EE5311- Digital IC Design

Module 3 - The Inverter

Janakiraman V

Assistant Professor Department of Electrical Engineering Indian Institute of Technology Madras Chennai

September 3, 2018

Learning Objectives

- Explain the functioning of a CMOS inverter
- Explain the Voltage Transfer Characteristics of an inverter
- Derive an expression for the trip point of an inverter
- Derive an expression for the delay of an inverter driving a load
- ▶ Derive expressions for Static, Dynamic and Short Circuit power of an inverter.

Outline

- Switch Model
- Transfer Characteristics
- Switching Threshold
- ► Noise Margin
- Supply Voltage Scaling
- Propagation Delay
- Power
 - Dynamic
 - Short circuit
 - Leakage

Inverters - Robust Configuration

- Pull down to GND with NMOS
- ▶ Pull up to V_{DD} with PMOS

Load Line

Figure: The CMOS Inverter

$$I_{DSp} = -I_{DSn}$$
 $V_{GSn} = V_{in}$
 $V_{GSp} = V_{in} - V_{DD}$
 $V_{DSn} = V_{out}$
 $V_{DSp} = V_{out} - V_{DD}$

Load Line

Figure: Solid lines- NMOS, Dashed lines - PMOS

Voltage Transfer Characterisitcs

Figure: VTC of a CMOS Inverter

Region	NMOS	PMOS
1	Off	Lin
2	Sat	Lin
3	Sat	Sat
4	Lin	Sat
5	Lin	Off

Switching Threshold

Figure: Switching Threshold

- Both NMOS and PMOS are in saturation
- ► Assume velocity saturation

Switching Threshold

$$I_{DSp} = -I_{DSn}$$
 $V_{GSn} = V_{in}$
 $V_{GSp} = V_{in} - V_{DD}$
 $V_{DSn} = V_{out}$
 $V_{DSp} = V_{out} - V_{DD}$
 $V_{in} = V_{out}$

- Both NMOS and PMOS are in saturation
- Assume velocity saturation

Switching Threshold

Ignoring channel length modulation

$$I_{DSn} = k'_{n} rac{W_{n}}{L} (V_{M} - V_{Tn} - rac{V_{DSATn}}{2}) V_{DSATn}$$
 $I_{DSp} = k'_{p} rac{W_{p}}{L} (V_{M} - V_{DD} - V_{Tp} - rac{V_{DSATp}}{2}) V_{DSATp}$
 $V_{M} = rac{V_{Tn} + rac{V_{DSATn}}{2} + r(V_{DD} + V_{Tp} + rac{V_{DSATp}}{2})}{1 + r}$
 $r = rac{k'_{p} (W_{p}/L) V_{DSATp}}{k'_{n} (W_{n}/L) V_{DSATn}} = rac{W_{p} v_{satp}}{W_{n} v_{satn}}$
 $V_{M} pprox rac{r}{r + 1} V_{DD}$

Switing Threshold

Figure: VTC Trip Point

Ratio of $\frac{W_p}{W_n}$ determines V_M

Switing Threshold Without Velocity Saturation

$$V_M = rac{V_{Tn} + r(V_{DD} + V_{Tp})}{1 + r}$$
 $r = \sqrt{rac{-k_p}{k_n}}$

Left as an exercise

Noise Margin

Figure: Noise Margin of a CMOS Inverter

- Logic levels from the driver should be recognized by the load
- ▶ Points of slope -1 provide the noise margin levels

$$NM_H = V_{OH} - V_{IH}$$

 $NM_L = V_{IL} - V_{OL}$

Noise Margin Approximation

Figure: Noise Margin approximation of a CMOS Inverter

- \triangleright Extend the tangent at V_M
- Slope is the gain (g) of the VTC

$$NM_{H} = V_{DD} - V_{IH} = V_{DD} - V_{M} + rac{V_{M}}{g}$$
 $NM_{L} = V_{IL} = V_{M} + rac{V_{DD} - V_{M}}{g}$

