Study 2A

January 26, 2025

Items

Read Data	4
Variable Names	4
Demographics	ļ
Cronbach's Alpha	(
Primary Analysis	,
Robustness	8
Interaction Analysis	1(
Secondary Analysis	1
Mediation	12
Figure S2 Code	15
System of Simultaneous Equations	18

Read Data

```
women <- c('Sylvia Plath', 'Isabel Allende', 'Lucy Maud', 'Jane Austen', 'Joyce Carol</pre>
→ Oates', 'Zadie Smith')
poets <- c('George Orwell','Sylvia Plath','Jack London', 'Charles Dickens', 'Neil</pre>

    Gaiman', 'Jorge Luis Borges')

oldies <- c('Charles Dickens', 'Ernest Hemingway', 'Herman Melville', 'Jack London',
→ 'Jane Austen', 'Jorge Luis Borges', 'J.R.R. Tolkien', 'Lucy Maud', 'Nathaniel
→ Hawthorne', 'F. Scott Fitzgerald')
books <- c('Charles Dickens', 'Herman Melville', 'Isabel Allende', 'Jack London', 'John
→ Steinbeck', 'Joyce Carol Oates', 'Jorge Luis Borges', 'J.R.R. Tolkien', 'Lucy Maud',
→ 'Michael Crichton', 'Ray Bradbury', 'Kurt Vonnegut', 'Ian McEwan')
# Process the data
d0 <- qual_data |>
   filter(!is.na(`choice-7`), !is.na(PROLIFIC_PID), Finished==1) |>
    gender_feedback = as.numeric(grepl("were women", feedbackItem1) |
                  grepl("were women", feedbackItem2) |
                  grepl("were women", feedbackItem3)),
    poets_shown = as.numeric(grep1("wrote poetry", feedbackItem1) |
                  grepl("wrote poetry", feedbackItem2) |
                  grepl("wrote poetry", feedbackItem3)),
    oldies_shown = as.numeric(grep1("were born in the 1800s", feedbackItem1) |
                grepl("were born in the 1800s", feedbackItem2) |
                grepl("were born in the 1800s", feedbackItem3)),
    books_shown = as.numeric(grepl("wrote more than 10 books", feedbackItem1) |
                 grepl("wrote more than 10 books", feedbackItem2)
                 grepl("wrote more than 10 books", feedbackItem3)),
   female_pick = case_when(`choice-7` %in% women ~ 1,
                           TRUE \sim 0),
   poets_pick = case_when(`choice-7` %in% poets ~ 1,
                           TRUE \sim 0),
    oldies pick = case when(`choice-7` %in% oldies ~ 1,
                           TRUE \sim 0),
   books_pick = case_when(`choice-7` %in% books ~ 1,
                           TRUE \sim 0),
    gender_code = case_when(gender=="Man" ~ 1, TRUE ~ 0),
   race_code = case_when(str_detect(race, "White / Caucasian") ~ 1, TRUE ~ 0),
   base_gender = rowSums(across(`choice-1`:`choice-6`, ~ . %in% women))
  ) |>
  mutate(
   across(c(I1:E3),
           ~ case when(
```

```
. == "Strongly disagree" ~ 1, . == "Disagree" ~ 2, . == "Somewhat disagree"
→ ~ 3, . == "Neither agree nor disagree" ~ 4,
           . == "Somewhat agree" ~ 5, . == "Agree" ~ 6, . == "Strongly agree" ~ 7, TRUE

  ~ NA_integer_))) |>
 mutate(
   internal1Z = (I1 - mean(I1, na.rm = TRUE)) / sd(I1, na.rm = TRUE),
   internal2Z = (I2 - mean(I2, na.rm = TRUE)) / sd(I2, na.rm = TRUE),
   internal3Z = (I3 - mean(I3, na.rm = TRUE)) / sd(I3, na.rm = TRUE),
   internal4Z = (I4 - mean(I4, na.rm = TRUE)) / sd(I4, na.rm = TRUE),
   internal = (internal1Z + internal2Z + internal3Z + internal4Z) / 4,
   external1Z = (E1 - mean(E1, na.rm = TRUE)) / sd(E1, na.rm = TRUE),
   external2Z = (E2 - mean(E2, na.rm = TRUE)) / sd(E2, na.rm = TRUE),
   external3Z = (E3 - mean(E3, na.rm = TRUE)) / sd(E3, na.rm = TRUE),
   external = (external1Z + external2Z + external3Z) / 3
 dplyr::select(gender_feedback:books_pick, base_gender,`choice-1`:`choice-7`, race,

    gender, age, gender_code, race_code, internal1Z:external) 

⟩

 slice(1:1000) # pre=registered sample size
# Write the API-pulled data into a CSV file
write.csv(d0, 'Study2A.csv', row.names = FALSE, quote = TRUE)
# when reading the csv, use the following command: read.csv('Study2A.csv', check.names =
\hookrightarrow F)
```

