1	Contest	1		5.6	Primes	11	9.4 MinRotation
				5.7	Estimates	11	9.5 SuffixArray .
2	Mathematics	1					9.6 SuffixTree
	2.1 Equations	1	6	Con	nbinatorial	11	9.7 AhoCorasick
	2.2 Recurrences	2		6.1	Permutations	11	
	2.3 Trigonometry	2		6.2	Partitions and subsets	12	10 Various
	2.4 Geometry	2		6.3	General purpose numbers	12	10.1 Intervals
	2.5 Derivatives/Integrals	2	_	~			10.2 TernarySearch
	2.6 Sums	2	7	Gra	-	13	10.3 Pick's Theorer
	2.7 Series	2		7.1	BellmanFord	13	10.4 Optimization t
	2.8 Probability theory	2		7.2	FloydWarshall	13	
	2.9 Markov chains	3		7.3	TopoSort	13	Contest (1)
				7.4	Euler walk	13	` ´
3	Data structures	3		7.5	Network flow	13	template.cpp
	3.1 Matrix	3		7.6	MinCostMaxFlow	13	#include <bits stdc++.h=""></bits>
	3.2 SplayTree	3		7.7	EdmondsKarp	14	using namespace std;
	3.3 FenwickTree2d	4		7.8	MinCut	14	#define rep(i, a, b) for
	3.4 RMQ	5		7.9	GlobalMinCut	14	<pre>#define trav(a, x) for(a #define all(x) begin(x),</pre>
	3.5 WaveletTree	5		7.10	hopcroftKarp	14	#define sz(x) (int)(x).s
	3.6 KDTree	5		7.11	DFSMatching	15	<pre>typedef long long l1; typedef pair<int, int=""> p</int,></pre>
	3.7 PersistentSegTree	6			MinimumVertexCover	15	typedef vector <int> vi;</int>
				7.13	WeightedMatching	15	int main() {
4	Numerical	6		7.14	GeneralMatching	15	cin.sync_with_stdio(0)
	4.1 GoldenSectionSearch	7			Strongly Connected Component	16	cin.exceptions(cin.fai
	4.2 Polynomial	7		7.16	BiconnectedComponents	16	,
	4.3 PolyRoots	7		7.17		16	Mathematics
	4.4 PolyInterpolate	7		7.18	MaximalCliques	16	<u>wiathematics</u>
	4.5 LinearRecurrence	7			MaximumClique	16	2.1 Equations
	4.6 HillClimbing	7			MaximumIndependentSet	17	2.1 Equations
	4.7 Determinant	7		7.21	TreePower	17	
	4.8 IntDeterminant	7		7.22	CompressTree	17	$ax^2 + bx + c$
	4.9 Simplex	8			HLD	17	
	4.10 MatrixInverse	8			CentroidDecomposition	18	The extremum is given
	4.11 SolveLinear	8			LinkCutTree	18	The extremum is given
	4.12 SolveLinear2	8			DirectedMST	18	
	4.13 SolveLinearBinary	9					
	4.14 Fast Fourier transforms	9	8	Geo	ometry	19	ax + b
	4.15 FastFourierTransformMod	9		8.1	Geometric primitives	19	cx + dy
	4.16 NumberTheoreticTransform	9		8.2	Circles	20	
	4.17 FastSubsetTransform	9		8.3	Polygons	20	
				8.4	Misc. Point Set Problems	21	In general, given an eq
5	Number theory	9		8.5	3D	21	variable x_i is given by
	5.1 Modular arithmetic	9					, with the street by
	5.2 Primality	10	9	\mathbf{Stri}	ngs	22	
	5.3 Divisibility	10		9.1	KMP	22	
	5.4 Fractions	11		9.2	Zfunc	22	
	5.5 Pythagorean Triples	11		9.3	Manacher	22	where A'_i is A with the

	9.5	SuffixArray	23
	9.6	SuffixTree	23
	9.7	AhoCorasick	23
10	Vari	ous	23
	10.1	Intervals	23
	10.2	TernarySearch	24
	10.3	Pick's Theorem	24
	10.4	Optimization tricks	24

$\underline{\text{Contest}}$ (1)

15 lines

```
sing namespace std;
define rep(i, a, b) for(int i = a; i < (b); ++i)
define trav(a, x) for(auto& a : x)
define all(x) begin(x), end(x)
define sz(x) (int)(x).size()
ypedef long long 11;
ypedef pair<int, int> pii;
.ypedef vector<int> vi;
.nt main() {
cin.sync_with_stdio(0); cin.tie(0);
cin.exceptions(cin.failbit);
```

$\underline{\text{Mathematics}}$ (2)

2.1 Equations

$$ax^{2} + bx + c = 0 \Rightarrow x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The extremum is given by x = -b/2a.

$$ax + by = e cx + dy = f$$

$$x = \frac{ed - bf}{ad - bc}$$

$$y = \frac{af - ec}{ad - bc}$$

in general, given an equation Ax = b, the solution to a variable x_i is given by

$$x_i = \frac{\det A_i'}{\det A}$$

where A'_i is A with the *i*'th column replaced by b.

Recurrences

If $a_n = c_1 a_{n-1} + \cdots + c_k a_{n-k}$, and r_1, \ldots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1 n + d_2)r^n.$

Trigonometry

$$\sin(v+w) = \sin v \cos w + \cos v \sin w$$
$$\cos(v+w) = \cos v \cos w - \sin v \sin w$$

$$\tan(v+w) = \frac{\tan v + \tan w}{1 - \tan v \tan w}$$
$$\sin v + \sin w = 2\sin\frac{v+w}{2}\cos\frac{v-w}{2}$$
$$\cos v + \cos w = 2\cos\frac{v+w}{2}\cos\frac{v-w}{2}$$

$$(V+W)\tan(v-w)/2 = (V-W)\tan(v+w)/2$$

where V, W are lengths of sides opposite angles v, w.

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x + \phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

2.4 Geometry

2.4.1 Triangles

Side lengths: a, b, c

Semiperimeter: $p = \frac{a+b+c}{2}$

Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$

Circumradius: $R = \frac{abc}{4A}$

Inradius: $r = \frac{A}{r}$

Length of median (divides triangle into two equal-area

triangles): $m_a = \frac{1}{2}\sqrt{2b^2 + 2c^2 - a^2}$

Length of bisector (divides angles in two):

$$s_a = \sqrt{bc \left[1 - \left(\frac{a}{b+c} \right)^2 \right]}$$

template

Law of sines:
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c} = \frac{1}{2R}$$

Law of cosines: $a^2 = b^2 + c^2 - 2bc \cos \alpha$

Law of tangents:
$$\frac{a+b}{a-b} = \frac{\tan \frac{\alpha+\beta}{2}}{\tan \frac{\alpha-\beta}{2}}$$

2.4.2 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180°, ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}$.

2.4.3 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \quad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(2y, x)$$

Derivatives/Integrals

$$\frac{d}{dx}\arcsin x = \frac{1}{\sqrt{1-x^2}} \quad \frac{d}{dx}\arccos x = -\frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}\tan x = 1 + \tan^2 x \quad \frac{d}{dx}\arctan x = \frac{1}{1+x^2}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \quad \int x\sin ax = \frac{\sin ax - ax\cos ax}{a^2}$$

$$\int e^{-x^2} = \frac{\sqrt{\pi}}{2}\operatorname{erf}(x) \quad \int xe^{ax}dx = \frac{e^{ax}}{a^2}(ax-1)$$

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

2.6 Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

2.7Series

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots, (-\infty < x < \infty)$$

$$\ln(1+x) = x - \frac{x^{2}}{2} + \frac{x^{3}}{3} - \frac{x^{4}}{4} + \dots, (-1 < x \le 1)$$

$$\sqrt{1+x} = 1 + \frac{x}{2} - \frac{x^{2}}{8} + \frac{2x^{3}}{32} - \frac{5x^{4}}{128} + \dots, (-1 \le x \le 1)$$

$$\sin x = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \dots, (-\infty < x < \infty)$$

$$\cos x = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \dots, (-\infty < x < \infty)$$

2.8 Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

2.8.1 Discrete distributions

Binomial distribution

The number of successes in n independent yes/no experiments, each which yields success with probability p is $Bin(n, p), n = 1, 2, ..., 0 \le p \le 1$.

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\mu = np, \, \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution

The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution

The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $\text{Po}(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

2.8.2 Continuous distributions

Uniform distribution

If the probability density function is constant between a and b and 0 elsewhere it is U(a,b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \, \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution

The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution

Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

2.9 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution.

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is irreducible (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii} = 1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij} = p_{ij} + \sum_{k \in \mathbf{G}} a_{ik} p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i = 1 + \sum_{k \in \mathbf{G}} p_{ki} t_k$.

Data structures (3)

3.1 Matrix

Matrix.h

```
Description: Basic operations on square matrices.
```

```
Usage: Matrix<int, 3> A;
A.d = {{{{1,2,3}}, {{4,5,6}}, {{7,8,9}}}};
vector<int> vec = {1,2,3};
vec = (A`N) * vec;
```

c43c7d, 26 lines

```
template < class T, int N> struct Matrix {
 typedef Matrix M;
 array<array<T, N>, N> d{};
 M operator*(const M& m) const
    rep(i,0,N) rep(j,0,N)
      rep(k, 0, N) \ a.d[i][j] += d[i][k] * m.d[k][j];
 vector<T> operator*(const vector<T>& vec) const
    vector<T> ret(N);
    rep(i, 0, N) rep(j, 0, N) ret[i] += d[i][j] * vec[j];
    return ret;
 M operator (11 p) const {
    assert (p >= 0);
    M a, b(*this);
    rep(i, 0, N) \ a.d[i][i] = 1;
    while (p) {
      if (p&1) a = a*b;
      b = b*b;
      p >>= 1;
    return a;
};
```

3.2 SplayTree

splay.h

6f0ac3, 194 lines

```
struct Node {
    Node *1;
    Node *r;
    Node *r;
    Node *p;
    int v, size;
    Node(): 1(NULL), r(NULL), p(NULL), v(0), size(0) {};
    Node(int v): 1(NULL), r(NULL), p(NULL), v(v), size(1) {};
};
Node *root;
void update(Node *P) {
    P->size = P->1->size + P->r->size + 1;
}
void rightRotate(Node *P) {
```

```
₩ UofR
    Node *T = P->1;
    Node *B = T -> r;
    Node *D = P -> p;
    if (D) {
        if (D->r == P)
            D->r = T;
        else
            D->1 = T;
    if (B)
        B->p = P;
    T->p = D;
    T->r = P;
    P->p = T;
    P->1 = B;
    update(P); update(T);
void leftRotate(Node *P) {
    Node *T = P -> r;
    Node *B = T -> 1;
    Node *D = P -> p;
    if (D) {
        if (D->r == P)
            D->r = T;
        else
            D->1 = T;
    if (B)
        B->p = P;
    T->p = D;
    T - > 1 = P;
    P->p = T;
    P->r = B;
    update(P); update(T);
// Make T root and Balance tree
void Splay(Node *T) {
    while (true) {
        Node *p = T->p;
        if (!p) break;
        Node *pp = p->p;
        if (!pp) //Zig
            if (p->1 == T)
                rightRotate(p);
            else
                leftRotate(p);
            break;
        if (pp->1 == p) {
            if (p->1 == T) { //ZigZig
                rightRotate(pp);
                rightRotate(p);
            } else { //ZigZag
                leftRotate(p);
                rightRotate(pp);
        } else
            if (p->1 == T) { //ZigZag
                rightRotate(p);
                leftRotate(pp);
            } else { //ZigZig
                leftRotate(pp);
                leftRotate(p);
```

```
}
    root = T;
void Insert(int v) {
    if (!root) {
        root = new Node(v);
        return;
    Node *P = root:
    while (true) {
        if (P->v == v) break; // not multiset
        if (v < (P->v)) {
            if (P->1)
                P = P -> 1;
            else {
                P->1 = new Node(v);
                P->1->p = P;
                P = P -> 1:
                update (P->p);
                break:
        } else {
            if (P->r)
                P = P -> r;
            else {
                P->r = new Node(v);
                P->r->p = P;
                P = P -> r:
                update (P->p);
                break;
    Splay(P);
void Inorder(Node *R) {
    if (!R) return;
    Inorder(R->1);
    printf("v: %d ", R->v);
    if (R->1) printf("1: %d ", R->1->v);
    if (R->r) printf("r: %d ", R->r->v);
    puts("");
    Inorder(R->r);
// Find v and make v root
Node *Find(int v) {
    if (!root) return NULL;
    Node *P = root;
    while (P) {
        if (P->v == v)
            break;
        if (v < (P->v)) {
            if (P->1)
                P = P -> 1;
            else
                break;
        } else {
            if (P->r)
                P = P -> r;
            else
                break;
    Splay(P);
    if (P->v == v)
        return P:
```

```
return NULL;
// Delete v
bool Erase(int v) {
    Node *N = Find(v);
    if (!N) return false;
    Node *L = N->1;
    Node *R = N->r;
    L->p = NULL;
    R->p = NULL;
    free(N);
    while (L->r) L = L->r;
    Splay(L);
    root->r = R;
    update (root);
    return true;
int main() {
    while (true) {
        int t;
        scanf("%d", &t);
        if (t != 0 && t != −1)
            Insert(t);
        else if (t == 0) {
            scanf("%d", &t);
            if (!Find(t))
                printf("Couldn't Find %d!\n", t);
                printf("Found %d!\n", t);
        } else {
            scanf("%d", &t);
            if (Erase(t))
                printf("Deleted %d!\n", t);
                printf("Couldn't Find %d!\n", t);
        if (root) printf("root: %d\n", root->v);
        Inorder (root);
```

3.3 FenwickTree2d

FenwickTree2d.h

Description: Computes sums a[i,j] for all i<I, j<J, and increases single elements a[i,j]. Requires that the elements to be updated are known in advance (call fakeUpdate() before init()).

```
Time: \mathcal{O}\left(\log^2 N\right). (Use persistent segment trees for \mathcal{O}\left(\log N\right).)

"FenwickTree.h"

struct FT2 {

vector<vi>ys; vector<FT> ft;

FT2(int limx) : ys(limx) {}

void fakeUpdate(int x, int y) {

for (; x < sz(ys); x |= x + 1) ys[x].push_back(y);
}

void init() {

trav(v, ys) sort(all(v)), ft.emplace_back(sz(v));
}

int ind(int x, int y) {

return (int)(lower_bound(all(ys[x]), y) - ys[x].begin()); }

void update(int x, int y, ll dif) {

for (; x < sz(ys); x |= x + 1)

ft[x].update(ind(x, y), dif);
```

```
11 query(int x, int y) {
   11 sum = 0;
   for (; x; x &= x - 1)
     sum += ft[x-1].query(ind(x-1, y));
    return sum;
};
```

3.4 RMQ

RMQ.h

Description: Range Minimum Queries on an array. Returns min(V[a], V[a +1], ... V[b - 1]) in constant time. Usage: RMQ rmq(values);

rmq.query(inclusive, exclusive); Time: $\mathcal{O}(|V|\log|V|+Q)$

1f8996, 17 lines

```
template<class T>
struct RMQ {
  vector<vector<T>> jmp;
  RMO(const vector<T>& V) {
    int N = sz(V), on = 1, depth = 1;
    while (on < N) on *= 2, depth++;
    jmp.assign(depth, V);
    rep(i, 0, depth-1) rep(j, 0, N)
      jmp[i+1][j] = min(jmp[i][j],
      jmp[i][min(N - 1, j + (1 << i))]);
  T query(int a, int b) {
    assert (a < b); // or return inf if a == b
    int dep = 31 - __builtin_clz(b - a);
    return min(jmp[dep][a], jmp[dep][b - (1 << dep)]);</pre>
};
```

WaveletTree

WaveletTree.h

```
1cd45c, 55 lines
template <class T>
struct wavelet (
  struct node {
   vector<int> b;
   T lo, hi, md;
  };
  vector<node> t;
  void build(const vector<T> &c, T *A, T *B, int v, int i, int
      j) {
    t[v].b.resize(B-A+1);
    t[v].lo = c[i], t[v].hi = c[j], t[v].md = c[(i+j)/2];
    for(int i = 0; A+i != B; ++i)
     t[v].b[i+1] = t[v].b[i] + (A[i] <= t[v].md);
    if(i == j) return;
    T *p = stable\_partition(A,B,[=](int x){return x <= t[v].md}
   build(c, A, p, v << 1, i, (i+j)/2);
   build(c,p,B,v << 1 | 1, (i+j)/2+1, j);
  void init(T *A, int n) {
    vector<T> c(A, A+n);
    sort(c.begin(),c.end());
    c.erase(unique(c.begin(),c.end()),c.end());
    int N = c.size();
    t.resize(N<<2);
    build(c, A, A+n, 1, 0, N-1);
```

```
wavelet(){}
 wavelet(T *A, int n) {init(A, n);}
 //kth smallest element in [l, r]
 T kth(int 1, int r, int k, int v = 1) {
   if(t[v].lo == t[v].hi) return t[v].lo;
    int lb = t[v].b[l-1], rb = t[v].b[r], il = rb-lb;
    return (k < i1) ? kth(lb+1,rb,k,v<<1) : kth(l-lb,r-rb,k-i1,
         v << 1 | 1):
  //number\ of\ elements\ in\ [l,r] <= to\ a
 int leg(int 1, int r, T a, int v = 1) {
   if(a < t[v].lo) return 0;</pre>
    if(t[v].hi <= a) return r-1+1;</pre>
    int lb = t[v].b[l-1], rb = t[v].b[r];
    return leg(lb+1, rb, a, v<<1) + leg(l-lb, r-rb, a, v<<1|1);
  //number of elements in [l, r] equal to a
  int count(int 1, int r, T a, int v = 1) {
   if(a < t[v].lo || a > t[v].hi) return 0;
    if(t[v].lo == t[v].hi) return r-l+1;
   int lb = t[v].b[l-1], rb = t[v].b[r];
    if (a <= t[v].md) return count(lb+1,rb,a,v<<1);</pre>
    return count (1-1b, r-rb, a, v<<1|1);
};
```

