

ÖSTERREICHISCHES PATENTAMT
A-1200 Wien, Dresdner Straße 87

Kanzleigebühr € 73,00
Schriftengebühr € 247,00

PCT/AT 2004/000251

Aktenzeichen A 1538/2003

Das Österreichische Patentamt bestätigt, dass

**die Firma Sanochemia Pharmazeutika AG
in A-1090 Wien, Boltzmanngasse 11,**

am 29. September 2003 eine Patentanmeldung betreffend

**"Verwendung von Galanthamin und seinen Derivaten zum Herstellen
von Arzneimitteln",**

überreicht hat und dass die beigeheftete Beschreibung mit der ursprünglichen, zugleich mit dieser Patentanmeldung überreichten Beschreibung übereinstimmt.

Österreichisches Patentamt
Wien, am 20. Juli 2004

Der Präsident:

i. A.

HRNCIR
Fachoberinspektor

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

BEER & PARTNER
RENTANWÄLTE KEG
1070 Wien, Linzengasse 8

Doppel

(51) Int. Cl.:

A 15 387/2003

W5-204000 P AT
B/A

(11) Nr.

Untex

AT PATENTSCHRIFT

(73) Patentinhaber: Sanochema Pharmazeutika AG
Wien (AT)

(54) Titel der Anmeldung:
Verwendung von Galanthamin und seinen Derivaten zum Herstellen von Arzneimitteln

(61) Zusatz zu Patent Nr.

(66) Umwandlung von GM

(62) gesonderte Anmeldung aus (Teilung):

(30) Priorität(en):

(72) Erfinder:

(22) (21) Anmeldetag, Aktenzeichen:

2003 09 29 ,

(60) Abhängigkeit:

(42) Beginn der Patentdauer:

Längste mögliche Dauer:

(45) Ausgabetag:

(56) Entgegenhaltungen, die für die Beurteilung der Patentierbarkeit in Betracht gezogen wurden:

Die Erfindung betrifft die Verwendung von Galanthamin und seinen Derivaten zum Herstellen von Arzneimitteln zur Behandlung des postoperativen Delirs.

Trotz deutlicher Fortschritte in der Anästhesie sowie in der perioperativen Versorgung kommt es auch heute bei einem erheblichen Anteil der Patienten, an denen größere chirurgische Eingriffe vorgenommen werden, zu postoperativen psychiatrischen Komplikationen, die unter dem Sammelbegriff „postoperatives Delir“ bekannt sind.

Als Delir bezeichnet man einen Zustand gestörten Bewusstseins, charakterisiert durch allgemeine Verwirrung, Herabsetzung der kognitiven Funktionen (Aufmerksamkeit, Konzentration und Gedächtnis), Halluzinationen und labiler Emotionen. Damit weist das Delir Elemente der Demenz wie auch psychotischer Zustandbilder auf, ist aber von diesen vor allem durch seine akute Natur und die meist spontan eintretende, wenn auch oft unvollständige und verzögerte, Reversibilität abgegrenzt.

Im Gegensatz zu den degenerativen Demenzsyndromen liegt beim postoperativen Delir eine ausschließlich funktionale Störung des zentralen Nervensystems vor. Das durch die einzelnen psychiatrischen Symptome erzeugte klinische Bild kann sehr schnell - gelegentlich innerhalb von Sekunden - fluktuieren.

Ein akutes oder subakutes Delir (entsprechend den Klassifikationen ICD 293.0 bzw. 293.1 der Weltgesundheitsorganisation) ist oft durch Einnahme von pharmakologisch wirksamen Substanzen induziert. Zahlreiche solche Substanzen sind Wirkstoffe oder Metaboliten von Medikamenten, sodaß ein arzneimittelinduziertes Delir (ICD 292.81) gegeben ist. Insbesondere Medikamente mit anticholinriger Wirkung, die das auf dem Neurotransmitter Azetylcholin basierende Nervensystem teilweise blockieren, können ein Delir induzieren, jedoch auch Sedativa, wie Benzodiazepine, und Antimanika wie Lithiumsalze.

Auch Rauschmittel bzw. deren akuter Entzug nach chronischem Gebrauch können Delirien erzeugen. Sehr häufig ist dies bei massivem akutem Alkoholabusus bzw. im Alkoholentzug der Fall (ICD 291.0),

jedoch können auch Cannabisprodukte, Amphetamine, Kokain usw. delirante Zustände verursachen.

Während die genannten deliranten Bewusstseinsveränderungen eine neurochemisch direkt nachvollziehbare Ursache haben, gibt es auch Delirien letztlich unbekannter Genese, worunter trotz des bekannten Auslösers (chirurgischer Eingriff) auch das postoperative Delir zu rechnen ist, da kein zugrunde liegender pathologischer Mechanismus zweifelsfrei bekannt ist.

Das postoperative Delir (POD) wird heute als ein multifunktionelles Syndrom angesehen ⁽¹⁾, wobei das Alter und der allgemeine Gesundheitszustand des Patienten ebenso eine Rolle spielen wie eventuell präoperativ vorhandene kognitive Störungen, nicht näher definierte Einflüsse der verabreichten Narkosemittel, und möglicherweise auch bestimmte intraoperative physiologische Veränderungen ⁽²⁾. Obwohl ein POD durchaus unmittelbar nach dem Erwachen aus der Narkose vorhanden sein kann, ist es nicht mit der schnell vorüber gehenden gutartigen Desorientierung nach Anästhesie gleichzusetzen. Vielmehr kann ein POD durchaus auch erst am zweiten postoperativen Tag oder auch noch später einsetzen, nachdem das eigentliche Erwachen aus der Narkose klinisch unauffällig verlaufen ist. Somit ist in diesen Fällen eine direkte Wirkung der perioperativ verabreichten Änästhetika bzw. Analgetika auszuschließen.

Obwohl die wissenschaftliche Literatur widersprüchliche Angaben über die Inzidenz des POD enthält (was größtenteils auf Unterschiede in den untersuchten Patientenpopulationen und die verwendete psychiatrische Definition zurückzuführen ist), besteht doch allgemeine Einigkeit, dass es sich um ein durchaus häufig auftretendes Phänomen handelt ⁽³⁾, insbesondere nach großen orthopädischen Eingriffen ⁽⁴⁾ und vor allem bei älteren Patienten. Eine jüngst publizierte Studie ⁽⁵⁾ fand unter Verwendung der als klinisch-sehr relevant geltenden Confusion Assessment Method (CAM; ⁽⁶⁾) unter 2158 postoperativen Patienten 16% mit voll ausgeprägtem Delir, 13% mit mindestens zwei Schlüsselsymptomen, und 40% mit mindestens einem Symptom, während nur 32% symptomfrei waren.

Obwohl POD also häufig und fast ausschließlich bei stationär aufgenommenen Patienten auftritt, und obwohl es als schlechtes prognostisches Zeichen für den weiteren postoperativen Verlauf gilt,

3

wird dieser Zustand häufig nicht bemerkt oder nicht beachtet. Dies ist vor allem darauf zurückzuführen, dass postoperative Patienten in der Regel auf den zuständigen chirurgischen Abteilungen verbleiben und das dortige Personal apathiebetonte (hypoaktive) Delirien oft nicht erkennt. Nur verhaltensauffällige (hyperaktive) Patienten werden mit Antipsychotika und/oder Sedative therapiert ⁽⁷⁾. Dabei wäre bereits die Therapie des sogenannten subsyndromalen POD (das nicht alle geforderten psychometrischen Kriterien eines POD erfüllt) äußerst bedeutsam, da dessen Bestehen einen Risikofaktor für die Progression zum Vollbild des deliranten Zustandsbildes darstellt, was statistisch gesehen mit verlängertem Spitalsaufenthalt, erhöhter Mortalität nach Entlassung, und verminderter kognitiver Leistung bei späteren Kontrolluntersuchungen einhergeht ⁽⁸⁾; bei den letztgenannten Spätfolgen spricht man auch vom Zustandbild des Postoperative Cognitive Decline (POCD), das in die Demenz übergehen kann.

Die Verwendung von Cholinesterase-Inhibitoren zur Therapie von arzneimittelinduzierten Delirien ist seit geraumer Zeit bekannt. Dies gilt vor allem für das „zentrale anticholinerge Syndrom“ ⁽⁹⁾, jedoch auch für Delirien, die im unmittelbaren Anschluß an Behandlungen mit nicht unmittelbar anticholinerg wirkenden Arzneimitteln auftreten. Beispielsweise erwähnt sei die Anwendung des prototypischen Cholinesterase-Inhibitors Physostigmin bei diesbezüglichen Komplikationen mit nicht-narkotisch wirkenden Akut-Sedativa ⁽¹⁰⁾.

Die dabei gemachten vorteilhaften Erfahrungen wurden auch auf das POD übertragen. Bereits 1978 wurde in der Literatur zur Vermeidung deliranter Zustände nach der Beendigung der Narkose die Injektion einer Einzeldosis Physostigmin unter noch aufrechter Narkose empfohlen ⁽¹¹⁾. Die Therapie eines bestehenden, insbesondere eines sich erst nach einer luziden postoperativen Periode manifestierenden, Delirs wird jedoch nicht angesprochen, sodaß diese Anwendung als intraoperative Prophylaxe eines substanzinduzierten (nämlich unmittelbar mit den Effekten des Narkosemittels in Zusammenhang stehenden) Delirs gewertet werden muß.