Variable Names

Variable	Description				
gender_feedback	Binary indicator of whether a participant was randomly assigned				
	to gender feedback condition.				
female_pick	Binary indicator of whether a participant selected a female author				
	for their seventh selection				
poets_pick	Binary indicator of whether a participant selected an author that				
	wrote poetry for their seventh selection.				
oldies_pick	Binary indicator of whether a participant selected an author that				
	was born in the $1800s$ for their seventh selection.				
book_pick	Binary indicator of whether a participant selected an author that				
	wrote more than 10 books for their seventh selection.				
base_gender	Count of the number of female authors selected in the initial si				
	authors.				
choice-1 to choice-7	The selected authors				
gender	Self-selected gender.				
race	Self-selected race.				
age	Self-entered age.				
gender_code	Dummy code for gender (male $= 1$).				
race_code	Dummy code for race (white $= 1$).				
internal1Z-4Z	Individual standardized scale items for Internal Motivation to I				
	spond Without Prejudice.				
external1Z-3Z	Individual standardized scale items for External Motivation to				
	Respond Without Prejudice.				
internal	Aggregated scale items for Internal Motivation to Respond Wi				
	out Prejudice.				
external	Aggregated scale items for External Motivation to Respond With-				
	out Prejudice.				

Demographics

Excluded Participants: 123

```
##
                         Percentage gender
## 1 Another gender not listed here:
                                       0.1
                                      45.4
## 3
                         Non-binary
                                       2.0
## 4
                              Woman
                                      52.5
##
                           Percentage Race
## 1 American Indian or Alaskan Native 0.7
## 2
            Asian / Pacific Islander 9.8
## 3
            Black or African American 13.1
## 4
                    Hispanic / Latinx 6.2
## 5
                    White / Caucasian 70.2
## # A tibble: 1 x 2
   mean_age sd_age
       <dbl> <dbl>
##
## 1
        41.0
              13.7
```

Cronbach's Alpha

```
# Calculating Cronbach's Alpha for the Internal subscale
internal_items <- d0[, c("internal1Z", "internal2Z", "internal3Z", "internal4Z")]
alpha_internal <- alpha(internal_items)

cat("Cronbach's Alpha for Internal Subscale: ", alpha_internal$total$raw_alpha, "\n")

## Cronbach's Alpha for Internal Subscale: 0.9161604

# Calculating Cronbach's Alpha for the External subscale
external_items <- d0[, c("external1Z", "external2Z", "external3Z")]
alpha_external <- alpha(external_items)
cat("Cronbach's Alpha for External Subscale: ", alpha_external$total$raw_alpha, "\n")</pre>
```

