Discussion 5

- Second-Order Circuits

11/03/2016

Outline

- Review & Extension
 - Solving First-Order equation
 - Solving Second-Order equation
 - Mid-term analysis
- Q&A

Outline

- Review & Extension
 - Solving First-Order equation
 - Cases analysis
 - Solving Second-Order equation
 - Mid-term analysis
- Q&A

Photoflash Unit

Lecture 7

Relay Circuits

Consider

$$\dot{x} + p(t)x = q(t)$$

(1)

- Note:
- 1. the equation is inhomogeneous when $q(t) \neq 0$ and
- and when homogeneous when q(t) = 0

$$\dot{x} + p(t)x = 0 \tag{2}$$

We will call this the associated homogeneous equation to the inhomogeneous equation (1)

Solutions to the Homogeneous Equation

- Separate variables $\frac{dx}{x} = -p(t)dt$
- Integrate $ln|x| = -\int p(t)dt + C_1$
- Exponentiate $|x| = e^{C_1}e^{-\int p(t)dt}$
- $|x| = Ce^{-\int p(t)dt}$ C > 0
- Drop the absolute value and recover the lost solution x(t) = 0
- This gives the general solution to (2)
 - $x(t) = Ce^{-\int p(t)dt}$ where C = any value

- Solutions to the Homogeneous Equation
- Example-3 solve $\dot{x} + 2tx = 0$
 - Separate variables $\frac{dx}{x} = -2tdt$
 - Integrate $ln|x| = -\int 2tdt = -t^2 + C_1$
 - Exponentiate $|x| = e^{C_1}e^{-t^2} = Ce^{-t^2}$
 - Drop the absolute value and recover the lost solution $x(t) = Ce^{-t^2}$
 - This gives the general solution to
 - $x(t) = Ce^{-t^2}$ where C = any value

- Solutions to the Inhomogeneous Equation
- integrating factors formula: the general solution to the inhomogeneous first order linear ODE($\dot{x} + p(t)x = q(t)$) is

•
$$x(t) = \frac{1}{u(t)} \left(\int u(t)q(t)dt + C \right)$$
, where $u(t) = e^{\int p(t)dt}$

- Example-4: solve ODE $\dot{x} + 2x = e^{3t}$ using the method of integrating factors
- Solution: Multiply both sides by u

•
$$u(t)\dot{x}(t) + 2u(t)x(t) = u(t)e^{3t}$$
 (3)

• Next, find an integrating factor u so that the left-hand side is equal to $\frac{d}{dt}(ux)$

•
$$u\dot{x} + \dot{u}x = u\dot{x} + 2ux \Rightarrow \dot{u} = 2u$$
 we choose $u(t) = e^{2t}$

- Example-4: continued
 - Now substitute $u(t) = e^{2t}$ into (3) replace the left-hand side by
 - $\frac{d}{dt}(ux)$ and solve for x, $\frac{d}{dt}(e^{2t}x) = e^{2t}e^{3t}$ $\Rightarrow e^{2t}x = \frac{1}{5}e^{5t} + C$
 - $\Rightarrow x(t) = \frac{1}{5}e^{3t} + Ce^{-2t}$

- Example-4: continued
 - When we use integrating factors directly.
 - Integrating factor: $u(t) = e^{\int 2dt} = e^{2t}$
 - Solution : $x(t) = \frac{1}{u(t)} \int u(t)e^{3t}dt = e^{-2t} \int e^{5t}dt = e^{-2t} \left(\frac{1}{5}e^{5t} + C\right) = \frac{1}{5}e^{3t} + Ce^{-2t}$

Other methods -1

• For
$$y' + p(x)y = q(x)$$
 and $y' + p(x)y = 0$

•
$$y = e^{-\int p(x)dx} \left[C + \int q(x)e^{\int p(x)dx}dx \right]$$
 (inhomogeneous equation)

•
$$y = Ce^{-\int p(x)dx}$$
 (homogeneous equation)

- Other methods -2
 - For y' + p(x)y = q(x) and y' + p(x)y = 0
 - First get the general solution of homogeneous equation $y = Ce^{-\int p(x)dx}$
 - Next let C = C(x) then $y = C(x)e^{-\int p(x)dx}$, substitute into the original equation
 - $\Rightarrow C'(x)e^{-\int p(x)dx} = q(x)$ then integrate to get C(x)

Outline

- Review & Extension
 - Solving First-Order equation
 - Solving Second-Order equation
 - Mid-term analysis
- Q&A

Homogeneous ODEs

$$mx'' + bx' + kx = 0$$
 where m, b, k constant, $m \neq 0$

Note

- The general solution is of the form $x(t) = c_1 x_1(t) + c_2 x_2(t)$ where x_1 and x_2 are two linearly independent solutions (none of them can be written as a constant multiple of the other)
- The characteristic polynomial of this equations is $p(s) = ms^2 + bs + k$
- The exponential solutions of this equation are $c_1e^{r_1t}$ and $c_2e^{r_2t}$, where r_1 , r_2 are the roots of the characteristic polynomial and c_1 and c_2 are arbitrary constants. If $r_1 = r_2 = r$, there is only one family of exponential solutions, namely ce^{rt}

Homogeneous ODEs

$$mx'' + bx' + kx = 0$$
 where m, b, k constant, $m \neq 0$

Solve

- 1. Write down the characteristic equation $ms^2 + bs + k = 0$
- 2. Compute its discriminant $\Delta = b^2 4mk$
- 3. There are three possible situations:
 - $\Delta > 0$ \Rightarrow two distinct real solutions $\Rightarrow x = c_1 e^{r_1 t} + c_2 e^{r_2 t}$
 - $\Delta = 0$ \Rightarrow only one real root r $\Rightarrow x = c_1 e^{rt} + c_2 t e^{rt}$
 - $\Delta < 0$ \Rightarrow two complex conjugate roots $\Rightarrow x = c_1 e^{r_1 t} + c_2 e^{r_2 t}$
 - $r_{1,2} = \alpha \pm i\beta$ where $\alpha = -\frac{b}{2m}$ and $\beta = \frac{\sqrt{|\Delta|}}{2m}$ the general solution • $x = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t)$

Inhomogeneous ODEs

$$mx'' + bx' + kx = f(t)$$
 where $f(t) \neq 0$

Solve

- We solve these by finding a particular solution x_p of the given ODE and the solution x_h to the corresponding homogeneous equation mx'' + bx' + kx = 0
- The general solution is given by $x = x_h + x_p$
- But how to find x_p ?

