Non computable functions

Curch's Thesis: computability = computability by TM's

computable functions so far:

$$f: \mathbb{N}_0^r \to \mathbb{N}_0$$

Curch's Thesis: computability = computability by TM's

computable functions so far:

$$f: \mathbb{N}_0^r \to \mathbb{N}_0$$

Let *A* be an alphabet not containing the blank symbol:

$$B \notin A$$

so it is no tape alphabet of a TM (which has to include *B*)

allowing strings $w \in A^*$ as inputs:

Curch's Thesis: computability = computability by TM's

computable functions so far:

$$f: \mathbb{N}_0^r \to \mathbb{N}_0$$

Let A be an alphabet not containing the blank symbol:

$$B \notin A$$

so it is no tape alphabet of a TM (which has to include *B*)

allowing strings $w \in A^*$ as inputs:

def: function f_M computed by TM M:

$$f_M: A^* \to A^*$$

• if M started with input w (on tape 1 and other tapes empty) halts with inscription $v \in A*$ on tape 1, then

$$f_{\mathbf{M}}(w) = v$$

otherwise

$$f_{M}(w) = \Omega$$

is undefinded

def: function f_M computed by TM M:

$$f_M: A^* \to A^*$$

• if M started with input w (on tape 1 and other tapes empty) halts with inscription $v \in A*$ on tape 1, then

$$f_{\mathbf{M}}(w) = v$$

otherwise

$$f_{\mathbf{M}}(w) = \mathbf{\Omega}$$

is undefinded

of special interest: 0/1 valued functions.

def: characteristic function χ_L of a language L Let $L \subseteq A^*$. Then

$$\chi_L: A^* \to \{0,1\}$$

is defined by

$$\chi_L(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$$

def: function f_M computed by TM M:

$$f_M: A^* \to A^*$$

• if M started with input w (on tape 1 and other tapes empty) halts with inscription $v \in A*$ on tape 1, then

$$f_{\mathbf{M}}(w) = v$$

otherwise

$$f_{\mathbf{M}}(w) = \mathbf{\Omega}$$

is undefinded

of special interest: 0/1 valued functions.

def: characteristic function χ_L of a language L Let $L \subseteq A^*$. Then

$$\chi_L: A^* \to \{0,1\}$$

is defined by

$$\chi_L(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$$

def: decidable languages L is decidable if its characteristic function is computed by a TM M

$$\chi_L = f_M$$

Note: as χ_L is total, the machine must halt for each input $w \in A^*$. We say M decides (membership in) L.

def: function f_M computed by TM M:

$$f_M: A^* \to A^*$$

• if M started with input w (on tape 1 and other tapes empty) halts with inscription $v \in A*$ on tape 1, then

$$f_{\mathbf{M}}(w) = v$$

• otherwise

$$f_{\mathbf{M}}(w) = \Omega$$

is undefinded

of special interest: 0/1 valued functions.

def: characteristic function χ_L of a language L Let $L \subseteq A^*$. Then

$$\chi_L: A^* \to \{0,1\}$$

is defined by

$$\chi_L(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$$

def: decidable languages L is decidable if its characteristic function is computed by a TM M

$$\chi_L = f_M$$

Note: as χ_L is total, the machine must halt for each input $w \in A^*$. We say M decides (membership in) L.

def: acceptor for L M is acceptor for l iff

 $\forall w \in A^*$. M started with w halts $\leftrightarrow w \in L$

Note:

- L decidable $\rightarrow \exists$ acceptor for L (trivial exercise).
- we will see, that the converse is not true.

def: function f_M computed by TM M:

$$f_M: A^* \to A^*$$

• if M started with input w (on tape 1 and other tapes empty) halts with inscription $v \in A*$ on tape 1, then

$$f_{\mathbf{M}}(w) = v$$

• otherwise

$$f_{\mathbf{M}}(w) = \Omega$$

is undefinded

of special interest: 0/1 valued functions.

def: characteristic function χ_L of a language L Let $L \subseteq A^*$. Then

$$\chi_L: A^* \to \{0,1\}$$

is defined by

$$\chi_L(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$$

def: decidable languages L is decidable if its characteristic function is computed by a TM M

$$\chi_L = f_M$$

Note: as χ_L is total, the machine must halt for each input $w \in A^*$. We say M decides (membership in) L.

def: acceptor for L M is acceptor for l iff

 $\forall w \in A^*$. M started with w halts $\leftrightarrow w \in L$

Note:

- L decidable $\rightarrow \exists$ acceptor for L (trivial exercise).
- we will see, that the converse is not true.

no condition if $w \notin L$

For digital natives:

- Turing machines are programs
- programs = strings = data is obvious.

