Analysis of multivariate time series with missing data

Karl Øyvind Mikalsen

Aug, 2019

□ト 4個ト 4 種ト 4 種ト ■ 9 Q @

1 / 36

Outline

- Introduction
- 2 Time series cluster kernel for learning similarities between multivariate time series with missing data
- 3 Time series cluster kernels to exploit informative missingness and incomplete label information

2 / 36

Outline

- Introduction
- 2 Time series cluster kernel for learning similarities between multivariate time series with missing data
- 3 Time series cluster kernels to exploit informative missingness and incomplete label information

|ロト 4回ト 4 差ト 4 差ト | 差 | 夕久(*)

3 / 36

Karl Øyvind Mikalsen Aug, 2019 4 / 36

Outline

- Introduction
- 2 Time series cluster kernel for learning similarities between multivariate time series with missing data
- 3 Time series cluster kernels to exploit informative missingness and incomplete label information

5 / 36

Paper I

K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz and R. Jenssen, "Time series cluster kernel for learning similarities between multivariate time series with missing data",

Pattern Recognition, Apr. 2018, Vol. 76, pp 569-581, doi: https://doi.org/10.1016/j.patcog.2017.11.030.

(□ ▶ ◀疊 ▶ ◀돌 ▶ ◀돌 ▶ · 돌 · ∽)Q(♡)

6 / 36

Time series analysis

Karl Øyvind Mikalsen Aug, 2019 7 / 36

Objective

Create a **kernel method** for **multivariate** time-series with **missing** data which is **robust** to hyperparameters.

Solution

- 1 Probabilistic formulation.
 - Can deal with missing data effectively.
 - Naturally extended to multivariate data.
- 2 Ensemble learning.
 - Robustness to hyperparameters.

Karl Øyvind Mikalsen Aug, 2019 8 / 36

Time series Cluster Kernel (TCK)

∢ロト <個ト < 重ト < 重ト < 重 との</p>

9 / 36

Time series Cluster Kernel (TCK)

Bayesian GMM for MTS with missing data

Ordinary GMM

- Mixture of *G* normally distributed components.
- Described by the mixing coefficients θ_g , means μ_g and covariances Σ_g .

Bayesian GMM for MTS with missing data

Ordinary GMM

- Mixture of G normally distributed components.
- Described by the mixing coefficients θ_g , means μ_g and covariances Σ_g .

GMM for multivariate time-series with missing data

- Time-dependent means $\mu_{\mathbf{g}} = \{\mu_{\mathbf{g}\mathbf{v}} \in \mathbb{R}^T \mid \mathbf{v} = 1, ..., V\}.$
- Diagonal covariance $\Sigma_g = diag\{\sigma_{g1}^2,...,\sigma_{gV}^2\}$, constant over time.
- Missing at random assumption.

(ロ) (레) (토) (토) (토) (인()

Bayesian GMM for MTS with missing data

Ordinary GMM

- Mixture of G normally distributed components.
- Described by the mixing coefficients θ_g , means μ_g and covariances Σ_g .

GMM for multivariate time-series with missing data

- Time-dependent means $\mu_{\mathbf{g}} = \{\mu_{\mathbf{g}\mathbf{v}} \in \mathbb{R}^T \mid \mathbf{v} = 1, ..., V\}.$
- Diagonal covariance $\Sigma_g = diag\{\sigma_{g1}^2,...,\sigma_{gV}^2\}$, constant over time.
- Missing at random assumption.

$$\text{Posterior:} \quad \pi_g = \frac{\theta_g \prod_{v=1}^V \prod_{t=1}^T \mathcal{N} \left(x_v(t) \mid \mu_{gv}(t), \sigma_{gv} \right)^{r_v(t)}}{\sum_{g=1}^G \theta_g \prod_{v=1}^V \prod_{t=1}^T \mathcal{N} \left(x_v(t) \mid \mu_{gv}(t), \sigma_{gv} \right)^{r_v(t)}}.$$