Die WO 00/032185 A offenbart Effektoren des cholinergen Systems zur Therapie von Delirien, darunter auch des PODs, das als „nicht cholinerges Delir“ bezeichnet wird. Darunter wird in der WO

00/032185 A ein Delir verstanden, das entsteht, ohne dass innerhalb der vorhergehenden 48 bis 72 Stunden eine Behandlung oder Intoxikation mit Substanzen erfolgt ist, die das cholinerge Reizleitungssystem blockieren. Die in der WO 00/032185 A geoffenbarte Anwendung von Cholinesterase-Inhibitoren zum Behandeln des PODs soll nach einer Operation erfolgen. Konkrete Beispiele für die Verwendung von Galanthamin und seinen Derivaten zum Behandeln von PODs enthält die WO 00/32185 A nicht. Die WO 00/32185 A enthält als einziges Beispiel den Fall einer Patientin, die im Zuge der medikamentösen Therapie ihrer langjährig bestehenden bipolaren Störung eine Lithium-Intoxikation erlitten hatte und deren daraufhin eintretendes Delir mit dem Cholinesterase-Inhibitor „Rivastigmin“, einen irreversiblen Inhibitor der Cholinesterasen, der seine Wirkung durch kovalente Modifikation (Carbamylierung) dieser Enzyme ausübt, erfolgreich therapiert wurde. Dabei handelt es sich um ein arzneimittelinduziertes Delir.

Derzeit gibt es kein für die Indikation POD zugelassenes Arzneimittel sowie keine veröffentlichten systematischen klinischen Studien, die die spezifische Wirksamkeit eines Arzneimittels bei streng definiertem POD wissenschaftlich unterstützen. Somit besteht nach wie vor ein erheblicher medizinischer Bedarf an pharmakologischen Mitteln, die ein auftretendes POD schnell beenden. Dabei muß auf minimale Nebenwirkungen einer solchen Therapie besonderer Wert gelegt werden, da sich ein POD-Patient *per definitionem* in der postoperativen Erholungsphase befindet und daher eine reduzierte physiologische und psychologische Stresstoleranz aufweist.

Der Erfindung liegt die Aufgabe zugrunde, diesem Bedarf gerecht zu werden.

Im Rahmen der Erfindung sind neben Galanthamin die Derivate von Galanthamin in Betracht gezogen, die in den WO 96/12692 A, WO 97/40049-A und WO 01/74820 A geoffenbart sind. Die genannten Dokumente enthalten auch Angaben über die Herstellbarkeit von Galanthamin und seinen Derivaten.

Im einzelnen sind als Galanthamin-Derivate in Betracht gezogen die Verbindungen der allgemeinen Formel

- 5 -

10

15

und

20

25

oder Salzen derselben, worin

30

R_2 , R_4 , X_1 und X_2 entweder gleich oder verschieden sind und ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Fluor, Chlor, Brom, Jod, Hydroxy, Alkoxy, niedriges Alkyl, das gegebenenfalls durch wenigstens ein Halogen substituiert ist, niedriges Alkenyl, niedriges Alkinyl, Aryl, Aralkyl, Aryloxyalkyl, Formyl, Alkylcarbonyl, Arylcarbonyl, Aralkylcarbonyl, Alkyloxycarbonyl, Aryloxycarbonyl, Aralkyloxycarbonyl, Alkylsulfonyl, Aralkylsulfonyl und Arylsulfonyl;

35

40

- 6 -

5 Y_1 und Y_2 entweder gleich oder verschieden sind und ausgewählt sind aus der Gruppe bestehend aus Wasserstoff, Fluor, Chlor, Brom, Jod, Hydroxy, Alkoxy, niedriges Alkyl, das gegebenenfalls durch wenigstens ein Halogen substituiert ist, niedriges Alkenyl, niedriges Alkinyl, Aryl, Aralkyl, Araoxyalkyl, Formyl, Alkylcarbonyl, Arylcarbonyl, Aralkylcarbonyl, Alkyloxycarbonyl, Aryloxycarbonyl, Aralkyloxycarbonyl, Alkylsulfonyl, Aralkylsulfonyl, Arylsulfonyl oder gemeinsam =O (Keton) sind;

10 A ein Benzolkern ist, der gegebenenfalls wenigstens einfach durch niedriges Alkyl, niedriges Alken, niedriges Alkin, Alkoxy, Fluor, Chlor, Brom, Jod, Alkyl, das durch wenigstens ein Halogen substituiert ist, Aralkyl, Hydroxy, primäres Amino, sekundäres Amino, tertiäres Amino, Nitro, Nitril, Alkylamino, Arylamino, Aldehyd, Carbonsäure und Carbonsäurederivate substituiert ist;

15 Z⁻ ein Anion einer pharmazeutisch annehmbaren, organischen Säure oder ein anorganisches Anion ist; und

R₅ ausgewählt ist aus der Gruppe bestehend aus Wasserstoff, Formyl, Alkyl, Alkenyl, Aryl, Aralkyl, Alkylcarbonyl, Arylcarbonyl, Aralkylcarbonyl, Alkyloxycarbonyl, Aryloxycarbonyl, Aralkyloxycarbonyl, Alkylsulfonyl, Arylsulfonyl und Aralkylsulfonyl.

Darunter insbesondere

Bromgalanthamin der Formel

35

40

- 7 -

Epibromgalanthamin der Formel

5

(2)

10

N-Demethylbromgalanthamin der Formel

15

(3)

und

20

N-Demethyl-epibromgalanthamin der Formel

25

(4)

30

Die Derivate des 4a,5,9,10,11,12-Hexahydro-6H-benzofuro[3a,3,2-ef]2benzazepins der allgemeinen Formel (II)

35

(II)

40

Des weiteren sind in Betracht gezogen:

Brom-N-demethylnaneđin (12)

- 9 -

Weiter sind in Betracht

gezogen: Verbindungen der allgemeinen Formel (I)

Formel (I)

5 wobei

R₁, R₂ entweder gleich oder verschieden sind und

- Wasserstoff, F, Cl, Br, J, CN, NC, OH, SH, NO₂, SO₃H, NH₂, CF₃ oder
- eine niedere (C₁-C₆) gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl- oder (Ar)Alkyloxygruppe oder

10 • eine Aminogruppe, die durch ein oder zwei gleiche oder verschiedene niedere (C₁-C₆), gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl- oder (Ar)Alkyloxycarbonyl oder (Ar)Alkyloxy-carbonylgruppen substituiert ist oder

- eine COOH, COO(Ar)Alkyl, CONH, CON(Ar)Alkyl Gruppe oder
- -(CH₂)_n-Cl, -(CH₂)_n-Br, -(CH₂)_n-OH, -(CH₂)_n-COOH, -(CH₂)_n-CN,

15 -(CH₂)_n-NC, darstellen, wobei

- R₁-R₂ auch gemeinsam als -CH=CH-CH=CH-, -O-(CH₂)_n-O-, mit n = 1-3 definiert sein können

R₃ = R₁, insbesondere OH und OCH₃, weiters

R₂-R₃ gemeinsam:-O-(CH₂)_n-O- bilden können, wobei n = 1 - 3

20 R₄, R₅: entweder beide Wasserstoff oder wechselweise jede Kombination von Wasserstoff oder eines (Ar)Alkenyl-, (Ar)Alkinyl-mit

- S-R₈, wobei R₈ Wasserstoff oder eine niedere (C₁-C₁₀) gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkylgruppe ist
- SO₂-R₈, SO₃-R₈

25 • OH, O-Schutzgruppe (wie TMS, TBDMS),

- O-CS-N-R₉ (Thiourethane),

- O-CO-N-R₉, wobei R₉ die folgenden Bedeutungen hat:

- 40 -

- O-CO-R₈ (Ester, R₈ siehe oben), insbesondere auch Ester mit dem Substitutionsmuster von Aminosäuren, wie

5

- weiters : R₄, R₅ = gemeinsam Hydrazone (=N-NH-R₁₀, =N-N(R₁₀, R₁₁), Oxime (=N-O-R₁₁) wobei R₁₀ Wasserstoff, eine niedere (C₁-C₆), gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl- oder (Ar)Alkylcarbonyl -oder (Ar)Alkylcarbonyloxygruppe sowie Sulfonsäure- wie z.B. Tosyl und Mesylgruppe ist und R₁₁ Wasserstoff, eine niedere (C₁-C₆), gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl- oder (Ar)Alkylcarbonylgruppe sowie Sulfonsäure- wie z.B. Tosyl- und Mesylgruppe ist.

10

- sowie Substituenten vom Typ:

15

Y₁, Y₂ = O, S, NH oder N-R₁₀ (überzählige Valenzen sind jeweils -H)

- wobei für den Fall, daß R₄ ≠ H darstellt R₅ auch OH bzw. für den Fall daß R₅ ≠ H darstellt R₄ auch OH sein kann.

G₁, G₂: gemeinsam oder verschieden die Bedeutung haben:

20

- -C(R₁₃, R₁₄)-, wobei R₁₃, R₁₄ Wasserstoff, OH, eine niedere, gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl-, Aryl-, (Ar)Alkyloxy- oder Aryloxygruppe oder gemeinsam eine Alkylspirogruppe (C₁ bis C₆- Spironng) sein können.
- Weiters G₁ und G₂ gemeinsam

- 11 -

mit $m = 1$ bis 7 darstellt.

G_3 : $-\text{CH}_2-$ oder $=\text{CO}$ darstellt.

