Convergence of the iterates of Lloyd's algorithm

Léo Portales joint work with my supervisors Elsa Cazelles and Edouard Pauwels

IRIT, TSE, CNRS and Université de Toulouse

24/07/24

$$\begin{array}{ccc} \mu & \nu & \\ \text{(Target Measure)} & \frac{1}{N} \sum_{k=1}^N \delta_{y_k} & \sum_{k=1}^N \pi_k \delta_{y_k} \end{array}$$

ullet μ is a compactly supported continuous probability measure on \mathbb{R}^d with density f.

- ullet μ is a compactly supported continuous probability measure on \mathbb{R}^d with density f.
- $\nu(Y) := \sum_{k=1}^N \pi_k \delta_{y_k}$ where $Y = (y_1, \dots, y_N) \in (\mathbb{R}^d)^N$ and $\pi \in \Delta_N$. N is fixed.

- ullet μ is a compactly supported continuous probability measure on \mathbb{R}^d with density f .
- $\nu(Y) := \sum_{k=1}^N \pi_k \delta_{y_k}$ where $Y = (y_1, \dots, y_N) \in (\mathbb{R}^d)^N$ and $\pi \in \Delta_N$. N is fixed.

$$W_2(\mu,\nu(Y)) = \left(\inf_{\gamma \in \Pi(\mu,\nu(Y))} \int_{\mathbb{R}^d \times \mathbb{R}^d} \|x - y\|^2 d\gamma(x,y)\right)^{\frac{1}{2}}$$

Simulations made using the library PyMongeAmpere by Quentin Mérigot.

2/19

$$\left| \min_{Y := (y_1, \dots, y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y := (y_1, \dots, y_N)} F_N(Y) \right|$$

$$\min_{Y:=(y_1,...,y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y:=(y_1,...,y_N)} F_N(Y)$$

where

$$F_{N}(Y) = \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \left\{ \int_{\mathbb{R}^{d}} \left(\min_{i=1,...,N} \|x - y_{i}\|^{2} - w_{i} \right) f(x) dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} \right\}$$

$$\left| \min_{Y := (y_1, \dots, y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y := (y_1, \dots, y_N)} F_N(Y) \right|$$

where

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,\dots,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$
(Uniform Quantization)

$$\min_{Y:=(y_1,...,y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y:=(y_1,...,y_N)} F_N(Y)$$

where

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,\dots,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$
(Uniform Quantization)

$$\min_{Y,\pi>0,\sum_{i=1}^{N}\pi_{i}=1}\frac{1}{2}W_{2}^{2}(\mu,\sum_{i=1}^{N}\pi_{i}\delta_{y_{i}})=\min_{Y:=(y_{1},...,y_{N})}G_{N}(Y)$$

3/19

$$\min_{Y:=(y_1,...,y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y:=(y_1,...,y_N)} F_N(Y)$$

where

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,\dots,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$
(Uniform Quantization)

$$\min_{Y,\pi>0, \sum_{i=1}^{N} \pi_i = 1} \frac{1}{2} W_2^2(\mu, \sum_{i=1}^{N} \pi_i \delta_{y_i}) = \min_{Y:=(y_1, \dots, y_N)} G_N(Y)$$

where
$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$

→□▶→□▶→□▶→□▶
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□

$$\min_{Y:=(y_1,...,y_N)} \frac{1}{2} W_2^2 \left(\mu, \frac{1}{N} \sum_{i=1}^N \delta_{y_i} \right) = \min_{Y:=(y_1,...,y_N)} F_N(Y)$$

where

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,\dots,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$
(Uniform Quantization)

$$\min_{Y,\pi>0, \sum_{i=1}^{N} \pi_i = 1} \frac{1}{2} W_2^2(\mu, \sum_{i=1}^{N} \pi_i \delta_{y_i}) = \min_{Y:=(y_1, \dots, y_N)} G_N(Y)$$

where
$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$
 (Optimal Quantization)

◆ロト ◆母ト ◆意ト ◆意ト · 意 · からぐ

• i'th Voronoï cell:

$$V_i(Y) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 < ||x - y_j||^2 \ \forall j = 1, ..., N\}$$

