Known: Xi, Ji, Oi, Xf, Yi, Of, of find: V, S

 $C = e + v(os(\nabla + \Theta_i) = \chi_f - r(os(\Theta_f) + r(os(\nabla + \Theta_i)))$ $d = f + rsin(\nabla + \Theta_i) = 2f - rsin(\Theta_f) + rsin(\nabla + \Theta_i)$ $g = G + rcos(\nabla + \Theta_i) = \chi_i - rcos(\Theta_i) + rcos(\nabla + \Theta_i)$ $N = b + rsin(\nabla + \Theta_i) = 2i - rsin(O_i) + rsin(\nabla + O_i)$

$$\begin{array}{c} (e,f) \\ (e,f) \\$$

	Known: P, d, kw, wo, T, S, L,
	Assumption: Ontside wheels (the ones that will to rotating the fistest) have in = in max
	Find * Dt for both more and linear more
	* Angular velocity of inside wheels for both furn
	bet S be the arc length traveled during a turn.
	, j
	Soft = (Ptd) T, Soft = Rw DWOFT
	DWoff = Woft With Woff = Wo DWOFT / WO, DWOFF = SOFT/RW
	SOCI/
	=> Att = 1/00, ANOFY = 1/RM
	Soci
	Soft. Soft. Soft.
_	Sift = PWAWift
	DWife = Wift Dt ft = DWift/ Att
_	14, 144 - 54) OLAR / META
	=> 1Wift = Sist/Rn >> Wift = Sift/Rw. Stft
	THE SUFF
	For the second turn, the calculations are the
	same but that Soul and Six ale solved

for the second turn, the calculations are the same, just that Sost and Sist are solved with an angular displacement of 8 instead of V.

For the linear movement from (g,h) to (c,d), all wheels can travel at the "ontside" wheel speed. l₁ = Rw swm = 5 Dwm = 1/Rw DWn=Wnden=> Stm= SWm/Wm => Dtm / Rw. wm

See Wet heppens/changes for other cases:

$$l_{1} = \sqrt{(e-a)^{2} + (f-b)^{2}}, l_{2} = \sqrt{l_{1}^{2} + r^{2}} - \sqrt{(e-a)^{2} + (f-b)^{2} + r^{2}}$$

$$M = A + B \Rightarrow B = M - A$$

$$A = -\alpha \tan (r/l_{1}), M = \alpha \tan 2(f-b, e-a)$$

$$\Rightarrow \beta = \alpha \tan 2(f-b, e-a) + \alpha \tan (r/l_{1})$$

$$\cos \beta = \frac{e-g}{l_{2}} \Rightarrow g = e - l_{2} \cos \beta$$

$$\Rightarrow g = \chi_{f} - r \cos(\theta_{f}) - l_{2} \cos(\beta)$$