3.6 KDTree

KDTree.h

```
<br/>dits/stdc++.h>
                                                      ff695b, 182 lines
// constructs from n points in O(n lg^2 n) time
// handles nearest-neighbor query in O(lg n) if points are well
// O(\log n) average nearest neighbor, O(n) worst in
     pathological case
using namespace std;
// number type for coordinates, and its maximum value
typedef long long ntype;
const ntype sentry = numeric_limits<ntype>::max();
// point structure for 2D-tree, can be extended to 3D
struct point {
    ntype x, y;
    point(ntype xx = 0, ntype yy = 0) : x(xx), y(yy) {}
bool operator==(const point &a, const point &b) {
    return a.x == b.x && a.y == b.y;
// sorts points on x-coordinate
bool on_x(const point &a, const point &b) {
    return a.x < b.x;</pre>
// sorts points on y-coordinate
bool on_y(const point &a, const point &b) {
    return a.y < b.y;</pre>
```

```
// squared distance between points
ntype pdist2(const point &a, const point &b) {
    ntype dx = a.x-b.x, dy = a.y-b.y;
    return dx*dx + dy*dy;
// bounding box for a set of points
struct bbox {
    ntype x0, x1, y0, y1;
    bbox(): x0(sentry), x1(-sentry), y0(sentry), y1(-sentry)
    // computes bounding box from a bunch of points
    void compute(const vector<point> &v) {
        for (int i = 0; i < v.size(); ++i) {</pre>
            x0 = min(x0, v[i].x); x1 = max(x1, v[i].x);
            y0 = min(y0, v[i].y); y1 = max(y1, v[i].y);
    // squared distance between a point and this bbox. 0 if
         inside
    ntype distance (const point &p) {
        if (p.x < x0) {
                                return pdist2(point(x0, y0), p)
            if (p.y < y0)
            else if (p.y > y1) return pdist2(point(x0, y1), p)
            else
                                return pdist2(point(x0, p.y), p
        else if (p.x > x1) {
            if (p.y < y0)
                                return pdist2(point(x1, y0), p)
            else if (p.y > y1) return pdist2(point(x1, y1), p)
            else
                                return pdist2(point(x1, p.y), p
                 );
        else {
                                return pdist2(point(p.x, y0), p
            if (p.y < y0)
            else if (p.y > y1) return pdist2(point(p.x, y1), p
                 );
            else
                                return 0:
// stores a single node of the kd-tree, either internal or leaf
struct kdnode {
    bool leaf;
                    // true if this is a leaf node (has one
         point)
                    // the single point of this is a leaf
    point pt;
                    // bounding box for set of points in
    bbox bound;
         children
    kdnode *first, *second; // two children of this kd-node
    kdnode() : leaf(false), first(0), second(0) {}
    ~kdnode() { if (first) delete first; if (second) delete
         second; }
    // intersect a point with this node (returns squared
         distance)
    ntype intersect (const point &p) {
        return bound.distance(p);
```

PersistentSegTree GoldenSectionSearch

else {

```
// recursively builds a kd-tree from a given cloud of
    void construct(vector<point> &vp) {
        // compute bounding box for points at this node
        bound.compute(vp);
        // if we're down to one point, then we're a leaf node
        if (vp.size() == 1) {
            leaf = true;
            pt = vp[0];
        else {
            // split on x if the bbox is wider than high (not
                 best heuristic...)
            if (bound.x1-bound.x0 >= bound.y1-bound.y0)
                sort(vp.begin(), vp.end(), on_x);
            // otherwise split on y-coordinate
                sort(vp.begin(), vp.end(), on_y);
            // divide by taking half the array for each child
            // (not best performance if many duplicates in the
                 middle)
            int half = vp.size()/2;
            vector<point> vl(vp.begin(), vp.begin()+half);
            vector<point> vr(vp.begin()+half, vp.end());
            first = new kdnode(); first->construct(v1);
            second = new kdnode(); second->construct(vr);
};
// simple kd-tree class to hold the tree and handle queries
struct kdtree {
    kdnode *root:
    // constructs a kd-tree from a points (copied here, as it
         sorts them)
    kdtree(const vector<point> &vp) {
        vector<point> v(vp.begin(), vp.end());
        root = new kdnode();
        root->construct(v);
    ~kdtree() { delete root; }
    // recursive search method returns squared distance to
         nearest point
    ntype search(kdnode *node, const point &p) {
        if (node->leaf) {
            // commented special case tells a point not to find
              if (p = node \rightarrow pt) return sentry;
              else
                return pdist2(p, node->pt);
        ntype bfirst = node->first->intersect(p);
        ntype bsecond = node->second->intersect(p);
        // choose the side with the closest bounding box to
        // (note that the other side is also searched if needed
        if (bfirst < bsecond) {
            ntype best = search(node->first, p);
            if (bsecond < best)
                best = min(best, search(node->second, p));
            return best;
```

```
ntype best = search(node->second, p);
            if (bfirst < best)</pre>
                best = min(best, search(node->first, p));
    // squared distance to the nearest
    ntype nearest (const point &p) {
        return search (root, p);
};
// some basic test code here
int main() {
    /\!/ generate some random points for a kd-tree
    vector<point> vp;
    for (int i = 0; i < 100000; ++i)
        vp.push_back(point(rand()%100000, rand()%100000));
    kdtree tree(vp);
    // query some points
    for (int i = 0; i < 10; ++i) {
        point q(rand()%100000, rand()%100000);
        cout << "Closest squared distance to (" << q.x << ", "
             << q.y << ")"
             << " is " << tree.nearest(q) << endl;
    return 0;
3.7 PersistentSegTree
PersistentSegTree.h
                                                     44b362, 82 lines
<iostream>, <vector>
using namespace std;
/* persistent segment tree w/ sum query */
struct per_seq {
  vector<int> lc,rc,lx,rx,val,roots = {0};
  //CHANGE ME
  inline static int combine(int a, int b) {
    return a+b;
  //build PST on indices i ... j of array a
  int build(int i, int j, int* a) {
    int v = lc.size();
    lc.push_back(-1);
    rc.push_back(-1);
    lx.push_back(i);
    rx.push_back(j);
    val.push_back(a[i]);
      int 1 = build(i, (i+j)/2, a), r = build((i+j)/2+1, j, a);
```

```
lc[v] = 1;
      rc[v] = r;
      val[v] = combine(val[1], val[r]);
    return v;
  int q(int v, int i, int j) {
    if(j < lx[v] \mid | rx[v] < i)
      return 0;
    if(i <= lx[v] && rx[v] <= j)</pre>
      return val[v];
    return combine(q(lc[v],i,j),q(rc[v],i,j));
  int u(int v, int i, int a) {
   if(i < lx[v] \mid | rx[v] < i)
      return v;
    int w = lc.size();
    lc.push_back(lc[v]);
    rc.push_back(rc[v]);
    lx.push_back(lx[v]);
    rx.push_back(rx[v]);
    //CHANGE ME
    val.push_back(val[v]+a);
    if(lx[v] != rx[v]) {
      int 1 = u(lc[v], i, a), r = u(rc[v], i, a);
      lc[w] = 1;
      rc[w] = r;
      val[w] = combine(val[1], val[r]);
    return w;
  //sum from i to j after t updates
  int query(int i, int j, int t = -1) {
    if(t == -1) t = roots.size()-1;
    return q(roots[t],i,j);
  //add a to position i at time t
  void update(int i, int a, int t) {
    roots.push_back(u(roots[t],i,a));
};
/* USAGE */
int main() {
  int a[5] = \{1, 1, 1, 1, 1\};
  per_seg p;
  p.build(0,4,a);
  p.update(1,1);
  p.update(3,2);
  cout << p.query(2,2,5) << "\n";
  cout << p.query(0,2,5) << "\n";
  cout << p.query(1,0,3) << "\n"
  return 0;
```


Numerical (4)

4.1 GoldenSectionSearch

GoldenSectionSearch.h

```
double xmin = gss(-1000,1000,func); 

Time: \mathcal{O}(\log((b-a)/\epsilon)) 31d45b, 14 lines double gss(double a, double b, double (*f) (double)) { double r = (sqrt(5)-1)/2, eps = 1e-7; double x1 = b - r*(b-a), x2 = a + r*(b-a); double f1 = f(x1), f2 = f(x2); while (b-a > eps) if (f1 < f2) { //change to > to find maximum b = x2; x2 = x1; f2 = f1; x1 = b - r*(b-a); f1 = f(x1); } else { a = x1; x1 = x2; f1 = f2; x2 = a + r*(b-a); f2 = f(x2); } return a;
```

4.2 Polynomial

Polynomial.h

c9b7b0, 17 lines

```
struct Poly {
  vector<double> a;
  double operator() (double x) const {
    double val = 0;
    for(int i = sz(a); i--;) (val *= x) += a[i];
    return val;
}

void diff() {
    rep(i,1,sz(a)) a[i-1] = i*a[i];
    a.pop_back();
}

void divroot(double x0) {
    double b = a.back(), c; a.back() = 0;
    for(int i=sz(a)-1; i--;) c = a[i], a[i] = a[i+1]*x0+b, b=c;
    a.pop_back();
}
};
```

4.3 PolyRoots

PolyRoots.h

Description: Finds the real roots to a polynomial.

```
Usage: poly_roots({{2,-3,1}},-le9,le9) // solve x^2-3x+2 = 0 Time: \mathcal{O}\left(n^2\log(1/\epsilon)\right)
```

```
sort(all(dr));
rep(i,0,sz(dr)-1) {
  double l = dr[i], h = dr[i+1];
  bool sign = p(1) > 0;
  if (sign ^ (p(h) > 0)) {
    rep(it,0,60) { // while (h - l > 1e-8)
        double m = (1 + h) / 2, f = p(m);
        if ((f <= 0) ^ sign) 1 = m;
        else h = m;
    }
    ret.push_back((1 + h) / 2);
}
return ret;</pre>
```

4.4 PolyInterpolate

PolyInterpolate.h

Description: Given n points $(\mathbf{x}[\mathbf{i}], \mathbf{y}[\mathbf{i}])$, computes an n-1-degree polynomial p that passes through them: $p(x) = a[0] * x^0 + \ldots + a[n-1] * x^{n-1}$. For numerical precision, pick $x[k] = c * \cos(k/(n-1) * \pi), k = 0 \ldots n-1$. **Time:** $\mathcal{O}(n^2)$

```
typedef vector<double> vd;
vd interpolate(vd x, vd y, int n) {
  vd res(n), temp(n);
  rep(k,0,n-1) rep(i,k+1,n)
    y[i] = (y[i] - y[k]) / (x[i] - x[k]);
  double last = 0; temp[0] = 1;
  rep(k,0,n) rep(i,0,n) {
    res[i] += y[k] * temp[i];
    swap(last, temp[i]);
    temp[i] -= last * x[k];
  }
  return res;
}
```

4.5 LinearRecurrence

LinearRecurrence.h

 $\begin{array}{ll} \textbf{Description:} & \text{Generates the k'th term of an n-order linear recurrence} \\ S[i] = \sum_j S[i-j-1]tr[j], \text{ given } S[0\ldots \geq n-1] \text{ and } tr[0\ldots n-1]. \text{ Faster than matrix multiplication.} & \text{Useful together with Berlekamp-Massey.} \\ \textbf{Usage: linearRec}\left(\left\{0,\ 1\right\},\ \left\{1,\ 1\right\},\ k\right) \ //\ k'\text{th Fibonacci number} \\ \textbf{Time: } \mathcal{O}\left(n^2\log k\right) \\ & \text{f4e444, 26 lines} \\ \end{array}$

```
typedef vector<ll> Poly;
11 linearRec(Poly S, Poly tr, 11 k) {
 int n = sz(tr);
 auto combine = [&] (Poly a, Poly b) {
   Poly res(n * 2 + 1);
   rep(i, 0, n+1) rep(j, 0, n+1)
    res[i + j] = (res[i + j] + a[i] * b[j]) % mod;
    for (int i = 2 * n; i > n; --i) rep(j,0,n)
     res[i - 1 - j] = (res[i - 1 - j] + res[i] * tr[j]) % mod;
    res.resize(n + 1);
    return res;
 Poly pol(n + 1), e(pol);
 pol[0] = e[1] = 1;
 for (++k; k; k /= 2) {
   if (k % 2) pol = combine(pol, e);
   e = combine(e, e);
```

```
}
ll res = 0;
rep(i,0,n) res = (res + pol[i + 1] * S[i]) % mod;
return res;
```

4.6 HillClimbing

HillClimbing.h

Description: Poor man's optimization for unimodal functions f40e55, 16 lines

```
typedef array<double, 2> P;
double func(P p);

pair<double, P> hillClimb(P start) {
  pair<double, P> cur(func(start), start);
  for (double jmp = 1e9; jmp > 1e-20; jmp /= 2) {
    rep(j,0,100) rep(dx,-1,2) rep(dy,-1,2) {
        P p = cur.second;
        p[0] += dx*jmp;
        p[1] += dy*jmp;
        cur = min(cur, make_pair(func(p), p));
    }
    return cur;
}
```

4.7 Determinant

Determinant.h

Description: Calculates determinant of a matrix. Destroys the matrix. Time: $\mathcal{O}\left(N^3\right)$

```
double det(vector<vector<double>>& a) {
  int n = sz(a); double res = 1;
  rep(i,0,n) {
   int b = i;
  rep(j,i+1,n) if (fabs(a[j][i]) > fabs(a[b][i])) b = j;
  if (i != b) swap(a[i], a[b]), res *= -1;
  res *= a[i][i];
  if (res == 0) return 0;
  rep(j,i+1,n) {
    double v = a[j][i] / a[i][i];
    if (v != 0) rep(k,i+1,n) a[j][k] -= v * a[i][k];
  }
}
return res;
}
```

4.8 IntDeterminant

ll t = a[i][i] / a[j][i];

if (t) rep(k,i,n)

IntDeterminant.h

Description: Calculates determinant using modular arithmetics. Modulos can also be removed to get a pure-integer version.

```
Time: O(N³)
const 11 mod = 12345;
11 det(vector<vector<11>>& a) {
  int n = sz(a); 11 ans = 1;
  rep(i,0,n) {
    rep(j,i+1,n) {
    while (a[j][i] != 0) { // gcd step}
}
```

```
a[i][k] = (a[i][k] - a[j][k] * t) % mod;
    swap(a[i], a[j]);
    ans *= -1;
}
ans = ans * a[i][i] % mod;
if (!ans) return 0;
}
return (ans + mod) % mod;
```

4.9 Simplex

rep(i,0,m) {

Simplex.h

Description: Solves a general linear maximization problem: maximize c^Tx subject to $Ax \leq b$, $x \geq 0$. Returns -inf if there is no solution, inf if there are arbitrarily good solutions, or the maximum value of c^Tx otherwise. The input vector is set to an optimal x (or in the unbounded case, an arbitrary solution fulfilling the constraints). Numerical stability is not guaranteed. For better performance, define variables such that x = 0 is viable.

```
Usage: vvd A = \{\{1,-1\}, \{-1,1\}, \{-1,-2\}\}; vd b = \{1,1,-4\}, c = \{-1,-1\}, x; T val = LPSolver(A, b, c).solve(x); 

Time: \mathcal{O}(NM*\#pivots), where a pivot may be e.g. an edge relaxation.
```

```
\mathcal{O}\left(2^{n}\right) in the general case.
                                                      aa8530, 68 lines
typedef double T; // long double, Rational, double + mod<P>...
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s])) s=j
struct LPSolver {
 int m, n;
 vi N. B:
  vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2), vd(n+2)) {
      rep(i, 0, m) rep(j, 0, n) D[i][j] = A[i][j];
     rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[i];}
     rep(j, 0, n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i, 0, m+2) if (i != r \&\& abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
     rep(j,0,n+2) b[j] -= a[j] * inv2;
     b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i, 0, m+2) if (i != r) D[i][s] *= -inv;
   D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
     int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
     if (D[x][s] >= -eps) return true;
     int r = -1;
```

```
if (D[i][s] <= eps) continue;</pre>
       if (r == -1 \mid | MP(D[i][n+1] / D[i][s], B[i])
                     < MP(D[r][n+1] / D[r][s], B[r])) r = i;
     if (r == -1) return false;
     pivot(r, s);
 T solve(vd &x) {
   int r = 0;
   rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
   if (D[r][n+1] < -eps) {
     pivot(r, n);
     if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
     rep(i, 0, m) if (B[i] == -1) {
       int s = 0;
       rep(j,1,n+1) ltj(D[i]);
       pivot(i, s);
   bool ok = simplex(1); x = vd(n);
   rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
   return ok ? D[m][n+1] : inf;
};
```

4.10 MatrixInverse

MatrixInverse.h

Description: Invert matrix A. Returns rank; result is stored in A unless singular (rank < n). Can easily be extended to prime moduli; for prime powers, repeatedly set $A^{-1} = A^{-1}(2I - AA^{-1}) \pmod{p^k}$ where A^{-1} starts as the inverse of A mod B, and B is doubled in each step.

```
Time: \mathcal{O}\left(n^3\right)
                                                       ebfff6, 35 lines
int matInv(vector<vector<double>>& A) {
 int n = sz(A); vi col(n);
 vector<vector<double>> tmp(n, vector<double>(n));
 rep(i, 0, n) tmp[i][i] = 1, col[i] = i;
 rep(i,0,n) {
    int r = i, c = i;
    rep(j,i,n) rep(k,i,n)
     if (fabs(A[j][k]) > fabs(A[r][c]))
        r = j, c = k;
    if (fabs(A[r][c]) < 1e-12) return i;</pre>
    A[i].swap(A[r]); tmp[i].swap(tmp[r]);
    rep(j,0,n)
      swap(A[j][i], A[j][c]), swap(tmp[j][i], tmp[j][c]);
    swap(col[i], col[c]);
    double v = A[i][i];
    rep(j,i+1,n) {
      double f = A[j][i] / v;
     A[j][i] = 0;
      rep(k, i+1, n) A[j][k] -= f*A[i][k];
     rep(k,0,n) tmp[j][k] -= f*tmp[i][k];
    rep(j,i+1,n) A[i][j] /= v;
    rep(j,0,n) tmp[i][j] /= v;
   A[i][i] = 1;
 for (int i = n-1; i > 0; --i) rep(j, 0, i) {
    double v = A[j][i];
    rep(k,0,n) tmp[j][k] -= v*tmp[i][k];
```

```
rep(i,0,n) rep(j,0,n) A[col[i]][col[j]] = tmp[i][j];
return n;
```

4.11 SolveLinear

SolveLinear.h

Description: Solves A * x = b. If there are multiple solutions, an arbitrary one is returned. Returns rank, or -1 if no solutions. Data in A and b is lost. **Time:** $\mathcal{O}\left(n^2m\right)$

```
typedef vector<double> vd;
const double eps = 1e-12;
int solveLinear(vector<vd>& A, vd& b, vd& x) {
 int n = sz(A), m = sz(x), rank = 0, br, bc;
 if (n) assert(sz(A[0]) == m);
 vi col(m); iota(all(col), 0);
  rep(i,0,n) {
    double v, bv = 0;
    rep(r,i,n) rep(c,i,m)
      if ((v = fabs(A[r][c])) > bv)
       br = r, bc = c, bv = v;
    if (bv <= eps) {
      rep(j,i,n) if (fabs(b[j]) > eps) return -1;
    swap(A[i], A[br]);
    swap(b[i], b[br]);
    swap(col[i], col[bc]);
    rep(j,0,n) swap(A[j][i], A[j][bc]);
    bv = 1/A[i][i];
    rep(j, i+1, n) {
      double fac = A[j][i] * bv;
      b[j] -= fac * b[i];
      rep(k,i+1,m) A[i][k] -= fac*A[i][k];
    rank++;
 x.assign(m, 0);
  for (int i = rank; i--;) {
   b[i] /= A[i][i];
   x[col[i]] = b[i];
    rep(j, 0, i) b[j] -= A[j][i] * b[i];
 return rank; // (multiple solutions if rank < m)
```

4.12 SolveLinear2

SolveLinear2.h

Description: To get all uniquely determined values of x back from Solve-Linear, make the following changes:

4.13 SolveLinearBinary

SolveLinearBinary.h

Description: Solves Ax = b over \mathbb{F}_2 . If there are multiple solutions, one is returned arbitrarily. Returns rank, or -1 if no solutions. Destroys A and b. Time: $\mathcal{O}\left(n^2m\right)$

typedef bitset<1000> bs; int solveLinear(vector<bs>& A, vi& b, bs& x, int m) { int n = sz(A), rank = 0, br; $assert(m \le sz(x));$ vi col(m); iota(all(col), 0); rep(i,0,n) { for (br=i; br<n; ++br) if (A[br].any()) break;</pre> **if** (br == n) { rep(j,i,n) if(b[j]) return -1; break: int bc = (int)A[br]._Find_next(i-1); swap(A[i], A[br]); swap(b[i], b[br]); swap(col[i], col[bc]); rep(j,0,n) if (A[j][i] != A[j][bc]) { A[j].flip(i); A[j].flip(bc); rep(j,i+1,n) if (A[j][i]) { b[j] ^= b[i]; $A[j] ^= A[i];$ rank++; x = bs();for (int i = rank; i--;) { if (!b[i]) continue; x[col[i]] = 1;rep(j,0,i) b[j] ^= A[j][i]; return rank; // (multiple solutions if rank < m)

4.14 Fast Fourier transforms

FastFourierTransform.h

Description: fft(a) computes $\hat{f}(k) = \sum_{x} a[x] \exp(2\pi i \cdot kx/N)$ for all k. Useful for convolution: conv (a, b) = c, where $c[x] = \sum a[i]b[x-i]$. For convolution of complex numbers or more than two vectors: FFT, multiply pointwise, divide by n, reverse(start+1, end), FFT back. Rounding is safe if $(\sum a_i^2 + \sum b_i^2) \log_2 N < 9 \cdot 10^{14}$ (in practice 10^{16} ; higher for random inputs). Otherwise, use long doubles/NTT/FFTMod.