Optimal Quantization

Uniform Quantization

• i'th Voronoï cell:

$$V_i(Y) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 < ||x - y_j||^2 \ \forall j = 1, ..., N\}$$

• i'th Laguerre cell:

$$L_i(Y, w) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 - w_i < ||x - y_j||^2 - w_j \ \forall j = 1, ..., N\}$$

Optimal Quantization

Uniform Quantization

• i'th Voronoï cell:

$$V_i(Y) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 < ||x - y_j||^2 \ \forall j = 1, ..., N\}$$

• i'th Laguerre cell:

$$L_i(Y, w) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 - w_i < ||x - y_j||^2 - w_j \ \forall j = 1, ..., N\}$$

Optimal Quantization

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$
$$= \frac{1}{2} \sum_{i=1}^N \int_{V_i(Y)} ||x - y_i||^2 f(x) dx$$

Discrete Uniform Quantization

• i'th Voronoï cell:

$$V_i(Y) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 < ||x - y_j||^2 \ \forall j = 1, ..., N\}$$

• i'th Laguerre cell:

$$L_i(Y, w) = \{x \in \mathbb{R}^d \mid ||x - y_i||^2 - w_i < ||x - y_j||^2 - w_j \ \forall j = 1, ..., N\}$$

Optimal Quantization

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 f(x) dx$$
$$= \frac{1}{2} \sum_{i=1}^N \int_{V_i(Y)} ||x - y_i||^2 f(x) dx$$

Discrete Uniform Quantization

$$F_{N}(Y) = \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \left\{ \int_{\mathbb{R}^{d}} \left(\min_{i=1,...,N} \|x - y_{i}\|^{2} - w_{i} \right) f(x) dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} \right\}$$

$$= \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \left\{ \sum_{i=1}^{N} \int_{L_{i}(Y,w)} \left(\|x - y_{i}\|^{2} - w_{i} \right) f(x) dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} \right\}$$

Can be described in two ways

1 Choose an initial points cloud Y.

Léo Portales

¹Lloyd, Stuart P. Least squares quantization in PCM, 1982. (♠) (♣) (♣) (♣) (♠) (♠)

Can be described in two ways

- ullet Choose an initial points cloud Y.
- **2** Construct either a Voronoï (OQ) or a Laguerre tessellation (UQ) of the support of μ .

Léo Portales Con

Can be described in two ways

- lacktriangle Choose an initial points cloud Y.
- ② Construct either a Voronoï (OQ) or a Laguerre tessellation (UQ) of the support of μ .
- Set the new points cloud as the barycenters of every cell.

Léo Portales

Can be described in two ways

- Choose an initial points cloud Y.
- Construct either a Voronoï (OQ) or a Laguerre tessellation (UQ) of the support of μ .
- Set the new points cloud as the barycenters of every cell.

Which translates to

UQ:

$$\begin{cases} Y_0 \in (\mathbb{R}^d)^N \setminus D_N \\ Y_{n+1} = Y_n - N \cdot \nabla F_N(Y_n) \end{cases}$$

Léo Portales

Can be described in two ways

- ullet Choose an initial points cloud Y.
- ② Construct either a Voronoï (OQ) or a Laguerre tessellation (UQ) of the support of μ .
- 3 Set the new points cloud as the barycenters of every cell.

Which translates to

UQ:

$$\begin{cases} Y_0 \in (\mathbb{R}^d)^N \setminus D_N \\ Y_{n+1} = Y_n - N \cdot \nabla F_N(Y_n) \end{cases}$$

OQ:

$$\begin{cases} Y_0 \in (\mathbb{R}^d)^N \setminus D_N \\ Y_{n+1} = Y_n - \frac{1}{\mu(V(Y_n))} \cdot \nabla G_N(Y_n) \end{cases}$$

¹Lloyd, Stuart P. Least squares quantization in PCM, 1982.

Lloyd's algorithm for (Uniform Quantization): an example with $\mu \sim \mathcal{N}_{\mathbb{S}^1}(0_2, \sigma^2 I_2)$

Simulations made using the library PyMongeAmpere by Quentin Mérigot.

