Kvik bestun

Bergur Snorrason

7. febrúar 2022

Rakningarvensl

▶ Talnarunan $a_1, a_2, ...$ kallast k-ta stigs rakningarvensl ef til er fall $f: \mathbb{R}^k \to \mathbb{R}$ þannig að

$$a_n = f(a_{n-1}, a_{n-2}, ..., a_{n-k})$$

fyrir ölll n > k.

- Frægasta dæmið um rakningarvensl er Fibonacci runan.
- ▶ Hún er annars stigs rakningarvensl gefin með fallinu f(x,y) = x + y.
- Reikna má upp úr þessum venslum endurkvæmt.

```
3 int fib(int x)
4 {
5     if (x < 3) return 1;
6     return fib(x - 1) + fib(x - 2);
7 }</pre>
```

- ▶ Í hverju skrefi skiptist endurkvæmnin í tvennt svo þetta forrit hefur tímaflækju $\mathcal{O}(2^n)$.
- Við getum þó bætt þetta til muna með því að geyma niðurstöðuna úr hverju kalli.
- niðurstöðuna úr hverju kalli.

 Þá nægir að reikna hvert gildi einu sinni.

Þessi viðbót kallast minnun (e. memoization).

```
1 #include <stdio.h>
 2 #define MAXN 1000000
 3
   int d[MAXN]; // Hér geymum við skilagildi fib (...).
                   Ef d[i] = -1 þá eigum við eftir að reikna fib(i).
   int fib(int x)
7
  {
8
       if (d[x] != -1) return d[x];
9
       if (x < 2) return 1;
10
       return d[x] = fib(x-1) + fib(x-2);
11 }
12
13 int main()
14
  {
```

15

16 17

18

19 20 } int n, i;
scanf("%d", &n);

return 0:

for (i = 0; i < n; i++) d[i] = -1;

printf($"%d \ n"$, fib(n - 1));

Ofansækin kvik bestun

- Nú reiknum við hvert gildi aðeins einu sinni.
- ▶ Við þurfum að reikna n gildi og hvert gildi má reikna í $\mathcal{O}(1)$ tíma, svo í heildina er forritið $\mathcal{O}(n)$.
- An minnunar náum við með erfiðum að reikna fertugustu Fibonacci töluna (því eframatið $\mathcal{O}(2^n)$ mætti bæta ögn) en með minnun náum við hæglega að reikna milljónustu Fibonacci töluna (hún mun þó ekki einu sinni passa í 64 bita).
- Ef lausnin okkar er endurkvæm með minnun kallast hún ofansækin kvik bestun (e. top down dynamic programming).

Neðansækin kvik bestun

- Það er þó lítið mál að breyta endurkvæmnu lausninni okkar í ítraða lausn.
- Eina sem við þurfum að passa er að reikna gildin í vaxandi röð.

```
1 #include <stdio.h>
2
3 int main()
4 {
5     int n, i;
6     scanf("%d", &n);
7     int a[n];
8     a[0] = a[1] = 1;
9    for (i = 2; i < n; i++) a[i] = a[i - 1] + a[i - 2];
10     printf("%d\n", a[n - 1]);
11     return 0;
12 }</pre>
```

Þegar ofansækin kvik bestunar lausn er útfærð með ítrun köllum við það neðansækna kvika bestun (e. bottom up dymanic programming).

- ► Í neðansækinni kvikri bestun byrjum við með grunntilfellin og smíðum flóknari lausnirnar út frá þeim.
- smíðum flóknari lausnirnar út frá þeim.
 Í ofansækinni kvikri bestun brjótum við fyrst niður flóknu dæmin í smærri dæmi sem við vitum svarið við og reiknum svo
- út úr því.
 Ef endurkvæmnafallið okkar er háð k breytum þá segjum við að lausnin okkar sé k víð kvik hestun
- að lausnin okkar sé k víð kvik bestun.
 Ofansækin kvik bestun hentar þegar við erum að vinna með
- fleiri en eina vídd.

 Pá getur verið erfitt að ítra í gegnum stöðurnar í "réttri röð".

Annar kostur ofansækinnar kvikrar bestunar er að lausnirnar geta verið nokkuð einsleitar.

```
1 #include <stdio.h>
2 #define MAXN 1000000
4 int d[MAXN]:
  int dp lookup(int x)
6
7
       if (d[x] != -1) return d[x];
       if (/* Er betta grunntilfelli? */)
9
10
           /* Skila tilheyrandi grunnsvari */
11
12
       /* Reikna d[x] */
13
       return d[x];
14 }
15
16 int main()
17 {
18
       int n, i;
19
       scanf("%d", &n);
20
       for (i = 0; i < MAXN; i++) d[i] = -1;
       printf("%d\n", dp lookup(n));
21
22
       return 0;
23 }
```

► Neðansækin kvik bestun hefur sýna kosti.

Sumar bessara bætinga krefjast bess að útfærsla sé

neðansækin.

