Algorithmic Foundations 2 - Tutorial Sheet 2 Predicate Logic and Sets

Predicates and Quantifiers

- 1. Suppose P(x,y) is the statement $x+2\cdot y=x\cdot y$, where the universe of discourse for both x and y is the set of integers \mathbb{Z} . What are the truth values of
 - (a) P(1,-1)

Solution: true - since $1 + 2 \cdot (-1) = -1 = 1 \cdot (-1)$.

(b) P(0,0)

Solution: true - since 0 + 2.0 = 0 = 0.0.

(c) P(2,1)

Solution: false - since $2 + 2 \cdot (1) = 4 \neq 2 = 1 \cdot 2$.

- 2. Suppose that Q(x) is the statement $x+1=2\cdot x$. What are the truth values of
 - (a) Q(2)

Solution: false - since $2+1=3\neq 4=2\cdot 2$.

(b) $\forall x \in \mathbb{R}. Q(x)$

Solution: false - since, for example if x=2, then $2+1=3\neq 4=2\cdot 2$.

(c) $\exists x \in \mathbb{R}. Q(x)$

Solution: true - since, for example taking x=1 we have $1+1=2=2\cdot 1$.

- 3. Let P(m,n) be the statement $n \geq m$. What is the truth value of
 - (a) $\forall n \in \mathbb{N}. P(0, n)$

Solution: true - all natural numbers are greater than or equal to 0.

(b) $\exists n \in \mathbb{N}. \forall m \in \mathbb{N}. P(m, n)$

Solution: false - there is no largest natural number. For example, for any natural number n, letting m = n+1 we have $m \in \mathbb{N}$ and P(m,n) does not hold.

(c) $\forall m \in \mathbb{N}. \exists n \in \mathbb{N}. P(m, n)$

Solution: true - for any $m \in \mathbb{N}$ letting n = m+1 we have $n \in \mathbb{N}$ and P(m,n) holds.

4. Suppose S is the set of all students, C is the set of all courses, and we are given the following list of predicates:

- H(y): x is an honours course;
- C(x): x is a CS course;
- S(x): x is a second-year;
- P(x): x is a part-time student;
- F(x): x is a full-time student;
- T(x,y): x is taking course y.
- 5. Write each of the following statements using these predicates and quantifiers where necessary.
 - (a) "Sarah is taking AF2"

Solution: T(Sarah, AF2)

(b) "all students are second-years"

Solution: $\forall x \in \mathcal{S}. S(x)$

(c) "every second-year is a full-time student"

Solution: $\forall x \in \mathcal{S}. (S(x) \to F(x))$

(d) "no CS course is an honours course"

Solution: $\forall y \in \mathcal{C}. (C(y) \rightarrow \neg H(y)).$

Alternative (and equivalent) solutions include $\forall y \in \mathcal{C}. \neg (C(y) \land H(y))$ and $\neg \exists y \in \mathcal{C}. (C(y) \land H(y))$.

(e) "every student is taking at least one course"

Solution: $\forall x \in \mathcal{S}. \exists y \in \mathcal{C}. T(x, y)$

(f) "there is a part-time student who is not taking any CS course"

Solution: $\exists x \in \mathcal{S}. \forall y \in \mathcal{C}. (P(x) \land (C(y) \rightarrow \neg T(x, y)))$ or alternatively $\exists x \in \mathcal{S}. (P(x) \land \forall y \in \mathcal{C}. (C(y) \rightarrow \neg T(x, y)))$

(g) "every part-time second-year is taking some honours course"

Solution: $\forall x \in \mathcal{S}. \exists y \in \mathcal{C}. ((P(x) \land S(x)) \rightarrow (H(y) \land T(x,y)))$ or alternatively $\forall x \in \mathcal{S}. ((P(x) \land S(x)) \rightarrow \exists y \in \mathcal{C}. (H(y) \land T(x,y)))$

- 6. Using the predicates from the previous question, write each of the following in good English without using variables in your answers.
 - (a) S(Helen)