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

 $A = \{a_0, \dots, a_s\}$
 $E = \{z : \delta(z, a) \text{ undefined for all } a\}$

For digital natives:

- Turing machines are programs
- programs = strings = data is obvious.

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

$$A = \{a_0, \dots, a_s\}$$

$$E = \{z : \delta(z, a) \text{ undefined for all } a\}$$

now code

$$\delta(z_i, a_j) = (z_k, a_\ell, m)$$

as

$$\#bin(i)\#bin(j)\#bin(k)\#bin(\ell)\#m'\#$$

with

$$m' = \begin{cases} 00 & m = L \\ 01 & m = N \\ 10 & m = R \end{cases}$$

For digital natives:

- Turing machines are programs
- programs = strings = data is obvious.

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

$$A = \{a_0, \dots, a_s\}$$

$$E = \{z : \delta(z, a) \text{ undefined for all } a\}$$

now code

$$\delta(z_i, a_j) = (z_k, a_\ell, m)$$

as

$$\#bin(i)\#bin(j)\#bin(k)\#bin(\ell)\#m'\#$$

with

$$m' = \begin{cases} 00 & m = L \\ 01 & m = N \\ 10 & m = R \end{cases}$$

concatenate all these strings with result

$$code'(M) \in \{0, 1, \#\}^*$$

For digital natives:

- Turing machines are programs
- programs = strings = data is obvious.

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

$$A = \{a_0, \dots, a_s\}$$

$$E = \{z : \delta(z, a) \text{ undefined for all } a\}$$

now code

$$\delta(z_i, a_j) = (z_k, a_\ell, m)$$

as

$$\#bin(i)\#bin(j)\#bin(k)\#bin(\ell)\#m'\#$$

with

$$m' = \begin{cases} 00 & m = L \\ 01 & m = N \\ 10 & m = R \end{cases}$$

• concatenate all these strings with result

$$code'(M) \in \{0, 1, \#\}^*$$

• finally obtain code(x) by replacing in code'(M) symbol by symbol

$$0 \text{ by} : 00$$
 , $1 \text{ by} : 01$, $\# \text{ by} : 10$

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

$$A = \{a_0, \dots, a_s\}$$

$$E = \{z : \delta(z, a) \text{ undefined for all } a\}$$

now code

$$\delta(z_i, a_j) = (z_k, a_\ell, m)$$

as

$$\#bin(i)\#bin(j)\#bin(k)\#bin(\ell)\#m'\#$$

with

$$m' = \begin{cases} 00 & m = L \\ 01 & m = N \\ 10 & m = R \end{cases}$$

• concatenate all these strings with result

$$code'(M) \in \{0, 1, \#\}^*$$

• finally obtain code(x) by replacing in code'(M) symbol by symbol

$$0 \text{ by} : 00$$
 , $1 \text{ by} : 01$, $\# \text{ by} : 10$

names:

- code(x) is called *Goedelisation* of M
- $\langle code(x) \rangle \in \mathbb{N}_0$ is called *Goedel number* of *M*

coding 1 tape Turing machines as strings:

• Let

$$M = (Z, A, \delta, z_0, E)$$

be a 1 tape TM. W.l.o.g

$$Z = \{z_0, \dots, z_r\}$$

$$A = \{a_0, \dots, a_s\}$$

$$E = \{z : \delta(z, a) \text{ undefined for all } a\}$$

now code

$$\delta(z_i, a_j) = (z_k, a_\ell, m)$$

as

$$\#bin(i)\#bin(j)\#bin(k)\#bin(\ell)\#m'\#$$

with

$$m' = \begin{cases} 00 & m = L \\ 01 & m = N \\ 10 & m = R \end{cases}$$

• concatenate all these strings with result

$$code'(M) \in \{0, 1, \#\}^*$$

• finally obtain code(x) by replacing in code'(M) symbol by symbol

$$0 \text{ by} : 00$$
 , $1 \text{ by} : 01$, $\# \text{ by} : 10$

names:

- *code*(*x*) is called *Goedelisation* of *M*
- $\langle code(x) \rangle \in \mathbb{N}_0$ is called *Goedel number* of *M*

inverse mapping Let $u \in \mathbb{B}^*$. We define Turing machine M_u (the TM coded by u) as

- the machine M with code(M) = u if u is code of a machine
- M_0 otherwise; M_0 ignores the input and halts $(E = \{z_0\})$.