- Það er stundum hægt að bæta tímaflækjuna með til dæmis
- sniðugri gagnagrind.

Lengsta sameiginlega hlutruna

- ► Tökum annað dæmi.
- ▶ Látum $S = s_1 s_2 ... s_n$ og $T = t_1 t_2 ... t_m$ vera strengi af lengd n og m, þannig að $1 \le n, m \le 10^3$.
- Hver er lengd lengsta strengs X þannig að hann sé hlutruna í bæði S og T?
- ► Takið eftir að "12" og "13" eru hlutrunur í "123" en "21" er það ekki.

- Getum við sett upp dæmið með þægilegum rakningarvenslum?
- Ef svo er þá getum við notað kvika bestun. Það er yfirleitt þægilegast að hugsa um rakningarvenslin sem
- fall, frekar en runu.
- Látum f(i, j) tákna lengstu sameiginlegu hlutrunu strengjanna $s_1 s_2 ... s_i$ og $t_1 t_2 ... t_i$.

 \triangleright Okkur mun svo nægja að reikna f(n, m).

- ► Við vitum að f(0, i) = f(j, 0) = 0.
- ▶ Þetta munu vera grunntilfellin okkar.
- Almennt gildir að ef við erum að reikna f(i,j) og $s_i = t_j$ þá getum við látið þann staf vera aftastan í sameiginlegu hlutrununni.
- ► Svo f(i,j) = f(i-1,j-1) + 1 ef $s_i = t_j$.
- ▶ Ef $s_i \neq t_j$ þá verður annað stakið (eða bæði stökin) að vera ekki í hlutrununni.
- Við veljum að sjálfsögðu að sleppa þeim sem gefur okkur betra svar, það er að segja $f(i,j) = \max(f(i-1,j),f(i,j-1))$.
- Við getum svo sett allt saman og fengið $f(i,j) = \begin{cases} 0, & \text{ef } i = 0 \text{ eða } j = 0 \\ f(i-1,j-1)+1, & \text{annars, og ef } s_i = t_j \\ \max(f(i-1,j),f(i,j-1)), & \text{annars.} \end{cases}$

```
7 int d[MAXN][MAXN];
8 int dp lookup(int x, int y)
9 {
10
       if (d[x][y] != -1) return d[x][y];
11
       if (x = 0 \mid | y = 0) return 0;
12
       if (s[x-1] = t[y-1]) return d[x][y] = dp \ lookup(x-1, y-1) + 1;
13
       return d[x][y] = max(dp lookup(x - 1, y), dp lookup(x, y - 1));
14 }
15
16 int lcs(char *a, char *b)
17 {
18
       int i, j, n = strlen(a) - 1, m = strlen(b) - 1;
19
       strcpy(s, a), strcpy(t, b);
       for (i = 0; i < n + 1; i++) for (j = 0; j < m + 1; j++) d[i][j] = -1;
```

6 char s[MAXN], t[MAXN];

return dp lookup(n, m);

20

21 22 } Það er þessi virði að bera saman dp_lookup(...) fallið í forritinu og f(i, j) af glærunni að framan.

```
f(i,j) = \left\{ egin{array}{ll} 0, & 	ext{ef } i = 0 	ext{ eða } j = 0 \\ f(i-1,j-1) + 1, & 	ext{annars, og ef } s_i = t_j \\ \max(f(i-1,j), f(i,j-1)), & 	ext{annars.} \end{array} 
ight.
```

```
int dp lookup(int x, int y)
  if (d[x][y] != -1) return d[x][y];
if (x == 0 || y == 0) return 0;
```

10 11

- Forritið okkar þarf í versta falli að reikna öll möguleg gildi á
- f(i, j), sem eru $(n+1) \cdot (m+1)$ talsins.

▶ En hvert gildi má reikna í $\mathcal{O}(1)$ tíma. ▶ Svo forritið hefur tímaflækjuna $\mathcal{O}(n \cdot m)$.

Skiptimyntadæmið

- Skoðum aftur Skiptimyntadæmið úr þarsíðustu viku.
- ▶ Þú ert með ótakmarkað magn af *m* mismunandi myntum.
- \triangleright Þær eru virði $x_1, x_2, ..., x_m$.
- ▶ Til þæginda gerum við ráð fyrir því að $x_1 = 1$.
- Hver er minnsti nauðsynlegi fjöldi af klinki sem þú þarft ef þú vilt gefa n krónur til baka.

- Gerum ráð fyrir að við byrjum að gefa til baka x_i krónur.
- Pá erum við búin að smækka dæmið niður í $n-x_j$.
- lacktriangle Við getum því skoðað öll mögulega gildi x_j og séð hvað er best.

