ZK Bootcamp: Day 1 Problem Set

Brian Justin Stout*

July 24, 2023

Problem 1. Working with the following set of integers $S = \{0, 1, 2, 3, 4, 5, 6\}$, compute the following: 4 + 4, 3 * 5, 3^{-1}

S is the finite field of seven elements, or \mathbb{F}_7 . Therefore $4 + 4 = 8 = 1 \pmod{7}$, $3 * 5 = 15 = 1 \pmod{7}$ which also shows that $3^{-1} = 5 \pmod{7}$.

Problem 2. For $S = \{0, 1, 2, 3, 4, 5, 6\}$ can we consider S and the operation g + f to be a group?

Yes, because $S = \mathbb{F}_7$ we know that S is a group under addition and the non-zero elements form a group under multiplication.

Problem 3. What is $-13 \pmod{5}$?

Adding multiples of the modulus we obtain $-13 = -13 + 15 = 2 \pmod{5}$.

Problem 4. For the polynomial $p(x) = x^3 - x^2 + 4x - 12$ find the positive root a. What is the degree of this polynomial?

The degree of the polynomial is 3, the largest power of x. A positive root for this polynomial is x = 2 because $2^3 - 2^2 + 4 * 2 - 12 = 8 - 4 + 8 - 12 = 0$. Therefore the polynomial factors as $(x - 2)(x^2 + x + 6)$.

^{*}email: bstout.eth@ethermail.io