On-orbit Servicing for Spacecraft Collision Avoidance Using Reinforcement Learning

SUSMITHA PATNALA Supervisor: Adam .F ABDIN

Index

- Introduction
- Mission architecture
- Design and development of on-orbit servicer
- Results and discussions
- ▶ Future prospects and conclusion

SERVICER MISSION ARCHITECTURE -ONE TO MANY

- ▶ Parking orbit in LEO at 750km
- ► Sun-synchronous orbit
- ► Inclination ~ 98°

Servicer Collision avoidance architecture

Ground support + CDM

Mission parameters

Mission parameters	Value
Orbit	Circular SSO at 750km
Inclination	98.38deg
No. of servicers	1 servicers
No. of missions per servicer	[3-n]
No. of planes	1
Satellites per plane	1
Range of RAAN/I (deg)	[-1.5,+1.5]
Range of altitude (km)	[-150,+150]
Propulsion	Electrical
ISP	1650s
Dry mass(kg)	240
Propellant mass(kg)	120
Total mass(kg)	360
Lifetime	10-15 years

Al Decision support model

RL framework

Schematic of a collision situation

State and action space

- ▶ **S** = {positions and velocities of Protected, Servicer, Debris, epoch, fuel}
- ▶ a =

Vx	Vy(direction of satellite)	Vz	Time to request next maneuver
0	0	0	Time for servicer to move: Phasing(Ts)
±Δvx	±Δvy	±∆∨z	T_dock
±Δvx	±Δvy	±∆∨z	TCAM=T_orb/2
+∆∨x	+∆vy	+∆vz	T_orb
-∆∨z	-∆∨z	-∆∨z	T_undock

Reward and threshold

► Each component has a predefined threshold, and the agent receives a negative reward proportional to its distance from the desired value if the threshold is exceeded.

Parameter	Threshold	
Collision Probability	10e-4	
Fuel Level	500 units(negative reward for each action)	
Trajectory Deviation (a)	100	
Trajectory Deviation (e)	0.01	
Trajectory Deviation (i)	0.01	
Trajectory Deviation (Ω)	0.01	
Trajectory Deviation (ω)	0.01	
Docking Position	500m	
Docking Velocity	5m/s	

Collision probability computation and docking criteria

- ▶ The Chenbai² method is used to compute collision probability.
- Docking criteria: Overlap of radii of two objects or reaching within 500m radius

Data formats

Two Line Elements (TLE)

- Datasets providing information about the orbital elements of an object.
- Maintained by the United States Air Force
- Object's position, velocity, and orbital elements.
- Accuracy is influenced by various factors; update frequency can vary.

Conjunction Data Messages (CDM)

- Standardized message formats for estimating potential collisions.
- Consultative Committee for Space Data Systems (CCSDS)
- State vectors of satellite and debris, collision probability, and method details.
- Designed for precise conjunction analysis.

Framework of simulator

Model extracted and extended from the available simulator ¹

RL algorithm: Cross Entropy(CE)

Training and analysis of the solution

Experiment description

Time resolution

Fine grid: about every 0.08 seconds

<u>Coarse grid:</u> captures the moments only before maneuvers and collisions.

- Simulation time: two days, during which we have a potential collision with debris generated.
- The start time of the experiment is "2018-Jan-24 21:35:59" and the end time of the simulation is "2018-Jan-27 02:24:00".

	a(m)	e	$i(^{\circ})$	$\Omega(^{\circ})$	$\omega(^\circ)$	$ u(^\circ)$
Protected	7208006	7.5e-05	324.51	177.65	174.32	127.9
Servicer	7208006	7.5e-05	324.51	177.65	174.32	134.9
Debris	7,213,238	7.7e-05	13.37	234.33	330.8	-15.08

Experiment description

Epoch: 2018-Jan-24 21:36:03.715201

Collision Probability: 0.0. Fuel Consumption: 0.0 (|dV|). Trajectory Deviation: á: 0.0 (m);

e: 0.0;

i: 0.0 (rad); W: 0.0 (rad);

w: 0.0 (rad); M: 0.0 (rad).

Reward Components: R Collision Probability: -0.0;

R Fuel Consumption: -0.0; R Trajectory Deviation: 0.0.

Total Reward: -970.95.

Model parameters and tools

- Initialize with 70 iterations and 50 sessions each
- Collision alert before 5 orbital periods
- First maneuver time: early
- Reverse maneuver is performed after CAM
- ▶ Total number of maneuvers: 4
- ▶ Pykep library ³ is used for the propagation of objects

Results with random guess

Decreasing policy reward with iterations.

Results with a random guess

1.0

time since simulation starts (mjd2000)

1.5

2.0

0.0

Training with coarse grid and visualization with fine grid

	dVx (m/s)	dVy (m/s)	dVz (m/s)	time (mjd2000)
1	0.990560	1.427529	-0.151943	6598.900000
2	0.192450	0.036808	0.212797	6598.970489
3	0.935751	-0.235568	-0.059789	6600.600560
4	-0.935751	0.235568	0.059789	6600.671043

Results with Lambert's 4 solution as guess

Training with coarse grid and visualization with fine grid

No.	dVx (m/s)	dVy (m/s)	dVz (m/s)	Time (mjd2000)
1	23.90	32.94	24.16	6598.90
2	-18.82	-35.11	-25.56	6598.97
3	0.00	-0.69	0.22	6600.53
4	-0.00	0.69	-0.22	6600.60

Animation of the simulation

▶ Put an alert at jan 26th 10oclock

Conclusions

- The preliminary results look promising in terms of using an on-orbit servicing for collision avoidance maneuvers.
- Docking + CAM are different on following aspects: propellant required and time resolution needs
- The solution obtained can only be thought of as suboptimal.
- ► The optimality for docking occurs in two ways: one is to find the time stamps where we are going to initialize the phasing. The second one is to find an optimal trajectory joining these points using the least possible fuel.

References

- 1. Gremyachikh, Leonid, et al. "SPACE NAVIGATOR: A tool for the optimization of collision avoidance maneuvers." arXiv preprint arXiv:1902.02095 (2019).
- 2. L. Chen, X. Z. Bai, Y. G. Liang, and K. B. Li, Orbital Data Applications for Space Objects, p. 166. 2017.
- 3. D. Izzo, dariomm098, A. Mereta, C. I. Sprague, dhennes, K. Nowak, C. Andre, N. Guy, T. G. Badger, J. Willitts, J. Simon, and A. Babenia, "esa/pykep," 11 2017. Version 2.0.
- 4. Izzo, Dario. "Revisiting Lambert's problem." Celestial Mechanics and Dynamical Astronomy 121 (2015): 1-15.