

Gigascale Reliable Energy Efficient Nanosystem (GREEN) Lab

School of Electrical and Computer Engineering, Georgia Tech

Exploring reliable, energy efficient computing solutions at nanometer nodes — from devices to circuits to systems

NeuroCube: A Programmable Digital Neuromorphic Architecture with High-Density 3D Memory

Section 6 - 2

Duckhwan Kim¹, Jaeha Kung¹, Sek Chai², Sudhakar Yalamanchili¹, Saibal Mukhopadhyay¹

¹School of Electrical and Computer Engineering, Georgia Institute of Technology ²SRI International

This material is based on work supported in part by an ONR Young Investigator award, a National Science Foundation CAREER Award, and the National Science Foundation grant CCF 1337177

- Motivation
- Base Architecture of NeuroCube as PIM
- Programming NeuroCube
- Out-of-Order Packet Arrival
- Simulation
- Conclusion

Digital Accelerator Design for Neuromorphic Algorithm

- Low operation density (ops/byte)
- Massive date required

Digital neuro-inspired architecture with **programmability** to cover different types of neural networks, **scalability**, and **high energy efficiency**

NeuroCube: Process-in-Memory Architecture for Neural Computing

Programmable, scalable platform as processor in memory

Hybrid Memory Cube (HMC)

- Heterogeneous integration
- Flexible logic die design

- Q1. Neural computing layer should meet thermal and area constraint in 3D stacked DRAM
- Q2. NeuroCube should be programmable to cover <u>different types of neural network</u>

Basic NeuroCube Architecture

Processor-in-memory + Parallelism

Operational Model of NeuroCube

Property of Neural Network: Deterministic Connections in Inference

locally neighborhood

Fully connected

All neurons in prev. layer

Recurrent connected

All neurons in prev. layer + current layer

General expression of artificial neural network (ANN)

$$y_j = \varphi\left(\sum_{i \in I} w_{(j,i)} \cdot y_i\right)$$

I: set of connected neurons

- Different NN layer can be mapped by changing set of connected neurons
 - Different data movements (memory address) can map different NN layers in NeuroCube

Property of Neural Network: Deterministic Connections in Training

- Backpropagation with gradient descent
 - $\delta_i = (W_{i,i+1}^T \times \delta_{i+1}) * \varphi'(y_i)$ (hidden) or $= -(d y_i) * \varphi'(y_i)$ (output)
 - φ' : derivative of NL activation function
 - *: element-wise multiplication
 - γ: learning rate
 - $\Delta W_{i-1} = \delta_i \times y_{i-1}^T$, $W_{i-1} = W_{i-1} + \gamma \Delta W_{i-1}$
- It is composed of
 - Matrix-vector multiplication, element-wise multiplication, and outer product
 - Can be mapped to FC layer with many zeros in matrix
- Training in neural network <u>still has deterministic connections</u>

Memory Centric Neural Computing

Programmable Neurosequence Generator (PNG)

- Sequence of operands is predetermined
- Based on the sequence, memory can push the data without request
- Data is delivered as packet through NoC

MCNC Data Flow

Initial Memory Mapping

- Assume 2 vaults in NeuroCube, 3 MACs/PE
 - For synaptic weights
 - Divide synaptic weights matrix into 2 vaults
 - For previous layer
 - Divide input previous into 2 vaults or
 - Duplicate prev. layer into all vaults (reduce NoC traffic)

 $W_{1,2}$ = [5 by 4] matrix

All neuron's states and synaptic weights are 16bit fixed point

Memory range for next layer

Memory range for this layer

MCNC Data Flow: Address Generator

- Assume 2 vaults in NeuroCube, 3 MACs/PE
- For each vault, it will push data to NoC within packet form

MCNC Data Flow (1)

Push packet (state[0]) to MAC [0]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	State [0]	0	0

MCNC Data Flow (2)

Push packet (state[0]) to MAC [1]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	State [0]	1	0

MCNC Data Flow (3)

Push packet (state[0]) to MAC [2]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	State [0]	2	0

MCNC Data Flow (4)

Push packet (weight[0,0]) to MAC [0]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	W [0, 0]	0	0

MCNC Data Flow (5)

Push packet (weight[0,1]) to MAC [1]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	W [0, 1]	1	0

MCNC Data Flow (6)

Push packet (weight[0,2]) to MAC [2]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	W [0, 2]	2	0

MCNC Data Flow (7)

Push packet (state[1]) to MAC [0]

SRC	DST	DATA	MAC-ID	OP-ID
0	0	State [1]	0	1

And so on ...

