Министерство образования и науки Российской Федерации «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ» (государственный университет)

ФАКУЛЬТЕТ ФИЗИЧЕСКОЙ И КВАНТОВОЙ ЭЛЕКТРОНИКИ КАФЕДРА ТВЕРДОТЕЛЬНОЙ ЭЛЕКТРОНИКИ И РАДИОФИЗИКИ

На правах рукописи УДК 519.63

Казаков Александр Олегович

Численное моделирование нелинейных процессов в твердых телах слоистой структуры при динамическом нагружении

Выпускная квалификационная работа бакалавра
Направление подготовки 010900
«Прикладные математика и физика»

Заведующий кафедрой	академик Гуляев Ю.В.
Научный руководитель	к.фм.н. Васюков А.В.
Студент-дипломник	Казаков А.О.

Содержание

\mathbf{B}	веде	ние		2					
	Пос	тановк	а задачи	. 3					
	Суп	цествун	ощие работы на схожую тематику	. 5					
1	Ура	авнени	ия механики деформируемого твёрдого тела	8					
	1.1	Ураві	нения движения и реологические соотношения	. 8					
	1.2	Моде	ль пластического течения	. 9					
		1.2.1	Критерий текучести Мизеса	. 9					
2	Чи	Численный метод							
	2.1	Расщ	епление на упругую и пластическую части	. 13					
	2.2	Реше	ние линейно-упругой части задачи	. 13					
		2.2.1	Матричная форма уравнений линейной упругости	. 13					
		2.2.2	Гиперболические свойства систем уравнений линейной						
			упругости	. 14					
		2.2.3	Расщепление по пространственным направлениям						
		2.2.4	Расчёт граничных узлов	. 16					
	2.3	Пласт	гический корректор	. 17					
3	По.	лучені	ные результаты	18					
	3.1	Тесто	вые задачи	. 18					
		3.1.1	Распространение продольной волны (Р-волны)	. 18					
		3.1.2	Распространение поперечной волны (S-волны)	. 20					
		3.1.3	Сферический взрыв	. 20					
	3.2	Расчё	ет многослойной преграды	. 24					
4	Зак	ключе	ние	28					
Л	итер	атура		29					

Введение

В данной работе рассматривается численное моделирование волновых деформационных процессов в твёрдых телах. Для описание физических процессов используются уравнения на скорости и напряжения в частицах материала из механики сплошной среды для деформируемого твёрдого тела. Рассчёт имеющейся системы уравнений проводится численно сеточно-характеристическим методом с расщеплением по трём пространственным направлениям. Он позволяет получать динамическую волновую картину.

- a
- 6
- B
- □Γ

Постановка задачи

Рис. 1. Обшивка и силовой кессон крыла.

Одной из практических задач о динамическом нагружении композиционных материалов является задача о непробивающем ударе по обшивке крыла самолёта. На рис. 1 приведена схема строения обшивки и силового кессона крыла, выполненных из композиционных материалов. Обшивка толщиной 6.5 мм состоит из 3 композитных субпакетов, соединенных между собой эпоксидной смолой, а стрингер толщиной 13 мм – из 6 аналогичных субпакетов. Каждый субпакет состоит из 11 монослоёв со взаимной ориентацией субпакетов при укладке 45/0/-45/0/0/90/0/0/-45/0/45. Каждый монослой имеет следующий состав: 60% – ориентированные длинные углепластиковые волокна; 40% – матрица (эпоксидная смола).

Ввиду большой вычислительной сложности при моделировании подобной конструкции с точностью до отдельного волокна, а также из-за многообразия протекающих процессов, полная задача декомпозируется на ряд подзадач. В данной работе рассматривается задача о получении волновой картины в элементе композитной обшивки крыла при следующих условиях:

- обшивка состоит из трёх субпакетов, сооединённых эпоксидной смолой;
- каждый субпакет изотропен по своим свойствам;

Слой	Е, ГПа	ν	ρ , kg/m ³	λ , $\Gamma\Pi a$	μ , $\Gamma\Pi a$	c_p , м/с	c_s , m/c
Эпоксидная смола	2.5	0.3	1250	1.44	0.96	1640	876
Субпакет	8	0.3	1250	4.62	3.08	2937	1570

Таблица 1. Упругие характеристики слоёв.