 $f(i) = \left\{ \begin{array}{ll} \infty, & \text{ef } i < 0 \\ 0, & \text{ef } i = 0 \\ \min_{j=1,2,\ldots,m} f(i-x_j) + 1, & \text{annars.} \end{array} \right.$

```
7 int n, m, a[MAXM];
8 int d[MAXN];
9 int dp_lookup(int x)
10 {
11     int i;
12     if (x < 0) return INF; // Þessi lína þarf að vera fremst!
13     if (d[x]! = -1) return d[x];</pre>
```

for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);

14

15

16

17 18 } if (x = 0) return 0;

d[x] = INF;

return d[x];


```
1 #include <stdio.h>
2 #define INF (1 << 30)
3 int min(int a, int b) { if (a < b) return a; return b; }
5 int main()
6 {
      int i, j, n, m;
      scanf("%d%d", &n, &m);
      int d[n + 1], a[m];
      for (i = 0; i < m; i++) scanf("%d", &a[i]);
      for (i = 0; i < n + 1; i++) d[i] = INF;
      d[0] = 0;
      for (i = 0: i < m: i++)
      {
          for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
              d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
      }
```

4

7

8 9

10 11

12

13

14

15

16 17

18

19 20 21

22

23 }

printf("%d\n", d[n]);

return 0;

- Breytum dæminu örlítið.
- Núna höfum við takmarkað magn af hverju klinki.
- Nánar tiltekið höfum við m klink að andvirði $x_1, x_2, ..., x_m$
- (núna geta verið endurtekin gildi). ▶ Hver er minnsti fjöldi að klinki sem þarf til að gefa til baka n
- krónur, ef það er á annað borð hægt.
- Nú er óþarfi að gera ráð fyrir því að $x_1 = 1$. Hvernig mætti breyta neðansæknu lausninni til að höndla
- betta?
- Skoðum aftur neðansæknu lausnina.

Hefðbundna skiptimyntadæmið

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
3 int min(int a, int b) { if (a < b) return a; return b; }
 4
   int main()
 6
       int i, j, n, m;
8
       scanf("%d%d", &n, &m):
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
11
       for (i = 0: i < n + 1: i++) d[i] = INF:
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
15
           for (j = 0; j < n + 1 - a[i]; j++) if (d[j] < INF)
16
                d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
17
18
       }
19
20
       printf("%d\n", d[n]);
21
22
       return 0:
23 }
```

Nýja dæmið

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 4
 5
  int main()
 6
   {
       int i, j, n, m;
8
       scanf("%d%d", &n, &m):
9
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
15
           for (i = n - a[i]; j >= 0; j--) if (d[j] < INF)
16
                d[j + a[i]] = min(d[j + a[i]], d[j] + 1);
17
18
       }
19
20
       printf("%d\n", d[n]);
21
22
       return 0:
23 }
```

-	Skoðum b	báðar aðferðirnar á litlu sýnidæmi.	
-	Skoðum f	fyrst með endurtekningum og síðan á	n endurtekningar

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 4, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 4, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 5, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 6, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 7, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 8, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 9, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 10]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4]
```

```
n = 10
a = [1, 3, 5]
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 4, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 4]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, 2, 1, 2, 1, 2, 3, 2, 3, 2]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10
a = [1, 3, 5]
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10
a = [1, 3, 5]
0 1 2 3 4 5 6 7 8 9 10
d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10
a = [1, 3, 5]
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, -1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, -1, 2, -1, -1, -1, -1, -1, -1]
```

```
n = 10
a = [1, 3, 5]
0    1    2    3    4    5    6    7    8    9   10
d = [0, 1, -1, -1, 2, -1, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, -1, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, -1, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, -1, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, -1, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, -1, 2, -1, 2, 3, -1]
```

```
n = 10
a = [1, 3, 5]
0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10
d = [0, 1, -1, 1, 2, -1, 2, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, 1, 2, -1, 2, 3, -1]
```

```
n = 10

a = [1, 3, 5]

0 1 2 3 4 5 6 7 8 9 10

d = [0, 1, -1, 1, 2, 1, 2, -1, 2, 3, -1]
```

- Hvernig myndum við þó leysa seinna dæmið með ofansækinni kvikri bestun?
- ▶ Við þurfum að hugsa það aðeins öðruvísi.
- ▶ Nú höfum við um tvennt að velja fyrir hvern pening.
- Annaðhvort notum við hann, eða ekki.
- Svo við látum f(n,j) tákna minnsta fjölda af klinki sem þarf til að gefa til baka n krónur, ef við megum nota klink $x_i, x_{i+1}, ..., x_m$.
- Þá fáum við að

$$f(i,j) = \left\{egin{array}{ll} \infty, & ext{ef } i < 0 \ \infty, & ext{ef } i
eq 0 ext{ og } j = m+1 \ 0, & ext{ef } i = 0 ext{ og } j = m+1 \ \min(f(i,j+1), & ext{f}(i-x_j,j+1)+1), & ext{annars}. \end{array}
ight.$$

```
8 int d[MAXN][MAXM];
9 int dp_lookup(int x, int y)
10 {
11     if (x < 0) return INF;
12     if (d[x][y]!= -1) return d[x][y];</pre>
```

 $dp_{lookup}(x - a[y], y + 1) + 1);$

if (y == m) return x == 0 ? 0 : INF;
return d[x][y] = min(dp lookup(x, y + 1),

13

14

15 16 }

- Það er nokkuð létt að meta tímaflækjurnar á neðansæknu lausnunum.
- ▶ Þær eru báðar tvöfaldar for-lykkjur, sú ytri af lengd m og
- innri af lengd $\mathcal{O}(n)$.

▶ Svo tímaflækjurnar eru $\mathcal{O}(n \cdot m)$.

- ▶ Í ofansæknu lausninni á hefðbundna dæminu þarf að reikna, allt að, n+1 fallgildi.
- ▶ Hvert gildi má reikna í $\mathcal{O}(m)$ tíma.
- Svo í heildina er hún $\mathcal{O}(n \cdot m)$.

