Optimizing Fertilizer Usage for Sustainable Farming

Chua Jing Jie 12th June 2024

Problem Statement

- Challenging for farmers to determine the optimal amount of fertilizer to use for their crops.
 - Too much fertilizer = soil degradation and wasted resources
 - Too little fertilizer = poor crop growth and low yield
- Building a decision support system to provide optimal fertilizer amount to use based on:
 - Soil conditions
 - Weather conditions
 - Crop types
- Farmers can input these easily obtainable data into the system to receive optimal fertilizer amount to use to:
 - Increase crop yield
 - Reduce costs
 - Minimise environmental impact

Data Schema for Dummy Data

Feature	Туре	Description
soil_color	String	Qualitative measure of soil color (e.g., dark brown, reddish)
soil_ph	Float	Soil pH level
soil_n	Float	Nitrogen content in soil (ppm)
soil_p	Float	Phosphorus content in soil (ppm)
temp	Float	Current temperature (°C)
rainfall	Float	Recent rainfall (mm)
forecast_temp	Float	Forecasted temperature (°C)
forecast_rainfall	Float	Forecasted rainfall (mm)
crop_type	String	Type of crop being grown
plant_health	String	Qualitative measure of plant health (e.g., healthy, yellowing, wilting)
optimal_fertilizer_amount	Float	Target value: Optimal fertilizer amount (kg/ha)

Assumptions:

- 10 Features, 1000 Rows of dummy data generated
- Features like soil content, weather, crop type, and plant health affect optimal fertilizer amount
- Farmers can collect these data easily to get recommendations
- Low percentage of outliers and missing data to mimic real-world imperfections
- Temperature and rainfall values are based on Indonesia's tropical climate
- Crop types are limited to common crops grown in Indonesia (wheat, corn, rice)
- Plant health conditions are randomly assigned as healthy, yellowing, or wilting.
- Fertilizer amount calculated with a simplified formula based on input features

Model Development Process

Simplified model development process to predict optimal fertilizer usage

Process:

- 1. **Data Splitting**: dummy data split into 67% train and 33% test sets
- 2. Preprocessing Pipeline
 - a. Fill missing values with median
 - b. Scale numeric features
 - c. Encoded categorical features
- 2. **Model training:** Trained an XGBRegressor model using preprocessed train data
- 3. **Evaluation**: RMSE of 4.28 when predicting on test set

Recommendations for Farmers (2 ways to give practical recommendations)

- 1. Give **general recommendations** for optimal fertilizer amounts by using the model to predict based on pre-defined scenarios:
 - a. Yellowing wheat with low rainfall and low soil nutrient levels: Use 132.80 kg/ha of fertilizer
 - b. Healthy rice with high rainfall and high soil nutrient levels: Use 105.19 kg/ha of fertilizer
 - c. Wilting wheat with very low nutrient levels and low rainfall: Use 136.64 kg/ha of fertilizer

- 2. Give **tailored recommendations** to farmers by predicting based on the specific data that the farmer provided.
 - Created a simple Streamlit web app to host the model to demonstrate how farmers can access the model via web/mobile apps:
 - Link to web app: https://dayataniassignment.streamlit.app/
 - Farmers enter soil, weather, crop data
 - Receive predicted optimal fertilizer amount

Thank You