BU CS 332 – Theory of Computation

Lecture 3: Assignment Project Exam Help

- Deterministic Finite Reading:
 Automata Sipser Ch 1.1-1.2
- Non-deterministiVe Chat powcoder

Mark Bun February 1, 2021

Last Time

 Parts of a theory of computation: Model for machines, model for problems, theorems relating machines and problems

Assignment Project Exam Help

- Strings: Finite concatenations of symbols
- Languages: Sets L of strings
 Add WeChat powcoder
 Computational (decision) problem: Given a string x, is it in the language L?

Deterministic Finite Assignment Project Exam Help Automata

Add WeChat powcoder

https://powcoder.com

A (Real-Life?) Example

- Example: Kitchen scale
- P = Power button (ON / OFF)

- Starts OFF in g mode
 Add WeChat powcoder
- A computational problem: Does a sequence of button presses in $\{P, U\}^*$ leave the scale ON in oz mode?

Machine Models

• <u>Finite Automata (FAs)</u>: Machine with a finite amount of unstructured memory

A DFA for the Kitchen Scale Problem

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

A DFA Recognizing Parity

The language recognized by a DFA is the set of inputs on which it ends in an "accept" state

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

Assignment Project Exam Help $\Sigma = \{a, b\}$ $L = \{w \mid w \text{ contains an even number of } a$'s} https://powcoder.com

Add WeChat powcoder

Which state is reached by the parity DFA on input aabab?

- a) "even"
- b) "odd"

Anatomy of a DFA

Some Tips for Thinking about DFAs

Given a DFA, what language does it recognize?

- Try experimenting with it on short strings. Do you notice any patterns?
- What kinds of singuits crause the life of the pet prapped in a state?

https://powcoder.com

Given a language, Agorstweetha DFA wecogenizing it

- Imagine you are a machine, reading one symbol at a time, always prepared with an answer
- What is the essential information that you need to remember? Determines set of states.

What language does this DFA recognize?

Practice!

- Lots of worked out examples in Sipser
- Tomorrow's discussion section and Help
- Automata Tutorphit powedence
 tutor.model.in.tumwechat powcoder

Formal Definition of a DFA

A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states
- **\(\Sigma** is the apprentiant Project Exam Help
- $\delta: Q \times \Sigma$ —https://spowertedom/sition
- $q_0 \in Q$ is the startweet powcoder
- $F \subseteq Q$ is the set of accept states

A DFA for Parity

Parity: Given a string consisting of a's and b's, does it contain an even number of a's?

$$\Sigma = \{a,b\}$$

$$L = \{w \mid w \text{ contains an even number of } a's\}$$

$$Assignment Project Exam Help$$

$$State set Q =$$

$$https://powcalcherateen \Sigma =$$

$$Add VeChat powcoder$$

$$a b$$

$$q_0$$

$$q_1$$

Start state q_0 Set of accept states F =

Formal Definition of DFA Computation

```
GUYTON AND HALL
TEXTBOOK OF MEDICAL
PHYSIOLOGY
THIRTEENTH EDITION
JOHN E. HALL
```

```
A DFA M=(Q,\Sigma,\delta,q_0,F) accepts a string w=w_1w_2\cdots w_n\in \Sigma^* (where each w_i\in \Sigma) if there exist r_0,\ldots,r_n\in Q such that
```

Assignment Project Exam Help

```
1. r_0 = q_0

2. \delta(r_i, w_{i+1}) = r_{i+1} for each i = 0, ..., n-1, and

3. r_n \in F Add WeChat powcoder
```

Example: Computing with the Parity DFA


```
A DFA M = (Q, \Sigma, \delta, q_0, F) accepts a string w = w_1 w_2 \cdots w_n \text{Add} W \text{(whetepeachoder } \in \Sigma) if there exist r_0, \ldots, r_n \in Q such that
```

- 1. $r_0 = q_0$
- 2. $\delta(r_i, w_{i+1}) = r_{i+1}$ for each i = 0, ..., n-1, and
- 3. $r_n \in F$

Regular Languages

Definition: A language is regular if it is recognized by a DFA

```
L = \{ w \in \{a, b\}^* \mid w \text{ has an even number of } a's \} \text{ is regular}
L = \{ w \in \{0, 1\}^* \} signontain Project Example Ip
```

https://powcoder.com

Many interesting programs recognize regular languages Add WeChat powcoder

NETWORK PROTOCOLS

COMPILERS

GENETIC TESTING

ARITHMETIC

Internet Transmission Control Protocol

Let TCPS = $\{ w \mid w \text{ is a complete TCP Session} \}$ Theorem. TCPS is regular

Compilers

Comments:

```
Are delimited by /* */
Cannot have nested /* */
Must be closed by */
*/ is illegal outside as commender.com

Add WeChat powcoder
```

Theorem. **COMMENTS** is regular.

