

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

Ch 6 Analytic Trigonometry

- **6.1 Fundamental Trigonometric Identities**
- 6.2 Sum and Difference Formula
- 6.3 Double-Angle, Power-Reducing, and Half-Angle Formulas
- 6.4 Product-to-Sum and Sum-to-Product Formulas
- **6.5** Trigonometric Equations

1 Simplify Trigonometric Expressions

Fundamental Identities			
Reciprocal Identities	$\csc x = \frac{1}{\sin x}$	$\sec x = \frac{1}{\cos x}$	$\cot x = \frac{1}{\tan x}$
	$\sin x = \frac{1}{\csc x}$	$\cos x = \frac{1}{\sec x}$	$\tan x = \frac{1}{\cot x}$
Quotient Identities	$\tan x = \frac{\sin x}{\cos x}$	$\cot x = \frac{\cos x}{\sin x}$	
Pythagorean Identities	$\sin^2 x + \cos^2 x = 1$	$\tan^2 x + 1 = \sec^2 x$	$1 + \cot^2 x = \csc^2 x$
Even and Odd Identities	$\sin(-x) = -\sin x$ $\csc(-x) = -\csc x$ $\tan(-x) = -\tan x$	cos(-x) = cos x $sec(-x) = sec x$ $cot(-x) = -cot x$	

Example 1:

Simplify the expression. Write the final form with no fractions.

$$sec^2x cotx cosx$$

Example 2:

Simplify the expression. Write the final form with no fractions.

$$\frac{\cos\theta}{1+\sin\theta}+\tan\theta$$

Example 3:

Simplify the expression. Write the final form with no fractions.

$$\frac{tan^2t-1}{tantsint+sint}$$

2 Verify Trigonometric Identities

Identity:

An equation is called an identity if it is true for all the values of the variable in the domain.

Example 4:

Verify the equation is an identity.

$$\frac{cos(-x)tan(-x)}{sinx} = -1$$

Example 5:

Verify the equation is an identity.

$$\frac{1}{1-\cos\theta} - \frac{1}{1+\cos\theta} = 2\cot\theta\csc\theta$$

Example 6:

Verify the equation is an identity.

$$\frac{1-sint}{1+sint} = (sect - tant)^2$$

Example 7:

Verify the equation is an identity.

$$ln|sinx| + ln|secx| = ln|tanx|$$

Example 8:

Verify the equation is an identity.

$$\frac{sinx}{1+sinx} = \frac{cscx-1}{cot^2x}$$

3 Write an Algebraic Expression as a Trigonometric Expression

Example 9:

Write the expression $\sqrt{x^2+9}$ as a function of θ , where $0<\theta<\frac{\pi}{2}$, by making the substitution $x=3tan\theta$.

Skill Practice:

Write the expression $\sqrt{x^2-25}$ as a function of θ , where $0<\theta<\frac{\pi}{2}$, by making the substitution $x=5sec\theta$.