- толщина субпакетов и соединяющих эпоксидных слоёв одинакова;
- размеры одного субпакета: 20x20x1 мм.

Упругие характеристики слоёв приведены в табл. 1 Эти параметры в изотропном приближении моделируют обшивку крыла самолёта и позволяют качественно получить волновую картину после непробивающего удара.

В эксперименте по непробивающему воздействию на обшивку нагрузка создается металлическим ударником диаметром 25.4 мм. Характерный пример профиля нагрузки при испытаниях приведен на рис. 2. Давление на поверхности крыла в ходе эксперимента находится в диапазоне 0-100 Мпа. Поэтому для численного моделирования выбирается воздействие с давлением 50 Мпа.

Рис. 2. Пример профиля нагрузки на обшивку крыла при испытаниях.

Резюмируя, можно выделить следующие цели работы:

- предложить алгоритм построения параллельной версии сеточно-характеристического метода в случае трёх пространственных переменных на неструктурированных сетках;
- реализовать предложенный алгоритм в виде программного комплекса;
- получить волновую картину в обшивке после низкоскоростного удара при указаных выше допущениях.

Существующие работы на схожую тематику

Для динамических задач механики деформируемого твердого тела необходимо использование численных методов, позволяющих получить полную волновую картину с высоким временным и пространственным разрешением с учётом влияния контактных границ. Так как определяющая система уравнений в частных производных относится к гиперболическому типу, одними из наиболее широко используемых вычислительных методов для её решения являются сеточно-характеристические методы, подробное описание и обзор которых можно найти в [7]. Существенное продвижение было получено в работах [11], основанных на сочетании метода характеристик и конечноразностных подходов.

В работе [12] рассматриваются особенности протекания процессов деформирования в многослойных преградах конечной толщины, вызванных ударом абсолютно твёрдого сферического тела. Для моделирования поведения материала преграды использовались реологические модели линейно-упругой среды (закон Гука), упругопластической (модель Прандтля-Рейса с условиями пластичности Мизеса и Мизеса-Шлейхера, модель Максвелла), упруговязкопластической сред. Характерной особенностью работы является использование модели разрушения (модель Майнчена-Сака), а также использование различных подходов к перестроению сеток. Для численного решения использованостные схемы. Минусами является использование структурированной (прямоугольной) сетки и только двух пространственных переменных.

В работе [13] проводилось численное исследование волновых и деформационных процессов в многослойных средах. Как и в предыдущей работе, использовался численно-характеристический метод, а также гибридная и гибридизированная схемы. Особенностью является использование неструктурированных (треугольных) сеток, а также применение сеточно-характеристического шаблона на неструктурированных сетках (этот подход нетипичен для данного метода, так как использование шаблона предполагает наличие структурированной сетки). Моделировался удар деформируемым сферическим ударником по многослойной (5 – 20 слоев) преграде. Данная модель описывала бронежилет и человеческое тело, защищённое им. Целью было найти оптимальные параметры среды для максимального поглощения воздействия ударника. К недостаткам работы можно отнести моделирование лишь по двум

пространственным координатам.

В [14] рассмотрены одномерные и двумерные нестационарные задачи о действии ударных нагрузок на деформируемые твёрдые среды многослойной структуры, описаны возникающие волновые эффекты, приводящие к появлению откола. Для описания поведения среды использованы модели линейно упругого и упругоидеальнопластического тела. На поверхностях раздела слоев рассматрены условия трёх типов: полного слипания, свободного скольжения, отслоения. В работе изучалось в основном влияние многослойных структур на амплитуду проходящей волны. На основании одномерных расчётов в слоистых средах был сделан вывод, что слоистые конструкции можно использовать для уменьшения амплитуды волн и для увеличения сжимающих напряжений вблизи лицевой поверхности, например, для увеличения силы сопротивления.

В [15] исследуются задачи распространения упругих волн, возникающих в результате землетрясения, в различных геологических средах: однородной, многослойной, градиентной, с трещиноватым пластом и карстовым образованием. Также проводится анализ воздействия упругих волн на поверхностные промышленные сооружения: здания и плотины. Проводится сравнение воздействия упругих волн на дневную поверхность для различных геологических сред. Качественно рассматривается влияние упругих волн на прочность поверхностных сооружений. В работе используется сеточно-характеристический метод на треугольных сетках, контактные границы выделяются явно.

