Supplementary Material

Supplementary Methods	2
Supplementary Table 1: SCN Functionally Characterized Variants	5
Supplementary Table 2: Corresponding variants, phenotypes, and function across different	
sodium channels	51
Supplementary Table 3: Detailed SCN1-11A Analysis	55
Supplementary Figure 1: Study selection	58
Supplementary Figure 2: Voltage sensing regions (S4) structure zoom across D1-D4	59

Supplementary Methods

Functional classification of mutations:

For each mutation described we assessed the overall effect with respect to channel function in terms of net current flow during voltage steps. Channel function is not necessarily the same as overall effect on *cellular* function as elegantly shown recently in Liu et al., 2019, where a gain in function for the channel, led to a paradoxical loss of function through depolarising block at the cellular level. As the vast majority of channels are characterised in non-excitable mammalian cell lines in voltage clamp only, we have used this baseline to allow comparisons between published studies. Assessing the net effect where a mutation can have multiple effects on channels, we have looked at different parameters in the following approach:

- 1. Peak currents: we first checked whether a mutation reduced or increased the peak current substantially. Where data allow (e.g. for FHM3 mutations in Cestele et al., 2013)² we have also asked whether these effects on peak current are dependent on expression system in a way that means they may not be physiologically relevant in the endogenous cells. If there are data suggesting the effects on peak current are dependent on system, we have noted this as 'mixed' in the first instance.
- 2. Voltage dependence of inactivation: as the channels must be able to activate in order to pass current, we have asked whether there were shifts in the voltage dependence of inactivation that suggest a substantial portion of channels would be stuck in inactivated states in resting cells at ~-70 or -80 mV. In a very few cases we have suggested that were a large shift in voltage dependence of inactivation would effectively make channels non-functional, we have indicated this is likely an overall LoF effect, even if the peak current is increased and voltage dependence of activation (see #3) was also shifted (we gave inactivation precedence as the channels would be unable to open in resting cells if inactivated at resting potentials).
- 3. Voltage dependence of activation: given functional channels (i.e. peak current is not lost) that are not stuck in inactivated states at rest (i.e. voltage dependence of inactivation not shifted so all channels are inactive at -80 mV), we asked how much stimulation is required to open channels that is to say, is the voltage dependence of activation shifted significantly? Here a shift to more

negative voltage dependences of activation would be a gain of function, but again – only if there are sufficient currents, and a significant population of non-inactivated channels.

- 4. Persistent currents: These can be increased, sometimes even when peak currents are reduced. Increases in persistent currents are included as gain of function, unless peak currents or voltage dependence of inactivation are shifted so much that channels are unlikely to be open at all, in which case, given the profound effects of sodium leaks on cellular activity we have still called cases with large increases in persistent currents 'mixed'.
- 5. Gating pore currents: Few groups using neuronal channels have been able to interrogate whether in the cases of S4 arginines these include gating pore leak, we have not rigorously separated gating pore leaks (but see R853Q in SCN2A for one example where these currents have been seen in neuronal channels; Mason et al., 2019)³. Where gating pore leaks are described, these are a gain of function (and one that is highly likely to be pathogenic in any cell). Further technically challenging work on neuronal channels will be needed to confirm the conservation of these gating pore currents across channel subtypes.
- 6. There are many additional features that can come into play, and where the above 5 criteria do not give an overriding answer, we have looked at these. For example, many groups also look at recovery from inactivation, but in our survey, this was rarely changed enough to be the dominating feature of a channel's functional change. However, where there were large impacts on recovery from inactivation and these were in contrast to other effects on the channel, we have given the results as mixed.

In practice this functional hierarchy, albeit simplistic and incomplete, typically agrees with the author assessments of the channels, with rare exceptions. We emphasise that this functional assessment is from the perspective of the channel, not the cell or the organism (indeed as these are mutations associated with diseases, they would all be loss of function from the organism's perspective).

Additional studies, including dynamic clamp, expression in excitable cells and interrogating current clamp properties, modelling, and the golden standard of knock-in studies in mice, all will bring additional insights to the consequences of the mutations on the cells, networks and behaviours, but for the purposes of comparing the effects of mutations across different channels we have relied on the reductionist, most commonly used experimental approach. It remains to be

seen whether functional effects that alter, for example channel trafficking, are conserved in different types of sodium channels expressed in different cellular backgrounds. In addition, some effects, for example where the different threshold of activation of SCN9A has specific effects on cellular activity (in this case in DRG neurons, Dib-Hajj et al., 2012)⁴ which are highly unlikely to be conserved in (for example) SCN4A in muscle cells. In these cases, the reductionist effect on voltage dependence of activation may be conserved, but the cellular effect divergent.

References

- 1. Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. *Brain*. 2019;142(2):376-390.
- 2. Cestèle S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. *Proc Natl Acad Sci USA*. 2013;110(43):17546-17551.
- 3. Mason ER, Wu F, Patel RR, Xiao Y, Cannon SC, Cummins TR. Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations. *eNeuro*. 2019;6(5)
- 4. Dib-Hajj SD, Yang Y, Black JA, Waxman SG. The NaV1.7 sodium channel: from molecule to man. *Nature Reviews Neuroscience*. 2013;14(1):49-62.

Supplementary Table 1: *SCN* **Functionally Characterized Variants**

No.	Gene	Variant	Overall effect	Reference for function	Primary disease	Reference for phenotype	SCN1A Equivalent	gnomAD frequency	Conservation
				1	-128 Cytoplasn	nic segment			
1	SCN5A	G9V	STW	Glazer (2020)¹	LQT3	Millat (2006) ² Gutter (2013) ³	G10V	-	NC
2	SCN9A	Q10R	GoF	Han (2009) ⁴	IEM	Han (2009) ⁴	D12R	1.29e-4	NC
3	SCN2A	D12N	LoF	Ben-Shalom (2017) ⁵	ASD	Ben-Shalom (2017)⁵	D12N	-	NC
4	SCN5A	R18W	GoF	Gutter (2013) ³	LQT3	Tester (2005) ⁶	R19W	2.57e-4	NC
5	SCN5A	R27H	LoF	Gutter (2013) ³	BrS	Priori (2002) ⁷	R28H	2.36e-4	NC
6	SCN5A	E30G	STW	Kapplinger (2015) ⁸	LQT3	Kapplinger (2015) ⁸	E31G	-	NC
7	SCN5A	R43Q	STW	Lin (2008) ⁹	LQT3	Lin (2008) ⁹	K41Q	4.85e-5	NC
8	SCN1A	E78D	LoF	Kluckova (2020) ¹⁰	EPI	Mancardi (2006) ¹¹	E78D	-	-
9	SCN5A	D84N	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	D81N	-	-
10	SCN2A	D82G	LoF	Ben-Shalom (2017)⁵	ASD	Ben-Shalom (2017) ⁵	D81G	-	-
11	SCN5A	F93S	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	F90S	-	-
12	SCN10A	V94G	LoF	Jabbari (2015) ¹³	AF	Jabbari (2015) ¹³	V92G	-	-
13	SCN4A	R104H	LoF	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	R101H	4.01e-6	-
14	SCN5A	R104Q	LoF	Gutter (2013) ³	BrS	Levy-Nissenbaum (2001) ¹⁵	R101Q	-	-
15	SCN5A	R104W	LoF	Clatot (2012) ¹⁶	BrS	Clatot (2012) ¹⁶	R101W	4.01e-6	-
16	SCN5A	N109K	STW	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	S106K	4.01e-6	NC
17	SCN5A	R121W	LoF	Clatot (2012) ¹⁶ Glazer (2020) ¹	BrS	Kapplinger (2010) ¹² Holst (2010) ¹⁷	R118W	-	-
18	SCN5A	A124D	LoF	Moreau (2012) ¹⁸	BrS	Moreau (2012) ¹⁸	A121D	-	NC
19	SCN5A	V125L	GoF	Gutter (2013) ³	LQT3	Kapplinger (2009) ¹⁹	l122L	2.17e-4	NC

20	SCN5A	K126E	LoF	Gutter (2013) ³	BrS	Gutter (2013) ³	K123E	-	NC			
					129-147 S 1	of D1						
21	SCN5A	L136P	LoF	Glazer (2020)¹	BrS	Yokokawa (2007) ²⁰ Yamagata (2017) ²¹	L133P	-	NC			
22	SCN8A	M139I	GoF	Zaman (2019) ²²	EPI	Zaman (2019) ²²	M135I	-	NC			
23	SCN4A	I141V	GoF	Petitprez (2008) ²³	PMC	Petitprez (2008) ²³	14.2017	-	NC			
24	SCN9A	I136V	GoF	Cheng (2008) ²⁴	IEM	Lee (2007) ²⁵	I138V	-	NC			
25	SCN1A	M145T	LoF	Mantegazza (2005) ²⁶	EPI	Mantegazza (2005) ²⁶	M145T	-	-			
	148-154 Extracellular											
	155-175 S2 of D1											
26	SCN5A	E161K	LoF	Smits (2005a) ²⁷	BrS	Smits (2005a) ²⁷	E158K	4.15e-6	-			
27	SCN10A	Y158D	GoF	Savio-Galimberti (2014) ²⁸	AF	Savio-Galimberti (2014) ²⁸	Y159D	2.58e-4	NC			
28	SCN5A	K175N	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	K172N	-	-			
29	SCN5A	A178G	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	A175G	-	-			
					176-189 Cyto	pplasmic						
30	SCN1A	G177A	LoF	Nissenkorn (2019) ²⁹	EPI	Nissenkorn (2019) ²⁹	G177A	-	-			
31	SCN1A	G177E	LoF	Ohmori (2006) ³⁰	EPI	Ohmori (2006) ³⁰	G177E	-	-			
32	SCN5A	T187I	LoF	Makiyama (2005) ³¹	BrS	Makyama (2005) ³¹	T184I	-	NC			
33	SCN2A	R188W	Mixed	Sugawara (2001) ³²	EPI	Sugawara (2001) ³²	R187W	1.99e-5	-			
	190-207 S3 of D1											
34	SCN4A	M203K	LoF	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	F200K	7.99e-6	NC			
35	SCN2A	V208E	GoF	Lauxmann (2018) ³³	EPI	Lauxmann (2018) ³³ Lemke (2012) ³⁴	V207E	-	NC			
					208-213 Extra	acellular						
_		_						_				

36	SCN5A	S216L	Mixed	Marangoni (2011) ³⁵ Wang (2007) ³⁶	LQT3; BrS	Marangoni (2011) ³⁵ Wang (2007) ³⁶	S213L	8.09e-5	NC
37	SCN9A	S211P	GoF	Estacion (2010) ³⁷	IEM	Estacion (2010) ³⁷	S213P	-	NC
					214-230 S4	of D1			
38	SCN11A	R222H	GoF	Han (2017) ³⁸	PPN	Han (2017) ³⁸ Okuda (2016) ³⁹	R216H	-	-
39	SCN5A	T220I	STW	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	T217I	7.14e-4	NC
40	SCN9A	F216S	GoF	Choi (2006) ⁴⁰ Sheets (2007) ⁴¹	IEM	Drenth (2005) ⁴² Kim (2013) ⁴³	F218S	-	-
41	SCN8A	R223G	LoF	De Kovel (2014) ⁴⁴	EPI	De Kovel (2014) ⁴⁴	R219G	-	-
42	SCN5A	V223L	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	V220L	-	-
43	SCN4A	R225W	LoF	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	D22214	-	-
44	SCN5A	R225W	LoF	Bezzina (2003) ⁴⁵	LQT3; BrS	Kapplinger (2009) ¹⁹ Kapplinger (2010) ¹²	R222W	-	-
45	SCN5A	R225P	GoF	Beckermann (2014) ⁴⁶	LQT3	Beckermann (2014) ⁴⁶	R222P	-	-
46	SCN5A	A226V	LoF	Tan (2016) ⁴⁷	BrS	Tan (2016) ⁴⁷	A223V	-	-
47	SCN1A	T226M	Mixed	Berecki (2019) ⁴⁸	EPI	Sadleir (2017) ⁴⁹	T226M	-	NC
48	SCN1A	I227S	LoF	Ohmori (2006) ³⁰	EPI	Nabbout (2003) ⁵⁰	1227\$	-	NC
49	SCN5A	V232I	STW	Barajaz-Martinez (2008) ⁵¹	BrS	Barajaz-Martinez (2008) ⁵¹ Kapplinger (2010) ¹² [compound missense with L1308F]	V229I	-	NC
50	SCN9A	1228M	GoF	Estacion (2011) ⁵²	SFN	Estacion (2011) ⁵² Faber (2012) ⁵³	1230M	8.58-e4	NC
					231-249 Cyto	pplasmic			
51	SCN2A	T236S	GoF	Thompson (2020) ⁵⁴	EPI	Nakamura (2013) ⁵⁵	T235S	3.98e-6	NC
52	SCN9A	1234T	GoF	Ahn (2010) ⁵⁶	IEM	Ahn (2010) ⁵⁶	1236T	-	-
53	SCN4A	S246L	STW	Tsujino (2003) ⁵⁷	CMS	Tsujino (2003) ⁵⁷	S243L	-	NC
54	SCN9A	S241T	GoF	Lampert (2006) ⁵⁸	IEM	Lampert (2006) ⁵⁸ Michiels (2005) ⁵⁹	S243T	-	-
55	SCN10A	S242T	GoF	Han (2018) ⁶⁰	PPN	Han (2018) ⁶⁰	J2+31	1.91-e4	-

56	SCN3A	L247P	LoF	Lamar (2017) ⁶¹	EPI	Lamar (2017) ⁶¹	L247P	-	-
57	SCN1A	D249E	LoF	Kluckova (2020) ¹⁰	EPI	Kluckova (2020) ¹⁰	D249E	-	NC
					250-269 S5	of D1			
58	SCN1A	S259R	LoF	Nissenkorn (2019) ²⁹	EPI	Nissenkorn (2019) ²⁹	S259R	-	-
59	SCN2A	A263V	GoF	Liao (2010a) ⁶²	EPI	Liao (2010a) ⁶² Schwarz (2016) ⁶³	A262V	-	-
60	SCN1A	L263V	GoF	Kahlig (2008) ⁶⁴	FHM	Kahlig (2008) ⁶⁴	L263V	-	-
61	SCN8A	G269R	LoF	Wengert (2019) ⁶⁵	NDD without epilepsy	Wengert (2019) ⁶⁵	G265R	-	-
62	SCN4A	Q270K	Mixed	Carle (2009) ⁶⁶	PMC	Carle (2009) ⁶⁶	02674	-	-
63	SCN5A	Q270K	Mixed	Calloe (2011) ⁶⁷	LQT3	Calloe (2011) ⁶⁷	- Q267K	-	-
					270-367 Extra	acellular			
64	SCN5A	L276Q	LoF	Glazer (2020)¹	BrS	Sommariva (2013) ⁶⁸ Yamagata (2017) ²¹	L273Q	-	-
65	SCN5A	R282H	LoF	Polezing (2006) ⁶⁹	BrS	Priori (2002) ⁷ Itoh (2005) ⁷⁰	Q279H	1.60e-5	NC
66	SCN5A	R282C	LoF	Glazer (2020) ¹	BrS	Andorin (2016) ⁷¹	Q279C	-	NC
67	SCN1A	T297I	LoF	Binini (2017) ⁷²	EPI	Binini (2017) ⁷²	T297I	-	NC
68	SCN5A	L325R	LoF	Keller (2005) ⁷³	BrS	Keller (2005) ⁷³	L335R	-	NC
69	SCN5A	C335R	LoF	Glazer (2020)¹	BrS	Van Malderen (2017) ⁷⁴	C345R	-	-
70	SCN5A	P336L	LoF	Cordeiro (2006) ⁷⁵	BrS	Cordeiro (2006) ⁷⁵	P346L	-	NC
71	SCN3A	K354Q	GoF	Estacion (2010) ⁷⁶	EPI	Holland (2008) ⁷⁷	K353Q	-	NC
72	SCN5A	E346D	Mixed	Glazer (2020)¹	BrS	Probst (2006) ⁷⁸	R356D	-	NC
73	SCN4A	P382T	LoF	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	P358T	-	-
74	SCN5A	D349N	LoF	Glazer (2020)¹	BrS	Savastano (2014) ⁷⁹	N359N	1.43e-5	NC
75	SCN5A	T353I	LoF	Pfahnl (2007) ⁸⁰ Zhang (2015) ⁸¹ Glazer (2020) ¹	BrS	Pfahnl (2007) ⁸⁰	T363I	-	-

76	SCN5A	D356N	LoF	Makiyama (2005) ³¹	BrS	Makiyama (2005) ³¹	D366N	4.02e-6	-		
					368-392 Pore	-forming					
77	SCN5A	R367C	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹² Amin (2011) ⁸²	R377C	1.07e-5	-		
78	SCN2A	R379H	LoF	Ben-Shalom (2017) ⁵	ASD	Ben-Shalom (2017) ⁵	027711	-	-		
79	SCN5A	R367H	LoF	Hong (2004) ⁸³	BrS	Hong (2004) ⁸³	- R377H	-	-		
80	SCN5A	R367L	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	R377L	-	-		
81	SCN5A	M369K	LoF	Glazer (2020)¹	BrS	Probst (2006) ⁷⁸ Probst (2007) ⁸⁴ Andorin (2016) ⁷¹	M379K	-	-		
82	SCN5A	W374G	LoF	Nakajima (2021) ⁸⁵	BrS	Kapplinger (2010) ¹² Nakajima (2021) ⁸⁵	W384G	-	-		
Rossenbacker (2004) ⁸⁶ Frustaci (2005) ⁸⁷ Peters (2016) ⁸⁸ BrS Rossenbacker (2004) ⁸⁶ Frustaci (2005) ⁸⁷ N386H 8.08e-6											
84 SCN8A N374K GoF Zaman (2019) ²² EPI Zaman (2019) ²² N386K - NC											
					393-399 Extra	acellular					
85	SCN1A	R393H	LoF	Ohmori (2006) ³⁰	EPI	Claes (2003) ⁸⁹	R393H	-	-		
86	SCN5A	G386R	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	G396R	-	-		
					400-420 S6	of D1					
87	SCN11A	I381T	GoF	Huang (2014) ⁹⁰	SFN	Huang (2014) ⁹⁰	V404T	7.96e-6	NC		
88	SCN5A	V396L	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	V406L	-	NC		
89	SCN10A	L388M	LoF	Gando (2020) ⁹¹	SUD	Gando (2020) ⁹¹	L414M	-	-		
90	SCN4A	N440K	GoF	Lossin (2012) ⁹²	PMC; PAM	Lossin (2012) ⁹²		-	-		
91	SCN5A	N406K	Mixed	Hu (2018) ⁹³ Kato (2014) ⁹⁴	LQT3	Hu (2018) ⁹³ Kato (2014) ⁹⁴	N416K	-	-		
92	SCN9A	N395K	GoF	Sheets (2007) ⁴¹	IEM	Drenth (2005) ⁴²		-	-		
93	SCN5A	N406S	LoF	Itoh (2007) ⁹⁵	BrS	Itoh (2007) ⁹⁵	N416S	-	-		
					421-768 Cyto	plasmic					

	1		1	T			1	1	
94	SCN2A	V423L	GoF	Wolff (2017) ⁹⁶	EPI	Wolff (2017) ⁹⁶	V421L	-	-
95	SCN4A	V445M	GoF	Wang (1999) ⁹⁷ Huang (2020) ⁹⁸	PMC	Liu (2015) ⁹⁹ Huang (2020) ⁹⁸		-	-
96	SCN5A	V411M	GoF	Horne (2011) ¹⁰⁰ Zhou (2015) ¹⁰¹	LQT3	Horne (2011) ¹⁰⁰ Zhou (2015) ¹⁰¹	V421M	-	-
97	SCN9A	V400M	GoF	Fischer (2009) ¹⁰²	IEM	Fischer (2009) ¹⁰²		-	-
98	SCN1A	Y426N	LoF	Ohmori (2006) ³⁰	EPI	Nabbout (2003) ⁵⁰	Y426N	-	-
99	SCN5A	R458C	GoF	Winkel (2015) ¹⁰³	LQT3	Winkel (2015) ¹⁰³	D481C	1.45e-4	NC
100	SCN5A	A551T	LoF	Chiang (2009) ¹⁰⁴ Juang (2014) ¹⁰⁵	BrS	Chiang (2009) ¹⁰⁴ Juang (2014) ¹⁰⁵	F598T	-	NC
101	SCN5A	H558R	STW	Ye (2003) ¹⁰⁶ Tester (2010) ¹⁰⁷ Veltmann (2016) ¹⁰⁸	LQT3; BrS	Ye (2003) ¹⁰⁶ Veltmann (2016) ¹⁰⁸ Juang (2014) ¹⁰⁵	R605R	0.22	NC
102	SCN5A	L567Q	LoF	Wan (2001) ¹⁰⁹	BrS	Priori (2000) ¹¹⁰	H614Q	-	NC
103	SCN5A	R569W	GoF	Kapplinger (2015) ⁸	LQT3	Kapplinger (2015) ⁸	E616W	8.03e-6	NC
104	SCN5A	A572D	STW	Tester (2010) ¹⁰⁷	LQT3	Tester (2010) ¹⁰⁷	N619D	5.18e-3	NC
105	SCN10A	L554P	GoF	Faber (2012) ¹¹¹	PPN	Faber (2012) ¹¹¹	R630P	8.60e-5	NC
106	SCN5A	N592K	LoF	Juang (2014) ¹⁰⁵	BrS	Juang (2014) ¹⁰⁵	H642K	3.23e-5	NC
107	SCN9A	D623N	GoF	Ahn (2013) ¹¹²	SFN	Faber (2012) ⁵³	D646N	-	-
108	SCN5A	L619F	GoF	Wehrens (2003) ¹¹³	LQT3	Wehrens (2003) ¹¹³	L668F	4.03e-5	NC
109	SCN5A	R620H	STW	Calloe (2013) ¹¹⁴ Glazer (2020) ¹	BrS	Calloe (2013) ¹¹⁴	P669H	3.14e-5	NC
110	SCN5A	R689H	LoF	Hong (2012) ¹¹⁵	BrS	Hong (2012) ¹¹⁵	К740Н	9.25e-5	NC
111	SCN10A	M650K	Mixed	Kist (2016) ¹¹⁶	IEM	Kist (2016) ¹¹⁶	Y753K	5.45e-4	NC
					769-787 S1	of D2			
112	SCN9A	1739V	GoF	Han (2012) ¹¹⁷	SFN	Faber (2012) ⁵³ Han (2012) ¹¹⁷	1774V	2.47e-3	-
113	SCN2A	T773I	GoF	Lauxmann (2018) ³³	EPI	Lauxmann (2018) ³³	T782I	-	-
114	SCN8A	T767I	GoF	Estacion (2014) ¹¹⁸ Pan (2020) ¹¹⁹	EPI	Estacion (2014) ¹¹⁸	17621	-	-