def: halting problem

$$H = \{u # v : u, v \in \mathbb{B}^*, M_u \text{ started with } v \text{ halts}\}$$

def: special halting problem

$$K = \{u \in \mathbb{B}^* : M_u \text{ started with } u \text{ halts}\}$$

def: halting problem

$$H = \{u \# v : u, v \in \mathbb{B}^*, M_u \text{ started with } v \text{ halts}\}$$

def: special halting problem

$$K = \{u \in \mathbb{B}^* : M_u \text{ started with } u \text{ halts}\}$$

THE classic result of TCS

Lemma 1. The special halting problem K is undecidable.

def: halting problem

$$H = \{u # v : u, v \in \mathbb{B}^*, M_u \text{ started with } v \text{ halts}\}$$

def: special halting problem

$$K = \{u \in \mathbb{B}^* : M_u \text{ started with } u \text{ halts}\}$$

THE classic result of TCS

Lemma 1. The special halting problem K is undecidable.

- by contradiction. Assume machine Q computes χ_K , i.e.
- Q started with u halts for all inputs with result

$$f_Q(u) = \begin{cases} 1 & M_u \text{ started with } u \text{ halts} \\ 0 & M_u \text{ started with } u \text{ does not halt} \end{cases}$$

def: halting problem

$$H = \{u # v : u, v \in \mathbb{B}^*, M_u \text{ started with } v \text{ halts}\}$$

def: special halting problem

$$K = \{u \in \mathbb{B}^* : M_u \text{ started with } u \text{ halts} \}$$

THE classic result of TCS

Lemma 1. The special halting problem K is undecidable.

- by contradiction. Assume machine Q computes χ_K , i.e.
- Q started with u halts for all inputs with result

$$f_Q(u) = \begin{cases} 1 & M_u \text{ started with } u \text{ halts} \\ 0 & M_u \text{ started with } u \text{ does not halt} \end{cases}$$

• modify Q to machine R as illustrated in figure 1.

Figure 1: construction of machine R from machine Q

With input *u*

run Q with input u with result $f_Q(u)$. If $f_Q(u) = 0$: stop. If $f_Q(u) = 1$: run forever.

def: halting problem

$$H = \{u # v : u, v \in \mathbb{B}^*, M_u \text{ started with } v \text{ halts}\}$$

def: special halting problem

$$K = \{u \in \mathbb{B}^* : M_u \text{ started with } u \text{ halts} \}$$

THE classic result of TCS

Lemma 1. The special halting problem K is undecidable.

- by contradiction. Assume machine Q computes χ_K , i.e.
- Q started with u halts for all inputs with result

$$f_Q(u) = \begin{cases} 1 & M_u \text{ started with } u \text{ halts} \\ 0 & M_u \text{ started with } u \text{ does not halt} \end{cases}$$

• modify Q to machine R as illustrated in figure 1.

Figure 1: construction of machine R from machine Q

With input *u*

run Q with input u with result $f_Q(u)$. If $f_Q(u) = 0$: stop. If $f_Q(u) = 1$: run forever.

• Let r = code(R) and consider $R = M_r$ started with r. Then

R started with r halts

- $\leftrightarrow f_Q(r) = 1$ (assumption about Q)
- \leftrightarrow R started with r does not halt (construction of R)

4.1 Basics

def: reducibility Let

$$L,L'\subseteq A^*$$

be languages. L is *reducible* to L' and write

$$L \leq L'$$

iff there is a total computable function

$$f: A^* \to A^*$$

such that

$$\forall w \in A. \quad w \in L \leftrightarrow f(w) \in L'$$

i.e the question $w \in L$? is reformulated as $f(w) \in L'$?

4 Reducibility

4.1 Basics

def: reducibility Let

$$L,L'\subseteq A^*$$

be languages. L is *reducible* to L' and write

$$L \leq L'$$

iff there is a total computable function

$$f: A^* \to A^*$$

such that

$$\forall w \in A. \quad w \in L \leftrightarrow f(w) \in L'$$

i.e the question $w \in L$? is reformulated as $f(w) \in L'$?

Lemma 2. Let $L \leq L'$. Then

- if L' is decidable, then L is decidable
- if L is undecidable, then L' is undecidable.

Proof. easy exercise

4 Reducibility

4.1 Basics

def: reducibility Let

$$L,L'\subseteq A^*$$

be languages. L is *reducible* to L' and write

$$L \leq L'$$

iff there is a total computable function

$$f: A^* \to A^*$$

such that

$$\forall w \in A. \quad w \in L \leftrightarrow f(w) \in L'$$

i.e the question $w \in L$? is reformulated as $f(w) \in L'$?

Lemma 2. Let $L \leq L'$. Then

- if L' is decidable, then L is decidable
- if L is undecidable, then L' is undecidable.