Solution: "Helen is a second-year student"

(b) $\neg \exists y \in \mathcal{C}. T(Joe, y)$

Solution: "Joe is not taking any course"

(c) $\exists x \in \mathcal{S}. (P(x) \land \neg S(x))$

Solution: "some part-time students are not second-years"

(d) $\exists x \in \mathcal{S}. \forall y \in \mathcal{C}. T(x, y)$

Solution: "some student is taking every course"

(e) $\forall x \in \mathcal{S}. \exists y \in \mathcal{C}. ((F(x) \land S(x)) \rightarrow (C(y) \land T(x,y)))$

Solution: "every full-time second year is taking a CS course"

7. Explain why the negation of "Some students in my class use e-mail" is not "Some students in my class do not use e-mail".

Solution: Short answer: both statements can be true at the same time. Longer answer: the negation is "all students in my class do not use e-mail" which is not the same as saying "some students in my class do not use e-mail".

- 8. Let \mathcal{S} be the set of all sets and consider the following predicates:
 - F(x): x is a finite set;
 - I(x): x is an infinite set;
 - S(x,y): x is contained in y;
 - E(x): x is the emptyset.

Translate the following into logical expressions:

(a) "not all sets are finite"

Solution: $\exists x \in \mathcal{S}. \neg F(x) \text{ or } \exists x \in \mathcal{S}. I(x)$

(b) "every subset of a finite set is finite"

Solution: $\forall x \in \mathcal{S}. \forall y \in \mathcal{S}. ((F(y) \land S(x,y)) \rightarrow F(x))$

(c) "no infinite set can be contained in a finite set"

Solution: $\neg \exists x \in \mathcal{S}. \exists y \in \mathcal{S}. (I(x) \land F(y) \land S(x,y))$ An alternatively would be $\forall x \in \mathcal{S}. (I(x) \rightarrow \neg (\exists y \in \mathcal{S}. (F(y) \land S(x,y))))$

Below is a proof showing these two formulae are logically equivalent:

```
 \forall x \in \mathcal{S}. \left( I(x) \to \neg (\exists y \in \mathcal{S}. \left( F(y) \land S(x,y) \right) \right) )  implication law  \equiv \forall x \in \mathcal{S}. \left( \neg I(x) \lor \neg (\exists y \in \mathcal{S}. \left( F(y) \land S(x,y) \right) \right) )  De Morgan law  \equiv \neg \exists x \in \mathcal{S}. \neg \neg (I(x) \land (\exists y \in \mathcal{S}. \left( F(y) \land S(x,y) \right) \right) )  negation law  \equiv \neg \exists x \in \mathcal{S}. \left( I(x) \land (\exists y \in \mathcal{S}. \left( F(y) \land S(x,y) \right) \right) )  double negation law  \equiv \neg \exists x \in \mathcal{S}. \exists y \in \mathcal{S}. \left( I(x) \land F(y) \land S(x,y) \right) )  since y does not appear in I(x)
```

(d) "the empty set is a subset of every finite set"

```
Solution: \forall x \in \mathcal{S}. \forall y \in \mathcal{S}. ((E(x) \land F(y)) \rightarrow S(x,y))
```

Difficult/challenging questions (Predicate Logic).

9. A statement is in *prenex normal form* when it is of the form:

$$\nabla_1 x_1 \cdot \nabla_2 x_2 \dots \nabla_n x_n \cdot P(x_1, x_2, \dots, x_n)$$

where $\nabla_i \in \{\forall, \exists\}$ for $1 \le i \le n$ and $P(x_1, x_2, \dots, x_n)$ is a predicate involving no quantifiers. For example we have that $\exists x. \forall y. (P(x, y) \lor Q(y))$ is in prenex normal form, while $\forall x. P(x) \land \exists y. Q(y)$ is not. Using the rules for logical equivalence write the following formulae in prenex normal form.

