UECS3213 / UECS3453 DATA MINING

SESSION: January 2019

TUTORIAL 4

Chapter 4 - Regression Analysis

1. The time *x* in years that an employee spent at a company and the employee's hourly pay, *y*, for 5 employees are listed in the table below.

\boldsymbol{x}	y
5	25
3	20
4	21
10	35
15	38

a) Calculate and interpret the correlation coefficient r. Include a plot of the data in your discussion.

$$r = \frac{n\sum(xy) - (\sum x)\left(\sum y\right)}{\sqrt{n\sum x^2 - \left(\sum x\right)^2}\sqrt{n\sum y^2 - \left(\sum y\right)^2}}$$

Hint:

$$corr(\mathbf{x}, \mathbf{y}) = cov(\mathbf{x}, \mathbf{y}) / \sigma_x \sigma_y$$

Answer:

Reference: https://www.kean.edu/~fosborne/bstat/09rc.html

\boldsymbol{x}	y	x^2	y^2	xy
5	25	25	625	125
3	20	9	400	60
4	21	16	441	84
10	35	100	1225	350
15	38	225	1444	570
$\sum x = 37$	$\sum y = 139$	$\sum x^2 = 375$	$\sum y^2 = 4135$	$\sum xy = 1189$

Hint: Calculate the numerator:

$$n\sum(xy) - \left(\sum x\right)\left(\sum y\right) = 5 \cdot 1189 - 37 \cdot 139 = 802$$

Then calculate the denominator:

$$\sqrt{n\sum x^2 - \left(\sum x\right)^2} \sqrt{n\sum y^2 - \left(\sum y\right)^2} = \sqrt{5 \cdot 375 - \left(37\right)^2} \sqrt{5 \cdot 4135 - \left(139\right)^2}$$
$$= \sqrt{506} \sqrt{1354} \approx 827.72$$

Now, divide to get
$$r \approx \frac{802}{827.72} \approx 0.97$$
.

Interpret this result: There is a **strong positive correlation** between the number of years and employee has worked and the employee's salary, since r is very close to 1.

b) Find the equation of the *least square regression line* for the abovementioned relationship.

$$y = a + bx.$$

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$a = \overline{y} - b\overline{x}$$

First, find the slope m. Start by determining the numerator:

$$n\sum xy - \left(\sum x\right)\left(\sum y\right)5 \cdot 1189 - 37 \cdot 139 = 802$$

Next, find the denominator:

$$n\sum(x^2) - \left(\sum x\right)^2 = 5 \cdot 375 - (37)^2 = 506$$

Divide to obtain $m = \frac{802}{506} \approx 1.58$

Now, find the y-intercept:
$$b = \frac{\sum y}{n} - m \frac{\sum x}{n} \approx \frac{139}{5} - 1.58 \cdot \frac{37}{5} \approx 16.11$$

Therefore, the equation of the regression line is $\hat{y} = 1.58x + 16.11$

c) Use the equations in part (b) to predict the hourly pay rate of an employee who has worked for 20 years.

Answer:

For an employee who has worked 20 years, x = 20. Plug this into the equation for the regression line: $\hat{y} = 1.58 \cdot 20 + 16.11 = 47.71$ is the predicted salary, based on the data.

- 2. The table below shows the number of absences, *x*, in a Calculus course and the final exam grade, *y*, for 7 students.
 - a) Find the correlation coefficient, r and interpret your result.

\boldsymbol{x}	1	0	2	6	4	3	3
y	95	90	90	55	70	80	85

Answer:

$$\sum x = 19,$$
 $\sum y = 565,$ $\sum x^2 = 75,$ $\sum y^2 = 46,775,$ $\sum xy = 1,380.$

Calculate the numerator:

$$n\sum(xy) - \left(\sum x\right)\left(\sum y\right) = 7 \cdot 1380 - 19 \cdot 565 = -1075$$

Then calculate the denominator:

$$\sqrt{n\sum x^2 - \left(\sum x\right)^2} \sqrt{n\sum y^2 - \left(\sum y\right)^2} = \sqrt{7 \cdot 75 - (19)^2} \sqrt{7 \cdot 46775 - (565)^2}$$
$$= \sqrt{164} \sqrt{8200} \approx 1159.66$$

Now, divide to get
$$r \approx \frac{-1075}{1159.66} \approx -0.93$$
.

Interpret this result: There is a strong negative correlation between the number of absences and the final exam grade, since r is very close to -1. Thus, as the number of absences increases, the final exam grade tends to decrease.

b) Find the equation of the *least square regression line* for the abovementioned relationship.

$$y = a + bx.$$

$$b = \frac{n \sum xy - \sum x \sum y}{n \sum x^2 - (\sum x)^2}$$

$$a = \overline{y} - b\overline{x}$$

First, find the slope m. Start by determining the numerator:

$$n\sum xy - \left(\sum x\right)\left(\sum y\right) = 7 \cdot 1380 - 19 \cdot 565 = -1075$$

Next, find the denominator:

$$n\sum(x^2) - \left(\sum x\right)^2 = 7 \cdot 775 - (19)^2 = 164$$

Divide to obtain $m = \frac{-1075}{164} \approx -6.55$

Now, find the y-intercept:
$$b = \frac{\sum y}{n} - m \frac{\sum x}{n} \approx \frac{565}{7} - (-6.55) \cdot \frac{19}{7} = 98.49$$

Therefore, the equation of the regression line is $\hat{y} = -6.55x + 98.49$

c) Use the equations to part (b) to predict the test score for a student with 5 absences.