	I	I	1		l	T		I			
115	SCN5A	M734V	LoF	Glazer (2020)¹	BrS	Le Scouarnec (2015) ¹²⁰	M785V	-	NC		
116	SCN5A	A735E	LoF	Glazer (2020) ¹	BrS	Priori (2002) ⁷ Nakajima (2011) ¹²¹	A786E	-	-		
117	SCN5A	A735T	LoF	Glazer (2020)¹	BrS	García-Castro (2010) ¹²²	A786T	-	-		
118	SCN5A	A735V	LoF	De la Roche (2019) ¹²³	BrS	De la Roche (2019) ¹²³	A786V	4.01e-6	-		
					788-798 Extra	acellular					
119	SCN1A	E788K	LoF	Kluckova (2020) ¹⁰	EPI	Kluckova (2020) ¹⁰	E788K	-	-		
120	SCN1A	Y790C	LoF	Bechi (2015) ¹²⁴	EPI	Annesi (2003) ¹²⁵	Y790C	-	NC		
121	SCN5A	E746K	LoF	Glazer (2020)¹	BrS	Peters (2008) ¹²⁶	N797K	2.14e-5	NC		
					799-818 S2	of D2					
122	SCN5A	G752R	LoF	Glazer (2020)¹	BrS	Smits (2002) ¹²⁷ Probst (2006) ⁷⁸ Probst (2009) ¹²⁸ Hoogendijk (2010) ¹²⁹	G803R	4.03e-6	-		
123	SCN1A	T808S	Mixed	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹ [compound missense with N1011I]	T808S	-	-		
					819-832 Cyto	pplasmic					
124	SCN5A	D772N	Mixed	Glazer (2020)¹	LQT3; BrS	Kapplinger (2009) ¹⁹ Kapplinger (2010) ¹²	D823N	2.01e-5	-		
125	SCN5A	P773S	STW	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	P824S	-	NC		
					833-852 S3	of D2					
126	SCN5A	D785N	LoF	Glazer (2020)¹	BrS	Sayeed (2014) ¹³²	D836N	-	-		
127	SCN8A	G822R	LoF	Wengert (2019) ⁶⁵	NDD without epilepsy	Wengert (2019) ⁶⁵	G837R	-	NC		
					853-854 Extra	acellular					
855-872 S4 of D2											
128	SCN9A	L823R	Mixed	Lampert (2009) ¹³³	IEM	Lampert (2009) ¹³³	L858R	-	-		
129	SCN10A	R756W	LoF	Gando (2020) ⁹¹	SUD	Gando (2020) ⁹¹	R859W	5.68e-5	-		
130	SCN1A	R859H	LoF	Volkers (2011) ¹³⁴	EPI	Volkers (2011) ¹³⁴	R859H	7.99e-6	-		

	,			I		T			
131	SCN4A	R669H	LoF	Kuzmenkin (2002) ¹³⁵	НуроРР	Bulman (1999) ¹³⁶		8.05e-6	-
132	SCN1A	R859C	LoF	Bechi (2015) ¹²⁴	EPI	Depienne (2009) ¹³⁷	DOLOG	-	-
133	SCN5A	R808C	LoF	Glazer (2020) ¹	BrS	Kotta (2010) ¹³⁸	- R859C	8.07e-6	-
134	SCN9A	F826Y	GoF	Wu (2017) ¹³⁹	IEM	Wu (2017) ¹³⁹	F861Y	-	-
135	SCN4A	R672G	LoF	Jurkatt-Rott (2000) ¹⁴⁰ Kuzmenkin (2002) ¹³⁵	НуроРР	Jurkatt-Rott (2000) ¹⁴⁰	R862G	-	-
136	SCN4A	R672H	LoF	Jurkatt-Rott (2000) ¹⁴⁰ Kuzmenkin (2002) ¹³⁵	НуроРР	Jurkatt-Rott (2000) ¹⁴⁰	– R862H	1.21e-5	-
137	SCN5A	R811H	LoF	Calloe (2013) ¹¹⁴	BrS	Calloe (2013) ¹¹⁴		1.22e-5	-
138	SCN2A	R853Q	Mixed	Berecki (2018) ¹⁴¹ Mason (2019) ¹⁴²	EPI	Nakamura (2013) ⁵⁵ Epi (2013) ¹⁴³ Samanta (2015) ¹⁴⁴ Kobayashi (2016) ¹⁴⁵ Li (2016) ¹⁴⁶ Wolff (2017) ⁹⁶ Berecki (2018) ¹⁴¹	R862Q	-	
139	SCN3A	L855P	GoF	Zaman (2020) ¹⁴⁷	Fetal Akinesia	Zaman (2020) ¹⁴⁷	L863P	-	NC
140	SCN5A	L812Q	LoF	Wang (2015) ¹⁴⁸	BrS	Wang (2015) ¹⁴⁸	L863Q	-	-
141	SCN1A	R865G	GoF	Volkers (2011) ¹³⁴	EPI	Volkers (2011) ¹³⁴	R865G	-	-
142	SCN4A	R675Q	Mixed	Wu (2014) ¹⁴⁹	NormoPP	Wu (2014) ¹⁴⁹		8.19e-6	-
143	SCN5A	R814Q	Mixed	Glazer (2020) ¹	LQT3; BrS	Frigo (2007) ¹⁵⁰ Sommariva (2013) ⁶⁸ Itoh (2016) ¹⁵¹ Yamagata (2017) ²¹	R865Q	2.51e-5	-
144	SCN5A	K817E	LoF	Kinoshita (2016) ¹⁵²	BrS	Kinoshita (2016) ¹⁵²	K868E	-	-
ı					873-888 Cyto	pplasmic	•	•	
145	SCN1A	T875M	LoF	Lossin (2002) ¹⁵³	EPI	Escayg (2000) ¹⁵⁴	T875M	-	-
146	SCN3A	1875T	GoF	Zaman (2018) ¹⁵⁵ Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2018) ¹⁵⁵ Miyatake (2018) ¹⁵⁶ Zaman (2020) ¹⁴⁷	10027	-	-
147	SCN9A	1848T	GoF	Cummins (2004) ¹⁵⁷ Namer (2015) ¹⁵⁸ Thiele (2011) ¹⁵⁹	IEM	Yang (2004) ¹⁶⁰ Drenth (2005) ⁴² Namer (2015) ¹⁵⁸	- I883T	-	-
148	SCN11A	G699R	GoF	Han (2015) ¹⁶¹	SFN	Han (2015) ¹⁶¹	G888R	1.63e-4	-
1				<u>I</u>	889-907 S5	of D2	ı		

149	SCN5A	L839P	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	L890P	-	-
150	SCN9A	G856D	GoF	Hoeijmakers (2012) ¹⁶²	IEM; SFN	Hoeijmakers (2012) ¹⁶²	G891D	-	-
151	SCN9A	G856R	GoF	Tanaka (2017) ¹⁶³	IEM	Tanaka (2017) ¹⁶³	G891R	-	-
152	SCN9A	L858F	GoF	Han (2006) ¹⁶⁴ Han (2007) ¹⁶⁵ Cregg (2014) ¹⁶⁶	IEM	Han (2006) ¹⁶⁴ Drenth (2005) ⁴²	L893F	-	-
153	SCN9A	L858H	GoF	Cummins (2004) ¹⁵⁷ Estacion (2010) ¹⁶⁷ Thiele (2011) ¹⁵⁹ Vasylyev (2014) ¹⁶⁸	IEM	Yang (2004) ¹⁶⁰	L893H	-	-
154	SCN4A	T704M	GoF	Bendahhou (1999) ¹⁶⁹	HyperPP; PMC	Huang (2019) ¹⁷⁰	T894M	-	-
155	SCN9A	A863P	GoF	Harty (2006) ¹⁷¹	IEM	Harty (2006) ¹⁷¹	A898P	-	NC
156	SCN1A	F902C	LoF	Rhodes (2004) ¹⁷²	EPI	Ohmori (2002) ¹⁷³ - reported as F891C	F902C	-	-
157	SCN5A	F851L	LoF	Glazer (2020)¹	BrS	Priori (2002) ⁷	F902L	7.07e-6	-
158	SCN9A	V872G	GoF	Choi (2009) ¹⁷⁴	IEM	Choi (2009) ¹⁷⁴	V907G	-	-
					908-936 Extra	acellular			
159	SCN2A	G899S	LoF	Wolff (2017) ⁹⁶	EPI	Wolff (2017) ⁹⁶	G908S	-	-
160	SCN1A	М909К	LoF	Kluckova (2020) ¹⁰	EPI	Kluckova (2020) ¹⁰	M909K	-	NC
161	SCN9A	Q875E	GoF	Stadler (2015) ¹⁷⁵	IEM	Skeik 2012 ¹⁷⁶	Q910E	-	-
162	SCN10A	R814H	GoF	Savio-Galimberti (2014) ²⁸	AF	Savio-Galimberti (2014) ²⁸	K917H	3.08e-4	NC
163	SCN2A	K908E	GoF	Lauxmann (2018) ³³	EPI	Wolff (2017) ⁹⁶ Lauxmann (2018) ³³	K917E	-	NC
164	SCN9A	R896Q	LoF	Cox (2010) ¹⁷⁷	CIP	Cox (2010) ¹⁷⁷	R931Q	1.06e-5	NC
165	SCN5A	W879R	LoF	Glazer (2020)¹	BrS	Glazer (2020) ¹	W932R	-	-
					937-957 Pore	-forming			
166	SCN1A	H939Q	LoF	Ohmori (2006) ³⁰	EPI	Ohmori (2006)³º	H939Q	-	-
167	SCN5A	1890T	LoF	Tarradas (2013) ¹⁷⁸	BrS	Tarradas (2013) ¹⁷⁸	I943T	-	NC
168	SCN5A	F892I	LoF	Glazer (2020)¹	BrS	Savastano (2014) ¹⁷⁹	F945L	-	-

169	SCN1A	R946C	LoF	Volkers (2011) ¹³⁴	EPI	Volkers (2011) ¹³⁴		-	-
170	SCN2A	R937C	LoF	Ben-Shalom (2017) ⁵ Begemann (2019) ¹⁸⁰	ASD	Ben-Shalom (2017) ⁵ Begemann (2019) ¹⁸⁰ Rauch (2012) ¹⁸¹	R946C	-	-
171	SCN1A	R946H	LoF	Liao (2010b) ¹⁸² Volkers (2011) ¹³⁴	EPI	Liao (2010b) ¹⁸² Volkers (2011) ¹³⁴	Postcu	-	-
172	SCN2A	R937H	LoF	Ben-Shalom (2017) ⁵	ASD	Ben-Shalom (2017) ⁵	- R946H	-	-
173	SCN5A	E901K	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	E954K	-	-
174	SCN1A	M956T	LoF	Bechi (2015) ¹²⁴	EPI	Bechi (2015) ¹²⁴	M956T	-	-
					958-970 Extr	acellular			
175	SCN1A	C959R	LoF	Ohmori (2006) ³⁰	EPI	Ohmori (2006) ³⁰	C959R	-	-
176	SCN5A	S910L	LoF	Pambrun (2014) ¹⁸³	BrS	Pambrun (2014) ¹⁸³	A963L	3.99e-6	NC
177	SCN10A	L867F	LoF	Gando (2020) ⁹¹	SUD	Gando (2020) ⁹¹	L969F	2.85e-5	NC
					971-991 S6	of D2			
178	SCN1A	G979R	LoF	Sugawara (2003) ¹⁸⁴ Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹		-	-
179	SCN8A	G964R	LoF	Wagnon (2017) ¹⁸⁵	NDD without epilepsy	Wagnon (2017) ¹⁸⁵	- G979R	-	-
180	SCN5A	N927S	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	N980S	-	NC
181	SCN5A	L928P	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	L981P	-	-
182	SCN1A	V983A	LoF	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹	V983A	-	-
183	SCN1A	N985I	LoF	Sugawara (2003) ¹⁸⁴	EPI	Fujiwara (2003) ¹³¹	N985I	-	-
184	SCN1A	L986F	LoF	Lossin (2003) ¹⁸⁶ Thompson (2012) ¹⁸⁷	EPI	Claes (2001) ¹⁸⁸	L986F	-	-
185	SCN4A	L796V	GoF	Elia (2020) ¹⁸⁹	PMC	Elia (2020) ¹⁸⁹	L986V	-	-
					992-1219 Cyt	oplasmic			
186	SCN5A	S941N	GoF	Ruan (2007) ¹⁹⁰	LQT3	Schwarz (2000) ¹⁹¹	S994N	-	-
187	SCN11A	N816K	GoF	Huang (2019) ¹⁹²	FEP	Huang (2019) ¹⁹²	A997K	3.99e-6	NC

188	SCN2A	E999K	GoF	Miao (2020) ¹⁹³ Thompson (2020) ⁵⁴	EPI	Nakamura (2013) ⁵⁵ Miao (2020) ¹⁹³	E1008K	-	NC
189	SCN1A	N1011I	LoF	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹ [compound missense with	N1011I	-	NC
190	SCN5A	R965C	LoF	Hsueh (2009) ¹⁹⁴	BrS	T808S] Hsueh (2009) ¹⁹⁴	R1018C	6.49e-5	-
191	SCN5A	P1014S	STW	Glazer (2020)¹	BrS	Glazer (2020)¹	H1065S	-	NC
192	SCN5A	R1023H	LoF	Frustaci (2005) ⁸⁷	BrS	Frustaci (2005) ⁸⁷	L1073H	2.50-e4	NC
193	SCN10A	P1102S	GoF	Gando (2020) ⁹¹	SUD	Gando (2020) ⁹¹	P1167S	4.02e-6	NC
194	SCN5A	S1103Y	GoF	Splawski (2002) ¹⁹⁵	LQT3	Splawski (2002) ¹⁹⁵ - reported as S1102Y Plant (2006) ¹⁹⁶	-	7.69e-3	NC
195	SCN1A	T1174S	Mixed	Cestele (2013) ¹⁹⁷	EPI	Cestele (2013) ¹⁹⁷	T1174S	1.71e-3	NC
196	SCN9A	W1150R	GoF	Estacion (2009) ¹⁹⁸	IEM	Drenth (2005) ⁴² Estacion (2009) ¹⁹⁸	Q1187R	0.88	NC
197	SCN5A	P1177L	GoF	Winkel (2012) ¹⁹⁹	LQT3	Winkel (2012) ¹⁹⁹	K1190L	-	NC
198	SCN1A	W1204R	Mixed	Lossin (2002) ¹⁵³ Bechi (2015) ¹²⁴	EPI	Escayg (2001) ²⁰⁰ Marini (2007) ²⁰¹	W1204R	-	NC
199	SCN5A	R1193Q	LoF	Wang (2004) ²⁰² Huang (2006) ²⁰³ Abdelsayed (2015) ²⁰⁴ Peters (2016) ⁸⁸ Abe (2018) ²⁰⁵ Li (2019) ²⁰⁶	LQT3; BrS	Takahata (2003) ²⁰⁷ Wang (2004) ²⁰² Huang (2006) ²⁰³ Li (2019) ²⁰⁶	N1206Q	5.18-e3	NC
					1220-1237 S	1 of D3			
200	SCN2A	E1211K	Mixed	Ogiwara (2009) ²⁰⁸	EPI	Ogiwara (2009) ²⁰⁸	E1221K	-	-
201	SCN5A	S1218I	LoF	Calloe (2013) ¹¹⁴	BrS	Calloe (2013) ¹¹⁴	S1231I	-	-
					1238-1250 Ext	racellular			
202	SCN5A	E1225K	LoF	Glazer (2020)¹	LQT3; BrS	Schulze-Bahr (2003) ²⁰⁹ Tester (2005) ⁶ Crotti (2012) ²¹⁰ Sommariva (2013) ⁶⁸ Andorin (2016) ⁷¹ Yamagata (2017) ²¹ Van Malderen (2017) ⁷⁴	E1238K	4.01e-6	-
203	SCN5A	R1232W	LoF	Baroudi (2002) ²¹¹ Makita (2008) ²¹²	BrS	Chen (1998) ²¹³ Baroudi (2002) ²¹¹	R1245W	-	NC
					1251-1269 S	2 of D3			

	ı		I								
204	SCN4A	D1069N	LoF/Mixed	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	D1256N	1.20e-5	-		
205	SCN5A	D1243N	LoF/Mixed	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	5123011	1.45e-4	-		
206	SCN1A	M1267I	LoF	Nissenkorn (2019) ²⁹	EPI	Nissenkorn (2019) ²⁹	M1267I	-	-		
				1270-12	283 Cytoplasmi	c			-		
207	SCN1A	A1273V	Mixed	Peters (2016) ²¹⁴	EPI	Peters (2016) ²¹⁴	A1273V	-	-		
208	SCN5A	G1262S	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	G1275S	2.83e-5	-		
	1284-1302 S3 of D3										
209	SCN3A	V1280I	STW	Zaman (2020) ¹⁴⁷	EPI	Zaman (2020) ¹⁴⁷	V1292I	1.2e-5	NC		
210	SCN5A	V1281F	Mixed	Glazer (2020)¹	BrS	Hermida (2013) ²¹⁵	V1294F	-	-		
					1303-1310 Ext	racellular					
211	SCN5A	A1294G	LoF	Zaytseva (2019) ²¹⁶	BrS	Zaytseva (2019) ²¹⁶	S1307G	2.86e-5	NC		
212	SCN5A	E1295K	GoF	Abriel (2001) ²¹⁷	LQT3	Abriel (2001) ²¹⁷	E1308K	4.02e-6	NC		
					1311-1329 S	4 of D3					
213	SCN9A	R1279P	GoF	Huang (2014) ²¹⁸	PPN	Huang (2014) ²¹⁸	R1316P	-	-		
214	SCN5A	T1304M	GoF	Wang (2007) ³⁶	LQT3	Wang (2007) ³⁶ Kapplinger (2009) ¹⁹ Olesen (2012) ²¹⁹	T1317M	1.65e-4	-		
215	SCN5A	L1308F	STW	Barajaz-Martinez (2008) ⁵¹	BrS	Barajaz-Martinez (2008) ⁵¹ Kapplinger (2010) ¹² [compound missense with V232I]	L1321F	4.71e-4	NC		
216	SCN2A	R1312T	LoF	Lossin (2012) ²²⁰	EPI	Shi (2009) ²²¹	R1322T	-	-		
217	SCN11A	L1158P	GoF	Huang (2014) ⁹⁰	SFN	Huang (2014) ⁹⁰	L1327P	4.71e-4	-		
218	SCN2A	R1319Q	LoF	Misra (2008) ²²²	EPI	Berkovic (2004) ²²³ Wolff (2017) ⁹⁶	R1329Q	-	NC		
1330-1346 Cytoplasmic											
219	SCN5A	G1319V	LoF	Casini (2007) ²²⁴	BrS	Casini (2007) ²²⁴	G1332V	4.08e-5	-		
220	SCN9A	V1298F	GoF	Jarecki (2008) ²²⁵ Cheng (2010) ²²⁶ Estacion (2010) ¹⁶⁷	PEPD	Fertleman (2006) ²²⁷	V1335F	-	-		

221 SCN9A V1299F GoF Jarecki (2008) ²²⁵ Thiele (2011) ¹⁵⁹ PEPD Fertleman (2006) ²²⁷ V1336F Wang (1996) ²²⁸ Tian (2004) ²²⁹ Glazer (2020) ¹ Li (2020) ²³⁰ Uang (1995) ²³¹ N1338S	-	-
222 SCN5A N1325S GoF Tian (2004) ²²⁹ Glazer (2020) ¹ LQT3 Wang (1995) ²³¹ N1338S		
		NC
223 SCN2A L1330F LoF Misra (2008) ²²² EPI Heron (2002) ²³² L1340F	-	-
224 SCN5A V1328M GoF Turker (2016) ²³³ BrS Turker (2016) ²³³ L1341M	-	NC
225 SCN5A A1330P GoF Wedekind (2001) ²³⁴ Berecki (2006) ²³⁵ LQT3 Wedekind (2001) ²³⁴ A1343P	-	-
226 SCN4A A1156T GoF Palmio (2017) ²³⁶ HyperPP; PMC McClatchey (1992) ²³⁷ A1343T	5.33e-5	-
227 SCN5A A1330T GoF Smits (2005b) ²³⁸ LQT3 Smits (2005b) ²³⁸	-	-
228 SCN3A P1333L GoF Zaman (2018) ¹⁵⁵ EPI Zaman (2018) ¹⁵⁵ Zaman (2020) ¹⁴⁷	-	-
229 SCN4A P1158L GoF Desaphy (2016) ²³⁹ PAM Desaphy (2016) ²³⁹	-	-
230 SCN5A P1332L GoF Ruan (2007) ¹⁹⁰ LQT3 Ruan (2007) ¹⁹⁰ Schulze-Bahr (2004) ²⁴⁰	-	-
231 SCN9A P1308L GoF Cheng (2010) ²²⁶ IEM Cheng (2010) ²²⁶	-	-
232 <i>SCN4A</i> P1158S Mixed Sugiara (2003) ²⁴¹ Webb (2008) ²⁴² HypoPP Sugiara (2003) ²⁴¹ P1345S	-	-
233 SCN5A S1333Y GoF Huang (2009) ²⁴³ LQT3 Huang (2009) ²⁴³	-	NC
234 SCN2A S1336Y GoF Thompson (2020) ⁵⁴ EPI Nakamura (2013) ⁵⁵	-	NC
1347-1366 S5 of D3		
235 SCN8A I1327V GoF Barker (2016) ²⁴⁴ EPI Vaher (2014) ²⁴⁵ Singh (2015) ²⁴⁶ I1347V	-	-
236 <i>SCN2A</i> N1339D GoF Miao (2020) ¹⁹³ EPI Miao (2020) ¹⁹³ N1349D	-	-
237 SCN8A L1331V GoF Patel (2016) ²⁴⁷ EPI Carvill (2013) ²⁴⁸ - reported as L1290V L1351V	-	-
238 SCN2A L1342P Mixed Begemann (2019) ¹⁸⁰ EPI Hackenberg (2014) ²⁴⁹ Matalon (2014) ²⁵⁰ Dimassi (2016) ²⁵¹ L1352P Wolff (2017) ⁹⁶ Begemann (2019) ¹⁸⁰	-	-
239 SCN9A V1316A GoF Wu (2013) ²⁵² Estacion (2013) ²⁵³ IEM Huang (2016) ²⁵⁴ Estacion (2013) ²⁵³ V1353A	-	-
240 SCN11A V1184A GoF Leipold (2015) ²⁵⁵ PPN Leipold (2015) ²⁵⁵	-	-

