Quiz 13: Anisotropic media II

Consider the following sequence of elements along the z-direction: First an x-polarizer, then a wave-plate, and finally a y-polarizer. We have a circularly polarized plane-wave of wavelength $\lambda=1~\mu m$, propagating along the z-direction, with total electric field amplitude E_0 , incident on this system. We look for the electric field vector (direction and amplitude) after each of these elements. The extra total phase-factors in the solution do not matter.

- 1) What is the electric field vector after the x-polarizer? [2 points]
- 2) For the wave-plate consider the system shown in the figure:

 A uniaxial crystal of thickness $d=2.5~\mu m$, the extraordinary crystal axis is in the x-y plane and
 - extraordinary crystal axis is in the x-y plane and makes a 45 degrees angle with the x and y axis. The ordinary refractive index is $n_o=2.2$ and the extraordinary refractive index is $n_e=2.1$. What is the electric field vector after this wave-plate? Simplify your result by multiplying
 - the electric field vector after this wave-plate? Simplify your result by multiplying it by the phase-factor $\frac{1+i}{\sqrt{2}}$. [6 points]
- 3) What is the electric field vector after the y-polarizer? [2 points] You have 10 minutes!

Make sure that you indicate your name and seminar group on your answer sheet.