

E2:243 TEST

(September 20, 2019)

(2PM -3:30PM)

SR No .:

SPARSH YADAV

16664

Sequence Number:

Answer All Questions

(Maximum Marks:50)

I) In the following, in each question only one alternative is correct.

Tick $(\sqrt{})$ the correct alternative:

(Correct Answer 1 Mark/Wrong Answer -0.5 Mark/Not Attempted

0 Mark)

(Total: 8 Marks)

1. The function $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined as $f(x) = x^2 - x - 6$ is

- (a) one-one but not onto
- (b) onto but not one-one
- (c) both one-one and onto
- (d) neither one-one nor onto
- 2. If $f: \mathcal{A} \longrightarrow \mathcal{B}$ and E, F are subsets of \mathcal{B} , then $f^{-1}(E \cup F') =$

(a)
$$f^{-1}(E) \cup (f^{-1}(F))'$$

- (b) $f^{-1}(E) \cup (f^{-1}(F'))'$
- (c) $f^{-1}(E') \cup f^{-1}(F)$
- (d) $f^{-1}(E') \cup f^{-1}(F')$
- 3. The sequence of real numbers $\{a_n\}_{n\in\mathbb{N}}$ defined as $a_n = \frac{n+1}{n}$ is $\frac{2}{3}, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}$

- (b) nondecreasing but not bounded above
- (a) nonincreasing and bounded below
 - (d) nonincreasing but not bounded below

lin n(1+1/n) =

$$\mathcal{I} = [0, \infty)$$
 as

The sequence of
$$\mathcal{I} = [0, \infty)$$
 as $f_n(x) = \frac{1}{1 + nx}$ (a) does not converge pointwise on \mathcal{I} but converges uniformly on \mathcal{I}

(a) does not converge pointwise on
$$\mathcal{I}$$
 nor uniformly on \mathcal{I}

(c) converges uniformly on
$$\mathcal{I}$$
 and hence also converges uniformly on \mathcal{I}

(a) converges pointwise on $\mathcal I$ but not uniformly on $\mathcal I$

converges pointwise on
$$\mathcal{I}$$
 but not uniformly on \mathcal{I}
8. If $\{f_n\}_{n\in\mathbb{N}}$ is a sequence of continuous real valued functions on the intreval $\mathcal{I}=[-1,1]$ converging uniformly on \mathcal{I} to the function f

(a)
$$\int_0^1 f(x)dx$$
 may not exist

(a)
$$\int_0^1 f(x)dx$$
 may not exist but $\lim_{n\to\infty} \int_0^1 f_n(x)dx$ may not exist (b) $\int_0^1 f(x)dx$ must exist but $\lim_{n\to\infty} \int_0^1 f_n(x)dx$ may not exist

(b)
$$\int_0^1 f(x)dx$$
 must exist but $\int_0^1 f(x)dx$ both exist but may not be equal (c) $\int_0^1 f(x)dx$ and $\lim_{n\to\infty} \int_0^1 f_n(x)dx$ both exist but may not be equal

(c)
$$\int_0^1 f(x)dx$$
 and $\lim_{n\to\infty} \int_0^1 f_n(x)dx$ both exist and must be equal (d) $\int_0^1 f(x)dx$ and $\lim_{n\to\infty} \int_0^1 f_n(x)dx$ both exist and must be equal

II) In the following, state TRUE or FALSE:

(Total:8 Marks)

$$f^{-1}(E \cup F) = f^{-1}(E) \cup f^{-1}(F)$$

2. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers and $a\in\mathbb{R}$. Then

$$a_n \longrightarrow a \Longleftrightarrow |a_n| \longrightarrow |a|$$

(V) In the following give reasons for your answers and show the details of your working:

(Write the answers in the space provided below each question)

1. Let $\{f_n\}_{n\in\mathbb{N}}$ be the sequence of real numbers defined as

$$f_n = \frac{n^2 + 2}{2n^2 + 3}$$

Answer the following:

- (a) Find the *lub* and *glb* of this sequence
- (b) Show that the sequence is a Cauchy sequence
- (c) Is the sequence nonincreasing?
- (d) Does the sequence converge and if so to what value f does the sequence converge?
- (e) Use the definition of convergence to show that the sequence converges to the f you obtained in (d) above

(2 Marks for each part. Total 10 Marks) $f_n = \frac{n^2 + 2}{2n^2 + 3}$ $n \in \mathbb{N}$ $\lim_{n \to \infty} \frac{n^2 + 2}{2n^2 + 3} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{2n^2 + 3} = \frac{1}{2}$ $f_{n > 2} = \frac{1}{2} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{2n^2 + 3} = \frac{1}{2}$ $f_{n > 2} = \frac{1}{2} = \lim_{n \to \infty} \frac{1 + \frac{2}{n}}{2n^2 + 3} = \frac{1}{2}$ Clearly it is a su non-increasing sequence, bounded below by 1/2. for every 600] a positive integer N(e) s.t formm > N(t) =) |fn-fm| < E Let n/m $\left| \frac{n^2 + 2}{2n^2 + 3} - \frac{m^2 + 2}{2m^2 + 3} \right|$ and = 2m/h+3n2+2m2+8-[2ptn2+3m2+4n2+8) m2 + 1 (E = $\left[\frac{-n^2+m^2}{(2n^2+3)(2m^2+3)}\right]$ < \in (2n2, 3) (2m2, 3) < E $\frac{m^{2}(\frac{h^{2}+1}{m^{2}+1})}{(2n^{2}+3)}$ < $\frac{m^{2}}{(2n^{2}+3)}$ <

Scanned by CamScanner

