Victor Kitov v.v.kitov@yandex.ru

Yandex School of Data Analysis

Table of Contents

- 1 Linearly separable case
- 2 Linearly non-separable case

Main idea

Select hyperplane maximizing the spread between classes.

Objects x_i for i=1,2,...n lie at distance b/|w| from discriminant hyperplane if

$$\begin{cases} x_i^T w + w_0 \ge b, & y_i = +1 \\ x_i^T w + w_0 \le -b & y_i = -1 \end{cases} \quad i = 1, 2, ...N.$$

This can be rewritten as

$$y_i(x_i^T w + w_0) \ge b, \quad i = 1, 2, ...N.$$

The margin is equal to 2b/|w|. Since w, w_0 and b are defined up to multiplication constant, we can set b=1.

Problem statement

Problem statement:

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w,w_0} \\ y_i(x_i^T w + w_0) \ge 1, \quad i = 1, 2, ... N. \end{cases}$$

Support vectors

non-informative observations: $y_i(x_i^T w + w_0) > 1$

do not affect the solution

support vectors:
$$y_i(x_i^T w + w_0) = 1$$

- ullet lie at distance 1/|w| to separating hyperplane
- affect the the solution.

Table of Contents

- Linearly separable case
- 2 Linearly non-separable case

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) \ge 1, & i = 1, 2, ... N. \end{cases}$$

$$\begin{cases} \frac{1}{2} w^T w \to \min_{w, w_0} \\ y_i(x_i^T w + w_0) \ge 1, & i = 1, 2, ... N. \end{cases}$$

Problem

Constraints become incompatible and give empty set!

No separating hyperplane exists. Errors are permitted by including slack variables ξ_i :

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w,\xi} \\ y_i (w^T x_i + w_0) \ge 1 - \xi_i, \ i = 1, 2, ...N \\ \xi_i \ge 0, \ i = 1, 2, ...N \end{cases}$$

- Parameter C is the cost for misclassification and controls the bias-variance trade-off.
- It is chosen on validation set.
- Other penalties are possible, e.g. $C \sum_{i} \xi_{i}^{2}$.

Classification of training objects

- Non-informative objects:
 - $y_i(w^Tx_i + w_0) > 1$
- Support vectors *SV*:
 - $y_i(w^Tx_i + w_0) \leq 1$
 - boundary support vectors \widetilde{SV} :
 - $y_i(w^Tx_i + w_0) = 1$
 - violating support vectors:
 - $y_i(w^Tx_i + w_0) > 0$: violating support vector is correctly classified.
 - $y_i(w^Tx_i + w_0) < 0$: violating support vector is misclassified.

Solution of linearly non-separable case

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

 \bigcirc Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle x_i, x_j \rangle \right)$$

 \odot Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

Making predictions

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^N \alpha_i - \frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle \to \max_{\alpha} \\ \sum_{i=1}^N \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i \langle \mathbf{x}_i, \mathbf{x}_j \rangle \right)$$

3 Make prediction for new x:

$$\widehat{y} = \operatorname{sign}[w^T x + w_0] = \operatorname{sign}[\sum_{i \in SV} \alpha_i^* y_i \langle x_i, x \rangle + w_0]$$

• On all steps we don't need exact feature representations, only scalar products $\langle x, x' \rangle$!

Kernel trick generalization

• Solve dual task to find α_i^* , i = 1, 2, ...N

$$\begin{cases} L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\alpha} \\ \sum_{i=1}^{N} \alpha_i y_i = 0 \\ 0 \le \alpha_i \le C \end{cases}$$

② Find optimal w_0 :

$$w_0 = \frac{1}{n_{\tilde{SV}}} \left(\sum_{j \in \tilde{SV}} y_j - \sum_{j \in \tilde{SV}} \sum_{i \in \mathcal{SV}} \alpha_i^* y_i K(x_i, x_j) \right)$$

3 Make prediction for new x:

$$\widehat{y} = \text{sign}[w^T x + w_0] = \text{sign}[\sum_{i \in SV} \alpha_i^* y_i \frac{K(x_i, x_j)}{W(x_i, x_j)} + w_0]$$

• We replaced $\langle x, x' \rangle \to K(x, x')$ for $K(x, x') = \langle \phi(x), \phi(x') \rangle$ for some feature transformation $\phi(\cdot)$.

Another view on SVM

Optimization problem:

$$\begin{cases} \frac{1}{2} w^T w + C \sum_{i=1}^{N} \xi_i \to \min_{w,\xi} \\ y_i (w^T x_i + w_0) = M_i (w, w_0) \ge 1 - \xi_i, \\ \xi_i \ge 0, \ i = 1, 2, ... N \end{cases}$$

can be rewritten as

$$\frac{1}{2C}|w|^2 + \sum_{i=1}^{N} [1 - M_i(w, w_0)]_+ \to \min_{w, \xi}$$

Thus SVM is linear discriminant function with cost approximated with $\mathcal{L}(M) = [1 - M]_+$ and L_2 regularization.

Sparsity of solution

- SVM solution depends only on support vectors
- This is also clear from loss function, satisfying $\mathcal{L}(M) = 0$ for $M \ge 1$.
 - objects with margin≥ 1 don't affect solution!
- Sparsity causes SVM to be less robust to outliers
 - because outliers are always support vectors