For a student with 5 absences, x = 5. Plug this into the equation for the regression line: $\hat{y} = -6.55 \cdot 5 + 98.49 = 65.74$ is the predicted score, based on the data.

3. The table below shows the height, *x*, in inches and the pulse rate, *y*, per minute, for 9 people. Find the correlation coefficient, *r* and interpret your result.

				70					
y	90	85	88	100	105	98	70	65	72

$$\sum x = 622$$
, $\sum y = 773$, $\sum x^2 = 43,206$, $\sum y^2 = 68,007$, $\sum xy = 53,336$.

Calculate the numerator:

$$n\sum(xy) - \left(\sum x\right)\left(\sum y\right) = 9 \cdot 53336 - 622 \cdot 773 = -782$$

Then calculate the denominator:

$$\sqrt{n\sum x^2 - \left(\sum x\right)^2} \sqrt{n\sum y^2 - \left(\sum y\right)^2} = \sqrt{9 \cdot 43206 - (622)^2} \sqrt{9 \cdot 68007 - (773)^2}$$
$$= \sqrt{1970} \sqrt{14534} \approx 5350.89$$

Now, divide to get
$$r \approx \frac{-782}{5350.89} \approx -0.15$$
.

Interpret this result: There appears to be an extremely weak, if any, correlation between height and pulse rate, since r is close to 0.

- 4. Consider the following set of points: $\{(-2, -1), (1, 1), (3, 2)\}$
 - a) Find the *least square regression line* for the given data points.
 - b) Plot the given points and the regression line in the same rectangular system of axes.

Answer:

Organize the data in a table.

We now use the above formula to calculate a and b as follows

a =
$$(n\Sigma x y - \Sigma x\Sigma y) / (n\Sigma x^2 - (\Sigma x)^2) = (3*9 - 2*2) / (3*14 - 2^2) =$$

23/38

$$b = (1/n)(\Sigma y - a \Sigma x) = (1/3)(2 - (23/38)^2) = 5/19$$

b) We now graph the regression line given by y = a x + b and the given points.

Graph of linear regression

- 5. Given the following data: $\{(-1, 0), (0, 2), (1, 4), (2, 5)\}$
 - a) Find the *least square regression line* for the following set of data
 - b) Plot the given points and the regression line in the same rectangular system of axes.

X	У	ху	x ²
-1	0	0	1
0	2	0	0
1	4	4	1
2	5	10	4
$\Sigma x = 2$	$\Sigma y = 11$	$\Sigma x y = 14$	$\Sigma x^2 = 6$

We now use the above formula to calculate a and b as follows

a =
$$(n\Sigma x y - \Sigma x \Sigma y) / (n\Sigma x^2 - (\Sigma x)^2) = (4*14 - 2*11) / (4*6 - 2^2) = 17/10 = 1.7$$

b =
$$(1/n)(\Sigma y - a \Sigma x) = (1/4)(11 - 1.7*2) = 1.9$$

b) We now graph the regression line given by y = ax + b and the given points.

Graph of linear regression.

6. The values of y and their corresponding values of y are shown in the table below

X	0	1	2	3	4
У	2	3	5	4	6

- a) Find the *least square regression line*, y = a x + b.
- b) Estimate the value of y when x = 10.

Answer

a) We use a table to calculate a and b.

We now calculate a and b using the least square regression formulas for a and b.

a =
$$(n\Sigma x y - \Sigma x\Sigma y) / (n\Sigma x^2 - (\Sigma x)^2) = (5*49 - 10*20) / (5*30 - 10^2)$$

= 0.9

$$b = (1/n)(\Sigma y - a \Sigma x) = (1/5)(20 - 0.9*10) = 2.2$$

- b) Now that we have the least square regression line y = 0.9 x +
- 2.2, substitute x by 10 to find the value of the corresponding y.

$$y = 0.9 * 10 + 2.2 = 11.2$$

7. The sales of a company (in million dollars) for each year are shown in the table below.

x (year)	2005	2006	2007	2008	2009
y (sales)	12	19	29	37	45

- a) Find the *least square regression line* y = a x + b.
- b) Use the least squares regression line as a model to estimate the sales of the company in 2012.

a) We first change the variable x into t such that t = x - 2005 and therefore t represents the number of years after 2005. Using t instead of x makes the numbers smaller and therefore manageable. The table of values becomes.

We now use the table to calculate a and b included in the least regression line formula.

t	У	t y	t ²
0	12	0	0
1	19	19	1
2	29	58	4
3	37	111	9
4	45	180	16
$\Sigma x = 10$	$\Sigma y = 142$	$\Sigma xy = 368$	$\Sigma x^{2} = 30$

We now calculate a and b using the least square regression

formulas for a and b.

$$a = (n\Sigma t \ y - \Sigma t \Sigma y) \ / \ (n\Sigma t^2 - (\Sigma t)^2) = (5*368 - 10*142) \ / \ (5*30 - 10^2)$$

$$= 8.4$$

b =
$$(1/n)(\Sigma y - a \Sigma x) = (1/5)(142 - 8.4*10) = 11.6$$

The estimated sales in 2012 are: y = 8.4 * 7 + 11.6 = 70.4 million dollars.

The End