Optimization Methods Tutorial-1

Branch and Bound Technique

- Divide a problem into subproblems
- For each subproblem:
 - If it has no feasible solution, done;
 - If it has an integer optimal solution; done. Compare the optimal solution with the best solution we know till now.
 - If it has an optimal solution that is worse than the previous best solution, done.
 - If it has an optimal solution that are not all integer, better than the previous best solution, then we would have to divide this subproblem further and repeat.

$Max Z = -x_1 + 4x_2$

 $x_i \geq 0$, x_i 's are integers

Such that
$$-10x_1 + 20x_2 \leq 22$$

$$5x_1 + 10x_2 \leq 49$$

$$x_1 \leq 5$$

For the LP relaxation

$$MaxZ = -x_1 + 4x_2$$

s. t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$
 $x_1 \le 5$

Optimal solution of the relaxation is (3.8,3) with z=8.2. Then we consider two cases: $x_1 \ge 4$ and $x_1 \le 3$.

 $x_i \geq 0$

The linear programming relaxation

$$\text{Max } Z = -x_1 + 4x_2
 \text{s.t. } -10x_1 + 20x_2 \leq 22
 \text{5}x_1 + 10x_2 \leq 49
 x_1 \leq 5
 x_1 \geq 4
 x_2 \geq 0$$

has optimal solution at (4, 2.9) with Z = 7.6.

The linear programming relaxation

$$\operatorname{Max} Z = -x_1 + 4x_2$$

s.t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$
 $4 \le x_1 \le 5$
 $x_2 \ge 3$

has no feasible solution $(5x_1 + 10x_2 \ge 50)$ so the IP has no feasible solution either.

The linear programming relaxation

$$\operatorname{Max} Z = -x_1 + 4x_2$$

s.t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$
 $4 \le x_1 \le 5$

has an optimal solution at (4,2) with Z=4. This is the optimal solution of the IP as well. Currently, the best value of Z for the original IP is Z=4.

 $0 \le x_2 \le 2$

Now we consider the branch of $0 \le x_1 \le 3$. The LP relaxation

$$\operatorname{Max} Z = -x_1 + 4x_2$$

s.t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$
 $x_1 \le 3$
 $0 \le x_i$

has an optimal solution at (3,2.6) with Z=7.4. We branch out further to two cases: $x_2 \leq 2$ and $x_2 \geq 3$.

The LP relaxation

$$\text{Max } Z = -x_1 + 4x_2
 \text{s.t. } -10x_1 + 20x_2 \leq 22
 \text{5}x_1 + 10x_2 \leq 49
 x_1 \leq 3
 x_2 \geq 3$$

has no feasible solution $(-10x_1 + 20x_2 \ge 30)$. The IP has no solution either.

Quiz

$$\operatorname{Max} Z = -x_1 + 4x_2$$

s.t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$
 $0 \le x_1 \le 3$
 $0 \le x_2 \le 2$

We branch further with two cases: $x_1 \ge 2$ or $x_1 \le 1$ (we still have $0 \le x_2 \le 2$).

The LP relaxation

$$\max Z = -x_1 + 4x_2$$

s.t.
$$-10x_1 + 20x_2 \le 22$$

 $5x_1 + 10x_2 \le 49$

 $2 \le x_1 \le 3$

has an optimal at
$$(2,2)$$
, with $Z=6$. Since this is better than the incumbent $Z=4$ at $(4,2)$, this new integer

solution is our current best solution.

 $0 \le x_2 \le 2$

The LP relaxation

$$\max Z = -x_1 + 4x_2$$
s.t. $-10x_1 + 20x_2 \le 22$

$$5x_1 + 10x_2 \le 49$$

$$0 \le x_1 \le 1$$

$$0 < x_2 < 2$$

has an optimal at (1, 1.6) with Z = 5.4. Then any integer solution in this region can not give us a solution with the value of Z greater than 5.4. This branch is fathomed.

So, optimal solution is at x1 = 2, x2 = 2, and maximum value of Z is 6.