(a) $\exists x. P(x) \lor \exists x. Q(x) \lor R$ where R is a propositional formula, containing no variables or quantifiers;

Solution: Changing the variable x to y in the subforumula $\exists x. Q(x)$ we have:

$$\exists x. P(x) \lor \exists x. Q(x) \lor R \equiv \exists x. P(x) \lor \exists y. Q(y) \lor R$$
$$\equiv \exists x. \exists y. (P(x) \lor Q(y) \lor R)$$

since y does not appear free in $\exists x. P(x), x$ does not appear free in $\exists y. Q(y)$ and neither x nor y appear free in R.

(b) $\neg(\forall x. P(x) \lor \forall x. Q(x))$

Solution: Changing the variable x to y in the subforumula $\forall x. Q(x)$ we have:

$$\neg(\forall x. P(x) \lor \forall x. Q(x)) \equiv \neg(\forall x. P(x) \lor \forall y. Q(y))$$

$$\equiv \neg \forall x. P(x) \land \neg \forall y. Q(y)$$
 De Morgan law
$$\equiv \neg \forall x. \neg \neg P(x) \land \neg \forall y. \neg \neg Q(y)$$
 double negation law (twice)
$$\equiv \exists x. \neg P(x) \land \exists y. \neg Q(y)$$
 quantifier law
$$\equiv \exists x. \exists y. (\neg P(x) \land \neg Q(y))$$

since y does not appear free in $\forall x. \neg P(x)$ and x does not appear free in $\exists y. \neg Q(y)$.

(c) $\exists x. P(x) \rightarrow \exists x. Q(x)$

Solution: Changing the variable x to y in the second sub-forumula we have:

$$\exists x. \, P(x) \to \exists x. \, Q(x) \equiv \exists x. \, P(x) \to \exists y. \, Q(y)$$
 implication law
$$\equiv \neg \exists x. \, P(x) \vee \exists y. \, Q(y)$$
 double negation law
$$\equiv \forall x. \, \neg P(x) \vee \exists y. \, Q(y)$$
 quantifier law
$$\equiv \forall x. \, \exists y. \, (\neg P(x) \vee Q(y))$$

since y does not appear free in $\forall x. \neg P(x)$ and x does not appear free in $\exists y. Q(y)$.

Sets and Set Operations

10. List the members of the following sets (recall that \mathbb{Z} is the set of integers and \mathbb{N} is the set of natural numbers).

(a) $\{x \mid x \in \mathbb{Z} \land x^2 = 5\}$

Solution: \emptyset

(b) $\{5 \cdot x \mid x \in \mathbb{Z} \land (-2 \le x \le 2)\}$

Solution: $\{-10, -5, 0, 5, 10\}$

(c) $\{x \mid x \in \mathbb{N} \land x^2 \in \{1, 4, 9\}\}$

Solution: $\{1, 2, 3\}$

(d) $\{x \mid x \in \mathbb{Z} \land x^2 \in \{1, 4, 9\}\}$

Solution: $\{-3, -2, -1, 1, 2, 3\}$

- 11. Use set builder notation to give a description of each of the following sets.
 - (a) $\{0, 3, 6, 9, 12\}$

Solution: $\{3 \cdot x \mid x \in \mathbb{N} \land 0 \le x \le 4\}$

(b) $\{-3, -2, -1, 0, 1, 2, 3\}$

Solution: $\{x \mid x \in \mathbb{Z} \land -3 \le x \le 3\}$

(c) $\{1, 4, 9, 16, 25, 36, 49\}$

6

Solution: $\{x^2 \mid x \in \mathbb{N} \land 1 \le x \le 7\}$

12. Suppose $A = \{a, b, c\}$ and $B = \{b, \{c\}\}$. Mark each of the following true or false.

(a) $\{a, c\} \in A$

Solution: false $(\{a,c\})$ is actually a strict subset of A, i.e. $\{a,b\} \subset A$

(b) $\{c\} \subseteq B$

Solution: false (actually we have $\{c\} \in B$)

(c) $B \subseteq A$

Solution: false (for example, $\{c\} \in B$ and $\{c\} \notin A$)