Proof. easy exercise

4 Reducibility

example:

Lemma 3. $K \leq H$, hence the halting problem H is undecidable:

Proof.

$$f(u) = u#u$$

4.1 Basics

def: reducibility Let

$$L, L' \subseteq A^*$$

be languages. L is *reducible* to L' and write

$$L \leq L'$$

iff there is a total computable function

$$f: A^* \to A^*$$

such that

$$\forall w \in A. \quad w \in L \leftrightarrow f(w) \in L'$$

i.e the question $w \in L$? is reformulated as $f(w) \in L'$?

Lemma 2. Let $L \leq L'$. Then

- if L' is decidable, then L is decidable
- if L is undecidable, then L' is undecidable.

Proof. easy exercise

4 Reducibility

example:

Lemma 3. $K \leq H$, hence the halting problem H is undecidable:

Proof.

$$f(u) = u#u$$

remarks

- \leq is transitive
- we define

$$L \equiv L' \leftrightarrow L \leq L' \land L' \leq L$$

- \equiv is equivalence relation
- classes of equally undecidable problems (studied recursion theory; IMHO moderately exciting)

4.2 Two more examples (of program properties)

 $C = \{u : M_u \text{ computes a constant function}\}$

 $K_0 = \{u : M_u \text{ started with empty tape halts}\}$

4.2 Two more examples (of program properties)

 $C = \{u : M_u \text{ computes a constant function}\}$

 $K_0 = \{u : M_u \text{ started with empty tape halts}\}$

Lemma 4. $K \leq K_0$, i.e. K_0 is undecidable.

- f will transform goedelisations u into goedelisations f(u)
- for $u \in A^*$ machine $M_{f(u)}$ writes u on the empty tape and then behaves like M_u .

4.2 Two more examples (of program properties)

 $C = \{u : M_u \text{ computes a constant function}\}$

 $K_0 = \{u : M_u \text{ started with empty tape halts}\}$

Lemma 4. $K \leq K_0$, i.e. K_0 is undecidable.

- f will transform goedelisations u into goedelisations f(u)
- for $u \in A^*$ machine $M_{f(u)}$ writes u on the empty tape and then behaves like M_u .

Lemma 5. $K_0 \leq C$, i.e. C is undecidable.

machine $M_{f(u)}$ started with input x

- erases x
- behaves like M_u (started with empty tape)
- if it halts: output 1.

4.3 Rice's theorem

question: can we decide any nontrivial property of programs/goedelisations u?

trivial property: holds for all programs or for none.

4.3 Rice's theorem

question: can we decide any nontrivial property of programs/goedelisations u? trivial property: holds for all programs or for none.

Lemma 6. Partition the set of computable functions

$$R = \{f : \{0,1,\#\}^* \to \{0,1,\#\}^* \mid f \text{ is computable}\}\$$

into

$$R = R_1 \dot{\cup} R_2$$

in a nontrivial way

$$R_1 \neq \emptyset$$
, $R_2 \neq \emptyset$

Then the set

$$R' = \{u : f_{M_u} \in R_1\}$$

is not decidable

show $K_0 \le R'$ by program transformation f s.t,

 $M_{f(u)}$ computes function in $R' \leftrightarrow M_u$ started with empty tape halts

4.3 Rice's theorem

question: can we decide any nontrivial property of programs/goedelisations u? trivial property: holds for all programs or for none.

Lemma 6. Partition the set of computable functions

$$R = \{f : \{0,1,\#\}^* \to \{0,1,\#\}^* \mid f \text{ is computable}\}\$$

into

$$R = R_1 \dot{\cup} R_2$$

in a nontrivial way

$$R_1 \neq \emptyset$$
, $R_2 \neq \emptyset$

Then the set

$$R' = \{u : f_{M_u} \in R_1\}$$

is not decidable

show $K_0 \le R'$ by program transformation f s.t,

 $M_{f(u)}$ computes function in $R' \leftrightarrow M_u$ started with empty tape halts

- let Ω be the function, which is everywhere undefined. W.l.o.g $\Omega \in R_2$.
- let M' a TM computing a function in R_1 (exists, as $R_1 \neq \emptyset$)
- definition of transformed machine $M_{f(u)}$ started with input x
 - 1. ignore but save input x (e.g. save on extra track)
 - 2. behave as M_u started with empty tape
 - 3. if M_u halts: behave like M' started with x
- then the function computed by $M_{f(u)}$ is

$$f_{M_{f(u)}} = \begin{cases} \Omega & u \notin K_0 \\ f_{M'} & u \in K_0 \end{cases}$$

hence

$$f(u) \in R' \iff u \in K_0$$

Lemma 7. There exists a (universal) Turing machine U such that for all u, v machine U started with u#v simulates M_u started with v

For digital natives

- being able to write in language L
- an interpreter for programs in L

Lemma 7. There exists a (universal) Turing machine U such that for all u, v machine U started with $u \neq v$ simulates M_u started with v

Very quick proof: write in C a TM interpreter U'. With input u#v

- decode *u* to TM *M*
- simulate M started with v
- simulate U' by 1 tape TM.