241	SCN5A	V1340I	LoF	Samani (2009) ²⁵⁶	BrS	Samani (2009) ²⁵⁶	V1353I	4.60e-5	-
242	SCN1A	V1353L	LoF	Lossin (2003) ¹⁸⁶	EPI	Wallace (2001) ²⁵⁷	V1353L	-	-
243	SCN5A	F1344S	LoF	Keller (2006) ²⁵⁸	BrS	Keller (2006) ²⁵⁸	F1357S	-	-
244	SCN5A	W1345C	LoF	Glazer (2020)¹	BrS	Lee (2010) ²⁵⁹	W1358C	-	-
245	SCN5A	L1346P	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	L1359P	-	-
246	SCN1A	V1366I	LoF	Bechi (2015) ¹²⁴	EPI	Osaka (2007) ²⁶⁰	V1366I	-	-
247	SCN5A	V1353M	STW	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	V1366M	2.78e-5	NC
					1367-1418 Ext	racellular			
248	SCN10A	A1304T	GoF	Faber (2012) ¹¹¹	PPN	Faber (2012) ¹¹¹	A1370T	4.60e-5	NC
249	SCN8A	T1360N	LoF	Wengert (2019) ⁶⁵	NDD without epilepsy	Wengert (2019) ⁶⁵	T1380N	-	-
250	SCN5A	V1378M	LoF	Moreau (2012) ¹⁸	BrS	Moreau (2012) ¹⁸	V1390M	3.99e-6	NC
251	SCN5A	N1380K	LoF	Glazer (2020) ¹	BrS	Rudnik-Schöneborn (2011) ²⁶¹	N1392K	-	-
252	SCN5A	S1382I	LoF	Glazer (2020) ¹	BrS	Probst (2009) ¹²⁸	T1394I	-	NC
253	SCN4A	C1209F	LoF	Zaharieva (2016) ¹⁴	CMS	Zaharieva (2016) ¹⁴	C1396F	-	-
254	SCN2A	C1386R	LoF	Ben-Shalom (2017) ⁵	ASD	Ben-Shalom (2017) ⁵	C1396R	-	-
255	SCN5A	V1405L	LoF	Glazer (2020)¹	BrS	Amin (2011) ⁸²	V1418L	-	-
256	SCN5A	V1405M	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹² Zumhagen (2016) ²⁶² Yamagata (2017) ²¹	V1418M	-	-
					1419-1440 Por	e-forming			
257	SCN5A	G1406E	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	G1419E	-	NC
258	SCN5A	G1406R	LoF	Tan (2006) ²⁶³	BrS	Kyndt (2001) ²⁶⁴	G1419R	-	NC
259	SCN1A	G1421W	LoF	Kim (2018) ²⁶⁵	EPI	Kim (2018) ²⁶⁵	G1421W	-	NC
260	SCN2A	T1420M	LoF	Ben-Shalom (2017) ⁵	ASD	Ben-Shalom (2017)⁵	T1430M	-	-

-										
-										
-										
-										
-										
NC										
-										
-										
1480-1542 Cytoplasmic										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										
-										

	1	1	ı	T			T	ı			
280	SCN1A	Q1489K	GoF	Kahlig (2008) ⁶⁴ Cestèle (2008) ²⁸⁵	FHM	Kahlig (2008) ⁶⁴ Cestèle (2008) ²⁸⁵	Q1489K	-	-		
281	SCN5A	Q1476R	GoF	Moreau (2013) ²⁸⁶	LQT3	Moreau (2013) ²⁸⁶	Q1489R	-	-		
282	SCN4A	G1306E	GoF	Farinato (2019) ²⁷²	PAM	Lerche (1993) ²⁸⁷	G1494E	-	-		
283	SCN8A	G1475R	GoF	Liu (2019) ²⁸⁸ Zaman (2019) ²²	EPI	Parrini (2017) ²⁸⁹ Wang (2017) ²⁹⁰ Xiao (2018) ²⁹¹ Gardella (2018) ²⁹² Liu (2019) ²⁸⁸ Zaman (2019) ²²	G1494R	-	-		
284	SCN1A	I1498M	LoF	Barbieri (2019) ²⁸³	FHM	Weller (2014) ²⁹³	I1498M	-	-		
285	SCN4A	I1310N	GoF	Farinato (2019) ²⁷²	PMC	Farinato (2019) ²⁷²	I1498N	-	-		
286	SCN9A	I1461T	GoF	Fertleman (2006) ²²⁷	PEPD	Fertleman (2006) ²²⁷	I1498T	-	-		
287	SCN5A	F1486L	GoF	Wang (2007) ³⁶	LQT3	Wang (2007) ³⁶	54.4001	-	-		
288	SCN1A	F1499L	GoF	Barbieri (2019) ²⁸³	FHM	Vahedi (2009) ²⁸⁴	- F1499L	-	-		
289	SCN1A	M1500V	GoF	Barbieri (2019) ²⁸³	FHM	Domitrz (2016) ²⁹⁴	M1500V	-	-		
290	SCN4A	T1313A	GoF	Bouhours (2004) ²⁹⁵	PMC	Bouhours (2004) ²⁹⁵	T1501A	-	-		
291	SCN4A	T1313M	GoF	Farinato (2019) ²⁷²	PMC	Farinato (2019) ²⁷²	T1501M	4.00e-6	-		
292	SCN9A	T1464I	GoF	Fertleman (2006) ²²⁷ Thiele (2011) ¹⁵⁹	PEPD	Fertleman (2006) ²²⁷	T1501I	-	-		
293	SCN3A	T1486I	GoF	Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2020) ¹⁴⁷	- 115011	-	-		
294	SCN8A	A1491V	GoF	Zaman (2019) ²²	EPI	Zaman (2019) ²²	A1510V	-	-		
295	SCN5A	P1506S	LoF	Saber (2015) ²⁹⁶	BrS	Saber (2015) ²⁹⁶	P1519S	-	-		
296	SCN5A	R1512W	LoF	Deschenes (2000) ²⁶⁹ Zheng (2016) ²⁹⁷	BrS	Deschenes (2000) ²⁶⁹ Smits (2002) ¹²⁷ Zheng (2016) ²⁹⁷	R1525W	5.57e-5	-		
297	SCN1A	R1525Q	LoF	Binini (2017) ⁷²	EPI	Binini (2017) ⁷²	R1525Q	3.99e-6	-		
	1543-1560 S1 of D4										
298	SCN5A	N1541D	LoF	Dharmawan (2019) ²⁹⁸	BrS	Dharmawan (2019) ²⁹⁸	N1554D	-	-		
299	SCN4A	N1366S	GoF	Ke (2017) ²⁹⁹	PMC	Ke (2017) ²⁹⁹	N1554S	-	-		
				· · · · · · · · · · · · · · · · · · ·							

	1561-1571 Extracellular											
	1572-1590 S2 of D4											
300	SCN2A	L1563V	Mixed	Misra (2008) ²²² Berecki (2018) ¹⁴¹ Begemann (2019) ¹⁸⁰	EPI	Lewis (1996) ³⁰⁰ Heron (2002) ²³²	L1573V	-	-			
301	SCN9A	W1538R	GoF	Cregg (2013) ³⁰¹	IEM	Cregg (2013) ³⁰¹	R1575R	2.02e-3	NC			
302	SCN1A	R1575C	GoF	Ohmori (2008) ³⁰²	EPI	Ohmori (2008) ³⁰²	R1575C	7.18e-5	NC			
303	SCN2A	I1571T	GoF	Miao (2020) ¹⁹³	EPI	Miao (2020) ¹⁹³	I1581T	-	NC			
304	SCN10A	V1518I	LoF	Gando (2020) ⁹¹	SUD	Gando (2020) ⁹¹	L1583I	7.78e-5	NC			
305	SCN1A	E1587K	LoF	Kluckova (2020) ¹⁰	EPI	Kluckova (2020) ¹⁰	F1597V	-	-			
306	306 SCN5A E1574K LoF Glazer (2020) ¹ BrS Kapplinger (2010) ¹²											
	1591-1602 Cytoplasmic											
307	SCN1A	R1596C	LoF	Kluckova (2020) ¹⁰	EPI	Harkin (2007) ³⁰³ Depienne (2009) ¹³⁷ Kim (2014) ³⁰⁴	- R1596C	-	-			
308	SCN5A	R1583C	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	N1330C	8.03e-6	-			
309	SCN2A	Y1589C	GoF	Lauxmann (2013) ³⁰⁵	EPI	Lauxmann (2013) ³⁰⁵	Y1599C	-	-			
					1603-1620 S	3 of D4						
310	SCN5A	I1593M	STW	Kapplinger (2015) ⁸	LQT3	Kapplinger (2015) ⁸	I1606M	4.02e-6	NC			
311	SCN2A	F1597L	GoF	Wolff (2017) ⁹⁶	EPI	Wolff (2017) ⁹⁶	F1607L	-	-			
312	SCN5A	D1595N	LoF	Wang (2002) ³⁰⁶	PCCD; BrS	Wang (2002) ³⁰⁶	D1608N	-	-			
313	SCN1A	V1611F	GoF	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹	V1611F	4.03e-6	-			
					1621-1633 Ext	racellular						
314	SCN5A	S1609L	GoF	Winkel (2015) ¹⁰³	LQT3	Winkel (2015) ¹⁰³	A1622L	-	NC			
315	SCN1A	L1624P	GoF	Fan (2016) ³⁰⁷	FHM	Fan (2016) ³⁰⁷	L1624P	-	NC			
316	SCN4A	V1442E	LoF	Tsujino (2003) ⁵⁷	CMS	Tsujino (2003) ⁵⁷	V1630E	-	NC			

		1	ı	1	ı		1		
317	SCN1A	P1632S	LoF	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹	P1632S	-	-
318	SCN2A	P1622S	LoF	Wolff (2017) ⁹⁶	EPI	Wolff (2017) ⁹⁶	P10323	-	-
319	SCN5A	T1620K	Mixed	Surber (2008) ³⁰⁸	LQT3	Surber (2008) ³⁰⁸	T1633K	-	-
320	SCN2A	T1623N	GoF	Thompson (2020) ⁵⁴	EPI	Nakamura (2013) ⁵⁵	T1633N	-	-
321	SCN5A	T1620M	LoF	Baroudi (2002) ²¹¹ Wang (2000) ³⁰⁹ Makita (2008) ²¹²	BrS	Chen (1998) ²¹³ Baroudi (2002) ²¹¹	T1633M	3.99e-6	-
					1634-1650 S	4 of D4			
322	SCN3A	R1621G	GoF	Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2020) ¹⁴⁷	R1636G	-	-
323	SCN3A	R1621Q	GoF	Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2020) ¹⁴⁷		3.98e-6	-
324	SCN5A	R1623Q	GoF	Kambouris (1998) ³¹⁰ Tsurugi (2009) ³¹¹ Li (2020) ²³⁰	LQT3	Kambouris (2000) ³¹² Miura (2003) ³¹³	R1636Q	-	-
325	SCN8A	R1617Q	GoF	Wagnon (2015) ³¹⁴	EPI	Ohba (2014) ³¹⁵ Kong (2015) ³¹⁶ Larsen (2015) ³¹⁷		-	-
326	SCN4A	R1451C	LoF	Poulin (2018) ³¹⁸	НуроРР	Poulin (2018) ³¹⁸	R1639C	1.21e-5	-
327	SCN5A	R1626P	GoF	Ruan (2007) ¹⁹⁰	LQT3	Ruan (2007) ¹⁹⁰	R1639P	-	-
328	SCN4A	R1451L	LoF	Poulin (2018) ³¹⁸	PMC	Poulin (2018) ³¹⁸	245201	4.04e-6	-
329	SCN8A	R1620L	LoF	Liu (2019) ²⁸⁸	ASD	Liu (2019) ²⁸⁸	R1639L	-	-
330	SCN8A	A1622D	GoF	Liu (2019) ²⁸⁸	ASD	Liu (2019) ²⁸⁸	A1641D	-	-
331	SCN5A	R1629Q	LoF	Zeng (2013) ³¹⁹	BrS	Zeng (2013) ³¹⁹	R1642Q	1.19e-5	-
332	SCN4A	R1454W	LoF	Habbout (2016) ³²⁰	CMS	Habbout (2016) ³²⁰	R1642W	1.61e-5	-
333	SCN4A	I1455T	Mixed	Bednarz (2016) ³²¹	PMC	Bednarz (2016) ³²¹	I1643T	1.20e-5	-
334	SCN5A	G1631D	GoF	Wang (2008) ³²²	LQT3	Wang (2008) ³²²	G1644D	-	-
335	SCN9A	G1607R	GoF	Choi (2011) ³²³	PEPD	Choi (2011) ³²³	G1644R	-	-
336	SCN5A	R1632C	LoF	Nakajima (2015) ³²⁴ Dharmawan (2019) ²⁹⁸	BrS	Nakajima (2015) ³²⁴ García-Molina (2016) ³²⁵	R1645C	3.98e-6	-
337	SCN4A	R1457H	LoF	Arnold (2015) ³²⁶	CMS	Arnold (2015) ³²⁶	R1645H	4.01e-6	-

338	SCN5A	R1632H	Mixed	Benson (2003) ³²⁷ Glazer (2020) ¹	BrS	Robyns (2014) ³²⁸		7.96e-6	-
339	SCN1A	R1648C	Mixed	Rhodes (2004) ¹⁷² Thompson (2012) ¹⁸⁷	EPI	Ohmori (2002) ¹⁷³ – reported as R1638C	R1648C	-	-
340	SCN1A	R1648H	Mixed	Lossin (2002) ¹⁵³ Vanoye (2006) ³²⁹ Kahlig (2010) ³³⁰	EPI	Escayg (2000) ¹⁵⁴	R1648H	-	-
341	SCN4A	R1460Q	Mixed	Elia (2019) ³³¹	CMS	Elia (2019) ³³¹	R1648Q	8.01e-6	-
342	SCN4A	R1460W	Mixed	Elia (2019) ³³¹	CMS	Elia (2019) ³³¹	R1648W	2.13e-5	-
343	SCN9A	L1612P	GoF	Suter (2015) ³³²	PEPD	Suter (2015) ³³²	L1649P	-	-
344	SCN1A	L1649Q	Mixed	Kahlig (2008) ⁶⁴ Cestèle (2013) ³³³	FHM	Kahlig (2008) ⁶⁴ Cestèle (2013) ³³³	L1649Q	-	-
					1651-1669 Cyt	coplasmic			
345	SCN10A	R1588Q	LoF	Jabbari (2015) ¹³	AF	Jabbari (2015) ¹³	K1651Q	1.19e-5	NC
346	SCN5A	G1642E	LoF	Glazer (2020) ¹	BrS	Kapplinger (2010) ¹²	G1655E	-	-
347	SCN1A	I1656M	LoF	Lossin (2003) ¹⁸⁶ Liu (2013) ³³⁴	EPI	Wallace (2001) ²⁵⁷	I1656M	-	-
348	SCN1A	R1657C	LoF	Lossin (2003) ¹⁸⁶	EPI	Lossin (2003) ¹⁸⁶		-	-
349	SCN5A	R1644C	LoF	Frustaci (2005) ⁸⁷	BrS	Frustaci (2005) ⁸⁷	R1657C	3.98e-6	-
350	SCN8A	R1638C	LoF	Wengert (2019) ⁶⁵	NDD without epilepsy	Wengert (2019) ⁶⁵		-	-
351	SCN5A	R1644H	GoF	Wang (1996) ²²⁸ Nieto-Marin (2019) ³³⁵	LQT3	Nieto-Marin (2019) ³³⁵	R1657H	-	-
352	SCN3A	F1646C	GoF	Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2020) ¹⁴⁷	F1661C	-	-
353	SCN1A	F1661L	GoF	Barbieri (2019) ²⁸³	FHM	Weller (2014) ²⁹³	F1661L	-	-
354	SCN1A	F1661S	Mixed	Rhodes (2004) ¹⁷² Thompson (2012) ¹⁸⁷	EPI	Claes (2003) ⁸⁹	F1661S	-	-
355	SCN4A	F1473S	GoF	Fleischhauer (1998) ³³⁶	PMC	Fleischhauer (1998) ³³⁶	L10012	-	-
356	SCN1A	M1664K	LoF	Bechi (2015) ¹²⁴	EPI	Depienne (2010) ³³⁷	NACC 111	-	-
357	SCN9A	M1627K	GoF	Fertleman (2006) ²²⁷ Dib-Hajj (2008) ³³⁸ Thiele (2011) ¹⁵⁹	PEPD	Fertleman (2006) ²²⁷	M1664K	-	-
358	SCN5A	M1652R	GoF	Ruan (2007) ¹⁹⁰ Li (2020) ²³⁰	LQT3	Ruan (2007) ¹⁹⁰	M1665R	-	-
	•								

359	SCN2A	P1658S	LoF	Miao (2020) ¹⁹³	EPI	Miao (2020) ¹⁹³	P1668S		-				
360	SCN5A	A1656D	GoF	Kim (2019) ³³⁹	LQT3	Kim (2019) ³³⁹	A1669D	-	-				
361	SCN9A	A1632E	GoF	Estacion (2008) ³⁴⁰ Rühlmann (2020) ³⁴¹	IEM; PEPD	Estacion (2008) ³⁴⁰	A1669E	-	-				
362	SCN9A	A1632G	GoF	Yang (2016) ³⁴²	IEM	Yang (2016) ³⁴²	A1669G	-	-				
363	SCN9A	A1632T	GoF	Eberhardt (2014) ³⁴³	IEM	Eberhardt (2014) ³⁴³	A1669T	-	NC				
1670-1687 S5 of D4													
364	364 SCN1A L1670W Mixed Bertelli (2018) ³⁴⁴ Dhifallah (2018) ³⁴⁵ FHM Dhifallah (2018) ³⁴⁵ L1670W												
365	365 SCN5A I1660V LoF Cordeiro (2006) ⁷⁵ BrS Cordeiro (2006) ⁷⁵ I1673V 3.18e-5 -												
366	SCN1A	G1674R	LoF	Rhodes (2004) ¹⁷² Thompson (2012) ¹⁸⁷	EPI	Ohmori (2002) ¹⁷³ - reported as G1664R	046740	-	-				
367	SCN5A	G1661R	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹² Van Malderen (2017) ⁷⁴	- G1674R	-	-				
368	SCN5A	V1667I	GoF	Nakajima (2020) ³⁴⁶	LQT3	Nakajima (2020) ³⁴⁶	V1680I	3.98e-6	NC				
369	SCN4A	I1495F	Mixed	Bendahhou (1999) ¹⁶⁹	HyperPP	Bendahhou (1999) ¹⁶⁹	I1683F	-	-				
370	SCN3A	Y1669C	LoF	Zaman (2020) ¹⁴⁷	ASD	Zaman (2020) ¹⁴⁷	Y1684C	-	NC				
371	SCN1A	A1685D	LoF	Sugiura (2012) ³⁴⁷	EPI	Fujiwara (2003) ¹³¹	A1685D	-	NC				
372	SCN1A	A1685V	LoF	Lossin (2003) ¹⁸⁶ Sugiura (2012) ³⁴⁷	EPI	Sugawara (2001) ³⁴⁸	A1685V	-	NC				
373	SCN5A	S1672Y	LoF	Glazer (2020)¹	BrS	Kapplinger (2010) ¹² Andorin (2016) ⁷¹	A1685Y	-	NC				
	1688-1709 Extracellular												
374	SCN5A	A1680T	STW	Glazer (2020)¹	BrS	Kapplinger (2010) ¹²	A1693T	4.6e-5	NC				
375	SCN10A	D1639N	LoF	Kaluza (2018) ³⁴⁹	SFN	Dabby (2016) ³⁵⁰	D1702N	8.75e-5	NC				
376	SCN5A	D1690N	LoF	Zeng (2016) ³⁵¹ Nunez (2013) ³⁵²	BrS	Zeng (2016) ³⁵¹ Nunez (2013) ³⁵²	D1703N	3.98e-6	-				
377	377 SCN1A T1709I LoF Rhodes (2005) ¹³⁰ EPI Fujiwara (2003) ¹³¹ T1709I												
					1710-1732 Por	e-forming							

	1				Ī								
378	SCN5A	T1709M	LoF	Glazer (2020)¹	LQT3; BrS	Kapplinger (2010) ¹² Lakshmanadoss (2016) ³⁵³	T1722M	3.98e-6	-				
379	SCN5A	G1712C	LoF	Chen (2016) ³⁵⁴	BrS	Kapplinger (2015) ⁸ Chen (2016) ³⁵⁴	G1725C	-	-				
380	SCN10A	G1662S	GoF	Han (2014) ³⁵⁵	SFN	Han (2014) ³⁵⁵	G1725S	1.36e-3	-				
381	SCN5A	D1714G	LoF	Amin (2005) ³⁵⁶	BrS	Amin (2005) ³⁵⁶	D1727G	-	-				
	1733-1762 Extracellular												
382	382 SCN5A N1722D LoF Glazer (2020) ¹ BrS Probst (2009) ¹²⁸ N1735D - NC												
383	SCN5A	P1730H	LoF	Glazer (2020) ¹	BrS	Van Malderen (2017) ⁷⁴	P1743H	-	NC				
384	SCN1A	G1749E	LoF	Rhodes (2004) ¹⁷²	EPI	Claes (2003) ⁸⁹	G1749E	-	NC				
385	SCN5A	G1740R	LoF	Baroudi (2004) ³⁵⁷	BrS	Baroudi (2004) ³⁵⁷ Kapplinger (2010) ¹²	G1754R	-	-				
386	SCN5A	G1743R	LoF	Valdivia (2004) ³⁵⁸	BrS	Takahata (2003) ²⁰⁷ Valdivia (2004) ³⁵⁸	G1757R	-	NC				
387	SCN5A	G1748D	LoF	Nunez (2013) ³⁵²	BrS	Nunez (2013) ³⁵²	G1762D	-	NC				
					1763-1785 S	6 of D4							
388	SCN1A	F1765L	LoF	Liao (2010b) ¹⁸²	EPI	Liao (2010b) ¹⁸²	F1765L	-	NC				
389	SCN10A	I1706V	GoF	Huang (2013) ³⁵⁹	SFN	Huang (2013) ³⁵⁹	I1770V	-	-				
390	SCN1A	F1774S	GoF	Bertelli (2018) ³⁴⁴	FHM	Chastan (2016) ³⁶⁰	F1774S	-	-				
391	SCN5A	I1762A	GoF	Chang (2004) ³⁶¹	LQT3	Chang (2004) ³⁶¹	V1776A	-	NC				
392	SCN5A	V1763M	GoF	Chang (2004) ³⁶¹	LQT3	Chang (2004) ³⁶¹	V1777M	-	NC				
393	SCN8A	V1758A	LoF	Zaman (2019) ²²	EPI	Zaman (2019) ²²	V1778A	-	-				
394	SCN5A	V1764M	GoF	Chang (2004) ³⁶¹	LQT3	Chang (2004) ³⁶¹	V1778M	-	-				
395	SCN3A	M1765I	GoF	Zaman (2020) ¹⁴⁷	EPI/PMG	Zaman (2020) ¹⁴⁷	M1780I	-	-				
396	SCN8A	M1760I	GoF	Liu (2019) ²⁸⁸	EPI	Liu (2019) ²⁸⁸	IVII/8UI	-	-				
397	SCN5A	M1766L	Mixed	Valdivia (2002) ³⁶² Ye (2003) ¹⁰⁶	LQT3	Valdivia (2002) ³⁶² Ye (2003) ¹⁰⁶	M1780L	-	-				