R_6 eine Gruppe $-(G_4)_p - (G_5)_q - G_6$ mit $p, q = 0 - 1$ darstellt, in der G_4 folgende Definitionen erfüllt:

- $-(\text{CH}_2)_r - \text{C}(R_{15}, R_{16})-(\text{CH}_2)_t$, mit $r = 1-6$ und $R_{15}, R_{16} =$ Wasserstoff, niedere, gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl-, Cycloalkyl-, Arylgruppe,
- $-\text{O}-$, oder $-\text{NR}_{15}-$

mit $s = 1-4, t = 0-4$

, also ein ortho, meta, oder para disubst. Aromat

, wobei $G_4 = \text{NR}_{15}, \text{O}$ oder S darstellt.

G_5 gleich oder verschieden von G_4 sein kann und für den Fall daß $p = 1$ ist zusätzlich $-\text{S}-$ darstellt,

G_6 folgende Definitionen erfüllt:

15

- R_{17}, R_{18}, R_{19} , und R_{20} sind einzeln oder gemeinsam, gleich oder unterschiedlich Wasserstoff.

-12-

niedere, gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl-, Cycloalkyl-, oder Arylgruppen, wobei R_{17} und R_{18} bzw. R_{19} und R_{20} gemeinsam eine Cycloalkylgruppe (Ringgröße 3-8) bilden können.

- $G_9 = \text{O}, \text{S}, \text{NH}, \text{NR}_{21}, -(\text{CH}_2)_o-$,
- $R_{21} = \text{CHO}, \text{COOR}_{17}$, oder ein unsubstituierter, oder durch eine oder mehrere F, Cl, Br, J, NO_2 , NH_2 , OH, Alkyl, Alkyloxy, CN, NC oder CF_3 , CHO, COOH, COOAlkyl, SO_3H , SH, S-Alkyl-Gruppen gleich oder unterschiedlich substituierter (Hetero)Arylrest, (mit Heteroaryl insbesondere 2-Pyridyl, 4-Pyridyl, 2-Pyrimidinyl) oder
- eine Methylgruppe, welche durch 1-3 unsubstituierte, oder durch ein oder mehrere F, Cl, Br, J, NO_2 , NH_2 , Alkyl, Alkyloxy, CN, NC oder CF_3 Gruppen gleich oder verschieden substituierte Phenylgruppe(n) substituiert ist,

G_6 kann weiter sein:

bzw.

15

- $-\text{CHO}, \text{COOR}_{17}, -\text{CONR}_{17}$

- 43 -

- eine niedrige, gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl-, (Ar)Alkenyl-, (Ar)Alkinyl-, Cycloalkyl-, oder Arylgruppe,
- -O-R₁-, -NR₁-R₁₈, Phthalimido-, -CN, oder -NC

R₇ ist gleich R₆ oder stellt -O⁺ (N-Oxid) oder ein freies Elektronenpaar (e-Paar) dar, wobei R₆ und R₇ auch einen gemeinsamen Ring der Größe 3-8 bilden können, und

- [X] nur dann existiert und ein Ion einer pharmakologisch verwendbare anorganischen und organischen Säure darstellt, wenn R₅ und R₆ vorhanden sind und somit der Stickstoff eine positive Ladung trägt.

10

- Z = N, bzw. N⁺ für den Fall, daß R₅ und R₆ gemeinsam vorhanden sind und R₇ ungleich O⁻ ist.

Ein Sonderfall der in Betracht gezogenen Verbindungen der allgemeinen Formel (I), sind die Verbindungen der allgemeinen

Formel (II)

15

wobei die Reste die bei Formel (I) beschriebenen Bedeutungen haben. Diese Formel entsteht formal aus Formel (I), indem die Bindung von C₁ zum "Furan" Sauerstoff gebrochen und stattdessen von C₁ direkt an Z gebildet wird.

Darunter insbesondere

Übersicht der unter anderem in Betracht gezogenen

Subst. Nr.	Chir.	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇	Z	X	C, $\frac{IC_{50}}{\mu M_0 l}$
Gal	(-)	II	H	CH ₃	OH	II	CH ₃	H	N'	Br	CH ₃
1 Br	(+/-)	Br	II	CH ₃	OH	H	CH ₃	-	N	-	CH ₃
1	(+/-)	Br	II	CH ₃	OH	H	CH ₃	-	N	-	CH ₃
2	(+/-)	Br	II	CH ₃	H	OH	CH ₃	-	N	-	CH ₃
3	(-)	Br	H	CH ₃	OH	H	CH ₃	-	N	-	CH ₃
4	(+/-)	Br	H	CH ₃	OH	H	CH ₃	-	N	-	CH ₃
5	(-)	Br	H	CH ₃	OH	H	H	-	N	-	CH ₃
6	(+)	Br	H	CH ₃	OH	H	H	-	N	-	CH ₃
7	(+/-)	Br	H	CH ₃	H	OH	H	-	N	-	CH ₃
8	(+/-)	Br	H	CH ₃	-O-CH ₂ -CH(CH ₃) ₂ -O-	CHO	-	N	-	CH ₃	
9	(+/-)	H	H	CH ₃	-O-CH ₂ -CH(CH ₃) ₂ -O-	CH ₃	-	N	-	CH ₃	
10	(1/1)	Br	H	CH ₃	-O-CH ₂ -CH ₂ -O-	CHO	-	N	-	CH ₃	
11	(+/-)	II	H	CH ₃	-O-CH ₂ -CH ₂ -O-	CH ₃	-	N	-	CH ₃	
12	(+/-)	II	H	CH ₃	-O-CH ₂ -CH ₂ -O-	CH ₃	-	N	-	CH ₃	
13	(+/-)	Br	H	CH ₃	-O-CH ₂ -CH ₂ -OH	H	-O-CH ₂ -CH ₂ -O-	CH ₃	-	N	-
14	(+/-)	Br	H	CH ₃	-O-CH ₂ -CH ₂ -O-	CH ₃	-O-CH ₂ -CH ₂ -O-	CH ₃	-	N	-
15	(+/-)	Br	H	CH ₃	=O	H	H	-	N	-	CH ₃
16	(1/1)	Br	H	CH ₃	=O	CH ₃	CH ₃	-	N	-	CH ₃
17	(-)	II	H	CH ₃		II	CH ₃	-	N	-	CH ₃
18	(1)	II	II	CH ₃		II	CH ₃	-	N	-	CH ₃

	δ	τ	δ'	τ'	δ''	τ''	δ'''	τ'''	δ''''	τ''''	δ'''''	τ'''''	δ''''''	τ''''''	δ'''''''	τ'''''''	δ''''''''	τ''''''''	δ''''''''	τ''''''''
19	(-)	H	CH ₃	H	H															
20	(+)	H	CH ₃	H	H	-O-C(=O)-CH ₂ -	-O-C(=O)-CH ₂ -	H	CH ₃	-	N	-	CH ₃	120						
21	(-)	H	CH ₃	H	H	-O-C(=O)-CH ₂ -	-O-C(=O)-CH ₂ -	H	CH ₃	-	N	-	CH ₃	55						
22	(+)	H	CH ₃	H	H	-O-C(=O)-CH ₂ -	-O-C(=O)-CH ₂ -	H	CH ₃	-	N	-	CH ₃	35						
23	(-)	H	CH ₃	H	H	-O-C(=O)-CH ₂ -	-O-C(=O)-CH ₂ -	H	CH ₃	-	N	-	CH ₃	25						
24	(+)	H	CH ₃	H	H	-O-C(=O)-CH ₂ -	-O-C(=O)-CH ₂ -	H	CH ₃	-	N	-	CH ₃	85						
25	(-)	H	CH ₃	H	H				O-C(=O)-CH ₂ -NH-	1-BOC	CH ₃	-	N	-	CH ₃	45				
26	(-)	H	CH ₃	H	H				O-C(=O)-CH ₂ -NH-	COOBn	CH ₃	-	N	-	CH ₃	1				

27	(+)	H	H	CH ₃	-	N	-	ClI ₂
28	(-)	H	CH ₃	CH ₃	-	N	-	ClI ₂
29	(-)	H	ClI ₂	CH ₃	-	N	-	CH ₃
30	(+)	H	ClI ₂	CH ₃	-	N	-	>150
31	(-)	H	CH ₃	CH ₃	-	N	-	CH ₃
32	(-)	H	CH ₃	CH ₃	-	N	-	CH ₃
33	(+/-)	Br	H	CH ₃	-	N	-	ClI ₂

