KDD Cup 2017

Speaker: 陳昶儒、周鴻汶、王仁緯

Prof.: 李漢銘 老師

Divide the work

Name	Data processing	Train model
陳昶儒	V	V
周鴻汶	V	V
王仁緯	V	V

Outline

- ► Task I (travel time)
 - Software Platform
 - Data processing
 - Phase I
 - Phase2
- ► Task 2 (volume)

Task 1 (travel time)

Software Platform

Data processing

- combine the trajectories and weather data
- > split dataset and use them to train different models
 - Routes from Intersection A to Tollgates 2 & 3;
 - Routes from Intersection B to Tollgates 1 & 3;
 - Routes from Intersection C to Tollages 1 & 3.

	intersection_id	tollgate_id	starting_time	travel_time	weekday	month	day	hours	minute	pressure	sea_pressure	wind_direction	wind_speed	temperature	rel_humidity	precipitation
3	A	2	2016-07-19 00:37:59	58.05	2	7	19	0	37	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
7	A	2	2016-07-19 01:36:04	74.47	2	7	19	1	36	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
8	А	3	2016-07-19 01:36:20	94.57	2	7	19	1	36	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
10	A	2	2016-07-19 01:38:48	39.27	2	7	19	1	38	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
12	A	2	2016-07-19 01:42:22	35.38	2	7	19	1	42	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
15	A	2	2016-07-19 01:48:40	130.43	2	7	19	1	48	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
17	A	2	2016-07-19 01:52:08	67.41	2	7	19	1	52	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
19	A	2	2016-07-19 02:20:16	42.64	2	7	19	2	20	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
20	A	3	2016-07-19 02:36:20	72.12	2	7	19	2	36	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
21	A	3	2016-07-19 02:38:10	83.10	2	7	19	2	38	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0
23	A	2	2016-07-19 02:42:22	29.15	2	7	19	2	42	1000.9	1005.8	219.0	3.3	27.5	81.0	0.0

Phase1

4-12: use XGboost

- Use feature: weekday,hours,minute,temperature,wind_speed,wind_direction, rel_humidity.
- Drop tarvel_time > 500
- max_depth=2 , n_estimators=250, learning_rate=0.0 l
- ▶ Testing data MAPE: 0.1821
 - ▶ Routes A2: 0.1791
 - Routes A3: 0.1935
 - ▶ Routes BI: 0.1716
 - ▶ Routes B3: 0.1899
 - ▶ Routes CI: 0.1445
 - ▶ Routes C3: 0.2142
- Predict data MAPE: 0.1846

4-14: use XGboost

- Use feature: weekday,hours,minute,temperature,pressure,rel_humidity.
- Drop tarvel_time > 500
- max_depth=mix , n_estimators=250, learning_rate=0.01
- max_depth=2, n_estimators=250, learning_rate=0.01
- ▶ Testing data MAPE : 0.1796/0.1799
 - Routes A2: 0.1791
 - Routes A3: 0.1900/0.1914
 - Routes B1: 0.1733/0.1737
 - ▶ Routes B3: 0.1737
 - ▶ Routes CI: 0.1446
 - ▶ Routes C3: 0.2172
- Predict data MAPE: 0.1869 / 0.1846

4-18: Mix 4-12,4-14

- **4-12**:
 - Model B1,B3,C1,C3
- **4-14**
 - ► Model A2,A3
- ▶ Predict data MAPE: 0.1845

4-19: Change model

- Let model A2,A3,B1,B3,C1,C3 change to:
- ► A2 : A2M,A2T,A2W,A2R,A2F,A2A,A2S
- ► A3 : A3M,A3T,A3W,A3R,A3F,A3A,A3S
- ▶ BI : BIM,BIT,BIW,BIR,BIF,BIA,BIS
- ▶ B3 : B3M,B3T,B3W,B3R,B3F,B3A,B3S
- CI: CIM,CIT,CIW,CIR,CIF,CIA,CIS
- ► C3 : C3M,C3T,C3W,C3R,C3F,C3A,C3S