Time: $\mathcal{O}(N \log N)$ with $N = |A| + |B| \ (\sim 1s \text{ for } N = 2^{22})$ aca9fa, 35 lines

```
typedef complex<double> C;
typedef vector<double> vd;
void fft(vector<C>& a) {
  int n = sz(a), L = 31 - __builtin_clz(n);
  static vector<complex<long double>> R(2, 1);
  static vector<C> rt(2, 1); // (^ 10% faster if double)
  for (static int k = 2; k < n; k \neq 2) {
   R.resize(n); rt.resize(n);
   auto x = polar(1.0L, M_PI1 / k); // M_PI, lower-case L
   rep(i,k,2*k) rt[i] = R[i] = i&1 ? R[i/2] * x : R[i/2];
  rep(i,0,n) \ rev[i] = (rev[i / 2] | (i & 1) << L) / 2;
  rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
  for (int k = 1; k < n; k *= 2)
```

```
for (int i = 0; i < n; i += 2 * k) rep(j, 0, k) {
     Cz = rt[j+k] * a[i+j+k]; // (25\% faster if hand-rolled)
     a[i + j + k] = a[i + j] - z;
     a[i + j] += z;
vd conv(const vd& a, const vd& b) {
 if (a.empty() || b.empty()) return {};
 vd res(sz(a) + sz(b) - 1);
 int L = 32 - builtin clz(sz(res)), n = 1 \ll L;
 vector<C> in(n), out(n);
 copy(all(a), begin(in));
 rep(i,0,sz(b)) in[i].imag(b[i]);
 fft(in);
 trav(x, in) x *= x;
 rep(i, 0, n) out[i] = in[-i & (n - 1)] - conj(in[i]);
 rep(i, 0, sz(res)) res[i] = imag(out[i]) / (4 * n);
 return res;
```

FastFourierTransformMod

FastFourierTransformMod.h

Description: Higher precision FFT, can be used for convolutions modulo arbitrary integers as long as $N \log_2 N \cdot \text{mod} < 8.6 \cdot 10^{14}$ (in practice 10^{16} or higher). Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$, where N = |A| + |B| (twice as slow as NTT or FFT) "FastFourierTransform.h"

```
typedef vector<ll> v1;
template<int M> v1 convMod(const v1 &a, const v1 &b) {
 if (a.empty() || b.empty()) return {};
 vl res(sz(a) + sz(b) - 1);
  int B=32-__builtin_clz(sz(res)), n=1<<B, cut=int(sqrt(M));</pre>
  vector<C> L(n), R(n), outs(n), outl(n);
  rep(i,0,sz(a)) L[i] = C((int)a[i] / cut, (int)a[i] % cut);
  rep(i,0,sz(b)) R[i] = C((int)b[i] / cut, (int)b[i] % cut);
  fft(L), fft(R);
  rep(i,0,n) {
    int j = -i \& (n - 1);
    outl[j] = (L[i] + conj(L[j])) * R[i] / (2.0 * n);
    outs[j] = (L[i] - conj(L[j])) * R[i] / (2.0 * n) / 1i;
  fft(outl), fft(outs);
  rep(i,0,sz(res)) {
    11 \text{ av} = 11(\text{real}(\text{outl}[i]) + .5), \text{ cv} = 11(\text{imag}(\text{outs}[i]) + .5);
    11 \text{ bv} = 11(\text{imag}(\text{outl}[i]) + .5) + 11(\text{real}(\text{outs}[i]) + .5);
    res[i] = ((av % M * cut + bv) % M * cut + cv) % M;
 return res:
```

NumberTheoreticTransform

void ntt(vl& a, vl& rt, vl& rev, int n) {

NumberTheoreticTransform.h

Description: Can be used for convolutions modulo specific nice primes of the form $2^a b + 1$, where the convolution result has size at most $2^{\tilde{a}}$. Inputs must be in [0, mod).

Time: $\mathcal{O}(N \log N)$

```
"../number-theory/ModPow.h"
const 11 mod = (119 << 23) + 1, root = 62; // = 998244353
// For p < 2^30 there is also e.g. 5 << 25, 7 << 26, 479 << 21
// and 483 << 21 (same root). The last two are > 10^9.
typedef vector<ll> v1;
```

```
rep(i,0,n) if (i < rev[i]) swap(a[i], a[rev[i]]);
 for (int k = 1; k < n; k *= 2)
   for (int i = 0; i < n; i += 2 * k) rep(j,0,k) {
       11 z = rt[j + k] * a[i + j + k] % mod, &ai = a[i + j];
        a[i + j + k] = (z > ai ? ai - z + mod : ai - z);
        ai += (ai + z >= mod ? z - mod : z);
vl conv(const vl& a, const vl& b) {
 if (a.empty() || b.empty())
 int s = sz(a) + sz(b) - 1, B = 32 - builtin clz(s), n = 1 << B;
 vl L(a), R(b), out(n), rt(n, 1), rev(n);
 L.resize(n), R.resize(n);
 rep(i,0,n) rev[i] = (rev[i / 2] | (i & 1) << B) / 2;
 11 \text{ curL} = \text{mod} / 2, \text{inv} = \text{modpow}(n, \text{mod} - 2);
 for (int k = 2; k < n; k *= 2) {
   11 z[] = \{1, modpow(root, curL /= 2)\};
   rep(i,k,2*k) rt[i] = rt[i / 2] * z[i & 1] % mod;
 ntt(L, rt, rev, n); ntt(R, rt, rev, n);
 rep(i,0,n) out[-i & (n-1)] = L[i] * R[i] * mod * inv * mod;
 ntt(out, rt, rev, n);
 return {out.begin(), out.begin() + s};
```

4.17 FastSubsetTransform

FastSubsetTransform.h

Description: Transform to a basis with fast convolutions of the form $c[z] \, = \, \sum_{z=x \oplus y} a[x] \cdot b[y], \text{ where } \oplus \text{ is one of AND, OR, XOR.}$ The size of a must be a power of two.

```
Time: \mathcal{O}(N \log N)
```

```
3de473, 16 lines
void FST(vi& a, bool inv) {
  for (int n = sz(a), step = 1; step < n; step *= 2) {
    for (int i = 0; i < n; i += 2 * step) rep(j, i, i+step) {
      int \&u = a[j], \&v = a[j + step]; tie(u, v) =
        inv ? pii(v - u, u) : pii(v, u + v); // AND
        inv ? pii(v, u - v) : pii(u + v, u); // OR
        pii(u + v, u - v);
  if (inv) trav(x, a) x /= sz(a); //XOR only
vi conv(vi a, vi b) {
  FST(a, 0); FST(b, 0);
  rep(i, 0, sz(a)) a[i] *= b[i];
  FST(a, 1); return a;
```

Number theory (5)

5.1 Modular arithmetic

Modular Arithmetic.h

Description: Operators for modular arithmetic. You need to set mod to some number first and then you can use the structure.

```
const 11 mod = 17; // change to something else
struct Mod {
 11 x;
 Mod(ll xx) : x(xx) \{ \}
 Mod operator+(Mod b) { return Mod((x + b.x) % mod); }
```

10

```
Mod operator-(Mod b) { return Mod((x - b.x + mod) % mod); }
Mod operator*(Mod b) { return Mod((x * b.x) % mod); }
Mod operator/(Mod b) { return *this * invert(b); }
Mod invert(Mod a) {
    11 x, y, g = euclid(a.x, mod, x, y);
    assert(g == 1); return Mod((x + mod) % mod);
}
Mod operator^(11 e) {
    if (!e) return Mod(1);
    Mod r = *this^(e / 2); r = r * r;
    return e&1 ? *this * r : r;
}
};
```

ModInverse.h

Description: Pre-computation of modular inverses. Assumes LIM \leq mod and that mod is a prime.

```
const 11 mod = 1000000007, LIM = 200000;
ll* inv = new ll[LIM] - 1; inv[1] = 1;
rep(i,2,LIM) inv[i] = mod - (mod / i) * inv[mod % i] % mod;
```

${\bf ModPow.h}$

b83e45, 8 lines

49d606, 10 lines

```
const 11 mod = 1000000007; // faster if const

11 modpow(11 b, 11 e) {
    11 ans = 1;
    for (; e; b = b * b % mod, e /= 2)
        if (e & 1) ans = ans * b % mod;
    return ans;
}
```

ModLog.h

Description: Returns the smallest $x \ge 0$ s.t. $a^x = b \pmod{m}$. a and m must be coprime. **Time:** $\mathcal{O}(\sqrt{m})$

```
11 modLog(11 a, 11 b, 11 m) {
   assert(__gcd(a, m) == 1);
   11 n = (11) sqrt(m) + 1, e = 1, x = 1, res = LLONG_MAX;
   unordered_map<11, 11> f;
   rep(i,0,n) e = e * a % m;
   rep(i,0,n) x = x * e % m, f.emplace(x, i + 1);
   rep(i,0,n) if (f.count(b = b * a % m))
```

ModSum.h

return res;

Description: Sums of mod'ed arithmetic progressions.

res = min(res, f[b] * n - i - 1);

modsum(to, c, k, m) = $\sum_{i=0}^{\rm to-1} (ki+c)\%m$. divsum is similar but for floored division.

Time: $\log(m)$, with a large constant.

```
5c5bc5, 16 lines
```

```
typedef unsigned long long ull;
ull sumsq(ull to) { return to / 2 * ((to-1) | 1); }

ull divsum(ull to, ull c, ull k, ull m) {
   ull res = k / m * sumsq(to) + c / m * to;
   k %= m; c %= m;
   if (!k) return res;
   ull to2 = (to * k + c) / m;
   return res + (to - 1) * to2 - divsum(to2, m-1 - c, m, k);
}

ll modsum(ull to, ll c, ll k, ll m) {
   c = ((c % m) + m) % m;
```

```
k = ((k % m) + m) % m;

return to * c + k * sumsq(to) - m * divsum(to, c, k, m);
```

ModMulLL.h

```
Description: Calculate a \cdot b \mod c (or a^b \mod c) for 0 \le a, b < c < 2^{63}. Time: \mathcal{O}(1) for mod_mul, \mathcal{O}(\log b) for mod_pow
```

```
typedef unsigned long long ull;
typedef long double ld;
ull mod_mul(ull a, ull b, ull M) {
    ll ret = a * b - M * ull(ld(a) * ld(b) / ld(M));
    return ret + M * (ret < 0) - M * (ret >= (ll)M);
}
ull mod_pow(ull b, ull e, ull mod) {
    ull ans = 1;
    for (; e; b = mod_mul(b, b, mod), e /= 2)
        if (e & 1) ans = mod_mul(ans, b, mod);
    return ans;
}
```

ModSgrt.h

Description: Tonelli-Shanks algorithm for modular square roots. Finds x s.t. $x^2 = a \pmod{p}$ (-x gives the other solution).

Time: $\mathcal{O}(\log^2 p)$ worst case, $\mathcal{O}(\log p)$ for most p

```
"ModPow.h"
                                                       19a793, 24 lines
11 sqrt(11 a, 11 p) {
 a %= p; if (a < 0) a += p;
 if (a == 0) return 0;
 assert (modpow(a, (p-1)/2, p) == 1); // else no solution
 if (p % 4 == 3) return modpow(a, (p+1)/4, p);
 // a^{(n+3)/8} \text{ or } 2^{(n+3)/8} * 2^{(n-1)/4} \text{ works if } p \% 8 == 5
 11 s = p - 1, n = 2;
 int r = 0, m;
 while (s % 2 == 0)
    ++r, s /= 2;
  while (modpow(n, (p-1) / 2, p) != p-1) ++n;
 11 x = modpow(a, (s + 1) / 2, p);
 11 b = modpow(a, s, p), g = modpow(n, s, p);
 for (;; r = m) {
   11 t = b;
    for (m = 0; m < r && t != 1; ++m)
     t = t * t % p;
    if (m == 0) return x;
   11 \text{ gs} = \text{modpow}(g, 1LL \ll (r - m - 1), p);
   q = qs * qs % p;
   x = x * qs % p;
   b = b * q % p;
```

5.2 Primality

eratosthenes.h

Description: Prime sieve for generating all primes up to a certain limit. is prime[i] is true iff i is a prime.

Time: lim=100'000'000 \approx 0.8 s. Runs 30% faster if only odd indices are stored.

```
const int MAX_PR = 5'000'000;
bitset<MAX_PR> isprime;
vi eratosthenes_sieve(int lim) {
  isprime.set(); isprime[0] = isprime[1] = 0;
  for (int i = 4; i < lim; i += 2) isprime[i] = 0;
  for (int i = 3; i*i < lim; i += 2) if (isprime[i])
    for (int j = i*i; j < lim; j += i*2) isprime[j] = 0;
  vi pr;
```

```
rep(i,2,lim) if (isprime[i]) pr.push_back(i);
return pr;
```

MillerRabin.h

Description: Deterministic Miller-Rabin primality test. Guaranteed to work for numbers up to 2⁶⁴; for larger numbers, extend A randomly.

Time: 7 times the complexity of $a^{\overline{b}} \mod c$.

Factor.h

 $\begin{array}{ll} \textbf{Description:} & \text{Pollard-rho randomized factorization algorithm.} & \text{Returns prime factors of a number, in arbitrary order (e.g. 2299 -> \{11, 19, 11\}). \end{array}$

Time: $\mathcal{O}\left(n^{1/4}\right)$ gcd calls, less for numbers with small factors.

```
"ModMulLL.h", "MillerRabin.h"
                                                     f5adaa, 18 lines
ull pollard(ull n) {
 auto f = [n](ull x) { return (mod_mul(x, x, n) + 1) % n; };
 if (!(n & 1)) return 2;
  for (ull i = 2;; i++) {
    ull x = i, y = f(x), p;
    while ((p = \_gcd(n + y - x, n)) == 1)
     x = f(x), y = f(f(y));
    if (p != n) return p;
vector<ull> factor(ull n) {
 if (n == 1) return {};
 if (isPrime(n)) return {n};
 ull x = pollard(n);
  auto 1 = factor(x), r = factor(n / x);
 1.insert(1.end(), all(r));
 return 1;
```

5.3 Divisibility

euclid.h

Description: Finds two integers x and y, such that $ax + by = \gcd(a, b)$. If you just need gcd, use the built in a-gcd instead. If a and b are coprime, then a is the inverse of a (mod b).

```
11 euclid(l1 a, l1 b, l1 &x, l1 &y) {
   if (b) { l1 d = euclid(b, a % b, y, x);
     return y -= a/b * x, d; }
   return x = 1, y = 0, a;
}
```

Euclid.iava

```
Description: Finds {x, y, d} s.t. ax + by = d = gcd(a, b). GabaO1, 11 lines

static BigInteger[] euclid(BigInteger a, BigInteger b) {

BigInteger x = BigInteger.ONE, yy = x;

BigInteger y = BigInteger.ZERO, xx = y;

while (b.signum() != 0) {
```

```
BigInteger q = a.divide(b), t = b;
b = a.mod(b); a = t;
t = xx; xx = x.subtract(q.multiply(xx)); x = t;
t = yy; yy = y.subtract(q.multiply(yy)); y = t;
}
return new BigInteger[]{x, y, a};
```

CRT.h

Description: Chinese Remainder Theorem.

crt(a, m, b, n) computes x such that $x \equiv a \pmod{m}$, $x \equiv b \pmod{n}$. If |a| < m and |b| < n, x will obey $0 \le x < \operatorname{lcm}(m,n)$. Assumes $mn < 2^{62}$. **Time:** $\log(n)$

5.3.1 Bézout's identity

For $a \neq b \neq 0$, then d = gcd(a, b) is the smallest positive integer for which there are integer solutions to

$$ax + by = d$$

If (x, y) is one solution, then all solutions are given by

$$\left(x + \frac{kb}{\gcd(a,b)}, y - \frac{ka}{\gcd(a,b)}\right), \quad k \in \mathbb{Z}$$

phiFunction.h

Description: Euler's ϕ function is defined as $\phi(n) := \#$ of positive integers $\leq n$ that are coprime with n. $\phi(1) = 1$, p prime $\Rightarrow \phi(p^k) = (p-1)p^{k-1}$, m, n coprime $\Rightarrow \phi(mn) = \phi(m)\phi(n)$. If $n = p_1^{k_1} p_2^{k_2} ... p_r^{k_r}$ then $\phi(n) = (p_1 - 1)p_1^{k_1 - 1} ... (p_r - 1)p_r^{k_r - 1}$. $\phi(n) = n \cdot \prod_{p|n} (1 - 1/p)$. $\sum_{d|n} \phi(d) = n$, $\sum_{1 \leq k \leq n, \gcd(k, n) = 1} k = n\phi(n)/2, n > 1$ **Euler's thm:** a, n coprime $\Rightarrow a^{\phi(n)} \equiv 1 \pmod{n}$.