В [16] сформулирована двумерная математическая модель механической реакции головы человека на ударные воздействия, описывающая пространственное распределение механических нагрузок на мозг (система череп-мозг с точки зрения механики также является многослойной средой). Приведены некоторые результаты ее численного исследования с применением сеточно-характеристических методов на структурированных (прямоугольных) и неструктурированных (треугольных) сетках.

Работа [17] посвящена численному исследованию волновых процессов и явления откола, возникающих при импульсном нагружении двух- и четырех-слойных упругопластических цилиндрических оболочек конечной толщины, подкрепленных с тыльной стороны ребрами жесткости. Используется динамическая система двумерных уравнений механики деформируемого тела и упруго идеально пластическая модель Прандтля-Рейсса. В работе показана возможность не только получать разрушенные зоны, но и отдельные тре-

щины, зоны концентраций напряжений вблизи трещины и края откольной зоны, которая переходит в трещину, являющуюся самостоятельным источником нестационарных возмущений.

Автору неизвесты работы на схожую тематику, использующие сеточно-характеристический метод на неструктурированных сетках при трех пространственных переменных с явным выделением контактных границ.

1 Уравнения механики деформируемого твёрдого тела

1.1 Уравнения движения и реологические соотношения

Для математического моделирования волновых процессов в деформируемом твёрдом теле используется система динамических уравнений [3,4] в виде

$$ho \dot{v}_i =
abla_j \sigma_{ij} + f_i$$
 (уравнения движения) $\dot{\sigma}_{ij} = q_{ijkl} \dot{\varepsilon}_{kl} + F_{ij}$ (реологические соотношения). (1.1)

Здесь ρ – плотность среды, v_i – компоненты скорости смещения, σ_{ij} , ε_{ij} – компоненты тензоров напряжений и деформаций, ∇_j – производная по j-й координате, f_i – массовые силы, действующие на единицу объёма, F_{ij} – силы, обусловленные вязкостью, q_{ijkl} – тензор упругих постоянных.

В случае малых деформаций тензор скоростей деформаций $e_{ij} = \dot{\varepsilon}_{ij}$ выражается через компоненты скорости смещения линейным образом:

$$e_{ij} = \frac{1}{2}(\nabla_j v_i + \nabla_i v_j). \tag{1.2}$$

Вид компонент тензора 4-го порядка q_{ijkl} определяется реологией среды. Для невязкого изотропного линейно-упругого материала

$$q_{ijkl} = \lambda \delta_{ij} \delta_{kl} + \mu (\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk})$$
 (изотропия)
$$F_{ij} = 0 \quad \text{(отсутствует вязкость)}. \tag{1.3}$$

В этом соотношении, которое обобщает закон Гука, λ и μ – параметры Ляме, δ_{ij} – символ Кронекера.

Для замыкания системы уравнений 1.1 её необходимо дополнить уравнением состояния, определяющим зависимость плотности от напряжений: например,

$$\rho = const$$

или

$$\rho = \rho_0 e^{\frac{p}{K}},$$

где $p=-\frac{1}{3}\sum \sigma_{kk}$ – давление, $K=\lambda+\frac{2}{3}\mu$ – коэффициент всестороннего сжатия.

1.2 Модель пластического течения

Существует множество феноменологических моделей пластической реологии сплошной среды. Основная идея многих из них [1,2] – существование критерия текучести $f(\sigma_{ij})$, определяющего переход между упругим $f(\sigma_{ij}) < 0$ и пластическим $f(\sigma_{ij}) = 0$ поведением материала. Компоненты σ_{ij} не могут выйти за пределы поверхности в пространстве напряжений, определяемой этим критерием, случай $f(\sigma_{ij}) > 0$ полагается невозможным.

