FUNKSJONER AV FLERE VARIABLE

MORTEN

1. Derivasjon

1.1. **Vektorer og totalderiverte.** En *vektorfunksjon* er en funksjon som tar en verdi i \mathbb{R}^n og gir en vektor i \mathbb{R}^m . En vektorfunksjon kan skrives som en funksjon $\mathbf{F}: \mathbb{R}^n \to \mathbb{R}^m$ som tar en vektor $\mathbf{x} \in \mathbb{R}^n$ og gir en vektor $\mathbf{F}(\mathbf{x}) \in \mathbb{R}^m$. En vektorfunksjon kan også skrives som en liste av funksjoner, for eksempel

$$\mathbf{F}(\mathbf{x}) = egin{bmatrix} f_1(\mathbf{x}) \ f_2(\mathbf{x}) \ dots \ f_m(\mathbf{x}) \end{bmatrix}.$$

Definisjon 1. Funksjonen \mathbf{F} er (total)deriverbar i punktet \mathbf{x}_0 hvis det finnes en $m \times n$ -matrise $\mathbf{F}'(\mathbf{x}_0)$ slik at

$$\lim_{\mathbf{h}\to 0} \frac{\mathbf{F}(\mathbf{x}_0 + \mathbf{h}) - \mathbf{F}(\mathbf{x}_0) - \mathbf{F}'(\mathbf{x}_0) \cdot \mathbf{h}}{\|\mathbf{h}\|} = 0.$$

Vi går ikke inn på detalj om grenseverdier i flere variabler. Alt vi trenger å vite er at de har samme regneregler som grenerverdier i en variabel. Dette medfører at de generelle derivasjonsreglene for funksjoner av en variabel også gjelder for vektorfunksjoner.

Definisjon 2. Lineærtilnærmingen til en vektorfunksjon F som er deriverbar i punktet \mathbf{x}_0 er gitt ved

$$L(\mathbf{x}) = \mathbf{F}(\mathbf{x}_0) + \mathbf{F}'(\mathbf{x}_0) \cdot (\mathbf{x} - \mathbf{x}_0).$$

Eksempel 3. La $f: \mathbb{R} \to \mathbb{R}$ være en vanlig funksjon av en variabel. Betingelsen over kan skrives:

$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0) - f'(x_0) \cdot h}{h} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} - f'(x_0) = 0.$$

Her står altså

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

Dette er den vanlige definisjonen av den deriverte av en funksjon av en variabel. Lineærtilnærmingen til f i punktet x_0 er gitt ved

$$L(x) = f(x_0) + f'(x_0) \cdot (x - x_0).$$

Grafen til L(x) er tangenten i punktet x_0 til grafen til f.

[illustrasjon av tangent til en funksjon av en variabel]

Date: February 25, 2025.

2 MORTEN

Eksempel 4. La $\mathbf{y} \colon \mathbb{R} \to \mathbb{R}^2$ være en kurve i planet. Betingelsen over kan igjen skrives:

$$\lim_{h \to 0} \frac{\mathbf{y}(x_0 + h) - \mathbf{y}(x_0) - \mathbf{y}'(x_0) \cdot h}{h} = \lim_{h \to 0} \frac{\mathbf{y}(x_0 + h) - \mathbf{y}(x_0)}{h} - \mathbf{y}'(x_0) = 0.$$

Her står altså

$$\mathbf{y}'(x_0) = \lim_{h \to 0} \frac{\mathbf{y}(x_0 + h) - \mathbf{y}(x_0)}{h}.$$

Denne grensen kan beregens komponentvis slik at hvis

$$\mathbf{y}(t) = \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix},$$

så er

$$\mathbf{y}'(t) = \begin{bmatrix} y_1'(t) \\ y_2'(t) \end{bmatrix}.$$

Lineærtilnærmingen til \mathbf{y} i punktet t_0 er gitt ved

$$L(t) = \mathbf{y}(t_0) + \mathbf{y}'(t_0) \cdot (t - t_0).$$

Dette er en parametrisering av tangenten til kurven i punktet $\mathbf{y}(t_0)$.

[Illustrasjon av tangent til en kurve i planet]

1.2. Gradienten og retningsderiverte.

Definisjon 5. Den retningsderiverte av en flervariabel funksjon $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}$ i punktet \mathbf{x}_0 i en retning $\vec{\mathbf{v}} \in \mathbb{R}^n$ er gitt ved

$$D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x}_0) = \lim_{t \to 0} \frac{\mathbf{F}(\mathbf{x}_0 + t\vec{\mathbf{v}}) - \mathbf{F}(\mathbf{x}_0)}{t}.$$

Gitt $\mathbf{x_0} \in \mathbb{R}^n$ og en vektor $\vec{\mathbf{v}} \in \mathbb{R}^n$, er funksjonen

$$g(t) = \mathbf{x_0} + t\vec{\mathbf{v}}$$

en parametrisering av den rette linjen gjennom $\mathbf{x_0}$ i retning $\vec{\mathbf{v}}$. Funksjonen $\mathbf{F} \circ g$ er en funksjon av en variabel, gitt ved $(\mathbf{F} \circ g)(t) = \mathbf{F}(g(t))$. Den deriverte av denne kompositten i punktet t=0 er retningsderiverte av \mathbf{F} i punktet $\mathbf{x_0}$ i retning $\vec{\mathbf{v}}$. Det vil si at $D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x_0}) = (\mathbf{F} \circ g)'(0)$.