24/07/24

6/19

• F_N and G_N both non convex.

²H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. 2013.

• F_N and G_N both non convex.

We follow the geometric approach in optimization pioneered by J.Bolte.

²H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. 2013.

• F_N and G_N both non convex.

We follow the geometric approach in optimization pioneered by J.Bolte.

 The iterates of gradient sequences converge in this setting under Lojasiewicz/Kurdyka-Lojasiewicz inequality.

²H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. 2013.

• F_N and G_N both non convex.

We follow the geometric approach in optimization pioneered by J.Bolte.

- The iterates of gradient sequences converge in this setting under Lojasiewicz/Kurdyka-Lojasiewicz inequality.
- Such properties are true whenever the underlying objective function's graph belongs to an o-minimal structure.

²H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. 2013.

• F_N and G_N both non convex.

We follow the geometric approach in optimization pioneered by J.Bolte.

- The iterates of gradient sequences converge in this setting under Lojasiewicz/Kurdyka-Lojasiewicz inequality.
- Such properties are true whenever the underlying objective function's graph belongs to an o-minimal structure.
- F_N and G_N do so under an analyticity assumption on the target density.

²H. Attouch, J. Bolte, and B.F. Svaiter. Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods. 2013.

Uniform Quantization

$$\overline{F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,...,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}}$$

Optimal Quantization

$$\overline{G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 f(x) dx}$$

Uniform Quantization

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,...,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$

Let $(Y_n)_n$ be Lloyd iterates.

Optimal Quantization

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$

Uniform Quantization

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,...,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$

Let $(Y_n)_n$ be Lloyd iterates.

• Convergence to a set of critical points³: $\|\nabla F_N(Y_n)\| \underset{n \to \infty}{\longrightarrow} 0$

Optimal Quantization

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$

Uniform Quantization

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \left\{ \int_{\mathbb{R}^d} \left(\min_{i=1,...,N} \|x - y_i\|^2 - w_i \right) f(x) dx + \frac{1}{N} \sum_{i=1}^N w_i \right\}$$

Let $(Y_n)_n$ be Lloyd iterates.

• Convergence to a set of critical points³: $\|\nabla F_N(Y_n)\| \underset{n \to \infty}{\longrightarrow} 0$

Optimal Quantization

$$\overline{G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 f(x) dx}$$

Let (Z_n) be Lloyd iterates.

Uniform Quantization

$$F_{N}(Y) = \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \left\{ \int_{\mathbb{R}^{d}} \left(\min_{i=1,...,N} \|x - y_{i}\|^{2} - w_{i} \right) f(x) dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} \right\}$$

Let $(Y_n)_n$ be Lloyd iterates.

• Convergence to a set of critical points³: $\|\nabla F_N(Y_n)\| \underset{n \to \infty}{\longrightarrow} 0$

Optimal Quantization

$$\overline{G_N(Y)} = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 f(x) dx$$

Let (Z_n) be Lloyd iterates.

• Convergence to a set of critical points⁴: $\|\nabla G_N(Z_n)\| \underset{n \to \infty}{\longrightarrow} 0$

³Quentin Merigot, Filippo Santambrogio, Clément Sarrazin. Non-asymptotic convergence bounds for Wasserstein approximation using point clouds. 2021

⁴Maria Emelianenko, Lili Ju and Alexander Rand. Nondegeneracy and Weak Global Convergence of the Lloyd Algorithm in \mathbb{R}^d . 2008

Uniform Quantization

$$F_{N}(Y) = \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \left\{ \int_{\mathbb{R}^{d}} \left(\min_{i=1,...,N} \|x - y_{i}\|^{2} - w_{i} \right) f(x) dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} \right\}$$

Let $(Y_n)_n$ be Lloyd iterates.

• Convergence to a set of critical points³: $\|\nabla F_N(Y_n)\| \underset{n \to \infty}{\longrightarrow} 0$

Optimal Quantization

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,...,N} ||x - y_i||^2 f(x) dx$$

Let (Z_n) be Lloyd iterates.