398	SCN5A	Y1767C	GoF	Huang (2006) ²⁰³	LQT3	Huang (2011) ³⁶³	Y1781C	-	-
				Huang (2011) ³⁶³ Rivolta (2002) ³⁶⁴					
399	SCN5A	I1768V	GoF	Clancy (2003) ³⁶⁵	LQT3	Rivolta (2002) ³⁶⁴	I1782V	-	-
400	SCN9A	A1746G	GoF	Cregg (2013) ³⁰¹	IEM	Cregg (2013) ³⁰¹	A1783G	-	-
401	SCN2A	A1773T	LoF	Miao (2020) ¹⁹³	EPI	Miao (2020) ¹⁹³	A1783T	-	-
402	SCN3A	V1769A	GoF	Zaman (2018) ¹⁵⁵ Zaman (2020) ¹⁴⁷	EPI	Zaman (2018) ¹⁵⁵	V1784A	-	NC
					1786-2009 Cyt	toplasmic			
403	SCN5A	N1774D	GoF	Kato (2014) ⁹⁴	LQT3	Kato (2014) ⁹⁴		-	-
404	SCN8A	N1768D	GoF	Veeramah (2012) ³⁶⁶ Patel (2016) ²⁴⁷ Baker (2018) ³⁶⁷	EPI	Veeramah (2012) ³⁶⁶	N1788D	-	-
405	SCN5A	N1774H	Mixed	Neubauer (2019) ³⁶⁸	LQT3	Neubauer (2019) ³⁶⁸	N1788H	-	-
406	SCN5A	E1784K	Mixed	Deschenes (2000) ²⁶⁹ Abdelsayed (2015) ²⁰⁴ Peters (2016) ⁸⁸ Veltmann (2016) ¹⁰⁸ Abdelsayed (2017) ³⁶⁹ Abdelsayed (2018) ³⁷⁰ Glazer (2020) ¹	LQT3; BrS	Deschenes (2000) ²⁶⁹ Takahashi (2014) ³⁷¹ Veltmann (2016) ¹⁰⁸	E1798K	-	NC
407	SCN5A	S1787N	GoF	Hu (2015) ³⁷²	LQT3	Splawski (2000) ³⁷³	S1801N	8.29e-4	NC
408	SCN5A	D1790G	Mixed	An (1998) ³⁷⁴ Wehrens (2000) ³⁷⁵ Baroudi (2000) ³⁷⁶	LQT3; BrS	Benhorin (1998) ³⁷⁷ Blich (2015) ³⁷⁸	D1804G	-	-
409	SCN1A	F1808L	Mixed	Rhodes (2005) ¹³⁰	EPI	Fujiwara (2003) ¹³¹	F1808L	-	-
410	SCN5A	Y1795C	GoF	Rivolta (2001) ³⁷⁹ Berecki (2006) ²³⁵ Fredj (2006) ³⁸⁰	LQT3	Rivolta (2001) ³⁷⁹ Benito (2008) ³⁸¹ Kapplinger (2015) ⁸	Y1809C	-	-
411	SCN5A	Y1795H	LoF	Rivolta (2001) ³⁷⁹	BrS	Rivolta (2001) ³⁷⁹	Y1809H	-	-
412	SCN2A	E1803G	GoF	Begemann (2019) ¹⁸⁰	EPI	Papuc (2019) ³⁸² Begemann (2019) ¹⁸⁰	E1813G	-	-
413	SCN4A	Q1633E	GoF	Kubota (2009) ³⁸³	PAM	Kubota (2009) ³⁸³	Q1821E	-	-
414	SCN1A	F1831S	LoF	Sugawara (2003) ¹⁸⁴	EPI	Fujiwara (2003) ¹³¹	F1831S	-	-
415	SCN5A	L1825P	LoF	Liu (2005) ³⁸⁴	LQT3	Makita (2002) ³⁸⁵	L1839P	-	-
416	SCN5A	Q1832E	LoF	Gando (2017) ³⁸⁶	BrS	Gando (2017) ³⁸⁶	K1846E	9.97e-5	NC

417	SCN1A	M1852T	Mixed	Rusconi (2007) ³⁸⁷	EPI	Annesi (2003) ¹²⁵	M1852T		NC
417	SCNIA	10110321	IVIIXEU	Ruscolli (2007)	LFI	Ailliesi (2003)	WIIOJZI	-	IVC
418	SCN5A	C1850S	LoF	Petitprez (2008) ³⁸⁸	BrS	Petitprez (2008) ³⁸⁸	C1864S	-	-
419	SCN1A	D1866Y	GoF	Spampanato (2004) ³⁸⁹	EPI	Spampanato (2004) ³⁸⁹	D1866Y	-	-
420	SCN2A	M1879T	GoF	Adney (2020) ³⁹⁰	EPI	Adney (2020) ³⁹⁰	M1889T	-	-
421	SCN8A	R1872L	GoF	Wagnon (2015) ³¹⁴ Zaman (2019) ²²	EPI	Wagnon (2015) ³¹⁴ Zaman (2019) ²²	R1892L	-	NC
422	SCN2A	R1882G	GoF	Schwarz (2016) ⁶³	EPI	Schwarz (2016) ⁶³	R1892G	-	NC
423	SCN2A	R1882Q	GoF	Wolff (2017) ⁹⁶ Berecki (2018) ¹⁴¹ Mason (2019) ¹⁴²	EPI	Howell (2015) ³⁹¹ Trump (2016) ³⁹² Wolff (2017) ⁹⁶ Berecki (2018) ¹⁴¹	R1892Q	-	NC
424	SCN8A	R1872Q	GoF	Wagnon (2015) ³¹⁴ Aktin (2018) ³⁹³	EPI	Wagnon (2015) ³¹⁴ Atkin (2018) ³⁹³		4.02e-6	NC
425	SCN8A	R1872W	GoF	Liu (2019) ²⁸⁸ Zaman (2019) ²²	EPI	Gardella (2016) ³⁹⁴ Zaman (2019) ²²	R1892W	-	NC
426	SCN1A	T1909I	Mixed	Ohmori (2006) ³⁰	EPI	Ohmori (2002) ³⁰	T1909I	-	-
427	SCN5A	R1897W	LoF	Olesen (2012) ²¹⁹	LQT3	Kapplinger (2009) ¹⁹	K1911W	-	NC
428	SCN5A	R1898C	LoF	Glazer (2020)¹	BrS	Selga (2015) ³⁹⁵ Zhang (2016) ³⁹⁶	R1912C	3.56e-5	NC
429	SCN1A	Q1923R	LoF	Nissenkorn (2019) ²⁹	EPI	Shi (2012) ⁴⁰ Nissenkorn (2019) ²⁹	Q1923R	-	-
430	SCN5A	Q1909R	Mixed	Winkel (2015) ¹⁰³ Abdelsayed (2017) ³⁶⁹	LQT3	Winkel (2015) ¹⁰³ Kapplinger (2015) ⁸	Q1923N	-	-
431	SCN1A	R1927G	LoF	Rusconi (2009) ³⁹⁷	EPI	Rusconi (2009) ³⁹⁷	R1927G	-	-
432	SCN1A	T1934I	LoF	Kluckova (2020) ¹⁰	EPI	Kluckova (2020) ¹⁰	T1934I	3.19e-5	NC
433	SCN10A	A1886V	GoF	Savio-Galimberti (2014) ²⁸	AF	Savio-Galimberti (2014) ²⁸	G1950V	1.20e-3	NC
434	SCN5A	119685	LoF	Frustaci (2005) ⁸⁷	BrS	Frustaci (2005) ⁸⁷	M1977S	1.64e-5	NC
435	SCN5A	Y1977N	Mixed	Casini (2019) ³⁹⁸	LQT3	Casini (2019) ³⁹⁸	Y1986N	-	NC
436	SCN5A	F2004L	LoF	Bebarova (2008) ³⁹⁹	LQT3; BrS	Bebarova (2008) ³⁹⁹ Arnestad (2007) ⁴⁰⁰	-	1.02e-5	NC
437	SCN5A	P2006A	GoF	Shinlapawittayatorn (2011) ⁴⁰¹	LQT3	Shinlapawittayatorn(2011) ⁴⁰¹	-	1.11e-3	NC

Legend:

gnomAD frequencies (marked in grey)

NC = not conserved (marked in grey) = corresponding position of variants do not share the same amino acid

STW = Similar to Wildtype function (variant marked in grey)

Phenotypical features: AF = atrial fibrillation, ASD = autism spectrum disorder, BrS = Brugada syndrome, CAP = cold aggravated pain, CMS = congenital myasthenic syndrome, DEE = developmental and epileptic encephalopathy, DS = Dravet syndrome, ECG = electrocardiogram, echo = echocardiogram, EPI = epilepsy, FHM3 = familial hemiplegic migraine type 3, GEFS+ = genetic epilepsy with febrile seizures plus, Hyper-PP = hyperkalaemic periodic paralysis, Hypo-PP = hypokalaemic periodic paralysis, IEM = inherited erythromelalgia, LQT3 = long QT3 syndrome, NDD = neurodevelopmental disorder, PAM = potassium-aggravated myotonia, PDN = painful diabetic neuropathy, PEPD = paroxysmal extreme pain disorder, PMC = paramyotonia congenita, PMG = polymicrogyria, PPN = painful peripheral neuropathy, SCB = sodium channel blocker, SCD = sudden cardiac death, SIDS = sudden infant death syndrome, SSS = sick sinus syndrome, SUD = sudden unexplained death, Sz = seizure, TdP = torsade de pointes, VT = ventricular tachycardia

References

- 1. Glazer AM, Wada Y, Li B, et al. High-Throughput Reclassification of SCN5A Variants. Am J Hum Genet 2020.
- 2. Millat G, Chevalier P, Restier-Miron L, et al. Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clinical Genetics 2006;70:214-27.
- 3. Gutter C, Benndorf K, Zimmer T. Characterization of N-terminally mutated cardiac Na(+) channels associated with long QT syndrome 3 and Brugada syndrome. Front Physiol 2013;4:153.
- 4. Han C, Dib-Hajj SD, Lin Z, et al. Early- and late-onset inherited erythromelalgia: genotype-phenotype correlation. Brain 2009;132:1711-22.
- 5. Ben-Shalom R, Keeshen CM, Berrios KN, An JY, Sanders SJ, Bender KJ. Opposing Effects on NaV1.2 Function Underlie Differences Between SCN2A Variants Observed in Individuals With Autism Spectrum Disorder or Infantile Seizures. Biol Psychiatry 2017;82:224-32.
- 6. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Compendium of cardiac channel mutations in 541 consecutive unrelated patients referred for long QT syndrome genetic testing. Heart Rhythm 2005;2:507-17.
- 7. Priori SG, Napolitano C, Gasparini M, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation 2002;105:1342-7.
- 8. Kapplinger JD, Giudicessi JR, Ye D, et al. Enhanced Classification of Brugada Syndrome-Associated and Long-QT Syndrome-Associated Genetic Variants in the SCN5A-Encoded Na(v)1.5 Cardiac Sodium Channel. Circ Cardiovasc Genet 2015;8:582-95.
- 9. Lin MT, Wu MH, Chang CC, et al. In utero onset of long QT syndrome with atrioventricular block and spontaneous or lidocaine-induced ventricular tachycardia: compound effects of hERG pore region mutation and SCN5A N-terminus variant. Heart Rhythm 2008;5:1567-74.
- 10. Kluckova D, Kolnikova M, Lacinova L, et al. A Study among the Genotype, Functional Alternations, and Phenotype of 9 SCN1A Mutations in Epilepsy Patients. Sci Rep 2020;10:10288.
- 11. Mancardi MM, Striano P, Gennaro E, et al. Familial occurrence of febrile seizures and epilepsy in severe myoclonic epilepsy of infancy (SMEI) patients with SCN1A mutations. Epilepsia 2006;47:1629-35.
- 12. Kapplinger JD, Tester DJ, Alders M, et al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 2010;7:33-46.
- 13. Jabbari J, Olesen MS, Yuan L, et al. Common and Rare Variants in <i>SCN10A</i> Modulate the Risk of Atrial Fibrillation. Circulation: Cardiovascular Genetics 2015;8:64-73.
- 14. Zaharieva IT, Thor MG, Oates EC, et al. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain 2016;139:674-91.
- 15. Levy-Nissenbaum E, Eldar M, Wang Q, et al. Genetic analysis of Brugada syndrome in Israel: two novel mutations and possible genetic heterogeneity. Genet Test 2001;5:331-4.
- 16. Clatot J, Ziyadeh-Isleem A, Maugenre S, et al. Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Na(v)1.5 α -subunits. Cardiovasc Res 2012;96:53-63.
- 17. Holst AG, Liang B, Jespersen T, et al. Sick sinus syndrome, progressive cardiac conduction disease, atrial flutter and ventricular tachycardia caused by a novel SCN5A mutation. Cardiology 2010;115:311-6.
- 18. Moreau A, Keller DI, Huang H, et al. Mexiletine differentially restores the trafficking defects caused by two brugada syndrome mutations. Front Pharmacol 2012;3:62.
- 19. Kapplinger JD, Tester DJ, Salisbury BA, et al. Spectrum and prevalence of mutations from the first 2,500 consecutive unrelated patients referred for the FAMILION long QT syndrome genetic test. Heart rhythm 2009;6:1297-303.
- 20. Yokokawa M, Noda T, Okamura H, et al. Comparison of Long-Term Follow-Up of Electrocardiographic Features in Brugada Syndrome Between the SCN5A-Positive Probands and the SCN5A-Negative Probands. The American Journal of Cardiology 2007;100:649-55.
- 21. Yamagata K, Horie M, Aiba T, et al. Genotype-Phenotype Correlation of SCN5A Mutation for the Clinical and Electrocardiographic Characteristics of Probands With Brugada Syndrome: A Japanese Multicenter Registry. Circulation 2017;135:2255-70.

- 22. Zaman T, Abou Tayoun A, Goldberg EM. A single-center SCN8A-related epilepsy cohort: clinical, genetic, and physiologic characterization. Ann Clin Transl Neurol 2019;6:1445-55.
- 23. Petitprez S, Tiab L, Chen L, et al. A novel dominant mutation of the Nav1.4 alpha-subunit domain I leading to sodium channel myotonia. Neurology 2008;71:1669-75.
- 24. Cheng X, Dib-Hajj SD, Tyrrell L, Waxman SG. Mutation I136V alters electrophysiological properties of the Na(v)1.7 channel in a family with onset of erythromelalgia in the second decade. Mol Pain 2008;4:1.
- 25. Lee MJ, Yu HS, Hsieh ST, Stephenson DA, Lu CJ, Yang CC. Characterization of a familial case with primary erythromelalgia from Taiwan. J Neurol 2007;254:210-4.
- 26. Mantegazza M, Gambardella A, Rusconi R, et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc Natl Acad Sci USA 2005;102:18177-82.
- 27. Smits JP, Koopmann TT, Wilders R, et al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J Mol Cell Cardiol 2005;38:969-81.
- 28. Savio-Galimberti E, Weeke P, Muhammad R, et al. SCN10A/Nav1.8 modulation of peak and late sodium currents in patients with early onset atrial fibrillation. Cardiovasc Res 2014;104:355-63.
- 29. Nissenkorn A, Almog Y, Adler I, et al. In vivo, in vitro and in silico correlations of four de novo SCN1A missense mutations. PLoS One 2019;14:e0211901.
- 30. Ohmori I, Kahlig KM, Rhodes TH, Wang DW, George AL, Jr. Nonfunctional SCN1A is common in severe myoclonic epilepsy of infancy. Epilepsia 2006;47:1636-42.
- 31. Makiyama T, Akao M, Tsuji K, et al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J Am Coll Cardiol 2005;46:2100-6.
- 32. Sugawara T, Tsurubuchi Y, Agarwala KL, et al. A missense mutation of the Na+ channel alpha II subunit gene Na(v)1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc Natl Acad Sci U S A 2001;98:6384-9.
- 33. Lauxmann S, Verbeek NE, Liu Y, et al. Relationship of electrophysiological dysfunction and clinical severity in SCN2A-related epilepsies. Hum Mutat 2018;39:1942-56.
- 34. Lemke JR, Riesch E, Scheurenbrand T, et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 2012;53:1387-98.
- 35. Marangoni S, Di Resta C, Rocchetti M, et al. A Brugada syndrome mutation (p.S216L) and its modulation by p.H558R polymorphism: standard and dynamic characterization. Cardiovasc Res 2011;91:606-16.
- 36. Wang DW, Desai RR, Crotti L, et al. Cardiac sodium channel dysfunction in sudden infant death syndrome. Circulation 2007;115:368-76.
- 37. Estacion M, Choi JS, Eastman EM, et al. Can robots patch-clamp as well as humans? Characterization of a novel sodium channel mutation. J Physiol 2010;588:1915-27.
- 38. Han C, Yang Y, Te Morsche RH, et al. Familial gain-of-function Nav1.9 mutation in a painful channelopathy. J Neurol Neurosurg Psychiatry 2017;88:233-40.
- 39. Okuda H, Noguchi A, Kobayashi H, et al. Infantile Pain Episodes Associated with Novel Nav1.9 Mutations in Familial Episodic Pain Syndrome in Japanese Families. PLoS One 2016;11:e0154827.
- 40. Choi JS, Dib-Hajj SD, Waxman SG. Inherited erythermalgia: limb pain from an S4 charge-neutral Na channelopathy. Neurology 2006;67:1563-7.
- 41. Sheets PL, Jackson JO, 2nd, Waxman SG, Dib-Hajj SD, Cummins TR. A Nav1.7 channel mutation associated with hereditary erythromelalgia contributes to neuronal hyperexcitability and displays reduced lidocaine sensitivity. J Physiol 2007;581:1019-31.
- 42. Drenth JP, te Morsche RH, Guillet G, Taieb A, Kirby RL, Jansen JB. SCN9A mutations define primary erythermalgia as a neuropathic disorder of voltage gated sodium channels. J Invest Dermatol 2005;124:1333-8.
- 43. Kim MK, Yuk JW, Kim HS, Park KJ, Kim DS. Autonomic dysfunction in SCN9A-associated primary erythromelalgia. Clin Auton Res 2013;23:105-7.
- de Kovel CG, Meisler MH, Brilstra EH, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res 2014;108:1511-8.

- 45. Bezzina CR, Rook MB, Groenewegen WA, et al. Compound heterozygosity for mutations (W156X and R225W) in SCN5A associated with severe cardiac conduction disturbances and degenerative changes in the conduction system. Circ Res 2003:92:159-68.
- 46. Beckermann TM, McLeod K, Murday V, Potet F, George AL, Jr. Novel SCN5A mutation in amiodarone-responsive multifocal ventricular ectopy-associated cardiomyopathy. Heart Rhythm 2014;11:1446-53.
- 47. Tan BY, Yong RY, Barajas-Martinez H, et al. A Brugada syndrome proband with compound heterozygote SCN5A mutations identified from a Chinese family in Singapore. Europace 2016;18:897-904.
- 48. Berecki GB, A.: Terhag, J.: Maljevic, S.: Gazina, E. V.: Hill, S. L.: Petrou, S. SCN1A gain of function in early infantile encephalopathy. Ann Neurol 2019;85:514-25.
- 49. Sadleir LG, Mountier EI, Gill D, et al. Not all SCN1A epileptic encephalopathies are Dravet syndrome: Early profound Thr226Met phenotype. Neurology 2017;89:1035-42.
- 50. Nabbout R, Gennaro E, Dalla Bernardina B, et al. Spectrum of SCN1A mutations in severe myoclonic epilepsy of infancy. Neurology 2003;60:1961-7.
- 51. Barajas-Martínez HM, Hu D, Cordeiro JM, et al. Lidocaine-induced Brugada syndrome phenotype linked to a novel double mutation in the cardiac sodium channel. Circ Res 2008;103:396-404.
- 52. Estacion M, Han C, Choi JS, et al. Intra- and interfamily phenotypic diversity in pain syndromes associated with a gain-of-function variant of NaV1.7. Mol Pain 2011;7:92.
- 53. Faber CG, Hoeijmakers JG, Ahn HS, et al. Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 2012;71:26-39.
- Thompson CH, Ben-Shalom R, Bender KJ, George AL. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants. J Gen Physiol 2020;152.
- Nakamura K, Kato M, Osaka H, et al. Clinical spectrum of SCN2A mutations expanding to Ohtahara syndrome. Neurology 2013;81:992-8.
- Ahn HS, Dib-Hajj SD, Cox JJ, et al. A new Nav1.7 sodium channel mutation I234T in a child with severe pain. Eur J Pain 2010;14:944-50.
- 57. Tsujino A, Maertens C, Ohno K, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A 2003;100:7377-82.
- 58. Lampert A, Dib-Hajj SD, Tyrrell L, Waxman SG. Size matters: Erythromelalgia mutation S241T in Nav1.7 alters channel gating. J Biol Chem 2006;281:36029-35.
- 59. Michiels JJ, te Morsche RH, Jansen JB, Drenth JP. Autosomal dominant erythermalgia associated with a novel mutation in the voltage-gated sodium channel alpha subunit Nav1.7. Arch Neurol 2005;62:1587-90.
- 60. Han C, Themistocleous AC, Estacion M, et al. The Novel Activity of Carbamazepine as an Activation Modulator Extends from NaV1.7 Mutations to the NaV1.8-S242T Mutant Channel from a Patient with Painful Diabetic Neuropathy. Mol Pharmacol 2018;94:1256-69.
- 61. Lamar T, Vanoye CG, Calhoun J, et al. SCN3A deficiency associated with increased seizure susceptibility. Neurobiol Dis 2017;102:38-48.
- 62. Liao Y, Anttonen AK, Liukkonen E, et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 2010;75:1454-8.
- 63. Schwarz N, Hahn A, Bast T, et al. Mutations in the sodium channel gene SCN2A cause neonatal epilepsy with lateonset episodic ataxia. J Neurol 2016;263:334-43.
- 64. Kahlig KM, Rhodes TH, Pusch M, et al. Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci USA 2008;105:9799-804.
- 65. Wengert ER, Tronhjem CE, Wagnon JL, et al. Biallelic inherited SCN8A variants, a rare cause of SCN8A-related developmental and epileptic encephalopathy. Epilepsia 2019;60:2277-85.
- 66. Carle T, Fournier E, Sternberg D, Fontaine B, Tabti N. Cold-induced disruption of Na+ channel slow inactivation underlies paralysis in highly thermosensitive paramyotonia. J Physiol 2009;587:1705-14.
- 67. Calloe K, Schmitt N, Grubb S, et al. Multiple arrhythmic syndromes in a newborn, owing to a novel mutation in SCN5A. Can J Physiol Pharmacol 2011;89:723-36.