◆ロト ◆御ト ◆恵ト ◆恵ト ・恵 ・ 釣りで

Estimation of model parameters $\Theta = \{\theta_g, \, \mu_g, \, \Sigma_g\}$

- Maximum likelihood: $\hat{\Theta}_{ML} = \operatorname{argmax}_{\Theta} p(X \mid \Theta)$ No closed form solution \implies Expectation Maximization (EM).
- Problem: Missing data.
- Solution ([Marlin et al, 2012]): **Bayesian approach**, put priors on parameters, $p(\Theta)$,
 - and use **Maximum a posteriori** EM: $\hat{\Theta}_{MAP} = \operatorname{argmax}_{\Theta} p(X \mid \Theta)p(\Theta)$.

Karl Øyvind Mikalsen Aug, 2019 12 / 36

Estimation of model parameters $\Theta = \{\theta_{\mathsf{g}},\ \mu_{\mathsf{g}},\ \Sigma_{\mathsf{g}}\}$

- Maximum likelihood: $\hat{\Theta}_{ML} = \operatorname{argmax}_{\Theta} p(X \mid \Theta)$ No closed form solution \implies Expectation Maximization (EM).
- Problem: Missing data.
- Solution ([Marlin et al, 2012]): Bayesian approach, put priors on parameters, p(Θ),
 and use Maximum a posteriori EM: Ô_{MAP} = argmax_Θ p(X | Θ)p(Θ).

- Smooth cluster means.
- Parameters similar to overall mean and covariance for clusters containing few time series.

Karl Øyvind Mikalsen Aug, 2019 12 / 36

Informative prior distributions for μ and Σ

Kernel-based Gaussian prior for the mean

$$P(\mu_{gv}) = \mathcal{N}(\mu_{gv} \mid m_v, S_v)$$

 m_{ν} empirical mean (for attribute ν).

 $S_v = s_v \mathcal{K}$, prior covariance matrix.

 s_{ν} empirical standard deviation

K kernel matrix.

$$\mathcal{K}_{tt'} = b_0 \exp(-a_0(t-t')^2), \quad t, t' = 1, \dots, T.$$

13 / 36

Informative prior distributions for μ and Σ

Kernel-based Gaussian prior for the mean

$$P(\mu_{\mathsf{gv}}) = \mathcal{N}\left(\mu_{\mathsf{gv}} \mid m_{\mathsf{v}}, \ \mathcal{S}_{\mathsf{v}}\right)$$

 m_{ν} empirical mean (for attribute ν).

 $S_v = s_v \mathcal{K}$, prior covariance matrix.

 s_{ν} empirical standard deviation

K kernel matrix.

$$\mathcal{K}_{tt'} = b_0 \exp(-a_0(t-t')^2), \quad t, t' = 1, \dots, T.$$

Inverse Gamma distribution prior is for standard deviation

$$P(\sigma_{gv}) \propto \sigma_{gv}^{-N_0} \exp\left(-rac{N_0 s_v}{2\sigma_{gv}^2}
ight)$$

 a_0 , b_0 and N_0 are user-defined hyperparameters.

Karl Øyvind Mikalsen Aug, 2019 13 / 36

Algorithm 1 MAP-EM for DiagGMM

Input $\{(X^{(n)}, R^{(n)})\}_{n=1}^N$, Ω and number of mixtures G.

- 1: Initialize the parameters Θ .
- 2: E-step. For each MTS $X^{(n)}$, evaluate the posterior probabilities using current parameter estimates,

$$\pi_g^{(n)} = P(Z_g^{(n)} = 1 \mid X^{(n)}, R^{(n)}, \Theta).$$

3: M-step. Update parameters using the current posteriors

$$\theta_{g} = N^{-1} \sum_{n=1}^{N} \pi_{g}^{(n)}$$

$$\sigma_{gv}^{2} = \frac{N_{0} s_{v}^{2} + \sum_{n=1}^{N} \sum_{t=1}^{T} r_{v}^{(n)}(t) \pi_{g}^{(n)} (x_{v}^{(n)}(t) - \mu_{gv}(t))^{2}}{N_{0} + \sum_{n=1}^{N} \sum_{t=1}^{T} r_{v}^{(n)}(t) \pi_{g}^{(n)}}$$