• Convergence to a set of critical points⁴: $\|\nabla G_N(Z_n)\| \underset{n \to \infty}{\longrightarrow} 0$

Question:

What about $(Y_n)_{n\geq 1}$ and $(Z_n)_{n\geq 1}$?

³Quentin Merigot, Filippo Santambrogio, Clément Sarrazin. Non-asymptotic convergence bounds for Wasserstein approximation using point clouds. 2021

⁴Maria Emelianenko, Lili Ju and Alexander Rand. Nondegeneracy and Weak Global Convergence of the Lloyd Algorithm in \mathbb{R}^d . 2008

Main result

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (OQ) converge.

Main result

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (QQ) converge.

Remark

Convexity of Supp(μ) is not necessary for uniform quantization.

KL inequality

Kurdyka-Lojasiewicz Inequality

f verifies a KL inequality at x^* if there exists a neighborhood U of x^* , c>0, $\eta>0$ and a strictly increasing positive function $\Psi:[0,\eta[\longrightarrow \mathbb{R}]]$ such that:

$$\|\nabla(\Psi \circ f)(x)\| \ge c, \ \forall x \in U \text{ such that } \ 0 < f(x) < \eta. \tag{1}$$

KL inequality

Kurdyka-Lojasiewicz Inequality

f verifies a KL inequality at x^* if there exists a neighborhood U of x^* , c>0, $\eta>0$ and a strictly increasing positive function $\Psi:[0,\eta[\longrightarrow\mathbb{R}])$ such that:

$$\|\nabla(\Psi \circ f)(x)\| \ge c, \ \forall x \in U \text{ such that } 0 < f(x) < \eta. \tag{1}$$

Main idea of KL: Composing f with Ψ makes it sharper around its critical points.

KL inequality

Kurdyka-Lojasiewicz Inequality

f verifies a KL inequality at x^* if there exists a neighborhood U of x^* , c>0, $\eta>0$ and a strictly increasing positive function $\Psi:[0,\eta[\longrightarrow\mathbb{R}])$ such that:

$$\|\nabla(\Psi \circ f)(x)\| \ge c, \ \forall x \in U \text{ such that } 0 < f(x) < \eta. \tag{1}$$

Main idea of KL: Composing f with Ψ makes it sharper around its critical points.

A function whose differential go to zero can have infinitely many oscillations as it goes to 0. The KL property prevents that from happening.

KL inequality

A case where the function is KL... and another one where it is not (at 0).

$$f: x \mapsto x^2, \ \Psi: x \mapsto \sqrt{x}$$

 $g: x \mapsto \sin 1/x$.

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

• $F(Y_k) - F(Y_{k+1}) \ge \sigma \|\nabla F(Y_k)\| \cdot \|Y_{k+1} - Y_k\|$

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

- $F(Y_k) F(Y_{k+1}) \ge \sigma \|\nabla F(Y_k)\| \cdot \|Y_{k+1} Y_k\|$
- $F(Y_{k+1}) = F(Y_k) \implies Y_{k+1} = Y_k$.

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

- $F(Y_k) F(Y_{k+1}) \ge \sigma \|\nabla F(Y_k)\| \cdot \|Y_{k+1} Y_k\|$
- $F(Y_{k+1}) = F(Y_k) \implies Y_{k+1} = Y_k$.

(We say that the sequence $(Y_k)_{k\geq 1}$ is SDC)

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

•
$$F(Y_k) - F(Y_{k+1}) \ge \sigma \|\nabla F(Y_k)\| \cdot \|Y_{k+1} - Y_k\|$$

•
$$F(Y_{k+1}) = F(Y_k) \implies Y_{k+1} = Y_k$$
.

(We say that the sequence $(Y_k)_{k>1}$ is SDC)

• We show that G_N is SDC (largely thanks to Emelianenko, Ju, Rand 5).

Léo Portales

 $^{^{5}}$ M. Emelianenko, L. Ju, and A. Rand. Nondegeneracy and weak global convergence of the Lloyd algorithm in \mathbb{R}^{d} . 2008

Strong descent conditions: Let $(Y_k)_{k\geq 1}$ be some sequence and F be some differentiable cost function.