```
9 int dp_lookup(int x)
10 {
11
       int i:
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
12
13
       if (d[x] != -1) return d[x];
14
       if (x == 0) return 0:
15
       d[x] = INF;
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
16
17
       return d[x];
18 }
```

 Í ofansæknu lausninni á hinu dæminu þarf að reikna, allt að, $(n+1)\cdot(m+1)$ fallgildi.

return $d[x][y] = min(dp_lookup(x, y + 1), dp_lookup(x - a[y], y + 1) + 1);$

▶ Hvert gildi má þó reikna í $\mathcal{O}(1)$ tíma.

9 int dp lookup(int x, int y)

10 {

11 12

13

```
Svo í heildina er hún \mathcal{O}(n \cdot m).
```

if (x < 0) return INF; if $(d[x][y] \stackrel{!}{!} = -1)$ return d[x][y];

if (y == m) return x == 0 ? 0 : INF;

- Hvað gerum við ef við viljum vita hvaða klink á að gefa til baka, ekki bara hversu mikið?
- Takið eftir að þegar við reiknum, til dæmis, min(dp(x, y + 1), dp(x - a[y], y + 1) + 1) þá erum við í raun að velja
- - hvort er betra: $dp(x, y + 1) e \delta a dp(x a[y], y + 1) +$ 1.
- Okkur nægir því að geyma fyrir hvert inntak í
- Kvik bestun byggir á því að besta leiðin sé alltaf sú sama.

Síðan er hægt að þræða sig í gegn eftir á og finna klinkið sem

barf.

- dp_lookup(...) hver besta leiðin er.

Finnur bara fjöldann

```
1 #include <stdio.h>
 2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
   int main()
7
       int i, j, n, m, x;
8
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
11
       for (i = 0; i < n + 1; i++) d[i] = INF;
       d[0] = 0:
12
13
       for (i = 0; i < m; i++)
14
           for (i = 0; i < n + 1 - a[i]; i++)
                if (d[j] < INF && d[j + a[i]] > d[j] + 1)
15
       {
16
           d[i + a[i]] = d[i] + 1:
17
18
       }
19
20
21
       printf("%d\n", d[n]);
22
23
24
25
26
27
28
29
       return 0:
30 }
```

Finnur hvaða klink

```
1 #include <stdio.h>
2 #define INF (1 << 30)
 3 int min(int a, int b) { if (a < b) return a; return b; }
 5
   int main()
 6
7
       int i, j, n, m, x;
8
       scanf("%d%d", &n, &m);
9
       int d[n + 1], a[m], e[n + 1];
10
       for (i = 0; i < m; i++) scanf("%d", &a[i]);
       for (i = 0; i < n + 1; i++) d[i] = INF;
11
12
       d[0] = 0;
13
       for (i = 0; i < m; i++)
14
            for (j = 0; j < n + 1 - a[i]; j++)
15
                if (d[i] < INF && d[j + a[i]] > d[j] + 1)
       {
16
17
           d[j + a[i]] = d[j] + 1;
18
           e[j + a[i]] = a[i];
19
20
21
       printf("%d\n", d[n]);
22
       x = n:
23
       while (x != 0)
24
            printf("%d ", e[x]);
25
26
           \times -= e[\times]:
27
       printf("\n"):
28
29
       return 0:
30 }
```

|--|

```
7 int dp lookup(int x)
8
9
       int i:
10
       if (x < 0) return INF; // Pessi lína þarf að vera fremst!
11
       if (d[x] != -1) return d[x];
12
       if (x == 0) return 0;
13
       d[x] = INF;
14
       for (i = 0; i < m; i++) d[x] = min(d[x], dp lookup(x - a[i]) + 1);
15
       return d[x];
16 }
17
18
   int dp traverse(int n, int *r)
19
   {
20
       int i = 0, mn, mni, j;
21
       while (n > 0)
22
23
            for (mn = INF, j = 0; j < m; j++) if (mn > dp lookup(n - a[j]) + 1)
24
                mn = dp lookup(n - a[j]) + 1, mni = j;
25
            r[i++] = a[\overline{m}ni];
26
           n -= a[mni];
27
28
       return i;
29 }
```

- Helsti kostur fyrri aðferðarinnar er að besta skrefið er ákvarðað $(\mathcal{O}(1))$ tíma.
- Í seinni aðferðinni tekur það jafnalangan tíma og dp_lookup(...) tekur að meta hverja stöðu.

lengstu sameiginlegu hlutrunum tveggja strengja.

- Þetta kemur bara til með að gera nógu góða lausn hæga ef það þarf að reikna fyrir mörg gildi.
- Skoðum nú hvernig við getum nýtt þetta til að finna eina af