In the future we will construct U directly as a TM.

For digital natives

- being able to write in language L
- an interpreter for programs in L

Lemma 7. There exists a (universal) Turing machine U such that for all u, v machine U started with $u \neq v$ simulates M_u started with v

Very quick proof: write in C a TM interpreter U'. With input u#v

- decode *u* to TM *M*
- simulate M started with v
- simulate U' by 1 tape TM.

In the future we will construct U directly as a TM.

observe:

U is acceptor for the halting problem H.

For digital natives

- being able to write in language L
- an interpreter for programs in L

Lemma 7. There exists a (universal) Turing machine U such that for all u, v machine U started with u # v simulates M_u started with v

Very quick proof: write in C a TM interpreter U'. With input u#v

- decode u to TM M
- simulate M started with v
- simulate U' by 1 tape TM.

In the future we will construct U directly as a TM.

observe:

U is acceptor for the halting problem H.

Lemma 8. A language L is decidable iff there exist acceptors for L and \overline{L}

- \rightarrow : trivial (why?)
- \leftarrow : by *dovetailing*. Given input $w \in A^*$ alternate between simultating 1 step of
 - 1. acceptor A_1 for L started with w
 - 2. acceptor A_2 for \overline{L} strated with w
- if A_1 halts first output 1, if A_2 halts first output 0.

For digital natives

- being able to write in language L
- an interpreter for programs in L

Lemma 7. There exists a (universal) Turing machine U such that for all u, v machine U started with u # v simulates M_u started with v

Very quick proof: write in C a TM interpreter U'. With input u#v

- decode u to TM M
- simulate M started with v
- simulate U' by 1 tape TM.

In the future we will construct U directly as a TM.

observe:

U is acceptor for the halting problem H.

Lemma 8. A language L is decidable iff there exist acceptors for L and \overline{L}

- \rightarrow : trivial (why?)
- \leftarrow : by *dovetailing*. Given input $w \in A^*$ alternate between simultating 1 step of
 - 1. acceptor A_1 for L started with w
 - 2. acceptor A_2 for \overline{L} strated with w
- if A_1 halts first output 1, if A_2 halts first output 0.

Lemma 9. \overline{H} has no acceptor

Proof. universal machine U is acceptor for H; if \overline{H} would have an acceptor, then H would be decidable.

6 Recursively enumerable languages/sets

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. *L* is r.e. iff *L* has an acceptor.

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. *L* is r.e. iff *L* has an acceptor.

 \rightarrow : assume M enumerates L. Construct acceptor M' for L.

- input w
- enumerate $L = v_1, v_2, \dots$
- for each output v_i test $v_i = w$. If true, stop.

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. *L* is r.e. iff *L* has an acceptor.

- \rightarrow : assume *M* enumerates *L*. Construct acceptor *M'* for *L*.
 - input w
 - enumerate $L = v_1, v_2, \dots$
 - for each output v_i test $v_i = w$. If true, stop.
- \leftarrow : slightly trickier. Let M be an acceptor for L.
 - good news: tapes are infinite, configurations of *M* are finite. Thus we can store any number *r* of configurations of *M* on one tape.
 - one can enumerate $A^* = \{v_1, v_2, ...\}$ e.g. by length and for equal length in lexicographic order.
 - now proceed in rounds. In round 1 create start configuration k_1 of M started with v_1 .

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. L is r.e. iff L has an acceptor.

- \rightarrow : assume *M* enumerates *L*. Construct acceptor *M'* for *L*.
 - input w
 - enumerate $L = v_1, v_2, \dots$
 - for each output v_i test $v_i = w$. If true, stop.
- \leftarrow : slightly trickier. Let M be an acceptor for L.
 - good news: tapes are infinite, configurations of *M* are finite. Thus we can store any number *r* of configurations of *M* on one tape.
 - one can enumerate $A^* = \{v_1, v_2, ...\}$ e.g. by length and for equal length in lexicographic order.
 - now proceed in rounds. In round 1 create start configuration k_1 of M started with v_1 .

