使得该基站数据中的 GLO 系统可用。否则,基 站中的 GLO 观测量将不能固定模糊度。

注意事项:

- bynavitz ● 后带 4 个参数为,基准站厂商给定,用来设置 RTCM1230 CPB 值。
- 设备名称中最多允许一个空格,而且必须用'~'代替。
- 后带 60 个参数,设置每个 K 值的修正量。

格式:

SETGLOIFB [DEVICE_NAME] x1 x2 x3 x4 [x5.....x60]

示例:

SETGLOIFB TRIMBLE 16.348 16.348 16.348 16.348

SETGLOIFB TRIMBLE

说明:

ID	示例	格式	描述
1	SETGLOIFB	SETGLOIFB	通过另外方式标校的基站接收机的 GLO 频间差
2	TRIMBLE	TRIMBLE	设备名称
3	16.348 16.348 16.3 48 16.348	x1 x2 x3 x4 [x 5x60]	后带 4 个参数为,基准站厂商给定,用来设置 RTCM 1230 CPB 值。 后带 60 个参数,设置每个 K 值的修正量。

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

3.2.12 SNRCUTOFF

设置卫星信号载噪比门限(dB),保存重启生效。

格式:

SNRCUTOFF [SNR]

示例:

SNRCUTOFF 40

说明:

ID	示例	格式	描述
1	SNRCUTOFF	SNRCUTOFF	设置卫星信号载噪比门限(dB)标识
2	40	[SNR]	卫星信号载噪比门限(dB),取值范围 0-50dB, 默认,20dB

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.13 VELSMOOTH

速度平滑窗口配置,配置后 GNSS 速度输出窗口内平均速度,可平滑 GNSS 速度数值。保 存重启生效。不带参数查询。

格式:

VELSMOOTH [PERIOD]

示例:

示例:			
SNRCUTOFF 40			
说明:			
ID	示例	格式	描述
1	VELSMOOTH	VELSMOOTH	设置卫星信号载噪比门限(dB)标识
2	1.0	[PERIOD]	平滑窗口时长,单位 s,默认 1s

bynavitz 注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.2.14 WORKFREQS

设置工作频点,保存重启生效。当 SYSTEM 字段省略时,指定配置系统为全系统,此时需 要一次性将所有需要配置频点写进去。不带参数时作用为查询当前配置。(此指令仅建议 在专业技术支持的指导下使用)

格式:

WORKFREQS [FREQ] [SYSTEM] [SOURCE]

示例:

WORKFREOS B1IB2IB2AL1L2CL2PG1G2E1E5BI5 配置全系统工作频点

WORKFREQS L1L2C GPS 配置主天线 GPS 工作频点

bynavitz WORKFREQS L1L2C GPS MASTER 配置主天线 GPS 工作频点

WORKFREQS ALL ALL 打开所有支持的频点和系统

WORKFREQS NONE QZSS 关闭 QZSS 系统

WORKFREQS 查询当前工作频点

ID	示例	格式	描述
1	WORKFREQS	WORKFREQS	设置工作频点指令
			DY -

2	L1L2C	FREQ	需要配置的频点,可选项有 指定频点:如 L1、L2C、B1I等(板卡可配置 的频点受授权限制,若需要查询可用频点,可 用 LOG AUTHORIZATION ONCE 指令查询, 详见 4.3.1)。 NONE:关闭所有频点。 ALL:打开全部可用频点(用于快速配置所有系 统可用频点,使用该项时,SYSTEM 字段只能 选择全部系统[ALL],不支持单独配置,详见示 例)。
3	GPS	SYSTEM	需要配置的系统。可选项:GPS、GLONASS、GALILEO、BEIDOU、BEIDOU2、BEIDOU3、QZSS、IRNSS、ALL。ALL 代表全部支持系统。
4	MASTER	SOURCE	MASTER:主天线 SLAVE:从天线 注:该项省略时,默认选择主天线

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.3 组合导航指令

3.3.1 INSCALIBRATE*

初始化校准。

格式:

INSCALIBRATE Offset Trigger [SDThreshold]

示例:

INSCALIBRATE RBV NEW 0.5

ID	示例	格式	描述
1	INSCALIBRATE	INSCALIBRA TE	初始化校准
2	RBV	Offset	校准整机坐标系到车体坐标系的旋转参数

			NEW,使用新的校准值覆盖上次的校准值
2	NEW	Trigger	STOP,停止校准,使用得到的估算值
3	INEV	Trigger	RESET,重置校准过程,恢复上次的出厂值(一般为 0
	DVIII		0 0) 或用户输入值
4	0.5	SDThreshold	标准差(缺省时为默认值 0.5°)

3.3.2 SETALIGNMENTVEL*

配置对准所需的最小载体运动速度。

格式:

SETALIGNMENTVEL V

示例:

SETALIGNMENTVEL 5.0

说明:

ID	示例	格式	描述
1	SETALIGNMENTVEL	SETALIGNMENTVEL	配置对准所需的最小载体运动速度
2	5.0	V	最小对准速度,默认 2m/s,下限 1m/s

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.3.3 SETINSPROFILE*

ynavitz 配置模型。

格式:

SETINSPROFILE Profile

示例:

SETINSPROFILE LAND

ID	示例	格式	ASCII 值	二进制数值	描述
1	SETINSPROFILE	SETINSPROFILE	SETINSPROFILE	D	配置模型标识

			Default	0	基础模型
		-41-75	LAND	1	车载模型
	(17)	aVju	MARINE	2	舰船模型
2	LAND	Profile	FIXEDWING_ BASIC	3	固定翼模型(暂不支持)
			Reserved	4	保留
			VTOL_BASIC	5	垂直起降模型(暂不支持)
			RAIL_BASIC	6	轨道模型(暂不支持)

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

3.3.4 SETINSROTATION*

配置整机坐标系到其他坐标系的旋转参数。

格式:

SETINSROTATION INSRotation X Y Z [XSD YSD ZSD]

示例:

SETINSROTATION RBV 1.0 2.0 3.0 0.05 0.05 0.05

ID	示例	格式	描述
1	SETINSROTATIO	SETINSROTATI	配置整机坐标系到其他坐标系的旋转参数
'	N	ON	
2	RBV	INSRotation	RBV,整机坐标系到车体坐标系的旋转参数
		417	USER,整机坐标系到用户定义坐标系的旋转参数
3	1.0	X	X 轴的旋转参数 (°) , -90 ~ +90
4	2.0	Y	Y 轴的旋转参数 (°) , -180 ~ +180
5	3.0	Z	Z 轴的旋转参数 (°) , -180 ~ +180
6	0.05	XSD	可选,X 轴的旋转参数的标准差(°),默认 0.0, 0~
	0.03	X3D	45
7	0.05	YSD	可选,Y轴的旋转参数的标准差(°),默认 0.0, 0~4
	0.05	130	5
8	0.05	ZSD	可选,Z轴的旋转参数的标准差(°),默认 0.0, 0~
0	0.03	230	45

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。 bynavitz

3.3.5 SETINSTRANSLATION*

配置整机坐标系到其他坐标系的杆臂。

格式:

SETINSTRANSLATION INSTranslation X Y Z XSD YSD ZSD VEHICLE

示例:

SETINSTRANSLATION ANT1 1.0 2.0 3.0 0.05 0.05 VEHICLE

说明:

ID	示例	格式	描述
1	SETINSTRANSLATION	SETINSTRANSLATION	配置整机坐标系到其他坐标系的杆臂
			ANT1,整机坐标系到(主)天线1的杆臂
2	ANT1	INSTranslation	ANT2,整机坐标系到(从)天线 2 的杆臂
	ANTI	INSTITUTION	USER,整机坐标系到用户定义坐标系的杆
	PAUJA		臂,即更改导航中心到用户配置点
3	1.0	X	X 轴的杆臂(m), -100~ + 100
4	2.0	Y	Y 轴的杆臂(m), -100~ + 100
5	3.0	Z	Z 轴的杆臂(m), -100~ + 100
6	0.05	XSD	X 轴的杆臂的标准差(m),0~10
7	0.05	YSD	Y 轴的杆臂的标准差(m),0~10
8	0.05	ZSD	Z 轴的杆臂的标准差(m), 0~10
	- may		VEHICLE,输入数据的坐标系为车体坐标
9	VEHICLE	InnutFrame	系
	VEHICLE	InputFrame	IMUBODY,输入数据的坐标系为整机坐标
			系

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.3.6 SETINSTYPE*

设置 IMU 类型,通常无需设置,自动识别 IMU 类型。不带参数时作用为查询当前配置。

格式:

SETINSTYPE [IMUTYPE]

示例:

SETINSTYPE X1-3

说明:

ID	示例	格式	描述	
1	SETINSTYPE	SETINSTYPE	设置 IMU 类型	
2	X1-3	[IMUTYPE]	IMU 类型	

注:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

3.3.7 SETINSUPDATE*

配置滤波更新数据,仅限高级用户使用。

格式:

SETINSUPDATE INSUpdate Trigger

示例:

SETINSUPDATE ZUPT DISABLE

说明:

ID	示例	格式	描述
1	SETINSUPDATE	SETINSUPDATE	配置滤波更新数据
	Dy		POS, 位置
			ZUPT, 零速修正
2	ZUPT	INSUpdate	ADR, 载波相位
			ALIGN, 双天线定向
			DMI, 距离测量装置
3	DICABLE	Triggor	DISABLE, 禁用
3	DISABLE	Trigger	ENABLE, 启用

注①:此命令生效后,可通过 SAVECONFIG 命令将相关配置保存到 FLASH 中。

4 消息(带*指令仅支持组合导航终端) bynavitz

4.1 NMEA 格式消息

4.1.1 ATR

定位和定向类导航消息。

推荐

bynavitz LOG GPATR ONTIME 1

ASCII 示例

\$GPATR,062743.00,4,0.000,-0.002,0.000,0.006,4,37.19,-76.84*7F

说明

ID	示例	格式	描述
1	GPATR	\$ATR	数据 ID
2	062743.00	hhmmss.ss	UTC 时间
3	4	a0	定位状态,见注释①
4	0.000	x1	基线长度,单位: m
5	-0.002	x2	北向距离 N,单位:m
6	0.000	x3	东向距离 E,单位: m
7	0.006	x4	天向距离 U,单位:m
8	4	a1	定向状态,见注释①
9	37.19	x5	偏航角,单位:度(取值范围 0°~360°)
10	-76.84	х6	俯仰角,单位:度(取值范围-90°~90°)
11		-	保留位
12	7F	hh	校验

注释①: 0-表示无解; 1-表示单点定位解; 2-表示伪距差分解; 4-固定解; 5-浮点解。

4.1.2 DOP

输出 DOP 值。

推荐

LOG GPDOP ONTIME 1

ASCII 示例

\$GPDOP,022518.00,1.03,0.61,0.83,0.61,1.19*70

说明

ID	示例	格式	描述
1	\$GPDOP	\$DOP	数据 ID
2	022518.00	HHMMSS.SS	UTC 时间
3	1.03	xx.xx	PDOP:空间位置精度因子
4	0.61	xx.xx	HDOP: 水平位置精度因子
5	0.83	xx.xx	VDOP: 高程精度因子
6	0.61	xx.xx	TDOP: 钟差精度因子
7	1.19	xx.xx	GDOP: 几何精度因子
8	70	Hh	校验

4.1.3 FPD

定位定姿消息集。

推荐

LOG GPFPD ONTIME 1

ASCII 示例

\$GPFPD,1975,355908.00,296.248,-71.075,1.579,28.233170896,112.877141017,61.053,-0.15 7,0.020,-0.021, 3.898,30,30,1*4F

说明

ID	示例	格式	描述
1	\$GPFPD	\$FPD	数据 ID
2	1975	Xxxx	GPSWeek 自 1980.1.6 至当前的 星期数(GPS 时间)
3	3555908.00	sssss.ss	自本周日 00:00:00 至当前的秒数 (GPS 时间)
4	296.248	xx.xx	偏航角0~360°
5	-71.075	xx.xx	俯仰角-90~90°
6	1.579	xx.xx	横滚角-180~180°
7	28.233170896	xxx.xx	纬度-90~90°
8	112.877141017	xxx.xx	经度-180~180°
9	61.053	xxx.xx	高度,单位: m
10	-0.157	xx.xx	东向速度,单位: m/s
11	0.020	xx.xx	北向速度,单位: m/s
12	-0.021	xx.xx	天向速度,单位: m/s
13	3.898	xx.xx	基线长度,单位: m
14	30	Xx	天线1卫星数
15	30	Xx	天线2卫星数
16	1	a	解算状态,见注释①
17	4F	Hh	校验

注释①: 0: 初始化; 1: GPS位置、速度和航向有效; 2: GPS位置和速度有效;

3: 纯惯性模式; 11:GPS差分、速度和航向有效; 12: GPS差分有效。

4.1.4 **GGA**

接收机的时间、位置和定位相关数据。

推荐

LOG GPGGA ONTIME 1

ASCII 示例

\$GPGGA,062134.00,2813.9908005,N,11252.6285300,E,1,28,0.5,83.684,M,-17.038,M,0.000,0 000*60

说明

ID	示例	格式	描述
1	\$GPGGA	\$GGA	数据 ID
2	062134.00	hhmmss.s s	UTC 时间
3	2813.9908005	ddff.ff	纬度,格式见注释①
4	N	a	纬度方向 N/S, N - 北纬, S - 南纬
5	11252.6285300	dddff.ff	经度,格式见注释②
6	Е		经度方向 E/W
0	E	a	E-东经,W-西经
7	1	X	解算状态,见注释③
8	28	XX	参与定位解算卫星数
9	0.5	x.x	HDOP: 水平位置精度因子
10	83.684	x.x	海拔高
11	М	U	海拔高单位: m
12	-17.038	V V	高程异常值:CGCS-2000 大地高和海拔高的差距
12	-17.038 x.x		"-" 表示海平面低于 CGCS-2000 椭球面
13	М	U	高程异常值单位: m
14	0.000	XXXX	差分龄期,单位:s,注释④
15	0000	x.x	差分站台 ID 号,注释⑤
16	60	hh	校验

注释①: 28°13.9908005′, 取值范围为 0°~90°小数点前保留 2 位为分, 其余为度。

注释②: 112°52.6285300′, 取值范围为 0°~180°小数点前保留 2位为分, 其余为度。

注释③: 0: 无效解; 1: 单点定位解; 2: 伪距差分; 4: 固定解; 5: 浮动解。

注释④:差分龄期:距离上次接收到差分信号的时间。

注释⑤: 单点定位时 ID 为 0, RTK 时为所接收的差分数据来源基准站 ID。

4.1.5 **GST**

GPS 伪距噪声统计,包括了三维坐标的标准偏差信息。

推荐

LOG GPGST ONTIME 1

ASCII 示例

\$GPGST,024603.00,3.2,6.6,4.7,47.3,5.8,5.6,22.0*58

说明

ID	示例	格式	描述
1	\$GPGST	\$GST	数据 ID
2	024603.00	hhmmss.ss	UTC 时间,hhmmss(时分秒)格式
3	3.2	a.a	用于导航计算的伪距标准偏差的平方 根值
4	6.6	b.b	椭球体长半轴标准偏差(单位:米)
5	4.7	c.c	椭球体短半轴标准偏差(单位:米)
6	47.3	d.d	椭球体长半轴方位(单位:度)
7	5.8	e.e	标准纬度偏差(单位:米)
8	5.6	f.f	标准经度偏差(单位:米)
9	22.0	g.g	标准高度偏差(单位:米)
10	*58	*cc	校验
	7		עע

4.1.6 **GSV**

输出可视的卫星状态,包括:可视的卫星数、卫星标识号、仰角、方位角及信噪比(SNR)值。

推荐

LOG GPGSV ONTIME 1

ASCII 示例

\$GPGSV,3,3,10,26,82,187,47,28,43,056,46,,,,,,*77

说明

ID	示例	格式	描述
1	\$GPGSV	\$GSV	数据 ID
2	3	X.X	GSV 消息总数
3	3	X.X	当前 GSV 消息序号
4	10	XX	视野内卫星数
5	26	XXX	卫星号
6	82	X.X	卫星仰角,单位:度
7	187	X.X	卫星方位角,单位:度
8	47	X.X	信噪比
	28,43,056,46	-	重复 4~7 字段,表示其他卫星信息
	,,,,,,,,		见注释①
n	77	hh	校验

注释①:每条消息最多传输 4 颗卫星的信息,如果剩余需要输出信息的卫星不足 4 颗,按实际数目输出,其余字段以",,,"填充。(每条消息中逗号的数目必须相同)。

4.1.7 HDT

输出方位角,以真北为参考。

推荐

LOG GPHDT ONTIME 1

ASCII 示例

\$GPHDT,98.397404,T*39

ID	示例	格式	描述
1 0	GPHDT	\$HDT	数据 ID

ynavit^z

2	98.397404	x.x	方位角,单位:度(取值范围 0°~360°)
3	T	T	真北标志位
4	39	hh	校验

4.1.8 HPD

GPS 定位定向消息集。

推荐

LOG GPHPD ONTIME 1

ASCII 示例

\$GPHPD,1975,355985.00,296.248,-71.075,292.096,28.233173291,112.877139847,61.040,-4 92.200,567.901,-28.918,-0.003,0.001,-0.006,-0.005,-0.003,-0.006,1.808,30,30,1*4F

ID	示例	格式	描述
1	\$GPHPD	\$HPD	数据 ID
			GPSweek自1980-1-6至当前的星期
2	1975	XXXX	数
			(GPS时间)
3	355985.00	xxxx.xx	自本周日00:00:00至当前的秒数
J	333903.00	*****	(GPS时间)
4	296.248	xx.xx	偏航角0~360°
5	-71.075	xx.xx	俯仰角-90~90°
6	292.096	VV VV	地速相对真北方向的夹角
0	292.090	XX.XX	(0-359.99°)
7	28.233173291	XXX.XX	纬度, 单位: 度
8	112.877139847	xxx.xx	经度,单位:度
9	61.040	xxx.xx	高度,单位: m
10	-492.200	W W	移动站相对基站的东向距离,单位:
10	-492.200	XX.XX	m
11	567.901	W W	移动站相对基站的北向距离,单位:
11	507.901	XX.XX	m

12	-28.918	xx.xx	移动站相对基站的天向距离,单位: m
13	-0.003	xx.xx	东向速度,单位: m/s
14	0.001	xx.xx	北向速度,单位: m/s
15	-0.006	xx.xx	天向速度,单位: m/s
16	0.005	VOV. VOV.	两次测量值间的东向速度差,单位:
16	0.005 xx.xx	XX.XX	m/s
17	-0.003 xx.xx	两次测量值间的北向速度差,单位:	
17	-0.005	XX.XX	m/s
18	-0.006		两次测量值间的天向速度差,单位:
10	-0.000	XX.XX	m/s
19	1.808	xx.xx	基线长度,单位: m
20	30	XX	定向天线可用星数
21	30	XX	定位天线可用星数
22	1	a	解算状态,见注释①
23	4F	НН	校验

注释①: 0:GPS 无效; 1:GPS 单点位置有效; 2:伪距差分; 4:RTK 固定解; 5:RTK 浮点解。

4.1.9 NTR

输出差分后移动站离参考站的距离。

推荐

LOG GPNTR ONTIME 1

ASCII 示例

\$GPNTR,024404.00,1,17253.242,+5210.449,-16447.587,-49.685,0004*40

ID	示例	格式	描述
1	\$GPNTR	\$NTR	数据 ID
2	024404.00	hhmmss.ss	UTC 时间
3	1	a	解算状态,见注释①

4	17253.242	xxx.xxx	距离参考站斜距 单位: m
	-41	15	X 方向平距: 单位: m
5	+5210.449	xxx.xxx	"+"表示在参考站北方向
	VIII		"-" 表示在参考站南方向
			Y方向平距: 单位: m
6	-16447.587	xxx.xxx	"+"表示在参考站东方向
			"-"表示在参考站西方向
			H 方向平距: 单位: m
7	-49.685	xxx.xxx	"+"表示在参考站上方
	.41	5	"-"表示在参考站下方
8	0004	XXX	差分站台 ID
9	HH	hh	校验