Hvis $D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x_0}) > 0$ da vokser funksjonen \mathbf{F} når vi beveger oss vekk fra punketet $\mathbf{x_0}$ i retning $\vec{\mathbf{v}}$. Hvis $D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x_0}) < 0$ da avtar funksjonen \mathbf{F} når vi beveger oss vekk fra punketet $\mathbf{x_0}$ i retning $\vec{\mathbf{v}}$.

[Illustrasjon]

Oppgave 1. Forklar hvorfor $D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x}_0) = \mathbf{F}'(\mathbf{x}_0) \cdot \vec{\mathbf{v}}$.

Husk at enhetsvektoren $\vec{\mathbf{e}}_i$ er en vektor med lengde 1 i retning $i\text{-}\mathrm{aksen}.$ Det vil

si at
$$\vec{\mathbf{e}}_i = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix}$$
, der 1 står på i -te plass.

Definisjon 6. Den retningsderiverte av \mathbf{F} i punktet \mathbf{x}_0 i retning $\vec{\mathbf{e}}_i$ kalles den *i*-te partiellderiverte av \mathbf{F} i punktet \mathbf{x}_0 og skrives

$$\frac{\partial \mathbf{F}}{\partial x_i}(\mathbf{x}_0) = D_{\vec{\mathbf{e}}_i} \mathbf{F}(\mathbf{x}_0).$$

Fra oppgave 1 har vi at

$$\frac{\partial \mathbf{F}}{\partial x_i}(\mathbf{x}_0) = \mathbf{F}'(\mathbf{x}_0) \cdot \vec{\mathbf{e}}_i.$$

Oppgave 2. Per definisjon er den retningsderiverte av en vektorfunksjon den deriverte til en funksjon av en variabel. Beskriv en funksjon $h: \mathbb{R} \to \mathbb{R}$ slik at $\frac{\partial \mathbf{F}}{\partial x_i}(\mathbf{x}_0) = h'(0)$.

Definisjon 7. Gradienten til en vektorfunksjon $F: \mathbb{R}^n \to \mathbb{R}$ i et punkt $\mathbf{x}_0 \in \mathbb{R}^n$ er vektoren

$$\nabla \mathbf{F}(\mathbf{x}_0) = \begin{bmatrix} \frac{\partial \mathbf{F}}{\partial x_1}(\mathbf{x}_0) \\ \vdots \\ \frac{\partial \mathbf{F}}{\partial x_n}(\mathbf{x}_0) \end{bmatrix}$$

Bemerkning 8. Gradienten $\nabla \mathbf{F}(\mathbf{x}_0)$ er en kolonnevektor, og $\mathbf{F}'(\mathbf{x}_0)$ er radvektoren som fås ved å legge denne kolonnevktoren ned som vi gjorde da vi deinerte matrisemultiplikasjon.

Teorem 9. Hvis $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}$ er en skalarfunksjon og \mathbf{x}_0 er et punkt slik at $\mathbf{F}'(\mathbf{x}_0)$ er definert, så er

$$D_{\vec{\mathbf{v}}}\mathbf{F}(\mathbf{x}_0) = \mathbf{F}'(\mathbf{x}_0) \cdot \vec{\mathbf{v}} = \nabla \mathbf{F}(\mathbf{x}_0) \cdot \vec{\mathbf{v}} = |\nabla \mathbf{F}(\mathbf{x}_0)| \cos \theta,$$

for alle vektorer $\vec{\mathbf{v}}$ med lengde 1, der θ er vinkelen mellom $\vec{\mathbf{v}}$ og $\nabla \mathbf{F}(\mathbf{x}_0)$. Derfor er $\nabla \mathbf{F}(\mathbf{x}_0)$ retningen der \mathbf{F} vokser raskest i punktet \mathbf{x}_0 .

[[eksempel]]

1.3. Gradienter og nivåmengder.

Definisjon 10. En *nivåkurve* til en funksjon $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}$ er en kurve $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^n$ slik at $\mathbf{F}(\mathbf{r}(t)) = c$ for en konstant c.

Teorem 11. Gitt $\mathbf{F} \colon \mathbb{R}^n \to \mathbb{R}$ og en nivåkurve $\mathbf{r} \colon \mathbb{R} \to \mathbb{R}^n$ til \mathbf{F} og et tall t slik at de deriverte $\mathbf{r}'(t)$ og $\mathbf{F}'(\mathbf{r}(t))$ begge er definert. Da er

$$\nabla \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = 0.$$

Dette er en direkte konsekvens av kjerneregelen:

$$0 = (\mathbf{F} \circ \mathbf{r})'(t) = \mathbf{F}'(\mathbf{r}(t)) \cdot \mathbf{r}'(t) = \nabla F(\mathbf{r}(t)) \cdot \mathbf{r}'(t).$$

[[eksempler eg fra boken]

1.4. Jacobimatrisen.