• In rounds r > 1

- 1. simulate 1 step of M for each configuration k_i , i < r on the tape. Each such step might require to shift the tape inscription right of k_i to the right or the portion left of k to the left. If the step of k_i leads to an accepting configuration output v_i .
- 2. add on the tape as new configuration k_r the start configuration of M started with v_r .

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. L is r.e. iff L has an acceptor.

- \rightarrow : assume M enumerates L. Construct acceptor M' for L.
 - input w
 - enumerate $L = v_1, v_2, \dots$
 - for each output v_i test $v_i = w$. If true, stop.
- \leftarrow : slightly trickier. Let M be an acceptor for L.
 - good news: tapes are infinite, configurations of *M* are finite. Thus we can store any number *r* of configurations of *M* on one tape.
 - one can enumerate $A^* = \{v_1, v_2, ...\}$ e.g. by length and for equal length in lexicographic order.
 - now proceed in rounds. In round 1 create start configuration k_1 of M started with v_1 .

- In rounds r > 1
 - 1. simulate 1 step of M for each configuration k_i , i < r on the tape. Each such step might require to shift the tape inscription right of k_i to the right or the portion left of k to the left. If the step of k_i leads to an accepting configuration output v_i .
 - 2. add on the tape as new configuration k_r the start configuration of M started with v_r .

Lemma 11. Let L be a type-0 language. Then L has an acceptor.

6 Recursively enumerable languages/sets

def: recursively enumerable language Language $L \subseteq A^*$ is recursively enumerable (r.e.) if there is a TM M s.t. M started with empty tape outputs (say on an output tape) exactly the words in L in some order.

Lemma 10. *L* is r.e. iff *L* has an acceptor.

- \rightarrow : assume M enumerates L. Construct acceptor M' for L.
 - input w
 - enumerate $L = v_1, v_2, \dots$
 - for each output v_i test $v_i = w$. If true, stop.
- \leftarrow : slightly trickier. Let M be an acceptor for L.
 - good news: tapes are infinite, configurations of *M* are finite. Thus we can store any number *r* of configurations of *M* on one tape.
 - one can enumerate $A^* = \{v_1, v_2, ...\}$ e.g. by length and for equal length in lexicographic order.
 - now proceed in rounds. In round 1 create start configuration k_1 of M started with v_1 .

- In rounds r > 1
 - 1. simulate 1 step of M for each configuration k_i , i < r on the tape. Each such step might require to shift the tape inscription right of k_i to the right or the portion left of k to the left. If the step of k_i leads to an accepting configuration output v_i .
 - 2. add on the tape as new configuration k_r the start configuration of M started with v_r .

Lemma 11. Let L be a type-0 language. Then L has an acceptor.

- let L = L(G) be generated by type-0 grammar G.
- on input w enumerate all derivations of G, say by increasing length and for each length in lexicographic order. If any such derivation produces w accept.

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of *G*:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of G:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

• intuition for next rules: for possible inputs w = w[1:n] of TM M the grammar can generate strings of the form

$$(B,B)^{u}z_{0}(w_{1},w_{1})\dots(w_{n},w_{n})(B,B)^{v}$$

i.e. copies of w on both tracks, surrounded by enough B's on both tracks. Productions for this

- 1. $S \rightarrow (B,B)S \mid z_0A_1$
- 2. $A_1 \rightarrow (a,a)A_1 \mid A_2 \text{ for all } a \in A \setminus \{B\}$
- 3. $A_2 \rightarrow (B,B)A_2 \mid \varepsilon$

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of G:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

• intuition for next rules: for possible inputs w = w[1:n] of TM M the grammar can generate strings of the form

$$(B,B)^{u}z_{0}(w_{1},w_{1})\dots(w_{n},w_{n})(B,B)^{v}$$

i.e. copies of w on both tracks, surrounded by enough B's on both tracks. Productions for this

- 1. $S \rightarrow (B,B)S \mid z_0A_1$
- 2. $A_1 \rightarrow (a,a)A_1 \mid A_2 \text{ for all } a \in A \setminus \{B\}$
- 3. $A_2 \rightarrow (B,B)A_2 \mid \varepsilon$

- simulate *M* on the lower track (and remember input on upper track)
 - 1. if $\delta(z,a) = (z',c,L)$ then for all $b,C,D \in A$ production $(C,b)z(D,a) \to z'(C,b)(D,c)$
 - 2. if $\delta(z,a) = (z',c,N)$ then for all $b,D \in A$ production $z(D,a) \to z'(D,c)$
 - 3. if $\delta(z,a) = (z',c,R)$ then for all $b,D \in A$ production $z(D,a) \to (D,c)z'$

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of G:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

