DEPARTAMENT DE MATEMÀTICA APLICADA (ETSINF)

ALG - Test Bloc 2 (Pràctiques P4 a P7)

COGNOMS i Nom	Grup

1. Considera la matriu

$$A = \left[\begin{array}{rrrr} -2 & 4 & 2 & 2 \\ 8 & -2 & 1 & 2 \\ -4 & 2 & 1 & 4 \\ -2 & 1 & 4 & 4 \end{array} \right]$$

 \mathbf{a})_(1p) Calcula amb Scilab la inversa, A^{-1} de dues maneres i verifica que trobes el mateix resultat.

 $\mathbf{b})_{(1p)}$ Resol l'equació matricial

$$A \cdot X \cdot A^t = A + B$$

on $B = A \cdot A^t$.

 \mathbf{c})_(1p) A partir de la descomposició LU de A que Scilab te proporciona, resol el sistema $A\overrightarrow{x} = \overrightarrow{b}$ on $\overrightarrow{b} = (-1, 2, 0, 3)$ i verifica que el resultat que trobes és correcte.

2. a)_(1p) Calcula la projecció ortogonal de $\overrightarrow{x}=(1,-1,2)$ sobre la recta w=<(1,2,-1)>.

 $\mathbf{b})_{(1p)}$ Converteix el conjunt de vectors

$$\overrightarrow{u} = (-3, -2, 1, 0), \quad \overrightarrow{v} = (0, 0, 0, -1), \quad \overrightarrow{w} = (-1, 3, 3, 0)$$

en un sistema ortonormal.i troba un vector unitari de la forma $\overrightarrow{x} = (a, b, c, 0)$, ortogonal als tres

 \mathbf{c}) $_{(1p)}$ Calcula la projección ortogonal de $\overrightarrow{x}=(1,-1,2)$ sobre el subespai W=<(1,2,-1),(1,1,-2)>

 \mathbf{d})_(1p) Troba el subespai ortogonal, W^{\perp} , del subespai de \mathbf{c}) i verifica (de dues maneres) que la projecció calculada, $Proj_W(\overrightarrow{x})$, es troba efectivament en W.

3. a) $_{(1.5p)}$ Troba amb Scilab la solució per mínims quadrats per al sistema Ax = b, construint les equacions normals i calculant l'error d'aproximació, on

$$A = \begin{bmatrix} 6 & -4 & 4 \\ 8 & -6 & 4 \\ 7 & -6 & 2 \\ -3 & 2 & -2 \\ 4 & -4 & 2 \end{bmatrix} \qquad i \qquad b = \begin{bmatrix} -2 \\ 0 \\ 1 \\ 1 \\ 2 \end{bmatrix}$$

b)_(1.5p) Troba l'equació $y = \alpha + \beta x$ de la recta de mínims quadrats per als punts

$$P_1 = (1, -1), \quad P_2 = (3, 0), \quad P_3 = (6, 0), \quad P_4 = (-1, 4)$$

i calcula l'error residual.