Cronbach's Alpha for External Subscale: 0.8665694

Primary Analysis

```
# primary model
r1 <- lm(female_pick ~ gender_feedback, data=d0)
# Display the summary with robust standard errors
robust_summary(r1)
##
## Call:
## lm(formula = female_pick ~ gender_feedback, data = d0)
## Residuals:
      Min
               1Q Median
                            3Q
## -0.3508 -0.3508 -0.2421 0.6492 0.7579
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.24206 0.01912 12.662 < 2e-16 ***
## gender_feedback 0.10874
                             0.02875 3.783 0.000164 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
\#\# Residual standard error: 0.4537 on 998 degrees of freedom
## Multiple R-squared: 0.01419,
                                 Adjusted R-squared: 0.0132
## F-statistic: 14.36 on 1 and 998 DF, p-value: 0.0001599
robust_confint(r1)
                       2.5 %
##
                               97.5 %
## (Intercept)
                 0.20454862 0.2795784
## gender_feedback 0.05232815 0.1651578
```

Robustness

```
## which feedback was shown with gender, remove constant due to ollinearity
r2 <- lm(female_pick ~ gender_feedback + oldies_pick + poets_pick + books_pick - 1,

    data=d0)

# Display the summary with robust standard errors
robust_summary(r2)
##
## Call:
## lm(formula = female_pick ~ gender_feedback + oldies_pick + poets_pick +
      books_pick - 1, data = d0)
##
## Residuals:
               1Q Median
      Min
                              30
                                     Max
## -0.4782 -0.2551 -0.1503 0.5970 1.0000
## Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
## gender_feedback 0.252651 0.025239 10.010 < 2e-16 ***
## oldies_pick
                0.002419
                            0.028872 0.084
                                              0.9333
## poets_pick
                  ## books_pick
                 0.150322
                            0.024801 6.061 1.92e-09 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4737 on 996 degrees of freedom
## Multiple R-squared: 0.245, Adjusted R-squared: 0.242
## F-statistic: 80.81 on 4 and 996 DF, p-value: < 2.2e-16
robust_confint(r2)
##
                         2.5 %
                                  97.5 %
## gender_feedback 0.203123249 0.30217888
## oldies pick
                -0.054238744 0.05907642
## poets_pick
                  0.006749703 0.13887260
## books_pick
                   0.101653669 0.19899098
## robust to demographic controls
r3 <- lm(female_pick ~ gender_feedback + gender_code + race_code + age, data=d0)
# Display the summary with robust standard errors
robust_summary(r3)
##
## Call:
## lm(formula = female_pick ~ gender_feedback + gender_code + race_code +
##
      age, data = d0)
```

```
##
## Residuals:
##
      Min
               1Q Median
## -0.4414 -0.3027 -0.2630 0.5836 0.8709
##
## Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   0.329787
                             0.050668 6.509 1.20e-10 ***
## gender_feedback 0.117171
                              0.028543 4.105 4.37e-05 ***
## gender_code -0.121673 0.028313 -4.297 1.90e-05 ***
## race_code
                   0.018696 0.031895 0.586
                                                  0.558
                  -0.001215
                              0.001087 -1.118
                                                  0.264
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.45 on 995 degrees of freedom
## Multiple R-squared: 0.03324,
                                   Adjusted R-squared: 0.02935
## F-statistic: 8.552 on 4 and 995 DF, p-value: 8.726e-07
robust_confint(r3)
##
                         2.5 %
                                      97.5 %
## (Intercept)
                   0.230358267 0.4292165391
## gender_feedback 0.061158906 0.1731835632
## gender_code
                 -0.177233248 -0.0661121580
## race_code
                  -0.043893471 0.0812852028
## age
                  -0.003347433 0.0009171391
## logistic regression
# Fit the logistic regression model
r4 <- glm(female_pick ~ gender_feedback, family = binomial, data=d0)
summary(r4)
##
## Call:
  glm(formula = female_pick ~ gender_feedback, family = binomial,
##
      data = d0)
## Coefficients:
                  Estimate Std. Error z value Pr(>|z|)
                              0.1040 -10.98 < 2e-16 ***
                   -1.1414
## (Intercept)
                                         3.75 0.000177 ***
                               0.1402
## gender_feedback 0.5259
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1214.9 on 999 degrees of freedom
## Residual deviance: 1200.6 on 998 degrees of freedom
## AIC: 1204.6
##
## Number of Fisher Scoring iterations: 4
```

```
# Odds ratio
tidy_r4 <- tidy(r4, exponentiate = TRUE, conf.int = T)</pre>
print(tidy_r4)
## # A tibble: 2 x 7
##
    term
                    estimate std.error statistic p.value conf.low conf.high
    <chr>
                       <dbl> <dbl>
                                          <dbl>
                                                   <dbl>
                                                            <dbl>
## 1 (Intercept)
                                                                      0.390
                       0.319
                                0.104
                                         -11.0 5.00e-28
                                                            0.260
## 2 gender_feedback
                       1.69
                                0.140
                                           3.75 1.77e- 4
                                                         1.29
                                                                      2.23
```