$$\mu_{gv} = \frac{S_{v}^{-1} m_{v} + \sigma_{gv}^{-2} \sum_{n=1}^{N} \pi_{g}^{(n)} \operatorname{diag}(r_{v}^{(n)}) x_{v}^{(n)}}{S_{v}^{-1} + \sigma_{gv}^{-2} \sum_{n=1}^{N} \pi_{g}^{(n)} \operatorname{diag}(r_{v}^{(n)})}$$

4: Repeat step 2-3 until convergence.

Output Posteriors $\Pi^{(n)} \equiv (\pi_1^{(n)}, \dots, \pi_G^{(n)})^T$ and mixture parameters Θ .

Karl Øyvind Mikalsen Aug, 2019 14 / 36

First part of the TCK: Probabilistic model

Karl Øyvind Mikalsen Aug, 2019 15 / 36

Second part of the TCK: Ensemble learning

Karl Øyvind Mikalsen Aug, 2019 16 / 36

Why ensemble learning?

Karl Øyvind Mikalsen Aug, 2019 17 / 36

Why ensemble learning?

- Want robustness to hyperparameters.
- 2 Increased expressiveness.
- Want a kernel.

Karl Øyvind Mikalsen

Classification using SVM

How do we do ensemble learning?

18 / 36

How do we do ensemble learning?

Karl Øyvind Mikalsen

Forming the kernel

20 / 36

Forming the kernel

$$K(X^{(n)}, X^{(m)}) = \frac{1}{Z} \sum_{q \in \mathcal{Q}} \Pi^{(n)}(q)^T \Pi^{(m)}(q)$$

where

$$\Pi^{(n)}(q) \equiv (\pi_1^{(n)}, \dots, \pi_{q_2}^{(n)})^T$$

and

$$\pi_g^{(n)} \equiv P(Z_g^{(n)} = 1 \mid X^{(n)}, R^{(n)}, \Theta)$$

Karl Øyvind Mikalsen

Two-variate time series' generated from a VAR model

21 / 36

Two-variate time series' generated from a VAR model

Dimensionality reduction using kPCA

◆□ → ◆同 → ◆ 三 → ○ へ ○ ○

21 / 36

Two-variate time series' generated from a VAR model

Dimensionality reduction using kPCA

Clustering

	TCK	GMM
CA	0.990	0.910
ARI	0.961	0.671

(□▶ 4륜▶ 4분▶ - 분 - 쒸익♡ -

Missing data

Figure: Classification accuracy on simulated VAR(1) dataset of the 1NN-classifier configured with a (dis)similarity matrix obtained using LPS, DTW (d), DTW (i), GAK and TCK. We report results for three different types of missingness, with an increasing percentage of missing values.

□ト 4個ト 4差ト 4差ト 差 9Q℃

Benchmark datasets

Datasets	Attributes	Classes	Source	TCK	LPS	DTW
PenDigits	2	10	UCI	0.929	0.928	0.883
Libras	2	15	UCI	0.811	0.894	0.878
uWave	3	8	UCR	0.908	0.945	0.909
Character Trajectories	3	20	UCI	0.953	0.961	0.903
Robot failure LP1	6	4	UCI	0.938	0.836	0.720
Robot failure LP4	6	3	UCI	0.926	0.914	0.880
Wafer	6	2	UCR	0.982	0.981	0.963
Japanese vowels	12	9	UCI	0.978	0.964	0.965
ArabicDigits	13	10	UCI	0.951	0.977	0.962
PEMS	963	7	UCI	0.815	0.798	0.775
ItalyPower	1	2	UCR	0.947	0.933	0.918
Synthetic control	1	6	UCR	0.993	0.975	0.937

Table: Accuracy.