56	(+/-)	D ₁	H	C ₁ ₁	H	H	N - C ₁ ₁	
57	(+/-)	Br	H	C ₁ ₁	OH			
58	(+/-)	Br	H	CH ₃	OH			
59	(+/-)	Br	H	CH ₃	OH			
60	(+/-)	Br	H	CH ₃	OH	CO-CH ₃		
61	(+/-)	Br	H	CH ₃	OH	CO-COOEt		
62	(+/-)	Br	H	CH ₃	OH	CO-(CH ₂) ₂ -COOCH ₃		
63	(+/-)	Br	H	CH ₃	OH	COOCH ₃		
64	(+/-)	D ₁	H	CH ₃	OH	t-BOC		
65	(+/-)	Br	H	CH ₃	OH	CO-C ₁ ₁ H ₃		
66	(+/-)	Br	H	CH ₃	OH	Et ₂ N		
67	(+/-)	Br	H	CH ₃	OH	CO-(CH ₂) ₂ -COOH		
68	(+/-)	Br	H	CH ₃	OH	CO-COOH		
69	(+/-)	H	H	CH ₃	OH	CH ₂ -CH ₂ -OH		
70	(+/-)	Br	H	CH ₃	OH	CH ₂ -CH ₂ -OH		
71	(+/-)	Br	H	CH ₃	OH	CH ₂ -CH ₂ -NH ₂		
72	(+/-)	H	H	CH ₃	OH	CH ₂ -COOH		
73	(+/-)	H	H	CH ₃	OH	CO-C ₁ ₁ H ₃		
74	(+/-)	H	H	CH ₃	OH	CH ₂ CN		
75	(+/-)	H	H	CH ₃		= N-OTs		
76	(+)	H	H	CH ₃		= N-OH		
77	(-)	H	H	CH ₃		= N-OH		
78	(+)	H	H	CH ₃		= N-OH		
79	(-)	H	H	CH ₃		= N-OCH ₃		
80	(+/-)	H	H	CH ₃		= N-OCH ₃		
						= NH		

81	(-)	H	H	CH ₃	= N-NH-CH ₃	CH ₃	-	N	-	CH ₃	>150
82	(+/-)	H	H	CH ₃	= N-N(CH ₃) ₂	CH ₃	-	N	-	CH ₃	unlöslich
83	(+/-)	H	H	CH ₃	= N-[N-(CH ₃) ₂]-OH	CH ₃	-	N	-	CH ₃	>150
84	(+/-)	H	H	CH ₃	= N-NH-CHO	CH ₃	-	N	-	CH ₃	>150
85	(+/-)	H	H	CH ₃	= N-NH-BOC	CH ₃	-	N	-	CH ₃	>150
86	(+/-)	H	H	CH ₃	= N-NH-PTs	CH ₃	-	N	-	CH ₃	>150
87	(+/-)	H	H	CH ₃		CH ₃	-	N	-	CH ₃	unlöslich
88	(+/-)	H	H	CH ₃		CH ₃	-	N	-	CH ₃	>150
89	(+/-)	H	H	CH ₃		CH ₃	-	N	-	CH ₃	>150
90	(+/-)	H	H	CH ₃		CH ₃	-	N	-	CH ₃	>150
91	(-)	H	H	CH ₃	OII	= N-NH ₂	H			Br'	CH ₃
92	(-)	H	H	CH ₃	OII	H					40
93	(-)	H	H	CH ₃	OII	H					8
94	(-)	H	H	CH ₃	OII	H					5

η_5	(-)	H	H	CH ₃	H	CH ₃	N'	Cl'	ClI ₂	6
96	(+)	H	H	CH ₃						
97	(+)	H	H	CH ₃						
98	(-)	H	H	CH ₃	H	H	CH ₃	N'	-	CH ₃ , unlös
99	(-)	H	H	CH ₃	OH	OH	CH ₃	N'	Br	CH ₃ ,
100	(-)	H	H	CH ₃	OH	OH	CH ₃	N'	Hal	CH ₃ ,
101	(+/ -)	Br	H	CH ₃		= O	CH ₃	-	N	C=O
102	(+/ -)	Br	H	CH ₃	OH	H	CH ₃	-	N	C=O
103	(+/ -)	Br	H	CH ₃	O-TBDMS	H	CH ₃	-	N	C=O
104	(-)	H	H	H	OH	H	CH ₃	-	N	C=O
105	(+/ -)	Br	H	CH ₃	OH	H	CH ₃	-	N	CH ₃
106	(+/ -)	H	H	CH ₃	OH	H			N	- CH ₃
107	(+/ -)	Br	H	CH ₃	OH	H			N	- ClI ₂
108	(+/ -)	Br	H	CH ₃	OH	H			N	- CH ₃

109	(+/-)	Br	I	CH ₃	OH	H		- N -	CH ₃
110	(+/-)	Br	H	CH ₃					
111	(+)	Br	H	CH ₃					
112	(+/-)	H	H	CH ₃	OH	H	CH ₃	- N -	CH ₃
117	(-)	NO ₂	H	CH ₃	OH	H	H	- N -	CH ₃
118	(-)	NH ₂	I	CH ₃	OH	H	CH ₃	- N -	CH ₃

- 22 -

Sonderfall der allgemeinen Formel (I) ist die allgemeine Formel (II):

Formel (II)

Pat II Nr.	Chiral	R ₁	R ₂	R ₃	R ₄	R ₅	G ₃	DB*	IC ₅₀
113	(+/-)	Br	H	CH ₃	=O		CH ₂	ja	5
114	(+/-)	Br	H	CH ₃	OH	H	CH ₂	ja	
115	(+/-)	H	H	CH ₃	OH	H	CH ₃	ja	
116	(+/-)	Br	H	CH ₃	OH	H	CH ₂	nein	>150
									50

* DB = Doppelbindung

Anm.: "Chiral." weist in der gesamten Tabelle auf die Chiralität des jeweiligen Eduktes hin. Drehwerte der Produkte sind im experimentellen Teil erfaßt.

Überdies sind in Betracht gezogene
Verbindungen der allgemeinen Formel I

5

worin die Substituenten die nachstehend erläuterten Bedeutungen haben:

R₁ und R₂ sind gleich oder verschieden und bedeuten:

a) Wasserstoff, F, Cl, Br, J, CN, OH, SH, NO₂, SO₃H, PO₃H, NH₂, CF₃, OSO₂(CH₂)_nCF₃,
10 worin n gleich 0, 1 oder 2 ist, -OSO₂-Aryl, -Vinyl- oder -Ethinyl;

b) eine niedrige (C₁-C₆), gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl-,
(Ar)Alkoxy-, Cycloalkyl- oder Cycloalkoxygruppe,

c) eine Aminogruppe, die gegebenenfalls durch eine oder zwei gleiche oder verschiedene
niedrige (C₁-C₆), gegebenenfalls verzweigte, gegebenenfalls substituierte (Ar)Alkyl- oder
15 (Ar)Alkylcarbonyl- oder (Ar)Alkoxy carbonylgruppen oder durch eine Gruppe ausgewählt aus einem
gegebenenfalls substituierten Pyrrolidin-, Piperidin-, Morphin-, Thiomorpholin-, Piperazin- oder
Homopiperazinrest substituiert ist;

d) eine -COOH, -COO(Ar)Alkyl, -CO-Amino-Gruppe, die gegebenenfalls wie oben unter c)
angegeben, substituiert ist, oder eine COH(Ar)Alkylgruppe;

20 e) eine -(CH₂)_nX (worin X = Br, Cl, F oder J ist), -(CH₂)_nOH-, -(CH₂)_nCHO-, -(CH₂)_nCOOH-,
(CH₂)_nCN-, -(CH₂)_nNC-, -(CH₂)_nCOAlkyl- oder -(CH₂)_nCOAryl-Gruppe, worin n 1-4 ist;

f) eine -(CH₂)_nVinyl-, -(CH₂)_nEthinyl-, -(CH₂)_n Cycloalkyl-Gruppe, worin n 0, 1 oder 2 ist,
wobei Cycloalkyl ein aliphatischer Ring mit 3 bis 7 C-Atomen ist;

25 g) eine C₃-C₆ substituierte Alkenylgruppe (gegebenenfalls substituiert mit H, F, Br, Cl, CN,
CO₂Alkyl, COAlkyl, COAryl);

h) eine C₃-C₆ substituierte Alkinylgruppe (gegebenenfalls substituiert mit H, F, Br, Cl, CN,
CO₂Alkyl, COAlkyl, COAryl); oder

i) R₁ und R₂ bedeuten gemeinsam -CH=CH-CH=CH- -O(CH₂)_nO- (n = 1 bis 3) -CH=CH-
(A₁ ist NH, O oder S), oder -CH₂CH₂A₁ (A₁ ist NH, O oder S);

30 R₃ dieselbe Bedeutung hat wie R₁, insbesondere OH und OCH₃ ist, oder
R₂ und R₃ gemeinsam -A₂(CH₂)_nA₂ bedeuten, worin n 1 bis 3 ist und die Substituenten A₂
gleich oder verschieden sind und NH, O oder S bedeuten;

R₄ und R₅ sind entweder

a) beide Wasserstoff,

oder

b) einer von R_4 und R_5 ist Wasserstoff, eine (Ar)Alkyl-, (Ar)Alkenyl- oder (Ar)Alkinyl-Gruppe und der andere von R_4 und R_5 ist

5 i) OR_6 , worin R_6 Wasserstoff, eine niedrige (C_1-C_{10} , gegebenenfalls verzweigte oder substituierte) Alkylgruppe, oder Cycloalkylgruppe, eine C_3-C_{10} substituierte Silylgruppe (beispielsweise Triethylsilyl, Trimethylsilyl, t-Butyldimethylsilyl oder Dimethylphenylsilyl), eine C_1 -alpha-Alkoxyalkyl-Gruppe, beispielsweise Tetrahydropyranyl, Tetrahydrofuryl, Methoxymethyl, Ethoxymethyl, 2-Methoxypropyl, Ethoxyethyl, Phenoxyethyl oder 1-Phenoxyethyl;

10 ii) $O-CS-NHR_6$ (Thiourethane), worin R_6 die oben unter i) angegebene Bedeutungen hat;

iii) $O-CO-NHR_7$ mit der nachstehenden Bedeutung:

15 iv) $O-CO-HR_6$, worin R_6 die oben unter i) genannte Bedeutungen hat, insbesondere Ester mit den Substitutionsmuster von Aminosäuren (beide Enantiomeren), wie

20 v) NR_7R_7 , worin die beiden Substituenten R_7 gleich oder verschieden sind und Wasserstoff, eine niedrige (C_1-C_4), gegebenenfalls verzweigte, Alkylgruppe oder Cycloalkylgruppe bedeuten, oder die Substituenten R_7 sind gemeinsam $-(CH_2)_n-$, worin n 3 bis 5 ist;

25 vi) $NH-COR_6$ (Amid), worin R_6 die oben unter i) genannte Bedeutungen hat;

vii) $S-R_6$, worin R_6 die oben unter i) angegebene Bedeutung hat;

viii) SO_nR_8 , worin n 0, 1 oder 2 ist und worin R_8 eine (C_1-C_{10}), gegebenenfalls verzweigte oder cyclische, gegebenenfalls substituierte (Ar)Alkylgruppe ist;

G₁: $-(CH_2)_x-$, worin x 1 oder 2 ist;

G₂: $-(CH_2)_y-$, worin y 0 bis 2 ist;

30 G₃: $-(CH_2)_z-$, worin z 0 bis 3 ist, mit der Maßgabe, daß die Summe aus $x+y+z$ wenigstens 2 und höchstens 4 ist, oder worin G₃ Carbonyl oder Thiocarbonyl, $-CH(OH)-$ oder $-C(OH)=$ ist;

W ist:

a) $CR_{13}R_{14}$, worin R_{13} Wasserstoff und $R_{14}-(CH_2)_nNR_7R_7$, $:CO-NR_7R_7$ oder $-COOR_7$ bedeuten,

- 25 -

worin $n = 0$ bis 2 ist und R_7 die oben genannten Bedeutungen hat, oder R_7 und R_7 bilden über $-(CH_2)_n$, worin $n = 3$ bis 5 ist, einen Ring, wobei die Substituenten R_{13} und R_{14} vertauscht sein können.

b) N-Phenyl (gegebenenfalls substituiert mit Fluor, Brom, Chlor, $(C_1 \text{--} C_4)Alkyl$, CO_2Alkyl ,
 5 CN, $CONH_2$, oder Alkoxy), N-Thien- 2- oder 3-yl, oder N-Fur- 2- oder 3-yl, oder N-1,3,5-Triazinyl
 bedeutet, wobei der Triazinrest weiter mit Cl, OR_6 oder NR_7R_7 substituiert sein kann, und R_6 bzw.
 R_7 die oben angeführte Bedeutung haben;

c) einer der nachstehend wiedergegebenen Substituenten

10

15 worin J keine Bindung oder $-(CH_2)_n$, wobei $n = 0$ bis 3 ist, Carbonyl, Thiocarbonyl, O, S-SO oder
 SO_2 bedeutet, R_6 die oben angegebenen Bedeutungen hat, und worin
 $Q-(CH_2)_n-M^*(CH_2)_m$ ist, wobei $n = 0$ bis 4 und $m = 0$ bis 4 und M^* Alkinyl, Alkenyl,
 disubstituiertes Phenyl, disubstituiertes Thiophen, disubstituiertes Furan, disubstituiertes
 Pyrazin, disubstituiertes Pyridazin, einen Spacer einer der nachstehend wiedergegebenen
 20 Formeln, einen Peptidspacer L oder einen heterocyclischen Spacer HS der nachstehenden
 Formeln bedeutet,

- 26 -

P = CH oder N
T = CH oder N
X = NR₆, O oder S
Z = CH oder N

worin R₁₅ die Seitenkette von D-, L-, D,L-Aminosäuren oder unnatürlichen Aminosäuren bedeutet,

5 und für den Fall von n>1 R₁₅ in den einzelnen Resten jeweils eine gleiche oder verschiedene Seitenkette von D-, L-, D,L-Aminosäuren oder unnatürlichen Aminosäuren bedeutet, mit der Maßgabe, daß das Atom N neben Q jeweils mit der Gruppe G₂ und G₃ der Formel I verbunden ist;

10 d) ein, gegebenenfalls wenigstens einfach substituierter, tricyclischer Substituent (Tr) mit wenigstens einem heterocyclischen Ring als Ringbestandteil und einer Bindungsstelle an einem Kohlenstoffatom eines anellierten Benzolringes desselben, der über einen Spacer Q und das Q benachbarte Stickstoffatom jeweils mit G₂ und G₃ der Verbindung der Formel I verbunden ist, wobei Q die oben unter c) angegebene Bedeutung hat; oder

e) ·NH·, ·O·, ·S·, ·SO· oder ·SO₂·.

- 27 -

Darunter insbesondere

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1118		100	200	Ro 22
SPH-1146		1,2	3,6	TK 66/1
SPH-1149		0,2	0,21	HM 104
SPH-1162		200		CI 2-1, CB 19

- 28 -

Substanzen- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1184		0.2	0.6	LCz 225/1
SPH-1191		0.35	4.4	LCz 205
SPH-1196		5.2	5	TK 36-2
SPH-1163		200	0.47	MH 7-1-1
SPH-1199		200	2.3	MH 25-1

- 29 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1200		200	17	MH 30-1
SPH-1201		46	0,6	MH-29-1
SPH-1202		200	5,2	MH-28-1
SPH-1203				MH-26-1
SPH-1204		200	200	MH-31-2

- 30 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1205		70	2,4	MH 33
SPH-1206		78	2,5	MH 38-1
SPH-1207		47	0,7	MH 39-1
SPH-1208		200	25	CB 2
SPH-1209		37	20	CB 5

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
-------------------	----------	---------------------------	---------------------------	----------------

- 32 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1217		9,5	17	CB 28
SPH-1218		25	0,54	CB 30
SPH-1219		28,5	200	CB 36
SPH-1220		7,2	21	CB 41
SPH-1221		4,8	200	CB 45

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1222		6.7	200	CB 46
SPH-1227		40	6	HM 38
SPH-1228		200	200	CB 43
SPH-1229		38	30	CB 52
SPH-1230				CB 53

- 34 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1231		33	200	CB 49
SPH-1232		36	200	CB 50
SPH-1233		200	200	CB 51
SPH-1234		66	200	CB 56
SPH-1235		3.4	11	CB 42

- 35 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
-------------------	----------	---------------------------	---------------------------	----------------

- 36 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1245		25	200	CB 59
SPH-1246		17,5	20	MR 16
SPH-1247		2,4	4	MR 17
SPH-1248		40	90	MR 7
SPH-1249		45	26	MR 13

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1250		200	95	MH-66
SPH-1251		59	45	MH-71
SPH-1252		200	52	MH-72
SPH-1253		60	5.4	MH-75
SPH-1254		200	3	MH-76

- 38 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
-------------------	----------	---------------------------	---------------------------	----------------

SPH-1255

200 200 MH-81

SPH-1256

200 14 MH-83

SPH-1259

140 80 HM 60

SPH-1262

54,5 36 MR 14

SPH-1263

200 200 Ap 74

- 39 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
-------------------	----------	---------------------------	---------------------------	----------------

- 40 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
-------------------	----------	---------------------------	---------------------------	----------------

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1277		33	7.3	HM 57
SPH-1278		100	32	HM 60
SPH-1280		0,5	0,24	CB 98
SPH-1282		4	0,54	CB 100, BK 11
SPH-1283		93	100	DD 9

- 42 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1284		8	90	DD 10
SPH-1286		0,3	1,5	BK-32-1-3, AH 8
SPH-1287		18,5	63	HM 109
SPH-1288		6,3	60	HM 112, DD 13
SPH-1289		0,7	1,2	HM 117

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code.
-------------------	----------	---------------------------	---------------------------	-----------------

SPH-1290

1,2 100 MH 123-3,
 AH 11

SPH-1291

0,8 200 MH 123-3,
 TT 33

SPH-1292

40 100 CB 112

SPH-1293

4.2 25 MH 122-3,
 PI-4

SPH-1295

15 32 BM 1

Substanz- Code	Struktur	IC50 (AChE, mE-hr)	IC50 (BChE, mE-hr)	Labor- Code
SPH-1296		46	200	CB 147, DD 16
SPH-1298		200	70	MH 117
SPH-1302		23	200	HM 203
SPH-1309		200	200	MT 176
SPH-1310		5.3	200	MT 141

- 45 -

Substanz- Code	Struktur	IC50 (AChE, mE-hr)	IC50 (BChE, mE-hr)	Labor- Code
SPH-1311		1.3	2.1	BM 4
SPH-1312		3	2.4	DD 24
SPH-1314		8.4	2.4	DD 18
SPH-1315		2.8	5	
SPH-1317		80	200	PI 12

Substanz- Code	Struktur	IC ₅₀ (AChE, mE, hr)	IC ₅₀ (BChE, mE, hr)	Labor- Code
SPH-1318		200	200	PI 14
SPH-1319		200	200	PI 19
SPH-1320		83	30	PI 21
SPH-1326		8.4	2.6	CB 171
SPH-1327		24	3	WO 2

SPH-1328

- 47 -

Substanz- Code	Struktur	IC50 (AChE, mE·hr)	IC50 (BChE, mE·hr)	Labor- Code
SPH-1328		7.2	200	CB 161
SPH-1329		2.9	0.85	DD 26
SPH-1330		64	67	RMA 15
SPH-1331		50	200	MH 142
SPH-1332		200	200	MH 145