注释①: 0: 无效解; 1: 单点定位解; 2: 伪距差分; 4: 固定解; 5: 浮点解。

4.1.10 ORI

ynavitz 定向数据。

LOG GPORI ONTIME 1

ASCII 示例

\$GPORI,060723.00,2,3.25000000,30.450000,6.112233,3.2,8*HH			
说明	Wild		hVII
ID	示例	格式	描述
1	\$GPORI	\$ORI	数据 ID
2	060723.00	hhmmss.ss	UTC 时间
3	1	х	解算状态,见注释①
4	3.25000000	x.x	基线长度,单位: m
5	30.450000	x.x	方位角,单位:度(取值范围 0°~360°)
6	6.112233	x.x	俯仰角,单位:度(取值范围-90°~90°)
7	预留	x.x	基线向量的 x 分量, 单位: m

8	预留	x.x	基线向量的 y 分量,单位: m
9	预留	x.x	基线向量的 z 分量,单位: m
10	whav-	НН	校验

注释①: 0: 无解; 1: 单点解; 4: 固定解; 5: 浮点解。

4.1.11 PASHR*

输出定向类导航信息。 ynavitz

推荐

LOG PASHR ONTIME 1

ASCII 示例

\$PASHR,024224.00,37.186,T,0.000,-76.837,0.000,0.000,0.500,0.200,2*10

说明

ID	示例	格式	描述
1	\$PASHR	\$PASHR	数据 ID
2	024224.00	hhmmss.ss	UTC 时间
3	37.186	xxx.xx	方位角,单位:度(取值范围 0°~360°)
4	Т	Т	真北标志位
5	0.000	xxx.xx	横滚角,单位:度(取值范围-180°~180°)
6	-76.837	xxx.xx	俯仰角,单位:度(取值范围-90°~90°)
7	0.000	heave	高程异常值(锁定为 0)
8	0.000	xx.xxx	横滚角标准差
9	0.500	xx.xxx	俯仰角标准差
10	0.200	xx.xxx	方位角标准差
11	2	a	解算状态,见注释①
12	10	hh	校验

注释①: 0-无定位; 1-单点定位; 2-RTK 定位。

bynavitz

4.1.12 PTNL AVR navit

输出方位角。

推荐

LOG PTNLAVR ONTIME 1

ASCII 示例

\$PTNL,AVR,032735.00,+37.1860,Yaw,-76.8374,Tilt,,,0.001,3,1.5,21*36

说明

ID	示例	格式	描述		
1	\$PTNL,AVR	\$PTNL,AVR	数据 ID		
2	032735.00	hhmmss.ss	UTC 时间		
3	+37.1860	xxx.xxx	方位角,单位:度(取值范围 0°~360°)		
4	Yaw	Yaw	方位角标识		
5	-76.8374	xx.xx	俯仰角,单位:度(取值范围-90°~90°)		
6	Tilt	Tilt	俯仰角标识		
7		-	预留		
8		-	预留		
9	0.001	xx.xx	基线长度,单位: m		
10	3	a	解算状态,见注释①		
11	1.5	xx.xx	PDOP: 空间位置精度因子		
12	21	xx	参与解算卫星数		
13	36	hh	校验		

注释①: 0:无效解; 1:GPS 单点解; 2: RTK 浮点解; 3:RTK 固定解; 4:伪距差分。

4.1.13 PTNL PJK

直接输出投影后的平面坐标,方便第三方软件的使用。 ynavitä

推荐

LOG PTNLPJK ONTIME 1

示例

\$PTNL,PJK,022832.00,111617,+3125709.515,N,+684258.136,E,1,30,0.526,EHT+63.147,M*7A

说明

ID	示例	格式	描述
1	\$PTNL,PJK	\$PTNL,PJK	数据 ID
2	022832.00	hhmmss.ss	UTC 时间
3	111617	mmddyy	日期,格式为月日年
4	+3125709.515	XXXX.XXX	X 坐标, 单位: m
5	N	-	X 坐标方向
6	+684258.136	XXXX.XXX	Y坐标,单位: m
7	E	-	Y坐标方向
8	1	a	解算状态,见注释①
9	30	XX	参与解算的卫星数
10	0.526	xx.xx	HDOP 水平精度因子
11	EHT+63.147	2000 00	高度: EHT-大地高
	EП1+03.147	axxx.xx	GHT-海拔高
12	М	U	高度单位: m
13	7A	hh	校验

注释①: 0: 无效解; 1: 单点定位解; 2: 伪距差分; 3: 固定解; 4: 浮点解。

4.1.14 RMC

最简导航传输数据。

推荐

LOG GPRMC ONTIME 1

ASCII 示例

\$GPRMC,020550.00,A,2813.9891299,N,11252.6278784,E,0.033,315.7,161117,0.0,E,A*30

说明

ID	示例	格式	描述
1	GPRMC	\$RMC	数据 ID
2	020250.00	Hhmmss.ss	UTC 时间
3	^	V V	定位状态:
5	А	X.X	A - 有效定位,V - 无效定位
4	2813.9891299	ddff.ff	纬度,见注释①
5	N	a	纬度方向: N - 北纬, S - 南纬
6	11252.6278784	dddff.ff 经度,见注释②	
7	E	a 经度方向: E - 东经, W - 西经	
8	0.033	x.x 地面速度,单位:节(N)	
9	315.7	V V	地面航向,以真北为参考基准,沿顺时针方向
9	313./	x.x	至航向的角度。(取值范围 0°~360°)
10	161117	ddmmyy	日期, 日月年
11	0.0	x.x 磁偏角,单位:度	
12	E	a 磁偏角方向	
13	А	a 模式指示,见注释③	
14	30	hh	校验

注释①: 28°13.99891299′, 取值范围为 0°~90°小数点前保留 2位为分, 其余为度。

注释②: 112°52.6278784', 取值范围为 0°~180°小数点前保留 2位为分, 其余为度。

注释③: N=数据无效; A=自主定位; E=估算; D=差分; M=手动输入。

4.1.15 TRA 方位角信息。

推荐

LOG GPTRA ONTIME 1

ASCII 示例

\$GPTRA,063027.30,101.78,071.19, -00.00, 4,10,0.00,0004*51

说明

ID	示例	格式	描述	
1	\$GPTRA	\$TRA	数据 ID	
2	063027.30	hhmmss.ss	UTC 时间	
3	101.78	xxx.xx	方位角, 单位: 度(取值范围 0°~360°)	
4	071.19	xxx.xx	俯仰角,单位:度(取值范围-90°~90°)	
5	-00.00	xx.xx 横滚角,单位:度(取值范围-180°~18		
6	4	a 解算状态,见注释①		
7	10	xx 参与解算的卫星数		
8	0	xx.xx	差分龄期,单位: s	
9	0004	xxxx	差分站台 ID	
10	51	hh	校验	

注释①: 0: 无效解; 1: 单点定向解; 2: 伪距差分; 4: 固定解; 5: 浮点解。

4.1.16 VTG

bynavitz 输出地面速度信息。

LOG GPVTG ONTIME 1

ASCII 示例

\$GPVTG,134.395,T,134.395,M,0.019,N,0.035,K,A*33 说明						
ID	示例	格式	描述			
1	\$GPVTG	\$VTG	数据 ID			
2	134.395	XXX.XXX	地面航向,以真北为参考基准,000~359.999°			
3	Т	U	真北标示符			
4	134.395	XXX.XXX	地面航向,以磁北为参考基准,000~359.999°			
5	M	U	磁北标示符			
6	0.019	XXX.XXX	水平运动速度 000~999, 单位: 节 (海里/h)			
7	N	U	单位,N 表示海里每小时			

8	0.035	XXX.XXX	水平运动速度 000~999, 单位: km/h
9	K	U	单位,K 表示千米每小时
10	A	U	定位状态,见注释①
11	33	hh	校验

注释①: A-自主定位; D-差分; E-估算; M-手动输入; N-数据无效。

4.1.17 **ZDA**

描述 UTC 时间、日期和本地时区。 bynavitä

推荐

LOG GPZDA ONTIME 1

ASCII 示例

\$GPZDA,004401.00,16,11,2017,8,0*6C 说明				
ID	示例	格式	描述	
1	GPZDA	\$ZDA	数据 ID	
2	004401.00	hhmmss.ss	UTC 时间	
3	16	XX	日	
4	11	XX	月	
5	2017	XXXX	年	
6	8	XX	填本地时区,见注释①	
7	0	xx	本时区分钟差,见注释①	
8	6C	hh	校验	

注释①:因板卡不能够自动获得本地时区和本时区分钟差,本地时区固定为东八区,本时区分 钟差固定为 0。

4.2 自定义格式消息

4.2.1 BESTPOS

输出最佳位置信息。

消息 ID: 42

推荐

LOG BESTPOSA ONTIME 1

ASCII 示例

#BESTPOSA,COM3,0,0.0,FINESTEERING,1975,393343.000,000000000,0000,113;SOL_COM PUTED,SINGLE,28.23315179260,112.87713400113,79.7665,-17.0381,WGS84,1.2642,1.6 209,2.1834,"0",0.000,0.022,28,27,27,27,0,00,30,13*DB49BF3D

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	BESTPOS header	Log 消息标准头标,详见 2.1.2.1 标准 格式 ASCII 信息结构	-	Н	0
2	sol stat	解算状态, 见表 4-1 解算状态描述说 明	Enum	4	Н
3	pos type	定位状态,见表 4-2 定位状态描述说明	Enum	4	H+4
4	lat	纬度, 单位: 度	Double	8	H+8
5	lon	经度,单位:度	Double	8	H+16
6	hgt	海拔高,单位: m	Double	8	H+24
7	Undulation	高程异常值,单位:m CGCS-2000 大地高和海拔高的差距 "-"表示海平面低于 CGCS-2000 椭 球面	Float	4	H+32
8	Datum ID	坐标系 ID 选定的参考坐标系	Enum	4	H+36
9	Lat σ	纬度标准差,单位: m	Float	4	H+40
10	Lon σ	经度标准差,单位: m	Float	4	H+44

11	11 Hgt σ 高度标准差,单位:m Float 4 H+48				
12	Stn ID	差分站台ID号,单点定位时ID为0	Char[4]	4	H+52
13	Diff_age	差分龄期,单位: s	Float	4	H+56
14	Sol age	解算时间,单位: s	Float	4	H+60
15	#SVs	跟踪到的卫星数	Uchar	1	H+64
16	#solnSVs	参与解算的卫星数	Uchar	1	H+65
17	#solnL1SVs	参与解算的 L1/E1/B1 卫星数	Uchar	1	H+66
18	#solnMultiSVs	参与解算的多频信号卫星数	Uchar	1	H+67
19	Reserved	预留	HEX	1	H+68
20	Ext sol stat	扩展解算状态,见表 4-3 扩展解算状态描述说明	Hex	vit	H+69
21	Galileo and Bei Dou sig mask	Bei Galileo 和 BeiDou 信号标志,见表 Ask 4-5 Galileo -BEIDOU 信号掩码 Hex 1			
22	GPS and GLONA GPS 和 Glonass 信号标志,见表 4-4 22 SS sig mask GPS-GLONASS 信号掩码 Hex 1				H+71
23	32-bitCRC 校验,见表 4-6 32 位 CR H+7				H+72
24	24 [CR][LF] 消息终结符(仅限 ASCII 格式) - - -				5 -
表 4-1 解算状态描述说明					

24	24 [CR][LF] 消息终约		消息终结律	守(仅限 ASCII 格式)	-		-
表 4		4-1 解算状态描述说明	yna	3.			
二进	制数值	А	SCII 值		描述		
	0	SOL_0	COMPUTED	完全解算			
	1	INSUFF	-ICIENT_OBS	观测量不足			
	2	NO_CO	NVERGENCE	不收敛			
	3	SINO	GULARITY	参数矩阵异常			
	4	COV_TRACE		协方差超过最大值(>1000 米)			
	5	TEST_DIST		测试距离超限(距离 10km,最多丢弃 3次)			
	6	COL	.D_START	冷启动尚未完全解算			
	7	V_	H_LIMIT	高度或速度超过限值			
	8	VA	RIANCE	方差超过限值			
	9	RESIDUALS		残差过大			
1	0-12	Reserved		预留			
	13	INTEGRITY_WARNIN G		残差过大使定位不可靠	wns	All	
1	4-17	Re	eserved	预留			

		当输入 FIX 位置命令时,接收器计算自己的位置,并确定
	117	位置是否有效。
		Pending 意味着目前跟踪的卫星不够,无法验证输入到接
18	PENDING	收器的 FIX 位置是否有效。 在正常情况下,在 GNSS 接 收机锁定其前几颗卫星之前,您应该只看到 Pending 启
		动几秒钟。 如果您的天线被阻塞(或没有插入), 并且
		您已经输入了 FIX 位置命令,那么您可能会无限期地看到
		该状态。
19	INVALID_FIX	使用 FIX 位置命令输入的位置无效
20	UNABTHORIZED	定位类型未经授权
21	Reserved	预留
22	INVALID_RATE	此解决方案类型不支持所选的输出速率

表 4-2 定位状态描述说明

二进制数值	ASCII 值	描述
0	NONE	未解算
1	FIXEDPOS	位置已由 FIX POSITION 命令固定
2	FIXEDHEIGHT	位置已由 FIX HEIGHT 或 FIX AUTO 命令固定
3	Reserved	预留
4	FLOATCONV	浮点载波相位模糊解
5	WIDELANE	宽巷模糊解
6	NARROWLANE	窄巷模糊解
7	Reserved	预留
8	DOPPLER_VELOCITY	使用瞬时多普勒计算速度
9-15	Reserved	预留
16	SINGLE	单点解
17	PSRDIFF	伪距差分
18	WAAS	SBAS 解
19	PROPAGATED	由卡尔曼滤波器在没有新观测的情况下推算解
20-31	Reserved	预留
32	L1_FLOAT	L1 浮点解
33	IONOFREE_FLOAT	无电离层浮点解
34	NARROW_FLOAT	窄带浮点解

35-47	Reserved	预留
48	L1_INT	L1 固定解
49	WIDE_INT	宽带固定解
50	NARROW_INT	窄带固定解
51	RTK_DIRECT_INS	RTK 状态,其中 RTK 直接通过 INS 初始化
52	INS_SBAS	天线校正后 INS 位置
53	INS_PSRSP	INS 伪距单点解-没有 DGPS 校正
54	INS_PSRDIFF	INS 伪距差分
55	INS_RTKFLOAT	INS RTK 浮点解
56	INS_RTKFIXED	INS RTK 固定解
57-67	Reserved	预留
68	PPP_CONVERGING	正在进行精密单点定位(TerraStar-C)解算
69	PPP	精密单点定位(TerraStar-C)
70	OPERATIONAL	精度在 UAL 范围内
71	WARNING	精度在 UAL 范围外,但在警告范围内
72	OUT_OF_BOUNDS	解的精度在 UAL 极限之外
73	INS_PPP_Converging	正在进行 Ins PPP 解(TerraStar-C)
74	INS_PPP	Ins PPP解 (TerraStar-C)
77	PPP_BASIC_CONVERGING	正在进行精密单点定位(TerraStar-L)解算
78	PPP_BASIC	精密单点定位(TerraStar-L)
79	INS_PPPP_BASIC_Converging	正在进行 Ins PPP 解(TerraStar-L)
80	INS_PPPP_BASIC	Ins PPP解(TerraStar-L)

表 4-3 扩展解算状态描述说明

bit 位	掩码	描述
		RTK 解算结果: 修正方案已确认
0	0x01	PDP 解算结果: 滑动解算
		其他: 预留

1-3	0x0E	伪距电离层修正 0 = 未知或默认的 Klobuchar 模型 1 = Klobuchar 广播 2 = SBAS 广播 3 = 多频解算 4 = 伪距差分修正 5 = 混合电离层数值
4	0x10	RTK 辅助使能
5	0x20	0 - 无天线警报 1 - 天线信息缺失
6-7	0xC0	预留

表 4-4 GPS-GLONASS 信号掩码

Bit	掩码	描述			
0	0x01	GPS L1 用于解算			
1	0x02	GPS L2 用于解算			
2	0x04	GPS L5 用于解算			
3	0x08	预留			
4	0x10	GLONASS L1 用于解算			
5	0x20	GLONASS L2 用于解算			
6	0x40	GLONASS L3 用于解算			
7	0x80	预留			
bynavit ² bynavit ²					

h	vnav	表 4-5 Galileo -BEIDOU 信号掩码
Bit	掩码	描述
0	0x01	Galileo E1 用于解算
1	0x02	Galileo E5A 用于解算
2	0x04	Galileo E5B 用于解算
3	0x08	Galileo ALTBOC 用于解算
4	0x10	BeiDou B1 用于解算
5	0x20	BeiDou B2 用于解算
6	0x40	BeiDou B3 用于解算
7	0x80	预留

表 4-6 32 位 CRC 校验算法代码(C)

```
#define CRC32_POLYNOMIAL 0xEDB88320L
Calculate a CRC value
value: Value
unsigned long CalcCRC32Value(int value) {
   int i;
   unsigned long ulCRC;
   ulCRC = value;
   for (i = 8; i > 0; --i)
          ulCRC = ( ulCRC >> 1 ) ^ CRC32_POLYNOMIAL;
       if (ulCRC & 1)
       else
       ulCRC >>= 1;
   return ulCRC;
Calculates the CRC-32 of a data block
ulCount: Number of bytes in the data block
ucBuff: Data block
```



```
unsigned long CalcBlockCRC32( unsigned long ulCount, unsigned char *ucBuff ) {
                                          bynavitz
   unsigned long ulTmp1;
   unsigned long ulTmp2;
   unsigned long ulCRC = 0;
   while ( ulCount-- != 0 ) {
       ulTmp1 = ( ulCRC >> 8 ) & 0x00FFFFFFL;
       ulTmp2 = CalcCRC32Value( ((int) ulCRC ^ *ucBuff++ ) & 0xFF );
       ulCRC = ulTmp1 ^ ulTmp2;
   }
     ynavitž
   return ulCRC;
}
```

4.2.2 BESTGNSSPOS

输出最佳可用 GNSS 位置(无 INS)。

bynavitz 消息 ID: 1429

LOG Port BESTGNSSPOSA ONTIME 1

ASCII 示例

#BESTGNSSPOSA,ICOM4,0,0.0,FINESTEERING,2109,367696.000,00000000,0000,82;SOL_COMP UTED, NARROW INT, 28.23315515415, 112.87713068512, 82.5990, -17.0381, WGS84, 0.0106, 0.01 10,0.0250,"0",1.000,0.058,33,33,33,25,00,00,30,33*9ea908f7

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	BESTGNSSPOS header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构	-	Н	0
2	Sol Type	解算状态, 见表 4-1 解算状态描述 说明	Enum	4	Н
3	Pos Type	位置类型,见表 4-2 定位状态描述	Enum	4	H+4

		说明			
4	Lat	纬度 (°)	Double	8	H+8
5	Lon	经度 (°)	Double	8	H+16
6	Hgt	海平面上的高度 (m)	Double	8	H+24
7	Undulation	高程异常值	Float	4	H+32
8	Datum ID	坐标系 ID	Enum	4	H+36
9	Lat σ	纬度标准差	Float	4	H+40
10	Lon σ	经度标准差	Float	4	H+44
11	Hgt σ	高度标准差	Float	4	H+48
12	Stn ID	基站 ID	Char[4]	4	H+52
13	Diff_age	差分延迟时间 (s)	Float	4	H+56
14	Sol_age	解算延迟时间 (s)	Float	4	H+60
15	#SVs	跟踪卫星数	Uchar	1	H+64
16	#solnSVs	解算卫星数	Uchar	1	H+65
17	#solnL1SVs	L1/E1/B1 解算卫星数	Uchar	1	H+66
18	#solnMultiSVs	多频解算卫星数	Uchar	1	H+67
19	Reserved	预留	Uchar	1	H+68
20	Ext sol stat	扩展解算状态,见表 4-3 扩展解算 状态描述说明	Hex	Vi	H+69
21	Galileo and BeiDou s ig mask	Galileo 和 BeiDou 信号使用标志 <i>,</i> 见表 4-5 Galileo -BEIDOU 信号 掩码	Hex	1	H+70
22	GPS and GLONASS si g mask	GPS 和 GLONASS 信号使用标志, 见表 4-4 GPS-GLONASS 信号掩 码	Hex	1	H+71
23	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码 (C)	Hex	4	H+72
24	[CR][LF]	消息终结符(仅限 ASCII 格式)			