COMMENTS = {strings over {0,1, /, *} with legal comments}

Genetic Testing

DNA sequences are strings over the alphabet $\{A, C, G, T\}$.

A gene g is a special substring over this alphabet.

Assignment Project Exam Help

A genetic test searchest some general searchest searches

 $\frac{\text{Add WeChat powcoder}}{\text{GENETICTEST}_g} = \{ \text{strings over } \{A, C, G, T\} \text{ containing } g \text{ as a substring} \}$

Theorem. GENETICTEST $_g$ is regular for every gene g.

Arithmetic

LET
$$\Sigma = \left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}$$
Assignment Project Exam Help

- A string over Σ haspthree Rows (Row₁, ROW₂, ROW₃)
- Each ROW $b_0 b_1 k_{2ld}$. Were presents the integer

$$b_0 + 2b_1 + ... + 2^N b_N$$

• Let ADD = $\{S \in \Sigma^* \mid ROW_1 + ROW_2 = ROW_3\}$

Theorem. ADD is regular.

Nondeterministic Finite Automata https://powcoder.com

Add WeChat powcoder

In a DFA, the machine is always in exactly one state upon reading each input symbol

Assignment Project Exam Help

In a nondeterministic. The marking can try out many different ways of reading the same string

- Next symbol may cause an NFA to branch" into multiple possible computations
- Next symbol may cause NFA's computation to fail to enter any state at all

A Nondeterministic Finite Automaton (NFA) accepts if there exists a way to make it reach an accept state.

Example: Does this NFA accept the string 1100?

Some special transitions

Example

Example

Now You Try! ignment Project Exam oder.com Add Wechat powcoder

What is the language of this NFA? (over alphabet $\{0\}$)

- a) $\{0^k \mid k \text{ is a multiple of 2}\}$
- b) $\{0^k \mid k \text{ is a multiple of 3}\}$
- c) $\{0^k \mid k \text{ is a multiple of 6}\}$
- d) $\{0^k | k \text{ is a multiple of 2 or a multiple of 3}\}$

Formal Definition of a NFA

```
An NFA is a 5-tuple M = (Q, \Sigma, \delta, q_0, F)
Q is the set of states
\Sigma \text{ is the alphabet Project Exam Help}
\delta \colon Q \times \Sigma_{\varepsilon} \xrightarrow{P(Q)} \text{ is the transition function}
q_0 \in Q \text{ is the start state}
Add \text{ WeChat powcoder}
F \subseteq Q \text{ is the set of accept states}
```

M accepts a string w if there exists a path from q_0 to an accept state that can be followed by reading w.

Example

$$N = (Q, \Sigma, \delta, q_0^{Add})$$
 WeChat powcoder $\delta(q_0, 0)$

$$\delta(\boldsymbol{q_0}, \boldsymbol{r}) \qquad \delta(\boldsymbol{q_0}, \boldsymbol{0}) =$$

$$Q = \{q_0, q_1, q_2, q_3\}$$
 $\delta(q_0, 1) =$

$$\Sigma = \{0, 1\} \qquad \delta(q_1, \varepsilon) =$$

$$\mathbf{F} = \{\mathbf{q}_3\} \qquad \qquad \delta(\mathbf{q}_2, \mathbf{0}) =$$

Why study NFAs?

 Not really a realistic model of computation: Real computing devices can't actually try many possibilities in parallel

Assignment Project Exam Help

But:

https://powcoder.com

- Useful tool for understanding power of DFAs/regular languages
- NFAs can be simpler than DFAs
- Lets us study "nondeterminism" as a resource (cf. P vs. NP)