Karl Øyvind Mikalsen Aug, 2019 23 / 36

Robustness to hyperparameters

One (two) hyperparameters: Number of GMMs in the ensemble $|\mathcal{Q}|$. $|\mathcal{Q}| = Q(C-1)$.

Outline

- Introduction
- 2 Time series cluster kernel for learning similarities between multivariate time series with missing data
- 3 Time series cluster kernels to exploit informative missingness and incomplete label information

Paper III

K. Ø. Mikalsen, C. Soguero-Ruiz, F. M. Bianchi, A. Revhaug and R. Jenssen,

"Time series cluster kernels to exploit informative missingness and incomplete label information", submitted to *Pattern Recognition*.

26 / 36

Informative missingness

Figure: Che et al, 2018.

The distribution of the missing patterns for diseased patients is not equal to the corresponding distribution for the control group: $p(R \mid Y = 1) \neq p(R \mid Y = 0)$.

- Missingness not ignorable!
- TCK_{IM}: Exploit the rich information in the missingness patterns and observed data.

Karl Øyvind Mikalsen Aug, 2019 27 / 36

TCKIM

- Binary indicator time series.
- Continuous and discrete attributes.
- Mixed mode Bayesian mixture models.

$$X \in \mathbb{R}^{V \times T}$$
, input time series: $X = \begin{pmatrix} 13.1 & NA & NA & 14.2 & NA & 14.4 & NA \\ NA & 51 & 52 & NA & 40 & NA & 37 \end{pmatrix}$

$$R \in \{0,1\}^{V \times T}$$
, masking for X : $R = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$

Karl Øyvind Mikalsen Aug, 2019 29 / 36

$$X \in \mathbb{R}^{V \times T}$$
, input time series: $X = \begin{pmatrix} 13.1 & NA & NA & 14.2 & NA & 14.4 & NA \\ NA & 51 & 52 & NA & 40 & NA & 37 \end{pmatrix}$

$$R \in \{0,1\}^{V \times T}$$
, masking for X : $R = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$

Multivariate time series U = (X, R) with two modes X and R. U is generated from a finite mixture density,

$$p(U \mid \Phi, \Theta) = \sum_{g=1}^{G} \theta_g f(U \mid \phi_g),$$

Karl Øyvind Mikalsen Aug, 2019 29 / 36

$$X \in \mathbb{R}^{V \times T}$$
, input time series: $X = \begin{pmatrix} 13.1 & NA & NA & 14.2 & NA & 14.4 & NA \\ NA & 51 & 52 & NA & 40 & NA & 37 \end{pmatrix}$

$$R \in \{0,1\}^{V \times T}$$
, masking for X : $R = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$

Multivariate time series U = (X, R) with two modes X and R. U is generated from a finite mixture density,

$$p(U \mid \Phi, \Theta) = \sum_{g=1}^{G} \theta_g f(U \mid \phi_g),$$

Assume that

$$f(U \mid \phi_g) = f(X \mid R, \mu_g, \Sigma_g) f(R \mid \beta_g),$$
Gaussian Bernoulli

4□▶ 4□▶ 4 □ ▶ 4 □ ▶ 3 ■ 9 Q ○

Karl Øyvind Mikalsen

29 / 36

$$X \in \mathbb{R}^{V \times T}$$
, input time series: $X = \begin{pmatrix} 13.1 & NA & NA & 14.2 & NA & 14.4 & NA \\ NA & 51 & 52 & NA & 40 & NA & 37 \end{pmatrix}$

$$R \in \{0,1\}^{V \times T}$$
, masking for X : $R = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$

Multivariate time series U = (X, R) with two modes X and R. U is generated from a finite mixture density,

$$\rho(U \mid \Phi, \Theta) = \sum_{g=1}^{G} \theta_g f(U \mid \phi_g),$$

Assume that

$$f(U \mid \phi_g) = f(X \mid R, \mu_g, \Sigma_g) f(R \mid \beta_g),$$
Gaussian
Bernoulli