- 68. Sommariva E, Pappone C, Martinelli Boneschi F, et al. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur J Hum Genet 2013;21:911-7.
- 69. Poelzing S, Forleo C, Samodell M, et al. SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene. Circulation 2006;114:368-76.
- 70. Itoh H, Shimizu M, Mabuchi H, Imoto K. Clinical and electrophysiological characteristics of Brugada syndrome caused by a missense mutation in the S5-pore site of SCN5A. J Cardiovasc Electrophysiol 2005;16:378-83.
- 71. Andorin A, Behr ER, Denjoy I, et al. Impact of clinical and genetic findings on the management of young patients with Brugada syndrome. Heart Rhythm 2016;13:1274-82.
- 72. Binini N, Sancini G, Villa C, et al. Identification of two mutations in cis in the SCN1A gene in a family showing genetic epilepsy with febrile seizures plus (GEFS+) and idiopathic generalized epilepsy (IGE). Brain Res 2017;1677:26-32.
- 73. Keller DI, Rougier JS, Kucera JP, et al. Brugada syndrome and fever: genetic and molecular characterization of patients carrying SCN5A mutations. Cardiovasc Res 2005;67:510-9.
- 74. Van Malderen SCH, Daneels D, Kerkhove D, et al. Prolonged Right Ventricular Ejection Delay in Brugada Syndrome Depends on the Type of SCN5A Variant Electromechanical Coupling Through Tissue Velocity Imaging as a Bridge Between Genotyping and Phenotyping. Circ J 2017;82:53-61.
- 75. Cordeiro JM, Barajas-Martinez H, Hong K, et al. Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome. Circulation 2006;114:2026-33.
- 76. Estacion M, Gasser A, Dib-Hajj SD, Waxman SG. A sodium channel mutation linked to epilepsy increases ramp and persistent current of Nav1.3 and induces hyperexcitability in hippocampal neurons. Exp Neurol 2010;224:362-8.
- 77. Holland KD, Kearney JA, Glauser TA, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neuroscience Letters 2008;433:65-70.
- 78. Probst V, Allouis M, Sacher F, et al. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation. J Cardiovasc Electrophysiol 2006;17:270-5.
- 79. Savastano S, Rordorf R, Vicentini A, et al. A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: Validation of the 2013 diagnostic criteria. Heart Rhythm 2014;11:1176-83.
- 80. Pfahnl AE, Viswanathan PC, Weiss R, et al. A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm 2007;4:46-53.
- 21. Zhang J, Chen Y, Yang J, et al. Electrophysiological and trafficking defects of the SCN5A T353I mutation in Brugada syndrome are rescued by alpha-allocryptopine. Eur J Pharmacol 2015;746:333-43.
- 82. Amin AS, Boink GJ, Atrafi F, et al. Facilitatory and inhibitory effects of SCN5A mutations on atrial fibrillation in Brugada syndrome. Europace 2011;13:968-75.
- 83. Hong K, Berruezo-Sanchez A, Poungvarin N, et al. Phenotypic characterization of a large European family with Brugada syndrome displaying a sudden unexpected death syndrome mutation in SCN5A. J Cardiovasc Electrophysiol 2004;15:64-9.
- 84. Probst V, Denjoy I, Meregalli PG, et al. Clinical aspects and prognosis of Brugada syndrome in children. Circulation 2007;115:2042-8.
- 85. Nakajima T, Dharmawan T, Kawabata-Iwakawa R, et al. Reduced current density, partially rescued by mexiletine, and depolarizing shift in activation of SCN5A W374G channels as a cause of severe form of Brugada syndrome. Ann Noninvasive Electrocardiol 2021:e12828.
- 86. Rossenbacker T, Carroll SJ, Liu H, et al. Novel pore mutation in SCN5A manifests as a spectrum of phenotypes ranging from atrial flutter, conduction disease, and Brugada syndrome to sudden cardiac death. Heart Rhythm 2004;1:610-5.
- 87. Frustaci A, Priori SG, Pieroni M, et al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 2005;112:3680-7.
- 88. Peters CH, Abdelsayed M, Ruben PC. Triggers for arrhythmogenesis in the Brugada and long QT 3 syndromes. Prog Biophys Mol Biol 2016;120:77-88.
- 89. Claes L, Ceulemans B, Audenaert D, et al. De novo SCN1A mutations are a major cause of severe myoclonic epilepsy of infancy. Hum Mutat 2003;21:615-21.

- 90. Huang J, Han C, Estacion M, et al. Gain-of-function mutations in sodium channel Na(v)1.9 in painful neuropathy. Brain 2014;137:1627-42.
- 91. Gando I, Williams N, Fishman GI, Sampson BA, Tang Y, Coetzee WA. Functional characterization of SCN10A variants in several cases of sudden unexplained death. Forensic Sci Int 2019;301:289-98.
- 92. Lossin C, Nam TS, Shahangian S, et al. Altered fast and slow inactivation of the N440K Nav1.4 mutant in a periodic paralysis syndrome. Neurology 2012;79:1033-40.
- 93. Hu RM, Tester DJ, Li R, et al. Mexiletine rescues a mixed biophysical phenotype of the cardiac sodium channel arising from the SCN5A mutation, N406K, found in LQT3 patients. Channels (Austin) 2018;12:176-86.
- 94. Kato K, Makiyama T, Wu J, et al. Cardiac channelopathies associated with infantile fatal ventricular arrhythmias: from the cradle to the bench. J Cardiovasc Electrophysiol 2014;25:66-73.
- 95. Itoh H, Tsuji K, Sakaguchi T, et al. A paradoxical effect of lidocaine for the N406S mutation of SCN5A associated with Brugada syndrome. Int J Cardiol 2007;121:239-48.
- 96. Wolff M, Johannesen KM, Hedrich UBS, et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 2017;140:1316-36.
- 97. Wang DW, VanDeCarr D, Ruben PC, George AL, Jr., Bennett PB. Functional consequences of a domain 1/S6 segment sodium channel mutation associated with painful congenital myotonia. FEBS Lett 1999;448:231-4.
- 98. Huang CW, Lai HJ, Lin PC, Lee MJ. Changes of Resurgent Na(+) Currents in the Nav1.4 Channel Resulting from an SCN4A Mutation Contributing to Sodium Channel Myotonia. Int J Mol Sci 2020;21.
- 99. Liu XL, Huang XJ, Luan XH, et al. Mutations of SCN4A gene cause different diseases: 2 case reports and literature review. Channels (Austin) 2015;9:82-7.
- 100. Horne AJ, Eldstrom J, Sanatani S, Fedida D. A novel mechanism for LQT3 with 2:1 block: a pore-lining mutation in Nav1.5 significantly affects voltage-dependence of activation. Heart Rhythm 2011;8:770-7.
- 101. Zhou H, Li Z, Ali Raza G, et al. [High incidence of sudden cardiac death in one family with type-3 long QT syndrome: molecular genetics and electrophysiology mechanism analysis]. Zhonghua Xin Xue Guan Bing Za Zhi 2015;43:1046-50.
- 102. Fischer TZ, Gilmore ES, Estacion M, et al. A novel Nav1.7 mutation producing carbamazepine-responsive erythromelalgia. Ann Neurol 2009;65:733-41.
- 103. Winkel BG, Yuan L, Olesen MS, et al. The role of the sodium current complex in a nonreferred nationwide cohort of sudden infant death syndrome. Heart Rhythm 2015;12:1241-9.
- 104. Chiang KC, Lai LP, Shieh RC. Characterization of a novel Nav1.5 channel mutation, A551T, associated with Brugada syndrome. J Biomed Sci 2009;16:76.
- 105. Juang JM, Lu TP, Lai LC, et al. Utilizing multiple in silico analyses to identify putative causal SCN5A variants in Brugada syndrome. Sci Rep 2014;4:3850.
- 106. Ye B, Valdivia CR, Ackerman MJ, Makielski JC. A common human SCN5A polymorphism modifies expression of an arrhythmia causing mutation. Physiol Genomics 2003;12:187-93.
- 107. Tester DJ, Valdivia C, Harris-Kerr C, et al. Epidemiologic, molecular, and functional evidence suggest A572D-SCN5A should not be considered an independent LQT3-susceptibility mutation. Heart Rhythm 2010;7:912-9.
- 108. Veltmann C, Barajas-Martinez H, Wolpert C, et al. Further Insights in the Most Common SCN5A Mutation Causing Overlapping Phenotype of Long QT Syndrome, Brugada Syndrome, and Conduction Defect. J Am Heart Assoc 2016;5.

- 109. Wan X, Chen S, Sadeghpour A, Wang Q, Kirsch GE. Accelerated inactivation in a mutant Na(+) channel associated with idiopathic ventricular fibrillation. Am J Physiol Heart Circ Physiol 2001;280:H354-60.
- 110. Priori SG, Napolitano C, Giordano U, Collisani G, Memmi M. Brugada syndrome and sudden cardiac death in children. Lancet 2000;355:808-9.
- 111. Faber CG, Lauria G, Merkies IS, et al. Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 2012;109:19444-9.
- 112. Ahn HS, Vasylyev DV, Estacion M, et al. Differential effect of D623N variant and wild-type Na(v)1.7 sodium channels on resting potential and interspike membrane potential of dorsal root ganglion neurons. Brain Res 2013;1529:165-77.
- 113. Wehrens XH, Rossenbacker T, Jongbloed RJ, et al. A novel mutation L619F in the cardiac Na+ channel SCN5A associated with long-QT syndrome (LQT3): a role for the I-II linker in inactivation gating. Hum Mutat 2003;21:552.
- 114. Calloe K, Refaat MM, Grubb S, et al. Characterization and mechanisms of action of novel NaV1.5 channel mutations associated with Brugada syndrome. Circ Arrhythm Electrophysiol 2013;6:177-84.
- Hong K, Hu J, Yu J, Brugada R. Concomitant Brugada-like and short QT electrocardiogram linked to SCN5A mutation. Eur J Hum Genet 2012;20:1189-92.
- 116. Kist AM, Sagafos D, Rush AM, et al. SCN10A Mutation in a Patient with Erythromelalgia Enhances C-Fiber Activity Dependent Slowing. PLoS One 2016;11:e0161789.
- 117. Han C, Hoeijmakers JG, Ahn HS, et al. Nav1.7-related small fiber neuropathy: impaired slow-inactivation and DRG neuron hyperexcitability. Neurology 2012;78:1635-43.
- 118. Estacion M, O'Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 2014;69:117-23.
- 119. Pan Y, Cummins TR. Distinct functional alterations in SCN8A epilepsy mutant channels. J Physiol 2020;598:381-401.
- 120. Le Scouarnec S, Karakachoff M, Gourraud JB, et al. Testing the burden of rare variation in arrhythmia-susceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet 2015;24:2757-63.
- 121. Nakajima T, Kaneko Y, Saito A, et al. Identification of six novel SCN5A mutations in Japanese patients with Brugada syndrome. Int Heart J 2011;52:27-31.
- 122. García-Castro M, García C, Reguero JR, et al. The spectrum of SCN5A gene mutations in Spanish Brugada syndrome patients. Rev Esp Cardiol 2010;63:856-9.
- de la Roche J, Angsutararux P, Kempf H, et al. Comparing human iPSC-cardiomyocytes versus HEK293T cells unveils disease-causing effects of Brugada mutation A735V of Na(V)1.5 sodium channels. Sci Rep 2019;9:11173.
- 124. Bechi G, Rusconi R, Cestele S, Striano P, Franceschetti S, Mantegazza M. Rescuable folding defective NaV1.1 (SCN1A) mutants in epilepsy: properties, occurrence, and novel rescuing strategy with peptides targeted to the endoplasmic reticulum. Neurobiol Dis 2015;75:100-14.
- 125. Annesi G, Gambardella A, Carrideo S, et al. Two novel SCN1A missense mutations in generalized epilepsy with febrile seizures plus. Epilepsia 2003;44:1257-8.
- 126. Peters S. Arrhythmogenic right ventricular dysplasia-cardiomyopathy and provocable coved-type ST-segment elevation in right precordial leads: clues from long-term follow-up. Europace 2008;10:816-20.

- 127. Smits JP, Eckardt L, Probst V, et al. Genotype-phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J Am Coll Cardiol 2002;40:350-6.
- 128. Probst V, Wilde AA, Barc J, et al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ Cardiovasc Genet 2009;2:552-7.
- 129. Hoogendijk MG, Potse M, Linnenbank AC, et al. Mechanism of right precordial ST-segment elevation in structural heart disease: excitation failure by current-to-load mismatch. Heart Rhythm 2010;7:238-48.
- 130. Rhodes TH, Vanoye CG, Ohmori I, Ogiwara I, Yamakawa K, George AL, Jr. Sodium channel dysfunction in intractable childhood epilepsy with generalized tonic-clonic seizures. J Physiol 2005;569:433-45.
- 131. Fujiwara T, Sugawara T, Mazaki-Miyazaki E, et al. Mutations of sodium channel alpha subunit type 1 (SCN1A) in intractable childhood epilepsies with frequent generalized tonic-clonic seizures. Brain 2003;126:531-46.
- 132. Sayeed MZ, Salam MA, Haque MZ, Islam AK. Brugada syndrome with a novel missense mutation in SCN5A gene: a case report from Bangladesh. Indian Heart J 2014;66:104-7.
- 133. Lampert A, Dib-Hajj SD, Eastman EM, et al. Erythromelalgia mutation L823R shifts activation and inactivation of threshold sodium channel Nav1.7 to hyperpolarized potentials. Biochemical and Biophysical Research Communications 2009;390:319-24.
- 134. Volkers L, Kahlig KM, Verbeek NE, et al. Nav 1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome. Eur J Neurosci 2011;34:1268-75.
- 135. Kuzmenkin A, Muncan V, Jurkat-Rott K, et al. Enhanced inactivation and pH sensitivity of Na(+) channel mutations causing hypokalaemic periodic paralysis type II. Brain 2002;125:835-43.
- Bulman DE, Scoggan KA, van Oene MD, et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology 1999;53:1932-6.
- 137. Depienne C, Trouillard O, Saint-Martin C, et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J Med Genet 2009;46:183-91.
- 138. Kotta CM, Anastasakis A, Gatzoulis K, Manolis AS, Stefanadis C. Novel sodium channel SCN5A mutations in Brugada syndrome patients from Greece. Int J Cardiol 2010;145:45-8.
- 139. Wu B, Zhang Y, Tang H, et al. A Novel SCN9A Mutation (F826Y) in Primary Erythromelalgia Alters the Excitability of Nav1.7. Curr Mol Med 2017;17:450-7.
- 140. Jurkat-Rott K, Mitrovic N, Hang C, et al. Voltage-sensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current. Proc Natl Acad Sci U S A 2000;97:9549-54.
- 141. Berecki G, Howell KB, Deerasooriya YH, et al. Dynamic action potential clamp predicts functional separation in mild familial and severe de novo forms of SCN2A epilepsy. Proc Natl Acad Sci U S A 2018;115:E5516-e25.
- 142. Mason ER, Wu F, Patel RR, Xiao Y, Cannon SC, Cummins TR. Resurgent and Gating Pore Currents Induced by De Novo SCN2A Epilepsy Mutations. eNeuro 2019;6.
- 143. Epi K, Allen AS, Berkovic SF, et al. De novo mutations in epileptic encephalopathies. Nature 2013;501:217-21.
- 144. Samanta D, Ramakrishnaiah R. De novo R853Q mutation of SCN2A gene and West syndrome. Acta Neurol Belg 2015;115:773-6.

- 145. Kobayashi Y, Tohyama J, Kato M, et al. High prevalence of genetic alterations in early-onset epileptic encephalopathies associated with infantile movement disorders. Brain Dev 2016;38:285-92.
- 146. Li J, Cai T, Jiang Y, et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol Psychiatry 2016;21:298.
- 147. Zaman T, Helbig KL, Clatot J, et al. SCN3A-related neurodevelopmental disorder: A spectrum of epilepsy and brain malformation. Ann Neurol 2020;88:348-62.
- 148. Wang L, Meng X, Yuchi Z, et al. De Novo Mutation in the SCN5A Gene Associated with Brugada Syndrome. Cell Physiol Biochem 2015;36:2250-62.
- 149. Wu L, Zhang B, Kang Y, Wu W. Enhanced slow inactivation of the human skeletal muscle sodium channel causing normokalemic periodic paralysis. Cell Mol Neurobiol 2014;34:707-14.
- 150. Frigo G, Rampazzo A, Bauce B, et al. Homozygous SCN5A mutation in Brugada syndrome with monomorphic ventricular tachycardia and structural heart abnormalities. Europace 2007;9:391-7.
- 151. Itoh H, Berthet M, Fressart V, et al. Asymmetry of parental origin in long QT syndrome: preferential maternal transmission of KCNQ1 variants linked to channel dysfunction. Eur J Hum Genet 2016;24:1160-6.
- 152. Kinoshita K, Takahashi H, Hata Y, et al. SCN5A(K817E), a novel Brugada syndrome-associated mutation that alters the activation gating of NaV1.5 channel. Heart Rhythm 2016;13:1113-20.
- 153. Lossin C, Wang DW, Rhodes TH, Vanoye CG, George AL, Jr. Molecular basis of an inherited epilepsy. Neuron 2002;34:877-84.
- 154. Escayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000;24:343-5.
- 155. Zaman T, Helbig I, Bozovic IB, et al. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann Neurol 2018;83:703-17.
- 156. Miyatake S, Kato M, Sawaishi Y, et al. Recurrent SCN3A p.Ile875Thr variant in patients with polymicrogyria. Ann Neurol 2018:84:159-61.
- 157. Cummins TR, Dib-Hajj SD, Waxman SG. Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 2004;24:8232-6.
- 158. Namer B, Orstavik K, Schmidt R, et al. Specific changes in conduction velocity recovery cycles of single nociceptors in a patient with erythromelalgia with the I848T gain-of-function mutation of Nav1.7. Pain 2015;156:1637-46.
- 159. Theile JW, Jarecki BW, Piekarz AD, Cummins TR. Nav1.7 mutations associated with paroxysmal extreme pain disorder, but not erythromelalgia, enhance Navbeta4 peptide-mediated resurgent sodium currents. J Physiol 2011;589:597-608.
- 160. Yang Y, Wang Y, Li S, et al. Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 2004;41:171-4.
- Han C, Yang Y, de Greef BT, et al. The Domain II S4-S5 Linker in Nav1.9: A Missense Mutation Enhances Activation, Impairs Fast Inactivation, and Produces Human Painful Neuropathy. Neuromolecular Med 2015;17:158-69.
- 162. Hoeijmakers JG, Han C, Merkies IS, et al. Small nerve fibres, small hands and small feet: a new syndrome of pain, dysautonomia and acromesomelia in a kindred with a novel NaV1.7 mutation. Brain 2012;135:345-58.

- 163. Tanaka BS, Nguyen PT, Zhou EY, et al. Gain-of-function mutation of a voltage-gated sodium channel Na(V)1.7 associated with peripheral pain and impaired limb development. J Biol Chem 2017;292:9262-72.
- 164. Han C, Rush AM, Dib-Hajj SD, et al. Sporadic onset of erythermalgia: a gain-of-function mutation in Nav1.7. Ann Neurol 2006;59:553-8.
- 165. Han C, Lampert A, Rush AM, et al. Temperature dependence of erythromelalgia mutation L858F in sodium channel Nav1.7. Mol Pain 2007;3:3.
- 166. Cregg R, Cox JJ, Bennett DL, Wood JN, Werdehausen R. Mexiletine as a treatment for primary erythromelalgia: normalization of biophysical properties of mutant L858F NaV 1.7 sodium channels. Br J Pharmacol 2014;171:4455-63.
- 167. Estacion M, Waxman SG, Dib-Hajj SD. Effects of ranolazine on wild-type and mutant hNav1.7 channels and on DRG neuron excitability. Mol Pain 2010;6:35.
- 168. Vasylyev DV, Han C, Zhao P, Dib-Hajj S, Waxman SG. Dynamic-clamp analysis of wild-type human Nav1.7 and erythromelalgia mutant channel L858H. J Neurophysiol 2014;111:1429-43.
- 169. Bendahhou S, Cummins TR, Tawil R, Waxman SG, Ptácek LJ. Activation and inactivation of the voltage-gated sodium channel: role of segment S5 revealed by a novel hyperkalaemic periodic paralysis mutation. J Neurosci 1999;19:4762-71.
- Huang S, Zhang W, Chang X, Guo J. Overlap of periodic paralysis and paramyotonia congenita caused by SCN4A gene mutations two family reports and literature review. Channels (Austin) 2019;13:110-9.
- 171. Harty TP, Dib-Hajj SD, Tyrrell L, et al. Na(V)1.7 mutant A863P in erythromelalgia: effects of altered activation and steady-state inactivation on excitability of nociceptive dorsal root ganglion neurons. J Neurosci 2006;26:12566-75.
- 172. Rhodes TH, Lossin C, Vanoye CG, Wang DW, George AL, Jr. Noninactivating voltage-gated sodium channels in severe myoclonic epilepsy of infancy. Proc Natl Acad Sci U S A 2004;101:11147-52.
- 173. Ohmori I, Ouchida M, Ohtsuka Y, Oka E, Shimizu K. Significant correlation of the SCN1A mutations and severe myoclonic epilepsy in infancy. Biochem Biophys Res Commun 2002;295:17-23.
- 174. Choi JS, Zhang L, Dib-Hajj SD, et al. Mexiletine-responsive erythromelalgia due to a new Na(v)1.7 mutation showing use-dependent current fall-off. Exp Neurol 2009;216:383-9.
- 175. Stadler T, O'Reilly AO, Lampert A. Erythromelalgia mutation Q875E Stabilizes the activated state of sodium channel Nav1.7. J Biol Chem 2015;290:6316-25.
- 176. Skeik N, Rooke TW, Davis MD, et al. Severe case and literature review of primary erythromelalgia: novel SCN9A gene mutation. Vasc Med 2012;17:44-9.
- 177. Cox JJ, Sheynin J, Shorer Z, et al. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 2010;31:E1670-86.
- 178. Tarradas A, Selga E, Beltran-Alvarez P, et al. A novel missense mutation, 1890T, in the pore region of cardiac sodium channel causes Brugada syndrome. PLoS One 2013;8:e53220.
- 179. Savastano S, Rordorf R, Vicentini A, et al. A comprehensive electrocardiographic, molecular, and echocardiographic study of Brugada syndrome: validation of the 2013 diagnostic criteria. Heart Rhythm 2014;11:1176-83.
- 180. Begemann A, Acuna MA, Zweier M, et al. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol Med 2019;25:6.

- 181. Rauch A, Wieczorek D, Graf E, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 2012;380:1674-82.
- 182. Liao WP, Shi YW, Long YS, et al. Partial epilepsy with antecedent febrile seizures and seizure aggravation by antiepileptic drugs: associated with loss of function of Na(v) 1.1. Epilepsia 2010;51:1669-78.
- 183. Pambrun T, Mercier A, Chatelier A, et al. Myotonic dystrophy type 1 mimics and exacerbates Brugada phenotype induced by Nav1.5 sodium channel loss-of-function mutation. Heart Rhythm 2014;11:1393-400.
- 184. Sugawara T, Tsurubuchi Y, Fujiwara T, et al. Nav1.1 channels with mutations of severe myoclonic epilepsy in infancy display attenuated currents. Epilepsy Res 2003;54:201-7.
- 185. Wagnon JL, Barker BS, Ottolini M, et al. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol Genet 2017;3:e170.
- 186. Lossin C, Rhodes TH, Desai RR, et al. Epilepsy-associated dysfunction in the voltage-gated neuronal sodium channel SCN1A. J Neurosci 2003;23:11289-95.
- 187. Thompson CH, Porter JC, Kahlig KM, Daniels MA, George AL, Jr. Nontruncating SCN1A mutations associated with severe myoclonic epilepsy of infancy impair cell surface expression. J Biol Chem 2012;287:42001-8.
- 188. Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68:1327-32.
- 189. Elia N, Nault T, McMillan HJ, Graham GE, Huang L, Cannon SC. Myotonic Myopathy With Secondary Joint and Skeletal Anomalies From the c.2386C>G, p.L769V Mutation in SCN4A. Front Neurol 2020;11:77.
- 190. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation 2007;116:1137-44.
- 191. Schwartz PJ, Priori SG, Dumaine R, et al. A Molecular Link between the Sudden Infant Death Syndrome and the Long-QT Syndrome. New England Journal of Medicine 2000;343:262-7.
- 192. Huang J, Estacion M, Zhao P, et al. A Novel Gain-of-Function Nav1.9 Mutation in a Child With Episodic Pain. Front Neurosci 2019;13:918.
- 193. Miao P, Tang S, Ye J, et al. Electrophysiological features: The next precise step for SCN2A developmental epileptic encephalopathy. Mol Genet Genomic Med 2020:e1250.
- 194. Hsueh CH, Chen WP, Lin JL, et al. Distinct functional defect of three novel Brugada syndrome related cardiac sodium channel mutations. J Biomed Sci 2009;16:23.
- 195. Splawski I, Timothy KW, Tateyama M, et al. Variant of SCN5A sodium channel implicated in risk of cardiac arrhythmia. Science 2002;297:1333-6.
- 196. Plant LD, Bowers PN, Liu Q, et al. A common cardiac sodium channel variant associated with sudden infant death in African Americans, SCN5A S1103Y. J Clin Invest 2006;116:430-5.
- 197. Cestele S, Labate A, Rusconi R, et al. Divergent effects of the T1174S SCN1A mutation associated with seizures and hemiplegic migraine. Epilepsia 2013;54:927-35.
- 198. Estacion M, Harty TP, Choi JS, Tyrrell L, Dib-Hajj SD, Waxman SG. A sodium channel gene SCN9A polymorphism that increases nociceptor excitability. Ann Neurol 2009;66:862-6.

