COUNTER AS CLOCK DIVIDER

Verilog code:

```
module couter_clkdivider(
  input wire clk,
  input wire reset,
  output wire clk_div2,
  output wire clk_div4
);
  reg [1:0] count;
  always @(posedge clk) begin
```

```
if (reset)
    count <= 2'b00;
else
    count <= count + 1;
end
assign clk_div2 = count[0];
assign clk_div4 = count[1];
endmodule</pre>
```

RTL analysis schematic:

Synthesis schematic:

Look Up Tables:

Cell Properties				
count[0]_i_1				
11	10	O=!I0 & !I1		
0	0	1		
0	1	0		
1	0	0		
1	1	0		

Figure 1: LUT FOR COUNT[0]

Cell Properties					
	count	[1]_i_	1		
12	11	10	O=10 & !I1 & !I2 + !I0 & I1 & !I2		
0	0	0	0		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	0		

Figure 2: LUT FOR COUNT[1]