Fermat's little thm: $p \text{ prime} \Rightarrow a^{p-1} \equiv 1 \pmod{p} \ \forall a.$ cf7d6d, 8 lines const int LIM = 5000000; int phi[LIM];

```
const int LIM = 50000000;
int phi[LIM];

void calculatePhi() {
   rep(i,0,LIM) phi[i] = i&1 ? i : i/2;
   for(int i = 3; i < LIM; i += 2) if(phi[i] == i)
    for(int j = i; j < LIM; j += i) phi[j] -= phi[j] / i;
}</pre>
```

5.4 Fractions

ContinuedFractions.h

Description: Given N and a real number $x \ge 0$, finds the closest rational approximation p/q with $p,q \le N$. It will obey $|p/q - x| \le 1/qN$.

For consecutive convergents, $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. $(p_k/q_k$ alternates between > x and < x.) If x is rational, y eventually becomes ∞ ; if x is the root of a degree 2 polynomial the a's eventually become cyclic.

```
Time: \mathcal{O}(\log N)
typedef double d; // for N \sim 1e7; long double for N \sim 1e9
pair<ll, ll> approximate(d x, ll N) {
 11 LP = 0, LQ = 1, P = 1, Q = 0, inf = LLONG_MAX; d y = x;
 for (;;) {
    ll lim = min(P ? (N-LP) / P : inf, Q ? (N-LQ) / Q : inf),
       a = (11) floor(y), b = min(a, lim),
       NP = b*P + LP, NO = b*O + LO;
    if (a > b) {
      // If b > a/2, we have a semi-convergent that gives us a
      // better approximation; if b = a/2, we *may* have one.
      // Return {P, Q} here for a more canonical approximation.
      return (abs(x - (d)NP / (d)NQ) < abs(x - (d)P / (d)Q)) ?
        make_pair(NP, NQ) : make_pair(P, Q);
    if (abs(y = 1/(y - (d)a)) > 3*N) {
      return {NP, NQ};
    LP = P; P = NP;
    LQ = Q; Q = NQ;
```

FracBinarySearch.h

Description: Given f and N, finds the smallest fraction $p/q \in [0,1]$ such that f(p/q) is true, and $p, q \leq N$. You may want to throw an exception from f if it finds an exact solution, in which case N can be removed.

```
struct Frac { ll p, q; };
template < class F>
Frac fracBS(F f, ll N) {
 bool dir = 1, A = 1, B = 1;
 Frac lo{0, 1}, hi{1, 1}; // Set hi to 1/0 to search (0, N)
 if (f(lo)) return lo;
 assert(f(hi));
 while (A || B)
    11 adv = 0, step = 1; // move hi if dir, else lo
    for (int si = 0; step; (step *= 2) >>= si) {
      adv += step;
     Frac mid{lo.p * adv + hi.p, lo.q * adv + hi.q};
     if (abs(mid.p) > N || mid.q > N || dir == !f(mid)) {
       adv -= step; si = 2;
   hi.p += lo.p * adv;
   hi.q += lo.q * adv;
    dir = !dir;
   swap(lo, hi);
   A = B; B = !!adv;
 return dir ? hi : lo;
```

5.5 Pythagorean Triples

The Pythagorean triples are uniquely generated by

$$a = k \cdot (m^2 - n^2), b = k \cdot (2mn), c = k \cdot (m^2 + n^2),$$

with m > n > 0, k > 0, $m \perp n$, and either m or n even.

5.6 Primes

p=962592769 is such that $2^{21} \mid p-1$, which may be useful. For hashing use 970592641 (31-bit number), 31443539979727 (45-bit), 3006703054056749 (52-bit). There are 78498 primes less than $1\,000\,000$.

Primitive roots exist modulo any prime power p^a , except for p=2, a>2, and there are $\phi(\phi(p^a))$ many. For p=2, a>2, the group $\mathbb{Z}_{2^a}^{\times}$ is instead isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_{2^{a-2}}$.

5.7 Estimates

$$\sum_{d|n} d = O(n \log \log n).$$

The number of divisors of n is at most around 100 for n < 5e4, 500 for n < 1e7, 2000 for n < 1e10, 200 000 for n < 1e19.

Combinatorial (6)

6.1 Permutations

6.1.1 Factorial

						9		
n!	1 2 6	24 1	20 720	5040	40320	362880	3628800	
n	11	12	13	14	15	16	17	
n!	4.0e7	4.8e	8 6.2e	9 8.7e	10 1.3e	12 2.1e1	3 3.6e14 0 171	
n!	2e18	2e25	3e32	$8e47 \ 3$	6e64 9e	157 6e26	$62 > DBL_M$	AX

IntPerm.h

Description: Permutation -> integer conversion. (Not order preserving.) **Time:** $\mathcal{O}(n)$

6.1.2 Cycles

Let $g_S(n)$ be the number of *n*-permutations whose cycle lengths all belong to the set S. Then

$$\sum_{n=0}^{\infty} g_S(n) \frac{x^n}{n!} = \exp\left(\sum_{n \in S} \frac{x^n}{n}\right)$$

6.1.3 Derangements

Permutations of a set such that none of the elements appear in their original position.

$$D(n) = (n-1)(D(n-1)+D(n-2)) = nD(n-1)+(-1)^n = \left\lfloor \frac{n!}{e} \right\rfloor$$

6.1.4 Burnside's lemma

Given a group G of symmetries and a set X, the number of elements of X up to symmetry equals

$$\frac{1}{|G|} \sum_{g \in G} |X^g|,$$

where X^g are the elements fixed by g (g.x = x).

If f(n) counts "configurations" (of some sort) of length n, we can ignore rotational symmetry using $G = \mathbb{Z}_n$ to get

$$g(n) = \frac{1}{n} \sum_{k=0}^{n-1} f(\gcd(n,k)) = \frac{1}{n} \sum_{k|n} f(k)\phi(n/k).$$

6.2 Partitions and subsets

6.2.1 Partition function

Number of ways of writing n as a sum of positive integers, disregarding the order of the summands.

$$p(0) = 1, \ p(n) = \sum_{k \in \mathbb{Z} \setminus \{0\}} (-1)^{k+1} p(n - k(3k - 1)/2)$$

6.2.2 Binomials

binomialModPrime.h

Description: Lucas' thm: Let n, m be non-negative integers and p a prime. Write $n = n_k p^k + \ldots + n_1 p + n_0$ and $m = m_k p^k + \ldots + m_1 p + m_0$. Then $\binom{n}{m} \equiv \prod_{i=0}^k \binom{n_i}{m_i}$ (mod p). fact and invfact must hold pre-computed factorials / inverse factorials, e.g. from ModInverse.h. **Time:** $\mathcal{O}(\log_p n)$

```
c = c * fact[a] % p * invfact[b] % p * invfact[a - b] % p;
n /= p; m /= p;
return c;
}
```

multinomial.h

6.3 General purpose numbers

6.3.1 Bernoulli numbers

EGF of Bernoulli numbers is $B(t) = \frac{t}{e^t - 1}$ (FFT-able). $B[0, \ldots] = [1, -\frac{1}{2}, \frac{1}{6}, 0, -\frac{1}{30}, 0, \frac{1}{42}, \ldots]$

Sums of powers:

$$\sum_{i=1}^{n} n^{m} = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_{k} \cdot (n+1)^{m+1-k}$$

Euler-Maclaurin formula for infinite sums:

$$\sum_{i=m}^{\infty} f(i) = \int_{m}^{\infty} f(x)dx - \sum_{k=1}^{\infty} \frac{B_{k}}{k!} f^{(k-1)}(m)$$

$$\approx \int_{0}^{\infty} f(x)dx + \frac{f(m)}{2} - \frac{f'(m)}{12} + \frac{f'''(m)}{720} + O(f^{(5)}(m))$$

6.3.2 Stirling numbers of the first kind

Number of permutations on n items with k cycles.

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k), \ c(0,0) = 1$$

$$\sum_{k=0}^{n} c(n,k)x^{k} = x(x+1)\dots(x+n-1)$$

$$c(8, k) = 8, 0, 5040, 13068, 13132, 6769, 1960, 322, 28, 1$$

 $c(n, 2) = 0, 0, 1, 3, 11, 50, 274, 1764, 13068, 109584, \dots$

6.3.3 Eulerian numbers

Number of permutations $\pi \in S_n$ in which exactly k elements are greater than the previous element. k j:s s.t. $\pi(j) > \pi(j+1)$, k+1 j:s s.t. $\pi(j) \geq j$, k j:s s.t. $\pi(j) > j$.

$$E(n,k) = (n-k)E(n-1,k-1) + (k+1)E(n-1,k)$$

$$E(n,0) = E(n, n-1) = 1$$

$$E(n,k) = \sum_{j=0}^{k} (-1)^{j} \binom{n+1}{j} (k+1-j)^{n}$$

6.3.4 Stirling numbers of the second kind

Partitions of n distinct elements into exactly k groups.

$$S(n,k) = S(n-1,k-1) + kS(n-1,k)$$

$$S(n,1) = S(n,n) = 1$$

$$S(n,k) = \frac{1}{k!} \sum_{i=0}^{k} (-1)^{k-j} \binom{k}{j} j^{n}$$

6.3.5 Bell numbers

Total number of partitions of n distinct elements. B(n) = 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, For p prime,

$$B(p^m + n) \equiv mB(n) + B(n+1) \pmod{p}$$

6.3.6 Labeled unrooted trees

```
# on n vertices: n^{n-2}
# on k existing trees of size n_i: n_1 n_2 \cdots n_k n^{k-2}
# with degrees d_i: (n-2)!/((d_1-1)!\cdots(d_n-1)!)
```

6.3.7 Catalan numbers

$$C_n = \frac{1}{n+1} {2n \choose n} = {2n \choose n} - {2n \choose n+1} = \frac{(2n)!}{(n+1)!n!}$$

$$C_0 = 1, \ C_{n+1} = \frac{2(2n+1)}{n+2} C_n, \ C_{n+1} = \sum_{i=1}^{n} C_i C_{n-i}$$

 $C_n = 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, \dots$

- sub-diagonal monotone paths in an $n \times n$ grid.
- \bullet strings with n pairs of parenthesis, correctly nested.
- binary trees with with n+1 leaves (0 or 2 children).
- ordered trees with n+1 vertices.
- ways a convex polygon with n + 2 sides can be cut into triangles by connecting vertices with straight lines.
- permutations of [n] with no 3-term increasing subseq.

Graph (7)

7.1 BellmanFord

BellmanFord.h

Description: Calculates shortest paths from s in a graph that might have negative edge weights. Unreachable nodes get dist = inf; nodes reachable through negative-weight cycles get dist = -inf. Assumes $V^2 \max |w_i| < \sim 2^{63}$ Time: $\mathcal{O}(VE)$

```
const ll inf = LLONG_MAX;
struct Ed { int a, b, w, s() { return a < b ? a : -a; }};
struct Node { ll dist = inf; int prev = -1; };
void bellmanFord(vector<Node>& nodes, vector<Ed>& eds, int s)
 nodes[s].dist = 0;
  sort(all(eds), [](Ed a, Ed b) { return a.s() < b.s(); });
  int lim = sz(nodes) / 2 + 2; // /3+100 with shuffled vertices
  rep(i,0,lim) trav(ed, eds) {
   Node cur = nodes[ed.a], &dest = nodes[ed.b];
    if (abs(cur.dist) == inf) continue;
    11 d = cur.dist + ed.w;
    if (d < dest.dist) {</pre>
     dest.prev = ed.a;
     dest.dist = (i < lim-1 ? d : -inf);
  rep(i,0,lim) trav(e, eds) {
   if (nodes[e.a].dist == -inf)
     nodes[e.b].dist = -inf;
```

FloydWarshall

FlovdWarshall.h

Description: Calculates all-pairs shortest path in a directed graph that might have negative edge weights. Input is an distance matrix m, where $m[i][j] = \inf if i$ and j are not adjacent. As output, m[i][j] is set to the shortest distance between i and j, inf if no path, or -inf if the path goes through a negative-weight cycle.

```
Time: \mathcal{O}(N^3)
```

```
531245, 12 lines
const 11 inf = 1LL << 62;</pre>
void floydWarshall(vector<vector<ll>>& m) {
  int n = sz(m);
  rep(i, 0, n) m[i][i] = min(m[i][i], OLL);
  rep(k, 0, n) rep(i, 0, n) rep(j, 0, n)
   if (m[i][k] != inf && m[k][j] != inf) {
      auto newDist = max(m[i][k] + m[k][j], -inf);
     m[i][j] = min(m[i][j], newDist);
  rep(k, 0, n) if (m[k][k] < 0) rep(i, 0, n) rep(j, 0, n)
    if (m[i][k] != inf && m[k][j] != inf) m[i][j] = -inf;
```

TopoSort

TopoSort.h

Description: Topological sorting. Given is an oriented graph. Output is an ordering of vertices, such that there are edges only from left to right. If there are cycles, the returned list will have size smaller than n – nodes reachable from cycles will not be returned.

```
Time: \mathcal{O}(|V| + |E|)
```

22a53d, 14 lines

```
vi topo_sort(const vector<vi>& gr) {
 vi indeg(sz(gr)), ret;
 trav(li, gr) trav(x, li) indeg[x]++;
 queue <int> q; // use priority queue for lexic. smallest ans.
 rep(i, 0, sz(gr)) if (indeg[i] == 0) q.push(-i);
 while (!q.empty()) {
   int i = -q.front(); // top() for priority queue
   ret.push_back(i);
   q.pop();
   trav(x, qr[i])
     if (--indeg[x] == 0) q.push(-x);
 return ret;
```

7.4 Euler walk

EulerWalk.h

Description: Eulerian undirected/directed path/cycle algorithm. Returns a list of nodes in the Eulerian path/cycle with src at both start and end, or empty list if no cycle/path exists. To get edge indices back, also put it->second in s (and then ret).

Time: $\mathcal{O}\left(E\right)$ where E is the number of edges.

f8bd47, 27 lines

```
vector<pii> outs; // (dest, edge index)
 int nins = 0;
};
vi euler_walk(vector<V>& nodes, int nedges, int src=0) {
 trav(n, nodes) c += abs(n.nins - sz(n.outs));
 if (c > 2) return {};
 vector<vector<pii>::iterator> its;
 trav(n, nodes)
   its.push_back(n.outs.begin());
 vector<bool> eu(nedges);
 vi ret, s = \{src\};
 while(!s.empty()) {
   int x = s.back();
   auto& it = its[x], end = nodes[x].outs.end();
    while (it != end && eu[it->second]) ++it;
   if(it == end) { ret.push_back(x); s.pop_back(); }
    else { s.push_back(it->first); eu[it->second] = true; }
 if(sz(ret) != nedges+1)
    ret.clear(); // No Eulerian cycles/paths.
  // else, non-cycle if ret.front() != ret.back()
 reverse(all(ret));
 return ret;
```

7.5 Network flow

PushRelabel.h

Description: Push-relabel using the highest label selection rule and the gap heuristic. Quite fast in practice. To obtain the actual flow, look at positive values only.

```
Time: \mathcal{O}\left(V^2\sqrt{E}\right)
```

6c4045, 49 lines

```
typedef ll Flow;
struct Edge {
  int dest, back;
  Flow f, c;
};
```

```
struct PushRelabel {
 vector<vector<Edge>> g;
 vector<Flow> ec;
 vector<Edge*> cur;
 vector<vi> hs; vi H;
 PushRelabel(int n): q(n), ec(n), cur(n), hs(2*n), H(n) {}
 void add_edge(int s, int t, Flow cap, Flow rcap=0) {
   if (s == t) return;
   q[s].push back({t, sz(q[t]), 0, cap});
   q[t].push_back({s, sz(q[s])-1, 0, rcap});
 void add_flow(Edge& e, Flow f) {
   Edge &back = g[e.dest][e.back];
   if (!ec[e.dest] && f) hs[H[e.dest]].push_back(e.dest);
   e.f += f; e.c -= f; ec[e.dest] += f;
   back.f -= f; back.c += f; ec[back.dest] -= f;
 Flow maxflow(int s, int t) {
   int v = sz(g); H[s] = v; ec[t] = 1;
    vi co(2*v); co[0] = v-1;
    rep(i,0,v) cur[i] = g[i].data();
    trav(e, g[s]) add_flow(e, e.c);
    for (int hi = 0;;) {
      while (hs[hi].empty()) if (!hi--) return -ec[s];
     int u = hs[hi].back(); hs[hi].pop_back();
      while (ec[u] > 0) // discharge u
       if (cur[u] == g[u].data() + sz(g[u])) {
         H[u] = 1e9;
         trav(e, g[u]) if (e.c && H[u] > H[e.dest]+1)
           H[u] = H[e.dest]+1, cur[u] = &e;
          if (++co[H[u]], !--co[hi] && hi < v)</pre>
            rep(i, 0, v) if (hi < H[i] && H[i] < v)
              --co[H[i]], H[i] = v + 1;
          hi = H[u];
        } else if (cur[u]->c && H[u] == H[cur[u]->dest]+1)
         add_flow(*cur[u], min(ec[u], cur[u]->c));
        else ++cur[u];
};
```

MinCostMaxFlow 7.6

MinCostMaxFlow.h

Description: Min-cost max-flow. cap[i][j] != cap[j][i] is allowed; double edges are not. If costs can be negative, call setpi before maxflow, but note that negative cost cycles are not supported. To obtain the actual flow, look at positive values only.