Interaction Analysis

```
## interaction of base gender
# primary model
r_interaction <- lm(female_pick ~ gender_feedback*base_gender, data=d0)

# Display the summary with robust standard errors
robust_summary(r_interaction)</pre>
```

```
##
## lm(formula = female_pick ~ gender_feedback * base_gender, data = d0)
## Residuals:
      Min
              1Q Median
                             3Q
## -0.4145 -0.3373 -0.2216 0.6439 0.8169
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             ## gender_feedback
                             0.14695
                                       0.04402 3.339 0.000873 ***
                                               2.493 0.012823 *
## base_gender
                             0.03856
                                       0.01547
## gender_feedback:base_gender -0.02551
                                       0.02295 -1.111 0.266631
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.4528 on 996 degrees of freedom
## Multiple R-squared: 0.02024,
                                Adjusted R-squared: 0.01729
## F-statistic: 6.858 on 3 and 996 DF, p-value: 0.0001419
```

Secondary Analysis

Mediation

```
## Sobel test for Internal Motivation
## $statistic
## internal
## 19.65463
##
## $p_value
## internal
##
##
## $se
##
    internal
## 0.01295411
##
## Causal Mediation Analysis
##
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
##
##
                 Estimate 95% CI Lower 95% CI Upper p-value
## ACME
                   0.0432
                                0.0151
                                               0.07 0.0016 **
## ADE
                   0.0656
                                0.0164
                                               0.11 0.0098 **
                                               0.17 <2e-16 ***
## Total Effect
                   0.1087
                                0.0530
## Prop. Mediated 0.3969
                                0.1648
                                               0.75 0.0016 **
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Sample Size Used: 1000
##
##
## Simulations: 10000
```

$ACME(\rho)$


```
## $statistic
## external
## 8.512787
##
## $p_value
   external
##
##
## $se
    external
## 0.0157396
##
## Causal Mediation Analysis
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
##
                  Estimate 95% CI Lower 95% CI Upper p-value
##
## ACME
                   0.01715
                                0.00208
                                                0.03 0.0248 *
                   0.09159
                                0.03863
                                                0.15 0.0012 **
## ADE
## Total Effect
                   0.10874
                                0.05363
                                                0.16 0.0002 ***
## Prop. Mediated 0.15774
                                0.02205
                                                0.36 0.0246 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Sample Size Used: 1000
```

Sobel test for External Motivation

##

Simulations: 10000

$ACME(\rho)$

Correlation Between Internal and External: 0.7463554

P-value: 1.152678e-178

Combined Multiple Mediation Model Results

```
##
## Causal Mediation Analysis
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
##
                  Estimate 95% CI Lower 95% CI Upper p-value
##
## ACME
                    0.0591
                                 0.0200
                                                0.10 0.0034 **
                    0.0659
                                 0.0174
                                                0.11 0.0084 **
## ADE
## Total Effect
                    0.1250
                                0.0632
                                                0.19
                                                     0.0002 ***
## Prop. Mediated
                    0.4728
                                0.2118
                                                0.79 0.0032 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Sample Size Used: 1000
##
```