• intuition for next rules: for possible inputs w = w[1:n] of TM M the grammar can generate strings of the form

$$(B,B)^{u}z_{0}(w_{1},w_{1})\dots(w_{n},w_{n})(B,B)^{v}$$

i.e. copies of w on both tracks, surrounded by enough B's on both tracks. Productions for this

- 1. $S \rightarrow (B,B)S \mid z_0A_1$
- 2. $A_1 \rightarrow (a,a)A_1 \mid A_2 \text{ for all } a \in A \setminus \{B\}$
- 3. $A_2 \rightarrow (B,B)A_2 \mid \varepsilon$

- simulate *M* on the lower track (and remember input on upper track)
 - 1. if $\delta(z,a) = (z',c,L)$ then for all $b,C,D \in A$ production $(C,b)z(D,a) \to z'(C,b)(D,c)$
 - 2. if $\delta(z,a) = (z',c,N)$ then for all $b,D \in A$ production $z(D,a) \to z'(D,c)$
 - 3. if $\delta(z,a) = (z',c,R)$ then for all $b,D \in A$ production $z(D,a) \to (D,c)z'$
- if this reaches an end state $z \in E$ throw away right components of pairs, i.e. the lower track. For all $z \in E$ and all $a, D \in A'$ productions

$$z(a,D) \rightarrow zaz$$
 , $(a,D)z \rightarrow zaz$

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of G:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

• intuition for next rules: for possible inputs w = w[1:n] of TM M the grammar can generate strings of the form

$$(B,B)^{u}z_{0}(w_{1},w_{1})\dots(w_{n},w_{n})(B,B)^{v}$$

i.e. copies of w on both tracks, surrounded by enough B's on both tracks. Productions for this

- 1. $S \rightarrow (B,B)S \mid z_0A_1$
- 2. $A_1 \rightarrow (a,a)A_1 \mid A_2 \text{ for all } a \in A \setminus \{B\}$
- 3. $A_2 \rightarrow (B,B)A_2 \mid \varepsilon$

- simulate *M* on the lower track (and remember input on upper track)
 - 1. if $\delta(z,a) = (z',c,L)$ then for all $b,C,D \in A$ production $(C,b)z(D,a) \to z'(C,b)(D,c)$
 - 2. if $\delta(z,a) = (z',c,N)$ then for all $b,D \in A$ production $z(D,a) \to z'(D,c)$
 - 3. if $\delta(z,a) = (z',c,R)$ then for all $b,D \in A$ production $z(D,a) \to (D,c)z'$
- if this reaches an end state $z \in E$ throw away right components of pairs, i.e. the lower track. For all $z \in E$ and all $a, D \in A'$ productions

$$z(a,D) \rightarrow zaz$$
 , $(a,D)z \rightarrow zaz$

• finally trow away blanks and the copies of states z. For all $z \in E$ productions

$$B \to \varepsilon$$
 , $z \to \varepsilon$

Lemma 12. If $L \subseteq (A \setminus \{B\})^*$ has an acceptor, then L is a type-0 language.

Given an acceptor $M = (Z, A, \delta, z_0, E)$ we construct a grammar $G = (A \setminus \{B\}, N, P, S)$ with $L(G) = \{w \in (A \setminus \{B\})^* : M \text{ accepts } w\}.$

• nonterminals of G:

$$N = A \cup A \times A \cup Z \cup \{S, A_1, A_2\}$$

Alphabet symbols $(a_1, a_2) \in A \times A$ occupy 2 tracks with a_1 on upper track, a_2 on lower track.

• intuition for next rules: for possible inputs w = w[1:n] of TM M the grammar can generate strings of the form

$$(B,B)^{u}z_{0}(w_{1},w_{1})\dots(w_{n},w_{n})(B,B)^{v}$$

i.e. copies of w on both tracks, surrounded by enough B's on both tracks. Productions for this

- 1. $S \rightarrow (B,B)S \mid z_0A_1$
- 2. $A_1 \rightarrow (a,a)A_1 \mid A_2 \text{ for all } a \in A \setminus \{B\}$
- 3. $A_2 \rightarrow (B,B)A_2 \mid \varepsilon$

- simulate *M* on the lower track (and remember input on upper track)
 - 1. if $\delta(z,a) = (z',c,L)$ then for all $b,C,D \in A$ production $(C,b)z(D,a) \to z'(C,b)(D,c)$
 - 2. if $\delta(z,a) = (z',c,N)$ then for all $b,D \in A$ production $z(D,a) \to z'(D,c)$
 - 3. if $\delta(z,a) = (z',c,R)$ then for all $b,D \in A$ production $z(D,a) \to (D,c)z'$
- if this reaches an end state $z \in E$ throw away right components of pairs, i.e. the lower track. For all $z \in E$ and all $a, D \in A'$ productions

$$z(a,D) \rightarrow zaz$$
 , $(a,D)z \rightarrow zaz$

• finally trow away blanks and the copies of states z. For all $z \in E$ productions

$$B \to \varepsilon$$
 , $z \to \varepsilon$

Lemma 13. The type-0 languages are exactly the r.e. languages.