4.2.3 BESTGNSSVEL

输出最优 GNSS 速度信息(无 INS)。它还输出一个速度状态指示器,用于指示相应的数据是否有 效。速度测量有时有一个与之相关的延迟。有效时间是日志中的时间标签减去延迟值。 bynavitz navitä

消息 ID: 1430

推荐

LOG Port BESTGNSSVELA ONTIME 1 navita

ASCII 示例

bynavitz #BESTGNSSVELA,ICOM4,0,0.0,FINESTEERING,2109,367811.000,00000000,0000,82;SOL_COMPU TED,NARROW_INT,0.000,1.000,0.0086,148.677046,0.0586,0.0*2b4e3d94

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	BESTGNSSVEL hea	Log 消息标准头标,详见 2.1.2.1		Heli	0
'	der	标准格式 ASCII 信息结构	-		
2	Sol Status	解算状态,见表 4-1 解算状态描述说明	Enum	4	Н
3	Vel Type	速度类型,见表 4-2 定位状态描述说明	Enum	4	H+4
4	Latency	延迟	Float	4	H+8
5	Diff_age	差分延迟(s)	Float	4	H+12
6	Hor Spd	水平速度(m/s)	Double	8	H+16
7	Trk Gnd	前进方向与真北的夹角(°) (取值范围 0°~360°)	Double	8	H+24
8	Vert Spd	垂直速度(m/s),其中正值表 示高度(上升)增加,负值表示高 度(下降)减少	Double	8	H+32
9	Reserved	预留	Float	4	H+40
10	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+44
11	[CR][LF]	消息终结符(仅限 ASCII 格式)		avil	-
	That I have a				

4.2.4 CORRIMUDATA*

输出校正后 IMU 原始数据。提供了 RAWIMU 修正重力、地球自转和传感器误差后的 IMU 数据, 其中数值都是以 CORRIMUDATA 间隔(sample)为单位的增量值。输出频率不可调,仅支持 ON NEW,按IMU标定频率输出。

ynavitz 消息 ID: 812

推荐

电话: +86-731-85058117 http://www.bynav.com 63 / 145

LOG Port CORRIMUDATAA ONNEW

ASCII 示例

ynavit #CORRIMUDATAA,ICOM4,0,0.0,FINESTEERING,2106,444279.000,00000000,0000,68;2106,44427 268*b0429fcb

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	CORRIMUDATA heade	Log消息标准头标,详见2.1.2.1标		VHE	0
	hv/r	准格式ASCII信息结构	whe	Н	U
2	Week	GPS周	ULong	4	H+
3	Seconds into Week	周内秒	Double	8	H+4
4	PitchRate	X轴角度增量(rad/sample)	Double	8	H+12
5	RollRate	Y轴角度增量(rad/sample)	Double	8	H+20
6	YawRate	Z轴角度增量(rad/sample)	Double	8	H+28
7	LateralAcc	X轴速度增量(m/s/sample)	Double	8	H+36
8	LongitudinalAcc	Y轴速度增量 (m/s/sample)	Double	8	H+44
9	VerticalAcc	Z轴速度增量(m/s/sample)	Double	8	H+52
10	you	32-bitCRC校验, 见表 4-6 32 位		4	U.E6
10	XXX	CRC 校验算法代码(C)	Hex	4	H+56
11	[CR][LF]	消息终结符(仅限ASCII格式)	-	-	-

4.2.5 CORRIMUDATAS*

提供了 RAWIMU 修正重力、地球自转和传感器误差后的 IMU 数据,其中数值都是以 CORRIMUD ATA 间隔(sample)为单位的增量值。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输 出。(注意该消息的消息头为短格式消息头)

消息 ID: 813

推荐

ynavitz LOG Port CORRIMUDATASA ONNEW

ASCII 示例

%CORRIMUDATASA,2106,444370.000;2106,444370.000000000,-0.000002805,-0.000002805,-<u>by</u>navitz 0.000008220,-0.000000018,0.000042498,-0.000013335*a0a3d8d6

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	CORRIMUDATAS hea	Log 消息短格式头标,见 2.1.2.		Н	0
	der	2 短格式 ASCII 信息结构	-	П	U
2	Week	GPS 周	ULong	4	H+
3	Seconds into Week	周内秒	Double	8	H+4
4	PitchRate	X 轴角度增量(rad/sample)	Double	8	H+12
5	RollRate	Y 轴角度增量(rad/sample)	Double	8	H+20
6	YawRate	Z 轴角度增量(rad/sample)	Double	8	H+28
7	LateralAcc	X 轴速度增量(m/s/sample)	Double	8	H+36
8	LongitudinalAcc	Y 轴速度增量(m/s/sample)	Double	8	H+44
9	VerticalAcc	Z 轴速度增量(m/s/sample)	Double	8	H+52
10	you.	32-bitCRC 校验,见表 4-6 32		4	U.E6
10	XXX	位 CRC 校验算法代码 (C)	Hex	4	H+56
11	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	- 41-	-
4.2.6	HEADING	1000	byn	3V.	

4.2.6 HEADING

输出包含接收机运动的航向。航向是主天线到从天线连线矢量与真北的夹角,顺时针方向为正。

消息 ID: 971

推荐

bynavitz LOG HEADINGA ONTIME 1

ASCII 示例

#HEADINGA,COM3,0,0,FINESTEERING,1975,394129.000,00000000,0000,113;SOL COMPUTED,N ARROW_INT,1.328605294,296.248487535,-71.075350314,0,0.200,0.500,"0000",29,24,29,7,00, hynavit 5 00,10,01*63131FA1

1	HEADING header	Log 消息标准头标, , 详见 2.1.2.1	-	Н	0
		标准格式 ASCII 信息结构			
2	sol stat	解算状态,见表 4-1 解算状态描述说	Enum	4	Н
		明			
3	pos type	定向类型,见表 4-2 定位状态描述说	Enum	4	H+4
	postype	明	LIIUIII	_	111-4
4	length	定向基线长度,单位:m	Float	4	H+8
5	heading	方位角,范围:0~360°	Float	4	H+12
6	pitch	俯仰角,范围: -90~90°	Float	4	H+16
7	Reserved	预留	Float	4	H+20
8	hdg std dev	方位角标准差,单位: 度	Float	4	H+24
9	ptch std dev	俯仰角标准差,单位:度	Float	4	H+28
1.0		差分站台ID号,	Char[4]	4	11.22
10	stn ID	若不是差分为零			H+32
11	#SVs	定向天线可见卫星数	Uchar	1	H+36
12	#solnSVs	参与定向的卫星数	Uchar	1	H+37
13	#obs	定向天线仰角以上的卫星数	Uchar	1	H+38
14	#multi	定向天线仰角以上的 L2 卫星数	Uchar	1	H+39
1.5		解算来源, 见表 4-7 解算来源描述		1	H+40
15	sol source	说明	Hex		
16	ext sol stat	扩展解算状态	Uchar	1	H+41
		Galileo 和 BeiDou 信号使用标志,			
17	Galileo and BeiDo	见表 4-5 Galileo -BEIDOU 信号掩	Hex	1	H+42
	u sig mask	码			
	GPS and GLONASS	GPS 和 GLONASS 信号使用标志,见		-	
18	sig mask	表 4-4 GPS-GLONASS 信号掩码	Hex		H+43
10	than av	32-bitCRC 校验,见表 4-6 32 位 C	arm2	W.	H+44
19	XXXX	RC 校验算法代码 (C)	Hex	4	
20	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-
		1			

表 4-7 解算来源描述说明

Bit	掩码	描述
0-1	0x03	预留
		解算源天线:
2-3	0x0C	0 = 主天线
		1 = 从天线

4-7	0xF0	预留	
4.2.7 HE	ADING2	bynavitz	

4.2.7 HEADING2

输出包含接收机运动的航向。航向是主天线从天线间基线向量逆时针方向与真北的夹角。

消息 ID: 1335

推荐

ynavitz LOG HEADING2A ONTIME 1

ASCII 示例

#HEADING2A,COM1,0,39.5,FINESTEERING,1622,422892.200,02040000,f9bf,6521;SOL_COMPUT ED, NARROW_INT, 0.927607417, 178.347869873, -1.3037414550.0, 0.261901051, 0.391376048, "R hynavit⁷⁵ 222","AAAA",18,17,17,16,0,01,0,33*7be836f6

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	HEADING header	Log 消息标准头标, , 详见 2.1.2.1	_	н	0
_		标准格式 ASCII 信息结构			
2	sol stat	解算状态, 见表 4-1 解算状态描述说明	Enum	4	Н
3	pos type	定向类型,见表 4-2 定位状态描述说 明	Enum	4	H+4
4	length	定向基线长度,单位: m	Float	4	H+8
5	heading	方位角,范围:0~360°	Float	4	H+12
6	pitch	俯仰角,范围: -90~90°	Float	4	H+16
7	Reserved	预留	Float	4	H+20
8	hdg std dev	方位角标准差,单位: 度	Float	4	H+24
9	ptch std dev	俯仰角标准差,单位:度	Float	4	H+28
10	rover stn ID	流动站ID号	Char[4]	4	H+32
11	Master stn ID	差分站台ID号,若不是差分为零	Char[4]	4	H+36
12	#SVs	定向天线可见卫星数	Uchar	1	H+40

13	#solnSVs	参与定向的卫星数	Uchar	1	H+41
14	#obs	定向天线仰角以上的卫星数	Uchar	1	H+42
15	#multi	定向天线仰角以上的 L2 卫星数	Uchar	V ₁	H+43
16	sol source	解算来源,见表 4-7 解算来源描述 说明	Hex	1	H+44
17	ext sol stat	扩展解算状态	Uchar	1	H+45
18	Galileo and BeiDo u sig mask	Galileo 和 BeiDou 信号使用标志, 见表 4-5 Galileo -BEIDOU 信号掩 码	Hex	1	H+46
19	GPS and GLONASS sig mask	GPS 和 GLONASS 信号使用标志,见 表 4-4 GPS-GLONASS 信号掩码	Hex	VIL	H+47
20	xxxx	32-bitCRC 校验, 见表 4-6 32 位 C RC 校验算法代码(C)	Hex	4	H+48
21	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

4.2.8 INSATT*

该消息输出了姿态信息。默认姿态信息为整机坐标系相对于当地导航坐标系的姿态。除非用户自 bynavi 定义了输出坐标系。

消息 ID: 263

推荐

LOG Port INSATTA ONTIME 1

ASCII 示例

#INSATTA,ICOM4,0,0.0,FINESTEERING,2106,444520.000,00000000,0000,68;2106,444520.0000 00000,179.817646100,-0.384419858,0.601726410,INS_ALIGNMENT_COMPLETE*127e6ba7

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSATT header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构	-	H	0
2	Week	GPS 周	Ulong	4	Н

3	Seconds into	周内秒	Double	8	H+4
	Week				
4	Roll	横滚角(取值范围-180°~180°)	Double	8	H+12
5	Pitch	俯仰角(取值范围-90°~90°)	Double	8	H+20
6	Azimuth	航向角(取值范围 0°~360°)	Double	8	H+28
7	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+36
8	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC	Hex	4	11.40
8		校验算法代码(C)		4	H+40
9	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

9	9 [CR][LF]		消息终结符(仅限 ASCII 格式)		-	-	-	
	表 4-8 惯性导航状态说明							
二进制数值 ASCII 值			ASCII 值		描述			
	0		INS_INACTIVE		对准未激	活		
	1		INS_ALIGNING		正在进行粗	对准		
	2	INIC	LUCII VADIANCE		较高协方	差		
	2	INS_HIGH_ VARIANCE		姿态估计未收敛				
	3 INS_ SOLUTION_ GOOD			5	对准完成结果较好			
	6	INS_	SOLUTION_ FREE	Ŀ	2星结果较差	不可用		
	7	INS_ A	LIGNMENT_ COMPLET E	6	粗对准完	成		
	8		MINING_ ORIENTATIO N	TIO 正在确定 IMU 轴与重力对齐				
	9	WAI	TING_ INITIALPOS	等待位置解				
	10 WAITING_ AZIMUTH		等待航向角					
	11 INITIALIZING_ BIASES			在静态数据前 10 秒内估计初始偏差				
	12	M	OTION_ DETECT	尚未完善	全对准,但已	已检测到运动		

4.2.9 INSCALSTATUS*

输出当前校准过程的状态和估计值。

消息 ID: 1961

推荐

navitā ynavitz LOG INSCALSTATUSA ONTIME 1

ASCII 示例

#INSCALSTATUSA,ICOM4,0,0.0,FINESTEERING,2106,445650.000,00000000,0000,68;RBV,0.000 0,0.0000,0.0000,45.0000,45.0000,INS_CONVERGING,0*d1c62c20

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSCALSTATUS	Log 消息标准头标,详见 2.1.2.1 标		Н	0
	header	准格式 ASCII 信息结构	-	П	0
2	Offset Type	偏移量的类型, 见表 4-9 偏移量类型说明	Enum	4	Н
3	X Axis Offset	整机坐标系 X 轴的偏移 (m/°)	Float	4	H+4
4	Y Axis Offset	整机坐标系 Y 轴的偏移 (m/°)	Float	4	H+8
5	Z Axis Offset	整机坐标系 Z 轴的偏移 (m/°)	Float	4	H+12
6	X Uncertainty	整机坐标系 X 轴的不确定性 (m/°)	Float	4	H+16
7	Y Uncertainty	整机坐标系 Y 轴的不确定性 (m/°)	Float	4	H+20
8	Z Uncertainty	整机坐标系 Z 轴的不确定性 (m/°)	Float	4	H+24
9	Source Status	数据来源状态,见表 4-10 数据来源 状态说明	Enum	4	H+28
10	Calibration Count	校准完成次数	Ulong	4	H+32
11	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+36
12	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

表 4-9 偏移量类型说明

二进制数值	ASCII 值	描述
1	ANT1	IMU 至天线杆臂
8	ALIGN	对齐偏移
11	RBV	IMU 至车体偏移

表 4-10 数据来源状态说明

二进制数值	ASCII 值	描述
1	FROM_NVM	偏移值源自 NVM 中保存的参数
2	CALIBRATING	偏移值源自当前正在运行的校准过程
3	CALIBRATED	偏移值源自已完成的校准过程

电话: +86-731-85058117 http://www.bynav.com 70 / 145

4	FROM_ COMMAND	偏移值源自用户命令
5	RESET	偏移值源自系统重置
6	FROM_DUAL_ ANT	偏移值源自双天线定向结果
7	INS_ CONVERGING	偏移值源自初始输入值。校准过程暂停,直到 INS 结果收敛。
8	INSUFFICIENT SPEED	偏移值源自当前正在运行的校准过程。由于速度不够,暂停校
0	INSUFFICIENT_ SPEED	准。
9	HIGH POTATION	偏移值源自当前正在运行的校准过程。由于车辆高度旋转,暂
9	HIGH_ ROTATION	停校准。

4.2.10 INSPOS*

WGS84 坐标系下位置信息,默认输出为整机的导航中心,若用户设置了自定义输出点,则输出原 点为用户自定义点。

消息 ID: 265

推荐

LOG Port INSPOSA ONTIME 1

ASCII 示例

#INSPOSA,ICOM4,0,0.0,FINESTEERING,2107,34578.000,00000000,03de,68;2107,34578.000000 000,28.23317171539,112.87712332635,81.4569,INS_ALIGNMENT_COMPLETE*3070d086

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSPOS header	Log 消息标准头标,详见 2.1.2.1 标准格		I	0
I	INSPOS Header	式 ASCII 信息结构		Г	0
2	Week	GPS 周	Ulong	4	Н
3	Seconds into	周内秒	Double	æ	H+4
3	Week	问口於		0	Π +4
4	Lat	纬度 (°)	Double	8	H+12
5	Lon	经度 (°)	Double	8	H+20
6	Hgt	椭球高 (m)	Double	8	H+28
7	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+36

8	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码 (C)	Hex	4	H+40
9	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	Air	-

4.2.11 INSPTNLPJKS*

输出修正重力、地球自转和传感器误差后的 IMU 数据,惯导解算结果和投影后的平面坐标,平面投影相关参数设置详见 2.2 PJKPARA。

消息 ID: 0 (暂不支持二进制,未指定)

推荐

LOG Port INSPTNLPJKSA ONTIME 1

ASCII 示例

%INSPTNLPJKSA,2140,543667.190;2140,543667.190,INS_ALIGNMENT_COMPLETE,NARROW_IN T,0.004055394,-0.003153181,-0.006703759,0.000486768,-0.000326828,-0.000478564,28.232 55921255,112.87499481423,87.4105,3125639.183,684048.808,70.367,0.000496535,0.003006 558,0.000241381,114.633280830,179.502194734,0.016271861*c0b7c8ec

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSPTNLPJKSA hea	Log 消息短格式头标,见 2.1.2.2 短格		Н	0
I	der	式 ASCII 信息结构	1	Е	U
2	Week	GPS 周	Ulong	4	Н
3	Seconds into Wee k	周内秒(s)	Double	8	H+4
4	Pos Type	位置信息类型	Ulong	4	H+12
5	INS Status	INS 解算状态,表 4-8 惯性导航状态 说明	Ulong	4	H+16
6	Accl_X	X 轴速度增量(m/s/sample)	Double	8	H+20
7	Accl_Y	Y 轴速度增量(m/s/sample)	Double	8	H+28
8	Accl_Z	Z 轴速度增量(m/s/sample)	Double	8	H+36
9	PitchRate	X 轴角度增量(rad/sample)	Double	8	H+44
10	RollRate	Y 轴角度增量(rad/sample)	Double	8	H+52

11	YawRate	Z 轴角度增量(rad/sample)	Double	8	H+60
12	Lat	纬度 (°)	Double	8	H+68
13	Lon	经度 (°)	Double	8	H+76
14	Hgt	海拔高 (m)	Double	8	H+84
15	Pos_X	平面 X 坐标(m)	Double	8	H+92
16	Pos_Y	平面 Y 坐标 (m)	Double	8	H+100
17	Height	大地高 (m)	Double	8	H+108
18	North Velocity	北向速度(m/s)	Double	8	H+116
19	East Velocity	东向速度(m/s)	Double	8	H+124
20	Down Velocity	地向速度(m/s)	Double	8	H+132
21	Heading	航向角(取值范围 0°~360°)	Double	8	H+140
22	Pitch	俯仰角(取值范围-90°~90°)	Double	8	H+148
23	Roll	横滚角(取值范围-180°~180°)	Double	8	H+156
24	100/	32-bitCRC 校验, 见表 4-6 32 位 CR	Have	4	11.160
24	XXX	C 校验算法代码(C)	Hex	4	H+160
25	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

4.2.12 INSPVA*

输出位置、速度和姿态信息。

消息 ID: 507

推荐

LOG Port INSPVAA ONTIME 1

ASCII 示例

#INSPVAA,ICOM4,0,0.0,FINESTEERING,2107,34642.000,00000000,03de,68;2107,34642.000000 000,28.23317128813,112.87712303748,81.5374,-0.0060,-0.0437,0.0013,179.714439972,-0.35 2008098,1.265366582,INS_ALIGNMENT_COMPLETE*3d5a8ba9

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1 INSPV	INSPVA header	Log 消息标准头标,详见 2.1.2.1 标准格	yn a	Н	0
	IIIVSPVA Headel	式 ASCII 信息结构			