Simulations: 10000

##

```
## Causal Mediation Analysis
##
## Nonparametric Bootstrap Confidence Intervals with the Percentile Method
##
                 Estimate 95% CI Lower 95% CI Upper p-value
## ACME
                 -0.01622 -0.03234
                                              0.00 0.0204 *
## ADE
                  0.06588
                              0.01841
                                              0.11 0.0076 **
                                              0.10 0.0560 .
## Total Effect
                  0.04965
                             -0.00102
## Prop. Mediated -0.32672
                             -2.59288
                                              0.92 0.0764 .
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Sample Size Used: 1000
##
##
## Simulations: 10000
```

Figure S2 Code

```
dfemale_plot <- d0 |>
  dplyr::select(gender_feedback, female_pick) |>
  dplyr::group_by(gender_feedback) |>
  dplyr::summarise(
   n = n(),
   freq = mean(female pick),
    sd = sd(female_pick) * 100,
    se = (sd(female_pick) / sqrt(n())) * 100
  ) |>
  dplyr::mutate(
    gender_feedback = case_when(
      gender_feedback == 1 ~ "\"Treatment\"",
      TRUE ~ "\"Control\""
    )
  ) |>
  dplyr::rename(Condition = gender_feedback)
##### poets
r_poets <- lm(poets_pick ~ poets_shown, data=d0)</pre>
dpoets_plot <- d0 |>
  dplyr::select(poets_shown, poets_pick) |>
  dplyr::group_by(poets_shown) |>
  dplyr::summarise(
   n = n(),
   freq = mean(poets_pick),
    sd = sd(poets_pick) * 100,
    se = (sd(poets_pick) / sqrt(n())) * 100
  )|>
```

```
mutate(poets_shown = case_when(poets_shown==1 ~ "\"Treatment\"",
                          TRUE ~ "\"Control\"")) |>
 rename(Condition = poets_shown)
##### books
r_books <- lm(books_pick ~ books_shown, data=d0)
dbooks_plot <- d0 |>
  dplyr::select(books_shown, books_pick) |>
  dplyr::group by(books shown) |>
  dplyr::summarise(
   n = n(),
   freq = mean(books_pick),
   sd = sd(books_pick) * 100,
   se = (sd(books_pick) / sqrt(n())) * 100
  mutate(books_shown = case_when(books_shown==1 ~ "\"Treatment\"",
                          TRUE ~ "\"Control\"")) |>
 rename(Condition = books_shown)
#### oldies
r_oldies <- lm(oldies_pick ~ oldies_shown, data=d0)
doldies plot <- d0 |>
  dplyr::select(oldies_shown, oldies_pick) |>
  dplyr::group_by(oldies_shown) |>
  dplyr::summarise(
   n = n(),
   freq = mean(oldies_pick),
   sd = sd(oldies_pick) * 100,
   se = (sd(oldies_pick) / sqrt(n())) * 100
  )|>
  mutate(oldies_shown = case_when(oldies_shown==1 ~ "\"Treatment\"",
                          TRUE ~ "\"Control\"")) |>
 rename(Condition = oldies_shown)
## Combine plots
df_combined <- bind_rows(</pre>
 dpoets_plot %>% mutate(Category = "\nWrote Poetry"),
  dbooks_plot %>% mutate(Category = "\nWrote > 10 books"),
 doldies_plot %>% mutate(Category = "\nWere Born\nin the 1800s"),
 dfemale_plot %>% mutate(Category = "\nWere Women")
, .id = "id") %>%
  mutate(Category = factor(Category, levels = c('\nWrote Poetry', '\nWrote > 10 books',
  → '\nWere Born\nin the 1800s', '\nWere Women')))
p_{combined} \leftarrow ggplot(df_{combined}, aes(x = Condition, y = freq*100, fill = Condition)) +
```

```
geom_bar(stat="identity", width = 0.85, position = position_dodge(width = 0.7)) +
