Дата: 17.02.2022

Клас: 9-А,Б

Тема уроку. Числові послідовності. Властивості числових послідовностей.

Мета уроку: домогтися засвоєння учнями змісту понять: числова послідовність, п-й член числової послідовності, формула п-го члена; списку способів задання числової послідовності. Виробити вміння: відтворювати вивчені означення; знаходити члени послідовності із заданими номерами, якщо послідовності задані різними способами. Повторити означення числової функиї, а також супутні поняття.

Числовою послідовністю називається функція, яка задана на множині всіх натуральних чисел або на множині перших п натуральних чисел.

Числова послідовність позначається так:

$$(a_n)$$
: a_1 ; a_2 ; a_3 ; ...; a_n .

Кожне число a_n — n-й член послідовності; n — номер члена.

Види числових послідовностей

1. Якщо кількість членів n послідовності (a_n) скінченна, то (a_n) — скінченна послідовність.

Якщо кількість членів n послідовності (a_n) нескінченна, то (a_n) — нескінченна послідовність.

Приклади:

- а) послідовність (a_n) натуральних чисел нескінченна;
- б) послідовність (a_n) коренів рівняння (x-1)(x-2)(x+3) = 0 скінченна.
- 2. Якщо кожний наступний член послідовності, починаючи з другого, більший за попередній, то послідовність є *зростаючою*.

Якщо кожний член послідовності, починаючи з другого, менший від попереднього, то послідовність ϵ спадною.

Приклади:

- а) (a_n) : 1; 2; 3; ... послідовність натуральних чисел є зростаючою;
- б) (b_n) : -1; -2; -3; ... послідовність цілих від'ємних чисел є спадною.

Способи задання числових послідовностей:

1) описом знаходження її членів.

Приклад. Числова послідовність дільників числа 15, записаних у порядку зростання: (a_n) : a_1 = 1; a_2 = 3; a_3 = 5; ...; a_4 = 15;

2) переліком її членів.

Приклад. (b_n): 54; 1; 33; 27, тоді a_1 = 54; a_2 = 1; a_3 = 33; a_4 = 27;

3) таблицею. Приклад.

' 1					
n	1	2	3	4	5
a_n	-2	1	-4	1	-6

Тоді $a_1 = -2$; $a_2 = 1$; $a_3 = -4$; $a_4 = 1$; $a_5 = 6$;

4) формулою n-го члена.

Приклад. $a_n=n^2-1$, тоді $a_1=1^2-1=0$; $a_2=2^2-1=3$; $a_3=3^2-1=8$ і т.д.; 5) рекурентною формулою. Приклад. $a_n=a_{n-1}\cdot a_{n-2}$, якщо $a_1=1$; $a_2=2$, тоді $a_1=1$; $a_2=2$; $a_3=a_1\cdot a_2=$

2; $a_4 = a_2 \cdot a_3 = 2 \cdot 2 = 4$; $a_5 = a_3 \cdot a_4 = 4 \cdot 2 = 8$.

Домашнє завдання П.15 -опрацювати №668, 672, 674*

Виконання завдань сфотографувати та надіслати в HUMAN або на електронну пошту vikalivak@ukr.net