- $F(Y_k) F(Y_{k+1}) \ge \sigma \|\nabla F(Y_k)\| \cdot \|Y_{k+1} Y_k\|$
- $F(Y_{k+1}) = F(Y_k) \implies Y_{k+1} = Y_k$.

(We say that the sequence $(Y_k)_{k\geq 1}$ is SDC)

- We show that G_N is SDC (largely thanks to Emelianenko, Ju, Rand 5).
- F_N SDC (can be deduced from Merigot, Santambrogio, Sarrazin 6).

⁶Quentin Merigot, Filippo Santambrogio, Clément Sarrazin. Non-asymptotic convergence bounds for Wasserstein approximation using point clouds. 2021

12 / 19

 $^{^5}$ M. Emelianenko, L. Ju, and A. Rand. Nondegeneracy and weak global convergence of the Lloyd algorithm in \mathbb{R}^d . 2008

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (QQ) converge.

Sketch of proof

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (OQ) converge.

Sketch of proof

• F_N and G_N verify a KL inequality at all points of their domain.

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (OQ) converge.

Sketch of proof

- \bullet F_N and G_N verify a KL inequality at all points of their domain.
- SDC gradient methods on KL functions converge (Bolte et.al, Absil et.al.)

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (QQ) converge.

Sketch of proof

- F_N and G_N verify a KL inequality at all points of their domain.
- SDC gradient methods on KL functions converge (Bolte et.al, Absil et.al.)
- Lloyd's algorithm for OQ and UQ are SDC gradient methods on KL functions and thus the iterates converge.

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (OQ) converge.

Sketch of proof

- F_N and G_N verify a KL inequality at all points of their domain.
- SDC gradient methods on KL functions converge (Bolte et.al, Absil et.al.)
- Lloyd's algorithm for OQ and UQ are SDC gradient methods on KL functions and thus the iterates converge.

Question:

Why are F_N and G_N KL?

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is ???. Then the iterates of Lloyd for both uniform (UQ) and optimal quantization (QQ) converge.

Sketch of proof

- F_N and G_N verify a KL inequality at all points of their domain.
- SDC gradient methods on KL functions converge (Bolte et.al, Absil et.al.)
- Lloyd's algorithm for OQ and UQ are SDC gradient methods on KL functions and thus the iterates converge.

Question:

Why are F_N and G_N KL? Because they are definable in an o minimal structure.

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

Léo Portales

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

• *SA*:

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an,exp}} \subset \mathcal{P}(\mathbb{R})$$

•
$$\mathcal{SA}: \bigcup_{i=1}^{N} \{x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$$

Léo Portales

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an,exp}} \subset \mathcal{P}(\mathbb{R})$$

• $SA: \bigcup_{i=1}^{N} \{x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$

......

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

- $SA: \bigcup_{i=1}^{N} \{x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$
- \mathbb{R}_{an} : Same with the analytic maps restricted to a compact within their domain of definition ⁷

Léo Portales Convergence of Lloyd's ite

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

- $SA: \bigcup_{i=1}^{N} \{x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$
- \bullet \mathbb{R}_{an} : Same with the analytic maps restricted to a compact within their domain of definition 7 example: $\exp |_{[-1,1]}$.

Léo Portales

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions, 1994

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

- \mathcal{SA} : $\bigcup_{i=1}^{N} \{ x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$
- \mathbb{R}_{an} : Same with the analytic maps restricted to a compact within their domain of definition ⁷ example: $\exp |_{[-1,1]}$.
- $\mathbb{R}_{an.exp}$: Same with the exponential map.⁸

Léo Portales Convergence of Lloyd's iterates

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

⁹Raf Cluckers, Daniel J. Miller. Stability under integration of sums of products of real globally subanalytic functions and their logarithms. 2009

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an},\mathsf{exp}} \subset \mathcal{P}(\mathbb{R})$$