Noise Margin Calculations

- Need to consider channel length modulation
- ▶ Slope is the gain $(g = \frac{dV_{out}}{dV_{in}})$ of the VTC

$$I_{DSn} = I_{DSn}^{no-clm}(1 + \lambda_n V_{out})$$
 $I_{DSp} = I_{DSp}^{no-clm}(1 + \lambda_p (V_{out} - V_{DD}))$
 $g = -\frac{1}{I_D(V_M)} \frac{k_n V_{DSATn} + k_p V_{DSATp}}{\lambda_n - \lambda_p}$
 $g pprox rac{1 + r}{(V_M - V_{Tn} - V_{DSATn}/2)(\lambda_n - \lambda_p)}$
 $r = rac{k_p V_{DSATp}}{k_n V_{DSATn}}$

Pass Transistors

$$V_{D}$$

$$V_{C}(0^{-}) = 0$$

$$V_{D}$$

$$V_{C}(0^{-}) = V_{DD}$$

$$V_{C}(0^{-}) = V_{DD}$$

$$v_C(t) = min(V_G - V_{Tn}, V_D)$$

 $v_C(t) = max(V_G - V_{Tp}, V_D)$

Switch Model

Figure: The CMOS Inverter

- ▶ The high and low logic levels are V_{DD} and GND(0)
- Logic levels are independent of sizes Ratioless Logic
- ▶ Low output impedance $(k\Omega)$ Immune to noise
- Large input impedance Infinite fanout
- No conduction path from supply to ground in steady state

Switch Model Dynamic Behaviour

Figure: Dynamic Behaviour of CMOS Inverter

$$au_{rise} = R_p C_L$$
 $au_{fall} = R_n C_L$

Delay

- ▶ Propagation Delay 50% input to 50% output
 - ▶ Rise delay. Output goes from $L \uparrow H$ t_{pLH}
 - ▶ Fall delay . Output goes from $H \downarrow L$ t_{pHL}
 - Propagation delay is defined as $t_p = \frac{t_{pHL} + t_{pLH}}{2}$
- Slew
 - Rise time Time taken for output to go from 10% to 90%
 - ► Fall time TIme taken for output to go from 90% to 10%

Delay

Figure: Delay

$$t_{pHL} = R_{eqn}C_L$$
 $t_{pLH} = R_{eqp}C_L$
 $t_p = C_L \frac{R_{eqn} + R_{eqp}}{2}$

Transistor Sizing - Symmetric delay

- Rising propagation delay should be identical to falling propagation delay.
- ▶ This also ensures a symmeteric VTC

$$t_{pHL} = t_{pLH}$$
 $R_{eqn} = R_{eqp}$
 $\frac{C_L V_{DD}}{2I_{DSATn}} = \frac{C_L V_{DD}}{2I_{DSATp}}$
 $W_n \mu_n = W_p \mu_p$
 $W_p \approx 2W_n$

Transistor Sizing - Minimum delay

$$t_p = C_L \frac{R_{eqn} + R_{eqp}}{2}$$

$$t_p = (0.5)[(1+\beta)(C_{gn2} + C_{dn1}) + C_{wire}]R_{eqn}(1+\frac{\alpha}{\beta})$$

$$\alpha = \frac{R_{eqp}}{R_{eqn}}@W_p = W_n; \beta = \frac{W_p}{W_n}$$

$$\frac{\partial t_p}{\partial \beta} = 0$$

$$\beta_{opt} = \sqrt{\alpha \left(1 + \frac{C_{wire}}{C_{dn1} + C_{gn2}}\right)}$$

Power Dissipation

Energy lost as heat disspation in the devices

- Dynamic Charge/ Discharging of cpacitance
- ▶ Short Circuit Conductive path from $V_{DD} \rightarrow GND$
- Static Leakage even when no activity happens

Dynamic Power

Figure: Capacitor charge and discharge

$$L \uparrow H$$
 $E_{VDD} = \int_{0}^{\infty} i_{VDD}(t) V_{DD} dt$
 $E_{C} = \int_{0}^{\infty} i_{VDD}(t) V_{out} dt$