Hence

$$f(X \mid R, \mu_g, \Sigma_g) = \prod_{\substack{v=1 \ t=1}}^{V} \prod_{t=1}^{T} \mathcal{N}(x_v(t) \mid \mu_{gv}(t), \sigma_{gv})^{r_v(t)},$$

$$f(R \mid \beta_g) = \prod_{\substack{v=1 \ T}} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta_{gvt})^{1 - r_v(t)} \prod_{\substack{g \mid r_v(t) \ gyt}} (1 - \beta$$

and

Karl Øyvind Mikalsen

Algorithm 2 MAP-EM for mixed mode mixture model

Input Dataset $\{U^{(n)} = (X^{(n)}, R^{(n)})\}_{n=1}^N$, hyperparameters Ω and number of mixtures G.

- 1: Initialize the parameters $\Theta = (\theta_1, \dots, \theta_G)$ and $\Phi = \{\mu_g, \sigma_g, \beta_g\}_{g=1}^G$.
- 2: E-step. For each MTS $U^{(n)}$, evaluate the posterior probabilities with the current parameter estimates.
- 3: M-step. Update parameters using the current posteriors

$$\begin{split} \theta_g &= N^{-1} \sum_{n=1}^N \pi_g^{(n)} \\ \sigma_{gv}^2 &= \frac{N_0 s_v^2 + \sum_{n=1}^N \sum_{t=1}^T r_v^{(n)}(t) \, \pi_g^{(n)} \big(x_v^{(n)}(t) - \mu_{gv}(t) \big)^2}{N_0 + \sum_{n=1}^N \sum_{t=1}^T r_v^{(n)}(t) \, \pi_g^{(n)}} \\ \mu_{gv} &= \frac{S_v^{-1} m_v + \sigma_{gv}^{-2} \sum_{n=1}^N \pi_g^{(n)} \mathrm{diag} \big(r_v^{(n)} \big) \, x_v^{(n)}}{S_v^{-1} + \sigma_{gv}^{-2} \sum_{n=1}^N \pi_g^{(n)} \mathrm{diag} \big(r_v^{(n)} \big)} \\ \beta_{gvt} &= \big(\sum_{n=1}^N \pi_g^{(n)} \big)^{-1} \sum_{n=1}^N \pi_g^{(n)} \, r_v^{(n)}(t) \end{split}$$

4: Repeat step 2-3 until convergence.

Karl Øyvind Mikalsen

Output Posteriors $\Pi^{(n)} \equiv \left(\pi_1^{(n)}, \dots, \pi_G^{(n)}\right)^T$ and parameter estimates Θ and Φ .

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ★

Aug. 2019

30 / 36

TCK_{IM}

Create the kernel in the same way as in Paper 1, but with Bayesian mixed mode mixture models as base models in the ensemble!

Karl Øyvind Mikalsen

Aug, 2019 31 / 36

Healthcare case study

Tromsø EHR corpus:

- Data extracted from Department of Gastrointestinal Surgery at University Hospital of North-Norway.
- More than 35000 unique patients and approximately 264 000 outpatient visits.
- Procedure codes: More than 1 000 000 NCSP codes.
- Diagnosis codes: More than 1 000 000 ICD-10 codes.
- Laboratory tests: More than 1 600 000 lab tests.
- Free text notes: More than 1 800 000. Hundreds of different document categories.
- Radiologic examinations: More than 60 000 radiology reports.
- Histology data: more than 500 000 pathology reports, including (re)-admittance and death dates.

Karl Øyvind Mikalsen Aug, 2019 32 / 36

Detecting infections among patients undergoing colon rectal cancer surgery

- Detect Surgical Site Infection (SSI), a common hospital-acquired infection.
- ullet Laboratory tests o Multivariate time series.

Attribute nr.	Blood test	Missing rate
1	Hemoglobin	0.646
2	Leukocytes	0.727
3	C-Reactive Protein	0.691
4	Potassium	0.709
5	Sodium	0.712
6	Creatinine	0.867
7	Thrombocytes	0.921
8	Albumin	0.790
9	Carbamide	0.940
10	Glucose	0.921
11	Amylase	0.952

Overall: 80.7% missing data.