Out-of-order Packet Arrival Problem in NeuroCube

Out-of-order Packet Arrival Issue: NoC Congestion

Although data access is sequential, data arrival can be **out-of-order** due to NoC congestion

Out-of-Order data arrival (1)

SRC	DST	DATA	MAC-ID	OP-ID
4bit	4bit	16bit	4bit	8bit

- OP-ID == OP_CNT == 23
 - This packet is for current operation
 - It moves to temporal buffer [15] directly

Out-of-Order data arrival (2)

SRC	DST	DATA	MAC-ID	OP-ID
4bit	4bit	16bit	4bit	8bit

- OP-ID != OP_CNT
 - This packet is for next operation (OP_CNT == 24)
 - It moves to OOO buffer [8]
 - 8 = mod(24,16)
 - OOO buffer [i] is FIFO with 64 depth

Out-of-Order data arrival (3)

SRC	DST	DATA	MAC-ID	OP-ID
4bit	4bit	16bit	4bit	8bit

- OP-ID == OP_CNT == 23
 - This packet is for current operation
 - It moves to temporal buffer [14] directly
 - Temp buffer (length 16) is full
 - It will trigger 16 MACs operation

Out-of-Order data arrival (4)

SRC	DST	DATA	MAC-ID	OP-ID
4bit	4bit	16bit	4bit	8bit

- Temp buffer trigger 16 MACs
- Increase OP_CNT
- Ready for 24th operation

Out-of-Order data arrival (5)

SRC	DST	DATA	MAC-ID	OP-ID
4bit	4bit	16bit	4bit	8bit

- Before capture new packet, check OOO buffer[8]
 - 8 = mod(24,16)
 - Full search OOO buffer [8] (64 depth)
 - Move [0;2;0x5A;0;24] to temp buffer [0]

Layerwise Programming

Address generator can be designed using three nested counters

For each layer, host program the NeuroCube by writing conf. registers

For 2D-Conv: #N: 26 x 26, #C: 3 x 3 For FC: #N: 10 x 1, #C: 676 x 1

- Latency of writing configuration registers is negligible
- External interface is very rare

Layerwise Programming

Conv-NN for Scene labeling

Handshaking to start programming or main operation

Simulation Results

Synthesis Result

28nm CMOS process

15nm FinFet process

- To utilize HMC internal throughput fully, $f_{PF} = 5$ GHz
- Thermal analysis performed under 5GHz operating
- Max. allowable temp. of HMC: 378K

Footprint of HMC 1.0: 68mm²

Hardware Power Breakdown

- Measured energy consumption [J. Jeddeloh, `12 VLSI]
 - 3.7 pj/bit for the DRAM layers
 - 6.78 pj/bit for the logic layer, (most power hungry = ext. interface SERDES)

Single core power breakdown (15nm): 187mW

Performance Simulation: Inference

15nm Finfet design

To see system throughput, cycle-level simulation is performed

- Inference: scene labeling
 - Two operating modes:
 - 1. Duplication prev. layer to reduce NoC traffic
 - 2. No duplication to reduce memory overhead

Performance Simulation: Training

15nm Finfet design

Performance Simulation: DDR3/Crossbar

15nm Finfet design

System throughput (OPs/s)

Multiple channels in HMC improve system throughput

System throughput (OPs/s)

Crossbar improves system throughput for FC layer

Related Works

- Most of prev. work focused on specific NN
 - Shows high throughput based on optimized design (ASIC/FPGA)
 - Not programmable (not scalable)
- Programmable + Scalable design
 - General purposed architecture: mobile CPU or GPU
 - Integrated systems with external DRAM

	[L. Cabigelli `15 DAC]		NeuroCube	
Platform	Tegra K1	GTX 780	28nm	15nm
Bit precision ctrl.	N/A	N/A	16bit	16bit
Throughput (GOPs/s)	76	1781	7.95	132.4
Computing Power (W)	11	206.8	0.249	3.41
Efficiency (GOPs/s/W)	6.91	8.61	31.92	38.82
Inference/training	inference	inference	both	both

- NeuroCube: Neuro-inspired architecture as PIM in HMC
 - Utilize high memory bandwidth
 - Integrated with high density memory
 - Meet thermal/area constraints
- Programmable architecture to cover diff. NN types
 - Programming memory access pattern
 - Simple memory address generator (PNG) is embedded in memory
 - Memory centric neural computing (MCNC) scheme
- System performance is simulated
 - Network-on-chip traffic is next bottleneck
 - Optimized NoC design, data re-usage should be studied

Thank you