- 199. Winkel BG, Larsen MK, Berge KE, et al. The prevalence of mutations in KCNQ1, KCNH2, and SCN5A in an unselected national cohort of young sudden unexplained death cases. J Cardiovasc Electrophysiol 2012;23:1092-8.
- 200. Escayg A, Heils A, MacDonald BT, Haug K, Sander T, Meisler MH. A Novel SCN1A Mutation Associated with Generalized Epilepsy with Febrile Seizures Plus—and Prevalence of Variants in Patients with Epilepsy. The American Journal of Human Genetics 2001;68:866-73.
- 201. Marini C, Mei D, Temudo T, et al. Idiopathic Epilepsies with Seizures Precipitated by Fever and SCN1A Abnormalities. Epilepsia 2007;48:1678-85.
- 202. Wang Q, Chen S, Chen Q, et al. The common SCN5A mutation R1193Q causes LQTS-type electrophysiological alterations of the cardiac sodium channel. J Med Genet 2004;41:e66.
- 203. Huang H, Zhao J, Barrane FZ, Champagne J, Chahine M. Nav1.5/R1193Q polymorphism is associated with both long QT and Brugada syndromes. Can J Cardiol 2006;22:309-13.
- 204. Abdelsayed M, Peters CH, Ruben PC. Differential thermosensitivity in mixed syndrome cardiac sodium channel mutants. J Physiol 2015;593:4201-23.
- 205. Abe M, Kinoshita K, Matsuoka K, et al. Lack of modulatory effect of the SCN5A R1193Q polymorphism on cardiac fast Na+ current at body temperature. PLoS One 2018;13:e0207437.
- 206. Li L, Ruan Y, Liu N, et al. "Pill-in-the-Pocket" Treatment of Propafenone Unmasks ECG Brugada Pattern in an Atrial Fibrillation Patient With a Common SCN5A R1193Q Polymorphism. Front Physiol 2019;10:353.
- 207. Takahata T, Yasui-Furukori N, Sasaki S, et al. Nucleotide changes in the translated region of SCN5A from Japanese patients with Brugada syndrome and control subjects. Life Sci 2003;72:2391-9.
- 208. Ogiwara I, Ito K, Sawaishi Y, et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 2009;73:1046-53.
- 209. Schulze-Bahr E, Eckardt L, Breithardt G, et al. Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 2003;21:651-2.
- 210. Crotti L, Marcou CA, Tester DJ, et al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J Am Coll Cardiol 2012;60:1410-8.
- 211. Baroudi G, Acharfi S, Larouche C, Chahine M. Expression and intracellular localization of an SCN5A double mutant R1232W/T1620M implicated in Brugada syndrome. Circ Res 2002;90:E11-6.
- 212. Makita N, Mochizuki N, Tsutsui H. Absence of a trafficking defect in R1232W/T1620M, a double SCN5A mutant responsible for Brugada syndrome. Circ J 2008;72:1018-9.
- 213. Chen Q, Kirsch GE, Zhang D, et al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 1998;392:293-6.
- 214. Peters C, Rosch RE, Hughes E, Ruben PC. Temperature-dependent changes in neuronal dynamics in a patient with an SCN1A mutation and hyperthermia induced seizures. Sci Rep 2016;6:31879.
- 215. Hermida JS, Arnalsteen-Dassonvalle E, Kubala M, et al. Dual phenotypic transmission in Brugada syndrome. Arch Cardiovasc Dis 2013;106:366-72.
- 216. Zaytseva AK, Karpushev AV, Kiselev AM, et al. Characterization of a novel SCN5A genetic variant A1294G associated with mixed clinical phenotype. Biochem Biophys Res Commun 2019;516:777-83.

- 217. Abriel H, Cabo C, Wehrens XH, et al. Novel arrhythmogenic mechanism revealed by a long-QT syndrome mutation in the cardiac Na(+) channel. Circ Res 2001;88:740-5.
- Huang J, Yang Y, Dib-Hajj SD, et al. Depolarized inactivation overcomes impaired activation to produce DRG neuron hyperexcitability in a Nav1.7 mutation in a patient with distal limb pain. J Neurosci 2014;34:12328-40.
- 219. Olesen MS, Yuan L, Liang B, et al. High prevalence of long QT syndrome-associated SCN5A variants in patients with early-onset lone atrial fibrillation. Circ Cardiovasc Genet 2012;5:450-9.
- 220. Lossin C, Shi X, Rogawski MA, Hirose S. Compromised function in the Na(v)1.2 Dravet syndrome mutation R1312T. Neurobiol Dis 2012;47:378-84.
- 221. Shi X, Yasumoto S, Nakagawa E, Fukasawa T, Uchiya S, Hirose S. Missense mutation of the sodium channel gene SCN2A causes Dravet syndrome. Brain Dev 2009;31:758-62.
- 222. Misra SN, Kahlig KM, George AL, Jr. Impaired NaV1.2 function and reduced cell surface expression in benign familial neonatal-infantile seizures. Epilepsia 2008;49:1535-45.
- 223. Berkovic SF, Heron SE, Giordano L, et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004;55:550-7.
- 224. Casini S, Tan HL, Bhuiyan ZA, et al. Characterization of a novel SCN5A mutation associated with Brugada syndrome reveals involvement of DIIIS4-S5 linker in slow inactivation. Cardiovasc Res 2007;76:418-29.
- 225. Jarecki BW, Sheets PL, Jackson JO, 2nd, Cummins TR. Paroxysmal extreme pain disorder mutations within the D3/S4-S5 linker of Nav1.7 cause moderate destabilization of fast inactivation. J Physiol 2008;586:4137-53.
- 226. Cheng X, Dib-Hajj SD, Tyrrell L, Wright DA, Fischer TZ, Waxman SG. Mutations at opposite ends of the DIII/S4-S5 linker of sodium channel Na V 1.7 produce distinct pain disorders. Mol Pain 2010;6:24.
- 227. Fertleman CR, Baker MD, Parker KA, et al. SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 2006;52:767-74.
- 228. Wang DW, Yazawa K, George AL, Jr., Bennett PB. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc Natl Acad Sci U S A 1996;93:13200-5.
- 229. Tian XL, Yong SL, Wan X, et al. Mechanisms by which SCN5A mutation N1325S causes cardiac arrhythmias and sudden death in vivo. Cardiovasc Res 2004;61:256-67.
- 230. Li G, Woltz RL, Wang CY, et al. Gating Properties of Mutant Sodium Channels and Responses to Sodium Current Inhibitors Predict Mexiletine-Sensitive Mutations of Long QT Syndrome 3. Front Pharmacol 2020;11:1182.
- Wang Q, Shen J, Li Z, et al. Cardiac sodium channel mutations in patients with long QT syndrome, an inherited cardiac arrhythmia. Hum Mol Genet 1995;4:1603-7.
- Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002;360:851-2.
- 233. Turker I, Makiyama T, Vatta M, et al. A Novel SCN5A Mutation Associated with Drug Induced Brugada Type ECG. PLoS One 2016;11:e0161872.
- 234. Wedekind H, Smits JP, Schulze-Bahr E, et al. De novo mutation in the SCN5A gene associated with early onset of sudden infant death. Circulation 2001;104:1158-64.

- 235. Berecki G, Zegers JG, Bhuiyan ZA, Verkerk AO, Wilders R, van Ginneken AC. Long-QT syndrome-related sodium channel mutations probed by the dynamic action potential clamp technique. J Physiol 2006;570:237-50.
- 236. Palmio J, Sandell S, Hanna MG, Männikkö R, Penttilä S, Udd B. Predominantly myalgic phenotype caused by the c.3466G>A p.A1156T mutation in SCN4A gene. Neurology 2017;88:1520-7.
- 237. McClatchey AI, McKenna-Yasek D, Cros D, et al. Novel mutations in families with unusual and variable disorders of the skeletal muscle sodium channel. Nat Genet 1992;2:148-52.
- 238. Smits JP, Veldkamp MW, Bezzina CR, et al. Substitution of a conserved alanine in the domain IIIS4-S5 linker of the cardiac sodium channel causes long QT syndrome. Cardiovasc Res 2005;67:459-66.
- 239. Desaphy JF, Carbonara R, D'Amico A, et al. Translational approach to address therapy in myotonia permanens due to a new SCN4A mutation. Neurology 2016;86:2100-8.
- 240. Schulze-Bahr E, Fenge H, Etzrodt D, et al. Long QT syndrome and life threatening arrhythmia in a newborn: molecular diagnosis and treatment response. Heart 2004;90:13-6.
- 241. Sugiura Y, Makita N, Li L, et al. Cold induces shifts of voltage dependence in mutant SCN4A, causing hypokalemic periodic paralysis. Neurology 2003;61:914-8.
- 242. Webb J, Cannon SC. Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia. Neurology 2008;70:755-61.
- 243. Huang H, Millat G, Rodriguez-Lafrasse C, et al. Biophysical characterization of a new SCN5A mutation S1333Y in a SIDS infant linked to long QT syndrome. FEBS Lett 2009;583:890-6.
- Barker BS, Ottolini M, Wagnon JL, Hollander RM, Meisler MH, Patel MK. The SCN8A encephalopathy mutation p.lle1327Val displays elevated sensitivity to the anticonvulsant phenytoin. Epilepsia 2016;57:1458-66.
- 245. Vaher U, Noukas M, Nikopensius T, et al. De novo SCN8A mutation identified by whole-exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J Child Neurol 2014;29:NP202-6.
- 246. Singh R, Jayapal S, Goyal S, Jungbluth H, Lascelles K. Early-onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure 2015;26:69-71.
- 247. Patel RR, Barbosa C, Brustovetsky T, Brustovetsky N, Cummins TR. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 2016;139:2164-81.
- 248. Carvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013;45:825-30.
- Hackenberg A, Baumer A, Sticht H, et al. Infantile epileptic encephalopathy, transient choreoathetotic movements, and hypersomnia due to a De Novo missense mutation in the SCN2A gene. Neuropediatrics 2014;45:261-4.
- 250. Matalon D, Goldberg E, Medne L, Marsh ED. Confirming an expanded spectrum of SCN2A mutations: a case series. Epileptic Disord 2014;16:13-8.
- 251. Dimassi S, Labalme A, Ville D, et al. Whole-exome sequencing improves the diagnosis yield in sporadic infantile spasm syndrome. Clin Genet 2016;89:198-204.
- 252. Wu MT, Huang PY, Yen CT, Chen CC, Lee MJ. A novel SCN9A mutation responsible for primary erythromelalgia and is resistant to the treatment of sodium channel blockers. PLoS One 2013;8:e55212.

- 253. Estacion M, Yang Y, Dib-Hajj SD, et al. A new Nav1.7 mutation in an erythromelalgia patient. Biochem Biophys Res Commun 2013;432:99-104.
- Huang CW, Lai HJ, Huang PY, Lee MJ, Kuo CC. The Biophysical Basis Underlying Gating Changes in the p.V1316A Mutant Nav1.7 Channel and the Molecular Pathogenesis of Inherited Erythromelalgia. PLoS Biol 2016;14:e1002561.
- 255. Leipold E, Hanson-Kahn A, Frick M, et al. Cold-aggravated pain in humans caused by a hyperactive NaV1.9 channel mutant. Nat Commun 2015;6:10049.
- 256. Samani K, Wu G, Ai T, et al. A novel SCN5A mutation V1340I in Brugada syndrome augmenting arrhythmias during febrile illness. Heart Rhythm 2009;6:1318-26.
- 257. Wallace RH, Scheffer IE, Barnett S, et al. Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus. Am J Hum Genet 2001;68:859-65.
- 258. Keller DI, Huang H, Zhao J, et al. A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. Cardiovasc Res 2006;70:521-9.
- 259. Lee YS, Baek JS, Kim SY, et al. Childhood brugada syndrome in two korean families. Korean Circ J 2010;40:143-7.
- 260. Osaka H, Ogiwara I, Mazaki E, et al. Patients with a sodium channel alpha 1 gene mutation show wide phenotypic variation. Epilepsy Res 2007;75:46-51.
- 261. Rudnik-Schöneborn S, Schaupp M, Lindner A, et al. Brugada-like cardiac disease in myotonic dystrophy type 2: report of two unrelated patients. Eur J Neurol 2011;18:191-4.
- Zumhagen S, Zeidler EM, Stallmeyer B, Ernsting M, Eckardt L, Schulze-Bahr E. Tpeak-Tend interval and Tpeak-Tend/QT ratio in patients with Brugada syndrome. Europace 2016;18:1866-72.
- Tan BH, Valdivia CR, Song C, Makielski JC. Partial expression defect for the SCN5A missense mutation G1406R depends on splice variant background Q1077 and rescue by mexiletine. Am J Physiol Heart Circ Physiol 2006;291:H1822-8.
- 264. Kyndt F, Probst V, Potet F, et al. Novel SCN5A mutation leading either to isolated cardiac conduction defect or Brugada syndrome in a large French family. Circulation 2001;104:3081-6.
- 265. Kim HW, Quan Z, Kim YB, et al. Differential effects on sodium current impairments by distinct SCN1A mutations in GABAergic neurons derived from Dravet syndrome patients. Brain Dev 2018;40:287-98.
- Hermida JS, Dassonvalle E, Six I, et al. Prospective evaluation of the familial prevalence of the brugada syndrome. Am J Cardiol 2010;106:1758-62.
- 267. Zhu JF, Du LL, Tian Y, et al. Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome. Exp Ther Med 2015;9:1639-45.
- 268. Maury P, Moreau A, Hidden-Lucet F, et al. Novel SCN5A mutations in two families with "Brugada-like" ST elevation in the inferior leads and conduction disturbances. J Interv Card Electrophysiol 2013;37:131-40.
- Deschenes I, Baroudi G, Berthet M, et al. Electrophysiological characterization of SCN5A mutations causing long QT (E1784K) and Brugada (R1512W and R1432G) syndromes. Cardiovasc Res 2000;46:55-65.
- 270. Hothi SS, Ara F, Timperley J. p.Y1449C SCN5A mutation associated with overlap disorder comprising conduction disease, Brugada syndrome, and atrial flutter. J Cardiovasc Electrophysiol 2015;26:93-7.
- 271. Sacilotto L, Epifanio HB, Darrieux FC, et al. Compound Heterozygous SCN5A Mutations in a Toddler Are they Associated with a More Severe Phenotype? Arg Bras Cardiol 2017;108:70-3.

- 272. Farinato A, Altamura C, Imbrici P, et al. Pharmacogenetics of myotonic hNav1.4 sodium channel variants situated near the fast inactivation gate. Pharmacol Res 2019;141:224-35.
- 273. Koch MC, Baumbach K, George AL, Ricker K. Paramyotonia congenita without paralysis on exposure to cold: a novel mutation in the SCN4A gene (Val1293lle). Neuroreport 1995;6:2001-4.
- 274. Gay S, Dupuis D, Faivre L, et al. Severe neonatal non-dystrophic myotonia secondary to a novel mutation of the voltage-gated sodium channel (SCN4A) gene. Am J Med Genet A 2008;146a:380-3.
- 275. Maggi L, Ravaglia S, Farinato A, et al. Coexistence of CLCN1 and SCN4A mutations in one family suffering from myotonia. Neurogenetics 2017;18:219-25.
- 276. Bankston JR, Yue M, Chung W, et al. A novel and lethal de novo LQT-3 mutation in a newborn with distinct molecular pharmacology and therapeutic response. PLoS One 2007;2:e1258.
- 277. Cai ZQ, Li WP, Chen X, et al. [The reverse effects of allitridum on sodium current decrease caused by SCN5A-F1473S mutation]. Yao Xue Xue Bao 2016;51:1852-7.
- 278. Ruan Y, Denegri M, Liu N, et al. Trafficking Defects and Gating Abnormalities of a Novel <i>SCN5A</i> Mutation Question Gene-Specific Therapy in Long QT Syndrome Type 3. Circulation Research 2010;106:1374-83.
- 279. Dib-Hajj SD, Rush AM, Cummins TR, et al. Gain-of-function mutation in Nav1.7 in familial erythromelalgia induces bursting of sensory neurons. Brain 2005;128:1847-54.
- 280. Gurkiewicz M, Korngreen A, Waxman SG, Lampert A. Kinetic modeling of Nav1.7 provides insight into erythromelalgia-associated F1449V mutation. J Neurophysiol 2011;105:1546-57.
- 281. Gando I, Campana C, Tan RB, Cecchin F, Sobie EA, Coetzee WA. A distinct molecular mechanism by which phenytoin rescues a novel long QT 3 variant. J Mol Cell Cardiol 2020;144:1-11.
- 282. Tan RB, Chakravarti S, Busovsky-McNeal M, Walsh A, Cecchin F. Complexity of ranolazine and phenytoin use in an infant with long QT syndrome type 3. HeartRhythm Case Rep 2017;3:104-8.
- 283. Barbieri R, Bertelli S, Pusch M, Gavazzo P. Late sodium current blocker GS967 inhibits persistent currents induced by familial hemiplegic migraine type 3 mutations of the SCN1A gene. J Headache Pain 2019;20:107.
- 284. Vahedi K, Depienne C, Le Fort D, et al. Elicited repetitive daily blindness. A new phenotype associated with hemiplegic migraine and SCN1A mutations 2009;72:1178-83.
- 285. Cestele S, Scalmani P, Rusconi R, Terragni B, Franceschetti S, Mantegazza M. Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci 2008;28:7273-83.
- 286. Moreau A, Krahn AD, Gosselin-Badaroudine P, et al. Sodium overload due to a persistent current that attenuates the arrhythmogenic potential of a novel LQT3 mutation. Front Pharmacol 2013;4:126.
- 287. Lerche H, Heine R, Pika U, et al. Human sodium channel myotonia: slowed channel inactivation due to substitutions for a glycine within the III-IV linker. J Physiol 1993;470:13-22.
- 288. Liu Y, Schubert J, Sonnenberg L, et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain 2019;142:376-90.
- Parrini E, Marini C, Mei D, et al. Diagnostic Targeted Resequencing in 349 Patients with Drug-Resistant Pediatric Epilepsies Identifies Causative Mutations in 30 Different Genes. Hum Mutat 2017;38:216-25.

- 290. Wang J, Gao H, Bao X, et al. SCN8A mutations in Chinese patients with early onset epileptic encephalopathy and benign infantile seizures. BMC Med Genet 2017;18:104.
- 291. Xiao Y, Xiong J, Mao D, et al. Early-onset epileptic encephalopathy with de novo SCN8A mutation. Epilepsy Res 2018;139:9-13.
- 292. Gardella E, Marini C, Trivisano M, et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 2018;91:e1112-e24.
- 293. Weller CM, Pelzer N, de Vries B, et al. Two novel SCN1A mutations identified in families with familial hemiplegic migraine. Cephalalgia 2014;34:1062-9.
- 294. Domitrz I, Kosiorek M, Żekanowski C, Kamińska A. Genetic studies of Polish migraine patients: screening for causative mutations in four migraine-associated genes. Hum Genomics 2016;10:3.
- 295. Bouhours M, Sternberg D, Davoine CS, et al. Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans. J Physiol 2004;554:635-47.
- 296. Saber S, Amarouch MY, Fazelifar AF, et al. Complex genetic background in a large family with Brugada syndrome. Physiol Rep 2015;3.
- 297. Zheng J, Zhou F, Su T, et al. The biophysical characterization of the first SCN5A mutation R1512W identified in Chinese sudden unexplained nocturnal death syndrome. Medicine (Baltimore) 2016;95:e3836.
- 298. Dharmawan T, Nakajima T, Iizuka T, et al. Enhanced closed-state inactivation of mutant cardiac sodium channels (SCN5A N1541D and R1632C) through different mechanisms. J Mol Cell Cardiol 2019;130:88-95.
- 299. Ke Q, Ye J, Tang S, et al. N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita. J Physiol 2017;595:6837-50.
- 300. Lewis TB, Shevell MI, Andermann E, Ryan SG, Leach RJ. Evidence of a third locus for benign familial convulsions. J Child Neurol 1996;11:211-4.
- 301. Cregg R, Laguda B, Werdehausen R, et al. Novel mutations mapping to the fourth sodium channel domain of Nav1.7 result in variable clinical manifestations of primary erythromelalgia. Neuromolecular Med 2013;15:265-78.
- 302. Ohmori I, Ouchida M, Kobayashi K, et al. Rasmussen encephalitis associated with SCN 1 A mutation. Epilepsia 2008;49:521-6.
- 303. Harkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007;130:843-52.
- 304. Kim YO, Bellows S, McMahon JM, et al. Atypical multifocal Dravet syndrome lacks generalized seizures and may show later cognitive decline. Dev Med Child Neurol 2014;56:85-90.
- 305. Lauxmann S, Boutry-Kryza N, Rivier C, et al. An SCN2A mutation in a family with infantile seizures from Madagascar reveals an increased subthreshold Na(+) current. Epilepsia 2013;54:e117-21.
- 306. Wang DW, Viswanathan PC, Balser JR, George AL, Jr., Benson DW. Clinical, genetic, and biophysical characterization of SCN5A mutations associated with atrioventricular conduction block. Circulation 2002;105:341-6.
- 307. Fan C, Wolking S, Lehmann-Horn F, et al. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 2016;36:1238-47.