Time: Approximately $\mathcal{O}(E^2)$

6915ce, 81 lines

```
#include <bits/extc++.h>
const 11 INF = numeric_limits<11>::max() / 4;
typedef vector<11> VL;
struct MCMF {
  int N;
  vector<vi> ed, red;
  vector<VL> cap, flow, cost;
  vi seen;
  VL dist, pi;
  vector<pii> par;
  MCMF (int N) :
    N(N), ed(N), red(N), cap(N, VL(N)), flow(cap), cost(cap),
```

};

EdmondsKarp MinCut GlobalMinCut hopcroftKarp

```
seen(N), dist(N), pi(N), par(N) {}
void addEdge(int from, int to, ll cap, ll cost) {
 this->cap[from][to] = cap;
 this->cost[from][to] = cost;
 ed[from].push_back(to);
  red[to].push_back(from);
void path(int s) {
  fill(all(seen), 0);
  fill(all(dist), INF);
  dist[s] = 0; ll di;
  __gnu_pbds::priority_queue<pair<ll, int>> q;
  vector<decltype(q)::point_iterator> its(N);
 q.push({0, s});
  auto relax = [&](int i, ll cap, ll cost, int dir) {
   ll val = di - pi[i] + cost;
   if (cap && val < dist[i]) {
     dist[i] = val;
     par[i] = {s, dir};
     if (its[i] == q.end()) its[i] = q.push({-dist[i], i});
      else q.modify(its[i], {-dist[i], i});
 };
  while (!q.empty()) {
   s = q.top().second; q.pop();
   seen[s] = 1; di = dist[s] + pi[s];
   trav(i, ed[s]) if (!seen[i])
     relax(i, cap[s][i] - flow[s][i], cost[s][i], 1);
   trav(i, red[s]) if (!seen[i])
     relax(i, flow[i][s], -cost[i][s], 0);
  rep(i, 0, N) pi[i] = min(pi[i] + dist[i], INF);
pair<11, 11> maxflow(int s, int t) {
 11 \text{ totflow} = 0, \text{ totcost} = 0;
  while (path(s), seen[t]) {
   11 fl = INF;
   for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
     fl = min(fl, r ? cap[p][x] - flow[p][x] : flow[x][p]);
   totflow += fl;
   for (int p,r,x = t; tie(p,r) = par[x], x != s; x = p)
     if (r) flow[p][x] += fl;
     else flow[x][p] -= fl;
  rep(i, 0, N) rep(j, 0, N) totcost += cost[i][j] * flow[i][j];
 return {totflow, totcost};
// If some costs can be negative, call this before maxflow:
void setpi(int s) { // (otherwise, leave this out)
  fill(all(pi), INF); pi[s] = 0;
 int it = N, ch = 1; 11 v;
 while (ch-- && it--)
   rep(i,0,N) if (pi[i] != INF)
     trav(to, ed[i]) if (cap[i][to])
       if ((v = pi[i] + cost[i][to]) < pi[to])</pre>
         pi[to] = v, ch = 1;
  assert(it >= 0); // negative cost cycle
```

7.7 EdmondsKarp

EdmondsKarp.h

Description: Flow algorithm with guaranteed complexity $O(VE^2)$. To get edge flow values, compare capacities before and after, and take the positive values only.

```
template < class T > T edmonds Karp (vector < unordered map < int, T >> &
    graph, int source, int sink) {
 assert (source != sink);
 T flow = 0;
 vi par(sz(graph)), q = par;
 for (;;) {
   fill(all(par), -1);
   par[source] = 0;
    int ptr = 1:
   a[0] = source;
   rep(i,0,ptr) {
     int x = q[i];
     trav(e, graph[x]) {
       if (par[e.first] == -1 && e.second > 0) {
         par[e.first] = x;
         q[ptr++] = e.first;
         if (e.first == sink) goto out;
   return flow;
   T inc = numeric_limits<T>::max();
   for (int y = sink; y != source; y = par[y])
     inc = min(inc, graph[par[y]][y]);
   flow += inc;
   for (int y = sink; y != source; y = par[y]) {
     int p = par[y];
     if ((graph[p][y] -= inc) <= 0) graph[p].erase(y);</pre>
     graph[y][p] += inc;
 }
```

7.8 MinCut

MinCut.h

Description: After running max-flow, the left side of a min-cut from s to t is given by all vertices reachable from s, only traversing edges with positive residual capacity.

7.9 GlobalMinCut

GlobalMinCut.h

Description: Find a global minimum cut in an undirected graph, as represented by an adjacency matrix.

```
Time: O(V³)
pair<int, vi> GetMinCut(vector<vi>& weights) {
  int N = sz (weights);
  vi used(N), cut, best_cut;
  int best_weight = -1;

for (int phase = N-1; phase >= 0; phase--) {
   vi w = weights[0], added = used;
}
```

```
int prev, k = 0;
  rep(i,0,phase){
    prev = k;
    k = -1;
    rep(j,1,N)
      if (!added[\dot{\eta}] && (k == -1 || w[\dot{\eta}] > w[k])) k = \dot{\eta};
    if (i == phase-1) {
      rep(j,0,N) weights[prev][j] += weights[k][j];
      rep(j,0,N) weights[j][prev] = weights[prev][j];
      used[k] = true;
      cut.push_back(k);
      if (best_weight == -1 \mid \mid w[k] < best_weight) {
        best cut = cut;
        best_weight = w[k];
    } else {
      rep(j,0,N)
        w[j] += weights[k][j];
      added[k] = true;
return {best_weight, best_cut};
```

7.10 hopcroftKarp

hopcroftKarp.h

Description: Fast bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

```
Usage: vi btoa(m, -1); hopcroftKarp(g, btoa);
```

```
Time: \mathcal{O}\left(\sqrt{V}E\right)
bool dfs(int a, int L, vector<vi>& g, vi& btoa, vi& A, vi& B) {
 if (A[a] != L) return 0;
 A[a] = -1;
 trav(b, g[a]) if (B[b] == L + 1) {
    if (btoa[b] == -1 || dfs(btoa[b], L + 1, g, btoa, A, B))
      return btoa[b] = a, 1;
 return 0;
int hopcroftKarp(vector<vi>& g, vi& btoa) {
 int res = 0;
  vi A(g.size()), B(btoa.size()), cur, next;
  for (;;) {
    fill(all(A), 0);
    fill(all(B), 0);
    cur.clear();
    trav(a, btoa) if(a !=-1) A[a] = -1;
    rep(a, 0, sz(g)) if(A[a] == 0) cur.push_back(a);
    for (int lay = 1;; lay++) {
      bool islast = 0;
      next.clear();
      trav(a, cur) trav(b, g[a]) {
        if (btoa[b] == -1) {
          B[b] = lay;
          islast = 1;
        else if (btoa[b] != a && !B[b]) {
          B[b] = lay;
          next.push_back(btoa[b]);
```



```
if (islast) break;
  if (next.empty()) return res;
  trav(a, next) A[a] = lay;
  cur.swap(next);
}
rep(a,0,sz(g))
  res += dfs(a, 0, g, btoa, A, B);
}
```

7.11 DFSMatching

DFSMatching.h

Description: Simple bipartite matching algorithm. Graph g should be a list of neighbors of the left partition, and btoa should be a vector full of -1's of the same size as the right partition. Returns the size of the matching. btoa[i] will be the match for vertex i on the right side, or -1 if it's not matched.

Usage: vi btoa(m, -1); dfsMatching(g, btoa); **Time:** $\mathcal{O}(VE)$

```
bool find(int j, vector<vi>& g, vi& btoa, vi& vis) {
 if (btoa[j] == -1) return 1;
  vis[j] = 1; int di = btoa[j];
  trav(e, g[di])
   if (!vis[e] && find(e, q, btoa, vis)) {
     btoa[e] = di;
     return 1;
  return 0;
int dfsMatching(vector<vi>& q, vi& btoa) {
  rep(i, 0, sz(q)) {
   vis.assign(sz(btoa), 0);
   trav(j,g[i])
     if (find(j, g, btoa, vis)) {
       btoa[j] = i;
       break;
  return sz(btoa) - (int)count(all(btoa), -1);
```

7.12 MinimumVertexCover

MinimumVertexCover.h

Description: Finds a minimum vertex cover in a bipartite graph. The size is the same as the size of a maximum matching, and the complement is a maximum independent set.

```
d0b3f2, 20 lines
"DFSMatching.h"
vi cover(vector<vi>& g, int n, int m) {
 vi match (m, -1);
  int res = dfsMatching(g, match);
  vector<bool> lfound(n, true), seen(m);
  trav(it, match) if (it != -1) lfound[it] = false;
  vi q, cover;
  rep(i,0,n) if (lfound[i]) q.push_back(i);
  while (!q.empty()) {
   int i = q.back(); q.pop_back();
   lfound[i] = 1;
   trav(e, g[i]) if (!seen[e] && match[e] != -1) {
     seen[e] = true;
     q.push_back(match[e]);
  rep(i,0,n) if (!lfound[i]) cover.push_back(i);
```

```
rep(i,0,m) if (seen[i]) cover.push_back(n+i);
assert(sz(cover) == res);
return cover;
```

7.13 WeightedMatching

WeightedMatching.h

Description: Min cost bipartite matching. Negate costs for max cost. **Time:** $\mathcal{O}\left(N^3\right)$

```
typedef vector<double> vd;
bool zero(double x) { return fabs(x) < 1e-10; }</pre>
double MinCostMatching(const vector<vd>& cost, vi& L, vi& R) {
 int n = sz(cost), mated = 0;
  vd dist(n), u(n), v(n);
  vi dad(n), seen(n);
  rep(i,0,n) {
    u[i] = cost[i][0];
    rep(j,1,n) u[i] = min(u[i], cost[i][j]);
 rep(j,0,n) {
   v[j] = cost[0][j] - u[0];
    rep(i,1,n) \ v[j] = min(v[j], cost[i][j] - u[i]);
 L = R = vi(n, -1);
 rep(i,0,n) rep(j,0,n) {
    if (R[j] != -1) continue;
    if (zero(cost[i][j] - u[i] - v[j])) {
     L[i] = j;
     R[j] = i;
     mated++;
     break;
  for (; mated < n; mated++) { // until solution is feasible</pre>
    int s = 0:
    while (L[s] !=-1) s++;
    fill(all(dad), -1);
    fill(all(seen), 0);
    rep(k,0,n)
     dist[k] = cost[s][k] - u[s] - v[k];
    int \dot{1} = 0;
    for (;;) {
      j = -1;
      rep(k,0,n){
       if (seen[k]) continue;
        if (j == -1 || dist[k] < dist[j]) j = k;</pre>
      seen[j] = 1;
      int i = R[j];
      if (i == -1) break;
      rep(k,0,n) {
       if (seen[k]) continue;
       auto new_dist = dist[j] + cost[i][k] - u[i] - v[k];
        if (dist[k] > new_dist) {
          dist[k] = new_dist;
          dad[k] = j;
    rep(k,0,n) {
      if (k == j || !seen[k]) continue;
```

```
auto w = dist[k] - dist[j];
   v[k] += w, u[R[k]] -= w;
}
u[s] += dist[j];

while (dad[j] >= 0) {
   int d = dad[j];
   R[j] = R[d];
   L[R[j]] = j;
   j = d;
}
   R[j] = s;
   L[s] = j;
}
auto value = vd(1)[0];
   rep(i,0,n) value += cost[i][L[i]];
return value;
}
```

7.14 GeneralMatching

GeneralMatching.h

Description: Matching for general graphs. Fails with probability N/mod. **Time:** $\mathcal{O}\left(N^3\right)$

```
"../numerical/MatrixInverse-mod.h"
vector<pii> generalMatching(int N, vector<pii>& ed) {
 vector<vector<ll>> mat(N, vector<ll>(N)), A;
 trav(pa, ed) {
   int a = pa.first, b = pa.second, r = rand() % mod;
   mat[a][b] = r, mat[b][a] = (mod - r) % mod;
 int r = matInv(A = mat), M = 2*N - r, fi, f;
 assert (r % 2 == 0);
 if (M != N) do {
   mat.resize(M, vector<11>(M));
    rep(i,0,N) {
     mat[i].resize(M);
     rep(j,N,M) {
       int r = rand() % mod;
       mat[i][j] = r, mat[j][i] = (mod - r) % mod;
 } while (matInv(A = mat) != M);
 vi has (M, 1); vector<pii> ret;
 rep(it,0,M/2) {
   rep(i,0,M) if (has[i])
      rep(j,i+1,M) if (A[i][j] && mat[i][j]) {
       fi = i; fj = j; goto done;
    } assert(0); done:
   if (fj < N) ret.emplace_back(fi, fj);</pre>
   has[fi] = has[fj] = 0;
    rep(sw, 0, 2) {
     11 a = modpow(A[fi][fj], mod-2);
     rep(i,0,M) if (has[i] && A[i][fj]) {
       11 b = A[i][fj] * a % mod;
        rep(j, 0, M) A[i][j] = (A[i][j] - A[fi][j] * b) % mod;
      swap(fi,fj);
 return ret;
```


7.15 Strongly Connected Component

SCC.h

Description: Finds strongly connected components in a directed graph. If vertices u,v belong to the same component, we can reach u from v and vice versa.

Usage: $sc(graph, [\&](vi\& v) \{ ... \})$ visits all components in reverse topological order. comp[i] holds the component index of a node (a component only has edges to components with lower index). ncomps will contain the number of components. **Time:** $\mathcal{O}(E+V)$

```
bb2963, 24 lines
vi val, comp, z, cont;
int Time, ncomps;
template < class G, class F> int dfs (int j, G& q, F& f) {
  int low = val[j] = ++Time, x; z.push_back(j);
  trav(e,g[j]) if (comp[e] < 0)
   low = min(low, val[e] ?: dfs(e,q,f));
 if (low == val[j]) {
     x = z.back(); z.pop_back();
     comp[x] = ncomps;
     cont.push_back(x);
    } while (x != i);
    f(cont); cont.clear();
    ncomps++;
  return val[j] = low;
template < class G, class F> void scc(G& g, F f) {
  val.assign(n, 0); comp.assign(n, -1);
 Time = ncomps = 0;
 rep(i, 0, n) if (comp[i] < 0) dfs(i, g, f);
```

7.16 BiconnectedComponents

BiconnectedComponents.h

Description: Finds all biconnected components in an undirected graph, and runs a callback for the edges in each. In a biconnected component there are at least two distinct paths between any two nodes. Note that a node can be in several components. An edge which is not in a component is a bridge, i.e., not part of any cycle. **Usage:** int eid = 0; ed.resize(N);

```
for each edge (a,b) {  & \text{ed[a].emplace.back(a, eid);} \\ & \text{ed[b].emplace.back(a, eid++);} \\ & \text{bicomps([s](const vis edgelist)} \\ & \text{Time: } \mathcal{O}(E+V) \\ & \text{vi num, st;} \\ & \text{vector<vector<pii>>> ed;} \\ \end{aligned} }
```

```
vi num, st;
vector<vector<pii>> ed;
int Time;
template < class F>
int dfs(int at, int par, F& f) {
  int me = num[at] = ++Time, e, y, top = me;
  trav(pa, ed[at]) if (pa.second != par) {
    tie(y, e) = pa;
    if (num[y]) {
      top = min(top, num[y]);
      if (num[y] < me)
        st.push_back(e);
    } else {
      int si = sz(st);
     int up = dfs(y, e, f);
     top = min(top, up);
```

```
if (up == me) {
    st.push_back(e);
    f(vi(st.begin() + si, st.end()));
    st.resize(si);
}
else if (up < me) st.push_back(e);
else { /* e is a bridge */ }
}
return top;
}

template < class F >
void bicomps(F f) {
    num.assign(sz(ed), 0);
    rep(i,0,sz(ed)) if (!num[i]) dfs(i, -1, f);
}
```

7.17 2sat

2sat.h

Description: Calculates a valid assignment to boolean variables a, b, c,... to a 2-SAT problem, so that an expression of the type (a|||b)&&(!a|||c)&&(d|||!b)&&... becomes true, or reports that it is unsatisfiable. Negated variables are represented by bit-inversions (\sim x).

```
Usage: TwoSat ts(number of boolean variables); ts.either(0, \sim3); // Var 0 is true or var 3 is false ts.set.value(2); // Var 2 is true ts.at_most_one({0, \sim1,2}); // <= 1 of vars 0, \sim1 and 2 are true ts.solve(); // Returns true iff it is solvable ts.values[0..N-1] holds the assigned values to the vars
```

Time: $\mathcal{O}\left(N+E\right)$, where N is the number of boolean variables, and E is the number of clauses.

```
struct TwoSat {
 int N;
 vector<vi> ar:
 vi values; // 0 = false, 1 = true
 TwoSat(int n = 0) : N(n), qr(2*n) {}
 int add_var() { // (optional)
   gr.emplace_back();
   gr.emplace_back();
   return N++;
 void either(int f, int j) {
   f = \max(2*f, -1-2*f);
   j = \max(2*j, -1-2*j);
   gr[f].push_back(j^1);
   gr[j].push_back(f^1);
 void set_value(int x) { either(x, x); }
 void at_most_one(const vi& li) { // (optional)
   if (sz(li) <= 1) return;</pre>
   int cur = \simli[0];
   rep(i,2,sz(li)) {
     int next = add_var();
     either(cur, ~li[i]);
     either(cur, next);
     either(~li[i], next);
     cur = \sim next;
    either(cur, ~li[1]);
```

```
vi val, comp, z; int time = 0;
  int dfs(int i) {
    int low = val[i] = ++time, x; z.push_back(i);
    trav(e, gr[i]) if (!comp[e])
     low = min(low, val[e] ?: dfs(e));
    if (low == val[i]) do {
     x = z.back(); z.pop_back();
      comp[x] = low;
      if (values[x>>1] == -1)
       values[x>>1] = x&1;
    } while (x != i);
    return val[i] = low;
 bool solve() {
    values.assign(N, -1);
    val.assign(2*N, 0); comp = val;
    rep(i,0,2*N) if (!comp[i]) dfs(i);
    rep(i,0,N) if (comp[2*i] == comp[2*i+1]) return 0;
    return 1:
};
```

7.18 MaximalCliques

MaximalCliques.h

Description: Runs a callback for all maximal cliques in a graph (given as a symmetric bitset matrix; self-edges not allowed). Callback is given a bitset representing the maximal clique.

```
Time: \mathcal{O}\left(3^{n/3}\right), much faster for sparse graphs
```

b0d5b1, 12 lines

```
typedef bitset<128> B;
template<class F>
void cliques(vector<B>& eds, F f, B P = ~B(), B X={}, B R={}) {
    if (!P.any()) { if (!X.any()) f(R); return; }
    auto q = (P | X)._Find_first();
    auto cands = P & ~eds[q];
    rep(i,0,sz(eds)) if (cands[i]) {
        R[i] = 1;
        cliques(eds, f, P & eds[i], X & eds[i], R);
        R[i] = P[i] = 0; X[i] = 1;
    }
}
```

7.19 MaximumClique

MaximumClique.h

Description: Quickly finds a maximum clique of a graph (given as symmetric bitset matrix; self-edges not allowed). Can be used to find a maximum independent set by finding a clique of the complement graph.

Time: Runs in about 1s for n=155 and worst case random graphs (p=.90). Runs faster for sparse graphs.

fbbef1, 49 lines

```
typedef vector<bitset<200>> vb;
struct Maxclique {
    double limit=0.025, pk=0;
    struct Vertex { int i, d=0; };
    typedef vector<Vertex> vv;
    vb e;
    vv V;
    vector<vi> C;
    vi qmax, q, S, old;
    void init(vv& r) {
        trav(v, r) v.d = 0;
        trav(v, r) trav(j, r) v.d += e[v.i][j.i];
        sort(all(r), [](auto a, auto b) { return a.d > b.d; });
```

```
int mxD = r[0].d;
    rep(i, 0, sz(r)) r[i].d = min(i, mxD) + 1;
  void expand(vv& R, int lev = 1) {
    S[lev] += S[lev - 1] - old[lev];
    old[lev] = S[lev - 1];
    while (sz(R)) {
     if (sz(q) + R.back().d <= sz(qmax)) return;</pre>
     q.push_back(R.back().i);
     trav(v,R) if (e[R.back().i][v.i]) T.push_back({v.i});
      if (sz(T)) {
       if (S[lev]++ / ++pk < limit) init(T);</pre>
        int j = 0, mxk = 1, mnk = max(sz(qmax) - sz(q) + 1, 1);
       C[1].clear(), C[2].clear();
       trav(v, T) {
          int k = 1;
          auto f = [&](int i) { return e[v.i][i]; };
          while (any_of(all(C[k]), f)) k++;
         if (k > mxk) mxk = k, C[mxk + 1].clear();
         if (k < mnk) T[j++].i = v.i;
          C[k].push_back(v.i);
        if (j > 0) T[j - 1].d = 0;
        rep(k, mnk, mxk + 1) trav(i, C[k])
         T[j].i = i, T[j++].d = k;
        expand(T, lev + 1);
      } else if (sz(q) > sz(qmax)) qmax = q;
      q.pop_back(), R.pop_back();
  vi maxClique() { init(V), expand(V); return qmax; }
 Maxclique(vb conn) : e(conn), C(sz(e)+1), S(sz(C)), old(S) {
    rep(i,0,sz(e)) V.push_back({i});
};
```

7.20 MaximumIndependentSet

MaximumIndependentSet.h

Description: To obtain a maximum independent set of a graph, find a max clique of the complement. If the graph is bipartite, see MinimumVertexCover.