- $SA: \bigcup_{i=1}^{N} \{x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$
- \bullet \mathbb{R}_{an} : Same with the analytic maps restricted to a compact within their domain of definition ⁷ example: $\exp |_{[-1,1]}$.
- $\mathbb{R}_{an,exp}$: Same with the exponential map.⁸
- If f is ??? then $Y \mapsto \int_{\mathcal{X}} f(x,Y) dx$ is definable in an o-minimal structure.9

Léo Portales

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions 1994

⁹Raf Cluckers, Daniel J. Miller. Stability under integration of sums of products of real globally subanalytic functions and their logarithms. 2009 > < => < => <

$$\mathcal{SA} \subset \mathbb{R}_{\mathsf{an}} \subset \mathbb{R}_{\mathsf{an,exp}} \subset \mathcal{P}(\mathbb{R})$$

- \mathcal{SA} : $\bigcup_{i=1}^{N} \{ x \in \mathbb{R}^d \mid P_{i_1}(x) \geq 0, ..., P_{i_l} \geq 0, (P_{i_k})_{k=1,...,l} \subset \mathbb{R}_d[X] \}$ Definability stable by $+, \times, (.)^{-1}, \min, ...$
- \mathbb{R}_{an} : Same with the analytic maps restricted to a compact within their domain of definition ⁷ example: $\exp |_{[-1,1]}$.
- $\mathbb{R}_{an,exp}$: Same with the exponential map.⁸
- If f is GSA then $Y \mapsto \int_{\chi} f(x, Y) dx$ is definable in an o-minimal structure.
- Functions definable in an o minimal structure are KL.

Léo Portales

⁷H. Hironaka. Introduction to Real-analytic Sets and Real-analytic Maps. 1973

⁸L.van den Dries and C.Miller, On the real exponential field with restricted analytic functions. 1994

⁹Raf Cluckers, Daniel J. Miller. Stability under integration of sums of products of real globally subanalytic functions and their logarithms. 2009

An image (regarded as a probability density.)

- An image (regarded as a probability density.)
- Semi-algebraic densities (Uniform law on a semi algebraic set, the triangular distribution,...)

- An image (regarded as a probability density.)
- Semi-algebraic densities (Uniform law on a semi algebraic set, the triangular distribution,...)
- Any probability density which is analytic and which is truncated on a compact semi algebraic subset (ex: Gaussians truncated on a sphere).

- An image (regarded as a probability density.)
- Semi-algebraic densities (Uniform law on a semi algebraic set, the triangular distribution,...)
- Any probability density which is analytic and which is truncated on a compact semi algebraic subset (ex: Gaussians truncated on a sphere).
- Any mix of the previous ones.

- An image (regarded as a probability density.)
- Semi-algebraic densities (Uniform law on a semi algebraic set, the triangular distribution,...)
- Any probability density which is analytic and which is truncated on a compact semi algebraic subset (ex: Gaussians truncated on a sphere).
- Any mix of the previous ones.

Think of it as analytic functions restricted to a semi-algebraic compact subset

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 \underbrace{f(x)}_{GSA} dx$$

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 \underbrace{f(x)}_{GSA} dx$$

$$G_N(Y) = \frac{1}{2} \int_{\mathbb{R}^d} \min_{\substack{i=1,\dots,N\\ \text{GSA}}} ||x - y_i||^2 \underbrace{f(x)}_{\text{GSA}} dx$$

$$G_N(Y) = \underbrace{\frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} ||x - y_i||^2 \underbrace{f(x)}_{GSA} dx}_{\text{definable}}$$

Conclusion: G_N is a KL function.

Conclusion: G_N is a KL function.

$$F_N(Y) = \max_{w \in \mathbb{R}^N} \frac{1}{2} \int_{\mathbb{R}^d} \min_{i=1,\dots,N} (\|x - y_i\|^2 - w_i) \underbrace{f(x)}_{\text{GSA}} dx + \frac{1}{N} \sum_{i=1}^N w_i$$

$$\underbrace{\text{GSA}}_{\text{definable}}$$

Conclusion: G_N is a KL function.

$$F_{N}(Y) = \max_{w \in \mathbb{R}^{N}} \frac{1}{2} \int_{\mathbb{R}^{d}} \min_{i=1,\dots,N} (\|x - y_{i}\|^{2} - w_{i}) \underbrace{f(x)}_{GSA} dx + \frac{1}{N} \sum_{i=1}^{N} w_{i} .$$

$$\underbrace{GSA}_{definable}$$

$$\underbrace{definable}_{definable}$$

Conclusion: F_N is a KL function.