2	Week	GPS 周	Ulong	4	Н
3	Seconds into	周内秒	Double	8	H+4
٦	Week		Double	V	1174
4	Lat	纬度 (°)	Double	8	H+12
5	Lon	经度 (°)	Double	8	H+20
6	Hgt	椭球高 (m)	Double	8	H+28
7	North Velocity	北向速度(m/s)	Double	8	H+36
8	East Velocity	东向速度(m/s)	Double	8	H+44
9	Up Velocity	天向速度(m/s)	Double	8	H+52
10	Roll	横滚角(取值范围-180°~180°)	Double	8	H+60
11	Pitch	俯仰角(取值范围-90°~90°)	Double	8	H+68
12	Azimuth	航向角(取值范围 0°~360°)	Double	8	H+76
13	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+84
1.4	VOO	32-bitCRC 校验,见表 4-6 32 位 CRC	11	4	H+88
14	XXX	校验算法代码(C)	Hex	4	П+88
15	[CR][LF]	消息终结符(仅限 ASCII 格式)		-	-

4.2.13 INSPVAS*

输出位置、速度和姿态信息。(注意该消息的消息头为短格式消息头)

消息 ID: 508

推荐

LOG Port INSPVASA ONTIME 1

ASCII 示例

%INSPVASA,2107,34875.000;2107,34875.0000000000,28.23316391985,112.87713071260,82.8 079,-0.0024,-0.0307,0.0003,179.757726111,-0.376524653,1.046861519,INS_ALIGNMENT_COM PLETE*7adc4cb9

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSPVAS hea	Log 消息短格式头标,见 2.1.2.2 短格式			0
'	der	ASCII 信息结构		Н	

3 4 5	Seconds into Week Lat	周内秒 纬度 (°)	Double	8	H+4	
4	Lat	AV 3-	Double			
-					1154	
5		炉及()	Double	8	H+12	
	Lon	经度 (°)	Double	8	H+20	
6	Hgt	椭球高 (m)	Double	8	H+28	
7	North Velocit	北向速度(m/s)	Double	8	H+36	
,	у	和问述及(III/5)			П+30	
8	East Velocity	东向速度(m/s)	Double	8	H+44	
9	Up Velocity	天向速度(m/s)	Double	8	H+52	
10	Roll	横滚角(取值范围-180°~180°)	Double	8	H+60	
11	Pitch	俯仰角(取值范围-90°~90°)	Double	8	H+68	
12	Azimuth	航向角(取值范围 0°~360°)	Double	8	H+76	
13	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+84	
14	XXX	32-bitCRC 校验, 见表 4-6 32 位 CRC	Hex	4	H+88	
14	XXX	校验算法代码 (C)	пех	4	Птоо	
15	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-	
4.2.14 INSPVAX*						

4.2.14 INSPVAX*

除了输出与 INSPVA 相同的位置、速度和姿态信息外,还输出其相应的标准差。

消息 ID: 1465

推荐

ynavit^z LOG Port INSPVAXA ONTIME 1

ASCII 示例

#INSPVAXA,ICOM4,0,0.0,FINESTEERING,2107,35489.000,00000000,03de,68;INS_ALIGNMENT_C OMPLETE, INS_RTKFIXED, 28.23316396165, 112.87713086609, 82.7966, -17.0382, 0.0020, -0.0191, 0.0006, 179.789714292, -0.387541550, 1.405962922, 0.0240, 0.0168, 0.0218, 0.0047, 0.0049, 0.005, 0.0049, 0.005, 0.0049, 0.004,0.0553,0.0553,1.0818,00000000,0*fd6e3a89

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
----	------	----	-------	-------	-------

1	INSPVAX he	Log 消息标准头标,详见 2.1.2.1 标准格式 A		1.1	0
1	ader	SCII 信息结构	-	H	0
2	INS Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H
3	Pos Type	位置信息类型, 见表 4-2 定位状态描述说明	Enum	4	H+4
4	Lat	纬度 (°)	Double	8	H+8
5	Lon	经度 (°)	Double	8	H+16
6	Hgt	海拔高 (m)	Double	8	H+24
7	Undulation	高程异常值(m)	Float	4	H+32
8	North Veloci	北向速度(m/s)	Double	8	H+36
0	ty	北門丞反(III/5)			П+30
9	East Velocit	东向速度(m/s)	Double	8	H+44
	у	八門座及(III/3)			11144
10	Up Velocity	天向速度(m/s)	Double	8	H+52
11	Roll	横滚角(取值范围-180°~180°)	Double	8	H+60
12	Pitch	俯仰角(取值范围-90°~90°)	Double	8	H+68
13	Azimuth	航向角(取值范围 0°~360°)	Double	8	H+76
14	Lat σ	纬度标准差	Float	4	H+84
15	Long σ	经度标准差	Float	4	H+88
16	Height σ	椭球高标准差	Float	4	H+92
17	North Vel σ	北向速度标准差	Float	4	H+96
18	East Vel σ	东向速度标准差	Float	4	H+100
19	Up Vel σ	天向速度标准差	Float	4	H+104
20	Roll σ	横滚角标准差	Float	4	H+108
21	Pitch σ	俯仰角标准差	Float	4	H+112
22	Azimuth σ	航向角标准差	Float	4	H+116
22	Ext sol stat	扩展解算状态信息, 见表 4-11 组合导航扩	Hex	4	H+120
23	EXI SUI SIAI	展解算状态描述说明	VINE	V	П+120
24	Time Since	5. 1. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Ushort	2	U.124
24	Update	距上次位置更新时间(s)			H+124
25	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校	Hex	4	H+126
رے	^^^	验算法代码(C)	HEV	7	11+120
26	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

表 4-11 组合导航扩展解算状态描述说明

半字节	Bit	掩码	描述	取值范围
N0	0	0x00000001	位置更新	0=未使用 1=已使用

	1	00000000	扣件事並	0 + /= 1 - 2 /= 1
	1	0x00000002	相位更新	0=未使用 1=已使用
	2	0x00000004	零速更新	0=未使用 1=已使用
	3	0x00000008	轮速计更新	0=未使用 1=已使用
	4	0x00000010	对准 (定向) 更新	0=未使用 1=已使用
N1	5	0x00000020	外部位置更新	0=未使用 1=已使用
'''	6	0x00000040	INS 解收敛标志	0=未收敛 1=已收敛
	7	0x00000080	多普勒更新	0=未使用 1=已使用
	8	0x00000100	伪距更新	0=未使用 1=已使用
N2	9	0x00000200	速度更新	0=未使用 1=已使用
INZ	10	0x00000400	预留	- 4175
	11	0x00000800	航位推算更新	0=未使用 1=已使用
	12	0x00001000	相位终止更新	0=未使用 1=已使用
NID	13	0x00002000	地面航线更新	0=未使用 1=已使用
N3	14	0x00004000	外部速度更新	0=未使用 1=已使用
	15	0x00008000	外部海拔高更新	0=未使用 1=已使用
	16	0x00010000	外部方位更新	0=未使用 1=已使用
NI 4	17	0x00020000	外部高度更新	0=未使用 1=已使用
N4	18	0x00040000	预留	
	19	0x00080000	预留	may
	20	0x00100000	流动站位置更新	0=未使用 1=已使用
N5	21	0x00200000	流动站位置更新类型	0 = 非 RTK 更新 1 = RTK 整数更新
IND	22	0x00400000	预留	
	23	0x00800000	预留	
				0=静态启动偏差未估计(从零开
	24	0x01000000	启用估计偏差	始)
			173	1=静态启动偏差已估计
NIC	25	0x02000000	对准方向已验证	0=未验证 1=已验证
N6		0.0400000	74/44/5 — 1	0=未设置,1=已设置
	26	0x04000000	对准指示 1	见说明
		0.0000000	71/14/15	0 = 未设置, 1 = 已设置
	27	0x08000000	対准指示 2	见说明
	20	0v1000000	7+V++K = 2	0 = 未设置, 1 = 已设置
	28	0x10000000	对准指示 3	见说明
N7	20	0,20000000	NIV/N4 C a a al 445 — 1	0 = 未设置, 1 = 已设置
N7	29	0x20000000	NVM Seed 指示 1	见表 4-13 NVM Seed 指示说明
	30	0x40000000	NVM Seed 指示 2	0 = 未设置, 1 = 已设置
			i	

			见表 4-13 NVM Seed 指示说明
21	0,0000000	NIVM Cood #5= 2	0 = 未设置, 1 = 已设置
31	31 0x80000000	NVM Seed 指示 3	见表 4-13 NVM Seed 指示说明

表 4-12 对准指示说明

Bits 26-28 数值	Hex 值	完成对准类型
000	0x00	对准未完成
001	0x01	静态
010	0x02	动态
011	0x03	双天线
100	0x04	用户指令
101	0x05	NVM Seed

表 4-13 NVM Seed 指示说明

Bits 29-31 数值	Hex 值	完成对准类型
000	0x00	NVM Seed Inactive
001	0x01	Seed stored in NVM is invalid
010	0x02	NVM Seed failed validation check
011	0x03	NVM Seed is pending validation (awaitin g GNSS)
100	0x04	NVM Seed Injected (includes error model d ata)
101	0x05	NVM Seed data ignored due to a user-com manded filter reset or configuration chang e
110	0x06	NVM Seed error model data injected

4.2.15 INSSPD*

该消息输出了水平和垂直方向的速度信息。

bynavitz 消息 ID: 266

推荐

LOG Port INSSPDA ONTIME 1

ASCII 示例

#INSSPDA,ICOM4,0,0.0,FINESTEERING,2107,37106.000,00000000,0000,68;2107,37106.0000 00000,5.233402789,0.014530860,-0.000531521,INS_ALIGNMENT_COMPLETE*4ac6a980

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1		Log 消息标准头标,详见 2.1.2.1 标准格	-	Н	0
	der	式 ASCII 信息结构			
2	Week	GPS 周	Ulong	4	Н
3	Seconds int	周内秒	Double	8	ши
3	o Week	周内炒		0	H+4
4	Trk Gnd	前进方向与真北的夹角(0~360°)	Double	8	H+12
5	Horizontal S	水平方向连连(~/5)	Double	8	11.20
)	peed	水平方向速度(m/s)		0	H+20
	Vertical Spe	表古之内体体(*** /s)	Double	0	11.20
6	ed	垂直方向速度(m/s)		8	H+28
7	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+36
8	2004	32-bitCRC 校验, 见表 4-6 32 位 CRC		4	11.40
٥	XXX	校验算法代码(C)	Hex	4	H+40
9	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

4.2.16 INSSTDEV*

该消息输出了 INS 位置、速度和姿态的标准差。

消息 ID: 2051

推荐

LOG Port INSSTDEVA ONTIME 1

ASCII 示例

#INSSTDEVA,ICOM4,0,0.0,FINESTEERING,2107,37213.000,00000000,0000,68;0.0239,0.0168,

0.0220, 0.0068, 0.0067, 0.0057, 0.0497, 0.0497, 1.0741, 00000000, 0,0,00bffbbf, 0*c607c0d6, 0.0220, 0.0068, 0.0067, 0.0057, 0.0069,

说明

字段类型	描述	二进制格式	二进制字节	二进制偏移		
INICCEDENT Is a selection	Log 消息标准头标,详见 2.1.2.1					
inssidev neader	标准格式 ASCII 信息结构	-	Н	0		
Lat σ	纬度标准差 (m)	Float	4	Н		
Lon σ	经度标准差 (m)	Float	4	H+4		
Hgt σ	高度标准差 (m)	Float	4	H+8		
North Velocity σ	北向速度标准差(m/s)	Float	4	H+12		
East Velocity σ	东向速度标准差(m/s)	Float	4	H+16		
Up Velocity σ	天向速度标准差(m/s)	Float	4	H+20		
Roll σ	横滚角标准差 (°)	Float	4	H+24		
Pitch σ	俯仰角标准差(°)	Float	4	H+28		
Azimuth σ	航向角标准差(°)	Float	4	H+32		
Fort and state	扩展解算状态信息,见表 4-11 组	Hong	4	H+36		
EXI SUI SIAI	合导航扩展解算状态描述说明	utong	4	П+30		
Time Since Upda	F次 ZUDT 武位罢再轮后的时间	Uchort	2	H+40		
te	工人 ZOPT 或位直史制冶的时间	OSHOIT		11+40		
Reserved	预留	Ushort	2	H+42		
Reserved	预留	Ulong	4	H+44		
Reserved	预留	Ulong	4	H+48		
VOOV	32-bitCRC 校验,见表 4-6 32	Ноу	4	H+52		
XXXX	位 CRC 校验算法代码 (C)	пех	4	Π + 32		
[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-		
	4175					
7 INSVEL*						
亥消息输出了当地导航坐标系的速度信息。						
	Lat σ Lon σ Hgt σ North Velocity σ East Velocity σ Up Velocity σ Roll σ Pitch σ Azimuth σ Ext sol stat Time Since Upda te Reserved Reserved Reserved CRESERVED TINSVEL*	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构 Lat σ	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构 Lat σ	Log 消息标准头标,详见 2.1.2.1		

4.2.17 INSVEL*

消息 ID: 267

推荐

ynavit 5 LOG Port INSVELA ONTIME 1

ASCII 示例

#INSVELA,ICOM4,0,0.0,FINESTEERING,2107,37289.000,00000000,0000,68;2107,37289.00000 <u>hv</u>navitz 0000,0.0099,-0.0082,-0.0014,INS_ALIGNMENT_COMPLETE*7c7a85fb

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSVEL head	Log 消息标准头标,详见 2.1.2.1 标准格		Н	0
ı	er	式 ASCII 信息结构	-	П	0
2	Week	GPS 周	Ulong	4	Н
3	Seconds int	周内秒	Double	8	H+4
٥	o Week	尚內於		0	П+4
4	North Veloci	北京连连 (m /c)	Double		11.12
4	ty	北向速度(m/s)	OVID	8	H+12
5	East Velocity	东向速度(m/s)	Double	8	H+20
6	Up Velocity	天向速度(m/s)	Double	8	H+28
7	Status	INS 解算状态,表 4-8 惯性导航状态说明	Enum	4	H+36
8	2004	32-bitCRC 校验, 见表 4-6 32 位 CRC	Hov		11.40
8	XXX	校验算法代码(C)	Hex	4	H+40
9	[CR][LF]	消息终结符(仅限 ASCII 格式)	-		-
_		aVir			
4.2.1	8 MARKTI	ME,MARK2TIME			

4.2.18 MARKTIME, MARK2TIME

标记输入事件的时间,其中 MARKTIME 标记 IMU DR 时间,MARK2TIME 标记 EVENT IN 时 间。

消息 ID: 231 (MARKTIME), 616 (MARK2TIME)

推荐

bynavitz LOG Port MARKTIMEA ONNEW

LOG Port MARK2TIMEA ONNEW

ASCII 示例

#MARK2TIMEA,ICOM4,0,0.0,FINESTEERING,2107,37368.803,00000000,0000,68;2107,37368.8 03115213,0.000000000e+00,0.00000000e+00,0.000000000,VALID*1a85cfb5

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	MARKTIME/ MAR K2TIME header	Log 消息标准头标,详见 2.1. 2.1 标准格式 ASCII 信息结构	byf		0
2	Week	GPS 参考周	Long	4	Н
3	Seconds	设备内部时钟测量的周内秒	Double	8	H+4
4	Offset	设备时钟漂移(s), GPS 系统时间=GPS 参考时间-时钟漂移	Double	8	H+12
5	Offset std	时钟漂移标准差	Double	8	H+20
6	UTC Offset	UTC 时间=GPS 参考时间-时钟 漂移+UTC 漂移	Double	8	H+28
7	Status	时钟状态,见表 4-14 时钟模型状态说明	Enum	4	H+36
9	xxx	32-bitCRC 校验,见表 4-6 3 2 位 CRC 校验算法代码 (C)	Ulong	4	H+40
10	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

表 4-14 时钟模型状态说明

时钟状态 (二进制)	时钟状态(ASCII 值)	描述			
0	VALID	时钟模型有效			
1	CONVERGING	时钟模型接近有效			
2	ITERATING	时钟模型正在进行有效性迭代			
3	INVALID	时钟模型无效			
4.2.19 PSRVEL					
该消息输出伪距速度	亥消息输出伪距速度信息。				

4.2.19 **PSRVEL**

该消息提供了地面上接收机天线的实际速度和方向。速度测量有时有一个与之相关的延迟。有 效时间是日志中的时间标签减去延迟值。PSRVEL 中的速度由伪距滤波器确定。伪距滤波器的速 度由多普勒计算。速度状态表示不同程度的速度质量。为确保速度正常,还必须检查速度解算 状态。如果解算状态为非零,则速度可能无效。应注意的是,接收器并不确定载体的指向(航 向), 而是确定 GPS 天线相对于地面的运动方向。瞬时多普勒速度的延迟总是 0.15 秒。延迟 表示跟踪环路在大约 1g 加速度下引起的延迟估计值。对于大多数用户,延迟可以假定为零(瞬 时速度)。

消息 ID: 100 bynavitā

推荐

ynavitz LOG Port PSRVELA ONTIME 1

ASCII 示例

#PSRVELA,COM3,0,98.1,FINESTEERING,2149,348230.000,00000000,0000,757;SOL_COMPUTE hynavit 2 D,NARROW_INT,0.000,0.000,0.0012,60.835538,0.0057,0*a0039781

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	PSRVELA header	Log 消息标准头标,详见 2.1.2. 1 标准格式 ASCII 信息结构	-	н	0
2	Sol Status	解算状态,见表 4-1 解算状态 描述说明	Enum	4	Н
3	Vel Type	速度类型,见表 4-2 定位状态 描述说明	Enum	4	H+4
4	Latency	延迟	Float	4	H+8
5	Diff_age	差分延迟 (s)	Float	4	H+12
6	Hor Spd	水平速度(m/s)	Double	8	H+16
7	Trk Gnd	前进方向与真北的夹角(°) (取值范围 0°~360°)	Double	8	H+24
8	Vert Spd	垂直速度 (m/s), 其中正值表 示高度 (上升)增加, 负值表示 高度(下降)减少	Double	8	H+32
9	Reserved	预留	Float	4	H+40
10	xxx	32-bitCRC 校验,见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+44
11	[CR][LF]	消息终结符(仅限 ASCII 格式)		-	-

4.2.20 RAWIMU*

该消息提供原始 IMU 观察量,数据的参考原点为整机导航中心。输出频率不可调,仅支持 ONN EW,按IMU标定频率输出。

消息 ID: 268 ynavitz

推荐

LOG Port RAWIMUA ONNEW

ASCII 示例

#RAWIMUA,ICOM4,0,0.0,FINESTEERING,2107,37454.000,00000000,0000,68;2107,37454.000 000000,00000000,-2116037,15254,-3991,1707,2161,3258*ab408b44

000000,00000000,-2116037,15254,-3991,1707,2161,3258*ab408b44						
说明	hynay,		hVN			
字段	字段类型	描述	二进制格式	二进制字节	二进制偏移	
1	RAWIMU header	Log 消息标准头标,详见 2.1.2. 1 标准格式 ASCII 信息结构	-	Н	0	
2	Week	GPS 周	Ulong	4	Н	
3	Seconds into Week	周内秒	Double	8	H+4	
4	IMU Status	IMU 状态,目前默认为 0	Hex Ulong	4	H+12	
5	Z Accel	Z 轴的速度增量*	Long	4	H+16	
6	-Y Accel	-Y 轴的速度增量*	Long	4	H+20	
7	X Accel	X 轴的速度增量*	Long	4	H+24	
8	Z Gyro	Z 轴的角度增量*	Long	4	H+28	
9	-Y Gyro	-Y 轴的角度增量*	Long	4	H+32	
10	X Gyro	X 轴的角度增量*	Long	4	H+36	
11	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+40	
12	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	aVII	-	