7.21 TreePower

TreePower.h

Description: Calculate power of two jumps in a tree, to support fast upward jumps and LCAs. Assumes the root node points to itself.

Time: construction $\mathcal{O}(N \log N)$, queries $\mathcal{O}(\log N)$

bfce85, 25 lines

```
vector<vi> treeJump(vi& P) {
   int on = 1, d = 1;
   while(on < sz(P)) on *= 2, d++;
   vector<vi> jmp(d, P);
   rep(i,1,d) rep(j,0,sz(P))
   jmp[i][j] = jmp[i-1][jmp[i-1][j]];
   return jmp;
}

int jmp(vector<vi>& tbl, int nod, int steps) {
   rep(i,0,sz(tbl))
    if(steps&(1<<i)) nod = tbl[i][nod];
   return nod;
}

int lca(vector<vi>& tbl, vi& depth, int a, int b) {
```

```
if (depth[a] < depth[b]) swap(a, b);
a = jmp(tbl, a, depth[a] - depth[b]);
if (a == b) return a;
for (int i = sz(tbl); i--;) {
   int c = tbl[i][a], d = tbl[i][b];
   if (c != d) a = c, b = d;
}
return tbl[0][a];
}</pre>
```

7.22 CompressTree

CompressTree.h

Description: Given a rooted tree and a subset S of nodes, compute the minimal subtree that contains all the nodes by adding all (at most |S|-1) pairwise LCA's and compressing edges. Returns a list of (par, orig_index) representing a tree rooted at 0. The root points to itself. **Time:** $\mathcal{O}(|S|\log|S|)$

```
"LCA.h"
                                                     dabd75, 20 lines
vpi compressTree(LCA& lca, const vi& subset) {
 static vi rev: rev.resize(sz(lca.dist));
 vi li = subset, &T = lca.time;
 auto cmp = [&](int a, int b) { return T[a] < T[b]; };</pre>
 sort(all(li), cmp);
 int m = sz(1i)-1;
 rep(i,0,m) {
   int a = li[i], b = li[i+1];
   li.push_back(lca.query(a, b));
 sort(all(li), cmp);
 li.erase(unique(all(li)), li.end());
 rep(i, 0, sz(li)) rev[li[i]] = i;
 vpi ret = {pii(0, li[0])};
 rep(i, 0, sz(li) -1) {
   int a = li[i], b = li[i+1];
   ret.emplace_back(rev[lca.query(a, b)], b);
 return ret;
```

7.23 HLD

HLD.h

Description: Decomposes a tree into vertex disjoint heavy paths and light edges such that the path from any leaf to the root contains at most log(n) light edges. The function of the HLD can be changed by modifying T, LOW and f. f is assumed to be associative and commutative.

```
void f(T& a, T b) { a = max(a, b); }
vector<Node> V;
vector<Chain> C;
HLD(vector<vpi>& q) : V(sz(q)) {
  dfs(0, -1, g, 0);
  trav(c, C) {
   c.tree = {sz(c.nodes), 0};
    for (int ni : c.nodes)
      c.tree.update(V[ni].pos, V[ni].val);
void update(int node, T val) {
  Node& n = V[node]; n.val = val;
  if (n.chain != -1) C[n.chain].tree.update(n.pos, val);
int pard(Node& nod) {
  if (nod.par == -1) return -1;
  return V[nod.chain == -1 ? nod.par : C[nod.chain].par].d;
// query all *edges* between n1. n2
pair<T, int> query(int i1, int i2) {
  T ans = LOW;
  while(i1 != i2) {
    Node n1 = V[i1], n2 = V[i2];
    if (n1.chain != -1 && n1.chain == n2.chain) {
      int lo = n1.pos, hi = n2.pos;
      if (lo > hi) swap(lo, hi);
      f(ans, C[n1.chain].tree.query(lo, hi));
      i1 = i2 = C[n1.chain].nodes[hi];
    } else {
      if (pard(n1) < pard(n2))
       n1 = n2, swap(i1, i2);
      if (n1.chain == -1)
        f(ans, n1.val), i1 = n1.par;
      else ·
        Chain& c = C[n1.chain];
        f(ans, n1.pos ? c.tree.query(n1.pos, sz(c.nodes))
                      : c.tree.s[1]);
        i1 = c.par;
  return make_pair(ans, i1);
// query all *nodes* between n1, n2
pair<T, int> query2(int i1, int i2) {
  pair<T, int> ans = query(i1, i2);
  f(ans.first, V[ans.second].val);
  return ans;
pii dfs(int at, int par, vector<vpi>& q, int d) {
  V[at].d = d; V[at].par = par;
  int sum = 1, ch, nod, sz;
  tuple<int, int, int> mx(-1,-1,-1);
  trav(e, g[at]){
   if (e.first == par) continue;
    tie(sz, ch) = dfs(e.first, at, g, d+1);
   V[e.first].val = e.second;
    sum += sz;
    mx = max(mx, make_tuple(sz, e.first, ch));
  tie(sz, nod, ch) = mx;
```

CentroidDecomposition LinkCutTree DirectedMST

```
if (2*sz < sum) return pii(sum, -1);</pre>
    if (ch == -1) { ch = sz(C); C.emplace_back(); }
   V[nod].pos = sz(C[ch].nodes);
   V[nod].chain = ch;
   C[ch].par = at;
   C[ch].nodes.push_back(nod);
    return pii(sum, ch);
};
```

CentroidDecomposition

CentroidDecomposition.h

80964d, 40 lines

```
vvi T;
const int N = 1e5+5;
int cdt sz[N]={};
int cdt_parent[N];
vi cdt_children[N];
int cdt_fsz(int u, int v) {
  if(cdt sz[v] == -1) return 0;
  cdt sz[v] = 1;
  for(int w : T[v])
   if (w != u)
      cdt_sz[v] += cdt_fsz(v,w);
 return cdt_sz[v];
//call\ cdt\_build(0,\ tree\_size)
//cdt_parent of the centroid root is -1
int cdt_build(int v, int n, bool rc = 1) {
  if(rc) cdt fsz(-1,v);
  int p = -1;
  while(1) {
   int x = -1;
    for(int w : T[v])
     if(x == -1 || cdt_sz[w] > cdt_sz[x])
       x = w;
   if(cdt_sz[x] * 2 <= n) break;</pre>
   cdt_sz[v] = n-cdt_sz[x];
   p = v, v = x;
  cdt_sz[v] = cdt_parent[v] = -1;
  for(int w : T[v]) {
   if (cdt_sz[w] == -1) continue;
   int x = cdt_build(w,cdt_sz[w],w == p);
    //found\ cdt\ edge\ (v \rightarrow x)
   cdt_children[v].push_back(x);
   cdt_parent[x] = v;
  return v;
```

7.25 LinkCutTree

Description: Represents a forest of unrooted trees. You can add and remove edges (as long as the result is still a forest), and check whether two nodes are in the same tree.

Time: All operations take amortized $\mathcal{O}(\log N)$.

693483, 90 lines

```
struct Node { // Splay tree. Root's pp contains tree's parent.
 Node *p = 0, *pp = 0, *c[2];
 bool flip = 0;
 Node() { c[0] = c[1] = 0; fix(); }
```

```
void fix() {
   if (c[0]) c[0]->p = this;
   if (c[1]) c[1]->p = this;
   // (+ update sum of subtree elements etc. if wanted)
 void push_flip() {
   if (!flip) return;
    flip = 0; swap(c[0], c[1]);
   if (c[0]) c[0]->flip ^= 1;
    if (c[1]) c[1]->flip ^= 1;
 int up() { return p ? p->c[1] == this : -1; }
 void rot(int i, int b) {
   int h = i \hat{b};
   Node *x = c[i], *y = b == 2 ? x : x -> c[h], *z = b ? y : x;
    if ((y->p = p)) p->c[up()] = y;
   c[i] = z -> c[i ^ 1];
   if (b < 2) {
     x->c[h] = y->c[h ^ 1];
     z -> c[h ^1] = b ? x : this;
   v - > c[i ^1] = b ? this : x;
   fix(); x->fix(); y->fix();
   if (p) p->fix();
   swap(pp, y->pp);
 void splay() {
   for (push_flip(); p; ) {
     if (p->p) p->p->push_flip();
     p->push_flip(); push_flip();
     int c1 = up(), c2 = p->up();
     if (c2 == -1) p->rot(c1, 2);
     else p->p->rot(c2, c1 != c2);
 Node* first() {
   push_flip();
   return c[0] ? c[0]->first() : (splay(), this);
} ;
struct LinkCut {
 vector<Node> node;
 LinkCut(int N) : node(N) {}
 void link(int u, int v) { // add an edge (u, v)
   assert(!connected(u, v));
   make_root(&node[u]);
   node[u].pp = &node[v];
 void cut (int u, int v) { // remove an edge (u, v)
   Node *x = &node[u], *top = &node[v];
   make_root(top); x->splay();
   assert(top == (x->pp ?: x->c[0]));
   if (x->pp) x->pp = 0;
    else {
     x->c[0] = top->p = 0;
     x \rightarrow fix();
 bool connected (int u, int v) { // are u, v in the same tree?
   Node* nu = access(&node[u])->first();
   return nu == access(&node[v])->first();
 void make_root(Node* u) {
   access(u);
   u->splay();
   if(u->c[0]) {
     u - c[0] - p = 0;
```

```
u - c[0] - flip ^= 1;
      u - c[0] - pp = u;
      u - > c[0] = 0;
      u \rightarrow fix();
 Node* access(Node* u) {
    u->splay();
    while (Node* pp = u->pp) {
      pp->splay(); u->pp = 0;
      if (pp->c[1]) {
        pp - c[1] - p = 0; pp - c[1] - pp = pp; 
      pp - c[1] = u; pp - fix(); u = pp;
    return u;
};
```

DirectedMST

DirectedMST.h

Description: Edmonds' algorithm for finding the weight of the minimum spanning tree/arborescence of a directed graph, given a root node. If no MST exists, returns -1.

Time: $\mathcal{O}\left(E\log V\right)$

a69883 48 lines

```
"../data-structures/UnionFind.h"
struct Edge { int a, b; ll w; };
struct Node {
  Edge kev;
  Node *1, *r;
  11 delta;
  void prop()
    kev.w += delta;
    if (1) 1->delta += delta;
    if (r) r->delta += delta;
    delta = 0:
  Edge top() { prop(); return key; }
Node *merge(Node *a, Node *b) {
  if (!a || !b) return a ?: b;
  a->prop(), b->prop();
  if (a->key.w > b->key.w) swap(a, b);
  swap(a->1, (a->r = merge(b, a->r)));
  return a;
void pop(Node*\& a) { a->prop(); a = merge(a->1, a->r); }
11 dmst(int n, int r, vector<Edge>& g) {
  UF uf(n):
  vector<Node*> heap(n);
  trav(e, g) heap[e.b] = merge(heap[e.b], new Node{e});
  11 \text{ res} = 0;
  vi seen(n, -1), path(n);
  seen[r] = r;
  rep(s,0,n) {
    int u = s, qi = 0, w;
    while (seen[u] < 0) {</pre>
      path[qi++] = u, seen[u] = s;
      if (!heap[u]) return -1;
      Edge e = heap[u] \rightarrow top();
      heap[u]->delta -= e.w, pop(heap[u]);
      res += e.w, u = uf.find(e.a);
      if (seen[u] == s) {
        Node \star cvc = 0;
        do cyc = merge(cyc, heap[w = path[--qi]]);
        while (uf.join(u, w));
```



```
u = uf.find(u);
      heap[u] = cyc, seen[u] = -1;
return res;
```

Geometry (8)

8.1 Geometric primitives

Point.h

Description: Class to handle points in the plane. T can be e.g. double or long long. (Avoid int.)

```
template \langle class T \rangle int sqn(T x) \{ return (x > 0) - (x < 0); \}
template < class T>
struct Point {
  typedef Point P;
  T x, v;
  explicit Point (T x=0, T y=0) : x(x), y(y) {}
  bool operator<(P p) const { return tie(x,v) < tie(p.x,p.v);</pre>
  bool operator==(P p) const { return tie(x,y)==tie(p.x,p.y);
  P operator+(P p) const { return P(x+p.x, y+p.y); }
  P operator-(P p) const { return P(x-p.x, y-p.y); }
  P operator*(T d) const { return P(x*d, y*d); }
  P operator/(T d) const { return P(x/d, y/d); }
  T dot(P p) const { return x*p.x + y*p.y; }
  T cross(P p) const { return x*p.y - y*p.x; }
  T cross(P a, P b) const { return (a-*this).cross(b-*this); }
  T dist2() const { return x*x + y*y; }
  double dist() const { return sqrt((double)dist2()); }
  // angle to x-axis in interval [-pi, pi]
  double angle() const { return atan2(y, x); }
  P unit() const { return *this/dist(); } // makes dist()=1
  P perp() const { return P(-y, x); } // rotates +90 degrees
  P normal() const { return perp().unit(); }
  // returns point rotated 'a' radians ccw around the origin
  P rotate (double a) const {
   return P(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a)); }
  friend ostream& operator<<(ostream& os, P p) {</pre>
    return os << "(" << p.x << "," << p.y << ")"; }
};
```

lineDistance.h

Description:

Returns the signed distance between point p and the line containing points a and b. Positive value on left side and negative on right as seen from a towards b. a==b gives nan. P is supposed to be Point<T> or Point3D<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long. Using Point3D will always give a non-negative distance. For Point3D, call .dist /S on the result of the cross product.


```
f6bf6b, 4 lines
template<class P>
double lineDist(const P& a, const P& b, const P& p) {
 return (double) (b-a).cross(p-a)/(b-a).dist();
```

SegmentDistance.h Description:

Returns the shortest distance between point p and the line segment from point s to e.


```
Usage: Point < double > a, b(2,2), p(1,1);
bool onSegment = segDist(a,b,p) < 1e-10;
                                                       5c88f4, 6 lines
typedef Point < double > P;
double segDist(P& s, P& e, P& p) {
 if (s==e) return (p-s).dist();
  auto d = (e-s) . dist2(), t = min(d, max(.0, (p-s).dot(e-s)));
  return ((p-s)*d-(e-s)*t).dist()/d;
```

SegmentIntersection.h

Description:

If a unique intersection point between the line segments going from s1 to e1 and from s2 to e2 exists then it is returned. If no intersection point exists an empty vector is returned. If infinitely many exist a vector with 2 elements is returned, containing the endpoints of the common line segment. The wrong position will be returned if P is Point<|l> and the intersection point does not have integer coordinates. Products of three coordinates are used in intermediate steps so watch out for overflow if using int or long long.

```
Usage: vector<P> inter = seqInter(s1,e1,s2,e2);
if (sz(inter) == 1)
cout << "segments intersect at " << inter[0] << endl;</pre>
"Point.h", "OnSegment.h"
                                                         9d57f2, 13 lines
template < class P > vector < P > segInter (P a, P b, P c, P d) {
```

```
auto oa = c.cross(d, a), ob = c.cross(d, b),
     oc = a.cross(b, c), od = a.cross(b, d);
// Checks if intersection is single non-endpoint point.
if (sqn(oa) * sqn(ob) < 0 && sqn(oc) * sqn(od) < 0)
  return { (a * ob - b * oa) / (ob - oa) };
set<P> s:
if (onSegment(c, d, a)) s.insert(a);
if (onSegment(c, d, b)) s.insert(b);
if (onSegment(a, b, c)) s.insert(c);
if (onSegment(a, b, d)) s.insert(d);
return {all(s)};
```

lineIntersection.h

Description:

If a unique intersection point of the lines going through s1,e1 and s2,e2 exists {1, point} is returned. If no intersection point exists $\{0, (0,0)\}$ is returned and if infinitely many exists $\{-1, e^2\}$ (0,0)} is returned. The wrong position will be returned if P is Point<ll> and the intersection point does not have integer coordinates. Products of three coordinates are used in 1 intermediate steps so watch out for overflow if using int or ll.

```
Usage: auto res = lineInter(s1,e1,s2,e2);
if (res.first == 1)
cout << "intersection point at " << res.second << endl;
```

```
template<class P>
pair<int, P> lineInter(P s1, P e1, P s2, P e2) {
 auto d = (e1 - s1).cross(e2 - s2);
 if (d == 0) // if parallel
   return {-(s1.cross(e1, s2) == 0), P(0, 0)};
 auto p = s2.cross(e1, e2), q = s2.cross(e2, s1);
 return {1, (s1 * p + e1 * q) / d};
```

sideOf.h

Description: Returns where p is as seen from s towards e. $1/0/-1 \Leftrightarrow \text{left/on}$ line/right. If the optional argument eps is given 0 is returned if p is within distance eps from the line. P is supposed to be Point<T> where T is e.g. double or long long. It uses products in intermediate steps so watch out for overflow if using int or long long.

```
Usage: bool left = sideOf(p1,p2,q)==1;
"Point.h"
                                                         3af81c, 9 lines
template<class P>
int sideOf(P s, P e, P p) { return sgn(s.cross(e, p)); }
template<class P>
int sideOf(const P& s, const P& e, const P& p, double eps) {
  auto a = (e-s).cross(p-s);
  double 1 = (e-s).dist()*eps;
  return (a > 1) - (a < -1);
OnSegment.h
Description: Returns true iff p lies on the line segment from s to e. Use
(segDist(s,e,p) <=epsilon) instead when using Point < double >.
                                                        c597e8, 3 lines
template < class P > bool on Segment (P s, P e, P p) {
  return p.cross(s, e) == 0 && (s - p).dot(e - p) <= 0;
linearTransformation.h
Description:
Apply the linear transformation (translation, rotation and
scaling) which takes line p0-p1 to line q0-q1 to point r.
"Point.h"
                                                        03a306, 6 line
typedef Point<double> P;
P linearTransformation(const P& p0, const P& p1,
    const P& q0, const P& q1, const P& r) {
  P dp = p1-p0, dq = q1-q0, num(dp.cross(dq), dp.dot(dq));
  return q0 + P((r-p0).cross(num), (r-p0).dot(num))/dp.dist2();
```

Angle.h

return (b < a.t180() ?

