卷积核

https://ssshooter.github.io/canvas-img-process/

粒子效果

https://kongchenglc.github.io/Demo/particle/index.html

Canvas

```
      <canvas id="canvas" width="400" height="300"/>

      Var canvas = document.getElementById('canvas');

      Var ctx = canvas.getContext('2d');

      一个画布的创建

      关于 canvas 的宽高。
```

Canvas 是一个画板和一张画纸,画板相当于一个容器,画图/作业是在画纸上进行的,

画板和画纸的默认宽高是 300*150, 当画纸与画板宽高相等时, 图像不会被拉伸, 当画纸与画板宽高不一样时, 图像就会被拉伸(变形)。

1. width 和 height 属性是设定画板和画纸的宽高,

如: width="300" height="300" 即画板的宽高是 300*300, 画纸的宽高也是 300*300, 作业的 300*300 的对角线图像就不会被拉伸

2. style 样式 里设定的是仅画板的宽高,画纸的宽高还是为默认值 300*150

```
canvas.drawImage(this.video, 0, 0, this.width, this.height);

canvas.getImageData(0, 0, this.width, this.height) → 输出一个imageData
对象

canvas.createImageData(imageData 对象)
```

关于 imageData 对象

一个一维数组,包含以 RGBA 顺序的数据,数据使用 0 至 255 (包含)的整数表示。

方法不允许操作非此域名外的图片资源,所以如果想本地试试文章中的例子,直接写图片路径就会报错,

关于粒子效果:

灰度公式

Brightness = 0.21*r + 0.72*g + 0.07*b

卷积 + ImageData = ?

图像归根到底就是一大堆的颜色点矩阵,我们完全可以把颜色点代替上面的数字矩阵处理, 不同的卷积核对图片的处理结果如下(图片来自维基百科)

Operation	Kernel	Image result
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$	
Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	4

35	40	41	45	50								
40	40	42	46	52		0	1	0				
42	46	50	55	55	X	0	0	0			42	
48	52	56	58	60		0	0	0				
56	60	65	70	75								_