- 1. (a) Write a derivation to show that $\{Ax\} \vdash_{K_{\mathcal{L}}} \exists xAx$. [You may wish to use an instance of the tautology: $((p \to \neg q) \to (q \to \neg p))$.]
 - (b) Explain how the deduction theorem can be applied to deduce that $\{Ax\} \vdash_{K_{\mathcal{L}}} (Bx \to \exists xAx)$.
- **2.** Let Σ be a set of closed wffs and let \mathcal{A} , \mathcal{B} and \mathcal{C} be closed wffs. Recall that for any wff \mathcal{D} , $(\mathcal{A} \vee \mathcal{D})$ is an abbreviation for $(\neg \mathcal{A} \to \mathcal{D})$. Suppose that $\Sigma \cup \{(\mathcal{A} \vee (\mathcal{B} \wedge \mathcal{C}))\}$ is consistent. Show that either $\Sigma \cup \{\mathcal{A}\}$ is consistent or $\Sigma \cup \{\mathcal{B}\}$ is consistent.
- 3. Let $\mathcal{L}_G = (\varnothing, \{P^1, L^1, I^2\}, \varnothing)$ be the language of geometry. The intended meaning is that an interpretation of \mathcal{L}_G consists of a set of points and lines. Px means "x is a point", Lx means "x is a line" and Ixy means "line x is incident with point y" (point y is contained in line x). An example of an interpretation of \mathcal{L}_G is illustrated below. We will construct a first-order system with equality, S, with language \mathcal{L}_G . [You may use the abbreviations \land, \lor and \exists .]
 - (a) Write down axioms to ensure that every element of the domain is either a point or a line, and that no element can be both a point and a line.
 - (b) Write down axioms to ensure that there is at least one point and that there is at least one line.
 - (c) Write down an axiom to ensure that two distinct lines intersect in at most one point (in other words, if l_1 and l_2 are lines and $l_1 \neq l_2$ and p_1 and p_2 are points such that l_i is incident with p_j for i, j = 1, 2 then $p_1 = p_2$).
 - (d) Write down an axiom to ensure that for any two distinct points there is at least one line incident with both points.
 - (e) Show that if \mathcal{I} is a normal model of S with domain D and p_1 and p_2 are points of \mathcal{I} (in other words, $p_1, p_2 \in D$ and $P^{\mathcal{I}}p_1$, $P^{\mathcal{I}}p_2$ both hold and $p_1 \neq p_2$) then there is a unique $l \in D$ such that $L^{\mathcal{I}}l$, $I^{\mathcal{I}}lp_1$ and $I^{\mathcal{I}}lp_2$ all hold. [You need not give a derivation within S of this: it is enough to describe what properties normal models of S must have.]

Example:

Figure: The finite projective plane of order 7

The domain has 14 elements, p_1, p_2, \ldots, p_7 and l_1, l_2, \ldots, l_7 . For each $i, P^{\mathcal{I}}p_i$ and $L^{\mathcal{I}}l_i$ are true and $P^{\mathcal{I}}l_i$ and $L^{\mathcal{I}}p_i$ are false. $I^{\mathcal{I}}$ is the relation

$$\{(l_1, p_1), (l_1, p_2), (l_1, p_4), \\ (l_2, p_2), (l_2, p_3), (l_2, p_5), \\ (l_3, p_3), (l_3, p_4), (l_3, p_6), \\ (l_4, p_4), (l_4, p_5), (l_4, p_7), \\ (l_5, p_5), (l_5, p_6), (l_5, p_1), \\ (l_6, p_6), (l_6, p_7), (l_6, p_2), \\ (l_7, p_7), (l_7, p_1), (l_7, p_3)\}$$

In the above diagram, 6 of the lines are represented by straight lines, and line l_2 is represented by a closed curve.

MATHS 315 Assignment 4 Page 2 of 2