Л. Йовков

НПМГ "Акад. Л. Чакалов"

05.04.2020

Да започнем с изследването на взаимните положения на две равнини в пространството.

І. УСПОРЕДНИ РАВНИНИ

Дефиниция 1

Две равнини, които нямат общи точки, се наричат успоредни.

На фигура 1 са представени равнините α и β , които са успоредни. Пишем $\alpha \parallel \beta$. Очевидно е, че всяка права от едната равнина е успоредна на другата равнина.

Фигура 1: Успоредни равнини

Ще формулираме без доказателство следния критерий за успоредност на две равнини.

Теорема 1

Ако две пресичащи се прави от една равнина са успоредни на две пресичащи се прави от друга равнина, то двете равнини са успоредни.

Съдържанието на този критерий не е случайно и е свързано с една от основните аксиоми на стереометрията, според която всеки две пресичащи се прави задават единствена равнина.

Освен това са в сила и средващите две теореми.

Теорема 2

През точка, нележаща на дадена равнина, съществува единствена равнина, успоредна на дадената.

На фигура 2 през точката A, нележаща в равнината α , минава единствена равнина β , успоредна на дадената.

Фигура 2: Равнина през точка, успоредна на дадена равнина

Теорема 3

Пресечниците на равнина с две успоредни равнини са успоредни прави.

На фигура 3 равнините α и β са успоредни. Пресечниците на равнината γ с α и β са съответно правите \boldsymbol{a} и \boldsymbol{b} . Тогава $\boldsymbol{a} \parallel \boldsymbol{b}$ или записано символично:

$$\alpha \parallel \beta$$
,
 $\gamma \cap \alpha = a, \ \gamma \cap \beta = b$
 $\Rightarrow a \parallel b$.

 Φ игура 3: Пресечници на успоредни равнини с трета равнина

Пример 1

Точката M е средата на ръба CC_1 на куба $ABCDA_1B_1C_1D_1$. Нека $\alpha=(BMD_1)$.

- а) Да се намери пресечницата на равнините α и (*ABB*₁*A*₁).
- б) Ако $N = \alpha \cap AA_1$, да се намери отношението $AN : AA_1$.

Решение 1

- 1. $AB \parallel CD$, $BB_1 \parallel CC_1 \Rightarrow$ по теорема 1 получаваме $(ABB_1A_1) \parallel (DCC_1D_1)$
- 2. Нека $\alpha \cap (ABB_1A_1) = BN$. Тогава по теорема 3 имаме $BN \parallel MD_1$.
- 3. Аналогично $BM \parallel D_1 N$.
- 4. *BMD*₁*N* успоредник
- $\Rightarrow BM = D_1N$
- 5. $\Delta BCM \simeq \Delta D_1 A_1 N$ по 4 пр.
- $\Rightarrow A_1N = CM = \frac{1}{2}CC_1$
- \Rightarrow AN : AA₁ = 1 : 2 \square

Пример 2

Даден е куб $ABCDA_1B_1C_1D_1$. Намерете пресечницата на равнината, минаваща през средите на ръбовете AB, BC и A_1D_1 , с равнината $A_1B_1C_1D_1$.

Решение 2

Решението извършете самостоятелно.

Пример 3

Даден е куб $ABCDA_1B_1C_1D_1$. Докажете, че равнините (ACB_1) и (A_1C_1D) са успоредни.

Решение 3

Решението извършете самостоятелно.

Дефиниция 2

Фигурата, образувана от права и две полуравнини с контур тази права, се нарича двустенен ъгъл.

На фигура 4 равнините λ и μ се пресичат по правата \boldsymbol{a} и образуват двустенен ъгъл. Правата \boldsymbol{a} се нарича ръб на двустенния ъгъл, а самите равнини — стени на двустенния ъгъл. Бележим със $\angle(\lambda; \mu)$.

Фигура 4: Двустенен ъгъл

На фигура 5 през точка O от ръба на двустенния ъгъл сме построили равнина $\pi \perp a$. Ясно е, че през O няма друга равнина с това свойство.