- 308. Surber R, Hensellek S, Prochnau D, et al. Combination of cardiac conduction disease and long QT syndrome caused by mutation T1620K in the cardiac sodium channel. Cardiovasc Res 2008;77:740-8.
- 309. Wang DW, Makita N, Kitabatake A, Balser JR, George AL, Jr. Enhanced Na(+) channel intermediate inactivation in Brugada syndrome. Circ Res 2000;87:E37-43.
- 310. Kambouris NG, Nuss HB, Johns DC, Tomaselli GF, Marban E, Balser JR. Phenotypic characterization of a novel long-QT syndrome mutation (R1623Q) in the cardiac sodium channel. Circulation 1998;97:640-4.
- 311. Tsurugi T, Nagatomo T, Abe H, et al. Differential modulation of late sodium current by protein kinase A in R1623Q mutant of LQT3. Life Sci 2009;84:380-7.
- 312. Kambouris NG, Nuss HB, Johns DC, Marban E, Tomaselli GF, Balser JR. A revised view of cardiac sodium channel "blockade" in the long-QT syndrome. J Clin Invest 2000;105:1133-40.
- 313. Miura M, Yamagishi H, Morikawa Y, Matsuoka R. Congenital long QT syndrome and 2:1 atrioventricular block with a mutation of the SCN5A gene. Pediatr Cardiol 2003;24:70-2.
- 314. Wagnon JL, Barker BS, Hounshell JA, et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol 2016;3:114-23.
- 315. Ohba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014;55:994-1000.
- 316. Kong W, Zhang Y, Gao Y, et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia 2015;56:431-8.
- 317. Larsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015;84:480-9.
- 318. Poulin H, Gosselin-Badaroudine P, Vicart S, et al. Substitutions of the S4DIV R2 residue (R1451) in Na(V)1.4 lead to complex forms of paramyotonia congenita and periodic paralyses. Sci Rep 2018;8:2041.
- 319. Zeng Z, Zhou J, Hou Y, et al. Electrophysiological characteristics of a SCN5A voltage sensors mutation R1629Q associated with Brugada syndrome. PLoS One 2013;8:e78382.
- 320. Habbout K, Poulin H, Rivier F, et al. A recessive Nav1.4 mutation underlies congenital myasthenic syndrome with periodic paralysis. Neurology 2016;86:161-9.
- 321. Bednarz M, Stunnenberg BC, Kusters B, et al. A novel Ile1455Thr variant in the skeletal muscle sodium channel alpha-subunit in a patient with a severe adult-onset proximal myopathy with electrical myotonia and a patient with mild paramyotonia phenotype. Neuromuscul Disord 2017;27:175-82.
- Wang DW, Crotti L, Shimizu W, et al. Malignant perinatal variant of long-QT syndrome caused by a profoundly dysfunctional cardiac sodium channel. Circ Arrhythm Electrophysiol 2008;1:370-8.
- 323. Choi JS, Boralevi F, Brissaud O, et al. Paroxysmal extreme pain disorder: a molecular lesion of peripheral neurons. Nat Rev Neurol 2011;7:51-5.
- 324. Nakajima T, Kaneko Y, Saito A, Ota M, Iijima T, Kurabayashi M. Enhanced fast-inactivated state stability of cardiac sodium channels by a novel voltage sensor SCN5A mutation, R1632C, as a cause of atypical Brugada syndrome. Heart Rhythm 2015;12:2296-304.
- 325. García-Molina E, Sabater-Molina M, Muñoz C, Ruiz-Espejo F, Gimeno JR. An R1632C variant in the SCN5A gene causing Brugada syndrome. Mol Med Rep 2016;13:4677-80.

- 326. Arnold WD, Feldman DH, Ramirez S, et al. Defective fast inactivation recovery of Nav 1.4 in congenital myasthenic syndrome. Ann Neurol 2015;77:840-50.
- 327. Benson DW, Wang DW, Dyment M, et al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J Clin Invest 2003;112:1019-28.
- 328. Robyns T, Nuyens D, Van Casteren L, et al. Reduced Penetrance and Variable Expression of SCN5A Mutations and the Importance of Co-inherited Genetic Variants: Case Report and Review of the Literature. Indian Pacing Electrophysiol J 2014;14:133-49.
- 329. Vanoye CG, Lossin C, Rhodes TH, George AL, Jr. Single-channel properties of human NaV1.1 and mechanism of channel dysfunction in SCN1A-associated epilepsy. J Gen Physiol 2006;127:1-14.
- 330. Kahlig KM, Lepist I, Leung K, Rajamani S, George AL. Ranolazine selectively blocks persistent current evoked by epilepsy-associated Nanu1.1 mutations. Br J Pharmacol 2010;161:1414-26.
- 331. Elia N, Palmio J, Castañeda MS, et al. Myasthenic congenital myopathy from recessive mutations at a single residue in Na(V)1.4. Neurology 2019;92:e1405-e15.
- 332. Suter MR, Bhuiyan ZA, Laedermann CJ, et al. p.L1612P, a novel voltage-gated sodium channel Nav1.7 mutation inducing a cold sensitive paroxysmal extreme pain disorder. Anesthesiology 2015;122:414-23.
- 333. Cestèle S, Schiavon E, Rusconi R, Franceschetti S, Mantegazza M. Nonfunctional NaV1.1 familial hemiplegic migraine mutant transformed into gain of function by partial rescue of folding defects. Proc Natl Acad Sci USA 2013;110:17546-51.
- 334. Liu SZ, P. Altered PKA modulation in the Na(v)1.1 epilepsy variant I1656M. J Neurophysiol 2013;110:2090-8.
- 335. Nieto-Marin P, Jimenez-Jaimez J, Tinaquero D, et al. Digenic Heterozigosity in SCN5A and CACNA1C Explains the Variable Expressivity of the Long QT Phenotype in a Spanish Family. Rev Esp Cardiol (Engl Ed) 2019;72:324-32.
- Fleischhauer R, Mitrovic N, Deymeer F, Lehmann-Horn F, Lerche H. Effects of temperature and mexiletine on the F1473S Na+ channel mutation causing paramyotonia congenita. Pflugers Arch 1998;436:757-65.
- 337. Depienne C, Trouillard O, Gourfinkel-An I, et al. Mechanisms for variable expressivity of inherited SCN1A mutations causing Dravet syndrome. J Med Genet 2010;47:404-10.
- 338. Dib-Hajj SD, Estacion M, Jarecki BW, et al. Paroxysmal extreme pain disorder M1627K mutation in human Nav1.7 renders DRG neurons hyperexcitable. Mol Pain 2008;4:37.
- 339. Kim HJ, Kim BG, Park JE, et al. Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 2019;9:12997.
- 340. Estacion M, Dib-Hajj SD, Benke PJ, et al. NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 2008;28:11079-88.
- Rühlmann AH, Körner J, Hausmann R, et al. Uncoupling sodium channel dimers restores the phenotype of a pain-linked Na(v) 1.7 channel mutation. Br J Pharmacol 2020;177:4481-96.
- 342. Yang Y, Huang J, Mis MA, et al. Nav1.7-A1632G Mutation from a Family with Inherited Erythromelalgia: Enhanced Firing of Dorsal Root Ganglia Neurons Evoked by Thermal Stimuli. J Neurosci 2016;36:7511-22.
- 343. Eberhardt M, Nakajima J, Klinger AB, et al. Inherited pain: sodium channel Nav1.7 A1632T mutation causes erythromelalgia due to a shift of fast inactivation. J Biol Chem 2014;289:1971-80.

- 344. Bertelli S, Barbieri R, Pusch M, Gavazzo P. Gain of function of sporadic/familial hemiplegic migraine-causing SCN1A mutations: Use of an optimized cDNA. Cephalalgia 2019;39:477-88.
- 345. Dhifallah S, Lancaster E, Merrill S, Leroudier N, Mantegazza M, Cestele S. Gain of Function for the SCN1A/hNav1.1-L1670W Mutation Responsible for Familial Hemiplegic Migraine. Front Mol Neurosci 2018;11:232.
- Nakajima T, Dharmawan T, Kawabata-Iwakawa R, et al. Biophysical defects of an SCN5A V1667I mutation associated with epinephrine-induced marked QT prolongation. J Cardiovasc Electrophysiol 2020.
- 347. Sugiura Y, Ogiwara I, Hoshi A, Yamakawa K, Ugawa Y. Different degrees of loss of function between GEFS+ and SMEI Nav 1.1 missense mutants at the same residue induced by rescuable folding defects. Epilepsia 2012;53:e111-4.
- 348. Sugawara T, Mazaki–Miyazaki E, Ito M, et al. Nav1.1 mutations cause febrile seizures associated with afebrile partial seizures. Neurology 2001;57:703-5.
- 349. Kaluza L, Meents JE, Hampl M, et al. Loss-of-function of Nav1.8/D1639N linked to human pain can be rescued by lidocaine. Pflugers Arch 2018;470:1787-801.
- 350. Dabby R, Sadeh M, Broitman Y, Yosovich K, Dickman R, Leshinsky-Silver E. Painful small fiber neuropathy with gastroparesis: A new phenotype with a novel mutation in the SCN10A gene. J Clin Neurosci 2016;26:84-8.
- 351. Zeng Z, Xie Q, Huang Y, Zhao Y, Li W, Huang Z. p.D1690N sodium voltage-gated channel alpha subunit 5 mutation reduced sodium current density and is associated with Brugada syndrome. Mol Med Rep 2016;13:5216-22.
- Nunez L, Barana A, Amoros I, et al. p.D1690N Nav1.5 rescues p.G1748D mutation gating defects in a compound heterozygous Brugada syndrome patient. Heart Rhythm 2013;10:264-72.
- 353. Lakshmanadoss U, Mertens A, Gallagher M, Kutinsky I, Williamson B. Sudden cardiac arrest due to a single sodium channel mutation producing a mixed phenotype of Brugada and Long QT3 syndromes. Indian Pacing Electrophysiol J 2016;16:66-9.
- 354. Chen YY, Liu SR, Xie LZ, et al. [Functional analysis of a novel SCN5A mutation G1712C identified in Brugada syndrome]. Nan Fang Yi Ke Da Xue Xue Bao 2016;37:256-60.
- 355. Han C, Vasylyev D, Macala LJ, et al. The G1662S NaV1.8 mutation in small fibre neuropathy: impaired inactivation underlying DRG neuron hyperexcitability. J Neurol Neurosurg Psychiatry 2014;85:499-505.
- 356. Amin AS, Verkerk AO, Bhuiyan ZA, Wilde AA, Tan HL. Novel Brugada syndrome-causing mutation in ion-conducting pore of cardiac Na+ channel does not affect ion selectivity properties. Acta Physiol Scand 2005;185:291-301.
- 357. Baroudi G, Napolitano C, Priori SG, Del Bufalo A, Chahine M. Loss of function associated with novel mutations of the SCN5A gene in patients with Brugada syndrome. Can J Cardiol 2004;20:425-30.
- 358. Valdivia CR, Tester DJ, Rok BA, et al. A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc Res 2004;62:53-62.
- 359. Huang J, Yang Y, Zhao P, et al. Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 2013;33:14087-97.
- 360. Chastan N, Lebas A, Legoff F, Parain D, Guyant-Marechal L. Clinical and electroencephalographic abnormalities during the full duration of a sporadic hemiplegic migraine attack. Neurophysiol Clin 2016;46:307-11.
- 361. Chang CC, Acharfi S, Wu MH, et al. A novel SCN5A mutation manifests as a malignant form of long QT syndrome with perinatal onset of tachycardia/bradycardia. Cardiovasc Res 2004;64:268-78.

- 362. Valdivia CR, Ackerman MJ, Tester DJ, et al. A novel SCN5A arrhythmia mutation, M1766L, with expression defect rescued by mexiletine. Cardiovasc Res 2002;55:279-89.
- Huang H, Priori SG, Napolitano C, O'Leary ME, Chahine M. Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels. Am J Physiol Heart Circ Physiol 2011;300:H288-99.
- 364. Rivolta I, Clancy CE, Tateyama M, Liu H, Priori SG, Kass RS. A novel SCN5A mutation associated with long QT-3: altered inactivation kinetics and channel dysfunction. Physiol Genomics 2002;10:191-7.
- 365. Clancy CE, Tateyama M, Liu H, Wehrens XH, Kass RS. Non-equilibrium gating in cardiac Na+ channels: an original mechanism of arrhythmia. Circulation 2003;107:2233-7.
- 366. Veeramah KR, O'Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012;90:502-10.
- 367. Baker EM, Thompson CH, Hawkins NA, et al. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia 2018;59:1166-76.
- 368. Neubauer J, Wang Z, Rougier JS, et al. Functional characterization of a novel SCN5A variant associated with long QT syndrome and sudden cardiac death. Int J Legal Med 2019;133:1733-42.
- 369. Abdelsayed M, Baruteau AE, Gibbs K, et al. Differential calcium sensitivity in NaV 1.5 mixed syndrome mutants. J Physiol 2017;595:6165-86.
- 370. Abdelsayed M, Ruprai M, Ruben PC. The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 2018;8:3643.
- Takahashi K, Shimizu W, Miyake A, Nabeshima T, Nakayashiro M, Ganaha H. High prevalence of the SCN5A E1784K mutation in school children with long QT syndrome living on the Okinawa islands. Circulation Journal 2014:CJ-13-1516.
- 372. Hu RM, Tan BH, Tester DJ, et al. Arrhythmogenic Biophysical Phenotype for SCN5A Mutation S1787N Depends upon Splice Variant Background and Intracellular Acidosis. PLoS One 2015;10:e0124921.
- 373. Splawski I, Shen J, Timothy KW, et al. Spectrum of mutations in long-QT syndrome genes. KVLQT1, HERG, SCN5A, KCNE1, and KCNE2. Circulation 2000;102:1178-85.
- 374. An RH, Wang XL, Kerem B, et al. Novel LQT-3 mutation affects Na+ channel activity through interactions between alpha- and beta1-subunits. Circ Res 1998;83:141-6.
- Wehrens XH, Abriel H, Cabo C, Benhorin J, Kass RS. Arrhythmogenic mechanism of an LQT-3 mutation of the human heart Na(+) channel alpha-subunit: A computational analysis. Circulation 2000;102:584-90.
- 376. Baroudi G, Chahine M. Biophysical phenotypes of SCN5A mutations causing long QT and Brugada syndromes. FEBS Lett 2000;487:224-8.
- 377. Benhorin J, Goldmit M, MacCluer JW, et al. Identification of a new SCN5A mutation, D1840G, associated with the long QT syndrome. Mutations in brief no. 153. Online. Hum Mutat 1998;12:72.
- 378. Blich M, Efrati E, Marai I, Suleiman M, Gepstein L, Boulous M. Novel Clinical Manifestation of the Known SCN5A D1790G Mutation. Cardiology 2015;132:228-32.
- 379. Rivolta I, Abriel H, Tateyama M, et al. Inherited Brugada and long QT-3 syndrome mutations of a single residue of the cardiac sodium channel confer distinct channel and clinical phenotypes. J Biol Chem 2001;276:30623-30.

- 380. Fredj S, Sampson KJ, Liu H, Kass RS. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br J Pharmacol 2006;148:16-24.
- 381. Benito B, Brugada R, Perich RM, et al. A mutation in the sodium channel is responsible for the association of long QT syndrome and familial atrial fibrillation. Heart Rhythm 2008;5:1434-40.
- 382. Papuc SM, Abela L, Steindl K, et al. The role of recessive inheritance in early-onset epileptic encephalopathies: a combined whole-exome sequencing and copy number study. Eur J Hum Genet 2019;27:408-21.
- 383. Kubota T, Kinoshita M, Sasaki R, et al. New mutation of the Na channel in the severe form of potassium-aggravated myotonia. Muscle Nerve 2009;39:666-73.
- 384. Liu K, Yang T, Viswanathan PC, Roden DM. New mechanism contributing to drug-induced arrhythmia: rescue of a misprocessed LQT3 mutant. Circulation 2005;112:3239-46.
- 385. Makita N, Horie M, Nakamura T, et al. Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 2002;106:1269-74.
- 386. Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: Mutations responsible for impaired Nav1.5 channel trafficking and function. Pacing Clin Electrophysiol 2017;40:703-12.
- Rusconi R, Scalmani P, Cassulini RR, et al. Modulatory proteins can rescue a trafficking defective epileptogenic Nav1.1 Na+ channel mutant. J Neurosci 2007;27:11037-46.
- 388. Petitprez S, Jespersen T, Pruvot E, et al. Analyses of a novel SCN5A mutation (C1850S): conduction vs. repolarization disorder hypotheses in the Brugada syndrome. Cardiovasc Res 2008;78:494-504.
- 389. Spampanato J, Kearney JA, de Haan G, et al. A novel epilepsy mutation in the sodium channel SCN1A identifies a cytoplasmic domain for beta subunit interaction. J Neurosci 2004;24:10022-34.
- 390. Adney SK, Millichap JJ, DeKeyser JM, Abramova T, Thompson CH, George AL, Jr. Functional and pharmacological evaluation of a novel SCN2A variant linked to early-onset epilepsy. Ann Clin Transl Neurol 2020;7:1488-501.
- 391. Howell KB, McMahon JM, Carvill GL, et al. SCN2A encephalopathy: A major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015;85:958-66.
- 392. Trump N, McTague A, Brittain H, et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J Med Genet 2016;53:310-7.
- 393. Atkin TA, Maher CM, Gerlach AC, et al. A comprehensive approach to identifying repurposed drugs to treat SCN8A epilepsy. Epilepsia 2018;59:802-13.
- 394. Gardella E, Becker F, Moller RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016;79:428-36.
- 395. Selga E, Campuzano O, Pinsach-Abuin ML, et al. Comprehensive Genetic Characterization of a Spanish Brugada Syndrome Cohort. PLoS One 2015;10:e0132888.
- 396. Zhang L, Tester DJ, Lang D, et al. Does Sudden Unexplained Nocturnal Death Syndrome Remain the Autopsy-Negative Disorder: A Gross, Microscopic, and Molecular Autopsy Investigation in Southern China. Mayo Clin Proc 2016;91:1503-14.
- 397. Rusconi R, Combi R, Cestele S, et al. A rescuable folding defective Nav1.1 (SCN1A) sodium channel mutant causes GEFS+: common mechanism in Nav1.1 related epilepsies? Hum Mutat 2009;30:E747-60.

- 398. Casini S, Albesa M, Wang Z, et al. Functional Consequences of the SCN5A-p.Y1977N Mutation within the PY Ubiquitylation Motif: Discrepancy between HEK293 Cells and Transgenic Mice. Int J Mol Sci 2019;20.
- 399. Bebarova M, O'Hara T, Geelen JL, et al. Subepicardial phase 0 block and discontinuous transmural conduction underlie right precordial ST-segment elevation by a SCN5A loss-of-function mutation. Am J Physiol Heart Circ Physiol 2008;295:H48-58.
- 400. Arnestad M, Crotti L, Rognum TO, et al. Prevalence of long-QT syndrome gene variants in sudden infant death syndrome. Circulation 2007;115:361-7.
- 401. Shinlapawittayatorn K, Du XX, Liu H, Ficker E, Kaufman ES, Deschênes I. A common SCN5A polymorphism modulates the biophysical defects of SCN5A mutations. Heart Rhythm 2011;8:455-62.

Supplementary Table 2: Corresponding variants, phenotypes, and function across different sodium channels

Pair	SCN1A Position	Gene/ Variant	Function	Phenotype	Reference*	Corresponding Gene/Variant	Function	Phenotype	Reference*
I	1138V	SCN4A ; II4IV DI SI	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2 Act., no change} V _{1/2 FI}	Sodium channel myotonia	Petitprez (2008) ²³	SCN9A ; II36V DI SI	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2 Act., no change} V _{1/2 FI}	IEM	Cheng (2008) ²⁴
2	R222W	SCN4A ; R225W DI S4	LoF; WCC: Y, ↓CD, →V _{1/2} Act., no changeV _{1/2} FI	Congenital Myopathy	Zaharieva (2016) ¹⁴	SCN5A ; R225W DI S4	LoF; WCC: Y, $\downarrow\downarrow$ CD, \rightarrow V _{1/2 Act.} , \rightarrow V _{1/2 FI}	Severe conduction disease	Bezzina (2003) ⁴⁵
3	S243T	SCN9A ; S241T D1 S4-5	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2 Act., no change} V _{1/2 FI}	IEM	Lampert (2006) ⁵⁸	SCN10A ; S242T D1 S4-5	GoF; WCC: Y, ←V _{1/2 Act.} , ←V _{1/2 FI}	PPN, PDN; carbamazepin e responder	Han (2018) ⁶⁰
4	Q267K	SCN4A ; Q270K D1 S5	GoF/Mixed; WCC: Y, \rightarrow V _{1/2 Act.} \rightarrow V _{1/2 FI}	PMC	Carle (2009) ⁶⁶	SCN5A ; Q270K D1 S5	GoF/Mixed; WCC: Y, \downarrow CD, $\uparrow I_{NaP}$, $\rightarrow V_{1/2 Acc.}$, $\rightarrow V_{1/2 FI}$	LQT3/BrS overlap syndrome; ECG: fetal tachycardia/ fibrillation TdP, LQT	Calloe (2011) ⁶⁷
5	R377H	SCN2A ; R379H D1 S5-6	LoF; WCC: None	ASD	Ben-Shalom (2017) ⁵	SCN5A ; R367H D1 S5-6	LoF; WCC: None	BrS; SCD; ECG: ST elevation	Hong (2004) ⁸³
		SCN4A ; N440K DI S6	GoF; WCC: Y, ↑I _{NaP} , no change V _{1/2} Act., →V _{1/2} FI	PMC	Lossin (2012) ⁹²	SCN9A ; N395K DI S6	GoF; WCC: Y, ←V _{1/2} Act, no change V _{1/2} FI	IEM	Sheets (2007) ⁴¹
6	N416K					SCN5A ; N406K D1 S6	GoF/Mixed; WCC: Y, ↓CD, ↑I _{NaP} , no change V _{1/2} Act., no change V _{1/2} FI,	LQT3; ECG: TdP, LQT, polymorphic VT, mexiletine responder	Hu (2018) ⁹³ Kato (2014) ⁹⁴
_	V421M	SCN4A ; V445M DI S6	GoF; WCC: Y, $\uparrow I_{NaP}$, $\leftarrow V_{1/2 \text{ Act.}}, \leftarrow V_{1/2 \text{ FI}}$	PMC	Wang (1999) ⁹⁷ Huang (2020) ⁹⁸	SCN5A; V411M DI S6	GoF; WCC: Y, ↑CD, ↑I _{NaP} , ←V _{1/2} Act., no change V _{1/2} FI	LQT3; ECG: neonatal LQT with 2:1 block	Horne (2011) ¹⁰⁰ Zhou (2015) ¹⁰¹
7	V421M					SCN9A ; V400M D1 S6	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2 Act.} , →V _{1/2 FI}	IEM; carbamazepin e responder	Fischer (2009) ¹⁰²
8	T782I	SCN2A ; T773I D2 SI	GoF; WCC: Y, no change CD, ↑I _{NaP} , ←V _{1/2} Act., no change V _{1/2} FI	DEE, Sz onset I day	Lauxmann (2018) ³³	SCN8A ; T767I D2 SI	GoF; WCC: Y, ↓CD, ↑I _{NaP} , ←V _{I/2} Act., no changeV _{I/2} FI	DEE, Sz onset 2 weeks	Pan (2020) ¹¹⁸ Estacion (2014) ¹¹⁹
9	R859H	SCN1A ; R859H D2 S4	LoF/mixed; WCC: Y, $\uparrow I_{NaP}$, no changeCD, $\leftarrow V_{1/2 \text{ Act.}}$, $\leftarrow V_{1/2 \text{ FI}}$	GEFS+	Volkers (2011) ¹³⁴	SCN4A ; R669H D2 S4	LoF/mixed; WCC: Y, ↓CD, no change V1/2 Act., ←V1/2 FI	НуроРР	Kuzmenkin (2002) ¹³⁵
10	R859C	SCN1A ; R859C D2 S4	LoF; WCC: Y, ↓CD, no change V I/2 Act., no change VI/2 FI	EPI	Bechi (2015) ¹²⁴	SCN5A ; R808C D2 S4	LoF; WCC: Y, \downarrow CD, no change $V_{1/2}$ Act., $\leftarrow V_{1/2}$ FI	BrS	Glazer (2020) ¹