```
7 int dp lookup(int x, int y)
 8 {
9
       if (d[x][y] != -1) return d[x][y];
       if (x = 0 \mid | y = 0) return 0;
10
11
       if (s[x-1] = t[y-1]) return d[x][y] = dp lookup(x-1, y-1) + 1;
12
       return d[x][y] = max(dp_lookup(x - 1, y), dp_lookup(x, y - 1));
13 }
14
15 int lcs(char *a, char *b, char *r)
16
  {
17
       int i, j, k, n = strlen(a) - 1, m = strlen(b) - 1, x, y;
       strcpy(s, a), strcpy(t, b), memset(r, '\0', MAXN);
18
19
       for (i = 0; i < n + 1; i++) for (j = 0; j < m + 1; j++) d[i][j] = -1;
20
       for (k = dp \ lookup(n, m), x = n, y = m; x > 0 \&\& y > 0;)
21
       {
22
           if (s[x-1] = t[y-1]) r[--k] = s[x-1], x--, y--;
23
           else if (dp lookup(x, y - 1) > dp lookup(x - 1, y)) y=-;
```

5 char s[MAXN], t[MAXN];
6 int d[MAXN][MAXN];

else x--:

return dp lookup(n, m);

24

25 26

27 }

- Seinni skiptimyntadæmið er náskylt *hlutmengjasummudæminu* (e. *Subset Sum Problem*).
- Dæmið er einfalt.
- Gefnar eru n tölur a₁,..., a_n ásamt tölu c.
 Hvaða hlutruna af tölum gefur hæstu summuna án þess að

fara yfir c.

```
c = 15 \\ b = 0 a: 1 2 7 9
```

$$c = 15 \\ b = 2$$
 a: 1 2 7 9

$$c = 15 \\ b = 9$$
 a: 1 2 7 9

$$c = 15$$
 $b = 9$
a: 1 2 7 9

$$c = 15 \\ b = 9$$
a: 1 2 7 9

```
c = 15 \\ b = 10 a: 1 2 7 9
```

$$c = 15 \\ b = 11$$
a: 1 2 7 9

$$c = 15 \\ b = 11$$
 a: 1 2 7 9

$$c = 15 \\ b = 12$$
 a: 1 2 7 9

$$c = 15 \\ b = 12$$
a: 1 2 7 9

$$c = 15 \\ b = 12$$
a: 1 2 7 9

$$f(i,j) = \begin{cases} 1, & \text{ef til er hlutruna af } a_1, \dots, a_i \text{ sem hefur summu } j, \\ 0, & \text{annars.} \end{cases}$$

Við getum nú umritað

 $f(i,j) = \left\{ egin{array}{ll} 1, & ext{ef } i = 0 ext{ og } j = 0, \ 0, & ext{ef } i = 0 ext{ og } j
eq 0, ext{eda} j < 0, \ \min(1,f(i-1,j) \ +f(i-1,j-a_i)), & ext{ef } i
eq 0. \end{array}
ight.$

Svarið er þá stærsta $\ell \leq c$ þannig að $f(n,\ell)$ er einn.

```
8 int dp lookup(int x, int y)
9 {
10
       if (x < 0 \&\& y == 0) return 1;
       if (y < 0 \mid | x < 0) return 0;
11
       if (d[x][y] != -1) return d[x][y];
12
13
       return d[x][y] = dp \ lookup(x-1, y) \ || \ dp \ lookup(x-1, y-b[x]);
14 }
15
16 int subsetsum(int *a, int n, int c)
17
18
       int i, j;
       for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
19
20
       for (i = 0; i < n; i++) b[i] = a[i];
```

7 int d[MAXN][MAXC], b[MAXN];

return c:

while (!dp lookup(n-1, c)) c--;

21

22

23 }

- ▶ Við reiknum hvert gildi á f(i,j) í $\mathcal{O}(1)$.

sinnum fallgildi fallsins f.

er $\mathcal{O}(n \cdot c)$.

- ▶ Við þurfum í versta falli að reinka $n \cdot (c+1)$ slíka gildi.
- Svo það tekur okkur $\mathcal{O}(n \cdot c)$ tíma að reikna f(i,j).
- ► En sökum minnunar tekur það $\mathcal{O}(q + n \cdot c)$ tíma að reikna q

Við þurfum að reikna það, í versta falli, c sinnum, svo forritið

- Ein algeng hagnýting á þessu er tvískipting talna.
- Látum a_1, \ldots, a_n vera heiltölur.

Summurnar eru 54 og 55, og mismunur beirra er 1.

- Hvernig er best að skipta þeim í tvo hópa þannig að mismunur summa hvors hóps sé sem minnstur.
- Ef tölurnar eru (10, 2, 10, 30, 15, 2, 30, 10) þá skiptum við í
- (2, 2, 10, 10, 30) og (10, 15, 30).

- Hvernig getum við leyst betta?
- Látum T vera summu allra talnanna.
- ▶ Við getum nú notað subsetsum(...) með c = |T/2|.
- Það gefur okkur annan hópinn og hinn hópurinn verður afgangurinn.
- Okkur vantar þó að finna hvaða tölur eiga að vera í hvorum hóp.