Таким образом, идеальнопластическим материалом, или материалом без упрочнения, можно назвать среду с постоянной функцией $f(\sigma_{ij})$, а материалом с упрочнением – тот, у которого поверхность текучести изменяется в процессе деформации. Выделяют два основных вида упрочнения:

- Изотропное поверхность текучести расширяется симметрично относительно начала координат
- Кинематическое поверхность текучести смещается без изменения формы

Для металлов установлено, что пластическая деформация обусловлена взаимным смещением кристаллических плоскостей и не изменяет объёма материала. Поэтому гидростатическое сжатие

$$\sigma = \frac{\sigma_{ii}}{3}$$

не приводит к пластическим деформациям, и переход к пластике определяется только сдвиговыми напряжениями, то есть девиатором тензора напряжений:

$$s_{ij} = \sigma_{ij} - \sigma \delta_{ij}$$

1.2.1 Критерий текучести Мизеса

Одним из широко используемых критериев является получаемая из инвариантов σ_{ij} функция

$$f(\sigma_{ij}) = \frac{1}{2} s_{ij} s_{ji} - k_F^2 \tag{1.4}$$

Получаемая поверхность текучести – круговой цилиндр радиуса $k_F\sqrt{2}$ с осью $\sigma_1=\sigma_2=\sigma_3$ в пространстве главных напряжений. На рис.3 приве-

Рис. 3. Критерий текучести.

дено его сечение плоскостью $\sigma_3=0$, а также сечение другой поверхности, получаемой из близкого к мизесовскому критерия Треска.

Для полимеров же величина предела текучести при сжатии и растяжении часто бывает различна. Поэтому в критерий текучести включаются слагаемые, зависящие от гидростатического давления, и поверхность текучести из цилиндрической переходит в коническую или близкую к ней.

В программном комплексе для случая трёх измерений была реализована модель идеального пластического течения без упрочнения, которая в случае одноосного нагружения сводится к диаграмме $\varepsilon-\sigma$ на рис.4

Для одномерного кода были испробованы модели с линейным упрочнением. В 1D такая модель сводится к кусочной зависимости модуля Юнга от напряжения (рис. 5)

Рис. 4. Идеальная упругопластика в случае одноосного нагружения.

Рис. 5. Упругопластика с линейным упрочнением.

2 Численный метод

2.1 Расщепление на упругую и пластическую части

Пластическая задача решается расщеплением на два физических процесса: упругая деформация и пластическое течение. Расщепление проводилось на каждом из трёх подшагов по пространственным координатам, которые будут описаны ниже. На этапе предиктора рассчёт значений на новом временном слое делается как для линейно-упругого тела. Затем, в случае выхода напряжений за пределы поверхности текучести, пластический корректор возвращает их обратно на $f(\sigma_{ij}) = 0$.

2.2 Решение линейно-упругой части задачи

2.2.1 Матричная форма уравнений линейной упругости

Уравнения 1.1 и 1.3 можно переписать в матричной форме:

$$\frac{\partial}{\partial t}\vec{u} + \mathbf{A}_x \frac{\partial}{\partial x}\vec{u} + \mathbf{A}_y \frac{\partial}{\partial y}\vec{u} + \mathbf{A}_z \frac{\partial}{\partial z}\vec{u} = \vec{f}.$$
 (2.1)

Здесь $\vec{u} = \{v_x, v_y, v_z, \sigma_{xx}, \sigma_{xy}, \sigma_{xz}, \sigma_{yy}, \sigma_{yz}, \sigma_{zz}\}^T$ – вектор искомых функций, \vec{f} – вектор правых частей той же размерности, x, y, z – независимые пространственные переменные, t – время,

2.2.2 Гиперболические свойства систем уравнений линейной упругости

Рассмотрим сначала одномерное уравнение вида

$$\frac{\partial}{\partial t}\vec{u} + \mathbf{A}\frac{\partial}{\partial x}\vec{u} = \vec{f}. \tag{2.2}$$

Если матрица **A** имеет полный набор вещественных собственных значений, то такое уравнение называется гиперболическим, и его решения соответствуют процессам, которые носят волновой характер. В этом случае справедливо разложение:

$$\mathbf{A} = \mathbf{\Omega}^{-1} \mathbf{\Lambda} \mathbf{\Omega},$$

где Ω – матрица, составленная из векторов $\vec{\omega}_i$, где $\vec{\omega}_i$ есть собственные векторы матрицы \mathbf{A} , удовлетворяющие соотношениям

$$\vec{\omega}_i \mathbf{A} = \lambda_i \vec{\omega}_i,$$

а $\Lambda = diag\{\lambda_i\}$ – диагональная матрица собственных значений. В предположении независимости компонент матрицы \mathbf{A} от времени и координаты, домножив уравнение 2.2 слева на Ω , получаем уравнение

$$\frac{\partial}{\partial t}\Omega \vec{u} + \Lambda \frac{\partial}{\partial x}\Omega \vec{u} = \Omega \vec{f},$$

