# **Assignment -4**

| Assignment Date     | 17 November 2022             |
|---------------------|------------------------------|
| Student Name        | Sirasanambeti Somunath reddy |
| Student Roll Number | 111619104139                 |
| Maximum Marks       | 4 Marks                      |

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression

df=pd.read_csv("/content/drive/NyDrive/Colab Notebooks/abalone.csv")
```

#### Univariate Analysis

```
df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 3B)
     array([[<matplotlib.axes. subplots.AxesSubplot object at 8x7f3d1b8fb698>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dlade4d98>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladaa398>,
             <matplotlib.axes._subplots.AxesSubplot object at Bx7f3d1ad60998>],
            [<matplotlib.axes._subplots.AxesSubplot object at 0x7f3dladl6f98>,
             <matplotlib.axes._subplots.AxesSubplot object at Bx7f3d1acda5d8>,
             <matp1otlib.axes._subplots.AxesSubplot object at Bx7f3dlac8fc58>,
             <matplotlib.axes._subplots.AxesSubplot object at 8x7f3dlac53ld8>]],
           dtype=object)
                                                            Diameter
                                                                                                    Height
                                                                                                                                        Whole weight
                                                                                   1600
      400
                                             350
                                                                                   1400
      350
                                                                                                                           250
                                                                                   1200
      300
                                             250
                                                                                    1000
                                                                                                                           200
      250
                                             200
                                                                                    800
      200
                                                                                                                            150
                                             150
                                                                                    600
      150
                                                                                                                            100
      100
                                             100
                                                                                    400
                                                                                                                            50
       50
                                              50
                                                                                    200
              0.2
                      0.4
                             0.6
                                                   0.1
                                                       0.2
                                                            0.3
                                                                0.4
                                                                    0.5
                                                                                                 0.4
                                                                                                      0.6
                                                                                                           0.8
                                                                                                                                   0.5
                                                                                                                                        10
                                                                                                                                             1.5
                                                                                                                                                  2.0
                  Shucked weight
                                                          Viscera weight
                                                                                                  Shell weight
                                                                                                                                            age
      350
                                             350
                                                                                    350
                                                                                                                            600
      300
                                             300
                                                                                    300
                                                                                                                            500
      250
                                             250
                                                                                    250
                                                                                                                            400
      200
                                             200
                                                                                    200
      150
                                                                                                                           300
                                             150
                                                                                    150
                                                                                                                            200
      100
                                             100
                                                                                    100
                                                                                                                            100
       50
                                              50
                                                                                     50
         0.00 0.25 0.50 0.75 100 125 150
                                                                                             0.2
```

 Length
 Diameter
 Height
 whole weight
 Shucked weight
 Viscera weight
 Shell weight
 age

 Sex

 0.427746
 0.326494
 0.107996
 0.431363
 0.191035
 0.092010
 0.128182
 9.390462

 M
 0.561391
 0.439287
 0.151381
 0.991459
 0.432946
 0.215545
 0.281969
 12.205497

F 0.579093 0.454732 0.158011 1.046532

0.446188

0.230689

0.302010 12.629304

# Bivariate Analysis

numerical\_features = df.select\_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical\_features])



# Descriptive statistics

| Length         Diameter         Height         whole weight         Shucked weight         viscera weight         Shell weight         age           count         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         4177.000000         0.139203         3.224169         0.139203         3.224169         0.00000         0.001500         0.001500         0.001500         0.001500         0.001500         0.001500         0.001500         0.001500         0.186000         0.005500         0.130000         9.500000         0.001500         0.170000         0.234000         10.50000 <td< th=""><th colspan="9">df.describe()</th></td<> | df.describe() |             |             |             |              |                |                |              |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------------|-------------|--------------|----------------|----------------|--------------|-------------|
| mean         0.523992         0.407881         0.139516         0.828742         0.359367         0.180594         0.238831         11.433684           std         0.120093         0.099240         0.041827         0.490389         0.221963         0.109614         0.139203         3.224169           min         0.075000         0.055000         0.000000         0.002000         0.001000         0.000500         0.001500         2.500000           25%         0.450000         0.350000         0.115000         0.441500         0.186000         0.093500         0.130000         9.500000           50%         0.545000         0.425000         0.140000         0.799500         0.336000         0.171000         0.234000         10.500000           75%         0.615000         0.480000         0.165000         1.153000         0.502000         0.253000         0.329000         12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | Length      | Diameter    | Height      | whole weight | Shucked weight | viscera weight | Shell weight | age         |
| std         0.120093         0.099240         0.041827         0.490389         0.221963         0.109614         0.139203         3.224169           min         0.075000         0.055000         0.000000         0.002000         0.001000         0.000500         0.001500         2.500000           25%         0.450000         0.350000         0.115000         0.441500         0.186000         0.093500         0.130000         9.500000           50%         0.545000         0.425000         0.140000         0.799500         0.336000         0.171000         0.234000         10.500000           75%         0.615000         0.480000         0.165000         1.153000         0.502000         0.253000         0.329000         12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | count         | 4177.000000 | 4177.000000 | 4177.000000 | 4177.000000  | 4177.000000    | 4177.000000    | 4177.000000  | 4177.000000 |
| min         0.075000         0.055000         0.000000         0.002000         0.001000         0.000500         0.001500         2.500000           25%         0.450000         0.350000         0.115000         0.441500         0.186000         0.093500         0.130000         9.500000           50%         0.545000         0.425000         0.140000         0.799500         0.336000         0.171000         0.234000         10.500000           75%         0.615000         0.480000         0.165000         1.153000         0.502000         0.253000         0.329000         12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mean          | 0.523992    | 0.407881    | 0.139516    | 0.828742     | 0.359367       | 0.180594       | 0.238831     | 11.433684   |
| 25%       0.450000       0.350000       0.115000       0.441500       0.186000       0.093500       0.130000       9.500000         50%       0.545000       0.425000       0.140000       0.799500       0.336000       0.171000       0.234000       10.500000         75%       0.615000       0.480000       0.165000       1.153000       0.502000       0.253000       0.329000       12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | std           | 0.120093    | 0.099240    | 0.041827    | 0.490389     | 0.221963       | 0.109614       | 0.139203     | 3.224169    |
| 50%     0.545000     0.425000     0.140000     0.799500     0.336000     0.171000     0.234000     10.500000       75%     0.615000     0.480000     0.165000     1.153000     0.502000     0.253000     0.329000     12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | min           | 0.075000    | 0.055000    | 0.000000    | 0.002000     | 0.001000       | 0.000500       | 0.001500     | 2.500000    |
| 75% 0.615000 0.480000 0.165000 1.153000 0.502000 0.253000 0.329000 12.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25%           | 0.450000    | 0.350000    | 0.115000    | 0.441500     | 0.186000       | 0.093500       | 0.130000     | 9.500000    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50%           | 0.545000    | 0.425000    | 0.140000    | 0.799500     | 0.336000       | 0.171000       | 0.234000     | 10.500000   |
| max 0.815000 0.650000 1.130000 2.825500 1.488000 0.760000 1.005000 30.500000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75%           | 0.615000    | 0.480000    | 0.165000    | 1.153000     | 0.502000       | 0.253000       | 0.329000     | 12.500000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | max           | 0.815000    | 0.650000    | 1.130000    | 2.825500     | 1.488000       | 0.760000       | 1.005000     | 30.500000   |

Check for missing values

df.isnull().sum()