```
7 int d[MAXN][MAXC], b[MAXN];
8 int dp lookup(int x, int y)
9 {
       if (x < 0 \&\& y == 0) return 1;
       if (y < 0 \mid | x < 0) return 0;
       if (d[x][y] != -1) return d[x][y];
       return d[x][y] = dp \ lookup(x-1, y) \ || \ dp \ lookup(x-1, y-b[x]);
14 }
16 void partition (int *a, int *r, int n)
17
  {
       int i, j, t = 0, c;
       for (i = 0: i < n: i++) t += a[i]. r[i] = 0. b[i] = a[i]:
       c = t/2:
       for (i = 0; i < n; i++) for (j = 0; j < c + 1; j++) d[i][j] = -1;
       while (!dp lookup(n-1, c)) c--;
       i = n - 1. i = c:
       while (i > 0 \&\& i > 0)
```

if (dp lookup(i-1, j) > dp lookup(i-1, j-a[i])) i--;

else r[i] = 1, j = a[i], i = -i

10

11

12

13

15

18

19

20

21

22

23

24

25

26

{

- ▶ Þá er tímaflækjan $\mathcal{O}(n \cdot T)$.

sem w er stærsta talan í inntakinu.

Við skoðum hana kannski seinna.

 $\mathcal{O}(n^2 \cdot w)$.

- ▶ Það er til skemmtileg leið til að fá tímaflækjuna $\mathcal{O}(n \cdot w)$, þar

- Látum T vera summu allra talnanna.

► Takið eftir að tímaflækjan $\mathcal{O}(n \cdot T)$ er í raun sú sama og

- ► Hlutmengjadæmið er í raun sértilfelli af *bakpokadæminu* (e. *Knapsack Problem*).
- ▶ Gerum ráð fyrir að við séum með n hluti sem allir hafa einhverja vigt og verðgildi.
- Við erum einnig með bakpoka sem þolir tiltekna samtals vigt.
 Verkefnið snýst þá um að hámarka heildar verðgildi hluta sem
- hægt er að setja í bakpokann.
 Ef sérhver hlutur hefur sömu vigt og verðgildi þá erum við komin með hlutmengjasummudæmið.

- Nánar, við höfum tölur $v_1, \ldots, v_n, w_1, \ldots, w_n$ og c.
- ▶ Við viljum ákvarða tölur $b_1, \ldots, b_n \in \{0, 1\}$ þannig að

$$\sum_{i=1}^n b_i \cdot w_i \leq c$$
 og $\sum_{i=1}^n b_i \cdot v_i$ sé hámarkað.

- Látum f(i,j) tákna hámarks verðgildi sem má fá úr fyrstu i hlutunum með baknoka sem bolir byngd i.
- hlutunum með bakpoka sem þolir þyngd *j*.

 Við höfum þá

$$f(i,j) = \left\{egin{array}{ll} -\infty, & ext{ef } j < 0, \ 0, & ext{annars, ef } i = 0 \ ext{max}(f(i-1,j) \ +f(i-1,j-w_i)+v_i), & ext{annars.} \end{array}
ight.$$