Дефиниция 3

Ъгълът, който се получава при пресичането на двустенния ъгъл с равнина, перпендикулярна на ръба му, се нарича линеен ъгъл на двустенния ъгъл.

Ъгълът POQ е линеен ъгъл на двустенния $\measuredangle(\lambda; \mu)$.

Фигура 5: Линеен ъгъл на двустенен ъгъл

Забележка 1

При пресичането на ръба на двустенния ъгъл с равнини, перпендикулярни на този ръб, получаваме ъгли с взаимноуспоредни рамене. Те очевидно имат една и съща мярка. Следователно всичките линейни ъгли на даден двустенен ъгъл са равни.

Забележка 2

В практиката обикновено за построяване на двустенен ъгъл се използва разгледаната и доказана вече теорема за трите перпендикуляра от темата "Ортогонално проектиране. Ъгъл между права и равнина".

Въвеждаме още и следната

Дефиниция 4

Мярка на двустенен ъгъл се нарича мярката на кой да е негов линеен ъгъл.

Дефиниция 5

Два двустенни ъгъла се наричат равни, ако са равни линейните им ъгли.

Дефиниция 6

Ъгъл между две равнини се нарича по-малкият от двустенните ъгли, образувани от равнините.

Пример 4

Дадена е правилна четириъгълна пирамида ABCDM с основен ръб 2 и околен ръб $\sqrt{5}$. Да се намери двустенният ъгъл между околна стена и основата.

Решение 4

Нека *МО* е височината на пирамидата. Понеже околните ръбове са равни, то и проекциите им върху основата са равни:

OA = OB = OC = OD. Тогава точка O е центърът на квадрата ABCD.

Построяваме $MP\bot BC$. Понеже $\delta_\bot(MP)=OP$, то по теоремата за трите перпендикуляра $OP\bot BC$. Така $BC\bot(OMP)$ и

$$\angle[(ABCD); (BCM)] = \angle OPM.$$

От $\triangle CPM$ с Питагорова теорема пресмятаме MP=2. Сега от $\triangle OPM$ имаме

$$\cos \angle OPM = \frac{OP}{PM} = \frac{1}{2} \Rightarrow \angle OPM = 60^{\circ}. \square$$

Пример 5

В правилна триъгълна пирамида ABCD основните ръбове имат дължина $6\sqrt{3}$, а околните — $\frac{9}{\sqrt{2}}$. Намерете мярката на двустенния ъгъл между две съседни околни стени.

Решение 5

Понеже $\triangle BCD \simeq \triangle ACD$ с обща страна CD, то петите на височините през върховете A и B към CD ще съвпадат.

$$\frac{BH}{6\sqrt{3}} = \frac{1}{\sqrt{3}} \Rightarrow BH = 6.$$

4. Сега от равнобедрения $\triangle ABH$ по косинусова теорема получаваме $\cos \angle AHB = -\frac{1}{2}$, т. е. $\angle AHB = 120^{\circ}$. \Box

II. ПЕРПЕНДИКУЛЯРНИ РАВНИНИ

Двустенен ъгъл, за който линейният му ъгъл има мярка 90° , се нарича прав двустенен ъгъл.

Дефиниция 7

Две равнини, които сключват прав двустенен ъгъл, се наричат перпендикулярни.

В сила е

Теорема 4

Ако една равнина минава през права, перпендикулярна на друга равнина, то двете равнини са перпендикулярни.

Пример 6

Даден е куб $ABCDA_1B_1C_1D_1$. Да се докаже, че равнините (ACB_1) и (BDB_1) са перпендикулярни.

Решение 6

Понеже $BB_1 \perp (ABCD)$, то $AC \perp BB_1$. Освен това $AC \perp BD$. Следователно $AC \perp (BDB_1)$. Но $AC \in (ACB_1)$, откъдето по теорема 4 имаме $(ACB_1) \perp (BDB_1)$. \square

Задача 1

Даден е куб $ABCDA_1B_1C_1D_1$. Определете ъгъла между равнините (ABC_1) и (ABC).

Задача 2

В правилната четириъгълна пирамида ABCDV с връх V всички ръбове са равни. Намерете косинуса на ъгъла между равнините (ABC) и (BCV).