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is globally subanalytic. Then the iterates of Lloyd for both uniform and optimal quantization converge.

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is globally subanalytic. Then the iterates of Lloyd for both uniform and optimal quantization converge.

Additional results:

We showed along the way the definability of $Y \mapsto D(\mu, \frac{1}{N} \sum_{k=1}^{N} \delta_{y_k})$ for

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is globally subanalytic. Then the iterates of Lloyd for both uniform and optimal quantization converge.

Additional results:

We showed along the way the definability of $Y \mapsto D(\mu, \frac{1}{N} \sum_{k=1}^{N} \delta_{y_k})$ for

• $D = W_p$ (general Wasserstein)

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is globally subanalytic. Then the iterates of Lloyd for both uniform and optimal quantization converge.

Additional results:

We showed along the way the definability of $Y \mapsto D(\mu, \frac{1}{N} \sum_{k=1}^{N} \delta_{y_k})$ for

- $D = W_p$ (general Wasserstein)
- $D = maxSW_2$ (max Sliced Wasserstein)

Theorem

Let μ be a continuous probability measure supported on a compact and convex subset of \mathbb{R}^d . Suppose its density is globally subanalytic. Then the iterates of Lloyd for both uniform and optimal quantization converge.

Additional results:

We showed along the way the definability of $Y \mapsto D(\mu, \frac{1}{N} \sum_{k=1}^{N} \delta_{y_k})$ for

- $D = W_p$ (general Wasserstein)
- $D = maxSW_2$ (max Sliced Wasserstein)
- ullet $D=W_{\epsilon}$ (Entropic regularization of the semi-discrete OT problem)

 Continuous probabilities can be quantized with an arbitrary (OQ) or a uniform (UQ) measure on a points cloud.

- Continuous probabilities can be quantized with an arbitrary (OQ) or a uniform (UQ) measure on a points cloud.
- This can be solved with Lloyd's algorithm.

- Continuous probabilities can be quantized with an arbitrary (OQ) or a uniform (UQ) measure on a points cloud.
- This can be solved with Lloyd's algorithm.
- Sequential convergence: geometric approach to optimization and first order method (J. Bolte).

- Continuous probabilities can be quantized with an arbitrary (OQ) or a uniform (UQ) measure on a points cloud.
- This can be solved with Lloyd's algorithm.
- Sequential convergence: geometric approach to optimization and first order method (J. Bolte).

Thank you for listening!

Let $Y \notin D_N$, then

$$\min_{\pi \in \Delta_N} W_2^2 \left(\mu, \sum_{i=1}^N \pi_i \delta_{y_i} \right) = \int_{\mathbb{R}^d} \min_{i=1,\dots,N} \|x - y_i\|^2 d\mu(x).$$

Proof.

We denote $\mathcal{H}(Z,Y) = \sum_{i=1}^N \int_{V_i(Z)} \|x - y_i\|^2 d\mu(x)$.

We observe that $\mathcal{H}(Z,Y) = \int_{\mathbb{R}^d} ||x - T(x)||^2 d\mu(x)$ with

 $T(x) = \sum_{i=1}^{N} y_i 1_{V_i(Z)}(x)$. This is the optimal transport map from μ to $\sum_{i=1}^{N} \mu(V_i(Z)) \delta_{y_i}$, so:

$$\mathcal{H}(Z,Y) = W_2^2(\mu, \sum_{i=1}^N \mu(V_i(Z))\delta_{y_i}).$$

Since $\min_{Z} \mathcal{H}(Z, Y) = \mathcal{H}(Y, Y)$ we finally get

$$\min_{Z} \mathcal{H}(Z, Y) = \min_{\pi} W_2^2(\mu, \sum_{i=1}^{N} \pi_i \delta_{y_i}).$$