```
df - pd.get dummies(df)
dummy_da ta = df . copy()
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
# outliers removal
d-F. drop(df[ (d-F[ ' VI scera weight ' ] \gt 0. 5) & (df-[ ' age ' ] \lt 20) ] . Index, inp1ace=True)
\label{eq:dfdf} $$ df.drop(df[(df['Uiscera weight']<0.5) & (df['age'] \rightarrow 25)].index, inplace=True) $$
var - 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outliers removal
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
#Outlier removal
var = ' Nhole weight '
pit . scatter (x = df-[var], y = df['age'])
p1t . grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &
          (df['age'] < 25)].index, inplace = True)</pre>
df. drop(df-[(df['Nhole weight']<2.5) & (
d-F['age'] \rightarrow 25)]. Index, 1nplace = True)
var = ' Diameter '
pit . scatter (x = df-[var] , y = df[ ' age ' ] )
p1t . grid(True)
df.drop (df-[(df['Diazeten'] <8.1) &
\label{eq:df-def} $$ (df['age'] < 5)].index, inplace = True) $$ df. drop(df-[(df['Diameter'] < 0.6) & (
d-F['age'] > 25)]. Index, 1nplace = True)
d-F-. drop(df-[ (d1°[ ' Diameter '] >=0. 6) & (
df-['age'] < 25)] . Index, 1nplace = True)
var = 'Height'
p1t . scatter (x - df[var] , y - df[ 'age '])
p1t.grid(True)
d-F. drop(d-I- [ (df-[ ' Height ' ] > 6 . 4) &
          (df[ 'age '] < 15) ] . Index, Inplace = True)
d-F. drop(df-[ (d-F[ 'Height '] <0. 4) & (
d-I^{\circ}['age'] > 25)] . index, 1nplace = True)
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Leugth'] < 8.1) &
          (df['age'] < 5)].index, inplace = True)</pre>
dfdropd[df['Leugth]<0.8) & (
df['age'] > 25)].index, inplace = True)
df.dropd[df['Length]>=8.8) & (
df['age'] < 25)].iudex, inplace = True)</pre>
```



#### Categorical columns

 $numerical\_features = df.select\_dtypes(include = [np.number]).columns \\ categorica1\_features = df.select\_dtypes(include = [np.object]).columns$ 

/usr/local/lib/python3.7/dist-packages/ipykernel\_launcher.py:2: Deprecationwarning: 'up.object' is a deprecated alias for the builtin 'object' To siler Deprecated in NumPy 1.20; for more details and guidance: <a href="https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations">https://numpy.org/devdocs/release/1.20.8-notes.html#deprecations</a>

#### numerical\_features

# categonica I\_featunes