```
9 int dp lookup(int x, int y)
10 {
11
       if (y < 0) return -INF;
12
       if (x < 0) return 0;
13
       if (d[x][y] != -1) return d[x][y];
14
       return d[x][y] = max(dp lookup(x - 1, y),
                                dp lookup(x - 1, y - b[x]) + a[x]);
15
16 }
17
18
  void knapsack(int *v, int *w, int *r, int n, int c)
19 {
```

for (i = 0; i < n; i++) for (j = 0; j <= c; j++) d[i][j] = -1; for (i = 0; i < n; i++) a[i] = v[i], b[i] = w[i], r[i] = 0;

if $(dp_lookup(i-1, j) < dp_lookup(i-1, j-w[i]) + v[i])$

8 int d[MAXN][MAXC], a[MAXN], b[MAXN];

int i, j, s[MAXN], ss;

for (i = n - 1; i >= 0; i--)

j = w[i], r[i] = 1;

i = c:

20

21

22 23

24

25 26

27 }

- Við þurfum að reikna $n \cdot (c+1)$ fallgildi fallsins f.
- Nert fallgildi er reiknað í $\mathcal{O}(1)$.

▶ Í heildina er þetta því $\mathcal{O}(n \cdot c)$.

- Stundum getur verið erfitt að ákvarða hvernig stöðurúmið okkar á að líta út.
- Tökum vel bekkt dæmi.
- Gerum ráð fyrir að við séum með n stöður.
- ► Gefið er tvívítt fylki $(d_{ii})_{1 \le i,j \le n}$, þar sem d_{ii} táknar tímann
- sem það tekur að fara úr i-tu stöðunni í j-tu stöðuna. Við viljum nú ferðast í gegnum allar stöðurnar í einhverri röð bannig að við byrjum og endum í sömu stöðu, förum í hverja
- tökum sem stystan tíma. Þetta er fræga Farandsölumannadæmið (e. Travelling Salseman Problem).
- ▶ Sígilt er að leysa þetta dæmi endurkvæmt í $\mathcal{O}((n+1)!)$ tíma.

stöðu nákvæmlega einu sinni (tvisvar í upphafsstöðuna) og

Við höfum nú tólin til að gera betur.

- Tökum fyrst eftir að það skiptir ekki máli í hvaða stöðu við byrjum.
- ▶ Við getum því gert ráð fyrir að við byrjum í fyrstu stöðunni.
- ▶ Látum P tákna mengi alla staða, A vera eiginlegt hlutmengi þar í og s vera stak utan A.
- Við getum þá látið f(s,A) vera stystu leiðina til að fara í allar stöður $P \setminus A$ nákvæmlega einu sinni frá s og enda í fyrstu stöðunni.
- ► Rakningarformúla fyrir f fæst því með

$$f(s,A) = \left\{ egin{array}{ll} 0, & ext{ef } s=1 ext{ og } A=P \ \infty, & ext{annars, ef } s=1 ext{ og } A
eq \emptyset \ \min_{e \in A} (d_{se} + f(e,A \setminus e)), & ext{annars.} \end{array}
ight.$$

Svarið við dæminu fæst svo með $f(1,\emptyset)$.

- Wikipedia kennir bessa aðferð við Held og Karp (1962) og segir að þetta sé með fyrstu hagnýtingum kvikrar bestunar.
- ightharpoonup Í versta falli þurfum við að reikna $n \cdot 2^n$ falligildi á f, ef við
- erum með n stöður.
- ▶ Hvert fallgildi er reiknað í $\mathcal{O}(n)$ tíma.
- Svo í heildina er forritið $\mathcal{O}(n^2 \cdot 2^n)$. Samkvæmt 10^8 reglunni náum við að leysa dæmi með $n \le 18$.
- ightharpoonup Við náum bara $n \leq 10$ með augljósu endurkvæmnu lausninni.

```
8 int dp_lookup(int x, int y)
9 {
10    int i;
11    if (d[x][y] != -1) return d[x][y];
12    if (x == 0 && y != 0) return (y == ((1 << n) - 1)) ? 0 : INF;
13    for (d[x][y] = INF, i == 0; i < n; i++) if ((y&(1 << i)) == 0)
14    d[x][y] = min(d[x][y], dp_lookup(i, y + (1 << i)) + g[x][i]);
15    return d[x][y];</pre>
```

for (i = 0; i < n; i++) for (j = 0; j < (1 << n); j++) d[i][j] = -1;

for (i = 0; i < n; i++) for (j = 0; j < n; j++) g[i][j] = a[i*MAXN + j];

7 int d[MAXN][1 << MAXN], g[MAXN][MAXN], n;</pre>

int tsp(int *a, int n)

return dp lookup(0, 0);

int i, j;

17 18

19 { 20

21

22

23

24 }

- Tökum nú dæmi sem er ekki jafn staðlað.
- ▶ Gerum ráð fyrir að við séum með n reiti fyrir framan okkur, hver merktur með tölu a;
- Reitirnir liggja jafndreift á beinni línu og þú byrjar á reit númer eitt.
- ightharpoonup Þú vilt síðan ferðast á reit n með því að hoppa á milli reitanna.
- ▶ Pú færð ai stig ef þú lendir á i-ta reitnum og
 - heildarstigafjöldinn er summa stiganna fyrir öll hoppin.
- Hvert stökk má þó ekki vera lengra en stökkið á undan.
- Hver er mesti fjöldi stiga sem þú getur fengið.
 Takið eftir að 1 ≤ n ≤ 3 ⋅ 10³ og −10° ≤ a_i ≤ 10°.

- Finnum rakningarformúlu sem lýsir svarinu.
- Látum f(i,j) vera mesta stigafjöldan sem má fá með því að
- stökkva frá i-ta reitnum með stökkum sem eru ekki lengri en j. Við fáum þá

 $f(i,j) = \begin{cases} a_n, & \text{ef } i = n, \\ \max_{1 \le k \le \min(j, n-i)} f(i+k, k) + a_i, & \text{annars.} \end{cases}$