(d) $\{b,c\} \in \mathcal{P}(A)$

Solution: true (b and c are elements of A, and hence $\{b, c\}$ is a subset of A)

(e) $\{\{a\}\}\subseteq \mathcal{P}(A)$

Solution: true ($\{a\}$ is an element of $\mathcal{P}(A)$ so the set containing $\{a\}$ is a subset of $\mathcal{P}(A)$)

(f) $\{b, \{c\}\} \in \mathcal{P}(B)$

Solution: true (since a set is element of its powerset)

(g) $\{\{\{c\}\}\}\}\subseteq \mathcal{P}(B)$

Solution: true $(\{c\} \in B \text{ implies } \{\{c\}\}\} \in \mathcal{P}(B) \text{ which implies } \{\{\{c\}\}\} \subseteq \mathcal{P}(B))$

(h) $|\mathcal{P}(A \times B)| = 32$

Solution: false $(|A \times B| = 3.2 = 6 \text{ so the power set is of size } 2^6 = 64)$

(i) $\{a, b\} \in A \times A$

Solution: false (the set $A \times A$ contains ordered pair, but $\{a, b\}$ is the set containing the elements a and b)

(j) $\varnothing \subseteq A \times A$

Solution: true (the emptyset is a subset of any set - to prove a set A is a subset of B we need to show any element of A is in B, when A is the empty set this holds vacuously as there are no elements in A)

(k) $(c,c) \in A \times A$

Solution: true - since $c \in A$

- 13. Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ by giving
 - (a) a containment proof;

Solution: First we show $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$. Considering any $x \in A \cap (B \cup C)$, by definition of intersection we have:

$$x \in A \cap (B \cup C) \implies x \in A \text{ and } x \in B \cup C$$

 $\Rightarrow x \in A$ and either $x \in B$ or $x \in C$ by definition of union

 \Rightarrow either $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$

rearranging

 \Rightarrow either $x \in A \cap B$ or $x \in A \cap C$

by definition of intersection

 $\Rightarrow x \in (A \cap B) \cup (A \cap C)$

by definition of union

and hence, since $x \in A \cap (B \cup C)$ was arbitrary, we have $A \cap (B \cup C) \subseteq (A \cap B) \cup (A \cap C)$ as required.

To complete the proof we show $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$. Considering any $x \in (A \cap B) \cup (A \cap C)$, by definition of union we have:

$$x \in (A \cap B) \cup (A \cap C) \Rightarrow \text{ either } x \in A \cap B \text{ or } x \in A \cap C$$

 \Rightarrow either $x \in A$ and $x \in B$, or $x \in A$ and $x \in C$ by definition of intersection

 $\Rightarrow x \in A \text{ and either } x \in B \text{ or } x \in C$

rearranging

 $\Rightarrow x \in A \text{ and } x \in B \cup C$

 $\Rightarrow x \in A \cap (B \cup C)$

by definition of union by definition of intersection

1.1 - (A o D) + (A

and hence, since $x \in (A \cap B) \cup (A \cap C)$ was arbitrary, we have $(A \cap B) \cup (A \cap C) \subseteq A \cap (B \cup C)$ completing the proof.

(b) an element table proof;

Solution:

A	B	C	$A \cap B$	$A \cap C$	$B \cup C$	$A \cap (B \cup C)$	$(A \cap B) \cup (A \cap C)$
0	0	0	0	0	0	0	0
0	0	1	0	0	1	0	0
0	1	0	0	0	1	0	0
0	1	1	0	0	1	0	0
1	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1
1	1	0	1	0	1	1	1
1	1	1	1	1	1	1	1

Each set has the same values in the element table: the value is 1 if and only if A has the value 1 and either B or C has the value 1.

(c) a proof using logical equivalence.