Karl Øyvind Mikalsen Aug, 2019 33 / 36

Figure: Overview of the approach taken to detect postoperative SSI.

Karl Øyvind Mikalsen Aug, 2019 34 / 36

Results

Table: Performance (mean \pm se) on the SSI dataset.

Kernel	F1-score	Sensitivity	Specificity	Accuracy
TCK	0.726 ± 0.045	0.678 ± 0.035	0.930 ± 0.024	0.863 ± 0.023
LPS	0.746 ± 0.035	0.696 ± 0.056	0.939 ± 0.019	0.875 ± 0.016
GAK _{LOCF}	0.570 ± 0.045	0.484 ± 0.059	0.924 ± 0.022	0.808 ± 0.017
GAK_{mean}	0.629 ± 0.046	0.502 ± 0.059	$\textbf{0.966}\pm\textbf{0.023}$	0.843 ± 0.016
Linear _{LOCF}	0.557 ± 0.058	0.480 ± 0.073	0.914 ± 0.017	0.800 ± 0.018
Linear _{mean}	0.599 ± 0.030	0.489 ± 0.041	0.948 ± 0.043	0.826 ± 0.024
LPS _{IM}	0.720 ± 0.062	0.661 ± 0.069	0.937 ± 0.036	0.863 ± 0.032
$GAK_{\mathit{IM}+\mathit{LOCF}}$	0.669 ± 0.015	0.586 ± 0.024	0.940 ± 0.021	0.846 ± 0.011
$GAK_{\mathit{IM}+\mathit{mean}}$	0.696 ± 0.030	0.617 ± 0.033	0.945 ± 0.022	$0.856 \pm\! 0.011$
$Linear_{\mathit{IM}+\mathit{LOCF}}$	0.628 ± 0.016	0.529 ± 0.030	0.945 ± 0.011	0.834 ± 0.005
$Linear_{\mathit{IM}+\mathit{mean}}$	0.668 ± 0.037	0.568 ± 0.033	0.951 ± 0.030	0.850 ± 0.021
TCK_{IM}	$\textbf{0.802}\pm\textbf{0.016}$	$\textbf{0.806}\pm\textbf{0.027}$	0.927 ± 0.017	$\textbf{0.895}\pm\textbf{0.010}$

Karl Øyvind Mikalsen Aug, 2019 35 / 36

Other MTS work

- K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, R. Jenssen, "The time series cluster kernel", published in MLSP 2017, Tokyo, Japan, Sep. 2017, pp. 1–6.
- K. Ø. Mikalsen, F. M. Bianchi, C. Soguero-Ruiz, S. O. Skrøvseth, R.-O. Lindsetmo, A. Revhaug, R. Jenssen, "Learning similarities between irregularly sampled short multivariate time series from EHRs", oral presentation at 3rd ICPR Workshop on Pattern Recognition for Healthcare Analytics, Cancun, Mexico, Dec. 2016.
- A. Storvik Strauman, F. M. Bianchi, K. Ø. Mikalsen, M. Kampffmeyer, C. Soguero-Ruiz, R. Jenssen, "Classification of postoperative surgical site infections from blood measurements with missing data using recurrent neural networks", published in *Proceedings of 2018 IEEE EMBS International Conference on Biomedical Health Informatics (BHI)*, Las Vegas, USA, Mar. 2018, pp 307–310.
- F. M. Bianchi, K. Ø. Mikalsen and R. Jenssen, "Learning compressed representations of blood samples time series with missing data", ESANN, Bruges, Belgium, Apr. 2018,
- F. M. Bianchi, L. Livi, K. Ø. Mikalsen, M. Kampffmeyer and R. Jenssen, "Learning representations of multivariate time series with missing data", Pattern Recognition, 2019.

Karl Øyvind Mikalsen Aug, 2019 36 / 36