Predict data MAPE: 0.215

5-3: Cross validation by 4-18 model

- Cv_folds=5
- ▶ Metrics=MAE
- ► Testing data MAPE:0.185~0.19
- ▶ Predict data MAPE:0.2005

5-9: Select New Feature

- ▶ A gradient boosting method to improve travel time prediction (2015)
- Let travel time data become 5-avg-set example: 6:00,6:05,6:10
- New Feature:
 - ▶ TI: before 5 min travel time
 - T2: before 10 min travel time
 - ▶ T3: before 15 min travel time
 - Detla I:TI-T2
 - Detla2:T2-T3
 - ▶ Time: I~288(5 min I set)

22	A	2	[2016-07-19 05:20:00,2016- 07-19 05:25:00)	46.440000	46.730000	51.540000	-0.290000	-4.810000	40.63	
23	A	2	[2016-07-19 05:25:00,2016- 07-19 05:30:00)	40.630000	46.440000	46.730000	-5.810000	-0.290000	32.47	
24	A	2	[2016-07-19 05:30:00,2016- 07-19 05:35:00)	32.470000	40.630000	46.440000	-8.160000	-5.810000	55.35	
25	A	2	[2016-07-19 05:35:00,2016- 07-19	55.350000	32.470000	40.630000	22.880000	-8.160000	63.86	

5-9-16: new model

- ▶ Use feature: 4-18 features + T1,T2,T3,delta1,delta2
- ▶ Predicti data MAPE:0.1949 → 0.1881

5-19: weather vs travel_time

Precipitation vs Travel_time (A2 & hour=8)

5-19: weather vs travel_time

Temperature vs Travel_time (A2 & hour=8)

5-19: use XGboost

- Use feature: t1,t2,t3,deltat1,deltat2,weekday,hour
- Let tarvel_time > 500 become 500
- ▶ Testing data MAPE: 0.1681
 - ▶ Routes A2: 0.1704
 - Routes A3: 0.1337
 - ▶ Routes BI: 0.1636
 - ▶ Routes B3: 0.1874
 - ▶ Routes CI: 0.1419
 - ▶ Routes C3: 0.2117
- Predict data MAPE: 0.1851

Compare 4-18 and 5-19

Compare 4-18 and 5-19

▶ 4-18 VS 5-19

▶ Predict data MAPE: 0.1786

Turning A2 model 5-22~5-24

5-25 Phase1 over

▶ Best MAPE: 0.1778

▶ Rank : 100

Phase2

Data processing

- ▶ Add 10-18 to 10-25 training data into the model
- Let travel time data become 5-avg-set example: 6:00,6:05,6:10
- New Feature:
 - ▶ TI: before 5 min travel time
 - T2: before 10 min travel time
 - T3: before 15 min travel time
 - Detla I:T I-T2
 - Detla2:T2-T3
 - ▶ Time: I~288(5 min I set)
- ▶ To predict 10-26 to 10-31 8~10AM and 17~19PM travel time

5-29: Phase2 predict

- ▶ Use feature: t1,t2,t3,deltat1,deltat2,weekday,hour,check
- Let tarvel_time > 500 become 500

- Predict data MAPE: 0.1846
- ▶ Rank:12

► A2

▶ B3

▶ C3

5-30: Phase2 predict

- Use feature: t1,t2,t3,deltat1,deltat2,weekday,hour,check
- Let tarvel_time > 500 become 500

- Predict data MAPE: 0.1813
- Rank:5

▶ BI

▶ CI

5-31: Phase2 predict

- CI & BI(4-I8 model) both better (5-I9 model)
- Use feature: weekday,hours,minute,temperature,pressure,rel_humidity
- ▶ Let tarvel_time > 500 become 500