которое после перехода к Римановым инвариантам $\vec{v} = \Omega \vec{u}$ распадается на n одномерных уравнений вида

$$\frac{\partial}{\partial t}v_i + \lambda_i \frac{\partial}{\partial x}v_i = \tilde{f}_i, \tag{2.3}$$

где $\tilde{f}_i = (\Omega \vec{f})_i$. Таким образом, решение уравнения 2.2 представляется в виде суммы плоских волн, движущихся со скоростями λ_i . Вдоль прямой с наклоном $\frac{\partial x}{\partial t} = \lambda_i$, называемой характеристикой, 2.3 переходит обыкновенное дифференциальное уравнение

$$\frac{dv_i}{dt} = \tilde{f}_i. (2.4)$$

Благодаря этому для численного решения 2.2 предлагается использовать сеточнохарактеристический метод, суть которого состоит в следующем. Из того узла m временного слоя n+1, в котором требуется получить решение, опускаются характеристики. Из точки пересечения характеристики со слоем n значение

Рис. 6. Принципиальная схема сеточно-характеристического метода.

 v_i переносится в точку ξ_m^{n+1} путём решения 2.4:

$$v_i^{n+1}(\xi_m) = v_i^n(\xi_m - \lambda_i \tau) + \tilde{f}_i \tau.$$

Если характеристика не попадает точно в расчётный узел, то применяются различные методы реконструкции значения в данной точке (в данной работе используется интерполяция).

2.2.3 Расщепление по пространственным направлениям

Идея метода [10] решения исходной задачи состоит в расщеплении по трём пространственным координатам, то есть в разделении на этапе численного решения трёхмерной системы уравнений 2.1 на три одномерных,

$$\frac{\partial}{\partial t}\vec{u} + \mathbf{A}_x \frac{\partial}{\partial x}\vec{u} = \vec{f},\tag{2.5}$$

$$\frac{\partial}{\partial t}\vec{u} + \mathbf{A}_y \frac{\partial}{\partial y}\vec{u} = \vec{f},\tag{2.6}$$

$$\frac{\partial}{\partial t}\vec{u} + \mathbf{A}_z \frac{\partial}{\partial z}\vec{u} = \vec{f},\tag{2.7}$$

Эти уравнения решаются последовательно описанным в предыдущем параграфе методом с использованием на каждом подшаге результатов, полученных на предыдущем подшаге.

2.2.4 Расчёт граничных узлов

Чистый метод характеристик, описанный выше, годится лишь для расчёта внутренних узлов сетки, то есть только в том случае, если характеристика, выпущенная из узла, не выводит за пределы области интегрирования. В случае, когда узел является внешним, применяется иной подход для решения задачи. Рассматриваемая система уравнений в граничных узлах области интегрирования имеет не больше трёх [9] выводящих характеристик, поэтому для корректной постановки задачи требуется задание граничных условий для каждого внешнего узла сетки в количестве, равном числу выводящих характеристик. Граничные условия могут быть нескольких видов (символы без волны – для первого тела, с волной – для второго):

• свободная граница

$$\sigma_{\tau} = \sigma_n = 0;$$

• скольжение тел друг относительно друга

$$v_n = \tilde{v}_n,$$
 $\sigma_n = \tilde{\sigma}_n,$
 $\sigma_{\tau} = \tilde{\sigma}_{\tau} = 0;$

слипание тел

$$v_n = \tilde{v}_n,$$

$$v_\tau = \tilde{v}_\tau. \tag{2.8}$$

В случае, когда узел имеет выводящие характеристики, решение определяется следующим образом: те компоненты искомого вектора \vec{v} , которые не имеют выводящих характеристик, считаются при помощи сеточно-характеристического метода, описанного ранее; остальные уравнения заменяются граничными соотношениями. После этого, решается полученная СЛАУ, из которой определяются значения всех компонент вектора \vec{v} в текущем узле.

Пластический корректор 2.3

В данной работе был реализован простейший корректор, реализующий нормировку вектора напряжений. Этот способ известен как правило корректировки Уилкинса, и верен только для идеальнопластической среды без упрочнения.

