Predicting the Closing Price of an S&P500 Stock

- Stefano Chiappo
- Brown University
- 6th of December 2023
- https://github.com/chiste fano/Project_DATA1030.git

Introduction

- Regression problem
- The aim of this project is to predict the closing stock price based on quarterly financial metrics and previous prices
- Important to be able to invest in stocks whose price will increase

- Merged three different datasets: Prices, Securities, Fundamentals
- Data from Kaggle, sourced Prices and Securities from Yahoo Finance and Fundamentals from S&P Global

Dealing with Missing Values

- Dropped points without lagged or current closing price
- Remove some strongly corelated features
- Percentage of missing values in features:
- Quick Ratio 16.7%
- Earnings Per Share 5.91%
- Estimated Shares Outstanding 5.91%
- Iterative Imputer with Linear Regression Estimator
- Dataset size: (101198, 81)

Splitting and Preprocessing Data

- Time Series Data, so not iid
- Grouped by Stock Name and Date
- Used latest 20% of points for each stock as test set
- Used PredefinedSplit to create five, time-sensitive train and validation sets
- 'GICS Sector' only categorical feature, used OneHotEncoder
- Used Standard Scaler for all other (continuous) features

Models Used

ML Model	Hyperparameters Tuned	Average RMSE (\$)	Standard Deviation Average RMSE (\$)
Baseline Score	None	89.5	0.00
Lasso	max_iter, alpha	2.38	0.05
Ridge	alpha	2.35	0.08
Random Forest Regression	n_estimators, max_depth	3.36	0.73
K-neighbors Regressor	n_neighbors, weights	8.39	0.79
XGBoost	n_estimators, learning_rate, max_depth	7.72	0.43

Best Machine Learning Model

- Overall, the best model with its tuned hyperparameters was:
- Ridge Regression
- Alpha=1.67 e-09
- -RMSE: 2.35 (\$)

Global Feature Importance- SHAP

Global Feature Importance- Permutation

Improving Interpretability and Predictive Power

Interpretability

- Dropping highly correlated features
- Using less of the features which have a small impact on predicting the closing price of the stock

<u>Predictive Power</u>

- Try other ML models that are more time consuming, like SVR
- More hyperparameters can be tuned in the models
- Use more recent data to predict more accurately current prices

End of the Presentation