Submission Form

Fill up the following slots with appropriate content. You must submit the content of this document from this page only.

• Your Name: TASNIM RAHMAN MOUMITA

• Your ID: 22301689

• Your Section: 02

• Experiment No: 02

• Experiment Title: Determination of the time constant of an RC series circuit

Table: Data showing the time dependence of voltage across the capacitor

Observation	Time, t (s)	Voltage across	Voltage across	Time constant,
		the capacitor, Vc	the capacitor, Vc	(t)
		During charging	During	
		process (V)	discharging	
			process (V)	
01	10	3.15	5.70	According to
				theory, the time
02	20	5.15	3.93	constant is the
				amount of time
03	30	6.36	2.48	needed for the
	40			circuit to gain
04	40	7.31	1.71	63% of its
0.5	50	7.07	1.10	maximum
05	50	7.87	1.13	voltage during
06	60	0.26	0.74	charging or to
06	60	8.26	0.74	lose 37% of its
07	70	0.52	0.47	maximum
07	70	8.53	0.47	voltage during
00	90	0.60	0.22	discharging.
08	80	8.68	0.32	For charging,
09	90	9.70	0.21	63% of
09	90	8.79	0.21	maximum
10	100	8.86	0.13	voltage is 5.67 V
10	100	0.00	0.13	and for
11	110	8.91	0.09	discharging 37%
	110	0.71	0.07	of maximum
12	120	8.94	0.06	voltage is 3.33
	120		0.00	V. The required
13	130	8.96	0.04	time for the 63%
				of maximum
14	140	8.98	0.03	voltage is 24.3 s
				and for 37% of
15	150	9.0	0.019	the maximum
				voltage is
16	160		0.011	24.13s. Their
				average value is
17	170		0.008	24.2s. So, this is
				the experimental
18	180		0.005	value of time
				constant, which
19	190		0.004	is 24.2.

20	200	0.002	
21	210	0.002	Now, we know that the value of
22	220	0.001	time constant –
23	230	0.001	t = RC = 120 * 0.2
24	240	0.001	= 24s
25	250	0.0	This is the theoretically predicted and expected value.
			So we got our experimental value 24.2 and theoretically predicted value 24. So in comparison, the experimental value is 0.2 s more than the theoretically predicted one.

Capacitance, C = .2F Resistance, R=120 Ohm

Graph 1: Insert the Graph here

 $\underline{Graph\text{-}1:} \ Time(t) \ vs \ Voltage \ across \ the \ capacitor, \ Vc \ During \ charging \ process \ (V)$

Graph 2: Insert the Graph here

 $\underline{\text{Graph-2:}} \ \text{Time}(t) \ vs \ Voltage \ across \ the \ capacitor, \ Vc \ During \ discharging \ process \ (V)$

Calculations:

In our theoretical discussion, we learned that the time constant of a circuit is the time it takes for the circuit to reach 63% of its maximum voltage during charging, or to drop to 37% of its maximum voltage during discharging. In our experiment, we found that 63% of the maximum voltage was 5.67 V during charging, and 37% of the maximum voltage was 3.33 V during discharging. The circuit took 24.3

seconds to reach 5.67 V during charging and 24.13 seconds to drop to 3.33 V during discharging. Averaging these two times, we found the experimental value of the time constant to be 24.2 seconds. This hands-on experiment gave us a practical understanding of the time constant in a circuit.

Here,

we know that the value of time constant –

$$t = RC = 120 * 0.2 = 24 s$$

So, This is the theoretically predicted/expected value.

Results:

So, as far this, we got our experimental value 24.2 and theoretically predicted value 24. So in comparison , (24.2-24=0.2) the experimental value is 0.2 s more than the theoretically predicted one.

My experimental value of the time constant is deviated from its theoretically predicted value is,

Deviation =
$$((24.2-24)/24) *100$$

= $(.2/24) *100$
= 0.833%

0.8333 % is the deviation.

Answer the following questions:

1. What will happen if you keep both K1 and K2 closed?

Answer:

If I keep both K1 and K2 closed, it will form a short circuit and catch fire.

2. Why do you think the Voltmeter was not connected in series?

Answer:

When a component with high resistance is connected in series in a circuit, it can prevent current from flowing due to its high resistance. That's why we connect it in series. This setup allows us to control the current flow in the circuit effectively.

3. Why do you think we chose the maximum value of the resistance in the resistor?

Answer:

When we use a resistor with a lower resistance in a circuit that includes a capacitor, the capacitor charges and discharges at a faster rate. This rapid ups and downs in the rate of charging and discharging can make it challenging to point the exact voltage

across the capacitor. However, if we increase the resistance, the capacitor's charging and discharging process slows down, allowing us to obtain a more accurate voltage reading. This is likely why we chose to maximize the resistance of the resistor in such situations.

4. Sketch voltage across the resistor, V_R vs. time, t curve during charging and discharging process of the capacitor.

Answer:

During charging:

During discharging:

