VilBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Visionand-Language Tasks

Jiasen Lu

Dhruv Batra Devi Parikh Georgia Institute of Technology Oregon State University Facebook Al Research

Stefan Lee

NeuralPS '19

Noah Lee (noahlee357@korea.ac.kr) Donghui Im (ehdgnl101@korea.ac.kr) Data Intelligence Lab, Korea University 2021 02. 19. How can we learn task-agnostic joint representations of vision and language?

- Common need to align natural language and visual stimuli
- The need for visual grounding

- Widespread usage of pretrain-then-transfer performing proxy tasks
- Recent success with self-supervised learning ELMo, BERT, GPT

"Shepherd"
"Beagle"

Achieve joint representation of image content and natural language

BUT is visual grounding pretrainable & transferable?

- 1) Proposes a joint model for learning task-agnostic **visual grounding** to jointly reason about text and images
- 2) Utilizes co-attention transformer layers by introducing separate streams for vision and language processing
- 3) Outperforms four established vision-and-language tasks

06 Model

Model overview

Model: Visual Representation

Faster R-CNN

- w/ ResNet-101 backbone pretrained on Visual Genome
- Encode spatial location (5-d vector)
- Extract bounding boxes & visual features (10~35 high scoring)

Model: Linguistic Representation

BERT

Pretrained on BookCorpus & Wikipedia

06 Model

Co-attention

Exchanging key-value pairs in multi-head attentions

Model: Pretraining Dataset

Conceptual Captions

- 3.3 million images
- Weakly-associated descriptive captions
- Trained on two proxy tasks

Alt-text: Musician Justin Timberlake performs at the 2017 Pilgrimage Music & Cultural Festival on September 23, 2017 in Franklin, Tennessee.

Conceptual Captions: pop artist performs at the festival in a city.

Alt-text: A Pakistani worker helps to clear the debris from the Taj Mahal Hotel November 7, 2005 in Balakot, Pakistan.

Conceptual Captions: a worker helps to clear the debris.

Model: Pre-training

Two pretraining tasks

Model: Pre-training

Masked multi-model learning

[Language]

- Setting identical to BERT
- Masked text input
 - 80%: <mask>
 - 10% : random
 - 10%: unaltered

[Vision]

- Masked input
 - 90%: zeroed out
 - 10%: unaltered

Model: Pre-training

Multi-modal alignment prediction

- Predict whether image and text are aligned (binary prediction)
- Negatives generated by randomly replacing either the image or caption

05 Dataset/Code

[Dataset] — all publicly available Visual Question Answering: VQA 2.0 https://visualqa.org/

Visual Commonsense Reasoning: VCR https://visualcommonsense.com/

Grounding Referring Expressions: RefCOCO+ http://tamaraberg.com/referitgame/

Caption-Based Image Retrieval, Zero-Shot Caption-Based Image Retrieval: Flickr30k http://nlp.cs.illinois.edu/

[Code] — publicly available https://github.com/facebookresearch/vilbert-multi-task

07 Settings

[Embedding]

- Visual: Faster R-CNN w/ ResNet-101 backbone
- Linguistic: BERT_{BASE}

[Hyperparameter]

- Batch size: 512
- Epochs: 10
- Optimizer: Adam
- Learning rate: 1e-4
- Learning rate decay: scheduled linear decay

[Ablative]

- Single-Stream: single BERT
- Single-Stream[†]: single stream w/o pretraining
- Vilbert vilbert w/o pretraining

[Task-Specific]

- Visual Question Answering DFAF
- Visual Commonsense Reasoning R2C
- Grounding Referring Expressions MAttNet
- Caption-Based Image Retrieval: SCAN
- Zero-shot Caption-Based Image Retrieval

09 Experiment

Comparison to the SOTAs

		VQA [3] VCR [25]					COCO+	[32]	Image	Image Retrieval [26]			ZS Image Retrieval		
	Method	test-dev (test-std)	$Q \!\!\to\!\! A$	$QA{\rightarrow}R$	$Q{\rightarrow}AR$	val	testA	testB	R1	R5	R10	R1	R5	R10	
TA	DFAF [36]	70.22 (70.34)	-	-	-	-	-	-	-	-	-	-	-	-	
	R2C [25]	-	63.8 (65.1)	67.2 (67.3)	43.1 (44.0)	-	-	-	-	-	-	-	-	-	
S	MAttNet [33]	-	-	-	-	65.33	71.62	56.02	-	-	-	-	-	-	
	SCAN [35]	-	-	-	-	-	-	-	48.60	77.70	85.20	-	-	-	
	Single-Stream†	65.90	68.15	68.89	47.27	65.64	72.02	56.04	-	-	-	-	-	-	
Ours	Single-Stream	68.85	71.09	73.93	52.73	69.21	75.32	61.02	-	-	-	-	-	-	
	ViLBERT†	68.93	69.26	71.01	49.48	68.61	75.97	58.44	45.50	76.78	85.02	0.00	0.00	0.00	
	ViLBERT	70.55 (70.92)	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	72.34	78.52	62.61	58.20	84.90	91.52	31.86	61.12	72.80	

- Outperforms SOTAs by a margin of 2~13%
- Improved visiolinguistic representations with pretraining and finetuning

09 Experiment

Effect of pretraining

		VQA [3] VCR [25]					RefCOCO+ 32			Image Retrieval [26]			ZS Image Retrieval		
	Method	test-dev (test-std)	$Q{\rightarrow} A$	$QA{\rightarrow}R$	$Q{\rightarrow}AR$	val	testA	testB	R1	R5	R10	R1	R5	R10	
TA	DFAF [36]	70.22 (70.34)	-	-	-	-	-	-	-	-	-	-	-	-	
	R2C [25]	-	63.8 (65.1)	67.2 (67.3)	43.1 (44.0)	-	-	-	-	-	-	-	-	-	
S	MAttNet [33]	-	-	-	-	65.33	71.62	56.02	-	-	-	-	-	-	
	SCAN [35]	-	-	-	-	-	-	-	48.60	77.70	85.20	-	-	-	
	Single-Stream†	65.90	68.15	68.89	47.27	65.64	72.02	56.04	-	-	-	-	-	-	
Ours	Single-Stream	68.85	71.09	73.93	52.73	69.21	75.32	61.02	-	-	-	-	-	-	
	ViLBERT†	68.93	69.26	71.01	49.48	68.61	75.97	58.44	45.50	76.78	85.02	0.00	0.00	0.00	
	ViLBERT	70.55 (70.92)	72.42 (73.3)	74.47 (74.6)	54.04 (54.8)	72.34	78.52	62.61	58.20	84.90	91.52	31.86	61.12	72.80	

Zero-shot performance outperforming drastically (vs VilBERT[†])

^{-&}gt; ViLBERT learned semantically meaningful visiolinguistic alignment during

09 Experiment

Size of pretraining dataset

	VQA 3	VQA [3] VCR [25]			RefCOCO+ 32			Image	Retrieva	al [26]	ZS Image Retrieval 26			
Method	test-dev	$Q \rightarrow A$	$QA{\rightarrow}R$	Q→AR	val	testA	testB	R1	R5	R10	R1	R5	R10	
ViLBERT (0 %)	68.93	69.26	71.01	49.48	68.61	75.97	58.44	45.50	76.78	85.02	0.00	0.00	0.00	
Vilbert (25 %)	69.82	71.61	73.00	52.66	69.90	76.83	60.99	53.08	80.80	88.52	20.40	48.54	62.06	
Vilbert (50 %)	70.30	71.88	73.60	53.03	71.16	77.35	61.57	54.84	83.62	90.10	26.76	56.26	68.80	
ViLBERT (100 %)	70.55	72.42	74.47	54.04	72.34	78.52	62.61	58.20	84.90	91.52	31.86	61.12	72.80	

- Same VilBERT setup but control the percentage of the conceptual caption dataset being used
- Monotonic increase of accuracy as the amount of data increases

- 1) Proposes a joint model, Vilbert for learning task-agnostic visual grounding to jointly reason about text and images
- 2) Utilizes **co-attentional transformer layers** by introducing separate streams for vision and language processing
- 3) Compares with four established vision-and-language tasks and achieves significant improvements with 7~10% margin

Q&A

Main model

Evaluation

Training

- Image layer Noah Lee
- Text layer Donghui Im