Solution:

$$A \cap (B \cup C) = \{x \mid x \in A \cap (B \cup C)\}$$
 by definition
$$= \{x \mid (x \in A) \land (x \in (B \cup C))\}$$
 by definition of \cap by definition of \cup by d

14. Prove or disprove: $A-(B\cap C)=(A-B)\cup (A-C)$.

Solution: Proof. By definition of set difference:

$$\begin{array}{ll} A - (B \cap C) = & A \cap (\overline{B \cap C}) \\ &= & A \cap (\overline{B} \cup \overline{C}) \\ &= & (A \cap \overline{B}) \cup (A \cap \overline{C}) \\ &= & (A - B) \cup (A - C) \end{array} \qquad \text{definition of set difference}$$

15. Prove or disprove: $A-(B \cap C) = (A-B) \cap (A-C)$.

Solution: false - for example, if $A=\{1,2\},\ B=\{1\},\ C=\{2\},$ then $A-(B\cap C)=A$ while $(A-B)\cap (A-C)=\varnothing$

16. Prove or disprove: $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

Solution: true - this is easiest with a membership table showing each set has the same values: the value is 1 if and only if exactly one of A, B and C has the value 1, or all three have value 1.

Proving with the other methods is possible, but is more involved.

17. Let $A_i = \{1, 2, \dots, i\}$ for $i \in \mathbb{Z}^+$, find $\bigcup_{i=1}^n A_i$ and $\bigcap_{i=1}^n A_i$ for $n \in \mathbb{Z}^+$.

Solution: We have $\bigcup_{i=1}^n A_i = A_n$ and $\bigcap_{i=1}^n A_i = \{1\}$

- 18. Mark each of the following true or false:
 - (a) A (B C) = (A B) C

Solution: false - for example, consider $A=B=\{a,b\}$ and $C=\{b\}$, then $A-(B-C)=\{a,b\}-\{a\}=\{b\}$ while $(A-B)-C=\varnothing-\{b\}=\varnothing$

(b) (A-C)-(B-C) = A-B

Solution: false - for example, take $A=\{a\},\ B=\{b\}$ and $C=\{a,b\},$ then $(A-C)-(B-C)=\varnothing-\varnothing=\varnothing$ while $A-B=\{a\}$

(c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Solution: true - below is a containment proof:

First we show $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$. Therefore, considering any $x \in A \cup (B \cap C)$, by definition of union:

$$x \in A \cup (B \cap C) \implies x \in A \text{ or } x \in B \cap C$$

 $\Rightarrow x \in A \text{ or both } x \in B \text{ and } x \in C$ by definition of intersection

 $\Rightarrow x \in A \text{ or } x \in B, \text{ and } x \in A \text{ or } x \in C$ rearranging

 $\Rightarrow x \in A \cup B$, and $x \in A \cup C$ by definition of union

 $\Rightarrow x \in (A \cup B) \cap (A \cup C)$ by definition of intersection

and, since $x \in A \cup (B \cap C)$ was arbitrary, we have $A \cup (B \cap C) \subseteq (A \cup B) \cap (A \cup C)$ are required.

To complete the proof we show $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$. Considering any $x \in (A \cup B) \cap (A \cup C)$, definition of intersection we have:

$$x \in (A \cup B) \cap (A \cup C) \implies x \in A \cup B$$
, and $x \in A \cup C$

 $\Rightarrow x \in A \text{ or } x \in B, \text{ and } x \in A \text{ or } x \in C$ by definition of union

 $\Rightarrow x \in A \text{ or both } x \in B \text{ and } x \in C$ rearranging

 $\Rightarrow x \in A \text{ or } x \in B \cap C$ by definition of intersection

 $\Rightarrow x \in A \cup (B \cap C)$ by definition of union.

Hence, since $x \in (A \cup B) \cap (A \cup C)$ was arbitrary, we have $(A \cup B) \cap (A \cup C) \subseteq A \cup (B \cap C)$ completing the proof.