```
8 II d[MAXN][MAXN], a[MAXN], n;
9 II dp lookup(II x, II y)
10 {
       II i;
       if (x = n - 1) return a[x];
```

 $d[x][y] = max(d[x][y], dp_lookup(x + i, i));$

if (d[x][y] != -INF) return d[x][y]; for (i = 1; i < min(y + 1, n - x); i++)

return d[x][y] = d[x][y] + a[x];

11 12

13

14

15 16

17 }

- ▶ Við þurfum að reikna $n \cdot n$ fallgildi og hvert fallgildi er reiknað í $\mathcal{O}(n)$.
- Svo heildartímaflækjan er $\mathcal{O}(n^3)$.
- ► En nú má *n* vera, allt að, $3 \cdot 10^3$ og $(3 \cdot 10^3)^3 = 27 \cdot 10^9$.
- Svo þessi lausn er of hæg.

- Útfærum nú lausnina neðansækið í von um að geta bætt hana síðan.

Munum að
$$f(i,j) = \left\{ \begin{array}{ll} a_n, & \text{ef } i=n, \\ \max_{1 \leq k \leq \min(j,n-i)} f(i+k,k) + a_i, & \text{annars.} \end{array} \right.$$

- Nú er f(i,j) bara háð styttri stökkum eða jafn löngum stökkum sem byrja aftar.
- \triangleright Svo við getum reiknað út f(i,j) í vaxandi stökk röð, og minnkandi upphafsstöðum.
- Með öðrum orðum látum við j vaxa, og i minnka.

```
1 #include <stdio.h>
 2 #include <assert.h>
 3 typedef long long II;
 4 #define MAXN 3001
 5 #define INF (1LL << 60)
6 | | | max(| | | a , | | | b ) { return a > b ? a : b; } 
7 | | | min(| | | a , | | | b ) { return a < b ? a : b; }
9 int main()
10 {
        II i, j, k, n;
        scanf("%||d", &n);
        II d[n][n], a[n];
        for (i = 0; i < n; i++) scanf("%||d", &a[i]);
        for (i = 0; i < n; i++) for (j = 0; j < n; j++) d[i][j] = -INF;
```

for (i = n - 2; i >= 0; i--) d[i][1] = d[i + 1][1] + a[i];

for (k = 1; k < min(j + 1, n - i); k++)

d[i][j] = max(d[i][j], d[i + k][k] + a[i]);

for (i = 0; i < n; i++) d[n-1][i] = a[n-1];

for (i = n - 2; i >= 0; i--)

 $printf("%||d \n", d[0][n-1]);$

8

11

12

13

14 15

16

17 18

19

20

21

22

23

24

25 }

d[n - 1][1] = a[n - 1];

for (i = 2; i < n; i++)

return 0:

- Nú er þetta forrit lítið annað en þreföld for-lykkja, hver af lengd $\mathcal{O}(n)$.
- Svo tímaflækjan er $\mathcal{O}(n^3)$.
- Þetta ætti því einnig að vera of hægt.

► Tökum þó eftir einu.

- ightharpoonup Þegar við reiknum fallgildið f(i,j) þá tökum við stærsta gildið
- á skálínunni $f(i + 1, 1), f(i + 2, 2), \dots, f(i + k, k)$. Eftir að hafa reiknað fallgildin fyrir tiltekna stökklengd hefur eitt stak bæst við hverja skálínu.
- Það er lítið mál að halda utan um stærsta stakið á hverri

skálínu með því að uppfæra eftir að nýtt fallgildi er reiknað.

Þá getum við líka reiknað hvert fallgildi í föstum tíma.

```
1 #include <stdio.h>
 2 #include <assert.h>
 3 typedef long long II;
4 #define MAXN 3001
 5 #define INF (1LL << 60)
6 | | max(| | a, | | b) { return a > b ? a : b; }
7 | | min(| | a, | | b) { return a < b ? a : b; }
8
9 int main()
10 {
11
       II i, j, k, n;
       scanf("%||d", &n);
12
13
       II d[n][n], e[n], a[n];
14
       for (i = 0: i < n: i++) scanf("%||d". &a[i]):
15
       for (i = 0; i < n; i++) for (j = 0; j < n; j++) d[i][j] = -INF;
16
       d[n-1][1] = e[n-1] = a[n-1];
       for (i = n - 2; i >= 0; i--) e[i] = d[i][1] = d[i + 1][1] + a[i];
17
18
       for (j = 2; j < n; j++)
19
           e[n - j] = max(e[n - j], d[n - 1][j] = a[n - 1]);
20
           for (i = n - 2; i \ge 0; i--)
21
22
23
               d[i][i] = e[i + 1] + a[i]:
24
               if (i >= j - 1) e[i - j + 1] = max(e[i - j + 1], d[i][j]);
25
26
       printf("%||d \n". d[0]|n - 1|):
27
28
       return 0:
29 }
```

- Nú er þetta forrit lítið annað en tvöföld for-lykkja, hvor af lengd $\mathcal{O}(n)$.
- ▶ Svo tímaflækjan er $\mathcal{O}(n^2)$.
- ightharpoonup Petta ætti sleppa, því $(3\cdot 10^3)^2=9\cdot 10^6<10^8.$