Рассчитанные в ходе эластичного предиктора напряжения в случае выхода за поверхность текучести – $f(\sigma_{ij}) \ge 0$ (см. 1.4), приводятся на неё путём умножения на нормировочный коэффициент:

$$s_{ij}^{n+1} = s_{ij}^e \frac{k_F}{J_2^e} (2.9)$$

$$s_{ij}^{n+1} = s_{ij}^{e} \frac{k_F}{J_2^{e}}$$

$$J_2 = \sqrt{\frac{1}{2} s_{ij} s_{ij}}$$
(2.9)

3 Полученные результаты

3.1 Тестовые задачи

Для проверки корректности реализации параллельной версии алгоритма были произведены расчёты ряда тестовых задач.

3.1.1 Распространение продольной волны (Р-волны)

Пусть плоская Р-волна в среде распространяется вдоль оси z. В этом случае аналитическое решение соответствующего одномерного уравнения дает следующие соотношения на параметры волны:

- $v_z = -f(z)\sqrt{\frac{\lambda+2\mu}{\rho}} = C_p;$
- $\bullet \ v_x = v_y = 0;$
- $\sigma_{zz} = f(z)(\lambda + 2\mu);$
- $\sigma_{xx} = \sigma_{yy} = f(z)\lambda;$
- $\sigma_{ij}=0$ для $i \neq j$.

Здесь f(z) - произвольная функция, зависящая только от z и задающая форму волны. Для расчёта распространения P-волны в кубе были использованы следующие безразмерные параметры:

- размер расчётной области: 50х50х50;
- $\lambda = 70000$;
- $\mu = 10000;$
- $\rho = 1$.

На графиках (см. рис. 7-9) представленые результаты численного расчёта. Получено совпадение параметров волны с аналитическим решением:

•
$$v_z = C_p = 300;$$

$$\bullet \ \frac{\sigma_{zz}}{\sigma_{xx}} = \frac{\sigma_{zz}}{\sigma_{yy}} = \frac{\lambda + 2\mu}{\lambda} = \frac{9}{7}.$$

Рис. 7. Распространение Р-волны, 2-й временной слой.

Рис. 8. Распространение Р-волны, 12-й временной слой.

Рис. 9. Распространение Р-волны, 22-й временной слой.

3.1.2 Распространение поперечной волны (S-волны)

Пусть плоская S-волна в среде распространяется вдоль оси z. В этом случае аналитическое решение соответствующего одномерного уравнения дает следующие соотношения на параметры волны:

- $v_z = -f(z)\sqrt{\frac{\mu}{\rho}} = C_s;$
- $\bullet \ v_x = v_y = 0;$
- $\sigma_{ij}=f(z)\mu$; для одной из пар $i \neq j$
- $\sigma_{ij} = 0$ для i = j.

Здесь f(z) - произвольная функция, зависящая только от z и задающая форму волны. Для расчёта распространения S-волны в кубе были использованы следующие безразмерные параметры:

- размер расчётной области: 50х50х50;
- $\lambda = 70000$;
- $\mu = 10000$;
- $\rho = 1$.

На графиках (см. рис. 10-12) представленые результаты численного расчёта. Получено совпадение скорости волны с аналитическим решением:

•
$$v_z = C_s = 100$$
.

3.1.3 Сферический взрыв

Для проверки корректности расчёта при отражении от границ был произведён расчёт модельной задачи о сферическом взрыве со следующими параметрами:

- размер расчётной области: 50х50х50;
- $\lambda = 70000;$
- $\mu = 10000$;
- $\rho = 1$.

На графиках (см. рис. 13, 14) изображены результаты расчётов.

Рис. 10. Распространение S-волны, 2-й временной слой.

Рис. 11. Распространение S-волны, 12-й временной слой.

Рис. 12. Распространение S-волны, 22-й временной слой.

Рис. 13. Расчёт задачи о сферическом взрыве, 25-й временной слой.

Рис. 14. Расчёт задачи о сферическом взрыве, 50-й временной слой.

3.2 Расчёт многослойной преграды

При расчёте задачи о непробивающем ударе по многослойной преграде использовались данные из табл. 1. В табл. 2 приведены обезразмеренные величины, использовавшиеся в расчёте.