(d) $A \cap (B \cup C) = (A \cup B) \cap (A \cup C)$

Solution: false - for example, if $A = \{a\}$ and $B = C = \{b\}$, then $A \cap (B \cup C) = \{a\} \cap \{b\} = \emptyset$ while $(A \cup B) \cap (A \cup C) = \{a,b\} \cap \{a,b\} = \{a,b\}$

(e) If $A \cup C = B \cup C$, then A = B

Solution: false - for example, consider $A = \{a\}, B = \{b\}$ and $C = \{a, b\}$

(f) If $A \cap C = B \cap C$, then A = B

Solution: false - for example, consider $A = \{a, c\}, B = \{b, c\}$ and $C = \{c\}$

(g) If $A \cap B = A \cup B$, then A = B

Solution: true. Below we give a containment proof showing A = B using the

hypothesis $A \cap B = A \cup B$. First we show $A \subseteq B$, by definition of union we have:

$$x \in A \Rightarrow x \in A \cup B$$

 $\Rightarrow x \in A \cap B$ by the hypothesis
 $\Rightarrow x \in B$ by the definition of intersection

and hence $A \subseteq B$.

To complete the proof we show $B \subseteq A$. Considering any $x \in B$, by definition of union we have:

$$x \in B \Rightarrow x \in A \cup B$$

 $\Rightarrow x \in A \cap B$ by the hypothesis
 $\Rightarrow x \in A$ by the definition of intersection

and hence $B \subseteq A$ completing the proof.

(h) If $A \oplus B = A$, then A = B

Solution: false - for example, if
$$A=\{a\}$$
 and $B=\varnothing$, then $A\oplus B=(A-B)\cup(B-A)=\{a\}\cup\varnothing=\{a\}$

(i) there is a set A such that |P(A)| = 12

Solution: false - from the lectures we have that the size of the power set equals 2^n where n is the size of the set

(j) $A \oplus A = A$

Solution: false - for example, if
$$A = \{a\}$$
, then $A \oplus A = (A - A) \cup (A - A) = \emptyset \cup \emptyset = \emptyset$.

We actually have that $A \oplus A = \emptyset$ for all sets A. Below is a proof of this fact using using set comprehension and logical equivalences.

$$A \oplus A = \{x \mid x \in A \oplus A\} \qquad \text{by definition}$$

$$= \{x \mid x \in (A-A) \cup (A-A)\} \qquad \text{by definition of symmetric difference}$$

$$= \{x \mid (x \in A-A) \vee (x \in A-A)\} \qquad \text{by definition of } \cup$$

$$= \{x \mid x \in A-A\} \qquad \text{idempotent law}$$

$$= \{x \mid (x \in A) \wedge (x \not\in A)\} \qquad \text{by definition of set difference}$$

$$= \{x \mid (x \in A) \wedge \neg (x \in A)\} \qquad \text{by definition of negation}$$

$$= \{x \mid \text{false}\} \qquad \text{contradiction law}$$

$$= \varnothing$$

19. Prove or disprove: $A \oplus (B \oplus C) = (A \oplus B) \oplus C$.

Solution: true - this is easiest with a membership table showing each set has the same values: the value is 1 if and only if exactly one of A, B and C has the value 1, or all three have value 1.

Proving with the other methods is possible, but is more involved.

20. Suppose that A, B and C are sets such that $A \oplus C = B \oplus C$, does it follow that A = B.

Solution: The answer is yes. We will prove using a containment proof.

First we show $A \subseteq B$. Considering any $x \in A$ we split the proof into the following two cases.

- If $x \in C$, then by definition of set difference $x \notin A \oplus C$, and hence since $A \oplus C = B \oplus C$ it follows that $x \notin B \oplus C$. Now since $x \in C$ and $x \notin B \oplus C$, by definition of set difference it must be the case that $x \in B$.
- If $x \notin C$, then by definition of set difference $x \in A \oplus C$, and hence since $A \oplus C = B \oplus C$ it follows that $x \in B \oplus C$. Now since $x \notin C$ and $x \in B \oplus C$, by definition of set difference it must be the case that $x \in B$.

Since these are all the cases to consider ot follows that $x \in B$ and $A \subseteq B$.

The proof that $B \subseteq A$ follows similarly, and therefore we have that A = B.