Dynamic Power

$$L \uparrow H$$

$$E_{VDD} = \int_{0}^{\infty} i_{VDD}(t) V_{DD} dt$$

$$E_{VDD} = \int_{0}^{\infty} C_{L} \frac{dv_{out}}{dt} V_{DD} dt$$

$$E_{VDD} = \int_{0}^{V_{DD}} C_{L} V_{DD} dv_{out}$$

$$E_{VDD} = C_{L} V_{DD}^{2}$$

$$E_{C} = \frac{C_{L} V_{DD}^{2}}{2}$$

Dynamic Power

- ▶ $L \uparrow H$ Load capacitor charges and disspates $\frac{C_L V_{DD}^2}{2}$ in PMOS
- ▶ $H \downarrow L$ Load capacitor discharges and disspates $\frac{C_L V_{DD}^2}{2}$ in NMOS
- Note that the energy dissipated is independent of size
- Depends on
 - ▶ Probability of switching $(P_{0\rightarrow 1})$ Activity factor
 - Frequency of operation (f)

$$P_{dyn} = C_L V_{DD}^2 f_{0 o 1}$$

 $P_{dyn} = C_L V_{DD}^2 P_{0 o 1} f$

Short Circuit Power

Figure: Both NMOS and PMOS conduct

$$E_{sc} = V_{DD} \frac{I_{peak} t_{sc}}{2} + V_{DD} \frac{I_{Peak} t_{sc}}{2}$$

$$P_{sc} = t_{sc} V_{DD} I_{peak} f$$

$$t_{sc} = \frac{V_{DD} + V_{Tp} - V_{Tn}}{V_{DD}} t_{s}$$

Static Power

Figure: NMOS or PMOS leaks current

$$P_{stat} = I_{stat} V_{DD}$$

$$P_{tot} = P_{dyn} + P_{sc} + P_{stat}$$

$$P_{tot} = (C_L V_{DD}^2 + V_{DD} I_{peak} t_s) f_{0 o 1} + V_{DD} I_{leak}$$

Stacking Effect

- lacktriangle The intermedaite node : $0 < V_X < V_{DD}$
- ightharpoonup Exponentially reduces the leakage of the series stack $(I_2 << I_1)$
- ▶ Increase in V_{TH} of the top transistor due to body effect

Process Variations

- Impossible to manufacture tiny dimensions accurately
- Variations are not avoidable
- ▶ Process Parameters : T_{OX} , N_A , L_e x_j , μ_n , μ_p see variations
- Performance Parameters: Currents and Voltages
- ▶ Process variation information (μ, σ) are provided to designers
- Performance parameter variation in simulation should match measured variations

Process Variations

Global Variations

WAFER: 200mm (8 in) or 300mm (12 in)

- All transistors within a chip affected in the same way
- Transistors in different chips across the wafer affected differently

Global Variations

- Manufacturing process of (N and P)MOS are different
- ► Transistors end up being Fast (F), Slow (S) or Typical (T)
- All N can get biased in one direction
- All P can get biased in another
- Corner simulation (N,P): (TT, FS, FF, SF, SS)

Local Variations

- ► Transistors sitting right next to each other will be different
- Happens mainly due to Random Dopant Fluctuation
- ▶ Large transistors are affect lesser than small ones $(\sigma_{Local} \propto \frac{1}{\sqrt{IW}})$
- Requires large number of statistical simulations to ensure correct functionality

Ring Oscillators

- Excellent process monitors
- Good representative of all digital circuits
- ► Can be added by the FAB in Kerf regions or by designers in their chip
- Measure the frequency of oscilations to determine the global process corner
- ► Can be added in multiple corners of a large chip to measure any across chip variation

Ring Oscillators

$$T_P \approx 2x(2N+1)\tau_{inv}$$

- ► EN = 0 prevents any oscillations Saves dynamic power
- Usually a couple of 100 INV long
- Very high frequency of oscillations
- ▶ Divided several times before being brought out of the chip

References

The material presented here is based on the following books/ lecture notes

 Digital Integrated Circuits Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic 2nd Edition, Prentice Hall India