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1333		9	23	RMA 14, DD 7
SPH-1335		0.02	0.8	CB 177, BK 6
SPH-1339		0.3	1.5	HM 264-1
SPH-1340		32	30	HM 265-1
SPH-1345		200	200	MH 143
SPH-1346		200	200	MH 146

3,3,3,3,3,3,3,3,3

- 49 -

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1357		0,022	0,8	MF 8
SPH-1359		0,0052	0,24	MF 19
SPH-1362		3	200	MF-3, CK-21-3
SPH-1363		3,6	20	MF-17, CK-24-2
SPH-1369		0,022	1,5	MT 273

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1371		0,36		BK-32-2, BK-32-1-3
SPH-1372		0,022		UJ-1682-2
SPH-1373		0,043		UJ-1685
SPH-1374		0,027		UJ-1686
SPH-1375		0,023		UJ-1683

Substanz- Code	Struktur	IC50 (AChE, mE·hr)	IC50 (BChE, mE·hr)	Labor- Code
SPH-1376		0.02		UJ-1684
SPH-1377		0,024		BK-34-2
SPH-1490				MB-8
SPH-1491				MB-1
SPH-1492				MB-7

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1493				MB-10
SPH-1494				MB-15
SPH-1515				ML-7
SPH-1521				
SPH-1522				CK-52-6
SPH-1523				CK-58-2

- 53 -

Substanz- Code	Struktur	IC50 (AChE, mE,-hr)	IC50 (BChE, mE,-hr)	Labor- Code
SPH-1524				CK-65-1
SPH-1525				CK-63
SPH-1526				CK-63
SPH-1528				CK-49-1- IPP-3-1
SPH-1529				CK-59- AcPP-3-1

32333333333333

- 54 -

Substanz- Code	Struktur	IC50 (AChE, mE-hr)	IC50 (BChE, mE-hr)	Labor- Code
SPH-1530				CK-59-ISS- 4-1
SPH-1531				CK-59-IPP- 2-1
SPH-1532				CK-59- MSS-5-1
SPH-1534				CK-9-2
SPH-1535				CK-10

11.3.2013

-55-

Substan- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1536				CK-32
SPH-1537				CK-17
SPH-1538				CK-17-1
SPH-1539				CK-36

Substanz- Code	Struktur	IC50 (AChE, mE, hr)	IC50 (BChE, mE, hr)	Labor- Code
SPH-1540				CK-41
SPH-1541				CK-48
SPH-1542				CK-43-5
SPH-Nummer	Struktur	IC50 AChE μ M	IC50 BChE μ M	
SPH-1193		1,5	0,8	

Im Rahmen der Erfindung ist unter anderem besonders in Betracht gezogen die Verbindung (6R)-
5 3-Methoxy-5,6,9,10,11,12-hexahydro-4a[H1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol

Von besonderem Interesse sind die nachstehend genannten Verbindungen

	SPH	Structure	MG
1	SPH-1003		1400
2	SPH-1004		5000
3	SPH-1006		2000
4	SPH-1012		700
5	SPH-1014		800
6	SPH-1049		1370
7	SPH-1055		1400
8	SPH-1061		1500
9	SPH-1064		719

10	SPH-1068		3250
11	SPH-1072		1800
12			1050
13	SPH-1090		900
14	SPH-1140		2130
15	SPH-1294		1480
16	SPH-1300		1200
23	SPH-3415		930
29	SPH-3435		390
31	SPH-3440		1800

In den obigen allgemeinen Formeln bedeutet „niedrig“ eine Gruppe mit 1 bis 6 Kohlenstoffatomen und (Ar)Alkyl eine Aryl- oder Alkylgruppe oder eine Arylalkylgruppe. Sinngemäßes gilt für (Ar)Alkylcarbonyl und (Ar)Alkylcarbonyl. Die systematischen (IUPAC)-Namen der weiter oben durch SPH-Ziffern und Strukturformeln identifizierten Verbindungen sind die folgenden:

<u>SPH-Kennzeichen</u>	<u>Chemischer Name</u>
SPH-1003	(-) Galanthamin-n-butylthiocarbamat
SPH-1004	(+) Galantamin Hydrobromid
SPH-1006	(-) Galanthamin-n-butylcarbamat
SPH-1012	(-) Epigalantamin-S-a -methylbenzylcarbamat
SPH-1014	(-) Epigalantamin-n-butylcarbamat
SPH-1049	rac. Narwedinoxim
SPH-1055	(6R)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-on-2-Methylhydrazon
SPH-1061	(+)-N-Demethylbromgalanthamin
SPH-1064	Pyrokohlensäure-t-butylester-2-(4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-oylidene)hydrazid
SPH-1068	(-) Epigalantamin
SPH-1072	(6R)-4a,5,6,9,10,11,12-Hexahydro-1-Brom-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-gamma-oxo-buttersäuremethylester
SPH-1079	2-(4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-yliden)-hydrazincarboximidamid
SPH-1090	(6R)-4a,5,9,10,11,12-Hexahydro-1-Brom-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-gamma-oxo-buttersäure
SPH-1118	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-11-(2-morpholin-4-yl-ethyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1123	(4aR,6R,8aR)-Delta-5,6-4a,5,9,10,11,12-hexahydro-6,11-dimethyl-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin
SPH-1146	(-) Cyclopropyl-methyl-galanthaminium bromid
SPH-1149	(-) (3-Methylbut-2-en-1-yl)-galantaminium bromid
SPH-1162	(6R)-Ethyl-3-(1-bromo-6-hydroxy-3-methoxy-4a,5,9,10,11,12-hexahydro-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11-yl)-propanoat
SPH-1163	(-) 1-Dimethylamino-galanthamin
SPH-1184	(-) N -(4-Brombenzyl)-galantaminium bromid
SPH-1191	(-) N -(3-Chlorpropyonyl)-galantaminium bromid
SPH-1193	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-11-(2-methyl-prop-2-enyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepinium-6-ol chloride
SPH-1196	(6R)-11-(3-2-(4-fluorophenyl-2,5-diazabicyclo[2.2.1]heptan-5-yl-propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1199	(6R)-N-Allyl -1-methylgalanthamin
SPH-1200	(6R)-1-Methyl-galanthamin
SPH-1201	1-Methyl -N,N'-piperidinopropyl- galanthamin
SPH-1202	1-Methyl-N,N'-morpholinoethyl-galanthamin
SPH-1203	1-Methyl-N - benzyl -galanthamin
SPH-1204	1 - Methyl - epigalanthamin
SPH-1205	1-Methyl-N-(2-methyl-prop-2-enyl)-galanthaminium chlorid
SPH-1206	1-Methyl-N-propargyl-galanthaminium bromid
SPH-1207	1-Methyl-N-benzyl-galanthaminium bromid
SPH-1208	(6R)-1-bromo-6-hydroxy-N11-isopropyl-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1209	(6R)- 1-bromo-6-hydroxy-3-methoxy- N11-methyl 5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carbothioamide

SPH-1210	3-((6R)-1-bromo-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanenitrile
SPH-1211	(6R)-6-hydroxy-3-methoxy-N11-methyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carbothioamide
SPH-1213	(6R)-11-((3-dimethylamino)propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1214	(6R)-6-hydroxy-N11-isopropyl-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1215	(6R)-6-hydroxy-3-methoxy-N11-phenyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1216	3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanenitrile
SPH-1217	Ethyl-3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanoate
SPH-1218	Methyl (6R)-1-bromo-N11-cyano-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboximidothioate
SPH-1219	2-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-ylmethylene)-malononitrile
SPH-1220	(6R)-11-(3-hydroxypropyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1221	(6R)-N11-t-butyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1222	(6R)-N11-cyclohexyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1227	(6S)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-methyl-6H-Benzofuro[3a,3,2-ef][2]benzazepin-6-amin
SPH-1228	(6R)-11-(4,6-diphenoxyl-1,3,5,-triazin-2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1229	(6R)-3-methoxy-11-(2-pyrimidinyl)-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1230	(6R)-11-(4,6-dichloro-1,3,5,-triazin-2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1231	(6R)-N11-ethyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1232	(6R)-6-hydroxy-3-methoxy-N11-(2-naphthyl)-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1233	(6R)-11-(4,6-bis-(2-aminoethoxy)-1,3,5,-triazin-2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1234	(6R)-11-(2-chloro-4-pyrimidinyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1235	(6R)-11-(3-aminopropyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1236	(6R)-6-hydroxy-3-methoxy-N11-allyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carbothioamide
SPH-1237	(6R)-N11-4-chlorophenyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1242	(6R)-11-(4,6-bis-(2-(dimethylamino)ethoxy)-1,3,5,-triazin-2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1243	(6R)-11-(4,6-bis-(diethylamino)-1,3,5,-triazin-2-yl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1244	(6R)-11-(2-(3-(dimethylamino)propoxy)-4-pyrimidinyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol

SPH-1245	(6R)-11-(2-diethylamino)-4-pyrimidinyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1246	2-chloro-1-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-1-ethanone
SPH-1247	(4aS,6R,8aS)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1248	Ethyl-2-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)acetate
SPH-1249	3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-N1-t-butylpropanamide
SPH-1250	1-Methyl-N-(2-methyl-prop-2-enyl)-epigalanthaminium-chlorid
SPH-1251	1 - Methyl - N - propargyl - epigalanthaminium - bromid
SPH-1252	1 - Methyl - N - allyl - epigalanthaminium - bromid
SPH-1253	1 - Methyl - N - p - trifluoromethyl - benzyl - epigalanthaminium - bromid
SPH-1254	1 - Methyl - N - benzyl - epigalanthaminium - bromid
SPH-1255	1 - Methyl - N - methyl - epigalanthaminium - jodid
SPH-1256	1 - Methyl - N - methyl -galanthaminium - jodid
SPH-1259	((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-fumaric acid dimethyl ester
SPH-1262	3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-N11-isopropylpropanamide
SPH-1263	4a,5,9,10,11-Hexahydro-3-methoxy-10-methyl-6H.bezofuro[3a,3,2-ef]-[3]benzazepin-6-ol
SPH-1264	3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-acrylic acid ethyl ester
SPH-1266	((4aS,6R,8aS)-6-hydroxy-3-methoxy-N11-2-trifluoromethyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1267	(6R)-6-hydroxy-3-methoxy-N11-methylbenzyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1268	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11-carboxamid
SPH-1269	(4aS,6R,8aS)-6-hydroxy-N11-isopropyl-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1270	(4aS,6R,8aS)-N11-t-butyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1271	t-butyl-3-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanoate
SPH-1272	Methyl-(4aS,6R,8aS)-N11-cyano-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboximidothioate
SPH-1273	(4aS,6R,8aS)-11-Methyl-3-phenoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1276	3-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanic acid
SPH-1277	t-butyl-3-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)propanoate
SPH-1278	2-((6R)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-ylmethylene)-malonic acid diethyl ester
SPH-1280	(4aS,6R,8aS)-3-methoxy-11-phenyl-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1282	(4aS,6R,8aS)-3-methoxy-11-thiophenyl-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol

SPH-1283	(4aR,6S,8aR)-N11-t-butyl-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1284	(4aR,6S,8aR)-6-hydroxy-N11-isopropyl-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1286	(4aS,6R,8aS)-3-methoxy-11-(3-piperidin-1-yl-propyl)-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1287	(4aS,6R,8aS)-6-hydroxy-3-methoxy-N11-methyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide
SPH-1288	(4aS,6R,8aS)-3,6-Dihydroxy-N11-isopropyl-5,6,9,10-tetrahydro-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxylic acid amide
SPH-1289	(4aS,6R,8aS)-11-(cyclopropylmethyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1290	(4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-12-carbonitrile
SPH-1291	(4aS,6R,8aS)-5,6,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-12-carbonitrile
SPH-1292	((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)carboxylic acid 9H-fluoren-9-ylmethyl ester
SPH-1293	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11,12-Dimethyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1294	(6S)-4a,5,9,10,11,12-Hexahydro-1,11-(dimethyl-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol Hydrobromid
SPH-1295	3-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)ethanenitrile
SPH-1296	(4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxylic acid phenyl ester
SPH-1298	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-1-methyl-11-(3-(1-piperidinyl)propyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1302	(4aS,6R,8aS)-4a,5,9,10-Tetrahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-carbonsäure- 1,1-dimethylethylester
SPH-1309	(6R)-10-Amino-4a,5,9,11,12-hexahydro-3-methoxy-6-hydroxy-6H-benzo[a]cyclohepta[hi]benzofuran-6-ol
SPH-1310	11-Amino-4a,5,9,11,12-hexahydro-3-methoxy-6-hydroxy-6H-benzo[a]cyclohepta[hi]benzofuran-6-ol
SPH-1311	(4aS,6R,8aS)-11-(3-aminoethyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1312	(4aS,6R,8aS)-11-(3-2-(4-fluorophenyl)-2,5-diazabicyclo[2.2.1]heptan-5-yl-propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1314	1-(2-Phenyl-2,5-diazabicyclo[2.2.1]heptan5-yl)-2-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-1-ethanone
SPH-1315	(4aS,6R,8aS)-11-(3-hydroxypropyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol SPH-
SPH-1317	(6R)-1,11-Dimethyl-5,6,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-12-carbonitrile
SPH-1318	(4aS,6S,8aS)-5,6,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-12-carbonitrile
SPH-1319	(6S)-5,6,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-12-carbonitrile
SPH-1320	(4aS,6R,8aS)-1,11-Dimethyl-5,6,9,10,11,12-Hexahydro-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol

SPH-1326	1-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)pent-4-en-1-one
SPH-1327	(4aS,6R,8aS)-11-(1-benzoyl-piperidin-4-yl)-3-methoxy-5,6,9,10,11,12-hexahyd-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1328	(4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carbothionic acid O-phenyl ester
SPH-1329	(4aS,6R,8aS)-11-(2-Phenyl-2,5-diazabicyclo[2.2.1]heptan-5-yl-ethyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1330	(4aR,6S,8aR)-11-((3-dimethylamino)propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1331	(4aS,6R,8aS)-4a,5,9,10-Tetrahydro-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol, 11-oxide
SPH-1332	(4aS,6R,8aS)-4a,5,9,10-Tetrahydro-6-hydroxy-3-methoxy-6H-14aH-benzofuro[3a,3,2-ef]isoxasolo[3,2-a][2]benzazepine-14-carboxylic acid, methyl ester
SPH-1333	(4aR,6S,8aR)-11-(3-piperidin-1-yl-propyl)-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1335	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-benzoforo[3a,3,2-ef][2]benzazepin-11-yl]butyl]-5,6-dimethoxyindan-1-on
SPH-1339	(4aS,6R,8aS)-11-propyl-3-methoxy-5,6,9,10,11,12-hexahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1340	N-Dermethyl-N-propargyl-galantamine
SPH-1345	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-Hydroxy-3-methoxy-11-methyl-6H-,14H-[1]benzofuro[3a,3,2-ef]ioxazolo[3,2a2][2]benzazepin-13(or 14)-carboxylic acid, methylester
SPH-1346	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-Hydroxy-3-methoxy-11-methyl-6H-,14H-[1]benzofuro[3a,3,2-ef]ioxazolo[3,2a2][2]benzazepin-13(or 14)-carbonitrile
SPH-1357	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-benzoforo[3a,3,2-ef][2]benzazepin-11-yl]butyl]-5-methoxyindan-1-on
SPH-1359	2-[5-[(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]pentyl]-5,6-dimethoxyindan-1-on
SPH-1362	((4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-6-hydroxy-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11-yl)methyl-azodicarboxylic acid diethyl ester
SPH-1369	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]butyl]-1,2-benzoisothiazol-3(2H)-on, 1,1 dioxid,
SPH-1371	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-[3-(1-piperidinyl)propyl]-6H-benzofuro[3a,3,2-ef][2]benzazepin-6-ol, dihydrobromide,
SPH-1372	2-[5-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]pentyl]-1,2-benzoisothiazol-3(2H)-on, 1,1-dioxid, fumarat
SPH-1373	-[6-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]hexyl]-1,2-benzoisothiazol-3(2H)-on, 1,1-dioxid, fumarat
SPH-1374	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]butyl]-1,2-benzoisothiazol-3(2H)-on, 1,1-dioxid, L(+)-tartra
SPH-1375	2-[5-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]pentyl]-5,6-dimethoxyindan-1-on, fumarat

SPH-1376	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]butyl]-5,6-dimethoxyindan-1-on, fumar
SPH-1377	2-[4-[(4aS,6R,8aS)-4a,5,9,10,11,12-hexahydro-6-hydroxy-3-methoxy-6H-benzofuro[3a,3,2-ef][2]benzazepin-11-yl]butyl]-5-methoxyindan-1-on, fumarat
SPH-1396	(-) Galantamin-phenylthiocarbamat
SPH-1490	6,7-Dihydro-5-(4-((4aS,6R,8aS)-6-Hydroxy-3-methoxy-4a,5,9,10-tetrahydro-6H-benzofuro[3a,3,2-ef][2]benzazepine-11-(12H)-yl]butyl-benzo[b]thiophen-4-(5H)-on
SPH-1491	6,7-Dihydro-5-(4-((4aS,6R,8aS)-6-Hydroxy-3-methoxy-4a,5,9,10-tetrahydro-6H-benzofuro[3a,3,2-ef][2]benzazepine-11-(12H)-yl]pentyl)-benzo[b]thiophen-4-(5H)-on
SPH-1492	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-(6-piperidin-1-yl-hexyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1493	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-(6-(4methylpiperazine)-1-yl-hexyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1494	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-(6-(4-hydroxypiperidin-1-yl-hexyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1515	(4aS,6R,8aS)-3,6-Dihydroxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)carbonsäureallylester
SPH-1521	1-(6-((4aS,6R,8aS)-6-Hydroxy-3-methoxy-4a,5,9,10-tetrahydro-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11(12H)-yl)-hexyl)-piperidin-4-one
SPH-1522	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-(N-tert-Butoxycarbonyl-6-aminohexyl)-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 carboxamide
SPH-1523	N-tert-Butoxycarbonylglycine-[4-[(4aS,6R,8aS)-6-hydroxy-3-methoxy-5,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl]-3-aza-4-oxobutyl]amide
SPH-1524	((4aS,6R,8aS)-6-(Benzoyloxy)-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)carboxylic acid allyl ester
SPH-1526	((4aS,6R,8aS)-6-(Benzoyloxy)-3-hydroxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)carboxylic acid allyl ester
SPH-1528	N-p-Methoxybenzoyl-phenylalanyl-phenylalanine-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)-amide
SPH-1529	N-Acetyl-phenylalanyl-phenylalanine-((4aS,6R,8aS)-6-hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)-amide
SPH-1534	((4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)carboxylic acid triisopropyl sili ester
SPH-1535	((4aS,6R,8aS)-6-Hydroxy-3-methoxy-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepin-11 (12H)-yl)carboxylic acid ttert-butyldiphenylsili ester
SPH-1536	(4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-3-methoxy-11-trfluoracetyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepin-6-ol
SPH-1537	((4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine-11-yl) carboxylic acid allylester
SPH-1538	((4aS,6R,8aS)-6-(2-Allyloxycarbonyloxy)-4a,5,9,10,11,12-hexahydro-3-methoxy-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine-11-yl) carboxylic acid allylester
SPH-1539	1-((4aS,6R,8aS)-4a,5,9,10,11,12-Hexahydro-6-hydroxy-3-methoxy-11-methyl-6H-[1]benzofuro[3a,3,2-ef][2]benzazepine-11-yl)-6-(4-hydroxy-1-piperidyl)hexan-1-one