11	R862H	SCN4A ; R672H D2 S4	LoF; WCC: Y, ↓CD; →V _{1/2 Act.} , ←V _{1/2 FI}	Нуро-РР	Jurkatt-Rott (2000) ¹⁴⁰ Kuzmenkin (2002) ¹³⁵	SCN5A ; R811H D2 S4	LoF; WCC: Y, ↓CD; no changeVI/2 Act., ←VI/2 FI	BrS; family history of sudden death,	Calloe (2013) ¹¹⁴
12	R865Q	SCN4A ; R675Q D2 S4	Mixed; WCC: Y, no changeCD, no changeV1/2 Act., no changeV1/2 FI, ←V1/2 SI	Potassium sensitive normoPP	Wu (2014) ¹⁴⁹	SCN5A ; R814Q D2 S4	Mixed; WCC: Y, no changeCD, no changeVI/2 Act., no changeVI/2 FI	LQT3; BrS	Glazer (2020) ¹
13	I883T	SCN3A ; 1875T D2 S4-5	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2 Act.} →V _{1/2 FI}	EPI/PMG	Zaman (2018) ¹⁵⁵	SCN9A ; I848T D2 S4-5	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2} Act., no changeV _{1/2} FI	IEM	Cummins (2004) ¹⁵⁷ Namer (2015) ¹⁵⁸ Theile (2011) ¹⁵⁹
14	R946C	SCN1A ; R946C; D2 S5-6	LoF; WCC: None	DS	Volkers (2011) ¹³⁴	SCN2A ; R937C; D2 S5-6	LoF; WCC: None	ASD	Begemann (2019) ¹⁸⁰
15	R946H	SCN1A ; R946H; D2 S5-6	LoF; WCC: None	DS	Liao (2010) ¹⁸² Volkers (2011) ¹³⁴	SCN2A ; R937H; D2 S5-6	LoF; WCC: None	ASD	Ben-Shalom (2017) ⁵
16	G979R	SCN1A ; G979R; D2 S6	LoF; WCC: None	DS	Sugawara (2003) ¹⁸⁴ Rhodes (2005) ¹³⁰	SCN8A ; G964R; D2 S6	LoF; WCC: None	NDD without EPI	Wagnon (2017) ¹⁸⁵
17	D1256N	SCN4A ; D1069N D3 S2	LoF/Mixed; WCC: Y, no changeCD, →V _{1/2} Act., →V _{1/2} FI	Congenital myopathy	Zaharieva (2016) ¹⁴	SCN5A ; D1243N D3 S2	LoF/Mixed; WCC: Y, no change CD, $\rightarrow V_{1/2 \text{ Act.}}$, $\rightarrow V_{1/2 \text{ Fi}}$	BrS	Glazer (2020) ¹
18	A1343T	SCN4A ; A1156T D3 S4-5	GoF; WCC: Y, no changeV1/2 Act., →V1/2 FI	PMC with prominent myalgia	Palmio (2017) ²³⁶	SCN5A ; A1330T D3 S4-5	GoF; WCC: Y, no changeV1/2 Act., →V1/2 FI	LQT3; SCD	Smits (2005) ²³⁸
		SCN3A ; P1333L D3 S4-5	GoF; WCC: Y, ↑I _{NaP} , ←V _{I/2} Act., no changeV _{I/2}	EPI	Zaman (2018) ¹⁵⁵	SCN4A ; P1158L D3 S4-5	GoF; WCC: Y, no changeV1/2 Act., →V1/2 FI	Sodium channel myotonia	Desaphy (2016) ²³⁹
19	PI345L					SCN5A ; P1332L D3 S4-5	GoF/mixed; WCC: Y, ←V _{1/2 Act.} ←V _{1/2 FI}	LQT3, ECG: TdP, LQT, mexiletine responder	Ruan (2007) ¹⁹⁰
						SCN9A ; P1308L D3 S4-5	GoF; WCC: Y, ↓CD, ←V _{1/2} Act., no changeV _{1/2} FI	IEM	Cheng (2010) ²²⁶
20	S1346Y	SCN2A ; S1336Y D3 S4-5	GoF/Mixed (Na _v I.2N); WCC: Y, ↓CD, ←V _{I/2} Act., →V _{I/2} FI	DEE	Thompson (2020) ⁵⁴	SCN5A ; S1333Y D3 S4-5	GoF; WCC: Y, no changeCD, ←V _{1/2} Act., →V _{1/2} FI	SIDS; LQT3	Huang (2009) ²⁴³
21	V1353A	SCN9A ; V1316A D3 S4-5	GoF; WCC: Y, ←V _{1/2} Act, →V _{1/2} FI	IEM	Wu (2013) ²⁵² , Estacion (2013) ²⁵³	SCN11A ; V1184A D3 S5	GoF; WCC: Y, ↑CD, ↑INaP, ←VI/2 Act., no change VI/2 FI	PPN, CAP	Leipold (2015) ²⁵⁵
22	F1486C	SCN4A ; F1298C D3-D4 linker	GoF/Mixed; WCC: Y, →V _{I/2 Act.} , →V _{I/2 FI}	Sodium channel myotonia	Farinato (2019) ²⁷²	SCN5A ; F1473C D3-D4 linker	GoF; WCC: Y, ↑I _{NaP} , no change V _{1/2} Act., →V _{1/2}	LQT3; ECG: TdP, LQT with 2:1 block, mexiletine responder	Bankston (2007) ²⁷⁶

23	FI499L	SCN1A; F1499L D3-D4 linker	GoF; WCC: Y, ↑I _{NaP} , no change V _{1/2} Act., →V _{1/2} Fi	FHM	Barbieri (2019) ²⁸³	SCN5A; F1486L D3-D4 linker	GoF; WCC: Y, ↑I _{NaP} , no changeV _{1/2} Act., →V _{1/2} FI	LQT3	Wang (2007) ³⁶
24	T15011	SCN3A; T14861 D3-D4 linker	GoF; WCC: Y, ↑I _{NaP} , no change V _{1/2} Act., →V _{1/2} FI	EPI/PMG	Zaman (2020) ¹⁴⁷	SCN9A; T1464I D3-D4 linker	GoF; WCC: Y, $\uparrow I_{NaP}$, $\rightarrow V_{1/2 \text{ Act.}} \rightarrow V_{1/2 \text{ FI}}$	PEPD, responsive to SCB	Fertleman (2006) ²²⁷ Theile (2011) ¹⁵⁹
25	E1587K	SCN1A ; E1587K D4 S2	LoF; WCC: None	EPI	Kluckova (2020) ¹⁰	SCN5A ; E1574K D4 S2	LoF; WCC: Y, ↓↓CD, →V _{1/2 Act.}	BrS	Glazer (2020) ¹
26	R1596C	SCN1A ; R1596C D4 S2-3	LoF; WCC: None	EPI	Kluckova (2020) ¹⁰	SCN5A ; R1583C D4 S2-3	LoF; WCC: Y, \CD, no change/NaP, no change/V1/2 Act., no change/V1/2 FI	BrS	Glazer (2020) ¹
27	P1632S	SCN1A ; P1632S; D4 S3-4	LoF; WCC: Y, ←V _{1/2} Act., ←V _{1/2} FI	DS	Rhodes (2005) ¹³⁰	SCN2A ; P1622S; D4 S3-4	LoF; WCC: Y, ←V _{1/2 FI}	ASD and Sz onset 21 months	Wolff (2017) ⁹⁶
		SCN3A: R1621Q D4 S4	GoF; WCC: Y, no changeCD, ↑I _{NaP} , ←V _{I/2} Act., no changeV _{I/2} FI	EPI/PMG	Zaman (2020) ¹⁴⁷	SCN8A ; R1617Q D4 S4	GoF; WCC: Y, $\uparrow I_{NaP}$, $\leftarrow V_{1/2 \text{ Act.}} \rightarrow V_{1/2 \text{ FI}}$	DEE, Sz onset 3 months	Wagnon (2015) ³¹⁴
28	R1636Q					SCN5A ; R1623Q D4 S4	GoF; WCC: Y, ↑ <i>I</i> _{NaP} , ← <i>V</i> _{1/2 Act.}	LQT3; ECG: TdP, LQT, mexiletine responder	Kambouris (1998) ³¹⁰ Tsurugi (2009) ³¹¹
29	R1639L	SCN4A; R1451L D4 S4	LoF; WCC: Y, ↓CD, no changeV _{1/2} Act., ←V _{1/2} FI	Complex phenotype including myotonia and paralysis (both potassium sensitive and hypoPP	Poulin (2018) ³¹⁸	SCN8A; R1620L D4 S4	LoF; WCC: Y, ↓↓CD, no changeV1/2 Act., ←V1/2 FI	ASD	Liu (2019) ²⁸⁸
30	R1645H	SCN4A ; R1457H D4 S4	LoF; WCC: Y, no change V _{1/2} Act., ←V _{1/2} FI	CMS (in patient homozygous for R1457H variant)	Arnold (2015) ³²⁶	SCN5A ; R1632H D4 S4	LoF; WCC: Y, no changeCD, no changeV _{1/2} Act., ←V _{1/2} FI	SSS; ECG: bradycardia, absent atrial depolarizatio ns, prolonged QRS, 1° heart block	Benson (2003) ³²⁷
31	R1657C	SCN1A ; R1657C; D4 S4-5	LoF; WCC: Y, ↓CD, →V _{1/2} Act., no change V _{1/2} FI	GEFS+	Lossin (2003) ¹⁸⁶	SCN5A ; R1644C D4 S4-5	LoF; WCC: Y, →V _{1/2} Act, no change V _{1/2} FI	BrS; ECG: ST elevation, echo: CM changes	Frustaci (2005) ⁸⁷
						SCN8A; R1638C; D4 S4-5	LoF; WCC: Y, →V _{1/2 Act} , no change V _{1/2 FI}	NDD without epilepsy	Wengert (2019) ⁶⁵
32	FI66IS	SCNIA; F1661S D4 S4-5	Mixed; 50% reduction in trafficking WCC: Y, ↓CD, ↑INAP, no change VI/2 Act., →VI/2 FI	DS	Rhodes (2004) ¹⁷² Thompson (2012) ¹⁸⁷	SCN4A ; F1473S D4 S4-5	GoF; WCC: Y, CD not reported, ↑I _{NaP} , no change V _{1/2} Act., →V _{1/2} FI	PMC	Fleischhauer (1998) ³³⁶
33	M1664K	SCNIA ; M1664K D4 S4-5	LoF; 90% reduction in peak current and trafficking not allowing for detailed SCNIA biophysics	GEFS+/DS	Bechi (2015) ¹²⁴	SCN9A ; M1627K D4 S4-5	GoF; WCC: Y, no changeCD, no changeV1/2 Act., →V1/2 FI	PEPD	Fertleman (2006) ²²⁷ Dib-Hajj (2008) ³³⁸ Theile (2011) ¹⁵⁹

34	G1674R	SCN1A ; G1674R D4 S5	LoF; WCC: None ↓↓CD	EPI	Rhodes (2004) ¹⁷² Thompson (2012) ¹⁸⁷	SCN5A ; G1661R D4 S5	LoF; WCC: Y (barely) ↓↓CD	BrS	Glazer (2020) ¹
35	M17801	SCN3A ; M17651 D4 S6	GoF; WCC: Y, ↑I _{NaP} , ←V _{1/2} Act., no changeV _{1/2} FI	EPI/PMG	Zaman (2020) ¹⁴⁷	SCN8A ; M17601 D4 S6	GoF; WCC: Y, ←V _{1/2} Act., no change V _{1/2} FI	EPI	Liu (2019) ²⁸⁸
36	N1788D	SCN5A; N1774D C-Term	GoF; WCC: Y, ↑CD, ↑I _{Na} P, ←V _{1/2} Act., no change V _{1/2} FI	LQT3; ECG: TdP, LQT with 2:1 block, mexiletine responder	Kato (2014) ⁹⁴	SCN8A; NI768D C-Term	GoF; WCC: Y, ↑I _{NaP} , no changeV _{1/2} Act, →V _{1/2} FI	DEE, Sz onset 6 months	Veeramah (2012) ³⁶⁶ Patel (2016) ²⁴⁷ Baker (2018) ³⁶⁷
37	R1892Q	SCN2A; R1882Q; C-Term	GoF; WCC: Y, \uparrow CD, $\uparrow I_{NaP}$, $\leftarrow V_{1/2 \text{ Act.}}$, $\rightarrow V_{1/2}$ FI	DEE, Sz onset I day	Berecki (2018) ¹⁴¹ Mason (2019) ¹⁴² Wolff (2017) ⁹⁶	SCN8A ; R1872Q; C-Term	GoF; WCC: Y, ↑CD, ←V _{1/2 Act.} , →V _{1/2 FI}	DEE, Sz onset 4 months	Wagnon (2015) ³¹⁴ Aktin (2018) ³⁹³
38	Q1923R	SCNIA; Q1923R C-Term	LoF; WCC: None	DS	Nissenkorn (2019) ²⁹	SCN5A; Q1909R C-Term	Mixed; ←V _{1/2 Act.} , no changeV _{1/2} FI decrease in peak current by 50%.	SIDS (not a known cardiac patient)	Winkel (2015) ¹⁰³ Abdelsayed (2017) ³⁶⁹

Corresponding variant = identical variant among different *SCN* at the same position/location in the SCN protein (the corresponding sequence numbers are not identical as the amino acid sequence between *SCN* variants differs slightly).

Rows marked in grey denote variant pairs with divergent functional properties.

Phenotypical features: ASD = autism spectrum disorder, BrS = Brugada syndrome, CAP = cold aggravated pain, CM changes = cardiomyopathic changes, CMS = congenital myasthenic syndrome, DEE = developmental and epileptic encephalopathy, DS = Dravet syndrome, ECG = electrocardiogram, echo = echocardiogram, EPI = epilepsy, FHM3 = familial hemiplegic migraine type 3, GEFS+ = genetic epilepsy with febrile seizures plus, Hyper-PP = hyperkalaemic periodic paralysis, Hypo-PP = hypokalaemic periodic paralysis, IEM = inherited erythromelalgia, LQT3 = long QT3 syndrome, Na_v1.2N = neonatal proteoform, NDD = neurodevelopmental disorder, PAM = potassium-aggravated myotonia, PDN = painful diabetic neuropathy, PEPD = paroxysmal extreme pain disorder, PMC = paramyotonia congenita, PMG = polymicrogyria, PPN = painful peripheral neuropathy, SCB = sodium channel blocker, SCD = sudden cardiac death, SIDS = sudden infant death syndrome, SSS = sick sinus syndrome, SUD = sudden unexplained death, Sz = seizure, TdP = torsade de pointes, VT = ventricular tachycardia

Electrophysiological key features: Arrows (\rightarrow) are used for electrophysiological parameters. The direction of the arrows indicates hyperpolarizing (\leftarrow) or depolarizing shifts (\rightarrow), as well as an increase (\uparrow) or decrease (\downarrow) of parameters, ($\downarrow \downarrow = >50\%$ decrease)

Electrophysiological abbreviations: GoF: gain-of-function, LoF: loss-of-function, WCC: whole cell current (Y = measurable, N = not measurable), Act: activation, CD: current density, FI: fast inactivation, SI: slow inactivation, I_{NaP} : persistent sodium current, $V_{1/2 \text{ Act}}$: half-activation of steady-state activation curve, $V_{1/2 \text{ FI}}$: half-inactivation of steady-state fast inactivation curve.

^{*}References relate to those detailed in Supplementary Table 1.

Supplementary Table 3: Detailed *SCN1-11A* **Analysis**

	SCNIA							
Disorder	No.	Functional Effects	Distribution	Clinical Context				
EPI	60 (85%)	 GoF – (3/60, 5%) LoF – (47/60, 78%) Mixed – (10/60, 17%) 	SCN1A variants clustered across pore-loop regions (S5, S5-6 & S6) and 88% of variants showed LoF (23/26)					
FHM3	• GoF – (8/11, 73%) • LoF – (1/11, 9%) • Mixed – (2/11, 18%)		55% (6/11) of FHM3-associated variants occurred in sites implicated in channel inactivation, including the DIII-IV linker, DIVS4-5 and DIVS6, predominantly showing GoF effects. Of these, 83% were GoF (5/6). While most FHM3-associated variants are associated with GoF effects, the variant located in DIVS4 was clearly mixed. The other mixed variant was located in DIVS5	Variants displaying LoF were more frequently associated with DS, whereas variants showing GoF were FHM3-associated (p<0.001)				
			SCN2A					
Disorder	No.	Functional Effect	Distribution	Clinical Context				
EPI	29 (81%)	 GoF – (17/29, 59%) LoF – (7/29, 24%) Mixed – (5/29, 17%) 	SCN2A epilepsy-associated variants were evenly distributed across homologous domains but very few were found in pore-forming regions	Variants displaying LoF effects were frequently associated with ASD, while GoF variants were				
ASD	7 (19%)	All variants showed LoF	71% of ASD-associated variants clustered in pore-loop regions (5/7), all displaying LoF	epilepsy-associated (p = 0.001)				
			SCN3A					
Disorder	No.	Functional Effect	Distribution	Clinical Context				
EPI	5 (38%)	 GoF – 3/5 (60%) LoF – 1/5 (20%) Mixed – 1/5 (20%) 	Variants associated with an epilepsy or mixed phenotype were evenly distributed across the protein and only two were observed in pore-forming					
EPI/PMG	6 (46%)	All variants showed GoF	regions	Epilepsy and PMG variants appear to be mainly GoF				
ASD	I (8%)	LoF	DIVSS					
Fetal Akinesia	I (8%)	GoF	DIIS4					

	SCN4A							
Disorder	No.	Functional Effect	Distribution	Clinical Context				
PMC	14 (36%)	 GoF – (11/14, 86%) LoF – (1/14, 7%) Mixed – (2/14, 7%) 	43% occurred in the DIII-IV linker (6/14) and the remainder across the protein					
CMS	10 (26%)	LoF – (8/10, 80%)Mixed – (2/10, 20%)	Two variants occurred in pore-loops and two in voltage-sensing regions.					
PAM	4 (11%)	All variants showed GoF	Three variants were found in inactivation sites and one in the C-terminus	GoF variants were frequently PAM/PMC-associated, whereas LoF variants were CMS-associated (p<0.001). Overall, 32% of variants occurred in				
НуроРР	5 (13%)	Four variants displayed LoF and one variant showed mixed function	All four variants displaying LoF were found in S4 sites while the LoF variant was found in DIIIS4-5	inactivation sites (12/38), 92% of which showed GoF (11/12). 29% of variants were found in S4 sites (11/38), 70% of which showed LoF (8/11). 18% occurred in pore-forming regions (7/38) and the remainder across the protein.				
HyperPP	I (3%)	Mixed	DIVS5	remainder across the protein.				
NormoPP	I (3%)	Mixed	DIIS4					
Mixed Phenotype	3 (8%)	All variants showed GoF	Variants occurred in DIS6, DIIS5 and DIIIS4-5					
			SCN5A					
Disorder	No.	Functional Effect	Distribution	Clinical Context				
BrS	100 (69%)	96% of variants showed LoF (96/100), three were mixed effect and one displayed GoF	52% of BrS-associated variants occurred in pore-loop regions (S5, S5-6 & S6) (52/100), while only 6% were found at sites of channel inactivation (6/100)					
LQT3	38 (26%)	 GoF – (30/38, 79%) LoF – (2/38, 5%) Mixed – (6/38, 16%) 	47% of LQT3 variants clustered in sites of inactivation (18/38), showing predominantly GoF (94%, 17/18)	Variants displaying LoF effects were more frequently BrS-associated, while GoF variants were LQT3-associated, (p<0.001)				
Mixed	8 (5%)	 LoF – 4/8 (50%) Mixed – 4/8 (50%) 	Two variants occurred in the C-terminus, one in DIS4, one in DIIS4 and the rest across the protein					

	SCN8A						
Disorder	No.	Functional Effect	Distribution	Clinical Context			
EPI	14 (67%)	• GoF – (12/14, 86%) • LoF – (2/14, 14%)	29% occurred in S4 regions (4/14), 14% in the C-terminus (2/14), 14% in inactivation sites (2/14) and the remainder across the protein. None occurred in cytoplasmic regions.	Variants displaying LoF effects were frequently			
NDD	5 (23%)	All variants showed LoF	Three were found in pore-forming regions, one in DIVS4-5 and one in DIIS3	NDD/ASD-associated, while GoF variants were epilepsy-associated, (p=0.003).			
ASD	2 (9%)	One variant showed GoF while the other LoF	Both variants were located in DIVS4				
			SCN9A				
Disorder	No.	Functional Effect	Distribution	Clinical Context			
PPN	34	 GoF – 33/34 (97%) Mixed – 1/34 (3%) 	Of 33 GoF variants, 33% were found in inactivation sites (11/33), 18% in DIIS5 (6/33), 15% in S4 regions (5/33) and the remainder across the protein. The mixed effect variant was located in DIIS4.	The majority of variants appear to be GoF			
			SCNIOA				
Disorder	No.	Functional Effect	Distribution	Clinical Context			
AF	1	LoF	The LoF variant was observed in the N-terminus				
SUD	2	Both variants showed LoF	Variants were observed in D1S6 and D1IS4	GoF variants appear to be associated with PPN			
PPN	3	All variants showed GoF	Variants were found at DIS4-S5, DIVS5-6 and DIVS6				
	SCNIIA						
Disorder	No.	Functional Effect	Distribution	Clinical Context			
PPN	4	All variants showed GoF	PPN-associated variants were found in DIS4, DIIS4-5, DIIIS4 and DIIIS5	The majority of variants appear to be GoF.			

Phenotypical features: FHM3 = familial hemiplegic migraine type 3, EPI = epilepsy, ASD = autism spectrum disorder, NDD = neurodevelopmental disorder, PMG = polymicrogyria, Hypo-PP = hypokalaemic periodic paralysis, Hyper-PP = hyperkalaemic periodic paralysis, PMC = paramyotonia congenita, CMS = congenital myasthenic syndrome, PAM = potassium-aggravated myotonia, BrS = Brugada syndrome, LQT3 = long QT3 syndrome, SCD = sudden cardiac death, PPN = peripheral painful neuropathy (including, PEPD = paroxysmal extreme pain disorder, IEM = inherited erythromelalgia and SFN = small fibre neuropathy), AF = atrial fibrillation, SUD = sudden unexpected death.

Supplementary Figure 1: Study Selection

Supplementary Figure 2: Voltage sensing regions (S4) structure zoom across D1-D4

Voltage sensing regions (S4) structure zoom across D1-D4. Close-up view of S4 voltage sensing regions across all four domains (D1-D4) illustrating conserved Arginines R0-R4.