ТЧ-8 2024

SFS

24 июня 2024 г.

При нахождении ошибок обращайтесь @fedorrrMM

Содержание

1	Раздел 1. Аналитическая теория чисел: Элементарные методы	4
	1.1 Вокруг оценок Чебышёва	6

1 Раздел 1. Аналитическая теория чисел: Элементарные методы

1.1 Вокруг оценок Чебышёва

По понятиям: Рассмотрим функции $\pi(x)=\sum\limits_{p\leq x}1, \theta(x)=\sum\limits_{p\leq x}\ln(p), \psi(x)=\sum\limits_{p^{\alpha}\leq x}\ln(p).$ (Если не сказано противное, то $x\in[1,+\infty), n\in\mathbb{N}=1,2,\ldots,\,p$ — простое число; в формуле p^{α} подразумевается $\alpha\in\mathbb{N}.$)

Задача 1

Доказать, что для функции $\psi(x)$ справедливы представления:

$$\psi(x) = \sum_{p \le x} \left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor = \ln([1, 2, \dots, \lfloor x \rfloor]) = \sum_{n \le x} \Lambda(n),$$

где $[a_1,\ldots,a_n]$ – наименьшее общее кратное чисел $a_1,\ldots,a_n\in\mathbb{N},\ \Lambda(n)$ – функция Мангольдта, т. е.

$$\Lambda(n) = egin{cases} \ln(p), & n = p^{lpha} \ 0 & ext{иначе} \end{cases}$$

Решение задачи 1

По определению $\psi(x) = \sum_{p^{\alpha} \leq x} \ln(p)$. Теперь рассмотрим эту сумму и вынесем все общие $\ln(p)$. Получим: $\sum_{p^{\alpha} \leq x} \ln(p) = \sum_{p \leq x} \ln(p) \cdot \left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor$ — это такое число, что $p^{\alpha} \leq x, p^{\alpha+1} > x$ $[1,2,\dots\lfloor x \rfloor] = \prod_{p \leq x} p^{m_p}, \quad m_p : p^{m_p} \leq x, \quad p^{m_p+1} > x.$ Логарифмируем и получаем $\ln([1,2,\dots\lfloor x \rfloor]) = \sum_{p \leq x} \left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor$ $\sum_{p^{\alpha} \leq x} \ln(p) + \sum_{p^{\alpha} \leq x} 0 = \sum_{n \leq x} \Lambda(n)$

Задача 2

Доказать равенство $\sum\limits_{d|n} \Lambda(d) = \ln(n)$.

Решение задачи 2

Сначала рассмотрим случай $n=p^m$. Тогда $\sum\limits_{d|n}\Lambda(d)=\sum\limits_{p^{\alpha}\leq n}\ln(p)=m\cdot\ln(p)=\ln(p^m)=\ln(n)$

Теперь пусть $n=p_1^{m_1}\cdots p_n^{m_n}$. $\sum\limits_{d|n}\Lambda(d)=\sum\limits_{i=1}^n\sum\limits_{p_i^{\alpha}\leq n}\ln(p)/^*$ т.к. при делителе d, содержащем

разные простые $\Lambda(d)=0^*/=\sum\limits_{i=1}^n \ln(p_i^{m_i})=\ln(p_1^{m_1}\cdots p_n^{m_n})=\ln(n)$

Задача 3

Доказать равенства:

- 1. $\psi(x) = \theta(x) + \theta(x^{\frac{1}{2}}) + \theta(x^{\frac{1}{3}}) + \cdots$, причём количество ненулевых слагаемых в сумме справа равно $\left\lfloor \frac{\ln(x)}{\ln(2)} \right\rfloor$;
- 2. $\ln(\lfloor x \rfloor!) = \psi(x) + \psi(\frac{x}{2}) + \psi(\frac{x}{3}) + \cdots$. (Указание. Использовать задачу 1.2.)

Решение задачи 3

1.а По определению $\psi(x) = \sum_{p^{\alpha} \leq x} \ln(p), \theta(x) = \sum_{p \leq x} \ln(p).$

Рассмотрим $\theta(x^{\frac{1}{\alpha}}) = \sum_{p \leq x^{\frac{1}{\alpha}}}^{p \leq x^{\frac{1}{\alpha}}} \ln(p)$. Теперь распишем сумму из условия:

 $\sum_{\alpha=1}^{\infty} \theta(x^{\frac{1}{\alpha}}) = \sum_{p \leq x} \left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor \cdot \ln(p)$ — перегруппировали по простым, не превосходящим x. Число такое, т.к. в сумме будет ровно $\left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor$ элементов таких, что $p \leq x^{\alpha}$

- 1.b Как отмечено выше, в сумме будет ровно $\left\lfloor \frac{\ln(x)}{\ln(p)} \right\rfloor$ элементов таких, что $p \leq x^{\alpha}$. Максимально это число при p=2 и равно $\left\lfloor \frac{\ln(x)}{\ln(2)} \right\rfloor$;
 - 2 t