•
$$mx'' + bx' + kx = f(t)$$
 where $f(t) \neq 0$

•
$$f(t) = P_n(t)$$
, P_n is polynomial $\begin{cases} 0 \text{ isn't the root} & \Rightarrow x_p = H_n(t) \\ 0 \text{ is the simple root} & \Rightarrow x_p = tH_n(t) \\ 0 \text{ is one two fold root} & \Rightarrow x_p = t^2 H_n(t) \end{cases}$

$$f(t) = P_n(t)e^{\alpha t} \qquad \alpha \text{ isn't the root} & \Rightarrow x_p = H_n(t)e^{\alpha t}$$

$$\alpha \text{ is the simple root} & \Rightarrow x_p = tH_n(t)e^{\alpha t}$$

$$\alpha \text{ is one two fold rootroot} & \Rightarrow x_p = t^2 H_n(t)e^{\alpha t}$$

$$f(t) = e^{\alpha t} \begin{bmatrix} P_n(t) \sin \beta t \\ + \\ Q_m(t) \cos \beta t \end{bmatrix}$$

 $\alpha \pm i\beta \ isn't \ the \ root \ \Rightarrow \ x_p = e^{\alpha t} [R_l(t)cos\beta t + S_l(t)sin\beta t]$

$$\alpha \pm i\beta$$
 is the root $\Rightarrow x_p = te^{\alpha t} [R_l(t)cos\beta t + S_l(t)sin\beta t]$ 19

Example -5 Solve
$$y'' - 3y' = 2 - 6x$$

Solution:

- 1.get the general solution corresponding to homogeneous ODE
 - $-\lambda^2 3\lambda = \lambda(\lambda 3) = 0 \Rightarrow y_h(x) = C_1 + C_2 e^{3x}$
- 2.get the $y_p(x)$ according to the text in previous page, let $y_p(x) = x(Ax + B)$
 - Then $[y_p(x)]'' 3[y_p(x)]' = 2A 3(2Ax + B) = -6Ax + 2A 3B = 2 6x$
 - $-\begin{cases} 2A 3B = 2\\ 6A = 6 \end{cases} yields A = 1, B = 0 \Rightarrow y_p(x) = x^2$
 - General solution : $y(x) = x^2 + C_1 + C_2 e^{3x}$ where C_1 and C_2 are constants

Solving second order equation

$$\frac{d^2v}{dt^2} + \frac{R}{L}\frac{dv}{dt} + \frac{1}{LC}v = \frac{v_s}{LC}$$

First solving the Eigen-function of and Eigenvalues of a second order formula

And there are THREE cases you should know

Case 1: Overdamped ($\alpha > \omega_0$)

$$s = -\frac{R}{2L} \pm \sqrt{\left(\frac{R}{2L}\right)^2 - \frac{1}{LC}}$$

$$\alpha = \frac{R}{2L} \quad \omega_0 = \frac{1}{\sqrt{LC}} \qquad s_1 = -\alpha + \sqrt{\alpha^2 - \omega_o^2} \qquad s_2 = -\alpha - \sqrt{\alpha^2 - \omega_o^2}$$

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

Case 2: Critically Damped ($\alpha = \omega_0$)

$$v(t) = (A_1t + A_2)e^{-\alpha t} \qquad \alpha = \frac{R}{2L}$$

Case 3: Underdamped ($\alpha < \omega_0$)

$$s = -\alpha \pm \sqrt{\alpha^2 - \omega_0^2}$$

$$s_{1} = -\alpha + \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha + \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha + j\omega_{d}$$

$$s_{2} = -\alpha - \sqrt{\alpha^{2} - \omega_{0}^{2}} = -\alpha - \sqrt{-(\omega_{0}^{2} - \alpha^{2})} = -\alpha - j\omega_{d}$$

where
$$j = \sqrt{-1}$$
 and $\omega_d = \sqrt{\omega_0^2 - \alpha^2}$.

- ω_0 is often called the <u>undamped natural frequency.</u>
- ω_d is called the <u>damped natural frequency</u>.

The natural response

$$v(t) = A_1 e^{S_1 t} + A_2 e^{S_2 t}$$

Recall Euler's formula $e^{ix} = cosx + isinx$

becomes

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

Case 3: Underdamped ($\alpha < \omega_0$)

$$v(t) = e^{-\alpha t} (B_1 \cos \omega_d t + B_2 \sin \omega_d t)$$

- Exponential $e^{-\alpha t}$ * Sine/Cosine term
 - Exponentially damped, time constant = $1/\alpha$
 - Oscillatory, period $T = \frac{2\pi}{\omega_d}$

Think: what if the resistance is zero in the circuit?

Outline

- Review & Extension
 - Solving First-Order equation
 - Solving Second-Order equation
 - Mid-term analysis
- Q&A

Outline

- Review & Extension
 - Solving First-Order equation
 - Solving Second-Order equation
 - Mid-term analysis
- Q&A