$$\mathcal{A} \rightarrow \text{integers} \quad \mathcal{Q} \rightarrow \text{rehards}, \quad \mathbb{R} \rightarrow \text{reals}, \quad \mathcal{L} \rightarrow \text{complex}$$

$$\mathcal{Q}^{c} \rightarrow \text{realized}$$

$$sup$$
 $\{a,b\} = b$

$$\inf \{(a,b)\} = \alpha$$

$$\inf \left\{ \left[a,b\right) \right\} = a$$

$$sy \left\{ (a,b), (b+1,c) \right\} = c$$

$$|(0,1)| = |R|$$

$$k_2 \in \mathbb{N}$$
 $k_1 \in \mathbb{N}$
 $(k_2 - k_1) \in \mathbb{N}$

$$f:(0,1) \rightarrow \mathbb{R}$$
 can be a bijection

$$f(\pi_1) = y_1$$
 if $y_1 = y_2$ $\Rightarrow \pi_1 = \pi_2$ $\Rightarrow \text{one-one}$

+(n() = 31 if 4 = 72 (> ~ = ~) one-one f(~2) = 1/2 and f-1(t,)=x, exists ty, ER Suppose f: N -> R u a bijection (one-one and onto) This $f(n) = f(n) \implies n = n_2$ $f(n) = f(n) \implies n \in \mathbb{N} \text{ such that } f(n) = y$ $\Rightarrow \mathbb{R} = \left\{ f(1), f(2), \ldots \right\}$ > countable but Riguncountable |P(A)| > |A|> a set that contains all subsets of itself A- {1,2,3} P(A)= { {6}, {13, {23, {33, {1,23, {2,3}}} {3,13, {1,2,3} {

To see a formal proof me head Conton's Diagonal Argumet

[] # R f(X) is the range f(X) may not be equal to Y For fruction f(n)=y and $f(n)=y_2 \Rightarrow y_1=y_2$

For fruction f(n) = y and $f(n) = y_2 \Rightarrow y_1 = y_2$ (basic diffuse with map) $f(n_1) = y_1, \quad f(n_2) = y_1 \Rightarrow x_1 = x_2 \text{ in furtion}$