```
Index(['Sex'], dtype='object')
```

#### **ENCODING**

from sklearn.preprocessing import LabelEncoder le=LabelEncoder() print(df.Sex.value\_counts())

M 1525 1 1341 F 1301

Name: Sex, dtype: int64

# x=df.iloc[:,:5]

| 1 | Nhole we1ght | Helght | Diameter | Length | Sex |      |  |
|---|--------------|--------|----------|--------|-----|------|--|
|   | 0.5140       | 0.095  | 0.365    | 0.455  | М   | 0    |  |
|   | 0.2255       | 0.090  | 0.265    | 0.350  | М   | 1    |  |
|   | 0.6770       | 0.135  | 0.420    | 0.530  | F   | 2    |  |
|   | 0.5160       | 0.125  | 0.365    | 0.440  | М   | 3    |  |
|   | 0.2050       | 0.080  | 0.255    | 0.330  |     | 4    |  |
|   |              |        |          |        |     |      |  |
|   | 0.8870       | 0.165  | 0.450    | 0.565  | F   | 4172 |  |
|   | 0.9660       | 0.135  | 0.440    | 0.590  | М   | 4173 |  |
|   | 1.1760       | 0.205  | 0.475    | 0.600  | М   | 4174 |  |
|   | 1.0945       | 0.150  | 0.485    | 0.625  | F   | 4175 |  |
|   | 1.9485       | 0.195  | 0.555    | 0.710  | М   | 4176 |  |
|   |              |        |          |        |     |      |  |

y=df.iloc[:,5:]

4167 rows • 5 columns

|         | Shucked weight | VIscera weight | Shell weight | age  | 10 |
|---------|----------------|----------------|--------------|------|----|
| 0       | 0.2245         | 0.1010         | 0.1500       | 16.5 |    |
| 1       | 0.0995         | 0.0485         | 0.0700       | 8.5  |    |
| 2       | 0.2565         | 0.1415         | 0.2100       | 10.5 |    |
| 3       | 0.2155         | 0.1140         | 0.1550       | 11.5 |    |
| 4       | 0.0895         | 0.0395         | 0.0550       | 8.5  |    |
|         |                |                |              |      |    |
| 4172    | 0.3700         | 0.2390         | 0.2490       | 12.5 |    |
| 4173    | 0.4390         | 0.2145         | 0.2605       | 11.5 |    |
| 4174    | 0.5255         | 0.2875         | 0.3080       | 10.5 |    |
| 4175    | 0.5310         | 0.2610         | 0.2960       | 11.5 |    |
| 4176    | 0.9455         | 0.3765         | 0.4950       | 13.5 |    |
| 4167 ro | ws 4 columns   |                |              |      |    |

 $from \ sk1earn.model\_selection \ import \ train\_test\_split \\ x\_train,x\_test,y\_train,y\_test=train\_test\_split(x,y,test\_size=0.2)$ 

Model Building

 $\label{thm:constraint} from sklearn.linear_model import LinearRegression \\ mlr=LinearRegression() \\ mlr.fit(x\_train,y\_train) \\$ 

Train and Test model

# x\_test [6:5]

|      | Sex | Length | Diameter | Height | Nhole we1ght |
|------|-----|--------|----------|--------|--------------|
| 661  |     | 0.535  | 0.450    | 0.170  | 0.781        |
| 370  | F   | 0.650  | 0.545    | 0.165  | 1.566        |
| 2272 | М   | 0.635  | 0.510    | 0.210  | 1.598        |
| 1003 | М   | 0.595  | 0.455    | 0.150  | 1.044        |
| 1145 | М   | 0.580  | 0.455    | 0.195  | 1.859        |

# y\_test[0:5]

|      | Shucked we1ght | vlscera we1ght | Shell we1ght | age  |
|------|----------------|----------------|--------------|------|
| 661  | 0.3055         | 0.1555         | 0.295        | 12.5 |
| 370  | 0.6645         | 0.3455         | 0.415        | 17.5 |
| 2272 | 0.6535         | 0.2835         | 0.580        | 16.5 |
| 1003 | 0.5180         | 0.2205         | 0.270        | 10.5 |
| 1145 | 0.9450         | 0.4260         | 0.441        | 10.5 |

#### Feature Scaling

from sklearn.preprocessing import StandardScaler ss=StandardScaler() x\_train=ss.fit\_transform(x\_train) mlrpred=mlr.predict(x\_test[B:9]) mlrpred

Performance measure

I-rom sklearn .metric s Import r2\_score r2\_s core(m1r . predict (x\_test) , y\_test )

0.5597133867640833