Слой	ρ	λ	μ
Эпоксидная смола	1.25	1440	960
Субпакет	1.25	4620	3080

Таблица 2. Безразмерные характеристики субпакетов.

Давление в зоне воздействия ударника задавалось равным 50 МПа (50 единиц в безразмерных величинах).

На графиках (см. рис. 15-20) изображены результаты численного расчёта задачи.

Рис. 15. Начальное возмущение.

Рис. 16. Отражение от первой границы.

Рис. 17. Отражение от второй границы.

Рис. 18. Отражение от третьей границы.

Рис. 19. Формирование волны Рэлея.

Рис. 20. Распространение волны Рэлея.

4 Заключение

Результаты, полученные в результате выполнения дипломного проекта:

- предложена схема параллельной версии сеточно-характеристического метода для решения задач механики деформируемого твёрдого тела в случае трёх пространственных переменных на неструктурированных сетках;
- предложенная схема реализована в виде программного комплекса для высокопроизводительных вычислений;
- проведено тестирование масштабируемости параллельной версии алгоритма, получена эффективность использования кластера 90% для метода со сквозным счётом и 30% для метода с явным выделением контактных границ, ожидаемая эффективность на реальных задачах 60%;
- рассчитан ряд тестовых задач для подтверждения корректности реализации, получено совпадение с аналитическими решениями;
- численно смоделирована задача о непробивающем ударе по многослойной конструкции и качественно получена волновая картина в материале.

Список литературы

- [1] Кукуджанов В.Н. Вычислительная механика сплошное сред. М.: Издательство Физико-математической литературы, 2008, с. 32, с. 242, с. 271.
- [2] И.Реслер, Х.Хардерс, М.Бекер Механическое поведение конструкционных материалов. Перевод с немецкого. Долгопрудный, Издательский дом «Интеллект», 2011, с. 91-115
- [3] Новацкий В. К. Теория упругости. М.: Мир, 1975, с. 105-107.
- [4] Седов Л. И. Механика сплошной среды. Том 1. М. : Наука, 1970, с. 143.
- [5] Работнов Ю.Н. Механика деформируемого твёрдого тела. М.: Наука, 1988.-712 с.
- [6] Белоцерковский О.М. Численное моделирование в механике сплошных сред. М.: Физико-математическая литература. 1994, 442 с.
- [7] Магомедов К.М., Холодов А.С. Сеточно-характеристические численные методы. М.: Наука, 1988, 288 с.
- [8] Холодов А.С., Холодов Я.А. О критериях монотонности разностных схем для уравнений гиперболического типа.
- [9] Челноков Ф.Б. Численное моделирование деформационных процессов в средах со сложной структурой.
- [10] Федоренко Р.П. Введение в вычислительную физику. М.: Изд-во Моск. физ. -техн. ин-та, 1994, 528 с.
- [11] Чушкин П.И. Метод характеристик для пространственных сверхзвуковых течений. Труды ВЦ АН СССР, 1968, с. 121.
- [12] Петров И.Б., Челноков Ф.Б. Численное исследование волновых процессов и процессов разрушения в многослойных преградах // Журнал вычислительной математики и математической физики 2003, том 43, N 10, с. 1562-1579.

- [13] Matyushev N.G., Petrov I.B. Mathematical Simulation of Deformation and Wave Processes in Multilayered Structures // Computational Mathematics and Mathematical Physics 2009, Vol. 49, N 9, P. 1615-1621.
- [14] Петров И.Б., Тормасов А.Г., Холодов А.С. О численном изучении нестационарных процессов в деформируемых средах многослойной структуры // Механика твердого тела 1989, N 4, c. 89-95.
- [15] Голубев В.И., Квасов И.Е., Петров И.Б. Воздействие природных катастроф на наземные сооружения // Математическое моделирование 2011, том 23, N 8, c. 46-54.
- [16] Агапов П.И., Белоцерковский О.М., Петров И.Б. Численное моделирование последствий механического воздействия на мозг человека при черепно-мозговой травме // Журнал вычислительной математики и математической физики 2006, том 46, N 9, с. 1711-1720.
- [17] Петров И.Б. Волновые и откольные явления в слоистых оболочках конечной толщины // Механика твердого тела 1986, N 4, с. 118-124.