^{*}单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

表 4-15 IMU 原始数据转换系数说明

设备	IMU	转换系数	频率	比例因子
X1-3	Gyro	3.35276126861572e-05 °/s/LSB		3.35276126861572e-07 °/LSB
/A1-3		4.65661287307739e-06 m/s2/L	100Hz	4.65661287307739e-08 m/s/L
77(1)	Accel	SB		SB

X1-5	Gyro	3.0517578125e-05 °/s/LSB		2.44140625e-07 °/LSB
/A1-5	Accel	3.74094009399414e-06 m/s2/L	125Hz	2.99275207519531e-08 m/s/L
,,,,		SB		SB
X1-6 /A1-6	Gyro	2.88991928100586e-05 °/s/LSB	0	2.31193542480469e-07 °/LSB
	Accel	7.48188018798828e-06 m/s2/L	125Hz	5.98550415039063e-08 m/s/L
77.11 0		SB		SB

4.2.21 **RAWIMUS***

该消息提供原始 IMU 观察量,相较 RAWIMU 额外提供了 IMU 相关信息,数据的参考原点为整机导航中心。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输出。(注意该消息的消息头为短格式消息头)

消息 ID: 325

推荐

LOG Port RAWIMUSA ONNEW

ASCII 示例

%RAWIMUSA,2107,37564.000;2107,37564.0000000000,00000000,-2111774,15617,-4719,293 9,635,1057*03104a49

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	DALMANG TO I	Log 消息短格式头标, 见 2.1.2.2			,
I	RAWIMUS header	短格式 ASCII 信息结构		Н	0
2	Week	GPS 周	Ulong	4	Н
3	Seconds into We	周内秒	Double	8	H+4
3	ek	间内砂			
4	IMU Status	IMU 状态,目前默认为 0	Hex Ulong	4	H+12
5	Z Accel	Z 轴的速度增量*	Long	4	H+16
6	-Y Accel	-Y 轴的速度增量*	Long	4	H+20
7	X Accel	X 轴的速度增量*	Long	4	H+24
8	Z Gyro	Z 轴的角度增量*	Long	4	H+28

9	-Y Gyro	-Y 轴的角度增量*	Long	4	H+32
10	X Gyro	X 轴的角度增量*	Long	4	H+36
11	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+40
12	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

^{*}单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

4.2.22 RAWIMUSX*

该消息提供扩展型原始 IMU 观察量,相较 RAWIMU 额外提供了 IMU 相关信息,数据的参考原 点为整机导航中心。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输出。(注意该消息的消息头为短格式消息头)

消息 ID: 1462

推荐

LOG Port RAWIMUSXA ONNEW

ASCII 示例

%RAWIMUSXA,2107,37676.000;00,3,2107,37676.000000000,00000000,-2106390,13697,-57 80,3624,1446,1426*6ae4f31b

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	RAWIMUSX he	Log 消息短格式头标,见 2.1.2.2 短格		Н	0
	ader	式 ASCII 信息结构	-	П	U
		IMU 信息:			
	Imu Info	Bit 0 置 1 表示 IMU 故障	Hex	1	Н
2		Bit1 置 1 表示 IMU 数据加密,不可使			
		用。			
		Bit2-7: 保留		41	75
3	Imu Type	IMU 类型, 见表 4-16 IMU 类型说明	Uchar		H+1
4	Week	GPS 周	UShort	2	H+2

5	Seconds into Week	周内秒	Double	8	H+4
6	IMU Status	IMU 状态,目前默认为 0	Hex Ulong	4	H+12
7	Z Accel	Z 轴的速度增量*	Long	4	H+16
8	-Y Accel	-Y 轴的速度增量*	Long	4	H+20
9	X Accel	X 轴的速度增量*	Long	4	H+24
10	Z Gyro	Z 轴的角度增量*	Long	4	H+28
11	-Y Gyro	-Y 轴的角度增量*	Long	4	H+32
12	X Gyro	X 轴的角度增量*	Long	4	H+36
13	XXX	32-bitCRC 校验, 见表 4-6 32 位 CR C 校验算法代码(C)	Hex	4	H+40
14	[CR][LF]	消息终结符(仅限 ASCII 格式)		-	-

表 4-16 IMU 类型说明

二进制数值	ASCII 值	设备型号	IMU 型号
3	3	X1-3/A1-3	ADIS 16505
4	4	X1-4/A1-4	TDK IIM-46234
5	5	X1-5/A1-5	EPSON_G354
6	6	X1-6/A1-6	EPSON_G365
7	7	X1-7/A1-7	EPSON_G370

^{*}单位为 LSB(Least Significant Bit),转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

4.2.23 RAWIMUX*

该消息提供扩展型原始 IMU 观察量,数据的参考原点为整机导航中心。输出频率不可调,仅支持 ONNEW,按 IMU 标定频率输出。

消息 ID: 1461

推荐

LOG Port RAWIMUXA ONNEW

ASCII 示例

#RAWIMUXA,ICOM4,0,0.0,FINESTEERING,2107,37613.000,00000000,0000,68;00,3,2107,3761 3.000000000,00000000,-2106169,13714,-5559,3570,1638,1782*9d84ce36

说明

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	RAWIMUSX he	Log 消息短格式头标, 见 2.1.2.2 短格	_	П	0
	ader	式 ASCII 信息结构		''	U
		IMU 信息:		.16	
	-02	Bit 0 置 1 表示 IMU 故障			
2	lmu Info	Bit1 置 1 表示 IMU 数据加密,不可使	Hex	1	Н
		用。			
		Bit2-7: 保留			
3	lmu Type	IMU 类型, 见表 4-16 IMU 类型说明	Uchar	1	H+1
4	Week	GPS 周	UShort	2	H+2
5	Seconds into	周内秒	Double	8	H+4
3	Week	间的秒			
6	IMU Status	IMU 状态,目前默认为 0	Hex Ulong	4	H+12
7	Z Accel	Z 轴的速度增量*	Long	4	H+16
8	-Y Accel	-Y 轴的速度增量*	Long	4	H+20
9	X Accel	X 轴的速度增量*	Long	4	H+24
10	Z Gyro	Z 轴的角度增量*	Long	4	H+28
11	-Y Gyro	-Y 轴的角度增量*	Long	4	H+32
12	X Gyro	X 轴的角度增量*	Long	4	H+36
12	VVV	32-bitCRC 校验,见表 4-6 32 位 CR	Ноу		4.40
13	XXX	C 校验算法代码 (C)	Hex	4	H+40
14	[CR][LF]	消息终结符(仅限 ASCII 格式)		-	-

^{*}单位为 LSB(Least Significant Bit), 转换的比例因子与 IMU 型号有关。详见表 4-15 IMU 原始数据转换系数说明。

4.3 配置查询

4.3.1 AUTHORIZATION

输出当前板卡授权信息。仅支持单次输出。

查询指令格式:

LOG AUTHORIZATION ONCE

查询结果示例:

AuthStr: 3745523D74C21D0DB7410D0B071AB2C8;

AuthMode: C1-8D;

Authorization: Permanent Licence;

InsEnable: FALSE;

DualAntEnable: TRUE;

RawOutEnable: TRUE;

AssistEnable: FALSE;

OdoEnable: FALSE; MaxInsFreq: 125;

MaxRTKFreq: 5;

FrqMask: B1IB2IB1CB2AB2BL1L1CL2CL2PG1G2E1E5BE5A;

NavSys: GPS GLONASS GALILEO BEIDOU QZSS;

查询结果说明:

ID	示例	描述
1	AuthStr: 3745523D74C21D0DB7410D0B071AB2C8;	AuthStr: 授权码
2	AuthMode: C1-8D;	AuthMode: 授权板卡类型
3	Authorization: Permanent Licence;	AuthWeek: 授权有效期(GPS WEE
3	Authorization. Permanent Licence,	K)
4	InsEnable: FALSE;	InsEnable:INS 授权状态
5	DualAntEnable: TRUE;	DualAntEnable: 双天线授权状态
6	RawOutEnable: TRUE;	RawOutEnable: 原始数据输出授
0	Rawouterlable. TROE,	权状态
7	AssistEnable: FALSE;	AssistEnable:组合导航辅助功能授
,	ASSISTENABLE. FALSE,	权(自检,杆臂测量,RBV 等)
8	OdoEnable: FALSE;	OdoEnable: 里程计轮速计功能授
0	oddinable. TALSE,	权
۵	MaxInsFreg: 125;	MaxInsFreq:最大 INS 结果输出频
9	Maxims req. 125,	度
10	MaxRTKFreq: 5;	MaxRTKFreq: 最大 RTK 结果输出
10	inaxitititeq. 3,	频度
11	FrqMask:B1IB2IB1CB2AB2BL1L1CL2CL2PG1G2E1E5BE5	FrqMask:接收频点授权

	A;	
12	NavSys: GPS GLONASS GALILEO BEIDOU QZSS;	NavSys: 卫星系统授权
4.3	2 BYCHECK	

4.3.2 BYCHECK

GNSS 自检信息输出。

查询指令格式:

LOG BYCHECKA ONTIME 5

查询结果示例:

#BYCHECKA,ICOM1,0,0.0,FINESTEERING,2106,129959.200,00000000,0000,65;1502,2106,1 29959.200,1,1,1,1,1,1,1,1,1,1*e120f355

查询结果说明:

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	BYCHECK header	Log 消息标准头标,详见 2.1.2.1		Н	0
	Brenzek nedder	标准格式 ASCII 信息结构			75
2	Runtime	接收机运行时间,单位 s	Ulong	4	Н
3	Week	GPS 周	Ulong	4	H+4
4	Sow	周内秒	Double	4	H+8
5	Dual Frequency	天线是否支持双频点*	Ulong	4	H+12
6	Detection Voltag	天线是否有馈电*	Ulong	4	H+16
	е	八线定日日顺电	Otorig		11110
7	Glo Frequency Di	GLONASS 频间差是否校准*	Ulong	4	H+20
	ff		9		
8	Work Frequency	工作频点是否匹配*	Ulong	4	H+24
9	Base Station Posi	是否收到基准站坐标*	Ulong	4	H+38
9	tion	走口权到 坐准如主你	Utong	Ť	11+30
10	Base Antenna Bl	基准站天线是否被遮挡*	Ulong	4	H+32
	ock	坐作却入戏走口放煙口	Otorig	۲	11132
11	Diff Link	差分链路是否稳定*	Ulong	4	H+36
12	Dual Base	是否接收到多基站数据*	Ulong	4	H+40
13	Board Temperatu re	主板温度是否正常*	Ulong	4	H+44

14	Rover Block	接收机天线是否被遮挡*	Ulong	4	H+48
15	xxxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	H+52
16	[CR][LF]	消息终结符(仅限 ASCII 格式)			

*0: 否, 1: 是, 2: 状态不确定

4.3.3 BYCONFIG

输出当前时刻系统相关信息。

bynavitz LOG Port BYCONFIGA ONTIME 1

查询结果示例:

#BYCONFIG,ICOM1,0,0.0,FINESTEERING,2105,565387.000,00000000,0000,64;1606.277,0A 0A473C44242E10B9EBEB718777B7A3,2105,55.412,rover*f275111e

查询结果说明:

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移			
1	BYCONFIG head	Log 消息标准头标,详见 2.1.2.1	_	Н	0			
ı	er	标准格式 ASCII 信息结构	_	П	U			
2	Runtime Secon	系统运行时间	Double	8	Н			
	ds	永 机色门时间	Double	0	11			
3	DNA	系统唯一序列号	Uchar*32	1*16	H+8			
4	Authorization G	rization G 授权时间 GPS 周 Ulong	Ulong	4	H+24			
4	psweek	及似间 042 间	Otorig		11+24			
5	Temperature	系统温度 Doub		8	H+28			
6	Workmode	工作模式	Ulong	4	H+36			
		(1: rover 2: base)						
7	xxxx	32-bitCRC 校验,见表 4-6 32	11	4	H+52			
/	****	位 CRC 校验算法代码 (C)	Hex					
8	[CR][LF]	消息终结符(仅限 ASCII 格式)						
4.3.4 CCOMCONFIG								
输出 CAN	输出 CAN 通信接口配置。仅支持单次输出。							

4.3.4 CCOMCONFIG

查询指令格式:

LOG CCOMCONFIG ONCE

查询结果示例:

CCOM1 NO	DE1 J1939	126720	7	FE	IN:NONE	OUT:NONE
CCOM2 NO	NE NONE	0	0	0	IN:NONE	OUT:NONE
ссомз по	NE NONE	0	0	0	IN:NONE	OUT:NONE
CCOM4 NO	NE NONE	0	0	0	IN:NONE	OUT:NONE

查询结果说明:

ID	示例	格式	描述
1	ссом1	[PORT]	端口号,可为 CCOM1、CCOM2、CCOM3、CCOM4
2	NODE1	[NODE]	节点名称
3	J1939	[PROTOCOL]	协议名称
4	126720	[PGN]	参数组编号
5	7	[PRIORITY]	优先级
6	FE	[ADDRESS]	地址
7	IN:NONE	[IN:FORMAT]	输入协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、A
	IN.NONE [IN.FORMAT]		UTO,详见 INTERFACEMODE
8	OUT-NONE	[OUT:FORMAT]	输出协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、A
	OUT.NOINL	[OUT.] ORMAT]	UTO,详见 INTERFACEMODE

4.3.5 COMCONFIG

输出串口配置信息。仅支持单次输出。

查询指令格式:

LOG COMCONFIG

查询结果示例:

COM1 115200 N 8 1 IN:RTCM OUT:RTCM COM2 460800 N 8 1 IN:BYNAV OUT:BYNAV COM3 115200 N 8 1 IN:AUTO OUT:AUTO

电话: +86-731-85058117 http://www.bynav.com

92 / 145

查询结果说明:

ID	示例	格式	描述
1	COM1	Port	串口号,可为 COM1、COM2
2	115200	Baudrate	波特率
3	N	Parity	校验方式:'N',无校验,'O',奇校验,'E',偶校验
4	8	Databit	数据位, 可为 7、8
5	1	Stopbit	停止位,可为 1、2
6	IN:RTCM	IN:FORMAT	输入协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、AUT O,详见 INTERFACEMODE
7	OUT:RTC	OUT:FORM	输出协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、AUT
	M	AT	O,详见 INTERFACEMODE

4.3.6 FLASHDNA

输出当前板卡唯一序列号。仅支持单次输出。

查询指令格式:

LOG FLASHDNA ONCE

查询结果示例:

FlashDNA: 000000000EF6018D46888950B163E39;UniqueID: 000000000EF6018D4688 8950B163E39; 0

查询结果说明:

I D	示例	格式	描述
1	FlashDNA	FlashDNA	序列号标识
2	000000000EF6018D46888950B163E 39	[FLASHDNA]	序列号
3	UniqueID	UniqueID	ID 标识
4	000000000EF6018D46888950B163E 39	[UNIQUEID]	ID
5	byna o	[AUTH EXPIRA TION]	授权到期标志: 0 未到期, 1 已到期

4.3.7 FLASHDNAA

输出当前板卡唯一序列号。支持固定频率输出。(该语句暂无二进制格式输出)

查询指令格式:

LOG FLASHDNAA ONTIME 1

查询结果示例:

#FLASHDNAA,COM3,0,99.8,FINESTEERING,2146,110330.000,00000000,0000,754;00000 00000EF6018D469085293122F39,3130303133DD5120E459316193122F39,0*4c3b62b4

查询结果说明:

字段	字段类型描述		
1	FLASHDNAA header Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构		
2	FLASHDNA 序列号		
3	UNIQUEID 板卡唯一 ID		
4	AuthState	授权状态 (0: 有效, 1: 过期)	
5	xxx 32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C		
6	[CR][LF]	消息终结符(仅限 ASCII 格式)	

4.3.8 ICOMCONFIG

显示当前以太网传输层/应用层配置。仅支持单次输出。

查询指令格式:

LOG ICOMCONFIG ONCE

查询结果示例:

ICOM1 TCP:1111 IN:AUTO OUT:AUTO ICOM2 TCP: 2222 IN: AUTO OUT: AUTO ICOM3 TCP:3333 IN: AUTO OUT: AUTO ICOM4 TCP: 44444 IN: AUTO OUT: AUTO

查询结果说明:

ICO	M4 TCP :444	44 IN: AUTO	OUT: AUTO
查询结果说明:			
I 示例 格式			描述

D						
1	ICOM1	Port	接口名称,可为 ICOM1、ICOM2、ICOM3、ICOM4			
2	141/11	343.	DISABLED 关闭网络服务			
3	ТСР	Protocol	TCP 使用 TCP			
4			UDP 使用 UDP			
5	:1111	Host:Port	主机:端口号,若主机字段为空,则设备作为服务器监听设置的端			
	.1111	11030.1 010	口号,若不为空!	则作为客户端,主动连接设置的地址		
6	IN: AUTO	IN:FORMA	输入协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、A			
0	IIV. AUTO	T	UTO <i>,</i> 详见 INTERFACEMODE			
7	OUT: AUT	OUT:FOR	输出协议类型,可为 RTCM、BYNAV、NONE、FPGA、LOG、A			
′	0	MAT	UTO, 详见 INTE	RFACEMODE		

4.3.9 INSCONFIG*

用于查询 INS 系统配置。简化格式仅支持单次输出。ASCII 格式支持固定频率输出。

4.3.9.1 简化格式

LOG INSCONFIG

查询结果示例:

<INSCONFIG ICOM4 0 90.7 FINESTEERING 2131 450079.920 00000000 0000 741</p>

- IMU-3 0 10 0 LAND 0000021f AUTOMATIC ROVER FALSE 00000000 0 0
- 0 0 0 0 0 0 <
- <
- ANT1 VEHICLE 0.1000 -0.3800 0.1600 0.0500 0.0500 0.0500 FROM_COMMAND
- ANT2 VEHICLE 0.1000 0.3700 0.1600 0.0500 0.0500 0.0500 FROM_COMMAND <
- USER VEHICLE 0.1000 -0.3800 0.1600 0.0000 0.0000 0.0000 FROM_COMMAND <
- <
- RBV IMUBODY 0.000000000 0.000000000 0.000000000 0.0500 0.0500 FR OM_COMMAND
- USER IMUBODY 0.000000000 0.000000000 0.00000 0.0000 0.0000 F bynavitz ROM NVM

ID	示例	格式	描述	
	<insconfig 0="" 0000="" 00000000="" 2131="" 41<="" 450079.920="" 7="" 90.7="" finesteerin="" g="" icom4="" td=""><td>INSCONFIG header</td><td colspan="2">Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构</td></insconfig>	INSCONFIG header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构	
2	IMU-3	IMU Type	IMU 类型, 见表 4-16 IMU 类型说明	
3	0	Mapping	方向	
4	10	Initial Alignment Velocit y	用户设置的最小对准速度	
5	0	Heave Window	振动窗口(s)	
6	LAND	Profile	模型设置,见 0 注:此命令生效后,可 通过 SAVECONFIG 命令将相关配置保存 到 FLASH 中。 SETINSPROFILE*	
7	0000021f	Enabled Updates	使能更新类型	
8	AUTOMATIC	Alignment Mode	系统对准模式,见表 4-17 系统对准模 式说明	
9	ROVER	Relative INS Output Fra me	用户指定的相对 INS 向量坐标系,见表 4-18 用户指定的相对 INS 向量坐标系 及方向说明	
10	FALSE	Relative INS Output Dire ction	用户指定的相对 INS 向量方向,见表 4-18 用户指定的相对 INS 向量坐标系 及方向说明	
11	00000000	INS Receiver Status	INS 接收机状态: 首(低)字节- 按 INSResetEnum 重置 INS 第二字节- =0x01,IMU 通信错误 =0x00,正常 =其他,保留 第三、四字节-保留	
12	0	Reserved	预留	
13	0	Reserved	预留	
14	0	Reserved	预留	
15	0	Reserved	预留	

