2023年秋季学期人工神经网络第一次作业

◎ 说明: 完成作业可以使用你所熟悉的编程语言○和平台,比如 C, C++、MATLAB、Python等。作业链接: 2023年秋季学期人工神经网络第一次作业: https://zhuoqing.blog.csdn.net/article/details/133764230。

01 学习算法

一、题目内容

1、背景介绍

在第一章介绍了日本学者"**甘利俊一**"提出的统一公式,把对神经元输入连接权系数的修正 ΔW 分成了三个独立成分的乘积:学习速率 η ,学习信号 r(W,x,d) 以及输入向量 X 。

原文链接: https://zhuoqing.blog.csdn.net/article/details/133764230

作者主页:https://zhuoqing.blog.csdn.ne

▲ 图1.1 神经网络中神经元学习的统一公式

当学习信号 $r\left(W,x,d\right)$ 取不同形式,可以得到神经元的三大类不同修正方式(无监督、有监督、死记忆):

【表1-1 不同的神经元学习算法】

学习规则	权值调整	学习信号	初始值	学习方 式	转移函 数
Hebbian	$\Delta W = \eta f\left(W^T X ight) X$	$r=f\left(W^{T}X ight)$	随机	无监督	任意
Percetron	$\Delta W = \eta \left[d - \mathrm{sgn} \left(W^T X ight) ight] X$	$r=d-f\left(W^{T}X ight)$	任意	有监督	二值函数
Delta	$\Delta W = \ \eta \left[d - f \left(W^T X ight) ight] f' \left(W^T X ight) X$	$r = \left[d - f\left(W^T X\right)\right] f'\left(W^T X\right)$	任意	监督	连续可 导
Widrow- Hoff LMS	$\Delta W = \eta \left(d - W^T X ight) X$	$r=d-W^TX$	任意	监督	连续
Correlation 相关,外积	$\Delta W = \eta dX$	r=d	0	监督 死记忆	任意

下面给出神经元模型和训练样本数据,请通过编程实现上述表格中的五种算法并给出计算结果。通过这个作业练习,帮助大家熟悉神经元的各种学习算法。

作者丰页:https://zhuoging.blog.csdn.net

2、神经元模型

下面给出神经元模型,根据不同的算法要求:

- 选择相应的传递函数种类(离散二值函数、双曲正切函数、ReLU函数):除了Perceptron算法选择二值函数外,其它都选择双曲正切函数,
- 神经元权系数 (w_1, w_2, b) 都初始化成 0。

▲ 图1.1.2 神经元及其传递函数

3、样本数据

训练样本包括6个数据,它们的分布如下图所示:

内容来源:csdn.net 作者昵称:卓晴

原文链接: https://zhuoging.blog.csdn.net/article/details/13376423

作者丰页: https://zhuoging.blog.csdn.ne

▲ 神经元训练数据分布

【表1-2 样本数据】

序列	X1	X2	类别
1	-0.1	0.3	-1 CS
2	0.7	0.5	1
3	-0.5	0.2	-1
4	-0.5	0.5	-1
500 5	0.2	SON 0.1	-SDN 1 65
6	0.0	0.8	1

1 import sys,os,math,time

2 import matplotlib.pyplot as plt

3 from numpy import *

内容来源:csdn.net

原文链接: https://zhuoging.blog.csdn.net/article/details/13376423

作者主页: https://zhuoging.blog.csdn.net

```
4
    xdim = [(-0.1,0.3), (0.7,0.5), (-0.5,0.2), (-0.5,0.5), (0.2,0.1), (0,0.8)]
 6
    ldim = [-1,1,-1,-1,1,1]
 7
    print("序列", "X1", "X2", "类别")
 8
 9
10
    count = 0
11
    for x,l in zip(xdim, ldim):
12
13
14
        print("%d %3.1f %3.1f %d"%(count, x[0] v[1], 1))
```

二、作业要求

1、必做内容

- 1. 给出每个学习算法核心代码;
- 2. 给出经过一轮样本学习之后神经元的权系数数值结果(w1,w2,b);
- * 权系数初始化为 0;
- * 学习速率 $\eta = 1$;
- * 训练样本按照 表格1-2 的顺序对神经元进行训练;

2、选做内容

- 1. 在坐标系中绘制出经过一轮训练之后, 权系数(w1,w2)所在的空间位置;
- 2. 简单讨论一下不同算法对于神经元权系数的影响;

```
1 import sys,os,math,time
    import matplotlib.pyplot as plt
    from numpy import *
 4
    xdim = [(-0.1,0.3), (0.5,0.7), (-0.5,0.2), (-0.7,0.3), (0.7,0.1), (0,0.5)]
    ddim = [1, -1, 1, 1, -1, 1]
 7
 8
    def sigmoid(x):
9
        return 1/(1+exp(-x))
10
11
    def hebbian(w,x,d):
12
        x1 = [1, x[0], x[1]]
13
        net = sum([ww*xx for ww,xx in zip(w, x1)])
        o = sigmoid(net)
```

w1 - [wwxo*vv for ww vv in zin/w v1) ∨

02 感知机

一、感知机算法求解分类问题

1、样本数据

利用单个神经元, 使用感知机算法求解样本分类问题。 样本数据就采用第一道大题中的六个样本数据。 见**【表1-2 样本数据】**。

2、作业要求

- 1. 绘制出网络结构图,并给出算法核心代码;
- 2. 对比不同学习速率对于训练收敛的影响;

二、感知机识别字母

1、样本数据

如下是三个字母 A,B,C,D,E,J,K 的 7×9 的点阵图 ,共有三种字体。将它们转换成由(-1,1)组成的63维向量。

内容来源:csdn.net

作者昵称:阜晴

原文链接:https://zhuoging.blog.csdn.net/article/details/133764230

作者丰页: https://zhuoging.blog.csdn.ne

▲ 图2.2.1 A,B,C,D,E,J,K三种字体点阵

2、作业基本要求

内容来源:csdn.net

作者昵称:卓晴

原文链接:https://zhuoging.blog.csdn.net/article/details/13376423

作者丰页:https://zhuoging.blog.csdn.ne/

- 1. 建立由七个神经元组成的简单感知机网络,完成上述七个字母的识别训练;
- 2. 测试训练之后的网络在带有一个噪声点的数据集合上的识别效果。 给图片增加一个噪声点就是随机在样本中选取一个像素 , 将其数值进行改变 (从-1改变成1 , 或者从1改变成-1)。

3、选做内容

- 1. 测试上述感知机网络在两个噪声点的数据集合上的识别效果;
- 2. 对比以下两种情况训练的感知机的性能。
 - 。 第一种情况:只使用没有噪声的七个字母进行训练;
 - 。 第二种情况:使用没有噪声和有一个噪声点的样本进行训练;
- 3. 对比不同的学习速率对于训练过程的影响。

三、感知机算法收敛特性

□ 这是选做题目

请证明对于线性可分的两类数据集合,使用感知机算法进行分类。感知机算法收敛步骤数量的上限与学习速率无关。

03 Adaline网络

□ 这是选做题目。

一、题目内容

1、背景介绍

自适应线性神经元 ADALINE(Adatpive Linear Neuron)是由 Bernard Widrow 与 Ted Hoff 在 1959年提出的算法。关于他们提出算法前后的故事,大家可以参照网文: The ADALINE - Theory and Implementation of the First Neural Network Trained With Gradient Descent 进行了解。

下面也是根据上述网文中所介绍的两种鸟类(猫头鹰与信天翁)数据集合,产生相应的分类数据集合。大家使用 ADALINE 算法完成它们的分类器算法。

▲ 图3.1.1 猫头鹰与信天翁

2、样本数据

(1) 数据参数

根据Wikipedia 中关于 信天翁 Wandering albatross 和 猫头鹰(Great horned owl)的相关数据,这两种鸟类的题中和翼展长度如下表所示。

【表1-3 两种鸟类的体型数据】

种类	体重(kg)	翼展(m)
信天翁	9	CS 3 CS
猫头鹰	1.2	1.2

使用计算机产生两个鸟类体型随机数据数据,下表给出了每一类数据产生的参数:

【表1-4 两类鸟类数据产生参数】

鸟类	体重平均值	体重方差	翼展平均值	翼展方差	个数	分类
信天翁	9000	800	300	20	100	1
猫头鹰	1000	200	100	15	100	-1

内谷米源:csan.net

作者昵称:卓晴

原文链接: https://zhuoqing.blog.csdn.net/article/details/133764230

作者丰页:https://zhuoging.blog.csdn.net

下面给出了产生随机样本数据的 Python 示例代码。大家可以参照这些代码,使用自己熟悉的 编程语言来实现。

```
def species_generator(mu1, sigma1, mu2, sigma2, n_samples, target, seed):
        '''creates [n samples, 2] array
 2
 3
 4
        Parameters
 5
 6
        mu1, sigma1: int, shape = [n_samples, 2]
 7
            mean feature-1, standar-dev feature-1
 8
        mu2, sigma2: int, shape = [n_samples, 2]
 9
            mean feature-2, standar-dev feature-2
        n_samples: int, shape= [n_samples, 1]
10
            number of sample cases
11
        target: int, shape = [1]
12
13
            target value
14
            random seed for reproducibility 🔍
```


二、作业要求

- 1. 构造一个 ADALINE 神经元,完成上述两类鸟类的分类。 由于需要进行分类,在对 ADALINE 的输出在 经过一个符号函数(sgn)便可以完成结果的分类;
 - 2. 利用上述数据对 ADALINE 进行训练。观察记录训练误差变化的曲线。
- 3. 讨论不同的学习速率对于训练结果的影响,看是否存在一个数值,当学习速率超过这个数值之后,神经元训练过程不再收敛。

■ 相关文献链接:

- The ADALINE Theory and Implementation of the First Neural Network Trained With Gradient Descent
- Wandering albatross
- Great horned owl

● 相关图表链接:

- 图1.1 神经网络中神经元学习的统一公式
- 表1-1 不同的神经元学习算法
- 图1.1.4 神经元及其传递函数
- 图1.1.5 神经元训练数据
- 表1-2 样本数据
- 图2.1.1 分类数据及其在三维坐标中的位置
- 图2.2.2 C,H,L字母的点阵图
- 图2.2.3 与三个字母Hamming距离为1的噪声样本
- 图3.1.1 猫头鹰与信天翁
- 表1-3 两种鸟类的体型数据
- 表1-4 两类鸟类数据产生参数
- 图3.1.2 产生两类数据的分布

内谷米源:csan.net 作者昵称:卓晴

原文链接:https://zhuoging.blog.csdn.net/article/details/133764230

作者丰页:https://zhuoging.blog.csdn.ne