```
#include <stdlib.h>
#include <string.h>
#define MAXPAROLA 30
#define MAXRIGA 80
int main(int arge, char "argv[])
   int freq[MAXPAROLA]; /* vettore di contatti delle frequenze delle lunghezze delle pitrole char riga[MAXXIGA]; int i, intalo, lunghezza;
```

Trees

Definitions

Stefano Quer
Dipartimento di Automatica e Informatica
Politecnico di Torino

Units 12 and 13

Trees

Edges

- In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path
- More informally
 - A **tree** is composed by a set of vertices (or nodes) and a set of edges where any two vertices are connected by exactly one path

 Vertices (nodes)
 - A **rooted tree** is a tree where there is a node called root
 - > A **forest** is a disjoint union of trees

Rooted trees

- > The node(s) with
 - No parent is the root
 - No children are leaves
 - From 0 to n children are internal nodes
- Parent/child relationship

note: maximum one parent but can have more children

 Node y is an ancestor of x if y belongs to the path from r to x

• Node y is a proper ancestor of x iff $x \neq y$

Node x is a descendant of y

Parent and a child are adjacent

nodes

y ancestor of di x x descendant of y a parent of b b child of a

Properties of a rooted tree

- Given a rooted tree T and a node n the following are common definitions
 - Degree (T)
 - Maximum number of children
 - Depth (n)
 - Length of the path from the root to n
 - Height (T)
 - Maximum depth of a node

Tree of degree 3 height 3

Binary trees

- A binary tree is
 - > Tree of degree 2
 - Each node may have 0, 1 or at most 2 children
 - We can recursively express a tree T as
 - The empty set of nodes or
 - The root, the left subtree, the right subtree

h = 3

Complete binary trees

- A complete binary tree must satisfy two conditions
 - > All leaves have the same depth
 - > Every node is either a leaf or it has 2 children
- ❖ In a complete binary tree of height h
 - \triangleright The number of leaves is 2^h
 - > The number of nodes is

Finite geometric progression with ratio = 2 $N = \sum_{i=0}^{h} 2^{i} =$ $= 2^{0} + 2^{1} + 2^{2} + \dots + 2^{h} =$ $= 2^{h+1} - 1$

Balanced binary trees

- A binary tree is balanced if all paths root-leaves have the same length
 - If T is complete, then T is also balanced
 - The opposite is not necessarily true
- A binary tree is almost balanced if the length of all paths from root to leaves differs at most by 1

- Each node must store
 - The data fieds (including the key)
 - > The pointers to children
 - Possibly, a pointer to the parent
 - The pointer to the parent is necessary only for specific operations
- Pointers may be critical for generic trees, as the number of children varies
 - There are at least two representations for nodes of a tree of degree *n*

- ➤ Each node stores 1 pointer to every child, i.e., *n* pointers overall
 - For binary trees, we may store only two pointers (i.e., left or I and right or r)
 - For n-ary trees
 - If the degree n is reached by the majority of the nodes we may use a static array of pointers (children or child)
 - If only few nodes have the maximum degree, we may use a dynamic array of pointers to children

Binary tree

The key can be an integer or a string

The pointer to the father is optional

, , ...

Data fields

Pointers to children

N-ary tree

```
typedef struct node_s node_t;
struct node_s {
  int key;
  ... binary
  node_t *1, *r;
};
```

- Each node stores 1 pointer to the left child and 1 pointer to the siblings
 - We always have two pointers per node and we save memory