16	0	Reserved	预留	
17	0	Reserved	预留	
18	0	Reserved	预留	
19	0	Reserved	预留	
20	0	Reserved	预留	
21	3	Number of Translations	输入的转换数量	
22	ANT1	Translation	转换类型, 见表 4-19 转换偏移类型说	
			明	
23	VEHICLE	Frame	坐标系	
		73	(IMUBODY 或 VEHICLE)	
24	0.1000	X Offset	X 轴偏移(m)	
25	-0.3800	Y Offset	Y 轴偏移(m)	
26	0.1600	Z Offset	Z 轴偏移(m)	
27	0.0500	X Uncertainty	 X 轴的不确定性(m) 	
28	0.0500	Y Uncertainty	Y 轴的不确定性(m)	
29	0.0500	Z Uncertainty	Z 轴的不确定性(m)	
30	FROM_COMMAND	Translation Source	转换来源,见表 4-10 数据来源状态说 明	
可变	2	Number of Rotations	输入的旋转数量	
可变	RBV	Rotation	旋转类型,见表 4-21 旋转偏移类型说 明	
可变	IMUBODY	Frame	坐标系 (IMUBODY 或 VEHICLE)	
可变	0.000000000	X Rotation	X 轴旋转 (°)	
可变	0.00000000	Y Rotation	Y 轴旋转 (°)	
可变	0.00000000	Z Rotation	Z 轴旋转 (°)	
可变	0.0500	X Rotation Std Dev	X 轴旋转参数标准差 (°)	
可变	0.0500	Y Rotation Std Dev	Y 轴旋转参数标准差 (°)	
可变	0.0500	Z Rotation Std Dev	Z 轴旋转参数标准差 (°)	
可变	FROM_COMMAND	Rotation Source	旋转来源,见表 4-10 数据来源状态说 明	
k	ynav		bynav	

4.3.9.2 ASCII 格式

查询指令格式:

LOG INSCONFIGA ONCE

查询结果示例:

查询结果说明:

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	INSCONFIG header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII 信息结构	-	H	0
2	IMU Type	IMU 类型,见表 4-16 IMU 类型 说明	Enum	4	Н
3	Mapping	方向	Uchar	1	H+4
4	Initial Alignment V elocity	用户设置的最小对准速度	Uchar	1	H+5
5	Heave Window	振动窗口(s)	Ushort	2	H+6
6	Profile	模型设置,见0注:此命令生效 后,可通过 SAVECONFIG 命令将 相关配置保存到 FLASH 中。 SETINSPROFILE*	Enum		H+8
7	Enabled Updates	使能更新类型	Hex	4	H+12
8	Alignment Mode	系统对准模式,见表 4-17 系统 对准模式说明	Enum	4	H+16
9	Relative INS Outpu t Frame	用户指定的相对 INS 向量坐标 系,见表 4-18 用户指定的相对 I NS 向量坐标系及方向说明	Enum	4	H+20

10	Relative INS Outpu	用户指定的相对 INS 向量方向, 见表 4-18 用户指定的相对 INS	Bool	4	H+24
	2 Birection	向量坐标系及方向说明			
	Dy	INS 接收机状态:			
11		首(低)字节-			
		按 INSResetEnum 重置 INS			
	INS Receiver Statu	第二字节-	Hex	4	H+28
	S	=0x01,IMU 通信错误	TIEX	4	11+20
		=0x00 <i>,</i> 正常			
		=其他,保留		-41	75
	aV	第三、四字节-保留			
12	Reserved	预留	Uchar	1	H+32
13	Reserved	预留	Uchar	1	H+33
14	Reserved	预留	N/A	2	H+34
15	Reserved	预留	N/A	4	H+36
16	Reserved	预留	N/A	4	H+40
17	Reserved	预留	N/A	4	H+44
18	Reserved	预留	N/A	4	H+48
19	Reserved	预留	N/A	4	H+52
20	Reserved	预留	N/A	4	H+56
21	Number of Transla tions	输入的转换数量	Ulong	4	H+60
22	Translation	转换类型, 见表 4-19 转换偏移 类型说明	Enum	4	variable
23	Frame	坐标系 (IMUBODY 或 VEHICLE)	Enum	4	variable
24	X Offset	X 轴偏移(m)	Float	4	variable
25	Y Offset	Y 轴偏移(m)	Float	4	variable
26	Z Offset	Z 轴偏移(m)	Float	4	variable
27	X Uncertainty	X 轴的不确定性(m)	Float	4	variable
28	Y Uncertainty	Y 轴的不确定性(m)	Float	4	variable
29	Z Uncertainty	Z 轴的不确定性(m)	Float	4	variable

30	Translation Source	转换来源,见表 4-10 数据来源状 态说明	Enum	4	variable
可变	Number of Rotatio ns	输入的旋转数量	Ulong	4	variable
可变	Rotation	旋转类型,见表 4-21 旋转偏移 类型说明	Enum	4	variable
可变	Frame	坐标系 (IMUBODY 或 VEHICLE)	Enum	4	variable
可变	X Rotation	X 轴旋转 (°)	Float	4	variable
可变	Y Rotation	Y 轴旋转 (°)	Float	4	variable
可变	Z Rotation	Z 轴旋转 (°)	Float	4	variable
可变	X Rotation Std De V	X 轴旋转参数标准差(°)	Float	4	variable
可变	Y Rotation Std De v	Y 轴旋转参数标准差(°)	Float	4	variable
可变	Z Rotation Std De V	Z 轴旋转参数标准差(°)	Float	4	variable
可变	Rotation Source	旋转来源,见表 4-10 数据来源状 态说明	Enum	4	variable
可变	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算法代码(C)	Hex	4	variable
可变	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-

表 4-17 系统对准模式说明

ASCII 值	二进制数值	描述	
UNAIDED 0		静态粗对准或动态对准方法可用。	
AIDED_ TRANSFE 2		使用双天线定向结果初始化方位角估计。	
AUTOMATIC	3	根据双天线定向结果初始化姿态,执行常规静态粗对准或执行动态对准,以先可能的为准。	
STATIC	4	仅限静态粗对准方式	
KINEMATIC	5	仅限动态粗对准方式	

表 4-18 用户指定的相对 INS 向量坐标系及方向说明

分类	ASCII 值	二进制数值	描述
相对 INS	ROVER	1	ROVER-相对 ROVER 的 INS 坐标系

向量坐标	MASTER	2	MASTER-相对基准站的 INS 坐标系
系	MASTER 2		ECEF-地心地固坐标系
	ECEF	3	LOCALLEVEL-当地坐标系
	LOCALLEVEL	4	默认设置为 ROVER
相对 INS	FALSE	0	Rover 到 Master (默认)
向量方向	TRUE	1	Master 到 Rover

表 4-19 转换偏移类型说明

ASCII 值	二进制数值	描述			
ANT1	1	从导航中心到主 GNSS 天线相位中心的偏移。			
ANT2	2	从导航中心到从 GNSS 天线相位中心的偏移。			
EXTERNAL	3	从导航中心到外部位置源的偏移地点。这个偏移类型用于 EXTERNALPV			
EXTERNAL		AS 命令(暂不支持)。			
		从导航中心到用户输出的转换地点。这个偏移量移动 INSPVA、INSPOS、INSV			
USER	4	EL、INSATT 和 INSSPD 中的位置和速度信息,及其对应的短 header 格式和扩			
		展版本。			
MARK1	5	从导航中心到 MARK1 输出位置的平移。这个偏移量改变了 MARK1PVA(暂不			
MARKI		支持)中的位置和速度信息。			
MARK2	6	从导航中心到 MARK2 输出位置的平移。这个偏移量改变了 MARK2PVA(暂不			
MARKZ		支持)中的位置和速度信息。			
GIMBAL	7	从导航中心到万向支架旋转中心的平移。			
MARK3	9	从导航中心到 MARK3 输出位置的平移。这个偏移量改变了 MARK3PVA(暂不			
MARKS	9	支持)中的位置和速度信息。			
MARK4	10	从导航中心到 MARK4 输出位置的平移。这个偏移量改变了 MARK4PVA(暂不			
IMAKN4	10	支持)中的位置和速度信息。			

表 4-20 坐标系说明

	又捋广中的位直相还反信忌。					
表 4-20 坐标系说明						
ASCII 值	ASCII 值 二进制数值 描述					
	IMUBODY 0 以整机/板卡坐标系为基准,以导航中心原点					
IMUBODY	0	以整机/板卡坐标系为基准,以导航中心原点				

表 4-21 旋转偏移类型说明

ASCII 值	二进制数值	描述
	R 4	从整机/板卡坐标系到用户输出坐标系的旋转。
USER		这个偏移量会影响 INSPVA、INSPOS、INSVEL、INSATT 和 INSSPD 中的
		姿态信息,以及它们的短格式(header)和扩展版本。

电话: +86-731-85058117 101 / 145 http://www.bynav.com

MARK1 5		从整机/板卡坐标系旋转到 MARK1 的所需输出。 此偏移旋转 MARK1PVA(暂不支持)中的姿态信息。
MARK2	6	从整机/板卡坐标系旋转到 MARK2 的所需输出。 此偏移旋转 MARK2PVA(暂不支持)中的姿态信息。
ALIGN	8	从整机/板卡坐标系旋转到校准双天线坐标系。 当使用带 SPAN 的双天线对准解决方案时,如果使用下一页的 SETINSTRAN SLATION 命令提供了到主要和次要 GNSS 天线的平移偏移,则会自动计算此 偏移。
MARK3	9	从整机/板卡坐标系旋转到 MARK3 的所需输出。 此偏移旋转 MARK3PVA(暂不支持)中的姿态信息。
MARK4	10	从整机/板卡坐标系旋转到 MARK4 的所需输出。 此偏移旋转 MARK4PVA(暂不支持)中的姿态信息。
RBV	11	从整机/板卡坐标系到车体坐标系的旋转。
RBM	12	从整机/板卡坐标系旋转至万向节安装坐标系。

4.3.10 IPCONFIG

输出板卡网络配置。仅支持单次输出。

查询指令格式:

LOG IPCONFIG ONCE

查询结果示例:

IPCONFIG STATIC 192.168.8.130 255.255.0.0 192.168.1.9

I D	示例	格式	描述
1	IPCONFIG	IPCONFIG	IP 配置标识
2	STATIC	[AddressMod e]	IP 类型: STATIC、DHCP
3	192.168.8.130	IPAddress	IP 地址
4	255.255.0.0	[NetMask]	子网掩码
5	192.168.1.9	[GateWay]	网关

4.3.11 IPSTATUS

该语句提供了 IP 地址、子网掩码、网关和 DNS 服务器的配置信息。仅支持单次输出。

查询指令格式:

LOG Port IPSTATUSA ONCE

查询结果示例:

#IPSTATUSA,ICOM4,0,0.0,FINESTEERING,2106,444455.800,00000000,0000,68;1,ETHA,"19 2.168.8.130","255.255.0.0","192.168.1.9",0*f276973e

查询结果说明:

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移	
1	IPSTATUS he	Log 消息标准头标,详见 2.1.2.		Н	0	
'	ader	1 标准格式 ASCII 信息结构	-	П	0	
2	#IPRec	以太网端口序号	Ulong	4	Н	
3	Interface	以太网端口名称	Enum	4	H+4	
4	IP Address	IP 地址	String[16]	variable 1	H+8	
5	Netmask	子网掩码	String[16]	variable 1	H+24	
6	Gateway	网关	String[16]	variable 1	H+40	
7	#DNSServer	DNS 服务器序号	Ulong	4	H+4+(#IPRec×52)	
8	IP Address	DNS 服务器 IP 地址	String[16]	variable 1	H+4+(#IPRec×52)+4	
		22 hitCDC 松砂 田丰 4.6 22			H+4+(#IPRec×52) +	
9	XXX	32-bitCRC 校验,见表 4-6 32 xxx	Hex	4	4+(# DNSServer×1	
		位 CRC 校验算法代码 (C)			6)	
10	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	- 0	V][-	

4.3.12 LOGLIST

此语句列出当前正在输出消息的所有端口,及其正在输出的消息,输出到每个端口以及何时记录。仅支持单次输出。

4.3.12.1 简化格式

查询指令格式:

LOG LOGLIST

查询结果示例:

<LOGLIST ICOM4 0 100.0 FINESTEERING 2144 7251.000 00000000 0000 754</p>

- < 12
- < COM2 RTCM1074 ONTIME 1.000000 0.000000 NOHOLD
- COM2 RTCM1084 ONTIME 1.000000 0.000000 NOHOLD
- COM2 RTCM1094 ONTIME 1.000000 0.000000 NOHOLD
- COM2 RTCM1114 ONTIME 1.000000 0.000000 NOHOLD
- COM2 RTCM1124 ONTIME 1.000000 0.000000 NOHOLD
- COM2 RTCM1006 ONTIME 5.000000 0.000000 NOHOLD
- COM2 RTCM1033 ONTIME 10.000000 0.000000 NOHOLD
- COM3 GPGGA ONTIME 1.000000 0.000000 NOHOLD
- < ICOM1 GPGGA ONTIME 1.000000 0.000000 NOHOLD
- < ICOM4 BESTPOSA ONTIME 1.000000 0.000000 NOHOLD
- < ICOM4 HEADINGA ONTIME 1.000000 0.000000 NOHOLD
- < CCOM1 BESTPOSA ONTIME 1.000000 0.000000 NOHOLD

ID	示例	格式	描述
1	<pre><loglist 0="" 0000="" 00000000="" 100.0="" 2144="" 7251.000="" 754<="" finesteerin="" g="" icom4="" pre=""></loglist></pre>	LOGLIST header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCIII 信息结构
2	12	# logs	消息个数,最大80
3	COM2	port	输出端口,见表 1-7 详细端口标识符说明
4	RTCM1074	message	消息名称
5	ONTIME	trigger	0 = ONNEW 1 = ONCHANGED 2 = ONTIME 3 = ONNEXT 4 = ONCE 5 = ONMARK 详见 3.1.11
6	1.000000	period	输出周期 (ONTIME 下可用)
7	0.000000	offset	时间偏移 (ONTIME 下可用)
8 NOHOLD hold 0 = NOHOLD 1 = HOLD			

			详见 3	.1.11
9	.41	下-	一条消息	41:75
4.3.12.2	ASCII 格式			

4.3.12.2 ASCII 格式

查询指令格式:

LOG LOGLISTA ONCE

查询结果示例:

#LOGLISTA,COM3,0,100.0,COARSE,2143,455743.800,00000000,0000,754;10,COM2,RTCM1 074,ONTIME,1.000000,0.000000,NOHOLD,COM2,RTCM1084,ONTIME,1.000000,0.000000,N OHOLD, COM2, RTCM1094, ONTIME, 1.000000, 0.000000, NOHOLD, COM2, RTCM1114, ONTIME, 1.000000,0.000000,NOHOLD,COM2,RTCM1124,ONTIME,1.000000,0.000000,NOHOLD,COM 2,RTCM1006,ONTIME,5.000000,0.000000,NOHOLD,COM2,RTCM1033,ONTIME,10.000000,0. 000000,NOHOLD,COM2,GPGGA,ONTIME,1.000000,0.000000,NOHOLD,ICOM1,GPGGA,ONTI ME,1.000000,0.000000,NOHOLD,CCOM1,INSCAN10,ONTIME,1.000000,0.000000,NOHOLD* e618828c

	*\0\forall \text{P\forall \text{II}}				
查询结果	是说明:	-31			
字段	字段类型	描述	格式		
1	LOGLIST header	Log 消息标准头标,详见 2.1.2.1 标准格式 ASCII			
'	LOGLIST HEAGE!	信息结构	-		
2	# logs	消息个数,最大80	long		
3	port	输出端口, 见表 1-7 详细端口标识符说明	Enum		
4	message	消息名称	Char []		
		0 = ONNEW	11-75		
	trigger	1 = ONCHANGED			
		2 = ONTIME			
5		3 = ONNEXT	Enum		
		4 = ONCE			
		5 = ONMARK			
		详见 3.1.11			
6	period	输出周期 (ONTIME 下可用)	double		
7	offset	时间偏移 (ONTIME 下可用)	double		
8	hold	0 = NOHOLD	Enum		
0	Hotu	1 = HOLD	Enum		

		详见 3.1.11	
9	下一条消息		
可变	xxx	32-bitCRC 校验, 见表 4-6 32 位 CRC 校验算 法代码(C)	Hex
可变	[CR][LF]	消息终结符(仅限 ASCII 格式)	-

4.3.12.3 二进制格式类型

查询指令格式:

LOG LOGLISTB ONCE

查询组	LOG LOGLISTB ONCE 查询结果说明:				
字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1		Log 消息标准头标,详见表 1-6 二进制格 式信息标准 Header(头)结构说明	-	Н	0
2	# logs	消息个数,最大80	Ulong	4	Н
3	port	输出端口, 见表 1-7 详细端口标识符说明	Enum	4	H+4
4	message	消息 ID	Ushort	2	H+8
5	message typ e	Bits 0-4 = 保留 Bits 5-6 = 格式标志位 00 = 二进制 01 = 自定义 ASCII 10 = NMEA 11 = 保留 Bit 7 = 响应标志位 0 = 原始发消息 1 = 响应消息	Char	av Jt	H+10
6	Reserved	保留	Char	1	H+11
7	0 = ONNEW 1 = ONCHANGED 2 = ONTIME		Enum	4 avdt	H+12
8	period	输出周期 (ONTIME 下可用)	double	8	H+16

9	offset	offset 时间偏移 (ONTIME 下可用)		8	H+24	
		0 = NOHOLD		-41		
10	hold	1 = HOLD	Enum	4	H+32	
		PATE	详见 3.1.11			
11	… 下一条消息, 偏移量= H + 4 + (#logs x 32))		
可变	2007	32-bitCRC 校验, 见表 4-6 32 位 CRC	Ноу		H+4+ (#lo	
可受	XXX	校验算法代码(C)	Hex	4	gs x 32)	

4.3.13 NMEATALKER

输出 NMEA 帧头。

查询指令格式:

LOG NMEATALKER ONCE

查询结果示例:

NMEATALKER GP

查询结果说明:

I D	示例	格式	描述
1	NMEATALKER	NMEATALKER	NMEA 帧头配置标识
2	GP	[HEADER]	NMEA 帧头

4.3.14 NTRIPCONFIG

输出 NTRIP 配置信息

查询指令格式:

LOG NTRIPCONFIG ONCE

查询结果示例:

NCOM1 CLIENT v1 192.168.1.88:8888 NTRIP BYNAV BYNAV IN:RTCM OUT:RTCM bynavik NCOM2 DISABLED v1 IN:NONE OUT:NONE

I D	示例	格式	描述
1	NCOM1	PORT	NTRIP 端口(NCOM1/NCOM2)
	TOVITO I	DISABLED	bying
2	CLIENT	SERVER	NTRIP 连接类型
		CLIENT	
3	V1	PROTOCOL	NTRIP 协议类型(V1/V2)
4	192.168.1.88:888	ENDPOINT	NTRIP 连接 IP 及端口号
4	8	LINDFOINT	NIRIF 足按 IF X编口与
5	NTRIP	MOUNTPOINT	NTRIP 连接挂载点
6	BYNAV	USER NAME	用户名
7	BYNAV	PASSWORD	密码
8	ALL	BINDINTERFACE	绑定端口,固定为 ALL

4.3.15 PJKPARA

查询 PJK 投影参数。

查询指令格式:

LOG PJKPARA

查询结果示例:

PJK Paramter A:6378137.00; 1/F:298.257222101; B0:0.000000; L0:0.000000; N0:0.00 0; E0:500000.000; SCALE:1.000000; HEIGHTMODE:EHT;

ID	示例	格式	描述
1	PJK Paramter	PJK Paramt er	查询 PJK 投影参数标识
2	Α	А	椭球长半轴标识符
3	6378245.00	XXXX.XX	椭球长半轴,单位: m
4	1/F	1/F	扁率倒数标识符
5	298.357222101	xx.xx	扁率倒数
6	ВО	В0	原点纬度标识符
7	0.000000	x.xxx	原点纬度,单位:度