Description: A class for ordering angles (as represented by int points and a number of rotations around the origin). Useful for rotational sweeping. Sometimes also represents points or vectors.

```
Usage: vector<Angle> v = \{w[0], w[0].t360() ...\}; // sorted
int j = 0; rep(i,0,n) { while (v[j] < v[i].t180()) ++j; }
// sweeps j such that (j-i) represents the number of positively
oriented triangles with vertices at 0 and i
```

```
struct Angle {
               int x, y;
               int t;
               Angle(int x, int y, int t=0) : x(x), y(y), t(t) {}
               Angle operator-(Angle b) const { return {x-b.x, y-b.y, t}; }
               int half() const {
                 assert(x || y);
                 return y < 0 || (y == 0 && x < 0);
a01f81, 8 lines
               Angle t90() const { return \{-y, x, t + (half() \&\& x >= 0)\}; \}
               Angle t180() const { return {-x, -y, t + half()}; }
               Angle t360() const { return {x, y, t + 1}; }
             bool operator<(Angle a, Angle b) {</pre>
               // add a. dist2() and b. dist2() to also compare distances
               return make_tuple(a.t, a.half(), a.y * (11)b.x) <</pre>
                      make_tuple(b.t, b.half(), a.x * (ll)b.y);
             // Given two points, this calculates the smallest angle between
             // them, i.e., the angle that covers the defined line segment.
             pair<Angle, Angle> segmentAngles(Angle a, Angle b) {
               if (b < a) swap(a, b);
```

make_pair(a, b) : make_pair(b, a.t360()));


```
Angle operator+(Angle a, Angle b) { // point a + vector b
 Angle r(a.x + b.x, a.y + b.y, a.t);
 if (a.t180() < r) r.t--;
 return r.t180() < a ? r.t360() : r;
Angle angleDiff(Angle a, Angle b) { // angle b- angle a
 int tu = b.t - a.t; a.t = b.t;
 return \{a.x*b.x + a.y*b.y, a.x*b.y - a.y*b.x, tu - (b < a)\};
```

Circles

CircleIntersection.h

Description: Computes the pair of points at which two circles intersect. Returns false in case of no intersection.

```
84d6d3, 11 lines
typedef Point<double> P;
bool circleInter(P a, P b, double r1, double r2, pair < P, P >* out) {
  if (a == b) { assert(r1 != r2); return false; }
  P \text{ vec} = b - a;
  double d2 = vec.dist2(), sum = r1+r2, dif = r1-r2,
         p = (d2 + r1*r1 - r2*r2)/(d2*2), h2 = r1*r1 - p*p*d2;
  if (sum*sum < d2 || dif*dif > d2) return false;
  P \text{ mid} = a + \text{vec*p, per} = \text{vec.perp()} * \text{sqrt(fmax(0, h2) / d2);}
  *out = {mid + per, mid - per};
  return true;
```

CircleTangents.h

Description: Finds the external tangents of two circles, or internal if r2 is negated. Can return 0, 1, or 2 tangents – 0 if one circle contains the other (or overlaps it, in the internal case, or if the circles are the same); 1 if the circles are tangent to each other (in which case .first = .second and the tangent line is perpendicular to the line between the centers). .first and .second give the tangency points at circle 1 and 2 respectively. To find the tangents of a circle with a point set r2 to 0.

```
"Point.h"
                                                      b0153d, 13 lines
template<class P>
vector<pair<P, P>> tangents(P c1, double r1, P c2, double r2) {
 P d = c2 - c1;
  double dr = r1 - r2, d2 = d.dist2(), h2 = d2 - dr * dr;
  if (d2 == 0 || h2 < 0) return {};</pre>
  vector<pair<P, P>> out;
  for (double sign : {-1, 1}) {
   P v = (d * dr + d.perp() * sqrt(h2) * sign) / d2;
   out.push_back(\{c1 + v * r1, c2 + v * r2\});
  if (h2 == 0) out.pop_back();
  return out:
```

circumcircle.h

Description:

"Point.h"

The circumcirle of a triangle is the circle intersecting all three vertices. ccRadius returns the radius of the circle going through points A, B and C and ccCenter returns the center of the same circle.

typedef Point < double > P; double ccRadius (const P& A, const P& B, const P& C) { return (B-A).dist() * (C-B).dist() * (A-C).dist() / abs((B-A).cross(C-A))/2; P ccCenter (const P& A, const P& B, const P& C) {

```
P b = C-A, c = B-A;
return A + (b*c.dist2()-c*b.dist2()).perp()/b.cross(c)/2;
```

MinimumEnclosingCircle.h

Description: Computes the minimum circle that encloses a set of points. Time: expected $\mathcal{O}(n)$

```
"circumcircle.h"
                                                     09dd0a, 17 lines
pair<P, double> mec(vector<P> ps) {
 shuffle(all(ps), mt19937(time(0)));
 P \circ = ps[0];
 double r = 0, EPS = 1 + 1e-8;
 rep(i, 0, sz(ps)) if ((o - ps[i]).dist() > r * EPS) {
   o = ps[i], r = 0;
   rep(j,0,i) if ((o - ps[j]).dist() > r * EPS) {
     o = (ps[i] + ps[j]) / 2;
     r = (o - ps[i]).dist();
     rep(k, 0, j) if ((o - ps[k]).dist() > r * EPS) {
       o = ccCenter(ps[i], ps[j], ps[k]);
        r = (o - ps[i]).dist();
 return {o, r};
```

8.3 Polygons

InsidePolygon.h

Description: Returns true if p lies within the polygon. If strict is true, it returns false for points on the boundary. The algorithm uses products in intermediate steps so watch out for overflow.

```
Usage: vector<P> v = {P{4,4}, P{1,2}, P{2,1}};
bool in = inPolygon(v, P{3, 3}, false);
Time: \mathcal{O}\left(n\right)
```

```
"Point.h", "OnSegment.h", "SegmentDistance.h"
```

```
template<class P>
bool inPolygon(vector<P> &p, P a, bool strict = true) {
  int cnt = 0, n = sz(p);
  rep(i,0,n) {
    P q = p[(i + 1) % n];
    if (onSegment(p[i], q, a)) return !strict;
    //or: if (segDist(p[i], q, a) \le eps) return !strict;
    cnt \hat{}= ((a.y < p[i].y) - (a.y < q.y)) * a.cross(p[i], q) > 0;
  return cnt;
```

PolygonArea.h

Description: Returns twice the signed area of a polygon. Clockwise enumeration gives negative area. Watch out for overflow if using int as T!

```
f12300, 6 lines
"Point.h"
template<class T>
T polygonArea2(vector<Point<T>>& v) {
 T = v.back().cross(v[0]);
 rep(i,0,sz(v)-1) a += v[i].cross(v[i+1]);
 return a:
```

PolygonCenter.h

Description: Returns the center of mass for a polygon. Time: $\mathcal{O}\left(n\right)$

P polygonCenter(const vector<P>& v) {

```
"Point.h"
                                                                         9706dc, 9 lines
```

```
typedef Point < double > P;
```

```
P res(0, 0); double A = 0;
for (int i = 0, j = sz(v) - 1; i < sz(v); j = i++) {
  res = res + (v[i] + v[j]) * v[j].cross(v[i]);
  A += v[j].cross(v[i]);
return res / A / 3;
```

PolygonCut.h

Description:

Returns a vector with the vertices of a polygon with everything to the left of the line going from s to e cut away.

```
Usage: vector<P> p = ...;
p = polygonCut(p, P(0,0), P(1,0));
"Point.h", "lineIntersection.h"
```



```
f2b7d4, 13 lines
```

```
typedef Point<double> P;
vector<P> polygonCut(const vector<P>& poly, P s, P e) {
 vector<P> res;
 rep(i,0,sz(poly)) {
   P cur = poly[i], prev = i ? poly[i-1] : poly.back();
    bool side = s.cross(e, cur) < 0;</pre>
    if (side != (s.cross(e, prev) < 0))</pre>
     res.push_back(lineInter(s, e, cur, prev).second);
    if (side)
      res.push back(cur);
 return res;
```

ConvexHull.h

Description:

"Point.h"

Returns a vector of the points of the convex hull in counterclockwise order. Points on the edge of the hull between two other points are not considered part of the hull.

Time: $\mathcal{O}(n \log n)$

```
typedef Point<11> P;
vector<P> convexHull(vector<P> pts) {
 if (sz(pts) <= 1) return pts;</pre>
 sort(all(pts));
 vector<P> h(sz(pts)+1);
 int s = 0, t = 0;
 for (int it = 2; it--; s = --t, reverse(all(pts)))
   trav(p, pts) {
     while (t \ge s + 2 \&\& h[t-2].cross(h[t-1], p) \le 0) t--;
 return {h.begin(), h.begin() + t - (t == 2 \& h[0] == h[1]);
```

HullDiameter.h

Description: Returns the two points with max distance on a convex hull (ccw, no duplicate/colinear points). c571b8, 12 lines

```
typedef Point<ll> P;
array<P, 2> hullDiameter(vector<P> S) {
 int n = sz(S), j = n < 2 ? 0 : 1;
 pair<ll, array<P, 2>> res({0, {S[0], S[0]}});
  rep(i,0,j)
    for (;; j = (j + 1) % n) {
      res = \max(\text{res}, \{(S[i] - S[j]).dist2(), \{S[i], S[j]\}\});
      if ((S[(j+1) % n] - S[j]).cross(S[i+1] - S[i]) >= 0)
        break:
  return res.second;
```


PointInsideHull.h

Description: Determine whether a point t lies inside a convex hull (CCW order, with no colinear points). Returns true if point lies within the hull. If strict is true, points on the boundary aren't included.

Time: $\mathcal{O}(\log N)$ "Point.h", "sideOf.h", "OnSegment.h"

typedef Point<11> P;

```
bool inHull(const vector<P>& 1, P p, bool strict = true) {
  int a = 1, b = sz(1) - 1, r = !strict;
  if (sz(1) < 3) return r && onSegment(1[0], 1.back(), p);
  if (sideOf(1[0], 1[a], 1[b]) > 0) swap(a, b);
  if (sideOf(1[0], 1[a], p) >= r || sideOf(1[0], 1[b], p) <= -r)
    return false;
  while (abs(a - b) > 1) {
    int c = (a + b) / 2;
    (sideOf(1[0], 1[c], p) > 0 ? b : a) = c;
  }
  return sgn(1[a].cross(1[b], p)) < r;
}</pre>
```

LineHullIntersection.h

Description: Line-convex polygon intersection. The polygon must be ccw and have no colinear points. lineHull(line, poly) returns a pair describing the intersection of a line with the polygon: \bullet (-1,-1) if no collision, \bullet (i,-1) if touching the corner i, \bullet (i,i) if along side (i,i+1), \bullet (i,j) if crossing sides (i,i+1) and (j,j+1). In the last case, if a corner i is crossed, this is treated as happening on side (i,i+1). The points are returned in the same order as the line hits the polygon. extrVertex returns the point of a hull with the max projection onto a line.

Time: $\mathcal{O}(N + Q \log n)$

rep(i,0,2) {

swap (endA, endB);

"Point.h" 758f22, 39 lines typedef array<P, 2> Line; #define cmp(i, j) sqn(dir.perp().cross(poly[(i)%n]-poly[(j)%n])) #define extr(i) cmp(i + 1, i) >= 0 && cmp(i, i - 1 + n) < 0 int extrVertex(vector<P>& poly, P dir) { int n = sz(poly), lo = 0, hi = n; if (extr(0)) return 0; while (10 + 1 < hi) { int m = (lo + hi) / 2;if (extr(m)) return m; int 1s = cmp(1o + 1, 1o), ms = cmp(m + 1, m); $(1s < ms \mid | (1s == ms \&\& 1s == cmp(1o, m)) ? hi : 1o) = m;$ return lo; #define cmpL(i) sqn(line[0].cross(poly[i], line[1])) array<int, 2> lineHull(Line line, vector<P> poly) { int endA = extrVertex(poly, (line[0] - line[1]).perp()); int endB = extrVertex(poly, (line[1] - line[0]).perp()); **if** $(cmpL(endA) < 0 \mid \mid cmpL(endB) > 0)$ **return** {-1, -1}; array<int, 2> res;

int m = ((lo + hi + (lo < hi ? 0 : n)) / 2) % n;

switch ((res[0] - res[1] + sz(poly) + 1) % sz(poly)) {

int lo = endB, hi = endA, n = sz(poly);

if (res[0] == res[1]) return {res[0], -1};

case 0: return {res[0], res[0]};

case 2: return {res[1], res[1]};

(cmpL(m) == cmpL(endB) ? lo : hi) = m;

while ((lo + 1) % n != hi) {

res[i] = (lo + !cmpL(hi)) % n;

if (!cmpL(res[0]) && !cmpL(res[1]))

```
return res;
```

8.4 Misc. Point Set Problems

ClosestPair.h

71446b, 14 lines

Description: Finds the closest pair of points.

Time: $\mathcal{O}\left(n\log n\right)$

```
"Point.h"
                                                      d31bbf, 17 lines
typedef Point<11> P;
pair<P, P> closest (vector<P> v) {
 assert (sz(v) > 1);
 set<P> S;
 sort(all(v), [](P a, P b) { return a.y < b.y; });</pre>
 pair<ll, pair<P, P>> ret{LLONG MAX, {P(), P()}};
 int j = 0;
 trav(p, v) {
   P d{1 + (ll)sgrt(ret.first), 0};
   while (v[j].y <= p.y - d.x) S.erase(v[j++]);</pre>
    auto lo = S.lower_bound(p - d), hi = S.upper_bound(p + d);
    for (; lo != hi; ++lo)
      ret = min(ret, {(*lo - p).dist2(), {*lo, p}});
   S.insert(p);
 return ret.second;
```

FastDelaunay.h

Description: Fast Delaunay triangulation. Each circumcircle contains none of the input points. There must be no duplicate points. If all points are on a line, no triangles will be returned. Should work for doubles as well, though there may be precision issues in 'circ'. Returns triangles in order $\{t[0][0], t[0][1], t[0][2], t[1][0], \ldots\}$, all counter-clockwise.

```
Time: \mathcal{O}(n \log n)
"Point.h"
                                                       bf87ec, 88 lines
typedef Point<11> P;
typedef struct Ouad* O;
typedef __int128_t 111; // (can be ll if coords are < 2e4)
P arb(LLONG_MAX, LLONG_MAX); // not equal to any other point
struct Quad {
  bool mark; Q o, rot; P p;
 P F() { return r()->p; }
 O r() { return rot->rot; }
  O prev() { return rot->o->rot;
  Q next() { return r()->prev(); }
bool circ(P p, P a, P b, P c) { // is p in the circumcircle?
  111 p2 = p.dist2(), A = a.dist2()-p2,
      B = b.dist2()-p2, C = c.dist2()-p2;
  return p.cross(a,b) \starC + p.cross(b,c) \starA + p.cross(c,a) \starB > 0;
Q makeEdge(P orig, P dest) {
  Q q[] = {new Quad{0,0,0,orig}, new Quad{0,0,0,arb},
           new Quad{0,0,0,dest}, new Quad{0,0,0,arb}};
    q[i] -> o = q[-i \& 3], q[i] -> rot = q[(i+1) \& 3];
  return *q;
void splice(Q a, Q b) {
  swap(a->o->rot->o, b->o->rot->o); swap(a->o, b->o);
Q connect(Q a, Q b) {
```

Q = makeEdge(a->F(), b->p);

splice(q, a->next());

```
splice(q->r(), b);
 return q;
pair<Q,Q> rec(const vector<P>& s) {
 if (sz(s) <= 3) {
   Q = makeEdge(s[0], s[1]), b = makeEdge(s[1], s.back());
    if (sz(s) == 2) return { a, a->r() };
    splice(a->r(), b);
   auto side = s[0].cross(s[1], s[2]);
   Q c = side ? connect(b, a) : 0;
    return {side < 0 ? c->r() : a, side < 0 ? c : b->r() };
#define H(e) e->F(), e->p
#define valid(e) (e->F().cross(H(base)) > 0)
 Q A, B, ra, rb;
 int half = sz(s) / 2;
 tie(ra, A) = rec({all(s) - half});
 tie(B, rb) = rec(\{sz(s) - half + all(s)\});
  while ((B->p.cross(H(A)) < 0 && (A = A->next())) | |
         (A->p.cross(H(B)) > 0 && (B = B->r()->o)));
 Q base = connect(B->r(), A);
 if (A->p == ra->p) ra = base->r();
 if (B->p == rb->p) rb = base;
#define DEL(e, init, dir) O e = init->dir; if (valid(e)) \
    while (circ(e->dir->F(), H(base), e->F())) {
     0 t = e - > dir; \setminus
     splice(e, e->prev()); \
     splice(e->r(), e->r()->prev()); \
     e = t; \
 for (;;) {
   DEL(LC, base->r(), o); DEL(RC, base, prev());
   if (!valid(LC) && !valid(RC)) break;
   if (!valid(LC) || (valid(RC) && circ(H(RC), H(LC))))
     base = connect(RC, base->r());
     base = connect(base->r(), LC->r());
 return { ra, rb };
vector<P> triangulate(vector<P> pts) {
 sort(all(pts)); assert(unique(all(pts)) == pts.end());
 if (sz(pts) < 2) return {};
 Q e = rec(pts).first;
 vector<Q>q=\{e\};
 int qi = 0;
 while (e->o->F().cross(e->F(), e->p) < 0) e = e->o;
#define ADD { Q c = e; do { c->mark = 1; pts.push_back(c->p); \
 q.push_back(c->r()); c = c->next(); } while (c != e); }
 ADD; pts.clear();
 while (qi < sz(q)) if (!(e = q[qi++]) -> mark) ADD;
 return pts;
```

8.5 3D

PolyhedronVolume.h

Description: Magic formula for the volume of a polyhedron. Faces should point outwards.