Lemma 14. There are undecidable type-0 languages. why?

7 The recursion theorem (Kleene 1938)

question: is there a TM M_u , such that M_u started on empty tape prints its own goedelisation u.

notation For $u \in \mathbb{B}^*$ we denote by

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

7 The recursion theorem (Kleene 1938)

question: is there a TM M_u , such that M_u started on empty tape prints its own goedelisation u.

notation For $u \in \mathbb{B}^*$ we denote by

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h : \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

proof (magic): construct total computable program transformation \tilde{g} by

$$\varphi_{\tilde{g}(u)}(x) = \begin{cases} \varphi_{\varphi_u(u)}(x) & \varphi_u(u) \text{ defined} \\ \Omega & \text{otherwise} \end{cases}$$

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

proof (magic): construct total computable program transformation \tilde{g} by

$$\varphi_{\tilde{g}(u)}(x) = \begin{cases} \varphi_{\varphi_u(u)}(x) & \varphi_u(u) \text{ defined} \\ \Omega & \text{otherwise} \end{cases}$$

program for computation of $\tilde{g}(u)$

- decode transition function of M_u from u.
- create code(M) of the following machine M
 - 1. save input *x* on free track
 - 2. run M_u with input u
 - 3. if this halts with result $e \in \mathbb{B}^*$ run universal TM U with input e # x, i.e. simulate M_e on input x.
 - 4. if this terminates, output result of the simulation.

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

proof (magic): construct total computable program transformation \tilde{g} by

$$\varphi_{\tilde{g}(u)}(x) = \begin{cases} \varphi_{\varphi_u(u)}(x) & \varphi_u(u) \text{ defined} \\ \Omega & \text{otherwise} \end{cases}$$

program for computation of $\tilde{g}(u)$

- decode transition function of M_u from u.
- create code(M) of the following machine M
 - 1. save input x on free track
 - 2. run M_u with input u
 - 3. if this halts with result $e \in \mathbb{B}^*$ run universal TM U with input e # x, i.e. simulate M_e on input x.
 - 4. if this terminates, output result of the simulation.

Then

$$h \circ \tilde{g} = \varphi_{v}$$

is a total computable function with

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

proof (magic): construct total computable program transformation \tilde{g} by

$$\varphi_{\tilde{g}(u)}(x) = \begin{cases} \varphi_{\varphi_u(u)}(x) & \varphi_u(u) \text{ defined} \\ \Omega & \text{otherwise} \end{cases}$$

program for computation of $\tilde{g}(u)$

- decode transition function of M_u from u.
- create code(M) of the following machine M
 - 1. save input x on free track
 - 2. run M_u with input u
 - 3. if this halts with result $e \in \mathbb{B}^*$ run universal TM U with input e # x, i.e. simulate M_e on input x.
 - 4. if this terminates, output result of the simulation.

Then

$$h \circ \tilde{g} = \varphi_{v}$$

is a total computable function with

$$u = \tilde{g}(v) \rightarrow \varphi_u = \varphi_{h(u)}$$

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

Lemma 16. There is a TM M_u such that M_u started with empty tape prints u

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

Lemma 16. There is a TM M_u such that M_u started with empty tape prints u

consider program transformation h. With input u

- print goedelisation $code(D_u)$ of the following machine:
- D_u started with empty tape prints u

$$\varphi_u = f_{M_u}$$

the function computed by TM M_u .

Lemma 15. Let $h: \mathbb{B}^* \to \mathbb{B}^*$ be any total computable function (a program transformation). Then there is $u \in \mathbb{B}^*$ such that

$$f_{M_{h(u)}} = f_{M_u}$$

resp.

$$\varphi_{h(u)} = \varphi_u$$

i.e. the (TM's with the) original program u and the transformed program h(u) compute the same function.

Lemma 16. There is a TM M_u such that M_u started with empty tape prints u

consider program transformation h. With input u

- print goedelisation $code(D_u)$ of the following machine:
- D_u started with empty tape prints u

By lemma 15 there is *u* such that

$$\varphi_u(\varepsilon) = \varphi_{h(u)}(\varepsilon)$$
= result of D_u started with empty tape
= u