Math Foundations for Artificial Intelligence

2023/2024

Analytic Geometry

- 1. Let be the vectors $x = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $y = \begin{bmatrix} -1 \\ -1 \\ 0 \end{bmatrix}$. Compute the length x, and the angle and the distance between x and y.
- 2. Let be the following vectors of \mathbb{R}^3 :

$$u = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}; \quad v = \begin{bmatrix} -1 \\ 2 \\ 3 \end{bmatrix}.$$

Calculate:

2.1.
$$w = v - \left(\frac{\langle u, v \rangle}{\langle u, u \rangle}\right) u;$$

- 2.2. $\langle u, w \rangle$. What can you conclude?
- 3. Determine which of the following pairs of vectors are orthogonal.

3.1.
$$u = \begin{bmatrix} 8 \\ -5 \end{bmatrix}$$
, $v = \begin{bmatrix} -2 \\ -3 \end{bmatrix}$;

3.2.
$$u = \begin{bmatrix} 12 \\ 3 \\ -5 \end{bmatrix}, v = \begin{bmatrix} 2 \\ -3 \\ 3 \end{bmatrix}$$
;

3.3.
$$u = \begin{bmatrix} 3 \\ 2 \\ -5 \\ 0 \end{bmatrix}, v = \begin{bmatrix} -4 \\ 1 \\ -2 \\ 6 \end{bmatrix};$$

3.4.
$$u = \begin{bmatrix} -3 \\ 7 \\ 4 \\ 0 \end{bmatrix}, v = \begin{bmatrix} 1 \\ -8 \\ 15 \\ -7 \end{bmatrix}$$

4. Consider the points A = (1,-1), B = (0,0) and C = (x,6). Knowing that triangle ABC is a right triangle, determine x.

Math Foundations for Artificial Intelligence

2023/2024

5. Consider the vectors $u = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ and $v = \begin{bmatrix} a \\ b \end{bmatrix}$, belonging to \mathbb{R}^2 , and the vector subspace $S = ger\{u\}$.

Determine the relationship between a and b so that it is orthogonal to all elements of S.

6. Show that the following sets are orthogonal and identify the sets that are orthogonal:

6.1.
$$\left\{\begin{bmatrix}2\\5\end{bmatrix},\begin{bmatrix}15\\-6\end{bmatrix}\right\}$$
;

6.2.
$$\left\{ \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}, \begin{bmatrix} -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{bmatrix} \right\};$$

6.3.
$$\left\{ \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 6 \end{bmatrix} \right\};$$

6.4.
$$\left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \frac{2\sqrt{5}}{5} \\ 0 \\ -\sqrt{5} \\ 5 \end{bmatrix}, \begin{bmatrix} \frac{\sqrt{5}}{5} \\ 0 \\ \frac{2\sqrt{5}}{5} \end{bmatrix} \right\}.$$

- 7. Let be the following vectors of \mathbb{R}^4 $v_1 = \begin{bmatrix} 2 \\ 1 \\ 0 \\ 3 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ -2 \\ 0 \\ 0 \end{bmatrix}$, $v_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $u = \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ and $S = span[v_1, v_2, v_3]$.
 - 7.1. Verify if $B = \{v_1, v_2, v_3\}$ is an orthogonal basis of S.
 - 7.2. Verify if $u \in S^{\perp}$.
- 8. Consider the vector subspace of \mathbb{R}^3 , $S = \left\{ \begin{bmatrix} x \\ y x \\ x \end{bmatrix} : y, x \in \mathbb{R} \right\}$. Check whether the following vectors

belong to S^{\perp} :

8.1.
$$u = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$$
;

8.2.
$$u = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
.

Math Foundations for Artificial Intelligence

2023/2024

- 9. Consider the vector subspace $S = span\begin{bmatrix} -1\\2\\1 \end{bmatrix}$ and the vector $v = \begin{bmatrix} 1\\-2\\0 \end{bmatrix}$. Determine.
 - 9.1. The orthogonal projection of v onto S;
 - 9.2. The distance between v and S.
- 10. Consider the vector subspace $S = span\begin{bmatrix} -1\\1 \end{bmatrix}$. Determine a vector v in \mathbb{R}^2 , such that:

$$\pi_{\mathcal{S}}(v) = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$$
;

$$dist(v, S) = 2.$$

11. Consider the Euclidean vector space \mathbb{R}^4 with the dot product. A subspace $U \subseteq \mathbb{R}^4$ and $x \in \mathbb{R}^4$ are given by

$$U = span\begin{bmatrix} 1\\2\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\-1\\1\end{bmatrix} \text{ and } \mathbf{x} = \begin{bmatrix} 1\\1\\2\\3\end{bmatrix}.$$

- 11.1. Determine the orthogonal projection $\pi_U(x)$ of x onto U.
- 11.2. Determine the distance d(x, U).
- 12. Consider in the Euclidean vector space \mathbb{R}^4 with the dot product the subspace

$$U = \left\{ \begin{bmatrix} y+z \\ y \\ z \\ w \end{bmatrix} : y, z, w \in \mathbb{R} \right\} \text{ and the vector } x = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \text{ and } x_0 = \begin{bmatrix} 3 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

- 12.1. Find an orthonormal basis of U.
- 12.2. Determine the orthogonal projection $\pi_U(x)$ of x onto U.
- 12.3. Consider the plane in \mathbb{R}^4 which is defined by $P := U + x_0$. Determine the distance between P and x.