8	LO	LO	中央子午线标识符
9	0.000000	x.xxx	中央子午线,单位: 度
10	N0	N0	北偏移标识符
11	0.000	x.x	北偏移, 单位: m
12	EO	E0	东偏移标识符
13	500000.000	x.x	东偏移,单位: m
14	SCALE	SCALE	比例因子标识符
15	1.000000	x.x	比例因子
16	HEIGHTMODE	HEIGHTMOD E	PJK 高程
17	EHT	XXX	EHT: 椭球高; GHT: 海拔高

4.3.16 REFSTATION/ REFSTATIONINFO

输出当前基站坐标,不带频度控制参数输出纬经高坐标,带频度控制参数则输出 ECEF 坐标。

查询指令格式:

LOG REFSTATION

LOG REFSTATIONINFO

LOG REFSTATION ONCE

LOG REFSTATIONINFO ONCE

查询结果示例:

RefStation: 28.23243023 112.87494990 69.696

RefStation: -2186028.842 5181373.595 2999256.821

I D	示例	格式	描述
1	RefStation	RefStation	基站坐标标识
2	28.23243023/ -2186028.842	[B/X]	BLH 坐标系经度/地心地固坐标系X
3	112.87494990/5181373.595	[L/Y]	BLH 坐标系纬度/地心地固坐标系

			Υ
4	69.696/2999256.821	[H/Z]	BLH 坐标系高程/地心地固坐标系
4	09.090/2999230.021		Z

4.3.17 REFSTATIONA

该语句提供基准站坐标信息输出。(该语句暂无二进制格式输出)

查询指令格式:

LOG REFSTATIONA ONCE

查询结果示例:

#REFSTATIONA,ICOM4,0,81.9,FINESTEERING,2129,440707.400,00000000,0000,742;0.000, 0.000,0.000*f40f1626

查询结果说明:

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
1	REFSTATIONA hea	Log 消息标准头标,详见 2.1.2.1		Н	
1	der	标准格式 ASCII 信息结构	wint		0
2	X	基站坐标(ECEF)	Double	4	Н
3	Υ	基站坐标(ECEF)	Double	4	H+4
4	Z	基站坐标(ECEF)	Double	4	H+8
5		32-bitCRC 校验, 见表 4-6 32 位	Hex	4	H+12
5	XXX	CRC 校验算法代码(C)	пех	4	ПТ12
6	[CR][LF]	消息终结符(仅限 ASCII 格式)	-	-	-
4.3.18 RTKCONFIG					
绘山块版机 DTV 相关配罢					

4.3.18 RTKCONFIG

输出接收机 RTK 相关配置

查询指令格式:

LOG RTKCONFIG ONCE bynavitz

查询结果示例:

DualAnt:

RTK Type: **ROVER**

TRUE

电话: +86-731-85058117 http://www.bynav.com 110 / 145

OBS Intr: 0.20 FPGARaw Freq: 0.20

RTK Freq: B1IB2IL1L2CL2PG1G2

Elev Mask: 5.0 deg Snr Mask: 20.0

NAVSYS: GPS GLONASS GALILEO BEIDOU QZSS IRNSS

查询结果说明:

I	示例	格式	描述
D	_dl+7/A	12-4	
1	RTK Type: ROVER	RTK Type	接收机工作模式
2	DualAnt: TRUE	DualAnt	双天线使能, TRUE 使能, FALSE 禁
	Duatant. TROE	DuatAnt	用
3	OBS Intr:0.20	OBS Intr	观测量频度
4	FPGARaw Freq:0.20	FPGARaw Freq	原属数据输出频度
5	RTK Freq:B1IB2IL1L2CL2PG1G2	RTK Freq	跟踪卫星频点
6	Elev Mask:5.0 deg	Elev Mask	仰角门限
7	Snr Mask:20.0	Snr Mask	载噪比门限
8	NAVSYS:GPS GLONASS GALILEO	NAVSYS	跟踪卫星系统
	BEIDOU QZSS IRNSS	INAVSTS	政

4.3.19 SHIFTDATUM

输出坐标系平移参数 X, Y, Z

查询指令格式:

LOG SHIFTDATUM ONCE

查询结果示例:

ShiftDatum :0.000 0.000 0.000

I D	示例	格式	描述
1	ShiftDatum	ShiftDatum	输出坐标系平移参数

2	0.000	Х	X 坐标平移(ECEF)
3	0.000	Υ	Y 坐标平移(ECEF)
4	0.000	Z	Z 坐标平移(ECEF)

4.3.20 VERSION

输出版本信息。

查询指令格式:

LOG VERSION

查询结果示例:

\$BDVER,V7.54_0EC870_T,19060377,21010633,21010525,21010643,20122624,20101504,2 0073004,20122406*71

ID	示例	格式	描述	
1	\$BDVER	\$VER	数据 ID	
2	V7.54_0EC870_T	Vx.xx_YYYY	固件版本号	
3	19060377	x1	FPGA 版本号	
4	21010633	x2	ARM 版本号	
5	21010525	х3	PB 版本号	
6	21010643	x4	解算库版本号	
7	20122624	x5	内核版本号	
8	20101504	x6	Web 服务器版本号	
9	20073004	x7	Web 界面版本号	
10	20122406	x8	Bootrom 版本号	
11	71	hh	校验	

4.4 其他格式消息

4.4.1 ENU

ynavitz 输出不同滤波条件下,流动站相对于基准站的东向、北向、天向距离。

推荐

LOG GPENU ONTIME 1

ASCII 示例

\$GPENU,120446.00,-1301.1411,-42.4221,10.2936,1,-1301.1396,-42.4226,10.2876,1,-1301.1 396, -42.4226, 10.2876, 0, -1301.1396, -42.4226, 10.2876, 0, -1301.1396, -42.4226, 10.2876, 0, -13 01.1396,-42.4226,10.2876,0,4,24,1.000*47

说明

ID	示例	格式	描述	
0	\$GPENU	\$ENU	数据 ID	
1	120446.00	hhmmss.ss	UTC 时间	
2	-1301.1411	xx.xx	De 东向距离,单位: m, 见注释①	
3	-42.4221	xx.xx	Dn 北向距离,单位: m, 见注释②	
4	10.2936	xx.xx	Du 天向距离,单位: m, 见注释③	
5	1	a	滤波次数指示, 1s 滤波输出	
			滤波窗: 1, 见注释④	
6	-1301.1396	XX.XX	De 东向距离,单位: m	
7	-42.4226	xx.xx	Dn 北向距离,单位: m	
8	10.2876	xx.xx	Du 天向距离,单位: m	
9	1	a	滤波次数指示,1min 滤波输出	
			滤波窗: 60	
10	-1301.1396	xx.xx	De 东向距离,单位: m	
11	-42.4226	xx.xx	Dn 北向距离,单位: m	
12	10.2876	XX.XX	Du 天向距离,单位: m	
13	0	a	滤波次数指示, 15min 滤波输出	
) y • • •		滤波窗: 900	

14	-1301.1396	xx.xx	De 东向距离,单位: m	
15	-42.4226	XX.XX	Dn 北向距离, 单位: m	
16	10.2876	xx.xx	Du 天向距离,单位: m	
17	0	a	滤波次数指示, 1h 滤波输出	
			滤波窗: 3600	
18	-1301.1396	xx.xx	De 东向距离,单位: m	
19	-42.4226	xx.xx	Dn 北向距离,单位: m	
20	10.2876	xx.xx	Du 天向距离,单位: m	
21	0	a	滤波次数指示,12h 滤波输出	
	-may-		滤波窗: 43200	
22	-1301.1396	xx.xx	De 东向距离,单位: m	
23	-42.4226	xx.xx	Dn 北向距离,单位: m	
24	10.2876	xx.xx	Du 天向距离,单位: m	
25	0	а	滤波次数指示, 24h 滤波输出	
			滤波窗: 86400	
26	4	a	定位状态,见注释⑤	
27	24	xx	参与解算的卫星数	
28	1.000	xxxx	差分数据时间	
29	47	hh	校验和	

注释①: De 东向距离: 流动站相对于基准站的东向距离。

注释②: Dn 北向距离: 流动站相对于基准站的北向距离。

注释③: Du 天向距离: 流动站相对于基准站的天向距离。

注释④:滤波次数指示:1-滤波次数达到了设置的滤波窗口大小;0-滤波次数未达到设置的滤

波窗口大小。

注释⑤:定位状态:0-未定位;1-单点解;4-固定解;5-浮点解。

4.4.2 **ENUAVR***

主从天线在当地导航系中的位置均值,以及整机系在当地导航系中的姿态,主要用于杆臂值计算。

推荐

LOG ENUAVR ONTIME 1

ASCII 示例

#ENUAVR,COM1,0,0.0,FINESTEERING,2095,127522.000,00000000,0000,25;-1075.1430,-98.4 608,-8.6259,-1075.1430,-98.4610,-8.6258,-3.1407,-0.0016,58*2865555d

说明

ID	示例	格式	描述
	#ENUAVR,COM1,0,0.0,FIN		Log 消息标准头标,详见 2.1.2.1
0	ESTEERING,2095,127522.	ENUAVR header	Log 消息标准关标,许见 2.1.2.1 标准格式 ASCII 信息结构
	000,00000000,0000,25;		が准俗式 A3CII 信总结例
1	1075.1430	ANT1 East	天线 1 东向位置(m)
2	-98.4608	ANT1 North	天线 1 北向位置 (m)
3	-8.6259	ANT1 Up	天线 1 天向位置 (m)
4	-1075.1430	ANT2 East	天线 2 东向位置 (m)
5	-98.4610	ANT2 North 天线 2 北向位置 (m)	
6	-8.6258	ANT2 Up	天线 2 天向位置 (m)
7	-3.1407	Roll	横滚角(0~360°)
8	-0.0016	Pitch 俯仰角(-90~90°)	
9	58	Count 计数	
10	2065554	yoy.	32-bitCRC 校验,见表 4-6 32
	2865555d	XXX	位 CRC 校验算法代码 (C)
11	MIG	[CR][LF]	消息终结符(仅限 ASCII 格式)

4.4.3 KSXT

时间、定位定向、速度数据。

推荐

LOG KSXT ONTIME 1

ASCII 示例

\$KSXT,20191219093115.00,112.87713062,28.23315515,65.5618,0.00,0.00,336.65,0.010,,3,0,023,-1075.146,-98.462,-8.618,-0.004,0.009,0.004,1.0,30,*3FCF0C9B

说明

ID	示例	格式	说明
1	\$KSXT	\$KSXT	数据 ID
2	20191219093115.00	UTC 时间,格式为 yyyymmddhhn mss.ss,如 2016040106284180 表示 2016 年 4 月 1 日 06 时 28 分 41.80 秒	
3	112.87713062	x1	经度,小数点后8位,单位:度
4	28.23315515	x2	纬度,小数点后8位,单位:度
5	65.5618	x3	高度,小数点后4位,单位:米
6	0.00	x4	方位角,天线 1、天线 2 连线与正北 方向夹角(天线 1 为方向, 天线 2 为位置), 范围 0°~360°, 小数点 后 2 位
7	0.00	俯仰角,范围-90°~90°, 小数点 位	
8	336.65	x6	速度角,车辆行进方向与正北方向夹 角,0°~360°,小数点后2位
9	速度,车辆行进方向速度 0.010 x7 3 位,单位: km/h		速度,车辆行进方向速度,小数点后 3 位,单位: km/h
10	vnav	x8	横滚角,范围-90°~90°, 小数点后 2 位
11	3	x9	卫星定位状态: 0表示未定位,1表示单点定位,2表示RTK浮点解,3表示RTK固定解
12	0	x10	卫星定向状态: 0表示未定向, 1表示单点定向, 2表示 RTK 浮点解, 3表示 RTK 固定解
13	0	x11	定向天线当前参与解算的卫星数量
14	23	x12	定位天线当前参与解算的卫星数量

			东向位置坐标,以基站为原点的地	
15	-1075.146	x13	理坐标系下的东向位置,单位为	
			m,小数点后3位(如无为空)	
			北向位置坐标,以基站为原点的地	
16	-98.462	x14	理坐标系下的北向位置,单位为	
			m,小数点后3位(如无为空)	
			天向位置坐标,以基站为原点的地	
17	-8.618	x15	理坐标系下的天向位置,单位为	
			m,小数点后3位(如无为空)	
	-41	5	东向速度,地理坐标系下的东向速	
18	-0.004	x16	度,小数点后 3 位,单位: km/h	
			(如无为空)	
			北向速度,地理坐标系下的北向速	
19	0.009	x17	度,小数点后 3 位,单位: km/h	
			(如无为空)	
			天向速度,地理坐标系下的天向速	
20	0.004	x18	度,小数点后 3 位,单位: km/h	
	_1 -		(如无为空)	
21	1.0	x19	差分龄期	
22	30	x20	基准站卫星数	
23		x23	预留	
22	+六11人/	25550505	异或校验(十六进制字符串,从帧	
23	校验位	3FCF0C9B	头开始校验)	

4.5 RTCM 格式消息

4.5.1 RTCM 数据

bynavitz RTCM 是一种普遍采用的数据传输格式,它是由国际海运事业无线电技术委员会提出的,用于制 定在差分全球导航定位系统和实时动态操作时使用的标准。

4.5.2 RTCM 数据帧结构

RTCM 数据以帧的形式的传输,RTCM3.2 标准格式的帧结构如下表:

序号 数据内容 比特数/bit 备注	
--------------------	--

1	同步码	8	8 设为'11010011',十六进制为'D3'	
2	保留	6	设为'000000'	
3	信息长度	10	数据信息的长度,以字节数表示	
4	数据信息 不定	不宁	最大 1023bytes,若不是整数字节,最	
4		后一个字节用 0 补足整字节数		
5	CRC	24	校验	

因而每帧 RTCM 数据的数据头固定为'1101 0011 0000 00', 十六进制显示为'D3 0_'。 bynavitz

4.5.3 北云设备支持 RTCM 消息类型介绍

4.5.3.1 基准站支持 RTCM 消息类型

北云基准站可输出的 RTCM 消息如下:

RTCM1003, GPS L1 和 L2 代码和相位

bynavitz RTCM1004, GPS L1 和 L2 码,相位和模糊度以及载波噪声比

RTCM1005,天线参考点的站坐标 XYZ

RTCM1006, 天线参考点和天线高度的站坐标 XYZ

RTCM1011, GLONASS L1和L2代码和相位

RTCM1012, GLONASS L1 和 L2 码,相位和模糊度以及载波噪声比 bynavitz

RTCM1074,全 GPS 伪距和载波相位加信号强度

RTCM1075,全 GPS 伪距,载波相位,多普勒和信号强度

RTCM1076,全 GPS 伪距和载波相位加信号强度(高分辨率)

bynavitz RTCM1077,全 GPS 伪距、载波相位、多普勒和信号强度(高分辨率)

RTCM1084,全 GLONASS 伪距和载波相位加信号强度

RTCM1085,全 GLONASS 伪距,载波相位,多普勒和信号强度

RTCM1086,全 GLONASS 伪距和载波相位加信号强度(高分辨率)

RTCM1087,全 GLONASS 伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM1094,全伽利略伪距和载波相位加信号强度

RTCM1095,全伽利略伪距,载波相位,多普勒和信号强度

RTCM1096,全伽利略伪距和载波相位加信号强度(高分辨率)

RTCM1097,全伽利略伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM 1104,全 SBAS 伪距和载波相位加信号强度

RTCM 1105,全 SBAS 伪距,载波相位,多普勒和信号强度

RTCM 1106,全 SBAS 伪距和载波相位加信号强度(高分辨率)

RTCM 1107, 全 SBAS 伪距,载波相位,多普勒和信号强度(高分辨率)

RTCM 1114, 全 QZSS 伪距和载波相位加信号强度

RTCM 1115,全 QZSS 伪距,载波相位,多普勒和信号强度

RTCM 1116,全 QZSS 伪距和载波相位加信号强度(高分辨率)

RTCM 1117, 全 QZSS 伪距,载波相位,多普勒和信号强度(高分辨率) bynavitz

RTCM 1124, 全北斗伪距和载波相位加信号强度

RTCM 1125, 全北斗伪距, 载波相位, 多普勒和信号强度

RTCM 1126, 全北斗伪距和载波相位加信号强度(高分辨率)

RTCM 1127, 全北斗伪距, 载波相位, 多普勒和信号强度(高分辨率)

RTCM1134,全 IRNSS 伪距和载波相位加信号强度【北云自定义】

RTCM1135,全 IRNSS 伪距,载波相位,多普勒和信号强度【北云自定义】

RTCM1136,全IRNSS 伪距和载波相位加信号强度(高分辨率)【北云自定义】

RTCM1137,全 IRNSS 伪距,载波相位,多普勒和信号强度(高分辨率)【北云自定义】

RTCM1019, GPS 星历

RTCM1020, GLONASS 星历

RTCM1042, 北斗星历

RTCM1044, QZSS 星历

RTCM1046,伽利略星历

RTCM1048, IRNSS 星历【北云自定义】

RTCM1033,接收机及天线描述

RTCM1230, GLONASS 相位偏差

4.5.3.2 流动站支持 RTCM 消息类型

北云流动站除支持 Bynav 基准站可输出的 RTCM 消息外,还支持以下消息的解析:

RTCM1073, 紧凑型 GPS 伪距和载波相位

RTCM1083, 紧凑型 GLONASS 伪距和载波相位

RTCM1093, 紧凑伽利略伪距和载波相位

RTCM 1103, 紧凑型 SBAS 伪距和载波相位

RTCM 1113, 紧凑型 QZSS 伪距和载波相位

RTCM 1123, 紧凑型北斗伪距和载波相位

4.6 星历及观测数据

4.6.1 消息内容

星历及观测数据使用以下消息:

表 4-22 输出消息说明

名称	输出内容	数据 ID
bdsephemerisb	解析后 BDS 电文	1696
galephemerisb	解析后 GAL 电文	1122
gpsephemb	解析后 GPS 电文	7
gloephemerisb	解析后 GLO 电文	723
qzssephemerisb	解析后 QZSS 电文	1336
rangecmpb	压缩版卫星观测信息	140

4.6.2 配置输出

● 配置串口输出观测数据(可转换为.obs 文件)

log comx rangecmpb ontime 1

数据频度可按需配置。

● 配置串口输出电文数据(可转换为.nav 文件)

log comx bdsephemerisb onchanged

log comx galephemerisb onchanged

log comx gpsephemb onchanged

log comx gloephemerisb onchanged

log comx gzssephemerisb onchanged

配置以上 5 条消息后,板卡会在各个卫星系统电文更新的时候输出该系统的电文(BDS 电文更 新 1h/次, GAL 电文更新 10min/次, GPS/QZSS 电文更新 2h/次, GLO 电文更新 0.5h/ 次)。若保存数据时间较短,没有达到电文更新周期,可能没有接收到完整的电文,可在点击 开始保存数据后,发送一遍以上5条指令,板卡会输出当前的电文信息。

以上 5 条指令均支持使用 ontime 控制输出频度,如配置 ontime 1,则消息每秒输出一次,每 次数据为一颗卫星的星历,全部卫星星历输出后,继续循环输出。

4.6.3 信息格式

星历及观测数据输出采用二进制格式,具有统一的数据结构。每条消息由数据头和数据主体构 成,数据头的结构说明见表 1-6 二进制格式信息标准 Header(头)结构说明。 bynavitz

4.6.4 输出消息

4.6.4.1 bdsephemerisb

功能描述:输出 BDS 星历参数,每条消息为一颗星的星历。

数据 ID: 1696。

输入控制指令: log comx bdsephemerisb onchanged

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
0	数据头	见表 1-6 二进制格式信息标准 Hea			0
U	数据 失	der(头)结构说明		Н 0	U
1	卫星 ID	BDS 卫星号	Ulong	4	Н
2	周	北斗周	Ulong	4	H+4
3	URA	用户测距精度 (m)	Double	8	H+8
		卫星健康标志:			
4	Health	0=健康;	Ulong	4	H+16
		1=不健康			
5	tgd1	B1 群延迟 (s)	Double	8	H+20
6	tgd2	B2 群延迟 (s)	Double	8	H+28