5-31: Phase2 predict

- ▶ Predict data MAPE: 0.1789
- ▶ Rank:5

6-1: Phase2 predict

- ▶ Predict data MAPE: 0.1813
- ▶ Rank:5

5-25 Phase1 over

▶ Best MAPE: 0.1789

▶ Rank : 5

Task 2 (volume)

task2 - volume prediction

- ▶ phase I: predict 10/18—10/24 average tollgate traffic volume.
- ▶ at the beginning, I use ANN to train 5 model, and then combine them
 - ► ANN: 2 hidden layer (10-5)
 - data processing: min-max normalization
 - features: month, hour, minute, weekday, temperature, rel-humidity
 - training data: 2016-09-20 to 2016-10-17, every 2 minutes
 - testing data: 2016-10-11 to 2016-10-17
- test MAPE = 0.3848
- real MAPE = 0.4110

- phase I : predict 10/18—10/24 average tollgate traffic volume.
- using xgboost to train 5 model, and then combine them
 - using mse scoring to tune best parameters
 - data processing: min-max normalization
 - features: month, hour, minute, weekday, temperature, rel-humidity
 - training data: 2016-09-20 to 2016-10-17, every 2 minutes
 - testing data: 2016-10-11 to 2016-10-17
- test MAPE = 0.5721
- real MAPE = 0.4013

- phase I : predict 10/18— 10/24 average tollgate traffic volume.
- using xgboost to train I model
 - using mse scoring to tune best parameters
 - data processing : standardization
 - features: tollgate_id, direction, hour, minute, holiday, 5min_ago, I 0min_ago, weekday
 - training data: 2016-10-08 to 2016-10-17, every 5 minutes
 - testing data: 2016-10-11 to 2016-10-17
- ▶ test MAPE = 0.1236
- real MAPE = 0.2018

0.04815702009760177

20170513XGB04_20min_avg_volume-20 140 -120 -100 -80 -40 -1011-1017 MAPE = 0.1236 (test) mape = 0.2018

0.03637701789013063

0.07995655244071778

0.06334180251930366

phase I : predict 10/18—10/24 average tollgate traffic volume.

- using xgboost to train I model
 - using mse scoring to tune best parameters
 - data processing : standardization
 - features: tollgate_id, direction, hour, minute, weekday
 - training data: 2016-10-08 to 2016-10-17, every 20 minutes
 - testing data: 2016-10-11 to 2016-10-17
- test MAPE = 0.1171
- real MAPE = 0.1717

0.030878023808432957

0.07636071839711914 0.046439807806175355

0.03265662101969155

0.047940262555877515

▶ phase2 : predict 10/25—10/31 average tollgate traffic volume.

weekend, low-value

0.1253097041218753

0.20051269831804733

0.09124546125632332

0.19215886572945845

0.14172328331091694

Volume Prediction 460 / 0.1717

phase2 : predict 10/25— 10/31 average tollgate traffic volume.

models:

- using xgboost
- features : hour, weekday, minutes, tollgate_id, direction
- training data: 2016-10-11 to 2016-10-24, every 20 minutes
- testing data: 2016-10-18 to 2016-10-24

using 09-20 to 09-26data

using 10-11 to 10-17 data

test MAPE = 0.1104, real MAPE = 0.3418

real MAPE = 0.4324

real MAPE = 0.3950

- test MAPE = 0.1358, real MAPE = 0.3446
- test MAPE = 0.1724, real MAPE = 0.3716
- training data: 2016-10-18 to 2016-10-24, every 20 minutes
- testing data: 2016-10-18 to 2016-10-24
 - test MAPE = 0.0748, real MAPE = 0.3163

Volume Prediction **365** / **0.3163**

Travel Time Prediction	Volume Prediction			Volume Prediction 365 / 0.3163
时间	ľ	MAPE	当天排名	
2017-06-01 01:03:19		0.3163 ↑	187	
2017-05-31 00:57:58).3447 ↓	217	
2017-05-29 20:09:37).3418	283	

Thank you for listening