2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2
2 2 2 2 2 2 2 2 2 2

- 66 -

SPH-1540

(4aS,6R,8aS)-6-hydroxy-3-methoxy-N11-(1-naphthyl)-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-11(12H)-carboxamide

SPH-1541

(4aS,6R,8aS)-3-methoxy-11-(tert-butoxycarbonyl-5,6,9,10-tetrahydro-4aH-[1]benzofuro[3a,3,2-ef][2]benzazepine-6(12H)-yloxy)-5-oxopentanoic acid

Die erfindungsgemäß unter Verwendung von Galanthamin und seinen Derivaten erhältlichen Arzneimittel können einen Wirkstoff oder eine Kombination von Wirkstoffen enthalten. Unter Kombination werden auch Kombinationen der erfindungsgemäß in Betracht gezogenen Verbindungen mit anderen pharmazeutisch aktiven Substanzen verstanden.

15 Galanthamin, ein Derivat oder ein Säureadditionssalze des selben kann in jeder geeigneten, chemischen oder physikalischen Form verabreicht werden. Beispielsweise kann es als das Hydrobromid, Hydrochlorid, Methylsulfat oder Methiodid verabreicht werden.

20

Galanthamin, ein Analogon, ein Derivat oder deren pharmazeutisch annehmbare Säureadditionssalze können einem an Schlaganfall oder Schädel-Hirn - Trauma leidenden Patienten intravenös durch Injektion oder Infusion oder intracerebroventrikulär mittels eines implantierten Behälters verabreicht werden.

Typische Dosierungsrationen bei Verabreichung dieser Wirkstoffe hängen von der Natur der verwendeten Verbindung ab und liegen 30 bei intravenöser Applikation im Bereich von 0,1 bis 2,0 mg pro Tag und Kilogramm Körpergewicht in Abhängigkeit vom physischen Zustand und sonstiger Medikation des Patienten.

35 Die folgenden spezifischen Formulierungen können bei der Behandlung des Zustandes nach Schlaganfall oder Schädel-Hirn - Trauma Anwendung finden:

Lösung zur parenteralen Verabreichung enthaltend 1 mg Wirkstoff/ml.

Flüssige Formulierung zur intracerebroventrikulären Verabreichung, in einer Konzentration von 1 oder 5 mg Wirkstoff/ml.

Es wurde nunmehr festgestellt und durch eine umfangreiche klinische Studie erhärtet, dass orale Verabreichung von Galanthamin (in Form des unter dem Markennamen Reminyl® zur Therapie der leichten bis mittelschweren Alzheimer'schen Krankheit handelsüblichen Hydrobromids) an präoperativ nicht demente oder kognitiv eingeschränkte Patienten mit akutem POD eine bisher nicht beschriebene, unerwartet schnelle und weitgehende Besserung der Symptome bewirkt. Als besonders überraschend muß dabei herausgestrichen werden, dass die beobachteten Nebenwirkungen der Galanthamin-Verabreichung sehr gering waren, obwohl postoperative Patienten erfahrungsgemäß eine erhöhte cholinerge Sensitivität aufweisen.

Im Rahmen einer in Österreich durchgeföhrten prospektiven multizentrischen klinischen Studie wurden über 200 Patienten, die im Rahmen einer geplanten Operation einen Hüftgelenkersatz erhielten, in ein Protokoll zur versuchsweisen Behandlung eines eventuell auftretenden POD einbezogen. Als POD-Fälle galten Patienten, die zumindest an einem der ersten fünf postoperativen Tage ein positives Ergebnis nach den Kriterien 1 (akuter Beginn) sowie 2A (Aufmerksamkeitsstörung), 2B (fluktierende Aufmerksamkeit), und 3 (desorganisierte Denkvorgänge) und/oder 4 (Bewusstseinsveränderung) des Confusion Assessment Method - Tests aufwiesen. Waren einige, aber nicht alle, dieser Kriterien erfüllt, wurde der Patient dennoch mit POD diagnostiziert, wenn der vom Pflegepersonal zu beurteilende Score im Confusion Rating Scale (CRS) positiv war. Die Schwere des Deliriums wurde mittels CRS, des Delirium Rating Score (DRS) und des Delirium Symptom Interviews bestimmt. Der Grad der kognitiven Beeinträchtigung wurde durch den Mini-Mental State Exam (MMSE) Test erfasst.

Die Auswertung der Studie zeigte in eindeutiger Weise die Wirksamkeit von Galanthamin bei POD.

29. September 2003

Sanochemia Pharmazeutika AG

vertreten durch:

DIPL.-ING. MANFRED EGER
DIPL.-ING. KURTALD BELENBERG
Kuhn

LITERATUR

-69-

1. Trzepacz PT. Update on the neuropathogenesis of delirium. *Dement Geriatr Cogn Disord.* 1999;10:330-334.
2. Bekker AY, Weeks EJ. Cognitive function after anaesthesia in the elderly. *Best Pract Res Clin Anaesthesiol.* 2003;17:259-272.
3. O'Brien D. Acute postoperative delirium: definitions, incidence, recognition, and interventions. *J Perianesth Nurs.* 2002;17:384-392.
4. Williams-Russo P, Urquhart BL, Sharrock NE et al. Post-operative delirium: predictors and prognosis in elderly orthopedic patients. *J Am Geriatr Soc.* 1992;40:759-767.
5. Kiely DK, Bergmann MA, Murphy KM et al. Delirium among newly admitted postacute facility patients: prevalence, symptoms, and severity. *J Gerontol A Biol Sci Med Sci.* 2003;58:M441-M445.
6. Jackson JC, Ely EW. The Confusion Assessment Method (CAM). *Int J Geriatr Psychiatry.* 2003;18:557-558.
7. Carnes M, Howell T, Rosenberg M et al. Physicians vary in approaches to the clinical management of delirium. *J Am Geriatr Soc.* 2003;51:234-239.
8. Cole M, McCusker J, Dendukuri N et al. The prognostic significance of subsyndromal delirium in elderly medical inpatients. *J Am Geriatr Soc.* 2003;51:754-760.
9. Baraka A, Harik S. Reversal of central anticholinergic syndrome by galanthamine. *J Am Med Assoc.* 1977;238:2293-2294.
10. Milam SB, Bennett CR. Physostigmine reversal of drug-induced paradoxical excitement. *Int J Oral Maxillofac Surg.* 1987;16:190-193.
11. Savage GJ, Metzger JT. The prevention of postanesthetic delirium. *Plast Reconstr Surg.* 1978;62:81-84.
12. Mulsant BH, Pollock BG, Kirshner M et al. Serum anticholinergic activity in a community-based sample of older adults: relationship with cognitive performance. *Arch Gen Psychiatry.* 2003;60:198-203.

13. Santos MD, Alkondon M, Pereira EF et al. The Nicotinic Allosteric Potentiating Ligand Galantamine Facilitates Synaptic Transmission in the Mammalian Central Nervous System. *Mol Pharmacol.* 2002;61:1222-1234.

BEER & PARTNER
PATENTANWÄLTE KEG
1070 Wien, Lindengasse 8

A 1538/2003

Doppel

29. September 2003

W5-204000-pAT

Unterschriften

Sanochemia Pharmazeutika AG

in Wien, AT

B/A

Patentansprüche:

1. Verwendung von Galanthamin und seinen cholinerge Aktivität aufweisenden Derivaten zum Herstellen von Arzneimitteln zur Behandlung von postoperativem Delir und/oder subsyndronalem postoperativem Delir.

2. Verwendung nach Anspruch 1 zum Herstellen von Arzneimitteln zur präventiven Behandlung von postoperativem Delir und/oder subsyndronalem postoperativem Delir.

Sanochemia Pharmazeutika AG

vertreten durch:

Date:

13/08FOR:

Richard Chantal D. Luis Hipolito Patrizia
Chantal. A. Danièle Evelyne Norbert Brigitte
Sylvie Carole Soumia Bruno

Record copy for inputting ➔ _____

Record copy EASY for uploading + checking ➔ _____

Record copy inputted for checking ➔ No _____

Mail with file ➔ _____

Mail without file ➔ AS - 1

P.Doc with file ➔ _____ ↳ def. en

P.Doc without file ➔ _____

ISR with file ➔ _____

ISR without file ➔ _____

ISR/WOSA ➔ _____

Demand with file ➔ _____

Demand without file ➔ _____

IPER Translation ➔ _____

IPER without file ➔ _____

B36
PCT/AT2004/000251

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.