  geom_text(aes(label=paste0(sprintf("%.1f", freq*100),"%")),
            position=position_dodge(width=0.7), vjust=5, size = 4, color = "white") +
  geom_errorbar(aes(ymin=freq*100-se, ymax=freq*100+se), width = .1, position =

→ position_dodge(width = 0.7)) +
  facet_wrap(~factor(Category, c('\nWrote Poetry', '\nWrote > 10 books', '\nWere Born\nin
  → the 1800s', '\nWere Women')), nrow = 1, strip.position = "bottom") +
  geom_segment(data = df_combined %>% filter(Condition == "\"Treatment\""),
                aes(x = 1, xend = 2, y = freq*100 + se + 5, yend = freq*100 + se + 5),
                inherit.aes = FALSE) +
   geom_text(data = df_combined %>% filter(Category %in% c('\nWrote Poetry', '\nWrote >
   → 10 books', '\nWere Born\nin the 1800s') & Condition == "\"Treatment\""),
             aes(x = 1.5, xend = 1.5, y = freq*100 + se + 7, yend = freq*100 + se + 7,
             \rightarrow label = "n.s."),
             inherit.aes = FALSE, vjust = 0) +
   geom_text(data = df_combined %>% filter(Category == '\nWere Women' & Condition ==

    "\"Treatment\""),
             aes(x = 1.5, xend = 1.5, y = freq*100 + se + 5, yend = freq*100 + se + 5,
             \rightarrow label = "***"),
             inherit.aes = FALSE, vjust = 0) +
  theme_bw() +
  scale_fill_manual(values = c("#990000", "#011F5B"), labels = c("No feedback provided",
  → "Feedback provided"), "Feedback") +
  scale_y\_continuous(labels = function(x) paste0(x,"%"), limits = c(0,90)) +
  scale_x_discrete(labels = c("\"Control\"" = "Not\nShown", "\"Treatment\"" = "Shown")) +
  labs(x = "Feedback on % of authors who...", y = "% of New Authors with the Target
  → Attribute",title = "The Effect of Getting Feedback on Your Author Selections") +
  theme(plot.caption = element_text(face = "italic"),
        legend.position = c(0.5, 0.95),
        legend.title = element_blank(),
        legend.direction = "horizontal",
        legend.text = element_text(size = 12),
        legend.key.size = unit(7, 'mm'),
        legend.background = element_rect(fill = "white"),
        panel.grid.minor = element_blank(),
        panel.grid = element_blank(),
       panel.border = element_rect(fill= NA, color = "white"),
       plot.background = element_rect(fill = "white"),
       panel.background = element_rect(fill = "white"),
       axis.title.x = element_text(face="bold", size = 13, vjust = 21),
       plot.title = element blank(),
       axis.title.y = element text(size = 12, color = "black"),
       axis.text.x = element_blank(),
       axis.ticks = element_blank(),
       axis.text.y = element_text(size = 12, color = "black"),
       strip.text = element_text(size = 12, color = "black"),
        strip.background = element_rect(colour = "white", fill = "white"))
\#p\_combined
# Save the plot with Times New Roman font
ggsave("../Supplemental Studies/Supplemental_Figures/Figure-S1.pdf", plot = p_combined,
→ width = 10, height = 8, units = "in", device = cairo_pdf, family = "Times New Roman")
```

System of Simultaneous Equations

##					Wald.Coefficient	P_Value
##	${\tt Gender}$	Feedback	- poets	Feedback	45.46436853	2.029532e-11
##	Gender	Feedback	- books	Feedback	0.05131848	8.208079e-01
##	Gender	Feedback	- oldies	s Feedback	18.51765959	1.764927e-05