Chapter 16 Even Answers

- 2. See Instructor's Manual.
- 4. See Instructor's Manual.
- **6.** 184 km
- **8.** (a) -1.65 (b) -6.02 (c) 1.15
- **10.** 80.0 N
- 12. 520 m/s
- **14.** 631 N

16.
$$\frac{Tg}{2\pi}\sqrt{\frac{M}{m}}$$

18. (a)
$$v = \left(30.4 \frac{\text{m/s}}{\sqrt{\text{kg}}}\right) \sqrt{m}$$
 (b) 3.89 kg

20.
$$\sqrt{\frac{mL \tan \theta}{4Mg}}$$
 where $\tan \theta = \sqrt{\left(\frac{L}{2D-L}\right)^2 - 1}$

- **22.** (a) zero (b) 0.300 m
- **24.** 0.800 m/s
- **26.** ± 6.67 cm
- **28.** (b) 18.0 rad/m, 0.0833 s, 75.4 rad/s, 4.20 m/s (c) $y(x, t) = (0.200 \text{ m}) \sin (18.0 \text{x/m} + 75.4 \text{t/s} 0.151 \text{ rad})$
- **30.** (a) -1.51 m/s, 0 (b) 16.0 m, 0.500 s, 32.0 m/s
- **32.** (a) 0.0215 m (b) 1.95 rad (c) 5.41 m/s
 - (d) $y(x, t) = (0.0215 \text{ m})\sin (8.38x \text{ rad/m} + 80.0\pi t \text{ rad/s} + 1.95 \text{ rad})$
- **34.** 30.0 m in positive *x*-direction
- **36.** (a) $y = (2.00 \times 10^{-4} \text{ m}) \sin (16.0x 3140t)$ (b) 158 N
- **38.** 1.07 kW
- **40.** (a) \wp remains constant (b) \wp remains constant
 - (c) premains constant (d) pris quadrupled
- **42.** (a) $y = (7.50 \times 10^{-2} \text{ m}) \sin(4.19x 314t)$ (b) 625 W
- 44. $\sqrt{2} \wp_{\text{original}}$

48. (b)
$$f(x + vt) = \frac{1}{2}(x + vt)^2$$
, $g(x - vt) = \frac{1}{2}(x - vt)^2$

(c)
$$f(x + vt) = \frac{1}{2} \sin(x + vt)$$
, $g(x - vt) = \frac{1}{2} \sin(x - vt)$

- **50.** (a) 0.0400 m (b) 0.0314 m (c) 0.477 Hz (d) 2.09 s (e) positive x-direction
- **52.** $0.456 \,\mathrm{m/s}$
- **54.** (a) 179 m/s (b) 17.7 kW

56. (a)
$$2Mg$$
 (b) $L_0 + \frac{2Mg}{k}$ (c) $\sqrt{\frac{2Mg}{m} \left(L_0 + \frac{2Mg}{k}\right)}$

58. (a)
$$v = \sqrt{T/[\rho(10^{-3}x + 10^{-2})10^{-4}]}$$
 m/s (b) 94.3 m/s, 66.7 m/s

- **62.** (a) 5.00 m/s, positive x-direction (b) 5.00 m/s, negative x-direction
 - (c) 7.50 m/s, negative x-direction (d) 24.0 m/s, positive x-direction

64. (a)
$$v = \sqrt{kL/\mu}$$
 (b) 31.6 m/s

66. (a)
$$\frac{\mu \omega^2}{2k} A_0^2 e^{-2bx}$$
 (b) $\frac{\mu \omega^2}{2k} A_0^2$ (c) e^{-2bx}

2 Chapter 16 Even Answers