Задача 3

В правилна триъгълна пирамида *ABCDV* основните ръбове имат дължина $2\sqrt{3}$, а околните — $\sqrt{7}$. Намерете двустенния ъгъл при основен ръб на пирамидата.

Задача 4

В правилна четириъгълна пирамида *ABCDV* околните стени сключват с основата ъгъл с мярка 45°. Намерете основния ръб на пирамидата, ако височината и́ е 5.

Задача 5

В правилна четириъгълна пирамида ABCDV основните ръбове са равни на 6, а околните — на $3\sqrt{3}$. Намерете мярката на двустенния ъгъл между околните стени.

Задача 6

Основата на триъгълна пирамида ABCD е равностранен $\triangle ABC$ и околният ръб DC е перпендикулярен на основата. Ако AB = CD, намерете тангенса на двустенния ъгъл при ръба AB.

Задача 7

Основата на триъгълна пирамида ABCD е равнобедрен $\triangle ABC$, като AB=6 и AC=BC=5. Ако AV=4,8 и $AV\bot(ABC)$, намерете мярката на двустенния ъгъл при ръба BC.

Задача 8

Основните ръбове на правилна шестоъгълна пирамида са равни на 6. Околните ръбове на пирамидата са равни на 7. Намерете синуса на половината от двустенния ъгъл между две съседни околни стени.

Задача 9

Даден е куб $ABCDA_1B_1C_1D_1$. Намерете косинуса на ъгъла между равнината (ABCD) и равнината, минаваща през върха A и средите на ръбовете DD_1 и C_1D_1 .

Задача 10

В правоъгълния паралелепипед $ABCDA_1B_1C_1D_1$ AB=1 и $BC=CC_1=2$. Точка N е среда на CC_1 , а точка M— на A_1D_1 . Намерете косинуса на ъгъла между равнините (ABC) и (B_1NM) .

Задача 11

Основата на пирамида е квадрат със страна a. Околният ръб $AV \perp (ABCD)$ и има дължина $a\sqrt{3}$. Намерете косинуса на двустенния ъгъл при ръба CV.

Задача 12

Основата на пирамидата ABCDV е правоъгълен трапец с основи AB=4 и CD=1. По-голямото бедро на трапеца е BC=5, а околният ръб $AV\bot(ABC)$, като BV=8. Намерете мярката на ъгъла между равнините (ABV) и (DCV).

Задача 13

В правилна триъгълна пирамида ъгълът между околен ръб и основа е α . Двустенният ъгъл при основен ръб е β . Докажете, че $2\tan\alpha = \tan\beta$.

Задача 14

Равнината на ромба ABCD и равнината на правоъгълния трапец DCEF ($DC \parallel EF$, DC > EF) са перпендикулярни. Да се намери отношението на периметъра на ромба към радиуса на вписаната в него окръжност, ако $COS \angle BCE = \frac{DF}{CE} = \frac{\sqrt{3}}{2}$.

Задача <u>15</u>

Равнината на квадрата ABCD със страна a и равнината на равнобедрения ΔBCM с $\measuredangle MBC = 120^\circ$ са перпендикулярни. Да се намери лицето на ΔADM .

Задача 16

Основата на права призма $ABCDA_1B_1C_1D_1$ е равнобедреният трапец ABCD ($AD \parallel BC$, AD > BC). Диагоналът на трапеца има дължина $3\sqrt{3}$ и е ъглополовяща на ъгъла при основата, който е равен на 60° . Да се намери ъгълът между равнината на основата и равнината на сечението, което минава през ръба AB и върха D_1 , ако $DD_1 = \frac{3}{2}AD$.

Задача 17

Дадени са $\triangle ABC$ и равнина α . Разстоянията от върховете A, B и C до α са $AA_1=2$, $BB_1=1$ и $CC_1=2$, 5. Дължините на ортогоналните проекции на AB и на височината CD към нея са равни на $\sqrt{3}$. Да се определи ъгълът, заключен между равнината на $\triangle ABC$ и равнината α , ако разстоянието от точка D до пробода на AB с равнината α е 3.