1ec4d3, 6 lines

```
template<class V, class L>
double signed_poly_volume(const V& p, const L& trilist) {
  double v = 0;
  trav(i, trilist) v += p[i.a].cross(p[i.b]).dot(p[i.c]);
```

3ae526, 12 lines

```
₩ UofR
  return v / 6;
Point3D.h
Description: Class to handle points in 3D space. T can be e.g. double or
template<class T> struct Point3D {
  typedef Point3D P;
  typedef const P& R;
  T x, y, z;
  explicit Point3D(T x=0, T y=0, T z=0) : x(x), y(y), z(z) {}
  bool operator<(R p) const {</pre>
    return tie(x, y, z) < tie(p.x, p.y, p.z); }
  bool operator==(R p) const {
    return tie(x, y, z) == tie(p.x, p.y, p.z); }
  P operator+(R p) const { return P(x+p.x, y+p.y, z+p.z); }
  P operator-(R p) const { return P(x-p.x, y-p.y, z-p.z); }
  P operator*(T d) const { return P(x*d, y*d, z*d); }
  P operator/(T d) const { return P(x/d, y/d, z/d); }
  T dot(R p) const { return x*p.x + y*p.y + z*p.z; }
  P cross(R p) const {
    return P(y*p.z - z*p.y, z*p.x - x*p.z, x*p.y - y*p.x);
  T dist2() const { return x*x + y*y + z*z; }
  double dist() const { return sqrt((double)dist2()); }
  //Azimuthal angle (longitude) to x-axis in interval [-pi, pi]
  double phi() const { return atan2(v, x); }
  //Zenith angle (latitude) to the z-axis in interval [0, pi]
  double theta() const { return atan2(sqrt(x*x+y*y),z); }
  P unit() const { return *this/(T)dist(); } //makes dist()=1
  //returns unit vector normal to *this and p
  P normal(P p) const { return cross(p).unit(); }
  //returns point rotated 'angle' radians ccw around axis
  P rotate (double angle, P axis) const {
    double s = sin(angle), c = cos(angle); P u = axis.unit();
    return u*dot(u)*(1-c) + (*this)*c - cross(u)*s;
};
3dHull.h
Description: Computes all faces of the 3-dimension hull of a point set. *No
faces will point outwards.
Time: \mathcal{O}(n^2)
"Point3D.h"
                                                      c172e9, 49 lines
typedef Point3D<double> P3;
struct PR {
  void ins(int x) { (a == -1 ? a : b) = x; }
  void rem(int x) { (a == x ? a : b) = -1; }
  int cnt() { return (a != -1) + (b != -1); }
 int a, b;
struct F { P3 q; int a, b, c; };
```

four points must be coplanar*, or else random results will be returned. All

```
vector<F> hull3d(const vector<P3>& A) {
 assert (sz(A) >= 4);
  vector<vector<PR>> E(sz(A), vector<PR>(sz(A), {-1, -1}));
#define E(x,y) E[f.x][f.y]
  vector<F> FS:
  auto mf = [&](int i, int j, int k, int l) {
   P3 q = (A[j] - A[i]).cross((A[k] - A[i]));
   if (q.dot(A[1]) > q.dot(A[i]))
     q = q * -1;
   F f{q, i, j, k};
   E(a,b).ins(k); E(a,c).ins(j); E(b,c).ins(i);
```

```
FS.push_back(f);
 };
 rep(i, 0, 4) rep(j, i+1, 4) rep(k, j+1, 4)
   mf(i, j, k, 6 - i - j - k);
 rep(i,4,sz(A)) {
   rep(j,0,sz(FS)) {
     F f = FS[j];
     if(f.q.dot(A[i]) > f.q.dot(A[f.a])) {
       E(a,b).rem(f.c);
       E(a,c).rem(f.b);
       E(b,c).rem(f.a);
       swap(FS[j--], FS.back());
       FS.pop_back();
   int nw = sz(FS);
   rep(j,0,nw) {
     F f = FS[j];
#define C(a, b, c) if (E(a,b).cnt() != 2) mf(f.a, f.b, i, f.c);
     C(a, b, c); C(a, c, b); C(b, c, a);
 trav(it, FS) if ((A[it.b] - A[it.a]).cross(
   A[it.c] - A[it.a]).dot(it.g) <= 0) swap(it.c, it.b);
 return FS;
```

sphericalDistance.h

Description: Returns the shortest distance on the sphere with radius radius between the points with azimuthal angles (longitude) f1 (ϕ_1) and f2 (ϕ_2) from x axis and zenith angles (latitude) t1 (θ_1) and t2 (θ_2) from z axis. All angles measured in radians. The algorithm starts by converting the spherical coordinates to cartesian coordinates so if that is what you have you can use only the two last rows. dx*radius is then the difference between the two points in the x direction and d*radius is the total distance between the points. 611f07, 8 lines

```
double sphericalDistance(double f1, double t1,
    double f2, double t2, double radius) {
 double dx = \sin(t2) \cdot \cos(f2) - \sin(t1) \cdot \cos(f1);
 double dy = sin(t2) * sin(f2) - sin(t1) * sin(f1);
 double dz = cos(t2) - cos(t1);
 double d = sqrt(dx*dx + dy*dy + dz*dz);
 return radius*2*asin(d/2);
```

Strings (9)

9.1 KMP

KMP.h

Time: $\mathcal{O}(n)$

Description: pi[x] computes the length of the longest prefix of s that ends at x, other than s[0...x] itself (abacaba -> 0010123). Can be used to find all occurrences of a string.

```
d4375c, 16 lines
vi pi(const string& s) {
 vi p(sz(s));
 rep(i,1,sz(s)) {
   int q = p[i-1];
    while (g \&\& s[i] != s[g]) g = p[g-1];
   p[i] = g + (s[i] == s[g]);
  return p;
```

```
vi match (const string& s, const string& pat) {
 vi p = pi(pat + ' \setminus 0' + s), res;
 rep(i,sz(p)-sz(s),sz(p))
   if (p[i] == sz(pat)) res.push_back(i - 2 * sz(pat));
 return res;
```

Zfunc 9.2

Zfunc.h

Description: z[x] computes the length of the longest common prefix of s[i:]and s, except z[0] = 0. (abacaba -> 0010301) Time: $\mathcal{O}(n)$

```
vi Z(string S) {
 vi z(sz(S));
 int 1 = -1, r = -1;
  rep(i,1,sz(S)) {
   z[i] = i >= r ? 0 : min(r - i, z[i - 1]);
    while (i + z[i] < sz(S) && S[i + z[i]] == S[z[i]])
    if (i + z[i] > r)
     1 = i, r = i + z[i];
  return z;
```

9.3 Manacher

Manacher.h

Description: For each position in a string, computes p[0][i] = half length of longest even palindrome around pos i, p[1][i] = longest odd (half rounded down).

```
Time: \mathcal{O}(N)
                                                       e7ad79, 13 lines
array<vi, 2> manacher(const string& s) {
 int n = sz(s);
 array < vi, 2 > p = {vi(n+1), vi(n)};
 rep(z,0,2) for (int i=0, l=0, r=0; i < n; i++) {
    int t = r-i+!z;
    if (i<r) p[z][i] = min(t, p[z][1+t]);</pre>
    int L = i-p[z][i], R = i+p[z][i]-!z;
    while (L>=1 && R+1<n && s[L-1] == s[R+1])
     p[z][i]++, L--, R++;
    if (R>r) l=L, r=R;
 return p;
```

9.4 MinRotation

MinRotation.h

Description: Finds the lexicographically smallest rotation of a string. Usage: rotate(v.begin(), v.begin()+min.rotation(v), v.end()); Time: $\mathcal{O}(N)$ 358164, 8 lines

```
int min_rotation(string s) {
 int a=0, N=sz(s); s += s;
 rep(b,0,N) rep(i,0,N) {
   if (a+i == b || s[a+i] < s[b+i]) {b += max(0, i-1); break;}</pre>
    if (s[a+i] > s[b+i]) { a = b; break; }
 return a;
```

9.5 SuffixArray

SuffixArrav.h

Description: Builds suffix array for a string. sa[i] is the starting index of the suffix which is i'th in the sorted suffix array. The returned vector is of size n+1, and sa[0] = n. The lcp array contains longest common prefixes for neighbouring strings in the suffix array: lcp[i] = lcp(sa[i], sa[i-1]), lcp[0] = 0. The input string must not contain any zero bytes. Time: $\mathcal{O}(n \log n)$

```
struct SuffixArray {
  vi sa, lcp;
  SuffixArray(string& s, int lim=256) { // or basic_string<int>
    int n = sz(s) + 1, k = 0, a, b;
   vi \times (all(s)+1), v(n), ws(max(n, lim)), rank(n);
    sa = lcp = y, iota(all(sa), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim = p) {
     p = j, iota(all(y), n - j);
     rep(i,0,n) if (sa[i] >= j) y[p++] = sa[i] - j;
      fill(all(ws), 0);
      rep(i, 0, n) ws[x[i]]++;
      rep(i,1,lim) ws[i] += ws[i - 1];
     for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
      swap(x, y), p = 1, x[sa[0]] = 0;
     rep(i,1,n) = sa[i-1], b = sa[i], x[b] =
        (y[a] == y[b] \&\& y[a + j] == y[b + j]) ? p - 1 : p++;
    rep(i,1,n) rank[sa[i]] = i;
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)</pre>
     for (k \&\& k--, j = sa[rank[i] - 1];
         s[i + k] == s[j + k]; k++);
};
```

SuffixTree

SuffixTree.h

Description: Ukkonen's algorithm for online suffix tree construction. Each node contains indices [l, r) into the string, and a list of child nodes. Suffixes are given by traversals of this tree, joining [l, r) substrings. The root is 0 (has l = -1, r = 0), non-existent children are -1. To get a complete tree, append a dummy symbol – otherwise it may contain an incomplete path (still useful for substring matching, though).

```
Time: \mathcal{O}(26N)
```

```
aae0b8, 50 lines
struct SuffixTree {
  enum { N = 200010, ALPHA = 26 }; // N \sim 2*maxlen+10
 int toi(char c) { return c - 'a'; }
  string a; //v = cur \ node, q = cur \ position
 int t[N][ALPHA],1[N],r[N],p[N],s[N],v=0,q=0,m=2;
  void ukkadd(int i, int c) { suff:
   if (r[v]<=q) {
     if (t[v][c]==-1) { t[v][c]=m; l[m]=i;
       p[m++]=v; v=s[v]; q=r[v]; goto suff; }
     v=t[v][c]; q=l[v];
   if (q==-1 || c==toi(a[q])) q++; else {
     l[m+1]=i; p[m+1]=m; l[m]=l[v]; r[m]=q;
     p[m]=p[v]; t[m][c]=m+1; t[m][toi(a[q])]=v;
     l[v]=q; p[v]=m; t[p[m]][toi(a[l[m]])]=m;
     v=s[p[m]]; q=l[m];
     while (q<r[m]) { v=t[v][toi(a[q])]; q+=r[v]-l[v]; }</pre>
     if (q==r[m]) s[m]=v; else s[m]=m+2;
     q=r[v]-(q-r[m]); m+=2; goto suff;
```

SuffixArray SuffixTree AhoCorasick IntervalContainer

```
SuffixTree(string a) : a(a) {
   fill(r,r+N,sz(a));
   memset(s, 0, sizeof s);
   memset(t, -1, sizeof t);
    fill(t[1],t[1]+ALPHA,0);
    s[0] = 1; 1[0] = 1[1] = -1; r[0] = r[1] = p[0] = p[1] = 0;
    rep(i,0,sz(a)) ukkadd(i, toi(a[i]));
 // example: find longest common substring (uses ALPHA = 28)
 pii best:
 int lcs(int node, int i1, int i2, int olen) {
   if (1[node] <= i1 && i1 < r[node]) return 1;</pre>
    if (1[node] <= i2 && i2 < r[node]) return 2;</pre>
    int mask = 0, len = node ? olen + (r[node] - l[node]) : 0;
    rep(c, 0, ALPHA) if (t[node][c] != -1)
     mask |= lcs(t[node][c], i1, i2, len);
    if (mask == 3)
     best = max(best, {len, r[node] - len});
    return mask:
 static pii LCS(string s, string t) {
   SuffixTree st(s + (char) ('z' + 1) + t + (char) ('z' + 2));
   st.lcs(0, sz(s), sz(s) + 1 + sz(t), 0);
    return st.best:
};
```

AhoCorasick

AhoCorasick.h

Description: Aho-Corasick tree is used for multiple pattern matching. Initialize the tree with create(patterns). find(word) returns for each position the index of the longest word that ends there, or -1 if none. findAll(_, word) finds all words (up to $N\sqrt{N}$ many if no duplicate patterns) that start at each position (shortest first). Duplicate patterns are allowed; empty patterns are not. To find the longest words that start at each position, reverse all input. **Time:** create is $\mathcal{O}(26N)$ where N is the sum of length of patterns. find is $\mathcal{O}(M)$ where M is the length of the word. findAll is $\mathcal{O}(NM)$. 716ac4, 67 lines

```
struct AhoCorasick {
 enum {alpha = 26, first = 'A'};
 struct Node {
    // (nmatches is optional)
   int back, next[alpha], start = -1, end = -1, nmatches = 0;
   Node(int v) { memset(next, v, sizeof(next)); }
 };
 vector<Node> N:
 vector<int> backp;
 void insert(string& s, int j) {
   assert(!s.empty());
   int n = 0;
   trav(c, s) {
     int& m = N[n].next[c - first];
     if (m == -1) { n = m = sz(N); N.emplace_back(-1); }
     else n = m;
    if (N[n].end == -1) N[n].start = j;
   backp.push_back(N[n].end);
   N[n].end = j;
   N[n].nmatches++;
 AhoCorasick(vector<string>& pat) {
   N.emplace_back(-1);
   rep(i,0,sz(pat)) insert(pat[i], i);
   N[0].back = sz(N);
   N.emplace_back(0);
```

```
queue<int> q;
  for (q.push(0); !q.empty(); q.pop()) {
    int n = q.front(), prev = N[n].back;
    rep(i,0,alpha) {
      int &ed = N[n].next[i], y = N[prev].next[i];
      if (ed == -1) ed = y;
        N[ed].back = y;
        (N[ed].end == -1 ? N[ed].end : backp[N[ed].start])
          = N[v].end;
        N[ed].nmatches += N[y].nmatches;
        q.push(ed);
vi find(string word) {
  int n = 0;
  vi res; // ll count = 0;
  trav(c, word) {
    n = N[n].next[c - first];
    res.push_back(N[n].end);
    // count \neq = N[n] . nmatches;
  return res:
vector<vi> findAll(vector<string>& pat, string word) {
  vi r = find(word);
  vector<vi> res(sz(word));
  rep(i,0,sz(word)) {
    int ind = r[i];
    while (ind !=-1) {
      res[i - sz(pat[ind]) + 1].push_back(ind);
      ind = backp[ind];
  return res:
```

Various (10)

10.1 Intervals

IntervalContainer.h

Description: Add and remove intervals from a set of disjoint intervals. Will merge the added interval with any overlapping intervals in the set when adding. Intervals are [inclusive, exclusive). Time: $\mathcal{O}(\log N)$

```
edce47, 23 lines
set<pii>::iterator addInterval(set<pii>& is, int L, int R) {
 if (L == R) return is.end();
  auto it = is.lower_bound({L, R}), before = it;
  while (it != is.end() && it->first <= R) {</pre>
    R = max(R, it->second);
    before = it = is.erase(it);
 if (it != is.begin() && (--it)->second >= L) {
   L = min(L, it->first);
    R = max(R, it->second);
    is.erase(it);
 return is.insert(before, {L,R});
void removeInterval(set<pii>& is, int L, int R) {
 if (L == R) return;
```

```
₩ UofR
```

```
auto it = addInterval(is, L, R);
auto r2 = it->second;
if (it->first == L) is.erase(it);
else (int&)it->second = L;
if (R != r2) is.emplace(R, r2);
```

IntervalCover.h

Description: Compute indices of smallest set of intervals covering another interval. Intervals should be [inclusive, exclusive). To support [inclusive, inclusive], change (A) to add | | R.empty(). Returns empty set on failure (or if G is empty).

Time: $\mathcal{O}(N \log N)$

9e9d8d, 19 lines

```
template < class T>
vi cover(pair<T, T> G, vector<pair<T, T>> I) {
  vi S(sz(I)), R;
  iota(all(S), 0);
  sort(all(S), [&](int a, int b) { return I[a] < I[b]; });</pre>
  T cur = G.first;
  int at = 0;
  while (cur < G.second) { // (A)
   pair<T, int> mx = make pair(cur, -1);
   while (at < sz(I) && I[S[at]].first <= cur) {</pre>
     mx = max(mx, make_pair(I[S[at]].second, S[at]));
   if (mx.second == -1) return {};
   cur = mx.first;
   R.push back (mx.second);
  return R;
```

ConstantIntervals.h

Description: Split a monotone function on [from, to) into a minimal set of half-open intervals on which it has the same value. Runs a callback g for each such interval.

constantIntervals(0, sz(v), [&](int x){return v[x];}, Usage: [&] (int lo, int hi, T val) $\{\ldots\}$); Time: $\mathcal{O}\left(k\log\frac{n}{k}\right)$

```
template < class F, class G, class T>
void rec(int from, int to, F& f, G& q, int& i, T& p, T q) {
  if (p == q) return;
  if (from == to) {
   g(i, to, p);
    i = to; p = q;
  } else {
    int mid = (from + to) >> 1;
   rec(from, mid, f, g, i, p, f(mid));
    rec(mid+1, to, f, g, i, p, q);
template < class F, class G>
void constantIntervals(int from, int to, F f, G g) {
 if (to <= from) return;</pre>
 int i = from; auto p = f(i), q = f(to-1);
```

TernarySearch 10.2

rec(from, to-1, f, g, i, p, q);

TernarySearch.h

g(i, to, q);

Description: Find the smallest i in [a, b] that maximizes f(i), assuming that $f(a) < \ldots < f(i) \ge \cdots \ge f(b)$. To reverse which of the sides allows non-strict inequalities, change the < marked with (A) to <=, and reverse the loop at (B). To minimize f, change it to >, also at (B). Usage: int ind = ternSearch(0,n-1,[&](int i){return a[i];});

```
template<class F>
int ternSearch(int a, int b, F f) {
 assert(a <= b);
 while (b - a >= 5) {
    int mid = (a + b) / 2;
   if (f(mid) < f(mid+1)) // (A)
     a = mid;
    else
     b = mid+1;
 rep(i,a+1,b+1) if (f(a) < f(i)) a = i; // (B)
 return a:
```

Pick's Theorem 10.3

Time: $\mathcal{O}(\log(b-a))$

- Pick's Theorem is a useful method for determining the area of any polygon whose vertices are points on a lattice, a regularly spaced array of points. While lattices may have points in different arrangements, this essay uses a square lattice to examine Pick's Theorem.
- Boundary Point (B): a lattice point on the polygon (including vertices)
- Interior Point (I): a lattice point in the polygon's interior region
- Area = B / 2 + I 1

Optimization tricks 10.4

10.4.1 Bit hacks

- x & -x is the least bit in x.
- for (int x = m; x;) { --x &= m; ...} loops over all subset masks of m (except m itself).
- c = x&-x, r = x+c; $(((r^x) >> 2)/c) | r$ is the next number after x with the same number of bits set.
- rep(b, 0, K) rep(i, 0, (1 << K)) if (i & 1 << b) D[i] += D[i^(1 << b)]; computes all sums of subsets.

10.4.2 **Pragmas**

- ullet #pragma GCC optimize ("Ofast") $will\ make\ GCC$ auto-vectorize for loops and optimizes floating points better (assumes associativity and turns off denormals).
- #pragma GCC target ("avx,avx2") can double performance of vectorized code, but causes crashes on old machines.
- #pragma GCC optimize ("trapv") kills the program on integer overflows (but is really slow).

FastMod.h

Description: Compute a%b about 4 times faster than usual, where b is constant but not known at compile time. Fails for b = 1.

```
typedef unsigned long long ull;
typedef uint128 t L;
struct FastMod {
 ull b. m:
 FastMod(ull b) : b(b), m(ull((L(1) << 64) / b)) {}
 ull reduce(ull a) {
   ull q = (ull) ((L(m) * a) >> 64), r = a - q * b;
   return r >= b ? r - b : r;
};
```