

Data Warehouse

Sirojul Munir S.SI, M.KOM – Semester Genap TA 20182

STAR SCHEMA - DATA CUBES

Star Schema

Excellent for ad-hoc queries, but bad for online transaction processing

Studi Kasus: Product Orders

Contoh Star Schema

A Concept Hierarchy: Dimension Location

Multidimensi Data

Sales volume as a function of product, month, and region

Dimensions: Product, Location, Time Hierarchical summarization paths

Contoh: Data Cubes

Data Penjualan 2018

Sales of Jakarta	TV	DVD	Audio
Januari	2000	1000	500
Februari	1500	1500	1000
Maret	500	1000	2000
April	500	1000	2000

Data Penjualan 2018

Sales of Depok	TV	DVD	Audio
Januari	1000	100	500
Februari	500	200	100
Maret	800	300	200
April	1500	400	200

Multidimensional (3D) Table

	TV		DVD		Audio	
Items						
City						
	Jakarta	Depok	Jakarta	Depok	Jakarta	Depok
Januari	2000	1000	1000	100	500	500
Febaruari	1500	500	1500	200	1000	100
Maret	500	800	1000	300	2000	200
April	500	1500	1000	400	2000	200

Sample Data cube

Cuboids

Data Cube

Axes of the cube represent attributes of the data records

- Generally discrete-valued / categorical
- e.g. color, month, state
- Called dimensions

Cells hold aggregated measurements

- e.g. total \$ sales, number of autos sold
- Called facts

Real data cubes have >> 3 dimensions

Slicing and Dicing

Querying the Data Cube

Cross-tabulation

- "Cross-tab" for short
- Report data grouped by 2 dimensions
- Aggregate across other dimensions
- Include subtotals

Operations on a cross-tab

- Roll up (further aggregation)
- Drill down (less aggregation)

Number of Autos Sold

	CA	OR	WA	Total
Jul	45	33	30	108
Aug	50	36	42	128
Sep	38	31	40	109
Total	133	100	112	345

Roll Up and Drill Down

Number of Autos Sold

	CA	OR	WA	Total
Jul	45	33	30	108
Aug	50	36	42	128
Sep	38	31	40	109
Total	133	100	112	345

Roll up

by Month

Number of Autos Sold

CA	OR	WA	Total
133	100	112	345

Number of Autos Sold

	CA	OR	WA	Total
Red	40	29	40	109
Blue	45	31	37	113
Gray	48	40	35	123
Total	133	100	112	345

"Standard" Data Cube Query

Measurements

• Which fact(s) should be reported?

Filters

• What slice(s) of the cube should be used?

Grouping attributes

- How finely should the cube be diced?
- Each dimension is either:
 - (a) A grouping attribute
 - (b) Aggregated over ("Rolled up" into a single total)
- \circ n dimensions \rightarrow 2ⁿ sets of grouping attributes
- Aggregation = projection to a lower-dimensional subspace

Latihan

- 1. Buat query yang menghasilkan skema bintang!
- 2. Buat query yang mengambil salah satu dimensi data (product, location, time)!