7	AODC	时钟数据期龄	Ulong	4	H+36	
8	toc	时钟参考时间	Ulong	4	H+40	
9	a0	时钟修正常数	Double	8	H+44	
10	a1	时钟修正一次项系数	Double	8	H+52	
11	a2	时钟修正二次项系数	Double	8	H+60	
12	AODE	星历数据期龄	Ulong	4	H+68	
13	toe	星历参考时间	Ulong	4	H+72	
14	RootA	轨道长轴平方根	Double	8	H+76	
15	ecc	轨道离心率	Double	8	H+84	
16	ω	近地点角距	Double	8	H+92	
17	Δn	角速度校正	Double	8	H+100	
18	MO	平近点角	Double	8	H+108	
19	Ω0	升交点赤经	Double	8	H+116	
20	Ω	升交点赤经校正	Double	8	H+124	
21	iO	轨道倾角	Double	8	H+132	
22	IDOT	轨道倾角校正	Double	8	H+140	
23	Cuc	近地点角距摄动校正(余弦)	Double	8	H+148	
24	Cus	近地点角距摄动校正(正弦)	Double	8	H+156	
25	Crc	轨道半径摄动校正(余弦)	Double	8	H+164	
26	Crs	轨道半径摄动校正(正弦)	Double	8	H+172	
27	Cic	轨道倾角摄动校正(余弦)	Double	8	H+180	
28	Cis	轨道倾角摄动校正(正弦)	Double	8	H+188	
29	校验	32-bitCRC 校验, 见表 4-6 32 位	Ulong	4	H+196	
29	1又3型	CRC 校验算法代码(C)		4	11+190	
30		消息终结符				
4.6.4.2 galephemerisb 功能描述:输出 GAL 星历参数,每条消息为一颗星的星历。						
数据 ID: 1122。						

输入控制指令: log comx galephemerisb onchanged

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
0	数据头	见表 1-6 二进制格式信息标准 Header (头)结构说明	ana	Н	0
1	卫星 ID	GAL 卫星号	Ulong	4	Н

2	FNAV 标志	FNAV 星历接收标志	Bool	4	H+4
3	INAV 标志	INAV 星历接收标志	Bool	4	H+8
		E1B 健康标志:		Alr.	
4	E1BHealth	0=未正确接收;	Uchar	1	H+12
		1=正确接收			
		E5a 健康标志:			
5	E5aHealth	0=未正确接收;	Uchar	1	H+13
		1=正确接收			
		E5b 健康标志:			
6	E5bHealth	0=未正确接收;	Uchar	1	H+14
		1=正确接收		Alle.	
		E1B 数据有效标志:			
7	E1BDVS	0=数据无效;	Uchar	1	H+15
		1=数据有效			
		E5a 数据有效标志:			
8	E5aDVS	0=数据无效;	Uchar	1	H+16
		1=数据有效			
		E5b 数据有效标志:			5
9	E5bDVS	0=数据无效;	Uchar	1	H+17
		1=数据有效	N I I		
10	SISA	空间信号精度	Uchar	1	H+18
11	预留		Uchar	1	H+19
12	IODNav	星历数据期龄	Ulong	4	H+20
13	Toe	星历参考时间(s)	Ulong	4	H+24
14	RootA	轨道长轴平方根	Double	8	H+28
15	△n	角速度校正	Double	8	H+36
16	M0	平近点角	Double	8	H+44
17	ecc	轨道离心率	Double	8	H+52
18	ω	近地点角距	Double	8	H+60
19	Cuc	近地点角距摄动校正 (余弦)	Double	8	H+68
20	Cus	近地点角距摄动校正 (正弦)	Double	8	H+76
21	Crc	轨道半径摄动校正(余弦)	Double	8	H+84
22	Crs	轨道半径摄动校正(正弦)	Double	8	H+92
23	Cic	轨道倾角摄动校正(余弦)	Double	8	H+100
24	Cis	轨道倾角摄动校正(正弦)	Double	8	H+108
25	i0	轨道倾角	Double	8	H+116

26	IDOT	轨道倾角校正	Double	8	H+124
27	Ω0	升交点赤经	Double	8	H+132
28	Ω	升交点赤经校正	Double	8	H+140
29	FNAVtoc	FNAV 时钟参考时间	Ulong	4	H+148
30	FNAVa0	FNAV 时钟修正常数	Double	8	H+152
31	FNAVa1	FNAV 时钟修正一次项系数	Double	8	H+160
32	FNAVa2	FNAV 时钟修正二次项系数	Double	8	H+168
33	INAVtoc	INAV 时钟参考时间	Ulong	4	H+176
34	INAVa0	INAV 时钟修正常数	Double	8	H+180
35	INAVa1	INAV 时钟修正一次项系数	Double	8	H+188
36	INAVa2	INAV 时钟修正二次项系数	Double	8	H+196
37	E1E5aBGD	E1E5a 群延迟(s)	Double	8	H+204
38	E1E5bBGD	E1E5b 群延迟(s)	Double	8	H+212
30	₩	32-bitCRC 校验, 见表 4-6 32 位 CR	Hong	4	11, 220
39	校验	C 校验算法代码 (C)	Ulong	4	H+220
40		消息终止符			

4.6.4.3 gpsephemb

功能描述:输出 GPS 星历参数,每条消息为一颗星的星历。数据 ID:7。

输入控制指令: log comx gpsephemb onchanged

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
0	数据头	见表 1-6 二进制格式信息标准 Heade		Н	0
	数据 关	r(头)结构说明			
1	PRN	GPS 卫星号	Ulong	4	Н
2	Tow	GPS 周内秒	Double	8	H+4
		卫星健康标志:			
3	Health	0=健康;	Ulong	4	H+12
		1=不健康			
4	IODE1	星历数据期号 1	Ulong	4	H+16
5	IODE 2	星历数据期号 2	Ulong	4	H+20
6	WN	GPS 周计数	Ulong	4	H+24
7	Z WN	Z 计数器的 GPS 周计数	Ulong	4	H+28
8	Toe	星历参考时间	Double	8	H+32

9	А	轨道长轴 (m)	Double	8	H+40
10	△n	角速度校正	Double	8	H+48
11	MO	平近点角	Double	8	H+56
12	ecc	轨道离心率	Double	8	H+64
13	ω	近地点角距	Double	8	H+72
14	Cuc	近地点角距摄动校正(余弦)	Double	8	H+80
15	Cus	近地点角距摄动校正(正弦)	Double	8	H+88
16	Crc	轨道半径摄动校正(余弦)	Double	8	H+96
17	Crs	轨道半径摄动校正(正弦)	Double	8	H+104
18	Cic	轨道倾角摄动校正(余弦)	Double	8	H+112
19	Cis	轨道倾角摄动校正(正弦)	Double	8	H+120
20	i0	轨道倾角	Double	8	H+128
21	IDOT	轨道倾角校正	Double	8	H+136
22	Ω0	升交点赤经	Double	8	H+144
23	Ω	升交点赤经校正	Double	8	H+152
24	IODC	时钟数据期号	Ulong	4	H+160
25	Toc	卫星时钟修正(s)	Double	8	H+164
26	Tgd	群波延时校正估计	Double	8	H+172
27	a0	时钟修正常数	Double	8	H+180
28	a1	时钟修正一次项系数	Double	8	H+188
29	a2	时钟修正二次项系数	Double	8	H+196
		反电子欺骗标志			
30	AS	0=错误	Bool	4	H+204
		1=正确			
31	N	平均角速度校正	Double	8	H+208
32	URA	用户测距精度	Double	8	H+216
33	校验	32-bitCRC 校验,见表 4-6 32 位 CR	Ulong	4	H+224
در	化人引业	C 校验算法代码 (C)		4	1 ITZZ 4
34		消息终止符			

4.6.4.4 gloephemerisb

功能描述:输出 GLO 星历参数,每条消息为一颗星的星历。

数据 ID: 723。

输入控制指令: log comx gloephemerisb onchanged

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
0	数据头	见表 1-6 二进制格式信息标准 Header (头)结构说明		vijt	0
1	sloto	GLO 卫星号(sloto +37)	Ushort	2	Н
2	freq	卫星频率通道(0~20)	Ushort	2	H+2
3	sat type	卫星类型: 0=GLO 卫星 1= GLO_M 卫星 2= GLO_K 卫星	Uchar	1	H+4
4	预留	4.7		111	H+5
5	周	星历参考周(GPS)	Ushort	2	H+6
6	周内秒	星历参考周内秒(GPS ms)	Ulong	4	H+8
7	leaps	GPS 与 GLO 的整秒差 (跳秒,可能不正确)	Ulong	4	H+12
8	Nt	从最近一个闰年1月1日起的天数	Ushort	2	H+16
9	预留			1	H+18
10	预留			1	H+19
11	issue	与星历参考时间的 15min 间隔数	Ulong	4	H+20
12	健康标志	星历健康标志: 0~3=健康 4~15=不健康	Ulong	4	H+24
13	pos x	卫星 x 方向参考位置(PZ90,m)	Double	8	H+28
14	pos y	卫星 y 方向参考位置(PZ90, m)	Double	8	H+36
15	pos z	卫星 z 方向参考位置(PZ90,m)	Double	8	H+44
16	vel x	卫星 x 方向参考速度(PZ90,m/s)	Double	8	H+52
17	vel y	卫星 y 方向参考速度(PZ90, m/s)	Double	8	H+60
18	vel z	卫星 z 方向参考速度(PZ90, m/s)	Double	8	H+68
19	асс х	卫星 x 方向参考加速度(PZ90, m/s2)	Double	8	H+76
20	асс у	卫星 y 方向参考加速度(PZ90, m/s2)	Double	8	H+84
21	acc z	卫星 z 方向参考加速度(PZ90, m/s2)	Double	8	H+92
22	Tau_N	卫星钟差	Double	8	H+100
23	△Tau_N	卫星钟差修正	Double	8	H+108
24	γ	卫星频偏	Double	8	H+116
25	Tk	帧头的天内秒(GLO, s)	Ulong	4	H+124
26	P	技术参数	Ulong	4	H+128
27	Ft	用户测距精度	Ulong	4	H+132

28	age	数据期龄	Ulong	4	H+136
29	Flags	信息标志,见注 1	Ulong	4	H+140
30	校验	32-bitCRC 校验,见表 4-6 32 位 CRC 校验算法代码(C)	Ulong	4	H+144
31		消息终止符			

注 1: 最后 2bit 是 P1 标志符,表示星历参考时间 t_b 的时间段的长度:

P1 值	tb 时间段长
00	0min
01	30min
10	45min
11	60min

倒数第 3bit 是 P2 标志符,表示对应 tb 时间段的长度为 30 或 60min 时的值的奇偶性,

0=偶数

1=奇数

倒数第 4bit 是 P3 标志符,表示该帧是提供关于 5 颗星还是 4 颗星的历书参数,

0=4 颗

1=5 颗

4.6.4.5 qzssephemerisb

bynavitz 功能描述:输出 QZSS 星历参数,每条消息为一颗星的星历。

数据 ID: 1336。

输入控制指令: log comx qzssephemerisb onchanged

字段	字段类型	描述	二进制格式	二进制字节	二进制偏移
0	数据头	见表 1-6 二进制格式信息标准 Heade		н	0
	数据 头	r(头)结构说明			
1	PRN	QZSS 卫星号	Ulong	4	Н
2	Tow	子帧 0 的周内秒	Double	8	H+4
3	Health	卫星健康标志:	Ulong	4	H+12
		0=健康;			

		1=不健康			
4	IODE1	星历数据期号 1	Ulong	4	H+16
5	IODE 2	星历数据期号 2	Ulong	4	H+20
6	WN	GPS 周计数	Ulong	4	H+24
7	Z WN	Z 计数器的 GPS 周计数	Ulong	4	H+28
8	Toe	星历参考时间	Double	8	H+32
9	Α	轨道长轴(m)	Double	8	H+40
10	△n	角速度校正	Double	8	H+48
11	M0	平近点角	Double	8	H+56
12	есс	轨道离心率	Double	8	H+64
13	ω	近地点角距	Double	8	H+72
14	Cuc	近地点角距摄动校正 (余弦)	Double	8	H+80
15	Cus	近地点角距摄动校正 (正弦)	Double	8	H+88
16	Crc	轨道半径摄动校正(余弦)	Double	8	H+96
17	Crs	轨道半径摄动校正 (正弦)	Double	8	H+104
18	Cic	轨道倾角摄动校正 (余弦)	Double	8	H+112
19	Cis	轨道倾角摄动校正 (正弦)	Double	8	H+120
20	i0	轨道倾角	Double	8	H+128
21	IDOT	轨道倾角校正	Double	8	H+136
22	Ω0	升交点赤经	Double	8	H+144
23	Ω	升交点赤经校正	Double	8	H+152
24	IODC	时钟数据期号	Ulong	4	H+160
25	Toc	卫星时钟修正(s)	Double	8	H+164
26	Tgd	群波延时校正估计	Double	8	H+172
27	a0	时钟修正常数	Double	8	H+180
28	a1	时钟修正一次项系数	Double	8	H+188
29	a2	时钟修正二次项系数	Double	8	H+196
	93 -	反电子欺骗标志			
30	AS	0=错误	Bool	4	H+204
		1=正确			
31	N	平均角速度校正	Double	8	H+208
32	URA	用户测距精度	Double	8	H+216
		星历有效时间:			
33	Fit Interval	0=星历数据有效时间为 2h;	Uchar	1	H+224
	LVN3	1=星历数据有效时间超过 2h	WING		
34	预留		Uchar	1	H+225

35	预留	_	Uchar	1	H+226
36	预留	41-75 —	Uchar	1	H+227
37	校验	32-bitCRC 校验,见表 4-6 32 位 CR C 校验算法代码(C)	Ulong	4	H+228
38		消息终止符			

4.6.4.6 rangecmpb

功能描述:输出当前跟踪卫星的压缩原始观测数据。

数据 ID:140。 输入控制指令:log comx rangecmpb ontime 1							
字段	字段类型	描述	二进制格式	二进制字节	二进制偏移		
0	Header	见表 1-6 二进制格式信息标准 Header (头)结构说明		Н	0		
1	# obs	消息中包含卫星的数目	Ulong	4	Н		
2	Range	第一颗星的观测数据,见注 1	-	24	H+4		
3	Next PRN	下一颗星的观测数据	-	24	H+28		
		W3r	-	aVJL	H+52		
	校验	32-bitCRC 校验,见表 4-6 32 位 CRC	Ulong	4	H+4+ (# o		
		校验算法代码(C)	,		bs *24)		
		消息终止符					

注 1: 一颗星的压缩原始数据共 192bits (24byte), 具体内容如下:

Bit 编号	Bit 长度	累计 bits	描述
0~31	32	32	通道跟踪状态: 见注 2 跟踪状态的 32bits
32~59	28	60	多普勒频率(Hz)
60~95	36	96	伪距(m/128)
96~127	32	128	ADR(累计多普勒,周)

			a. ADR (Accumulated Doppler Range) is calculated as follows:
			ADR_ROLLS = (RANGECMP_PSR / WAVELENGTH + RANGECMP_ADR) / MAX_VALUE
			Round to the closest integer
			IF (ADR_ROLLS ≤ 0)
			ADR_ROLLS = ADR_ROLLS - 0.5
			ELSE
			ADR_ROLLS = ADR_ROLLS + 0.5
			At this point integerise ADR_ROLLS
			CORRECTED_ADR = RANGECMP_ADR - (MAX_VALUE*ADR_ROLLS)
			where
			ADR has units of cycles
			WAVELENGTH = 0.1902936727984 for GPS L1
			WAVELENGTH = 0.2442102134246 for GPS L2
			MAX_VALUE = 8388608
128~131	4	132	伪距标准差(m)
			Code StdDev-PSR (m)
			0 0.050
			1 0.075
			2 0.113
			3 0.169
			4 0.253
			5 0.380
			6 0.570
			7 0.854
			8 1.281
			9 2.375
			10 4.750
			11 9.500
			12 19.000
			13 38.000
			14 76.000
			15 152.000
132~135	4	136	ADR 标准差(累计多普勒,周)
136~143	8	144	卫星号
			1~32=GPS
			38~61=GLONASS
			1~36=Galileo
			1~40=BDS
			193~202=QZSS
			1~7=NavIC
144~164	21	165	锁定时间(s)
165~169		170	载噪比(dB-Hz),该数值加 20 为载噪比
. 33 137			范围在 20~51, ≤20 均输出为 20, ≥51 均输出为 51
170~175	6	176	GLONASS 频带数
175 175	U	170	CCONTOU XX

176~191	16	192		预留	
注 2:跟踪状态共 32bits(4byte),具体内容如下:					
4				LHLA IN	

Bit 编号	Bit 长度	累计 bits	描述
0~4	5	5	跟踪状态:
			0=空闲
			1=搜索
			2=宽频引导
		173	3=窄频引导
	nava		4=相位锁定环路
			6=通道引导
			7=频率锁定环路
			9=通道调整
			10=码搜索
			11=辅助位锁定环路
			23=侧峰检测
5~9	5	10	卫星通道号
10		11	相位锁定标志
			0=未锁定
			1=锁定
11	1	12	校验已知标志
			0=未知
			1=已知
12	1	13	伪码锁定标志
		12	0=未锁定
	nave		1=锁定
13~15	3	16	相关器类型
			0=N/A
			1=标准相关
			2=窄相关
			3=预留
			4=PAC
	-1/1	17	5=窄带 PAC
bil	USA 2		6=预留
16~18	3	19	卫星系统

ЬУ	navi	5	0=GPS 1=GLONASS 2=SBAS 3=Galileo 4=BDS 5=QZSS 6=NavIC 7=其他
19	1	20	预留
20	navi	21	分组标志 0=未分组 1=已分组
21~25	5	26	信号类型,与卫星系统有关
			GPS
			0=L1 C/A
			5=L2P
			9=L2P 加密
			14=L5Q
			16=L1C
Dy			17=L2C
			GLONASS
			0=L1 C/A
			1=L2 C/A
			5=L2P
	avi		SBAS
hV	navi		0=L1 C/A
			6=L5I
			Galileo
			2=E1C
			6=E6B
			7=E6C
	aaV]		12=E5a Q
hV			17= E5b Q
			20=E5 AltBOC Q

by	navil	1	BDS 0=B1D1 1=B2D1 2=B3D1 4=B1D2 5=B2D2
by	navi	5	6=B3D2 7=B1C 9=B2a 10=B2b QZSS 0=L1 C/A 14=L5Q 16=L1C
by	navil	5	17=L2C NavIC 0=L5 其他 19=L 频带
26	1	27	预留
27		28	L1 为首要通道 0=非首要 1=首要
28	1	29	载波相位测量值 0=未加半周 1=增加半周
29	1	30	滤波器指示 0=非数字滤波 1=数字滤波
30	navil	31	PRN 锁定标志 0=未锁定 1=锁定
31	1	32	通道分配

	0=自动 1=强制
4.73	I=浊制

bynavita

bynavitz

bynavitz

bynavitz

bynavitz

bynavitz

bynavitz

bynavitz

免责声明

本手册提供有关湖南北云科技有限公司(以下简称北云科技)产品的信息。手册并未以暗示、默许等任何形式转让本公司或任何第三方的专利、版权、商标、所有权等其下的任何权利或许可。除在产品的销售条款和协议中声明的责任之外,本公司概不承担其它任何责任。同时,北云科技对其产品的销售和使用不作任何明示或暗示的担保,包括但不限于对产品特定用途的适用性、适销性或对版权、著作权、专利权等知识产权的侵权责任等,均不作担保。对于不按手册要求连接或操作而产生的问题,本公司免责。必要时北云科技可能会对产品规格及产品描述进行修改,恕不另行通知。

对于本公司产品可能存在的某些设计缺陷或不妥之处,一经发现将改进而发生产品版本迭代,并因此可能导致产品与已出版的规格有所差异。如客户需要,可提供最新的产品规格。

版权所有 © 2013-2021,湖南北云科技有限公司,预留所有权利。

